

Manual de Instruções

Led-Zeppelin

IPT - Seção de Obras Civis (SOC)

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
24/11/2023	Guilherme F. Linhares	1.0	Criação do documento.
27/11/2023	Guilherme F. Linhares	1.1	Atualização da capa e das seções 1.1 e 1.2.
28/11/2023	Guilherme F. Linhares	1.2	Atualização das seção 6.
29/11/2023	Guilherme F. Linhares	1.3	Atualização das seções 1.1, 1.2, 3 e 6.
30/11/2023	Guilherme F. Linhares	1.4	Atualização das seções 4 e 6.
01/12/2023	Guilherme F. Linhares	1.5	Atualização da seção 1.2.
04/12/2023	Guilherme F. Linhares	1.6	Atualização das seções 1.1, 4 e 6.

05/12/2023	Guilherme F. Linhares	1.7	Atualização das seções 1.1, 3, 4 e 6.
06/12/2023	Guilherme F. Linhares	1.8	Atualização das seções 1.1, 1.2, 4 e 5.
07/12/2023	Guilherme F. Linhares	1.9	Atualização das seções 1.1, 1.2, 2, 4 e 5.
08/12/2023	Guilherme F. Linhares	2.0	Atualização no índice e das seções 1, 2, 3, 4, 5 e 6 .
13/12/2023	Guilherme F. Linhares	2.1	Atualização das seções 1, 2 e 4
14/12/2023	Guilherme F. Linhares	2.2	Atualização das seções 2, 4 e 6
18/12/2023	Guilherme F. Linhares	2.3	Atualização das seções 1, 2 e 4
19/12/2023	Guilherme F. Linhares	2.4	Atualização das seções 1, 2, 3, 4, 5 e 6.

Índice

1. Componentes e Recursos (sprint 4)		3
1.1. Componentes externos 3		
1.2. Requisitos de conectividade	5	
2. Guia de Montagem (sprint 4)	5	
3. Guia de Instalação (sprint 4)	9	
4. Guia de Configuração (sprint 4)	10	
5. Guia de Operação (sprint 4) 16		
6. Troubleshooting (sprint 4) 21		

1. Componentes e Recursos (sprint 4)

1.1. Componentes externos

Aqui se encontram os equipamentos físicos que compõem o dispositivo.

- Microcontrolador ESP32-DevKitC V4
- Célula de carga com módulo HX711
- ▶ LCD 16x2
- Botão push
- LED RGB
- LED de 2 pinos
- Buzzer passivo
- Sensor de temperatura e umidade DHT11
- Módulo leitor de micro SD
- Porta-baterias
- Antena Wi-Fi
- Bateria de lítio ICR18650-22P
- Cartão de memória micro SD
- Parafusos
- Protoboard

Figura 1 - Componentes do dispositivo.

1.1.1. Mapa de conexões dos componentes

Esta seção contempla uma representação visual das ligações dos componentes do dispositivo.

Figura 2 - Mapa dos componentes conectados.

Todos os componentes mencionados em seguida estão conectados no ESP32 Devkit C, com exceção da célula de carga

- 1. HX711: GND, DT D26, SCK D27, VCC;
- 2. LED RGB: VERMELHO (R) D14, GND, VERDE (G) 17, AZUL (B) 16;
- 3. LED Vermelho: GND, D4:
- 4. LCD: GND, VCC 5V, SDA 21, SCL 22;
- 5. BOTÃO LIGA/DESLIGA: VCC, D12;
- 6. BOTÃO RESET: VCC, D2;
- 7. BOTÃO TARA: VCC, D25;
- 8. BUZZER: GND, D15;
- 9. DHT11: VCC, GND, SDA 21;
- 10. MÓDULO MICRO SD: VCC, GND, DO (MISO) D19, DI (MOSI) D23, SCK D18, CS D5;
- 11. CÉLULA DE CARGA (conectada ao HX711): FIO VERMELHO E+, FIO PRETO E-, FIO BRANCO A-, FIO VERDE A+.

1.2. Requisitos de conectividade

Incluindo softwares, redes e protocolos, nesta seção se encontram as conexões necessárias para a operação do dispositivo.

- 1. Rede Wi-Fi
- 2. Protocolo MQTT
- 3. Protocolo I2C

- 4. Ubidots (site) e conta no Ubidots
- 5. Arduino IDE (programa)
- 6. Lan de Zeppelin (seção 4)

2. Guia de Montagem (sprint 4)

Esta seção demonstra em etapas como deve ser feita a inclusão dos componentes do dispositivo. Siga as instruções em sequência para garantir a organização e integridade do dispositivo.

