Assignment -2

Data Visualization and Pre-processing

Assignment Date	27 September 2022
Student Name	PL.Vetriselvan
Student Roll Number	912419104037
Maximum Marks	2 Marks

Task 1:

1. Download the dataset: Dataset

- Assignment-2

1. Download the dataset: Dataset

Task 2:

2.Loading the Churn_Modelling dataset

Solution: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

import warnings
warnings.filterwarnings("ignore")

▼ 2.Loading the Churn_Modelling dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

from google.colab import drive drive.mount('/content/drive')

[] from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive

data =
pd.read_csv("/content/drive/MyDrive/Colab
Notebooks/Churn_Modelling.csv") data.info()

data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

data.head()

lata.t	ail()													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	- 1
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	,
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1 66
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	

data.shape

[] data.shape

(10000, 14)

Task 3:

3. Visualization of Dataset

Univariate Analysis

• Distribution Plot

Solution: sns.displot(data['Age'], color ='skyblue')

- 3. Visualization of Dataset
- → Univariate Analysis

sns.distplot(data["Age"],hist=False,color='skyblue')

sns.distplot(data["Age"],hist=False,color='skyblue')

(matplotlib.axes._subplots.AxesSubplot at 0x7fe53dfc9b50>

Histograms

data['Geography'].value counts()

```
[ ] data['Geography'].value_counts()
```

France 5014 Germany 2509 Spain 2477 Name: Geography, dtype: int64

plt.hist(x=data.Geography, bins=6, color='blue')
plt.title("Geographic Distribution of Population with
CreditCard") plt.xlabel("Geography") plt.ylabel("Population")
plt.show()

```
[ ] plt.hist(x=data.Geography, bins=6, color='blue')
plt.title("Geographic Distribution of Population with CreditCard")
plt.xlabel("Geography")
plt.ylabel("Population")
plt.show()
```


sns.histplot(x=data.Age,hue=data['Tenure'], bins =10,)

[] sns.histplot(x=data.Age,hue=data['Tenure'], bins =10,)

Bar Plot

data['Gender'].value counts()

```
Bar Plot

[ ] data['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

pd.crosstab(data['Gender'],data['Geography']).plot(kind='bar')

• Box Plot

sns.boxplot(data["Age"],color='blue')

sns.barplot(data['Geography'], data["Age"])

- Bivariate Analysis

sns.barplot(data["NumOfProducts"],data["Age"])

$data ['HasCrCard'].value_counts()$

```
[ ] data['HasCrCard'].value_counts()

1 7055
0 2945
Name: HasCrCard, dtype: int64
```

data['HasCrCard'].value_counts().head(20).plot.bar()

• Line Chart

sns.lineplot(data['Age'], data['CreditScore'])

Line Chart

Multi-Variate Analysis

• Scatter Plot

data['IsActiveMember'].value_counts()

Multi-Variate Analysis

```
Scatter Plot

[ ] data['IsActiveMember'].value_counts()

1    5151
0    4849
Name: IsActiveMember, dtype: int64
```

sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

Point Plot

sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

Point Plot

[] sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

HeatMap

data.head()

Не	atMap													
da	ta.head()													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exit
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	

data_cor = data.iloc[:,3:].corr() data_cor

[] data_cor = data.iloc[:,3:].corr()
 data_cor

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
lsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
Estimated Salary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

plt.figure(figsize = (16,8)) sns.heatmap(data_cor,linecolor='white',linewidth=0.5, annot=True)

• Pair Plot

data.head()sns.pairplot(data=data[["Age","Tenure","Balance","NumOfProducts"]],ki nd="kde",)

Task 4:

- 4. Descriptive Statistic Analysis
 - 1. Mean
 - 2. Medium
 - 3. Mode
 - 4. Standard Deviation
 - 5. Variance

Solution:

data.describe().T

- 4.Descriptive Statistic Analysis
 - 1. Mean
 - 2. Medium
 - 3. Mode
 - 4. Standard Deviation
 - 5. Variance

data['Age'].mean()

[] data['Age'].mean()
38.9218

data['Age'].median()

[] data['Age'].median()

37.0

