ABSTRACT OF THE DISCLOSURE

A process for preparing compounds of the formula (II),

where the substituents R^1 to R^5 are each independently H, CH_3 , straight-chain or branched C_1 - C_8 -alkyl, $CH(OC_1$ - C_5 -alkyl)₂, $CH(C_1$ - C_5 -alkyl)(OC_1 - C_5 -alkyl), $CH_2(OC_1$ - C_5 -alkyl), $CH(CH_3)(OC_1$ - C_5 -alkyl), C_1 - C_8 -alkoxy, $N(C_1$ - C_5 -alkyl)₂, phenyl, substituted phenyl, aryl, heteroaryl, $S(C_1$ - C_5 -alkyl) or a radical $C_{aryl,alkyl}$, and

the symbols $X^{1 \text{ to } 5}$ are each carbon or a maximum of two neighboring X^{1-5} are nitrogen or X^1R^1 and X^2R^2 together are O, NH, N(C₁-C₅-alkyl), N(C=O-C₁-C₅-alkyl), N(SiR₃)₂ or S,

or where neighboring radicals R¹ to R⁵ form the following structural unit,

where X^6 to X^9 and R^6 to R^9 have the same meaning as X^1 to X^5 and R^1 to R^5 which comprises reacting chloro- or fluoroaromatics of the formula (I) with carbon electrophiles and lithium metal.