

COMPARATOR, MUX Part 1

Lecture No. 1

By- CHANDAN SIR

$$f(A,B,C,D) = \sum_{n}(0,2,4,6,10,11,13,15)$$

ADT ABCTARD

AB+AB+AC

AB+ AB+ BC

AB+AB+ABC Semiminimized expression

AB+AB.

Q.3

$$f(A,B,C,D) = \sum_{\alpha} m (1,5,6,7,11,12,13,15)$$

$$\hat{A}^{(C)} = \sum_{\alpha} m (1,5,6,7,11,12,13,15)$$

$$\hat{A}^{(C)} = \sum_{\alpha} m (1,5,6,7,11,12,13,15)$$

Q.6

 $f(A,B,C,D) = \sum m(0,2,4,6,7,8,10,11,12,14,15)$

07

 $f(A,B,C,D) = \sum m(1,5,6,7,11,12,13,15)$

14

HW

K Map - Basics

Don't Care Condition

Combination of inputs on which the output may or may not depends are called don't care condition.

f(A₁R) =
$$\overline{AB} + \overline{AB} + \overline{AB}$$

Q.8

 $f(A,B,C,D) = \sum_{n=0}^{\infty} m(0,2,4,6,7,8,10,11,12,14,15) + \sum_{n=0}^{\infty} d(1,3)$

AB CO	900	0(11	10
00	V	X	X	1
01	1		1	L
- 11	Ī)	1
10	1		1	(I)

K-IMAP in pos form :->

$$f = \overline{B}\overline{C} + \overline{A}B + BC$$

$$f = \overline{B}\overline{C} + \overline{A}B + BC$$

$$f = \overline{B}\overline{C} + \overline{A}B + BC$$

$$= \overline{B}\overline{C} \cdot \overline{A}B \cdot \overline{B}C = (B+C) \cdot (A+B) \cdot (B+C)$$

$$f = \overline{B}\overline{c} + \overline{A}c + Bc$$

$$f = \overline{B}\overline{c} + \overline{A}c + Bc > \overline{B}\overline{c} \cdot \overline{A}c \cdot Bc$$

$$f = \overline{B}\overline{c} + \overline{A}c + Bc > \overline{B}\overline{c} \cdot \overline{A}c \cdot Bc$$

$$= (B+c) \cdot (A+c) \cdot (B+c)$$

AB	Minterm	Maxterm
00	AB AB AB	ATB ATB ATB

