IB Complex Analysis

Ishan Nath, Lent 2023

Based on Lectures by Prof. Holly Krieger

January 30, 2023

Page 1 CONTENTS

Contents

1	Con	nplex Differentiation	2
	1.1	Basic Notions	2
	1.2	Exponential and Logarithm	9
	1.3	Contour Integration	10
Inc	lex		14

1 Complex Differentiation

Our goal in this course is to study the theory of complex-valued differentiable functions in one complex variable. Example include:

- Polynomials $p(z) = a_d z^d + \cdots + a_1 z + a_0$, with coefficients in $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$ or \mathbb{C} .
- The infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^z},$$

which we showed convergence for z having real part greater than 1.

• Harmonic functions $u(x,y): \mathbb{R}^2 \to \mathbb{R}, u_{xx} + u_{yy} = 0.$

In this course, we make the convention that $\theta = \arg(z) \in [0, 2\pi)$.

1.1 Basic Notions

• $U \subset \mathbb{C}$ is open if for all $u \in U$, there exists $\varepsilon > 0$ such that

$$\Delta(x,\varepsilon) = \{ z \in \mathbb{C} \mid |z - u| < \varepsilon \} \subset U.$$

- A path in $U \subset \mathbb{C}$ is a continuous map $\gamma : [a, b] \to U$. We say the path is C^1 if γ' exists and is continuous (we take one-sided derivatives at the endpoints). γ is *simple* if it is injective.
- $U \subset \mathbb{C}$ is path-connected if for all $z, w \in U$, there exists a path in U with endpoints at z, w.

Remark. If U is open, and $z, w \in U$ are connected by a path γ in U, then there exists a path γ in U connected z, w consisting of finitely many horizontal and vertical segments.

Definition 1.1. A *domain* is a non-empty, open, path-connected subset of \mathbb{C} .

Definition 1.2.

(i) $f: U \to \mathbb{C}$ is differentiable at $u \in U$ if

$$f'(u) = \lim_{z \to u} \frac{f(z) - f(u)}{z - u}$$

exists.

(ii) $f: U \to \mathbb{C}$ is holomorphic at $u \in U$ if there exists $\varepsilon > 0$ such that f is differentiable at z, for all $z \in \Delta(u, \varepsilon)$. We may also call such a function analytic.

(iii) $f: \mathbb{C} \to \mathbb{C}$ is *entire* if it is holomorphic everywhere.

Remark. All differentiation rules (sum, products, ...) in \mathbb{R} hold, by the same proofs.

Identifying \mathbb{C} with \mathbb{R}^2 , we may write $f: U \to \mathbb{C}$ as f(x+iy) = u(x,y) + iv(x,y), where u, v are the real and imaginary parts of f.

From analysis and topology, recall that $u: U \to \mathbb{R}$ as a function of two real variables if (\mathbb{R}^2) differentiable at $(c,d) \in \mathbb{R}^2$ with $Du|_{(c,d)} = (\lambda,\mu)$ if

$$\frac{u(x,y) - u(c,d) - [\lambda(x-c) + \mu(y-d)]}{\sqrt{(x-c)^2 + (y-d)^2}} \to 0,$$

as $(x,y) \to (c,d)$. However, this is a weaker condition than differentiability over \mathbb{C} .

Proposition 1.1 (Cauchy-Riemann equations). Let $f: U \to \mathbb{C}$ on an open set $U \subset \mathbb{C}$. Then f is differentiable at $w = c + id \in U$ if and only if, writing f = u + iv, we have u, v are \mathbb{R}^2 -differentiable at (c, d), and

$$u_x = v_y, u_y = -v_x.$$

Proof: f is differentiable at w if and only if f'(w) = p + iq exists, so

$$\lim_{z \to w} \frac{f(z) - f(w) - (z - w)(p + iq)}{|z - w| = 0}.$$

Writing f = u + iv and considering the real and imaginary parts in the quotient above, this holds if and only if

$$\lim_{(x,y)\to(c,d)} \frac{u(x,y) - u(c,d) - [p(x-c) - q(y-d)]}{\sqrt{(x-c)^2 + (y-d)^2}} = 0,$$

and

$$\lim_{(x,y)\to(c,d)}\frac{v(x,y)-v(c,d)-[q(x-c)+p(y-d)]}{\sqrt{(x-c)^2+(y-d)^2}}=0.$$

This holds if and only if u, v are \mathbb{R}^2 -differentiable at (c, d), and $u_x = v_y$, $u_y = -v_x$.

