POISSON PROCESS GENERATION

Homogeneous Poisson Processes with rate λ .

- Recall: interarrival times X_i are exponential RVs with rate λ : exponential pdf $f(x) = \lambda e^{-\lambda x}$; for $x \in [0, \infty)$, with exponential cdf $F(x) = 1 e^{-\lambda x}$. So $X_i = -\ln(U_i)/\lambda$, $U_i \sim Uni(0, 1)$; therefore RV $T_j = \sum_{i=1}^{j} X_i = \text{the time for } j^{th} \text{ event.}$
- Algorithm A, to generate all events in (0, T):
 - 1) initialize $t = -\ln(U_0)/\lambda$, n = 0;
 - 2) while t < T, n = n + 1, $S_n = t$, $t = t \ln(U_n)/\lambda$ end. Output n is # of events in (0, T), and event times S_1, \ldots, S_n .
- Example:
 - a) in Text Problem 5.24, buses arrive at a sporting event according to a Poisson process with rate 5 per hour; need to simulate bus arrivals over one hour period.

b) Example Matlab for $\lambda = 3$, T = 2 $T = -\log(\text{rand})/3; \quad n = 0;$ while T < 2, n = n+1; $S(n) = T; \quad T = T - \log(\text{rand})/3;$ end, disp(n), disp(S(1:n)) 7 $.14181 \quad .34328 \quad .90224 \quad 1.0121 \quad 1.2183 \quad 1.4602 \quad 1.4988$ For K = 10000 Matlab runs, E[n] = 6.0205.

- Alternate Method: uses discrete Poisson RV N(T), where N(T) = total # events in (0,T), and $mean(N) = T\lambda$. Recall Poisson pmf: $p_j = e^{-\lambda T} \frac{(\lambda T)^j}{j!}$, $j = 0, 1, \ldots$. If n = N(T), then TU_1, TU_2, \ldots, TU_n are event times, which can be sorted to get S_1, \ldots, S_n .
- Algorithm B, to generate all events in (0, T):
 - 1) generate $N \sim Poisson(\lambda T)$;
 - 2) generate $U_1, U_2, \ldots, U_N \sim Uni(0, 1)$;
 - 3) sort TU_1, \ldots, TU_N to get arrival times S_1, \ldots, S_n . Output N is # of events in (0, T), with event times S_1, \ldots, S_n . Step 1)? use Poisson RV algorithm from text Chapter 4:
 - 1a) generate $U \sim Uni(0,1)$;
 - 1b) set N = 0, $p = e^{-\lambda T}$, F = p;
 - 1c) while U > F, set N = N + 1set $p = p\lambda T/N$, F = F + pend;
 - 1d) Output N, the # of Poisson process events in time T.
- Example: for $\lambda = 3$, T = 2

U = rand; N = 0; p = $\exp(-6)$; F = p;
while U > F, N = N+1; p = 6*p/N; F = F+p; end
disp(N), disp(sort(2*rand(1,N)))
6

.042814 .21492 .66472 1.6707 1.7381 1.8899

For K = 10000 Matlab runs, E[N] = 5.9872.

NonHomogeneous Processes with intensity function $\lambda(t)$ given.

- Interarrival times X_i are exponential RVs with rate $\lambda(t)$,
- "Thinning" Algorithm to generate all $S_i \in (0, T)$:
 - 1) initialize t = 0, n = 0, $\lambda = \max_{t \in [0,T]} \lambda(t)$;
 - 2) set $t = t \ln(Uni(0,1))/\lambda$, if t > T, stop;
 - 3) if $Uni(0,1) \leq \lambda(t)/\lambda$, set n = n+1, $S_n = t$;
 - 4) go to step 2.

Output n is # of events in (0, T), and event times S_1, \ldots, S_n .

```
• Example, with \lambda(t) = 6/(t+2), T = 2; so \lambda = 3.

t = -\log(\text{rand})/3; n = 0;

while t < 2,

if rand < 2/(t+2), n = n+1; S(n) = t; end

t = t-\log(\text{rand})/3;

end

disp([n S(1:n)])

4 .096807 .73985 1.3257 1.6074
```

- If $\lambda(t) \not\approx \lambda$, it is more efficient to subdivide [0, T]; use $0 = t_0 < t_1 < \ldots < t_{k+1} = T$, with $\lambda_j = \max_{t \in [t_{j-1}, t_j]} (\lambda(t))$.
- Subdivision Algorithm to generate all $S_i \in (0,T)$:
 - 1) initialize t = 0, n = 0, j = 1;
 - 2) $X = -\ln(Uni(0,1))/\lambda_j$;
 - 3) set t = t + X, if $t > t_i$, go to step 6;
 - 4) if $Uni(0,1) \leq \lambda(t)/\lambda_j$, set n=n+1, $S_n=t$;
 - 5) go to step 2;
 - 6) if j = k + 1 stop;
 - 7) set $X = (X + t t_j)\lambda_j/\lambda_{j+1}, \ t = t_j, \ j = j + 1;$
 - 8) goto step 3.

Output n is # of events in (0, T), and event times S_1, \ldots, S_n .

• Alternate Method, generates S_n 's directly, using

$$F_s(x) = P\{s < x | s\}$$

= 1 - $P\{0 \text{ events in } (s, s + x)\}$
= 1 - $e^{-\int_0^x \lambda(s+t)dt}$.

Direct Algorithm: initialize n = 0, $S_0 = 0$; while $S_n < T$, generate $X_{n+1} \sim F_{S_n}$; set $S_{n+1} = S_n + X_{n+1}$, n = n + 1 end.

This method requires easily inverted F_{S_i} s.

• Example: with $\lambda(t) = b/(t+a)$. First compute

$$\int_0^x \lambda(s+y)dy = b \int_0^x (s+y+a)^{-1}dy = b(\ln(x+s+a) - \ln(s+a));$$

then

$$F_s(x) = 1 - e^{-b(\ln(x+s+a) - \ln(s+a))} = 1 - (\frac{s+a}{x+s+a})^b.$$

Then solve $U = F_s(X)$;

Use
$$F_s^{-1}(U) = (s+a)[U^{-1/b} - 1]$$
, so event times are $S_1 = F_0^{-1}(U_1)$, $S_{n+1} = S_n + F_{S_n}^{-1}(U_n)$, $i > 1$.

• Example with $\lambda(t) = 6/(t+2)$, T = 2; so $F_s^{-1}(U) = (s+2)[U^{-1/6}-1]$.

Matlab

```
t = 2*(rand^(-1/6)-1); n = 0; while t < 2, n = n+1; S(n) = t; t = t + (2+t)*(rand^(-1/6)-1);end, disp([n S(1:n)]) 5 \quad .23931 \quad .59698 \quad .77515 \quad 1.1221 \quad 1.8968 Using K = 100000 \text{ runs}, E[n] \approx 4.1641, compared to \int_0^2 \frac{6}{2+r} dx = 6 \ln(2) \approx 4.1589.
```