МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ПГТУ»)

Факультет (и	нститут)	
<u>Радиотехнич</u>		
	1 1	
Направление	подготовк	и (специальность)
1		(наименование)
Выпускник:		
	Фамилия	Александров
	Имя	<u>Илья</u>
	Отчество	Константинович
Тема ВКР		
Кафедра Раді	иотехничес	ких и медико-биологических систем
2000-110-110-11	коронон	
Заведующий		и.о. уч. степень, звание, должность, подпись)
D	` -	•
Руководител	Ь	и.о. уч. степень, звание, должность, подпись)
Консультант	(ф.	и.о. уч. степень, звание, должность, подпись)
Консультант		и.о. уч. степень, звание, должность, подпись)
	(1)	,,, <u></u> , <u>A</u> -/
Рецензент		
	(ф.	и.о. уч. степень, звание, должность, подпись)
Мо приказа об	Vitoenwijei	нии темы ВКР
ВКР начата	утверждег	IMM TEMBI DICI
ВКР законче	110	
		PONTINE DVD
№ приказа о	•	защите БКГ й экзаменационной комиссии по защите
Оценка госу,	дарственно	и экзаменационной комиссии по защите
Декан факулі	ьтета	
(Директор ин	іститута) _	
(- :	
Секретарь Го	сударствен	ной
		сии
(
	/	
	«	» 202 г.

Аннотация

Выпускная квалификационная работа посвящена разработке. Разработан

Данная работа содержит введение, _ разделов, заключение и список использованной литературы. Пояснительная записка изложена на __ страницах.

Annotation

The final qualifying work is devoted to the development of a

This work contains an introduction, _ sections, conclusion and a list of references. The explanatory note is set out on _ pages.

Содержание

введен	НИЕ	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	4
1. ЗАД	АЧИ И МЕТ	ОДЫ РА	АДИОТЕХНИКИ	•••••		5
1.1 3	адачи радио	гехники	[5
1.1.1	Задача объ	наружен	ния сигнала	• • • • • • • • • • • • • • • • • • • •	•••••	5
1.1.2	Задача раз	зличени	я сигналов			5
1.1.3	Задача рас	спознава	ания сигналов	• • • • • • • • • • • • • • • • • • • •	•••••	6
1.1.4	Задача фи	льтраци	ии сигналов			6
1.2	тандартные	методы	решения задач радиотехник	и	•••••	7
1.2.1	Энергетич	неский д	цетектор			7
1.2.2	Корреляці	ионная (функции			7
1.2.3	Метод спе	ектралы	ного анализа			8
1.2.4	Низкочаст	готный,	высокочастотный, режектор	ный и	полосов	юй
филь	тры	•••••			•••••	9
	Летоды реше 0	ния зад	ач радиотехники основанные	е на ней	і́ронны:	х сетях
1.3.1		нейрон	ная сеть			10
1.3.2	Сверточна	ая нейро	онная сеть		•••••	14
1.3.3	Рекуррент	гная ней	ронная сеть			14
2. PA31	РАБОТКА А	ЛГОРИ′	TMA	• • • • • • • • • • •		15
3. PA31	РАБОТКА П	РОГРА	ММЫ			16
3.1 V	Інструменты	и техно	ологии для разработки			16
			ого интерфейса			
	•	-	кода			
4. ИНС	ТРУКЦИЯ Г	ТОЛЬЗС	ВАТЕЛЯ			17
			Й ЛИТЕРАТУРЫ			
P	2 32					
	⊵ докум. Подп сандров	ись Дата		Лит.	Лист	Листов
ровер.	,				3	80
					ПГТ	/
					,,,,,	•

1. ЗАДАЧИ И МЕТОДЫ РАДИОТЕХНИКИ

Традиционно радиотехника решает следующие задачи: задача обнаружения сигналов, задача различения сигналов, задача распознавания образов и задача фильтрации сигналов.

1.1 Задачи радиотехники

1.1.1 Задача обнаружения сигнала

Задача обнаружения сигнала сводится к тому, чтобы во входном сигнале наилучшим способом принять решение о наличии или отсутствии искомого образа [1].

