

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT I - MULTIPLE INTEGRALS

Part - A

1.	$\int_{0}^{2} \int_{0}^{2} dx dy =$ (A) 4 (C) 0	(B) 2 (D) 1	ANS A	(CLO-1, Apply)
2.	$\int_0^2 \int_0^2 e^{x+y} dx dy =$ (A) $(e-1)^2$ (C) 1	(B) $(e^2 - 1)^2$ (D) 0	ANS B	(CLO-1, Apply)
3.	$\int_{1}^{2} \int_{2}^{5} x y dx dy =$ (A) 1 (C) $\frac{63}{4}$	(B) -1 (D) $\frac{53}{4}$	ANS C	(CLO-1, Apply)
4.	$\int_0^1 \int_1^2 (x^2 + y^2) dx dy =$ (A) 0 (C) $\frac{8}{3}$	(B) 9 (D) $-\frac{8}{3}$	ANS C	(CLO-1, Apply)
5.	$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} d\theta d\varphi =$ $(A) \frac{\pi}{2}$ $(C) \frac{\pi^2}{4}$	(B) $\frac{\pi}{3}$ (D) $\frac{\pi^2}{8}$	ANS C	(CLO-1, Apply)
6.	$\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \sin(\theta + \varphi) d\theta d\varphi =$ (A) 2 (C) 0	(B) 1 (D) -2	ANS A	(CLO-1, Apply)

7.	$\int_{0}^{1} \int_{0}^{x} dy dx =$ (A) 1 (B) - (C) $\frac{1}{2}$ (D) $\frac{1}{3}$	1 ANS C	(CLO-1, Apply)
8.	$\int_{0}^{\pi} \int_{0}^{a \sin \theta} r dr d\theta =$ $(A) \pi a^{2} \qquad (B) \frac{\pi}{4} dx$ $(C) \frac{\pi}{4} a^{3} \qquad (D) \frac{\pi}{6} dx$ $\int_{0}^{2} \int_{1}^{2} \int_{1}^{2} x y^{2} z dz dy dx =$	a^2 a^2 B	(CLO-1, Apply)
9.	$\int_0^2 \int_1^2 \int_1^2 x \ y^2 \ z \ dz \ dy \ dx =$ (A) 24 (C) 20 (B) 28 (D) 7	ANS D	(CLO-1, Apply)
10.	If R is the region bounded by $x = 0$, $y = 0$ and $x + \iint_R dx dy =$ (A) 1 (B) $-$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$	ANS	(CLO-1, Apply)
11.	The region of integration of the integral $\int_0^1 \int_0^x f(x) dx$ (A) square (B) rec (C) triangle (D) circ	etangle ANS	(CLO-1, Apply)
12.	To change Cartesian into polar coordinates in double integration, the transformation used is (A) $x = r \cos \theta$, $y = r \sin \theta$ (B) $x = a \cos \theta$, $y = b \sin \theta$ (C) $x = r \sin \theta$, $y = r \cos \theta$ (D) $x = a \sec \theta$, $y = b \tan \theta$		(CLO-1, Remember)
13.	Change the order of integration in $\int_0^a \int_x^a f(x,y) dy$ (A) $\int_0^a \int_x^a f(x,y) dy dx$ (B) $\int_0^a \int_0^y f(x,y) dy dx$ (C) $\int_0^a \int_0^{x^2} f(x,y) dy dx$ (D) $\int_0^a \int_x^{x^2} f(x,y) dy dx$	(x,y)dx dy $(x,y) dy dx$ ANS B	(CLO-1, Apply)
14.		is $ \begin{array}{c} ANS \\ \mathbf{R} \\ AY \\ AX \\ \mathbf{B} \end{array} $ ANS	(CLO-1, Remember)
15.	••	$\iint_{R} dx dy$ ANS \mathbf{A}	(CLO-1, Remember)

