四、波动说对光的薄膜干涉现象的理论描述

1、厚度均匀的薄膜干涉——等倾条纹

光程差
$$\delta = 2e\sqrt{n^2 - n^2 \sin^2 i} + \frac{\lambda}{2}$$

光强度
$$I = 2I_0 + 2I_0 \cos \Delta \varphi \quad \Delta \varphi = \frac{2\pi}{\lambda} (r_2 - r_1) = \frac{2\pi}{\lambda} \delta$$

四、波动说对光的薄膜干涉现象的理论描述

2、厚度不均匀的薄膜干涉——等厚干涉

白光入射

单色光入射

肥皂膜的干涉条纹

日常中见到的薄膜干涉: 肥皂泡, 雨天地上的油膜, 昆虫翅膀, …。

劈尖(劈形膜)

劈尖——夹角很小的两个平面所构成的薄膜。

1,2两東光来自同一東入射光, 它们可以干涉——等厚干涉.

设单色平行光入射,在入射点A处,膜厚为e,

当0很小时,1、2光程差

$$\delta \approx 2ne + \frac{\lambda}{2} = \delta(e)$$

在n, λ定了以后,δ只是厚度e的函数.

劈尖干涉在膜表面附近形成明、暗相间的条纹。

$$\delta \approx 2ne + \frac{\lambda}{2} = \delta(e)$$

明纹
$$\delta(e) = k\lambda, k = 1, 2, 3\cdots$$

暗纹
$$\delta(e) = (2k-1)\frac{\lambda}{2}, k=1,2,\cdots$$

同一厚度e对应同一级条纹——等厚条纹

在棱边处e=0,由于半波损失而形成暗纹。

光强度
$$I = 2I_0 + 2I_0 \cos \Delta \varphi \qquad \Delta \varphi = \frac{2\pi}{\lambda} (r_2 - r_1) = \frac{2\pi}{\lambda} \delta$$

相邻两条亮纹(或暗纹)对应的厚度差Δe:

$$\Delta e = e_{k+1} - e_k = \frac{\lambda}{2n}$$

条纹间距L

$$L = \frac{\lambda}{2n\,\theta}$$

$$\delta_{k} = 2ne_{k} + \frac{\lambda}{2} = k\lambda$$

$$\delta_{k+1} = 2ne_{k+1} + \frac{\lambda}{2} = (k+1)\lambda$$

$$\tan \theta = \frac{\Delta e}{L}$$

$$L = \frac{\lambda}{2n \tan \theta}$$

 $\theta \downarrow \to L^{\uparrow}$ 条纹分得更开,更好测量。

条纹间距L

$$L = \frac{\lambda}{2n\,\theta}$$

应用举例:

- 1. 测波长λ.
- 2. 测微小直径、厚度(或镀膜厚度)、长度变化。
- 3. 检测表面质量.

例:已知波长为590 nm,在玻片上出现7条明纹,如图

所示,细丝的直径是多少?

明纹
$$2ne + \lambda / 2 = k\lambda$$
 $(k = 1, 2\cdots)$

暗纹
$$2ne + \lambda / 2 = (2k-1)\lambda / 2$$
 $(k=1,2\cdots)$

细丝的直径
$$d = \frac{(k-1)\lambda}{2n} = \frac{7 \times 590}{2 \times 1} = 2.07 \times 10^3 \, nm = 2.07 \, \mu m$$

等厚干涉条纹

劈尖

不规则表面

15.3 光的波动说对光的衍射现象的理论描述

衍射: 波传播过程中, 当遇到障碍物时,

能绕过障碍物边缘而偏离直线传播的现象。

水波通过窄缝时的衍射

1、光的衍射现象

(1)实验现象:

(2)光的衍射现象:

光波在传播过程中遇到障碍物, 能够绕过障碍物的边缘而偏离 直线传播的现象称为光的衍射。

S 光源 (b)

