Advanced Applied Econometrics

Professor Felix Weinhardt

based on: Scott Cunningham's Mixtape

Panel Methods

- Panel data: we observe the same units (individuals, firms, countries, schools, etc.) over several time periods
- Often our outcome variable depends on unobserved factors which are also correlated with our explanatory variable of interest
- If these omitted variables are constant over time, we can use panel data estimators to consistently estimate the effect of our explanatory variable
- Main estimators for panel data:
 - Pooled OLS
 - Fixed effects estimator
 - Random effects estimator

Panel setup

- Let y and $x \equiv (x_1, x_2, \dots, x_k)$ be observable random variables and c be an unobservable random variable
- We are interested in the partial effects of variable x_j in the population regression function

$$E[y|x_1,x_2,\ldots,x_k,c]$$

- We observe a sample of i = 1, 2, ..., N cross-sectional units for t = 1, 2, ..., T time periods (a balanced panel)
 - For each unit i, we denote the observable variables for all time periods as $\{(y_{it}, x_{it}) : t = 1, 2, ..., T\}$
 - $x_{it} \equiv (x_{it1}, x_{it2}, \dots, x_{itk})$ is a $1 \times K$ vector
- Typically assume that cross-sectional units are i.i.d. draws from the population: $\{y_i, x_i, c_i\}_{i=1}^N \sim i.i.d.$ (cross-sectional independence)
 - $y_i \equiv (y_{i1}, y_{i2}, \dots, y_{iT})'$ and $x_i \equiv (x_{i1}, x_{i2}, \dots, x_{iT})$
 - ullet Consider asymptotic properties with T fixed and $N o \infty$

Panel setup

Single unit:

$$y_{i} = \begin{pmatrix} y_{i1} \\ \vdots \\ y_{it} \\ \vdots \\ y_{iT} \end{pmatrix}_{T \times 1} X_{i} = \begin{pmatrix} X_{i,1,1} & X_{i,1,2} & X_{i,1,j} & \dots & X_{i,1,K} \\ \vdots & \vdots & \vdots & & \vdots \\ X_{i,t,1} & X_{i,t,2} & X_{i,t,j} & \dots & X_{i,t,K} \\ \vdots & \vdots & \vdots & & \vdots \\ X_{i,T,1} & X_{i,T,2} & X_{i,T,j} & \dots & X_{i,T,K} \end{pmatrix}_{T \times K}$$

Panel with all units:

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_N \end{pmatrix} X = \begin{pmatrix} X_1 \\ \vdots \\ X_i \\ \vdots \\ X_N \end{pmatrix}_{NT \times N}$$

Unobserved effects model: Farm output

• For a randomly drawn cross-sectional unit *i*, the model is given by

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}, \ t = 1, 2, \dots, T$$

- y_{it} : output of farm i in year t
- $x_{it}: 1 \times K$ vector of variable inputs for farm i in year t, such as labor, fertilizer, etc. plus an intercept
- $\beta: K \times 1$ vector of marginal effects of variable inputs
- c_i : sum of all time-invariant inputs known to farmer i (but unobserved for the researcher), e.g., soil quality, managerial ability, etc.
 - often called the unobserved effect, unobserved heterogeneity, etc
- ε_{it} : time-varying unobserved inputs, such as rainfall, unknown to the farmer at the time the decision on the variable inputs x_{it} is made
 - often called the idiosyncratic error
- What happens when we regress y_{it} on x_{it} ?

Pooled OLS

• When we ignore the panel structure and regress y_{it} on x_{it} we get

$$y_{it} = x_{it}\beta + v_{it}; \ t = 1, 2, ..., T$$

with composite error $v_{it} \equiv c_i + \varepsilon_{it}$

- Main assumption to obtain consistent estimates for β is:
 - $E[v_{it}|x_{i1},x_{i2},\ldots,x_{iT}]=E[v_{it}|x_{it}]=0$ for $t=1,2,\ldots,T$
 - x_{it} are strictly exogenous: the composite error v_{it} in each time period is uncorrelated with the past, current and future regressors
 - But: labour input x_{it} likely depends on soil quality c_i and so we have omitted variable bias and $\widehat{\beta}$ is not consistent
 - No correlation between x_{it} and v_{it} implies no correlation between unobserved effect c_i and x_{it} for all t
 - Violations are common: whenever we omit a time-constant variable that is correlated with the regressors (heterogeneity bias)
 - Additional problem: v_{it} are serially correlated for same i since c_i is present in each t and thus pooled OLS standard errors are invalid

Unobserved effects model: program evaluation

Program evaluation model:

$$y_{it} = prog_{it}\beta + c_i + \varepsilon_{it}; t = 1, 2, \dots, T$$

- y_{it} : log wage of individual i in year t
- $prog_{it}$: indicator coded 1 if individual i participants in training program at t and 0 otherwise
- β : effect of program
- c_i : sum of all time-invariant unobserved characteristics that affect wages, such as ability, etc.
- What happens when we regress y_{it} on $prog_{it}$? $\widehat{\beta}$ not consistent since $prog_{it}$ is likely correlated with c_i (e.g., ability)
- Always ask: is there a time-constant unobserved variable (c_i) that is correlated with the regressors? If yes, then pooled OLS is problematic

Fixed effect regression

Our unobserved effects model is:

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; t = 1, 2, \dots, T$$

- If we have data on multiple time periods, we can think of c_i as **fixed effects** or "nuisance parameters" to be estimated
- OLS estimation with fixed effects yields

$$(\widehat{\beta}, \widehat{c}_1, \dots, \widehat{c}_N) = \operatorname*{argmin}_{b, m_1, \dots, m_N} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - x_{it}b - m_i)^2$$

this amounts to including N farm dummies in regression of y_{it} on x_{it}

Derivation: fixed effects regression

$$(\widehat{\beta}, \widehat{c}_1, \dots, \widehat{c}_N) = \underset{b, m_1, \dots, m_N}{\operatorname{argmin}} \sum_{i=1}^N \sum_{t=1}^T (y_{it} - x_{it}b - m_i)^2$$

The first-order conditions (FOC) for this minimization problem are:

$$\sum_{i=1}^{N} \sum_{t=1}^{T} x'_{it} (y_{it} - x_{it} \widehat{\beta} - \widehat{c}_i) = 0$$

and

$$\sum_{t=1}^{T} (y_{it} - x_{it}\widehat{\beta} - \widehat{c}_i) = 0$$

for $i = 1, \ldots, N$.

