概率论与数理统计期中考试试题

考试时间: 2009年4月18日9:50-11:50

		姓名	学号 <u>200_0</u>	班级	
'			其他题目在答题才 答题本内由监考教	体上解答〔写清题号及♬ ☑师统一收回。	_ 解题过程)。考
	、单项选择题	(18 分,每题 2 ⁄	分),请将正确答	案对应的字母填在指定	横线处。
1.	任何一个事件	和它的对立事件	之间	o	
	(A) 相容	(B) 互不相容	(C) 独立	(D) 不独立。	
2.	随机变量 X 的	分布律: P{X =	$i\} = 2(1-2a)a^i,$	<i>i</i> = 0,1,2,···。则常数 <i>a</i> =	=o
	(A) 3	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{3}$	
3.	设随机变量X	服从标准正态分	布,则随机变量	Y = 2 X 的概率密度函数	汝是。
	V 270		(B) $\sqrt{\frac{2}{\pi}} e^{-\frac{ y }{4}} $ ($y \in$		
	(C) $\sqrt{\frac{2}{\pi}} e^{-\frac{y^2}{8}}$	$\frac{2}{y} (y > 0) $	(D) $\frac{1}{\sqrt{2\pi}}e^{-\frac{ y }{4}}$ (y >	> 0)	
4.	事件 A, B 相互	独立,且 $P(\overline{A}\overline{B})$	$=\frac{2}{9}$, $P(\overline{A}\overline{B})=F$	$P(AB)$, $P(A) \ge P(B)$,	则 $P(A) = \circ$
	2	5	(C) $\frac{4}{9}$	3	
5.	如果 0 < Var(X	$Y(x) < +\infty$, $\bigvee Var(x)$	$\left(\frac{X - E(X)}{\operatorname{Var}(X)}\right) = \underline{\hspace{1cm}}$	o	
	(A) 1	(B) 0	(C) $\frac{1}{Var(X)}$	(D) $Var(X)$	
6.		· , ,	$X - \mu) = \underline{\hspace{1cm}}$	o	
	(A) 0	(B) $\sigma\sqrt{\frac{2}{\pi}}$	(C) σ	(D) σ^2	
7.	Laplace 分布的	的密度函数为 p(z	$(x) = \frac{1}{2}e^{- x }, x \in R$,其期望等于	o
	(A) 0	(B) 1	(C) e	(D) 不存在	
8.	假设连续型	\mathbb{P} 随机变量 X ,	Y 在 $0 < x < 1, 0$	< y < 1 上 满足 p _{y x}	$\left(y x\right) = \frac{2y + 4x}{1 + 4x}$
	$p_X(x) = \frac{1+4x}{3}$, $\emptyset 0 < x < 1, 0 < y < 1 \ \text{Fr}$, $p_{X Y}(x Y=y) = \underline{\hspace{1cm}}$				
	$(A) \frac{y+2x}{y+1}$	(B) 1	(C) $\frac{y+x}{y+1}$	$(D) \frac{y+4x}{y+2}$	

9. 在[a,b]区间上取值的随机变量 X , 其方差最大可以达到_____。

(A)
$$b^2 - a^2$$
 (B) $\left(\frac{b-a}{2}\right)^2$ (C) $(b-a)^2$ (D) $\frac{b^2 - a^2}{2}$

- 二、(12分)射击室里有10支步枪,其中2支经过校准,用其射击命中率为0.8,用其他8支射击的命中率为0.2。
- (1) 今从室内任取一步枪对目标射击恰好命中,求使用的枪为已校准的概率;
- (2) 任取一支步枪,射击10次,命中5发的概率是多少?
- 三、(12分)(1) 反复掷一颗公正的色子,直到首次连续出现两个6点,求投掷次数的期望;
- (2) 设甲、乙两人进行一场比赛,投掷色子直至首次相继出现"6点6点"或"1点6点"停止,如果以"6点6点"结束,则甲胜,以"1点6点"结束为乙胜,请问甲、乙的获胜概率。

四、(12 分) 如果 X 服从几何分布 Ge(p), Y 服从指数分布 $Exp(\lambda)$, 请证明:

- (1) 对任意正整数m和n, 有P(X > n + m | x > m) = P(X > n);
- (2) 对任意 s > 0 和 t > 0, 有 P(Y > s + t | y > s) = P(Y > t)。

几何分布与指数分布的上述性质称为"无记忆性",请简单解释无记忆性的直观含义。

五、(10分) (1)
$$X$$
 为一只取正整数值的离散型随机变量,证明 $E(X) = \sum_{k=1}^{\infty} P(X \ge k)$;

(2) 利用此公式计算几何分布 Ge(p) 的期望。

六、(12 分) 设随机变量
$$X,Y$$
 独立同分布,且 X 的概率分布为 $\frac{X}{P}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $U = \max\{X,Y\}$, $V = \min\{X,Y\}$ 。

(1) 求(U,V)的联合概率分布;(2) 求U,V 的期望和方差。

七、(18分) 二元随机变量
$$(X,Y)$$
的联合密度函数 $p(x,y) = \begin{cases} 1, |y| < x, 0 < x < 1 \\ 0, 其他 \end{cases}$,求

 $(1) \quad p_{Y|X}\big(y|x\big), \quad p_{X|Y}\big(x|y\big); \qquad (2) \quad E\big(Y|X\big), \quad E\big(X|Y\big);$

(3)
$$P(|Y| < \frac{1}{3}|X = \frac{1}{2}), P(X < \frac{1}{3}|Y = -\frac{1}{2}).$$

八、 $(6\, \mathcal{G})$ 冒泡排序法的基本思想是交换所有的相邻逆序,直到没有逆序为止。假设冒泡排序算法的输入是n个不同数的一个随机排序,即等可能地为n个不同数的n! 种排列中的任意一个,求冒泡法需要交换逆序的次数的期望值。