

Traitement et Analyse d'Images

Modèles génératifs Auto-encodeur variationnel

Comment générer des visages synthétiques ?

En modélisant la distribution correspondante $x \sim p_{\theta}(x)$!

→ Est ce que des distributions classiques restent pertinentes ?

Comment modéliser des distributions complexes ?

On projette l'espace image (modélisé par p(x)) dans un espace de représentation cachée, plus efficace, appelé espace latent (modélisé par p(z))

Distribution des visages

► Pour quel but ?

Une obsession: maîtriser l'espace latent!!!

Espace latent $\ z_i \in \mathbb{R}^K$

► Pour quel but ?

Une obsession : maîtriser l'espace latent!!!

Espace latent $z_i \in \mathbb{R}^K$

Auto-encodeurs

Comment apprendre une distribution?

Projection dans un espace de représentation plus efficace et de dimension inférieure

Espace d'entée $\ x_i \in \mathbb{R}^{N imes M}$

Comment apprendre une distribution?

Comment disposer d'un espace de représentation pertinent ?

Le formalisme des auto-encodeurs

Architectures standards

Exemple de fonction de coût

$$\mathrm{loss} = \|x - \hat{x}\|^2$$

Implémentation par apprentissage profond

Encodeur / Décodeur modélisé par des réseaux neuronaux (convolutionnels)

$$\mathrm{loss} = \|x - f(e(x))\|^2$$

Intérêt des auto-encodeurs

Auto-encodeur ? Pour quoi faire ?

Intérêt des auto-encodeurs

► Modèles génératifs

Limitations

Nécessité de mieux contrôler la structure de l'espace latent

Intérêts des auto-encodeurs

Modèle génératif avec de meilleures propriétés grâce au cadre variationnel

Intérêts des auto-encodeurs

Modèle génératif avec cadre variationnel

Interpolation linéaire dans l'espace latent

$$t\cdot z_0 + (1-t)\cdot z_7, \qquad 0\leq t\leq 1$$

Les auto-encodeurs variationnels

L'ensemble des mathématiques sont décrites dans le blog suivant

https://creatis-myriad.github.io/tutorials/2022-09-12-tutorial-vae.html

- Renforcement d'un espace latent structuré
 - → Au travers d'un cadre probabiliste
 - → En imposant des contraintes de continuité
 - → En imposant des contraintes de complétude

- Cadre probabiliste: continuité
 - → Introduction de régularisations locales de l'espace latent
 - Thaque donnée d'entrée x est encodée sous forme d'une distribution gaussienne $q_x(z) = N(\mu_x, diag(\sigma_x))$

- Cadre probabiliste: continuité
 - → L'échantillonnage d'une région locale de l'espace latent produit des résultats proches

- Cadre probabiliste: complétude
 - → Favoriser que tout point reconstruit dans l'espace latent donne des résultats cohérents

- Cadre probabiliste: complétude
 - \rightarrow Imposer que toutes les distributions $q_{\chi}(z)$ soient proches d'une distribution normal standard N(0,I)
 - → Variances proches de 1 => limite la génération de distributions ponctuelles
 - → Moyennes proches de 0 => favorise des distributions proches les unes des autres

- Cadre probabiliste: continuité & complétude
 - Architecture des VAE

Les auto-encodeurs variationnels

Formulation mathématique

- Comment générer des visages synthétiques ?
 - \rightarrow Soit $p(\cdot)$ la distribution qui représente les visages humains
 - \rightarrow On souhaite trouver un modèle f qui génère des échantillons x dont la probabilité p(x) ou soit maximale

$$f^* = rg \max_f \; p(x)$$
 avec x généré par un modèle $f(\cdot)$

→ Dans ce cas, les échantillons générés s'apparentent aux visages humains de la base de données d'entrainement

lacktriangle Modélisation d'une variable caché z pour réduire la complexité du problème

→ Rappel du théorème de Bayes

Formulation mathématique

 \rightarrow La distribution p(z|x) est généralement complexe à modéliser

Approximation de p(z|x) par une fonction q(z|x) simple et calculable et qui permettra d'échantillonner efficacement z

