10-701: Introduction to Machine Learning

Lecture 7 –Logistic Regression

Hoda Heidari

* Slides adopted from F24 offering of 10701 by Henry Chai.

Recall: Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target distribution, $y \sim P^*(Y|x)$
 - Distribution, P(Y|x)
 - Goal: find a distribution, P, that best approximates P^*

Recipe for Naïve Bayes

- Define a model space and model parameters
 - Make the Naïve Bayes assumption

$$P(X|Y) = \prod_{d=1}^{D} P(X_d|Y)$$

- Parameters: $\pi = P(Y = 1)$, $\theta_{d,y} = P(X_d = 1|Y = y)$
- Write down an objective function
 - Maximize the log-likelihood

- Optimize the objective w.r.t. the model parameters
 - Solve in closed form: take partial derivatives, set to 0 and solve

Bernoulli Naïve Bayes

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$
 - $\hat{\pi} = {}^{N_{Y=1}}/_{N}$
 - N = # of data points
 - $N_{Y=1}$ = # of data points with label 1
- Binary features
 - $X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y})$
 - $\bullet \ \widehat{\theta}_{d,y} = \frac{N_{Y=y,X_d=1}}{N_{Y=y}}$
 - $N_{Y=y}$ = # of data points with label y
 - $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$

• Given a test data point $\mathbf{x}' = [x_1', ..., x_D']^T$

Bernoulli
Naïve
Bayes:
Making
Predictions

Bernoulli Naïve Bayes: Making Predictions

• Given a test data point $\mathbf{x}' = [x_1', ..., x_D']^T$ $P(Y = 1|\mathbf{x}') \propto P(Y = 1)P(\mathbf{x}'|Y = 1)$ $= \hat{\pi} \prod^{D} \hat{\theta}_{d,1}^{x'_{d}} (1 - \hat{\theta}_{d,1})^{1 - x'_{d}}$ $P(Y = 0 | \mathbf{x}') \propto (1 - \hat{\pi}) \prod_{d=0}^{\nu} \hat{\theta}_{d,0}^{x'_d} (1 - \hat{\theta}_{d,0})^{1 - x'_d}$ $\hat{y} = \begin{cases} 1 \text{ if } \hat{\pi} \prod_{d=1}^{D} \hat{\theta}_{d,1}^{x'_{d}} (1 - \hat{\theta}_{d,1})^{1 - x'_{d}} > \\ (1 - \hat{\pi}) \prod_{d=1}^{D} \hat{\theta}_{d,0}^{x'_{d}} (1 - \hat{\theta}_{d,0})^{1 - x'_{d}} \end{cases}$

What if some Word-Label pair never appears in our training data?

x ₁ ("hat")	x ₂ ("cat")	x ₃ ("dog")	x ₄ ("fish")	x ₅ ("mom")	x ₆ ("dad")	<i>y</i> (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0

The Cat in the Hat gets a Dog (by ???)

- If some $\hat{\theta}_{d,y} = 0$ and that word appears in our test data x', then P(Y = y | x') = 0 even if all the other features in x' point to the label being y!
- The model has been overfit to the training data...
- We can address this with a prior over the parameters!

Setting the Parameters via MAP

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$

•
$$\hat{\pi} = {}^{N_{Y=1}}/_{N}$$

- N = # of data points
- $N_{Y=1}$ = # of data points with label 1
- Binary features

•
$$X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y}) \text{ and } \theta_{d,y} \sim \text{Beta}(\alpha, \beta)$$

•
$$\hat{\theta}_{d,y} = \frac{N_{Y=y,X_{d=1}} + (\alpha - 1)}{N_{Y=y} + (\alpha - 1) + (\beta - 1)}$$

- $N_{Y=y}$ = # of data points with label y
- $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$
- α and β are "pseudocounts" of imagined data points that help avoid zero-probability predictions.
- Common choice: $\alpha = \beta = 2$

What can we do when this is a bad/incorrect assumption, e.g., when our features are words in a sentence?

