Algebra Tutorial-III

Dr. Abhash Kumar Jha / MA-111

1 Symmetric groups

1. Write the cycle decompositions and orders of the following permutations.

$1 \mapsto 13$	$2 \mapsto 2$	$3 \mapsto 15$	$4 \mapsto 14$	$5 \mapsto 10$
$6 \mapsto 6$	$7 \mapsto 12$	$8 \mapsto 3$	$9 \mapsto 4$	$10 \mapsto 1$
$11 \mapsto 7$	$12 \mapsto 9$	$13 \mapsto 5$	$14 \mapsto 11$	$15 \mapsto 8$

Figure 1: σ

	$2 \mapsto 9$	$3 \mapsto 10$	$4 \mapsto 2$	$5 \mapsto 12$
	$7 \mapsto 5$	$8 \mapsto 11$	$9 \mapsto 15$	$10 \mapsto 3$
$11 \mapsto 8$	$12 \mapsto 7$	$13 \mapsto 4$	$14 \mapsto 1$	$15 \mapsto 13$

Figure 2: τ

Also, find the cycle decompositions and orders of σ^2 , $\sigma\tau$, $\tau\sigma$, $\tau^2\sigma$.

- 2. Prove that an n-cycle has order n. Using this prove that the order of a permutation consisting of disjoint cycles is the *least common multiple* of the lengths of the cycles.
- 3. Determine the number of elements in S_7 of order 12. What about the number of elements of order 3.
- 4. Show that every permutation in S_n is a product of transpositions. Also, show that if a permutation σ can be expressed as a product of an even (odd) number of transpositions, then any other decomposition of σ is so.
- 5. Show that there are $\frac{1}{2}(n!)$ even permutations in S_n . Do they form a group?

2 Dihedral groups

For $n \geq 3$, the dihedral group D_n is defined as the symmetries of a regular n-gon, with the operation being composition.

- 1. Show that the number of elements in D_n is 2n.
- 2. Show that $D_n = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$ for some element r and s in D_n .
- 3. With the above notation show that $rs = sr^{-1}$.
- 4. Show that D_n can be considered as a subgroup of a S_n .
- 5. Find the centre of D_4 . Also, find the centralizer of $A = \{1, r, r^2, r^3\}$ in D_4 .

3 Cyclic groups

- 1. For n = 6, 8 and 20, find all generators of $\mathbb{Z}/n\mathbb{Z}$.
- 2. Prove that $\mathbb{Q} \times \mathbb{Q}$ is not cyclic.
- 3. Let G be a group and $a, b \in G$ with |a| = 1000, |b| = 30. Find the order of

$$a^{62}, a^{185}, a^{400}, b^{17}, b^{18}, \text{ and } b^{26}.$$

- 4. Prove that a group of order 3 must be cyclic.
- 5. Let G be a finite group. Show that there exists a fixed positive integer n such that $a^n = e$ for all a in G.
- 6. Prove that a finite group is the union of proper subgroups if and only if the group is not cyclic.
- 7. Prove that no group can have exactly two elements of order 2.
- 8. Let $\phi(n)$ denote the number of positive integers less than n and relatively prime to n. Show that for relatively prime m and n,

$$\phi(mn) = \phi(m)\phi(n).$$

Also, show that for a prime p,

$$\phi(p^n) = p^n - p^{n-1}.$$

9. If d is a positive divisor of n, show that the number of elements of order d in a cyclic group of order n is $\phi(d)$.