

UNIVERSITE BATNA2 ANNÉE UNIVERSITAIRE 2024-2025

ANEMIES HEMOLYTIQUES

DR R.NACIB

SERVICE HEMATOLOGIE ET THERAPIE CELLULAIRE ,CLCC BATNA

SEPTEMBRE 2024

PLAN

- 1. INTRODUCTION
- 2. INTERET DE LA QUESTION
- 3. RAPPELS
- 4. DIAGNOSTIC POSITIF
- 5. DIAGNOSTIC ETIOLOGIQUE
- 6. CONCLUSION

INTRODUCTION

- ☐ À L'etat normal la durée de vie d'un GR est de 120 jours environ
- ☐ L'hémolyse : la destruction prématurée
- ☐ Une durée de vie accourcie des globules rouges (< 120 jours).
- ☐ Une anémie apparaît lorsque la production de la moelle osseuse ne peut plus compenser
- la réduction de la durée de vie des globules rouges.
- ☐ Cette affection peut être acquise ou constitutionnelle

INTERET DE LA QUESTION

- ☐ Connaitre la strusture du GR
- ☐ Physiologie de l'hémolyse
- ☐ DG+ anémie hémolytique
- ☐ ETIOLOGIES

RAPPELS

STTRUCTURE DU GR

GR dans les vaisseaux sanguins

=

petits disques biconcaves, de 2µm d'épaisseur et 7µm de

diamètre

• Le GR peut être schématiquement représenté comme un sac (membrane) contenant de:

• - l'hémoglobine (pigment responsable de la fonction d GR)

• - des enzymes (pour la protection de l'Hb et de la membrane contre l'oxydation ainsi la fourniture d'énergie).

MEMBRANE DU GR

La forme biconcave est la morphologie la plus apte à la déformabilité : les GR passent dans des capillaires de 3 µm de diamètre.

GLOBINE

- La globine est une protéine de 141 ou 146 AA, de structure enroulée sur elle-même, et au sein de laquelle se positionne une molécule d'hème, dans une poche hydrophobe.
- L'hémoglobine est constituée de 4 globines, identiques
 2 à 2, et a un PM de 64.5 kDa.
- Profil electrophorétique: chez l'homme,3Hb physiologiques
 - HbA1 (α2 β 2): 97 à 98 %.
 - Hb A2 (α 2 δ 2):2 à 3 %.
 - Hb F (α 2 Y2): < 1%.

ENZYMES

- ☐ <u>Le GR doit produire de l'énergie pour 2 objectifs principaux :</u>
- - Maintenir l'intégrité de la membrane, pour assurer le maintien de l'équilibre ionique par fonctionnement des pompes Na+, Ka+, ATP ase qui nécessitent de l'ATP
- - Maintenir l'Hb sous sa forme active, c'est-à-dire réduite (= fer à l'état divalent). Normalement, chez l'adulte, il y a < 1% de méthémoglobine (= fer à l'état trivalent).

- Le GR produit l'énergie par 2 voies principales :
- La glycolyse anaérobie: La principale enzyme est la Pyruvate Kinase (PK)
- Le shunt des pentoses : La principale enzyme est le Glucose-6-Phosphate- Déshydrogénase (G6PD)

HEMOLYSE

DEFINITION

- Hémolyse = destruction des globules rouges (GR) arrivés au terme de leur vie circulatoire de 120 j,
- associée à la libération puis au catabolisme de l'hémoglobine.

HEMOLYSE PHYSIOLOGIQUE

DEFINITION

- Les GR vieillis disparaissent du torrent circulatoire : **HEMOLYSE PHYSIOLOGIQUE**
- ✓ Intra tissulaire (phagocytose ; 85%),
- ✓ Intra vasculaire (= dans le torrent circulatoire ; 15%).

