

RouterEval: A Comprehensive Benchmark for Routing LLMs to Explore Model-level Scaling Up in LLMs

Zhongzhan Huang Sun Yat-sen University

Project Page: https://github.com/MilkThink-Lab/RouterEval

[Data, Code, Paper, Baselines and Tutorial]

2025.03.09

What's your first impression of <u>Mixture-of-Experts</u> (**MoE**)? When you hear this term?

Traditional Mixture-of-Experts (MoE)

https://research.google/blog/mixture-of-experts-with-expert-choice-routing/

What's your first impression of <u>Mixture-of-Experts</u> (**MoE**)? When you hear this term?

Traditional Mixture-of-Experts (MoE)

https://research.google/blog/mixture-of-experts-with-expert-choice-routing/

My First Impression

Routing LLMs — Model-level "MoE"?

The Overview of Routing LLMs

Given <u>an input</u>, a capable router <u>assigns</u> it to the <u>appropriate LLM</u> for processing.

- Goal:
 - **High** accuracy, ✓
 - **Low** computational cost,
 - **Low** hallucinations, etc.

- Task Type:
 - ~Classification
 - ~Agents Scheduling
 - ~Recommender system
 - ~Retrieval problem
 - Retrieval data for LLM 😵
 - 🔲 Retrieval LLM for data 📀

Routing LLMs — Model-level "MoE"?

The Overview of Routing LLMs

Given <u>an input</u>, a capable router <u>assigns</u> it to the appropriate LLM for processing.

- Goal:
 - High accuracy,
 - Low computational cost, 🚹
 - **Low** hallucinations, etc. 🔔

- Classical Example:
 - Machine-Human Chatting Handoff
 - Intelligent customer service
 - Large/Small LLM switch
 - GPT-4~GPT-3 switch for trade-off between Perf. and cost.
 - Sometimes we might feel that LLMs seem to be acting a bit silly

- Potential of Routing LLM
 - Prompt-to-Leaderboard @ UCB (2025.02.20, 10+days ago) ~ Arena Rank 1 ≈ Grok3 (with 200000+GPU)
- Current Shortcomings of Routing LLM
 - Without unified benchmark (everyone did their own thing)
 - Existing benchmarks (Limited LLMs/evaluations and Open-source Proprietary)

- Potential of Routing LLM
 - Prompt-to-Leaderboard @ UCB (2025.02.20, 10+days ago) ~ Arena Rank 1 ≈ Grok3 (with 200000+GPU)
- Current Shortcomings of Routing LLM
 - Without unified benchmark (everyone did their own thing)
 - Existing benchmarks (Limited LLMs/evaluations and Open-source Proprietary)

Our Contribution

[Collect/ Organize /Open-source] **8,567** LLMs ~ **12** benchmarks ~ **201,715,850** performance records

- We find the model-level scaling up phenomenon in LLMs (With capable router: Performance ∝ #LLMs)
- Constructing the RouterEval benchmark tailored for router design

 $p \rightarrow 1$: oracle router

 $P \rightarrow 0$: random router

Model-level Scaling up:

With capable router,
Performance ∝ #LLMs

Weak Candidates CanAlso be Promising:

5 weak LLMs (perf. \leq 0.3) can achieve 0.95 \geq GPT-4 on MMLU

Small Number of Candidates is Enough:

