

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO₂ and CO₂-mixtures for CO₂ capture and storage processes

H. Li a,*, J. Yan a,b

- ^a Chemical Engineering and Technology/Energy Processes, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- ^b Sustainable Development of Society and Technology, Malardalen University, SE-721 23 Vasteras, Sweden

ARTICLE INFO

Article history: Received 27 February 2008 Received in revised form 23 May 2008 Accepted 24 May 2008 Available online 24 July 2008

Keywords: CO₂ capture and storage Vapor liquid equilibria Cubic equation of state Binary interaction parameter CO₂ binary CO₂-mixtures

ABSTRACT

Proper solution of vapor liquid equilibrium (VLE) is essential to the design and operation of CO_2 capture and storage system (CCS). According to the requirements of engineering applications, cubic equations of state (EOS) are preferable to predict VLE properties. This paper evaluates the reliabilities of five cubic EOSs, including PR, PT, RK, SRK and 3P1T for predicting VLE of CO_2 and binary CO_2 -mixtures containing CO_2 , and CO_2 and binary CO_2 -mixtures containing CO_2 , based on the comparisons with the collected experimental data. Results show that SRK is superior in the calculations about the saturated pressure of pure CO_2 ; while for the VLE properties of binary CO_2 -mixtures, PR, PT and SRK are generally superior to RK and 3P1T. The impacts of binary interaction parameter CO_2 -mixtures also analyzed. CO_2 -mixtures of the calculation accuracy, the binary interaction parameter was calibrated for all of the studied EOSs regarding every binary CO_2 -mixture.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon dioxide capture and storage (CCS), which involves the capture, transport and long-term storage of carbon dioxide, is a technology aimed at reducing greenhouse gas emissions from burning fossil fuels in industrial and energy-related processes. CCS is a critical technology amongst a portfolio of measures to limit climate change to a manageable level, along with improving energy efficiency, and switching to renewable energy resources. The importance of CCS has been highlighted in Fig. 1 as one of key elements in reducing greenhouse gas emissions [1].

The vapor liquid equilibrium (VLE) of CO₂ and CO₂-mixtures is of great importance to the design and operation of many processes of CCS system, like separation, purification/liquefaction and transportation [2–4]. Since those processes cover a large range of operating conditions from normal atmosphere to supercritical state, and involve multi-components, the experimental data alone cannot satisfy the requirements of the engineering applications. Therefore, semi-empirical equations of state are usually used to predict those properties. Different EOSs and their reliabilities have been studied by previous investigators [5–7]. These studies have resulted in the general conclusion that their reliabilities vary for different properties, components and conditions. Due to rapid increasing research on CCS, there has been an increased interest in finding a proper EOS to predict VLE of CO₂ and CO₂-mixtures.

However only a little work about it has been done so far, which cannot meet the demand of the applications in CCS systems. For example, Carroll studied Peng–Robinson (PR) [8] and Redlich–Kwong–Soave (SRK) EOSs [9] for the VLE calculations of CO_2 -mixtures including CH_4 and H_2S [10–11].

EOSs can be divided into two categories: specialized EOSs, like Span's EOS [12] for CO₂, and general EOSs, like van der Waals EOS [13]. Compared with the later, specialized equations have a better accuracy, but their applications are limited to certain substances. For example, Span's EOS can only be applied to CO2. The general equations can be further divided into two types: equations with simple structures (GESS), such as Redlich-Kwong (RK) EOS [14]; and equations with complex structures (GECS), such as Benedict-Webb-Rubin (BWR) EOS [15]. Although GECS may give better results, they contain more parameters, which may be not available for all of substances. And the complex structures of GECS make the calculation procedures on the thermodynamic properties more complicated, especially when calculating some derived properties like enthalpy and entropy. As a result, GECS is more difficult to be applied. In addition; also due to the complicated calculation procedure, if they are not included originally, GECS is more difficult to be integrated into some commercial simulation tools, like Aspen Plus [16] and IPSpro [17]. Thus from a viewpoint of engineering application, a GESS is preferable if it can provide a sufficient accuracy. The purpose of our study is to evaluate the reliabilities of cubic equations of state, which may be the simplest general equations, for predicting VLE of CO2 and binary CO₂-mixtures.

^{*} Corresponding author. Tel.: +46 87906713; fax: +46 87230858. E-mail addresses: hailong@kth.se (H. Li), jinyue@kth.se (J. Yan).

Nomen	clature		
a, b, c	constants in equations of state	EOS	equation of state
k_{ij}	binary interaction parameter	GECS	generalized equation with complex structure
N	number of experimental data	GESS	generalized equation with simple structure
P	pressure	PR	Peng-Robinson
R	universal gas constant	PT	Patel-Teja
T	temperature	RK	Redlich-Kwong
V	molar volume	SRK	Redlich-Kwong-Soave
X	mole fraction in liquid phase	VLE	vapor liquid equilibrium
X	total mole fraction in mixtures		
y	mole fraction in vapor phase	Subscrip	ots
Z	compressibility factor	boi	boiling
		С	critical
Abbrevi	ations	cal	calculated value
AAD	absolute average deviation	con	condensing
Abs.	absolute	exp	experimental value
BWR	Benedict-Webb-Rubin	g	gas
CCS	CO ₂ capture and storage	i, j	component index
DEV	deviation	1	liquid
EOR	enhanced oil recovery	S	saturated

Fig. 1. The strategy to reduce global CO_2 emissions [1].

