FORM PTO-1390 (REV. 9-2001)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

13134-PCT-US

U.S. APPLICATION NO. (If known, see 37 CFR 1.5

10/089001

	GB00/03597	19 September 2000	24 September	
	INVENTION			
APPLICAN	VT(S) FOR DO/EO/US oSciences, Inc.			
Applicant h	nerewith submits to the United Sta	ites Designated/Elected Office (DO/EO/US)	the following items and	other information:
		concerning a filing under 35 U.S.C. 371.		, -
		T submission of items concerning a filing u	nder 35 U.S.C. 37T.	
3. Thi	is is an express request to begin norms (5), (6), (9) and (21) indicated	ational examination procedures (35 U.S.C. 3'	71(f)). The submission	must include
4. The	e US has been elected by the expir	ration of 19 months from the priority date (A	rticle 31).	
. —	copy of the International Applicati		ant Duranu)	:
а.	is attached hereto (required has been communicated by	only if not communicated by the Internation	iai Burcau).	
<u>.</u> b. с.		cation was filed in the United States Receivi	ng Office (RO/US).	. 1
	_	ne International Application as filed (35 U.S.		
a.	is attached hereto.			
b.	<u>—</u>	tted under 35 U.S.C. 154(d)(4).		
7. 🗸 Am		ernational Aplication under PCT Article 19 ((35 U.S.C. 371(c)(3))	<u> </u>
a	are attached hereto (require	ed only if not communicated by the Internation	onal Bureau).	
b.	have been communicated b	y the International Bureau.		
c .	have not been made; howe	ver, the time limit for making such amendme	ents has NOT expired.	
d.	have not been made and w	ill not be made.		et e 1 de la composition della
8.	English language translation of the	ne amendments to the claims under PCT Arti	cle 19 (35 U.S.C. 371 (c)(3)).
9. 🗌 -An	oath or declaration of the inventor	or(s) (35 U.S.C. 371(c)(4)).		
	English lanugage translation of the ticle 36 (35 U.S.C. 371(c)(5)).	ne annexes of the International Preliminary E	Examination Report und	er PCT
Items 1	1 to 20 below concern documen	t(s) or information included:		and the second s
11. 🗌 🏻 🗗	An Information Disclosure Statemen	ent under 37 CFR 1.97 and 1.98.		·
12. 🔲 🛚 A	An assignment document for recor	ding. A separate cover sheet in compliance	with 37 CFR 3.28 and 3	3.31 is included.
13. 🗌 A	A FIRST preliminary amendment.			. • · · · · · · · · · · · · · · · · · ·
14. 🗌 🛮 A	A SECOND or SUBSEQUENT pr	reliminary amendment.		
15. 🗌 🛮 🗸	A substitute specification.			. •
16 A	A change of power of attorney and	or address letter.		
17. 🗌 A	A computer-readable form of the s	equence listing in accordance with PCT Rule	e 13ter.2 and 35 U.S.C.	1.821 - 1.825.
18 A	A second copy of the published in	ternational application under 35 U.S.C. 154(d)(4).	
19. 🗌 🛚 🛚	A second copy of the English lang	uage translation of the international applicat	ion under 35 U.S.C. 154	4(d)(4).
20. 🗸 🤇	Other items or information: Par	tial International Search Repor	t .	
	•	*		

JC13 Rec'd PCT/PTO 2 2 MAR 2002

U.S. APPLICATION NO. (if kno	wn, see 37 CFR La	INTERNATIONAL APPLICATION	I NO.		ATTORNEY'S DO	CKET NUMBER
		:		CAL	CULATIONS	PTO USE ONLY
21. The follow	-			-		-
BASIC NATIONAL			,			į
nor international se	earch fee (37 CFR	nmination fee (37 CFR 1.482 1.445(a)(2)) paid to USPTC prepared by the EPO or JPO)			
International prelin USPTO but Interna	ninary examination ational Search Rep	n fee (37 CFR 1.482) not pa port prepared by the EPO or	id to JPO \$890.00			
International prelim	ninary examination arch fee (37 CFR	n fee (37 CFR 1.482) not pa 1.445(a)(2)) paid to USPTO	id to USPTO \$740.00			
International prelin but all claims did no	ninary examination ot satisfy provisior	n fee (37 CFR 1.482) paid to ns of PCT Article 33(1)-(4) .	USPTO \$710.00			
and all claims satist	fied provisions of I	n fee (37 CFR 1.482) paid to PCT Article 33(1)-(4)	\$100.00			
ENTE	R APPROPRI	ATE BASIC FEE AM	IOUNT =	\$ 89	90.00	
Surcharge of \$130.0 months from the ear	0 for furnishing th liest claimed prior	ne oath or declaration later the ity date (37 CFR 1.492(e)).	an 20 30	\$		
ÇLAIMS	NUMBER FILE	ED NUMBER EXTRA	RATE	\$		
Total claims	30 - 20	= 10	x \$18.00		80	
Independent claims	10 - 3	= 7	x \$84.00		88	
MULTIPLE DEPENI			+ \$280.00	\$		
	J TOT	AL OF ABOVE CAL	CULATIONS =	\$		
Applicant claim are reduced by		us. See 37 CFR 1.27. The f	ees indicated above	\$		
			SUBTOTAL =	\$		
Processing fee of \$13 months from the earl	30.00 for furnishir iest claimed priori	ng the English translation late ty date (37 CFR 1.492(f)).	er than 20 30	\$	•	·
		TOTAL NAT	TONAL FEE =	\$	-	
Fee for recording the accompanied by an a	enclosed assignm ppropriate cover s	nent (37 CFR 1.21(h)). The heet (37 CFR 3.28, 3.31). \$	assignment must be 40.00 per property +	\$		
		TOTAL FEES	ENCLOSED =	\$ 1	658	
				Amou r	int to be efunded:	\$
					charged:	\$
_		to cove				
I I	ge my Deposit Accopy of this sheet	count No. 11-0171 is enclosed.	in the amount of \$ 16	58.00	<u>)</u> to cover the	e above fees.
c. The Commi overpaymen	ssioner is hereby a	authorized to charge any add ount No. <u>11-0171</u> . A duj	litional fees which may b plicate copy of this sheet	e requi is encl	red, or credit a osed.	ny
d. Fees are to l	be charged to a cr	edit card. WARNING: Info	ormation on this form ma le credit card information	y becon	me public. Cr uthorization or	edit card PTO-2038.
						į
NOTE: Where an	appropriate time	limit under 37 CFR 1.494 ranted to restore the applic	or 1.495 has not been meation to pending status.			
			0/	00	in D.	1.11
SEND ALL CORRESPO	ONDENCE TO:		- WW SIGNATU	LIA.	1 V.	
					Schmidt	į
				II D.	Johnniat	
Kalow & Spring 488 MADIS New YOCK	gut LLP		NAME			l
488 MADIS	son AVE		_39,49	2		
NewYork	MY10053) -	REGISTR.	ATION N	NUMBER	
•						

25840.1 **PATENT**

13134 PCT US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Bayliffe, et al.

Serial No.: 10/089,001

International Application No.: PCT/GB00/03597

Date Filed: March 22, 2002

International Filing Date: 19 September 2000

International Priority Date:

24 September, 2000

Title:

"ASSAY"

Customer No.:

Kalow & Springut LLP 488 Madison Avenue, 19th Floor New York, New York 10022

(212) 813-1600

January 6, 2003

Commissioner for Patents Washington, D.C. 20231

TRANSMITTAL OF SEQUENCE LISTING

Sir:

This is a reply to the Notice to Comply With Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures issued in connection with the above-identified patent application on June 4, 2002. The deadline for reply to this Notice is January 6, 2003. Accordingly, this reply is timely filed. Enclosed also please find a petition for extension of time.

Certificate of Mailing Under 37 C.F.R. 1.8

I hereby declare that this correspondence is being deposited with the United States Postal Service as Express Mail Label No.: EV 035748108 US in an envelope addressed to: Commissioner for Patents, Box PCT,

Washington D.C. 20231

13134-PCT-US

Applicants:

Bayliffe et al

International Application No.: PCT/BG00/03597

International Filing Date: 19 September 2000

Page -2- (Notification of Missing Requirements under 35 U.S.C. 371)

Sequence Listing

Please amend the above-identified application as follows:

IN THE SPECIFICATION:

Please remove pages 1-22 of the sequence listing and replace them with pages 1-26 of the attached substitute sequence listing.

REMARKS

This amendment replaces the original sequence listing with the attached substitute sequence listing. A computer readable copy of the sequence is enclosed. A paper copy is also being submitted. The computer readable copy of the substitute sequence listing and the attached paper copy are identical and meet the requirements of 37 CFR 1.821-1.825. No new matter has been added.

If any additional fees are due, or an overpayment has been made, please charge, or credit, our Deposit Account No. 11-0171 for such sum.

If the Examiner has any questions regarding the present application, the Examiner is cordially invited to contact Applicants' attorney at the telephone number provided below.

Respectfully submitted,

Willia D. Me

William D. Schmidt

Registration No.: 39,492

Attorney for Applicant

Kalow & Springut LLP (212) 813-1600

4324.1

13134-PCT-US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Bayliffe et al.

Examiner:

To be assigned

Serial No.:

To be assigned

Art Unit:

To be assigned

Filed:

Herewith

Title:

Assay

Kalow & Springut LLP 488 Madison Avenue

New York, New York 10022

March 22, 2002

Commissioner for Patents Washington, D.C. 20231

PRELIMINARY AMENDMENT

Dear Sir:

Prior to examination on the merits of this national stage application under the Patent Cooperation Treaty, please enter the following amendments in the above-identified application.

AMENDMENT

IN THE SPECIFICATION:

On page 1 after the title, please insert the following paragraph:

Certificate of Mailing Under 37 C.F.R. 1.10

I hereby declare that this correspondence is being deposited with the United States Postal Service via Express Mail Label No. 6 V 035 77643 (15 in an envelope addressed to: Assistant Commissioner

for Patents, Washington, D.C.

Date: 3/22/02 Name:

Applicant: Bayliffe et al. Serial No.: Not yet assigned Docket 13134-PCT-US Preliminary Amendment – March 22, 2002 Page 2 of 3

-- Cross-Reference to Related Applications

This application is a national stage filing under the Patent Cooperation Treaty (PCT) for PCT international application number PCT/GB00/03597 filed on 19 September 2000, published under PCT Article 21(2) in English as WO 01/21833 on 29 March 2001. Both the international application and this national stage application claim the benefit of the filing date of GB 9922527.8 filed 24 September 1999.--

IN THE CLAIMS

Please amend claims 6-9 to read as follows:

- 6. (Amended) A method of claim 1 which further comprises the use of one or more common amplification primer(s) in the presence of appropriate nucleotide triphosphates and an agent for polymerization, and subjecting the mixture to PCR amplification such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a corresponding PCR amplification product.
- 7. (Amended) A method of claim 2 wherein two or more diagnostic primers are used as a multiplex.
- 8. (Amended) A method of claim 2 wherein all of the diagnostic primers are used in a single multiplex reaction.
- 9. (Amended) A method of claim 1 which further comprises the use of one or more control primers.

Applicant: Bayliffe et al.
Serial No.: Not yet assigned
Docket 13134-PCT-US
Preliminary Amendment – March 22, 2002
Page 3 of 3

REMARKS

Entry of this preliminary amendment is respectfully requested. Pursuant to 37 CFR §1.121, a marked up version of the amendment to the specification and to the amended claims is submitted herewith.

The claim amendments reflect changes to conform the claims to U.S. practice. The amendments do not add new matter.

This is a PCT national stage filing under 35 USC §371, claiming a right of priority to an earlier filed foreign application GB 9922527.8 filed 24 September 1999, in accordance with 35 USC §363 and 35 USC §365. The amendment to the specification identifies the present application as a national stage filing in the U.S. under the PCT (for PCT/GB00/03597 filed 19 September 2000) and also claims priority to GB 9922527.8 filed 24 September 1999.

Applicants submit no fee is required in connection with the filing of this Preliminary Amendment. If any fee is deemed necessary, authorization is hereby given to charge the amount of any such fee to Deposit Account No. 11-0171.

Respectfully submitted,

William D. Schmidt
Attorney for Applicant(s)

Registration No.: 39,492

13134-PCT-US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Bayliffe et al.

Examiner:

To be assigned

Serial No.:

To be assigned

Art Unit:

To be assigned

Filed:

Herewith

Title:

Assay

Kalow & Springut LLP 488 Madison Avenue New York, New York 10022

March 22, 2002

Commissioner for Patents Washington, D.C. 20231

MARKED UP CLAIMS

Dear Sir:

In accordance with 37 CFR §1.121 (c) the following marked up claims are submitted to accompany the amendment filed concurrently for the application identified above.

6. (Amended) A method [as claim in any one of the previous claims and] of claim 1 which further comprises the use of one or more common amplification primer(s) in the presence of appropriate nucleotide triphosphates and an agent for polymerization, and subjecting the mixture to PCR amplification such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a corresponding PCR amplification product.

Certificate of Mailing Under 37 C.F.R. 1.10

I hereby declare that this correspondence is being deposited with the United States Postal Service via Express Mail Label No. <u>E. Vo3S-77643846</u>in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C.

Date: 3/22/02 Name:

- 7. (Amended) A method [as claimed in any one of claims] of claim 2[-6 and] wherein two or more diagnostic primers are used as a multiplex.
- 8. (Amended) A method [as claimed in any one of claims] of claim 2[-6 and] wherein all of the diagnostic primers are used in a single multiplex reaction.
- 9. (Amended) A method [as claimed in any one of the previous claims and] of claim 1 which further comprises the use of one or more control primers.

Respectfully submitted,

William D. Schmidt

Attorney for Applicant(s)

Registration No. 39,492

Kalow & Springut LLP (212) 813-1600

Rec'd PCT/PTO 06 JAN 2003

SEQUENCE LISTING

```
<110> Bayliffe, Andrew
     Docter, Eelco
     Kelly, Stephen James
     Robertson, Nancy Hastings
<120> Assay
<130> 13134PCTUS
<140> US 10/089,001
<141> 2002-03-22
<150> PCT/GB00/03597
<151> 2002-09-19
<150> GB 9922527.8
<151> 1999-09-24
<160> 108 \
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n= A, C, G, or T, wherein 0-20 n may be absent
<400> 1
nnnnnnnnn nnnnnnnnn nnnnnntgtt aaagac
                                                            36
<210> 2
<211> 66
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(56)
<223> n = A, C, G, or T, wherein 0-40 n may be absent
<400> 2
```

```
66
aaaagc
<210> 3
<211> 66
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(56)
<223> n = A, C, G, or T, wherein 0-40 n may be absent
<400> 3
<210> 4
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 4
                                                         26
taattcccca aatccctgtt aaagac
<210> 5
<211> 88
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(60)
<223> n = A, C, G, or T, wherein 0-55 n may be absent
taattcccca aatccctgtt aaaaaagc
<210> 6
<211> 90
$212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(60)
\langle 223 \rangle n = A, C, G, or T, wherein 0-55 n may be absent
```

```
<400> 6
taattcccca aatccctgtt aaaaaaaatc
<210> 7
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 7
gttaatcatt cagctactac gcacctaatt ccccaaatcc ctgttaaaaa agc
                                                             53
<210> 8
<211> 89
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 8
gactgtacga tactcattta tatgaagtca gctacttacc tatagaacgc ttgctagttt 60
aattccccaa atccctgtta aaaaaaatc
<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
                                                             35
gtacataaaa caagcatcta ttgaaaatat ctgac
<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                              36
nnnnnnnnn nnnnnnnnn nnnnnngcaa cagtca
<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 11
                                                                    36
nnnnnnnnn nnnnnnnnnn nnnnnnttgg taatta
<210> 12
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1) ... (26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnatag ttctct
<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 13
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnggga tccatc
<210> 14
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1) ... (26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnaaac accatt
<210> 15
```

```
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 15
nnnnnnnnn nnnnnnnnn nnnnnngtct tacgca
                                                                    36
<210> 16
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 16
                                                                    30
tcttgggatt caataacttt gcaacagtca
<210> 17
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17
                                                                    27
tctcgaattt tctatttttg gtaatta
<210> 18
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 18
                                                                    30
agtttgcaga gaaagacaat atagttctct
<210> 19
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 19
                                                                    30
tgatcactcc actgttcata gggatccatc
```

```
<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 20
                                                                   30
gtatctatat tcatcatagg aaacaccatt
<210> 21
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 21
                                                                   29
gaacatttcc tttcagggtg tcttacgca
<210> 22
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnaaac accaca
<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(6)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnngcga tagact
<210> 24
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnngaag tattga
<210> 25
<211> 36
<212> DNA
<213> Artificial Sequence
<220> >
<223> Primer
<221> misc_feature
<222> (1) ... (26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnatca teetgt
<210> 26
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 26
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnntctg tgagtt
<210> 27
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnttct tgctga
<210> 28
```

```
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1) ... (26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnngete gttgtt
<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 29
                                                                    30
agcctatgcc tagataaatc gcgatagact
<210> 30
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 30
                                                                    30
tgccatgggg cctgtgcaag gaagtattga
<210> 31
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 31
                                                                    30
cctatgcact aatcaaagga atcatcctgt
<210> 32
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 32
                                                                    30
tatttttatt tcagatgcga tctgtgagtt
```

```
<210> 33
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 33
                                                                   31
ttattcacct tgctaaagaa attcttgctg a
<210> 34
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 34
                                                                   25
gctaaagaaa ttcttgctcg ttgtt
<210> 35
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnagtt gttgta
<210> 36
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnaggg ttcctg
<210> 37
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 37
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnttgt tctacc
<210> 38
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 38
                                                                   36
nnnnnnnnn nnnnnnnnnn nnnnnngaaa ataact
<210> 39
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 39
nnnnnnnn nnnnnnnnn nnnnntaaa cctaga
                                                                   36
<210> 40
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnaaaa gatagc
<210> 41
```

```
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1) ... (26)
\langle 223 \rangle n = A, C, G, or T, wherein 0-20 n may be absent
nnnnnnnn nnnnnnnnn nnnnncagg gaagça
                                                                     36
<210> 42
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 42
nnnnnnnnn nnnnnnnnn nnnnnaagc cagtta
                                                                     36
<210> 43
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 43
                                                                     29
ttcaagatag aaagaggaca gttgttgta
<210> 44
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 44
                                                                     23
ccttcttctt ctcagggttc ctg
<210> 45
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
```

