- Formal Grammar. J. Chem. Inf. Comput. Sci. 1989, 29, 106-112. (9) Cooke-Fox, D. I.; Kirby, G. H.; Rayner, J. D. Computer Translation of IUPAC Systematic Organic Nomenclature. 3. Syntax Analysis and Semantic Processing. J. Chem. Inf. Comput. Sci. 1989, 29, 112-118.
 (10) Conrow, K. Computer Generation of Baeyer System Names of Saturation.
- rated, Bridged, Bicyclic, Tricyclic, and Tetracyclic Hydrocarbons. J.
- Chem. Doc. 1966, 6, 206-212.
 (11) Van Binnendyk, D.; MacKay, A. C. Computer-Assisted Generation of IUPAC Names of Polycyclic Bridged Ring Systems. Can. J. Chem. **1973**, 51, 718-723
- (12) Vander Stouw, G. G.; Gustafson, C.; Rule, J. D.; Watson, C. E. The Chemical Abstracts Service Chemical Registry System. IV. Use of the Registry System to Support the Preparation of Index Nomenclature. J. Chem. Inf. Comput. Sci. 1976, 16, 213-218.
- (13) Mockus, J.; Isenberg, A. C.; Vander Stouw, G. G. Algorithmic Generation of Chemical Abstracts Index Names. 1. General Design. J.

- Chem. Inf. Comput. Sci. 1981, 21, 183-195.
 Meyer, D. E.; Gould, S. R. Microcomputer Generation of Chemical Nomenclature from Graphic Structure Input. Am. Lab. 1988, 20 (11),
- (15) Meyer, D. E.; Warr, W. A.; Love, R. A. Chemical Structure Software for Personal Computers; ACS Professional Reference Book; American Chemical Society: Washington, DC, 1988.
- (16) Wisniewski, J. L. Effective Text Compression with Simultaneous Di-
- gram and Trigram Encoding. J. Inf. Sci. 1987, 13, 159-164.

 (17) Willet, P. A Review of Chemical Structure Retrieval Systems. J. Chemom. 1987, 1, 139-155.
- (18) International Union of Pure and Applied Chemistry. Revision of the Extended Hantzsch-Widman System of Nomenclature for Heteromonocycles. Pure Appl. Chem. 1983, 55 (2), 409-416.
 Tenenbaum, A. M.; Augenstein, M. J. Data Structures Using Pascal.
- Prentice-Hall: Englewood Cliffs, NJ, 1981; pp 252 and 318.

Topological Statistics on a Large Structural File

MICHEL PETITJEAN and JACQUES-ÉMILE DUBOIS*

Institut de Topologie et de Dynamique des Systèmes (ITODYS), associé au CNRS, Université de Paris VII, 1 rue Guy de la Brosse, 75005 Paris, France

Received March 7, 1990

Statistics based upon connection tables have been determined for a large structural file. Many distributions have unexpected local maxima and minima. Parity phenomena are observed in the distribution of hydrogen and carbon. An interpretation of even and odd distributions is proposed. Some of the compounds which represent topological extremes are shown.

INTRODUCTION

Many statistics in chemistry can be developed from chemical compounds that are, with their associated data, registered in databases, covering for example, spectroscopy, biological activity, thermodynamic properties, and so on. These parameters represent a source for numerous statistical investigations and research into correlations. When such investigations focus on the structural data for fully characterized compounds, very few analyses have been reported and they all depend upon Chemical Abstracts Service (CAS) for their source data.^{1,2} When large files are involved, some aspects of our basic knowledge of chemical data depend largely upon these statistics. In this paper, we present original results derived from a CAS file³ containing 3 424 428 compounds registered through July 1978.

Although statistics on cyclic and heterocyclic systems have been reported, 1,2 some complementary topological information in the structural data are reported here and provide valuable information for the chemist investigating large chemical datasets. Such information is useful for optimization of algorithms which require a statistical knowledge of topological data, such as atomic excentricities or concentric layers around a focus which can be used, for example, when applying the Cahn-Ingold-Prelog rules in computation of configuration. Some unexpected statistical results were obtained and these cannot be interpreted without the use of graph theory. Most of the statistical variables, therefore, will be derived from graph theory rather than from chemical considerations.

REPRESENTATION OF CHEMICAL COMPOUNDS

The expanded formulas of the compounds in the database are coded by means of a DARC-like⁴ colored graph, but the statistical study is carried out without any preconceived idea concerning coding rules. The study is aimed essentially at extracting fundamental topological information from the file. The following colored graph terminology is used in the presentation of the results.

In a compound formula:

the graph nodes are the atoms

the graph edges are the chemical bonds

The atoms and bonds are both colored. Each atom assumes one of the 103 colors defined by the Mendeleev Table (the 103 atomic symbols), and each bond takes one of the following values: SI (simple), TA (tautomer), AR (aromatic), DO (double), or TR (triple).

In addition, the atoms are labeled with secondary chromatic information, and in this way, the complete description provided for each molecular structure includes

"Unusual" valency: arithmetic positive value between 0 and 99, a value of zero meaning the usual valency. Charge: algebraic signed value between -9 and +9 associated with the delocalization flag; localized charge

Isotope: arithmetic positive value giving the integer mass of the isotope. Zero means natural abundance.

Stereochemistry: may be included in the code, but is not registered in this part of the file.

Excentricity of an x atom: qreatest distance from x to any y atom

$$e(F)=3$$

$$e(F)=3$$

$$e(C)=2$$

$$e(C)=2$$

$$e(C)=2$$

$$e(C)=3$$

$$e(Ma)=0$$

First component:
Radius R=Min(e(x))=2
Diameter D=Max(e(x))=3

Second Component:
Radius R=Min(e(x))=0
Diameter D=Max(e(x))=0

Concentric layers around a focus

The greatest depth is also the excentricity of the focus

Figure 1. Different graph theory topological variables, exemplified by sodium trifluoroacetate.

Table I. Different Sets of Observations Considered in the File

type observations	total observations
chemical compounds	3 424 428
atoms	77 915 142
components	4019514
shortest path between atoms-pairs	2 225 906 690
concentric layers focused around atoms	898 037 816

A compound such as sodium fluoroacetate is comprised of components, in this case sodium ion and fluoroacetate ion. The components in the graph of a compound are labeled. Each component carries a ratio, which is the fractional multiplicity coefficient of the component, which, for the first registered component, is arbitrarily set at 1:1.

In addition, hydrogen atoms (except for 7957 hydrogens bearing secondary chromatisms) are implicit and are not recorded in the connection table. Thanks to the graph concept, this topological representation can express most of the expanded formulas correctly. Some variations on this concept (e.g., oriented multigraphs, recording of hydrogens, different sets of chromatisms) are possible and lead to modifications in the set of compounds that can be coded.³ It was not felt to be necessary to code every compound in the file but only to code enough compounds to allow extraction of some of the robust statistical phenomena from the database.

STATISTICAL VARIABLES

The statistical variables can be divided into two categories:
(a) Distributions dependent upon the particular coding of

Table II. Number of Compounds with a Given Number of Components

components	compounds	components	compounds
1	2 863 557	7	79
2	533 323	8	57
3	22 47 1	9	5
4	4 1 2 8	10	5
5	557	11	3
6	242	12	ī

the graph used on a computer. These are essentially those that depend on the internal numbering of the atoms.

