Умножение матриц

Пусть f — линейная функция из n-мерного векторного пространства V в m-мерное векторное пространство W, а g — линейная функция из W в некоторое k-мерное векторное пространство U. Композиция $g \circ f$, очевидно, является линейной функцией из V в U. Если функциям f и g соответствуют $m \times n$ и $k \times m$ -матрицы A и B, то $k \times n$ -матрица, соответствующая $g \circ f$, называется npouseedenuem матриц B и A и обозначается BA.

- 1. Сформулируйте правило умножения матриц в терминах их коэффициентов.
- 2. Запишите произведение матриц поворота в \mathbb{R}^2 в общем виде.
- 3. Докажите, что произведение матриц ассоциативно и дистрибутивно.
- 4. Приведите пример того, что умножение даже 2 × 2 матриц некоммутативно.
- 5. Докажите, что rank $BA \leq \min(\operatorname{rank} B, \operatorname{rank} A)$.

Обратная матрица

В дальнейшем, если не оговорено иное, будем считать, что рассматриваемые матрицы являются квадратными матрицами размера $n \times n$. Пространство всех таких матриц обозначается через M_n .

- 6. Докажите, что M_n является кольцом. Определите нулевой и единичный элементы этого кольца.
- 7. Проверьте, что матрица, которую мы раньше называли обратной, является обратной по умножению.

Преобразования, не изменяющие ранга матрицы, которые мы рассматривали ранее: прибавление к столбцу (строке) линейной комбинации остальных столбцов (строк), умножение строки (столбца) на ненулевое число, называются элементарными.

- 8. Запишите элементарные преобразования в виде умножения на матрицу.
- 9. Обоснуйте следующий способ нахождения обратной матрицы: запишем пару матриц (A,E) и будем применять к ним одновременно элементарные операции до тех пор, пока первая матрица не станет единичной, тогда вторая матрица будет равна A^{-1} .

Упражнения

Cледом квадратной матрицы A называется сумма её диагональных элементов, обозначение — $\operatorname{tr} A$. Симметричная относительно главной диагонали квадратная матрица A называется n неотрицательно определённой, если для любого вектора X верно неравенство $X^{\mathrm{T}}AX \geqslant 0$. Если при этом равенство выполняется только для $X = \mathbf{0}$, то A называется положительно определённой.

- 10. Докажите равенство $(BA)^{-1} = A^{-1}B^{-1}$ для любых обратимых квадратных матриц.
- 11. Докажите равенство $\det BA = \det B \cdot \det A$ для любых $A, B \in M_n$.
- 12. Докажите равенство $\operatorname{tr} BA = \operatorname{tr} AB$ для любых $A, B \in M_n$.
- 13. Докажите равенство $A^{-1} = \frac{1}{\det A} (A_i^j)^{\mathrm{T}}$ для любой обратимой квадратной матрицы A.
- 14. Обозначим столбцы обратимой квадратной матрицы A как A^1, A^2, \ldots, A^n . Докажите¹, что для любого столбца B решение $X = (x_1, x_2, \ldots, x_n)^T$ уравнения AX = B имеет вид $x_i = \det(A^1, \ldots, A^{i-1}, B, A^{i+1}, \ldots, A^n), i = \overline{1, n}$.
- 15. Докажите, что определитель положительно определённой матрицы ненулевой.
- 16. Докажите, что матрица, состоящая только из единиц, неотрицательно определена.
- 17. Пусть для некоторого числа $t \ge 0$ все недиагональные элементы матрицы A равны t, а все диагональные элементы строго больше t. Докажите, что $\det A \ne 0$.

¹Такой способ решения системы уравнений называется **методом** или **правилом Крамера**.