# Interpolation Theory

Dangxing Chen

Duke Kunshan University

### Introduction

- lacktriangle Suppose we want to study a very complicated function f(x)
- ▶ Don't know how to deal with f(x)
- $ightharpoonup p_n(x)$  polynomial
- ▶ If  $f(x) \approx p_n(x)$ , then we only need to focus on  $p_n(x)$
- Assume data are generated according to  $y_i = p_n(x_i)$
- **Question**: How to recover  $p_n(x)$ ?
- ▶ **Def**: **Interpolation** is the selection of a function p(x) from a given class of functions





### Polynomial interpolation theory

**Application** 

Trigonometric interpolation

Error analysis and Runge phenomenor

### Fitting problem

- ▶ Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ , where  $x_i$  distinct
- ▶ Suppose  $y_i$  are generated by  $p(x_i)$
- ▶ E.g., Suppose  $p_1(x) = ax + b$  and we observe  $(x_0, y_0)$ ,  $(x_1, y_1)$

### Fitting problem

- lacksquare Observe  $(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)$ , where  $x_i$  distinct
- ▶ Suppose  $y_i$  are generated by  $p(x_i)$
- ▶ E.g., Suppose  $p_1(x) = ax + b$  and we observe  $(x_0, y_0)$ ,  $(x_1, y_1)$
- $p_1(x) = \frac{y_1 y_0}{x_1 x_0} x + y_0 x_0 \frac{y_1 y_0}{x_1 x_0}$
- **Question**: What if we have n+1 points?

### Fitting problem

- ▶ Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ , where  $x_i$  distinct
- ▶ Suppose  $y_i$  are generated by  $p(x_i)$
- ▶ E.g., Suppose  $p_1(x) = ax + b$  and we observe  $(x_0, y_0)$ ,  $(x_1, y_1)$
- $p_1(x) = \frac{y_1 y_0}{x_1 x_0} x + y_0 x_0 \frac{y_1 y_0}{x_1 x_0}$
- **Question**: What if we have n+1 points?
- Assume  $p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- Form the linear system:

$$c_0 + c_1 x_0 + c_2 x_0^2 + \dots + c_n x_0^n = y_0,$$

$$\vdots$$

$$c_0 + c_1 x_n + c_2 x_n^2 + \dots + c_n x_n^n = y_n.$$

Question: What is the matrix form?



### Vandermonde matrix

$$\mathbf{c} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

- ▶ **Def**: **A** is called a **Vandermonde matrix**.
- ightharpoonup  $\mathbf{Ac} = \mathbf{y}$
- A polynomial is determined by its coefficients c
- Question: Existence? Uniqueness?



### **Analysis**

- **THM**: Given n+1 distinct  $x_i$ , there is a unique polynomial p(x) of degree  $\leq n$  that interpolates  $y_i$  at  $x_i$ .
- Proof from the linear algebra
  - $\blacktriangleright \det(\mathbf{X}) = \prod_{0 \le j < i \le n} (x_i x_j) \text{ (HW)}$
  - $x_i \neq x_j, \text{ so } \operatorname{det}(\mathbf{X}) \neq 0$
  - By linear algebra, the solutions exists and is unique
- Another proof
  - Suppose column vectors of A are linearly dependent
  - ▶ There exists a nontrivial x s.t. Ax = 0
  - ▶ There are n+1 roots
  - ► The only possibility is the zero polynomial
  - Matrix invertible, and therefore existence and uniqueness are guaranteed.



Polynomial interpolation theory

### **Application**

Trigonometric interpolation

Error analysis and Runge phenomenor

#### Introduction

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- ▶ Suppose  $\{y_i\}$  are generated by a polynomial p(x)
- Some applications:
  - ▶ How to predict new points  $\widetilde{x}_0, \widetilde{x}_1, \dots, \widetilde{x}_m$
  - ▶ How to know derivatives at  $\{x_i\}$ , i.e.,  $f'(x_i)$
  - ▶ How to know integrals at  $\{x_i\}$ , i.e.,  $\int_a^{x_i} f(x) \ dx$

### Prediction

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$

► Construct 
$$\mathbf{A} \in \mathbb{R}^{(n+1)\times (n+1)} = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

- **Question**: How to predict new points  $\widetilde{x}_0, \widetilde{x}_1, \dots, \widetilde{x}_m$ ?



