Quantitative Foundations

Project 4

Dimensionality Reduction & Classification

Instructor: Linwei Wang

Contents

1	Dim	nensionality Reduction					
	1.1	Basics	·	4			
	1.2	Eigen	values and Eigenvectors	6			
		1.2.1	Definition	6			
		1.2.2	Properties	ç			
		1.2.3	Matrix Diagonalization	ç			
		1.2.4	Virtues of Symmetry	11			
	1.3	Singu	lar Value Decomposition (SVD)	12			
	1.4	.4 Principle Component Analysis					
		1.4.1	A 2D Example	14			
		1.4.2	Change of Basis	15			
		1.4.3	Variance: Noise and Redundancy	16			
		1.4.4	Solving PCA	18			
		1.4.5	PCA & Dimensionality Reduction	20			
		1.4.6	Assumptions, Limitations and Extensions	22			
	1.5	Indep	endent Component Analysis	23			
_							
2	Clas	ssification					
	2.1	Linear	r Methods for Classification	25			
		2.1.1	Linear Regression for an Indicator Matrix	25			

	2.1.2	Linear Discriminant Analysis	32
2.2	Protot	type Methods	36
	2.2.1	K-means Clustering	36
	2.2.2	K-means Clustering for Classifying Labeled Data	37
2.3	K-Nea	arest-Neighbor (kNN) Classifiers	38

1 Dimensionality Reduction

Why do we need dimensionality reduction?

Example 1: Digital images of handwritten numbers, each represented by a 28 by 28 image (784 by 1 data vector).

Figure 1.1: A set of examples of handwritten 4's, a subset from MNIST database (http://yann.lecun.com/exdb/mnist/)

Example 2: Face images, each represented by a 112 by 92 image or, a 10304 by 1 vector.

Figure 1.2: A set of face images, a subset of the face database provided by the Cambridge Universituy (http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html)

Given original data d in \mathbb{R}^n , principal components can be understood as a sequence of projections of the data, mutually uncorrelated and ordered in variance, that provide a a sequence of best linear approximations to that data. Often, a relatively small subset of q principal components (q << n) could serve as excellent lower-dimensional features for representing the high-dimensional data.

1.1 Basics

Definition (Linear Independence). The vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are said to be *linearly independent* if the euqation

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_n\mathbf{u}_n = \mathbf{0}$$

implies that $c_1 = 0, c_2 = 0, \dots, c_n = 0$. Otherwise the vectors are linearly dependent. In other words, the vectors are *linearly dependent* if there exists a set of numbers $\{c_1, c_2, \dots, c_n\}$ not all zero such as $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_n\mathbf{u}_n = \mathbf{0}$. This means one of the vectors can be written as a linear combination of the others.

Consider in 2-dimensional space the following two vectors $\mathbf{x}_1 = (x_1, y_1)^T$, $\mathbf{x}_2 = (x_2, y_2)^T$. What does it mean if the two vectors are linearly dependent?

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 = 0$$

If $c_1, c_2 \neq 0$, we have $\mathbf{x}_1 = -\frac{c_2}{c_1}\mathbf{x}_2$. It means \mathbf{x}_1 and \mathbf{x}_2 are parallel. Two vectors in R^2 are linearly independent if and only if they are not parallel.

Example. Consider $\mathbf{x}_1 = (1,1)^T$ and $\mathbf{x}_2 = (-1,1)^T$. Are \mathbf{x}_1 and \mathbf{x}_2 independent?

$$c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 0 \rightarrow \begin{cases} c_1 - c_2 = 0 \\ c_1 + c_2 = 0 \end{cases} \rightarrow \begin{cases} c_1 = 0 \\ c_2 = 0 \end{cases}$$

Example. Consider in R^3 if the following three vectors $\mathbf{x}_1 = (1, 2, 0)^T$, $\mathbf{x}_2 = (1, -1, 1)^T$ and $\mathbf{x}_3 = (2, 1, 1)^T$ are independent?

$$c_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 0 \to \begin{cases} c_1 + c_2 + 2c_3 = 0 \\ 2c_1 - c_2 + c_3 = 0 \\ 0c_1 + c_2 + c_3 = 0 \end{cases} \to \begin{cases} c_1 = 1 \\ c_2 = 1 \\ c_3 = -1 \end{cases}$$

Since $c_1, c_2, c_3 \neq 0$, $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are not linearly independent. Three vectors in R^3 are linearly independent if and only if they do not lie in the same plane.

