VECTORS

Dr. Gabriel Obed Fosu

February 28, 2022

Outline

- Introduction To Vectors
 - Introduction
 - Vectors in \mathbb{R}^n

- 2 Vector Products
 - Dot Product

Outline of Presentation

- Introduction To Vectors
 - Introduction
 - ullet Vectors in \mathbb{R}^n

- 2 Vector Products
 - Dot Product

Introduction To Vectors

Definition (Vector)

A vector is an object that has both a magnitude and a direction.

Introduction To Vectors

Definition (Vector)

A vector is an object that has both a magnitude and a direction.

• An example of a vector quantity is velocity. This is speed, in a particular direction. An example of velocity might be 60 mph due north.

Introduction To Vectors

Definition (Vector)

A vector is an object that has both a magnitude and a direction.

- An example of a vector quantity is velocity. This is speed, in a particular direction. An example of velocity might be 60 mph due north.
- A quantity with magnitude alone, but no direction, is not a vector. It is called a scalar instead. One example of a scalar is distance.

Geometric representation

Definition (Geometric representation)

A vector \mathbf{v} is represented by a directed line segment denoted by \overrightarrow{AB} .

$$\begin{array}{ccc}
A & v = \overrightarrow{AB} \\
& & & & \\
\end{array}$$

- ullet A is the initial point/origin/tail and B is the terminal point/endpoint/tip.
- ② The length of the segment is the **magnitude** of ${\bf v}$ and is denoted by $|{\bf v}|$.
- ullet A and B are any points in space.

Vectors are represented with arrows on top $(\vec{v} \text{ or } \overrightarrow{OP})$ or as boldface \mathbf{v} .

Definition

Two vectors are equal if they have the same magnitude and direction.

Definition

Two vectors are equal if they have the same magnitude and direction.

Example

 $\overrightarrow{AB} = \mathbf{u} = \overrightarrow{DC}$

Addition of Vectors

Theorem (Parallelogram law)

Vector $\mathbf{u} + \mathbf{v}$ is the diagonal of the parallelogram formed by \mathbf{u} and \mathbf{v} .

Addition Laws

(a) Parallelogram law of vector addition: The tail of ${\bf u}$ and ${\bf v}$ coincide.

Addition of Vectors

Theorem (Parallelogram law)

Vector $\mathbf{u} + \mathbf{v}$ is the diagonal of the parallelogram formed by \mathbf{u} and \mathbf{v} .

Addition Laws

(a) Parallelogram law of vector addition: The tail of ${\bf u}$ and ${\bf v}$ coincide.

(b) Triangle law of vector addition: The tip of ${\bf u}$ coincides with the tail of ${\bf v}$. (Also called head to tail rule)

Addition

If the two vectors do not have a common point, we can always coincide them by shifting one of the vectors.

By observing that

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD} \tag{1}$$

Addition

If the two vectors do not have a common point, we can always coincide them by shifting one of the vectors.

By observing that

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD} \tag{1}$$

Zero Vector

- $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA}$. This is the **zero vector**. It has zero magnitude and is denoted by $\mathbf{0}$ or $\overrightarrow{0}$. Its origin is equal to its endpoint.
- 2 For any vector $\mathbf{w}, \mathbf{w} + \mathbf{0} = \mathbf{w}$ [if we let $\mathbf{w} = \overrightarrow{MN}$ and $\mathbf{0} = \overrightarrow{NN}$ then $\mathbf{w} + \mathbf{0} = \overrightarrow{MN} + \overrightarrow{NN} = \overrightarrow{MN} = \mathbf{w}$.]

Addition

If the two vectors do not have a common point, we can always coincide them by shifting one of the vectors.

By observing that

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD} \tag{1}$$

Zero Vector

- **1** $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA}$. This is the **zero vector**. It has zero magnitude and is denoted by **0** or $\overrightarrow{0}$. Its origin is equal to its endpoint.
- 2 For any vector $\mathbf{w}, \mathbf{w} + \mathbf{0} = \mathbf{w}$ [if we let $\mathbf{w} = \overrightarrow{MN}$ and $\mathbf{0} = \overrightarrow{NN}$ then $\mathbf{w} + \mathbf{0} = \overrightarrow{MN} + \overrightarrow{NN} = \overrightarrow{MN} = \mathbf{w}$.]

