

SMITHSONIAN

MISCELLANEOUS COLLECTIONS

VOL. 63

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO, BY HIS OBSERVATIONS, RESEARCHES.

AND EXPERIMENTS, PROCURES KNOWLEDGE FOR MEN"—SMITHSON

(Publication 2320)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1914

The Lord Galtimore (Press

ADVERTISEMENT

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace the principal publications issued directly by the Smithsonian Institution in octavo form; and is designed to contain reports on the present state of our knowledge of particular branches of science, instructions for collecting and digesting facts and materials for research, lists and synopses of species of the organic and inorganic world, reports of explorations, aids to bibliographical investigations, etc., generally prepared at the express request of the Institution.

The "Smithsonian Contributions to Knowledge," in quarto form, embraces the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge.

In both of these series each article bears a distinct number, and is also separately paged unless the entire volume relates to one subject. The date of the publication of each article is that given on its special title-page, and not that of the volume in which it is placed. In many cases papers have been published and largely distributed, several months before their combination into volumes.

CHAS. D. WALCOTT, Secretary of the Smithsonian Institution.

CONTENTS

- 1. Hinsdale, Guy. Atmospheric air in relation to tuberculosis. Published June 22, 1914. x+136 pp., 93 pls. (Publication Number 2254.)
- 2. Clark, Austin Hobart. Notes on some specimens of a species of Onychophore (*Oroperipatus corradoi*) new to the fauna of Panama. February 21, 1914. 2 pp. (Pub. No. 2261.)
- 3. GILMORE, CHARLES, W. A new Ceratopsian dinosaur from the Upper Cretaceous of Montana, with note on *Hypacrosaurus*. March 21, 1914. 10 pp., 2 pls. (Pub. No. 2262.)
- 4. Pittier, H. On the relationship of the genus Aulacocarpus, with description of a new Panamanian species. March 18, 1914. 4 pp. (Pub. No. 2264.)
- 5. GOLDMAN, E. A. Descriptions of five new manimals from Panama. March 14, 1914. 7 pp. (Pub. No. 2266.)
- 6. Fowle, Frederick E. Smithsonian Physical Tables. Sixth revised edition. November 10, 1914. xxxvi+355 pp. (Pub. No. 2269.)
- 7. Heller, Edmund. New subspecies of mammals from Equatorial Africa. June 24, 1914. 12 pp. (Pub. No. 2272.)
- 8. Explorations and field-work of the Smithsonian Institution in 1913. November 27, 1914. 88 pp. (Pub. No. 2275.)
- 9. McIndoo, N. E. The olfactory sense of insects. November 21, 1914. 63 pp. (Pub. No. 2315.)
- Fewkes, J. Walter. Archeology of the Lower Mimbres Valley, New Mexico. December 18, 1914. 53 pp., 8 pls. (Pub. No. 2316.)

.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 1

Modgkins Fund

ATMOSPHERIC AIR IN RELATION TO TUBERCULOSIS

(WITH 93 PLATES)

BY

GUY HINSDALE, A. M., M. D.

HOT SPRINGS, VIRGINIA.

Secretary of the American Climatological Association; Ex-President Pennsylvania Society for the Prevention of Tuberculosis; Fellow of the College of Physicians of Philadelphia; Associate Professor of Climatology, Medico-Chirurgical College; Member of the American Neurological Association; Fellow of the Royal Society of Medicine, Great Britain; Corresponding Member of the International Anti-Tuberculosis Association, etc.

(Publication 2254)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1914

The Lord Gastimore (Press BALTIMORE, MD., U. S. A.

ADVERTISEMENT

The accompanying paper, by Dr. Guy Hinsdale, on "Atmospheric Air in Relation to Tuberculosis," is one of nearly a hundred essays entered in competition for a prize of \$1,500 offered by the Smithsonian Institution for the best treatise "On the Relation of Atmospheric Air to Tuberculosis," to be presented in connection with the International Congress on Tuberculosis held in Washington, September 21 to October 12, 1908. The essays were submitted to a Committee of Award, consisting of Dr. William H. Welch, of Johns Hopkins University, Chairman; Prof. William M. Davis, of Harvard University: Dr. George M. Sternberg, Surgeon-General, U. S. A., Ret'd; Dr. Simon Flexner, Director of Rockefeller Institute for Medical Research, New York; Dr. Hermann M. Biggs, of New York, General Medical Officer, Department of Health, New York City: Dr. George Dock, Medical Department, Washington University, St. Louis; and Dr. John S. Fulton, of Baltimore, Secretary General of the Congress on Tuberculosis. Upon the recommendation of the committee, the prize was divided equally between Dr. Guy Hinsdale, of Hot Springs, Virginia, and Dr. S. Adolphus Knopf, of New York City.

At the request of the Institution, Dr. Hinsdale has revised his essay so as to indicate some of the advances made in the study of the subject during the past five years.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

WASHINGTON, DECEMBER, 1913.

TERMS OF COMPETITION SMITHSONIAN INSTITUTION

HODGKINS FUND PRIZE

In October, 1891, Thomas George Hodgkins, Esquire, of Setauket, New York, made a donation to the Smithsonian Institution, the income from a part of which was to be devoted to "the increase and diffusion of more exact knowledge in regard to the nature and properties of atmospheric air in connection with the welfare of man." In furtherance of the donor's wishes, the Smithsonian Institution has from time to time offered prizes, awarded medals, made grants for investigations, and issued publications.

In connection with the approaching International Congress on Tuberculosis, which will be held in Washington, September 21 to October 12, 1908, a prize of \$1,500 is offered for the best treatise "On the Relation of Atmospheric Air to Tuberculosis." Memoirs having relation to the cause, spread, prevention, or cure of tuberculosis are included within the general terms of the subject.

Any memoir read before the International Congress on Tuberculosis, or sent to the Smithsonian Institution or to the Secretary-General of the Congress before its close, namely, October 12, 1908, will be considered in the competition.

The memoirs may be written in English, French, German, Spanish or Italian. They should be submitted either in manuscript or type-written copy, or if in type, printed as manuscript. If written in German, they should be in Latin script. They will be examined and the prize awarded by a Committee appointed by the Secretary of the Smithsonian Institution in conjunction with the officers of the International Congress on Tuberculosis.

Such memoirs must not have been published prior to the Congress. The Smithsonian Institution reserves the right to publish the treatise to which the prize is awarded.

No condition as to the length of the treatises is established, it being expected that the practical results of important investigations will be set forth as convincingly and tersely as the subject will permit.

The right is reserved to award no prize if in the judgment of the Committee no contribution is offered of sufficient merit to warrant such action.

CHARLES D. WALCOTT,

Secretary of the Smithsonian Institution.

Washington, D. C., February 3, 1908.

PREFACE

The rapid progress in the antituberculosis movement throughout the world in the last five years has made it necessary to make some changes in the present essay as originally presented to the Smithsonian Institution in 1908. Much that then seemed novel appears almost commonplace now. An extraordinary amount of research has been carried out with reference to the atmospheric air during these later years. The whole theory of ventilation has been stated in new terms; the presence of ozone in the atmosphere, a subject that has always appealed to the popular fancy since its discovery, has been restudied and its physiologic action assigned a value different from that commonly ascribed to it; the properties of strong sunlight and Alpine air have been marshalled for the combat with surgical tuberculosis, particularly in children.

Physiologists in Europe and America have lately made most interesting studies of the blood at the higher altitudes and their observations are constantly throwing new light on the entire subject of aerotherapy, replacing old impressions and beliefs with a scientific basis on which we may confidently build.

There never was a time when the outdoor life and the accessories for the atmospheric treatment of all tuberculous persons were so well systematized and placed in harmony with the other hygicnic measures adopted for their cure.

What the result has been we have endeavored to show and what the future holds for us we are eagerly awaiting.

May the Smithsonian Institution, through its Hodgkins Fund, continue to stimulate inquiry and disseminate the fruits of the worldwide efforts to the better understanding of the great problems that yet remain unsolved.

GUY HINSDALE.

HOT SPRINGS, VA., DECEMBER, 1913.

TABLE OF CONTENTS

CHAPTER · PA	\GE
I. Introduction	I
II. Value of Forests: Micro-organisms, Atmospheric Impurities General benefit of forests; qualities of forest air and soil; carbon dioxide; oxygen; ozone; use of forest reservations for sanatoria; micro-organisms in the respiratory passages; composition of expired air; atmospheric impurities, coal and smoke, carbonic acid, sulphur dioxide, ammonia; oxygen for tuberculous patients.	4
III. Influence of Sea Air; Inland Seas and Lakes	32
IV. Influence of Compressed and Rarefied Air; High and Low Atmospheric Pressure; Altitude	61
V. Influence of Increased Atmospheric Pressure, Condensed Air The effect of barometric changes on the spirits; artificially compressed air, C. T. Williams, Von Vivenot; pneumatic cabinet; Prof. Bier's treatment of surgical tuberculosis by artificial hyperæmia.	87
VI. Artificial Pressure; Breathing Exercises	98
VII. Fresh Air Schools for the Tuberculous; Ventilation	103

1	PAGE
VIII. Exercise in Tuberculosis; Graduated Labor	
IX. Accessories for Fresh Air Treatment of Tuberculosis	
X. Conclusions	12

Modgkins Fund

ATMOSPHERIC AIR IN RELATION TO TUBERCULOSIS

BY GUY HINSDALE, A. M., M. D., Hot Springs, VA.

(WITH 93 PLATES)

CHAPTER I. INTRODUCTION

We are compelled to acknowledge at the outset the difficulty or impossibility of analyzing the relationship of atmospheric air to tuberculosis so as to isolate the influence of all other factors. It would be totally uscless and impossible to consider air independent of sunlight, heat, rainfall, the configuration of the earth's surface; racial characteristics, social environment, including dwellings, clothing, food, and drink.

As a resultant of all these and many other factors in the tuberculosis problem, we obtain the figures of mortality which are published from time to time by various cities, states, and nations. The problem seems incapable of solution. One might as well survey an oak that has grown for centuries and set out to determine the relative value of the atmospheric air, the sunlight, the rainfall, and the various constituents of the soil and its environment in producing the sturdy, deeply rooted, and wide-spreading tree which has seen ages come and go.

The world-wide efforts now made to determine the nature of this infection and especially its bacteriologic and pathologic character are accompanied by a general effort to limit its spread. We are encouraged to believe that future generations will be provided with a practical and efficient method of destroying this insatiate monster.

Undoubtedly we have begun at the right end, but we only began within the memory of nearly all of us, only thirty-two years ago, when the true cause of the disease was first isolated and revealed to the human eye.

Previously we were as the blind leading the blind, groping about in search of special climates, special foods or medicines, meeting with more or less success in so far as the dietetic, hygienic, out-ofdoor plan of treatment was carried out. These curative measures succeeded then, as they succeed now, but preventive measures worthy the name were entirely unknown. The enemy once revealed in its hiding place, and various facts in its life history determined, the logical result was a gradual—very gradual—dawn which promised better things. Now the world has seen a great light and we wonder how intelligent men could have dwelt in those caverns of ignorance and even refused to come out for years while the men in the laboratory beckoned with signs which then seemed so uncertain but now so clear. As late as 1890 the medical mind did not grasp the necessity for preventive measures. As one asleep it heard voices but was slow to waken; it starts and rubs its eyes and looks about, waiting for some word or message that will bring it to its senses.

It was in 1891 that the first society for the prevention of tuberculosis was organized. This was started in France by M. Armaingaud, of Bordeaux. The second was the Pennsylvania Society for the Prevention of Tuberculosis organized in Philadelphia in 1892. These were the pioneers in Europe and America. They devoted their energies to a campaign with three cardinal features: (1) the education of the public in reference to the nature of the disease and its means of prevention; (2) the passage of suitable laws regarding notification, the restriction of expectoration, disinfection, etc.; and (3) the care of consumptives and the establishment of sanatoria by public or private means in suitable localities.

The wonderful growth of this movement for preventive measures is now seen in the establishment of 1,228 societies for the prevention of tuberculosis in America alone, and in the erection of 527 sanatoria in this country (1913). The State of Pennsylvania alone has appropriated in one Act of Legislature \$2,000,000 for this purpose and one citizen of the state, Mr. Henry Phipps, has given an equal amount for the scientific study as well as the practical treatment of this disease in all its bearings.

Mont Alto, Franklin Co.

No. of patients under	treatment	. 957	
Elevation		. 1,650	ft.

¹ The State of New York leads all other states in the number of new organizations and institutions established during the last two years. The total number of beds for consumptives in the United States now exceeds 33,000.

² The Pennsylvania legislature appropriated \$1,000,000 in 1907, \$2,000,000 in 1909, \$2,624,808 in 1911, and \$2,659,660 in 1913 for tuberculosis work alone. This is under the direction of Dr. Samuel G. Dixon, the Commissioner of Health.

There are at the present time two State Sanatoria in Pennsylvania in operation.

Note: The figures in Franklin County include the deaths of the State Sanatori
The death rate for Franklin County exclusive of Mont Alto would be

0-49

50-99

ONWEALTH OF PENNSYLVANIA EPARTMENT OF HEALTH IG. DIXON, M. D., COMMISSIONER

99

PENNSYLVANIA BY COUNTIES FOR THE YEAR 1912

The late Dr. Henry I. Bowditch, of Boston, was one of the first physicians in America to recognize the value of constant out-door life in the treatment of tuberculosis and was accustomed to send such patients on easy journeys by carriage so that they might have the benefit of as much out-door air as possible, becoming gradually inured to the elements.

The late Dr. Alfred L. Loomis, of New York, was one of the first to systematically send tuberculous patients to the Adirondack forest that they might have the benefit of the purest and most invigorating air obtainable and, like the physicians of ancient Rome who sent consumptive patients to the pine forests of Libya, he believed that the terebinthinate exhalations from the standing pines exerted a most beneficial influence on pulmonary affections. Dr. Loomis's results were so gratifying that he encouraged Dr. Edward L. Trudeau to care for such patients in the Adirondack Mountains throughout the year, and Dr. Trudeau, with his help, founded in 1884 the first sanatorium for tuberculosis in America.¹

This Adirondack Cottage Sanitarium, now in its thirtieth year, has been the inspiration of sanatoria for tuberculosis throughout the country. Its success in restoring so many patients to health and usefulness is not wholly estimated in figures. It has established

These institutions care for both incipient and far advanced cases. The interior arrangement of the sanatoria at Cresson and Hamburg is such that they can be used for the different classes of cases as demand may necessitate. There is a waiting list of those desiring admission to these institutions at all times.

The State maintains 115 Tuberculosis Dispensaries, which are located throughout the 67 counties in the commonwealth. There are 220 physicians and 120 visiting nurses employed in these dispensaries.

By the courtesy of Dr. Samuel G. Dixon, Commissioner of Health, we are able to show in a map the distribution of tuberculosis in the counties of Pennsylvania (pl. 1). This shows, as in an earlier map by the author, that the disease is least prevalent in the higher, forest covered regions of the State.

¹ A. L. Loomis, M. D. Evergreen Forests as a therapeutic agent in pulmonary phthisis (Trans. Amer. Climatological Ass., Vol. 4, 1887). See page 134.

a practical method of cure and has done much to correct the earlier unfounded and mischievous notions that prevailed as to what was necessary for the cure of tuberculosis.

Taking this institution as an example, let us see what bearing it may have on our general subject, the relation of the atmospheric air to tuberculosis:

(a) It is in the midst of an evergreen forest of over 10,000 square miles; (b) the atmosphere is pure, or at least as pure as may be obtained on the continent; (c) the air is moderately moist; (d) the rainfall averages 35 inches; (e) the air is moderately rarified, owing to (f) an elevation of 1,750 feet; (g) owing to its northern situation (latitude 44°) and its elevation (1,750 feet) (h) the climate is cold in winter and (i) subject to rather sudden changes with an annual range of 50° C, or 138° F.

CHAPTER II. VALUE OF FORESTS, MICRO-ORGANISMS, ATMOSPHERIC IMPURITIES.

GENERAL BENEFIT OF FORESTS

It has come to be an axiom in phthisiology that the air of an evergreen forest is eminently suitable for a patient with tuberculosis.\(^1\) As we have previously mentioned, the pine forests of Libya were used two thousand years ago for the cure of "ulcerated lungs.\(^1\) At that period the pines abounded and gave the locality a reputation as a health resort for affections of the lungs.\(^1\) But the ravages of time, aided by fire and sword, not to speak of domestic needs, have obliterated all vestiges of these ancient forests.

The successful institutions located in the Hartz Mountains, the Black Forest of Germany, in the Forest of Ardennes, the State Forest Reserve of Pennsylvania, and the Adirondack Forest in New York owe much of their success to the abundant use of the purest air both day and night.

European Governments have long recognized the great value of

The following quotation from Pliny shows that it was generally agreed in his day that the forests and especially those which abound in pitch and balsam are the most beneficial to consumptives or those who do not gather strength after long illness, and that they are of more value than the voyage to Egypt:

[&]quot;Sylvas, cas duntaxat quae picis resinaeque gratia redantur, utilissimas esse phthisicis, aut qui longa aegritudine non recolligant vires, satis constat; et illum cocli aera plus ita quam navigationem Aegyptian proficere, plus quam lactis herbidos per montium aestiva potus."—C. Plinii, Hist. Nat. lib. xxiv, Cap. 6.

ST. BLASIEN IN THE BADEN BLACK FUREST, GERMANN Courtesy of Dr. Sander

SANATORIUM ST. BLASIEN IN THE BADEN BLACK FOREST, GERMANY. ELEVATION 800 METERS (2,600 FEET). THE AIR OF THE FIR FOREST

IN THE CURE OF TUBERCULOSIS

Photograph Furnished by Dr. Albert Sander

their forests and have protected them by strictly enforcing intelligent laws so that they may be forever preserved and improved. The history of forestry in the United States and Canada has been that of ruthless, unrestrained, wholesale destruction of nearly all our standing pine, and heavier spruce. In recent years, however, we have seen the establishment of Government reserves, State reserves, and State laws for their protection; the organization of the American Forestry Association, the American Forest Congress, the Society for the Preservation of the Adirondack Forest; the Schools of Forestry at Yale, Harvard University and Mont Alto, Penna. All these remedial measures have come very late, but will undoubtedly exert a strong influence for good.¹

Aside from the general beneficial influence of forests, universally recognized by climatologists, these natural parks have proved the means of restoring thousands of persons suffering from tuberculosis and diseases of the respiratory system.

QUALITIES OF FOREST AIR AND SOIL

The qualities of forest air and forest soil have been studied by E. Ebermayer who shows that, like that of the sea and mountains, forest air is freer from injurious gases, dust particles, and bacteria. It was shown that the vegetable components of the forest soil contain less nutritive matter (albuminoid, potash, and phosphates and nitrates) for bacterial growth; that the temperature and moisture conditions are less favorable; that the sour humus of the forest soil is antagonistic to pathogenic bacteria; finally that, so far, no pathogenic microbes have ever been found in forest soil; hence this soil may be called hygienically pure.

The soil is protected from high winds by forest growth and undergrowth; the upper soil strata are slow to dry out and wind sweeping over them carries few micro-organisms into the air. As may be expected, fewer microbes are found in forest air than outside their limits. Serafini and Arata have proved this experimentally.³ They

¹The chief forester of the United States has in 1913 under his care in 160 forest reservations a total of 165,000,000 acres of forest land. The present Chief Forester has done excellent work in the prevention of serious forest fires.

² E. Ebermayer: (1) Hygienic significance of forest air and forest soil. (2) Experiments regarding the significance of humus as a soil constituent; and influence of forest, different soils, and soil-covers on composition of air in the soil. Wollny, 1890 (Hygeia, August 15, 1891).

³ Serafini and Arata: Intorno all 'azione dei boschi sui mikro organismi transportati dai venti.

exposed plates in the forest air and on its outskirts and tabulated their countings of bacteria for forty successive days from May 6. They made three classes—molds, liquefying and non-liquefying bacteria. They found that, with one exception, one or two of these classes were always less numerous in the forest than on its outskirts and generally from twenty-three to twenty-eight times less. Serafini makes the point that bacteria coming from the outside are reduced in number by a sort of filtration process. Thus we see that the air of forests is comparatively free from endogenous and exogenous bacteria—none of them in any case being pathogenic.¹

CARBON DIOXIDE IN FORESTS

Puchner shows that the air in the forest contains generally more carbonic acid gas than in the open, due to the decomposition of litter.* But this difference must be almost inappreciable. As we know, the law of diffusion of gases renders it impossible for variations in the relative proportion of the atmospheric constituents to be more than transitory. Diffusion is greatly favored by the winds which sweep through the tree tops, especially where they are not too crowded.

The fact that so many sanatoria for tuberculosis are located in or near forests makes it very important to dwell a little longer on the constituents of the air in these localities. We know that forests, as well as all other forms of vegetal growth, take up large quantities of carbonic acid, retaining the carbon and rejecting the oxygen, and the question naturally arises, does it sensibly change the relative quality of either constituent so that the composition of the air is slightly different in the woods? Prof. Mark W. Harrington, lately chief of the United States Weather Bureau, undertook to answer that question, both with reference to carbonic acid, oxygen, and ozone, with some interesting results. Repeated observations show that each constituent is curiously uniform in quantity in the free air. It has been thought that carbonic acid is quite variable but the introduction of better methods of observation shows that, except in confined places where the gas is produced, the variations are very

¹ See B. E. Fernow: Forest Influences, U. S. Dep. Agriculture, Forestry Division Bulletin No. 7, pp. 171-173.

² H. Puchner: Investigations of the Carbonic Acid Contents of the Atmosphere.

^{*}M. W. Harrington: Review of Forest Meteorological Observations, U. S. Dep. Agriculture, Forestry Division Bulletin No. 7, p. 105.

DR, WALTHER'S SANATORIUM, NORDRACH-COLONIE, BLACK FOREST, GERMANY

DR. WALTHER'S SANATORIUM, NORDRACH-COLONIE, BLACK FOREST, GERMANY

VIEW FROM THE ADIRONDACK COTTAGE SANITARIUM
"In the foreground are the pines and my only business in life is to sit and look at them"

Courtesy of Journal of The Outdoor Life

small. A little study shows that the carbonic acid gas taken up by a forest is a very small quantity compared with that which passes the forest in the same time with the moving air. Grandeau estimated the annual product of carbon by a forest of beeches, spruces, or pines as about 2,700 pounds per acre. This corresponds to 9,900 pounds of carbonic acid gas or 69,300 cubic feet. Now, if the average motion of the air is five miles an hour, a low estimate, and the layer of air from which the gas is taken be estimated at one hundred feet thick, there would pass over an acre 550 million cubic feet in one hour. This air must contain about three parts in ten thousand of carbonic acid gas and the total amount of the latter per hour is 165,000 cubic feet. But this is two and two-thirds, or more than twice as much as that taken up by the trees in the entire season, so that the air could provide in thirty minutes for the wants of the trees for the entire season. Prof. Harrington shows that the ratio of carbonic acid used to that furnished is only one part in 8,600.

OXYGEN IN FORESTS

Again, the additions of oxygen to the air would form a still smaller percentage of the oxygen already present, for this gas makes up 20.938 per cent of the air against a thirtieth of one per cent obtainable from this source.

OZONE IN FORESTS

The occurrence of ozone in the air of forests, especially coniferous forests, has been credited, since its discovery by Schoenbein in 1840, with affording remarkable health-giving qualities. This opinion has become firmly fixed in the minds of the public and, to a large extent, has been accepted by the medical profession as an evidence of high oxidizing power at once corrective of decaying vegetation and exhilarating and curative to mankind. Popular belief usually has some basis for its existence; indeed, meteorologists made regular estimations of ozone in the atmosphere by testing with sensitized papers and the results were published in connection with statistics of health resorts.²

The Schonbein test is based on the power of ozone to free iodine from a solution of potassium iodide in contact with starch, when a violet color is developed in the sensitized paper. Unfortunately the

¹See Belgique Horticole, Vol. 35, 1885, p. 227.

² See Transactions American Climatological Association, Vol. 5, p. 118.

discovery of important sources of error has destroyed the value of observations made in this manner. Other substances in the air have been found to act as reducing agents; secondly, the color after having appeared may be altered or destroyed by substances, such as sulphurous acid and many organic substances. Again, the test acts only in a moist atmosphere and, besides that, varies in intensity according to the amount of the wind, so that, in a way, it is a measure of humidity and of wind.

A more recent test, mentioned by Huggard as more sensitive, depends upon the use of what is known as tetra-paper, but is also considered uncertain. The full name of this reagent is tetramethyl-paraphenylendiamin paper. Notwithstanding the unsatisfactory nature of these tests, the conclusion seems to be accepted that ozone is more abundant in May and June and least abundant in December and January; more abundant in the forests and the seashore and in mid-ocean and least abundant in towns where it commonly cannot be detected. The following quotation is from page 332 ct seq. of Vol. 1, Watts' Dictionary of Chemistry:

Very little is known respecting the proportion of ozone in the atmosphere, or of the circumstances which influence its production. The ozonometric methods hitherto devised are incapable of affording accurate quantitative estimations. Air over marshes or in places infested by malaria contains little or no ozone. No ozone can be detected in towns or in inhabited houses.

Houzeau determines the relative amount of ozone in the air by exposing strips of red litmus paper dipped to half their length in a I per cent solution of potassium iodide. The paper in contact with ozone acquires a blue color from the action of the liberated potash upon the red litmus. The iodised litmus paper is preferable to iodised starch paper (Schönbein's test-paper) which exhibits a blue coloration with any reagent which liberates iodine, e.g., nitrous acid, chlorine, etc. From observations made with iodised litmus paper Houzeau concludes that ozone exists in the air normally, but the intensity with which it acts at any given point of the atmosphere is very variable. Country air contains at most $\frac{1}{450000}$ of its weight or $\frac{1}{700000}$ of its volume of ozone. The frequency of the ozone manifestations varies with the seasons, being greatest in the spring, strong in summer, weaker in autumn, and weakest in winter. The maximum of ozone is found in May and June, and the mininum in December and January. In general, ozone is more frequently observed on rainy days than in fine weather. Strong atmospheric disturbances, as thunder storms, gales, and hurricanes, are frequently accompanied by great manifestations of ozone. According to Houzeau, atmospheric electricity appears to be the most active cause of the formation of atmospheric ozone.

It has been found that the air immediately above the tree tops and at the margin of the forest is richer in ozone than that of the interior, where a portion of it is utilized by the decaying vegetation. Ozone certainly aids in purifying the air by oxidizing animal or

SANATORIUM ST. BLASIEN IN THE BADEN SCHWARZWALD 800 METERS ABOVE SEA-LEVEL

Courtesy of Dr. Harry Lee Barnes

vegetable matter in process of decay and by uniting with the gases produced by their decomposition. It can, therefore, be found in considerable amounts where the air is particularly pure. This amount rarely exceeds one part in 10,000. "There is somewhat more ozone on mountains than on plains and most of all near the sea. Water is said by Carius to absorb 0.8 of its volume of ozone."

This statement by Mr. Russell seems to us extraordinary in view of the minute quantity contained in the atmosphere and apparently needs confirmation, especially in view of Russell's next statement that a great excess of ozone is destructive to life, and oxygen containing one two-hundred and fortieth part of ozone is rapidly fatal, and further, that even the ordinary quantity has bad effects in exacerbating bronchitis and bronchial colds, and some other affections of the lungs.

Ozone is not found in the streets of large towns or usually in inhabited rooms, but in very large, well ventilated rooms it is sometimes, though rarely, detected. According to Russell it may be formed on the slow oxidation of phosphorus and of essential oils in the presence of moisture. When produced by electric discharges its pungency of odor is said to make it easily perceptible when present only to the extent of one volume in 2,500,000 volumes of air and the smell may sometimes be noticed on the sea beach.

Since the discovery of ozone by Schönbein, not much has been learned about the actual origin of this allotropic form of oxygen. Its presence in and near forests and living plants has undoubtedly supported the popular view that the air of the forests is particularly healthful and that living plants in our apartments are likewise beneficial.²

The existence of hydrogen peroxide in air was first established by Meissner in 1863, but we have no knowledge of the proportion in which it is present. All information as to its relative distribution is obtained from determinations of its amount in rain water and snow. The proportion seems to vary, like that of ozone, with the seasons of the year and with the temperature of the air. It is not improbable that the amount of hydrogen peroxide in air is greater than that of ozone, and it is possible that many so-called ozone manifestations are in reality due to peroxide of hydrogen. Watts' Dictionary of Chemistry.

¹ Francis A. R. Russell: The Atmosphere in Relation to Human Life and Health, Smithsonian Miscellaneous Collections, Vol. 39 (Publication No. 1072), 148 p., Washington, 1896.

² See J. M. Anders: House Plants as Sanitary Agents, Lippincott & Co., 1887.

A recent paper by Sawyer, Beckwith and Skolfield' of the Hygienic Laboratory of the California State Board of Health, is one of the latest researches which discredit the claim made for ozone as a purifier of air. During recent years circulars have been issued in great numbers by manufacturers of apparatus stating that ozone is a "necessity" for the destruction of infectious germs and bacterial life, for the sterilization of air in operating rooms for the purification of air in homes of persons suffering from contagious diseases and for giving to offices and homes the invigorating air of the country, seashore and mountains.²

How false these claims are can readily be seen from the systematic work of these investigators, the details of which we cannot give here but to which the reader is referred. Among their conclusions are the following:

During these tests certain physiologic effects of the "ozone" were noticed by the experimenters after they had been working around the machines. The immediate effect of inhaling the diluted gas was a feeling of dryness or tickling in the nasopharynx, and sometimes the irritation was felt in the chest. If the exposure was prolonged, watering of the eyes, and occasionally a slight headache, resulted. The smell of the "ozone" and its irritation was much more noticeable to persons who came suddenly under its influence than to those who were continuously exposed.

- 1. The gaseous products of the two well-known ozone machines examined are irritating to the respiratory tract and, in considerable concentration, they will produce edema of the lungs and death in guinea-pigs.
- 2. A concentration of the gaseous products sufficiently high to kill typhoid bacilli, staphylococci and streptococci, dried on glass rods, in the course of several hours, will kill guinea-pigs in a shorter time. Therefore these products have no value as bactericides in breathable air.
- 3. Because the products of the ozone machines are irritating to the mucous membranes and are probably injurious in other ways, the machines should not be allowed in schools, offices or other places in which people remain for considerable periods of time.
- 4. The ozone machines produce gases which mask disagreeable odors of moderate strength. In this way the machines can conceal faults in ventilation while not correcting them. Because the ozone machine covers unhygienic conditions in the air and at the same time produces new injurious substances, it cannot properly be classed as a hygienic device.

Another paper even more elaborate than this was published at the same time by Edwin O. Jordan, Ph. D., and A. J. Carlson, Ph. D.,

¹ The Alleged Purification of Air by the Ozone Machine. Journ. Amer. Med. Ass., Sept. 27, 1913, p. 1013.

² See Amer. Journ. Physiologic Therapeutics, Nov.-Dec., 1911.

of Chicago.1 This investigation was carried on at the suggestion of and under a grant from the Journal of the American Medical Association. Their experiments were carried out (1) to determine the germicidal action of ozone on pure cultures under the conditions commonly used in testing disinfectants, and (2) to determine the effect of ozone on the ordinary air bacteria. They found, after a long series of experiments detailed in full in their paper, that no surely germicidal action on certain species of bacteria could be demonstrated by the usual disinfection tests with amounts of gaseous ozone ranging from 3 to 4.6 parts per million. The alleged effect of ozone on the ordinary air bacteria, if it occurs at all, is slight and irregular even when amounts of ozone far beyond the limit of physiologic tolerance are employed.² The toxication of strong concentrations of ozone through injury to the lungs was marked. Even in moderate amounts it produced an irritation of the sensory nerve endings of the throat and a headache due to irritation, corrosion and consequent hyperemia of the frontal sinuses. Consequently the use of this poisonous gas as a therapeutic agent is either valueless or injurious.

USE OF FOREST RESERVATIONS FOR SANATORIA

We cannot leave the subjects of forests and forest air without strongly advocating the use of forests and especially State and Governmental forest reserves for institutions, hospitals, and camps for the tuberculous. The State of Pennsylvania has large forestry reservations, amounting at present to 1,000 square miles in 23 counties, and maintains a State School of Forestry, where young men are in training for its forest service. Acting under liberal forest laws, Dr. J. T. Rothrock, then State Forestry Commissioner, in 1903, announced that citizens of Pennsylvania are entitled to the privilege of using the forestry reservation of the state under proper restrictions as a residence while regaining health and recommended it especially to those in need of fresh air treatment of tuberculosis. In the spring of that year Dr. Rothrock, with State aid, started the construction of a few small cabins for the use of such patients and called it the South Mountain Camp Sanatorium.³ This is situated

¹Ozone: Its Bactericidal Physiologic and Deodorizing Action. (Journ. Amer. Med. Ass., Sept. 27, 1913, Vol. 61, pp. 1007-1012).

² This is corroborated by the recent article by Konrich, Zur Verwendung der Ozone in der Lüftung. (Zeitschr. Hyg., 1913, Vol. 73, 443.)

⁸ Charities and Commonwealth, Dec. 1, 1906. Journ. Amer. Med. Ass., 1907. Journal of the Outdoor Life, Jan., 1907, and Feb., 1908.

in Franklin County, Pennsylvania, in the southern tier of counties where the state owns 55,000 acres. The altitude of the camp is 1,650 to 1,700 feet. It is now the site of the great State Sanatorium known as Mont Alto with a capacity of over 1,000 patients.

At first the patients were obliged to provide and to prepare their own food, but the legislature afterward appropriated enough to enable the management to furnish food, and the results were better than before. Only patients in the incipient stages were admitted, and of the 141 so cared for (up to the year 1908) about 75 per cent were either much improved or cured. The charge to the patients was one dollar per week for all supplies and services, excepting washing and the care of their cabins and their persons. The large forestry reserve allows of an indefinite extension of this method of dealing with the disease, and the small expense seems to point to it as a way to provide for the large class of patients who must be cared for in the incipient stages if the disease is to be checked and its victims restored to society as safe and potent factors in industrial progress. Dr. Rothrock, who has just closed twenty years of distinguished service to the state in the forestry commission, believes that the forest reservations furnish an answer to the further problem of how to care for the consumptive whose disease is arrested, but whose financial condition demands that he must still be cared for until able to return to his home. Pennsylvania has nearly a million acres of forest reservation, much of which needs replanting with young trees. To do this requires a large number of men, and the task of raising and transplanting trees is mostly light outdoor labor, well suited to the convalescent consumptive. In addition, there are various forms of woodcraft, such as basket making and the manufacture of small rustic articles that could easily be carried on under healthful conditions in the forests. The example of Pennsylvania suggests the propriety of other states taking similar steps and providing for the large number of consumptives who need care in an inexpensive and at the same time effective manner.

The United States Government should establish without delay large forest reserves in the Eastern, Middle, and Southern States. The White Mountains of New Hampshire and the Southern Appalachians should be placed under a system of Federal protection. It is encouraging to note that by a recent decision (November, 1913) of the Courts of New Hampshire the way is opened for the condemnation of mountain land in that State and indemnity has been awarded private owners for land so taken.

The United States has 165,000,000 acres of national forests and France and Germany combined, 14,500,000 acres.

The site of a model sanatorium for tuberculosis has the purest air or air nearly devoid of floating matter. It is only on very high mountain tops or in mid ocean, or in the Polar ice fields that we can have air free from suspended matter. The good results obtained in the higher Alpine sanatoria and in long sea voyages, in given cases of tuberculosis, are attributable in some degree to this absence of irritating or polluted atmosphere. In the more northern sanatoria, of which the Adirondack Cottage Sanitarium is a type, the long winter in which snow covers the ground for possibly five months, is always recognized as the best season for patients. The gain in health acquired during one winter equals that of two summers. The added freedom which the snow covering provides against dust and other atmospheric impurities may have its hygienic influence for the cure of tuberculosis.

MICRO-ORGANISMS IN RESPIRATORY PASSAGES

It is interesting to learn something of the fate of micro-organisms when inhaled by a person in health or by those whose respiratory passages are already suffering from irritation or disease. It has been calculated that upward of 14,000 organisms pass into the nasal cavities in one hour's quiet respiration in the ordinary London atmosphere.' Tyndall showed by his experiments with a ray of light in a dark chamber that expired air, or more exactly the last portion of the air of expiration is optically pure. In other words, respiration has freed the inhaled air from the particles of suspended matter with which it is laden. These experiments coincide with those of Gunning of Amsterdam in 1882 and those of Strauss and Dubreuil in 1887. Grancher has made many experiments with the expired air of phthisical patients and has never found in it the tubercle bacillus or its spores. Charrin, Karth, Cadéac, and Mallet have had corresponding results.

These germs are probably all arrested before reaching the trachea; they halt in the upper air passages. The interior of the great majority of normal masal cavities is perfectly aseptic. On the other hand the vestibules of the nares, the vibrissæ lining them and all crusts formed there are generally swarming with bacteria. All germs are arrested here and the ciliated epithelium rapidly ejects them.

¹On Researches by Drs. St. Clair Thomson and R. T. Hewlet. Lancet, January 11, 1896.

By experiments on the mucous membrane of the dorsal wall of the pharynx, Thomson and Hewlet found that a particle of wet cork was conveyed at the rate of 25 mm. or one inch per minute.

Wurtz and Lermoyez have published researches on the action of nasal mucus upon the anthrax bacillus and they hold that it exerts a bactericidal influence on all or nearly all pathogenic agents in different degrees of intensity.

Thomson and Hewlet corroborate this to the extent of saying that the nasal mucus "is possessed of the important property of exerting an inhibitory action on the growth of micro-organisms." Their experiments upon each other were very ingenious and highly interesting. They were able to demonstrate that in ordinary air of the laboratory under the conditions observed, 29 moulds and nine bacterial colonies developed; whereas after passing through the nose the air contained only two moulds and no bacteria.

On another occasion they found in nine liters of laboratory air, six moulds and four bacterial colonies, while the same quantity of air after passing through the nose exhibited one mould and no bacteria. Thus they show that practically all, or nearly all, the microorganisms of the air are arrested before reaching the naso-pharynx; probably a majority are stopped by the vibrissæ at the very entrance to the nose and those which do penetrate as far as the mucous membrane are rapidly eliminated. They state that the nasal mucus is an unfavorable soil for the growth of organisms and in this it is aided by the ciliated epithelium and lacrymal secretion.

COMPOSITION OF EXPIRED AIR

Dr. D. H. Bergey in 1893-4 made some experiments in the Laboratory of Hygiene of the University of Pennsylvania under the provisions of the Hodgkins Fund of the Smithsonian Institution which are pertinent to this subject.¹ These were conducted to ascertain whether the condensed moisture of air expired by men in ordinary, quiet respiration, contains any particulate organic matters, such as micro-organisms, epithelial scales, etc. The expired breath was conducted through melted gelatin contained in a half liter Erlenmayer flask, for twenty to thirty minutes. The gelatin was then hardened

¹ J. S. Billings, S. Weir Mitchell, and D. H. Bergey: The Composition of Expired Air and Its Effects on Animal Life. Smithsonian Contributions to Knowledge, Vol. 29 (Publication 989), Washington, 1895. This investigation seemed to disprove the renowned experiments of Brown-Séquard and D'Arsonval in 1887.

by rolling the flask in a shallow basin of ice-water, thus distributing the culture in a thin layer over the bottom and sides of the flask.

These cultures were kept under observation for 20 to 30 days. About 150 cc. of gelatin was used for each experiment. The glass tube (b) of the apparatus used, which served for the entrance of the expired air, was inserted far enough to just impinge on the fluid culture medium in the flask, so that the air produced a slight agitation of the fluid in passing through the apparatus. The tube of entrance (b) is provided with a bulb-shaped enlargement which serves to retain any saliva that may flow into the tube. The tube (c) is closed with cotton so as to prevent the entrance of microorganisms from this side of the apparatus, and a similar cotton plug is inserted in b when the apparatus is not in use.

Apparatus for Determining the Presence of Bacteria in Expired Breath.

It was found that the organisms developed in the cultures were all of the same character—a small yellow bacillus, common in laboratory air. When special precautions were taken to sterilize the apparatus with dry heat for an hour previous to introducing the gelatin, besides the subsequent sterilization of the gelatin, the results were negative—no growths developed. If, after standing in the working room for several days, it was found that the culture medium was sterile, the expired breath was then conducted through the apparatus and the culture was kept under observation (for the specified time in the table) at the room temperature. The nature of the organisms that developed in the first two experiments, and the absence of any growth in the others, make it probable that they developed from spores that survived the fractional sterilization of the culture medium. It is improbable that they were carried in the expired breath. Dr. Bergey also made a careful examination of the fluid condensed from the expired air with high powers, both in hanging drops and in six dried and stained preparations, but nothing resembling bacteria or epithelium was found.

The conclusion was reached that there is no evidence of a special

toxicity of the expired air. Billings, Mitchell, and Bergey say, in the monograph referred to, that the injurious effects of such air observed appeared to be due entirely to the diminution of oxygen, or the increase of carbonic acid, or to a combination of these two factors. They consider that the principal, though not the only, causes of discomfort to people in crowded rooms are excessive temperature and unpleasant odors.

We shall see, further on, that later studies show that the relative proportions of oxygen and carbonic acid are not *per se* such important factors.

Dr. Milton J. Rosenau, professor of preventive medicine and hygiene in Harvard Medical School, said in his recent address on "Ether Day" at the Massachusetts General Hospital:

One of the fallacies that has fallen is the relation of the air to the spread of infection. The virus of most communicable diseases was believed to be in the expired breath, or exhaled as emanations of some sort from the body. These emanations were said to be carried long distances—miles—on the wind. The easiest, and therefore the most natural way, to account for the spread of epidemic diseases was to consider them as air-borne. Nowadays the sanitarian pays little heed to infection in the air except in droplet infection, and the radius of danger in the fine spray from the mouth and nose in coughing, sneezing and talking is limited to a few feet or yards at most. The more the air is studied the more it is acquitted as a vehicle for the spread of the communicable diseases.

It was a great surprise when bacteriologists demonstrated that the expired breath ordinarily contains no bacteria. Most micro-organisms, even if wafted into the air soon die on account of the dryness, and especially if exposed to sunshine. The relation of the air to infection is nowhere better illustrated than in the practice of surgery. At first Lister and his followers attempted to disinfect the air in contact with the wound by carbolic sprays. Now the surgeon pays no heed to the air of a clean operating room, but ties a piece of gauze over his mouth and nose, and also over his hair, to prevent infective agents from falling into the wound from these sources.

How complicated this entire subject is we can readily see from the review ² made by Dr. Henry Sewall, of Denver, of recent experimental studies by Zuntz, Haldane, Rosenau and Amoss, Heymann, Paul, Ercklentz and Flügge, Leonard Hill and others. This review deserves to be read carefully. It sums up our latest knowledge and leads to some surprising conclusions. After describing the Black Hole of Calcutta, in which one hundred and forty-six Europeans

¹ Boston Medical and Surgical Journal, November 6, 1913.

² On What do the Hygiene and Therapeutic Virtues of the Open Air Depend? by Henry Sewall, Ph. D., M. D. (Journ. Amer. Med. Ass., Jan. 20, 1912).

were confined on the night of June, 1756, and only twenty-three survived, he shows that numberless observations have all led to the one conclusion that prolonged confinement in close air tends to lower vitality and increase the incidence of certain infections, especially pulmonary tuberculosis. However, it was found many years ago that animals and men can tolerate without distress an increase of carbon dioxide in the air far beyond any concentration which it is likely to acquire under the worst conditions of crowding, provided the oxygen tension is maintained at a high level. Zuntz and Haldane and his associates show that the normal excitement of the respiratory nerve-center depends on the accumulation within it of carbon dioxide, a waste product, which it is a prime object of respiration to remove. Sewall refers to Brown-Séquard and D'Arsonval's work and, as bearing on it, the very recent work of Rosenau and Amoss.1 These workers condensed the vapor of human expiration and injected the liquid into guinea-pigs. No symptoms followed this procedure. But after an appropriate interval of some weeks a little of the blood-serum from the person supplying the moisture was injected into the same animals. The outcome was an unmistakable anaphylactic reaction. According to current beliefs the result showed that the expired air must have contained proteid matter which sensitized the pigs toward proteids in the blood of persons from whom the first proteid was derived. The authors offer, as yet, no opinion as to whether the proteid in the expired air possesses hygienic significance.

Prof. Sewall finds a suggestive analogy in the physiologic relations of carbon dioxide which it is one of the chief objects of respiration to remove. Added to air in sufficient percentage it is deadly to animals, yet so far from its being useless in the body, Haldane and Priestley found that it must form four to five per cent of the alveolar air for the maintenance of normal respiratory movement, and a considerable lowering of its tension in the body would be followed by speedy death. Boycott and Haldane note that the subjective sense of invigoration and well-being excited by cold weather is associated with a high tension of carbon dioxide in the alveolar air.² After summarizing the experiments of Heyman, Paul,

^{&#}x27;Organic Matter in the Expired Breath (Journal of Medical Research, 1911, Vol. 25, 35).

² Haldane and Priestley: The Regulation of the Lung Ventilation (Journal of Physiology, 1905, Vol. 27, p. 225).

Boycott and Haldane: The Effects of Low Atmospheric Pressure on Respi-

and Ercklentz in Flügge's laboratory which seem to show that, in people both well and sick, chemical changes in the character of the air in inhabited rooms exercise no deleterious effect on the health of the dwellers Dr. Sewall reviews Leonard Hill's work which shows that the motion of the air in the experimental chamber by means of electric fans almost entirely annulled the sense of discomfort.2 He then cites the astonishing experiments of F. G. Benedict and R. D. Milner who kept a subject for twenty-four hours in a chamber, the air of which held an average carbon dioxide content of 220 parts per 10,000 or over seventy times the normal, together with a reduction of oxygen to less than 19 per cent. The humidity was kept down and the temperature held uniform. The subject of the experiment suffered no discomfort.

Boycott and Haldane, referred to above, express the opinion that "the alveolar carbon dioxide tends to a lower level in warm weather" and that this diminution in the alveolar carbon dioxide is associated with a feeling of warmth of a rather unpleasant kind rather than with any absolute point on the thermometer; they hold that the rise in the carbon dioxide tension is associated with the general exhilaration and stimulation produced by cold air.

And now comes Leonard Hill, the physiologist, of London, who with his staff at the London Hospital conducted several noteworthy experiments which he described before the Institution of Heating and Ventilating Engineers in March, 1911.4 In view of the fact that

ration (Journal of Physiology, 1908, Vol. 37, p. 359). See also Preventive Medicine and Hygiene, by Milton J. Rosenau, M. D., Chapter 4, D. Appleton & Co., 1913. Prof. Rosenau's work contains the latest word on the bacteria and poisonous gases in the air, ventilation, etc.

Thomas R. Crowder, M. D.: A Study of the Ventilation of Sleeping Cars (Archives of Internal Medicine, January, 1911, and January, 1913). This claborate investigation is illustrated by numerous diagrams showing the carbon dioxide content in the air from the aisles, the upper and lower berths and smoking rooms.

¹ Zeitschrift f. Hygien. u. Infectionskr., 1905, Vol. 59.

² Leonard Hill: The Relative Influence of Heat and Chemical Impurity of Close Air (Journal of Physiology, 1910, Vol. 41, p. 3).

See also Leonard Hill, Martin Flack, James McIntosh, R. A. Rowlands. H. B. Walker: The Influence of the Atmosphere on our Health and Comfort in Confined and Crowded Places, Smithsonian Miscellaneous Collections, Vol. 60, No. 23, p. 96 (Publication 2170), 1913.

³ Experiments on the Metabolism of Matter and Energy in the Human Body, Bulletin 175, U. S. Dep. Agriculture Office Experiment Station, 1907.

Journ. Amer. Med. Ass., April 8, 1911.

the London health authorities insist that in factories the percentage of carbon dioxide must not rise above the usual amount allowed, say ten parts in ten thousand, he remarks that the regulations do not prescribe any limitations of the wet-bulb temperature adding that while carbon dioxide does not do any harm whatever a wet-bulb temperature of 75° F. is very bad and ought not to be tolerated in any factory. All the current teaching of the hygiene of ventilation runs on the subject of chemical purity of the air; but according to Prof. Hill the essential thing in ventilation is heat, not chemical purity. It does not matter if there is I per cent more carbon dioxide and I per cent less of oxygen. In the worst ventilated rooms there is not I per cent less oxygen. The only effect of an excess of carbon dioxide is to make one breathe a little more deeply. A much higher amount has to be attained to have any toxic effect. As to organic impurities derived from respiration there is no physiologic evidence of their toxicity or that they are of any importance except as an indicator of the number of bacteria in air. The way to keep air best from the physiologic point of view is shown by the following experiment performed by Hill at the London Hospital: Into a small chamber which holds about three cubic meters he put eight students and sealed them up air tight. They entered joking and lively and at the end of 44 minutes the wet bulb temperature had risen to 83° F. They had ceased to laugh and joke and the dry bulb stood at 87° F. They were wet with sweat and their faces were congested. The carbon dioxide had risen to 5.26 per cent and the oxygen had fallen to 15.1 per cent. Hill then put on three electric fans and merely whirled the air about just as it was. The effect was like magic; the students at once felt perfectly comfortable, but as soon as the fans stopped they felt as bad as ever and they cried out for the fans. These and other experiments related, according to Hill, show that all the discomfort from breathing air in a confined space is due to heat and moisture and not to carbon dioxide. Even after five repetitions of the experiment there were no aftereffects, such as headache. The obvious inference is that the air must be kept in motion to avoid bad effects. The open air treatment of disease is not altogether a matter of fresh air, but the constant cooling of the body by the circulation of air which makes us eat more and promotes activity. This leads to the general strengthening of the body because the blood is not only circulated by the heart but by every muscle in the body.

There cannot be efficient circulation without constant movement

and activity. If there is constant cooling by ventilation, then a person is kept more active and the general health is improved.

As Dr. M. J. Rosenau said in his recent address:

Thus our entire conception of ventilation has changed, owing to the fact that we now do not believe that fresh air is particularly necessary in order to furnish us with more oxygen or to remove the slight excess of carbon dioxide. It is plain that it is heat stagnation that makes us feel so uncomfortable in a poorly ventilated room rather than any change in the chemical composition of the air. It has been made perfectly clear from the work of Flügge that one of the chief functions of fresh air is to help our heat-regulating mechanism maintain the normal temperature of the body. It is necessary to have some 2,000 to 3,000 cubic feet of air an hour to maintain our thermic equilibrium—just the amount that was formerly stated to be necessary to dilute the carbon dioxide and supply fresh oxygen. The practice of ventilation, therefore, has not altered so much as has our reason for attaching importance to clean, cool, moving air, which has completely changed.

The foregoing résumé is perhaps not complete without mentioning the recent work of Prof. Yandell Henderson, of Yale University, who has brought forward his "Acapnia" theory (acapnia meaning diminished carbon dioxide in the blood). He says:

We have really at the present time no adequate scientific explanation for the health-stimulating properties of fresh air and the health-destroying influence of bad ventilation. . . . The subject needs investigating along new lines rather than a rehearsal of old data.

Dr. Crowder's recent experiments also furnish additional evidence against the theory that efficient ventilation consists in the chemical purity of the air, in its freedom from a toxic organic substance. Even were a poisonous protein substance present in the expired air—a fact no experimenter has yet been able to demonstrate—the human organism under every-day conditions is apparently well able to adjust itself to the reinhalation of this hypothetic substance, since a considerable quantity of the expired air is always taken back into the lungs.

We consider that experiments like these demonstrate most valuable and practical truths and that is our excuse for introducing them so particularly in this place. When we consider that the average man exhales from 9,000 to 10,800 liters of air in twenty-four

¹ Boston Medical and Surgical Journal, Nov. 6, 1913.

² Trans. Fifteenth International Congress on Hygiene and Demography, Vol. 7, p. 622.

⁸ Crowder, Thomas R.: The Reinspiration of Expired Air (Arch. Int. Med., October, 1913, p. 420).

⁴ Editorial in Journ. Amer. Med. Ass., Nov. 29, 1913. See also page 108.

hours' it would indeed be a terrible situation if it were true that the expired breath could convey pathogenic or other bacilli. The millions of bacilli which we take into the air passages are arrested in the air passages and for the most part mercifully destroyed by the secretion. In any event we have the assurance that the expired air is free from micro-organisms. With reference to tuberculosis this means that if healthy persons are exposed only to the expired air of tuberculous subjects no infection can occur. Only through bacilli contained in the sputum or in tiny drops of moisture coughed by the patient is the disease communicated; and it is further probable that, as in the case of other infectious organisms, when once received into the nose and mouth and upper air passages, they quickly lose their activity or are soon extruded. (See page 13 et seq.)

ATMOSPHERIC IMPURITIES

In view of these facts it would scarcely seem necessary to state that for the treatment of all respiratory diseases and especially for the treatment of infections such as tuberculosis, which invades the larynx and the lungs, or for the treatment of patients whose throats and lungs owing to other infections, such as tonsillitis, pneumonia, or influenza, may be specially susceptible, no city air can be considered favorable. It is our duty to provide as nearly as possible air with a very low bacterial content such as may be obtained in forests or in the neighborhood of the seashore.

COAL AND SMOKE

Aside from the presence of bacteria in the air of cities and towns there are other impurities which are of great disadvantage to tuberculous patients. The prevalent use of soft, or bituminous coal in Great Britain and America, especially in manufacturing centers, undoubtedly shortens human life and hastens many a consumptive to his end. Volumes have been written on this subject and most valuable contributions have been made by Dr. J. B. Cohen, of Leeds, Mr. Francis A. R. Russell, Henry de Varigny and others, published in connection with the Hodgkins Fund.³

¹ About 380 cubic feet which is equal to a volume 7½ feet (220 cm.) in height, width, and thickness.

² It has been calculated that in a town like London or Manchester, a man breathes in during ten hours 37,500,000 spores and germs. F. A. R. Russell.
³ See Smithsonian Miscellaneous Collections, Vol. 39, 1896 (Publications 1071, 1072, 1073).

See also "The Influence of Smoke on Acute and Chronic Lung Infections," by Wm. Charles White, M.D., and Paul Shuey, Pittsburg. Trans. Amer. Climatological Association, 1913.

Dr. William Charles White and Paul Shuey, of Pittsburgh, have recently made a study of the influence of smoke on acute and chronic lung infections, selecting pneumonia and tuberculosis as a cause of death in Pittsburgh, St. Louis, Portland, Oregon, St. Paul, Cincinnati, Chicago, Philadelphia, New York, New Orleans, Richmond, Cleveland, San Francisco, Indianapolis, Minneapolis, Memphis, Boston, Mobile, and Los Angeles. They plotted the number of smoky days per year, 1907 to 1912, with the smokiest cities first and so on to the least in the order indicated above. The mortality for white population and total population and other data are noted on the accompanying chart. This study is in some respects unsatisfactory, because of the difficulty of getting data as to smoky days. The conclusion was that if we except Portland and St. Paul there is a general tendency of the tuberculosis death rate to rise as the number of smoky days in the city decreases. On the other hand, it will be seen that there is a general tendency for the number of deaths from pneumonia to fall as the number of smoky days in the city decreases. In this instance, also, Portland, St. Paul, and Boston must be excepted. All this needs confirmation.

It is a matter of common knowledge that coal miners are liable to a disease called fibrosis, anthracosis, or miners' consumption, in which the lungs receive and retain coal dust, which penetrates every nook and cranny of the lungs and adds one more element of danger to a most hazardous occupation. But we have it on the authority of Sir Frederick Treves that he had seen the lungs of many persons, who had lived in London, which were black from their surface to their innermost recesses. Such a condition, in his opinion, not only made it more difficult to resist disease, but started disease, and it was entirely due to dirt and soot inhaled. The black fog of London owes its color to coal smoke, which gives it its filthy, choking constituents, and kills people by thousands. Experiments showed that during a bad fog six tons of soot were deposited to the square mile.'

¹ Some six hundred years ago, the citizens of London petitioned King Edward I to prohibit the use of "sea coal." He replied by making its use punishable by death. This stringent measure was repealed, however, but there was again considerable complaint in Queen Elizabeth's reign, and the nuisance created by coal smoke seems to have been definitely recognized at this period. Since this time there has been continual agitation, together with much legislation, both abroad and in this country. In the seventeenth century, King Charles II adopted repressive measures in London, and in the present century anti-smoke crusades have been frequent. In fact, the smoke problem will undoubtedly continue to demand attention until it is either

The number of smoky days are noted, for each year (heavy line). Total death-rates (dotted line). Age of settlement and population per acre noted Death-rates per 10,000 for Pneumonia and Tuberculosis in Eighteen Cities, 1907-1912.

The Lancet undertook by means of a system of gauges of its own design to estimate the annual deposit in London of all adventitious matter from the atmosphere. In the city proper it was calculated to be nearly five hundred tons to the square mile or about four and a half pounds per acre each day. Were it mere dirt it would not be so serious, but it is charged with gases and fluids of a deleterious character such as sulphates, chlorides, ammonia, and carbon that is more or less oily and tarry. One of the experts employed by the Meteorological Council in connection with the County Council of London, found that the sulphur contents of the coal ranged from one to two per cent and that from half a million to a million tons of sulphuric acid were diffused in the air every year. The loss to property from this erosive influence he estimated at about five and a half million pounds sterling. The effect upon health was a more elusive question, but stress was laid on the rise in death rate during foggy weather in which coal smoke plays a prominent part. Owing to the activity of the Coal Smoke Abatement Society, under the presidency of Sir William Richmond, atmospheric conditions are greatly improved. and it is claimed that there is a steady diminution in the number and density of the black fogs.

In an article on London as a Health Resort and as a Sanitary City, by S. D. Clippingdale, M. D., Trans. Royal Society of Medicine, February, 1914, there is an interesting historical account of London air and fog, with a bibliography.

CARBON DIOXIDE

Parallel conditions are observed in cities like Leeds, Liverpool, Manchester, and Glasgow, and in less degree in cities like Pittsburgh, Cincinnati, Chicago, Cleveland, and St. Louis, during periods of comparatively calm, and of heavy and humid atmosphere. Egbert' states that "it has been calculated that for every ton of coal burnt in London something like three tons of carbon dioxide are produced," and as the city's coal consumption is over 30,000 tons per diem, its atmosphere must receive the enormous daily contamination of about 300 tons of soot and 90,000 tons of carbonic acid every day! How important, then, the adoption of practical means to abate the smoke nuisance! Engineers assure us that such means

entirely solved by the abolishment of the use of solid fuel or by the installation of devices and methods which shall prevent the formation of smoke in furnaces, regardless of the nature of the fuel.

¹ Seneca Egbert: A Manual of Hygiene and Sanitation, Philadelphia, 1900. p. 74.

are perfectly feasible and economical. It does not need an engineer to assure us that they are hygienic.

Prof. Charles Baskerville, of the College of the City of New York, has vigorously attacked the problem of smoke and other air impurities. He shows that the sticky properties of soot are due to the tar contained in it. This tar adheres so tenaciously to everything that it is not easily removed by rain. In large manufacturing districts, particularly in those where bituminous coal is used as fuel, vegetation is blackened, the leaves of trees are covered and the stomata are filled up, thus inhibiting the natural processes of transpiration and assimilation. In addition, the soot is frequently acid and the deposition of acid along with soot is probably one of the principal causes of the early withering which is characteristic of the many forms of town vegetation.

SULPHUR DIOXIDE

Aside from the solid material which pollutes the atmosphere of cities, there are correspondingly enormous quantities of noxious gases which are equally injurious to persons with tubercular disease or other diseases of the respiratory tract. Mention has already been made of the vast amounts of carbonic acid gas generated by furnaces, not to speak of the quantities exhaled by human beings. The production of this carbon dioxide by the combustion of coal offers a definite measure of the production of sulphur dioxide. These two gases have the same origin and the measure of one is the measure of the other. Recent studies by Prof. Theodore W. Schaefer, who has made many observations of the air of Kansas City during fogs, tend to show that the presence of sulphur dioxide has an unfavorable effect on persons suffering from bronchitis, pharyngitis, pneumonia, and asthma. In January, 1902, the heavy fogs occurring in St. Louis, Missouri, caused serious injury to the throat and lungs of prominent singers and in an action brought against the city and its chief smoke inspector, it was alleged that owing to the additional presence of smoke, suffocating gases, and acid, the health of the complainant was injured. In a mandamus proceeding it was asked that the authorities be compelled to abate the smoke nuisance.

Prof. Schaefer has used the data mentioned previously as to the output of carbonic acid in London and states that he finds that at least 2,700 tons of sulphur dioxide are generated daily in that city and pass into surrounding atmosphere. This gas, after uniting with

¹ Medical Record, New York, November 23, 30, 1912.

26

the oxygen and aqueous vapor of the air, is converted into sulphuric acid.1

The presence of sulphur in coal, or in iron pyrites contained in coal, is responsible for this acid product and Prof. Schaefer believes that sulphur dioxide, being a very heavy gas, with a specific gravity of 2.25, is alone capable of creating a fog, or is at once shown when it is brought in contact with the atmosphere, from which it absorbs aqueous vapor, causing dense, heavy fumes. The dust or carbon particles, coming in contact with this acid vapor, enhance its gravity materially.

Prof. Baskerville some time ago made a number of determinations of the sulphur dioxide content of the air of New York city. Stations were established throughout greater New York city, including high office buildings, parks, subways, stations, and railroad tunnels; and very variable results, as might be expected, were obtained. The determinations may, in part, be thus summarized:

Locality	SO2 in parts in a million
Elevated portion of city, near a	
high stack	3.14
Various parks	o.84 (maximum; others negative)
Railroad tunnels	8.54—31.50
Subway	None
Downtown region	1.055.60
Localities near a railroad	1.12—8.40

In 1907, the residents of Staten Island, as well as some on Long Island, complained of the noxious nature of the air wafted over from various plants in New Jersey. This induced the Department of Health of the City of New York to investigate the air and vegetation in the vicinity of the Borough of Richmond, Staten Island, and some of the results obtained are given below by permission of the Department.

Substance	Impurity	
Air	Trace of sulphuric acid	
Air	0.0066 per cent. SO2 by weight	
Air	Trace of sulphuric acid	
Grass (three samples)	Sulphuric acid present	
Grass	0.24 per cent SO ₃	
Grass	o.70 per cent SO₃	
Leaves	0.19 per cent SO₃	
Leaves	0.28 per cent SO₃	
Soil	0.0015 per cent SO ₃	

¹Theodore W. Schaefer: The Contamination of the Air of our Cities with Sulphur Dioxide, the Cause of Respiratory Disease. Boston Medical and Surgical Journal, July 25, 1907.

These results do not really give us anything definite, as the comparative factor is absent.

Fog usually collects in the lower portions of a city, especially in depressed localities known as hollows, where it remains until dispersed by air currents. The well-known increase of mortality in cities during the continued presence of heavy fog with these additional contaminations have been recorded and commented upon for years. The heavy, suffocating, poisonous quality of sulphur dioxide is well known and has been the subject of several investigations. In general, it may be said that the chief symptoms of poisoning with sulphurous acid are those of irritation of the nucous membranes. Even in five parts in 10,000 it acts as an irritant, causing sneezing, coughing and lacrymation, bronchial irritation and catarrh (Cushny). It is also credited with causing pneumonia and Prof. Schaefer notes its power to produce asthma. Undoubtedly it would aggravate pulmonary and laryngeal tuberculosis and either delay or prevent a cure under the conditions described.

AMMONIA IN THE AIR

This gas is constantly present in the atmosphere, but in very minute quantities. Fifty years ago Boussingault and, later, Schloesing made careful investigations of this impurity of the atmosphere and devised ingenious methods of estimating its amount in air and rain water. It usually exists only in combination with carbonic or nitric acid; very little is free. Water absorbs it freely and it has been estimated that in France the annual rainfall brings to the earth in the form of nitrogen nearly 5 kilograms per acre. The presence of ammonia indicates organic putrefaction. Its amount does not usually exceed a very few parts per million. It is usually perceptible, as we all know, in and about stables.

