# 《Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering》

- 1. Introduction
  - 2. Method
- 3. Used-Model
  - 4. Evaluation
- 5. Conclusion

# 1. Introduction

- 본 논문에서는 RAG 모델을 내부적으로 수정하여 발전시킨 FiD 모델을 제안함.
- RAG의 목적과 마찬가지로 답변시에 작은 모델을 통해서도 정확한 정보를 가져오기 위해 만들어진 기술.
  - 즉, external knowledge corpus로부터 knowldege를 추가적으로 전달받음.
    - RAG와 같이 Encoder-Decoder로 구성됐지만, 인코더에서 디코더로 넘어가는 부분에서 차이가 존재한다.

# Recap RAG



#### RAG의 Encoder-Decoder: RAG sequence / RAG token

- 1. 인코더를 통해 질문을 인코딩하고 독립적으로 모든 문서를 인코딩함.
- 2. 인코딩된 질문과 문서를 통해 문서마다 독립적으로 답변을 생성함.

즉, 한 문서당 한 대답이 나옴 / 한 문서당 한 단어가 나옴

RAG sequence

RAG token

3. 이걸 marginalize, 즉 확률 높은 / 정확도가 높은것만 취급을 해서 output으로 뱉음.

**Rag sequence** – 문서 A/B/C: 여러분 "~~" 이 문장으로 타협하시죠

Rag token – 문서 A/B/C: 여러분 첫번째 단어는 "~" 이게 좋을 듯, 두번 째는 "~" ....

- 이 과정에서 기존 RAG는 연산과정이 복잡하고, passage 수에 따라 연산과정이 quadric 하게 증가.
- Passage가 디코딩이 될 때, 독립적으로 처리되어 passage간 정보 통합이 안됨. -> 이래서 rag-sequence/rag-token 을 사용하게 됨

이렇게 독립적으로 처리하게 되면 문서가 많아질 경우 오히려성능이 감소함.

# 2. Method



Figure 2: Architecture of the Fusion-in-Decoder method.

- FiD는 retriever을 통해corpus, 즉 참고문서 중 input과 유사한 부분을 가져와서 인코더로 hidden representation 을 얻는건 RAG와 똑같음.
- 모든 hidden representation을 concat해서 디코더에 넣어서 그걸 기반으로 답변을 생성하게 함.

## RAG workflow



- RAG는 RAG-sequence/RAG-token을 통해 "입력 -> 문서 -> sequence생성"의 과정을 통해 output이 산출이 됨.
- 즉, output이 생성될 때 문서를 기반으로 생성이됨.
- 반면 FiD는 입력과 입력을 통해 retrieve된 문서가 함께 concat 되어 output을 생성하게됨.

### FiD workflow



Figure 2: Architecture of the Fusion-in-Decoder method.

### Workflow 요약

- 1. 사용자 질문 x 가 들어옴
- 2. 사용자 질문 x 를 사용해 retrieve로 top-k개의 문서  $d_k$ 에서 관련된 내용 n을 찾음.
- 3. X+n을 하여 representation 을 만들어줌. 그러면 k개의 (x+n) 형태가 나오게 되고, 이거를 다 합침. -> (x+n) \* k
- 4. 이 (x+n)\*k를 디코더에 넣어서 최종 output을 생성

#### 장점:

- 1. 그렇게 답변의 계산되는 수가 linear하게 증가하여 감소하게 됨.
- 2. cross attention으로서 passage끼리 서로의 정보를 참고하여 답을 생성할 수 있음.

# 3. Used-Model

- Encoder-Decoder: T5 base(220M), T5 large(770M)
- Retriever : DPR, BM25 (학습하지 않고 일반 모델로 진행했다고함.)
- Dataset: Natural Question(NQ), TriviaQA, SQuAD

- Input: question, title, answer
- Output: Answer

# 4. Evaluation

FiD

| Model                                  |                     | _    | NQ TriviaQA    |      | SQuAD Open |      |
|----------------------------------------|---------------------|------|----------------|------|------------|------|
|                                        |                     | EM   | EM             | EM   | EM         | Fl   |
| DrQA (Chen et al., 2017)               |                     | -    | -              | -    | 29.8       | -    |
| Multi-Passage BERT (Wang et al., 2019) |                     | -    | -              | -    | 53.0       | 60.9 |
| Path Retriever (Asai et al., 2020)     |                     | 31.7 | -              | -    | 56.5       | 63.8 |
| Graph Retriever (Min et al., 2019b)    |                     | 34.7 | 55.8           | -    | -          | -    |
| Hard EM (Min et al., 2019a)            |                     | 28.8 | 50.9           | -    | -          | -    |
| ORQA (Lee et al., 2019)                |                     | 31.3 | 45.1           | -    | 20.2       | -    |
| REALM (Guu et al., 2020)               |                     | 40.4 | -              | -    | -          | -    |
| DPR (Karpukhin et al., 2020)           |                     | 41.5 | 57.9           | -    | 36.7       | -    |
| SpanSeqGen (Min et al., 2020)          |                     | 42.5 | -              | -    | -          | -    |
| RAG (Lewis et al., 2020)               |                     | 44.5 | 56.1           | 68.0 | -          | -    |
| T5 (Roberts et al., 2020)              |                     | 36.6 | -              | 60.5 | -          | -    |
| GPT-3 few shot (Brown et al., 2020)    |                     | 29.9 | -              | 71.2 | -          | -    |
| Fusion-in-Decoder (base)               |                     | 48.2 | 65.0           | 77.1 | 53.4       | 60.6 |
| Fusion-in-Decoder (large)              |                     | 51.4 | 67.6           | 80.1 | 56.7       | 63.2 |
|                                        |                     |      |                |      |            |      |
| RAG                                    | Model               | NQ   | TQA<br>Exact N |      |            |      |
|                                        | RAG-Token-BM25      | 29.7 | 41.5           |      |            |      |
|                                        | RAG-Sequence-BM25   | 31.8 | 44.1           |      |            |      |
|                                        | RAG-Token-Frozen    | 37.8 | 50.1           |      |            |      |
|                                        | RAG-Sequence-Frozen | 41.2 | 52.1           |      |            |      |
|                                        | RAG-Token           | 43.5 | 54.8           |      |            |      |
|                                        | RAG-Sequence        | 44.0 | 55.8           |      |            |      |