Negative vector

 \overrightarrow{BA} and \overrightarrow{AB} have the same magnitude but opposite directions and satisfy $\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AA}=\overrightarrow{0}$. \overrightarrow{BA} is the **negative** of \overrightarrow{AB} i.e. $\overrightarrow{BA}=-\overrightarrow{AB}$.

1 In general, we have $k\overrightarrow{AB}$. For instance $\underbrace{\overrightarrow{AB} + \overrightarrow{AB} + \cdots + \overrightarrow{AB}}_{k} = k\overrightarrow{AB}$

if $k \in \mathbb{Z}$. The coefficient k is a scalar and the product between a scalar and a vector is called scalar multiplication.

• In general, we have $k\overrightarrow{AB}$. For instance $\underbrace{\overrightarrow{AB} + \overrightarrow{AB} + \cdots + \overrightarrow{AB}}_{k} = k\overrightarrow{AB}$

if $k \in \mathbb{Z}$. The coefficient k is a scalar and the product between a scalar and a vector is called scalar multiplication.

② ${\bf w}$ and $k{\bf w}$ are said to be **parallel**; they have the same direction if k>0 and opposite direction if k<0.

Position Vectors

Definition (Position Vectors)

While vectors can exist anywhere in space, a point is always defined relative to the origin, O. Vectors defined from the origin are called Position Vectors

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$
 (2)

$$= [-\vec{a}] + \vec{b} \tag{3}$$

$$= \vec{b} - \vec{a} \tag{4}$$

$$= \overrightarrow{OB} - \overrightarrow{OA} \tag{5}$$

It is natural to represent position vectors using coordinates. For example, in $\overrightarrow{A}=(3,2)$ and we write the vector $\overrightarrow{a}=\overrightarrow{OA}=[3,2]$ using square brackets. Similarly, $\overrightarrow{b}=[-1,3]$ and $\overrightarrow{c}=[2,-1]$

It is natural to represent position vectors using coordinates. For example, in A=(3,2) and we write the vector $\vec{a}=\overrightarrow{OA}=[3,2]$ using square brackets. Similarly, $\vec{b}=[-1,3]$ and $\vec{c}=[2,-1]$

• The individual coordinates [3 and 2 in the case of \vec{a}] are called the components of the vector.

It is natural to represent position vectors using coordinates. For example, in A=(3,2) and we write the vector $\vec{a}=\overrightarrow{OA}=[3,2]$ using square brackets. Similarly, $\vec{b}=[-1,3]$ and $\vec{c}=[2,-1]$

- The individual coordinates [3 and 2 in the case of \vec{a}] are called the components of the vector.
- A vector is sometimes said to be an ordered pair of real numbers. That is

$$[3,2] \neq [2,3] \tag{6}$$

It is natural to represent position vectors using coordinates. For example, in A=(3,2) and we write the vector $\vec{a}=\overrightarrow{OA}=\begin{bmatrix}3,2\end{bmatrix}$ using square brackets. Similarly, $\vec{b}=[-1,3]$ and $\vec{c}=[2,-1]$

- The individual coordinates [3 and 2 in the case of \vec{a}] are called the components of the vector.
- A vector is sometimes said to be an ordered pair of real numbers. That is

$$[3,2] \neq [2,3] \tag{6}$$

 $\ensuremath{\mathfrak{g}}$ Vectors can be represented either as row vector [a,b,c] of a column $\lceil a \rceil$

Given
$$\mathbf{u} = [u_1, u_2]$$
 and $\mathbf{v} = [v_1, v_2]$ then

Addition

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2] \tag{7}$$

Given $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$ then

Addition

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2] \tag{7}$$

Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2] \tag{8}$$

Given $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$ then

4 Addition

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2] \tag{7}$$

Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2] \tag{8}$$

Scalar multiplication

$$k\mathbf{u} = [ku_1, ku_2] \tag{9}$$

Given $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$ then

Addition

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2] \tag{7}$$

Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2] \tag{8}$$

Scalar multiplication

$$k\mathbf{u} = [ku_1, ku_2] \tag{9}$$

Magnitude / Length / Norm

$$|\mathbf{u}| = ||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2}$$
 (10)

Standard Basis Vectors

Let $\vec{i}=[1,\ 0]$ and $\vec{j}=[0,\ 1]$, the i,j are called standard basis vectors in \mathbb{R}^2

Each vector have length 1 and point in the directions of the positive x, and y-axes respectively.

