05/15/2006 16:27 FAX @009/026

Applicants:

VanGoor et al.

Application No:

10/800,022

AMENDMENTS

Please replace all prior versions and listings of claims with the amended claims as follows:

IN THE CLAIMS

1-51. (Canceled)

52. (currently amended) A compound of formula (II):

or a pharmaceutically acceptable salt thereof, wherein:

 C_1 is H, aryl, heterocyclic, heteroaryl, aliphatic, $C(0)R^2$, $C(0)R^3$, $C(0)NH_3$, $C(0)NH_3$, $C(0)NH_3$, $C(0)NH_3$, $C(0)N(R^3)_3$.

 X_1 is selected from halo, R^2 , CF_3 , CN, COOH, COOR, $C(O)RI_3$, C(O)NHR, or C(O)NHR, or C(O)NHR, or C(O)NHR, C(O)NHR, or C(O)NHR,

each R is independently R^2 or R^3 ;

wherein each of ring B, optionally including X_1 and OH, and C_1 optionally comprises up to 4 substituents, and ring A optionally comprises up to 3 substituents, wherein said substituents are independently selected from R^1 , R^2 , R^3 , R^4 , or R^5 ;

 R^1 is R^6 or $(CH_2)_n-Y$;

n is 0, 1 or 2;

Y is halo, CN, NO2, CF3, CHF2, CH2F,

Applicants: VanGoor et al.

Application No: 10/800,022

OCF₃, OH, SCHF₂, SR⁶, S(O)R⁶, SO₂R⁶, NH₂, NHR⁶, N(R⁶)₂, NR⁶R⁸, COOH, COOR⁶ or OR⁶; or

two R¹ on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\tt R}^2$ is aliphatic, wherein each ${\tt R}^2$ optionally comprises up to 2 substituents independently selected from ${\tt R}^1$, ${\tt R}^4$, or ${\tt R}^5$;

 \mathbb{R}^3 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 or \mathbb{R}^5 ;

 R^4 is OR^5 , OR^6 , $OC(0)R^6$, $OC(0)R^5$, $OC(0)OR^6$, $OC(0)OR^5$, $OC(0)N(R^6)_2$, $OC(0)N(R^5)_2$, $OC(0)N(R^6R^5)$, $OP(0)(OR^6)_2$, $OP(O)(OR^5)_2$, $OP(O)(OR^6)(OR^5)$, SR^6 , SR^5 , $S(O)R^6$, $S(O)R^5$, SO_2R^6 , SO_2R^5 , $SO_2N(R^6)_2$, $SO_2N(R^5)_2$, $SO_2NR^5R^6$, SO_3R^6 , SO_3R^5 , $C(0)R^5$, $C(0)OR^5$, $C(0)R^6$, $C(0)OR^6$, $C(0)N(R^6)_2$, $C(0)N(R^5)_2$, $C(0)N(R^5R^6)$, $C(0)N(OR^6)R^6$, $C(0)N(OR^5)R^6$, $C(0)N(OR^6)R^5$, $C(0)N(0R^5)R^5$, $C(NOR^6)R^6$, $C(NOR^6)R^5$, $C(NOR^5)R^6$, $C(NOR^5)R^5$, $N(R^6)_2$, $N(R^5)_2$, $N(R^5R^6)$, $NR^5C(0)R^5$, $NR^6C(0)R^6$, $NR^6C(0)R^5$, $NR^{6}C(0)OR^{6}$, $NR^{5}C(0)OR^{6}$, $NR^{6}C(0)OR^{5}$, $NR^{5}C(0)OR^{5}$, $NR^{6}C(0)N(R^{6})_{2}$, $NR^{6}C(0)NR^{5}R^{6}$, $NR^{6}C(0)N(R^{5})_{2}$, $NR^{5}C(0)N(R^{6})_{2}$, $NR^{5}C(0)NR^{5}R^{6}$, $NR^{5}C(0)N(R^{5})_{2}$, $NR^{6}SO_{2}R^{6}$, $NR^{6}SO_{2}R^{5}$, $NR^{5}SO_{2}R^{5}$, $NR^{6}SO_{2}N(R^{6})_{2}$, $NR^{6}SO_{2}NR^{5}R^{6}$, $NR^{6}SO_{2}N(R^{5})_{2}$, $NR^{5}SO_{2}NR^{5}R^{6}$, $NR^5SO_2N(R^5)_2$, $N(OR^6)R^6$, $N(OR^6)R^5$, $N(OR^5)R^5$, $N(OR^5)R^6$, $P(0) (OR^6)N(R^6)_2$, $P(0) (OR^6)N(R^5R^6)$, $P(0) (OR^6)N(R^5)_2$, $P(0) (OR^5)N(R^5R^6)$, $P(0) (OR^5)N(R^6)_2$, $P(0) (OR^5)N(R^5)_2$, $P(0)(OR^6)_2$, $P(0)(OR^5)_2$, or $P(0)(OR^6)(OR^5)$;

VanGoor et al.

