# DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120 DEPTH-FIRST SEARCH

#### **AGENDA**

- Depth-first search algorithm
  - Timestamp
  - Depth-first trees (forest)
  - Parenthesized expression

#### DEPTH-FIRST SEARCH (DFS)

- The strategy is to **search "deeper" in the graph** whenever possible
- It explores edges out of the most recently discovered vertex v that still has unexplored edges leaving it
- If any undiscovered vertices remain, then depth-first search selects one of them as a new source.
- The algorithm repeats this entire process until it has discovered every vertex.

#### THE DFS ALGORITHM

- Input
  - a graph G = (V, E) that is represented BY **adjacency lists**
- The algorithm selects an undiscovered vertex as a new source.
- Then it uses a **DFS-VISIT** procedure to **explores edges**.

```
DFS (G)

I for each vertex u \in G.V

2    u.color = WHITE

3    u.\pi = NIL

4time = 0

5for each vertex u \in G.V

6    if u.color == WHITE

7    DFS-VISIT (G,u)
```

#### THE DFS ALGORITHM THE VERTEX OBJECT

- For each vertex  $u \in V$ ,
  - -u. d the time vertex u is **discovered**.
  - u. f the time vertex u is **finished**.
  - u.color distinguish between discovered and undiscovered vertices. Vertex u is
    - White before time *u*. *d*,
    - Gray between time u.d and u.f, and
    - Black thereafter.
  - $u.\pi$  the **predecessor** of vertex u.
    - If u has no predecessor, then  $u.\pi = \text{NIL}$ .

| DFS | S (G)                              |
|-----|------------------------------------|
| 1   | <b>for</b> each vertex $u \in G.V$ |
| 2   | u.color = WHITE                    |
| 3   | $u.\pi = NIL$                      |
| 4   | time = 0                           |
| 5   | <b>for</b> each vertex $u \in G.V$ |
| 6   | if $u.color == WHITE$              |
| 7   | $DFS\text{-}VISIT\;(G,u)$          |

| $DFS-VISIT\;(G,u)$                 |  |
|------------------------------------|--|
| Itime = time + 1                   |  |
| 2u.d = time                        |  |
| 3u.color = GRAY                    |  |
| <b>4 for</b> each $v \in G.Adj[u]$ |  |
| 5 <b>if</b> $v.color == WHITE$     |  |
| 6 $u.\pi = u$                      |  |
| 7 DFS-VISIT $(G, v)$               |  |
| 8u.color = BLACK                   |  |
| 9time = time + 1                   |  |
| 10u.f = time                       |  |

#### THE DFS ALGORITHM TIMESTAMP

- The *time* variable is a global timestamp.
- The algorithm *timestamps* each vertex:
  - The u. d records when u is first **discovered** (and **grayed**), and
  - the u. f records when the search **finishes** examining u's adjacency list (and blackens u).
  - For each node u, u. d < u. f.
- These timestamps are integers **between 1 and 2**|V|, since there is **one discovery** event and **one finishing** event for each of the |V| vertices.

| DF | <b>S</b> (G)                       |
|----|------------------------------------|
| 1  | <b>for</b> each vertex $u \in G.V$ |
| 2  | u.color = WHITE                    |
| 3  | $u.\pi = NIL$                      |
| 4  | time = 0                           |
| 5  | <b>for</b> each vertex $u \in G.V$ |
| 6  | if $u.color == WHITE$              |
| 7  | $DFS\text{-}VISIT\;(G,u)$          |

| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| ı  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.



• Global timer: *time* =

Stack is used to show the working process of DFS-VISIT algorithm

Stack

| <b>DFS</b> ( <i>G</i> ) |                                    |  |
|-------------------------|------------------------------------|--|
| I                       | <b>for</b> each vertex $u \in G.V$ |  |
| 2                       | u.color = WHITE                    |  |
| 3                       | $u.\pi = NIL$                      |  |
| 4                       | time = 0                           |  |
| 5                       | <b>for</b> each vertex $u \in G.V$ |  |
| 6                       | if $u.color == WHITE$              |  |
| 7                       | $DFS\text{-}VISIT\;(G,u)$          |  |
|                         |                                    |  |

