Multi-Trace approach to **Optimized Schwarz Methods**

X.Claeys[†], P.-H.Tournier[†] & E.Parolin*

- † Laboratoire Jacques-Louis Lions, Sorbonne Université INRIA Paris, équipe Alpines
- * POems, UMR CNRS/ENSTA/INRIA, ENSTA ParisTech

Scattering in heterogeneous medium

wave number : $\kappa: \mathbb{R}^d \to \mathbb{C}$ bounded $\Re \{\kappa(\mathbf{x})\} \ge 0, \Im m\{\kappa(\mathbf{x})\} \ge 0, \kappa(\mathbf{x}) \ne 0$ source : $f \in L^2(\Omega)$

Non-overlapping partition

$$\begin{split} \Omega &= \overline{\Omega}_1 \cup \dots \cup \overline{\Omega}_J, \\ \Gamma_j &:= \partial \Omega_j, \ \Gamma_j' := \Gamma_j \setminus \partial \Omega \\ \Omega_j &: \text{Lipschitz, bounded} \end{split}$$

$$-\Delta u - \kappa(\mathbf{X})^2 u = f \text{ in } \Omega,$$

$$\partial_{\mathbf{n}} u - \imath \kappa u = 0 \text{ on } \partial \Omega.$$

local sub-problems $j = 1 \dots J$ $-\Delta u - \kappa^2 u = f$ in Ω_i

$$-\Delta u - \kappa^2 u = f \text{ in } \Omega_j$$

$$\partial_n u - \iota \kappa u = 0 \text{ on } \partial \Omega_i \cap \partial \Omega.$$

Cross points allowed

transmission conditions

$$\frac{\partial_{n_j} u|_{\Gamma_j}^{\text{int}} = -\partial_{n_k} u|_{\Gamma_k}^{\text{int}}}{u|_{\Gamma_j}^{\text{int}} = u|_{\Gamma_k}^{\text{int}}} \forall j, k$$

Optimized Schwarz Method (OSM) [Després, 1991]

Optimized Schwarz Method (OSM) is one of the most established DDM approaches for wave propagation. This is a substructuring method where transmission conditions are imposed through each interface by means of Robin traces involving impedance coefficients.

- operator valued impedance : [Collino, Ghanemi & Joly, 2000]
- second order TC : [Gander, Magoules & Nataf, 2002]
- DtN-like impedance: [Nataf, Rogier & de Sturler, 1995], [Antoine, Boudendir & Geuzaine, 2012], [Antoine, Bouajaj & Geuzaine, 2014]
- large literature : overview article [Gander & Zhang, 2019]

Cross point issue

Unappropriate treatment of cross-points may spoil convergence so care must be paid to this issue: [Gander & Kwok, 2013], [Gander & Santugini, 2016], [Després, Nicolopoulos & Thierry, 2020], [Modave, Antoine, Geuzaine & al, 2019 & 2020]. There is also a variant of FETI-DP "à la Després" [Farhat & al, 2005], [Bendali & Boubendir, 2006].

Outline

I Review of the Optimized Schwarz Method

II New manner to enforce transmission condition

III Numerical results

Outline

I Review of the Optimized Schwarz Method

II New manner to enforce transmission conditions

III Numerical results

Transmission conditions : with scalar $\Lambda > 0$,

$$\begin{array}{ll} \partial_{n_{j}}u|_{\Gamma_{j}} = -\partial_{n_{k}}u|_{\Gamma_{k}} & +\partial_{n_{j}}u|_{\Gamma_{j}} + \imath\Lambda u|_{\Gamma_{j}} = \\ u|_{\Gamma_{j}} = u|_{\Gamma_{k}} & \Longleftrightarrow & -\partial_{n_{k}}u|_{\Gamma_{k}} + \imath\Lambda u|_{\Gamma_{k}} \\ \text{on } \Gamma_{j} \cap \Gamma_{k} \forall j, k & \text{on } \Gamma_{j} \cap \Gamma_{k} \forall j, k \end{array} \\ \end{array} \\ \begin{array}{ll} \left(\partial_{n_{j}}u|_{\Gamma'_{j}} - \imath\Lambda u|_{\Gamma'_{j}}\right)_{j=1}^{J} = \\ -\Pi_{0}\left(\left(\partial_{n_{k}}u|_{\Gamma'_{k}} + \imath\Lambda u|_{\Gamma'_{k}}\right)_{k=1}^{J}\right) \end{array}$$

where the operator Π_0 swaps traces on both sides of each interfaces:

$$(v_0,\ldots,v_{\mathtt{J}})=\Pi_0(u_0,\ldots,u_{\mathtt{J}})\iff v_j=u_k \ \mathsf{on} \ \Gamma_j\cap\Gamma_k.$$

