Teorema delle Contrazioni per Funzioni Vettoriali Differenziabili

Premessa

Sia $f: \mathbb{R}^n \to \mathbb{R}^m$, con $X \subseteq \mathbb{R}^n$. Supponiamo che f sia differenziabile. Per la definizione di differenziabilità:

- Ogni componente scalare $f_{\alpha}: \mathbb{R}^n \to \mathbb{R}$, per $\alpha = 1, \dots, m$, è differenziabile in $x \in X$.
- Esiste la matrice Jacobiana Df(x), data da:

$$Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

Dato che f è differenziabile, possiamo scrivere localmente l'approssimazione lineare di f:

$$f(x+h) \approx f(x) + Df(x)h$$
,

dove Df(x)h rappresenta il prodotto tra la Jacobiana e il vettore h.

Collegamento con il Teorema delle Contrazioni

Supponiamo che f sia contrattiva su X rispetto alla norma indotta $\|\cdot\|_p$, ovvero:

$$||f(x) - f(y)||_p \le K||x - y||_p$$
, con $K < 1$, $\forall x, y \in X$.

Usando l'approssimazione differenziale di f, possiamo stimare la differenza tra f(x+h) e f(x):

$$||f(x+h) - f(x)||_p \le ||Df(x)h||_p.$$

Applicando la proprietà submoltiplicativa della norma indotta:

$$||Df(x)h||_p \le ||Df(x)||_p ||h||_p.$$

Per la contrattività, inoltre:

$$||f(x+h) - f(x)||_p \le K||h||_p.$$

Quindi, combinando le disuguaglianze ed applicando la disuguaglianza di Cauchy-Schwarz:

$$||Df(x)||_p ||h||_p \le K||h||_p$$

da cui segue:

$$||Df(x)||_p \leq K.$$

Dimostrazione della Convergenza

Fissiamo un punto arbitrario $x_0 \in X$ e consideriamo la successione definita da:

$$x_{n+1} = f(x_n)$$
, per ogni $n \in \mathbb{N}$.

Poiché f è una contrazione, cioè esiste L < 1 tale che:

$$d(f(x), f(y)) \le L \cdot d(x, y),$$

possiamo provare che la successione (x_n) è di Cauchy. Infatti:

$$d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) \le L \cdot d(x_n, x_{n-1}).$$

Iterando questo procedimento, otteniamo:

$$d(x_{n+k}, x_n) \le L^n \cdot d(x_1, x_0).$$

Poiché L < 1, segue che $d(x_{n+k}, x_n) \to 0$ per $n \to \infty$, cioè la successione (x_n) è di Cauchy. Per completezza di X (spazio di Banach), (x_n) converge ad un punto $x^* \in X$.

Conclusioni

1. Esistenza del punto fisso: Grazie al Teorema delle Contrazioni, se la norma della Jacobiana soddisfa $||Df(x)||_p \le K < 1$, allora esiste un unico punto fisso $x^* \in X$ tale che:

$$f(x^*) = x^*.$$

2. Convergenza della successione: La successione iterativa definita da:

$$x_{n+1} = f(x_n), \quad x_0 \in X,$$

converge al punto fisso x^* .

3. Coerenza con il Teorema delle Contrazioni: Se $||Df(x)||_p \le K < 1$, allora f è contrattiva rispetto alla norma indotta $||\cdot||_p$, coerentemente con il Teorema delle Contrazioni. Questo implica la convergenza della successione e l'esistenza del punto fisso.