| DF | $DFS-VISIT\;(G,u)$                    |  |
|----|---------------------------------------|--|
| I  | time = time + 1                       |  |
| 2  | u.d = time                            |  |
| 3  | u.color = GRAY                        |  |
| 4  | <b>for</b> each $v \in G.Adj[u]$      |  |
| 5  | if $v.color == WHITE$                 |  |
| 6  | $v.\pi = u$                           |  |
| 7  | $DFS-VISIT\;(G,v)$                    |  |
| 8  | u.color = BLACK                       |  |
| 9  | time = time + 1                       |  |
| 10 | u.f = time                            |  |
|    | · · · · · · · · · · · · · · · · · · · |  |

Apply the algorithm on the graph below.



• Global timer: time = 0



| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.



Adjacency list

$$r \rightarrow s \rightarrow x$$

$$s \rightarrow y$$

$$t \to y \to z$$

$$x \to s$$

$$y \rightarrow x$$

$$Z \rightarrow Z$$

• Global timer: time = 1

 $\mathsf{DFS}\text{-}\mathsf{VISIT}(G, r)$ 

Stack

| <b>DFS</b> ( <i>G</i> ) |                                    |  |
|-------------------------|------------------------------------|--|
| I                       | <b>for</b> each vertex $u \in G.V$ |  |
| 2                       | u.color = WHITE                    |  |
| 3                       | $u.\pi = NIL$                      |  |
| 4                       | time = 0                           |  |
| 5                       | <b>for</b> each vertex $u \in G.V$ |  |
| 6                       | if $u.color == WHITE$              |  |
| 7                       | $DFS\text{-}VISIT\;(G,u)$          |  |

| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.







$$t \to y \to z$$

$$x \to s$$

$$y \rightarrow x$$

$$Z \rightarrow Z$$



DFS-VISIT(G, s)

 $\mathsf{DFS}\text{-}\mathsf{VISIT}(G,r)$ 

Stack

#### 

| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  |                                  |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.



• Global timer: time = 2



DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G,u)

| $DFS\text{-VISIT}\;(G,u)$         |  |
|-----------------------------------|--|
| Itime = time + 1                  |  |
| 2u.d = time                       |  |
| 3u.color = GRAY                   |  |
| <b>4for</b> each $v \in G.Adj[u]$ |  |
| 5 <b>if</b> $v.color == WHITE$    |  |
| 6 $v.\pi = u$                     |  |
| 7 DFS-VISIT $(G, v)$              |  |
| 8u.color = BLACK                  |  |
| 9time = time + 1                  |  |
| 10u.f = time                      |  |

Apply the algorithm on the graph below.



• Global timer: time = 3



**DFS** (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G, u)

| DF | $DFS-VISIT\;(G,u)$               |  |
|----|----------------------------------|--|
| I  | time = time + 1                  |  |
| 2  | u.d = time                       |  |
| 3  | u.color = GRAY                   |  |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |  |
| 5  | if $v.color == WHITE$            |  |
| 6  | $v.\pi = u$                      |  |
| 7  | $DFS-VISIT\;(G,v)$               |  |
| 8  | u.color = BLACK                  |  |
| 9  | time = time + 1                  |  |
| 10 | u.f = time                       |  |

Apply the algorithm on the graph below.



• Global timer: time = 4



DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G, u)

| $DFS-VISIT\;(G,u)$                | DF |
|-----------------------------------|----|
| Itime = time + 1                  | I  |
| 2u.d = time                       | 2  |
| 3u.color = GRAY                   | 3  |
| <b>4for</b> each $v \in G.Adj[u]$ | 4  |
| 5 <b>if</b> $v.color == WHITE$    | 5  |
| 6 $v.\pi = u$                     | 6  |
| 7 DFS-VISIT $(G, v)$              | 7  |
| 8u.color = BLACK                  | 8  |
| 9time = time + 1                  | 9  |
| 10u.f = time                      | 10 |

• Apply the algorithm on the graph below.



• Global timer: time = 5



DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G, u)



• Apply the algorithm on the graph below.



