

Universidade Federal de Santa Catarina

Centro Tecnológico

Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação

Sistemas Digitais

INE 5406

Aula 7-T

2. Máquinas Sequencias Síncronas: Codificação de estados. Síntese de circuitos sequenciais segundo o Modelo de Mealy (comparação com o Modelo de Moore). Exemplos.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Síntese de Circuitos Sequenciais

Exemplo 3: Tabelas de (Transição de) Estados e de Saída

Tabela de (transição de) estados

Estado atual	W	Próximo estado	
A	0	A	
A	1	В	
В	0	A	
В	1	С	
С	0	A	
С	1	С	

Tabela de saída

Estado	Z
A	0
В	0
С	1

Síntese de Circuitos Sequenciais

Exemplo 3: Diagrama de Blocos

Sinais de entrada: w W Sinais de saída: z Número de estados: 3 ⇒ Logo, são necessários **Y**0 2 flip-flops para lógica de FF_0 lógica de armazenar as variáveis próximo \mathbf{Z} saída estado de estado ck Reset

Síntese de Circuitos Sequenciais

Exemplo 3: Codificação de Estados

Supondo a seguinte codificação: A=00, B=01, C=10

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	С
С	0	A
С	1	С

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	10	С
С	10	0	00	A
С	10	1	10	С
_	11	0	XX	-
_	11	1	XX	_

Síntese de Circuitos Sequenciais

Exemplo 3: circuito final

Slide 7T.6

Codificação de Estados

Exemplo 3, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	11	C
-	10	0	XX	- 1
-	10	1	XX	- 1
C	11	0	00	A
C	11	1	11	C

	Estado y1y0	Z
A	00	0
В	01	0
1	10	X
С	11	1

Codificação de Estados

Exemplo 3, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	11	C
-	10	0	XX	-
-	10	1	XX	-
С	11	0	00	A
С	11	1	11	С

Codificação de Estados

Exemplo 3, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11

y1y0	Z
00	0
01	0
10	X
11	1

$$z = y1$$

Coincidentemente, a equação de saída não mudou.

Codificação de Estados

Exemplo 3, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11

$$Y1 = w \cdot y0$$

$$Y0 = w$$

$$z = y1$$

Codificação de Estados

Assinalamento A=00, B=01, C=10

Assinalamento A=00, B=01, C=11

 $Y1 = w \cdot y0$ Y0 = wz = y1

INE/CTC/UFSC

Prof. José Luís Güntzel

Codificação de Estados

Exemplo 4, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11, D=10

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	X	С
С	X	D
D	X	A

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	11	С
D	10	X	00	A
C	11	X	10	D

Codificação de Estados

Exemplo 4, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11, D=10

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	X	11	C
D	10	X	00	A
C	11	X	10	D

$$Y1 = y0$$

Codificação de Estados

Exemplo 4, Porém Codificando os Estados com o **Código Gray**: A=00, B=01, C=11, D=10

	Estado y1y0	R1out	R1in	R2out	R2in	R3out	R3in	Done
A	00	0	0	0	0	0	0	0
В	01	0	0	1	0	0	1	0
D	10	0	1	0	0	1	0	1
C	11	1	0	0	1	0	0	0

R1out = R2in = y1 · y0
R1in = R3out = Done = y1 · y0
R2out = R3in =
$$\overline{y1}$$
 · y0

Codificação de Estados

Assinalamento A=00, B=01, C=10, D=11 | Assinalamento A=00, B=01, C=11, D=10

$$Y1 = \overline{y1} \cdot y0 + y1 \cdot \overline{y0}$$

$$Y0 = w \cdot \overline{y0} + y1 \cdot \overline{y0}$$

R1out = R2in =
$$y1 \cdot y0$$

R1in = R3out = Done = $y1 \cdot y0$
R2out = R3in = $y1 \cdot y0$

$$Y1 = y0$$

$$Y0 = w \cdot \overline{y1} + \overline{y1} \cdot y0$$

$$R1out = R2in = y1 \cdot y0$$

$$R1in = R3out = Done = y1 \cdot y0$$

$$R2out = R3in = y1 \cdot y0$$

Codificação de Estados

Codificação "One-Hot"