Математически постановка задачи выглядит следующим образом: Имеется два возможных сценария сценария. Нулевая гипотеза H_0 – сигнал отсутствует и, наблюдаемый сигнал y(t) состоит только из шума n(t):

$$H_0: y(t) = n(t)$$
 (1.1.1.1)

Альтернативная гипотеза H_1 — сигнал присутствует: и наблюдаемый сигнал y(t) представляет собой сумму полезного сигнала S(t) и шума n(t):

$$H_0: y(t) = S(t) + n(t)$$
 (1.1.1.2)

Цель задачи — принять решение о том: какая из гипотез верна, на основе наблюдений y(t).

1.1.2 Задача различения сигналов

Задача различения сигналов сводится к тому, чтобы разработать наилучшее правило или алгоритм, согласно которому обеспечивается принятие решения о том, какой из двух сигналов присутствует на входе в систему [1].

Математически постановка задачи выглядит следующим образом: Имеется набор возможных сигналов $\{S_1(t), S_2(t), S_3(t), ..., S_M(t)\}$, каждый из которых передается через канал связи. На приёмной стороне получается сигнал y(t), который представляет собой смесь переданного сигнала с шумом n(t):

$$y(t) = S_i(t) + n(t), \quad i = 1, 2, 3, ..., M$$
 (1.1.2)

					Лис
					_
Изм.	Лист	№ докум.	Подпись	Дата	3

где i — это номер переданного сигнала.

Цель задачи — на основе наблюдаемого сигнала y(t) сделать вывод о том, какой именно сигнал $s_i(t)$ был передан.

1.1.3 Задача распознавания сигналов

Задача распознавания сигналов сводится к тому, чтобы разработать наилучший алгоритм, согласно которому по наблюдаемому сигналу после выявления всех полезных образов определить их принадлежность к соответствующим объектам – источникам полезных сигналов [1].

Математически постановка задачи выглядит следующим образом: Имеется сигнал y(t), который состоит из образов $\{S_1(t), S_2(t), S_3(t), ..., S_M(t)\}$ и шума шума n(t):

$$y(t) = \sum_{i=0}^{M} S_i(t) + n(t), \quad i = 1, 2, 3, ..., M$$
 (1.1.3)

Цель задачи — на основе наблюдаемого сигнала y(t) идентефицировать и разделить все образы $s_i(t)$, которые были переданы.

1.1.4 Задача фильтрации сигналов

Задача фильтрации сигналов сводится к тому, чтобы разработать наилучший алгоритм, согласно которому из поступающего сигнала полезный сигнал будет выделяться наиболее точно с учетом имеющихся помех [1].

Математически постановка задачи выглядит следующим образом: Имеется сигнал y(t), который является суммой полезного сигнала S(t) и шума n(t):

$$y(t) = S(t) + n(t)$$
 (1.1.4.1)

Цель задачи — создать фильтр, который удаляет шум n(t) и оставляет полезный сигнал S(t) максимально неизменным. Фильтр можно описать как линейную систему, которая преобразует входной сигнал y(t) в выходной сигнал x(t):

$$x(t) = h(t) * y(t)$$
 (1.1.4.2)

где, h(t) – импульсная характеристика фильтра, а * – это операция свертки.

					Лист
					6
Изм.	Лист	№ докум.	Подпись	Дата	0

Импульсная характеристика определяет, каким образом фильтр воздействует на входной сигнал. В частотной области эта операция выражается через преобразование Фурье:

$$X(f) = H(f) \cdot Y(f) \tag{1.1.4.3}$$

где, X(f), H(f), Y(f) — это преобразование Фурье выходных сигналов, импульсной характеристики фильтра и входного сигнала соответственно.

1.2 Стандартные методы решения задач радиотехники

Для решения каждой из поставленных задач разработаны специальные методы, основанные на: на сравнении общей энергии, корреляционной функции, спектральной характеристики, низкочастотных, высокочастотных, полосовых и режекторных фильтров.

