Commands

clc clear command window

clear delete all variables

clear var1 var2 var3 ... delete selected variables

grid on adds a grid to the current graph grid off removes grid from current graph

help commandhelp on command (e.g. help clear)help functionprovide help on function (e.g. help sqrt)

format compact prevent blank lines in output

lookfor keyword looks for functions having keyword in their initial comment

who list all variables

whos list all variables (with variable sizes) name = @(args) expression define an "anonymous" function

Miscellaneous

comments % this is a comment

long comments % {

Everything in here is a comment.

The start and end markers must be on lines by themselves.

%}

long lines Lines that are uncomfortably long may be broken across ...

multiple lines by ending all but the last line with a ...

series of three dots.

creating vectors $\frac{1}{n}$ linspace (s, e, n) $\frac{1}{n}$ evenly spaced values from s to e

s: e from s to e in steps of 1

s:inc:e from s in steps of inc, last value not to exceed e

[v1 v2 v3 v3 ...] vector containing specified values

ones (1, n) row vector of n ones zeros (1, n) row vector of n zeroes

left division x y can be thought of as being equivalent to $x^{-1} * y$

Function m-files

function [outputs] = functionName (inputList)

% functionName comment describing what function does

% comments describing how to use function (description of inputs, etc.)

end

% can have subfunctions (accessible only from within same file)

Functions

abs(x) absolute value of x cond(A) condition number of matrix det(A) determinant of matrix diff(v)returns a vector contains the differences between successive elements of vector v. length of result is length(v) - 1 aborts m-file execution with specified error message error('message') exp(x)e to the power of x creates an n by n identity matrix eye(n) figure (num) switch to working with specified figure fminbnd(f, l, h)locates minimum of function f between l and h**fplot**(f, range) plot function f over interval range. range is a 2 element vector. example: fplot (f, [0, 10]) see *plot* for line options. outputs values using format defined by 'format' **fprintf**('format', v1, v2, v3...) format value fields: %f (fixed point), %e, %E (scientific), %g (general), %d (integer) width and precision control: %12.3f = use 3 decimal places in a field 12 wide format controls: \n (newline) \t (tab) **fzero**(f, loc) returns a root of function fif loc is a 2 element vector, looks for a root between loc(1) and loc(2): more efficient otherwise looks for a root in the vicinity of *loc* dy = gradient(y)returns a vector containing first order differences for vector v dy(1) is a forward difference, dy(n) is a backwards difference other elements of dy are central differences. for x values one apart the result is the numerical estimate of dy/dxfor other spacings the result must be divided by the step size input('prompt') outputs *prompt*, returns a value obtained from the user **integral** (f,a,b) integrates function f between a and b (Simpson quadrature) **interp1**(x, y, xin, opt) evaluates the spline defined by the data points at xin opt can be 'linear' (linear spline), 'spline' (regular cubic spline), 'cubic' (cubic Hermite spline), or 'pchip' (same thing) **interp1**(x, y, opt, 'pp') generates the piecewise polynomial for the spline defined by the data points. opt is as above (see also **ppval**) returns the inverse of square matrix A inv(A) length(x) returns the length of row or column vector x **linspace**(begin, end, n) returns a vector containing n equally spaced values running from begin to end. if n is omitted 100 values are generated log(x)natural logarithm (log base e) of xlog10(x)common logarithm (log base 10) of x[L,U] = lu(A)LU decomposition of A (L "psychologically lower triangular") [L,U,P] = lu(A)LU decomposition of A $\max(s1, s2)$ returns the maximum of s1 and s2 (s1, and s2 scalars) max(v) returns the maximum value in vector v

```
use [maxVal, maxPos] = max(v) to get both max value and its position
min(...)
               analogous to max
[t, y] = ode45(f, xspan, y0)
                              solves the differential equation defined by slope function f
                              over the interval xspan using initial conditions y0.
                              t and y are column vectors containing the solution
                              function f is given values for t and y and returns dy/dt
               creates a r by c matrix of ones
ones(r, c)
               creates a matrix of ones with the dimensions contained in 2 element vector size
ones(size)
plot(x, y, opt) plot y values against x values. x are y are vectors of the same length
               opt is optional: 'r' = red, 'b' = blue, 'k' = black, 'g' = green,
               'x' = crosses, 'o' = circles, '-' = solid line, ':' = dotted, '--' = dashed, '-.' = dash dot
polyfit(x, y, n)uses data points to generate an nth order polynomial
polyval(p, x) evaluates the polynomial defined by vector p for value x.
               if x is a matrix the result will be a matrix of the same size.
polyder(p)
               produces a polynomial that is the derivative of the polynomial defined by vector p
polyint(p)
             produces a polynomial that is the integral of the polynomial defined by vector p
              (with the constant of integration assumed to be zero)
ppval(pp, xin) evaluates piecewise polynomial pp for the value(s) in xin
                       QR decomposition of Z. The 0 selects "economy" version of outputs.
[Q0,R0] = qr(Z,0)
               returns a column vector containing all of the roots of the polynomial defined by
roots(p)
               vector p
               returns a 2 element row vector containing the dimensions of x (# rows, # cols)
size(x)
               use [rows cols] = sign(x) to get dimensions into separate variables
\mathbf{sqrt}(\mathbf{x})
               returns the square root of x
               sums up all of the elements of vector v
sum(v)
spline(x, y, xin)
                       like interp1 with opt = 'spline' (but allows for clamped end condition)
       if y is exactly two elements longer than x the first and last elements are the
       first derivatives at the beginning and end of the spline (clamped end condition)
spline(x, y)
               as above but produces a piecewise polynomial rather than y values
title('title')
               adds a title to the current figure
               applies trapezoidal integration to data points
trapz(x, y)
               as above but x values assumed evenly spaced and one apart
trapz(y)
xlabel('label') adds a label to the x axis of the current figure
ylabel('label') adds a label to the y axis of the current figure
zeros(r,c)
               creates a r by c matrix of zeroes
               creates a matrix of zeros with the dimensions contained in 2 element vector size
zeros(size)
Trigonometric functions (input in radians): sin(a), cos(a), tan(a), cot(a), sec(a), csc(a)
```

