Package 'fRNC'

January 10, 2021

Type Package
Title ncRNA module search functions
Version 0.1
Author leiming jiang
Maintainer leiming jiang <leiming8886@163.com></leiming8886@163.com>
Depends R ($>=$ 3.6.0), igraph
Imports graph, RBGL, Biobase, methods, stats, XML, survival, ggpubr, limma, edgeR
Suggests devtools, roxygen2, testthat
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
fRNC-package case.exp_miRNA case.exp_rna cepair clinData combinp control.exp_miRNA control.exp_rna

fRNC-package

fRNC	package fRNC: Search for modules in a node-weighted ncRNA network
Index	16
	survival.miR_rna
	subNetwork_only
	saveNetwork
	savelocalM
	runmodule
	plotSub
	interStringency
	integPvals
	IDsymbol
	gene_type
	DEGs
	dataR2L
	dataR2C
	dataN
	dataM2R
	dataM2L
	dataM2C

Description

fRNC constructs a node-weighted ncRNA network, performs module searching, generates simulation data from random networks, normalizes module scores using simulation data, removes unqualified modules, and orders resultant modules according to their significance.

Details

This package takes three types of data as input: a list of genes with association p-values and logFC, a human ncRNA network. generate_graph constructs a node-weighted ncRNA network. runmodule performs module search upon the node-weighted ncRNA network.

References

Hongbo Shi, Jiayao Li, Qiong Song et al. (2019) Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy

Peilin Jia, Siyuan Zheng, Jirong Rong, Wei Zheng, Zhongming Zhao. (2011) Bioformatics. dmG-WAS: dense module searching for genome-wide association studies in protein-protein interaction networks.

case.exp_miRNA 3

case.exp_miRNA	miRNA-seq expression data in the ECSA cancer samples	

Description

miRNA-seq expression data in the ECSA cancer samples, the row names are miRNA mirbase IDS, the column names are sample names in which last two sign is 01

Usage

```
data("case.exp_miRNA")
```

Examples

```
data("case.exp_miRNA")
case.exp_miRNA[1:100,]
```

case.exp_rna

RNA-seq expression data in the ECSA cancer samples

Description

RNA-seq expression data in the ECSA cancer samples, the row names are RNA mirbase IDS, the column names are sample names in which last two sign is 01

Usage

```
data("case.exp_rna")
```

Examples

```
data("case.exp_rna")
case.exp_rna[1:100,]
```

cepair

extract lncRNA-circRNA ceRNA pair

Description

```
extract lncRNA-circRNA ceRNA pair
```

Usage

```
cepair(interac, N_mi = 50)
```

Arguments

interac the interaction data matrix, in which the column name contain "node_gene_ID",

"type" and "target_gene_ID"

N_mi a numeric value, shared miRNAs by a lncRNA and circRNA

4 combinp

Value

interac_temp the interaction data matrix, in which the column name contain "node_gene_ID", "type" and "target_gene_ID"

Examples

```
## Not run:
interac <- interStringency(type = "ncRNA", stringency = "high")
interac_high_p_50 <- cepair(interac, N_mi= 50)
## End(Not run)</pre>
```

clinData

clinical data in the ECSA cancer patients

Description

clinical data in the ECSA cancer patients, the column names are TCGA sample ID(cancer sample ID), survival time (month), survival status

Usage

```
data("clinData")
```

Examples

```
data("clinData")
clinData[1:100,]
```

combinp

Generate corrected p-value based on p-value and logFC in the expression matrix

Description

based on the formula: corrected p-value = 2*(1-pnorm((-log10(p-value)) * abs(log2FC))), corrected p-value was generated

Usage

```
combinp(node_attr = NULL, islog = T)
```

Arguments

node_attr A data frame containing three columns: type, logFC and p value, and the row

name is the gene identifier.

islog Boolean value, whether to use the logFC, if FALSE, the weight is the p-value,

or "TRUE", the corrected p-value is used

control.exp_miRNA 5

Value

A data matrix containing three columns: type, gene, weight(corrected p-value), the row name is the gene identifier.

References

Hongbo Shi, Jiayao Li, Qiong Song et al. (2019) Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy

Examples

```
data("dataN")
result <- combinp(dataN[,c("type","logFC","PValue")])</pre>
```

control.exp_miRNA

miRNA-seq expression data in the ECSA normal samples

Description

miRNA-seq expression data in the ECSA normal samples, the row names are miRNA mirbase IDS, the column names are sample names in which last two sign is 11

Usage

```
data("control.exp_miRNA")
```

Examples

```
data("control.exp_miRNA")
control.exp_miRNA[1:100,]
```

control.exp_rna

RNA-seq expression data in the ECSA normal samples

Description

RNA-seq expression data in the ECSA normal samples, the row names are RNA mirbase IDS, the column names are sample names in which last two sign is 11

Usage

```
data("control.exp_rna")
```

```
data("control.exp_rna")
control.exp_rna[1:100,]
```

6 dataM2R

dataM2C

Example network for ncRNA network on miRNA-circRNA

Description

Data example consisting of a matrix of network.

