NSXTool Internal Documentation: Notes on Literature

the NSXTool collaboration (Dated: internal notes, work in progress, do not circulate, May 6, 2019)

I. KABSCH 2010B

Paper on "Integration, scaling, space-group assignement and post-refinement" \cite{black}].

A. Notation correspondences

	Kabsch	we
incident wavevector	\mathbf{S}_0	\mathbf{k}_{i}
reciprocal vector	\mathbf{p}^*	${f q}$
detector distance	F	?

B. Spot prediction (Sect 2.2)

This section uses vector components in the coordinate system $\{\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3\}$. In this special system, \mathbf{p}^* and \mathbf{p}_0^* are related to each other through a rotation by φ around vm_2 , and \mathbf{S}_0 is perpendicular to \mathbf{m}_1 .

1. How to obtain \mathbf{p}^* as function of \mathbf{p}_0^* , φ

In $\mathbf{p}^* = D(\mathbf{m}_2, \varphi)\mathbf{p}_0^*$, just insert the standard rotation matrix D. Skip the line that involves the cross-product $\mathbf{m}_2 \times \mathbf{p}_0^*$, and directly obtain the next line.

2. How to obtain \mathbf{p}^* as function of $\mathbf{p}_0^*, \mathbf{S}_0$

First, the component along \mathbf{m}_2 : Rotation around \mathbf{m}_2 does not change this component, hence $\mathbf{p}^*\mathbf{m}_2 = \mathbf{p}_0^*\mathbf{m}_2$.

Next, the component along \mathbf{m}_3 : By construction, $\mathbf{m}_1 \perp \mathbf{S}_0$. This simplifies the vector product

$$\begin{aligned} \mathbf{S}_0 \mathbf{p}^* &= (\mathbf{S}_0 \mathbf{m}_2)(\mathbf{m}_2 \mathbf{p}^*) + (\mathbf{S}_0 \mathbf{m}_3)(\mathbf{m}_3 \mathbf{p}^*) \\ &= (\mathbf{S}_0 \mathbf{m}_2)(\mathbf{m}_2 \mathbf{p}_0^*) + (\mathbf{S}_0 \mathbf{m}_3)(\mathbf{m}_3 \mathbf{p}^*). \end{aligned} \tag{1}$$

Insert this in the Laue equation $-2\mathbf{S}_0\mathbf{p}^* = p_0^{*2}$, and resolve for $\mathbf{p}^*\mathbf{m}_3$.

Finally, the component along \mathbf{m}_1 : Resolve $p_0^{*2} = \sum (\mathbf{p}^* \mathbf{m}_i)^2$ for $\mathbf{p}^* \mathbf{m}_1$.

3. How to obtain φ as function of \mathbf{p}_0^* , \mathbf{p}^*

Start from

$$\cos \varphi = \frac{\mathbf{p}^*_{\perp} \mathbf{p}^*_{0\perp}}{|\mathbf{p}^*_{\perp}| \cdot |\mathbf{p}^*_{0\perp}|} \tag{2}$$

where the subscript \perp designates the projection into the plane perpendicular to $\mathbf{m_2}$.