1.2.1 Энергетический детектор

Энергетический детектор — это метод, основанный на сравнении общей энергии сигнала y(t) с некоторым пороговым значением p. Энергию сигнала можно оценить с помощью следующего выражения:

$$E_{y} = \int_{-\infty}^{+\infty} |y(t)|^{2} dt$$
 (1.2.1.1)

Если энергия сигнала превышает заданный порог, делается вывод о наличии сигнала.

$$E_{\gamma} > p \tag{1.2.1.2}$$

Энергетический детектор позволяет решить задачу обнаружения сигнала.

1.2.2 Корреляционная функции

С помощью корреляционной функции сравнивается входной и эталонный сигналы. На выходе расчитывается величина в промежутке от 0 до 1, что описывает две крайности от «сигналы совершенно различны» до «сигналы совершенно идентичны» соответственно. Математическое представление функции выглядит следующим образом:

Изм.	Лист	№ докум.	Подпись	Дата

$$r = \frac{\sum_{i=0}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{N} (y_i - \bar{y})^2}}$$
(1.2.2.1)

где, r – значение корреляционной функции, x_i – значение входного сигнала, y_i – эталонный сигнал, \bar{x} – математическое ожидание входного сигнала, \bar{y} – математическое ожидание эталонного сигнала, N – размер исследуемого промежутка сигнала.

После расчета устанавливается допустимый порог, при достижении которого будет считаться, что входной сигнал содержит образ, который необходимо обнаружить, либо идентичен ему:

$$r > p \tag{1.2.2.2}$$

где, р – пороговое значение идентичности сигналов.

Корреляционная функция достаточно удобный инструмент, с помощью которого можно решать задачи обнаружения сигнала, различения сигналов и распознавания образов в сигнале.

1.2.3 Метод спектрального анализа

Спектральный анализ позволяет выявить во входном сигнале характерные частоты, которыми описывается искомый образ и на этой основе сделать вывод о наличии эталонного сигнала во входном. Спектральный анализ строится на преобразовании Фурье. Преобразование Фурье — это математическая операция, которая позволяет перевести функцию времени в функцию частоты. Для аналоговых сигналов оно имеет следующий вид:

$$S(\omega) = \int_{-\infty}^{+\infty} s(t)e^{-j\omega t}dt$$
 (1.2.3.1)

где, s(t) функция входного сигнала, ω – круговая частота, -j – мнимая единица.

Для дискретного сигнала преобразование выглядит следующим образом:

$$X_p(k) = \sum_{n=0}^{N} x_p(n) e^{-j\frac{2\pi}{n}kn}, \ k = 0, 1, ..., N$$
 (1.2.3.2)

где, $x_p(n)$ — дискретный сигнал, N — размерность дискретного сигнала, -j — мнимая единица.

					Лист
					,
Изм.	Лист	№ докум.	Подпись	Дата	0

Рисунок 1.1 - Сигналы с различной степенью частотной модуляции и их спектры.

Как можно заметить на Рисунок 1.1 спектр имеет ярко выраженные пики на определенных значениях частоты. В сравнении данных значений с эталонными и заключается метод спектрального анализа.

Метод спектрального анализа попозволяет решать задачи обнаружения сигнала, различения сигналов и распознавания образов в сигнале.

1.2.4 Низкочастотный, высокочастотный, режекторный и полосовой фильтры

Низкочастотный фильтр – это фильтр, который пропускает низкие частоты и подавляет высокие. Его импульсная характеристика выглядит следующим образом:

$$H(f) = \begin{cases} 1 & \text{if } |f| \le f_c \\ 0 & \text{if } |f| > f_c \end{cases}$$
 (1.2.4.1)

где, $f_{\mathcal{C}}$ – частота среза.

Высокочастотный фильтр — это фильтр, который пропускает высокие частоты и подавляет низкие. Его импульсная характеристика выглядит следующим образом:

$$H(f) = \begin{cases} 0 & \text{if } |f| \le f_c \\ 1 & \text{if } |f| > f_c \end{cases}$$
 (1.2.4.2)

Изм.	Лист	№ докум.	Подпись	Дата

где, f_c – частота среза.