(b) Distributions that depend only on the chemical information carried in each graph. The number of carbon atoms, for example, does not depend upon the local coding. It should also be noted that the interpretation of the distribution(s) depends partly on the set of nonrepresentable compounds. Every interpretation will be correct for our subfile of the CAS database, but some differences may be discerned when the full CAS file is considered. Only these latter distributions will be explored. In this way, numerous results of little value to chemists will be avoided.

If a set of primary distributions has been defined, it is always possible to build many new synthetic distributions, either univariate or multivariate, affording some complex results. In order to limit the quantity of combinatorial distributions, only some of the more important ones are given here. Among these important distributions, those concerning cycles and heterocycles have been published recently^{1,2} and will not be reported

Table III. Number of Compounds with a Given Number of H Atoms

Н	compds	Н	compds	Н	compds	H	compds	Н	compds	Н	compds
0	26 667	52	10062	104	474	156	90	208	28	260	4
1	9414	53	3 405	105	221	157	33	209	16	262	5
2	16 229	54	8 050	106	410	158	92	210	38	263	1
3	20 177	55	2772	107	138	159	29	211	23	264	3
4	31 957	56	6 0 8 6	108	407	160	89	212	42	265	3
5	35 985	57	2 196	109	134	161	33	213	16	266	3
6	57 808	58	4 597	110	334	162	78	214	24	267	2
7	60 60 1	59	1 744	111	183	163	29	215	7	268	5
8	91 650	60	3 809	112	285	164	67	216	24	269	1
9	93 766	61	1 472	113	142	165	39	217	16	270	6
10	131 064	62	3 098	114	258	166	58	218	24	272	3
11	120 266	63	1 424	115	116	167	18	219	12	274	2
											2
12	164 729	64	2 593	116	235	168	57	220	27	275	2
13	137 056	65	1 268	117	114	169	19	221	21	278	2
14	181 755	66	2 663	118	190	170	49	222	25	280	2
15	142 664	67	1 122	119	98	171	22	223	17	282	2
16	183 715	68	2 382	120	195	172	52	224	38	283	1
17	129 539	69	1 168	121	114	173	18	225	27	284	2
18	174 683	70	2 0 5 1	122	173	174	51	226	30	286	1
19	116 053	71	1 000	123	116	175	24	227	22	288	3
20	153 599	72	1918	124	143	176	37	228	26	290	1
21	99 849	73	1010	125	86	177	18	229	9	291	2
22	132 270	74	1 737	126	182	178	37	230	29	292	1
23	83 084	75	1 054	127	85	179	19	231	17	294	1
24	113 151	76	1 620	128	120	180	45	232	19	296	1
25	60 046	77	735	129	79	181	9	233	16	297	2
26	94 288	78	1 635	130	110	182	43	234	25	298	1
27	56014	79	712	131	51	183	23	235	10	299	i
28	77 274	80	1 377	132	113	184	39	236	12	300	2
29	43 855	81	701	133	61	185	17	237	15	302	1
30	67 180	82	1 241	134	108	186	27	238	20	304	2
31	34 396	83	610	135	89	187	13	239	11	308	1
32		84	1 196	136	98	188		240		312	1
33	53 559 27 018		588	137	64	189	41		22 9	318	1
		85					15	241			
34	44 105	86	1131	138	117	190	32	242	7	320	2
35	20 459	87	506	139	52	191	18	243	9	323	1
36	35 731	88	877	140	102	192	49	244	11	326	1
37	15839	89	460	141	53	193	15	245	7	330	2
38	27 129	90	948	142	107	194	31	246	10	342	2
39	13 070	91	420	143	44	195	14	247	4	346	1
40	21 244	92	681	144	112	196	40	248	13	348	1
41	10 049	93	458	145	54	197	12	249	5	350	1
42	18 383	94	666	146	110	198	29	250	8	352	1
43	8 659	95	335	147	55	199	14	251	7	358	1
44	15 761	96	559	148	140	200	29	252	14	360	2
45	7 796	97	311	149	67	201	17	253	6	368	1
46	14764	98	516	150	90	202	26	254	3	383	1
47	6 3 3 4	99	280	151	57	203	11	255	4	384	1
48	13813	100	538	152	77	204	32	256	2	418	1
49	5 402	101	191	153	46	205	10	257	2	450	1
50	12375	102	477	154	85	206	31	258	$\bar{7}$		•
51	4 666	103	211	155	49	207	15	259	2		

Table IV. Number of Compounds with a Given Number of D or T Atoms

D or T	D compds	T compds
0	3 423 017	3 424 316
1	575	100
2	525	5
3	155	4
4	90	0
5	28	0
6	23	0
7	7	1
8	3	I
9	1	0
10	2	0
12	1	0
17	1	1

here. The aim of this paper is to complement the published results and, hopefully, provide a different insight into the chemical information that is in the file. Some brief comparisons between our statistics on the 1978 file and the dif-

Table V. Number of Atoms with a Given Connection Degree

(no. of neighbors)	atoms	connection degree (no. of neighbors)	atoms
0	403 027	8	629
1	16814229	9	227
2	37 072 401	10	3 281
3	21 202 169	11	45
4	2 357 230	12	89
5	49 783	13	5
6	11825	14	4
7	198		

ferent statistical results derived by CAS from the 1974, 1979, and 1987 files show only minor variations. An exception concerns the number of compounds containing either deuterium or tritium. Such compounds occur less frequently in the 1978 file.

The file can be considered as a set of five different types of observation (see Table I). Each of these five types of observation is a possible topological unit, and they will be examined in turn. In order to avoid confusion, some classical

Figure 2. Hydrogen distribution, concerning compounds (Table III). The upper curve corresponds to even values, with an absolute maximum for 16 hydrogens (183715 compounds). Only the range 1-75 is displayed: highest values represent less than 0.9% of the hydrogencontaining compounds.

Figure 3. Carbon distribution, concerning compounds [data from (ref 3)]. The upper curve corresponds to even values, with an absolute maximum for 12 carbons (202276 compounds). Only the range 1-50 is displayed: highest values represent less than 1% of the carbon-containing compounds.

terms for nonoriented graphs are defined here following Berge.⁵ These terms are also illustrated in Figure 1.