- Consiste em usar tantas variáveis de estado quantos forem os estados
- Cada estado é codificado de modo que somente uma das variáveis de estado vale "1" e todas as demais valem "0"

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 3:

A=001, B=010, C=100

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	С
С	0	A
С	1	С

	Estado atual y2 y1 y0	W	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	С
С	100	0	001	A
С	100	1	100	C

As combinações de entrada não citadas têm como próximo estado XXX

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 3:

A=001, B=010, C=100

	Estado atual y2 y1 y0	W	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	C
C	100	0	001	A
С	100	1	100	C

Y2	<u>-</u> <u>-</u> y2y1	_ y2y1	y2y1	y2y1	
 y0w	X	0	X	0	y0·w
- y0w	X	1	X	1	
y0w	0	X	X	X	
y0w	0	X	X	X	

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 3:

A=001, B=010, C=100

	Estado atual y2 y1 y0	W	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	C
C	100	0	001	A
С	100	1	100	С

Y1	y2y1		y2y1	y2y1	
 y0w	X	0	X	0	
- y0w	X	0	X	0	y0·w
y0w	1	X	X	X	
y0w	0	X	X	X	

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 3:

A=001, B=010, C=100

	Estado atual y2 y1 y0	W	Próximo estado Y2 Y1 Y0	
A	001	0	001	A
A	001	1	010	В
В	010	0	001	A
В	010	1	100	C
С	100	0	001	A
С	100	1	100	C

Y0	 y2y1	_ y2y1	y2y1	y2y1	w
 y0w	X	1	X	1	
	X	0	X	0	
y0w	0	X	X	X	
y0w	1	X	X	X	

Codificação de Estados

Aplicando a Codificação "One-Hot" ao Exemplo 3:

A=001, B=010, C=100

	Estado	Z
	y2 y1 y0	
A	001	0
В	010	0
С	100	1
	1	

Z	<u></u> y2y1	_ y2y1	y2y1	y2y1
- y0	X	0	X	1
y0	0	X	X	X
•				1
				y2

$$z = y2$$

As combinações de entrada não citadas têm como saída X

Codificação de Estados

Assinalamento A=00, B=01, C=10

$$Y1 = w \cdot (y1 + y0)$$

$$Y0 = w \cdot y1 \cdot y0$$

$$z = y1$$

Assinalamento A=00, B=01, C=11 (Código Gray)

$$Y1 = w \cdot y0$$

$$Y0 = w$$

$$z = y1$$

Codificação "One Hot"

$$Y2 = \overline{y0} \cdot w$$

$$Y1 = \underline{y0} \cdot w$$

$$Y0 = \overline{w}$$

$$z = y2$$

Modelo de Mealy

Característica principal: as saídas dependem do estado atual e de

entrada(s) primária(s)

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3:

Projete um circuito que satisfaça às seguintes especificações:

- 1.O circuito possui uma entrada, w, e uma saída, z.
- 2. Todas as mudanças de valores no circuito ocorrem na borda de subida do sinal de relógio.
- 3. Quando o circuito detetar que a entrada w vale "0", a saída z deve valer "0" no ciclo de relógio seguinte. Porém, quando o circuito detetar que a entrada w vale "1" durante duas bordas de relógio consecutivas, a saída z deve passar a valer "1" no ciclo de relógio seguinte à segunda ocorrência do valor "1". As mudanças de z estão sincronizadas com a borda de relógio ativa.

