

Fouille de données

Description Quality assessment and validation of

classifiers

Philippe Lenca

IMT Atlantiqueaa

Outline

- Issues

Outline

- Issues
- 2 BV
- Metrics for performance evaluation
- 4 ROC
- References

page 2

Philippe Lenca

Fouille de données De Classifiers evaluation

Evaluation & Credidibility Issues

Evaluation is a major issue in Data Mining

KDD is a non-trivial (decision aid interactive and iterative) process where user(s) seek to identify valid, novel, potentially useful, and ultimately understandable patterns in data.

- how reliable are the predicted results?
- how much should we be confident with what was learned?
- what measure should we use?

Philippe Lenca

- how should we measure performance?
- how to compare the relative performance among competing models?

→ Metrics, framework, comparisons and tests.

Evaluation & Credidibility Issues

Basic example

Most widely-used metric: accuracy which is the proportion of true results in the data set.

Consider a 2-class problem:

- 100 examples of class C_1
- 9900 examples of class C_2
- if model M_1 predicts everything to be class C_2 , accuracy is 9900/10000 = 99.0 %
- but M_1 does not offer any value to help to predict C_1

 \mapsto Accuracy could be high but the model unuseful.

Philippe Lenca

Fouille de données D Classifiers evaluation

Evaluation & Credidibility Issues

Is it easy to define such quantitative measures?

- validity: measures of certainty, robusteness
 - estimated prediction accuracy, confidence on new data
- utility: gain
 - in money saved because of better predictions
 - speedup in response time
- novelty, surprising: more subjective
 - if the pattern contradicts a user expectation
 - · with a stochastic model
- understandability: more subjective
 - estimated by simplicity (size of the pattern)

→ Metrics for classifiers.

Evaluation & Credidibility Issues

Basic example

	Predicted C_2	Predicted C_1		
C_1	50	100		
C_2	9,700	150		
0.700 . 100				

200	_	9,700+100	= 98%
acc_{M_1}	_	9.700+50+100+150	— 90 /0

	Predicted C ₂	Predicted C_1
C_1	150	0
C_2	9,850	0

$$acc_{M_2} = \frac{9,850+0}{9.850+150+0+0} = 98.5\%$$

 M_2 is trivial and better than M_1 .

 M_2 reduces the rate of inaccurate predictions from 2% to 1.5% (an apparent improvement of 25%!!), but it never predicts C_1 .

The class variable is generally imbalanced and the most interesting class is the smaller one.

 \hookrightarrow The less accurate model is more useful than the more accurate model. Accuracy is not irrelevant but not enough, other metrics should be used.

 M_1 is fair.

Philippe Lenca

Fouille de données > Classifiers evaluation

BV

Supervised learning

Formally.

- a sample set $S = (x_1, y_1) \dots (x_n, y_n)$ coming from an (unknown) distribution P on $X \times Y$ where X is the d-dimensional space of the attributes X_1, \ldots, X_d and Y the target space
- goal: infer an hypothesis $h: X \to Y \in H$ (hypothesis space) such that the generalization error $Pr(x, y) \equiv P[h(x) \neq y]$ is minimal (taking into account a cost function)

 \hookrightarrow The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict outputs given inputs that it has not encountered [Mit80].

page 9

Philippe Lenca

Fouille de données > Classifiers evaluation

Supervised learning

Issues.

page 11

- but the true distribution P is unknown
- noise
- non separable labels

 \hookrightarrow The generalization error $Pr(x,y)_{\equiv P}[h(x) \neq y]$ of h(x) can be decomposed into three terms: incompressible error, biais and variance [Bre98]

Supervised learning

page 10

Philippe Lenca

Fouille de données D Classifiers evaluation

Biais & variance

Issues.

- the target function $f(x) \in F$ has the smallest generalization error
- \blacksquare let h^* be the best function for S and H
- ideally, h(x) = f(x)
- but because of non separable cases there is an incompressible error $\epsilon = Pr(x, y)_{\equiv P}[f(x) \neq y]$

$$\hookrightarrow$$
 So $Pr(x,y)_{\equiv P}[h(x) \neq y] = \epsilon + E[h(x) - f(x)]$
Goal: min $E[h(x) - f(x)]$

Biais & variance

E[h(x)-f(x)]

- $h^* f$: biais (approximation error, H vs. F))
- $-h h^*$: variance (estimation error, sample dependency)
- -h-f: total error

 \rightarrow Need for compromise.

page 13

Philippe Lenca

Fouille de données > Classifiers evaluation

Biais & variance: illustration [Mon99]

- large biais and low variance: affine functions f have a large discrepancy with r, but this gap depends little on the learning base
- low biais and large variance: complex functions g are able to adjust as closely as possible to the observed points of r, but their forms vary greatly according to the learning base

Biais & variance

page 14

Philippe Lenca

Fouille de données D Classifiers evaluation

First conclusions

Learning is an ill-posed problem:

- data is not sufficient and there is a need for inductive bias. assumptions about H
- error on learning set is not a good indicator of the quality of the model
- there is a dilemma between biais and variance
- take into account model complexity: H too much complex/overfitting, H not enough complex/underfitting

 \hookrightarrow Trade-off between complexity of H, size of learning set, generalization error (which first decreases and then increases with complexity -stopping criteria-).