Inverses (output in radians): $a\sin(x)$, $a\cos(x)$, $a\tan(x)$, $a\tan(x)$, $a\tan(x)$, $a\cot(x)$, $a\sec(x)$, $a\csc(x)$

Root Finding:

$$x_R = x_U - \frac{f(x_U)(x_U - x_L)}{f(x_U) - f(x_L)} \quad x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)} \quad x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$E_{MAX} = \frac{\Delta x^0}{2^N}$$
 $N = \log_2 \frac{\Delta x^0}{E_{MAX}} = \frac{\log(\Delta x^0 / E_{MAX})}{\log 2}$

N = estimate number (first is estimate 1), estimate N involves N-1 function evaluations/wall movements

Golden Section:

$$X_2 = X_U - d$$
, $X_1 = X_L + d$, $d = (\phi - 1)(X_U - X_L)$

$$\phi = \frac{1 + \sqrt{5}}{2} = 1.6180339887 \quad E_{MAX} = \frac{\Delta x^{0} (\phi - 1)^{N-1}}{2}$$

max error assumes midpoint of interval chosen as answer; as above estimate N involves N-1 wall movements

Simultaneous Equations:

row = row - (element _ below _ pivot / pivot)* pivot _ row

$$Ax = b \Rightarrow LUx = b \Rightarrow Ld = b \text{ and } Ux = d$$
 $d = L \setminus b, x = U \setminus d$
 $Ax = b \Rightarrow P^{-1}LU = b \Rightarrow LUx = Pb \Rightarrow Ld = Pb \text{ and } Ux = d$ $d = L \setminus (P*b), x = U \setminus d$

Iterative methods: $x_{k+1} = Cx_k + d$ $c_{ii} = 0$ $c_{ij} = -a_{ij} / a_{ii}$ $d_i = b_i / a_{ii}$

Lagrange Polynomial:

$$p(x) = L_1(x)y_1 + L_2(x)y_2 + L_3(x)y_3 + \dots + L_N(x)y_N$$

$$L_k(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_N)}{(x_k - x_1)(x_k - x_2) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_N)}$$

Numerator of $L_k(x)$ is product of all $(x - x_i)$ except for $(x - x_k)$ Denominator of $L_k(x)$ is product of all $(x_k - x_i)$ except for $(x_k - x_k)$

Newton's Polynomial:

$$p(x) = a_1 + a_2(x - x_1) + a_3(x - x_1)(x - x_2) + \dots + a_N(x - x_1) \dots (x - x_{N-1})$$

$$a_1 = y_1$$
 $a_2 = Dy_1$ $a_3 = D^2 y_1$... $a_N = D^{N-1} y_1$

$$Dy_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \quad D^2 y_i = \frac{Dy_{i+1} - Dy_i}{x_{i+2} - x_i} \quad D^k y_i = \frac{D^{k-1} y_{i+1} - D^{k-1} y_i}{x_{i+k} - x_i}$$

Regression:

