Benefits of staleness and asynchrony in machine

learning algorithms

CS744: Big Data Systems – Group 8

Hongyi Wang, Xin Jin, Yuzhe Ma

Motivation

- Scaling synchronous distributed machine learning is challenging because of straggler effect
- Back-up worker setups mitigate straggler effect but still suffering from losing data for each epoch since stale gradient will be dropped by master
- **Staleness** of gradient has reported that has partially equivalent effect as adding **momentum** in iterative-style optimization method
- Our approach is motivated by foregoing points, we're trying to use stale gradients to improve model convergence rate while maintain speedup gains under backup worker setups

Background - Overview

Fig. 1 Setting and Approach in this work

- For each iteration, master only wait for **k** faster workers out of **n**
- When gradients from slow workers (t-1, t-2, ...) are received, master cache and use them for next model update (for step t)

System Design

Fig. 3 Speedup Performances

- We implement Parameter Server distributed setting and train deep network model in synchronous manner
- Our Distributed Algorithm is implemented in PyTorch + MPI, model training process are handled by PyTorch while communication is achieved through MPI
- Gradient compression is implemented for reducing communication overhead
- Our system gain good speedups as number of nodes scales up

Theoretical Analysis

Mathematical Model: $w_{t+1} = w_t - \sum_{i=t-k+1}^t lpha_i
abla f(w_i)$

One Dimensional Case

Definition 1. Generalized Curvature. The derivative of $f(x) : \mathbb{R} \to \mathbb{R}$, can be written as

 $f'(x) = h(x)(x - x^*)$

for some $h(x) \in \mathbb{R}$, where x^* is the global minimum of f(x). We call h(x) the generalized curvature.

Assumption: $h(x) \in [a,b], 0 < a \le b$. (bounded curvature)

Theorem 1. Let f(w) be strictly convex, and assume the generalized curvature $h(w) \in [a, b]$, where $0 < a \le b$. If $c \le \alpha_t \le \frac{1}{b}$ for some c > 0 and $\sum_{i=t-k+1}^{t-1} \alpha_i \le \frac{a}{2b} \alpha_t$, then $\lim_{t \to \infty} |w_t - w^*| = 0$.

Assumption: all the eigenvalues satisfy $\lambda_i \in [a,b], 0 < a \leq b$.

Theorem 2. Let f(w) be strictly convex. Assume the generalized curvature $\lambda_i \in [a,b]$ for all i at any w, where $0 < a \le b$. If $c \le \alpha_t \le \frac{1}{b}$ for some c > 0 and $\sum_{i=t-k+1}^{t-1} \alpha_i \le \frac{a}{2b}\alpha_t$, then $\lim_{t\to\infty} \|w_t - w^*\| = 0$.

Example 1. Ridge Regression. Let $f(w) = \|Xw - y\|^2 + \eta \|w\|^2$. The global minimum $w^* = (X^\top X + \eta I)^{-1} X^\top y$. $f(w) = (Xw - y)^\top (Xw - y) + \eta w^\top w$, thus $\nabla f(w) = 2X^\top Xw - 2X^\top y + 2\eta w = 2(X^\top X + \eta I)(w - w^*)$ and $H(w) = 2(X^\top X + \eta I)$, which is a constant with respect to w. Now consider the generalized curvature of f(w), which are the eigenvalues of $H(w) = 2(X^\top X + \eta I)$. Without loss of generality we assume single instances satisfy $\|x\| \le 1$. Then we have the following claim:

Theorem 3. All the eigenvalues of $H(w) = 2(X^{T}X + \eta I)$ lies between $[2\eta, 2n + 2\eta]$, where n is the training set size.

High Dimensional Case

Definition 2. High-dimensional Generalized Curvature. The derivative of a strictly convex function $f(x): \mathbb{R}^d \to \mathbb{R}$, can be written as

 $\nabla f(x) = H(x)(x - x^*)$

for some $\nabla f(x) \in \mathbb{R}^d$, where x^* is the global minimum of f(x). Let $\lambda_i, i \in [d]$ be the eigenvalues of H(x) and also use $v_i, i \in [d]$ to denote the corresponding eigenvectors. We call λ_i the generalized curvature along direction v_i .

Extension to SGD

Update Rule: $w_{t+1} = w_t - \sum_{i=t-k+1}^t \alpha_i X_i, \mathbf{E} X_i = \nabla f(w_i).$

Theorem 4. Let f(w) be strictly convex. Assume the generalized curvature $\lambda_i \in [a,b]$ for all i at any w, where $0 < a \le b$. If $c \le \alpha_t \le \frac{1}{b}$ for some c > 0 and $\sum_{i=t-k+1}^{t-1} \alpha_i \le \frac{a}{2b}\alpha_t$, then $\lim_{t\to\infty} \|\mathbf{E}[w_t - w^*]\| = 0$.

- Experiments are running on m4.2xlarge instances on AWS EC2
- The Deep Network LeNet and hand-written image dataset MNIST are used for these results
- mini-batch SGD is implemented for experiment for this experiment global batch size B=256
- global batch are splitted among workers each worker shares local batch size at B/n

750

1000 1250

- Following the same settings these experiments are running on multi-layer fully connected neural network with MNIST dataset
- 3 hidden layer are used with number of hidden units at 800, 500, 10 respectively