3/8/2016 Big-O | Coursera

×

Big-O

7/7 questions correct

Quiz passed!

Continue Course (/learn/algorithmic-toolbox/exam/KbsLl/growth-rate)

Back to Week 2 (/learn/algorithmic-toolbox/home/week/2)

1.

Introduction and Learning Outcomes

The goal of this assignment is to practice with big-O notation.

Recall that we write f(n) = O(g(n)) to express the fact that f(n) grows no faster than g(n): there exist constants N and c>0 so that for all $n\geq N$, $f(n)\leq c\cdot g(n)$.

Is it true that $\log_2 n = O(n^2)$?

Yes

Correct Response

A logarithmic function grows slower than a polynomial function.

No

3/8/2016

2.

 $n\log_2 n = O(n)$

- Yes
- No

Correct Response

To compare these two functions, one first cancels n. What is left is $\log_2 n$ versus 1. Clearly, $\log_2 n$ grows faster than 1.

$$n^2 = O(n^3)$$

Yes

Correct Response

 n^a grows slower than n^b for constants a < b.

- No

$$n = O(\sqrt{n})$$

- No

Correct Response

 $\sqrt{n} = n^{1/2}$ grows slower than $n = n^1$ as 1/2 < 1.

5.

$$5^{\log_2 n} = O(n^2)$$

- O
- Yes
- 0
- No

Correct Response

Recall that $a^{\log_b c}=c^{\log_b a}$ so $5^{\log_2 n}=n^{\log_2 5}$. This grows faster than n^2 since $\log_2 5=2.321\ldots>2$.

6.

$$n^5 = O(2^{3\log_2 n})$$

- O Yes
- O No

Correct Response

 $2^{3 \log_2 n} = (2^{\log_2 n})^3 = n^3$ and n^3 grows slower than n^5 .

7.

$$2^n = O(2^{n+1})$$

Yes

Correct Response

 $2^n = 2 \cdot 2^n$, that is, 2^n and 2^{n+1} have the same growth rate and hence $2^n = \Theta(2^{n+1})$.

3/8/2016 Big-O | Coursera

O No