Remark. If the partial u_x, u_y, v_x, v_y exist and are continuous on U, then u, v are differentiable on U. So it suffices to check the partials exist and are continuous, and the Cauchy-Riemann equations hold to deduce complex differentiability.

Example 1.1.

- 1. Take $f(z) = \overline{z}$. Then f has u(x,y) = x and v(x,y) = -y, so $u_x = 1$, $v_y = -1$. So $f(z) = \overline{z}$ is not holomorphic or differentiable anywhere.
- 2. Any polynomial $p(z) = a_d z^d + \cdots + a_1 z + a_0$, with $a_i \in \mathbb{C}$ is entire.
- 3. Rational function, which are quotients of polynomials $\frac{p(z)}{q(z)}$ are holomorphic on the open set $\mathbb{C} \setminus \{\text{zeroes of } q\}$.

Note that f = u + iv satisfying the Cauchy-Riemann equations at a point does not mean it is differentiable at that point.

Some proofs in regular analysis have natural extensions to complex analysis. For example, if $f: U \to \mathbb{C}$ on a domain U with f'(z) = 0 on U, then f is constant on U.

Now we ask: why are we interested in complex analysis?

- Unlike \mathbb{R}^2 differentiable functions, holomorphics functions are very constrained. For example, if f is entire and bounded (so |f(z)| < M for all $z \in \mathbb{C}$), then f is constant. Contrast with sin, for example.
- We will see that f holomorphic on a domain U has holomorphic derivative on U. This implies that f is infinitely differentiable, as are u and v.

In particular, we can differentiate the Cauchy-Riemann equations to get

$$u_{xx} = v_{yx} = v_{xy} = -u_{yy},$$

so $u_{xx} + u_{yy} = 0$, and similarly $v_{xx} + v_{yy} = 0$. Hence the real and imaginary parts of a holomorphic function are harmonic.

Let $f: U \to \mathbb{C}$ be a holomorphic function on an open set U_1 and $w \in U$ with $f'f(w) \neq 0$. We want to look at the geometric behaviour of f at w.

In fact, we claim f is conformal at w. Let γ_1, γ_2 be C^1 -paths through w, say $\gamma_1, \gamma_2 : [-1, 1] \to U_1$, such that $\gamma_1(0) = \gamma_2(0) = w$, and $\gamma'_i(0) \neq 0$. If we write $\gamma_i(t) = w + r_i(t) = e^{i\theta_j(t)}$, then we have

$$arg(\gamma_j'(z)) = \theta_j(0),$$

and the argument of the image line is

$$\arg((f \circ \gamma_j)'(0)) = \arg(\gamma_j'(0)f'(\gamma_j(0))) = \arg(\gamma_j'(0)) + \arg(f'(w)) + 2\pi n,$$

where crucially we use $\gamma'_j(0)f'(\gamma_j(0)) \neq 0$, so the direction of γ_j at w under the application of f is rotated by $\arg(f'(w))$. This is independent of γ_j . Since the angle between γ_1 and γ_2 is the difference of the arguments f preserves the angle. This is what it means to be conformal.

Definition 1.3. Let U, V be domains in \mathbb{C} . A map $f: U \to V$ is a conformal equivalence of U and V if f is a bijective holomorphic map with $f'(z) \neq 0$, for all $z \in U$.

Remark.

- 1. Using the real inverse function theorem, one can show if $f: U \to V$ is a holomorphic bijection of open sets with $f'(z) \neq 0$ for all $z \in U$, then the inverse of f is also holomorphic, so also conformal by the chain rule. So conformally equivalent domains are equal from the perspective of the functions f.
- 2. We will later see than being injective and holomorphic on a domain implies $f'(z) \neq 0$ for all $z \in U$, so this requirement is redundant.

Example 1.2.

