O-03 (ANSYS)

Формулировка задачи:

Дано:

E, v=0.25,

F, *l*, *d*.

Найти: 1) Коэффициенты канонического уравнения метода сил;

- 2) Эпюры внутренних моментов (изгибающих и крутящих);
- 2) Вертикальное перемещение точки K: δ_K ;

Аналитический расчёт (см. 0-03) даёт следующие решения:

$$d = 65i \ i = 0,13 \cdot l.$$

$$\delta_K = \frac{11}{9} \cdot \frac{F \cdot l^3}{E \cdot I_z} =$$

$$= 1,222 \cdot \frac{F \cdot l^3}{E \cdot I_z} - \hat{a}i \ \hat{e}c.$$

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же результаты методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U_M > PlotCtrls > Style > Colors > Reverse Video

B меню оставить только пункты, относящиеся к прочностным расчётам:

M_M > Preferences > Отметить "Structural" > ОК

При построениях полезно видеть номера точек и линий твердотельной модели, узлов модели конечноэлементной:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE, NODE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Параметрам задачи, входящим в формулы (E, F, l, E, I_z) присваиваем значение I. Тогда результатами расчёта будут коэффициенты перед формулами. Геометрическая жёсткость при кручении для круглых и кольцевых поперечных сечений ровно вдвое больше изгибного момента инерции.

№	Действие	Результат
1	Задаём параметры расчёта— базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1	Scalar Parameters
2	> Close Первая строчка в таблице конечных элементов — балочный тип ВЕАМ44: M_M > Preprocessor C_P > ET,1,BEAM44 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types: Type 1 BEAM44 Add Options Delete Close Help

No	Действие	Результат
3	Реальные константы для элемента BEAM44: C_P> R,1,ASect,Iz,Iy,d,d,Ik > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help
4	Coйства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».	Ceffire Material Model Behavior Material Cost Frontier Felipp Material Models Available Material Models Geffred Material Models Available Temperature Softinging Material Number 1 Linear Isotropic Material Properties for Material Number 1 Temperatures Delete Temperature Ox. Caxoal Heb
	Основная система. Твердотельное модели	прование:
5	Координаты узлов рамы $A \rightarrow 1$, $E \rightarrow 2$, $B \rightarrow 5$, $\Gamma \rightarrow 6$, $\mathcal{A} \rightarrow 7$, $K \rightarrow 8$: Создаём твердотельную модель основной системы (О.С.). Определяемся с положением рамы относительно глобальной декартовой системы координат.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

No	Действие	Результат
6	Ключевые точки: M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем -l,0,0 > Apply > NPT пишем 2 X,Y,Z пишем -l,0,l > Apply > NPT пишем 3 X,Y,Z пишем 0,0,l > Apply > NPT пишем 4 X,Y,Z пишем 0,0,l > Apply > NPT пишем 5 X,Y,Z пишем 1,0,l > Apply > NPT пишем 6 X,Y,Z пишем 1,0,0 > Apply > NPT пишем 7 X,Y,Z пишем 7 X,Y,Z пишем -2*l,0,l > Apply > NPT пишем 8 X,Y,Z пишем 2*l,0,l > OK	POINTS POIN NUM 7 2 R.X 5 8
7	Изометрия: Прорисовываем всё, что есть: U_M > Plot > Multi-Plots - изометрия; автоформат (размер изображения по размеру окна рабочего поля).	POINTS POIN NUM 7 2 X .3 .6 .5 .8

№	Действие	Результат
8	Ocu стержней рамы: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 (будет окошко выбора точек 3 или 4; выбрать 3 > OK>Apply) 4 (будет окошко выбора точек 3 или 4; выбрать 4 > OK) и 5 6 и 5 7 и 2 5 и 8 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K 7 L5 2 X L2 2 X L3 5 L6 8
9	Заделки: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 и 6 ключевые точки > OK > Lab2 установить "All DOF" > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K U ROT 7 L5 2 X L3 5 L6 8