As far as any relation to tuberculosis is concerned, ammoniacal air has for us only a remote interest. At one time it was strongly advocated as a cure for pulmonary consumption and perhaps some historic details may be of interest here.

Dr. Thomas Beddoes, of Loudon, published in 1803, "Considerations on a Modified Atmosphere in Consumption Cases." and strongly advocated residence in a cow stable for such cases. One of his patients was Mrs. Finch, a daughter of Dr. Joseph Priestley,

¹ This accords with the conclusions of W. C. White and Paul Shuey, loc. cit.

The relation of Sea Fog to Tuberculosis is considered in the next chapter, page 52.

famous for his epoch-making discovery of Oxygen. The patient, from the description given, had a well-marked case of pulmonary tuberculosis in the second or third stage. She was placed in a stable 14 by 20 feet and 9 feet high, and her bed was in a small recess a few inches above the ground of the stable, where two or three cows were kept. The temperature was maintained at 60° to 70° F. Mrs. Finch remained in this cow house nearly all the time from the autumn of 1799 until the spring of 1800. In a letter, dated August 15, 1800, the patient wrote, "I am happy in being able to say that my chest continues perfectly well; and from the difference of my feelings now, and some years back, I am more than ever a friend of the cows. I avoid colds and night air; and by rides in the country am anxious to brace myself against winter and the necessity of a sea voyage."

OXYGEN FOR TUBERCULOUS PATIENTS

Shortly after the discovery of oxygen, physicians were stimulated to try the effect of various gases in the treatment of phthisis. Fourcroy and Beddoes both observed the effects of the inhalation of oxygen and found that it accelerated the pulse and respiration, and, as they believed, increased inflammatory action so that they concluded that its effect was prejudicial. Beddoes held that in phthisis there is an excess of oxygen in the system and consequently, that free air was injurious to the patient. He says in the essay quoted previously: "As it seemed to me hopeless to propose residence in a cow house, I advised that the patient should live during the winter in a room fitted up so as to ensure the command of a steady temperature. This advice was followed. Double doors and double windows were added to the bed room. The fire place was bricked up round the flue of a cast iron stove for giving out heated air." What a contrast to the fresh air cure of the present day! But the doctor persisted in his plan of treatment until the patient died.

The amount of oxygen present in the atmosphere, 20.938 per cent, is precisely adapted to the needs of animal life and the same proportion of oxygen is preserved in the atmosphere everywhere, without regard to altitude. It has been found that animals die if the ratio of oxygen is artificially decreased by as much as twenty-five per

¹ Thomas Beddoes: Observations on the Medical and Domestic Management of the Consumptive. American edition, Troy, 1803, p. 42.

² Analyses by Gay-Lussac of Air Collected at 7,000 meters; and observations by Dumas and Boussingault.

cent; but Paul Bert also showed that too much oxygen was equally prejudicial to life and, indeed, poisonous, animals dying in a superoxygenated atmosphere as soon as their blood contains one-third more than the normal ratio of oxygen, because in such an atmosphere the hemoglobin of the red blood corpuscles is saturated with oxygen—a fact which never occurs under normal conditions—and a proportion of this gas then dissolves in the serum of the blood. Here lies the danger, for the tissues cannot withstand the presence of free, uncombined oxygen and death follows. The question immediately arises: Why do the tissues require combined oxygen and why does free oxygen kill them? No one knows. Henry de Varigny, who deals with this subject with reference to ærobic and anærobic organisms deals with this curious fact and acknowledges our limited knowledge on this point. He states, however, that while a certain increase in the ratio of oxygen results in death, lesser increases of a temporary character may be beneficial. Every poison kills, doubtless, but there are doses which not only do not kill, but even confer benefit and improve health.

Lorrain Smith has shown that oxygen at the tension of the atmosphere stimulates the lung-cells to active absorption; at a higher tension it acts as an irritant, or pathologic stimulant, and produces inflammation.²

As far as the respiratory processes are concerned the respiration of pure oxygen takes place without disturbing them for even in an atmosphere of pure oxygen animals breathe as though they were respiring normal atmospheric air.³

Sir Humphrey Davy believed that when pure oxygen was inspired there is no more chemical change induced than occurs when atmospheric air is breathed; in other words, let the vital actions be a constant quantity, the addition of oxygen to the inspired air does not materially increase vital transformation. Fifty years ago there was great confusion in the minds of otherwise intelligent observers and false reasoning led them into grave errors. Those who, like Beddoes, believed that there was too much oxygen in the system held that the inhalation of air containing carbonic acid was the proper plan of treatment and this theory of hyper-oxidation was revived

¹ Paul Bert: La Pression Barometrique, 1878.

See also monograph by F. G. Benedict quoted on page 31.

² Lorrain Smith, in Journal of Physiology, 1899, Vol. 24, p. 19.

³ An American Text Book of Physiology, Vol. 1.

by Baron von Liebig, who recommended that in phthisis the respiratory action should be lessened.¹

The Boston Nutrition Laboratory of the Carnegie Institution of Washington has undertaken a most painstaking series of investigations bearing on this subject. They include an examination of the comparative oxygen-content of uncontaminated outdoor air under all conditions as to wind direction and strength, temperature, cloud formation, barometer, and weather. In addition, samples of air were collected on the Atlantic Ocean, on the top of Pike's Peak, in the crowded streets of Boston, and in the New York and Boston subways. The results of the analyses of uncontaminated outdoor air showed no material fluctuation in oxygen percentage in observations extending over many months and in spite of all possible alterations in weather and vegetative conditions. The average figures are 0.031 per cent of carbon dioxide and 20.938 per cent oxygen. The ocean air and that from Pike's Peak gave essentially similar results.

The extraordinary rapidity with which the local variations in the composition of the air are equalized is accentuated by the observations on street air in the heart of the city, where the contaminating factors might be expected to be of sufficient magnitude to affect perceptibly the analytic data. Only the slightest trace of oxygen deficit is shown, with a minute corresponding carbon-dioxide increment. Observations such as these tend to demonstrate the extent of the diffusion of gases and the establishment of equilibrium by aircurrents.

Most unexpected are the figures in regard to the extremely small extent to which the air was vitiated in the modern "tube" or subway, even during "rush" hours. There was, on the average, a fall of 0.03 per cent in oxygen accompanied by a rise of 0.032 per cent in the carbon dioxide. Professor Benedict points out that while the measurement of carbon dioxide has been taken as an index of good or bad ventilation, the fact that the proportion of oxygen is actually lowered by an increase in the carbon dioxide has never before been clearly demonstrated. As a result of this, the determination of the content of carbon dioxide in the air, which can be made with ease and accuracy, suffices to establish the approximate percentage of oxygen. For every 0.01 per cent increase in the atmospheric carbon dioxide one may safely assume a corresponding decrease in the percentage of oxygen. Aside from minor fluctuations ex-

¹ See Edward Smith: Consumption, Its Early and Remediable Stages. Blanchard and Lea, Philadelphia, 1865.

plained above, it may now truly be said that "the air is a physical mixture with the definiteness of composition of a chemical compound."

Since the introduction ² into medical practice of oxygen compressed in cylinders its use has been tried in tuberculous cases, but no satisfactory results have been obtained and its use is discontinued, except, so far as we know, in the hands of charlatans.

The inhalation of oxygen gas may not per se exert any curative action on a tuberculous lung, but that fact should not lead us to the conclusion that the voluntary respiration of an increased quantity of air is not beneficial. It is stated that the air in the central parts of the lungs is richer in carbonic acid than that found in the larger tubes and hence deep inspiration followed by deep expiration causes a larger amount of the air richer in carbonic acid, to be exhaled. From this the conclusion is drawn that increased chemical change will result, for if the carbon dioxide be removed from the air cells its place will be filled by quantities of the same gas which will escape from the blood. Furthermore, the removal of carbon dioxide from the blood facilitates and makes possible those metabolic changes which with a supply of suitable food improve nutrition.

Nowadays we often speak of oxygen as synonymous with atmospheric air and in this sense we give it a prominent place in pulmonary therapeutics. We are tempted to reproduce the placard of an old boot-maker and chiropodist of fifty years ago which read:

The best medicine! Two miles of oxygen three times a day. This is not only the best, but cheap and pleasant to take. It suits all ages and constitutions. It is patented by Infinite Wisdom, sealed with a signet divine. It cures cold feet, hot heads, pale faces, feeble lungs and bad tempers. If two or three take it together it has a still more striking effect. It has often been known to reconcile enemies, settle matrimonial quarrels and bring reluctant parties to a state of double blessedness. This medicine never fails. Spurious compounds are found in large towns; but get into the country lanes, among green fields, or on the mountain top, and you have it in perfection as prepared in the great laboratory of nature.

Before taking this medicine . . . should be consulted on the understanding that corns, bunions, or bad nails, prevent its proper effects.

¹ See the recent monograph by Benedict, F. G.: The Composition of the Atmosphere with Special Reference to Its Oxygen Content, Carnegie Institution of Washington, Publication 166, 1912. Review in Journ. Amer. Med. Ass., Jan. 25, 1913.

² The late Dr. Andrew H. Smith, of New York, was the first in the United States to use Oxygen in medical practice, 1860. "Oxygen gas as a Remedy in Disease," A. H. Smith, 1870.

The old London boot-maker had more wisdom than most of the doctors of his time.

CHAPTER III. INFLUENCE OF SEA AIR; INLAND SEAS AND LAKES.

SEA VOYAGES

The value of sea air in tuberculosis has been discussed *pro* and *con* for ages and, like the tide, there is an ebb and flow of sentiment regarding its value in the treatment of tuberculosis. Undoubtedly there is, at present, a stronger belief in the efficacy of sea air in the various forms of tuberculosis than at any previous time. This is especially true as regards tuberculosis of the bones, the tuberculosis of children and in the important class of cases termed fibroid phthisis.

Aretaeus, about 250 B. C., recommended sea voyages for the cure of consumption, and 300 years later Celsus advocated voyages from Italy to Egypt, if the patient were strong enough. Celsus was a layman whose learning was truly encyclopedic, but only his medical writings have survived. When the Roman sufferer from tuberculosis was not able to make the sea voyage to Egypt he was sometimes advised to pass a large portion of his time sailing on the Tiber.

At Kreuznach, Ems, and other continental resorts, salt inhalations are given to patients with scrofulous and chronic bronchial affections. Instead of trusting to sea breezes the patients are taken to halls where saline particles are present in a higher precentage than they can ever be at the sea side. They inhale the salt-laden air and make use of pulverization apparatus. Hours are spent in the open air near the "evaporating fences" so as to inhale salt air at interior stations. At Ems this treatment is carried out in pneumatic chambers capable of holding ten people in compressed atmosphere for about 134 hours.

Sea air is of acknowledged purity as to micro-organisms, dust and adventitious gases. As previously remarked, there is at sea a maximum of ozone and a minimum of all foreign deleterious substances. (See page 9.) Without considering, as yet, the amount of watery vapor in the air of the ocean and other features of ocean air such as its movement and temperature, we recognize some physical contents such as a minute quantity of sodium chloride, iodine and bromine as characteristic of sea air when contrasted with air from any other

¹" Opus est, si vires patiuntur, longa navigatione, coeli mutatione, sic ut densius quam id est, ex quo discedit aeger, petatur; ideoque aptissime Alexandriam ex Italia itur." Celsus, De Med. lib. 111, Cap. 22.

STORM AT BLACKPOOL ENGLAND. SHOWING HOW SALINE PARTICLES ENTER THE ATMOSPHERE Photographs by Courtesy of Dr. Leonard Malloy

locality. The wind carries aloft fine particles derived from the crests of the waves and this saline matter from sea water and foam is constantly present near the surface and is carried for miles inland. It is well known that plants near the seashore have a perceptible coating of saline matter which modifies their growth.

As far as the present subject is concerned we have to deal with the influence on the tuberculous processes exerted by a marine climate. This can be obtained by undertaking sea voyages or by a residence on islands, or on the seaboard.

Ocean voyages were formerly strongly advocated as a means of cure in tuberculosis and were given an extended trial especially by English physicians. The constant commercial intercourse between England and her possessions all over the world made the practice easy and the results have been carefully weighed. Before the days of steam the typical ocean voyage from London to China or India involved vastly different conditions, as to time, route and accommodations. Some features will always be the same. Seasickness, the confined air of cabins, storm and wet will remain to harrass and terrify the traveler. But the clipper ships of the past are now, for the most part, doing duty as coal barges and the steam "tramp" and ocean liner carry the cargoes of the world.

After ruling out the tramps, cattle ships, and the coasting schooners, we have left a few sailing vessels still engaged in the East India trade and the fast liners. Modern systems of ventilation and cold storage have corrected some of the great disadvantages of the past and the presence of competent surgeons on board all the larger passenger steamers make the trip comparatively safe for a tuberculous patient if the necessity arises for him to make the voyage. But as a strictly therapeutic measure such trips are not to be recommended and in this we are supported by nearly all good authorities.²

¹Two illustrations from a storm at Blackpool, England, are supplied by the courtesy of Dr. Leonard Molloy.

²Huggard, A., Handbook of Climatic Treatment, London, 1906, says: "Sea voyages were formerly in great repute for persons with phthisis; but it is now recognized that, except in certain well-defined instances they generally do harm. Only slight or mild cases without fever and without active symptoms, are likely to benefit. The patients most suitable for a sea voyage are those in whom the disease has become partly or entirely arrested." Dr. Burney yet doubts whether phthisis at any stage is benefited by ocean travel. Prof. Charteris, of Glasgow, approves of a sea voyage in the early stage of phthisis in a young person, but after that stage all experience testifies that degeneration proceeds more rapidly on sea than on shore and the patient, if he reaches land, only does this to find a grave far away from the surroundings of friends and home.

Dr. W. E. Fisher, for many years surgeon to the Pacific Mail Steamship Co., while observing that patients affected with chronic diseases, such as phthisis, dyspepsia, etc., are not so liable to seasickness as others, states that a large percentage of tuberculous patients stand the sea voyage badly. Dr. Fisher's experience relates to the trip from New York to San Francisco by way of Panama. During the first part of the voyage until the Bahama Islands are reached, the invalid experiences bracing weather. From that point to the Isthmus and thence up the coast during the long voyage of three weeks or more, a distance of nearly three thousand miles, the temperature averages 90° in the shade and on many days rises as high as 95° or 96° F. This occurs during the winter months and is the direct cause of deaths on the voyage or shortly after arrival on the California coast.

Dr. R. W. Felkin, of Edinburgh, says: "Fifteen years ago I used to advocate sea voyages in my lectures on Climatology in Edinburgh, with great confidence; now I am more cautious. I do not send phthisical patients to sea as I once did. The risk of spreading infection is, to my thinking, too serious to be incurred. I well remember once sending two sisters to Australia; the elder suffered from phthisis; the younger was healthy. The elder certainly did gain some temporary benefit, but the younger sister and also a cabin companion became infected, and all three girls were in their graves within a year of their return to this country. I am sure that occupying a joint cabin as they did caused the mischief."

Dr. F. Parkes Weber, of London, takes a more hopeful view.² He says that sea voyages are often useful in the milder and quiescent forms of pulmonary tuberculosis, provided the patient's general condition be such as otherwise to fit him for life on shipboard. "Long voyages are to be preferred to all other methods of treatment in the case of male patients who have a taste for the sea, who are strong physically, or who possessed an originally strong constitution and were infected by 'chance' or when weakened by overwork, worry, improper hygienic conditions, or acute diseases."

In pulmonary tuberculosis complicated by syphilis, or syphilitic phthisis, as it was formerly designated, a marine climate seems to be particularly suitable.³

¹ Journal of Balneology and Climatology, January, 1906.

² F. Parkes Weber: System of Physiologic Therapeutics, Vol. 3, p. 87, Philadelphia, 1901.

⁸ See Roland G. Curtin, Trans. Amer. Climatological Ass., Vol. 4, p. 31.

The vicissitudes of sea-travel, the narrow cabins and the difficulty of obtaining a suitable diet, even such common requisites as milk and eggs, should be enough to condemn this plan. Tuberculosis patients ought not to travel more than is absolutely necessary. Imagine the bacteriological condition of a consumptive's stateroom, for instance, at the end of a month's voyage! What sea-captain or steward would ever put such a cabin into a sanitary condition for the next passenger?

The author has some experience of life at sea under both sail and steam, although he has never taken very prolonged voyages. Taking into account the character of the food supply and the necessity of at least sleeping in small cabins and probably spending days in them, with uncertain medical attention; and, besides this, the dangers of various kinds that pertain to seaports, the author feels bound to condemn sea voyages for the tuberculous in any stage.

"Non mutant morbum qui transeunt mare."

MARINE CLIMATE OF ISLANDS

It is far better for the tuberculous patient to remain on terra firma than to traverse the sea. Whatever is of value in the sea air can be obtained in islands such as Ireland, the Isle of Man, the Isle of Wight, Nantucket, the Isles of Shoals, Newfoundland, Long Island, the Bahamas, the Canaries, the Philippines, Samoa, and many other islands.

Just as in the case of sea voyages, there are concomitant influences, many of which are notoriously unfavorable, that in themselves over-balance any possible advantage from sea air. Take, for instance, the problem as it presents itself in Ireland or the Isle of Man.

Among the various countries of the world Ireland stood fourth in the order of mortality from tuberculosis, being exceeded by Hungary, Austria, and Servia. During the last thirty-five years the mortality in Great Britain has been reduced one-half among females and one-third among males but, until 1907, there had been no such fall in Ireland.

Sir John Byers, of Belfast, in his address entitled "Why is Tuberculosis so Common in Ireland?" characterized its prevalence in that country as "appalling." Among the nine causes which are assigned for this condition of affairs attention is first directed to the damp climate. An investigation of places with rather worse con-

¹The Lancet, January 25, 1908. See also Alfred E. Boyd, M. B.: Tuberculosis and Pauperism in Ireland, British Journ. Tuberculosis, July, 1908, p. 159.

ditions of climate led Sir John to say on this point: "I cannot, therefore, admit that there is much in the dampness of the atmosphere as a cause of tuberculosis in Ireland." Sir William Osler takes precisely the same ground and pointed out at the opening of the Tuberculosis Exhibit in Dublin, that Cornwall, with a much damper atmosphere than that of Ireland, was so free from the disease that consumptives were sent there. In Cardiff, Wales, with a damp climate and with the ground water in many places near the surface in the gravel and with the lower part of the town on a stiff marine clay, very retentive of moisture, the tuberculosis death rate for 1906 was only 1.20 per 1,000. On the other hand in Belfast, with a smaller rainfall (34.57 inches as against 42.43 inches) the mortality was more than twice as much, or 2.77 per 1,000. The figures for 1906 were:

	Rainfall inches	Death rate from tuberculosis per 1000
Manchester, notoriously damp, foggy and smoky		1.82
Liverpool		1.82
London		1.42
Cardiff, Wales	42.81	1.20
Bolton, England	42.43	1.11
Belfast, Ireland	34.57	2.77
Cork		4.53
Dublin, Ireland	27.73	2.91
North Dublin, Ireland		4.70

After taking up in turn dampness of soil, emigration as a cause for tuberculosis, the asserted susceptibility of the Irish to tuberculosis, poverty and social position, food and drink and industries, and after weighing them carefully they were all discarded as insufficient causes of this mortality. The prime cause was declared to be want of Sanitary Reform and the prevalent domestic or home treatment of the advanced cases of pulmonary tuberculosis.

Since 1907 an encouraging decline in the mortality from tuberculosis has been noted. Whereas the rate for both sexes throughout Ireland was 273.6 per 100,000 in 1907 it had dropped by gradual stages to 215.2 in 1912. Sir William Thompson, the General Register for Ireland, justly attributes this well marked decrease during the past six years to the exertion of Her Excellency, the Countess of Aberdeen.¹

¹Trans. National Association for the Prevention of Consumption and Other Forms of Tuberculosis, 5th Annual Conference, London, August 4 and 5, 1913. See also Sir John Moore, Interstate Medical Journ., April, 1914.

Sir William shows that this decrease indicates 17,000 fewer people suffering from tuberculosis in Ireland in 1912 than there were in 1907. This corresponds to a decrease of nearly one-fifth of the total number of cases of tuberculosis. He seems hopeful that within the next few years the death-rate from tuberculosis in Ireland will not be above the average in other countries.

Undoubtedly hygienic and philanthropic measures are entitled to the credit for this marked improvement and it gives us pleasure to note in this connection the remarkable work of Her Excellency, the Countess of Aberdeen. This noble woman founded in 1907 the Women's National Health Association of Ireland and a vigorous campaign was started which soon roused the whole country to a sense of responsibility in matters of public health and, in particular, to measures necessary for the prevention and cure of tuberculosis. The influence of this organization rapidly spread and within eighteen months no less than seventy branches had been opened throughout Ireland, for the most part opened in person by their excellencies, the Lord Lieutenant and Countess of Aberdeen, and now it has 150 branches and 18,000 members.

While undertaking the reduction of infant mortality, the improvement in the milk supply and better school hygiene, the association made a systematic attack on the prevalence of tuberculosis. This included home treatment and its strong ally, the tuberculosis dispensary, on a plan similar to that originated by Sir Robert Philip, of Edinburgh; it included sanatorium treatment; and it provided special treatment for advanced cases of tuberculosis. In this phase of the work the association had the benefit of £145,623. through the provisions of the National Insurance Act. Charitable Americans also contributed handsomely toward the erection of sanatoria now comprising one thousand beds, the maintenance of dispensaries and of depots for the supply of pasteurized milk.

It is interesting to note that the Association also lent its support to the formation of an "Irish Goat Society," believing that the best way to meet the scarcity of milk experienced in many parts of Ireland is to encourage the keeping of a good breed of milking goats. Then, too, through the administration of the Laborer's Acts nearly fifty thousand cottages with garden plots ranging up to one acre have been built for rural laborers by rural sanitary authorities at an outlay of over £8,000,000.

We have cited this remarkable campaign of the anti-tuberculosis

¹ The late Mr. R. J. Collier and Mr. Nathan Straus.

movement in Ireland to show how close are its relation to the broader field of general hygiene and sanitation and to show that such work pays; and furthermore what great service one person of noble birth, by her foresight, solicitous care and untiring devotion, can initiate and carry out. As Prof. Thompson says: There is no doubt that it will rank as one of the greatest philanthropic efforts of our time.

Take the Isle of Man. This island in the Irish Sea has a population of over ten thousand and for six hundred years has been singularly free from the admixture of English, Irish, or Scotch blood. The island has a more equable climate than any other part of the British Isles. The mean annual temperature is 49° F. There is comparative absence of frost, fog, or snow. But careful records since 1880 show that the Manx tuberculosis death rate is about double that on the mainland.¹

Isle of Man	1880-82 31.63	1883-1897 25.70 per 10,000
England and Wales	1887 15.08	1893 13.07 per 10,000
	1888 14.28	¹⁸⁹⁴ 12.17 per 10,000
	1889 14.35	¹⁸⁹⁵ 12.43 per 10,000
	1890 15.0б	¹⁸⁹⁶ 11.39 per 10,000

The Bahamas and Bermuda in the Atlantic Ocean have a subtropical marine climate that experience shows to be far too relaxing and enervating for tuberculous patients.

The Philippines and all other tropical islands are likewise entirely unsuited for tuberculous patients for the same reasons.² Newfoundland, with a harsh, damp, colder air, is equally bad.

Dr. Newsholme, of Brighton, President of the Epidemiological Section of the Royal Society of Medicine, in an elaborate inquiry into the principal causes of the reduction of the death rate from phthisis in different countries, came to the conclusion that the one

¹ Charles A. Davies, M. D.: Tuberculosis in the Isle of Man (Tuberculosis, London, Oct., 1900).

² According to Dr. Issac W. Brewer, U. S. A., "Notes on the Vital Statistics of the Philippine Census of 1903," American Medicine, Oct., 1906, the death rate from tuberculosis is one-third that in the United States.

common factor present in all cases where a fall was noted was the segregation of the patients in hospitals or sanatoria. In each country where the institutional has replaced the domestic relief of destitution there has been a reduction of the death rate from phthisis which is roughly proportional to the change.

As to the cause, then, of the spread of tuberculosis, we shall find that it probably always lies in ignorance, indifference and other moral or sociologic causes, and, in many of the cases cited, not to climatic or atmospheric conditions.

Our opinion of sea air is fortunately not confined to that of the high seas or even that of islands. The sea air sweeps the mainland and, as we know, modifies the climate of all adjacent portions of the Continent. The great source of atmospheric moisture is found ultimately in the oceans. The invisible watery vapor and the visible clouds are carried inland and deposit their water over the Continent. The monsoons which are most highly developed in India and other parts of Asia, prevail also in Texas and on the Pacific coast of the United States. These seasonal winds are of great importance from a climatic standpoint and hence should be taken into account in reference to the climatic treatment of tuberculosis. During the summer and autumn in India these seasonal winds sweep inland from the sea and deluge the country with rain. This amounts, in the Khasi Hills, 200 miles north of the Bay of Bengal, to between 500 and 600 inches a year and reaches its maximum at points about 1,400 meters, 4,600 feet, above sea level.

Fortunately in the United States these seasonal winds, while present, are not so dominant as climatic factors. We are more concerned in the present study with the diurnal winds of the seashore. The sea breeze which tempers the heat of our coasts is a distinctly beneficial feature of the shore and not only tends to moderate the heat of the summer day, but sweeps inland for fifty or a hundred miles the pure ocean air and provides all the desirable features of a marine climate.

ARCTIC CLIMATE

Passing still farther north we have the Arctic climate. It is marine or insular and cold. Arctic voyages have been proposed for the treatment of tuberculosis and, as adjuncts to the voyage, a summer sojourn in the northern fjords-of Greenland. A trip of this

¹See William Gordon: The Influence of Strong, Rainbearing Winds on the Prevalence of Phthisis, H. K. Lewis, London, 1910, Observations in Devonshire.

kind has been seriously planned by Dr. Frederick Sohon, of Washington, D. C., but has never yet been carried out.

It is a significant fact that Arctic explorers from Dr. Elisha Kent Kane down, including General A. W. Greely, Admiral Peary, Mr. W. S. Champ, Mr. Herbert L. Bridgman, the late Dr. Nicholas Senn, and others comment on the healthfulness of the Polar climate. Dr. Sohon made two voyages with Commander Peary, in 1896 and in 1902, and states his opinion that in summer the Arctic regions are entirely suitable for, and beneficial to, the tuberculous, and that the unequaled natural advantages for a cure can be practically utilized. Few understand the fascination which the Polar regions undoubtedly exert on all who enter that charmed circle. The expressions used by Arctic explorers seem so extravagant to the average mind. The late Professor Senn says: "Nature there lends such efforts toward prophylaxis, as to leave no need for therapeutics."

The air of the Arctic regions is free from dust and germs. It is not, in itself, responsible for any disease which may be carried into Arctic settlements by ships' crews, or by means of the migration of animals or birds. Colds and catarrhal conditions are conspicuously absent. There is no pneumonia. The only "Arctic Fever" is that which explorers are almost sure to contract on their first visit and which has an annual periodicity. It is not a self-limited disease, as Admiral Peary can testify after nearly fourteen consecutive summers in the Polar regions.

Another feature of the atmosphere in the Arctic is absolute clearness and abundance of sunshine. Dr. Sohon, in 1902, exposed dishes of agar and introduced into culture tubes pebbles, bits of vegetation and water from the ground and from pools at Commander Peary's winter quarters. Of six dishes exposed for from one-half to two hours, two were sterile and four gathered only a common white mould (P. glaucum). Only the hay bacillus was obtained from the pebbles. Water yielded the hay bacillus, B. liquefaciens, B. fluorescens and an unclassified non-pathogenic saprophytic rod organism.

^{&#}x27;Frederick Sohon, M. D.: Personal Observations on the Advantages of Certain Arctic Localities in the Treatment of Tuberculosis (American Medicine, April 23, 1904).

Idem. The Therapeutic Merits of the Arctic Climate Meteorological Data of a Summer Cruise (Journal American Medical Association, February 3, 1906).

² Nicholas Senn: Medical Affairs in the Heart of the Arctics (Journal American Medical Association, 1905, Vol. 45, pp. 1564, 1647).

The atmosphere has a bracing quality and is always credited with developing a prodigious appetite. It is pointed out that a taste is developed for the kind of food the tuberculous patient needs, viz., fatty food and meat. The craving for this kind of food is usually accompanied by a corresponding adaptability to digest it and, in healthy subjects, flesh is always gained. Dr. Sohon says that in both of his trips to Greenland he has exceeded his usual maximum weight, gaining the first time thirty pounds in two months, and the second time nineteen pounds in six weeks. In the latter voyage even the crew made an average gain of ten pounds in weight.

A large share of the beneficial influence of any atmospheric change is that which conduces to a good appetite and digestion. In this respect the summer Arctic voyage may fairly claim preeminence. With qualities such as these it is natural that, for a portion of the year at least, the merits of the Arctic climate in the treatment of tuberculosis should at least be considered.

An atmospheric feature is its great penetrability for light and especially for the actinic and ultra-violet rays. Tanning of the skin always occurs and sunburn is not uncommon. During summer the sun never sets and, though not very high in the heavens, its generous rays must exert a very beneficial influence on any morbid process, especially of a tubercular type. Arctic plants develop rapidly from seed to flower and seed again in surprising manner and the wild animals seem to be the largest and most vigorous of their kind.

In judging of the weather to be encountered in the Arctic regions, we are too much inclined to recall the harrowing accounts of the ill-fated expeditions of the past; but in the Northern fjords of Greenland, some miles from the coast, or in the protected inland bays, the atmospheric conditions of summer are quite agreeable and are especially suitable for the open air treatment.

The fluctuations of temperature are very moderate. The average minimum temperature between July 28 and September 6, between 69° and 78° north latitude on these Greenland Fjords, was about 38 F.; the average maximum was 49° to 50°. Temperatures as high as 56° were recorded at North Star Bay and about 52° at Etah.

The humidity averaged low. The records were made at 8 a. m. and 8 p. m., and, owing to the constant daylight, are much more representative estimates of relative humidity than in the case of records of relative humidity at those same hours in temperate latitudes.

	Maximum Humidity		Minimum Humidity		Average	
		8 p. m.		8 p. m.	8 a. m.	8 p. m.
New York	100	95	62	50	81.3	74.1
Denver	90	90	4 I	13	66.1 .	37.1
North Star Bay	72	71	56	39	63.1	54.
Etah, Greenland	81	70	40	35	57.6	52.4

The relative humidity was much lower while at anchor in the harbors of Northern Greenland than while en route through the Strait of Belle Isle and off Labrador and in Davis Strait and Smith's Sound.

We have given some attention to this subject on account of the very enthusiastic claims made on behalf of the atmosphere of the Arctic regions during summer treatment of tuberculosis. Although the plans for sending a ship with tuberculous passengers on this voyage failed to be carried out owing to inability to get the necessary permission from the Danish Government to land at the northern ports of Greenland, it is possible that at some future time the attempt will again be made.

The fact that Icelanders and Greenlanders may contract tuberculosis in numbers and may die from it is not to be overlooked; but the filth of winter quarters in the far North and the foul air of these huts is responsible for much of the illness of the native inhabitants. The Eskimo survives the dangers of the winter because he leads a totally different life in summer. It is difficult for those who have never been to the Polar regions to realize what a change is wrought by the advent of constant sunlight. This unique feature of the summer climate contributes to health and energy. The atmosphere, free from all germs and dust, bracing in its quality, is a strong stimulant to bodily functions as gain in weight testifies.

As a practical measure for the treatment of tuberculosis Arctic voyages have not yet been proved to be beneficial, although there is some presumptive evidence in their favor and, in view of the abundance of proof that the disease can be successfully combated at numberless places on the continent, such expeditions will scarcely meet with favor.

FLOATING SANATORIA

In 1896, Mr. M. O. Motschoutkovsky advocated floating sanatoria for patients with incipient tuberculosis. These specially fitted vessels were to be shifted from port to port according to the season so as to get the most favorable climatic conditions.

¹ The Lancet, April 4, 1906, p. 939.

OPEN AIR CLASS ON FERRY BOAT "SOUTHFIELD," EAST RIVER, NEW YORK CITY. SLEEPING HOUR Courtesy of Dr. J. W. Brannan

OPEN AIR SCHOOL FOR TUBERCULOUS CHILDREN. FERRY BOAT "SOUTHFIELD," BELLEVUE HOSPITAL. SEE PAGE 43

The vicissitudes of sea-travel, the narrow cabins and the difficulty of obtaining a suitable diet, even such common requisites as milk and eggs, ought to be erough to condemn this plan. Tuberculous patients ought not to travel more than is absolutely necessary. Old ferry boats have been recently utilized in New York as classrooms for tuberculous scholars. The ferry boat "Southfield" has been equipped for this work through the Miss Spence's School Society under the direction and courtesy of Bellevue Hospital in cooperation with Dr. John Winters Brannan and Dr. J. Alexander Miller.

There are three classes on the "Southfield"; two for pulmonary cases of about thirty-six children; these classes being part of the regular Bellevue Clinic work and entirely supported by Bellevue.

The third class is for tuberculous cripples with about twenty children. The cost of nurses and special equipment for this class together with incidental expenses is borne by the Spence School Society.

The teachers for all three classes are supplied by the New York Board of Education so that they are a part of the regular school system.¹

Owing to the fact that these old ferry boats seem to answer a useful purpose and in view of the reported use by the Italian Government of three discarded men-of-war as floating sanatoria in the treatment of tuberculous patients, a request was made to the Navy Department of the United States for similar ships by the Fourth International Congress on School Hygiene at Buffalo, N. Y., August 29, 1913, in a resolution, a portion of which is as follows:

Whereas, It has been demonstrated in New York and other cities that discarded vessels lend themselves admirably to transformation into all-year-round hospitals and sanatoria for consumptive adults, sanatoria for children afflicted with joint and other types of tuberculosis, and into open air schools for tuberculous, anemic, and nervous children;

Resolved, That the fourth International Congress on School Hygiene petitions the United States Government to place at the disposal of the various States of the Union as many of the discarded battleships and cruisers as possible to be anchored according to their size in the rivers or at the seashore and to be utilized by the respective communities for open air schools, preventoria, sanatorium schools for children, or hospital sanatoria for adults.

The Secretary of the Navy, however, for the following very good reasons, declined.

See Buffalo Medical Journal, 1907-8, Vol. 63, 41.

I am of the opinion that battleships are not suitable for floating sanatoria. This opinion is based on the following reasons,

The cost of maintaining a battleship in proper sanitary and structural condition is very high.

Battleships, particularly the older types, have very limited deck space, and this is so cut up by hatches, turrets, davits, cranes and winches that there are few spaces large enough for a cot. The cost of removing these obstructions would be equivalent to that of building more suitable floating hospitals.

The ventilation in the enclosed spaces of these vessels is so poor that it often has an unfavorable effect on those chosen especially for their health and vigor. Its effect on those already diseased could not be favorable. The openings are very small and admit but little sunlight; it is necessary to use artificial light for a large part of the day. To correct these conditions would involve great expense, even if it were possible of accomplishment.

The passages are narrow, the ladders steep and the hatches small, making transportation of the sick very difficult.

Very respectfully,

Josephus Daniels,

Sccretary of the Navy.

Under the title "Una nave-scula-sanatorio per fanciulli predisposti" Federico di Donato has urged this plan in Italy but up to the present the Italian Government has not assented.

The remark has been made that: "If the right sort of ship could be sent to the right place in the right kind of weather with the right sort of patients, a great deal of good might result."

SEASIDE SANATORIA FOR CHILDREN

In the United States notable attempts have been made to utilize sea air in treating tubercular disease in children. Individual cases have been treated by sea air, but on a larger scale we should mention the experience of two institutions.

In 1872, Dr. William H. Bennett, of Philadelphia, established the Children's Seashore House at Atlantic City, New Jersey. This institution is open during the entire year, and in 1912 more than 3,500 mothers and children were cared for. Among the first patients admitted to the Institution at its inception were the hospital children suffering from tubercular diseases of the bones, glands, and joints. The wonderful improvement wrought in such cases by the sea air led to a steadily increasing demand for their admission, and now throughout the year seventy beds are set apart for their care and treatment.

The most notable and most recent attempt in the United States to treat cases of tuberculosis of the bones, joints and lymph nodes is at the Sea Breeze Hospital at Coney Island on the Atlantic

SEA BREEZE HOSPITAL, SEA GATE, CONEY ISLAND, NEW YORK. TUBERCULOUS CHILDREN ON THE BEACH

TREATMENT OF POTT'S DISEASE OF THE SPINE ON A BRADFORD FRAME. SEA BREEZE HOSPITAL, SEA GATE, NEW YORK. PATIENTS REMAIN FOR MONTHS, NIGHT AND DAY, ON THESE FRAMES, BUT ARE REMOVED TWICE DAILY FOR BATHING AND POWDERING

Courtesy of Dr. J W. Brannan

SEA BREEZE HOSPITAL, SEA GATE, CONEY ISLAND, NEW YORK, MORE CITY CHILDREN ARE STARVED FOR SLEEP THAN FOR FOOD, VIEW AT 6 A. M. IN SPRING. CHILDREN SLEEPING TEN HOURS ON PORCH ALL NIGHT. CANVAS OVERHEAD ROLLED BACK.

Ocean, ten miles from New York City. This was undertaken by the New York Association for Improving the Condition of the Poor. Ten tents were erected on the beach and were opened to children between the ages of two and fourteen on June 6, 1904. These tents had a capacity of fifty patients. In the autumn permanent buildings were occupied and have since been used. While the main reliance has been on fresh sea air and good food, the very best surgical aid has been employed, and for all major operations the children were temporarily removed to hospitals in New York City. This co-operative arrangement is a great advantage to the seashore institution, as the distance is not great and avoids the necessity of enlarging the surgical staff and at the same time provides the highest surgical skill. To avoid mistakes most of the cases admitted are seen by at least one other surgeon besides the attending surgeon. While pulmonary cases are refused the staff admits severe, desperate, and even hopeless cases.

In a recent report by two of the members of the staff ¹ there are histories of forty-two cases and illustrations of the methods of treatment; but the noteworthy feature of the report is the prominence given to residence at the seashore as the chief means of cure. The conclusions from seventy-six histories which form a basis of the report are as follows:

- (1) The seashore is the best place for treating children with tuberculous adenitis. The children make a better recovery here than elsewhere. Those with adenoids and enlarged tonsils should be submitted to an operation as a start of the cure. Sea air does not permit us to dispense with this.
- (2) The seashore is probably the best place for children with tuberculous joints, provided they can have there the same skilled orthopedic care as elsewhere. Their disease runs a somewhat milder and probably a shorter course, and the functional results are better than those obtained elsewhere.
- (3) Our results have been largely due to the careful attention (including feeding and nursing) which has been given the children.
 - (4) Our results justify pushing the work.
- (5) A hospital such as this does better work than a public hospital under control of the municipality.
 - (6) Many cases of co-called bone tuberculosis are in reality syphilis. We do not know whether there is anything "specific" about the seashore,

^{&#}x27;Leonard W. Ely and B. H. Whitbeck, Medical Record, March 7, 1908. See also Charlton Wallace, Medical Record, July 22, 1905; John Winters Brannan, Trans. American Climatological Association, 1905, p. 107; John Winters Brannan, Trans. National Association for the Study and Prevention of Tuberculosis, 1906. Roland Hammond: Heliotherapy as an Adjunct in the Treatment of Bone Disease, Amer. Journ. Orthopedic Surgery, May and October, 1913.

or whether children simply thrive better and so overcome more quickly their disease.1

As to treatment other than diet and fresh air, little need be said. We use plaster when we can in preference to braces. In Pott's disease we use first the Bradford frame, then plaster jackets; in hip joints, the short Lorenz spica. In knee-joint disease after the acute stages, we also use plaster-of-Paris. Patients with large cold abscesses are transferred to the Manhattan hospitals, where their abscesses are opened, wiped out, and sewn up again with proper asceptic precautions.

On January 21st of the present year, 1914, the author revisited Sea Breeze Hospital, Coney Island, New York, in order to see what is being accomplished. Six cases of hip disease were being treated by partial exposure of the body to the sun. The patients were in bed on the balcony with the usual extension apparatus in place. General exposure, beginning with the feet and gradually involving the entire body, is not adopted at Sea Breeze, as a rule, and only the area of abdomen, hip and thigh adjacent to the diseased joint was exposed to the air and sun. Continued cloudy and unfavorable weather had prevented much progress in the newer patients who were then undergoing treatment; others who had been cured of serious tuberculous disease by the open-air method had recently been discharged. The fresh-air system is, however, well carried out, but not upon the naked body as in Switzerland and France.

The temperature on the open balcony next to the wooden wall of the building was 62° F. at noon in the sun. It was the first bright day after weeks of storm and cloud. It is probable that the very encouraging experience of the last two years will lead to the adoption of Rollier's method in all its details as modified by the less favorable climatic conditions of this part of the Atlantic seaboard.²

Results at Sea Breeze Hospital in the treatment of tuberculosis of the bones, joints and glands have been so good that the city of New York has acquired a new location with 1,000 feet of beach front on what is known as Rockaway Point, ten miles beyond Coney Island. The plot runs back about 600 feet to Jamaica Bay and cost the city, after condemnation proceedings, \$1,250,000. The plans include an arrangement of grounds and buildings which will involve a total

¹ Charlton Wallace, M. D.: Surgical Tuberculosis and Its Treatment (Journal of the Outdoor Life, March, 1013). This author, who is Orthopedic Surgeon to St. Charles' Hospital, Long Island, and the East Side Free School for Crippled Children, New York, says: The author is not in a position to produce scientific proof that sea air is better than country air, but he does believe such to be the case, although there are some individual patients who do better in the country than at the seashore.

² Heliotherapy is used at the Crawford Allen Hospital, Rhode Island.

outlay of \$2,500,000 and there will be accommodation for 1,000 patients in the eight pavilions. Contracts for two of these pavilions have been let and will be paid for by a fund raised by the New York Association for Improving the Condition of the Poor. The new hospital will be turned over to the city of New York and will be conducted by Bellevue and Allied Hospitals. The plans include an immense playground running back to Jamaica Bay for the use of the public.

Credit is due to Dr. John Winters Brannan, of New York, president of Bellevue and Allied Hospitals, for much of the great work which has so far taken about nine years to accomplish and for which America will be justly proud.

Encouraged by the success at Sea Breeze, another hospital for surgical tuberculosis in children was started six years ago at Port Jefferson, on the north shore of Long Island, opposite the Sound. The situation is said to be ideal. It accommodates two hundred children and is a handsome fireproof structure. It is called St. Charles' Hospital; it is under the active care of the "Daughters of Wisdom," a Roman Catholic Society. The children, according to Dr. Wallace, receive every physical, mental, spiritual and industrial care necessary to produce good moral men and women. It is an active orthopedic hospital admitting any deserving case and keeping him there until the lesions are healed. Patients in advanced stages of bone tuberculosis are received as well as those with pulmonary complication. Under the good hygienic surroundings at St. Charles' Hospital, the children have shown great improvement in every way. Dr. Wallace adds: "The removal of the diseased bone with the knife is no longer attempted, because such a procedure not only takes away the root from which the bone grows, but also fails to eradicate the affected area. Reliance must therefore be placed on other than cutting methods for local treatment of the affected parts." Immobilization by plaster-of-Paris, properly applied and fresh air on the shore of Long Island Sound, conjoined with every other hygienic aid possible, constitute the line of treatment.

The New York Hospital for Ruptured and Crippled has lately removed to a new site on a hill near the East River, where the outdoor treatment for the tuberculous cripple is carried out as well as it can be in a large city.

In England it has long been customary to send scrofulous children and those with surgical tuberculosis to the eastern and southeast coast. At Margate the Royal Sea-Bathing Hospital, founded by Lettsom and Latham in 1791, is the oldest institution of the kind in Great Britain, and retains its pre-eminence. There are similar institutions at Brighton, Bournemouth, Folkestone, and Ventnor, Isle of Wight (see plate 12).

The impression prevails at present in England that sea air is the best for these cases. The bracing air suits them perfectly and children with tuberculous bones, joints, or glands can stand a much colder and fresher air than children with pulmonary disease. Sea air improves the general health and keeps nutrition at the highest level. Italy and France, however, take the lead in seashore sanatoria exclusively devoted to tuberculous children. They have been in existence on the Italian shore at Viareggio since 1856, and on the French coast since 1860, and are conducted on a very extensive and systematic scale. The first sanatorium at Berck-sur-Mer was established in 1860 by the city of Paris, and is almost exclusively for children suffering from tuberculous disease of the joints, bones and glands, and has at present considerably over one thousand beds and accommodates children from the poorest quarters of Paris.¹

Two private hospitals for similar cases are located at Berck-Plage. One was founded by Baron Rothschild and is maintained by his widow and contains 600 beds. Four-fifths of the cases are surgical; one-fifth, medical.² The other is in Cazin Perrochaud and accommodates 200. At Pol-sur-Mer there is a similar institution maintained by the city of Lille, which is designed to have 900 beds.³ At Cannes there is an excellent private institution, the Villa Santa Maria, for the "cure helio-marine des tuberculoses chirurgicales" under the direction of D. A. Pascal.

Besides these institutions for surgical tuberculosis there are others which are intended mainly for pulmonary tuberculosis. These are located at Hendaye, Ormesson, Villiers-sur-Marne and Noisy le Grand. There are now fifteen sanatoria on the French coast open throughout the year and, in addition, a number open for only a part of the year, containing in all over four thousand beds. In 1904 there were twenty-three Italian hospitals distributed along the Mediterranean and Adriatic shores of Italy, with over ten thousand beds.

¹ See article by the author on "The Treatment of Surgical Tuberculosis," etc. Interstate Medical Journal, St. Louis, March, 1914.

² See article by Douglas C. McMurtrie, Boston Medical and Surgical Journal, Jan. 2, 1913.

⁸ See article by John W. Brannan, loc. cit.

VENTNOR, ISLE OF WIGHT, ENGLAND. SITE OF THE ROYAL NATIONAL HOSPITAL FOR CONSUMPTION Courtesy of Dr. T. A. Ross

WEST GALLERIES, MARITIME HOSPITAL FOR TUBERCULOSIS, BERCK-PLAGE, FRANCE. 300 BEDS

SOUTH GALLERIES, MARITIME HOSPITAL FOR TUBERCULOSIS, BERCK-PLAGE, FRANCE. 216 BEDS

These hospitals are said to be closed in winter. (Brannan.) Every other country in Europe, with the exception of Turkey and Greece, has one or more seashore sanatoria for tuberculous children, so that there are as many as seventy-five such hospitals on the shores of Europe. The Argentine Republic has two seashore sanatoria, one established twenty-three years ago with three hundred beds and a new one with five hundred beds.

The plan of treatment at all these institutions is very simple and ought to have been carried out on this side of the Atlantic long ago. The brilliant experience at Sea Breeze, Coney Island, is simply due to a repetition of the methods adopted for decades in France and England. The régime at all these sanatoria is about the same. The patients are kept out of doors all day on the beach or on verandas, which are covered but are open on the front and sides. Four meals a day with unlimited milk are provided. All through the winter the children occupy themselves on the grounds or on the beach; those confined to bed are on the open porches enjoying the sunshine and the sea air, the best tonics in the world, and developing a ruddy color and better general circulation than they have ever known. Their warm hands in the coldest winter weather is the wonder of all who visit them. At night the windows are wide open and the air has practically the same temperature as at any point on the coast, varying from 12° to 40° F. If the snow drifts in at night, as sometimes happens, nobody seems to be the worse. The windows are, however, closed for a half hour morning and evening while the children are being washed and dressed.

The surgeons at Berck-Plage, although engaged in active orthopedic work, are all firmly convinced that residence at the seashore, with the greater part of the twenty-four hours spent in the open air, does more for the children than could be accomplished even in the best appointed hospitals in the cities.¹ One of the surgeons at Margate, after fifteen years of constant work in the wards, states his opinion that the knife plays a very secondary part to climatic and general influences.

For an institution of this kind to attain the highest efficiency one thing seems plain; the patients must be admitted at a very early age, not from six years old and upwards, but as early as two years of age. In this respect the French and American sanatoria have the advantage of the English. The point has been made that at six years

¹ Each year during the early part of August vacation clinics are held, which are attended by large numbers of French and foreign physicians.

of age a child with tuberculous disease is often past cure. Much can be done with a tuberculosis case if " eaught young."

After serious operations, the surgeons at the seaside sanatoria note that progress is much more rapid when patients can live in the open air and the practical point has been discovered that subsequent dressings of a much more simple character are permissible under the open air régime. For instance, in Metropolitan hospitals the practice of packing and draining wounds has untold terrors for the unfortunate patients. Dr. Charlton Wallace found that at "Sea Breeze" tuberculous sinuses heal more rapidly and permanently when all packing and drainage are omitted and only a sterile absorbent dressing is applied. As the general instability of these patients is such as to cause them almost to collapse at the thought of having their wounds probed and packed, it led him to believe that they would gain strength and local resistance if they were not nervously upset at the time of each dressing. In the beginning, in order to ascertain whether there would be full drainage, comparisons were made of the amount of discharge, with and without the full dressing, and as there was no diminution be concluded that packing or tubing was not essential to drainage. Not only was the danger of infection less, no infected wound being observed, but he found that no sinus healed which still contained pus. This certainly simplifies the treatment of surgical wounds and the credit is given to the favorable atmospheric conditions.

At Sea Breeze the children receive from one to two hours instruction daily, the teachers being furnished by the Brooklyn Board of Education. It has been noted that the educational training given at this Sea Breeze Hospital has a most happy effect on the morals of the patients and at this early age much more can be accomplished in combating vice and ignorance, which constitute the greatest obstacles in dealing with the tuberculosis problem.

(For open air schools for tuberculosis children, Waldschule, etc., see pp. 103-107).

In estimating the value of sea air in non-pulmonary tuberculosis in children, we naturally look to France for some data based on the enormous experience now extending over a period of nearly fifty years. During the last twenty years in France alone 60,000 children have been treated in these sanatoria and Dr. Brannan is authority for the following statement:

HELIOTHERAPY, VIEW OF THE SOUTH GALLERIES OF THE MARINE HOSPITAL, BERCK-PLAGE, FRANCE. THE CHILDREN ARE EXPOSED ALL DAY NAKED TO THE SUN

SEA BREEZE HOSPITAL, SEA GATE, NEW YORK. OPEN AIR SCHOOL Courtesy of Dr. J. W. Brannan

HELIOTHERAPY. SEA BREEZE HOSPITAL, SEA GATE, NEW YORK, MARCH 18, 1913. CURED CASE OF TUBERCULOSIS OF THE KNEE. NO SINUS.

HELIOTHERAPY AT SEA BREEZE HOSPITAL, SEA GATE, NEW YORK, CCTOEER, 1912. CHILDREN ON THE BEACH. CURED CASES OF TUBERCULOSIS OF THE WRIST AND ANKLE. THERE WERE OPEN SINUSES IN EACH CASE.

These results of the treatment of surgical tuberculosis at seashore sanatoria are much more favorable than in the case of pulmonary tuberculosis, in adults, in corresponding localities (see pp. 71-73).

Nevertheless, the Department of Public Charities of the City of New York has just built and equipped at an expense of \$3,500,000, a new hospital for adults having pulmonary tuberculosis in the second or third stage. The site selected is on the highest point of Staten Island in New York Bay, 400 feet above tide and only five miles from

¹ See R. Russell, M.D.: Glandular Tabes, or the Use of Sea Water in Diseases of the Glands. London, 1750.

Ebenezer Gilchrist, M.D.: The Use of Sea Voyages in Medicine. London, 1771.

Albert L. Gihon, M. D., U. S. N.: The Therapy of Ocean Climate (Trans. Amer. Climat. Ass., 1889, p. 50).

M. Charteris, M. D.: Ocean Climate (Trans. Amer. Climat. Ass., 1890, p. 278).

Wm. Ewart, M. D., F. R. C. P.: The Present Position of the Treatment of Tuberculosis by Marine Climates (Journ. Balneology and Climatology, July, 1907).

W. S. Wilson: The Ocean as a Health Resort, London, 1880.

J. V. Shoemaker, M. D.: Ocean Travel for Health and Disease (The Lancet, July 23, 30, 1802).

Hughes Bennett, M. D.: Life at Sea Medically Considered (Medical Times and Gazette, Vol. 1, 1884, p. 244).

Thomas B. Peacock, M. D.: Beneficial Influence of Sea Voyages in Some Forms of Disease (Medical Times and Gazette, Vol. 2, 1873, p. 687).

John L. Adams: Report of 17 cases of Surgical Tuberculosis in Children (Boston Medical and Surgical Journal, 1006, Vol. 154, p. 17).

A. Crosbee Dixey, M. R. C. P.: Edinb. Lancet, Vol. 2, 1888, p. 264.

Boardman Reed: Effects of Sea Air Upon Diseases of the Respiratory Organs (Trans. Amer. Climat. Ass., Vol. 1, 1884, p. 51).

D'Espine, of Geneva. International Congress on Tuberculosis, Paris, October, 1905.

Armaingaud, of Bordeaux: International Congress on Tuberculosis, Paris, 1905.

Guy Hinsdale, M. D.: Treatment of Surgical Tuberculosis at the French Marine Hospitals and Alpine Sanatoria (Interstate Medical Journal, St. Louis, March, 1914).

Trans. Congrés de L'Association Internationale de Thalassotherapie. Cannes, April, 1914.

See also Willy Meyer: Open-Air and Hyperdermic Treatment as Powerful Aids in the Management of Complicated Surgical Tuberculosis in Adults (Trans. Sixth International Congress on Tuberculosis, Washington, 1908, Vol. 2, twenty illustrations).

See also "Open Air Treatment of Tuberculosis," by the late Dr. DeForest Willard, *ibid.*, page 257. Also Trans. Amer. Orthopedic Ass., 1808. Shacks, bungalows, sleeping tents, sanatoria and day camps are discussed.

the ocean. This new addition to New York's equipment has one thousand beds and is called the "Sea View Hospital."

At the Second Annual Meeting of the National Association for the Study and Prevention of Tuberculosis held in Washington in 1906, the following resolution was offered by Dr. John W. Brannan and unanimously adopted:

Whereas, Recent experience in Europe and in this country has shown that out-door life in pure air has the same curative effect in surgical tuberculosis as in tuberculosis of the lungs, therefore, be it

Resolved, That in the opinion of members of this Association hospitals and sanatoria should be established outside of cities either in the country or on the seashore for the treatment from its incipiency, of tuberculosis of bones, joints, and glands in children.

SEACOAST AND FOGS

Marine climates naturally include the strictly ocean climate and that of the seacoast. In the former sea air comes from every point of the compass. It is always moist and it is the most equable air that blows; it is of infinite variety from the dead calm of the doldrums to the fierce gales of the North Atlantic.

The atmosphere of the seacoast is naturally modified at times by continental influences. Indeed the characteristic "sea breeze" which springs up in the morning and subsides toward sun-down is brought about by the ascent of heated air back of the coast. The hotter the interior and the more rapidly this air ascends the stronger is the sea breeze which rushes shoreward from the ocean and penetrates for fifty or a hundred miles the adjoining country.

But under other conditions land breezes occur and bring to the shore the Continental atmosphere of a totally different type. These atmospheric conflicts between sea and land involve most interesting meteorological problems; they tend to lessen the equability of the purely marine or oceanic climate. Freezing weather is the product of the Continent and the descent of cold waves from the interior; it brings to our northern seacoast frost and snow for a time, and never trespassing far upon the high seas. The seacoast has thus a mixture of two climates, but the sea air predominates and is never absent very long.

There are well-known places in America and in the British Islands where the sea breeze greatly predominates; Nova Scotia, Cape Cod, and Cape May in the United States; Land's End and the Cornish Coast in England are cases in point. In such exposed situations the air is generally poorly adapted to the tuberculous patient. The air

SEA BREEZE HOSPITAL, SEA GATE, NEW YORK. TREATMENT OF POTT'S DISEASE OF THE SPINE WITH PLASTER JACKETS AND HELIOTHERAPY

Courtesy of Dr. J. W. Brannan

FIG 1. HELIOTHERAPY FOR SURGICAL TUBERCULOSIS. DR. ROLLIER'S SANATORIUM, LEYSIN, SWITZERLAND. DORSAL EXPOSURE

FIG. 2. HELIOTHERAPY FOR SURGICAL TUBERCULOSIS. DR. ROLLIER'S SANATORIUM. From the author's article in Interstate Medical Journal, March, 1914

is said to be "too strong" and certainly for an all-the-year-round residence the capes and headlands are too much at the mercy of high winds which render out-door life disagreeable. About Cape Cod, Nantucket, and Martha's Vineyard there is a peculiar liability to fog which is as unwelcome to the consumptive as it is to the mariner.

The author has had experience with the fogs in these waters and considers it one of the great drawbacks to an otherwise agreeable climate. The summer and early autumn fogs of the eastern Maine coast and of the Bay of Fundy and Nova Scotia are worse in their chilly and penetrating qualities. The towns of Massachusetts on or near the seacoast seem to have somewhat more tuberculosis than those of the interior.

Deaths from Pulmonary Tuberculosis in Massachusetts per 100,000
Population

Five Maritime	Towns		Five Inland	Towns	
	1905	1908-1912		1905	1908-1912
Boston	224	155	Pittsfield	168	98
Salem	154	III	Springfield	125	89
New Bedford	164	124	Chicopee	125	109
Newburyport	181	131	Holyoke	154	131
Plymouth	162	90	North Adams	81	98
Average	177	122	Average	131	105

Mr. Hiram F. Mills, of the Massachusetts State Board of Health, has lately published a most painstaking analysis of the mortality from tuberculosis in all the towns and cities of that state.

He shows that there are sixty cities and towns bordering on the sea having a total population of about one-third of the entire state, or 1,293,625, in which the average death-rate per 100,000 for the five years, 1908-1912, was 135. During this period the rate for the entire state was 131. Omitting Boston, which has peculiar conditions, from both calculations the rate was 111 for the remaining 59 maritime towns and cities against 124 for the remainder of the State. This throws the balance in favor of the seaboard. It should be noted that all the small and sparsely settled towns have low rates in almost regular gradation when compared with more and more populated districts.

Boston has had a noteworthy decrease in its tuberculosis death rate as shown by the following figures representing the rate for the last five years, namely, 271, 283, 254, 176, 182, or a decrease of one-third in five years. There are sixteen small towns having an aggre-

Address to the State Inspectors of Massachusetts, November 3, 1913.

gate population of 5,540, in which there have been no deaths in all of the five years.

The map shows several inland towns with a large death rate owing to the presence of tuberculosis hospitals, asylums, and other institutions. These are marked with an H (not readily seen in the reduced map) and include Rutland, Sharon, Lakeville, Bridgewater, North Reading, Medfield, Westborough, Westfield, Taunton, Danvers, and Monson.

As Mr. Mills says:

Forty years ago the death rate from consumption in Massachusetts was three times as great as it is now; thirteen years ago it had been reduced one-half in the previous forty years; to-day it has been reduced one-half in the past twenty years. There is no other State in the Union, in which records have been kept, where the reduction has been so much. From 1885 to 1909 it was more than twice as great as in England, Scotland, Ireland, The Netherlands, Belgium, Switzerland and Italy. The reduction is Prussia was 90 per cent of that in Massachusetts and that in Austria only 57 per cent. The registration system in Massachusetts is of the highest grade and in no other State or country of the world has such effective work been done and so much accomplished in reducing the death rate from tuberculosis as in that Commonwealth.

FOGS ON THE PACIFIC COAST

It is this element of fog which renders so much of the Pacific coast of the United States unsuitable for tuberculous patients. The morning fogs are conspicuous features of the climate and are acknowledged sources of danger to tuberculous cases. They penetrate as far as Los Angeles and Pasadena in the south, some eighteen miles from the coast; they are common in San Francisco, and are carried by ocean atmospheric currents through the Golden Gate, sweeping the bay and up the Sacramento and San Joaquin valleys.

There are portions of the California coast, as for example in the neighborhood of Santa Barbara, where the mountains are near the shore; and beyond the mountains are deserts and necessarily an exceedingly dry atmosphere. The night air from the mountains brings with it a dry Continental quality; the morning breezes bring a more humid air and possibly fog. In such localities fog is quickly scattered by the sun's heat and never penetrates very far inland. A suitable residence for tuberculous patients on the Pacific coast, as every native knows, is not found on the shore line but at some elevation above the sea fairly well up on the hillsides or in well-situated valleys, like the Montecito Valley, where the dryer air of the interior

STATE BOARD OF HEALTH MAP OF THE STATE OF MASSACHUSETTS. DEATHS FROM CONSUMPTION

SCALE OF MILES

O Z & 5 6 10 12 14 16 16 20 22 24 26 36 30 32 34 35 36 30 44 44 46 46 35

		i,

checks the advent of fog and where the early morning hours are as bright and dry as the afternoons.¹

RADIATION FOGS

Fogs are born of the sea and of the land. The sea fog is obviously purer and less injurious than the smoke-laden fog of cities. There are fogs and fogs; "dry" fogs and "wet" fogs; the fogs of the coast and the fogs of mountain valleys and river courses; but rarely of the plains. Radiation fogs are different from sea fogs; in dry weather, on a cold still night when the lowest stratum of air is rapidly cooled by contact with the cold radiating earth, the watery vapor is precipitated as minute globules. The colder the ground or the deeper and colder the water on which fog rests, the more persistent is the fog; but as the sun warms the watery particles and overcomes the heat lost by radiation, the fog lifts and floats upward. It is bound to lift as its specific gravity diminishes. Slopes of hills, especially their southern sides, some hundreds of feet above the lowland or seashore, are thus comparatively free from these fogs and are much drier and warmer than lower places in the neighborhood. Such locations are far preferable to those of lower altitude. (Russell.)

FOGS IN THE MOUNTAINS

And here we see how local geographic conditions modify the whole aspect of the question. On the North Atlantic Coast of the United States there are no mountain ranges; one cannot get away from the fogs if he would; while on the Pacific Coast, the mountains and their foot hills are comparatively near and one can be in full view of the seashore and yet be above the fog line.

At Santa Barbara, one of the favorite California resorts for tuber-culous patients, fogs occur frequently from May until October, but are comparatively rare at other times. Dr. William H. Flint, who practiced there for thirteen years, says that the fogs creep in from the sea in the late afternoon, in the evening, or in the early morning, disappearing at an uncertain hour the following forenoon. Occasionally fogs will persist all day and for a number of days consecutively. In May and June, 1903, a foggy period continued for seventeen days.²

¹ See A. G. McAdie: The Sun as a Fog Producer, Monthly Weather Review, Washington, 1913 (778-779).

² Trans. Amer. Climat. Ass., 1904, p. 20.

The late Dr. C. H. Alden, Asst. Surgeon General, U. S. A., who passed his later years, and died of tuberculosis, in Pasadena, California, says:

The climate of Southern California is not a dry one, as some suppose. As this region lies along the coast, and its most frequented portions are nowhere very distant from the water, the climate cannot be dry. The humidity lessens as one goes inland, but is always considerable, except in the uninhabited desert. The fogs which, in the absence of much rain, are a large factor in sustaining vegetation, penetrate many miles from the sea and add to the humidity. The fact that the humidity is not favorable for pulmonary tuberculosis which is at all advanced is evidently not appreciated as it should be. [Italics, author's.]

