

2009

TRIAL

HIGHER SCHOOL CERTIFICATE

Mathematics Extension 1

General Instructions:

- Reading Time 5 minutes
- Working time 2 hours
- Write using black or blue pen.
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown in every question.

Total marks - 84

Attempt Questions 1 - 7

All questions are of equal value

Question 1 (12 marks). Start on a SEPARATE page.

Marks

- (a) If $P(x) = x^4 3x^3 + ax^2 12$ is divisible by (x-3), find the value of a.
- (b) i) Find the gradients at the point P(1,1) of the tangents to the curves $y = x^3$ and $y = 1 \ln x$.
- ii) Hence find the acute angle between these tangents, giving the answer correct to the nearest degree.
- (c) A (1, -3) and B (6, 7)) are two points. Find the coordinates of the point P(x,y) which divides the interval AB internally in the ratio 2:3
- (d) Find $\int \cos^2 4x dx$.
- (e) Differentiate $\cos^{-1}(3x)$ with respect to x.

Question 2. (12 marks) start on a SEPARATE page.

(a) Use the substitution
$$u = x - 1$$
 to find $\int 5x\sqrt{x-1}dx$

- **(b)** T $(2t,t^2)$ is a point on the parabola $x^2 = 4y$.
- i) Show that the tangent to the parabola at T has equation

$$tx - y - t^2 = 0.$$

- ii) Hence find the values of t such that the tangent to the parabola at T passes through the point P (1, -2).
- c) i) Express $\cos x \sqrt{3} \sin x$ in the form $R \cos(x + \alpha)$

where
$$R > 0$$
 and $0 < \alpha < \frac{\pi}{2}$

ii) Hence solve
$$\cos x - \sqrt{3} \sin x = -2$$
 for $0 \le x \le 2\pi$.

Question 3. (12 marks). Start on a SEPARATE page.

(a) The points A, B, C and D lie on the circumference of a circle centred at 0.

CD is a diameter of the circle and AB is parallel to CD. \angle ACD = x^0 .

Find an expression for \angle ACB in terms of x

3

(b) Use the method of mathematical induction to show that the expression $9^n - 8n - 1$ is divisible by 64 for all integers $n \ge 2$.

3

(c) For the expansion of the expression $(x-\frac{3}{x})^8$, find the term independent of x.

3

(d) i) Sketch the graph of $y = 2\sin^{-1} 3x$.

2

ii) State the domain and range of the function

1

Question 4. (12 marks) .Start on a SEPARATE page.

- (a) How many groups of 2 men and 2 women can be formed from 6 men and 8 women.
 - 1
- (b) Six letter words are formed from the letters of the word CYCLIC.
- i) How many different 6-letter words can be formed? 1
- ii) How many 6 letter words can be formed, if no "C' s are together.? 2

(c)

FIGURE NOT TO SCALE

The angle of elevation of a tower PQ of height h metres at a point A due east of it is 12°. From another point B, the bearing of the tower is 051°T and the angle of elevation is 11°. The points A and B are 1000 metres apart and on the same level as the base Q of the tower.

i. Show that $\angle AQB = 141^{\circ}$. 1 Consider the triangle APQ and show that $AQ = h \tan 78^{\circ}$. ii. 1 Find a similar expression for BQ. 1 iii. Use the cosine rule in the triangle AQB to calculate h to the iv. 2

Question 4 continues on the next page.

nearest metre.

(d) i) Show that :
$$\frac{2 \tan x}{1 + \tan^2 x} = \sin 2x$$

ii) Hence, or otherwise, find
$$\int_{0}^{\frac{\pi}{4}} \frac{\tan x}{1 + \tan^{2} x} dx$$

Question 5. (12 marks). Start on a SEPARATE page.

- (a) The rate at which a body cools in air is proportional to the difference between the temperature, T, of the body and the constant surrounding temperature, S. This can be expressed as $\frac{dT}{dt} = k(T-S)$ where t is time in minutes and k is a constant.
- i) Show $T = S + Be^{kt}$ where B is a constant, is a solution of the above equation.
- ii) If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to 4 the nearest degree.
- (b) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O on the line, velocity $v ms^{-1}$ given by v = 2 x and acceleration $a ms^{-2}$.