Definition (Basis). Suppose that $S = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ is a set of n vectors in \mathbb{R}^n . The set S is called a basis for \mathbb{R}^n if

- $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly independent
- for every vector \mathbf{x} in \mathbb{R}^n there exists a unique set of scalars $\{c_1, c_2, \cdots, c_n\}$ so that \mathbf{x} can be expressed as linear combination:

$$\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_n \mathbf{u}_n \tag{1.1}$$

Theorem. In \mathbb{R}^n , any set of n linearly independent vectors form a basis of \mathbb{R}^n . Each vector \mathbf{x} in \mathbb{R}^n is uniquely expressed as a linear combination of the basis vectors as shown in (1.1).

Example Consider the standard basis set in R^3 :

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Changing of Basis Vectors: Let $V = [\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n]$ be a basis set in \mathbb{R}^n . Any $\mathbf{x} \in \mathbb{R}^n$ can be written as:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \mathbf{V}\mathbf{c} \tag{1.2}$$

where c is called coordinates of \mathbf{x} with respect to the basis $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$. Now assume we change the basis vector to $\mathbf{U} = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_n]$:

$$\mathbf{x} = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 + \dots + d_n \mathbf{u}_n = \mathbf{Ud}$$
 (1.3)

The new coordinates d of x with respect to the new basis U can be calculated by:

$$\mathbf{d} = \mathbf{U}^{-1} \mathbf{V} \mathbf{c} \tag{1.4}$$

Examples (Coordinate Transfromation). Let $\mathbf{x} = 3\mathbf{e}_1 + 2\mathbf{e}_2$ with respect to the standard basis $(\mathbf{e}_1, \mathbf{e}_2)$ in R^2 . What is the coordinate of \mathbf{x} if the basis changes from $(\mathbf{e}_1, \mathbf{e}_2)$ to $(\mathbf{u}_1, \mathbf{u}_2)$?

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\mathbf{Ud} = \mathbf{Ec} \to \mathbf{d} = \mathbf{U}^{-1}\mathbf{Ec} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2.5 \\ -0.5 \end{pmatrix}$$
(1.5)

Definition (Orthogonal). A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is said to be orthogonal provided that

$$\mathbf{v}_i'\mathbf{v}_k = 0$$
 whenever $j \neq k$.

Definition (Orthonormal). If $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is a set of orthogonal vectors, then they are orthonormal if they are all of unit norm, that is:

$$\mathbf{v}_j'\mathbf{v}_k = 0$$
 whenever $j \neq k$.
 $\mathbf{v}_j'\mathbf{v}_j = 1$ for all $j = 1, 2, \dots, n$.

Theorem. An orthonormal set of vectors is linearly independent.

Definition (Orthogonal Matrix). An $n \times n$ matrix **A** is said to be orthogonal provided that **A**' is the inverse of **A**; that is,

$$A'A = I$$
.

In other words, **A** is orthogonal if and only if the columns (and rows) of **A** form a set of orthonormal vectors.

1.2 Eigenvalues and Eigenvectors

1.2.1 Definition

Let **A** be a square matrix of dimension $n \times n$ and **x** a vector of dimension n. The product $\mathbf{y} = \mathbf{A}\mathbf{x}$ can be viewed as a linear transformation from n-dimensional space into itself. The nonzero vector **x** is an *eigenvector* of **A** if there is a scale factor λ such that:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1.6}$$

and the scalar λ is the *eigenvalue* corresponding to the eigenvector \mathbf{x} . The linear operator \mathbf{A} maps \mathbf{x} onto the multiple $\lambda \mathbf{x}$, that is, the eigenvectors are not changed by the operator \mathbf{A} except for the scale factor λ . This means that eigenvectors are invariant with respect to the operator \mathbf{A} .

