# Random Number Generation using Genetic Programming: Demonstration

#### Philip Leonard

University of Liverpool

Primary Supervisor: Dr. David Jackson Secondary Supervisor: Professor Paul E. Dunne

sgple on a@student.liver pool.ac.uk

#### Presentation Overview

#### Implementation Snapshot

Structs
Fitness Function
Selection
SNGP Driving Factor

#### Analysis Snapshot

Sample GP vs SNGP Sample SNGP vs GP Scalar Entropies 50 Run Average GP vs SNGP 50 Run C Rand() vs Random.org vs GP vs SNGP Graphical Data

#### Progress

## Genetic Programming - Struct

Here we can see how each tree is described as a struct in C.

```
struct population_member {
   char code[MAX_PROG_SIZE + 1];
   char output[J + 1];
   int proglen;
   double scalar_entropy[H_MAX];
   double total_fitness;
};
```

A population of these struct descriptions of the trees is formed by creating a larger struct to embody them all;

```
struct population_member population[POP_SIZE];
```

## Single Node Genetic Programming - Struct

Here we can see how each node is described as a struct in C.

```
struct population_member {
   char node_value;
   int depth;
   long dec_output[J];
   char bin_output[J + 1];
   int pred[POP_SIZE]; //1 if node index is predecessor
   int suc_1; //Array index of left successor
   int suc_2; //Array index of right successor
   double scalar_entropy[H_MAX];
   double total_fitness;
};
```

A graph of these struct descriptions of the nodes is formed by creating a larger struct to embody them all;

```
struct population_member graph[POP_SIZE];
```

#### Fitness Function - GP & SNGP

$$E_{total} = \sum_{h=1}^{N_{max}} \left[ -\sum_{j} P_{(hj)} \log_2 P_{(hj)} \right]$$

The fitness function above is implemented by counting the occurrences of all possible binary substrings from length h=1 up to length  $N_{max}$ . In this implementation  $N_{max}=7$ , giving us a maximal entropy/fitness of  $\sum_{i=1}^{7} i=28$ .

Occurrences are counted using using the KMP<sup>1</sup> pattern matching algorithm.

```
occurrence = KMP_{matching}(j2, bit_{seq});
```

<sup>&</sup>lt;sup>1</sup>Knuth Morris Pratt - finite automaton based pattern matching

#### Fitness Function - GP & SNGP - Continued

I replaced the initial brute force pattern matching with the KMP pattern matching algorithm which improved the worst-case running time from O(nm) to O(n+m), and greatly improving running times for both implementations.

After the occurrences are counted for that particular substring length, they are then summed;

```
occurrence_array[array_count] = occurrence;
total_occ += occurrence;
```

#### Fitness Function - GP & SNGP - Continued

The probability of occurrence for each  $0 < i \le H_{max}$  and therefore the scalar entropies can be calculated;

```
for (int z = 0; z < array_count; z++) {
   int occ = occurrence_array[z];
   double prob = 0;
   if (total_occ != 0)
      prob = occ / (double)total_occ;
   double e_h_increment:
   //Avoid log(0) and negative zero
   if (prob = 0 \mid \mid prob = 1)
      e_h_increment = 0;
   else
      e_h_increment = (-1*((prob*log10(prob))/log10(2.0)));
   e_scalar[h-1] = e_scalar[h-1] + e_h_increment;
```

#### Selection GP

For fitness proportionate selection, the fitnesses of the population are summed and then a random number is chosen in the sums range;

```
//Adding POP_SIZE so that programs with 0 entropy still have chance double total_select = fitness_sum + POP_SIZE; double selection = ( (double)rand() * total_select ) / (double)RAND_MAX;
```

The population fitnesses are then summed until the random number falls in between the current nodes fitness. Thus giving fitter members a greater chance of being selected. Below, s is the member chosen.

```
for (s = 0; s < POP_SIZE; s++) {
    struct population_member *progp = &population[s];
    acc_fitness = acc_fitness + 1 + progp->total_fitness;
    if (acc_fitness >= selection && selection >= old_acc_fitness) {
        break;
    }
}
```

In the other cases, a parent is chosen at random from the population size (with equal probability).

