18.06

Review for the Final Exam

Main Topics:

Equation Ax = b

Four Fundamental Subspaces

SVD and other matrix factorizations

Fundamental Theorem of Linear Algebra

Determinant

Eigenvalues and Eigenvectors

Four Fundamental Spaces

```
For a matrix A
```

Column space: col(A)

Row space: row(A)

Nullspace: null(A)

Left Nullspace: $null(A^T)$

What are these spaces?

Why do we study them?

How can we compute them?

Nullspace

```
A m \times n matrix
```

Nullspace: $null(A) = \{x \in \mathbb{R}^n | Ax = 0\}$

A is a function

input: $x \in \mathbb{R}^n$

output: $y \in \mathbb{R}^m$

y = Ax

 $\operatorname{null}(A): \{x \in \mathbb{R}^n | A(x) = 0\}$

Familiar example:

f is a function

input: $x \in \mathbb{R}$

output: $y \in \mathbb{R}$

$$y = f(x)$$

zeros(f): $\{x \in \mathbb{R} | f(x) = 0\}$

Nullspace

```
A \ m \times n \ \text{matrix: null}(A) = \{x \in \mathbb{R}^n | Ax = 0\}
```

Consider equation Ax = 0

This equation always has a solution

Set of all solutions is null(A)

Consider equation Ax = b

This equation may or may not have a solution

If has solution, let x_p denote some solution ($Ax_p = b$)

Set of all solutions is $x_p + \text{null}(A)$

$$\{x_p + x_n | x_n \in \text{null}(A)\}$$

Column Space

```
A m \times n matrix
```

Column space: $col(A) = \{ all linear combinations of columns \}$

Familiar example:

A is a function

input: $x \in \mathbb{R}^n$

output: $y \in \mathbb{R}^m$

y = Ax

 $col(A): \{y \in \mathbb{R}^m | Ax = y, x \in \mathbb{R}^n \}$

f is a function

input: $x \in \mathbb{R}$

output: $y \in \mathbb{R}$

y = f(x)

 $range(f): \{y \in \mathbb{R} | f(x) = y, x \in \mathbb{R} \}$

Column Space

 $A \ m \times n \ \text{matrix: } \operatorname{col}(A) = \{ y \in \mathbb{R}^m | Ax = y, x \in \mathbb{R}^n \}$

Consider equation Ax = b

This equation may or may not have a solution

Has at least one solution exactly when $b \in col(A)$

Row Space and Left Nullspace

```
A m \times n matrix
          Row space: row(A) = col(A^{\top})
          Left Nullspace: null(A^{T})
A^{\mathsf{T}} is a function
          input: y \in \mathbb{R}^m
          output: x \in \mathbb{R}^n
          x = A^{\mathsf{T}} y
          row(A): \{x \in \mathbb{R}^n | A^\top y = x, y \in \mathbb{R}^m \}
          \mathsf{null}(A^{\mathsf{T}}) = \{ y \in \mathbb{R}^m | A^{\mathsf{T}} y = 0 \}
          Careful: A^{T} is not (generally) the inverse of A
```

Singular Value Decomposition

 $A m \times n$ matrix, of rank r

Write
$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2^{\mathsf{T}} \end{bmatrix}$$

 $\Sigma_r \ r \times r$ diagonal matrix, with all positive singular values on diagonal

 U_1 first r columns of U

 V_1 first r columns of V

 U_1, U_2, V_1, V_2 are all orthogonal matrices

Why Use the SVD?

If A has (compact) SVD $A = U_1 \Sigma_r V_1^{\mathsf{T}}$, then $\mathrm{col}(A) = \mathrm{col}(U_1)$ Equation Ax = b Has at least one solution exactly when $b \in \mathrm{col}(A) = \mathrm{col}(U_1)$

Columns of U_1 span col(A)Columns of A span col(A)

Columns of U_1 are linearly independent Columns of A may or may not be linearly independent

Columns of U_1 form a basis of col(A)Columns of A may or may not form a basis of col(A)

Easier to test $b \in col(U_1)$ than $b \in col(A)$

Projection onto col(U): U orthogonal matrix

```
Given:
         vector b \in \mathbb{R}^m
         orthogonal m \times n matrix U
Want:
         vector \tilde{b} \in \operatorname{col}(U)
         \tilde{b} as close to b as possible
How:
         \tilde{b} = UU^{\mathsf{T}}b
         UU^{\mathsf{T}} is "projection matrix" transforms b to \tilde{b}
```

Fundamental Theorem of Linear Algebra

$$A \ m \times n$$
 matrix, of rank r , where $A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2^{\top} \end{bmatrix}$

$$col(A) = col(U_1)$$

 $row(A) = col(V_1)$
 $null(A) = col(V_2)$
 $null(A^T) = col(U_2)$

Tells us "everything" about A

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

When does Ax = b have at least one solution?

Exactly when $b \in col(A)$

Exactly when $b \in col(U_1)$

Exactly when $U_1U_1^Tb=b$

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

```
If Ax = b has at least one solution, when does it have only one solution? Exactly when \operatorname{null}(A) = \{0\} (only contains the zero vector) Exactly when \operatorname{col}(V_2) = \{0\} Exactly when r = n
```

General Solution to Ax = b

 $A m \times n$ matrix, of rank r

If Ax = b has at least one solution, what are all of the solutions? $x_p = V_1 \Sigma_r^{-1} U_1^{\mathsf{T}} b$ is a solution $(A = U_1 \Sigma_r V_1^{\mathsf{T}})$ $x_p + \operatorname{null}(A)$ is the set of all solutions $x_p + \operatorname{col}(V_2)$ is the set of all solutions

