ИЗПИТ

по Математичесь	ки анализ, специалност "Приложна мат	гематика"
	17 февруари 2011г.	
e:	Фак.:	номер:

- 1. Нека Δ е правоъгълник в равнината и $f:\Delta\to\mathbb{R}$ е ограничена функция. Дефинирайте малка и голяма сума на Дарбу за функцията f. Дайте дефиниция на риманов интеграл от f върху Δ чрез подхода на Дарбу. Формулирайте критерия за интегруемост във втора форма.
- 2. Представете интеграла $\int \int_K f(x,y) dxdy$ (тук K е множеството $\{(x,y)\in\mathbb{R}^2:\ 0\leq x\leq 1,\ y\geq 0,\ x^2+y^2\geq 2x,\ y^2\leq 2x\}$, а $f:K\to\mathbb{R}$ е непрекъсната функция) като повторен веднъж с външно интегриране по x и веднъж с външно интегриране по y.
- 3. Дайте дефиниция на множество, пренебрежимо по Лебег. Докажете, че изброимо обединение на пренебрежими множества е пренебрежимо.
- 4. Формулирайте теоремата на Лебег (за интегруемост по Риман). Дайте дефиниция на индикаторна (характеристична) функция на подмножество A на \mathbb{R}^n . Намерете (с обосновка) множеството от точките на прекъсване на тази функция. Кое е множеството от точките на прекъсване на характеристичната функция на K, където K е множеството, дефинирано в задача 2?
- 5. Нека F е непрекъснато векторно поле, дефинирано в областта $\Omega \subset \mathbb{R}^3$. Докажете, че ако криволинейният интеграл от втори род върху частично гладка крива $\Gamma \subset \Omega$ с начало A и край B не зависи от Γ , а само от A и B, то полето F е потенциално.
- 6. Напишете формулата за свеждане на повърхнинен интеграл от първи род към двоен риманов интеграл. Нека φ_1 и φ_2 ($\varphi_1 < \varphi_2$) са дължините на два меридиана, а ψ_1 и ψ_2 ($\psi_1 < \psi_2$) са ширините на два паралела (в радиани) върху сфера с радиус R. Пресметнете площта на частта от сферата, заключена между тези два паралела и два меридиана.
- 7. Нека Ω е област в \mathbb{R}^2 с частично гладка граница $\partial\Omega$ и нека $F=(F_1,F_2)$ е гладко векторно поле, дефинирано в околност на $\overline{\Omega}=\Omega\cup\partial\Omega$. Докажете формулата на Грийн за F и Ω , ако $\overline{\Omega}$ е криволинеен трапец и по двете променливи.
- 8. Нека S е явно зададената повърхнина $z=\sqrt{4x-x^2-y^2},\,(x,y)\in D:=\{x^2+y^2\leq 2x\}.$ Напишете единично нормално векторно поле, което ориентира S и е съгласувано с естествената параметризация. Нека Γ е краят на S, ориентиран така, че S да остава от лявата страна (Γ е сечението на повърнините, определени с уравненията $z=\sqrt{4x-x^2-y^2}$ и $x^2+y^2=2x$). Приложете формулата на Стокс към криволинейния интеграл от втори род

$$\int_{\Gamma} (y^2 + z^2) dx + (x^2 + z^2) dy + (x^2 + y^2) dz$$

и повърхнината S. Ще можете да пресметнете получения интеграл особено лесно, ако използвате подсказването, че $\int \int_{D} \frac{y}{\sqrt{4x-x^2-y^2}} \, \mathrm{d}x \mathrm{d}y = 0.$