(1) The topological "distance" between two nodes (atoms) x and y is the minimum number of edges (chemical bonds) between the two nodes. Trifluoroacetic acid, for example, has a distance d(F,O) of 3 between any of the fluorines and any of the oxygens. This distance is a mathematical distance which satisfies the three axioms:

$$d(x,y) \ge 0$$
 and $d(x,y) = 0 < = > x = y$
 $d(x,y) = d(y,x)$
 $d(x,y) \ge d(x,z) + d(z,y)$ (triangular inequality)

Table VI. Number of Atoms with a Given Excentricity E

labie VI.	Number of Att	oms with	a Given Ex		E.
Ε	atoms	Ε	atoms	E	atoms
0	403 027	50	22 1 32	100	285
1	109 369	51	19725	101	178
2	468 417	52	20 1 1 5	102	196
2 3	1 133 319	53	20 433	103	162
4	2 964 236	54	17 315	104	159
5	5 3 3 5 9 7 0	55	17120	105	142
6	7 435 105	56	16 553	106	117
7	8 412 779	57	15127	107	99
8	8 634 264	58	15 461	108	138
9	8012310	59	14 155	109	80
10	6820316	60	12808	110	84
11	5 501 553	61	11 536	111	49
12	4 3 5 0 9 0 7	62	10948	112	58
13	3 398 567	63	9837	113	48
14	2 676 495	64	9 540	114	59
15	2 055 809	65	9 300	115	52
16	1 629 633	66	8 1 5 2	116	54
17	1 308 694	67	8 138	117	49
18	1 045 464	68	7 698	118	56
19	849 553	69	6 090	119	45
20	694 321	70	6 480	120	48
21	577 229	71	6 001	121	44
22	491 954	72	5 985	122	50
23	415 228	73	5912	123	40
24	354 948	74	5 254	124	41
25	307 910	75	4 0 5 1	125	36
26	263 759	76	3917	126	34
27	229 265	77	3761	127	32
28	201 747	78	3 236	128	22
29	178 890	79	2878	129	22
30	152 623	80	2733	130	20
31	136 269	81	2685	131	14
32	118 865	82	2800	132	14
33	103 773	83	2 341	133	16
34	95 490	84	2 464	134	14
35	87 563	85	2 195	135	12
36	77 472	86	2 0 9 7	136	12
37	69 122	87	2083	137	12
38	63 174	88	1 930	138	10
39	54 804	89	1716	139	8
40	51 488	90	1 473	140	6
41	46 829	91	1318	141	8
42	39 861	92	846	142	6
43	36 231	93	729	143	6
44	33 429	94	707	144	6
45	29 425	95	527	144	12
46	29 232	96	485	146	4
46 47	29 232 27 972	90 97	397	146	ŏ
48	24 171	98	397	147	0
49	23 825	99	247	149	Ö
"	43 043	27		1 77	J.

When there is no path between the two nodes, the distance d(x,y) is considered to be infinite. For example, sodium trifluoroacetate has no path between the sodium and the other atoms, so d(Na,C), d(Na,F), and d(Na,O) are all infinite. Bond multiplicities do not affect the values of the distances.

- (2) A finite value for the distance d(x,y) defines a relationship between x and y which is reflexive, symmetrical, and transitive. There are thus equivalence classes: the subgraph containing all the nodes of a class is called a *component*. Sodium trifluoroacetate, as noted, has two components: the trifluoroacetate ion and the sodium ion.
- (3) In a given component, the excentricity e(x) of the node x is the maximum value of d(x,y) taken in the set of all y nodes in the component. It is also the maximum number of concentric layers focused on x (see Figure 1). In trifluoroacetate ion, e(F) = e(O) = 3 for the three fluorines and the two oxygens, and e(C) = 2 for the two carbons. Every isolated atom, such as the sodium ion, has zero excentricity: e(Na) = 0
- (4) The radius R of a component is the minimum excentricity e(x), taken from the set of all the x nodes. The node for which e(x) = R is called the *centroid* of the component,

Table VII. Number of Components with a Given Number of Atoms

atoms	compns	atoms	compns	atoms	compns	atoms	compns	atoms	compns
1	403 027	52	4860	103	255	154	41	205	19
2	9 199	53	3 6 7 0	104	269	155	53	206	22
3	13818	54	4 299	105	251	156	35	207	30
4	30 997	55	3 1 7 4	106	215	157	58	208	65
5	58 200	56	3 648	107	178	158	43	209	24
6	38 069	57	2870	108	212	159	46	210	26
7	38 526	58	3 284	109	195	160	41	211	25
8	58 142	59	2514	110	165	161	44	212	25
9	63 719	60	2 947	111	183	162	39	213	18
10	88 998	61	2 285	112	166	163	33	214	16
11	109 012	62	2 341	113	126	164	27	215	28
12	128 170	63	1977	114	151	165	36	216	26
13	143 647	64	2088	115	195	166	36	217	27
14	154 670	65		116	177	167	30 37	217	18
			1 592						
15	158 922	66	1917	117	155	168	26	219	25
16	193 884	67	1 433	118	143	169	36	220	20
17	169 810	68	1 530	119	148	170	40	221	18
18	176 002	69	1 192	120	140	171	32	222	16
19	167 672	70	1 280	121	107	172	31	223	12
20	170 321	71	1 054	122	124	173	43	224	12
21	159 130	72	1 326	123	111	174	29	225	17
22	156 370	73	961	124	111	175	32	226	15
23	138 869	74	1134	125	92	176	32	227	15
24	134663	75	905	126	109	177	39	228	17
25	116668	76	1 037	127	92	178	34	229	19
26	108 962	77	1 084	128	95	179	32	230	14
27	90 361	78	976	129	93	180	34	231	16
28	86 570	79	690	130	70	181	23	232	12
29	73 404	80	767	131	71	182	25	233	12
30	68 408	81	698	132	80	183	20	234	24
31	56 955	82	701	133	85	184	19	235	19
32	53 318	83	591	134	83	185	25	236	11
33	42 737	84	725	135	84	186	26	237	24
34	39 971	85	630	136	65	187	32	238	25
35	31 240	86	626	137	91	188	23	239	38
36	30 003	87	469	138	61	189	25	240	19
37	22 993	88	542	139	57	190	28	241	25
38	22 459	89	428	140	51	191	36	242	21
39	17 453	90	475	141	71	192	19	242	21
40	17 600	91	419	141	51	193	17	243	19
41	13 751	92	453	143	42	193	15	244	16
42	14 296	93	437	143	60	194	22	243	19
43	10 970	94	422	145	72 65	196	27	247	5
44	11894	95 06	365	146	65 34	197	26	248	17
45	8 8 4 8	96	405	147	34	198	14	249	8
46	9 033	97	286	148	52	199	27	250	26
47	6 8 2 6	98	313	149	65	200	20	251	19
48	7 576	99	263	150	64	201	60	252	17
49	5 473	100	304	151	50	202	26	253	17
50	5 943	101	274	152	45	203	23	254	0
51	4 6 2 6	102	279	153	67	204	19	255	0

but it is often not unique. Each centroid is a focus minimizing the number of concentric layers around it. The two carbons of trifluoroacetate ion are both centroids, and the radius of this ion is R = 2. The radius of an isolated node, such as the sodium ion, is always R = 0.

(5) The diameter D is a maximum of e(x), taken from the set of all the x nodes. The nodes for which e(x) = D are called extremal nodes. By applying triangular inequality to the centroid and the extremal nodes, it may be shown that D varies between R and 2R, depending on the component. Each extremal atom is a focus maximizing the number of concentric layers around it. Trifluoroacetate ion for example, has a diameter of D = 3. The diameter of an isolated atom, like the sodium ion, is always D = R = 0. For acyclic components with an even diameter, the centroid is unique and D = 2R. For acyclic components with an odd diameter, D = 2R - 1, and there are always two centroids x1 and x2 with d(x1,x2) = 1.

For most hydrocarbons and their derivatives, chemical nomenclature is closely related to the value of D, which leads to the alkane series (containing D + 1 carbons) describing the

component. When D = 0 the compound will be a methane derivative, D = 1 is an ethane derivative, and so on.