1. Any change of coordinates: on \mathbb{C} , take f(z) = az + b, for $a \neq 0$ and b, which is a conformal equivalence $\mathbb{C} \to \mathbb{C}$. More generally, a Möbius map

$$f(z) = \frac{az+b}{cz+d},$$

for $ad - bc \neq 0$, is a conformal equivalence from the Riemann sphere to itself. This can eb seen as adding a point at infinity to make a sphere \mathbb{C}_{∞} (or gluing two copies of the unit disc with coordinates z and $\frac{1}{z}$).

If $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is continuous, then

- if $f(\infty) = \infty$, then f is holomorphic at ∞ if and only if $g(z) = \frac{1}{f(\frac{1}{z})}$ is holomorphic at 0.
- If $f(\infty) \neq \infty$, then f is homolorphic at ∞ if and only if $f(\frac{1}{z})$ is holomorphic at 0.
- If $f(a) = \infty$ for $a \in \mathbb{C}$, then f is holomorphic at a if and only if $\frac{1}{f(z)}$ is holomorphic at a.

We can then think of Möbius maps as change of coordinates for the sphere.

Choosing $z_1 \to 0$, $z_2 \to \infty$, $z_3 \to 1$ defined a Möbius map

$$f(z) = \frac{z - z_1}{z - z_2} \cdot \frac{z_3 - z_2}{z_3 - z_1},$$

for distinct $z_1, z_2, z_3 \in \mathbb{C}$.

- 2. For $n \in \mathbb{N}$, $f(z) = z^n$ is a conformal equivalence from the sector $\{z \in \mathbb{C}^\times \mid 0 < \arg z < \frac{\pi}{n}\}$ to the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \Im z > 0\}$.
- 3. The Möbius map $f(z) = \frac{z-i}{z+i}$ is a conformal equivalence between $\mathbb H$ and D(0,1). We can compute $f'(z) \neq 0$ on $\mathbb H$, and

$$z \in \mathbb{H} \iff |z - i| < |z + i| \iff |f(z)| < 1.$$

Note that $f^{-1}(w) = -i \frac{w+1}{w-1}$.

4. We can use these examples to write down conformal equivalences. Let U_1 be the upper half semicircle, and U_2 the lower half plane. Considering $g(z) = \frac{z+1}{z-1}$, we know that sends D(0,1) to the left half-plane, so it sends U_1 to the upper left quadrant.

Then, the upper left quadrant if mapped by the squaring map to U_2 . So $f(z) = (\frac{z+1}{z-1})^2$ is a conformal equivalence from $U_1 \to U_2$.

These are all examples of the deep Riemann mapping theorem:

Theorem 1.1 (Riemann mapping theorem). Let $U \subset \mathbb{C}$ be a proper domain which is simply connected. Then there exists a conformal equivalence between U and D(0,1).

Here, simply connected means a subset $U \subset \mathbb{C}$ which is path-connected, and contractible: any loop in U can be contracted to a point. So any continuous path $\gamma: S^1 \to U$ extends to a continuous map $\hat{\gamma}: D(0,1) \to U_1$ with $\hat{\gamma}|_{S_1} = \gamma$.

In fact any domain bounded by a simple closed curve is simply connected, so all of these are conformally equivalent to D(0,1).

Example 1.3.

We look at a domains in the Riemann sphere, with bounded and connected complement. This is simply connected as a subset of \mathbb{C}_{∞} .

Now, the Mandelbrot set is bounded and connected, so the complement of the Mandelbrot set is simply connected in \mathbb{C}_{∞} .

Recall the following facts about functions defined by power series, or sequences of functions:

1. A sequence (f_n) of functions converges uniformly to a function f on some set S if for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $x \in S$,

$$|f_n(x) - f(x)| < \varepsilon.$$

- 2. The uniform limit of continuous functions is continuous.
- 3. The Weierstrass M-test: if there exists $M_n \in \mathbb{R}$ for all n such that $0 \le |f_n(x)| \le M_n$ for all $x \in S$, then

$$\sum_{n=1}^{\infty} M_n \infty \implies \sum_{n=1}^{\infty} f_n(x) \text{ converges uniformly on } S \text{ as } N \to \infty.$$

