DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA MATEMÁTICA (MESTRADO INTEGRADO EM CIÊNCIAS FARMACÊUTICAS)

Tabelas

PRIMITIVAS IMEDIATAS

Função	Primitiva
a	ax + C
$\int_{0}^{\infty} f'$	$\frac{f^{m+1}}{m+1} + C \ (m \in \mathbb{R} \setminus \{-1\})$
$\frac{f'}{f}$	$\ln f + C$
$a^f f'$	$\frac{a^f}{\ln a} + C \ (a \in \mathbb{R}^+ \setminus \{1\})$

Funções	trigonométricas
Função	Primitiva
$f' \operatorname{sen} f$	$-\cos f + C$
$f' \cos f$	$\operatorname{sen} f + C$
$f' \operatorname{tg} f$	$-\ln \cos f + C$
$f' \cot g f$	$\ln \sin f + C$
$f' \sec f$	$\ln \sec f + \lg f + C$
$f' \operatorname{cosec} f$	
$f' \sec^2 f$	$\operatorname{tg} f + C$
$f' \operatorname{cosec}^2 f$	$-\cot g f + C$
$f' \sec f \operatorname{tg} f$	$\sec f + C$
$f' \operatorname{cosec} f \operatorname{cotg} f$	$-\csc f + C$
$\frac{f'}{\sqrt{1-f^2}}$	$\arcsin f + C$ ou
	$- \operatorname{arc} \cos f + C$
$\frac{f'}{1+f^2}$	$arc \operatorname{tg} f + C$ ou
	$-\operatorname{arc\ cotg} f + C$
$\frac{f'}{ f \sqrt{f^2-1}}$	$\operatorname{arc} \sec f + C$ ou
10 1 V 0	$-\operatorname{arc\ cosec} f + C$

Funções hiperbólicas				
Função	Primitiva			
$f' \operatorname{sh} f$	$\operatorname{ch} f + C$			
$f' \operatorname{ch} f$	$\operatorname{sh} f + C$			
$f' \operatorname{th} f$	$\ln\left(\operatorname{ch} f\right) + C$			
$f' \operatorname{coth} f$	$\ln \sh f + C$			
$f' \operatorname{sech}^2 f$	th f + C			
$f' \operatorname{cosech}^2 f$	$-\coth f + C$			
$f' \operatorname{sech} f \operatorname{th} f$	$-\operatorname{sech} f + C$			
$f' \operatorname{cosech} f \operatorname{coth} f$	$-\operatorname{cosech} f + C$			
$\frac{f'}{\sqrt{1+f^2}}$	$\operatorname{arg} \operatorname{sh} f + C$			
$\frac{f'}{\sqrt{f^2 - 1}}$	$\operatorname{arg} \operatorname{ch} f + C$			
$\frac{f'}{1-f^2}$	arg th f+C, f <1,			
	$\arg\coth f + C, f > 1$			
$\frac{f'}{ f \sqrt{1-f^2}}$	$-\operatorname{arg\ sech} f + C$			
$\frac{f'}{ f \sqrt{1+f^2}}$	$\arg \operatorname{cosech} f + C$			

Primitivação por partes

$$\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx,$$

sendo F uma primitiva de f.

REGRAS PRÁTICAS

Potências de funções trigonométricas ou hiperbólicas

Potências ímpares de sen x, $\cos x$, sh x ou ch x. Destaca-se uma unidade à potência ímpar e o factor resultante passa-se para a co-função através das fórmulas fundamentais:

$$\cos^2 x + \sin^2 x = 1$$
, $\cosh^2 x - \sinh^2 x = 1$.

Potências pares de sen x, $\cos x$, sh x ou ch x. Passa-se para o arco duplo através das fórmulas:

$$sen^2 x = \frac{1}{2}(1 - \cos 2x), \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x),$$

$$\sinh^2 x = \frac{1}{2}(\cosh 2x - 1), \qquad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1).$$

Potências pares e ímpares de $\operatorname{tg} x$ ($\operatorname{th} x$) ou $\operatorname{cotg} x$ ($\operatorname{coth} x$). Destaca-se $\operatorname{tg}^2 x$ ($\operatorname{th}^2 x$) ou $\operatorname{cotg}^2 x$ ($\operatorname{coth}^2 x$) e aplica-se uma das fórmulas:

$$tg^2 x = sec^2 x - 1,$$
 $(th^2 x = 1 - sech^2 x),$
 $cotg^2 x = cosec^2 x - 1,$ $(coth^2 x = 1 + cosech^2 x).$