DISTRIBUTIONS IN COMPOUNDS

A chemical compound is the natural unit usually considered by the chemist. The following statistics are derived from a database of 3424428 compounds (except for the carbon distribution, which is based on the 3 387 025 carbon-containing compounds in the file). The bond distribution in the file is as follows: simple, 56.0%; tautomer, 5.4%; aromatic, 30.9%; double, 7.4%; triple, 0.3%. The bond chromatism, in particular the choice between aromatic and tautomeric, is computed by the coding algorithm which uses a set of rules that may not be optimal for all complex systems. The bond chromatism depends on this set of rules and thus on the coding algorithm. The charge distribution, which is sometimes difficult to define in delocalized systems, is in the same situation, as is the valency distribution. The concept of "usual valency" is unclear when applied to metallic elements which have numerous oxidation numbers and which can form chelates with different numbers of neighbors.

Table VIII. Number of Components with a Given Number of C Atoms

С	compns	С	compns	С	compns	C	compns	С	compns
0	483 571	45	3 441	90	192	135	31	180	5
1	21 838	46	3 893	9 1	116	136	66	181	2
2	40 151	47	2313	92	120	137	50	182	1
3	25 917	48	3 9 3 3	93	113	138	27	183	3
4	61 202	49	1867	94	108	139	29	184	Ō
5	52 961	50	2683	95	116	140	33	185	ĭ
6	133 323	51	1 678	96	170	141	37	186	Ö
7	108 259	52	2072	97	100	142	63	187	ĺ
8	139 671	53	1 263	98	146	143	23	188	i
ğ	152 953	54	2096	99	119	144	36	189	3
10	198 105	55	1312	100	126	145	36	190	3
11	178 233	56	1 588	101	97	146	32	191	í
12	211654	57	1116	101	95	147	28	192	0
13	184 800	58	1 214	102	56	148	38	193	0
14	200 481	59	747	103	79	149	19	193	0
15	185 439	60		104	66			194	0
16	189 068		1 346 680			150	43		
17		61		106	83	151	44	196	2
	157 393	62	996	107	56	152	21	197	0
18	160 877	63	705	108	95	153	22	198	l .
19	134878	64	865	109	61	154	33	199	1
20	140 627	65	583	110	73	155	21	200	1
21	119 184	66	743	111	61	156	17	201	0
22	108 950	67	375	112	48	157	15	202	0
23	83 453	68	659	113	46	158	19	203	0
24	79712	69	419	114	61	159	24	204	0
25	55 998	70	540	115	45	160	16	205	0
26	54 535	71	311	116	47	161	7	206	1
27	45 319	72	692	117	51	162	9	207	0
28	43 128	73	278	118	43	163	10	208	1
29	30 869	74	306	119	29	164	12	209	0
30	34 897	75	277	120	66	165	5	210	0
31	20818	76	438	121	38	166	4	211	0
32	22814	77	238	122	47	167	3	212	0
33	15114	78	339	123	35	168	11	213	0
34	17 259	79	193	124	34	169	9	214	0
35	10437	80	329	125	41	170	7	215	0
36	14417	81	232	126	36	171	3	216	0
37	7 848	82	247	127	26	172	2	217	0
38	9 2 2 9	83	132	128	29	173	8	218	0
39	6 0 0 1	84	270	129	34	174	2	219	Ō
40	8 568	85	137	130	46	175	4	220	ì
41	4 789	86	179	131	46	176	i	221	Ô
42	7317	87	132	132	50	177	6	222	Ŏ
43	3819	88	210	133	23	178	3	223	ŏ
44	5 271	89	131	134	42	179	ő	224	ŏ

	mean	SD	local maxima	local minima
no. of atoms	22.753	16.626	18	
no. of bonds	23.998	13.776	0;8	2;10
simple bonds	13.435	9.760	16	2
tautomer bonds	1.290	2.940	0;2;4	1;3;5
aromatic bonds	7.417	7.497	0;6;12;18;24;30	
			(6*i)	
double bonds	1.784	1.866	0 ` ′	
triple bonds	0.072	0.347	0	
heteroatoms	5.953	4.822	4 (sharp)	
"unusual" valencies	0.390	0.987	0	
no. of charges	0.109	0.530	0	
no. of "isotopes"	0.006	0.107	0	
no. of characters in mol formula	10.157	2.797	8;10	9
hydrogens (moi formula)	20.706	14.013	14;16	15
carbons	16.985	9.561	12;14	13

The complete distributions for the number of compounds with a given number of components are given in Table II. The distribution of compounds with a given number of hydrogen atoms is given in Table III and Figure 2 and for a given number of deuterium and tritium atoms in Table IV. Data concerning carbon distribution (the numbers of compounds having specific numbers of carbon atoms) was published previously³ and is displayed in Figure 3.

Figure 4. Carbon distribution, concerning components (Table VIII). The upper curve corresponds to even values, with an absolute maximum for 12 carbons (211654 components). Only the range 1-50 is displayed: highest values represent less than 0.9% of the carbon-containing components.

Table IX. Number of Components with a Given Number of Bonds

bonds	compns	bonds	compns	bonds	compns	bonds	compns	bonds	compns	bonds	compns
0	403 027	48	10642	96	511	144	62	192	28	240	16
1	9 199	49	8 346	97	421	145	54	193	30	241	17
2	13 538	50	7 9 5 0	98	404	146	58	194	36	242	32
3	30 673	51	7 007	99	381	147	59	195	22	243	21
4	56 357	52	6788	100	353	148	62	196	28	244	16
5	31 340	53	5 5 3 7	101	333	149	59	197	18	245	21
6	33 565	54	5 3 2 2	102	341	150	64	198	25	246	38
7	47 645	55	4610	103	334	151	47	199	22	247	24
8	48 743	56	4515	104	339	152	71	200	31	248	23
9	65612	57	3 9 2 3	105	305	153	56	201	27	249	15
10	74 412	58	3 596	106	252	154	47	202	22	250	13
11	97 394	59	3 198	107	258	155	45	203	27	251	18
12	115798	60	3 5 2 3	108	274	156	82	204	25	252	18
13	119 796	61	2 944	109	229	157	36	205	26	253	19
14	130 453	62	2846	110	238	158	58	206	35	254	10
15	139 455	63	2813	111	234	159	44	207	21	255	21
16	170 998	64	2 669	112	244	160	74	208	46	256	7
17	145 322	65	2 292	113	194	161	42	209	15	257	6
18	149 651	66	2 3 2 2	114	188	162	48	210	23	258	11
19	151 243	67	2 0 2 7	115	200	163	36	211	14	259	12
20	150 199	68	1975	116	182	164	40	212	22	260	19
21	145 982	69	1 933	117	186	165	27	213	25	261	10
22	139803	70	1 608	118	180	166	35	214	14	262	6
23	133 189	71	1 551	119	169	167	34	215	28	263	4
24	129867	72	1 849	120	186	168	52	216	63	264	4
25	122824	73	1 265	121	136	169	24	217	33	265	7
26	113 002	74	1 157	122	145	170	35	218	22	266	5
27	105 423	75	1 224	123	176	171	31	219	21	267	9
28	94 946	76	1114	124	142	172	48	220	26	268	4
29	84 592	77	1 084	125	118	173	30	221	12	269	5
30	78 780	78	1 129	126	123	174	48	222	26	270	2
31	69 307	79	935	127	107	175	31	223	30	271	2
32	64 629	80	962	128	112	176	34	224	18	272	2 2 5
33	57 075	81	844	129	103	177	31	225	19	273	5
34	51 943	82	751	130	98	178	35	226	20	274	3
35	46 209	83	775	131	108	179	19	227	16	275	11
36	42 117	84	1 059	132	130	180	46	228	23	276	3
37	34 456	85	657	133	88	181	28	229	9	277	6
38	30 929	86	625	134	106	182	30	230	26	278	8
39	27 140	87	620	135	96	183	18	231	14	279	3
40	24 315	88	651	136	96	184	36	232	25	280	3
41	20 089	89	566	137	64	185	26	233	21	281	1
42	19 234	90	687	138	105	186	19	234	10	282	6
43	15645	91	555	139	72	187	44	235	9	288	1
44	14 690	92	604	140	82	188	30	236	17		•
45	13 149	93	466	141	77	189	22	237	16		
46	11 951	94	470	142	90	190	22	238	23		
47	10 424	95	427	143	57	191	20	239	6		

