Cardinality Lecture

Andres Aradillas Fernandez

18 September 2022

Definition of Cardinality

Definition: Let cardinality of a set be denoted $|\cdot|$.

- Notation shorthand: $[n] = \{0, 1, ..., n 1\}.$
- Ex: $[3] = \{0, 1, 2\}$

Definition: *Enumeration* of finite set *S* with |S| = n is a bijective function $e: S \to [n]$.

Lemma 0.1 – Suppose X, Y are finite sets such that $|X| \le |Y|$. Then there exists an injection $f: X \to Y$

Proof. Let |X| = n, |Y| = m, $n \le m$. Then let $e_X : X \to [n]$, $e_Y : Y \to [m]$. Define $f : X \to Y$ such that $e_X = e_Y(f(x))$, $\forall x \in X$.

Every $e_X(x)$ is an integer within the set [n], and since $n \le m$, it is also within [m], a larger set. Since e_Y is bijection, \exists exactly one $y \in Y$ with $e_Y(y) = e_X(x)$, which we declare to be f(x), so we therefore know f(x) is well-defined since a single x does not map to multiple y.

Next, we want injection. Suppose $f(x_1) = f(x_2)$ for $x_1, x_2 \in X$. Then, $e_Y(f(x_1)) = e_Y(f(x_2))$, so then $e_X(x_1) = e_X(x_2)$. But we know $e_X(\cdot)$ is a bijection, so $x_1 = x_2$.

Lemma 0.2 – If X, Y finite sets such that |X| > |Y|, no injective mapping $f: X \to Y$. Proof is due to Pigeonhole Principle.

Definition: Given two sets A, B, then $|A| \le |B| \iff \exists injection A \to B$. $|A| \le |B|$ and $|B| \le |A| \Rightarrow |A| = |B|$

Theorem: (Schroeder-Bernstein Theorem) Given sets A, B, if there is an injection $f_1: A \to B$ and surjection $f_2: A \to B$, then there is a bijection $f: A \to B$.

Definition: Set S is countable if it has the same cardinality as a subset of \mathbb{N} , countably infinite if $|S| = |\mathbb{N}|$.

Lemma 0.3 – Suppose $A \subseteq B$. Then, $|A| \le |B|$. Proof is there exists an injection.

Important things about infinite sets:

- Removing finite number of elements preserves cardinality.
- Adding countable set to countable set preserves cardinality.