An Asymptotic Preserving scheme for the diffusion limit of a stochastic linear kinetic equation

Nathalie Ayi $^{(1)}$ Erwan Faou $^{(2)}$

(1) Sorbonne Université

(2) MINGuS Project, INRIA Bretagne Atlantique

6 Novembre 2018

Framework = Kinetic Theory.

Framework = Kinetic Theory.

Physical context = Models with *several levels of description* (example : gas).

Framework = Kinetic Theory.

Physical context = Models with *several levels of description* (example : gas).

Framework = Kinetic Theory.

Physical context = Models with *several levels of description* (example : gas).

$$\begin{split} t &= \mathsf{time} \\ x &= \mathsf{position} \\ v &= \mathsf{velocity} \end{split}$$

t = time x = positionv = velocity

For all infinitesimal volume dxdv around the point (x, v):

f(t,x,v)dxdv= number of particles which have position x and velocity v at time t.

t = time x = positionv = velocity

For all infinitesimal volume dxdv around the point (x, v):

f(t,x,v)dxdv = number of particles which have position x and velocity v at time t.

Aim = Numerical scheme adapted to the passage from the mesoscopic scale to the macroscopic one by a diffusive limit for a stochastic linear kinetic equation.

Aim = A numerical approximation of the kinetic equation which converges to a numerical approximation of the macroscopic equation when passing to the limit.

Aim = A numerical approximation of the kinetic equation which converges to a numerical approximation of the macroscopic equation when passing to the limit.

$$P^{\varepsilon,h} \xrightarrow{h \to 0} P^{\varepsilon}$$

$$\varepsilon \to 0 \qquad \qquad \downarrow \varepsilon \to 0$$

$$P^{0,h} \xrightarrow{h \to 0} P^{0}$$

Figure: Property of AP Schemes

Aim = A numerical approximation of the kinetic equation which converges to a numerical approximation of the macroscopic equation when passing to the limit.

$$P^{\varepsilon,h} \xrightarrow{h \to 0} P^{\varepsilon}$$

$$\varepsilon \to 0 \qquad \qquad \downarrow \varepsilon \to 0$$

$$P^{0,h} \xrightarrow{h \to 0} P^{0}$$

Figure: Property of AP Schemes

Property = Good scheme for both the **kinetic** (i.e $\varepsilon \approx 1$) and **diffusion regimes** (i.e. ε small).

Aim = A numerical approximation of the kinetic equation which converges to a numerical approximation of the macroscopic equation when passing to the limit.

$$P^{\varepsilon,h} \xrightarrow{h \to 0} P^{\varepsilon}$$

$$\varepsilon \to 0 \qquad \qquad \downarrow \varepsilon \to 0$$

$$P^{0,h} \xrightarrow{h \to 0} P^{0}$$

Figure: Property of AP Schemes

Property = Good scheme for both the **kinetic** (i.e $\varepsilon \approx 1$) and **diffusion** regimes (i.e. ε small).

Difficulty = Standard schemes $\leadsto h = \mathcal{O}(\varepsilon) \Longrightarrow$ Computationally too expensive in "fluid" zone (i.e. ε small).

Aim = A numerical approximation of the kinetic equation which converges to a numerical approximation of the macroscopic equation when passing to the limit.

$$P^{\varepsilon,h} \xrightarrow{h \to 0} P^{\varepsilon}$$

$$\varepsilon \to 0 \qquad \qquad \downarrow \varepsilon \to 0$$

$$P^{0,h} \xrightarrow{h \to 0} P^{0}$$

Figure: Property of AP Schemes

Property = Good scheme for both the **kinetic** (i.e $\varepsilon \approx 1$) and **diffusion** regimes (i.e. ε small).

Difficulty = Standard schemes $\leadsto h = \mathcal{O}(\varepsilon) \Longrightarrow$ Computationally too expensive in "fluid" zone (i.e. ε small).

 \implies Construct a **scheme** for which h is **indepedent** of ε .

Nathalie AYI Séminaire CMAP 6 Novembre 2018

Context

A stochastic linear kinetic equation

$$df + \frac{1}{\varepsilon}v\partial_x f dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} f dt + f \circ Q dW_t$$

whith $t \in [0, T]$, $x \in \mathbf{T}$, $v \in [-1, 1]$ and dW_t a cylindrical Wiener process.

Context

A stochastic linear kinetic equation

$$df + \frac{1}{\varepsilon}v\partial_x f dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} f dt + f \circ Q dW_t$$

whith $t \in [0, T]$, $x \in \mathbf{T}$, $v \in [-1, 1]$ and dW_t a cylindrical Wiener process.

Example = equation for the radiative transfer.

Left-hand side = free transport, linear operator \mathcal{L} = interaction of the particles with the medium, noise term = random emission/absorption of particles.

Context

A stochastic linear kinetic equation

$$df + \frac{1}{\varepsilon}v\partial_x f dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} f dt + f \circ Q dW_t$$

whith $t \in [0, T]$, $x \in \mathbf{T}$, $v \in [-1, 1]$ and dW_t a cylindrical Wiener process.

Example = equation for the radiative transfer.

Left-hand side = free transport, linear operator \mathcal{L} = interaction of the particles with the medium, noise term = random emission/absorption of particles.

$$dW_t = \sum_{k \ge 0} e_k d\beta_k(t)$$

whith $(\beta_k)_{k\geq 0}$ independent real-valued Brownian motions, $(e_k)_{k\geq 0}$ an orthonormal basis of the Hilbert space $L^2(\mathbf{T})$, Q a linear self-adjoint operator on $L^2(\mathbf{T})$ such that

$$\sum_{k\geq 0} \|Qe_k\|_{L_x^{\infty}}^2 < +\infty,$$

 σ a function which satisfies $0 < \sigma_m \le \sigma(x) \le \sigma_M$ for every x.

Nathalie AYI Séminaire CMAP 6 Novembre 2018

The linear operator

$$\mathcal{L}f(v) = \int_{-1}^{1} s(v, v')(f(v') - f(v))dv',$$

with s such that $0 < s_m \le s(v,v') \le s_M$ for every $v,v' \in [-1,1]$, s satisfies $\int_{-1}^1 s(v,v')dv' = 1$ and is symmetric: s(v,v') = s(v',v).

