7(K/12)	COP	VDP	D PD	
d	6	111,8µ	25,8/M	60,2 M	
(3			35,2 M	
1	0	79,2 M	27,6,4	24m 14,4m	
19	2	69,8 _M	28,6 M	14,4 M	
14		53,6pm	28,2,	9,6 _M	
16	Ę	74	282	4,6	
	·				
				1=	1-0,5
					(27,6+10

13 089,0052 3 -> teor

13 600 ~ 13 700 → 8xp. Overena

LSB	- 37, 17 mV	IN, 17,67 mV	10, 8 us 200, -200 200, -2
	- +2, +8 + mV	14,29 mV	-3,3
25B+2	100,401 mV	100 10,9 mV	-3,3
NB +3	146 mV	-	1,405