DERIVADA DE FUNCIONES DE VARIAS VARIABLES

Derivada de funciones escalares: repaso

Repasemos la definición de derivada para funciones escalares de una variable.

Sea $f:Dom\ f\subset R\to R$, y x_0 punto nterior de $Dom\ f$. Se define la derivada de f en x_0 al siguiente límite:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 si el límite existe y es finito

Para hallar la derivada, calculamos el límite del cociente incremental $\frac{\Delta f}{\Delta x}$ (el cociente entre el incremento de los valores

de la función y el incremento de la variable independiente). Geométricamente, la derivada en un punto es la pendiente de la recta y tangente a la gráfica de la función en dicho punto. Físicamente, la derivada representa una tasa de cambio (una razón de cambio) entre la variable dependiente y, y la variable independiente x.

DERIVADA DE FUNCIONES VECTORIALES DE VARIABLE REAL

Definición

Para definir la derivada de una función vectorial, generalizamos la definición vista para funciones escalares, es decir, calculamos el límite del cociente incremental.

Sea $\overline{f}:D\subset R\to R^n$, y sea t_0 punto interior de D. Se define la derivada de \overline{f} en t_0 al siguiente límite:

$$\overline{f}'(t_0) = \lim_{h \to 0} \frac{\overline{f}(t_0 + h) - \overline{f}(t_0)}{h}$$
 si el límite existe y es finito

Para las funciones vectoriales, la derivada en un punto, si existe, es un vector de Rⁿ.

Teorema (la derivada se calcula componente a componente)

Sea
$$\overline{f}: D \subset R \to R^n / \overline{f}(t) = (f_1(t), f_2(t), \dots, f_i(t), \dots, f_n(t))$$
, y sea t_0 punto interior de D .
$$\exists \overline{f}'(t_0) \Leftrightarrow \exists f'_i(t_0) \quad \forall i: 1 \le i \le n$$

Demostración:

 $\Leftrightarrow \exists f'_i(t_0) \quad \forall i: 1 \leq i \leq n$

Interpretación geométrica y física de la derivada de una función vectorial en un punto.

Consideremos la función $\overline{f}: D \subset R \to R^n$, con t_0 punto interior de D, asociada a una curva C de R^n . Si existe $\overline{f}'(t_0) = \lim_{h \to 0} \frac{\overline{f}(t_0 + h) - \overline{f}(t_0)}{h}$ el segmento $\overline{f}(t_0 + h) - \overline{f}(t_0)$ resulta secante a la curva C. Considerando el caso particular en que la curva sea una curva de R^2 podemos realizar la siguiente figura de análisis:

A medida que h tiende a 0, los valores de $t_0 + h$ tienden a t_0 , de modo que una posible secuencia será:

El vector secante $\overline{f}(t_0+h)-\overline{f}(t_0)$ se muestra en rojo en los gráficos. Para cualquier $h\neq 0$, el vector $\overline{v}=\frac{\overline{f}(t_0+h)-\overline{f}(t_0)}{h}$ es proporcional al vector secante, al cual se ha multiplicado por $\frac{1}{h}$. Siguiendo la posición del vector \overline{v} para valores de h tendiendo a 0, resulta plausible que en el límite, cuando $h\to 0$, el vector \overline{v} es tangente a la curva en el punto $\overline{f}(t_0)$.

El vector derivado $\overline{f}'(t_0)$ resulta entonces un vector tangente a la curva C imagen de \overline{f} en el punto $\overline{f}(t_0)$.

Si la curva C asociada a $\overline{f}:D\subset R\to R^3$, representa la trayectoria de un móvil, el vector derivado $\overline{f}'(t_0)$ corresponde a la velocidad de dicho móvil en el instante t_0 , velocidad que resulta tangente en cada punto de la trayectoria recorrida. Por otro lado, el vector derivada segunda $\overline{f}''(t_0)$ es la aceleración del móvil en cada punto de C, en el instante t_0 .

Dado que el vector $\overline{f}'(t_0)$ resulta un vector tangente a la curva C en el punto $\overline{f}(t_0)$, se puede considerar la posibilidad de definir una recta tangente a la curva en dicho punto. Por otro lado, si la función \overline{f} está definida de un subconjunto de R en R^3 , la curva $C = \operatorname{Im} \overline{f}$ es una curva en el espacio. Por ello, se puede definir un plano normal a C en $\overline{f}(t_0)$, considerando como vector director del plano al vector $\overline{f}'(t_0)$.

Curva de R³(negro), vector tangente en un punto (rosa), recta tangente (verde) y plano normal (naranja) en dicho punto.

Para ello, es necesario que la función vectorial \overline{f} sea derivable en t_0 , y además que el vector $\overline{f}'(t_0)$ sea no nulo para que resulte vector director, tanto de la recta tangente y como del plano normal. Por lo tanto, antes de definir la ecuación de la recta tangente y el plano normal a una curva en un punto de la misma, es necesario definir lo que resulta un punto regular de la curva.

Punto regular de una curva

Sea $\overline{f}:D\subset R\to R^n$, asociada a la curva C, y sea t_0 punto interior de D. Si se cumple que:

- $\exists \overline{f}'(t_0)$
- $\overline{f}'(t_0) \neq \overline{0}$

Entonces se define a $\overline{f}(t_0) = \overline{X_0}$ como punto regular de C.

Recta tangente a una curva en un punto de la misma

Sea $\overline{f}:D\subset R\to R^n$, asociada a la curva C, y sea t_0 punto interior de D. Sea en $\overline{f}(t_0)$ un punto regular de C. La recta tangente a C en $\overline{f}(t_0)$ está dada por la siguiente ecuación:

$$\overline{X} = \overline{f}(t_0) + \lambda \overline{f}'(t_0) \text{ con } \lambda \in R$$

Plano normal a una curva en un punto de la misma

Sea $\overline{f}: D \subset R \to R^3$, asociada a la curva C, y sea t_0 punto interior de D. Sea en $\overline{f}(t_0)$ un punto regular de C. El plano normal a C en $\overline{f}(t_0)$ está dado por la siguiente ecuación:

$$(\overline{X} - \overline{f}(t_0)) \cdot \overline{f}'(t_0) = 0$$

Resolvemos un ejercicio del TP4

1)a) Definida la curva como intersección de dos superficies: parametrícela convenientemente y halla una ecuación para la recta tangente a C en A. Halle una ecuación para el plano normal a C en A. Analice si C es una curva plana o alabeada.

$$\begin{cases} y = x^{2} \\ y + z = 5 \end{cases} A = (2,4,1)$$

$$\uparrow = x^{2} \\ \downarrow + z = 5 \end{cases}$$

$$\downarrow = x^{2} \\ \downarrow = x^{2}$$

$$\downarrow =$$