Machine Learning in Public Health

Lecture 6: Linear Model Selection and Regularization

Dr. Yang Feng

Linear Model Selection and Regularization

Consider the linear regression model.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- One typically fits this model using least squares.
- When many β_j 's are 0, we might want to use another fitting procedure instead of least squares to yield better prediction accuracy and model interpretability
 - Best Subset Selection
 - Forward Regression
 - Ridge Regression
 - LASSO

Best Subset Selection

To perform best subset selection, we fit a separate least squares regression for each possible combination of the p predictors.

- Potential problem: selecting the best model from among too many possibilities considered by best subset selection is not trivial.
- Best subset selection is usually implemented by:

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Choose the model in Step 3)

There are essentially two ideas in this step

- directly estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in Chapter 5.
- indirectly estimate test error by making an adjustment to the training error (e.g., adjusted R^2 , AIC, BIC and C_p).

Criteria for comparing models

For a candidate model M_d with d variables, we define the following criteria.

• Adjusted R^2 :

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

Q: how is adjusted R^2 different from R^2 ?

- Trade-off between goodness-of-fit (RSS) and model complexity (d).
- Mallow's C_p

$$C_p = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right),$$

where $\hat{\sigma}^2$ is the estimated variance of random error term ϵ using the full model (i.e., p predictors).

Criteria for comparing models

Akaike information criterion (AIC)

$$AIC = -2\log L + 2d,$$

where $\log L$ is the log-likelihood for the current model M_d . For linear regression, we have

$$\frac{1}{n}(RSS + 2d\hat{\sigma}^2)$$

Bayesian information criterion(BIC)

$$AIC = -2\log L + (\log n)d$$

For linear regression, we have

$$BIC = \frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right)$$

A few questions

• When n is bigger than $7, \log n > 2$. This means BIC penalizes larger models heavier compared to AIC. So which criterion encourages smaller models?

■ Among adjusted R^2 , AIC, C_p , BIC and Cross-Validation, which one is easier to be generalized beyond least squares linear regression?

CV - no term for model complexity, only need to get the error, thus it works better/more generalized for some other non-parametric models bc it does not require a likelihood function

Optimal model for each size

Machine Learning in Public Health (1)				

3/1/22, 8:59 AM

Optimal model for each size: four methods

Machine Learning in Public Health (1)				

3/1/22, 8:59 AM

Coefficients corresponding to optimal models

coef(best_subset, 1:11)

```
## [[1]]
## (Intercept)
                     Rating
## -354.238144
                   2.501169
## [[2]]
## (Intercept)
                     Income
                                 Rating
  -548.260759
                  -7.684998
                               4.002145
## [[3]]
    (Intercept)
                                     Limit
                                              StudentYes
                       Income
   -456.4610300
                                 0.2723742 429.2673608
                  -7.8639273
##
## [[4]]
                                     Limit
                                                    Cards
                                                            StudentYes
    (Intercept)
                       Income
   -523.0518688
                  -7.7925423
                                 0.2712276
                                              23.0613375
                                                           437,2257637
##
## [[5]]
    (Intercept)
                                     Limit
                                                    Cards
                                                                          StudentYes
                       Income
   -474.4151238
                                 0.2695746
                                              23.6202781
                                                            -0.8761518
                                                                         435.8910167
                   -7.6386077
## [[6]]
    (Intercept)
                                     Limit
                                                   Rating
                                                                 Cards
                       Income
                                                                                 Age
   -483.1236387
                   -7.6550380
                                 0.2425861
                                               0.4057927
                                                            21.4430273
                                                                          -0.8818302
     StudentYes
    434.7457520
##
## [[7]]
                                     Limit
    (Intercept)
                       Income
                                                   Rating
                                                                 Cards
                                                                                 Age
  -479.7062751
                  -7.6587166
                                 0.2432506
                                               0.3961782
                                                            21.4556382
                                                                          -0.8844975
  GenderFemale
                  StudentYes
     -5.9442936
                 434.5896004
##
## [[8]]
    (Intercept)
                                     Limit
                                                   Rating
                       Income
                                                                 Cards
                                                                                 Age
## -476.0559413
                  -7.6549983
                                 0.2430891
                                               0.3995257
                                                            21.4452607
                                                                          -0.8982854
## GenderFemale
                  StudentYes
                                MarriedYes
     -5.6678976
                 433.4931082
                                -5.4990089
##
## [[9]]
##
          (Intercept)
                                    Income
                                                         Limit
                                                                            Rating
```

