III - Récurrences

À Savoir

Le raisonnement par récurrence se déroule en 3 étapes principales.

- * On énonce clairement la propriété à démontrer. Cette propriété doit dépendre d'un entier naturel noté n.
- * L'initialisation. On montre la propriété lorsque n=0 (si la propriété est vraie pour tout entier naturel) ou lorsque n=1 (si la propriété est vraie pour tout entier naturel non nul).
 - Généralement, la propriété est une égalité. On montre alors que les deux membres de l'égalité sont égaux à une même valeur.
- * L'hérédité. On fixe un entier naturel n. On suppose la propriété vraie à l'ordre n (c'est l'hypothèse de récurrence). On montre que la propriété est vraie lorsque n est remplacé par (n+1) (ne pas oublier le parenthésage). Généralement, on part d'un côté de l'égalité et on arrive à l'autre côté. Une des étapes du calcul utilise l'hypothèse de récurrence.
- * Conclusion. On conclut clairement en citant l'initialisation, l'hérédité et le principe de récurrence.

I - Calculs de sommes

Exemple 1 - Somme des n premiers entiers non nuls

Montrons par récurrence que, pour tout n entier naturel,

$$0+1+2+\cdots+n=\sum_{k=0}^{n}k=\frac{n(n+1)}{2}.$$

On note $P_n : \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} k = \frac{0(0+1)}{2}$. Or,

$$\sum_{k=0}^{0} k = 0$$
$$\frac{0(0+1)}{2} = 0$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$. Montrons

que
$$\sum_{k=0}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$
. Or,

$$\sum_{k=0}^{n+1} k = 0 + 1 + 2 + \dots + n + (n+1)$$

$$= [0 + 1 + \dots + n] + (n+1), \text{ d'après les propriétés des sommes}$$

$$= \frac{n(n+1)}{2} + (n+1), \text{ d'après l'hypothèse de récurrence}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}.$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Exemple 2 - Somme des termes d'une suite géométrique

Soit $q \neq 1$. Montrons par récurrence que, pour tout n entier naturel,

$$q^{0} + q^{1} + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}.$$

On note $P_n: \sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$.

Initialisation. Lorsque n = 0. Montrons que $\sum_{k=0}^{0} q^k = \frac{1-q^{0+1}}{1-q}$. Or,

$$\sum_{k=0}^{0} q^{k} = q^{0} = 1$$

$$\frac{1 - q^{0+1}}{1 - q} = \frac{1 - q}{1 - q} = 1$$

Ainsi, P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. Supposons que $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$. Montrons que $\sum_{k=0}^{n+1} q^k = \frac{1-q^{(n+1)+1}}{1-q} = \frac{1-q^{n+2}}{1-q}$. Or,

$$\sum_{k=0}^{n+1} q^k = q^0 + q^1 + q^2 + \dots + q^n + q^{n+1}$$

$$= \left[q^0 + q^1 + \dots + q^n \right] + q^{n+1}, \text{ d'après les propriétés des sommes}$$

$$= \frac{1 - q^{n+1}}{1 - q} + q^{n+1}, \text{ d'après l'hypothèse de récurrence}$$

$$= \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q}$$

$$= \frac{1 - q^{n+1} + q^{n+1} - q \cdot q^{n+1}}{1 - q}$$

$$= \frac{1 - q^{n+2}}{1 - q}$$

$$= \frac{1 - q^{n+2}}{1 - q}$$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

Exercice 1. (Somme des n premiers carrés) Montrer par récurrence que, pour tout n entier naturel,

$$0^{2} + 1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=0}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 2. (Somme des n premiers cubes) Montrer par récurrence que,

pour tout n entier naturel,

$$0^3 + 1^3 + 2^3 + \dots + n^3 = \sum_{k=0}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$
.

