1.2 Непрограммисткое 1

Построение полинома Жегалкина 15 различными функциями от четырех переменных.

1.
$$f = (X_1 \lor X_2) \land (X_3 \lor X_4)$$

X_1	X_2	X_3	X_4	$X_1 \vee X_2$	$X_3 \vee X_4$	f
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	0	0
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	0	0
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

$$f(0,0,0,0) = a_0 = 0$$

$$f(0,0,0,1) = a_0 \oplus a_4 = 0$$

$$f(0,0,1,0) = a_0 \oplus a_3 = 0$$

$$f(0,0,1,1) = a_0 \oplus a_3 \oplus a_4 \oplus a_{34} = 0$$

$$f(0,1,0,0) = a_0 \oplus a_2 = 0$$

$$f(0,1,0,1) = a_0 \oplus a_2 \oplus a_4 \oplus a_{24} = 1$$

$$f(0,1,1,0) = a_0 \oplus a_2 \oplus a_3 \oplus a_{23} = 1$$

$$f(0,1,1,1) = a_0 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_{23} \oplus a_{34} \oplus a_{24} \oplus a_{234} = 1$$

$$f(1,0,0,0) = a_0 \oplus a_1 = 1$$

$$f(1,0,0,1) = a_0 \oplus a_1 \oplus a_4 \oplus a_{14} = 1$$

$$f(1,0,1,0) = a_0 \oplus a_1 \oplus a_3 \oplus a_{13} = 1$$

$$f(1,0,1,1) = a_0 \oplus a_1 \oplus a_3 \oplus a_4 \oplus a_{13} \oplus a_{14} \oplus a_{34} \oplus a_{134} = 1$$

$$f(1,1,0,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_{12} = 0$$

$$f(1,1,0,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_4 \oplus a_{12} \oplus a_{24} \oplus a_{14} \oplus a_{124} = 1$$

$$f(1,1,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_{12} \oplus a_{13} \oplus a_{23} a_{123} = 1$$

$$f(1,1,1,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_{12} \oplus a_{13} \oplus a_{14} \oplus a_{24} \oplus a_{23} \oplus$$

$$\oplus \ a_{34} \oplus a_{123} \oplus a_{124} \oplus a_{134} \oplus a_{234} \oplus a_{1234} = 1$$

$$f = X_1 X_2 X_3 \oplus X_1 X_3 \oplus X_1 X_4 \oplus X_2 X_3 \oplus X_2 X_4 \oplus X_1 X_3 X_4 \oplus X_2 X_3 X_4 \oplus X_4 X_5 X_5 \oplus X_5 \oplus X_5 X_5 \oplus X_5$$

$\oplus X_1X_2X_4 \oplus X_1X_2X_3X_4$ – полином Жегалкина

$$2. \ f = \overline{X_1} \oplus X_2 \oplus X_3 \oplus \overline{X_4}$$

X_1	X_2	X_3	X_4	$\overline{X_1}$	$\overline{X_1} \oplus X_2$	$\overline{X_1} + X_2 \oplus X_3$	$\overline{X_4}$	f
0	0	0	0	1	1	1	1	0
0	0	0	1	1	1	1	0	1
0	0	1	0	1	1	0	1	1
0	0	1	1	1	1	0	0	0
0	1	0	0	1	0	0	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1	0
0	1`	1	1	1	0	1	0	1
1	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	1	1	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	1	1	1	0
1	1	0	1	0	1	1	0	1
1	1	1	0	0	1	0	1	1
1	1	1	1	0	1	0	0	0

Решение методом треугольника:

0															
	1														
1		1													
	0		0												
1		1		1											
	1		1		0										
0	1	0		1		0									
	1		0		0		0								
1		0		1		0		1							
	1		1		0		1		0						
0		1		1		1		1		0					
	0		0		1		0		0		0				
0		1		0		1		1		0		0			
	1		0		0		1		0		0		0		
1		1		0		0		1		0		0		0	
	0		0		0		0		0		0		0		0
1		1		0		0		1		0		0		0	
	1	1	0		0		1		0		0		0		
0		1		0		1		1		0		0			
	0		0		1		0		0		0				
0		1		1		1		1	0	0					
	1		1		0		1		0						
1		0		1		0		1							
	1		0		0		0								
0		0		1		0									
	1		1		0										
1		1		1											
	0	1	0												
1		1													
	1														
0															

$$f = X_1 \oplus X_2 \oplus X_3 \oplus X_4$$
 —полином Жегалкина

3.

