Warm up

- Find the longest common substring of two or more strings.
 - $O(n^3)$ time, $O(n^2)$ time ... where n is the total length.
 - A few decades ago, Knuth conjectured that a linear time algorithm for this problem was impossible.

Full-text Indexing

- Bioinformatics research: Search the human genome (about 3 billion characters) for different genes or gene fragments of other species (say, tens to thousands of characters).
- String matching: find the occurrences of a pattern P in a text S.
- KMP algorithm: O(n + m) time, where n = |S| and m=|P|.
- Can we do better?
 - We are likely to search the human genome many times for different patterns.
 - Yes. <u>Build an index</u> for the human genome to speed up the searching.

Suffix Trees: an old solution for text indexing

- A well-studied main-memory data structures by the theoretical CS community in the 70's to 90's.
 - In recent years, the database community is also interested in suffix trees stored in external memory.
- Space: O(n) words; best implementation requires 40+
 Giga bytes to index the human genome (~3G).
- Today's lecture
 - □ Simple applications of suffix trees: pattern matching in O(|P| + occ) time.
 - construction of suffix trees: O(n) time.

Coming lectures

- 1990's: Suffix arrays, n words (12 Gigabytes for human genome)
- Can we further reduce the space for text indexing?
- Note that just to represent the text, it requires n log Σ bits in the worst case, where Σ = the alphabet size.
- Open problem (before): an $O(n \log \Sigma)$ -bit index or even (n $\log \Sigma$)-bit index.
- Sometimes a text (say, "aaaaaaa...ab") can be compressed to occupy less than n $\log \Sigma$ bits.
 - Can we have an index whose size depends on the size of the "compressed" text?
- Breakthrough in early 2000's: FM-index, Compressed suffix arrays.

Suffix Tries

Suffix Trie: a tree of all possible suffices

E.g. S = acacag

	Suffix
1	acacag\$
2	cacag\$
3	acag\$
4	cag\$
5	ag\$
6	g\$
7	\$

Suffix Trees (I)

Suffix Tree: Eliminate nodes with only one child

Suffix Trees (II)

A suffix tree has exactly n leaves, at most n-1 internal nodes and at most 2n-1 edges.

The label of each edge can be represented by 2 indexes.

Thus, suffix tree can be represented using O(n log n) bits

NB. For a leaf, the end index is 7.

Thus, we only store the start index.

Generalized suffix tree

- Build a suffix tree for two or more strings
- E.g. $S_1 = acgat\#, S_2 = cgt\$$

Pattern matching

- Find all occurrences of a given pattern P in S
 - Traverse the suffix tree starting from the root according to P.
 - All the leaves in the subtree rooted at x are the occurrences of P.
- Time: O(|P| + occ) where occ is the no. of occurrences.

E.g. S = acacag\$ P = aca

Occurrences: 1, 3

Other applications

Find the longest repeated substring in S

Other applications

- Find the longest repeated substring in S
 - the deepest internal node
- Time: O(n)

E.g. S = acacag\$
The longest repeat is aca.

Other applications

- Find the longest common substring of two or more sequences
 - About 30+ years ago, Knuth conjectured that a linear time algorithm for this problem was impossible.

Construction of suffix trees

- Consider $S = s_1 s_2 ... s_n$ where $s_n = \$$
- Algorithm:
 - Initialize the tree with only a root
 - □ For i = n to 1
 - include S[i..n] into the tree
- Time: O(n²)

Less than quadratic time

- Yes. We can construct it in O(n) time.
- Weiner [1973]
 - Linear time for constant-size alphabet, space?
- McGreight [JACM 1976]
 - Linear time for constant-size alphabet
- Ukkonen [Algorithmica, 1995]
 - Online construction, linear time for constant-size alphabet, less space
- Farach [FOCS 1997]
 - Linear time for general alphabet
- Today, we discuss Ukkonen's algorithm

Implicit suffix trees

- Let 5 be a string without the ending \$.
- A suffix S[i..n] can be a prefix of another longer suffix S[j..n]
 - \square S[i..n] is excluded from the implicit suffix tree of S.
- The implicit suffix tree contains all suffixes that are not prefix of other suffixes.

S=acca

Algorithm

Denote T_i be the implicit suffix tree for S[1..i].

- 1. Construct T_1
- 2. For i = 1 to m-1
 - \square /* Phase i: Construct T_{i+1} from T_i */

Illustration

S=acca

Constructing T_{i+1} from T_i

For
$$j = 1$$
 to $i+1$

- | /* extend each suffix S[j..i] to S[j..i+1] */
- □ Starting from the root, find the endpoint of the path labeled $\beta = S[j..i]$
- Extend the path with character S[i+1]
 - Rule 1: If β ends at a leaf, S[i+1] is appended to the label of the last edge to the leaf.
 - Rule 2: If every path from β starts with a character \neq S[i +1], create a new leaf and a leaf edge labeled with S[i+1].
 - Rule 3: If some path from β starts with character S[i+1], do nothing.

Example: from T_3 to T_4 Rule 1: If β ends at a leaf, S[i+1] is appended to the label of the last edge to the leaf.