Since van der Waals proposed his EOS in 1873, numerous modified versions of cubic EOSs with two or more parameters have been developed to improve predictions of volumetric and phase equilibrium properties of fluids. It has been well established that a cubic EOS can model phase equilibrium satisfactorily. In our previous work [18], we compared several cubic EOSs with the preliminary results generated by Aspen Plus. However to obtain more accurate results, the calculated results must be compared with experimental data. In this paper the experimental data on VLE of CO₂ and CO₂-mixtures were collected; with our self-programming codes, five cubic equations were studied; and the binary interaction parameter, k_{ij} , was also calibrated for all of the studied EOSs concerning different binary CO₂-mixtures. Finally insights and guidelines were provided regarding the selection of equations of state for the VLE calculations involved in the design processes of CCS.

2. Equations of state

Five cubic EOSs widely used in gas industries are included in this study: RK, SRK, PR, Patel–Teja (PT) [19], and 3P1T [20]. All studied EOSs are summarized in Table 1 with the features as described below:

Table 1Summary of studied EOSs for CO₂ and CO₂-mixtures

EOS	Function Form	Year	Mixing Rule
RK	$P = \frac{RT}{V-b} - \frac{a/T^{0.5}}{V(V+b)}$	1949	$a = \sum_{i} \sum_{j} x_i x_j a_i^{1/2} a_j^{1/2} (1 - k_{ij});$
SRK	$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$	1972	$b = \sum_{i} x_{i} b_{i}; k_{ij} = k_{ji}$ $a = \sum_{i} \sum_{j} x_{i} x_{j} a_{i}^{1/2} a_{j}^{1/2} (1 - k_{ij});$ $b = \sum_{i} x_{i} b_{i}; k_{ij} = k_{ii}$
PR	$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$	1976	$a = \sum_{i} \sum_{j} x_{i} x_{j} a_{i}^{1/2} a_{j}^{1/2} (1 - k_{ij});$
PT	$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + c(V - b)}$	1982	$b = \sum_{i} x_{i} b_{i}; k_{ij} = k_{ji}$ $a = \sum_{i} \sum_{j} x_{i} x_{j} a_{i}^{1/2} a_{j}^{1/2} (1 - k_{ij});$ $b = \sum_{i} x_{i} b_{i}; c = \sum_{i} x_{i} c_{i}; k_{ij} = k_{ii}$
3P1T	$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+c) + b(3V+c)}$	1987	$b = \sum_{i} x_{i} b_{i}; c = \sum_{i} x_{i} c_{i}; k_{ij} = k_{ji}$ $a = \sum_{i} \sum_{j} x_{i} x_{j} a_{i}^{1/2} a_{j}^{1/2} (1 - k_{ij});$ $b = \sum_{i} x_{i} b_{i}; c = \sum_{i} x_{i} c_{i}; k_{ij} = k_{ji}$

- RK EOS is the earliest modification of van der Waals EOS. It improved the intermolecular attraction term. It is suitable for the systems at low pressures.
- SKR EOS is a modification of RK EOS by introducing a temperature-dependent function to modify the attraction parameter. It was one of the most popular EOS in the hydrocarbon industry. SRK is quite capable of predicting VLE for liquid mixtures but it is not very satisfactory for predictions of liquid compressibility.
- PR EOS was proposed based on the previous RK EOS. It is capable
 of predicting the liquid density as well as vapor pressure in
 order to further improve VLE predictions. It is recommended
 for hydrocarbon processing applications, such as gas processing,
 refinery, and petrochemical processes.
- PT EOS has two substance dependent parameters which are obtained from the liquid density and vapor pressure data, and correlated with an acentric factor. The 3-parameter PT equation has been shown to give satisfactory results for both vapor pressure and density even for heavy and polar compounds. It is also recommended for hydrocarbon processing applications.
- 3P1T EOS is an equation of van der Waals type. It was primarily developed for non-polar compounds, however it was claimed to be able to be applied for polar substances as well [6].

3. Calculations of pure CO₂ properties

CO₂ is the major component in the mixtures of CCS system, and in some processes the mole fraction of CO₂ in CO₂-fluids may

Table 2Summary of the experimental data about VLE of pure CO₂

Source	Year	Temp (K)	Pressure (MPa)	Uncertainty
Holste et al. [21]	1987	215-448	0.1-50.0	P: ±0.01% T: ±0.01 K
Duschek [22]	1990	217-340	0.3-9.0	P: ±0.02% T: ±0.003 K
Gilgen et al. [23]	1992	220-360	0.3-13.0	V: ±(0.015-0.04)%
Brachthuser [24]	1993	233-523	0.8-30.1	V: ±(0.02-0.04)%
Klimeck et al. [25]	2001	240-470	0.5-30	P: ±0.016% T: ±0.004 K

exceed 95%. Therefore it is necessary to study the reliabilities of EOSs on the property calculations of pure CO₂.

3.1. Summary of the experimental data

Since 1980s, many new experiments with better accuracy on VLE of ${\rm CO_2}$ have been carried out. Table 2 lists those used for EOS evaluation.

3.2. Calculated results

The comparison on VLE of pure CO_2 between experimental data and calculated results from different EOSs is shown in Fig. 2a. Except RK EOS, the equations are all capable of calculating the saturation pressure with an average absolute deviation (AAD) less than 3%. Here AAD is defined as:

$$AAD = \frac{\sum abs\left(\frac{M_{cal} - M_{exp}}{M_{exp}}\right) \times 100\%}{N}$$

SRK EOS was found to be more accurate than the others over the whole range of tested conditions, with AAD of 1.05%.

Fig. 2b shows the deviation distribution of the calculated results on the saturated pressure of CO_2 . We can see that cubic EOS's accuracy is independent on temperature, except RK EOS, which gets better along with the rise of temperature. As a conclusion, RK EOS is not appropriate for the VLE calculation of CO_2 if temperature is lower than 290 K.