The linear operator

$$\mathcal{L}f(v) = \int_{-1}^{1} s(v, v')(f(v') - f(v))dv',$$

with s such that $0 < s_m \le s(v,v') \le s_M$ for every $v,v' \in [-1,1]$, s satisfies $\int_{-1}^1 s(v,v')dv' = 1$ and is symmetric: s(v,v') = s(v',v).

We define the operator Π such that

$$\Pi \phi = \frac{1}{2} \int_{-1}^{1} \phi(v) dv.$$

The linear operator

$$\mathcal{L}f(v) = \int_{-1}^{1} s(v, v')(f(v') - f(v))dv',$$

with s such that $0 < s_m \le s(v,v') \le s_M$ for every $v,v' \in [-1,1]$, s satisfies $\int_{-1}^1 s(v,v')dv' = 1$ and is symmetric: s(v,v') = s(v',v).

We define the operator Π such that

$$\Pi \phi = \frac{1}{2} \int_{-1}^{1} \phi(v) dv.$$

\mathcal{L} satisfies the following **properties**:

- $\Pi(\mathcal{L}\phi) = 0$ for every $\phi \in L^2([-1,1])$.
- The null space of \mathcal{L} is $\mathcal{N}(\mathcal{L}) = \{\phi = \Pi \phi\}$.
- The rank of \mathcal{L} is $\mathcal{R}(\mathcal{L}) = \mathcal{N}^{\perp}(\mathcal{L}) = \{\phi \text{ s.t. } \Pi \phi = 0\}.$
- \mathcal{L} admits a pseudo inverse from $\mathcal{N}^{\perp}(\mathcal{L})$ onto $\mathcal{N}^{\perp}(\mathcal{L})$ denoted by \mathcal{L}^{-1} .

Examples

The one-group transport equation

For

$$\mathcal{L}f = \int_{-1}^{1} \frac{1}{2} (f(v') - f(v)) dv' = \Pi f - f,$$

the equation becomes

$$df + \frac{1}{\varepsilon}v\partial_x f dt = \frac{\sigma}{\varepsilon^2}(\Pi f - f)dt + f \circ QdW_t.$$

Examples

The one-group transport equation

For

$$\mathcal{L}f = \int_{-1}^{1} \frac{1}{2} (f(v') - f(v)) dv' = \Pi f - f,$$

the equation becomes

$$df + \frac{1}{\varepsilon}v\partial_x f dt = \frac{\sigma}{\varepsilon^2}(\Pi f - f)dt + f\circ QdW_t.$$

The telegraph equation

With the velocity set $\{-1,1\}$, dv the discrete Lebesgue measure, we denote f(t,x,1):=p(t,x) and f(t,x,-1):=q(t,x). For $\sigma=1$, the **equation** becomes

$$\left\{ \begin{array}{l} dp + \frac{1}{\varepsilon}\partial_x p dt = \frac{1}{\varepsilon^2}(\frac{p+q}{2}-p)dt + p\circ Q dW_t \\ \\ dq - \frac{1}{\varepsilon}\partial_x q dt = \frac{1}{\varepsilon^2}(\frac{p+q}{2}-q)dt + q\circ Q dW_t. \end{array} \right.$$

The macroscopic equation

$$d\rho + \partial_x(\kappa \partial_x \rho)dt = \rho \circ QdW_t$$

with
$$\kappa(x) = \frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma(x)}$$
.

The macroscopic equation

$$d\rho + \partial_x(\kappa \partial_x \rho)dt = \rho \circ QdW_t$$

with
$$\kappa(x) = \frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma(x)}$$
.

Hilbert expansion:

$$f(t,x,v) = f_0(t,x,v) + \varepsilon f_1(t,x,v) + \varepsilon^2 f_2(t,x,v) + \dots$$

The macroscopic equation

$$d\rho + \partial_x(\kappa \partial_x \rho)dt = \rho \circ QdW_t$$

with
$$\kappa(x) = \frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma(x)}$$
.

Hilbert expansion:

$$f(t, x, v) = f_0(t, x, v) + \varepsilon f_1(t, x, v) + \varepsilon^2 f_2(t, x, v) + \dots$$

Identifying the same power of ε :

$$\sigma \mathcal{L} f_0 = 0 \quad \Rightarrow \quad f_0 = \Pi f_0 = \rho_0,$$

$$v \partial_x f_0 = \sigma \mathcal{L} f_1 \quad \Rightarrow \quad f_1 = \mathcal{L}^{-1} \left(\frac{1}{\sigma} v \partial_x \rho_0 \right)$$

$$df_0 = \sigma \mathcal{L} f_2 dt + f_0 \circ Q dW_t - v \partial_x \mathcal{L}^{-1} \left(\frac{1}{\sigma} v \partial_x \rho_0 \right) dt.$$

The macroscopic equation

$$d\rho + \partial_x(\kappa \partial_x \rho)dt = \rho \circ QdW_t$$

with
$$\kappa(x) = \frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma(x)}$$
.

Hilbert expansion:

$$f(t, x, v) = f_0(t, x, v) + \varepsilon f_1(t, x, v) + \varepsilon^2 f_2(t, x, v) + \dots$$

Identifying the **same power** of ε :

$$\sigma \mathcal{L} f_0 = 0 \quad \Rightarrow \quad f_0 = \Pi f_0 = \rho_0,$$

$$v \partial_x f_0 = \sigma \mathcal{L} f_1 \quad \Rightarrow \quad f_1 = \mathcal{L}^{-1} \left(\frac{1}{\sigma} v \partial_x \rho_0 \right)$$

$$df_0 = \sigma \mathcal{L} f_2 dt + f_0 \circ Q dW_t - v \partial_x \mathcal{L}^{-1} \left(\frac{1}{-v} v \partial_x \rho_0 \right) dt.$$

We apply Π and obtain

$$d\rho_0 = \rho_0 \circ QdW_t - \partial_x \left(\Pi \left[v \mathcal{L}^{-1} \left(\frac{v}{\sigma} \right) \right] \partial_x \rho_0 \right) dt.$$

We introduce g such that $f = \rho + \varepsilon g$ with $\rho = \Pi(f) \Rightarrow g$ satisfies $\Pi(g) = 0$.

