Devoir 1.

Exercice 1. Soient m un réel, et la matrice $A_m = \begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{pmatrix}$.

- 1. Quel est le rang de A_1 ? de A_{-2} ?
- 2. En déduire le polynôme caractéristique de A_m . Quelles sont les valeurs propres de A_m ?
- 3. Montrer que A_m est diagonalisable pour tout m.

Exercice 2. Soit $E = \mathbb{R}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{R} . On définit les applications ϕ, ψ, ξ de E dans E de la manière suivante :

$$\phi: P(X) \longrightarrow P'(X), \qquad \psi: P(X) \longrightarrow XP'(X), \qquad \xi: P(X) \longrightarrow \int_0^X P(t) dt.$$

- 1. Vérifier que ϕ, ψ, ξ sont des applications linaires sur un espace vectoriel.
- 2. Trouver les valeurs propres et les vecteurs propres de chacune de ces applications linéaires.

Exercice 3. On donne
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
.

- 1. Calculer les valeurs propres de A. En déduire que A n'est pas diagonalisable.
- 2. Trouver une matrice inversible P telle que $P^{-1}AP$ soit triangulaire.