No	Действие	Результат
	Конечноэлементная модель основной ст	истемы.
10	Указываем материал, тип элементов и номер поперечного сечения: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > [TYPE] установить "1 ВЕАМ44" [MAT] установить "1" [REAL] установить "1" > OK	Membing Attributes Default Assibilates for Membing [TVP4] Element type number [BMAT] Material number [BMAT] Material number [BKS] Element considers of number [BSS] Element considers of number [BSS] Element considerate by [BSS] Element considerate by [BSCHAMA] Section number Name defined
11	Размер элементов:Участки без распределённых нагрузок можно бить одним конечным элементом:M_M > Preprocessor > Meshing > Size Cntrls > ManualSize >Lines > All Lines >NDIV пишем 1> ОКОбновляем изображение: U_M > Plot > Multi-Plots	1 L-K U ROT .7 L5 2 L2 X X L3 5 L6 8
12	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsВидим сразу две модели - твердотельную и конечноэлементную.	1 E-L-K-N U ROT 7 L5 2 L2 3 L3 5 L6 8

№	Действие	Результат
13	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK Обновляем изображение: U_M > Plot > Multi-Plots Теперь видим только конечноэлементную модель.	1 E-N 7 1 2 X 3 6
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	E-N U ROT 7 2 X X

No	Действие	Результат
	Вычисление податливости δ_{II} :	
15	Edunuhue моменты по направлениям X _I : Номера узлов здесь совпадают с номерами ключевых точек, потому, что одна линия - один элемент и линии проводились от ранних точек к поздним. Значит слева от разреза - узел №3, справа - узел №4: М_М > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Nodes > Левой кнопкой мыши отмечаем узел 3 (будет окошко выбора >ОК) > ОК > Lab установить "МZ" VALU пишем 1 > Apply > Левой кнопкой мыши отмечаем узел 4 (будет окошко выбора >ОК) > ОК > Lab установить "МZ" VALU пишем 1 > ОК > ОК > Lab установить "МZ" VALU пишем -1 > ОК Обновляем изображение: U_M > Plot > Multi-Plots	E-N U ROT M 7 2 X X
16	Запускаем расчёт: M_M > Solution > Solve > Current LS > OK > OK	

№	Действие	Результат
17	Форма деформированной упругой оси рамы: M_M > General Postproc > Plot Results > > Deformed Shape > KUND установить Def + undeformed > OK	DISPLACEMENT STEP=1 SUB =1 TIME=1 DMX >1.75
18	Перемещение узлов 3 и 4 по направлению X_l от единичной силы, приложенной к основной системе по этому же направлению: М_М > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > Z-Component of rotation > OK Пропечаталась величина угла поворота левого узла (№3) в радианах: $ROTZ_3 = 2,25 \cdot \frac{l}{E \cdot I_z} - \ddot{\imath} \ \dot{\imath} \ \dot{\imath} \ \dot{\imath} \ \dot{\partial} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \alpha$	FILE PRINT ROT NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE ROTZ 1 0.0000 2 1.2500 3 2.2500 4 -2.2500 5 -1.2500 6 0.0000 7 1.2500 8 -1.2500 HAXIMUM ABSOLUTE VALUES NODE 3 VALUE 2.2500

№	Действие	Результат
	Вычисление податливости δ_{IF} :	
19	Очистка модели от сосредоточенных сил:Обновляем изображение:U_M > Plot > Multi-PlotsСилы и закрепления не пропали. Просто при расчёте меняются настройки видимости. Включаем изображение всех нагрузок и закреплений:U_M > PlotCtrls > Symbols >Селектор [/PBC] устанавливаем на "All Applied BCs"> OKУдаление внешних сосредоточенных сил и моментов:M_M > Preprocessor > Loads > Define Loads > Delete >Structural > Force/Moment > On Nodes > Pick All >Lab установить "All"	E-N U ROT 7 2 X 8
20	Внешняя нагрузка, приложенная к основной системе: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Nodes > Левой кнопкой мыши отмечаем узлы 7 и 8 > OK > Lab выбираем "FY" VALUE пишем -F > OK Обновляем изображение: U_M > Plot > Multi-Plots	E-N U ROT F 7

No	Действие	Результат
21	Запускаем расчёт: M_M > Solution > Solve > Current LS > OK > OK	
22	Форма деформированной упругой оси рамы: M_M > General Postproc > Plot Results > Deformed Shape > KUND установить Def + undeformed > OK	DISPLACEMENT STEP=1 SUB =1 TIME=1 DMX 71.91667
23	Перемещение узлов 3 и 4 по направлению X_1 от внешней нагрузки, приложенной к основной системе: М_М > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > Z-Component of rotation > OK Пропечаталась величина угла поворота левого узла (№3) в радианах: $ROTZ_3 = 1,25 \cdot \frac{F \cdot l^2}{E \cdot I_z} - \ddot{\imath} \ í \ \dot{\alpha} \ddot{\imath} \ \partial \dot{\alpha} \ddot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot{\alpha} \dot$	PRINT ROT NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOH LISTING ****** LOAD STEP=

