Department of Computer Science University of Bristol

COMS30030 - Image Processing and Computer Vision

Lecture 04

Edge & Shape Detection

Majid Mirmehdi | majid@cs.bris.ac.uk

Beyond the Matrix

- Images are matrices of numbers
- Shapes are more informative than individual pixel values

Source: https://www.datasciencecentral.com/profiles/blogs/image_classification.with.hsv.color.modeLprocessing

What are edges?

- Edges highlight the contour of shapes
- They can be used to identify objects

What are edges?

- Edges are those places in an image that correspond to object boundaries.
- Edges are pixels where image brightness changes (relatively) abruptly.

Why detect Edges?

- Edges: Sharp changes of image brightness
- Sources: Object boundaries, patterns, shadows, etc.
- For segmentation: finding object boundaries

Why detect Edges?

- Edges: Sharp changes of image brightness
- Sources: Object boundaries, patterns, shadows, etc.
- For segmentation: finding object boundaries
- For recognition: extracting patterns

Why detect Edges?

- Edges: Sharp changes of image brightness
- Sources: Object boundaries, patterns, shadows, etc.
- For segmentation: finding object boundaries
- For recognition: extracting patterns
- For motion analysis: reliable tracking regions

Meaningful edges vs. nuisance edges

• **Edges**: Sharp changes of image brightness

Difficult edges

Very difficult edges

Different techniques work for different cases.

Edge Detection Strategy

- Recognition Strategy: determine a `measure of change' in a pixel's neighbourhood
- First derivatives in 2D space → image gradient

Edge Detection Strategy

- Magnitude of the 1st derivative can be used to detect the presence of an edge
- Zero-crossing of the 2nd derivative at the midpoint of a transition in gray level, which provides a powerful approach for locating the edge
- The sign of the 2nd derivative usually used to determine whether an edge pixel lies on the dark or light side of an edge

Edge Detection Strategy

Horizontal differencing detects vertical edges Difference Difference

Vertical differencing detects Horizontal edges

The Image Gradient

A **vector** variable

- Direction ψ of the maximum growth of the function
- Magnitude $|\nabla f(x,y)|$ of the growth
- ullet Perpendicular to the edge direction ϕ

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y}$$
$$|\nabla f(x,y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
$$\psi = \arctan\left(\frac{\partial f/\partial y}{\partial f/\partial x}\right)$$
$$\phi = \psi - \frac{\pi}{2}$$

Example: Gradient & Edge Vectors

Simple derivatives too noisy

Straight differencing of pixels is sensitive to noise

Noisy cameraman

First derivative

Second derivative

Gradient Extraction via Filtering

$$h_x = egin{bmatrix} -1 & 0 & 1 \ -1 & 0 & 1 \ -1 & 0 & 1 \end{bmatrix} \quad h_y = egin{bmatrix} -1 & -1 & -1 \ 0 & 0 & 0 \ 1 & 1 & 1 \end{bmatrix}$$

$$|grad(f)| = |\nabla f(x,y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
 $\psi = \arctan\left(\frac{\partial f/\partial y}{\partial f/\partial x}\right)$

Prewitt Operator

- Central difference $\frac{\partial f}{\partial x} pprox \frac{f(x+1) f(x-1)}{2}$
- Mask [-1 0 1] is very sensitive to noise
- For 3x3 mask, ∇f can be estimated in 8 directions

$$h_{hor} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}, h_{dia} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}, \dots$$

Sobel Operator

- As Prewitt, Sobel relies on central differences
- Greater weight to the central pixels

$$h_{hor} = egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \end{bmatrix}, h_{ver} = egin{bmatrix} -1 & -2 & -1 \ 0 & 0 & 0 \ 1 & 2 & 1 \end{bmatrix}$$

- Can be approx. as derivative of a Gaussian
- First Gaussian smoothing, then derivation

$$\frac{\partial}{\partial x}(I*G) = I*\frac{\partial G}{\partial x}$$

Note, the filters are named by the way they seek out gradients, e.g. horizontal and vertical gradients to detect vertical and horizontal edges, respectively.