<223> Primer	
<400> 45	27
<pre><210> 46 <211> 26 <212> DNA <213> Artificial Sequence</pre>	2,
<220> <223> Primer	
<400> 46 gcctggcacc attaaagaaa ataact	26
<210> 47 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 47 atgccaacag aaggtaaacc taga	24
<210> 48 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 48 caaactctcc agtctgttta aaagatagc	29
<210> 49 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 49 ggaagaactg gatcagggaa gca	23
<210> 50 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	

```
<400> 50
                                                                      26
ttaggatttt tctttgaagc cagtta
<210> 51
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1) ... (26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
nnnnnnnnn nnnnnnnnn nnnnntgtt ctacga
                                                                      36
<210> 52
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(26)
\langle 223 \rangle n = A, C, G, or T, wherein 0-20 n may be absent
<400> 52
nnnnnnnn nnnnnnnnn nnnnntatt tagtga
                                                                      36
<210> 53
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (2)...(26)
\langle 223 \rangle n = A, C, G, or T, wherein 0-20 n may be absent
                                                                      36
nnnnnnnnn nnnnnnnnn nnnnnncaca ctgacg
<210> 54
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
```

```
<222> (1)...(26)
\langle 223 \rangle n = A, C, G, or T, wherein 0-20 n may be absent
                                                                     36
nnnnnnnnn nnnnnnnn nnnnnnctgc caaata
<210> 55
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(26)
<223> n = A, C, G, or T, wherein 0-20 n may be absent
<400> 55
                                                                     36
nnnnnnnnn nnnnnnnnn nnnnnntatc cacttg
<210> 56
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 56
                                                                     50
tagccattga tgacggagcg atgtttttc tggagattta tgttctacga
<210> 57
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 57
                                                                     36
gatttatgtt ctatggaatc tttttatatt tagtga
<210> 58
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 58
                                                                     25
tggagaaggt ggaatcacac tgacg
<210> 59
<211> 28
<212> DNA
```

<213> Artificial Sequence	
<220><223> Primer	
<400> 59 aagetetgaa tttacataet gecaaata	28
<210> 60 <211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 60	
aaagatgata agacttacca agctatccac ttg	33
<210> 61	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 61	
taatctctac caaatctgga tactatacc	29
<210> 62	
<211> 29	
<212> DNA <213> Artificial Sequence	
ALION MECHELOTAL BOQUENOS	
<220> <223> Primer	
\ZZJ\/ FIImeI	
<400> 62	29
taatctctac caaatctgga tactatacc	29
<210> 63	
<211> 25 <212> DNA	
<213> Artificial Sequence	
2220	
<220> <223> Primer	
<400> 63 gaattcccaa acttttagag acatc	25
,	
<210> 64 <211> 30	
<212> DNA	
<213> Artificial Sequence	

<220> <223> Primer	
<400> 64 cttgatggta agtacatggg tttttcttat	30
<210> 65 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 65 ccagacttca cttctaatta tgattatggg	30
<210> 66 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 66 ttgtggatca aatttcagtt gacttgtcat c	31
<210> 67 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 67 gacttcactt ctaatgatga ttatgggaga	30
<210> 68 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 68 gtttcacata gtgtatgacc ctctatatac actcatt	37
<210> 69 <211> 31 <212> DNA <213> Artificial Sequence	
<220>	

<400> 69 atctaaaatt ggagcaatgt tgtttttgac c	31
<210> 70 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 70 atctaaaatt ggagcaatgt tgtttttgac c	31
<210> 71 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 71 gtttcacata gtgtatgacc ctctatatac actcatt	37
<210> 72 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 72 ttttgctgtg agatctttga cagtcattt	29
<210> 73 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 73 tttgtttatt gctccaagag agtcatacca	30
<210> 74 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 74	

	gactgactga ctgactgaaa tggagacttt ttgtttatgt ggttactaa	49
	<210> 75 <211> 35 <212> DNA <213> Artificial Sequence	
•	<220> <223> Primer	
	<400> 75 gtatgataga gattatatgc aataaaacat taaca	35
	<210> 76 <211> 34	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 76	34
	tgtgtctaat attgattcta ctgtacaata ataa	J4
	<210> 77	
	<211> 35 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 77	35
	atttttccaa acttcattag aactgatcta ttgac	33
	<210> 78	
	<211> 27 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 78	27
	cacagtagct tacccataga ggaaaca	27
	<210> 79	
	<211> 35	
	<212> DNA <213> Artificial Sequence	
	<220> <223> Primer	
	<400> 79 atttttccaa acttcattag aactgatcta ttgac	35

<210> 80	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 80	
geteacetgt ggtateacte caa	23
<210> 81	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
.100. 01	
<400> 81	2.4
aatcaaacta tgttaaggga aataggacaa ctaa	34
(010) 00	
<210> 82	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<223> Frimer	
<400> 82	39
	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220>	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220>	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83	39
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa <210> 84	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa <210> 84 <211> 33	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <220>	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence	
<pre><400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <<220> <221> SPattact tacatgaatg acatttacag caa</pre>	
<400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> <220> 84 <221> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 84	33
<pre><400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <<220> <221> SPattact tacatgaatg acatttacag caa</pre>	
<pre><400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 84 <213> Artificial Sequence</pre>	33
<pre><400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaattttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 84 ggaaattatt tgtttaacaa taaaacaatg gaa <<10> 84 <210> 85</pre>	33
<pre><400> 82 cgattcgatt cagttttctg tggtttctta gtgtttgga <210> 83 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 83 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> 84 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 84 <213> Artificial Sequence</pre>	33

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 85
                                                        26
ccaacaacac ctccaatacc agtaac
<210> 86
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                        36
nnnnnnnnn nnnnnnnnn nnnnnnnnn aaagac
<210> 87
<211> 96
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(90)
<223> n = A, C, G, or T wherein 0-75 n may be absent
<400> 87
nnnnnnnnn nnnnnnnnn nnnnnnnnn aaaagc
                                                        96
<210> 88
<211> 96
<212> DNA
<213> Artificial Sequence
<223> Primer
<221> misc feature
<222> (1)...(90)
<223> n = A, C, G, or T wherein 0-75 n may be absent
<400> 88
96
nnnnnnnnn nnnnnnnnn nnnnnnnnn aaaatc
<210> 89
```

```
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1) ... (30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                   36
nnnnnnnn nnnnnnnnn nnnnnnnnn accatt
<210> 90
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn tacgca
<210> 91
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnnnn tccatc
<210> 92
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> \dot{n} = A, C, G, or T wherein 0-20 n may be absent
<400> 92
```

```
36
nnnnnnnnn nnnnnnnnn nnnnnnnnn taatta
<210> 93
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 93
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn cagtca
<210> 94
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn ttctct
<210> 95
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 95
nnnnnnnnn nnnnnnnnn nnnnnnnnn accaca
                                                                   36
<210> 96
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
```

```
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 96
nnnnnnnn nnnnnnnn nnnnnnnnn gttgta
                                                                    36
<210> 97
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
\langle 223 \rangle n = A, C, G, or T wherein 0-20 n may be absent
nnnnnnnn nnnnnnnn nnnnnnnnn gatagc
                                                                    36
<210> 98
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
nnnnnnnnn nnnnnnnnn nnnnnnnnn cctaga
                                                                   36
<210> 99
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
nnnnnnnn nnnnnnnnn nnnnnnnnn ataact
                                                                   36
<210> 100
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
```