Таблица истинности:

X_1	X_2	X_3	X_4	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Решение:

$$f(0,0,0,0) = a_0 = 0$$

$$f(0,0,0,1) = a_0 \oplus a_4 = 0$$

$$f(0,0,1,0) = a_0 \oplus a_3 = 0$$

$$f(0,0,1,1) = a_0 \oplus a_3 \oplus a_4 \oplus a_{34} = 0$$

$$f(0,1,0,0) = a_0 \oplus a_2 = 0$$

$$f(0,1,0,1) = a_0 \oplus a_2 \oplus a_4 \oplus a_{24} = 1$$

$$f(0,1,1,0) = a_0 \oplus a_2 \oplus a_3 \oplus a_{23} = 0$$

$$f(0,1,1,1) = a_0 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_{23} \oplus a_{24} \oplus a_{34} \oplus a_{234} = 1$$

$$f(1,0,0,0) = a_0 \oplus a_1 = 0$$

$$f(1,0,0,1) = a_0 \oplus a_1 \oplus a_4 \oplus a_{14} = 0$$

$$f(1,0,1,0) = a_0 \oplus a_1 \oplus a_3 \oplus a_{13} = 1$$

$$f(1,0,1,1) = a_0 \oplus a_1 \oplus a_3 \oplus a_4 \oplus a_{13} \oplus a_{14} \oplus a_{134} = 1$$

$$f(1,1,0,0) = a_0 \oplus a_{12} \oplus a_1 \oplus a_2 = 0$$

$$f(1,1,0,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_4 \oplus a_{12} \oplus a_{14} \oplus a_{24} \oplus a_{124} = 1$$

$$f(1,1,1,0) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_{12} \oplus a_{13} \oplus a_{23} a_{123} = 0$$

$$f(1,1,1,1) = a_0 \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_{12} \oplus a_{13} \oplus a_{14} \oplus a_{23} \oplus a_{24} \oplus$$

$$\oplus a_{34} \oplus a_{134} \oplus a_{123} \oplus a_{124} \oplus a_{234} \oplus a_{1234} = 1$$

$$f = X_1 X_2 X_3 \oplus X_2 X_4 \oplus X_1 X_3$$
 –полином Жегалкина

4.
$$f = (X_1 \wedge X_3) \wedge (X_2 \vee X_4)$$

X_1	X_2	X_3	X_4	$X_1 \wedge X_3$	$X_2 \vee X_4$	f
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	1	0	0	0	1	1
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	1	1
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	0	1	1
1	1	0	1	0	1	1
1	1	1	0	1	1	0
1	1	1	1	1	1	0

0															
	1														
1	4	0	^												
Δ	1	0	0	1											
0	1		1	1	1										
1	_	1	1	0	_	0									
	0	_	1		1		0								
1		0		1		0		0							
	0		0		1		0		0						
1	0	0		0		0		0	1	1					
4		•	0	_	1	0	0	_		_	0	•			
1	0	0	1	1	1		1	1	0	1	0	0	0		
1	U	1	1	0	1	1	1	1	U	1	0	0	0	0	
1	1	1	1	U	0	1	0	1	1	1	0	U	0	U	0
0	•	0	•	0	U	1	Ū	0	-	1	Ū	0	v	0	U
	1		1		1		0		0		0		0		
1		1		1		1		0		1		0			
	0		0		0		0		1		0				
1	_	1	4	1	_	1	_	1	•	1					
^	1	0	1	0	1	0	1	1	0						
0	1	0	1	0	1	0	0	1							
1	1	1	1	1	1	0	U								
	0	_	0	_	1										
1		1		0											
	1		0												
0		1													
_	0														
0															

