In [23]: import pandas as pd
import numpy as np

datos = pd.read_csv('C:/Users/Villamar/Desktop/JOSS/SEXTOSEMESTRE/MODELAMIENTOSIN
#datos.head()
datos

Out[23]:

	PAG	0	PRO	PROBABILIDAD
()	0	0.83	0.83
•	1 50	0	0.06	0.06
:	2 100	0	0.05	0.05
;	3 200	0	0.02	0.02
4	4 500	0	0.02	0.02
į	5 800	0	0.01	0.01
(1000	00	0.01	0.01

```
In [2]: demanda = datos.filter(items=["DIA", "DIASEMANA", "NO_ATENDIDOS"])
```

In [3]: # desplegamos los datos de los 5 primeros registros
demanda.head()

Out[3]:

	DIA	DIASEMANA	NO_ATENDIDOS
0	1	Lunes	68
1	1	Lunes	51
2	1	Lunes	40
3	1	Lunes	36
4	1	Lunes	29

```
In [4]: demandas = demanda.groupby("DIASEMANA")
```

```
In [5]: demandas.sum()
```

Out[5]:

DIA NO_ATENDIDOS

DIASEMANA		
Domingo	63	261
Jueves	32	235
Lunes	9	393
Martes	18	335
Miercoles	27	274
Sábado	54	294
Viernes	40	290

```
In [6]: # Obtenemos La media de cada uno de Las frecuencias
demandas.mean()
```

Out[6]:

DIA NO_ATENDIDOS

DIASEMANA			
Domingo	7.0	29.000000	
Jueves	4.0	29.375000	
Lunes	1.0	43.666667	
Martes	2.0	37.222222	
Miercoles	3.0	30.44444	
Sábado	6.0	32.666667	
Viernes	5.0	36 250000	

```
In [7]: tot = demandas.mean()
tot
```

Out[7]:

DIA NO_ATENDIDOS

DIASEMANA

```
Domingo
           7.0
                      29.000000
  Jueves
           4.0
                      29.375000
   Lunes
           1.0
                      43.666667
  Martes
           2.0
                      37.222222
Miercoles
           3.0
                      30.44444
 Sábado
           6.0
                      32.666667
 Viernes
           5.0
                      36.250000
```

```
In [8]: # Ordenamos por Día
suma = tot['NO_ATENDIDOS'].sum()
n=len(tot)
suma
x1 = tot.assign(Probabilidad=lambda x: x['NO_ATENDIDOS'] / suma)
x2 = x1.sort_values('DIA')
a=x2['Probabilidad']
a
```

Out[8]: DIASEMANA

Lunes 0.182993
Martes 0.155986
Miercoles 0.127583
Jueves 0.123101
Viernes 0.151912
Sábado 0.136895
Domingo 0.121530

Name: Probabilidad, dtype: float64

```
In [9]: a1= np.cumsum(a) #Cálculo la suma acumulativa de las probabilidades
x2['FPA'] =a1
x2
```

Out[9]:

	DIA	NO_ATENDIDOS	Probabilidad	FPA
DIASEMANA				
Lunes	1.0	43.666667	0.182993	0.182993
Martes	2.0	37.222222	0.155986	0.338979
Miercoles	3.0	30.444444	0.127583	0.466562
Jueves	4.0	29.375000	0.123101	0.589663
Viernes	5.0	36.250000	0.151912	0.741575
Sábado	6.0	32.666667	0.136895	0.878470
Domingo	7.0	29.000000	0.121530	1.000000

```
In [10]: x2['Min'] = x2['FPA']
x2['Max'] = x2['FPA']
x2
```

Out[10]:

	DIA	NO_ATENDIDOS	Probabilidad	FPA	Min	Max
DIASEMANA						
Lunes	1.0	43.666667	0.182993	0.182993	0.182993	0.182993
Martes	2.0	37.222222	0.155986	0.338979	0.338979	0.338979
Miercoles	3.0	30.444444	0.127583	0.466562	0.466562	0.466562
Jueves	4.0	29.375000	0.123101	0.589663	0.589663	0.589663
Viernes	5.0	36.250000	0.151912	0.741575	0.741575	0.741575
Sábado	6.0	32.666667	0.136895	0.878470	0.878470	0.878470
Domingo	7.0	29.000000	0.121530	1.000000	1.000000	1.000000

```
In [11]: lis = x2["Min"].values
lis2 = x2['Max'].values
lis[0] = 0
for i in range(1,7):
    lis[i] = lis2[i-1]
    print(i,i-1)
    x2['Min'] = lis
x2
```

