1ET-DI 27.11.2018

Laboratorium z fizyki

Ćw. nr: 33

WYZNACZANIE KSZTAŁTU POWIERZCHNI EKWIPOTENCJALNYCH POLA ELEKTROSTATYCZNEGO

1. Wprowadzenie teoretyczne

Pole elektrostatyczne

Jest to przestrzeń, w której na umieszczone ładunki działają siły elektryczne. Linie, wzdłuż których działają siły, są nazywane liniami pola i ich przebieg stanowi obraz pola. Nadajemy im zwroty zgodne ze zwrotami sił. Źródłami pól elektrostatycznych są wszystkie ładunki i ciała naelektryzowane. Pola pochodzące od kilku źródeł nakładają się na siebie i z tego powodu obrazy źródeł mogą być różne. Poniższe rysunki przedstawiają pola różnych źródeł.

Źródłami pola elektrostatycznego są nieruchome ładunki elektryczne rozmieszczone

w przestrzeni. Ładunki oddziaływują na siebie siłami. Siły te określa prawo Coulomba

(Q i q są ładunkami punktowymi)

gdzie:

0 ε - stała dielektryczna próżni

r ε - przenikalność względna dielektryka, w którym znajdują się ładunki. Pole elektrostatyczne w dowolnym punkcie w przestrzeni określa potencjał φ (z y x) - funkcja skalarna oraz natężenie pola $\check{E}(z$ y x) - funkcja wektorowa.

Natężenie pola elektrostatycznego wytworzonego przez ładunek Q definiuje się jako

$$\vec{E} = \frac{\vec{F}}{q} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \cdot \frac{Q}{r^2} \cdot \hat{r}$$

gdzie ŕ jest wektorem jednostkowym w kierunku wektora ř

$$r = \frac{F}{|F|}$$

Na podstawie znajomości natężenia pola można obliczyć potencjał pola

$$\varphi(x, y, z) = \varphi(x_0, y_0, z_0) - \int_{x_0, y_0, z_0}^{x, y, z} \overrightarrow{E} \cdot \overrightarrow{ds}$$

gdzie ds \square jest elementem drogi łączącej punkty z_0 y_0 x_0 i z y x.

Punkt określony współrzędnymi x_0 , y_0 , z_0 jest punktem odniesienia, a $\Box \Box \Box \phi$ (z_0 y_0 x_0) potencjałem w punkcie odniesienia.

Wybór punktu odniesienia i potencjału w tym punkcie są zwykle dowolne, a potencjał pola elektrostatycznego jest określony z dokładnością do stałej. Znając potencjał pola elektrostatycznego można obliczyć natężenie tego pola:

$$E(x, y, z) = -grad \varphi(x, y, z)$$

Modelem pola elektrostatycznego może być pole elektryczne w przestrzeni wypełnionej

jednorodnym materiałem o określonej, zwykle niedużej przewodności elektrycznej. Gęstość prądu w przestrzeni o stałej oporności właściwej ρ określa prawo Ohma:

$$\rho j = \frac{E}{\rho}$$

2. Wykonanie ćwiczenia

1 Schemat pomiarowy

- 1. Ustawić w kuwecie elektrody wskazane przez prowadzącego ćwiczenia.
- 2. Ustawić napięcie 3V (lub inne podane przez prowadzącego zajęcia) zasilające elektrody kondensatora.
- 3. Przesuwając sondę pomiarową wyznaczyć współrzędne *x*, *y* punktów posiadających potencjał: 0.5V, 1.0V, 1.5V, 2.0V, 2.5V (lub inne podane przez prowadzącego ćwiczenia).
- 4. Określić błędy Δx i Δy wyznaczenia współrzędnych punktu posiadającego określony potencjał. W tym celu należy nieznacznie zmieniać położenie sondy pomiarowej wokół danego punktu w takim zakresie, w jakim można uznać, że wskazanie woltomierza nie zmienia się.

3. Tabela

φ=0,5 V	x [mm]	224	220	230	226	227	221	230	50	60	219
	y [mm]	44	46	47	52	52	41	46	47	48	50
φ=1 V	x [mm]	162	160	159	162	155	167	159	158	160	159
	y [mm]	38	37	33	36	35	39	38	35	37	38
φ=1,5 V	x [mm]	130	140	139	135	141	144	138	133	145	139
	y [mm]	50	51	52	45	47	52	53	49	50	45
φ=2 V	x [mm]	90	91	88	87	91	95	36	84	83	92
	y [mm]	51	52	49	52	45	46	52	51	52	49
φ=2,5 V	x [mm]	70	71	72	69	69	68	72	73	75	69
	y [mm]	115	115	116	109	120	122	117	109	110	115

4.Wykres

5. Wnioski.

Odczytując pomiary z wykresu oraz graficznego jego przedstawienia możemy dostrzec, że każdy punkt badanego potencjału posiada własne położenie w przeznaczonej do naszego padania naczyniu.