L specification (draft)

Evgenii Balai

June 28, 2015

Contents

1 Syntax

1.1 Symbols

L symbols are non-empty strings of ascii characters divided into the following disjoint categories:

- \bullet integer numerals
- identifiers
- special characters

 $An\ integer\ numeral$ is a string of one or more decimal digits (0-9) possibly preceding by a minus sign

An identifier is a string of one or more letters, digits and underscore characters beginning with a letter.

A $special\ character$ is one of the following characters:

A symbol is an integer numeral, an identifier or a special character.

1.2 Basic Terms

Basic terms are divided into the following categories:

- constants
- variables
- typed variables
- arithmetic terms
- functional terms

A constant is either an identifier starting with a lowercase letter or an integer numeral.

A *variable* is an identifier starting with an uppercase letter.

A $typed\ variable$ is a string of the form $id\ var$, where id is an identifier also referred to as $type\ name$ and var is a variable.

An *arithmetic term* is a string of one of the following forms:

- \bullet -(t)
- $(t \diamond u)$

A **functional term** is a string of the form $f(t_1, ..., t_n)$ where $t_1, ..., t_n$ are basic terms, f is an identifier also referred to as an **functional symbol** and n > 0.

We will say that a basic term t' is a **subterm** of t iff at least one of the following condition holds:

- t = t'
- t is of the form -(t')
- t is of the form $(t' \diamond t_1)$
- t is of the form $(t_1 \diamond t')$
- t is of the form $f(t_1, \ldots t_n)$ and $t' \in \{t_1, \ldots, t_n\}$
- \bullet there exists a term $t^{\prime\prime}$ such that t^{\prime} is a subterm of $t^{\prime\prime}$ and $t^{\prime\prime}$ is a subterm of t

A term t is called ground iff

- t is an identifier of an integer numeral; or
- \bullet all of the subterms of t other than t itself are ground

1.3 Constant Declarations

A constant declaration is of the form

$$c = v. (1)$$

where c is an identifier also referred to as **constant name** and v is a ground arithmetic term, an integer numeral or an identifier. We will say that the constant c is defined by a program if it contains a declaration of the form (??).

1.4 Set Expressions

A **set expression** is of one of the following forms:

- $\{t_1, t_2, \dots, t_n\}$ where t_1, \dots, t_n are ground terms.
 - A shorthand $\{l..r\}$, where each of l and r is either a constant name, integer numeral or an aground arithmetic term may be used to represent the set of all integers in the range n..m.
- An identifier.
- t where V_1 in $type_1, \ldots, V_n$ in $type_n$ where t is a term, $\{V_1, \ldots, V_n\}$ is a set of all variables occurring in t and $type_1, \ldots type_n$ are identifiers.
- $(S_1 \diamond S_2)$, where S_1 and S_2 are set expressions and \diamond is a set theoretic operation, one of the special characters in the set $\{+,*,/\}$. Parentheses can be omitted in which case * and / have higher precedence than + and all operations are left-associative.

1.5 Type Declarations

A type declaration is of the form

$$t = set_expr.$$
 (2)

where t is an identifier and set_expr is a set expression defined in section $\ref{eq:condition}$. We will say that the type t is defined by a program if it contains a declaration of the form $\ref{eq:condition}$.

1.6 Quantified Terms

A *quantified term* is of one of the forms:

- quantifier p
- ullet some t_Var

Where *quantifier* is an identifier in the set {every, some}, p is an identifier also referred to as type, and t_Var is a typed variable.

We will refer to a quantified term starting with a quantifier some(every) as an *existentially quantified*(universally quantified).

1.7 Terms

A *term* is either a basic term or a quantified term.

1.8 Atoms

Atoms are divided into two categories:

- predicate atoms
- built-in atoms

A **predicate atom** is a string of the form $p(t_1, ..., t_n)$ where p is an identifier also referred to as a **predicate name** and $t_1, ..., t_n$ are terms.