The above equation can be rewritten in the form of a standard linear system:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0} \tag{1.7}$$

The system has a nontrivial solution if and only if matrix $A - \lambda I$ is singular.

Matrix Determinant: *Determinant* of **A**, denoted as $det(\mathbf{A})$, is an indication of the *sigularity* or invertability of **A**. A square matrix **A** is said to be *nonsingular* if it has an inverse; that is if there exists a matrix denoted by \mathbf{A}^{-1} such that:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \tag{1.8}$$

The existence of A^{-1} is directly related to det(A).

- Definition of Determinant: $det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$ for any i = 1, 2, ..., n where M_{ij} is the determinant of the matrix obtained by deleting the row and column containing a_{ij} .
- Matrix **A** is nonsingular if $det(\mathbf{A}) \neq 0$.

Special cases:

- $\mathbf{A} = (a_{11}), det(\mathbf{A}) = a_{11}.$
- $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.
 - $det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}$
 - Considering what situation does the following system has nontrivial solution?

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

•
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
. $\rightarrow det(\mathbf{A}) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$

Example. Find the determinant of matrix:

$$\left(\begin{array}{rrr}
1 & 2 & 1 \\
3 & 1 & 2 \\
-1 & 2 & 4
\end{array}\right)$$

$$det(\mathbf{A}) = (-1)^{1+1}(1) \times \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} + (-1)^{2+1}(2) \times \begin{vmatrix} 3 & 2 \\ -1 & 4 \end{vmatrix} + (-1)^{3+1}(1) \times \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix}$$
$$= 1 \times (4-4) - 2 \times (12+2) + 1 \times (6+1) = -21$$

Back to the eigenvalue problem, for matrix $A - \lambda I$ to be singular we need:

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0 \tag{1.9}$$

This determinant can be written in the form:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_1 n \\ a_{21} & a_{22} - \lambda & \cdots & a_2 n \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0$$

which is a polynomial of degree n denoted by $P(\lambda)$ and called the *characteristic polynomial* of matrix **A**:

$$P(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = (-1)^n (\lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_{n-1} \lambda + c_n)$$
(1.10)

• This characteristic polynomial has *n* roots, not necessarily distinct, that represent the eigenvalues of **A**.

• Each root λ can be substituted into (1.7) to obtain a corresponding nontrivial eigenvector \mathbf{x} . They can be real or complex.

Definition (Eigenvalue). If **A** is an $n \times n$ real matrix, then its n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ are the real and complex roots of the characteristic polynomial (1.10).

Definition (Eigenvector). If λ is an eigenvalue of **A** and the nonzero vector **v** has the property that:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \tag{1.11}$$

then v is an eigenvector of A corresponding to the eigenvalue λ .

Example. Find eigenvalues and eigenvectors for matrix.

$$\mathbf{A} = \left(\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{array} \right)$$

• Characteristic polynomial

$$P(\lambda) = det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 3 - \lambda \end{vmatrix} = -\lambda^3 + 8\lambda^2 - 19\lambda + 12 = 0.$$

which can be written as $-(\lambda - 1)(\lambda - 3)(\lambda - 4) = 0$ Therefore we have three eigenvalues: $\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 4$.

• Eigenvectors:

- An eigenvector is unique only up to a constant multiple.

1.2.2 Properties

Existence of Eigenvectors

The characteristic polynomial (1.10) can be factored into:

$$P(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_k)^{m_k}$$
(1.12)

where m_j is the *multiplicity* of the eigenvalue λ_j . The sum of all multiplicities is n: $n = m_1 + m_2 + \cdots + m_k$.

Theorem.

- For each *distinct* eigenvalue λ there exists *at least one* eigenvector **v** corresponding to λ .
- If λ has multiplicity r, there exist at most r linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r$ that correspond to λ .

Independency of Eigenvectors

Theorem. Supposed that **A** is a square matrix and $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of **A**, with associated eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, respectively; then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of linearly independent vectors.

Theorem. If the eigenvalues of the $n \times n$ matrix **A** are all distinct, then there exists n linearly independent eigenvectors \mathbf{v}_j , for $j = 1, 2, \dots, n$.

Example.