Even as far as Redlands, over fifty miles from the coast, according to General Alden, who lived there for two winters, "fogs come up from the sea during the spring, but they are shorn of most of their moisture." Nevertheless, Redlands, from its comparative dryness, is a favorite place in winter for patients with pulmonary tuberculosis and they no doubt do better there than at Los Angeles, Pasadena, or at resorts directly on the coast. General Alden's conclusion is that while the mild temperatures and continuous sunshine of this region are favorable for the aged and the feeble from many causes, needing an out-door life, the warmth and moisture are unfavorable for cases of pulmonary tuberculosis that are at all advanced.

In June, 1902, the author traveled through the mountains and visited the principal resorts throughout California. The sea air with its frequent accompaniment of fog seemed to him too strong or fresh for tuberculous patients. North of Santa Barbara or Monterey the sea air is certainly cold and harsh during most of the year and, wherever it penetrates, tuberculous patients feel worse. This is particularly true of the neighborhood of San Francisco. From the summit of Mt. Tamalpais, elevation 2,375 feet, on almost any summer afternoon fog can be seen driving in from the Pacific and spreading over San Francisco Bay. As the sun descends the temperature of the air drops, so that saturation is reached. Fog results. Now on the southern California coast the cold, ocean atmospheric currents contain much less actual moisture than the warm, clear air on shore and the resultant mixture will now contain less water than the warm air did before and hence it is claimed with reason that notwithstanding the dripping roofs and wet pavements, there is less absolute moisture in the air than before the fog appeared.

We did not find the California fog either so cold or chilling as we have observed it on the extreme eastern coast of Maine; nor is it so

Photograph by Prof. A. G. McAdle. Courtesy of the Chief of the United States Weather Bureau "Banked in a seried drift beside the sea,
Rolling, wind harried in a snowy spray.
Majestic and mysterious, swirling free
The ghostly flood is massing cold and gray."

MORNING FOG OVER VALLEYS
Photograph by Prof. A. G. McAdle. Courtesy of the Chief of the United States Weather Bureau

depressing and relaxing as the heavy misty weather observed in central and western Virginia mountain valleys during the rains of early summer and autumn, certainly not so depressing as the relaxing moisture of the tropics. The California fogs have been likened to the Scotch mist. They never deter the fishermen from curing their fish on their racks along the seashore. Raisins and other fruit are dried in the open fields and residents claim that during the rainiest weather nothing molds or rots. (P. C. Remondino.)

Mr. Ford A. Carpenter, of the U. S. Weather Bureau, has published an interesting book, in which he gives a lucid description of the fogs of the Pacific Coast.1 He shows that on that coast the maximum fog is reached in San Francisco, with moderately high averages north to the Canadian boundary and decreasing in frequency and duration with the latitude, San Diego having the least on the coast. He says that daylight fogs are practically unknown in San Diego. A "day with fog" is one on which there is one hour or more of fog dense enough to obscure objects one thousand feet distant. At San Diego the hours of greatest frequency were between eleven at night and six in the morning. Mr. Carpenter notes the beneficial effect of California fogs and says that it is impossible to measure accurately the amount of moisture conveyed by fog. There is no doubt that over a region covered by vegetation exposing a natural condensing surface, such as eucalyptus, palm, iceplant, etc., not less than a ton of water to the acre is thus distributed during the prevalence of every dense fog. It also checks evaporation.

"It is not fog in the generally accepted meaning, for this 'light veil' is neither cold nor excessively moisture-laden. Neither is it high, for its altitude is less than a thousand feet. To one who has spent a few weeks of spring, summer or fall in southern California, the picturesque description of the musical Spanish *el velo* is quickly recognized as both expressive and truthful." "El velo de la luz": "the veil that hides the light." "Velo qui cubre la luz del so": "The veil which shades (covers) the light of the Sun." "El velo de la mañana": "The veil of the morning."

There is probably no place on the entire coast line of the United States that offers so many climatic advantages for tuberculous patient as San Diego and its attractive neighbor, Coronado.

It is a mistake to believe that because there is fog, the humidity is necessarily high during its presence. The United States Weather

¹ The climate and weather of San Diego, California. San Diego, 1913. See Review in Journ. Royal Meteorological Society, Jan., 1914.

Bureau has taken pains to determine the relative humidity during fogs observed during ten years at Chicago on Lake Michigan. Observations were made on 118 foggy days by Dr. Frankenfield, whose results are given as follows:

Relative humidity 90 per cent (or more) in 75 per cent of days. Relative humidity 80 to 90 per cent in 13 per cent of days. Relative humidity below 80 per cent in 12 per cent of days.

The observer noted dense fog on one occasion when the relative humidity was as low as 52 per cent; on another, when it was 58 per cent.

The Pacific coast, as a whole, is much foggier than the Atlantic coast, because the winds on the Atlantic are mostly off-shore and consequently carry less moisture than the westerly on-shore winds of the Pacific.

In the interior of the United States, especially the western half, the average number of foggy days per year is less than ten each year; in the Lake region the number rises to fifteen or twenty per annum. In isolated localities, local conditions increase this number greatly.

At Colorado Springs genuine fogs occur, sometimes very dense and lasting all day, but they are uncommon and scarcely worth mentioning were not their existence so often denied. (Ely.)

In the Adirondack Mountains fogs and mists are not uncommon along the rivers and on the lake shores in the early morning in the summer and autumn. They are examples of the radiation fogs already referred to and, like dew and frost, they are associated with clear weather. The presence of a light fog over an Adirondack lake in the early morning foretells a bright, sunny, warm day.

Fogs are not at all unusual in the Alleghany and Blue Ridge Mountains. They follow river courses and settle in low valleys. The humidity attendant on the melting of snow or during the rains of early summer or autumn is not so readily exchanged for dryer air in the long narrow valleys as at the seaboard. In many localities the high ridges on either side shut out the direct rays of sunlight for several hours; while at the seaboard there are no such natural barriers.

At some of the higher elevations in the Blue Ridge Mountains of Pennsylvania, fog is noted during the summer and autumn. One observer, himself a tuberculous patient, recorded at Mount Pocono, in Monroe County, Pa., elevation 2,000 feet, fifteen days with fog part of the day, usually early morning, and seven with fog all day,

FOG LIFTING, SAN FRANCISCO BAY Protograph by Prof. A. G. McAdie. Courtesy of the Chief of the United States Weather Bureau

MITHSONIAN MISCELLANEOUS COLLECTIONS

FIG 1. RUTLAND, MASSACHUSETTS STATE HOSPITAL FOR CONSUMPTIVES

DAY CAMP FOR TUBERCULOUS PATIENTS, HOLYOKE, MASS.

UNDERCLIFF, A CAMP ON LAKE PLACID, ADIRONDACKS, NEW YORK Courtesy of Dr. C. D. Alton

between June 1 and December 1. But this patient adds the significant remark: "However, it seems ridiculous for me to find fault with Mount Pocono when I did so well there. My cough and expectoration decreased considerably; I gained five pounds and grew somewhat stronger."

At Rutland, Massachusetts, the site of the Massachusetts State Sanatorium, there were 24 days with fog for the year ending November 30, 1907. Nevertheless, out of 4,334 cases of pulmonary tuberculosis treated since its opening, 43.39 per cent of cases were arrested or apparently cured, and in addition, 47.38 per cent were improved.

From what has been said, it is, therefore, not surprising that claims are made that there is a noticeable difference in the character of fogs on the New England Coast.³ Dr. Bowditch has described the fogs on the Maine Coast as sometimes "dry fogs." "The light vapory mist which drives in frequently from the sea has no definite sense of moisture as it strikes the face, and in the midst of it the air frequently feels dry. In the vicinity of Mount Desert, the presence of the mountains has, doubtless, an effect upon the quality of the atmosphere, and would partly account for what is often spoken of—the effect of sea and mountain air combined. Its peculiar dryness, even though on the coast, has been often so marked that I have frequently thought that certain phthisical patients, who need a dry bracing atmosphere, might improve there, although I have never quite dared to recommend it for such cases."

SEA AIR FOR SURGICAL TUBERCULOSIS

Halsted, of Baltimore, however, has recorded a favorable result in a case of tuberculous glands of the neck, treated simply by an outdoor life on the Maine coast. The patient was a young lady of seventeen, whose cervical glands were actively inflamed and softened, the overlying skin having rapidly reddened and thinned during a treatment of six hours a day out of doors at a seashore further south. No operation was done, but she was sent to the Maine coast and lived *out-of-doors day and night* for four months. At the end of this period no one could tell, from the appearances, which side had been affected, and Halsted remarked that, to surgeons whose daily bread not long ago was tuberculous glands of the neck, such a

¹ Journal of the Outdoor Life, February, 1908, p. 15.

² Eleventh Annual Report, 1907.

⁸ Vincent Y. Bowditch, Trans. Amer. Climat. Ass., 1897. p. 25.

resolution foretells a revolution in treatment. That revolution is, fortunately, to-day un fait accompli.

Some of the European sanatoria of the best grade are in situations not altogether free from fogs and mists. This is true of Falkenstein, elevation 1,378 feet (420 m.), whose atmosphere is a little misty and foggy.

AIR OF INLAND SEAS AND LAKES

The region of the Great Lakes lying between the United States and Canada has been studiously avoided in selecting a site for any of the large sanatoria for tuberculosis. It is a matter of common observation that nasal, pharyngeal, and bronchial catarrhs are exceedingly common in adjacent districts. The lake winds are damp and are partly frozen during several months in the year, giving to the surrounding country a harsh climate.

The lower lake region is also the favorite track of storms or cyclonic atmospheric movements which sweep the lakes and the St. Lawrence valley on their way to the seaboard. As these areas of low atmospheric pressure advance they are attended by increasing cloudiness in front and are usually followed by colder air from the Northwest, the fall in temperature being sufficient at times to constitute a cold wave.²

The winter storms on the Great Lakes are quite as violent as any on the seacoast, and on Lake Superior and Lake Huron floating ice may be seen in May and sometimes, in Lake Superior, as late as June. Lakes Michigan, Erie and Ontario are more southerly, but their shores are low and the skies are notably cloudy. The author has experience of the cold fogs of Lake Superior in July and August, and was impressed with their penetrating quality. A summer spent on both the northern and southern shores of Lake Superior was wonderfully exhilarating; the air has a purity and stimulus such as one might expect from millions of miles of forest roundabout. But not a single place on that vast shore can be recommended as a residence for a tuberculous patient. The vicissitudes of the weather are such that the approved methods of cure could not well be carried out.

¹ Trans. Nat'l Ass. for the Study and Prevention of Tuberculosis, 1906.

² To constitute a cold wave, so called, there must be a fall of twenty degrees or more in twenty-four hours, free of diurnal range and extending over an area of at least 50,000 square miles, the temperature somewhere in the area going as low as 36° F.

WALLUM LAKE RHODE ISLAND. PATIENTS OF THE STATE SANATORIUM FOR TUBERCULOSIS Courtesy of Dr. Harry Lee Barnes

In the location of the state sanatorium for tuberculous patients in Minnesota, an interior and northerly location was wisely chosen, 150 miles south of Lake Superior, at Lake Pokegama, near the headwaters of the Mississippi.

The Wisconsin State Sanatorium has been located on Lake Nebagamon, thirty miles from Lake Superior.

Such small lakes as Lake Pokegama in Minnesota; the Muskoka Lakes in Ontario, where the Canadian National Sanitarium Association has established two sanatoria for consumptives; and the Saranac Lakes in the Adirondack Mountains, have no such power to modify the qualities of the atmosphere. Whatever influences are attributable to these smaller bodies of water are small, compared with that of the forest and mountains. Undoubtedly a small lake is a desirable feature in connection with a sanatorium, as it provides sources of amusement throughout the year and adds greatly to the beauty of the landscape. The writer spent six summers at Lake Placid in the Adirondack Mountains at an elevation of 1,860 feet. This is somewhat more protected than the Saranac Lakes, St. Regis Lake or Long Lake, and, in his opinion, is quite as well suited as a residence for tuberculous patients as any other locality in the Adirondacks. The State of New York has built its large State Sanatorium at Ray Brook only four miles distant from Lake Placid. The State of Rhode Island has chosen Wallum Lake for its new Sanatorium, views of which are here given.1

CHAPTER IV. INFLUENCE OF COMPRESSED AND RAREFIED AIR; HIGH AND LOW ATMOSPHERIC PRESSURE; ALTITUDE

No phase of the tuberculosis question has been so vigorously debated as the influence of altitude; no feature of the subject is so far from satisfactory solution. The battles between the Highlanders and the Lowlanders of Scotland seem to have been revived in the attempts to settle this question. Instead of the claymore and battleaxe, we have an array of statistics in serried columns marshalled by the leaders of the opposing forces. This history of the conflict would make as large a record as the Medical and Surgical History of the War of the Rebellion. And the end is not yet in sight.

After trying for years to cure consumption by means of an "equable climate" obtained at home by housing the patient behind double

¹The large German Sanatorium Grabosee is located on the shores of Lake Grabow.

windows, or by sending him to the islands of the sea, such as Madeira and the West Indies, the medical profession began to be impressed with the good results reported from the Rocky Mountains and the plains of the Western states and territories.

In the rush to the California gold fields in 1849 and in the rapid emigration from Eastern states to Colorado, Utah, California, overland in the "prairie schooner" and on horseback during subsequent years, the Western country became known for wonderful healthgiving qualities. It was not long before Colorado became widely heralded as a health resort for consumptives. English physicians sent their patients to Colorado instead of sending them to Australia, Algiers, or to the Riviera and the results obtained were remarkable. The late Dr. S. E. Solly, who practiced in Colorado for thirty-three years, was sent from London on account of the higher altitude and better air of Colorado, and was one of a large number of English residents who have made their home in that state on account of pulmonary tuberculosis.

In 1876, the late Dr. Charles Theodore Williams, of London, published his report to the International Medical Congress and in 1894 issued his work on Aero-Therapeutics, in which are detailed the histories of 202 consumptives who were sent to Colorado at an altitude of 5,000 or 6,000 feet. They represented a residence of 350 years at this elevation and the results were exceedingly satisfactory.

Jourdanet, a French physician practicing in Mexico, published two works, one in 1861 and one in 1875, which undertook to explain the influence of barometric pressure and, incidentally, why, on the plain of Anahuac, 6,000 feet in elevation, there is an entire absence of pulmonary phthisis.¹

Jourdanet aided the great French physiologist, Paul Bert, in establishing costly apparatus for investigating the physiological action of compressed and rarefied air and Paul Bert's classic work is an accepted authority on this subject. Later studies by Mosso and Marcet 2 should be noted, but it is impossible here to give more than passing notice. They show that a diminution of the barometric pressure increases the respiration rate and the volume of air respired, but if allowances are made for the increase of volume of the air at the lower pressure, the actual volume respired is less. Conversely,

¹D. Jourdanct: Influence de la Pression de l'Air, Paris, 1875. Herrera and Lope: La Vie Sur Hauts Plateaux, Hodgkins Prize Memoir, 1898. ²An American Text-Book of Physiology, Phila., 1901, Vol. 1, p. 434. Angello Mosso: Man in the High Alps (Der Mensch auf den Hochalpen, Leipsig, 1899), Translation by E. L. Kieśow, 1898.

an increase of pressure lowers the rate and the volume of air respired. The effects of the respiration of rarefied air and compressed air on the circulation and on the composition of the blood are very marked and are of a complex character owing to the additional influences of the abnormal pressure on the peripheral circulation. Not only is the circulation affected but, in the case of residence at high altitudes, the proportion of red blood corpuscles and of hemoglobin is notably increased. This increase in the red blood count at the higher altitudes, while not so great or so permanent as was at first supposed, is an established clinical fact and adds undoubted strength to the claim that altitude *per se* is a characteristic of the favorable climate for tuberculous patients.

DIMINISHED ATMOSPHERIC PRESSURE

The influence of diminished atmospheric pressure on the blood has been studied by Paul Bert in 1882, Zuntz, P. Regnard, Viault, Egger, Woolff, Koeppe, Solly, by W. A. Campbell and Gardiner and Hoagland, by L. S. Peters and by F. Laquer. One of the

^{&#}x27;Paul Bert, loc. cit., studied the blood of animals at La Paz, in Mexico, at an altitude of 12,140 feet (3,700 meters) and found that they had an oxygen-carrying capacity far in excess of that exhibited by the animals on the lower plains.

²Zuntz: Experiments on the Pic du Midi, Elevation 9,000 feet. He emphasized the possibility of an altered distribution of corpuscles.

⁸ Regnard, P.: La Cure d'Altitude, 2eime Ed. Paris, 1898.

^{&#}x27;Viault: Experiments at Merococha, Peru, elevation 14,275 feet. 1890. He noted that his blood contained 7 to 8 million red corpuscles per cubic millimeter.

⁵Egger: The Blood Changes in High Mountains. Verhandlungen d. xii, Congr. Inner. Med., 1893.

⁶ Woolff: Verhandlungen d. xii. Congr. Inner Med. 1893, pp. 262-276.

⁷Koeppe, xii. Congress für Inner. Med., 1893; Arch. Anat. Physiol., 1895, . pp. 154-184.

^{*}S. E. Solly: Blood Changes Induced by Altitude. Trans. American Climatological Association, 1899, p. 144; also 1900, p. 204.

S. E. Solly, Therapeutic Gazette, February, 1896.

⁹ Campbell and Hoagland: Trans. American Climatological Association, 1901, p. 107.

¹⁰ For the effect of altitude, 6,000 feet, on blood pressure in tuberculous patients, see article by L. S. Peters, Silver City, New Mexico, in Archives of Internal Medicine, August, 1908 and October, 1913. The latter report covers 600 cases and shows that altitude tends to raise blood pressure rather than lower it both in consumptives and in normal persons living at high altitudes.

¹¹ F. Laquer: Höhenclima und Blutneubildung, Deutsches Archiv für klin. Med. Leipzig, 1913, ex. Nos. 3 and 4, p. 189.

most thorough original studies is by Drs. Ossian, Schaumann and Emil Rosenquist, of Helsingfors, Finland. Turban, also, has made a study of this subject.²

Much of the earlier work has been proved incorrect as instrumental and laboratory technic has been improved. Hematologic work has made rapid strides and several important correcting factors have been introduced. Attention has been called to the more rapid evaporation of blood samples at high altitudes where the climate is always dry and errors from this source are considerable.

Not only that, but the human organism itself loses water more readily than at lower levels and so do animals used for experimental purposes. How much value should be given to these corrections we do not know, but there is evidently a revision downwards noticeable in nearly all the later studies of the blood count at high altitudes. Prof. Bürker, of Tübingen, and his colleagues show at best only a comparatively small increase amounting to only four to eleven and a half per cent at an altitude of six thousand feet.³

These observers made comparative observations at Tübingen (altitude 1,030 feet or 314 meters), and at the Sanatorium Schatzalp (altitude 6,150 feet or 1,874 meters, about 300 meters above Davos).

Bürker's findings, which appear to result from an exceptionally careful personal investigation with every precaution to avoid experimental error, show that altitude does exert an unquestionable influence on the blood in the direction of an increase in both the number of erythrocytes and the content of hemoglobin. The increase is an absolute one, not merely relative. The red cells increased from 4 to 11.5 per cent, the hemoglobin from 7 to 10 per cent. These figures, it will be noted, are smaller than those usually given for the effect of moderate altitudes, yet they represent substantial and undeniable gains quite in harmony with other previous observations.

The responses of the different persons in Bürker's Alpine expedition varied in degree; but the qualitative examination of the blood established the fact that no hemoglobin derivative other than oxyhemoglobin was concerned in

¹Ossian, Schaumann and Rosenquist: Ueber die Natur d. Blutveranderungen in Hohen Klima, Zeitschr. f. klin. Med., 1898, Band xxxv, Heft 1-4, pp. 126-170 and 315-349.

² Turban, Münch. Med. Wochenschr., 1899. p. 792.

³ See Editorial Altitude and the Blood Corpuscles, Journ. Amer. Med. Ass., February 3, 1912, p. 344; September 21, 1912 and November 1, 1913.

Bürker, K.; Jooss, E.; Moll, E., and Neumann, E.: Die physiologischen Wirkungen des Höhenklimas: II. Die Wirkung auf das Blut, geprüft durch tägliche Erythrozytenzählungen und tägliche qualitative und quantitative Hämoglobinbestimmlungen im Blute von vier Versuchspersonen während eines Monats, Ztschr. f. Biol., 1913, Vol. 61, 379.

the increment at altitudes. In agreement with most observers the adjustment of the blood to the new atmospheric conditions in ascending to higher levels occurs promptly; there is a rapid increase in the factors involved at the start followed by a more gradual continuation of the effect; but on returning toward the sea-level the blood does not resume its "low altitude" composition so promptly. There may be a prolonged delay in the adjustment and return to normal figures.

Cohnheim 2 regards evaporation as the cause of the concentration of blood under these conditions and that this is not due to a lack of oxygen. These studies in hematology have an important bearing on the course of tuberculosis at high altitudes, and constitute a very live question at the present day.

Professor Cohnheim and Dr. Weber 3 have recently reported the results of examination of the blood of twenty-three persons who have been engaged for long periods in the operations of the railway ascending the Jungfrau peak in the Alps. Most of them spent considerable portions of their time at altitudes from 2,300 meters (7,546 feet, Eigergletscher Station) upward to 3,450 meters (11,319 feet, Jungfraujoch Station). The importance of these observations lies in the fact that they furnish data regarding persons who have had prolonged experience in the higher altitudes so that the incidents of temporary residence and change of scene may be regarded as equalized or eliminated. They supplement the earlier records from the South American plateaus by results obtained with approved and up-to-date procedures. The new statistics agree in exhibiting values both for red blood-corpuscles and hemoglobin distinctly higher than the "normals" of sea level. Cohnheim maintains that the high figures thus obtained on a large scale from subjects accustomed to live at high atmospheric levels leave no alternative except to assume a new formation of corpuscles under such conditions. Where contrary conclusions have been reached—and there are many such—it is not unlikely that the period of residence was too brief to permit the stimulating effects of altitude to manifest themselves in any conspicuous way.

The renewed assumption of an increased functioning of the hemopoietic organs at high altitudes has further been supported by observations conducted on Monte Rosa in the Alps relating to the regeneration of blood after severe anemias. In the international laboratory built on the Col d'Olen at an altitude of 2,900 meters (9,515 feet) and dedicated to the memory of Angelo Mosso, Laquer has found that dogs deprived by hemorrhage of half their blood-supply regenerate it in about sixteen days. Under precisely comparable experimental conditions twenty-seven days are required at lower levels for the restoration of the same blood loss. Laquer believes that the lower partial pressure of the oxygen is the effective stimulating factor in this more pro-

¹ Editorial in Journ. Amer. Med. Ass., Nov. 1, 1913, q. v.

² For a recent review of this subject see Cohnheim, O.: Physiologie des Alpinismus, II. Ergebn. d. Physiol., 1912, xii, 628; also Anglo-American Expedition to Pike's Peak, Journal Amer. Med. Ass., Aug. 10, 1912, p. 449.
³ Cohnheim, O., and Weber: Die Blutbildung im Hochgebirge, Deutsch.

Arch. f. klin. Med., 1913, cx, 225.

nounced regeneration so strikingly shown at great heights. How long this latest explanation will withstand the attacks of the increasing number of Alpine physiologists remains to be seen.¹

The latest observations show that arterial blood contains considerably more oxygen at high altitudes than at sea level. The pulmonary alveoli have a special power of extracting or secreting oxygen and this power is increased in high altitudes, this increase not disappearing until a considerable time after descent to sea level.

W. R. Huggard, of London, an unbiassed and judicial observer, says: "The diminished frequency of tuberculosis with altitude may, I think, be taken as established." Hirsch held the same opinion and based his statement on statistics from various places.

Thirteen years ago, Dr. Solly endeavored to show this statistically and arranged three tables which we append.

TABLE I

COMPARATIVE RESULTS IN SANATORIA IN HIGH AND LOW CLIMATES

COMBINED FIRST AND SECOND-STAGE CASES ONLY

(Taken from Dr. Walters, pp. 52 and 53)

1876-1886	Altitude	Number of Cases	Number Benefited	Per Cent
LOWLAND CLIMATES				
Goerbersdorf (Manasse)		3,615	1,294	36
Falkenstein (Dettweiler)	1,375 ft.	1,022	746	73) -,
Reiboldsgrün (Driver)	2,300 ft.	2,000	1,400	70) / 1
Tota1		6,637	3,440	Average. 51
HIGHLAND CLIMATES				
Leysin (Bernier)	4.150 ft.	37	34	92
Davos (Turban)		302	269	8 9
Arosa (Jacobi)	6,000 ft.	259	212	82
Total		598	515	Average, 86

The total average of benefited in low climates was 71 per cent¹ " high " " 86 "

¹ Without Goerbersdorf.

The Goerbersdorf reports up to 1884 are so much lower in the percent of benefited to the others—owing, perhaps, to some different method of estimating results, or, perhaps, to their being taken so many years ago, when the material was worse and the treatment perhaps not as efficient—that probably it would bring out the truth better to omit them.

¹ Editorial in Journ, Amer. Med. Ass., July 26, 1913.

²W. R. Huggard: A Handbook of Climatic Treatment, London, 1906, p. 124.

³ Hirsch: Geographical and Historical Pathology, New Sydenham Society Translation, 1886, Vol. 3, p. 440.

TABLE II

Comparative Results in Open Resorts in Low and High Climates
all stages

(Taken from Handbook of Climatology, Solly, pp. 132 and 133)

	Number of Cases	Number Benefited	Per Cent
LOWLAND CLIMATES			
Desert Climates	154	100	65
Island Climates	568	295	52
Coast Climates:	2,328	1,369	59
Inland Climates	136	77	57
Total	3,186	1,841	Average, 58
HIGHLAND CLIMATES			
Alps (Davos)	2,027	1,551	77
Alps (Davos)	571	420	73
Total	2,598	1,971	Average, 76
		,	

The total average of benefited in lowland climates was 57 per cent " " " highland " " 76 per cent

The first table, Table I, deals with the comparative results in sanatoria in high and low climates, first and second stage cases combined being alone taken, and the different variety of forms of improvement being grouped under the head of benefited. Of the lowland sanatoria the lowest elevation above sea-level was 1,840 feet, and the highest 3,300 feet. Of the highland climates the lowest elevation was 4,150 feet, and the highest, 6,000 feet. The total average percentage of benefited in low climates was 71, and in high climates 86.

Table II gives comparative results in open resorts in low and high climates. The total average of benefited in lowland climates was 57 per cent, in highland climates 76 per cent.

TABLE III

COMPARATIVE RESULTS IN HIGH AND LOW CLIMATES IN OPEN
AND CLOSED RESORTS

Sanatoriums	Per Cent Benefited	Open Resorts	
LOWLAND CLIMATES Hygeia (A. Klebs) Goerbersdorf (Brehmer) Adirondacks (Trudeau) Average	76 77	Average percent of benefited,	58
HIGHLAND CLIMATES Davos (Turban)	_	. Average percent of benefited,	7 6

Table III shows the comparative results in high and low climates in open and closed resorts. The cases, however, could not be obtained in first and second stage cases alone, but only of all stages combined. In lowland climates the closed sanatoria show 74 per cent benefited, and the open resorts 58 per cent benefited. In highland climates the closed sanatoria show 84 per cent benefited and the open resorts 76 per cent, exhibiting the relative superiority of sanatorium over open resort treatment in the two classes of climates, respectively. Doubtless the sanatorium cases were on the whole in better condition upon first coming under treatment than those in the open resorts and, therefore, the superiority of sanatorium treatment over open methods is probably not as great as it appears here; but, nevertheless, even if the material were exactly the same, the sanatoria would show a greater percentage of benefited over the open resorts.

Table III also proves that climate exercises a beneficial influence over patients in closed sanatoriums as well as in open resorts. In all stages combined the percentage of benefited in sanatoria in low climates was 74 per cent, while in high climates it was 84 per cent.

In the first and second stage cases combined (see in Table I), the difference in favor of mountain sanatoria is still greater—low-land sanatoria 71 per cent; highland sanatoria 86 per cent.

The following is the classification of the National Association for the Study and Prevention of Tuberculosis adopted in May, 1913. The data given in the table on page 69 are given in terms generally used up to that time.

CLASSIFICATION OF SUBSEQUENT OBSERVATIONS

Apparently Cured: All constitutional symptoms and expectoration with bacilli absent for a period of two years under ordinary conditions of life.

Arrested: All constitutional symptoms and expectoration with bacilli absent for a period of six months; the physical signs to be those of a healed lesion.

Apparently Arrested: All constitutional symptoms and expectoration with bacilli absent for a period of three months; the physical signs to be those of a healed lesion.

Quiescent: Absence of all constitutional symptoms; expectoration and bacilli may or may not be present; physical signs stationary or retrogressive; the foregoing conditions to have existed for at least two months.

Improved: Constitutional symptoms lessened or entirely absent; physical signs improved or unchanged; cough and expectoration with bacilli usually present.

Unimproved: All essential symptoms and signs unabated or increased. Died.

¹ Dr. S. E. Solly, in the Philadelphia Medical Journal, December 1, 1900.

It is practically impossible to draw accurate conclusions from data furnished by different institutions, under such wide variations as to the character of the patients and varying standards as to what constitutes an apparent cure or arrested disease. A glance at the chart or table shows that good results are obtained at all eleva-

Sanatoria	Elevation	Apparently Cured	Disease Arrested	Improved	Unimproved	Died	Year	Stage
Sharon, Mass.	feet 250	per cent 56	per cent 18	per cent 33	per cent 9	per cent	1891-1911	All
Barlow, Los Angeles, Cal.	300	3 3·5 16 31·14	4 6 16 14.7	40 39·5 42·8 32·8	35 27·5 9 9.8	13 22 1.7 6.5	1907 1903-7 1912 1913	All Chiefly ad- vanced
Wallum Lake, R. 1. (State)	650	8. ₅	32·9 27·4	33.6 38.3	23.7	I 2.5	Previous to 1912 1912	}AII
Muskoka, Canada	700	5 - 54	20.8	45.41	24.56	3.67	1902-12	All
Pottenger, Monrovia, Cal. (Private)	1000	68 25 8	21 50 33	11 17 36	4 8	4 15	1909 to 1912	{Incipient Second Third
Otisville, N. Y. (State)	1200	I 2	47.3	27.7	10.5	1.3	1913	All
Rutland, Mass. (State)	1165	26.1	35.6	29.5	9		1906	Early
New Jersey State (Glen Gardner)	900	12	29	42	16	I	1912	All
White Haven, Pa. (Free Hospital)	1250		17.1	59.9	13.7	3.3	1901-13	A11
Adirondack Cott. Sanitarium, Saranac Lake, N. Y.	1750	48.3 8.8	36.3 48.2		15.4 43	4.2	1885-1911	Incipient Moderately and far advanced
Ray Brook, Adirondacks, N. Y. (State)	1635	34 - 4	31.6	17.3	14	•9	1912	All
New Mexico Cottage Sanita-	6000	83	17				1904-13	Incipient
rium, Silver City (600 cases, Private)		50	33	8	6	2		Moderately ad- vanced, 19%
		13	30	25	26	4		Far advanced
U. S. Public Health Service Sanatorium, Fort Stanton, N. M. (For Sailors)	6231	11.7	15	29.1	9.5	34.5	1899-1912	A11
U. S. Army Hospital, Fort Bayard, N. M.	6400	2.02 4.78	2.87 11.40	69.25 52.38			1911 1912	All All

tions. The best results are claimed in incipient cases by the Pottenger (Private) Sanatorium, Monrovia, California, 1,000 feet, and New Mexico Cottage Sanatorium, Silver City, New Mexico, 6,000 feet.

INSOLATION. DIATHERMANCY OF AIR. ALPINE RESORTS

Associated with diminished atmospheric pressure are other important and inseparable atmospheric qualities which contribute largely

to the resultant influence on man's welfare in the higher altitudes. These other qualities have a special influence on pulmonary tuberculosis and should be recognized in estimating the effect on patients of this class.

We have, first, greater insolation. The part played by the earth's atmosphere in arresting the sun's rays is very important and second only to the influence of the atmosphere of the sun itself in arresting the radiation of light and heat from the sun. Slight changes in the sun's atmosphere would speedily alter the terrestrial climate. On the earth's surface at sea level the energy of light of the sun and that of the heat rays are considerably less than at the higher altitudes and recent measurements are of great interest and practical value.

Dr. Julius Hann, the great meteorologist of Vienna, has noted that on the lower plains thirty to forty per cent of the total amount of the sun's heat was absorbed by the earth's atmosphere, whereas at the summit of Mt. Blanc, at 15,730 feet (4,810 meters) elevation, nearly one-half of the absorbing mass of the air is lost and the amount of the sun's heat absorbed was not more than 6 per cent. One can readily understand that when the resistance is removed the light rays are more effective than at sea level. The late Prof. S. P. Langley showed by delicate measurements at this height that the blue end of the spectrum grows to many times its intensity at sea level.1 This marked diathermancy of the atmosphere goes hand in hand with altitude. The increased facility with which the solar rays are transmitted through an attenuated air accounts for the tan and sunburn so readily acquired on mountain tops and this quality is, in the author's opinion, of value in the prevention and treatment of tuberculosis.

Owing to the increased diathermancy of the atmosphere at elevated stations there is a remarkable difference between the atmospheric temperature in the sun and in the shade. At the higher Alpine resorts for tuberculous patients, such as Davos (5,200 feet), St. Moritz (6,000 feet), Arosa (6,100 feet), and Leysin (4,757 feet), the excessive heat in the sun compared with shade temperatures in winter favors the outdoor life during the "invalid's day." It also, incidentally, impresses all newly arrived visitors as a marvellous climatic feature. At St. Moritz, now a fashionable winter resort, ladies find parasols almost a necessity while friends are skating, and those

¹S. P. Langley: Researches on Solar Heat and Its Absorption by the Earth's Atmosphere. Papers of the U. S. Weather Bureau, No. 15, Washington, 1884, p. 242.

who indulge in this Alpine pastime revel in summer clothing. Although the climate is a cold one it is characterized by great diurnal ranges of temperature, freedom from dust, winds and fogs, and eminently suitable for the climatic cure.

As the snow lies on the ground at these resorts for from three to five months, sleighing, skating, skiing and tobogganing are popular and some of these sports are allowable in suitable cases of tuberculosis. In March or April the snow melts and the roads become slushy and muddy, so that the air becomes very damp, and patients are accustomed to make temporary visits to lower stations, such as Wiesen (4,760 feet), Seewis (2,985 feet), Thusis (2,448 feet), Gais in Appenzell (2,820 feet), or Ragaz (1,709 feet), returning later to the higher stations.¹

SURGICAL TUBERCULOSIS TREATMENT IN SWITZERLAND

No chapter on high altitude treatment would be complete at the present time without noting the brilliant success of Dr. A. Rollier in the treatment of surgical tuberculosis at Leysin, in the Vaudois Alps, Switzerland. This station has an altitude of about 4,500 feet above sea level. The hospital buildings face the south and are protected by mountain ranges from the cold winds of the north and west.2 Rollier states that even in midwinter, with snow on the ground, the temperature on the sunny balconies is often as high as 95° to 120° F. Owing to the purity of the atmosphere and the absence of moisture there is little loss of the luminous and caloric radiation of the sun. Rollier established his first hospital for the treatment of tuberculosis of the bones and joints in 1903, but it is only during the last two or three years that his method has attracted so much attention, though Bernard, of Samaden, had practiced it in the pure mountain air of Graubunden in the Engadine; and probably this influenced Rollier to select an elevated site for his hospitals. These are three in number and are located at 1,250, 1,350 and 1,500 meters, or 3,800, 4,100 and 4,500 feet. The exposure of

¹ See Walter B. Platt, M. D.: The Climate of St. Moritz, Upper Engadine, Switzerland (Trans. Amer. Climat. Ass., Vol. 4, p. 137).

Arnold C. Klebs: St. Moritz, Engadine (Trans. Amer. Climat. Ass., 1906, Vol. 22, p. 15).

² See description by John Winters Brannan, M. D., Medical Record, June 7, 1913. Also Rollier, Paris Médical, January 7, 1911, and February, 1913. The author is indebted to Dr. Brannan for his data and to Dr. Rollier for the illustrations and descriptions of his method.

the patient to the sun is the essential feature and after three to ten days of acclimatization indoors he begins with five minute exposures of the feet, five times a day. This is steadily increased as pigmentation appears until finally the entire surface of the body is exposed from sunrise to sunset. The head is, however, protected with white caps and shaded glasses. With the development of the pigmentation the cure progresses until recovery is complete. Dr. Rollier has sent us photographs of a boy who had 32 foci of tuberculosis, even the lungs being involved. This boy was considered cured after fifteen months of treatment. See plate 26.

In another case there were multiple lesions, including a badly disorganized and anchylosed elbow with seven sinuses and a history of three resections of the joint and forearm. This boy also made a good recovery with complete return of function, full flexion and full extension. See plate 27. Dr. Brannan adds that he has seen many such cures at "See Breeze" and has kindly furnished photographs of some of these patients. See plate 16.

According to Rollier the pigmentation is the important element in the cure, inasmuch as it affords to the skin a remarkable resistance, favors the cicatrization of wounds and confers a local immunity to microbic infections. On days when there is no sunshine recourse is had to radiotherapy for the adults and the Bier treatment (local lowering of atmospheric pressure) for the children; at all times, whether the sun shines or not, the skin has its bath of air and light.

Two hundred beds in Rollier's sanatoria are reserved for children. Dr. Rollier presented to the XVII International Medical Congress at London in 1913, a résumé of his method of heliotherapy and refers to eighteen separate communications to medical literature, in which he and his associates have described the method. Among other things we notice that he reports the number of adults having external tuberculosis treated by him as greater than that of children, 522 to 477. The prognosis for the former is as favorable as for the latter and the duration of treatment is never much longer. In Rollier's paper, referred to, all his cases for the past eleven years are tabulated and out of 1,129 patients, 951 are reported cured. Of the total number only three underwent the operation of resection. These were cases of gonorrheal arthritis; one was adult of over fifty years. Two cases of tuberculosis of the foot were treated by amputation; both were adults of over sixty years.

Rollier uses fixation by means of plaster, especially in Pott's Disease, but in all cases insists strenuously that the tuberculous joint

TWO VIEWS OF THE SAME CHILD. THERE WERE 32 FOCI OF LUNG, GLANDULAR AND BONE TUBERCULOSIS; GENERAL CONDITION VERY BAD. AFTER ONE YEAR OF HELIOTHERAPY AT DR. ROLLIER'S SANATORIUM WELL ESTABLISHED CURE. HEALED SCARS AT SIGHT OF OPEN SORES; VIGOROUS.

FOUR ILLUSTRATIONS OF THE SAME CHILD. HE WAS ADMITTED TO DR. ROLLIER'S SANATORIUM, LEYSIN, AT THE AGE OF FIVE, WITH NUMEROUS TUBERCULOUS FOCI IN THE BONE AND PERIOSTEUM AND ABOUT THE RIGHT EYE. THERE WAS TUBERCULOSIS OF THE ELBOW AND RIGHT FOREARM. THREE PREVIOUS OPERATIONS. SEVEN FISTULOUS OPENINGS IN THE ELBOW; SEVEN IN THE FACE. JOINTS IMMOVABLE; GENERAL CONDITION BAD. THE TWO LOWER VIEWS SHOW THAT AT THE END OF ONE YEAR THE OPEN SORE HAD HEALED. CHILD VIGOROUS.

or other site of the disease must not be covered over by any unremovable apparatus so as to interfere with the full exposure to the sunlight. Rollier's last paper goes very fully into the technic of heliotherapy and the reader is referred to this and to the fully illustrated paper in "Paris Médical," February, 1913, in which there are forty-five remarkable photographs covering the most interesting features of this work. It is at present attracting great attention and American physicians can find in the recent review of Rollier's work by Dr. Henry Dietrich, of Los Angeles, California, an excellent summary of its theory and practice.

Rollier,² in his address before the Gesellschaft deutscher Naturforscher and Aerzte in Münster in 1912, says:

It is in surgical tuberculosis that we have seen the best results from heliotherapy, and we have made the treatment of it our life work. As a result of my experience in the use of the light-cure in higher altitudes, based on an experience of nine years, I maintain to-day that the cure of surgical tuberculosis in all its forms, in all stages, as well as at every age of life, can be accomplished.

The closed surgical tuberculosis always heals, if one will only be patient, and above all if one understands how to keep it closed. To transform a closed tuberculosis into an open one means to increase the gravity of the case a hundredfold. A diminution of the vitality of the tissues is the inevitable consequence. To regard a surgical tuberculosis as a local disease which can be cured by local treatment alone is a ruinous error. On the contrary,

¹ Journ. Amer. Med. Ass., December 20, 1913, p. 2232.

² References: Rollier (Verhandl. d. Gesellsch. f. Kinderheilk. d. 84 Versamml. d. Gesellsch. deutsch. Naturforsch. u. Aerzte in Münster), 1912. A report of 650 cases in which 355 patients were adults and 295 children. There were 450 cases of closed surgical tuberculosis and 200 cases of open surgical tuberculosis. In the cases of closed surgical tuberculosis 393 patients were cured, 41 improved, 11 remained stationary, and 5 died. Of the patients with open surgical tuberculosis, 137 were cured, 29 improved, 14 remained stationary, and 20 died.

Rollier and Rosselet: Sur le rôle du pigment épidermique et de la chlorophylle (Bulletin de la Soc. des sciences nat. 1908).

Rollier and Hallopeau: Sur les cures solaires directes des tuberculoses dans les stations d'altitude. Communication à l'Académie de Médecine, Paris (Bulletin de l'A. d. Méd., 1908, page 422).

Rollier and Borel: Héliothérapie de la tuberculose primaire de la conjonctive (Rev. méd. de la Suisse romande, 20 avril 1912).

Witmer, T. and Franzoni, A.: Deutsch. Zeitschrift für Chirurgie, No. 114.

P. F. Armand-Delille: L'Heliotherapie, Masson et Cie, Paris, 1914.

P. Vignard and P. Jouffray: La Cure Solaire des Tuberculoses Chirurgicales, Masson et Cie, Paris.

it is a general affection which requires general treatment. Of all infectious diseases it is the one in which the individual resistance plays a deciding part. Our first effort, therefore, is directed to improve general conditions and thus to bring about a healing of the local focus by treatment of the entire system. A rational local treatment is necessary as well, provided it is not too one-sided.

In cases of spondylitis, or Pott's disease, the children wear jackets having a large fenestrum cut anteriorly, as the vertebræ in children are not much further removed from the surface of the abdomen than from that of the back. After healing is verified by X-ray a celluloid corset is worn. One or two years are required for the cure. Plate 29 shows a girl thus cured of pronounced Pott's disease with gibbosity, and paraplegia and muscular atrophy. There was complete healing after fifteen months of the solar cure which the illustration well shows.

CASES OF HIGH ALTITUDE TREATMENT

As illustrations of the good effect of high altitude treatment, two cases from the practice of the late Dr. Charles Theodore Williams, of London, may be cited. They were both cured at St. Moritz (6,000 feet).

Miss C., aged 18, was first seen by Dr. Williams, July 20, 1887. She had lost a sister from tuberculosis and she had a history of cough and expectoration for five months and wasting and night sweats for two months; total loss of appetite and aspect very pallid. Slight dulness, crepitation in first interspace to the right. Ordered to St. Moritz for the winter. In the spring the patient spent six weeks in Wiesen, elevation 4,760 feet. She entirely lost her cough and expectoration, gained twenty-four pounds in weight and became well bronzed, looking the picture of health. Her chest increased enormously in circumference and measured, on full expiration, five inches more at the level of the second rib than before she left England. She stated that she had burst all her clothes. Careful examination at the end of eleven months, when these later notes were taken, showed great development of the thorax and hyper-resonance everywhere, but no abnormal physical signs. After more than three years in England the chest measurement had somewhat decreased.

Another patient, Miss R., aged 21, was seen in November, 1879, with a history of cough with expectoration, loss of flesh, night sweats, pain in the left chest and evening pyrexia of a month's dura-

ROLLIER, LEYSIN.

FIG. 1. HELIOTHERAPY AND IMMOBILIZATION IN PLASTER FOR SURGICAL TUBERCULOSIS. BALCONY OF DR. ROLLIER'S SANATORIUM, "LE CHALET," LEYSIN, SWITZERLAND, THE JACKETS HAVE LARGE OPENINGS TO ALLOW ACCESS OF SUNLIGHT TO THE DISEASED SPINES, SOME PATIENTS IN DORSAL POSITION; OTHERS IN VENTRAL POSITION.

FIG. 2. CHILDREN WHO CAME TO DR. ROLLIER VERY SICK NOW INDULGE IN WINTER SPORTS. NO CLOTHING BUT CAPS AND LOIN CLOTHS. NOTE THE MUSCULATURE OF THE CHILDREN FORMERLY SUBJECTS OF COXALGIA, ARTHRITIS, PERITONITIS AND ADENITIS.

tion. Dullness and deficient breath sounds were detected close to the left scapula. After three years of unsuccessful treatment in England, during which time two winters were spent at Hyères, on the Mediterranean, losing ground and growing thinner and showing evidence of commencing disease in the opposite lung, she was sent for the winter to St. Moritz. She returned the following May vigorous and well bronzed, having taken plenty of exercise, skating, walking, and tobogganing. She had lost all cough and had gained much strength. The chest measurement showed an increase of one inch. The whole thorax was found hyper-resonant and no physical signs of consolidation could be detected. After eleven years of residence subsequently in England, she was free from chest symptoms.

In this case, notwithstanding the improvement following two winters spent at Hyères, at sea level, the disease was not arrested and increased the following year. But during one winter's residence at St. Moritz, elevation 6,000 feet (diminished atmospheric pressure and out-door life with winter sports), there was complete arrest of the disease, as the experience of eleven years with absence of physical signs testifies.

There is a wealth of clinical material to show the advantages of high altitude treatment at the well-known European and American resorts. Sir Hermann Weber, of London, and his son, Dr. F. Parkes Weber, have had a long and favorable experience in the treatment of pulmonary tuberculosis in high altitudes and they support Dr. C. T. Williams in a higher estimate of treatment of this disease at high elevations as contrasted with results at the sea level.

Twenty-five years ago Sir Hermann Weber stated that out of 106 tuberculous patients sent to high altitudes, 38 were cured, either permanently or temporarily, 16 were stationary or but slightly improved and 10 deteriorated. More than half of the cases in the first stage were cured.

The American statistics of Drs. Samuel A. Fisk, W. A. Jayne, S. E. Solly, Charles Denison and S. G. Bonney, all of Colorado,

¹Fisk, Samuel A.: Concerning Colorado (Medical News, Sept. 16, 1899); Climate of Colorado (Trans. Amer. Climat. Ass., 1888, p. 11).

² Jayne, W. A.: Climate of Colorado and Its Effects (Trans. Amer. Climat. Ass., 1888).

⁸ Solly, S. E.: Invalids Suited for Colorado Springs (Trans. Amer. Climat. Ass., 1888, p. 34).

are certainly convincing as to the effect of high altitude treatment in the cure of pulmonary tuberculosis.¹

Solly said in 1888, "Taking the medical profession throughout the world, it is unquestionable that a large majority of those who have made a study of the subject believe that where a change is made, a change to an elevated country is the most likely to benefit a consumptive."

Solly lived for thirty-three years in Colorado after having removed, as a tuberculous invalid, from England. Every one of the physicians mentioned above went to Denver or Colorado Springs as a tuberculous patient, recovered his health there, acquired a reputation and successful practice during fifteen to thirty years of residence and the majority are alive to-day (1913). Those who died succumbed to other affections.

According to Solly, 76 per cent of all patients, good, bad and indifferent, and 89 per cent of those in the first stage that undergo climatic treatment in Colorado are benefited. Would such patients as we have mentioned have derived equal and as lasting benefit at Alpine Stations, such as Davos or St. Moritz, which have a corresponding altitude and an equal barometric pressure? Judging from recorded clinical experience, we believe that they probably would have done equally well. We can never know absolutely. Would they have done equally well at sea-level or at very moderate altitude? None of the physician-patients whose names are quoted would admit it.

Dr. Solly, with his inimitable humor once remarked, "If I were living in London to-day, I'd be dead." In all human probability most, if not all of them, are fair examples of the curative power of the Colorado climate.

Of late there have been dissenting voices, challenging some of the cardinal principles involved in the altitude treatment of tuberculosis. Not only altitude, with its concomitant rarefied atmosphere, but even sunlight itself which lightens the heart of every invalid, have both been denied the value so generally assigned them in tuberculo-

¹ Charles Theodore Williams: Aerotherapeutics, or the Treatment of Lung Diseases by Climate. The Lumleian Lectures, 1893; Macmillan, 1894, pp. 111-179.

Charles Denison: Dryness and Elevation the Most Important Elements in the Climatic Treatment of Phthisis (Trans. Amer. Climat. Ass., Vol. 1, 1884, p. 22).

therapy. These discordant notes find utterances among those who have been compelled to treat the poorer class of consumptives in our cities at the seaboard and who have obtained some excellent results. Stress is laid on the beneficial influence, for example, of cold.¹ The fact that patients improve more in winter than in summer is cited to prove that "cold air in itself seems to cure in a manner which nothing else can accomplish. * * * Sunshine is not essential—excellent results may be obtained in climates where the sun is rarely seen. Mere outdoor living seems to be the essential element, and yet there does not seem to be any doubt that quicker results are obtained in the cold season than in the summer."

EFFECT OF COLD AIR

There is truth in the proposition that cold air is better for the consumptive than heated air. It is usually purer and is unquestionably more stimulating to the vital forces. Warm sleeping rooms are positively bad because of deficient ventilation. Warmth debilitates and opens the way to bacterial invasion. Hot weather is relaxing, while moderate cold, or greater cold with proper safeguards, acts as a tonic and fortifies the well and sick alike against disease.

The good effect of cold air in tuberculosis is commonly noted by physicians and patients. The following extract from a letter from a tuberculous patient, dated Saranac Lake, New York, February 19, 1908, is interesting:

I have not felt the cold up here this winter as I feared I might, although the mercury has nearly disappeared on one or two memorable nights. 46° below zero is the coldest I have seen it but it was reported 50° below in the village. I am quite used to the cold now as I sit out on the porch all day and have not missed a day yet; but there is one redeeming feature about the cold up here and that is that zero weather does not seem nearly so cold as 20° above in Philadelphia. I really do not begin to feel it until it gets to 20° below, although it is usually too cold to use my hands even in milder weather. J. D.

This patient was 22 years old, had been at Saranac fifteen months and is reported perfectly well and weighs 180 pounds. He is apparently cured. He remains well, Nov., 1913.

¹ Editorial, American Medicine, Philadelphia, January 20, 1906.

See A. D. Blackader, M. D.: The Advantages of a Cold, Dry Climate in the Treatment of Some Forms of Disease (N. Y. Med. Journ., Aug. 3, 1912).

The minimum temperature at Saranac Lake for 1912 was —32° F. on January 25, and the maximum was 88° F. on July 10. The mean temperature was 40.98° F. The total precipitation was 43.19 inches, with a total snowfall of 124.24 inches. Clear days, 153; partly cloudy, 77; cloudy, 136.

The extract here reproduced from a letter dated Saranac Lake,

July, 1886, is interesting. It was addressed to the author.

The hot heather is I think me favorable to the this ical patients and the freatient my morneed tother place from Earl face to Early spring by hing muy

The best and clearest statement of seasonal influence on body weight of consumptives that we know of was made by Dr. N. B. Burns, of the North Reading State Sanatorium, Massachusetts. His observations are based on one thousand patients during three years. Fully forty per cent of the cases admitted to this sanatorium were of the far advanced and progressive type. It was noted that August, September and October show that the largest percentage of patients gaining, while the three months immediately preceding show the opposite.

Dr. Burns also charted the aggregate gain in pounds of the male patients treated at North Reading, December, 1911 to 1912, inclusive. There was a rise in January and February, 1912, to 850 pounds for 76 patients which was maintained well through March and April.

NORTH READING STATE SANATORIUM, MASSACHUSETTS TABLE ONE

N B. BURNS, M. D.

	-	1	Mond	J. Pari	100	,_	í	, J	۵	+,0	1/0/1	Doz
באשל סבס	Jan.	reB.	וחשלות	المارية	<u> </u>	Jan. Jeb. Mary Mary Dune July Oug. Dep. Oct. 1969.	e u Cy	ofug.	Oeb.		JACO.	Jec.
PATIENTS GAINING	64.5 59.4 42.7 47.2 42.0 44.2 46.9 71.9 74.9 66.4 60.7 64.9	59.4	42.7	47.2	42.0	44.2	46.9	71.9	74. 9	66.4	60. 7	64.9
PATIENTS LOSING	27.9 35.4 50.2 44.5 50.7 50.4 47.6 27.3 17.3 25.5 29.8 27.8	35.4	50.2	44.5	50.7	50.4	47.6	27.3	£.31	25.5	29.8	27.8
Patients Stationally 7. 6 5.2 7.1 8.3 7.3 5.4 5.5 0.8 7.8 8.1 9.5 7.3	7.6	5.2	7. 1	8.3	7,3	5.4	5.5	8.0	7.8	8.1	9.5	7.3

There was a subsequent sharp decline in May, the index dropping 250 points. This fall continued without interruption in June, to culminate July 11, at the low point for 1912.

The conclusion of this study was:

Phthisical patients are apt to lose rapidly in weight and general condition in May, June, and the first two weeks in July, which season constitutes an unfavorable and critical period.

Phthisical patients make an extraordinary recovery in weight and general condition in the month of August, which is a surprisingly favorable time of the year.

August, September, January and February are the most propitious months for obtaining successful results in treating pulmonary tuberculosis.

Forced feeding in the unfavorable season seems to have availed very little in limited number of cases studied at North Reading.

We have already referred to the beneficial influences of the Arctic summer climate (see pages 39-42), and we attributed much of it to the perpetual sunshine; consequently we cannot agree to the illogical statement that sunshine is not essential. We believe that the "Fireside Cure" has no place in the treatment of tuberculosis and we must admit that whereas only a few years ago the cold air fiend, who slept with windows wide open in the coldest winter, was considered a crank, he now has been proved to be the only sensible one among us.¹

EXPANSION OF THORAX AT HIGH ALTITUDES

Without dwelling further at this time on the effect of cold air compared with warm air on tuberculous disease (see pp. 28, 40, 71), we must note some of the undeniable effects of diminished atmospheric pressure on physical development and especially on the thorax and pulmonary tissue.

One striking change is the expansion of the thorax in various directions and a corresponding increase in the mobility of the thoracic walls. We have previously referred to one case in which the circumference increased five inches during a residence at St. Moritz, elevation 6,100 feet. (See page 74.) Changes of from one to three inches are more commonly noted even at much more moderate elevations. These changes are conveniently recorded by means of

¹ American Medicine, loc. cit.

the instrument known as the cyrtometer which gives accurate tracings for recording the progress of the patient.

Inasmuch as tuberculous patients in whom the disease is actively progressing show a shrinking of the perimeter pari passu with the advance of the disease, and those who are recovering show an increasing circumference, it is a fair inference that the physiologic increase in thoracic measurements due to residence in the higher altitudes is an advantage in the prevention and treatment of pulmonary tuberculosis. Man is not adapted to live permanently at altitudes above 13,000 to 16,000 feet (4,000-5,000 meters), but at somewhat lower elevations as, for instance, at 10,000 feet we have some thriving cities such as Leadville and Cripple Creek in Colorado, and Quito in Equador, elevations 10,000 and 9,350 feet (3,000 and 2,850 meters). The altitude of the permanent habitations in the Ortler Alps is about 5,450 feet (1,640 meters), and that of the highest health stations from 5,000 to 7,000 feet (Arosa). It is a well-known fact that the Indians of the Andes, the Swiss guides, the Tyrolese hunters and other mountain dwellers have a large thorax with correspondingly deep inspiratory power and remarkable endurance.² The increased respiration and the quickening of the circulation promote health and vigor in mountain races and comparisons between the highlanders and those in deep and flat valleys are always in favor of the former. All observers have remarked on the immunity from disease, and especially scrofulous and tuberculous disease, characteristic of mountain races, provided they live in the open, avoid overcrowding, have sufficient and suitable food and observe ordinary hygienic methods of life. Failure in this respect provides an opening for tuberculosis which, as we well know, is the scourge of the North American Indian and his relatives in Mexico and South America. Even in Ouito, that city of remarkable equability, where it is perpetual spring, tuberculosis has effected an entrance, and enters largely into the mortality lists.3 In Bogota, South America, in La-Paz, Mexico (elevation 11,000 feet, 3,360 meters) and in other densely populated towns in these countries, the later records show increasing numbers of cases of tuberculosis. This fact, however,

¹ See Minor, Charles L.: The Cyrtometer: A Neglected Instrument of Pulmonary Diagnosis and Prognosis (Trans. Amer. Climat. Ass., 1903, p. 221).

²" Mexican Indians, though of medium height, have unusually large and wide chests, quite out of proportion to their size." Jourdanet.

³ Jacoby: Thèse de Paris, 1888. Quoted by Huggard.

should not afford the slightest ground for controverting the general proposition that life at altitudes of from 3,000 to 6,000 feet favors immunity from tuberculosis and the cure of the disease in suitable cases,

CHOICE OF CASES FOR HIGH ALTITUDE

The question then arises, what are suitable cases for altitude treatment? What kind of patients may be sent to stations of lower barometric pressure?

In choosing a location, the late Dr. F. I. Knight, of Boston, formulated some opinions based on his long experience.¹ He limited the age of those resorting to altitudes to fifty years. In temperament he preferred the phlegmatic to the nervous, with an irritable heart, frequent pulse, and inability to resist cold; and with the latter we must be careful not to include those who show nervous irritability from *disease*, not temperament, as they are generally benefited in high places. As regards disease, he first considered cases of early infection of the apices of the lungs with little constitutional disturbance, and, although these generally do well under most conditions, yet considerable experience assured him that more recover in high altitudes than elsewhere.

It is best to begin with low altitude in patients with more advanced disease showing some consolidation but no excavation; also when both apices or much of one lung is involved and the pulse and temperature are both over 100.

Hemorrhagic cases, early cases with hemoptysis and without much fever are benefited by high altitudes. Patients with advanced disease, those with cavities or severe hectic symptoms should not be sent to high altitudes. A small, quiet cavity is not a counter-indication; hectic symptoms are counter-indications.

This accords with the latest report from the U. S. Public Health Service Sanatorium at Fort Stanton, New Mexico, altitude 6,231 feet. Dr. F. C. Smith reports 56 deaths from pulmonary hemorrhage in a total of 524 patients since the hospital was opened in 1899. His conclusion is that pulmonary hemorrhage is not more frequent at high altitude than at sea level, but the results are perhaps more often serious, especially in those with impaired circulation.²

¹ Trans. Amer. Climat. Ass., 1888, p. 50.

² Public Health Reports, U. S. Public Health Service, No. 51, by F. C. Smith, Passed Ass't Surgeon, Washington, 1910. See also Report No. 93. Washington, 1912.

SNOW SCENE AT UNITED STATES PUBLIC HEALTH SANATORIUM, FORT STANTON, NEW MEXICO. HOUSE AT RIGHT, WITH PORCH, QUARTERS OF OFFICER IN CHARGE. ROW IN CENTER SETS OF QUARTERS USED BY JUNIOR OFFICERS AND OTHERS

TUBERCULOSIS SANATORIUM OF THE UNITED STATES PUBLIC HEALTH SERVICE, FORT STANTON, NEW MEXICO. AMBULANT SICK CALL. PATIENTS TAKING BREATHING EXERCISES

Patients in an acute condition should not be sent. Cases of fibroid phthisis, in Dr. Knight's opinion, are not suitable. Convalescents from pneumonia or pleurisy are usually well suited for elevated regions. Advanced cases of tubercular laryngitis, if good local treatment and freedom from dust can be obtained, may do no worse in elevated regions than elsewhere.

In cases complicated by cardiac dilatation we cannot advise altitude; but a cardiac murmur resulting from a long-past attack of endocarditis with no sign of enlargement or deranged circulation should not prevent. Nervous derangements of the heart are usually counter-indications.

The observations made at the United States Public Health Sanatorium at Fort Stanton, New Mexico, by Surgeon F. C. Smith, of the service are commended as a valuable contribution to the Relation of Climate to the Treatment of Pulmonary Tuberculosis. This sanatorium is open to sailors in the merchant marine and they are transferred from the twenty-two marine hospitals on the coasts and rivers to this admirable inland sanatorium. It was found that the results have been nearly three times as good in the cases which left the home stations, i. e., the local marine hospitals, without fever as in those who had a temperature of 38° C. (100.4° F.) or more within two weeks of departure. The deaths in those leaving afebrile were to those leaving with fever as 22 to 59; the arrests, as 10 to 7½; the apparent cures, as 10 to 3. Dr. Smith holds that the case that should be sent to a distant climate immediately upon diagnosis is exceptional and he also adds that neglect to make an early diagnosis does not warrant precipitate haste in sending the victim away when it is finally established. The psychologic moment for a climatic change is when there is a comparative quiescence of the lung process under treatment at home, when nutrition is improved and further improvement is slow (Francine). Climatic change, however, must sometimes be made, as we will see later on, when the hoped for stage of quiescence does not occur.

Before allowing patients with pulmonary diseases to go long distances or to make any great change to higher altitudes, some caution should be given. In the first place, patients should not make any physical exertion for two or three weeks after arrival. The air may be stimulating, there may be sights to see and many dangerous invitations given, but it is absolutely necessary that the patient should be adjusted to the new atmospheric conditions. Acclimatization is necessary to comfort and safety. In the old days it was accomplished by the slow ride in the stage-coach over the plains. We cannot go back to the

old methods, and therefore we must exercise greater caution. No febrile case should be sent on these journeys or to any elevated resort. Hemorrhage is not a counter-indication to a change of altitude, and it is not any more liable to occur at five to six thousand feet than at sea-level. However, no advanced case of pulmonary tuberculosis should be sent away. Financial considerations are highly important. Expenses are usually underestimated, and the want of sufficient means, the need to economize as regards the necessities, not to speak of the luxuries, of life, is a dreadful handicap, and should bar out many a case that succumbs for want of the very comforts he had left behind. It would be far better for such patients if they should enter some special hospital or sanitarium for consumption, such as are found in most of our Eastern States.

No one should be sent away without definite and satisfactory knowledge of the place to which he is sent, and without a letter of introduction to some favorably known practitioner containing a statement of the main points in the case.

In matters of climate, as in many other fields, it is the man behind the climate who will help the patient, save him from errors and indiscretions, advise him and direct him as to local surroundings, and enable him so to live that his disease shall be arrested.

Some localities favorable for tuberculous patients have already been mentioned. Taking the country as a whole we naturally look to the elevated, sparsely settled regions of Colorado, New Mexico, Wyoming, Montana, Nevada, Utah, Arizona and California. The slopes of the Rocky Mountains and the Great Basin are justly entitled to first choice, provided always that other safeguards than climate are to had for the protection, the comfort and nutriment of the patient. Texas, especially the central and higher western portion, must be included in this great area. Life in Texas was formerly rather too rough and food and accommodations were too primitive for fastidious people, but now at places like San Antonio and El Paso, these defects have been remedied. The winter climate of Texas is very agreeable, except when the Texas norther descends and holds everything in an icy clasp. However, this is not altogether a disadvantage, if not too severe.

Florida suits some cases of phthisis. The interior of the state is sandy and the winter and spring climate is excellent. The cultivation of orange groves and other agricultural features of the state have given many a patient a profitable occupation that he would never have found elsewhere.

Thomasville, in Georgia, sixteen miles from the Florida line, and Aiken and Camden, in South Carolina, have long had a reputation for the relief of pulmonary affections. Asheville, North Carolina, is more elevated (2,300 feet) and has an excellent "all the year round" climate. Special attention is given to tuberculous patients at this resort, and this is something that cannot be said of all the good places. In Pennsylvania, suitable places are found in the Pocono Mountains, at White Haven, Kane, Cresson, Mont Alto and Hamburg. In New Jersey, there are Lakewood, Brown's Mills, Haddonfield, Vineland, and, for special cases, such as chronic fibroid phthisis, we may advise Atlantic City.

