Your first database

INTRODUCTION TO RELATIONAL DATABASES IN SQL

Timo Grossenbacher

Data Journalist

Investigating universities in Switzerland

A relational database:

- real-life *entities* become *tables*
- reduced redundancy
- data integrity by relationships

- e.g. professors , universities , companies
- e.g. only one entry in companies for the bank "Credit Suisse"
- e.g. a professor can work at multiple
 universities and companies , a company
 can employ multiple professors

Throughout this course you will:

- work with the data I used for my investigation
- create a relational database from scratch
- learn three concepts:
 - constraints
 - keys
 - referential integrity

You'll need: Basic understanding of SQL, as taught in Intro to SQL for Data Science.

Your first duty: Have a look at the PostgreSQL database

```
SELECT table_schema, table_name
FROM information_schema.tables;
```

```
table_schema | table_name

pg_catalog | pg_statistic

pg_catalog | pg_type

pg_catalog | pg_policy

pg_catalog | pg_authid

pg_catalog | pg_shadow

public | university_professors

pg_catalog | pg_settings

...
```


Have a look at the columns of a certain table

```
SELECT table_name, column_name, data_type
FROM information_schema.columns
WHERE table_name = 'pg_config';
```

Let's do this.

INTRODUCTION TO RELATIONAL DATABASES IN SQL

Tables: At the core of every database

INTRODUCTION TO RELATIONAL DATABASES IN SQL

Timo Grossenbacher

Data Journalist

Redundancy in the university_professors table

```
SELECT * FROM
FROM university_professors
LIMIT 3;
```

```
firstname
                 | Karl
lastname
                 | Aberer
               I ETH Lausanne
university
university_shortname | EPF
university_city
              | Lausanne
         | Chairman of L3S Advisory Board
function
organization | L3S Advisory Board
organization_sector | Education & research
firstname
           | Karl
                 | Aberer
lastname
university
                 | ETH Lausanne
university_shortname | EPF
university_city | Lausanne
function
          | Member Conseil of Zeno-Karl Schindler Foundation
organization | Zeno-Karl Schindler Foundation
organization_sector | Education & research
firstname
                 | Karl
lastname
                 l Aberer
(truncated)
function
          | Member of Conseil Fondation IDIAP
organization
                 | Fondation IDIAP
(truncated)
```


-[RECORD 1]	+	
firstname	Karl	
lastname	Aberer	
university	ETH Lausanne	
university_shortname	EPF	
university city	Lausanne	
function	Chairman of L3S Advisory Board	
organisation	L3S Advisory Board	
organisation_sector	Education & research	
- L RECORD 2 J		
firstname	Karl	
lastname	Aberer	
university	ETH Lausanne	
university_shortname	EPF	
university city	Lausanne	
function	Member Conseil of Zeno-Karl Schindler Foundation	
organisation	Zeno-Karl Schindler Foundation	
organisation sector	Education & research	
-[RECORD 3]		
firstname	Karl	
lastname	Aberer	
(truncated)		
function	Member of Conseil Fondation IDIAP	
organisation	Fondation IDIAP	
(truncated)		

Currently: One "entity type" in the database

A better database model with three entity types

New:

Old:

organization organization

organizations

lastname

professors

firstname

university_city

university_shortname

university

A better database model with four entity types

Create new tables with CREATE TABLE

```
CREATE TABLE table_name (
  column_a data_type,
  column_b data_type,
  column_c data_type
);
```

Create new tables with CREATE TABLE

```
CREATE TABLE weather (
  clouds text,
  temperature numeric,
  weather_station char(5)
);
```


Let's practice!

INTRODUCTION TO RELATIONAL DATABASES IN SQL

Update your database as the structure changes

INTRODUCTION TO RELATIONAL DATABASES IN SQL

Timo Grossenbacher

Data Journalist

The current database model

The current database model

Only store DISTINCT data in the new tables

```
SELECT COUNT(*)
FROM university_professors;
```

```
count
----
1377
```

 ${\bf SELECT~COUNT}({\bf DISTINCT~organization})$

FROM university_professors;

```
count
-----
1287
```

INSERT DISTINCT records INTO the new tables

```
INSERT INTO organizations
SELECT DISTINCT organization,
    organization_sector
FROM university_professors;
```

INSERT INTO organizations
SELECT organization,
 organization_sector
FROM university_professors;

Output: INSERT 0 1287

Output: INSERT 0 1377

The INSERT INTO statement

```
INSERT INTO table_name (column_a, column_b)
VALUES ("value_a", "value_b");
```

RENAME a COLUMN in affiliations

```
CREATE TABLE affiliations (
  firstname text,
  lastname text,
  university_shortname text,
  function text,
  organisation text
);
```

```
ALTER TABLE table_name
RENAME COLUMN old_name TO new_name;
```

DROP a COLUMN in affiliations

```
CREATE TABLE affiliations (
  firstname text,
  lastname text,
  university_shortname text,
  function text,
  organization text
);
```

```
ALTER TABLE table_name

DROP COLUMN column_name;
```

```
SELECT DISTINCT firstname, lastname,
    university_shortname
FROM university_professors
ORDER BY lastname;
```

```
-[ RECORD 1 ]-----+
firstname
       | Karl
lastname | Aberer
university_shortname | EPF
-[ RECORD 2 ]-----+
firstname | Reza Shokrollah
lastname | Abhari
university_shortname | ETH
-[ RECORD 3 ]-----+
firstname | Georges
lastname | Abou Jaoudé
university_shortname | EPF
(truncated)
(551 records)
```

```
SELECT DISTINCT firstname, lastname
FROM university_professors
ORDER BY lastname;
```

```
-[ RECORD 1 ]-----
firstname | Karl
lastname | Aberer
-[ RECORD 2 ]-----
firstname | Reza Shokrollah
lastname | Abhari
-[ RECORD 3 ]-----
firstname | Georges
lastname | Abou Jaoudé
(truncated)
(551 records)
```

A professor is uniquely identified by firstname, lastname only

Let's get to work!

INTRODUCTION TO RELATIONAL DATABASES IN SQL