- Are eigenvectors of the previous example linearly independent? (Consider if $det([\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]) = 0$ or not.)
- Are they orthogonal?

1.2.3 Matrix Diagonalization

Let **A** be an $n \times n$ matrix with n eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. We have:

$$AV = V\Lambda$$

where $V = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n]$, and

$$\Lambda = \begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}$$
(1.13)

The above equation is valid regardless of whether the eigenvectors are linearly independent or not.

If the n eigenvalues are distinct, the eigenvectors are linearly independent and thus \mathbf{V} is of full rank. In this case, we have:

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \tag{1.14}$$

or

$$\Lambda = V^{-1}AV \tag{1.15}$$

Theorem (Diagonalization). The matrix **A** is called *diagonalizable* if it is similar to a diagonal matrix. **A** is similar to a diagonal matrix Λ if and only if it has n linearly independent eigenvectors:

$$\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \mathbf{\Lambda} = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$$
$$\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n]$$
(1.16)

where λ_j , \mathbf{v}_j are eigenpairs for $j = 1, 2, \dots, n$.

- Relating back to the property of eigenvectors:
 - If the $n \times n$ A has n distinct eigenvalues \rightarrow it is always diagonalizable.
 - If A has n independent eigenvectors \rightarrow it is always diagonalizable regardless whether it has distinct or repeat eigenvalues.
 - If **A** has less than *n* independent eigenvectors, it is not diagonalizable.

Examples. Test in matlab the previous example of matrix **A** is diagnoalizable.

Now think about what happens if we select the eigenvectors of an $n \times n$ matrix **A** as the basis of \mathbb{R}^n ?

Recall that the eigenpair λ_i , \mathbf{v}_i has the property that the linear mapping $\mathbf{y} = \mathbf{A}\mathbf{x}$ maps \mathbf{v}_i onto the multiple of $\lambda_i \mathbf{v}_i$. If a basis of \mathbb{R}^n is selected that consists of the eigenvectors of \mathbf{A} , it is easier to visualize how space is transformed by the mapping $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Theorem. Suppose that $\mathbf{y} = \mathbf{A}\mathbf{x}$ is an $n \times n$ matrix that possesses n linearly independent eigenpairs λ_j, \mathbf{v}_j for $j = 1, 2, \cdots, n$; then any vector \mathbf{x} in R^n has a unique representation as a linear combination of the eigenvectors:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n \tag{1.17}$$

The linear transformation y = Ax maps x onto the vector:

$$\mathbf{y} = \mathbf{A}\mathbf{x} = c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2 + \dots + c_n\lambda_n\mathbf{v}_n \tag{1.18}$$

Example. Suppose that 3×3 matrix **A** has eigenvalues $\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 4$, which correspond to eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 & 2 & -2 \end{bmatrix}'$, $\mathbf{v}_2 = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}'$, and $\mathbf{v}_3 = \begin{bmatrix} 1 & 3 & -4 \end{bmatrix}'$, respectively. If $\mathbf{x} = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}'$, find the image of \mathbf{x} under the mapping $\mathbf{y} = \mathbf{A}\mathbf{x}$.

• First, express x as a linear combination of the eigenvectors, which equals to solving the linear system:

$$c_1 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} + c_2 \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

we have $c_1 = 2, c_2 = 1, c_3 = -1$.

• Second, Ax is found by:

$$\mathbf{A}\mathbf{x} = \mathbf{A}(2\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3)$$

$$= 2\mathbf{A}\mathbf{v}_1 + \mathbf{A}\mathbf{v}_2 - \mathbf{A}\mathbf{v}_3$$

$$= 2(2\mathbf{v}_1) - \mathbf{v}_2 - 4\mathbf{v}_3 = \begin{bmatrix} 2 & -5 & 7 \end{bmatrix}^T$$

1.2.4 Virtues of Symmetry

A real symmetric matrix has n real eigenvectors and for each eigenvalue of multiplicity m_i there corresponds m_i linearly independent eigenvectors. Hence every real symmetric matrix is diagonalizable.

Theorem. If A is a real symmetric matrix, there exists an orthogonal matrix K such that

$$K'AK = K^{-1}AK = \Lambda (1.19)$$

where Λ is a diagonal matrix consisting of the eigenvalues of **A**.