```
<221> misc_feature
<2225 (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn ttcctg
<210> 101
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 101
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn tetace
<210> 102
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn gaagca
<210> 103
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 103
                                                                   36
nnnnnnnnn nnnnnnnnn nnnnnnnnn cagtta
<210> 104
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Primer
<221> misc feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
<400> 104
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnnnn ctacga
<210> 105
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnnnn tagtga
<210> 106
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<221> misc_feature
<222> (1)...(30)
\langle 223 \rangle n = A, C, G, or T wherein 0-20 n may be absent
<400> 106
                                                                    36
nnnnnnnnn nnnnnnnnn nnnnnnnnn ctgacg
<210> 107
<211> 36
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer
 <221> misc_feature
 <222> (1)...(30)
<223> n = A, C, G, or T wherein 0-20 n may be absent
                                                                     36
 nnnnnnnnn nnnnnnnnn nnnnnnnnn caaata
 <210> 108
```

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<221> misc_feature

<222> (1) ... (30)

<223> n = A, C, G, or T wherein 0-20 n may be absent

<400> 108

nnnnnnnnn nnnnnnnnn nnnnnnnnn cacttg

36

JC13 Rec'd PCT/PTO 2 2 MAR 2002

5/pits

WO 01/21833

5

10

15

20

25

30

PCT/GB00/03597

ASSAY

- 1 -

This invention relates to a diagnostic method for the simultaneous detection of the variable length polythymidine (polyT) tract alleles in the CFTR gene that are associated with the phenotypic modulation of selected CFTR mutations (Friedman KJ. et al. Hum Mutat. 10: 108-115 (1997)).

The invention also relates to a diagnostic method further comprising the simultaneous detection of one or more of the DF508 (Kerem B. et al. Science 245: 1073-1080 (1989)), 621+1G>T (Rozen R. et al. Am. J. Med. Genet. 42: 360-364 (1992)), G542X, 3659delC, A455E, DI507 (Kerem B. et al. Proc. Nat.Acad. Sci. 87: 8447-8451 (1990)), 3849+10kbC>T (Highsmith WE. et al. New Eng. J. Med. 331: 974-980 (1994)), N1303K (Osborne L. et al. Am. J. Hum. Genet. 48: 608-612 (1991)), 1717-1G>A (Kerem B. et al. Proc. Nat. Acad. Sci. 87: 8447-8451 (1990), Guillermit H. et al. Hum. Genet. 85: 450-453 (1990)), 1078delT (Claustres M. et al. Genomics 13: 907-908 (1992)), W1282X (Vidaud M et al. Hum. Genet. 85: 446-449 (1990)), R347P, R117H (Dean M. et al. Cell 61: 863-870 (1990)), G551D, R553X (Cutting GR. et al. New Eng. J. Med. 323: 1685-1689 (1990)), S1251N (Gasparini P. et al. Hum. Mutat. 2: 389-394 (1993)), R1162X, R334W (Gasparini P. et al. Genomics 10: 193-200 (1991)), 2183AA>G, (Bozon D. et al. Hum. Mutat. 3: 330-332 (1994)), and the E60X (Will K. et al. Hum. Mutat. 5: 210-20 (1995)) mutations in the human cystic fibrosis conductance regulator (CFTR) gene that are prevalent in populations of European descent using the amplification refractory mutation system, (ARMS).

The invention also relates to a diagnostic method further comprising the simultaneous detection of one or more of the G85E (Chalkley G. et al. J. Med. Genet. 28: 875-877 (1991)), 405+1G>A (Dork T. et al. Hum Mol Genet. 2: 1965-1966 1993)), S549R (Kerem B. et al. Proc. Nat. Acad. Sci. 87: 8447-8451 (1990)), (or, depending on which of the two mutations produce this phenotype is tested for, Sangiuolo. et al. Genomics 9: 788-789 (1991)), W1089X (Shoshani T. et al. Hum. Molec. Genet. 3: 657-658 (1994)), D1152H (Feldmann D. et al. Clin. Chem. 41: 1675 (1995)) mutations in the human CFTR gene that are prevalent in populations of Middle Eastern descent using ARMS.

The invention also relates to mutation specific and allele specific primers for use in the method, to diagnostic kits containing these primers and to techniques for detecting primer specific amplification products.

10

15

20

25

30

- 2 -

Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a chloride channel and controls the regulation of other transport pathways. The CFTR gene maps to chromosome 7q (Riordan J R. et al. Science 245: 1066-1073 (1989)). Mutations in the CFTR gene cause cystic fibrosis (CF) formerly known as cystic fibrosis of the pancreas. Cystic fibrosis is an autosomal recessive disorder mainly among Caucasians with a frequency of approximately 1/2 500 (Welsh MJ. et al. in Scriver et al. (eds): The Metabolic Basis of Inherited Disease, Vol 3: 7th ed. McGraw-Hill; New York, pp3799-3876 (1995)). Cystic fibrosis disrupts exocrine function of the pancreas, intestinal glands (meconium ileus), biliary tree (biliary cirrhosis), bronchial glands (chronic bronchopulmonary infection with emphysema), and sweat glands (high sweat electrolyte with depletion in a hot environment). Infertility occurs in both males and females. Many of the clinical and pathological findings are thought to be attributable to a generalised defect in mucus secretion due to an abnormality in the chloride channel.

The treatment of CF is complex, costly and time-consuming. Most children with CF in the developed world are followed in CF clinics which are typically multidisciplinary, involving physicians, nurses, social workers, nutritionists and physiotherapists. Treatment is directed at improving nutrition through the use of replacement pancreatic enzymes and vitamins, as well as a high-energy, high-protein and liberal-fat diet. For those not responding to this approach, enteral supplementation by nightly nasogastric, gastrostomy or jejunostomy infusion of high-energy diets has been used. Pulmonary treatment includes antibiotic therapy, either maintained continuously or reserved for exacerbations, and chest physiotherapy consisting of postural drainage, percussion, vibration and assisted coughing.

Approximately 70% of the mutations in CF patients correspond to a specific deletion of 3 basepairs, which results in the loss of a phenylalanine residue at amino acid position 508 of the CFTR protein (Kerem B. et al. Am. J. Hum. Genet. 44: 827-834 (1989)).

Mutations of the CFTR gene are believed to produce an abnormal protein as a component of the chloride channel gate at the cell surface and are classified according to their phenotypic manifestations. Class I are nonsense mutations, resulting in the introduction of a stop codon, and in no synthesis of CFTR e.g. G542X, R553X, W1282X. Class II mutations cause a block in CFTR assembly in the endoplasmic reticulum or affect transport to the cell membrane, these include ΔF508, A455E, and P574H. Class III and IV mutations give rise to defective chloride channel activity or regulation e.g. R117H, which alters amino acid residues

15

20

25

30

- 3 -

in the first CFTR transmembrane domain. Class V mutations result in modulations in CFTR synthesis. In cases of CF involving class I and II CFTR mutations (most commonly ΔF508 homozygotes) chronic pulmonary disease is observed at variable levels with chronic pancreatitis. However, some CF patients present with "mild" symptoms ranging from sinopulmonary problems with pancreas sufficiency (PS-CF), to congenital bilateral absence of vas deferens (CBAVD). Mutations associated with PS-CF include R334W and R117H; the latter mutation accounts for approximately 0.8% of mutant alleles in Caucasian CF patients (Tsui LC. Trends Genet. 57: 392-398 (1992)).

There is a highly conserved polyT at the end of intron 8 of the CFTR gene. This polyT tract plays an important role in aiding splice branch site recognition, and identifying and using the splice acceptor site (Smith CW. et al. Nature. 342: 243-247 (1989)). There are three allelic variants depending on the number of thymidines (5, 7, or 9) with allele frequencies in the general population of 5%, 85%, 10%, and respectively (Chu C-S. et al. EMBO J. 10: 1355-1363 (1991)). The number of thymidines determines the efficiency by which the intron 8 splice acceptor site is used. The efficiency decreases when a shorter stretch of thymidine residues is found. The T5 allele results in the most inefficient use of this splice acceptor site (Teng, H. et al. Hum. Mol. Genet. 6: 85-90 (1997)) and so CFTR transcripts from a T5 allele will lack exon 9 sequence. Individuals homozygous for the 5T allele were found to generate 90% CFTR mRNA with exon9 skipped (exon9). While 7T homozygotes generated <25% exon9 transcripts, and 9T <15% (Lissens W. et al. Hum. Reprod. 11: Supp4 55-77 (1996)).

There is an association between phenotype and the particular polyT allelic background for some CF mutations, for example, if a CFTR gene with the R117H mutation harbors a T5 allele, the mutant gene will be responsible for CF. An R117H mutant CFTR gene that harbors a T7 allele can either result in CF or CBAVD (Kiesewetter S. et al. Nature Genet. 5: 274-278, (1993)).

The existence of polyT splice site variants may therefore explain the clinical heterogeneity observed in some mild cases of CF. It is also possible that the CF clinical phenotypes associated with mutations other than $\Delta F508$ result from both the mutation in the CFTR gene and the sequence at exon9 splice site acceptor site.

Most CFTR mutations occur on a particular polyT background, most commonly the 9T allele; $\Delta F508$ is in linkage disequilibrium with the 9T allele and the mild CF mutation R117H is always found on a 5T or 7T background. The mutation R117H has been shown to

15

20

25

30

PCT/GB00/03597

owe its phenotypic heterogeneity (PS CF or CBAVD) to the presence of the 5T or 7T polyT alleles (Friedman KJ. et al. Hum Mutat. 10: 108-115 (1997)). Compound heterozygotes having the genotype ΔF508/R117H may present as PS-CF, CBAVD or be asymptomatic. Since the mutation ΔF508 is in linkage disequilibrium with the 9T allele, it has been demonstrated that the R117H phenotype contrasts with respect to its associated polyT haplotype (R117H-5T or R117-7T). The incidence of 5T alleles is also associated with other clinical phenotypes, for example, disseminated bronchiectasis (Pignatti PF. et al. Am. J. Hum. Genet. 58: 889-892 (1996)). Hence the human CFTR gene intron 8 5T, 7T and 9T allele discriminatory test described and disclosed here is a test that is particularly useful when used in combination with any other cystic fibrosis diagnostic test.

Several cohort studies of screened and unscreened subjects have suggested that people identified with CF in the presymptomatic phase do better than those in whom a diagnosis is made because of symptoms. For example, one study (Dankert-Roelse JE. et al. J. Pediatr. 114: 362-367 (1989)) showed that, 88% of screened children but only 60% of unscreened children were still alive at age 11 years.

Diagnostic techniques for phenotypic manifestations of CF include measuring sweat chloride. Elevated sweat chloride concentrations (greater than 60 mmol/l) are almost exclusively observed in patients with CF. However, it is difficult to obtain sufficient sweat from newborns, even after stimulating localised sweating by administering pilocarpine into the skin it is often impossible to collect sufficient sweat for accurate analysis. Sweat chloride concentrations can be measured, for example, by using the Lazar ISM-146 Micro Chloride electrode. Measurement of elevated immunoreactive trypsinogen (IRT) in a dried blood spot is another screening method for CF. False positives and false negatives are known to occur, with false negatives occurring more frequently in neonates with meconium ileus. The positive predictive value of the test is only 1-7% (Ryley HC. J. Clin. Pathol. 41: 726-729 (1988), Edminson PD. et al. Scand. J. Gastroenterol. Suppl. 143: 13-18 (1988)). A false positive rate of 93-99% could and likely does generate considerable anxiety, which may be long-lasting (Ryley HC. J. Clin. Pathol. 41: 726-729 (1988)). Furthermore, elevations of IRT decline after the first few months of life, so while exact timing of specimen collection in the neonatal period is not critical, the collection of a second screening specimen to follow-up an initial abnormal screen should occur no earlier than 21 days, to avoid an increased number of false positives, and no later than 60 days, to reduce the risk of false negatives. Some newborn

15

20

25

-5-

screening programs rely on other tests. The "BM meconium test" identifies infants with high albumin content in the stool resulting from pancreatic insufficiency but it has very low sensitivity (Naylor EW. Semin. Perinatol. 9: 232-249 (1985)).

Friedman et al. describe an allele-specific amplification polyT assay (Friedman KJ. et al. Hum. Mutat. 10: 108-115 (1997)) designed to screen individuals for CFTR intron 8 5T, 7T, 9T alleles and heterozygotic polyT allelic combinations. However, the assay described by Friedman requires the use of each allele-specific primer in a separate reaction.

In our European Patent No. 0 332 435 B1 we disclose the Amplification Refractory Mutation System (ARMS). This simple and elegant method permits the detection of point mutations via allele-specific amplification of target sequences. In EP-0 332 435 we disclose and claim the application of ARMS to a variety of inherited and/or acquired genetic disorders.

Multiplex allele-specific amplification assays have been described for the simultaneous analysis of several CF causing mutations (for example, see Ferrie RM. et al. Am. J. Hum. Genet. 51: 251-262 (1992) and Robertson NH. et al. Eur. Respir. J. 12: 477-482 (1998)) as disclosed in our European Patent No. 0 928 832. The combination of different primers for the simultaneous detection of two or more point mutations is termed "multiplexing". However, the design of robust and accurate allele-specific multiplex tests is not straightforward. A person skilled in the art would still need to contend with inter- and intra- primer reactions when several alleles are amplified simultaneously in one reaction; there may be further interactions between amplification products for one allele with the primers for another allele. Furthermore, there will be inequalities between the efficiencies amplification products from different alleles.

We now provide allele-specific primers for the 5T, 7T and 9T alleles in intron 8 of the CFTR gene that are designed for use in combination in a multiplex assay and function by bringing about an allele-specific size differential between CFTR intron 8 5T, 7T and 9T derived amplification products.

Therefore according to a first aspect of the invention we now provide a diagnostic method for the detection of the 5T, 7T and 9T alleles in intron 8 of the human CFTR gene which method comprises contacting a test sample of nucleic acid from an individual with a multiplex of diagnostic primers comprising (i) 5T variant primer 5'(N)nAAAGAC3', (ii) 7T variant primer 5'(N*)n*(N)nAAAAGC3' and (iii) 9T variant primer 5'(N*)n*(N)nAAAATC3', wherein N represents additional nucleotides which base pair with

15

20

25

30

PCT/GB00/03597

the corresponding genomic sequence in the respective allele and n is an integer between 10 and 30 and N* represents additional non-homologous nucleotides which do not base pair with the corresponding genomic sequence in the respective allele and n* is an integer between 5 and 60, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

It will be appreciated that N* may be any other molecule that serves to reduce the electrophoretic mobility of an extension product such as 3'hexaethylene glycol (HEG) or a combination of such molecules and additional non-homologous nucleotides.

The diagnostic primers for use in the methods of the invention conveniently comprise one or more of

5T variant primer 5'(N)nTGTTAAAGAC3',

7T variant primer 5'(N*)n*(N)nTTAAAAAAGC3' and

9T variant primer 5'(N*)n*(N)nAAAAAAAATC3' wherein N, n, N* and n* are as defined above and n is an integer between 6 and 26.

It will be understood that the nucleotide sequence as defined by (N)n in the diagnostic primer is normally selected to be 100% complementary to the corresponding genomic sequence. However, as required, one or more mismatched bases may be included, for example at the 5' terminus of the primer. For example up to two, three, four or five mismatched base pairs may be included in the nucleotide sequence defined by (N)n. It will also be understood that any mismatched bases must not significantly impair the discriminatory properties of the diagnostic primer.

The integer n is for example 10, up to 15, up to 20, up to 25, or up to 30.

Preferred diagnostic primers include

5T variant primer 5'TAATTCCCCAAATCCCTGTTAAAGAC3',

7T variant primer 5'(N*)n*TAATTCCCCAAATCCCTGTTAAAAAAGC3' and

9T variant primer 5'(N*)n*TAATTCCCCAAATCCCTGTTAAAAAAAATC3' wherein N* and n* are as defined above.

Preferred diagnostic 7T and 9T primers are: 7T variant primer 5'GTTAATCATTCAGCTACTACGCACCTAATTCCCCAAATCCCTGTTAAAAAAAGC3' and 9T variant primer

10

15

20

25

30

PCT/GB00/03597

- 7 -

5'GACTGTACGATACTCATTTATATGAAGTCAGCTACTTACCTATAGAACGCTTGC TAGTTTAATTCCCCAAATCCCTGTTAAAAAAAAATC3'.