A **built-in atom** is a string of the form $t_1 \leq t_2$ where t_1 and t_2 are terms and $\leq \{ ' <', '>', '>=', '<=', '=', '<>' \}$ is a string of special characters.

An atom is called *ground* if all the terms occurring in the atom are ground.

1.9 Sentences

A **sentence** is either an atom or an expression of the form $(not\ A)$, $(A\ or\ B)$, $(A\ and\ B)$, where A and B are atoms. A sentence of the form $A\ and\ B$ can also be written as A, B. Parentheses can be omitted in which case not has highest precedence and or has the lowest precedence.

1.10 Maybe Literals

A maybe literal is of the form

maybe
$$p(t_1, \ldots t_n)$$
.

where t_1, \ldots, t_n are basic terms.

1.11 Cardinality Constraints

A cardinality constraint is of the form

$$v_1 <= |\{p(t_1, \dots t_n)\}| <= v_2.$$

where

- 1. each of v_1 and v_2 is a ground arithmetic term, integer numeral or a constant name,
- 2. t_1, \ldots, t_n are basic terms.

1.12 Rules

A *rule* can be of the two forms:

$$head.$$
 (3)

or

$$head if sentence.$$
 (4)

Where *head* is either a sentence predicate atom not containing quantified terms, or a maybe literal, or a cardinality constraint.

1.13 Program

A program is a sequence of constant declarations followed by a sequence of type declarations, followed by a sequence of rulescollection of statements, each of which is either a constant declarations, a type declaration, or a rule.

The sequence of constant declarations Constant declarations of a program must satisfy the following conditions:

- 1. Each constant name must not occur in the left hand side of a constant declaration at most once.
- Each identifier which is a subterm of the right hand side of a constant declaration must occur in the left hand side of a preceding constant declaration.

The sequence of type declarations—Type declarations of a program must satisfy the following conditions:

- 1. Each type name must occur in the left hand side of a type declaration at most once.
- 2. Each type name occurring in a set expression identifier occurring as a subexpression of an expression on the right hand side of a type declaration must occur in the left hand side of a preceding be a type name defined by a preceding type declaration.

The sequence of rules Rules of a program must satisfy the following conditions:

- 1. The leftmost occurrence of any variable V in a rule is preceded by a type name (also referred to as the type of the variable), which can also be preced by a quantifier. All other occurrences of V are subterms of a basic term.
- 2. For every typed variable $t \ Var$ the identifier t is a type defined by the program.
- 3. Every identifier occurring in the rule as a subterm of an arithmetic term is a constant name defined by the program.
- 4. Every variable occurring in a rule which does not occur in a quantified term also occurs in the head of the rule.
- 5. Every predicate atom $p(t_1, \ldots, t_n)$ occurring in r does not contain two different variables X and Y such that X occurs in a universally quantified term everyX in r and Y occurs in an existentially quantified term someY in r.

