1

Assignment 19

Shivangi Parashar AI20MTECH14012

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment19/ Assignment 19.tex

1 QUESTION

Let A be a 3×3 matrix with real entries. Identify the correct statements.

- 1.A is necessarily diagonalizable over R
- 2.If A has distinct real eigen values than it is diagonalizable over ${\bf R}$
- 3.If A has distinct eigen values than it is diagonalizable over C
- 4.If all eigen values are non zero than it is diagonalizable over ${\bf C}$

2 Solution

Statement 1.	A is necessarily diagonalizable over R	
False statement Example:	Matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^3 consisting of eigenvectors of A. Consider a matrix	
	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \tag{2.0.1}$	
	Eigen values are:	
	$\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0. \implies \lambda_1 = 1, \lambda_2 = 4 $ (2.0.2)	
	$\lambda_1 = 1$ has eigen vector $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$ and $\lambda_2 = 4$ has eigen vector $\begin{pmatrix} 1\\3\\9 \end{pmatrix}$ (2.0.3)	
	We have found only two linearly independent eigenvectors for A,not diagonalisable	
Statement 2.	If A has distinct real eigen values than it is diagonalizable over R	
True statement Proof 1:	Distinct real eigenvalues implies linearly independent eigenvectors spanning the entire spa and if a matrix has n linearly independent vectors than it is diagonalizable. Distinct eigen values implies linearly independent vectors that spans entire space. Consider 3 eigen vectors \mathbf{v} , \mathbf{w} and \mathbf{u} with eigen values λ , μ , ν respectively. such that $\lambda \neq \mu \neq \nu$	ice.
	$\alpha(\mathbf{v}) + \beta(\mathbf{w}) + \gamma(\mathbf{u}) = 0 \tag{2.0.4}$	
	$\alpha A(\mathbf{v}) + \beta A(\mathbf{w}) + \gamma A(\mathbf{u}) = 0 \tag{2.0.5}$	
	$\alpha \lambda \mathbf{v} + \beta \mu \mathbf{w} + \gamma \nu \mathbf{u} = 0 \tag{2.0.6}$	
	Multiplying (2.0.4)with $-\lambda$ and subtracting from (2.0.6) we have,	
	$\beta(\mu - \lambda)\mathbf{w} + \gamma(\nu - \lambda)\mathbf{u} = 0 $ (2.0.7)	
Proof 2:	Since, eigen values are distinct $(\mu - \lambda) \neq 0$ and $(\nu - \lambda) \neq 0$. Also, w and u are eigen vectors: \Rightarrow from equation (2.0.7) we have, $\beta = \gamma = 0$ substituting $\beta = \gamma = 0$ in equation (2.0.4) we have, $\alpha = \beta = \gamma = 0$. As, $\mathbf{v} \neq 0$ which proves that vectors are linearly independent. If a matrix has n linearly independent vectors than it is diagonalizable If $(\mathbf{p_1} \ \mathbf{p_2} \ \cdots \ \mathbf{p_n})$ are n independent eigen vectors then, $A\mathbf{p_1} = \lambda\mathbf{p_1}, \cdots, A\mathbf{p_n} = \lambda\mathbf{p_n}$	≠ 0
	\mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_n are in independent eigen vectors then, $A\mathbf{p}_1 = \lambda \mathbf{p}_1, \dots, A\mathbf{p}_n = \lambda \mathbf{p}_n$	
	$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} P = \begin{pmatrix} \mathbf{P_1} & \mathbf{P_2} & \cdots & \mathbf{P_n} \end{pmatrix} $ (2.0.8)	
	Now, $A\mathbf{P_i} = \lambda_i \mathbf{P_i} \implies AP = PD$ so, $P^{-1}AP = D$ is a diagonal matrix.	

Statement 3.	If A has distinct real eigen values than it is diagonalizable overC
True statement	If A is an $N \times N$ complex matrix with n distinct eigenvalues, then any set of n corresponding eigenvectors form a basis for \mathbb{C}^n
Proof:	It is sufficient to prove that the set of eigenvectors is linearly independent which is proved in statement 2.
Example:	$A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix} \tag{2.0.9}$
	Eigen values of A are:
	$\lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 6 \tag{2.0.10}$
	Eigen vectors are:
	$x_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, x_2 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, x_3 = \begin{pmatrix} -1\\-1\\2 \end{pmatrix}$ (2.0.11)
	Matrix A is diagonalizable because there is a basis of \mathbb{C}^3 consisting of eigenvectors of A.
Statement 4.	If all eigen values are non zero than it is diagonalizable over C
False Statement: Example:	Matrix would be diagonalizable if and only if it has linearly independent eigenvectors spanning the entire space. Consider a matrix
	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix} \tag{2.0.12}$
	Eigen values are:
	$\begin{pmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0. \implies \lambda_1 = 1, \lambda_2 = 4 \neq 0 $ (2.0.13)
	$\lambda_1 = 1$ has eigen vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\lambda_2 = 4$ has eigen vector $\begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$ (2.0.14)
	We have found only two linearly independent eigenvectors for A,not diagonalisable

TABLE 2:Solution