### Fault Detection of an Inverted Pendulum on a Cart

### **Plant Model**

- Control voltage to a DC motor delivers torque to the cart's drive wheel
- Position of the cart is measured using a circular coil potentiometer
- Velocity of the cart is measured using a tacho generator mounted on the drive wheel
- Angle of pendulum is determined via a potentiometer
- Angular velocity is not measured

System States: 
$$x = \begin{bmatrix} cart & position \\ cart & velocity \\ pendulum & angle \\ pendulum & angular & velocity \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

#### **Plant Parameters**

#### Fault Model

We assume a possible fault in the actuator (DC motor drive)  $f_A$ , as well as a possible fault in each of the sensors  $f_{s1}$ ,  $f_{s2}$ , and  $f_{s3}$ .

$$f = \begin{bmatrix} f_{A1} \\ f_{s1} \\ f_{s2} \\ f_{c3} \end{bmatrix}$$

#### **Linearized Discrete-Tme Model**

The system is linearized with a sampling time of 0.03s, at the operating point:

$$x = \begin{bmatrix} r \\ \dot{r} \\ \phi \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

The linearized model is valid under the following conditions:

- Control signal,  $|F| \le 20N$
- Cart position,  $|r| \le 0.5m$
- Cart velocity,  $|\dot{r}| \leq 1m/s$
- Pendulum angle,  $|\phi| \le \frac{1}{18}\pi \ rad$

### **System Model**

```
\dot{x} = Ax + Bu + E_d d + E_f f
y = Cx + F_f f
```

with:

- state vector, x
- input vector, u
- disturbance vector, d
- fault vector, f

```
A= [
    1, -0.0569,  0.0010,  0.0000;
    0,  0.9442, -0.0038,  0.0000;
    0,  0.0116,  1.0097,  0.0300;
    0,  0.7688,  0.6442,  1.0056
];

B= [ 0.0053; -0.1789;  0.0373;  2.4632];

E_d= B;

E_f= [B, zeros(4,3)];

C= [diag([1,1,1]), zeros(3,1)];

D= zeros(3,1);

F_d= zeros(3,1);

F_f= [zeros(3,1), diag([1,1,1])];

% Sampling time
T_s= 0.03;
```

### **State Feedback Control**

Because the system is unstable at the linearizaiton point

```
, we stabilize using a state feedback controller.
```

We design the gain matrix *K* by placing the poles of A + BK as (0.21, 0.22, 0.23, 0.24).

```
% State feedback controller
feed_poles= [ 0.21; 0.22; 0.23; 0.24 ];
K= place(A, B, feed_poles);
```

```
% No of states
n = size(A,1);
% No of inputs
m = size(B, 2);
% No of disturbance inputs
n_d= size(E_d,2);
% No of fault inputs
n_f = size(E_f, 2);
% No of outputs
p = size(C,1);
% Number of simulation steps
sim_steps= 15+1;
% Simulatipn time
sim_t= (0:sim_steps)*T_s;
% Pre-allocate matrices to hold simulation data
% Output matrix
y_k= zeros(p, sim_steps);
% State matrix
x_k= zeros(n, sim_steps+1);
% Input matrix
u k= zeros(m, sim steps);
% Set initial state into state matrix
x_k(:, 1) = [0; 0; 0.02; 0];
for idx= 1:sim_steps
    % Input
    u_k(:, idx) = -K*x_k(:, idx);
    % Next state
    x_k(:, (idx+1)) = A*x_k(:,idx) + B*u_k(:,idx);
```

```
% Output
    y_k(:, idx) = C*x_k(:,idx);
end
```

We plot the state estimation error to visualize the accuracy of the observed states

```
Fig sfc= figure;
subplot(1,2,1);
plot(sim_t, x_k, 'LineWidth', 1);
grid on;
title('Fig. 1- State Feedback Control (States)');
ylabel('States', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['$x_1$', "$x_2$", '$x_3$', '$x_4$']);
leg.Interpreter='latex';
leg.Location= 'southeast';
subplot(1,2,2);
plot(sim_t(1:end-1), u_k, 'LineWidth', 1);
grid on;
ylabel('Control Input', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['$u$']); leg.Interpreter='latex';
leg.Location= 'southeast';
```

