Tutorial #3.1: Group

1 Exercise 1:

Prove that: $G = (\mathbb{R}^*, *)$ is a group.

- i) Let $a, b, c \in \mathbb{R}^*$, (a * b) * c = abc = a * (b * c). Thus, G is associative.
- ii) There exists e = 1 such that a * e = a = e * a. Thus, G has indentity element.
- iii) There exists $1/a \ \forall a \in \mathbb{R}^*$ such that a*1/a=1=e. Thus, G has inverse element.
- iv) Since a * b = ab = ba = b * a, G is commutative.

Conclusion: G is not only a group, but also an abelian group.

2 Exercise 2:

Prove that: $G = (\mathbb{R}^* \times \mathbb{Z}, \circ)$ is a group with $(a, m) \circ (b, n) = (ab, m+n)$.

i) Let arbitrary $(a, m), (b, n), (c, q) \in \mathbb{R}^* \times \mathbb{Z}$

$$((a, m) \circ (b, n)) \circ (c, q) = (ab, m + n) \circ (c, q) = (abc, m + n + q)$$

$$(a, m) \circ ((b, n) \circ (c, q)) = (a, m) \circ (bc, n + q) = (abc, m + n + q)$$

Thus, G is associative.

- ii) There exists e = (1,0) such that (a,m) * e = (a,m). Thus, G has identity element.
- iii) There exists (1/a, -m) such that $(1/a, -m) \circ (a, m) = (1, 0) = e$. Thus, G has inverse element for all element in $(\mathbb{R}^* \times \mathbb{Z})$
- iv) Since $(a, m) \circ (b, n) = (ab, m + n) = (ba, n + m) = (b, n) \circ (a, m)$. G is also commutative.

Conclusion: G is an abelian group.

3 Exercise 3:

Let a, b, c be arbitrary in \mathbb{Z} .

- a) Since $(a + b) + c \equiv a + b + c \equiv a + (b + c) \pmod{n}$, addition mod n is associative operation in \mathbb{Z} .
- b) Since $(ab)c \equiv abc \equiv a(bc) \pmod{n}$, multiplication mod n is associative operation in \mathbb{Z} .

Conclusion: Addition and multiplication mod n are associative operations in \mathbb{Z} .

4 Exercise 4:

Prove that: (G, *) such that $(ab)^2 = a^2b^2$ is an abelian group. **Indeed:**

$$(ab)^{2} = a^{2}b^{2}$$

$$abab = aabb$$

$$(a^{-1} * a)ba(b * b^{-1}) = (a^{-1} * a)ab(b * b^{-1})$$

$$ba = ab$$
(1)

Conclusion: Since (G, *) is group, with (1) satisfied, (G, *) is also commutative. Hence, (G, *) is an abelian group.

5 Exercise 5:

Prove that: $G = (\mathbb{R} \setminus \{-1\}, *)$ is an abelian group with a*b = a+b+ab.

i) Let a, b, c be arbitrary in $\mathbb{R} \setminus \{-1\}$, we have:

$$(a*b)*c = (a+b+ab)*c = (a+b+ab)+c+(a+b+ab)c$$

= $a+b+c+ab+bc+ac+abc$ (1)

$$a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc)$$
$$= a + b + c + ab + bc + ac + abc$$
(2)

With (1) = (2), we conclude that G is associative.

- ii) There exists e = 0 such that a * e = (a + 0 + a * 0) = a. Thus, G has identity element.
- iii) With arbitrary element $a \in \mathbb{R} \setminus \{-1\}$, there exists a^{-1} is an inverse element of a. Indeed:

$$a * a^{-1} = e \iff a + a^{-1} + aa^{-1} = 0$$
$$\iff a^{-1} = \frac{-a}{a+1}$$

iv) Since a * b = a + b + ab = b + a + ba = b * a, G is commutative.

Conclusion: Hence, G is an abelian group.

6 Exercise 6:

Prove that: ab = ba with $a^4b = ba$ and $a^3 = e \ \forall a, b \in G$. **Proof:** It's trivial (write EASY! in exam will get you score ;)).

$$a^{4}b = ba$$

$$a^{3} * ab = ba$$

$$e * ab = ba$$

$$(e * a)b = ba$$

$$ab = ba$$
(Q.E.D)

7 Exercise 7:

Skip

8 Exercise 8:

Prove that: $(a^n)^{-1} = (a^{-1})^n$ with a is an element in group G. **Proof:** We can easily deduce that

$$(a^n)^{-1} * (a^n) = e (1)$$

$$(a^{-1})^n * (a^n) = a^{-1} ... a^{-1} (a^{-1}a) a ... a = a^{-1} ... (a^{-1}a) ... a = ... = e$$
 (2)

Proposition #2 saying that the inverse element of an element in group G is unique, while both $(a^n)^{-1}$ and $(a^{-1})^n$ is inverse element of a^n . Thus, $(a^n)^{-1}$ and $(a^{-1})^n$ must be equal.

9 Exercise 9:

Prove that: $ax = xa \iff a^{-1}x = xa^{-1}$ Proof:

$$ax = xa$$

$$a^{-1}ax = a^{-1}xa$$

$$x = a^{-1}xa$$

$$xa^{-1} = a^{-1}xaa^{-1}$$

$$xa^{-1} = a^{-1}x$$
(Q.E.D)

10 Exercise 10:

Prove that: ab = ba. Given $a^3b = ba^3$, $a, b \in G$ order 5. **Proof:**

$$a^{3}b = ba^{3}$$

$$(a^{3} * a^{3})b = (a^{3} * b)aa^{3}$$

$$a^{5} * ab = ba^{3}a^{3}$$

$$e * ab = b(a^{3}a^{3})$$

$$ab = ba$$
(Q.E.D)

11 Exercise 11:

Prove that: $G = (a\mathbb{Z} + b\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Z}, +)$. Given that a, b are integers.

Proof:

Let $\mathbb{M} = a\mathbb{Z} + b\mathbb{Z}$. Thus, the elements of \mathbb{M} satisfies that it is an integer.

- i) It's trivial that e = 0 is the identity element of $(\mathbb{Z}, +)$. Let $x \in \mathbb{M}$, we have x + e = x + 0 = X. Thus, G also has identity element e = 0.
- ii) Let $y \in \mathbb{M}$, x, y must satisfies that x = ak + bl; y = ai + bj with $l, k, i, j \in \mathbb{Z}$. Hence, x + y = a(k + i) + b(l + j). This satisfies that $x + y \in \mathbb{M}$
- iii) Let x^{-1} be the inverse element of x. By definition, $x*x^{-1}=e$ $\iff x+x^{-1}=0 \iff x^{-1}=-x \iff x^{-1}=a(-k)+b(-l)$. Since there exist such $(-k), (-l) \in \mathbb{R}$, there also exists such $x^{-1} \in \mathbb{M}$.

Conclusion: G is subgroup of (Z, +)