(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2976118号

(45)発行日 平成11年(1999)11月10日

(24)登録日 平成11年(1999)9月10日

(51) Int.Cl. ⁶		識別記号	F I		
H01J	31/12		H01J	31/12	С
	29/62			29/62	
	29/87	•		29/87	

請求項の数2(全 9 頁)

(21)出願番号	特願平1-287865	(73)特許権者	99999999
			キヤノン株式会社
(22)出願日	平成1年(1989)11月7日		東京都大田区下丸子3丁目30番2号
		(72)発明者	中村 尚人
(65)公開番号	特開平3-149728		東京都大田区下丸子3丁目30番2号 キ
(43)公開日	平成3年(1991)6月26日		ヤノン株式会社内
審査請求日	平成8年(1996)11月7日	(72)発明者	小野 治人
F1 113-4 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		東京都大田区下丸子3丁目30番2号 キ
			ヤノン株式会社内
		(72)発明者	鐵英俊
		(12/72/71	東京都大田区下丸子3丁目30番2号 キ
			ヤノン株式会社内
		(74)代理人	弁理士 豊田 善雄 (外1名)
		(/4/10座人	开理工 夏田 曾雄 (Chī 石)
		審査官	波多江 進
		番耳 日	似多在 连
			最終頁に続く

(54) 【発明の名称】 画像表示装置

1

(57) 【特許請求の範囲】

【請求項1】基板と、該基板面に沿って並設された一対の電極間に、該電極を介して電圧が印加される電子放出部を有する複数の表面伝導形電子放出素子と、該表面伝導形電子放出素子から放出された電子ピームを加速するための加速電圧が印加されるフェースプレートと、該基板と該フェースプレートとの間に配置された複数の耐大気圧用支持壁とを有する画像表示装置において、

前記耐大気圧用支持壁が、少なくとも前記一対の電極の 並設方向に表面伝導形電子放出素子を挟んで位置し、し かも少なくともこの電極の並設方向の両側面より突出し た補助電極を有するもので、各補助電極は、以下の関係 を満たす一定電圧Vcが印加されるものであることを特徴 とする画像表示装置。

 $Vc \leq Va \times d/D$

2

Va:前記フェースプレートに印加される加速電圧

- d:前記基板と該補助電極の距離
- D:該基板と該フェースプレートとの距離

【請求項2】前記補助電極が、前記耐大気圧用支持壁のフェースプレート寄りに設けられていることを特徴とする請求項1の画像表示装置。

【発明の詳細な説明】

[産業上の利用分野]

本発明は、表面伝導形電子放出素子を電子源として用 10 いる画像表示装置に関し、特に電子ピームの変更を補償 する補助電極を設けた画像表示装置に関する。

[従来の技術]

従来、簡単な構造で電子の放出が得られる素子として、例えば、エム・アイ・エリンソン (M. I. Elinson) 等によって発表された冷陰極素子が知られている [ラジ 20

オ・エンジニアリング・エレクトロン・フィジィッス (Radio Eng. Electron. phys.) 第10巻,1290~1296頁、1 965年]。

これは、基板上に形成された小面積の薄膜に、膜面に 平行に電流を流すことにより、電子放出が生ずる現象を 利用するもので、一般には表面伝導形放出素子と呼ばれ ている。

この表面伝導形放出素子としては、前記エリンソン等 により開発されたSnO₂ (Sb) 薄膜を用いたものの他、Au 薄膜によるもの [ジー・ディトマー: "スイン・ソリド 10 ・フィルムス" (G.Dittmer: "Thin Solid Films"),9 巻,317頁, (1972年)]、ITO薄膜によるもの[エム ハートウェル・アンド・シー・ジー・フォンスタッド: "アイ・イー・イー・イー・トランス・イー・ディー・ コンフ" (M. Hartwell and C. G. Fonstad: IEEE Trans. ED Conf.") 519頁, (1975年)]、カーボン薄膜によるも の[荒木久他: "真空",第26巻,第1号,22頁, (1983 年)]等が報告されている。

これらの表面伝導形放出素子は、

- 1) 高い電子放出効率が得られる、
- 2) 構造が簡単であるため、製造が容易である、
- 3) 同一基板上に多数の素子を配列形成できる、
- 4) 応答速度が速い、

等の利点があり、今後広く応用される可能性をもってい る。

一方、面状に展開した複数の電子源と、この電子源か らの電子ビームの照射を各々受ける蛍光体ターゲットと を、各々相対向させた薄形の画像表示装置が、特開昭58 -1956号、特開昭60-225342号等で開示されている。