## **Full Order Observer Design**

We want to design a full-order obeserver such that:

$$\hat{x} = A\hat{x} + Bu + L(y - \hat{y})$$

$$\hat{y} = C\hat{x}$$

The observer error dynamics is then governed by:

$$\dot{e} = (A - LC)e + E_d d + (E_f + LF_f)f$$

with:

• 
$$e = x - \hat{x}$$

#### **Pole Placement**

If we select our desired ole positions to be: (0.011, 0.012, 0.013, 0.014), we can examine the possible system response as:

```
obs_poles= [0.011, 0.012, 0.013, 0.014];
sys_temp= zpk([],obs_poles,1, T_s);
```



As can be seen, the response is quite satisfactory, with a response time of about  $2 \times 10^{-3}$ .

Now we compute the gain matrix L for our full order observer as:

### **Full Order Observer Simulation**

Here, we compare system states and output with the full order observer under zero disturbance and an initial

state of 
$$x = \begin{bmatrix} 0 \\ 0 \\ 0.02 \\ 0 \end{bmatrix}$$

Because the system is unstable at the linearizaiton point  $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ , we stabilize using a state feedback controller.

We design the gain matrix Kby placing the poles of A + BK as (0.21, 0.22, 0.23, 0.24).

```
% State feedback controller
feed_poles= [ 0.21; 0.22; 0.23; 0.24 ];
K= place(A, B, feed_poles);
```

```
% Number of simulation steps
sim_steps= 15+1;
% Simulation time
sim_t= (0:sim_steps)*T_s;
% Pre-allocate matrices to hold simulation data
% Output matrix
y_k= zeros(p, sim_steps);
% State matrix
x_k= zeros(n, sim_steps+1);
% Input matrix
u_k= zeros(m, sim_steps);
% Observed state matrix
x_k_hat= zeros(n, sim_steps+1);
% Observed output matrix
y_k_hat= zeros(p, sim_steps);
% State estimation error
e_k= zeros(n, sim_steps+1);
% Set initial state into state matrix
x_k(:, 1) = [0; 0; 0.02; 0];
% Initial state estimation error
e_k(:, 1) = x_k(:, 1) - x_k_hat(:, 1);
for idx= 1:sim_steps
    % Input
    u_k(:, idx) = -K*x_k(:, idx);
    % Next state
    x_k(:, (idx+1)) = A*x_k(:,idx) + B*u_k(:,idx);
    % Output
    y_k(:, idx) = C*x_k(:, idx);
    % Observed output
    y_k_hat(:, idx) = C*x_k_hat(:, idx);
    % Observed state
    x_k_{hat}(:, (idx+1)) = A*x_k_{hat}(:, idx) + B*u_k(:, idx) + ...
        L^*(y_k(:, idx) - y_k_hat(:, idx));
    % State estimation error
    e_k(:, idx+1) = x_k(:, idx+1) - x_k_hat(:, idx+1);
```

We plot the state estimation error to visualize the accuracy of the observed states

```
Fig_obs= figure;

plot(sim_t, e_k, 'LineWidth', 1);
grid on;
title('Fig. 2- Full Order Observer State Estimation Error');
ylabel('Estimation Error', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['$e_1$', "$e_2$", '$e_3$', '$e_4$']); leg.Interpreter='latex';
leg.Location= 'southeast';
```