Local scattering operators:

$$\begin{split} \mathrm{S}_{\mathbf{0}}^{\Gamma_{j}} (\partial_{n_{j}} \psi|_{\Gamma_{j}'} - \imath \Lambda \psi|_{\Gamma_{j}'}) &:= \partial_{n_{j}} \psi|_{\Gamma_{j}'} + \imath \Lambda \psi|_{\Gamma_{j}'} \\ \text{for } \Delta \psi + \kappa^{2} \psi &= 0 \text{ in } \Omega_{j} \\ \partial_{\mathbf{n}} \psi - \imath \kappa \psi &= 0 \text{ on } \partial \Omega_{j} \cap \partial \Omega \end{split}$$

Wave equations:

$$\begin{aligned} &(\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}} = \\ &\mathrm{S}_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathrm{J}}) + g \\ &\mathrm{with} \, \mathrm{S}_0 := \mathrm{diag}_{j=1,\ldots,\mathrm{J}}(\mathrm{S}_0^{\Gamma_j}). \end{aligned}$$

Transmission conditions : with scalar $\Lambda > 0$,

$$\begin{array}{ll} \partial_{n_{j}}u|_{\Gamma_{j}} = -\partial_{n_{k}}u|_{\Gamma_{k}} & +\partial_{n_{j}}u|_{\Gamma_{j}} + \imath\Lambda u|_{\Gamma_{j}} = \\ u|_{\Gamma_{j}} = u|_{\Gamma_{k}} & \Longleftrightarrow & -\partial_{n_{k}}u|_{\Gamma_{k}} + \imath\Lambda u|_{\Gamma_{k}} \\ \text{on } \Gamma_{j} \cap \Gamma_{k} \forall j, k & \text{on } \Gamma_{j} \cap \Gamma_{k} \forall j, k \end{array} \\ \end{array} \\ \rightleftharpoons \begin{array}{ll} \left(\partial_{n_{j}}u|_{\Gamma'_{j}} - \imath\Lambda u|_{\Gamma'_{j}}\right)_{j=1}^{J} = \\ -\Pi_{0}\left(\left(\partial_{n_{k}}u|_{\Gamma'_{k}} + \imath\Lambda u|_{\Gamma'_{k}}\right)_{k=1}^{J}\right) \end{array}$$

where the operator Π_0 swaps traces on both sides of each interfaces :

$$(v_0,\ldots,v_{\mathtt{J}})=\Pi_0(u_0,\ldots,u_{\mathtt{J}})\iff v_j=u_k \ \mathsf{on} \ \Gamma_j\cap\Gamma_k.$$

Local scattering operators:

$$\begin{split} \mathrm{S}_{0}^{\Gamma_{j}} (\partial_{n_{j}} \psi|_{\Gamma_{j}'} - \imath \Lambda \psi|_{\Gamma_{j}'}) &:= \partial_{n_{j}} \psi|_{\Gamma_{j}'} + \imath \Lambda \psi|_{\Gamma_{j}'} \\ \text{for } \Delta \psi + \kappa^{2} \psi &= 0 \text{ in } \Omega_{j} \\ \partial_{n} \psi - \imath \kappa \psi &= 0 \text{ on } \partial \Omega_{j} \cap \partial \Omega \end{split}$$

Wave equations:

$$\begin{aligned} &(\partial_{n_j} u|_{\Gamma_j'} + \imath \Lambda u|_{\Gamma_j'})_{j=1}^{J} = \\ &S_0((\partial_{n_k} u|_{\Gamma_k'} - \imath \Lambda u|_{\Gamma_k'})_{k=1}^{J}) + g \\ &\text{with } S_0 := \operatorname{diag}_{j=1,\dots,J}(S_0^{\Gamma_j}). \end{aligned}$$

stems from the source term of the bvp

Transmission conditions : with scalar $\Lambda > 0$,

$$\begin{array}{ll} \partial_{n_{j}}u|_{\Gamma_{j}} = -\partial_{n_{k}}u|_{\Gamma_{k}} & +\partial_{n_{j}}u|_{\Gamma_{j}} + \imath \wedge u|_{\Gamma_{j}} = \\ u|_{\Gamma_{j}} = u|_{\Gamma_{k}} & \Longleftrightarrow & -\partial_{n_{k}}u|_{\Gamma_{k}} + \imath \wedge u|_{\Gamma_{k}} \\ \text{on } \Gamma_{j} \cap \Gamma_{k} \, \forall j, k & \text{on } \Gamma_{j} \cap \Gamma_{k} \, \forall j, k \end{array} \\ \end{array} \\ \begin{array}{ll} (\partial_{n_{j}}u|_{\Gamma'_{j}} - \imath \wedge u|_{\Gamma'_{j}})_{j=1}^{J} = \\ -\Pi_{0}((\partial_{n_{k}}u|_{\Gamma'_{k}} + \imath \wedge u|_{\Gamma'_{k}})_{k=1}^{J}) \end{array}$$

where the operator Π_0 swaps traces on both sides of each interfaces :

$$(v_0,\ldots,v_{\mathtt{J}})=\Pi_0(u_0,\ldots,u_{\mathtt{J}})\iff v_j=u_k \text{ on } \Gamma_j\cap\Gamma_k.$$