1.14 Language Grammar

1.14.1 Terms

 $term ::= \frac{basic_term|quantified_term}{basic_term | basic_term | quantified_term} \\ basic_term ::= \frac{numeric_constant|variable|identifier | variable}{numeric_constant | variable | identifier | ident$

```
arithmetic_term | functional_term | arithmetic_term | functional_term
ground\_term ::= numeric\_constant \mid identifier \mid
      | ground\_arithmetic\_term \mid ground\_functional\_term |
arithmetic\_term ::= -(T0)|(T0 \ infix_1 \ T2)|(T1 \ infix_2 \ T2)|T0 \ infix_1 \ T2|T1 \ infix_2 \ T2-(T0)| (T0 infix_1
                        \mid T0 \ infix_1 \ T1 \mid T1 \ infix_2 \ T2
ground\_arithmetic\_term ::= \neg (T0\_g) \mid (T0\_g \ infix_1 \ T1\_g) \mid (T1\_g \ infix_2 \ T2\_g) \mid
                   \mid T0\_g \ infix_1 \ T1\_g \mid T1\_g \ infix_2 \ T2\_g
infix_1 ::= + -+ -
infix_2 ::= * | / | \% * | / | \%
infix := \frac{infix_1|infix_2|infix_1||infix_2|}{infix_1||infix_2|}
T0 ::= T1 \mid T0 \ infix_1 \ T1
T1 ::= T2 \mid T1 \ infix_2 \ T2
T2 ::= (T0) \mid variable \mid numeric\_constant \mid identifier \mid identifier variable
T0\_g ::= T1\_g \mid T0\_g \ infix_1 \ T1\_g
T1\_g ::= T2\_g \mid T1\_g \ infix_2 \ T2\_g
T2\_g ::= (T0\_g) \mid numeric\_constant \mid identifier
functional\_term ::= \frac{identifier (basic\_terms)}{identifier (terms)}
basic\_terms\_ground\_functional\_term ::= basic\_term|basic\_term, basic\_terms
identifier ( ground_terms )
quantified\_term ::= \frac{quantifier\ identifier\ variable}{quantifier\ identifier\ identifier\ variable} \mid quantifier\ identifier
quantifier := \frac{every|some}{every|some} every | some
basic\_terms ::= basic\_term \mid basic\_term, \ basic\_terms
ground\_terms ::= ground\_term \mid ground\_term, ground\_terms
terms ::= term \mid term, terms
1.14.2 Constant Declarations
```

 $const_decl ::= \frac{identifier = arithmetic_term. \mid identifier = identifier. identifier=ground_arithmetic_term}{\mid identifier = numeric_constant.} \quad \mid identifier = numeric_constant.$

1.14.3 Type Declarations

 $^{^1\}mathrm{Square}$ brackets around $basic_terms$ mean that $basic_terms$ are optional, that is, $\{\}$ is a valid expression for non-terminal set

```
\begin{array}{l} \textit{tvar} ::= \textit{variable} \ \text{in} \ \textit{identifier} \\ \textit{ST0} ::= \textit{ST1} \mid \textit{ST0} + \textit{ST1} \\ \textit{ST1} ::= \frac{\textit{ST2} \mid \textit{ST1} + \textit{ST2} \mid \textit{ST1} \setminus \textit{ST2} \mid \textit{ST1} \times \textit{ST2} \mid \textit{ST1} \setminus \textit{ST2} }{\textit{ST2} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST2} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} ::= \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{range} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{ST3} := \frac{(\textit{ST0}) \mid \textit{set} \mid \textit{set\_constr} \mid \textit{identifier}}{\textit{set\_constr} \mid \textit{set\_constr} \mid \textit{set\_c
```

1.14.4 Atoms

1.14.5 Sentences

```
sentence ::= s3
s3 ::= s2 \mid s3 \text{ or } s2
s2 ::= \frac{s1 \mid s2 \text{ and } s1 s1 \mid s2 \text{ and } s1 \mid s2 \text{, } s1}{s1 ::= s0 \mid \text{not } s0}
s0 \longrightarrow predicate | predicate(terms)|(s3) s0 ::= atom \mid (s3)
```

1.14.6 Maybe Literals

 $maybe_lit ::= maybe identifier(basic_terms)$

1.14.7 Cardinality Constraints

```
bound ::= arithmetic\_term \mid numeric\_constant \mid identifier \\ card\_constr ::= \frac{bound <= |\{identifier(basie\_terms)\}| <= bound}{bound <= |\{identifier(basie\_terms)\}| <= bound} \\ <= |\{identifier\}| <= bound
```

1.14.8 Rules

```
rule ::= \frac{head.|head \ if \ sentence \ head.|head \ if \ sentence.}{basic\_terms ::= basic\_term \ | basic\_term, basic\_terms} \\ disj ::= atom \ or \ atoms \ | \ atom \\ head ::= \frac{sentence \ | \ maybe\_lit \ | \ eard\_constr \ disj \ | \ maybe\_lit \ | \ card\_constr \ disj \ | \ maybe\_lit \ | \ card\_constr \ disj \ | \ maybe\_lit \ | \ card\_constr \ | \ ca
```