これら電子線ディスプレイ装置は次のような構造から なる。

第6図は従来ディスプレイ装置の概要を示すものであ る。1はガラス基板、2は支持体、3は配線電極、4は 電子放出部、5は電子通過孔、6は変調電極、7はガラ ス板、8は透明電極、9は画像形成部材で、例えば蛍光 体、レジスト材等電子が衝突することにより発光.変 色、帯電、変質等する部材から成る。10はフェースプレ ート、11は蛍光体の輝点である。電子放出部4は薄膜技 術により作製され、ガラス基板1とは接触することがな い中空構造を成すものである。配線電極3は電子放出部 40 材と同一の材料を用いて形成しても、別材料を用いても 良く、一般に融点が高く電気抵抗の小さいものが用いら れる。支持体2は絶縁性材料もしくは導電性材料で形成 されている。

これら電子線ディスプレイ装置は、配線電極3に電圧 を印加せしめ中空構造をなす電子放出部より電子を放出 させ、これら電子流を情報信号に応じて変調する変調電 極6に電圧を印加することにより電子を取り出し、取り 出した電子を加速させ蛍光体9に衝突させるものであ

形成せしめ、蛍光体9上に画像表示を行うものである。 上述従来の電子線ディスプレイは熱電子源を用いてい

1. 消費電力が高い。

る為、次のような問題点があった。

- 2. 変調スピードが遅い為大容量の表示ができない。
- 3. 各素子間のバラツキが生じ易い為大面積化が難しい。

これらの問題点を解決する為に熱電子源に代えて、前 述した表面伝導形電子放出素子を配置した画像表示装置 が考えられる。

第7図は、表面伝導形電子放出素子を用いた画像表示 装置の構成図である。12は絶縁性基板、13は配線電極、 14は素子電極、15は電子放出部である。この画像表示装 置は、第7図に示すように、配線電極間に素子を並べた 線電子源群と変調電極 6 群でXYマトリックス駆動を行う ことにより画像表示するものである。

これら電子線ディスプレイは通常1×10⁻¹~1×10⁻⁵ torrの真空状態で駆動させる為に、系全体を真空封止す ることによりディスプレイ装置を製作しなければならな

このため、上述したような電子放出素子を用いて平面 形の画像表示装置を製作する場合、大気圧に耐える構造 であることが必須である。大気圧によるフェースプレー トの歪み、変形等が画像に影響を及ぼさないよう、単純 にフェースプレートの厚みを増すことで対処しようとす ると、画面対角16インチ程度の装置でフェースプレート の厚みは約20mm程度必要であり、パネルの重量も20kg程 度になると考えられる。より大形のディスプレイ装置を 製作する場合、さらにフェースプレートの板厚を増す必 要があることから、重量が増すばかりでなくフェースプ 30 レートの光の透過率の低下から、十分な輝度が得られな いという問題が生じてくる。

そこで、表面伝導形電子放出素子を電子源とする画像 表示装置に限らず平面形の画像表示装置においては各画 素毎、あるいはいくつかの画素毎に支持壁を設けて補強 し、フェースプレートを支えフェースプレートの厚みが 増すことを防ぐ手段が一般に必要とされている。

ここで、支持壁の形状としては、第8図(a),

(b), (c) に示すようにフェースプレート側から見 て、井げた状(a)、円形(b)あるいは多角形、スリ ット状(c),柱状及びそれらの組合せ等各種の構造が 考えられる。

[発明が解決しようとする課題]

しかしながら、上述の耐大気圧のための支持壁は絶縁 体でなければならないことから、次のような問題点があ

- (1) 放出された電子ビームが支持壁に衝突し、フェー スプレートに到達する電流量が減少し、輝度が低下す
- (2) 耐大気圧支持壁のチャージアップによる沿面耐圧 る。また、配線電極3と変調電極6でXYマトリックスを 50 の低下により、沿面放電が発生し、該素子の破壊等が発

20

5

生する。

かかる耐大気圧支持壁への電子の衝突, チャージアップの問題は、表面伝導形電子放出素子を電子源として用いた場合に、より深刻となる。

その理由を、本発明者らが行った実験に基づき以下に説明する。

本発明者らは、第9図に示すような実験系が用い表面 伝導形電子放出素子の諸特性を測定していたが、この 時、放出素子の二極間に電圧VI、フェースプレート10に 電圧Vaを印加し、フェースプレート10上に発生する発光 点の位置を観測すると、電子放出部15の鉛直上方から素 子の正電極側にΔX,だけずれた位置に発光点が観測され ることを見い出した。

この現象の原理については、十分に解明されているわえではないが、表面伝導形電子放出素子からは、X方向に初速度を持つ電子線が放出されていることが考えられる。すなわち、薄膜16の局所領域15には、印加電圧VfによりX軸と平行に強い電界が発生しているはずであり、そのことから、空間に飛び出してきた電子がX方向の速度成分を持っていることが推測できる。

