NASA CONTRACTOR REPORT

NASA CR-161890

ADVANCED SHUTTLE SIMULATION TURBULENCE TAPS (SSTT)

By Frank B. Tatom and S. Ray Smith Engineering Analysis, Inc. 2109 Clinton Avenue W., Suite 432 Huntsville, Alabama 35805

(NASA-CR-161890) ADVANCED SHUTTLE SIMULATION TURBULENCE TAPES (SSTT) USERS GUIDE (Engineering Analysis, Inc.) 82 p HC A05/MF A01 CSCL 22B N82-12106

Unclas 63/16 08423

September 29, 1981

Prepared for

j

Ž.

NASA George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

1. REPORT NO.		AL REPORT STANDARD TITLE PAG
NASA CR-161890	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
		-
7. AUTHOR(S) Frank 8. Tatom and S. Ray Sr	nith	8. PERFORMING ORGANIZATION REPORT EAI – TR-81 – 003A
9. PERFORMING ORGANIZATION NAME AND AD		10. WORK UNIT, NO.
Engineering Analysis, Inc.		·
2109 Clinton Avenue W., Suit	e 432	11. CONTRACT OR GRANT NO. NASS_3318
Huntsville, Alabama 35805		13 TYPE OF REPORT & PERIOD COVERE
		7
National Aeronautics and Spa	ace Administration	Contractor
Washington, D.C. 20545		14. SPONSORING AGENCY CODE
IS. SUPPLEMENTARY NOTES		
Prenared under the technical	monitorship of the Atmospher	ic Sciences Division Space
	and Engineering Directorate,	
16. ABSTRACT		
A nonrecursive model (b	ased on von Karman spectra) for Shuttle Orbiter has been dev	or atmospheric turbuler.ce
simulation of instantaneous	vertical and horizontal gusts	at the vehicle center-of-
gravity and also for simula	tion of instantaneous gust gra	dients. Based on this
model, the time series for b	ooth gusts and gust gradients	have been generated and
Stored on a series of magne	tic tapes which are entitled Some time series are designed to	nuttle Simultation
	I to an altitude of 120,000 me	
· ·	cument is to provide any poter	
an appropriate description of	of the characteristics of the	simulated turbulence stored
on the tapes, as well as ins	structions regarding their pro	per use. The characteristic
of the turbulence serie, in	cluding he spectral shape, cameters with a7titude, are disc	utoff frequencies, and
	ir use is presented. Appendic	
spectral and statistica and	alyses of the SSTT and example	s of how the SSTT should
be used.	•	
7. KEY WORDS	18. DISTRIBUTION ST	ATEMENT
	Unclas	sified — Unlimited
	4	
	1.1.1.	
	William (- Snoth
	J. E. Kingsbury	, Space Sciences Laboratory
g. SECURITY (LASSIF, (of this report)	20. SECURITY CLASSIF, (of this page)	21. NO. OF PAGES 22. PRICE
Unclassified	Unclassified	82 NTIS
MFC - Form \$292 (Rev. December 1972)		Morration Service Seriostick Vivileia 20151

-2, . i

TABLE Of CONTENTS

S <u>ectio</u> n													Page
1	INTROL	UCTION											1-1
2	CHARAC	TERIST	ICS OF S	SIMULATI	ED TUR	BULEN	CE .						2-1
	2.2	Dimens	ence Gen ionless tion of	Energy	Conte	nt							2-1 2-1 2-4
3	USE OF	SIMUL	ATED TUR	RBULENCE	TAPE	s					•		3-1
	3.1 3.2	Readin Conver	g the Ti	ime Ser: Dimensi	ies Ta ional	pes Value	s.	::					3-1 3-2
APPENDIX APPENDIX APPENDIX	В	Statis	al Analy stical Ar e Use of	nalysis	of Si	mulat	ed T	urbul	ence.				A-1 6-1 C-1
		C.1 C.2	Example Example Dimension	Conver	sion f	rom D	imen	sionl	ess t	0			C-1
			C.2.1	Conver	sion o	f Gus	t Ti	me Se	eries,	u ₁ (t _n).		C-1
			C.2.2	Convers									C-5

LIST OF ILLUSTRATIONS

<u>Fiqure</u>		Page
A- 1	u ₁ Gust Spectrum, Altitude Band #1	.A-2
A-2	u ₁ - Gust Spectrum, Altitude Band #2 ,	. A - 2
A-3	u ₁ Gust Spectrum, Altitude Band #3	. A-3
A-4	u Gust Spectrum, Altitude Band #4.	A-3
A-5	u ₁ - Gust Spectrum, Altitude Band d5	
F6	u - Gust Spectrum, Altitude Band #6	. A-4
A-7	u ₂ - Gust Spectrum, Altitude Band #1.	.A-5
A-8	u ₂ - Gust Spectrum, Altitude dand #2	A-5
A-9	u ₂ - Gust Spectrum, Altitude Band #3	.A-6
A-10	u ₂ - Gust Spectrum, Altitude Band #4, ,	.A-6
A-11	u ₂ - Gust Spectrum, Altitude Band #5	. A-7
A- 12	u ₂ Gust Spectrum, Altitude Band b6.	.A-7
A- 13	u ₃ Gust Spectrum, Altitude Band 11 ,	. A-8
A- 14	u ₃ - Gust Spectrum, Altitude Band #2	.A-8
A-15	u ₃ Gust Spectrum, Altitude Band 13	.A-9
A- 16	u ₃ - Gust Spectrum, Altitude Band #4.	. A-9
A-17	u ₃ Gust Spectrum, Altitude Band #5	₄ A-10
A- 18	u ₃ - Gust Spectrum, Altitude Band #6	. A-10
A- 19	3u ₂ /3x ₁ - Gust Gradient Spectrum, Altitude Band #1.	.A-11
A-20	θu ₂ /θx ₁ - Gust Gradient Spectrum, Altitude Band #2	.A-11
A-21	3u ₂ /3x ₁ - Gust Gradient Spectrum, Altitude Band #3	. A-12
A-22	3u ₂ /3x ₁ - Gust Gradient Spectrum, Altitude Band #4 ,	. A-12
A-23	3u ₂ /3x ₁ - Gust Gradient Spectrum, Altitude Band #5	. A-13
A-24	θu ₂ /θx ₁ - Gust Gradient Spectrum, Altitude Band 16	. A-13
A – 25	au ₃ /ax ₁ - Gust: Gradient Spectrum, Altitude Band #1	
A-26	<pre>3u₃/3x₁ - Gust Gradient Spectrum, Altitude Band #2</pre>	.A-14
A-27	au ₃ /ax ₁ - Gust Gradient Spectrum, Altitude Band #3	. A-15
A-28	3u ₃ /3x ₁ - Gust Gradient Spectrum, Altitude Band #4.	
A-29	au ₃ /ax ₁ - Gust Gradient Spectrum, Altitude Bund #5	
.1-30	θu ₃ /θx ₁ Gust Gradient Spectrum, Altitude band #6.	A-16

LIST OF ILLUSTRATIONS (continued)