Therefore, for i = 1, ..., N,

$$\widehat{c}_i = \frac{1}{T} \sum_{t=1}^{I} (y_{it} - x_{it}\widehat{\beta}) = \overline{y}_i - \overline{x}_i\widehat{\beta},$$

where

$$ar{x}_i \equiv rac{1}{T} \sum_{t=1}^T x_{it}; ar{y}_i \equiv rac{1}{T} \sum_{t=1}^T y_{it}$$

Plug this result into the first FOC to obtain:

$$\widehat{\beta} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)'(x_{it} - \bar{x}_i)\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x}_i)'(y_{it} - \bar{y})\right)$$

$$\widehat{\beta} = \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{x}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{x}'_{it} \ddot{x}_{it}\right)$$

with time-demeaned variables $\ddot{x}_{it} \equiv x_{it} - \bar{x}$, $\ddot{y}_{it} \equiv y_{it} - \bar{y}_{i}$

Fixed effects regression

Running a regression with the time-demeaned variables $\ddot{y}_{it} \equiv y_{it} - \bar{y}_i$ and $\ddot{x}_{it} \equiv x_{it} - \bar{x}$ is numerically equivalent to a regression of y_{it} on x_{it} and unit specific dummy variables.

Even better, the regression with the time demeaned variables is consistent for β even when $Cov[x_{it}, c_i] \neq 0$ because time-demeaning eliminates the unobserved effects

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}$$

 $\bar{y}_i = \bar{x}_i\beta + c_i + \bar{\varepsilon}_i$

$$(y_{it} - \bar{y}_i) = (x_{it} - \bar{x})\beta + (c_i - c_i) + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

$$\ddot{y}_{it} = \ddot{x}_{it}\beta + \ddot{\varepsilon}_{it}$$

Fixed effects regression: main results

- Identification assumptions:
 - **1** $E[\varepsilon_{it}|x_{i1},x+i2,\ldots,x_{iT},c_i]=0; t=1,2,\ldots,T$
 - regressors are strictly exogenous conditional on the unobserved effect
 - allows x_{it} to be arbitrarily related to c_i
 - - regressors vary over time for at least some i and not collinear
- Fixed effects estimator
 - **1** Demean and regress \ddot{y}_{it} on \ddot{x}_{it} (need to correct degrees of freedom)
 - 2 Regress y_{it} on x_{it} and unit dummies (dummy variable regression)
 - 3 Regress y_{it} on x_{it} with canned fixed effects routine
 - STATA: xtreg y x, fe i(PanelID)
- Properties (under assumptions 1-2):
 - $\widehat{\beta}_{FE}$ is consistent: $\underset{N\to\infty}{plim}\,\widehat{\beta}_{FE,N}=\beta$
 - $\widehat{\beta}_{FE}$ is unbiased conditional on **X**

Fixed effects regression: main issues

- Inference:
 - Standard errors have to be "clustered" by panel unit (e.g., farm) to allow correlation in the ε_{it} 's for the same i.
 - STATA: xtreg , fe i(PanelID) cluster(PanelID)
 - Yields valid inference as long as number of clusters is reasonably large
- Typically we care about β , but unit fixed effects c_i could be of interest
 - \widehat{c}_i from dummy variable regression is unbiased but not consistent for c_i (based on fixed T and $N \to \infty$)
 - xtreg , fe routine demeans the data before running the regression and therefore does not estimate $\hat{c_i}$
 - intercept shows average \hat{c}_i across units
 - we can recover \hat{c}_i using $\hat{c}_i = \bar{y}_i \bar{x}_i \hat{\beta}$
 - predict c_i, u

Example: Direct Democracy and Naturalizations

- Do minorities fare worse under direct democracy than under representative democracy?
- Hainmueller and Hangartner (2012) examine data on naturalization requests of immigrants in Switzerland, where municipalities vote on naturalization applications in:
 - referendums (direct democracy)
 - elected municipality councils (representative democracy)
- Annual panel data from 1,400 municipalities for the 1991-2009 period
 - y_{it} : naturalization rate = $\frac{no.naturalizations_{it}}{eligible for eignpopulation_{i,t-1}}$
 - x_{it} : 1 if municipality used representative democracy, 0 if municipality used direct democracy in year t

Naturalization Panel Data

. des muniID muni_name year nat_rate repdem

variable name	storage type	display format	value label	variable label
muniID	float	%8.0g		municipality code
muni_name	str43	%43s		municipality name
year	float	%ty		year
nat_rate	float	%9.0g		naturalization rate (percent)
repdem	float	%9.0g		1 representative democracy, 0 direct

Panel Data Long Format

. list muniID muni_name year nat_rate repdem in 31/40

muniID	muni_name	year	nat_rate	repdem
2	Affoltern A.A.	2002	4.638365	0
2	Affoltern A.A.	2003	4.844814	0
2	Affoltern A.A.	2004	5.621302	0
2	Affoltern A.A.	2005	4.387827	0
2	Affoltern A.A.	2006	8.115358	1
2	Affoltern A.A.	2007	7.067371	1
2	Affoltern A.A.	2008	8.977719	1
2	Affoltern A.A.	2009	6.119704	1
3	Bonstetten	1991	.8333334	0
3	Bonstetten	1992	.8403362	0
1				