Considere a seguinte modificação da especificação acima:

- O sinal de saída **z** não precisa esperar que um segundo valor igual a "1" seja amostrado da entrada **w**.
- Porém, se **z** = 1 e **w** muda de "1" para "0", **z** deve também mudar para "0", **independentemente** da borda ativa do relógio

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: exemplo de funcionamento dinâmico

Especificação modificada:

- O sinal de saída **z** não precisa esperar que um segundo valor igual a "1" seja amostrado da entrada **w**.
- Porém, se **z** = 1 e **w** muda de "1" para "0", **z** deve também mudar para "0", **independentemente** da borda ativa do relógio

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: Diagrama de Estados

Interpretação do Diagrama de Estados:

- Durante o ciclo de relógio atual, o valor da saída z corresponde ao rótulo assinalado em alguma das arestas que partem do estado atual.
- No caso do estado B, por exemplo, z pode valer "0" ou valer "1", conforme for o valor de w. Isto implica que z pode mudar de valor antes que a máquina de estados mude de estado.

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: Tabelas de (Transição de) Estados e de Saída

Tabela de (transição de) estados

Estado atual	W	Próximo estado
A	0	A
A	1	В
В	0	A
В	1	В

Tabela de saída

Estado	W	Z
A	0	0
A	1	0
В	0	0
В	1	1

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: Projetando a lógica de próximo estado e a lógica de saída

- Como há somente dois estados, iremos utilizar somente uma variável de estado.
- Assumindo o seguinte assinalamento de estados: A=0, B=1

Lógica de Próximo Estado

	y	W	Y	
A	0	0	0	A
A	0	1	1	В
В	1	0	0	A
В	1	1	1	В

$$Y = \overline{y} \cdot w + y \cdot w = w$$

Lógica de Saída

у	W	Z		
0	0	0		
0	1	0		
1	0	0		
1	1	1	→	$z = y \cdot w$

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: circuito final

Slide 7T.29

Síntese de Circuitos Sequenciais

Exemplos 3 e 3.1: Comparando Moore e Mealy

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 3.1: exemplo de funcionamento dinâmico

Síntese de Circuitos Sequenciais

Exemplo 3.1:

Porém, se passarmos a saída z por um segundo flip-flop, filtraremos o comportamento assíncrono. De fato, estaremos transformando o circuito para o Modelo de Moore...

Síntese de Circuitos Sequenciais Exemplo 3.1:

Mealy

Mealy transform. em Moore

INE/CTC/UFSC

Prof. José Luís Güntzel

Sistemas Digitais - semestre 2010/2

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 4.1:

Utilizando o modelo de Mealy para FSM, projetar o "circuito de controle" que permita realizar um *swap* entre R1 e R2, utilizando R3 como temporário. (Desconsiderar outras possíveis operações.)

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 4.1:

Para realizar o *swap* entre R1 e R2 no circuito abaixo, é necessário realizar a seguinte seqüência de "**transferências entre registradores**":

```
1.R3 \leftarrow R2;
```

$$2.R2 \leftarrow R1$$
;

$$3.R1 \leftarrow R3$$
;

Síntese de Circuitos Sequenciais: Modelo de Mealy

Exemplo 4.1: Diagramas de estados

Lembrando que na versão **Mealy**, as mudanças dos sinais de saída estão associadas às arestas

Síntese de Circuitos Sequenciais: Modelo de Mealy

Estado atual	w	Operação:	R1in	R1out	R2in	R2out	R3in	R3out	Done
A	0	Nenhuma ação	0	0	0	0	0	0	0
A	1	R3 ← R2;	0	0	0	1	1	0	0
В	-	R2 ← R1;	0	1	1	0	0	0	0
С	-	R1 ← R3;	1	0	0	0	0	1	1

Obs interessante:

no de linhas = no
de arestas do
diagrama
(excluída a aresta
do reset).

Síntese de Circuitos Sequenciais

Exemplos 4 e 4.1: Comparando Mealy com Moore

- A versão **Mealy** requer três estados (ao invés de quatro da versão **Moore**)
- Porém, isto não significa necessariamente que o circuito será menor, pois ainda são necessários dois flip-flops...
 -/ R3out=1,
- A versão Mealy para o exemplo 3 gera os sinais de controle um ciclo de relógio mais cedo que a versão

Moore

• Logo, para realizar o *swap* entre dois registradores a versão **Mealy** necessita de 3 ciclos de relógio, enquanto a versão **Moore** necessita de 4 ciclos .