4. Let (c_n) be complex numbers, and fix $a \in \mathbb{C}$. Then there exists unique $R \in [0, \infty]$ such that the function

$$z \mapsto \sum_{n=1}^{\infty} c_n (z-a)^n$$

converges absolutely if |z - a| < R, and diverges if |z - a| > R. If 0 < r < R, then the series converges uniformly in $\Delta(a, r)$. R is the radius of convergence of the series. We can compute

$$R = \sup\{r \ge 0 \mid |c_n|r^n \to 0\},\$$

or

$$R = \frac{1}{\lambda}, \qquad \lambda = \limsup_{n \to \infty} |c_n|^{1/n}.$$

Theorem 1.2.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

is a complex power series with radius of convergence R. Then,

- (i) f is holomorphic on $\Delta(a, R)$.
- (ii) f has derivative

$$f'(z) = \sum_{n=1}^{\infty} nc_n(z-a)^{n-1},$$

with radius of convergence R about a.

(iii) f has derivatives of all orders on $\Delta(a,R)$, and $f^{(n)}(a) = n!c_n$.

Proof: We can let a=0 by change of variables $z \to z-a$. Consider the series

$$\sum_{n=1}^{\infty} n c_n z^{n-1}.$$

Since $|nc_n| \ge |c_n|$, the radius of convergence of this series is no larger than R. If $0 < R_1 < R$, then for $|z| < R_1$, we have

$$|nc_n z^{n-1}| = n|c_n|R_1^{n-1} \frac{|z|^{n-1}}{R_1^{n-1}},$$

and

$$n\left(\frac{|z|}{R_1}\right)^{n-1} \to 0.$$

Applying the M-test with $M_n = c_n R_1^{n-1}$, we have the convergence of the series. So the series has radius of convergence R.

Now for |z|, |w| < R, we need to consider

$$\frac{f(z) - f(w)}{z - w}.$$

Taking the partial sums,

$$\sum_{n=0}^{N} c_n \frac{z^n - w^n}{z - w} = \sum_{n=0}^{N} c_n \left(\sum_{j=0}^{n-1} z^j w^{n-1-j} \right)$$

For $|z|, |w| < \rho < R$, we have

$$\left| c_n \left(\sum_{j=0}^{n-1} z^j w^{n-1-j} \right) \right| \le |c_n| n \rho^{n-1}.$$

Hence the partial sums converge uniformly on $\{(z, w) \mid |z|, |w| < \rho\}$. So the series converges to a continuous limit on $\{|z|, |w| < R\}$, say g(z, w). When $z \neq w$, we know

$$g(z,w) = \frac{f(z) - f(w)}{z - w}.$$

When z = w, we have

$$g(w,w) = \sum_{n=0}^{\infty} nc_n w^{n-1}.$$

Hence by the continuity of g, this proves (i) and (ii). Then (iii) follows from a simple induction.

Corollary 1.1. Suppose $0 < \rho < R$, where R is the radius of convergence of the complex power series

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n,$$

and f(z) = 0 for all $z \in D(a, \rho)$. Then $f \equiv 0$ on D(a, R).

Proof: Since $f \equiv 0$ on $D(a, \rho)$, we have $f^{(n)}(a) = 0$ for all n. Hence $c_n = 0$ for all n, so $f \equiv 0$ on D(a, R).

1.2 Exponential and Logarithm

We define the complex exponential

$$e^z = \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

The complex exponential has the following properties:

- 1. It has radius of convergence ∞ , so the function is entire, and we have $\frac{d}{dz}e^z=e^z$.
- 2. For all $z, w \in \mathbb{C}$, $e^{z+w} = e^z e^w$, and $e^z \neq 0$.

This follows from setting $F(z) = e^{z+w}e^{-z}$, then taking the derivative,

$$F'(z) = e^{z+w}e^{-z} - e^{z+w}e^{-z} = 0,$$

so F is constant. Since $e^0=1$, $F(z)=e^w$, and $e^{z+w}=e^ze^w$. Since $e^ze^{-z}=e^0=1$, $e^z\neq 0$.

3. Let z = x + iy. Then $e^z = e^{x+iy} = e^x e^{iy}$. But $e^{iy} = \cos y + i \sin y$, and note that $|e^{iy}| = 1$, so

$$e^z = e^x(\cos y + i\sin y),$$

and $|e^z| = e^x$, so $e^z = 1$ if and only if x = 0 and $y = 2\pi k$ for $k \in \mathbb{Z}$. In fact, for all $w \in \mathbb{C}^{\times}$, there exist infinitely many $z \in \mathbb{C}$ such that $e^z = w$, differing by integer multiples of $2\pi i$.

