CLAIMS

Therefore, having thus described the invention, at least the following is claimed.

1	1.	A microstructure, comprising:
2		a substrate;
3		an overcoat layer disposed upon the substrate;
4		an air-region within at least a portion of the overcoat layer; and
5		a framing material layer engaging at least a portion of the air-region on
6		an inside surface of the framing material layer, and engaging the overcoat layer
7		on an outside surface of the framing material layer.
1	2.	The microstructure of claim 1, wherein the overcoat layer is selected from
2		polyimides, polynorbornenes, epoxides, polyarylenes ethers, polyarylenes,
3		inorganic glasses, and combinations thereof.
1	3.	The microstructure of claim 1, wherein the framing material is selected from
2		SiO_2 , Si_3N_4 , SiO_xN_y (where x is from 0.01 to 2 and y is from 0.01 to 1.33), and
3		Al_2O .
1	4.	The microstructure of claim 1, wherein the air-region has a height from about
2		0.01 to 100 micrometers and a width of about 0.1 to 10,000 micrometers.
1	5.	The microstructure of claim 1, wherein the framing material has a thickness of
2		about 0.001 to 10 micrometers.
1	6.	The microstructure of claim 1, wherein the framing material has a thickness of
2		about 0.01 to 2 micrometers.

1	7.	The microstructure of claim 1, further comprising a plurality of air-regions
2		disposed within the overcoat layer, the framing material layer of each of the
3		plurality of air-regions engaging at least a portion of each air-region on the
4		inside surface of the framing material layer and engaging the overcoat layer on
5		the outside surface of the framing material layer.
1	8.	The microstructure of claim 7, wherein the air-regions are positioned at
2		multiple height levels within the overcoat layer.
1	9.	The missestant of alsing 0 subseries of first air region is neglitioned above
1	9.	The microstructure of claim 8, wherein a first air-region is positioned above
2		and substantially in-line with a second air-region.
1	10.	The microstructure of claim 8, wherein a first air-region is positioned above
2		and substantially offset from a second air-region.
	11	
1	11.	A microstructure, comprising:
2		a substrate;
3		an overcoat layer disposed upon the substrate;
4		a sacrificial polymer layer disposed within at least a portion of the
5		overcoat layer; and
6		a framing material layer engaging at least a portion of the sacrificial
7		polymer layer on an inside surface of the framing material layer and engaging
8		the overcoat layer on an outside surface of the framing material layer.
1	12.	The microstructure of claim 11, wherein the overcoat layer is selected from
2		polyimides, polynorbornenes, epoxides, polyarylenes ethers, parylenes,
3		inorganic glasses, and combinations thereof.
1	13.	The microstructure of claim 11, wherein the framing material is selected from
2		SiO_2 , Si_3N_4 , SiO_xN_y (where x is from 0.01 to 2 and y is from 0.01 to 1.33), and
3		Al_2O .

1	21.	The method of claim 18, wherein the framing material is selected from SiO ₂ ,
2		Si_3N_4 , SiO_xN_y (where x is from 0.01 to 2 and y is from 0.01 to 1.33), and
3		Al_2O .
1	22.	The method of claim 18, wherein the sacrificial layer polymer is selected from
2		polyimides, polynorbornenes, epoxides, polyarylenes ethers, polyarylenes,
3		inorganic glasses, and combinations thereof.
1	23.	A method for fabricating a microstructure, comprising:
2		providing a structure having a substrate, an overcoat layer, a sacrificial
3		polymer layer in an area within the overcoat layer, and a framing material
4		between at least a portion of the sacrificial polymer layer and the overcoat
5		layer; and
6		removing the sacrificial polymer layer to form an air-region within the
7		area defined by the sacrificial material.
1	24.	The method of claim 23, wherein the sacrificial layer polymer is solvent-
2		incompatible with the overcoat.

1	14.	The microstructure of claim 11, wherein the sacrificial layer polymer is
2		selected from polyimides, polynorbornenes, epoxides, polyarylenes ethers,
3		parylenes, inorganic glasses, and combinations thereof.
1	15.	The microstructure of claim 11, wherein the sacrificial layer polymer is solvent
2		incompatible with the overcoat.
1	16.	The microstructure of claim 11, wherein the sacrificial layer polymer has a
2		height from about 0.01 to 100 micrometers and a width of about 0.1 to 10,000
3		micrometers.
1	17.	The microstructure of claim 11, wherein the framing material has a thickness
2		of about 0.001 to 10 micrometers.
1	18.	A method for fabricating a microstructure, comprising:
2		providing a substrate having a sacrificial polymer layer disposed
3		thereon;
4		disposing a framing material onto at least a portion of the sacrificial
5		polymer layer; and
6		disposing an overcoat layer onto the framing material, wherein the
7		framing material substantially separates the sacrificial polymer layer from the
8		overcoat layer.
1	19.	The method of claim 18, further comprising:
2		removing the sacrificial layer to define an air-region within the
3		overcoat layer, the framing material engaging at least a portion of the air-
4		region on an inside surface of the framing material and engaging the overcoat
5		layer on an outside surface of the framing material.
1	20.	The method of claim 18, wherein the overcoat layer is selected from
2		polyimides, polynorbornenes, epoxides, polyarylenes ethers, parylenes,
3		inorganic glasses, and combinations thereof.