

REVISÃO ENEM

Hidrostática

O QUE É UM FLUIDO?

Fluido é denominação genérica dada a qualquer substância que flui – isto é, escoa – e não apresenta forma própria, pois adquire a forma do recipiente que o contém. A **hidrostática** é o ramo da mecânica em que se estudam as condições de equilíbrio dos líquidos, dos gases e dos vapores. Um **líquido ideal** é *incompressível* e tem *viscosidade* desprezível.

O que é massa específica?

A massa específica de uma substância (μ) é a grandeza física escalar que caracteriza a distribuição da massa de um corpo homogêneo feito desta substância, no volume por ele ocupado. É definida pela relação entre a massa (m) e o volume (V).

$$\mu = \frac{m}{V} \Rightarrow \text{massa específica = massa/volume}$$

$$m = \mu \cdot V \Rightarrow \text{cálculo da massa}$$

OBSERVAÇÕES

- → Densidade (D) de um corpo é definida pela relação entre sua massa e seu volume. Se o corpo for homogêneo, sua densidade coincide com a massa específica da substância que o constitui; se o corpo tiver "espaços vazios" no seu interior, a densidade será menor do que a massa específica.
 - corpo homogêneo ⇒ D = µ
 - corpo oco ⇒ D < μ
- → Para **líquidos**, considerados sistemas homogêneos, a massa específica coincide sempre com a densidade.
- → Unidades de densidade
- no SI ⇒ quilograma por metro cúbico (kg/m³)
- na prática ⇒ grama por centímetro cúbico (g/cm³) e quilograma por litro (kg/ ℓ)
- conversões ⇒ para converter g/cm³ ou kg/ℓ em kg/m³, multiplique o número por 10⁻³

Peso específico (ρ = rô) de um corpo homogêneo é definido pela relação entre seu peso e seu volume. O peso específico também é dado pelo produto entre a densidade e a aceleração local da gravidade.

$$\rho = P/V = \mu \cdot g \Rightarrow P = \mu \cdot g \cdot V$$

peso = densidade · gravidade · volume

O QUE É DENSIDADE RELATIVA?

Densidade relativa $\mathbf{D_R}$ de um corpo ou de uma substância é a relação entre sua densidade $\mathbf{D_1}$ e a densidade de outra substância $\mathbf{D_2}$ tomada como padrão. Para sólidos e líquidos, a referência geralmente é a densidade da água, a 4°C:

$$\mu_{\text{água}} = 1.0 \times 10^3 \text{ kg/m}^3 = 1.0 \text{ g/cm}^3 = 1.0 \text{ kg/litro}$$

$$D_R = D_1/D_2$$

O QUE É PRESSÃO MÉDIA?

Define-se **pressão média** como a grandeza *escalar* dada pela relação entre a intensidade da força normal F_N à superfície e a área A da superfície:

Da definição, conclui-se que a força de pressão exercida sobre uma superfície é sempre perpendicular à superfície e dada por

$$F_N = p \cdot A$$

As **forças de pressão** exercidas por um fluido contra as paredes do recipiente são sempre **perpendiculares** à superfície.

Observa-se que um jato de água que jorra pelo orificio aberto na parede do recipiente sai perpendicularmente à parede. A unidade SI de pressão é o *pascal*, sendo **1Pa = 1N/m²**. Na prática, usa-se ainda atmosfera, mm de Hg, etc.

(1) FIG

- FIG. (1) A intensidade da **força** trocada na interação entre o lápis e cada um dos dedos é de mesma intensidade em ambas as extremidades: $F_A = F_B$. A **pressão**, porém, é maior na ponta do lápis, pois a área de distribuição da força é menor $p_B > p_A$, pois $A_B < A_A$.
- FIG. (2) Embora o peso de ambos os tijolos seja o mesmo $(P_A = P_B)$, a pressão exercida sobre o piso é maior no caso **A**, pois a área de distribuição do peso é menor $(p_A > p_B)$.

O QUE É PRESSÃO HIDROSTÁTICA?