HÉMOLYSE INTRA TISSULAIRE

. -

- Prépondérante à l'état normal (85%),
- elle est assurée par les macrophages de la moelle osseuse, de la rate et du foie.
- - Une suite de réactions va dissocier l'Hb en globine et en hème :
- La globine est dégradée (catabolisme des protéines),
- le fer de l'hème est recyclé dans l'érythropoïèse ou stocké dans les macrophages,
- l'hème est dégradé par l'hème oxydase pour produire la biliverdine puis la bilirubine.
- - La bilirubine est d'abord appelée « libre » : libérée hors des macrophages et véhiculée dans le plasma par l'albumine, qui la transporte jusqu'aux hépatocytes ;
- la bilirubine est glycuroconjuguée dans les hépatocytes
- la bilirubine est ensuite excrétée par la bile dans le duodénum où elle est transformée en stercobiline (éliminée dans les selles) et en urobilinogène et urobiline dont une partie (15%) est réabsorbée (cycle entéro-hépatique) et finalement éliminée dans les urines.

HÉMOLYSE INTRA VASCULAIRE

- Représente environ 15% de l'hémolyse physiologique,
- par lyse osmotique des GR vieillis ou fragmentation
- L'hémoglobine libre se fixe à l'haptoglobine
- l'Hb libre est en partie captée par les hépatocytes et en partie dissociée en dimères alpha-bêta qui traversent le filtre glomérulaire rénal où ils sont partiellement réabsorbés.
- La réabsorption est limitée et l'excès d'Hb libre peut provoquer une hémoglobinurie et une tubulopathie (insuffisance rénale aiguë).

L'hème peut se fixer également à l'albumine et à l'hémopexine. Le complexe hémopexine – hème est capté par les hépatocytes : l'hémopexine est libérée du complexe et retourne dans le plasma tandis que l'hème est dégradé.

L'HÉMOLYSE PATHOLOGIQUE

- Amplifie l'un ou l'autre de ces 2 mécanismes :
- durée de vie raccourcie
- Cette hémolyse excessive est habituellement accompagnée d'une régénération médullaire = augmentation du nombre des réticulocytes dans le sang.

DIAGNOSTIC POSITF

ANEMIE HEMOLYTIQUE CHRONIQUE

- Clinique : triade d'hémolyse chronique
- ✔ Pâleur
- Ictère
- ✓ SPM

- Biologie : anémie régénérative
- ✓ Hb < NLE
- $VCM > 100 \text{ fl (NII} 90 100 \text{ FS} \cdot \text{fl})$

Hémolyse physiologique

ANEMIE HEMOLYTIQUE AIGUE

- Clinique : TABLEAU D'ÉTAT DE CHOC
- ✓ Pâleur intense +++
- ✓ Tachycardie
- ✓ Pouls filant
- ✓ Hypotension
- ✓ Oligurie avec urines rouge porto ou hémoglobinurie
- Insuffisance rénale

• Biologie:

DIAGNOSTIC ETIOLOGIQUE

CLINIQUE

Triade hémolytique

- PCM
- Ictère
- SPM
- Signes de choc

HEMOGRAMME

- Anémie régénérative
- Taux de **Rétic** > 120 000 élt/mm3

HEREDITAIRES

Hémoglobinopathies

- Thalassémie
- Drépanocytose
- Autre: HbC...

A. Membrane

- Sphérocytose
- Elliptocytose

A. Enzymatiques

- G6PD
- Pyruvate Kinase

ACQUISES

Immune

- AHAI
- Allo-immune

Médicamenteuse

Micro-angiopathie

 Sd Hémolytique et urémique (Purpura thrombopénique et thrombotique)

ANEMIE HEMOLYTIQUE ACQUISE EXTRA CORPUSCULAIRE

ANEMIE HEMOLYTIQUE ACQUISE EXTRA CORPUSCULAIRE

IMMUNOLOGIQUE

NON IMMUNOLOGIQUE

AHA NON IMMUNOLOGIQUE

 Destruction des GR secondaire a des causes extra corpusculaires non immunologiques:

infectieuse	toxique	mecanique	Physique et biochimiqu e	Cas particulier
-bacterie: bartonella bacilliforme Parasitaire:pallu disme	-produits chimiques: aniline - medicaments:sulfami des -O2: oxygenation hyperbar -metaux lourds: plomb -morsure de serpent	-cardiovasculaire: valve mecanique -microangiopathie: purpura thrombopenique et thrombotique -marche prolongee -course a pied	-brulures etendues -noyade	HPN AHA mais corpusculaire Hemoglobinur ie nocturne

