publiziert bei: AWMF online

Das Portal der wissenschaftlichen Medizin

AWMF-Register Nr. 001/035

Klasse:

S2e

ANÄSTHESIOLOGIE & INTENSIVMEDIZIN

Offizielles Organ: Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI)

Berufsverband Deutscher Anästhesisten e.V. (BDA)

Deutsche Akademie für Anästhesiologische Fortbildung e.V. (DAAF)

Organ: Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin e.V. (DIVI)

Seit > 5 Jahren nicht aktualisiert, Leitlinie wird zur Zeit überarbeitet

S. Ghamari \cdot C. Höhne \cdot K. Becke \cdot C. Eich \cdot S. Kramer \cdot A. Hoeft \cdot J. Wermelt \cdot R. K. Ellerkmann

S2e-Leitlinie: Prävention und Therapie des pädiatrischen Emergence Delir

German guideline for prevention and therapy of paediatric emergence delirium

Verlag & Druckerei Aktiv Druck & Verlag GmbH An der Lohwiese 36 97500 Ebelsbach Deutschland www.aktiv-druck.de

© Anästh Intensivmed 2019;60:445–455 Aktiv Druck & Verlag GmbH DOI: 10.19224/ai2019.445

ELEKTRONISCHER SONDERDRUCK

Diese PDF-Datei ist nur für den persönlichen Gebrauch bestimmt: keine kommerzielle Nutzung, keine Einstellung in Repositorien. Nachdruck nur mit Genehmigung der Herausgeber (anaesth.intensivmed@dgai-ev.de).

Special Articles

German guideline for prevention and therapy of paediatric emergence delirium

S. Ghamari \cdot C. Höhne \cdot K. Becke \cdot C. Eich \cdot S. Kramer \cdot A. Hoeft \cdot J. Wermelt \cdot R. K. Ellerkmann

S2e-Leitlinie:

Prävention und Therapie des pädiatrischen Emergence Delir*

➤ Zitierweise: Ghamari S, Höhne C, Becke K, Eich C, Kramer S, Hoeft A et al: Prävention und Therapie des pädiatrischen Emergence Delir. Anästh Intensivmed 2019;60:445–455. DOI: 10.19224/ai2019.445

Präambel

Die vorliegende Leitlinie befasst sich mit der Prävention und der Therapie des pädiatrischen Emergence Delir und der Abgrenzung zur Emergence Agitation. Diese Empfehlungen basieren auf einer systematischen Literaturrecherche, lokalen SOPs sowie der klinischen Erfahrung ausgewiesener Kinderanästhesisten unterschiedlicher Zentren. Die vorliegende Leitlinie entspricht einem Konsens, der im Wissenschaftlichen Arbeitskreis Kinderanästhesie (WAKKA) der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) erarbeitet wurde.

Preamble

This evidence-based guideline is concerned with the prevention and therapy of paediatric emergence delirium and the delimitation of emergence agitation. These recommendations are based on a systematic literature research, local SOPs and clinical experience of designated paediatric anaesthesiologists from various centers. This guideline corresponds to a consensus that was developed in the Scientific Working Group of Paediatric Anaesthesia (WAKKA) of the German Society of Anaesthesiology and Intensive Care Medicine (DGAI).

Erstellungsprozess

Der Erstellungsprozess dieser Leitlinie basiert auf einer systematischen Literaturrecherche sowie der anschließenden kritischen Evidenzbewertung mit wissenschaftlichen Methoden. Die methodische Vorgehensweise des Leitlinienentwicklungsprozesses entspricht den Anforderungen an eine evidenzbasierte (S2e-) Leitlinie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF).

Die Erstellung der Leitlinie erfolgte in folgenden Schritten:

- Definition der Suchbegriffe zu allen Themenschwerpunkten und Festlegung der relevanten Datenbanken
- Systematische Recherche der wissenschaftlichen Literatur, aber auch Suche nach bereits verfügbaren Standardleitlinien, Empfehlungen und Expertenmeinungen
- Evaluation dieser Publikationen nach Evidenzkriterien des Oxford Centre for Evidence-based Medicine (Levels of Evidence 2009; http://www.cebm. net/index.aspx?o=1025, Stand 04.04. 2016)
- 4. Konsensusverfahren, organisatorischer und methodischer Ablauf der Leitlinienerstellung

Die Textversion dieser Leitlinie wurde durch die Redaktionsgruppe unter Berücksichtigung der aktuellen Literatur erstellt. Die Leitlinienerstellung wurde durch Frau Dr. Cathleen Muche-Borowski (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V., AWMF) methodisch begleitet. Die organisatorischen Vorbereitungen begannen im November 2015. Die Literaturrecherche und Literaturbewertung

 AWMF-Reg. Nr. 001–035
 Beschluss des Engeren Präsidiums der DGAI vom 09.11.2016.

Schlüsselwörter

Kinderanästhesie – Emergence Delir – Prävention des pädiatrischen Emergence Delir – evidenzbasierte Leitlinie – pädED

Keywords

Paediatric Anaesthesia – Emergence Delirium – Prevention of Paediatric Emergence Delirium – Evidence-based Guideline – paedED

Guidelines and Recommendations

erfolgte bis zum 04.04.2016. In mehreren Konsensuskonferenzen zwischen Juni 2014 und März 2016 wurden die Kernaussagen und Empfehlungen mit der gesamten Leitliniengruppe abgestimmt. Die redaktionelle Überarbeitung des Volltextes, der evidenzbasierten Empfehlungen und der Algorithmen nach den Konsensuskonferenzen erfolgte bis April 2016 durch die Redaktionsgruppenmitglieder Herrn Dr. Shahab Ghamari und Herrn Professor Dr. Richard Ellerkmann. Ergänzungen der Literaturliste wurden noch bis zum 04.04.2016 berücksichtigt. Die vollständige Dokumentation der einzelnen Schritte des Konsensusprozesses ist bei dem Leitlinienkoordinator hinterlegt. Die Abstimmungsergebnisse wurden von der Redaktionsgruppe in den Text eingearbeitet und allen Mitgliedern zur Diskussion in einem erneuten Delphi-Verfahren zur Verfügung gestellt.