Sobel Operator

(a) original image

(b) Sobel edge magnitude

(c) thresholded magnitude

Laplacian of a Gaussian Edge Detector

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

There are many edge detection methods...

Most, if not all, edge detection methods operate with one or more parameters/thresholds.

Is there ever a perfect edge map...

Shape Detection

Line Detection via the Hough Transform

In image space, a line is points (x, y) with gradient m, intercept c

$$y = mx + c$$

In parameter space, a line is points (m, c), with gradient -x, intercept y

$$c = -xm + y$$

Accumulate votes! The coordinates of the peak are the parameters m,c of the line!

$$y = mx + c$$

No *y* intercept! slope is infinite!

A straight line in 2D space can also be described in its polar form:

$$f(x, y, \rho, \theta) = x \cos \theta + y \sin \theta - \rho = 0$$

It can be represented in the 2D parameter space by point (x,y)

ho = distance between the straight line and the origin,

heta = angle between the distance vector and the positive x-direction.

$$f(x, y, \rho, \theta) = x \cos \theta + y \sin \theta - \rho = 0$$

The Hough Space

A point (x, y) in the image space is transformed into a sinusoidal curve in the parameter space. A point (ρ, θ) on this sinusoidal curve represents a straight line passing through the point (x, y) in the image space.

	point 1	point 2	point 3	point 4
θ	$\pi/2 = 1.571$	$-\pi/4 = -0.785$	0	$\pi/4 = 0.785$
ρ	1	0	1	1.4142

$$f(x, y, \rho, \theta) = x \cos \theta + y \sin \theta - \rho = 0$$

$$f(x, y, \rho, \theta) = x \cos \theta + y \sin \theta - \rho = 0$$

Peak gets fuzzy and hard to locate

$$f(x, y, \rho, \theta) = x \cos \theta + y \sin \theta - \rho = 0$$

Noise can lead to spurious peaks in the accumulator array

0.7071 = x * 0.7071 + y * 0.7071

Line Detection Algorithm

- 1. Make available an n=2 dimensional array $H(\rho,\theta)$ for the parameter space;
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements on the curve $\rho = x \cos \theta + y \sin \theta$ in the parameter space represented by the H array:

$$\forall \theta \mid \rho = x \cos \theta + y \sin \theta$$
$$H(\rho, \theta) = H(\rho, \theta) + 1;$$

4. In the parameter space, any element $H(\rho, \theta) > T_h$ represents a straight line detected in the image.

Line Detection using Gradient Information

- 1. Make n = 2 dimensional array $H(\rho, \theta)$
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$,

$$\forall \theta \mid \left(\angle G(x,y) - \Delta \theta \le \theta \le \angle G(x,y) + \Delta \theta \right)$$

$$\rho = x \cos \theta + y \sin \theta$$

$$H(\rho,\theta) = H(\rho,\theta) + 1;$$

where $\Delta\theta$ defines a small range in θ to allow some room for error in $\angle G$.

. Any element $H(\rho, \theta) > T_h$ represents a straight line

Line Detection Example

Line Detection Example

Original

Edges

Parameter Space

Hough Lines

1. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements satisfying the two simultaneous equations

$$\forall r, \begin{cases} x_0 = x \pm r \cos \angle G \\ y_0 = y \pm r \sin \angle G \end{cases}$$
$$H(x_0, y_0, r) = H(x_0, y_0, r) + 1;$$

2. In the parameter space, any element $H(x_0, y_0, r) > T_h$ represents a circle with radius r located at (x_0, y_0) in the image.

1. For any pixel satisfying $|G(x,y)| > T_s$ increment all elements satisfying the two simultaneous equations

(2)
$$\forall r, \begin{cases} x_0 = x \pm r \cos \angle G \\ y_0 = y \pm r \sin \angle G \end{cases}$$
$$H(x_0, y_0, r) = H(x_0, y_0, r) + 1;$$

2. In the parameter space, any element $H(x_0, y_0, r) > T_h$ represents a circle with radius r located at (x_0, y_0) in the image.

Summary: Shape Recognition via Hough Transform

- Image space is transformed into a parameter space
- Voting procedure is carried out in the parameter space.
- Object candidates are obtained as local maxima.

Next Lecture

Image Segmentation

