Note: Governing Euqations of General 3D duct flow

Email: jiaqi wang@sjtu.edu.cn

I. Hard-walled cylinderical ducts as basis function

A. Infinite straight duct mode

We began from the Helmholtz equation:

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = -\alpha^2 \psi \tag{1}$$

Using separation of variables, Circular symmetry: modes have the from : $\psi = F(r)G(\theta)$,

Then we have:

$$(\frac{\partial^2 F}{\partial r^2} + \frac{1}{r} \frac{\partial F}{\partial r})G + \frac{F}{r^2} \frac{\partial^2 G}{\partial \theta^2} = -\alpha^2 FG$$

$$Then,$$

$$(\frac{\partial^2 F}{\partial r^2} + \frac{1}{r} \frac{\partial F}{\partial r})}{F} + \frac{1}{r^2} \frac{\frac{\partial^2 G}{\partial \theta^2}}{G} = -\alpha^2$$

We assume that:

Due to periodicity, we require that Φ satisfy,

$$\frac{d^2G}{d\theta^2} = -m^2G \to \Phi(\theta) = e^{\pm im\theta} \tag{3}$$

Thus, we have

$$F'' + \frac{1}{r}F' + (\alpha^2 - \frac{m^2}{r^2}) = 0 \to F(r) = J_m(\alpha r)$$
(4)

Circular symmetry $\psi = F(r)G(\theta)$: modes explicitly given by:

$$\psi = J_m(\alpha_{m\mu}r)e^{\pm im\theta} \tag{5}$$

Hard walls:

$$J'_{m}(\alpha R) = 0 \to \alpha_{m\mu} = \frac{j'_{m\mu}}{R} \tag{6}$$

Soft walls without flow:

$$Z\alpha_{m\mu}J'_{m}(\alpha_{m\mu}R) = -iw\rho_{0}J_{m}(\alpha_{m\mu}R) \to \alpha_{m\mu}(Z)$$
(7)

Soft walls with flow:

$$Z\alpha_{m\mu}J'_{m}(\alpha_{m\mu}R) = (w - U_{0}\kappa_{m\mu})J_{m}(\alpha_{m\mu}R) \to \alpha_{m\mu}(Z)$$
(8)

A complete solution may be writtern as:

$$p(x,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} (A_{m\mu}e^{-i\kappa_{m\mu}x} + B_{m\mu}e^{i\kappa_{m\mu}x})U_{m\mu}(r)e^{im\theta}$$
(9)

In a hard-walled duct $U_{m\mu}e^{-im\theta}$ are orthogonal. Normalise such that:

$$\int_{0}^{2\pi} \int_{0}^{R} U_{m\mu}(r)e^{-im\theta}U_{n\nu}(r)e^{-in\theta}rdr = 2\pi\delta_{\mu\nu}\delta_{mn}$$
 (10)

Source expansion If $p(0, t, \theta) = p_0(r, \theta)$ is source in hard-walled duct, then for x>0

$$p_{0}(r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} (A_{m\mu}e^{-i\kappa_{m\mu}0})U_{m\mu}(r)e^{-im\theta}$$

$$p_{0}(r,\theta)\underline{U_{nv}(r)e^{-in\theta}r} = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} (A_{m\mu}e^{-i\kappa_{m\mu}0})U_{m\mu}(r)e^{-im\theta}\underline{U_{nv}(r)e^{-in\theta}r}$$

$$\underline{\int_{0}^{2\pi} \int_{0}^{R} p_{0}(r,\theta)\underline{U_{nv}(r)e^{-in\theta}r}drd\theta} = \underline{\int_{0}^{2\pi} \int_{0}^{R} \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} (A_{m\mu}e^{-i\kappa_{m\mu}0})U_{m\mu}(r)e^{-im\theta}\underline{U_{nv}(r)e^{-in\theta}r}drd\theta}$$

$$\underline{\int_{0}^{2\pi} \int_{0}^{R} p_{0}(r,\theta)\underline{U_{nv}(r)e^{-in\theta}r}drd\theta} = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} A_{m\mu}\underline{\int_{0}^{2\pi} \int_{0}^{R} U_{m\mu}(r)e^{-im\theta}\underline{U_{nv}(r)e^{-in\theta}r}drd\theta}$$

$$A_{nv} = \frac{1}{2\pi} \underline{\int_{0}^{2\pi} \int_{0}^{R} p_{0}(r,\theta)\underline{U_{nv}(r)e^{-in\theta}r}drd\theta}$$

$$(11)$$

and $B_{nv} = 0$. The same for x < 0 with A_{nv} and B_{nv} interchanged.

A finite number of modes (cut-on modes) survive at large distrances. Just 1 mode if kR«1: only A_{01} important.

B. General duct mode

The pressure and velocity can now be expressed as Fourier series. Upper indices shall be used to denote temporal decompositions:

$$\widehat{p} = \sum_{a = -\infty}^{\infty} P^{a}(\mathbf{x})e^{-iawt}$$

$$\widehat{u} = \sum_{a = -\infty}^{\infty} U^{a}(\mathbf{x})e^{-iawt}$$

$$\widehat{v} = \sum_{a = -\infty}^{\infty} V^{a}(\mathbf{x})e^{-iawt}$$

$$\widehat{w} = \sum_{a = -\infty}^{\infty} W^{a}(\mathbf{x})e^{-iawt}$$
(12)

$$P^{a} = \sum_{\alpha=0}^{\infty} P_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} P_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta)$$

$$U^{a} = \sum_{\alpha=0}^{\infty} U_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} U_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta)$$

$$V^{a} = \sum_{\alpha=0}^{\infty} V_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} V_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta)$$

$$W^{a} = \sum_{\alpha=0}^{\infty} W_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta) = \sum_{m=-\infty}^{\infty} \sum_{\mu=1}^{\infty} W_{\alpha_{m\mu}}^{a}(s)\psi_{\alpha_{m\mu}}(s,r,\theta)$$

$$(13)$$

A solution of ψ may have the form the same as the hard walls modes:

$$\psi_{m\mu}(r) = C_{\alpha_{m\mu}} J_m(\frac{j'_{m\mu}r}{h}) e^{im\theta} \tag{14}$$

where should be normalized according to:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha_{m\mu}} \psi_{\beta_{n\nu}} r dr d\theta = \delta_{\mu\nu} \delta_{mn} \tag{15}$$

C. Normalised Modes $\rightarrow C_{\alpha_{m\mu}}$

Relation involving intergrals:

$$\frac{2\int \alpha^2 x J_m(\alpha x)^2 dx = (\alpha^2 x^2 - m^2) J_m(\alpha x)^2 + \alpha^2 x^2 J'_m(\alpha x)^2}{\Delta^2 \int_0^h \alpha^2 x J_m(\alpha x)^2 dx = [(\alpha^2 x^2 - m^2) J_m(\alpha x)^2 + \alpha^2 x^2 J'_m(\alpha x)^2]|_0^h}$$

$$= [(\alpha^2 x^2 - m^2) J_m(\alpha x)^2 + \alpha^2 x^2 J'_m(\alpha x)^2]|_h - [(\alpha^2 x^2 - m^2) J_m(\alpha x)^2 + \alpha^2 x^2 J'_m(\alpha x)^2]|_0$$

$$= [(\alpha^2 h^2 - m^2) J_m(\alpha h)^2 + \alpha^2 h^2 J'_m(\alpha h)^2] - [(\alpha^2 0^2 - m^2) J_m(\alpha 0)^2 + \alpha^2 0^2 J'_m(\alpha 0)^2]$$

$$= (\alpha^2 h^2 - m^2) J_m(\alpha h)^2 + \alpha^2 h^2 J'_m(\alpha h)^2$$
(16)

With hard-walled boudary condition:

$$J'_{m}(\alpha h) = 0 \to \alpha_{m\mu} = \frac{j'_{m\mu}}{h} (eigenvalues)$$
 (17)

Then, we have:

$$\int_{0}^{h} r J_{m}(\alpha r)^{2} dr$$

$$= \begin{cases}
\frac{1}{2\alpha_{m\mu}^{2}} (\alpha_{m\mu}^{2} h^{2} - m^{2}) J_{m}(\alpha_{m\mu} h)^{2}, m \neq 0 \\
\frac{1}{2} (h^{2}) J_{0}(\alpha_{m\mu} h)^{2}, m = 0
\end{cases}$$

$$= \begin{cases}
(\frac{J_{m}(\alpha_{m\mu} h) \sqrt{(h^{2} - \frac{m^{2}}{\alpha_{m\mu}^{2}})}}{\sqrt{2}})^{2}, m \neq 0 \\
\frac{1}{2} (h^{2}) J_{0}(\alpha_{m\mu} h)^{2}, m = 0
\end{cases}$$

$$= \begin{cases}
(\frac{h^{2}}{2} (1 - \frac{m^{2}}{j'_{m\mu}^{2}}) J_{m}^{2} (j'_{m\mu})), m \neq 0 \\
\frac{1}{2} h^{2} J_{0}^{2} (j'_{m\mu}), m = 0
\end{cases}$$
(18)

Thus,

$$C_{\alpha_{m\mu}} = \begin{cases} \frac{1}{\sqrt{\frac{\pi}{2}h^2 J_0^2(j'_{m\mu})}}, m = 0\\ \frac{1}{\sqrt{(\frac{\pi h^2}{2}(1 - \frac{m^2}{j'_{m\mu}^2})J_m^2(j'_{m\mu}))}}, m \neq 0 \end{cases}$$
(19)

D. Slowly varying ducts

waiting for updating.....

E. Orthogonal-eigenvector

ref:https:

www.mathworks.com/help/matlab/ref/eigs.html

Eigenvectors, returned as a matrix. The columns in V correspond to the eigenvalues along the diagonal of D. The form and normalization of V depends on the combination of input arguments:

[V,D] = eigs(A) returns matrix V, whose columns are the eigenvectors of A such that A*V = V*D. The eigenvectors in V are normalized so that the 2-norm of each is 1.

If A is symmetric, then the eigenvectors, V, are orthonormal.