Auswahl der Literatur

Es wurde eine umfangreiche Literaturrecherche anhand vorformulierter Schlüsselwörter durchgeführt. Die Suche erfolgte primär über Medline und wurde durch die Suche über das Deutsche Institut für Medizinische Dokumentation und Information (DIMDI) ergänzt. In der DIMDI-Suchmaske sind neben Medline- auch die Embase- und Cochrane-Datenbanken enthalten. Untersucht wurden sämtliche in den Datenbanken publizierte Arbeiten. Im Rahmen der Recherche (Januar 1960 - April 2016) wurden anhand der Suchbegriffe 316 Arbeiten identifiziert. Berücksichtigt wurden nur deutsche oder englischsprachige Publikationen. Der Schwerpunkt lag auf Arbeiten, welche sich mit pädiatrischen Patienten befassten. Die Selektion des Literatursuchergebnisses erfolgte mit Schwerpunkt auf kontrollierten Studien, systematischen Übersichtsarbeiten, Meta-Analysen, Fallserien und Fallberichten. Nach Sichtung der Abstracts, Ausschluss von Duplikaten in DIMDI versus Medline, Überprüfung der Relevanz und nach Lektüre der Volltexte mussten weitere Studien aufgrund fehlender Relevanz oder mangelhaftem Studiendesign

ausgeschlossen werden. Schließlich wurden 121 Referenzen in die Analyse eingeschlossen. Die verwendeten Quellen und Zitierungen sind am Ende der Leitlinie im Literaturverzeichnis aufgeführt. Einige Empfehlungen, die keine ausreichende wissenschaftliche Evidenz hatten, jedoch durch den Konsens der Expertenkommission im Rahmen der klinischen Bedeutung für wichtig erachtet wurden, sind ebenfalls mit in die Leitlinie aufgenommen worden. Zudem fanden relevante Arbeiten Eingang in die Leitlinie, welche von den Experten nachbenannt wurden.

Evidenz- und Empfehlungsgradschema

Evidenzgrade wurden wie folgt definiert:

In Anlehnung an Oxford Centre for Evidence-based Medicine (Levels of Evidence 2009), http://www.cebm.net/index.aspx?o=1025 (Stand: 04.04.2016).

Stufe	Evidenz-Typ				
IA	wenigstens ein systematischer Review auf der Basis methodisch hochwertiger kontrollierter, randomisierter Studien (RCTs)				
IB	wenigstens ein ausreichend großer, methodisch hochwertiger RCT				
IIA	wenigstens eine hochwertige Studie ohne Randomisierung				
IIB	wenigstens eine hochwertige Studie eines anderen Typs quasi-experimenteller Studien				
III	mehr als eine methodisch hochwertige nichtexperimentelle Studie				
IV	Meinungen und Überzeugungen von angesehenen Autoritäten (aus klinischer Erfahrung); Experten- kommissionen; beschreibende Studien				

In der Regel bestimmt der Evidenzgrad den Empfehlungsgrad, d.h. eine Empfehlung mit einem mittleren Evidenzgrad würde auch zu einem mittleren Empfehlungsgrad führen. Auf Grund der weiter unten genannten Aspekte kann es jedoch gelegentlich zu einem begründeten Aufoder Abwerten des Empfehlungsgrades gegenüber dem Evidenzgrad kommen. Die Stärke der Empfehlung berücksich-

tigte sowohl Wirksamkeitsaspekte mit Berücksichtigung der Evidenzlage als auch unter anderem die Aspekte der Sicherheit, Praktikabilität und das Kosten/ Nutzen-Verhältnis.

Graduierung von Empfehlungen wurden wie folgt definiert:

In Anlehnung an http://www.awmf.org/leitlinien/awmf-regelwerk/ll-entwicklung/awmf-regelwerk-03-leitlinienentwicklung/ll-entwicklung-graduierung-der-empfehlungen html (Stand: 19.02.2016).

Empfeh- lungsgrad	Beschreibung	Formulierung
A	starke Empfehlung	soll/soll nicht
В	Empfehlung	sollte/ sollte nicht
0	offene Empfehlung	kann erwogen werden/kann verzichtet werden

Die Empfehlungsgrade wurden unter Berücksichtigung der nun folgenden Aspekte erstellt.

Im Vordergrund standen hierbei die ethischen Verpflichtungen, die Patientenpräferenzen, die Konsistenz der Studienergebnisse als auch die klinische Relevanz (Eignung der Effektivitätsmaße der Studie für die verschiedenen Bereiche der Kinderanästhesie, Relevanz der Kontrollgruppen). Weiterhin wurde das Verhältnis zwischen erwünschten und unerwünschten Behandlungsergebnissen, die pathophysiologischen und klinischen Plausibilitäten als auch die Anwendbarkeit auf die Patientenzielgruppe berücksichtigt. Schließlich wurden die Umsetzbarkeit in den ärztlichen Alltag in Hinblick auf Leistungsfähigkeit, Ressourcenbedarf und -verbrauch und die Schnittstellen zwischen den einzelnen Leistungserbringern berücksichtigt.

Erläuterungen zu den Empfehlungen des Leitlinienentwurfes

Die Einstufung der Leitlinienempfehlungen erfolgt auf der Basis der bestverfügbaren Evidenz (Evidenzgrad) und der klinischen Beurteilung im formalen Konsensusverfahren (Empfehlungsgrad).

