Amendments to the Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application.

Listing of Claims:

(Currently Amended) A four color liquid crystal display comprising: 1.

a plurality of pixels including three primary color pixels and a white pixel, each pixel including a pixel electrode and a switching element;

a plurality of gate lines extending in a row direction for transmitting a gate signal to the switching elements; and

a plurality of data lines extending in a column direction for transmitting data signals to the switching elements,

wherein the white pixel is smaller than the three primary color pixels and at least one of the gate lines and the data lines located adjacent to the white pixel has a line width larger than a width of other portions of the respective gate and data lines.

- 2. (Original) The liquid crystal display of claim 1, wherein the three primary color pixels include red, green and blue pixels.
- 3. (Original) The liquid crystal display of claim 2, wherein the green pixel is spaced apart from the white pixel.
- 4. (Withdrawn) The liquid crystal display of claim 1, wherein the pixels are arranged in a 2×2 matrix.
- 5. (Withdrawn) The liquid crystal display of claim 4, wherein the three primary color pixels include red, green and blue pixels and the blue pixel is larger than the red pixel and the green pixel.

6. (Withdrawn) The liquid crystal display of claim 5, wherein the blue pixel and the white pixel are arranged in a diagonal direction.

7. (Original) The liquid crystal display of claim 1, wherein the pixels are arranged in

sequence along the row direction.

8. (Original) The liquid crystal display of claim 7, wherein the three primary color

pixels include red, green and blue pixels and the red pixel, the green pixel, the blue pixel, and the

white pixel are arranged in sequence.

9. (Original) The liquid crystal display of claim 1, wherein the three primary color

pixels have substantially equal size.

10. (Currently Amended) The liquid crystal display of claim 1, wherein at least one

portion of the gate lines and the data lines located adjacent to the white pixel has a line width

larger than a width of other portions of the respective gate lines and the data lines.

11. (Currently Amended) The liquid crystal display of claim 10, wherein the gate

lines intersect the data lines and the at least one portion having the larger line width does not

directly intersect other larger line width portions of the respective gate lines and the data lines.

12. (Canceled)

13. (Currently Amended) A device of driving a four color liquid crystal display

including comprising:

a plurality of dots, each dot including red, green, blue, and white pixels, a plurality of

gate lines for transmitting gate signals to the pixels, and a plurality of data lines for transmitting

data signals to the pixels, wherein at least one of the gate lines and the data lines located adjacent

to the white pixel has a line width larger than a width of other portions of the respective gate

lines and the data lines, the device comprising:

Response dated: September 20, 2006

Reply to Office Action of June 20, 2006

a gate driver supplying the gate signals to the gate lines;

a data driver supplying the data voltages to the data lines; and

an image signal modifier for converting three-color image signals into four-color image signals, optimizing the four-color image signals, and supplying the optimized image signals to the data driver such that the data driver converts the optimized image signals to the data voltages.

14. (Original) The device of claim 13, wherein the image signal modifier comprises:

a data converter converting three-color image signals into four-color image signals;

a data optimizer optimizing the four-color image signals from the data converter;

a data output unit supplying the optimized image signals to the data driver in synchronization with a clock; and

a clock generator generating the clock, the data driver operating in synchronization with the clock.

(Original) The device of claim 14, wherein the optimized image signals (W', R', 15. G', B') for the white, red, green, and blue pixels are determined by:

where W₀ is an achromatic component of the four-color image signals, R₀, G₀ and B₀ are chromatic components of the four-color signals, and Min(x, y) and Max(x, y) are defined as minimum and maximum values between x and y, respectively.

16. (Currently Amended) The device of claim 14, wherein the optimized image signals (W', R', G', B') for the white, red, green, and blue pixels are determined by:

$$\begin{split} W' &= W_0 - (255 - Max(R_0,\,G_0,\,B_0)); \\ R' &= R_0 + (255 - Max(R_0,\,G_0,\,B_0)); \\ G' &= G_0 + (255 - Max(R_0,\,G_0,\,B_0)); \text{ and} \end{split}$$

Response dated: September 20, 2006 Reply to Office Action of June 20, 2006

$$GB' = GB_0 + (255 - Max(R_0, G_0, B_0)),$$

where W_0 is an achromatic component of the four-color image signals, R_0 , G_0 and B_0 are chromatic components of the four-color signals, and Max(x, y, z) is defined as a maximum value among x, y and z.