单缝K

(3)判据: d~λ

2、 惠更斯-菲涅耳原理

- 1690年,惠更斯提出惠更斯原理:任一波阵面上的点都可以 看作是发射子波的新波源,其后任一时刻子波的包络面就是 新的波阵面。
- 1818年,菲涅耳运用子波可以相干叠加的思想对惠更斯原理 作了补充。他认为:

从同一波面上各点发出的子波,在传播到空间某一点时,各个子波之间也可以相互叠加而产生干涉现象。这就是惠更斯 一菲涅耳原理。

单缝衍射实验

惠更斯-菲涅耳原理的数学表达式

波传到的任何一点都是子波的波源,各子波在空间某点的相干叠加,就决定了该点波的强度。

$$dI(p) \propto \frac{a(Q)K(\theta)}{r} dS$$

a(Q): 波前上Q处波的强度

 $\mathbf{K}(\boldsymbol{\theta})$:方向因子

波为何不向后面传播?

$$dI(P) = \frac{a(Q) \cdot K(\theta)}{r} dS \cdot \cos(\omega t - \frac{2\pi r}{\lambda})$$

$$I(P) = \iint_{S} \frac{a(Q) \cdot K(\theta)}{r} \cdot \cos(\omega t - \frac{2\pi r}{\lambda}) \cdot dS$$

$$= I_{0}(P) \cdot \cos[\omega t + \varphi(P)]$$

P处波的强度 $I_P \propto I_0^2(P)$

1882年以后,基尔霍夫(Kirchhoff)解电磁波动方程, 也得到了*I(P)*的表示式,惠更斯 — 菲涅耳原理有了波 动理论的根据。

3、衍射的分类

衍射系统一般由光源、障碍物(单缝)和接收屏组成的。

按它们相互距离的关系,光的衍射分为两大类:

(1) 菲涅耳衍射

光源—障碍物—接收屏距离为有限远。

(2) 夫琅和费衍射

光源—障碍物—接收屏距离为无限远。

4、单缝夫琅和费衍射

(1) 实验装置

光源在透镜L₁的物方焦平面

接收屏在L₂象方焦平面

(2) 现象

现象: 明暗相间的平行于单缝衍射条纹;

中央明纹明亮且较宽;

两侧对称分布着其它明纹。

(3) 菲涅耳半波带法解释单缝衍射

a.菲涅耳半波带

A, B两条平行光线之间的光程差 $BC=a\sin\theta$.

作平行于AC的平面,使相邻平面之间的 距离等于入射光的半波长. (位相差π)

把AB波阵面分成AA₁, A₁A₂, A₂B波带.

两相邻波带对应点 AA_1 中 A_1 和 AA_2 中 A_2 ,到达P点位相差为 π ,光程差为 $\lambda/2$ 。这样的波带就是菲涅耳半波带。

(3) 菲涅耳半波带法解释单缝衍射

a.菲涅耳半波带

任何两个相邻波带所发出的光线在P点相互抵消.

当BC是λ/2的偶数倍,所有波带成对抵消,P点暗;

当BC是λ/2的奇数倍,所有波带成对抵消后留下一个波带,P点明。

b.明暗条纹条件

$$a\sin\theta = 0$$

中央明纹(中心)

$$a \sin \theta = \pm 2k\lambda/2$$

暗纹中心

$$a\sin\theta = \pm(2k-1)\lambda/2$$

 $k=1,2,3,\cdots$ 明纹中心

条纹在接收屏上的位置

$$x = \pm k\lambda \cdot f / a$$

暗纹中心

$$x = \pm (2k - 1)\lambda \cdot f / 2a$$

明纹中心

$$k = 1, 2, 3, \cdots$$

$$(\tan \theta = \frac{x}{f} \sim \sin \theta)$$

c、条纹宽度

中央明条纹的角宽度:

$$\theta = \frac{2\lambda}{a}$$

其他明条纹的角宽度:

$$\theta = \frac{\lambda}{a}$$

$$a\sin\theta = 0$$

$$a \sin \theta = \pm 2k\lambda/2$$

$$a\sin\theta = \pm(2k-1)\lambda/2$$

中央明纹(中心)