Table X. Number of Components with a Given Number of Cycles

cycles	compns	cycles	compns	cycles	compns
0	931 825	21	423	42	4
1	785 193	22	112	43	0
2	874 538	23	99	44	0
3	667 176	24	92	45	0
4	426 887	25	71	46	0
5	184 585	26	51	47	0
6	80 28 1	27	50	48	4
7	29 200	28	33	49	0
8	15145	29	47	50	0
9	7 3 3 1	30	52	51	2
10	5 3 2 0	31	12	52	0
11	2 5 6 7	32	17	53	2
12	2 3 2 3	33	9	54	0
13	1 022	34	1	55	0
14	634	35	6	56	0
15	605	36	14	57	17
16	413	37	1	58	2
17	244	38	127	59	3
18	205	39	52	60	3
19	1 756	40	46	61	0
20	908	41	4	62	0

PARITY PHENOMENA

The distributions of each of the 103 elements were calculated. It was observed that most of them decrease rapidly and

Table XI. Number of Components with a Given Minimum Nodal Connection Degree (Range 0-5) and a Maximum Nodal Connection Degree (Range 0-14)

	0	i	2	3	4	5	total
0	403 027						403 027
1		9 199					9 199
2		38 419	11 248				49 667
3		2 047 980	109 229	38			2 157 247
4		1 354 393	25 338	5	15		1 379 751
5		8 2 5 8	536	28	124	31	8 977
6		7 1 3 7	397	1	14	6	7 555
7		95	17	0	0	0	112
8		391	127	1	0	0	519
9		125	31	1	0	0	157
10		2879	258	19	4	0	3 160
11		33	7	3	2	0	4.5
12		78	10	1	0	0	89
13		5	0	0	0	0	:
14		4	0	0	0	. 0	4
total	403 027	3 468 996	147 198	97	159	37	4019514

monotonically. Some exceptions are boron with local maxima of 3, 6, and 12; oxygen, with a local maximum of 2; and fluorine, with local maxima of 3, 6, and 12; but the major exceptions, as mentioned previously,³ are hydrogen and carbon. The frequency curve can be divided into two parts, one related

Table XII. Number of Components with a Given Radius

I able All.	Number of v	Compone	ciits with a C	IVOII IVA	1143
R	compns	R	compns	R	compns
0	403 027	25	745	50	31
1	99 542	26	523	51	9
2	101 434	27	447	52	9
2 3	403 971	28	513	53	2
4	671 409	29	315	54	11
5	737 589	30	362	55	10
6	604 704	31	263	56	4
7	377 290	32	277	57	1
8	227 990	33	201	58	1 5 3
9	144 267	34	230	59	3
10	82 197	35	161	60	4
11	48 431	36	115	61	1
12	31 285	37	187	62	0
13	21 507	38	205	63	6
14	14 520	39	130	64	2
15	10997	40	136	65	2
16	8 265	41	57	66	0
17	5821	42	75	67	3
18	5 799	43	59	68	3
19	3 887	44	78	69	1
20	3 8 2 6	45	63	70	1
21	2314	46	157	71	1
22	1 788	47	51	72	0
23	1211	48	37	73	3
24	896	49	48	74	0

Table XIII.	Number of	Components with a	Given Diameter
-------------	-----------	-------------------	----------------

Table XIII.	Number of	Compo	nents with a	Given Dia	ımeter
\overline{D}	compns	D	compns	D	compns
0	403 027	50	329	100	21
1	9 483	51	269	101	1
2	92319	52	245	102	6
3	48 924	53	246	103	5
4	92 432	54	173	104	1
5	168 808	55	281	105	2
6	265 915	56	198	106	0
7	280 176	57	157	107	0
8	346 557	58	145	108	11
9	359 507	59	190	109	4
10	373 907	60	165	110	4
11	316 658	61	160	111	0
12	276 997	62	92	112	0
13	204 392	63	104	113	0
14	169 564	64	174	114	1
15	128 014	65	102	115	0
16	98 343	66	97	116	0
17	81 188	67	138	117	0 1
18	60 101	68	89	118	1
19	46 499 35 240	69 70	60 96	119 120	1
20 21		70 71	37	120	0
22	26 878 21 044	72	68	122	1
23	17 062	73	108	123	0
24	12733	74	77	124	Õ
25	12 627	75	152	125	1
26	8 658	76	49	126	5
27	8 146	77	82	127	2
28	5 8 9 5	78	46	128	ō
29	6113	79	73	129	1
30	4515	80	49	130	1
31	4 591	81	22	131	0
32	3 3 5 7	82	32	132	0
33	3 087	83	28	133	0
34	2 3 7 5	84	45	134	1
35	2916	85	28	135	1
36	2 604	86	28	136	0
37	2 142	87	32	137	0
38	1 642	88	40	138	1
39	2 07 1	89	20	139	1
40	1611	90	36	140	0
41	1 212	91	126	141	0 1
42	1 052	92 93	26 11	142 143	0
43 44	1 003 745	93 94	37	144	0
45	637	95	14	145	0
46	572	96	20	146	2
47	444	97	20	147	õ
48	397	98	26	148	Ö
49	406	99	9	149	0

Table XIV. Number of Components with a Given Number of Centroids

Centroids		-			
centroids	compns	centroids	compns	centroids	compns
1	1 970 024	51	2	101	0
2 3	1 370 650	52	12	102	1
3	373 873	53	2	103	0
4	210908	54	10	104	2
5	51 341	55	1	105	0
6	19 556	56	12	106	1
7	5 203	57	2	107	0
8	4 204	58	4	108	2
9	2 473	59	0	109	0
10	2 0 6 3	60	11	110	1
11	1 195	61	0	111	0
12	1 466	62	0	112	1
13	653	63	5	113	1
14	1 020	64	8	114	0
15	551	65	2	115	0
16	692	66	2	116	0
17	257	67	0	117	0
18	512	68	4	118	1
19	144	69	2	119	0
20	412	70	4	120	1
21	159	71	0	121	0
22	272	72	13	122	1
23	98	73	0	123	0
24	321	74	1	124	1
25	76	75	0	125	0
26	178	76	1	126	1
27	74	77	1	127	0
28	140	78	2	128	0
29	48	79	0	129	0
30	156	80	6	130	0
31	21	81	8	131	0
32	143	82	1	132	0
33	26	83	1	133	0
34	50	84	4	134	1
35	17	85	1	135	0
36	104	86	1	136	1
37	6	87	0	137	0
38	31	88	4	138	0
39	7	89	2	139	0
40	51	90	3	140	1
41	2	91	0	141	0
42	42	92	5	142	0
43	3	93	0	143	0
44	36	94	1	144	0
45	11	95	0	145	0
46	18	96	3	146	0
47	3	97	0	147	0
48	34	98	3	148	0
49	8	99	0	149	0
50	19	100	2	150	0

to even values and the other to odd values (see Figures 2 and 3). The two frequency subcurves have similar shapes, with relative weights W + W = 100%:

relative weights $W_e + W_o = 100\%$: Hydrogens: $W_e - W_o = 17.57\%$ (26 667 compounds with no H are not included)