Local scattering operators:

$$\begin{split} \mathbf{S}_{\mathbf{0}}^{\Gamma_{j}} \big(\partial_{n_{j}} \psi |_{\Gamma_{j}'} - \imath \Lambda \psi |_{\Gamma_{j}'} \big) &:= \partial_{n_{j}} \psi |_{\Gamma_{j}'} + \imath \Lambda \psi |_{\Gamma_{j}'} \\ \text{for } \Delta \psi + \kappa^{2} \psi &= 0 \text{ in } \Omega_{j} \\ \partial_{n} \psi - \imath \kappa \psi &= 0 \text{ on } \partial \Omega_{j} \cap \partial \Omega \end{split}$$

Wave equations:

$$\begin{aligned} & (\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}} = \\ & \mathrm{S}_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathrm{J}}) + g \\ & \text{with } \mathrm{S}_0 := \mathrm{diag}_{j=1,\ldots,\mathrm{J}}(\mathrm{S}_0^{\Gamma_j}). \end{aligned}$$

Transmission conditions : with scalar $\Lambda > 0$,

$$\partial_{n_{j}}u|_{\Gamma_{j}} = -\partial_{n_{k}}u|_{\Gamma_{k}} + \partial_{n_{j}}u|_{\Gamma_{i}} + \imath \wedge u|_{\Gamma_{i}} =$$

$$u|_{\Gamma_{j}} = u|_{\Gamma_{k}} \iff -\partial_{n_{k}}u|_{\Gamma_{k}} + \imath \wedge u|_{\Gamma_{k}} \iff$$

$$on \Gamma_{j} \cap \Gamma_{k} \forall j, k$$

$$on \Gamma_{j} \cap \Gamma_{k} \forall j, k$$

$$on \Gamma_{j} \cap \Gamma_{k} \forall j, k$$

where the operator Π_0 swaps traces on both sides of each interfaces :

$$(v_0,\ldots,v_{\mathtt{J}})=\Pi_0(u_0,\ldots,u_{\mathtt{J}})\iff v_j=u_k \text{ on } \Gamma_j\cap\Gamma_k.$$

Local scattering operators:

$$\begin{array}{c} \operatorname{S}_{0}^{\Gamma_{j}}(\partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}-\iota \wedge \psi|_{\Gamma_{j}^{\prime}}) := \partial_{n_{j}}\psi|_{\Gamma_{j}^{\prime}}+\iota \wedge \psi|_{\Gamma_{j}^{\prime}} \\ \text{for } \Delta\psi+\kappa^{2}\psi \\ \partial_{n}\psi-\iota\kappa\psi = 0 \text{ in } \Omega_{j} \\ 0 \text{ on } \partial\Omega_{j}\cap\partial\Omega \end{array}$$

Optimized Schwarz

$$(\mathrm{Id} + \Pi_0 \mathrm{S}_0) p = -\Pi_0(g)$$

with
$$p = (\partial_{n_j} u|_{\Gamma'_i} - \imath \Lambda u|_{\Gamma'_i})_{j=1}^{J}$$

Wave equations:

$$\begin{aligned} &(\partial_{n_j} u|_{\Gamma'_j} + \imath \Lambda u|_{\Gamma'_j})_{j=1}^{\mathrm{J}} = \\ &\mathrm{S}_0((\partial_{n_k} u|_{\Gamma'_k} - \imath \Lambda u|_{\Gamma'_k})_{k=1}^{\mathrm{J}}) + g \\ &\mathrm{with} \, \mathrm{S}_0 := \mathrm{diag}_{j=1,\ldots,\mathrm{J}}(\mathrm{S}_0^{\Gamma_j}). \end{aligned}$$

The cross-point issue

$$p^{(n+1)} = (1-r)p^{(n)} - r\Pi_0 S_0(p^{(n)}) - r\Pi_0(g)$$

Without cross points, geometric convergence can be obtained for appropriate (operator valued) impedance Λ . In practice, convergence is much slower with cross points i.e. at best algebraic $\|p-p^{(n)}\|_{L^2}=O(n^{-\gamma})$. The root cause seems related to Π_0 not being continuous at cross-points in proper trace norms.