1.14.9 Program

```
program ::= \underline{[const\_decls][type\_decls][rules]const\_decls ::= const\_decl \mid const\_decl \cdot const\_decl \cdot statements} \\ \underline{type\_decls} \cdot statements ::= \underline{type\_decl} \mid \underline{type\_decls} \cdot statement \mid statement, \cdot statements \\ \underline{rules} \cdot statement ::= \underline{rule} \mid \underline{rule} \cdot \underline{rules} \cdot const\_decl \mid \underline{type\_decl} \mid \underline{rule}
```

1.15 Comments

L programs can have comments starting with /* and ending with */ . For example:

```
/*
This is a
  multiline comment
*/
type t = {1,2,3}. /* this is a type declaration */
p(t X) if /* this is a rule */ q(X).
```

2 Semantics

We define the semantics of an L program Π in terms of *models* of P. A model is a set of atoms which, intuitively, satisfies the rules of the program. The notion of satisfiability is defined in section $\ref{eq:property}$ with all necessary background provided in sections $\ref{eq:property}$ - $\ref{eq:property}$?

The semantics of a program P containing a comment coincide with the semantics of the program obtained from P by removing the comments. In the rest of this section we will consider programs not containing comments.

2.1 Constant Declarations

Let Π be an L program starting with constant declaration of the form

```
cn = gar\_term.
```

Where cn is referred to as a constant name and gar_term is a ground arithmetic term. By condition 2 for constant declarations defined in section $\ref{eq:constant}$, gar_term cannot contain identifiers as subterms, therefore its value v can be obtained as defined in section $\ref{eq:constant}$?

The models Π coincide with the models of program Π' obtained from Π by:

- 1. Removing the declaration $cn = gar_term$.
- 2. Replacing every subterm of a term Π equal to cn with numeric constant

By condition 2 for constant declarations defined in section ??, if the program Π' starts another constant declaration, its right hand side cannot contain numeric constants, therefore its semantics can be defined in the same manner as for Π .

Therefore, it is sufficient to define the semantics for programs not containing constant declarations (and, therefore, not containing constant names in arithmetic terms too).

2.2 Arithmetic Terms

A program may contain ground arithmetic terms constructed from integer numerals and operations '+' (plus), '-' (minus), '*' (multiplication), '/' (integer division), '%' $(\text{modulo})^2$ Each arithmetic term has a value. The meaning and

 $^{^2}$ Current implementation allows only numerals in the range -2,147,483,648 to 2,147,483,647. Moreover, correct evaluation for an arithmetic term is guaranteed only if all its subterms have values within the range.

precedence of operations '+', '-', '*' is as usual. The operation '/' has the same precedence as '*' and is defined as

$$a/b := sgn(a * b) * (|a| div |b|)$$

where

1.
$$sgn(a * b) = \begin{cases} 1 & \text{if } a * b \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

2. for $a \ge 0$ and $b \ge 0$ a div b is a floor division, i.e, a div b is the largest integer such that $b * (a \ div \ b) \le a$.

The operation '/' has the same precedence as '*' and is defined as

$$a\%b := a - n * (a/n)$$

All operations are associated from left to right.

The semantics of programs containing undefined arithmetic operations (division by zero or modulo with its second operand equal to zero) is undefined.

2.3 Type Declarations

Type declarations of a program Π define a mapping \mathcal{D}_{Π} from identifiers (also called type names) and set expressions of Π to sets of ground terms. If q is a type name or a sort expression, $\mathcal{D}_{\Pi}(q)$ denotes the set of ground terms it is mapped to.

