

Flavour Composition Studies

Laurie McClymont, Andreas Korn

13 January 2016

2 Introduction

- We want to understand how varying the flavour composition will affect the fitting function.
 - => Are the fitting functions robust to changes flavour composition?
 - => Vary the amount that different flavour combinations contribute and fit.
- Comment on CDS
 - => A lot of p-values are 1, is this plausible
 - => This is what I want to address

Figure 17: Same comment about the fit legend text—why do they all have a p-value of 1? Also, does doubling the b-content just happen to improve the fits such that each of the 3,4,5 parameter fits are identical or are the higher order contributions just close to 0 for these fits?

Details

Pythia8EvtGen MC Di-Jet Sample

- di-b-jet Ntuple production

Standard Dijet Resonance Cuts

- Leading Jet p_T > 410 GeV
- Sublead Jet p_T > 50 GeV
- $-|y^*| < 0.6$
- m_{ii} > 1100 GeV

Using fixed cut 85% for both jets.

- mbb_fix_8585

Cone matching truth flavour

- jetHadronConeExclTruthLabelID

Work Flow

phys-exotics/jdm/dijet/inputs/Btag/MC15_DiJet_20151104

Use DijetHelpersPackage:

Create Histograms and merge slices

- makeStandardHistograms.py
- plotStandardPlots.py
- Fit 20ifb smooth histos using singleFit.py
- Create data-like using from these fits

Fit spectrums and make some plots

- singleFit.py
- plotSingleFit.py

3 Combining Flavour Composition

- Create flavour fractions
 - => Creating histograms from fits to 20ifb scaled to 3ifb.
 - => Adding the fractions in different ways to produce various spectra.
- This creates new scaled distributions from which we can create data-like MC.

4 Fitting Procedure

We then fit to data-like distributions

- Very high p-value (p ~ 1.000, really??)
 - => These values taken from Chi²/Ndof
 - => Question on this on cds
- Try using toys to create p-Values (Advised by Jeff)
 - => Produce pseudo-data distributions based on the fit function parameters.
 - => Fit to these distributions.
 - => Ask number of times that fit to the pseudo is better than the original fit
 - => I use 1000 toys here.

Fitting Procedure with toys for p-value

p-values for different data-like seeds

• Each seed represents a different initial fluctuation, a different data-like distribution => For each seed a p-value can be created

=> 100 Seeds tried.

	# Parameter		
Mean	3	4	5
Nominal	0.325	0.280	0.283
bX*2	0.311	0.270	0.280

Conclusions

- Creating p-values by using pseudo-experiments.
- Low p-values when using toys.
- => Really want to try and understand why...
- What is the best way of displaying results
- => Choose one typical example
- => Show a grid of results
- => An average of several p-values

- Extract flavour fractions from 20 ifb of MC using truth information.
- Fit to smooth distributions (rounded to integer) using 4 parameter fitting function.
- Use these fits as templates to model the shape of the flavour fractions.

Need to look at errors, here they are poisson. => Maybe I should fit scaled that is truncated at 0.5

9 Combining Flavour Composition

- Then combine histograms by,
 - => Creating histograms from fits scaled to 3ifb.
 - => Adding the fractions in different ways to produce various spectra.
- This creates new scaled distributions from which we can create data-like MC.

10 Comparing Nominal to Original Spectrum

Compare nominal produced from stacking to original MC sample
 To validate that our procedure for producing distributions is valid.

Smooth means

- rounded to one
- poisson errors

Smooth distributions was what was originally fitted to => Comparison is good.

Matches well in region where nEvents > 1

Some differences in tail of distribution.

=> All within errors.

11 Comparing the shapes

- Compare how different these spectra actually are...
- => 1 1 1 1 1 1 = Nominal, no reweighing.
- => 2 2 2 1 1 1 = double contribution of bb, bc, bl
- => 2 1 1 1 1 1 = double contribution of bb
- => 5 1 1 1 1 1 = quintuple contribution of bb

- Make data-like
 - => Poisson fluctuating using scaled distribution as mean entry.
- This creates new scaled distributions from which we can create data-like MC.

- We then fit to each of our different combinations using the all our fitting functions
- Strong performance in all cases
 - => However 3 parameter fit splits from others as weighting increases.

4×10³ 5×10³

Mass [GeV]