This so-called "cross point issue" also arises in the different context of multi-domain boundary integral formulations where Multi-Trace Formalism (MTF) [Claeys & Hiptmair, 2012] now offers a framework that accomodates cross-points, and that is clean as regards function spaces.

Idea: use the Multi-Trace Formalism to treat cross-points in OSM. We shall replace Π_0 by a non-local counterpart Π that remains continuous no matter the presence of cross points, following the idea first introduced in :

X.Claeys, "Quasi-local multi-trace boundary integral formulations", Numer. Methods Partial Differential Equations, 31(6):2043–2062, 2015.

Outline

I Review of the Optimized Schwarz Method

II New manner to enforce transmission conditions

III Numerical results

Triangulation conforming with Ω_j 's, FE spaces $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on $\Omega_j \}$.

Volume functions	Tuples of traces $(\Gamma_j := \partial \Omega_j)$		
$\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) \times \cdots \times \mathrm{V}_h(\Omega_J)$	$\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$		
$V_h(\Omega) := \{ (u_1, \dots, u_J) \in \mathbb{V}_h(\Omega), $ $u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \}$	$\mathrm{V}_h(\Sigma) := \{\; (p_1, \dots, p_{\mathtt{J}}) \in \mathbb{V}_h(\Sigma), \ p_j = p_k \; on \; \Gamma_j \cap \Gamma_k \; orall j, k \; \}$		

Triangulation conforming with Ω_j 's, FE spaces $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on $\Omega_j \}$.

Volume functions	Tuples of traces $(\Gamma_j := \partial \Omega_j)$		
$\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) \times \cdots \times \mathrm{V}_h(\Omega_J)$	$\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$		
$V_h(\Omega) := \{ (u_1, \dots, u_J) \in V_h(\Omega), $ $u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \}$	$V_h(\Sigma) := \{ (p_1, \dots, p_J) \in \mathbb{V}_h(\Sigma), $ $p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \}$		

Piecewise H¹ Possible jumps through interfaces

Triangulation conforming with Ω_j 's, FE spaces $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on $\Omega_j \}$.

Volume functions	Tuples of traces $(\Gamma_j := \partial \Omega_j)$
$\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) \times \cdots \times \mathrm{V}_h(\Omega_J)$	$\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$
$V_h(\Omega) := \{ (u_1, \ldots, u_J) \in V_h(\Omega), $	$\mathcal{Y}_h(\Sigma) := \{\; (p_1,\ldots,p_{\mathtt{J}}) \in \mathbb{V}_h(\Sigma),\;$
$u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k$	$p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \ \}$

Multi-traces = tuples of traces at boundaries

Triangulation conforming with Ω_j 's, FE spaces $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on $\Omega_j \}$.

Volume functions	Tuples of traces $(\Gamma_j := \partial \Omega_j)$
$\mathbb{V}_h(\Omega) := V_h(\Omega_1) \times \cdots \times V_h(\Omega_J)$	$\mathbb{V}_{h}(\Sigma) := \mathrm{V}_{h}(\Gamma_{1}) \times \cdots \times \mathrm{V}_{h}(\Gamma_{J})$
	$V_h(\Sigma) := \{ (p_1, \ldots, p_J) \in \mathbb{V}_h(\Sigma), \}$
$u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \ \mathcal{V}$	$p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \ \}$

Single-traces = tuples of traces that match at interfaces

Triangulation conforming with Ω_j 's, FE spaces $V_h(\Omega_j) = \{ \mathbb{P}_k$ -Lagrange on $\Omega_j \}$.

Volume functions	Tuples of traces $(\Gamma_j := \partial \Omega_j)$		
$\mathbb{V}_h(\Omega) := \mathrm{V}_h(\Omega_1) \times \cdots \times \mathrm{V}_h(\Omega_J)$	$\mathbb{V}_h(\Sigma) := \mathrm{V}_h(\Gamma_1) \times \cdots \times \mathrm{V}_h(\Gamma_J)$		
$V_h(\Omega) := \{ (u_1, \ldots, u_J) \in \mathbb{V}_h(\Omega), $	$V_h(\Sigma) := \{ (p_1, \ldots, p_J) \in \mathbb{V}_h(\Sigma), \}$		
$u_j = u_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j,k \ \}$	$p_j = p_k \text{ on } \Gamma_j \cap \Gamma_k \ \forall j, k \ \}$		

Impedance

$$t_h(\mathfrak{p},\mathfrak{q}) = t_{\Gamma_1}(p_1,q_1) + \dots + t_{\Gamma_J}(p_J,q_J)$$

 $t_{\Gamma_j}(\cdot,\cdot) =$ any coercive sesquilinear form on $V_h(\Gamma_j)$

For the sake of clarity, $t_h(\cdot, \cdot)$ is assumed SPD.

