Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Analysis in einer Variable für LAK Roland Steinbauer, Wintersemester 2012/13

1. Prüfungstermin (11.1.2013)

Gruppe A

- 1. Definitionen, Sätze & Beweise.
 - (a) Definiere die folgenden Begriffe: (in einem Punkt) differenzierbare Funktion, Stammfunktion, Wendestelle einer Funktion, Riemann-integrierbare Funktion (inkl. Ober- und Unterintegral) (1+1+1+2 Punkte)
 - (b) Formuliere die Regel zur partiellen Integration und beweise sie. (3 Punkte)
 - (c) Formuliere den Satz von Rolle und beweise ihn. Wo und wie wird die Stetigkeit der Funktion verwendet? (6 Punkte)
- 2. Grundideen.
 - (a) Diskutiere die Bedeutung des Hauptsatzes der Differential- und Integralrechnung. (4 Punkte)
 - (b) Diskutiere, was es anschaulich für eine Funktion bedeutet, an einer Stelle nicht differenzierbar zu sein. (2 Punkte)
- 3. Vermischtes.
 - (a) Sei $f: I \to \mathbb{R}$ differenzierbar in $\xi \in I$ und sei $f(\xi) \neq 0$. Zeige:

$$\left(\frac{1}{f}\right)'(\xi) = -\frac{f'(\xi)}{f^2(\xi)} \qquad (2 \text{ Punkte})$$

(b) Sei $f: I \to \mathbb{R}$ differenzierbar mit der Eigenschaft $\exists C > 0$, sodass $|f'(\xi)| \leq C$ für alle $\xi \in I$. Zeige, dass dann für alle $x, y \in I$ gilt

$$|f(x) - f(y)| \le C |x - y|$$
. (2 Punkte)

- (c) Beweise: Hat eine differenzierbare Funktion $f: I \to \mathbb{R}$ ein lokales Extremum in einem inneren Punkt ξ von I, dann verschwindet $f'(\xi)$. (2 Punkte)
- (d) Zeige: $(x^{\alpha})' = \alpha x^{\alpha-1} \ (\alpha \in \mathbb{R}, x > 0)$ (2 Punkte)

Bitte umblättern!

- 4. Beispiele und Gegenbeispiele.
 - (a) Zeige: |x| ist in x = 0 nicht differenzierbar. (1 Punkt)
 - (b) Berechne $\int \log(x) dx$. (1 Punkt)
 - (c) Diskutiere im Detail ein Beispiel einer differenzierbaren Funktion, die nicht stetig differenzierbar ist. (2 Punkte)
 - (d) Sei $f: \mathbb{R} \to (0, \infty)$ differenzierbar. Wo ist $g(x) := \sqrt{f(x)}$ differenzierbar? Berechne die Ableitung von g. (2 Punkte)
- 5. Richtiq oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib jeweils eine kurze Begründung oder ein Gegenbeispiel. (Je 2 Punkte)

- (a) Jede zweimal differenzierbare Funktion ist stetig differenzierbar.
- (b) $\int_0^1 \frac{dx}{x}$ konvergiert.
- (c) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Dann ist f Riemann-integrierbar auf jedem Intervall [a, b].