D. Clouteau

Introduction

Galerkin

Basis

uext
The discret
dynamical
system
eigenmodes
Rayleigh

ee.

Meshes
Shape
functions
Local
matrix
assembling
Global FE

Summary

Galerkin and Finite Element Methods Stiffness and Mass matrices

D. Clouteau

Department of Mechanical and Civil Engineering Ecole Centrale Paris, France

September 11, 2008

D. Clouteau

Introduction

G.1. 1:

Basis u_{ext} The discret dynamical system eigenmodes

eigenmodes Rayleigh Method

FEN

Objectives Meshes Shape functions Local matrix assembling Global FE

 Summan

1 Introduction

2 The Galerkin Method

- Basic idea
- Displacement Boundary conditions
- The discrete dynamical system
- Approximate eigenmodes
- The Rayleigh Method

3 The Finite element Method

- Objectives
- Meshes
- Shape functions
- Local matrix assembling
- Global FE matrices
- 4 Summary

Introduction

D. Clouteau

Introduction

 $egin{aligned} & ext{Galerkin} \ & u_{ ext{ext}} \ & ext{The discrete} \ & ext{dynamical} \ & ext{system} \ & ext{eigenmodes} \ & ext{Rayleigh} \ & ext{Method} \end{aligned}$

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

Summar

History of the FEM:

- B. Galerkin 1871-1945: St Petersburg, Civil and Mechanical Engineer. He created the "Galerkin's method" to compute approximate solution,
- W. Ritz 1878-1909: Göttingen, similar method in mathematical physics, with D. Hilbert.
- R. Courant 1888-1972: Göttingen \rightarrow New-York (triangular elements 1943)
- R. Clough 1920-: Berkeley, (FEM 1959) Seismic response of a Dam, *Dynamics of Structures*, 1975,
- O. Zienkiewicz 1921-: Swansea (FEM 1965), The Finite Element Method 1970.
- J. Argyris 1913-2004: Stuttgart, Civil Eng. \rightarrow Aerospace.

- D. Clouteau
- Introduction

Illitoductio

Basis

 $u_{
m ext}$ The discrete dynamical system eigenmodes Rayleigh Method

FEM

Meshes
Shape
functions
Local
matrix
assembling
Global FE

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

The Galerkin's Method The basic idea

D. Clouteau

Introduction

Calorkin

Basis

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

FEN

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

ummary

- Take a set of displacement fields $\boldsymbol{w}_n(\boldsymbol{x})$,
- Look for an approximate solution u_h as :

$$oldsymbol{u}(oldsymbol{x},t) = \sum_{n=1}^{N} q_n(t) oldsymbol{w}_n(oldsymbol{x})$$

■ Use these fields $w_n(x)$ in the Virtual Power Principle to obtain a discrete dynamical system :

$$\mathbf{K}\mathbf{a} + \mathbf{C}\dot{\mathbf{a}} + \mathbf{M}\ddot{\mathbf{a}} = \mathbf{f}$$

to be solved for the amplitudes $q_n(t)$

- D. Clouteau
- Introduction

introductio.

Racio

The discrete dynamical system eigenmodes Rayleigh

FEM.

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

Displacement Boundary conditions Linear case

- On Γ_u : $\boldsymbol{u} = \boldsymbol{u}_{\text{ext}} \neq 0$ but $\boldsymbol{w} = 0$ for the VPP.
- An auxiliary field $\boldsymbol{u}_{\text{ext}}^r(\boldsymbol{x},t)$ on V such that

$$\boldsymbol{u}_{\mathrm{ext}}^{r}(\boldsymbol{x},t) = \boldsymbol{u}_{\mathrm{ext}}(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \Gamma_{u}$$

• A new unknown field $u^o = u - u^r_{\text{ext}} \in \mathbb{V}_o$ satisfying

$$\mathcal{P}_{ ext{kin}}^o(oldsymbol{w}) = \mathcal{P}_{ ext{int}}^o(oldsymbol{w}) + \mathcal{P}_{ ext{ext}}^o(oldsymbol{w}) + \mathcal{P}_{ ext{int}}^r(oldsymbol{w}) - \mathcal{P}_{ ext{kin}}^r(oldsymbol{w}) \qquad orall oldsymbol{w} \in \mathbb{V}_o$$

- D. Clouteau
- Introduction

.....

