

Fast Distance Metrics in Low-dimensional Space for Neighbor Search Problems

Guihong Wan, Crystal Maung, Chenxu Zhang, Haim Schweitzer

Department of Computer Science The University of Texas at Dallas

Contributions

- New formulas for improving the approximations of Euclidean distance and Mahalanobis distance in low-dimensional space
- The technique in which the new formulas are derived

Outline

- Introduction
 - Dimension Reduction Techniques
 - Euclidean Distance
- Our Approach
 - Modeling the uncertainty
 - The maximum entropy method
 - Derivation of new formulas
- Experimental Results
 - k Nearest Neighbors
 - k Furthest Neighbors

Introduction

- Dimension Reduction Techniques
- Euclidean Distance

Dimension Reduction Techniques

- Linear dimension reduction techniques: from m to r
- $A \approx QW$, $a_i \approx Qw_i$
- $Q: m \times r$ is a matrix with orthogonal columns.

Dimension Reduction Techniques (cont.)

Three common choices for $Q_{m \times r}$:

- 1. r dominant left eigenvectors of A \leftarrow Principal Component Analysis (PCA)
- 2. r selected columns of A \leftarrow Column Subset Selection (CSS)
- 3. r vectors drawn from a Gaussian distribution with orthogonalization \leftarrow Johnson-Lindenstrauss (JL) random projections

Dimension Reduction Techniques (cont.)

- W represents A in the low dimensional space
- W can be used for various approximations
- E.g.: Euclidean distance:

$$d^{2}(a_{i}, a_{j}) \approx d^{2}(w_{i}, w_{j})$$

$$O(m) \qquad O(r)$$

Euclidean Distance

$$d^2(a_i, a_j) \approx d^2(w_i, w_j)$$

We show how to improve it.

Can we improve $d_{estimate}$?

- Classical solution: increasing r
- Our solution:

Model the uncertainty with random variables

Use the Maximum Entropy Method to infer the distribution

Take expectations to obtain deterministic formulas

Modeling the Uncertainty

- $A \approx Q_1 W_1$, $a^i \approx Q_1 w_1^i$
- Q_1 : m×r has orthogonal columns. Can be extended to an orthogonal basis of \mathbb{R}^m .

 Q_2 : m×(m-r) is such an extension.

$$A = Q_1 W_1 + Q_2 W_2$$
, $a_i = Q_1 w_1^i + Q_2 w_2^i$ <1>
 $Q_1^T Q_1 = I$, $Q_2^T Q_2 = I$, $Q_1^T Q_1 + Q_2^T Q_2 = I$

Observe: W_2 is unknown.

Modeling the Uncertainty (cont.)

$$A = Q_1 W_1 + Q_2 W_2,$$
 $a_i = Q_1 w_1^i + Q_2 w_2^i$
 $A \approx Q_1 W_1,$ $a^i \approx Q_1 w_1^i$

We propose to view W_2 as a random matrix with entries that are random variables:

$$\hat{A} = Q_1 W_1 + Q_2 \widehat{W}_2$$
, $\hat{a}_i = Q_1 w_1^i + Q_2 \widehat{w}_2^i$ <2>

Problem: how to infer the probability distribution.

Our solution: use the Maximum Entropy Method.

The Maximum Entropy Method (MEM)

- MEM: a well-known technique for inferring probability distributions.
- When given constraints that the probability distribution must satisfy, the MEM asserts that:

the "most likely distribution" is the distribution with the largest entropy that satisfies the constraints.

Example

Consider coin flipping. Let (p_1, p_2) be the probability distribution.

Constraint: $p_1 + p_2 = 1$

What is the most likely probability distribution?

Maximize entropy: $-p_1 \log(p_1) - p_2 \log(p_2)$

Subject to: $p_1 + p_2 = 1$

Solution: $p_1 = p_2 = \frac{1}{2}$

The Maximum Entropy Method (cont.) Theorem 1: Let $x = (x_1, x_2, ..., x_n)^T$ be a random vector,

Theorem 1: Let $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ be a random vector, where x_i are n random variables.

Given the correlation matrix $R = \mathbb{E}\{xx^T\}$ (R is known), then according to the MEM, the probability density f(x) and the entropy H(x) are :

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \Delta}} e^{-\frac{1}{2}x^t R^{-1}x}$$
$$H(x) = \ln \sqrt{(2\pi e)^n \Delta}$$

where Δ is the determinant of R.

The Maximum Entropy Method (cont.)

 $R = E\{xx^T\}$ is partially known

Missing parts can be determined by maximizing Δ .

$$H(x) = \ln \sqrt{(2\pi e)^n \Delta}$$

Hadamard's inequality:

$$\Delta \le R_{11} \dots R_{nn}$$

with equality iff R is diagonal.

$$\left[egin{array}{ccccc} R_{11} & 0 & \dots & 0 \\ 0 & R_{22} & \dots & 0 \\ dots & dots & dots & dots \\ 0 & 0 & \dots & R_{nn} \end{array}
ight]$$

The Maximum Entropy Method (cont.)

Theorem 2: Let $W = (w_1, w_2, ..., w_n)$ be a random matrix of dimensions $r \times n$.