<u>Fiqure</u>		Page
A-31	$\frac{\partial u_3}{\partial x_2} =$	Gust Gradient Spectrum, Altitude Band #1
A-32		Gust Gradient Spectrum, Altitude Band #2
A- 33		Gust Gradient Spectrum, Altitude Band #3
A- 34	$\frac{\partial u_3}{\partial x_2} =$	Gust Gradient Spectrum, Altitude Band #4
A- 35		Gust Gradient Spectrum, Altitude Band #5 4-19
A- 36	$\frac{\partial u_3}{\partial x_2}$	Gust Gradient Spectrum, Altitude Band #6
B- 1	u, - Gust	Probability Density Distribution, Altitude Band #1 B-4
B-2	u ₁ - Gust	Probability Dersity Distribution, Altitude Band #2. • • B-5
B	"1 - Gust	Probability Density Distribution, Altitude Band #3 B-6
B-4	u, Gust	Probability Density Distribution, Altitude Band #4 8-7
8-5	u ₁ - Gust	Probability Density Distribution, Altitude Band #5 8-8
B-6	u - Gust	Probability Density Distribution, Altitude Band #6 B-9
B- 7	- Gust	Probability Density Distribution, Altitude Band #1 8-10
B-8	"2 Gust	Probability Density Distribution, Aititude Band #2 B-11
B-9	u_2^- Gust	Probability Density Distribution, Altitude Band #3 6-12
B-10	u ₂ - Gust	Probability Density Distribution, Altitude Band #4 8-13
B-11	Gust	Probability Density Distribution, Altitude Band #5 8-14
8-12	u ₂ - Gust	Probability Density Distribution, Altitude Band #6 8-15
B- 13	u ₃ = Gust	Probability Density Distribution, Altitude Band #1 8-16
B-14	u ₃ - Gust	Probability Density Distribution, Altitude Band #2 8-17
8-15	Gust	Probability Density Distribution, Altitude Band 13 8-18
8-15	u ₃ - Gust	Probability Density Distribution, Altitude Band ¥4 8-19
8-17	u ₃ - Gust	Probability Density Distribution, Altitude Band #5 8-20
8-18		Probability Density Distribution, Altitude Band #6 6-21
8- 19	$\frac{\partial u_2}{\partial x_1}$ -	Gust Gradient Probabi1ity Density Distribution, Altitude Band #1. 8-22
B-20	^{au} 2/ ^{ax} 1 -	Gust Gradient Probability Density Distribution, Altitude Band #2. 8-23
8-21	^{9u} 2/9x ₁ -	Gust Gradient Probability Density Distribution, Altitude Band #3
8-22		Gust Gradient Probability Density Distribution,

LIST OF ILLUSTRATIONS

(Cont inued)

<u>Figure</u>	$\underline{\mathbf{P}}_{\mathbf{z}}$	<u>age</u>
6-23	au ₂ /ax ₁ - Gust Gradient Probability Density Distribution , Altitude Band #5.	-26
8-24	<pre>3u₂/3x₁ Gust Grauient Probability Density Distribution,</pre>	-27
8-25	3u ₃ /3x ₁ - Gust Gradient Probability Density Distribution, Altitude Band #1	-28
6-26	au ₃ /ax ₁ - Gust Gradient Probability Density Distribution, Altitude Band #2.	-29
8-27	3u ₃ /3x ₁ - Gust Gradient Probability Density Distribution, Altitude Band #3	3-30
B- 28	3u ₃ /3x ₁ - Gust Gradient Probability Density Distribution, Altitude Band #4,	-31
6-29	θu ₃ /θx ₁ - Gust Gradient Probabi1ity Density Distribution, Altitude Band #5	3-32
8-30	θu ₃ /θx ₁ Gust Gradient Probability Density Distribution, Altitude Band #6	3-33
8-31	<pre>3u3/3x2 = Gust Gradient Probability Density Distribution, Altitude Band #1</pre>	3-34
8-32	θu ₃ /θx ₂ - Gust Gradient Probability Density Distribution, Altitude Band #2	3-35
B- 33	∂u ₂ /∂x ₂ - Gust Gradient Probabi1 ity Density Distribution,	3-36
B-34	au ₃ /ax ₂ - Gust Gradient Probability Density Distribution,	3-37
B-35	au ₂ /ax ₂ - Gust Gradient Probability Density Distribution,	3-38
8-36	3u3/3x2 - Gust Gradient Probability Density Distribution,	3-39

j

LIST OF TABLES

<u>Table</u>		Page
2-1 2-2 2-3 3-1 3-2 3-3	Summary of Turbulence Parameters in Discrete Altitude Bands. Types of Simulated Turbulence. Dimensionless Energy Content for Gusts and Gust Gradients. Index of Shuttle Simulated Turbulence Tapes (SSTT) Magnetic Tape Characteristics. Variation of Standard Deviation and Length Scale	2-3 2-3 3-1
3-4	with Altitude	
A-1 B-1 B-2 B-3	Matrix of Spectral Analysis Figures	. B-1
8-4 C-1 C-2	the Observed Standard Deviation. Matrix of Statistical Analysis Figures SSTT-1 Example Records SSTT-4 Example Records	B-3 c-2

1. INTRODUCTION

The effects of atmospheric turbulence in both horizontal and near-horizontal flight, during the return of the Space Shuttle, are important for determining design, control, and "pilot-in-the-loop" effects. A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight pat): of the Shuttle Orbiter has been been developed which provides for simulation of instantaneous vertical and norizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients have been generated and stored on a series of magnetic tapes which are entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters.

The purpose of this document is **to provide** any potential user of the SSTT with an appropriate description of the characteristics of the simulated turbulence stored on the tapes, as well as instructions regarding their proper use. Section 2 contains a discussion of the characteristics of the turbulence series, including the spectral shape, cutoff frequencies, and variation of turbulence parameters with **al**titude. Information regarding the tapes and their use is presented in Section **3.** References cited are included in Section 4. Appendices A and B present the results of spectral and statistical analyses of the **SSTT** while examples of how the SSTT should be used are provided in Appendix C.

See al

2. CHARACTERISTICS OF SIMULATED TURBULENCE

The non-recursive turbulence model used to generate the SSTT is based on von Karman spectra with finite upper limits corresponding to the dimensions of the Space Shuttle, relative to the scale of turbulence in the atmosphere. Because the scale of turbulence increases with altitude while the dimensions of the Space Shuttle are fixed, the finite upper limits of the von Karman spectra increase with altitude. In order to take into account these spectral changes, for each gust or gust gradient there are actually six time series corresponding to six altitude bands extending from ground level to 120,000 meters, as indicated in Table 2-1. A more detailed description of the characteristics of the turbulence is provided in the subsections which follow.

2.1 TURBULENCE GENERATION PROCEDURE

The six types of SSTT are presented in Table 2-2. For each gust and gust gradient series indicated in the table, the generation procedure involved convolving a discrete white noise signal of unit variance with a discrete approximation of the impulse response function corresponding to the appropriate, dimensionless spectrum [1]. Each of the resulting series consists of 8500 discrete signals. The time interval, T_1 , associated with each series was based on the maximum frequency for which the simulation procedure is considered valid. These time intervals and the corresponding limiting frequencies, Ω_{ilmax} , are included in Table 2-1 along with the turbulence length scales, L_i .