$$f=X_4\oplus X_2\oplus X_2X_4\oplus X_1X_3$$
 —полином Жегалкина

5.
$$f = ((\overline{X_1} \oplus X_2) \vee (\overline{X_3} \oplus X_4)) | X_1$$

X_1	X_2	X_3	X_4	$\overline{X_1}$	$\overline{X_3}$	$\overline{X_1} \oplus X_2$	$\overline{X_3} \oplus X_4$	$(\overline{X_1} \oplus X_2) \vee (\overline{X_3} \oplus X_4)$	f
0	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1	1
0	0	1	0	1	0	1	0	1	1
0	0	1	1	1	0	1	1	1	1
0	1	0	0	1	1	0	1	1	1
0	1	0	1	1	1	0	0	0	1
0	1	1	0	1	0	0	0	0	1
0	1	1	1	1	0	0	1	1	1
1	0	0	0	0	1	0	1	1	0
1	0	0	1	0	1	0	0	0	1
1	0	1	0	0	0	0	0	0	1
1	0	1	1	0	0	0	1	1	0
1	1	0	0	0	1	1	1	1	0
1	1	0	1	0	1	1	0	1	0
1	1	1	0	0	0	1	0	1	0
1	1	1	1	0	0	1	1	1	0

 $f=1 \, \oplus X_1 \oplus X_1 X_4 \oplus X_1 X_3 \oplus X_1 X_2 X_4 \oplus X_1 X_2 X_3$ —полином Жегалкина

1															
	0														
1		0													
	0		0												
1		0		0											
	0		0		0										
1		0		0		0									
	0		0		0		0								
1		0		0		0		1							
	0		0		0		1		1						
1		0		0		1		0		1					
	0		0		1		1		0		0				
1		0		1		0		0		1		0			
	0		1		1		1		1		0		1		
1		1		0		1		1		1		1		1	
	1		1		0		0		0		1		0		0
0		0		0		1		1		0		1		1	
	1		1		1		1		0		0		1		
1		1		1		0		1		0		0			
	0		0		1		0		0		0				
1		1		0		0		1		0					
	1		0		1		1		0						
0		1		1		1		1							
	0		1		0		0								
0		0		1		1									
	0		0		1										
0		0		0											
	0		0												
0	-	0	-												
-	0	-													
0	Ū														
•															

6.
$$f = (\overline{X_1} \vee X_2) \wedge (\overline{X_3} \vee X_4)$$

X_1	X_2	X_3	X_4	$\overline{x_1}$	$\overline{x_1} \lor x_2$	$\overline{X_3}$	$\overline{X_3} \vee X_4$	f
0	0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	1	0	1	1	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	0	1	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	0	1	1
1	0	0	0	0	0	1	1	0
1	0	0	1	0	0	1	1	0
1	0	1	0	0	0	0	0	0
1	0	1	1	0	0	0	1	0
1	1	0	0	0	1	1	1	1
1	1	0	1	0	1	1	1	1
1	1	1	0	0	1	0	0	0
1	1	1	1	0	1	0	1	1

$$f = X_3 \oplus X_3 X_4 \oplus X_1 \oplus X_1 X_3 \oplus X_1 X_3 X_4 \oplus X_1 X_2 \oplus X_1 X_2 X_3 \oplus X_1 X_2 X_2 \oplus X_1 X_2 X_3 \oplus X_1 X_2 \oplus X_1$$

 $\oplus X_3X_3X_3X_3 \oplus 1$ – полином Жегалкина

7. $f = X_1 \wedge (X_2 \vee (X_3 \wedge X_4))$

X_1	X_1	X_1	X_1	$X_3 \wedge x_4$	$X_2 \lor (X_3 \land X_4)$	f
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	0
0	1	1	1	1	1	0
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	1	1
1	1	0	1	0	1	1
1	1	1	0	0	1	1
1	1	1	1	1	1	1

0															
	0														
0		0													
	0		0												
0		0	_	0											
_	0	•	0	•	0	•									
0	0	0	•	0	•	0	•								
^		•	0	0	0	0	0	•							
0	0	0	0	0	0	0	0	0	Λ						
0		0	U	0	U	0	U	0	0	Λ					
	0		0		0		0	0	0	0	1				
0		0	U	0	U	0	U	0		1	1	1			
U	0	U	0	U	0	U	0	U	1	1	0	_	0		
0	U	0	U	0	U	0	U	1	-	1	U	1	U	0	
U	0	U	0	U	0	U	1	_	0	_	1	-	0	U	1
0		0	Ŭ	0	Ū	1		1	Ū	0	_	1	Ū	1	_
	0		0		1	_	0	_	0		0	_	1	_	
0		0		1		1		1		0		0			
	0		1		0		1		0		0				
0		0		1		0		1		0					
	1		0		0		0		0						
1		1		1		0		1							
	0		1		0		1								
1		1		1		1									
	0		0		1										
1	0	0	_	0											
_	0	•	0												
1	•	0													
4	0														
1															