Choices of impedance:

- surface mass matrix
- surface order 2 operator
- layer potential, DtN map
- Schur complements
- etc...

Matching at interfaces via orthogonal symmetry

The t_h -orthogonal projection onto the single-trace space $P_h: \mathbb{V}_h(\Sigma) \to V_h(\Sigma)$ can be applied by solving a (**DDM friendly!**) SPD problem

$$\mathfrak{p}=\mathrm{P}_{h}(\mathfrak{v}) \quad \Longleftrightarrow \quad \mathfrak{p}\in \mathrm{V}_{h}(\Sigma) \quad \text{and} \quad \ t_{h}(\mathfrak{p},\mathfrak{w})=t_{h}(\mathfrak{v},\mathfrak{w}) \quad \forall \mathfrak{w}\in \mathrm{V}_{h}(\Sigma)$$

Lemma : The t_h -orthogonal symmetry $\Pi:=\mathrm{P}_h-(\mathrm{Id}-\mathrm{P}_h)=2\mathrm{P}_h-\mathrm{Id}$ satisfies $\|\Pi(\mathfrak{q})\|_{t_h}=\|\mathfrak{q}\|_{t_h} \forall \mathfrak{q} \in \mathbb{V}_h(\Sigma)$ and, for any $\mathfrak{v},\mathfrak{q} \in \mathbb{V}_h(\Sigma)$,

$$(\mathfrak{v},\mathfrak{q}) \in V_h(\Sigma) \times V_h(\Sigma)^{\perp} \iff \mathfrak{q} + \imath \mathfrak{v} = \Pi(-\mathfrak{q} + \imath \mathfrak{v}).$$

Find
$$u_h \in V_h(\Omega)$$
 and $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$

$$a(u,v) := \sum_{j=1}^{J} \int_{\Omega_{j}} \nabla u \cdot \nabla \overline{v} - \kappa^{2} u \, \overline{v} \, dx \\ - \int_{\partial \Omega_{j}} \imath \kappa \, u \, \overline{v} \, d\sigma \\ \ell(v) := \sum_{j=1}^{J} \int_{\Omega_{j}} f \overline{v} dx \qquad u,v \in \mathbb{V}_{h}(\Omega)$$

Find
$$u_h \in \mathbb{V}_h(\Omega)$$
, $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$ and $\forall v_h \in \mathbb{V}_h(\Omega)$
 $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$
 $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$

Find
$$u_h \in V_h(\Omega)$$
 and $a(u, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$

$$\begin{array}{l} \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) := \sum_{j=1}^{\mathrm{J}} \int_{\Omega_{j}} \nabla \boldsymbol{u} \cdot \nabla \overline{\boldsymbol{v}} - \kappa^{2} \boldsymbol{u} \, \overline{\boldsymbol{v}} \, d\boldsymbol{x} \\ - \int_{\partial \Omega_{j}} \imath \kappa \, \boldsymbol{u} \, \overline{\boldsymbol{v}} \, d\sigma \\ \ell(\boldsymbol{v}) := \sum_{j=1}^{\mathrm{J}} \int_{\Omega_{j}} f \overline{\boldsymbol{v}} d\boldsymbol{x} & \boldsymbol{u}, \boldsymbol{v} \in \mathbb{V}_{h}(\Omega) \end{array}$$

Find
$$u_h \in \mathbb{V}_h(\Omega)$$
, $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$ and $\forall v_h \in \mathbb{V}_h(\Omega)$
 $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$
 $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$

Non trivial theorem :

- relaxing constraints with Lagrange multipliers
- \bullet Use Π to enforce continuity

Find
$$u_h \in V_h(\Omega)$$
 and $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$

$$a(u,v) := \sum_{j=1}^{J} \int_{\Omega_{j}} \nabla u \cdot \nabla \overline{v} - \kappa^{2} u \, \overline{v} \, dx \\ - \int_{\partial \Omega_{j}} \imath \kappa \, u \, \overline{v} \, d\sigma \\ \ell(v) := \sum_{j=1}^{J} \int_{\Omega_{j}} f \overline{v} dx \qquad u,v \in \mathbb{V}_{h}(\Omega)$$

Find
$$u_h \in \mathbb{V}_h(\Omega)$$
, $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$ and $\forall v_h \in \mathbb{V}_h(\Omega)$
 $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$
 $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$

