FFM232, Klassisk fysik och vektorfält -Föreläsningsanteckningar

Christian Forssén, Institutionen för fundamental fysik, Chalmers, Göteborg, Sverige

Sep 30, 2015

Ytterligare räkneproblem

Här ges några exempel hur vi kan använda Gauss och Stokes satser på vektorfält med singulariteter.

Här hanterar vi singulariteten genom att lägga in

- ullet en liten sfär med radien ϵ kring en punktkälla.
- \bullet en cylinder kring z-axeln för en linjekälla.
- \bullet en cirkel med radien ϵ runt z-axeln för en virveltråd.

Exempel: Punktkälla. Beräkna integralen

$$\int_{S} \vec{F} \cdot d\vec{S} \tag{1}$$

där S är ytan

$$\rho = a - z, \ 0 \le z \le a \tag{2}$$

med en normal som pekar uppåt, och fältet ges av

$$\vec{F} = F_0 \left[\left(\frac{a^2}{r^2} + \frac{r^2 \cos^3 \theta}{a^2} \right) \hat{e}_r - \frac{r^2 \cos^2 \theta \sin \theta}{a^2} \hat{z} \right].$$
 (3)

 F_0 och a är konstanter.

Lösning. Vi börjar med att studera ytan S som är en kon med spetsen i z=a. Konen har sin öppna bottenyta vid z=0.

Om vi tittar på fältet, så ser vi genast att det har en punktkälla i origo. För att tolka de övriga termerna så skriver vi om fältet som

$$\vec{F} = F_0 \frac{a^2}{r^2} \hat{e}_r + F_0 \frac{r^2 \cos^2 \theta}{a^2} \left(\cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta \right). \tag{4}$$

Uttrycket inom parentesen är basvektorn \hat{z} , och $r\cos\theta = z$. Vi kan därför dela upp fältet i två delar, en del som vi skriver i sfäriska koordinater, och som är singulär, och en andra del som vi skriver i kartesiska koordinater:

$$\vec{F} = F_0 \left(\frac{a^2}{r^2} \hat{e}_r + \frac{z^2}{a^2} \hat{e}_z \right)$$
 (5)

Divergensen av \vec{F} blir

$$\nabla \cdot \vec{F} = \frac{2F_0 z}{a^2}.\tag{6}$$

För att använda Gauss sats behöver vi dels isolera singulariteten i origo genom att lägga in en halvsfär, S_{ϵ} , med radien ϵ runt origo för z>0 och med en normalvektor som pekar mot origo. Dessutom måste vi sluta konen, vilket vi gör genom att lägga till en cirkelskiva, S_1 , med ytterradien a och normalvektorn $-\hat{e}_z$ i xy-planet.

Gauss sats ger oss nu

$$\int_{S} \mathbf{F} \cdot d\mathbf{S} + \int_{S_{\epsilon}} \vec{F} \cdot d\vec{S} + \int_{S_{1}} \vec{F} \cdot d\vec{S} = \int_{V} \nabla \cdot \mathbf{F} dV.$$
 (7)

Vi börjar med att beräkna volymsintegralen

$$\int_{V} \nabla \cdot \vec{F} dV = \int_{V} \frac{2\pi F_0 z}{a^2} dV. \tag{8}$$

Vi noterar här att vad vi gör är att integrera över cirkelskivor med radien a-z, så vår integral kan skrivas

$$\int_0^a \frac{2F_0 z}{a^2} \pi \left(a - z\right)^2 dz = \frac{2\pi F_0}{a^2} \left[\frac{z^4}{4} - \frac{2}{3} a z^3 + \frac{a^2 z^2}{2} \right]_0^a = \frac{2\pi F_0}{a^2} \frac{a^4}{12} = \frac{\pi F_0 a^2}{6}.$$
(9)

Sedan betraktar vi integralen över S_{ϵ} (lägg märke till att $r=\epsilon$ på S_{ϵ}).

$$\int_{S_{\epsilon}} \vec{F} \cdot d\vec{S} = \int_{S_{\epsilon}} F_0 \left(\frac{a^2}{\epsilon^2} \hat{e}_r + \frac{\epsilon^2 \cos^2 \theta}{a^2} \hat{e}_z \right) \cdot (-\hat{e}_r) dS = -F_0 \left(\int_S \frac{a^2}{\epsilon^2} dS + \int_S \frac{\epsilon^2 \cos^3 \theta}{a^2} dS \right) = -F_0 \left(\frac{a^2}{\epsilon^2} 2\pi \epsilon^2 + \frac{\epsilon^2}{a^2} \int_S \cos^3 \theta dS \right) \to -2\pi a^2 F_0 \quad d\mathring{a} \epsilon \to 0. \tag{10}$$