Initially the particle is 4 metres to the left of O.

- (i) Find an expression for a a in terms of x.
- (ii) Use integration to show that $x = 2 6e^{-t}$
- (iii) Find the exact time taken by the particle to travel 4 metres from its starting point.

Question 6. (12 marks) .Start on a SEPARATE page.

(a)

In $\triangle XYZ$, ZX = y and $\angle YZX = 90^{\circ}$

i) Show that the area A and perimeter P of the triangle are given by

$$A = \frac{1}{2}y^2 \tan X$$
 and $P = y (1 + \tan X + \sec X)$ respectively.

ii) If $X = \frac{\pi}{4}$ radians and y is increasing at a constant rate of $0.1 \, \text{cms}^{-1}$

find the rate at which the area of the triangle is increasing at the instant when y = 20 cm.

iii) If y = 10cm and X is increasing at a constant rate of 0.2 radians per second, find the rate at which the perimeter of the triangle is increasing

when
$$X = \frac{\pi}{6}$$
 radians.

Question 6 continues on the next page

Question 6

(b)

AB is a chord of a circle of radius 1 metre that subtends an angle θ at the centre of the circle, where $0 < \theta < \pi$. The perimeter of the minor segment cut off by AB is equal to the diameter of the circle.

(i) Show that
$$\theta + 2 \sin \frac{1}{2}\theta - 2 = 0$$
.

(ii) Show that the value of
$$\theta$$
 lies between 1 and 2

(iii) Use one application of Newton's method with an initial approximation of
$$\theta_0 = 1$$
 to find the next approximation to the value of θ , giving your answer correct to 1 decimal place.

Question 7. (12 marks). Start on a SEPARATE page.

- (a) A ball is projected from a point O on horizontal ground in a room of length R metres with an initial speed of U ms⁻¹ at an angle of projection of α . There is no air resistance and the acceleration due to gravity is g ms⁻²
- (i) Assuming after t seconds the ball's horizontal distance x metres, is given by: $x = U t \cos \alpha$, and the vertical component of motion is $\ddot{y} = -g$, show that the vertical displacement y of the ball is given by:

$$y = U t \sin \alpha - \frac{1}{2}gt^2$$

(ii) Hence show that the range R metres for this ball is given by:

$$R = \frac{U^2 Sin2\alpha}{g}$$

(iii) Suppose that the room has a height of 3. 5 metres and the angle of projection is fixed for $0 < \alpha < \frac{\pi}{2}$ but the speed of projection U varies.

Prove that: the maximum height will occur when $U^2 = 7g \cos ec^2 \alpha$ and the maximum range would be 14 cot α .

- (b)
- i) Write down the binomial expansion of $(1-x)^{2n}$ in ascending powers of x
- ii) Hence show that:

$$\binom{2n}{1} + 3\binom{2n}{3} + \dots + (2n-1)\binom{2n}{2n-1} = 2\binom{2n}{2} + 4\binom{2n}{4} + \dots + 2n\binom{2n}{2n}.$$
3

End of paper

TRIAL HSC Ext. 1 SOLUTION. [2009.

Question 1.

a) $P(x) = x^4 - 3x^3 + ax^2 - 12$

 $P(3) = 3^4 - 3.3^3 + 4.3^2 - 12 = 0$

· 81 - 81 + 9 a - 12 =0

 $a = \frac{12}{9} = \frac{4}{3}$

 $y = x^{3}$

y=1-ln x y = -1 (1)

at(1,1), y = 3.1=3

at(1,1), y = -1

..m, = 3

: M2=-1

 $Tan \theta = \left| \frac{3 - -1}{1 - 3} \right| = \left| \frac{4}{-2} \right| = 2$

:. 0 = Tan (2) = 63 (2)

c) Scos 422dx

 $\cos^2 4x = \frac{\cos 8x}{2} + 1$

 $\int \cos^2 4\pi dx = \frac{1}{2} \int (\cos 8\pi + i) dx$

 $= \frac{1}{2} \left[\frac{\sin 8x}{e} + x \right] + c$

= Singx +x +C.

a) A(11-3) B(6,7)