Find
$$u_h \in V_h(\Omega)$$
 and $a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h(\Omega)$

$$\begin{array}{ll} \textbf{a}(\textbf{u},\textbf{v}) := \sum_{j=1}^{J} \int_{\Omega_{j}} \nabla \textbf{u} \cdot \nabla \overline{\textbf{v}} - \kappa^{2} \textbf{u} \, \overline{\textbf{v}} \, d\textbf{x} \\ & - \int_{\partial \Omega_{j}} \imath \kappa \, \textbf{u} \, \overline{\textbf{v}} \, d\sigma \\ \ell(\textbf{v}) := \sum_{j=1}^{J} \int_{\Omega_{j}} f \overline{\textbf{v}} d\textbf{x} & \textbf{u}, \textbf{v} \in \mathbb{V}_{h}(\Omega) \end{array}$$

Find
$$u_h \in \mathbb{V}_h(\Omega)$$
, $\mathfrak{p}_h \in \mathbb{V}_h(\Sigma)$ and $\forall v_h \in \mathbb{V}_h(\Omega)$
 $a(u_h, v_h) - \imath t_h(u_h|_{\Sigma}, v_h|_{\Sigma}) = t_h(\mathfrak{p}_h, v_h|_{\Sigma}) + \ell(v_h)$
 $\mathfrak{p}_h = -\Pi(\mathfrak{p}_h + 2\imath u_h|_{\Sigma})$

Unknowns u_h are eliminated in all subdomains in parallel by local "ingoing -to-outgoing" solves, applying a (block diagonal) scattering operator.

Proposition : Define $S(\mathfrak{p}):=\mathfrak{p}+2\imath w|_{\Sigma}$ where $w\in \mathbb{V}_h(\Omega)$ satisfies $a(w,v)-\imath t_h(w|_{\Sigma},v|_{\Sigma})=t_h(\mathfrak{p},v|_{\Sigma}) \forall v\in \mathbb{V}_h(\Omega)$. Then $\|S(\mathfrak{p})\|_{t_h}\leq \|\mathfrak{p}\|_{t_h}$ for all $\mathfrak{p}\in \mathbb{V}_h(\Sigma)$.

Theorem:

- 1) Boundedness : $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity : $\Re\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi S)\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

Coercivity constant

$$\gamma_h := \frac{\alpha}{\lambda_h^+ + 2 \|\mathbf{a}\|/\lambda_h^-}$$

Theorem:

- 1) Boundedness : $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity: $\Re\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi S)\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

$$\alpha := \inf \sup_{u_h, v_h \in V_h(\Omega) \setminus \{0\}} \frac{|a(u_h, v_h)|}{\|u_h\|_{\mathrm{H}^1_\kappa(\Omega)} \|v_h\|_{\mathrm{H}^1_\kappa(\Omega)}}$$

$$\text{Coercivity constant} \qquad \|a\| := \sup_{u, v \in \mathrm{H}^1(\Omega) \setminus \{0\}} \frac{|a(u, v)|}{\|u\|_{\mathrm{H}^1_\kappa(\Omega)} \|v\|_{\mathrm{H}^1_\kappa(\Omega)}}$$

$$\gamma_h := \frac{|a(u, v)|}{\lambda_h^+ + 2 \|a\|/\lambda_h^-}$$

Theorem:

- 1) Boundedness : $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity : $\Re\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi S)\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

$$\alpha := \inf_{u_h, v_h \in \mathcal{V}_h(\Omega) \setminus \{0\}} \frac{|a(u_h, v_h)|}{\|u_h\|_{H^1_\kappa(\Omega)} \|v_h\|_{H^1_\kappa(\Omega)}}$$

$$Coercivity constant$$

$$\gamma_h := \frac{\lambda_h^+ + 2 \|a\|/\lambda_h^-}{\lambda_h^+ + 2 \|a\|/\lambda_h^-}$$

$$\|a\| := \sup_{u, v \in \mathcal{H}^1(\Omega) \setminus \{0\}} \frac{|a(u, v)|}{\|u\|_{H^1_\kappa(\Omega)} \|v\|_{H^1_\kappa(\Omega)}}$$

$$\lambda_h^- := \inf_{\substack{j=1,\dots,J\\v_h \in \mathcal{V}_h(\Gamma_j) \setminus \{0\}}} \frac{t_{\Gamma_j}(v_h, v_h)}{\|v_h\|_{H^{1/2}_\kappa, h}^2(\Gamma_j)}$$

Theorem:

- 1) Boundedness : $\|\operatorname{Id} + \Pi S\|_{t_h} \leq 2$
- **2)** Coercivity : $\Re e\{t_h(\mathfrak{v}, (\mathrm{Id} + \Pi S)\mathfrak{v})\} \ge \gamma_h^2 \|\mathfrak{v}\|_{t_h}^2 \quad \forall \mathfrak{v} \in \mathbb{V}_h(\Sigma)$