In New York, there are the Adirondacks, especially the vicinity of Saranac; Loomis, in Sullivan County, where there is an excellent sanatorium. In New England, there are institutions at Rutland and Sharon, Massachusetts; Wallum Lake, Rhode Island; Wallingford, Connecticut. But, as we have said before, the choice of a place, whether near home or at a distant point involves all the questions of diagnosis, of temperament, of financial resources, all of which the physician must weigh as conscientiously as though his own life depended on it.

Of late, English physicians have been making more extended use of the higher Alpine resorts. Among these, Davos Platz, altitude 5,200 feet; St. Moritz, 6,000 feet; Arosa, 6,100 feet; and Leysin, 4,712 feet, are usually chosen. Their chief characteristics are an atmosphere of dry, still, cold, rarefied air; absence of fog, few clouds and very little wind. There is, therefore, strong sunlight with a grateful warmth in the sun's rays.

In selecting cases for treatment by change of climate, we must exercise as much discrimination as in applying any other remedial measure. Indeed, more caution should be used, for the patient will pass out of observation and in most cases the advice given involves the most vital consequences.

CHAPTER V. INFLUENCE OF INCREASED ATMOSPHERIC PRESSURE; CONDENSED AIR

Celsus, in treating of pulmonary tuberculosis in the first century A. D., advocated a change of climate and to "seek a denser air than one lives in." ¹

A few places in California and in Asia Minor are below sea-level.

¹ De Medicina, Paris edition, Delahay, 1855.

But the consequent increased atmospheric pressure in these localities is not in itself worthy of note. Such desolate regions as the Dead Sea, the Mojave Desert, Death Valley, and Salton Lake, California, are entirely unsuited for the tuberculous, and, for obvious reasons, all subterranean pressures are out of the question. Divers and caisson workers become anemic and hence artificial pressures increased beyond the normal at sea level are injurious.

Even the natural variations in atmospheric pressure at any given station may be sufficient to have some appreciable influence, per se, on the course of pulmonary tuberculosis. Changes of pressure of 20 mm. (.7874 inches) occasionally take place, but they are comparable to a gradual change of level amounting to only 200 meters (656 feet), and it has been assumed that no appreciable physiologic effects can be attributed to these gradual alterations, at least as far as tubercular diseases are concerned. Hann and Thomas state that in experiments with pneumatic chambers, pressure changes amounting to 300 mm. (11.8 inches) a day have been produced without causing any notable injurious effects upon the sick persons concerned in these experiments.

EFFECT OF BAROMETRIC CHANGES ON THE SPIRITS

As the barometric pressure in any given place falls the cloudiness usually increases, the temperature rises, the wind increases, and precipitation is liable to occur; as the pressure rises the skies clear, the temperature falls and the winds shift to the west or northwest. The spirits and general morale of all patients usually improve with a rising barometer unless prolonged wind storms accompany such a change. Whatever improvement accompanies a rising barometer is due to the stimulus of cold or the return of sunshine and dryer air.

Dr. Charles C. Browning, of Los Angeles, has studied the effect of some atmospheric conditions on tuberculous patients.³ In his first report it appeared that unseasonable or very sudden changes in temperature influenced temperature of patients, while equal or greater changes occurring slowly did not. Of hemorrhages occurring in groups about four times the number occurred when there

¹ Julius Hann: Handbook of Climatology, Macmillan, 1903, p. 71.

² Thomas, in Beiträge zur Allgemeinen Klimatologie, Erlangen, 1872.

Trans. American Climatological Ass., 1908; idem, 1913, p. 189.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

Relation of pulmonary hemorrhages and deaths from tuberculosis to barometric pressure, temperature and humidity. Courtesy of Dr. C. C. Browning, Los Angeles, Cal.

was a barometric pressure change exceeding .3 of an inch within twenty-four hours than when the change was less. The hemorrhages appeared to be more frequent if there had been a change in the opposite direction—a sudden fall. The cases observed were all in the advanced stage. The conditions which appear to influence groups of hemorrhages and deaths are barometric pressure, humidity and cloudiness, each in turn appearing to be the most prominent

Chart showing deaths from tuberculosis in the Los Angeles County Hospital and in the city of Los Angeles in 1910. Rainfall, mean monthly temperature and relative humidity are also shown. Courtesy of Dr. C. C. Browning.

index in exerting a limited determining influence. This is shown in the two charts for November and December, 1912. Dr. Browning's paper contains charts for six other months.

Dr. Browning notes the influence of fog and remarks that the "high fog" is regarded by many as one of the most desirable factors of the Southern California climatic condition. It is not fog in the generally accepted meaning, for this "light veil" is neither cold nor excessively moisture laden; neither is it high, for its altitude is less than a thousand feet.

When the barometer is gradually rising and the humidity slowly falling and the sky clear or clearing, patients are pleasant, in some cases jovial and inclined to be optimistic as to the future.

When the barometer is either gradually or rapidly falling and the humidity rising and becoming more oppressive as the hours go by, and the day is foggy with little or no sunshine, the effect on patients is entirely different. They become pessimistic, cross and very irrit-During the so-called "northers," when the barometer falls, then rises rapidly with clear weather and a quick drop in the humidity as from 75 per cent to 20 per cent in twenty-four hours, there is a marked drying of the mucous membrane, causing great discomfort in some and comfort in others.

ARTIFICIALLY COMPRESSED AIR

Artificially compressed air has been used by Oertel, Simonoff and Charles Theodore Williams in pulmonary tuberculosis. two claimed great improvement resulting from its use; but Williams did not find such favorable effects. In nine cases submitted to the compressed air bath, hemorrhage was brought on in two while in the bath; in four others hemorrhage occurred but could not be distinctly connected with this form of treatment. There was usually some gain in weight and diminished cough and expectoration, and apparently the respiration became freer in the unaffected portions of the lungs. Beyond the opening up or aeration of portions of the lung which had not been brought into play for some time, there seemed to be no special change for the better. Compressed air in Williams's experience did not facilitate the absorption of lung consolidation or infiltration.

At the Brompton Hospital a large wrought iron chamber was constructed about ten feet in diameter by eight feet in height, and accommodated four patients. It had thick glass windows and a closely fitting door. By means of inlet and outlet pipes compressed air was introduced and allowed to escape. The outer air from a pure source was filtered through cotton and pumped into the receiver. The pressure was gradually increased after the patients were inside the tank until it reached ten pounds or two-thirds of an atmosphere above the normal. Half an hour was spent in increasing the pressure, one hour in maintaining it at the highest point required, and half an hour in

¹ Charles Theodore Williams: Compressed Air Bath and Its Uses in the Treatment of Disease, London; Smith, Elder & Co., 1885, and Aerotherapeutics. Macmillan, London, 1894, p. 106.

reducing it; so that two hours were consumed in its application therapeutically.

A practical difficulty was encountered in keeping the compressed air sufficiently cool to be comfortable, owing to the fact that air invariably rises in temperature during compression and cools during rarefaction; so that in warm days ice had to be used about the reservoir.

Von Vivenot, in a careful series of experiments, showed that the influence of compressed air on the respiratory capacity was to permanently raise it. When used for two hours every day it is found to increase daily from 20 ccm. to 30 ccm. above the previous day's record. Von Vivenot took 122 compressed air baths during 143 days and his respiratory capacity was raised from 3051 ccm. to 3794 ccm. and, in compressed air, to 3981 ccm. This increased capacity was reached in three and a half months, after 91 baths and was afterward maintained at practically the same level.

An increase in respiratory capacity has been noted by other observers, but the respiration rate is always lowered and in almost all cases there is a similar lowering of the pulse rate.

PNEUMATIC CABINET

These experimental results naturally appealed to phthisiologists and patients were treated at Brompton, as we have mentioned, and in the United States by means of Ketchum's pneumatic cabinet or similar devices. There is no doubt but that the method was given a fair trial, but it has been found wanting. The pneumatic cabinets installed at considerable expense at the Loomis Sanitarium at Liberty, at the Rush Hospital in Philadelphia and at Saranac, are rusting away or consigned to the scrap heap. The simpler and more natural method of outdoor life is found much more safe, rational and effective.²

See J. Solis Cohen: The Use of Compressed and Rarefied Air as a Substitute for Change of Climate in the Treatment of Pulmonary Phthisis. (Trans. Amer. Climat. Ass., Vol. 1, 1885).

V. Y. Bowditch: Ten Months Experience with Pneumatic Differentiation, ibid., 1886, 47.

A. S. Houghton, Journ. Amer. Med. Ass., Nov. 7, 1885.

C. E. Quimby, Trans. Amer. Climat. Ass., Vol. 9, p. 33.

Isaac Hull Platt, Trans. Amer. Climat. Ass., Vol. 3, p. 76.

¹ Paul Bert, op. cit., p. 439.

Huggard, W. R.: Handbook of Climatic Treatment, p. 109.

² At Sharon Sanatorium it is still used in some cases as a means of calisthenics for the chest and is thought to be of value

Tiegel, New Yorker Medicinische Presse, April, 1887.

E. L. Trudeau, Trans. Amer. Climat. Ass., 1886, p. 41.

Ketchum: Physics of Pneumatic Differentiation (Medical Record, Jan. 9, 1886).

Waldenburg, Pneumatische Behandlung, Berlin.

J. T. Whittaker, Gaillard's Med. Journ., August, 1885, p. 208.

Herbert F. Williams, Journ. Amer. Med. Ass., Aug. 14, 1885.

Herbert F. Williams, Trans. Amer. Climat. Ass., 1886, p. 17.

B. F. Westbrook, Trans. Amer. Climat. Ass., 1887, p. 102.

ARTIFICIAL HYPERÆMIA

We must here refer to an important advance in the treatment of surgical tuberculosis in which artificial changes in the atmospheric pressure play a prominent part. Prof. Bier, of Bonn, first used his famous method in treating tuberculosis of joints; he used the "Stauungsbinde." He also uses cupping glasses of various shapes so that they may be applied to various parts. The rarefaction of the air is accomplished by a rubber ball or a pump, according to the size of the glass. After opening tuberculosis lymphatic glands and tuberculous abscesses in connection with joints, the cupping glasses are applied and the claim is made that this process avoids mixed infections. Tampons and drains, also, are found to be unnecessary.

In treating a member, for instance the hand, Bier uses a glass cylinder provided with a cuff and a rubber band, so that the whole hand is hermetically sealed and by means of the pump the air is partially exhausted. By similar apparatus Prof. Bier, Dr. V. Schmieden, Dr. Willy Meyer, Ewart, and others all over the world have treated successfully cases of surgical tuberculosis so that the method has an established place in tuberculo-therapy.¹

CHAPTER VI. ARTIFICIAL PRESSURE; BREATHING EXERCISES

Radical differences of opinion exist as to the use of artificial variations of pressure, or pneumatic differentiation, in pulmonary tuberculosis and also as to the larger question as to whether the diseased lung should be set at rest or invited to expand.

The respiration of artificially compressed or rarefied air for limited periods, such as half an hour or two hours, has been considered, but this form of pulmonary gymnastics has given way to

¹ August Bier: Hyperæmie als Heilmittel, 5th edition. Prof. Bier advises a long continued residence at the seashore in cases of surgical tuberculosis.

more natural methods of accomplishing the results aimed at. The judicious use of exercises has been advocated for centuries and this plan of treatment has passed through most interesting phases, long advocated, then condemned and later revived. Some of the recent advocates of exercise by graduated labor invoke the very latest knowledge of the pathology of tuberculosis in support of this method.

The bad effects of exercise on tuberculosis patients at the well-known climatic stations have been widely commented on and number-less histories of patients going to their death when caution might have saved them are on record. Patients going from the lower elevations to altitudes of five and six thousand feet do not seem to realize at first how necessary are rest and thorough acclimatization for their safety during the earlier weeks or months of treatment. The higher stations are natural gymnasia where diseased lungs may be trained or overtrained; where accidents may happen to the inexperienced and rash, or even to the old time expert if he neglects to exercise proper judgment. No fall from the trapeze is more fatal in its effect than some mountain expedition or other adventure by the tuberculous patient. Dr. Solly was wont to say that nowhere is the invalid fool more quickly punished for his folly than in Colorado.

We are concerned, at present, with exercise as it relates to the breathing habit and the aeration of the diseased lung. Exercises and improved breathing habits can be carried out and acquired at the sea-level or at higher elevations. We believe that at the moderate or higher altitudes breathing exercises are more effective for good and tend more fully to develop the thoracic movements and capacity than at the lower levels (see page 62). Minor has recently reviewed this subject in a paper on the "Use and Abuse of Pulmonary Gymnastics in the Treatment of Tuberculosis" and holds that they are beneficial in properly selected cases. That such measures are abused by those who use them indiscriminately and unintelligently we all know.

ATMOSPHERIC COMPRESSION OF LUNG

Fifteen years ago Cornet came out strongly against exercises and others of experience take even more radical ground. The principle of rest has been carried to such an extreme that surgical measures, such as strapping the affected side to insure complete immobilization, have been adopted.¹ The most radical measure was the introduction

¹ Charles Denison, Trans. Amer. Climat. Ass., Vol. 21, 1905.

into the pleural cavity of nitrogen gas, or atmospheric air, so as to compress the lung and prevent as nearly as possible all motion. The credit for devising this operation and first performing it, belongs to Forlanini, but it was first practiced in America by Dr. John B. Murphy,' of Chicago, and has been repeatedly used by many others in Europe and America, including the late Dr. Henry P. Loomis,' Dr. Cleaveland Floyd and Dr. Samuel Robinson, of Boston, Dr. L. Brauer, Prof. T. Beneke, of Hamburg, Dr. H. L. Barnes and Dr. F. T. Fulton, of Rhode Island.

ARTIFICIAL PNEUMOTHORAX

Prof. Theodore Beneke, of Hamburg, says that Forlanini conceived the idea of placing the affected lung at rest by artificial pneumothorax as early as 1882; he put it in practice in 1888; Brauer and Ad. Schmidt performed it in 1906. Murphy seems to have developed his operation without any knowledge of Forlanini's work. The operation has been performed in Germany, according to Beneke, by hundreds of physicians on several thousand patients. The operation is meeting with great favor in America.

The clinical observation that the occurrence of pleuritic effusion in tuberculous cases was followed by an arrest of the symptoms of the primary disease if the effusion were left undisturbed; and, further, the unfavorable results which follow tapping in other cases, or when later adopted in cases of quiescent during the presence of the effusion led to this method of artificially producing immobility. Pleuritic effusion is intimately connected with pulmonary tuberculosis in a majority of cases and, if not purulent, should probably be left undisturbed.

Loomis followed Murphy's technique, using a special apparatus for the injection of pure nitrogen gas by means of which from fifty

¹ John B. Murphy: The Surgery of the Lungs (Journ. Amer. Med. Ass., 1898). Also Surgical Clinics of Dr. John B. Murphy, December, 1913. W. B. Saunders Co., Phila.; also Interstate Medical Journ., March, 1914.

² Henry P. Loomis: Some Personal Observations on the Effects of Intrapleural Injections of Nitrogen Gas in Tuberculosis (Trans. Amer. Climat. Ass., 1900; Med. Record, Sept. 29, 1900).

This method was first proposed by Prof. Carlo Forlanini, of Pavia, Italy, at the International Medical Congress, Rome, 1894.

³ Ueber den kunstlichen Pneumothorax, "Tuberculosis." Berlin, Nov., 1913. ⁴ See article by Dunham and Rockhill, with discussion by C. L. Minor, Journ. Amer. Med. Ass., Sept. 13, 1913.

to two hundred cubic inches were introduced into the pleural cavity on the affected side¹

The nitrogen gas introduced into the pleural cavity does not remain long without being absorbed, and in order to keep the lung immobilized for six months or more, repeated injections are required. When ordinary atmospheric air gains entrance to the pleural cavity it constitutes the condition known as pneumothorax, and if the pneumothorax becomes closed, the oxygen steadily diminishes and finally disappears, the carbon dioxide decreases and the last element to disappear is the nitrogen. This fact has been determined by chemical analysis by Dory, Bouveret, LeConte, Ewald (Loomis). The respirations are always increased after the injections and the pulse rate is lowered. A notable effect in Dr. Loomis' cases was the absolute control of pulmonary hemorrhage in cases where all other measures failed.

Dr. Loomis' experience in eighteen cases treated by injections of nitrogen gas was uniformly favorable, although not curative. Probably the fact that pulmonary hemorrhage is controlled is the chief value of the method, though gain in weight followed the adoption of this measure in all the cases.

SONG CURE

One method of pulmonary exercise lately advocated for tuberculous patients is by singing.² Singing invokes correct nasal breathing and a maintenance of the elasticity and proper expansion of the chest. The necessary breathing exercises promote an increased functional activity of all parts of the lungs, including the apices where tuberculosis usually first becomes evident. It is here that expansion is most limited and the prevalent opinion is that this comparative inactivity is a strong factor in the tendency of the disease.

The "song cure" may be suitable in some cases of pulmonary

¹For a good description of the latest apparatus and a discussion of the most approved methods see articles by Harry Lee Barnes and Frank Taylor Fulton, and by Samuel Robinson and Cleaveland Floyd, Transactions of the American Climatological Association, 1913, pp. 160-188, and 1911, pp. 289-383. A bibliography is given in Transactions, 1913, p. 170.

See also Trans. American Sanatorium Association, 8th spring meeting, p. 16. Discussion by H. D. Chadwick, W. A. Griffin, E. S. Bullock, G. W. Holden, J. J. Lloyd, Jr., L. Brown, J. Roddick Byers.

See also Samuel Robinson, "Practical Treatment," edited by Musser and Kelly, W. B. Saunders Co., Philadelphia, 1911, Vol. 3, p. 254.

² Drs. Leslie and Horsford, The Hospital, London, Jan. 25, 1908.

tuberculosis, but in laryngeal cases it would be counter-indicated. Its practice in pulmonary cases has not been adopted to any very great extent; but it would seem to have some advantages as it does not involve great muscular fatigue.

It is well known that public speakers with pulmonary tuberculosis cannot continue this practice with impunity. Their tendency to attempt to increase their weakening vocal powers by forcing the air outward has a bad influence on the lungs. Bad habits of speaking and lack of training are probably accountable for these bad results. Artistic breathing should be cultivated and all public speaking in crowded and badly ventilated halls should be avoided. Knopf refers to cases of phthisis which had even passed the incipient stage and were cured after following the occupation of street singer or speaker. He cites the case of an English lady who became an evangelist, addressing crowds of people every night in open air meetings and who was actually cured of her tuberculous disease after following this calling for a year.

Our own experience leads us to believe this to be an exceptional result. Having had some experience in treating members of the Salvation Army in various grades of the service, the impression gained was that tubercular disease was quite common among them and that their life of exposure, unhygienic quarters, insufficient food and excessive use of the voice rendered them an easy prey to consumption. The voice is almost always over-strained and hoarse and the open air life the members lead is accompanied by hardships which over-balance any favorable features in their nomadic existence.

Open air singing, properly employed, as in the German Army, is, no doubt, beneficial. This should be encouraged by all military authorities. It relieves the tedium of the march and invigorates the soldier. Barth, of Koslin, has made a thorough study of the effects of singing on the action of the lungs and heart, on diseases of the heart, on the pulmonary circulation, on the blood, the vocal apparatus, the upper air passages, the general health, the development of

¹ George Hudson Makuen: Artistic Breathing (Philadelphia Medical Journal, Sept. 3, 1898).

² S. A. Knopf: Respiratory Exercises in the Prevention and Treatment of Pulmonary Diseases (Johns Hopkins Medical Bulletin, Sept. 1901).

See also John H. Pryor, Deep Breathing as a Therapeutic and Preventive Measure in Certain Diseases of the Lungs (Trans. Amer. Climat. Ass., Vol. 22, 1906, p. 251).

the chest, on metabolism and on the activity of the digestive organs, and has come to the conclusion that singing is one of the exercises most conducive to health. (Knopf.)

CHAPTER VII. FRESH AIR SCHOOLS FOR THE TUBERCULOUS;

Under the name of "Waldschule" these have recently been established in Germany. The first was opened at Charlottenburg, Berlin, August 1, 1904, and closed its first term October 29th of the same year with 120 scholars. The results of the first year were very encouraging, the average increase in the weight of the children was five pounds, and the Forest School has been regularly opened each year.

The credit of its establishment belongs to the "Vaterländischer Frauenverein" of Charlottenburg. This patriotic association of women selected children either suspected of tuberculosis or with the disease already established for the Forest School. In this way educational facilities are provided for children whose condition renders them unsuitable for the public schools and at the same time avoids the necessity of sending them to sanatoria where there is little or no provision for teaching.

At Charlottenburg they put up so-called "Doecker barracks" or transportable buildings of light construction. There was one school barrack, containing two class-rooms and one teachers' room. The second barrack was used for household purposes. There was also an open "liege-halle" towards the south where the children may remain during bad weather. A light frame structure contains wash rooms and a bath-room with tub and douche. Three schoolmasters and one schoolmistress give instruction. The children were distributed in six classes of about twenty each. This is smaller than in the public schools where there are from forty-five to sixty in a class. The sessions never lasted over two hours continuously.

This school has now grown so as to accommodate 240 children.

A second school is located in M.-Gladbach in the Rheinprovinz. It was opened in 1906 for sixty children between eight and fourteen years of age.

A third one is in Muhlhausen, Reichslande, Elsass-Lothringen, Southwest Germany. It was opened in 1906 and the physician in charge is Dr. Bienstock.

¹ For further particulars of this school, see article by Dr. J. Nietner, Tuberculosis, May, 1905.

A fourth is the Forest School in the Victoria Louise Children's Sanatorium at Hohenlychen. It was established August 1, 1903. Pastor Mickley is in charge. These are the pioneer schools and many others have since been established.

The most successful private open air schools in Germany are conducted by Prof. Dr. Gustav Pannwitz, the honorary secretary of the International Association for the Prevention of Tuberculosis. They are situated at Hohenlychen, about two hours by rail from Berlin, near Templin, on the hilly plateau which is called the "Mecklenburgisch—Pommersche—Secnplatte," between the East Sea and Spree Rivers. There are extensive forests of fir, a large lake with an island of 240 acres belonging to the school. It is conducted on the most modern hygienic principles.

An open air school was established at Bostall-Heath, near Woolwich, England, in 1907; in France, at Lyons, Vincennes and Boulogne; in Switzerland, at Lausanne, open from June 5 to September 23, at Zurich and Geneva. The "Rayon de Soleil" at Geneva, is for very young children; so also "Les Oisillons" at Lausanne.

In the United States the first fresh air school for tuberculous children was established in Providence, Rhode Island. Dr. Ellen A. Stone and Dr. Mary S. Packard had a small day camp during the summer of 1907 for children suspected of having tuberculosis. They soon became convinced that a fresh air school ought to be started for the benefit of the tuberculous children of Providence and they asked the help of Dr. Jay Perkins, Chairman of the Providence League for the Suppression of Tuberculosis in getting a single small school, necessarily ungraded, for those children, arranged so as to approximate an out of door school. At the camp which these physicians had been conducting there were about ten children who would soon have to go back to the ordinary schools or else would be at home in close rooms.

In response to this appeal Dr. Perkins enlisted the sympathy of the Superintendent of Schools, Mr. Walter H. Small, and with Judge Rueckert and Dr. Charles V. Chapin, the school committee established the first fresh air public school in America.

A school house not then in use and centrally located was requested for use and granted, and the necessary changes were made. The result was that they had to begin with a room on the second floor the full size of the building, about 40 by 25 feet, with windows on three sides. The brick wall on one-half of the southerly side was removed and windows substituted, these windows extending from near the floor to the ceiling, with hinges at the top and pulleys ar-

LONDON COUNTY COUNCIL'S OPEN AIR SCHOOL AT SHOOTER'S HILL. PAVILIONS COURSES of D. Waiter Lindley

ranged so that the lower end can be raised to the ceiling, thus leaving this half of the room completely open to the south. Each school desk and its accompanying seat is arranged on an individual wooden support so that, while stationary as regards each other, each desk and seat can be moved as desired, and thus any arrangement of seats may be made. The school is an ungraded one (the ages running from 7 to 13 years), and as such limited to 25 pupils. The school hours are from 9 to 11.45 a.m., and from 1.45 to 3.30 p.m., with a recess from 10.15 to 10.45. Towards the end of this recess each pupil is served a cup of hot soup. Each pupil has a sitting-out bag of the standard type and in very cold weather has a hot soapstone in the bottom of the bag. In the end of the room not open to the south a good fire ic kept going, thus partially warming the air and keeping that end of the room moderately warm, the pupils' seats all being in the other end.

One interesting feature in connection with the school is that, though these children come from poor homes and there has been an extensive epidemic of "colds" in winter, especially affecting the nose and throat, no child in the school has had even a "cold in the head." On being enrolled, each child is weighed, measured, and the hemoglobin tested. The League furnishes the sitting-out bags and soapstones and some clothing, the city paying all other expenses.

Thus the credit for suggesting the school belongs to Drs. Packard and Stone, but the work was developed and carried on through the efforts of the League. Most of the children for the school are selected in the first instance by the head tuberculosis nurse and secondly by the physicians on the League Committee. All of them are from within walking distance of the school. Dr. Stone is one of the Medical Inspectors of the Public Schools and the other Medical Inspector, Dr. Charles E. Hawkes, was added to the committee.

Providence was the first city in the country to establish special schools for the mentally deficient and the school department is to be highly complimented because of the enthusiasm and energy with which they took up the establishment of a special school for the physically deficient as soon as the matter was presented to them.

This Fresh Air School in Providence was opened on January 27, 1908, with ten pupils, and soon twenty were enrolled. Hot soapstones, sitting-out bags, hot drinks at recess, frequent trips to the stove, breathing exercises, marching, bending movements, and uniform work in singing are prominent features of the pioneer fresh-air school in America.¹

¹ Ellen A. Stone, M.D., Journal of the Outdoor Life, May, 1908.

The instruction of children at the Sea Breeze Hospital for Tuberculous Children at Coney Island is provided by the Board of Public Education of Brooklyn, New York, and the Board deserves credit for thus cooperating with the Sanatorium. Provision is now made in the larger cities for the regular and systematic education out of doors of tuberculous children in the community at large and the success of this movement is attested by the fact that on May 1, 1913, there were 177 open air schools in the United States, five of these are in Rhode Island; thirty in Manhattan; twenty in Brooklyn.

See also Jay Perkins, M.D.: Fresh Air Schools—How They Accomplish Their Result (Journal of the Outdoor Life, New York, June, 1912).

Les EColes de Plein Air, leur valeur prophylatique dans la Lutte Anti-Tuberculose, "Tuberculosis," Berlin, Nov., 1911.

The Open-Air School, Anna Garlin Spencer, Trans. Sixth International Congress, Washington, 1908, Vol. 2, p. 612.

Open Air Schools, Thomas Wray Grayson, M.D., Therapeutic Gazette, Nov., 1913, p. 27. Also John V. Van Pelt, Interstate Med. Journ., April, 1914.

In order to control tuberculosis effectively we shall have to make more determined efforts to reach the school children and even those of earlier years. Tuberculosis is latent in thousands of children in every large city; sooner or later it becomes manifest as vital resistance becomes lowered. A recent view, prevailing in France and Germany, is that all tuberculous infections are made in infancy and childhood, the disease lying latent, from one cause or another, until the individual resistance, weakened by successive colds, pneumonia, grippe or other infections, or exposure to reinfection, finally yields and tuberculosis is actively established. Both laboratory and clinical experience point to a much earlier primary infection than we have been accustomed to believe and hence too much stress cannot be laid on the importance of better ventilated schools and the establishment of more "fresh-air schools" in every city of the country. These should be located near parks, if possible, or at least have extensive play grounds.1 They should be conducted also for the benefit of children who may be anemic, nervous, and not necessarily tuberculous; and also for apparently healthy children. The best example of the outdoor school for normal children has been opened at Bryn Mawr College, Pennsylvania, as the Phebe Anna Thorne Model School.

¹ Henry Barton Jacobs, M. D., Journal of the Outdoor Life, April, 1908. J. H. Lowman, M. D., Trans. Nat. Ass. for the Study and Prevention of Tuberculosis, 1907.

The three Elizabeth McCormick Schools, in Chicago, are admirable examples of the open air school.

FIG. 1. "RAYON DE SOLEIL," GENEVA, SWITZERLAND. DAY CAMP FOR ANEMIC AND DELICATE CHILDREN

FIG. 2. FOREST SCHOOL, GENEVA, SWITZERLAND

FIG. 1. OPEN AIR SCHOOL ESTABLISHED BY THE CIVIC CLUB, PITTSBURGH, PENNA. STUDY HOUR; WARM WEATHER

FIG. 2. OPEN AIR SCHOOL ESTABLISHED BY THE CIVIC CLUB, PITTSBURGH. STUDY HOUR; COLD WEATHER

OPEN AIR SCHOOL ESTABLISHED BY THE CIVIC CLUB, PITTSBURGH, PENNA. RESTING HOUR

OPEN AIR SCHOOL ESTABLISHED BY THE CIVIC CLUB, PITTSBURGH, PENNA. LUNCH HOUR

Fig. 1 FRESH AIR SCHOOL ESTABLISHED BY THE CIVIC CLUB, PITTSBURGH, PENNA

FIG. 2. OPEN AIR CLASS FOR ANEMIC CHILDREN AT PUBLIC SCHOOL NO. 21, NEW YORK CITY Courtesy of Dr. J. W. Brannan

OPEN AIR CLASS, ROYAL VICTORIA HOSPITAL, EDINBURGH, SCOTLAND

Other private schools are advertising open air classrooms, e. g., the Horace Mann School, the Packer Institute of Brooklyn and the Brooklyn High School.

All measures to preserve the purity of air and its freedom from dust should be rigidly enforced in schools. Bad ventilation is the rule except in the most modern school buildings. After two hours the air is depressing and carbonic acid is usually found in excess. The problem of how to deal with dust is a difficult one in schools, owing to the expense of really efficient methods. The floors should not have open crevices and dry sweeping should not be allowed. Sweeping with wet saw dust is probably the most effective, and at the end of each term a thorough bacteriological dust disinfection should be carried out by the Department of Health. Dr. J. H. Lowman, of Cleveland, who has instituted great reforms in the hygiene of the schools of that city, recommends not formaldehyde, but that the walls should be cleaned or painted, the furniture washed and the floors treated with dilute solutions of chloride of lime.

We recognize tuberculosis to be one of the greatest dangers to school children, for at the tenth year the Prussian statistics show that out of 100 boys who die, 9.26 die of tuberculosis, and out of 100 girls, 12.02 die of tuberculosis; hence the importance of all hygienic safeguards against this malady.

Tracheo-bronchial tuberculosis and tuberculosis of the lymphatic system are the forms most commonly encountered and strict medical inspection will reveal large numbers of children for whom fresh air schools or sanatorium schools should be provided. In New York City, out of about one hundred thousand children examined in 1905-1906, over one thousand were found to have pulmonary disease, and in almost every case it was the first intimation to the mother that her child had pulmonary tuberculosis.

Besides the Waldschule of Germany there are specially constructed sanatorium schools in Milan, Italy, and vacation colonies have been established near Geneva, the Swiss Government supplying the teacher while philanthropy supports the schools. In Denmark, where the outing vacations are so thoroughly systematized, the teachers are supplied by the state. The United States show promise of carrying out this enlightened method of dealing with the tuberculous problem. Outdoor schools are conducted successfully in connection with private camps for boys and girls. Many of these are in New Hampshire and Maine, in the vicinity of the Rangeley Lakes, and in Oxford County.

IMPORTANCE OF VENTILATION

The first desideratum in tuberculo-therapy and in the prevention of tuberculosis is abundant and free ventilation. The dwelling, the bedroom, the workshop, the office, the church, the schoolroom, the theatre, the modern subway are one and all dangerous in proportion, as their atmosphere is composed of dead or rebreathed air. only is tuberculosis favored by unhygienic surroundings and vitiated atmosphere in particular, but no other agent, not excepting alcohol and bad food, so surely undermines the constitution and renders it unable to resist disease. Air that has once been breathed, ought not to be breathed again. Out of doors the danger is minimized; indoors we usually breathe and rebreathe the contained air again and again. To some extent, of course, this cannot be avoided, but we should endeavor to reduce it to a minimum. This subject has been recently investigated by Dr. Thomas R. Crowder, who studied by ingenious methods the effect of such factors as change of position, body motion, different types of breathing and different temperatures and, in addition, has determined the conditions that obtain on the sleeping porch and in the open air. Nasal breathing was the type examined, since in mouth breathing there is, under favorable circumstances, little reinspiration.1

The conclusions that may fairly be drawn from Crowder's work are that (1) a person remaining quiet and indoors will immediately rebreathe from 1 to 2 per cent of his own expired air; (2) when lying in bed the percentage is higher, rising to from 4 to 10 per cent, depending on the position assumed while sleeping. "Nor does sleeping in the open insure pure air for breathing. The same influences here produce the same relative results that they do inside. When one buries his head between pillow and bed clothes for the sake of warmth, reinspiration is inevitable, and it is not necessarily small in amount." In addition, it must be noted that at each inspiration we reinhale not only some of the air just exhaled, but also the air contained in the nose and larger bronchi—the so-called "dead-space" air. This may amount to one-third of the whole volume in quiet inspiration and not less than one-tenth in deep breathing.

The significance of this study in connection with questions of ventilation is obvious. Since even under the most favorable conditions we cannot avoid drawing back into the lungs some of the air that has just passed out of them, not much importance can be attached to the slight variations in carbon dioxide content which occur in the air of rooms.

¹ The Reinspiration of Expired Air. Archives of Internal Medicine, Chicago, October, 1913, p. 1936. Journ. Amer. Med. Ass., Editorial, Nov. 29, 1913, p. 1986.

PORTABLE OPEN AIR SANATORIUM FOR CONSUMPTIVES ON THE GRABOWSEE, NEAR ORANIENBURG. DOECKER CONSTRUCTION Courtesy of Christoph and Unmack

OPEN AIR CHAPELS AND THEATRES

It is remarkable how inconsistent we all are in matters of hygiene. Medical men are often among the worst offenders. Their offices are commonly stuffy, their conventions and social gatherings are often held in inadequate halls in which vitiated air, sometimes reeking with smoke, is perfectly abominable.

If to do were as easy as to know what 'twere well to do Then chapels had been churches and poor men's cottages princes' palaces.

We cannot go back to the time of the Druids or worship in groves after the manner of the Greeks, but it seems fitting here to call attention to one chapel that has been specially constructed for out-of-door worship and that is destined to be a model for many a sanatorium at least. This has been constructed for the famous King Edward VII Sanatorium near Midhurst, in Sussex, England. The accompanying illustration of this unique chapel marks a step in advance in sanatorium construction. It is in the Moorish style, shaped like a broad letter V. The double rows of columns of the cloister are on the southerly side, the pulpit and chancel are in the apex and the northerly sides forming the inner walls are provided with arched apertures so that the patients may sit absolutely in the open air but with sufficient protection from the weather at all seasons. In fair weather services are held under the sky in the open space in front of the building between its extended arms. The illustration shows this very beautifully.

Open air theatres were built by the Greeks and Romans and the remains of these structures are among the most interesting of ancient ruins. In Europe the Passion Play at Bayreuth is enacted wholly out of doors, but is entirely apart from our subject except so far as it demonstrates the possibilities of out-of-door representation. The low theatre and concert hall are invariably hot and stuffy and undoubtedly foster tuberculosis by inadequate ventilation. It would be better if we could have some theatres or assembly halls with perfectly free circulation of air.

The Groton School in Connecticut has lately undertaken to build an outdoor gymnasium, so that the boys shall have the advantage of exercise in the open air rather than in an enclosed building. This is the first school we know of to adopt this admirable plan.

VENTILATION OF DWELLINGS

Ordinary dwellings are terribly deficient as regards ventilation. The country dwellings of the poor are strangely defective in this respect. It has been said that the reason why the air in rural districts is so pure is that the poor country people have all the bad air shut up in their houses. There is a great deal of truth in this. Doctors are constantly struggling with the strange aversion that the rural population has regarding sufficient air in the bedrooms. As soon as night falls the windows and doors are tightly closed and the kerosene lamp adds to the pollution of the air. It is a common experience to find the doors and windows kept closely shut owing to the deeply rooted fear of catching cold. In European countries the windows of many of the older dwellings were originally intended for light and not for air, and are merely panes of glass built into the wall and not intended to be opened. Others are so badly constructed that the upper sash cannot be lowered and the lower sash is scarcely ever raised more than a few inches.

The children in many country cottages instead of being rosy and robust, as they should be with healthy surroundings, are frequently pale and bloodless on account of this bad air. This deficient ventilation of country houses and the bad food so common, where milk and eggs ought to be so plentiful and good, conspire to give to some country populations a bad start in the earlier years. No better example can be cited than that of the "poor whites" of the Southern United States. Indolence, ignorance, general helplessness and inertia are their characteristics. Their children are pale and gaunt, and their living quarters are horrible beyond description. It is a wonder the death rate among them is not greater than it is.¹

It seems very strange, but it is a fact, that about seventy years ago a proposition was made to use the Mammoth Cave in Kentucky as a winter resort for invalids. Sixteen consumptives were sent there to gain the reputed benefit from the equable temperature and asserted purity of the air in that cavern. Five of these patients died and the others were injured as a result of the darkness and dampness combined. That such an irrational and cruel experiment should have been tried seems incomprehensible at the present day.

¹ The death rate from pulmonary tuberculosis for Virginia during the year ending June 30, 1913, was for whites 98.4, and for colored 256 per 100,000. The state rate was estimated at 148.

² See Croghan: The Mammoth Cave as a Winter Resort for Invalids (Boston Medical and Surgical Journal, 1843, Vol. 28, p. 188).

Daniel Drake, M.D.: Western Journal of Medicine and Surgery, Louisville, Kentucky, 1843, Vol. 7, p. 78.

OPEN AIR DINING HALL. DR. WALTHER'S SANATORIUM, NORDRACH-COLONIE, BLACK FOREST, GERMANY

LAWN CUTTING. GRADUATED LABOR IN PULMONARY TUBERCULOSIS. SANATORIUM OF THE BROMPTON HOSPITAL, FRIMLEY, ENGLAND

ROYAL VICTORIA HOSPITAL FARM COLONY. PLANTING POTATOES. GRADUATED LABOR

CHAPTER VIII. EXERCISE IN TUBERCULOSIS; GRADUATED LABOR

The Nordrach system of treatment of pulmonary tuberculosis carried out by Dr. Walther and that of his predecessor, Dr. Brehmer, at Gocbersdorf, in Silesia, involves much exercise in addition to fresh air and alimentation; the Dettweiler system enjoins rest in the open air with superalimentation. McLean's dictum is: "If the phthisical patient would live, he must work for it." 1 Probably this advice should not be taken too literally, at least by every tuberculous patient; but graduated physical exercise has a very important and useful place in the treatment of most patients. Brehmer advocated hill-climbing, while Walther advises graduated walking exercises, in some cases to the extent of walking twenty miles a day. Whether one practices walking, or hill-climbing or graduated labor, we cannot dissociate from these measures the effect of atmospheric air, in its various qualities, upon the lungs and the accompanying stimulation of the pulmonary and general circulation. Two recent papers by London practitioners are full of such suggestive thoughts on this subject that we call special attention to them. They are considered by some as marking an epoch in the treatment of pulmonary tuberculosis.

At a meeting of the Medical Society of London, January 13, 1908, Dr. Marcus S. Paterson, the Medical Superintendent of the Brompton Hospital Sanatorium, at Frimley, read a paper on "Graduated Labor in Pulmonary Tuberculosis" which was supplemented by another on the "Effect of Exercise on the Opsonic Index of Patients Suffering from Pulmonary Tuberculosis," by Dr. A. C. Inman, Superintendent of the Laboratories, Brompton Hospital.

The patients for whom Paterson instituted graduated labor were selected cases sent from the Brompton Hospital in London to its Sanatorium at Frimley, at an elevation of 380 feet in the country.

He was induced to carry out this plan of treatment after seeing tuberculous patients who did well while working under unfavorable surroundings; but he believed that under careful regulation of labor and with very careful observation of the temperature records, he might safely proceed. The exercises adopted involved all the muscles of the trunk and extremities and this was thought to be better than walking exercises in which the lower limbs were chiefly employed. The use of the upper limbs seemed more likely to favor

¹ McLean: Personal Observation in Phthisis Pulmonalis (Journal Amer. Med. Ass., February, 1898).

² The Lancet, January 25, 1908.

the expansion of the lungs. It was not forgotten that the common objections to this plan of treatment are, (1) that the disease would become active again under the strain; and (2) that the exertion would tend to produce hemoptysis. Considerable tact and personal influence must have been exerted to get the patients to carry out a plan which involved increasing labor and measures that are generally considered positively harmful.

The first exercise ordered was walking, the distance being gradually increased up to ten miles a day. When a patient had reached this stage he was given a basket in which to carry mould for spreading on the lawns. No case of hemoptysis or of pyrexia occurred among these patients. When they had been on this grade with nothing but beneficial results for from three weeks to a month, they were given boys' spades with which to dig for five minutes followed by an interval of five minutes for a rest. After a few weeks, several of the patients on this work, who were doing well, were allowed to work as hard as possible with their small spades without any intervals for rest. As they had all improved on this labor larger shovels were obtained, and it was found that the patients were able to use them without the occurrence of hemoptysis or a rise of temperature. About this time many of the patients were feeling so well that it became necessary to restrain them from doing too much.

These results in a few cases creates a most favorable sentiment among the other patients so that the system was extended generally, with great care and minute supervision. Harder work was prescribed for patients who could be trusted even to the use of spades, shovels and five pound pick-axes. The patients all expressed the opinion that the work did them good and that the harder they worked the better they felt. Many patients have written to Dr. Paterson to say that they date their improvement from the commencement of the labor, and that they think the hardest work did them the most good. It certainly speaks well for the strict supervision of these patients that no accidents occurred of a serious nature, though several developed fever and, subsequently, pleurisy. One patient was laid up for two months and was much worse at the end of that time, though eventually he did well and returned to work, though the extent of his disease was increased through overexertion.

The suitability of cases for graduated labor rests on a very careful physical examination, importance being laid on the general muscular and physical development. Marked wasting and poor development is, naturally, a bar to this method of treatment. The resisting power

ROYAL VICTORIA HOSPITAL FOR CONSUMPTION, EDINBURGH. GRADUATED LABOR; ROAD MAKING BY THE PATIENTS ON HEAVY GRADE WORK, THERAPEUTIC AUTO-INOCULATION ARTIFICIALLY CONTROLLED BY MANUAL LABOR Courtesy of Sir Robert Philip

of a patient with a very limited lesion is an unknown quantity and has to be determined, whereas a patient with a lesion involving four lobes may remain at work for some time and exhibit a good initial resisting power.

Dr. Paterson lays very great stress on the temperature taken in the mouth. If this is or has been 99° F. or over during the week preceding admission to the sanatorium, the patient is put to bed after the journey. So long as the temperature remains at 99° F. in the case of men or 99.6° F. in the case of women, the patient is not allowed up for any purpose. So long as the temperature is unaffected by exertion the patient is gradually allowed up for longer and longer periods. Patients with apparently limited disease, but who are in poor general condition and without fever, are allowed to be up all day, but are not permitted to take further exercise than is entailed by walking to and from the dining hall for their meals. The remainder of the day is spent in resting. As their condition improves they are allowed to walk half a mile a day, and so on, until a distance of six miles a day is reached. The rate of increase in the amount of exercise depends upon such factors as the patient's disposition, weight and appetite.

The grades of work are briefly as follows:

- (A I) Walking from one-half to ten miles daily.
- (1) Carrying baskets of mould or other material.
- (2) Using a small shovel.
- (3) Using a large shovel.
- (4) Using a five-pound pick-axe.
- (5) Using a pick-axe for six hours a day.

Patients in grades 1, 2, 3, and 4, work four hours a day.

The basket work in which about eight pounds of earth are carried is considered the most important and, as a rule, patients spend far more time in this work than in any other. It brings into use all the muscles.

Work has a wholesome effect on the mind. If the patient is at first sullen and apathetic, the improvement in physical condition quickly begets a lively and cheerful mental attitude, and one that seeks work rather than to shirk it.

During 1905 and 1906 the number of patients discharged from this sanatorium was 164, and they all returned to their previous occupations, whatever they happened to be, and not to light, outdoor work. They were fitted by the line of treatment which we have described for effective wage earning. We have dwelt quite fully on this innovation in tuberculo-therapy because it gives promise of good, practical results and, further, because it is so radically different from the prevailing methods adopted in most sanatoria. But, the most interesting feature is the explanation which is offered to account for the benefits which has accrued. This explanation is set forth in an elaborate study made by A. C. Inman, M. B., the superintendent of the laboratories of the Brompton Hospital, on the "Effect of Exercise on the Opsonic Index of Patients Suffering from Pulmonary Tuberculosis."

This study of Imman's was prompted and made possible by the brilliant work of Sir Almroth Wright. Wright showed in his Harveian Lecture in New York, that there are three great agencies by which immunizing responses can be evoked in the organism:

- (1) By the inoculation of bacterial vaccines.
- (2) By artificially induced auto-inoculations.
- (3) By spontaneous auto-inoculations.

Wright had previously elucidated the subject of vaccine therapy by constructing curves from the opsonic indices of patients vaccinated against their infection and in this manner traced a definite train of events which follow upon a single inoculation. The successive phases were termed the negative phase, the positive phase and the phase of maintained high level. Freeman, working in Wright's laboratory, then took up the subject of massage in its effect on gonococcal joints showing that "Auto-inoculations follow upon all active and passive movements which affect a focus of infection and upon all vascular changes which activate the lymph-stream in such a focus."

Wright's dictum was that "where in association with a bacterial invasion of the organism bacteria or bacterial products pass into the general lymph, and blood-stream, intoxication effects and immunizing responses, similar to those which follow upon the inoculation of bacterial vaccines, must inevitably supervene." It is a perfectly logical conclusion, then, that nature cures bacterial infections through such auto-inoculations. Inman set himself to find out what the body is doing of itself and what value extraneous circumstances, such as physical exercise, have in aiding these attempts on the part of the body. Inman's work was conducted on a carefully planned technique, controlled and checked at all points, using forty-three patients in the sanatorium treated by the System of Graduated Labor.

Inman found that in 41 out of 43 cases the opsonic index was at

¹ Read before the Medical Society of London, January 13, 1908.

THERAPEUTIC AUTO-INOCULATION ARTIFICIALLY CONTROLLED BY MANUAL LABOR. LOOMIS SANATORIUM, NEW YORK. HERAPEUTIC AUTO-INOCULATION ARTIFICIALLY GRADE WORK; ROAD MAKING

THERAPEUTIC AUTO-INOCULATION ARTIFICIALLY CONTROLLED BY MANUAL LABOR. LOOMIS SANATORIUM, NEW YORK. HERAY GRADE WORK; ROAD MAKING

some time of the day well above the normal, and what is of even more importance, in no case did the exercise, even though severe, lower the index below the normal line—that is, the auto-inoculation was never so great as to produce a negative phase and, therefore, never in excess.

It was observed during these investigations that in some bloods examined, tuberculo-agglutinins appeared in association with the immune tuberculo-opsonins. This must be taken as another evidence of an immunizing response on the part of the organism. When the difficulties of such a method of treatment and the danger of the weapon employed are taken into consideration it will be readily understood that every now and then, in spite of the most careful supervision, an excessive auto-inoculation must take place. Such an over-dose is readily recognized clinically. A patient doing well on the grade of work prescribed for him and with no abnormality of temperature suddenly complains of feeling tired, of loss of appetite and of headache; and the temperature chart registers an elevation to 99° or 100° F. These are precisely the symptoms which are found during the negative phase after an excessive dose of bacterial vaccine.

Thus we have a new scientific test by which the effect of physical exercise on the blood of patients has been traced. As Inman says:

The opsonic index has shown that the exercise has supplied the stimulus needed to induce artificial auto-inoculation, and that this systematic graduation has regulated this in point of time and amount. This co-operation with the natural efforts of the blood has enabled Dr. Paterson to send his patients back to their accustomed work, however hard it may be. But the investigation has done more than explain a successful mode of treatment. Dr. Paterson agrees with me that with the aid of the opsonic index he can regulate the stimulus with scientific accuracy and obtain his results more certainly and more rapidly. This, of course, involves work in the laboratory. But it also means a more rapid and a more certain discharge of the patient which is the main object of the sanatorium.

Fresh air, exercise, and proper food seem then to constitute the foundation of successful treatment of tuberculosis. The improvement of the general condition of the patient and life in the open air evidently needs to be supplemented by certain exercise so as to produce a series of auto-inoculations and probably the best method yet devised is by the system of graduated labor just described.

All sorts of exercises such as horseback riding, golfing, light dumb-bell exercises and other calisthenics have been practiced for many years in treating tuberculosis; walking exercises have been the feature of some of the German sanatoria referred to; patients sent to the western states and territories almost invariably practiced outdoor exercises, some with great harm and some with benefit. Neither physician nor patient in most instances regulated these exer-

cises intelligently, but groped in the dark, never dreaming of the underlying principles as explained by laboratory studies of Sir Almroth Wright, Paterson, Inman, and others. We trust that further studies and the application of the same method in Europe and America will fix the value of exercise in tuberculosis.

A somewhat similar system of graduated labor has been adopted in the King Edward VII Sanatorium near Midhurst, England. Light work in the gardens and grounds is prescribed in lieu of some of the walking exercise and forms part of the regular treatment. Practical gardening in the grounds and flower beds is utilized. The lightest labor consists of weeding, hoeing and edging paths and borders, gathering seeds, plucking dead flowers, pruning, etc. Somewhat harder exercise consists in wheeling soil to the lawns and spreading it, clearing ground of stones and taking them away in barrows, and in leveling new ground after being broken up. The heaviest work is that of digging and trenching unbroken ground, moving, rolling, etc. Paths through the pine woods have also been constructed. In this particular work the breaking up of the ground with picks and clearing away the roots from neighboring trees was allotted to the first division of patients. The second division cleared away the broken ground and roughly leveled it. The third division finished the leveling of the paths with rakes and tidied up the edges.1

Free patients at the King's Sanatorium have made a cinder tennis court; they have cut down and sawed fire wood; they have an open air carpenter shop and an instructor in carpentry, who is himself a patient; they care for the poultry and make the runs for the fowls. In this way patients are constantly occupied.

Although the system of graduated exercises, or labor, adopted at the sanatoria referred to, has attracted wide notice and its principles were there first placed on a highly scientific basis, there were previous attempts to do this in an intelligent and rational manner. Sir Robert Philip, at Edinburgh, over twenty years ago, before the bacteriology of tuberculosis had been so well developed, prescribed practically the same thing as a therapeutic measure of definite dosage. He had had classes of selected patients who came at fixed hours to take regular training with regard to posture and healthy respiratory movement. More especially the young were taught the value of a healthy form of chest, the principles of nose-breathing and full diaphragmatic movement. "In addition to this, measured walks of varying amount and gradient were prescribed exactly

¹ Noel Dean Bardswell, Tuberculosis, Berlin, May, 1908.

as we prescribe medicines. Thus we had walks radiating from the dispensary round the meadows, walks over the Bruntsfield Links and walks in various directions on the slopes of Arthur's Seat. The patients reported, at successive visits, their experience in carrying out such instructions and notes were made of the effects produced." Here we see the germ of the class method so well developed and practiced by Pratt, of Boston, although he is an apostle of rest rather than labor.

The results in Philip's hands were eminently satisfactory. "The patients did remarkably well and no accident was traced to the adoption of active movement instead of rest. The experience led to a change in my outlook in relation to the meaning of treatment in tuberculosis." Philip came to the conclusion that by the establishment of hospitals or sanatoria for patients in the earlier stages of tuberculosis "we might hope to achieve permanent cures to a degree not dreamt of, by elaboration of the principle of regulated exercises and graded activity of all kinds." These conclusions were justified by the results obtained "in the home treatment undertaken for so many years at the Victoria Dispensary and in the systematized régime of work at the Royal Victoria Hospital and the recently opened Farm Colony."

Sir Robert Philip lays great stress on the well-known fact that there is a progressive intoxication in tuberculosis and the toxins produced by the tubercle bacillus appear to exert their vicious influence particularly on the neuromuscular apparatus. The toxin is especially a muscle poison.¹ There is a visible and palpable progressive wasting of the muscles, both of the trunk and the extremities, with advancing flaccidity and increased myotatic irritability. It is an expression of malnutrition, a muscular dystrophy dependent on intoxication. The obvious conclusion is that by the institution of natural movements the physiologic cure of "recreation" is assisted and health gradually returns.

Sir Robert's scheme of physical treatment at the Royal Victoria Hospital is worthy of mention. On admission each patient is placed at complete rest. During this stage, in addition to minute examination of every organ, the patients general condition is carefully observed. According to the estimate which is made the length of the resting period is fixed. Thereafter, in the absence of counter-indication, the patient is gradually advanced through the other stages.

¹ R. W. Philip, Trans. International Med. Congress, Washington, 1887, Vol. 1, p. 205.

The dose of exercise is increased or diminished as the temperature chart, pulse rate and other indications suggest. A colored badge is given to the patient to denote the stage he has reached.

I. Resting Stage, as noted above. (White Badge.)

II. Stage of Regulated Exercises. (Yellow Badge.) This includes (1) walking ½ to 5 miles; (a) on the level; (b) on sloping ground. (2) Various respiratory exercises once or twice a day. (3) Other forms of movements to improve carriage of shoulders, head, chest, etc.

III. Stage of Regulated Work. (Pale Blue Badge.)

IIIA. Picking up papers, leaves and other light rubbish on the grounds; knitting; sewing; drawing.

IIIB. (Green Badge.) Emptying waste garden boxes and assisting to carry away rubbish. Carrying light baskets for various garden purposes. Light painting work, wiping shelters; setting tables and laying cloth in patients' dining room; cleaning silver, brasses, taps, etc.

IIIC. (Deep Blue Badge.) Raking, hoeing; mowing; sweeping leaves; light wheel-barrow; heavier painting work; sweeping shelters; scrubbing

floors; cleaning knives; assisting in laundry; washing dishes.

IIID. (Red Badge.) Digging; sawing; carrying heavy baskets for various gardening purposes; wheeling and drawing full wheel-barrow and other heavy gardening work. Window cleaning and polishing floors; sweeping and cleaning court yard. Carpentering; joinering; engineering; attending boiler; errands.

An institution providing diversified occupations has a great advantage over one whose patients are restricted to walking exercises and where the women are employed in kitchen work and the men as laboratory orderlies, assistants in the drug rooms, clerks and so on. It is well to vary the walking exercise with manual labor. Patients welcome it and take a great interest in the various occupations they are put to. They acquire confidence in themselves as they see their muscular tone improving and some prospect of resuming useful occupations.

With various modifications suggested by local conditions the system of graduated labor described above is now adopted at various institutions in America; in many cases, however, the economic aspect of the plan of treatment apparently overshadows the therapeutic features; probably the best examples of the method are at the Loomis Sanatorium, New York, Otisville State Sanatorium, New York, The Adirondack Cottage Sanitarium, New York, The North Reading State Sanatorium, Massachusetts, and The Barlow Sanatorium, Los Angeles, California. Dr. Barlow has kindly sent me the following description of the method he has carried out:

This institution is semi-charitable and receives cases in all stages.

You ask me to send you a statement of our use of graduated labor. I will give you the facts as we handle the matter, which is somewhat modified to

TENT HOUSES. BARLOW SANATORIUM, LOS ANGELES, CALIFORNIA

meet the needs of our institution. It seems to me that every institution must modify this according to the facilities at command. Our working plan is as follows:

All the patients without any fever are kept absolutely quiet for the first two or three weeks, except that they are allowed to go to the dining room for meals. If, during this time, there is no elevation of temperature, no marked acceleration of pulse, and no loss of weight, they are started on exercise, beginning with ten minutes' walking twice a day. If they continue to do well, gain weight, temperature remains normal, and progress of physical signs is favorable, then exercise is increased every two weeks. The amount of exercise is charted for each patient; one copy posted on the bulletin board, and one copy retained by the nurse in charge of the order, to check up the allowance for each patient. Patients who have more than ten minutes' exercise twice a day make their own beds and keep their rooms in order, except the heavy cleaning. After patients have reached an allowance of thirty minutes twice a day, they are assigned to more practical work about the place or grounds. In making these assignments, the patient's physical condition and progress, former, and probably future, occupation are considered. Most of these assignments are changed each month, the effort being to try to increase the work each month. The work done includes the setting of tables in the dining room, removing and washing dishes, work in the diet kitchen, looking after books and pamphlets in the library, cataloguing books, statistical work, stenography and typewriting, carrying mail, light repairs about buildings, care of paths and summer-houses, sprinkling during dry weather, and operating the incinerator. Many patients are assigned to flower beds of their own, or to doing light work in caring for the sanatorium grounds. In carrying out this exercise or labor, careful watch is kept over patients, and if any elevation of temperature, acceleration of pulse, or extension of physical signs are observed, they are put back to rest. The purposes that this exercise and labor seem to serve are, recreation, stimulating the appetite and digestion, building up healthy tissue, inducing healthy sleep, and testing the patients against relapses when they resume their normal way of living after being discharged. We find that patients who accept the occupation cheerfully make better progress mentally and physically than those who resent being assigned to duties.

For patients with an elevation of temperature 99° or over, acceleration of pulse, either loss or no gain in weight, or who do not show improvement in other ways, rest is continued, and exercise or assigned work is deferred.

At the present time (December 11, 1913), there are 43 patients in the sanatorium. Ten are in the infirmary; thirty-three in open-air cottages; of the latter twenty-seven are doing their own work, and twenty-five additional assigned work. Of the six in open air cottages not doing their own work, three are new patients who have been recently admitted and not under observation a sufficient time for report.

REFERENCES TO WORKS ON EXERCISE AND WORK

Sir Robert W. Philip: Rest and Movement in Tuberculosis (British Medical Journal, December 24, 1910).

Albert Robin: How Consumption is Cured by Work (Therapeutic Gazette, December, 1911, p. 854-865).

Lawrason Brown and F. H. Heise: Properly Regulated Rest and Exercise in Pulmonary Tuberculosis (Journal of the Out-Door Life, August, 1912).

J. W. Flinn: Rest and Repair in Pulmonary Tuberculosis (Journ. Amer. Med. Ass., Aug. 16, 1913, p. 466).

L. Teleky: Choice of Occupation with Regard to Tuberculosis (Wien. klin. Wochnschr., March 13, 1913; abstr., Journal Amer. Med. Ass., April 26, 1913, p. 1336).

S. R. C. Halcomb: Graduated Labor in Pulmonary Tuberculosis (Military Surgeon, February, 1913; abstr., Journ. Amer. Med. Ass., Oct. 26, 1912, p. 1561).

J. W. Allan: Graduated Labor at Bellefield Sanatorium (Glasgow Med. Journ., January, 1911; abstr., Journ. Amer. Med. Ass., Feb. 4, 1911, p. 384).

A. P. Francine: Rest, Exercise and Food in the Management of Tuberculosis (New York Med. Jour., Dec. 31, 1910; abstr., Journ. Amer. Med. Ass., Oct. 29, 1910).

M. Paterson: Treatment of Pulmonary Tuberculosis by Graduated Rest and Exercise (Practitioner, January, 1913).

C. C. MacCorison and N. B. Burns: Method of Recording Exercise Data in Sanatorium for Consumptives (Boston Med. and Surg. Journ., May 9, 1912).

CHAPTER IX. ACCESSORIES FOR THE FRESH AIR TREAT-MENT OF TUBERCULOSIS

It would be impossible to carry out the fresh air treatment of tuberculosis without some special facilities or accessories. These vary somewhat in accordance with the plan of treatment, whether singly or collectively; or in cities, forests, or plains. Among these accessories we include: (1) Tents; pavilion tents. (2) Tent houses; shacks, "lean-tos." (3) Disused trolley cars. (4) Balconies or leigeterrasse for day use. (5) Day camps. (6) Sleeping porches or balconies. (7) Wooden pavilions. (8) Glass pavilions. (9) Hospital roof wards. (10) Detached Cottages. (11) Sleeping canopies.

Tents.—Tents have the advantage of low cost, portability, and the fact that they are adapted for almost any locality, whether in the city, the forest, or the plains. In the city a tent for the use of a tuberculous patient usually attracts too much notice and unfavorable comment unless placed in a rural district. It is possible, however, to crect tents in the heart of a great city, hundreds of feet above the ground where an abundance of pure air and sunlight are obtained. The modern hotel or office building can furnish a far better site, in these particulars, than many rural districts. The author is not aware of any extensive use of tall buildings for the treatment of pulmonary tuberculosis, but it would seem to be an entirely feasible proposition.

TENTS FOR TUBERCULOUS PATIENTS, SUNNYREST, WHITE HAVEN, PENNA.

ESTES PARK, COLORADO. CHEAP BUT COMFORTABLE TENT FOR SUMMER USE Courtesy of Dr. S. G. Bonney

Anyone who will read the interesting story by Van Tassel Sutphen entitled "The Negative Pole," will find the history of an interesting case of pulmonary tuberculosis cured by residence of eighteen months on the top of a modern "skyscraper." The patient had been advised to remove to Arizona, but circumstances made this advice impossible to follow; as an alternative measure he isolated himself almost entirely from the world in the midst of a metropolis, and was rewarded by a complete cure. The imaginative author of this original story assigns to the patient a much more difficult rôle than need be assumed by anyone who may follow the general line of treatment and perhaps we may hear of many who may be encouraged to carry out the plan suggested.

In the forest during the warmer season tents are almost indispensable. A substantial tent properly erected, protected with a "fly" and with a surrounding trench to provide for excessive rainfall, can be made a comfortable and healthful habitation during a large part of the year.

The ventilation of tents, and their heating in cold weather, have received a great deal of study, and as they are perfected in these respects their suitability for a continuous residence throughout the year has been proved. Tents can be made storm proof and almost as comfortable in stormy weather as an ordinary building. On Blackwell's Island and on Ward's Island, New York City, tents are in constant use, with astonishing success for tuberculous patients.

At the Manhattan State Hospital East, for the insane, Ward's Island, New York City, the late Dr. A. E. Macdonald instituted, in 1901, a tent colony for the tuberculous patients.

This experiment resulted most favorably and led to the extension of the outdoor treatment to other classes of the insane besides the consumptives. For thirteen years the consumptive insane on Ward's Island have been treated in tents and pavilions. Tuberculous infection has been removed from the wards and 11.39 per cent of patients are reported to have had their tubercular disease arrested. They almost invariably gained flesh; one is reported to have gained 79.5 lbs. (Eighth Annual Report, Manhattan State Hosp., New York.) In the Eighth Annual Report the following comment is made: "In our experience the winter months have proven to be the most favorable for these patients, despite popular opinion to the contrary, and likewise it is seen that the summer month of July was in a decided manner proven to be the least favorable of the year."

¹ Harper's Magazine, July, 1908.

The accompanying illustrations show fully the initial stage of this experiment in a portion of New York City having many natural beauties. But in the course of time it was apparently realized that the same results might be obtained with other structures of a more permanent character and I am informed by Dr. William Mabon, the superintendent and medical director, that the tents have been replaced by wooden and glass camps. The reason for this change is that the tents were found to be very close and unsatisfactory in wet weather, whereas the wooden camps can be opened and ventilated under all conditions of weather.

Pavilion Tents.—On Blackwell's Island, New York, the Metropolitan Hospital makes use of twelve pavilion tents with a capacity for 142 patients. Steam pipes are arranged in a double circuit and in some cases stoves render these pavilion tents comfortable in winter and were preferred by the majority of the patients, in the coldest weather, to the ordinary quarters in the main building of the hospital. These pavilion tents were devised by Dr. A. M. Holmes, of Denver.