2.1. Encaixe da Antena Wi-Fi (Figuras 3 e 4)

1. Posicionamento da Antena:

 Encaixe a antena Wi-Fi na abertura localizada ao lado direito da case (oposto ao DHT11 e a entrada ethernet).

Figura 3 - Encaixe da antena na case.

• Rotacione a antena em sentido horário até que ela se mantenha completamente estável.

Figura 4 - Rotação da antena na case.

2.2. Inclusão do Cartão de Memória (Figura6)

1. Acesso ao Leitor de Micro SD:

• Remova a tampa localizada abaixo da case para acessar o leitor de micro SD.

Figura 5 - Remoção da tampa da case.

2. Inserção do Cartão:

 Garanta que o dispositivo esteja desligado e insira o cartão de memória no leitor de micro SD, seguindo a orientação mostrada na imagem abaixo.

Figura 6 - Inserção do cartão de memória no módulo.

2.3. Inclusão da Bateria de Lítio (Figura 7)

1. Inserção da Bateria:

 Ainda com a tampa removida, insira a bateria de lítio no porta-bateria, seguindo a demonstração na imagem abaixo.

Figura 7 - Inserção da bateria no porta-bateria da case.

2. Fechando a case:

• Encaixe a tampa novamente.

Figura 8 - Readição da tampa da case.

Observações Importantes:

- A fixação dos parafusos deve ser realizada por um técnico especializado para garantir a segurança e integridade do dispositivo.
- A representação do dispositivo pode não estar 100% precisa, visto que trata de uma ilustração que busca simular a montagem das peças indicadas.

3. Guia de Instalação

(sprint 4)

A instalação do dispositivo deve ser conduzida por um técnico especializado em montagem de equipamentos, uma vez que envolve conhecimentos técnicos e considerações de segurança.

Certifique-se de seguir as orientações abaixo para garantir uma instalação correta e segura.

3.1. Observações para a Instalação:

3.1.1. Posicionamento da Célula de Carga:

- A célula de carga deve ser instalada fora da case do dispositivo.
- Garanta que a célula de carga esteja posicionada de maneira estável e segura, evitando interferências que possam comprometer a precisão das medições.

3.1.2. Fixação do Dispositivo Completo:

- O dispositivo completo deve ser firmemente fixado abaixo do local de medição.

Utilize parafusos adequados e certifique-se de que a fixação seja robusta para evitar movimentos indesejados durante o uso.

3.2. Procedimentos Gerais:

- O técnico deve garantir que o local escolhido para a instalação atenda aos requisitos de segurança e estabilidade necessários para o funcionamento adequado do dispositivo.
- Ao fixar o dispositivo, verifique se a superfície de instalação é resistente o suficiente para suportar o peso e as possíveis vibrações associadas ao funcionamento.
- Posicione a célula de carga conforme as especificações técnicas, garantindo que esteja adequadamente conectada ao dispositivo.
- Certifique-se de que não haja obstruções ao redor da célula de carga que possam afetar a leitura das medições.
- Realize uma verificação final para garantir que todos os componentes estejam devidamente instalados e seguros.
- Caso surjam dúvidas durante a instalação, entre em contato com o suporte técnico para obter assistência adicional.

4. Guia de Configuração (sprint 4)

Nesta seção encontra-se um passo a passo detalhado de como os ambientes necessários para utilizar o dispositivo devem ser configurados.

4.1. Download dos arquivos

Para fazer o download (baixar) os arquivos necessários para manusear os softwares dos dispositivos, acesse o <u>repositório do</u> <u>Github Fender</u>. Após acessar o repositório clique no botão "Code" em verde e clique em "Download ZIP" em seguida (Figura 8).

Figura 9 - Localização do download dos arquivos.

Após baixar os arquivos, vá até a pasta onde foi feito o download e extraia os arquivos, clicando com o botão direito do mouse sobre a pasta e selecionando a opção "Extrair tudo", como indica a figura 9.

Figura 10 - Extração dos arquivos.

Após a extração dos arquivos, abra a pasta extraída e abra o arquivo "signal_conditioner.ino", seguindo o caminho *src > firmware > signal_conditioner*.

4.2. Configuração do Dispositivo

Para iniciar, compile o código do dispositivo utilizando o Arduino IDE e em seguida clique no botão de upload.

Figura 11 - Botões de compilação (sinal de visto) e de "upload" (sinal de seta para a direita).

4.3. Configuração do Hardware

Para iniciar a configuração do hardware, pressione o botão denominado "CONFIG". O LED RGB começará a piscar em azul, indicando o modo de configuração Wi-Fi ativo. Após a estabilidade da luz, o dispositivo conecta-se ao Wi-Fi.

Figura 12 - Localização do botão CONFIG no dispositivo.