The exact solution $\mathfrak{p}^{(\infty)} \in \mathbb{V}_h(\Sigma)$ to the skeleton formulation can be computed with e.g. a Richardson iteration : given $r \in (0,1)$, compute

$$\mathfrak{p}^{(n+1)} = (1-r)\mathfrak{p}^{(n)} - r\Pi \mathfrak{S}\mathfrak{p}^{(n)} + rg_h.$$

Proposition: convergence of Richardson's solver

$$\frac{\|\mathfrak{p}^{(n)} - \mathfrak{p}^{(\infty)}\|_{t_h}}{\|\mathfrak{p}^{(0)} - \mathfrak{p}^{(\infty)}\|_{t_h}} \le (1 - 2r(1 - r)\gamma_h^2)^{n/2}.$$

Important consequence : If the $t_{\Gamma_j}(\cdot,\cdot)$'s yield norms that are h-uniformly equivalent to $\|\cdot\|_{\mathrm{H}^{1/2}(\Gamma_i)}$, then we have h-uniform geometric convergence.

Only 3 hypothesis required

- **H1)** $\Im m\{a(v,v)\} \le 0 \ \forall v \in \mathrm{V}_h(\Omega)$ i.e. the medium can only absorb or propagate. The case of "purely" propagative media $\Im m\{a(v,v)\} = 0 \ \forall v \in \mathrm{V}_h(\Omega)$ is covered in particular.
- **H2)** Unique solvability of the discrete pb:

$$\inf_{u_h \in \mathrm{V}_h(\Omega)} \sup_{v_h \in \mathrm{V}_h(\Omega)} \frac{|a(u_h,v_h)|}{\|u_h\|_{\mathrm{H}^1_\kappa(\Omega)}\|v_h\|_{\mathrm{H}^1_\kappa(\Omega)}} > 0.$$

H3) The impedance $t_h(\cdot, \cdot)$ must be chosen coercive.

No assumption on:

- · the shape constant of the mesh
- the frequency regime

Outline

I Review of the Optimized Schwarz Method

Il New manner to enforce transmission conditions

III Numerical results

Numerical experiments: Helmholtz in 2D

Constant wave number $\kappa > 0$ in a disc $\Omega = \mathrm{D}(0,1)$ and impedance boundary condition $(\partial_{\boldsymbol{n}} - \imath \kappa) u^{\mathrm{ex}} = g$ with $g(\boldsymbol{x}) = (\partial_{\boldsymbol{n}} - \imath \kappa) \exp(-\imath \kappa \mathbf{d} \cdot \boldsymbol{x})$, discretization with $V_h(\Omega) = \mathbb{P}_1$ -Lagrange.

$$egin{aligned} u_h^{\mathrm{ex}} &\in \mathrm{V}_h(\Omega) \quad \mathrm{and} \quad a(u_h^{\mathrm{ex}}, v_h) = \ell(v_h) \quad orall v_h \in \mathrm{V}_h(\Omega) \ a(u, v) &= \int_\Omega
abla u \cdot
abla \overline{v} - \kappa^2 u \overline{v} d\mathbf{x} - \imath \kappa \int_{\partial \Omega} u \overline{v} d\sigma \ \ell(v) &= \int_{\partial \Omega} \overline{v} g d\sigma. \end{aligned}$$

With $u_0^{(0)} \equiv 0$, we denote $u_h^{(n)}$ the iterates of the linear solver. The measured error is given by

$$(\text{relative error})^2 = \frac{\sum_{j=1}^{J} \|u_h^{(n)} - u_h^{\text{ex}}\|_{\mathrm{H}^1(\Omega_j)}^2}{\sum_{j=1}^{J} \|u_h^{(0)} - u_h^{\text{ex}}\|_{\mathrm{H}^1(\Omega_j)}^2}.$$

Remarks:

- global linear solver is GMRes, relative tolerance = 10^{-8}
- sequential computations on a 6 core workstation
- FEM & DDM code NIDDL (in Julia) + BemTool (in C++) for integral operators
- exchange operator Π computed with PCG.

Choices of impedance

Recall that $t_h(\mathfrak{p},\mathfrak{q})=t_{\partial\Omega_1}(p_1,q_1)+\cdots+t_{\partial\Omega_J}(p_J,q_J)$. We tested several choices of local impedances.

Choice 1 : M =surface mass matrix

$$t_{\partial\Omega_j}(p_h,q_h)=\int_{\partial\Omega_i}p_h(m{x})\overline{q}_h(m{x})d\sigma(m{x})$$

This is the impedance originally considered by Després.