 $\rho = \left(\frac{3+12}{5}, \frac{-9+14}{5}\right)$ $= \left(3, 1\right)$

e) $\frac{d}{dx}(\cos^{3}3\pi) = \frac{-1}{\sqrt{1-9x^{2}}} \times 3$

a) u = x-1 : $\frac{du}{dx} = 1 \Rightarrow du = d$: Son for-1 don = 5. (4+1) Tu du

= $5\int (u^{\frac{3}{2}} + u^{\frac{1}{2}}) du$

 $=5\left[\frac{2}{5}.u^{\frac{5}{2}}+\frac{2}{3}.u^{\frac{3}{2}}\right]+C$

= 2 u2 + 10 u2 + c

 $= 2(x-1)^{\frac{5}{2}} + \frac{10}{3}(x-1)^{\frac{3}{2}} + c$ 3

b)(i) $4y = x^2$ $-iy = \frac{x^2}{4} \Rightarrow y' = \frac{2x}{4} = \frac{x}{2}$

at (2t, +2), y = 2t = t.

.. The equation is

 $y-t^2=t(x-2t)$

 $y=tx-t^2 \Rightarrow tx$ $tx-y-t^2=0$

(1) Sub. P(1,-2) in the equati t 2 -y-t2=

: t+2-t2 =0 => t2-t-2=0

(t-2)(t+1)=0

:. t=2 or-1 @

e) (i) Cos x - Jzsinx = R Cos(x+a)

= Rcosxcosa - Rsinxsina

: Reason = 1 and R sing = 13

 $Tan \alpha = \sqrt{3} R^{2} + 4$ $\alpha = \frac{\pi}{3} R^{2} + 4$

· (B) x - \(\sigma \) \(\sigm

 $\frac{(1)2(2)(2+3)=-2}{(0)(2+3)=-1} = \frac{2}{3} =$

シスニオーなニマス 6

/CAD = 98 (angle at circumference in semicircle).

LBAC = 2 (alternate angles are equal - LBAD = 70°+2° (D)

ABCD is a cyclic quadrilateral

: opposite angles are supplementary

: (BCD = 180 - (90+x) = 90-x

: (ACB = (BCD - LACD = 90-x - x

b) When n=2, T2=9-16-1=64 which is divisible by 64

.. True for n=2 0

Assume that it is true for n=k, k7/2

: 9K-8K-1 = 64A, and AEZ.

Then 9K+1 -8(K+1)-1= 9.9K-8K-9

 $= 9(9^k - 1) - 8k$

 $= 9(q^{k}-8k-1)+64k$

= 9 × 64A +64K

= 64 (9A+64) (2)

i true for n=k+1

-: qn-en-1 is divisible by 64,

8-27=0=> Y=4 C

:. The term is $8C_4(-3)^4 = 5670$

a) 6C2 x8C2 = 420.

b) (i) Number of words = 6!

Total, if no c's are together $= 4 \times 3! = 24$ (

(i) (A9B= 90+51=141 0

(ii) In DAPQ, LAPQ = 78° 1. A @ = tan 78 => AQ = htan78

(iii) In D PaB, BQ = tanzo :. BQ = htan 79°

(iv) In D ABR, AB = AQ +BQ - ZAQ. BQ CASIGI

: 10 00000 = h2tan78 + h2Tan 79 - 2h2 Tan78 Tan79 Cos

 $\frac{1.5h^2}{86.288} = \frac{1000000}{86.288} = 108m$

(i)
$$\frac{2 \tan x}{1 + \tan^2 x} = \frac{2 \sin x}{\cos x}$$

$$= 2 \frac{\sin x}{\cos x} \times \cos^2 x$$

$$= \frac{\sin 2\pi}{1}$$
(i) $\int_{4}^{\pi} \frac{\tan x}{1 + \tan^{2}x} dx = \frac{1}{2} \int_{4}^{\pi} \sin 2x dx$

