Esercizi di riepilogo Corso di Laurea in Informatica A.A. 2007-2008 Docente: Andrea Loi

1. Trovare le radici complesse del polinomio:

$$z^{4} + i$$

e dire come sono disposte nel piano.

2. VERO O FALSO (giustificando la risposta).

- Un polinomio di quarto grado a coefficienti complessi ammette sempre 4 radici.
- Un polinomio di quarto grado a coefficienti complessi ammette sempre 4 radici distinte.
- Esistono polinomi a coefficienti reali che non ammettono radici reali.

3. Si trovino i vettori del piano ortogonali ai seguenti:

- i+2j
- 2i j
- \bullet i+j
- 2i + j
- 3i + 4j

4. Provare che i vettori:

$$u = 2i - 3i$$
: $v = 3i + 2i$

costituiscono una base del piano. Si esprimano inoltre i vettori della base $\mathcal{B} = \{i, j\}$ nella base $\mathcal{B}' = \{u, v\}$. Si scriva inoltre il vettore w = -5i + 2j nella base \mathcal{B}' , si scriva, infine, il vettore z = u + 2v nella base \mathcal{B} .

5. Per quali valori di m i vettori:

$$u = (m-2)i + mj; v = -2i + mj$$

costituiscono una base per il piano? Stesso esercizio con:

$$u = (m+3)i + (m+1)j; v = -3i + (m-1)j$$

6. Si determinino m e n in maniera tale che i vettori:

$$u = (m+3n)i + (2m+n-1)j; v = (3m+n)i - (3m+4n+2)j$$

soddisfino le seguenti condizioni:

- u=v
- u=-v
- \bullet u=2v
- 3u=2v
- u+v=3i+5j

1. Si determini k in maniera tale che i vettori dello spazio:

$$u = (1, 2, 3); v = (0, k, 1); w = (1, 1, k)$$

Formino una base per lo spazio.

- 2. Calcolare il prodotto scalare e vettoriale tra i vettori $\mathbf{v} = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ e $\mathbf{w} = -3\mathbf{i} \mathbf{j} + \mathbf{k}$. Verificare inoltre la disuguaglianza di Cauchy–Schwarz.
- 3. Si determini λ in maniera tale che il triangolo di vertici i punti O = (0,0,0), $P_1 = (1,\lambda,2)$ e $P_2 = (1,2,1)$, abbia area pari a $\frac{\sqrt{3}}{2}$. Si dica di che tipo di triangolo si tratta.
- 4. Siano $\mathbf{v} = (1, 4, 0)$ e $\mathbf{w} = (1, -2, -1)$. Calcolare l'area del parallelogramma di vertici $O, \mathbf{v}, \mathbf{w}, \mathbf{w} + \mathbf{v}$. Tale parallelogramma è un rombo, un rettangolo e(o) un quadrato?

- 5. Sia \mathbf{v} un vettore di \mathbb{R}^n e λ un numero reale. Dimostrare che $\|\lambda\mathbf{v}\| = |\lambda|\|\mathbf{v}\|$.
- 6. VERO O FALSO (giustificando la risposta).
 - (a) Per tutti i vettori $\|\mathbf{v}\|$ e $\|\mathbf{w}\|$ in \mathbb{R}^n

$$\|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|.$$

(b) Esistono vettori $\|\mathbf{v}\|$ e $\|\mathbf{w}\|$ in \mathbb{R}^n

$$\|\mathbf{v} + \mathbf{w}\| = \|\mathbf{v}\| + \|\mathbf{w}\|.$$

- 7. Verificare che i vettori (1,2,-1) e (-1,0,-1) di \mathbb{R}^3 sono ortogonali. A partire da questi vettori costruire una base ortonormale di \mathbb{R}^3 . Fare lo stesso con i vettori (2,2,1) e (1,1,-4).
- 8. VERO O FALSO (giustificando la risposta).
 - (a) Se il prodotto di due matrici è uguale alla matrice nulla allora una delle due matrici è la matrice nulla.
 - (b) Una matrice $n \times n$ è invertibile se solo se ha rango n.
 - (c) Se A e B sono due matrici invertibili $n \times n$ allora il loro prodotto è una matrice invertibile $n \times n$.
 - (d) Esitono due matrici A e B invertibili $n \times n$ tale che il loro prodotto non è invertibile.
 - (e) Per ogni matrice A $n \times n$ e $k \in \mathbb{R}$ allora $\det(kA) = k \det A$.
 - (f) Esiste una matrice $A \in M_{n,n}$ e $k \in \mathbb{R}$ tale che $\det(kA) = k \det A$.
- 9. Per quali valori del parametro λ la matrice $A=\begin{pmatrix}0&0&\lambda\\1&1&-2\\1&0&1\end{pmatrix}$ è invertibile.
- 10. Trovare l'inversa (se possibile) della matrice $A=\left(\begin{array}{ccc} 1 & 0 & -1\\ 2 & 1 & 0\\ 1 & 1 & 1 \end{array}\right)$