2.2 DIMENSIONLESS ENERGY CONTENT

1

The total dimensionless energy content of each time series for each altitude band was established by integrating the corresponding spectra over the appropriate finite limits indicated in Table 2-1. The resulting energy content is presented in Table 2-3. As might be expected the total dimensionless energy content of each of the turbulent gust series is less than or equal to unity. The dimensionless energy content for each gust gradient, however,

Actually the term "energy" is not precise when dealing with gust gradients.

TABLE 2-1. SUMMARY OF TÜRBÜLENCE PARAMETERS IN DISCRETE ALTITÜDE BANDS

BAND	LOWER	UPPER	TURBU	TURBULENCE LENGTH SCALE L _i (m)	ENGTH m)	TIME T _i (d	TIME INTERVAL	L nless)	TIME INTERVAL MAXIMUM FREQUENCY I_{i} (dimensionless) $\Omega_{i,1\mathrm{max}}$ (dimensionless)	MAXIMUM FREQUENCY $\Omega_{\rm iImax}({ m dimension})$	NCY on less!
	(m)	(E)		i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 i = 1 i = 2	i = 3	j = 1	1 = 2	i = 3	1 - 1	i = 2	i = 3
1	0	30	43.4	27.7	16.8	.6520	.6520 1.022 1.684	1.684		4.818 3.075	1.866
2	30	304.8	961	190	192	.1444	.1489	.1474	.1474 21.76 21.10 21.32	21.10	21.32
3	304.8	762	300	300	300	.09432		.09432	.09432 .09432 33.310 33.310 33.310	33.310	33.310
4	762	10,000	533	533	533	.05309	.05309 .05309	.05309	59.180	59.180	.05309 59.180 59.180 59.180
S	10,000	27,000	20,000	20,000 20,000 1,230 .004266.004266 .06785 736.5 736.5	1,230	.004266	.004266	.06785	736.5	736.5	46.30
9	27,000	120,000 200,000 200,000 11,800 .003511.003511 .0 950 894.9	200,000	200,000	11,800	.003511	.003511	.07950	894.9	894.9 52.80	52.80

NOTE: i = 1 applies to u_1 -gust i = 2 applies to u_2 -gust and $\partial u_2/\partial x_1$ gust gradients i = 3 applies to u_3 -gust and $\partial u_3/\partial x_1$ gust gradients

1

TABLE 2-2. TYPES OF SIMULATED TURBULENCE

Туре	Corresponding Spectrum	Comments
"1	Ф11	longitudinal gust
"2	^Ф 22	transverse gust
u ₃	Ф33	vert, ? gust
^{au} 2/ax1	[©] 22/11	yaw
∂u ₃ /∂x ₁	^Ф 33/ 11	pitch
^{au} 3/ ^{ax} 2	^Ф 33/22	rol I

TABLE 2-3. DIMENSIONLESS ENERGY CONTENT FOR GUSTS AND GUST GRADIENTS

ALTITUDE	SPECTRUM						
BAND	• _{ll}	^ф 22	ф ₃₃	Ф _{22/11}	^{\$} 33/11	⁴ 33/22	
1	.6225	.5010	.2752	.5877	.1525	. 1557	
2	.8595	.8560	.8383	13.147	12.171	12.308	
3	. 8956	. 8952	.8809	24.767	22.643	22.890	
4	. 9298	.9296	.9197	54.123	49.527	50.060	
5	.9977	. 9953	.9251	1740.	41.71	95.62	
6	1.000	.9973	.9363	2309.	52.08	391.6	

is not limited in such a manner and range as high as 391.6. For both gusts and gust gradients the total energy content generally increases with altitude because of similar increases in the limits of integration.

2.3 VALIDATION OF SIMULATED TURBULENCE

A spectra? analysis of each of the aimensionless time series has been carried out by means of a Fast Fourier Transform FFT4 [2]. The results, which are presented in Appendix A, demonstrate that the simulated turbulence possesses the proper von Karman spectral characteristics.

All of the dimensionless time series have also been analyzed statistically to determine the gust and gust gradient probability density functions. As shown in Appendix B the results of these analyses indicate that both the simulated gusts and gust gradients are normally distributed, with near-zero means and standard deviations consistent with the energy content presented in Table 2-3.

3. USE OF SIMULATED TURBULENCE TAPES

The dimensionless simulated turbulence time series are stored on six magnetic tapes as summarized in Table 3-1. Each tape actually contains six time series corresponding to the six altitude bands described in Section 2. The appropriate procedures for reading the tapes are presented in subsection 3.1, while the proper method for converting the time series from dimensionless to dimensional form is described in subsection 3.2.

TABLE 3-1. INDEX OF SHUTTLE SIMULATED TURBULENCE TAPES (SSTT)

<u>Tape</u>	Time Series	<u>Comments</u>
SSTT-1	u ₁ - gust	1ongitudinal gust
SSTT-2	u ₂ - gust	transverse gust
SSTT-3	u ₃ - gust	vertical gunt
SSTT-4	∂u ₂ /∂x ₁ - gust gradient	yaw
SSTT-5	∂u ₃ /∂x ₁ - gust Gradient	pitch
SSTT-6	au ₃ /a× ₂ - gust gradient	rol:

3.1 READING THE TIM SERIES TAPES

ş

The six time series on each tape are stored in parallel in 6-word logical records and are correlated (i.e., at any point in the time series the 6 turbulence values are all generated from the same string of random numbers). Each time series consists of 8500 elements and thus each tape containt 8500 6-word records. Pertinent characteristics of the tapes are summarized in Table 3-2.

The first record on each tape contains a 36-character alphanumeric descriptor. the second record contains the time series identification number (1-6), the number of points in the time series, and the dimensionless generation time step size for each altitude band. The format for this record is

TABLE 3-2. MAGNETIC TAPE CHARACTERISTICS

Host computer:

HP 21-MX Minicomputer

Number of tracks:

Q

Header type:

Non-label

Character type:

. bit ASCII

Recording density:

300 bits per inch

"2110,6(1X,E14.7)". Following these two records the time series is stored in 6-word records as previously described and in the format "6(1X,E14.7)". The order of storage in each record is from lowest to highest altitude band. Thus the first word in each record corresponds to band #1, the second to band #2, etc. Examples of the records as stored on the tapes are presented in Appendix C.

In the actual use of the time series tapes the sampling frequency may be different from the frequency at which the tapes were generated. In fact, the dimensionless sampling frequency will generally be variable. Therefore it will be necessary to interpolate the time series in order to get values at the proper points in dimensional time. Either zero-order or first-order interpolation should be used. Also, as time progresses and altitude changes, it will be necessary to switch altitude bands in the time series consistent with Table 2-1. Because of the manner in which the 6 time series are generated, any discontinuity due to switching time series should be minimal.

