CS 70 Discrete Mathematics and Probability Theory

 $Summer \ 2022 \quad \text{Jingjia Chen, Michael Psenka and Tarang Srivastava}$

DIS 1B

1 Prove or Disprove

For each of the following, either prove the statement, or disprove by finding a counterexample.

- (a) $(\forall n \in \mathbb{N})$ if *n* is odd then $n^2 + 4n$ is odd.
- (b) $(\forall a, b \in \mathbb{R})$ if $a + b \le 15$ then $a \le 11$ or $b \le 4$.
- (c) $(\forall r \in \mathbb{R})$ if r^2 is irrational, then r is irrational.
- (d) $(\forall n \in \mathbb{Z}^+)$ $5n^3 > n!$. (Note: \mathbb{Z}^+ is the set of positive integers)

2 Fermat's Contradiction

Prove that $2^{1/n}$ is not rational for any integer $n \ge 3$. (*Hint*: Use Fermat's Last Theorem. It states that there exists no positive integers a, b, c s.t. $a^n + b^n = c^n$ for $n \ge 3$.)

CS 70, Summer 2022, DIS 1B

3 Pigeonhole Principle

Prove the following statement: If you put n + 1 balls into n bins, however you want, then at least one bin must contain at least two balls. This is known as the *pigeonhole principle*.

4 Numbers of Friends

Prove that if there are $n \ge 2$ people at a party, then at least 2 of them have the same number of friends at the party. Assume that friendships are always reciprocated: that is, if Alice is friends with Bob, then Bob is also friends with Alice.

(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where n > m, at least one container must contain more than one item. You may use this without proof.)

CS 70, Summer 2022, DIS 1B 2