- Using the existing data to make the predictions of future armed conflict in Kenya.
- This is done by using the SpatioTemporal data mining techniques.


```
In [4]:
         #librarie for manupulating, storing data and performing mathematical calculation
         import pandas as pd
         import numpy as np
         #importing visualization libraries
         import matplotlib.pyplot as plt
         import plotly.express as px
         from plotly.subplots import make subplots
         %matplotlib inline
         import seaborn as sns
         #prediction libraries
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
In [5]:
         df=pd.read csv("G:\Project\Final YearProjecte ♥\DATA\The Armed Conflict Location & Event Data Project.csv")
In [6]:
         df["event date"]=pd.to datetime(df["event date"])
         df["month"]=df["event date"].apply(lambda time:time.month)
         df["day"]=df["event date"].apply(lambda time:time.day)
         df['DayOfweek']=df["event date"].dt.day name()
In [7]:
         groupby df=pd.DataFrame(df.groupby(['event date','year','Constituency','Ward','event type','latitude','longitude','County
         groupby df.reset index(inplace=True)
```

```
mciPerYear = df_ct.loc['All']
In [10]:
          df_ct = df_ct.iloc[:-1,:]
          mciPerYear = mciPerYear[:-1]
          mciPerYear.tail()
Out[10]: year
         2018
                   524
         2019
                   340
         2020
                   446
         2021
                   397
         2022
                  1085
         Name: All, dtype: int64
In [11]:
          df_annual = pd.concat([pd.Series(mciPerYear.index, name='year'),
                                  pd.Series(mciPerYear.values, name='event type')], axis=1).reset index()
          df annual = df annual.drop(columns=['index'])
          df annual.sample(4)
```

Out[11]:		year	event_type
	15	2012	374
	11	2008	416
	18	2015	321
	23	2020	446

Machine learning Model

- this is the subset of Artificial Interligence use to train machine to learn and make the changes.
- the type of machine learning use here is supervised machine learning. This is becouse there is Historical and label data that is used to train machine.

```
In [12]: #Linear regression function
def LinearPredict(x,y,years):
    #reshape data
    x = x.reshape((-1, 1))
    y = y.reshape((-1, 1))
    #build model and train
    model = LinearRegression()
```

```
model.fit(x, y)
              #evaluate error
              r sq = model.score(x, y)
              #make predictions
              y pred = model.predict(years)
              print('intercept:', model.intercept )
              print('slope:', model.coef )
              print('coefficient of determination:', r_sq)
              print('Prediction of Armed Conflict Events in Kenya in', years, 'will be', np.round(y_pred,0))
              return model.coef , model.intercept , y pred
In [13]:
          #Years to predict
          yearsToPredict = np.array([[2023],[2024],[2025]])
In [14]:
          #get MCI data
          x = df annual['year'].values
          y = df_annual['event_type'].values
          m,b, pred = LinearPredict(x,y,yearsToPredict)
          #print("data", m,b,pred)
         intercept: [-43352.86290598]
         slope: [[21.7408547]]
         coefficient of determination: 0.46089049870064336
         Prediction of Armed Conflict Events in Kenya in [[2023]
          [2024]
          [2025]] will be [[629.]
          [651.]
          [672.]]
In [15]:
          # Reshape Data
          x = (df annual['year'].values).reshape(-1, 1)
          y = df annual['event type'].values
          #build and train model
          poly reg = PolynomialFeatures(degree=2)
          x poly = poly reg.fit transform(x)
          pol reg = LinearRegression()
          pol_reg.fit(x_poly, y)
          #make prediction
```

```
pred = pol_reg.predict(poly_reg.fit_transform(yearsToPredict))
           pred
Out[15]: array([755.94384617, 805.91974362, 857.91242982])
In [16]:
          #build model
           poly_reg = PolynomialFeatures(degree=3)
          x poly = poly reg.fit transform(x)
          pol_reg = LinearRegression()
           #train
          pol_reg.fit(x_poly, y)
           #predict
           pred3 = pol reg.predict(poly reg.fit transform(yearsToPredict))
           pred3
Out[16]: array([784.38667449, 847.00279549, 913.89282027])
In [17]:
          from sklearn import svm
In [18]:
          x = (df_annual['year'].values).reshape((-1, 1))
          y = (df_annual['event_type'].values)
          yearsToPredict
Out[18]: array([[2023],
                 [2024],
                 [2025]])
In [19]:
          clf = svm.SVR(gamma='auto')
          clf.fit(x,y)
           resSVR = clf.predict(yearsToPredict)
           resSvc_df =pd.DataFrame({'Predict': resSVR[:]})
           resSvc_df
Out[19]:
                Predict
          0 246.886319
```