### Prediction

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$

- **Question**: How to predict new points  $\widetilde{x}_0, \widetilde{x}_1, \dots, \widetilde{x}_m$ ?

$$\widetilde{\mathbf{A}} \in \mathbb{R}^{(m+1)\times(n+1)} = \begin{bmatrix}
1 & \widetilde{x}_0 & \widetilde{x}_0^2 & \dots & \widetilde{x}_0^n \\
1 & \widetilde{x}_1 & \widetilde{x}_1^2 & \dots & \widetilde{x}_1^n \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \widetilde{x}_m & \widetilde{x}_m^2 & \dots & \widetilde{x}_m^n
\end{bmatrix}$$

ightharpoonup Predict  $\widetilde{\mathbf{y}} = \widetilde{\mathbf{A}}\mathbf{c}$ 



### Numerical differentiation

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ightharpoonup Calculate coefficients  $\mathbf{Ac} = \mathbf{y}$
- ▶ **Question**: What is  $p'_n(x)$ ?

### Numerical differentiation

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- lacktriangle Calculate coefficients  $\mathbf{Ac} = \mathbf{y}$
- ▶ **Question**: What is  $p'_n(x)$ ?
- $p'_n(x) = c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1}$
- ► Suppose  $p'_n(x) = d_0 + d_1x + d_2x^2 + \dots + d_nx^n$
- $d_n = 0 \text{ and } d_i = (i+1)c_{i+1}, 0 \le i < n$

▶ Define 
$$\mathbf{B} \in \mathbb{R}^{(n+1)\times(n+1)} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & n \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

ightharpoonup d = Bc



### Numerical differentiation - continued

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ▶ **Question**: How to calculate  $p'_n(x)$  at  $\{x_i\}$ ?

### Numerical differentiation - continued

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- **Question**: How to calculate  $p'_n(x)$  at  $\{x_i\}$ ?
- ▶ Determine  $p_n$ :  $\mathbf{c} = \mathbf{A}^{-1}\mathbf{y}$
- ▶ Determine  $p'_n$ :  $\mathbf{d} = \mathbf{B}\mathbf{A}^{-1}\mathbf{y}$
- Predict at  $p'_n(x_i)$ :  $\mathbf{y}' = \mathbf{A}\mathbf{B}\mathbf{A}^{-1}\mathbf{y}$
- ▶ Differentiation matrix:  $\mathbf{D} \in \mathbb{R}^{(n+1)\times(n+1)} = \mathbf{A}\mathbf{B}\mathbf{A}^{-1}$
- ightharpoonup Rank( $\mathbf{D}$ ) =

### Numerical differentiation - continued

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- **Question**: How to calculate  $p'_n(x)$  at  $\{x_i\}$ ?
- ▶ Determine  $p_n$ :  $\mathbf{c} = \mathbf{A}^{-1}\mathbf{y}$
- ▶ Determine  $p'_n$ :  $\mathbf{d} = \mathbf{B}\mathbf{A}^{-1}\mathbf{y}$
- Predict at  $p'_n(x_i)$ :  $\mathbf{y}' = \mathbf{A}\mathbf{B}\mathbf{A}^{-1}\mathbf{y}$
- ▶ Differentiation matrix:  $\mathbf{D} \in \mathbb{R}^{(n+1)\times(n+1)} = \mathbf{A}\mathbf{B}\mathbf{A}^{-1}$
- $Rank(\mathbf{D}) = n.$
- ▶ **Remark**: Matrix representation useful in differential equations, e.g. y''(x) = f(x)



- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ightharpoonup Calculate coefficients  $\mathbf{Ac} = \mathbf{y}$
- **Question**: What is  $\int p_n(x) dx$ ?

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ightharpoonup Calculate coefficients  $\mathbf{Ac} = \mathbf{y}$
- ▶ **Question**: What is  $\int p_n(x) dx$ ?
- ► Suppose  $\int p_n(x) dx = d_0 + d_1x + d_2x^2 + \dots + d_{n+1}x^{n+1}$
- $d_{i+1} = \frac{c_i}{i+1}, 0 \le i \le n$
- ▶  $\mathbf{d} = \mathbf{Bc}$  (without  $d_0$ )



- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- **Question**: How to calculate  $\int_0^x p_n(z) dz$  at  $\{x_i\}$ ?

- Observe  $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$
- Assume  $y = p_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ▶ **Question**: How to calculate  $\int_0^x p_n(z) dz$  at  $\{x_i\}$ ?
- $ightharpoonup d_0$  is no longer needed
- ▶ Determine  $p_n$ :  $\mathbf{c} = \mathbf{A}^{-1}\mathbf{y}$
- ▶ Determine  $\int p_n(x) dx$ :  $\mathbf{d} = \mathbf{B}\mathbf{A}^{-1}\mathbf{y}$
- ▶ Predict at  $\int_0^{x_i} p_n(z) dz$ :

$$\widetilde{\mathbf{A}} = \begin{bmatrix} x_0 & x_0^2 & \dots & x_0^{n+1} \\ x_1 & x_1^2 & \dots & x_1^{n+1} \\ \vdots & \ddots & \ddots & \vdots \\ x_n & x_n^2 & \dots & x_n^{n+1} \end{bmatrix}$$