Basi

uext
The discrete
dynamical
system
eigenmodes

Objective Meshes Shape

Shape functions Local matrix assembling Global FE matrices

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

The discrete dynamical system Using the Galerkin method

D. Clouteau

Introduction

Galerkin

Basis $u_{\rm ext}$ The discrete dynamical system

eigenmodes

FEM

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

Summar

- $\{w_n\}_{n=1,N}$ a basis of $\mathbb{V}_h \in \mathbb{V}_o$ (no need to be orthogonal for $(.,.)_{\mathbb{V}_o}$ but could be for others)
- \mathbf{u}_h the approximate solution on this basis

$$\boldsymbol{u}_h(\boldsymbol{x},t) = \sum_{n'=1}^N \boldsymbol{w}_{n'}(\boldsymbol{x}) q_{n'}(t) = \boldsymbol{W}(\boldsymbol{x}) \mathbf{q}(t),$$

■ The VPP with $\boldsymbol{w} = \boldsymbol{w}_n, \forall n \leq N$:

$$\mathcal{K}(\boldsymbol{u}, \boldsymbol{w}_n) + \mathcal{C}(\dot{\boldsymbol{u}}, \boldsymbol{w}_n) + \mathcal{M}(\ddot{\boldsymbol{u}}, \boldsymbol{w}_n) = \mathcal{P}(\boldsymbol{w}_n)$$

$$\sum_{n=1}^{N} \mathcal{K}(\boldsymbol{w}_{n'}, \boldsymbol{w}_n) q_{n'} + \mathcal{C}(\boldsymbol{w}_{n'}, \boldsymbol{w}_n) \dot{q}_{n'} + \mathcal{M}(\boldsymbol{w}_{n'}, \boldsymbol{w}_n) \ddot{q}_{n'} = \mathcal{P}(\boldsymbol{w}_n)$$

$$\mathbf{K}\mathbf{q} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{M}\ddot{\mathbf{q}} = \mathbf{f}$$

The Stiffness and Mass matrices in the Galerkin method

D. Clouteau

Introductio

 $egin{aligned} & ext{Galerkin} \ & ext{Basis} \ & ext{$u_{ ext{ext}}$} \ & ext{The discrete dynamical system} \ & ext{eigenmodes} \ & ext{eigenmodes} \ & ext{Rayleigh} \ & ext{Method} \end{aligned}$

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE

Summa

■ The symmetric positive $mass\ matrix\ \mathbf{M}$:

$$[\mathbf{M}]_{n'n} = \mathcal{M}(\boldsymbol{w}_{n'}, \boldsymbol{w}_n) = \int_{V} \rho \boldsymbol{w}_n \cdot \boldsymbol{w}_{n'} dV$$

 \blacksquare The stiffness matrix **K**:

$$[\mathbf{K}]_{n'n} = (\mathcal{K}_e + \mathcal{K}_g - \mathcal{K}_i)(\boldsymbol{w}_{n'}, \boldsymbol{w}_n) = [\mathbf{K}_e + \mathbf{K}_g - \mathbf{K}_i]_{n'n}$$

■ The symetric positive elastic stiffness matrix \mathbf{K}_e :

$$[\mathbf{K}_{e}]_{n'n} = \int_{V} \boldsymbol{\sigma}(\boldsymbol{w}_{n'}) : \boldsymbol{\epsilon}(\boldsymbol{w}_{n}) dV = \int_{V} \operatorname{tr}(\boldsymbol{\epsilon}(\boldsymbol{w}_{n}) \boldsymbol{C}_{e} \boldsymbol{\epsilon}(\boldsymbol{w}_{n'})) dV$$
$$= \int_{V} (\lambda \operatorname{div}(\boldsymbol{w}_{n}) \operatorname{div}(\boldsymbol{w}_{n'}) + 2\mu \boldsymbol{\epsilon}(\boldsymbol{w}_{n}) : \boldsymbol{\epsilon}(\boldsymbol{w}_{n'})) dV$$

■ The positive symmetric damping matrix **D** and the skew-symmetric gyroscopic matrix \mathbf{C}_a :

$$[\mathbf{C}]_{n'n} = (\mathcal{C}_a + \mathcal{D}_g)(oldsymbol{w}_{n'}, oldsymbol{w}_{oldsymbol{n}}) = [\mathbf{C}_a + \mathbf{D}]_{ar{n}'n}$$

- D. Clouteau
- Introduction

minoductio.

Galerk

 $u_{
m ext}$ The discrete dynamical

eigenmodes

Rayleigh Method

FEM

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

The approximate eigenmodes Without gyroscopic terms

eigenmodes

■ The approximate eigenvectors $\hat{\mathbf{q}}_k$ and eigenfrequencies $\tilde{\omega}_k$:

$$\mathbf{K}\mathbf{q}_k = \tilde{\omega}_k^2 \mathbf{M} \mathbf{q}_k$$

Orthogonality:

$$\mathbf{q}_l^T \mathbf{M} \mathbf{q}_k = m_k \delta_{kl} \qquad \mathbf{q}_l^T \mathbf{K} \mathbf{q}_k = m_k \tilde{\omega}_k^2 \delta_{kl}$$

■ link with the true eigenfrequencies:

$$\tilde{\omega}_k \ge \omega_k$$

Which basis fields for the Galerkin Method? and foreseen difficulties

D. Clouteau

Introductio

Galei

 $u_{
m ext}$ The discrete dynamical

eigenmodes Rayleigh

FEM

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE

- Two contradictory goals for a given accuracy :
 - Reducing the number of fields in the basis,
 - Using easy to compute displacement fields.
- Two remaining difficulties:
 - computing strains and stresses,
 - integrating over the domain.
- Two solutions:
 - Localized masses and coupling stiffnesses
 - The FE Method

- D. Clouteau
- Introduction

minoductio.