Predict

- **1** 246.518439
- 2 246.500124

Armed Conflict prediction model

I will build a model that will predict the total number of event types in Kenya based on location of crime.

The following alogrithms will be tested

- KNeighborsClassifier
- DecisionTreeClassifier/ RandomForest &
- LogisticRegression

```
In [20]:
          x = groupby df[[ 'latitude', 'longitude']].values
           print(type(x))
          <class 'numpy.ndarray'>
Out[20]: array([[ 2.1667, 36.5167],
                 [-0.3072, 36.0723],
                 [-4.05 , 39.6667],
                 [-4.0547, 39.6636],
                 [ 0.2239, 34.808 ],
                 [-1.1216, 37.1518]]
In [21]:
          y = groupby_df[['location']].values.flatten()
          print(type(y))
          <class 'numpy.ndarray'>
         array(['Suguta Valley', 'Nakuru', 'Mombasa', ..., 'Mombasa', 'Shinyalu',
Out[21]:
                 'Komo'], dtype=object)
In [22]:
          #Split data into training and testing datasets
           x train, x test, y train, y test = train test split(x,y, test size=0.2)
```

```
#Evaluation function
def Evaluate(predicted, y_test):
    true_pred = np.sum(predicted == y_test)
    total_pred = predicted.shape[0]
    print('True predictions', true_pred, 'out of', total_pred)
    print('Percent of correct predictions', round(100*true_pred/total_pred,2), '%')
```

KNeighborsClassifier

• use to predict categorical values

```
In [25]: from sklearn.neighbors import KNeighborsClassifier
```

Defining and Training the model

```
In [27]: #Defining Model
KNClassifier = KNeighborsClassifier(n_neighbors =15) # n_neighbors : int, optional (default = 5)
#Training the model
KNClassifier = KNClassifier.fit(x_train, y_train)
```

Predicting and testing the model

```
In [30]: #Predicting
    resKN = KNClassifier.predict(x_test)
    #Evaluate
    Evaluate(resKN,y_test)
    #convert resKN to dataframe
    KNClassifier_df =pd.DataFrame({'KNClassifier': resKN[:]})
    KNClassifier_df.head()
```

True predictions 1235 out of 1744
Percent of correct predictions 70.81 %

C:\Users\USER\anaconda3\lib\site-packages\sklearn\neighbors_classification.py:211: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this

I have tested different values for n_neighbors, if n_neighbors = 5 the error is higher than when n_neighbors = 15. Further increase of n_neighbors

does not produce better results.

Using decision tree

- this is a method that oparates by constracting multiple Decision Trees during phase.
- the decision of the majority of the trees is chosen by the Random Forest as the final decision.

```
In [31]: from sklearn.tree import DecisionTreeClassifier
```

Defining and Training the model

```
#defining model
DTClassifier = DecisionTreeClassifier(criterion='entropy',max_depth=20,random_state=1)
#Training model
DTClassifier = DTClassifier.fit(x_train,y_train)
```

Predicting and testing the model

```
In [34]:
          #pr
           resDtc = DTClassifier.predict(x test)
           Evaluate(resDtc,y test)
           DTClassifier_df =pd.DataFrame({'DTClassifier': resDtc[:]})
           DTClassifier df.head()
          True predictions 1593 out of 1744
          Percent of correct predictions 91.34 %
Out[34]:
             DTClassifier
               Wangige
          1 Tigania East
          2
                   Kom
              Kakamega
             Mau Narok
```

I have tested different max_depth, found that increasing max_depth pass 20 does not produce better results.