Carbons: $W_e - W_o = 6.04\%$ (37 403 compounds with no C are not included)

with no C are not included)

A possible explanation of this bias toward even values can be found in graph theory. The number of odd-connected nodes in a graph is always even. Since the connection degrees of the nodes are the valencies of the elements (a double bond is represented with two edges, so very few carbons will not be tetraconnected), then the set of odd-connected atoms will contain a large number (70 908 564) of hydrogen atoms, most of which are monoconnected. At a lower frequency 10 568 323 nitrogen atoms, most triconnected, and 1 110 863 chlorine atoms, most monoconnected, can be found. If monovalent hydrogen atoms were the only monoconnected atoms, one should observe 100% of even-hydrogen-containing compounds, but since monovalent hydrogen is merely the most abundant odd-connected element, one observes only 58.8% of even-hydrogen-containing compounds.

Table XV. Number of Components with a Given Number of Extremal Atoms

ext atoms	compns	ext atoms	compns	ext atoms	compns	
1	403 027	51	2	101	0	
2	1 204 847	52	8	102	1	
3	1 035 109	53	2	103	0	
4	809 145	54	6	104	l	
5	266 572	55	1	105	0	
6	167416	56	11	106	0	
7	65 846	57	0	107	0	
8	33 472	58	3	108	1	
9	13 352	59	0	109	0	
10	5 784	60	8	110	1	
11	1 328	61	0	111	0	
12	6145	62	0	112	1	
13	604	63	3	113	0	
14	1 642	64	6	114	0	
15	702	65	2	115	0	
16	645	66	1	116	0	
17	170	67	0	117	0	
18	1 003	68	3	118	ī	
19	110	69	0	119	Ö	
20	341	70	4	120	1	
21	271	71	Ö	121	ò	
22	144	72	9	122	ŏ	
23	43	73	Ó	123	ŏ	
24	322	74	0	124	ő	
25	41	75	ő	125	ő	
26	99	76	ő	126	ĺ	
27	71	77	1	127	ó	
28	493	78	3	128	0	
29	35	79	0	129	0	
30	130	80	3	130	0	
31	12	81	8	131	Ö	
32	111	82	0	131	0	
	24	83	1	132	0	
33 34		84	2	133	1	
-	36					
35	16	85 84	1 1	135 136	0	
36 27	96	86 87	0		1	
37	5	87	4	137	0	
38	20	88		138	0	
39	11	89]	139	0	
40	28	90	1	140	0	
41	2	91	0	141	0	
42	42	92	0	142	0	
43	0	93	0	143	0	
44	28	94	1	144	0	
45	11	95	0	145	0	
46	12	96	2	146	0	
47	1	97	0	147	0	
48	28	98	0	148	0	
49	8	99	0	149	0	
50	6	100	0	150	0	

A similar explanation may hold for the carbon distribution. If the connection degrees of the nodes are the numbers of neighbors of the elements (double bonds are represented here with only one edge, so carbons may be either even- or oddconnected), then the set of odd-connected atoms contains a large number of triconnected carbons—57 528 231 carbons in the file, 57% of which are sp^{2,6} This is supported by the high number of benzenoid compounds; the benzene ring is by far the most common ring system in the database, about 20 times more common than the next most abundant ring (pyridine).2 Monoconnected or pentaconnected carbons are very rare. There is also a large set of monoconnected hydrogens and, at a much lower occurrence frequency, odd-connected oxygens (5820786 in the database, some of them, such as alcohols and other hydroxy compounds, being even-connected). There are also odd-connected nitrogens and so on. If sp² (triconnected) carbons and monovalent hydrogens were the only odd-connected elements, one would observe 100% of even- (carbon and hydrogen) containing compounds and thus 100% of evencarbon-containing compounds because, as shown previously, the number of hydrogens would also be even. Since sp² (triconnected) carbons and monovalent hydrogens are the most

$$\begin{array}{c} 0 \\ \text{CH}_2 - \text{C} - \text{O} - \text{CH}_2 - \left(\text{CH}_2 \text{O} \text{CH}_2 \right) \\ - \text{CH}_2 - \text{C} - \text{CH}_2 - \left(\text{CH}_2 \text{O} \text{CH}_2 \right) \\ - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 \\ - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 \\ - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 \\ - \text{C} - \text{C} - \text{CH}_2 - \text{C} - \text{C} - \text{CH}_2 \\ - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C} - \text{C} - \text{C} - \text{C} \\ - \text{C}$$

$$R_3S_1 - CH_2 - S_1R_3$$
 $R = \begin{bmatrix} 0 & tBu \\ tBu \\ N-0 \\ tBu \end{bmatrix}$
 $RN = 30859 - 25 - 7$

Figure 5. Some topologically extremal compounds in the file. Polyethers RN = 1319-63-7 and RN = 42892-32-0: diameter D = 146 and radius R = 73. Polyimine RN = 65000-54-6: R = 73, with 140 centroids. When focused on the methylene group, the deepest concentric layer of the silane RN = 30859-25-7 has 78 atoms.

abundant odd-connected elements, one observes only 53.0% of even-carbon-containing compounds. The parity phenomenon is also observed in connection with the atom distribution, i.e., the number of compounds with a given number of atoms, excluding hydrogen. The difference $W_e - W_o = 2.0\%$ is weak and may be related to the parity of the carbon distribution.

DISTRIBUTIONS OF ATOMS

The second type of observation to be investigated is the set of all atoms. It may be recalled that hydrogens (except for the 7957 special hydrogen atoms mentioned previously) were not recorded and that multiple bonds were recorded as simple edges. The following statistics refer to the 77915142 atoms:

	mean	SD	local maxima	local minima
connection degree (no. of neighbors)	2.109	0.793	2;10	7
"unusual" valency	0.094	0.994	5	26
algebraic charge	0.172	2.526	+1	
isoptope	0.016	1.506	14	
excentricity	10.526	6.829	8;0	1

