Econometrics 1 Applied Econometrics with R

Lecture 9: Nonlinear Regression

黄嘉平

中国经济特区研究中心 讲师

办公室: 文科楼2613

E-mail: huangjp@szu.edu.cn

Tel: (0755) 2695 0548

Website: https://huangjp.com

Nonlinear Regression

Two types of nonlinearity

Average income vs. test score

Average Income (in 1000 dollars)

Average income vs. test score

Average income vs. test score

A quadratic regression model

$$TestScore_i = \beta_0 + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$$

- Implementation in R
 - > lm(testscr ~ avginc + I(avginc^2))
- The I() command ensures that the term avginc² is an independent variable of the model.

Investigate the I() command

Perform the following commands with summary()

```
> lm(testscr ~ avginc)
> lm(testscr ~ avginc + avginc^2)
> lm(testscr ~ avginc + I(avginc^2))
> avginc2 <- avginc^2</pre>
> lm(testscr ~ avginc + avginc2)
What did you find?
```

General form of nonlinear regression function

The nonlinear population regression models* are of the form

$$Y_i = f(X_{1i}, X_{2i}, \dots, X_{ki}) + u_i, \quad i = 1, \dots, n$$

where $f(X_{1i}, X_{2i}, ..., X_{ki})$ is the population **nonlinear** regression function.

^{*} There are other forms of nonlinear regression function, see Appendix 8.1.

The effect on Y of a change in X_k

• When the value X_k is changed to $X_k + \Delta X_k$, the change of Y is

$$\Delta Y = f(X_1, \dots, X_{k-1}, X_k + \Delta X_k, X_{k+1}, \dots, X_m) - f(X_1, \dots, X_{k-1}, X_k, X_{k+1}, \dots, X_m)$$

 Suppose in our TestScore-Income model, the Income is increased from 10 to 11, then the change of TestScore is

$$(\hat{\beta}_0 + \hat{\beta}_1 \times 11 + \hat{\beta}_2 \times 11^2) - (\hat{\beta}_0 + \hat{\beta}_1 \times 10 + \hat{\beta}_2 \times 10^2)$$

= $\hat{\beta}_1 + 21\hat{\beta}_2$

A general approach to modeling nonlinearities using multiple regression

- 1. Identify a possible nonlinear relationship.
- 2. Specify a nonlinear function and estimate its parameters by OLS.
- 3. Determine whether the nonlinear model improves upon a linear model.
- 4. Plot the estimated nonlinear regression function.
- 5. Estimate the effect on *Y* of a change in *X*.

Nonlinear functions of a single independent variable

Polynomials

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_r X_i^r + u_i$$

Logarithms

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

$$\ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

$$\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$$

Polynomials

- Why polynomials?
- Taylor series expansion of a smooth function f(x) at point a:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \frac{f'''(a)}{3!}(x - a)^{3} + \frac{f''''(a)}{4!}(x - a)^{4} + \cdots$$

A function can be approximated by a polynomial.

Practice

Fit the following regression models

TestScore_i =
$$\beta_0 + \beta_1 \text{Income}_i + \beta_2 \text{Income}_i^2 + u_i$$

TestScore_i = $\beta_0 + \beta_1 \text{Income}_i + \beta_2 \text{Income}_i^2 + \beta_3 \text{Income}_i^3 + u_i$

 Do you think the term Income³ is helpful in explaining test score or not? Why?

Determine the degree of polynomial

- 1. Pick a maximum value of r (start with 2, 3, or 4) and estimate the polynomial regression for that r.
- 2. Test the hypothesis $\beta_r = 0$. If it is rejected, than X^r belongs in the regression, so use the polynomial of degree r.
- 3. If the hypothesis cannot be rejected in step 2, eliminate X^r from the regression and estimate a polynomial regression of degree r-1. Test whether the coefficient is zero. If rejected, than use the polynomial of degree r-1.
- 4. If not rejected, try r-2 ...

Heteroskedasticity-robust standard errors

 Regression with the 1m command in R is under the homoskedasiticity assumption (see Section 5.4).

$$\widehat{\text{TestScore}} = 600.1 + 5.02 \text{ Income} + 0.096 \text{ Income}^2 + 0.00069 \text{ Income}^3$$
 (5.83) (0.86) (0.00047)

 The heteroskedasticity-robust standard errors given in the book are

$$\widehat{\text{TestScore}} = 600.1 + 5.02 \text{ Income} + 0.096 \text{ Income}^2 + 0.00069 \text{ Income}^3$$
 (5.1) (0.71) (0.029) (0.00035)

Heteroskedasticity-robust standard errors in R

 Use the coeftest command in lmtest package in combination with the vcov command in sandwich package:

```
> library(sandwich)
> library(lmtest)
> fm <- lm(testscr ~ avginc + I(avginc^2) + I(avginc^3))
> coeftest(fm, vcov = vcovHC, type = "HC0")
```

Alternative settings of type:

```
"const" — homoskedastic case

"HC0" — the model used in the book

"HC3" — default
```

Logarithms

- Definition $x = \ln(\exp(x))$
- Logarithms and percentages

$$\ln(x + \Delta x) - \ln(x) \approx \frac{\Delta x}{x}$$

when $\Delta x/x$ is small. For example,

$$ln(101) - ln(100) = 0.00995$$

- $\Delta x/x$ is the percentage change in x divided by 100.
- Usually, changes in *price* and *wages* are expressed in logarithms.