Potências pares de $\sec x$ ($\operatorname{sech} x$) ou $\operatorname{cosec} x$ ($\operatorname{cosech} x$). Destaca-se $\operatorname{sec}^2 x$ ($\operatorname{sech}^2 x$) ou $\operatorname{cosec}^2 x$ ($\operatorname{cosech}^2 x$) e ao factor resultante aplica-se uma das fórmulas:

$$\sec^2 x = 1 + \tan^2 x$$
, $(\operatorname{sech}^2 x = 1 - \operatorname{th}^2 x)$,
 $\operatorname{cosec}^2 x = 1 + \operatorname{cotg}^2 x$, $(\operatorname{cosech}^2 x = \operatorname{coth}^2 x - 1)$.

Potências ímpares de $\sec x$ ($\operatorname{sech} x$) ou $\operatorname{cosec} x$ ($\operatorname{cosech} x$). Destaca-se $\operatorname{sec}^2 x$ ($\operatorname{sech}^2 x$) ou $\operatorname{cosec}^2 x$ ($\operatorname{cosech}^2 x$) e primitiva-se por partes começando por esse factor.

Produtos de potências de funções trigonométricas ou hiperbólicas

Potência ímpar de sen x (sh x) por qualquer potência de $\cos x$ (ch x). Destaca-se sen x (sh x) e passa-se o factor resultante para a co-função através da fórmula fundamental:

$$sen^2 x = 1 - \cos^2 x, \quad (sh^2 x = ch^2 x - 1).$$

Potência ímpar de $\cos x$ (ch x) por qualquer potência de $\sin x$ (sh x). Destaca-se $\cos x$ (ch x) e passa-se o factor resultante para a co-função através da fórmula fundamental:

$$\cos^2 x = 1 - \sin^2 x,$$
 $(\cosh^2 x = 1 + \sinh^2 x).$

Potência par de $\operatorname{sen} x$ ($\operatorname{sh} x$) por potência par de $\cos x$ ($\operatorname{ch} x$). Aplicam-se as fórmulas:

$$sen 2x = 2 sen x cos x, (sh 2x = 2 sh x ch x),$$

$$cos 2x = cos^{2} x - sen^{2} x, (ch 2x = ch^{2} x + sh^{2} x),$$

$$sen^{2} x = \frac{1}{2} (1 - cos 2x), (sh^{2} x = \frac{1}{2} (ch 2x - 1)),$$

$$cos^{2} x = \frac{1}{2} (1 + cos 2x), (ch^{2} x = \frac{1}{2} (ch 2x + 1)).$$

Produtos em que aparecem factores do tipo sen mx ou cos nx (sh mx ou ch nx)

Aplicam-se as fórmulas:

$$sen x sen y = \frac{1}{2}(\cos(x-y) - \cos(x+y)), \qquad \left(sh x sh y = \frac{1}{2}(ch(x+y) - ch(x-y)) \right),
\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y)), \qquad \left(ch x ch y = \frac{1}{2}(ch(x+y) + ch(x-y)) \right),
sen x cos y = \frac{1}{2}(sen(x+y) + sen(x-y)), \qquad \left(sh x ch y = \frac{1}{2}(sh(x+y) + sh(x-y)) \right).$$

Primitivação de fracções racionais

Consideremos a fracção $\frac{f(x)}{g(x)}$ onde f(x) e g(x) são dois polinómios. Se o grau do numerador for maior ou igual ao grau do denominador, efectua-se a divisão de f(x) por g(x). Obtém-se então

$$\frac{f(x)}{g(x)} = Q(x) + \frac{R(x)}{g(x)},$$

sendo $\frac{R(x)}{g(x)}$ uma fracção própria. Para primitivar a fracção própia procede-se de acordo com os seguintes passos.

Decomposição do denominador da fracção própria em factores. Os factores obtidos são da forma $(x-a)^{\alpha}$, correspondendo a raízes reais a de multiplicidade α , ou da forma $\left[(x-p)^2+q^2\right]^{\beta}$, correspondendo às raízes imaginárias $p\pm qi$ de multiplicidade β .