- ▶ Integration matrix:  $\mathbf{S} \in \mathbb{R}^{(n+1)\times(n+1)} = \widetilde{\mathbf{A}}\mathbf{B}\mathbf{A}^{-1}$



# Change of variables

- ▶ Suppose fix  $\{x_i\}_{i=0}^n$ , where  $x_i = \frac{i}{n}$
- ► Calculate interpolation matrix **A**, differentiation matrix **D**, and integration matrix **S**
- ▶ Suppose now for  $y = p_n(x)$  with  $x \in [a, b]$
- Question: Can we avoid repeated calculation?

# Change of variables

- ▶ Suppose fix  $\{x_i\}_{i=0}^n$ , where  $x_i = \frac{i}{n}$
- Calculate interpolation matrix A, differentiation matrix D, and integration matrix S
- ▶ Suppose now for  $y = p_n(x)$  with  $x \in [a, b]$
- Question: Can we avoid repeated calculation?
- We have  $\widetilde{x} = a + (b a)x$
- ▶ Change of variables:  $p_n(\widetilde{x}) = p_n(a + (b a)x) = q_n(x)$
- $\blacktriangleright \ \text{E.g., } p_n(\widetilde{x}) = \widetilde{x}^2 \text{, } \widetilde{x} \in [0,2] \text{; } q_n(x) = 4x^2 \text{, } x \in [0,1]$
- ▶ E.g.,  $p_n(\widetilde{x}) = \widetilde{x}^2$ ,  $\widetilde{x} \in [1,3]$ :  $q_n(x) = (1+2x)^2$ ,  $x \in [0,1]$
- ightharpoonup Sufficient to just learn  $q_n$



### Prediction

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x$ ,  $x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- Assume  $q_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ightharpoonup Solve  $\mathbf{Ac} = \mathbf{y}$
- **Question**: How to predict new points  $\widehat{x}_0, \widehat{x}_1, \dots, \widehat{x}_m$ ?

### Prediction

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x$ ,  $x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- Assume  $q_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ightharpoonup Solve  $\mathbf{Ac} = \mathbf{y}$
- **Question**: How to predict new points  $\widehat{x}_0, \widehat{x}_1, \dots, \widehat{x}_m$ ?

$$\widetilde{\mathbf{A}} = \begin{bmatrix}
1 & \frac{\widehat{x}_0 - a}{b - a} & \left(\frac{\widehat{x}_0 - a}{b - a}\right)^2 & \dots & \left(\frac{\widehat{x}_0 - a}{b - a}\right)^n \\
1 & \frac{\widehat{x}_1 - a}{b - a} & \left(\frac{\widehat{x}_1 - a}{b - a}\right)^2 & \dots & \left(\frac{\widehat{x}_1 - a}{b - a}\right)^n \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \frac{\widehat{x}_m - a}{b - a} & \left(\frac{\widehat{x}_m - a}{b - a}\right)^2 & \dots & \left(\frac{\widehat{x}_m - a}{b - a}\right)^n
\end{bmatrix}$$

 $ightharpoonup \mathsf{Predict}\ \widetilde{\mathbf{y}} = \widetilde{\mathbf{A}}\mathbf{c}$ 



### Differentiation

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x, x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- Assume  $q_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- ▶ Construct the differentiation matrix  $\mathbf{D}$  on  $x \in [0,1]$
- **Question**: How to calculate  $p'_n(\widetilde{x}_i)$ ?

### Differentiation

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x$ ,  $x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- Assume  $q_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
- lacktriangle Construct the differentiation matrix  ${f D}$  on  $x\in[0,1]$
- ▶ **Question**: How to calculate  $p'_n(\widetilde{x}_i)$ ?
- Chain rule:

$$\frac{d}{d\widetilde{x}}p_n(\widetilde{x}) = \frac{d}{d\widetilde{x}}q_n(x) = \frac{d}{d\widetilde{x}}q_n\left(\frac{\widetilde{x} - a}{b - a}\right)$$
$$= \frac{1}{b - a}q'_n(x)$$

$$\mathbf{y}' = \frac{1}{b-a}\mathbf{D}\mathbf{y}$$



## Integration

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x$ ,  $x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- lacktriangle Construct the integration matrix  ${f S}$  on  $x\in[0,1]$
- **Question**: How to calculate  $\int_a^{\widetilde{x}} p_n(z) \ dz$ ?