AHA IMMUNOLOGIQUE

•1. Définition

- AH liées à la présence Ac dirigés contre un Ag de la surface des GR
- les GR recouverts d'Ac sont « sensibilisés »
- Les GR ont une durée de vie raccourcie.
- Ce sont les plus fréquentes des AH acquises
- d'origine extra corpusculaires

AHA IMMUNOLOGIQUE

- Destruction des GR selon les **mécanismes** impliquant :
- Des allo-Ac: accident transfusionnel
- -Immunoallergique: medicament: exple penicilline
- -auto Ac: AHA auto immune

CLASSIFICATION DES AHAI

- * selon l'optimum thermique d'action de l'Ac:
- - AH à Ac chauds : optimum d'action à 37°C, souvent IgG, fixant ou non le complément ;
 - 70 % des cas,
- - AH à Ac froids: optimum thermique à 22°C ou plus bas, souvent IgM, parfois IgG;
- 30 % des cas.
- * selon l'origine :
- - AHAI primitives : cause inconnue = 50% des cas,

AHI A AUTOAC CHAUDS

- 70% des AHAI
- Tableau d'hémolyse
- Température de fixation optimale des $Ac = 37^{\circ}C$.
- Test de Coombs direct positif IgG seul ou mixte (G+C').
- Idiopathiques dans 50 % des cas.
- Les maladies à rechercher :

maladies auto-immunes,

Hémopathie lymphoïde,

Tumeurs solides, Déficit immunitaire, Infection virale

Médicaments : AINS, sulfamides, ceftriaxone, **l'alpha méthyl dopa** (Aldomet)+++

AHI A AUTOAC FROIDS

- Optimum thermique bas (cependant parfois jusque 30 °C)
- Hémolyse déclenchée à une température inférieure à 30°C; intra vasculaire ou non.
- Idiopathiques: 50 % des cas.

Deux types de maladies à rechercher:

• Infection : Sérologies :

Mycoplasme, VIH, VHC, EBV, CMV, PCR EBV

• Hémopathie lymphoïde

* Les AHAI post-infectieuses = aiguës, transitoires.

- 1/3 des AHAI à Ac froids.
- Plus fréq chez l'enfant
- Mycoplasma pneumoniae

ANEMIE HEMOLYTIQUE ACQUISE CORPUSCULAIRE

HEMOGLOBINURIE PAROXISTIQUE NOCTURE: HPN (maladie de marchiawafa-micheli)

- Maladie clonale rare de la cellule souche hématopoïétique
- liée à une mutation somatique acquise du gène PIG-A, provoquant la perte d'ancrage de diverses molécules de la surface cellulaire
- Absence de DAF ou CD55 et/ou MIRL ou CD 59
- le complément s'active et devient hémolysant
- Deux formes cliniques :

Forme classique (3/4 des pts) : maladie hémolytique et/ ou thrombosante « de novo »,

Forme aplasique (1/4 des pts) : dans les suites d'une aplasie médullaire.

ANEMIE HEMOLYTIQUE CONGENITALE CORPUSCULAIRE

DEFINITION

- Maladies génétiques à transmission héréditaires
- dues à une anomalie intrinsèque corpusculaire du GR:
 - ☐ Hémoglobinopathie :
 - Quantitatif : syndrome thalassémique
 - Qualitatif : syndrome drépanocytaire
 - ☐ Déficit Enzymatiques : G6PD. PK
 - ☐ Anomalie de la membrane : MSH

ANOMALIES DE HEMOGLOBINE

ANOMALIES QUANTITATIVES

SYNDROMES THALASSEMIQUES

DÉFINITION

Les thalassémies sont des anomalies <u>constitutionnelles</u> de l'Hb caractérisées par un <u>déficit quantitatif</u> de synthèse d'une des <u>chaines</u> <u>de globine</u>

Déficit en chaine α

Déficit en chaine β

α thalassémie

β thalassémie

B THALASSÉMIE

Répartition géographique

☐ Pourtour du bassin méditerranéen =thalas

☐ Moyen orient

THALASSÉMIE

Mode de transmission

- Loi de mendel
- transmission autosomale recessive
- Mariage consanguin augmente
- la chance 25% d'homozygote

Physiopathologie

- Défaut de synthèse de chaine β
- ☐ Ch a +Ch g = Hb F grande affinité pou O2 ☐
- ☐ Hypoxie+ EPO diminuée+ érythropoïèse exagérée

Déficit de synthèse de l'hémoglobine

Anémie microcytaire hypochrome

Conséquence des anomalies

 \square Synthèse équivalente des chaines α et non α .