Pooled OLS

. reg nat_rate repdem , cl(muniID)

Linear regression

Number of obs = 4655F(1, 244) = 130.04 Prob > F = 0.0000 R-squared = 0.0748 Root MSE = 3.98

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem _cons	2.503318 2.222683	.2195202	11.40 22.03	0.000	2.070921 2.023976	2.935714

Decompose within and between variation

```
. tsset muniID year , yearly
panel variable: muniID (strongly balanced)
time variable: year, 1991 to 2009
delta: 1 year
```

. xtsum nat_rate

Variable	Mean	Std. Dev.	Min	Max	Observations
nat_rate overall between	2.938992	4.137305 1.622939	0	24.13793 7.567746	N = 4655 n = 245
within		3.807039	-3.711323	24.80134	T = 19

Time-demeaning for fixed effects: $y_{it} \rightarrow \ddot{y}_{it}$

- . * get municipality means
- . egen means nat rate = mean(nat rate) , by(muniID)
- . * compute deviations from means
- . gen dm_nat_rate = nat_rate means_nat_rate
- . list muniID muni_name year nat_rate means_nat_rate dm_nat_rate in 20/40 ,ab(20)

	muniID	muni_name	year	nat_rate	means_nat_rate	dm_nat_rate
20.	2	Affoltern A.A.	1991	.2173913	3.595932	-3.37854
21.	2	Affoltern A.A.	1992	.9473684	3.595932	-2.648563
22.	2	Affoltern A.A.	1993	1.04712	3.595932	-2.548811
23.	2	Affoltern A.A.	1994	.8342023	3.595932	-2.761729
24.	2	Affoltern A.A.	1995	2.002002	3.595932	-1.59393
25.	2	Affoltern A.A.	1996	1.7769	3.595932	-1.819031
26.	2	Affoltern A.A.	1997	1.862745	3.595932	-1.733186
27.	2	Affoltern A.A.	1998	2.054155	3.595932	-1.541776
28.	2	Affoltern A.A.	1999	2.402135	3.595932	-1.193796

Fixed effects regression with demeaned data

```
. egen means repdem = mean(repdem) , by(muniID)
. gen dm repdem = repdem - means repdem
. * regression with demeaned data
. reg dm nat rate dm repdem , cl (muniID)
Linear regression
                                                  Number of obs = 4655
                                                  F(1, 244) = 265.18
                                                  Prob > F = 0.0000
                                                  R-squared = 0.1052
                                                  Root MSE = 3.6017
```

		Robust				
dm_nat_rate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dm rendem	3 0228	1856244	16 28	0 000	2 657169	3 388431

dm_nat_rate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dm_repdem _cons		.1856244 5.81e-09	16.28 0.11		2.657169 -1.08e-08	3.388431 1.21e-08

Fixed effects regression with canned routine

. xtreg nat_rate repdem , fe cl(muniID) i(muniID)

Fixed-effects (within) regression	Number of obs	=	4655
Group variable: muniID	Number of groups	=	245
R-sq: within = 0.1052 between = 0.0005 overall = 0.0748	Obs per group: min avg max	=	19 19.0 19
corr(u_i, Xb) = -0.1373	F(1,244) Prob > F	=	265.18 0.0000

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem _cons	3.0228 2.074036	.1856244	16.28 39.05	0.000	2.657169 1.969413	3.388431 2.178659
sigma_u sigma_e rho	1.7129711 3.69998 .17650677	(fraction	of varia	nce due t	o u_i)	

Fixed effects regression with dummies

. reg nat_rate repdem i.muniID, cl(muniID)

Linear regression

Number of obs	=	465
F(0, 244)	=	
Prob > F	=	
R-squared	=	0.242
Root MSE	=	3.

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem	3.0228	.1906916	15.85	0.000	2.647188	3.398412
muniID						
2	1.367365	5.17e-14	2.6e+13	0.000	1.367365	1.367365
3	1.292252	5.17e-14	2.5e+13	0.000	1.292252	1.292252
9	1.284652	5.17e-14	2.5e+13	0.000	1.284652	1.284652
10	1.271783	5.17e-14	2.5e+13	0.000	1.271783	1.271783
13	.3265469	5.17e-14	6.3e+12	0.000	.3265469	.3265469

Applying fixed effects

- We can use fixed effects for other data structures to restrict comparisons to within unit variation
 - Matched pairs
 - Twin fixed effects to control for unobserved effects of family background
 - Cluster fixed effects in hierarchical data
 - School fixed effects to control for unobserved effects of school

Problems that even fixed effects do not solve

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; \ t = 1, 2, \dots, T$$

- Where y_{it} is murder rate and x_{it} is police spending per capita
- What happens when we regress y on x and city fixed effects?
 - $\widehat{\beta}_{FE}$ inconsistent unless strict exogeneity conditional on c_i holds
 - $E[\varepsilon_{it}|x_{i1},x_{i2},\ldots,x_{iT},c_i]=0; t=1,2,\ldots,T$
 - ullet implies $arepsilon_{it}$ uncorrelated with past, current and future regressors
- Most common violations
 - Time-varying omitted variables
 - Economic boom leads to more police spending and less murders
 - Can include time-varying controls, but avoid post-treatment bias (i.e., collider)
 - Simultaneity
 - if city adjusts police based on past murder rate, then spending t+1 is correlated with ε_t (since higher ε_t leads to higher murder rate at t)
 - strictly exogenous x cannot react to what happens to y in the past or the future!
- Fixed effects do not obviate need for good research design!