	1 2 2			
16.	$\int_0^1 \int_0^2 \int_0^3 dx dy dz =$ (A) 3 (C) 2	(B) 4 (D) 6	ANS D	(CLO-1, Apply)
17.	$\int_{1}^{a} \int_{1}^{b} \frac{dx dy}{x y} =$ (A) $\log a + \log b$ (C) $\log b$	(B) $\log a$ (D) $\log a \log b$	ANS D	(CLO-1, Apply)
18.	$\int_0^{\pi/2} \int_0^{\sin \theta} dr d\theta =$ (A) 1 (C) $\frac{\pi}{3}$	$ \begin{array}{c} (B) \frac{\pi}{2} \\ (D) \frac{\pi}{4} \end{array} $	ANS A	(CLO-1, Apply)
19.	Area of the region R in polar coordi (A) $\iint_R dr d\theta$ (C) $\iint_R r dr d\theta$	nates is (B) $\iint_R r^2 dr d\theta$ (D) $\iint_R (r+1) dr d\theta$	ANS C	(CLO-1, Remember)
20.	Area of an ellipse is (A) πr^2 (C) $\pi a b^2$	(B) $\pi \ a^2 \ b$ (D) $\pi \ a \ b$	ANS D	(CLO-1, Remember)
21.	$\int_0^2 \int_0^1 4 x y dx dy =$ (A) 4 (C) 2	(B) 3 (D) 1	ANS A	(CLO-1, Apply)
22.	$\int_0^{\pi} \int_0^{\sin \theta} r dr d\theta =$ $(A) \pi$ $(C) \frac{\pi}{4}$	(B) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$ a^2	ANS C	(CLO-1, Apply)
23.	$ \frac{(C)\frac{\pi}{4}}{\int_0^1 \int_0^2 \int_1^2 x^2 y \ z \ dz \ dy \ dx} = $ (A) 2 (C) 3	(B) 4 (D) 1	ANS D	(CLO-1, Apply)
24.	Change the order of integration in \int (A) $\int_0^a \int_x^a \frac{x}{x^2+y^2} dy dx$ (C) $\int_0^a \int_0^x \frac{x}{x^2+y^2} dy dx$	(B) $\int_0^a \int_0^x \frac{x}{x^2 + y^2} dy dx$	ANS B	(CLO-1, Apply)

25.	Change the order of integration in $\int_0^1 \int_0^x dy dx$. (A) $\int_0^1 \int_1^y dx dy$ (B) $\int_0^1 \int_0^y dy dx$ (C) $\int_0^1 \int_0^y dy dx$ (D) $\int_0^1 \int_0^y dy dx$	$\int_{0}^{x} dx dy$ $\int_{y}^{1} dx dy$ ANS \mathbf{D}	(CLO-1, Apply)
26.	In double integration, the transformation used to chan into polar coordinates is (A) $dx dy = dr d\theta$ (B) $dx dy = J dr d\theta$ (C) $dx dy = -J dr d\theta$ (D) $dx dy = J ^2 dr$	ANS R	(CLO-1, Remember)
27.	$(C) dx dy = -J dr d\theta \qquad (D) dx dy = J ^2 dr$ $\int_0^{\pi} \int_0^{\pi} d\theta d\varphi =$ $(A) 1 \qquad (B) 0$ $(C) \frac{\pi}{2} \qquad (D) \pi^2$	ANS D	(CLO-1, Apply)
28.	(A) 3 (C) 2 (D) 1	ANS D	(CLO-1, Apply)
29.	$(C)\frac{\pi}{2}$ $(D)\frac{\pi}{4}$	ANS A	(CLO-1, Apply)
30.	$\int_{0}^{1/2} \int_{1}^{2} x dx dy =$ (A) 3 (B) $\frac{3}{2}$ (C) $\frac{1}{2}$ (D) $\frac{3}{4}$	ANS D	(CLO-1, Apply)
31.	$\iiint_{R} dx dy dz \text{ over the volume of the sphere of radiu}$ $(A) 4 \pi a^{3} \qquad (B) 2 \pi a$ $(C) \frac{2}{3} \pi a^{3} \qquad (D) \frac{4}{3} \pi a$	a^3 ANS	(CLO-1, Remember)
32.	$\int_{0}^{2} \int_{0}^{1} x y dx dy =$ (A) 1 (B) 2 (C) 3 (D) 4	ANS A	(CLO-1, Apply)
33.	$\int_0^1 \int_0^1 (x+y) dx dy =$ (A) 1 (C) 3 (B) 2 (D) 4	ANS A	(CLO-1, Apply)

34.	The region of integration of the integral $\int_{-b}^{b} \int_{-a}^{a} f(x,y) dx dy$ is (A) square (C) triangle	(B) rectangle (D) circle	ANS B	(CLO-1, Apply)
35.	$\int_0^2 \int_0^1 y dx dy =$ (A) 4 (C) 0	(B) 2 (D) 1	ANS B	(CLO-1, Apply)
36.	$\int_0^\infty \int_0^y \frac{e^{-y}}{y} dx dy =$ (A) 4 (C) 0	(B) 2 (D) 1	ANS D	(CLO-1, Apply)

* * * * *