#### Selection SNGP

A node is selected at random with equal probabilities, removing the terminal values from the equation. The successor (left or right child) is also chosen with equal probability. This is then mutated to another node in the graph (with a lower depth, chosen with equal probability).

```
\begin{array}{ll} \mbox{int} & \mbox{mut} = (\mbox{rand}()\%(\mbox{POP\_SIZE-NUM\_TERMINALS})) + \mbox{NUM\_TERMINALS}; \\ \mbox{int} & \mbox{suc} = \mbox{rand}()\%2; \end{array}
```

## **SNGP** Driving Factor

In GP, the evolution of the population is done regardless to fitness progress. In SNGP the most effective climbing approach I found was to drive on either the increase of the total population fitness OR by the fittest members fitness increase;

```
if (best_fitness_old >= best_fitness &&
    total_pop_fitness_old >= total_pop_fitness)
{
    //Then throw away new graph population after mutation
}
```

## **Analysis Snapshot**

In this section we shall be taking a look at a short but general analysis of the project so far. I conducted 50 runs of both the GP and SNGP implementations in order to gather data to conduct some evaluation of the project. These runs were all conducted under "standard" parameters as seen below.

|                                     | GP          | SNGP        |
|-------------------------------------|-------------|-------------|
| Max Entropy                         | 27.990 Bits | 27.990 Bits |
| Max Generations / Mutation attempts | 51          | 2500        |
| Population Size                     | 500         | 100         |
| Max init program depth              | 4           | N/A         |
| Max crossover program depth         | 15          | N/A         |
| FPR prob                            | 0.1         | N/A         |
| Crossover prob                      | 0.9         | N/A         |
| Internal node crossover prob        | 0.9         | N/A         |
| External node crossover prob        | 0.1         | N/A         |

## Sample GP vs SNGP - A single Run



## Sample GP Scalar Entropies



## Sample SNGP Scalar Entropies



## 50 Run Average GP vs SNGP

After 50 Runs of both implementations, I was able to gather some promising data. The results show that SNGP is both quicker and more effective than GP when it comes to finding solutions (I.e. RNGs with entropy higher than 27.99)

|                  | SNGP        | GP          |
|------------------|-------------|-------------|
| Avg Run Time     | 606.9s      | 4111.6s     |
| Avg Sol Run Time | 483.2s      | 2173.4s     |
| Solution Rate    | 88%         | 40%         |
| Avg Sol Size     | 167.5       | 154.6       |
| Avg Final Size   | 167.3       | 277.8       |
| Avg Run Fitness  | 27.88153318 | 27.2570626  |
| Best Sol Fitness | 27.995729   | 27.995032   |
| Avg Sol Fitness  | 27.9917378  | 27.99195145 |

## 50 Run C Rand() vs Random.org vs GP vs SNGP

I also collected data from 50 calls of both the C Rand function (seeded with the time), and atmospheric noise data from Random.org. The results are promising, showing that the RNGs produced genetically fractionally outperform both common methods of producing random numbers.

|                             | TRNG        | C PRNG      | SNGP       | GP          |
|-----------------------------|-------------|-------------|------------|-------------|
| Fittest (Entropy)           | 27.993097   | 27.991925   | 27.995729  | 27.995032   |
| Fittest (%)                 | 99.975%     | 99.9712%    | 99.985%    | 99.982%     |
| Fittest (Entropy Shortfall) | 0.006903    | 0.008075    | 0.004271   | 0.004968    |
| Avg Fit (Entropy) (Sol)     | 27.98695522 | 27.98985372 | 27.9917378 | 27.99195145 |
| Avg Fit (%) (Sol)           | 99.953%     | 99.964%     | 99.970%    | 99.971%     |
| Avg Fit (Shortfall) (Sol)   | 0.01304478  | 0.01014628  | 0.0082622  | 0.00804855  |

## Random.org Entropy Fluctuation Over Time

The entropy fluctuation on the day which I gathered the data from Random.org is shown on the graph below generated by their servers.



## SNGP Entropy Shortfall of Solutions



## GP Entropy Shortfall of Solutions



#### **SNGP Surface Plot**

A graphical view of the correlation between running time, solution size and Entropy of all 50 runs of the Single Node Genetic Programming Implementation.



## Genetic Programming Surface Plot

A graphical view of the correlation between running time, solution size and Entropy of all 50 runs of the Genetic Programming Implementation.



#### Overview

To conclude, it is clearly evident that SNGP produces more solutions in a much quicker time frame, under these standard parameters. It is also evident that a RNG produced genetically can outperform common pseudo and natural methods of producing random numbers.

This has just been a snapshot of the evaluation, in my dissertation further analysing of both GP and SNGP will be undertaken using different parameters in order to observe performance under different conditions.

## **Progress**



Figure: Gantt Chart - Work plan





Q&A