Standard Basis Vectors

Let $\vec{i}=[1,\ 0]$ and $\vec{j}=[0,\ 1]$, the i,j are called standard basis vectors in \mathbb{R}^2

Each vector have length 1 and point in the directions of the positive x, and y-axes respectively.

Similarly, in the three-dimensional plane, the vectors $\vec{i}=[1,0,0], \vec{j}=[0,1,0]$ and $\vec{k}=[0,0,1]$ are also called the standard basis vectors.

Again they have length 1 and point in the directions of the positive $x,\ y,$ and $z\mathrm{-axes}.$

Standard Basis Vectors

Unit Vector

Definition

- A vector of magnitude 1 is called a unit vector. In the Cartesian coordinate system, i and j are reserved for the unit vector along the positive x-axis and yaxis respectively.
- The Cartesian coordinate system is therefore defined by three reference points (O, I, J) such that the origin O has coordinates (0, 0), $\mathbf{i} = \overrightarrow{OI}$ and $\mathbf{j} = \overrightarrow{OJ}$, and any vector $\mathbf{w} = \overrightarrow{OM}$ can be expressed as $\mathbf{w} = w_1 \mathbf{i} + w_2 \mathbf{j}$. w_1 and w_2 are the coordinates of \mathbf{w} .

Given the points E=(2,7) and F=(3,-1), then the vector \overrightarrow{EF} is given as

$$\overrightarrow{EF} = \overrightarrow{OF} - \overrightarrow{OE} \tag{11}$$

$$= [(3, -1) - (2, 7)] \tag{12}$$

$$= [1, -8]$$
 (13)

Calculate the magnitude of vector $\mathbf{a}=\lambda_1\mathbf{a}_1-\lambda_2\mathbf{a}_2-\lambda_3\mathbf{a}_3$ in case $\mathbf{a}_1=[2,-3], \mathbf{a}_2=[-3,0], a_3=[-1,-1]$ and $\lambda_1=2,\lambda_2=-1,\lambda_3=3.$

Calculate the magnitude of vector
$$\mathbf{a}=\lambda_1\mathbf{a}_1-\lambda_2\mathbf{a}_2-\lambda_3\mathbf{a}_3$$
 in case $\mathbf{a}_1=[2,-3], \mathbf{a}_2=[-3,0], a_3=[-1,-1]$ and $\lambda_1=2,\lambda_2=-1,\lambda_3=3.$

$$\mathbf{a} = \lambda_1 \mathbf{a}_1 - \lambda_2 \mathbf{a}_2 - \lambda_3 \mathbf{a}_3 \tag{14}$$

$$= 2[2, -3] - [-1][-3, 0] - 3[-1, -1]$$
(15)

$$= [4, -6] + [-3, 0] + [3, 3]$$
(16)

$$= [4, -3] (17)$$

Thus

Calculate the magnitude of vector $\mathbf{a} = \lambda_1 \mathbf{a}_1 - \lambda_2 \mathbf{a}_2 - \lambda_3 \mathbf{a}_3$ in case $\mathbf{a}_1 = [2, -3], \mathbf{a}_2 = [-3, 0], a_3 = [-1, -1]$ and $\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 3$.

$$\mathbf{a} = \lambda_1 \mathbf{a}_1 - \lambda_2 \mathbf{a}_2 - \lambda_3 \mathbf{a}_3 \tag{14}$$

$$= 2[2, -3] - [-1][-3, 0] - 3[-1, -1]$$
(15)

$$= [4, -6] + [-3, 0] + [3, 3]$$
(16)

$$= [4, -3] \tag{17}$$

Thus

$$|\mathbf{a}| = \sqrt{4^3 + [-3]^2} = \sqrt{25} = 5$$
 (18)

A car is pulled by four men. The components of the four forces are $\mathbf{F}_1 = [20,25], \mathbf{F}_2 = [15,5], \mathbf{F}_3 = [25,-5]$ and $\mathbf{F}_4 = [30,-15]$. Find the resultant force \mathbf{R} .

A car is pulled by four men. The components of the four forces are $\mathbf{F}_1 = [20,25], \mathbf{F}_2 = [15,5], \mathbf{F}_3 = [25,-5]$ and $\mathbf{F}_4 = [30,-15].$ Find the resultant force \mathbf{R}_2 .