Usage

```
data("dataM2C")
```

Examples

```
data("dataM2C")
dataM2C[1:100,]
```

dataM2L

Example network for ncRNA network on miRNA-lncRNA

Description

Data example consisting of a matrix of network.

Usage

```
data("dataM2L")
```

Examples

```
data("dataM2L")
dataM2L[1:100,]
```

dataM2R

Example network for ncRNA network on miRNA-RPB

Description

Data example consisting of a matrix of network.

Usage

```
data("dataM2R")
```

```
data("dataM2R")
dataM2R[1:100,]
```

dataN 7

dataN

Example node_attr for ncRNA network

Description

Data example consisting of a matrix of the colname of genes, type, logFC, logCPM, PValue, FDR.

Usage

```
data("dataN")
```

Examples

```
data("dataN")
dataN[1:100,]
```

dataR2C

Example network for ncRNA network on RPB-circRNA

Description

Data example consisting of a matrix of network.

Usage

```
data("dataR2C")
```

Examples

```
data("dataR2C")
dataR2C[1:100,]
```

dataR2L

Example network for ncRNA network on RBP-lncRNA

Description

Data example consisting of a matrix of network.

Usage

```
data("dataR2L")
```

```
data("dataR2L")
dataR2L[1:100,]
```

8 gene_type

DEGs	Perfa

Performe differential expression analysis

Description

Differential expression analysis using edgeR or limma for two group comparison

Usage

```
DEGs(case.exp, control.exp, geneid, data_type)
```

Arguments

case.exp	the case expression matrix, in which the row name is gene id and the column name is sample id
control.exp	the control expression matrix, in which the row name is gene id (the same with the case) and the column name is sample id
geneid	gene id in the case or control expression matrix
data type	a character string indicating which date type to deal with is to be choosed. One

of "RNAseq_counts", "fpkm" and "microarray": can be abbreviated

Value

DEGlist list contain four elements, DEGs the differential expression matrix, Nor_expr the normalized expression matrix, data_type a character string of the data type algorithm a character string indicating which algorithm was used, One of "edgeR", "limma"

Examples

```
## Not run:
data("case.exp_miRNA")
data("control.exp_miRNA")
result_miR <- DEGs(case.exp_miRNA,control.exp_miRNA,
geneid= rownames(control.exp_miRNA), data_type = "RNAseq_counts")
## End(Not run)</pre>
```

gene_type

Table of the gene identifier and the type for ensembl ID

Description

Data consisting of a matrix, the colname contain gene_ID and gene_Name

Usage

```
data("gene_type")
```

IDsymbol 9

Examples

```
data("gene_type")
gene_type[1:100,]
```

IDsymbol

Table of the gene identifier and the gene symbol

Description

Data consisting of a matrix of the colname of gene_ID and gene_Name

Usage

```
data("IDsymbol")
```

Examples

```
data("IDsymbol")
IDsymbol[1:100,]
```

integPvals

Integrate multiple p-values into joint p-values

Description

The function integrate multiple p-values into the joint p-value of p-values based on the order statistics of p-values. An joint p-value #is given by the kth order statistic.

Usage

```
integPvals(pvalmatrix)
```

Arguments

pvalmatrix

Numeric matrix of p-values, columns represent different sets of p-values

Value

```
matrix The matrix of two columns: gene, weight(p-value)
```

10 plotSub

interStringency

Extract interactions according to stringency and interaction type

Description

interactions were extracted according to stringency and interaction type in the database of ENCORI

Usage

```
interStringency(
  type = c("RBP", "ncRNA"),
  stringency = c("low", "medium", "high", "strict")
)
```

Arguments

type a character string indicating which interaction type is to be choosed, . One of

"RBP" (RBP-circRNA,RBP-lncRNA,miRNA-circRNA,miRNA-lncRNA,miRNA-

RBP), "ncRNA (miRNA-circRNA,miRNA-lncRNA)": can be abbreviated

 ${\tt stringency} \qquad {\tt a character string indicating which interaction stringency is to be choosed, . One}$

of "low" (number of supported experiments > = 1), "medium (> = 2)", "high (

> = 3)", "strict (> = 5)"