##	-478.2999819	-7.6539473	0.2430925	0.3992281
##	Cards	Age	GenderFemale	StudentYes
##	21.4787522	-0.8909104	-5.6975997	433.3446404
##	MarriedYes	EthnicityCaucasian		
##	-5.5205462	3.6022736		
##				
##	[[10]]			
##		Income	Limit	Rating
##	-482.4570451	-7.6484920	0.2412729	0.4253337
##	Cards	Age	GenderFemale	StudentYes
##	21.4309499	-0.8814066	-5.7321331	433.2456953
##	MarriedYes	EthnicityAsian	EthnicityCaucasian	
##	-6.0516622	6.2314770	6.8553322	
##	:			
##	[[11]]			
##	(Intercept)	Income	Limit	Rating
##	-477.5268904	-7.6464664	0.2415817	0.4201142
##	Cards	Age	Education	GenderFemale
##	21.4194258	-0.8833370	-0.3266788	-5.7043018
##	StudentYes	MarriedYes	EthnicityAsian	EthnicityCaucasian
##	433.3529352	-6.1769790	6.3441993	6.8727948

coef(best_subset, 4)

```
## (Intercept) Income Limit Cards StudentYes
## -523.0518688 -7.7925423 0.2712276 23.0613375 437.2257637
```

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

```
## (Intercept) Income Limit Rating Cards StudentYes
## -531.3130997 -7.8084975 0.2465294 0.3715033 21.0647478 436.1851935
```

Optimal model for each size: four methods

Machine Learning in Public Health (1)	

3/1/22, 8:59 AM

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

```
## (Intercept) Income Limit Cards StudentYes
## -523.0518688 -7.7925423 0.2712276 23.0613375 437.2257637
```

Optimal model for each size: four methods

М	achine Learning in Public Health (1)	3/1/22, 8:59 AM

Comparison

■ In either forward or backward selection, we search through 1 + p(p + 1)/2 models. This is a huge saving compared with best subset selection.

- However, forward stepwise selection and backward stepwise selection might miss the optimal subset of features. This is a price we have to pay for computational advantages.
- There are hybrid approaches that combine forward and backward selection.

Shrinkage Methods

• We can fit a model containing all *p* predictors using a technique that *constrains* or *regularizes* the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero.

- Shrinking the coefficient estimates can significantly reduce their variance (with some cost in bias).
- Best known shrinkage methods: ridge regression and the lasso.
- The ridge regression coefficient estimates $\hat{\beta}_{j}^{R}$ are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2 ,$$

where $\lambda \geq 0$ is tuning parameter, and x_{ij} is the jth coordinate of the ith observation x_i .

• Lasso: find \hat{R}_{j}^{L} that minimizes

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

Importance of standardization

- In contrast to the usual least squares approach, standardizing the predictors is important in shrinkage methods. Why?
- To standardize the predictors:

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}$$

- ullet λ is an important penalty parameter that controls the amount of shrinkage.
- What happens when $\lambda = 0$ and $\lambda \to \infty$?
- How do we choose the tuning parameter λ ? Cross-validation
- Lasso tends to give sparser models compared to ridge (better for model interpretability), and it tends to perform better when the true model is sparse.
- But we do not know which is better for prediction accuracy.

Ridge regression does NOT give you sparse models

Macl	hine Learning in Public He	ealth (1)			

3/1/22, 8:59 AM

Bias-variance trade-off for ridge regression

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

Machine Learning in Public Health (1)	3/1/22, 8:59 AM

Lasso encourages sparse models

Machine Learning in Public Health (1)	3/1/22, 8:59 AM

Another fomulation of ridge and lasso

■ The Lasso's sparsity is better interpreted by an alternative formulation of Lasso and ridge regression

• λ and s has some corresponding relationships.

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

How are they related to best subset selection?

A simple special case for ridge regression and the Lasso

- Consider a simple case with n = p, and X is a diagonal matrix with 1's on the diagonal and 0's in all off-diagonal elements
- Assume that we perform regression without an intercept
- lacktriangle Under these assumptions, the approach amounts to finding eta_1,\cdots,eta_p that minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2$$

The least squares solution is given by

$$\hat{\beta}_j = y_j$$

• In this setting, amounts to finding β_1, \dots, β_p to minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

The ridge regression estimates take the form

$$\hat{\beta}_i^R = y_i/(1+\lambda)$$

A simple special case for ridge regression and the Lasso (cont')

The amounts to finding coefficients to minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

The lasso estimate takes the form

$$\hat{\beta}_j^L = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2 \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2 \\ 0 & \text{if } |y_j| \le \lambda/2 \end{cases}$$

or

$$\hat{\beta}_j^L = sign(y_j)[abs(y_j) - \lambda/2]_+$$

A simple special case for ridge regression and the Lasso (cont')

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with n = p and X a diagonal matrix with 1's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.

High-dimensional setting

• High-dimensional settings: the scenarios where the number of predictors p is bigger than the sample size n

- A situation common in modern biology and medical sciences, but probably less so in business
- Including more variables into the regression, we potentially might find some useful features, but this benefit needs to be weighted against including many noise features.
- Example: Suppose there are in total 1000 features, 10 features are useful for the outcome, and the remaining 990 are noise features. We fix sample size (say at n = 50). Please compare the following three scenarios
 - I. Use all 10 useful features for prediction
 - Use 9 of the 10 useful features for prediction
 - 3. Use all 10 useful features, plus 100 noise features for prediction
- Here, I is clearly better than 3 (no decrease in bias, but increase in variance). It is hard to compare I and 2 only based on this abstract description (think about variance and bias again).

Next Class

Regression and Classification Trees