Rule 2: If every path from β starts with a character \neq S[i+1], create a new leaf and a leaf edge labeled with S[i+1].

Rule 3: If some path from β starts with character S[i+1], do nothing.

Observation 1

- Consider Phase i (constructing T_{i+1} from T_i) Once we apply rule 3 to extend S[j..i], then
 - \neg rule 3 will be applied for extending S[k..i] for k = j+1,...,i
 - □ Thus, nothing to be done for k = j+1,..., i

Proof:

- Since rule 3 is applied to extend S[j..i], T_i contains a path labeled S[j..i] followed by the character S[i+1].
- Thus, there is also a path for S[k..i] for k > j, followed by S[i+1].

Remark

- Based on Observation 1, in Phase i, once we have applied rule 3, we can stop.
- This saves a lot of work.

Observation 2

• Once we add a leaf for a suffix in T_i , that leaf remains in T_{i+1} , T_{i+2} , ...

Proof:

We never remove any leaves.

Remark

- In Phase i (i.e. constructing T_{i+1} from T_i), let H_i be the last extension that makes use of rule 1 or rule 2 to extend S[H_i ...i].
 - □ In other words, for extension of j = 1 to H_i , we do not perform any rule 3. That is, $S[j_{i+1}]$ at a leaf in T_{i+1} .
- In Phase i+1 (i.e. constructing T_{i+2} from T_{i+1}), for j = 1 to H_i , when searching T_{i+1} for S[j..i+1], we always encounter a leaf at the end of S[j..i+1].
 - □ Thus, only rule 1 is applied to extend S[j..i+1] to S[j..i+2], and there is no structural change to T_{i+1}
 - Structural change occurs only starting from j > H_i

Algorithm for Phase i

- /* For $j=1...H_{i-1}$, extension of j is based on rule 1. No change to the structure of the tree. */
- For $j = H_{i-1} + 1$ to i+1,
 - Find the endpoint of the path from the root labeled with S[j..i]
 - Extend the path with character S[i+1] based on rule 1,
 2, or 3
 - □ If we extend the path with rule 3,
 - /* extension j' for j'=j+1...i+1 are also based on rule 3. So, no need to do anything */
 - Set H_i = j-1
 - Break (exit the for loop)

Whole process

- Summary
 - □ Phase 1: we compute extension for $j = 1..H_1+1$.
 - □ Phase 2: we compute extension for $j = H_1+1...H_2+1.$
 - □ Phase 3: we compute extension for $j = H_2+1..H_3+1.$
 - **...**
 - □ Phase i: we compute extension for $j = H_{i-1} + 1...H_i + 1...H_i$
 - **...**
- In total, we will do at most 2n extensions.
- For an extension due to S[j..i], it takes O(n) time because we need to find the endpoint of S[j..i].
- The total time is $O(n^2)$.
- The process is accelerated using suffix link.

Suffix links

x is a single character

For an internal node v with path-label $x\alpha$, if there is another node s(v) with path-label α , than we create a suffix link from v to s(v).

Suffix links are well defined

Lemma. In a suffix tree, every internal node u (except the root) has a suffix link v.

Proof:

- \square Consider any internal node \square with path-label $\times \alpha$.

- β_1 β_2 j+1
- suffix link of u = v

How to use suffix link?

- Assume that before extension due to S[j..i], we've maintained the suffix links for all internal nodes.
- In the extension for j, we have located the end of S[j..i], denoted w.
- To start extension for (j+1), we go to the end of S[j+1..i] as follows:
 - From w, go up one edge to v
 - Through suffix link, go to s(v)
 - Go down a number of nodes until we find the end of S[j+1..i], say, w'.
 - If w ends at a new internal node, create a suffix link from w to w' (exists already or create it now).

Time complexity

- Find the end of S[j+1..i]:
 - □ Steps i, ii, and iv take O(1) time
 - Step iii takes amortized O(1) time.
- So, each extension can be solved in O(1) time.
- As there are 2n extensions, the total time is O(n).

Average over all step iii

Step 3 takes amortized O(1) time

- Define node-depth to be the depth of a node from the root (we count the number of nodes).
- Note that for each extension,
 - Step i reduces the node-depth by 1.
 - Step ii reduces the node-depth by at most 1. See next slide.
 - Step iii increases the node-depth.
- Since there are at most 2n extensions,
 - All steps 1 and 2 can reduce the node-depth by at most 4n
- Since the maximum node-depth is n,
 - All steps 3 can at most increase the node-depth by 5n.
 - □ Each step 3 goes down O(1) nodes on average.

Suffix link and depth

- For every internal node u, depth of s(u) ≥ depth of u - 1
- Proof:
 - For every ancestor w of v except the root and the one closest to the root, s(w) should be an ancestor of s(v).

Disadvantage of suffix trees

- Suffix tree is space inefficient. It has O(n) nodes and requires $O(n|\Sigma|)$ words or $O(n|\Sigma|\log n)$ bits.
- Manber and Myers (SIAM J. Comp 1993) proposes a new data structure, called suffix array, which has a similar functionality as suffix tree. Moreover, it only requires n words or O(n log n) bits.
- Compressed suffix arrays, suffix trees: O(n) bits.