Fill-In-The_Blank: Plasma!

You have been to	old that all mat	ter is compos	sed of	
(1)	, but it's actuall	y more comp	licated!	
In the typical pic	ture of an(1)		: the p	ositively
charged particles calle	ed(2)	and	d neutrally	charged
particles called(3)_		_ are compre	ssed in the	e center in
a structure called the	(4)	Arou	nd the	
(4)	are negative cl	narged partic	les called	
(5)	S.			
A(2)	has(6)		as a	
(3)	, but an(5)		_ has	
(7)	the mass of a	(2)	C	or
(3)				
Matter can take	4 states, solid,	liquid, gas, a	nd	
(8)				
A(8)	is formed wh	nen the matte	r become	s very,
very(9)	, meaning	the atoms ar	e moving	very
quickly, and/or very, v	erv (10)			

In a solid, liquid, or gas, the atoms a	re organized in their typical form,			
but a(8) is very different.				
In a(8), the(5)_	are no longer			
connected to the (4)	In fact, you can barely even			
describe the matter in a (8)	as being composed of			
(1) s! Instead, the matter is in a sort of a				
(5)(4)	soup!			
The process of a gas transforming into a plasma is called (11)				
and the process of	turning back into a gas is called			
(12) This makes se	nse because, in chemistry, the			
word(11) can refe	er to(5)s			
leaving an(1)				
One example of a(8)	is a very hot fire. It			
needs to be very hot for(11)	to occur, a cooler fire			
is probably more of a gas than a(8	3) Another very			
classic example of a(8)	is a			
(13)				
But the most important examp	le of a(8) is			
the core of a (14)	! There. many hot			

(2) s, disconnected from	(5)s			
are able merge, which causes a star to emit masses of energy.				
Answer Choices				
1.- wisps- bloops- atom- neutrinos				
2.				

neutrinosquarkspositronsprotons

- neutrons

- baubles

NucleusCore

NeutronBaryonPositronElectron

- tiny thingies

- mass-pointers

Quark-centerHamburger

3.

4.

5.

6.

- About half
- About the same
- About one 100th
- About one tenth

7.

- About one tenth
- About the same
- About half
- About one 1000th

8.

- Astromia
- Eukrasia
- Plasma
- Eureka

9.

- Bouncy
- Swell
- Cold
- Hot

10.

- Expanded
- Static
- Electric
- Compressed

11.

- Evaporation
- Composition
- Melting
- Ionization

12.

- Freezing
- Deionization
- Decomposition
- Condensation

13.

- A hot cup of tea
- Lava
- A beating heart
- A lightning bolt

14.

- apple
- atom
- star
- person