Στοχαστικές Διαδικασίες 1ή Θεωρητική Άσκηση

Λεωνίδας Αβδελάς | ΑΜ: 03113182

Άσκηση 4

Έχουμε τον πίνακα:

$$P = \begin{pmatrix} 0 & 3/4 & * & 0 & 0 \\ 3/4 & 0 & 0 & 1/8 & * \\ 1/2 & 1/4 & 1/4 & * & * \\ * & 3/5 & 1/5 & 1/5 & * \\ 0 & 0 & 1/10 & 1/5 & * \end{pmatrix}$$

Για να είναι ο πίνακας πίνακας πιθανοτήτων μετάβασης, θα πρέπει για κάθε p(i,j) να ισχύει $\sum_i p(i,j) = 1$.

Άρα για την πρώτη γραμμή: $0 + \frac{3}{4} + * + 0 + 0 = 1$, οπότε $* = \frac{1}{4}$.

Για την δεύτερη γραμμή: $\frac{3}{4} + 0 + 0 + \frac{1}{8} + * = 1$, οπότε $* = \frac{1}{8}$.

Για την τρίτη γραμμή: $\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + * + * = 1$, οπότε και για τα δύο * = 0.

Για την τέταςτη γραμμή: $* + \frac{3}{5} + \frac{1}{5} + \frac{1}{5} + * = 1$, οπότε και για τα δύο * = 0.

Για την πέμπτη γραμμή: $0 + 0 + \frac{1}{10} + \frac{1}{5} + * = 1$, οπότε * = 7/10.

Άσκηση 5

Δεδομένου ότι ο χώρος καταστάσεων είναι $\mathbb{X} = \{K, B, \Sigma, Y, M\}$, ο πίνακας πιθανοτήτων μετάβασης θα είναι:

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 1/4 & 1/4 & 0 & 1/4 & 1/4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Άσκηση 6

Θέλουμε να μοντελοποιήσουμε την θέση του ρήγα, άρα ο χώρος καταστάσεων μας θα είναι $\mathbb{X} = \{\Theta_1, \Theta_2, \Theta_3, \Theta_4, \Theta_5\}.$

Θα μελετήσουμε την θέση του ρήγα περιγραφικά πρώτα και μετά θα φτιάξουμε τον πίνακα πιθανοτήτων μετάβασης.

Αν είναι στην θέση Θ_1 , έχει πιθανότητα να βρεθεί στην μέση 2/3. Ακόμα,με πιθανότητα 1/3 μπορεί να επιλεγεί το χαρτί στην Θ_5 , οπότε σε αυτή την περίπτωση ο ρήγας μένει στην θέση του.

Αν είναι στην θέση Θ_2 , το χαρτί στην Θ_1 έχει πιθανότητα 2/3 να επιλεχθεί, οπότε σε αυτή την περίπτωση ο ρήγας θα μετακινηθεί στην Θ_1 . Αν επιλεχθεί το χαρτί στην Θ_5 , ο ρήγας μένει στην θέση του.

Αν είναι στην θέση Θ_3 , το χαρτί στην Θ_1 έχει πιθανότητα 2/3 να επιλεχθεί, οπότε ο ρήγας θα μετακινηθεί στην θέση Θ_2 και το χαρτί από την Θ_1 θα πάει στην Θ_3 . Αν επιλεχθεί το χαρτί στην Θ_5 , ο ρήγας θα μετακινηθεί στην Θ_4 και το χαρτί από την Θ_5 θα πάει στην Θ_3 .

Αν είναι στην θέση Θ_4 , το χαρτί στην Θ_1 έχει πιθανότητα 2/3 να επιλεχθεί, οπότε σε αυτή την περίπτωση ο ρήγας θα μείνει στην θέση του. Αν επιλεχθεί το χαρτί στην Θ_5 , ο ρήγας μετακινείται στην Θ_5 .

Αν είναι στην θέση $Θ_5$, έχει πιθανότητα να βρεθεί στην μέση 1/3. Ακόμα,με πιθανότητα 2/3 μπορεί να επιλεγεί το χαρτί στην $Θ_1$, οπότε σε αυτή την περίπτωση ο ρήγας μένει στην θέση του.