Value

interaction of setting

Examples

```
## Not run:
    data("dataM2C")
data("dataM2L")
data("dataM2R")
data("dataR2C")
data("dataR2L")
interac <- interStringency(type = "ncRNA",stringency = "strict")
interac <- interac[,c("node_gene_ID","target_gene_ID")]
## End(Not run)</pre>
```

plotSub

Plot of the subnetwork

Description

The function plots a network from graphNEL or igraph format. It is used to visualize the modules. For further plotting options use the plot.igraph function of the igraph package. The shapes of the nodes can be changed according to the scores argument, then negative scores appear squared The color of the nodes can be changed according to the diff.expr argument. Negative(positive) values lead to green(red) nodes.

runmodule 11

Usage

```
plotSub(
  network,
  layout = layout.fruchterman.reingold,
  labels = NULL,
  diff.expr = NULL,
  scores = NULL,
  main = NULL,
  vertex.size = NULL
)
```

Arguments

A graph in igraph or graphNEL format. network layout Layout algorithm, e.g. layout.fruchterman.reingold or layout.kamada.kawai. Labels for the nodes of the network labels diff.expr Named numerical vector of log2FC of the nodes in the network for coloring of the nodes. Named numerical vector of scores of the nodes for the shape of the node in the scores network. Main title of the plot. main Numerical value or verctor for the size of the vertices. vertex.size

References

Daniela Beisser, Gunnar W. Klau, Thomas Dandekar et al. (2010) BioNet: an R-Package for the functional analysis of biological networks

Examples

```
library(igraph)
edgel <- cbind(c("1", "2", "3", "4", "5", "6", "7"), c("b", "c", "d", "e", "f", "a", "b"))
g <- graph.edgelist(edgel, directed=TRUE)
V(g)$type <- c(rep("lncRNA",4),rep("miRNA",4),rep("circRNA",5))
plotSub(g)</pre>
```

runmodule

Run module search function

Description

runmodule constructs a node-weighted ncRNA network, performs module searching, generates simulation data from random networks,

normalizes module scores using simulation data, removes un-qualified modules, and orders resultant modules according to their significance.

12 runmodule

Usage

```
runmodule(
  network,
  gene2weight,
  maxsize = 15,
  method = c("global", "local"),
  d = 2,
  r = 0.1,
  seletN = NULL,
  FDR = 1e-14,
  issymbol = TRUE
)
```

Arguments

network	A data frame	containing a	symbolic (edge list of	the ncRNA	network in which
	.1 1		1	TTS II II.		3.7 11

the columns must contain "node_gene_ID", "type", "target_gene_Name"

gene2weight A weight data frame containing three columns: "type", "gene", "weight" the first

"type" the type of the gene identifier; lncRNA, miRNA, circRNA the second gene is unique, gene identifier (should be coordinate with the node symbol used in ncRNA network); the third weight is gene-based p-value or corrected p-value

derived from differentially gene analysis or survival analysis

maxsize An integer: the numbel of size of the module for user settings in the method of

"global", default 15.

method a character string indicating which the search method is to be computed. One

of "global" (default, refer to Heinz method), "local (refer to GS method)": can

be abbreviated

d An integer used to define the order of neighbour genes to be searched in the

method of the method "local". This parameter is default set up as 2

r A float indicating the cut-off for increment during module expanding process

in the method of the method "local". Greater r will generate smaller module.

a vector: gene identifier IDs, or a gene identifier ID, for example "MIMAT0000461",c("MIMAT00004

Default is 0.1.

"ENSG00000250742")

FDR Numeric value, from the false discovery rate a p-value threshold is calculated.

P-values below this threshold are considered to be significant The FDR can be

used to control the size of the maximum scoring module

issymbol Boolean value, whether to set the node attribute "symbol"(gene symbol) in the

network. @return runmodule returns a list containing relevant data and results,

including:

GNCW the node-weighted network used for searching

module list of genes comprising each module, named for the seed gene if the method is "local" or the ig

module.score.matrix contains Zm, Zn

References

seletN

Hongbo Shi, Jiayao Li, Qiong Song et al. (2019) Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy

savelocalM 13

Peilin Jia, Siyuan Zheng, Jirong Rong, Wei Zheng, Zhongming Zhao. (2011) Bioformatics. dmG-WAS: dense module searching for genome-wide association studies in protein-protein interaction networks.

