Algorithms from the book implemented in GAP

Version 1.0

29 January 2016

Rafael Villarroel-Flores Citlalli Zamora-Mejía

Rafael Villarroel-Flores Email: rvf0068@gmail.com

Homepage: http://rvf0068.github.io

Citlalli Zamora-Mejía Email: cizame@gmail.com

Copyright

© 2016 by Rafael Villarroel-Flores and Citlalli Zamora-Mejía

kreher-stinson package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Contents

2		tracking	
		Knapsack	
2 2	2.2	Generating all cliques	
	2.3	Exact cover	
	2.4 Bounding functions	Bounding functions	
	2.5	Exercises	
3	Heuristic Search		
	3.1	Uniform graph partition	

Chapter 1

Generating Combinatorial Objects

1.1 Subsets

1.1.1 KSSubsetLexRank

▷ KSSubsetLexRank(number, subset)

(function)

Returns the rank of subset as a subset of the set of numbers from 1 to number (Algorithm 2.1).

1.1.2 KSSubsetLexUnrank

▷ KSSubsetLexUnrank(number, rank)

(function)

Returns the subset of {1..number} whose rank is rank. (Algorithm 2.2).

1.1.3 KSkSubsetLexRank

▷ KSkSubsetLexRank(T, k, n)

(function)

Finds the rank of T, among all k-subsets of an n-set.

1.1.4 KSkSubsetLexUnrank

 \triangleright KSkSubsetLexUnrank(r, k, n)

(function)

Given an integer r between 0 and $\binom{n}{k} - 1$, returns the k-subset of an n-set with rank r.

Chapter 2

Bactracking

2.1 Knapsack

2.1.1 KSCheckKnapsackInput

> KSCheckKnapsackInput(profits, weights, capacity)

(function)

Checks for valid input data for the Knapsack problems (Problems 1.1-1.4).

2.1.2 KSKnapsack1

▷ KSKnapsack1(profits, weights, capacity)

(function)

Implementation of Algorithm 4.1.

2.1.3 KSKnapsack2

▷ KSKnapsack2(profits, weights, capacity)

(function)

Implementation of Algorithm 4.3.

2.2 Generating all cliques

2.2.1 KSAllCliques

▷ KSAllCliques(graph)

(function)

Implementation of Algorithm 4.4. A graph G is defined by the list graph, which must be a list of subsets of $\{1,...,n\}$, for some integer n. The neighbors of vertex i are the elements of graph[i].

2.3 Exact cover

2.3.1 KSExactCover

▷ KSExactCover(number, cover)

(function)

Finds an subcollection of cover (which is a set of subsets of $\{1,..,number\}$) that is an exact cover of $\{1,..,number\}$, if it exists.

2.4 Bounding functions

2.4.1 KSSortForRationalKnapsack

▷ KSSortForRationalKnapsack(profits, weights)

(function)

Given two vectors *profits*, *weights* of the same length, this function returns a vector of the two vectors, sorted in non-decreasing order of values of *profits[i]/weights[i]*.

2.4.2 KSRationalKnapsackSorted

▷ KSRationalKnapsackSorted(profits, weights, capacity)

(function)

Solves the rational Knapsack problem with parameters given. The vectors *profits*, *weights* must already be sorted.

2.4.3 KSKnapsack3

▷ KSKnapsack3(profits, weights, capacity)

(function)

Solves the Knapsack problem with parameters given, using the function KSRationalKnapsack-Sorted as bounding function.

2.4.4 KSRandomKnapsackInstance

▷ KSRandomKnapsackInstance(size, maximum_weight)

(function)

Returns a random instance of a Knapsack problem, for size objects. The maximum weight is $maximum_weight$. For each i, the profit P[i] is $2*W[i]*\varepsilon$, where ε is a random number between 0.9 and 1.1.

2.4.5 KSRandomTSPInstance

▷ KSRandomTSPInstance(n, Wmax)

(function)

Returns a random instance of the TSP problem, which is a symmetric n by n matrix, such that its ij entry is the cost to travel from city i to city j. The entries in the diagonal are made equal to ∞ . Each cost is a random integer between 1 and Wmax.

2.4.6 KSTSP1

▷ KSTSP1(*G*) (function)

Solves the TSP problem, for the instance *G*, traversing the whole tree space.

2.4.7 KSMinCostBound

▶ KSMinCostBound(V, G) (function)

A bounding function for the TSP problem.

2.4.8 KSReduce

Reduce function for matrices, which will be useful to implement a secound bounding function for the TSP problem.

2.4.9 KSReduceBound

A second bounding function for the TSP problem. *V* is a partial solution, and *M* is the problem instance. This implements Algorithm 4.12.

2.4.10 KSTSP2

 \triangleright KSTSP2(G, F) (function)

Solves the TSP problem for instance G, using the bounding function F.