Τελικά ο πίνακας πιθανοτήτων μετάβασης θα είναι:

$$P = \begin{pmatrix} 1/3 & 0 & 2/3 & 0 & 0 \\ 2/3 & 1/3 & 0 & 0 & 0 \\ 0 & 2/3 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 2/3 & 1/3 \\ 0 & 0 & 1/3 & 0 & 2/3 \end{pmatrix}$$

Άσκηση 7

Ο χώρος καταστάσεων είναι $\mathbb{X} = \{0,1,2,3,4,5\}$. Θέλουμε να φέρουμε 5 φορές συνεχόμενα 6, οπότε η πιθανότητα να πάμε στην επόμενη κατάσταση κάθε φορά είναι 1/6, ενώ η πιθανότητα να πάμε στην 0, είναι 5/6. Αν φτάσουμε στην κατάσταση 5, το παιχνίδι τελειώνει, όποτε παραμένουμε στην κατάσταση αυτή.

Άρα ο πίνακας πιθανοτήτων μετάβασης θα είναι:

$$P = \begin{pmatrix} 5/6 & 1/6 & 0 & 0 & 0 & 0 \\ 5/6 & 0 & 1/6 & 0 & 0 & 0 \\ 5/6 & 0 & 0 & 1/6 & 0 & 0 \\ 5/6 & 0 & 0 & 0 & 1/6 & 0 \\ 5/6 & 0 & 0 & 0 & 0 & 1/6 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

και οι αρχικές πιθανότητες $\pi(0) = (1, 0, 0, 0, 0, 0)$.

Στην περίπτωση που θέλουμε να εμφανιστεί η ακολουθία 65656, θεωρούμε ότι ο χώρος καταστάσεων είναι ο ίδιος και αναπαριστά σε ποιά θέση της ακολουθίας είμαστε.

Τότε κάθε φορά που φέρνουμε 6 ενώ έπρεπε να φέρουμε 5, γυρνάμε στο πρώτο βήμα, ενώ κάθε άλλη φορά στο μηδενικό.

Έτσι, ο πίνακας πιθανοτήτων μετάβασης θα είναι:

$$P = \begin{pmatrix} 5/6 & 1/6 & 0 & 0 & 0 & 0 \\ 4/6 & 1/6 & 1/6 & 0 & 0 & 0 \\ 5/6 & 0 & 0 & 1/6 & 0 & 0 \\ 4/6 & 1/6 & 0 & 0 & 1/6 & 0 \\ 5/6 & 0 & 0 & 0 & 0 & 1/6 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

και οι αρχικές πιθανότητες $\pi(0) = (1, 0, 0, 0, 0, 0)$.

Άσκηση 8

Για να είναι η $X_{nn\in\mathbb{N}}$ αλυσίδα Markov, θα πρέπει να ισχύει ότι για κάθε $n\in\mathbb{N}$ και κάθε $v_0,\ldots,v_{n-1},x,y\in\mathbb{X}$ Έχουμε

$$\Pr[X_{n+1} = y | X_0 = \nu_0, \dots X_{n-1} = \nu_{n-1}, X_n = x] = \Pr[X_{n+1} = y | X_n = x]$$

Πράγματι, εύκολα μπορούμε να δούμε ότι η τιμή του X_{n+1} εξαρτάται μόνο από την τιμή του X_n . Ο χώρος καταστάσεων του X είναι $\{0,1,2,3,4\}$ και κάθε φορά κάνουμε την πράξη:

$$X_{n+1} = (S_n + \text{dice}) \pmod{5} =$$

 $(S_n \pmod{5} + \text{dice} \pmod{5}) \pmod{5} =$
 $(X_n + (\text{dice}) \pmod{5}) \pmod{5}$

όπου dice είναι το ισοπίθανο γεγονός της وίψης του ζαριού με χώρο καταστάσεων το $\{1,2,3,4,5,6\}$.