Corollary. If **A** is an $n \times n$ real symmetric matrix, there exist n linearly independent eigenvectors for **A** and they form an orthogonal set.

Corollary. The eigenvalues of a real symmetric matrix are all real numbers.

Theorem. A symmetric matrix **A** is *positive definite* if and only if all the eigenvalues of **A** are positive.

1.3 Singular Value Decomposition (SVD)

Theorem (SVD). Let **A** be an $n \times m$ matrix with rank r. Then there exists unitary matrices $\mathbf{U}(n \times n)$ and $\mathbf{V}(m \times m)$ such that:

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T \tag{1.20}$$

where Σ is an $n \times m$ matrix with entries that are singular values of **A**.

Interpreting SVD. And how does it related to eigenvalue and eigenvectors?

- Look at $B = AA^T = U\Sigma V^T V\Sigma U^T = U\Lambda U^T \rightarrow BU = U\Lambda$. \rightarrow The left singular vectors U are the eigenvectors of AA^T .
- Consider $n \times n$ matrix $\mathbf{B} = \mathbf{A}\mathbf{A}^T$ a rank r, symmetric matrix.
 - Let $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$ be the set of orthonormal eigenvectors with the associated eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_r\}$ for $\mathbf{B} : \mathbf{B} \mathbf{u}_i = \lambda_i \mathbf{u}_i$
 - $\sigma_i = \sqrt{\lambda_i}$
 - Let Σ be the $n \times m$ diagonal matrix with entries

$$\Sigma_{ij} = \begin{cases} \sigma_i & \text{if} \quad i = j \\ 0 & \text{if} \quad i \neq j \end{cases}$$

where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ are the ordered set of σ_i . Because **V** is orthogonal, (1.30) can be written as:

$$\mathbf{U}^T \mathbf{A} = \mathbf{\Sigma} \mathbf{V}^T \tag{1.21}$$

In other words, we have:

$$\mathbf{u}_i^T \mathbf{A} = \sigma_i \mathbf{v}_i^T \tag{1.22}$$

where $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is a set of orthonormal vectors. In other words, \mathbf{U}^T is a change of basis from \mathbf{A} to $\Sigma \mathbf{V}^T$, or, the orthonormal basis \mathbf{U}^T transform column vectors of \mathbf{X} to orthonormal vectors (spans the column space of \mathbf{X}).

- Similarly consider $C = A^T A = V \Sigma U^T U \Sigma V^T = V \Sigma V^T$. \rightarrow The right singular vectors V are the eigenvectors of $A^T A$.
- Consider $C = A^T A$ a rank r, symmetric $m \times m$ matrix.
 - Let $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ be the set of orthonormal eigenvectors with the associated eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_r\}$ for \mathbf{C} : $\mathbf{C}\mathbf{v}_i = \lambda_i\mathbf{v}_i$
 - $\sigma_i = \sqrt{\lambda_i}$

- Similarly, because U is unitary from (1.30) we have:

$$AV = U\Sigma \tag{1.23}$$

Namely we have:

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i \tag{1.24}$$

In other words, V^T is a change of basis from A^T to ΣU^T , or, the orthonormal basis V^T transform row vectors of A to orthonormal vectors (spans the row space of A).

• Recall the virtue of symmetry \rightarrow U, V are orthornormal. σ are real.

Definition: Matrix Conditional Number. Condition number c(A) of matrix A:

$$c(\mathbf{A}) = ||\mathbf{A}||||\mathbf{A}^{-1}|| = \sqrt{\frac{\lambda_{max}(\mathbf{A}^T \mathbf{A})}{\lambda_{min}(\mathbf{A}^T \mathbf{A})}} = \sigma_{max}/\sigma_{min}$$
(1.25)

where σ_{max} and σ_{min} are the maximum and minimum singular values of A.

Property. If c(A) is small, the relative error in the solutions to Ax = b due to a small perturbation of A is small. If c(A) is large, A is said to be ill-conditioned and the relative error in the solutions to Ax = b using matrix inversion maybe large, even for a small error in A.