```
In [2]: import matplotlib.pyplot as plt
        import matplotlib.axes as ax
        import pandas as pd
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import classification_report
        from sklearn.metrics import f1_score, precision_score, recall_score
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
In [3]: data = pd.read_csv('../data/student-por.csv')
In [4]: Y = data[['G1', 'G2', 'G3']].sum(axis=1)
        X = data.drop(['G1', 'G2', 'G3'], axis=1)
        X = (X-X.min())/(X.max()-X.min())
        Y = Y.apply(lambda x: 1 if x > 36 else 0)
        plt.style.use('dark_background')
In [5]: # prints out the number of 0s and 1s in each grade classification
        print(Y.value_counts())
       0
            373
       1
            276
       Name: count, dtype: int64
In [6]: data.std()
        X.std().plot(
            figsize = (20, 10),
            title = "Correlation with Final Grade",
            fontsize = 15,
            rot = 45,
            grid = True,
            kind="bar"
```

Out[6]: <Axes: title={'center': 'Correlation with Final Grade'}>


```
In [7]: corr = X.corrwith(Y)
print(corr)
# plot correlation
corr.plot.bar(
    figsize = (20, 10),
    title = "Correlation with Final Grade",
    fontsize = 15,
    rot = 45,
    grid = True
)
```

school	-0.216612			
sex	-0.121178			
age	-0.111140			
address	0.154401			
famsize	0.029692			
Pstatus	-0.018757			
Medu	0.250064			
Fedu	0.210895			
Mjob	0.152817			
Fjob	0.079145			
reason	0.122862			
guardian	-0.080321			
traveltime	-0.178832			
studytime	0.196043			
failures	-0.295689			
schoolsup	-0.050051			
famsup	0.004753			
paid	-0.073249			
activities	0.068846			
nursery	0.066065			
higher	0.276473			
internet	0.126987			
romantic	-0.081672			
famrel	0.075510			
freetime	-0.073464			
goout	-0.084976			
Dalc	-0.214624			
Walc	-0.178247			
health	-0.131542			
absences	-0.149890			
dtype: float64				

dtype: float64

Out[7]: <Axes: title={'center': 'Correlation with Final Grade'}>


```
In [8]: corr = X.corrwith(data["G1"])
print(corr)
```

```
# plot correlation
corr.plot.bar(
    figsize = (20, 10),
    title = "Correlation with G1",
    fontsize = 15,
    rot = 45,
    grid = True
)
```

```
school
           -0.292626
sex
          -0.104109
          -0.174322
age
address
          0.157127
famsize
          0.047230
Pstatus
          0.015251
Medu
          0.260472
Fedu
          0.217501
Mjob
          0.181551
Fjob
          0.109847
reason
          0.155556
guardian
         -0.122676
traveltime -0.154120
studytime 0.260875
failures -0.384210
schoolsup -0.071779
famsup
          0.038255
paid
         -0.062784
activities 0.080123
          0.031172
nursery
higher
          0.349030
internet
          0.139931
romantic -0.074973
famrel
          0.048795
freetime -0.094497
goout
         -0.074053
Dalc
         -0.195171
Walc
         -0.155649
health
         -0.051647
absences
          -0.147149
dtype: float64
```

Out[8]: <Axes: title={'center': 'Correlation with G1'}>


```
In [9]: corr = X.corrwith(data["G2"])
print(corr)
# plot correlation
corr.plot.bar(
    figsize = (20, 10),
    title = "Correlation with G2",
    fontsize = 15,
    rot = 45,
    grid = True
)
```

school	-0.269776			
sex	-0.104005			
age	-0.107119			
address	0.154600			
famsize	0.038891			
Pstatus	0.018689			
Medu	0.264035			
Fedu	0.225139			
Mjob	0.153875			
Fjob	0.086343			
reason	0.157459			
guardian	-0.097065			
traveltime	-0.154489			
studytime	0.240498			
failures	-0.385782			
schoolsup	-0.056624			
famsup	0.038141			
paid	-0.033925			
activities	0.067154			
nursery	0.039867			
higher	0.331953			
internet	0.147909			
romantic	-0.097937			
famrel	0.089588			
freetime	-0.106678			
goout	-0.079469			
Dalc	-0.189480			
Walc	-0.164852			
health	-0.082179			
absences	-0.124745			
dtype: float64				