Special Articles

Die Gründe für ein Abweichen des Empfehlungsgrades vom Evidenzgrad können sich aus ethischen Erwägungen, klinischer Relevanz, Abwägung von Nutzen und Risiken, Nebenwirkungen sowie der Anwendbarkeit der untersuchten Interventionen in der Breite und Berücksichtigung von Konsistenz und Effektstärke der Studienergebnisse ergeben. Empfehlungen, für welche die verfügbare externe Evidenz nicht ausreichend bis nicht vorhanden ist, die aber erfahrungsgemäß für den klinischen Ablauf unabdingbar sind, können trotzdem nach Konsensusfindung den höchsten Empfehlungsgrad erhalten. Empfehlungen, für welche der Evidenzgrad A vorliegt, können dagegen nach Konsensusfindung wegen ihrer geringfügigen klinischen Bedeutung einen niedrigeren Empfehlungsgrad erhalten. Dementsprechend sind die Hintergründe der Empfehlungen im anschließenden Volltext dieser Leitlinie diskutiert.

Mitglieder der Leitliniengruppe

Die Leitlinienkoordination erfolgte durch Professor Dr. Richard Ellerkmann, Klinik und Poliklinik für Anästhesiologie und operative Intensivmedizin, Universitätsklinikum Bonn.

Dr. Cathleen Muche-Borowski, Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Marburg, übernahm die methodische Begleitung der Leitlinienentwicklung.

Die Leitliniengruppe umfasste als Mitglieder:

Redaktionsgruppe:

Dr. Shahab Ghamari, Professor Dr. Richard Ellerkmann

Expertengruppe:

Professor Dr. Andreas Hoeft, Dr. Sylvia Kramer, Professor Dr. Christoph Bernhard Eich, Professor Dr. Claudia Höhne, Dr. Karin Becke-Jakob, Dr. Julius Wermelt

Kontrolle der Literatur:

Wissenschaftlicher Arbeitskreis Kinderanästhesie der DGAI (Nachbenennung relevanter Arbeiten durch die Experten).

Finanzierung der Leitlinienerstellung/Interessenkonflikt

Die vorliegende Leitlinie wurde durch die Autoren der Leitlinie auf freiwilliger Basis und ohne finanzielle Unterstützung erstellt. Jedes Mitglied der Leitlinien-Entwicklungsgruppe hat das Formular zur Darlegung der Interessenkonflikte seitens der AWMF erhalten und unabhängig mit bestem Wissen und Gewissen ausgefüllt. Hierbei sind, soweit vorhanden, verschiedenste berufliche und private Interessen und Verbindungen dargelegt. Die Bewertung der potentziellen Interessenkonflikte erfolgte durch die Co-Autoren selbst, aber die Stellungnahmen wurden im Nachgang durch die Redaktionsgruppe kritisch evaluiert. Hierbei kam die Redaktionsgruppe zu dem Entschluss, dass keine Bias oder Beeinflussung in Bezug auf das Thema dieser Leitlinie vorliegen. Die Formblätter sind bei dem Leitlinienkoordinator hinterlegt.

Gültigkeit und Aktualisierungsverfahren

Die Gültigkeitsdauer der Leitlinie erstreckt sich über einen Zeitraum von 5 Jahren. Nach Ablauf dieses Zeitraums ist eine Aktualisierung der Leitlinie durch die Mitglieder der Redaktionsgruppe projektiert. Das Aktualisierungsverfahren beinhaltet eine Prüfung und Bewertung der Kernaussagen anhand der aktuells-

ten verfügbaren Evidenz anhand einer systematischen Literaturrecherche durch die Redaktionsgruppe. Die überarbeiteten Kernaussagen werden im Rahmen des geplanten Aktualisierungsverfahrens veröffentlicht.

Definition

Das pädiatrische Emergence Delir (pädED) ist nicht klar definiert. Aufgrund einer Vielzahl verwendeter Messinstrumente sowie der zum Teil synonym verwendeten Begriffe "Emergence Agitation" (EA) und "Emergence Delirium" und den Überschneidungen im klinischen Bild zwischen pädED und Emergence Agitation ist eine Abgrenzung beider Begriffe schwierig. In dieser Leitlinie wird der Begriff pädED als Überbegriff für die Zustände Emergence Agitation und pädED verwandt.

Dabei ist es den Autoren wichtig, zwischen Delir und Agitation zu differenzieren. Die Ursachen für beide Zustände können durchaus unterschiedlich sein und somit können therapeutische Ansätze ebenfalls unterschiedlich ausfallen (Abb. 1).

So kann eine durch Schmerzen, Hunger oder die periphere Venenverweilkanüle getriggerte Agitation kausal therapiert werden, während das pädiatrische Emergence Delir deutlich schwieriger zu therapieren ist. Ursächlich kommt es postoperativ wahrscheinlich häufiger zu einer schmerzbedingten Agitation

Guidelines and Recommendations

als zu einem Delir im eigentlichen Sinne. Das Delir wird nach der ICD-10-GM-Klassifikation Version 2016 (Deutsches Institut für Medizinische Dokumentation und Information) wie folgt definiert:

"Ein ätiologisch unspezifisches hirnorganisches Syndrom, das charakterisiert ist durch gleichzeitig bestehende Störungen des Bewusstseins und der Aufmerksamkeit, der Wahrnehmung, des Denkens, des Gedächtnisses, der Psychomotorik, der Emotionalität und des Schlaf-Wach-Rhythmus. Die Dauer ist sehr unterschiedlich und der Schweregrad reicht von leicht bis zu sehr schwer."

Sikich et al. definierten im Rahmen ihrer Studie das **pädiatrische** postnarkotische Delir als eine Bewusstseins- und Aufmerksamkeitsstörung des Kindes im Zusammenhang mit Desorientierung und einer gestörten Wahrnehmung, hyperaktiv motorisches Verhalten und eine Überreaktion auf äußere Reize im unmittelbaren Zusammenhang einer Aufwachphase nach erfolgter Narkose [101].