The above primers have been shown to detect their respective alleles reliably and robustly. Each of the primers disclosed above represents a further and independent aspect of the invention.

In many situations, it will be convenient to use a diagnostic primer of the invention with a further amplification primer in one or more cycles of PCR amplification. A convenient example of this aspect is set out in our European patent number EP-B1-0332435. Any convenient amplification primer may be useed provided that the resulting amplification products are of a suitable size for separation and analysis. The further amplification primer is conveniently the polyT common primer

GTACATAAAACAAGCATCTATTGAAAAATATCTGAC and this is used in combination with the intron 8 5T, 7T and 9T allele-specific primers.

Therefore according to a further aspect of the invention we provide a diagnostic method for the detection of the 5T, 7T and 9T alleles in intron 8 of the human CFTR gene which method comprises contacting a test sample of nucleic acid from an individual with a multiplex of diagnostic primers comprising (i) 5T variant primer 5'(N)nAAAGAC3', (ii) 7T variant primer 5'(N*)n*(N)nAAAAGC3' and (iii) 9T variant primer 5'(N*)n*(N)nAAAATC3', wherein N represents additional nucleotides which base pair with the corresponding genomic sequence in the respective allele and n is an integer between 10 and 30 and N* represents additional non-homologous nucleotides which do not base pair with the corresponding genomic sequence in the respective allele and n* is an integer between 5 and 60, and a common amplification primer in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, and subjecting the mixture to PCR amplification such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a corresponding PCR amplification product.

The above aspects of the invention are referred to as primer set 1 and conveniently illustrated by reference to Table 1 and the disclosure of a specific primer mix1.

References to primer "mixes" and "sets" are not intended to be limiting and the terms are used throughout the text interchangeably.

It will also be appreciated that we do not want to be limited solely to discrimination between the human CFTR gene intron 8 5T, 7T and 9T alleles by allele associated PCR

15

20

25

30

-8-

product sizes; hence a further definition of N* is one from a group of labels that can be conjugated to primers whereby an individual label is associated specifically to one allele-specific primer and n* may be 0 or an integer greater than 1. An example of labels according to this definition of N* is a group of molecules such as fluorophores for example, (Brown T. and Brown DJS. in Newton CR. (ed): PCR - Essential Data: 1st ed. Wiley; Chichester, pp57-71 (1995)).

The primers may be manufactured using any convenient method of synthesis.

Examples of such methods may be found in standard textbooks, for example "Protocols For Oligonucleotides And Analogues: Synthesis And Properties;" Methods In Molecular Biology Series; Volume 20; Ed. Sudhir Agrawal, Humana ISBN: 0-89603-247-7; 1993; 1st Edition.

It will be appreciated that any of the above diagnostic methods may, if appropriate, also be configured so that extension of the diagnostic primer indicates the absence of the respective CFTR gene polyT allele.

As outlined earlier above, the polyT methods of this invention may be used with any known CFTR testing procedure.

In addition we have now devised novel diagnostic primer sequences for the detection of the W1282X, 1717-1G>A, G542X, N1303K, DF508 and 3849+10kbC>T mutations of the human CFTR gene using ARMS allele specific amplification. Therefore the polyT multiplex of the present invention is conveniently accompanied by the use in a separate ARMS reaction of one or more of:

DF508 mutant primer 5'(N)nACCATT3',

3849+10kb C>T mutant primer 5'(N)nTACGCA3',

N1303K mutant primer 5'(N)nTCCATC3',

1717-1G>A mutant primer 5'(N)nTAATTA3',

W1282X mutant primer 5'(N)nCAGTCA3', and

G542X mutant primer 5'(N)nTTCTCT3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

Two or more of the above diagnostic primers are conveniently used as a multiplex and more conveniently with a suitable amplificiation primer. Preferably several or all of the above primer sequences are used in a single multiplex reaction.

20

25

30

PCT/GB00/03597

-9-

Convenient primers include:

W1282X mutant primer 5'(N)nGCAACAGTCA3',

1717-1G>A mutant primer 5'(N)nTTGGTAATTA3',

G542X mutant primer 5'(N)nATAGTTCTCT3',

N1303K mutant primer 5'(N)nGGGATCCATC3',

DF508 mutant primer 5'(N)nAAACACCATT3' and

3849+10kb C>T mutant primer 5'(N)nGTCTTACGCA3' wherein N, n, are as defined above and n is an integer between 6 and 26.

Preferred diagnostic primers include

10 W1282X mutant primer 5'TCTTGGGATTCAATAACTTTGCAACAGTCA3',

1717-1G>A mutant primer 5'TCTCGAATTTTCTATTTTTGGTAATTA3',

G542X mutant primer 5'AGTTTGCAGAGAAAGACAATATAGTTCTCT3',

N1303K mutant primer 5'TGATCACTCCACTGTTCATAGGGATCCATC3',

DF508 mutant primer 5'GTATCTATATTCATCATAGGAAACACCATT3', and

3849+10kb C>T mutant primer 5'GAACATTTCCTTTCAGGGTGTCTTACGCA3'.

The above aspects of the invention are referred to as primer set 2A and illustrated by reference to Table 3 and the specific primer mix 2A. Primer mix 2A is conveniently used in combination with primer mix 1 as set out in Table 1.

We have also devised novel diagnostic primer sequences for detection by ARMS allele specific amplification of the DF508 normal allele, and the 621+1G>T, R117H, R334W, G551D, R553X, and R1162X mutations of the human CFTR gene. Therefore the polyT multiplex of the present invention is conveniently accompanied by the use in a separate ARMS reaction of one or more of:

DF508 non-mutant primer 5'(N)nACCACA3',

W1282X mutant primer 5'(N)nCAGTCA3',

1717-1 mutant primer 5'(N)nTAATTA3',

G542X mutant primer 5'(N)nTTCTCT3',

N1303K mutant primer 5'(N)nTCCATC3',

DF508 non-mutant primer 5'(N)nACCACA3',

DF508 mutant primer 5'(N)nACCATT3' and

3849+10kb C>T mutant primer 5'(N)nTACGCA3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic

15

20

25

30

- 10 -

variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

Two or more of the above diagnostic primers are conveniently used as a multiplex and more conveniently with a suitable amplificiation primer. Preferably several or all of the above primer sequences are used in a single multiplex reaction.

Convenient diagnostic primers include:

DF508 non-mutant primer 5'(N)nAAACACCACA3',

R117H mutant primer 5'(N)nGCGATAGACT3',

621+1G>T mutant primer 5'(N)nGAAGTATTGA3',

10 R334W mutant primer 5'(N)nATCATCCTGT3',

R1162X mutant primer 5'(N)nTCTGTGAGTT3',

R553X mutant primer 5'(N)nTTCTTGCTGA3' and

G551D mutant primer 5'(N)nGCTCGTTGTT3' wherein N, n, are as defined above and n is an integer between 6 and 26.

Preferred diagnostic primers include:

R117H mutant primer5'AGCCTATGCCTAGATAAATCGCGATAGACT3',

621+1G>T mutant primer 5'TGCCATGGGGCCTGTGCAAGGAAGTATTGA3',

R334W mutant primer 5'CCTATGCACTAATCAAAGGAATCATCCTGT3',

R1162X mutant primer 5'TATTTTTATTTCAGATGCGATCTGTGAGTT3',

R553X mutant primer 5'TTATTCACCTTGCTAAAGAAATTCTTGCTGA3',

G551D mutant primer 5'GCTAAAGAAATTCTTGCTCGTTGTT3'.

The above aspects of the invention are referred to as primer set 2B and are conviently illustrated by reference to Table 3 and the specific primer mix 2B. Primer mix 2B is conveniently used in combination with mix1 as set out in Table 1.We have also devised novel diagnostic primer sequences for the A455E, 2183AA>G, 3659delC, DI507, 1078delT, R347P, S1251N and E60X mutations of the human CFTR gene using ARMS allele specific amplification. Therefore the polyT multiplex of the present invention is conveniently accompanied by the use in a separate ARMS reaction of one or more of:

A455E mutant primer 5'(N)nGTTGTA3',

2183AA>G mutant primer 5'(N)nGATAGC3',

3659delC mutant primer 5'(N)nCCTAGA3',

DI507 mutant primer 5'(N)nATAACT3',

10

PCT/GB00/03597

- 11 -

1078delT mutant primer 5'(N)nTTCCTG3', R347P mutant primer 5'(N)nTCTACC3', S1251N mutant primer 5'(N)nGAAGCA3' and E60X mutant primer 5'(N)nCAGTTA3'

wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

Two or more of the above diagnostic primers are conveniently used as a multiplex and more conveniently with a suitable amplification primer. Preferably several or all of the above primer sequences are used in a single multiplex reaction.

The diagnostic primer conveniently comprises one or more of A455E mutant primer 5'(N)nAGTTGTTA3',

15 1078delT mutant primer 5'(N)nAGGGTTCCTG3',

R347P mutant primer 5'(N)nTTGTTCTACC3',

DI507 mutant primer 5'(N)nGAAAATAACT3',

3659delC mutant primer 5'(N)nTAAACCTAGA3',

2183AA>G mutant primer 5'(N)nAAAAGATAGC3',

20 S1251N mutant primer 5'(N)nCAGGGAAGCA3' and
F60X mutant primer 5'(N)nAAGCCAGTTA3' wherein N, n, are as

E60X mutant primer 5'(N)nAAGCCAGTTA3' wherein N, n, are as defined above and n is an integer between 6 and 26.

Preferred diagnostic primers include

A455E mutant primer 5'TTCAAGATAGAAAGAGGACAGTTGTTGTA3',

25 1078delT mutant primer 5'CCTTCTTCTTCTCAGGGTTCCTG3',

R347P mutant primer 5'CACCATCTCATTCTGCATTGTTCTACC3',

DI507 mutant primer 5'GCCTGGCACCATTAAAGAAAATAACT3',

3659delC mutant primer 5'ATGCCAACAGAAGGTAAACCTAGA3',

2183AA>G mutant primer 5'CAAACTCTCCAGTCTGTTTAAAAGATAGC3',

30 S1251N mutant primer 5'GGAAGAACTGGATCAGGGAAGCA3' and E60X mutant primer 5'TTAGGATTTTCTTTGAAGCCAGTTA3'.

15

20

25

- 12 -

The above aspects of the invention are referred to as primer set 2C and conveniently illustrated by reference to Table 4 and the specific primer mix 2C. Primer mix 2C is conveniently used in combination with mix1 as set out in Table 1.

We have also devised novel diagnostic primer sequences for the detection of the G85E, 405+1G>A, S549R, W1089X and D1152H mutations of the human CFTR gene using ARMS allele specific amplification. Therefore the polyT multiplex of the present invention is conveniently accompanied by the use in a separate ARMS reaction of one or more of:

G85E mutant primer 5'(N)nCTACGA3',

405+1G>A mutant primer 5'(N)nTAGTGA3',

S549R mutant primer 5'(N)nCTGACG3',

W1089X mutant primer 5'(N)nCAAATA3' and

D1152H mutant primer 5'(N)nCACTTG3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

Two or more of the above diagnostic primers are conveniently used as a multiplex and more conveniently with a suitable amplificiation primer. Preferably several or all of the above primer sequences are used in a single multiplex reaction.

The diagnostic primer conveniently comprises one or more of

G85E mutant primer 5'(N)nTGTTCTACGA3',

405+1G>A mutant primer 5'(N)nTATTTAGTGA3',

S549R mutant primer 5'(N)nCACACTGACG3',

W1089X mutant primer 5'(N)nCTGCCAAATA3',

D1152H mutant primer 5'(N)nTATCCACTTG3' wherein N, n, are as defined above and n is an integer between 6 and 26.

Preferred diagnostic primers include:

G85E mutant primer

5'TAGCCATTGATGACGGAGCGATGTTTTTTCTGGAGATTTATGTTCTACGA3'

30 405+1G>A mutant primer

5'GATTTATGTTCTATGGAATCTTTTTATATTTAGTGA3',

S549R mutant primer 5'TGGAGAAGGTGGAATCACACTGACG3',

10

15

20

25

30

- 13 -

W1089X mutant primer 5'AAGCTCTGAATTTACATACTGCCAAATA3' and D1152H mutant primer 5'AAAGATGATAAGACTTACCAAGCTATCCACTTG3'

The above aspects of the present invention are referred to as primer set 3 and conveniently illustrated by reference to Table 5 and the specific mix 3. Mix 3 may for example be used in combination with mix1 as set out in Table 1.

The above primers in mixes 2A, 2B, 2C and 3 have been shown to detect their respective alleles reliably and robustly.

The primers may be manufactured using any convenient method of synthesis.

Examples of such methods may be found in standard textbooks, for example "Protocols For Oligonucleotides And Analogues: Synthesis And Properties;" Methods In Molecular Biology Series; Volume 20; Ed. Sudhir Agrawal, Humana ISBN: 0-89603-247-7; 1993; 1st Edition.

It will be appreciated that any of the above diagnostic methods may, if appropriate, also be configured so that extension of the diagnostic primer indicates the absence of the respective CFTR gene mutation or polyT allele.

The test sample of nucleic acid is preferably a blood sample but may also conveniently be a sample of any body fluid, or tissue obtained from an individual. The individual is any convenient mammal, preferably a human being. It will be appreciated that the test sample may equally be a nucleic acid sequence corresponding to the sequence in the test sample. That is to say that all or a part of the region in the sample nucleic acid may firstly be amplified using any convenient technique such as PCR before use in the method of the invention.

Any convenient enzyme for polymerisation may be used provided that it does not affect the ability of the DNA polymerase to discriminate between normal and mutant template sequences to any significant extent. Examples of convenient enzymes include thermostable enzymes which have no significant 3'-5' exonuclease activity, for example Taq DNA polymerase, particularly "Ampli Taq Gold" DNA polymerase (PE Applied Biosystems), Stoffel fragment, or other appropriately N-terminal deleted modifications of Taq or Tth (Thermus thermophilus) DNA polymerases.

Significiantly the diagnostic methods of the invention can be used in combination to enable the presence or absence of mutations or polyT alleles of the CFTR gene to be detected simultaneously (i.e. the method comprises several multiplex tests). Primer Mix 1 can be used in isolation or in combination with any other cystic fibrosis diagnostic tests. Because the multiplex polyT test using the mix 1 primer mix adds value to the information derived from

15

20

25

30

PCT/GB00/03597

other cystic fibrosis diagnostic tests it is convenient to use the mix 1 primer mix in combination with the mix 2A primer mix. Similarly, it is convenient to use the mix 1 primer mix in combination with the mix 2B primer mix. Similarly, it is convenient to use the mix 1 primer mix in combination with the mix 2C primer mix. Similarly, it is convenient to use the mix 1 primer mix in combination with the mix 3 primer mix. Similarly, it is convenient to use the mix 1 primer mix in combination with any two of the mix 2A, 2B, 2C or 3 primer mixes. Similarly, it is convenient to use the mix 1 primer mix in combination with any three of the mix 2A, 2B, 2C or 3 primer mixes. Similarly, it is convenient to use the mix 1 primer mix in combination with all of the mix 2A, 2B, 2C or 3 primer mixes.

- 14 -

The above test combinations give genotype information by distinguishing between individuals who are heterozygous and homozygous for either of the CFTR polyT alleles and the more common DF508 CFTR gene mutation. If desired, the tests may provide genotype information for the 1717-1G>A, G542X, W1282X, N1303K, 3849+10kbC>T, 621+1G>T, R553X, G551D, R117H, R1162X, R334W, A455E, 2183AA>G, 3659delC, 1078delT, DI507, R347P, S1251N, E60X, G85E, 405+1G>A, S549R, W1089X, and D1152H CFTR gene mutations by the inclusion of primers specific for the normal CFTR gene sequences that correspond to the respective mutated CFTR gene sequences associated with these mutations. Whilst each multiplex test may have any of the primers described above in combination the preferred diagnostic primer multiplexes are the mix 1 comprising primers for the 5T, 7T and 9T alleles. Mix 2A comprising primers for the 1717-1G>A, G542X, W1282X, N1303K, DF508 and 3849+10kbC>T mutations; mix 2B comprising primers for the 621+1G>T, R553X, G551D, R117H, R1162X and R334W mutations and the normal CFTR gene sequence corresponding to the DF508 mutation; mix 2C comprising primers for the A455E, 2183AA>G, 3659delC, 1078delT, DI507, R347P, S1251N and E60X mutations; mix 3 comprising primers for the G85E, 405+1G>A, S549R, W1089X, and D1152H mutations.

We have developed a validated test using primer mix 2A for the 1717-1G>A, G542X, W1282X, N1303K, DF508 and 3849+10kbC>T mutations and have applied these in a thorough investigation of the incidence of the mutations in 100 individuals.

In many situations, it will be convenient to use a diagnostic primer of the invention with a further amplification primer in one or more cycles of PCR amplification. A convenient example of this aspect is set out in our European patent number EP-B1-0332435. In the present application, the further amplification primer is either a 1717-1G>A common, G542X common, W1282X common, N1303K common, DF508 common or 3849+10kbC>T common

20

25

- 15 -

primer. The 1717-1G>A common primer TAATCTCTACCAAATCTGGATACTATACC is conveniently used in combination with the 1717-1G>A mutant primer, the G542X common primer TAATCTCTACCAAATCTGGATACTATACC is conveniently used in combination with the G542X mutant primer, the W1282X common primer

5 GAATTCCCAAACTTTTAGAGACATC is conveniently used in combination with the W1282X mutant primer, the, N1303K common primer CTTGATGGTAAGTACATGGGTTTTTCTTAT is conveniently used in combination with the N1303K mutant primer, the DF508 common primer CCAGACTTCACTTCTAATTATGATTATGGG is conveniently used in combination with the DF508 mutant primer, the 3849+10kbC>T common primer TTGTGGATCAAATTTCAGTTGACTTGTCATC is conveniently used in combination with the 3849+10kbC>T mutant primer.

