Smart(er) searching and sorting

Alexandra Silva and Henk Barendregt

{alexandra,henk}@cs.ru.nl http://www.cs.ru.nl/~{alexandra,henk}

Institute for Computing and Information Sciences Radboud University Nijmegen

14 February 2012

Alexandra & Henk 14 February 2012 Lesson 3 1 / 41

Recap

Last week's message

- why analyzing time complexity is important;
- which type of abstractions are done in the analysis
- how to analyze the execution time of a non-recursive algorithm.

Today

- Divide and conquer (mergesort and quicksort).
 - algorithms
 - 2 solving recurrence relations
- Randomized algorithms (randomized quicksort).

Dive and Conquer

Divide and conquer strategy

- Divide the problem into n sub-problems (smaller instances of the original problem)
- Conquer the sub-problems
 - trivial for small sizes
 - use the same strategy, otherwise
- Combine the solutions of the sub-problems into the solution of the original problem

Implementation is typically recursive (why?)

Merge sort

It uses a divide and conquer strategy

- Divide the vector in two vectors of similar size
- Conquer: recursively order the two vectors (trivial for...

Merge sort

It uses a divide and conquer strategy

- Divide the vector in two vectors of similar size
- *Conquer*: recursively order the two vectors (trivial for...vectors of size 1)
- Combine two ordered vectors into a new ordered vector.
 Auxiliary merge function.
 - 1 The merge function gets as input two *ordered* sequences A[p...q] and A[q+1...r]
 - ② In the end of the execution we get the sequence A[p...r] ordered.

Mergesort

Mergesort

Question: What is the dimension of each sequence in the divide step?

Mergesort

Question: What is the dimension of each sequence in the divide step? q = |(p+r)/2|

Initial call on an array with n elements: merge_sort(A,1,n).

Example I

Example II

Array with number of elements not a multiple of 2

Remains to do. . .

merge procedure

Input: Array A and indices p, q, r such that

- $p \le q < r$.
- Subarray A[p..q] is sorted and subarray A[q+1..r] is sorted. By the restrictions on p, q, r, neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray in A[p..r].

Merge

Idea behind merging: Think of two piles of cards. Each pile is sorted and placed face-up on a table with the smallest cards on top. We will merge these into a single sorted pile, face-down on the table. A basic step:

- Choose the smaller of the two top cards.
- Remove it from its pile, thereby exposing a new top card.
- Place the chosen card face-down onto the output pile.
- Repeatedly perform basic steps until one input pile is empty.
 Once one input pile empties, just take the remaining input pile and place it face-down onto the output pile.

Merge

Idea behind merging: Think of two piles of cards.

Each pile is sorted and placed face-up on a table with the smallest cards on top. We will merge these into a single sorted pile, face-down on the table. A basic step:

- Choose the smaller of the two top cards.
- Remove it from its pile, thereby exposing a new top card.
- Place the chosen card face-down onto the output pile.
- Repeatedly perform basic steps until one input pile is empty.
 Once one input pile empties, just take the remaining input pile and place it face-down onto the output pile.

What is the complexity of this algorithm?

Merge

- Each basic step should take constant time, since we check just the two top cards.
- There are ≤ n basic steps, since each basic step removes one card from the input piles, and we started with n cards in the input piles.
- Therefore, this procedure should take $\Theta(n)$ time.

what are the sentinels good for?


```
void merge(int A[], int p, int q, int r) {
  int L[MAX], R[MAX];
                              /* length of array A[p..q] */
  int n1 = q-p+1;
  int n2 = r-q;
                              /* length of array A[q+1..r] */
  for (i=1; i<=n1; i++) L[i] = A[p+i-1]; /* array LEFT */
  for (j=1; j<=n2; j++) R[j] = A[q+j]; /* array RIGHT */
  L[n1+1] = MAXINT; R[n2+1] = MAXINT; /* sentinels */
   i = 1; j = 1;
  for (k=p ; k<=r ; k++)
    if (L[i] \le R[j]) { /* put the next smallest
      A[k] = L[i]; i++; element in the array */
    } else {
      A[k] = R[j]; j++;
```

```
void merge(int A[], int p, int q, int r) {
  int L[MAX], R[MAX];
                              /* length of array A[p..q] */
   int n1 = q-p+1;
                              /* length of array A[q+1..r] */
  int n2 = r-q;
  for (i=1; i<=n1; i++) L[i] = A[p+i-1]; /* array LEFT */
  for (j=1; j<=n2; j++) R[j] = A[q+j]; /* array RIGHT */
  L[n1+1] = MAXINT; R[n2+1] = MAXINT; /* sentinels */
   i = 1; j = 1;
  for (k=p ; k<=r ; k++)
    if (L[i] \le R[j]) { /* put the next smallest
      A[k] = L[i]; i++; element in the array */
    } else {
      A[k] = R[j]; j++;
```

merge executes in $\Theta(n)$ time, where n = r - p + 1 = the number of elements being merged.