Um den Schweregrad des postoperativen Delirs zu quantifizieren, haben Sikich et al. in ihrer Studie eine Skala (Pediatric Anaesthesia Emergence Delirium: PAED-Scale) von 0 bis 20 entwickelt (Tab. 1) und diese an 50 postoperativen pädiatrischen Patienten evaluiert [101]. Die Autoren errechneten für einen PAED-Skala-Wert von ≥10 eine Sensitivität für das Vorhandensein eines Delirs von 64%. Gleichzeitig diskutierten die Autoren aber auch die Schwächen dieser Skala, da der Einfluss von "Ruhelosigkeit" und "Untröstbarkeit" auf die Skala schmerzbedingt zu falsch positiven Ergebnissen führen kann, wobei hierbei kein Delir, sondern eine durch Schmerzen verursachte Agitation vorliegt (Abb. 1). Wie lässt sich jedoch eine postoperative Agitation von einem Delir unterscheiden? Entscheidend bei der Differenzierung zwischen der postoperativen Agitation und dem Delir ist bei letzterem die fehlende Kontaktierbarkeit und die fehlende Wahrnehmung der Umgebung [82]. Die Autoren Locatelli et al. [79] haben

daher in ihrer Veröffentlichung vorgeschlagen, lediglich die ersten 3 "Items" der PAED-Skala zu berücksichtigen (ED I-Score, Tab. 1). Bei Werten ≥9 dieses ED I-Scores kamen die Autoren in der Beurteilung eines postoperativen Delirs auf eine Sensitivität von 93% und eine Spezifität von 94%.

Im klinischen Alltag kann es dennoch schwierig sein, in der akuten Situation zwischen einem Delir und einer Agitation zu differenzieren, zumal delirante Patienten auch agitiert sein können. Locatelli et al. haben in ihrer Studie [79] keinen parallelen Schmerzscore erhoben.

Im Sinne einer effektiven Qualitätskontrolle soll die Inzidenz des pädED im Aufwachraum anhand einer validierten Skala (Beispielsweise PAED oder ED I) dokumentiert werden (Evidenzgrad IIA).

Da Schmerzen vorhandene Delirscores beeinflussen [96] muss ein pädiatrischer Schmerzscore (KUSS=kindliche Unbehagens- und Schmerzskala) im Aufwachraum erhoben werden, um besser zwischen schmerzbedingter Agitation und einem postoperativen Delir zu differenzieren [20].

Die gezielte Dokumentation von Delirkriterien (Frage 1 bis 3 des PAED-Scores) versus **Agitationskriterien** (Frage 4 und 5 des PAED-Scores) versus Schmerzscores kann für die **Therapieentscheidung** des pädED hilfreich sein, wenn man die unterschiedlichen therapeutischen Ansätze bedenkt (Abb. 1 und Tab. 1).

Risikofaktoren

Verschiedenen Studien zufolge kommt es abhängig vom Eingriff, den durchgeführten Präventionsmaßnahmen, dem gewählten Anästhesieregime, dem Ausmaß der postoperativen Analgesie und der verwendeten Dokumentationsskala, wie oben bereits erwähnt, zu differierenden Inzidenzen des pädED zwischen 18 und 80% [49,114].

Alter

Bereits 1961 konnte Eckenhoff [41] nachweisen, dass das Alter Einfluss auf die Inzidenz des pädED hat. Die höchste Inzidenz mit 13% wurde damals bei 3- bis 9-Jährigen detektiert, im Vergleich zu 2,4% bei über 70-Jährigen. Ergänzend hierzu konnten Aono et al. beschreiben, dass die Inzidenz nach Sevoflurannarkosen im Vorschulalter (3-6 Jahre) mit 40% signifikant höher war, als bei Schulkindern (6-10 Jahre) mit 11,5% [8]. Im Gegensatz zu Erwachsenen und Schulkindern, sind Vorschulkinder eventuell weniger in der Lage, mit emotionalem Stress in einer ungewohnten Umgebung umzugehen, sodass das Auftreten eines pädED aufgrund der niedrigeren Frustrationstoleranz häufiger beobachtet wird [8].

Vorschulalter soll bei Kindern als ein Risikofaktor für das pädED angesehen werden (Evidenzgrad IIA).

Tabelle 1
PAED-Skala aufgeteilt anhand Delir- und Agitationskriterien. Delirkriterien = ED I-Score (nach [79].

	Das Kind	gar nicht	ein wenig	etwas mehr	viel	sehr viel
Delir- Kriterien (ED I-Score)	hält Augenkontakt zur Bezugsperson	4	3	2	1	0
	zeigt zielgerichtete Bewegungen	4	3	2	1	0
	nimmt seine Umwelt wahr	4	3	2	1	0
				I		
Agitations- Kriterien (ED II-Score)	ist unruhig/ruhelos	0	1	2	3	4
	ist untröstlich	0	1	2	3	4

Special Articles

Präoperative Ängstlichkeit

Diverse Studien haben gezeigt, dass die präoperative Ängstlichkeit, im Englischen als "anxiety" bezeichnet, die Intensität des pädED beeinflusst [7, 57,117]. Das Ausmaß der präoperativen Ängstlichkeit konnte wiederum durch Vermeidung jeglicher während der Einleitung auftretender Nebengeräusche [64], den Einsatz von Clownärzten [44,48,86,109,110], Musik [56], Hypnosemaßnahmen [21], Iphone-Induction [81], Ablenkung in Form von Videoclips während der Einleitung [87] als auch durch den Einsatz von Aufklärungsfilmen für die Eltern vor der Operation [85,121] reduziert werden.