4.4. Configuração do Software

4.4.1. Conectando ao Wi-Fi do ESP32

Após realizar o upload do código e apertar o botão "CONFIG", através de seu dispositivo móvel, conecte-se à rede Wi-Fi do ESP32, com nome de início "LedZ" e de senha "iptamainteli".

Em seguida, acesse a notificação recebida logo após a conexão ao wi-fi, como na imagem abaixo.

Figura 13 - Notificação da rede LedZ (Metade do nome foi censurado para preservar a segurança da rede)

Caso essa notificação não apareça, acesse <u>este link</u> para acessar a aplicação, garantindo que seu dispositivo esteja conectado ao wifi LedZ.

4.4.2. Acessando a Plataforma de Configuração

Figura 14 - Localização do monitor serial no Arduino IDE.

- 1. Obtenha o link indicado no monitor serial do código.
- 2. Cole esse link na barra superior de pesquisa em qualquer navegador e acesse o site.

4.4.3. Configurando o Wi-Fi

Figura 15 - Tela inicial do Lan de Zeppelin.

- 1. Na plataforma de configuração, clique em "Configurar WiFi".
- 2. Selecione a rede Wi-Fi à qual o dispositivo será conectado. Caso não apareça nenhuma rede, clique em "Atualizar" no rodapé da página.

Figura 16 - Escolha das redes.

4.4.4. Configurando o Ubidots

- 1. Acesse o Ubidots por meio de qualquer navegador.
- 2. Faça login na plataforma.
- 3. No ícone do perfil no canto superior direito, clique em "API Credentials".

Figura 17 - Localização do "API Credentials" no Ubidots.

- 4. Copie o Token disponível em "Default Tokens".
- 5. Cole o Token na seção "Token do Ubidots" na plataforma de configuração.

Figura 18 - Localização da seção "Token do ubidots".

4.4.5 Personalizando as Configurações do Dispositivo

Figura 19 - Seções de personalização do dispositivo e salvamento.

- 1. Nomeie o dispositivo.
- 2. Defina a unidade de medida e o valor mínimo para alerta.

- 3. No campo de calibração, insira o resultado da divisão do valor lido pelo sensor pelo valor real da massa conhecida do objeto, ambos em kg.
- 4. Escolha a frequência do envio em milissegundos.
- 5. Se desejar realizar a tara no momento da configuração, ative ou desative a caixa de seleção conforme sua decisão.

4.4.6 Salvando as Configurações

Clique em "Salvar" para aplicar as configurações realizadas.

4.5. Ajustes

4.5.1. Substituição do cartão de memória

Para substituir o cartão de memória basta remover a tampa abaixo da case e trocar o cartão localizado dentro do leitor de micro SD.

Figura 20 - Localização do cartão de memória no hardware.

4.5.2. Reinicialização do dispositivo

Para realizar a reinicialização do dispositivo aguarde o LED vermelho começar a piscar após concluir a instalação dos sensores. Quando o LED ligar, pressione o botão denominado "ALERTA" no dispositivo. Assim, as configurações anteriores serão deletadas e as conexões canceladas.

Figura 21 - Localização do botão de reinicialização.

4.5.3. Recalibrar o sensor

Para recalibrar o sensor siga o tópico 3 da seção 4.3.5.

5. Guia de Operação (sprint 4)

5.1. Operação do Hardware

Esse tópico contém descrições detalhadas sobre como os componentes operam no dispositivo completo.

Observação: O posicionamento dos componentes na imagem pode não representar o dispositivo final.

Figura 22 - Dispositivo com componentes

1. Antena Wi-Fi:

 Utilizada para estabelecer a conexão do ESP32 com redes Wi-Fi, permitindo a comunicação e transferência de dados.

2. Buzzer:

 Oferece feedback sonoro indicativo do estado da célula de carga, auxiliando na compreensão do funcionamento do dispositivo.

3. LCD I2C:

 Exibe a quantidade de massa aplicada sobre a célula de carga, proporcionando uma interface visual para o usuário acompanhar as medições em tempo real. Além disso, apresenta uma confirmação visual de que o dispositivo está corretamente conectado ao broker.

4. ESP32:

 Microcontrolador responsável pelo processamento das informações, controle geral do dispositivo e comunicação com outros dispositivos ou plataformas online.

5. Botão de reinício:

 Pressionado para reiniciar o dispositivo, essencial para ser utilizado após a instalação do mesmo na obra, garantindo que as configurações anteriores sejam apagadas e a conexão com outros dispositivos seja cancelada.

6. LED Vermelho:

 Funciona como um indicador visual de alerta, informando que o dispositivo está pronto para ser reiniciado.