dtype: float64

Out[9]: <Axes: title={'center': 'Correlation with G2'}>


```
In [10]: corr = X.corrwith(data["G3"])
print(corr)
```

```
# plot correlation
corr.plot.bar(
    figsize = (20, 10),
    title = "Correlation with G3",
    fontsize = 15,
    rot = 45,
    grid = True
)
```

```
school
           -0.284294
sex
          -0.129077
          -0.106505
age
address
          0.167637
famsize
          0.045016
         -0.000754
Pstatus
Medu
          0.240151
Fedu
          0.211800
Mjob
          0.148252
Fjob
          0.052953
reason
          0.124969
guardian
         -0.079609
traveltime -0.127173
studytime 0.249789
failures -0.393316
schoolsup -0.066405
famsup
          0.059206
paid
         -0.054898
activities 0.059791
          0.028752
nursery
higher
          0.332172
internet
          0.150025
romantic -0.090583
famrel
          0.063361
freetime -0.122705
goout
         -0.087641
Dalc
         -0.204719
Walc
         -0.176619
health
         -0.098851
absences
          -0.091379
dtype: float64
```

Out[10]: <Axes: title={'center': 'Correlation with G3'}>


```
In [15]: from sklearn.decomposition import PCA
         pca = PCA(30)
         L_sk = pca.fit_transform(X)
         print(pca.explained_variance_ratio_)
         print('L_sk.shape:', L_sk.shape)
        [0.11397246 0.09177979 0.07526411 0.06875527 0.06262613 0.06071489
         0.04985033 0.04426737 0.04270601 0.03919684 0.03729151 0.03354062
         0.03132663 0.02914511 0.02476489 0.02290744 0.02169056 0.01954619
         0.01792237\ 0.01665185\ 0.01449061\ 0.01384722\ 0.01238833\ 0.01179414
         0.01076413 0.00925666 0.00703921 0.00665812 0.00518606 0.00465515]
        L_sk.shape: (649, 30)
In [22]: import numpy as np
         cum_explained_var_ratio = np.cumsum(pca.explained_variance_ratio_)
         plt.plot(cum_explained_var_ratio)
         plt.xlabel('# principal components')
         plt.ylabel('cumulative explained variance');
         plt.savefig('../plots/cumulative_explained_variance.png')
         for i in range(30):
             print(f"Explained variance ratio for 30 components in {i} dim: {cum_explained_v
```

Explained variance ratio for 30 components in 0 dim: 0.11397246395470281 Explained variance ratio for 30 components in 1 dim: 0.20575225111524695 Explained variance ratio for 30 components in 2 dim: 0.28101635882156084 Explained variance ratio for 30 components in 3 dim: 0.3497716258663351 Explained variance ratio for 30 components in 4 dim: 0.41239775739888757 Explained variance ratio for 30 components in 5 dim: 0.47311264548928833 Explained variance ratio for 30 components in 6 dim: 0.5229629783271169 Explained variance ratio for 30 components in 7 dim: 0.5672303501600313 Explained variance ratio for 30 components in 8 dim: 0.6099363609391142 Explained variance ratio for 30 components in 9 dim: 0.6491331975637067 Explained variance ratio for 30 components in 10 dim: 0.6864247049360924 Explained variance ratio for 30 components in 11 dim: 0.7199653234498868 Explained variance ratio for 30 components in 12 dim: 0.7512919534932523 Explained variance ratio for 30 components in 13 dim: 0.78043706840725 Explained variance ratio for 30 components in 14 dim: 0.8052019566964291 Explained variance ratio for 30 components in 15 dim: 0.828109393880001 Explained variance ratio for 30 components in 16 dim: 0.8497999529711993 Explained variance ratio for 30 components in 17 dim: 0.8693461454013631 Explained variance ratio for 30 components in 18 dim: 0.887268514488974 Explained variance ratio for 30 components in 19 dim: 0.9039203669841223 Explained variance ratio for 30 components in 20 dim: 0.9184109749746556 Explained variance ratio for 30 components in 21 dim: 0.9322581974192338 Explained variance ratio for 30 components in 22 dim: 0.9446465233858625 Explained variance ratio for 30 components in 23 dim: 0.956440664579338 Explained variance ratio for 30 components in 24 dim: 0.9672047968929608 Explained variance ratio for 30 components in 25 dim: 0.976461454278881 Explained variance ratio for 30 components in 26 dim: 0.9835006674450353 Explained variance ratio for 30 components in 27 dim: 0.9901587862279064 Explained variance ratio for 30 components in 28 dim: 0.9953448471624807