1. TriviaQA에 EM이 두개가 있는데,

왼쪽: open-domain: 이 설정에서는 모델이 외부의 매우 큰 문서 저장소(ex:위키피디아)에서 답을 검색하여 찾고, 그 문서에서 답변을 추출함.

- 검색 성능을 주로 보게됨.

(응용: 일반 지식 검색, 가상 비서, 고객 지원)

오른쪽: closed-domain: 이 설정에서는 답변이 이미 포 함된 지정된 문서에서만 답을 추출하기만 하면 됨.

- 주저진 정보에서 답변 퀄리티를 보게됨.

(응용: 회사/학교 내부 문서(법률 같은거) 검색, 교육 자료 등)

#### 2. 결과:

- RAG에서는 open-domain에 대해서만 진행하였으며, 점수 비교 결과 FiD기법이 더 좋은 성능을 보임.
- FiD에서 모델의 크기가 클수록 더 좋은 결과가 나옴.

## Top-k 갯수에 따른 성능 비교

- 논문에서는 retrieve된 문서의 개수별로 성능을 측정하여 비교하였다.
- 엘보우 포인트(?)는 대략 10-20으로 판단하고 있음.
- Sequence-to-sequence 모델이 다양한 문서를 통해 정보를 잘 빼오고 있다고 판단함.
- 훈련시에 문서를 x개 만큼 뽑았다면, evaluation 때도 x개의 문서를 사용함. (ex: 훈련할 때 50개의 문서를 뽑아서 한다고 했으면, 평가할때도 문서 50개를 뽑아서 답을 냄.)

Natural Questions

47
46
45
44
43
42
41
40
5 10 25 50 100

Number of passages





## Training 시 사용되는 문서 수 변동에 따른 성능 평가

• 논문에서는 evaluation때 사용되는 문서 수를 100으로 고정하고, 각 훈련시에 사용되는 문서 수에 변동을 줘서 성능 측정 실험을 진행함.

|                   | NaturalQ       | uestions      | TriviaQA       |               |  |
|-------------------|----------------|---------------|----------------|---------------|--|
| Training Passages | w/o finetuning | w/ finetuning | w/o finetuning | w/ finetuning |  |
| 5                 | 37.8           | 45.0          | 58.1           | 64.2          |  |
| 10                | 42.3           | 45.3          | 61.1           | 63.6          |  |
| 25                | 45.3           | 46.0          | 63.2           | 64.2          |  |
| 50                | 45.7           | 46.0          | 64.2           | 64.3          |  |
| 100               | 46.5           | -             | 64.7           | -             |  |

- 이것도 당연히(?) 훈련시에 더 많은 데이터를 가지고 최종 답변의 완성도와 퀄리티를 높이는 방법으로 학습을 하기 때문에 많을 수록 좋음.
- \*\* w/o finetuning 파인튜닝 안함 w/finetuning 파인튜닝함
- 파인튜닝: 훈련된 모델을 가져와서 100개의 문서로 1000번의 반복해서 finetuning을 진행했고, 이 결과 모델을 처음부터 새로 훈련하는것보다 훨씬 적은 데이터를 사용하면서도 성능을 개선시켰음.
- 예를 들어, NQ의 경우 데이터셋에서 46.0 EM 정확도를 달성하기 위해 100개의 문서를 훈련하는 경우 425 GPU 시간이 필요하지만, 미세조정을 통해 147 GPU 시간만으로도 동일한 수준의 정확도를 얻을 수 있습니다.

# 5. Conclusion

- 이 논문에서는 오픈 도메인 질문 응답에 대한 간단한 접근 방식을 연구함
  - \* 성능적으로 우수한 모습을 보임.
  - \* 문서의 확장 반영이 유연함.

### - 목표 및 방향성:

일련의 과정을 더 효율적으로 만들어서 **문서 검색-> 답 생성**의 모든 과정을 하나의 모델로 학습할 계획.