No	Действие	Результат
24	Обновляем изображение: U_M > Plot > Multi-Plots U_M > PlotCtrls > Symbols > Селектор [/PBC] устанавливаем на "All Applied BCs" [/PSF] Surface Load Symbols устанавливаем "Pressures" > OK	E-N U ROT F 2 X 3
	Расчётная схема рамы:	
25	Связываем узлв 3 и 4 по всем степеням свободы: M_M > Preprocessor > Coupling/Ceqn > Coincident Nodes > Lab установить "All appropriate" TOLER оставить 0.0001 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	E-N U ROT F CP 2 X 8
26	Запускаем расчёт: M_M > Solution > Solve > Current LS > OK > OK	

No	Действие	Результат
27	Действие Cunoban cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK > B окне "Applied Boundary Conditions" U установить "Off" Rot установить "Off" F установить "Symbol+Value" M установить "Symbol+Value" > OK > B окне "Reactions" NFOR установить "Off" RFOR установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK B окне "Miscellaneous" поставить галочку на единственной позиции CP. Обновляем изображение: U_M > Plot > Multi-Plots Получаем тот же результат, что и на puc. 1. В рабочем поле видим следующее: - Красным цветом начерчены внешние силы; - Малиновым цветом - реактивные силы; - Фиолетовым - векторы реактивные силы; - Фиолетовым - векторы реактивные коментов: изгибного (поперёк оси стержня) и крутильного (вдоль его оси).	Результат 1

№	Действие	Результат
28	Вид сверху: вид сверху; вид сверху; автоформат (размер изображения по размеру окна рабочего поля).	1 ELEMENTS F CP RFOR RMOM 444444 Z X 444444
29	<pre>Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
30	Cocmaвление эпюры внутреннего изгибающего момента Musz: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Смотрим таблицу результатов: M M > General Postproc > Element Table > Define Table > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS6 SMIS 6 Time= 1.0000 (Current) SMIS12 SMIS 12 Time= 1 0000 (Current) Add Update Delete Close Help

№	Действие	Результат
31	Прорисовка эпюры Мизг: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS6" LabJ установить "SMIS12" Fact пишем 1 > ОК Получаем тот же результат, что и на рис. 1. (только числа, выделенные синим цветом). Значения показывает цветовая шкала. Цвет эпюры на центральной перекладине показывает значение в пятом слева интервале (0,50,6). Можно его уточнить (см. следующее действие).	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN =-1 ELEM=4 MAX =0 ELEM=4 7 2 4 6 -1864 0
32	Конечные элементы поперечины (между узлами 2 и 5): Выделяем нужные конечные элементы: U_M > Select > Entities > Устанавливаем "Elements", "By Num/Pick" и "From Full" > ОК Кликаем мышкой на элемент между узлами 2 и 3 Кликаем мышкой на элемент между узлами 4 и 5 > ОК Прорисовываем: U_M > Plot > Replot Получаем тот же результат, что и на рис. 1. на участке Б-В (только числа, выделенные синим цветом). Значения показывает цветовая шкала. Выделяем сё, что есть: U_M > Select > Everything Прорисовываем: U_M > Plot > Replot	1 LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN =555556 ELEM=2 MAX =555556 ELEM=2 555556 555556

No	Действие	Результат
35	Вертикальное перемещение узла №8 (точка K) $M_M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > Y-Component of displacement > OK Получаем методом конечных элементов: UY_8 = \delta_8 = \delta_{\hat{E}} = 1,222 \cdot \frac{F \cdot l^3}{E \cdot I_Z} \hat{a}\!$	PRINT U NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UY 1 0.0000 2 -0.33333 3 -0.55556E-01 4 -0.55556E-01 5 -0.33333 6 0.0000 7 1.2222 HAXIHUM ABSOLUTE VALUES NODE 7 VALUE -1.2222

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst", ".stat" и "SECT".

Интерес представляют ".db" (файлы модели), ".rst" (файл результатов расчёта) и файл ".SECT" (поперечное сечение), остальные файлы промежуточные, их можно удалить.