## **Fault Injection and Residual Generation**

Now we inject faults into the system. We simulate the faults to happen at (3.5s, 5s, 7.5s, 12s) respectively.

```
fault_times= [3.5; 5; 7.5; 12];
fault_points= round(fault_times./T_s);
```

```
% Number of simulation steps
sim_steps= fault_points(end)+100;
```

```
% Simulation time
sim_t= (0:sim_steps)*T_s;
% Pre-allocate matrices to hold simulation data
% Output matrix
y_k= zeros(p, sim_steps);
% State matrix
x_k= zeros(n, sim_steps+1);
% Input matrix
u_k= zeros(m, sim_steps);
% Disturbance Matrix
d_k= 0.5*rand(n_d, sim_steps);
% Fault Matrix
f k= zeros(n f, sim steps);
% Residual Matrix
r_k= zeros(p, sim_steps);
% Reisudual Filter to improve residual dynamics
W = diag([3,2,1]);
% Fault injection
for idx=1:n_f
    f_k(idx, fault_points(idx):end) = ones(1,sim_steps-fault_points(idx)+1);
end
% Observed state matrix
x_k_hat= zeros(n, sim_steps+1);
% Observed output matrix
y_k_hat= zeros(p, sim_steps);
% Set initial state into state matrix
x_k(:, 1) = [0; 0; 0.02; 0];
% Initial state estimation error
e_k(:, 1) = x_k(:, 1) - x_k_{hat}(:, 1);
for idx= 1:sim_steps
    % Input
    u_k(:, idx) = -K*x_k(:, idx);
    % Next state
    x_k(:, (idx+1)) = A*x_k(:,idx) + B*u_k(:,idx) + E_d*d_k(:,idx) + E_f*f_k(:,idx);
    y_k(:, idx) = C*x_k(:, idx) + F_f*f_k(:, idx);
    % Observed output
    y_k_hat(:, idx) = C*x_k_hat(:, idx);
    % Observed state
    x_k_{hat}(:, (idx+1)) = A*x_k_{hat}(:, idx) + B*u_k(:, idx) + ...
        L*(y_k(:, idx) - y_k_hat(:, idx));
    % Residual Generation
    r_k(:, idx) = W*(y_k(:, idx) - y_k_hat(:, idx));
```

We plot the state estimation error to visualize the accuracy of the observed states

```
Fig_res= figure;

plot(sim_t(1:end-1), r_k, 'LineWidth', 1);
grid on;
title('Fig. 3- Full Order Residual Signals');
ylabel('Estimation Error', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['$r_1$', "$r_2$", '$r_3$']); leg.Interpreter='latex';
leg.Location= 'southeast';
```



# Full Decoupling using Unknown Input Observer

We try to eliminate the influence of the disturbance signals on the residual by usung an Unknown Input Observer.

Assuming a fault-free operation, we have:

$$\dot{x} = Ax + Bu + E_d d$$

$$v = Cx$$

By taking the derivative of y, we have:

$$\dot{y} = C(Ax + Bu + E_d d)$$

We need  $CE_d$  to be left-invertible (of full column rank), such that:

$$d = CE_d^{-1}(\dot{y} - CAx - CBu)$$

With  $M = CE_d^{-1}$  we have:

$$\dot{x} = (A - E_d MCA)x + (B - E_d MCB)u + E_d M \dot{y}$$

To avoid using the derivative of the ooutput signal, we can perform a state transformation:

$$z = x - E_d M y$$

Such that:

$$\dot{z} = (A - E_d MCA)x + (B - E_d MCB)u$$

for which we can then construct an observer.

Hoewever, for this plant,  $CE_d$  is not invertible, thus this approach cannot be used.

# **Parity Space Approach**

With the parity space approach, we explore the inherent characteristics of the system to generate residual signals.

First, we examine the behaviour of the system over a window of length s

```
\begin{aligned} y(k-s) &= Cx(k-s) + Du(k-s) + F_d d(k-s) + F_f f(k-s) \\ y(k-s+1) &= Cx(k-s+1) + Du(k-s+1) + F_d d(k-s+1) + F_f f(k-s+1) \\ y(k-s+1) &= CAx(k-s) + CBu(k-s) + CE_d d + CE_f f + Du(k-s+1) + F_d d(k-s+1) + F_f f(k-s+1) \\ &\cdot \\ &\cdot \\ &\cdot \\ &\cdot \end{aligned}
```

$$y(s) = CA^{s}x(k-s) + CA^{s-1}Bu(k-s) + \dots + CBu(k-1) + Du(k) + CA^{s-1}E_{d}d(k-s) + \dots + CE_{d}d(k-1) + F_{d}d(k) + CA^{s-1}E_{f}f(k-s) + \dots + CE_{f}f(k-1) + F_{f}f(k)$$

