

АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХ

Хеширование (часть 2 из 2)

Paмон Антонио Родригес Залепинос arodriges@hse.ru

Структура модуля 2

Модуль Nº 2	Nº		Дата	Тема лекции	Nº	Домашние задания
	7	1	27 окт	Хеширование, хэш таблицы 2	2b	Д3-Каникулы
	8	2	03 ноя	Фильтры	3	Задание на С++
	9	3	10 ноя	СД для вторичной памяти	4	Задание на С++
	10	4	17 ноя	Пространственные СД	5	Задание на С++
	11	5	24 ноя	Параллельные СД	6	Задание на С++ и/или С# (зависит
	12	6	01 дек	Параллельные СД 2		от выбранного уровня сложности)
	13	?	08 дек	Деревья в оперативной памяти		Примерно за 2 недели заканчиваются ДЗ
	14	8	15 дек	Современные тренды		
	СЕССИЯ с 21.12.2020					

Highlights:

- лекции, семинары и ДЗ синхронизированы
- ? возможно будет еще одна лекция, с другой темой
- некоторые представления об эффективности СД будут развеяны:
 - на семинаре вы собственноручно, на практике сравните производительность красно-черных деревьев и хэш таблиц (если не нужны next & prev)
- пространственные СД обширный класс
 - в современном мире, около 80% всех данных содержат географическую привязку:
 <u>ссылка 1</u> (Forbes), <u>ссылка 2</u> (Carto)
 - отдельные секции на значимых конференциях (e.g., VLDB: https://vldb2020.org/program.html)

Требование к студентам на лекции: слушайте внимательно!

Польза КДЗ: Roaring Bitmaps & Invisible Join

Возможно сейчас не до конца понятны

- все преимущества bitmaps
- тонкости современных СРU
- другие нюансы

В этом случае мы работаем на будущее:

- вы будете постепенно получать новые, дополнительные знания
- обновлять свое представление о bitmaps в ходе своей карьеры

Дополнительная польза: вы также

- изучали профессиональный код RoaringBitmaps
- разбирались со статьями о bitmaps

Надеемся, что опыт выполнения КДЗ будет полезным для Вашей будущей карьеры!

Если распределение ключей известно...

Например,

K — вещественные числа, причем в диапазоне [0,1) и равномерно распределены

$$k \in U$$
, $0 \le k < 1$

Тогда

$$h(k) = \lfloor km \rfloor$$

удовлетворяет требованию простого равномерного хеширования

Хорошая хеш-функция не должна коррелировать с закономерностями, которым подчиняются ключи

Метод деления

Простейший способ

$$h(k) = k \mod m$$

Каких значений m избегать?

- Например, если $m=2^p$, то h(k) просто p младших бит числа k
- Лучше, чтобы значение хеш-функции зависело от всех бит ключа
- m может быть простым числом, достаточно далеким от степени 2

Метод умножения

$$h_A(k) = \lfloor m(Ak \ mod \ 1) \rfloor$$

- Генерирует значения в диапазоне $\{0, ..., m-1\}$
- $Ak \ mod \ 1$ получает дробную часть Ak
- Мы перестаем зависеть от m
- Значение *А* должно быть аккуратно подобрано **Например** (константа Дональда Кнута):

$$A \approx \frac{\sqrt{5} - 1}{2} = 0.6180339887 \dots$$

Хеш-таблицы с открытой адресацией

В случае коллизии (ячейка занята) ищем другое свободное место (ячейку) в этой же таблице до m раз

- Все объекты непосредственно хранятся в таблице
- Каждая ячейка содержит либо объект либо NIL
- Таблица может оказаться заполненной (при этом вставка более невозможна)
- Экономия памяти (нет списков, указателей на списки) → можно создавать хеш-таблицы большего размера, легче хранить в кэшах

$$h: U \times \{0,1,...,m-1\} \mapsto \{0,1,2,...,m-1\}$$

Очередной поиск места – испытание (probe) $\langle h(k,0), h(k,1),...,h(k,m-1) \rangle$

Линейное исследование

Пусть вспомогательная хеш-функция задана в виде

$$h': U \mapsto \{0,1,...,m-1\}$$

Тогда данном методе используется хеш-функция

$$h(k,i) = (h'(k) + i) \bmod m$$

где i принимает значения в диапазоне [0,m)

Недостаток: вероятность заполнения пустой ячейки, которой предшествуют i заполненных ячеек =(i+1)/m

Образуются длинные серии заполненных ячеек

Квадратичное исследование

Пусть вспомогательная хеш-функция задана в виде

$$h': U \mapsto \{0,1,...,m-1\}$$

Тогда данном методе используется хеш-функция

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

где i принимает значения в диапазоне [0,m), $c_1,c_2\neq 0$

Неформально: «прыгаем» дальше от заполненной ячейки, чем в линейном исследовании

Двойное хеширование

Две вспомогательные хеш-функции

$$h_1, h_2: U \mapsto \{0, 1, ..., m-1\}$$

Тогда данном методе используется хеш-функция

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$

где i принимает значения в диапазоне [0,m)

 $h_2(k)$ и m должны быть взаимно простыми, например, $m=2^p, h_2(k)$ возвращает только нечетные значения

Обыкновенная кукушка

Кукушонок выбрасывает яйца хозяев из гнезда.

Кукушкино хеширование (предложено в 2001 г.)

- Можем хранить элемент в ячейке $h_1(x)$ либо $h_2(x)$
- Если обе ячейки заняты, вытолкнуть элемент из $h_1(x)$
- Очередная ячейка занята выталкивать до n раз, потом «перехешировать» (напр. увеличить размер таблицы в 2 раза)


```
procedure insert(x)

if T[h_1(x)] = x or T[h_2(x)] = x then return;

pos \leftarrow h_1(x);

loop n times {

if T[pos] = \text{NULL then } \{ T[pos] \leftarrow x; \text{ return} \};

x \leftrightarrow T[pos];

if pos= h_1(x) then pos\leftarrow h_2(x) else pos\leftarrow h_1(x);}

rehash(); insert(x)

end
```

Rasmus Pagh, Cuckoo Hashing for Undergraduates, 2006

Благодарю за внимание!

Paмон Антонио Родригес Залепинос <u>arodriges@hse.ru</u>