

Vsebina

- Zgradba SUPB
- Upravlanje s prostorom na disku
- Upravljanje z medpomnilnikom
- Startegije zamenjave strani v medpomnilniku

Upravljanje s prostorom na disku...

Upravljanje z diskom - upravljalec z diskom (Disk Space Manager).

Lastnosti:

- Skrije podrobnosti strojne opreme in OS; omogoča, da ostale komponente SUPB vidijo podatke kot zbirko strani.
- Izvaja ukaze za dodeljevanje in sproščanje prostora na disku ter branje in pisanje;
- Vse operacije izvaja nad enotami stran (page). Stran = blok na disku. Branje/pisanje strani → ena I/O operacija;

Upravljanje s prostorom na disku...

- Vzdržuje stanje zasedenih in prostih blokov na disku.
- Obstajata dva načina:
 - Vzdrževanje seznama prostih blokov (kazalec na prvi blok seznama se shrani na znano lokacijo na disku),
 - Vzdrževanje bitne mape (za vsak blok je v bitni mapi bit, ki označuje, ali je blok zaseden ali ne).

Upravljanje s prostorom na disku...

- Uporaba datotečnega sistema za upravljanje s prostorom:
 - Upravljalec z diskom lahko uporablja datoteke operacijskega sistema
 → celotna PB se nahaja v eni ali več datotekah.
 - V tem primeru je zadolžen za upravljanje prostora v teh datotekah.
 - Veliko PB ne uporablja datotečnega sistema, ampak svoj lastni sistem za upravljanje z diskom (popolnoma svoj ali pa razširja funkcionalnost datotečnega sistema OS). Razlogi:
 - o PRAKTIČNI: bazo lahko uporabimo na več platformah,
 - o TEHNIČNI: pri 32 bitnem naslavljanju se pojavi omejitev v velikosti datoteke.

- Upravljalec medpomnilnika programska plast, skrbi za prenašanje strani v pomnilnik.
 - upravlja z razpoložljivim pomnilnikom (buffer pool).
 - višjim plastem zagotavlja strani... prenese kar zahtevajo
 - višje plasti obveščajo o straneh, ki se sprostijo, spremenijo.

select * from employees
where emp_no = 10002;

emp_no	birth_date	first_name	last_name	gender	hire_date
10001	1953-09-02	Georgi	Facello	M	1986-06-26
10002	1964-06-02	Bezalel	Simmel	F	1985-11-21
10003	1959-12-03	Parto	Bamford	M	1986-08-28
10004	1954-05-01	Chirstian	Koblick	M	1986-12-01
10005	1955-01-21	Kyoichi	Maliniak	M	1989-09-12
10006	1953-04-20	Anneke	Preusig	F	1989-06-02
10007	1957-05-23	Tzvetan	Zielinski	F	1989-02-10
10008	1958-02-19	Saniya	Kalloufi	M	1994-09-15
10009	1952-04-19	Sumant	Peac	F	1985-02-18
10010	1963-06-01	Duangkaew	Piveteau	F	1989-08-24
10011	1953-11-07	Mary	Sluis	F	1990-01-22
10012	1960-10-04	Patricio	Bridgland	M	1992-12-18
10013	1963-06-07	Eberhardt	Terkki	M	1985-10-20
10014	1956-02-12	Berni	Genin	M	1987-03-11
10015	1959-08-19	Guoxiang	Nooteboom	М	1987-07-02

select * from employees
where emp_no = 10002;

	emp_no	birth_date	first_name	last_name	gender	hire_date
Þ	10001	1953-09-02	Georgi	Facello	М	1986-06-26
	10002	1964-06-02	Bezalel	Simmel	F	1985-11-21
	10003	1959-12-03	Parto	Bamford	М	1986-08-28
	10004	1954-05-01	Chirstian	Koblick	M	1986-12-01
	10005	1955-01-21	Kyoichi	Maliniak	М	1989-09-12
	10006	1953-04-20	Anneke	Preusig	F	1989-06-02
	10007	1957-05-23	Tzvetan	Zielinski	F	1989-02-10
	10008	1958-02-19	Saniya	Kalloufi	М	1994-09-15
	10009	1952-04-19	Sumant	Peac	F	1985-02-18
	10010	1963-06-01	Duangkaew	Piveteau	F	1989-08-24
	10011	1953-11-07	Mary	Sluis	F	1990-01-22
	10012	1960-10-04	Patricio	Bridgland	М	1992-12-18
	10013	1963-06-07	Eberhardt	Terkki	М	1985-10-20
	10014	1956-02-12	Berni	Genin	М	1987-03-11
	10015	1959-08-19	Guoxiang	Nooteboom	М	1987-07-02

