<u>Laboratório - Arquivos e Exceções</u>

As respostas devem ser enviadas para o e-mail <u>filipemtz@gmail.com</u> e o corpo do e-mail deve conter os nomes dos alunos que realizaram a atividade.

- 1) Faça um programa que solicite que o usuário digite o nome, idade e um hobbie e salve estas informações em um arquivo chamado "info.txt".
- 2) Faça um programa que leia o arquivo "info.txt" e exiba as informações na tela.
- 3) Crie uma nova exceção chamada InformacoesIncompletasException que herde e lance a exceção se o arquivo possuir menos de 3 linhas. Passe o nome do arquivo como argumento para o construtor da classe InformacoesIncompletasException e use-o para exibir uma mensagem de erro no formato "O arquivo 'info.txt' contém dados incompletos".
- 4) Faça um programa que leia uma sequência de números armazenados em um arquivo chamado "entrada.txt" e salve em um arquivo "saida.txt" os valores máximo e mínimo, além da média, mediana e do desvio padrão. Crie métodos para calcular esses valores.

O desvio padrão é dado por:

Desvio Padrão (Dp)

$$Dp = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

onde \overline{x} é a média.

A **mediana** representa o valor central de um conjunto de dados. Para encontrar seu valor é necessário colocar os números em ordem crescente ou decrescente. Se o número elementos do sequência for ímpar, a mediana é o valor no meio da sequência. Se for par, a mediana é a média dos dois valores centrais.

Exemplo 1:

entrada.txt	saida.txt
2	mínimo: 1
5	máximo: 5
3	média: 3
1	mediana: 3
4	desvio padrão: 1.5811

Exemplo 2:

entrada.txt	saida.txt
2	mínimo: 1
1	máximo: 100
1	média: 21.2
2	mediana: 2
100	desvio padrão: 44.053

- 5) No exercício anterior, se existirem dados não numéricos no arquivo, ao tentar converter o conteúdo da linha para um número será lançada a exceção NumberFormatException. Capture esta exceção e escreva uma mensagem informando ao usuário que todos os dados do arquivo devem ser numéricos e exibindo o conteúdo da linha. Crie três versões do programa com:
 - Uma que exiba o erro assim que a primeira linha problemática for encontrada e encerre o programa.
 - Outra que exiba o erro sempre que uma linha problemática for encontrada e continue a execução do programa descartando o conteúdo da linha. As métricas devem ser calculadas usando os valores válidos do arquivo.
 - Outra que defina uma nova exceção chamada ValorNaoNumeroException que herde da classe
 Exception e no construtor receba como argumento o nome do arquivo e o conteúdo da linha
 problemática. Use estas informações para exibir uma mensagem no formato "O arquivo
 'entrada.txt' contém uma linha com valores não numéricos: 'linha de exemplo'.". Lance esta
 exceção usando o throw quando for capturada uma exceção do tipo NumberFormatException e
 verifique a mudança na mensagem ao executar o programa.
- 6) Considere um arquivo em formato CSV (comma-separated values valores separados por vírgula) com nome "exames.csv" contendo dados de pacientes e, para cada um deles, os resultados de um exame. Crie um novo arquivo "exames_novos.csv" sem a coluna de nomes e substituindo na 2a, 3a e 4a colunas os valores por um número inteiro (e.g., na 2a "jovem" por 1, adulto por "2" e idoso por "3" e na 3a, "normal" por 1, "SDA" por 2 e "ITC" por 3). Na solução, assuma que os valores diferentes existentes nas linhas não são conhecidos e que eles devem ser extraídos do arquivo. Importante: observe que os valores podem estar escritos em minúsculo ou maiúsculo.

Exemplo:

exames.csv	exames_novos.txt
Nome;Grupo;M1;M2	Grupo;M1;M2
Jose Almeida;jovem;SDA;normal	1;1;1
Maria Silva;idoso;NORMAL;normal	2;2;1
Alberto Meireles;adulto;SDA;alterado	3;1;2
Marta Roberta Loureiro;idoso;ITC;inconclusivo	2;3;3
Camila Auxiliadora;Jovem;normal;alterado	1;2;2
Suzane Schneider;jovem;ITC;Alterado	1;3;2
Armando Botelho;Adulto;SDA;NORMAL	3;1;1

7) Usando como entrada um arquivo no mesmo formato do exercício anterior, produza um arquivo chamado "estatisticas.txt" com uma contagem de valores para a 2a, 3a e 4a colunas, como ilustrado abaixo.

exames.csv	exames_novos.txt
Nome;Grupo;M1;M2	Grupo
Jose Almeida;jovem;SDA;normal	* Jovem: 3
Maria Silva;idoso;NORMAL;normal	* Adulto: 2
Alberto Meireles;adulto;SDA;alterado	* Idoso: 2
Marta Roberta Loureiro;idoso;ITC;inconclusivo	M1
Camila Auxiliadora;Jovem;normal;alterado	* SDA: 3
Suzane Schneider;jovem;ITC;Alterado	* normal: 2
Armando Botelho;Adulto;SDA;NORMAL	* ITC: 2
	M2
	* normal: 3
	* alterado: 3
	* inconclusivo: 1