The resultant force

$$\mathbf{F} = F_1 + F_2 + F_3 + F_4 \tag{19}$$

$$= [20, 25] + [15, 5] + [25, -5] + [30, -15]$$
 (20)

$$= [90, 10] \tag{21}$$

Definition

- **1** If v_1, v_2, \ldots, v_n are n real numbers:
- $v = [v_1, v_2]$ is a two dimension vector. It belongs to \mathbb{R}^2 .
- \bullet $v = [v_1, v_2, v_3]$ is a three dimension vector. It belongs to \mathbb{R}^3 .
- $v=[v_1,v_2,\ldots,v_n]$ is an n dimension vector. It belongs to \mathbb{R}^n . We may use $\mathbf{e}_1,\mathbf{e}_2,\ldots\mathbf{e}_n$ to denote the unit vectors of the coordinate system.

- If v_1, v_2, \ldots, v_n are n real numbers:
- $v = [v_1, v_2]$ is a two dimension vector. It belongs to \mathbb{R}^2 .
- \bullet $v = [v_1, v_2, v_3]$ is a three dimension vector. It belongs to \mathbb{R}^3 .
- $v=[v_1,v_2,\ldots,v_n]$ is an n dimension vector. It belongs to \mathbb{R}^n . We may use $\mathbf{e}_1,\mathbf{e}_2,\ldots\mathbf{e}_n$ to denote the unit vectors of the coordinate system.
- **1** $\mathbf{i} = [1,0,0], \mathbf{j} = [0,1,0]$ and $\mathbf{k} = [0,0,1]$ are three dimension vectors; $\mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathbb{R}^3.\mathbf{u} = [3,-1,5] = 3\mathbf{i} \mathbf{j} + 5\mathbf{k}$ is a vector in \mathbb{R}^3 .

- ① If v_1, v_2, \ldots, v_n are n real numbers:
- $v = [v_1, v_2]$ is a two dimension vector. It belongs to \mathbb{R}^2 .
- \bullet $v = [v_1, v_2, v_3]$ is a three dimension vector. It belongs to \mathbb{R}^3 .
- $v=[v_1,v_2,\ldots,v_n]$ is an n dimension vector. It belongs to \mathbb{R}^n . We may use $\mathbf{e}_1,\mathbf{e}_2,\ldots\mathbf{e}_n$ to denote the unit vectors of the coordinate system.
- **1** $\mathbf{i} = [1,0,0], \mathbf{j} = [0,1,0]$ and $\mathbf{k} = [0,0,1]$ are three dimension vectors; $\mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathbb{R}^3.\mathbf{u} = [3,-1,5] = 3\mathbf{i} \mathbf{j} + 5\mathbf{k}$ is a vector in \mathbb{R}^3 .
- ② $\mathbf{v} = [3, -1, 5, 0, 4] = 3\mathbf{e}_1 \mathbf{e}_2 + 5\mathbf{e}_3 + 4\mathbf{e}_5$ is a five dimension vector; $\mathbf{v} \in \mathbb{R}^5$.

- If v_1, v_2, \ldots, v_n are n real numbers:
- $v = [v_1, v_2]$ is a two dimension vector. It belongs to \mathbb{R}^2 .
- \bullet $v = [v_1, v_2, v_3]$ is a three dimension vector. It belongs to \mathbb{R}^3 .
- $v=[v_1,v_2,\ldots,v_n]$ is an n dimension vector. It belongs to \mathbb{R}^n . We may use $\mathbf{e}_1,\mathbf{e}_2,\ldots\mathbf{e}_n$ to denote the unit vectors of the coordinate system.
- **1** $\mathbf{i} = [1,0,0], \mathbf{j} = [0,1,0]$ and $\mathbf{k} = [0,0,1]$ are three dimension vectors; $\mathbf{i}, \mathbf{j}, \mathbf{k} \in \mathbb{R}^3.\mathbf{u} = [3,-1,5] = 3\mathbf{i} \mathbf{j} + 5\mathbf{k}$ is a vector in \mathbb{R}^3 .
- ② $\mathbf{v} = [3, -1, 5, 0, 4] = 3\mathbf{e}_1 \mathbf{e}_2 + 5\mathbf{e}_3 + 4\mathbf{e}_5$ is a five dimension vector; $\mathbf{v} \in \mathbb{R}^5$.
- **3** The coordinate system is defined by $\mathbf{e}_1=[1,0,0,0,0],\ \mathbf{e}_2=[0,1,0,0,0],\ \mathbf{e}_3=[0,0,1,0,0],\ \mathbf{e}_4=[0,0,0,1,0],\ \text{and}\ \mathbf{e}_5=[0,0,0,0,1].$

$$\mathbf{u} = [u_1, u_2, \dots, u_n], \quad \text{and} \quad \mathbf{v} = [v_1, v_2, \dots, v_n] \text{ then}$$

