

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC405 - ESTRUTURA DE DADOS II

Aula 13.2 – Teoria dos Grafos – Conceitos Formais

2^a PARTE

Conceitos formais

Definição Formal:

- Um grafo é uma tripla ordenada (N, A, g), onde:
 - N é um conjunto arbitrário, não-vazio e finito de vértices (nós ou nodos)
 - A é um conjunto finito de arestas
 - g é uma função que associa cada aresta a∈A a
 um par não-ordenado de vértices chamados de extremos de a

Desenhar grafo...

Teoria dos Grafos – Exercício Simples

Considere os dois diagramas abaixo. Rotule os vértices e as arestas de tal forma que os dois diagramas representem o mesmo grafo.

Teoria dos Grafos – Exercício Simples

Uma possível identificação de vértices e rótulos pode ser:

Os dois diagramas são representados por:

- Conjunto de vértices: $\{v_1, v_2, v_3, v_4, v_5\}.$
- Conjunto de arestas: $\{e_1, e_2, e_3, e_4, e_5\}.$
- Função aresta-vértice:

Aresta	Vértice
e_1	$\{v_1, v_2\}$
e_2	$\{v_2, v_3\}$
e_3	$\{v_3, v_4\}$
e_{4}	$\{v_4, v_5\}$
e_{5}	$\{v_5, v_1\}$

Conceitos importantes:

- Suponha um grafo G = (N, A, g), onde:
- $N = \{x, y\}$, ou seja, contém dois vértices x e y
- $A = \{a1\}$, ou seja, contém apenas uma aresta
- A função g é tal que g(a1) = x-y
- Podemos denotar a aresta a1 por x-y simplesmente por xy
- Dizemos que essa aresta incide em x e em y
- x e y também são as pontas ou extremos da aresta
- Se xy é uma aresta do grafo, também podemos dizer que x e y são vértices vizinhos ou adjacentes

Grafo Simples

- Um grafo considerado simples não pode ter duas arestas com o mesmo par de pontas, ou seja arestas paralelas (coincidentes).
- Um grafo simples também não pode ter uma aresta com pontas coincidentes, ou seja não pode ter laços.

Cardinalidade e Grau

- A cardinalidade de um grafo G é o número de vértices que ele contém, e é denotado por |G|
- O grau de um vértice é dado pela quantidade de arestas que incidem sobre o vértice
- Teorema da soma dos graus:
 - A soma dos graus de um vértice deve ser igual ao dobro da quantidade de arestas

$$\sum_{x=1}^{|N|} d(v_x) = 2 * |A|$$

Desenhar grafo...

Grafo Completo

- Um grafo completo é um grafo simples no qual todos os vértices distintos são adjacentes
- Como ele é necessariamente um grafo simples, um grafo completo não admite arestas paralelas e laços
- Grafos completos recebem nomes especiais de acordo com a quantidade de vértices que ele contém:
 - K1
 - K2
 - K3
 - ...

Grafo Completo

Desenhar grafo...

<u>Definição</u>: Um grafo completo de n vértices, denominado K_n^* , é um grafo simples com n vértices v_1, v_2, \ldots, v_n , cujo conjunto de arestas contém exatamente uma aresta para cada par de vértices distintos.

Exemplo: Grafos completos com 2, 3, 4, e 5 vértices.

Grafo Completo

^{*}A letra K representa a letra inicial da palavra komplett do alemão, que significa "completo".

Grafo Completo

Dado o grafo completo K_n temos que

Vértice está conectado aos vértices através de # arestas (não conectados ainda)

ou seja, se contarmos o número total de arestas de K_n temos

$$\sum_{i=1}^{n-1} i = \frac{(n-1) \cdot n}{2} = \frac{n^2 - n}{2} = \frac{(|V|^2 - |V|)}{2}$$

Grafo Completo

Os grafos K_2 , K_3 , K_4 , e K_5

possuem a seguinte quantidade de arestas:

Grafo	# arestas
K_2	1
K ₃	3
K_4	6
K_5	10

Grafos

Quantidade de grafos distintos com n vértices

O número total de grafos distintos com n vértices (|V|) é

$$2^{\frac{n^2-n}{2}} = 2^{\frac{(|V|^2-|V|)}{2}}$$

que representa a quantidade de maneiras diferentes de escolher um subconjunto a partir de

$$\frac{n^2 - n}{2} = \frac{(|V|^2 - |V|)}{2}$$

possíveis arestas de um grafo com n vértices.