かかる速度成分を持った放出電子は、第3図(a)に 示すような軌道を描くため、他の例えば電子放出部鉛直 軸を中心としてガウス分布に従う電子の広がりを有する 熱電子源等に比べ、耐大気圧支持壁への電子の衝突確立 は一段と高くなる。

以上のような問題点があるため、表面伝導形電子放出 素子は、素子構造が簡単でかつ2つ以上の複数の素子を ライン状に配置することが容易であるにもかかわらず、 産業上積極的に応用されるには至っていないのが現状で ある。

本発明は、表面伝導形電子放出素子を電子源とする画像表示装置における上記課題を解決することを目的とする。

[課題を解決するための手段及び作用]

基板と、該基板面に沿って並設された一対の電極間に、該電極を介して電圧が印加される電子放出を有する複数の表面伝導形電子放出素子と、該表面伝導形電子放出素子から放出された電子ビームを加速するための加速電圧が印加されるフェースプレートと、該基板と該フェースプレートとの間に配置された複数の耐大気圧用支持 40壁とを有する画像表示装置において、

前記耐大気圧用支持壁が、少なくとも前記一対の電極の並設方向に表面伝導形電子放出素子を挟んで位置し、しかも少なくともこの電極の並設方向の両側面より突出した補助電極を有するもので、各補助電極は、以下の関係を満たす一定電圧Vcが印加されるものであることを特徴とする画像表示装置にある。

 $Vc \leq Va \times d/D$

Va:前記フェースプレートに印加される加速電圧 d 前記基板と該補助電極の距離 D:該基板と該フェースプレートとの距離

本発明によれば、補助電極に、上記範囲の低電圧Vcを 印加することにより、フェースプレートと補助電極間に 電子レンズを形成し、電子ピームの耐大気圧用支持壁へ の衝突を防ぎ、チャージアップを低減すると共に、フェ ースプレートへの電子ピームの集束性をも併せて改善す るものである。

「実施例〕

以下、実施例を用いて本発明を具体的に詳述する。 10 実施例1

本発明の第1の実施例を、図面に基づいて詳細に説明 す。第1図は、本実施例を示す装置の斜視図であり、第 2図は第1図のAA′面における断面図である。

第1図及び第2図において、10は内面に蛍光体が塗布されているフェースプレート、17は本発明に係る補助電極、18は耐大気圧用支持壁、6は変調電極、15は表面伝導形電子放出素子の電子放出部、12は絶縁性基板、13は配線電極、5は変調電極の電子ビーム通過孔、19は変調電極の支持体を示す。

かかる構成において、本発明による補助電極17の作用を、第3図及び第4図を用いて説明する。先ず、補助電極17がない場合の電子の運動を考える。第3図において、電子放出部15から放出された電子は、変調電極6の電子ビーム通過孔5を通り、変調電圧により変調を受けながら加速電圧Vaにより加速され、フェースプレート10に衝突し蛍光体を励起し画像を形成する。

しかしながら、表面伝導形電子放出素子では、電子放出部15から放出される電子は、放出される時点で高電位側電極側へ、すなわち X 方向の速度成分を持っている。また、変調電極 6 による変調の際、変調電圧により Y 方向の加速電圧の働きが相対的に弱くなることもあるため、結果として第3図矢印 a に示すように支持壁18に衝突してしまうことがある。

次に、本発明の補助電極17に印加する電圧をVcとし、電子源とフェースプレート10との距離をD、電子源と補助電極17との距離をd、フェースプレートに印加される加速電圧をVaとするとき、

$$Vc \leq Va \times \frac{d}{D}$$

の関係を満たすように情報信号に応じて変化しない定電 圧Vcを印加すると、補助電極17の開孔近傍の等電位面は 第4図に示すように湾曲する。このため、支持壁18方向 に飛んできた電子は、補助電極17付近で内側へのカFを 受け、その軌道は図中りに示すように曲げられる。

この作用により、支持壁18への負電荷のチャージアップを減少させるとともに、画像形成に寄与する電子ビームを増加させることができる。

ここで、補助電極17の位置と、印加電圧Vcの具体的な 50 値の範囲だが、フェースプレート10と電子放出部15との 距離Dが10mm、加速電圧Vaが10KV程度を標準とすると、 実験から、補助電極17と電子放出部15との距離 d は 7~ 9mm、補助電極17に与える電圧Vcは7~9KVの範囲が望ま しい。

一方、補助電極17の材質としては、CRTのシャドウマ スクに用いられる通常のFe材で良いが、熱膨張が問題と なる場合、インパー材を用いても良い。補助電極17の厚 さは、0.1~0.3mmで十分であった。また、補助電極17の 開口部(電子通過孔)の寸法は、支持壁18の間隔によっ ても異なる。また、開口の大きさにより電圧Vcの値も変 化するため、系全体において最適となるよう決めなけれ ばならない。支持壁18のX方向間隔が700μm~1mm程度 の時、支持壁18からの電極の突き出し部の寸法が100~2 00 μm、すなわち、電子放出部15の鉛直軸から突き出し 部端部までの距離が500~800 μmのとき最適と考えられ る。