Application No:

10/800,022

 ${\tt R}^5$ is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3 ${\tt R}^1$ substituents;

 ${\bf R}^6$ is H or aliphatic, wherein ${\bf R}^6$ optionally comprises a ${\bf R}^7$ substituent;

 R^7 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each R^7 optionally comprising up to 2 substituents independently chosen from H, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or $(CH_2)_n-Z$;

Z is selected from halo, CN, NO₂, CHF₂, CH₂F, CF₃, OCF₃, OH, SCHF₂, S-aliphatic, S(O)-aliphatic, SO₂-aliphatic, NH₂, N-aliphatic, N(aliphatic)₂, N(aliphatic) 8 , COOH, C(O)O(-aliphatic), or D-aliphatic; and

 R^8 is an amino protecting group.

53. (Canceled)

- 54. (currently amended) The compound according to claim 53, wherein X_1 is selected from (C1-C4)-aliphatic, or C(0)-NH₂ F.
- 55. (currently amended) A compound having formula (III):

05/15/2006 16:28 FAX @ 012/026

Applicants: VanGoor et al.

Application No: 10/800,022

$$X_2$$
 $HN-N$
 X_3
 OH
 $(III)_7$

or a pharmaceutically acceptable salt thereof, wherein:

 X_2 is selected from halo, R^2 , CF_3 , CN, COOH, $COOR^2$, $COOR^3$, $C(O)R^2$, $C(O)R^3$, $C(O)NH_2$, C(O)NHR, or $C(O)NR^2$;

 X_3 is selected from H, halo, CF_3 , or NO_2 ; each R is independently R^2 or R^3 ;

 R^1 is oxo, R^6 or $(CH_2)_n - Y_i$

n is 0, 1 or 2;

Y is halo, CN, NO₂, CHF₂, CH₂F, CF₃, OCF₃, OH, SCHF₂, SR⁶, S(O)R⁶, SO₂R⁶, NH₂, NHR⁶, N(R⁶)₂, NR⁶R⁸, COOH, COOR⁶ or OR⁶; or

two R¹ on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 ${\bf R}^2$ is aliphatic, wherein each ${\bf R}^2$ optionally comprises up to 2 substituents independently selected from ${\bf R}^1,~{\bf R}^4,$ or ${\bf R}^5$:

 \mathbb{R}^3 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 or \mathbb{R}^5 ;

VanGoor et al.

Application No:

10/800,022

 $C(O)R^5$, $C(O)OR^5$, $C(O)R^6$, $C(O)OR^6$, $C(O)N(R^6)_2$, $C(O)N(R^5)_2$, $C(O)N(R^5R^6)$, $C(O)N(OR^6)R^6$, $C(O)N(OR^5)R^6$, $C(O)N(OR^6)R^5$, $C(O)N(OR^5)R^6$, $C(NOR^6)R^6$, $C(NOR^6)R^6$, $C(NOR^5)R^6$, $C(NOR^6)_2$, $C(O)R^6$, C(O

 ${\rm R}^5$ is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3 ${\rm R}^1$ substituents;

 ${\tt R}^6$ is H or aliphatic, wherein ${\tt R}^6$ optionally comprises a ${\tt R}^7$ substituent:

 R^7 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each R^7 optionally comprising up to 2 substituents independently chosen from H, (C_1-C_6) -straight or branched alkyl, (C_2-C_6) straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or $(CH_2)_{n}-Z$;

Z is selected from halo, CN, NO₂, CHF₂, CH₂F, CF₃, OCF₃, OH, SCHF₂, S-aliphatic, S(0)-aliphatic, SO₂-aliphatic, NH₂, N-aliphatic, N(aliphatic)₂, N(aliphatic) 8 , COOH, C(0)O(-aliphatic, or O-aliphatic; and

 ${\sf R}^{\sf 8}$ is an amino protecting group; provided that:

VanGoor et al.

Application No:

10/800,022

(i) when X_1 is H, then X_2 is not methyl, chloro, or bromo;

(ii) when X₂ is chloro, then X₃ is not fluoro, chloro, or nitro;

(iii) when X, is methyl, then X, is not nitro or chloro.

56-82. (Canceled)

83. (currently amended) A compound selected from IA-6, IA-7, IA-20, IA-26, IA-31, IA-42, IA-50, IA-54, IA-61, IA-64, IA-76, IA-92, IA-95, or IA-107.

VanGoor et al.

Application No:

10/800,022

VanGoor et al.

Application No:

10/800,022

VanGoor et al.

Application No:

10/800,022

(currently amended) A pharmaceutical composition comprising a compound according to any one of claims 40-83, 52, 55, 83, 85, and 86, and a pharmaceutically acceptable carrier or adjuvant.

Applicants:

VanGoor et al.

Application No:

10/800,C22

85. (new) A compound of formula (I):

or a pharmaceutically acceptable salt thereof; wherein:

A is '7' OH; wherein X, is halogen;

B is ; wherein X, is H, halo, CF, or NO,

C is H;

X is H; and

provided that when X, is H, X, is not Cl.

- 86. (new) The compound according to claim 85, wherein said compound has one or more of the features selected from the group:
 - (a) X_3 is halo, CF_3 , or NO_2 ; and
 - (b) X₂ is halo.