 \square β thalassémie.

conséquences

- ☐ Erythropoïèse inefficace et apoptose
- ☐ **Hémolyse** intra-médullaire et une hémolyse prématurée des GR circulants.

- ☐ Hyperplasie erythroblastique avec hyperplasie des os plats.
- Déformation squelettiques: faciès mongoloïde
- ☐ Erythropoïèse extra-médullaire : hépato-splénomégalie

conséquences

☐ Augmentation de synthèse de l'Hb F et Hb A2

β thalassémies majeure:

• CLINIQUE:

- ☐ L'anémie n'apparait pas dés la naissance car synthèse de l'Hb F majoritaire.
- ☐ Le diagnostic est fait entre 3 et 18 mois.
- ☐ PCM + subictère + SPM = TRIADE HEMOLYTIQUE
- ☐ ASPECT MONGOLOÏDE DU FACIÈS.
- □ Retard staturo-pondéral

DIAGNOSTIC+

• **HEMOGRAMME** :

- \square Anémie sévère Hb = 4-7 g/dl.
- ☐ Microcytose et hypochromie.
- ☐ Taux de réticulocyte élevé.

AUTRES:

- ☐ Fer sérique et ferritinémie élevés .
- ☐ Bilirubine indirecte élevée.

Frottis:

- GR pâles, annulocytes
- poikilocytose, cellules cibles.
- Érythroblastose circulante

shutterstock.com · 2182222827

Beta Thalassemia Major – bone changes

•Étude de l'hémoglobine = diagnostic de certitude

•ELECTROPHORESE DE L'HEMOGLOBINE

•+

• ENQUETTE FAMILIALE

• Forme B^0/B^0

• Hb A = 00%

• Hb F > 95%

• Hb A2 = normale ou élevée

Forme B^0/B^{\pm}

Hb A = 5 à 45%

Hb F = 50 à 95%

Hb A2 = normale ou élevée

EVOLUTION

- La thalassémie majeure est l'hémoglobinopathie dont le pronostic est le plus sévère.
- Sans traitement transfusionnel les enfants ne vivent pas au-delà de 10 ans.

- L'évolution est marqué par:
- Les infections à répétition
- Une hépatosplénomégalie importante : hypersplénisme
- Insuffisance cardiaque: anémie et hémochromatose.
- Hémochromatose: aggravé par la transfusion évolue en insuffisance cardiaque et hépatique.

BETATHAL INTERMEDIAIRE

• C'est une forme atténuée de la maladie B⁺/B⁺

La séverité moindre est due soit à une persistance de synthèse de l'Hb A Age de debut+++

BETATHAL MINEURE OU TRAIT THALASSEMIQUE

- C'est la forme B⁰/B ou B⁺/B
- Asymptomatique cliniquement
- Pseudopolyglobulie, microcytose et hypochromie.
- À l'électrophorèse Hb A2 >
 3,3%

Ce dosage revêt une importance particulière chez les couples en âge de procréer puisque c'est sur ce résultats que repose l'identification des couples à risque pour la thalassémie, et l'indication d'un conseil génétique ou de diagnostic prénatal.

TRAITEMENT COOLEY

TRAITEMENT COOLEY

- La transfusion vise à maintenir une Hb supérieur à 10g/dl
- Le rythme transfusionnel est 1 fois/mois: programme transfusionnel
- Utiliser du sang déleucocyté et phénotypé dans les système Rhésus et Kell.
- Traitement préventif : ATB, Vit B9, vaccination

- Traitement chélateur de fer
- Désferal, ferriprox
- Splénectomie en cas d'augmentation des besoins transfusionnels
- La greffe de cellules souches GMO est le seul traitement curateur de la maladie