3.2 CONYERSION TO DINENSPONAL VALUES

4

The dimensionless time series on each tape must be converted to dimensional form before actual use in a simulstion exercise. The conversion process generally involves multiplication and/or division by the appropriate turbulence parameters. Examples of the conversion process for both gust and gust gradient time series are included in Appendix C.

For converting dimensionless gusts, $\textbf{u_i}$, the corresponding standard deviation, σ_i , should be used. Thus

$$u_i^* = \sigma_i u_i \tag{3-1}$$

where

For dimensionless gust gradient, $\frac{\partial u_i}{\partial x_j}$, the parameters σ_i and L_i are used. Thus

$$\frac{\partial u_{i}^{*}}{\partial x_{j}^{*}} = \frac{\partial_{i}}{L_{i}} \frac{\partial u_{j}}{\partial x_{j}}$$
(3-2)

where

$$\partial u_{j}^{\bullet}/\partial x_{j}^{*}$$
 = dimensional gust gradient

In the case of dimensionless time it is necessary to develop the procedures for converting both from dimensionless to dimensional form, and also to dimensionless from dimensional. In proceeding from dimensionless to dimensional time the dimensionless time step, T_i , represents the basic unit to be converted. The conversion involves the vehicle velocity, V, and the turbulence scale, L_i . Thus

$$\Delta t_{i}^{*} = aL_{i}T_{i}/V \qquad (3-3)$$

where

$$\Delta t_i^*$$
 = dimensional time step

It is important to note that because both L_i and V vary with altitude, the resulting dimensional time step Δt_i is not a constant. To obtain dimensional time, t_i^* , a summation process is involved as follows:

$$t_{1N} = \sum_{i=1}^{N} At_{in}^{*}$$

$$= aT^{1} \sum_{i=1}^{N} L_{in}^{/V} n$$
(3-4)

where

$$L_{in} = L_{i}(Z_{n})$$
 $V_{n} = V(Z_{n})$
 $Z_{n} = \text{altitude at nth step}$

In converting to dimensionless from dimensional time the basic unit, the dimensional time step, st, will normally be a constant. The corresponding dimensionless time interval, T_{im} , will be

$$T_{im} = \frac{V_{m}\delta t}{aL_{im}}$$
 (3-5)

The total dimensionless time, $\boldsymbol{t}_{\text{iM}}\text{, will be}$

$$t_{iM} = \sum_{m=1}^{M} \tau_{im}$$

$$= \sum_{m=1}^{M} \frac{v_m \delta t^*}{a L_{im}}$$

$$= \frac{\delta t^*}{a} \sum_{m=1}^{M} v_m / L$$

$$= \frac{\delta t^*}{a} \sum_{m=1}^{M} v_m / L$$
(3-6)

The dimensionless time, t_{iM} , corresponds to some M' dimensionless time intervals, T_i , plus some fractional interval, T', as follows:

$$t_{iM} = M'T_i + T' \tag{3-7}$$

where

$$0 \le T' \le T_i$$

j

Thus the number of dimensionless time intervals, M', can be computed as

$$M' = Int(t_{iM}/T_i)$$

$$= Int(\frac{\delta t^*}{aT_i} \sum_{m=1}^{M} V_m/L_{im})$$
(3-8)

where

The fractional interval, I', can be computed by the relation

$$T' = t_{iM} - M'T_{i}$$
 (3-9)

The interpolation process will involve interpolating between t_{iM} , and $t_{iM'+1}$ at the point t_{iM} as shown in Figure 3-1.

Figure 3-1. Relationship Between t_{iM} , $t_{iM'}$, and $t_{iM'+1}$

In the conversion to or from dimensional values three parameters are required: standard deviation, integral scale of turbulence, and vehicle speed. The variation of the turbulence standard deviation, σ_i , with altitude is presented in Table 3-3. The same table contains the turbulence scale, L_i , as a function of altitude. These tabulated values are consistent with JSC 0700 131.

The vehicle speed, V, fs **a** function of altitude but also may vary **from** one trajectory to another. Table 3-4 provides **representative** values of V as a function of altitude.

TABLE 3-3. VARIATION OF STANDARD DEVIATION 4ND LENGTH SCALE WITH ALTITUDE*

ALTITUDE		OARD DEYIA TURBULFN			EGRAL SCA	
(m)	σ _{1(m/sec)}	^{or} 2(m/sec)	[♂] 3(m/sec)	L ₁ (m)	L ₂ (m)	L ₃ (m)
10	2.31	1.67	1.15	21	11	5
20	2.58	1.98	1.46	33	19	11
30	2.75	2.20	1.71	43	28	17
40	2.88	2.36	1.89	52	35	23
50	2.98	2.49	2.05	61	42	29
60	3.07	2.61	2.19	68	49	35
70	3.15	? .71	2.32	75	56	41
80	3.22	2.81	2.43	82	63	47
90	3.28	2.89	2.54	89	69	53
100	3.33	2.97	2.64	95	75	59
200	3.72	3.53	3.38	149	134	123
304.8	3.95/4.37	31. 95/4-37	3.95/4.39	196/300	190/300	192/300
400	4.39	4.39	4.39	300	300	300
500	4.39	4.39	4.39	300	300	300
600	4.39	4.39	4.39	300	300	300
700	4.39	4.39	4.39	300	300	300
762	4.39/5.70	4.39/5.70	4.39/5.70	300/533	300/533	3001533
800	5.70	5.70	5.70	533	533	533
900	5.70	5.70	5.70	533	533	53 3
1524	5.70/5.79	5.70/5.79	5. 7015.7' 9	533	533	533
2000	5.79	5.79	5.79	533	53 3	533
3048	5.79/5.52	5i. 79/5.52	5.79/5.52	533	533	533
4000	€.52	5.52	5.52	533	533	533
5000	5.52	5.52	5.52	533	533	533
6096	5.52/5.27	5i_52/5.27	5.52/5.27	533	533	533
7000	5.27	5.27	5.27	533	533	533
8000	5.27	5.27	5.27	533	533	533
9144	5.27/4.22	5i.27 /4. 22	5.27/4.22	533	533	533
16000	4.22	4.22	4.22	533	533	537
50000	6.01	6.01	4.22	6691	6691	955

^{*}Double entries for a tabulated altitude indicate a step change in standard deviation or integral scale at that altitude.

a

TABLE 3-3. VARIATION OF STANDARD DEVIATION AND LENGTH SCALE WITH ALTITUDE (Continued)

ALTITUDE		NDARD DEVI		INTEGRAL SCALES OF TURBULENCE		
(m)	^σ 1(m/sec)	^σ 2(m/sec)	σ3(m/sec)	L ₁ (m)	L ₂ (m)	L ₃ (m)
27000	7.00	7.00	4.22	20000	20000	1230
30000	8,23	8,23	4.66	23533	23533	1443
40000	12.82	12.82	6.03	36693	36693	2231
50000	18.08	15.08	7.51	51 786	51786	3128
60000	23.94	23.94	8.90	68623	68623	4124
70000	30.36	30.36	10.28	87063	87063	5208
80000	37.29	37.29	11.65	106998	106998	6376
30000	44.70	44.70	13.01	128338	128338	7622
100000	52.58	52.58	14.35	151010	151010	8941
110000	60.89	60.89	15.69	174950	174950	10330
120000	69.62	69.62	17.02	200000	200000	1 1800

TABLE 3-4. VARIATION OF SHUTTLE SPEED WITH ALTITUDF [6]

ALTITUDE (m)	V (m/sec)		
100	152		
300	156		
500	158		
2000	170		
4000	188		
6000	200		
8000	240		
10000	300		
20000	500		
40000	1928		
60000	4695		
80000	7468		
100000	7521		
120000	7510		

1

APPENDIX A

SPECTRAL ANALYSIS OF SIMULATED TURBULENCE

By means of a Fast Fourier Transform [2] spectral analyses of all simulated turbulence have been performed. The results are presented in dimensionless form in Figures A-1 through A-36. Table A-1 provides a summar, of these figures. Also included in each figure is the theoretical von Karman spectra. The agreement between the theoretical spectra and the computed spectra is quite satisfactory.

