Лабораторная работа 4

Математическое моделирование

Оразгелдиев Язгелди

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	15

Список иллюстраций

3.1	код на языке Julia	'/
3.2	Решение уравнения гармонического осциллятора без затуханий и без	
	действий внешней силы	8
3.3	Фазовый портрет гармонического осциллятора без затуханий и без	
	действий внешней силы	8
3.4	код на языке OpenModelica	9
3.5	Решение уравнения гармонического осциллятора без затуханий и без	
	действий внешней силы	9
3.6	Фазовый портрет гармонического осциллятора без затуханий и без	
	действий внешней силы	9
3.7	код на языке Julia	10
3.8	Фазовый портрет гармонического осциллятора с затуханием и без	
	действий внешней силы	10
3.9	код на языке OpenModelica	11
3.10	Решение уравнения гармонического осциллятора с затуханием и без	
	действий внешней силы	11
3.11	Фазовый портрет гармонического осциллятора с затуханием и без	
	действий внешней силы	11
3.12	Решение уравнения гармонического осциллятора с затуханием и без	
	действий внешней силы	12
3.13	Фазовый портрет гармонического осциллятора с затуханием и без	
	действий внешней силы	13
	код на языке OpenModelica	13
3.15	Решение уравнения гармонического осциллятора с затуханием и под	
	действием внешней силы	14
3.16	Фазовый портрет гармонического осциллятора с затуханием и под	
	действием внешней силы	14

Список таблиц

1 Цель работы

Реализовать математическую модель гармонического осциллятора

2 Задание

Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы х"+6x=0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы х' '+6x'+6x=0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы х' '+6x'+12x=sin(6t)

 $t = [0,60] \times 0 = 0.6 y 0 = 1.6$

3 Выполнение лабораторной работы

1. Построил модель колебания гармонического осциллятора без затуханий и без действий внешней силы на языке Julia

```
using DifferentialEquations, Plots;
function f1(u, p, t)
    x, y = u
    g, w = p
    dx = y
    dy = -g .*y - w^2 .*x
    return [ dx, dy ]
end

u0 = [0.6, 0.16]
p1 = [0, 6]
tspan = (0, 60)
problem = ODEProblem(f1, u0, tspan, p1)
sol1 = solve(problem, Tsit5(), saveat=0.05)
plot(sol1, label = ["x","y"])
```

Рис. 3.1: код на языке Julia

Рис. 3.2: Решение уравнения гармонического осциллятора без затуханий и без действий внешней силы

Рис. 3.3: Фазовый портрет гармонического осциллятора без затуханий и без действий внешней силы

Построил ту же модель на языке OpenModelica

```
1
    model 14 mm
 2
 3
      parameter Real g=0;
4
      parameter Real w=6;
 5
      parameter Real x_0=0.6;
 6
      parameter Real y 0=1.6;
 7
8
      Real x(start=x 0);
9
      Real y(start=y 0);
10
    equation
11
12
13
      der(x)=y;
14
      der(y) = -g .*y - w^2 .*x;
15
16
    end 14 mm;
```

Рис. 3.4: код на языке OpenModelica

Рис. 3.5: Решение уравнения гармонического осциллятора без затуханий и без действий внешней силы

Рис. 3.6: Фазовый портрет гармонического осциллятора без затуханий и без действий внешней силы

2. Построил модель колебания гармонического осциллятора с затуханием и без действий внешней силы на языке Julia

```
p2 = [6, 6]
problem2 = ODEProblem(f1, u0, tspan, p2)
sol2 = solve(problem2, Tsit5(), saveat=0.05)
plot(sol2, label =["x","y"])

0.5
-0.5
-1.0
-1.5
-2.0
0 10 20 30 40 50 60
```

Рис. 3.7: код на языке Julia

Рис. 3.8: Фазовый портрет гармонического осциллятора с затуханием и без действий внешней силы

Построил ту же модель на языке OpenModelica

```
1
    model 14 mm2
 2
3
      parameter Real g=6;
      parameter Real w=6;
4
5
      parameter Real x 0=0.6;
      parameter Real y 0=1.6;
6
7
8
      Real x(start=x 0);
9
      Real y(start=y 0);
10
11
    equation
12
13
      der(x)=y;
14
      der(y) = -g .*y - w^2 .*x;
15
    end 14 mm2;
```

Рис. 3.9: код на языке OpenModelica

Рис. 3.10: Решение уравнения гармонического осциллятора с затуханием и без действий внешней силы

Рис. 3.11: Фазовый портрет гармонического осциллятора с затуханием и без действий внешней силы

3. Построил модель колебания гармонического осциллятора с затуханием и под действием внешней силы на языке Julia

```
p3 = [6, 12]
f(t)=sin(6*t)
function fl(u, p, t)
     x, y = u

g, w = p
     dx = y
dy = -g .*y - w^2 .*x
return [ dx, dy ]
problem3 = ODEProblem(f1, u0, tspan, p3)
sol3 = solve(problem3, Tsit5(), saveat=0.05)
plot(sol1, label = ["x", "y"])
                 ["x", "y"]
["x", "y"]
    3
    2
    1
    0
  -1
  -2
   -3
                   10
                                  20
                                                                              50
     0
                                                30
                                                               40
                                                                                            60
```

Рис. 3.12: Решение уравнения гармонического осциллятора с затуханием и без действий внешней силы

Рис. 3.13: Фазовый портрет гармонического осциллятора с затуханием и без действий внешней силы

Построил модель колебания гармонического осциллятора с затуханием и под действием внешней силы на языке OpenModelica

```
model 14 mm3
2
3
      parameter Real g=6;
4
      parameter Real w=12;
 5
      parameter Real x 0=0.6;
 6
      parameter Real y 0=1.6;
 7
8
      Real x(start=x_0);
9
      Real y(start=y 0);
10
11
    equation
12
13
      der(x)=y;
14
      der(y) = -g .*y - w^2 .*x + sin(6*time);
   end 14 mm3;
15
```

Рис. 3.14: код на языке OpenModelica

Рис. 3.15: Решение уравнения гармонического осциллятора с затуханием и под действием внешней силы

Рис. 3.16: Фазовый портрет гармонического осциллятора с затуханием и под действием внешней силы

4 Выводы

Я реализовал математическую модель гармонического осциллятора