Espoir de la thérapie génique

PREVENTION COOLEY

- Dépistage des hétérozygotes et conseil génétique +++
- Diagnostic prénatal: étude d'ADN fœtal

ANOMALIES QUALITATIVES

Drépanocytose

DEFINITION

- ☐ La plus fréquente et la plus grave des AH par Hb anormale.
- \square Anomalie de structure de la chaine β de globine \longrightarrow synthèse de l'**Hb** S
- ☐ Affecte surtout les sujets de race noire.
- ☐ Transmission sur le mode autosomique récessif.
- ☐ Les homozygotes S/S et les hétérozygotes sont S/A

PHYSIOPATHOLOGIE

- \square Mutation β 6glu \longrightarrow val.
- ☐ En milieu désoxygéné
 - Polymérisation de l'Hb S et altération de la mb.
 - Déshydratation et stress cellulaire oxydatif.
 - Déformation des GR en faucille (drépanocyte).

☐ Vaso-occlusion infarctus dans divers organes

douleur aiguë syndrome pulmonaire aigu hyposplénisme ostéonécrose néphropathie

CLASSIFICATION

Maladie drépanocytaire majeurs :

- **Hb S/S** (forme fréquente)
- Hb S/B° thalassémie (Hb A=0%)
- Hb S/B⁺ thalassémie sévère (Hb A= 1-5%)

Drépanocytose asymptomatique:

Hb S/A : (Hb A=50-60%)

(Hb

S=30-40%

CLINIQUE: Drépanocytose homozygote SS:

Signes apparaissent quelques mois après la naissance

•La clinique est sont en fonction de l'âge :

■ 06 mois à 05 ans :

- •-CVO =le syndrome main-pied :
- gonflement douloureux
- •-Syndrome anémique d'importance varia
- •-SPM, retard staturo-pondéral
- •-Infections (pneumopathie, ORL.....)

- 06 à 15 ans :
 - CVO: crises douloureuses touchant
 - surtout l'appareil leuco-moteur (os et articulation)
 - Abdomen, thorax
 - Asplenie fonctionnelle +++: par des microinfarcissement de la rate avec comme conséquence des infections graves [méningite, septicémie ...)
- 15 ans : complications dégénératives
- (Accidents ischémiques ⇒ séquelles définitives) :

Drépanocytose homozygote

- Anémie Hb=7-9 g/dl
- Normocytose, normochromie
- Très régénérative, rétic=200-400 G/L
- Frottis = présence de drépanocytes
- Électrophorèse de l'Hb:
- $\bullet \qquad \qquad \mathbf{HbA} = \mathbf{00\%}$
- HbF = 1-10%
- HbS = 80-95%
- HbA2 = 2-3.4%

Drépanocytose hétérozygote

- Hémogramme normal
- Électrophorèse de l'Hb : présence d'une hémoglobine (S=35-45%)

FACTEURS FAVORISANTS DES CRISES VASO-OCCLUSIVES

Hypoxie

- ✓ Infections
- ✓ Anesthésie Générale
- ✓ Altitude
- Effort prolonge
- ✔ Course à pied
- ✓ Insuffisance respiratoire

Déshydratation

- ✓ Forte chaleur
- Effort prolonge
- ✓ Infection avec fièvre
- Stress

TRAITEMENT

1- Prévention des crises algiques :

- •- Hygiène de vie
- - bonne hydratation
- - éviter fatigue, pas de variation importante de température ou d'altitude
- acide folique (1cp/j 10 premiers jours du mois).
- Oracilline
- vaccinations (pneumocoque, Haemophilus...)

3- En cas de crise importante:

• 2- En cas de crise bénigne:

repos au chaud+ antalgique

- hospitalisation, repos, hyperhydratation, antalgiques et oxygénothérapie.
- traiter la cause déclenchante : infection, hypoxémie, stress.
- Corriger l'anémie: transfusion
- Echange transfusionnel
- Traitement inducteur de synthèse de l'Hb F (hydroxyurie, Hydrea°)

Prévention de la drépanocytose

- Dépistage des hétérozygotes et conseil génétique +++
- Diagnostic prénatal: étude d'ADN fœtal

•ANOMALIE DE LA MEMBRANE : MSH :