# Integration

- ▶ Observe  $(\widetilde{x}_0, y_0), (\widetilde{x}_1, y_1), \dots, (\widetilde{x}_n, y_n)$  on  $\widetilde{x} \in [a, b]$
- $\widetilde{x} = a + (b a)x$ ,  $x \in [0, 1]$
- $p_n(\widetilde{x}) = q_n(x)$
- $lackbox{ }$  Construct the integration matrix  ${f S}$  on  $x\in[0,1]$
- ▶ **Question**: How to calculate  $\int_a^{\widetilde{x}} p_n(z) \ dz$ ?
- Integration by substitution:

$$\int_{a}^{\widetilde{x}} p_{n}(z) dz = (b-a) \int_{0}^{x} p_{n}(a+(b-a)z) dz$$
$$= (b-a) \int_{0}^{x} q_{n}(z) dz.$$



Polynomial interpolation theory

**Application** 

Trigonometric interpolation

Error analysis and Runge phenomenor

## Oscillatory function interpolation

► Some functions are oscillatory, e.g., signals



- ► For such functions, a polynomial is not necessarily the best choice
- Question: What might be a potential better choice?



#### Fourier series

- ▶ For simplicity, assumes  $x \in [-\pi, \pi]$
- ► Def: Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx).$$

**Question**: What are  $a_k$  and  $b_k$ , theoretically?

#### Fourier series

- ▶ For simplicity, assumes  $x \in [-\pi, \pi]$
- Def: Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx).$$

- **Question**: What are  $a_k$  and  $b_k$ , theoretically?
- ▶ Question:  $\int_{-\pi}^{\pi} \cos(jx) \cos(kx) dx = ?$
- $2\cos(\theta)\cos(\eta) = \cos(\theta \eta) + \cos(\theta + \eta)$

#### Fourier series

- ▶ For simplicity, assumes  $x \in [-\pi, \pi]$
- Def: Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx).$$

- **Question**: What are  $a_k$  and  $b_k$ , theoretically?
- ▶ Question:  $\int_{-\pi}^{\pi} \cos(jx) \cos(kx) dx = ?$
- $2\cos(\theta)\cos(\eta) = \cos(\theta \eta) + \cos(\theta + \eta)$
- $j \neq k: \int_{-\pi}^{\pi} \cos(jx) \cos(kx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos((j+k)x) + \cos((j-k)x) dx = \frac{1}{2} \left( \frac{\sin((j+k)x)}{j+k} + \frac{\sin((j-k)x)}{j-k} \right) \Big|_{-\pi}^{\pi} = 0$
- $j = k: \int_{-\pi}^{\pi} \cos(jx) \cos(kx) \ dx = \frac{1}{2} \int_{-\pi}^{\pi} 1 + \cos(2kx) \ dx = \pi + \frac{\sin(2kx)}{4k} \Big|_{\pi}^{\pi} = \pi$
- $\blacktriangleright \int_{-\pi}^{\pi} \cos(jx) \cos(kx) \ dx = \pi \cdot \delta_{j,k}$ , where  $\delta_{j,k}$  Kronecker delta



#### Fourier coefficients

Integral identities:

$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx).$$

**Question**: What are  $a_k, b_k$ ?

### Fourier coefficients

- Integral identities:
- $f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx).$
- **Question**: What are  $a_k, b_k$ ?
- Taking integrals
- ► Fourier coefficients:
  - $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$
  - $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \ dx$
  - $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \ dx$



# Discrete integral

- Fourier coefficients:
  - $\bullet \ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$
  - $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \ dx$
  - $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \ dx$
- $ightharpoonup x_i = -\pi + i\Delta x$ ,  $\Delta x = \frac{2\pi}{n}$
- ► Trapezoidal's rule:  $\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{\Delta x}{2} (f(x_i) + f(x_{i+1}))$
- Periodic assumption:  $f(x_0) = f(x_n)$
- $a_0 \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i)$
- $a_k \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \cos(kx_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cos(kx_i)$
- $b_k \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \sin(kx_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \sin(kx_i)$
- Question: How good are these integral approximations?



# Discrete integral

- Fourier coefficients:
  - $\bullet \ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$

  - $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \ dx$
- $ightharpoonup x_i = -\pi + i\Delta x$ ,  $\Delta x = \frac{2\pi}{n}$
- ► Trapezoidal's rule:  $\int_{x_i}^{x_{i+1}} f(x) dx \approx \frac{\Delta x}{2} (f(x_i) + f(x_{i+1}))$
- Periodic assumption:  $f(x_0) = f(x_n)$
- $a_0 \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i)$
- $a_k \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \cos(kx_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cos(kx_i)$
- $b_k \approx \frac{1}{\pi} \sum_{i=0}^{n-1} f(x_i) \sin(kx_i) \Delta x = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \sin(kx_i)$
- Question: How good are these integral approximations?
- No errors in the interpolation!