暗纹中心

明纹中心

$$k = 1, 2, 3, \cdots$$

c、条纹宽度

屏幕上中央明条纹的线宽度为:

$$\Delta x = 2\lambda \cdot f / a$$

其它明条纹的宽度为中央明条纹宽度的一半,即

$$\Delta x_i = \lambda \cdot f / a$$

中央明条纹的角宽度:
$$\theta = \frac{2\lambda}{a}$$
 $(\tan \theta = \frac{x}{f} \sim \sin \theta)$

d、缝宽变化对条纹的影响

$$\Delta x = f \, \frac{\lambda}{a}$$

缝宽越小,条纹间隔越宽.

由条纹宽度看出:

缝越窄(a越小),条纹分散的越开,**衍射现象越明显**; **缝越宽(a越大)**,条纹向中央靠拢;

当缝宽比波长大很多时,形成单一的明条纹,这就是透镜所形成线光源的象,显示了光的直线传播的性质。

几何光学是波动光学在 $a >> \lambda$ 时的极限情形。

衍射与几何光学的关系:

e、干涉与衍射的本质

杨氏双缝干涉

干涉与衍射的本质:

从本质上讲,干涉和衍射都是波的相干叠加。

干涉指的是**有限多的子波**的相干叠加, **衍射**指的是**无限多的子波**的相干叠加,

干涉强调的是不同光束相互影响而形成相长或 相消的现象;

衍射强调的是**光线偏离直线**而进入阴影区域。

5、圆孔夫琅和费衍射

(1) 实验装置及衍射图样

中央亮斑(爱里斑)

(2) 爱里斑:

第一暗环对应的衍射角θ₀称为爱里斑的半角宽,理论计算得:

$$\theta_0 \approx \sin \theta_0 = 0.61 \lambda / R = 1.22 \lambda / D$$

(3) 、光学仪器的分辨本领

a、物与像的关系

点物S和S₁在透镜的焦平面上呈现两个爱里斑,屏上总光强为 两衍射光斑的非相干迭加。

当两个物点距离足够小时,就有能否分辨的问题。

b、瑞利判据

瑞利给出恰可分辨两个物点的判据:

点物 S_1 的爱里斑中心恰好与另一个点物 S_2 的爱里斑边缘(第一衍射极小)相重合时,恰可分辨两物点。

最小分辨角(角分辨率)

$$\delta\theta = \theta_1 \approx 1.22 \frac{\lambda}{D}$$

分辨本领

$$R \equiv \frac{1}{\delta \theta} = \frac{D}{1.22\lambda}$$

讨论:

- ·分辨本领与D成正比,与波长成反比:
 - D大,分辨本领大; 波长小,分辨本领大;
- •圆孔衍射公式对抛物面式的天线,雷达均成立。

望远镜: λ 不可选择, 可 $\uparrow D \rightarrow \uparrow R$

- ▲ 世界上最大的光学望远镜: D=8 m 建在了夏威夷山顶。
- ▲世界上最大的射电望远镜: D = 500 m 建在了贵州省喀斯特洼坑

显微镜: D不会很大, 可 $\downarrow \lambda \rightarrow \uparrow R$

紫光 400 nm, 最小分辨距离是200 nm

电子 λ : $0.1\mathring{A} \sim 1\mathring{A}$ ($10^{-2} \sim 10^{-1}$ nm)

电子显微镜分辨本领很高,可观察物质的细微结构。

•人眼的分辨本领

设人眼瞳孔直径为D,可把人眼看成一枚凸透镜,焦距只有 20毫米,其成象为夫琅和费衍射的图样。

例:假设汽车两盏灯相距r=1.5m,人的眼睛瞳孔直径D=4mm,问最远在多少米的地方,人眼恰好能分辨出这两盏灯? 这里假设所求距离只取决于眼睛瞳孔的衍射效应,并以 对视觉最敏感的黄绿光λ=550nm,进行讨论。