The mapping is defined as follows:

1. For every sort expression of the form

$$\{t_1,\ldots,t_n\}$$

$$\mathcal{D}_{\Pi}(\{t_1,\ldots,t_n\})$$
 is $\{t_1,\ldots,t_n\}$

2. For every sort expression of the form

$$t$$
 where V_1 in $type_1, \ldots, V_n$ in $type_n$

$$\mathcal{D}_{\Pi}(t \text{ where } V_1 \text{ in } type_1, \dots, V_n \text{ in } type_n) \text{ is } \{t|V_1 \in \mathcal{D}_{\Pi}(type_1), \dots, V_n \in \mathcal{D}_{\Pi}(type_n)\}$$

3. For every sort expression of the form

$$S_1 \diamond S_2$$

 $\mathscr{D}_{\Pi}(S_1 \diamond S_2)$ is $\mathscr{D}_{\Pi}(S_1) \odot \mathscr{D}_{\Pi}(S_2)$, where \odot is a set operation: union, intersection, or difference when \diamond is +, * or / correspondingly.

4. For every type declaration of the form

$$tn = set_expr$$

$$\mathcal{D}_{\Pi}(tn)$$
 is $\mathcal{D}_{\Pi}(set_expr)$

In the remainder of the section we will mostly use \mathcal{D}_{Π} to obtain the values which correspond to the type names of Π .

2.4 Programs with Free Variables and Ground Programs

Let Π be an L program and r be a rule of P. A variable V occurring in r is called a *free* variable if at least one of the following conditions is satisfied:

- 1. V occurs in the head of r, and the head of r is either a sentence or a maybe literal.
- 2. V occurs in the head of r and in the body of r.

Other variables occurring in r are quantified variables.

For a program Π we obtain a corresponding ground program Π^g as follows:

- 1. each rule r containing free variables is replaced with a maximal collection of rules, each of which corresponds to a unique substitution of free variables (together with possibly preceding type names) with ground terms. A variable v can be replaced with a term f if
 - there in an occurrence of a typed variable t v in r, and
 - $f \in \mathcal{D}(t)$
- 2. each arithmetic term is evaluated as described in section ??.

For example, consider the program

```
type1 = {1,2,5}.
type2 = {1,2}.

p(type1 X, type2 Y) if X+Y = 7.
maybe q(type1 X).
1<=|{t(type1 X, type2 Y)}| <= 2 if q(Y).</pre>
```

The corresponding ground program is:

```
p(1, 1) if 2 = 7
p(1, 2) if 3 = 7
p(2, 1) if 3 = 7
p(2, 2) if 4 = 7
p(5, 1) if 6 = 7
p(5, 2) if 7 = 7
maybe q(1).
maybe q(2).
maybe q(5).
1<=|{t(type1 X, 1)}| <= 2 if q(1).
1<=|{t(type1 X, 2)}| <= 2 if q(2).</pre>
```

Therefore, any program Π can be viewed as a shorthand for the corresponding ground program Π^g . In the following sections we will define the semantics of ground programs.

2.5 Program Models

A model of Π is a set of ground atoms satisfying certain conditions.

To describe the conditions, we first introduce some definitions. We will call a predicate atom $p(t_1, \ldots, t_n)$ basic if all the terms t_1, \ldots, t_n are basic. Similarly, a sentence is called basic if all the atoms occurring in the sentence are basic.

Definition 1. (A set ground atoms satisfying a basic predicate atom) A set of ground atoms A satisfies a simple predicate atom $p(t_1, ... t_n)$ if and only if $p(t_1, ... t_n) \in A$.

Definition 2. (A set of ground atoms satisfying a built-in atom)

A set of ground atoms satisfies a ground built-in atom $t_1 \diamond t_2$ iff one of the following conditions is satisfied:

- 1. \diamond is $=(\neq)$ and $t_1 = t_2(t_1 \neq t_2)$;
- 2. \diamond is < (\leq , \geq ,>), t_1 and t_2 are integer numerals representing numbers N_1 and N_2 respectively and $N_1 < N_2$ ($N_1 \leq N_2, N_1 \geq N_2, N_1 > N_2$);
- 3. \diamond is < (\leq , \geq ,>), t_1 and t_2 are identifiers starting with a lowercase letter, and t_1 lexicographically smaller than (smaller than or equal to, greater than or equal to, greater) t_2 .

The semantics of a program containing a built-in atom $t_1 \diamond t_2$ where $\diamond \in \{<, \leq, \geq, >\}$ is *defined* if and only of both t_1 , t_2 are both constants or integer numerals.