Decomposição da fracção própria numa soma de elementos simples. Cada factor do tipo:

1. $(x-a)^{\alpha}$ dá origem a

$$\frac{A_1}{(x-a)^{\alpha}} + \frac{A_2}{(x-a)^{\alpha-1}} + \dots + \frac{A_{\alpha}}{x-a},$$

com A_i , $i = 1, ..., \alpha$, constantes a determinar;

2. $[(x-p)^2+q^2]^{\beta}$ dá origem a

$$\frac{P_1x + Q_1}{[(x-p)^2 + q^2]^{\beta}} + \frac{P_2x + Q_2}{[(x-p)^2 + q^2]^{\beta-1}} + \dots + \frac{P_{\beta}x + Q_{\beta}}{(x-p)^2 + q^2},$$

com P_i , Q_i , $j = 1, ..., \beta$, constantes a determinar.

Determinação das constantes. As constantes A_i , $i=1,\ldots,\alpha$, e P_j , Q_j , $j=1,\ldots,\beta$, podem ser determinadas conjuntamente pelo *método do coeficientes indeterminados*. Há, no entanto, uma forma alternativa de calcular essas constantes, que descrevemos de seguida.

- 1. Cálculo dos coeficientes A_i , $i=1,\ldots,\alpha$. Seja $\psi(x)$ tal que $g(x)=\psi(x)(x-a)^{\alpha}$. Se:
 - (a) $\alpha = 1$, temos que

$$A_1 = \left[\frac{R(x)}{\psi(x)}\right]_{x=a};$$

(b) $\alpha > 1$, efectua-se a divisão

$$\left[\frac{R(x)}{\psi(x)}\right]_{x=a+h}$$

dispondo os polinómios por ordem crescente dos seus monómios, obtendo-se

$$\left[\frac{R(x)}{\psi(x)}\right]_{x=a+h} = A_1 + A_2h + \dots + A_\alpha h^{\alpha-1} + \frac{R_\alpha(a+h)}{\psi(a+h)}.$$

- 2. Cálculo dos coeficientes P_j , Q_j , $j=1,\ldots,\beta$. Seja $\psi(x)$ tal que $g(x)=\psi(x)\left[(x-p)^2+q^2\right]^{\beta}$. Se:
 - (a) $\beta = 1$, temos que

$$\left[P_1x + Q_1 = \frac{R(x)}{\psi(x)}\right]_{x=p+qi};$$

(b) $\alpha > 1$, as constantes calculam-se pelo método dos coeficientes indeterminados (as constantes P_1 e Q_1 podem ser obtidas como em (a)).

Nota: Caso apareçam elementos simples da forma $\frac{1}{[(x-p)^2+c]^n}$, estes podem ser primitivados usando a seguinte fórmula de recorrência:

$$\int \left(\frac{1}{[(x-p)^2+c]^n}\right) dx = \frac{1}{c} \left[\frac{1}{2n-2} \times \frac{x-p}{[(x-p)^2+c]^{n-1}} + \frac{2n-3}{2n-2} \int \left(\frac{1}{[(x-p)^2+c]^{n-1}}\right) dx\right].$$

Primitivação por substituição

Sejam a, b, c e d constantes reais. A notação R(...) indica que se trata de uma função racional (envolvendo apenas somas, diferenças, produtos e quocientes) do que se encontra entre parêntesis.

Tipo de Função	Substituição
$\frac{1}{(x^2+a^2)^k}, \ k \in \mathbb{N}, \ k > 1$	$x = a \operatorname{tg} t$
$\frac{P(x)}{(ax^2+bx+c)^k},\ k\in\mathbb{N},\ k>1,\ b^2-4ac<0,\ \text{onde}$ $P(x)\ \text{\'e}\ \text{um polin\'omio de grau inferior ou igual a }2k$	$ax + \frac{b}{2} = t$
$\frac{P(x)}{((x-p)^2+q^2)^k},\ k\in\mathbb{N},\ k>1,\ \text{onde}\ P(x)\ \text{\'e}\ \text{um}$ polinómio de grau inferior ou igual a $2k$	x = p + qt
$\frac{x^{k-1}}{x^{2k} \pm a^2}, \ k \in \mathbb{Q}, \ k > 1$	$x^k = at$