Table XVII. Number of Layers with a Given Depth

Table XVI. Number of Paths with a Given Length

length	paths	length	paths	length	paths	-	depth	layers	depth	layers	depth	layers
0	77 915 142	49	932612	98	5 532	-	0	77 915 142	49	376 311	98	3 302
ĺ	164 357 002	50	904 376	99	4 5 4 2		1	77 512 115	50	352 486	99	2906
2	229 244 876	51	822 726	100	4 4 2 8		2	77 402 746	51	330 354	100	2659
3	237 692 512	52	764 290	101	3 692		3	76 934 329	52	310629	101	2 3 7 4
4	221 359 272	53	726 886	102	3 426		4	75 801 010	53	290 514	102	2 196
5	202 636 784	54	666 188	103	2866		5	72836774	54	270 081	103	2 000
6	179 934 712	55	611690	104	2758		6	67 500 804	55	252 766	104	1838
7	152 706 078	56	583 028	105	2 3 5 8		7	60 065 699	56	235 646	105	1 679
8	127 099 050	57	525 988	106	2 184		8	51 652 920	57	219 093	106	1 537
9	102 337 698	58	482 148	107	1840		9	43 018 656	58	203 966	107	1 420
10	82 488 910	59	452832	108	1 866		10	35 006 346	59	188 505	108	1 321
11	66 382 512	60	406 912	109	1 548		11	28 186 030	60	174 350	109	1 183
12	53 557 820	61	371 236	110	1 560		12	22 684 477	61	161 542	110	1 103
13	43 501 662	62	353 212	111	1 332		13	18 333 570	62	150 006	111	1019
14	36 087 700	63	317674	112	1 304		14	14935003	63	139 058	112	970
15	29 671 486	64	292 086	113	1 146		15	12 258 508	64	129 221	113	912
16	25 029 242	65	276 096	114	1138		16	10 202 699	65	119681	114	864
17	21 479 812	66	247612	115	1 008		17	8 573 066	66	110381	115	805
18	18 251 854	67	221 624	116	972		18	7 264 372	67	102 229	116	753
19	15719910	68	208 694	117	872		19	6218908	68	94 09 1	117	699
20	13 859 090	69	187 798	118	840		20	5 369 355	69	86 393	118	650
21	12 03 1 596	70	176 378	119	726		21	4 675 034	70	80 303	119	594
22	10 584 384	71	161 236	120	694		22	4 097 805	71	73 823	120	549
23	9 451 346	72	144 684	121	614		23	3 605 851	72	67 822	121	501
24	8 251 666	73	128 382	122	578		24	3 190 623	73	61 837	122	457
25	7 330 208	74	119 352	123	516		25	2835675	74	55 925	123	407
26	6 692 854	75	104 168	124	456		26	2 527 765	75	50 67 1	124	367
27	5 926 080	76	95 674	125	392		27	2 264 006	76	46 620	125	326
28	5 320 062	77	87 854	126	348		28	2034741	77	42 703	126	290
29	4847706	78	78 998	127	306		29	1832994	78	38 942	127	256
30	4314768	79	71 760	128	258		30	1 654 104	79	35 706	128	224
31	3 890 326	80	68 252	129	230		31	1 501 481	80	32 828	129	202
32	3 634 336	81	60 444	130	204		32	1 365 212	81	30 095	130	180
33	3 274 204	82	55 406	131	180		33	1 246 347	82	27 410	131	160
34	3 002 064	83	50 674	132	166		34	1 142 574	83	24610	132	146
35	2787416	84	45 004	133	152		35	1 047 084	84	22 269	133	132
36	2 498 736	85	39 322	134	134		36	959 521	85	19805	134	116
37	2 278 066	86	35 996	135	120		37	882 049	86	17610	135	102
38	2 168 938	87	29 642	136	110		38	812927	87	15 513	136	90
39	1 956 388	88	25 780	137	94		39	749 753	88	13 430	137	78
40	1786716	89	20 948	138	84		40	694 949	89	11 500	138	66
41	1 675 338	90	17510	139	74		41	643 461	90	9 784	139	56
42	1 521 776	91	14 002	140	80		42	596 632	91	8 3 1 1	140	48
43	1 405 354	92	12386	141	60		43	556 771	92	6 993	141	42
44	1 362 388	93	10 258	142	64		44	520 540	93	6147	142	34
45	1 243 010	94	9138	143	56		45	487 111	94	5418	143	28
46	1 160 560	95	7750	144	64		46	457 686	95	4711	144	22
. 47	1 099 932	96	7 022	145	24		47	428 454	96	4 184	145	16
48	1 003 772	97	5 848	146	4		48	400 482	97	3 699	146	4

It should be noted that 0.48% of the atoms bear a charge. Of these charges, 57.7% are positive and localized (55% are +1); 4.9% are also positive, but delocalized; 34.7% are negative and localized (34.5% are -1); while 2.7% are negative and delocalized. The complete distributions are given for the number of atoms with a given connection degree in Table V, and with a given excentricity in Table VI.

It should also be noted that the values of the excentricities do not depend on bond multiplicity, but would be increased by one unit for most organic compounds if hydrogens were recorded. The excentricity of an atom x varies from R (centroid excentricity) to D (extremal atom excentricity) and is also the maximal number of concentric layers focused around x.

DISTRIBUTIONS IN COMPONENTS

The component is the most useful topological unit defined in a large set of graphs because there is no connection between two atoms which belong to different components. The following statistics for components are derived from a database of 4019514 compounds.

	mean	SD	local maxima	local minima
atoms (without H)	19.384	13.343	1;5;16	2;6;17
hydrogens (mol formula)	17.640	14.408	0;1;3;14;16	2;5;15
carbons	14.312	10.402	10;12;14	11;13
bonds	20.445	14.670	0;4;16	5
cycles (see also ref 2)	2.061	1.899	1;3	2
min connection degree	0.937	0.365	1;4	3
max connection degree	3.042	1.157	3:10	7
radius of components	5.090	3.193	0;5	1
diameter of components	9.634	6.258	0:2:10	1;3
centroids	1.825	1.410	1	,
extremal nodes	3.144	1.743	2	

Complete distributions are given for atoms in Table VII, for carbons in Table VIII, for bonds in Table IX, for cycles in Table X, for minimum and maximum connection degrees (bivariate) in Table XI, for radii of components in Table XII, for their diameters in Table XIII, for multiplicities of centroids in Table XIV, and for multiplicities of extremal atoms in Table XV.

The distribution of hydrogen atoms in components shows the same parity phenomenon as it did in compounds, except for components containing two hydrogen atoms, where a local

Table XVIII. Number of Layers with a Given Number of Atoms

atoms	layers	atoms	layers	
1	274 232 111	25	588	_
2	265 064 075	26	1 340	
2 3	175 572 167	27	818	
4	96 901 365	28	2 452	
5	45 178 432	29	118	
6	23 444 257	30	435	
7	9 423 141	31	219	
8	4 3 5 8 1 6 6	32	459	
9	1 866 522	33	80	
10	910094	34	12	
11	397 662	35	38	
12	312082	36	117	
13	102 025	37	13	
14	101 255	38	4	
15	56 960	39	295	
16	31 880	40	26	
i 7	16824	41	210	
18	28 884	42	281	
19	7 251	45	8	
20	7 253	54	222	
21	9610	56	6	
22	2 177	60	2	
23	670	78	1	
24	5 209			

minimum is observed, and components with three hydrogen atoms, where a local maximum is noted. This may be a consequence of the existence of numerous components such as HCl or OH⁻, which have only one hydrogen, or those such as NH₃ or H₃PO₄, which have three hydrogens. If components with 0, 1, 2, or 3 hydrogens are removed from the analysis, the relative difference between even and odd distributions is $W_e - W_o = 17.70\%$, which is very close to the 17.57% observed for compounds.