We introduce g such that $f = \rho + \varepsilon g$ with $\rho = \Pi(f) \Rightarrow g$ satisfies $\Pi(g) = 0$.

The equation becomes

$$d(\rho + \varepsilon g) + \frac{1}{\varepsilon} v \partial_x (\rho + \varepsilon g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L}(\rho + \varepsilon g) dt + (\rho + \varepsilon g) \circ Q dW_t. \tag{1}$$

We introduce g such that $f = \rho + \varepsilon g$ with $\rho = \Pi(f) \Rightarrow g$ satisfies $\Pi(g) = 0$.

The equation becomes

$$d(\rho + \varepsilon g) + \frac{1}{\varepsilon} v \partial_x (\rho + \varepsilon g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L}(\rho + \varepsilon g) dt + (\rho + \varepsilon g) \circ Q dW_t. \tag{1}$$

We apply Π and obtain

$$d\rho + \partial_x \Pi(vg)dt = \rho \circ QdW_t. \tag{2}$$

We introduce g such that $f = \rho + \varepsilon g$ with $\rho = \Pi(f) \Rightarrow g$ satisfies $\Pi(g) = 0$.

The equation becomes

$$d(\rho + \varepsilon g) + \frac{1}{\varepsilon} v \partial_x (\rho + \varepsilon g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L}(\rho + \varepsilon g) dt + (\rho + \varepsilon g) \circ Q dW_t. \tag{1}$$

We apply Π and obtain

$$d\rho + \partial_x \Pi(vg)dt = \rho \circ QdW_t. \tag{2}$$

9/33

We do (1) - (2) and obtain

$$dg + \frac{1}{\varepsilon}(I - \Pi)(v\partial_x g)dt = \frac{\sigma}{\varepsilon^2}\mathcal{L}gdt + g \circ QdW_t - \frac{1}{\varepsilon^2}v\partial_x \rho dt.$$

The micro-macro formulation

$$\left\{ \begin{array}{l} d\rho + \partial_x \Pi(vg) dt = \rho \circ Q dW_t \\ dg + \frac{1}{\varepsilon} (I - \Pi) (v \partial_x g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} g dt + g \circ Q dW_t - \frac{1}{\varepsilon^2} v \partial_x \rho dt, \end{array} \right.$$

⇒ system which is equivalent to our kinetic equation.

The micro-macro formulation

$$\left\{ \begin{array}{l} d\rho + \partial_x \Pi(vg) dt = \rho \circ Q dW_t \\ dg + \frac{1}{\varepsilon} (I - \Pi) (v \partial_x g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} g dt + g \circ Q dW_t - \frac{1}{\varepsilon^2} v \partial_x \rho dt, \end{array} \right.$$

⇒ system which is equivalent to our kinetic equation.

Advantages = The decomposition **only uses basic properties** of the collision operator common to most of kinetic equations

The micro-macro formulation

$$\left\{ \begin{array}{l} d\rho + \partial_x \Pi(vg) dt = \rho \circ Q dW_t \\ dg + \frac{1}{\varepsilon} (I - \Pi) (v \partial_x g) dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} g dt + g \circ Q dW_t - \frac{1}{\varepsilon^2} v \partial_x \rho dt, \end{array} \right.$$

⇒ system which is equivalent to our kinetic equation.

Advantages = The decomposition only uses basic properties of the collision operator common to most of kinetic equations, approach which works for both diffusive and hydrodynamical limits.

Examples

The one group transport equation

$$\left\{ \begin{array}{l} d\rho + \partial_x \Pi(vg) dt = \rho \circ Q dW_t \\ dg + \frac{1}{\varepsilon} (I - \Pi) (v \partial_x g) dt = -\frac{\sigma}{\varepsilon^2} g dt + g \circ Q dW_t - \frac{1}{\varepsilon^2} v \partial_x \rho dt. \end{array} \right.$$

Examples

The one group transport equation

$$\left\{ \begin{array}{l} d\rho + \partial_x \Pi(vg) dt = \rho \circ Q dW_t \\ dg + \frac{1}{\varepsilon} (I - \Pi) (v \partial_x g) dt = -\frac{\sigma}{\varepsilon^2} g dt + g \circ Q dW_t - \frac{1}{\varepsilon^2} v \partial_x \rho dt. \end{array} \right.$$

The telegraph equation

We denote $g = (\alpha, \gamma)$.

$$\begin{cases} d\rho + \partial_x \frac{\alpha - \gamma}{2} dt = \rho \circ Q dW_t \\ d\alpha + \frac{1}{\varepsilon} \partial_x \frac{\alpha + \gamma}{2} dt = -\frac{1}{\varepsilon^2} \alpha dt + \alpha \circ Q dW_t - \frac{1}{\varepsilon^2} \partial_x \rho dt \\ d\gamma - \frac{1}{\varepsilon} \partial_x \frac{\gamma + \alpha}{2} dt = -\frac{1}{\varepsilon^2} \gamma dt + \gamma \circ Q dW_t + \frac{1}{\varepsilon^2} \partial_x \rho dt. \end{cases}$$

Formal analytical limit

•
$$dg + \frac{1}{\varepsilon}(I - \Pi)(v\partial_x g)dt = \frac{\sigma}{\varepsilon^2}\mathcal{L}gdt + g \circ QdW_t - \frac{1}{\varepsilon^2}v\partial_x \rho dt$$

$$\Rightarrow g = \mathcal{L}^{-1}\left(\frac{1}{\sigma}v\partial_x \rho\right) + \mathcal{O}(\varepsilon).$$

Formal analytical limit

•
$$dg + \frac{1}{\varepsilon}(I - \Pi)(v\partial_x g)dt = \frac{\sigma}{\varepsilon^2}\mathcal{L}gdt + g \circ QdW_t - \frac{1}{\varepsilon^2}v\partial_x \rho dt$$

$$\Rightarrow g = \mathcal{L}^{-1}\left(\frac{1}{\sigma}v\partial_x\rho\right) + \mathcal{O}(\varepsilon).$$

• $d\rho + \partial_r \Pi(vq) dt = \rho \circ QdW_t$

$$\Rightarrow d\rho + \partial_x(\kappa \partial_x \rho)dt = \rho \circ QdW_t + \mathcal{O}(\varepsilon)$$

with
$$\kappa(x) = \frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma(x)}$$
.