Pressão hidrostática ou pressão manométrica ou pressão efetiva é a pressão exercida pelo peso da coluna de fluido em equilíbrio (isto é, a pressão devida somente ao líquido), dada pelo produto:

$$p_{HIDROSTÁTICA} = p_H = \mu \cdot g \cdot H$$

Conclui-se que a pressão hidrostática, num dado local da Terra:

- \Rightarrow **depende** da natureza do líquido (μ);
- ⇒ num mesmo líquido, é diretamente proporcional à altura vertical *H* (= profundidade);
- ⇒ independe da forma do recipiente, da área da coluna fluida e da inclinação do recipiente;
- \Rightarrow no interior de um líquido homogêneo em equilíbrio, é a mesma em qualquer superfície horizontal (= superfície isobárica).

Pressão absoluta

A pressão total, ou pressão absoluta, exercida num ponto $\bf A$ no interior de um líquido homogêneo em equilíbrio, é dada pela pressão na superfície livre, $\bf p_0$, somada à pressão hidrostática devido ao peso da coluna de líquido.

TEOREMA DE **S**TEVIN

A diferença de pressão entre dois pontos de um líquido homogêneo, em equilíbrio, Δp , corresponde à pressão hidrostática da coluna de líquido que existe entre eles, ΔH .

$$\Delta p = \mu . g . \Delta H$$

OBSERVAÇÕES

→ Pressão atmosférica ⇒ experiência de Torricelli

Evangelista Torricelli conduziu um experi-mento com um tubo de mercúrio, capaz de de-terminar a intensidade da pressão atmosférica. Ao nível do mar, o valor obtido foi, aproximadamente:

$$p_{atm} = 10^5 \text{ N/m}^2 = 76 \text{ mm de Hg} = 1 \text{ atmosfera}$$

Observa-se que a pressão atmosférica **depende da altitude do local:** *quanto maior for a altitude, menor é o valor da pressão atmosférica*

→ Equilíbrio de um mesmo líquido em vasos comunicantes

Quando dois ou mais vasos são ligados pela base e expostos ao ar livre, o líquido que eles contêm, quando em equilíbrio, atinge o mesmo nível nos dois ramos

→ Equilíbrio de líquidos imiscíveis num mesmo recipiente

Líquidos imiscíveis (não se misturam) e que não reagem quimicamente entre si, colocados num mesmo recipiente, se sobrepõe na razão inversa de suas densidades, isto é, o mais denso vai para o fundo.

→ Equilíbrio de líquidos imiscíveis em vasos comunicantes

O equilíbrio se estabelece de modo que as alturas das colunas líquidas, medidas a partir da **superfície de separação**, sejam inversamente proporcionais às respectivas densidades.

$$\mu_1 \cdot H_1 = \mu_2 \cdot H_2$$

→ Manômetros

Manômetro é um instrumento destinado a medir pressão. Barômetro é um manômetro que mede a pressão atmosférica.

O que estabelece o Princípio de Pascal?

Em um fluido em equilíbrio, a pressão em um ponto qualquer de uma superfície exerce uma força perpendicular à superfície, que independe da direção ou orientação dessa superfície. Qualquer pressão adicional aplicada a esse fluido se transmite integralmente a todos os pontos do fluido.

Injetando água com uma seringa em uma bola de pingue-pongue, na qual foram feitos vários orifícios, veremos que a água jorra, com a mesma pressão, por todos esses orifícios. A pressão exercida na água pelo êmbolo da seringa se transmite em todas as direções, em concordância com o princípio de Pascal.

Aumentando-se a pressão em um ponto de um líquido em equilíbrio, este aumento transmite-se integralmente a todos os pontos do líquido.

O QUE É UMA PRENSA HIDRÁULICA?

É um equipamento utilizado para multiplicar forças e as transmitirem a outro local de aplicação, cujo princípio de funcionamento é a lei de Pascal, isto é, um sistema hidráulico usa a transmissão de pressão em um líquido para a obtenção de trabalho mecânico. São exemplos o macaco hidráulico, a direção hidráulico, o freio hidráulico, etc.

