Ferienkurs Analysis 3 - Übungen Funktionentheorie

Ralitsa Bozhanova, Max v. Vopelius

12.08.2009

1 Differenzierbarkeit

- (a) Sei $A=(a_{ij})_{i,j=1,2}\in\mathbb{R}^{2\times 2}$. Zeigen Sie, dass die von A durch die Matrixmultiplikation auf $\mathbb{R}^2\cong\mathbb{C}$ induzierte \mathbb{R} -lineare Abbildung $T:\mathbb{C}\to\mathbb{C}$ genau dann \mathbb{C} -linear ist, falls $a_{21}=-a_{12}$ und $a_{22}=a_{11}$
- (b) Sei $U \subseteq \mathbb{C}$ nichtleer und offen. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (1) f ist komplex differenzierbar in $z_0 \in U$
 - (2) f ist reell differenzierbar in $z_0 \in U$ und das Differenzial $Df(z_0)$ ist \mathbb{C} -linear
 - (3) f ist reell differenzierbar und es gelten die Cauchy-Riemannschen Differentialgleichungen:

$$v_x(z_0) = -u_y(z_0), v_y(z_0) = u_x(z_0)$$

(c) Sei $f: \mathbb{C} \to \mathbb{C}$ definiert durch $f(z) := x^3y^2 + ix^2y^3$ wobei z = x + iy. In welchen Punkten von \mathbb{C} ist f komplex differenzierbar? Ist f dort auch holomorph?

2 Differenzierbarkeit (2)

- (a) Zeigen Sie, dass $f(z) = e^x \cos y + i e^x \sin y$ auf \mathbb{C} und $g(z) = \frac{\log (x^2 + y^2)}{2} + i \arctan \left(\frac{y}{x}\right)$ auf $\mathbb{C} \setminus \{z \in \mathbb{C} | \operatorname{Re} z = 0\}$ holomorph ist.
- (b) Bestimmen Sie die auf \mathbb{C} holomorphe Funktion f mit Realteil $u(z) = e^x \sin y$ und f(0) = 0.
- (c) Zeigen Sie, dass die Funktion zu $\mathbb{C} \setminus \{0\} \to \mathbb{R}$ mit $u(z) = \log |z|$ in $\mathbb{C} \setminus \{0\}$ harmonisch ist, aber nicht Realteil einer komplex differenzierbaren Funktion sein kann.

3 Komplexe Wegintegrale

(a) Seien a, s > 0 und γ der Rechteckrand [-r - is, r - is] + [r - is, r + is] + [r + is, -r + is] + [-r + is, -r - is]. Berechnen Sie

$$\int_{\gamma} \frac{dz}{z}$$

2

(b) Sei $G=\{z\in\mathbb{C}||z|<1, \operatorname{Re}z+\operatorname{Im}z>1\}.$ Konstruieren Sie einen Weg γ entlang ∂G und berechnen Sie

$$\int_{\gamma} dz \operatorname{Im} z \text{ und } \int_{\gamma} dz \overline{z}$$

(c) Sei p(z)ein komplexwertiges Polynom, $z_0\in\mathbb{C},\,r>0.$ Zeigen Sie, dass

$$\int_{\partial B_r(z_0)} dz \overline{p(z)} = 2\pi i r^2 \overline{p'(z_0)}$$

4 Cauchyscher Integralsatz

Sei $n \in \mathbb{Z}, z_0 \in \mathbb{C}.D \equiv B_r(z_0) := \{z \in \mathbb{C} | |z - z_0| < r\}, r > 0, z \in \mathbb{C}$

$$I_n(z) := \frac{1}{2\pi i} \int_{\partial B} d\xi \left(\xi - z\right)^n$$

Zeigen Sie, dass $I_n(z_0) = \delta_{n,-1}$.

5 Integralformeln für Polynome

Es sei $p(z) := \sum_{n=0}^{N} a_n z^n$ mit Koeffizienten $a_n \in \mathbb{C}$ gegeben.

(a) Sei $\epsilon > 0$ und k $in\mathbb{Z}$. Berechnen Sie

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} dz \frac{p(z)}{z^{k+1}}$$

(b) Sei $\epsilon > 0$ und $z_0 \in \mathbb{C}$. Berechnen Sie

$$\frac{1}{2\pi i} \int_{|z-z_0|=\epsilon} dz \frac{p(z)}{z-z_0}$$

(c) Sei $k \in \mathbb{N}_0$. Berechnen Sie

$$\frac{1}{2\pi i} \int_{|z|=1} dz \frac{e^{-z}}{z^{k+1}}$$

6 Logarithmusfunktion

Sei $U \subset \mathbb{C}$ offen und zusammenhängend. Eine holomorphe Funktion $f: U \to \mathbb{C}$ heißt eine Logarithmusfunktion, falls $e^{f(z)} = z \, \forall z \in U$.

Sei $\phi \in \mathbb{R}$ und $z_0 = e^{i\phi}$ und sei

$$L_{\phi}(z) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{nz_0^n} (z - z_0)^n + i\phi$$

(a) Wie groß ist der Konvergenzradius von L_{ϕ} ?

3

(b)Zeigen Sie, dass L_ϕ eine Logarithmus
funktion ist.