$$= -\frac{1}{4} \left[\cos \frac{\pi}{2} - \cos 0\right]$$

$$= -\frac{1}{4} \left[\cos \frac{\pi}{2} - \cos 0\right]$$

$$= -\frac{1}{4} \left[\cos \frac{\pi}{2} - \cos 0\right]$$

Questions

a) (i)
$$\frac{dT}{dt} = k.Be^{kt}$$

= $k(T-s)$

$$T = \{000\}$$

 $t = 300\}$
(ii) $100 = 25 + Be$ $\implies B = 75$

$$T = 80$$

$$t = 30$$

$$T = 807$$

 $t = 30$ $80 = 25 + 75 e^{30k}$
 $\frac{55}{75} = e^{30k}$

$$log_e\left(\frac{11}{15}\right) = 30k$$

$$k = \frac{1}{30} \log_{15} \Omega$$

$$\alpha = \frac{1}{2} \frac{dv}{dx} = (2-2)(-1)$$

$$= 2-2 \qquad (2)$$

(i)
$$V = \frac{dx}{dt} = 2 - x$$

$$dt = \frac{dx}{2-x}$$

$$\int dt = \int \frac{dx}{2-x}$$

(1)

$$it = -\ln(2-x) + \ln b$$

$$it = \ln \frac{6}{2-\pi}$$

After the particle has travelled. 4m from its starting position,

(2)

Jan x = ZY => ZY = y tan x

$$\frac{dA}{dt} = \frac{dA}{dy} \times \frac{dy}{dt}$$

$$A = \frac{1}{2} y \tan^2 x$$

$$\frac{dP}{dt} = \frac{dP}{dx} \times \frac{dx}{dt}$$

Using cosine rule, AB2 = 12+12- 2 cost = 2 (1-ceso)

$$= 2(1 - \cos \theta)$$

= $4 \cdot \sin^2 \frac{1}{2}\theta$

· Perimeter = diameter >

$$f(i) = 1 + 2 \sin \frac{1}{2} - 2 \approx -0.04$$

$$f(2) = 2 + 2 \sin 1 - 2 = 1.68 70$$

fince f(0) is continuous,

(iii)
$$f(e) = 0 + 2\sin\theta - 2$$

$$f'(0) = 1 + (0) \frac{0}{2}$$

$$\frac{1}{1} \cdot \theta_{1} = \theta_{0} - \frac{f(\theta_{0})}{f(\theta_{0})}$$

$$= 1 - \frac{-1 + 2 \sin \frac{1}{2}}{1 + \cos \frac{1}{2}}$$

(i) t=0, x=0 and a dy = Usina

$$\dot{y} = -9$$

$$\dot{y} = -9t + c$$

when t=0, y=Using => C=Using

$$y = \int (-gt + usin\alpha) dt$$

$$= utsin\alpha - gt^2 + D$$

$$y = \text{Utsing} - 9t^2 - 0$$

: t (Using
$$-gt$$
) =0

$$3.5 = \frac{U^2 \sin^2 \alpha}{2\alpha} = \frac{1}{2} = \frac{79}{12} = \frac{79}{12} = \frac{1}{2} \cos^2 \alpha$$

(i) Maximum range
$$R = \frac{12 \sin 2\alpha}{9}$$

$$= \frac{79}{\sin^2 \alpha} \times \frac{2 \sin \alpha \cos \alpha}{9}$$

$$= \frac{14 \cos \alpha}{\sin \alpha}$$

$$= \frac{14 \cot \alpha}{\sin \alpha}$$

b) (i)
$$(1-x)^{2n} = {2n \choose -2} (-x)^{2n} + {2n \choose 2} (-x)^{2n} + {2n \choose 2} (-x)^{2n}$$

$$+ \cdots + {2n \choose 2} (-x)^{2n-1} + {2n \choose 2} (-x)^{2n}$$

$$2n-i$$
(1)

$$y = \text{Utsin} - 9t^{2} - 2n(1-x)^{n-1} = -2n(1-x)^{2n-1} = -2n(1-x)^{2n} + 2n(1-x)^{2n} = -2n(1-x)^{2n} + 2n(1-x)^{2n} = -2n(1-x)^{2n} = -2n($$

$$0 = -\frac{2n}{2} + \frac{2n}{2} - \frac{3}{2} + \dots$$

$$-(2n-i)^{2n} + 2n \cdot {2n \choose 2n}$$