 $[V,D]={
m eigs}(A,B)$ returns V as a matrix whose columns are the generalized eigenvectors that satisfy $A^*V=B^*V^*D$. The 2-norm of each eigenvector is not necessarily 1.

If B is symmetric positive definite, then the eigenvectors in V are normalized so that the B-norm of each is 1. If A is also symmetric, then the eigenvectors are B-orthonormal.

We could further study this question!!

if we can use the GramSchmidt mode as basis??

II. Mass equation

Mass consevation:

$$-ia\kappa P^{a} + \nabla \cdot \mathbf{U}^{a} = \sum_{b=-\infty}^{+\infty} \left(-P^{a-b}\nabla \cdot \mathbf{U}^{b} - \mathbf{U}^{a-b} \cdot \nabla P^{b} - \frac{B}{2A}iakP^{b}P^{a-b} \right)$$
(20)

First, derivation of eq1:

We know that:

$$h_s = 1 - \kappa r \cos(\phi), h_r = 1, h_\theta = r \tag{21}$$

Then,

$$\nabla \cdot \mathbf{U}^{a} = \frac{1}{h_{1}h_{2}h_{3}} \left[\frac{\partial(v_{1}h_{2}h_{3})}{\partial w_{1}} + \frac{\partial(v_{2}h_{3}h_{1})}{\partial w_{2}} + \frac{\partial(v_{3}h_{1}h_{2})}{\partial w_{3}} \right]$$

$$= \frac{1}{r(1 - \kappa r cos(\phi))} \left[\frac{\partial(U^{a}r)}{\partial s} + \frac{\partial(V^{a}r(1 - \kappa r cos(\phi)))}{\partial r} + \frac{\partial(W^{a}(1 - \kappa r cos(\phi)))}{\partial \theta} \right]$$
(22)

Thus, we have the mass equation, approximate RHS by:

$$\nabla \cdot \mathbf{U}^b = ib\kappa P^b + o(M^2)$$

$$\nabla P^b = ib\kappa \mathbf{U}^b + o(M^2)$$
(23)

Then we have

$$-ia\kappa P^{a} + \frac{1}{r(1 - \kappa r cos(\phi))} \left[\frac{\partial (U^{a}r)}{\partial s} + \frac{\partial (V^{a}r(1 - \kappa r cos(\phi)))}{\partial r} + \frac{\partial (W^{a}(1 - \kappa r cos(\phi)))}{\partial \theta} \right]$$

$$= \sum_{b=-\infty}^{+\infty} \left(-ib\kappa P^{a-b}P^{b} - ib\kappa U^{a-b}U^{b} - ib\kappa V^{a-b}V^{b} - ib\kappa W^{a-b}W^{b} - \frac{B}{2A}iakP^{b}P^{a-b} \right)$$
(24)

The fourier harmonics are expanded as follows:

$$P^{a} = \sum_{\beta=0}^{\infty} P_{\beta}^{a}(s)\psi_{\beta}(s, r, \theta)$$

$$U^{a} = \sum_{\beta=0}^{\infty} U_{\beta}^{a}(s)\psi_{\beta}(s, r, \theta)$$

$$V^{a} = \sum_{\beta=0}^{\infty} V_{\beta}^{a}(s)\psi_{\beta}(s, r, \theta)$$

$$W^{a} = \sum_{\beta=0}^{\infty} W_{\beta}^{a}(s)\psi_{\beta}(s, r, \theta)$$

$$(25)$$

with normalized relation:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \psi_{\beta} r dr d\theta = \delta_{\alpha\beta} \tag{26}$$

Reorganize the eq5:

$$-ia\kappa P^{a}(1-\kappa r cos(\phi)) + \frac{1}{r}\frac{\partial(U^{a}r)}{\partial s} + \frac{1}{r}\frac{\partial(V^{a}r(1-\kappa r cos(\phi)))}{\partial r} + \frac{1}{r}\frac{\partial(W^{a}(1-\kappa r cos(\phi)))}{\partial \theta}$$

$$= (1-\kappa r cos(\phi))\sum_{b=-\infty}^{+\infty} (-ib\kappa P^{a-b}P^{b} - ib\kappa U^{a-b}U^{b} - ib\kappa V^{a-b}V^{b} - ib\kappa W^{a-b}W^{b} - \frac{B}{2A}iakP^{b}P^{a-b})$$

$$(27)$$

Intergal and insert eq 6, 7 into eq 8:

1. the first term:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r[-ia\kappa(1 - \kappa r \cos(\phi))P^{a}] dr d\theta$$

$$= -ia\kappa \sum_{\beta}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \psi_{\beta} r[(1 - \kappa r \cos(\phi))] dr d\theta P_{\beta}^{a}$$

$$= -ia\kappa \Psi_{\alpha\beta} [r(1 - \kappa \cos(\phi))] P_{\beta}^{a}$$
(28)

(summation convention)

2. the second term:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r \left[\frac{1}{r} \frac{\partial(U^{a}r)}{\partial s}\right] dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r \frac{\partial(\psi_{\beta}U_{\beta}^{a})}{\partial s} dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \psi_{\beta} r \frac{\partial(U_{\beta}^{a})}{\partial s} dr d\theta + \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r \frac{\partial(\psi_{\beta})}{\partial s} dr d\theta U_{\beta}^{a}$$

$$= \frac{dU_{\beta}^{a}}{ds} \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \psi_{\beta} r dr d\theta + \int_{0}^{2\pi} \int_{0}^{h} r \frac{\partial(\psi_{\alpha}\psi_{\beta})}{\partial s} dr d\theta U_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \psi_{\beta} r \frac{\partial(\psi_{\alpha})}{\partial s} dr d\theta U_{\beta}^{a}$$

$$= \frac{dU_{\beta}^{a}}{ds} \delta_{\alpha\beta} + \frac{\partial(\int_{0}^{2\pi} \int_{0}^{h} r \psi_{\alpha} \psi_{\beta} dr d\theta)}{\partial s} U_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial(\psi_{\alpha})}{\partial s} \psi_{\beta} r dr d\theta U_{\beta}^{a}$$

$$= \frac{dU_{\alpha}^{a}}{ds} + 0 - \Psi_{\{\alpha\}\beta}[r] U_{\beta}^{a}$$

3. the third term:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r \left[\frac{1}{r} \frac{\partial (V^{a} r (1 - \kappa r \cos(\phi)))}{\partial r} \right] dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \frac{\partial (\psi_{\beta} r (1 - \kappa r \cos(\phi)))}{\partial r} dr d\theta V_{\beta}^{a}$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (\psi_{\alpha} \psi_{\beta} r (1 - \kappa r \cos(\phi)))}{\partial r} dr d\theta V_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \psi_{\beta} r (1 - \kappa r \cos(\phi)) \frac{\partial (\psi_{\alpha})}{\partial r} dr d\theta V_{\beta}^{a}$$

$$= 0(periodic) - \Psi_{[\alpha]\beta} [r (1 - \kappa r \cos(\phi))] V_{\beta}^{a}$$
(30)

4. the fourth term:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r \left[\frac{1}{r} \frac{\partial (W^{a}(1 - \kappa r cos(\phi)))}{\partial \theta} \right] dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \left[\frac{\partial (\psi_{\beta}(1 - \kappa r cos(\phi)))}{\partial \theta} \right] dr d\theta W_{\beta}^{a}$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (\psi_{\alpha} \psi_{\beta}(1 - \kappa r cos(\phi)))}{\partial \theta} \right] dr d\theta W_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \psi_{\beta}(1 - \kappa r cos(\phi)) \left[\frac{\partial (\psi_{\alpha})}{\partial \theta} \right] dr d\theta W_{\beta}^{a}$$

$$= \int_{0}^{h} \left[\psi_{\alpha} \psi_{\beta}(1 - \kappa r cos(\phi)) \right]_{0}^{2\pi} dr W_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \psi_{\beta}(1 - \kappa r cos(\phi)) \left[\frac{\partial (\psi_{\alpha})}{\partial \theta} \right] dr d\theta W_{\beta}^{a}$$

$$= 0 - \Psi_{(\alpha)\beta} \left[(1 - \kappa r cos(\phi)) \right] W_{\beta}^{a}$$

5. the RHS term:

$$\int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} r[(1-\kappa r cos(\phi)) \sum_{b=-\infty}^{+\infty} (-ib\kappa P^{a-b}P^{b} - ib\kappa U^{a-b}U^{b} - ib\kappa V^{a-b}V^{b} - ib\kappa W^{a-b}W^{b} - \frac{B}{2A}iakP^{b}P^{a-b})]drd\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \psi_{\alpha} \psi_{\beta} \psi_{\gamma} r(1-\kappa r cos(\phi))drd\theta$$

$$\sum_{b=-\infty}^{+\infty} (-ib\kappa P^{a-b}_{\beta}P^{b}_{\gamma} - ib\kappa U^{a-b}_{\beta}U^{b}_{\gamma} - ib\kappa V^{a-b}_{\beta}V^{b}_{\gamma} - ib\kappa W^{a-b}_{\beta}W^{b}_{\gamma} - ia\kappa \frac{B}{2A}P^{a-b}_{\beta}P^{b}_{\gamma})$$

$$= \Psi_{\alpha\beta\gamma}[r(1-\kappa r cos(\phi))] \sum_{b=-\infty}^{+\infty} (-ib\kappa P^{a-b}_{\beta}P^{b}_{\gamma} - ib\kappa U^{a-b}_{\beta}U^{b}_{\gamma} - ib\kappa V^{a-b}_{\beta}V^{b}_{\gamma} - ib\kappa W^{a-b}_{\beta}W^{b}_{\gamma} - ia\kappa \frac{B}{2A}P^{a-b}_{\beta}P^{b}_{\gamma})$$

$$(32)$$

Finally, we obtain the mass equation in the form of eigenfunction, the idea is same as Galerkin method:

$$\frac{dU_{\alpha}^{a}}{ds} - \Psi_{\{\alpha\}\beta}[r]U_{\beta}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1-\kappa\cos(\phi))]P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1-\kappa\cos(\phi))]V_{\beta}^{a} - \Psi_{(\alpha)\beta}[(1-\kappa\cos(\phi))]W_{\beta}^{a}$$

$$= \Psi_{\alpha\beta\gamma}[r(1-\kappa\cos(\phi))] \sum_{b=-\infty}^{+\infty} (-ib\kappa P_{\beta}^{a-b}P_{\gamma}^{b} - ib\kappa U_{\beta}^{a-b}U_{\gamma}^{b} - ib\kappa V_{\beta}^{a-b}V_{\gamma}^{b} - ib\kappa W_{\beta}^{a-b}W_{\gamma}^{b} - ia\kappa \frac{B}{2A}P_{\beta}^{a-b}P_{\gamma}^{b})$$
(33)

