

Convolutional Neural Network

Kun Yuan

Center for Machine Learning Research @ Peking University

Oct. 24, 2023

Most of the materials are from a great blog [1]

How to extract features in images?

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

*

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Vertical edge detection

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and horizontal edge detection

1	0	-1
1	0	-1
1	0	-1

Vertical

1	1	1		
0	0	0		
-1	-1	-1		

Horizontal

We can also develop other filters to extract curves, circles, etc.

In CNNs, we will let neural network to learn filters by itself; no need to design!

Stride(移动步长)

Filter

Result

1	0	-1
1	0	-1
1	0	-1

1 = 2*1 + 5*0 + 3*(-1) +

Parameters:

Size:

f = 3

Stride: s = 2

Padding: p = o 2*1 + 4*0 + 3*(-1) + 5*1 + 4*0 + 2*(-1)

https://indoml.com

Dimension: 6 x 6

4

5

5

5

Padding (填充)

Input									Filter			•	Result
	0	0	0	0	0	0	0	0					
	0	4	9	2	5	8	3	0					-15
	0	5	6	2	4	0	3	0	.,,	1	0	-1	
	0	2	4	5	4	5	2	0	*	1	0	-1	
	0	5	6	5	4	7	8	0		1	0	-1	/
	0	5	7	7	9	2	1	0	1 .	<u>Para</u> Size:		f =	3 = 0*1 + 0*0 + 0*(-1) + 0*1 + 4*0 + 9*(-1) +
	0	5	8	5	3	8	4	0		Stride Pade		s =	0*1 + 9*0 + 6*(-1)
	0	0	0	0	0	0	0	0				-	= -15

Dimension: 6 x 6

https://indoml.com

Padding (填充)

Padding can maintain the influence of the corner elements in input matrix

Padding can help maintain the matrix size

Input size: n x n

Filter size: f x f

Padding: p

Sride: s

Output size:

$$\lfloor \frac{n+2p-f}{s} + 1 \rfloor$$

3D convolution

Filters in different channels can be different

Use multiple filters to extract different features

One convolutional layer

A Convolution Layer

Parameters to learn

Sample complete network

https://indoml.com

Pooling

Pooling can reduce the size of representations, speedup calculations, and make feature extraction more robust

Center of Machine Learning Research

Pooling

Pooling can reduce variance (from 知乎-谢志宁)

https://www.zhihu.com/question/36686900/answer/130890492

Shift invariance

Scale invariance

Well-known architectures: LeNet

Conv layers only have a few parameters to learn; lightweight 99% weights

Well-known architectures: AlexNet

https://indoml.com

Well-known architectures: VGG

The strength is in the simplicity: the dimension is halved and the depth is increased on every step

ResNet

Deeper neural networks are harder to train; gradient vanishing or exploding

Skip connection helps the gradient to back-propagate

$$z^{[l+2]} = W^{[l+2]} a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g^{[l+2]}(z^{[l+2]} + a^{[l]})$$

ResNet

ResNet can train very deep neural networks

Center of Machine Learning Research

Reference

[1] Student Notes: Convolutional Neural Networks (CNN) Introduction

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction/

[2] Andrew Ng, Convolutional Neural Networks

https://www.bilibili.com/video/BV1BF411w7xQ/?spm_id_from=333.337.search-card.all.click