Any convenient control primer may be used. However, the amplification products from the Mix 1 primer mix serve as internal controls and so an additional amplification control is not required.

We have developed a validated test using primer mix 2B for the 621+1G>T, R553X, G551D, R117H, R1162X and R334W mutations and the normal DF508 allele and have applied these in a thorough investigation of the incidence of the mutations in 100 individuals.

In many situations, it will be convenient to use a diagnostic primer of the invention with a further amplification primer in one or more cycles of PCR amplification. A convenient example of this aspect is set out in our European patent number EP-B1-0332435. In the present application, the further amplification primer is either a 1717-1G>A common, G542X common, W1282X common, N1303K common, DF508 common or 3849+10kbC>T common primer. The DF508 common primer GACTTCACTTCTAATGATGATTATGGGAGA is conveniently used in combination with the DF508 normal primer, the 621+1G>T common primer GTTTCACATAGTGTATGACCCTCTATATACACTCATT is conveniently used in combination with the 621+1G>T mutant primer, the R553X common primer ATCTAAAATTGGAGCAATGTTGTTTTTGACC is conveniently used in combination with the R553X mutant primer, the G551D common primer

ATCTAAAATTGGAGCAATGTTGTTTTTGACC is conveniently used in combination with the G551D mutant primer, the R117H common primer

GTTTCACATAGTGTATGACCCTCTATATACACTCATT is conveniently used in combination with the R117H mutant primer, the R1162X common primer

10

- 16 -

TTTTGCTGTGAGATCTTTGACAGTCATTT is conveniently used in combination with the R1162X mutant primer, the R334W common primer

TTTGTTTATTGCTCCAAGAGAGTCATACCA is conveniently used in combination with the R334W mutant primer.

Any convenient control primer may be used. We have selected control primers from unrelated regions of the genome, namely, part of the human apolipoprotein B gene and part of the ornithine decarboxylase gene.

We have developed a validated test using primer mix 2C for the A455E, 2183AA>G, 3659delC, 1078delT, DI507, R347P, S1251N and E60X mutations and have applied these in a thorough investigation of the incidence of the mutations in 100 individuals.

In many situations, it will be convenient to use a diagnostic primer of the invention with a further amplification primer in one or more cycles of PCR amplification. A convenient example of this aspect is set out in our European patent number EP-B1-0332435. In the present application, the further amplification primer is either a 621+1G>T common, R553X common, G551D common, R117H common, R1162X common, R334W common or A455E 15 common primer. The A455E common primer GACTGACTGACTGAAATGGAGACTTTTTGTTTATGTGGTTACTAA is conveniently used in combination with the A455E mutant primer, the 2183AA>G common primer GTATGATAGAGATTATATGCAATAAAACATTAACA is conveniently used in 20 combination with the 2183AA>G mutant primer, the 3659delC common primer TGTGTCTAATATTGATTCTACTGTACAATAATAA is conveniently used in combination with the 3659delC mutant primer, the 1078delT common primer ATTTTTCCAAACTTCATTAGAACTGATCTATTGAC is conveniently used in combination with the 1078delT mutant primer, the DI507 common primer 25 CACAGTAGCTTACCCATAGAGGAAACA is conveniently used in combination with the DI507 mutant primer, the R347P common primer ATTTTTCCAAACTTCATTAGAACTGATCTATTGAC is conveniently used in combination with the R347P mutant primer, the S1251N common primer GCTCACCTGTGGTATCACTCCAA is conveniently used in combination with the S1251N mutant primer, the E60X common primer 30

AATCAAACTATGTTAAGGGAAATAGGACAACTAA is conveniently used in combination with the E60X mutant primer.

25

30

- 17 -

Any convenient control primer may be used. We have selected control primers from unrelated regions of the genome, namely, part of the human apolipoprotein B gene and part of the ornithine decarboxylase gene.

We have developed a validated test using primer mix 3 for the G85E, 405+1G>A, S549R, W1089X, and D1152H mutations and have applied these in a thorough investigation of the incidence of the mutations in a number of individuals.

In many situations, it will be convenient to use a diagnostic primer of the invention with a further amplification primer in one or more cycles of PCR amplification. A convenient example of this aspect is set out in our European patent number EP-B1-0332435. In the present application, the further amplification primer is either a G85E common, 405+1G>A common, S549R common, W1089X common, D1152H common primer. The G85E and the 405+1G>A common primer CGATTCGATTCAGTTTTCTGTGGTTTCTTAGTGTTTGGA is conveniently used in combination with the G85E mutant primer and/or the 405+1G>A mutant primer, the S549R common primer

15 GTAATTTTTTACATGAATGACATTTACAGCAA is conveniently used in combination with the S549R mutant primer, the W1089X common primer GGAAATTATTTGTTTAACAATAAAACAATGGAA is conveniently used in combination with the W1089X mutant primer and the D1152H common primer CCAACAACACCTCCAATACCAGTAAC is conveniently used in combination with the D1152H mutant primer.

Any convenient control primer may be used. We have selected control primers from unrelated regions of the genome, namely, part of the human apolipoprotein B gene and part of the ornithine decarboxylase gene.

It will be appreciated that by combining intron 8 polyT allele-specific primers and their respective common primer and/or different mutant or normal primers and their respective common primers, or by using combinations of the 1 and 2A and/or 2B and/or 2C and/or 3 primer sets or mixes for a given DNA sample, further useful diagnostic tests are provided which permit the simultaneous detection of alternative polyT alleles and/or several mutations in the CFTR gene. Each of these combinations will also include the addition of the appropriate control primers as set out in Tables 1 to 5 below. The combination of different primers for the simultaneous detection of two or more point mutations is termed "multiplexing" (see EP-B1-0332435).

- 18 -

A variety of methods may be used to detect the presence or absence of diagnostic primer extension products and/or amplification products. These will be apparent to the person skilled in the art of nucleic acid detection procedures. Preferred methods avoid the need for radiolabelled reagents. Particular detection methods include size separation of amplification products, for example as described in our patents numbers EP 0 332 435 & US 5595890, "ALEX" product detection (Haque K. et al. Diag. Mol. Pathol. &: 248-252 (1998)), the detection of amplification incorporated "Sunrise" probes (Nazarenko IA. et al. Nucl. Acids Res. 25: 2516-2521 (1997)), the detection of amplification incorporated "Scorpions" primers (Whitcombe D. et al. Nature Biotechnol. 17: 804-807 (1999)), the detection of fluorescence polarisation signal combined with dual labelled ARMS primers (Gibson NJ. et al. Clin. Chem. 43: 1336-1341 (1997)) patent number EP 0 382 433, the detection of intercalating dyes into ARMS products (Brownie J. et al. Nucl. Acids Res. 25: 3235-3241 (1997)) patent number EP 0 731 177, "taqman" product detection for example as described in patent numbers US-A-5487972 & US-A-5210015; and "Molecular Beacons" product detection outlined in patent number WO-95/13399.

One or more of the primer mixes of the invention may be conveniently packaged with instructions for use in the method of the invention and appropriate packaging and sold as a kit. Convenient primer mixes include intron 8 polyT allele-specific primers and CFTR mutation-specific primers, equivalent normal-specific primers; all as hereinbefore disclosed. The kits will conveniently include one or more of the following: appropriate nucleotide triphosphates, for example one or more of dATP, dCTP, dGTP, and dTTP, a suitable polymerase as previously described, and a convenient buffer solution.

The invention will now be illustrated but not limited by reference to the following Examples, Tables and Figures in which:

25

30

10

15

20

Table 1 shows a specific primer mix 1

Table 2 shows a specific primer mix 2A

Table 3 shows a specific primer mix 2B

Table 4 shows a specific primer mix 2C

<u>Table 5</u> shows a specific primer mix 3

Figure 1 shows the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to (PolyT)

10

15

- 19 -

Figure 2 shows the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to a CFTR DF508 heterozygote, DF508 homozygote, DF508/ DI507 compound heterozygote, G542X heterozygote, G551D heterozygote, 1078delT heterozygote. (i.e figure from brochure)

<u>Figure 3</u> shows the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to a (Middle Eastern Panel)

Figure 4 shows diagramatically the relative sizes in base pairs and the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to the CFTR intron 8 5T, 7T and 9T alleles.

Figure 5 shows diagramatically the size in base pairs and the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to the CFTR 1717-1G>A, G542X, W1282X, N1303K, DF508, 3849+10kbC>T, 621+1G>T, R553X, G551D, R117H, R1162X, R334W, A455E, 2183AA>G, 3659deIC, 1078deIT, DI507, R347P, S1251N, E6OX mutant alleles and the non-DF508 allele.

Figure 6 shows diagramatically the size in base pairs and the relative location of the PCR product bands on an agarose electrophoresis gel corresponding to the CFTR D1152H, W1089X, G85E, 405+1G>A, S549R mutant alleles.

PCT/GB00/03597

- 20 -

Examples

5

15

30

Example 1.1 Materials Provided in a diagnostic kit containing 50 tests (polyT)

- 1. 50 Vial 1 (colour coded) containing primers (5T, 7T, 9T), and deoxynucleotide triphosphates in buffer.
 - 2. 1 vial dilution buffer.
 - 1 vial AmpliTaq Gold.
 - 4. 1 vial loading dye.
 - 5. 1 vial DNA control, contains human DNA in buffer.
- 10 6. Instructions for use.

Example 2.1 Materials Provided in a diagnostic kit containing 50 tests (CF20)

- 50 Vial 2A (colour coded) containing primers (mutant 1717-1G>A, G542X, W1282X, N1303K, DF508 and 3849+10kbC>T), control primers and deoxynucleotide triphosphates in buffer.
- 2. 50 Vial 2B (colour coded) containing primers (mutant 621+1G>T, R553X, G551D, R117H, R1162X, R334W, normal DF508), control primers and deoxynucleotide triphosphates in buffer.
- 50 Vial 2C (colour coded) containing primers (mutant A455E, 2183AA>G,
 3659deIC, 1078deIT, DI507, R347P, S1251N, E6OX), control primers and deoxynucleotide triphosphates in buffer.
 - 4. 1 vial dilution buffer.
 - 5. 1 vial AmpliTaq Gold.
 - 6. 1 vial loading dye.
- 25 7. 1 vial normal DNA control, contains human DNA unaffected by the mutations detected by the kit, in buffer.
 - 8. Instructions for use.

Example 3.1 Materials Provided in a diagnostic kit containing 50tests (Middle Eastern)

- 1. 50 Vial 3 (colour coded) containing primers (D1152H, W1089X, G85E, 405+1G>A, S549R), control primers and deoxynucleotide triphosphates in buffer
 - 2. 1 vial dilution buffer.

10

15

20

25

- 21 -

- 3. 1 vial AmpliTaq Gold.
- 4. 1 vial loading dye.
- 1 vial normal DNA control, contains human DNA unaffected by the mutations detected by the kit, in buffer.
 - 6. Instructions for use.

Example 4.1 Instructions for CF20 PCR amplification procedure

- 1. Program the thermal cycler for an activation program which holds the vials at 94 °C for 20 minutes and an amplification program of 0.5 minutes at 94 °C (denaturation), 2 minutes at 58 °C (annealing) and 1 minute at 72 °C (extension) for 35 cycles. Followed by a 20 minute 72 °C extension stage...
 - 2. Label one vial A, one vial B and one vial C for each sample and control.
 - 3. Microfuge vials A, B and C until all liquid is at the bottom of each vial.
- 4. Prepare sufficient dilution of the AmpliTaq Gold for the number of samples and controls to be tested. For 10 samples or controls pipette 68 μL sterile deionized water, 20 μL dilution buffer, 100 μL loading dye and 12 μL AmpliTaq Gold into a microfuge tube and mix gently.
- 5. Carefully open the vial lid and pipette 5 μ L of the enzyme dilution into the A, B and C vials using separate tips and re-cap.
- 6. Pipette 5 μ L of test or Normal DNA Control sample to each of a vial A, B and C vials using separate tips. Add one drop of Sigma light white mineral oil to cover the aqueous phase if using a thermal cycler without a heated lid. Re-cap firmly.
- 7. For the negative control add 5 μ L sterile water to a vial of each of A, B and C. Add one drop of Sigma light white mineral oil to cover the aqueous phase if using a thermal cycler without a heated lid. Re-cap firmly.
 - 8. Microfuge vials A, B and C until all liquid is at the bottom of each vial.
- 9. Place all tubes firmly in the thermal cycler block. Initiate the 94 °C activation program. On completion of the activation program, run the amplification program.
- 10. On completion of the final extension stage, the samples may be stored at room temperature overnight or at 2-8 °C for up to 7 days before analysis by gel electrophoresis.

Instructions for CF Poly-T and CF-MEP PCR amplification procedure

10

15

20

30

- 22 -
- 1. Program the thermal cycler for an activation program which holds the vials at 94 °C for 20 minutes and an amplification program of 0.5 minutes at 94 °C (denaturation), 2 minutes at 58 °C (annealing) and 1 minute at 72 °C (extension) for 35 cycles. Followed by a 20 minute 72 °C extension stage..
 - 2. Label a vial for each sample and control.
 - 3. Microfuge vials until all liquid is at the bottom of each vial.
- 4. Prepare sufficient dilution of the AmpliTaq Gold for the number of samples and controls to be tested. For 10 samples or controls pipette 68 μ L sterile deionized water, 20 μ L dilution buffer, 100 μ L loading dye and 12 μ L AmpliTaq Gold into a microfuge tube and mix gently.
- 5. Carefully open the vial lid and pipette 5 μ L of the enzyme dilution into the vials using separate tips and re-cap.
- 6. Pipette 5 μ L of test or DNA Control sample to each vial using separate tips. Add one drop of Sigma light white mineral oil to cover the aqueous phase if using a thermal cycler without a heated lid. Re-cap firmly.
- 7. For the negative control add 5 μ L sterile water to a separate vial. Add one drop of Sigma light white mineral oil to cover the aqueous phase if using a thermal cycler without a heated lid. Re-cap firmly.
 - 8. Microfuge vials until all liquid is at the bottom of each vial.
- 9. Place all tubes firmly in the thermal cycler block. Initiate the 94 °C activation program. On completion of the activation program, run the amplification program.
- 10. On completion of the final extension stage, the samples may be stored at room temperature overnight or at 2-8 °C for up to 7 days before analysis by gel electrophoresis.

25 Example 4.2 Procedure

1. 15 x 12 cm horizontal submarine gels with combs of 1.5 mm x 5 mm suspended 1 mm above the gel tray, were prepared using 100 mL of 3% $NuSieve^{TM}$ (FMC Corporation) 3:1 agarose in 134 mM (16.2 g/L) Tris-base, 74.9 mM (4.63 g/L) boric acid, 2.55 mM (0.95 g/L) EDTA buffer with 0.1 μ g/mL ethidium bromide (TBE/EtBr). TBE/EtBr was also used as the running buffer.

- 23 -

- 2. A 50 Base-Pair Ladder (Amersham Pharmacia Biotech) at $1.5 \mu g/15\mu L$ was prepared in the loading dye (80 μL distilled water / $10\mu L$ loading dye / $10\mu L$ 50 Base-Pair Ladder). $15\mu L$ of this dilution was run adjacent to samples as a molecular weight marker.
- 15 μL of PCR products from samples or control vials were loaded on a gel (for CF20 A, B and C trios were loaded in adjacent wells).
- 4. Electrophoresis was carried out at 5 to 6 V/cm between electrodes until the dye front had migrated 5 cm from the loading wells towards the anode (1.5 to 2 hours).
- 5. After electrophoresis the gels were placed on a UV transilluminator at 260 nm then visualised and photographed.

10

15

20

25

30

5

Example 4.3 Interpretation of Results for CF20 and CF-MEP

PCR products will be observed as bands in the vial tracks of the gel.

- 1. The upper and lower control band must be clearly visible in all samples.
- 2. All tracks should be free of excessive smearing and background fluorescence.
- 3. The position of the upper and lower control bands should indicate the correct molecular size (see Figure 5 or Figure 6).
- 4. The negative control should show no bands in the tracks within the area corresponding to the upper and lower control bands. A diagnostic band should not be interpreted if a similar band is also seen in the negative control for that PCR run as this is indicative of contamination with genomic DNA.

If any of the above points are not observed the results should not be interpreted and a repeat test carried out.

- 5. An individual has two copies of the CFTR gene. Where these copies have the same sequence for any given site, an individual is described as being homozygous for this site. Where the copies differ in sequence at a given site, an individual is described as being heterozygous for this site.
