```
In [1]: import os
    import glob
    import math as m
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import statsmodels.api as sm
    import seaborn as sns
    import itertools
    import sklearn
    import re
```

Create File Pathways and see how many files

```
In [2]: #Path into the chl folder
        file path chl = "/Users/kenneth/Desktop/repro database-main/data/environment
        #Grabs all file names in the chl folder
        file_list_chl = os.listdir(file_path_chl)
        file list chl.remove(".ipynb checkpoints")
        print(len(set(file list chl)))
        #Salinity
        file_path_sal = "/Users/kenneth/Desktop/repro_database-main/data/environment
        #Grabs all file names in the sal folder
        file list sal = os.listdir(file path sal)
        print(len(set(file_list_sal)))
        #Temperature
        file_path_temp = "/Users/kenneth/Desktop/repro_database-main/data/environmer
        #Grabs all file names in the temp folder
        file_list_temp = os.listdir(file_path_temp)
        file_list_temp.remove(".ipynb_checkpoints")
        print(len(set(file list temp)))
       27
       27
       91
```

To make sure to find the number of lines of data we have, I checked the number of rows

```
In [3]: def number_of_lines(file_list, file_path, name):
    num_rows = 0
    for file in file_list:
        loc = file_path + file
        df_temp = pd.read_csv(loc, names=name)
        num_rows += len(df_temp)
    return num_rows

In [4]: len_chl = number_of_lines(file_list_chl, file_path_chl, ['date', 'chl'])
    print("Chloropyll should be", len_chl, "long.")
    len_sal = number_of_lines(file_list_sal, file_path_sal, ['date', 'sal'])
    print("Salinity should be", len_sal, "long.")
```

localhost:8891/lab 1/10

```
len_temp = number_of_lines(file_list_temp, file_path_temp, ['date', 'temp'])
print("Temperature should be", len_temp, "long.")
Chloropyll should be 1331 long.
Salinity should be 1598 long.
Temperature should be 5931 long.
```

Creating function to combine all corresponding data into one dataset

```
In [5]: def big dataset builder(file list, file path):
            big_df = pd.DataFrame()
            counter = 0
            for i in range(len(file_list)):
                loc = file_path + file_list[i]
                nums = int(re.findall(r'\d+', file list[i])[0])
                df_temp = pd.read_csv(loc, names=['Date', "Value"])
                df_temp["Site_ID"] = [nums] * len(df_temp)
                df_temp = df_temp.reset_index().drop('index', axis = 1)
                #print(df temp)
                if counter == 0:
                    big_df = df_temp
                    counter += 1
                else:
                    big_df = pd.concat([big_df, df_temp])
            return big_df.reset_index().drop('index', axis = 1)
```

Using this builder, test run on chlorophyll to see if it works:

```
In [6]: chl = big_dataset_builder(file_list_chl, file_path_chl)
    chl
```

localhost:8891/lab 2/10

Out[6]:		Date	Value	Site_ID
	0	-0.549398	0.151442	318
	1	-0.472289	2.170673	318
	2	-0.385542	0.353365	318
	3	-0.308434	3.180288	318
	4	-0.231325	2.170673	318
	•••			•••
	1326	10.741562	7.457273	14
	1327	10.875439	7.386420	14
	1328	11.274064	7.491223	14
	1329	11.461187	7.123253	14
	1330	11.667143	7.054298	14

1331 rows × 3 columns

It works so, create 3 dataframes each containing chl, sal, temp

```
In [7]: #Chloropyll
    print("Length of Chloropyll Data:", len(chl))
    chl["Data_Type"] = ["Chlorophyll"] * len(chl)
    display(chl.head(2))

#Salinity
    sal = big_dataset_builder(file_list_sal, file_path_sal)
    print("Length of Salinity Data:", len(sal))
    sal["Data_Type"] = ["Salinity"] * len(sal)
    display(sal.head(2))

#Temperature
    temp = big_dataset_builder(file_list_temp, file_path_temp)
    print("Length of Temperature Data:", len(temp))
    temp["Data_Type"] = ["Temperature"] * len(temp)
    display(temp.head(2))
```

Length of Chloropyll Data: 1331

	Date	Value	Site_ID	Data_Type
0	-0.549398	0.151442	318	Chlorophyll
1	-0.472289	2.170673	318	Chlorophyll

Length of Salinity Data: 1598

localhost:8891/lab

	Date	Value	Site_ID	Data_Type	
	0	0.358649	33.604009	6	Salinity
1		0.377120	33.320781	6	Salinity

Length of Temperature Data: 5931

	Date	Value	Site_ID	Data_Type
0	-0.153585	14.225521	97	Temperature
1	-0.158516	12.908090	97	Temperature

Successfully created all 3 datasets with values, time to add them together for later use.

```
In [8]: env_df = pd.concat([chl, sal, temp])
  env_df = env_df.rename(columns = {'Date': 'Normalized Date'})
  env_df
```

\cap		+	Γ	0	Ι.
U	u	L.	L	Ο.	