- Za vsak okvir v medpomnilniku dve spremenljivki:
 - pin_count: št. zahtev po neki strani brez sprostitve (št. trenutnih uporabnikov strani).
 - dirty: stran spremenjena: true/false.
- Začetno stanje okvirja:
 - pin_count = 0
 - dirty = false

| P=0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| D=F |
| P=0 |
| D=F |
| P=0 |
| D=F |
| P=0 |
| D=F |

Primer

T1: select * from employees where emp_no = 10002;

T2: update employees set last_name = 'Julius' where emp_no = 10008;

P=0	P=0	P=0	P=0	P=0	P=0	P=0	P=0
D=F	D=F	D=F	D=F	D=F	D=F	D=F	D=F
P=0	P=1	P=0	P=0	P=1	∠ P=0	P=0	P=0
D=F	D=F	D=F	D=F	D=T	D=F	D=F	D=F
P=0	P=0	P=0	P=0	P=0	P=0	P=0	P=0
D=F	D=F	D=F	D=F	D=F	D=F	D=F	D=F
P=0	P=0	P=0	P=0	P=0	P=0	P=0	P=0
D=F	D=F	D=F	D=F	D=F	D=F	D=F	D=F

Postopek...

- Ko se pojavi zahteva po določeni strani, upravljalec z medpomnilnikom izvede naslednje:
 - če se stran nahaja v kakšnem od okvirjev, vrne pomnilniški naslov okvirja in poveča pin_count za 1,
 - sicer izvede naslednje:
 - o izbere okvir za zamenjavo (z uporabo strategije za zamenjavo).
 - o če je dirty bit okvirja, ki bo zamenjan, postavljen na "on", se stran prepiše na disk.
 - o stran se prenese iz diska v okvir, ki je določen za zamenjavo.
 - o pin_count okvirja se postavi na 1
 - o ko sistem sporoči, da se stran sprostila, se pin_count zmanjša za 1. Ko doseže vrednost 0, sistem prepiše stran nazaj na disk (če dirty bit ON)

Postopek

- Dodatna pravila:
 - Zahtevana stran ni v medpomnilniku, vsi okvirji zasedeni → izberi okvir s pin_count=0. Če več takih → uporabi strategijo izbire!
 - Ni iskane strani, ni strani s pin_count=0 → čakaj na sprostitev (transakcija razveljavljena).

Konfliktne spremembe...

 Nevarnost: če neko stran zahteva več neodvisnih transakcij, lahko pride do konfliktnih sprememb...

| P=0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| D=F |
| P=0 | P=2 | P=0 | P=0 | P=0 | P=0 | P=0 | P=0 |
| D=F |
| P=0 |
| D=F |
| P=0 |
| D=F |

Konfliktne spremembe

- Reševanje z zaklepanjem:
 - Obstaja protokol zaklepanja, za katerega skrbijo višje ravni SUPB (posebej upravljalec transakcij).
 - Vsaka transakcija lahko pridobi deljeno (shared) ali ekskluzivno (exclusive) zaklepanje preden lahko stran bere ali spreminja.
 - Ekskluzivno zaklepanje iste strani ne sme biti odobreno dvema transakcijama istočasno!

Zamenjava strani v medpomnilniku...

- Strategija zamenjave strani v medpomnilniku močno vpliva na učinkovitost SUPB.
- Različne strategije primerne za različne situacije.
- Strategija LRU Least Recently Used
 - Vrsta kazalcev na okvirje s pin_count = 0
 - Ko stran postane kandidat za zamenjavo (pin_count = 0), okvir strani dodamo na konec vrste
 - Za zamenjavo izberemo stran iz okvirja, na katerega kaže prvi kazalec v vrsti
 - Problem: časovna kompleksnost

Zamenjava strani v medpomnilniku...

Zamenjava strani v medpomnilniku...

Strategija urne zamenjave (clock replacement)

Vsaka stran ima:

- R reference bit
- P Pin count

Algoritem

Ko P postane 0 postavimo R=1; Če potrebna zamenjava, preverimo stran, kamor kaže kazalec; Če velja P>0 ali R=1, pomaknemo kazalec naprej Sicer stran uporabimo za zamenjavo.

Upravljanje navideznega pomnilnika z OS

- Upravljanje z navideznim pomnilnikom OS in medpomnilnikom pri SUPB podobno.
- Cilj pri SUPB: zagotoviti učinkovit dostop do podatkov, ko jih sistem rabi. Če je podatek v pomnilniku – dobro, sicer slabo.
- SUPB tipično realizira svojega upravljavca z medpomnilnikom:
 - lahko bolje predvidi zaporedje (vzorce dostopanja) kot tipičen OS.
 Strategija vnaprejšnjega branja (prefetching).
 - SUPB rabi več nadzora nad stranmi, ki se zapisujejo na disk, kot ga omogoča tipičen OS.