2.4.11 KSMaxClique1

ightharpoonup KSMaxClique1(G) (function)

Adapts the function that lists the complete subgraphs of G, to find the size of the largest clique of G. This implements Algorithm 4.14.

2.4.12 KSMaxClique2

 \triangleright KSMaxClique2(G, F) (function)

Finds the size of the maximum clique in the graph G, using the bounding function F. This implements Algorithm 4.19.

2.4.13 KSSizeBound

▷ KSSizeBound(XX, G, C1)

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and CI is the set of candidates to extend XX.

2.4.14 KSGenerateRandomGraph

▷ KSGenerateRandomGraph(n)

(function)

Returns a list of edges of a random graph on n vertices. This implements Algorithm 4.20.

2.4.15 KSEdgeListToAdjacencyList

▷ KSEdgeListToAdjacencyList(Ged, n)

(function)

Given the list of edges Ged of a graph with n vertices, returns the adjacency list of such graph.

2.4.16 KSGreedyColor

▷ KSGreedyColor(G)

(function)

Colors the vertices of a graph G using a greedy strategy. This implements Algorithm 4.16.

2.4.17 KSSamplingBound

▷ KSSamplingBound(XX, G, C1)

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and C1 is the set of candidates to extend XX. This function uses a fixed greedy coloring of the graph G. Implements Algorithm 4.17.

2.4.18 KSInducedSubgraph

▷ KSInducedSubgraph(G, L)

(function)

Returns the adjacency list of the subgraph of G induced by the vertices in L.

2.4.19 KSGreedyBound

▷ KSGreedyBound(XX, G, C1)

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and CI is the set of candidates to extend XX. This uses a greedy coloring of the subgraph of G induced by L.

2.4.20 KSGenerateRandomGraph2

```
▷ KSGenerateRandomGraph2(n, delta)
```

(function)

Returns the list of edges of a random graph on n vertices with edge density delta.

2.4.21 KSTSP3

$$\triangleright$$
 KSTSP3(G , F) (function)

Solves the TSP problem for instance G, using bounding function F, applying the branch and bound technique.

2.5 Exercises

2.5.1 KSQueens

Solves the *n* queens problem for a $size \times size$ board.

```
gap> KSQueens(4);
[ 2, 4, 1, 3 ]
[ 3, 1, 4, 2 ]
```

Chapter 3

Heuristic Search

3.1 Uniform graph partition

3.1.1 KSRandomkSubset

 \triangleright KSRandomkSubset(k, n) (function)

Returns a randomly chosen k-subset of the set of integers from 1 to n.

3.1.2 KSSelectPartition

▷ KSSelectPartition(n) (function)

Returns a random partition of the set $\{1, 2, ..., 2n\}$ into two subsets of size n each. (Algorithm 5.7)

3.1.3 KSCost

$$ightharpoonup KSCost(G, P)$$
 (function)

Returns the cost of the partition *P* of the vertices of the weighted graph *G*.

3.1.4 KSGain

$$\triangleright$$
 KSGain(G , P , u , v) (function)

P is a partition in equal parts of the vertices of G. This function calculates the change in the value of the cost function when interchanging the vertex u from the first set in the partition P with the vertex v which is in the second set of the partition.

3.1.5 KSRandomCostMatrix

Returns a symmetric n by n matrix, such that its entries are random integers from 0 to Wmax, and with zeros in the main diagonal.

3.1.6 KSAscend

 \triangleright KSAscend(G, P) (function)

Given a partition P of the vertices of the weighted graph G, it returns a partition Q with less cost than P, by exchanging one vertex of the partition, if such partition exists. Otherwise, returns the same partition P.

Index

```
KSAllCliques, 5
KSAscend, 11
KSCheckKnapsackInput, 5
KSCost, 10
KSEdgeListToAdjacencyList, 8
KSExactCover, 6
KSGain, 10
{\tt KSGenerateRandomGraph}, 8
KSGenerateRandomGraph2, 9
KSGreedyBound, 8
KSGreedyColor, 8
KSInducedSubgraph, 8
KSKnapsack1, 5
KSKnapsack2, 5
KSKnapsack3, 6
KSkSubsetLexRank, 4
KSkSubsetLexUnrank, 4
KSMaxClique1, 7
KSMaxClique2, 7
KSMinCostBound, 7
KSQueens, 9
KSRandomCostMatrix, 10
KSRandomKnapsackInstance, 6
KSRandomkSubset, 10
KSRandomTSPInstance, 6
{\tt KSRationalKnapsackSorted}, 6
KSReduce, 7
KSReduceBound, 7
KSSamplingBound, 8
KSSelectPartition, 10
KSSizeBound, 8
KSSortForRationalKnapsack, 6
KSSubsetLexRank, 4
KSSubsetLexUnrank, 4
KSTSP1, 7
KSTSP2, 7
KSTSP3, 9
```