Logistic Regression

```
In [35]:
          from sklearn.linear model import LogisticRegression
In [36]:
          lr = LogisticRegression(random state=1)
          lr = lr.fit(x train, y train)
          resLr = lr.predict(x_test)
          Evaluate(resLr,y test)
          lr df =pd.DataFrame({'lr': resLr[:]})
          lr df.head()
         True predictions 294 out of 1744
         Percent of correct predictions 16.86 %
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: ConvergenceWarning: lbfgs failed to conv
         erge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
```

- **2** Kisumu
- 3 Nairobi
- 4 Nairobi

Voting for most frequent prediction

I have 3 predictions. To improve prediction results I will create voting algorithm.

If 2 out of 3 predictions are the same, I will choose that prediction, otherwise I will select 1st column by default The logic is this

```
If (a==b) or (a==c) then select a
```

Ifelse (b==c) then select b

Else select a by default

Above can be transformed to the following statement

If (b==c) then select b

Else select a by default

```
In [37]:
    df_predict = KNClassifier_df.join(DTClassifier_df)
    df_predict = df_predict.join(lr_df)
    df_predict.head()
```

```
Out[37]:KNClassifierDTClassifierIr0KabeteWangigeNairobi1Tigania EastTigania EastNairobi
```

```
KNClassifier DTClassifier
                                          lr
          2
                    Kom
                                Kom Kisumu
               Kakamega
                           Kakamega Nairobi
               Mau Narok
                          Mau Narok Nairobi
In [38]:
           df predict votes = df predict.copy()
           df predict votes.head()
Out[38]:
              KNClassifier DTClassifier
                                          lr
          0
                  Kabete
                            Wangige Nairobi
              Tigania East
                          Tigania East Nairobi
          2
                    Kom
                                Kom Kisumu
               Kakamega
                           Kakamega Nairobi
               Mau Narok
                          Mau Narok Nairobi
In [39]:
           df predict votes['vote'] = 'none'
           df_predict_votes.head()
Out[39]:
              KNClassifier DTClassifier
                                          Ir vote
          0
                  Kabete
                            Wangige Nairobi none
              Tigania East
                          Tigania East Nairobi none
          2
                    Kom
                                Kom Kisumu none
               Kakamega
                           Kakamega Nairobi none
               Mau Narok
                          Mau Narok Nairobi none
```

Here is the execution of the function itself/ voting chamber

```
for items, vals in df_predict_votes.iterrows():
    if(vals['DTClassifier'] == vals['KNClassifier']):
```

calling the previous dataset with the requared column so that the output data will be complete

```
In [43]: county=groupby_df[['County','Constituency','Ward','location','latitude','longitude']]
```

Counting the total number of predicted Armed conflict events in each location.

```
In [113...
           #total number of events in predicted location
           count=DTClassifier df['DTClassifier'].value counts()
           count.head()
Out[113... Nairobi
                     165
                      49
          Mombasa
                      36
          Mandera
          Garissa
                      32
          Nakuru
                      30
          Name: DTClassifier, dtype: int64
In [114...
           count=count.rename axis('location')#qiving name to a first column
           count.head(2)
```

```
Out[114... location
          Nairobi
                     165
          Mombasa
                      49
          Name: DTClassifier, dtype: int64
In [115...
           #giving name to the second column and make the dataframe
           count=count.reset_index(name='values')
           count.sort values('location')
Out[115...
                location values
          472
                  Ahero
          147
                  Aiyam
                             3
           80
                   Alale
          482
                   Aldai
          121
               Amagoro
                             3
          126 Westlands
           76
                   Witu
          225
                   Wote
          241 Wundanyi
          555
                    Yala
                             1
         556 rows × 2 columns
In [120...
           #Saving in excel
           excel_file=pd.ExcelWriter("Predictions.xlsx")
           count.to_excel(excel_file)
           excel_file.save()
In [104...
           #cheking/testing some location if it exist in a predicted dataframe
           count.loc[count['location']=='Kuresoi']
```

```
Out[104... location values

123 Kuresoi 3
```