III. Momentum equation

Momentum consevation:

$$-ia\kappa \mathbf{U}^{a} + \nabla P^{a} = \sum_{b=-\infty}^{\infty} (-\mathbf{U}^{a-b} \cdot \nabla \mathbf{U}^{b} + P^{a-b} \nabla P^{b})$$
(34)

First, we know that

$$\nabla P^{a} = \sum_{i} \frac{1}{h_{i}} \frac{\partial f}{\partial w_{i}} \hat{h}_{i} = \frac{1}{1 - \kappa r \cos\phi} \frac{\partial P^{a}}{\partial s} \hat{e}_{s} + \frac{\partial P^{a}}{\partial r} \hat{e}_{r} + \frac{1}{r} \frac{\partial P^{a}}{\partial \theta} \hat{e}_{\theta}$$
(35)

The RHS term is a bit complex, with the divergence of a vector U with its gradient, with

First, we know that

$$(\mathbf{v} \cdot \nabla) \mathbf{v}^{b} = \begin{cases} term1 : \mathcal{D}v_{1}^{b} + \frac{v_{2}^{b}}{h_{2}h_{1}} (v_{1} \frac{\partial h_{1}}{\partial \xi_{2}} - v_{2} \frac{\partial h_{2}}{\partial \xi_{1}}) + \frac{v_{3}^{b}}{h_{3}h_{1}} (v_{1} \frac{\partial h_{1}}{\partial \xi_{3}} - v_{2} \frac{\partial h_{3}}{\partial \xi_{1}}) \\ term2 : \mathcal{D}v_{2}^{b} + \frac{v_{3}^{b}}{h_{3}h_{2}} (v_{2} \frac{\partial h_{2}}{\partial \xi_{3}} - v_{3} \frac{\partial h_{3}}{\partial \xi_{2}}) + \frac{v_{1}^{b}}{h_{1}h_{2}} (v_{2} \frac{\partial h_{2}}{\partial \xi_{1}} - v_{1} \frac{\partial h_{1}}{\partial \xi_{2}}) \\ term3 : \mathcal{D}v_{3}^{b} + \frac{v_{1}^{b}}{h_{1}h_{3}} (v_{3} \frac{\partial h_{3}}{\partial \xi_{1}} - v_{1} \frac{\partial h_{1}}{\partial \xi_{3}}) + \frac{v_{2}^{b}}{h_{2}h_{3}} (v_{3} \frac{\partial h_{3}}{\partial \xi_{2}} - v_{3} \frac{\partial h_{2}}{\partial \xi_{3}}) \end{cases}$$
 (36)

Besides.

$$\mathcal{D} = \frac{v_1}{h_1} \frac{\partial}{\partial \xi_1} + \frac{v_2}{h_2} \frac{\partial}{\partial \xi_2} + \frac{v_3}{h_3} \frac{\partial}{\partial \xi_3}$$
 (37)

Thus, we have:

$$-\mathbf{U}^{a-b} \cdot \nabla \mathbf{U}^{b} = \\ -\sum_{b=-\infty}^{\infty} \begin{cases} term\mathcal{D}1 : \frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial U^{b}}{\partial s} + V^{a-b} \frac{\partial U^{b}}{\partial r} + \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta} \\ term\mathcal{D}2 : \frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial V^{b}}{\partial s} + V^{a-b} \frac{\partial V^{b}}{\partial r} + \frac{W^{a-b}}{r} \frac{\partial V^{b}}{\partial \theta} \\ term\mathcal{D}3 : \frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial W^{b}}{\partial s} + V^{a-b} \frac{\partial W^{b}}{\partial r} + \frac{W^{a-b}}{r} \frac{\partial W^{b}}{\partial \theta} \\ term\mathcal{X}2 : \frac{V^{b}}{r} (V^{a-b} \frac{\partial 1}{\partial \theta} - V^{a-b} \frac{\partial 1}{\partial r}) + \frac{U^{b}}{r(1-\kappa r cos\phi)} (V^{a-b} \frac{\partial 1}{\partial s} - U^{a-b} \frac{\partial 1}{\partial r}) \\ term\mathcal{X}3 : \frac{U^{b}}{(1-\kappa r cos\phi)^{r}} (W^{a-b} \frac{\partial h_{3}}{\partial s} - U^{a-b} \frac{\partial (1-\kappa r cos\phi)}{\partial \theta}) + \frac{V^{b}}{1h_{3}} (W^{a-b} \frac{\partial h_{3}}{\partial r} - V^{a-b} \frac{\partial 1}{\partial \theta}) \\ term\mathcal{D}1 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial U^{b}}{\partial s} - V^{a-b} \frac{\partial U^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta} \\ term\mathcal{D}2 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial V^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial V^{b}}{\partial \theta} \\ term\mathcal{D}3 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial W^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial W^{b}}{\partial \theta} \\ term\mathcal{D}3 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial W^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial W^{b}}{\partial \theta} \\ term\mathcal{D}3 : \frac{(\kappa cos\phi)}{1-\kappa r cos\phi} U^{a-b} U^{b} - \frac{\kappa cos\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} \\ term\mathcal{X}2 : \frac{W^{a-b}W^{b}}{r} - \frac{\kappa cos\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{X}3 : \frac{\kappa s in\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} + \frac{W^{a-b}V^{b}}{r} \\ term\mathcal{$$

Finally, we could derive the momentum conservation equation, with final term approximate by

eq 4:

$$\begin{cases} -ia\kappa U^{a} + \frac{1}{1-\kappa r cos\phi} \frac{\partial P^{a}}{\partial s} \\ -ia\kappa V^{a} + \frac{\partial P^{a}}{\partial r} \\ -ia\kappa W^{a} + \frac{1}{r} \frac{\partial P^{a}}{\partial \theta} \end{cases}$$

$$= \sum_{b=-\infty}^{\infty} \begin{cases} term\mathcal{D}1 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial U^{b}}{\partial s} - V^{a-b} \frac{\partial U^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta} \\ term\mathcal{D}2 : -\frac{U^{a-b}}{1-\kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial V^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial V^{b}}{\partial \theta} \end{cases}$$

$$+ \sum_{b=-\infty}^{\infty} \begin{cases} term\mathcal{X}1 : \frac{\kappa cos\phi}{1-\kappa r cos\phi} U^{a-b} V^{b} - \frac{\kappa sin\phi}{(1-\kappa r cos\phi)} U^{a-b} W^{b} \\ term\mathcal{X}2 : \frac{W^{a-b}W^{b}}{r} - \frac{\kappa cos\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} \\ term\mathcal{X}3 : \frac{\kappa sin\phi}{(1-\kappa r cos\phi)} U^{a-b} U^{b} - \frac{W^{a-b}V^{b}}{r} \end{cases}$$

$$ib\kappa P^{a-b} V^{b}$$

$$ib\kappa P^{a-b} V^{b}$$

$$ib\kappa P^{a-b} V^{b}$$

Now, we are going to project on ψ , it may be a little complex, we will doing step by step.

A. Momentum e^s term

First, deal with the e^s term:

$$-ia\kappa U^{a} + \frac{1}{1 - \kappa r \cos\phi} \frac{\partial P^{a}}{\partial s}$$

$$= \sum_{b=-\infty}^{\infty} term\mathcal{D}1 : -\frac{U^{a-b}}{1 - \kappa r \cos\phi} \frac{\partial U^{b}}{\partial s} - V^{a-b} \frac{\partial U^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{X}1 : \frac{\kappa \cos\phi}{1 - \kappa r \cos\phi} U^{a-b} V^{b} - \frac{\kappa \sin\phi}{(1 - \kappa r \cos\phi)} U^{a-b} W^{b}$$

$$+ib\kappa P^{a-b} U^{b}$$

$$(40)$$

Multiply $(1 - \kappa r \cos \phi)$, we have:

$$-ia\kappa(1 - \kappa r cos\phi)U^{a} + \frac{\partial P^{a}}{\partial s}$$

$$= term\mathcal{D}1: \sum_{b=-\infty}^{\infty} -U^{a-b}\frac{\partial U^{b}}{\partial s} - (1 - \kappa r cos\phi)V^{a-b}\frac{\partial U^{b}}{\partial r} - (1 - \kappa r cos\phi)\frac{W^{a-b}}{r}\frac{\partial U^{b}}{\partial \theta}$$

$$+ term\mathcal{X}1: \sum_{b=-\infty}^{\infty} \kappa cos\phi U^{a-b}V^{b} - \kappa sin\phi U^{a-b}W^{b} +$$

$$term\mathcal{P}1: \sum_{b=-\infty}^{\infty} ib\kappa(1 - \kappa r cos\phi)P^{a-b}U^{b}$$

$$(41)$$

 $\int \int XXr\psi_{\alpha}drd\theta$, we have:

$$RHS = \int_{0}^{2\pi} \int_{0}^{h} [term\mathcal{D}1 + term\mathcal{X}1 + term\mathcal{P}1]r\psi_{\alpha}drd\theta \tag{42}$$

1. the first $\mathcal{D}1$ tems:

We ref the wiki https:

en.wikipedia.org/wiki/Leibniz integral rule

General form: Differentiation under the integral sign:

$$\frac{d}{dx}(\int_{a(x)}^{b(x)} f(x,t)dt) - f(x,b(x)) \cdot \frac{d}{dx}b(x) + f(x,a(x)) \cdot \frac{d}{dx}a(x) = \int_{a(x)}^{b(x)} \frac{d}{dx}f(x,t)dt$$
(43)