Mehrere Studien untersuchten die Anwesenheit der Eltern und deren Auswirkung auf die Angst der präoperativen Kinder. Hierbei wurde "Eltern anwesend" versus "Eltern nicht anwesend" [4,12, 16,58,59,61-63,91,119], "beide Eltern anwesend" versus "ein Elternteil anwesend" [60] sowie "Eltern anwesend" versus "sedative Medikation" [12,59,62,68] untersucht. Auch wenn die PPIA (Parental Presence during Induction of Anaesthesia), also die Anwesenheit der Eltern bei Narkoseeinleitung, in einigen europäischen Ländern zum Standard gehört, so konnte in den oben genannten Studien bisher kein klarer Vorteil für PPIA hinsichtlich präoperativer Ängstlichkeit gezeigt werden [84].

2004 untersuchte Kain et al. 791 Kinder im Rahmen von operativen Eingriffen mit Sevofluran, wobei vor der Einleitung keine Prämedikation mit Midazolam erfolgte. Hierbei konnte nicht nur ein Zusammenhang zwischen präoperativer Ängstlichkeit und der Inzidenz eines pädED gezeigt werden, sondern auch zwischen präoperativer Ängstlichkeit und postoperativen Anpassungsstörungen, die über einen längeren Zeitraum nach dem Eingriff noch nachgewiesen werden konnten [57].

In einer Folgestudie 2007 konnte dieselbe Arbeitsgruppe zeigen, dass die Inzidenz des postoperativen Delirs in einer sogenannten ADVANCE-Studiengruppe im Vergleich zur Kontrollgruppe reduziert werden konnte [59].

ADVANCE setzt sich zusammen aus: A=Anxiety-reduction, D=Distraction, V=Video-modeling and -education, A= Adding parents, N=No excessive reassurance, C=Coaching, E=Exposure/shaping. In der ADVANCE-Gruppe wurden sowohl die Eltern, als auch die Kinder zuvor geschult, damit sie besser auf den operativen Eingriff vorbereitet sind.

Entscheidend ist nicht die Anwesenheit der Eltern bei der Einleitung, sondern eine effektive Angstreduktion des Patienten. Dies sollte mit dem sogenannten ADVANCE-Bundle erfolgen, wobei die Eltern aktiv in den Prozess eingebunden werden (Evidenzgrad IB), kann aber auch durch Musik [56], Videoclips [87], Iphone-Induction [81] sowie Sedativa erfolgen (Midazolam [25], Clonidin [6,105], Dexmedetomidin [43]; Evidenzgrad IB).

Operativer Eingriff

Die Inzidenz des pädED hängt zudem vom operativen Eingriff ab. So lag die Inzidenz bei HNO-Eingriffen [41,114] höher als bei allgemeinpädiatrischen Eingriffen. Ob dieser Unterschied allein durch die unterschiedliche postoperative Schmerzintensität erklärt werden kann bleibt unklar.

Eingriffe im Kopf-/Halsbereich (Strabismuschirurgie, Bronchoskopien, HNO-Eingriffe, MKG-Spalten-OPs, u.a.) stellen aber nachweislich einen Risikofaktor da (Evidenzgrad IIB).

Bryan et al. zeigten im Rahmen ihrer Studie jedoch auch, dass ein pädED ohne operativ erfolgten Schmerzreiz im Rahmen von MRT-Untersuchungen vorkommt, wobei die Inzidenz mit 9% nach Sevofluran- und 4% nach Propofolnarkosen deutlich niedriger angegeben wird, als nach operativen Eingriffen [19].

Analgesie

Auch wenn Unruhezustände nach nichtoperativen Eingriffen vorkommen, nehmen viele Autoren an, dass Schmerz ein wichtiger Risikofaktor des pädED ist [18,28,36,38,70,89,90,93,118]. Studie-

nergebnisse haben bisher gezeigt, dass eine suffiziente Analgesie maßgeblichen Einfluss auf die Inzidenz des pädED nimmt [30,32,42,47,55]. So konnte gezeigt werden, dass die Verbesserung der postoperativen Analgesie, sei es durch Fentanyl [33,39,45,47,104], Nalbuphin [98], Gabapentin [97], Magnesium [1], Ketamin [3,37,67,107], Dexmedetomidin [50,53,54,100], Clonidin [34,74,76,83, 106,120], Dexamethason [69] oder den Einsatz verschiedener Regionalanästhesieverfahren wie dem Fascia iliaca Kompartment-Block [70], der Kaudalanästhesie [9,102] oder dem infraorbitalen Nervenblock [116], einen positiven Effekt hat. Regionalanästhesiologische Verfahren sollten daher supplementär eingesetzt werden, falls keine Kontraindikationen bestehen.

Eine präemptive Analgesie, angepasst an die Schwere des operativen Eingriffs, ist Grundvoraussetzung für eine niedrige Inzidenz des pädED (Evidenzgrad IA).

Narkoseform

In anderen Studien konnte gezeigt werden, dass Narkosen unter Inhalationsanästhetika, wie zum Beispiel Sevofluran oder Desfluran, mit einer höheren Inzidenz des postoperativen Delirs einhergehen, verglichen mit total intravenöser Anästhesie [27,49,66,80,94,108]. Andere haben zeigen können, dass bereits ein Propofolbolus oder eine Propofolinfusion von ca. 3 mg/kg zum Ende einer Narkose mit volatilen Anästhetika die Inzidenz der postoperativen Agitation senken kann [2,10,31].