本実施例においては、フェースプレート10と電子放出 部15の距離Dを10mm、加速電圧Vaを10KVとした時、支持 壁18間のX方向間隔が700μmの装置で電子放出部15と 補助電極17との距離dを8mmとし、補助電極17に印加す る電圧Vcを7KVとしたときに最も良い結果を得た。

尚、支持壁18は感光性ガラスで形成し、補助電極17に は厚さ0.1mmのFe材を使用し、支持壁18からの補助電極1 7の突き出し量は100 µmとした。

実施例2

本発明の第2の実施例を第5図に示す。第5図には、 第2の実施例の主要部のみを示しており、装置の断面図 については、第1の実施例と変わるところがないため、 第2図をもって省略する。

本実施例は、支持壁18がスリット状を成す補助電極17 の構成を示している。尚、支持壁18がスリット状の場合 においても、第1の実施例第1図に示した網状の補助電 極17、第5図に示す支持壁18の一部に設けたひさし状の 補助電極17いずれを用いても、支持壁18への負電荷のチ ャージアップを低減する点で同様の効果が得られる。か かるひさし状の分離形補助電極17の場合には、電極全て 導通し、同電位の定電圧Vcが印加される構成としなけれ ばならないことは言うまでもない。

ところで、以上の例のどの構成においても、変調電極 あるいはフェースプレートの衝突する電子ビームの位置 40 3,13……配線電極、4,15……電子放出部 を制御するための偏向電極を有する構成の場合が考えら れ、それらの電極に印加される電圧が前述の

$$Vc \leq Va \times \frac{d}{D}$$

の関係式を満たす範囲となる場合があるが、変調電極あ るいは偏向電極に印加される電圧は、それぞれの作用か

ら考えて情報信号に応じて変化するものでなければ意味 がない。

これに対し、本発明の補助電極には、変調電極や偏向 電極とは独立に、一定の電圧Vcが印加される構成としな ければならないことは言うまでもない。

ここに、本発明に係る補助電極の存在意義があると言 えよう。

[発明の効果]

以上説明したように、本発明の画像表示装置によれ ば、耐大気圧用支持壁への電子の衝突を防ぐことがで き、次のような特有の効果がある。

- (1) 放出される電子ビームの支持壁へ衝突が低減する ため、フェースプレートに到達する電流量が増加し、輝 度が向上する。
- (2) 耐大気圧支持壁のチャージアップによる沿面耐圧 の低下がないため、沿面放電による素子破壊を防ぐこと ができる。
- (3) ある広がりを持ってフェースプレートに到達する 電子ビームのうち周縁付近の電子が内側に曲げられるた 20 め、フェースプレートでの輝点の鮮鋭さが増す。

【図面の簡単な説明】

第1図は、本発明の第1の実施例を示す装置斜視図であ

第2図は、本発明の第1の実施例を示す装置のA-A' 面における断面図である。

第3図は、本発明における電子軌道を示す断面図であ る。

第4図は、本発明における電子軌道を示す断面図の部分 拡大図である。

30 第5図は、本発明の第2の実施例である装置の主要部を 示す斜視図である。

第6図は、従来ディスプレイの概要図を示す。

第7図は、表面伝導形電子放出素子を用いた画像表示装 置を示す。

第8図(a), (b), (c)は、耐大気圧用支持壁の 構造斜視図を示す。

第9図は、表面伝導形電子放出素子の発光点観測実験を 示す図である。

1 ……ガラス基板、2,19……支持体

5 ……電子通過孔、6 ……変調電極

7……ガラス板、8……透明電極

9 …… 蛍光体、10……フェースプレート

11……蛍光体の輝点、12……絶縁性基板

14……素子電極、17……補助電極

18……耐大気圧用支持壁

【第4図】 【第1図】 電子の軌道を示す部分拡大図 10 フェースプ・レート 10-加速電圧 Vog 17補助電極 支持壁 18 電子ピーム通過孔 6变調電核 5 電子放出部 配線電極 12 絶縁性基板

【第2図】

(断面 A-A)

【第3図】

電子の軌道を示す断面図

【第5図】

【第9図】

(表面伝導形電子放出素子の発光点) 観測実験を示す図

【第6図】

【第7図】

【第8図】

フロントページの続き

(72)発明者 野村 一郎

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

(56)参考文献 特開 昭61-133539 (JP, A) 特開 昭59-15977 (JP, A)

(58)調査した分野(Int.Cl.*, DB名) HOIJ 31/12 - 31/15 HOIJ 29/62,29/87