CS578: Internet of Things

IEEE 802.15.4e

Standard: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6471722
Survey Article: https://www.sciencedirect.com/science/article/pii/S0140366416301980

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in, URL: http://manaskhatua.github.io/

Limitations of 802.15.4 MAC

- Unbounded latency
 - Both BE and Non-BE mode use CSMA-CA
 - No bound on maximum delay to reach destination
- Non-reliable communication
 - Very low delivery ratio due to the inefficiency of CSMA-CA

- No protection against interferences/multipath fading
 - Due to usage of single channel
- Powered relay nodes in multi-hop network
 - Relay nodes keep their radio active always.
 - Results in complex synchronization and beacon scheduling in BE mode
 - Consume large energy
- So, 802.15.4 is unsuitable for many critical scenarios
 - when applications have stringent requirements

Requirements of Critical Applications

- Timeliness
 - Deterministic latency for packet delivery
- Reliability
 - Wire-like reliability may be required, e.g., 99.9% or better
- Scalability
 - Large network size
- Energy Efficiency
 - Target battery lifetime: 5 years, or more

Introduction to 802.15.4e

- > IEEE 802.15 Task Group 4e was created in 2008
 - To redesign the existing 802.15.4 MAC
- ➤ IEEE 802.15.4e MAC Enhancement Standard document approved in 2012
 - Contains idea from existing WirelessHART and ISA 100.11.a
 - Time slotted access
 - Shared and dedicated slots
 - Multi-channel communication
 - Frequency hopping
 - Introduce five MAC behaviour modes to support specific applications
 - General functional enhancements
 - Not tied to any specific application domain

MAC behaviour modes

- Time Slotted Channel Hopping (TSCH)
 - Industrial automation and process control
 - Non-delay tolerant applications

- Deterministic and Synchronous Multi-channel Extension (DSME)
 - Industrial and commercial applications
 - Non-delay tolerant and delay tolerant applications

- Low Latency Deterministic Network (LLDN)
 - Star network
 - For single hop and single-channel networks
 - Provides very low latency

Cont...

- Asynchronous multi-channel adaptation (AMCA)
 - For large network such as smart utility networks, infrastructure monitoring
 - In large network single, common channel is not appropriate
 - Used in non Beacon-Enabled PANs
 - Device selects best link quality channel as its designated listening channel
 - Sender node switch to receiver designated listening channel to transmit its data
 - Beacon or Hello packet is used to advertise node designated listening channel

- Radio Frequency Identification Blink (BLINK)
 - For Application like item/people identification, location and tracking
 - Node communicate without prior association
 - No ACK required
 - Aloha protocol is used to transmit BLINK packet by "transmit only" devices

General Functional Enhancements

These are not tied to any specific application domain:

- Low Energy (LE)
 - Intended for applications that can trade latency for energy efficiency
 - Operate in very low duty cycle (<= 1%)
 - Appearing always on to the upper layers
- Information Elements (IE)
 - Mechanism to exchange information at the MAC sublayer
- Enhanced Beacons (EB)
 - Extension of the 802.15.4 beacon frames
 - Provide greater flexibility
 - Allow to create application-specific frames, by including relevant IEs

Cont...

- Multi purpose Frame
 - MAC wise frame format, differentiate on Information Elements (IE)
- MAC Performance Metric
 - To provide feedback on channel quality to upper layers
 - IP protocol may implement dynamic fragmentation of datagrams depending on the channel conditions
- Fast Association (FastA)
 - Allows a node to associate in a reduced amount of time
 - Critical application gives priority to latency over energy

TSCH Mode

- Topology independent
- > Time slotted access
 - Increase throughput by eliminating collision among competing nodes
 - Predictable and bounded latency
- Multi-channel communication
 - More nodes exchange their frames at the same time
 - ✓ Increases network capacity
- Channel hopping
 - Mitigates the effects of interference and multipath fading
 - ✓ Improve reliability

- So, **TSCH provides**
 - increased network capacity,
 - high reliability, and
 - predictable latency,
 - while maintaining very low duty cycles