Grafos

Quantidade de grafos distintos com n vértices

Exemplo: Quantos grafos distintos com 3 vértices existem?

- Um grafo com 3 vértices v_1 , v_2 e v_3 possui no máximo 3 arestas, ou seja, $E = \{v_1v_2, v_1v_3, v_2v_3\}.$
- O número de sub-conjuntos distintos de E é dado por $\mathcal{P}(E)$, ou seja, o conjunto potência de E que vale $2^{|E|}$.

$$\mathcal{P}(E) = \left\{ \begin{array}{c} \emptyset, \\ \{v_1v_2\}, \\ \{v_1v_3\}, \\ \{v_2v_3\}, \\ \{v_1v_2, v_2v_3\}, \\ \{v_1v_3, v_2v_3\}, \\ \{v_1v_2, v_1v_3\}, \\ \{v_1v_2, v_1v_3, v_2v_3\} \end{array} \right\}$$

Cada elemento de $\mathcal{P}(E)$ deve ser mapeado num grafo com 3 vértices levando a um grafo distinto:

Grafos

Quantidade de grafos distintos com n vértices

Exemplo: Quantos grafos distintos com 3 vértices existem (continuação)?

• Para cada elemento (sub-conjunto) do conjunto potência de E temos um grafo distinto associado, ou seja, o número total de grafos com 3 vértices é:

$$2^{\frac{n^2-n}{2}} = 2^{\frac{3^2-3}{2}} = 2^3 = 8$$

Subgrafo

- Um subgrafo de um grafo consiste em um conjunto de vértices e arestas que são subconjuntos dos vértices e arestas do grafo original.
- É uma parte do grafo original

Passeio (walk)

- Um passeio ("walk") é uma sequência de vértices v₁, v₂, . . . , v_{k-1}, v_k tal que v_{j-1}v_j ∈ E(G) para j = 2, . . . , k. Note que em um passeio pode haver repetição de vértices e arestas. Se v₁ = v_k, dizemos que o passeio é fechado;
- caso contrário, o passeio é aberto. Um passeio fechado é também denominado circuito por alguns autores.

Trilha (Trail)

• Uma trilha ("trail") é um passeio $v_1, v_2, \ldots, v_{k-1}, v_k$ cujas **arestas** são todas distintas. Em uma trilha pode haver repetição de vértices, mas não de arestas. Assim como no caso dos passeios, as trilhas também podem ser classificadas em fechadas e abertas.

Caminho (Path)

• Um caminho ("path") é um passeio $v_1, v_2, \ldots, v_{k-1}, v_k$ onde os vértices são todos distintos. Note que em um caminho, como não pode haver repetição de vértices, não há repetição de arestas. Portanto, todo caminho é uma trilha (mas nem toda trilha é um caminho). O comprimento de um caminho é o número de arestas neste caminho. Observe que não pode haver "caminho fechado", pois em um caminho não há repetição de vértices. Se P é um caminho e u, v são vértices deste caminho, denotamos por P[u, v] o subcaminho de P que vai de u até v.

Ciclo

 Um ciclo ("cycle") é um passeio v₁, v₂, . . . , v_{k-1} , v_k tal que v_1 , v_2 , . . . , v_{k-1} é um caminho e $v_1 = v_k$. Por definição, em um ciclo devemos ter $k \ge 3$. O comprimento de um ciclo é o número de vértices (ou arestas) presentes no ciclo. Um ciclo de comprimento três é também chamado de triângulo. Um ciclo de comprimento ímpar [par] é chamado simplesmente de ciclo ímpar [ciclo par].

Percurso, Trilha, Caminho e Ciclo

a != b → true ou false?

Percurso, Trilha, Caminho e Ciclo

Exemplo 1.1. Seja G o grafo tal que $V(G) = \{a, u, v, w, x, y, z\}$ e $E(G) = \{uv, vw, wx, xy, yz, zu, av, ax, az\}$. Na Figura 1.1 temos duas representações geométricas diferentes para G.

Figura 1.1: Duas representações geométricas diferentes para o mesmo grafo.