TABLE A-1. MATRIX OF SPECTRAL ANALYSIS FIGURES

SERIES TYPE	ALTITUDE BAND						
	1	2	3	4	5	6	
u ₁	A-1	A-2	A-3	A-4	A-5	A-6	
u ₂	A-7	A-8	A-9	A-10	A-11	A-12	
u ₃	A-13	A-14	A-15	A-16	A-17	A-18	
au ₂ /ax ₁	A-19	A-20	A-21	A-22	A-23	A-24	
au ₃ /a× ₁	A-25	A-26	A27	A-28	A-29	A-30	
243/3×2	A-31	A-32	A-33	A-34	A-35	A-36	

The spectral analysis involved the first 4096 terms of each time series except for bands 5 and 6 for the u_1 and u_2 gusts. For these cases 8192 terms were used.

A-2

Figure A-5. u₁ - Gust Spectrum, Altitude Band #5

A-4

Figure A-8 u₂ - Wst Spectrum, Altitude Band #2

Figure A-7. u₂ - Gust Spectrum, Altitude Band #1

Į

Figure A-11. pz - Gust Spectrum, Alticade Band #5

j

 u_3 - ω st Spectrum, Altitude Band #3 Figure A-15.

00.87 69

00.}-

LOG10 SPECTRAL DENSITY

THEORETICAL VON KARMAN

00:0

00.1-

Figure A-22. $\Im \, u_2/\Im \, x_1$. Sust Gradient Spectrum. Altitude Band #5

1

Figure A-21. $3u_2/3x_1$ - Gust Gradient Spectrum, Altitude Band #3

 \mathbb{R}^{n^t}

Ϊ.

k 1 4

Figure A-25. au_3/ax_1 - Gust Gradient Spectrum, Altitude Band #1

Figure A-28. $3u_3/3x_1$ - Gust Gradient Spectrum, Altitude Band #4

Figure A-27_ au₃/ax₁ - Gust Gradient Spect om, Altitude Band #3

Figure A-30. au_3/ax_1 - Gust Gradient Spectrum, Altitude Band #6

A-16

a

Figure A-29. ∂u₃/∂x₁ - Gust Gradient Syectrum, Altitude Band #5

4

A-18

Figure A-36. $3u_3/3x_2$ - Gust Gradient Spectrum. Altitude Band #6

3u3/3x2 - Gust Gradient Spectrum, Altitude Band #5 Figure A-35.

A-19

mas

, . 1

APPENDIX B

STATISTICAL ANALYSIS OF SIMILATED TURBULENCE

8y means of standard statistical analysis procedures each of the

SSTT has been analyzed to determine its mean value, standard deviation, and
probability density distribution. The resulting mean values are presented
in Table B-1 while Table 8-2 contains the resulting standard deviations.

As expected all mean values were near zero. The standard deviations represent the square root of the energy content. The ratio of the theoretical energy content (From Table 2-3) to the square of the corresponding standard deviation (from Table 8-2) is presented in Table 8-3. The agreement appears quite satisfactory.

The gust and gust gradient probability density distributions are presented in Figures 8-1 through 8-36 in accordance with Table 8-4. In each figure the corresponding theoretical normal distribution is also presented. The results indicate that both the gust and gust gradient time series are very close to normal distributions.

TABLE B-1. MEAN VALUE OF GUST AND GUST GRADIENTS

SERIES TYPE	ALTITUDE BAND						
	1	2	3	4	5	6	
u ₁	019295	042050	051852	088142	0455	0464	
u ₂	010671	029576	0371	049431	0428	0441	
u ₃	006806	029652	037043	049370	043788	046637	
9u2/9x1	000002	001572	002794	005628	172152	206385	
au3/ax5	000001	001591	002798	005649	004293	004893	
au3/9x1	005760	073072	103823	160303	171448	286178	

The statistical analysis involved the first 4096 terms of each time series except for bands 5 a d 6 for the $\bf u_1$ and $\bf u_2$ gusts. For these cases 8192 terms were used.

TABLE 8-2. STANDARD DEVIATION OF GUST AND GUST GRADIENTS

SERIES TYPE	ALTITUDE BAND							
	1	2	3	4	5	6		
ul	. 788959	.927098	. 946351	.964271	. 9 98 88	.99996		
w ₂	.707845	.925201	.94619	.964152	,99764	.99863		
u ₃	.524571	. 915606	. 938552	.958985	.961845	,967651		
3u ₂ /3x ₁	.766627	?. 625937	4.9761 18	7.356808	41.717292	08.052734		
9u3/9x2	.390512	3.488677	4.758426	7.037516	6.458092	7.216648		
9n3/9x ¹	.394539	3.508280	4.784378	7.075349	9.778736	19.790119		

TABLE 8-3. RATIO OF THE THEORETICAL ENERGY CONTENT*

TO THE SQUARE OF THE OBSERVED STANDARD DEVIATION*

SERIES Type	ALTITUDE BAND							
	1	2	3	4	5	6		
ul	1.0001	1.0000	1.0000	1.0000	. 9999	4:0001		
u ₂	.9999	1.0000	.9999	1.0000	1.0000	1.0000		
ug	1.0001	1.0000	1.0000	1.0001	1.0000	.9999		
3u2/3x1	1.0000	1.0000	1.0000	1.0000	. 9998	1.0000		
343/3x2	1.0000	1.0000	1.0000	1.0000	1.0061	1.0000		
903/9x1	1.0002	1.0000	1.0000	1.0000	1.0000	.9999		

Theoretical energy content taken from Table 2-3.

[†]Observed standard deviation taken from Table B-2.

