Glossary

Image formation

 $Depth\ of\ field$ distance between the nearest and farthest objects in a scene that appear

acceptably sharp in an image

Field of view angular portion of 3D scene seen by the camera

Focal length distance from C to F

Focal point of intersection of light rays parallel to optical axis of convex lens

Object distance distance from object to C

Optical axis line through C and its projection onto the image plane Principal point intersection of the optical axis with the image plane

Multiple view geometry

Baseline distance between the optical centers of two cameras

Symbols

Frame transformation

\mathcal{C}	potentially moving camera reference frame
\mathcal{A}	arbitrary reference frame
$_{\mathcal{A}}\mathbf{e}_{x}^{\mathcal{B}}$	x basis vector of \mathcal{B} (expressed in \mathcal{A})
$_{\mathcal{A}}\mathbf{e}_{y}^{\mathcal{B}}$	y basis vector of \mathcal{B} (expressed in \mathcal{A})
$_{\mathcal{A}}\mathbf{e}_{z}^{\mathcal{B}}$	z basis vector of \mathcal{B} (expressed in \mathcal{A})
\mathcal{B}	arbitrary reference frame
$\mathbf{T}_{\mathcal{A}\mathcal{B}}$	homogeneous transformation from $\mathcal B$ to $\mathcal A$
$Y^{\mathcal{A}}$	y coordinate of $_{\mathcal{A}}\mathbf{P}$
$_{\mathcal{A}}\tilde{\mathbf{P}}$	homogeneous coordinate vector of P (expressed in A)
$X^{\mathcal{A}}$	x coordinate of $_{\mathcal{A}}\mathbf{P}$
$Z^{\mathcal{A}}$	z coordinate of $_{\mathcal{A}}\mathbf{P}$
$_{\mathcal{A}}\mathbf{P}$	coordinate vector of P (expressed in \mathcal{A})
P	arbitrary point in 3D
${f R}_{21}$	passive elementary rotation (about a single axis) from an intermediate refer-
	ence frame 1 to 2
$\mathbf{R}_{\mathcal{A}2}$	passive elementary rotation (about a single axis) from an intermediate refer-
	ence frame 2 to \mathcal{A}
$\mathbf{R}_{\mathcal{A}\mathcal{B}}$	passive rotation matrix from \mathcal{B} to \mathcal{A}
$\mathbf{R}_{1\mathcal{B}}$	passive elementary rotation (about a single axis) from ${\mathcal B}$ to an intermediate
	reference frame 1
$_{\mathcal{A}}\mathbf{t}_{\mathcal{A}\mathcal{B}}$	translation from origin of ${\mathcal A}$ to origin of ${\mathcal B}$ (expressed in ${\mathcal A}$)

\mathcal{W} fixed, stationary world reference frame

Image formation

Lsize of aperture edistance from C to focal plane δ distance from focal plane to image plane α_u, α_v focal lengths expressed in pixels focal length Ffocal point \mathbf{K} calibration/intrinsic parameter matrix Zobject distance Z_c optical axis Coptical center/center of projection k_u inverse of pixel size along x (pixel conversion factor) inverse of pixel size along y (pixel conversion factor) k_v x coordinate p (expressed in image frame) xy coordinate p (expressed in image frame) x $\tilde{\mathbf{p}}$ homogeneous coordinate vector of p (expressed in pixel frame) $\tilde{\bar{\mathbf{p}}}$ homogeneous unit-plane normalized coordinate vector of p (expressed in pixel $\bar{\mathbf{p}} = [\bar{u} \ \bar{v}]^\top$ unit-plane normalized coordinate vector of p (expressed in pixel frame) $\mathbf{p} = [u \ v]^{\top}$ coordinate vector of p (expressed in pixel frame) P projected onto image plane horizontal coordinate of *O* (expressed in image frame) u_O vertical coordinate of *O* (expressed in image frame) v_O 0 principal point

Calibration

H homography

Filtering

 \mathbf{G}_{σ} gaussian filter

 $\mathbf{H}[u, v]$ filter/kernel/mask/template

 $\mathbf{I}'[x,y]$ intensity of filtered image pixel (x,y) $\mathbf{I}[x,y]$ intensity of original image pixel (x,y)