Straight line fit:
$$y = mx + b$$
 $m = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - \left(\sum x_i\right)^2}$ $b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n\sum x_i^2 - \left(\sum x_i\right)^2} = \overline{y} - m\overline{x}$

$$r^{2} = \frac{S_{t} - S_{r}}{S_{t}}$$
 $S_{t} = \sum (y_{i} - \overline{y})^{2}$ $S_{r} = \sum (y_{i} - f(x_{i}))^{2}$

For a straight line fit only:
$$r = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n\sum x_i^2 - \left(\sum x_i\right)^2} \sqrt{n\sum y_i^2 - \left(\sum y_i\right)^2}}$$

For
$$y = \alpha e^{\beta x}$$
 $x' = x$ $y' = \ln(y)$ $\alpha = e^b$, $\beta = m$

For
$$y = \alpha x^{\beta}$$
 $x' = \log(x)$ $y' = \log(y)$ $\alpha = 10^{b}$, $\beta = m$

For
$$y = \alpha \frac{x}{\beta + x}$$
 $x' = \frac{1}{x}$ $y' = \frac{1}{y}$ $\alpha = 1/b, \beta = m/b$

General least squares: $y = a_1 z_1(x) + a_2 z_2(x) + a_3 z_3(x) + \cdots + a_m z_m(x)$

Basic solution : $z_{ij} = z_j(x_i)$ $Z^T Z a = Z^T y$ QR decomposition : Z = QR $Ra = Q^T y$

Integration:

$$I = \frac{h}{2} (f(x_0) + f(x_1)) \implies I = \frac{h}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + \dots + 2f(x_{N-1}) + f(x_N))$$

$$I = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) \implies I = \frac{h}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{N-1}) + f(x_N))$$

$$I = \frac{3h}{8} (f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3))$$

$$I_{j,1} = \text{estimate using } h_j \quad h_j = \frac{h_1}{2^{j-1}} \quad I_{j,k} = \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1} \quad \left| \varepsilon \right| = \left| \frac{I_{1,k} - I_{2,k-1}}{I_{1,k}} \right|$$

n	c_0	X ₀	c_1	X ₁	c_2	X ₂	c ₃	X ₃
2	1	-0.57735	1	0.57735				
3	5/9	-0.77459	8/9	0	5/9	0.77459		
4	0.347855	-0.861136	0.652145	-0.339981	0.652145	0.339981	0.347855	0.861136

Directly usable only for -1 to 1. For a to b use $\int_{a}^{b} f(x) dx \approx \left(\frac{b-a}{2}\right) \sum_{i=0}^{n-1} \left(c_{i} f\left(\frac{b+a}{2} + \frac{b-a}{2}x_{i}\right)\right)$

Differentiation:

First Derivative	Formula	Error
Forward (2 point)	$[f(x_{i+1}) - f(x_i)]/h$	O(h)
Forward (3 point)	$[-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)]/2h$	$O(h^2)$
Backwards (2 point)	$[f(x_i) - f(x_{i-1})]/h$	O(h)
Backwards (3 point)	$[3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})]/2h$	$O(h^2)$
Central (2 point)	$[f(x_{i+1}) - f(x_{i-1})]/2h$	$O(h^2)$
Central (4 point)	$\left[-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})\right]/12h$	$O(h^4)$

$$D_{j,1} = \text{estimate using } h_j \quad h_j = \frac{h_1}{2^{j-1}} \quad D_{j,k} = \frac{4^{k-1}D_{j+1,k-1} - D_{j,k-1}}{4^{k-1} - 1} \quad |\varepsilon| = \left| \frac{D_{1,k} - D_{2,k-1}}{D_{1,k}} \right|$$

ODE's:

$$\frac{dy}{dt} = f(t, y)$$
 $y_{i+1} = y_i + \phi h$ Euler: $\phi = f(t_i, y_i)$ Midpoint: $\phi = f(t_{i+1/2}, y_{i+1/2})$

Heun:
$$y^{0}_{i+1} = y_i + f(t_i, y_i)h$$
 $y^{j}_{i+1} = y_i + \frac{f(t_i, y_i) + f(t_{i+1}, y^{j-1}_{i+1})}{2}h$

no iteration $y_{i+1} = y^1_{i+1}$ with iteration $y_{i+1} = y^m_{i+1}$ $\left| \frac{y^m_{i+1} - y^{m-1}_{i+1}}{y^m_{i+1}} \right| < \varepsilon$

$$A\frac{d^2y}{dt^2} + B\frac{dy}{dt} + Cy = D \implies \frac{dy}{dt} = y', \quad \frac{dy'}{dt} = \frac{D - By' - Cy}{A}$$