# Cell-cycle-gated feedback control mediates desensitization to interferon

Edmund Miller

2021-04-22 Thu

#### Introduction

#### **Hypo**thesis

- Does pretreatment with IFN- $\alpha$  result in desensitization?
- Can a computational model be created to predict IFN responses?
- What role does the cell cycle play in the IFN response?

#### Results

## IFN- $\alpha$ pretreatments confer opposite effects depending on

their durations

#### Fig 1A. HeLa Reporter Cell Line

 $\_20210422\_091025 screen shot.png$ 

#### Fig. 1D Schematic of IFN- $\alpha$ pretreatment experiments

\_20210422\_104851screenshot.png

#### Fig. 1D A diagram of the microfluidic set-up

\_20210422\_105123screenshot.png

#### Fig. 1B Time Lapse of Cells treated for IFN- $\alpha$ for 48 hours

\_20210422\_091431screenshot.png

Fig. 1B Time traces of nuclear/cytoplasmic STAT1-mCherry and PIRF9-YFP signals of the cell

\_20210422\_091808screenshot.png

### Fig. 1C Averaged time traces of nuclear/cytoplasmic STAT1-mCherry, PIRF9-YFP

\_20210422\_100656screenshot.png

Fig. Supp 1D Time course western blots showing the dynamics of phosphorylation (pY701), IRF9 and expression of STAT1

\_20210422\_093026screenshot.png

#### Fig. 1E PIRF9-driven YFP induction response to the second IFN- $\alpha$ treatment

\_20210422\_102211screenshot.png

## USP18 is responsible for desensitization induced by the

prolonged IFN- $\alpha$  pretreatment

#### Fig. 2A Time-lapse images of STAT1 nuclear translocation

\_20210422\_112910screenshot.png

### Fig. Supp. 2A Western blots of USP18 expression in WT and USP18-KD cells

\_20210422\_121123screenshot.png

#### Fig. 2B YFP induction response to the second IFN- $\alpha$ treatment in USP18-KD

\_20210422\_111043screenshot.png

#### Fig. 1F Amounts of PIRF9-YFP induction by the second IFN- $\alpha$ stimulation

\_20210422\_111453screenshot.png

### Fig. 2C Amounts of PIRF9-YFP induction in USP18-KD cells by the second IFN- $\alpha$ stimulation

\_20210422\_111412screenshot.png

### Computational modeling suggests a delayed negative

feedback loop through USP18

### Fig. 3A Simple kinetic model of the IFN-driven gene regulatory network

\_20210422\_113839screenshot.png

### Fig. Supp 3A kinetic model of the IFN-driven gene regulatory network with parameters

\_20210422\_115407screenshot.png

# Fig. 3C Amounts of PIRF9-YFP induction by the second IFN- stimulation Predicted by model simulations

\_20210422\_114424screenshot.png

#### Fig. Supplement 3B Model fitting results

\_20210422\_115253screenshot.png

#### Fig 3D. Experimental design with repetitive IFN pulses

\_20210422\_115744screenshot.png

### Fig. 3E Model prediction of the responses to pulse versus sustained IFN inputs

\_20210422\_115809screenshot.png

### Fig. 3F Experimental data of the responses to pulse versus sustained IFN inputs

\_20210422\_115854screenshot.png

#### upregulation by IFN is

heterogeneous in single cells

The kinetics of USP18

#### Fig. 4A Dual reporter cell line schematic

\_20210422\_120826screenshot.png

### Fig. 4B Time traces of PIRF9-YFP and PUSP18-CFP of a single cell in response to IFN-

\_20210422\_120948screenshot.png

### Fig 4C. Distributions of PIRF9 and PUSP18 activation times in single cells

\_20210422\_121313screenshot.png

#### Fig 4D. Distributions of delay times in single cells

\_20210422\_121358screenshot.png

### Fig 4E. Representative time traces of PIRF9 and PUSP18 in a single cell from each group

\_20210422\_121444screenshot.png

## Cell cycle phases differentially regulate USP18 expression

Fig 4E. Delay times as a function of the percentages of cell cycle progression upon IFN treatment onset

\_20210422\_122543screenshot.png

### Fig 5A. Delay times in cells treated with different cell cycle perturbation

\_20210422\_121847screenshot.png

#### Fig 5B. CDK2 activity reporter Schematic

\_20210422\_122704screenshot.png

#### Fig 5C. Nuclear DHB and PUSP18-driven gene expression

\_20210422\_122941screenshot.png

### Fig 5D. Effect of decitabine on DNA methylation and nucleosome occupancy

\_20210422\_123028screenshot.png

#### Fig 5D. Distribution of delay times upon decitabine treatment

\_20210422\_123104screenshot.png

Cell-cycle-gated feedback

inputs

responses to repetitive IFN

control shapes single-cell



### Fig. 6A simple model of the IFN-driven gene regulatory network

\_20210422\_123240screenshot.png

Fig. 6C cell-cycle gated feedback control simulated responses under different pretreatment conditions

\_20210422\_123535screenshot.png

# Fig. 6D cell-cycle gated feedback control experimental responses under different pretreatment conditions

\_20210422\_123547screenshot.png
Higher levels of USP18 expression by the prolonged
pretreatment lead to reduced IRF9 induction upon the
second stimulation at the single-cell level, qualitatively
in agreement with our experimental data

#### Conclusion

#### **Conclusion**

- The effects of IFN pretreatments depend on their input durations
- The G1 and early S phases enable an open window for immediate USP18 upregulation upon the IFN treatment
  - If they miss the window the USP18 induction has to wait for G1 of the next cell cycle
- SARS-CoV-2 is especially sensitive to type I IFNs
  - IFN pretreatment a potential strategy to prevent SARS-CoV-2 infection