The tent devised by Dr. Charles Fox Gardiner, of Colorado Springs, is largely used in western sanatoria and has some notable advantages. It is of conical shape, like the Sibley army tent, with a ventilator at the apex of the cone which may be opened or shut. The board floor has an air space beneath and air inlets opening at the floor between the interior wainscoting and the tent wall supplying air at the height of three or four feet above the floor. This is an improvement over the method of allowing air to enter at the floor. These inlets are controlled by hinged lids. This tent avoids the use of a center pole, pegs, or guy-ropes, as it is supported by two-by-four-inch timbers reinforced by angle irons and plates. This tent costs from \$90 to \$100 and is thoroughly practical. It is not unlike the Nordrach tent. (See plate 55.)

The tent devised by Dr. H. L. Ulrich, of Minneapolis, is simpler and less expensive. It consists of a wall tent with ridge pole for the tent, and another 12 inches clear above it for the "fly." There are ventilating openings on either side of the tent ridge. The tent and "fly" are secured by guy-ropes and pegs and all four sides may be rolled up and lowered as required. A stove may be used in cold weather. A tent 10 by 12 feet costs \$22.50.

Other excellent tents have been devised by Prof. Irving Fisher, of New Haven, Dr. Mary Lapham, of Highland, N. C., and Dr. James A. Hart, of Geneva, New York, and Colorado Springs.

¹ American Medicine, Phila., 1905, Vol. 9, 517.

UNITED STATES PUBLIC HEALTH SANATORIUM, FORT STANTON NEW MEXICO. SHOWING TENTS OCCUPIED BY CONSUMPTIVE EMPLOYEES

FIG. 1. MANHATTAN STATE HOSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. TENTS FOR THE TUBERCULOUS INSANE

FIG. 2. MANHATTAN STATE HOSPITAL. EAST, WARD'S ISLAND, NEW YORK CITY. CAMP C, FOR DEMENTED AND UNCLEANLY TUBERCULOSIS INSANE PATIENTS

FIG. 1. MANHATTAN STATE HOSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. TENTS FOR THE TUBERCULOUS INSANE. SUMMER LOCATION

FIG. 2. MANHATTAN STATE HOSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. CAMP A, FOR THE TUBERCULOUS INSANE. SUMMER LOCATION

FIG. 1. TENT DEVISED BY DR. CHARLES F. GARDINER, COLORADO SPRINGS. SEE PAGE 122

FIG. 2. MANHATTAN STATE HOSPITAL, EAST, CAMP A. INSANE TUBERCULOUS PATIENTS. REVOLVING TENT CONSTRUCTED SO AS TO BE EASILY TURNED IN ACCORDANCE WITH THE DIRECTION OF SUN AND WIND.

ROYAL VICTORIA HOSPITAL FOR CONSUMPTION, EDINBURGH. SHELTERS ARRANGED FOR NIGHT USE. THESE ARE USED ALL THE YEAR ROUND Courtesy of Sir Robert Philip

FIG. 1. MANHATTAN STATE HOSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. NEW OPEN SHELTER FOR THE TUBERCULOUS INSANE

FIG. 2. LOOMIS SANATORIUM, SULLIVAN COUNTY, NEW YORK. SLEEPING GALLERY IN GUILD LEAN-TO

VOL. 63, NO. 1, PL. 58

INTERIOR VIEW OF OPEN AIR COTTAGE USED BY STATE HOSPITAL FOR CRIPPLED AND DEFORMED CHILDREN, AT ST. PAUL, MINNESOTA A PERFECT OPEN AIR TREATMENT. PATIENTS PROTECTED FROM SUN, FLIES AND MOSQUITOS Courtesy of the Metal Screened Cottage Company, St. Paul

BED SHELTER, UNITED STATES PUBLIC HEALTH SERVICE SANATORIUM, FORT STANTON, NEW MEXICO, 1912

TENT HOUSE, TYPE B, UNITED STATES PUBLIC HEALTH SERVICE SANATORIUM, FORT STANTON, NEW MEXICO, 1912

MASTERS, PILOTS AND ENGINEERS

TENT HOUSES, TYPE B, UNITED STATES PUBLIC HEALTH SERVICE SANATORIUM, FORT STANTON, NEW MEXICO

TUBERCULOSIS SANATORIUM OF THE UNITED STATES PUBLIC HEALTH SERVICE AT FORT STANTON, NEW MEXICO

SMITHSONIAN MISCELLANEOUS COLLECTIONS

SCENE IN NEW MEXICO, NEAR FORT STANTON. THIS HERD BELONGS TO THE SANATORIUM OF THE UNITED STATES PUBLIC HEALTH SERVICE

A "ROUND-UP" OF THE HERD BELONGING TO THE SANATORIUM FOR TUBERCULOSIS, UNITED STATES PUBLIC HEALTH SERVICE, FORT STANTON. A CHARACTERISTIC SCENE IN NORTHERN NEW MEXICO

DISUSED TROLLEY CARS WERE FIRST USED FOR CONSUMPTIVE PATIENTS BY DR. WILLIAM H. PETERS, OF PROVIDENCE, AT THE PINE RIDGE CAMP, RHODE ISLAND. THE CAMP CONSISTED OF SHACKS. PHOTOGRAPH SHOWS THE EFFORTS MADE TO PROVIDE THE OPEN AIR CURE BEFORE THE STATE SANATORIUM WAS BUILT

The evolution of the tent and open air shelter into the tent house, shack, and cottage, is an interesting feature of the open air treatment of tuberculosis.

"Lean-to."—The open air shelter and "lean-to" are somewhat alike. The latter has been long used by sportsmen and others in our northern forests, and has been greatly amplified for sanatorium purposes. The roof of the "lean-to" slopes directly back from its front or there may be a ridge placed close to the front or southerly side of the structure. The roof slopes well toward the back, but is short in front and allows free access of air and light. Canvass or screens are arranged to hang in front as a protection from wind or rain, and to insure privacy. For a full description of a "lean-to" the reader is referred to Dr. H. M. King's description with plans in "Some Methods of Housing," Charity Organization Society, New York.

Excellent "lean-tos" or open air shelters are in use all the year at the Royal Victoria Hospital, Edinburgh, Scotland, as seen in the illustration kindly supplied by Sir Robert Philip. (See plate 56.)

Pavilion tents are amplifications of the tent cottage, and are adapted for ten or twelve beds. As described by Mr. Homer Folks, they are sixteen by thirty-two feet long; the walls are eight feet high; the roof is fifteen feet high at the ridge and the floor of the tent is sixteen inches above the ground with free circulation of air underneath.

Tent Houses adapted for use in the New England and Middle States are naturally different from those in use in New Mexico and Arizona, where rain and snow are uncommon. The accompanying illustrations show a row of six tent houses and a single tent house at the U. S. Public Health Sanatorium at Fort Stanton, New Mexico, for consumptive sailors, under the care of the United States Public Health Service. The roof has a slight incline and the sides are arranged to give free ventilation as well as shelter when required.

Trolley Cars.—Superannuated and disused trolley cars were first used for tuberculosis patients by Dr. W. H. Peters, of Providence, Rhode Island, at the Pine Ridge Camp near that city. With slight alterations and at very little expense these cars may serve a useful purpose in connection with the outdoor treatment of tuberculosis at all seasons. Once located on a convenient site they have many advantages over the ordinary shack, affording a maximum of light and air and good protection against storms with their adjustable windows and doors. The author visited Pine Ridge Camp and can testify to

their efficiency; the camp itself was discontinued after the erection of the fine State Sanatorium for tuberculosis at Wallum Lake. Trolley cars were also used at the Camp Auxiliary, Montefiore Home, Bedford, New York. (See plates 67 and 68.)

The Balcony, or Liege-terrasse as it is known in Germany, is a necessary adjunct of any sanatorium for tuberculosis. Plate 71 shows a covered or partly sheltered balcony in use at a large private sanatorium in St. Blasien in the Black Forest, Germany. Plate 89 shows an open or uncovered balcony at the Sharon Sanatorium, Massachusetts. In June, 1908, the author visited the latter sanatorium with the Medical Director, Dr. Vincent Y. Bowditch, and can bear witness to the excellent arrangements for the outdoor treatment of tuberculosis carried out at this institution.

The records, now extending over 22 years, show that about 50 per cent of all cases, and 72 per cent of all incipient cases have been arrested or cured. Of the 160 arrested cases treated between 1891 and 1906, 133 or 83 per cent were still living and well in 1908, most of them house-keepers and wage earners; in addition, 3.7 per cent were doing well at last accounts, but were not recently heard from.

We have given the particulars of these cases treated at Sharon Sanatorium because the results are remarkably good being obtained at an elevation of 250 feet above sea level, about 15 miles from Massachusetts Bay, and about 20 miles from Boston. Sharon is near enough to the ocean to be affected by the sea breeze during the hot weather.

Day Camps; Walderholungstätten.—The daily care of consumptives at a day camp for the outpatients of a general hospital had its origin about the same time in both Boston and Berlin. It was proposed by Dr. A. K. Stone and Dr. E. P. Joslin in 1905 in Boston, and provision was made at the Mattapan Day Camps and at the House of the Good Samaritan for ambulatory patients. Plates 72-74 show how this is carried out. In July, 1908, fifty consumptives too ill to be benefited by treatment at the Massachusetts General Hospital were transferred to the new home of the Boston Consumptives' Hospital on the Conness estate, Mattapan, and entered on treatment which it was hoped would culminate in their improvement to an extent that should warrant their entrance into the state institution. They went to the camp in the morning and returned to their homes

¹ See V. Y. Bowditch, Boston Medical and Surg. Journ., June 22, 1899. See V. Y. Bowditch, Journ. Amer. Med. Ass., Nov. 14, 1903.

See V. Y. Bowditch, Trans. Amer. Climatological Ass., 1907, p. 168.

FIG. 1. OLD TROLLEY CAR THAT WAS USED BY MOTHER AND CHILD AT THE PINE RIDGE CAMP FOR CONSUMPTIVES, NEAR PROVIDENCE, RHODE ISLAND

Photograph by Courtesy of Dr. W. H. Peters, Providence

FIG. 2. ESTES PARK, COLORADO. IDEAL SUMMER RESIDENCE, WITH SPACIOUS PORCHES FOR PULMONARY INVALIDS. SLOPING GROUND, SANDY SOIL, MOUNTAINOUS BACK-GROUND AFFORDING PROTECTION FROM WIND AND DUST.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

at night. Those given preference in treatment were patients whose dependents, circumstances, and health most demanded it. The new hospital and its location are picturesque as well as healthful, and patients are able to remain throughout the winter. The main building is 125 feet long and contains dining-room, kitchen, examination and rest rooms, and has a spacious veranda facing the south. It is designed to accommodate 150 patients, in the two pavilions, two cottages, and children's building. The Day Camp has proved to be a great success.

Day camps, when properly conducted, have an immense value on educational lines. In addition they remove for a time the sources of infection from the community and from the homes. These patients cannot always go to a sanatorium but in this way receive proper care during a large part of the day and may eventually avoid the necessity of going to a sanatorium; others who need sanatorium care are provided for, pending admission; and after discharge from the sanatorium the camp helps to complete the cure. Dr. Otis does not believe that these camps are destined to become a permanent therapeutic measure in conducting the cure.

The best location for day camps is in the forest. In Germany they are known as Walderholungstätte and there are over eighty of them scattered throughout the Empire. Those who are only slightly affected with tuberculosis, or are convalescent from it, pass the day in camp and return at night to their homes. The accompanying illustration (pl. 76) shows these camps for adults and children at Kuhfelde, Germany. These forest convalescent homes are greatly favored by the German insurance societies and sick lodges. Their benefits are extended to the children of patients.

Germany must be given credit for making the greatest discoveries and for instituting the most rational methods of treatment in connection with tuberculosis. The most thorough measures are adopted by the Imperial Government, the industrial insurance companies and by the medical profession of Germany.

According to the business report of the German Central Committee for the campaign against tuberculosis, there were in Germany in 1908 99 popular sanatoria for adults affected with disease of the lungs. These have 10,539 beds, 6,500 for men and 4,039 for women; in addition there are 36 private sanatoria with 2,175 beds, so that in all, 12,714 beds for adult tuberculosis patients are available. For children with pronounced tuberculosis there are 18 sanatoria with 875 beds; besides there are 73 institutions, with 6,348 beds, in which

are received only "scrofulous" children and those who are threatened with tuberculosis. During the last five years these facilities have been greatly increased; 31,022 insured persons were treated in the sanatoria during a total of 2,312,850 days of care, at a cost of 11,483,033 marks (\$2,755,928). On an average, each person treated received 75 days of care at a cost of 370.16 marks (\$88.84) or 4.96 marks (\$1.19) per person for each day of care.

Night Camps.—These afford open air conditions of sleeping, either for patients with arrested tuberculosis who pursue their occupation by day in the nearby city, or with disease still unarrested but who are able, or from necessity are compelled to work by day.¹

Sleeping porches and balconies.—Sleeping out of doors requires special arrangements which are not usually found in cities. The ordinary dwelling, apartment house, or tenement has no provision for this innovation in tuberculo-therapy. Suburban and country houses or those in the less crowded cities are better adapted for the conversion of an upper porch or balcony into a sleeping apartment. In Denver, for instance, the practice is common enough to excite little comment. Detached houses are usually easily fitted with the necessary screened enclosures.²

Pavilions are more substantial and permanent than the forms of shelter previously referred to. Where large numbers of patients must be cared for at a minimum of expense the pavilion system has distinct advantages, especially for night use. At the Metropolitan Hospital, Blackwell's Island, New York City, about one-third of all consumptives under hospital care in New York are there provided for in the tent pavilions referred to on page 123; these tent pavilions cost about \$12.00 per bed or \$144.00 for a tent pavilion with a capacity of 12 beds.

At the Manhattan State Hospital for the Insane, Ward's Island. New York, more substantial and permanent pavilions have been constructed of wood and glass and have displaced the cloth tents. These pavilions are heated by steam, lighted by electricity, and have removable glass sides permitting a free circulation of air and light all the time. Their per capita cost is about \$100.

In addition, there are camps for both the men and the women with a total capacity of 175 patients. In summer some canvas tents

¹ E. O. Otis: Institutions for the Prevention and Cure of Tuberculosis, Boston Med. and Surg. Journ., Aug. 1, 1912.

² See "Directions for Living and Sleeping in the Open Air," National Ass. Tuberculosis, 1910. See T. S. Carrington: Interstate Med. Journ., April, 1914.

OPEN AIR LIFE AT THE ADIRONDACK COTTAGE SANITARIUM; WINTER

SANATORIUM ST. BLASIEN IN THE BADEN BLACK FOREST. THIS "REST HALL" IS CLOSE TO THE WOODS, HAS A PERMANENT ROOF AND FLOOR AND FLOOR AND AWNINGS WHICH ARE ROLLED UP OUT OF SIGHT

FIG. 1. DAY CAMP FOR TUBERCULOSIS PATIENTS, HOUSE OF THE GOOD SAMARITAN, BOSTON

FIG. 2. A DAY CAMP FOR TUBERCULOUS PATIENTS AT THE HOUSE OF THE GOOD SAMARITAN, BOSTON. NEAR THE HARVARD MEDICAL SCHOOL

BOSTON CONSUMPTIVES' HOSPITAL AT MATTAPAN. DAY CAMP. PATIENTS REPORT AT 9 A. M. AND RETURN HOME BETWEEN 5 AND 6 P. M

DOECKER PORTABLE BARRACKS, USED AS A RECOVERY STATION, AT KUHFELDE IN THE ALTMARK, GERMANY Courtesy of Christoph and Unmack

FIG 1. DIET KITCHEN. DAY CAMP AT PARKER HILL, BOSTON, MASSACHUSETTS

FIG. 2. SLEEPING BALCONY USED BY A PATIENT IN HAVERHILL, MASSACHUSETTS

SLEEPING PORCH IN A CROWDED DISTRICT OF PHILADELPHIA

DOUBLE SLEEPING PORCH WITH EASTERN AND SOUTHERN EXPOSURES. THIS SUMMER RESIDENCE IN ESTES PARK, COLORADO, IS PROVIDED WITH PORCHES ON ALL SIDES SAVE THE NORTH, WHICH IS PROTECTED BY THE ROCKY FORMATION IN THE BACKGROUND. THE PORCH IS COVERED WITH A PERMANENT ROOF.

Courtesy of Dr. S. G. Bonney

CITY RESIDENCE WITH IDEAL UPPER DOUBLE SLEEPING PORCH CONNECTED WITH BEDROOM. SHEATHING AT THE BASE, WIRE SCREENING, AWNINGS. ELECTRIC LIGHT.

Courtesy of Dr. S. G. Bonney. Denver

SMITHSONIAN MISCELLANEOUS COLLECTIONS

PAVILIONS AT THE ROYAL VICTORIA HOSPITAL FOR CONSUMPTION, EDINBURGH, SCOTLAND

CANTON, MASSACHUSETTS, STATE HOSPITAL SCHOOL FOR CRIPPLED (TUBERCULOUS) CHILDREN. SHOWING UNIT

FIG. 1. MANHATTAN STATE HOSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. NEW PAVILIONS
FOR THE TUBERCULOUS INSANE
Courtesy of Dr. William Mabon

FIG 2 MANHATTAN STATE HUSPITAL, EAST, WARD'S ISLAND, NEW YORK CITY. NEW GLASS PAVILION FOR THE TUBERCULOUS INSANE. WINTER

Courtesy of Dr. William Mabon

INTERIOR OF ONE OF THE PAVILIONS, ROYAL VICTORIA HOSPITAL, EDINBURGH
Courtesy of Sir Robert Philip

FIG. 1. KIOSK AND OPEN DECK ADJOINING WARDS FOR EARLY CASES OF TUBERCULOSIS, PHIPPS INSTITUTE, IN A VERY OLD AND CROWDED PART OF PHILADELPHIA

Courtesy of Dr. C. J. Hatfield, Director

FIG. 2. BELLEVUE HOSPITAL, NEW YORK CITY. ROOF WARD FOR CHILDREN Courtesy of Dr. J. W. Brannan

are used. The accompanying photograph (pl. 83), kindly furnished by Dr. Wm. Mabon, the superintendent, shows the character of the pavilion.

In the Royal Victoria Hospital for Consumptives, Edinburgh, Scotland, still more substantial and expensive pavilions are in use as seen from the illustrations (pl. 84) kindly furnished by Dr. R. W. Philip.

Roof Gardens.—At the Philadelphia Hospital the first attempt to segregate tuberculous patients for the fresh air cure was by means of a roof garden ward. This was a vast improvement over the previous method of indoor confinement and was greatly appreciated by the patients. The roof garden ward was in use winter and summer, but later gave way to the six glass pavilions erected at an expense of over \$112,000.

Each pavilion is intended to accommodate eighteen patients, usually in an advanced stage of tuberculosis. Each is separate in itself with walls and roof of glass and only sufficient metal work to give proper support. The floors are of cement so as to be as smooth and non-absorbent as possible. Including the porches, which are also enclosed in glass, each pavilion measures 39 by 70 feet. The glass is arranged in frames in both walls and porches and by means of automatic devices one side of the building or all three sides may be thrown open. Screens or shades are arranged to prevent too much access of the sun. The system of ventilation and heating is considered ample.

Detached Cottages.—At the Nordrach Ranch Sanatorium, three miles from Colorado Springs, independent cottages resembling tents are used. These are economical and insure privacy and sufficient protection. The system is adopted from that in use in Nordrach, Germany.

The highest development of housing for the tuberculous patient is undoubtedly the independent cottage. It is necessarily expensive, but the patient fortunate enough to be its inmate has a maximum of comfort and at the same time is in the enjoyment of the best atmospheric conditions night and day. At the Loomis Sanatorium where the snow lies on the ground more than four months in the year, and at Saranac Lake, in the Adirondack Mountains, where the winters are even longer and more severe, the independent cottage is a distinctive feature.

Sleeping Canopies.—Detachable windows may be applied to tents, pavilions, or ordinary dwellings, so as to allow patients to breathe

by day and night the outer air uncontaminated by others occupying the same room or dwelling. Devices suitable for any window may be obtained. It is thus possible in a hospital ward to have half a dozen patients breathe the outer air while the ward is kept warm. The tent can come over the end of the regular hospital bed so that patients sleeping in wards where miscellaneous cases are received, may nevertheless have the full benefit of the outer air. By means of thick celluloid the patient may be readily seen. The celluloid window may be raised to give the patient drink and nourishment.

Plate 93 shows the Walsh Window Tent applied to the window of an ordinary dwelling.¹

CHAPTER X. CONCLUSIONS.

There are some people, especially those of a skeptical or combative tendency, who refuse to admit that climate plays any important rôle in the cure of tuberculosis. One of these who was formerly in charge of a widely known institution for the study and treatment of tuberculosis has said: "I desire to go on record as believing that there is no therapeutic value in climate." This same physician probably owes his life to the fact that thirty-five years or more ago he left the city and removed to the mountains of Pennsylvania for the relief of a pulmonary disease and recovered. Such an attitude is a study for the psychologists and would hardly seem deserving of serious attention, except that we hear such statements as this: "If a case of consumption cannot be cured in its home climate it cannot be cured anywhere."

I think there is no doubt that if any of us were told that he is in the incipient stage of tuberculosis he would immediately take steps to familiarize himself with the line of treatment which would, before much time had elasped, involve leaving Boston, New York, Philadelphia, or Chicago, as the case might be, and so live as to enjoy what air and sunshine and other atmospheric features might afford.

One reason why home climates, if such a term may be permissible, have grown in favor is that it has been found necessary to establish a large number of State sanatoria, or at least to seek aid for private sanatoria from some of our State legislatures. It is a matter of expediency to have such sanatoria and legislators must be convinced that good results or, if necessary, the best results, can be obtained close at hand. We are all heartily in favor of such institu-

¹ For the history of this tent see Knopf and McLaughlin, N. Y. Med. Journ., 1905, Vol. 81, 425.

tions whether or not we should wish to stake our chances of recovery in any of them.

Of course we do not claim that there is any specific climate for tuberculosis and the long search for such climate, a search lasting for nearly two thousand years, is apparently at an end.

Now what is there left to us, and what do we understand by a climatic change?

We all know that the New England climate is changeable, that is, the meteorological conditions are constantly varying just as they also vary in the Mississippi Valley and along the Atlantic seaboard. But the New England climate is peculiarly unstable and, as Charles Dudley Warner has said, "New England is the battle-ground of the weather."

We have a change of climate when we leave the hot city in summer and go a few miles to the shore. We have floating hospitals so that this climatic change may stimulate a sick child to recovery. A so-called "home-climate" may work a cure or aid in a cure because we leave the climate of our homes, often too dry with furnace heat, too poorly ventilated, too damp from lack of sun, and remove to more hygienic dwellings in the same locality where sun and air and cleanliness abound.

But, to take up the principal question at issue, the first thing usually asked is whether one should go to the Adirondacks, Colorado, New Mexico, Arizona, California, or elsewhere, in order to get what is so frequently claimed to be the greatest climatic advantages. No one who has visited these localities can fail to be impressed with the living examples of recovery from tuberculosis. Denver, Colorado Springs, and innumerable towns in southern California abound in doctors who have practically recovered from this disease and are earning a living that is the envy of their eastern confrères.

Would they have recovered in their eastern homes? Almost to a man they answer "No." I have never heard of an exception. But the case is hard to prove from such *ex parte* evidence. However, it is interesting to note Dr. H. B. Dunham's conclusion. He stated in 1904, after visiting discharged Massachusetts State Sanatorium patients in the west, and after comparing Massachusetts Sanatorium statistics with those of the U. S. Army Sanatorium at Fort Bayard, New Mexico, that "the results corroborate our beliefs in the efficacy of residence in dry climates, but with a smaller margin in its favor than was anticipated." The proportion of people adapted for treatment in these extremes of climate must be more equal than

thought possible by climatologists generally. That is to say, a small majority of the patients at Rutland, Mass., would probably do better at Fort Bayard, New Mexico, and a large minority might do better at Rutland. But no one can say positively, in any given case, what would have been the outcome had he chosen differently.

We need not discuss the bearing of what to do for the poor or what to do for the rich, or the question of food, or the physician's management; these are important and may govern the choice, but what we want is an answer to the abstract question of the influence of climate.

We believe that climate may be *utilized as an adjuvant* of great value for carrying out the hygienic, dietetic treatment of all forms of tuberculosis and of many other diseases. There are some elements of climate that have a more positive influence in hastening cure than others. The first place must be assigned to an abundance of air, which is as nearly as possible bacteriologically and chemically pure. It goes without saying that city air is polluted by smoke and dust and all dwellings, whether in the city or the country, are far below the standard of purity desirable. Only on the sea or at the highest elevations do we find air really pure, but we can approximate it by living out of doors. There is a climate of the city, a suburban climate, a climate of the country, woods, and plains, all differing as regards purity of air. We are all probably agreed on this point.

Next comes the subject of sunshine. We admit that good results are obtained in cloudy regions as, for instance, in the Adirondacks and at Rutland; but there is at least no objection to sunshine, and I believe that the moral effect of bright sunny days and plenty of them is very great. Invalids always welcome the sun. We can protect ourselves from too much sun if need be, and I, for one, believe that sunlight does a vast amount of good and sunny regions are much to be preferred, other things being equal. That is the great asset of our western plains and mountains; and it is a real asset that counts. Of course there are exceptions. Tastes differ. Dr. Solly used to relate the story of one of his countrymen who had been sojourning in Colorado and finally returned to England. As he landed in a fog and found himself home again, he exclaimed, "Thank God! I am out of that beastly sunshine." I do not suppose he intended to be irrational or ungrateful for the greatest of all natural gifts.

Now, what other climatic conditions besides pure air and abundant sunshine have we to help us? Is a cool climate or a warm climate the best? Is a dry or humid climate to be preferred? These quali-

FIG. 1. SHACK WITH SCREENED PORCH. ESTES PARK, COLORADO Courtesy of Dr. S. G. Bonney

FIG. 2. WELCH'S RESORT, FIVE MILES FROM LYONS, COLORADO. SIX ROOM COTTAGE SOME WHAT PRIMITIVE BUT WITH AMPLE SCREENED PORCH. SHELTERED FROM NORTH AND WEST WINDS.

Courtesy of Dr. S. G. Bonney

VIEW OF THE ROCKY MOUNTAIN RANGE FROM THE PORCHES OF SUMMER COTTAGES, ESTES PARK, COLORADO Courtesy of Dr. S. G. Bonney

MITHSONIAN MISCELLANEOUS COLLECTIONS

COTTAGE AT THE ADIRONDACK COTTAGE SANITARIUM NEW YORK

FIG. 1. ANNE M. LOOMIS MEMORIAL COTTAGE—(NEW INDEPENDENT UNIT) LOOMIS SANATORIUM SULLIVAN COUNTY, NEW YORK

FIG. 2. LOOMIS SANATORIUM, SULLIVAN COUNTY, NEW YORK. ONE OF THE EAST PORCHES OF THE MARY LEWIS RECEPTION HOSPITAL

ties of temperature and humidity may as well be considered together. Undoubtedly for the majority of cases in the first stage the climate should be dry and the temperature comfortable—not warm enough to be relaxing, but not so cold as to be repellent and restrict exercise or out-of-door life. It is true that in special localities better results are obtained during the cold months than during the summer. This is true of the Adirondack Cottage Sanitarium in the State of New York. One reason for this is that in winter the lakes and ponds are frozen and covered with dry snow; the air is drier. It is far enough north and at a sufficient altitude to escape the alternate freezing and thawing that is experienced in New York City, where unquestionably it is less favorable for the consumptive during the cold season than during the warm months. Take Florida and South Carolina: Undoubtedly the best season there is during the winter months, as the summers are oppressively warm and wet. winter is the dry season and the temperature is comfortable. The interior of Florida forty or fifty miles from either coast is reasonably dry. As far as Arizona and New Mexico are concerned, the summers are too hot at all the lower elevations for any invalid, but at the higher elevations, 5,000 or 6,000 or 7,000 feet, the summer heat is not oppressive. Along the southern coast of California and at many of the resorts somewhat inland, as good results are obtained in summer as in winter, although the latter is the more fashionable season for eastern visitors. The southern California resorts which have been most frequented by consumptives vary greatly between themselves as regards the important question of humidity. That a place is frequented by consumptives does not prove that it is a desirable place for them. Many of them are misguided, wandering invalids, sent out from the east with little or no judgment as to their individual needs and with no proper knowledge on the part of their medical advisers as to the humidity or local character of the places to which they are destined. A man, for instance, will go to Los Angeles. It does not take him long to find out that while the air is fairly dry from II a. m. to 5 p. m., it is always damp at night. Six hours out of twenty-four are dry, the remaining eighteen are decidedly damp. The physicians of Los Angeles do not claim that their climate is a suitable one for cases of tuberculosis and usually send these cases to the interior stations, such as Redlands or Riverside, Monrovia or Altadena. Many are sent to Arizona. Experience shows that consumptives do better if they avoid the coast region. Or, if near the coast, as at Santa Barbara, they are better if they

find a site at some elevation on the hillside or in the mountain valleys beyond the reach of the morning fog and the excessive humidity at the shore.1 The records of the Weather Bureau show that these places on the coast or within reach of the fogs which penetrate inland have a greater humidity than Boston or New York, the mean annual absolute humidity for Santa Barbara, Los Angeles, and San Diego being given at 4.20, 4.42 and 4.34 grains, more than one-third more than that of New York and Boston, 3.19 grains and 2.84 grains. The mean annual relative humidity of all these places mentioned is from 72 to 73 per cent. But the advantage of places like Santa Barbara, San Diego, Redlands, and Riverside, lies in the fact that the mean annual humidity shows a remarkable variation during the twenty-four hours compared with places like Boston, New York, or Philadelphia, where the daily range is much less. At Redlands, fifty miles inland from the Pacific Ocean, one of the best known stations, the hygrometer has been known to indicate in fair weather 55 per cent at 4.30 p. m., and 80 per cent at 6.00 p. m. The relative humidity is sometimes as low as 30 per cent for a limited time during the day, and 70 to 80 per cent at night when the temperature is from 44° to 60° F.

It may as well be stated that the government records of humidity are quite misleading when we use them to judge of the climate of any given place. The observations are made at 8 a. m. and 8 p. m., but in the invalid's day, made up of the intervening hours, the relative humidity reaches a much lower mark than the records show. I often observe a relative humidity in Virginia of 25 or 30 per cent at 2 p. m., and 95 or 98 per cent at night or in the early morning, especially when dew falls after a bright, invigorating day. I think that people, whether sick or well, adjust themselves to these natural changes of humidity if properly clothed and constantly in the open air; but when subject to rapid changes in humidity, as in going back and forth from the excessively dry air of a house in winter to the damp air outside, the demands upon the mucous membranes are very great and such frequent and violent changes certainly do harm to susceptible people. Such rapid variations or alterations of the humidity of the inspired air I think are as bad as would be rapid alternations of altitude involving variations of several thousand feet.

Some patients, however, seem to do better with a humidity greater than that chosen for others. If we have a low relative humidity

¹ See W. Jarvis Barlow, M.D.: Climate in the Treatment of Pulmonary Tuberculosis (Journ. Amer. Medical Association, October 28, 1911).

and at the same time a moderately low temperature the general effect is tonic and it is beneficial in conditions of irritability of the respiratory mucous membrane; but if the temperature is very low this may be rather irritating. We find atmospheric conditions like this from Minnesota to the Rockies and through Manitoba and Alberta.

The combination of high relative humidity and low temperature certainly favors catarrh and we have such conditions all winter long in the region of the Great Lakes and in New York and New England. Probably the best combination is a low humidity and a moderately cool temperature; the average tuberculous patient makes his best gains after August first and in subsequent cold, dry weather when such conditions prevail. But of course there are exceptions and some do better with a high relative humidity and a warm temperature; these are not numerous and probably include more of the patients in later stages when expectoration is profuse and vitality is low.

The old idea about equability of temperature, at least between the temperature of midday and midnight, is not of great importance; all mountainous stations show great variations in this respect. Some variability tends to stimulate the vital activities, but in older people and those who are feeble great variability is a disadvantage.

As far as altitude is concerned it probably has not, per se, any great influence; certainly to my mind not so much as we used to think. However, altitude is incidentally associated with mountain life or life on the plains, with more sun, less moisture, and scattered population. We should not forget that surgical tuberculosis is always favorably influenced by a seashore residence suitably chosen.

I never shall forget the wonderful impression made on visiting the Sea Breeze Hospital for Tuberculous Children on Long Island, New York. Constant outdoor life in all weather works miraculous cures after the most formidable operations for bone tuberculosis and in many cases renders them wholly unnecessary in patients whose physical condition on admission was most unpromising. All the great French and Italian sanatoria for tuberculous children are located on the seashore.

Among the numberless histories of the climatic cure I will give only one and I think I may safely let it stand as a good example by which to let the argument rest. The history is that of a physician whom we all love and respect. It was published, together with twenty other carefully recorded histories, by that prince of clinicians,

the late Dr. Alfred L. Loomis, in the Medical Record and formed a part of a paper read before the Medical Society of the State of New York in 1879, a paper which we commend to your attention. Dr. Loomis says:

At the age of twenty-five this patient, being of good family history, began to lose his health in the winter of 1872. His symptoms were rapidly becoming urgent; he was examined by several physicians. Extensive consolidation at the left apex was found, extending posteriorly nearly to the angle of the scapula; on the right side nothing was discovered save slight pleuritic adhesions at the apex.

He was ordered south, but returned in the spring in no way benefited. On the contrary, night-sweating had set in, and his fever was higher. In the latter part of May he started for the Adirondacks, the ride in the stage being accomplished on an improvised bed. His condition at this time was most unpromising; he had daily fever, night sweats, profuse and purulent expectoration, had lost his appetite and was obliged constantly to have recourse to stimulants. Weight about 134 pounds. He began to improve at once, his appetite returned, all his symptoms decreased in severity, and after a stay of more than three months he returned to New York weighing 146 pounds, with only slight morning cough, presenting the appearance of a man in good health. A few days after his arrival in New York he had a chill, all his old symptoms returned and he was advised to leave for St. Paul, Minnesota, where he spent the entire winter. He did badly there; was sick the greater portion of the winter. In the spring of 1873 he again went to the Adirondacks. At this time he was in a most debilitated state, was anemic, emaciated, had daily hectic fever, constant cough, and profuse purulent expectoration.

The marked improvement did not commence at once as it did the previous summer, and the first of September found him in a wretched condition. I then examined him for the first time and found complete consolidation of the left lung over the scapula and suprascapular space, with pleuritic thickenings and adhesions over the infraclavicular space. On coughing, bronchial rales of large and small size were heard over the consolidated portion of the lung. Over the right infraclavicular region the respiratory murmur was feeble, and on full inspiration pleuritic friction sounds were heard. I advised him to remain at St. Regis Lake during the winter, and although he was repeatedly warned that such a step would prove fatal, he followed my advice.

From this time he began slowly to improve. Since that time he has lived in this region. At the present time his weight is 158 pounds, gain of 22 pounds since he first went to the Adirondacks in 1873, and ten pounds more than was his weight in health. He has slight morning cough and expectoration, his pulse is from 72 to 85 and he presents the appearance of a person in good health. In his lungs evidences still remain of the disease he has so many years combated.

Although he has made three attempts to live in New York, at intervals of two years, each time his removal from the mountains has been followed within ten days by a chill, and a return of pneumonic symptoms-symptoms so ominous that he has become convinced that it will be necessary for him to remain in the Adirondack region for some time to come.

FIG. 1. LOOMIS SANATORIUM, SULLIVAN COUNTY, NEW YORK

FIG. 2. LOOMIS SANATORIUM, SULLIVAN COUNTY, NEW YORK. PORCH OF OLD INFIRMARY

Fig. 2. Pennsylvan a's state sanatorium for tuberculos s, number 3. Hamburg. Berks county

PARTIAL VIEW OF PENNSYLVANIA'S STATE SANATORIUM FOR TUBERCULOSIS, NUMBER 2, CRESSON, CAMBRIA COUNTY

This property, formerly a popular summer resort hotel, was presented to the State by Nir.

Andrew Carnegie for sanatorium purposes

THE WALSH WINDOW TENT. ALTHOUGH LYING IN THE BEDROOM THE SLEEPER HAS FREE ACCESS TO THE OUTER AIR

We all know the after history of this patient. Thank God, he is still living, still working, and there are thousands living to-day who owe their lives to the example which he has set them. He seized the principles of climatic treatment and adapted it to the individual.

I recently sent the following question to the deans of medical colleges in Boston, Chicago, New Orleans, Los Angeles, and Montreal. I knew nothing of the views of these men on this subject except one; of course we all know that every one from California has decided views on climate. The question was:

What would you do for yourself climatically if you were told for the first time that you had incipient pulmonary tuberculosis?

Here are the answers:

I would strike for the wild pine woods of northern Michigan or Wisconsin and stay there.--A. R. Edwards, Chicago.

In answer to your question I may say that if I had incipient tuberculosis I should either go to Saranac or St. Agathe in Canada and employ the open air treatment.—F. J. Shepherd, McGill University, Montreal.

In answer to your question of December 26, I would say that I would treat myself as I do patients on whom I make the diagnosis of incipient pulmonary tuberculosis, that is, refer them to a local man who specializes in this disease, and ask him to look them over and refer them for climatic treatment in accordance with his knowledge of climatic conditions suitable to the individual case. Were I to start out to select a climate for myself, I would be much more influenced by the physician under whose care I would come in the new place than by the actual climate, and would probably select either Saranac Lake or Asheville, N. C., as I know and have confidence in physicians in each place. Were they to decide that I was better suited to some other climate, I would move on under their advice. If it were possible, I believe that I would undoubtedly leave Boston, had I incipient tuberculosis.

Very truly yours,

HENRY A. CHPISTIAN,

Boston.

If I had to answer your question categorically I would say that I would ask the advice of one or two men living in my own community as to what I should do for myself climatically if I were told for the first time that I had incipient pulmonary tuberculosis.

The practice among the profession in New Orleans is to send patients to St. Tammany Parish, in Louisiana, where the growth of piney woods is thick and ozone plentiful. When the particular case justifies, the patient is sent to the plains of Arizona or New Mexico, and, rarely, to El Paso, Texas. A few patients go to Colorado.—Isadore Dyer, Tulane University, New Orleans, La.

Perhaps I can best answer this personally by telling you what I did when I was told this very thing fifteen years ago. Having contracted tuberculosis in New York city I sought a better climate for an outdoor life, spending the first summer in the Adirondack Mountains and in November of that year

going to California, where I lived for one year in the foothill region near the coast at an elevation of 1,000 feet, free from responsibility and work. After the first year I never had any return of my pulmonary tuberculosis.

I believe a change of climate is more a question of finances than anything else. If one has not the necessary means to have what is right in a different climate his chances for a cure are much better with home treatment, but when a better climate can conveniently be added to other measures of treatment for pulmonary tuberculosis it should be advised.—W. Jarvis Barlow, Univ. of Southern California, Los Angeles, Cal.

Note.—For the bibliography of tuberculosis in its various relations the reader is referred to the Index Catalogue of the Surgeon-General's Library, U. S. Army, Volume 18, Second Series, Washington, 1913. This bibliography embraces 412 pages in double columns, an invaluable contribution to the history and literature of this subject.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 2

Notes on Some Specimens of a Species of Onychophore (Oroperipatus corradoi) New to the Fauna of Panama

BY
AUSTIN HOBART CLARK

(Publication 2261)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
FEBRUARY 21, 1914

The Lord Galtimore (Press

NOTES ON SOME SPECIMENS OF A SPECIES OF ONYCHOPHORE (OROPERIPATUS CORRADOL) NEW TO THE FAUNA OF PANAMA

By AUSTIN HOBART CLARK

Through Professor T. D. A. Cockerell I have recently received four specimens of a species of Peripatus collected at Ancon, Canal Zone, by Mr. J. Zetek, which represent a genus, as well as a species, not previously definitely known as an inhabitant of the region.

These specimens are now in the collection of the United States National Museum.

OROPERIPATUS CORRADOI (Camerano)

Peripatus corradoi 1808. Camerano, Boll. Mus. Zool. ed Anat. comp. di Torino, vol. 13, No. 316, p. 2.—1808. Camerano, Atti R. Acc. Sci. di Torino (2), vol. 33, pp. 308-310, figs. A and B; p. 591.—1905. Bouvier, Ann. des. sci. nat. (0), vol. 2, p. 120, pl. 3, fig. 15; pl. 4, figs. 20, 30; text figs. 6, p. 15; 18, p. 20; 42, p. 38; 63, p. 124; 64 and 65, p. 125 (the complete synonymy is given).

Oroferipatus corradoi 1013. A. H. CLARK, Proc. Biol. Soc. Washington, vol. 26, p. 16.

Locality.—Ancon, Panama Canal Zone.

Material.—Four specimens, two males and two females.

Notes.—One of the females is 34 mm. long and 4 mm. broad, and possesses twenty-seven pairs of ambulatory legs; the other is 34 mm. long and 3.5 mm. broad, with twenty-nine pairs of ambulatory legs.

Of the males one is 19 mm, long and 2.3 mm, broad, with twenty-four pairs of ambulatory legs, and the other is 19 mm, long and 2.5 mm, broad, with twenty-five pairs of ambulatory legs.

All the specimens are dorsally dark brown in color, with a narrow median line of darker, and ventrally light brown.

The dorsal folds in the two females are all of approximately the same width, but in the males there is a more or less distinct alternation of broader and narrower folds; there are no incomplete folds.

Some of the primary papille of the back are very much more developed than the others, and lighter in color, and these enlarged light colored papille show a more or less regular arrangement which, however, is very much less evident in the females than in the males.

There is a regular line of these papillæ on either side of the median dorsal dark line, which gradually becomes irregular and disappears somewhat before the middle of the body. There are two scalloped rows, one along each of the outer margins of the dorsal surface of the body, consisting of a series of arcs of which the convexity is above each of the ambulatory legs; beyond these in the males there are similar lines with the arcs alternating with those in the inner rows, their convexity being between the legs, and reaching down to the level of the leg bases. Between the median and lateral lines the enlarged papillæ are arranged in a sinuous and more or less irregular line, with scattered ones on either side of it; but toward the posterior part of the body they become less and less numerous, and more and more irregular in their position.

All of the legs are provided with feet.

The creeping pads consist each of four arcs of nearly equal width, of which the fourth is about as long as the second.

The urinary tubercle which, in reference to the short diameter of the third are is approximately central in position, divides the third arc into two parts, of which the posterior is much smaller than the anterior, and is entirely separated from the tubercle, which is broadly united with the anterior portion. The conditions in these specimens is well represented in Bouvier's figure.

Remarks.—These individuals appear to agree with the specimens of Oroperipatus corradoi from Guayaquil as described by Bouvier.

Range.—Oroperipatus corradoi is now known from Quito, Balzar and Guayaquil, Ecuador, and from Ancon, Panama Canal Zone.

List of the Species of Onychophores Known from the Isthmus of Panamá

Oroperipatus corradoi (Camerano). Oroperipatus eiseni (Wheeler)¹. Macroperipatus geayi (Bouvier). Epiperipatus brasiliensis (Bouvier). Epiperipatus edwardsii (Blanchard).

^a This species has not actually been taken on the isthmus, but as it ranges from Tepic, Mexico, south to the Rio Purus, Brazil, it probably occurs there.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 3

A New Ceratopsian Dinosaur from the Upper Cretaceous of Montana, with Note on Hypacrosaurus

(WITH TWO PLATES)

ΒY

CHARLES W. GILMORE
Assistant Curator of Fossil Reptiles, U. S. National Museum

(Publication 2262)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
MARCH 21, 1914

The Lord Galtimore Press

A NEW CERATOPSIAN DINOSAUR FROM THE UPPER CRETACEOUS OF MONTANA, WITH NOTE ON HYPACROSAURUS!

By CHARLES W. GILMORE

ASSISTANT CURATOR OF FOSSIL REPTILES, U. S. NATIONAL MUSEUM.

(WITH TWO PLATES)

INTRODUCTION

The fossil remains upon which the present communication is based were collected by the writer during the summer of 1913 while working under the auspices of the U. S. Geological Survey on the Blackfeet Indian Reservation in northwestern Montana. The partial skeletons of five individuals were found and these supplement one another to such an extent that nearly all parts of the skeleton are represented. The skull presents some anatomical features not heretofore known in the Ceratopsia and the new genus and species *Brachyceratops montanensis* is here proposed.

This new form is the smallest known representative among the Ceratopsian dinosaurs and in several respects strikingly different from any of its allied contemporaries.

The present paper is preliminary. Upon the completion of the preparatory work now in progress a more detailed account of the skeletal anatomy and a discussion of its affinities will be given.

BRACHYCERATOPS MONTANENSIS, new genus and species

Type.—Cat. No. 7951 U. S. Nat. Mus. A considerable portion of a disarticulated skull (i. e., nasals, prefrontals, postfrontals, postfrontals, postfrontals, premaxillaries, maxillaries, alisphenoid), with which is provisionally associated a fragmentary part of the frill and a right dentary and a predentary.

Type locality.—N. E. 1/4 Sec. 16, T 37 N, R 8 W, Milk River, Blackfeet Indian Reservation, Teton County, Montana.

Paratypes.—Cat. No. 7952, U. S. Nat. Mus. Rostral and portions of the premaxillaries; Cat. No. 7953 U. S. Nat. Mus. Sacrum.

¹ Published by permission of the Director of the U. S. Geological Survey.

complete pelvis and articulated caudal series of 45 vertebræ continuing to the tip of the tail; Cat. No. 7957, U. S. Nat. Mus. Two tarsals of the distal row, four articulated metatarsals, a portion of the fifth, and eleven phalanges.

Localities.—Same as the type.

Horizon.—From the upper part of an Upper Cretaceous formation soon to be described by the U. S. Geological Survey, which includes the equivalent of the Judith River formation and some older beds. The fossiliferous horizon is also the equivalent of the upper part of the Belly River formation, as described in neighboring areas of Canada.

Generic and specific characters.—Typically of small size. Skull with facial portion much abbreviated, and deep vertically. Supraorbital horn cores small. Nasal horn core outgrowth from nasals, large, slightly recurved, laterally compressed, and divided longitudinally by median suture. Frill with comparatively sharp median crest, fenestræ apparently of small size, and entirely within the median element. Supratemporal fossæ opening widely behind. Border of frill scalloped, but without separate marginal ossifications. Dentition as compared with *Triceratops* greatly reduced.

Description of skull.—The description to follow is devoted entirely to a consideration of the skull, since it shows characters of sufficient importance to readily distinguish it from all the other known members of the Ceratopsian group, which in the greater number of instances have also been established upon cranial material.

When found, the skull was entirely disarticulated, but the excellent state of preservation of the bone and the absence of distortion by crushing rendered the assembling of the scattered elements a comparatively easy matter. This specimen is of the utmost importance in the evidence it gives for the proper interpretation of the cranial elements, and especially the positive information it affords relating to those parts of the Ceratopsian cranium now somewhat in controversy.

In the above diagnosis of the genus and species, it is stated to be typically of small size. While this statement is true so far as applied to the known specimens, it should also be stated that to some extent the small size of these specimens may be due to the immaturity of the individuals. The open sutures of the skull, sacrum, and vertebræ all testify to the youth of the animals.

Viewing the skull in profile (pl. 1), one is especially impressed by the great abbreviation of the facial portion, when compared with the Ceratopsians of the Lance formation. It is to this shortening that the generic name refers. The narial opening, as in other known Judith River and Belly River forms, is situated well forward and under the nasal horn, whereas in the later and more highly specialized *Triccratops* this orifice is entirely posterior to that horn. The distance between the nasal and supraorbital horns, as seen in the upper outline, is exceedingly short, due largely to the shortened nasal bones and the great fore and aft development of the basal portion of the nasal horn and also to the forward position over the orbits of the small brow horns.

The exact pitch of the frill portion in relation to the anterior part of the skull cannot be positively determined, though in the drawing it has been placed in accordance with the evidence of articulated skulls.

This specimen brings to light an entirely new phase of nasal horn development and one which, so far as our previous knowledge goes, appears to be unique among dinosaurs. Reference is made here to the longitudinal separation of the horn core into two halves by the nasal suture. This also indicates the nasal horn to be an outgrowth from the nasal bones instead of having originated from a separate center of ossification, as is the case in the more specialized *Triceratops*. It appears quite probable there are some of the described Belly River species that will also show a similar mode of nasal horn development when juvenile specimens are found.

The nasals are especially deep and massive, due to the development on their superior surfaces of the nasal horn cores. Posteriorly they present a pointed process with a beveled underlapping surface for contact with the prefrontals (the frontals and lachrymals of authors). Laterally they send down a deep extension to meet the premaxillary, and anteriorly the arched ventral borders of the nasal bones form the upper half of the boundary of the narial orifice. Anteriorly they send out vertically flattened processes (see p, fig. 1) between which are received the ascending processes of the premaxillæ. This nasal process appears to end about 32 mm. in advance of the forward line of the horn core, so that the upper outline of the beak is formed largely by the premaxillaries. The horn has a broad fore and aft extent at its base, but tapers rapidly to a bluntly pointed horn of moderate height. Transversely it is much compressed at the base, though inclined to expand somewhat toward the summit. The horn as a whole is directed somewhat forward, but the curve of the posterior side is such as to give the impression

that its upper part is slightly recurved. The surfaces of the upper half are roughened and grooved by vascular impressions.

On the tip of the left half of the nasal horn is a small, flattened oval bony ossicle, which rests in a shallow depression or pit on the apex of the horn as shown at *os*, figure 1. This ossicle is a distinct element from the underlying bone and may represent the incipient horn of later Ceratopsians where it is known to be developed from a center of ossification distinct from the nasal bones.

Fig. 1.—Nasals and nasal horn cores of *Brachyccratops montanensis*. Type: Cat. No. 7951 U. S. Nat. Mus., τ_2 Nat. size. A, side view; B, front view; ϵ , surface for contact with the premaxillaries; f, surface for articulation of prefrontal; no, anterior nasal opening; os, ossicle on top of horn core; p, anterior process of nasal; po, orifice for superior processes of premaxillaries; s, suture separating two halves of nasal horn.

The maxillaries are of triangular outline with alveoli for twenty teeth in the functional row. As compared with *Triceratops* this is a greatly reduced number, *Triceratops* having forty alveoli in the maxillary. In this specimen all of the functional teeth have fallen out, but two or more germ teeth are still retained and these give some idea of their character.

The true extent of the postfrontals in the Ceratopsian skull is here correctly determined for the first time. Authorities have heretofore considered the postfrontal as extending from the median line outward and including all of that portion of the skull here designated as postfrontal and postorbital (see pl. 2). In this specimen a longitudinal suture just internal to the base of the supraorbital horn core separates it into two distinct elements. The inner portion all paleontologists agree in calling the postfrontal, the outer appears without question to represent the postorbital. Von Huene, in 1912, in a skull of *Triccratops prorsus* regarded that portion forming the posterior boundary of the orbit as representing the whole of the postorbital, but the writer now questions the correctness of this determination in the genus *Triccratops*, in so far as regarding it as representing the entire postorbital.

In *Brachyceratops* the postfrontal is a somewhat irregularly triangular bone, longer than wide, which unites by suture on the median line with its fellow of the opposite side.

Anteriorly the combined postfrontals terminate in a pointed projection that is interposed between the deeply emarginate posterior borders of the prefrontals. Posteriorly and on either side of the postfrontal foramen these bones articulate by suture with the median element of the frill. A toothed external border unites with the postorbital. Beginning between the horn cores the median upper surfaces of the postfrontals are angularly depressed, gradually deepening and widening transversely as they approach the fontenelle much as in *Styracosaurus albertensis* Lambe, see B, plate II, The Ottawa Naturalist, Vol. 27, 1913.

The postorbital gives rise to the small supraorbital horn core and forms nearly one-half of the orbital border. Posterior to this horn which is situated on the extreme anterior end, the bone flares out into a wide expanded portion, much deflected externally, with a curved posterior border, the inner half of which forms a portion of the outer boundary of the supratemporal fossa, the outer half having an underlapping sutural edge for articulation with the squamosal. The straight inferior edge meets the jugal which is missing in this specimen.

The thickened anterior border shows a sutural edge for union with the missing supraorbital bone. On the median inferior surface is a shallow pit which receives the outer end of the alisphenoid, as it does in *Stegosaurus* and *Camptosaurus*.

¹ Neues Jahrbuch, 1912, fig. 3, p. 151.

Immediately above the orbit on the anterior part of the postorbital there rises a low horn core, the upper extremity being obtusely rounded from a lateral aspect, see po.h plate 1, but sharply pointed when viewed from the front. The external surface of this horn is plane, the internal strongly convex, with the antero-posterior diameter greatly exceeding the transverse, the total height of the horn above the orbit being 35 mm. These horn cores appear to be outgrowths from the postorbital bones unless they include a posterior supraorbital element such as has recently been found in the skull of Stegosaurus. However that may be, there is no trace of such a division in the postorbitals of this specimen. This again raises the question of the proper designation of these horns which have been called successively postfrontal and supraorbital horn cores. If an outgrowth from the postorbital bone, as the present specimen appears to indicate, the term postorbital horn core would be a more appropriate designation.

The prefrontals (the frontals and lachrymals of authors) are deeply emarginate anteriorly and receive between them the pointed posterior ends of the nasals.

The prefrontal is a quadrangular plate of bone diagonally placed filling the interspace between the postfrontal and nasal bones. Its thickened posterior end contributes to the inner part of the anterior boundary of the orbit. Near the posterior termination a narrow vertical sutural surface (so, pl. 2) on the external side was for the articulation of the small supraorbital bone that is missing. This element would have completed the thickened projecting orbital border immediately in front of the eye and which forms such a conspicuous feature of the Ceratopsian skull. On the upper posterior end of the prefrontal a pointed peg-like projection is received in a corresponding pit in the anterior border of the postfrontal, thus strengthening the union of these two bones. The prefrontal is just barely in contact with the postorbital at the base of the postorbital horn core.

The relationships of the pre- and postfrontals in *Brachyceratops* is an unusual one, for in most dinosaurian crania the frontal is interposed between them, and so far as the writer is aware the above condition is only found in *Stegosaurus* among the dinosauria and in some of the Permian reptilia. Von Huene has shown, and the writer believes correctly too, that the frontal in *Triceratops* has been entirely excluded from the dorsal surface of the skull.

The frill is represented by the median elements from two individuals. Both have portions missing, but the better preserved one is

provisionally associated with the type as shown in plates 1 and 2. This association, however, is only provisional in so far as it applies to the recognition of the proper individual, for it can be said without question that all the bones found belong to the same kind of an animal.

The dermo-supraoccipital or interparietal, for surely it cannot be the parietal as Hay and von Huene have clearly shown, is united by suture with the anterior portion of the skull at the postfrontal foramen. The median part of the interparietal is sharply ridged, excepting the posterior extremity, where it flattens out into a thinner portion with an emarginate median border. Between the fenestræ the median bar, in cross section, is triangular. The superior surface of this ridge forward of its narrowest part between the fenestræ presents three low longitudinal swellings arranged one in front of the other. Proximally the median portion is greatly compressed transversely into a short neck, forward of which it again widens into a much depressed end that articulates laterally with the postfrontals and with them forms the upper boundaries of the postfrontal foramen, see fo, plate 2. Between these two lateral portions the median surface is deeply concave and slopes downward to a heavy truncated border that in all probability was suturally united with the parietals. In Brachyceratops at least, the parietal was entirely excluded from the dorsal aspect, and it is presumed that similar conditions obtained in Triceratops, although von Huene was inclined to regard a small portion of the median part of the frill posterior to the postfrontal foramen in that genus as being parietal.

The bone surrounding the frill fenestræ is very thin, but toward the lateral free edges and posteriorly it becomes thickened. Proximally it remains thin where it forms the floor of the supratemporal fossa but thickens toward the sutural border for the squamosal. The exact shape and extent of the frill fenestræ cannot be accurately determined from the available specimens, but it is readily apparent that they were of comparatively small size. The surfaces of the frill are relatively smooth and without the ramifying system of vascular grooves of the later Ceratopsians. There were no epoccipital bones on the margins of the frill, but on either side of the median emargination a series of prominences give to the periphery much the same peculiar scalloped effect found in the *Triceratops* frill with its separate ossifications.

¹ Proc. U. S. Nat. Mus. vol. 36, 1909, p. 97.

² Neues Jährbuch, 1912, pp. 150-156, figs. 3, 4, 5 and 6.

Laterally the median portion unites with the squamosal by a straight sutural edge that is directed forward and inward toward the center of the skull. A triangular outward projection with an upper striated surface at the anterior termination of the squamosal suture represents a surface that was overlapped by the articulated squamosals (s.s., plate 1). A low, sharp, diagonally directed ridge apparently indicates the posterior extent of the overlap of the squamosal. The squamosals are missing, but those as in other primitive Ceratopsians appear to have been short and broad.

The rostral is missing from the type, but is present in a slightly smaller individual (Cat. No. 7052, U. S. Nat. Mus.). (See fig. 2.) In general aspect it resembles the rostral of *Triceratops*, but with a

Fig. 2.--Rostral of *Brachyceratops montanensis*. Paratype: Cat. No. 7052 U. S. Nat. Mus., 12 nat. size. a. side view; b, posterior view; s, superior processes; b, posterior processes.

less curved anterior border. Externally the surfaces are pitted and grooved and in life were doubtless covered by a horny sheath.

The predentary except for its much smaller size is indistinguishable from that of *Triceratops*. It is to be distinguished from the predentary of *Monoclonius dawsoni* Lambe by the upward turned apex of the anterior end.

The dentary is stout, gradually narrowing vertically toward the front, the anterior end being especially depressed and unusually broad transversely, this end being nearly at right angles to the posterior portion. Near the posterior end on the external surface a stout coronoid process is developed, extending well above the dental border. It is compressed transversely but widens antero-posteriorly with a hooked forward process as in other primitive Ceratopsians. Beginning at the base of this process, a low, broad ridge extends

forward at about mid-height along the outer side of the dentary. Above and below this ridge the outer surface retreats obliquely inward.

Viewed from above, the dental border is straight but is obliquely placed in relation to the lower portion, that is, it passes from the inner posterior margin to the outer anterior margin of the jaw. Beneath the coronoid process there is a deep mandibular fossa which extends forward about one-third the length of the dentary. On the inner side there is the usual row of foramina, leading into the dental chamber. The exact number of alveoli cannot be determined at this time, although the tooth series is relatively shorter than in either *Ceratops* or *Triceratops*.

F16. 3.—Dentary of Brachyceratops montanensis. Type: Cat. No. 7051 U. S. Nat. Mus., $\frac{1}{2}$ nat. size. c, coronoid process; m, mental foramen; sp, surface for predentary.

At this time little can be said regarding the affinities of *Brachy-ceratops*, though it would appear most nearly allied to *Monoclonius*, as shown by its small size, the small brow horns of similar shape, large nasal horn and crenulated margin of the frill without separate marginal ossifications.

It is readily distinguished, however, from all known Ceratopsians by the longitudinal suture of the nasal horn, the small fenestræ wholly within the median frill element, and the greatly abbreviated facial portion of the skull. It is also apparent that there are other distinguishing features in the skeleton which is to be described later.

The striking resemblance of the fragment of a skull figured by Hatcher as *Monoclonius crassus* 1 to the homologous parts of the

¹Monog. U. S. Geol. Survey, Vol. 49, 1907, p. 74, fig. 76.

present specimen leads the writer to suggest its possible identification with the present genus. Hatcher regarded it as belonging to a smaller and distinct individual from the type of that species and he also observes: "I describe and figure this element in this connection not out of regard for any certain additional characters it may furnish distinctive of the present genus and species [Monoclonius crassus] but rather for the information which it affords relative to the homologies of certain cranial elements in the Ceratopsia as a group." The great similarity of the horn-cores with those of Brachyceratops lends much color to the above suggestion.

MEASUREMENTS	mm.
Greatest length of skull, about	. 565
Greatest breadth of skull, estimated	. 400
Expanse of frontal region at base of brow horn cores	. 90
Greatest width of nasals	. 58
Length of interparietal along median line	
Height of nasal horn core above border of narial orifice	. 125
Greatest width of postfrontals	. 80
Greatest length of combined post- and prefrontals	. 126

NOTE ON HYPACROSAURUS

I wish to announce the discovery in northwestern Montana, in beds equivalent to the upper part of the Belly River formation, of the Trachodont reptile *Hypacrosaurus*. A considerable portion of the skeleton (Cat. No. 7948, U. S. Nat. Mus.) of one individual was recovered, and at this time (the specimen not being entirely prepared) I am unable to distinguish it specifically from the type and only known species, *H. altispinus* Brown, from the Edmonton Cretaceous of Canada.

¹ Barnum Brown: A New Trachodont Dinosaur Hypacrosaurus, from the Edmonton Cretaceous of Alberta. (*Bull. Amer. Mus. Nat. Hist.*, Vol. 32, 1913, pp. 395-496.)

EXPLANATION OF PLATE 1

Lateral view of the skull of *Brachyceratops montanensis*. Type: Cat. No. 7951 U. S. Nat. Mus., ¼ nat. size. d, dentary; f, fenestra in frill; if, infraorbital foramen; in.p. interparietal; j, jugal; l, lachrymal; mx, maxillary; n, nasal; nh, nasal horn core; no, anterior narial opening; o, orbit; os, ossicle on top of nasal horn core; pd, predentary; pf, prefrontal; pmx, premaxillary; po, postorbital; po.h, postorbital horn core; r, rostral; s, suture separating halves of nasal horn; sq, squamosal; so, sutural border on prefrontal for small supraorbital; s.s. sutural surfaces for squamosal; st.f, supratemporal fossa.

EXPLANATION OF PLATE 2

Superior view of the skull of *Brachyceratops montanensis*. Type: Cat. No. 7951 U. S. Nat. Mus., ½ nat. size. f, fenestra in frill; fo, postfrontal foramen; in.p. interparietal; n. nasal; nh, nasal horn core; pf, prefrontal; po, postorbital; poh, postorbital horn core; p.tf, postfrontal; s, suture representing halves of the nasal horn core; so, sutural border for missing supraorbital bone; sq. squamosal; s.tf, supratemporal fossa.

LATERAL VIEW OF SKULL OF BRACHYCERATOPS MONTANENSIS

SMITHSONIAN MISCELLANEOUS COLLECTIONS

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 4

ON THE RELATIONSHIP OF THE GENUS AULACOCARPUS, WITH DESCRIPTION OF A NEW PANAMANIAN SPECIES

BY H. PITTIER

(Publication 2264)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
MARCH 18, 1914

The Lord Baltimore Press BALTIMORE, MD., U. S. A.

ON THE RELATIONSHIP OF THE GENUS AULACOCAR-PUS, WITH DESCRIPTION OF A NEW PANA-MANIAN SPECIES

By H. PITTIER

The genus Aulacocarpus, as originally regarded by its founder, Dr. O. Berg, included two species, A. Scllowianus Berg, from Brazil, and A. crassifolius (Benth.) Berg, from Colombia. The latter was first described as Campomanesia crassifolia Benth., upon material collected by the botanists of the Sulphur voyage on Gorgona Island, off the Pacific coast of Colombia, between Buenaventura and Tumaco. The Flora of the British West Indies by Grisebach contains the description of a new species, A. quadrangularis, from Antigua and Guadeloupe Islands; and subsequently the same author added his A. Wrightii, originally collected in Eastern Cuba.

