12.09 - 19.09/2018 22/16/11 з. на 5/4/3

Определение 1. Пусть X, Y — множества. Множество упорядоченных пар $\{(x, y) : x \in X, y \in Y\}$ называется произведением множестве X и Y. Обозначение $X \times Y$.

Задача 1. Пусть в X всего n элементов, а в Y-m. Сколько элементов в $X \times Y$?

Задача 2. Верно ли, что **a)** $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D);$ **б)** $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D);$ **в)** $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D);$ **г)** Решите пункты а-в), если B = D.

Определение 2. (Бинарным) отношением на множестве M называется произвольное подмножество R в $M \times M$. Если пара (x,y) лежит в R, то мы говорим, что x находится в отношении R с y.

Обозначение: либо xRy, либо $x \sim_R y$, либо просто $x \sim y$, если понятно, о каком отношении идёт речь.

Задача 3. Сколько существует отношений на множестве из n элементов?

Определение 3. Отношение \sim на множестве M называется

- 1) рефлексивным, если $x \sim x$ для всех $x \in M$;
- 2) симметричным, если $x \sim y$ влечет $y \sim x$ для всех $x, y \in M$;
- 3) транзитивным, если $x \sim y$ и $y \sim z$ влечет $x \sim z$ для всех $x, y, z \in M$;
- 4) отношением эквивалентности, если оно и рефлексивно, и симметрично, и транзитивно.

Задача 4. На картинке справа изображено отношение R на множестве $\{1,2,3,4,5\}$, $5 \bullet \bullet \bullet \bullet \bullet$ состоящее из пар $\{(1,3),(2,2),(3,1),(2,4)\}$. Добавьте в него минимальное количество $4 \bullet \bullet \bullet \bullet$ пар так, чтобы оно стало **a)** рефлексивным; **б)** симметричным; **в)** транзитивным; $3 \bullet \bullet \bullet \bullet \bullet$ **r)** отношением эквивалентности; $2 \bullet \bullet \bullet \bullet \bullet$ **Задача 5. a)** Может ли отношение эквивалентности на множестве из 5 элементов состоять из 16 пар? **б)** 17 пар?

Задача 6°. Какие из следующих отношений рефлексивны, симметричны, транзитивны и какие являются отношениями эквивалентности?

- а) на множестве натуральных чисел: $x < y; x \le y; x$ делит y; x взаимно просто с y;
- **б)** на множестве всех подмножеств натуральных чисел: $A \subset B$; $A \subseteq B$;
- **в)** на множестве учеников 179 школы: *х* и *у* учатся в одном классе;
- **г)** на множестве графов с n вершинами: Γ_1 изоморфен Γ_2 ;
- **д)** на графе с n вершинами: x можно соединить ребром с y; x можно соединить путем с y; x и y лежат в одной компоненте связности;
- \mathbf{e}) (остатки от деления на n) на множестве целых чисел: $x \equiv y \mod n$ для данного $n \in \mathbb{N}$;
- **ж**) $^{\varnothing}$ (целые числа) на множестве $\mathbb{N} \times \mathbb{N}$: $(a,b) \sim (c,d)$ если a+d=b+c;
- **3)** (рациональные числа) на множестве $\mathbb{Z} \times \mathbb{N}$: $(a,b) \sim (c,d)$ если ad = bc;
- **и)** (eekmopu) на множестве упорядоченных пар точек плоскости с действительными координатами: $((a,b),(c,d)) \sim ((e,f),(g,h))$ если c-a=g-e и d-b=h-f.

Определение 4. Пусть на множестве M задано отношение эквивалентности \sim . Для каждого элемента $a \in M$ классом эквивалентности элемента a называется множество $H_a = \{x \in M : x \sim a\}$.

Задача 7. Докажите, что любые два класса эквивалентности либо не пересекаются, либо совпадают.

Определение 5. Пусть на множестве M задано отношение эквивалентности \sim . Множество классов эквивалентности называется ϕ актормножеством и обозначается M/\sim .

Задача 8°. Опишите классы эквивалентности и фактормножество для отношений эквивалентности из задачи 6 (письменно пункты e-u).

Определение 6. Транзитивным замыканием симметричного отношения R на множестве M называется отношение «лежать в одной компоненте связности графа с вершинами из M и рёбрами, соответствующими парам вершин, находящимся в отношении R».

Задача 9*. а) Докажите, что транзитивное замыкание симметричного отношения — отношение эквивалентности. б) Опишите транзитивные замыкания для отношений из задачи 6. в) Опишите транзитивное замыкание для отношения $(a,b) \sim (b,a), (a,b) \sim (a,b\pm a)$ на $\mathbb{Z} \times \mathbb{Z}$.

Задача 10*. Сколько существует отношений эквивалентности на 8-элементном множестве?

1	2 a	2 6	2 B	2 Г	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	4 B	4 Г	5 a	56	6 a	6 6	6 B	6 Г	6 д	6 e	6 ж	6	6 и	7	8	9 a	9 6	9 B	10