Definition 3. (A set of ground atoms satisfying a basic sentence) A set of of ground atoms A satisfies a basic sentence S ($A \vdash S$) if one of the following conditions is satisfied:

- 1. S is a basic atom, and $S \in A$
- 2. S is of the form not S', and A does not satisfy S'
- 3. S is of the form S_1 or S_2 (S_1 and S_2) and A satisfies one (both) of the sentences S_1 and S_2

Let S be a sentence. By S' we denote the sentence obtained from S by replacing each quantified term

quantifier p

with

quantifier p X

where X is a variable not occurring in S and unique for each quantified term in S.

Let

- $X_1, ... X_n$ be the variables occurring in existentially quantified terms of S' of types $Tx_1, ..., Tx_n$ correspondingly
- $Y_1, \ldots Y_m$ be the variables occurring in universally quantified terms of S' of types Ty_1, \ldots, Ty_m correspondingly

For a sentence S by $S|_{\{Z_1=z_1,...,Z_n=z_n\}}$ we denote the sentence obtained from S by

1. for each variable $Z_i \in \{Z_1, \dots, Z_n\}$ replacing every occurrence of a quantified term

quantifier
$$p Z_i$$

with z_i ;

2. replacing all other occurrences of each $Z_i \in \{Z_1, \ldots, Z_n\}$ with z_i .

Definition 4. (A set of ground atoms satisfying a sentence) A set of ground terms A satisfies S iff

$$\exists (x_1, \dots, x_n) \in \mathscr{D}(Tx_1) \times \dots \times \mathscr{D}(Tx_n) : \forall (y_1, \dots, y_m) \in \mathscr{D}(Ty_1) \times \dots \times \mathscr{D}(Ty_m) :$$
$$(A \vdash S'|_{\{X_1 = x_1, \dots, X_n = x_n, Y_1 = y_m, \dots Y_m = y_m\}})$$

Definition 5. (A set of ground atoms satisfying a cardinality constraint) Let A be a set of ground atoms and

$$v_1 <= |\{p(t_1, \dots t_n)\}| <= v_2.$$

be a cardinality constraint of a program Π . Let X_1, \ldots, X_n be all variables occurring in the constraint and $Tx_1, \ldots Tx_n$ be the types of the variables X_1, \ldots, X_n correspondingly. Let S be a set of ground atoms of Π of the form $p(t'_1, \ldots, t'_n)$ each of which is obtained from $p(t_1, \ldots, t_n)$ by replacing all occurrences of variables with elements of their corresponding types.

A satisfies the constraint $v_1 \leq |\{p(t_1, \dots t_n)\}| \leq v_2$ iff $v_1 \leq |S| \leq v_2$.

As described in section ??, program rules may be in one of the two forms. We sometimes say that a rule of the form

head.

has a body which is satisfied by any set of ground atoms and use a canonical form

head if body.

even if the body is not present.

Definition 6. (A set of ground atoms satisfying a rule)

A set of ground atoms A satisfies a rule head is either a cardinality constraint or a sentence and one of the following conditions holds:

- 1. A does not satisfy body;
- 2. A satisfies both body and head.

Definition 7. (A model of a program)

Let A be a set of ground atoms of a program Π ; M be the sets of all literals l such that Π contains a rule

maybe l if body.

where body is satisfied by A. A is a model of Π if and only if it can be written as a union $M' \cup C$, where

- 1. M' is $M \cap A$;
- 2. C is the smallest set of ground literals such that $M' \cup C$ satisfies all the rules of Π whose heads are sentences;
- 3. $M' \cup C$ satisfies all the rules of Π whose heads are cardinality constraints.

Alternative Definition for program models(by Dr.Gelfond)

Definition 8. (Program reduct)

Let Π be an L program and A be a set of ground atoms. We obtain an L program Π^A (the *reduct* of Π with respect to S) from Π as follows:

1. For every rule r of Π of the form

 $\verb|maybe| l if body.$

if body is satisfied by S, add the rule l if body and remove r.