Thus, in 1866 Aulacocarpus had been increased to four species, but the flower of none of these had ever been described. Taking into consideration the general distribution of the Myrtaceae, it was but logical, in the absence of more complete information, to find a place for this genus among the Myrtoideae, which are widely dispersed in America. According to Berg, its affinities were with Campomanesia, a supposition which was strengthened by the original inclusion in this genus of one of the species of Aulacocarpus. On the other hand, Niedenzu, taking as a basis the embryonic characters, places it among the Eugeniinae.

During his exploration of the forests of Eastern Panama, in 1911, the writer had the good fortune to discover a new representative of Aulacocarpus in the shape of a medium-sized tree, from which herbarium specimens were obtained, the flowers being preserved in alcohol. The description of these shows that, contrary to every expectation, Aulacocarpus is not a true Myrtoid, but must be placed among

¹Linnaea 27: 345. 1856. Martius, Fl. Bras. 14¹: 380. 1857.

² Bot. Voy. Sulphur 97. pl. 37. 1844.

³ Page 239.

⁴ Cat. Pl. Cub. 90. 1866.

³ Niedenzu, however, ignores Grisebach's Antillean species (Engl. & Prantl, Pflanzenfam. 3⁷: 83. 1808).

the Leptospermoideae, also represented in South America by the Chilean genus Tepualia. This will be made clear by the following amended and completed description:

AULACOCARPUS Berg.

Receptacle forming a crater-like cup above the ovary. Sepals 5, short, obtuse or acute. Petals 5, unguiculate, apiculate. Stamens 10, inserted on the margin of the receptacle, 5 opposite to, 5 alternate with the sepals, curved outward beyond the corolla, the basifixed 2-celled anthers hanging around the receptacle; anther cells longitudinally dehiscent. Ovary 5-celled, each cell with 5 (or 4) ovules; style simple, truncate. Drupe depressed-globose, horny or sublignose, 5 to 1-celled, each cell with 1 seed. Seed albuminose, covered with a thick, suberose testa. Cotyledons plano-convex, thick; radicle basal, very short. Trees with very hard wood; leaves opposite, exstipulate, thick, obscurely veined; flowers single or few in a cluster, pseudo-axillary.

Species 5, Tropical American.

On account of its fundamental characters, viz.: exalbuminose seed, short basal radicle, ovate-depressed seeds, indehiscent woody drupe, 5-celled ovary, and 10 stamens, with basifixed anthers, Aulacocarpus would take perhaps an intermediary position between the Calothamninae and the Chamaelauciae. The genus does not naturally fit into any of the present divisions of the Leptospermoideae, although there can be no doubt as to its belonging to this subfamily.

The collection and study of new materials of the 4 species of Aulacocarpus already described is highly desirable and it is not unlikely that a better knowledge of the genus will result in a reduction of the number of species. My own specimens do not agree with any existing description, and so I have presumed to describe them under a new name.

AULACOCARPUS COMPLETENS, sp. nov.

A tree up to about 18 meters high and 35 to 40 cm. in diameter at the base. Crown elongate; trunk continuous. Bark smooth, grayish. Entirely glabrous.

Leaves opposite, large, coriaceous, short-petiolate. Stipules none. Petioles thick, 4 to 5 mm. long. Leaf blades 14 to 25 cm. long, 5 to 14 cm. broad, ovate-elliptic (broader toward the base), cordate to

truncate at the base, narrowly acuminate at tip, light green above, paler and sometimes brownish beneath. Costa impressed above, very prominent beneath; primary veins numerous, almost straight and parallel, slightly prominent above and underneath.

Flowers single or aggregate at nodes on old wood (never on the year's growth). Pedicels slender, 12 to 15 mm. long, bearing at the middle one pair of small bractlets, these clasping, ovate-acute, persistent, about 2 mm. long. Receptacle funnel-shaped or obconic, growing much above the ovary. Sepals 5, coriaceous, thick, ovate-triangular and acute at the tip, caducous, about 6 mm. long and 4 mm. broad at the base. Petals 5, reflexed, pink, irregularly and broadly ovate, apiculate, with a short, broad claw and a pair of rounded basal winglets; margin irregularly denticulate or sublacerate; length 11 mm., breadth 9 mm. Stamens 10, inserted on margin of receptacle and alternately opposite to sepals and petals; filaments about 10

Floral details of Aulococarpus completens: a, petal; b, stamen; b^i , anther, ventral side; b^2 , anther, dorsal side; c, cross-section of ovary. Enlarged 4 times,

mm. long, bending outwards; anthers 6 to 6.5 mm. long, golden yellow, basifixed, introrse, with a large ovate, glandular, porelike structure at about the middle of the ventral side, and four small glands near the tip; cells longitudinally dehiscent. Ovary 5-celled, each cell with 5 or 4 ovules; style glabrous, terete, truncate, about 7.5 mm. long.

Fruit dry, 4 to 1-celled, globose-depressed in the first case, with the cells showing outside, globose and crowned with the cuplike receptacular overgrowth when 1-celled; pericarp thick, hard, greenish outside at maturity; cells 1-seeded. Seeds large, ovoid and slightly compressed laterally, their length 11 mm., the longest diameter 9 mm.

Panama: Hills back of Puerto Obaldia, San Blas Coast; flowers and fruit, August 30, 1911; *Pittier* 4310 (type, U. S. Nat. Herb. Nos. 479435-7).

This remarkable species differs from A. crassifolius (Benth.) Berg in its larger leaves, these almost always deeply emarginate at the base, and in having the lobes of the calyx long, acute, triangular, and caducous. Further, our species is a relatively large tree, while the latter, compared in its habit with Calycolpus glaber, is barely more than a shrub. The wood is very hard and known under the name "gasparillo."

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 63, NUMBER 5

DESCRIPTIONS OF FIVE NEW MAMMALS FROM PANAMA

BY E A. GOLDMAN

(Publication 2266)

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION

MARCH 14, 1914

The Lord Gastimore (Press BALTIMORE, MD., U. S. A.

DESCRIPTIONS OF FIVE NEW MAMMALS FROM PANAMA

By E. A. GOLDMAN

Additional determinations of mammals obtained by the writer, while assigned to the Smithsonian Biological Survey of the Panama Canal Zone, reveal five hitherto unrecognized forms which are described below.

For the loan of types and other material for comparison I am indebted to Dr. J. A. Allen of the American Museum of Natural History, New York City, and to Mr. Samuel Henshaw of the Museum of Comparative Zoology, Cambridge, Massachusetts.

CHIRONECTES PANAMENSIS, new species

Type from Cana (altitude 2,000 feet), eastern Panama. No. 179164, skin and skull, male, old adult, U.S. National Museum (Biological Survey Collection); collected by E. A. Goldman, March 23, 1912. Original number 21562.

General characters.—Similar to C. minimus of Guiana in size and color, but differing in cranial details, especially the longer braincase and much longer, evenly tapering, and posteriorly pointed nasals.

Color.—Color pattern about as in C. minimus, but light facial areas apparently less distinct; dark brown or black of forearms extending down over the thinly haired first phalanges of three median digits, the terminal phalanges white or light flesh color as in minimus; hairy base of tail dark all round.

Skull.—Similar to that of *C. minimus*, but braincase more elongated, the well-developed lambdoid crest projecting posteriorly over foramen magnum; nasals longer, encroaching farther on frontal platform, the ends pointed instead of truncate, and the sides not constricted near middle; ascending branches of premaxillae reaching farther posteriorly along sides of nasals; fronto-parietal suture convex posteriorly; inner sides of parietals longer; sagittal crest well developed.

Measurements.—Type: Total length, 651 mm.; tail vertebrae. 386; hind foot, 72. Skull (type): Greatest length, 74.2; condylobasal length, 72.3; zygomatic breadth, 43.8; length of nasals, 33;

greatest breadth of nasals, 11; interorbital breadth, 14.1; postorbital breadth, 8.5; palatal length, 45.6; upper molariform tooth row, 26.4; upper premolar series, 11.6.

Remarks.—While the water opossum of Middle America and Colombia is very similar in size and color to *C. minimus* of northeastern South America it differs in numerous cranial details from that animal as figured by Burmeister. The nasals are conspicuously longer and very different in form. The sagittal crest develops in both sexes early in life. In a specimen from Rio Frio, Cauca River, Colombia, the tail is black to the tip.

Specimens examined.—Total number, 11, as follows:

Panama: Cana (type), 1.

Costa Rica: San Jose, 1; exact localities unknown, 3.

Nicaragua: Matagalpa, 1.

Colombia: Bagado, I; Barbacoas, I; Guanchito, I; Porto Frio, Cauca River, I; Palmira, I.

LONCHOPHYLLA CONCAVA, new species

Type from Cana (altitude 2,000 feet), eastern Panama. No. 179621, skin and skull, male adult, U. S. National Museum (Biological Survey Collection), collected by E. A. Goldman, May 20, 1912. Original number 21701.

General characters.—Similar in size to L. mordax, but color darker; cranial and dental characters different, the second upper premolar notably narrower, and in the reduced development of the internal lobe more like that of the much larger species, L. hesperia.

Color.—About as in Glossophaga soricina; general color of upper parts near warm sepia (Ridgway, Color Standards and Nomenclature, 1912), the under parts and basal color of fur of upper parts somewhat paler.

Skull.—Broader and more massive than that of L. mordax, the braincase larger and more fully inflated; interpterygoid fossa broader; coronoid process lower, the upper outline more broadly rounded; angle of mandible longer; incisors slightly larger; second upper premolar much less extended transversely owing to reduction in size of inner lobe; molar crowns more quadrate, less triangular in outline. Compared with that of L. hesperia the skull is much smaller and relatively shorter and broader, the braincase relatively larger but flatter above; coronoid process with less broadly rounded

¹ Fauna Brasiliens, pp. 72-73, pl. 11, figs 3-4, 1856.

upper outline; dentition similar, but relatively heavier, the premolar series less widely spaced; third upper molar nearly as large as second (decidedly smaller in *hesperia*).

Measurements.—Type (measured in flesh): Total length, 68 mm.; tail vertebrae, 10; tibia, 12.7; hind foot, 11; forearm, 33.9. Skull (type): Greatest length, 23.4; condylobasal length, 22.4; interorbital breadth, 4.6; breadth of braincase, 9.3; mastoid breadth, 9.8; depth of braincase at middle, 6.9; palatal length, 12.3; length of mandible, 16.8; maxillary tooth row, 8.

Remarks.—In the general form of the skull this species is in all essential respects like L. mordax and L. robusta and unlike L. hesperia in which the skull is relatively much narrower and more elongated. The narrowness and Chacronycteris-like appearance of the skull of L. hesperia has been pointed out by Mr. Gerrit S. Miller, Jr. The greater relative as well as actual length of the rostrum in hesperia leaves the third upper molar implanted well in front of the maxillary processes of the zygoma as in the genus Chaeronycteris instead of in the same horizontal plane with these processes as in mordax and robusta. In the narrowness of the second upper premolar, however, L. concava approaches hesperia, the conspicuous inner lobe present in mordax and robusta being reduced to a slight swelling bearing a small cusp. The coronoid process in concava is somewhat intermediate in shape between the high angular form seen in morda.r and the low, broadly rounded upper outline of hesperia,

A small bat, Lionycteris spurrelli, from northwestern Colombia, has recently been described by Mr. Oldfield Thomas and made the type of a new genus characterized by the narrowness of the upper premolars. L. concava may possibly require comparison with the Colombian species which is based on an immature individual. But, allowing for immaturity, the cranial dimensions given are so different (greatest length, 18.7 in spurrelli, 23.4 in concava) that the specific identity of the two seems very improbable.

Specimens examined.—One, the type.

LUTRA REPANDA, new species

Type from Cana (altitude 2,000 feet), eastern Panama. No. 179974, skin and skull, male adult, U. S. National Museum (Biological Survey Collection), collected by E. A. Goldman, May 30, 1912. Original number 21758.

¹ Proc. U. S. Nat. Mus., vol. 42, No. 1882, p. 24, March 6, 1912.

General characters.—A small form with low, flat skull closely allied to L. colombiana, but differing in dental and slight cranial characters, especially the lesser transverse extent of the large upper molariform teeth. Differing from L. latidens in much smaller size as well as cranial details.

Color.—Entire upper parts warm sepia or mars brown (Ridgway, 1912); under parts grayish brown, palest on throat, pectoral and inguinal regions; lips and inner sides of forelegs soiled whitish.

Skull.—Similar in size to that of L. colombiana; rostrum and interorbital space narrower; lachrymal eminence more prominent, projecting as a distant process on anterior border of orbit; jugal less extended vertically but bearing a postorbital process as in colombiana; palate reaching farther posteriorly beyond molars; upper carnassial narrower, with inner lobe less produced posteriorly, leaving a gap which is absent in colombiana; upper molar narrower, the postero-external cusp set inward, giving the crown a less evenly rectangular outline. Contrasted with that of L. latidens the skull is very much smaller, with flatter frontal region.

Measurements.—Type: Total length, 1085 mm.; tail vertebrae, 500; hind foot, 119. An adult female from Gatun, Canal Zone: 1095; 463; 111. Skull (type): Condylobasal length, 109.1; zygomatic breadth, 72; interorbital breadth, 23.1; postorbital breadth, 16.8; mastoid breadth, 69.9; palatal length, 49.8; maxillary tooth row, 36.1; alveolar length of upper carnassial, 12.4; alveolar breadth of upper carnassial, 10.

Remarks.—The otter of Panama, like other Middle American forms of Lutra, has the nose pad haired to near the upper border of the nostrils; the soles of the feet are entirely naked; the tufts of hair under the toes and the granular tubercles present on the soles of the hind feet in L. canadensis are absent. The frontal region is flatter in skulls of L. repanda than in the skull of the type of L. colombiana, but the more swollen condition of the latter may be due to the presence of the parasites that frequent the frontal sinuses in Mustelidae.

Specimens examined.—Two, from localities as follows:

Panama: Cana (type), 1. Canal Zone: Gatun, 1.

FELIS PIRRENSIS, new species

Type from Cana (altitude 2,000 feet), eastern Panama, No. 179162, skin and skull, female adult, U. S. National Museum (Biological Survey Collection); collected by E. A. Goldman, March 22, 1912. Original number 21559.

General characters.—A large, long-tailed tiger-cat, probably a member of the F. pardinoides group. Pelage rather long and soft; fur of nape not reversed; skull large with narrowly spreading zygomata and fully inflated audital bullae.

Color.—Ground color of upper parts ochraceous tawny (Ridgway, 1912), nearly uniform from nape to base of tail, but becoming somewhat paler on head and paling through cinnamon buff to pinkish buff along lower part of sides; general upper surface heavily lined and spotted with black, the spots on sides more or less completely encircling tawny areas, or forming rosettes; back of neck with a narrow median black line and two broader parallel lines, one on each side; shoulders marked by heavy diagonal stripes extending from near a rounded solid black median spot downward and forward on each side; posterior part of back with two narrow central lines extending to near base of tail; under parts white, heavily spotted with black across abdomen, and with black bars, one across throat and one across neck; outer sides of forearms and hind legs cinnamon buffy, spotted with black; feet buffy grayish interrupted by small black markings; ears deep black, with white submarginal spots and buffy edges; tail with about 12 broad, irregular, but nearly complete black rings, the narrow interspaces buffy above and white below.

Skull.—Large and rather elongated, the vault of braincase highest near fronto-parietal suture; frontal region broad; zygomata slightly spreading posteriorly, the squamosal arms not strongly bowed outward; palate narrow; audital bullae large and much inflated anteriorly.

Measurements.—Type: Total length, 963 mm.; tail vertebrae, 440; hind foot, 131.5. Skull (type): Greatest length, 99.6; condylobasal length, 95.6; zygomatic breadth, 62.8; interorbital breadth, 18.5; length of nasals (median line), 17.6; greatest breadth of nasals, 13; intertemporal breadth of braincase, 34; breadth between tips of postorbital processes, 51.5; length of palate, 38.5; length of upper incisive tooth row, 12.2; alveolar length (outer side) of upper carnassial, 11.6.

Remarks.—This tiger cat is provisionally referred to the little known F. pardinoides group. In size it seems nearer to the F. wiedii group, but it lacks the reversed pelage of nape commonly ascribed to that group. Moreover, the skull is more elongated than in the available Mexican and Brazilian specimens used for comparison and assumed to represent the F. wiedii group. It may be similar

to *F. pardinoides oncilla* Thomas, from Volcan de Irazu, Costa Rica, but the type of the latter without skull is described as a much smaller animal with clay colored under parts. No comparison with the forms of *Felis pajeros* seems necessary.

Specimens c.ramined.—One, the type.

AOTUS ZONALIS, new species

Type from Gatun (altitude 100 feet), Canal Zone, Panama, No. 171231, skin and skull, female adult, U. S. National Museum (Biological Survey Collection); collected by E. A. Goldman, April 29, 1911. Original number 21101.

General characters.—Resembling A. griscimembra, but general color more buffy, less grayish; skull broader and differing in numerous details; dentition heavier.

Color.—General shade of upper parts, limbs and upper base of tail near wood brown (Ridgway, 1912) with a buffy suffusion, this color more or less heavily overlaid with russet and black along median line of back; head marked with narrow black lateral lines converging to a point on back of neck, and a black median frontal line extending from between eyes to crown; white spots above and below eyes; sides of neck grayish in some specimens; under parts light ochraceous-buff; feet blackish; proximal third of under side of tail usually stained with chestnut, the distal two-thirds black all round.

Skull.—Similar in general size to that of A. griscimembra, but broader, the greater breadth most noticeable in the braincase; interorbital region more depressed, materially altering the facial angle; frontals less extended posteriorly between parietals; parietals joined by a longer suture owing to lesser posterior development of frontals; supraoccipital reaching farther upward in a wedge-shaped extension between parietals; zygomatic portion of jugal heavier; audital bullae less inflated in front of meatus; mandible broader and heavier, the angle more everted; molariform teeth heavier.

Measurements.—Type: Total length, 683 mm.; tail vertebrae, 400; hind foot, 90. Average of two adult female topotypes: 637 (620-654); 357 (325-390); 85.5 (83-88). An adult male from Boca de Cupe: 670; 360; 90. Skull (type): Greatest length, 60.9; condylobasal length, 47.2; zygomatic breadth, 37.5; breadth between outer sides of orbits, 43.3; postorbital breadth, 31.5; mastoid breadth, 33.8; interorbital breadth, 5.2; palatal length, 17.5; maxillary tooth row, 18.3.

Remarks.—This species, the only known nocturnal monkey of Panama, closely resembles A. griseimembra of the Santa Marta region of Colombia in external appearance, the principal difference being a more general buffy suffusion of the body and limbs. The skull, however, differs in many important respects and the larger molariform teeth of the Panama animal would alone serve as a distinguishing character.

Specimens examined.—Total number, 10, from localities as follows:

Canal Zone: Gatun (type locality), 4. Panama: Cana, 3; Boca de Cupe, 3.

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 63, NUMBER 6

SMITHSONIAN PHYSICAL TABLES

SIXTH REVISED EDITION

PREPARED BY

FREDERICK E. FOWLE

AID, SMITHSONIAN ASTROPHYSICAL OBSERVATORY

(PUBLICATION 2269)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1914

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series, Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the 5th revised edition issued in 1910. That revision has been still further continued for the present sixth edition.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

June, 1914.

PREFACE TO THE 5TH REVISED EDITION.

The present Smithsonian Physical Tables are the outcome of a radical revision of the set of tables compiled by Professor Thomas Gray in 1896. Recent data and many new tables have been added for which the references to the sources have been made more complete; and several mathematical tables have been added, — some of them especially computed for this work. The inclusion of these mathematical tables seems warranted by the demand for them. In order to preserve a uniform change of argument and to facilitate comparison, many of the numbers given in some tables have been obtained by interpolation in the data actually given in the papers quoted.

Our gratitude is expressed for many suggestions and for help in the improvement of the present edition: to the U. S. Bureau of Standards for the revision of the electrical, magnetic, and metrological tables and other suggestions; to the U. S. Coast and Geodetic Survey for the revision of the magnetic and geodetic tables; to the U. S. Geological Survey for various data; to Mr. Van Orstrand for several of the mathematical tables; to Mr. Wead for the data on the musical scales; to Mr. Sosman for the new physical-chemistry data; to Messrs. Abbot, Becker, Lanza, Rosa, and Wood; to the U. S. Bureau of Forestry and to others. We are also under obligation to the authors and publishers of Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen (1905) and B. O. Peirce's Mathematical Tables for the use of certain tables.

It is hardly possible that any series of tables involving so much transcribing, interpolation, and calculation should be entirely free from errors, and the Smithsonian Institution will be grateful, not only for notice of whatever errors may be found, but also for suggestions as to other changes which may seem advisable for later editions.

F. E. Fowle.

ASTROPHYSICAL OBSERVATORY
OF THE SMITHSONIAN INSTITUTION,

June, 1910

PREFACE TO THE 6TH REVISED EDITION.

The revision commenced for the fifth edition has been continued; a large proportion of the tables have been rechecked, typographical errors corrected, later data inserted and many new tables are added, including among others a new set of wire tables from advance sheets courteously given by the Bureau of Standards, new mathematical tables computed by Mr. Van Orstrand and those on Röntgen rays and radioactivity. The number of tables has been increased from 335 to over 400. We express our gratitude to the Bureau of Standards, to the Geophysical Laboratory, the Geological Survey, and to those who have helped through suggested improvements, new data, or by calling our attention to errors in the earlier editions.

F. E. FOWLE.

ASTROPHYSICAL OBSERVATORY
OF THE SMITHSONIAN INSTITUTION,
October, 1913.

TABLE OF CONTENTS.

Intro	duction on units of measurement and	cons	rersio	n fact	ors				xvii
	s of measurement: general discussion						•		xvii
	ension formulæ for dynamic units.								xix
	•								XXV
	of electric and magnetic units:								xvii
	" formulæ in electrostatic system						•		cviii
	" " electromagnetic system						•		xxxi
Pract	tical units of electricity, legalization of					•	•		XXV
1140	real units of electricity, regulization of		•	•	•	•	•	Α.	AA Y
TABLE									
I.	Formulæ for conversion factors: (a)	Fun	dame	ntal u	nits				2
			ived u						
	. ,		Geom		and d	lynan	nic ur	iits	2
			Heat						
			. Mag						3
2.	Tables for converting U. S. weights								0
	(1) Customary to metric .								5
	(2) Metric to customary .								6
3.									
	(1) Metric to imperial .								7
	(2) Multiples, metric to imper	rial							8
	(3) Imperial to metric .								9
	(4) Multiples, imperial to met	ric							10
4.	Volume of a glass vessel from weight								ΙI
5.	Derivatives and integrals								12
6.									13
7.	Mathematical constants								14
8.	Reciprocals, squares, cubes and squ	are r	oots	of nat					15
9.	Logarithms, 1000-2000								24
10.	Logarithms								26
II.	Antilogarithms								28
12.	Antilogarithms, .9000-1.0000 .								30
13.	Circular (trigonometric) functions, a	argun	nent (°. ′.)					
14.			nent (
15.	Logarithmic factorials, $n!$, $n = r$ to	100	. `		,				40
16.	Hyperbolic functions						•		41
17.	Factorials, 1-20								47

18.	Exponential functions				48
19.	Values of e^{x^2} and e^{-x^2} and their logarithms				54
	$\frac{\pi}{-r}$				
20.	" " $e^{\frac{n}{4}}$ and $e^{\frac{-n}{4}}$ " " "				55
	" $\frac{\sqrt{\pi}}{e^4}$ and $\frac{-\sqrt{\pi}}{e^4}$ " "				
2I.					55
22.	" c^x and e^{-x} and " for fractional		of x		56
23.	Probability of errors of observations: probability integr	al .			56
24.	a a a a a a a a a a a a a a a a a a a	•	•		57
25.	Values of 0.6745 $\sqrt{\frac{1}{n-1}}$	•	•		57
26.	" 0.6745 $\sqrt{\frac{1}{n(n-1)}}$ · · · · ·	•	•		58
27.	" o.8453 $\sqrt{\frac{1}{n(n-1)}}$ · · · · · ·		•		58
28.	" " $0.8453 \frac{1}{n\sqrt{n-1}}$				58
29.	Least-squares formulæ		•	٠	59
30.	Inverse of probability integral. Diffusion	•		•	60
31.	Logarithms of the gamma function $\Gamma(n)$ for values of n			2	62
32.	Values for the first seven zonal harmonics from $\theta = 0^{\circ}$	to $\theta = 90$	o°	•	64
33.	Value for $\int_{0}^{\frac{\pi}{2}} (1 - \sin^{2}\theta \sin^{2}\phi) \pm 1 d\Phi$ for different values of	θ ; also	the co	r-	
	responding logarithms				66
34.	Moments of inertia, radii of gyration, corresponding we	ights			67
35.	Strength of materials: (a) metals				68
	(b) stones				68
	(c) brick				68
	(d) concretes				68
36.	" " timber tests				69
37.					70
38.	Moduli of rigidity				7 I
39.	Variation of the moduli of rigidity with the temperature				7 I
40.	Young's modulus				72
41.	Compressibility of the more important solid elements.				73
42.	Hardness				73
43.	Relative hardness of the elements				73
44.	Poisson's ratio				73
45.	Elastic moduli of crystals, formulæ		•		74
46.	" " " numerical results				75
47·	Compressibility of O, air, N, H at different pressures as	nd tempe	erature	es	76
48.					76
49	ee ee ee ee ee ee				76
50.	" carbon dioxide at " " '				77
51.	" gases, values of a		•		77

CO	NIT	CAL	TC

vii

			00	1 0	0			
52.	Compressibility of air and oxygen be	etween	18° an	d 22	·	•		77
53∙	Relation between pressure, tempera			ne of	sulphu	r diox	ide	78
54.		"	"	"	ammo	nia	•	7 8
55.	Compressibility of liquids	•	•		•	•	•	79
56.	" " solids · ·	•	•		•	•	•	80
57.	Specific gravities corresponding to the	he Bau	mé sca	le .	•	•	•	8 1
58.	Reduction of weighings in air to vac							82
59.	" "densities " " "							82
60.	Densities of the solid and liquid eler	nents						83
61.	" " various woods							85
62.	" " solids							86
63.	" " alloys · ·							87
64.	" " natural and arti	ficial m	ineral					88
	" " molten tin and tin-lead			, ,			·	88
65.					•	•	•	89
66.	Weight in grams per square meter o			•	•	•	•	
67.	" " various common units of	sneet n	ietai		•	•	•	89
68.	Densities of various liquids	•	•	• •	•	•	•	90
69.	" " gases · ·	•				•	•	91
70.	" " aqueous solution				id acid	s .	•	92
71.	Density of water free from air between	een o	and 36	° C .		٠.	. •	94
72.	Volume of water at temperatures be	etween	o° and	l 36° (C in te	rms of	its	
	volume at the temperature of ma	aximun	ı densi	ty .	•	•	•	95
73.	Density and volume of water at differ	ent ten	nperati	ares fr	om-10	to 250	°C	96
74.	" " " mercury at "		66		" -10	" 360	°C	97
75.	Densities aqueous ethyl alcohol. T	emp. v	ariatio	n .				98
76.	" " mixtures methyl a	lcohol	, cane-s	sugar o	r sulpl	uric a	cid	100
, 77.	Velocity of sound in solids							101
78.	" " " " liquids and gas	es .						102
7 9·	Musical scales							103
80.	" "							103
81.	Acceleration of gravity at sea level a	nd diff	erent l	atitud	es .			104
82.	Results of some of the more recent							105
	Value of gravity at some of the U. S					ns .		106
83.	Length of seconds pendulum for sea						·	107
84.					Tatitue	ics	•	107
85.	Determinations of the length of the	second	s pend	urum	•	•	•	108
86.	Miscellaneous geodetic data .	•	•	•	•	•	•	108
87.	Lengths of degrees on earth's surface	е .	•		•	•	•	
88.	Miscellaneous astronomical data.	•	•		•	•	•	109
89.	Planetary data	•	•		•	•	٠	110
90.	Equation of time	•	•	• •	•	•	•	110
91.	Miscellaneous astronomical data.	•	•		•	•	٠	110
92.	Terrestrial magnetism: secular char		declina	tion .	•	•	•	III
93.	" " dip or inclir	nation	•		•	•	•	113
94.	" secular cha	nge of	dip				•	113
95.	" horizontal i	ntensit	y		•			114
96.	" secular char	nge of i	horizor	ıtal in	tensity	•		114
-		_						

viii contents.

97.	Terrestrial magnetism: total intensity	115
98.	" secular change of total intensity	115
99.	" agonic line	116
100.	Magnetic elements at magnetic observatories	117
101.	Pressure of mercury and water columns	118
102.	Reduction of barometer to standard temperature	119
103.	" " " gravity, inch and metric scales .	120
104.	" " " latitude 45° : inch scale	I 2 I
105.	" " " metric scale	I 2 2
106.	Correction of barometer for capillarity: inch and metric scale	123
107.	Volume of mercury meniscus in cu. mm	123
108.	Aerodynamics: data for wind pressures	124
109.	" " the soaring of planes	125
110.	Coefficients of friction	126
111.	Lubricants	126
112.	" for cutting tools	126
113.	a Viscosity of water at different temperatures	127
Ü		127
114.		128
115.		128
116.		128
117.	Viscosity of various liquids	129
.81		130
119.	~	
120.		135
121.		136
22.		136
123.		137
124.		138
125.		139
126.		140
127.		140
128.	~ 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141
129.		142
130.	<i>''</i>	142
131.	" 1 11 '6	143
132.		144
133.		145
134.		145
135.	" " " "	145
136.	Capillarity and surface tension: liquids in contact with air, water or	.,
		146
137.		146
138.		146
		140
139.		147

-cc	124	TT	ATC	rc.

	0011211101		1.1
141.	Vapor pressures of methyl alcohol		• 149
142.	" and temperatures: (a) carbon disulphide.		. 150
	(b) chlorobenzine		. 150
	(c) bromobenzine		. 150
	(d) aniline		. 150
	(e) methyl salicylate.		. 151
	(f) bromonaphthaline		. 151
	(g) mercury		. 151
143.	Vapor pressure of solutions of salts in water		. 152
144.	Pressure of saturated aqueous vapor at low temperature ov-	er ice	. 154
145.		wate	r . 154
146.	" " " " ° o° to 50° C		. 154
147.	" " " 50° to 374° C	•	. 155
148.	weight in grains of aqueous vapor in a cubic foot of satura	ted air	. 156
149.	" " grams " " " " " meter of "	"	. 156
150.			. 157
151.			. 158
152.	Relative humidity		. 160
153.	Values of 0.378e in the atmospheric pressure equation $h = 2$	B - 0.3	78 <i>e</i> 161
154.	Table for facilitating the calculation of $h/760$	•	
155.	Logarithms of $h/760$ for values of h between 80 and 800.	•	. 162
156.	Values of $t + 0.00367 t$:		
	(a) for values of t between 0° and 10° C, by tenths. (b) " " " -90° " $+1990^{\circ}$ C, by ten	•	. 164
	(c) Logarithms for $t = -90$ + 1990 C, by unit	s .	
	(d) " " 400° " 1990° C, by tens.	s .	. 166 . 168
157.	Determination of heights by the barometer	•	. 169
158.	Barometric pressures corresponding to different temperature	ires of	the
-300	boiling-point of water:	ites of	tile
	(a) Common measure		. 170
	(b) Metric measure		. 171
159.	International Primary wave-length standard, Red Cd. line .		. 172
160.	" Secondary " standards Fe. arc lines .		. 172
161.	Additional standard Fe. lines		. 172
162.	Stronger lines of some of the elements		. 172
163.	Rowland's standard solar wave-lengths (also corrections) .		. 173
164.	Tertiary standard wave-lengths Fe. arc lines		. 176
165.	Wave-lengths of the Fraunhofer lines		. 177
166.	Photometric standards		. 178
167.	Intrinsic brightness of various lights		. 178
168.	Visibility of white lights	•	. 178
169.	Efficiency of various electric lights	•	· 17 9
170.	Sensitiveness of the eye to radiation of different wave-len	gths: 1	low
			. 180
171.	Sensitiveness of the eye: greater intensities		. 180
172.	Sensibility of the eye to small differences of intensity (Fech	ner)	. 180

X CONTENTS.

173.	The sol								•	•	•	•	•	101
174.	Solar sp	pectr	um ene	rgy; a	atmosp	herio	trans	paren	су	•	•	•	•	181
175.	Distrib	ation	of sola	r ener	gy in	spect	rum		•		•	•	٠	181
176.	Distrib	ation	of inte	nsity	of radi	ation	over	solar	disk					181
177.	Transm	issib	ility of	radiat	ion by	dry	and m	oist a	ir			•	•	182
178.	Brightn	ess c	f sky											182
179.	Relative	e inte	ensities	of sur	n- and	sky-l	ight					•		182
180.	Air mas	sses						•			•	•		182
181.	Relativ	e inte	ensities	of so	lar rad	iatio	n — m	onthl	y cha	nge				183
182.	Mean n										•	•		183
183.	Indices	of re	efractio	n of J	ena gla	asses						•		184
184.	"	"	6.6	"	16	"						•	•	184
185.	"	"	"	"	44	"	temp	eratui	re coe	efficie	ents	•	•	184
186.	44	"	"	for	rock s	alt								185
187.	44	"	"	"	"	" te	empera	ture	coeffi	cient	s.			185
188.	"	"	"	44	sylvin	е.					•			185
189.	"	"	"	"	fluorit	е.								185
190.	"	"	"	"	"	tem	peratu	re co	efficie	nts		•		186
191.	"	"	44	66	Icelan	d spa	ır							186
192.	"	"	44	44	nitros	o-dim	ethyl-	anilin	e					186
193.	"	"	"	"	quartz									187
194.	44	"	44	"	variou	s alu	ms							187
195.	"	"	"	44	"	mo	norefr	ingen	ts			•		188
196.	46	"	"	"	"	uni	axial	crysta	ls			•		189
197.	"	"	"	44	"	bia	xial cr	ystals	3		•	•	•	190
198.	66	"	"	"	solutio	ons o	f salts	and a	acids	:				
•					(a)	solut	ions ir	n wate	er			•		191
					(b)	"	6	alco	hol	•		•	•	191
					(c)	"	4	ota	ıssiun	n per	mang	ganate		191
199.	66	"	"	"	variou	s liq	uids		•			•	•	192
200.	"	"	"	"	gases	and '	vapors	•		•				193
201.	Standa	rd re	fractive	medi	a: n=	= 1.7	4 to 1	.87				•	•	194
202.	"		"	44	n =	= 1.6	8 to 2	10			• •	•	•	194
203.	"		44	44	n =	= 1.5	46 to	1.682	•	•		•		194
204.	Optical	con	stants o	of met	als — (defin	itions))			•	•	•	195
205.	"			"			•			•	•	•		195
206.	66		"					•	•	•	•	•	•	196
207.	Reflect	ing p	ower o	f meta	ls		•				•	•		196
208.	Reflect	ion c	f light,	perpe	ndicul	lar in	cidenc	e: va	rious	valu	es of	n	•	197
209.	"	4		incide	ence va	aryin	g: n n	ear u	nity			•		197
210.	"	6	"	"		"		= 1.55			•	•		197
211.	Reflect	ion f	rom me	etals								•		198
212.	"		" va	rious 1	nateria	als					•	•	•	198
213.	Transn	nissit	oility of	radia	tion by	Jen	a glass	ses	•	•		•	•	199
214.		"	"	44			"				•	•	•	199
0.7.5		66	"	44	44	66	ultra	-violet	t glas	ses				100

CONTENTS. xi

216.	Transmissibility of radiation by alum, rock salt, sylvine, fluorit	e, Ice-	
	land spar, quartz		200
217.	Color screens (Landolt)		201
218.	" " (Wood)		201
219.	" " (Jena glasses)		202
219a.	Transmissibility of radiation by water		202
220.	Rotation of the plane of polarized light by solutions		203
221.	" " " sodium chlorate and	quartz	203
222.	Colors of thin films, Newton's rings	-	204
223.	Thermal conductivity of metals and alloys		205
224.	Thermal conductivity at high temperature		206
225.	" of various substances		207
226.	" "water and salt solutions		207
227.	" " organic liquids		207
228.	" " gases		207
229.	Diffusivities		208
230.	Heat of combustion		209
231.	Heat values and analyses of various fuels: (a) coals		210
·	(b) peats		210
	(c) liquid fuels		210
232.	Chemical and physical properties of explosives		2 I I
233.	Heat of combination		212
234.	Latent heat of vaporization		214
235.	" "fusion		216
236.	Melting-points of the chemical elements		217
237.	Boiling-points " " "		218
238.	Densities, melting and boiling points, inorganic compounds		219
239.	Effect of pressure on melting points		220
240.	" " freezing point of water		221
241.	Melting points of various mixtures of metals		222
242.	" " " " " " " " "		222
243.	Low-melting-point alloys		222
244.	Densities, melting-points, boiling-points of organic compounds:		
244.	(a) Paraffin series		223
	(b) Olefine series		223
	(c) Acetylene series \cdot \cdot \cdot \cdot		224
	(d) Monatomic alcohols		224
	(e) Alcoholic ethers		224
	(f) Ethyl ethers		224
	(g) Miscellaneous		_
245	Transformation and melting-points, minerals and eutectics.		225 226
245.	Lowering of freezing-points by salts in solution		
246.			227
247.	Raising of boiling-points by salts in solution		229
248.	Freezing mixtures		230
249.			231
250.	Coefficients of linear expansion of the chemical elements .	• •	232

xii Contents.

251.		· 233
252.	" cubical " crystalline and other solids .	• 234
253.	" " " " liquids	. 235
254.	" thermal expansion of gases	. 236
255.	Mechanical equivalent of heat: various data	. 237
256.	" " " adopted values (Ames)	. 237
257.	" " conversion values	. 237
258.	Specific heats of the chemical elements	. 238
259.	" " water and mercury	. 239
260.	Additional specific heats of the elements	. 240
261.	Mean specific heats of quartz, silica glass and platinum	. 240
262.	Specific heats of various solids	. 241
263.	" " " liquids	. 241
264.	" " " minerals and rocks	. 242
265.	" " " gases and vapors	. 243
266.		. 244
267.		. 244
268.		. 244
269.	" " 16^{III} and 59^{III} thermometers: -5° to -35° C	. 244
270.		· 245
271.	" " " 59 ¹¹¹ " " 100° to 200° C.	. 245
272.	, 0	. 246
273.	" air and high temperature (59111) mercury thermometer	
274.	" H., toluol, alcohol, petrol ether, pentane thermometers	: 246
275.		• 247
276.		247
27 7 .	Standard points for calibration of thermometers	. 247
278.		. 248
279.		. 249
280.		249
281.		250
282.		. 250
283.		. 251
284.		. 251
285.		. 251
286.		. 252
287.		. 252
288.		253
289.	" " temperature and pressure effects	253
290.	-	254
291.		255
292.	,	260
293.		261
294.		262
	()	263
	(c) standard cells	263

338.

temperature coefficients . 304

xiv contents.

33 9 ·	Equivalent	conduct	ivit	y of salts,	acids,	bases i	n solut	ion		•		305
340.	"	"		" some	additio	nal sal	ts in s	olutio	on			307
341.	"	conduc	tanc	e of the s	eparate	ions						308
342.	Hydrolisis	of amme	oniu	m acetate	: ioniz	ation o	f wate	r	•			308
343.	Dielectric o	onstant	s (sp	ecific ind	uctive o	capacit	y) of g	ases				309
344.	"	"	` •		"	٠,,	"	"	tempe	ratur		• •
511	c oefficie	nt .										309
345.	Dielectric o	constant	s (st	pecific ind	uctive o	capacit	v) of g	ases:	pressi	ire co		0)
3 13	efficient		- (1			٠.			•			310
346.	Dielectric o		s of	liquids								310
347.	"	"	"		mperati	ıre coe	fficient					312
348.	"	"	"	liquefied	-							312
349·	"	"	. "	-		ns for						313
350.	"	"	"				•					313
	"	"	"	crystals		•	•	•				314
351.	Permeabilit	w of iron				ions in	duction	· ne	•			315
352.	Permeabilit					ious iii	auctio	5	•	•	•	3-3
353∙				Vestingho		8 trar	eform	a r				315
	· / -	"	"	vestingno "	use 110.	6 (141	"	. 1	•	•		316
	(b)	"	"	"	"		"		•	•		316
	(c)	"				4		-anaf	· ormor	•		
	(d)			homson-l		-	-walt ti	ansu	ormer	•		316
354.	Magnetic p	ropertie					, .	•	•	•		317
355.	" ແ			cast iron			as	•	•	•		317
356.				r ring spe				. 1	•	•		317
357⋅	Compositio								•	•		318
35 ⁸ .	Permeabilit							•	•	•		320
359.	Magnetic p	-						•	•	•		320
360.	"	"		steel at c			•	•	•	•		320
361.	"	"	"	cobalt at			•	•	•	•		321
362.	"	"	"	mekei		•	•	•	•	•		321
363.	"	"	"	magnetit			•	•	•	•		32 I
364.	"	"		Lowmoo			1.	•	•	•	٠	321
365.	"	"		Vicker's			•	•	•	•	٠	321
366.	"	"		Hadfield		ganese	steel	•	•	•	•	321
367.	Saturation					•	•	•	•	•	٠	321
368.	Magnetic p								•	•		322
369.	Dissipation	of ener	gy i		nagnetia	zation	of mag	netic	subst	ances		322
370.	"	" "			"		" cabl	e tra	nsforn	iers		322
371.	Demagneti	zing fac	tors	for rods				•				323
372.	"	4	•	Shuddem	agen's	values		•				323
373.	Dissipation	of ener	gy i	n cyclic n	nagnetiz	zation	of vari	ous s	ubstan	ces		324
374.	"	"	•	"	"		" tran	sforn	ner ste	els		325
375.	Magneto-o	ptic rota	tion	, formulæ	: Verd	et's co	nstant				•	326
376.	Č ts		4	in solids					•			327
377·	"	"	6	" liquid	ls .				•			328
378.	"	"	•	" soluti		salts ar	nd acid	ls in	water			329

379•	wagneto-optic rotation, gases	•	•	. 330
380.	Verdet's and Kundt's constants			. 330
381.	Values of Kerr's constant			. 331
382.	Dispersion of Kerr's effect. Ingersoll's values			. 331
383.	" " " " Foote's "		•	. 331
384.	Magnetic susceptibility			. 332
385.	Variation of the resistance of bismuth in magnetic field			• 333
386.	" " " " nickel " " "			. 333
387.	" " " various metals in a magnetic	field		• 333
388.	Transverse galvanomagnetic and thermomagnetic effects			. 334
389.	Variation of the Hall constant with the temperature .			• 334
390.	Röntgen rays (x-rays) ionization due to			• 335
391.	" " Secondary Röntgen rays			• 335
392.	" " Cathodic rays			. 335
393.	" " absorption coefficients	•		. 336
394.	X-R spectra and atomic numbers			. 336
395.	Radioactivity: production of phosphorescence			· 337
396.	" " α-particles	•		· 337
397.	" heating effects		•	. 337
398.	" various constants			. 338
399•	" stopping powers for a rays			. 340
400.	" "β"			. 340
401.	" " γ"			. 340
402.	" ions produced by the α , β , and γ rays.			. 341
403.	" radium emanation; units			. 341
404.	" vapor pressure of Ra emanation			· 341
405.	" spectra			· 341
406.	Miscellaneous constants, molecular, atomic, etc			. 342
407.	Periodic system of the elements	•	•	• 343
	Definitions of units			. 345
	Index	•	•	• 349

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, - and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass.—It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these, they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the customary, and the French or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the customary system the standard unit of length is the yard and is now defined as 3600/3937 meter. The unit of mass is the avoirdupois pound and is defined as 1/2.20462 kilogram.

The British yard is defined as the "straight line or distance (at 62° F.) between the transverse lines in the two gold plugs in the bronze bar deposited in the office of the exchequer." The British standard of mass is the pound avoirdupois and is the mass of a piece of platinum marked "P. S. 1844, 1 lb.," preserved in the exchequer office.

In the metric system the standard of length is the meter and is defined as the distance between two lines at o° Centrigrade on a platinum iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "mètre des Archives," which was made by Borda. Copies of the International Prototype Meter are possessed by the various governments, and are called "National Prototypes."

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is not now defined in terms of the meridian length, and hence subsequent measurements of the length of the meridian have not affected the length of the meter.

The metric standard of mass is the kilogram and is defined as the mass of a piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogramme des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C. Copies of the International Prototype Kilogram are possessed by the various governments, and as in the case of the meter standards are called National Prototypes.

Comparisons of the French and customary standards are given in tabular form in Table 2; and similarly Table 3, differing slightly, compares the British and French systems. In the metric system the decimal subdivision is used, and thus we have the decimeter, the centimeter, and the millimeter as subdivisions, and the dekameter, hektometer, and kilometer as multiples. The centimeter is most commonly used in scientific work.

Time. — The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. — Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a vard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if I be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^2 . Similarly the ratio of two units of volume will be l^3 , and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, l, l are known, and the powers of l, l, and l involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was l/3 and the power of l involved in the expression for area is l²; hence, the factor for transforming from square feet to square yards is l/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l/t and l/t^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = ML^2T^{-2}$$

is the dimensional equation for energy, and ML²T⁻² is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$Q = CL^a M^b T^c,$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $\frac{L_i}{L}, \frac{M_i}{M}, \frac{T_i}{T}$, which in accordance with the convention adopted above will be lmt, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tt$, and if Q_i be the new quantity-number

$$Q_{i} = CL_{i}^{\alpha}M_{i}^{b}T_{i}^{c}$$

$$= CL^{\alpha}l^{\alpha}M^{b}m^{b}T^{c}t^{c} = Ql^{\alpha}m^{b}t^{c},$$

or the conversion factor is $l^a m^b t^c$, a quantity of precisely the same form as the dimension formula $L^a M^b T^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

r. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L², and the conversion factor ℓ^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$V = CL^3$$
,

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L^3 and the conversion factor l^3 .

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-3} , and conversion factor ml^{-3} .

Example. — The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound = 7000, and l is the number of inches in a foot = 12; $\therefore ml^{-3} = 7000/12^3 = 4.051$. Hence the density is $150 \times 4.051 = 607.6$ in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{dL}{dT}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT⁻¹, and the conversion factor \mathcal{U}^{-1} .

Example.—A train has a velocity of 60 miles an hour: what is its velocity in feet per second?

Here l = 5280 and t = 3600; $\therefore lt^{-1} = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity = $60 \times 1.467 = 88.0$ in feet per second.

- 5. Angle. An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
- 6. Angular Velocity. Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .
- 7. Linear Acceleration. Acceleration is the rate of change of velocity or $a = \frac{dv}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is tt^{-2} .

Example. — A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometers per hour: what is the acceleration in centimeters per second per second?

Since the velocity gained was 20 kilometers per hour in one minute, the acceleration was 1200 kilometers per hour per hour.

Here l = 100 000 and t = 3600; $\therefore lt^{-2} = 100 000/3600^2 = .00771$, and therefore acceleration = $.00771 \times 1200 = 9.26$ centimeters per second.

8. Angular Acceleration. — Angular acceleration is rate of change of angu-

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{T}$ or T^{-2} , and the conversion factor t^{-2} .

- 9. Solid Angle. A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{\text{area}}{L^2}$ or τ , and hence the conversion factor is also τ .
- to. **Curvature.** Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L⁻¹, and the conversion factor is I^{-1} .
- rr. Tortuosity. Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is I^{-1} .
- 12. Specific Curvature of a Surface. This was defined by Gauss to be at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L^{-2} , and the conversion factor is thus l^{-2} .
- 13. **Momentum.** This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT⁻¹, and the conversion factor mlt⁻¹. Example. — A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimeter, the gram, and the second are fundamental units?

Here m = 453.59, l = 30.48, and t = 1; $\therefore mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

- 14. Moment of Momentum. The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .
- 15. Moment of Inertia. The moment of inertia of a body round any axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^2 . The conversion factor is therefore ml^2 .

- 16. Angular Momentum. The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
- 17. Force. A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2} . The conversion factor is thus mlt^{-2} .

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grams, centimeters, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-2} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

- 18. Moment of a Couple, Torque, or Twisting Motive. These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or ML^2T^{-2} , and the conversion factor is ml^2t^{-2} .
- 19. Intensity of a Stress.—The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.
- 20. Intensity of Attraction, or "Force at a Point." This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM^{-1} or LT^{-2} , the same as acceleration. The conversion factors for acceleration therefore apply.
- 21. Absolute Force of a Centre of Attraction, or "Strength of a Centre."—This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL^2M^{-1} or L^3T^{-2} . The conversion factor is therefore l^3t^{-2} .
- 22. Modulus of Elasticity. A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}t^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML^2T^{-2} .

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

- 24. Resilience. This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^2T^{-2}L^{-3}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.
- 25. Power, or Activity. Power or, as it is now very commonly called, activity is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT⁻¹ or ML² Γ^{-3} , and the conversion factor ml^2t^{-3} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.

Examples. (a) Find the number of gram centimeters in one foot pound.

Here the units of force are the attraction of the earth on the pound * and the gram of matter, and the conversion factor is \mathcal{A} , where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

- (b) Find the number of foot poundals in 1 000 000 centimeter dynes. Here m = 1/453.59, l = 1/30.48, and t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.
- (c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or 550 \times 32.2 = 17710 foot poundals per second. One watt is 10⁷ ergs per second, that is, 10⁷ dyne centimeters per second. The conversion factor is ml^2t^8 , where m=453.59, l=30.48, and t=1, and the result has to be divided by 10⁷, the number of dyne centimeters per second in the watt.

Hence, $17710 \text{ ml}^2 t^{-8} / 10^7 = 17710 \times 453.59 \times 30.48^2 / 10^7 = 746.3$.

(d) How many gram centimeters per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is flt^{-1} , where f is 453.59, l is 30.48, and t is 60.

Hence, $33000 lt^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604000$ nearly.

* It is important to remember that in problems like that here given the term "pound" or "gram" refers to force and not to mass.

HEAT UNITS.

1. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-2} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature; and hence, if we denote temperature-numbers by Θ and their conversion factors by θ , the dimensional formula and conversion factor for quantity of heat will be $M\Theta$ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^3\Theta$, and hence the conversion factor is to be calculated from the formula $\ell^3\theta$.

For other physical quantities involving heat we have: —

- 2. Coefficient of Expansion. The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .
- 3. Conductivity, or Specific Conductance. This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$K = \frac{H}{\frac{\Theta}{L}L^2T}$$

and the dimensional formula $\frac{H}{\Theta LT} = \frac{M}{LT}$, which gives $ml^{-1}t^{-1}$ for conversion factor.

In thermometric units the formula becomes L^2T^{-1} , which properly represents diffusivity. In dynamical units H becomes ML^2T^{-2} , and the formula changes to $MLT^{-3}\Theta^{-1}$. The conversion factors obtained from these are l^2t^{-1} and $mlt^{-3}\theta^{-1}$ respectively.

- 4. Thermal Capacity. This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
- 5. Latent Heat. Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M\Theta/M$ or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is l^2t^{-2} .*
- **6.** Joule's Equivalent. Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^2T^{-2} = JH$$
 or $JM\Theta$.

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta^{-1}$. The conversion factor is thus represented by $l^2t^{-2}\theta^{-1}$. When heat is measured in dynamical units J is a simple number.

7. Entropy. — The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2t^{-2}\theta^{-1}$.

Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water 1° F. The *calorie* is the quantity of heat required to raise the temperature of one kilogramme of water 1° C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water 1° C. Hence:—

- (1) To find the number of calories in one British thermal unit, we have m = .45359 and $\theta = \frac{5}{9}$; $\therefore m\theta = .45359 \times 5/9 = .25199$.
- (2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $\therefore m\theta = 1000$.

It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.

(b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

^{*} It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulæ in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

mula $ml^{-1}t^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and t = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-3}$.

(c) Find the relation between the units stated in (b) for emissivity.

In this case the conversion formula is $ml^{-2}t^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-5}$.

(d) Find the number of centimeter gram second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}l^{-1}$, where m = 0.064799, l = 2.54, and l = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(ϵ) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^2l^{-2}\theta^{-1}}{ll^{-1}}$ or $l\theta^{-1}$, where l=.3048 and $\theta^{-1}=1.8$; $\therefore 776 \times .3048 \times 1.8 = 425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogram meter second and degree-Centigrade units are used?

The conversion factor is $l^2t^{-2}\theta^{-1}$, where l = .3048, t = 1, and $\theta^{-1} = 1.8$; $\therefore 24832 \times l^2t^{-2}\theta^{-1} = 24832 \times .3048^2 \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic

systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f = a \frac{qq_1}{l^2}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_1 quantities of electricity, and l the distance between q and q_1 . The magnitude of the force f for any particular values of q, q_1 and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_0$ and f, a, and l are each unity. A formal definition

In the electromagnetic system the repulsion between two magnetic poles or

is given below.

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_l}{l^2},$$

where m and m_i are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacity for electricity, might be called specific inductive capacities for magnetism. They are usually called permeabilities. (*Vide* Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m=m_D$, and f, a, and f each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

r. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimeter gram second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for [force \times length² \times inductive capacity] or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{3}{2}}l^{-1}k^{\frac{1}{2}}$.

- 2. Electric Surface Density and Electric Displacement. The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}L^{-\frac{1}{2}}L^{-\frac{1}{2}}K^{\frac{1}{2}}$.
- 3. Electric Force at a Point, or Intensity of Electric Field. This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$\frac{ML^2T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}=M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}} = LK,$$

which gives *lk* for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

- 6. Specific Inductive Capacity. This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or r.*
- 7. Electric Current. Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}}{T} = M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}},$$

and the conversion factor $m^{1}l^{1}t^{-2}k^{\frac{1}{2}}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as t on the electrostatic and as $t^{-2}t^{2}$ on the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

$$\frac{M^{i}L^{i}T^{-1}K^{i}}{L^{2}\frac{M^{i}L^{i}T^{-1}K^{-i}}{L}} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area} \times \text{potential gradient} \times \text{time}}.$$

The conversion factor is $t^{-1}k$.

- 9. Specific * Resistance. This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .
- 10. Conductance. The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$\frac{M^{\frac{1}{2}}L^{\frac{5}{2}}T^{-2}K^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}}=LT^{-1}K,$$

from which we get the conversion factor $lt^{-1}k$.

11. Resistance.—This is the reciprocal of confluctance, and therefore the dimensional formula and the conversion factor are respectively $L^{-1}TK^{-1}$ and $l^{-1}tk^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

- (a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.
- By (1) the formula is $m^1 l^3 t^{-1} k^3$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; \therefore the factor is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{9}{2}} = 4.2836$.
- (b) Find the factor required to convert electric potential from millimeter milligram second units to c. g. s. units.
- By (4) the formula is $m^{\frac{1}{2}l^{2}}t^{-\frac{1}{2}}k^{-\frac{1}{2}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.
- (c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.
- By (5) the formula is lk, and in this case l = 30.48 and k = 6; \therefore the factor $= 30.48 \times 6 = 182.88$.
- * The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

- r. Magnetic Pole, or Quantity of Magnetism. Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity] or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}P^{\frac{1}{2}}$.
- 2. Density of Surface Distribution of Magnetism. This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\dagger}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, which gives the conversion factor $m^{\dagger}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.
- 3. Magnetic Force at a Point, or Intensity of Magnetic Field. The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

 $\frac{MLT^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}}=M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$\frac{ML^2T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}},$$

which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}p^{-\frac{1}{2}}$.

- 5. **Magnetic Moment.** This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{\dagger}L^{\dagger}T^{-1}P^{\dagger}$, and the conversion factor $m^{\dagger}l^{\dagger}t^{-1}p^{\dagger}$.
- 6. Intensity of Magnetization. The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-

tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{M^{\frac{1}{2}}L^{\frac{6}{3}}T^{-1}P^{\frac{1}{2}}}{L^{8}} = M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}.$$

The conversion factor is therefore $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-1}p^{\frac{1}{2}}$.

- 7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity.

 This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
- 8. Magnetic Susceptibility. This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

$$\frac{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}} \ \, \text{or} \ \, P.$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

- 9. Current Strength. A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}$, which gives the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}T^{-\frac{1}{2}}$.
- 10. Current Density, or Strength of Current at a Point. This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{\frac{1}{2}}L^{-\frac{2}{3}}T^{-1}P^{-\frac{1}{2}}$ and $m^{\frac{1}{2}}l^{-\frac{1}{2}}l^{-\frac{1}{2}}$.
- 11. Quantity of Electricity. This is the product of the numbers for current and time. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}\Gamma^{-\frac{1}{2}} \times T = M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}p^{-\frac{1}{2}}$.
- 12. Electric Potential, or Electromotive Force. As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{2}T^{-2}}{M^{\frac{1}{2}}L^{\frac{3}{2}}P^{-\frac{1}{2}}} = M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}},$$

and the conversion factor $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}p^{\frac{1}{2}}$.

* Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as 1 in the electromagnetic and $J^{-2}l^{2}$ in the electrostatic systems.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{2}{3}}T^{-2}P^{\frac{1}{2}}} = L^{-1}T^{2}P^{-1},$$

and the conversion factor $l^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\frac{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{-\frac{1}{2}}} = LT^{-1}P.$$

The conversion factor thus becomes $lt^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

- 15. Conductance. This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}TP^{-1}$ and $l^{-1}tp^{-1}$.
- 16. Conductivity, or Specific Conductance. This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows:—

$$\frac{\frac{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}{L^{\frac{2}{2}}\frac{M^{\frac{1}{2}}L^{\frac{2}{3}}T^{-2}P^{\frac{1}{2}}}}{L} = L^{-2}TP^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

- 17. Specific Resistance. This is the reciprocal of conductivity as defined in 16, and hence the dimensional formula and conversion factor are respectively $L^2T^{-1}P$ and $\ell^2\ell^{-1}p$.
- 18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}}{M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}}}\times T=LP.$$

The conversion factor is therefore lp, and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

- 20. Electro-kinetic Momentum. The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{-\frac{1}{2}} \times LP$ $\longrightarrow M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-1}p^{\frac{1}{2}}$.
- 21. Electromotive Force at a Point.— The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}l^{\frac{1}{2}}}t^{-2}p^{\frac{1}{2}}$.
- 22. Vector Potential. This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}P^{\frac{1}{2}}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}P^{\frac{1}{2}}$.
- 23. Thermoelectric Height. This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}P^{\frac{1}{2}}\Theta^{-1}$, and the conversion factor $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}P^{\frac{1}{2}}\theta^{-1}$.
- 24. Specific Heat of Electricity. This quantity is measured in the same way as 23, and hence has the same formulæ.
- 25. Coefficient of Peltier Effect. This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$\frac{M\Theta}{M^{\frac{1}{2}}L^{\frac{1}{2}}P^{-\frac{1}{2}}}=M^{\frac{1}{2}}L^{-\frac{1}{2}}P^{\frac{1}{2}}\Theta,$$

and the conversion factor $m^{\frac{1}{2}}l^{-\frac{1}{2}}p^{\frac{1}{2}}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

- (a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.
- By (3) the formula is $m^{\frac{1}{2}}l^{-\frac{1}{2}}t^{-\frac{1}{2}}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = 1; ... the factors = $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{\frac{1}{2}} \times 30.48^{-\frac{1}{2}} = 0.046108$.

- (b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?
- By (5) the formula is $m^{\frac{1}{2}}l^{\frac{d}{2}}t^{-1}p^{\frac{d}{2}}$, and the values for this problem are m = 0.0648, l = 30.48, t = 1, and p = 1; \therefore the number = $0.0648^{\frac{1}{2}} \times 30.48^{\frac{d}{2}} = 1305.6$.
- (c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimeter milligram second units?

- By (6) the formula is $m^{\frac{1}{2}l^2}l^{-1}p^{\frac{1}{2}}$, and in this case m = 1000, l = 10, t = 1, and p = 1; ... the intensity $= 700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}} = 70000$.
- (d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gram and second units.
- By (9) the formula is $m^{\frac{1}{2}}l^{\frac{1}{2}}p^{-\frac{1}{2}}$, and the values of these quantities are here $m = 10^{11}$, $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor $= 10^{\frac{11}{2}} \times 10^{-\frac{9}{2}} = 10$.
- (e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10⁻¹¹ gram and second units.
- By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-9}$, t = 1, and p = 1; \therefore the factor $= 10^{-9}$.
- (f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gram and second units to c. g. s. units.
- By (12) the formula is $m^{\frac{1}{2}}l^{\frac{3}{2}}t^{-2}p^{\frac{1}{2}}$, and for this case $m=10^{-11}$, $l=10^9$, t=1, and p=1; \therefore the factor $=10^8$.

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimeter, the gram, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international ohm, which is based upon the ohm equal to 109 units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grams in mass, of a constant cross-sectional area and of the length of 106.3 centimeters.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of o.ooiii8 of a gram per second.

* "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.

"In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted:—

"As a unit of electromotive force, the international volt, which is the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampère, and which is represented sufficiently well for practical use by $\frac{1000}{4334}$ of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C., and prepared in the manner described in the accompanying specification.*

"As a unit of quantity, the international coulomb, which is the quantity of electricity transferred by a current of one international ampère in one second.

"As a unit of capacity, the international farad, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.†

"As a unit of work, the *joule*, which is equal to 10⁷ units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.

"As a unit of power, the watt, which is equal to 10⁷ units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.

"As the unit of induction, the henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.

"The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 12th, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

"The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimeters in diameter and from 4 to 5 centimeters in depth.

"The anode should be a plate of pure silver some 30 square centimeters in area and 2 or 3 millimeters in thickness.

"This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.

"The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts

by weight of the nitrate to 85 parts of water.

"The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than to ohms."

- * A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell, but no report was made, on account of Helmholtz's death.
- † The one milliouth part of the farad is more commonly used in practical measurements, and is called the microfarad.

FUNDAMENTAL AND DERIVED UNITS.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratio of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is lt^{-1} ; l=5280/1, t=3600/1, therefore the factor=5280/3600=1.467.

(a) Fundamental Units.

Name of Unit.	Symbol.	Conversion Factor.
Length. Mass. Time. Temperature. Electric Inductive Capacity. Magnetic Inductive Capacity.	L M T Θ K	l m t θ k

(b) DERIVED UNITS.

I. Geometric and Dynamic Units.

Name of Unit.	Conversion Factor.
Area.	72
Volume.	/ ³
Angle.	I
Solid Angle.	I
Curvature.	<i>l</i> −1
Tortuosity.	<i>l</i> ^{−1}
Specific curvature of a surface.	<i>l</i> −2
Angular velocity.	t^{-1}
Angular acceleration.	t^{-2}
Linear velocity.	$1 t^{-1}$
Linear acceleration.	$1 t^{-2}$
Density.	$m l^{-3}$
Moment of inertia.	$m l^2$
Intensity of attraction, or "force at a point."	lt^{-2}
Absolute force of a centre of attraction, or "strength of a centre."	$l^3 t^{-2}$
Momentum.	$m l t^{-1}$
Moment of momentum, or angular momentum.	$m l^2 t^{-1}$
Force.	$m l t^{-2}$
Moment of a couple, or torque.	$m l^2 t^{-2}$
Intensity of stress.	$m l^{-1} t^{-2}$
Modulus of elasticity.	$m l^{-1} t^{-2}$
Work and energy.	$m l^2 t^{-2}$
Resilience.	$m l^{-1} t^{-2}$
Power or activity.	$m l^2 t^{-8}$

FUNDAMENTAL AND DERIVED UNITS.

