# **Biostatistics I: Hypothesis testing**

# **Continuous data: Two-sample (independent) tests**

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

**y**@erandrinopoulou



## In this Section

- ► Two-sample t-test (independent samples)
- ► Two-sample Wilcoxon rank sum test (independent samples)
- Examples

### **Assumptions**

- ► The dependent variables must be continuous
- ► The observations are independent
- ► The dependent variables are approximately normally distributed
- ▶ The dependent variables do not contain any outliers

### **Scenario**

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

### **Connection with linear regression**

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, where  $x_i$  indicates whether a patient was in group 1 or in group 2

$$H_0: \beta_1 = 0$$

$$H_1:\beta_1 \neq 0$$

3

### Scenario

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

## **Alternatively**

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

### Null hypothesis



### Alternative hypothesis



$$\mu_1 = \mu_2$$
 $\beta_1 = 0$ 

$$\mu_1 \neq \mu_2$$
 $\beta_1 \neq 0$ 

### **Test statistic**

If the variances of the two groups are equal we use the t-statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s\sigma^2(x)}{n_1} + \frac{s\sigma^2(x)}{n_2}}}$$
, where

$$sd^2(x) = \frac{\sum (x_1 - \bar{x}_1)^2 + \sum (x_2 - \bar{x}_2)^2}{n_1 + n_2 - 2}$$

If the variances of the two groups being compared are *not* equal we use the Welch t-statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}}}$$

- ▶ Sample mean of group 1, 2:  $\bar{x}_1$ ,  $\bar{x}_2$
- ▶ Standard deviation of group 1, 2:  $sd(x_1)$ ,  $sd(x_2)$
- Number of subjects in group 1, 2:  $n_1$ ,  $n_2$

## **Sampling distribution**

- ▶ t-distribution with:
  - ▶ If the variance of the two groups are equal:  $df = n_1 + n_2 2$
  - If the variance of the two groups are not equal:  $df = \frac{\left[\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}\right]^2}{\frac{[sd^2(x_1)/n_1]^2}{n_1 1} + \frac{[sd^2(x_2)/n_2]^2}{n_2 1}}$
- Critical values and p-value

## Type I error

Normally  $\alpha = 0.05$ 

### **Draw conclusions**

lacktriangle Compare test statistic (t) with the critical values or the p-value with lpha

### **Scenario**

Is the mean BMI of the students from group 1 different from the mean BMI of the students of group 2?

## **Hypothesis**

 $H_0: \mu_1 = \mu_2$ 

 $H_1: \mu_1 \neq \mu_2$ 

### **Collect and visualize data**



## **Hypothesis**

```
H_0: \mu_1 = \mu_2
H_1: \mu_1 \neq \mu_2
```

#### **Test statistic**

Let's assume that:

- ► Sample mean of group 1:  $\bar{x}_1 = 24$
- ▶ Sample mean of group 2:  $\bar{x}_2$  = 23
- ▶ Standard deviation of group 1:  $sd(x_1) = 6$
- ▶ Standard deviation of group 2:  $sd(x_2) = 2$
- Number of subjects in group 1:  $n_1 = 50$
- Number of subjects in group 2:  $n_2 = 50$

```
We first test homogeneity of variances:
H_0: \frac{\text{variance}_1}{\text{variance}_2} = 1
H_1: \frac{\text{variance}_1}{\text{variance}_2} \neq 1
F statistic: \frac{highest\ variance}{lowest\ variance} = 9
DF: n_1 - 1 = 50 - 1 = 49. n_2 - 1 = 50 - 1 = 49
If \alpha = 0.05 and two-tailed test, get critical value in R:
gf(p = 0.05, df1 = 49, df2 = 49, lower.tail = FALSE)
[1] 1.607289
highest variance = 9 > 1.61 \Rightarrow H_0 is rejected
lowest variance
```

### **Test statistic**

Not equal variances:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s\sigma^2(x_1)}{n_1} + \frac{s\sigma^2(x_2)}{n_2}}} = \frac{24 - 23}{\sqrt{\frac{36}{50} + \frac{4}{50}}} = 1.12$$

## **Degrees of freedom**

$$df = \frac{\left[\frac{sd^2(x_1)}{n_1} + \frac{sd^2(x_2)}{n_2}\right]^2}{\frac{[sd^2(x_1)/n_1]^2}{n_1 - 1} + \frac{[sd^2(x_2)/n_2]^2}{n_2 - 1}} = \frac{\left(\frac{36}{50} + \frac{4}{50}\right)^2}{\frac{(36/50)^2}{49} + \frac{(4/50)^2}{49}} = 59.76$$

## Type I error

$$\alpha$$
 = 0.05

### **Critical values**

Using R we get the critical values from the t-distribution: critical value<sub>0.05/2</sub> = critical value<sub>0.05/2</sub>

$$qt(p = 0.05/2, 59.76, lower.tail = FALSE)$$

[1] 2.000463 -critical value $_{\alpha/2}$  = -critical value $_{0.05/2}$ 

$$qt(p = 0.05/2, 59.76, lower.tail = TRUE)$$

[1] -2.000463





#### **Draw conclusions**

We reject the  $H_0$  if:

▶  $t > \text{critical value}_{\alpha/2}$  or  $t < -\text{critical value}_{\alpha/2}$ 

We have 1.12 < 2  $\Rightarrow$  we do not reject the  $H_0$ 

Using R we obtain the p-value from the *t*-distribution:

[1] 0.2671949



### **Assumptions**

- ► Population distribution is symmetric
- ▶ The observations are independent of one another

#### **Scenario**

Is the distribution of the score values of the students in group 1 different from the distribution of the score values of the students in group 2?