• Global timer: time = 6



| DF | <b>S</b> (G)                       |
|----|------------------------------------|
| I  | <b>for</b> each vertex $u \in G.V$ |
| 2  | u.color = WHITE                    |
| 3  | $u.\pi = NIL$                      |
| 4  | time = 0                           |
| 5  | <b>for</b> each vertex $u \in G.V$ |
| 6  | if $u.color == WHITE$              |
| 7  | $DFS\text{-}VISIT\;(G,u)$          |

| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.



• Global timer: time = 7



| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |

Apply the algorithm on the graph below.



• Global timer: time = 8



DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G,u)

| $DFS-VISIT\;(G,u)$                |  |
|-----------------------------------|--|
| Itime = time + 1                  |  |
| 2u.d = time                       |  |
| 3u.color = GRAY                   |  |
| <b>4for</b> each $v \in G.Adj[u]$ |  |
| 5 <b>if</b> $v.color == WHITE$    |  |
| 6 $v.\pi = u$                     |  |
| 7 DFS-VISIT $(G, v)$              |  |
| 8u.color = BLACK                  |  |
| 9time = time + 1                  |  |
| 10u.f = time                      |  |

Apply the algorithm on the graph below.



• Global timer: time = 8



 $\mathsf{DFS}\text{-}\mathsf{VISIT}(G, t)$ 

Stack

 $\begin{array}{c} \textbf{DFS} \ (\textbf{\textit{G}}) \\ \textbf{Ifor} \ \text{each vertex} \ u \in G.V \\ 2 \qquad u. \ color = \textbf{WHITE} \\ 3 \qquad u. \ \pi = \textbf{NIL} \\ 4time = 0 \\ \hline \textbf{5for} \ \text{each vertex} \ u \in G.V \\ 6 \qquad \textbf{if} \ u. \ color == \textbf{WHITE} \\ 7 \qquad \textbf{DFS-VISIT} \ (G,u) \\ \end{array}$ 

| DF | $FS-VISIT\left( G,u ight)$       |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |

Apply the algorithm on the graph below.



• Global timer: time = 9



| DF | S-VISIT $(G, u)$                 |
|----|----------------------------------|
| I  | time = time + 1                  |
| 2  | u.d = time                       |
| 3  | u.color = GRAY                   |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$            |
| 6  | $v.\pi = u$                      |
| 7  | $DFS-VISIT\;(G,v)$               |
| 8  | u.color = BLACK                  |
| 9  | time = time + 1                  |
| 10 | u.f = time                       |
|    |                                  |

Apply the algorithm on the graph below.



• Global timer: time = 9



Stack

**DFS** (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G,u)

| DF | S-VISIT $(G, u)$          |
|----|---------------------------|
| I  | time = time + 1           |
| 2  | u.d = time                |
| 3  | u.color = GRAY            |
| 4  | for each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$     |
| 6  | $v.\pi = u$               |
| 7  | $DFS-VISIT\;(G,v)$        |
| 8  | u.color = BLACK           |
| 9  | time = time + 1           |
| 10 | u.f = time                |

Apply the algorithm on the graph below.



• Global timer: time = 10



Stack

DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G,u)

| Itime = time + 1                  |
|-----------------------------------|
|                                   |
| 2u.d = time                       |
| 3u.color = GRAY                   |
| <b>4for</b> each $v \in G.Adj[u]$ |
| 5 <b>if</b> $v.color == WHITE$    |
| 6 $v.\pi = u$                     |
| 7 DFS-VISIT $(G, v)$              |
| 8u.color = BLACK                  |
| 9time = time + 1                  |
| 10u.f = time                      |

Apply the algorithm on the graph below.



• Global timer: time = 11





| DF | S-VISIT $(G, u)$          |
|----|---------------------------|
|    | time = time + 1           |
| 2  | u.d = time                |
| 3  | u.color = GRAY            |
| 4  | for each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$     |
| 6  | $v.\pi = u$               |
| 7  | $DFS-VISIT\;(G,v)$        |
| 8  | u.color = BLACK           |
| 9  | time = time + 1           |
| 10 | u.f = time                |

Apply the algorithm on the graph below.