If we stack up all the equations into matrix form, we have

$$\begin{bmatrix} y(k-s) \\ y(k-s+1) \\ y(k-s+2) \\ \vdots \\ y(k-1) \\ y(k) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{s-1} \\ CA^s \end{bmatrix} x(k-s) + \begin{bmatrix} D & 0 & 0 & \cdots & 0 & 0 \\ CB & D & 0 & \cdots & 0 & 0 \\ CAB & CB & D & \cdots & 0 & 0 \\ \vdots \\ CA^{s-2}B & CA^{s-3}B & CA^{s-4}B & \cdots & D & 0 \\ CA^{s-1}B & CA^{s-2}B & CA^{s-3}B & \cdots & CB & D \end{bmatrix}$$

$$\begin{bmatrix} F_d & 0 & 0 & \cdots & 0 & 0 \\ CE_d & F_d & 0 & \cdots & 0 & 0 \\ CAE_d & CE_d & F_d & \cdots & 0 & 0 \\ CAE_d & CE_d & F_d & \cdots & 0 & 0 \\ CAE_d & CE_d & F_d & \cdots & 0 & 0 \\ CAB & CB & CA^{s-3}B & CA^{s-4}B & \cdots & CB & D \end{bmatrix}$$

$$\begin{bmatrix} F_f & 0 & 0 & \cdots & 0 & 0 \\ CE_f & F_f & 0 & \cdots & 0 & 0 \\ CAE_f & CE_f & F_f & \cdots & 0 & 0 \\ CAE_f & CE_f & F_f & \cdots & 0 & 0 \\ CAE_f & CE_f & F_f & \cdots & 0 & 0 \\ CAE_f & CE_f & F_f & \cdots & CE_f & F_f \end{bmatrix}$$

$$\begin{bmatrix} CA^{s-2}E_f & CA^{s-3}E_d & CA^{s-4}E_d & \cdots & F_d & 0 \\ CA^{s-1}E_d & CA^{s-2}E_d & CA^{s-3}E_d & \cdots & CE_d & F_d \end{bmatrix}$$

$$\begin{bmatrix} CA^{s-2}E_f & CA^{s-3}E_f & CA^{s-4}E_f & \cdots & F_f & 0 \\ CA^{s-1}E_f & CA^{s-2}E_f & CA^{s-3}E_f & CA^{s-3}E_f & \cdots & CE_f & F_f \end{bmatrix}$$

$$\begin{bmatrix} CA^{s-1}E_f & CA^{s-2}E_f & CA^{s-3}E_f & CA^{s-3}E_f$$

We can then compress this into

$$y_s(k) = H_{o,s}x(k-s) + H_{u,s}u_s(k) + H_{d,s}d_s(k) + H_{f,s}f_s(k)$$

Rearranging yields

$$y_s(k) - H_{u,s}u_s(k) = H_{o,s}x(k-s) + H_{d,s}d_s(k) + H_{f,s}f_s(k)$$

Since  $y_s(k)$  and  $u_s(k)$  are available online, we generate the residual signal as

$$r(k) = v_s(y_s(k) - H_{u,s}u_s(k))$$

The dynamics of the residual are now governed by

$$r(k) = v_s(H_{o.s}x(k-s) + H_{d.s}d_s(k) + H_{f.s}f_s(k))$$

The vector  $v_s$  is called the parity vector and must satisfy:

- $v_s H_{o.s} = 0$
- $v_s H_{f,s} \neq 0$
- $v_s H_{d,s} = 0$  (for full decoupling)

For full decoupling to be possible, the following rank condition must be satisfied:

 $rank[H_{o,s} H_{d,s}] < rank[H_{o,s} H_{d,s} H_{f,s}]$ 

#### **Build up data matrices**

```
% Window size
s=5i
% H_os, H_us, H_ds, H_fs
H_os = zeros(s*p,n);
H_us= zeros(s*p,s*m);
H_ds= zeros(s*p,s*n_d);
H_fs= zeros(s*p,s*n_f);
for r = 1:s
    H_{os}((r-1)*p+1:r*p,1:n) = C*(A^{(r-1)});
    for c = 1:r
        if r == c
            H_us((r-1)*p+1:r*p,(c-1)*m+1:c*m) = D;
            H_ds((r-1)*p+1:r*p,(c-1)*n_d+1:c*n_d) = F_d;
            H_fs((r-1)*p+1:r*p,(c-1)*n_f+1:c*n_f) = F_f;
        else
            H_us((r-1)*p+1:r*p,(c-1)*m+1:c*m) = C*A^(r-c-1)*B;
            H_ds((r-1)*p+1:r*p,(c-1)*n_d+1:c*n_d) = C*A^(r-c-1)*E_d;
            H_fs((r-1)*p+1:r*p,(c-1)*n_f+1:c*n_f) = C*A^(r-c-1)*E_f;
        end
    end
end
% Check rank condition for full decoupling
rank([H_os H_ds]) < rank([H_os H_ds H_fs])</pre>
```

```
ans = logical
```

Since the rank condition is satisfied, full decoupling can be achieved.