Fig. 2. Calculated results on VLE of pure ${\rm CO_2}$ and the deviation distribution on saturated pressure from different EOSs.

Table 3Summary of the experimental data for CO₂-mixtures

Source	Year	Type	Mixture	T (K)	P (MPa)	Uncertainty
Caubet [29]	1901	TPVX	CO ₂ /SO ₂	291-416	2.7-10.5	
Reamer et al. [30]	1944	TPxy	CO ₂ /CH4	311-511	1.4-69	
Steckel [31]	1945	PTxy	CO ₂ /H ₂ S	221-288.15	0.1-3.6	
Bierlein et al. [32]	1953	PTVX	CO ₂ /H ₂ S	273-370	1.5-8.5	V: ±0.02%
						T: ±0.02 K
Donnelly et al. [33]	1954	TPxy	CO ₂ /CH ₄	167-301	2.0-7.4	P: ±0.1%
Muirbrook et al. [34,35]	1965	TPxy	CO_2/O_2 , CO_2/N_2 , $CO_2/N_2/O_2$	273.15	5.5–12	
Kestin et al. [36]	1966	TPVX	CO ₂ /Ar	293.15-303.15	0.101-2.58	
Fredenslund et al. [37]	1970	TPxy	CO_2/O_2	223.15-283.15	1-13	P: ±0.5%
						T: ±0.02 K
Arai et al. [38]	1971	PVTx	CO_2/N_2 , CO_2/CH_4	253-288	55-15	P: ±0.01 atm
						T: ±0.01 K
Sarashina et al. [39]	1971	PVTx	CO ₂ /Ar	288.15	5.69-9.77	P: ±0.01 atm
						T: ±0.01 K
Davalos et al. [40]	1976	TPxy	CO ₂ /CH ₄	230–250	0.9-8.5	
Altunin et al. [41]	1977	Z	CO ₂ /Ar	303.15	0.29-10.75	
Mraw et al. [42]	1978	TPxy	CO ₂ /CH ₄	89–208	0.5-6.3	
Somait et al. [43]	1978	TPxy	CO_2/N_2	270	3–12	P: ±0.015 atm
						T: ±0.02 K
Dorau et al. [44]	1983	TPxy	CO_2/N_2	223.15-273.15	3–20	
Esper et al. [45]	1989	TPVX	CO_2/N_2	205-320	0.1-48	P: ±0.015%
						T: ±0.01 K

4. Calculation on the properties of CO₂-mixture

4.1. Impurity

The requirements on CO₂ purity are defined by the requirements from CO₂ transport, storage environmental regulations and the cost. Depending on the CO₂ capture approaches, the purity of CO₂ stream varies from different CO₂ capture systems. Generally impurities may come from air, fuels and the products of combustion. The most common impurities in the flue gas include O₂, N₂, Ar, CH₄, H₂S, SO₂ and H₂O. Because CO₂/H₂O has been studied intensively in previous studies [26–28], in this paper H₂O is excluded and our attention is paid to CH₄, O₂, H₂S, N₂, Ar and SO₂.

Fig. 3. Relationship between calculation accuracy and binary interaction parameter.

Fig. 4. AAD on P_s , $y_{s,CO2}$ and $P_s + y_{s,CO2}$ of CO_2/CH_4 at different k_{ij} .

Table 4 Calibrated k_{ij} for different binary CO₂-mixtures

	PR	PT	RK	SRK	3P1T
CO ₂ /CH ₄	0.100	0.905	0.079	0.105	-0.034
CO_2/O_2	0.114	0.899	0.168	0.116	0.105
CO ₂ /H ₂ S	0.099	0.892	0.083	0.106	0.098
CO_2/N_2	-0.007	1.036	0.102	-0.014	-0.026
CO ₂ /Ar	0.163	0.882	-0.076	0.180	0.140
CO ₂ /SO ₂	0.046	0.952	-0.041	0.048	0.083

4.2. Survey of experimental data

For the thermodynamic properties of CO_2 -mixtures, many experimental investigations were carried out and focused mainly on the impurities like hydrocarbons, nitrogen and hydrogen sulfide. This was due to their importance for production and processing of natural gas resources and the use of the CO_2 -mixtures for

Table 5 AAD of EOSs on the calculated VLE properties of binary CO_2 -mixtures

		PR	PT	RK	SRK	3P1T
CO ₂ /CH ₄	$P_{\rm s}$	1.68	2.00	5.73	1.87	20.74
	$y_{s,CO2}$	2.63	3.14	16.71	2.79	26.95
CO_2/O_2	$P_{\rm s}$	4.17	3.62	4.08	4.02	3.50
	$y_{s,CO2}$	2.89	2.74	14.90	3.44	14.13
CO ₂ /H ₂ S	$P_{\rm s}$	1.22	1.48	3.41	1.32	3.32
	$y_{s,CO2}$	4.54	4.28	9.28	4.49	4.79
CO_2/N_2	$P_{\rm s}$	2.08	1.62	4.08	1.79	3.10
	$y_{s,CO2}$	2.23	2.17	5.25	2.83	13.15
CO ₂ /Ar	$P_{\rm s}$	2.88	2.85	5.43	3.36	9.79
	$y_{s,CO2}$	-	-	-	-	-
CO ₂ /SO ₂	$P_{\rm s}$	4.64	4.67	10.62	4.28	4.17
	$y_{\rm s,CO2}$	-	_	-	-	-

Fig. 5. Calculated results on VLE of CO₂/CH₄ at 219.26 and 270 K.

enhanced oil recovery (EOR) process. As a result, there are many available experimental data about the mixtures of CO_2/N_2 , CO_2/CH_4 and CO_2/H_2S , which cover a wide range of temperature and pressure. However, the experimental data of CO_2 -mixtures containing O_2 , Ar and SO_2 are limited. The experimental data collected from the literature are summarized in Table 3.

