Homework 4

58119125 蒋卓洋

1) Given the following KG, please answer the question "Is Albert Einstein a mortal?" using query rewriting on the query *Mortal(Albert Einstein)* (this query is used for checking whether Albert Einstein is a mortal).

Solution:

$$Mortal(x) \lor Woman \lor Man(x) \lor Children(x)$$

2) The following ontology is inconsistent. Please remove one axiom in it to make it consistent and provide a model of the new ontology.

Highvalue_Company □ Solvent_Company Solvent_Company □ ¬Bankrupt_Enterprise Highvalue_Company(Lehman_Brothers_Holdings) Bankrupt Enterprise(Lehman Brothers Holdings)

Solution:

A. Remove 'Bankrupt_Enterprise(Lehman_Brothers_Holdings)'; Model:

$$\begin{split} &\Delta = \{lbh\} \\ &I_{I}(Lehman_Brothers_Holdings) = lbh, \\ &I_{C}(Highvalue_Company) = \{lbh\}, \\ &I_{C}(Solvent_Company) = \{lbh\}, \\ &I_{C}(Bankrupt_Enterprise) = \{\} \end{split}$$

B. Remove 'Solvent_Company □ ¬Bankrupt_Enterprise'; Model:

```
\begin{split} &\Delta = \{lbh\} \\ &I_{I}(Lehman\_Brothers\_Holdings) = lbh, \\ &I_{C}(Highvalue\_Company) = \{lbh\}, \\ &I_{C}(Bankrupt\_Enterprise) = \{lbh\}, \\ &I_{C}(Solvent\_Company) = \{lbh\} \end{split}
```

C. Remove 'Highvalue_Company(Lehman_Brothers_Holdings)'; Model:

$$\begin{split} &\Delta = \{lbh\} \\ &I_I(Lehman_Brothers_Holdings) = lbh, \\ &I_C(Bankrupt_Enterprise) = \{lbh\}, \\ &I_C(Highvalue_Company) = \{\}, \\ &I_C(Solvent_Company) = \{\} \end{split}$$

D. Remove 'Highvalue_Company ☐ Solvent_Company'; Model:

$$\begin{split} &\Delta = \{lbh\} \\ &I_{I}(Lehman_Brothers_Holdings) = lbh, \\ &I_{C}(Bankrupt_Enterprise) = \{lbh\}, \\ &I_{C}(Highvalue_Company) = \{lbh\}, \\ &I_{C}(Solvent_Company) = \{\} \end{split}$$

3) Why TransE cannot handle symmetric relation and one-to-many relation?

Solution:

1) For an arbitrary triple $\langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle$, the symmetric relation can be described as:

$$\begin{cases} h+r=t\\ t+r=h \end{cases}$$

So that, this will hold only if:

$$\begin{cases} \boldsymbol{r} = 0 \\ \boldsymbol{h} = \boldsymbol{t} \end{cases}$$

This is not a condition for any triple, so TransE cannot handle symmetric relation.

② For two arbitrary triples $\langle h, r, t_1 \rangle$ and $\langle h, r, t_2 \rangle$ with different vector t_1 and t_2 , the one-to-many relation will be described as:

$$\mathbf{t_1} = \mathbf{h} + \mathbf{r} = \mathbf{t_2}$$

So that, this will hold only if:

$$t_1 = t_2$$

This is contrary to the original conditions, so TransE cannot handle one-to-many relation.