Synthétiseur table d'onde

Sommaire

- 1. Synthétiseur mixeur d'ondes
- 2. Synthétiseur table d'onde

Principe de fonctionnement

1. Synthétiseur mixeur d'ondes

Variation des paramètres

Synthétiseur Table d'onde

26. incrémentation du compteur de fichiers traités

27. retourne la liste waveform list

Start 1. importation des librairies numpy, pydub, matplotlib.pyplot et mpl toolkits.mplot3d, ainsi que la librairie os 2. création des fonctions: get waveform, normalize array, autocorr fft, get pseudo period, get waveform array 3. init input folder path, limit period, aveform array = get waveform array(n): For arrêt de la boucle si le nombre de fichiers atteint n 21. Condition traitement du fichier uniquement s'il a l'extension .wav 22. appel de la fonction get pseudo period pour obtenir la valeur de la pseudo-période 23. Condition si la valeur de la pseudo-période est inférieure à limit period, traitement du fichier suivant 24. sinon, appel de la fonction get_waveform pour extraire les sous-tableaux de taille 1/T 25. ajout du tableau des sous-tableaux de taille 1/T à la liste waveform list

Générateur Table d'onde

- -> création d'une fonction figure_diplay qui affiche chaque sous-tableau de la liste waveform_array sous forme de figure -> création d'une fonction write, waveform, c. array qui prend la
- -> création d'une fonction write_waveform_c_array qui prend la liste waveform_array et le chemin d'un fichier c en entrée

- 30. ouverture du fichier en écriture
- 31. écriture de la déclaration du tableau waveform_array en C
- parcours de chaque fichier dans la liste waveform_array
- 33. écriture des sous-tableaux du fichier courant dans le fichier C
- 34. retourne le tableau des sous-tableaux de taille N

Générateur Table d'onde

get_waveform prend le chemin d'un fichier audio et un entier N en entrée

- lecture du fichier audio et extraction des N premiers échantillons ou de la totalité du fichier audio si N est supérieur à la longueur du fichier
- normalisation des échantillons extraits
- 5. division des échantillons en sous-tableaux de taille N
- 6. retourne le tableau des sous-tableaux de taille N

normalize_array normalise les valeurs d'un tableau en utilisant la valeur maximale autocorr_fft calcule l'autocorrélation d'un signal audio en utilisant la FFT

get_pseudo_period prend un signal audio y et une fréquence d'échantillonnage fs en entrée 11. calcul de l'autocorrélation du signal audio en appelant la fonction

 suppression des valeurs négatives de lags

autocorr fft

- 13. recherche du premier maximum après le pic principal
- 14. conversion de l'index en temps
- retourne la valeur de la pseudo-période T