First conclusions

Occam's razor: simple solutions generalize well; when you have two competing theories that make exactly the same predictions, the simpler one is the better; among competing hypotheses, the one with the fewest assumptions should be selected; the simplest explanation for some phenomenon is more likely to be accurate than more complicated explanations... Keep things simple!

- simpler to compute and to use (lower computational complexity)
- easier to train/tune (lower space complexity)
- easier to explain (more interpretable)
- better generalization ability (lower variance)

 \mapsto Use the less complex model as possible.

Philippe Lenca

Fouille de données D Classifiers evaluation

Basis material

Confusion matrix

Confusion matrix summarizes the performance of a classifier on a dataset: a cross-table of predicted labels (columns) and actual labels (rows).

	Predicted		
	C_1	C_2	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c + d
Total	a+c	b+d	n

- TP true positive
- FN false negative
- FP false positive
- TN true negative

→ Basis material of evaluation.

Outline

Metrics for performance evaluation

page 18

Philippe Lenca

Fouille de données D Classifiers evaluation

Basis material

Accuracy and error rate

Proportion of true (or false) results in the data set: focus on the predictive capability of a model.

	Predicted		
	C_1	C_2	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c+d
Total	a+c	b+d	n

accuracy:
$$acc = \frac{a+d}{n} = 1 - e$$

error rate: $e = \frac{b+c}{n} = 1 - acc$

→ Accuracy/error rate are not satisfying. They can be irrelevant. in case of imbalanced class (which is the most common case) and where the most interesting class is the smaller one.

page 20

Basis material

Cost matrix

Errors do not have the same cost. Cost matrix summarizes the cost of misclassifying (non symmetric matrix).

	Predicted		
	C_1	C_2	
C_1	$c(C_1 C_1)$	$c(C_2 C_1)$	
C_2	$c(C_1 C_2)$	$c(C_2 C_2)$	

c(i, j) cost of misclassifying class example as class i

 \hookrightarrow Basis material of evaluation. But cost matrix are not easy to obtain.

page 21

Philippe Lenca

Fouille de données D Classifiers evaluation

Cost-sensitive measures

Recall (pattern recognition and information retrieval)

Recall is the fraction of relevant instances that are retrieved.

		Predicted		
	C_1	C_2	Total	
C_1	a (TP)	b (FN)	a+b	
C_2	c (FP)	d (TN)	c + d	
Total	a+c	b+d	n	

$$r = \frac{TP}{TP + FN} = \frac{a}{a+b}$$
 (True Positive Rate)

Information retrieval

 $r = \frac{\{\text{relevant documents}\} \cap \{\text{retrieved documents}\}|}{|\{\text{relevant documents}\}|}$

r = 1.0: all relevant documents were retrieved (but says nothing about how many irrelevant documents retrieved). It is trivial to achieve recall of 1.0 by returning all documents. . .

 \hookrightarrow The higher r, the lower the FNs, biased towards $c(C_1|C_1)$ and $c(C_2|C_1)$

Precision (pattern recognition and information retrieval)

Cost-sensitive measures

Precision is the fraction of retrieved instances that are relevant.

	Predicted		
	C_1	C ₂	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c + d
Total	a+c	b+d	n

$$p = \frac{TP}{TP + FP} = \frac{a}{a + c}$$

Information retrieval

 $p = \frac{\{\text{relevant documents}\} \cap \{\text{retrieved documents}\}|}{|\{\text{retrieved documents}\}|}$

p = 1.0: every result retrieved by a search was relevant (but says nothing about whether all relevant documents were retrieved).