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \tag{44}$$

For partial difference, for a given β , the derivation of the function $g(\alpha) = \int_{a(\alpha)}^{b(\beta)} f(x,\alpha) dx$ is

$$\frac{d}{d\alpha} \left(\int_{a(\alpha)}^{b(\beta)} f(x,\alpha) dx \right) - 0 + \frac{da(\alpha)}{d\alpha} f(a(\alpha),\alpha) = \int_{a(\alpha)}^{b(\beta)} \frac{\partial}{\partial \alpha} f(x,\alpha) dx$$
 (45)

1.1

$$\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \left[-rU^{a-b} \frac{\partial U^{b}}{\partial s} \right] \psi_{\alpha} dr d\theta$$

$$= \sum_{b=-\infty}^{\infty} - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial s} \left[rU^{a-b} U^{b} \psi_{\alpha} \right] dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial}{\partial s} \left[rU^{a-b} \psi_{\alpha} \right] dr d\theta$$

$$= \sum_{b=-\infty}^{\infty} - \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} \left[rU^{a-b} U^{b} \psi_{\alpha} \right] dr d\theta + \int_{0}^{2\pi} \frac{dh(s)}{ds} \left[rU^{a-b} U^{b} \psi_{\alpha} \right]_{r=h} d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} \frac{r \partial U^{a-b}}{\partial s} U^{b} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} rU^{a-b} U^{b} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} rU^{a-b} U^{b} dr d\theta$$

$$(46)$$

here, we gives a relationship between U^a and V^a at the boundary which to dliminate V^a tems:

$$h'U^{a-b} = (1 - \kappa h \cos \phi)V^{a-b} \tag{47}$$

1.2

$$\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \left[-(1 - \kappa r \cos\phi) V^{a-b} \frac{\partial U^{b}}{\partial r} \right] r \psi_{\alpha} dr d\theta$$

$$= -\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (r(1 - \kappa r \cos\phi) V^{a-b} U^{b} \psi_{\alpha})}{\partial r} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (r(1 - \kappa r \cos\phi) V^{a-b} \psi_{\alpha})}{\partial r} dr d\theta$$

$$= -\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \left[(r(1 - \kappa r \cos\phi) V^{a-b} U^{b}) \psi_{\alpha} \right]_{0}^{h} d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (r(1 - \kappa r \cos\phi) V^{a-b})}{\partial r} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial r} r(1 - \kappa r \cos\phi) V^{a-b} dr d\theta$$

$$= -\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \left[(hh' U^{a-b} U^{b}) \psi_{\alpha} \right]_{0}^{h} d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (r(1 - \kappa r \cos\phi) V^{a-b})}{\partial r} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial r} r(1 - \kappa r \cos\phi) V^{a-b} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial r} r(1 - \kappa r \cos\phi) V^{a-b} dr d\theta$$

1.3

$$\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \left[-(1 - \kappa r \cos\phi) \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta} \right] r \psi_{\alpha} dr d\theta$$

$$= -\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial ((1 - \kappa r \cos\phi) W^{a-b} U^{b} \psi_{\alpha})}{\partial \theta} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial ((1 - \kappa r \cos\phi) W^{a-b})}{\partial \theta} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial \theta} ((1 - \kappa r \cos\phi) W^{a-b}) dr d\theta$$

$$= -\sum_{b=-\infty}^{\infty} \int_{0}^{h} \left[(1 - \kappa r \cos\phi) W^{a-b} U^{b} \psi_{\alpha} \right]_{0}^{2\pi} dr$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial ((1 - \kappa r \cos\phi) W^{a-b})}{\partial \theta} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial \theta} ((1 - \kappa r \cos\phi) W^{a-b}) dr d\theta$$

$$= 0(periodic) + \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial ((1 - \kappa r \cos\phi) W^{a-b})}{\partial \theta} \psi_{\alpha} dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial \theta} ((1 - \kappa r \cos\phi) W^{a-b}) dr d\theta$$

$$+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (\psi_{\alpha})}{\partial \theta} ((1 - \kappa r \cos\phi) W^{a-b}) dr d\theta$$

Combine together:

$$\frac{\int_{0}^{2\pi} \int_{0}^{h} [term\mathcal{D}1] r \psi_{\alpha} dr d\theta}{\left\{ \left(\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} r U^{a-b} U^{b} dr d\theta \right. \right.} \\
\left\{ \left(\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} r U^{a-b} U^{b} dr d\theta \right. \\
+ \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (\psi_{\alpha})}{\partial r} r (1 - \kappa r \cos \phi) V^{a-b} U^{b} dr d\theta \right. \\
+ \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (\psi_{\alpha})}{\partial \theta} ((1 - \kappa r \cos \phi) W^{a-b} U^{b}) dr d\theta) \\
+ \left(\int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial U^{a-b}}{\partial s} r \psi_{\alpha} dr d\theta \right. \\
+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial (r (1 - \kappa r \cos \phi) V^{a-b})}{\partial r} \psi_{\alpha} dr d\theta \\
+ \int_{0}^{2\pi} \int_{0}^{h} U^{b} \frac{\partial ((1 - \kappa r \cos \phi) W^{a-b})}{\partial \theta} \psi_{\alpha} dr d\theta) \\
- \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [r U^{a-b} U^{b} \psi_{\alpha}] dr d\theta \right\}$$

We apply eq 5, find that:

$$-i(a-b)\kappa r(1-\kappa r cos(\phi))P^{a-b} + \left[\frac{\partial (U^{a-b}r)}{\partial s} + \frac{\partial (V^{a-b}r(1-\kappa r cos(\phi)))}{\partial r} + \frac{\partial (W^{a-b}(1-\kappa r cos(\phi)))}{\partial \theta}\right] = o(M^2)$$
(51)

We have the second terms in eq(31) are equal to:

$$\int_{0}^{2\pi} \int_{0}^{h} U^{b}[-i(a-b)\kappa r(1-\kappa r \cos(\phi))P^{a-b}]\psi_{\alpha}drd\theta$$

$$= i(a-b)\kappa \Psi_{\alpha\beta\gamma}[r(1-\kappa r \cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b}$$
(52)

And, the longitudinal derivation s can also be expand about the duct modes, with note $[r], (\theta), \{s\}$:

$$\frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [rU^{a-b}U^{b}\psi_{\alpha}] dr d\theta$$

$$= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}] U_{\beta}^{a-b} U_{\gamma}^{b} dr d\theta$$

$$= \frac{\partial}{\partial s} (\int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}] dr d\theta) U_{\beta}^{a-b} U_{\gamma}^{b}$$

$$+ \frac{\partial U_{\beta}^{a-b} U_{\gamma}^{b}}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}] dr d\theta$$

$$= \frac{\partial}{\partial s} (\int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}] dr d\theta) U_{\beta}^{a-b} U_{\gamma}^{b}$$

$$+ (\frac{dU_{\beta}^{a-b}}{ds} U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds} U_{\beta}^{a-b}) \int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}] dr d\theta$$
(53)

2. the second $\mathcal{X}1$ tems:

$$term\mathcal{X}1:\sum_{b=-\infty}^{\infty}\kappa cos\phi U^{a-b}V^{b}-\kappa sin\phi U^{a-b}W^{b}$$

$$\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} [\kappa \cos\phi U^{a-b} V^{b} - \kappa \sin\phi U^{a-b} W^{b}] r \psi_{\alpha} dr d\theta$$

$$= \kappa \Psi_{\alpha\beta\gamma} [r \cos\phi] U_{\beta}^{a-b} V_{\gamma}^{b} - \kappa \Psi_{\alpha\beta\gamma} [r \sin\phi] U_{\beta}^{a-b} W_{\gamma}^{b}$$
(54)

3. the second $\mathcal{P}1$ tems:

$$term\mathcal{P}1: \sum_{b=-\infty}^{\infty} ib\kappa(1-\kappa rcos\phi)P^{a-b}U^{b}$$

$$\sum_{b=-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{h} [ib\kappa(1 - \kappa r \cos\phi)P^{a-b}U^{b}]r\psi_{\alpha}drd\theta$$

$$= ib\kappa\Psi_{\alpha\beta\gamma}[r(1 - \kappa r \cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b}$$
(55)

4. The LHS terms:

$$\frac{\partial P^a}{\partial s} - ia\kappa (1 - \kappa r \cos \phi) U^a$$

From 1.1 as example, we know that

$$\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial s} [rU^{a-b}U^{b}\psi_{\alpha}] dr d\theta$$

$$= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [rU^{a-b}U^{b}\psi_{\alpha}] dr d\theta - \int_{0}^{2\pi} \frac{dh(s)}{ds} [rU^{a-b}U^{b}\psi_{\alpha}]_{r=h} d\theta$$
(56)

4.1

$$\int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial P^{a}}{\partial s}\right] r \psi_{\alpha} dr d\theta
= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (P^{a}_{\beta}\psi_{\beta})}{\partial s}\right] r \psi_{\alpha} dr d\theta
= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (P^{a}_{\beta}\psi_{\beta})}{\partial s}\right] r \psi_{\alpha} dr d\theta - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (\psi_{\alpha})}{\partial s}\right] r \psi_{\beta} dr d\theta P_{\beta}^{a}
= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} (P^{a}_{\beta}\psi_{\beta}) r \psi_{\alpha} dr d\theta - \frac{dh(s)}{ds} \left[P^{a}_{\beta}\psi_{\beta}r\psi_{\alpha}\right]_{r=h} - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (\psi_{\alpha})}{\partial s}\right] r \psi_{\beta} dr d\theta P_{\beta}^{a}
= \frac{\partial}{\partial s} (P^{a}_{\beta}\delta_{\alpha\beta}) - \int_{0}^{2\pi} \frac{dh(s)}{ds} \left[P^{a}_{\beta}\psi_{\beta}r\psi_{\alpha}\right]_{r=h} d\theta - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (\psi_{\alpha})}{\partial s}\right] r \psi_{\beta} dr d\theta P_{\beta}^{a}
= \frac{d}{ds} P^{a}_{\alpha} - \int_{0}^{2\pi} \frac{dh(s)}{ds} \left[P^{a}_{\beta}\psi_{\beta}r\psi_{\alpha}\right]_{r=h} d\theta - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (\psi_{\alpha})}{\partial s}\right] r \psi_{\beta} dr d\theta P_{\beta}^{a}$$

$$=\frac{d}{ds}P_{\alpha}^{a}-\int_{0}^{2\pi}\int_{0}^{h}\frac{\partial\psi_{\beta}\psi_{\alpha}}{\partial r}hh'drd\theta P_{\beta}^{a}-\int_{0}^{2\pi}\int_{0}^{h}\left[\frac{\partial(\psi_{\alpha})}{\partial s}\right]r\psi_{\beta}drd\theta P_{\beta}^{a}$$

