

Escola Politécnica da Universidade de São Paulo Sistemas Embarcados para IoT - PSI 3542

Felipe Beserra - 13683702 Gabriel Kiyoki Hanashiro - 13682020

Descrição do Sistema

Trabalho final de PSI 3542

Orientador: Sergio Takeo Kofuji

Introdução

Este documento tem como objetivo apresentar alguns detalhes iniciais do projeto elaborado por Felipe Beserra e Gabriel Hanashiro, para o trabalho final da disciplina de PSI3542 - Sistemas Embarcados para IoT.

Aqui, estão informações quanto ao Floorplan utilizado para o projeto, os dashboards que serão desenvolvidos (para página web e para aplicativo de celular) e informações quanto às capacidades do assistente de voz.

SUMÁRIO

Introdução	1
O Trabalho Final	3
Requisitos Mínimos	3
O Projeto do Grupo	3
Floorplan	4
Dashboard	4
Dashboard #1	4
Dashboard #2	5
Assistente de voz	6
Intenção	6
Entidades	6
Diálogo	6

O Trabalho Final

O trabalho final da disciplina é um resultado de tudo que foi passado ao longo do semestre, sendo necessário realizar uma solução completa de IoT utilizando dispositivos embarcados IoT.

Requisitos Mínimos

Quanto aos pré-requisitos do sistema, eles são:

- 1 ou mais dispositivo(s) embarcado(s) de IoT para sensoriamento/atuação, com capacidade de comunicação MQTT;
- 1 Smart IoT Device/Gateway/Edge com capacidade de interação humano-máquina por voz e gerenciamento dos dispositivos de IoT embarcados e integração com serviços em nuvem;
- 1 aplicação de monitoramento em nuvem, capaz de conversar com usuários através de redes sociais e página web;

Visualmente, é necessário que o projeto siga a seguinte estrutura:

O Projeto do Grupo

O projeto concebido pelo grupo, vai garantir todos os requisitos mínimos mencionados no tópico acima, evidentemente, e terá como objetos IoT: luzes e travas inteligentes utilizando ESP se comunicando via internet (MQTT) com uma página web, um aplicativo de celular e uma assistente de voz.

Abaixo, estão mais detalhes quanto a tópicos específicos do projeto (floorplan, dashboard e assistente de voz).

Floorplan

O floorplan do grupo será baseado na planta pronta abaixo (imagem 1), com 2 quartos, 2 banheiros, 1 cozinha, 1 área de serviço, 1 sala, 1 garagem, mantendo todos os cômodos existentes nela, porém com medidas diferentes das apresentadas na imagem. Além disso, a planta terá seu formato levemente modificado para poder ser incluída uma varanda na entrada da casa.

O floorplan será integrado aos dashboards de maneira dinâmica, para poder servir de mapa como guia dos dispositivos espalhados pela casa, servindo também como indicadores do estado de cada componente.

Imagem2 - Planta base do projeto do grupo
Imagem disponível em: ht.jpg

Dashboard

Dashboard #1

Este será o dashboard disponível via página web, ela será feita com node-red e terá um mapa da casa, com símbolos que indicam o estado dos dispositivos IoT (por exemplo uma lâmpada, ele indicaria se está acesa ou desligada). Além disso, teremos os controles para a trava e para as luzes da casa, e uma área designada para as informações meteorológicas do local.

O plano é que o dashboard #1 se assemelhe a imagem seguinte:

Dashboard #2

O dashboard #2 será o aplicativo de celular, e este deverá ter todas as mesmas funções que o primeiro dashboard (para computador), apenas com uma diferença no layout.

O plano é que o dashboard #2 se assemelhe a imagem seguinte:

Assistente de voz

Intenção

O assistente de voz deverá ser capaz de ligar ou desligar as luzes dos ambientes, ativar as travas localizadas nas portas e informar os estados deles, além das informações meteorológicas do local. Como intenção, teremos palavras como "ligar", "desligar", "trancar", "destrancar", "estado", "luz", "trava", "temperatura" e "umidade".

No caso das travas, é provável que sua utilização seja feita apenas com alguma senha ou outra segurança semelhante, para que apenas o dono da trava consiga controlá-la.

Entidades

Como sistemas IoT, teremos lâmpadas e travas inteligentes, nomeadas ou numeradas de acordo com o cômodo controladas via ESP; e um sensor de temperatura e umidade, além, é claro, do dispositivo para realizar a comunicação humano-máquina (assistente de voz).

Para manter a comodidade e simplicidade de um interruptor tradicional, pretendemos manter também a funcionalidade física do controle via botão, mas este estará integrado no ecossistema IOT para funcionar como um atuador inteligente e não apenas físico (interrompendo a passagem de corrente no fio da lâmpada).

Diálogo

O wake word seria o nome do dispositivo. Ele seria capaz de responder verbalmente informações quanto ao estado dos dispositivos IoT e as informações meteorológicas do local.