Slotframe Structure

TsTxOffset: Timeslot
 Transmission Offset
 = TsCCAOffset + TsCCA + TsRxTx

Figure 22b—Timeslot diagram of acknowledged transmission

Synchronization

- Nodes synchronize on a periodic slotframe
- Slotframe consists of a number of timeslots
- A timeslot is long enough to send a data frame and receive its ACK

- In each slotframe, EB is broadcasted by PAN Coordinator or other FFDs
 - For network advertisement and synchronization
 - EB contains information of
 - ✓ Channel hopping, timeslot details and slotframe information for Synchronization
- > A node can start sending its beacon only after getting a valid EB frame

Re-synchronization

- Clock drift occurs due to
 - Differences in manufacturing, temperature and supply voltage
 - ✓ Clocks of different nodes typically pulse at a slightly different frequency.

- Nodes need to periodically re-synchronize
 - Frame-based synchronization
 - ACK-based synchronization

Channel Hopping

The channel offset is translated in an operating frequency f using

$$f = F\{(ASN + chOf) \mod n_{ch}\};$$
 ASN = k.S + t

- ASN (absolute slot number): total # of slots elapsed since the network was deployed
- n_{ch}: number of physical channels presently available to consider
- F is implemented as a look-up-table containing the set of available channels
- k : count of slotframe cycle since the start of the network
- S : slotframe size
- t: timeslot in a slotframe

- ➤ Max. no. of available channel =16
- Each channel is identified by a channelOffset
- ➤ Channel could be blacklisted because of low quality

TSCH Mode: Link

- Link: Pairwise assignment of a directed communication between devices in a specific slot, with a given channel offset
- Link is denoted by [t, chOf]
 - t is timeslot no. in the slotframe
 - chOf is channel offset
- Two types of Link
 - Dedicated links
 - ✓ Direct access
 - ✓ One transmitter One receiver
 - ✓ Generally used for Data Packet
 - Shared links ——
 - ✓ TSCH CSMA-CA protocol
 - ✓ Multiple transmitters/receivers
 - ✓ Generally used for Control Packet

TSCH CSMA/CA

TSCH Retransmission Backoff Algorithm

CSMA-CA used in shared link to avoid repeated collisions.

In dedicated link, no chance of collision.

Cont...

Original 802.15.4 CSMA-CA v/s TSCH CSMA-CA algorithm

Backoff mechanism

- ✓ In 802.15.4 CSMA-CA, transmitting node waits for a random backoff time before trying to transmit it
- ✓ In TSCH CSMA-CA, backoff mechanism is activated only after the node has experienced a collision

Backoff unit duration

- ✓ In 802.15.4 CSMA-CA, backoff unit duration is 320µs
- ✓ In TSCH CSMA-CA, backoff unit duration corresponds to a shared slot duration

Clear Channel Assessment (CCA)

- ✓ In 802.15.4 CSMA-CA, each node performs a CCA to check the channel state, before performing transmission
- ✓ In TSCH CSMA-CA, CCA is used to avoid the packet transmission if a strong external interference is detected. Internal collision is not possible due to TSCH.

Packet dropping

- ✓ In 802.15.4 CSMA-CA, a packet is dropped after the sender found channel busy for macMaxCSMABackoffs consecutive times
- ✓ In TSCH CSMA-CA, a packet is dropped only if it reaches the maximum number of retransmissions i.e., *macMaxFrameRetries*

Network Formation

- PAN coordinator starts the process of network formation by sending EB frame
 - Network advertisement
- EBs are special frames containing
 - Synchronization information
 - ✓ allows new devices to synchronize to the network
 - Channel hopping information
 - ✓ allows new devices to learn the channel hopping sequence
 - Timeslot information
 - ✓ describes when to expect a frame transmission and when to send an acknowledgment
 - Initial link and slotframe information
 - ✓ allows new devices to know:
 - o when to listen for transmissions from the advertising device
 - o when to transmit to the advertising device

Cont...

- A new node starts listening for EB on a certain frequency
- Upon receiving an EB
 - The MAC layer notifies the higher layer
 - The higher layer initializes the slotframe and links
 - ✓ Using information in the received EB message
 - Switches the device into TSCH mode
 - ✓ At this point the device is connected to the network
 - The device allocates communication resources
 - √ (i.e., slotframes and links)
 - and starts advertising, on its turn
- the 802.15.4e standard did not define the EB advertising policy.