- Inférence variationnelle
 - \rightarrow Technique d'approximation statistique de distributions complexes, ici p(z|x)
 - → Définition d'une famille paramétrée de distributions
 - \blacktriangleright ex. famille des gaussiennes de paramètres μ_{χ} , σ_{χ} modélisées par des fonctions à déterminer
 - → Rechercher la meilleure approximation de la distribution cible dans cette famille
 - → Le meilleur élément de la famille minimise une mesure d'erreur d'approximation entre deux distributions
 - Fonction de divergence de Kullback-Liebler est souvent utilisée

- Fonction de divergence de Kullback-Liebler
 - → Mesure de distances entre deux distributions via l'entropie relative

$$D_{KL}\left(p\parallel q
ight) = \int p(x)\cdot\log\left(rac{p(x)}{q(x)}
ight)\!dx$$

- $\rightarrow D_{KL}$ est une mesure toujours positive $D_{KL}(p||q) \geq 0$
- $\rightarrow D_{KL}$ est une mesure non symétrique $D_{KL}(p||q) \neq D_{KL}(q||p)$

- Pour la distribution en violet, la distance AB est grande
- Pour la distribution en vert, la distance AB est modérée
- La notion de distance est différente en fonction des distributions

- Inférence variationnelle
 - $\rightarrow p(z|x)$ est approximé par une famille de fonctions q(z|x)
 - $\rightarrow q(z|x)$ est modélisée par une distribution gaussienne alignée sur les axes

$$q(z|x) = \mathcal{N}\left(\mu_x, \sigma_x
ight) = \mathcal{N}\left(g(x), diag(h(x))
ight)$$

- \Rightarrow g(x) et h(x) sont des fonctions qui représentent les moyennes μ_x et les covariances σ_x
- \rightarrow Mesure d'approximation entre les deux distributions p(z|x) et q(z|x)

$$(g^*,h^*) = rg\min_{(g,h)} \; D_{KL} \left(q(z|x) \parallel p(z|x)
ight)$$

- Inférence variationnelle
 - \rightarrow En jouant sur les expressions de p(x), il est possible de retrouver les définitions et relations suivantes

$$log \; p(x) = ELBO + D_{KL} \left(q(z|x) \parallel p(z|x) \right)$$

- \rightarrow ELBO est une borne inférieure de $\log p(x)$
- \rightarrow Maximiser ELBO revient à maximiser $\log p(x)$
- \rightarrow Si on maximise $\log p(x)$, alors on minimise $D_{KL}(q(z|x) || p(z|x))$

- Processus d'optimisation
 - La borne inférieure ELBO peut être reformulée

$$\mathcal{L} = \mathbb{E}_{z \sim q(z|x)} \left[log \left(p(x|z)
ight)
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

→ En exploitant l'hypothèse gaussienne suivante

$$p(x|z) = \mathcal{N}\left(f(z), cI
ight)$$

$$\mathcal{L} \propto \mathbb{E}_{z \sim q(z|x)} \left[-lpha \|x - f(z)\|^2
ight] - D_{KL} \left(q(z|x) \parallel p(z)
ight)$$

q(z|x)

Processus d'optimisation

$$(f^*,g^*,h^*) = rg\min_{(f,g,h)} \; \left(\mathbb{E}_{z\sim q(z|x)} \left[lpha \|x-f(z)\|^2
ight] + D_{KL} \left(q(z|x) \parallel p(z)
ight)
ight)$$

Fonction de perte en apprentissage profond

- $\rightarrow g(\cdot)$ et $h(\cdot)$ sont modélisés par un encodeur
- $\rightarrow f(\cdot)$ est modélisée par un décodeur

q(z|x)

Interprétation de la fonction de perte

$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \,+\, lpha \|x - f(z)\|^2$$

Interprétation de la fonction de perte

$$ext{loss} = D_{KL}\left(\mathcal{N}\left(g(x), diag\left(h(x)
ight)
ight), \mathcal{N}\left(0, I
ight)
ight) \, + \, lpha \|x - f(z)\|^2$$

- $\rightarrow \mathcal{N}(g(x), h(x))$ impose une contrainte de *continuité* locale
- $\rightarrow \mathcal{N}(\cdot, \mathcal{N}(0, I))$ impose une contrainte de *complétude* globale

Implémentation par apprentissage profond

Astuce de reparamétrage

Application pratique

L'obsession est de maîtriser l'espace latent!!!