# Example

- ► E.g.,  $f(x) = \frac{a_0}{2} + a_1 \cos(x) + b_1 \sin(x)$
- $x_0 = -\pi, x_1 = -\frac{\pi}{3}, x_2 = \frac{\pi}{3}, x_3 = \pi, n = 3$
- Coefficients:
  - $a_0 = \frac{2}{3} \left( f(-\pi) + f\left(-\frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) \right)$
  - $a_1 = \frac{2}{3} \left( f(-\pi) \cos(-\pi) + f\left(-\frac{\pi}{3}\right) \cos\left(-\frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{3}\right) \right)$
  - $b_1 = \frac{2}{3} \left( f(-\pi) \sin(-\pi) + f\left(-\frac{\pi}{3}\right) \sin\left(-\frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{3}\right) \right)$
- $\cos(-\pi) = -1, \cos\left(\pm\frac{\pi}{3}\right) = \frac{1}{2}$
- $\sin(-\pi) = 0, \sin(\pm \frac{\pi}{3}) = \pm \frac{\sqrt{3}}{2}$
- Coefficients:
  - $a_0 = \frac{2}{3} \left( f(-\pi) + f\left(-\frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) \right)$
  - $a_1 = \frac{3}{3} \left( -f(-\pi) + \frac{1}{2} f\left(-\frac{\pi}{3}\right) + \frac{1}{2} f\left(\frac{\pi}{3}\right) \right)$
  - $b_1 = \frac{2}{3} \left( -\frac{\sqrt{3}}{2} f\left( -\frac{\pi}{3} \right) + \frac{\sqrt{3}}{2} f\left( \frac{\pi}{3} \right) \right)$
- ▶ **Question**: How to verify?



# Example - continued

- $f(x) = \frac{a_0}{2} + a_1 \cos(x) + a_2 \sin(x)$
- ▶ Suppose f(x) = 1

$$a_0 = \frac{2}{3}(1+1+1) = 2$$

$$a_1 = \frac{3}{3} \left( -1 + \frac{1}{2} + \frac{1}{2} \right) = 0$$

$$b_1 = \frac{2}{3} \left( -\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) = 0$$

▶ Suppose  $f(x) = \cos(x)$ 

• 
$$a_0 = \frac{2}{3} \left( \cos(-\pi) + \cos\left(-\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{3}\right) \right) = 0$$

$$a_1 = \frac{2}{3} \left( -\cos(-\pi) + \frac{1}{2}\cos\left(-\frac{\pi}{3}\right) + \frac{1}{2}\cos\left(\frac{\pi}{3}\right) \right) = 1$$

$$b_1 = \frac{2}{3} \left( -\frac{\sqrt{3}}{2} \cos\left(-\frac{\pi}{3}\right) + \frac{\sqrt{3}}{2} \cos\left(\frac{\pi}{3}\right) \right) = 0$$

▶ Suppose  $f(x) = \sin(x)$ 

• 
$$a_0 = \frac{2}{3} \left( \sin(-\pi) + \sin\left(-\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right) \right) = 0$$

$$a_1 = \frac{2}{3} \left( -\sin(-\pi) + \frac{1}{2}\sin\left(-\frac{\pi}{3}\right) + \frac{1}{2}\sin\left(\frac{\pi}{3}\right) \right) = 0$$

$$b_1 = \frac{2}{3} \left( -\frac{\sqrt{3}}{2} \sin\left(-\frac{\pi}{3}\right) + \frac{\sqrt{3}}{2} \sin\left(\frac{\pi}{3}\right) \right) = 1$$

- Exactly recovered!
- Question: Why different from the polynomial interpolation?



## Connection with polynomial fitting

- ► Fourier series:  $f(x) = \frac{a_0}{2} + a_1 \cos(x) + b_1 \sin(x)$
- $x_0 = -\pi, x_1 = -\frac{\pi}{3}, x_2 = \frac{\pi}{3}, x_3 = \pi, n = 3$
- ightharpoonup Form the linear system  $\mathbf{Ac} = \mathbf{f}$

$$\begin{bmatrix} \frac{1}{2} & \cos(x_0) & \sin(x_0) \\ \frac{1}{2} & \cos(x_1) & \sin(x_1) \\ \frac{1}{2} & \cos(x_2) & \sin(x_2) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}.$$

