Mathematical Logic (M345P65) Problem Sheet 3

- [1] The first-order language \mathcal{L} has one unary function symbol f and one unary relation symbol P. Let ϕ be the formula $(\forall x_1)(P(x_1) \to P(f(x_1)))$. Give an interpretation of \mathcal{L} in which ϕ is true, and one in which it is false.
- [2] In each of the following cases a first-order language \mathcal{L}_i and two \mathcal{L}_i -structures \mathcal{A}_i , \mathcal{B}_i are given. In each case, write down a sentence of \mathcal{L}_i which is true in \mathcal{A}_i but not in \mathcal{B}_i . Explain your answers briefly (your argument need not involve valuations).
- (a) \mathcal{L}_1 has a single binary relation symbol R. The domain of \mathcal{A}_1 is \mathbb{N} and $R(x_1, x_2)$ is interpreted as $x_1 \leq x_2$. The domain of \mathcal{B}_1 is \mathbb{Z} and $R(x_1, x_2)$ is interpreted as $x_1 \leq x_2$.
- (b) \mathcal{L}_2 has a single binary relation symbol R. The domain of \mathcal{A}_2 is \mathbb{Z} and $R(x_1, x_2)$ is interpreted as $x_1 < x_2$. The domain of \mathcal{B}_2 is \mathbb{Q} (the set of rational numbers) and $R(x_1, x_2)$ is interpreted as $x_1 < x_2$.
- (c) \mathcal{L}_3 has a single unary function symbol f and a single binary relation symbol E. The domain of \mathcal{A}_3 is \mathbb{N} and f is interpreted as the function $x_1 \mapsto x_1 + 1$. The domain of \mathcal{B}_3 is \mathbb{Z} and f is interpreted as the function $x_1 \mapsto x_1 + 2$. In both structures E is interpreted as equality.
- (d) \mathcal{L}_4 has a single binary relation symbol R. The domain of \mathcal{A}_4 is \mathbb{N} and $R(x_1, x_2)$ is interpreted as ' x_1, x_2 are congruent modulo 3'. The domain of \mathcal{B}_4 is \mathbb{N} and $R(x_1, x_2)$ is interpreted as ' x_1, x_2 are congruent modulo 5'.
- [3] The language \mathcal{L} has a binary relation symbol E, a binary function symbol m, a unary function symbol i and a constant symbol e. Let G be a group and consider G as an \mathcal{L} -structure by interpreting E as equality, m as multiplication, i as inversion, and e as the identity element of G. Let v be a valuation (of \mathcal{L}) in G and let

$$H = \{v(t) : t \text{ is a term of } \mathcal{L}\}.$$

- (a) Show that H is a subgroup of G.
- (b) Show that H is generated by $\{v(x_i): x_i \text{ is a variable of } \mathcal{L}\}$.
- (c) What is H if we omit the function symbol i from the language?
- [4] Let ϕ be a formula in a first-order language \mathcal{L} and let v be a valuation (in some \mathcal{L} -structure \mathcal{A}). Suppose there is a valuation v' which is x_i -equivalent to v and satisfies ϕ . Show that v satisfies $(\exists x_i)\phi$.
- [5] Suppose F is a field. The language \mathcal{L}_F appropriate for considering F-vector spaces V has a 2-ary relation symbol R (for equality); a 2-ary function symbol a (for addition in the vector space); a constant symbol 0 (for the zero vector) and, for every $\alpha \in F$, a 1-ary function symbol f_{α} (for scalar multiplication by α).

Convince yourself that it is possible to express the axioms for being an F-vector space as a set of formulas in this language.

David Evans, October 2018.