Deep Learning for Speech and Language

End-To-End Speech Recognition with Recurrent Neural Networks

José A. R. Fonollosa

Universitat Politècnica de Catalunya Barcelona, January 26, 2017

From speech processing to machine learning

Towards end-to-end RNN Speech Recognition?

Architectures

- GMM-HMM: 30 years of feature engineering
- DNN-GMM-HMM: Trained features
- DNN-HMM: TDNN, LSTM, RNN, MS
- DNN for language modeling (RNN)
- End-to-end DNN?

Examples

- Alex Graves (Google)
- Deep Speech (Baidu)

Recognition system

Acoustic Model

Phonetic inventory

Pronunciation Lexicon

DNN-GMM-HMM

Acoustic Model

Phonetic inventory

Pronunciation Lexicon

MLP outputs as input to GMM

Bottleneck Features

 Use one narrow hidden layer. Supervised or unsupervised training (autoencoder)

DNN-Derived Features

 Zhi-Jie Yan, Qiang Huo, Jian Xu: A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR. INTERSPEECH 2013: 104-108

Acoustic Model

Phonetic inventory

Pronunciation Lexicon

DNN-HMM

Acoustic Model

Phonetic inventory

Pronunciation Lexicon

DNN-HMM+RNNLM

Acoustic Model

Phonetic inventory

Pronunciation Lexicon

RNN-RNNLM

RNN

Acoustic Model

(N-GRAM +) RNN

End-to-End RNN

- Alex Graves et al. (2006) "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks" Proceedings of the International Conference on Machine Learning, ICML
- Florian Eyben, Martin Wöllmer, Björn Schuller, Alex Graves (2009)
 "From Speech to Letters Using a Novel Neural Network Architecture for Grapheme Based ASR", ASRU
- Alex Graves, Navdeep Jaitly, (Jun 2014) "Towards End-To-End Speech Recognition with Recurrent Neural Networks", International Conference on Machine Learning, ICML
- Jan Chorowski et al. (Dec 2014) "End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results", Deep Learning and Representation Learning Workshop: NIPS

End-to-End RNN

- Awni Hannun et al (Dec 2014), "Deep Speech: Scaling up end-to-end speech recognition", arXiv:1412.5567 [cs.CL]
- D. Bahdanau et al. (Dec 2014) "End-to-End Attention-based Large Vocabulary Speech Recognition", arXiv:1508.04395 [cs.CL]
- Miao, Y., Gowayyed, M., and Metze, F. (2015). EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding. arXiv:1507.08240 [cs]
- Baidu Research 34 authors- (Dec 2015), "Deep Speech 2: End-to-end Speech Recognition in English and Mandarin", arXiv:1512.02595 [cs.CL]

End-to-End RNN

- No perceptual features (MFCC). No feature transformation. No phonetic inventory. No transcription dictionary. No HMM.
- The output of the RNN are characters including space, apostrophe, (not CD phones)
- Connectionist Temporal Classification (No fixed alignment speech/character)
- Data augmentation. 5,000 hours (9600 speakers) + noise = 100,000 hours. Optimizations: data parallelism, model parallelism
- Good results in noisy conditions

Adam Coates

Bidirectional Recursive DNN

Unrolled RNN

Spectogram
Clipped ReLu
Accelerated
gradient method
GPU friendly

$$h_t^{(f)} = g(W^{(4)}h_t^{(3)} + W_r^{(f)}h_{t-1}^{(f)} + b^{(4)})$$

$$h_t^{(b)} = g(W^{(4)}h_t^{(3)} + W_r^{(b)}h_{t+1}^{(b)} + b^{(4)})$$

Deep Speech II (Baidu)

Language Model

English: Kneser-Ney smoothed 5-gram model with pruning.

Vocabulary: 400,000 words from 250 million lines of text

Language model with 850 million n-grams.

Mandarin: Kneser-Ney smoothed character level 5-gram model with pruning

Training data: 8 billion lines of text.

Language model with about 2 billion n-grams.

Maximize $Q(y) = log(pctc(y|x)) + \alpha log(plm(y)) + \beta word_count(y)$

Language	Architecture	Dev no LM	Dev LM
English	5-layer, 1 RNN	27.79	14.39
English	9-layer, 7 RNN	14.93	9.52
Mandarin	5-layer, 1 RNN	9.80	7.13
Mandarin	9-layer, 7 RNN	7.55	5.81

Table 6: Comparison of WER for English and CER for Mandarin with and without a language model. These are simple RNN models with only one layer of 1D invariant convolution.

- How'to'connect'speech'data'with'transcription?'
 - Transcription'not'labeled'per'millisecond'
- Use'CTC,'from'[Graves'06]'
- Efficient'dynamic'programming'of'all'possible' alignments'to'compute'error'of'{audio,'transcription}

Bryan 'Catanzard

Connectionist Temporal Classification

- The framewise network receives an error for misalignment
- The CTC network predicts the sequence of phonemes / characters (as spikes separated by 'blanks')
- No force alignment (initial model) required for training.