Logarithms 1: the linear-log model

The linear-log model

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

- In this model, a 1% change in X is associated with a change in Y of $0.01\beta_1$.
- Practice
 - Fit the model $\operatorname{TestScore}_i = \beta_0 + \beta_1 \ln(\operatorname{Income}_i) + u_i$
 - Plot your estimated regression line with sample data.

```
> fm <- lm(testscr ~ log(avginc))</pre>
> newx <- seq(min(avginc), max(avginc), 0.1)
> newy <- fm$coefficients[1] + fm$coefficients[2] * log(newx)</pre>
> plot(avginc, testscr, col = "gray")
> lines(newx, newy, col = "red")
      700
      680
Test Score
      640 660
                                                quadratic
                                                   linear-log
      620
```

Average Income (in 1000 dollars)

30

40

50

10

20

Logarithms 2: the log-linear model

The log-linear model

$$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

• In this model, a one-unit change in X is associated with a $100 \times \beta_1\%$ change in Y.

Logarithms 3: the log-log model

The log-log model

$$\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$$

- In this model, a 1% change in X is associated with a $\beta_1\%$ change in Y.
- Here, β_1 is the *elasticity* of Y with respect to X.

Practice

- Try the log-log model in the regression of testscr on avginc.
- Plot your regression function on the scatter plot.

x axis: average income

y axis: log of test score

Comparing different models

- The log-linear and log-log models can be compared using the R^2 or adjusted R^2 .
- It does not make sense to compare the log-log model with the linear-log model using R^2 , since the dependent variables are different. (Recall the definition of R^2)
- You should use economic theory and experts' knowledge to judge which model is better.

Interactions between independent variables

- Sometimes the effect on the dependent variable of one independent variable could depend on another independent variable.
- Example: Student-teacher ratio and percentage of English learners.

If the students who are still learning English benefit more from small group instruction, than the effect on test scores of a change in the student-teacher ratio would depend on the percentage of English learners.

Interactions between two binary variables

- Binary variable (dummy variable) $D_i \in \{0, 1\}$
- Regression with two binary variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

- E.g., Y: earnings, D1: college degree, D2: gender.
- Model with interaction

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

Interaction between a continuous and a binary variable

Model without interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + u_i$$

Models with interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i) + u_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 (X_i \times D_i) + u_i$$

 \boldsymbol{X}

$$\beta_0 + (\beta_1 + \beta_2)X$$

$$\beta_0 + \beta_1X$$

$$Slope = \beta_1 + \beta_2$$

$$\beta_0 + \beta_1X$$

$$Y_i = \beta_0 + \beta_1X_i + \beta_2(X_i \times D_i) + u_i$$

X

Binary variables in R

- If you want a variable (column of data) to be treated as a binary (dummy) variable, it must be defined as a factor type of data.
- Example:
 - > factor(c(0, 1, 1))
- Try to figure out what the following codes do:

```
> scoredata <- read.csv("caschool.csv")
> d <- factor(el_pct > 10)
> nld <- lm(testscr ~ str + d + str:d)</pre>
```

Interaction of variables in lm()

A interaction term between x1 and x2 is specified by

```
x1:x2
```

- x1*x2 is equivalent to x1 + x2 + x1:x2
- Practice with
 - > lm(testscr ~ str + d + str:d)
 - > lm(testscr ~ str * d)

The I() command

 The ^ operator used with lm() command has the following meaning

$$(x1 + x2 + x3)^2$$

= $(x1 + x2 + x3) * (x1 + x2 + x3)$
= $x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3$

for more details, see help(formula).

• Therefore, if you want to evaluate the quadratic term of x (which is an arithmetic operation), you need to use I(x^2).

Interaction between two continuous variables

The model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

- Take test scores as Y, student-teacher ratio as X_1 , and percentage of English learners as X_2 . Fit this regression model.
- Read pages 324-328 about the interpretation of the model.

Take-home exercise (not an assignment)

- Try other possible models that contain nonlinear terms of student-teacher ratio and percentage of English learners, as well as the interactions between them, and predict test scores.
- Read Section 8.4 and Chapter 9.

References

- 1. Stock, J. H. and Watson, M. M., *Introduction to Econometrics*, 3rd Edition, Pearson, 2012.
- 2. Kleiber, C. and Zeileis, A., *Applied Econometrics with R*, Springer, 2008.