# Connection with polynomial fitting

- Fourier series:  $f(x) = \frac{a_0}{2} + a_1 \cos(x) + b_1 \sin(x)$
- $x_0 = -\pi, x_1 = -\frac{\pi}{3}, x_2 = \frac{\pi}{3}, x_3 = \pi, n = 3$
- ightharpoonup Form the linear system  $\mathbf{Ac} = \mathbf{f}$

$$\begin{bmatrix} \frac{1}{2} & \cos(x_0) & \sin(x_0) \\ \frac{1}{2} & \cos(x_1) & \sin(x_1) \\ \frac{1}{2} & \cos(x_2) & \sin(x_2) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \end{bmatrix}.$$

Orthogonality:

$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} \frac{n}{4} & 0 & 0\\ 0 & \frac{n}{2} & 0\\ 0 & 0 & \frac{n}{2} \end{bmatrix}$$

Solves the linear system

$$\mathbf{c} = \begin{bmatrix} \frac{4}{n} & 0 & 0\\ 0 & \frac{2}{n} & 0\\ 0 & 0 & \frac{2}{n} \end{bmatrix} \mathbf{A}^T \mathbf{f}$$

**Remark**: RHS is discrete cosine/sine transformation we did!

#### General form

- $f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kx) + \sum_{k=1}^{n} b_k \sin(kx)$
- $x_i = -\pi + \frac{2\pi}{2n}$  N = 2n + 2 points
- ightharpoonup Linear system form:  $\mathbf{Ac} = \mathbf{f}$

$$\mathbf{c} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \\ b_1 \\ \vdots \\ b_n \end{bmatrix}, \mathbf{f} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_{N-1}) \end{bmatrix}$$

## Integral form

$$\widetilde{\mathbf{A}} = \begin{bmatrix} 1 & \cos(x_0) & \dots & \cos(nx_0) & \sin(x_0) & \dots & \sin(nx_0) \\ 1 & \cos(x_1) & \dots & \cos(nx_1) & \sin(x_1) & \dots & \sin(nx_1) \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 1 & \cos(x_N - 1) & \dots & \cos(nx_N - 1) & \sin(x_N - 1) & \dots & \sin(nx_N - 1) \end{bmatrix}$$

$$\mathbf{P}$$
Discrete cosine/sine transformation:

▶ Discrete cosine/sine transformation:

$$\mathbf{c} = \frac{2}{N-1} \widetilde{\mathbf{A}}^T \mathbf{f}.$$



Polynomial interpolation theory

**Application** 

Trigonometric interpolation

Error analysis and Runge phenomenon

#### Taylor series

- A simplified analysis
- ▶  $f(x) = p_{n+1}(x)$  and assume  $f(x) \approx p_n(x)$  for  $x \in [a, b]$
- ▶ Taylor series around  $x_0$ :  $p_n(x) = f(x_0) + f'(x_0)(x x_0) + \frac{f''(x_0)}{2}(x x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x x_0)^n$
- **Question**: Error  $e_n(x) = |f(x) p_n(x)|$ ?

#### Taylor series

- A simplified analysis
- ▶  $f(x) = p_{n+1}(x)$  and assume  $f(x) \approx p_n(x)$  for  $x \in [a, b]$
- ▶ Taylor series around  $x_0$ :  $p_n(x) = f(x_0) + f'(x_0)(x x_0) + \frac{f''(x_0)}{2}(x x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x x_0)^n$
- **Question**: Error  $e_n(x) = |f(x) p_n(x)|$ ?
- Match one more term the fit is exact
- $e_n(x) = \left| \frac{f^{(n+1)}(x_0)}{(n+1)!} (x x_0)^{n+1} \right|$
- ▶ General theorem:  $e_n = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1} \right|$ ,  $\exists \xi$  between  $x_0$  and x



# Polynomial interpolation

- A simplified analysis
- ▶  $f(x) = p_{n+1}(x)$  and assume  $f(x) \approx p_n(x)$  for  $x \in [a, b]$
- ▶ Interpolation:  $p_n(x_i) = p_{n+1}(x_i)$  for  $0 \le i \le n$
- ▶ Question: Error  $e_n(x) = |f(x) p_n(x)|$ ?