Definition 1.4. Let $U \subset \mathbb{C}^{\times}$ be an open set. We say a continuous function $\lambda: U \to \mathbb{C}$ is a branch of the logarithm if for all $z \in U$, $\exp(\lambda(z)) = z$.

Example 1.4.

Let $U = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Define $\log : U \to \mathbb{C}$ by

$$\log(z) = \ln|z| + i\theta,$$

where $\theta = \arg(z)$, and $\theta \in (-\pi, \pi)$. This is the principal branch of the logarithm.

Proposition 1.2. $\log(z)$ is holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ with derivative $\frac{1}{z}$. Moreover, if |z| < 1, then

$$\log(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}z^n}{n}.$$

Proof: As an inverse to e^z and by the chain rule, we have $\log z$ is holomorphic with $\frac{d}{dz} \log z = \frac{1}{z}$. We have

$$\frac{\mathrm{d}}{\mathrm{d}z}\log(1+z) = \frac{1}{z+1} = 1 - z + z^2 - z^3 + z^4 - \cdots,$$

which is the derivative of

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^n}{n}.$$

So $\log(1+z)$ agrees with this series up to a constant. Since $\log(1)=0$, the equality holds.

If $\alpha \in \mathbb{C}$, we can define $z^{\alpha} = \exp(\alpha \log z)$. This gives a definition of z^{α} on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. We can compute that $\frac{\mathrm{d}}{\mathrm{d}z}z^{\alpha} = \alpha z^{\alpha-1}$.

It is not necessarily true that $z^{\alpha}w^{\alpha}=(zw)^{\alpha}$. Take $\alpha=\frac{1}{2}$, then

$$z^{1/2} = \exp\left(\frac{1}{2}\log z\right) = \exp\left(\frac{1}{2}\ln|z| + \frac{1}{2}i\theta\right),$$

for $\theta \in (-\pi, \pi)$. Hence the argument of $z^{1/2}$ is in $(-\frac{\pi}{2}, \frac{\pi}{2})$.

1.3 Contour Integration

If $f:[a,b]\to\mathbb{C}$ is continuous, we define

$$\int_a^b f(t) dt = \int_a^b \Re(f(t)) dt + i \int_a^b \Im(f(t)) dt.$$

Proposition 1.3. Let $f:[a,b] \to \mathbb{C}$ be continuous. Then,

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \le (b - a) \sup_{a \le t \le b} |f(t)|,$$

with equality if and only if f is constant.

Proof: Write $M = \sup_{a \le t \le b} |f(t)|$, and $\theta = \arg(\int_a^b f(t) dt)$. Then

$$\left| \int_{a}^{b} f(t) dt \right| = e^{-i\theta} \int_{a}^{b} f(t) dt = \int_{a}^{b} e^{-i\theta} f(t) dt$$
$$= \int_{a}^{b} \Re(e^{-i\theta} f(t)) dt$$
$$\leq \int_{a}^{b} |f(t)| dt \leq M(b-a).$$

If we have equality, then |f(t)| = M, and $\arg f(t) = \theta$, so f is constant.

Definition 1.5. Let $\gamma:[a,b]\to\mathbb{C}$ be a C^1 -smooth curve. Then we define the arc-length of γ to be

$$length(\gamma) = \int_a^b |\gamma'(t)| dt.$$

We say γ is simple if $\gamma(t_1) = \gamma(t_2) \iff t_1 = t_2$ or $\{t_1, t_2\} = \{a, b\}$. If γ is simple, then length (γ) is the length of the image of γ .