```
data['Age'].mode()

[ ] data['Age'].mode()

data['EstimatedSalary'].mean()

[ ] data['EstimatedSalary'].mean()

100090.239891

data['EstimatedSalary'].median(),)

[ ] data['EstimatedSalary'].modian()

100193.915

data['EstimatedSalary'].mode()

[ ] data['EstimatedSalary'].mode()

[ ] data['EstimatedSalary'].mode()

[ ] data['Balance'].mean()

[ ] data['Balance'].mean()

[ ] data['Balance'].mean()
```

data['CreditScore'].std()

[] data['CreditScore'].std() 96.65329873613035

data['Tenure'].var()

[] data['Tenure'].var() 8.364672627262726

Task 5:

5. Handling Missing Values

Solution:

data.isna().any()

▼ 5.Handling Missing Values

```
[ ] data.isna().any()
                                  False
False
False
       RowNumber
CustomerId
       CreditScore
                                  False
False
False
       Geography
Gender
       Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
                                  False
False
False
                                  False
                                  False
False
       EstimatedSalary
       Exited
       dtype: bool
                           data.isnull().sum()
```

```
[ ] data.isnull().sum()
         RowNumber
         CustomerId
Surname
CreditScore
         Geography
Gender
Age
Tenure
         Balance
NumOfProducts
HasCrCard
IsActiveMember
        EstimatedSalary
Exited
dtype: int64
```

Task 6:

6. Finding Outliers and Replacing Them

Solution:

```
outliers = data.quantile(q=(0.25,0.75))
outliers
```

▼ 6. Finding Outliers and Replacing Them

iqr = outliers.loc[0.75]-outliers.loc[0.25]iqr[2:]

upper = outliers.loc[0.75] + 1.5 * iqr upper[2:]

```
[ ] upper = outliers.loc[0.75] + 1.5 * iqr
[ ] upper[2:]
                            919.00000
62.00000
13.00000
     CreditScore
     Age
Tenure
                         319110.60000
     Balance
                          3.50000
2.50000
      NumOfProducts
     HasCrCard
IsActiveMember
                                2.50000
     EstimatedSalary
                         296967.45375
     Exited
                               0.00000
     dtype: float64
```

lower = outliers.loc[0.25] - 1.5 * iqr lower[2:]

```
[] lower[2:]

CreditScore 383.00000
Age 14.00000
Tenure -3.00000
Balance -191466.36000
NumOfProducts -0.50000
HasCrCard -1.50000
ISActiveMember -1.50000
EstimatedSalary -96577.09625
Exited 0.00000
dtype: float64
```

sns.boxplot(data['Age'], color= 'Coral',)

[] sns.boxplot(data['Age'], color= 'Coral',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53b08d1d0>

upper['Age']

[] upper['Age']

62.0

data['Age'].mode()

[] data['Age'].mode()

0 37 dtype: int64

sns.boxplot(data['Tenure'], color= 'cyan',)

[] sns.boxplot(data['Tenure'], color= 'cyan',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53b061b50>

4 Tenure

sns.boxplot(data['EstimatedSalary'], color= 'cyan',)

[] sns.boxplot(data['Balance'], color= 'cyan',)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe53afd6050>

sns.boxplot(data['CreditScore'], color= 'cyan',)

data['CreditScore'].mode()

```
[ ] data['CreditScore'].mode()

0 850
dtype: int64
```

lower['CreditScore']

data["CreditScore"] = np.where(data["CreditScore"]<390,850,data["CreditScore"]) sns.boxplot(data['CreditScore'], color= 'blue',)

Task 7:

7. Checking for categorical columns and perform encoding

Solution: data.info()

- 7. Checking for categorical columns and perform encoding

```
[ ] data.info()
      <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
      Data columns (total 14 columns):