# Polynomial interpolation

- A simplified analysis
- ▶  $f(x) = p_{n+1}(x)$  and assume  $f(x) \approx p_n(x)$  for  $x \in [a, b]$
- ▶ Interpolation:  $p_n(x_i) = p_{n+1}(x_i)$  for  $0 \le i \le n$
- **Question**: Error  $e_n(x) = |f(x) p_n(x)|$ ?
- $ightharpoonup x_i$  are roots of  $e_n$
- $ightharpoonup e_n = |c \prod_{i=0}^n (x x_i)|$

# Polynomial interpolation

- A simplified analysis
- ▶  $f(x) = p_{n+1}(x)$  and assume  $f(x) \approx p_n(x)$  for  $x \in [a, b]$
- ▶ Interpolation:  $p_n(x_i) = p_{n+1}(x_i)$  for  $0 \le i \le n$
- **Question**: Error  $e_n(x) = |f(x) p_n(x)|$ ?
- $ightharpoonup x_i$  are roots of  $e_n$
- $e_n = |c \prod_{i=0}^n (x x_i)|$
- $c = \frac{f^{(n+1)}(x)}{(n+1)!}$
- ▶ General theorem:  $e_n = \left| \frac{(x-x_0)...(x-x_n)}{(n+1)!} f^{(n+1)}(\xi) \right|$ ,  $\exists \xi$  between [a,b]



## Example

- ► Error formula:  $f(x) p_n(x) = \frac{(x-x_0)...(x-x_n)}{(n+1)!} f^{(n+1)}(\xi)$
- ▶ Suppose  $f(x) = a_0 + a_1 x + a_2 x^2$  for  $x \in [0, 1]$
- Use  $p_1(x) = b_0 + b_1 x$  to fit at [0,1]
- ► Error:  $e_1(x) = |f(x) p_1(x)|$
- 0,1 are two roots
- $ightharpoonup R_1(x) = f(x) p_1(x) = cx(x-1)$
- **Question**: What is *c*?

## Example

- ► Error formula:  $f(x) p_n(x) = \frac{(x-x_0)...(x-x_n)}{(n+1)!} f^{(n+1)}(\xi)$
- ▶ Suppose  $f(x) = a_0 + a_1 x + a_2 x^2$  for  $x \in [0, 1]$
- ▶ Use  $p_1(x) = b_0 + b_1 x$  to fit at [0, 1]
- ► Error:  $e_1(x) = |f(x) p_1(x)|$
- 0,1 are two roots
- $ightharpoonup R_1(x) = f(x) p_1(x) = cx(x-1)$
- **Question**: What is *c*?
- $2c = R_1''(x) = f''(x) = 2a_2$
- $ightharpoonup R_1(x) = a_2 x(x-1)$



## Comparison

- ► Taylor series:  $e_n = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1} \right|$
- Interpolation:  $e_n = \left| \frac{f^{(n+1)}(\eta)}{(n+1)!} (x x_0) \dots (x x_n) \right|$
- ▶ Consider the largest error  $||e_n||_{\infty} = \max_{a \leq x \leq b} e_n$
- lacksquare We have no control of  $f^{(n+1)}$  and  $\xi,\eta$
- ightharpoonup Compare  $\left|(x-c)^{n+1}\right|$  and  $\left|(x-x_0)\dots(x-x_n)\right|$
- ▶ E.g., [a,b] = [-1,1], n = 2,  $|(x-c)^3|$  vs |(x-1)x(x+1)|

## Comparison

- ► Taylor series:  $e_n = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1} \right|$
- Interpolation:  $e_n = \left| \frac{f^{(n+1)}(\eta)}{(n+1)!} (x x_0) \dots (x x_n) \right|$
- ► Consider the largest error  $||e_n||_{\infty} = \max_{a \le x \le b} e_n$
- lacktriangle We have no control of  $f^{(n+1)}$  and  $\xi,\eta$
- ightharpoonup Compare  $\left|(x-c)^{n+1}\right|$  and  $\left|(x-x_0)\dots(x-x_n)\right|$
- ▶ E.g., [a,b] = [-1,1], n = 2,  $|(x-c)^3|$  vs |(x-1)x(x+1)|
- ► Taylor: let c = 0,  $||(x c)^3||_{\infty} = 1$

#### Comparison

- ► Taylor series:  $e_n = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1} \right|$
- Interpolation:  $e_n = \left| \frac{f^{(n+1)}(\eta)}{(n+1)!} (x x_0) \dots (x x_n) \right|$
- ► Consider the largest error  $||e_n||_{\infty} = \max_{a \le x \le b} e_n$
- lacktriangle We have no control of  $f^{(n+1)}$  and  $\xi,\eta$
- ightharpoonup Compare  $\left|(x-c)^{n+1}\right|$  and  $\left|(x-x_0)\dots(x-x_n)\right|$
- ▶ E.g., [a,b] = [-1,1], n = 2,  $|(x-c)^3|$  vs |(x-1)x(x+1)|
- ► Taylor: let c = 0,  $||(x c)^3||_{\infty} = 1$
- ▶ Interpolation:  $\frac{d}{dx}(x-1)x(x+1) = 3x^2 1$  with roots  $\pm \frac{1}{\sqrt{3}}$
- Interpolation:  $||(x-1)x(x+1)||_{\infty} = \frac{2}{3\sqrt{3}} \approx 0.4$
- Conclusion: Polynomial interpolation wins!