Network Formation Goals

- Optimizing the network formation process
 - Synchronized communication schedule consumes less energy of nodes by reducing duty cycle
- Minimum Joining time
 - Devices must keep the radio ON during the joining phase
 - EBs should be sent frequently to reduce waiting time
- Minimize EB transmissions
 - Frequent EB transmission consumes more communication resources
 - Also Increases energy consumption at network and node level

TSCH: Link scheduling

- Assignment of unique link to node for data transmission
- Challenging in dynamic networks
- ➤ IEEE 802.15.4e standard does not specify how to derive an appropriate link schedule
- > Existing multichannel scheduling schemes are not suitable for TSCH networks
 - They do not allow per-packet channel hopping
 - Not for resource-constrained nodes
 - They are not efficient in terms of channel utilization

Cont...

Centralized Scheduling

- Link schedule computed and distributed by a special node
 - ✓ Network coordinator
 - ✓ Based on information received by all the nodes of the network
 - ✓ Link schedule has to be re-computed and re-distributed every time a change in the operating conditions occurs
 - ✓ Not good for dynamic network and large scale network

Distributed Scheduling

- Good choice for dynamic network and large scale network
- Link schedule is computed autonomously by each node
 - ✓ Based on local, partial information exchanged with its neighbors
- Limited Overhead
 - ✓ Suitable for energy-constrained nodes

TSCH: Open Issues

- Network Formation
 - Current solution inefficient for
 - Energy consumption
 - Mobile Objects
- Security
 - Selective Jamming (SJ) attacks
 - > Secure Beacons and Different Frequency hopping sequence
- TSCH network synchronization
 - > Energy consumption
- TSCH slot scheduling
 - Guaranteed QoS

6TiSCH Network

- 6TiSCH working group created by IETF
- Goal: integrate TSCH within the IoT protocol stack
 - To enable IPv6 over TSCH mode of IEEE 802.15.4e
 - Defining a new functional entity in charge of scheduling TSCH time slot

(a) ZigBee stack.

(b) ZigBeeIP stack.

(c) 6TiSCH stack.

Need for 6TiSCH

- In 6TiSCH, the TSCH MAC mode is placed under an IPv6-enabled protocol stack:
 - IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)
 - IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), and
 - Constrained Application Protocol (CoAP)

- TSCH does not define
 - Policies to build and maintain the communication schedule
 - Mechanisms to match the schedule to the multi-hop paths maintained by RPL
 - Mechanisms to adapt the resources allocated between neighbor nodes to the data traffic flows
 - Techniques to allow differentiated treatment of packets
 - √ data packets & control packet

6TiSCH Architecture

- ➤ 6TiSCH WG considers low-power lossy-network (LLN)
- ➤ Allow more than 1000 nodes
- > Nodes are in same IPv6 subnet
- 6LoWPAN Header compression (HC) is used to transmit packet
- Presence of high-speed backbone (e.g. WiFi mesh) to connect all nodes
- Constrained nodes are attached to backbone through backbone router (BBR)
- Backbone is connected to the Internet through a Gateway

Fig. 6TiSCH Architecture

6TiSCH Protocol Stack

- ➤ A new sublayer, called 6top defined by the 6TiSCH WG
 - Works on top of TSCH
 - Build and manage TSCH schedule
 - ✓ add/delete links/cells
 - 6top also collects connectivity information
 - ✓ Monitors the performance of cells
 - Both with centralized and distributed scheduling supported

Fig. 6TiSCH Protocol Stack

6TiSCH Scheduling

- 6TiSCH considers three modes for building and maintaining the TSCH schedule
- 1. Minimal Scheduling [RFC 8180]
 - Default schedule
 - TSCH schedule is static, and either preconfigured or learnt by a node at joining time
 - Used during network bootstrap, or when a better schedule is not available
- 2. Centralized Scheduling
 - A central entity called Path Computation Element (PCE) collects network state information and traffic requirements
 - It builds and install the schedule in the network
- 3. Distributed Scheduling
 - Nodes agree on a common distributed schedule by using distributed multi-hop scheduling protocols and neighbor-to-neighbor scheduling negotiation
 - Reservation phase & negotiation phase

Thanks!

