

Método de la falsa posición.

Consideremos f & C[a,b] y que f (a) y f(b) tienen signos distintos.

Consideremos la recta secunte L que pasa por les puntos AyB.

Obs. El punto de intersección entre L y el eje x a una aproximación a la raíz.

A La pendiente de L usando Ay B.

$$m = \frac{f(b) - f(a)}{b - a}$$

1 La pendiente de L voundo Cy B.

$$m = \frac{f(b) - 0}{b - \chi_r}$$

Igualando las expresiones:

$$f(b) - f(a) = f(b)$$
 $b - a = b - x_r$

$$f(b)-f(a) = f(b)$$

$$b-\alpha$$

$$b-x_r$$

$$\Rightarrow b-x_r = f(b)(b-a)$$

$$f(b)-f(a)$$

$$\Rightarrow \chi_r = b-\frac{f(b)(b-a)}{f(b)-f(a)}$$

Se generan des subintervales: $[a, x_r]$ y $[x_r, b]$ se tienen 3 casos:

(aso I: $f(a) \cdot f(x_r) < 0$ i.e. $f(a) \cdot f(x_$

Caso II: $f(x_r) \cdot f(b) < 0$, i.e. tienen signas opuestos \Rightarrow hay un cero en $[x_r, b]$.

Caso III: $f(x_r) = 0$, entonces x_r as un cero de f.

En el caso I o II, el proceso de la falsa posición se puede repetir.