Construction of the numerical scheme

Let us deal with the stiff term for the one-group transport equation with $\sigma=1$. We are interested in

$$\partial_t g = -\frac{1}{\varepsilon^2} g.$$

Construction of the numerical scheme

Let us deal with the stiff term for the one-group transport equation with $\sigma=1$. We are interested in

$$\partial_t g = -\frac{1}{\varepsilon^2} g.$$

With Explicit Euler, we obtain

$$\frac{g^{n+1}-g^n}{\Delta t}=-\frac{1}{\varepsilon^2}g^n$$

$$\Rightarrow g^{n+1} = \left(1 - \frac{\Delta t}{\varepsilon^2}\right)g^n = \left(1 - \frac{\Delta t}{\varepsilon^2}\right)^{n+1}g^0.$$

Stability $\Rightarrow \Delta t \leq \varepsilon^2 \Rightarrow$ Problem for ε small.

Construction of the numerical scheme

Let us deal with the stiff term for the one-group transport equation with $\sigma=1$. We are interested in

$$\partial_t g = -\frac{1}{\varepsilon^2} g.$$

With Explicit Euler, we obtain

$$\frac{g^{n+1}-g^n}{\Delta t}=-\frac{1}{\varepsilon^2}g^n$$

$$\Rightarrow g^{n+1} = \left(1 - \frac{\Delta t}{\varepsilon^2}\right)g^n = \left(1 - \frac{\Delta t}{\varepsilon^2}\right)^{n+1}g^0.$$

Stability $\Rightarrow \Delta t \leq \varepsilon^2 \Rightarrow$ Problem for ε small.

With Implicit Euler, we obtain

$$\frac{g^{n+1} - g^n}{\Delta t} = -\frac{1}{\varepsilon^2} g^{n+1}$$

 $\Rightarrow g^{n+1} = \left(\frac{\varepsilon^2}{\varepsilon^2 + \Delta t}\right)g^n \Rightarrow \text{Stability issues independent of the size } \varepsilon.$

The micro-macro formulation

$$\begin{cases} d\rho + \partial_x \Pi(vg)dt = \rho Q dW_t + \frac{1}{2}\rho \sum_{k\geq 0} (Qe_k)^2 dt \\ dg + \frac{1}{\varepsilon} (I - \Pi)(v\partial_x g)dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} g dt + g Q dW_t + \frac{1}{2}g \sum_{k\geq 0} (Qe_k)^2 dt - \frac{1}{\varepsilon^2} v \partial_x \rho dt. \end{cases}$$

Implicitation of the collision term, **Upwind discretization** of $(I - \Pi)(v\partial_x g)$, **centered approximations** of $\partial_x \Pi(vg)$ and $v\partial_x \rho$.

The micro-macro formulation

$$\begin{cases} d\rho + \partial_x \Pi(vg)dt = \rho Q dW_t + \frac{1}{2}\rho \sum_{k\geq 0} (Qe_k)^2 dt \\ dg + \frac{1}{\varepsilon} (I - \Pi)(v\partial_x g)dt = \frac{\sigma}{\varepsilon^2} \mathcal{L} g dt + gQ dW_t + \frac{1}{2}g \sum_{k\geq 0} (Qe_k)^2 dt - \frac{1}{\varepsilon^2} v\partial_x \rho dt. \end{cases}$$

Implicitation of the collision term, Upwind discretization of $(I - \Pi)(v\partial_x g)$, centered approximations of $\partial_x \Pi(vg)$ and $v\partial_x \rho$.

Notations:

- Time: $t_n = n\Delta t$ with Δt time step.
- Space: Two staggered grids of step Δx with nodes $x_i=i\Delta x$ and $x_{i+\frac{1}{2}}=(i+\frac{1}{2})\Delta x$ extended by periodicity.

$$\rho_i^n \approx \rho(t_n, x_i)$$
 and $g_{i+\frac{1}{2}}^n(v) \approx g(t_n, x_{i+\frac{1}{2}}, v)$

Numerical scheme

$$\begin{cases} \rho_{i}^{n+1} = & \rho_{i}^{n} - \Delta t \Pi \left(v \frac{g_{i+\frac{1}{2}}^{n+1} - g_{i-\frac{1}{2}}^{n+1}}{\Delta x} \right) + \rho_{i}^{n} \left(\frac{\Delta t}{2} \sum_{k \geq 0} (b_{ik})^{2} + \sqrt{\Delta t} \sum_{k \geq 0} b_{ik} \xi_{k}^{n+1} \right) \\ g_{i+\frac{1}{2}}^{n+1} = & g_{i+\frac{1}{2}}^{n} - \frac{\Delta t}{\varepsilon \Delta x} (I - \Pi) \left(v^{+} \left(g_{i+\frac{1}{2}}^{n} - g_{i-\frac{1}{2}}^{n} \right) + v^{-} \left(g_{i+\frac{3}{2}}^{n} - g_{i+\frac{1}{2}}^{n} \right) \right) \\ - \frac{\sigma_{i+\frac{1}{2}}}{\varepsilon^{2}} \mathcal{L} g_{i+\frac{1}{2}}^{n+1} \Delta t + g_{i+\frac{1}{2}}^{n} \left(\frac{1}{2} \Delta t \sum_{k \geq 0} (b_{i+\frac{1}{2},k})^{2} + \sqrt{\Delta t} \sum_{k \geq 0} b_{i+\frac{1}{2},k} \xi_{k}^{n+1} \right) \\ - \frac{1}{\varepsilon^{2}} v \frac{\rho_{i+1}^{n} - \rho_{i}^{n}}{\Delta x} \Delta t \end{cases}$$

with $v^+=\max(v,0)$ and $v^-=\min(v,0)$, $(\xi_k^n)_{n\geq 1,k\geq 0}$ i.i.d. with a normal distribution, $b_{ik}:=Qe_k(x_i)$ and $b_{i+\frac{1}{n},k}:=Qe_k(x_{i+\frac{1}{n}})$.