• **Assume** features are conditionally independent given the label:

$$P(X|Y) = \prod_{d=1}^{D} P(X_d|Y)$$

- Pros:
 - <u>Significantly</u> reduces computational complexity
 - Also reduces model complexity, combats overfitting
- Cons:
 - Is a strong, often illogical assumption
 - We'll see a relaxed version of this much later when we discuss Bayesian networks

Key Takeaways

- Text data
 - Bag-of-words feature representation
- Naïve Bayes
 - Conditional independence assumption
 - Pros and cons
 - Different Naïve Bayes models based on type of features
 - MLE vs. MAP for Bernoulli Naïve Bayes

Henry Chai - 2/5/24 10

Recall: Building a Probabilistic Classifier

- Define a decision rule
 - Given a test data point x', predict its label \hat{y} using the posterior distribution P(Y = y | X = x')
 - Common choice: $\hat{y} = \underset{y}{\operatorname{argmax}} P(Y = y | X = x')$
- Model the posterior distribution
 - Option 1 Model P(Y|X) directly as some function of X (today!)
 - Option 2 Use Bayes' rule (Monday):

$$P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} \propto P(X|Y) P(Y)$$

• Suppose we have binary labels $y \in \{0,1\}$ and D-dimensional inputs $\mathbf{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$

Assume

Modelling the Posterior

This implies two useful facts:

Modelling the Posterior

- Suppose we have binary labels $y \in \{0,1\}$ and D-dimensional inputs $\mathbf{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$
- Assume

$$P(Y = 1|\mathbf{x}) = \text{logistic}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$
$$= \frac{\exp(\mathbf{w}^T \mathbf{x})}{\exp(\mathbf{w}^T \mathbf{x}) + 1}$$

This implies two useful facts:

1.
$$P(Y = 0|x) = 1 - P(Y = 1|x) = \frac{1}{\exp(w^T x) + 1}$$

2. $\frac{P(Y = 1|x)}{P(Y = 0|x)} = \exp(w^T x) \rightarrow \log \frac{P(Y = 1|x)}{P(Y = 0|x)} = w^T x$

Logistic Function

Why use the Logistic Function?

- Differentiable everywhere
- logistic: $\mathbb{R} \rightarrow [0, 1]$

The decision boundary is linear in x!

Logistic
Regression
Decision
Boundary

The decision boundary is linear in x!

$$\hat{y} = \begin{cases} 1 \text{ if } P(Y = 1 | \mathbf{x}) \ge \frac{1}{2} \\ 0 \text{ otherwise} \end{cases}$$

$$P(Y = 1 | \mathbf{x}) = \text{logistic}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})} \ge \frac{1}{2}$$

$$2 \ge 1 + \exp(-\mathbf{w}^T \mathbf{x})$$

$$1 \ge \exp(-\mathbf{w}^T \mathbf{x})$$

$$\log(1) \ge -\mathbf{w}^T \mathbf{x}$$

$$0 \le \mathbf{w}^T \mathbf{x}$$

18

19

20

Define a model space and model parameters

General Recipe for Machine Learning

Write down an objective function

Optimize the objective w.r.t. the model parameters

Recipe for Logistic Regression

- Define a model space and model parameters
 - Assume independent, identically distributed (iid) data
 - Assume $P(Y = 1|X) = logistic(w^T x)$
 - Parameters: $\mathbf{w} = [w_0, w_1, \dots, w_D]$
- Write down an objective function
 - Maximize the conditional log-likelihood
 - Minimize the negative conditional log-likelihood

- Optimize the objective w.r.t. the model parameters
 - 555

Setting the **Parameters** via Minimum Negative Conditional (log-)Likelihood **Estimation** (MCLE)

Find w that minimizes

$$\ell_{\mathcal{D}}(\mathbf{w}) =$$

Setting the **Parameters** via Minimum Negative Conditional (log-)Likelihood **Estimation** (MCLE)

Find w that minimizes

$$\ell_{\mathcal{D}}(\mathbf{w}) = -\log P(y^{(1)}, ..., y^{(N)} | \mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}, \mathbf{w}) = -\log \prod_{n=1}^{N} P(y^{(n)} | \mathbf{x}^{(n)}, \mathbf{w})$$

$$= -\log \prod_{n=1}^{N} P(Y = 1 | \mathbf{x}^{(n)}, \mathbf{w})^{y^{(n)}} \left(P(Y = 0 | \mathbf{x}^{(n)}, \mathbf{w}) \right)^{1-y^{(n)}}$$

$$= -\sum_{n=1}^{N} y^{(n)} \log P(Y = 1 | \mathbf{x}^{(n)}, \mathbf{w}) + (1 - y^{(n)}) \log P(Y = 0 | \mathbf{x}^{(n)}, \mathbf{w})$$

$$= -\sum_{n=1}^{N} y^{(n)} \log \frac{P(Y = 1 | \mathbf{x}^{(n)}, \mathbf{w})}{P(Y = 0 | \mathbf{x}^{(n)}, \mathbf{w})} + \log P(Y = 0 | \mathbf{x}^{(n)}, \mathbf{w})$$

$$= -\sum_{n=1}^{N} y^{(n)} \mathbf{w}^{T} \mathbf{x}^{(n)} - \log \left(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{(n)}) \right)$$