Examining Table 3, some gaps were identified between the available experimental data and the requirements of EOS evaluations. For example, there are few experimental data on VLE of CO_2/SO_2 at temperatures lower than 290 K, and there are few experimental data on VLE of CO_2/Ar , except at the temperature 288.15 K and pressure 5–10 MPa. Moreover most of the experimental data are about binary CO_2 -mixtures. Thus the experimental data of multi-component CO_2 -mixtures are still necessary to further verify the reliabilities of EOSs.

Fig. 6. Calculation deviations on P_s and $y_{s,CO2}$ of CO_2/CH_4 .

4.3. Mixing rules and binary interaction parameter

In general the semi-empirical EOSs were developed by using pure component data. The application of these equations has been extended to multi-component systems by defining mixing rules to evaluate the average parameters required in the EOS calculations. In this study, the conventional random van der Waals mixing rules are employed for all of EOSs. In the mixing rules, there is one very important parameter, the binary interaction parameter k_{ij} , which accounts for the attraction forces between pairs of non-similar molecules. Theoretically it is a modification of intermolecular attraction when calculating thermodynamic properties of mixtures. k_{ij} is more sensitive to derivative or partial properties such as fugacity coefficients than to total properties such as mixture molar volumes. For that reason, values of k_{ij} have most often been determined from VLE data.

Since the determination of k_{ij} requires a large amount of experimental data for a certain system, the calibrated binary interaction parameters are not known for all the binary systems and EOSs. If the calibrated k_{ij} is unknown, for approximate calculation we can ignore the difference of attraction forces which are between non-similar molecules and between similar molecules, and regard different molecules as the same. Thus, values of k_{ij} would be taken as zero (if $(1-k_{ij})$ is used in the mixing rules, such as RK EOS) or unity (if (k_{ii}) is used in the mixing rules, such as PT EOS).

Fig. 7. Calculated results on VLE of CO_2/O_2 at 223.15 and 263.15 K.

However an inappropriate k_{ij} may cause poor calculating accuracy of an EOS. Fig. 3 shows the sum of AAD on the saturated pressure and AAD on the saturated vapor fraction of CO_2 ($y_{s,CO2}$) at different values of binary interaction parameter k_{ij} for CO_2 /CH₄. It is quite clear that AAD changes with the variation of k_{ii} .

In order to improve cubic equations' accuracy and evaluate EOSs accurately, the binary interaction parameters of various binary CO_2 -mixtures must be determined first. Usually the binary interaction parameter k_{ij} is considered to be independent of temperature, composition and density [46]. However, others have suggested there are also some different conclusions that k_{ij} is temperature and composition dependent [47–49]. As the interaction parameter is determined by matching the predicted values with experimental data, it should be considered as a fitting parameter

CO,/O,

-□—PR EOS

PT EOS

RK EOS SRK EOS 3P1T EOS 20 8 AAD on P (%) Abs. Deviation on P 15 10 5 0 0.7 0.8 8 co. (mol) 2 0 230 240 250 260 220 270 280 Temperature (K) (a) Deviations on Ps 0,/0 PR EOS PT EOS RK FOS SRK EOS 3P1T EOS 50 40 30 20 10 0 0.8 25 (mol 20 15 10 5 0 230 240 250 260 270 280 Temperature (K) (b) Deviations on y_{CO},

Fig. 8. Calculation deviations on P_s and $y_{s,CO2}$ of CO_2/O_2 .

eter only and not a rigorous physical parameter [6]. In this study the value of k_{ii} is still regarded as a constant.

The saturated pressures and saturated vapor compositions were calculated from the known saturated temperatures (T_s) and saturated liquid compositions (x_s) . Fig. 4 shows the AAD of PR EOS on P_s , $y_{s,CO2}$, and $P_s + y_{s,CO2}$ of CO_2/CH_4 at different k_{ij} . It clearly displays that for various properties, the right value of k_{ij} may be different. Since both saturated pressure and saturated vapor composition are important to CCS processes, here we calibrate k_{ij} as the value that makes the sum of AAD on P_s and $y_{s,CO2}$ minimum. For CO_2/Ar and CO_2/SO_2 , because no x_s was known at dew points and no y_s was known at bubble points, no AAD on $y_{s,CO2}/x_{s,CO2}$ was calculated. In these cases, the value of k_{ij} that makes the AAD on P_s minimum was chosen. Based on the experimental data listed in Table 3, k_{ij} was calibrated for every EOS concerning every binary mixture. Results are given in Table 4.

4.4. VLE

With the new calibrated $k_{\rm ij}$, VLE of different binary CO₂-mixtures were calculated using different EOSs; and the calculated results were compared with experimental data. Table 5 summarized the absolute average deviations of EOSs. In general, all of the studied EOS have various performances for various mixtures. Comparatively PR, PT and SRK are superior to RK and 3P1T for all

Fig. 9. Calculated results on VLE of CO₂/H₂S at 303.15 and 313.15 K.

of the studied mixtures, except CO_2/SO_2 . It should be pointed out that although 3P1T is primarily developed for non-polar compounds, it does not show any advantages in the VLE calculations of CO_2/CH_4 , CO_2/O_2 , CO_2/N_2 and CO_2/Ar . In the following, further analysis was carried out regarding every binary CO_2 -mixture.