#### Runge Phenomenon

- So far the interpolation method (by polynomial) works for many cases, e.g.,  $e^x$ ,  $\sin(x)$ , ...
- **Question**:  $\lim_{n\to\infty} \max_{a\leq x\leq b} |f(x)-p_n(x)|=0$ ?

## Runge Phenomenon

- So far the interpolation method (by polynomial) works for many cases, e.g.,  $e^x$ ,  $\sin(x)$ , ...
- ▶ Question:  $\lim_{n\to\infty} \max_{a\leq x\leq b} |f(x)-p_n(x)|=0$ ? Not necessarily
- ► Runge Phenomenon
- $f(x) = \frac{1}{1+x^2}, -5 \le x \le 5$



Question: Why?



## Runge Phenomenon

- So far the interpolation method (by polynomial) works for many cases, e.g.,  $e^x$ ,  $\sin(x)$ , ...
- ▶ Question:  $\lim_{n\to\infty} \max_{a\leq x\leq b} |f(x)-p_n(x)|=0$ ? Not necessarily
- Runge Phenomenon
- $f(x) = \frac{1}{1+x^2}, -5 \le x \le 5$



**Question**: Why?  $f^{(n+1)}$  grows too fast



## Further analysis

- ▶ For polynomial interpolation in [a,b] with  $x_i = a + (b-a)\frac{i}{n}$
- $\|(x-x_0)\dots(x-x_n)\|_{\infty} \le n! \left(\frac{b-a}{n}\right)^{n+1}$
- $ightharpoonup e_n = \left| \frac{f^{(n+1)}(\eta)}{(n+1)!} (x x_0) \dots (x x_n) \right|$
- ▶ **Question**: How to avoid Runge phenomenon?

## Further analysis

- lacksquare For polynomial interpolation in [a,b] with  $x_i=a+(b-a)rac{i}{n}$
- $\|(x-x_0)\dots(x-x_n)\|_{\infty} \le n! \left(\frac{b-a}{n}\right)^{n+1}$
- $ightharpoonup e_n = \left| \frac{f^{(n+1)}(\eta)}{(n+1)!} (x x_0) \dots (x x_n) \right|$
- Question: How to avoid Runge phenomenon?
- Fix n to avoid high oscillations
- ightharpoonup Reduce b-a
- Piecewise interpolation



- $\rightarrow x_0,\ldots,x_n$
- ► Piecewise interpolation
- ► Cubic spline: In  $[x_i, x_{i+1}]$ ,  $p_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$
- ▶  $s(x) = p_i(x)$  if  $x \in [x_i, x_{i+1}]$
- Question: number of unknowns?

- $\rightarrow x_0,\ldots,x_n$
- Piecewise interpolation
- ► Cubic spline: In  $[x_i, x_{i+1}]$ ,  $p_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$
- ►  $s(x) = p_i(x)$  if  $x \in [x_i, x_{i+1}]$
- **Question**: number of unknowns? 4n
- **Question**: Can we just fit at  $\{x_j\}$ ?

- $ightharpoonup x_0, \ldots, x_n$
- ► Piecewise interpolation
- ► Cubic spline: In  $[x_i, x_{i+1}]$ ,  $p_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$
- ►  $s(x) = p_i(x)$  if  $x \in [x_i, x_{i+1}]$
- **Question**: number of unknowns? 4n
- ▶ Question: Can we just fit at  $\{x_j\}$ ? No,  $p_i'(x_{i+1}) \neq p_{i+1}'(x_i)$

- $\rightarrow x_0,\ldots,x_n$
- Piecewise interpolation
- ► Cubic spline: In  $[x_i, x_{i+1}]$ ,  $p_i(x) = a_i + b_i x + c_i x^2 + d_i x^3$
- ►  $s(x) = p_i(x)$  if  $x \in [x_i, x_{i+1}]$
- **Question**: number of unknowns? 4n
- ▶ Question: Can we just fit at  $\{x_j\}$ ? No,  $p_i'(x_{i+1}) \neq p_{i+1}'(x_i)$
- Impose conditions:
  - $\triangleright$   $s(x_i) = y_i, n+1$  equations
  - $ightharpoonup p_i(x_i) = p_{i+1}(x_i), n-1 \text{ equations}$
  - $p'_{i}(x_{i}) = p'_{i+1}(x_{i}), n-1$  equations
  - $p_i''(x_i) = p_{i+1}''(x_i), n-1$  equations
  - Other conditions, e.g.,  $s'(x_0) = y_0'$  and  $s'(x_n) = y_n'$ , 2 equations
- Question: Matrix form?