4.2

$$\int_{0}^{2\pi} \int_{0}^{h} [-ia\kappa(1 - \kappa r \cos\phi)U^{a}]r\psi_{\alpha}drd\theta$$

$$= -ia\kappa\Psi_{\alpha\beta}[r(1 - \kappa r \cos\phi)]U_{\beta}^{a}$$
(58)

Finally, putting all together becomes:

$$\begin{split} \frac{d}{ds}P_{\alpha}^{a} - \int_{0}^{2\pi} \frac{dh(s)}{ds} [P_{\beta}^{a}\psi_{\beta}r\psi_{\alpha}]_{r=h}d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial(\psi_{\alpha})}{\partial s}]r\psi_{\beta}drd\theta P_{\beta}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1-\kappa r\cos\phi)]U_{\beta}^{a} \\ &= \frac{d}{ds}P_{\alpha}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1-\kappa r\cos\phi)]U_{\beta}^{a} - \int_{0}^{2\pi} hh'[P_{\beta}^{a}\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a} \\ &= \sum_{b=-\infty}^{\infty} \\ (eq31) : \{(\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial\psi_{\alpha}}{\partial s} rU^{a-b}U^{b}drd\theta \\ &+ \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial(\psi_{\alpha})}{\partial s} r(1-\kappa r\cos\phi)V^{a-b}U^{b}drd\theta \\ &+ (eq33) : i(a-b)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r\cos\phi)V^{a-b}U^{b}drd\theta \\ &+ (eq33) : i(a-b)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r\cos\phi)V^{a-b}U^{b}drd\theta \\ &- (\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b}) \int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}]drd\theta U_{\beta}^{a-b}U_{\gamma}^{b} \\ &- (\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b}) \int_{0}^{2\pi} \int_{0}^{h} [r\psi_{\beta}\psi_{\gamma}\psi_{\alpha}]drd\theta \\ &+ eq(35) : \kappa\Psi_{\alpha\beta\gamma}[r\cos\phi]U_{\beta}^{a-b}V_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[r\sin\phi]U_{\beta}^{a-b}W_{\gamma}^{b} \\ &+ eq(36) : ib\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r\cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b} \\ &+ (a-b)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r\cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b} \\ &- \frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b}) \\ &+ \kappa\Psi_{\alpha\beta\gamma}[r\cos\phi]U_{\beta}^{a-b}V_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[r\sin\phi]U_{\beta}^{a-b}U_{\gamma}^{b} \\ &+ ib\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r\cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b} \end{aligned}$$

To be conclude, with the e^s term:

$$-ia\kappa U^{a} + \frac{1}{1 - \kappa r \cos\phi} \frac{\partial P^{a}}{\partial s}$$

$$= \sum_{b=-\infty}^{\infty} term\mathcal{D}1 : -\frac{U^{a-b}}{1 - \kappa r \cos\phi} \frac{\partial U^{b}}{\partial s} - V^{a-b} \frac{\partial U^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial U^{b}}{\partial \theta}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{X}1 : \frac{\kappa \cos\phi}{1 - \kappa r \cos\phi} U^{a-b} V^{b} - \frac{\kappa \sin\phi}{(1 - \kappa r \cos\phi)} U^{a-b} W^{b}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{P}1 : ib\kappa P^{a-b} U^{b}$$

$$(60)$$

We have:

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]U_{\beta}^{a} + \frac{d}{ds}P_{\alpha}^{a} - \int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta P_{\beta}^{a} - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a}$$

$$= \underline{term}\mathcal{D}1 : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}U_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}U_{\gamma}^{a}$$

$$+ \underline{term}(D1+\mathcal{P}1) : i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b}$$

$$- \underline{term}\mathcal{D}1 : \frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+ \underline{term}\mathcal{X}1 : \kappa\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}V_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}W_{\gamma}^{b}$$

$$(61)$$

B. Momentum e^r term

Second, deal with the e^r term:

$$-ia\kappa V^{a} + \frac{\partial P^{a}}{\partial r}$$

$$= \sum_{b=-\infty}^{\infty} term\mathcal{D}2 : -\frac{U^{a-b}}{1 - \kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial V^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial V^{b}}{\partial \theta}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{X}2 : \frac{W^{a-b}W^{b}}{r} - \frac{\kappa cos\phi}{(1 - \kappa r cos\phi)} U^{a-b}U^{b}$$

$$+term\mathcal{P}2 : \sum_{b=-\infty}^{\infty} ib\kappa P^{a-b}V^{b}$$

$$(62)$$

LHS-2: $\frac{\partial P^a}{\partial r}(1 - \kappa r cos \phi)$

$$\int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial P^{a}}{\partial r} (1 - \kappa r \cos \phi) \right] r \psi_{\alpha} dr d\theta \\
= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\beta} (1 - \kappa r \cos \phi) r \psi_{\alpha}}{\partial r} \right] dr d\theta P_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha} (1 - \kappa r \cos \phi) r}{\partial r} \right] \psi_{\beta} dr d\theta P_{\beta}^{a} \\
= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\beta} (1 - \kappa r \cos \phi) r \psi_{\alpha}}{\partial r} \right] dr d\theta P_{\beta}^{a} \\
- \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha}}{\partial r} \right] (1 - \kappa r \cos \phi) r \psi_{\beta} dr d\theta P_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (1 - \kappa r \cos \phi) r}{\partial r} \right] \psi_{\alpha} \psi_{\beta} dr d\theta P_{\beta}^{a} \\
= \int_{0}^{2\pi} \left[\psi_{\alpha} \psi_{\beta} r (1 - \kappa r \cos \phi) \right]_{0}^{h} d\theta P_{\beta}^{a} \\
- \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha}}{\partial r} \right] (1 - \kappa r \cos \phi) r \psi_{\beta} dr d\theta P_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \left[1 - 2\kappa r \cos \phi \right] \psi_{\alpha} \psi_{\beta} dr d\theta P_{\beta}^{a} \\
= \int_{0}^{2\pi} \left[\psi_{\alpha} \psi_{\beta} r (1 - \kappa r \cos \phi) \right]_{0}^{h} d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta} \left[r (1 - \kappa r \cos \phi) \right] P_{\beta}^{a} - \Psi_{\alpha\beta} \left[1 - 2\kappa r \cos \phi \right] P_{\beta}^{a} \\
= \int_{0}^{2\pi} \left[\psi_{\alpha} \psi_{\beta} r (1 - \kappa r \cos \phi) \right]_{0}^{h} d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta} \left[r (1 - \kappa r \cos \phi) \right] P_{\beta}^{a} - \Psi_{\alpha\beta} \left[1 - 2\kappa r \cos \phi \right] P_{\beta}^{a} \right]$$

The derivation of $term\mathcal{D}2$ is identical to A, we are not prove it again. $Term\mathcal{P}2$ also could be combine with the part separated term of $term\mathcal{D}2$ with V^b . $Term\mathcal{X}2$ is also easy to derive.

Thus, we have the final equation:

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]V_{\beta}^{a}$$

$$\int_{0}^{2\pi} [\psi_{\alpha}\psi_{\beta}r(1-\kappa rcos\phi)]_{0}^{h}d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1-\kappa rcos\phi)]P_{\beta}^{a} - \Psi_{\alpha\beta}[1-2\kappa rcos\phi]P_{\beta}^{a}$$

$$= \underline{term\mathcal{D}2} : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}V_{\gamma}^{a}$$

$$+\underline{term(D2+\mathcal{P}2)} : i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}V_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2} : -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}V_{\gamma}^{b} + \frac{dV_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2} : \Psi_{\alpha\beta\gamma}[1-\kappa rcos\phi]W_{\beta}^{a-b}W_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}U_{\gamma}^{b}$$

$$(64)$$

C. Momentum e^{θ} term

Third, deal with the e^{θ} term:

$$-ia\kappa W^{a} + \frac{1}{r}\frac{\partial P^{a}}{\partial \theta}$$

$$= \sum_{b=-\infty}^{\infty} term\mathcal{D}3 : -\frac{U^{a-b}}{1 - \kappa r cos\phi} \frac{\partial W^{b}}{\partial s} - V^{a-b}\frac{\partial W^{b}}{\partial r} - \frac{W^{a-b}}{r}\frac{\partial W^{b}}{\partial \theta}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{X}3 : \frac{\kappa sin\phi}{(1 - \kappa r cos\phi)} U^{a-b}U^{b} - \frac{W^{a-b}V^{b}}{r}$$

$$+term\mathcal{P}3 : \sum_{b=-\infty}^{\infty} ib\kappa P^{a-b}W^{b}$$

$$(65)$$

LHS-2: $\frac{\partial P^a}{\partial \theta} \frac{(1 - \kappa r \cos \phi)}{r}$

$$\int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial P^{a}}{\partial \theta} \frac{(1 - \kappa r \cos \phi)}{r} \right] r \psi_{\alpha} dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\beta} (1 - \kappa r \cos \phi) \psi_{\alpha}}{\partial \theta} \right] dr d\theta P_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha} (1 - \kappa r \cos \phi)}{\partial \theta} \right] \psi_{\beta} dr d\theta P_{\beta}^{a}$$

$$= 0 - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha}}{\partial \theta} \right] (1 - \kappa r \cos \phi) \psi_{\beta} dr d\theta P_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial (1 - \kappa r \cos \phi)}{\partial \theta} \right] \psi_{\alpha} \psi_{\beta} dr d\theta P_{\beta}^{a}$$

$$= - \int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial \psi_{\alpha}}{\partial \theta} \right] (1 - \kappa r \cos \phi) \psi_{\beta} dr d\theta P_{\beta}^{a} + \kappa \int_{0}^{2\pi} \int_{0}^{h} \left[r \sin \phi \right] \psi_{\alpha} \psi_{\beta} dr d\theta P_{\beta}^{a}$$

$$= - \Psi_{(\alpha)\beta} \left[(1 - \kappa r \cos \phi) \right] P_{\beta}^{a} - \kappa \Psi_{\alpha\beta} \left[r \sin \phi \right] P_{\beta}^{a}$$

The derivation of $term\mathcal{D}3$ is identical to A, we are not prove it again. $Term\mathcal{P}3$ also could be combine with the part separated term of $term\mathcal{D}3$ with W^b . $Term\mathcal{X}3$ is also easy to derive.