• Global timer: time = 12



DFS (G)

I for each vertex  $u \in G.V$ 2 u.color = WHITE3  $u.\pi = NIL$ 4time = 0

5for each vertex  $u \in G.V$ 6 if u.color == WHITE7 DFS-VISIT (G,u)

| DF | S-VISIT (G, u)            |
|----|---------------------------|
| I  | time = time + 1           |
| 2  | u.d = time                |
| 3  | u.color = GRAY            |
| 4  | for each $v \in G.Adj[u]$ |
| 5  | if $v.color == WHITE$     |
| 6  | $v.\pi = u$               |
| 7  | $DFS-VISIT\;(G,v)$        |
| 8  | u.color = BLACK           |
| 9  | time = time + 1           |
| 10 | u.f = time                |

Apply the algorithm on the graph below.



• Global timer: time = 12



| DF | <b>(S</b> (G)                      |
|----|------------------------------------|
| I  | <b>for</b> each vertex $u \in G.V$ |
| 2  | u.color = WHITE                    |
| 3  | $u.\pi = NIL$                      |
| 4  | time = 0                           |
| 5  | <b>for</b> each vertex $u \in G.V$ |
| 6  | if $u.color == WHITE$              |
| 7  | $DFS\text{-}VISIT\;(G,u)$          |
|    |                                    |

| $DFS-VISIT\;(G,u)$ |                                  |
|--------------------|----------------------------------|
| I                  | time = time + 1                  |
| 2                  | u.d = time                       |
| 3                  | u.color = GRAY                   |
| 4                  | <b>for</b> each $v \in G.Adj[u]$ |
| 5                  | if $v.color == WHITE$            |
| 6                  | $v.\pi = u$                      |
| 7                  | $DFS-VISIT\;(G,v)$               |
| 8                  | u.color = BLACK                  |
| 9                  | time = time + 1                  |
| 10                 | u.f = time                       |

Stack

#### THE DFS ALGORITHM THE RESULT

- Let  $G_{\pi} = (V, E_{\pi})$ , where  $E_{\pi} = \{(v, \pi, v) : v \in V \text{ and } v, \pi \neq NIL\}$ , then  $G_{\pi}$  is the resulting **predecessor subgraph** from running the DFS.
- The predecessor subgraph of a DFS forms a **depth-first forest** comprising several **depth-first**

**trees**. The edges in  $E_{\pi}$  are **tree edges**.



## THE DFS ALGORITHM RUNNING TIME - INIT.

- Initialization of DFS (G)
  - Line I ~ 3 executes  $\Theta($  \_\_\_\_\_) time(s).
  - Line 5 ~ 7 executes  $\Theta($  \_\_\_\_\_) time(s).
  - The running time of DFS(G), **exclusive of** the time to execute the calls to DFS-VISIT is  $\Theta($ \_\_\_\_\_).

```
DFS (G)

I for each vertex u \in G.V

2   u.color = WHITE

3   u.\pi = NIL

4time = 0

5for each vertex u \in G.V

6   if u.color == WHITE

7   DFS-VISIT (G,u)
```

#### THE DFS ALGORITHM RUNNING TIME - DFS-VISIT

- Execution of DFS-VISIT (*G*, *u*)
  - For each vertex  $v \in V$ , DFS-VISIT(G, u) is called \_\_\_\_\_ time(s).
  - During an execution of DFS-VISIT(G, u), the loop on lines 4-7 executes  $\Theta(\underline{\hspace{1cm}})$  times.
  - The property of adjacency list

$$\sum_{v \in V} |Adj[v]| = \Theta(\underline{\hspace{1cm}})$$

the total cost of executing lines 4-7 of DFS-VISIT is  $\Theta($ \_\_\_\_\_).

| <b>DFS</b> ( <i>G</i> ) |                                    |  |
|-------------------------|------------------------------------|--|
| I                       | <b>for</b> each vertex $u \in G.V$ |  |
| 2                       | u.color = WHITE                    |  |
| 3                       | $u.\pi = NIL$                      |  |
| 4                       | time = 0                           |  |
| 5                       | <b>for</b> each vertex $u \in G.V$ |  |
| 6                       | if $u.color == WHITE$              |  |
| 7                       | $DFS\text{-}VISIT\;(G,u)$          |  |

| DF | $DFS-VISIT\;(G,u)$               |  |  |
|----|----------------------------------|--|--|
| I  | time = time + 1                  |  |  |
| 2  | u.d = time                       |  |  |
| 3  | u.color = GRAY                   |  |  |
| 4  | <b>for</b> each $v \in G.Adj[u]$ |  |  |
| 5  | if $v.color == WHITE$            |  |  |
| 6  | $v.\pi = u$                      |  |  |
| 7  | $DFS\text{-}VISIT\;(G,v)$        |  |  |
| 8  | u.color = BLACK                  |  |  |
| 9  | time = time + 1                  |  |  |
| 10 | u.f = time                       |  |  |
|    | ·                                |  |  |