2. For every rule r of Π of the form

maybe l if body.

where body is not satisfied by S, remove r.

Note that the reduct of Π is an L program not containing rules with maybe literals in heads.

Definition 9. (A model of a program)

Let A be a set of ground atoms of a program Π ; A is a model of Π if and only if the following conditions are satisfied:

- 1. A is the minimal set satisfying the rules of Π^A whose heads are sentences.
- 2. A satisfies all the rules of Π^A whose heads are cardinality constraints.

3 Examples

3.1 Simple Examples

```
The program \Pi_1:
a.
b if a.
has exactly one model \{a, b\}.
The program \Pi_2:
a if b.
has exactly one model {}, because it does not contain maybe literals or cardi-
nality constraints, and {} is the minimal set of atoms satisfying the only rule of
the program.
The program \Pi_3:
t1 = \{5,6,7\}.
t2 = \{0,1,2\}
p(t2 N) if q(N+5).
maybe q(t1 N).
1{q(t1 N)}2.
has three models:
{q(5),q(6),p(1),p(0)};
{q(6),q(7),p(1),p(2)};
{q(5),q(7),p(0),p(2)}.
Note that, for example, \{q(5), q(6), p(1), p(0), p(2)\} is not a model of \Pi_3,
because C = \{p(1), p(0), p(2)\} is not the smallest set of ground atoms such
that \{q(5), q(6)\} \cup C satisfies the rules
p(0) if q(5).
p(1) if q(6).
p(2) if q(7).
```

3.2 Safety Obligations

The safety obligations are met if

- 1. The system requirements have been certified;
- 2. The process for insuring validation has been followed, and
- 3. The system has passed all required inspections.

The 3 conditions for meeting safety obligations can be defined by the following L rule:

```
safetyObligationsMet if
  requirementsCertified and
  validationProcessFollowed and
  passed(every requiredInspection).
```

The system requirements are certified if they are sound and complete. This is expressed by the following L rule:

```
requirementsCertified if
requirementsSound and
requirementsComplete.
```

The validation process has been followed if sections A - E of code 825/A/6 have been satisfied. The code sections are represented by identifiers of the form $825_A_6_X$, where X is a character in the range A-Z. The corresponding L rule is:

```
validationProcessFollowed if
  satisfied(code_825_A_6_A) and
  satisfied(code_825_A_6_B) and
  satisfied(code_825_A_6_C) and
  satisfied(code_825_A_6_D) and
  satisfied(code_825_A_6_E).
```

The set of required inspection is represented by a type consisting of two elements:

```
requiredInspection = {epa_i_652_6B_714_A, epa_i_652_6B_714_B}.
```

The first inspection named EPA i/652/6B/714/A is passed if we have completed all required forms and have no EPA safety hearings pending:

```
passed(epa_i_652_6B_714_A) if
  completed(every requiredFromEPA714) and
  not pending(every epaFine_j_652_6B_710_C).
```

The second inspection named EPA i/652/6B/714/B is passed if we have paid all fines required under previous infractions under EPA code j/652/6B/710/C:

```
passed(epa_i_652_6B_714_B) if
   paid(every epaFine_j_652_6B_710_C).
```

All the forms, hearings and infractions mentioned in the previous two definitions are defined by types:

```
epaSafetyHearing = {}.
requiredFromEPA714 = {} .
epaFine_j_652_6B_710_C = {}.
```

A complete program with type declarations and rules put in the right order is given in appendix ??

3.3 K-vertex Connectivity of Graphs

A graph is called *K-vertex-connected* (or simply *K-connected*) if it has more than *K* vertices and remains connected whenever fewer than *K* vertices are removed.

We consider the undirected graph shown in Figure 1.