Example

merge(A,9,12,16)

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \dots & 1 & 2 & \cancel{5} & \cancel{7} & \cancel{1} & \cancel{2} & \cancel{5} & \dots \\ k \\ L & \cancel{2} & 4 & 5 & 7 & \cancel{0} \\ i & i & \end{bmatrix} \qquad R = \begin{bmatrix} 2 & 3 & 4 & 5 \\ \cancel{1} & 2 & 3 & 6 & \cancel{0} \\ y & 1 & 2 & 3 & 6 & \cancel{0} \\ y & 1 & 2 & 3 & 6 & \cancel{0} \\ y & 1 & 2 & 3 & 6 & \cancel{0} \end{bmatrix}$$

$$A \xrightarrow{8} 9 \xrightarrow{10} 11 \xrightarrow{12} 13 \xrightarrow{14} 15 \xrightarrow{16} 17 \\ \dots \xrightarrow{1} 2 \xrightarrow{3} 4 \xrightarrow{5} 7 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{4}$$

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \dots & 1 & 2 & 2 & \cancel{7} & \cancel{1} & \cancel{2} & \cancel{3} & \cancel{6} & \dots \\ k & & & & & & \\ L & \cancel{2} & 4 & 5 & 7 & \infty & R & \cancel{1} & \cancel{2} & 3 & 6 & \infty \\ \vdots & \vdots \\ \end{matrix}$$

Example c'd

merge(A, 9, 12, 16)

Algorithm with a recursive call: running time can usually be described as a *recurrence*.

Algorithm with a recursive call: running time can usually be described as a *recurrence*. How does that work?

Algorithm with a recursive call: running time can usually be described as a *recurrence*. How does that work?

Let's for a moment assume that the size of the input is a power of 2. In each *division step* the sub-arrays have exactly size n/2.

Algorithm with a recursive call: running time can usually be described as a *recurrence*. How does that work?

Let's for a moment assume that the size of the input is a power of 2. In each *division step* the sub-arrays have exactly size n/2.

T(n): time of execution (in the worst case) for a input of size n;

If n = 1 then T(n) is constant: $T(n) \in \Theta(1)$.

Otherwise:

- **1 Divide** computing the middle of the vector is done in constant time: $\Theta(1)$.
- **2** Conquer two problems of size n/2 are solved: 2T(n/2).
- **3 Compose** the merge function executes in linear time: $\Theta(n)$

Otherwise:

- **1 Divide** computing the middle of the vector is done in constant time: $\Theta(1)$.
- **2** Conquer two problems of size n/2 are solved: 2T(n/2).
- **3 Compose** the merge function executes in linear time: $\Theta(n)$

Hence:

$$T(n) = egin{cases} \Theta(1) & ext{if } n = 1 \ \Theta(1) + 2T(n/2) + \Theta(n) & ext{if } n > 1 \end{cases}$$

Alexandra & Henk 14 February 2012 Lesson 3 16 / 41

Otherwise:

- **1 Divide** computing the middle of the vector is done in constant time: $\Theta(1)$.
- **2 Conquer** two problems of size n/2 are solved: 2T(n/2).
- **3 Compose** the merge function executes in linear time: $\Theta(n)$

Hence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ \Theta(1) + 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

and now we want to conclude that $T(n) \in \Theta(??)$.

Merge vs Insertion sort

Running ahead: we will show that $T(n) \in \Theta(n \lg n)$.

Merge vs Insertion sort

Running ahead: we will show that $T(n) \in \Theta(n \lg n)$.

Cf. Insertion sort in $\Theta(n^2)$.

Merge vs Insertion sort

Running ahead: we will show that $T(n) \in \Theta(n \lg n)$.

Cf. Insertion sort in $\Theta(n^2)$.

Going back: How did we get $n \lg n$?