1 0

2 1

3 2

4 3

5465

Out[11]:

	DIA	NO_ATENDIDOS	Probabilidad	FPA	Min	Max
DIASEMANA						
Lunes	1.0	43.666667	0.182993	0.182993	0.000000	0.182993
Martes	2.0	37.222222	0.155986	0.338979	0.182993	0.338979
Miercoles	3.0	30.444444	0.127583	0.466562	0.338979	0.466562
Jueves	4.0	29.375000	0.123101	0.589663	0.466562	0.589663
Viernes	5.0	36.250000	0.151912	0.741575	0.589663	0.741575
Sábado	6.0	32.666667	0.136895	0.878470	0.741575	0.878470
Domingo	7.0	29.000000	0.121530	1.000000	0.878470	1.000000

```
In [12]: # Generamos los 62 # aleatorios por cualquiera de los métodos estudiados y luego
# Generador de números aleatorios Congruencia lineal
# Borland C/C++ xi+1=22695477xi + 1 mod 2^32
n, m, a, x0, c = 52, 2**32, 22695477, 4, 1
x = [1] * n
r = [0.1] * n
for i in range(0, n):
x[i] = ((a*x0)+c) % m
x0 = x[i]
r[i] = x0 / m
# Llenamos nuestro DataFrame
d = {'ri': r }
dfMCL = pd.DataFrame(data=d)
dfMCL
```

Out[12]:

	ri
0	0.021137
1	0.992121
2	0.164339
3	0.063835
4	0.661529
5	0.400824
6	0.248127
7	0.586098
8	0.107008
9	0.849288
10	0.624741
11	0.476402
12	0.051529
13	0.232983
14	0.081332
15	0.736542
16	0.268061
17	0.883159
18	0.647850
19	0.000471
20	0.508672
21	0.177622
22	0.999577
23	0.524479
24	0.764966
25	0.750150