 \hookrightarrow The higher p, the lower the FPs, biased towards $c(C_1|C_1)$ and $c(C_1|C_2)$

Philippe Lenca

Cost-sensitive measures

F_{β} -measure (for non-negative real values of β)

 F_{β} -measure combines precision and recall. It "measures the effectiveness of retrieval with respect to a user who attaches β times as much importance to recall as precision" [van Rijsbergen (1979)].

$$F_{\beta} = (1 + \beta^2) \cdot \frac{\mathbf{p} \cdot \mathbf{r}}{\beta^2 \cdot \mathbf{p} + \mathbf{r}} = \frac{(1 + \beta^2) \cdot \mathrm{TP}}{((1 + \beta^2) \cdot \mathrm{TP} + \beta^2 \cdot \mathrm{FN} + \mathrm{FP})}$$

	Predicted		
	C_1	C_2	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c + d
Total	a+c	b+d	n

Philippe Lenca

Harmonic mean of precision and recall: $F_1 = 2 \frac{P \cdot T}{P + r} = 2 \frac{TP}{(2TP + FN + FP)}$

$$F_1 = 2\frac{\text{p}\cdot\text{r}}{\text{p}+\text{r}} = 2\frac{\text{TP}}{(2\text{TP}+\text{FN}+\text{FP})}$$

Weights recall higher than precision:

$$F_2=5rac{
m p\cdot r}{4
m p+r}$$
 – Weights precision higher than recall: $F_{0.5}=1.25rac{
m p\cdot r}{0.25
m p+r}$

recall:
$$F_{0.5} = 1.25 \frac{\text{p} \cdot \text{r}}{0.25 \text{p} + 1}$$

Cost-sensitive measures

cuoc

Riais & variance

Matuina

ROC

Reference

F_1 -measure

Harmonic mean of precision and recall:

$$F_1 = 2 \frac{\mathbf{p} \cdot \mathbf{r}}{\mathbf{p} + \mathbf{r}} = 2 \frac{\mathbf{TP}}{(2\mathbf{TP} + \mathbf{FN} + \mathbf{FP})}$$

F1-measure is a compromise between p and r, it is high when both precision and recall are reasonably high.

 \hookrightarrow The higher F_1 , the lower the FPs and FNs, biased towards all except $c(C_2|C_2)$.

page 25

Philippe Lenca

Fouille de données D Classifiers evaluation

Cost-sensitive measures

lecuae

Biais & variance

Metrics

ROC

Reference

Notes

- Sensitivity = Recall = TP-rate : proportion of total positives cases which are correctly predicted
 - If recall = sensitivity = 0.90, 90% from the sick group are predicted as sick
- Fp-rate (or false alarm rate) is the proportion of total negative cases which are erroneously predicted as positives
- Specificity is the proportion of of total negative cases which are correctly predicted as negatives
 - If Specificity = 0.80, 80% from the healthy group are predicted as healthy, while 20% are predicted as sick
- Precision is the proportion of predicted positives cases which are truly positive
 - If Precision = 0,60, 60% of the predicted positives cases are truly positive

Cost-sensitive measures

Riais & variance

Motrice

PAC

Reference:

Sensitivity/specificity, PPV and NPV (medicine)

Sensitivity is the fraction of total positives cases which are correctly predicted: ability to identify positive results: $se = \frac{TP}{TP+FN} = \frac{a}{a+b} = r = TP$ -rate

Specificity is the fraction of total negative cases which are correctly predicted as negatives: ability of to identify negative results.

$$sp = \frac{TN}{TN + FP} = \frac{d}{c + d} = 1$$
- FP-rate

	Predicted		
	C_1	C ₂	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c + d
Total	a + c	b+d	n

FP-rate (or false alarm rate) is the proportion of negative cases predicted as positives: FP-rate = $\frac{FP}{FP+TN}$

Positive predictive value: $PPV = \frac{TP}{TP+FP} = p$

Negative predictive value: $NPV = \frac{TN}{FN+TN}$

page 26

Philippe Lenca

Fouille de données > Classifiers evaluation

 \hookrightarrow The higher r, the lower the FNs, biased towards $c(C_1|C_1)$ and

Outline

Biais & variance

Metrics

ROC

Reference

1 Issue

 $c(C_2|C_1)$.

- (2) B\
- Metrics for performance evaluation
- 4 ROC
- References

ROC

Receiver Operating Characteristic

- signal detection (World War II, 1950s)
- ROC graph: True positive rate against False positive rate
- performance of classifiers (different algorithms, parameter settings, training scenarios, cost matrix, etc.) is represented as a point on the ROC space
- ROC graph depicts relative trade-offs between benefits (TP) and costs (FP)

Fouille de données De Classifiers evaluation

→ First application of ROC in machine learning in [Spa89].

ROC space

	Predicted		
	C_1	C_2	Total
C_1	a (TP)	b (FN)	a+b
C_2	c (FP)	d (TN)	c + d
Total	a+c	b+d	n

$$TPR = \frac{TP}{TP + FN} = \frac{a}{a + b}$$
 $FPP = \frac{FP}{FP + TN} = \frac{c}{c + b}$

- (0,0): no false positive errors but also gains no true positives
- (1, 1): always decide positive
- (x, x): decide randomly
- (0, 1): perfect classifier

Go northwest (TPR is higher, FPR is lower, or both)

ROC space & Aera Under ROC Curve

ROC curve

ROC curves are insensitive to class imbalance.

