

Constructions Ex 11.2 Q11

Answer:

Given that

Construct a $\triangle ABC$ of given data, $AB=4.6\,\mathrm{cm}, BC=5.1\,\mathrm{cm}$ and $\angle A=60^{\circ}$ and then a triangle similar to it whose sides are $\left(4:5=\frac{4}{5}\right)^{\mathrm{th}}$ of the corresponding sides of $\triangle ABC$.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 4.6 \,\mathrm{cm}$

Step: II- With A as centre draw an angle $\angle A = 60^{\circ}$.

Step: III- With B as centre and radius = BC = 5.1 cm, draw an arc, intersecting the arc drawn in step II at C.

Step: IV- Joins BC to obtain $\triangle ABC$

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$

Step: VI- Along AX, mark off five points A_1 , A_2 A_3 A_4 and A_5 such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$ Step: VII- Join A_5B .

Step: VIII- Since we have to construct a triangle each of whose sides is $\binom{4}{5}^{\text{th}}$ of the corresponding

So, we take four parts out of five equal parts on AX from point A_4 draw $A_4B'\|A_5B_5$, and meeting AB at B'

Step: IX- From B' draw $B'C' \| BC$, and meeting AC at C'

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\left(\frac{4}{5}\right)^{\text{th}}$ of the corresponding sides of ΔABC .

Constructions Ex 11.2 Q12

Answer:

Given that

Construct a ΔXYZ of given data, Let XY = 5 cm, YZ = 6 cm and $\angle Y = 60^{\circ}$ and then a triangle similar to it whose sides are $\left(\frac{3}{4}\right)^{\text{th}}$ of the corresponding sides of ΔXYZ

Step of construction

Step: I- First of all we draw a line segment XY = 5 cm.

Step: II- With Y as centre draw an angle $\angle Y = 60^{\circ}$

Step: III- With Y as centre and radius = YZ = 6 cm, draw an arc.

Step: IV- Join XZ to obtain \$\Delta XYZ\$

Step: V- Below XY, makes an acute angle $\angle \it{YXP} = 60^{\circ}$.

Step: VI -Along XP, mark off four points X_1, X_2, X_3 and X_4 such that $XX_1 = X_1X_2 = X_2X_3 = X_3X_4$

Step: VIII- Since we have to construct a triangle each of whose sides is $(\frac{3}{4})^{th}$ of the corresponding

sides of ΔXYZ .

So, we take three parts out of four equal parts on XP from point X_3 draw $X_3Y^{'}\|X_4Y$, and meeting

Step: IX- From Y' draw Y'Z' || YZ, and meeting XZ at Z'

Thus, $\Delta XY'Z'$ is the required triangle, each of whose sides is $\left(\frac{3}{4}\right)^{th}$ of the corresponding sides of ΔXYZ .

******* END *******