Ob bereits die Einleitung mit Sevofluran im Vergleich zur intravenösen Einleitung zur Erhöhung der Inzidenz des pädED führt ist unklar. In einer Umfrage des wissenschaftlichen Arbeitskreises Kinderanästhesie wurde dieser Frage nachgegangen und 44% der Befragten beantworteten die Frage mit ja [78]. Wissenschaftliche Untersuchungen, die diese Annahme belegen, existieren nicht. Jedoch konnten Auerswald et al. zeigen, dass nach Maskeneinleitung mit Sevofluran und anschließender TIVA

Guidelines and Recommendations

nur in 36% der Fälle eine postoperative Agitation vermieden werden konnte, versus 59% nach intravenöser Einleitung und anschließender TIVA. Ob diese Daten ein Effekt des Sevoflurans oder der "Stormy Mask Induction", also einer unkooperativen Maskeneinleitung und somit einer erhöhten Ängstlichkeit zum Zeitpunkt der Einleitung geschuldet sind, lässt sich nicht klären [14].

TIVA-Narkosen verringern die Inzidenz des pädiatrischen Emergence Delirs (Evidenzgrad IB).

Da moderne volatile Anästhetika mit einem verbesserten Blut-Gas-Verteilungskoeffizienten eine höhere Inzidenz der postoperativen Unruhe aufweisen als Halothan [75], wurde bereits gemutmaßt, dass ein Zusammenhang zwischen raschem postoperativem Erwachen und der Inzidenz eines postoperativen Delirs besteht [114]. Dies konnte in anderen Studien bisher aber nicht eindeutig belegt werden [27]. Grundsätzlich erscheint es jedoch ratsam, pädiatrische Patienten postoperativ ausschlafen zu lassen. Eine ruhige Atmosphäre im Aufwachraum kann hierbei hilfreich sein. Ein großer Zusammenhang zwischen der Lautstärke im Aufwachraum und der Inzidenz des pädED wurde von 46% der Mitglieder des WAKKA bejaht [78].

Paradoxe Reaktion auf Midazolam

Bereits Eckenhoff stellte 1961 fest, dass die Prämedikation mit einem Barbiturat ein Risikofaktor für ein postoperatives Delir darstellt [41]. Auch in der ADVANCE-Studie von Kain et al. lag die Inzidenz des postoperativen Delirs in der Midazolamgruppe mit 20% doppelt so hoch wie in der ADVANCE-Gruppe (kein Midazolam) [59]. In einer Studie von Cole et al. konnte gezeigt werden, dass eine verzögert stattfindende Agitation fast ausschließlich bei Kindern zu sehen war, die präoperativ Midazolam erhalten hatten [30]. Cho et al. konnten wiederum zeigen, dass die Dauer der Agitation nach Gabe von 0,5 mg/kg Midazolam i.v. im Vergleich zu 0,3 mg/kg signifikant verlängert war [25]. Vereinzelte Fallberichte weisen darauf

hin, dass ein postoperatives Delir durch die präoperative Gabe von Midazolam ausgelöst werden kann [40,115]. Die postoperative Gabe von Flumazenil führte in diesen beiden Fallberichten innerhalb weniger Minuten zur klinischen Verbesserung. Die generelle postoperative Gabe von Flumazenil zur Prävention eines postoperativen Delirs erwies sich in einer Studie von Araki et al. jedoch nicht als zielführend [13].

Nach kurzen operativen Eingriffen und oraler Gabe von Midazolam sowie langanhaltendem pädED sollte auch an eine paradoxe Reaktion auf Midazolam gedacht werden und eine Therapie mit Flumazenil (0,02 mg/kg) in Erwägung gezogen werden (Evidenzgrad IV).

Präventionsstrategien

Die Präventionsstrategien ergeben sich bereits größtenteils aus den oben genannten Risikofaktoren. Während Alter und operativer Eingriff nicht beeinflusst werden können, so sollte jedem Anästhesisten bewusst sein, dass bei einem Kind im Vorschulalter die Wahrscheinlichkeit eines pädED nach einem HNO-Eingriff am höchsten ist.

Präventionsstrategien erstrecken sich hierbei auf nichtmedikamentöse und medikamentöse Maßnahmen. Nichtmedikamentöse Strategien basieren auf Minimierung der präoperativen Ängstlichkeit durch oben genannte Maßnahmen sowie auf der Beseitigung von postoperativen Ursachen einer Agitation (Durst, Hunger, Anwesenheit der Eltern; Abb. 1). Eine japanische Untersuchung konnte mit Elektrostimulation des Akkupunkturpunktes HT7 eine effektive Prävention des pädED zeigen [52]. Medikamentöse Strategien können zum einen auf eine Verbesserung der prä- und postoperativen Sedierung durch Dexmedetomidin [50,53,54,100], Clonidin [34,66,74,76,83,106,120] oder Midazolam [15] abzielen, wie auch auf eine Verbesserung der postoperativen Analgesie (siehe oben). Zudem empfiehlt sich die Durchführung einer TIVA

im Vergleich zur Gasnarkose [14,22]. Eine kurze zeitlich limitierte Propofolanwendung im Rahmen einer TIVA nach dem Anwendungsmodel von Short et al. [99] erscheint für Kinder als sicher, jedoch muss man auch an das geringe Risiko eines durch Propofol induzierten Infusionssyndroms, abgekürzt als PRIS (Propofol Infusion Syndrome), denken, dessen komplexe Pathophysiologie die Mitochondrien involviert [111]. Um das Risiko einer PRIS zu reduzieren, sollte die Anwendungsdosis bezogen auf 24 Stunden bei ≤4 mg/kg/h liegen und dadurch der katabole Stoffwechsel unterbunden werden [65]. Zu den häufigen Nebenwirkungen von Propofol während eines operativen Eingriffs bis zu 60 Minuten gehören der reversible Anstieg der Triglyceride und Plasmalipide als auch der bauspeicheldrüsenspezifischen Enzyme [23]. Eine Propofolanwendung erscheint als sicher, wenn bei einer 24 stündigen Applikation die Höchstdosis von 4 mg/ kg/h nicht überschritten wird [73]. In Tabelle 2 sind relevante medikamentöse Präventionsstrategien zur Vermeidung eines pädiatrischen Emergence Delirs, nach Empfehlungs- und Evidenzgrad gegliedert, aufgelistet.