Formal numerical limit

$$\bullet \ g_{i+\frac{1}{2}}^{n+1} = \frac{1}{\sigma_{i+\frac{1}{2}}} \mathcal{L}^{-1} \left(v \frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} \right) + \mathcal{O}(\varepsilon)$$

Formal numerical limit

$$\bullet \ g_{i+\frac{1}{2}}^{n+1} = \frac{1}{\sigma_{i+\frac{1}{2}}} \mathcal{L}^{-1} \left(v \frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} \right) + \mathcal{O}(\varepsilon)$$

$$\Rightarrow \rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\Delta x} \left(\kappa_{i+\frac{1}{2}} \frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} - \kappa_{i-\frac{1}{2}} \frac{\rho_i^n - \rho_{i-1}^n}{\Delta x} \right) + \rho_i^n \left(\frac{1}{2} \Delta t \sum_{k \ge 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \ge 0} b_{ik} \xi_k^{n+1} \right) + \mathcal{O}(\varepsilon)$$

Formal numerical limit

$$\bullet \ g_{i+\frac{1}{2}}^{n+1} = \frac{1}{\sigma_{i+\frac{1}{2}}} \mathcal{L}^{-1} \left(v \frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} \right) + \mathcal{O}(\varepsilon)$$

$$\Rightarrow \rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\Delta x} \left(\kappa_{i+\frac{1}{2}} \frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} - \kappa_{i-\frac{1}{2}} \frac{\rho_i^n - \rho_{i-1}^n}{\Delta x} \right) + \rho_i^n \left(\frac{1}{2} \Delta t \sum_{k \ge 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \ge 0} b_{ik} \xi_k^{n+1} \right) + \mathcal{O}(\varepsilon)$$

 \Rightarrow the usual **3-points stencil explicit scheme** for **the diffusion equation** with $\kappa_{i+\frac{1}{2}} = -\frac{\Pi(v\mathcal{L}^{-1}v)}{\sigma_{i+\frac{1}{2}}}$.

The one-group transport equation

Numerical scheme for the kinetic equation:

$$f_i^{n+1} = f_i^n - \frac{\Delta t}{\varepsilon \Delta x} (v^+(f_i^n - f_{i-1}^n) + v^- (f_{i+1}^n - f_i^n))$$

$$+ \frac{1}{\varepsilon^2} (\Pi f_i^n - f_i^n) + f_i^n \left(\frac{1}{2} \Delta t \sum_{k \ge 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \ge 0} b_{ik} \xi_k^{n+1} \right)$$

The one-group transport equation

Numerical scheme for the kinetic equation:

$$f_i^{n+1} = f_i^n - \frac{\Delta t}{\varepsilon \Delta x} (v^+ (f_i^n - f_{i-1}^n) + v^- (f_{i+1}^n - f_i^n)) + \frac{1}{\varepsilon^2} (\Pi f_i^n - f_i^n) + f_i^n \left(\frac{1}{2} \Delta t \sum_{k \ge 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \ge 0} b_{ik} \xi_k^{n+1} \right)$$

Numerical (Crank-Nicholson) scheme for the diffusion equation:

$$\begin{split} \rho_i^{n+1} &= \rho_i^n - \frac{\kappa}{2} \frac{\Delta t}{\Delta x^2} \left(\rho_{i+1}^{n+1} - 2\rho_i^{n+1} + \rho_{i-1}^{n+1} \right) - \frac{\kappa}{2} \frac{\Delta t}{\Delta x^2} \left(\rho_{i+1}^n - 2\rho_i^n + \rho_{i-1}^n \right) \\ &+ \rho_i^n \left(\frac{1}{2} \Delta t \sum_{k \geq 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \geq 0} b_{ik} \xi_k^{n+1} \right) \end{split}$$

with $\kappa = \Pi(v\mathcal{L}^{-1}v) = \Pi(-v^2) = -1/3$.

The one-group transport equation

Numerical scheme for the kinetic equation:

$$f_i^{n+1} = f_i^n - \frac{\Delta t}{\varepsilon \Delta x} (v^+ (f_i^n - f_{i-1}^n) + v^- (f_{i+1}^n - f_i^n))$$

$$+ \frac{1}{\varepsilon^2} (\Pi f_i^n - f_i^n) + f_i^n \left(\frac{1}{2} \Delta t \sum_{k \ge 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \ge 0} b_{ik} \xi_k^{n+1} \right)$$

Numerical (Crank-Nicholson) scheme for the diffusion equation:

$$\begin{split} \rho_i^{n+1} &= \rho_i^n - \frac{\kappa}{2} \frac{\Delta t}{\Delta x^2} \left(\rho_{i+1}^{n+1} - 2\rho_i^{n+1} + \rho_{i-1}^{n+1} \right) - \frac{\kappa}{2} \frac{\Delta t}{\Delta x^2} \left(\rho_{i+1}^n - 2\rho_i^n + \rho_{i-1}^n \right) \\ &+ \rho_i^n \left(\frac{1}{2} \Delta t \sum_{k \geq 0} (b_{ik})^2 + \sqrt{\Delta t} \sum_{k \geq 0} b_{ik} \xi_k^{n+1} \right) \end{split}$$

with
$$\kappa = \Pi(v\mathcal{L}^{-1}v) = \Pi(-v^2) = -1/3$$
.

• For the simulation, discretization in velocities $\Rightarrow \kappa \approx -1/2 \sum_{j=1}^{N} v_j^2 \Delta v$.

Simulations

- Initial data: $f_0(x, v) = (1 + \cos(2\pi x + \pi)).$
- \bullet Space domain [0,1] discretized with N=200 points, periodic boundary conditions.
- Noise of the form $\sum_{k \in \mathbf{Z}} \frac{1}{|k|+1} \left(\cos(kx) + \sin(kx)\right) d\beta_k$.
- Comparison of three regimes: kinetic for $\varepsilon=1$, intermediate for $\varepsilon=10^{-2}$, diffusion for $\varepsilon=10^{-8}$.
- 100 **realizations** for each time \Rightarrow comparison of the mean.