Slutligen har vi integralen över S_1

$$\int_{S_1} \vec{F} \cdot d\vec{S} = \int_{S_1} F_0 \left(\frac{a^2}{r^2} \hat{e}_r + \frac{z^2}{a^2} \hat{e}_z \right) \cdot (-\hat{e}_z) dS.$$
 (11)

Tänk nu på att $\hat{e}_r \cdot \hat{z} = 0$ i xy-planet, och att z = 0 därstädes. Därav följer att integralen är 0. Det följer nu att vår eftersökta integral blir

$$\int_{S} \vec{F} \cdot d\vec{S} = \frac{\pi F_0 a^2}{6} + 2\pi F_0 a^2 = \frac{13\pi F_0 a^2}{6}.$$
 (12)

Exempel: Linjekälla. Beräkna integralen

$$\int_{S} \vec{F} \cdot d\vec{S},\tag{13}$$

där ytan S ges av $r=2a,\,0\leq\varphi<2\pi$ och $\frac{\pi}{4}\leq\theta\leq\frac{3\pi}{4}$ och har normalen $\hat{e}_r,$ och fältet ges av

$$\vec{F} = F_0 \left[\left(\frac{a}{\rho} + \frac{\rho}{a} \right) \hat{e}_\rho + \frac{z}{a} \hat{e}_z \right]. \tag{14}$$

 F_0 och a är här konstanter.

Lösning. Ytan S är den mittersta delen av en sfär. Den avgränsas vid $z=\pm\sqrt{2}a.$

Fältet \vec{F} är singulärt för $\rho=0,$ det vill säga längs z-axeln. Fältets divergens är

$$\nabla \cdot \vec{F} = F_0 \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(a + \frac{\rho^2}{a} \right) + \frac{\partial}{\partial z} \left(\frac{z}{a} \right) \right] = F_0 \left(\frac{1}{\rho} \frac{2\rho}{a} + \frac{1}{a} \right) = \frac{3F_0}{a}. \tag{15}$$

Vi sluter volymen genom att lägga till en cylinder, S_{ϵ} kring z-axeln mellan $-\sqrt{2}a \leq z \leq \sqrt{2}a$ och med radien ϵ . Normalen för S_{ϵ} är $-\hat{e}_{\rho}$. Dessutom lägger vi till cirkulära skivor, S_{+} och S_{-} , vid $z=\pm\sqrt{2}$ med normaler $\pm\hat{e}_{z}$.

Vi kan nu skriva Gauss sats som

$$\int_{S} \vec{F} \cdot d\vec{S} + \int_{S_{\epsilon}} \vec{F} \cdot d\vec{S} + \int_{S_{+}} \vec{F} \cdot d\vec{S} + \int_{S_{-}} \vec{F} \cdot d\vec{S} = \int_{V} \nabla \cdot \vec{F} dS.$$
 (16)

Vi börjar med volymsintegralen

$$\int_{V} \nabla \cdot \vec{F} dS = \int_{S} \frac{3F_0}{a} dV. \tag{17}$$

Vi kan se den här integralen som om vi integrerar över cirkelskivor med radien $\sqrt{4a^2-z^2}$ för $-\sqrt{2}a \le z \le \sqrt{2}a$

$$\int_{-\sqrt{2}a}^{\sqrt{2}a} \frac{3F_0}{a} \pi \left(4a^2 - z^2\right) dz = \frac{3F_0}{a} \left[4a^2 z - \frac{z^3}{3}\right]_{-\sqrt{2}a}^{\sqrt{2}a}$$

$$= \frac{3F_0}{a} \left(4\sqrt{2}a^3 - \frac{2}{3}\sqrt{2}a^3 + 4\sqrt{2}a^3 - \frac{2}{3}\sqrt{2}a^3\right)$$

$$= 20\sqrt{2}F_0a^2. \tag{18}$$

Vi tar nu hand om ytintegralerna. Först S_{ϵ} , där $\rho = \epsilon$ på S_{ϵ}

$$\int_{S_{\epsilon}} \vec{F} \cdot d\vec{S} = \int_{S_{\epsilon}} F_0 \left[\left(\frac{a}{\epsilon} + \frac{\epsilon}{a} \right) \hat{e}_{\rho} + \frac{z}{a} \hat{e}_z \right) \cdot (-\hat{e}_{\rho}) dS$$

$$= \int_{S_{\epsilon}} F_0 \left(\frac{a}{\epsilon} + \frac{\epsilon}{a} \right) dS = F_0 \left(\frac{a}{\epsilon} + \frac{\epsilon}{a} \right) \int_{S_{\epsilon}} dS$$

$$= F_0 \left(\frac{a}{\epsilon} + \frac{\epsilon}{a} \right) 2\pi \epsilon 2\sqrt{2}a \to 4\sqrt{2}\pi F_0 a^2 \quad d\mathring{a} \quad \epsilon \to 0 \tag{19}$$