Minimizing the Negative Conditional (log-)Likelihood

$$\ell_{\mathcal{D}}(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \mathbf{w}^{T} \mathbf{x}^{(n)} - \log\left(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{(n)})\right)$$

Minimizing the Negative Conditional (log-)Likelihood

$$\ell_{\mathcal{D}}(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \mathbf{w}^{T} \mathbf{x}^{(n)} - \log(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{(n)}))$$

$$\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) = -\sum_{n=1}^{N} y^{(n)} \nabla_{\mathbf{w}} \mathbf{w}^{T} \mathbf{x}^{(n)} - \nabla_{\mathbf{w}} \log(1 + \exp(\mathbf{w}^{T} \mathbf{x}^{(n)}))$$

$$= -\sum_{n=1}^{N} y^{(n)} \mathbf{x}^{(n)} - \frac{\exp(\mathbf{w}^{T} \mathbf{x}^{(n)})}{1 + \exp(\mathbf{w}^{T} \mathbf{x}^{(n)})} \mathbf{x}^{(n)}$$

$$= \sum_{n=1}^{N} \mathbf{x}^{(n)} (P(Y = 1 | \mathbf{x}^{(n)}, \mathbf{w}) - y^{(n)})$$

Recall: Gradient Descent

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Recall: Gradient Descent

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

 Good news: the negative conditional log-likelihood, like the squared error, is also convex!

Gradient Descent

• Input:
$$\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, \eta^{(0)}$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$O(ND) \left\{ \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) = \sum_{n=1}^{N} \boldsymbol{x}^{(n)} \left(P\left(Y = 1 \middle| \boldsymbol{x}^{(n)}, \boldsymbol{w}^{(t)} \right) - y^{(n)} \right) \right\}$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Stochastic Gradient Descent

• Input:
$$\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}, \eta_{SGD}^{(0)}$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample a data point from \mathcal{D} , $(x^{(n)}, y^{(n)})$
 - b. Compute the pointwise gradient:

$$\nabla_{\mathbf{w}} \ell^{(n)}(\mathbf{w}^{(t)}) = \mathbf{x}^{(n)}(P(Y=1|\mathbf{x}^{(n)},\mathbf{w}^{(t)}) - y^{(n)})$$

- c. Update \mathbf{w} : $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} \eta_{SGD}^{(0)} \nabla_{\mathbf{w}} \ell^{(n)} (\mathbf{w}^{(t)})$
- d. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Stochastic Gradient Descent

• If the data point is sampled uniformly at random, then the expected value of the pointwise gradient is proportional to the full gradient:

$$E\left[\nabla_{\boldsymbol{w}}\ell_{\boldsymbol{x}^{(n)},\boldsymbol{y}^{(n)}}(\boldsymbol{w}^{(t)})\right] = \frac{1}{N}\sum_{n=1}^{N}\nabla_{\boldsymbol{w}}\ell^{(n)}(\boldsymbol{w}^{(t)})$$
$$= \frac{1}{N}\sum_{n=1}^{N}\boldsymbol{x}^{(n)}(P(Y=1|\boldsymbol{x}^{(n)},\boldsymbol{w}^{(t)}) - \boldsymbol{y}^{(n)})$$
$$= \frac{1}{N}\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}(\boldsymbol{w}^{(t)})$$

• In practice, the data set is randomly shuffled then looped through so that each data point is used equally often

Stochastic
Gradient
Descent vs.
Gradient
Descent

Gradient Descent

Stochastic Gradient Descent

Mini-batch Stochastic Gradient Descent

• Input:
$$\mathcal{D} = \{ (\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) \}_{n=1}^{N}, \eta_{MB}^{(0)}, B$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample B data points from \mathcal{D} :

$$\mathcal{D}_{batch}\{\left(\boldsymbol{x}^{(b)}, y^{(b)}\right)\}_{b=1}^{B}$$

b. Compute the gradient w.r.t. the sampled batch:

$$\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}_{batch}}(\boldsymbol{w}^{(t)}) = \sum_{b=1}^{B} \boldsymbol{x}^{(b)} (P(Y=1|\boldsymbol{x}^{(b)}, \boldsymbol{w}) - y^{(b)})$$

- c. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta_{MB}^{(0)} \nabla_w \ell_{\mathcal{D}_{batch}}(w^{(t)})$
- d. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Linear Models

Linear Models

Linear Models

Linear Models?

Linear Models?

Feature Transforms

• Given D-dimensional inputs $\mathbf{x} = [x_1, ..., x_D]$, first compute some transformation of our input, e.g.,

$$\phi([x_1, x_2]) = [z_1 = (x_1 - 0.5)^2, z_2 = (x_2 - 0.5)^2]$$