Going back: How did we get $n \lg n$?

We had

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ \Theta(1) + 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Going back: How did we get $n \lg n$?

We had

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ \Theta(1) + 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Let us rewrite this as

this as
$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Going back: How did we get $n \lg n$?

We had

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ \Theta(1) + 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Let us rewrite this as

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

where c is the largest constant representing both the time required to solve problems of dimension 1 as well as the time per array element of the divide and combine steps.

Alexandra & Henk 14 February 2012 Lesson 3 18 / 41

For the original problem we have a cost *cn* plus the cost of the sub-problems:

For the original problem we have a cost *cn* plus the cost of the sub-problems:

For each of the size-n/2 subproblems, we have a cost of cn/2, plus two sub-problems, each costing T(n/4):

Continue expanding until the problem sizes get down to 1:

• Each level has cost cn.

Continue expanding until the problem sizes get down to 1:

- Each level has cost cn.
- There are $\lg n + 1$ levels (height is $\lg n$; proof by induction).

Continue expanding until the problem sizes get down to 1:

- Each level has cost cn.
- There are lg n + 1 levels (height is lg n; proof by induction).
- Total cost is sum of costs at each level: $cn(\lg n + 1) = cn \lg n + cn.$

Alexandra & Henk 14 February 2012 Lesson 3 20 / 41

Continue expanding until the problem sizes get down to 1:

- Each level has cost cn.
- There are lg n + 1 levels (height is lg n; proof by induction).
- Total cost is sum of costs at each level: cn(lg n + 1) = cn lg n + cn.
- Ignore low-order term: merge sort worst case is in Θ(n lg n).

How to solve recurrences?

First, a small detail: we assumed the length of the array was a power of 2. If that's not case, the right formula for the recurrence would be:

$$T(n) = egin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

How to solve recurrences?

First, a small detail: we assumed the length of the array was a power of 2. If that's not case, the right formula for the recurrence would be:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{if } n > 1 \end{cases}$$

The solution of a recurrence can be *verified* using the *substitution method*, which allows us to prove that indeed the recurrence above has solution $T(n) \in \Theta(n \lg n)$

Alexandra & Henk 14 February 2012 Lesson 3 21 / 41

- Guess the solution.
- Use induction to find the constants and show that the solution works.

Example: Consider the following recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

- **1** Guess: $T(n) = n \lg n + n$ (usually done by looking at the recursion tree).
- 2 Induction:

Basis:
$$n = 1 \Rightarrow n \lg n + n = 1 = T(n)$$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

= $2(n/2 \lg n/2 + n/2) + n$ induction hyp.

Alexandra & Henk 14 February 2012 Lesson 3 23 / 41

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

= $2(n/2 \lg n/2 + n/2) + n$ induction hyp.
= $n \lg n/2 + n + n$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

= $2(n/2 \lg n/2 + n/2) + n$ induction hyp.
= $n \lg n/2 + n + n$
= $n(\lg n - \lg 2) + n + n$

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$
= $2(n/2 \lg n/2 + n/2) + n$ induction hyp.
= $n \lg n/2 + n + n$
= $n(\lg n - \lg 2) + n + n$
= $n \lg n - n + n + n$

Alexandra & Henk 14 February 2012 Lesson 3 23 / 41

Inductive step: Inductive hypothesis is that $T(k) = k \lg k + k$ for all k < n. We will use this inductive hypothesis for T(n/2).

$$T(n) = 2T(n/2) + n$$

= $2(n/2 \lg n/2 + n/2) + n$ induction hyp.
= $n \lg n/2 + n + n$
= $n(\lg n - \lg 2) + n + n$
= $n \lg n - n + n + n$
= $n \lg n + n$

Alexandra & Henk 14 February 2012 Lesson 3 23 / 41

Generally, we use asymptotic notation:

- We would write e.g. $T(n) = 2T(n/2) + \Theta(n)$.
- We assume T(n) = O(1) for sufficiently small n.
- We express the solution by asymptotic notation: $T(n) = \Theta(n \lg n)$ (or $T(n) \in \Theta(n \lg n)$).
- We do not worry about boundary cases, nor do we show base cases in the substitution proof.

- T(n) is always constant for any constant n.
- Since we are ultimately interested in an asymptotic solution to a recurrence, it will always be possible to choose base cases that work.
- When we want an asymptotic solution to a recurrence, we do not worry about the base cases in our proofs.
- When we want an exact solution, then we have to deal with base cases.