 $f = X_1 X_3 X_4 \oplus X_1 X_2 \oplus X_1 X_2 X_3 X_4$ —полином Жегалкина

8. $X_1 \oplus (X_2 \wedge X_3) \oplus X_4$

X_1	X	X_1	X_1	$X_2 \wedge X_3$	$X_1 \oplus (X_2 \wedge X_3)$	f
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	0	1	1	0	0	1
0	1	0	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	1	1
0	1	1	1	1	1	0
1	0	0	0	0	1	1
1	0	0	1	0	1	0
1	0	1	0	0	1	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	0	1	0	1	0
1	1	1	0	1	0	0
1	1	1	1	1	0	1

0															
	1														
1		0													
	1		0												
0		0		0											
4	1	•	0	•	0	4									
1	1	0	0	0	4	1	0								
Λ		0	0	1	1	1	0	4							
0	1	0	1	1	0	1	1	1	0						
1	1	1	1	1	U	0	1	1	U	0					
	0		0		0	U	0	1	0	U	0				
1	U	1	U	1	U	0	U	1	U	0	U	0			
_	1	_	1	_	0		1	_	0		0		0		
0	_	0	_	1		1	_	1		0		0		0	
	1		0		1		0		0		0		0		0
1		0		0		1		1		0		0		0	
	1		0		0		1		0		0		0		
0		0		0		0		1		0		0			
	1		0		0		0		0		0				
1		0	_	0	_	0		1	_	0					
_	1	•	0	•	0	_	1	4	0						
0	4	0	•	0	4	1	•	1							
1	1	0	0	1	1	1	0								
1	1	U	1	1	0	1									
0	1	1	1	1	U										
U	0	1	0	1											
0	U	1	U												
3	1	-													
1	-														

$$f = X_1 \oplus X_4 \oplus X_2 X_3$$
 —полиом Жегалкина

9.
$$f = (X_1/X_2) \wedge (X_3/X_4)$$

X_1	X_2	X_3	X_4	X_1/X_2	X_3/X_4	f
0	0	0	0	1	1	1
0	0	0	1	1	1	1
0	0	1	0	1	1	1
0	0	1	1	1	0	0
0	1	0	0	1	1	1
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	1	0	0
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	0	0

1															
	0														
1		0													
	0		1												
1		1	_	0	_										
•	1	•	1	•	0	•									
0	1	0	4	0	•	0	•								
4	T	1	1	0	0	0	0	0							
1	0	1	1	0	0	0	0	0	0						
1	U	0	1	0	U	0	U	0	U	0					
1	0	U	1		0	U	0	U	0	U	0				
1	U	1	1	0	U	0	U	0	U	0	U	1			
_	1	_	1	Ū	0	Ū	0	Ū	0	Ū	1	_	0		
0	_	0		0		0	Ū	0		1	_	1		0	
	1		1		0		0		1		0	_	0		1
1		1		0		0		1		1		1		1	
	0		1		0		1		0		1		1		
1		0		0		1		1		0		0			
	0		1		1		0		0		1				
1		1		1		1		1		1					
	1		0		0		1		1						
0		1		1	_	0		0							
•	0	•	1	4	0	4	1								
0	^	0	0	1	1	1									
Λ	0	0	0	0	1										
0	0	0	0	0											
0	U	0	U												
U	0	U													
0															

 $f=X_1X_2\oplus X_3X_4\oplus X_1X_2X_3X_4\oplus \mathbf{1}$ —полином Жегалкина

10.
$$f = (X_1 \downarrow \overline{X_2}) \lor (\overline{X_3} | X_4)$$

X_1	X_2	X_3	X_4	$\overline{X_2}$	$\overline{X_3}$	$X_1 \downarrow \overline{X_2}$	$\overline{X_3} X_4$	f
0	0	0	0	1	1	0	1	1
0	0	0	1	1	1	0	0	0
0	0	1	0	1	0	0	1	1
0	0	1	1	1	0	0	1	1
0	1	0	0	0	1	1	1	1
0	1	0	1	0	1	1	0	1
0	1	1	0	0	0	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	1	1	0	1	1
1	0	0	1	1	1	0	0	0
1	0	1	0	1	0	0	1	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	1	0	1	1
1	1	0	1	0	1	0	0	0
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	0	1	1