Random Effects

Reconsider our unobserved effects model:

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}, \quad t = 1, 2, \dots, T$$

- Cannot use the fixed effects regression to estimate effects of time-constant regressors in x_{it} (eg., soil quality, farm location, etc.)
 - Since fixed effect estimator allows c_i to be correlated with x_{it} , we cannot distinguish the effects of time-invariant regressors from the time-invariant unobserved effect c_i
- Need orthogonality assumption: $Cov[x_{it}, c_i] = 0; \quad t = 1, ..., T$
 - Strong assumption: Unobserved effects c_i are uncorrelated with each explanatory variable in x_{it} in each time period
 - For example if we include soil quality in x_{it} we have to assume it is uncorrelated with all other time-invariant inputs

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; \quad t = 1, \dots, T$$

- $E[\varepsilon_{it}|x_i,c_i]=0$; $t=1,2,\ldots,T$: explanatory variables are strictly exogenous conditional on the unobserved effect
- ② $E[c_i|x_i] = E[c_i] = 0$: unobserved effects c_i are uncorrelated with regressors
- **1** Tank $E[X_i'\Omega X_i] = K$: no collinearity among regressors
 - $\Omega = E[v_i v_i']$: the variance matrix of the composite error $v_{it} = c_i + \varepsilon_{it}$
- We typically also assume that Ω takes a special form:
 - $E[\varepsilon_i \varepsilon_i' | x_i] = \sigma_\varepsilon^2 \mathbf{I}_T$: idiosyncratic errors are homoskedastic for all t and serially uncorrelated
 - $E[c_i^2|x_i] = \sigma_c^2$: unobserved effect c_i is homoscedastic

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; \quad t = 1, \ldots, T$$

- $E[\varepsilon_{it}|x_i,c_i]=0;\ t=1,2,\ldots,T$: explanatory variables are strictly exogenous conditional on the unobserved effect
- ② $E[c_i|x_i] = E[c_i] = 0$: unobserved effects c_i are uncorrelated with regressors
- **3** rank $E[X_i'\Omega X_i] = K$: no collinearity among regressors
 - $\Omega = E[v_i v_i']$: the variance matrix of the composite error $v_{it} = c_i + \varepsilon_{it}$
- **9** We typically also assume that Ω takes a special form:
 - $E[\varepsilon_i \varepsilon_i' | x_i] = \sigma_\varepsilon^2 I_T$: idiosyncratic errors are homoskedastic for all t and serially uncorrelated
 - $E[c_i^2|x_i] = \sigma_c^2$: unobserved effect c_i is homoscedastic

Assumption 4 implies
$$\Omega = E[v_i v_i' | x_i] = \begin{pmatrix} \sigma_c^2 + \sigma_\varepsilon^2 & \sigma_c^2 & \dots & \sigma_c^2 \\ \sigma_c^2 & \sigma_c^2 + \sigma_\varepsilon^2 & \dots & \vdots \\ \vdots & & \ddots & \sigma_c^2 \\ \sigma_c^2 & & & \sigma_c^2 + \sigma_\varepsilon^2 \end{pmatrix}_{T \times T}$$

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; \quad t = 1, \ldots, T$$

- $E[\varepsilon_{it}|x_i,c_i]=0;\ t=1,2,\ldots,T$: explanatory variables are strictly exogenous conditional on the unobserved effect
- ② $E[c_i|x_i] = E[c_i] = 0$: unobserved effects c_i are uncorrelated with regressors
- rank $E[X_i'\Omega X_i] = K$: no collinearity among regressors
 - $\Omega = E[v_i v_i']$: the variance matrix of the composite error $v_{it} = c_i + \varepsilon_{it}$
- **9** We typically also assume that Ω takes a special form:
 - $E[\varepsilon_i \varepsilon_i' | x_i] = \sigma_\varepsilon^2 I_T$: idiosyncratic errors are homoskedastic for all t and serially uncorrelated
 - $E[c_i^2|x_i] = \sigma_c^2$: unobserved effect c_i is homoscedastic
 - ullet Given assumptions 1-3, pooled OLS is consistent, since composite error v_{it} is uncorrelated with x_{it} for all t
 - However, pooled OLS ignores the serial correlation in v_{it}

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}; \quad t = 1, \ldots, T$$

- $E[\varepsilon_{it}|x_i,c_i]=0;\ t=1,2,\ldots,T$: explanatory variables are strictly exogenous conditional on the unobserved effect
- ② $E[c_i|x_i] = E[c_i] = 0$: unobserved effects c_i are uncorrelated with regressors
- **3** rank $E[X_i'\Omega X_i] = K$: no collinearity among regressors
 - $\Omega = E[v_i v_i']$: the variance matrix of the composite error $v_{it} = c_i + \varepsilon_{it}$
- **9** We typically also assume that Ω takes a special form:
 - $E[\varepsilon_i \varepsilon_i' | x_i] = \sigma_\varepsilon^2 I_T$: idiosyncratic errors are homoskedastic for all t and serially uncorrelated
 - $E[c_i^2|x_i] = \sigma_c^2$: unobserved effect c_i is homoscedastic
 - \bullet Random effects estimator $\widehat{\beta}_{RE}$ exploits this serial correlation in a generalized least squares (GLS) framework
 - $\widehat{\beta}_{RE}$ is consistent under assumption 1-3: $\underset{N \to \infty}{plim} \, \widehat{\beta}_{RE,N} = \beta$
 - $\hat{\beta}_{RE}$ is asymptotically efficient given assumption 4 (in the class of estimators consistent under $E[v_i|x_i]=0$)

Random effects estimator

Consider the transformation parameter

$$\lambda=1-\left(rac{\sigma_arepsilon^2}{\sigma_arepsilon^2+T\sigma_arepsilon^2}
ight)^{rac{1}{2}}$$
 with $0\leq\lambda\leq1$

