Laplace Transformation of some elementary functions:

	F(t)	$L\{F(t)\} = f(s)$
1.	1	$\frac{1}{s}$, s>0
2.	t	$\frac{1}{s^2}$, s>0
3.	<i>t</i> ⁿ n= 0, 1, 2,	Ü
4.	e ^{at}	$\frac{\frac{n!}{s^{n+1}}, s>0}{\frac{1}{s-a}, s>a}$
5.	sinat	$\frac{a}{s^2+a^2}, \ s>0$
6.	cosat	$\frac{s}{s^2+a^2}, \ s>0$
7.	sinhat	$\frac{a}{s^2 - a^2}, s > a $
8.	coshat	$\frac{s}{s^2 - a^2}, s > a $
9.	$\frac{t^n}{(n+1)!}, \qquad n > -1$	$\frac{1}{s^{n+1}}, n > -1$

Inverse Laplace Transformation

	f(s)	$L^{-1}\{f(s)\} = F(t)$
1.	$\frac{1}{s}$	1
2.	$\frac{1}{s^2}$	t
3.	$\frac{1}{s^{n+1}}$, $n = 0,1,2,$	$\frac{t^n}{n!}$
4.	$\frac{1}{s-a}$	e^{at}
5.	$\frac{1}{s^2 + a^2}$	$\frac{sinat}{a}$
6.	$\frac{s}{s^2 + a^2}$	cosat
7.	$\frac{1}{s^2 - a^2}$	sinhat a
8.	$\frac{s}{s^2 - a^2}$	coshat
9.	$\frac{1}{s^{n+1}}, n > -1$	$\frac{t^n}{(n+1)!}, \qquad n > -1$