- 6. The presence of PCR product generated from the normal DF508 primer in vial B of CF20 indicates that the sample contains the normal sequence for this site. The normal PCR product will be observed in the vial B track of the gel at 160bp and is identified by comparison of theband position with an adjacent marker track.
- 7. For CF20 the PCR products from an individual carrying any of the 1717-IG>A, G542X, W1282X, N1303K, DF508 and 3849+10kbC>T mutations will be observed in the

- 24 -

vial A track of the gel and are identified by comparison of the band position with an adjacent marker track. The product band sizes in base pairs are shown in Figure 5. Only product bands of the correct size should be interpreted.

- 8. For CF20 the PCR products from an individual carrying any of the 621+1G>T, R553X, G551D, R117H, R1162X, and R334W mutations will be observed in the vial B track of the gel and are identified by comparison of the band position with an adjacent marker track. The product band sizes in base pairs are shown in Figure 5. Only product bands of the correct size should be interpreted.
- For CF20 the PCR products from an individual carrying any of the A455E,
 2183AA>G, 3659delC, 1078deIT, DI507, R347P, S1251N and E60X mutations will be observed in the vial C track of the gel and are identified by comparison of the band position with an adjacent marker track. The product band sizes in base pairs are shown in Figure 5.
 Only product bands of the correct size should be interpreted.

15 Interpretation of Results for CF Poly-T

20

25

PCR products will be observed as bands in the vial tracks of the gel.

- 1. The bands should be of similar intensity to the 250bp band in the 50bp ladder, loaded at 1.5mg/15ml (Amersham Pharmacia Biotech).
 - 2. At least one of the CF Poly-T products should be visible in each DNA sample.
 - 3. No bands should be visible in the negative control
- 4. If any of the above points are not observed the results should not be interpreted and a repeat test carried out.
- 5. For CF Poly-T the product band sizes in base pairs are shown in Figure 4. Only product bands of the correct size should be interpreted.
- 6. As a result of allele expansion within the microsatellite region (TG)₈₋₁₃, contiguous to the Poly-T region, the length of the diagnostic PCR products may vary. As a result very small product band shifts may be observed during electrophoresis. These shifts do not alter the interpretation of test results.
- Owing to the nature of the sequence surrounding the Poly-T locus,
 heteroduplexes may occasionally be formed from the PCR products and may therefore be visible in some test sample tracks. The position of these heteroduplexes is indicated in figure
 - 8. The observed heteroduplexes are summarised as follows:

15

20

25

30

- 25 -

A 7T/7T individual may have a heteroduplex band larger than the 7T allele but not as large as the 9T allele.

A 5T/7T individual may have a heteroduplex that runs in a similar position to the 9T allele. Therefore if all three diagnostic bands are visible the individual's genotype is 5T/7T. The heteroduplex, if present, is generally weaker than the corresponding 5T and 7T diagnostic products.

A 5T/9T individual occasionally has a heteroduplex which run larger than the 9T allele.

Owing to the sequence variability in the region proximal to the Poly-T repeat, additional (previously unseen) heteroduplexes may be observed.

Example 4.4 Performance Characteristics

For CF20 one hundred EDTA blood samples were tested using the procedures described in Examples 4.1 and 4.2 in a 'blind' in-house study. Samples were prepared using the method described in Example 4.5. Each result obtained was confirmed for each of the 20 mutations using alternative methods. Of the 100 individuals tested, 92 were normal and 8 were DF508 heterozygotes.

In addition blood and mouthwash samples were taken from each of 40 individuals and tested using the diagnostic assay. The result obtained from each mouthwash sample was concordant with that obtained using the blood sample from the same individual.

A number of compound heterozygotes within the same multiplex test were sourced and analysed using the diagnostic assay. In all cases, both mutations were detected. Those tested were:

The 'A mix'

1717-1G>A / N1303K, 1717-1G>A / DF508, G542X / W1282X, G542X / N1303K, G542X / DF508, W1282X / N1303K, W1282X / DF508 , W1282X / 3849+10kbC>T, N1303K / DF508, DF508 / 3849+10kbC>T.

The 'B mix'

R553X / G551D, R553X / R334W.

Owing to the rarity of the remaining combinations and the subsequent unavailability of samples, other compound heterozygotes were not evaluated.

10

15

20

25

30

- 26 -

The rare R1283M, 1717-2A>G, R117C, 621+2T>C, R117L, I506V mutations have been evaluated for cross reactivity. These were tested using the procedures described in Examples 1.2 and 1.3 and were not detected. In addition the following polymorphisms were not detected by the test: 3617G/T, 1655T/G (F508C), 1651A/G.

Evaluation of known mutations and polymorphisms in the CFTR gene using the procedures described in Examples 4.1 and 4.2 has highlighted the following observations:

- 1. DI507 in combination with dupl 716+51 >61 will produce a PCR product of 233bp in the 'C mix' rather than the expected 222bp.
- Slight cross reactivity of the R347P primer in the 'C mix' with the rare R347H
 mutation was observed which results in faint PCR product visible at the R347P position in the
 'C mix'.
- A recently reported mutation, 2184insG, will theoretically cross react with the 2183AA>G primer in the 'C mix'. A diagnostic 2183AA>G band may indicate that the 2184insG mutation is present.
- 4. The following mutations, which have not been checked due to unavailability of relevant samples, may interfere with test function: R117P, 621+2T>G, R553G, R553Q, R347L, I506T, I506S and the rare combination of DI507 with the polymorphism 1651A/G. For CF Poly-T one hundred EDTA blood samples were tested using the procedures described in Examples 4.1 and 4.2 in a 'blind' in-house study. Samples were prepared using the method described in Example 4.5. The genotype for each sample was independently confirmed. Additionally 100 mouthwash samples paired with the blood samples were tested on the CF Poly-T test. The result obtained from each mouthwash sample was concordant with that obtained using the blood sample from the same individual.

There are a number of sequence variants in the CFTR gene of unknown frequency which are located close to the Poly-T tract. The following mutations, which have not been checked due to unavailability of relevant samples, may theoretically interfere with test function:

- 1. The 1342-11TTT>G mutation which results in a (TG)₁₃(T)₃ individual with an apparent 5T disease state will produce diagnostic PCR product from the 5T primer.
- 2. The 1342-13G/T polymorphism which alters the final TG repeat to TT by substitution of the final does not affect the performance of the test as this polymorphism changes the status of individuals with respect to the polythymidine tract length.

- 27 -

3. The effects of the 1342-1G>C, and 1342-2A>C and 1342-2delAG mutations have not been tested but may affect the performance of the ELUCIGENETM CF Poly-T test.

For CF-MEP one hundred EDTA blood samples were tested using the procedures described in Examples 4.1 and 4.2 in a 'blind' in-house study. Samples were prepared using the method described in Example 4.5. All 100 samples tested were normal with respect to the CF-MEP mutations.

One compound heterozygotes within the same multiplex test was sourced and analysed using the diagnostic assay. In the sample G85E/D1152H both mutations were detected

10 Example 4.5 Method for Preparation of DNA from Whole Blood (EDTA) Samples:

- 1. Pipette 80 μL of each blood sample into a screw-topped microfuge tube.
- 2. Pipette 320 μL of 170 mM (9.09 g/L) NH₄Cl solution into each tube.
- 3. Mix for 20 minutes by gentle swirling and inversion. Avoid vigorous agitationand formation of foam.
 - 4. Centrifuge each tube for 2 minutes at 12 000g until a cell pellet is formed.
 - 5. Using a pipette remove and discard the supernatant liquid.
 - 6. Pipette 300 μ L of 10 mM (0.58 g/L) NaCl/10 mM (3.72 g/L) EDTA into each tube and resuspend the cells by vortex mixing.
 - 7. Centrifuge each tube for 1 minute at 12 000g until a cell peilet is formed.
 - 8. Repeat steps 5 to 7 at least a further two times until all visible red coloration in the supernatant liquid has been removed.
 - 9. Using a pipette remove and discard the supernatant liquid.
- 10. Pipette 200 μ L of 50 mM (2 g/L) NaOH solution into each tube and resuspend the cells by vortex mixing.
 - 11. Incubate at 100°C for 10 minutes.
 - 12. Pipette 40 μ L of 1 M (121.1 g/L) Tris/HCI (pH 7.5) into each tube and vortex mix.
- 13. Add 1ml sterile deionised water to each microfuge tube to give a total DNA30 sample volume of 1.24mL.
 - 14. Centrifuge each tube for 1 minute at 12 000g until a pellet of cell debris is formed. The DNA is contained within the supernatant liquid.

10

- 28 -

Example 4.6 Method for Preparation of DNA from Mouthwash Samples:

- 1. Agitate 10 mL of 0.9% saline in the mouth for 20 seconds. Collect the suspension in a sterile plastic universal tube.
 - 2. Pellet the cells by centrifugation at 800g for 10 minutes at 18-28 °C.
 - 3. Using a pipette remove and discard the supernatant liquid.
- 4. Pipette 500 μ L of 10 mM (0.58 g/L) NaCl/10 mM (3.72 g/L) EDTA into each tube and resuspend the cells by vortex mixing.
 - 5. Transfer each sample to a screw-capped microfuge tube.
 - 6. Centrifuge each tube for 1 minute at 12 000g until a cell pellet is formed.
 - 7. Using a pipette carefully remove and discard the supernatant liquid.
- 8. Pipette 500 μ L of 50 mM (2g/L) NaOH solution into each tube and resuspend the cells by vortex mixing.
 - 9. Incubate at 100°C for 10 minutes
- 15 10. Pipette 100 μL of 1 M (121.1 g/L) Tris/HCl (pH 7.5) into each tube and vortex mix.
 - 11. Centrifuge each tube for 1 minute at 12 000g until a pellet of cell debris is formed. The DNA is contained within the supernatant liquid.
- 12. Transfer 100 μL of the supernatant (DNA sample) to a fresh, labelled 20 microfuge tube.
 - 13. Add 400 μL of sterile deionised water to each DNA sample to give a total volume of 500 μL .

The mix formulation for mix 1 is presented below (Table 1). The 25µl total reaction volume also includes 1x ARMS, 100mM dNTP, 1.5U AmpliTaq Gold, 1x CRS.

PCT/GB00/03597

- 29 -Table 1

Primer	F/R	Primer Ref	Mismatch	Length	Sequence
5T	R	5TMR	GT-3	26	TAA TTC CCC AAA TCC
				}	CTG TTA AAG AC
<i>7</i> T	R	7T25	GT-2	53	GTT AAT CAT TCA GCT
					ACT ACG CAC CTA ATT
					CCC CAA ATC CCT GTT
					AAA AAA GC
9T	R	9Т60	TT-2	90	GAC TGT ACG ATA CTC
					ATT TAT ATG AAG TCA
				,	GCT TAC TTA CCT ATA
					GAA CGC TTG CTA GTT
					TAA TTC CCC AAA TCC
			,		CTG TTA AAA AAA ATC
Intron 8	F	PT COM		35	GTA CAT AAA ACA AGC
polyT C		FOR			ATC TAT TGA AAA TAT
					CTG AC

PCT/GB00/03597

- 30 -

The mix formulation for the 2A mix is presented below (Table 2). The $25\mu l$ total reaction volume also includes 1x ARMS, 100mM dNTP, 1.5U AmpliTaq Gold, 1x CRS

Table 2

5

Primer	F/R	Primer	Mismatch	Length	Conc	Sequence
		Ref			μΜ	
Apo B	F	ABF	CA-2	23	0.2	GAG CAC AGT ACG
						AAA AAC CAC CT
Аро В	R	ABR20	TG-2	25	0.2	AAA CAC GAA GAT
		A	AG-6			GCT GTC TAC TAT C
ODC	F	ODFFP	CT-2	30	0.3	AGA GGA TTA TCT
(FPLC		LC				ATG CAA ATC CTT
purified)						GTA ACC
ODC	R	ODRFP	AC-2	30	0.3	TCA ACT TCA CTA
(FPLC		LC				TCA AAA GTC ATC
purified)						ATC TAG
W1282X M	F	WXMF	CC-2	30	1	TCT TGG GAT TCA
						ATA ACT TTG CAA
		i				CAG TCA
W1282X C	R	WXCR		25	1	GAA TTC CCA AAC
				}		TTT TAG AGA CAT C
1717-1G>A	F	17MF20	TT-2	40	2	TAC TAA AAG TGA
М			GA-23			CTC TCG AAT TTT
						CTA TTT TTG GTA
						ATT A
Exon 11 C	R	Aex11C		29	1	TAA TCT CTA CCA
		R				AAT CTG GAT ACT
	Ì					ATA CC
G542X M	F	GXMF	CA-2	30	1	AGT TTG CAG AGA
						AAG ACA ATA TAG
			l	l		TTC TCT
	•		7		j .	ı

PCT/GB00/03597

- 31 -

N1303K C	F	NKCF2	TC-9	30	1	CTT GAT GGT AAG
141303K.C	1	1	10-7	130	,	
	1	0			Ī	TAC ATG GGT TTT
		Ī				TCT TAT
N1303K M	R	NKMR	TT-2	30	1	TGA TCA CTC CAC
						TGT TCA TAG GGA
						TCC ATC
DF508 C	F	ADFCF	TC-12	30	0.5	CCA GAC TTC ACT
		20				TCT AAT TAT GAT
						TAT GGG
DF508 M	R	ADFMR	TT-2	30	0.5	GTA TCT ATA TTC
	l				ł	ATC ATA GGA AAC
						ACC ATT
3849+10kb	F	38CF		31	0.2	TTG TGG ATC AAA
С						TTT CAG TTG ACT
						TGT CAT C
3849+10kb	R	38MR20	GA-3	29	0.2	GAA CAT TTC CTT
M						TCA GGG TGT CTT
] [ACG CA

The mix formulation for the 2B mix is presented below (Table 3). The 25µl total reaction volume also includes 1x ARMS, 100mM dNTP, 1.5U AmpliTaq Gold, 1x CRS.

5

Table 3

Primer	F/R	Primer	Mismatch	Length	Conc	Sequence
	j	Ref		ļ	μМ	
Apo B	F	ABF	CA-2	23	0.1	GAG CAC AGT ACG
						AAA AAC CAC CT
Apo B	R	ABR20	CA-2	26	0.1	CAT TTA GTT TCA
		В	l			GCC CAG GAA TAA
		1				CG

PCT/GB00/03597

- 32 -

ODC	F.	ODFFP	CT-2	30	0.3	AGA GGA TTA TCT
(FPLC	-	LC				ATG CAA ATC CTT
purified)			:			GTA ACC
ODC	R	ODRFP	AC-2	30	0.3	TCA ACT TCA CTA
(FPLC	K	LC	NC-2		0.5	TCA AAA GTC ATC
purified)						ATC TAG
	R	62MR	GT-2	30	2	TGC CAT GGG GCC
621+1G>T	K	UZIVIK	G1-2	30	2	TGT GCA AGG AAG
M						TAT TGA
				20	0.5	
R117H M	R	RHMR	CC-2	30	0.5	AGC CTA TGC CTA
						GAT AAA TCG CGA
						TAG ACT
621/R117H	F	ex4CF	CT-8 TC-	37	1.5	GTT TCA CAT AGT
С			26 GA-27			GTA TGA CCC TCT
						ATA TAC ACT CAT
						Т
R334W M	F	RWMF	GG-2	30	0.2	CCT ATG CAC TAA
						TCA AAG GAA TCA
						TCC TGT
R334W C	R	RWCR	-	30	0.2	TTT GTT TAT TGC
						TCC AAG AGA GTC
						ATA CCA
G551D M	R	GDMR2	TT-2	27	2	TTG CTA AAG AAA
		0		Í	:	TTC TTG CTC GTT
						GTT
R553X M	R	R5MR	GG-2	60	2	GAC TGA CTG ACT
						GAC TGA CTC TGA
						CTG ACT TAT TCA
						CCT TGC TAA AGA
						AAT TCT TGC TGA
G551D/	F	Bex11C	GG-20 GA-	31	2	ATC TAA AAT TGG
R553X C		F20	21			AGC AAT GTT GTT
			i	I	ī	

PCT/GB00/03597

- 33 -

						TTT GAC C
DF508 N	R	BDFNR	CT-2	30	0.5	GTA TCT ATA TTC
						ATC ATA GGA AAC
						ACC ACA
DF508 C	F	BDFCF	·	30	0.5	GAC TTC ACT TCT
						AAT GAT GAT TAT
						GGG AGA
R1162X M	F	R1MF	TG-2	30	0.2	TAT TTT TAT TTC
						AGA TGC GAT CTG
						TGA GTT
R1162X C	R	RICR		29	0.2	TTT TGC TGT GAG
						ATC TTT GAC AGT
					;	CAT TT

The mix formulation for the 2C mix is presented below (Table 4). The $25\mu l$ total reaction volume also includes 1x ARMS, 100mM dNTP, 1.5U AmpliTaq Gold, 1x CRS.

5

Table 4

Primer	F/R	Primer Ref	Mismatch	Length	Conc	Sequence
Аро В	F	ABF	CA-2	23	0.2	GAG CAC AGT ACG AAA AAC CAC CT
Аро В	R	ABR20C		30	0.2	CAG CTT CTT ATA GAT TTG TAT TTC TCT GAA
ODC (FPLC purified)	F	ODFFPL C	CT-2	30	0.3	AGA GGA TTA TCT ATG CAA ATC CTT GTA ACC
ODC (FPLC	R	ODRCFP LC	AC-2	31	0.3	TCA ACT TCA CTA TCA AAA GTC ATC

PCT/GB00/03597

- 34 -

purified)	j			1		ATC TGA A
A455E M	F	A45MF	TC-2	50	1	GAC TGA CTG ACT
				ļ		GAC TGA AAT TTC
						AAG ATA GAA
					ŀ	AGA GGA CAG
						TTG TTG TA
A455E C	R	A45CR		49	1	GAC TGA CTG ACT
						GAC TGA AAT
						GGA GAC TTT TTG
	ļ					TTT ATG TGG TTA
,						CTA A
2183AA>G	F	2183CF		35	2	GTA TGA TAG
С						AGA TTA TAT GCA
				1		ATA AAA CAT
				1		TAA CA
2183AA>G	R	2183MR	AA-3	31	2	CCC AAA CTC TCC
M			İ			AGT CTG TTT AAA
						AGA TAG C
3659delC	F	3659MF	GG-2	27	2	GAC ATG CCA
M						ACA GAA GGT
						AAA CCT AGA
3659delC C	R	3659CR	CA-29	34	2	TGT GTC TAA TAT
						TGA TTC TAC TGT
						ACA ATA ATA A
DI507 M	F	DIMF	AA-3	26	0.5	GCC TGG CAC CAT
						TAA AGA AAA
						TAA CT
DI507 C	R	DICR		27	0.5	CAC AGT AGC TTA
				1		CCC ATA GAG
				ŀ		GAA ACA
1078delT	F	1078MF	CA-3	23	2	CCT TCT TCT TCT
M			ļ			CAG GGT TCC TG

PCT/GB00/03597

- 35 -

R347P M	F	R34PMF	AC-3	27	0.2	CAC CAT CTC ATT
						CTG CAT TGT TCT
						ACC
Exon 7 C	R	ex7CR	CC-24	35	1	ATT TTT CCA AAC
			CC-29			TTC ATT AGA ACT
						GAT CTA TTG AC
S1251N M	F	S12MF	CT-2	23	0.2	GGA AGA ACT
		}				GGA TCA GGG
				1		AAG CA
S1251N C	R	S12CR		23	0.2	GCT CAC CTG TGG
						TAT CAC TCC AA
E60X C	F	E60XCF		34	0.5	AAT CAA ACT ATG
		ĺ				TTA AGG GAA
						ATA GGA CAA
				•		CTA A
E60X M	R	E60XMR	TG-3	26	0.5	TTA GGA TTT TTC
						TTT GAA GCC AGT
						TA

The mix formulation for mix 3 is presented below (Table 5). The 25µl total reaction volume also includes 1x ARMS, 100mM dNTP, 1.5U AmpliTaq Gold, 1x CRS.

5

Table 5

Primer	F/R	Primer Ref	Mismatch	Length	Conc	Sequence
				-	μМ	
Аро В	F	ABF	CA-2	23	0.1	GAG CAC AGT
						ACG AAA AAC
						CAC CT
Apo B	R	ABR20B	CA-2	26	0.1	CAT TTA GTT
						TCA GCC CAG
						GAA TAA CG

PCT/GB00/03597

- 36 -

ODC	F	ODFFPLC	CT-2	30	0.3	AGA GGA TTA
(FPLC						TCT ATG CAA
purified)						ATC CTT GTA
						ACC
ODC	R	ODRCFPL	AC-2	31	0.3	TCA ACT TCA
(FPLC		С				CTA TCA AAA
purified)						GTC ATC ATC
	:					TGA A
S549R C	R	122-99		33	0.5	GTA ATT TTT TTA
						CAT GAA TGA
						CAT TTA CAG
						CAA
S549R T>G	F	126-99	CC-2	25	0.5	TGG AGA AGG
M						TGG AAT CAC
						ACT GAC G
W1089X C	R	F10682	· · · · · · · · · · · · · · · · · · ·	33	1.0	GGA AAT TAT
						TTG TTT AAC
						AAT AAA ACA
			·			ATG GAA
W1089X M	F	140-99	AG-3	28	1.0	AAG CTC TGA
	:					ATT TAC ATA
						CTG CCA AAT A
D1152H C	F	F10683	i 	26	0.5	CCA ACA ACA
						CCT CCA ATA
						CCA GTA AC
D1152H M	R	145-99	TT-3	33	0.5	AAA GAT GAT