- $\sigma_{\varepsilon}^2 = Var[\varepsilon_{it}]$: variance of idiosyncratic error
- $\sigma_c^2 = Var(c_i)$: Variance of unobserved effect
- $\widehat{\beta}_{RF}$ is equivalent to pooled OLS on:

$$y_{it} - \bar{y}_i = (x_{it} - \lambda \bar{x}_i)\beta + (v_{it} - \lambda \bar{v}_i), \forall i, t$$

$$\tilde{y}_{it} = \tilde{x}_{it}\beta + \tilde{v}_{it}$$

- As $\lambda \to 1$, $\widehat{\beta}_{RF} \to \widehat{\beta}_{FF}$
- As $\lambda \to 0$, $\widehat{\beta}_{RF} \to \widehat{\beta}_{Pooled}$ OLS
 - $\lambda \to 1$ as $T \to \infty$ or if variance of c_i is large relative to variance of ε_{it}
- λ can be estimated from data $\hat{\lambda} = 1 (\hat{\sigma}_{\varepsilon}^2/(\hat{\sigma}_{\varepsilon}^2 + T\hat{\varepsilon}_{\varepsilon}^2))^{\frac{1}{2}}$
- Usually wise to cluster the standard errors since assumption 4 is strong

Random effects regression

. xtreg nat rate repdem , re cl(muniID) i(muniID)

Random-effects GLS regression	Number of obs	=	4655
Group variable: muniID	Number of groups	=	245
R-sq: within = 0.1052 between = 0.0005 overall = 0.0748	Obs per group: min ave ma:	g =	19 19.0 19
corr(u_i, X) = 0 (assumed)	Wald chi2(1) Prob > chi2	=	227.99

nat_rate	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
repdem _cons	2.859397 2.120793	.1893742	15.10 21.80	0.000	2.48823 1.930096	3.230564 2.311489
sigma_u sigma_e rho	1.3866768 3.69998 .1231606	(fraction	of varia	nce due t	o u_i)	

Summary: Fixed effects, random effects, Pooled OLS

- Main assumptions
 - Regressors are strictly exogenous conditional on the time-invariant unobserved effects
 - Regressors are uncorrelated with the time-invariant unobserved effects
- Results
 - Fixed effects estimator is consistent given assumption 1, but rules out time-invariant regressors
 - Random effects estimators and pooled OLS are consistent under assumptions 1-2, and allow for time-invariant regressors
 - Given homoskedasticity assumptions (random effects assumption 4), the random effects estimator is asymptotically efficient
- Assumption 2 is strong so fixed effects are typically more credible
 - Often the main reason for using panel data is to rule out all time-invariant unobserved confounders!

Hausman test

	$\widehat{eta}_{ extsf{RE}}$	$\widehat{eta}_{\it FE}$
$H_0: Cov[x_{it}, c_i] = 0$	Consistent and efficient	Consistent
$H_1: Cov[x_{it}, c_i] \neq 0$	Inconsistent	Consistent

Then,

- Under $H_0, \widehat{\beta}_{RE} \widehat{\beta}_{FE}$ should be close to zero
- Under H_1 , $\widehat{\beta}_{RE} \widehat{\beta}_{FE}$ should be different from zero
- It can be shown that in large samples, under H_0 , the test statistic

$$(\widehat{\beta}_{\mathit{FE}} - \widehat{\beta}_{\mathit{RE}})'(\widehat{\mathit{Var}}[\beta_{\mathit{FE}}] - \widehat{\mathit{Var}}[\beta_{\mathit{RE}}])^{-1}(\widehat{\beta}_{\mathit{FE}} - \widehat{\beta}_{\mathit{RE}}) \overset{d}{\to} \chi_k^2$$

where k is the number of time-varying regressors.

• We may reject the null hypothesis of "random effects" and stick with the less efficient, but consistent fixed effects specification

Random effects regression

```
. quietly: xtreg nat_rate repdem , fe i(muniID)
. estimates store FE
.
. quietly: xtreg nat_rate repdem , re i(muniID)
. estimates store RE
. hausman FE RE
```

	Coeffi	cients ——		
	(b) FE	(B) RE	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
repdem	3.0228	2.859397	.1634027	.0304517

 $\mbox{$b$ = consistent under Ho, and Ha; obtained from xtreg} \\ \mbox{B = inconsistent under Ha, efficient under Ho; obtained from xtreg} \\$

Test: Ho: difference in coefficients not systematic

chi2(1) = (b-B)'[(
$$V_b-V_B$$
)^(-1)](b-B)
= 28.79

Hausman test

- Hausman test does not test if the fixed effect model is correct; the test assumes that the fixed effects estimator is consistent!
- Conventional Hausman test assumes homoskedastic model and does not allow for clustering
- There are Haumsman like tests that allow for clustered standard errors

```
. * hausman test with clustering
. quietly: xtreg nat_rate repdem , re i(muniID) cl(muniID)
. xtoverid

Test of overidentifying restrictions: fixed vs random effects
Cross-section time-series model: xtreg re robust cluster(muniID)
Sargan-Hansen statistic 26.560 Chi-sq(1) P-value = 0.0000
```

Adding Time Effects

Reconsider our unobserved effects model:

$$y_{it} = x_{it}\beta + c_i + \varepsilon_{it}, \ t = 1, 2, \dots, T$$

- Fixed effects assumption: $E[\varepsilon_{it}|x_i,c_i]=0; t=1,2,\ldots,T$: regressors are strictly exogenous conditional on the unobserved effect
- ullet Typical violation: Common shocks that affect all units in the same way and are correlated with x_{it}
 - Trends in farming technology or climate affect productivity
 - Trends in immigration inflows affect naturalization rates
- We can allow for such common shocks by including time effects into the model

