Algorithmic Human-Robot Interaction

Inverse Reinforcement Learning

CSCI 7000

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

Reinforcement Learning

 \mathbf{o}_t – observation

 \mathbf{s}_t – state

Anatomy of an RL Algorithm

Policy Differentiation

Trajectory: τ Trajectory length: T
Policy: π Reward: r
Parameters: θ Gradient: ∇ J: Expected reward

$$\theta^{\star} = \begin{array}{c} \text{Best } \theta \text{ based on expected} \\ \text{reward over the T-length} \\ \text{trajectory} \\ J(\theta) \end{array}$$

$$\pi_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = \pi_{\theta}(\tau)$$

Probability of given trajectory using policy π_{θ}

$$J(heta) = egin{array}{l} ext{Expected reward value given} \ ext{trajectory } (au) ext{ sampled from } \pi_{ heta} \ \end{array}$$

Gradient of policy w.r.t. θ is equal to policy * gradient of log policy

$$abla_{ heta} J(heta) = egin{array}{c} ext{Take gradient of} \ J(heta) \end{array}$$

Use convenient identity to get rid of non-log policy

Sample from policy instead of enumerating all possible trajectories

Rewrite substituting in worked-out gradient

Expand policy(trajectory) and take log gradient

Using the Policy Gradient

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)$$

(a_i,t) fit a model to estimate return generate samples (i.e. run the policy)

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
 - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Using the Policy Gradient

Recall:

• We defined a policy π as a function that says which action to do from a given world state

Policies are usually not discrete:

- A policy will typically output a likelihood for each action
- In CartPole, $\pi(s) = [0.88, 0.12]$ would represent 88% chance to move left, and 12% chance to move right

How to turn an arbitrary function into probabilities?

Softmax is one good option:

$$\bullet \ \sigma(z,j) = \frac{e^{z_j}}{\sum_{k=0}^{|z|-1} e^{z_k}}$$

Using the Policy Gradient

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Q-Function replacement of reward sum:

$$\sum_{t} r(s_t^i, a_t^i) \rightarrow \hat{Q}_{i,t} = \sum_{t'=t}^{T} r(s_{t'}, a_{t'})$$

- Where do we get $\nabla_{\theta} \log \pi_{\theta}$?
 - Can derive it analytically if you have an expression for π_{θ} and do the calculus
 - Can derive it automatically if you're using a computation graph to express π_{θ} :

predictions = policy.predict(states)
nll = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=predictions)
weighted_nll = tf.multiply(nll, q_values)
loss = tf.reduce_mean(weighted_nll)
gradients = loss.gradients(loss, theta)
Cross-Entr

Prob. of "correct" action

Cross-Entropy Loss:

$$L_i = -\log\left(\frac{e^{Jy_i}}{\sum_j e^{f_j}}\right)$$

Inverse Optimal Control / Inverse RL

Given:

- State and action space
- Roll-outs from π^*
- Dynamics Model (sometimes)

Goal:

- Recover reward function
- Use reward function to derive $\pi \approx \pi^*$

Challenges:

- Problem is underspecified
- Hard to evaluate your learned reward
- Demonstrations might be good, but not optimal

Maximum Entropy IRL (Ziebart et al. 2008)

Notation:

$$\tau = \{s_1, a_1, ..., s_t, a_t, ..., s_T\}$$
 trajectory

$$R_{\psi}(\tau) = \sum_{t} r_{\psi}(s_t, a_t)$$
 learned reward

$$\mathcal{D}: \{ au_i\} \sim \pi^*$$
 expert demonstrations

$$p(\tau) = \frac{1}{Z} \exp(R_{\psi}(\tau))$$

$$\max_{\psi} \sum_{\tau \in D} \log p_{r_{\psi}}(\tau)$$

$$Z = \int \exp\left(R_{\psi}(\tau)\right) d\tau$$

Probability is exponential in the reward (good trajectories are more likely)

Maximize likelihood of a given reward function parameterization

Integral over all possible trajectories 😊

MaxEnt IRL

- 1. Initialize ψ (reward function params), gather demonstrations D
- 2. Solve for optimal policy $\pi(a|s)$ with reward r_{ψ}
- 3. Solve for state visitation frequencies $p(s|\psi)$
- 4. Compute gradient: $\nabla_{\psi} L = -\frac{1}{|D|} \sum_{\tau_d \in D} \frac{dr_{\psi}}{d\psi} (\tau_d) \sum_{s} p(s|\psi) \frac{dr_{\psi}}{d\psi} (s)$
- 5. Update ψ with one gradient step using $\nabla_{\psi} L$
- 6. GOTO 2

Must solve the whole MDP in the inner loop of finding the reward function!