TABLE 8-4. MATRIX OF STATISTICAL ANALYSIS FIGURES

SERIES	ALTITUCE BAND					
TYPE	1	2	3	4	5	6
ul	8-1	8-2	8-3	B-4	B-5	B-6
u ₂	B-7	8-8	8-3	B- 10	B-11	B-12
u ₃	8-13	B-14	B-15	B-16	B-17	B-18
3u ₂ /3x ₁	B-19	6-20	8-21	B-72	3-23	8-24
∂u ₃ /∂x ₁	8-25	8-26	3-27	8-28	8-29	8-30
9n ³ /9x ⁵	B-31	8-32	8-33	B-34	8-35	8-36

Figure B-1. u_1 - Gust Probability Density Distribution, Altitude Band #1

Figure B-2. u_{1} - Gust Probability Density Distribution, Altitude Band #2

Figure B-3. u_1 - Gust Probability Density Distribution, Altitude Band 3

a

Figure 8-4. u_1 - Gust Probability Density Distribution, Altitude Band 4

3

Figure P-5. u_1 - Gust Probability Density Distribution, Alticude Band #5

a

Figure B-6. $u_{
m I}$ - Gust Probability Density Distribution, Altitude Band #6

:

1

Figure B-7. u₂ - Gust Probability Density Distribution, Altitude Band #1

 u_2 - Gust Probability Density Distribution, Altitude Band #2 Figure 8-8.

Figure B-9. u₂ - Gust Probability Density Distribution, Altitude Band #3

ļ

Figure 8-10. u_2 - Gust Probability Density Distribution, Altitude Band #4

Figure 8-11. u₂ - Gust Probability Density Distribution, Altitude Band #5

Figure 8-12. u_2 - Gust Probability Density Distribution, Altitude Band #C

Figure 8-13. u_3 - Gust Probability Density Distribution, Altitude Band #1

٠.,

Figure 8-14. u₃ - Gust Probability D. wit, Distribution, Altitude Band #2

Figure 8-15. u₃ - G_{PS}t Probability De_Osity Distribution, Altitude Bamd #3

Figure B-16. u_3 - Gust Probability Density Distribution, Altitude Band #4

Figure B-17. u_3 - Gust Probability Density Distribution, Altitude Band #5

Figure 8-18. u_3 - Gust Probability Density Distribution, Altitude Band #6

ڒ

Figure 8-19. $3u_2/3x_1$ - Gust Gradient Probability Density Distribution, Altitude Band #1

 $\partial u_2/\partial x_1$ - Gwst Gradient Probability Density Distribution, Altitude Band #2 Figure 8-20

Figure B-21. a_{u_2}/a_{x_1} - Gust Gradient Probability Density Distribution, Altitude Band #3

a

Figure 8-22. $\log / 3 x_1$ - Gust Gradiant Probability Density Distribution Altitude Band #4

Figure 3-23 au_2/ax_1 - Gust Gradient Probability Density Distribution, Altitude Bard #5

Figure 8-24. $3u_2/3x_1$ - Gust Gradient Probability Density Distribution, Altitude Band #6

Figure 8-25. a_{u_3}/a_{x_1} - Gust Gradient Probability Density Distribution, Altitude Band #1

 $\partial_{\omega_3}/\partial x_1$ - Gw ${}^\circ$ Gradient Probability Density Distribu ${}^\circ$ loo, Altitude Band #2

Figure

j

Figure B-27. $3\cdot 3/3x_1$ - Gust Gradient Probability Density Distribution, Altıtude Band #3

Figure 8-28. $3u_3/3x_1$ - Gust Gradient Probability Density Distribution, Altitude Band #4

Figure B-29. Bu,/ax, - Gush Gradient Probatintty Distric

it turk an

Figure 8-30. $3u_3/3x_1$ - Gust Gradient Probability Density Distribution, Altitude Band #6

Mistur 30r Gwst Gradient Probability Pensity Distribution Figure 8-31. 3u3/3x2

Figure 8-32. $3\omega_3/3\times_2$ - Gust Gradient Probability Density Distribution, Altitude Band #2

/ Distribut on, Arritude 6 θυ3/θχ2 - Gust Gradient Probability Der Figure 8-33.

Figure B-34. $3u_3/3x_2$ - Gust Gradient Probability Density Distribution, Altitude Band #4

Figure 8-35. a_{u_3}/a_{x_2} - Gust Gradient Probability Dervity Distribution "ititude Brook from

Figure 8-36. $3u_3/3x_2$ - Gust Gradient Probability Density Distribution, Altitude Band #6

APPENDIX C

EXAMPLE USE OF SSTT

The example which follows consists of two parts. In the first part, covered in subsection C.I, sample records from two tapes are presented and explained. In the second part, described in subsection C.2, the dimension-lees time series corresponding to the same records are converted to dimensional form.

C. I EXAMPLE RECORDS FROM SSTT-1 AND SSTT-4

In order to provide the user with a clear picture of the manner in which the data are organized on each tape the first 40 records actually stored on SSTT-1 and SSTT-4 are presented in Tables C-1 and C-2 respectively. The first record on each tape contains a 36-character alphanumeric descriptor. The second record contains the time series identification number (1-6), the number of points in the time series, and the dimensionless generation time step site for each altitude band. The format for this record is "2I10,4(1X,E14.7)". Following these two records, the time series is stored in 6-word records with the format "6(1X,E14.7)". The order of storage in each record is from lowest to highest altitude band. Thus the first word in each record corresponds to band #1, the second to band #2, etc.

- C.2 EXAMPLE CONVERSION FROM DIMENSIONLESS TO DIMENSIONAL TIME SERIES
- c.2.1 Conversion of Gust Time Series, $u_1(t_n)$

1

As an example, the Space Shuttle is assumed to be at the following point in its descent trajectory:

altitude
$$(Z_n)$$
 - 9000 m
velocity (V_n) - 270 m/sec

This point in the trajectory for simplicity is assumed to correspond to the first term (N=1) in the dimensionless time series as recorded in the third record of SSTT-1 presented in Table C-1. The conversion steps proceed as follows:

