Санкт-Петербургский политехнический университет Петра Великого

ФизМех

Кафедра «Прикладная математика»

Курсовая работа по дисциплине «Интервальный анализ» Тема "Решение системы нелинейных уравнений интервальным методом Ньютона"

Выполнил учащийся гр. 5030102/00201

Гвоздев С.Ю

Преподаватель:

Баженов А.Н

Санкт-Петербург 2024 г.

1 Постановка задачи

Дана система нелинейных уравнений:

$$\begin{cases}
F_1(x_0, x_1, x_2...x_n) = 0 \\
F_1(x_0, x_1, x_2...x_n) = 0 \\
... \\
F_n(x_0, x_1, x_2...x_n) = 0
\end{cases}$$
(1)

Необходимо решить данную систему, воспользовавшись интервальным методом Ньютона с заданной точностью.

2 Интервальный оператор Ньютона

Отображение:

$$\mathcal{N}: \mathbb{I}D \times \mathbb{R}^n \to \mathbb{I}\mathbb{R}^n$$

задаваемое правилом

$$\mathcal{N}(\mathbf{X}, \widetilde{x}) = \widetilde{x} - Encl(\mathbf{L}, F(\widetilde{x})) \tag{2}$$

есть интервальный оператор Ньютона на $\mathbb{I}D$ относительно точки \widetilde{x} Как и в одномерном случае, после выбора бруса начального приближения $\mathbf{X}^{(0)} = \mathbf{X}$ итерационное уточнение решения системы нелинейных уравнений с помощью многомерного интервального метода Ньютона организуется следующим образом:

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} \cap \mathcal{N}(\mathbf{X}^{(k)}, \widetilde{x}^{(k)}), \widetilde{x}^{(k)} \in \mathbf{X}^{(k)}, k = 0, 1, 2...$$
(3)

3 Интервальный метод кравчика

В качестве процедуры Encl будем использовать интервальный метод Кравчика для предварительного внешнего оценивание объединенного множества решений ИСЛАУ Это итерационный метод, шаги которого организуются по следующему правилу:

$$\mathbf{x}^{(k+1)} = (\Lambda \mathbf{b} + (I - \Lambda \mathbf{A}) \mathbf{x}^{(k)}) \cap \mathbf{x}^{(k)}, k = 0, 1, 2...$$
(4)

В качестве $\mathbf{x}^{(0)}$ берется брус $\mathbf{x} = \{[-\theta, \theta], ..., [-\theta, \theta]\}^T$,где

$$\theta = \frac{||\Lambda \mathbf{b}||_{\infty}}{1 - \eta} \tag{5}$$

$$\eta = ||I - \Lambda \mathbf{A}||_{\infty} < 1 \tag{6}$$

Алгоритм решения

- 1. В первую очередь интервал локализации начального приближения ${\bf X}^{(0)}$, который будет в дальнейшем уточнен с помощью многомерного интервального метода Ньютона
- 2. Начинаем итерационный процесс для метода Ньютона
 - (a) Выбирается интервальная матрица Липшица ${f L}^{(k)}$, как естественное нтервальное расширешие Якобиана отображения F на $\mathbf{X}^{(k)}$
 - (b) Точку $\widetilde{x}^{(0)}$ выбираем как медиану интервала $\mathbf{X}^{(0)}$
 - (c) Ищем предварительную внешнюю оценку ИСЛАУ $\mathbf{A}x = \mathbf{b}$, где $\mathbf{A} = \mathbf{L}^{(k)}, \ \mathbf{b} = F(\widetilde{x}^{(k)}),$ воспользовавшись формулой (5)
 - (d) Уточняем полученную внешнюю оценку ИСЛАУ интервальным методом Кравчика. Условием выхода из цикла считаем достижение расстояния между оценками на последних двух итерациях заданной точности.
 - (е) Находим интервальный оператор Ньютона по формуле (2)
 - (f) Находим приближение $\mathbf{x}^{(k+1)}$, используюя правило (3)
 - (g) Если $Dist(\mathbf{x}^{(k)},\mathbf{x}^{(k+1)}) < \epsilon$ повторяем все шаги цикла, положив $\mathbf{x}^{(k)} = \mathbf{x}^{(k+1)}$. Иначе завершаем итерационный процесс, в качестве решения системы берем $\mathbf{x}^{(k+1)}$