Random effects regression

xtgraph nat_rate

Random effects regression

xtgraph repdem

Fixed effects: adding time effects

• Linear time trend:

$$y_{it} = x_{it}\beta + c_i + t + \varepsilon_{it}; \quad t = 1, 2, \dots, T$$

- Linear time trend common to all units
- Time fixed effects:

$$y_{it} = x_{it}\beta + c_i + t_t + \varepsilon_{it}; \ t = 1, 2, \dots, T$$

- Common shock in each time period
- Generalized difference-in-difference model
- Unit specific linear time trends:

$$y_{it} = x_{it}\beta + c_i + g_i \cdot t + t_t + \varepsilon_{it}; \quad t = 1, 2, \dots, T$$

• Linear time trends that vary by unit

Modeling time effects

Fixed effects: adding time effects

- . egen time = group(year)
- . list muniID muni_name year time in 20/40 ,ab(20)

	muniID	muni_name	year	time
20.	2	Affoltern A.A.	1991	1
21.	2	Affoltern A.A.	1992	2
22.	2	Affoltern A.A.	1993	3
23.	2	Affoltern A.A.	1994	4
24.	2	Affoltern A.A.	1995	5
25.	2	Affoltern A.A.	1996	6
26.	2	Affoltern A.A.	1997	7
27.	2	Affoltern A.A.	1998	8
28.	2	Affoltern A.A.	1999	9
29.	2	Affoltern A.A.	2000	10
30.	2	Affoltern A.A.	2001	11

Fixed effects: linear time trend

. xtreg nat rate repdem time , fe cl(muniID) i(muniID)

Fixed-effects (within) regression	Number of obs	=	4655
Group variable: muniID	Number of groups	=	245
R-sq: within = 0.1604	Obs per group: min	=	19
between = 0.0005	avg	=	19.0
overal1 = 0.1350	max	=	19
	F(2,244)	=	247.57
$corr(u_i, Xb) = -0.0079$	Prob > F	=	0.0000

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem time _cons	.8247928 .2313692 .3892908	.2590615 .0171752 .1309232	3.18 13.47 2.97	0.002 0.000 0.003	.3145106 .1975386 .1314069	1.335075 .2651997 .6471747
sigma_u sigma_e rho	1.6271657 3.584409 .17086519	(fraction	of varia	nce due t	o u_i)	

Fixed effects: year fixed effects

. xtreg nat_rate repdem i.time , fe cl(muniID) i(muniID)

Fixed-effects (within) regression	Number of obs	=	4655
Group variable: muniID	Number of groups	=	245
R-sq: within = 0.1885	Obs per group: min	=	19
between = 0.0005	avg	=	19.0
overal1 = 0.1575	max	=	19
	F(19,244)	=	31.48
$corr(u_i, Xb) = -0.0168$	Prob > F	=	0.0000

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem	1.203658	.3031499	3.97	0.000	.6065335	1.800783
time						
2	.3829173	.1723225	2.22	0.027	.0434879	.7223468
3	.2789777	.1514124	1.84	0.067	0192644	.5772198
4	.7034078	.167466	4.20	0.000	.3735443	1.033271

Fixed effects: unit specific time trends

. xtreg nat_rate repdem muniID#c.time i.time , fe cl(muniID) i(muniID) note: 19.time omitted because of collinearity

Fixed-effects (within) regression Group variable: muniID	Number of obs Number of groups	= =	4655 245
R-sq: within = 0.2650 between = 0.5185 overall = 0.2864	Obs per group: min avg max	=	19 19.0 19
corr(u_i, Xb) = -0.3963	F(18,244) Prob > F	=	

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem	.9865241	.322868	3.06	0.002	.3505601	1.622488
muniID#c.time						
1	.333343	.024298	13.72	0.000	.2854823	.3812036
2	.2914274	.024298	11.99	0.000	.2435667	.339288
3	.248985	.024298	10.25	0.000	.2011244	.2968457

Unit specific time trends often eliminate "results"

TABLE 5.2.3
Estimated effects of labor regulation on the performance of firms in Indian states

in Indian states								
	(1)	(2)	(3)	(4)				
Labor regulation (lagged)	186 (.064)	185 (.051)	104 (.039)	.0002 (.020)				
Log development expenditure per capita		.240 (.128)	.184 (.119)	.241 (.106)				
Log installed electricity capacity per capita		.089 (.061)	.082 (.054)	.023 (.033)				
Log state population		.720 (.96)	0.310 (1.192)	-1.419 (2.326)				
Congress majority			0009 (.01)	.020 (.010)				
Hard left majority			050 (.017)	007 (.009)				
Janata majority			.008	020 (.033)				
Regional majority			.006 (.009)	.026 (.023)				
State-specific trends Adjusted R ²	No .93	No .93	No .94	Yes .95				

Notes: Adapted from Besley and Burgess (2004), table IV. The table reports regression DD estimates of the effects of labor regulation on productivity. The

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Model recognizes the effect of change in x may occur with a late
 - effect of new tax credit for children on fertility rate
- Interpretation of coefficients:
 - Consider **temporary increase** in x_{it} from level m to m+1 at t which lasts only one period
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = m\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = m\beta_0 + m\beta_1 + (m+1)\beta_2 + c_i$
 - $y_{t+3} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Model recognizes the effect of change in x may occur with a late
 - effect of new tax credit for children on fertility rate
- Interpretation of coefficients:
 - Consider **temporary increase** in x_{it} from level m to m+1 at t which lasts only one period
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = m\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = m\beta_0 + m\beta_1 + (m+1)\beta_2 + c_i$
- $\beta_0 = y_t y_{t-1}$ immediate change in y due to temporary one-unit increase in x (impact propensity)