Given $z_i = \mathbb{E}\{||w_i||^2\}$, then according to the MEM:

- 1. All entries of the matrix W have 0 mean: $E\{w_{ii}\}=0$
- 2. w_{i_1,j_1} and w_{i_2,j_2} are independent

3.
$$E\{w_{ij}^2\} = \frac{z_i}{r}$$

3.
$$E\{w_{ij}^2\} = \frac{z_i}{r}$$
4. $f(W) = \frac{1}{\sqrt{(2\pi)^{rn}\Delta}} e^{-s(W)}$ where: $\Delta = \frac{\prod_{i=1}^n z_i^r}{r^{rn}}$, $s(W) = \frac{r}{2} \sum_{i,j} \frac{w_{i,j}^2}{z_i}$.

Derivation of New Formulas

The distance (squared) between a_i and a_i :

Exact :
$$d^2(a_i, a_j) = ||w_1^i - w_1^j||^2 + z_i + z_j - 2(w_2^i)^T w_2^j$$

MEM : $d^2(a_i, a_j) \approx ||w_1^i - w_1^j||^2 + z_i + z_j$
Classical: $d^2(a_i, a_j) \approx ||w_1^i - w_1^j||^2$

Recall: $z_i = ||a_i||^2 - ||w_1^i||^2$

The new formula is much more accurate than the classical formula when a_i , a_i are nearly orthogonal.

Derivation of New Formulas (cont.)

Derivation:

$$\hat{a}_i = Q_1 w_1^i + Q_2 \hat{w}_2^i, \quad \hat{a}_j = Q_1 w_1^j + Q_2 \hat{w}_2^j$$

$$|| \hat{a}_i - \hat{a}_j ||^2 = ||w_1^i - w_1^j||^2 + ||\hat{w}_2^i||^2 + ||\hat{w}_2^j||^2 - 2(\hat{w}_2^i)^T \hat{w}_2^j$$

Expectation:

$$E\{||\hat{a}_i - \hat{a}_j||^2\} = ||w_1^i - w_1^j||^2 + z_i + z_j$$

Experimental Results

- k Nearest Neighbors
- k Furthest Neighbors

k Nearest Neighbors (KNN)

The error: $(\sum_{i=1}^{k} d_i)/k$

Figure 3: Error of KNN using PCA. k=10.

k Nearest Neighbors (cont.)

The recall:
$$[\text{COUNT}_{i=1}^k (d_i \leq d_{max}^*)]/k$$

Table VI: Recall for KNN using PCA on various datasets

r:k	YP		GC)M	Ionosphere		
	$d_{ m classical}$	$d_{ m entropy}$	$d_{ m classical}$	$d_{ m entropy}$	$d_{ m classical}$	$d_{ m entropy}$	
1:10	0	0.005	0.040	0.080	0.215	0.310	
5:10	0.035	0.060	0.365	0.390	0.735	0.735	
10:10	0.220	0.235	0.490	0.570	0.860	0.885	
20:10	0.545	0.560	0.705	0.700	0.910	0.955	
1:20	0	0.005	0.040	0.108	0.323	0.478	
5:20	0.043	0.073	0.393	0.470	0.740	0.838	
10:20	0.243	0.280	0.570	0.648	0.863	0.915	
20:20	0.573	0.625	0.723	0.770	0.925	0.958	

k Furthest Neighbors (KFN)

The ratio: $\sum_{i=1}^k d_i^*/d_i$

The recall: $[\mathrm{COUNT}_{i=1}^k(d_i \geq d_{min}^*)]/k$

			PCA		QRP			JL					
methods		$d_{ m classical}$		$d_{ m entropy}$		$d_{ m classical}$		$d_{ m entropy}$		$d_{ m classical}$		$d_{ m entropy}$	
	r:k	ratio	recall	ratio	recall	ratio	recall	ratio	recall	ratio	recall	ratio	recall
Linear Scan	5:10	1.0189	76.8%	1.0019	91.4%	1.0481	62.6%	1.0056	87.2%	1.1540	39.4%	1.0252	77.4%
	25:10	1.0011	92.8%	1.0003	96.4%	1.0043	85.0%	1.0002	96.6%	1.0366	65.6%	1.0096	83.6%
QDAFN	5:10	1.0189	76.8%	1.0020	91.2%	1.0481	62.6%	1.0043	87.2%	1.1537	39.4%	1.0367	73.6%
	25:10	1.0011	92.8%	1.0003	96.4%	1.0043	85.0%	1.0002	96.6%	1.0366	65.6%	1.0096	83.6%
Drusilla	5:10	1.0185	77.0%	1.0019	91.4%	1.0481	62.6%	1.0056	87.2%	1.1494	39.8%	1.0264	77.2%
	25:10	1.0013	92.0%	1.0006	95.4%	1.0045	84.8%	1.0006	95.6%	1.0369	65.6%	1.0161	79.8%
RQALSH	5:10	1.0193	76.8%	1.0064	87.2%	1.0538	60.6%	1.0302	68.8%	1.1542	39.0%	1.0590	62.6%
	25:10	1.0036	90.0%	1.0029	92.8%	1.0088	82.4%	1.0051	92.4%	1.0572	57.6%	1.0430	63.0%

Table IV: Improvement for KFN on GOM dataset

Thank You!

Email:guihong.wan@utdallas.edu