Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.7.2 ЭФФЕКТ ПОККЕЛЬСА

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используется:

Гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Теория:

Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля, причём это изменение пропорционально напряжённости электрического поля. Как следствие эффекта Поккельса в кристалле появляется двойное лучепреломление или меняется его величина, если кристалл был двулучепреломляющим в отсутствие поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетрольноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Рис. 1: Схема для наблюдения интерфереционной картины.

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — рещультат интерфернции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен тёмные и наоборот). В случаи, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right), \tag{3}$$

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ – полуволновое напряжение, d – поперечный размер кристалла. При напряжении $U = E_{\rm sn} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

Рис. 2: Схема установки

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

Ход работы:

1. Измерим радиусы тёмных колец r(m) и расстояние L от середины кристалла до экрана. Построим график $r^2 = f(m)$. По углу наклона прямой определим двулучепреломление $(n_o - n_e)$ ниобата лития, пользуясь формулой (2). При L = $75,3\pm0,1$ см получили следующие радиусы колец:

m	1	2	3	4	5	6
r_m , cm	2,4	3,4	4,3	5,1	5.7	6,3

Таблица 1: Радиусы темных колец интерференционной картины. $\sigma_{r_m}=0,1$ см

Рис. 3: График зависимости $r^2 = f(m)$

$$n_0 - n_e = \frac{\lambda}{l} \frac{(n_o L)^2}{r_m^2} m = 0,104 \pm 0,003$$

2. Получим значения напряжения, при которых интенсивность пятна минимальна и максимальна для двух положений поляроида.

	$U_{\lambda/2}$, B	U_{λ} , B	$U_{\lambda 3/2}$, B
1	450	930	1380
	1035	510	1500

Таблица 2: Значения напряжения для минимумов и максимумов интерференционной картины. $\sigma_U = 15 \text{ B}$

Рис. 4: Фигура Лиссажу для U_{λ}^{\perp}

Рис. 5: Фигура Лиссажу для U_{λ}^{\parallel}

Рис. 6: Фигура Лиссажу для $U_{\lambda/2}^{\perp}$

Рис. 7: Фигура Лиссажу для $U_{\lambda/2}^{\parallel}$

Рис. 8: Фигура Лиссажу для $U_{3\lambda/2}^\perp$

Рис. 9: Фигура Лиссажу для $U_{3\lambda/2}^{\parallel}$

Обсуждение результатов и выводы:

В ходе данной работы мы исследовали интерференцию рассеянного света, прошедшего кристалл, наблюдали изменение характера поляризации света при наложении на кристалл электрического поля.

Определили двулучепреломление $(n_o-n_e)=0,104\pm0,003$ и полуволновое напряжение ниобата лития $U_{\lambda/2}=475\pm15$ В.