Полосовый фильтр — это фильтр, который пропускает частоты в определенном диапазоне и подавляет все остальные. Его импульсная характеристика выглядит следующим образом:

$$H(f) = \begin{cases} 1 & \text{if } f_l \le |f| \le f_h \\ 0 & \text{otherwise} \end{cases}$$
 (1.2.4.3)

где, f_l — нижняя граница полосы пропускания, f_h — верхняя граница полосы пропускания.

Режекторный фильтр — это фильтр, который подавляет частоты в определенном диапазоне и пропускает все остальные. Его импульсная характеристика выглядит следующим образом:

$$H(f) = \begin{cases} 0 & \text{if } f_l \le |f| \le f_h \\ 1 & \text{otherwise} \end{cases}$$
 (1.2.4.3)

где, f_l — нижняя граница полосы пропускания, f_h — верхняя граница полосы пропускания.

1.3 Методы решения задач радиотехники основанные на нейронных сетях

Нейронные сети разделяют на три типа: линейные, сверточные и реккурентные. Каждый тип решает свои задачи и применим при различных условиях.

1.3.1 Линейная нейронная сеть

Линейная нейронная сеть представляет собой совокупность нейронов, или персептронов, которые организованы в слои и соединены между собой.

Входной слой выполняет функцию распределения данных. Выходной слой обрабатывает информацию, поступающую от предыдущих слоев, и выдает конечные результаты.

Слои, находящиеся между входным и выходным, называются промежуточными или скрытыми, и они также занимаются обработкой данных. Каждый нейрон предыдущего слоя соединен синаптическими связями со всеми

Изм.	Лист	№ докум.	Подпись	Дата

нейронами следующего слоя, что создает однородную и регулярную топологию многослойной нейронной сети [5].

Искусственный нейрон выглядит следующим образом:

Рисунок 1.2 – Искусственный нейрон

где, x — входной сигнал, ω — весовой коэффициент, S — взвешенная сумма, F — оператор нелинейного преобразования, y — выходной сигнал.

Математически расчет искусственного нейрона выглядит следующим образом:

$$y = F(\sum_{i=1}^{n} \omega_{i} x_{i}) = F(WX)$$
 (1.3.1.1)

где, X — вектор входного сигнала, W — весовой вектор, F — оператор нелинейного преобразования, y — выходной сигнал.

Сумма произведений входных сигналов на весовые коэффициенты называется взвешенной суммой. Она представляет собой скалярное произведение вектора весов на входной вектор:

$$S' = F(\sum_{i=1}^{n} \omega_i x_i) = F(WX) = |W||X|\cos(\alpha)$$
 (1.3.1.2)

где, |W| и |X| — длины векторов W и X соответственно, α угол между векторами W и X.

В качестве оператора нелинейного преобразования используется функция активации. Пусть Т — порог нелинейного элемента, который характеризует положение функции активации по оси абцисс. С учетом Т взвешенную сумму можно представить следующим образом:

$$S = \sum_{i=1}^{n} \omega_i x_i - T = S' - T \tag{1.3.1.3}$$

Одной из наиболее простых и популярных функций активации является сигмоида:

					Ŀ
					Г
Изм.	Лист	№ докум.	Подпись	Дата	ı

$$y(S) = \frac{1}{1 + e^{-cS}} \tag{1.3.1.4}$$

где, S- сумма C>0- коэффициент, характеризующий ширину сигмоидной функции по оси абцисс.

Рисунок 1.3 – Функция активации сигмоида

Слой нейронной сети – это множество нейронных элементов, на которые в каждый такт времени параллельно поступает информация от других нейронных элементов сети. Однослойная нейронная сеть будет выглядеть следующим образом [5]:

Рисунок 1.4 – Топология однослойной нейронной сети

					Лист
					12
Изм.	Лист	№ докум.	Подпись	Дата	12

Тогда выходное значение ј-го элемента второго слоя будет расчитыватся по следующей формуле:

$$y_i = F(S_i) = F(\sum_{i=1}^n \omega_{i,i} x_i - T_i)$$
 (1.3.1.5)

где, T_j — порог j-го нейронного элемента выходного слоя, $\omega_{i,j}$ — сила синаптической связи между i-м нейроном распределительного слоя и j-м нейроном обрабатывающего слоя.