Figure 1: Complete undirected graph with 5 nodes

The number of nodes in the graph is stored in a constant n:

```
n = 5.
```

The number K is also a constant:

```
k = 2.
```

The nodes of the graph are represented with a type node.

```
node = \{1..n\}.
```

The edges of the graph are represented with the facts below. The atom edge(i, j) for integers i and j is true if and only if there is an edge from node i to node j in the graph. The edges are defined as follows³:

```
edge(node X, node Y) if X\%n = (Y+1)\%n.
edge(node X, node Y) if X\%n = (Y+2)\%n.
```

We will check K-connectedness by trying to remove up to K-1 nodes from the graph and checking whether the graphs remains connected. For a node N removed (N) is true if N is removed from the graph. Any node may be removed from the graph:

```
maybe removed(node N).
```

We are only interesting in the models where less than K nodes are removed:

```
0 \le |\{\text{removed(node N)}\}| \le k-1.
```

To defined the connectedness of a graph, we first define a $\operatorname{reachable}(X,Y)$ relation, which is true if and only if there exists a path from X to Y in the graph not containing removed nodes:

Any node which wasn't removed is reachable from itself:

```
reachable(node X, X) if not removed(X).
```

³for this example we could also define the edges using a single rule edge(node X, node Y), however we use a more sophisticated description for demonstration purpose. Similar rules can be used to define, for example, graphs with double ring topologies.

A node Y is reachable from node X if they are both not removed and there is an edge from X to Y:

A node Y is reachable from node X if there exists a node Z reachable from X such that Y is reachable from Z and none of the nodes X,Y,Z was removed:

The graph is k-connected if any two nodes that were not removed are reachable from each other. We next define the disconnected relation: the graph is disconnected if there exists a pair of nodes which are not reachable from each other.

```
disconnected if not reachable(some node X, some node Y) and not removed(X) and not removed(Y).
```

If there exists at least one way to remove at most k-1 such that the graph is disconnected, the graph is not k-connected. We can check this by, first, putting a constraint requiring the graph to be disconnected:

```
1<=|{disconnected}|<=1.</pre>
```

The graph is not K-connected if and only there exists at least one model of the program.

The program has no models for $k \le 4$ but has a model for k = 5. That is, the graph on figure ?? is 4 - connected but not 5 - connected (for example, the nodes $\{2,3,4,5\}$ can be removed from the graph to make it disconnected).

A L program for checking safety obligations

```
requiredInspection = {epa_i_652_6B_714_A, epa_i_652_6B_714_B}.
epaSafetyHearing = {}.
requiredFromEPA714 = {} .
epaFine_j_652_6B_710_C = {}.
safetyObligationsMet if
   requirementsCertified and
   {\tt validationProcessFollowed} and
   passed(every requiredInspection).
requirementsCertified if
   {\tt requirements} {\tt Sound} \ {\tt and} \\
   requirementsComplete.
validationProcessFollowed if
   satisfied(code_825_A_6_A) and
   satisfied(code_825_A_6_B) and
   satisfied(code_825_A_6_C) and
   satisfied(code_825_A_6_D) and
   satisfied(code_825_A_6_E).
passed(epa_i_652_6B_714_A) if
   completed(every requiredFromEPA714) and
   not pending(every epaFine_j_652_6B_710_C).
passed(epa_i_652_6B_714_B) if
   paid(every epaFine_j_652_6B_710_C).
```

B L program for checking K-connectivity of a graph

```
n = 5.
k = 2.
node = \{1..n\}.
edge(node X, node Y) if X%n = (Y+1)%n.
edge(node X, node Y) if X%n = (Y+2)%n.
maybe removed(node N).
0 \le |\{\text{removed}(\text{node N})\}| \le k-1.
reachable(node X, X) if not removed(X).
reachable(node X,node Y) if edge(X,Y)
                              and not removed(X)
                              and not removed(Y).
reachable(node X,node Y) if reachable(X,some node Z)
                              and reachable(Z,Y)
                              and not removed(X)
                              and not removed(Y)
                              and not removed(Z).
disconnected if
                    not reachable(some node X, some node Y)
                    and not removed(X)
                    and not removed(Y).
1<=|{disconnected}|<=1.</pre>
```