Лабораторная работа 1

Основным заданием данной лабораторной работы является разработка и исследование параллельной программы, осуществляющей поиск численного решения для уравнения переноса:

$$\frac{\partial u(x,t)}{\partial t} + \frac{\partial u(x,t)}{\partial x} = 5xt, 0 \le t \le T, 0 \le x \le X$$
$$u(0,x) = -\frac{5}{6}x^3, 0 \le x \le X$$
$$u(t,0) = 0, 0 \le t \le T$$

Для решения задачи используется равномерная сетка с шагами τ по времени и h по координате. Функция u(x,t) рассматривается в точках

$$t=k\tau, x=mh, 0\leq k\leq K, 0\leq m\leq H, T=K\tau, X=Mh$$

Для поиска численного решения используется явная центральная трехточеченая схема

$$\frac{y_m^{n+1} - 0.5(y_{m+1}^n + y_{m-1}^n)}{\tau} + a \frac{y_{m+1}^n - y_{m-1}^n}{2h} = f_m^k$$

В нашей задаче мы использовали такие параметры: T = 1, h = 0.025, X = 24000, M = 800000

Измерим время выполнения программы для разного количества процессов и разного количества шагов по времени

Процессы\ т	T_1	T_2	$S_2 = \frac{T_1}{T_2}$	$E_2 = \frac{S_2}{2}$	T_4	$S_4 = \frac{T_1}{T_4}$	$E_4 = \frac{S_4}{4}$
K = 10	0,07	0,056	1,25	0,625	0,0498	1,40562248995	0,35140562248
K = 100	0,7	0,612	1,14379084967	0,57189542483	0,549	1,27504553734	0,31876138433
K = 200	1,4	1,2	1,16666666666	0,5833333333	1,5	0,93333333333	0,23333333333
K = 5	0,031	0,025	1,24	0,62	0,022	1,40909090909	0,35227272727
K = 20	0,13	0,116	1,12068965517	0,56034482758	0,101	1,28712871287	0,32178217821
K = 50	0,4	0,3	1,33333333333	0,66666666666	0,25	1,6	0,4
K = 70	0,46	0,42	1,09523809523	0,54761904761	0,35	1,31428571428	0,32857142857
K = 300	2,38	1,83	1,30054644808	0,65027322404	4,6	0,51739130434	0,12934782608
K = 400	3,13	2,78	1,12589928057	0,56294964028	5,9	0,53050847457	0,13262711864

Зависимость ускорения от количества процессов и шагов по времени

Зависимость эффективности от количества процессов и шагов по времени