# Column Non-Null Count Dtype
       0 RowNumber
                               10000 non-null
          CustomerId
                                 10000 non-null
10000 non-null
                                                      object
            Surname
            CreditScore 10000 non-null
            Geography
Gender
                                 10000 non-null
                                                      object
                                  10000 non-null
       6 Age
7 Tenure
                                  10000 non-null
                                                      int64
                                  10000 non-null
            Balance 10000 non-null NumOfProducts 10000 non-null
                                                      float64
int64
       10 HasCrCard 10000 non-null
11 IsActiveMember 10000 non-null
                                                      int64
                                                      int64
       12 EstimatedSalary 10000 non-null
13 Exited 10000 non-null
                                                      int64
      dtypes: float64(2), int64(9), object(3)
      memory usage: 1.1+ MB
```

data.dtypes.value_counts()

```
[ ] data.dtypes.value_counts()

int64     9
object     3
float64     2
dtype: int64
```

```
# Encoding Categorical variables into numerical variables'
# Label Encoding

from sklearn.preprocessing import LabelEncode
label = LabelEncoder()

data['Gender'] = label.fit_transform(data['Gender'])
data['Geography'] = label.fit_transform(data['Geography'])
data.head(8)
```

	Encoding Cat Label Encodi		riables in	nto numerical	variables									
	om sklearn.p oel = LabelE		g import L	abelEncoder										
				rm(data[' <mark>Gend</mark> e form(data[' <u>G</u> e										
/E /2000	ta.head(8)													70.000
	RowNumber	CustomerId		CreditScore						NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exite
0	1	15634602	Hargrave	619	0	0	42	2	0.00	1	1	1	101348.88	
1	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	1	112542.58	
1	2	15647311 15619304	Hill	608 502	2				83807.86 159660.80	1		1 0		
- 50						0					1		113931.57	
2	3	15619304	Onio	502	0	0	42 39	8	159660.80	3	1	0	113931.57 93826.63	
2	3 4	15619304 15701354	Onio Boni	502 699	0	0 0	42 39	8 1 2	159660.80 0.00	3	1	0	113931.57 93826.63 79084.10	
2 3 4	3 4 5	15619304 15701354 15737888	Onio Boni Mitchell	502 699 850	0 0 2	0 0 0 1	42 39 43	8 1 2	159660.80 0.00 125510.82 113755.78	3 2 1	1 0 1	0 0	113931.57 93826.63 79084.10	

Task 8:

8. Split the data into dependent and independent variables

Solution:

```
data_new = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis =
1) data_new.info() data_new.shape

x = data_new.iloc[:,0:10]
y = data_new.iloc[:,10
print(x.shape)
print(y.shape)
print(x.columns)

x.head(8)
```

```
[ ] x = data_new.iloc[:,0:10]
   y = data_new.iloc[:,10]
   print(x.shape)
   print(y.shape)
   print(x.columns)
   (10000, 10)
   dtype='object')
[ ] x.head(8)
     CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
               0 0 42 2 0.00
           608
                    2
                         0 41
                                 1 83807.86
                                                           0
                                                                      1
                                                                            112542.58
                   0 0 42 8 159660.80
    2
          502
                                                                            113931.57
                                                   3
                                                                      0
    3
                    0
                         0 39
                                        0.00
                                                                             93826.63
                  2 0 43 2 125510.82
           850
                                                                            79084.10
                   2
                         1 44
                                                                            149756.71
                  0 1 50 7 0.00
          822
                                                                     1 10062.80
                         0 29
                                 4 115046.74
                                                                            119346.88
```

Task 9:

9. Split the data into training and testing

```
Solution: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(y_train.shape)
print(y_test.shape)
```

- 9. Split the data into training and testing

```
[] from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(y_test.shape)
print(y_test.shape)

(8000, 10)
(8000, 10)
(2000, 10)
(2000, 10)
```

Task 10:

10. Scale the independent variables

```
Solution: from sklearn.preprocessing import StandardScaler
    ss = StandardScaler from sklearn.preprocessing
    import StandardScaler
    sc = StandardScaler() x_train =
        sc.fit_transform(x_train) x_test =
        sc.fit_transform(x_test)
    x_train = pd.DataFrame(x_train)
    x_train.head()
```

▼ 10. Scale the independent variables