1															
0	1	^													
0	1	0	1												
1	_	1	_	0											
	0		1		1										
1		0		1		0									
	0		0		1		1								
1	0	0	•	0	•	1	_	0	•						
1		0	0	0	0	0	1	Λ	0	Λ					
1	0	U	0		0		1	0	0	0	0				
1		0	U	0	U	1	1	0	U	0	U	0			
_	0		0		1	_	1		0		0		1		
1		0		1		0		0		0		1		0	
	0		1		1		1		0		1		1		1
1		1	_	0	_	1		0	1	1		0		1	
0	1	•	1	0	0	^	1	4		^	1	^	0		
0	1	0	1	0	0	0	0	1	1	0	1	0			
1	1	1	1	0	U	0	U	0	1	1	1				
•	0	-	1		0	Ū	0	Ū	0	_					
1		0		0		0		0							
	0		1		0		0								
1		1		0		0									
•	1	•	1	•	0										
0	1	0	1	0											
1	1	1	1												
1	0	-													
1	•														

$$f = 1 \oplus X_4 \oplus X_3 X_4 \oplus X_2 X_4 \oplus X_2 X_3 X_4 \oplus X_1 X_2 X_4 \oplus$$

 $\bigoplus X_1X_2X_3X_4$ —полином Жегалкина

11. $f = ((X_1 \land X_2) | (X_3 \lor X_4)) \downarrow X_4$

X_1	X_2	X_3	X_4	$X_1 \wedge X_2$	$X_3 \lor X_4$	$(X_1 \wedge X_2) (X_3 \vee X_4)$	f
0	0	0	0	0	0	1	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	0	1	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	0	1	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	0	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	1	0	0
1	1	1	0	1	1	0	1
1	1	1	1	1	1	0	0

0															
	0														
0		0													
	0		0												
0		0	_	0											
_	0	•	0	•	0	•									
0	0	0	•	0	•	0	•								
^		•	0	0	0	^	0	•							
0	0	0	0	0	0	0	0	0	0						
0		0	U	0	U	0	U	0	U	Λ					
	0	U	0		0		0	0	0	0	0				
0		0	U	0	U	0	U	0	U	0	U	0			
U	0	U	0	U	0	U	0	U	0	U	0	U	1		
0	U	0	U	0	U	0	U	0	U	0	U	0	-	1	
U	0	U	0	U	0	U	0	U	0	U	0	U	1	_	1
0		0	Ŭ	0	Ū	0	Ŭ	0	Ŭ	0	Ū	1	_	0	_
	0		0		0		0		0		1	_	1		
0		0		0		0		0	_	1		0			
	0		0		0		0		1		1				
0		0		0		0		1		0					
	0		0		0		1		1						
0		0		0		1		0							
	0		0		1		1								
0		0		1		0									
	0		1		1										
0		1		0											
_	1		1												
1	_	0													
•	1														
0															

 $f = X_1 X_2 X_3 \oplus X_1 X_2 X_3 X_4$ —полином Жегалкина

12.
$$f = ((X_1 \wedge X_4) \downarrow (\overline{X_2}|X_3)) \vee (\overline{X_1} \wedge X_2)$$

<i>X</i> ₁	X_1	X_1	X_1	$X_1 \wedge X_4$	$\overline{X_1} X_1$	$(X_1 \wedge X_4) \downarrow \left(\overline{X_2} \middle X_3\right)$	$\overline{X_1} \wedge X_2$	f
0	0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0	0
0	0	1	0	0	0	1	0	1
0	0	1	1	0	0	1	0	1
0	1	0	0	0	1	0	1	1
0	1	0	1	0	1	0	1	1
0	1	1	0	0	1	0	1	1
0	1	1	1	0	1	0	1	1
1	0	0	0	0	1	0	0	0
1	0	0	1	1	1	0	0	0
1	0	1	0	0	0	1	0	1
1	0	1	1	1	0	0	0	0
1	1	0	0	0	1	0	0	0
1	1	0	1	1	1	0	0	0
1	1	1	0	0	1	0	0	0
1	1	1	1	1	1	0	0	0