	Normalized Date	Value	Site_ID	Data_Type
0	-0.549398	0.151442	318	Chlorophyll
1	-0.472289	2.170673	318	Chlorophyll
2	-0.385542	0.353365	318	Chlorophyll
3	-0.308434	3.180288	318	Chlorophyll
4	-0.231325	2.170673	318	Chlorophyll
•••			•••	
5926	0.884478	15.272427	71	Temperature
5927	0.950274	14.582943	71	Temperature
5928	0.998773	14.585183	71	Temperature
5929	1.026338	10.292826	71	Temperature
5930	1.057564	11.679310	71	Temperature

8860 rows × 4 columns

Fix all Negative Dates:

```
In [9]: fix_neg = [1 + i if i < 0 else i for i in env_df['Normalized Date']]
    print(all(i >= 0 for i in fix_neg))
    env_df['Normalized Date'] = fix_neg
    env_df
```

True

localhost:8891/lab 4/10

Out[9]:		Normalized Date	Value	Site_ID	Data_Type
	0	0.450602	0.151442	318	Chlorophyll
	1	0.527711	2.170673	318	Chlorophyll
	2	0.614458	0.353365	318	Chlorophyll
	3	0.691566	3.180288	318	Chlorophyll
	4	0.768675	2.170673	318	Chlorophyll
	•••				•••
	5926	0.884478	15.272427	71	Temperature
	5927	0.950274	14.582943	71	Temperature
	5928	0.998773	14.585183	71	Temperature
	5929	1.026338	10.292826	71	Temperature
	5930	1.057564	11.679310	71	Temperature

8860 rows × 4 columns

```
In [10]: # new_dates = []
# for i in env_df["Normalized Date"]:
# while i > 1.08333333:
# i -= 1
# new_dates.append(m.floor(i * 12))
# env_df["Normalized Date"] = new_dates
# env_df
```

Export this to a csv file:

```
In [11]: file_path_df = '/Users/kenneth/Desktop/repro_database-main/data/env_data.csv
env_df.to_csv(file_path_df, sep=',', index=False, encoding='utf-8')
```

Let's try to make the data look a little better in a different data frame.

```
In [12]: piv_env = env_df.pivot_table(values = 'Value', index = ["Site_ID", "Normaliz
piv_env = piv_env.reset_index()
piv_env = piv_env.rename_axis(None, axis=1).fillna(0)
piv_env
```

localhost:8891/lab 5/10

Out[12]:		Site_ID	Normalized Date	Chlorophyll	Salinity	Temperature
	0	1	4.000000	0.0	28.783536	0.000
	1	1	5.000000	0.0	28.819698	0.000
	2	1	6.000000	0.0	35.105508	0.000
	3	1	7.000000	0.0	33.390196	0.000
	4	1	8.000000	0.0	34.424729	0.000
	•••	•••				•••
	8697	343	0.582143	0.0	0.000000	30.868
	8698	343	0.664286	0.0	0.000000	29.865
	8699	343	0.832143	0.0	0.000000	25.898
	8700	343	0.917857	0.0	0.000000	21.254
	8701	343	1.085714	0.0	0.000000	18.967

8702 rows × 5 columns

Export the dataframe for further use:

```
In [13]: file_path_df = '/Users/kenneth/Desktop/repro_database-main/data/piv_env_data
piv_env.to_csv(file_path_df, sep=',', index=False, encoding='utf-8')
```

Combined All Environmental Data!!

Time to combine families, reprodata, and env_data

```
In [14]:
    env_data = pd.read_csv('/Users/kenneth/Desktop/repro_database-main/data/env_
    families = pd.read_csv('/Users/kenneth/Desktop/repro_database-main/data/fami
    reprodata = pd.read_csv('/Users/kenneth/Desktop/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/repro_database-main/data/env_database-main/data/fami
```

Lets check the data to see how we can combine them

```
In [15]: print(env_data.shape)
  env_data.head(3)
```

(8860, 4)

Out[15]:		Normalized Date	Value	SiteID	Data_Type
	0	0.450602	0.151442	318	Chlorophyll
	1	0.527711	2.170673	318	Chlorophyll
	2	0.614458	0.353365	318	Chlorophyll

localhost:8891/lab 6/10

2

3

2003

```
In [16]: print(families.shape)
          families.head(3)
         (232, 4)
Out[16]:
             Unnamed: 0 db
                                              family
                                   query
          0
                        1 itis
                                Abra alba Semelidae
           1
                               Abra nitida Semelidae
                        2 itis
           2
                        3 itis Abra tenuis Semelidae
In [17]:
          print(reprodata.shape)
          reprodata.head(3)
         (541, 19)
Out[17]:
              SiteID
                       Study
                                  Species
                                             Locality LatDeg LatMin LongDeg LongMin spaw
                                               Adyar
                     Abraham
                                  Meretrix
          0
                                                           13
                                                                   1.0
                                                                             80
                                                                                     16.0
                                                river
                        1953
                                     casta
                                               mouth
                                 Ruditapes
                       Adachi
                                               Inage,
           1
                  2
                                                           35
                                                                 36.0
                                                                            140
                                                                                      3.0
                         1979
                              phillipinarum
                                               Japan
                                               Marian
                     Ahn et al
                                 Laternula
```