4.4.1. Mixture of CO₂/CH₄

Fig. 5 shows the calculated VLE diagrams of CO_2/CH_4 at 219.26 and 270 K. It is clear that the calculated results of PR, PT and SRK fit the experimental data well; and comparatively 3P1T has the worst accuracy. Given T and $x_{s,CO2}$, RK may predict a lower, while 3P1T may predict a higher CO_2 composition in vapor phase than the actual value. In addition, the performances of EOSs are normally getting worse as the conditions are approaching the critical points of mixtures. For example when $x_{s,CO2}$ is 68.1 mol%, 270 K is quite close to the critical temperature of CO_2/CH_4 (T_c = 275.2 K) At these

Fig. 10. Calculation deviations on P_s and $y_{s,CO2}$ of CO_2/H_2S .

composition and temperature, except RK, cubic equations failed to calculate $P_{\rm s}$ and $y_{\rm s;CO2}$ of ${\rm CO_2/CH_4}$ with an AAD within 30%. The big deviations might be caused by the appearance of the so-called trivial solution [50]. The trivial solution could be avoided by applying some novel algorithms or by making a better initial value [51–54]. In this paper the algorithm developed by Asselineau [51] was used.

Fig. 6 shows the deviation distributions of all EOSs on $P_{\rm s}$ and $y_{\rm s,CO2}$ of CO₂/CH₄. PR, PT and SRK have similar accuracy on $P_{\rm s}$ and $y_{\rm s,CO2}$, and their performances do not vary clearly, nearly within 5%, at various temperature and $x_{\rm s,CO2}$ of CO₂. Different from them, RK and 3P1T have much worse accuracy on $y_{\rm s,CO2}$ than on $P_{\rm s}$; and their performances are affected by temperature and $x_{\rm s,CO2}$ obviously. Their AADs on $P_{\rm s}$ and $y_{\rm s,CO2}$ rise first and then drop along with the rise of temperature approximately; meanwhile RK has better accuracies on both $P_{\rm s}$ and $y_{\rm s,CO2}$ but 3P1T has better accuracies on $P_{\rm s}$ at lower $x_{\rm s,CO2}$. Generally PR is more accurate than the other cubic EOSs in the calculations on $P_{\rm s}$ and $y_{\rm s,CO2}$, with respective AADs of 1.68% and 2.63%.

4.4.2. Mixture of CO_2/O_2

Fig. 7 shows the calculated VLE diagrams of CO_2/O_2 at 223.15 and 263.15 K. Compared with the calculations on CO_2/CH_4 , PR, PT, RK and SRK have quite similar performances, but 3P1T has a better one, especially on the saturated pressure. Along with the increments of oxygen's mole fraction in liquid phase, the performances of all equations are getting worse. When $x_{s,O2}$ is high, they may generate higher saturated pressures at low temperatures, such as 223.15 K, while predict lower values of $y_{s,CO2}$, except RK as high temperatures, like 263.15 K.

Fig. 8 shows the distributions of the absolute deviations on $P_{\rm s}$ and $y_{\rm s,CO2}$ of CO₂/O₂. Comparatively temperature have quite regular impacts on the calculation accuracy of both $P_{\rm s}$ and $y_{\rm s,CO2}$. Except 3P1T's AAD on $P_{\rm s}$, all equations' AADs on $P_{\rm s}$ and $y_{\rm s,CO2}$ drop along with the increment of temperature. Moreover 3P1T's deviations on $y_{\rm s,CO2}$ drop long with the increment of $x_{\rm s,CO2}$. Generally 3P1T is superior in the calculations on $P_{\rm s}$ with AAD of 3.50%, while PT is superior in the calculations on the saturated vapor composition where AAD is 2.74%.

4.4.3. Mixture of CO₂/H₂S

Fig. 9 shows the calculated VLE diagrams of CO₂/H₂S at 303.15 and 313.15 K. Clearly the results of all cubic equations agree with the experimental data well except 3P1T at the high temperature. And the accuracy differences amongst all equations are much smaller, if compared with the VLE calculations of other binary

Fig. 11. Calculated results on VLE of CO₂/N₂ at 270 K.

CO₂-mixtures. Moreover 3P1T always got smaller saturated pressures than the experimental data at both low and high temperatures.

Fig. 10 shows the distributions of the absolute deviations on $P_{\rm s}$ and $y_{\rm s,CO2}$ of ${\rm CO_2/H_2S}$. Comparatively PR, PT and SRK's accuracies on $P_{\rm s}$ are not obviously affected by temperature and $x_{\rm s,CO2}$; RK's accuracy on $P_{\rm s}$ becomes better while and 3P1T's becomes worse along with the increments of temperature and decrements of $x_{\rm CO2}$. As to the calculation accuracy on $y_{\rm s,CO2}$, all equations have better performance at lower temperatures and higher $x_{\rm s,CO2}$. Generally, PR is superior in the calculations on $P_{\rm s}$ with AAD at 1.22% and SRK is superior in the calculations on $y_{\rm s,CO2}$, where AAD is 4.49%.

4.4.4. Mixture of CO₂/N₂

Fig. 11 shows the calculated VLE diagrams of CO_2/N_2 at 270K. All equations have better accuracies on P_s than on $y_{s,CO2}$. It is quite similar to the calculations on CO_2/O_2 that the performances of all equations are getting worse at high x_{N2} , except RK. Compared with experimental data, RK always predicts higher; while 3P1T predicts lower mole fraction of CO_2 in vapor phase.

Fig. 12 shows the distributions of the absolute deviations on P_s and $y_{s,CO2}$ of CO_2/N_2 . Except RK, all equations have better accuracy on P_s and $y_{s,CO2}$ at high $x_{s,CO2}$. For example, at 270 K, the deviations on P_s and $y_{s,CO2}$ of PR, PT and SRK are within 2.5% when $x_{s,CO2}$ is over 85%; however they may be larger than 5% when $x_{s,CO2}$ is less than 80%. Along with the increments of $x_{s,CO2}$, RK's absolute deviations of on P_s drop first and then rise, while its absolute deviations on $y_{s,CO2}$ rise first and then drop. Generally PT is more accurate than the other cubic EOSs in the calculations on P_s and P_s with respective AADs of 1.62% and 2.17%.