5 Решение задачи и полученные результаты

Найдем решение для следующих систем нелинейных уравнений:

$$F_1 = \begin{cases} x_1 + x_2 = [2.7, 4.1] \\ \frac{x_1}{x_2} = [1, 1] \end{cases}$$
 (7)

$$F_{1} = \begin{cases} x_{1} + x_{2} = [2.7, 4.1] \\ \frac{x_{1}}{x_{2}} = [1, 1] \end{cases}$$

$$F_{2} = \begin{cases} [0.7, 0.9]x_{1} + [1.1, 1.2]x_{2} = [2.7, 4.1] \\ \frac{x_{1}}{x_{2}} = [1, 1.3] \end{cases}$$
(8)

Поиск решений системы F_1 5.1

Рассмотрим график системы

Рис. 1: График системы ${\cal F}$

В качестве начального приближения возьмем брус

$$\mathbf{X}^{(0)} = [0.8, 2.4] \times [0.8, 2.4]$$

Рис. 2: Брус $\mathbf{X}^{(0)}$ для системы F

Решение полученное в результате 43-х итераций интервального метода Ньютона:

$$\mathbf{X} = [1.241, 2.25] \times [1.3125, 2.1875]$$

Рис. 3: Метод Ньютона для системы ${\cal F}$

В таблице представлены первые 10 итераций метода:

k	$\mathbf{X}^{(k)}$	$\mathcal{N}(\mathbf{X}^{(k)},\widetilde{x}^{(k)})$	$Dist(\mathbf{X}^{(k)}, \mathbf{X}^{(k+1)})$
0	$[0.8, 2.4] \times [0.8, 2.4]$	$[0.886699, 2.6133] \times [0.941, 2.458]$	[0, 0.12]
1	$[0.8, 2.4] \times [0.92, 2.458]$	$[0.939, 2.560] \times [1.083, 2.416]$	[0, 0.161]
2	$[0.901, 2.456] \times [1.0836, 2.416]$	$[0.988, 2.511] \times [1.121, 2.378]$	[0.099, 0.037]
3	$[1, 2.5] \times [1.121, 2.378]$	$[1.029, 2.470] \times [1.152, 2.347]$	[0.029, 0.030]
4	$[1.029, 2.470] \times [1.152, 2.347]$	$[1.068, 2.431] \times [1.181, 2.318]$	[0.039, 0.0292]
5	$[1.068, 2.431] \times [1.181, 2.318]$	$[1.106, 2.393] \times [1.209, 2.290]$	[0.037, 0.027]
6	$[1.106, 2.393] \times [1.209, 2.290]$	$[1.139, 2.360] \times [1.233, 2.266]$	[0.033, 0.024]
7	$[1.139, 2.360] \times [1.233, 2.266]$	$[1.167, 2.332] \times [1.254, 2.245]$	[0.028, 0.020]
8	$[1.167, 2.332] \times [1.254, 2.245]$	$[1.190, 2.309] \times 1.270, 2.229]$	[0.022, 0.016]
9	$[1.190, 2.309] \times [1.270, 2.229]$	$[1.207, 2.292] \times [1.282, 2.217]$	[0.017, 0.012]
10	$[1.207, 2.292] \times [1.282, 2.217]$	$[1.226, 2.279] \times [1.291, 2.208]$	[0.011, 0.009]

5.2 Поиск решений системы F_2

Рассмотрим график системы

Рис. 4: График системы F

В качестве начального приближения возьмем брус

$$\mathbf{X}^{(0)} = [1, 2.2] \times [1, 2.6]$$

Рис. 5: Брус $\mathbf{X}^{(0)}$ для системы F

Решение полученное в результате 43-х итераций интервального метода Ньютона:

$$\mathbf{X} = [1.271, 1.879] \times [1.388, 2.326]$$

Рис. 6: Метод Ньютона для системы F

6 Выводы

- 1. Решение интервальной системы нелинейных уравнений представляет собой приближенный ответ, полученный в процессе выполнения метода.
- 2. Количество итераций метода зависит от выбранного начального приближения, и чем больше расстояние между границами начального приближения, тем больше требуется итераций.
- 3. Важно аккуратно выбирать начальное приближение, так как оно должно содержать в себе решение системы; в противном случае метод может работать некорректно.