Table of Contents

	1
Auto and cross correlation matrix	2
Plotting the Auto_correlation	2
Plotting the PSD	3
Main ITDM	3
Functions	4
Auto and cross correlation	4
Plotting the power spectrum	4
Ibrahim method function	
Stability analysis	7
splitting the time domain signal with windowing and overlapping	7
Complex to real mode shapes	8
Mode shape visualization	8
GUI to select the relevant parameters	

Data1:Data.mat

Auto and cross correlation matrix Plotting the Auto_correlation

Auto correlation of the file: Data.mat

Plotting the PSD

Frequency [Hz]

Main ITDM

Starting ITDM:
Doing it for the order of the sys:

Functions

Auto and cross correlation

Plotting the power spectrum

Ibrahim method function

N = 8

N = 10

N = 12

N = 14

N = 16

N = 18

N = 20

N = ZZ

N = 24 N = 26

N = 28

N = 30

N = 32

N = 34

N = 36

N = 38

- N = 40
- N = 42
- N = 44
- N = 46
- N = 48
- N = 50
- N = 52
- N = 54
- N = 56
- N = 58
- N = 60
- N = 62
- N = 64
- N = 66
- N = 68
- N = 70 N = 72
- N = 74
- 10 /4
- N = 76 N = 78
- N = 80
- N = 82
- N = 84
- N = 86
- N = 88
- N = 90
- N = 92
- N = 94
- N = 96
- N = 98
- N = 100

Stability analysis

```
The ranges of stable frequencies are: 14.4032 & 14.5056 32.1184 & 32.2208 54.4416 & 54.544 83.0112 & 83.1136 114.2432 & 114.3456 157.8656 & 157.968
```

splitting the time domain signal with windowing and overlapping

Complex to real mode shapes

Mode shape visualization GUI to select the relevant parameters

Published with MATLAB® R2023b