4.4.5. Mixture of CO₂/Ar

Fig. 13 shows the calculated VLE diagrams of CO_2/Ar at 288.15 K. PR, PT and SRK have quite similar calculated results, which agree well with the experimental data on condensing pressures, but not on boiling pressures when x_{Ar} is high. RK also has a better accuracy on condensing pressures. 3P1T's deviations on both dew and bubble points are very clear.

Fig 14 shows the distributions of the absolute deviations on $P_{\rm s}$ of CO₂/Ar. To the calculations on condensing pressures, the accura-

Fig. 12. The distributions of absolute deviations on P_s and $y_{s,CO2}$ of CO_2/N_2 .

Fig. 13. Calculated results on VLE of CO₂/Ar at 288.15 K.

Fig. 14. The distributions of absolute deviations of on P_s of CO_2/Ar .

cies of PR, PT, SRK and 3P1T are getting better; while RK's accuracy is getting worse along with the increments of CO_2 mole fraction in vapor phase. Generally PT is superior to other equations, where AAD on P_s is 2.85%.

4.4.6. Mixture of CO₂/SO₂

Fig. 15 shows the calculated VLE diagrams of CO_2/SO_2 at X_{CO2} = 62.13 and 88.71 mol%. At low concentration of CO_2 , such as X_{CO2} = 62.13 mol%, PR, PT, SRK and 3P1T have better accuracy on VLE; while at high concentration of CO_2 , such as X_{CO2} = 88.71 mol%, RK's results agree with the experimental data better. Compared with the VLE calculations on other CO_2 -mixtures, 3P1T has much better performances on CO_2/SO_2 .

Fig. 16 shows the distributions of the absolute deviations on P_s of CO_2/SO_2 . Along with the rise of X_{SO2} , PR, PT, SRK and 3P1T's accuracies on boiling pressures are getting worse, while their accuracies on condensing pressures are getting better except X_{SO2} is lower than 10 mol%. RK performs in a similar way on boiling pres-

Fig. 15. Calculated results on VLE of CO_2/SO_2 at X_{CO2} = 62.13 and 88.71 mol%.

sures, but a reverse way on condensing pressures. Comparatively the accuracies of all cubic equations were not affected by temperature clearly. In general, 3P1T is more accurate than the other EOSs in the calculations on $P_{\rm S}$, where AAD is 4.17%.

5. Further discussions on binary interaction parameter, k_{ii}

Binary interaction parameter, k_{ij} , can also be found from the literature for some CO_2 -mixtures. Comparisons were carried out between the calculated results generated with the literature k_{ij} and the new calibrated k_{ij} . Absolute average deviations are listed in Table 6. Because the target function applied to the calibration

Fig. 16. The distributions of absolute deviations on condensing and boiling pressures of CO_2/SO_2 .

of k_{ij} was defined to make the sum of deviations on P_s and $y_{s,CO2}$ minimum in this paper, the accuracies of EOSs on P_s may not be

Table 6 AAD of EOSs with the literature k_{ii} and the new calibrated k_{ij}

EOS		CO ₂ /CH ₄	CO ₂ /CH ₄		CO_2/N_2		CO ₂ /H ₂ S	
		k_{ij}	AAD on $P_s/y_{s,CO2}$	k_{ij}	AAD on $P_s/y_{s,CO2}$	$\overline{k_{ij}}$	AAD on $P_s/y_{s,CO2}$	
PR	New calibrated	0.100	1.68/2.63	-0.007	2.08/2.23	0.099	1.22/4.54	
	Literature [55]	0.0919	1.52/3.87	-0.017	2.11/2.38	0.0974	1.18/4.69	
PT	New calibrated	0.905	2.00/3.14	_	- '	_	- '	
	Literature [19]	0.907	1.93/3.24	_	_	_	_	
RK	New calibrated	0.079	5.73/16.71	0.102	4.08/5.25	0.083	3.41/9.28	
	Literature [16]	0.0933	4.73/18.41	-0.0315	16.76/11.98	0.0989	4.39/8.36	
SRK	New calibrated	_	_ ′	_	_ '	0.106	1.32/4.49	
	Literature [10]	_	_	_	_	0.0989	1.14/5.00	

improved with the new regressed k_{ij} . However the accuracies of EOSs on $P_s + y_{s,CO2}$ were remarkably improved.

Moreover, as mentioned above that the determination of k_{ij} requires a large amount of experimental data, the calibrated k_{ij} might be inappropriate, because the VLE experimental data of CO₂/Ar are limited. Therefore it is necessary to carry out more experiments to close the experimental gaps, in order to improve the EOS accuracy.

6. Conclusions

Based on the collected experimental data, this paper studied the reliability of five cubic equations of state on predicting vapor liquid equilibria of CO_2 and binary CO_2 -mixtures (including CH_4 , O_2 , H_2S , N_2 , Ar and SO_2). According to the results, we have the following conclusions on the various tested EOSs:

- For the VLE properties of pure CO₂, SRK is superior in the calculations on saturated pressure with AAD of 1.05%. In general RK is not recommended for VLE calculations.
- (2) The experimental data on VLE were collected from literatures for all of studied binary CO₂-mixtures. Some experimental gaps were identified: there are few experimental data on VLE of CO₂/SO₂ at temperatures lower than 290 K, and on VLE of CO₂/Ar, except at the temperature 288.15 K and pressure 5–10 MPa.
- (3) The binary interaction parameter has clear effects on the calculating accuracy of an EOS in the VLE calculations of CO₂-mixtures. In order to improve EOSs' accuracy, k_{ij} has to be calibrated based on experimental data for all of the EOSs regarding all of the binary CO₂-mixtures.
- (4) For the VLE properties of binary CO₂-mixtures, PR, PT and SRK are generally superior to RK and 3P1T. Comparatively PR is recommended to the calculations of CO₂/CH₄ and CO₂/H₂S; PT is recommended to the calculations of CO₂/O₂, CO₂/N₂ and CO₂/Ar; while 3P1T is recommended to the calculations of CO₂/SO₂.
- (5) With the new calibrated k_{ij} , although EOSs accuracy on saturated pressure may not be improved, they have better accuracies on saturated vapor composition than with the values of k_{ij} available from the literature.