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Model recognizes the effect of change in x may occur with a late
 - effect of new tax credit for children on fertility rate
- Interpretation of coefficients:
 - Consider **temporary increase** in x_{it} from level m to m+1 at t which lasts only one period
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = m\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = m\beta_0 + m\beta_1 + (m+1)\beta_2 + c_i$
 - $y_{t+3} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
- $\beta_1 = y_{t+1} y_t$ change in y one period after temporary one-unit increase in x

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Model recognizes the effect of change in x may occur with a late
 - effect of new tax credit for children on fertility rate
- Interpretation of coefficients:
 - Consider **temporary increase** in x_{it} from level m to m+1 at t which lasts only one period
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = m\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = m\beta_0 + m\beta_1 + (m+1)\beta_2 + c_i$
 - $y_{t+3} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
- $\beta_2 = y_{t+2} y_{t-1}$ change in y two periods after temporary one-unit increase in x

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Model recognizes the effect of change in x may occur with a late
 - effect of new tax credit for children on fertility rate
- Interpretation of coefficients:
 - Consider **temporary increase** in x_{it} from level m to m+1 at t which lasts only one period
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = m\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = m\beta_0 + m\beta_1 + (m+1)\beta_2 + c_i$
 - $y_{t+3} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
- $\beta_3 = y_{t-1}$ change in y is zero three periods after temporary one-unit increase in x

$$y_{it} = x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}, \ t = 1, 2, ..., T$$

- Interpretation of coefficients:
 - Consider **permanent increase** in x_{it} from level m to m+1 at t, i.e., $(x_s = m, s < t \text{ and } x_s = m+1, s \ge t)$
 - $y_{t-1} = m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_t = (m+1)\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t+1} = (m+1)\beta_0 + (m+1)\beta_1 + m\beta_2 + c_i$
 - $y_{t+2} = (m+1)\beta_0 + (m+1)\beta_1 + (m+1)\beta_2 + c_i$
 - $y_{t+3} = (m+1)\beta_0 + (m+1)\beta_1 + (m+1)\beta_2 + c_i$
- After one period y has increased by $\beta_0 + \beta_1$, after two periods y has increased by $\beta_0 + \beta_1 + \beta_2$ and there are no further increases after two periods
- Long-run increase in $y: \beta_0 + \beta_1 + \beta_2$ (long-run propensity)

Lagged effects of direct democracy

. xtreg nat_ra	ate repdem L1.	repdem L2.re	epdem L3	.repdem	i.year, fe	cl	(muniID) i	(muniID)
Fixed-effects (within) regression Number of obs = 3920)
Group variable	e: muniID			Number	of groups	=	245	5
R-sq: within				Obs per	group: min			
between	n = 0.0012				ave	3 =	16.0)
overal	1 = 0.1235				max	κ =	16	5
				F(19,24	4)	=	21.63	3
corr(u_i, Xb)	= -0.0206			Prob >	F	=	0.0000)
		(Std. E	rr. adjus	ted for	245 cluste	rs i	in muniID)	
		Robust						-
nat_rate	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]	
repdem								_
	.6364802	.3593924	1.77	0.078	0714272	2	1.344388	3
L1.	1.201065	.4233731	2.84	0.005	.367133	3	2.034998	3
L2.	1648692	.4697434	-0.35	0.726	-1.090139	9	.7604003	3
L3.		.4109918						
	1							

Long-run effect of direct democracy

```
. lincom repdem + L1.repdem + L2.repdem + L3.repdem
```

(1) repdem + L.repdem + L2.repdem + L3.repdem = 0

nat_rate	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	1.294485	.4426322	2.92	0.004	.4226175	2.166353

Lags and Leads model

$$y_{it} = x_{i,t+1}\beta_{-1} + x_{it}\beta_0 + x_{i,t-1}\beta_1 + x_{i,t-2}\beta_2 + c_i + \varepsilon_{it}; \ t = 1, 2, ..., T$$

- Can use estimate of β_{-1} to test for anticipation effects
 - Consider **temporary increase** in x_{it} from level m to m+1 at t
 - $y_{t-2} = \beta_{-1}m + m\beta_0 + m\beta_1 + m\beta_2 + c_i$
 - $y_{t-1} = \beta_{-1}(m+1) + m\beta_0 + m\beta_1 + m\beta_2 + c_i$
- Anticipation effect: $\beta_{-1} = y_{t-1} y_{t-2}$ change in y in period t-1, the period before the temporary one-unit increase in x
- Placebo test: if x causes y, but y does not cause x, then β_{-1} should be close to zero

Leads and Lags

. xtreg nat rate Fl.repdem repdem Ll.repdem L2.repdem L3.repdem i.year, fe cl(muniID) i(muniID)

Fixed-effects (within) regression Group variable: muniID	Number of obs Number of groups		3675 245
R-sq: within = 0.1621 between = 0.0010 overal1 = 0.1269	Obs per group: min avg max	=	15 15.0 15
$corr(u_i, Xb) = -0.0353$	1 (10/211)	=	20.34

nat_rate	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
repdem						
F1.	.1707685	.3212906	0.53	0.596	4620886	.8036255
	.6975731	.4397095	1.59	0.114	1685376	1.563684
L1.	.8723962	.4619322	1.89	0.060	0374873	1.78228
L2.	.014941	.4583628	0.03	0.974	8879119	.9177939
L3.	2904252	.4108244	-0.71	0.480	-1.09964	.5187895

