342 Assignment : cfg

March 28, 2021

Total points: 36 Due Date: Mar 27 2021 Julian Garcia Caleb Carnathan

6 points for each question.

- 1. Consider the following grammar.
 - Terminals : "a", "b"
 - Non-terminals : S
 - Start Symbol: S
 - Production rules:
 - $* \ S \to \epsilon$
 - $* S \rightarrow aSb$

For each of the strings, state whether the grammar accepts it or not, and whether or not it accepts, try to give a parse tree. if the grammar does not accept it, you wont be able to make a full parse tree - do this till however much you can and show where it fails

- (a) ϵ
- (b) a
- (c) aabb
- (d) aaabb
- (e) aaabbb

2. • Consider the following grammar.

Terminals: "a", "b"
Non-terminals: S
Start Symbol: S
Production rules:

 $* S \rightarrow aSb$

For each of the strings, state whether the grammar accepts it or not, and whether or not it accepts, try to give a parse tree. if the grammar does not accept it, you wont be able to make a full parse tree - do this till however much you can and show where it fails

(a) ϵ

- (b) a
- (c) aabb
- (d) aaabb
- (e) aaabbb

as E S-> asb x NoTAccepted

a S b

b.) a S-> asb x NOT Accepted

C.S aabb S>asb> Accepted

d.) aaabb S>aSb>aaSbb>aaaSbbbX

C) aaabbb S > aSb > aasbb > aaasbbbb Accepted

- What is the language accepted by this grammar?
- 3. Consider the following grammar.
 - Terminals : "a", "b"
 - Non-terminals : S
 - Start Symbol: S
 - Production rules:
 - $* \ S \to \epsilon$
 - $* S \rightarrow aaSb$

For each of the strings, state whether the grammar accepts it or not, and whether or not it accepts, try to give a parse tree. if the grammar

does not accept it, you wont be able to make a full parse tree - do this till however much you can and show where it fails

- e
- $-\ aab$
- $-\ aaaabb$
- $-\ aaabb$
- aaabbb

- What is the language accepted by this grammar?
- 4. Consider the following grammar.

- Terminals: "a", "b"

- Non-terminals : S, A

- Start Symbol: S

- Production rules:

- $* S \rightarrow A$
- $* \ S \to aSb$
- $* \ A \to a$
- $*A \rightarrow Aa$

For each of the strings, state whether the grammar accepts it or not, and whether or not it accepts, try to give a parse tree. if the grammar does not accept it, you wont be able to make a full parse tree - do this till however much you can and show where it fails

- $-\epsilon$
- a
- aabb
- -aaabb

$-\ aaaaabbb$

- What is the language accepted by this grammar?
- 5. Consider the following grammar.
 - Terminals : "a", "b"
 - Non-terminals : S, A
 - Start Symbol: S
 - Production rules:
 - $* \ S \to \epsilon$
 - $*\ S \to aSa$
 - $* S \rightarrow bSb$

For each of the strings, state whether the grammar accepts it or not, and whether or not it accepts, try to give a parse tree. if the grammar does not accept it, you wont be able to make a full parse tree - do this till however much you can and show where it fails

- $-\epsilon$
- a
- $-\ abba$
- $-\ ababa$
- $-\ abbaabba$
- What is the language accepted by this grammar?

- 6. Give a grammar for the following languages. You only need to attempt this. For all of these the alphabets (terminals) are $\{a, b\}$ and the start state is S.
 - (a) $L = \{s \mid s \text{ number of a's in s } in \text{ number of b's in s } \}$
 - (b) $L = \{s \mid s \text{ is odd-lengthed palindromes } \}$

(c) $L=\{s\mid s \text{ number of a's in s is three times number of b's in s and all the a's come before b's }$