Combination of the predicted values with historical data so it can be easily understood. Here, I will be merging the predicted location with the corresponding County, constituency, ward, latitude and longitude.

```
In [105...
           #checking unique values in a predicted results
           Unique values=count['location'].unique()
           Unique values.shape
Out[105... (556,)
In [106...
           # combining the unique values of a predicted results(location) with the corresponding County, latitude and longitude
           isinDTC=county[county['location'].isin(Unique values)]
           isinDTC.tail()
Out[106...
                                                       location latitude longitude
                  County
                           Constituency
                                               Ward
          8711
                                Kandara
                                                Ithiru
                                                       Kandara
                                                                -0.9000
                                                                          37.0000
                 Muranga
          8712
                   Kisumu Kisumu Central
                                             Railways
                                                        Kisumu
                                                                -0.1000
                                                                          34.7500
          8715
                              Suna West Ragana-oruba
                                                                -1.0667
                   Migori
                                                        Migori
                                                                          34.4667
          8716 Machakos
                              Machakos
                                            Township Machakos
                                                                -1.5167
                                                                          37.2667
          8717 Mombasa
                                  Mvita
                                             Majengo Mombasa
                                                                -4.0547
                                                                          39.6636
In [107...
           #counting the total number of duplicate rows
           isinDTC.duplicated().sum()
Out[107... 6573
In [108...
           #Total number of duplicates rows in the column of location
           isinDTC['location'].duplicated().sum()
```

```
Out[108... 6804
```

#droping the duplicate rows in the column of location isinDTC['location'].drop_duplicates(inplace=False).shape

Out[109... (556,)

In [117...
 results=isinDTC.drop_duplicates(inplace= False)
 results.sort_values('location')

Out[117...

	County	Constituency	Ward	location	latitude	longitude
2027	Kisumu	Nyando	Ahero	Ahero	-0.1833	34.9166
2286	Laikipia	Laikipia East	Sosian	Aiyam	0.3667	36.5500
7634	West Pokot	Pokot North	Alale	Alale	2.3333	35.0176
1755	West Pokot	Kacheliba	Kiwawa	Alale	2.3333	35.0176
2162	Siaya	Alego Usonga	Usonga	Aldai	0.0833	34.0667
•••						
7247	Nairobi	Westlands	Parklands	Westlands	-1.2682	36.8091
3131	Lamu	Lamu West	Witu	Witu	-2.3889	40.4382
4268	Makueni	Makueni	Wote	Wote	-1.7808	37.6288
1983	Taita Taveta	Wundanyi	Wundanyi/Mbale	Wundanyi	-3.4000	38.3667
1588	Siaya	Gem	Yala Township	Yala	0.0991	34.5376

787 rows × 6 columns

In [111... 787-556

Out[111... 231

>There are 231 repeated rows still, in this case the dataset can be exported to excel so that this reduntancies can be removed completely

• its the saved in an exel file format for further preprocessing

```
excel_file=pd.ExcelWriter("Final_results.xlsx")
results.to_excel(excel_file)
excel_file.save()
```

Importing the complete processed dataset results from excel to jupyter

```
In [123...
            pred locations=pd.read csv('G:\PROJECT\Final YearProject ♥\DATA\Complete.csv')
            pred locations.head()
Out[123...
                 County Constituency
                                               Ward
                                                      location latitude longitude Total_Pred
          0
                 Kisumu
                              Nyando
                                              Ahero
                                                        Ahero
                                                                -0.1833
                                                                          34.9166
                 Laikipia
                           Laikipia East
                                                                 0.3667
                                                                          36.5500
                                              Sosian
                                                        Aiyam
          2 West Pokot
                             Kacheliba
                                             Kiwawa
                                                         Alale
                                                                 2.3333
                                                                          35.0176
                   Siaya Alego Usonga
                                             Usonga
                                                         Aldai
                                                                 0.0833
                                                                          34.0667
          4
                            Teso North Malaba Central Amagoro
                                                                 0.6333
                                                                                           3
                   Busia
                                                                          34.3333
In [130...
            pred locations.loc[pred locations['location']=='Eldoret']#count.loc[count['location']=='Kuresoi']
Out[130...
                  County Constituency
                                           Ward location latitude longitude Total_Pred
          86 Uasin Gishu
                               Ainabkoi Kapsoya
                                                  Eldoret
                                                                     35.2833
                                                                                     20
                                                            0.5167
 In [ ]:
```