Feature detection

R cornerness function

k magic number for Harris detector $\in [0.04, 0.15]$

M second moment matrix

Feature matching

```
d_1 distance from closest descriptor d_2 distance from second closest descriptor s number of layers per scale octave (SIFT)
```

Multiple view geometry

b	baseline
\mathbf{C}_k	camera pose at time k
\mathbf{n}	epipolar plane normal
\mathbf{e}_{l}	epipole
${f E}$	essential matrix
${f F}$	fundamental matrix
$(\cdot)_{l,r}$	indices for left and right camera
N	number of (3D) points in SFM
n	number of views in n -view SFM
$_{\mathcal{W}}\mathbf{C}$	coordinate vectors of C (expressed in \mathcal{W})
$ar{\mathbf{p}} \equiv \ _{\mathcal{C}}\mathbf{p}$	homogeneous unit-plane normalized coordinate vector of \boldsymbol{p} (expressed in pixel
	frame)
$\tilde{\mathbf{p}}'$	homogeneous coordinate vector of P projected on rectified image plane (ex-
	pressed in pixel frame)
$\hat{\mathbf{p}}$	Normalized (to range $[-1,1] \times [-1,1]$) coordinate vector of p (expressed in
	pixel frame)
\mathbf{p}'	coordinate vector of ${\cal P}$ projected on rectified image plane (expressed in pixel

Tracking

 \mathbf{f}^i observed feature position in current image (at position \mathbf{x}^i in template) $\mathbf{T}[x,y]$ intensity of template image at pixel (x,y) $\mathbf{W}(\mathbf{x};\mathbf{p})$ transformation (warp parameterized by \mathbf{p}) of template point \mathbf{x}

Visual inertial fusion

frame)

```
gravity vector (expressed in \mathcal{W})
\mathbf{g}
                    angular velocity (true value) (expressed in \mathcal{B})
\omega
	ilde{oldsymbol{\omega}}
                    angular velocity measurement (expressed in \mathcal{B})
                     orientation/attitude of IMU (rotation \mathbf{R}_{WB})
\mathbf{q}
\mathbf{b}^{A}
                     accelerometer bias (expressed in \mathcal{B})
\mathbf{b}^G
                     gyroscope bias (expressed in \mathcal{B})
\mathcal{B}
                    body reference frame
\Sigma_k^i
                     covariance of \mathbf{f}^i at time t_k
\mathbf{z}^{i}
                    observed (2D) features, i = 1, ..., M
(\cdot)_k
                    index for t_k
```

```
\mathbf{u} = \{ \tilde{\boldsymbol{\omega}}, \tilde{\mathbf{a}} \}
                    IMU measurements in time interval [t_{k-1}, t_k] (expressed in \mathcal{B})
                    Set of 3D landmarks (expressed in W), i = 1, ..., M
\mathbf{L} = \{\mathbf{L}^i\}
                    linear acceleration (true value) (expressed in \mathcal{B})
                    linear acceleration measurement (expressed in \mathcal{B})
\tilde{\mathbf{a}}
N
                    number of camera poses/state estimates
\mathbf{n}^A
                    accelerometer additive zero-mean Gaussian white noise (expressed in \mathcal{B})
\mathbf{n}^G
                    gyroscope additive zero-mean Gaussian white noise (expressed in \mathcal{B})
M
                    number of landmarks/features
                    Position (expressed in \mathcal{W})
р
                    passive rotation from \mathcal{W} to \mathcal{B}
\mathbf{R}_{\mathcal{BW}}
                    covariance of \mathbf{x}_k at time t_k
\mathbf{\Lambda}_k
\mathbf{x} = [\mathbf{p} \ \mathbf{q} \ \mathbf{v}]^{\top} state estimate (expressed in \mathcal{W})
                    Set of state estimates at times t_k, k = 1, ..., N
\mathbf{X} = \{\mathbf{x}_k\}
                    standard deviation of zero-mean Gaussian noise bias derivative
\sigma_b
                    time at iteration k
t_k
                    perspective projection of \mathbf{L}^i onto image plane (expressed in \mathcal{C} defined by \mathbf{x}_k)
\pi(\mathbf{x}_k, \mathbf{L}^i)
                    velocity (expressed in \mathcal{W})
```

Event-based vision

C contrast sensitivity

Abbreviations

Initialisms

FOV (field of view)