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$
(22)

$$\mathbf{u} = [u_1, u_2, \dots, u_n],$$
 and $\mathbf{v} = [v_1, v_2, \dots, v_n]$ then

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$
(22)

2 Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2, \dots, u_n - v_n]$$
(23)

$$\mathbf{u} = [u_1, u_2, \dots, u_n],$$
 and $\mathbf{v} = [v_1, v_2, \dots, v_n]$ then

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$
(22)

2 Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2, \dots, u_n - v_n]$$
(23)

Scalar multiplication

$$k\mathbf{u} = [ku_1, ku_2, \dots, ku_n] \tag{24}$$

$$\mathbf{u} = [u_1, u_2, \dots, u_n],$$
 and $\mathbf{v} = [v_1, v_2, \dots, v_n]$ then

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$
 (22)

2 Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2, \dots, u_n - v_n]$$
(23)

Scalar multiplication

$$k\mathbf{u} = [ku_1, ku_2, \dots, ku_n] \tag{24}$$

Magnitude

$$|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2} \tag{25}$$

$$\mathbf{u} = [u_1, u_2, \dots, u_n],$$
 and $\mathbf{v} = [v_1, v_2, \dots, v_n]$ then

$$\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]$$
 (22)

2 Subtraction

$$\mathbf{u} - \mathbf{v} = [u_1 - v_1, u_2 - v_2, \dots, u_n - v_n]$$
(23)

Scalar multiplication

$$k\mathbf{u} = [ku_1, ku_2, \dots, ku_n] \tag{24}$$

Magnitude

$$|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2} \tag{25}$$

Unit vector in the direction of u

$$\mathbf{e}_{\mathbf{u}} = \frac{\mathbf{u}}{|\mathbf{u}|} = \left(\frac{u_1}{|\mathbf{u}|}, \frac{u_2}{|\mathbf{u}|}, \dots, \frac{u_n}{|\mathbf{u}|}\right) \tag{26}$$

If ${\bf a}=[4,0,3]$ and ${\bf b}=[-2,1,5],$ find $|{\bf a}-{\bf b}|$ and the unit vector ${\bf e}$ in the direction of ${\bf a}.$

If $\mathbf{a}=[4,0,3]$ and $\mathbf{b}=[-2,1,5],$ find $|\mathbf{a}-\mathbf{b}|$ and the unit vector \mathbf{e} in the direction of \mathbf{a} .

$$\vec{a} - \vec{b} = [4, 0, 3] - [-2, 1, 5]$$
 (27)

$$= [6, -1, -2] \tag{28}$$

and

$$|\vec{a} - \vec{b}| = \sqrt{6^2 + [-1]^2 + [-2]^2} = \sqrt{41}$$
 (29)

If $\mathbf{a}=[4,0,3]$ and $\mathbf{b}=[-2,1,5],$ find $|\mathbf{a}-\mathbf{b}|$ and the unit vector \mathbf{e} in the direction of \mathbf{a} .

$$\vec{a} - \vec{b} = [4, 0, 3] - [-2, 1, 5]$$
 (27)

$$= [6, -1, -2] \tag{28}$$

and

$$|\vec{a} - \vec{b}| = \sqrt{6^2 + [-1]^2 + [-2]^2} = \sqrt{41}$$
 (29)

The unit in the direction of a is

$$\mathbf{e} = \frac{1}{\sqrt{4^2 + 0^2 + 3^2}} [4, 0, 3] \tag{30}$$

$$=\frac{1}{5}[4,0,3] \tag{31}$$

$$= \left[\frac{4}{5}, 0, \frac{3}{5}\right] \tag{32}$$

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and any scalars $k, k' \in \mathbb{R}$,

• Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ Additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- **o** Commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- $\bullet \quad \mathsf{Commutative} \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Additive identity $\mathbf{u} + \mathbf{0} = \mathbf{u}$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- **o** Commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Additive identity $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- Multiplicative identity $1\mathbf{u} = \mathbf{u}$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ Additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- **o** Commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Additive identity $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- Multiplicative identity $1\mathbf{u} = \mathbf{u}$
- $\bullet \text{ Associative } [\mathbf{u} + \mathbf{v}] + \mathbf{w} = \mathbf{u} + [\mathbf{v} + \mathbf{w}]$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- $oldsymbol{o}$ Commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Additive identity $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- Multiplicative identity $1\mathbf{u} = \mathbf{u}$
- $\bullet \text{ Associative } [\mathbf{u} + \mathbf{v}] + \mathbf{w} = \mathbf{u} + [\mathbf{v} + \mathbf{w}]$
- Scalar Multiplication $k[\mathbf{u} + \mathbf{v}] = k\mathbf{u} + k\mathbf{v}$

- Closure $\mathbf{u} + \mathbf{v} \in \mathbb{R}^n$
- $\textbf{ additive inverse } \mathbf{u} + [-\mathbf{u}] = \mathbf{0}$
- Commutative $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- Additive identity $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- Multiplicative identity $1\mathbf{u} = \mathbf{u}$
- $\bullet \ \mathsf{Associative} \ [\mathbf{u} + \mathbf{v}] + \mathbf{w} = \mathbf{u} + [\mathbf{v} + \mathbf{w}]$
- Scalar Multiplication $k[\mathbf{u} + \mathbf{v}] = k\mathbf{u} + k\mathbf{v}$
- Scalar Multiplication $[k + k']\mathbf{u} = k\mathbf{u} + k'\mathbf{u}$

Definition (Linear Combination)

A vector \mathbf{v} is a linear combination of vectors $\mathbf{v_1}, \mathbf{v_2}, \cdots, v_n$ if there are scalars k_1, k_2, \cdots, k_n such that

$$\mathbf{v} = k_1 \mathbf{v_1} + k_2 \mathbf{v_2} + \dots + k_n \mathbf{v_n} \tag{33}$$

The scalars k_1, k_2, \dots, k_n are called the **coefficients** of the linear combination.

Definition (Linear Combination)

A vector \mathbf{v} is a linear combination of vectors $\mathbf{v_1}, \mathbf{v_2}, \cdots, v_n$ if there are scalars k_1, k_2, \cdots, k_n such that

$$\mathbf{v} = k_1 \mathbf{v_1} + k_2 \mathbf{v_2} + \dots + k_n \mathbf{v_n} \tag{33}$$

The scalars k_1, k_2, \dots, k_n are called the **coefficients** of the linear combination.

Example

The vectors $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ -4 \\ 0 \end{bmatrix}$ Since

$$3\begin{bmatrix} 1\\0\\-1 \end{bmatrix} + 2\begin{bmatrix} 2\\-3\\1 \end{bmatrix} - \begin{bmatrix} 5\\-4\\0 \end{bmatrix} = \begin{bmatrix} 2\\-2\\1 \end{bmatrix}$$
 (34)

Exercise

- Let $M=(m_1,m_2)$ and $N=(n_1,n_2)$ be two points in the Cartesian coordinate system (O,I,J). Express $\mathbf{u}=\overrightarrow{MN},\mathbf{v}=\overrightarrow{MO}-2\overrightarrow{ON},\mathbf{w}=\overrightarrow{MN}+2\overrightarrow{NM}+\overrightarrow{ON}-\overrightarrow{OI}+3\overrightarrow{IJ}$ in terms of \overrightarrow{OI} and \overrightarrow{OJ} .
- 2 Find a unit vector that has the same direction as

 - $\mathbf{v} = [-2, 1, 2].$
- 3 Show that ${\bf u}=2{\bf e}_1-4{\bf e}_2+{\bf e}_3-\sqrt{2}{\bf e}_4$ and ${\bf v}=-4{\bf e}_1+8{\bf e}_2-2{\bf e}_3+\sqrt{8}{\bf e}_4$ are parallel vectors.

Outline of Presentation

- Introduction To Vectors
 - Introduction
 - Vectors in \mathbb{R}^n

- 2 Vector Products
 - Dot Product

Dot Product

For \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

If

$$\mathbf{u} = [u_1, u_2, \dots, u_n], \quad \text{and} \quad \mathbf{v} = [v_1, v_2, \dots, v_n]$$

then

$$\langle \mathbf{u}, \ \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$
 (35)

is the dot product of the two vectors.

The dot product is also called inner or scalar product.