Percurso, Trilha, Caminho e Ciclo

Exemplo 1.4. Considere novamente o grafo G do Exemplo 1.1. Então:

 $W_1 = u, v, a, z, y, x, a, z$ é um passeio aberto; $W_2 = u, v, a, z, y, x, a, z, u$ é um passeio fechado; T = a, v, w, x, a, z, y é uma trilha aberta; $P_1 = u, v, w, x, a, z, y$ é um caminho; $P_2 = u, v, w, x, y$ é um caminho induzido; $C_1 = u, v, w, x, y, z, u$ é um ciclo; $C_2 = u, v, a, z, u$ é um ciclo induzido.

Observação 1.1. Muitas vezes, será útil considerar passeios, trilhas, caminhos e ciclos como grafos (ou subgrafos), em vez de considerá-los simplesmente como sequências de vértices. Assim, por exemplo, podemos nos referir a um caminho P com k vértices como um grafo P tal que $V(P) = \{v_1, \ldots, v_k\}$ e $E(P) = \{v_{j-1}v_j \mid 2 \le j \le k\}$.

Grafo Conexo

- Um grafo G=(V, E, g) é conexo se existir um caminho entre qualquer par de vértices. Também chamado de conectado.
- Caso Contrário é desconexo.

Tem diferença do grafo conexo para o grafo completo.

Qual é?

Desenhar grafo.

Grafo Conexo

Grafo Cíclico

- Um ciclo é um caminho de n_0 até n_0 novamente de forma que o único vértice que ocorre mais de uma vez é o n_0
- Um grafo sem ciclos é dito acíclico

Exercício: Trace um grafo que tenha os vértices {1, 2, 3, 4, 5}, as arestas {a1, a2, a3, a4, a5, a6} e a função g, onde:

$$g(a1) = 1 - 2$$

$$g(a2) = 1 - 3$$

$$g(a3) = 3 - 4$$

$$g(a4) = 3 - 4$$

$$g(a5) = 4 - 5$$

$$g(a6) = 5 - 5$$

Trace caminhos que são ciclos no grafo, seguindo a definição:

Grafo com ciclos

Ciclo no grafo: 3 a3 4 a4 3

NÃO é um ciclo: 3 a4 4 a4 3

Ciclo: 5 **a6** 5

Grafo com ciclos

Isomorfismo

 Um isomorfismo entre dois grafos G e H é uma bijeção f de V(G) em V(H) tal que dois vértices v e w são adjacentes em G se e somente se f(v) e f(w) são adjacentes em H.

Isomorfismo

Esses grafos são isomorfos?

Isomorfismo

Esses grafos são isomorfos?

Resposta: NÃO

Isomorfismo

Não tem um algoritmo eficiente para dizer que um grafo é isomorfo. Por tem formas rápidas de checar o não isomorfismo.

Quando não é isomorfismo?

- Um grafo tem mais vértices que o outro.
- Um grafo tem mais arestas que o outro
- Um grafo tem arestas paralelas e o outro não.
- Um grafo tem um laço e o outro não.
- Um grafo tem um vértice de grau k e o outro não.
- Um grafo é conexo e o outro não.
- Um grafo tem um ciclo e o outro não

Grafo Dirigido

- Um grafo é dirigido (dígrafo) se suas arestas possuem orientação
- Denomina-se arco a aresta direcionada
- Em um grafo não dirigido, uma aresta pode ser representada por (i, j) ou por (j, i). O mesmo não ocorre em um grafo dirigido

$$V = \{1, 2, 3, 4, 5, 6\}$$

E = \{(2, 3), (3, 1), (3, 5), (4, 3), (6, 6)\}

Grafo Dirigido

 Na versão dirigida G' de um grafo não dirigido G = (V, E), cada aresta não dirigida (i, j) de G dá origem a dois arcos (i, j) e (j, i) em G'

Grafo não dirigido:

Grafo dirigido correspondente:

Grafo Dirigido

- Grau de vértices em grafo dirigido. Os vértices possuem:
 - Grau de entrada d_{in}(v): número de arcos que chegam ao vértice v
 - Grau de saída d_{out}(v): número de arcos que saem do vértice v

$$d_{in}(a) = 1$$
 $d_{out}(a) = 1$
 $d_{in}(b) = 4$
 $d_{out}(b) = 2$
 $d_{in}(c) = 2$
 $d_{out}(c) = 3$
 $d_{in}(d) = 0$
 $d_{out}(d) = 1$

Referências

- T. Cormen Algoritmos: teoria e prática ELSEVIER, 2002
- Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro - UFMG