Αρα αν $X_n = 0$, τότε ανάλογα με την τιμή της ζαριάς Z έχουμε:

•
$$Z = 1$$
, $X_{N+1} = 1$

•
$$Z = 2$$
, $X_{N+1} = 2$

•
$$Z = 3$$
, $X_{N+1} = 3$

•
$$Z = 4$$
, $X_{N+1} = 4$

•
$$Z = 5$$
, $X_{N+1} = 0$

•
$$Z = 6$$
, $X_{N+1} = 1$

Ομοίως για $X_n = 1$,

•
$$Z = 1$$
, $X_{N+1} = 2$

•
$$Z = 2$$
, $X_{N+1} = 3$

•
$$Z = 3$$
, $X_{N+1} = 4$

•
$$Z = 4$$
, $X_{N+1} = 0$

•
$$Z = 5$$
, $X_{N+1} = 1$

•
$$Z = 6$$
, $X_{N+1} = 2$

Παρόμοια γίνεται και για τα υπόλοιπα X_n .

Έτσι έχουμε τον πίνακα μεταβάσεων:

$$P = \begin{pmatrix} 1/6 & 2/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 2/6 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 2/6 & 1/6 \\ 1/6 & 1/6 & 1/6 & 1/6 & 2/6 \\ 2/6 & 1/6 & 1/6 & 1/6 & 1/6 \end{pmatrix}$$

Άσκηση 11

Ο χώρος καταστάσεων αποτελείται από τις μεταθέσεις των συμβόλων $\{A,B,C\}$, άρα είναι ο:

$$\{ABC, ACB, BCA, BAC, CAB, CBA\}$$

Για τον πίνακα μεταβάσεων έχουμε:

- Αν επιλέξουμε το βιβλίο Α, έχουμε με πιθανότητα p, ότι θα έχουμε τις ακόλουθες μεταβάσεις:
 - Αν ΑΒC, τότε ΑΒC.

- Αν ΑCB, τότε ACB.
- Αν ΒCΑ, τότε ΑΒС.
- Αν ΒΑC, τότε ΑΒC.
- Αν CAB, τότε ACB.
- Αν CBA, τότε ABC.
- Αν επιλέξουμε το βιβλίο B, έχουμε με πιθανότητα q, ότι θα έχουμε τις ακόλουθες μεταβάσεις:
 - Αν *ABC*, τότε *BAC*.
 - Aν ACB, τότε BAC.
 - Αν *BCA*, τότε *BCA*.
 - Αν ΒΑC, τότε ΒΑC.
 - Αν *CAB*, τότε *BCA*.
 - Αν *CBA*, τότε *BCA*.
- Αν επιλέξουμε το βιβλίο C, έχουμε με πιθανότητα r, ότι θα έχουμε τις ακόλουθες μεταβάσεις:
 - Αν ΑΒC, τότε CAB.
 - Αν *ΑCB*, τότε *CAB*.
 - Αν ΒCΑ, τότε CBΑ.
 - Αν ΒΑC, τότε CBA.
 - Αν CAB, τότε CAB.
 - Αν CBA, τότε CBA.

Τελικά έχουμε τον πίνακα:

 $\{ABC, ACB, BCA, BAC, CAB, CBA\}$

$$P = \begin{pmatrix} p & 0 & 0 & q & r & 0 \\ 0 & p & 0 & q & r & 0 \\ p & 0 & q & 0 & 0 & r \\ p & 0 & 0 & q & 0 & r \\ 0 & p & q & 0 & r & 0 \\ p & 0 & q & 0 & 0 & r \end{pmatrix}$$

Άσκηση 12

Είναι εύκολα αντιληπτό ότι Pr(A) + Pr(B) = 1, όπου Pr(A) η πιθανότητα μετάβασης από το διαμέρισμα A στο B και Pr(B) το ανάποδο.

Αρα αν n τα σωματίδια στο διαμέρισμα A, τότε έχουμε πιθανότητα $\frac{n}{N}$ να επιλεγεί σωματίδιο από το διαμέρισμα A και να μεταφερθεί στο B.

Έτσι μπορούμε να δούμε την διαδικασία αυτή σαν ένα συμμετρικό περίπατο, όπου στο βήμα n, μπορεί να μετακινηθεί στο βήμα n-1 με πιθανότητα $\frac{n}{N}$ και στο βήμα n+1 με πιθανότητα $\frac{N-n}{N}$.

Στην κατάσταση 0, έχουμε πιθανότητα 1 να μεταφερθούμε στην κατάσταση 1 και στην κατάσταση N, έχουμε πιθανότητα 1 να μεταφερθούμε στην N-1.