For the substitution method:

- Name the constant in the additive term.
- Show the upper (O) and lower (Ω) bounds separately. Might need to use different constants for each.

Another example

Take the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(\lfloor n/2 \rfloor) + n & \text{if } n > 1 \end{cases}$$

We seem to run into a problem if we want to show that $T(n) \le cn \lg n$:

$$T(1) \le c1 \lg 1 = 0$$
 FALSE!

Another example

Take the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(\lfloor n/2 \rfloor) + n & \text{if } n > 1 \end{cases}$$

We seem to run into a problem if we want to show that $T(n) \le cn \lg n$:

$$T(1) \le c1 \lg 1 = 0$$
 FALSE!

However, recall that the *O*-notation only requires that we show that there exist $c, n_0 > 0$ for which $T(n) \le cn \lg n$, for all $n \ge n_0$.

Alexandra & Henk 14 February 2012 Lesson 3 26 / 41

en 🌉

Another example

Hence we just have to replace the base case n=1 by something else... We take it step by step: let's look at $n_0=2$

$$T(2) = 4 \le c2 \lg 2 = 2c$$

Enough to choose $c \geq 2$.

Another example

Hence we just have to replace the base case n=1 by something else... We take it step by step: let's look at $n_0=2$

$$T(2)=4\leq c2\lg 2=2c$$

Enough to choose $c \ge 2$.

But now careful:

$$T(2) = 2T\lfloor 2/2 \rfloor + 2 = 2T(1) + 2 = 4$$

 $T(3) = 2T\lfloor 3/2 \rfloor + 3 = 2T(1) + 3 = 5$
 $T(4) = 2T\lfloor 4/2 \rfloor + 4 = 2T(2) + 4 = 12$
 $T(5) = 2T\lfloor 5/2 \rfloor + 5 = 2T(2) + 5 = 13$
 $T(6) = 2T\lfloor 6/2 \rfloor + 6 = 2T(3) + 6 = 16$

Because both T(2) and T(3) depend on T(1) we cannot simply replace the base case n=1 by n=2, but we need **both** n=2 and n=3.

Another example

Hence we just have to replace the base case n=1 by something else... We take it step by step: let's look at $n_0=2$

$$T(2) = 4 \le c2 \lg 2 = 2c$$

Enough to choose $c \ge 2$.

But now careful:

$$T(2) = 2T\lfloor 2/2 \rfloor + 2 = 2T(1) + 2 = 4$$

 $T(3) = 2T\lfloor 3/2 \rfloor + 3 = 2T(1) + 3 = 5$
 $T(4) = 2T\lfloor 4/2 \rfloor + 4 = 2T(2) + 4 = 12$
 $T(5) = 2T\lfloor 5/2 \rfloor + 5 = 2T(2) + 5 = 13$
 $T(6) = 2T\lceil 6/2 \rceil + 6 = 2T(3) + 6 = 16$

Because both T(2) and T(3) depend on T(1) we cannot simply replace the base case n=1 by n=2, but we need **both** n=2 and n=3. For n=3, we have $T(3)=5 \le c3 \lg 3 = 4.8c$, which also holds for c>2.

Master method

Used for many divide-and-conquer recurrences of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1, b > 1$, and f(n) > 0. Based on the master theorem (Theorem 4.1 in the book). Compare $n^{\log_b a}$ vs. f(n):

- Case 1: $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$. (f (n) is polynomially smaller than $n^{\log_b a}$.) Solution: $T(n) = \Theta(n^{\log_b a})$.
- Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$, where $k \ge 0$. (f(n) is within a polylog factor of $n^{\log_b a}$, but not smaller.) Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and f(n) satisfies the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n. (f(n) is polynomially greater than $n^{\log_b a}$.) Solution: $T(n) = \Theta(f(n))$.

Quicksort is based on the three-step process of divide-and-conquer.

Divide: Partition A[p..r], into two subarrays A[p..q-1] and A[q+1..r], such that each element in the first subarray A[p..q-1] is \leq than A[q] and A[q] is \leq each element in the second subarray A[q+1..r].

- The subarrays can be empty;
- computing q is part of the partition function
 The partition function receives as input A[p..r], partitions it in place using the last element as pivot and returns index q.

Combine: Sort the two subarrays by recursive calls to quicksort. **Combine:** No work is needed to combine the subarrays, because they are sorted in place.

