New analytic rotations for bifactor modeling and metric invariance in Exploratory Factor Analysis

Marcos Jiménez ¹, Francisco J. Abad ¹, Eduardo Garcia-Garzon ², Luis E. Garrido ³, Vithor R. Franco ⁴

 $^{\mathrm{1}}$ Universidad Autónoma de Madrid, Spain

² Shakers, Spain

³ Pontificia Universidad Católica Madre y Maestra, Dominican Republic

⁴ Universidade São Francisco, Brazil

Only two kinds of factor rotation?

PSYCHOMETRIKA—VOL. 66, NO. 2, 289-306 JUNE 2001

A SIMPLE GENERAL PROCEDURE FOR ORTHOGONAL ROTATION

ROBERT I. JENNRICH

UNIVERSITY OF CALIFORNIA AT LOS ANGELES

PSYCHOMETRIKA—VOL. 67, NO. 1, 7–20 MARCH 2002

A SIMPLE GENERAL METHOD FOR OBLIQUE ROTATION

Robert I. Jennrich

UNIVERSITY OF CALIFORNIA AT LOS ANGELES

The gradient projection method

0.00

-0.01

0.63

Orthogonal Projection

$$P(\mathbf{G}) = \mathbf{G} - 0.5 \left(\mathbf{X} \mathbf{G}^{\top} + \mathbf{X}^{\top} \mathbf{G} \right) \mathbf{X}$$

$$\mathbf{X}^{\top}\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Oblique Projection

0.03

$$P(\mathbf{G}) = \mathbf{G} - \mathbf{X} \mathrm{diag}(\mathbf{X}^{\top}\mathbf{G})$$

$$\mathbf{X}^{\top}\mathbf{X} = \begin{pmatrix} 1 & .35 & .44 \\ .35 & 1 & .14 \\ .44 & .14 & 1 \end{pmatrix}$$

The Partially Oblique Manifold

$$\mathsf{Rotated}\ (\Lambda) \quad = \quad \mathsf{Unrotated}\ (\mathbf{U}) \, \times \, \mathsf{Rotation}\ \mathsf{matrix}\ (\mathbf{X})$$

$$\begin{pmatrix} \mathbf{0.37} & 0.07 & 0.00 \\ \mathbf{0.57} & 0.01 & 0.02 \\ \mathbf{0.53} & -0.03 & -0.02 \\ -0.02 & \mathbf{0.47} & -0.03 \\ 0.01 & \mathbf{0.44} & 0.01 \\ -0.05 & 0.00 & \mathbf{0.52} \\ -0.02 & 0.00 & \mathbf{0.56} \\ 0.04 & 0.00 & 0.63 \end{pmatrix} = \begin{pmatrix} 0.04 & -0.26 & -0.27 \\ 0.09 & -0.32 & -0.46 \\ 0.04 & -0.27 & -0.46 \\ -0.07 & -0.38 & 0.28 \\ -0.01 & -0.37 & 0.23 \\ -0.02 & -0.48 & 0.31 \\ 0.51 & 0.02 & 0.09 \\ 0.56 & 0.01 & 0.07 \\ 0.63 & -0.01 & 0.03 \end{pmatrix} \begin{pmatrix} -0.13 & -0.06 & 1 \\ 0.55 & -0.83 & 0.01 \\ 0.82 & 0.56 & 0.10 \end{pmatrix}$$

Partially Oblique Projection

$$P(\mathbf{G}) = \mathbf{G} - \mathbf{X} \Big(I \circ \mathbf{V} \left(\frac{\mathbf{V}^{\top} \mathbf{Q} \mathbf{V}}{\mathbf{1} \mathbf{d}^{\top} + \mathbf{d} \mathbf{1}^{\top}} \right) \mathbf{V}^{\top} \right)$$

$$\mathbf{X}^{\top}\mathbf{X} = \begin{pmatrix} 1 & \mathbf{0} & .44 \\ \mathbf{0} & 1 & .14 \\ .44 & .14 & 1 \end{pmatrix}$$

Exploratory Bi-factor Model with Multiple General factors

- [I Disentangle the variance due to the general and specific factors.
- [Vse any rotation criteria that you want (i.e., target, oblimin, etc.).