- to choose the best trade-off between tp-rate and fp-rate (idem for precision-recall curve)
- to compare the performance of two classifiers

• the greater the AUC, the better the performance

 \rightarrow Readings: [Bra97, Faw06, Fla10].

Philippe Lenca

Fouille de données D Classifiers evaluation

ROC

	Predicted		
	C_1	C_2	Total
C_1	a (TP)	b (FN)	a+b
C ₂	c (FP)	d (TN)	c+d
Total	a+c	b+d	n

	M ₁ Predicted			
	C_1	C_2	Total	
C_1	640	360	1000	
C_2	280	720	1000	
Total	920	1080	2000	

 $TPR = 0.64 \ FPP = 0.28$

Acc = 0

	M₃ Predicted		
	C_1	C ₂	Total
C_1	300	100	400
C_2	1000	600	1600
Total	1300	700	2000
TPR - 0.75 FPR - 0.63			

Acc = 0.45

	M ₅ Predicted		
	C_1	C_2	Total
C_1	250	750	1000
C_2	870	130	1000
Total	1120	880	2000
TPR - 0.25 FPR - 0.87			

Total 1500 500 2000 $TPR = 0.75 \ FPR = 0.75$

Acc = 0.50

Mo Predicted C₁ C₂ Total 750 250 1000 750 250 1000

	M ₄ Predicted		
	C_1	C_2	Total
C_1	1000	600	1600
C_2	300	100	400
Total		700	2000
$TPR = 0.62 \ FPR = 0.75$			

Acc = 0.55

	W6 Predicted			
	C_1	C_2	Total	
C_1	870	130	1000	
C_2	250	750	1000	
Total	1180	880	2000	
TDD	0.07	LDD	0.25	

Acc = 0.19

AUC

Full ROC curve [Bra97])

To generate a full ROC curve from a classifier instead of just a single point, it is necessary to generate scores from the considered classifier rather than iust a class label.

A precision-recall curve can also be generated.

page 33

Philippe Lenca

Fouille de données De Classifiers evaluation

ROC

ROC curve for Model Comparison

- no model consistently outperform the other
- M_1 is better for small FPR
- \blacksquare M_2 is better for large FPR

AUC

Area Under Curve (area under ROC Curve [Bra97])

The AUC of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance.

 \hookrightarrow The greater the AUC, the better the performance.

page 34

Philippe Lenca

Fouille de données De Classifiers evaluation

ROC example [Faw06]

class	score
р	.9
р	.8
n	.7
р	.6
р	.55
р	.54
n	.53
n	.52
р	.51
n	.505
р	.4
n	.39
р	.38
n	.37
n	.36
n	.35
р	.34
n	.33
р	.3
n	.1

Fouille de données De Classifiers evaluation

Outline

Issues Biais & variance Metrics ROC Referen

Issue

B\

Metrics for performance evaluation

4 ROC

6 References

page 37

Philippe Lenca

Fouille de données De Classifiers evaluation

References II			
Biais & variance	Metrics	ROC	References

[Mon99] Gaétan Monari.

Sélection de modèles non linéaires par leave-one-out. Etude théorique et application des réseaux de neurones au procédé de soudage par points.
PhD thesis, Université Paris 6, 1999.

[Spa89] Kent A. Spackman.

Signal detection theory: valuable tools for evaluating inductive learning.

In Proceedings of the sixth international workshop on Machine learning, pages 160–163, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

Philippe Lenca Fouille de données ⊳ Classifiers evaluation

References I

Issues Riais & variance Metrics ROC References

[Bra97] Andrew P. Bradley.

The use of the area under the ROC curve in the evaluation of machine learning

Pattern Recognition, 30(7):1145-1159, 1997.

[Bre98] Leo Breiman.

Arcing classifiers.

The Annals of Statistics, 26(3):801-849, 1998.

[Faw06] Tom Fawcett.

An introduction to ROC analysis.

Pattern Recognition Letters, 27(8):861-874, 2006.

[Fla10] Peter A. Flach.

ROC analysis.

In Claude Sammut and Geoffrey I. Webb, editors, *Encyclopedia of Machine Learning*, pages 869–875. Springer, 2010.

[Mit80] T.M. Mitchell.

page 38

The need for biases in learning generalizations.

Technical Report CBM-TR-117, Rutgers Computer Science Department, 1980.

Philippe Lenca Fouille de données ⊳ Classifiers evaluation

