Separating and supporting hyperplanes

Converse separating hyperplane theorems

Theorem 1. Any two convex sets C and D, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Example: (Theorem of alternatives for strict linear inequalities) We derive the necessary and sufficient conditions for solvability of a system of strict linear inequalities $\mathbf{A}\mathbf{x} < \mathbf{b}$.

These inequalities are infeasible if and only if the (convex) sets

$$C = \{\mathbf{b} - \mathbf{A}\mathbf{x} | \mathbf{x} \in \mathbb{R}^n\}, \quad D = \mathbb{R}_{++}^m = \{\mathbf{y} \in \mathbb{R}^m | \mathbf{y} \succeq \mathbf{0}\}$$

do not intersect. The set D is open, C is an affine set. Hence by the above theorem, C and D are disjoint iff there exists a separating hyperplane, i.e., a nonzero $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}$ such that $\lambda^T \mathbf{y} \leq \mu$ on C and $\lambda^T \mathbf{y} \geq \mu$ on D.

 $\mu \leq 0$ and $\lambda \geq 0$, $\lambda \neq 0$.

 $\exists \lambda \text{ s.t. } \lambda \neq 0, \lambda \geq 0, A^T \lambda = 0, \lambda^T b \leq 0.$

Separating and supporting hyperplanes

Converse separating hyperplane theorems

Theorem 1 (Theorem of the Alternative (Fakas' Lemma)). For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ the following are strong alternatives:

- 1. $\exists \mathbf{x} \in \mathbb{R}^n_+ \text{ such that } \mathbf{A}\mathbf{x} = \mathbf{b},$
- 2. $\exists \mathbf{y} \in \mathbb{R}^m \text{ such that } \mathbf{A}^T \mathbf{y} \geq \mathbf{0} \text{ and } \mathbf{b}^T \mathbf{y} < 0.$

Proof. 1) $\Longrightarrow \neg 2$): For $\mathbf{x} \in \mathbb{R}^n_+$ with $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{y} \in \mathbb{R}^m$ with $\mathbf{A}^T\mathbf{y} \ge 0$ we have $\mathbf{b}^T\mathbf{y} = \mathbf{x}^T\mathbf{A}^T\mathbf{y} \ge 0$.

 $eg 1) \Longrightarrow 2$): $C := cone(\mathbf{A})$ is a closed convex cone which does not contain the vector \mathbf{b} : by the Separating Hyperplane Theorem there exists a $\mathbf{y} \in \mathbb{R}^m$ with $\langle \mathbf{y}, \mathbf{x} \rangle \geq 0 > \langle \mathbf{y}, \mathbf{b} \rangle$ for all $\mathbf{x} \in C$, in particular $\mathbf{A}_i^T \mathbf{y} = \langle \mathbf{y}, \mathbf{A}_i \rangle \geq 0$, $\forall i$, that is, $\mathbf{A}^T \mathbf{y} \geq \mathbf{0}$.

Separating and supporting hyperplanes

Supporting hyperplanes

Suppose $C \subseteq \mathbb{R}^n$, and \mathbf{x}_0 is a point in its boundary ∂C . If $\mathbf{a} \neq \mathbf{0}$ satisfies $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_0$ for all $\mathbf{x} \in C$, then the hyperplane $\{\mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_0\}$ is called a supporting hyperplane to C at the point \mathbf{x}_0 .

Theorem 1 (Supporting Hyperplane Theorem). For any nonempty convex set C, and any $\mathbf{x}_0 \in \partial C$, there exists a supporting hyperplane to C at \mathbf{x}_0 .

Proof: Two cases: $C^{\circ} \neq \emptyset$ and $C^{\circ} = \emptyset$.

Dual cones

Let K be a cone. The set

$$K^* = \{ \mathbf{y} | \mathbf{x}^T \mathbf{y} \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

 K^* is a cone, and is always convex, even when the original cone K is not.

Geometrically, $\mathbf{y} \in K^*$ if and only if $-\mathbf{y}$ is the normal of a hyperplane that supports K at the origin.

Example: subspace, nonnegative orthant, positive semidefinite cone, norm cone

- Properties of dual cones
- K^* is closed and convex.
- $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.
- If K has nonempty interior, then K^* is pointed.
- If the closure of K is pointed then K^* has nonempty interior.
- K^{**} is the closure of the convex hull of K. (Hence if K is convex and closed, $K^{**} = K$.)

These properties show that if K is a proper cone, then so is its dual K^* , and moreover, that $K^{**} = K$.

Dual generalized inequalities

Suppose that the convex cone K is proper, so it induces a generalized inequality \preceq_K . Then its dual cone K^* is also proper, and therefore induces a generalized inequality. We refer to the generalized inequality \preceq_{K^*} as the dual of the generalized inequality \preceq_K . Some important properties relating a generalized inequality and its dual are:

- $\mathbf{x} \leq_K \mathbf{y}$ if and only if $\boldsymbol{\lambda}^T \mathbf{x} \leq \boldsymbol{\lambda}^T \mathbf{y}$ for all $\boldsymbol{\lambda} \succeq_{K^*} \mathbf{0}$.
- $\mathbf{x} \prec_K \mathbf{y}$ if and only if $\boldsymbol{\lambda}^T \mathbf{x} < \boldsymbol{\lambda}^T \mathbf{y}$ for all $\boldsymbol{\lambda} \succeq_{K^*} \mathbf{0}, \boldsymbol{\lambda} \neq \mathbf{0}$.

Since $K = K^{**}$, the dual generalized inequality associated with \leq_{K^*} is \leq_{K} , so these properties hold if the generalized inequality and its dual are swapped. As a specific example, we have $\lambda \leq_{K^*} \mu$ if and only if $\lambda^T \mathbf{x} \leq \mu^T \mathbf{x}$ for all $\mathbf{x} \succeq_K \mathbf{0}$.