Partition

Perform the divide step by a procedure partition, which returns the index q that marks the position separating the subarrays.

```
int partition (int A[], int p, int r) {
x = A[r];
i = p-1;
for (j=p ; j<r ; j++)
 if (A[j] \le x) {
  i++;
  swap(A, i, j);
swap(A, i+1, r);
return i+1;
void swap(int X[], int a, int b)
{ aux = X[a]; X[a] = X[b]; X[b] = aux; }
```

Complexity of partition?

Partition

Perform the divide step by a procedure partition, which returns the index q that marks the position separating the subarrays.

```
int partition (int A[], int p, int r) {
x = A[r];
i = p-1;
for (j=p ; j<r ; j++)
 if (A[j] \le x) {
   i++;
   swap(A, i, j);
swap(A, i+1, r);
return i+1;
void swap(int X[], int a, int b)
\{ aux = X[a]; X[a] = X[b]; X[b] = aux; \}
```

Complexity of partition? linear: $\Theta(n)$.

Example

partition(A,p,r)

This is the situation after 4 steps in the loop.

Example c'd

partition(A,p,r)

Here you see the rest of the steps and final result: the pivot 5 goes in the middle of two sub-arrays that only have, respectively, smaller and larger elements than 5.

(The index j disappears because it is no longer needed once the for loop is exited.)

```
void quicksort(int A[], int p, int r) {
  if (p < r) {
    q = partition(A,p,r)
    quicksort(A,p,q-1);
    quicksort(A,q+1,r);
  }
}</pre>
```



```
void quicksort(int A[], int p, int r) {
  if (p < r) {
    q = partition(A,p,r)
    quicksort(A,p,q-1);
    quicksort(A,q+1,r);
  }
}</pre>
```

What is the recurrence relation corresponding to quicksort?

```
void quicksort(int A[], int p, int r) {
  if (p < r) {
    q = partition(A,p,r)
    quicksort(A,p,q-1);
    quicksort(A,q+1,r);
  }
}</pre>
```

What is the recurrence relation corresponding to quicksort?

$$T(n) = D(n) + T(k) + T(k')$$

where D(n) time of partition $-\Theta(n)$ and k'=n-k-1.

Hence

$$T(n) = \Theta(n) + \max_{k=0}^{n-1} (T(k) + T(n-k-1))$$

Hence

$$T(n) = \Theta(n) + \max_{k=0}^{n-1} (T(k) + T(n-k-1))$$

Assume $T(n) \leq cn^2$. Then,

Hence

$$T(n) = \Theta(n) + \max_{k=0}^{n-1} (T(k) + T(n-k-1))$$

Assume $T(n) \leq cn^2$. Then,

$$T(n) \leq \Theta(n) + \max(ck^2 + c(n - k - 1)^2)$$

$$= \Theta(n) + c \max(k^2 + (n - k - 1)^2)$$

$$= \Theta(n) + c \max(2k^2 + (2 - 2n)k + (n - 1)^2)$$

$$P(k)$$

When is P(k) maximal?

Hence

$$T(n) = \Theta(n) + \max_{k=0}^{n-1} (T(k) + T(n-k-1))$$

Assume $T(n) \leq cn^2$. Then,

$$T(n) \leq \Theta(n) + \max(ck^2 + c(n - k - 1)^2)$$

$$= \Theta(n) + c \max(k^2 + (n - k - 1)^2)$$

$$= \Theta(n) + c \max(2k^2 + (2 - 2n)k + (n - 1)^2)$$

When is P(k) maximal? k = 0 and k = n - 1: $P(k) = (n - 1)^2$.

Quicksort: worst case

Hence, one has

$$T(n) \le \Theta(n) + c(n-1)^2 = \Theta(n) + c(n^2 - 2n + 1) = \Theta(n) + cn^2$$

which shows that $T(n) \in O(n^2)$.

Quicksort: worst case

Hence, one has

$$T(n) \le \Theta(n) + c(n-1)^2 = \Theta(n) + c(n^2 - 2n + 1) = \Theta(n) + cn^2$$

which shows that $T(n) \in O(n^2)$.

Is it also true that we have in the worst case $T(n) \in \Theta(n^2)$?