Therapieoptionen

Um das pädED zu therapieren, sollte zunächst anhand einer validierten Skala versucht werden, zwischen Delir und Agitation zu differenzieren. Hierzu kann beispielsweise die PAED-Skala in Zusammenhang mit der KUSS-Skala dienen, um Schmerzen als Ursache für das pädED abschätzen zu können. Kann eine schmerzbedingte Ursache nicht ausgeschlossen werden, können nach Ausschöpfung der nichtmedikamentösen Maßnahmen unter pulsoxymetrischer Kontrolle intravenöse Opiate zum Einsatz kommen. Auch sollte versucht werden, andere Ursachen für eine postoperative Agitation (Durst, Hunger, Angst etc.) auszuschließen, und den Eltern sollte ermöglicht werden, ihr Kind zu beruhigen und zu trösten.

Wenn eine Fremd- oder Eigengefährdung besteht, hat sich der Einsatz von intravenösen Anästhetika bewährt.

Special Articles

Tabelle 2
Medikamentöse Präventionsstrategien des pädED (MA=Meta-Analyse, SR=systematischer Review).

Medikament	Art und Zeitpunkt der Applikation	Evidenzgrad	Empfeh- lungsgrad
Midazolam	oral, intravenös, rektal, cave: nasal brennt!	[30]: 2b; [11]: 1b; [24] 1b; [26]: 1b; [72]: 1b; [77]: 1b; [112]: NR; [113]: 1b	В
Alpha-2-Agonisten (Clonidin, Dexmedetomidin)	intravenös, intranasal, epidural	[5]: 1b; [92]: MA; [103]: MA; [6]: 1b; [17]: 1b; [74]: 1b; [95]: SR & MA; [88]: 1b	В
Propofol	als TIVA oder am Ende der OP	[66]: 1b; [10]: 1b	В
Analgesie durch u.a. Kaudalanäs- thesie oder Fascia iliaca-Block	präoperativ, intraoperativ, am Ende der OP	[117]: 1b; [9]: 2b; [71]: 1b	В

Hierbei kann die Gabe von Propofol in einer Dosierung von 0,5–1 mg/kg KG unter pulsoxymetrischer Kontrolle und Beatmungsbereitschaft Anwendung finden [35,51]. Alternativ kann auch die Gabe von Clonidin in einer Dosierung von 2 µg/kg oder die Gabe von 1 mg/kg Ketamin S erfolgen.

Laut einer Umfrage beim WAKKA konnte die höchste Zufriedenheit hinsichtlich der Wirkung einer medikamentösen Therapie dem Propofol zugeordnet werden – vor Clonidin und Dipidolor [78]. Prospektive randomisierte Studien zur Therapie des postoperativen Delirs existieren leider kaum. Eine Studie untersuchte den therapeutischen Effekt von Physostigmin im Vergleich zu Placebo [46], ohne einen klaren Vorteil für Physostigmin erkennen zu können.

Die Therapieempfehlung, welche in Abbildung 2 dargestellt ist, besitzt somit lediglich einen Evidenzgrad der Klasse IV (Expertenmeinung).

Zusammenfassung

Zusammenfassend kann festgehalten werden, dass das pädED ein häufig auftretendes Phänomen bei narkotisierten Kindern im Vorschulalter ist. Man kann das pädED, dessen Ursache multifaktoriell anzusehen ist, nicht zu 100% verhindern. Präventionsmaßnahmen sind sowohl pharmakologisch (Analgesie und Sedativa) als auch nichtpharmakologisch möglich. Grundsätzlich erscheint es ratsam, Eltern bereits im Vorfeld über das klinische Bild eines möglichen pädED aufzuklären. Weiterhin sollten Eltern darüber informiert werden, dass postoperative Verhaltensstörungen nach dem operativen Eingriff noch länger anhalten können [29].

Literatur

- Abdulatif M, Ahmed A, Mukhtar A, Badawy S: The effect of magnesium sulphate infusion on the incidence and severity of emergence agitation in children undergoing adenotonsillectomy using sevoflurane anaesthesia. Anaesthesia 2013;68(10):1045–1052
- Abu-Shahwan I: Effect of propofol on emergence behavior in children after sevoflurane general anesthesia. Paediatr Anaesth 2008;18(1):55–59
- Abu-Shahwan I, Chowdary K:
 Ketamine is effective in decreasing the
 incidence of emergence agitation in
 children undergoing dental repair under
 sevoflurane general anesthesia. Paediatr
 Anaesth 2007;17(9):846–850
- Akinci SB, Kose EA, Ocal T, Aypar U: The effects of maternal presence during anesthesia induction on the mother's anxiety and changes in children's behavior. Turk J Pediatr 2008;50(6):566–571
- Ali MA, Abdellatif AA: Prevention of sevoflurane related emergence agitation in children undergoing adenotonsillectomy: A comparison of dexmedetomidine and propofol. Saudi J Anaesth 2013;7(3):296–300
- 6. Almenrader N, Passariello M, Coccetti B, Haiberger R, Pietropaoli P: Premedication in children: a comparison of oral midazolam and oral clonidine. Paediatr Anaesth 2007;17(12):1143–1149
- Aono J, Mamiya K, Manabe M: Preoperative anxiety is associated with a high incidence of problematic behavior