• Theorem of alternatives for linear strict generalized inequalities

Suppose $K \subseteq \mathbb{R}^m$ is a proper cone. Consider the strict generalized inequality

$$\mathbf{A}\mathbf{x} \prec_K \mathbf{b},$$
 (1)

where $\mathbf{x} \in \mathbb{R}^n$. Then the inequality systems (1) and

$$\exists \boldsymbol{\lambda} \text{ s.t. } \boldsymbol{\lambda} \neq \boldsymbol{0}, \boldsymbol{\lambda} \succeq_{K^*} \boldsymbol{0}, \ \mathbf{A}^T \boldsymbol{\lambda} = 0, \boldsymbol{\lambda}^T \mathbf{b} \leq 0.$$
 (2)

are alternatives.

- Minimum and minimal elements via dual inequalities
 - Dual characterization of minimum element

 \mathbf{x} is the minimum element of S, with respect to the generalized inequality \preceq_K , iff for all $\lambda \succ_{K^*} \mathbf{0}$, \mathbf{x} is the unique minimizer of $\lambda^T \mathbf{z}$ over $\mathbf{z} \in S$. Geometrically, this means that for any $\lambda \succ_{K^*} \mathbf{0}$, the hyperplane

$$\{\mathbf{z}|\boldsymbol{\lambda}^T(\mathbf{z}-\mathbf{x})=0\}$$

is a strict supporting hyperplane to S at \mathbf{x} .

- Minimum and minimal elements via dual inequalities
 - Dual characterization of minimal element

only sufficient!

If $\lambda \succ_{K^*} \mathbf{0}$ and \mathbf{x} minimizes $\lambda^T \mathbf{z}$ over $\mathbf{z} \in S$, then \mathbf{x} is minimal.

Convexity matters!

• Example: Pareto optimal production frontier

Minimize

$$\lambda^T \mathbf{x} = \lambda_1 \mathbf{x}_1 + ... + \lambda_n \mathbf{x}_n$$

over the set P of production vectors, using any $\lambda > 0$.

Chapter 4: Convex Functions

- Basic properties and examples
- Operations that preserve convexity
- The conjugate function
- A little about nonconvex analysis

A function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if dom f is a convex set and if for all \mathbf{x} , $\mathbf{y} \in \text{dom } f$, and θ with $0 \le \theta \le 1$, we have

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}). \tag{1}$$

modulus

A function f is strictly convex if strict inequality holds in (1) whenever $\mathbf{x} \neq \mathbf{y}$ and $0 < \theta < 1$.

A function f is strongly convex if

 $tf(x_1) + (1-t)f(x_2)$

$$f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y}) - \frac{\theta(1 - \theta)\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2, \quad \forall \theta \in [0, 1].$$
 (2)

f is concave, strictly concave, strongly concave if -f is convex, strictly convex, strongly convex. A function is both convex and concave iff it is an affine function.

A convex function is continuous on the relative interior of its domain; it can have discontinuities only on its relative boundary.

Theorem 1 (Rademacher's Theorem). A convex function is differentiable almost everywhere on the relative interior of its domain.

Extended-value extensions

If f is convex we define its extended-value extension $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ by

$$\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}), & \mathbf{x} \in \text{dom } f \\ \infty, & \mathbf{x} \notin \text{dom } f. \end{cases}$$

We will use the same symbol to denote a convex function and its extension.

Example: Indicator function of a convex set

$$\min_{\mathbf{x}} f(\mathbf{x}), \\
s.t. \mathbf{x} \in \mathcal{C}. \qquad \qquad \min_{\mathbf{x}} f(\mathbf{x}) + \tilde{I}_{\mathcal{C}}(\mathbf{x}).$$

First-order conditions

Suppose f is differentiable. Then f is convex iff dom f is convex and

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$$
 (1)

holds for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$.

Proof. If f is convex, then $f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})$, which can be rewritten as

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha},$$

 $f(y) = f(x) + \nabla f(x)^T (y - x)$ (x, f(x))

Letting $\alpha \to 0^+$, we have (1). If (1) holds, we have

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le f(\mathbf{x}) - (1 - \alpha)\langle \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle,$$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le f(\mathbf{y}) + \alpha\langle \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$$

Multiplying the first inequality with α and the second with $(1 - \alpha)$ and adding them together, we obtain $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$.

If $\nabla f(\mathbf{x}) = \mathbf{0}$, then for all $\mathbf{y} \in \text{dom } f$, $f(\mathbf{y}) \geq f(\mathbf{x})$, *i.e.*, \mathbf{x} is a global minimizer of f.

Strictly convex:

$$f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \quad \text{if } \mathbf{y} \neq \mathbf{x}.$$
 (1)

Proof. $f(\mathbf{y}) > f(\mathbf{x}) + \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha}$, $\forall \alpha \in (0, 1)$. For all $\alpha \in (0, 1)$ by the convexity we have $f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x}) \geq \alpha \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$. Thus $\langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle = \inf_{\alpha \in (0, 1)} \frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha}$. If there exists $\alpha \in (0, 1)$ such that $\frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} > \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$, then (1) holds. Otherwise,

$$\frac{f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})) - f(\mathbf{x})}{\alpha} = \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle, \quad \forall \alpha \in (0, 1).$$

So $f(\mathbf{x} + \alpha(\mathbf{y} - \mathbf{x}))$ is a linear function of $\alpha \in (0, 1)$ and f cannot be strictly convex.

Strongly convex: $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2$.

Proof. Follow the proof of convexity.