Estimation with the bifactor package

Mixed rotation criteria

[✓] Use Oblimin for the general factors and Target for the specific factors.

	Oblin	Target				
_ ′	Neur	Extr	Ans	Depr	Soc	Aser
X1						
X2						
ХЗ						
X4						
X5						
X6						
X7						
X8						


```
efast(Sigma, nfactors = 6, estimator = "ULS", Target = Target,
    projection = "poblq", oblq_factors = c(2, 4),
    rotation = c("oblimin", "target"), blocks = list(1:2, 3:6))
```

Multitrait-Multimethod analysis

/Trait	Trait	Trait	Method	Method
0.37	0.07	0.00	0.56	0.00
0.57	0.01	0.02	0.56	0.00
0.53	0.03	0.02	0.00	0.51
0.49	0.02	0.03	0.00	0.43
0.02	0.47	0.03	0.61	0.00
0.01	0.44	0.01	0.45	0.00
0.01	0.57	0.01	0.00	0.39
0.08	0.34	0.08	0.00	0.55
0.05	0.00	0.52	0.47	0.00
0.02	0.00	0.56	0.67	0.00
0.04	0.00	0.63	0.00	0.44
0.06	0.07	0.58	0.00	0.50

```
Trait Trait Method Method

Trait 1 .33 .45 0 0

Trait .33 1 .25 0 0

Trait .45 .25 1 0 0

Method 0 0 0 1 .44

Method 0 0 0 0 .44 1
```

Loading Matrix

Factor Correlation Matrix

Model identification in CFA

- [X] warning: covariance matrix of latent variables is not positive definite
- $[\checkmark]$ Solution: Parameterize the covariance matrix of latent variables as $\mathbf{X}^{\top}\mathbf{X}$ and optimize it on the partially oblique manifold.

$$\begin{pmatrix} 1 & .33 & .45 & 0 & .68 \\ .33 & 1 & .25 & 0 & .77 \\ .45 & .25 & 1 & .56 & 0 \\ 0 & 0 & .56 & 1 & .44 \\ .68 & .77 & 0 & .44 & 1 \end{pmatrix}$$

Factor correlation matrix optimized on the Partially Oblique manifold

Summary

Applications of the Partially Oblique manifold:

- [v] Uncorrelate the general and specific factors in Exploratory Bi-factor analysis with either one or multiple general factors.
- [Incorrelate trait and method factors in multitrait-multimethod analysis.
- [Identify CFA models where the correlations between the latent factors are, at least, positive semi-definite.
- $[\checkmark]$ Similar rotations can be developed to obtain a method for metric invariance in EFA.

Thank you

 $Contact:\ marcosjnezhquez@gmail.com$

• https://github.com/Marcosjnez/bifactor

y@skeptpsych

Webpage: https://marcosjnez.github.io/

References

- Jennrich, R. I. (2002). A simple general method for oblique rotation. Psychometrika, 67(1), 7–19. https://doi.org/10.1007/BF02294706
- Jennrich, R. I. (2001). A simple general procedure for orthogonal rotation. Psychometrika, 66(2), 289–306. https://doi.org/10.1007/BF02294840
- Jiménez, M., Abad, F. J., Garcia-Garzon, E., & Garrido, L. E. (2023). Exploratory bi-factor analysis with multiple general factors. *Multivariate Behavioral Research*, 0(0), 1–18. https://doi.org/10.1080/00273171.2023.2189571
- Jiménez, M., Abad, F. J., Garcia-Garzon, E., Garrido, L. E., & Franco, V. R. (2022). Bifactor: Exploratory factor and bi-factor modeling with multiple general fators [Manual]. https://github.com/Marcosinez/bifactor
- Jiménez, M., Abad, F. J., Garcia-Garzon, E., Golino, H., Christensen, A. P., & Garrido, L. E. (2023). Dimensionality assessment in bifactor structures with multiple general factors: A network psychometrics approach. *Psychological Methods*, No Pagination Specified–No Pagination Specified. https://doi.org/10.1037/met0000590