OBSERVAÇÕES

- → O fator de multiplicação de forças ou eficiência da prensa hidráulica é igual à razão A_{maior}/A_{menor}.
- → O volume de líquido deslocado pelo êmbolo menor é igual ao volume deslocado pelo êmbolo maior ($\Delta V_{menor} = \Delta V_{maior}$).
- → O trabalho realizado pela força menor é igual ao trabalho realizado pela força maior (W_{F1} = W_{F2}).

O que é empuxo?

Empuxo (\vec{E}) é uma força vertical, de baixo para cima, exercida por um fluido sobre um corpo total ou parcialmente nele mergulhado (fig 1).

- A força de empuxo é igual à diferença entre as forças hidrostáticas que atuam na direção vertical, \vec{F}_1 de baixo para cima, na base inferior, e superior do corpo (fig 2).
- ☐ A força de reação à força de empuxo está aplicada no seio do fluido (fig 3):

ação: fluido sobre o corpo (Ē)

reação: corpo sobre fluido (– 💆)

O que afirma o Princípio de Arquimedes?

A intensidade do empuxo que age sobre um corpo mergulhado total ou parcialmente num fluido em equilíbrio é igual ao peso do volume de fluido deslocado pelo corpo.

 μ_F = densidade do fluido V_{subm} = volume fluido deslocado pela porção submersa

OBSERVAÇÕES

- → O empuxo é diretamente proporcional à densidade do fluido e diretamente proporcional à porção de volume submerso.
- → O empuxo *independe* da densidade do corpo, da massa do corpo, do peso do corpo, do fato do corpo ser oco ou maciço ou da profundidade em que se encontra o corpo.
- → O peso do corpo, força vertical, de cima para baixo, exercida pela atração gravitacional da Terra, é dado por:

$$P_{c}$$
 = μ_{c} . g . V_{c}
 μ_{c} = densidade do corpo
 V_{c} = volume do corpo

QUAIS COMPORTAMENTOS PODE ASSUMIR UM OBJETO TOTALMENTE IMERSO NO INTERIOR DO FLUIDO?

Se o corpo estiver totalmente mergulhado no fluido, o volume do fluido deslocado será igual ao volume do corpo:

$$V_{subm} = V_{fluido deslocado} = V_{corpo}$$

Teremos, então, três possibilidades:

☐ Primeira possibilidade: P > E

 $\mu_{\text{corpo}} > \mu_{\text{fluido}}$

A força resultante que atua no corpo é denomi-nada peso aparente e sua intensidade é dada por:

$$P_{aparente} = P_A = P - E$$

Sob ação dessa força resultante, o corpo desloca-se para baixo, até entrar em equilíbrio ao encontrar o fundo do recipiente (fig. 1)

Segunda possibilidade: P = E

 $\mu_{\text{corpo}} = \mu_{\text{fluido}}$

Como o peso do corpo e o empuxo têm mesma intensidade, o peso aparente é nulo e em qualquer posição que se abandone o corpo no interior do fluido, ele estará em equilíbrio. (fig. 2).

☐ Terceira possibilidade: P < E

 $\mu_{\rm corpo} < \mu_{\rm fluido}$

A força resultante que atua sobre o corpo, nessa situação, é denominada força ascensional, cuja intensidade é dada por:

$$F_{ascensional} = F_A = E - P$$

Sob ação dessa força \mathbf{F}_A , o corpo irá subir acelerando no interior do fluido, até atingir a superfície, onde irá emergir parcialmente até o equilíbrio ($fig\ 3$).

O QUE É UM CORPO FLUTUANTE NUM FLUIDO?

Um objeto é um *corpo flutuante* em equilíbrio num fluido quando são verificadas as seguintes características:

- \Box O volume submerso é menor do que o volume do corpo ($V_{subm} < V_{corpo}$);
- \Box A densidade do fluido é maior do que a densidade do corpo ($\mu_{fluido} > \mu_{corpo}$);
- Obedece ao **princípio da flutuação**: "o empuxo do fluido tem intensidade igual ao peso do corpo e a força resultante é nula".

$$\Sigma \vec{F} = \vec{0} \Rightarrow \mathbf{E} = \mathbf{P}$$