Dot Product

For \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

If

$$\mathbf{u} = [u_1, u_2, \dots, u_n], \quad \text{and} \quad \mathbf{v} = [v_1, v_2, \dots, v_n]$$

then

$$\langle \mathbf{u}, \ \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$
 (35)

is the dot product of the two vectors.

The dot product is also called inner or scalar product.

Example

$$[1,2,3] \cdot [-1,0,1] = 1(-1) + 2(0) + 3(1) = 2.$$

Dot Product

For \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

If

$$\mathbf{u} = [u_1, u_2, \dots, u_n], \quad \text{and} \quad \mathbf{v} = [v_1, v_2, \dots, v_n]$$

then

$$\langle \mathbf{u}, \ \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$
 (35)

is the dot product of the two vectors.

The dot product is also called inner or scalar product.

Example

$$[1, 2, 3] \cdot [-1, 0, 1] = 1(-1) + 2(0) + 3(1) = 2.$$

Example

$$[\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}] \cdot [2\mathbf{j} - \mathbf{k}] = 0 + 4 + 3 = 7.$$

In $\mathbb{R}^3, \mathbf{i} = [1,0,0], \mathbf{j} = [0,1,0]$ and $\mathbf{k} = [0,0,1]$ so that

	i	j	k
i	1	0	0
j	0	1	0
k	0	0	1

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and any scalar $k \in \mathbb{R}$:

- $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$
- $0 \cdot \mathbf{u} = 0.$

- $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$
- $0 \cdot \mathbf{u} = 0.$
- $\mathbf{0} \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$
- $\mathbf{0} \cdot \mathbf{u} = \mathbf{0}.$
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ iff $\mathbf{u} = \mathbf{0}$.

- $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$
- $\mathbf{0} \cdot \mathbf{u} = \mathbf{0}.$
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ iff $\mathbf{u} = \mathbf{0}$.

- $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$
- $\mathbf{0} \cdot \mathbf{u} = \mathbf{0}.$
- $\mathbf{0} \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\mathbf{u} \cdot \mathbf{u} = |\mathbf{u}|^2 \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0$ iff $\mathbf{u} = \mathbf{0}$.
- $\mathbf{0} \ \mathbf{u} \cdot [\mathbf{v} + \mathbf{w}] = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}.$

Angles

The dot product can also be used to calculate the angle between a pair of vectors. In R^2 or R^3 , the angle between the nonzero vectors u and v will refer to the angle θ determined by these vectors that satisfies $0 \le \theta \le 180$.

For nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} \tag{36}$$

This implies that

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta \tag{37}$$

 $0 \le \theta \le \pi$ is the internal angle.

For nonzero vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||} \tag{36}$$

This implies that

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \ ||\mathbf{v}|| \cos \theta \tag{37}$$

 $0 \le \theta \le \pi$ is the internal angle.

Orthogonal vectors

Two nonzero vectors ${\bf u}$ and ${\bf v}$ are said to be orthogonal or perpendicular if

$$\mathbf{u} \cdot \mathbf{v} = 0 \tag{38}$$

$$\mathbf{u} \cdot \mathbf{v} = [1, -2, 3] \cdot [1, 0, -1]$$
 (39)

$$=1+0-3=-2$$
 Not orthogonal (40)

$$\mathbf{u} \cdot \mathbf{v} = [1, -2, 3] \cdot [1, 0, -1]$$
 (39)

$$=1+0-3=-2$$
 Not orthogonal (40)

$$\mathbf{u} \cdot \mathbf{w} = [1, -2, 3] \cdot [2, 7, 4]$$
 (41)

$$=2-14+12=0$$
 orthogonal (42)

$$\mathbf{u} \cdot \mathbf{v} = [1, -2, 3] \cdot [1, 0, -1]$$
 (39)

$$=1+0-3=-2 \quad \text{Not orthogonal} \tag{40}$$

$$\mathbf{u} \cdot \mathbf{w} = [1, -2, 3] \cdot [2, 7, 4]$$
 (41)

$$= 2 - 14 + 12 = 0$$
 orthogonal (42)

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \, ||\mathbf{v}||} = \frac{-2}{\sqrt{14} \times \sqrt{2}} = \frac{-1}{\sqrt{7}} \tag{43}$$

$$\theta = 112.2078 \tag{44}$$

Find k so that $\mathbf{u} = [1, k, -3, 1]$ and $\mathbf{v} = [1, k, k, 1]$ are orthogonal.