Exercice 3. (Formule du binôme de Newton, $(a, b \in \mathbb{R} \text{ et } n \in \mathbb{N}. \text{ Alors,})$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

II - Inégalités

Exemple 3 - Inégalité de Bernoulli

Soit x > 0. Montrons que, pour tout $n \ge 0$, $(1+x)^n \ge 1 + nx$.

On note $P_n: (1+x)^n \geqslant 1+nx$.

Initialisation. Lorsque n=0. Montrons que $(1+x)^0 \ge 1+0x$. Or,

$$(1+x)^0 = 1$$

 $1+0x = 1$.

Ainsi, la propriété P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $(1+x)^n \ge 1+nx$. Montrons que $(1+x)^{n+1} \ge 1+(n+1)x$. En effet,

$$(1+x)^{n+1} = (1+x)^n \times (1+x)$$
, d'après la définition des puissances $\geq (1+nx) \times (1+x)$, d'après l'hypothèse de récurrence $\geq 1+x+nx+nx^2$ $\geq 1+(n+1)x+nx^2$ $\geq 1+(n+1)x$, car $nx^2 \geq 0$

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, (1+x)^n \geqslant 1 + nx.$$

Exemple 4 - Suite & Encadrement

Soit (u_n) définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 15}$. Montrer que, pour tout n entier naturel, $0 \le u_n \le 5$.

On note $P_n: 0 \leq u_n \leq 5$.

Initialisation. Lorsque n = 0. Montrons que $0 \le u_0 \le 5$.

 $u_0 = 3 \in [0, 5]$, donc P_0 est vraie.

Hérédité. Soit $n \in \mathbb{N}$. On suppose que $0 \le u_n \le 5$. Montrons que $0 \le u_{n+1} \le 5$. En effet,

 $0 \le u_n \le 5$, d'après l'hypothèse de récurrence

 $15 \leqslant u_n + 15 \leqslant 20$

 $\sqrt{15} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{20}$, la fonction racine étant croissante

 $0 \leqslant \sqrt{15} \leqslant \sqrt{u_n + 15} \leqslant \sqrt{20} \leqslant \sqrt{25}$, car $20 \leqslant 25$

 $0 \leqslant u_{n+1} \leqslant 5$, d'après la définition de u_{n+1}

Ainsi, P_{n+1} est vraie.

Conclusion. Finalement, la propriété est vraie à l'ordre 0 et est héréditaire. D'après le principe de récurrence, elle est vraie pour tout n entier naturel, soit

$$\forall n \in \mathbb{N}, 0 \leqslant u_n \leqslant 5.$$

Exercice 4. (Suite & Encadrement) Soit (u_n) définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 6}$. Montrer que, pour tout n entier naturel, $u_n \leq 3$.

Exercice 5. (Suite & Encadrement) Soit (u_n) définie par $u_0 = 6$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{u_n + 15}$. Montrer que, pour tout n entier naturel, $4 \le u_n \le 10$.

III - Suites définies par récurrence

Exercice 6. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 5$

Chapitre III - Récurrences ECT 2

et, pour tout n entier naturel, $u_{n+1} = u_n + 3$. Montrer que, pour tout n entier naturel, $u_n = 5 + 3n$.

Exercice 7. (Suite géométrique) Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = 5 \times u_n$. Montrer que, pour tout n entier naturel, $u_n = 3 \times 5^n$.

Exercice 8. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout n entier naturel, $u_{n+1} = u_n + n + 1$. Montrer que, pour tout n entier naturel, $u_n = \frac{n(n+1)}{2}$.

Exercice 9. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout n entier naturel, $u_{n+1} = \sqrt{1 + u_n^2}$. Montrer que, pour tout n entier naturel, $u_n = \sqrt{n+9}$.

Exercice 10. (Suite & Terme général) Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout n entier naturel, $u_{n+1} = \frac{u_n}{u_n+1}$. Montrer que, pour tout n entier naturel non nul, $u_n = \frac{2}{2n+1}$.