Self Attention Graph Pooling

ICML 2019

Junhyun Lee, Inyeop Lee, Jaewoo Kang

Department of Computer Science and Engineering, Korea University, Seoul, Korea

Introduced by Qing Lyu 06/19/2019

Contribution

- Propose a graph pooling method based on self-attention
- The proposed pooling method considers both node features and graph topology
- The proposed method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters

Graph convolution

- Spectral approach
 - redefine the convolution operation in the Fourier domain
 - graph Laplacian with the Chebyshev expansion (introduced by Fatir on April 17)
- Non-spectral approach
 - the central node aggregates features from adjacent nodes when its features are passed to the next layer
 - GraphSAGE: learns node embeddings through sampling and aggregation
 - Graph Attention Network (GAT): based on attention mechanisms

Graph pooling

- Topology based pooling
 - eigendecomposition
 - Graclus
- Global pooling
 - consider graph features
 - use summation or neural networks to pool all the representations of nodes in each layer
 - Set2Set
 - SortPool
- Hierarchical pooling
 - learn feature- or topology-based node assignments in each layer
 - Diffpool
 - gPool

Motivation

- Current graph pooling methods are with high storage complexity
 - DiffPool: $\mathcal{O}(k|V|^2)$
 - gPool: $\mathcal{O}(|V| + |E|)$
- The number of parameters depends on the number of nodes

To further improve graph pooling, they propose SAGPool which can use features and topology to yield hierarchical representations with a reasonable complexity of time and space.

Figure 1. An illustration of the SAGPool layer.

- Self-attention mask
 - Calculate self-attention score Z

$$Z = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta_{att})$$

• Keep top *kN* nodes

$$idx = top-rank(Z, \lceil kN \rceil), \quad Z_{mask} = Z_{idx}$$

- SAGPool
 - Generalized equation for attention score Z

$$Z = \sigma(GNN(X, A))$$

• Two-hop connections: SAGPool_{augmentation}

$$Z = \sigma(GNN(X, A + A^2))$$

Stacking GNN layers: SAGPool_{serial}

$$Z = \sigma(GNN_2(\sigma(GNN_1(X, A)), A))$$

Averaging multiple attention scores: SAGPool_{parallel}

$$Z = \frac{1}{M} \sum_{m} \sigma(\text{GNN}_{m}(X, A))$$

Left: global pooling architecture SAGPool_g
Right: hierarchical pooling architecture SAGPool_g

Readout layer: aggregates node features to make a fixed size representation

$$s = \frac{1}{N} \sum_{i=1}^{N} x_i \mid\mid \max_{i=1}^{N} x_i$$

Dataset

Table 1. Statistics of data sets.

Data set	Number of Graphs	Number of Classes	Avg. # of Nodes per Graph	Avg. # of Edges per Graph
D&D	1178	2	284.32	715.66
PROTEINS	1113	2	39.06	72.82
NCI1	4110	2	29.87	32.30
NCI109	4127	2	29.68	32.13
FRANKENSTEIN	4337	2	16.90	17.88

Result

Comparison with other methods

Table 3. Average accuracy and standard deviation of the 20 random seeds. The subscript g (e.g. $POOL_g$) denotes the global pooling architecture and the subscript h (e.g. $POOL_h$) denotes the hierarchical pooling architecture.

Models	D&D	PROTEINS	NCI1	NCI109	FRANKENSTEIN
Set2Set _g	71.27 ± 0.84	66.06 ± 1.66	68.55 ± 1.92	69.78 ± 1.16	61.92 ± 0.73
$\operatorname{SortPool}_g$	72.53 ± 1.19	66.72 ± 3.56	73.82 ± 0.96	74.02 ± 1.18	60.61 ± 0.77
$SAGPool_g$ (Ours)	76.19 ± 0.94	70.04 ± 1.47	74.18 ± 1.20	74.06 ± 0.78	62.57 ± 0.60
$\mathrm{DiffPool}_h$	66.95 ± 2.41	68.20 ± 2.02	62.32 ± 1.90	61.98 ± 1.98	60.60 ± 1.62
$gPool_h$	75.01 ± 0.86	71.10 ± 0.90	67.02 ± 2.25	66.12 ± 1.60	61.46 ± 0.84
SAGPool _h (Ours)	76.45 ± 0.97	71.86 ± 0.97	67.45 ± 1.11	67.86 ± 1.41	61.73 ± 0.76

Result

Comparison with different SAGPools

Table 4. Experimental results of SAGPool_h variants. We compare ChebConv(K=2) (Defferrard et al., 2016), GCNConv (Kipf & Welling, 2016), SAGEConv (Hamilton et al., 2017), and GATConv(heads=6) (Velikovi et al., 2018). GCNConv is applied to SAGPool_h, SAGPool_h, sagmentation, SAGPool_h, serial, and SAGPool_h, parallel.

Graph Convolution	D&D	PROTEINS
$SAGPool_h$	76.45 ± 0.97	71.86 ± 0.97
$egin{aligned} SAGPool_h,_{Cheb} \ SAGPool_h,_{SAGE} \ SAGPool_h,_{GAT} \end{aligned}$	75.82 ± 0.79 76.28 ± 1.06 75.49 ± 0.93	71.98 ± 0.93 71.93 ± 0.82 71.98 ± 1.01
$SAGPool_h$, augmentation $SAGPool_h$, serial, 2 layers	77.07 ± 0.82 76.68 ± 0.96	$71.82 \pm 0.81 \\ 72.17 \pm 0.87$
$\begin{array}{c} SAGPool_h,_{parallel},M=2 \\ SAGPool_h,_{parallel},M=4 \end{array}$	$75.79 \pm 0.96 \\ 76.77 \pm 0.61$	72.05 ± 0.43 71.66 ± 0.98

Result

Parameter comparison

Thanks