Making IRL work for complex problems

Must handle:

- (1) Unknown dynamics
- (2) Solving MDP in an inner loop

$$p(\tau) = \frac{1}{Z} \exp(R_{\psi}(\tau))$$

$$\max_{\psi} \sum_{\tau \in D} \log p_{r_{\psi}}(\tau)$$

$$Z = \int \exp\left(R_{\psi}(\tau)\right) d\tau$$

Adaptively sample increasingly close to ψ by constructing a policy to do it for us

Sample from what? Can't sample from policies near ψ because we're solving for ψ !

Can sample to approximate Z!

Guided Cost Learning (Generative Adversarial Imitation)

Guided Cost Learning: Results

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel UC Berkeley

Brief Aside: Generative Adversarial Networks

Inverse RL <=> GANs

Similar to inverse RL, GANs learn an objective for generative modeling.

Inverse RL

trajectory $\tau \longleftrightarrow \text{sample } x$ policy $\pi \sim q(\tau) \longleftrightarrow \text{generator } G$ reward $r \longleftrightarrow \text{discriminator } D$

GANs

Goal: Infer reward function underlying expert demonstrations

IRL Recap

Evaluating the partition function (Z):

- Initial approaches solve the MDP in the inner loop of IRL (or assume known dynamics).
- Can estimate Z using sampling!

Connection to Generative Adversarial Networks:

 Sampling-based MaxEnt IRL is a GAN with a special form of discriminator, using RL to optimize the generator.

Classic Papers

- Abbeel & Ng ICML '04. Apprenticeship Learning via Inverse Reinforcement Learning.
 Good introduction to inverse reinforcement learning
- **Ziebart et al. AAAI '08**. *Maximum Entropy Inverse Reinforcement Learning*. Introduction of probabilistic method for inverse reinforcement learning

Modern Papers

- Wulfmeier et al. arXiv '16. Deep Maximum Entropy Inverse Reinforcement Learning.
 MaxEnt IRL using deep reward functions
- **Finn et al. ICML '16.** *Guided Cost Learning*. Sampling-based method for MaxEnt IRL that handles unknown dynamics and deep reward functions
- Ho & Ermon NIPS '16. Generative Adversarial Imitation Learning. IRL method building on Abbeel & Ng '04 using generative adversarial networks

Papers for Today:

Shared Autonomy via Deep Reinforcement Learning

Pro: Chandan Naik Con: Ian Loefgren

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Pro: Nishank Sharma Con: Ashwin Vasan

But how can we use this to play Mario Kart?

DAgger (Dataset Aggregation)

- Iterative algorithm
- Trains a stationary deterministic policy
- No regret algorithm in an online learning setting

[under reasonable assumptions, it] "must find a policy with good performance under the distribution of observations it induces in such sequential settings" Initialize $\mathcal{D} \leftarrow \emptyset$. Initialize $\hat{\pi}_1$ to any policy in Π . **for** i=1 **to** N **do** Let $\pi_i = \beta_i \pi^* + (1-\beta_i)\hat{\pi}_i$. Sample T-step trajectories using π_i . Get dataset $\mathcal{D}_i = \{(s, \pi^*(s))\}$ of visited states by π_i and actions given by expert. Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i$. Train classifier $\hat{\pi}_{i+1}$ on \mathcal{D} . **end for Return** best $\hat{\pi}_i$ on validation.

Algorithm 3.1: DAGGER Algorithm.

At the first iteration, it uses the expert's policy to gather a dataset of trajectories \mathcal{D} and train a policy $\hat{\pi}_2$ that best mimics the expert on those trajectories. Then at iteration n, it uses $\hat{\pi}_n$ to collect more trajectories and adds those trajectories to the dataset \mathcal{D} . The next policy $\hat{\pi}_{n+1}$ is the policy that best mimics the expert on the whole dataset \mathcal{D} .

Insight:

- 1) Combine learned policy with novel human demonstrations
- 2) Train over all of human demos
- 3) Learn about areas of the state space not initially reached

Super Tux Kart

Evaluation Design:

What are your hypotheses about your system?

How will you test them?

What are you trying to prove with this work?

Designing Your Evaluation

Experiment Design:

Do you need human subjects?

Are your conditions likely to test your hypotheses?

Within-subjects or between-subjects?

Protocol design:

Someone not on your project should be able to run your experiment with this script!