0															
	0														
0		1													
	1		0												
1		1		1											
	0		1		0										
1		0		1		0									
	0		0		1		0								
1		0		0		0		0							
	0		0		0		0		0						
1		0		0		0		0		0					
	0		0		1		0		0		1				
1		0		1		0		0		1		1			
	0		1		0		0		1		0		0		
1		1		1		1		1		1		1		0	
	1		0		1		1		0		1		0		1
0		1		0		0		1		0		1		1	
	0		0		1		0		0		0		1		
0	Ū	1	Ŭ	1	_	0	Ū	1		0	Ū	0	_		
	1		1		1		1	_	0		0				
1	_	0	_	0	_	1	_	1	·	0					
_	1	v	1	U	0	-	0	_	0	Ū					
0	_	1	_	0	Ū	1		1	Ū						
U	0	-	1	Ū	1	_	1	_							
0	U	0	_	1	_	0	_								
U	0	U	0	_	1	U									
0		0	U	0	1										
U	0	U	0	U											
0	U	0	U												
U	Λ	U													
Λ	0														
0															

 $f = X_3 \oplus X_2 \oplus X_2 X_3 \oplus X_1 X_3 X_4 \oplus X_1 X_2 \oplus X_1 X_2 X_3 X_4$ —полином Жегалкина

13.
$$f = \overline{(X_1 \vee X_3)} \vee (\overline{X_4} \wedge X_3)$$

X_1	X_2	X_3	X_4	$X_1 \vee X_3$	$\overline{X_1 \vee X_3}$	$\overline{X_2}$	$\overline{X_2} \wedge X_4$	f
0	0	0	0	0	1	1	0	1
0	0	0	1	0	1	1	1	1
0	0	1	0	1	0	1	0	0
0	0	1	1	1	0	1	1	1
0	1	0	0	0	1	0	0	1
0	1	0	1	0	1	0	1	1
0	1	1	0	1	0	0	0	0
0	1	1	1	1	0	0	0	0
1	0	0	0	1	0	1	0	0
1	0	0	1	1	0	1	1	1
1	0	1	0	1	0	1	0	0
1	0	1	1	1	0	1	1	1
1	1	0	0	1	0	0	0	0
1	1	0	1	1	0	0	0	0
1	1	1	0	1	0	0	0	0
1	1	1	1	1	0	0	0	0

1															
	0														
1		1													
	1		1												
0		0		0											
	1		1	_	0										
1		1		0		0									
	0	_	1	_	0	_	1	_							
1	•	0	4	0	1	1	•	1	_						
4	0	4	1	4	1	4	0	•	1	4					
1	4	1	•	1	•	1	•	0	•	1	4				
Λ	1	1	0	1	0	1	0	0	0	0	1	0			
0	0		4	1	1	1	0	0	0	0	1	0	1		
0	U	0	1	0	1	1	U	0	U	1	1	1	1	0	
U	0	U	1	U	0	1	0	U	1	1	0	1	1	U	1
0		1	1	0	U	1	U	1	1	1	U	0	1	1	1
U	1	1	1	U	1	1	1	1	0	1	0	U	0	_	
1	_	0	_	1	•	0	_	1	U	1	U	0	U		
_	1	Ū	0	_	1		0	_	1	_	0	·			
0		0	Ū	0		0		0	_	1	Ū				
	1		0		1		0		0	_					
1		0		1		0		0							
	1		1		1		0								
0		1		0		0									
	0		1		1										
0		0		1											
	0		0												
0		0													
	0														
0															

$$f=1\oplus X_3\oplus X_3X_4\oplus X_2X_3X_4\oplus X_1\oplus X_1X_4\oplus X_1X_3\oplus X_1X_3X_4\oplus \\ \oplus X_1X_2X_4\oplus X_1X_2X_3X_4$$
—полином Жегалкина