Acknowledgements

Financial supports from the Swedish Energy Agency (STEM) and Swedish Research Council (VR) are gratefully acknowledged. We would also like to thank Dr. Jinying Yan and Dr. Marie Anhenden, Vettenfall R&D, for fruitful discussion.

References

- [1] Stangeland A. Why CO₂ Capture and Storage (CCS) is an Important Strategy to Reduce Global CO₂ Emissions. The Bellona Foundation, June 1, 2007, also see: http://www.bellona.org/filearchive/fil_Bellona_Paper_-_Why_CCS_-_1June07. pdf.
- [2] Li H, Yan J. Impact of Impurities in CO₂-fluids on CO₂ Transport Process. In proceedings of GT2006, ASME Turbo Expo 2006: Power for Land, Sea and Air, May 8-11, 2006. Barcelona. Spain.
- [3] Li H, Yan J. Study of Impurity Impacts on Purification Process in Oxy-fuel Combustion Based CO₂ Capture and Storage System. In: Proceedings of international green energy conference III, Västerås, Sweden; 2007.
- [4] Li H, Yan J. Preliminary study on CO₂ processing in CO₂ Capture from Oxy-fuel Combustion. In: Proceedings of GT2007, ASME Turbo Expo 2007: Power for Land, Sea and Air, May 14–17, Montreal Canada; 2007.
- [5] Abbott MM. Cubic equations of state: an iterative review. Am Chem Soc Adv Chem Ser 1979:182:47–70.
- [6] Danesh A, Xu D-H, Todd AC. Comparative study of cubic equations of state for predicting phase behavior and volumetric properties of injection gas-reservoir oil systems. Fluid Phase Equilibria 1991;63:259–78.

- [7] Yang J, Griffiths PR, Goodwin ARH. Comparison of methods for calculating thermodynamic properties of binary mixtures in the sub and super critical state: Lee-Kesler and Cubic equations of state for binary mixtures containing either CO₂ and H₂S. J Chem Thermodyn 2003;35:1521–39.
- [8] Peng DY, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fund 1976:15:59-64.
- [9] Soave G. Equilibrium constants for modified Redlich-Kwong equation of state. Chem Eng Sci 1972;27:1196–203.
- [10] Carrol JJ, Lui DW. Equations for evaluating acid gas injection. Oil Gas J 1997:6:64-72.
- [11] Carroll JJ, Maddocks JR. Design considerations for acid gas injection. In: Proceedings of Laurance Reidgas conditioning conference, Norman Oklahoma, USA: 1999.
- [12] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 1996;25(6):1509–96.
- [13] van der Waals JD. Over de continuiteit van den gas en vloestoftoestand. Dissertation, Leiden University, Leiden, Netherland; 1873.
- [14] Redlich O, Kwong JNS. On the thermodynamics of solutions. Chem Rev 1949;44:233-44.
- [15] Benedict M, Webb GB, Rubin LC. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. J Chem Phys 1940;8:334.
- [16] Aspen ONE 2006, Aspen Technology Inc., Cambridge, MA, USA.
- [17] IPSEpro, SimTech Simulation Technology, Austria.
- [18] Li H, Yan J. Comparative study of equations of state (EOS) for CO₂ transportation in pipeline. In: Proceedings of GHGT-8. Norway: Trondhelm; 2006.
- [19] Patel NC, Teja AS. A new cubic equation of state for fluids and fluid mixtures. Chem Eng Sci 1982;37(3):463–73.
- [20] Yu J, Lu BC, Iwai Y. Simultaneous calculations of VLE and saturated liquid and vapor volumes by means of a 3P1T cubic EOS. Fluid Phase Equilibria 1987;37:207–22.
- [21] Holste JC, Hall KR, Eubank PT, Esper G, Watson MQ, Warowny W, et al. Experimental $(p, V_{\rm m}, T)$ for pure ${\rm CO_2}$ between 220 and 450 K. J Chem Thermodyn 1987;19:1233–50.
- [22] Duschek W, Kleinrahm R, Wanger W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J Chem Thermodyn 1990;22:827–40.
- [23] Gilgen R, Kleinrahm R, Wagner W. Supplementary measurements of the (pressure, density temperature) relation of carbon dioxide in the homogeneous region at temperatures from 220 K to 360 K and pressures up to 13 MPa. J Chem Thermodyn 1992;24:1243–50.
- [24] Brachthäuser K, Kleinrahm R, Lösch HW, Wagner W. Entwicklung eines neuen Dichtemeßverfahrens und Aufbau einer Hochtemperatur-Hochdruck-Dichtemeßanlage. Düsseldorf: VDI-Verlag; 1993.
- [25] Klimeck J, Kleinrahm R, Wagner W. Measurements of the (p, ρ, T) relation of methane and carbon dioxide in the temperature range 240–520 K at pressures up to 30 MPa using a new accurate single-sinker densimeter. J Chem Thermodyn 2001;33:251–67.
- [26] Li H, Ji X, Yan J. A new modification on RK EOS for gaseous CO₂ and gaseous mixtures of CO₂ and H₂O. Int J Energy Res 2006;30(3):135–48.
- [27] Hu J, Duan Z, Zhu C, Chou I. PVTx properties of the CO₂-H₂O and CO₂-H₂O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models. Chem Geol 2007;238:249-67.
- [28] Ji Y, Ji X, Feng X, Liu C, Lu L, Lu X. Progress in the study on the phase equilibria for the CO₂–H₂O and CO₂–H₂ O–NaCl systems. Chin J Chem Eng 2007;15(3):439–48.
- [29] Caubet F. Liquéfaction des mélanges gazeux. Université de Bordeaux; 1901.
- [30] Reamer HH, Olds RH, Sage BH, Lacey WN. Phase equilibria in hydrocarbon systems: methane-carbon dioxide system in the gaseous region. Ind Eng Chem 1944;35(1):88-90.
- [31] Von Steckel F. Dampf-Flussigkeits-Gleichgewichte einiger binarer, schwefelwasserstoffhaltiger systeme unter Druck. Svensk Kemisk Tidskrift 1945;9:209–16.
- [32] Bierlein JA, Kay WB. Phase-equilibrium properties of system carbon dioxidehydrogen sulfide. Ind Eng Chem 1953;45(3):618–24.
- [33] Donnelly HG, Katz DL. Phase equilibria in the carbon dioxide-methane system. Ind Eng Chem 1954;46(3):511-7.
- [34] Muirbrook NK, Prausnitz JM. Multicomponent vapor-liquid equilibria at high pressures: Part I experimental study of the nitrogen-oxygen-carbon dioxide system at 0 °C. AIChE J 1965;11(6):1092-7.
- [35] Chuen PL, Muirbrook NK, Prausnitz JM. Multicomponent vapor-liquid equilibria at high pressures: Part II thermodynamic analysis. AIChE J 1965:11(6):1097-102.
- [36] Kestin J, Kobayashi Y, Wood RT. The viscosity of four binary gaseous mixtures at 20 and 30 °C. Physica Amsterdam 1966;32:1065–89.
- [37] Fredenslund A, Sather GA. Gas-liquid equilibrium of the oxygen-carbon dioxide system. J Chem Eng Data 1970;15(1):17–22.
- [38] Arai Y, Kaminishi G, Saito S. The experimental determination of the P-V-T-X relations for the carbon dioxide–nitrogen and the carbon dioxide–methane system. J Chem Eng Jpn 1971;4(2):113–22.
- [39] Sarashina E, Arai Y, Saito S. The P-V-T-X relation for the carbon dioxideargon system. J Chem Eng Jpn 1971;4:379–81.