Síntese de Circuitos Sequenciais

Exemplo 5 (questão 2 da 1ª verificação de 2007/2, modificada):

Suponha que tu foste contratado(a) pela BSI (Brava Semiconductors Inc.) para trabalhar no projeto do alarme automotivo BSI A5000, o qual deverá ser lançado no mercado na segunda quinzena de novembro/2007. O diagrama de blocos deste alarme é mostrado abaixo. Do ponto de vista externo, este alarme possui **quatro** entradas (ck, reset, arma e sensor) e uma saída (buz). O comportamento deste alarme deve ser como segue:

Slide 7T.40

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 Prof. José Luís Güntzel

Síntese de Circuitos Sequenciais

Exemplo 5 (questão 2 da 1ª verificação de 2007/2, modificada):

- 1. Existe um estado chamado "DES", no qual o alarme permanece enquanto o sinal "arma" não for ativado (ou seja, enquanto arma=0). Além disso, este é o estado para o qual o alarme vai quando o sinal o alarme é desarmado (ou seja, quando o sinal "arma" baixar, após um período de tempo em que ele valia "1"), ou quando o Reset assíncrono for ativado.
- 2. Existe um estado "ARM", para o qual o alarme vai quando é armado, nele permanecendo enquanto o sensor não detectar uma invasão (ou seja, enquanto sensor =0) e caso o alarme não for desarmado.

Síntese de Circuitos Sequenciais

Exemplo 5 (questão 2 da 1ª verificação de 2007/2, modificada):

- 3. Se o sensor detecta uma invasão (sensor=1), o alarme não dispara imediatamente a buzina. (A buzina é disparada fazendo-se buz=1.) Antes de disparar a buzina, ele passa por um período de retardo, correspondente a uma contagem completa do contador-decrementador mostrado no diagrama de blocos. Somente quando o conteúdo deste contador-decrementador atingir o valor zero o alarme pode disparar. Porém, uma vez que a contagem iniciou, as únicas maneiras de evitar que o alarme dispare (ou seja, que a buzina toque) é desativar o sinal "arma" (fazendo "arma=0") ou resetar o alarme. Isto significa que, uma vez iniciada a contagem regressiva do contador, o sinal "sensor" não deve mais interferir no comportamento do circuito.
- 4. Uma vez disparado o alarme, a buzina somente será desligada se o sinal "arma" for desativado ou se o alarme for resetado.

Síntese de Circuitos Sequenciais Observações:

- O bloco de controle do A5000 recebe ainda como entrada o sinal "zero", que avisa quando o contador-decrementador atingiu o valor zero. Ele também precisa gerar os sinais que controlam o contador-decrementador, quais sejam: "set" e "dec".
- o sinal "set" é assíncrono e seta todos os bits do contador-decrementador. Já
 o sinal "dec" é síncrono e causa o decremento (em uma unidade) do
 conteúdo do contador-decrementador.

Alarme BSI A5000

Síntese de Circuitos Sequenciais

Exemplo 5 (questão 2 da 1ª verificação de 2007/2, modificada): Assumindo o modelo de máquina de estados de Moore:

- a) Desenha o diagrama de estados para o bloco de controle deste alarme. (1 ponto)
- b) Monta a tabela de transição de estados e a tabela de saídas (em uma única tabela) para o bloco de controle deste alarme. (0,5+1,0 = 1,5 ponto)
- Assumindo o modelo de máquina de estados de **Mealy** (e eventual otimização de estados decorrente deste modelo):
- c) Desenha o diagrama de estados para o bloco de controle deste alarme. (1 ponto)
- d) Monta a tabela de transição de estados e a tabela de saídas (em uma única tabela) para o bloco de controle deste alarme. (0,5+1,0 = 1,5 ponto)
- OBS: Não codifique os estados em binário. Ao invés disso, use nomes curtos para os estados (por ex. DES, ARM...).