TABLE C-1. SSTT-1 EXAMPLE RECORDS

= 1

TURBULENT GUSTS	GENERATED OF 3500	16-81 16-80 1447614E	34401546 4043	37178	5-01 4165570E-02
6.7 19144E+00	1856 04E + 0	5239217E+U0	411111X3E+Un	- 543212 JE+On	1、町下町町大田町町十〇日
35.71564E+00	٠	338 477 LE + CO	40+37,0.14	これを見をなるのです。	- 4F3 57E+NO
- 11609C3E+01	8688521E+00	7227465E+00	のの人間をしなたに必ず、1	このではの間におけたのです	00+3802+60+
1.2920414E+00	2091856E + 0n	00+35157661	- 5365419E-01	3127302E+u0	7300705E+00
. 22 38827E+00	.2663171E+00	0-403881E+00	00+304-1006	1513643E+0P	- 1772641E+00
11.15938E+00	SECESSES OF	37733718+00	366971 NE + UR	- 7817819E-01	1043956E+00
.7124773E+00	٠	00+32576778	75614905+00	46 04382E - 04	. 6153556E-02
.1430704E+01	•	1368192E+01	1043838+611	2024800E+00	1500030E+00
17141076+01	_	. 1564315E + 01	1308493E+01	2491474E+00	1936700E+00
. 5991361E+00	•	3102150E+00	.7461791E+0U	1358770E-01	3171739E-01
20591648000	-	2586429E+00	2361214E+00	- 1907722E+00	2296870E+00
11687405+00	_	339e018E+00	3651233E+00	7561249E-01	-, 1059414E+00
1.78883.8E+00	_	2153032E+00	- 8881503E-01	3535733E+00	3862761E+U0
1605417E+00	31692056-01	. 1091817E + 00	.1776028E+00	2085572E+00	2420689E+00
.2417949E-01	. 1693297E+00	.2254679E+00	.2737577E+00	11 u8891E+00	142894E+00
18.72122E-01	. 1940306E+00	.2460706E+00	00+3/444064.	1386707E+00	1746745E+00
J166534€+00	•	. 5373664E+00	\$302659E+00	3483637E-01	6193630E-05
03+3529E+00	9	.6933707E+00	00+35151E49.	00+3840.F0-	. 68 42627E-01
. 245441 3E+00	.2784138E+00	٠	3474014E+00	- 4041896E-01	7140785E-01
3614624E+80	•	4786105E 01	. 8651808E-02	- 1634463E+00	1. 18555733E+00
10+4050011	9 (00+36202470	00+40000100	00 + 360 C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00+3105000
1104010E+00	10.43.05.0E+00.	249/421E+00	7038604E+00	47 F GR 70F - 01	3669235400 36692356400
S046527E+00		S495572E+00	00 + 35 9 C C C C C C C C C C C C C C C C C C	1074335E+00	74141986-01
.2371427E+00	•	.4655139E+00	4798326E+00	1242532E+00	9544277E-01
. 1954756E+00	0	.4934292E+00	50315146+00	2058206F + 00	18143796+00
30-30210E+00	. 5730420E+00	6035095E+00	.5925360E+00	.3007517E+00	2801964E+00
- 1609266E+00	3782437E+00	. 4389605E+00	. 4560364E + 00	2276506E+01	<046421E+00
. 5674951E+00	. 8889327E+00	. 8830619E+00	.819C024E+00	. 4773401E+00	. 1584527E+00
00+30+00+00.	.9371415E+00	9245096E+00	. 8449167F + 00	192396+0	.4915624E+00
1323519E+01	1492482E+01	1401994E+01	1235476E+01	34266E+0	70166136+00
1042//6761	10.100010010	10+34/00/21	- 1 4 0 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7432691E+00	
12877505+81	1337407F+01	1225893E+01	10586616+01	002856+0	70907166+00
4325653E+00		100 - MI - 2400 MM	43056236+00	4544587E+0r	4521182E+00
-, 1365916E+00		1785966E-01	. 4072478E-01	. 2984878E+00	2991245E+00
6954330E-01	1564458E+00	1491442E+00	1083869E+00	. 2994357E+00	.3205633E+00
. 76 96 56 3E - BI	2702416E+10	2799207E+80	2286164E+00	.2859467E+06	00+W5/6661M

C-2

1

TABLE C-2 SSCT-4 EXAMPLE RECORDS

This column is not stored as part of the records but has been provided for convenience.

- Establish Proper Value for Index, i = Based on Table 2-1, for u₁ gusts, i=1
- 2. Establish Altitude Sand Based on Table 2-1 with $L_1 = 9000 \text{ m}$, the proper altitude band would be #4.
- 3. Read Dimensionless Time Increment, T₁ Based on the sixth word (corresponding to Altitude Band #4) in the second record in SSTT-1, as presented in Table C-1, the dimensionless time increment, T₁, would be ,05308717.
- 4. Determine Integral Scale, L_1 Based on Table 3-3, with Z_1 = 9000 m, the proper integral scale, L_1 , would be 533 meters.
- 5. Compute Dimensional Time -

$$t^*_{11} = \sum_{n=1}^{1} \Delta t^*_{1n}$$

$$= aT_1 \sum_{n=1}^{1} L_{1n} / Vn$$

$$= (1.339) \cdot (.05308717) \cdot (533/270)$$

$$= .1403 \text{ sec}$$

- 6. Read Dimensionless Gust Based on the fourth word (corresponding to Altitude Band #4) in the third record (corresponding to N=1) the dimensionless gust value is -.4110189.
- Determine Standard Deviation in Direction of Gust Based on Table 3-3 with Z₁ = 9000 m, the proper standard deviation, σ₁, would be 5.27 m/sec.
- 8. Compute Dimensional Gust -

$$u_1^* = \sigma_1 u_1$$

= (5,27)(-.4110189)
= -2.17 m/sec

C.7.2 Conversion of Gust Gradient Time Ser $\frac{1}{2}$, $\frac{3u_2}{3u_1}(t_n)$

In this example the same altitude and velocity are assumed for the Space Shuttle as in subsection C.2.1. This point in the trajectory, for simplicity, is assumed to correspond to the *first* term (N=1) in the dimensionless time series as recorded in the *third* record of SSTT-4 presented in Table C-2. The conversion steps proceed as follows:

- 1. Establish Frozer Value for Index, i = Based on Table 2-2 for $\frac{\partial u_2}{\partial x_1}$ gust gradients, i = 2.
- 2. Establish Altitude Band Based on Table 2-! with $Z_1 = 9000 \, m$, the proper altitude band would be Y4.
- 3. Read Dimensionless Time Increment, T₂ = Eased on the sixth word (corresponding to Altitude Band #4) in the second record in SSTT-1, as presented in Table C-2, the dimensionless time increment, T₂, would be .05308717.
- 4. Determine Integral Scale, L_2 = Based on Table 3-3, with Z_1 = 900 m, the proper integral scale, L_2 , would be 533 meters.
- 5. <u>Compute Dimensional Time</u> -

$$t_{21}^{*} = \sum_{n=1}^{\infty} \Delta t_{2n}^{*}$$

$$= aT_{2} \sum_{n=1}^{1} L_{2n}/V_{n}$$

$$= (1.339) \cdot (.05308717) \cdot (533/270)$$

$$= .1403 \text{ sec}$$

- 6. Read Dimensionless Gust Gradient Based on the jourth word (corresponding to Altitude Band #4) in the third record (corresponding to N=1) the dimensionless gust gradient value is -4.476854.
- Determine Standard Oeviation in Direction of Gust Based on Table 3·3 with Z₁ = 9000 m, the proper standard deviation,
 σ₂, would be 5.27 m/sec.

8. Compute Dimensional Gust Gradient -

N82-12106

ERRATA

NASA CONTRACTOR REPORT CR-161890

ADVANCED SHUTTLE SIMULATION TURBULENCE TAPES (SSTT) USERS GUIDE

By Frank B. Tatom and S. Ray Smith

September 29, 1981

Cover: Part of title has been omitted; add words "Users Guide" to end of title.

Pages ii, 2-2, 3-7, 4-1, C-5: Replace with attached pages ii, 2-2, 3-7, 4-1, and C-5.

> These changes are necessary to clarify and correct errors in instructions for use of the tapes.

