Jannik Wiessler Matlab Grundkurs

Newton-Raphson Verfahren

Das Newton-Raphson* Verfahren ist eine Methode zur numerischen Bestimmung von Nullstellen gegebener, stetig differenzierbarer Funktionen $f: \mathbb{R} \to \mathbb{R}$. Abbildung 1 illustriert die dazugehörige Iterationsvorschrift.

Abbildung 1: Visualisierung des Newton-Raphson Verfahrens

Das Verfahren

- 1. Wähle einen Startwert x_0 , berechne $f(x_0)$.
- 2. Berechne die Tangente $t_0(x)$ an $f(x_0)$. Die Tangente ergibt sich aus dem linearen Anteil der Taylorentwicklung an $f(x_0)$:

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{linearer Summand}} + \underbrace{\frac{1}{2}f''(x_0)(x - x_0)^2 + \dots}_{\text{Terme h\"{o}herer Ordnung}}$$
(1)

$$t(x) = t_0(x) = f(x_0) + f'(x_0)(x - x_0)$$
(2)

3. Berechne die Nullstelle x_1 der Tangente.

$$t_{0}(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) \stackrel{!}{=} 0$$

$$\Leftrightarrow f'(x_{0})(x - x_{0}) = -f(x_{0})$$

$$\Leftrightarrow (x - x_{0}) = -f(x_{0})/f'(x_{0})$$

$$\Leftrightarrow x = x_{0} - f(x_{0})/f'(x_{0}) := x_{1}$$
(3)

4. Wähle x_1 als neuen Startwert, beginne bei 1.

^{*}Isaac Newton und Joseph Raphson

Die allgemeine Iterationsvorschrift ergibt sich aus

$$t_n(x) = f(x_n) + f'(x_n)(x_{n+1} - x_n) \stackrel{!}{=} 0$$

zu:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$\tag{4}$$

Beispiel Im Folgenden sei ein einfaches Zahlenbeispiel angegeben. Mit dem Startwert $x_0 = 5$ und der Ableitung f'(x) = 2(x-3) wird die Nullstelle der Funktion $f(x) = (x-3)^2$ numerisch angenähert.

$f(x) = (x-3)^2$	f'(x) = 2(x-3)	x
4	4	5
1	2	4
0.25	1	3.5
0.0625	0.5	3.25
0.015625	0.25	3.125
0.0039063	0.125	3.0625
\downarrow		\downarrow
0.0		3.0

Konvergenz Auf eine detaillierte Analyse der Konvergenzgeschwindigkeit wird im Folgenden verzichtet. Es sei jedoch erwähnt, dass die Konvergenz des Verfahrens nicht uneingeschränkt sichergestellt ist. Als Gegenbeispiel sei

$$h(x) = x^3 - 2x + 2, \quad x_0 = 0 \tag{5}$$

gegeben. Es kann leicht überprüft werden, dass das Verfahren auf der Funktion h mit Startwert $x_0 = 0$ in einer Oszillation zwischen 0 und 1 resultiert.

Abbruchkriterien Neben der Vorgabe einer maximalen Anzahl an Iterationen kann bei der Implementierung auf zwei weitere Abbruchkriterien abgestellt werden.

- 1. Maximale Anzahl an Iterationen erreicht
- 2. $||f(x_n)|| < \varepsilon_1$
- 3. $||x_{n+1} x_n|| < \varepsilon_2$

Dabei bestimmen $\varepsilon_1, \varepsilon_2 \in \mathbb{R}^+$ die Qualität der Nullstelle.