Choice 2 : K =surface H1-scalar product

$$t_{\partial\Omega_j}(p_h,q_h) = \int_{\partial\Omega_j} \kappa^{-1} \nabla p_h(\boldsymbol{x}) \cdot \nabla \overline{q}_h(\boldsymbol{x})/2 + \kappa p_h(\boldsymbol{x}) \overline{q}_h(\boldsymbol{x}) d\sigma(\boldsymbol{x})$$

Choice 3 : W =positive hypersingular integral operator

$$t_{\partial\Omega_j}(\boldsymbol{p}_h,\boldsymbol{q}_h) = \int_{\partial\Omega_j\times\partial\Omega_j} \exp(-\kappa|\boldsymbol{x}-\boldsymbol{y}|)/(4\pi|\boldsymbol{x}-\boldsymbol{y}|)[$$

$$\kappa^{-1}\boldsymbol{n}(\boldsymbol{x})\times\nabla_{\partial\Omega_j}\boldsymbol{p}_h(\boldsymbol{x})\cdot\boldsymbol{n}(\boldsymbol{y})\times\nabla_{\partial\Omega_j}\boldsymbol{q}_h(\boldsymbol{y})$$

$$+\kappa\boldsymbol{n}(\boldsymbol{x})\cdot\boldsymbol{n}(\boldsymbol{y})\boldsymbol{p}_h(\boldsymbol{x})\boldsymbol{q}_h(\boldsymbol{y}) \left[d\sigma(\boldsymbol{x},\boldsymbol{y})\right]$$

Choice 4 : $\Lambda =$ **schur complement**(\simeq discrete DtN) associated with the interior numerical solution to the **positive** problem $-\Delta v + \kappa^2 v = 0$ in Ω_i .

Mesh partitionning

Meshes were generated a priori on the whole computational domain with GMSH. Partitionning is obtained a posteriori with Metis.

Convergence history

$$\kappa=$$
 5, $\lambda=2\pi/\kappa\simeq$ 1.25 $N_{\lambda}=\lambda/h=$ 40 points/wavelength.

Iteration count vs. $N_{\lambda} = \text{points/wavelength}$

 $\kappa=1,~\lambda=2\pi/\kappa\simeq 6.28,~N_{\lambda}=\lambda/h,~$ 4 subdomains. Relative tolerance of GMRes $=10^{-8}, \emptyset=$ no DDM.

Ø	M	K	W	٨
44	82	63	34	24
227	130	92	36	24
654	218	258	38	22
2474	363	491	38	25
9559	671	1888	39	23
41888	1060	2633	39	23
	44 227 654 2474 9559	44 82 227 130 654 218 2474 363 9559 671	44 82 63 227 130 92 654 218 258 2474 363 491 9559 671 1888	44 82 63 34 227 130 92 36 654 218 258 38 2474 363 491 38 9559 671 1888 39

Iteration count vs. J = number of subdomains

$$\kappa=5,~~\lambda=2\pi/\kappa\simeq 1.26,~~N_{\lambda}=\lambda/h=40.$$
 Relative tolerance of GMRes = 10^{-8} .

J	Μ	K	W	٨
2	182	181	45	43
4	214	195	54	54
8	249	269	63	64
16	258	224	72	74
32	307	225	85	84
64	354	270	94	90
128	434	267	105	89

Iteration count vs. $\kappa = \text{wavenumber}$

κ	Ø	Μ	K	W	٨
1	149	125	79	36	22
2	268	131	115	38	32
4	811	168	127	49	47
8	1563	190	159	57	58
16	2926	214	163	66	68
32	5846	249	201	73	77

We proposed a new way of imposing transmission conditions involving another choice of exchange operator. This yields *h*-uniform convergence of iterative solvers, and accomodates cross-points.

In addition this approach appears as a natural generalization of the classical OSM à la Després, and allows to propose a full theoretical framework, which was not available so far.

Also available:

- other boundary conditions (Dirichlet, Neumann),
- other equations (3D Helmholtz, Maxwell),
- analysis of non-infsup-stable impedances.

Future investigations

- fine properties of the exchange operator
- large scale optimized parallel implementation
- multi-level strategy
- non-conforming DDM

Thank you for your attention Questions?

X.Claeys, F.Collino, P.Joly and E.Parolin, "A discrete domain decomposition method for acoustics with uniform exponential rate of convergence using non-local impedance operators", proceedings of the DD25 conference.

X.Claeys, "A new variant of the Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions", ESAIM Math. Model. Numer. Anal. 55 (2021), no. 2, 429–448.

X.Claeys and E.Parolin, "Robust treatment of cross points in Optimized Schwarz Methods", submitted, preprint Arxiv 2003.06657

X.Claeys, "Non-self adjoint impedance in Generalized Optimized Schwarz Methods", submitted, preprint Arxiv 2108.03652

X.Claeys, F.Collino and E.Parolin, Matrix form of nonlocal OSM for electromagnetics, preprint Arxiv 2108.11352