Thus, we have the final equation:

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]W_{\beta}^{a}$$

$$-\Psi_{(\alpha)\beta}[(1-\kappa rcos\phi)]P_{\beta}^{a}-\kappa\Psi_{\alpha\beta}[rsin\phi]P_{\beta}^{a}$$

$$=\underline{term\mathcal{D}2}:\Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}W_{\gamma}^{a}$$

$$+\underline{term(D2+\mathcal{P}2)}:i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}W_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2}:-\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}W_{\gamma}^{b}+\frac{dW_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2}:\kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}U_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[1-\kappa rcos\phi]W_{\beta}^{a-b}V_{\gamma}^{b}$$

$$(67)$$

A. nonliear term

we have to re-derive the momentum equation with multiply $(1 - \kappa r \cos \phi)$:

$$-ia\kappa V^{a} + \frac{\partial P^{a}}{\partial r}$$

$$= \sum_{b=-\infty}^{\infty} term\mathcal{D}2 : -\frac{U^{a-b}}{1 - \kappa r cos\phi} \frac{\partial V^{b}}{\partial s} - V^{a-b} \frac{\partial V^{b}}{\partial r} - \frac{W^{a-b}}{r} \frac{\partial V^{b}}{\partial \theta}$$

$$+ \sum_{b=-\infty}^{\infty} term\mathcal{X}2 : \frac{W^{a-b}W^{b}}{r} - \frac{\kappa cos\phi}{(1 - \kappa r cos\phi)} U^{a-b}U^{b}$$

$$+ term\mathcal{D}2 : \sum_{b=-\infty}^{\infty} ib\kappa P^{a-b}V^{b}$$

$$(68)$$

LHS-2: $\frac{\partial P^a}{\partial r}$

$$\int_{0}^{2\pi} \int_{0}^{h} \left[\frac{\partial P^{a}}{\partial r} \right] r \psi_{\alpha} dr d\theta$$

$$= \int_{0}^{2\pi} \left[r \psi_{\alpha} \psi_{\beta} \right]_{0}^{h} d\theta P_{\beta}^{a} - \int \int \psi_{\alpha} \psi_{\beta} dr d\theta P_{\beta}^{a} - \int \int \frac{\partial \psi_{\alpha}}{\partial r} \psi_{\beta} r dr d\theta P_{\beta}^{a} \tag{69}$$

Thus, we have the final equation:

$$-ia\kappa\Psi_{\alpha\beta}[r]V_{\beta}^{a} + \int_{0}^{2\pi} [\psi_{\alpha}\psi_{\beta}r]_{0}^{h}d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r]P_{\beta}^{a}a - \Psi_{\alpha\beta}P_{\beta}^{a}$$

$$= \underline{term\mathcal{D}2} : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r]V_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}W_{\beta}^{a-b}V_{\gamma}^{a}$$

$$+ \underline{term(D2 + \mathcal{P}2)} : i(a)\kappa\Psi_{\alpha\beta\gamma}[r]P_{\beta}^{a-b}V_{\gamma}^{b}$$

$$+ \underline{term\mathcal{D}2} : -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}V_{\gamma}^{b} + \frac{dV_{\gamma}^{b}}{ds}U_{\beta}^{a-b})error$$

$$+ \underline{term\mathcal{X}2} : \kappa\Psi_{\alpha\beta\gamma}W_{\beta}^{a-b}W_{\gamma}^{b}$$

$$(70)$$

B. V_{α}^{a} & W_{α}^{a} for RHS

Using the linear relationships:

$$ia\kappa V^{a} = \frac{\partial P^{a}}{\partial r}$$

$$:= \int \int iak V^{a}_{\beta} \psi_{\beta} r \psi_{\alpha} dr d\theta = \int \int \frac{\partial P^{a}_{\beta} \psi_{\beta}}{\partial r} r \psi_{\alpha} dr d\theta$$

$$= ia\kappa V^{a}_{\beta} \delta_{\alpha\beta} = \Psi_{\alpha[\beta]}[r] P^{a}_{\beta} = \int_{0}^{2\pi} [r \psi_{\alpha} \psi_{\beta}]_{0}^{h} d\theta P^{a}_{\beta} - \int \int \psi_{\alpha} \psi_{\beta} dr d\theta P^{a}_{\beta} - \int \int \frac{\partial \psi_{\alpha}}{\partial r} \psi_{\beta} r dr d\theta P^{a}_{\beta}$$

$$(71)$$

$$iakW^{a} = \frac{1}{r} \frac{\partial P^{a}}{\partial \theta}$$

$$:= \int \int iakW^{a}_{\beta} \psi_{\beta} r \psi_{\alpha} dr d\theta = \int \int \frac{\partial P^{a}_{\beta} \psi_{\beta}}{\partial \theta} \frac{1}{r} r \psi_{\alpha} dr d\theta$$

$$= ia\kappa W^{a}_{\beta} \delta_{\alpha\beta} = \Psi_{\alpha(\beta)}[r] P^{a}_{\beta} = 0 - \Psi_{(\alpha)\beta}[r] P^{a}_{\beta}$$
(72)

Thus, we can establish relationships between the tranverse modes and pressure modes (no summation over a)

$$V_{\alpha}^{a} = \frac{1}{ia\kappa} \left[\int_{0}^{2\pi} \left[r\psi_{\alpha}\psi_{\beta} \right]_{0}^{h} d\theta - \Psi_{\alpha\beta} - \Psi_{[\alpha]\beta}[r] \right] P_{\beta}^{a} = \mathbf{V}_{\alpha\beta}^{a} P_{\beta}^{a}$$

$$(73)$$

$$W_{\alpha}^{a} = -\frac{1}{ia\kappa} \Psi_{(\alpha)\beta} P_{\beta}^{a} = \mathbf{W}_{\alpha\beta}^{a} P_{\beta}^{a}$$

$$\tag{74}$$

C. $\frac{d}{ds}V_{\alpha}^{a}$ & $\frac{d}{ds}W_{\alpha}^{a}$ for RHS

We also require modal expressions for $\frac{d}{ds}V^a_{\alpha}$ and $\frac{d}{ds}W^a_{\alpha}$.

We differentiate eq49 with respect to s:

$$\frac{\partial V^a}{\partial s} = \frac{1}{ia\kappa} \frac{\partial^2 P^a}{\partial s \partial r}
= \frac{\partial}{\partial r} ((1 - \kappa r \cos \phi) U^a)$$
(75)

where we have used symmetry of mixed partials and the linear expression for $\frac{\partial P^a}{\partial s}$ from eq 21.

From 1.1 as example, we know that

$$\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial s} [rU^{a-b}U^{b}\psi_{\alpha}] dr d\theta$$

$$= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [rU^{a-b}U^{b}\psi_{\alpha}] dr d\theta - \int_{0}^{2\pi} \frac{dh(s)}{ds} [rU^{a-b}U^{b}\psi_{\alpha}]_{r=h} d\theta$$
(76)

here, we gives a relationship between U^a and V^a at the boundary which to dliminate V^a tems:

$$h'U^a_\beta = (1 - \kappa h \cos \phi)V^a_\beta \tag{77}$$

Multiplying this expression by $r\phi_{\alpha}$ and integrating across section of the duct, we obtain:

$$\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial V^{a}}{\partial s} r \psi_{\alpha} dr d\theta = \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial r} ((1 - \kappa r \cos \phi) U^{a}) r \psi_{\alpha} dr d\theta$$

$$LHS := \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial [V_{\beta}^{a} \psi_{\beta} r \psi_{\alpha}]}{\partial s} dr d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial r \psi_{\alpha}}{\partial s} \psi_{\beta} dr d\theta V_{\beta}^{a}$$

$$= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [V_{\beta}^{a} \psi_{\beta} r \psi_{\alpha}] dr d\theta - \int_{0}^{2\pi} \frac{dh(s)}{ds} [V_{\beta}^{a} \psi_{\beta} r \psi_{\alpha}]_{0}^{h} d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} \psi_{\beta} r dr d\theta V_{\beta}^{a}$$

$$= \frac{\partial}{\partial s} V_{\beta}^{a} \delta_{\alpha\beta} - \int_{0}^{2\pi} \frac{h'^{2}}{1 - \kappa h \cos \phi} [r \psi_{\beta} \psi_{\alpha}]_{0}^{h} d\theta - \Psi_{\{\alpha\}\beta} [r] V_{\beta}^{a}$$

$$RHS := \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial r} ((1 - \kappa r \cos \phi) U_{\beta}^{a} \psi_{\beta} r \psi_{\alpha}) dr d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (r \psi_{\alpha})}{\partial r} (1 - \kappa r \cos \phi) U_{\beta}^{a} \psi_{\beta} dr d\theta$$

$$= \int_{0}^{2\pi} [r (1 - \kappa r \cos \phi) \psi_{\beta} \psi_{\alpha}]_{0}^{h} d\theta U_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial r} r (1 - \kappa r \cos \phi) \psi_{\beta} dr d\theta U_{\beta}^{a} - \int_{0}^{2\pi} \int_{0}^{h} (1 - \kappa r \cos \phi) \psi_{\alpha} \psi_{\beta} dr d\theta U_{\beta}^{a}$$

$$= \int_{0}^{2\pi} [r (1 - \kappa r \cos \phi) \psi_{\beta} \psi_{\alpha}]_{0}^{h} d\theta U_{\beta}^{a} - \Psi_{[\alpha]\beta} [r (1 - \kappa r \cos \phi)] U_{\beta}^{a} - \Psi_{\alpha\beta} [(1 - \kappa r \cos \phi)] U_{\beta}^{a}$$

$$= \int_{0}^{2\pi} [r (1 - \kappa r \cos \phi) \psi_{\beta} \psi_{\alpha}]_{0}^{h} d\theta U_{\beta}^{a} - \Psi_{[\alpha]\beta} [r (1 - \kappa r \cos \phi)] U_{\beta}^{a} - \Psi_{\alpha\beta} [(1 - \kappa r \cos \phi)] U_{\beta}^{a}$$