Tipo de Função	Substituição
$R(a^{rx}, a^{sx},)$	$a^{mx} = t$ onde $m = m.d.c.(r, s,)$
$R(\log_a x)$	$t = \log_a x$
$R\left(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{p}{q}}, \left(\frac{ax+b}{cx+d}\right)^{\frac{r}{s}}, \dots\right)$	$\frac{ax+b}{cx+d} = t^m \text{ onde } m = m.m.c.(q, s,)$
$R\left(x,(ax+b)^{\frac{p}{q}},(ax+b)^{\frac{r}{s}},\ldots\right)$	$ax + b = t^m$ onde $m = m.m.c.(q, s,)$
$R\left(x,x^{\frac{p}{q}},x^{\frac{r}{s}},\ldots\right)$	$x = t^m$ onde $m = m.m.c.(q, s,)$
$R\left(x,\sqrt{a^2-b^2x^2}\right)$	$x = \frac{a}{b} \operatorname{sen} t$ ou $x = \frac{a}{b} \cos t$ ou $x = \frac{a}{b} \operatorname{th} t$
$R\left(x,\sqrt{a^2+b^2x^2}\right)$	$x = \frac{a}{b} \operatorname{tg} t \text{ ou } x = \frac{a}{b} \operatorname{sh} t$
$R\left(x,\sqrt{b^2x^2-a^2}\right)$	$x = \frac{a}{b} \sec t$ ou $x = \frac{a}{b} \cot t$
$R\left(x,\sqrt{x},\sqrt{a-bx}\right)$	$x = \frac{a}{b} \operatorname{sen}^2 t$ ou $x = \frac{a}{b} \cos^2 t$
$R\left(x,\sqrt{x},\sqrt{a+bx}\right)$	$x = \frac{a}{b} \operatorname{tg}^2 t$
$R\left(x,\sqrt{x},\sqrt{bx-a}\right)$	$x = \frac{a}{b}\sec^2 t$
$R\left(x,\sqrt{ax^2+bx+c}\right)$	se $a > 0$ faz-se $\sqrt{ax^2 + bx + c} = x\sqrt{a} + t$ se $c > 0$ faz-se $\sqrt{ax^2 + bx + c} = \sqrt{c} + tx$ se $ax^2 + bx + c = a(x - r_1)(x - r_2)$, $\sqrt{ax^2 + bx + c} = (x - r_1)t$ ou $\sqrt{ax^2 + bx + c} = (x - r_2)t$
$x^m(a+bx^n)^{\frac{p}{q}}$	se $\frac{m+1}{n} \in \mathbb{Z}$ faz-se $a+bx^n=t^q$ se $\frac{m+1}{n} + \frac{p}{q} \in \mathbb{Z}$ faz-se $a+bx^n=x^nt^q$

Tipo de Função	Substituição
$R(\operatorname{sen} x, \cos x):$ (a) se $R(u, v)$ é impar na variável u , isto é, $R(-u, v) = -R(u, v)$ (b) se $R(u, v)$ é impar na variável v , isto é, $R(u, -v) = -R(u, v)$ (c) se $R(u, v)$ é par em nas variáveis u e v , isto é, $R(-u, -v) = R(u, v)$ (d) nos restantes casos (e até nos anteriores)	$\cos x = t$
$R(\operatorname{sen} mx, \cos mx)$	mx = t
$R(e^x, \operatorname{sh} x, \operatorname{ch} x)$	$x = \ln t$
$R(\operatorname{sh} x, \operatorname{ch} x):$ (a) $R \notin \operatorname{impar\ em\ sh} x$ (b) $R \notin \operatorname{impar\ em\ ch} x$ (c) $R \notin \operatorname{par\ em\ sh} x \in \operatorname{ch} x$ (d) nos restantes casos (e até nos anteriores)	$\operatorname{ch} x = t$ $\operatorname{sh} x = t$ $\operatorname{th} x = t, \text{ obtendo então}$ $\operatorname{sh} x = \frac{t}{\sqrt{1 - t^2}}, \text{ ch } x = \frac{1}{\sqrt{1 - t^2}}$ $\operatorname{th} \frac{x}{2} = t, \text{ obtendo então}$ $\operatorname{sh} t = \frac{2t}{1 - t^2}, \text{ ch } x = \frac{1 + t^2}{1 - t^2}$
$R(\operatorname{sh} mx, \operatorname{ch} mx)$	mx = t

Observação: Quando se efectua uma substituição, aparece frequentemente uma expressão do tipo $\sqrt{f^2(t)}$. No caso geral terá de se escrever

 $\sqrt{f^2(t)} = |f(t)|.$