# THE DFS ALGORITHM RUNNING TIME - OVERALL

- Conclude
  - The running time of DFS(G), **exclusive of** the time to execute the calls to DFS-VISIT is  $\Theta(|V|)$ .
  - The total cost of executing lines 4-7 of DFS-VISIT is  $\Theta(|E|)$ .
- The running time of the entire DFS procedure is  $\Theta(\underline{\hspace{1cm}})$

| <b>DFS</b> ( <i>G</i> ) |                                    |  |
|-------------------------|------------------------------------|--|
| I                       | <b>for</b> each vertex $u \in G.V$ |  |
| 2                       | u.color = WHITE                    |  |
| 3                       | $u.\pi = NIL$                      |  |
| 4                       | time = 0                           |  |
| 5                       | <b>for</b> each vertex $u \in G.V$ |  |
| 6                       | if $u.color == WHITE$              |  |
| 7                       | $DFS\text{-}VISIT\;(G,u)$          |  |
|                         |                                    |  |

| DF | $DFS-VISIT\;(G,u)$                          |  |  |
|----|---------------------------------------------|--|--|
| I  | time = time + 1                             |  |  |
| 2  | u.d = time                                  |  |  |
| 3  | u.color = GRAY                              |  |  |
| 4  | <b>for</b> each $v \in G.Adj[u]$            |  |  |
| 5  | if $v.color == WHITE$                       |  |  |
| 6  | $v.\pi = u$                                 |  |  |
| 7  | $DFS\text{-}VISIT\;(\mathit{G},\mathit{v})$ |  |  |
| 8  | u.color = BLACK                             |  |  |
| 9  | time = time + 1                             |  |  |
| 10 | u.f = time                                  |  |  |

#### THE PROPERTY OF DFS #1

- In the execution of DFS-VISIT(*G*, *v*)
  - $u = v.\pi$  if and only if DFS-VISIT(G, v) was called during a search of u's adjacency list.
    - Example, *x* has established its predecessor *y*.
  - Vertex v is a **descendant** of vertex u in the depth-first forest if and only if v is discovered during the time in which u is grey.
    - Example, *x* is a **descendant** of vertex *y*.
- When we first explore and edge (u, v), if the color of vertex v is WHITE, edge (u, v) is a **tree edge**.





#### THE PROPERTY OF DFS #2

#### • The parenthesis structure:

- Represent the discovery of vertex  $\boldsymbol{u}$  with a left parenthesis " $(\boldsymbol{u}$ " and
- Represent its finishing by a right parenthesis "u"
- Then the history of discoveries and finishings makes a well-formed expression in the sense that the parentheses are properly nested.





## THE PROPERTY OF DFS #2 THEOREM 22.7

#### · Parenthesis theorem

- In any depth-first search of a (directed or undirected) graph G = (V, E), for any two vertices u and v, exactly one of the following three conditions holds:
  - i. the intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and neither u or v is a descendant of the other in the depth first forest,
  - ii. the interval [u.d,u.f] is contained entirely within the interval [v.d,v.f], and u is a descendant of v in a depth-first tree, or
  - iii. the interval [v.d, v.f] is contained entirely within the interval [u.d, u.f], and v is a descendant of u in a depth-first tree.



#### THE PROPERTY OF DFS #2 PRACTICE

- Consider the depth-first forest (left) we developed as the result of running DFS.
- Show the intervals of the discovery and finish of each vertex on the diagram (right).
- Show the corresponding parenthesization.





#### NEXT UP DEPTH-FIRST SEARCH

#### REFERENCE

• Screenshots are taken from the textbook.