Kinetic regime

Figure: one-group transport equation $\varepsilon=1$: comparison between SMM and explicit schemes (200 grid points): t=0.1 (left), t=0.3 (right).

Kinetic regime

Figure: one-group transport equation $\varepsilon=1$: comparison between SMM and explicit schemes (200 grid points): t=0.6 (left), t=1 (right).

Intermediate regime

Figure: one-group transport equation $\varepsilon=10^{-2}$: comparison between SMM and CN schemes (200 grid points): $t=\varepsilon/10$ (left), $t=4\varepsilon/10$ (right).

Intermediate regime

Figure: one-group transport equation $\varepsilon=10^{-2}$: comparison between SMM and CN schemes (200 grid points): t=0.05 (left), t=0.1 (right).

Diffusion regime

Figure: one-group transport equation $\varepsilon=10^{-8}$: comparison between SMM and CN schemes (200 grid points): t=0.01 (left), t=0.1 (right).

Diffusion regime

Figure: one-group transport equation $\varepsilon=10^{-8}$: comparison between SMM and CN schemes (200 grid points): t=0.25 (left), t=0.4 (right).

Stability analysis

The telegraph equation with a one dimensional Brownian motion for noise:

$$\begin{cases} d\rho + \partial_x \frac{\alpha - \gamma}{2} dt = \rho \circ d\beta(t) \\ d\alpha + \frac{1}{\varepsilon} \partial_x \frac{\alpha + \gamma}{2} dt = -\frac{1}{\varepsilon^2} \alpha dt + \alpha \circ d\beta(t) - \frac{1}{\varepsilon^2} \partial_x \rho dt \\ d\gamma - \frac{1}{\varepsilon} \partial_x \frac{\gamma + \alpha}{2} dt = -\frac{1}{\varepsilon^2} \gamma dt + \gamma \circ d\beta(t) + \frac{1}{\varepsilon^2} \partial_x \rho dt. \end{cases}$$

Stability analysis

The telegraph equation with a one dimensional Brownian motion for noise:

$$\begin{cases} d\rho + \partial_x \frac{\alpha - \gamma}{2} dt = \rho \circ d\beta(t) \\ d\alpha + \frac{1}{\varepsilon} \partial_x \frac{\alpha + \gamma}{2} dt = -\frac{1}{\varepsilon^2} \alpha dt + \alpha \circ d\beta(t) - \frac{1}{\varepsilon^2} \partial_x \rho dt \\ d\gamma - \frac{1}{\varepsilon} \partial_x \frac{\gamma + \alpha}{2} dt = -\frac{1}{\varepsilon^2} \gamma dt + \gamma \circ d\beta(t) + \frac{1}{\varepsilon^2} \partial_x \rho dt. \end{cases}$$

We denote $j:=\frac{1}{2\varepsilon}(p-q)=\frac{1}{2}(\alpha-\gamma).$ The **micro-macro scheme** rewrites

$$\begin{cases} & \rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\Delta x} \left(j_{i+\frac{1}{2}}^{n+1} - j_{i-\frac{1}{2}}^{n+1} \right) + \rho_i^n \left(\frac{\Delta t}{2} + \sqrt{\Delta t} \; \xi^{n+1} \right) \\ & j_{i+\frac{1}{2}}^{n+1} = j_{i+\frac{1}{2}}^n + \frac{\Delta t}{2\varepsilon \Delta x} \left[j_{i+\frac{3}{2}}^n - 2j_{i+\frac{1}{2}}^n + j_{i-\frac{1}{2}}^n \right] \\ & - \frac{\Delta t}{\varepsilon^2} j_{i+\frac{1}{2}}^{n+1} + j_{i+\frac{1}{2}}^n \left(\frac{\Delta t}{2} + \sqrt{\Delta t} \; \xi^{n+1} \right) - \frac{1}{\varepsilon^2} \Delta t \left(\frac{\rho_{i+1}^n - \rho_i^n}{\Delta x} \right) \end{cases}$$

Stability analysis

Theorem

There exist constants C(T), Δt_0 , Δx_0 and ε_0 such that for all $\Delta t \leq \Delta t_0$, $\Delta x \leq \Delta x_0$ and $\varepsilon \leq \varepsilon_0$ satisfying the **CFL condition**

$$\Delta t \le \frac{1}{2} \left(\frac{\Delta x^2}{2} + \varepsilon \Delta x \right)$$

then we have

$$\mathbb{E}\left[\sum_i (\rho_i^n)^2 + (\varepsilon j_{i+\frac{1}{2}}^n)^2\right] \le C(T) \, \mathbb{E}\left[\sum_i (\rho_i^0)^2 + (\varepsilon j_{i+\frac{1}{2}}^0)^2\right]$$

for every n.

Proof:

We denote
$$J^n_{i+\frac{1}{2}}=\varepsilon j^n_{i+\frac{1}{2}},\,\mu=\frac{\Delta t}{\varepsilon\Delta x}$$
 and $\lambda=\frac{1}{1+\Delta t/\varepsilon^2}.$

The scheme becomes

$$\begin{cases} \rho_{j}^{n+1} = \rho_{j}^{n} - \mu \left(J_{j+\frac{1}{2}}^{n+1} - J_{j-\frac{1}{2}}^{n+1} \right) + \rho_{j}^{n} \left(\frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1} \right) \\ J_{j+\frac{1}{2}}^{n+1} = \lambda \left(J_{j+\frac{1}{2}}^{n} (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1}) \right. \\ \left. + \frac{\mu}{2} \left[J_{j+\frac{3}{2}}^{n} - 2J_{j+\frac{1}{2}}^{n} + J_{j-\frac{1}{2}}^{n} \right] - \mu \left(\rho_{j+1}^{n} - \rho_{j}^{n} \right) \right) \end{cases}$$

Proof:

We denote $J^n_{i+\frac{1}{2}}=\varepsilon j^n_{i+\frac{1}{2}},\,\mu=\frac{\Delta t}{\varepsilon\Delta x}$ and $\lambda=\frac{1}{1+\Delta t/\varepsilon^2}.$