Thus, LHS=RHS, we have:

$$\frac{d}{ds}V_{\alpha}^{a} = \int_{0}^{2\pi} \frac{h'^{2}}{1 - \kappa h \cos\phi} [r\psi_{\beta}\psi_{\alpha}]_{0}^{h} d\theta + \Psi_{\{\alpha\}\beta}[r]V_{\beta}^{a} + \int_{0}^{2\pi} [r(1 - \kappa r \cos\phi)\psi_{\beta}\psi_{\alpha}]_{0}^{h} d\theta U_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1 - \kappa r \cos\phi)]U_{\beta}^{a} - \Psi_{\alpha\beta}[(1 - \kappa r \cos\phi)]U_{\beta}^{a}$$
(79)

Similarly for W^a , differentiating eq50 with respect to s and substituting the linear expression for $\frac{\partial P^a}{\partial s}$ by eq21:

$$\frac{\partial W^a}{\partial s} = \frac{1}{ia\kappa} \frac{\partial^2 P^a}{\partial s \partial \theta}
= \frac{1}{r} \frac{\partial}{\partial \theta} ((1 - \kappa r \cos \phi) U^a)$$
(80)

Multiplying this expression by $r\phi_{\alpha}$ and integrating across section of the duct, we obtain:

$$\int_{0}^{2\pi} \int_{0}^{h} \frac{\partial W^{a}}{\partial s} r \psi_{\alpha} dr d\theta = \int_{0}^{2\pi} \int_{0}^{h} \frac{1}{r} \frac{\partial}{\partial \theta} ((1 - \kappa r \cos \phi) U^{a}) r \psi_{\alpha} dr d\theta$$

$$LHS := \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial [W^{a}_{\beta} \psi_{\beta} r \psi_{\alpha}]}{\partial s} dr d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial r \psi_{\alpha}}{\partial s} \psi_{\beta} dr d\theta W^{a}_{\beta}$$

$$= \frac{\partial}{\partial s} \int_{0}^{2\pi} \int_{0}^{h} [W^{a}_{\beta} \psi_{\beta} r \psi_{\alpha}] dr d\theta - \int_{0}^{2\pi} \frac{dh(s)}{ds} [W^{a}_{\beta} \psi_{\beta} r \psi_{\alpha}]_{0}^{h} d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial \psi_{\alpha}}{\partial s} \psi_{\beta} r dr d\theta W^{a}_{\beta}$$

$$= \frac{d}{ds} W^{a}_{\alpha} - \int_{0}^{2\pi} \frac{dh(s)}{ds} [\psi_{\beta} r \psi_{\alpha}]_{0}^{h} d\theta W^{a}_{\beta} - \Psi_{\{\alpha\}\beta}[r] W^{a}_{\beta}$$

$$RHS := \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial}{\partial \theta} ((1 - \kappa r \cos \phi) U^{a}_{\beta} \psi_{\beta} \psi_{\alpha}) dr d\theta - \int_{0}^{2\pi} \int_{0}^{h} \frac{\partial (\psi_{\alpha})}{\partial \theta} (1 - \kappa r \cos \phi) U^{a}_{\beta} \psi_{\beta} dr d\theta$$

$$= 0(periodic) - \Psi_{(\alpha)\beta}[1 - \kappa r \cos \phi] U^{a}_{\beta}$$

Thus, LHS=RHS, we have:

$$\frac{d}{ds}V_{\alpha}^{a} = \int_{0}^{2\pi} \frac{dh(s)}{ds} [\psi_{\beta}r\psi_{\alpha}]_{0}^{h} d\theta W_{\beta}^{a} + \Psi_{\{\alpha\}\beta}[r]W_{\beta}^{a} - \Psi_{(\alpha)\beta}[1 - \kappa r \cos\phi]U_{\beta}^{a}$$
(82)

D. Substitue pressure modes for transverse velocity modes

1. mass equation

$$\frac{dU_{\alpha}^{a}}{ds} - \Psi_{\{\alpha\}\beta}[r]U_{\beta}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1 - \kappa cos(\phi))]P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1 - \kappa rcos(\phi))]\underline{\underline{V}_{\beta}^{a}} - \Psi_{(\alpha)\beta}[(1 - \kappa rcos(\phi))]\underline{\underline{W}_{\beta}^{a}} \\
= \Psi_{\alpha\beta\gamma}[r(1 - \kappa rcos(\phi))]\sum_{b=-\infty}^{+\infty} (-ib\kappa P_{\beta}^{a-b}P_{\gamma}^{b} - ib\kappa U_{\beta}^{a-b}U_{\gamma}^{b} - ib\kappa \underline{\underline{V}_{\beta}^{a-b}V_{\gamma}^{b}} - ib\kappa \underline{\underline{W}_{\beta}^{a-b}W_{\gamma}^{b}} - ia\kappa \underline{\underline{B}}P_{\beta}^{a-b}P_{\gamma}^{b})$$
(83)

Transform:

$$\frac{dU_{\alpha}^{a}}{ds} := \underline{I}u_{\alpha}^{la}$$

$$-\Psi_{\{\alpha\}\beta}[r]U_{\beta}^{a} := -\underline{\Psi_{\{\alpha\}\beta}[r]}u_{\beta}^{a}$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa cos(\phi))]P_{\beta}^{a} := -ia\kappa\Psi_{\alpha\beta}[r(1-\kappa cos(\phi))]p_{\beta}^{a}$$

$$-\Psi_{\{\alpha\}\beta}[r(1-\kappa rcos(\phi))]P_{\beta}^{a} := -\underline{\Psi_{\{\alpha\}\beta}[r(1-\kappa rcos(\phi))]}p_{\beta}^{a}$$

$$-\Psi_{\{\alpha\}\beta}[r(1-\kappa rcos(\phi))]\underline{V_{\beta}^{a}} := -\underline{\Psi_{\{\alpha\}\delta}[r(1-\kappa rcos(\phi))]}V_{\delta\beta}^{a}p_{\beta}^{a}$$

$$-\Psi_{\{\alpha\}\beta}[r(1-\kappa rcos(\phi))]\underline{W_{\beta}^{a}} := -\underline{\Psi_{\{\alpha\}\delta}[(1-\kappa rcos(\phi))]}V_{\delta\beta}^{a}p_{\beta}^{a}$$

$$\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos(\phi))]\sum_{b=-\infty}^{+\infty}(-ib\kappa P_{\beta}^{a-b}P_{\gamma}^{b}) := \sum_{b=-\infty}^{+\infty}-ib\kappa\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{\alpha\beta\gamma}[(1-\kappa rcos(\phi))]}p_{\beta}^{a-b}p_{\gamma}^{b} = (B_{1}[p,p])_{\alpha}^{a}$$

$$\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos(\phi))]\sum_{b=-\infty}^{+\infty}(-ib\kappa V_{\beta}^{a-b}V_{\gamma}^{b}) := \sum_{b=-\infty}^{+\infty}-ib\kappa\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{\alpha\beta\gamma}[(1-\kappa rcos(\phi))]}V_{\delta\beta}^{a-b}V_{\gamma}^{b}p_{\beta}^{a-b}p_{\gamma}^{b}$$

$$\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos(\phi))]\sum_{b=-\infty}^{+\infty}(-ib\kappa W_{\beta}^{a-b}W_{\gamma}^{b}) := \sum_{b=-\infty}^{+\infty}-ib\kappa\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{\alpha\delta\epsilon}[r(1-\kappa rcos(\phi))]}V_{\delta\beta}^{a-b}V_{\epsilon\gamma}^{b}p_{\beta}^{a-b}p_{\gamma}^{b}$$

$$\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos(\phi))]\sum_{b=-\infty}^{+\infty}(-ib\kappa W_{\beta}^{a-b}W_{\gamma}^{b}) := \sum_{b=-\infty}^{+\infty}-ib\kappa\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{\alpha\delta\epsilon}[r(1-\kappa rcos(\phi))]}\underline{\Psi_{\alpha\delta\gamma}[(1-\kappa rcos(\phi))]}p_{\beta}^{a-b}p_{\gamma}^{b}$$

$$\frac{d}{ds}P_{\alpha}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1 - \kappa r cos\phi)]U_{\beta}^{a} - \int_{0}^{2\pi} hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta P_{\beta}^{a} - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a}$$

$$= \sum_{b=-\infty}^{+\infty} \underline{term\mathcal{D}1} : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1 - \kappa r cos\phi)]\underline{\underline{V}_{\beta}^{a-b}}U_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1 - \kappa r cos\phi)]\underline{\underline{W}_{\beta}^{a-b}}U_{\gamma}^{a}$$

$$+ \underline{term(D1 + \mathcal{P}1)} : i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1 - \kappa r cos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b}$$

$$+ \underline{term\mathcal{D}1} : -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r])U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+ \underline{term\mathcal{X}1} : \Psi_{\alpha\beta\gamma}[r cos\phi]U_{\beta}^{a-b}\underline{V_{\gamma}^{b}} - \kappa\Psi_{\alpha\beta\gamma}[r sin\phi]U_{\beta}^{a-b}\underline{W_{\gamma}^{b}}$$

$$(85)$$

Transform:

$$\frac{d}{ds}P_{\alpha}^{a} := \underline{\underline{I}}p'_{\alpha}^{a}$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]U_{\beta}^{a} := \underline{-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa cos(\phi))]}u_{\beta}^{a}$$

