Deep Autoencoders for Data Compression

Tanay Mehta <u>LinkedIn</u> | <u>Email</u> | <u>Github</u>

The Dataset

- The given dataset consists of 2 files, training set and testing set.
- Since the task is to compress the data (thus reconstructing the given data), it differs ever so slightly from a general neural network problem, difference being the absence of target variables.
- Training Data contains ~ 1 Million data points.
- Testing Data contains ~ 27 Thousand data points.

Preprocessing

Any major pre-processing steps are not taken, except Mean
 Normalization of both Training and Testing Datasets

Data Before and After Preprocessing

2 train_data.sample(5)						
	m	pt	phi	eta		
103557	4604.136719	35358.269531	-0.046221	3.153636		
110606	5349.682617	23026.968750	-1.602440	-1.501314		
7376	3982.672363	21766.623047	-0.270745	-1.086375		
28823	5434.583008	25144.343750	-0.663255	1.483790		
66111	19289.832031	190417.234375	-1.605715	0.028735		

2 train_data.sample(5)						
	m	pt	phi	eta		
127010	0.387414	0.055814	-1.644587	-1.433460		
6213	-0.146326	-0.405315	-1.563429	0.821581		
102498	-0.567993	-0.619722	-0.585495	1.109422		
35092	-0.604736	-0.464915	0.770662	-2.035339		
56858	-0.512914	-0.559525	1.498315	0.985856		

Before Normalization

After Normalization

^{*}Both the data samples are drawn Randomly from the dataset

Deep Autoencoders

- A Deep Autoencoder is a type of Neural Network that can reconstruct the given input data.
- Simply put, It can "**learn**" to generate data similar to what it was provided with.
- This is "learning" is done by reducing dimensions of data by an "Encoder" and then increasing the dimensions again by a "Decoder".
- This way, the model learns to express, let's say 4D data into 3D or less.

 Although, it doesn't achieve state-of-the art performance, it's still usable.

My Approach

- I have designed a Deep Stacked
 Autoencoder with 3 Encoding and 3
 Decoding Layers, making both
 encoder and decoder symmetric.
- My implementation compresses the data from 4D to 3D (Since it has 3 Latent Dimensions).
- A Sample* Deep Stacked
 Autoencoder looks like:

Results

Following are the plots of the 4 Feature vectors from the test data and their reconstruction.

Results

As seen from former plots, it is clear that the model isn't exactly perfect at reconstructing the data, as a result some of the data may get lost, but better AutoEncoders can be designed to reduce this problem as much as possible.

Results

Below is the Re-construction Loss (Basically the **element-wise difference between the original data and the reconstructed data, squared!**), decreasing throughout the training process of 350 Epochs (or cycles).