Pagis

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

FEN

Meshes
Shape
functions
Local
matrix
assembling
Global FE

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

The Rayleigh Method

A discrete Dynamic model of a building

D. Clouteai

Introduction

Galerkin

Basis u_{ext} The discrete dynamical system eigenmodes

Rayleigh

Method FEM

Objectives Meshes Shape functions Local matrix assembling Global FE matrices

ummary

Hypotheses:

- Masses localized on the floors $m_i = m$,
- Horizontal displacement of the floors: N Degrees Of Freedom $q_i(t)$,
- \blacksquare One static mode due to inertial forces $\hat{\mathbf{q}}$
- Storey stiffness brought by columns: $k_i = k = n_c \frac{12EI}{k_a^3}$,
- The static solution :

$$\Delta \hat{q}_n = \hat{q}_n - \hat{q}_{n-1} = \frac{m}{k}(N+1-n),$$

■ The approximate natural frequency:

$$\omega_o = \frac{\mathcal{E}_e(\hat{\mathbf{q}})}{\mathcal{E}_{kin}(\hat{\mathbf{q}})} = \frac{k \|\Delta \hat{\mathbf{q}}\|^2}{m \|\hat{\mathbf{q}}\|^2}$$

- D. Clouteau
- Introduction

introductio

Rasis

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

FEM

Objectives Meshes

Shape functions
Local matrix
assembling

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

The Finite Element Method The objectives

D. Cloureac

Introductio

Racio

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

Objectives

Meshes
Shape
functions
Local

Local matrix assembling Global FE matrices

Summai

- Parametrize the geometry,
 - to perform integrations,
 - to define Basis function,
 - Solution: Divide the structure into simple cells (tetrahedrons, prisms, bricks, plates, beams...)
- Build basis functions
 - being continuous,
 - with simple derivatives,
 - Having given values on the boundary,
 - easy to integrate over the cells.
 - **Solution:** Polynomials on the cells
- Interpolating basis functions \Leftrightarrow Degrees of freedom q_n being the displacement field at some given nodes (not mandatory),

- D. Clouteau
- Introduction

introductio

Basis

uext
The discrete
dynamical
system
eigenmodes
Rayleigh

Objective Meshes

Shape functions Local matrix assembling Global FE matrices

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

Meshes and element shape functions Parametrizing the geometry

Introduction

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

Obje

Objectives Meshes

Shape functions Local matrix assembling Global FE

Summary

- The nodes with coordinates $x_{A=1,N_d}$
- The elements (tetrahedrons) $V_{E=1,N_e}$ with their local nodes $(A_i)_{i=1,n_E}$,
- Local parametrization of $x \in V_E$:

$$x = \sum_{i=1}^{4} w_i(x) x_{A_i}$$
 $0 \le w_i \le 1$ $\sum_{i=1}^{4} w_i = 1$

• $w_i(\mathbf{x})$ are linear interpolating shape functions $(w_i(\mathbf{x}_i) = \delta_{ij})$

$$w_i(oldsymbol{x}) = rac{(oldsymbol{x}_{A_k} - oldsymbol{x}_{A_j}) \wedge (oldsymbol{x}_{A_l} - oldsymbol{x}_{A_j}) \cdot (oldsymbol{x} - oldsymbol{x}_{A_j})}{6V_E} = rac{h_i(oldsymbol{x})}{H_i}$$

D. Clouteau

Introduction

Introduction

Galerk

uext
The discrete
dynamical
system
eigenmodes
Rayleigh

FEM

Objectives Meshes Shape

functions Local matrix assemblin

Summar

1 Introduction

2 The Galerkin Method

- Basic idea
- Displacement Boundary conditions
- The discrete dynamical system
- Approximate eigenmodes
- The Rayleigh Method

3 The Finite element Method

- Objectives
- Meshes
- \blacksquare Shape functions
- Local matrix assembling
- Global FE matrices
- 4 Summary

Nodal shape functions Parametrizing the geometry

D. Clouteau

Introductio

Galerkin

 $u_{
m ext}$ The discrete dynamical system eigenmodes Rayleigh Method

FEN

Objective Meshes Shape functions

Local matrix assembling Global FE matrices

- $V_A = \bigcup_{e=1}^{N_A} V_{E_A^e}$ the support the shape function,
- The scalar shape function

$$w_A(\boldsymbol{x}) = w_{E_A^e}(\boldsymbol{x})\delta_{AA_i}, \qquad \boldsymbol{x} \in V_{E_A^e}$$

- The displacement basis function $w_{Aa}(x) = w_A(x)i_a$
- Boundary condition $x_A \notin \Gamma_u$
- w_{Aa} are continuous and piecewise differentiable.