Daniela Beisser, Gunnar W. Klau, Thomas Dandekar et al. (2019) BioNet: an R-Package for the functional analysis of biological networks

Examples

```
## Not run:
data("dataN")
gene2weight <- combinp(dataN[,c("type","logFC","PValue")])
interac <- interStringency(type = "ncRNA",stringency = "strict")
interac <- interac[,c("node_gene_ID","type","target_gene_ID")]
res.list_global <- runmodule(network = interac, gene2weight, method = "global")
res.list_local <- runmodule(network = interac, gene2weight, method = "local",
maxsize=15, seletN = "MIMAT0000461")
## End(Not run)</pre>
```

savelocalM

save and plot module

Description

save and plot module for the methd "local" result

Usage

```
savelocalM(res.list_local)
```

Arguments

```
res.list_local the methd "local" result
```

Value

the plot and the format "XGMML" of the each module, filenames is the seed node

saveNetwork

save of the subnetwork

Description

The function plots a network from graphNEL or igraph format. It is used to visualize the modules. For further plotting options use the plot.igraph function of the igraph package. The shapes of the nodes can be changed according to the scores argument, then negative scores appear squared The color of the nodes can be changed according to the diff.expr argument. Negative(positive) values lead to green(red) nodes.

14 subNetwork_only

Usage

```
saveNetwork(
  network,
  name = "network",
  file,
  type = c("table", "XGMML", "sif", "tab")
)
```

Arguments

network A graph in igraph or graphNEL format.

name Name of the network, only needed for the XGMML format.

file File name to save.

type Type in which graph shall be saved.

References

Daniela Beisser, Gunnar W. Klau, Thomas Dandekar et al. (2010) BioNet: an R-Package for the functional analysis of biological networks

Examples

```
library(igraph)
edgel <- cbind(c("1", "2", "3", "4", "5", "6", "7"), c("b", "c", "d", "e", "f", "a", "b"))
g <- graph.edgelist(edgel, directed=TRUE)
V(g)$type <- c(rep("lncRNA",4),rep("miRNA",4),rep("circRNA",5))
saveNetwork(g,file ="g", type = "XGMML")</pre>
```

subNetwork_only

Create a subGraph

Description

The function creates a subgraph with the nodes given in the nodeList

Usage

```
subNetwork_only(nodeList, network)
```

Arguments

nodeList Character vector of nodes, contained in the subgraph.

network Graph that is used for subgraph extraction

Value

A graph object.

survival.miR_rna 15

Examples

```
library(igraph)
edgel <- cbind(c("a1", "a2", "a3", "a4", "a5", "a6", "a7"), c("b", "c", "d", "e", "f", "a", "b"))
g <- graph.edgelist(edgel, directed=TRUE)
node.list <- c("a1", "b", "c", "a1")
graph <- subNetwork_only(nodeList=node.list, network=g)</pre>
```

survival.miR_rna

survival analysis

Description

The function calculate the P-values from a univariable Cox proportional hazards regression model between survival data and corresponding expression of node. First, the overlap of the sample IDs among the survival data and the two expression data is obtained, then based on the overlap sample IDs, the p-value of every node from a univariable Cox proportional hazards regression model is calculated on the R package survival.

Usage

```
survival.miR_rna(miRNA_profile = NULL, gene_profile = NULL, clinData = NULL)
```

Arguments

miRNA_profile the miRNA expressin data matrix,in which the row name is gene id and the column name is sample id.

gene_profile the mRNA expressin data matrix,in which the row name is gene id and the column name is sample id.

clinData the data matrix of survival data,in which the column name is "ID"(sample IDs), "Survival"(months) and "Status"(0,1)

Value

surivallis list contain three elements, miR_p the p-value matrix of IDs, rna_p the p-value matrix of IDs, algorithm a character string indicating which algorithm was used

```
## Not run:
result_miR <- DEGs(case.exp_miRNA,control.exp_miRNA,
geneid= rownames(control.exp_miRNA),
result_rna <- DEGs(case.exp_rna,control.exp_rna,
geneid= rownames(control.exp_rna), data_type = "RNAseq_counts")
interac <- interac[,c("node_gene_ID","type","target_gene_ID")]
survival.miR_rna(miRNA_profile=result_miR$Nor_expr,
gene_profile = result_rna$Nor_expr, clinData = clinData)
## End(Not run)</pre>
```

Index

```
case.exp_miRNA, 3
{\tt case.exp\_rna, 3}
cepair, 3
clinData, 4
combinp, 4
control.exp_miRNA, 5
control.exp\_rna, 5
{\tt dataM2C}, \color{red} 6
dataM2L, 6
dataM2R, 6
dataN, 7
dataR2C, 7
dataR2L, 7
DEGs, 8
fRNC (fRNC-package), 2
fRNC-package, 2
gene_type, 8
IDsymbol, 9
integPvals, 9
interStringency, 10
plotSub, 10
runmodule, 11
savelocalM, 13
saveNetwork, 13
subNetwork_only, 14
\verb"survival.miR\_rna", \textcolor{red}{15}
```