The scheme becomes

$$\begin{cases} \rho_{j}^{n+1} = \rho_{j}^{n} - \mu \left(J_{j+\frac{1}{2}}^{n+1} - J_{j-\frac{1}{2}}^{n+1} \right) + \rho_{j}^{n} \left(\frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1} \right) \\ J_{j+\frac{1}{2}}^{n+1} = \lambda \left(J_{j+\frac{1}{2}}^{n} (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1}) + \frac{\mu}{2} \left[J_{j+\frac{3}{2}}^{n} - 2 J_{j+\frac{1}{2}}^{n} + J_{j-\frac{1}{2}}^{n} \right] - \mu \left(\rho_{j+1}^{n} - \rho_{j}^{n} \right) \right) \end{cases}$$

We take ρ_j^n and $J_{j+\frac{1}{2}}^n$ on the form of elementary waves $\rho_j^n=\rho^n(\varphi)e^{ij\varphi}$ and $J_{j+\frac{1}{2}}^n=J^n(\varphi)e^{i(j+\frac{1}{2})\varphi}$.

$$\begin{cases} \rho^{n+1} = \rho^n \left(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1}\right) - 2i\mu J^{n+1} \sin \theta \\ J^{n+1} = \lambda \left(J^n \left(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \, \xi^{n+1} - 2\mu \sin^2 \theta\right) - 2i\mu \sin \theta \rho^n \right) \end{cases}$$

with $\theta = \frac{\varphi}{2}$.

This rewrites as
$$\binom{\rho^{n+1}}{J^{n+1}} = A_{n+1} \binom{\rho^n}{J^n}$$
 with
$$\begin{pmatrix} 1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 4\mu^2 \lambda \sin^2 \theta & -i(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) 2\lambda \mu \sin \theta \\ -2i\mu \lambda \sin \theta & (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) \lambda. \end{pmatrix}$$

 $= A_{n+1}.$

This rewrites as
$$\binom{\rho^{n+1}}{J^{n+1}} = A_{n+1} \binom{\rho^n}{J^n}$$
 with
$$\begin{pmatrix} 1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 4\mu^2 \lambda \sin^2 \theta & -i(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) 2\lambda \mu \sin \theta \\ -2i\mu \lambda \sin \theta & (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) \lambda. \end{pmatrix} = A_{n+1}.$$

 A_{n+1} is a **stochastic perturbation** of the matrix \widetilde{A} appearing in the deterministic version :

$$\widetilde{A} = \begin{pmatrix} 1 - 4\mu^2\lambda\sin^2\theta & -i(1 - 2\mu\sin^2\theta)2\lambda\mu\sin\theta \\ -2i\mu\lambda\sin\theta & (1 - 2\mu\sin^2\theta)\lambda \end{pmatrix}.$$

$$\Rightarrow A_{n+1} = \widetilde{A} + \sqrt{\Delta t} \xi^{n+1} \widetilde{B} + \Delta t \widetilde{C},$$

with $\widetilde{B} = \widetilde{B}(\mu\lambda, \mu^2\lambda, \sin\theta)$ and $\widetilde{C} = \widetilde{C}(\mu\lambda, \mu^2\lambda, \sin\theta)$.

This rewrites as
$$\binom{\rho^{n+1}}{J^{n+1}} = A_{n+1} \binom{\rho^n}{J^n}$$
 with
$$\begin{pmatrix} 1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 4\mu^2 \lambda \sin^2 \theta & -i(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) 2\lambda \mu \sin \theta \\ -2i\mu \lambda \sin \theta & (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) \lambda. \end{pmatrix} = A_{n+1}.$$

 A_{n+1} is a **stochastic perturbation** of the matrix \widetilde{A} appearing in the deterministic version :

$$\widetilde{A} = \begin{pmatrix} 1 - 4\mu^2\lambda\sin^2\theta & -i(1 - 2\mu\sin^2\theta)2\lambda\mu\sin\theta \\ -2i\mu\lambda\sin\theta & (1 - 2\mu\sin^2\theta)\lambda \end{pmatrix}.$$

$$\Rightarrow A_{n+1} = \widetilde{A} + \sqrt{\Delta t} \xi^{n+1} \widetilde{B} + \Delta t \widetilde{C},$$

with
$$\widetilde{B} = \widetilde{B}(\mu\lambda, \mu^2\lambda, \sin\theta)$$
 and $\widetilde{C} = \widetilde{C}(\mu\lambda, \mu^2\lambda, \sin\theta)$.

Under the **CFL assumption**, $\lambda \mu \leq C$, $\lambda \mu^2 \leq C$.

This rewrites as
$$\binom{\rho^{n+1}}{J^{n+1}} = A_{n+1} \binom{\rho^n}{J^n}$$
 with
$$\begin{pmatrix} 1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 4\mu^2 \lambda \sin^2 \theta & -i(1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) 2\lambda \mu \sin \theta \\ -2i\mu \lambda \sin \theta & (1 + \frac{\Delta t}{2} + \sqrt{\Delta t} \ \xi^{n+1} - 2\mu \sin^2 \theta) \lambda. \end{pmatrix} = A_{n+1}.$$

 A_{n+1} is a **stochastic perturbation** of the matrix \widetilde{A} appearing in the deterministic version :

$$\widetilde{A} = \begin{pmatrix} 1 - 4\mu^2\lambda\sin^2\theta & -i(1 - 2\mu\sin^2\theta)2\lambda\mu\sin\theta \\ -2i\mu\lambda\sin\theta & (1 - 2\mu\sin^2\theta)\lambda \end{pmatrix}.$$

$$\Rightarrow A_{n+1} = \widetilde{A} + \sqrt{\Delta t} \xi^{n+1} \widetilde{B} + \Delta t \widetilde{C},$$

with
$$\widetilde{B} = \widetilde{B}(\mu\lambda, \mu^2\lambda, \sin\theta)$$
 and $\widetilde{C} = \widetilde{C}(\mu\lambda, \mu^2\lambda, \sin\theta)$.

Under the **CFL assumption**, $\lambda \mu \leq C$, $\lambda \mu^2 \leq C$.