- [40] Davalos J, Anderson WR, Phelps RE, Kldnay AJ. Liquid-vapor equilibria at 250.00 K for systems containing methane, ethane, and carbon dioxide. J Chem Eng Data 1976;21(1):81–4.
- [41] Altunin VV, Koposhilov OD. An experimental study of thermal properties of gaseous mixtures of carbon dioxide with argon. Teploenergetika 1977:24(8):80–3.
- [42] Mraw SC, Hwang S, Kobayashi R. Vapor-liquid equilibrium of the CH₄-CO₂ system at low temperature. J Chem Eng Data 1978;23(2):135-9.
- [43] Somait FA, Kidnay AJ. Liquid-vapor equilibria at 270.00 K for system containing nitrogen, methane, and carbon dioxide. J Chem Eng Data 1978;23(4):301-5.
- [44] Dorau W, Al-Wakeel IM, Knapp H. VLE data for CO₂–CF₂Cl₂, N₂–CO₂, N₂–CF₂Cl₂ and N₂–CO₂–CF₂Cl. Cryogenics 1983;5:29–35.
- [45] Esper GJ, Bailey DM, Holste JC, Hall KR. Volumetric behavior of near-equimolar mixtures for CO₂ + CH₄ and CO₂ + N₂. Fluid Phase Equilibria 1989;49:35–47.
- [46] Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. 2nd ed.. Prentice-Hall; 1986.
- [47] Moysan J, Huro M, Paradowski H, Vidal J. Prediction of the solubility of hydrogen in hydrocarbon solvents through cubic equation of state for fluids and fluids mixtures. Chem Eng Sci 1983;77(3):463–73.

- [48] Voros NG, Tassios DP. Vapor-liquid equilibria in non-polar/weakly polar systems with different types of mixing rules. J Fluid Phase Equilibria 1985;91:1–29.
- [49] Bjorlykke OP, Firoozabadi A. Measurement and computation of retrograde condensation and near critical phase behavior. In: Proceeding of SPE annual technical conference and exhibition, EOR volume, SPE 20524, 1990. p. 541–50.
- [50] Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. 4th ed. McGraw-Hill; 1987.
- [51] Asselineau L, Bogdanic G, Vidal J. A versatile algorithm for calculating vapor-liquid equilibria. Fluid Phase Equilibria 1979;3:273–90.
- [52] Michelsen ML. Calculation of phase envelopes and critical points for multicomponent mixtures. Fluid Phase Equilibria 1980;4:1–10.
- [53] Poling BE, Grens EA, Prausnitz JM. Thermodynamic properties from a cubic equation of state: avoiding trivial roots and spurious derivatives. Ind Eng Chem Process Des Dev 1981;20:127–30.
- [54] Gundersen T. Numerical aspects of the implementation of cubic equations of state in flash calculation routines. Comput Chem Eng 1982;6(3):245–55.
- [55] Prausnitz JM. Computer calculations for multicomponent vapor-liquid equilibria. N.J.New Jersey: Englewood Cliffs; 1967.