II. Heat Units.

Name of Unit.	Conversion Factor.
Quantity of heat (thermal units). " " (thermometric units). " " (dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). " (thermometric units), or diffusivity. " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units). Joule's equivalent. Entropy (heat measured in thermal units). " " dynamical units).	$m \theta$ $l^3 \theta$ $m l^2 t^{-2}$ θ^{-1} $m l^{-1} t^{-1}$ $l^2 t^{-1}$ $m l t^{-8} \theta^{-1}$ m θ $l^2 t^{-2}$ $l^2 t^{-2} \theta$ m $l^2 t^{-2} \theta$

III. Magnetic and Electric Units.

Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Magnetic pole, or quantity of magnetism. Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and magnetic susceptibility and magnetic susceptibility and magnetic susceptibility. Quantity of electricity. Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	$m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} k^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}}$	$m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} p^{\frac{1}{2}}$ p $m^{\frac{1}{2}} l^{\frac{1}{2}} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} p^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-2} p^{\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} p^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}}$ $l^{\frac{1}{2}} l^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}} l^{-\frac{1}{2}}$

TABLE 1. FUNDAMENTAL AND DERIVED UNITS.

III. Magnetic and Electric Units.								
Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.						
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	$t^{-1} k$ $t k^{-1}$ $l t^{-1} k$ $l^{-1} t k^{-1}$ $t^{-1} t^{2} k^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} l^{-\frac{1}{2}} k^{-\frac{1}{2}}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} k^{-\frac{1}{2}} \theta^{-1}$ $m^{\frac{1}{2}} l^{\frac{1}{2}} t k^{-\frac{1}{2}} \theta$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.*

(1) CUSTOMARY TO METRIC.

		LINE	AR.				CAPAC	ITY.	
	fnches to millimeters.	Feet to meters.	Yards to meters.	Miles to kilometers.		Fluid drams to milliliters or cubic centimeters.	Fluid ounces to milliliters.	Liquid quarts to liters.	Gallons to
1 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.8004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.828804 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 7 8 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.01 236.58 266.16	0.94633 1.89267 2.83900 3.78533 4.73167 5.67800 6.62433 7.57066 8.51700	3.78533 7.57066 11.35600 15.14133 18.92666 22.71199 26.49733 30.28266 34.06799
	SQUARE.						WEIG	НТ.	
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milligrams.	Avoirdu- pois ounces to grams.	Avoirdu- pois pounds to kilo- grams.	Troy ounces to grams.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	9.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.345 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3913 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90718 1.36078 1.81437 2.26796 2.72155 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
9	30.003	CUBI		3,		3 3 7 3			1
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Bushels to hectoliters.		I Gunter's I sq. statu I fathom	chain = ite mile =	20.1168 259.000 1.829	meters.
1 2 3 4 5 6 7 8 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14159 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154		1 nautical 1 foot 1 avoir. po 1 5432.35639	ound =	1853.25 0.30480 453.59242 1.000	

* Quoted from sheets issued by the United States Bureau of Standards.

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram.

I meter (international prototype) = 1553164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1907 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier. The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866). roid of 1866).

TABLES FOR CONVERTING U.S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

		LINEA	AR.				(CAPAC	TY.		
	Meters to inches.	Meters to feet.	Meters to yards.	Kilometers to miles.		Millili- ters or cubic cen- timeters to fluid drams.	Cent liters fluid ounce	to to	rs 1	Deca- iters to allons.	Hecto- liters to bushels.
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354.3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.33 0.67 1.01 1.35 1.69 2.02 2.36 2.70 3.04	6 2.11; 4 3.170; 3 4.220; 5.28; 9 6.340; 7 7.39; 8.45;	34 5 501 7 58 10 36 13 03 15 70 18	.6418 .2836 .9253 .5671 .2089 .8507 .4924 .1342	2.8378 5.6756 8.5135 11.3513 14.1891 17.0269 19.8647 22.7026 25.5404
	SQUARE.							WEIGI	HT.		
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Hectares to acres.		Milli- grams to grains.		Kilo- grams to grains.	Hec gram oun- avoird	s to	Kilo- grams to pounds avoirdupois.
1 2 3 4 5	0.1550 0.3100 0.4650 0.6200 0.7750	10.764 21.528 32.292 43.055 53.819	1.196 2.392 3.588 4.784 5.980	2.471 4.942 7.413 9.884 12.355	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173	5 3	5432.36 0864.71 6297.07 01729.43 07161.78	3.52 7.05 10.58 14.10	322 996 370	2.20462 4.40924 6.61387 8.81849 11.02311
6 7 8 9	0.9300 1.0850 1.2400 1.3950	64.583 75.347 86.111 96.875	7.176 8.372 9.568 10.764	14.826 17.297 19.768 22.239	6 7 8 9	0.09259 0.1080 0.12340 0.13880	3 IC	92594.14 98026.49 23458.85 38891.21	21.16 24.69 28.21 31.72	92	13.22773 15.43236 17.63698 19.84160
		CUBI	C.					WEIG	нт.		
	Cubic centimeters to cubic inches.	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards.		Quintal pounds		Millies tonnes to av	pounds		ilograms o ounces Troy.
1 2 3 4 5 6	0.0610 0.1220 0.1831 0.2441 0.3051 0.3661 0.4272	61.023 122.047 183.070 244.094 305.117 366.140 427.164	35.314 70.269 105.943 141.258 176.572 211.887 247.201	1.308 2.616 3.924 5.232 6.540 7.848 9.156	1 2 3 4 5 6	220 440 661 881 1102 1322 1543	.92 .39 .85 .31	220 440 661 881 1102 1322	9.2 3.9 8.5 3.1	10	32.1507 64.3015 96.4522 28.6030 60.7537 92.9045 25.0552
7 8 9	0.4882	488.187 549.210	282.516 317.830	10.464	7 8 9	1763	.70	1763	7.0	2	57.2059 89.3 5 67

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Metre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight

in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at 4° C, 760 mm. Hg. pressure which weighs 1 kilogram = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(1) METRIC TO IMPERIAL.

LINEAR MEASURE.

ı millimeter (mm.) (.001 m.)	= 0.03937 in.
I centimeter (.o. m.)	= 0.39370 "
I decimeter (.I m)	= 3.93701 "
	(39.370113 "
IMETER (m.)	$.=\{3.280843 \text{ ft.}$
•	$.=$ $\begin{cases} 3.280843 \text{ ft.} \\ 1.09361425 \text{ yds} \end{cases}$
dekameter	.= 10.93614 "
i hectometer {	. = 109.361425 "
1 kilometer { (1,000 m.) }	. = 0.62137 mile.
1 myriameter { (10,000 m.) }	. = 6.21372 miles.
micron	. == 0.001 mm.

SQUARE MEASURE.

1 sq. centimeter	. =	0.1550 sq. in.
1 sq. decimeter (100 sq. centm.)	{=	15.500 sq. in.
I sq. meter or centi- are (100 sq. dcm.)	{={	10.7639 sq. ft. 1.1960 sq. yds.
I ARE (100 sq. m.)	=	119.60 sq. yds.
or 10,000 sq. m.)	=	2.4711 acres.

CUBIC MEASURE.

cub. centimeter (c.c.) (1,000 cubic) = 0.0610 cub. in. millimeters)
1 cub. decimeter (c.d.) (1,000 cubic centimeters) = 61.024 " "
$ \left.\begin{array}{l} \text{1 CUB. METER} \\ \text{or stere} \\ (1,000 \text{ c.d.}) \end{array}\right\}. = \left\{\begin{array}{l} 35.3148 \text{ cub. ft.} \\ 1.307954 \text{ cub. yds.} \end{array}\right. $

MEASURE OF CAPACITY.

```
1 mi!liliter (ml.) (.001 {
                           = 0.0610 cub, in.
   liter)
                           = { 0.61024 "
I centiliter (.oI liter)
                               ( 0.070 gill.
I deciliter (.I liter) .
                          = 0.176 pint.
I LITER (1,000 cub.
   centimeters or I
                          = 1.75980 pints.
   cub. decimeter)
I dekaliter (10 liters)
                               2.200 gallons.
I hectoliter (100 ")
I kiloliter (1,000 ")
                        \cdot =
                               2.75 bushels.
                                3.437 quarters.
```

APOTHECARIES' MEASURE.

 $\begin{array}{c} \textbf{I} & \text{cubic centi} \\ & \textbf{meter} \\ & \text{gram w't} \end{array} \right\} = \left\{ \begin{array}{c} \text{0.03520 fluid ounce.} \\ \text{0.28157 fluid drachm.} \\ \text{15.43236 grains weight.} \end{array} \right.$ 1 cub. millimeter = 0.01693 minim.

AVOIRDUPOIS WEIGHT.

```
\mathbf{I} milligram (mgr.) . . = 0.01543 grain.
I \text{ centigram (.01 gram.)} = 0.15432
I decigram (.1 ") = 1.54324 grains.
I GRAM . . . . . = 15.43236
I dekagram (100 gram.) = 5.64383 drams.

I hectogram (100 ") = 3.52739 oz.

I KILOGRAM (1,000 ") = \begin{cases} 2.2046223 \text{ lb} \\ 15432.3564 \end{cases}
                                               grains.
1 myriagram (10 kilog.) =22.04622 lbs.
                 (100 "
                              = 1.96841 \text{ cwt}.
1 quintal
I millier or tonne \{1,000 \text{ kilog.}\} . = 0.9842 ton.
```

TROY WEIGHT.

APOTHECARIES' WEIGHT.

$$1 \text{ GRAM } \dots = \begin{cases} 0.25721 \text{ drachm.} \\ 0.77162 \text{ scruple.} \\ 15.43236 \text{ grains.} \end{cases}$$

Note.—The Meter is the length, at the temperature of oo C., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 30.370113 inches, as above stated.

The Kilogram is the mass of a platinum-iridium weight deposited at the same place.

The LITER contains one kilogram weight of distilled water at its maximum density (40 C.), the barometer being at 760 millimeters.

*In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

TABLE 3.

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

								D . Comu	
	LIN	NEAR MEAS	SURE.			MEA	ASURE OF (CAPACITY.	·
	Millimeters to inches.	Meters to feet.	Meters to yards.	Kilo- meters to miles.		Liters to pints.	Dekaliters to gallons	Hectoliters to bushels.	Kiloliters to quarters.
1 2 3 4 5	0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	3.28084 6.56169 9.84253 13.12337 16.40421	1.09361 2.18723 3.28084 4.37446 5.46807	0.62137 1.24274 1.86412 2.48549 3.10686	1 2 3 4 5	1.75980 3.51961 5.27941 7.03921 8.79902	2.19975 4.39951 6.59926 8.79902 10.99877	2.74969 5.49938 8.24908 10.99877 13.74846	3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0.31496090 0.35433102	19.68506 22.96590 26.24674 29.52758	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
	SQUARE MEASURE.					w	EIGHT (Avo	oirdupois).	
	Square centimeters to square inches.	Square meters to square feet.	Square meters to square yards.	Heclares to acres.		Milli- grams to grains.	Kilograms to grains.	Kilo- grams to pounds,	Quintals to hundred- weights.
1 2 3 4 5	0.15500 0.31000 0.46500 0.62000 0.77500	10.76393 21.52786 32.29179 43.05572 53.81965	1.19599 2.39198 3.58798 4.78397 5.97996	2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	0.01543 0.03086 0.04630 0.06173 0.07716	15432.356 30864.713 46297.069 61729.426 77161.782	2.20462 4.40924 6.61387 8.81849 11.02311	1.96841 3.93683 5.90524 7.87365 9.84206
6 7 8 9	0.93000 1.08500 1.24000 1.39501	64.58357 75:34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13.22773 15.43236 17.63698 19.84160	11.81048 13.77889 15.74730 17.71572
	CUBIC MEASURE. Apothecaries' Measure.		CUBIC MEASURE. CARIES			VOIRDUPOIS (cont.)	Troy W	EIGH T.	Apothe- caries' Weight.
	Cubic decimeters to cubic inches.	Cubic meters to cubic feet.	Cubic meters to cubic yards,	Cub. centimeters to fluid drachms.		Milliers or fonnes to tons.	Grams to ounces Troy.	Grams to penny- weights.	Grams to scruples.
1 2 3 4 5	61.02390 122.04781 183.07171 244.09561 305.11952	35.31476 70.62952 105.94428 141.25904 176.57379	1.30795 2.61591 3.92386 5.23182 6.53977	0.28157 0.56314 0.84471 1.12627 1.40784	1 2 3 4 5	0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366,14342 427,16732 488,19123 549,21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.19290 0.22506 0.25721 0.28936	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

LINEAR MEASURE.

- to at	{ 25.400 milli- meters.
I inch =	
1 foot (12 in.) =	0.30480 meter.
I YARD (3 ft.) . $=$	0.914399 "
I pole $(5^{\frac{1}{2}} \text{ yd.}) \cdot . =$	5.0292 meters.
$\left\{\begin{array}{c} \text{1 chain (22 yd. or } \\ \text{100 links)} \end{array}\right\} =$	20.1168 "
1 furlong (220 yd.) =	201.168 "
1 mile (1,760 yd.) . =	1.6093 kilo- meters.

SOUARE MEASURE.

-	
ı square inch =	6.4516 sq. cen- timeters.
1 sq. ft. (1.44 sq. in.) =	9.2903 sq. deci- meters.
1 SQ. YARD (9 Sq. ft.) =	o.836126 sq. meters.
$1 \text{ perch } (30\frac{1}{4} \text{ sq. yd.}) = \left\{$	25.293 sq. me- ters.
I rood (40 perches) = I ACRE (4840 sq. yd.) =	10.117 ares. 0.40468 hectare.
1 sq. mile (640 acres) =	259.00 hectares.

CUBIC MEASURE.

1 cub. inch = 16.387 c	ub. centimeters.
$ \begin{array}{c} \text{1 cub. foot } (1728) \\ \text{cub. in.} \end{array} = \begin{cases} 1 & \text{cub. foot } (1728) \\ \text{cub. in.} \end{cases} $	o.028317 cub. me- ter, or 28.317
1 CUB. YARD (27) =0	76455 cub. meter.

APOTHECARIES' MEASURE.

4.5459631 liters
28.4123 cubic
centimeters.
3.5515 cubic
centimeters.
0.05919 cubic
centimeters.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY.

AVOIRDUPOIS WEIGHT.

1 grain = 1 dram = 1 ounce (16 dr.) =	64.8 m illi- grams. 1.772 grams. 28.350 "
	20.350
1 POUND (16 oz. or } =	0.45359243 kilog r.
1 stone (14 lb.) =	6.350 "
1 quarter (28 lb.) . =	12.70 "
t hundredweight)	(ro 8o
i hundredweight } =	\$ 50.80 " 0.5080 quintal.
1 ton (20 cwt.) . =	{ 1.0160 tonnes or 1016 kilo- grams.

TROY WEIGHT.

I Troy OUNCE (480 grains avoir.)
I pennyweight (24 grains) = 1.5552 "

Note. — The Troy grain is of the same weight as the Avoirdupois grain.

APOTHECARIES' WEIGHT.

I ounce (S drachms) = 31.1035 grams.
I drachm, 5i (3 scru-) = 3.888 "
ples) | scruple, Di (20) | = 1.296 "

NOTE. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade. The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The Gallon contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches.

TABLE 3.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

	LINEAR MEASURE.					MEASURE OF CAPACITY.				
	Inches to centimeters.	Feet to meters.	Yards to meters.	Miles to kilo- meters.		Quarts to liters.	Gallons to liters.	Bushels to dekaliters.	Quarters to hectoliters.	
1 2 3 4 5	2.539998 5.079996 7.619993 10.159991 12.699989	0.30480 0.60960 0.91440 1.21920 1.52400	0.91440 1.82880 2.74320 3.65760 4.57200	1.60934 3.21869 4.82803 6.43737 8.04671	1 2 3 4 5	1.13649 2.27298 3.40947 4.54596 5.68245	4.54596 9.09193 13.63789 18.18385 22.72982	3.63677 7.27354 10.91031 14.54708 18.18385	2.90942 5.81883 8.72825 11.63767 14.54708	
6 7 8 9	15.239987 17.779984 20.319982 22.859980	1.82880 2.13360 2.43840 2.74320	5.48640 6.40080 7.31519 8.22959	9.65606 11.26540 12.87474 14.48408	6 7 8 9	6.81894 7.95544 9.09193 10.22842	27.27578 31.82174 36.36770 40.91367	21.82062 25.45739 29.09416 32.73093	17.45650 20.36591 23.27533 26.18475	
	SQ	UARE ME	ASURE.			w	EIGHT (Avo	irdupois).		
	Square inches to square centimeters.	Square feet to square decimeters.	Square yards to square meters.	Acres to hectares.		Grains to milli- grams.	Ounces to grams.	Pounds to kilo- grams.	Hundred- weights to quintals.	
1 2 3 4 5	6.45159 12.90318 19.35477 25.80636 32.25794	9.29029 18.58058 27.87086 37.16115 46.45144	0.83613 1.67225 2.50838 3.34450 4.18063	0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	64.79892 129.59784 194.39675 259.19567 323.99459	28.34953 56.69905 85.04858 113.39811 141.74763	0.45359 0.90718 1.36078 1.81437 2.26796	0.50802 1.01605 1.52407 2.03209 2.54012	
6 7 8 9	38.70953 45.16112 51.61271 58.06430	55.74173 65.03201 74.32230 83.61259	5.01676 5.85288 6.68901 7.52513	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	170.09716 198.44669 226.79621 255.14574	2.72155 3.17515 3.62874 4.08233	3.04814 3.55616 4.06419 4.57221	
	CUBIC MEASURE. APOTHE- CARIES' MEASURE.				A	voirdupois (cont.).	Troy W	BIGHT.	Apothe- Caries' Weight.	
	Cubic inches to cubic centimeters.	Cubic feet to cubic meters.	Cubic yards to cubic meters.	Fluid drachins to cubic centi- meters.		Tons to milliers or tonnes.	Ounces to grams.	Penny- weights to grams.	Scruples to grams.	
1 2 3 4 5	16.38702 32.77404 49.16106 65.54808 81.93511	0.02832 0.05663 0.08495 0.11327 0.14158	0.76455 1.52911 2.29366 3.05821 3.82276	3.55153 7.10307 10.65460 14.20613 17.75767	1 2 3 4 5	1.01605 2.03209 3.04814 4.06419 5.08024	31.10348 62.20696 93.31044 124.41392 155.51740	1.55517 3.11035 4.66552 6.22070 7.77587	1.29598 2.59196 3.88794 5.18391 6.47989	
6 7 8 9	98.32213 114.70915 131.09617 147.48319	0.16990 0.19822 0.22653 0.25485	4.58732 5.35187 6.11642 6.88098	21.30920 24.86074 28.41227 31.96380	6 7 8 9	6.09628 7.11233 8.12838 9.14442	186.62088 217.72437 248.82785 279.93133	9.33104 10.88622 12.44139 13.99657	7.77587 9.07185 10.36783 11.66381	

II

VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at t° C, P grammes of mercury, weighted with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature, $t_1: V = PR = P\frac{p}{d}$, at another temperature, $t_1: V = PR_1 = P p/d \{1 + \gamma (t_1 - t)\}$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at $t \circ C$,

and $\gamma = 0.000$ 025, is the cubical expansion coefficient of glass.

								
Temper-		WATER.			MERCURY.			
t t	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$	R.	$R_1, t_1 = 10^{\circ}.$	$R_1, t_1 = 20^{\circ}.$		
00	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867		
l I	1133	1358	1609	5633	5798	5982		
2	1092	1292	1542	5766	5914	6098		
3	1068	1243	1493	5900	6029	6213		
4	1060	1210	1460	6033	6144	6328		
5	1068	1193	1443	6167	6259	6443		
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558		
7 8	1131	1206	1456	6434	6490	6674		
	1184	1234	1485	6568	6605	6789		
9	1252	1277	1 527	6702	6720	6904		
10	1333	1333	1584	6835	6835	7020		
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135		
12	1 5 3 6	1486	1736	7103	7066	7250		
13	1657	1582	1832	7236	7181	7365		
14	1790	1690	1940	7370	7297	7481		
15	1935	1810	2060	7 50-4	7412	7 596		
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711		
17	2261	2086	2337	777 I	7642	7826		
18	2441	2241	249I	7905	77.57	7941		
19	2633	2407	2658	8039	7872	So57		
20	2835	2584	2835	8172	7988	8172		
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288		
22	3271	2970	3220	8440	8218	8403		
23	3504	3178	3429	8573	8333	8518		
24	3748	3396	3647	8707	8449	8633		
25	4001	3624	3875	8841	8564	8748		
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864		
27	4537	4110	4361	9108	8794	S979		
28	4818	4366	4616	9242	8910	9094		
29	5110	4632	4884	9376	9025	9210		
30	5410	4908	5159	9510	9140	9325		
		<u> </u>		H	l	l		

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

DERIVATIVES AND INTEGRALS.*

d ax	= a dx	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}$, unless $n=-1$
d u v	$=\left(u\frac{dv}{dx}+v\frac{du}{dx}\right)dx$	$\int \frac{dx}{x}$	$=\log x$
	an any	J x	
$d\frac{u}{a}$	$= \left(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\right) dx$	$\int e^x dx$	$=e^x$
$d x^n$	$= nx^{n-1} dx$	$\int e^{ax}dx$	$=\frac{1}{a}e^{ax}$
	$=d\frac{f(u)}{du}\cdot\frac{du}{dx}\cdot dx$	$\int x e^{ax} dx$	$=\frac{e^{ax}}{a^2}(ax-1)$
df(u)	an ax		9
$d e^{x}$	$= e^x dx$	$\int \log x dx$	$= x \log x - x$
$d e^{ax}$	$= a e^{ax} dx$	∫u dv	$= u v - \int v du$
$d \log_e x$	$=\frac{1}{x} dx$	$\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$d x^x$	$= x^x \left(1 + \log_e x \right)$		
$d \sin x$	$=\cos xdx$	$\int (a^2+x^2)^{-1} dx$	$=\frac{1}{a} \tan^{-1} \frac{x}{a} =$
			$\frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2+a^2}}$
$d \cos x$	$=-\sin xdx$	$\int (a^2-x^2)^{-1}dx$. 210
$d \tan x$	$= \sec^2 x \ dx$	$\int (a^2-x^2)^{-\frac{1}{2}} dx$	$=\sin^{-1}\frac{x}{a}, \text{ or } -\cos^{-1}\frac{x}{a}$
d cot x	$= -\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$= \pm (a^2 \pm x^2)^{\frac{1}{2}}$
$d \sec x$	$= \tan x \sec x dx$	$\int \sin^2 x \ dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$d \csc x$	$= -\cot x \cdot \sec x dx$	$\int \cos^2 x dx$	$= \frac{1}{2} \sin x \cos x + \frac{1}{2} x$
$d \sin^{-1} x$	$= (1 - x^2)^{-\frac{1}{2}} dx$	$\int \sin x \cos x dx$	$= \frac{1}{2} \sin^2 x$
$d \cos^{-1} x$	$=-(1-x^2)^{-\frac{1}{2}} dx$	$\int (\sin x \cos x)^{-1}$	$dx = \log \tan x$
$d \tan^{-1} x$	$= (1+x^2)^{-1} dx$	$\int \tan x dx$	$= -\log \cos x$
$d \cot^{-1} x$	$= -(1+x^2)^{-1} dx$	$\int \tan^2 x dx$	$= \tan x - x$
$d \sec^{-1} x$	$= x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot x dx$	$= \log \sin x$
$d \csc^{-1} x$	$= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$	$\int \cot^2 x dx$	$=$ $-\cot x - x$
d sinh x	$= \cosh x dx$	$\int \csc x dx$	$= \log \tan \frac{1}{2} x$
$d \cosh x$	$= \sinh x dx$	$\int x \sin x dx$	$=\sin x - x\cos x$
$d \tanh x$	$= \operatorname{sech}^2 x dx$	$\int x \cos x dx$	$=\cos x + x \sin x$
$d \coth x$	$= -\operatorname{csch}^2 x dx$	$\int \tanh x dx$	$= \log \cosh x$
$d \operatorname{sech} x$	$=$ -sech $x \tanh dx$	$\int \coth x dx$	$= \log \sinh x$
$d \operatorname{csch} x$	$= -\operatorname{csch} x \cdot \operatorname{coth} x dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} e^x = \operatorname{gd} u$
$d \sinh^{-1} x$	$=(x^2+1)^{-\frac{1}{2}} dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{2}$
$d \cosh^{-1} x$	$=(x^2-1)^{-\frac{1}{2}} dx$	$\int x \sinh x dx$	$= x \cosh x - \sinh x$
$d \tanh^{-1} x$	$= (\mathbf{I} - x^2)^{-1} dx$	$\int x \cosh x dx$	$= x \sinh x - \cosh x$
$d \coth^{-1} x$	$=(1-x^2)^{-1}dx$	$\int \sinh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x - x \right)$
$d \operatorname{sech}^{-1} x$	$= -x^{-1} (1-x^2)^{-\frac{1}{2}} dx$	$\int \cosh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x + x \right)$
$d \operatorname{csch}^{-1} x$	$= -x^{-1} (x^2 + 1)^{-\frac{1}{2}}$	$\int \sinh x \cosh x dx$	$dx = \frac{1}{4} \cosh (2 x)$

^{*} See also accompanying table of derivatives. For example: $\int \cos x \, dx = \sin x + \text{constant}$.

$$(x+y)^n = x^n + \frac{n}{1} x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^2 + \cdots$$

$$\frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^m + \cdots \qquad (y^2 < x^2)$$

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \frac{n(n-1)(n-2)x^2}{3!} + \cdots + \frac{(\pm 1)^k n!}{(n-k)!} \frac{1}{k!} + \cdots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!} x^2 \mp \frac{n(n+1)(n+2)x^2}{3!} + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \pm x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \pm x^3 + x^4 \mp x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \pm x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \pm x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 \pm x^5 + x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 + x^5 + x^5 + \cdots$$

$$(1 \pm x)^{-1} = 1 \pm x^2 + x^3 + x^4 + x^5 + x^5$$

SERIES.

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots \qquad (x^{2} < \infty)$$

$$\tanh x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \dots \qquad (x^{2} < \frac{1}{4} \pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{6}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots \qquad (x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{5} + \frac{1}{7} x^{7} + \dots \qquad (x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{5} - \frac{61}{5040} x^{7} + \dots \qquad (x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots \qquad (x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots \qquad (\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} b_{o} + b_{1} \cos \frac{\pi x}{c} + b_{2} \cos \frac{2\pi x}{c} + \dots$$

$$+ a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots (-c < x < c)$$

$$a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$b_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

TABLE 7.- MATHEMATICAL CONSTANTS.

$e = 2.71828 \ 18285$	Numbers. $\pi = 3.14159 \ 26536$	Logarithms. 0.49714 98727
$e^{-1} = 0.36787 \ 94412$	$\pi^2 = 9.8696044011$	0.99429 97454
$M = \log_{10}c = 0.43429 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 \ 38509$	0.24857 49363
$\log_{10}\log_{10}e = 9.63778 \ 43113$	$\frac{\sqrt{\pi}}{2}$ = 0.88622 69255	9-94754 49407
$\log_{10} 2 = 0.30102 99957$	$\frac{1}{\sqrt{\pi}} = 0.56418 95835$	9.75142 50637
$\log_e 2 = 0.6931471806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10}x = M.\log_e x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_{B} x = \log_{e} x. \log_{B} e$	$\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$	9.90194 00615
$= \log_e x \div \log_e B$	$\frac{\pi}{4} = 0.78539 \ 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762$	$\frac{4}{8}\pi = 4.18879 02048$	0.62208 86093
$\log \rho = 9.67846 \ \text{o}3565$	$\frac{c}{\sqrt{2\pi}} = 1.08443 75514$	0.03520 45477

72	1000. $\frac{1}{\tilde{a}}$	n^2	n^3	√ n	n	1000. $rac{ ext{I}}{\hat{n}}$	n^2	n^3	√n
10	100.000	100	1000	3.1623	65	15.3846	4225	274625	8.0623
11	90.9091	121	1331	3.3166	66	15.1515	4356	287496	8.1240
12	83.3333	144	1728	3.4641	67	14.9254	4489	300763	8.1854
13	76.9231	169	2197	3.6056	68	14.7059	4624	314432	8.2462
14	71.4286	196	2744	3.7417	69	14.4928	4761	328509	8.3066
15	66.6667	225	337.5	3.8730	70	14.2857	4900	343000	8.3666
16	62.5000	256	4096	4.0000	71	14.0845	5041	357911	8.4261
17	58.8235	289	4913	4.1231	72	13.8889	5184	373248	8.4853
18	55.5556	324	5832	4.2426	73	13.6986	5329	389017	8.5440
19	52.6316	361	6859	4.3589	74	13.5135	5476	405224	8.6023
20	50.0000	400	8000	4.4721	75 76 77 78 79	13.3333	5625	421875	8.6603
21	47.6190	441	9261	4.5826		13.1579	5776	438976	8.7178
22	45.4545	484	10648	4.6904		12.9870	5929	456533	8.7750
23	43.4783	529	12167	4.7958		12.8205	6084	474552	8.8318
24	41.6667	576	13824	4.8990		12.6582	6241	493039	8.8882
25	40.0000	625	15625	5.0000	80	12.5000	6400	512000	8.9443
26	38.4615	676	17576	5.0990	81	12.3457	6561	531441	9.0000
27	37.0370	729	19683	5.1962	82	12.1951	6724	551368	9.0554
28	35.7143	784	21952	5.2915	83	12.0482	6889	571787	9.1104
29	34.4828	841	24389	5.3852	84	11.9048	70 56	592704	9.1652
30	33·3333	900	27000	5.4772	85	11.7647	7225	614125	9.2195
31	32·2581	961	29791	5.5678	86	11.6279	7396	636056	9.2736
32	31·2500	1024	32768	5.6569	87	11.4943	7569	658503	9.3274
33	30·3030	1089	35937	5.7446	88	11.3636	7744	681472	9.3808
34	29·4118	1156	39304	5.8310	89	11.2360	7921	704969	9.4340
35	28.5714	1225	42875	5.9161	90	11.1111	8100	729000	9.4868
36	27.7778	1296	46656	6.0000	91	10.9890	8281	753571	9.5394
37	27.0270	1369	50653	6.0828	92	10.8696	8464	778688	9.5917
38	26.3158	1444	54872	6.1644	93	10.7527	8649	804357	9.6437
39	25.6410	1521	59319	6.2450	94	10.6383	8836	830584	9.6954
40	25.0000	1600	64000	6.3246	95	10.5263	9025	85737 5	9.7468
41	24.3902	1681	68921	6.4031	96	10.4167	9216	884736	9.7980
42	23.8095	1764	74088	6.4807	97	10.3093	9409	912673	9.8489
43	23.2558	1849	79507	6.5574	98	10.2041	9604	941192	9.8995
44	22.7273	1936	85184	6.6332	99	10.1010	9801	970299	9.9499
45 46 47 48 49	22.2222 21.7391 21.2766 20.8333 20.4082	2025 2116 2209 2304 2401	91125 97336 103823 110592 117649	6.7082 6.7823 6.8557 6.9282 7.0000	100 101 102 103 104	10.0000 9.90099 9.80392 9.70874 9.61538	10000 10201 10404 10609 10816	1000000 1030301 1061208 1092727 1124864	10.0000 10.0499 10.0995 10.1489
50	20.0000	2500	125000	7.0711	105	9.52381	11025	1157625	10.2470
51	19.6078	2601	132651	7.1414	106	9.43396	11236	1191016	10.2956
52	19.2308	2704	140608	7.2111	107	9.34579	11449	1225043	10.3441
53	18.8679	2809	148877	7.2801	108	9.25926	11664	1259712	10.3923
54	18.5185	2916	157464	7.3485	109	9.17431	11881	1295029	10.4403
55	18.1818	3025	166375	7.4162	110	9.09091	12100	1331000	10.4881
56	17.8571	3136	175616	7.4833	111	9.00901	12321	1367631	10.5357
57	17.5439	3249	185193	7.5498	112	8.92857	12544	1404928	10.5830
58	17.2414	3364	195112	7.6158	113	8.84956	12769	1442897	10.6301
59	16.9492	3481	205379	7.6811	114	8.77193	12996	1481544	10.6771
60	16.6667	3600	216000	7.7460	115	8.69565	13225	1520875	10.7238
61	16.3934	3721	226981	7.8102	116	8.62069	13456	1560896	10.7703
62	16.1290	3844	238328	7.8740	117	8.54701	13689	1601613	10.8167
63	15.8730	3969	250047	7.9373	118	8.47458	13924	1643032	10.8628
64	15.6250	4096	262144	8.0000	119	8.40336	14161	1685159	10.9087

				1					
12	1000. $_{n}^{\mathrm{I}}$	n^2	n^3	√n	12	1000. $\frac{1}{n}$	n^2	n^3	\sqrt{n}
120	8.33333	14400	1728000	10.9545	175	5.71429	30625	5359375	13.2288
121	8.26446	14641	1771561	0000.11	176	5.68182	30976	5451776	13.2665
122	8.19072	14884	1815848	11.0454	177	5.64972	31329	5545233	13.3041
123	8.13008	15129	1860867	11.0905	178	5.61798	31684	5639752	13.3417
124	8.06452	15376	1906624	11.1355	179	5.58659	32041	5735339	13.3791
125	8.00000	15625	1953125	11.1803	180	5.55556	32400	5832000	13.4164
126	7.93651	15876	2000376	11.2250	181	5.52486	32761	5929741	13.4536
127	7.87402	16129	2048383	11.2694	182	5.49451	33124	6028568	13.4907
128	7.81250	16384	2097152	11.3137	183	5.46448	33489	6128487	13.5277
129	7.75194	16641	2146689	11.3578	184	5.43478	33856	6229504	13.5647
130	7.69231	16900	2107000	11.4018	185	5 40541	34225	6331625	13.6015
		17161	2197000 2248091		186	5.40541	34596	6434856	13.6382
131	7.63359	17424	2290968	11.4455 11.4891	187	5.37634	34969	6539203	13.6748
132	7.57576 7.51880	17689	2352637	11.5326	188	5.34759 5.31915	35344	6644672	13.7113
133 134	7.46269	17956	2406104	11.5758	189	5.29101	35721	6751269	13.7477
	7.40209								
135	7.40741	18225	2460375	11.6190	190	5.26316	36100	6859000	13.7840
136	7.35294	18496	2515456	11.6619	191	5.23560	36481	6967871	13.8203 13.8564
137 138	7.29927	18769	2571353	11.7047	192	5.20833	36864	7077888	
	7.24638	19044	2628072	11.7473	193	5.18135	37249 37636	7189057 7301384	13.8924
1 39	7.19424	19321	2685619	11.7898	194	5.1 5464	0.0		13.9204
140	7.14286	19600	2744000	11.8322	195	5.12821	38025	7414875	13.9642
141	7.09220	19881	2803221	11.8743	196	5.10204	38416	7 5 2 9 5 3 6	14.0000
142	7.04225	20164	2863288	11.9164	197	5.07614	38809	7645373	14.0357
143	6.99301	20449	2924207	11.9583	198	5.05051	39204	7762392	14.0712
144	6.94444	20736	2985984	12.0000	199	5.02513	39601	7880599	14.1067
145	6.89655	21025	3048625	12.0416	200	5.00000	40000	8000000	14.1421
146	6.84932	21316	3112136	12.0830	201	4.97512	40401	8120601	14.1774
147	6.80272	21609	3176523	12.1244	202	4.95050	40804	8242408	14.2127
148	6.75676	21904	3241792	12.1655	203	4.92611	41209	8365427	14.2478
149	6.71141	22201	3307949	12.2066	204	4.90196	41616	8489664	14.2829
150	6.66667	22500	337 5000	12.2474	205	4.87805	42025	8615125	14.3178
151	6.62252	22801	3442951	12.2882	206	4.85437	42436	8741816	14.3527
152	6.57895	23104	3511808	12.3288	207	4.83092	42849	8869743	14.3875
153	6.53595	23409	3581577	12.3693	208	4.80769	43264	8998912	14.4222
154	6.49351	23716	3652264	12.4097	209	4.78469	43681	9129329	14.4568
155	6.45161	24025	3723875	12.4499	210	4.76190	44100	9261000	14.4914
156	6.41026	24336	3796416	12.4900	211	4.73934	44521	9393931	14.5258
1 57	6.36943	24649	3869893	12.5300	212	4.71698	44944	9528128	14.5602
158	6.32911	24964	3944312	12.5698	213	4.69484	45369	9663597	14.5945
1 59	6.28931	25281	4019679	12.6095	214	4.67290	45796	9800344	14.6287
160	6.25000	25600	4096000	12.6491	215	4.65116	46225	9938375	14.6629
161	6.21118	25921	4173281	12.6886	216	4.62963	46656	10077696	14.6969
162	6.17.284	26244	4251528	12.7279	217	4.60829	47089	10218313	14.7309
163	6.13497	26569	4330747	12.7671	218	4.58716	47524	10360232	14.7648
164	6.097 56	26896	4410944	12.8062	219	4.56621	47961	10503459	14.7986
165	6.06061	27225	4492125	12.8452	220	4.54545	48400	10648000	14.8324
166	6.02410		4574296	12.8841	221	4.52489	48841	10793861	14.8661
167	5.98802	27556 27889	4657463	12.9228	222	4.50450	49284	10941048	14.8997
168	5.95238	28224	4741632	12.9615	223	4.48430	49729	11089567	14.9332
169	5.91716	28561	4826809	13.0000	224	4.46429	50176	11239424	14.9666
170	5.88235	28900	4913000	13.0384	225	4.44444	50625	11390625	15.0000
171	5.84795	29241	5000211	13.0767	226	4.42478	51076	11543176	15.0333
172	5.81395	29584	5088448	13.1149	227	1.10529	51529	11697083	15.0665
173	5.78035	29929	5177717	13.1529	228	4.38596	51984	11852352	15.0997
174	5.74713	30276	5268024	13.1909	229	4.36681	52441	12008989	15.1327
	1	,	1 .	" ' '	1	1		1	

12	1000.1	n^2	128	√n	12	1000.1	n^2	n^3	V 12
230	4·34783	52900	12167000	15.1658	285	3.50877	81225	23149125	16.8819
231	4·32900	53361	12326391	15.1987	286	3.49650	81796	23393656	16.9115
232	4·31034	53824	12487168	15.2315	287	3.48432	82369	23639903	16.9411
233	4·29185	54289	12049337	15.2643	288	3.47222	82944	23887872	16.9706
234	4·27350	54756	12812904	15.2971	289	3.46021	83521	24137569	17.0000
235	4.25532	55225	12977875	15.3297	290	3.44828	84100	24389000	17.0294
236	4.23729	55696	13144256	15.3623	291	3.43643	84681	24642171	17.0587
237	4.21941	56169	13312053	15.3948	292	3.42466	85264	24897088	17.0880
238	4.20168	56644	13481272	15.4272	293	3.41297	85849	25153757	17.1172
239	4.18410	57121	13651919	15.4596	294	3.40136	86436	25412184	17.1464
240	4.16667	57600	13824000	15.4919	295	3.38983	87025	25672375	17.1756
241	4.14938	58081	13997521	15.5242	296	3.37838	87616	25934336	17.2047
242	4.13223	58564	14172488	15.5563	297	3.36700	88209	26198073	17.2337
243	4.11523	59049	14348907	15.5885	298	3.35570	88804	26463592	17.2627
244	4.09836	59536	14526784	15.6205	299	3.34448	89401	26730899	17.2916
245	4.08163	60025	14706125	15.6525	300	3.33333	90000	27000000	17.3205
246	4.06504	60516	14886936	15.6844	301	3.32226	90601	27270901	17.3494
247	4.04858	61009	15069223	15.7162	302	3.31126	91204	27543608	17.3781
248	4.03226	61504	15252992	15.7480	303	3.30033	91809	27818127	17.4069
249	4.01606	62001	15438249	15.7797	304	3.28947	92416	28094464	17.4356
250	4.00000	62500	15625000	15.8114	305	3.27869	93025	28372625	17.4642
251	3.98406	63001	15813251	15.8430	306	3.26797	93636	28652616	17.4929
252	3.96825	63504	16003008	15.8745	307	3.25733	94249	28934443	17.5214
253	3.95257	64009	16194277	15.9060	308	3.24675	94864	29218112	17.5499
254	3.93701	64516	16387064	15.9374	309	3.23625	95481	29503629	17.5784
255	3.921 57	65025	16581375	15.9687	310	3.22581	96100	29791000	17.6068
256	3.90625	65536	16777216	16.0000	311	3.21543	96721	30080231	17.6352
257	3.89105	66049	16974593	16.0312	312	3.20513	97344	30371328	17.6635
258	3.87597	66564	17173512	16.0624	313	3.19489	97969	30664297	17.6918
259	3.86100	67081	17373979	16.0935	314	3.18471	98 5 96	30959144	17.7200
260	3.84615	67600	17576000	16.1245	31.5	3.17,460	99225	31255875	17.7482
261	3.83142	68121	17779581	16.1555	316	3.16456	99856	31554496	17.7764
262	3.81679	68644	17984728	16.1864	317	3.15457	100489	31855013	17.8045
263	3.80228	69169	18191447	16.2173	318	3.14465	101124	32157432	17.8326
264	3.78788	69696	18399744	16.2481	319	3.13480	101761	32461759	17.8606
265	3.77358	70225	18609625	16.2788	320	3.12500	102400	32768000	17.8885
266	3.75940	70756	18821096	16.3095	321	3.11526	103041	33076161	17.9165
267	3.74532	71289	19034163	16.3401	322	3.10559	103684	33386248	17.9444
268	3.73134	71824	19248832	16.3707	323	3.09598	104329	33698267	17.9722
269	3.71747	72361	1946 5 109	16.4012	324	3.08642	104976	34012224	18.0000
270	3.70370	72900	19683000	16.4317	325	3.07692	105625	34328125	18.0278
271	3.69004	73441	19902511	16.4621	326	3.06748	106276	34645976	18.0555
272	3.67647	73984	20123648	16.4924	327	3.05810	106929	34965783	18.0831
273	3.66300	74529	20346417	16.5227	328	3.04878	107584	35287552	18.1108
274	3.64964	75076	20570824	16.5529	329	3.03951	108241	35611289	18.1384
275 276 277 278 279	3.63636 3.62319 3.61011 3.59712 3.58423	75625 76176 76729 77284 77841	20796875 21024576 21253933 21484952 21717639	16.5831 16.6132 16.6433 16.6733 16.7033	330 331 332 333 334	3.03030 3.02115 3.01205 3.00300 2.99401	108900 109561 110224 110889	35937000 36264691 36594368 36926037 37259704	18.1659 18.1934 18.2209 18.2483 18.2757
280	3.57143	78400	21952000	16.7332	335	2.98507	112225	37595375	18.3030
281	3.55872	78961	22188041	16.7631	336	2.97619	112896	37933°56	18.3303
282	3.54610	79524	22425768	16.7929	337	2.96736	113569	38272753	18.3576
283	3.53357	80089	22665187	16.8226	338	2.95858	114244	38614472	18.3848
284	3.52113	80656	22906304	16.8523	339	2.94985	114921	38958219	18.4120

12	1000.1	n^2	n^3	√n	11	1000.1	n^2	n^3	√n
340	2.94118	115600	39304000	18.4391	395	2.53165	156025	61629875	19.8746
341	2.93255	11628 1	39651821	18.4662	396	2.52525	156816	62099136	19.8997
342	2.92398	116964	40001688	18.4932	397	2.51889	157609	62570773	19.9249
343	2.91545	117649	40353607	18.5203	398	2.51256	158404	63044792	19.9499
344	2.90698	118336	40707584	18.5472	399	2.50627	159201	63521199	19.9750
345	2.89855	119025	41063625	18.5742	400	2.50000	160000	64000000	20.0000
346	2.89017	119716	41421736	18.6011	401	2.49377	160801	64481201	20.0250
347	2.88184	120409	41781923	18.6279	402	2.48756	161604	64964808	20.0499
348	2.87356	121104	42144192	18.6548	403	2.48139	162409	65450827	20.0749
349	2.86533	121801	42508549	18.6815	404	2.47525	163216	65939264	20.0998
350	2.85714	122500	42875000	18.7083	405	2.46914	164025	66430125	20.1246
351	2.84900	123201	43243551	18.7350	406	2.46305	164836	66923416	20.1494
352	2.84091	123904	43614208	18.7617	407	2.45700	165649	67419143	20.1742
353	2.83286	124609	43986977	18.7883	408	2.45098	166464	67917312	20.1990
354	2.82480	125316	44361864	18.8149	409	2.44499	167281	68417929	20.2237
355	2.81690	126025	447 3887 5	18.8414	410	2.43902	168100	68921000	20.2485
356	2.80899	126736	451 18016	18.8680	411	2.43309	168921	69426531	20.2731
357	2.80112	127449	45499293	18.8944	412	2.42718	169744	69934528	20.2978
358	2.79330	128164	4588 2712	18.9209	413	2.42131	170569	70444997	20.3224
359	2.78552	128881	46268279	18.9473	414	2.41546	171396	70957944	20.3470
360	2.77778	129600	46656000	18.9737	415	2.40964	172225	71473375	20.3715
361	2.77008	130321	47045881	19.0000	416	2.40385	173056	71991296	20.3961
362	2.76243	131044	47437928	19.0263	417	2.39808	173889	72511713	20.4206
363	2.75482	131769	47832147	19.0526	418	2.39234	174724	73034632	20.4450
364	2.74725	132496	48228544	19.0788	419	2.38663	175561	73560059	20.4695
365	2.73973	133225	4862712 5	19.1050	420	2.38095	176400	74088000	20.4939
366	2.73224	133956	49027896	19.1311	421	2.37530	177241	74618461	20.5183
367	2.72480	134689	49430863	19.1572	422	2.36967	178084	75151448	20.5426
368	2.71739	135424	49836032	19.1833	423	2.36407	178929	75686967	20.5670
369	2.71003	136161	50243409	19.2094	424	2.35849	179776	76225024	20.5913
370	2.70270	136900	50653000	19.2354	425	2.35294	180625	76765625	20.61 55
371	2.69542	137641	51064811	19.2614	426	2.34742	181476	77308776	20.6398
372	2.68817	138384	51478848	19.2873	427	2.34192	182329	77854483	20.6640
373	2.68097	139129	51895117	19.3132	428	2.33645	183184	78402752	20.6882
374	2.67380	139876	52313624	19.3391	429	2.33100	184041	78953589	20.7123
375	2.66667	140625	52734375	19.3649	430	2.32558	184 9 00	79507000	20.7364
376	2.65957	141376	53157376	19.3907	431	2.32019	185761	80062991	20.7605
377	2.65252	142129	53582633	19.4165	432	2.31481	186624	80621568	20.7846
378	2.64550	142884	54010152	19.4422	433	2.30947	187489	81182737	20.8087
379	2.63852	143641	54439939	19.4679	434	2.30415	188356	81746504	20.8327
380	2.63158	144400	5487 2000	19.4936	435	2.29885	189225	82312875	20.8567
381	2.62467	145161	55306341	19.5192	436	2.29358	190096	82881856	20.8806
382	2.61780	145924	55742968	19.5448	437	2.28833	190969	83453453	20.9045
383	2.61097	146689	56181887	19.5704	438	2.28311	191844	84027672	20.9284
384	2.60417	147456	56623104	19.5959	439	2.27790	192721	84604519	20.9523
385	2.59740	148225	57066625	19.6214	440	2.27273	193600	85184000	20.9762
386	2.59067	148996	57512456	19.6469	441	2.26757	194481	85766121	21.0000
387	2.58398	149769	57960603	19.6723	442	2.26244	195364	86350888	21.0238
388	2.57732	150544	58411072	19.6977	443	2.25734	196249	86938307	21.0476
389	2.57009	151321	58863869	19.7231	444	2.25225	197136	87528384	21.0713
390	2.56410	152100	59319000	19.7484	445	2.24719	198025	88121125	21.0950
391	2.55754	152881	5977647 1	19.7737	446	2.24215	198916	88716536	21.1187
392	2.55102	153664	60236288	19.7990	447	2.23714	199809	89314623	21.1424
393	2.54453	154449	60698457	19.8242	448	2.23214	200704	89915392	21.1660
394	2.53807	155236	61162984	19.8494	449	2.22717	201601	90518849	21.1896

n	1000.1	n^2	n^3	112	11	1000.1	n^2	n_3	√n
450	2.22222	202500	91125000	21.2132	505	1.98020	255025	128787625	22.4722
451	2.21729	203401	91733851	21.2368	506	1.97628	256036	129554216	22.4944
452	2.21239	204304	92345408	21.2603	507	1.97239	257049	130323843	22.5167
453	2.20751	205209	92959677	21.2838	508	1.96850	258064	131096512	22.5389
454	2.20264	206116	93576664	21.3073	509	1.96464	259081	131872229	22.5610
455	2.19780	207025	94196375	21.3307	510	1.96078	260100	132651000	22.5832
456	2.19298	207936	94818816	21.3542	511	1.95695	261121	133432831	22.6053
457	2.18818	208849	95443993	21.3776	512	1.95312	262144	134217728	22.6274
458	2.18341	209764	96071912	21.4009	513	1.94932	263169	135005697	22.6495
459	2.17805	210681	96702579	21.4243	514	1.94553	264196	135790744	22.6716
460	2.17391	211600	97336000	21.4476	515	1.94175	265225	136590875	22.6936
461	2.16920	212521	97972181	21.4709	516	1.93798	266256	137388096	22.7156
462	2.16450	213444	98611128	21.4942	517	1.93424	267289	138188413	22.7376
463	2.15983	214369	99252847	21.5174	518	1.93050	268324	138991832	22.7596
464	2.15517	215296	99897344	21.5407	519	1.92678	269361	139798359	22.7816
465	2.15054	216225	100544625	21.5639	520	1.92308	270400	1,40608000	22.8035
466	2.14592	217156	101194696	21.5870	521	1.91939	271441	1,41,420761	22.8254
467	2.14133	218089	101847563	21.6102	522	1.91571	272484	1,422,366,48	22.8473
468	2.13675	219024	102503232	21.6333	523	1.91205	273529	1,430,55667	22.8692
469	2.13220	219961	103161709	21.6564	524	1.90840	274576	1,43877824	22.8910
470	2.12766	220900	103823000	21.6795	525	1.90476	275625	144703125	22.9129
471	2.12314	221841	104487111	21.7025	526	1.90114	276676	145531576	22.9347
472	2.11864	222784	105154048	21.7256	527	1.89753	277729	146363183	22.9565
473	2.11416	223729	105823817	21.7486	528	1.89394	278784	147197952	22.9783
474	2.10970	224676	106496424	21.7715	529	1.89036	279841	148035889	23.0000
475	2.10526	225625	107171875	21.7945	530	1.88679	280900	148877000	23.0217
476	2.10084	226576	107850176	21.8174	531	1.88324	281961	149721291	23.0434
477	2.09644	227529	108531333	21.8403	532	1.87970	283024	150568768	23.0651
478	2.09205	228484	109215352	21.8632	533	1.87617	284089	151419437	23.0868
479	2.08768	229441	109902239	21.8861	534	1.87266	285156	152273304	23.1084
480	2.08333	230400	110592000	21.9089	535	1.86916	286225	153130375	23.1301
481	2.07900	231361	111284641	21.9317	536	1.86567	287296	153990656	23.1517
482	2.07469	232324	111980168	21.9545	537	1.86220	288369	154854153	23.1733
483	2.07039	233289	112678587	21.9773	538	1.85874	289444	155720872	23.1948
484	2.06612	234256	113379904	22.0000	539	1.85529	290521	156590819	23.2164
485	2.06186	235225	114084125	22.0227	540	1.85185	291600	157464000	23.2379
486	2.05761	236196	114791256	22.0454	541	1.84843	292681	158340421	23.2594
487	2.05339	237169	115501303	22.0681	542	1.84502	293764	159220088	23.2809
488	2.04918	238144	116214272	22.0907	543	1.84162	294849	160103007	23.3024
489	2.04499	239121	116930169	22.1133	544	1.83824	295936	160989184	23.3238
490	2.04082	240100	117649000	22.1359	545	1.83486	297025	161878625	23.3452
491	2.03666	241081	118370771	22.1585	546	1.83150	298116	162771336	23.3666
492	2.03252	242064	119095488	22.1811	547	1.82815	299209	163667323	23.3880
493	2.02840	243049	119823157	22.2036	548	1.82482	300304	164566592	23.4994
494	2.02429	244036	120553784	22.2261	549	1.82149	301401	165469149	23.4307
495	2.02020	245025	121287375	22.2486	550	1.81818	302500	166375000	23.4521
496	2.01613	246016	122023936	22.2711	551	1.81488	303601	167284151	23.4734
497	2.01207	247009	122763473	22.2935	552	1.81159	304704	168196608	23.4947
498	2.00803	248004	123505992	22.3159	553	1.80832	305809	169112377	23.5160
499	2.00401	249001	124251499	22.3383	554	1.80505	306916	170031464	23.5372
500	2.00000	250000	125000000	22.3607	555	1.80180	308025	170953875	23.5584
501	1.99601	251001	125751501	22.3830	556	1.79856	309136	171879616	23.5797
502	1.99203	252004	126506008	22.4054	557	1.79533	310249	172808693	23.6008
503	1.98807	253009	127263527	22.4277	558	1.79211	311364	173741112	23.6220
504	1.98413	254016	128024064	22.4499	559	1.78891	312481	174676879	23.6432

72	IOOO. $\frac{1}{n}$	n^2	n ³	√n	n	1000 <u>.</u>	n^2	n^3	√n
560	1.78571	313600	1 7 5616000	23.6643	615	1.62602	378225	232608375	24.7992
561	1.78253	314721	176558481	23.6854	616	1.62338	379456	233744896	24.8193
562	1.77936	315844	177504328	23.7065	617	1.62075	380689	234885113	24.8395
563	1.77620	316969	178453547	23.7276	618	1.61812	381924	236029032	24.8596
564	1.77305	318096	179406144	23.7487	619	1.61551	383161	237176659	24.8797
565 566 567 568 569	1.76991 1.76678 1.76367 1.76056	319225 320356 321489 322624 323761	180362125 181321496 182284263 183250432 184220009	23.7697 23.7908 23.8118 23.8328 23.8537	620 621 622 623 624	1.61290 1.61031 1.60772 1.60514 1.60256	384400 385641 386884 388129 389376	238328000 239483061 240641848 241804367 242970624	24.8998 24.9199 24.9399 24.9600 24.9800
570	1.75439	324900	185193000	23.8747	625	1.60000	390625	244140625	25.0000
571	1.75131	326041	186169411	23.8956	626	1.59744	391876	245314376	25.0200
572	1.74825	327184	187149248	23.9165	627	1.59490	393129	246491883	25.0400
573	1.74520	328329	188132517	23.9374	628	1.59236	394384	247673152	25.0599
574	1.74216	329476	189119224	23.9583	629	1.58983	395641	248858189	25.0799
575	1.73913	330625	190109375	23.9792	630	1.58730	396900	250047000	25.0998
576	1.73611	331776	191102976	24.0000	631	1.58479	398161	251239591	25.1197
577	1.73310	332929	192100033	24.0208	632	1.58228	399424	252435968	25.1396
578	1.73010	334084	193100552	24.0416	633	1.57978	400689	253636137	25.1595
579	1.72712	335241	194104539	24.0624	634	1.57729	401956	254840104	25.1794
580	1.72414	336400	195112000	24.0832	635	1.57480	403225	256047875	25.1992
581	1.72117	337561	196122941	24.1039	636	1.57233	404496	257259456	25.2190
582	1.71821	338724	197137368	24.1247	637	1.56986	405769	258474853	25.2389
583	1.71527	339889	198155287	24.1454	638	1.56740	407044	259694072	25.2587
584	1.71233	341056	199176704	24.1661	639	1.56495	408321	260917119	25.2784
585	1.70940	342225	200201625	24.1868	640	1.56250	409600	262144000	25.2982
586	1.70648	343396	201230056	24.2074	641	1.56006	410881	263374721	25.3180
587	1.70358	344569	202262003	24.2281	642	1.55763	412164	264609288	25.3377
588	1.70068	345744	203297472	24.2487	643	1.55521	413449	265847707	25.3574
589	1.69779	346921	204336469	24.2693	644	1.55280	414736	267089984	25.3772
590	1.69492	348100	205379000	24.2899	645	1.55039	416025	268336125	25.3969
591	1.69205	349281	206425071	24.3105	646	1.54799	417316	269586136	25.4165
592	1.68919	350464	207474688	24.3311	647	1.54560	418609	270840023	25.4362
593	1.68634	351649	208527857	24.3516	648	1.54321	419904	272097792	25.4558
594	1.68350	352836	209584584	24.3721	649	1.54083	421201	273359449	25.4755
595	1.68067	354025	210644875	24.3926	650	1.53846	422500	274625000	25.4951
596	1.67785	355216	211708736	24.4131	651	1.53610	423801	275894451	25.5147
597	1.67504	356409	212776173	24.4336	652	1.53374	425104	277167808	25.5343
598	1.67224	357604	213847192	24.4540	653	1.53139	426409	278445077	25.5539
599	1.66945	358801	214921799	24.4745	654	1.52905	427716	279 7 26264	25.5734
600	1.66667	360000	216000000	24.4949	655	1.52672	429025	281011375	25.5930
601	1.66389	361201	217081801	24.5153	656	1.52439	430336	282300416	25.6125
602	1.66113	362404	218167208	24.5357	657	1.52207	431649	283593393	25.6320
603	1.65837	363609	219256227	24.5561	658	1.51976	432964	284890312	25.6515
604	1.65563	364816	220348864	24.5764	659	1.51745	434281	286191179	25.6710
605	1.65289	366025	221445125	24.5967	660	1.51515	435600	287496000	25.6905
606	1.65017	367236	222545016	24.6171	661	1.51286	436921	288804781	25.7099
607	1.64745	368449	223648543	24.6374	662	1.51057	438244	290117528	25.7294
608	1.64474	369664	224755712	24.6577	663	1.50830	439569	291434247	25.7488
609	1.64204	370881	225866529	24.6779	664	1.50602	440896	292 7 54944	25.7682
610	1.63934	372100	226981000	24.6982	665	1.50376	442225	294079625	25.7876
611	1.63666	373321	228099131	24.7184	666	1.50150	443556	295408296	25.8070
612	1.63399	374544	229220928	24.7386	667	1.49925	444889	296740963	25.8263
613	1.63132	375769	230346397	24.7588	668	1.49701	446224	298077632	25.8457
614	1.62866	376996	231475544	24.7790	669	1.49477	447561	299418309	25.8650