Alexandra & Henk 14 February 2012 Lesson 3 35 / 41

Quicksort: worst case

Hence, one has

$$T(n) \le \Theta(n) + c(n-1)^2 = \Theta(n) + c(n^2 - 2n + 1) = \Theta(n) + cn^2$$

which shows that $T(n) \in O(n^2)$.

Is it also true that we have in the worst case $T(n) \in \Theta(n^2)$?

- Occurs when all the subarrays are completely unbalanced.
- Have in every recursive call 0 elements in one subarray and n-1 elements in the other subarray. This corresponds to the recurrence

$$T(n) = T(n-1) + \Theta(n) = \sum_{i=0}^{n} \Theta(i) = \Theta(n^2).$$

Alexandra & Henk 14 February 2012 Lesson 3 35 / 41

• In the worst case, quicksort is in $\Theta(n^2)$, similar to insertion sort, but this worse case occurs when the sequence is already ordered (why?), for which insertion sort executes in $\Theta(n)$!

- In the worst case, quicksort is in $\Theta(n^2)$, similar to insertion sort, but this worse case occurs when the sequence is already ordered (why?), for which insertion sort executes in $\Theta(n)$!
- **Best case**: the partition function generates subarrays of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil 1$.

$$T(n) \leq \Theta(n) + 2T(n/2)$$

which has solution $T(n) \in \Theta(n \lg n)$.

- In the worst case, quicksort is in $\Theta(n^2)$, similar to insertion sort, but this worse case occurs when the sequence is already ordered (why?), for which insertion sort executes in $\Theta(n)$!
- **Best case**: the partition function generates subarrays of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil 1$.

$$T(n) \leq \Theta(n) + 2T(n/2)$$

which has solution $T(n) \in \Theta(n \lg n)$.

 In the average case, contrary to most algorithms, quicksort is closer to the best case than worst case.

Alexandra & Henk 14 February 2012 Lesson 3 36 / 41

- In the worst case, quicksort is in $\Theta(n^2)$, similar to insertion sort, but this worse case occurs when the sequence is already ordered (why?), for which insertion sort executes in $\Theta(n)$!
- **Best case**: the partition function generates subarrays of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil 1$.

$$T(n) \leq \Theta(n) + 2T(n/2)$$

which has solution $T(n) \in \Theta(n \lg n)$.

- In the average case, contrary to most algorithms, quicksort is closer to the best case than worst case.
- Try for instance to check what happens when the subarrays are always divided into 1/9 and 8/9 of its size. It will be $\Theta(n \lg n)$.

Quicksort: analysis summary

The running time of quicksort depends on the partitioning of the subarrays:

- If the subarrays are balanced, then quicksort can run as fast as mergesort.
- If they are unbalanced, then quicksort can run as slowly as insertion sort.

 In one execution of quicksort there will be n calls of the partition function. (Why?)

- In one execution of quicksort there will be n calls of the partition function. (Why?)
- In general, the execution time is T(n) = O(n + X), where X is the total number of comparisons performed.

- In one execution of quicksort there will be n calls of the partition function. (Why?)
- In general, the execution time is T(n) = O(n + X), where X is the total number of comparisons performed.
- In the average case, we need to analyze, probabilistically, the expected value of *variable X*.

- In one execution of quicksort there will be n calls of the partition function. (Why?)
- In general, the execution time is T(n) = O(n + X), where X is the total number of comparisons performed.
- In the average case, we need to analyze, probabilistically, the expected value of variable X.
- Because in reality the partition function will not generate in every step subarrays with the same relative size.

- So we would need to use a probabilistic distribution describing the input.
- In the case of a sorting algorithm, we need to know the probability of each permutation of the input occurring.
- When it is not realistic to determine the distribution, we can assume a uniform distribution (all inputs occur with same prob.).
- In such randomized algorithm no input corresponds to best or worst case scenario; it is the pre-processing that influences the best and worst case.

Randomized quicksort

One version would be to randomly choose the pivot every time. Hence, the partition function would be modified as follows:

```
int randomized-partition (int A[], int p, int r) {
i = generate_random(p,r) /* random number p<= i <= r */
swap(A,r,i);
return partition(A,p,r);
}</pre>
```

We will not dive into details in this course. Expected running time of quicksort using randomized-partition is $O(n \lg n)$.

Most important slide of today ;-)

Test

- 1h test, starts at 9 am on Friday
- 3 or 4 questions
- certain: one about O notation
- certain: one about analyzing a non-recursive algorithm
- maybe: one about recurrences