

SF1626 Flervariabelanalys Tentamen (08:00-11:00) 15e Mars, 2021

Inga hjälpmedel är tillåtna!

Examinator: John Andersson och Henrik Shahgholian

Tentamen består av tre delar; A, B och C, som vardera ger maximalt 12 poäng. Dina bonuspoäng adderas till del A, men den totala poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt, och antalet erhållna bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade.

Del A.

Fråga A1. Betrakta ytan i \mathbb{R}^3 som definieras av ekvationen

$$(x+y)^2 + (2x-y)^2 + z^2 = 9.$$

a) Hitta en normalvektor till ytan i punkten (1, -1, 0).

2 p.

b) Hitta en ekvation för tangentplanet till ytan i punkten (1, -1, 0).

2 p.

Fråga A2. Positionen för en partikel vid tidpunkten t > 0 beskrivs av

$$\mathbf{r}(t) = (2\cos(2t), A\sin(2t), 4t),$$

där $A \ge 0$ är ett reellt tal.

a) Beräkna partikelns hastighet och fart som funktioner av tiden t. Observera att ditt svar ska innehålla den obestämda konstanten A.

2 p.

 $\textbf{b)} \ \text{V\"{a}lj konstanten} \ A \ \text{s\^{a} att partikelns hastighet och acceleration} \ \text{\"{a}r ortogonala mot varandra}.$

2 p.

Fråga A3. Betrakta trippelintegralen

$$\iiint_K \frac{z}{2+x^2+y^2} dV,$$

där K är området som definieras av $z \ge \sqrt{x^2 + y^2}$ och $x^2 + y^2 + z^2 \le 9$.

a) Skriv om området K i cylindriska koordinater.

1 p.

b) Skriv om integralen i cylindriska koordinater.

1 p.

c) Beräkna integralen.

2 p.

Var god vänd!

Del B.

Fråga B1. Låt D vara det begränsade området i första kvadranten i \mathbb{R}^2 som begränsas av kurvorna

$$x^2 + 16y^2 = 16$$
, $x^2 + 16y^2 = 1$, $x = y$

samt den positiva y-axeln.

a) Beskriv
$$D$$
 i (u, v) -planet då $u = x^2 + 16y^2$ och $v = \frac{y}{x}$.

b) Beräkna jacobianen för transformationen ovan.

2 p.

c) Beräkna integralen

2 p.

$$\int \int_{D} \frac{y}{x} dA.$$

Fråga B2. En snickare vill tillverka en låda med volym $1m^3$. Lådan har sidorna parallella med koordinatplanen och sidlängderna ges av x, y och z,

$$0 < x < 10$$
, $0 < y < 10$ $0 < z < 10$.

Lådans framsida och ovansida skall tillverkas i ett fint träslag som kostar $900kr/m^2$ och undersidan och de övriga sidorna tillverkas av ett billigare träslag som kostar $300kr/m^2$. Snickaren vill välja sidlängderna så att kostnaden blir så låg som möjligt.

a) Formulera snickarens problem matematiskt som ett minimeringsproblem med bivillkor.

2 p.

b) Använd Lagrange multiplikatormetod för att lösa minimeringsproblemet i a) delen av uppgiften. Andra metoder ger inga poäng.

4 p.

Del C.

Fråga C1. Beräkna flödet av vektorfältet

$$\mathbf{F}(x,y,z) = \left(y + 2xz, y + z, -2x - z^2\right)$$

ut genom den yta som ges av $x^2 + y^2 + z^2 = 4$ och x, y, z > 0. Normalriktningen till ytan pekar bort från origo.

6 p.

Fråga C2. Låt Γ vara en enkel kurva som parametriseras av

$$\mathbf{r}(t) = (x(t), y(t)) : [0, 1] \mapsto \mathbb{R}^2,$$

där \mathbf{r} är en kontinuerlig och styckvis kontinuerligt deriverbar kurva från intervallet [0,1] in i \mathbb{R}^2 . Antag att kurvan är sluten; d.v.s. $\mathbf{r}(0) = \mathbf{r}(1)$. Slutligen så antar vi att för alla $t \in [0,1]$ så kommer minst ett av x(t), y(t) att vara heltal.

Avgör alla möjliga numeriska värden av linjeintegralen

6 p.

$$\int_{\Gamma} (y, -x) \cdot d\mathbf{r}.$$

Lycka till!