TABLE **OF** CONTENTS

Section																		Page
1	INTRO	DUCTION	I							-							•	1-1
2	CHARA	CTERIST	CICS OF	SIM	ULATE	ED TU	JRBUI	LENC	Έ.	-								2-1
	2.2	Dimens	ence Ge sionless tion o	s En	ergy	Cont	tent											2-1 2-1 2-4
3	USE OF	= SIMUI	ATED T	JRBU:	LENCE	E TAF	PES	, .		•		•		-			•	3-1
	3.1 3.2	Readir Conver	ng the '	Time o Di	Seri mensi	ies T ional	Tapes Va	s lues		•		,		-	•		,	3-1 3-2
4	REFER	ENCES (CITED.							-	, •			,			•	4-1
APPENDIX APPENDIX APPENDIX	В	Statis	ral Ana stical A Le Use (Anal	ysis	of S	Simu	late	ed T	urb	ule	nce				, .		A-1 B-1 C-1
		C.1 C.2	Example Example Dimens	e Co	nvers	sion	fro	m Di	lmen	sic	nle	SS	to					C-1 C-1
			C.2.1 C.2.2		nvers nvers									-	••		-	C-1
					2/9x													c-5

TABLE 2-1. SUMMARY OF TURBULENCE PARAMETERS IN DISCRETE ALTITUDE BANDS

BAND	LOWER	UPPER	TURBU	TURBULENCE LENGTH SCALE L _i (m)	ENGTH m)	TIME T _i (d	INTERVA	nless)	MAXIMUN ^O ilmax ⁽	4 FREQUE dimensi	TIME INTERVAL MAXIMUM FREQUENCY T_{i} (dimensionless) $\Omega_{i1\mathrm{max}}$ (dimensionless)
Þ	(m)	(m)	i = 1	j = 2	j = 3	i = 1 i = 2 i = 1 i = 2 i = 3 i = 1 i = 2 i = 3	i = 2	i = 3	i = 1	i = 2	j = 3
1	0	30	43.4	25 7	16 8	.6529	.6529 1.022 1.685 4.819	1,685	4.819	3.075 1.865	1.865
Z	30	304 8	190	190	190	.1489	.1489	.1489	.1489 .1489 21.10 21.10 21.10	21.10	21.10
m	304 8	3 62	00€	00≘	300	09432	09432		09432 33 310 33.310 33 310	33.310	33 310
4	762	10,000	533	533	533	60830	02309		05309 39 180 59.180 59.180	59.180	59.180
5	10,000	27,000	20,000	20,000	1,230	20,000 20,000 1,230 .004266 .004266 .06936 736.5 736.5 45.30	.004266	98690.	736.5	736.5	45.30
9	27,000	120,000 200,000 200,000 11,800 .003511.003511 .05950 894.9 894.9 52.80	200,000	200,000	11,800	.003511	.003511	.05950	894.9	894.9	52.80

applies to u_2^- gust and $\partial u_2/\partial x_1$ gust gradients applies to u_3^- gust and $\partial u_3/\partial x_1$ and $\partial u_3/\partial x_2$ gust gradients applies to $\mathbf{u_1}\text{-gust}$ S TS

3

TABLE 3-3. VARIATION OF STANDARD DEVIATION AND LENGTH SCALE WITH ALTITUDE (Continued)

ALŢIŢUDE	STAN (EGRAL SCALES TURBULENCE				
(m)	σ _{1(m/sec)}	σ _{2(m/sec)}	σ _{3(m/sec)}	L ₁ (m)	L ₂ (m)	L ₃ (m)
27000	7.00	7.00	4.22	20000	20000	1230
30000	8.23	8.23	4.66	23533	23533	1443
40000	12.82	12.82	6.09	36693	36693	2231
50000	18.08	18.08	7.51	51786	51786	3128
60000	23.94	23.94	8.90	68623	68623	4124
70000	30.36	30.36	10.28	87063	87063	5208
80000	37.29	37.29	11.65	106998	106998	6376
90000	44.70	44.70	13.01	128338	128338	7622
100000	52.58	52.58	14.35	151010	151010	8941
110000	60.89	60.89	15.69	174950	174950	10330
120000	69.62	69.62	17.02	200000	200000	11800

TABLE 3-4. VARIATION OF SHUTTLE SPEED WITH ALTITUDE [4]

ALTITUDE (m)	√ (m/sec)
100	152
300	156
500	158
2000	170
4000	188
6000	200
8000	240
10000	300
20000	500
40000	1928
60000	4695
80000	7468
100000	7521
120000	7510

4. REFERENCES CITED

- 1. Tatom, Frank B., and Smith, S. Ray, "Atmospheric Turbulence Simulation for Shuttle Orbiter", *EAI-TR-79-004*, Engineering Analysis, Inc., Hunts-ville, Alabama, August 31, 1979.
- 2. Maynard, Harry W., "An Evaluation of Ten Fast Fourier Transform (FFT) Programs", Research and Development Technical Report ECOM-5476, U.S. Army Electronics Command, Fort Monmouth, NJ, March 1973.
- 3. Space Shuttle Program: Natural Environment Design Requirements. Appendix 10.10, Space Shuttle Flight and Ground Specification, Level II Program Definition and Requirements, *JSC 07700*, Vol. 10, Revision B. NASA-Lyndon B. Johnson Space Center, Houston, TX, August 18, 1975.
- 4. Fichtl, George H., "A Technique for Simulating Turbulence for Aerospace Vehicle Flight Sumulation Studies", NASA TM 78141, George C. Marshall Space Flight Center, Marshall Space Flight Center, AL, November 1977.

c.2.2 Conversion of Gust Gradient Time. Series, $\frac{\partial u_2}{\partial x_1}(t_n)$

In this example the same altitude and velocity are assumed for the Space Shuttle as in subsection C.2.1. This point in the trajectory, for simplicity, is assumed to correspond to the first term (N=1) in the dimensionless time series as recorded in the third record of SSTT-4 presented in Table C-2. The conversion steps proceed as follows:

- 2. Establish Altitude Band Based on Table 2-1 with Z_1 = 9000 m, the proper altitude band would be #4.
- 3. Read Dimensionless Time Increment, T₂ Based on the sixth word (corresponding to Altitude Band #4) in the second record in SSTT-1, as presented in Table C-2, the dimensionless time increment, T₂, would be .05308717.
- 4. Determine Integral Scale, L_2 Based on Table 3-3, with $Z_1 = 9000 \,\text{m}$, the proper integral scale, L_2 , would be 533 meters.
- 5. Compute Dimensional Time -

$$t_{21}^{\star} = \sum_{n=1}^{1} \Delta t_{2n}^{\star}$$

$$= aT_{2} \sum_{n=1}^{1} L_{2n}/V_{n}$$

$$= (1.339) \cdot (.05308717) \cdot (533/270)$$

$$= .1403 \text{ sec}$$

- 6. Read Dimensionless Gust Gradient Based on the *fourth* word (corresponding to Altitude Band #4) in the *third* record (corresponding to N=1) the dimensionless gust gradient value is -4.476854.
- 7. Determine Standard Deviation in Direction of Gust Based on Table 3-3 with $Z_1 = 9000 \, m$, the proper standard deviation, σ_2 , would be 5.27 m/sec.

ā