Guidelines and Recommendations

Empfehlungen

- Eltern sollten präoperativ über die Möglichkeit des pädED aufgeklärt werden (Empfehlungsgrad B).
- Das pädED soll im AWR differenziert anhand einer validierten Skala für Schmerzen und gleichzeitig anhand einer validierten Skala für Delir erfasst werden (Empfehlungsgrad A).
- Vorschulalter gilt als ein nicht beeinflussbareres Risiko des p\u00e4dED (Empfehlungsgrad A).
- Präoperative Ängstlichkeit gilt als Risikofaktor des pädED.
- ADVANCE-Strategien (Schulung von Eltern und Kindern) können die präoperative Ängstlichkeit senken und sollten gegenüber der Midazolam-Prämedikation favorisiert werden (Empfehlungsgrad B).
- Alpha-2-Agonisten (Dexmedetomidin, Clonidin; jede Applikationsform) sollten appliziert werden, um die Inzidenz des pädED zu senken (Empfehlungsgrad B).
- Eingriffe im Kopf/Hals-Gebiet (HNO-Eingriffe, Bronchoskopien, MKG-Spalten-OPs u.a.) gehen mit einem erhöhtem Risiko eines pädED einher (Empfehlungsgrad B).
- Postoperative Schmerzen erhöhen das Risiko eines pädED (Empfehlungsgrad A).
- Regionalanästhesieverfahren sollten zur präventiven Analgesie eingesetzt werden, um die Inzidenz des pädED zu senken (Empfehlungsgrad B).
- Moderne volatile Anästhetika erhöhen das Risiko eines pädED im Vergleich zur TIVA (Empfehlungsgrad B).
- Propofolboli zum Ende einer inhalativen Anästhesie sollte zum Senken für das Risiko eines pädED in Betracht gezogen werden (Empfehlungsgrad B).
 - on emergence after halothane anesthesia in boys. Acta Anaesthesiol Scand 1999;43(5):542–544
- 8. Aono J, Ueda W, Mamiya K, Takimoto E, Manabe M: Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys.

 Anesthesiology 1997;87(6):1298–1300
- 9. Aouad MT, Kanazi GE, Siddik-Sayyid SM, Gerges FJ, Rizk LB, Baraka AS: Preoperative caudal block prevents emergence agitation in children following sevoflurane anesthesia. Acta Anaesthesiol Scand 2005;49(3):300–304
- Aouad MT, Yazbeck-Karam VG, Nasr VG, El-Khatib MF, Kanazi GE, Bleik JH: A single dose of propofol at the end of surgery for the prevention of emergence agitation in children undergoing strabismus surgery during sevoflurane anesthesia. Anesthesiology 2007;107(5):733–738
- Arai YC, Fukunaga K, Hirota S: Comparison of a combination of midazolam and diazepam and midazolam alone as oral premedication on preanesthetic and emergence condition in children. Acta Anaesthesiol Scand 2005 May;49(5):698–701
- Arai YC, Ito H, Kandatsu N, Kurokawa S, Kinugasa S, Komatsu T: Parental presence during induction enhances the effect of oral midazolam on emergence behavior of children undergoing general anesthesia. Acta Anaesthesiol Scand 2007;51(7):858–861

- 13. Araki H, Fujiwara Y, Shimada Y: Effect of flumazenil on recovery from sevoflurane anesthesia in children premedicated with oral midazolam before undergoing herniorrhaphy with or without caudal analgesia. J Anesth 2005;19(3):204–207
- Auerswald K, Behrends K, Burkhardt U, Olthoff D: Propofol for paediatric patients in ear, nose and throat surgery. Practicability, quality and cost-effectiveness of different anaesthesia procedures for adenoidectomy in infants. Anaesthesist 2006;55(8):846–853
- Bae JH, Koo BW, Kim SJ, Lee DH, Lee ET, Kang CJ: The effects of midazolam administered postoperatively on emergence agitation in pediatric strabismus surgery. Korean J Anesthesiol 2010;58(1):45–49
- Bevan JC, Johnston C, Haig MJ, Tousignant G, Lucy S, Kirnon V, et al: Preoperative parental anxiety predicts behavioural and emotional responses to induction of anaesthesia in children. Can J Anaesth 1990;37(2):177–182
- Bock M, Kunz P, Schreckenberger R, Graf BM, Martin E, Motsch J: Comparison of caudal and intravenous clonidine in the prevention of agitation after sevoflurane in children. Br J Anaesth 2002;88(6):790–796
- Bortone L, Bertolizio G, Engelhardt T, Frawley G, Somaini M, Ingelmo PM: The effect of fentanyl and clonidine on early postoperative negative behavior in children: a double-blind placebo controlled trial. Paediatr Anaesth 2014;24(6):614–619

- Bryan YF, Hoke LK, Taghon TA, Nick TG, Wang Y, Kennedy SM, et al: A randomized trial comparing sevoflurane and propofol in children undergoing MRI scans. Paediatr Anaesth 2009;19(7):672–681
- Buttner W, Finke W, Hilleke M, Reckert S, Vsianska L, Brambrink A: Development of an observational scale for assessment of postoperative pain in infants. Anasthesiol Intensivmed Notfallmed Schmerzther 1998;33(6):353–361
- Calipel S, Lucas-Polomeni MM, Wodey E, Ecoffey C. Premedication in children: hypnosis versus midazolam. Paediatr Anaesth 2005;15(4):275–281
- Chandler JR, Myers D, Mehta D, Whyte E, Groberman MK, Montgomery CJ, et al: Emergence delirium in children: a randomized trial to compare total intravenous anesthesia with propofol and remifentanil to inhalational sevoflurane anesthesia. Paediatr Anaesth 2013;23(4):309–315
- 23. Chauhan M, Garg A, Bharadwaj A: Effect of short-term propofol administration on pancreatic enzymes and lipid biochemistry in children between 1 month and 36 months. Paediatr Anaesth 2013;23(4):355–359
- Chen J, Li W, Hu X, Wang D: Emergence agitation after cataract surgery in children: a comparison of midazolam, propofol and ketamine. Paediatr Anaesth 2010;20(9):873–879