Função de Ativação

"Define" se o sinal será propagado pela rede

Da a RNA a não linearidade

Principais

- Threshold
- Sigmoid
- Relu (Rectified Linear Unit)
- Ranh (Hyperbolic tangent activation function)

Threshold (Binary Step)

$$f(x) = \left\{egin{array}{ll} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array}
ight.$$

Sigmoid

$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$

Relu (Rectified Linear Unit)

$$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x \leq 0 \ x & ext{for } x > 0 \end{array}
ight.$$

Hyperbolic Tangent (tanh)

$$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$$

Machine Learning

• Loss Function/Cost Function: diferença entre a previsão e o valor real

Root Mean Squared Error (RMSE)

Independente de Escala

• O desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424

$$RMSE = \sqrt{\frac{\sum_{I=1}^{N} (p_i - t_i)^2}{N}}$$

$$RMSE = \sqrt{\frac{15,083}{7}}$$

$$RMSE = 1,46$$

Calculada a Loss Function...

- É preciso atualizar os pesos da RNA...
- Backprogation