					:	AAG ACT TAC
						CAA GCT ATC
			·			CAC TTG
exon3 C	R	670-99	TC-21,	39	0.5	CGA TTC GAT
(NH-tail)			CT-22			TCA GTT TTC TGT
						GGT TTC TTA

PCT/GB00/03597

- 37 -

						GTG TTT GGA
G85E M	F	616-99	CA-3	50	0.5	TAG CCA TTG
(NH-tail)	ļ					ATG ACG GAG
						CGA TGT TTT TTC
						TGG AGA TTT
						ATG TTC TAC GA
405+1G>A	F	134-99	TC-3	36	1.0	GAT TTA TGT
M						TCT ATG GAA
						TCT TTT TAT ATT
	İ					TAG TGA
		,	2	1	I	I

- 38 -

Claims:

- A diagnostic method for the detection of the 5T, 7T and 9T alleles in intron 8 of the 1. human CFTR gene which method comprises contacting a test sample of nucleic acid from an individual with a multiplex of diagnostic primers comprising (i) 5T variant primer 5'(N)nAAAGAC3', (ii) 7T variant primer 5'(N*)n*(N)nAAAAGC3' and (iii) 9T variant primer 5'(N*)n*(N)nAAAATC3', wherein N represents additional nucleotides which base pair with the corresponding genomic sequence in the respective allele and n is an integer between 10 and 30 and N* represents additional non-homologous nucleotides which do not base pair with the corresponding genomic sequence in the respective allele and n* is an 10 integer between 5 and 60, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension 15 product.
 - 2. A method as claimed in claim 1 and which comprises the detection of further human CFTR gene alleles by, in a separate ARMS reaction, the use of one or more of:

DF508 mutant primer 5'(N)nACCATT3',

20 3849+10kb C>T mutant primer 5'(N)nTACGCA3',

N1303K mutant primer 5'(N)nTCCATC3',

1717-1G>A mutant primer 5'(N)nTAATTA3',

W1282X mutant primer 5'(N)nCAGTCA3', and

G542X mutant primer 5'(N)nTTCTCT3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

30 3. A method as claimed in claim 1 and which comprises the detection of further human CFTR gene alleles by, in a separate ARMS reaction, the use of one or more of: DF508 non-mutant primer 5'(N)nACCACA3', 10

25

PCT/GB00/03597

- 39 -

W1282X mutant primer 5'(N)nCAGTCA3',

1717-1 mutant primer 5'(N)nTAATTA3',

G542X mutant primer 5'(N)nTTCTCT3',

N1303K mutant primer 5'(N)nTCCATC3',

5 DF508 non-mutant primer 5'(N)nACCACA3',

DF508 mutant primer 5'(N)nACCATT3' and

3849+10kb C>T mutant primer 5'(N)nTACGCA3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

4. A method as claimed in claim 1 and which comprises the detection of further human CFTR gene alleles by, in a separate ARMS reaction, the use of one or more of:

15 A455E mutant primer 5'(N)nGTTGTA3',

2183AA>G mutant primer 5'(N)nGATAGC3',

3659delC mutant primer 5'(N)nCCTAGA3',

DI507 mutant primer 5'(N)nATAACT3',

1078delT mutant primer 5'(N)nTTCCTG3',

20 R347P mutant primer 5'(N)nTCTACC3',

S1251N mutant primer 5'(N)nGAAGCA3' and

E60X mutant primer 5'(N)nCAGTTA3'

wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

5. A method as claimed in claim 1 and which comprises the detection of further human 30 CFTR gene alleles by, in a separate ARMS reaction, the use of one or more of:

G85E mutant primer 5'(N)nCTACGA3',

405+1G>A mutant primer 5'(N)nTAGTGA3',

15

- 40 -

S549R mutant primer 5'(N)nCTGACG3',

W1089X mutant primer 5'(N)nCAAATA3' and

D1152H mutant primer 5'(N)nCACTTG3' wherein N and n are as previously defined, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

- 6. A method as claimed in any one of the previous claims and which further comprises the use of one or more common amplification primer(s) in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, and subjecting the mixture to PCR amplification such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a corresponding PCR amplification product.
 - 7. A method as claimed in any one of claims 2-6 and wherein two or more diagnostic primers are used as a multiplex.
- A method as claimed in any one of claims 2-6 and wherein all of the diagnostic
 primers are used in a single multiplex reaction.
 - A method as claimed in any one of the previous claims and which further comprises the use of one or more control primers.
- 25 10. A method as claimed in claim 1 and used in conjunction with any known diagnostic CFTR gene procedure.
 - 11. A diagnostic primer selected from any one of

5T variant primer 5'(N)nTGTTAAAGAC3',

7T variant primer 5'(N*)n*(N)nTTAAAAAAGC3' and

9T variant primer 5'(N*)n*(N)nAAAAAAAATC3' wherein N, n, N* and n* are as defined in claim 1 and n is an integer between 6 and 26

PCT/GB00/03597

- 41 -

- 12. A diagnostic primer selected from any one of
- 5T variant primer 5'TAATTCCCCAAATCCCTGTTAAAGAC3',

7T variant primer 5'(N*)n*TAATTCCCCAAATCCCTGTTAAAAAAAGC3' and

- 9T variant primer 5'(N*)n*TAATTCCCCAAATCCCTGTTAAAAAAAATC3' wherein N* and n* are as defined in claim 1.
 - 13. A diagnostic primer selected from any one of

7T variant primer

10 5'GTTAATCATTCAGCTACTACGCACCTAATTCCCCAAATCCCTGTTAAAAAAAGC3' and 9T variant primer

5'GACTGTACGATACTCATTTATATGAAGTCAGCTACTTACCTATAGAACGCTTGC TAGTTTAATTCCCCAAATCCCTGTTAAAAAAAAATC3'

- 15 14. A set of diagnostic primers as set out in Table 1
 - 15. A diagnostic primer selected from any one of

DF508 mutant primer 5'(N)nACCATT3',

3849+10kb C>T mutant primer 5'(N)nTACGCA3',

20 N1303K mutant primer 5'(N)nTCCATC3',

1717-1G>A mutant primer 5'(N)nTAATTA3',

W1282X mutant primer 5'(N)nCAGTCA3', and

G542X mutant primer 5'(N)nTTCTCT3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26

25

16. A diagnostic primer selected from any one of

W1282X mutant primer 5'(N)nGCAACAGTCA3',

1717-1G>A mutant primer 5'(N)nTTGGTAATTA3',

G542X mutant primer 5'(N)nATAGTTCTCT3',

30 N1303K mutant primer 5'(N)nGGGATCCATC3',

DF508 mutant primer 5'(N)nAAACACCATT3' and

3849+10kb C>T mutant primer 5'(N)nGTCTTACGCA3' wherein N and n are as defined in

claim 1 and n is an integer between 6 and 26

PCT/GB00/03597

- 42 -

- A diagnostic primer selected from any one of
 W1282X mutant primer 5'TCTTGGGATTCAATAACTTTGCAACAGTCA3',
 1717-1G>A mutant primer 5'TCTCGAATTTTCTATTTTTGGTAATTA3',
- 5 G542X mutant primer 5'AGTTTGCAGAGAAAGACAATATAGTTCTCT3', N1303K mutant primer 5'TGATCACTCCACTGTTCATAGGGATCCATC3', DF508 mutant primer 5'GTATCTATATTCATCATAGGAAACACCATT3', and 3849+10kb C>T mutant primer 5'GAACATTTCCTTTCAGGGTGTCTTACGCA3'.
- 10 18. A set of diagnostic primers as set out in Table 2
 - 19. A diagnostic primer selected from any one of DF508 non-mutant primer 5'(N)nACCACA3', W1282X mutant primer 5'(N)nCAGTCA3',
- 15 1717-1 mutant primer 5'(N)nTAATTA3',
 G542X mutant primer 5'(N)nTCTCT3',
 N1303K mutant primer 5'(N)nTCCATC3',
 DF508 non-mutant primer 5'(N)nACCACA3',
 DF508 mutant primer 5'(N)nACCATT3' and
- 20 3849+10kb C>T mutant primer 5'(N)nTACGCA3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26
 - 20. A diagnostic primer selected from any one of DF508 non-mutant primer 5'(N)nAAACACCACA3',
- 25 R117H mutant primer 5'(N)nGCGATAGACT3', 621+1G>T mutant primer 5'(N)nGAAGTATTGA3', R334W mutant primer 5'(N)nATCATCCTGT3', R1162X mutant primer 5'(N)nTCTGTGAGTT3', R553X mutant primer 5'(N)nTTCTTGCTGA3' and
- 30 G551D mutant primer 5'(N)nGCTCGTTGTT3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26

PCT/GB00/03597

- 43 -

21. A diagnostic primer selected from any one of

R117H mutant primer5'AGCCTATGCCTAGATAAATCGCGATAGACT3',

621+1G>T mutant primer 5'TGCCATGGGGCCTGTGCAAGGAAGTATTGA3',

R334W mutant primer 5'CCTATGCACTAATCAAAGGAATCATCCTGT3',

5 R1162X mutant primer 5'TATTTTTATTTCAGATGCGATCTGTGAGTT3',

R553X mutant primer 5'TTATTCACCTTGCTAAAGAAATTCTTGCTGA3',

G551D mutant primer 5'GCTAAAGAAATTCTTGCTCGTTGTT3'.

22. A set of diagnostic primers as set out in Table 3

10

23. A diagnostic primer selected from any one of

A455E mutant primer 5'(N)nGTTGTA3',

2183AA>G mutant primer 5'(N)nGATAGC3',

3659delC mutant primer 5'(N)nCCTAGA3',

15 DI507 mutant primer 5'(N)nATAACT3',

1078delT mutant primer 5'(N)nTTCCTG3',

R347P mutant primer 5'(N)nTCTACC3',

S1251N mutant primer 5'(N)nGAAGCA3' and

E60X mutant primer 5'(N)nCAGTTA3' wherein N and n are as defined in claim 1 and n is

20 an integer between 6 and 26

24. A diagnostic primer selected from any one of

A455E mutant primer 5'(N)nAGTTGTTGTA3',

1078delT mutant primer 5'(N)nAGGGTTCCTG3',

25 R347P mutant primer 5'(N)nTTGTTCTACC3',

DI507 mutant primer 5'(N)nGAAAATAACT3',

3659delC mutant primer 5'(N)nTAAACCTAGA3',

2183AA>G mutant primer 5'(N)nAAAAGATAGC3',

S1251N mutant primer 5'(N)nCAGGGAAGCA3' and

30 E60X mutant primer 5'(N)nAAGCCAGTTA3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26

PCT/GB00/03597

- 44 -

25. A diagnostic primer selected from any one of

A455E mutant primer 5'TTCAAGATAGAAAGAGGACAGTTGTTGTA3',

1078delT mutant primer 5'CCTTCTTCTCAGGGTTCCTG3',

R347P mutant primer 5'CACCATCTCATTCTGCATTGTTCTACC3',

5 DI507 mutant primer 5'GCCTGGCACCATTAAAGAAAATAACT3',

3659delC mutant primer 5'ATGCCAACAGAAGGTAAACCTAGA3',

2183AA>G mutant primer 5'CAAACTCTCCAGTCTGTTTAAAAGATAGC3',

S1251N mutant primer 5'GGAAGAACTGGATCAGGGAAGCA3' and

E60X mutant primer 5'TTAGGATTTTTCTTTGAAGCCAGTTA3'.

10

- 26. A set of diagnostic primers as set out in Table 4
- 27. A diagnostic primer selected from any one of

G85E mutant primer 5'(N)nCTACGA3',

15 405+1G>A mutant primer 5'(N)nTAGTGA3',

S549R mutant primer 5'(N)nCTGACG3',

W1089X mutant primer 5'(N)nCAAATA3' and

D1152H mutant primer 5'(N)nCACTTG3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26

20

28. A diagnostic primer selected from any one of

G85E mutant primer 5'(N)nTGTTCTACGA3',

405+1G>A mutant primer 5'(N)nTATTTAGTGA3',

S549R mutant primer 5'(N)nCACACTGACG3',

25 W1089X mutant primer 5'(N)nCTGCCAAATA3',

D1152H mutant primer 5'(N)nTATCCACTTG3' wherein N and n are as defined in claim 1 and n is an integer between 6 and 26

- 29. A diagnostic primer selected from any one of
- 30 G85E mutant primer

5'TAGCCATTGATGACGGAGCGATGTTTTTTCTGGAGATTTATGTTCTACGA3'

405+1G>A mutant primer

PCT/GB00/03597

- 45 -

5'GATTTATGTTCTATGGAATCTTTTATATTTAGTGA3',
S549R mutant primer 5'TGGAGAAGGTGGAATCACACTGACG3',
W1089X mutant primer 5'AAGCTCTGAATTTACATACTGCCAAATA3' and
D1152H mutant primer 5'AAAGATGATAAGACTTACCAAGCTATCCACTTG3'

5

30. A set of diagnostic primers as set out in Table 5

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 March 2001 (29.03.2001)

PCT

(10) International Publication Number WO 01/21833 A2

(51) International Patent Classification7: C12Q 1/68

(21) International Application Number: PCT/GB00/03597

(22) International Filing Date:

19 September 2000 (19.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 9922527.8 24 September 1999 (24.09.1999)

(71) Applicant (for all designated States except MG, US): AS-TRAZENECA AB [SE/SE]; S-151 85 Sodertalje (SE).

(71) Applicant (for MG only): ASTRAZENECA UK LIM-ITED [GB/GB]; 15 Stanhope Gate, London W1Y 6LN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAYLIFFE, Andrew, Iain [GB/GB]; Alderly Park, Macclesfield, Cheshire SK10 4TG (GB). DOCTER, Eelco [NL/GB]; Alderly Park, Macclesfield, Cheshire SK10 4TG (GB). KELLY, Stephen, James [GB/GB]; Alderly Park, Macclesfield, Cheshire SK10 4TG (GB). ROBERTSON, Nancy, Hastings [GB/GB]; Alderly Park, Macclesfield, Cheshire SK10 4TG (GB).

- (74) Agent: PHILLIPS, Neil, Godfrey, Alasdair; Astrazeneca, Global Intellectual Property, P.O. Box 272, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4GR (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

🖣 (54) Title: ASSAY

(57) Abstract: A diagnostic method for the detection of the 5T, 7T and 9T alleles in intron (8) of the human CFTR gene which method comprises contacting a test sample of nucleic acid from an individual with a multiplex of diagnostic primers comprising (i) 5T variant primer 5'(N)nAAAGAC3', (ii) 7T variant primer 5'(N*)n*(N)nAAAGC3' and (iii) 9T variant primer 5'(N*)n*(N)nAAAATC3', wherein N represents additional nucleotides which base pair with the corresponding genomic sequence in the respective allele and n is an integer between 10 and 30 and N* represents additional non-homologous nucleotides which do not base pair with the corresponding genomic sequence in the respective allele and n* is an integer between 5 and 60, in the presence of appropriate nucleotide triphosphates and an agent for polymerisation, such that a diagnostic primer is extended only when the corresponding allelic variant is present in the sample; and detecting the presence or absence of the allelic variant by reference to the presence or absence of a diagnostic primer extension product.

PCT/GB00/03597

- 1 of 5 -

Typical Results from the CF Poly-T test

Figure 1

5

15

10

Figure 2

PCT/GB00/03597

- 2 of 5 -

CF-MEP Agarose Gel Results

D1152H W1089X G85E 405+1 G>A S549R

Figure 3

5

PCT/GB00/03597

-3 of 5-

Figure 4

PCT/GB00/03597

-4 of 5 -

ELUCIGENE™ CF20 Test Format

5

Figure 5

PCT/GB00/03597

- 5 of 5 -

Figure 6

13237.1

13134PCTUS

DECLARATION AND POWER OF ATTORNEY

As a below-named inventor, I hereby declare that:

My residence, post office address, and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter, which is claimed and for which a patent is sought on the invention entitled:

'ASSAY"

the specification of which (check one)
is attached hereto
X was filed on March 22, 2002 as
Application Serial No. 10/089,001
and was amended on (if applicable)
\underline{X} described and claimed in PCT International Application No. $\underline{PCT/GB00/03597}$ filed on
September 19, 2000.
and was amended on under PCT Article 19 (if applicable),
(the undersigned hereby authorizes its attorney to amend this document to insert the filing date and application serial number when they become known.)
I hereby state that I have reviewed and understand the contents of the above-identified specification including the claims, as amended by any amendment(s) referred to above.
I acknowledge the duty to disclose information of which I am aware which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56

I hereby claim foreign priority benefits under Title 35, United States Code Section 119(a)-(d) or Section 365 of any foreign application(s) for patent, inventor=s certificate, or any PCT international application(s) which designated at least one country other than the United States of America, identified below and have also identified below any foreign application(s) for patent, inventor=s certificate, or any PCT international application designating at least one country other then the United States of America, having a filing date before that of the application(s) on which priority is claimed:

13134PCTUS

Prior Foreign Application(s)

			Priority	Claimed
Number	Country (or PCT)	Filing Date	Yes	No
9922527.8	GB	24 September 1999	X	

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below:

Provisional Application No.	Filing Date

I hereby claim the benefit under Title 35, United States Code, Section 120, of any United States application(s), or any PCT international application(s) designating the United States of America, that is/are listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose information which is material to patentability, as defined in 37 CFR ' 1.56, which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application Serial No.	Filing Date	Status (Patented, pending, or abandoned)
PCT/GB00/03597	19 September 2000	pending

And I hereby appoint

Name	Reg. No.	Name	Reg. No.
David A. Kalow	29,397	Milton Springut	27,721
John J. Santalone	32,794	J. David Ellett, Jr.	27,875
William D. Schmidt	39,492	Gary Molnar	30,299
Sylvia Chiou-Tan	47,324	Scott D. Locke	44,877
Tor Smeland	43,131		

each of them of KALOW & SPRINGUT LLP, 488 Madison Avenue, 19th floor, New York, New York 10022, my attorneys, each with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the patent, to transact all business in the Patent and Trademark Office connected therewith and to file any International Applications which are based thereon under the provisions of the Patent Cooperation Treaty.

Please address all communications, and direct all telephone calls, regarding this application to

David A. Kalow KALOW & SPRINGUT LLP 488 Madison Avenue, 19th floor New York, New York 10022. (212) 813-1600

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Andrew Bayliffe

Citizenship:

Great Britian

Residence Address: SK 10 4TG

Alderley Park, Macclesfield, Cheshire, Great Britain

Post Office Address: Same As Above

Date of signature <u>20 - 2 - 03</u>

Inventor's signature

ull name of second inventor:

Eelco Docter_

Citizenship:

Netherland

Residence Address: SK 10 4 TG

Alderley Park, Macclesfield, Cheshire, Great Brits

Post Office Address:

Same As Above

Date of signature 6.01.03

Inventor's signature

Full name of third inventor:

Stephen James #

Citizenship:

Great Britain

Residence Address: SK 10 4TG

Alderley Park, Macclesfield, Cheshire, Great Britain

Post Office Address: Same As Above

Date of signature 6th Jr. 1003

Inventor's signature Neghn Y. Kelly
Hastings Robertson

Full name of fourth inventor:

Nancy Hastings Robertson

Citizenship: Great Britain

Residence Address: SK 104TG

Alderley Park, Macclesfield, Cheshire, Great Britain

Post Office Address: Same As Above

Date of signature Ch Jan 2003

Inventor's signature

JC13 Rec'd PCT/PTO 2 2 MAR 2002

WO 01/21833

PCT/GB00/03597

-1-

SEQUENCE LISTING