Alex Graves 2006

GMM-HMM / DNN-HMM / RNN

Data Augmentation

This approach needs bigger models and bigger datasets.

Synthesis by superposition: reverberations, echoes, a large number of short noise recordings from public video sources, jitter

Lombart Effect.

Results 2000 HUB5 (LDC2002S09)

System	AM training data	SWB	CH
Vesely et al. (2013)	SWB	12.6	24.1
Seide et al. (2014)	SWB+Fisher+other	13.1	_
Hannun et al. (2014)	SWB+Fisher	12.6	19.3
Zhou et al. (2014)	SWB	14.2	_
Maas et al. (2014)	SWB	14.3	26.0
Maas et al. (2014)	SWB+Fisher	15.0	23.0
Soltau et al. (2014)	SWB	10.4	19.1
Saon et al (2015)	SWB+Fisher+CH	8.0	14.1

	IBM 2015	Baidu 2014
Features	VTL-PLP, MVN, LDA, STC, fMMLR, i-Vector	80 log filter banks
Alignment	GMM-HMM 300K Gaussians	-
DNN	DNN(5x2048) + CNN(128x9x9+5x2048) + +RNN 32000 outputs	4RNN (5 x 2304) 28 outputs
DNN Training	CE + MBR Discriminative Training (ST)	СТС
НММ	32K states (DNN outputs) pentaphone acoustic context	-
Language Model	37M 4-gram + model M (class based exponential model) + 2 NNLM	4-gram (Transcripts)

DS1 versus DS2 (Baidu)

	Deep Speech 1 (Baidu 2014)	DS2 (Baidu 2015)
Features	80 log filter banks	?
Alignment	-	-
DNN	4RNN (5 x 2304) 28 outputs	9-layer, 7RNN, BatchNorm, Conv. Layers. (Time/Freq)
DNN Training	СТС	СТС
НММ	-	-
Language Model	4-gram	5-gram

Training: Baidu database + data augmentation

Test: new dataset of 200 recording in both clean and noisy settings (no details)

Comparison against commercial systems in production

Deep Speech 2 Versus DS1

Test set	DS1	DS2
Baidu Test	24.01	13.59

Read Speech				
Test set	DS1	DS2	Human	
WSJ eval'92	4.94	3.60	5.03	
WSJ eval'93	6.94	4.98	8.08	
LibriSpeech test-clean	7.89	5.33	5.83	
LibriSpeech test-other	21.74	13.25	12.69	

UPC

Deep Speech 2 Versus DS1

Accented Speech				
Test set	DS1	DS2	Human	
VoxForge American-Canadian	15.01	7.55	4.85	
VoxForge Commonwealth	28.46	13.56	8.15	
VoxForge European	31.20	17.55	12.76	
VoxForge Indian	45.35	22.44	22.15	

Table 14: Comparing WER of the DS1 system to the DS2 system on accented speech.

Noisy Speech				
Test set	DS1	DS2	Human	
CHiME eval clean	6.30	3.34	3.46	
CHiME eval real	67.94	21.79	11.84	
CHiME eval sim	80.27	45.05	31.33	

DS2 Training data

Dataset	Speech Type	Hours	
WSJ	read	80	
Switchboard	conversational	300	
Fisher	conversational	2000	
LibriSpeech	read	960	
Baidu	read	5000	
Baidu	mixed	3600	
Total		11940	

DS2 Training data

Dataset	Speech Type	Hours	
WSJ	read	80	
Switchboard	conversational	300	
Fisher	conversational	2000	
LibriSpeech	read	960	
Baidu	read	5000	
Baidu	mixed	3600	
Total		11940	

Fraction of Data	Hours	Regular Dev	Noisy Dev
1%	120	29.23	50.97
10%	1200	13.80	22.99
20%	2400	11.65	20.41
50%	6000	9.51	15.90
100%	12000	8.46	13.59

System optimization

- Scalability and data-parallelism
- GPU implementation of CTC loss function
- Memory allocation

Deep Speech Demo

 http://www.ustream.tv/recorded/60113824/ highlight/631666

References

- Alex Graves et al. (2006) "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks" Proceedings of the International Conference on Machine Learning, ICML
- Florian Eyben, Martin Wöllmer, Björn Schuller, Alex Graves (2009) "From Speech to Letters - Using a Novel Neural Network Architecture for Grapheme Based ASR", ASRU
- Alex Graves, Navdeep Jaitly, (Jun 2014) "Towards End-To-End Speech Recognition with Recurrent Neural Networks", International Conference on Machine Learning, ICML
- Jan Chorowski et al. (Dec 2014) "End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results", Deep Learning and Representation Learning Workshop: NIPS
- Awni Hannun et al (Dec 2014), "Deep Speech: Scaling up end-to-end speech recognition", arXiv:1412.5567 [cs.CL]
- George Saon et al. "The IBM 2015 English Conversational Telephone Speech Recognition System", arXiv:1505.05899 [cs.CL]