- Régularisation de l'espace latent des VAE basée sur des attributs images
 - Génération d'un espace latent structuré
 - → Les attributs spécifiques à valeur continue doivent être codés selon des dimensions spécifiques

Structuration de l'espace latent

- Terme de régularisation d'attributs
 - C'est quoi un attribut ?
 - → Mesure effectué dans l'espace image qui permet de caractériser un objet cible
 - → Ex: écriture de chiffres manuscrits (base de données MNIST)
 - Attributs: épaisseur du trait, inclinaison, longueur, surface, ...
 - → Mesures des attributs images avant apprentissage, utilisés comme données d'entrée

- Terme de régularisation d'attributs
 - Lors de la phase d'apprentissage
 - → Calcul pour chaque attribut d'une matrice de distance $D_a \in \mathbb{R}^{m \times m}$ à partir des m images $\{x_i\}_{1 \le i \le m}$ présentes dans le batch courant

$$D_a(i,j) = a(x_i) - a(x_j)$$
 avec $i,j \in [0,m)$

→ Calcul pour chaque attribut r d'une matrice de distance $D_r \in \mathbb{R}^{m \times m}$ à partir des m vecteur latents $\{z_i\}_{1 \le i \le m}$ correspondant aux images du batch courant

$$D_r(i,j) = z_i^r - z_i^r$$
 avec $i,j \in [0,m)$

Introduction du terme de loss suivant

$$\mathcal{L}_{r,a} = MAE\left(anh\left(D_r
ight) - sign\left(D_a
ight)
ight)$$

Génération d'un espace latent structuré suivant des attributs

- Génération d'un espace latent structuré suivant des attributs
 - Echantillonnage de l'espace latent structuré

- Génération d'un espace latent structuré suivant des attributs
 - Echantillonnage de l'espace latent structuré
 - → Attribut spécifique: surface, longueur, épaisseur, inclinaison, largeur, hauteur
 - → Chaque colonne correspond à une traversée le long d'une dimension régularisée

- Exemple d'application: représentation des formes cardiaques
 - Génération d'un espace latent structuré en fonction des attributs suivants
 - → Cavité du ventricule gauche (VG) : surface, longueur, largeur basale, orientation
 - → Surface du myocarde
 - → Centre de la paroi épicardique

Les auto-encodeurs variationnels avec quantification vectorielle

 Apprentissage conjoint d'un auto-encodeur et d'une représentation discrète de l'espace latent

• L'espace latent est défini par l'ensemble des vecteurs $\{e_i\}_{i\in [1,K]}$ qui sont appris

• L'encodeur produit en sortie une matrice de taille $[M \times M \times D]$ qui correspond à $[M \times M]$ vecteurs de taille D

• Chaque vecteur de l'encodeur est comparé aux vecteurs de l'espace latent, et le numéro du vecteur le plus proche est affecté dans l'espace discret q(z|x)

- L'entrée du décodeur correspond à une matrice de taille $[M \times M]$ ou chaque composante est un vecteur de taille D
- Chaque composante correspond à un vecteur de l'espace latent choisi en fonction de son numéro dans l'espace discret q(z|x)

La fonction de perte à minimiser est la suivante

$$\mathcal{L} = log\left(p(x|z_q)
ight) + \|sg\left[z_e(x)
ight] - e\|_2 + eta\|z_e(x) - sg\left[e
ight]\|_2$$

 $sg[\cdot]$: Identité en forward et nulle en backward

That's all folks

Intérêt des auto-encodeurs

Représentation de données