```
<110> ASTRAZENECA AB
     <120> ASSAY
     <130> NGAP/PHM70607WO
     <140>
10
     <141>
     <150> 9922527.8
     <151> 1999-09-24
15
     <160> 85
     <170> PatentIn Ver. 2.1
     <210> 1
20
     <211> 11
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence: PCR primer
     <400> 1
     ntgttaaaga c
                                                                        11
30
     <210> 2
     <211> 11
     <212> DNA
     <213> Artificial Sequence
35
     <220>
     <223> Description of Artificial Sequence: PCR primer
     <400> 2
                                                                        11
40
     nttaaaaaag c
     <210> 3
     <211> 11
45
    <212> DNA
     <213> Artificial Sequence
     <220>
```

	WO 01/21833	PCT/GB00/03597
	- 2 -	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 3	
	naaaaaaaat c	11
5		
	<210> 4	
	<211> 26	
	<212> DNA	
10	<213> Artificial Sequence	
	<400> 4	
	taattcccca aatccctgtt aaagac	26
15		
	<210> 5	•
	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
20		
	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 5	
25	ntaatteece aaateeetgt taaaaaage	29
	<210> 6	
	<211> 31	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: PCR primer	
35		
	<400> 6	
	ntaattcccc aaatccctgt taaaaaaaaat c	31
40	010. 2	
40	<210> 7	
	<211> 53 <212> DNA	
	<213> Artificial Sequence	
	Control of the contro	
45	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 7	

PCT/GB00/03597 WO 01/21833 - 3 gttaatcatt cagctactac gcacctaatt ccccaaatcc ctgttaaaaa agc <210> 8 5 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 10 gactgtacga tactcattta tatgaagtca gctacttacc tatagaacgc ttgctagttt 60 aattccccaa atccctgtta aaaaaaatc 15 <210> 9 <211> 35 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 9 gtacataaaa caagcatcta ttgaaaatat ctgac 35 <210> 10 30 <211> 11 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer 35 <400> 10 11 ngcaacagtc a 40 <210> 11 <211> 11 <212> DNA <213> Artificial Sequence 45 <220>

<223> Description of Artificial Sequence: PCR primer

	WO 01/21833	PC1/GB00/0359/
	-4-	
	<400> 11	
	nttggtaatt a	11 .
_		
5	<210> 12	•
	<211> 11	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	400 12	
	<400> 12	11
15	natagttete t	
13		•
	<210> 13	
	<211> 11	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<pre><223> Description of Artificial Sequence: PCR primer</pre>	
	12257 200000	
25	<400> 13	
	ngggatccat c	11
	<210> 14	
30	<211> 11	
	<212> DNA	
	<213> Artificial Sequence	
٠.	<220>	
35	<223> Description of Artificial Sequence: PCR primer	
	<400> 14	
	naaacaccat t	11
	•	
40		
	<210> 15	
	<211> 11	
	<212> DNA	
A E	<213> Artificial Sequence	
45	.220.	
	<220> <223> Description of Artificial Sequence: PCR primer	
	(223) Description of Micriticial Sequence, for Primer	

PCT/GB00/03597 WO 01/21833 - 5 -<400> 15 11 ngtcttacgc a <210> 16 <211> 30 <212> DNA <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: PCR primer <400> 16 tcttgggatt caataacttt gcaacagtca 30 15 <210> 17 <211> 27 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 17 27 totogaattt totatttttg gtaatta <210> 18 30 <211> 30 <212> DNA <213> Artificial Sequence 35 <223> Description of Artificial Sequence: PCR primer <400> 18 30 agtttgcaga gaaagacaat atagttctct 40 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 6 -<400> 19 30 tgatcactcc actgttcata gggatccatc <210> 20 <211> 30 <212> DNA <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: PCR primer <400> 20 gtatctatat tcatcatagg aaacaccatt 30 15 <210> 21 <211> 29 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 21 29 gaacatttcc tttcagggtg tcttacgca <210> 22 30 <211> 11 <212> DNA <213> Artificial Sequence 35 <223> Description of Artificial Sequence: PCR primer <400> 22 11 naaacaccac a 40 <210> 23 <211> 11 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

	WO 01/21833	PCT/GB00/03597
	- 7 -	
	<400> 23	
	ngcgatagac t	11
5	<210> 24	
_	<211> 11	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 24	
	ngaagtattg a	11
15		
		-
	<210> 25	
	<211> 11	
	<212> DNA	•
20	<213> Artificial Sequence	
	<220>	
	<pre><223> Description of Artificial Sequence: PCR primer</pre>	
	2233 Beactipeton of Metitional beganner ton primar	
25	<400> 25	
	natcatectg t	11
	<210> 26	
30	<211> 11	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<223> Description of Artificial Sequence: PCR primer	
	<400> 26	
	ntctgtgagt t	11
40		
	<210> 27	
	<211> 11	
	<212> DNA	
,	<213> Artificial Sequence	
45		
	<220>	
	<223> Description of Artificial Sequence: PCR primer	

,	WO 01/21833	PCT/GB00/03597
	- 8 -	
	<400> 27	
	nttcttgctg a	11
-		
5	<210> 28	
	<211> 11	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 28	11
4	ngctcgttgt t	**
15		
	<210> 29	
	<211> 30	
20	<212> DNA <213> Artificial Sequence	
20	2213> Altilitial Dequence	
	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	•	•
25	<400> 29	
	agcctatgcc tagataaatc gcgatagact	30
	210. 20	
30	<210> 30 <211> 30	
50	<211> 30 <212> DNA	
	<213> Artificial Sequence	
	2213> Attiticial bequeace	
	<220>	
35	<223> Description of Artificial Sequence: PCR primer	
	<400> 30	7.0
	tgccatgggg cctgtgcaag gaagtattga	30
40		
40	<210> 31	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
45		
	<220>	
	<223> Description of Artificial Sequence: PCR primer	

PCT/GB00/03597 WO 01/21833 -9-<400> 31 cctatgcact aatcaaagga atcatcctgt 30 5 <210> 32 <211> 30 <212> DNA <213> Artificial Sequence 10 <220> <223> Description of Artificial Sequence: PCR primer <400> 32 tatttttatt tcagatgcga tctgtgagtt 30 15 <210> 33 <211> 31 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 33 31 ttattcacct tgctaaagaa attcttgctg a <210> 34 30 <211> 25 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer 35 <400> 34 25 gctaaagaaa ttcttgctcg ttgtt 40 <210> 35 <211> 11 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

WO 01/21833 PCT/GB00/03597 - 10 -<400> 35 nagttgttgt a . 11 5 <210> 36 <211> 11 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 36 nagggttcct g 11 15 <210> 37 <211> 11 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 37 nttgttctac c 11 <210> 38 30 <211> 11 <212> DNA <213> Artificial Sequence 35 <223> Description of Artificial Sequence: PCR primer <400> 38 ngaaaataac t 11 40 <210> 39 <211> 11 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 -11-<400> 39 11 ntaaacctag a <210> 40 <211> 11 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 40 11 naaaagatag c 15 <210> 41 <211> 11 <212> DNA 20 <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer 25 <400> 41 11 ncagggaagc a <210> 42 30 <211> 11 <212> DNA <213> Artificial Sequence <220> 35 <223> Description of Artificial Sequence: PCR primer <400> 42 naagccagtt a 11 40 <210> 43 <211> 29 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 12 -<400> 43 29 ttcaagatag aaagaggaca gttgttgta <210> 44 <211> 23 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 44 23 ccttcttctt ctcagggttc ctg 15 <210> 45 <211> 27 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 45 27 caccatctca ttctgcattg ttctacc <210> 46 30 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 35 <400> 46 26 gcctggcacc attaaagaaa ataact 40 <210> 47 <211> 24 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

	WO 01/21833	PCT/GB00/03597
	- 13 -	
	<400> 47	
	atgccaacag aaggtaaacc taga	24
	atyceaatay aaggeaaace taga	
	•	
5	<210> 48	•
	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 48	29
15	caaactctcc agtctgttta aaagatagc	43
13		
	<210> 49	
	<211> 23	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: PCR primer	
25	<400> 49	
	ggaagaactg gatcagggaa gca	23
	<210> 50	
30	<211> 26	
••	<212> DNA	
	<213> Artificial Sequence	
	<220>	
35	<223> Description of Artificial Sequence: PCR primer	
	<400> 50	
	ttaggatttt totttgaago cagtta	26
40		
40	-210. 51	
	<210> 51 <211> 11	
	<211> 11 <212> DNA	
	<213> Artificial Sequence	
45		
	<220>	
	<223> Description of Artificial Sequence: PCR primer	

WO 01/21833 PCT/GB00/03597 - 14 -<400> 51 ntgttctacg a 11 5 <210> 52 <211> 11 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 52 ntatttagtg a 11 15 <210> 53 <211> 11 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 53 ncacactgac g 11 <210> 54 30 <211> 11 <212> DNA <213> Artificial Sequence 35 <223> Description of Artificial Sequence: PCR primer <400> 54 nctgccaaat a 11 40 <210> 55 <211> 11 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 15 -<400> 55 11 ntatccactt g 5 <210> 56 <211> 50 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 56 tagecattga tgaeggageg atgttttttc tggagattta tgttctaega 50 15 <210> 57 <211> 36 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 57 gatttatgtt ctatggaatc tttttatatt tagtga 36 <210> 58 30 <211> 25 <212> DNA <213> Artificial Sequence <220> 35 <223> Description of Artificial Sequence: PCR primer 25 tggagaaggt ggaatcacac tgacg 40 <210> 59 <211> 28 <212> DNA <213> Artificial Sequence 45 <220>

<223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 16 -<400> 59 28 aagetetgaa tttacataet geeaaata 5 <210> 60 <211> 33 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 60 33 aaagatgata agacttacca agctatccac ttg 15 <210> 61 <211> 29 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 61 29 taatctctac caaatctgga tactatacc <210> 62 30 <211> 29 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer 35 <400> 62 29 taatctctac caaatctgga tactatacc 40 <210> 63 <211> 25 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 17 -<400> 63 25 gaattcccaa acttttagag acatc 5 <210> 64 <211> 30 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 64 30 cttgatggta agtacatggg tttttcttat 15 <210> 65 <211> 30 <212> DNA <213> Artificial Sequence 20 <223> Description of Artificial Sequence: PCR primer 25 <400> 65 30 ccagacttca cttctaatta tgattatggg <210> 66 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 35 31 ttgtggatca aatttcagtt gacttgtcat c 40 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence 45 <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 18 -<400> 67 30 gacttcactt ctaatgatga ttatgggaga <210> 68 <211> 37 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 68 37 gtttcacata gtgtatgacc ctctatatac actcatt 15 <210> 69 <211> 31 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 69 31 atctaaaatt ggagcaatgt tgtttttgac c <210> 70 30 <211> 31 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer 35 <400> 70 31 atctaaaatt ggagcaatgt tgtttttgac c 40 <210> 71 <211> 37 <212> DNA <213> Artificial Sequence 45 <220> <223> Description of Artificial Sequence: PCR primer

	WO 01/21833	PCT/GB00/03597
	- 19 -	
	<400> 71	
	gtttcacata gtgtatgacc ctctatatac actcatt	37
	•	
5	<210> 72	
J	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 72	
	ttttgctgtg agatctttga cagtcattt	29
15		
	•	
	<210> 73	
	<211> 30	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	•	
25	<400> 73	
	tttgtttatt gctccaagag agtcatacca	30
	<210> 74	
30	<211> 49	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
35	<223> Description of Artificial Sequence: PCR primer	
	<400> 74	
	gactgactga ctgactgaaa tggagacttt ttgtttatgt ggttactaa	49
40		
	<210> 75	
	<211> 35	
	<212> DNA	
45	<213> Artificial Sequence	
40	<220>	
	<pre><220> <223> Description of Artificial Sequence: PCR primer</pre>	
	<u> </u>	

WO 01/21833 PCT/GB00/03597 - 20 -<400> 75 gtatgataga gattatatgc aataaaacat taaca 35 5 <210> 76 <211> 34 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 76 tgtgtctaat attgattcta ctgtacaata ataa 34 15 <210> 77 <211> 35 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 77 atttttccaa acttcattag aactgatcta ttgac 35 <210> 78 30 <211> 27 <212> DNA <213> Artificial Sequence 35 <223> Description of Artificial Sequence: PCR primer <400> 78 cacagtaget tacceataga ggaaaca 27 40 <210> 79 <211> 35 <212> DNA <213> Artificial Sequence 45 <220>

<223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 21 -<400> 79 35 atttttccaa acttcattag aactgatcta ttgac 5 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: PCR primer <400> 80 23 gctcacctgt ggtatcactc caa 15 <210> 81 <211> 34 <212> DNA <213> Artificial Sequence 20 <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 81 34 aatcaaacta tgttaaggga aataggacaa ctaa <210> 82 30 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 35 <400> 82 39 cgattcgatt cagttttctg tggtttctta gtgtttgga 40 <210> 83 <211> 33 <212> DNA <213> Artificial Sequence 45 <223> Description of Artificial Sequence: PCR primer

PCT/GB00/03597 WO 01/21833 - 22 -<400> 83 33 gtaatttttt tacatgaatg acatttacag caa <210> 84 <211> 33 <212> DNA <213> Artificial Sequence 10 <223> Description of Artificial Sequence: PCR primer <400> 84 33 ggaaattatt tgtttaacaa taaaacaatg gaa 15 <210> 85 <211> 26 <212> DNA 20 <213> Artificial Sequence <220> <223> Description of Artificial Sequence: PCR primer 25 <400> 85 26 ccaacaacac ctccaatacc agtaac

United States Patent & Trademark Office Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

□ Page(s)	of		were not present
for scanning.		(Document title)	
□ Page(s)	of		were not
present for scanning.		(Document title)	·

Scanned copy is best available. Some drawings are dark