Άσκηση 13

Θα μοντελοποιήσουμε το παιχνίδι με μια ένα χώρο 4 καταστάσεων. Ο χώρος αυτός θα είναι ο $\mathbb{X} = \{A_1, A_2, A_3, T\}$. Το πείραμα μας ξεκινάει από την A_1 και αν φέρουμε K μεταφέρεται στην A_2 , αλλιώς παραμένει στην A_1 . Παρόμοια και για τα άλλα βήματα μέχρι να φτάσουμε στην T.

Έτσι έχουμε ότι:

- Από την A_1 μεταφερόμαστε στην A_2 με πιθανότητα 1/2 και παραμένουμε στην A_1 με πιθανότητα 1/2.
- Από την A_2 μεταφερόμαστε στην A_3 με πιθανότητα 1/2 αν φέρουμε Γ και παραμένουμε στην A_2 με πιθανότητα 1/2 αν φέρουμε K.
- Από την A_3 μεταφερόμαστε στην T με πιθανότητα 1/2 αν φέρουμε K και μεταφερόμαστε στην A_1 με πιθανότητα 1/2 αν φέρουμε K.
- Η Τ παραμένει στην Τ με πιθανότητα 1.

Έτσι ο πίνακας μεταβάσεων είναι:

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Άσκηση 14

Η ζήτηση ακολουθεί γεωμετρική κατανομή με p=1/2. Αυτό σημαίνει ότι σε κάθε χρονική στιγμή n, η πιθανότητα $\Pr(X=m)=p(1-p)^{m-1}$. Στην περίπτωση μας είναι $\Pr(X=m)=(\frac{1}{2})^m$

όπου η τιμή εκφράζει την πιθανότητα να πουληθούν η πακέτα την μέρα αυτή.

Για να δείξουμε ότι είναι μαρκοβιανή αλυσίδα, θα σκεφτούμε το πρόβλημα λίγο διαισθητικά. Αν γνωρίζουμε την ποσότητα πακέτων την μέρα n, B_n , τότε την ημέρα n+1, τα πακέτα θα είναι

$$X_{n+1} = X_n + 2 - Z(X_n + 2)$$

όπου $Z(X_n+2)$ είναι η ζήτηση σε πακέτα και εξαρτάται μόνο από το πόσα πακέτα υπάρχουν. Αν π.χ. υπάρχουν N πακέτα διαθέσιμα τότε η ζήτηση σε πακέτα θα είναι

$$Z(N) = \begin{cases} 1 & \text{if } p = 1/2 \\ 2 & \text{if } p = 1/4 \\ 3 & \text{if } p = 1/8 \\ \dots \\ N & \text{if } p = 1/2^N \end{cases}$$

Η πιθανότητα να ζητηθούν 0 πακέτα είναι $1 - \sum_{b=1}^{X} p_i$.

Άρα αφού το πλήθος των πακέτων που θα έχουμε την μέρα n+1 εξαρτάται μόνο από το πλήθος των πακέτων την μέρα n, τότε και η πιθανότητα $\Pr(X_n=B)$ εξαρτάται μόνο από την πιθανότητα $\Pr(X_{n-1})$.

Ο πίνακας μεταβάσεων μας δείχνει πόσα πακέτα θα έχουμε την επόμενη μέρα, αν γνωρίζουμε πόσα πακέτα είχαμε την μέρα n:

Av $X_n = 0$

$$X_{n+1} = \begin{cases} 0 & \text{if } p = 1/4 \\ 1 & \text{if } p = 1/2 \\ 2 & \text{if } p = 1/4 \end{cases}$$

Av $X_n = 1$

$$X_{n+1} = \begin{cases} 0 & \text{if } p = 1/8 \\ 1 & \text{if } p = 1/4 \\ 2 & \text{if } p = 1/2 \\ 3 & \text{if } p = 1/8 \end{cases}$$

Η σχέση αυτή μπορεί να γενικευτεί εύκολα και για τα επόμενα μεγέθη.

Έτσι έχουμε:

$$P = \begin{pmatrix} 1/4 & 1/2 & 1/4 & 0 & 0 & 0 & \dots \\ 1/8 & 1/4 & 1/2 & 1/8 & 0 & 0 & \dots \\ 1/16 & 1/8 & 1/4 & 1/2 & 1/16 & 0 & \dots \\ 1/32 & 1/16 & 1/8 & 1/4 & 1/2 & 1/32 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$