Pneumonia diagnosis using chest x-ray images

Brooke Stevens

Agenda

01

Background

04

Approach

02

Problem

05

Results

03

Literature Review

06

Discussions and Conclusions

Background

- 2.5 million people died from pneumonia in 2019, and 24% were under 5 years of age
- Pneumonia is the second most common cause of hospital admissions, only behind women giving birth
- Pneumonia is the leading cause of hospitalization of infants
- Common risk factors include air pollution, a lack of access to water for hand hygiene, and low temperatures
- It disproportionately affects the **young**, the **elderly**, and the **immunocompromised**

Problem

- Many respiratory diseases have similar symptoms, so it is often difficult for physicians to deliver confident diagnoses
- These symptoms include, but are not limited to: cough, sneezing, sore throat, chest pain, fever, fatigue
- Physicians would benefit from real-time assistance to diagnose pneumonia
 - Proper diagnoses allow for proper treatment methods for patients

Literature Review

Liquid biopsy system tool, Species-Specific Bacterial Detector (SSBD) (Wang et al.):

• http://proxy.library.vanderbilt.edu/login?url=https://www.proquest.com/scholarly-journals/novel-fast-pat-hogen-diagnosis-method-severe/docview/2730538532/se-2?accountid=14816

Serological and PCR-based diagnosis method (Herrera et al.):

• https://link.gale.com/apps/doc/A444844867/AONE?u=tel_a_vanderbilt&sid=bookmark-AONE&xid=a47c
262a

Sepsis prediction tool (HW1) (Sendak et al.):

http://proxy.library.vanderbilt.edu/login?url=https://www.proquest.com/scholarly-journals/real-world-integration-sepsis-deep-learning/docview/2511970280/se-2?accountid=14816

 Image data retrieved from Mendeley Data, courtesy of the University of California San Diego

• Train normal: 1,349

Train pneumonia: 3,883

Test normal: 234

Test pneumonia: 390

- Test a wide variety of simple classification models
- Fine-tune the model with the highest AUC

Method

- Scale all images to 64 x 64 and convert to numerical dataframe (12,286 features)
- Use SVD to determine principal components and perform dimension reduction
- Employ simple sklearn models to determine the most promising classifier
- Fine-tune a hyperparameter of the chosen classifier to improve the prediction accuracy

$$X_{reduced} = XV_n$$

n = number of principal components selected

$$X_{reduced} = XV_{20}$$

12,286 features \rightarrow 20 features

Results

Classification Method	Accuracy	AUC
Logistic Regression	92.64%	0.9718
Random Forest	93.02%	0.9731
KNN	92.40%	0.9555
SVM	93.07%	0.9756

Model chosen for tuning: SVM

- Hyperparameter chosen: Kernel type
- Kernel used in preliminary model:
 - RBF
- Additional kernels to investigate:
 - Linear
 - Polynomial
 - Sigmoid

Results

Kernel Method	Accuracy	AUC
RBF	93.07%	0.9756
Linear	92.74%	0.9717
Polynomial	92.57%	0.9704
Sigmoid	78.69%	0.7981

Discussion

Principal Findings

- Simple classification results were very promising
 - All had accuracy within the 92-93% range
- The SVM classifier outperformed other models
- RBF kernel performance:
 - Accuracy: 93.07%
 - O AUC: 0.9756

Discussion

Implications

- Performance is promising, but not good enough for confident diagnoses
 - Provide recommendations rather than concrete diagnoses
- This tool could be implemented into an x-ray image storage system
- Could also be a standalone tool
 - Extra steps, would likely see low usage in real-time care

Discussion

Limitations

- All images used are different sizes, lungs are positioned in different angles
 - Extra data manipulation would improve accuracy
- Choice of 64 x 64 image processing
- Only the most promising simple classification technique was fine-tuned
 - Future work could investigate whether other models are improved by fine-tuning
- Unexplored classification models (deep learning models)

References

https://www.thoracic.org/patients/patient-resources/resources/top-pneumonia-facts.pdf

 $\frac{https://www.clinicbarcelona.org/en/news/pneumonia-causes-2-5-million-deaths-around-the-world-each-year\#:\sim:text=Globally%2C%20only%20half%20of%20children,under%205%20years%20of%20age$

http://proxy.library.vanderbilt.edu/login?url=https://www.proquest.com/scholarly-journals/novel-fast-pathogen-diagnosis-method-severe/docview/2730538532/se-2?accountid=14816

https://link.gale.com/apps/doc/A444844867/AONE?u=tel_a_vanderbilt&sid=bookmark-AONE&xid=a47c262a

http://proxy.library.vanderbilt.edu/login?url=https://www.proquest.com/scholarly-journals/real-world-integration-sepsis-deep-learning/docview/2511970280/se-2?accountid=14816

https://data.mendeley.com/datasets/rscbjbr9sj/2