 $\Rightarrow \widetilde{B}(\lambda\mu,\lambda\mu^2,\sin\theta)$ and $\widetilde{C}(\lambda\mu,\lambda\mu^2,\sin\theta)$ are uniformly bounded.

Nathalie AYI Séminaire CMAP 6 Novembre 2018

We denote by \mathcal{F}_n the σ -algebra generated by

$$\rho^n, J^n, \xi^n, \rho^{n-1}, J^{n-1}, \xi^{n-1}, \dots, \rho^0, J^0.$$

 $\Rightarrow \xi^{n+1}$ independent of \mathcal{F}_n and ρ^n, J^n are \mathcal{F}_n -measurable.

$$\Rightarrow \mathbb{E}(\xi^{n+1}|\mathcal{F}_n) = 0, \, \mathbb{E}(\rho^n|\mathcal{F}_n) = \rho^n, \, \mathbb{E}(J^n|\mathcal{F}_n) = J^n.$$

$$\begin{split} &\Rightarrow \mathbb{E}\left[\left\| \begin{pmatrix} \rho^{n+1} \\ J^{n+1} \end{pmatrix} \right\|_2^2 |\mathcal{F}_n \right] = \mathbb{E}\left[\left\| A_{n+1} \begin{pmatrix} \rho^n \\ J^n \end{pmatrix} \right\|_2^2 |\mathcal{F}_n \right] \\ &\leq \left\| (\widetilde{A} + \Delta t \widetilde{C}) \begin{pmatrix} \rho^n \\ J^n \end{pmatrix} \right\|_2^2 + \Delta t \left\| \widetilde{B} \begin{pmatrix} \rho^n \\ J^n \end{pmatrix} \right\|_2^2 \leq \left(\|\widetilde{A}\|_2^2 + L \Delta t \right) \left\| \begin{pmatrix} \rho^n \\ J^n \end{pmatrix} \right\|_2^2, \end{split}$$

 $\|\widetilde{A}\|_2^2$ is the **largest eigenvalue** of the matrix $\widetilde{A}^*\widetilde{A}$. Denoting by \widetilde{T} and \widetilde{D} the trace and determinant of this latter matrix, the largest eigenvalue is

$$\frac{\widetilde{T} + \sqrt{\widetilde{T}^2 - 4\widetilde{D}}}{2}$$

and the condition $\|\widetilde{A}\|_2^2 \leq 1$ is thus equivalent to $1 - \widetilde{T} + \widetilde{D} \geq 0$.

 $\|\widetilde{A}\|_2^2$ is the **largest eigenvalue** of the matrix $\widetilde{A}^*\widetilde{A}$. Denoting by \widetilde{T} and \widetilde{D} the trace and determinant of this latter matrix, the largest eigenvalue is

$$\frac{\widetilde{T} + \sqrt{\widetilde{T}^2 - 4\widetilde{D}}}{2}$$

and the condition $\|\widetilde{A}\|_2^2 \le 1$ is thus equivalent to $1 - \widetilde{T} + \widetilde{D} \ge 0$.

$$1 - \widetilde{T} + \widetilde{D} = 8\lambda\mu^2 X (1 - \lambda + 2\lambda\mu X - 2\lambda\mu^2 X^2 - 2\lambda\mu^2 X)$$

with $X = (\sin \theta)^2$.

 $\|\widetilde{A}\|_2^2$ is the **largest eigenvalue** of the matrix $\widetilde{A}^*\widetilde{A}$. Denoting by \widetilde{T} and \widetilde{D} the trace and determinant of this latter matrix, the largest eigenvalue is

$$\frac{\widetilde{T}+\sqrt{\widetilde{T}^2-4\widetilde{D}}}{2}$$

and the condition $\|\widetilde{A}\|_2^2 \leq 1$ is thus equivalent to $1 - \widetilde{T} + \widetilde{D} \geq 0$.

$$1 - \widetilde{T} + \widetilde{D} = 8\lambda\mu^2X(1 - \lambda + 2\lambda\mu X - 2\lambda\mu^2X^2 - 2\lambda\mu^2X)$$

with $X = (\sin \theta)^2$.

We denote $Q(X):=1-\lambda+2\lambda\mu X-2\lambda\mu^2 X^2-2\lambda\mu^2 X.$

Q concave and satisfies $Q(0)=1-\lambda>0,$ $Q(1)=1-\lambda+2\lambda\mu-4\lambda\mu^2\geq0$ under the CFL condition.

$$\Rightarrow 1 - \widetilde{T} + \widetilde{D} \geq 0 \Rightarrow \|\widetilde{A}\|_2^2 \leq 1.$$

Ш

Nathalie AYI Séminaire CMAP 6 Novembre 2018

Stability in the general case

Theorem

If Δt satisfies the following CFL condition

$$\Delta t \le \frac{2s_m \sigma_m \Delta x^2}{2(2+\varepsilon)} + \frac{\varepsilon \Delta x}{2+\varepsilon},$$

then the sequence ρ^n and g^n defined by the scheme satisfy the energy estimate

$$\begin{split} \mathbb{E}\left[\sum_{i}(\rho_{i}^{n})^{2}\right] + \varepsilon^{2}\mathbb{E}\left[\sum_{i}\Pi\left((g_{i+\frac{1}{2}}^{n})^{2}\right)\right] \\ \leq C(T)\left(\mathbb{E}\left[\sum_{i}(\rho_{i}^{0})^{2}\right] + \varepsilon^{2}\mathbb{E}\left[\sum_{i}\Pi\left((g_{i+\frac{1}{2}}^{0})^{2}\right)\right]\right) \end{split}$$

for every n with C(T) a constant which only depends on T.

Conclusion and Perspectives

- Diffusion equation recovered when $\varepsilon \to 0 \Rightarrow AP$ scheme.
- CFL conditions ensuring the stability of our scheme.
- Numerical results confirming the good performances of the scheme, in particular in the diffusion regime.
- Perspectives: Similar technics to study stochastic perturbations of
 - the non-linear case of the radiative transfer equation,
 - the Boltzmann equation,
 - the Vlasov equation,
 - hydrodynamical limits . . .

Thank you for your attention.