Four Fundamental Spaces

Determinant: Geometric Meaning in \mathbb{R}^2

Consider
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, 2 × 2 real matrix

and
$$e_1={1\choose 0}$$
, $e_2={0\choose 1}$ in \mathbb{R}^2

A transforms square of area 1 to parallelogram of area |det(A)|

A transforms e_1 , e_2 to

$$v_1 = Ae_1 = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$$

$$v_2 = Ae_2 = \binom{a_{12}}{a_{22}}$$

 1^{st} and 2^{nd} col of A

Determinant: Geometric Meaning in \mathbb{R}^n

```
Consider A, n \times n real matrix and e_1, e_2, \ldots, e_n \in \mathbb{R}^n, where e_i: i^{\text{th}} entry 1, all other entries 0
```

```
A transforms e_1, e_2, ..., e_n to v_1, v_2, ..., v_n, where v_i = Ae_i v_i is i^{\text{th}} col of A e_1, e_2, ..., e_n specify hypercube in \mathbb{R}^n (n-dimensional version of cube) v_1, v_2, ..., v_n specify parallelotope in \mathbb{R}^n (n-dimensional version of parallelogram)
```

A transforms hypercube $e_1, e_2, ..., e_n$ of volume 1 to parallelotope $v_1, v_2, ..., v_n$ of volume $|\det(A)|$

Determinant: Geometric Meaning in \mathbb{R}^n

If det(A) is signed volume of parallelotope, det must satisfy certain properties

- 1) det(I) = 1
 - $v_1, v_2, ..., v_n$ is $e_1, e_2, ..., e_n$
- 2) If any column of A is all zeros, det(A) = 0 if i^{th} col of A is all zeros, $v_i = 0$, so volume is zero
- 3) Determinant is linear in each column separately

$$\begin{aligned} & \text{Vol}(v_1, \dots, v_i, cv_{i+1}, v_{i+2}, \dots, v_n) = c \ \text{Vol}(v_1, \dots, v_i, v_{i+1}, v_{i+2}, \dots, v_n) \\ & \text{Vol}(v_1, \dots, v_i, v_{i+1} + v'_{i+1}, v_{i+2}, \dots, v_n) \\ & = \text{Vol}(v_1, \dots, v_i, v_{i+1}, v_{i+2}, \dots, v_n) + \text{Vol}(v_1, \dots, v_i, v'_{i+1}, v_{i+2}, \dots, v_n) \end{aligned}$$

Eigenvalues and Eigenvectors: Definition

Square matrix A

If $Av = \lambda v$, $v \neq 0$ a vector and λ a scalar Then v is eigenvector of A with eigenvalue λ

v is a very special vector

Applying A to v only changes the magnitude of v, not direction Applying A to v produces λv

 λv is scaled version of v

Eigenvalues and Eigenvectors

Square matrix A,

Vector $v \neq 0$ is an eigenvector with eigenvalue λ if $Av = \lambda v$

Eigenvalues are the roots of $p_A(\lambda) = \det(\lambda I - A)$

What about eigenvectors?

If λ is an eigenvalue,

 $v \neq 0$ is eigenvector with with eigenvalue λ if $(\lambda I - A)v = 0$

All $v \in \text{null}(\lambda I - A)$, except v = 0

Eigenvectors not unique,

Each eigenvalue λ has infinitely many corresponding eigenvectors

Example: If v eigenvector with eigenvalue λ , so is $2v, \frac{3}{2}v, -7v, ...$

Generally just write down a collection of lin. indep. eigenvectors

Why are Eigenvectors Useful?

Example: A a 2 \times 2 matrix,

That has two lin. indep. eigenvectors v_1 , v_2

With corresponding eigenvalues λ_1 , λ_2

 v_1, v_2 form a basis of \mathbb{R}^2 (eigenbasis)

Can write any $x \in \mathbb{R}^2$ as $c_1v_1 + c_2v_2$, for some $c_1, c_2 \in \mathbb{R}$

$$Ax = A(c_1v_1 + c_2v_2)$$

= $c_1Av_1 + c_2Av_2$

 $= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2$

Each component scales by corresponding eigenvalue

Why are Eigenvectors Useful?

Example: A an $n \times n$ matrix,

That has n lin. indep. eigenvectors v_1 , ..., v_n

With corresponding eigenvalues $\lambda_1, \dots, \lambda_n$

 $v_1, ..., v_n$ form a basis of \mathbb{R}^n (eigenbasis)

Can write any $x \in \mathbb{R}^n$ as $c_1v_1 + \cdots + c_nv_n$, for some $c_i \in \mathbb{R}$

$$Ax = A(c_1v_1 + \dots + c_nv_n)$$

$$= c_1Av_1 + \dots + c_nAv_n$$

$$= c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

Each component scales by corresponding eigenvalue Much easier to compute in an eigenbasis, A behaves like diagonal matrix

Diagonalization

```
Consider A an n \times n matrix,
       That has n lin. indep. eigenvectors v_1, \dots, v_n
       With corresponding eigenvalues \lambda_1, \dots, \lambda_n
Let X be n \times n matrix with eigenvectors v_1, \dots, v_n in the columns
       X invertible because it is a square matrix with lin. Indep. cols
Let \Lambda be n \times n diagonal matrix with eigenvalues \lambda_1, \dots, \lambda_n along diagonal
Then AX = X\Lambda,
       So A = X \Lambda X^{-1}
       and \Lambda = X^{-1}AX
```

Diagonalization

If we can write $A = X\Lambda X^{-1}$, where Λ is diagonal, we say we have diagonalized A because A is "similar" to a diagonal matrix

We say matrices B and C are similar if there is an invertible matrix T, such that $B = TCT^{-1}$ Similar matrices represent the same function, in different bases Sometimes one basis is easier to work in than another

Diagonal matrices are especially easy to work with