Совокупность весовых коэффициентов W можно представить в виде матрицы, размерностью $m \times n$:

$$W = \begin{bmatrix} \omega_{11} & \cdots & \omega_{1m} \\ \vdots & \ddots & \vdots \\ \omega_{n1} & \cdots & \omega_{nm} \end{bmatrix}$$
 (1.3.1.6)

Тогда вектор – столбец взвешенной суммы в матричном виде определяется по следующей формуле:

$$S = W^T X - T \tag{1.3.1.7}$$

где, Т – вектор-столбец порогов нейронных элементов второго слоя.

На практике чаще всего применяется многослойная нейронная сеть, которая содержит несколько скрытых слоев и выглядит следующим образом [5]:

Рисунок 1.5 – Топология линейной нейронной сети

					Ли
					1
Изм.	Лист	№ докум.	Подпись	Дата	1 <i>1</i>

Общее количество синаптических связей многослойной линейной нейронной сети определяется по формуле:

$$V = \sum_{i=1}^{p} k(i)k(i+1) + \sum_{i=1}^{p} k(i+1)$$
 (1.3.1.8)

где, р – общее количество слоев нейронной сети, k(i) – количество нейронных элементов в i-м слое.

Здесь будет текст о том какие задачи из радиотехники может решить линейная нейронная сеть.

1.3.2 Сверточная нейронная сеть

Здесь будет текст описания сверточных нейронных сетей.

Здесь будет текст о том какие задачи из радиотехники может решить сверточная нейронная сеть.

1.3.3 Рекуррентная нейронная сеть

Здесь будет текст описания рекуррентных нейронных сетей.

Здесь будет текст о том какие задачи из радиотехники может решить рекррентная нейронная сеть.

Изм.	Лист	№ докум.	Подпись	Дата

	2. PA3PA	БОТКА	АЛГ	ОРИТМА		
Изм	 № докум.	Подпись	Лата			Лист 15

		3. PA3PA1	БОТКА	ПРС	ОГРАММЫ	
		3.1 Инстру	ументы	и те	хнологии для разработки	
		3.2 Описан	ие град	bичес	ского интерфейса	
		3.3 Описан	ие исхо	одно	го кода	
						Лист 1 6
Изм.	Лист	№ докум.	Подпись	Дата		16

		5. ЗАКЛН	ОЧЕНИ	Œ				
								Лисп
Изм.	Лист	№ докум.	Подпись	Лата				18

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Тисленко В.И. Статистическая теория радиотехнических систем: Учеб. пособие. Томск: Томский государственный университет управления и радиоэлектроники, 2003. 153 с.
- 2. Тихонов В.И. Статистическая радиотехника. 2е изд., перераб. и доп. М.: Радио и связь, 1982. 624 с.
- 3. Яневич Ю. М. Задачи приема сигналов и определения их параметров на фоне шумов учебное пособие / Ю.М. Яневич; Санкт-Петерб. гос. ун-т. Санкт-Петербург: С.-Петербургский государственный университет, 2004. 86 с.
- 4. Осадченко, В. Х. Фильтры высоких и низких частот : [учеб.-метод. пособие] / В. Х. Осадченко, Я. Ю. Волкова, Ю. А. Кандрина; [под общ. ред. В. Х. Осадченко] ; М-во образования и науки Рос. Федерации, Урал. федер. ун-т. Екатеринбург : Изд-во Урал. ун-та, 2015. 80 с.
- 5. Головко, В. А. Нейросетевые технологии обработки данных : учеб. пособие / В. А. Головко, В. В. Краснопрошин. Минск : БГУ, 2017. 263 с.

Изм. Лист	n № докум.	Подпись	Дата