#### **Parity Vector**

```
% Left null space of H_os H_ds
N_basis= null([H_os H_ds]')';

% Parity vector (can be selected as any of the rows)
v_s= N_basis(1, :)

v_s = 1x15
    -0.0727    0.0363   -0.1677    0.1874    0.1251   -0.2757   -0.0701    0.0076 ...
```

Pre-computation of  $v_sH_{u,s}$  to speed up online computation

```
rho_s= v_s*H_us
```

```
rho_s = 1 \times 5

10^{-16} \times 0.1388 \quad 0.3469 \quad 0.1735 \quad 0.0694 \quad 0
```

```
% Number of simulation steps
sim_steps= fault_points(end)+100;
% Simulation time
sim_t= (0:sim_steps)*T_s;
% Pre-allocate matrices to hold simulation data
% Output matrix
y_k= zeros(p, sim_steps);
% State matrix
x_k= zeros(n, sim_steps+1);
% Input matrix
u_k= zeros(m, sim_steps);
% Disturbance Matrix
d_k= 0.5*rand(n_d, sim_steps);
% Fault Matrix
f_k= zeros(n_f, sim_steps);
% Residual Matrix
r_k= zeros(1, (sim_steps-s));
% Fault injection
for idx=1:n_f
    f_k(idx, fault_points(idx):end) = ones(1,sim_steps-fault_points(idx)+1);
end
% Set initial state into state matrix
x_k(:, 1) = [0; 0; 0.02; 0];
% Before time k
% We need prior data for k-s to be valid
for idx= 1:(s+1)
    % Input
    u_k(:, idx) = -K*x_k(:, idx);
    % Next state
    x_k(:, (idx+1)) = A*x_k(:,idx) + B*u_k(:,idx) + E_d*d_k(:,idx);
    % Output
    y_k(:, idx) = C*x_k(:, idx) + D*u_k(:, idx) + F_d*d_k(:, idx);
end
% After Time k
for idx= (s+1):sim_steps
    % Input
    u_k(:, idx) = -K*x_k(:, idx);
    % Next state
    x_k(:, (idx+1)) = A*x_k(:,idx) + B*u_k(:,idx) + E_d*d_k(:,idx) + E_f*f_k(:,idx);
    y_k(:, idx) = C*x_k(:, idx) + D*u_k(:, idx) + F_d*d_k(:, idx) + F_f*f_k(:, idx);
```

```
% Residual Generation
% y_s
y_s_k= y_k(:, (idx-s+1):(idx));
y_s_k= y_s_k(:);
% u_s
u_s_k= u_k(:, (idx-s+1):(idx));
u_s_k= u_s_k(:);
% Residual
r_k(:, (idx-s))= v_s*y_s_k - rho_s*u_s_k;
end
```

We plot the state estimation error to visualize the accuracy of the observed states

```
Fig_ps_res= figure;

plot(sim_t(s+1:end-1), r_k, 'LineWidth', 1);
grid on;
title('Fig. 4- Parity Space Residual Signal');
ylabel('Residual Signal', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['$r_1$']); leg.Interpreter='latex';
leg.Location= 'southeast';
```

As can be seen in the figure above, the generated residual is insensitive to the actuator fault, this is probably because  $B = E_d$ .

If the residual signal is decoupled from the disturbance (via  $E_d$ ), then it is effectively decoupled from the input (via B).

#### **System States**

```
Fig_ps_states= figure;

plot(sim_t, x_k, 'LineWidth', 1);
grid on;
title('Fig. 5- Parity Space System States');
ylabel('States', 'Interpreter', 'latex');
xlabel('time, sec', 'Interpreter', 'latex');
leg= legend(['cart position', 'cart vel', 'pendulum ang', 'pendulum vel']); leg.Interpreter.
leg.Location= 'southeast';
```



## References

Fault Diagnosis and Fault Tolerant Systems Exercises, TU Kaiserslautern- Dina Martynova