14.
$$f = (X_1 \oplus X_2) \wedge (\overline{X_3} \oplus X_4)$$

X_1	X_2	X_3	X_4	$\overline{X_3}$	$\overline{X_3} \oplus X_4$	$X_1 \oplus X_2$	f
0	0	0	0	1	1	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	1	0	0
0	1	0	0	1	1	1	1
0	1	0	1	1	0	1	0
0	1	1	0	0	0	1	0
0	1	1	1	0	1	1	1
1	0	0	0	1	1	1	1
1	0	0	1	1	0	1	0
1	0	1	0	0	0	1	0
1	0	1	1	0	1	1	1
1	1	0	0	1	1	0	0
1	1	0	1	1	0	0	0
1	1	1	0	0	0	0	0
1	1	1	1	0	1	0	0

0															
	0														
0		0													
	0		0												
0		0		1											
•	0	4	1	•	1	_									
0	4	1	4	0	•	1	•								
1	1	•	1	0	0	1	0	4							
1	1	0	1	U	1	1	1	1	1						
0	1	1	1	1	1	0	1	0	1	1					
U	0		0		1		1	U	0	1	0				
0	U	1	U	0	1	1	1	0	U	1	U	0			
U	1	_	0	U	0	-	1	U	1	_	0	U	0		
1	_	1	v	0	Ū	0	_	1	_	1	Ū	0	v	0	
_	0	_	0		0		0	_	0	_	0		0		0
1		1		0		0		1		1		0		0	
	1		0		0		1		1		0		0		
0		1		0		1		0		1		0			
	0		0		1		1		0		0				
0		1		1		0		0		1					
	1		1	_	1		1		1						
1	_	0	_	0	_	1	_	1							
•	1	4	1	•	0	4	0								
0	•	1	4	0	1	1									
0	0	0	1	1	1										
0	0	0	0	1											
0	U	0	U												
U	0	U													
0	J														

 $f=X_2\oplus X_2X_4\oplus X_2X_3\oplus X_1\oplus X_1X_4\oplus X_1X_3$ —полином Жегалкина

15.
$$f = (\overline{X_1} \wedge (X_2 \downarrow X_3) | (X_4 \oplus X_1)$$

X_1	X_1	X_1	X_1	$X_2 \downarrow X_3$	$\overline{X_3}$	$\overline{X_1} \wedge (X_2 \downarrow X_3)$	$X_4 \oplus X_1$	f
0	0	0	0	1	1	1	0	1
0	0	0	1	1	1	1	1	0
0	0	1	0	0	1	0	0	1
0	0	1	1	0	1	0	1	1
0	1	0	0	0	1	0	0	1
0	1	0	1	0	1	0	1	1
0	1	1	0	0	1	0	0	1
0	1	1	1	0	1	0	1	1
1	0	0	0	1	0	0	1	1
1	0	0	1	1	0	0	0	1
1	0	1	0	0	0	0	1	1
1	0	1	1	0	0	0	0	1
1	1	0	0	0	0	0	1	1
1	1	0	1	0	0	0	0	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	0	0	1

1															
	1														
0		0													
	1		1												
1		1		0											
	0		1		1	_									
1	0	0		1		0									
			0	_	1		1								
1	0	0	•	0	•	1	_	0	_						
4		•	0	•	0	•	1	_	1	•					
1	0	0	•	0	•	0	•	1	4	0	_				
1		0	0	0	0	0	0	0	1	1	1	0			
1	0	0	0	U	0	U	0	0	0		1	0	1		
1	U	0	0	0	0	0	U	0	0	0	1	1	1	0	
1	0	U	0	U	0	U	0	U	0	U	0	T	1	U	1
1		0	U	0	U	0	U	0		0	U	0	1	1	7
1	0	U	0	U	0	U	0	U	0	U	0	U	0	_	
1	U	0	U	0	U	0	U	0	U	0	U	0	U		
	0	Ŭ	0	Ŭ	0	Ŭ	0	Ū	0	Ŭ	0	Ŭ			
1	·	0	Ū	0	Ū	0	Ū	0	Ŭ	0	Ū				
_	0		0		0		0		0						
1		0		0		0		0							
	0		0		0		0								
1		0		0		0									
	0		0		0										
1		0		0											
	0		0												
1		0													
	0														
1															

$$f=1\oplus X_{4}\oplus X_{3}X_{4}\oplus X_{2}X_{4}\oplus X_{2}X_{3}X_{4}\oplus X_{1}X_{4}\oplus X_{1}X_{3}X_{4}\oplus \\ \oplus X_{1}X_{2}X_{4}\oplus X_{1}X_{2}X_{3}X_{4}$$
—полином Жегалкина