17. (Original) The device of claim 14, wherein the optimized image signals (W', R', G', B') for the white, red, green, and blue pixels are determined by:

$$W' = (W_0 + Average(R_0, G_0, B_0))/2;$$

$$R' = R_0 + (W_0 - Average(R_0, G_0, B_0))/2;$$

$$G' = G_0 + (W_0 - Average(R_0, G_0, B_0))/2$$
; and

$$B' = B_0 + (W_0 - Average(R_0, G_0, B_0))/2,$$

where W_0 is an achromatic component of the four-color image signals, R_0 , G_0 and B_0 are chromatic components of the four-color signals, and Average(x, y, z) is defined as an average value of x, y and z.

- 18. (Currently Amended) The device of claim 14, wherein the data output unit outputs the optimized image signals by group of four three optimized image signals.
- 19. (Withdrawn) A device of driving a four color liquid crystal display including a plurality of red, green, blue, and white pixels arranged in a matrix, the device comprising:

a gray voltage generator generating a plurality of gray voltages;

an image signal modifier for converting three-color image signals into four-color image signals and selecting one of the three-color image signals and the four-color image signals; and

a data driver converting the selected image signals into data voltages selected from the gray voltages and applying the data voltage to the pixels.

- 20. (Withdrawn) The device of claim 19, wherein the image signal modifier comprises:
- a data converter converting the three-color image signals into the four-color image signals; and

Response dated: September 20, 2006

Reply to Office Action of June 20, 2006

a data selector for selecting one of the three-color image signals and the four-color image

signals based on a predetermined condition.

21. (Withdrawn) The device of claim 20, wherein the selection of the data selector is

based on difference between current image signals and previous image signals.

22. (Withdrawn) The device of claim 21, wherein the four-color image signals are

selected when the difference between the current image signals and the previous image signals is

larger than a predetermined value and the three-color image signals are selected when the

difference between the current image signals and the previous image signals is equal to or

smaller than the predetermined value.

23. (Withdrawn) The device of claim 20, wherein the selection of the data selector is

based on a selection signal from an external device.

24. (Withdrawn) The device of claim 23, wherein a state of the selection signal is

determined by a user.

25. (Withdrawn) The device of claim 24, wherein the state of the selection signal is

determined by operation modes of the liquid crystal display and the operation modes include a

normal mode and a TV mode.

26. (Withdrawn) The device of claim 20, wherein the data selector selects both a

group of the three-color image signals and a group of the four-color image signals.

27. (Withdrawn) The device of claim 26, wherein the liquid crystal display has a PIP

(picture-in-picture) function and the selected part of the four-color images signals corresponds to

the pixels displaying the PIP.

YOM-0057/OPP 030061 US

Page 6 of 13.

Response dated: September 20, 2006

Reply to Office Action of June 20, 2006

28. (Withdrawn) The device of claim 20, wherein the four-color image signals are

selected when a supply voltage provided for the liquid crystal display is a DC voltage and the

three-color image signals are selected when the supply voltage provided for the liquid crystal

display is an AC voltage.

29. (Withdrawn) The device of claim 20, wherein the image signal modifier further

comprises a data optimizer optimizing the four-color image signals from the data converter based

on a characteristic of the liquid crystal display and provides the optimized four-color image

signals for the data selector.

30. (Withdrawn) The device of claim 29, wherein the data selector comprises a

multiplexer selecting one of the three -color image signals and the four-color image signals based

on a selection signal.

31. (Withdrawn) The device of claim 30, wherein the image signal modifier further

comprises a delay unit delaying the three-color image signals for a predetermined time and

supplying the delayed three-color image signals to the multiplexer.

32. (Withdrawn) The device of claim 31, wherein the predetermined time is

substantially equal to a time for the three-color image signals to reach the multiplexer through

the data converter and the data optimizer.

33. (Currently Amended) A method of driving a four color liquid crystal display

including a plurality of gate lines, a plurality of data lines, and a plurality of red, green, blue, and

white pixels arranged in a matrix, the method comprising:

forming at least one of the gate lines and the data lines located adjacent to the white pixel

having a line width larger than a width of other portions of the respective gate and data lines;

converting three-color image signals into four-color image signals;

optimizing the four-color image signals;

converting the optimized four-color image signals into data voltages;

Response dated: September 20, 2006 Reply to Office Action of June 20, 2006

applying a gate voltage to the gate lines; and applying the data voltages into the data lines.

34. (Withdrawn) A method of driving a four color liquid crystal display including a plurality of gate lines, a plurality of data lines, and a plurality of red, green, blue, and white pixels arranged in a matrix, the method comprising:

converting three-color image signals into four-color image signals; selecting one of the three-color image signals and the four-color image signals; converting the selected image signals into data voltages; applying a gate voltage to the gate lines; and applying the data voltages into the data lines.

35. (Withdrawn) The method of claim 34, further comprising: optimizing the four-color image signals before the signal selection; and delaying the three-color image signals for a predetermined time before the signal selection.