3~10 candidates seems most cost-effective

Г		ARC				HellaSwag				MMLU				TruthfulQA			
	Router	$\mu_o\uparrow$	$V_R \uparrow$	$V_B \uparrow$	E_p	$\mu_o\uparrow$	$V_R \uparrow$	$V_B \uparrow$	E_p	$\mu_o\uparrow$	$V_R\uparrow$	$V_B \uparrow$	E_p	$\mu_o\uparrow$	$V_R \uparrow$	$V_B \uparrow$	E_p
m = 3	Oracle ro	0.80	0.94	1.34	1.02	0.80	0.84	1.08	1.32	0.89	1.03	1.35	1.00	0.85	1.27	1.21	1.05
	$r_o(0.5)$	0.67	0.79	1.11	1.47	0.74	0.78	1.00	1.53	0.75	0.87	1.11	1.47	0.74	1.10	1.04	1.47
	LinearR	0.61	0.71	0.96	1.42	0.75	0.79	1.00	1.43	0.74	0.85	1.04	1.30	0.72	1.08	1.00	1.36
	MLPR	0.61	0.71	0.96	1.42	0.75	0.78	1.00	1.43	0.74	0.86	1.04	1.26	0.71	1.06	0.96	1.30
	C-RoBERTa	0.62	0.73	1.00	1.03	0.75	0.79	1.00	0.29	0.73	0.84	1.02	0.62	0.71	1.06	0.96	0.31
	MLC	0.63	0.74	1.00	0.81	0.75	0.78	1.00	1.01	0.73	0.85	1.02	0.79	0.70	1.05	0.95	0.49
	PRknn	0.60	0.71	0.97	1.56	0.72	0.76	0.97	1.57	0.70	0.81	0.98	1.55	0.70	1.04	0.95	1.55
	Random	0.54	0.64	0.89	1.59	0.68	0.71	0.91	1.59	0.62	0.71	0.88	1.59	0.62	0.93	0.86	1.59
m = 5	Oracle r_o	0.85	1.00	1.34	1.57	0.81	0.85	1.10	2.00	0.92	1.07	1.63	1.49	0.89	1.33	1.27	1.72
	$r_o(0.5)$	0.70	0.82	1.09	2.16	0.74	0.78	1.00	2.25	0.75	0.87	1.24	2.14	0.75	1.12	1.05	2.19
	LinearR	0.64	0.75	0.93	2.15	0.75	0.79	1.00	2.19	0.69	0.80	1.01	2.04	0.72	1.08	0.97	2.15
	MLPR	0.64	0.75	0.93	2.13	0.75	0.79	1.01	2.20	0.70	0.81	1.02	2.00	0.71	1.05	0.93	2.11
	C-RoBERTa	0.66	0.78	0.97	0.82	0.75	0.79	1.00	0.52	0.68	0.79	0.98	1.02	0.70	1.04	0.92	0.84
	MLC	0.63	0.74	0.90	1.28	0.75	0.78	1.01	1.65	0.69	0.79	0.99	1.11	0.68	1.02	0.91	1.04
	PRknn	0.63	0.74	0.95	2.30	0.71	0.74	0.95	2.31	0.64	0.74	0.94	2.30	0.70	1.04	0.95	2.29
	Random	0.55	0.65	0.83	2.32	0.67	0.71	0.91	2.32	0.58	0.67	0.86	2.32	0.61	0.92	0.83	2.32
		Winogrande			GSM8k				IFEval				ВВН				
m = 3	Oracle r_o	0.95	1.09	1.22	1.20	0.87	0.95	1.29	1.10	0.79	1.02	1.33	1.04	0.82	0.99	1.42	0.97
	$r_o(0.5)$	0.86	0.98	1.09	1.51	0.76	0.82	1.10	1.49	0.67	0.87	1.08	1.47	0.68	0.82	1.15	1.46
	LinearR	0.76	0.87	0.95	1.45	0.71	0.77	0.97	1.37	0.70	0.91	1.08	1.10	0.63	0.76	1.04	1.34
	MLPR	0.78	0.89	0.98	1.30	0.69	0.75	0.95	1.33	0.70	0.91	1.08	0.94	0.63	0.76	1.05	1.30
	C-RoBERTa	0.78	0.89	0.98	0.60	0.69	0.75	0.94	0.61	0.70	0.91	1.09	0.79	0.60	0.72	0.98	0.80
	MLC	0.76	0.87	0.96	1.56	0.70	0.76	0.97	0.74	0.68	0.88	0.98	0.40	0.62	0.74	1.02	0.38
	PRknn	0.74	0.84	0.92	1.57	0.70	0.76	0.99	1.56	0.69	0.90	1.04	1.55	0.61	0.73	1.00	1.56
	Random	0.77	0.88	0.96	1.59	0.64	0.70	0.90	1.59	0.54	0.71	0.82	1.59	0.53	0.64	0.88	1.59
m = 5	Oracle r_o	0.98	1.12	1.31	1.77	0.89	0.96	1.33	1.67	0.81	1.06	1.36	1.63	0.88	1.06	1.69	1.43
	$r_o(0.5)$	0.85	0.97	1.12	2.21	0.74	0.81	1.09	2.19	0.67	0.87	1.06	2.17	0.70	0.84	1.29	2.13
	LinearR	0.75	0.85	0.96	2.15	0.72	0.78	0.98	2.01	0.67	0.87	0.95	1.86	0.63	0.75	1.08	2.11
	MLPR	0.80	0.91	1.03	2.08	0.72	0.78	0.98	1.99	0.67	0.87	0.96	1.80	0.62	0.74	1.05	2.05
	C-RoBERTa	0.76	0.87	0.97	0.83	0.72	0.78	0.99	0.82	0.67	0.87	0.92	1.02	0.59	0.71	0.99	1.03
	MLC	0.74	0.84	0.93	2.21	0.71	0.78	0.96	1.11	0.53	0.69	0.75	0.57	0.60	0.72	1.00	0.41
	PRknn	0.72	0.83	0.93	2.30	0.71	0.77	1.00	2.30	0.62	0.80	0.91	2.29	0.58	0.70	1.00	2.29
	Random	0.72	0.82	0.93	2.32	0.60	0.65	0.85	2.32	0.53	0.68	0.76	2.32	0.52	0.62	0.89	2.32