Definition 1.6. Let $f: U \to \mathbb{C}$ be continuous, with U open, and $\gamma: [a, b] \to U$ be a C^1 -smooth curve. Then the integral of f along γ is

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

This integral satisfies the following properties:

1. Linearity:

$$\int_{\gamma} c_1 f_1 + c_2 f_2 \, dz = c_1 \int_{\gamma} f_1 \, dz + c_2 \int_{\gamma} f_2 \, dz.$$

2. Additivity: if a < a' < b, then

$$\int_{\gamma|_{[a,a']}} f(z) \, dz + \int_{\gamma|_{[a',b]}} f(z) \, dz = \int_{\gamma} f(z) \, dz.$$

3. Inverse path: if $(-\gamma)(t) = \gamma(-t)$ on [-b, -a], then

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz.$$

4. Independence of parametrization: if $\phi: [a',b'] \to [a,b]$ is C^1 -smooth with $\phi(a') = a, \ \phi(b') = b$ and $\delta = \gamma \circ \phi$, then

$$\int_{\delta} f(z) \, \mathrm{d}z = \int_{\gamma} f(z) \, \mathrm{d}z.$$

This lets us assume that $\gamma:[0,1]\to U$.

We can loosen the restriction that γ is C^1 -smooth and allow it to be piecewise C^1 -smooth, i.e. there exist $a = a_0 < a_1 < \cdots < a_n = b$ such that $\gamma_i = \gamma|_{[a_{i-1}, a_i]}$ is C^1 -smooth. Define then

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{n} \int_{\gamma_i} f(z) dz.$$

Remark. Any piecewise C^1 -smooth curve can be reparametrized to be C^1 : for such a γ as above, replace γ_i by $\gamma_i \circ h_i$ where h_i is monotonic C^1 -smooth bijection with endpoint derivative 0.

So C^1 -smooth paths can have corners, for example

$$\gamma(t) = \begin{cases} 1 + i\sin(\pi t) & t \in [0, \frac{1}{2}], \\ \sin(\pi t) + i & t \in [\frac{1}{2}, 1]. \end{cases}$$

We say a "curve" is a piecewise C^1 -smooth path, and a "contour" is a simple *closed* piecewise C^1 -smooth path, where closed means the endpoints are equal.

Proposition 1.4. For any continuous $f: U \to \mathbb{C}$ with U open, and any curve $\gamma: [a,b] \to U$,

$$\left| \int_{\gamma} f(z) \, dz \right| \le \operatorname{length}(\gamma) \sup_{z \in \gamma} |f(z)|.$$

Proof:

$$\begin{split} \left| \int_{\gamma} f(z) \, \mathrm{d}z \right| &= \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, \mathrm{d}t \right| \\ &\leq \int_{a}^{b} \left| f(\gamma(t)) \gamma'(t) \right| \, \mathrm{d}t \\ &\leq \sup_{z \in \gamma} |f(z)| \mathrm{length}(\gamma). \end{split}$$

Proposition 1.5. If $f_n: U \to \mathbb{C}$ for $n \in \mathbb{N}$ and $f: U \to \mathbb{C}$ are continuous, and $\gamma: [a,b] \to U$ is a curve in U with $f_n \to f$ uniformly on γ , then

$$\int_{\gamma} f_n(z) \, \mathrm{d}z \to \int_{\gamma} f(z) \, \mathrm{d}z,$$

as $n \to \infty$.

Proof: By uniform convergence, $\sup_{z \in \gamma} |f(z) - f_n(z)| \to 0$ as $n \to \infty$. So by the previous proposition,

$$\left| \int_{\gamma} f(z) dz - \int_{\gamma} f_n(z) dz \right| \le \operatorname{length}(\gamma) \sup_{\gamma} |f - f_n|$$

$$\to 0$$

as $n \to \infty$.

Example 1.5.

Let $f_n(z) = z^n$ for $n \in \mathbb{Z}$ on $C^{\times} = U$, and $\gamma : [0, 2\pi] \to U$ with $\gamma(t) = e^{it}$. Then,

$$\int_{\gamma} f_n(z) dz = \int_0^{2\pi} e^{nit} i e^{it} dt = i \int_0^{2\pi} e^{(n+1)it} dt = \begin{cases} 2\pi i & n = -1, \\ 0 & n \neq -1. \end{cases}$$

Index

analytic, 2

branch of the logarithm, 9

Cauchy-Riemann equations, 3 complex differentiable, 2 conformal, 4

conformal equivalence, 5

domain, 2

harmonic function, 2 holomorphic, 2

open, 2

path, 2

path-connected, 2

principal branch of the logarithm, 10

radius of convergence, 7 rational functions, 4

Riemann mapping theorem, 6

simple, 2, 11

simply connected, 6

uniform convergence, 7

Weierstrass M-test, 7