## **Connection with linear regression**

 $rank(y_i) = \beta_0 + \beta_1 x_i + \epsilon_i$ , where  $x_i$  indicates whether a patient was in group 1 or in group 2

 $H_0: \beta_1 = 0$  $H_1: \beta_1 \neq 0$ 

## **Alternatively**

 $H_0$ : the distributions of both populations are equal

 $H_1$ : the distributions are not equal

#### **Test statistic**

- ▶ Calculate the ranks for the two groups  $(r_1 \text{ and } r_2)$
- ▶ Obtain the sum of those ranks  $R_1 = \sum r_1$ ,  $R_2 = \sum r_2$
- ► Calculate  $U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} R_1$  and  $U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} R_2$
- ▶ The test statistic (*U*) is the minimum of  $U_1$  and  $U_2$

If **one-tailed**: use either  $U_1$  or  $U_2$  for the test statistic (U) depending on the direction of the alternative hypothesis

## Sampling distribution

For large sample size: we can use the normal approximation, that is,  $\boldsymbol{W}$  is normally distributed

$$\mu_U = \frac{n_1 n_2}{2}$$

$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_2 + n_1 + 1)}{12}}$$

If there are ties in ranks, we should use:

$$\sigma_{u} = \sqrt{\frac{n_{1}n_{2}}{12} \left[ (n+1) - \sum_{i=1}^{K} \frac{t_{i}^{2} - t_{i}}{n(n-1)} \right]}$$

where  $n = n_1 + n_2$  and  $t_i$  is the number of subjects sharing the rank i. K is the number of ranks

$$Z = \frac{|min(U_1,U_2) - \mu_U| - 1/2}{\sigma_U}$$

## **Sampling distribution**

For small sample size: we can use the exact distribution

► Get critical values and p-value

## Type I error

Normally  $\alpha = 0.05$ 

### **Draw conclusions**

lacktriangle Compare test statistic with the critical values or the p-value with lpha

### **Scenario**

Is the distribution of the score values of the students in group 1 different from the distribution of the score values of the students in group 2?

## **Hypothesis**

 $H_0$ : the distributions of both populations are equal

 $H_1$ : the distributions are not equal

### **Collect and visualize data**

| variable | value    | rank |
|----------|----------|------|
| X        | 9.75508  | 1    |
| X        | 11.10491 | 4    |
| X        | 10.69730 | 3    |
| У        | 14.71926 | 5    |
| У        | 15.79611 | 6    |
| У        | 10.15486 | 2    |

### **Test statistic**

$$R_1 = 1 + 4 + 3 = 8$$

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1 = 7$$

$$R_2 = 5 + 6 + 2 = 13$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - R_2 = 2$$

## Type I error

$$\alpha$$
 = 0.05

## **Hypothesis**

 $H_0$ : the distributions of both populations are equal  $H_1$ : the distributions are not equal

#### **Critical values**

Using R we get the critical values from the exact distribution: low critical value $_{\alpha/2}$  = low critical value $_{0.05/2}$ 

```
qwilcox(p = 0.05/2, m = 3, n = 3, lower.tail = TRUE)
```

[1] 0

high critical value<sub> $\alpha/2$ </sub> = high critical value<sub>0.05/2</sub>

```
qwilcox(p = 0.05/2, m = 3, n = 3, lower.tail = FALSE)
```

[1] 9

### **Draw conclusions**

We reject the  $H_0$  if:

▶  $U_1$  > high critical value<sub> $\alpha/2$ </sub> and  $U_2$  < low critical value<sub> $\alpha/2$ </sub>

We have 7 < 9 and  $2 > 0 \Rightarrow$  we do *not* reject the  $H_0$ 

### **Draw conclusions**

Using R we obtain the p-value from the exact distribution:

$$p - value = 2 * Pr(U <= 2)$$
:

$$2 * pwilcox(q = 2, m = 3, n = 3, lower.tail = TRUE)$$

or

$$p$$
 – value = 2 \*  $Pr(U >= 7)$  = 2 \*  $(1 - Pr(U < 7))$ :

$$2 * (1 - pwilcox(q = 7 - 1, m = 3, n = 3, lower.tail = TRUE))$$

$$2 * pwilcox(q = 7 - 1, m = 3, n = 3, lower.tail = FALSE)$$