Combine all the information from above to create and export the large dataframe

Antarctica

elliptica

Cove,

-62

13.0

-58

47.0

```
df = reprodata.merge(env_data, on= 'SiteID', how= 'left')
In [18]:
         df = df.drop(columns = ["Unnamed: 18"])
         family_dic = {}
         for i in np.arange(len(families)):
             row = families.iloc[i, :].values
             family dic[row[2]] = row[3]
         family_col = []
         for i in np.arange(len(df)):
             row = df.iloc[i, :].values
             if row[2] in family_dic.keys():
                 family col.append(family dic[row[2]])
             else:
                 family_col.append(np.NaN)
         df["Family"] = family_col
         df
```

localhost:8891/lab 7/10

Out[18]:

SiteID		Study	Species	Locality	LatDeg	LatMin	LongDeg	LongMin
	0 1	Abraham Meretrix 1953 casta		Adyar river mouth	13	1.0	80	16.0
	1 1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
	2 1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
	3 1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
	4 1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
	•••				•••	•••		
999)2 560	Cledon et al 2004`	Tagelus plebeius	Mar Chiquita, Argentina	-37	44.0	-57	26.0
999	3 561	Drescher et al 2019	Rangia cuneata	Johnson Bayou, MS	30	20.0	-89	14.0
999)4 562	Cain 1975	Rangia cuneata	James River, Virginia	37	13.0	-76	43.0
999)5 563	Jovanovich and Marion 1989	Rangia cuneata	Dog River, Mobile, Alabama	30	34.0	-88	5.0
999	9 6 564	Fairbanks 1963	Rangia cuneata	Lake Ponchartrain, LA	30	7.0	-90	6.0

9997 rows × 22 columns

We will change up the dataset a bit to make it better

```
In [19]: file_path_df = '/Users/kenneth/Desktop/repro_database-main/clams.csv'
    df.to_csv(file_path_df, sep=',', index=False, encoding='utf-8')
```

Now lets try to do the same for the pivoted table:

```
In [20]: piv_env_data = pd.read_csv('/Users/kenneth/Desktop/repro_database-main/data/
    piv_env_data = piv_env_data.rename(columns= {"Site_ID": "SiteID"})
    print(piv_env_data.shape)
    piv_env_data.head(3)
```

(8702, 5)

localhost:8891/lab

Out[20]:	SiteID 0 1		Normalized Date	Chlorophyll	Salinity	Temperature
	0	1	4.0	0.0	28.783536	0.0
	1	1	5.0	0.0	28.819698	0.0
	2	1	6.0	0.0	35.105508	0.0

```
In [21]: df2 = reprodata.merge(piv_env_data, on= 'SiteID', how= 'left')
         df2.drop(columns = ["Unnamed: 18"])
         family_dic = {}
         for i in np.arange(len(families)):
             row = families.iloc[i, :].values
             family_dic[row[2]] = row[3]
         family_col = []
         for i in np.arange(len(df2)):
             row = df2.iloc[i, :].values
             if row[2] in family_dic.keys():
                 family_col.append(family_dic[row[2]])
             else:
                 family_col.append(np.NaN)
         df2["Family"] = family_col
         df2
         # family_dic = {}
         # family_col = []
         # for i in range(len(df2)):
               row = df2.iloc[i, :]
               if df2.iloc[i, 2] in family_dic:
                    family_col.append(family_dic[df2.iloc[i, 2]][0])
         #
               else:
                    family_col.append(0)
         # df2["Family"] = family_col
         # df2
```

localhost:8891/lab 9/10

Out[21]:

	SiteID Study Spec		Species	Locality	LatDeg	LatMin	LongDeg	LongMin
0	1	1 Abraham Mer 1953 c		Adyar river mouth	13	1.0	80	16.0
1	1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
2	1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
3	1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
4	1	Abraham 1953	Meretrix casta	Adyar river mouth	13	1.0	80	16.0
•••	•••							
9817	560	Cledon et al 2004`	Tagelus plebeius	Mar Chiquita, Argentina	-37	44.0	-57	26.0
9818	561	Drescher et al 2019	Rangia cuneata	Johnson Bayou, MS	30	20.0	-89	14.0
9819	562	Cain 1975	Rangia cuneata	James River, Virginia	37	13.0	-76	43.0
9820	563	Jovanovich and Marion 1989	Rangia cuneata	Dog River, Mobile, Alabama	30	34.0	-88	5.0
9821	564	Fairbanks 1963	Rangia cuneata	Lake Ponchartrain, LA	30	7.0	-90	6.0

9822 rows × 24 columns

Let's export this file as well:

```
In [22]: file_path_df = '/Users/kenneth/Desktop/repro_database-main/piv_clams.csv'
    df2.to_csv(file_path_df, sep=',', index=False, encoding='utf-8')
```

The big Dataset has been created! Now time to do actual Data Science

localhost:8891/lab 10/10