- Microsphérocytose héréditaire
- •maladie de Minkowski-Chauffard

DEFINITION

- anémie hémolytique constitutionnelle
 - la présence de GR de forme sphérique sur le frottis sanguin
 - une anomalie quantitative ou/et qualitative de l'une des protéines membranaires impliquées dans l'attachement du cytosquelette à la membrane du GR (bande 3, spectrine)
 - héréditaire : : transmission autosomale dominante :75 %

DIAGNOSTIC CLINIQUE

- Découverte possible à tout âge
- surtout chez l'enfant ou l'adolescent
- ☐ Interrogatoire : notion de splénectomie dans la famille
- ☐ Triade hémolytique
- Le risque de lithiase est élevé
- selon la symptomatologie et l'hémoglobine sanguine (dépendance transfusionnelle)
- et le % des sphérocytes :
- Asymptomatique (20 %)
 - Mineure / modérée (40 %)
 - Modérée (30 %)
 - Sévère (10 %)

DIAGNOSTIC BIOLOGIQUE

□ HÉMOGRAMME :

- le plus souvent anémie modérée (9 12 g/dL)
- VGM: normal.
- CCMH élevée
- taux de Réticulocytes élevé

☐ SIGNES BIOLOGIQUES D'HÉMOLYSE :

- haptoglobine très diminuée
- bilirubine libre augmentée
- LDH augmentée
- test de Coombs direct NEGATIF

☐ Technique actuelle de diagnostic : le test EMA (cyrtométrie de flux)

- ☐ Tests d'hémolyse.
- Ektacytomètrie en gradient osmotique.
- Test de fragilité aux solutions hypotoniques

- ☐ Electrophorèse des protéines membranaires
- ☐ Recherche de l'anomalie moléculaire au niveau génique

EVOLUTION, RISQUES ET COMPLICATIONS

- Poussées d'hyperhémolyse
- Crise de déglobulisation aiguë
- les complications biliaires (lithiase vésiculaire)
- Carence en folates par surconsommation

TRAITEMENT

- DANS > 50 % DES CAS : Simple suivi clinique, avec hémogramme
- DANS LES AUTRES SITUATIONS :
 - ☐ Traitement symptomatique, si besoin.
 - traiter les crises aiguës par transfusion
 - supplémenter en folates si hémolyse chronique sévère.
 - ☐ Splénectomie : dans les formes sévères, symptomatiques, mal supportées.
 - ☐ Cholécystectomie: lithiase vésiculaire complication de l'hémolyse chronique

Un conseil génétique est souhaitable

ENZYMOPATHIES

DEFINITION: Déficit en G6PD glucose 6 phosphate deshydrogénase)

(Transmission liée à l'X, Gène sur le chromosome X

- ✓ Anémie hémolytique régénérative = crise hémolytique aigue
- ✓ Rechercher facteurs favorisants (agents toxiques, ingestion de fèves ou infection)
- ✓ pâleur +ictère + urines sombres
- ✓ ↓Hb 3-7 g/dL; frottis : hématies mordues
- ✓ Rétic ↑ (>7-10J)
- ✓ ↑ bilirubine libre, chute de l'haptoglobine, ↑ LDH, parfois hémoglobinurie
 - Diagnostic:
- ✓ Contexte clinique :installation brutal + facteur déclenchant (favisme)
- ✓ NFS+ FROTTIS+ (schizocytes)
- **✓** Mesure de l'activité enzymatique

TRAITEMENT

- Education des enfants et leurs familles
- ✓ Interdiction des aliments et médicaments oxydants (sulfamides-sulfones, antipaludéens, vitamine C, bleu de méthylène.... Fèves pour le variant Méditerranée
- ✔ Parfois TS en cas d'anémie aiguë profonde mal tolérée

✓ En cas d'hémolyse chronique, une supplémentation en folates est parfois conseillée.

DÉFICIT EN PK:

- Pyruvate kinase
 - Transmission autosomique récessive
 - Hémolyse sévérité variable :
 - hémolyse compensée à anémie sévère avec hémolyse (ictère, SPM, pâleur)
 - Mesure de l'activité enzymatique

• Traitement : splénectomie (effet bénéfique)

CONCLUSION: TAKE HOME MESSAGES