7. LED RGB:

 Fornece feedback visual do estado da célula de carga.
 No estado padrão, permanece verde; entretanto, caso a deformação exceda o limite estabelecido, a cor pode mudar para alertar sobre condições fora do padrão.

8. Botão de Configuração (CONFIG):

 Utilizado para configurar o dispositivo. Facilita o processo de operação do sistema.

9. Entrada Ethernet:

 Permite a conexão com a internet por meio de uma conexão com fio, garantindo uma opção estável para a comunicação online do ESP32.

10. Sensor DHT11:

 Mede a temperatura e a umidade do ambiente. Deve ser instalado fora da case para garantir leituras precisas.

11. Porta-Baterias:

 Conecta-se às baterias que alimentam o ESP32, proporcionando uma fonte de energia independente e garantindo o funcionamento contínuo do dispositivo.

12. Módulo de Leitura do Cartão Micro SD:

 Conecta o cartão micro SD ao ESP32, permitindo o armazenamento de dados localmente e facilitando a recuperação de informações históricas.

5.2. Operação do Software

5.2.1. Dashboards no Ubidots

1. Acessando dashboards

- Após efetuar o login no Ubidots, na tela inicial, selecione o dispositivo desejado.
- Abra um dashboard existente clicando na seção "Data" na barra superior do site.

2. Dashboard da obra:

Figura 23 - Exemplo de dashboard de uma obra no Ubidots.

- No início da tela do dashboard de uma obra monitorada, existem 4 widgets principais. O primeiro e principal é o gráfico de linha que apresenta o histórico de força aplicada à célula de carga, na qual o eixo x representa a data e horário em que a força foi aplicada, e o eixo y a intensidade da força.
- Os widgets restantes representam um monitoramento em tempo real de três medições realizadas pelo dispositivo, a umidade do ambiente em porcentagem (intitulado de "Tank widget" no dashboard), a temperatura do ambiente em graus celsius (intitulado de "Thermometer widget") e por fim a força aplicada em formato de "gauge" ou manômetro.

3. Exportando Dados:

Figura 24 - Localização da opção de exportação de dados no Ubidots.

 Para exportar dados de qualquer um dos widgets, basta clicar nos três pontos no canto superior direito de um deles e clicar na opção "Export data". Em sequência, basta selecionar a data da medição dos dados, o email para recepção dos dados, e selecionar "OK". Por fim, será enviado um email pros destinatários fornecidos com os dados para excel.

5.2.2. Como criar widgets no Ubidots

- 1. No canto superior direito do dashboard, clique no símbolo "+".
- 2. Escolha o tipo de widget desejado.
- 3. Adicione a variável adequada ao widget, selecionando-a no dispositivo (Exemplo: ao criar um widget de temperatura, escolha a variável de temperatura).

Figura 25 - Tela de adição de widgets no Ubidots.

5.2.3. Recebendo notificações sobre o estado do dispositivo

1. Acesso ao Menu de Eventos:

 No Ubidots, clique em "Data" na barra superior e acesse o menu de eventos (Events).

2. Criação de Evento:

- No canto superior direito do menu de eventos, clique no símbolo "+".
- o Selecione a variável de peso em "Variable".
- o Em "Condition", escolha a opção "Greater than".
- Digite o limite definido para o dispositivo na obra em "Trigger Value".

3. Configuração de Ações:

- No menu "Actions", adicione a ação desejada para quando o dispositivo atingir o limite.
- o Configure as ações conforme sua preferência.

4. Finalizando Configurações:

 Conclua as configurações no menu "Settings" e salve o evento.

Figura 26 - Tela de criação de eventos.

6. Troubleshooting

(sprint 4)

Nesta seção são listados problemas/falhas comuns que podem acontecer com o dispositivo e, consequentemente, como resolvê-los.

#	Problema	Possível solução
1	Medição não é mostrada no Ubidots	a) Verifique se o token foi colado corretamente na página de configuração do WiFi.
2	Componente do dispositivo apresenta mal-funcionamento/não funciona	 a) Verifique se as portas dos componentes estão corretas no código. b) Verificar se os componentes estão bem encaixados. c) Verifique se os componentes estão encaixados nos lugares

		corretos.
3	Insuficiência de espaço no cartão de memória	a) Substitua o cartão de memória, como indicado na seção 4.4.1.
4	Medição imprecisa	a) Recalibre o sensor.
5	Ausência de alimentação	a) Substitua a bateria, seguindo a seção 2.3.
6	Lan de Zeppelin não pode ser acessado	a) Verifique se o dispositivo utilizado para se acessar a configuração está conectado ao Wi-Fi do ESP32
7	Cartão de memória não armazena os dados	a) Verifique se o cartão está bem encaixado no módulo. Caso esteja, desligue o ESP32, retire o cartão e coloque-o de novo.