Find k so that $\mathbf{u} = [1, k, -3, 1]$ and $\mathbf{v} = [1, k, k, 1]$ are orthogonal.

For orthogonal

$$\mathbf{u} \cdot \mathbf{v} = 0 \tag{45}$$

$$[1, k, -3, 1] \cdot [1, k, k, 1] = 0 \tag{46}$$

$$1 + k^2 - 3k + 1 = 0 (47)$$

$$k^2 - 3k + 2 = 0 (48)$$

$$[k-2][k-1] = 0 (49)$$

Hence k=2 or k=1

Theorem

For any two vectors a and b

Schwartz's inequality:

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| \, |\mathbf{b}| \tag{50}$$

2 Triangle inequality:

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}| \tag{51}$$

Theorem

For any two vectors a and b

Schwartz's inequality:

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| \, |\mathbf{b}| \tag{50}$$

2 Triangle inequality:

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}| \tag{51}$$

Definition

The distance between a and b is

$$d(\mathbf{a}, \mathbf{b}) = |\mathbf{a} - \mathbf{b}| \tag{52}$$

Theorem (Pythagoras)

For all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n ,

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 \tag{53}$$

if and only if ${f u}$ and ${f v}$ are orthogonal.

Note

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2\mathbf{u} \cdot \mathbf{v}$$
(54)

For orthogonal $\mathbf{u} \cdot \mathbf{v} = 0$

Projection of v onto u

Consider two nonzero vectors ${\bf u}$ and ${\bf v}$. Let ${\bf p}$ be the vector obtained by dropping a perpendicular from the head of vonto ${\bf u}$ and let θ be the angle between ${\bf u}$ and ${\bf v}$

Scaler Projection

The scalar projection of a vector ${\bf v}$ onto a nonzero vector ${\bf u}$ is defined and denoted by the scalar

$$comp_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|}$$
 (55)

Projection of v onto u

Consider two nonzero vectors \mathbf{u} and \mathbf{v} . Let \mathbf{p} be the vector obtained by dropping a perpendicular from the head of vonto \mathbf{u} and let θ be the angle between \mathbf{u} and \mathbf{v}

Scaler Projection

The scalar projection of a vector ${\bf v}$ onto a nonzero vector ${\bf u}$ is defined and denoted by the scalar

$$comp_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|}$$
 (55)

Vector Projection

The [vector] projection of ${\bf v}$ onto ${\bf u}$ is

$$proj_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|} \frac{\mathbf{u}}{|\mathbf{u}|} = comp_{\mathbf{u}}\mathbf{v} \frac{\mathbf{u}}{|\mathbf{u}|}$$
 (56)

Find the projection of ${\bf v}$ onto ${\bf u}$ if ${\bf u}=[2,1]$ and ${\bf v}=[-1,3]$

Find the projection of ${\bf v}$ onto ${\bf u}$ if ${\bf u}=[2,1]$ and ${\bf v}=[-1,3]$

$$\mathbf{u} \cdot \mathbf{v} = -2 + 3 = 1 \tag{57}$$

$$||\mathbf{u}|| \cdot ||\mathbf{u}|| = \sqrt{5}(\sqrt{5}) = 5 \tag{58}$$

Find the projection of ${\bf v}$ onto ${\bf u}$ if ${\bf u}=[2,1]$ and ${\bf v}=[-1,3]$

$$\mathbf{u} \cdot \mathbf{v} = -2 + 3 = 1 \tag{57}$$

$$||\mathbf{u}|| \cdot ||\mathbf{u}|| = \sqrt{5}(\sqrt{5}) = 5 \tag{58}$$

$$proj_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|} \frac{\mathbf{u}}{|\mathbf{u}|} = \frac{1}{5}\mathbf{u}$$
 (59)

$$=\frac{1}{5}[2,1] \tag{60}$$

$$= \left[\frac{2}{5}, \frac{1}{5}\right] \tag{61}$$

Exercise

Find the vector projection of ${\bf v}$ onto ${\bf u}$

$$\mathbf{0} \ \mathbf{u} = [-1, \ 1], \ \mathbf{v} = [-2, \ 4]$$

2
$$\mathbf{u} = [3/5, -4/5], \quad \mathbf{v} = [1, 2]$$

3
$$\mathbf{u} = [1/2, -1/4, /-1/2], \quad \mathbf{v} = [2, 2, /-2]$$

END OF LECTURE THANK YOU