$$-\int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta P_{\beta}^{a} - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a} := \underline{-\int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta}p_{\beta}^{a} - \underline{\Psi_{\{\alpha\}\beta}[r]}p_{\beta}^{a} = -\underline{\Psi_{\{\alpha\}\beta}[r]}p_{\beta}^{a}$$

$$\Psi_{\{\alpha\}\beta\gamma}[r]\sum_{b=-\infty}^{+\infty}U_{\beta}^{a-b}U_{\gamma}^{a} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{\{\alpha\}\beta\gamma}[r]}u_{\beta}^{a-b}u_{\gamma}^{b}$$

$$\Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}\underline{\underline{V}}_{\beta}^{a-b}U_{\gamma}^{a} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\Psi_{[\alpha]\delta\epsilon}[r(1-\kappa rcos\phi)]}\underline{V}_{\delta\beta}^{a-b}I_{\epsilon\gamma}^{b}p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$\Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}\underline{\underline{W}}_{\beta}^{a-b}U_{\gamma}^{a} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\underline{\Psi}}_{(\alpha)\delta\epsilon}[(1-\kappa rcos\phi)]\underline{W}_{\delta\beta}^{a-b}I_{\epsilon\gamma}^{b}p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-ia\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}P_{\beta}^{a-b}U_{\gamma}^{b} := ia\kappa\sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\underline{\Psi}}_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r])\sum_{b=-\infty}^{+\infty}U_{\beta}^{a-b}U_{\gamma}^{b} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underline{\underline{\Psi}}_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-\Psi_{\alpha\beta\gamma}[r]\sum_{b=-\infty}^{+\infty}(\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b}) := \sum_{b=-\infty}^{+\infty}(\Psi_{\alpha\beta\gamma}[r][G,I] + \Psi_{\alpha\beta\gamma}[r][I,G])u_{\beta}^{a-b}u_{\gamma}^{b}$$

$$\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}\underline{\underline{V}}_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}\underline{\underline{W}}_{\gamma}^{b} := \sum_{b=-\infty}^{+\infty}\Psi_{\alpha\beta\gamma}[rcos\phi][I,V] - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi][I,W]u_{\gamma}^{b}$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa r cos\phi)]V_{\beta}^{a}$$

$$+\int_{0}^{2\pi} [\psi_{\alpha}\psi_{\beta}r(1-\kappa r cos\phi)]_{0}^{h}d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1-\kappa r cos\phi)]P_{\beta}^{a} - \Psi_{\alpha\beta}[1-2\kappa r cos\phi]P_{\beta}^{a}$$

$$= \underline{term\mathcal{D}2} : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1-\kappa r cos\phi)]V_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1-\kappa r cos\phi)]W_{\beta}^{a-b}V_{\gamma}^{a}$$

$$+\underline{term(\mathcal{D}2+\mathcal{P}2)} : i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa r cos\phi)]P_{\beta}^{a-b}V_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2} : -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}V_{\gamma}^{b} + \frac{dV_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2} : \Psi_{\alpha\beta\gamma}[1-\kappa r cos\phi]W_{\beta}^{a-b}W_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[r cos\phi]U_{\beta}^{a-b}U_{\gamma}^{b}$$

$$(87)$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]W_{\beta}^{a}$$

$$-\Psi_{(\alpha)\beta}[(1-\kappa rcos\phi)]P_{\beta}^{a}-\kappa\Psi_{\alpha\beta}[rsin\phi]P_{\beta}^{a}$$

$$=\underline{term\mathcal{D}2}:\Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}W_{\gamma}^{a}$$

$$+\underline{term(D2+\mathcal{P}2)}:i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}W_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2}:-\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}W_{\gamma}^{b}+\frac{dW_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2}:\kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}U_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[1-\kappa rcos\phi]W_{\beta}^{a-b}V_{\gamma}^{b}$$

$$(88)$$

V. Tensors in matlab for numerical simulation

A. Tensor times vectors: $A\bar{\times}_n u$

Let \mathcal{A} be a tensor of size $I_1 \times I_2 \times ... \times I_N$, u be a vector of size I_n .

We have:

$$ttv(\mathcal{A}, \{u\}, [n]) = (\mathcal{A} \bar{\times}_n u)(i_1, ..., i_{n-1}, i_{n+1}, ..., i_N)$$

$$\sum_{i_n=1}^{I_n} \mathcal{A}(i_1, i_2, ..., i_N) u(i_n)$$
(89)

$$ttv(A_{m \times n}, \{u_{m \times 1}\}, [1]) = A_{m \times n} \bar{x}_1 u_{m \times 1} = A_{m \times n}^T u_{m \times 1}$$

$$ttv(A_{m \times n}, \{v_{n \times 1}\}, [2]) = A_{m \times n} \bar{x}_2 v_{n \times 1} = A_{m \times n} v_{n \times 1}$$
(90)

Property:

$$ttv(\mathcal{A}, \{u, v\}, [m, n]) = \mathcal{A}\bar{\times}_m u\bar{\times}_n v$$

$$= ttv(ttv(\mathcal{A}, \{u\}, [m]), \{v\}, [n-1]) = (\mathcal{A}\bar{\times}_m u)\bar{\times}_{n-1} v$$

$$= ttv(ttv(\mathcal{A}, \{v\}, [v]), \{u\}, [m]) = (\mathcal{A}\bar{\times}_n v)\bar{\times}_m u$$

$$(91)$$

Multiplication with a sequence of vectors

$$\beta = \mathcal{A}\bar{\times}_1 u^{(1)}\bar{\times}_2 u^{(2)}...\bar{\times}_N u^{(N)} = \mathcal{A}\bar{\times} u$$
 (92)
$$like: ttv(X, \{A, B, C, D\}) = ttv(X, \{A, B, C, D\}, [1234]) = ttv(X, \{D, C, B, A\}, [4321])$$

Multiplication with all but one of a sequence of vectors

$$b = \mathcal{A}\bar{\times}_{1}u^{(1)}\bar{\times}_{2}u^{(2)}...\bar{\times}_{n-1}u^{(2)}\bar{\times}_{n+1}u^{(2)}...\bar{\times}_{N}u^{(N)} = \mathcal{A}\bar{\times}_{-n}u$$

$$like: X = tenrand([5, 3, 4, 2]);$$

$$A = rand(5, 1); B = rand(3, 1); C = rand(4, 1); D = rand(2, 1);$$

$$Y = ttv(X, \{A, B, D\}, -3) = ttv(X, \{A, B, C, D\}, -3)$$

$$(93)$$

B. Tensor times matrix (ttm): $A \times_n u$

Let \mathcal{A} be a tensor of size $I_1 \times I_2 \times ... \times I_N$, U be a matrix of size $J_n \times I_n$.

We have:

$$ttm(\mathcal{A}, \{U\}, [n]) = (\mathcal{A} \times_n U)(i_1, ..., i_{n-1}, j_n, i_{n+1}, ..., i_N)$$

$$\sum_{i_n=1}^{I_n} \mathcal{A}(i_1, i_2, ..., i_N) U(j_n, i_n)$$

$$like: X = tensor(rand(5, 3, 4, 2)); A = rand(4, 5);$$
(94)

$$Y = ttm(X, A, 1) = ttm(X, \{A, B, C, D\}, 1) = ttm(X, A', 1, t')$$

Matrix Interpretation

$$ttm(A_{m \times n}, \{U_{m \times k}^T\}, [1]) = A \times_1 U^T = U^T A$$

$$ttm(A_{m \times n}, \{V_{m \times k}^T\}, [2]) = A \times_2 V^T = AV$$

$$ttm(A, \{U, V\}, [1, 2]) = UAV^T$$
(95)

$$Y=ttm(X,A,B,C,D,[1234]);\%<--4-way mutliply.$$

$$Y=ttm(X,D,C,B,A,[4321]);\%<--Same as above.$$

$$Y=ttm(X,A,B,C,D);\%<--Same as above.$$

$$Y=ttm(X,A',B',C',D','t')\%<--Same as above.$$

$$Y = ttm(X, C, D, [34]); \% < --XtimesCinmode - 3Dinmode - 4$$

$$Y = ttm(X, A, B, C, D, [34]) \% < --Same as above.$$
 (96)

$$\begin{split} Y &= ttm(X,A,B,D,[124]); \% < --3 - way multiply. \\ Y &= ttm(X,A,B,C,D,[124]); \% < --Same as above. \\ Y &= ttm(X,A,B,D,-3); \% < --Same as above. \\ Y &= ttm(X,A,B,C,D,-3)\% < --Same as above. \end{split}$$

Property

$$ttm(\mathcal{A}, \{u, v\}, [m, n]) = \mathcal{A} \times_m u \bar{\times}_n v$$

$$= ttm(ttm(\mathcal{A}, \{u\}, [m]), \{v\}, [n]) = (\mathcal{A} \times_m u) \times_n v$$

$$= ttm(ttm(\mathcal{A}, \{v\}, [v]), \{u\}, [m]) = (\mathcal{A} \times_n v) \times_m u$$

$$(97)$$

C. Tensor times tensor (ttt): < A, B >

Let \mathcal{A} and \mathcal{B} be a tensor of size $I_1 \times I_2 \times ... \times I_N$.

$$\langle \mathcal{A}, \mathcal{B} \rangle =$$

$$\beta = \sum_{i_1=1}^{I_1} \sum_{i_1=1}^{I_2} \dots \sum_{i_1=1}^{I_N} \mathcal{A}(i_1, i_2, ..., i_N) \mathcal{B}(i_1, i_2, ..., i_N)$$

$$(98)$$

$$X = tensor(rand(4,2,3)); Y = tensor(rand(3,4,2));$$

$$Z = ttt(X,Y); \% < --Outerproduct of X and Y.$$

$$size(Z)$$

Z = ttt(X, Y, [123], [231])% < --Innerproduct of XY.

$$Z = ttt(X, X, 1:3)\% < --Innerproduct of X with itself.$$

$$\tag{99}$$

Z = innerprod(X, permute(Y, [231]))% < -- Same as above.

Z = ttt(X, Y, [13], [21])% < --Product of XY along specified dims.