På ytan S_+ har vi

$$\int_{S_{+}} \vec{F} \cdot d\vec{S} = \int_{S_{+}} F_{0} \left[\left(\frac{a}{\rho} + \frac{\rho}{a} \right) \hat{e}_{\rho} + \frac{z}{a} \hat{e}_{z} \right] \cdot \hat{e}_{z} dS = \int_{S_{+}} F_{0} \frac{z}{a} dS. \tag{20}$$

På S_{+} är $z=\sqrt{2}a$, vilket också är skivans ytterradie

$$\int_{S_{+}} \vec{F} \cdot d\vec{S} = F_0 \sqrt{2\pi} 2a^2 = 2\sqrt{2}a^2 F_0.$$
 (21)

Vi inser att av symmetriskäl får integralen över S_- samma värde. Summerar vi nu ihop integralerna får vi

$$\int_{S} \vec{F} \cdot d\vec{S} = 20\sqrt{2}F_{0}a^{2} - 4\sqrt{2}F_{0}a^{2} - 2 \times 2\sqrt{2}F_{0}a^{2} = 12\sqrt{2}F_{0}a^{2}.$$
 (22)

Exempel: Virveltråd. Beräkna integralen

$$\oint_C \vec{F} \cdot d\vec{r}, \tag{23}$$

där kurvan C ges av

$$x^2 + \frac{y^2}{4} = a^2$$
, och $z = 0$, (24)

som genomlöps i positiv riktning, och fältet ges av

$$\vec{F} = F_0 \left[\frac{\rho \sin 2\varphi}{2a} \hat{e}_\rho + \left(\frac{a}{\rho} - \frac{\rho \sin^2 \varphi}{a} \right) \hat{e}_\varphi \right]. \tag{25}$$

 F_0 och a är konstanter.

Lösning. Kurvan C är en ellips med centrum i origo och halvaxlarna a och 2a. Enligt högerhandsregeln så väljer vi \hat{e}_z som normalen till ellipsskivan. Fältet \vec{F} är singulärt på z-axeln. Fältets rotation blir

$$\nabla \times \vec{F} = \frac{F_0}{\rho} \begin{vmatrix} \hat{e}_{\rho} & \rho \hat{e}_{\varphi} & \hat{e}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ \frac{\rho \sin 2\varphi}{2a} & a - \frac{\rho^2 \sin 2\varphi}{a} & 0 \end{vmatrix} = \frac{F_0}{\rho} \left(-\frac{2\rho \sin^2 \varphi}{a} - \frac{\rho \cos 2\varphi}{a} \right) \hat{e}_{z} = -\frac{F_0}{a} \hat{e}_{z}.$$
(26)

För att använda Stokes sats lägger in en cirkel, C_{ϵ} med radien ϵ runt origo. Vi orienterar C_{ϵ} så att vi följer den medurs, det vill säga dess tangentvektor blir $-\hat{e}_{\varphi}$. Stokes sats ger oss sedan

$$\oint_{C} \vec{F} \cdot d\vec{r} + \oint_{C_{\epsilon}} \vec{F} \cdot d\vec{r} = \int_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S}.$$
 (27)

Först beräknar vi ytintegralen

$$\int_{S} \nabla \times \vec{F} \cdot d\vec{S} = \int_{S} -\frac{F_0}{a} \hat{z} \cdot \hat{z} dS = -\frac{F_0}{a} \pi a \times 2a = -2\pi F_0 a, \qquad (28)$$

där vi har utnyttjat att ellipsens area är $2\pi a^2$. Sedan beräknar vi integralen längs kurvan C_ϵ där $\rho=\epsilon$

$$\oint_{C_{\epsilon}} \vec{F} \cdot d\vec{r} = \oint_{C_{\epsilon}} F_0 \left[\frac{\rho \sin 2\varphi}{2a} \hat{e}_{\rho} + \left(\frac{a}{\rho} - \frac{\rho \sin^2 \varphi}{a} \right) \hat{e}_{\varphi} \right] \cdot (-\hat{e}_{\varphi}) dr$$

$$= -F_0 \left(\oint_{C_{\epsilon}} \frac{a}{\epsilon} dr - \oint_{C_{\epsilon}} \frac{\epsilon \sin^2 \varphi}{a} dr \right)$$

$$= -F_0 \left(\frac{a}{\epsilon} 2\pi \epsilon - \frac{\epsilon}{a} \oint_{C_{\epsilon}} \sin^2 \varphi dr \right) \to -2\pi F_0 a \quad \text{då} \quad \epsilon \to 0. \tag{29}$$

Det följer att integralen blir

$$\int_{C} \vec{F} \cdot d\vec{r} = 0. \tag{30}$$