The distribution of carbon in components, shown in Figure 4, shows the same parity phenomenon as that in compounds. In components, the relative difference between even and odd distributions is $W_e - W_o = 7.99\%$ (483 571 components with no carbon were not included). This difference is more than the 6.04% observed for the distribution in compounds. A similar explanation is thought to apply, but the phenomenon may be less pronounced in multicomponent compounds. If one considers an infinite population of components and makes the following assumptions:

- (a) one even component has a constant appearance probability p, and one odd component has a constant appearance probability q = 1 p
- (b) k-multicomponents are built at random with k independent components

then for each k-multicomponent there is a probability p(k) that it will be even and a probability of q(k) = 1 - p(k) that it will be odd, with p(1) = p and q(1) = q and

$$p(k) - q(k) = (p - q)^k$$

Since (p-q) < 1, then $k > 1 \Rightarrow [p(k)-q(k)] < (p-q)$. This means that multicomponent compounds will have a parity difference that is lower than that for monocomponent compounds.

Neglecting the set of compounds with components that are devoid of carbon and using p-q=7.99% in conjunction with the data in Table II, these assumptions lead to a bias $W_e-W_o=6.78\%$, which corresponds to 232 229.8 compounds. The true percentage is 6.04%, corresponding to 204 655 compounds, and so the observed parity is less than the calculated parity. This residual discrepancy is due either to the presence in the Table II data of compounds with carbon-free components or to the inadequacy of the assumptions that have been made. The repartitions of each of the other elements in components have been made and were found to be close to the corresponding distributions in compounds.

The atom distribution, i.e., the number of components with a given number of atoms, excluding hydrogens, has a weak bias $W_e - W_o = 2.8\%$ (403 027 monoatomic compounds being excluded), and this may be explained as the atom distribution concerning the compounds.

The number of components with one atom (0 bonds, 0 cycles, R = D = 0, only 1 extremal node) is about 10% of the total number of components. Some 47% of these monoatomic components are either Cl⁻ or HCl.

The extreme value of the diameter D=146 (Table XIII) is given by two polyethers (RN 1319-63-7 and 42892-32-0) whose structures are shown in Figure 5. The extreme value of the radius R=73 (Table XII) is also due to these two compounds, together with the polyimine (RN = 65000-54-6), which is also shown in Figure 5. The extreme value of the number of centroids (Table XIV) is due to this same polyimine, which has 140 centroids. The extreme value of the number of extremal atoms (Table XV) arises from the macrocyclic compound (CH₂)₁₃₆ (RN = 63217-83-4), which has 136 extremal atoms and the same number of centroids.

DISTRIBUTIONS OF PATHS AND CONCENTRIC LAYERS

Although many processing algorithms that analyze the chemical environment of a focus need to be statistically optimized, there is a paucity of data pertaining to environments. The following statistics refer to the 2225 906 690 shortest paths from one atom (x) to every other atom (y). There are n*n paths in a component with n atoms and the length of a specific path is the distance d(x,y).

			local	local
	mean	SD	maxima	minima
path lengths	7.489	7.799	3	

The complete distribution is given in Table XVI. The number of paths with zero length is the same as the number of atoms in the whole file. All other path lengths are even values because both distances d(x,y) and d(y,x) are counted.

The following statistics concern the 898 037 816 concentric layers. Each atom x in each component can be viewed as the origin of a set of concentric layers, each y atom in a layer being at a given distance d(x,y) from the atom at the origin.

	mean	SD	local maxima	local minima
distances from origin (depth of layers)	7.286	7.956	1	
atoms in layer	2.479	1.526	1	

The two complete distributions are given in Tables XVII and XVIII. Again, the zero distance corresponds to the number of atoms in the whole file. The number of concentric layers is about half the number of paths because all the distances from an origin to all the atoms that constitute a layer are counted as one layer depth. The number of layers with increasing numbers of atoms does not decrease monotonically after 17 atoms. The extreme value of 78 atoms is due to the disilylmethane (RN = 30859-25-7) shown in Figure 5.

MULTIVARIATE DISTRIBUTIONS

Many bivariate or trivariate statistics are not reported here because the appropriate graphical definition is too large to be conveniently represented. Among the bivariate distributions in components, those for the atoms-bonds, atoms-cycles, bonds-cycles, radius-diameters, and centroids-extremal nodes were computed. The first three of the bivariate distributions are the three projections of the atoms-bonds-cycles distribu-

tion, which lies in a plane defined by atoms - bonds + cycles =

no. of components of the graph = 1

None of these distributions is readily printed. To do so graphically would require a diagram 70 × 70 cm, and an alphanumeric description would require hundreds of valuevalue-frequency 3-tuples. The bivariate distribution of the number of layers with a given number of atoms at a given depth has also been computed and presents the same display problems.

All of these bivariate distributions show different local maxima and minima, which define clusters of chemical structures and largely nonexistent chemical entities. It is hoped that multivariate exploration will reveal much more than the univariate or bivariate distributions. For example, the atombond-cycle-radius-diameter-centroid-extremal nodes distribution would be expected to show many local extrema, which could be interpreted as families of chemical structures in a statistical classification of the components. The problem is to build an algorithm in a multidimensional space from which the number of groups and their shapes can be computed. This problem is far from a solution.⁷

CONCLUSION

Interpretations have been offered for some of the distributions that have been determined experimentally in this paper, but many of them show unexpected local maxima or minima, or exhibit unusual parity phenomena. It seems clear that the composition of the database cannot be understood simply. Some explanations of the parity phenomena have been advanced, but a full interpretation of the various local extrema remains rather difficult.

The formulation of many algorithms dealing with large data sets can be optimized by means of statistical considerations, for example, substructure searching strategy or organized computerized chemical libraries. Searching and organized substructure data spaces could be achieved advantageously by consideration of the statistical weight of the data and avoiding use of models with poorly defined working spaces. Such working spaces are usually defined pragmatically or by trial and error for specific applications. The predictive space of many quantitative structure-activity relationship endeavors, for example, is usually vague outside the original training set.

The statistics reported here also represent a first step toward a better understanding of the composition of the complete corpus of organic chemistry. They show the salient features that are encountered in derivation of an organic chemical classification based upon statistical and topological methods, rather than nomenclatural concepts which stem from the chemist's perception of small sets of data (e.g., the concept of functional groups). Such a classification could lead to new tools for computer-managed structure elucidation and computer-aided property correlation, because the topological approach to molecular structure is more closely bound to chemical and spectroscopic properties than are classical nomenclature systems.

REFERENCES AND NOTES

- Stobaugh, R. E. J. Chem. Inf. Comput. Sci. 1980, 20, 76.
 Stobaugh, R. E. J. Chem. Inf. Comput. Sci. 1988, 28, 180.
 Petitjean M.; Dubois, J. E. Collect. Czech. Chem. Commun. 1990, 55,
- (4) Dubois, J. E.; Panaye, A.; Attias, R. J. Chem. Inf. Comput. Sci. 1987,
- (5) Berge, C. Graphes et Hypergraphes. Dunod Université, Paris, 1973. ISBN 2-04-009755-4.
- (6) Petitjean, M. Unpublished results.
- (7) Everitt, B. S.; Hand, D. J. Finite Mixture Distributions; Monographs on Applied Probability and Statistics. Chapman & Hall: London, 1981. ISBN 0-412-22420-8.