Métodos matemáticos de la física Examen final - 2do semestre 2020

Indicaciones: horario de examen 7:00-10:15 hrs. Hora límite para subir el examen a la plataforma de Uvirtual: 10:15 hrs. Deje indicado en detalle todo el procedimiento para llegar a los resultados.

1. Suponga que el potencial Φ satisface la ecuación de Laplace dentro del hemisferio $0 \le r < R$, $0 \le \theta \le \pi/2$, con (r, θ) las coordenadas esféricas usuales. Determine una expresión general del potencial dentro del hemisferio sujeto a las condiciones de contorno

$$\Phi_{\theta}(r, \pi/2) = 0, \text{ en } 0 \le r < R, \qquad \Phi(R, \theta) = \cos \theta, \text{ en } 0 \le \theta \le \pi/2. \tag{1}$$

Calcule los primeros tres términos no nulos del potencial.

2. Considere f(x), una función continua en el intervalo $[-\pi, \pi]$, tal que $f(-\pi) = f(\pi)$ y $f'(x) \in L_2(-\pi, \pi)$. Demuestre la convergencia de

$$\sum_{n=1}^{\infty} \sqrt{|a_n|^2 + |b_n|^2} \tag{2}$$

donde a_n y b_n son los coeficientes de Fourier de f(x) en el sistema ortonormal $\{\frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}}\}$, con $n \in \mathbb{N}$.

3. La ecuación de calor que describe la temperatura U de un disco se escribe en coordenadas polares (r, θ) como

$$\frac{\partial U}{\partial t} = k \left(\frac{\partial^2 U}{\partial r \partial r} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \theta \partial \theta} \right)$$
(3)

Suponga que la temperatura U=U(r,t) no depende de θ y que $0 \le r < 1$. Si el borde del disco se mantiene a temperatura cero para todo t>0, y si la temperatura inicial es U(r,0)=f(r), encuentre la expresión de la temperatura en el disco para todo $r\in [0,1)$, y t>0.

4. Para $x = \{x_n\}_{n=1}^{\infty} \in l_{\infty}$ se define la norma

$$||x|| = \sum_{n=1}^{\infty} \frac{|x_n|}{2^n} \tag{4}$$

Estudie si l_{∞} con dicha norma es un espacio de Banach.