11. Trovare i valori del parametro reale λ in modo tale che il seguente sistema nelle incognite x, y, z abbia: (a) una soluzione unica, (b) nessuna soluzione, (c) un numero infinito di soluzioni:

$$\begin{cases} x - y + z = \lambda \\ 2x + y - z = \lambda + 1 \\ 5x + y - z = \lambda \end{cases}$$

- 12. VERO O FALSO (giustificare le risposte)
 - (a) Un sistema omogeneo è sempre compatibile
 - (b) Un sistema omogeneo di 3 equazioni in 9 incognite ammette sempre soluzioni e queste dipendono da almeno 6 parametri.
 - (c) Un sistema omogeneo di 3 equazioni in 9 incognite ammette sempre soluzioni e queste dipendono esattamente da 6 parametri.
 - (d) Se $A \in M_{m,n}$ con m < n, allora il sistema omogeneo Ax = 0 ammette soluzioni non banali.
- 13. VERO O FALSO (giustificare):
 - (a) 5 vettori in \mathbb{R}^6 sono sempre linearmente dipendenti;
 - (b) 7 vettori in \mathbb{R}^5 sono linearmente dipendenti;
 - (c) 6 vettori in \mathbb{R}^6 sono sempre linearmente indipendenti.
- 14. Dimostrare che

$$\left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}1\\2\\3\end{array}\right), \left(\begin{array}{c}1\\1\\1\end{array}\right).$$

è una base \mathcal{B}' di \mathbb{R}^3 . Scrivere inoltre le coordinate del vettore $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$

rispetto alla base \mathcal{B}' . Se $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ sono le coordinate di un vettore rispetto alla base \mathcal{B}' quali sono le sue coordinate rispetto alla base \mathcal{B} ?

- 15. VERO O FALSO (giustificare le risposte) (Una matrice quadrata $A \in M_n$ è ortogonale se $AA^T = I_n$, dove A^T è la trasposta di A e I_n denota la matrice identità $n \times n$).
 - (a) Tutte la matrici ortogonali hanno determinante uguale a 1;
 - (b) Tutte la matrici ortogonali hanno determinante uguale a 1 oppure -1;
 - (c) Esistono matrici ortogonali che non rappresentano una rotazione.
- 16. Per quali valori di λ i vettori $v_1 = 2\lambda \mathbf{i} + \mathbf{j}$ e $v_2 = \mathbf{j}$ sono linearmente indipendenti?
- 17. Provare che i vettori $\mathbf{v_1} = 2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{v_2} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\mathbf{v_3} = -\mathbf{i} 2\mathbf{j} + \mathbf{k}$ sono linearmente indipendenti. Dire, inoltre se il vettore \mathbf{j} è esprimibile come combinazione lineare di $\mathbf{v_1}$, $\mathbf{v_2}$ e $\mathbf{v_3}$, e se lo è, dire in quanti modi.
- 18. Dire se i seguenti vettori di \mathbb{R}^3 sono linearmente indipendenti; scrivere, quando possibile, un vettore come combinazione lineare dei rimanenti:

$$\left(\begin{array}{c}3\\1\\2\end{array}\right), \left(\begin{array}{c}2\\1\\3\end{array}\right), \left(\begin{array}{c}3\\2\\1\end{array}\right).$$

Stessa domanda per i vettori

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\1\\1\end{array}\right).$$

19. Provare che i vettori:

$$\left(\begin{array}{c}1\\0\\1\end{array}\right), \left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}2\\2\\1\end{array}\right)$$

formano una base $\mathcal B$ di $\mathbb R^3$. Esprimere le coordinate del vettore

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

rispetto alla base \mathcal{B} .

20. Trovare una base del sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}.$$