The Autor Test

- Let D_{it} be a binary indicator equaling 1 if unit i switched from control to treatment between t and t-1; 0 otherwise
 - Lags: $D_{i,t-1}$: unit switched between t-1 and t-2
 - Leads: $D_{i,t+1}$: unit switches between t+1 and t
- Include lags and leads into the fixed effects model:

$$y_{it} = D_{i,t+2}\beta_{-2} + D_{i,t+1}\beta_{-1} + D_{it}\beta_0 + D_{i,t-1}\beta_1 + D_{i,t-2}\beta_2 + c_i + \varepsilon_{it}$$

- Interpretation of coefficients:
 - Leads β_{-1}, β_{-2} , etc. test for anticipation effects
 - Switch β_0 tests for immediate effect
 - Lags β_1, β_2 , etc. test for long-run effects
 - highest lag dummy can be coded 1 for all post-switch years

Lags and Leads of Switch to Representative Democracy

```
. list muni_name year repdem switch_t sw_lag1 sw_lag2 sw_lag3 ///
> sw_lead1 sw_lead2 sw_lead3 in 806/817
```

	muni_n~e	year	repdem	switch_t	sw_lag1	sw_lag2	sw_lag3	sw_lead1	sw_lead2	sw_lead3
806.	Stäfa	1998	0	0	0	0	0	0	0	0
807.	Stäfa	1999	0	0	0	0	0	0	0	0
808.	Stäfa	2000	0	0	0	0	0	0	0	0
809.	Stäfa	2001	0	0	0	0	0	0	0	0
810.	Stäfa	2002	0	0	0	0	0	0	0	1
811.	Stäfa	2003	0	0	0	0	0	0	1	0
812.	Stäfa	2004	0	0	0	0	0	1	0	0
813.	Stäfa	2005	1	1	0	0	0	0	0	0
814.	Stäfa	2006	1	0	1	0	0	0	0	0
815.	Stäfa	2007	1	0	0	1	0	0	0	0
816.	Stäfa	2008	1	0	0	0	1	0	0	0
817.	Stäfa	2009	1	0	0	0	1	0	0	0

Dynamic Effect of Switching to Representative Democracy

```
. xtreg nat_rate sw_lag3 sw_lag2 sw_lag1 switch_t ///
        sw lead1 sw lead2 sw lead3 sw lead4 sw lead5 i.year, fe cluster(muniID) i(muniID)
Fixed-effects (within) regression
                                            Number of obs
                                                                    4655
Group variable: muniID
                                            Number of groups =
                                                                     245
                                            Obs per group: min =
R-sq: within = 0.1913
      between = 0.0011
                                                          avg =
                                                                    19.0
      overall = 0.1601
                                                          max =
                                                                     19
                                            F(27,244)
                                                                   23.76
corr(u i, Xb) = -0.0162
                                            Prob > F
                                                                  0.0000
                            (Std. Err. adjusted for 245 clusters in muniID)
                          Robust
                  Coef.
                         Std. Err.
                                            P>|t|
                                                     [95% Conf. Interval]
   nat rate
    sw lag3
               1.160345
                         .5080271
                                     2.28
                                            0.023
                                                     .1596665
                                                                2.161023
    sw lag2
               1.743682
                         .5395212
                                     3.23
                                                    .680969
                                            0.001
                                                                2.806396
    sw lag1
              1.881663
                         .4880099
                                     3.86
                                            0.000
                                                   .9204133
                                                               2.842913
   switch t
              .7564792 .428627
                                     1.76
                                            0.079
                                                   -.0878019
                                                               1.60076
   sw lead1
              .2138757
                         .3899881
                                   0.55
                                            0.584
                                                   -.5542971
                                                               .9820485
   sw lead2
              .0843676
                         .3575292 0.24
                                            0.814
                                                   -.61987
                                                                .7886051
   sw lead3
               .1440446 .3194086 0.45 0.652
                                                   -.4851054
                                                                .7731945
                                                   -.5140018
   sw lead4
               .0750194 .2990359
                                   0.25 0.802
                                                                .6640405
   sw lead5
              -.0942415 .2599789
                                    -0.36 0.717
                                                   -.6063307
                                                                .4178477
```

Dynamic Effect of Switching to Representative Democracy

Lagged Dependent Variable

$$y_{it} = \alpha y_{i,t-1} + c_i + \varepsilon_{it}, \ t = 1, 2, \dots, T$$

- y_{it} could be capital stock of firm i at time t and α the capital depreciation rate
- For simplicity, we assume that ε_{it} are uncorrelated in time (as well as across individuals)
- Note that

$$y_{i,t-1} = \alpha y_{i,t-2} + c_i + \varepsilon_{i,t-1}$$

- So we have $Cov[y_{i,t-1}, c_i] \neq 0$ and therefore we need to include fixed effects c_i into the regression
- Does this work though?

Lagged dependent variable

With T = 3 we have

$$y_{i3} = \alpha y_{i2} + c_i + \varepsilon_{i3}$$

 $y_{i2} = \alpha y_{i1} + c_i + \varepsilon_{i2}$

and we can take time differences to eliminate c_i (similar to fixed effects)

$$y_{i3} - y_{i2} = \alpha(y_{i2} - y_{i1}) + (c_i - c_i) + (\varepsilon_{i3} - \varepsilon_{i2})$$

$$\Delta y_{i3} = \alpha \Delta y_{i2} + \Delta \varepsilon_{i3}$$

Since ε_{i2} affects both $\Delta y_{i2}=y_{i2}-y_{i1}$ and $\Delta \varepsilon_{i3}=\varepsilon_{i3}-\varepsilon_{i2}$ we get

 $Cov[\Delta y_{i2}, \Delta \varepsilon_{i3}] \neq 0$ and thus still have endogeneity

Models with fixed effects and lagged y do not produce consistent estimators Might use past levels y_{i1} as an instrument for Δy_{i2} , but this

requires strong assumptions (e.g., no serial correlation in ε_{it})