- Existing routers still have significant room for improvement.
- Classification bias is a major issue.

- Fast Experiments (Even CPU only)
- **Try** Few-shot learning, data augmentation, recommender systems, regularization methods, and pre-training, etc!

Relationship and Differences with Existing Paradigms

The Overview of Routing LLMs

■ Recommender Systems

Routing LLM is a specialized recommender system (input~user / LLM~item / Perf. Record~ history)

LLM Ensemble

■ Typically post-decision, while Routing LLM ~ pre-decision

LLM Fusion

■ Typically homogeneous LLMs, while Routing LLM can involve heterogeneous LLMs

■ Mixture-of-Experts (MoE)

■ Routing LLM is a model-level Mixture of Experts

Relationship and Differences with Existing Paradigms

The Overview of Routing LLMs

■ Recommender Systems

■ Routing LLM is a specialized recommender system (input~user / LLM~item / Perf. Record~ history)

LLM Ensemble

■ Typically post-decision, while Routing LLM ~ pre-decision

LLM Fusion

- Typically homogeneous LLMs, while Routing LLM can involve heterogeneous LLMs
- **■** Mixture-of-Experts (MoE)
 - Routing LLM is a model-level Mixture of Experts

Routing LLM is compatible with all the above paradigms (viewed as LLMs in the candidate pool).

Limitation and Challenge

- Severe lack of data
 - performance records are typically proprietary and expensive
- How to maintain router performance with multiple candidates?
 - lack of large data / multi-class issue
- RouterEval currently focuses only on performance
 - But can easily expand to computational cost, hallucination rate, etc
 - However, performance alone is still far from sufficiently usable
- The challenge of deployment
 - Large batch input for industrial deployment (avg. cost ↓)
 - 3~10 candidates + weak candidates seem "enough"

RouterEval: A Comprehensive Benchmark for Routing LLMs to Explore Model-level Scaling Up in LLMs

Zhongzhan Huang¹, Guoming Ling¹, Vincent S. Liang², Yupei Lin¹, Yandong Chen¹,
Shanshan Zhong¹, Hefeng Wu¹, Liang Lin¹

Sun Yat-sen University, ²Purdue University

Project Page: https://github.com/MilkThink-Lab/RouterEval

[Data, Code, Paper, Baselines and Tutorial]