ri

- 0.087186
- 0.736931
- 0.685749
- 29 0.532911
- 0.416229
- 0.706958
- 0.198789
- 0.116261
- 0.647896
- 0.141468
- 0.633563
- 0.160312
- 0.442957
- 0.769847
- 0.891846
- 0.842619
- 0.720730
- 0.225738
- 0.463035
- 0.576381
- 0.754969
- 0.785257
- 0.331067
- 49 0.483528
- 0.778536
- 0.571038

```
In [15]:
          def busqueda(arrmin, arrmax, valor):
          #print(valor)
              for i in range (len(arrmin)):
                   # print(arrmin[i],arrmax[i])
                   if valor >= arrmin[i] and valor <= arrmax[i]:</pre>
                       return i
                       print(i)
              return -1
         xpos = dfMCL['ri']
         posi = [0] * n
         print (n)
         for j in range(n):
              val = xpos[j]
              pos = busqueda(min,max,val)
              posi[j] = pos
         52
In [16]:
          x2 = x2.astype({"DIA" : int})
Out[16]:
                      DIA NO_ATENDIDOS Probabilidad
                                                       FPA
                                                                Min
                                                                        Max
          DIASEMANA
                        1
                               43.666667
                                           0.182993  0.182993  0.000000  0.182993
               Lunes
               Martes
                        2
                               37.222222
                                           Miercoles
                               30.444444
                                           29.375000
                                           0.123101  0.589663  0.466562  0.589663
              Jueves
                        4
              Viernes
                               36.250000
                                           0.151912  0.741575  0.589663  0.741575
                        5
              Sábado
                               32.666667
                                           0.136895  0.878470  0.741575  0.878470
                               29.000000
             Domingo
                       7
                                           0.121530 1.000000 0.878470 1.000000
In [17]: x2.dtypes
Out[17]: DIA
                            int32
         NO ATENDIDOS
                          float64
         Probabilidad
                          float64
         FPA
                          float64
         Min
                          float64
                          float64
         Max
         dtype: object
In [18]:
          x2.axes[0]
Out[18]: Index(['Lunes', 'Martes', 'Miercoles', 'Jueves', 'Viernes', 'Sábado',
                 'Domingo'],
                dtype='object', name='DIASEMANA')
```

```
In [19]: x2.set index('DIA')
Out[19]:
               NO_ATENDIDOS Probabilidad
                                            FPA
                                                     Min
                                                             Max
          DIA
            1
                    43.666667
                                2
                    37.222222
                                0.155986 0.338979
                                                0.182993 0.338979
            3
                    30.44444
                                29.375000
            4
                                0.123101  0.589663  0.466562  0.589663
            5
                    36.250000
                                0.151912 0.741575 0.589663
                                                         0.741575
            6
                    32.666667
                                0.136895 \quad 0.878470 \quad 0.741575 \quad 0.878470
            7
                    29.000000
                                0.121530 1.000000 0.878470 1.000000
In [20]:
          import itertools
         import math
         simula = []
         for j in range(n):
              for i in range(n):
                   sim = x2.loc[x2["DIA"] == posi[i]+1]
                   simu = sim. filter(['NO ATENDIDOS']). values
                   iterator = itertools.chain(*simu)
                   for item in iterator:
                       a=item
                   simula.append(round(a,2))
         simula
          43.67,
          29.38,
          43.67,
          29.0,
          29.38,
          32.67,
          32.67,
          43.67,
          36.25,
          36.25,
          29.38,
          30.44,
          36.25,
          37.22,
          43.67,
          36.25,
          43.67,
          36.25,
          43.67,
In [21]: dfMCL["Simulación"] = pd.DataFrame(simula)
         dfMCL["Costo de Atención"] = dfMCL["Simulación"] * 50
```

In [22]: dfMCL

Out[22]:

	ri	Simulación	Costo de Atención
0	0.021137	43.67	2183.5
1	0.992121	29.00	1450.0
2	0.164339	43.67	2183.5
3	0.063835	43.67	2183.5
4	0.661529	36.25	1812.5
5	0.400824	30.44	1522.0
6	0.248127	37.22	1861.0
7	0.586098	29.38	1469.0
8	0.107008	43.67	2183.5
9	0.849288	32.67	1633.5
10	0.624741	36.25	1812.5
11	0.476402	29.38	1469.0
12	0.051529	43.67	2183.5
13	0.232983	37.22	1861.0
14	0.081332	43.67	2183.5
15	0.736542	36.25	1812.5
16	0.268061	37.22	1861.0
17	0.883159	29.00	1450.0
18	0.647850	36.25	1812.5
19	0.000471	43.67	2183.5
20	0.508672	29.38	1469.0
21	0.177622	43.67	2183.5
22	0.999577	29.00	1450.0
23	0.524479	29.38	1469.0
24	0.764966	32.67	1633.5
25	0.750150	32.67	1633.5
26	0.087186	43.67	2183.5
27	0.736931	36.25	1812.5
28	0.685749	36.25	1812.5
29	0.532911	29.38	1469.0
30	0.416229	30.44	1522.0
31	0.706958	36.25	1812.5
32	0.198789	37.22	1861.0
33	0.116261	43.67	2183.5

	ri	Simulación	Costo de Atención
34	0.647896	36.25	1812.5
35	0.141468	43.67	2183.5
36	0.633563	36.25	1812.5
37	0.160312	43.67	2183.5
38	0.442957	30.44	1522.0
39	0.769847	32.67	1633.5
40	0.891846	29.00	1450.0
41	0.842619	32.67	1633.5
42	0.720730	36.25	1812.5
43	0.225738	37.22	1861.0
44	0.463035	30.44	1522.0
45	0.576381	29.38	1469.0
46	0.754969	32.67	1633.5
47	0.785257	32.67	1633.5
48	0.331067	37.22	1861.0
49	0.483528	29.38	1469.0
50	0.778536	32.67	1633.5
51	0.571038	29.38	1469.0