- D. Clouteau
- Introduction

111010440010

Basi

uext
The discrete
dynamical
system
eigenmodes
Rayleigh
Method

FEM

Meshes
Shape
functions

Local matrix assembling Global FE matrices

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

Local matrix assembling The tetrahedron element

D. Clouteau

Introductio

Galerkin

Basis u_{ext} The discrete dynamical system eigenmodes

Rayleigh

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

Summar

■ The strain tensor:

$$oldsymbol{\epsilon}(oldsymbol{w}_i(oldsymbol{x})oldsymbol{i}_a) = rac{oldsymbol{i}_a \otimes_s oldsymbol{n}_i}{H_i}$$

■ The stress tensor:

$$\sigma(\boldsymbol{w}_i(\boldsymbol{x})\boldsymbol{i}_a) = \frac{\lambda \boldsymbol{i}_a \cdot \boldsymbol{n}_i \boldsymbol{I}_d + 2\mu \boldsymbol{i}_a \otimes_s \boldsymbol{n}_i}{H_i}$$

■ The local stiffness matrix:

$$[K]_{iajb}^{E} = \int_{V_{E}} \boldsymbol{\sigma}(\boldsymbol{w}_{i}(\boldsymbol{x})\boldsymbol{i}_{a}) : \boldsymbol{\epsilon}(\boldsymbol{w}_{j}(\boldsymbol{x})\boldsymbol{i}_{b})dV$$

$$= V_{E} \frac{\lambda \boldsymbol{i}_{a} \cdot \boldsymbol{n}_{i}\boldsymbol{i}_{b} \cdot \boldsymbol{n}_{j} + \mu(\delta_{ab}\boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j} + \boldsymbol{n}_{i} \cdot \boldsymbol{i}_{a}\boldsymbol{n}_{i} \cdot \boldsymbol{i}_{b})}{H_{i}H_{i}}$$

■ The mass matrix:

$$[M]_{iajb}^{E} = \delta_{ab} \int_{V_{E}} \rho \boldsymbol{w}_{i}(\boldsymbol{x}) \boldsymbol{w}_{j}(\boldsymbol{x}) dV = \delta_{ab} \int_{V_{E}} \rho \frac{h_{i}h_{j}}{H_{i}H_{j}} dV$$

- D. Clouteau
- Introduction

minoduction

Gaiei.

u_{ext}
The discrete dynamical system eigenmodes
Rayleigh

FEM

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

- 1 Introduction
- 2 The Galerkin Method
 - Basic idea
 - Displacement Boundary conditions
 - The discrete dynamical system
 - Approximate eigenmodes
 - The Rayleigh Method
- 3 The Finite element Method
 - Objectives
 - Meshes
 - Shape functions
 - Local matrix assembling
 - Global FE matrices
- 4 Summary

Global FE matrices Assembling and properties

- -

Introduction

Galerkin

Basis u_{ext} The discrete dynamical system eigenmodes

Rayleigh

FEM

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

Summary

• Global assembling, axample of the *mass matrix*:

$$[M]_{AaBb} = \sum_{E=1}^{N_E} \sum_{i \le n_E; j \le n_E} \delta_{AA_i} \delta_{BA_j} [M]_{iajb}^E$$

■ Properties:

- \blacksquare All matrices but \mathbf{C}_a are symmetric
- \mathbf{C}_a is skew-symmetric,
- Huge matrices: 300K nodes leads to 10¹² terms and 8To of memory in full storage for each,
- All matrices are sparse: to be accounted in the storage (Profil, sparse, Element by element 50Mo).

Summary

- Introduction
- $egin{array}{l} ext{Basis} & oldsymbol{u}_{ ext{ext}} & ext{The discrete dynamical system eigenmodes} & ext{Rayleigh Method} & ext{Method} & ext{Advisor} & ext{Advis$

FEN.

Objectives
Meshes
Shape
functions
Local
matrix
assembling
Global FE
matrices

- What's new?
 - A general procedure leading to a discrete dynamical model:

$$(\mathbf{K}_e + \mathbf{K}_g - \mathbf{K}_i)\mathbf{q} + (\mathbf{C}_a + \mathbf{D})\dot{\mathbf{q}} + \mathbf{M}\ddot{\mathbf{q}} = \mathbf{f}$$

- an efficient and versatile procedure to assemble this system: Finite Element Method
- What's left?
 - How to solve the discrete model?
 - Which level of refinement?
 - What about beams and plates?