12	10001	n^2	n^3	V 12	12	1000. $\frac{1}{n}$	n^2	12 ³	V 12
670	1.49254	448900	300763000	25.8844	725 726 727 728 729	1.37931	525625	381078125	26.9258
671	1.49031	450241	302111711	25.9037		1.37741	527076	382657176	26.9444
672	1.48810	451584	303464448	25.9230		1.37552	528529	384240 5 83	26.9629
673	1.48588	452929	304821217	25.9422		1.37363	529984	385828352	26.9815
674	1.48368	454276	306182024	25.9615		1.37174	531441	387420489	27.0000
675	1.48148	455625	307546875	25.9808	730	1.36986	532900	389017000	27.0185
676	1.47929	456976	308915776	26.0000	731	1.36799	534361	390617891	27.0370
677	1.47710	458329	310288733	26.0192	732	1.36612	535824	392223168	27.0555
678	1.47493	459684	311665752	26.0384	733	1.36426	537289	393832837	27.0740
679	1.47275	461041	313046839	26.0576	734	1.36240	538756	395446904	27.0924
680	1.47059	462400	314432000	26.0768	735	1.36054	540225	397065375	27.1109
681	1.46843	463761	315821241	26.0960	736	1.35870	541696	398688256	27.1293
682	1.46628	465124	317214568	26.1151	737	1.35685	543169	400315553	27.1477
683	1.46413	466489	318611987	26.1343	738	1.35501	544644	401947272	27.1662
684	1.46199	467856	320013504	26.1534	739	1.35318	546121	403583419	27.1846
685	1.45985	469225	321419125	26.1725	740	1.35135	547600	405224000	27.2029
686	1.45773	470596	322828856	26.1916	741	1.34953	549081	406869021	27.2213
687	1.45560	471969	324242703	26.2107	742	1.34771	550564	408518488	27.2307
688	1.45349	473344	325660672	26.2298	743	1.34590	552049	410172407	27.2580
689	1.45138	474721	327082769	26.2488	744	1.34409	553536	411830784	27.2764
690	1.44928	476100	328509000	26,2679	745	1.34228	555025	413493625	27.2947
691	1.44718	477481	329939371	26,2869	746	1.34048	556516	415160936	27.3130
692	1.44509	478864	331373888	26,3059	747	1.33869	558009	416832723	27.3313
693	1.44300	480249	332812557	26,3249	748	1.33690	559504	418508992	27.3496
694	1.44092	481636	334255384	26,3439	749	1.33511	561001	420189749	27.3079
695	1.43885	483025	335702375	26.3629	750	1.33333	562500	421875000	27.3861
696	1.43678	484416	337153536	26.3818	751	1.33156	564001	423564751	27.4044
697	1.43472	485809	338608873	26.4008	752	1.32979	565504	425259008	27.4226
698	1.43266	487204	340368392	26.4197	753	1.32802	567009	426957777	27.4408
699	1.43062	488601	341532099	26.4386	754	1.32626	568516	428661064	27.4591
700	1.42857	490000	343000000	26.4575	755 756 757 758 759	1.32450	570025	430368875	27.4773
701	1.42653	491401	344472101	26.4764		1.32275	571536	432081216	27.4955
702	1.42450	492804	345948408	26.4953		1.32100	573049	433798093	27.5136
703	1.42248	494209	347428927	26.5141		1.31926	574564	435519512	27.5318
704	1.42045	495616	348913664	26.5330		1.31752	576081	437245479	27.5500
705	1.41844	497025	350402625	26.5518	760	1.31579	577600	438976000	27.5681
706	1.41643	498436	351895816	26.5707	761	1.31406	579121	440711081	27.5862
707	1.41443	499849	353393243	26.5895	762	1.31234	580644	442450728	27.6043
708	1.41243	501264	354894912	26.6083	763	1.31062	582169	444194947	27.6225
709	1.41044	502681	356400829	26.6271	764	1.30890	583696	445943744	27.6405
710	1.40845	504100	357911000	26.6458	765	1.30719	585225	447697125	27.6586
711	1.40647	505521	359425431	26.6646	766	1.30548	580756	449455096	27.6767
712	1.40449	506944	360944128	26.6833	767	1.30378	588289	451217663	27.6948
713	1.40252	508369	362467097	26.7021	768	1.30208	589824	452984832	27.7128
714	1.40056	509796	363994344	26.7208	769	1.30039	591361	454756609	27.7308
715	1.39860	511225	365525875	26.7395	770	1.29870	592900	456533000	27.7489
716	1.39665	512656	367061696	26.7582	771	1.29702	594441	458314011	27.7669
717	1.39470	514089	368601813	26.7769	772	1.29534	595984	460099648	27.7849
718	1.39276	515524	370146232	26.7955	773	1.29366	597529	461889917	27.8029
719	1.39082	516961	371694959	26.8142	774	1.29199	599076	463684824	27.8209
720	1.38889	518400	373248000	26.8328	775	1.29032	600625	465484375	27.8388
721	1.38696	519841	374805361	26.8514	776	1.28866	602176	467288576	27.8568
722	1.38504	521284	376367048	26.8701	777	1.28700	603729	469097433	27.8747
723	1.38313	522729	377933067	26.8887	778	1.28535	605284	470910952	27.8927
724	1.38122	524176	379503424	26.9072	779	1.28370	606841	472729139	27.9106

n	1000.1	n^2	n^3	√n	n	1000. $\frac{1}{n}$	n^2	12 ³	√n
780 781 782 783	1.28205	608400	474552000	27.9285	835	1.19760	697225	582182875	28.8964
	1.28041	609961	476379541	27.9464	836	1.19617	698896	584277056	28.9137
	1.27877	611524	478211768	27.9643	837	1.19474	700569	586376253	28.9310
	1.27714	613089	480048687	27.9821	838	1.19332	702244	588480472	28.9482
784 785 786 787 788	1.27551 1.27389 1.27220 1.27065 1.26904	614656 616225 617796 619369 620944 622521	481890304 483736625 485587656 487443403 489303872 491169069	28.0000 28.0179 28.0357 28.0535 28.0713 28.0891	839 840 841 842 843 844	1.19190 1.19048 1.18906 1.18765 1.18624 1.18483	703921 705600 707281 708964 710649 712336	59°589719 5927°04000 594823321 596947688 599077107 601211584	28.9655 28.9828 29.0000 29.0172 29.0345 29.0517
789 790 791 792 793 794	1.26743 1.26582 1.26422 1.26263 1.26103 1.25945	624100 625681 627264 628849 630436	493039000 494913671 496793088 498677257 500566184	28.1069 28.1247 28.1425 28.1603 28.1780	845 846 847 848 849	1.18343 1.18203 1.18064 1.17925 1.17786	714025 715716 717409 719104 720801	603351125 605495736 607645423 609800192 611960049	29.0689 29.0861 29.1033 29.1204 29.1376
795 796 797 798 799	1.25786	632025	5024 5 987 5	28.1957	850	1.17647	722500	614125000	29.1548
	1.25628	633616	504358336	28.2135	851	1.17509	724201	616295051	29.1719
	1.25471	635209	506261573	28.2312	852	1.17371	725904	618470208	29.1890
	1.25313	636804	508169592	28.2489	853	1.17233	727609	620650477	29.2062
	1.25156	638401	510082399	28.2666	854	1.17096	729316	622835864	29.2233
800	1.25000	640000	512000000	28.2843	855	1.16959	731025	62 5 02 6 375	29.2404
801	1.24844	641601	513922401	28.3019	856	1.16822	732736	627222016	29.2575
802	1.24688	643204	515849608	28.3196	857	1.16686	734449	629422793	29.2746
803	1.24533	644809	517781627	28.3373	858	1.16550	736164	631628712	29.2916
804	1.24378	646416	519718464	28.3549	859	1.16414	737881	633839779	29.3087
805	1.24224	648025	521660125	28.3725	860	1.16279	739600	636056000	29.3258
806	1.24069	649636	523606616	28.3901	861	1.16144	741321	638277381	29.3428
807	1.23916	651249	525557943	28.4077	862	1.16009	743044	640503928	29.3598
808	1.23762	652864	527514112	28.4253	863	1.15875	744769	642735647	29.3769
809	1.23609	654481	529475129	28.4429	864	1.15741	746496	644972544	29.3939
810	1.23457	656100	531441000	28.4605	865	1.15607	748225	647214625	29.4109
811	1.23305	657721	533411731	28.4781	866	1.15473	749956	649461896	29.4279
812	1.23153	659344	535387328	28.4956	867	1.15340	751689	651714363	29.4449
813	1.23001	660969	5373 ⁶ 7797	28.5132	868	1.15207	753424	653972032	29.4618
814	1.22850	662 5 96	539353144	28.5307	869	1.15075	755161	656234909	29.4788
815	1.22699	664225	541343375	28.5482	870	1.14943	756900	658503000	29.4958
816	1.22549	665856	543338496	28.5657	S71	1.14811	758641	660776311	29 51 27
817	1.22399	667489	545338513	28.5832	S72	1.14679	760384	663054848	29.5296
818	1.22249	669124	547343432	28.6007	S73	1.14548	762129	665338617	29.5466
819	1.22100	670761	549353259	28.6182	S74	1.14416	7 63876	667627624	29.5635
820	1.21951	672400	551368000	28.6356	875	1.14286	765625	669921875	29.5804
\$21	1.21803	674041	553387661	28.6531	876	1.14155	767376	672221376	29.5973
\$22	1.21655	675684	555412248	28.6705	877	1.14025	769129	674526133	29.6142
\$23	1.21507	677329	557441 7 67	28.6880	878	1.13895	770884	676836152	29.6311
\$24	1.21359	678976	5594 762 24	28.7054	879	1.13766	772641	679151439	29.6479
825	1.21212	680625	561 51 562 5	28.7228	880	1.13636	774400	681472000	29.6648
826	1.21065	682276	563559976	28.7402	881	1.13507	776161	683797841	29.6816
827	1.20919	683929	565609283	28.7576	882	1.13379	777924	686128968	29.6985
828	1.20773	685584	567663552	28.7750	883	1.13250	779689	688465387	29.7153
829	1.20627	687241	569 7227 89	28.7924	884	1.13122	781456	690807104	29.7321
830	1.20482	688900	571787000	28.8097	885	1.12994	783225	693154125	29.7489
831	1.20337	690561	573856191	28.8271	886	1.12867	784996	695506456	29.7658
832	1.20192	692224	575930368	28.8444	887	1.12740	786769	697864103	29.7825
833	1.20048	693889	578009537	28.8617	888	1.12613	788544	700227072	29.7993
834	1.19904	695556	580093704	28.8791	889	1.12486	790321	702595369	29.8161

n	1.0001	n^2	n ³	\sqrt{n}	12	1000.1	n^2	n^3	V ж
890	1.12360	792100	704969000	29.8329	945	1.05820	893025	843908625	30.7409
891	1.12233	793881	707347971	29.8496	946	1.05708	894916	846590536	30.7571
892	1.12108	795664	709732288	29.8664	947	1.05597	896809	849278123	30.7734
893	1.11982	797449	712121957	29.8831	948	1.05485	898704	851971392	30.7896
894	1.11857	799236	714516984	29.8998	949	1.05374	900601	854670349	30.8058
895	1.11732	801025	716917375	29.9166	950	1.05263	902500	857375000	30.8221
\$96	1.11607	802816	719323136	29.9333	951	1.05152	904401	860085351	30.8383
\$97	1.11483	804609	721734273	29.9500	952	1.05042	906304	862801408	30.8545
\$98	1.11359	806404	724130792	29.9666	953	1.04932	908209	865523177	30.8707
\$99	1.11235	808201	726572699	29.9833	954	1.04822	910116	868250664	30.8869
900	1.11111	\$10000	729000000	30.0000	955	1.04712	912025	870983875	30.9031
901	1.10988	\$11801	731432701	30.0167	956	1.04603	913936	873722816	30.9192
902	1.10865	\$13604	733870808	30.0333	957	1.04493	915849	876467493	30.9354
903	1.10742	\$15409	736314327	30.0500	958	1.04384	917764	879217912	30.9516
904	1.10619	\$17216	738763264	30.0666	959	1.04275	919681	881974079	30.9677
905	I.10497	\$19 0 25	741217625	30.0832	960	1.04167	921600	884736000	30.9839
906	I.10375	\$20836	743677416	30.0998	961	1.04058	923521	887503681	31.0000
907	I.10254	\$22649	746142643	30.1164	962	1.03950	925444	890277128	31.0161
908	I.10132	\$24464	748613312	30.1330	963	1.03842	927369	893056347	31.0322
909	I.10011	\$26281	751089429	30.1496	964	1.03734	929296	89 5 841344	31.0483
910	1.09890	828100	753571000	30.1662	965	1.03627	931225	898632125	31.0644
911	1.09769	829921	756058031	30.1828	966	1.03520	933156	901428696	31.0805
912	1.09649	831744	758550528	30.1993	967	1.03413	935089	904231063	31.0966
913	1.09529	833569	761048497	30.2159	968	1.03306	937024	907039232	31.1127
914	1.09409	835396	763551944	30.2324	969	1.03199	938961	909853209	31.1288
915	1.09290	\$37225	766060875	30.2490	970	1.03093	940900	912673000	31.1448
916	1.09170	\$39056	768575296	30.2655	971	1.02987	942841	915498611	31.1609
917	1.09051	\$40889	771095213	30.2820	972	1.02881	944784	918330048	31.1769
918	1.08932	\$42724	773620632	30.2985	973	1.02775	946729	921167317	31.1929
919	1.08814	\$44561	776151559	30.3150	974	1.02669	948676	924010424	31.2090
920	1.08696	846400	778688000	30.3315	975	1.0256.1	950625	926859375	31.2250
921	1.08578	848241	781229961	30.3480	976	1.02459	952576	929714176	31.2410
922	1.08460	850084	783777448	30.3645	977	1.02354	954529	932574833	31.2570
923	1.08342	851929	786330467	30.3809	978	1.02249	956484	935441352	31.2730
924	1.08225	853776	788889024	30.3974	979	1.02145	958441	938313739	31.2890
925	1.08108	855625	791453125	30.4138	980	1.02041	960400	941192000	31.3050
926	1.07991	857476	794022776	30.4302	981	1.01937	962361	944076141	31.3209
927	1.07875	859329	796597983	30.4467	982	1.01833	964324	946966168	31.3369
928	1.07759	861184	799178752	30.4631	983	1.01729	966289	949862087	31.3528
929	1.07643	863041	801 7 65 0 89	30.4795	984	1.01626	968256	952763904	31.3688
930	1.07527	864900	804357000	30.4959	985	1.01523	970225	955671625	31.3847
931	1.07411	866761	806954491	30.5123	986	1.01420	972196	958585256	31.4006
932	1.07296	868624	809557568	30.5287	987	1.01317	974169	961504803	31.4166
933	1.07181	870489	812166237	30.5450	988	1.01215	976144	964430272	31.4325
934	1.07066	872356	814780504	30.5614	989	1.01112	978121	967361669	31.4484
935	1.06952	874225	817400375	30.57 7 8	990	1.01010	980100	970299000	31.4643
936	1.06838	876096	820025856	30.5941	991	1.00908	982081	973242271	31.4802
937	1.06724	877969	822656953	30.6105	992	1.00806	984064	976191488	31.4960
938	1.06610	879844	825293672	30.6268	993	1.00705	986049	979146657	31.5119
939	1.06496	881 7 21	827936019	30.6431	994	1.00604	988036	982107784	31.5278
940	1.06383	883600	830584000	30.6594	995	1.00503	990025	985074875	31.5436
941	1.06270	885481	833237621	30.6757	996	1.00402	992016	988047936	31.5595
942	1.06157	887364	835896888	30.6920	997	1.00301	994009	991026973	31.5753
943	1.06045	889249	838561807	30.7083	998	1.00200	996004	994011992	31.5911
944	1.05932	891136	841232384	30.7246	999	1.00100	998001	997002999	31.6070

TABLE 9. LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115 116 117 118 119	0607 0645 0682 0719 0755	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	0622 0660 0697 0734 0770	0626 0663 0700 0737 0774	0630 0667 0704 0741	0633 0671 0708 0745 0781	0637 0674 0711 0748 0785	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910	o8o6 o842 o878 o913 o948	0810 0846 0881 0917 0952	0813 0849 0885 0920 0955	0817 0853 0888 0924 0959	0821 0856 0892 0927 0962	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145 146 147 148 149	1614 1644 1673 1703 1732	1617 1647 1676 1706	1620 1649 1679 1708 1738	1623 1652 1682 1711 1741	1626 1655 1685 1714 1744	1629 1658 1688 1717 1746	1632 1661 1691 1720 1749	1635 1664 1694 1723 1752	1638 1667 1697 1726 1755	1641 1670 1700 1729 1758	1644 1673 1703 1732 1761

LOGARITHMS.

N.	О	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	18 <i>2</i> 7	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2 7 88
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 10.

N	0	1	2	3	4	5	6	7	8	9			P. F	· .	_
1/4					T						1	2	3	4	5
10 11 12 13 14	0000 0414 0792 1139 1461	0043 0453 0828 1173 1492	0086 0492 0864 1206 1523	0128 0531 0899 1239 1553	0170 0569 0934 1271 1584	0212 0607 0969 1303 1614	0253 0645 1004 1335 1644	0294 0682 1038 1367 1673	0334 0719 1072 1399 1703	0374 0755 1106 1430 1732	4 4 3 3 3	8 8 7 6 6	12 11 10 10	17 15 14 13	21 19 17 16
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 2 2 2	6 5 5 4	8 8 7 7 7	11 10 9 9	14 13 12 12
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3 ⁸ 74	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2 2	4 4 4 4 4	6 6 6 5 5	8 8 8 7 7	11 10 10 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4065 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 47 5 7	2 2 2 2 1	3 3 3 3	5 5 5 4	7 7 6 6 6	9 8 8 7
30 31 32 33 34	477 I 4914 505 I 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	1 1 1 1	3 3 3 3 3	4 4 4 4 4	6 6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5599 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	1 1 1 1 1	2 2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	607 5 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	I I I I	2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7 267 7348	7024 7110 7 193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2 2	3 3 2 2 2	3 3 3 3	4 4 4 4 4

LOGARITHMS.

N.	0	1	2	3	4	5	6	7	8	9			P. I	٠.	
14.						<u>.</u>					1	2	3	4	5
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	74 ² 7 75 ⁰ 5 75 ⁸ 2 7 ⁶ 57 773 ¹	743 5 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 1	2 2 2 2 2	3 3 3 3	1 1 4 4
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	I I I I	I I I I	2 2 2 2	3 3 3 3	4 4 3 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 823 5 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	1 1 1 1	I I I I	2 2 2 2	3 3 3 3	3 3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 852 5 858 5 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	III	I I I I	2 2 2 2	2 2 2 2 2	3 3 3 3
75 76 77 78 79	8751 8808 8865 8921 8976	87 56 88 14 88 7 1 89 2 7 89 8 2	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	878 5 8842 8899 8954 9009	8791 8848 8904 8960 9015	879 7 8854 8910 8965 9020	8802 8859 8915 8971 9025	1 1 1	I I I I	2 2 2 2	2 2 2 2	3 3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	I I I I	I I I I	2 2 2 2	2 2 2 2	3 3 3 3 3
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	1 0 0	I I I I	2 2 1 1 1	2 2 2 2	3 2 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9 5 62 9609 9657 9703 97 5 0	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	00000	I I I I	I I I I	2 2 2 2	2 2 2 2 2
95 96 97 98 99	977 7 98 23 9868 9912 99 5 6	9782 9827 987 2 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	979 5 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	00000	I I I I	I I I I	2 2 2 2	2 2 2 2 2

TABLE 11.
ANTILOGARITHMS.

	_		2	2	4	5	6	7	8	9]	P. P	·.	
	0	1		3	4	э				9	1	2	3	4	5
.00 .01 .02 .03 .04	1000 1023 1047 1072 1096	1002 1026 1050 1074 1099	1005 1028 1052 1076 1102	1007 1030 1054 1079 1104	1009 1033 1057 1081 1107	1012 1035 1059 1084 1109	1014 1038 1062 1086	1016 1040 1064 1089	1019 1042 1067 1091	1021 1045 1069 1094 1119	00000	0 0 0	I I I I	I I I I	I I I
.05 .06 .07 .08 .09	1122 1148 1175 1202 1230	1125 1151 1178 1205 1233	1127 1153 1180 1208 1236	1130 1156 1183 1211 1239	1132 1159 1186 1213 1242	1135 1161 1189 1216 1245	1138 1164 1191 1219	1140 1167 1194 1222 1250	1143 1169 1197 1225 1253	1146 1172 1199 1227 1256	00000	I I I I	I I I I	I I I I	I I I I
.10 .11 .12 .13 .14	1259 1288 1318 1349 1380	1262 1291 1321 1352 1384	1265 1294 1324 1355 1387	1268 1297 1327 1358 1390	1271 1300 1330 1361 1393	1274 1303 1334 1365 1396	1276 1306 1337 1368 1400	1279 1309 1340 1371 1403	1282 1312 1343 1374 1406	1285 1315 1346 1377 1409	0 0 0 0	I I I	I I I I	I I I I	I 2 2 2 2
.15 .16 .17 .18	1413 1445 1479 1514 1549	1416 1449 1483 1517 1552	1419 1452 1486 1521 1556	1422 1455 1489 1524 1560	1426 1459 1493 1528 1563	1429 1462 1496 1531 1567	1432 1466 1500 1535 1570	1435 1469 1503 1538 1574	1439 1472 1507 1542 1578	1442 1476 1510 1545 1581	0 0 0 0	I I I I	I I I I	I I I I	2 2 2 2 2
.20 .21 .22 .23 .24	1585 1622 1660 1698 1738	1589 1626 1663 1702 1742	1 592 1629 1667 1706 1746	1596 1633 1671 1710 1750	1600 1637 1675 1714 1754	1603 1641 1679 1718 1758	1607 1644 1683 1722 1762	1611 1648 1687 1726 1766	1614 1652 1690 1730 1770	1618 1656 1694 1734 1774	00000	I I I I	I I I I	1 2 2 2	2 2 2 2 2
.25 .26 .27 .28 .29	1778 1820 1862 1905 1950	1782 1824 1866 1910	1786 1828 1871 1914 1959	1791 1832 1875 1919	1795 1837 1879 1923 1968	1799 1841 1884 1928 1972	1803 1845 1888 1932 1977	1807 1849 1892 1936 1982	1811 1854 1897 1941 1986	1816 1858 1901 1945 1991	0 0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I	2 2 2 2 2	2 2 2 2 2
.30 .31 .32 .33 .34	1995 2042 2089 2138 2188	2000 2046 2094 2143 2193	2004 2051 2099 2148 2198	2009 2056 2104 2153 2203	2014 2061 2109 2158 2208	2018 2065 2113 2163 2213	2023 2070 2118 2168 2218	2028 2075 2123 2173 2223	2032 2080 2128 2178 2228	2037 2084 2133 2183 2234	0 0 0	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I I I I 2	2 2 2 2 2	2 2 2 3
.35 .36 .37 .38 .39	2239 2291 2344 2399 2455	2244 2296 2350 2404 2460	2249 2301 2355 2410 2466	2254 2307 2360 2415 2472	2259 2312 2366 2421 2477	2265 2317 2371 2427 2483	2270 2323 2377 2432 2489	2275 2328 2382 2438 2495	2280 2333 2388 2443 2500	2286 2339 2393 2449 2506	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 2 2	3 3 3 3
.40 .41 .42 .43 .44	2512 2570 2630 2692 2754	2518 2576 2636 2698 2761	2523 2582 2642 2704 2767	2529 2588 2649 2710 2773	2535 2594 2655 2716 2780	2541 2600 2661 2723 2786	2547 2606 2667 2729 2793	2553 2612 2673 2735 2799	2559 2618 2679 2742 2805	2564 2624 2685 2748 2812	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	2 2 2 3 3	3 3 3 3 3
.45 .46 .47 .48 .49	2818 2884 2951 3020 3090	2825 2891 2958 3027 3097	2831 2897 296 5 3034 3105	2838 2904 2972 3041 3112	2844 2911 2979 3048 3119	2851 2917 2985 3055 3126	28 58 2924 2992 3062 31 33	2864 2931 2999 3069 3141	2871 2938 3006 3076 3148	2877 2944 3013 3083 3155	I I I I I	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2 2 2 2	3 3 3 3	3 3 4 4

ANTILOGARITHMS.

	0		2	3	4	5	6	7	8	9]	P. F		
	0	1.	2		*				8	9	1	2	3	4	5
.50 .51 .52 .53 .54	3162 3236 3311 3388 3467	3170 3243 3319 3396 3475	3177 3251 3327 3404 3483	3184 3258 3334 3412 3491	3192 3266 3342 3420 3499	3199 3273 3350 3428 3508	3206 3281 3357 3436 3516	3214 3289 3365 3443 3524	3221 3296 3373 3451 3532	3228 3304 3381 3459 3540	I I I	I 2 2 2 2 2	2 2 2 2	3 3 3 3	4 4 4 4 4
.55 .56 .57 .58 .59	3548 3631 3715 3802 3890	3556 3639 3724 3811 3899	3565 3648 3733 3819 3908	3573 3656 3741 3828 3917	3581 3664 3750 3837 3926	3589 3673 3758 3846 3936	3597 3681 3767 3855 3945	3606 3690 3776 3864 3954	3614 3698 3784 3873 3963	3622 3707 3793 3882 3972	I I I I	2 2 2 2	3 3 3 3	3 3 4 4	4 4 4 5
.60 .61 .62 .63 .64	3981 4074 4169 4266 4365	3990 4083 4178 4276 437 5	3999 4093 4188 4285 4385	4009 4102 4198 4295 4395	4018 4111 4207 4305 4406	4027 4121 4217 4315 4416	4036 4130 4227 4325 4426	4046 4140 4236 4335 4436	4055 4150 4246 4345 4446	4064 4159 4256 4355 4457	I I I I	2 2 2 2	3 3 3 3	4 4 4	5 5 5 5
.65 .66 .67 .68 .69	4467 4571 4677 4786 4898	4477 4581 4688 4797 4909	4487 4592 4699 4808 4920	4498 4603 4710 4819 4932	4508 4613 4721 4831 4943	4519 4624 4732 4842 4955	4529 4634 4742 4853 4966	4539 4645 4753 4864 4977	4550 4656 4764 4875 4989	4560 4667 4775 4887 5000	I I I I	2 2 2 2 2	3 3 3 3	4 4 4 5	5 5 6 6
.70 .71 .72 .73 .74	5012 5129 5248 5370 5495	5023 5140 5260 5383 5508	5035 5152 5272 5395 5521	5047 5164 5284 5408 5534	5058 5176 5297 5420 5546	5070 5188 5309 5433 5559	5082 5200 5321 5445 5572	5093 5212 5333 5458 5585	5105 5224 5346 5470 5598	5117 5236 5358 5483 5610	I I I I	2 2 2 3 3	4 4 4 4 4	5 5 5 5 5	6 6 6 6
. 75 .76 .77 .78 .79	5623 5754 5888 6026 6166	563 6 5768 5902 6039 6180	5649 5781 5916 6053 6194	5662 5794 5929 6067 6209	567 5 5808 5943 6081 6223	5689 5821 5957 6095 6237	5702 5834 5970 6109 6252	5715 5848 5984 6124 6266	5728 5861 5998 6138 6281	5741 5875 6012 6152 6295	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3 3 3 3	4 4 4 4 4	5 5 6 6	7 7 7 7
.80 .81 .82 .83 .84	6310 6457 6607 6761 6918	6324 6471 6622 6776 6934	6339 6486 663 7 6792 6950	6353 6501 6653 6808 6966	6368 6516 6668 6823 6982	6383 6531 6683 6839 6998	6397 6546 6699 6855 7015	6412 6561 6714 6871 7031	6427 6577 6730 6887 7047	6442 6592 6745 6902 7063	I 2 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6	7 8 8 8
.85 .86 .87 .88 .89	7079 7244 7413 7586 7762	7096 7261 7430 7603 7780	7112 7278 7447 7621 7798	7129 7295 7464 7638 7816	7145 7 311 7482 7656 7834	716 1 7328 7499 7674 7852	7178 7345 7516 7691 7870	7194 7362 7534 7709 7889	7211 7379 7551 7727 7907	7228 7396 7568 7745 7925	2 2 2 2 2	3 3 4 4	5 5 5 5	7 7 7 7 7	8 8 9 9
.90 .91 .92 .93 .94	7943 8128 8318 8511 8710	7962 8147 8337 8531 8730	7980 8166 8356 8551 8750	7998 8185 8375 8570 8770	8017 8204 8395 8590 8790	8035 8222 8414 8610 8810	8054 8241 8433 8630 8831	8072 8260 8453 8650 8851	8091 8279 8472 8670 8872	8110 8299 8492 8690 8892	2 2 2 2	4 4 4 4 4	6 6 6	7 8 8 8	9 10 10
.95 .96 .97 .98	8913 9120 9333 9550 9772	8933 9141 9354 9572 9795	8954 9162 9376 9594 981 7	8974 9183 9397 9616 9840	8995 9204 9419 9638 9863	9016 9226 9441 9661 9886	9036 9247 9462 9683 9908	9057 9268 9484 9705 9931	9078 9290 9506 9727 9954	9099 9311 9528 9750 9977	2 2 2 2	4 4 4 4 5	6 7 7 7	8 8 9 9	10 11 11 11

TABLE 12.
ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.900 .901 .902 .903	7043 7002 7080 7080 708 8017	7945 7962 5560 8519	7947 7905 7984 8003 8030	2015 2001 2001 2001 2010	7,31 7,969 7,987 8000 8024	7952 7971 7989 8008 8026	7973 7973 7991 8009 8028	7956 7974 7993 8011 8030	7958 7976 7993 8013 8032	7,960 7,978 7,997 8013 8033	7962 7980 7998 8017 8035
.905 .900 .907 .908	\$035 \$054 \$072 \$091 \$110	8037 8036 8074 8093 8111	\$030 \$037 \$070 \$045 \$113	8041 5030 5078 5097 8113	\$001 \$000 \$000 \$043	\$045 5003 5082 \$100 \$119	S046 5065 5084 8102 8121	\$048 \$007 \$083 \$104 \$123	\$030 \$000 \$087 \$100 \$123	\$032 \$070 \$080 \$108 \$120	S054 S072 S091 S110 S128
.910 .911 .912 .913 .914	\$12\$ \$147 \$166 \$155 \$204	\$130 \$140 \$108 \$187 \$203	\$132 \$151 \$170 \$188 \$207	\$134 \153 \171 \190 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$136 \$133 \$173 \$192 \$211	\$138 \$136 \$175 \$174 \$213	\$140 \$138 \$1,7 \$190 \$215	\$141 \$160 \$179 \$198 \$217	8143 5102 5151 5200 5219	\$145 \$164 \$183 \$202 \$221	\$147 \$166 \$153 \$164 \$153
.915 .916 .917 .918	\$222 \$241 \$250 \$270 \$270 \$299	\$224 \$243 \$292 \$281 \$300	\$226 \$245 \$204 \$2\$3 \$302	\$228 \$247 \$266 \$283 \$304	\$230 \$240 \$250 \$257 \$300	\$232 \$231 \$270 \$250 \$30\$	\$234 \$253 \$272 \$291 \$310	\$236 \$235 \$274 \$293 \$312	\$23\$ \$257 \$277 \$275 \$275 \$314	8230 8238 8278 8277 8370	8241 8260 8279 8299 8318
.920 .921 .922 .923 .924	\$318 \$337 \$336 \$375 \$395	\$320 \$330 \$355 \$377 \$397	\$321 \$341 \$360 \$379 \$398	\$323 \$343 \$302 \$381 \$400	8323 8334 8384 8383 8402	\$327 \$349 \$353 \$49	\$329 \$34\$ \$30\$ \$357 \$406	8331 8350 8370 8389 8408	\$333 \$352 \$371 \$301 \$410	8333 8354 8373 8343 8412	83337 8338 8337 8337 8414
. 925 .926 .927 .928 .929	\$414 \$433 \$453 \$472 \$492	\$416 \$433 \$453 \$474 \$424	\$418 \$437 \$437 \$447 \$476 \$496	\$420 \$439 \$439 \$458 \$498	\$422 \$441 \$461 \$480 \$300	8443 8443 8453 8463 8503	\$426 \$445 \$464 \$484 \$394	8429 8447 8466 8486 8306	\$420 \$400 \$400 \$400 \$500	\$431 \$451 \$470 \$470 \$470	8433 8433 8472 8472 8492 8311
.930 .931 .932 .933 .934	\$511 \$531 \$531 \$570 \$590	8513 8533 8533 8533 8533 8533 8533 8533	\$515 \$535 \$555 \$574	8517 8537 8537 8537 8536	8319 8339 8339 8339 8319	\$521 \$541 \$561 \$580 \$600	\$523 \$543 \$502 \$582 \$602	\$325 \$354 \$354 \$354 \$354 \$304	\$527 \$547 \$500 \$500 \$500	8520 8540 8568 8588 8568	\$531 8551 85570 85500 8610
.935 .535 .537 .538 .935	\$610 \$-30 \$-30 \$-70 \$000	8612 8632 8632 8672 8692	8514 8634 8634 8674 8694	\$616 \$636 \$436 \$436 \$436 \$436	\$61\$ \$63\$ \$63\$ \$63\$ \$67\$ \$69\$	\$620 \$140 \$660 \$680 \$100	\$622 \$642 \$662 \$682 \$702	8624 8644 8614 8684 8704	8656 8666 8666 8686 8706	8628 8148 8068 8088 8708	\$630 \$650 \$650 \$690 \$710
940 042 042 -043 -944	\$-10 \$-30 \$-30 \$-50 \$-70 \$790	\$712 \$732 \$732 \$772 \$772	8-14 8-34 8-34 8-34 8-94	\$=16 \$=36 \$=36 \$=56 \$=56 \$=56	8-18 8-38 8-38 8-38 8-78 8-78	8720 8740 8760 8780 8860	\$742 \$742 \$752 \$782 \$802	8-24 8-44 8-64 8-84 8804	\$126 \$146 \$166 \$186 \$366	8-28 8-48 8-88 8-88 8808	\$150 \$150 \$150 \$350
.945 .046 .947 .948 .949	\$810 8831 8831 8832 8892	8913 8833 8853 8874 8894	8813 8833 8835 8876 8896	8817 8837 8837 8878 8898	\$\$19 8\$39 8\$30 8880 8900	8821 8841 8861 8882 8902	8843 8843 8863 8884 8904	\$825 \$845 \$865 \$856 \$506	884- 886- 8888 8988	\$\$29 \$\$40 \$\$70 \$\$90 \$910	9831 8831 8872 8892 8913

ANTILOGARITHMS.

	0	1	2	3	4	5	6	7	8	9	10
.950 .951 .952 .953 .954	8913 8933 8954 8974 8995	8915 8935 8936 8976 8997	8917 8937 8958 8958 8978 8999	\$919 \$939 \$960 \$980 9001	8921 8941 8962 8983 9003	8923 8943 8964 8985 9005	8925 8945 8966 8987 9007	8927 8947 8968 8989 9009	8929 8950 8970 8991 9012	8931 8952 8972 8993 9014	8933 8954 8974 8995 9016
.955	9016	9018	9020	9022	9024	9026	9028	9030	9032	9034	9036
.956	9036	9039	9041	9043	9045	9047	9049	9051	9053	9055	9057
.957	9057	9059	9061	9064	9066	9068	9070	9072	9074	9076	9078
.958	9078	9080	9082	9084	9087	9089	9091	9093	9095	9097	9099
.959	9099	9101	9103	9105	9108	9110	9112	9114	9116	9118	9120
.960	9120	9122	9124	9126	9129	9131	9133	9135	9137	9139	9141
.961	9141	9143	9145	9147	9150	9152	9154	9156	9158	9160	9162
.962	9162	9164	9166	9169	9171	9173	9175	9177	9179	9181	9183
.963	9183	9185	9188	9190	9192	9194	9196	9198	9200	9202	9204
.964	9204	9207	9209	9211	9213	9215	9217	9219	9221	9224	9226
.965	9226	9228	9230	9232	9234	9236	9238	9241	9243	9245	9247
.966	9247	9249	9251	9253	9256	9258	9260	9262	9264	9266	9268
.967	9268	9270	9273	9275	9277	9279	9281	9283	9285	9288	9290
.968	9290	9292	9294	9296	9298	9300	9303	9305	9307	9309	9311
.969	9311	9313	9315	9318	9320	9322	9324	9326	9328	9330	9333
.970	9333	9335	9337	9339	9341	9343	9345	9348	9350	9352	9354
.971	9354	9356	9358	9361	9363	9365	9367	9369	9371	9373	9376
.972	9376	9378	9380	9382	9384	9386	9389	9391	9393	9395	9397
.973	9397	9399	9402	9404	9406	9408	9410	9412	9415	9417	9419
.974	9419	9421	9423	9425	9428	9430	9432	9434	9436	9438	9441
.975	9441	9443	9445	9447	9449	9451	9454	9456	9458	9460	9462
.976	9462	9465	9467	9469	9471	9473	9475	9478	9480	9482	9484
.977	9484	9486	9489	9491	9493	9495	9497	9499	9502	9504	9506
.978	9506	9508	9510	9513	9515	9517	9519	9521	9524	9526	9528
.979	9528	9530	9532	9535	9537	9539	9541	9543	9546	9548	9550
980	9550	9552	9554	9557	9559	9561	9563	9565	9568	957 0	9572
.981	9572	9574	9576	9579	9581	9583	9585	9587	9590	9592	9594
.982	9594	9596	9598	9601	9603	9605	9607	9609	9612	9614	9616
.983	9616	9618	9621	9623	9625	9627	9629	9632	9634	9636	9638
.984	9638	9641	9643	9645	9647	9649	9652	9654	9656	9658	9661
.985	9661	9663	9665	9667	9669	9672	9674	9676	9678	9681	9683
.986	9683	9685	9687	9689	9692	9694	9696	9698	9701	9703	9705
.987	9705	9707	9710	9712	9714	9716	9719	9721	9723	9725	9727
.988	9727	9730	9732	9734	9736	9739	9741	9743	9745	9748	9750
.989	9750	9752	9754	9757	9759	9761	9763	9766	9768	9770	9772
.990	9772	9775	9777	9779	9781	9784	9786	9788	9790	9793	9795
.991	9795	9797	9799	9802	9804	9806	9808	9811	9813	9815	9817
.992	9817	9820	9822	9824	9827	9829	9831	9833	9836	9838	9840
.993	9840	9842	9845	9847	9849	9851	9854	9856	9858	9861	9863
.994	9863	9865	9867	9847	9872	9874	9876	9879	9881	9883	9886
.995	9886	9888	9890	9892	9895	9897	9899	9901	9904	9906	9908
.996	9908	9911	9913	9915	9917	9920	9922	9924	9927	9929	9931
.997	9931	9933	9936	9938	9940	9943	9945	9947	9949	9952	9954
.998	9954	9956	9959	9961	9963	9966	9968	9970	9972	9975	9977
.999	9977	9979	9982	9984	9986	9988	9991	999 3	9995	9998	0000

TABLE 13.

CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA AD	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.0000 0.0029 0.0058 0.0087 0.0116 0.0145	0°00′ 10 20 30 40 50	.0000	0000.	.0000	∞ ∞ 343.77 2.5363 171.89 .2352 114.59 .0591 85.940 1.9342 68.750 .8373	90°00′ 50 40 30 20	1.5708 1.5679 1.5650 1.5621 1.5592 1.5563
0.0175 0.0204 0.0233 0.0262 0.0291 0.0320	1°00′ 10 20 30 40 50	.0175 8.2419 .0204 .3088 .0233 .3668 .0262 .4179 .0291 .4637 .0320 .5050		.0175 8.2419 .0204 .3089 .0233 .3669 .0262 .4181 .0291 .4638 .0320 .5053	57.290 1.7581 49.104 .6911 42.964 .6331 38.188 .5819 34.368 .5362 31.242 .4947	89°00′ 50 40 30 20	1.5533 1.5504 1.5475 1.5446 1.5417 1.5388
0.0349 0.0378 0.0407 0.0436 0.0465 0.0495	2°00′ 10 20 30 40 50	.0349 8.5428 .0378 .5776 .0407 .6097 .0436 .6397 .0465 .6677 .0494 .6940	.9994 9.9997 .9993 .9997 .9992 .9996 .9990 .9996 .9989 .9995 .9988 .9995	.0349 8.5431 .0378 .5779 .0407 .6101 .0437 .6401 .0466 .6682 .0495 .6945	28.636 1.4569 26.432 .4221 24.542 .3899 22.904 .3599 21.470 .3318 20.206 .3055	\$8°00′ 50 40 30 20	1.5359 1.5330 1.5301 1.5272 1.5243 1.5213
0.0524 0.0553 0.0582 0.0611 0.0640 0.0669	3°00′ 10 20 30 40 50	.0523 8.7188 .0552 .7423 .0581 .7645 .0610 .7857 .0640 .8059 .0669 .8251	.9986 9 9994 .9985 .9993 .9983 .9993 .9981 .9992 .9980 .9991 .9978 .9990	.0524 8.7194 .0553 .7429 .0582 .7652 .0612 .7865 .0641 .8067 .0670 .8261	19.081 1.2806 18.075 .2571 17.169 .2348 16.350 .2135 15.605 .1933 14.924 .1739	87°00′ 50 40 30 20	1.5184 1.5155 1.5126 1.5097 1.5068 1.5039
0.0698 0.0727 0.0756 0.0785 0.0814 0.0844	4°00′ 10 20 30 40 50	.0698 8.8436 .0727 .8613 .0756 .8783 .0785 .8946 .0814 .9104 .0843 .9256	.9976 9.9989 .9974 .9989 .9971 .9988 .9969 .9987 .9967 .9986 .9964 .9985	.0699 8.8446 .0729 .8624 .0758 .8795 .0787 .8960 .0816 .9118 .0846 .9272	14.301 1.1554 13.727 .1376 13.197 .1205 12.706 .1040 12.251 .0882 11.826 .0728	86°00′ 50 40 30 20	1.5010 1.4981 1.4952 1.4923 1.4893 1.4864
0.0873 0.0902 0.0931 0.0960 0.0989 0.1018	5°00′ 10 20 30 40 50	.0872 8.9403 .0901 .9545 .0929 .9682 .0958 .9816 .0987 .9945 .1016 9.0070	.9962 9.9983 .9959 .9982 .9957 .9981 .9954 .9980 .9951 .9979 .9948 .9977	.0875 8.9420 .0904 .9563 .0934 .9701 .0963 .9836 .0992 .9966 .1022 9.0093	11.430 1.0580 11.059 .0437 10.712 .0299 10.385 .0164 10.078 .0034 9.7882 0.9907	85°00′ 50 40 30 20	1.4835 1.4806 1.4777 1.4748 1.4719 1.4690
0.1047 0.1076 0.1105 0.1134 0.1164 0.1193	6°00 10 20 30 40 50	.1045 9.0192 .1074 .0311 .1103 .0426 .1132 .0539 .1161 .0648 .1190 .0755	.9945 9.9976 .9942 .9975 .9939 .9973 .9936 .9972 .9932 .9971 .9929 .9969	.1051 9.0216 .1080 .0336 .1110 .0453 .1139 .0567 .1169 .0678 .1198 .0786	9.51.44 0.9784 9.2553 .9664 9.0098 .9547 8.7769 .9433 8.5555 .9322 8.3450 .9214	50 40 30 20 10	1.4661 1.4632 1.4603 1.4574 1.4544 1.4515
0.1222 0.1251 0.1280 0.1309 0.1338 0.1367	7°00′ 10 20 30 40 50	.1219 9.0859 .1248 .0961 .1276 .1060 .1305 .1157 .1334 .1252 .1363 .1345	.9925 9.9968 .9922 .9966 .9918 .9964 .9914 .9963 .9911 .9961 .9907 .9959	.1228 9,0891 .1257 .0995 .1287 .1096 .1317 .1194 .1346 .1291 .1376 .1385	8.1443 0.9109 7.9530 .9005 7.7704 .8904 7.5958 .8806 7.4287 .8709 7.2687 .8615	83°00′ 50 40 30 20	1.4486 1.4457 1.4428 1.4399 1.4370 1.4341
0.1396 0.1425 0.1454 0.1484 0.1513 0.1542	8°00′ 10 20 30 40 50	.1392 9.1436 .1421 .1525 .1449 .1612 .1478 .1697 .1507 .1781 .1536 .1863	.9903 9.9958 .9899 .9956 .9894 .9954 .9896 .9952 .9886 .9950 .9881 .9948	.1405 9.1478 .1435 .1569 .1465 .1658 .1495 .1745 .1524 .1831 .1554 .1915	7.1154 0.8522 6.9682 .8431 6.8269 .8342 6.6912 .8255 6.5606 .8169 6.4348 .8085 6.3138 0.8003	\$2°00′ 50 40 30 20 10 \$1°00′	1.4312 1.4283 1.4254 1.4224 1.4195 1.4166
0.1571	9 00	Nat. Log. COSINES.	.9877 9.9946 Nat. Log. SINES.	Nat. Log. COTAN- GENTS.	Nat. Log. TANGENTS.	GREES. GREES.	RADI- ANS.

RADI- ANS.	DE- GREES.	SINES.	C	OSINES.	TANG	GENTS.	COTAN	GENTS.		
RA	GR	Nat. Lo	g. Na	it. Log.	Nat.	Log.	Nat.	Log.		
0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40 50	.1632 .21 .1650 .21 .1679 .22 .1708 .23	022 .987 00 .986 76 .986 251 .985 324 .985	2 .9944 8 .9942 3 .9940 8 .9938 3 .9936	.1614 .1644 .1673 .1703	9.1997 .2078 .2158 .2236 .2313 .2389	6.3138 6.1970 6.0844 5.9758 5.8708 5.7694	0.8003 .7922 .7842 .7764 .7687 .7011	\$1°00′ 50 40 30 20	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1822 .20 .1851 .26	.68 .98. 38 .98. 506 .98.	3 .9931 8 .9929 3 .9927 7 .9924	.1793 .1823 .1853 .1883	9.2463 .2536 .2609 .2680 .2750	5.6713 5.5764 5.4845 5.3955 5.3993 5.2257	0.7537 .7464 .7391 .7320 .7250 .7181	50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920 0.1949 0.1978 0.2007 0.2036 0.2065	11°00′ 10 20 30 49 50	.1908 9.28 .1937 .28 .1965 .29 .1994 .29 .2022 .30 .2051 .31	870 .981 134 .980 197 .979	95 .9914 99 .9912 93 .9909	.1974 .2004 .2035 .2065	9.2887 .2953 .3020 .3085 .3149 .3212	5.1446 5.0658 4.9894 4.9152 4.8430 4.7729	0.7113 .7047 .6980 .6915 .6851 .6788	79°00′ 50 40 30 20	1.3788 1.3759 1.3730 1.3701 1.3672 1.3643
0.2094 0.2123 0.2153 0.2182 0.2211 0.2240	12°00′ 10 20 30 40 50		38 .977 96 .976	5 .9901 9 .9899 13 .9896 17 .9893	.2156 .2186 .2217 .2247	9·3 ² 75 ·333 ⁶ ·3397 ·345 ⁸ ·35 ¹ 7 ·357 ⁶	4.7046 4.6382 4.5736 4.5107 4.4494 4.3897	0.6725 .6664 .6603 .6542 .6483	78°00′ 50 40 30 20	1.3614 1.3584 1.3555 1.3520 1.3497 1.3468
0.2269 0.2298 0.2327 0.2356 0.2385 0.2414	13°00′ 10 20 30 40 50	.2306 .30 .2334 .30 .2363 .37 .2391 .37	75 .973 29 .973 82 .972 34 .971 86 .971	37 .9884 30 .9881 24 .9878 7 .9875	.2339 .2370 .2401 .2432	9.3634 .3691 .3748 .3804 .3859 .3914	4.3315 4.2747 4.2193 4.1653 4.1126 4.0611	0.6366 .6309 .6252 .6196 .6141	77°00′ 50 40 30 20	1.3439 1.3410 1.3381 1.3352 1.3323 1.3294
0.2443 0.2473 0.2502 0.2531 0.2560 0.2589	14°00′ 10 € 20 30 40 50	.2504 .39	837 .979 887 .969 937 .968 986 .968 935 .969	96 .9866 89 .9863 81 .9856 74 .9856	.2524 .2555 .2586 .2617	.4021 .4074 .4127 .4178	4.0108 3.9617 3.9136 3.8667 3.8208 3.7760	0.6032 ·5979 ·5926 ·5873 ·5822 ·5770	76°00′ 50 40 30 20	1.3265 1.3235 1.3206 1.3177 1.3148 1.3119
0.2618 0.2647 0.2676 0.2705 0.2734 0.2763	15°00′ 10 20 30 40 50	.2644 .4: .2672 .4: .2700 .4;	130 .96 177 .96 223 .96 269 .96 314 .96 359 .96	52 .9846 14 .984 36 .9839 28 .9836	.2711 .2742 .2773 .2805	.4331 .4381 .4430 .4479	3.7321 3.6891 3.6470 3.6059 3.5656 3.5261	0.5719 .5669 .5619 .5570 .5521 .5473	40 30 20 10	1.3000 1.3061 1.3032 1.3003 1.2974 1.2945
0.2793 0.2822 0.2851 0.2880 0.2909 0.2938	16°00′ 10 20 30 40 50	.2812 .4. .2840 .4 .2868 .4	147 .966 191 .956 533 .956 576 .956 518 .95	05 .9823 96 .9823 88 .9817 80 .9812 72 .9810	.2899 .2931 .2962 .2964 .3026	.4622 .4669 .4716 .4762	3.4874 3.4495 3.4124 3.3759 3.3402 3.3052	0.5425 .5378 .5331 .5284 .5238 .5192	74°00′ 50 40 30 20	1.2915 1.2886 1.2857 1.2828 1.2799 1.2770
0.2967 0.2996 0.3025 0.3054 0.3083 0.3113	17°00′ 10 20 30 40 50	.2979 .4 .3007 .4 .3035 .4 .3062 .4	700 .95 741 .95 781 .95 821 .95 861 .95	55 .9802 46 .9798 37 .9792 28 .9790 20 .9786	.3089 .3121 .3153 .3185 .3217	.4898 .4943 .4987 .5031	3.1716 3.1397 3.1084	.5102 .5057 .5013 .4969	73°00′ 50 40 30 20 10 72°00′	1.2741 1.2712 1.2683 1.2654 1.2625 1.2595
0.3142	18°00′	.3090 9.49 Nat. Lo		11 9.9782 at. Log.	.3249 Nat.	9.5118 Log.	3.0777 Nat.	0.4SS2 Log.	ļ	1.2566
		COSINE		SINES.	CO	TAN- ENTS.		GENTS	DE- GREES.	RADI- ANS.

00	ES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RADI- ANS.	DE- GREES.	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	18°00′ 10 20 30 40 50	.3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052 .3228 .5090	.9511 9.9782 .9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765 .9465 .9761	.3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0777 0.4882 3.0475 .4839 3.0178 .4797 2.9887 .4755 2.9600 .4713 2.9319 .4671	72°00′ 50 40 30 20	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.5126 .3283 .5163 .3311 .5199 .3338 .5235 .3365 .5270 .3393 .5306	.9455 9.9757 .9446 .9752 .9436 .9748 .9426 .9743 .9417 .9739 .9407 .9734	.3443 9.5370 .3476 .5411 .3508 .5451 .3541 .5491 .3574 .5531 .3007 .5571	2.9042 0.4630 2.8770 .1589 2.8502 .4549 2.8239 .1509 2.7980 .4469 2.7725 .4429	71°00′ 50 40 30 20	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9397 9.9730 .9387 .9725 .9377 .9721 .9367 .9716 .9356 .9711 .9346 .9706	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.7475 0.4389 2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234 2.6279 .4196	70°00′ 50 40 30 20	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°CO′ 10 20 30 40 50	.3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.6051 0.4158 2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009 2.4960 .3972	69°00′ 50 40 30 20	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 9.5736 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 .9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4751 0.3936 2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792 2.3750 .3757	68°00′ 50 40 30 20	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3559 0.3721 2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583 2.2637 .3548	67°00′ 50 40 30 20	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2460 0.3514 2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380 2.1609 .3346	66°00′ 50 40 30 20	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 .9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1445 0.3313 2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183 2.0655 .3150	65°00′ 50 40 30 20	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8988 9.9537 .8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ 50 40 30 20 10	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025
0.4712	27°00′	.4540 9.6570 Nat. Log.	.8910 9.9499 Nat. Log.	Nat. Log.	1.9626 0.2928 Nat. Log.	63°00′	
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.	DE- GREES.	RADI- ANS.

RADI-	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA	GRI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00′ 10 20 30 40 50	.4540 9.6570 .4566 .6595 .4592 .6620 .4617 .6644 .4643 .6668 .4669 .6692	.8910 9.9499 .8897 .9492 .8884 .9486 .8870 .9479 .8857 .9473 .8843 .9466	.5095 9.7072 .5132 .7103 .5169 .7134 .5206 .7165 .5243 .7196 .5280 .7226	1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	63°00′ 50 40 30 20	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	28°00′ 10 20 30 40 50	.4695 9.6716 .4720 .6740 .4746 .6763 .4772 .6787 .4797 .6810 .4823 .6833	.8829 9.9459 .8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432 .8760 .9425	.5317 9.7257 .5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408	1.8807 0.2743 1.8676 .2713 1.8546 .2683 1.8418 .2652 1.8291 .2622 1.8165 .2592	62°00′ 50 40 30 20	1.0821 1.0792 1.0763 1.0734 1.0705
0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	29°00′ 10 20 30 40 50	.4848 9.6856 .4874 .6878 .4899 .6901 .4924 .6923 .4950 .6946 .4975 .6968	.8746 9.9418 .8732 .9411 .8718 .9404 .8704 .9397 .8689 .9390 .8675 .9383	.5543 9.7438 .5581 .7467 .5619 .7497 .5658 .7526 .5696 .7556 .5735 .7585	1.8040 0.2562 1.7917 .2533 1.7796 .2503 1.7675 .2474 1.7556 .2444 1.7437 .2415	61°00′ 50 40 30 20	1.0647 1.0617 1.0588 1.0559 1.0530
0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	30°00′ 10 20 30 40 50	.5000 9.6990 .5025 .7012 .5050 .7033 .5075 .7055 .5100 .7076 .5125 .7097	.8660 9.9375 .8646 .9368 .8631 .9361 .8616 .9353 .8601 .9346 .8587 .9338	.5774 9.7614 .5812 .7644 .5851 .7673 .5890 .7701 .5930 .7730 .5969 .7759	1.7321 0.2386 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270 1.6753 .2241	60°00′ 50 40 30 20	1.0472 1.0443 1.0414 1.0385 1.0356 1.0327
0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	31°00′ 10 20 30 40 50	.5150 9.7118 .5175 .7139 .5200 .7160 .5225 .7181 .5250 .7201 .5275 .7222	.8572 9.9331 .8557 .9323 .8542 .9315 .8526 .9308 .8511 .9300 .8496 .9292	.6009 9.7788 .6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902 .6208 .7930	1.6643 0.2212 1.6534 .2184 1.6426 .2155 1.6319 .2127 1.6212 .2098 1.6107 .2070	59°00′ 50 40 30 20	1.0297 1.0268 1.0239 1.0210 1.0181 1.0152
0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	32°00′ 10 20 30 40 50	.5299 9.7242 .5324 .7262 .5348 .7282 .5373 .7302 .5398 .7322 .5422 .7342	.8480 9.9284 .8465 .9276 .8450 .9268 .8434 .9260 .8418 .9252 .8403 .9244	.6249 9.7958 .6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070 .6453 .8097	1.6003 0.2042 1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930 1.5497 .1903	58°00′ 50 40 30 20	1.0123 1.0094 1.0065 1.0036 1.0007 0.9977
0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	33°00′ 10 20 30 40 50	.5446 9.7361 .5471 .7380 .5495 .7400 .5519 .7419 .5544 .7438 .5568 .7457	.8387 9.9236 .8371 .9228 .8355 .9219 .8339 .9211 .8323 .9203 .8307 .9194	.6494 9.8125 .6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235 .6703 .8263	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	57°00′ 50 40 30 20	0.9948 0.9919 0.9890 0.9861 0.9832 0.9803
0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	34°00′ 10 20 30 40 50	.5592 9.7476 .5616 .7494 .5640 .7513 .5664 .7531 .5688 .7550 .5712 .7568	.8290 9.9186 .8274 .9177 .8258 .9169 .8241 .9160 .8225 .9151 .8208 .9142	.6745 9.8290 .6787 .8317 .6830 .8344 .6873 .8371 .6916 .8398 .6959 .8425	1.4826 0.1710 1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575	56°00′ 50 40 30 20	0.9774 0.9745 0.9716 0.9687 0.9657 0.9628
0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	35°00′ 10 20 30 40 50	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8192 9.9134 .8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 .8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 .7221 .8586	1.4281 0.1548 1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	55°00′ 50 40 30 20 10	0.9599 0.9570 0.9541 0.9512 0.9483 0.9454
0.6283	36°00′	.5878 9.7692	.8090 9.9080	.7265 9.8613	1.3764 0.1387	54°00′	0.9425
		Nat. Log.	SINES.	Nat. Log. COTAN- GENTS.	TANGENTS.	DE GREES.	RADI-

RADI- ANS.	DE- GREES.	SINES.	COSINES.	TANGENTS.	COTANGENTS.		
RA	DI	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	36°00′ 10 20 30 40 50 37°00′	.5878 9.7692 .5901 .7716 .5925 .7727 .5948 .774 .5972 .7761 .5995 .7778	.8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	.7265 9.8613 .7310 .8639 .7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745		54°00′ 50 40 30 20 10 53°00′	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458 0.6487 0.6516 0.6545 0.6574 0.6603	10 20 30 40 50	.6041 .7811 .6065 .7828 .6088 .7844 .6111 .7861 .6134 .7877	.7969 .9014 .7951 .9004 .7934 .8995 .7916 .8985 .7898 .8975	.7581 .8797 .7627 .8824 .7673 .8850 .7720 .8876 .7766 .8902	1.3190 .1203 1.3111 .1176 1.3032 .1150 1.2954 .1124 1.2876 .1098	50 40 30 20 10	0.9221 0.9192 0.9163 0.9134 0.9105
0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	38°00′ 10 20 30 40 50	.6157 9.7893 .6180 .7916 .6202 .7926 .6225 .7941 .6248 .7957 .6271 .7973	.7862 .8955 .7844 .8945 .7826 .8935 .7808 .8925 .7790 .8915	.7813 9.8928 .7860 .8954 .7907 .8980 .7954 .9006 .8002 .9032 .8050 .9058	1.2799 0.1072 1.2723 .1046 1.2647 .1020 1.2572 .0994 1.2497 .0968 1.2423 .0942	52°00′ 50 40 30 20	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930
0.6807 0.6836 0.6865 0.6894 0.6923 0.6952	39°00′ 10 20 30 40 50	.6293 9.7989 .6316 .8002 .6338 .8020 .6361 .8033 .6383 .8050 .6406 .8066	.7753 .8895 .7735 .8884 .7716 .8874 .7698 .8864 .7679 .8853	.8098 9.9084 .8146 .9110 .8195 .9135 .8243 .9161 .8292 .9187 .8342 .9212	1.2349 0.0916 1.2276 .0890 1.2203 .0865 1.2131 .0839 1.2059 .0813 1.1988 .0788	51°00′ 50 40 30 20	0.8901 0.8872 0.8843 0.8814 0.8785 0.8756
0.6981 0.7010 0.7039 0.7069 0.7098	40°00′ 10 20 30 40 50	.6428 9.8081 .6450 .8096 .6472 .8111 .6494 .8129 .6517 .8140 .6539 .8153	.7623 .8821 .7604 .8810 .7585 .8800 .7566 .8789	.8391 9.9238 .8441 .9264 .8491 .9289 .8541 .9315 .8591 .9341 .8642 .9366	1.1918 0.0762 1.1847 .0736 1.1778 .0711 1.1708 .0685 1.1640 .0659 1.1571 .0634	50°00′ 50 40 30 20	0.8727 0.8698 0.8668 0.8639 0.8610 0.8581
0.7156 0.7185 0.7214 0.7243 0.7272 0.7301	41°00′ 10 20 30 40 50	.6561 9.8169 .6583 .8183 .6604 .8198 .6626 .8213 .6648 .8227 .6670 .8241	.7528 .8767 .7509 .8756 .7490 .8745 .7470 .8733	.8693 9.9392 .8744 .9417 .8796 .9443 .8847 .9468 .8899 .9494 .8952 .9519	1.1504 0.0608 1.1436 .0583 1.1369 .0557 1.1303 .0532 1.1237 .0506 1.1171 .0481	49°00′ 50 40 30 20	o.8552 o.8523 o.8494 o.8465 o.8436 o.8407
0.7330 0.7359 0.7389 0.7418 0.7447 0.7476	42°00′ 10 20 30 40 50	.6691 9.8253 .6713 .8269 .6734 .8283 .6756 .8297 .6777 .8311 .6799 .8322	.7412 .8699 .7392 .8688 .7373 .8676 .7353 .8665 .7333 .8653	.9004 9.9544 .9057 .9570 .9110 .9595 .9163 .9621 .9217 .9646 .9271 .9671	1.1106 0.0456 1.1041 .0430 1.0977 .0405 1.0913 .0379 1.0850 .0354 1.0786 .0329	48°00′ 50 40 30 20	0.8378 0.8348 0.8319 0.8290 0.8261 0.8232
0.7505 0.7534 0.7563 0.7592 0.7621 0.7650	43°00′ 10 20 30 40 50	.6\$20 9.8338 .6\$41 .8351 .6\$62 .8369 .6\$84 .8378 .6905 .8391 .6926 .840	.7294 .8629 .7274 .8618 .7254 .8606 .7234 .8594 .7214 .8582	.9325 9.9697 .9380 .9722 .9435 .9747 .9490 .9772 .9545 .9798 .9601 .9823	1.0724 0.0303 1.0661 .0278 1.0599 .0253 1.0538 .0228 1.0477 .0202 1.0416 .0177	47°00′ 50 40 30 20	0.8203 0.8174 0.8145 0.8116 0.8087 0.8058
0.7679 0.7709 0.7738 0.7767 0.7796 0.7825	44°00′ 10 20 30 40 50	.6947 9.8418 .6967 .8431 .6988 .844- .7009 .8457 .7030 .8469	.7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507	.9657 9.9848 .9713 .9874 .9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975	1.0355 0.0152 1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025	46°00′ 50 40 30 20 10	0.8029 0.7999 0.7970 0.7941 0.7912 0.7883 0.7854
0.7854	45°00′	Nat. Log.	.7071 9.8495 Nat Log.	Nat. Log.	Nat. Log.		
		COSINES.	SINES.	COTAN- GENTS.	TANGENTS.	DE- GREES.	RADI- ANS.

Ś	l l				<u> </u>				v,
IAN	SIN	ES.	COSI	NES.	TANG	ENTS	COTAN	GENTS.	EGREES
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEG
0.00 .01 .02 .03	0,00000 .01000 .02000 .03000 .03999	— ∞ 7.99999 8.30100 .47706 .60194	1.00000 0.99995 .99980 .99955 .99920	0.00000 9.99998 .99991 .99980	∞ 0.01000 .02000 .03001 .04002	∞ 8.00001 .30109 .47725 .60229	∞ 99.997 49.993 33.323 24.987	∞ 1.99999 .69891 •52275 •39771	00°00′ 00 34 01 09 01 43 02 18
0.05	0.04998	8.69879	0.99875	9.99946	0.05004	8.69933	19.983	1.30067	02°52′
.06	.05996	.77789	.99820	.99922	.06007	.77867	16.647	.22133	03 26
.07	.06994	.84474	•99755	.99894	.07011	.84581	14.262	.15419	04 01
.08	.07991	.90263	.99680	.99861	.08017	.90402	12.473	.09598	04 35
.09	.08988	.95366	•99595	.99824	.09024	.95542	11.081	.04458	05 09
0.10 .11 .12 .13	0.09983 .10978 .11971 .12963 .13954	8.99928 9.04052 .07814 .11272 .14471	0.99500 .99396 .99281 .99156 .99022	9.99782 •99737 •99687 •99632 •99573	0.10033 .11045 .12058 .13074 .14092	9.00145 .04315 .08127 .11640 .14898	9.9666 9.0542 8.2933 7.6489 7.0961	0.99855 .95685 .91873 .88360 .85102	05°44′ 06 18 06 53 07 27 08 01
0.15 .16 .17 .18	0.14944 .15932 .16918 .17903 .18886	9.17446 .20227 .22836 .25292 .27614	0.98877 .98723 .98558 .98384 .98200	9.99510 .99442 .99369 .99293 .99211	0.15114 .16138 .17166 .18197 .19232	9.17937 .20785 .23466 .26000 .28402	6.6166 6.1966 5.8256 5.4954 5.1997	0.82063 .79215 .76534 .74000 .71598	08°36′ 09 10 09 44 10 19 10 53
0.20	0.19867	9.29813	0.98007	9.99126	0.20271	9.30688	4.9332	0.69312	11°28′
.21	.20846	.31902	.97803	.99035	.21314	.32867	4.6917	.67133	12 02
.22	.21823	.33891	.97590	.98940	.22362	.34951	4.4719	.65049	12 36
.23	.22798	.35789	.97367	.98841	.23414	.36948	4.2709	.63052	13 11
.24	.23770	.37603	.97134	· .98737	.24472	.38866	4.0864	.61134	13 45
0.25	0.24740	9.39341	0.96891	9.98628	0.25534	9.40712	3.9163	0.59288	14°19'
.26	.25708	.41007	.96639	.98515	.26602	.42491	3.7592	·57509	14 54
.27	.26673	.42607	.96377	.98397	.27676	.44210	3.6133	·55790	15 28
.28	.27636	.44147	.96106	.98275	.28755	.45 ⁸ 72	3.4776	·54128	16 03
.29	.28595	.45629	.95824	.98148	.29841	.47482	3.3511	·52518	16 37
0.30	0.29552	9.47059	0.95534	9.98016	0.30934	9.49043	3.2327	0.50957	17°11'
.31	.30506	.48438	·95233	.97879	.32033	.50559	3.1218	.49441	17 46
.32	.31457	.49771	·94924	.97737	.33139	.52034	3.0176	.47966	18 20
.33	.32404	.51060	·94604	.97591	.34252	.53469	2.9195	.46531	18 54
.34	.33349	.52308	·94275	.97440	.35374	.54868	2.8270	.45132	19 29
0.35	0.34290	9.53516	0.93937	9.97284	0.36503	9.56233	2.7395	0.43767	20°03′
.36	.35227	.54688	.93590	.97123	.37640	.57565	2.6567	.42435	20 38
.37	.36162	.55825	.93233	.96957	.38786	.58868	2.5782	.41132	21 12
.38	.37092	.56928	.92866	.96786	.39941	.60142	2.5037	.39858	21 46
.39	.38019	.58000	.92491	.96610	.41105	.61390	2.4328	.38610	22 21
0.40	0.38942	9.59042	0.92106	9.96429	0.42279	9.62613	2.3652	0.37387	22°55′
.41	.39861	.60055	.91712	.96243	.43463	.63812	2.3008	.36188	23 29
.42	.40776	.61041	.91309	.96051	.44657	.64989	2.2393	.35011	24 04
.43	.41687	.62000	.90897	.95855	.45862	.66145	2.1804	.33855	24 38
.44	.42594	.62935	.90475	.95653	.47078	.67282	2.1241	.32718	25 13
0.45	0.43497	9.63845	0.90045	9.95446	0.48306	9.68400	2.0702	0.31600	25°47′
.46	.44395	.64733	.89605	.95233	•49545	.69500	2.0184	.30500	26 21
.47	.45289	.65599	.89157	.95015	•50797	.70583	1.9686	.29417	26 56
.48	.46178	.66443	.88699	.94792	•52061	.71651	1.9208	.28349	27 30
.49	.47063	.67268	.88233	.94563	•53339	.72704	1.8748	.27296	28 04
0 50	0.47943	9.68072	0.87758	9.94329	0.54630	9.73743	1.8305	0.26257	28°39′

ANS.	SIN	NES.	COSI	NES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
0.50	0.47943	9.68072	0.87758	9.94329	0.54630	9·73743	1.8305	0.26257	28°39′
.51	.48818	.68858	.87274	.94089	•55936	•74769	.7878	.25231	29 13
.52	.49688	.69625	.86782	.93 ⁸ 43	•57256	•75782	.7465	.24218	29 48
.53	.50553	.70375	.86281	.93591	•58592	•76784	.7067	.23216	30 22
.54	.51414	.71108	.85771	-93334	•59943	•77774	.6683	.22226	30 56
0.55	0.52269	9.71824	0.85252	9.93071	0.61311	9.7 ⁸ 754	1.6310	0.21246	31°31′
.56	.53119	.72525	.84726	.92801	.62695	.79723	.5950	.20277	32 ° 05
.57	.53963	.73210	.84190	.92526	.64097	.80684	.5601	.19316	32 40
.58	.54802	.73880	.83646	.92245	.65517	.81635	.5263	.18365	33 14
.59	.55636	.74536	.83094	.91957	.66956	.82579	.4935	.17421	33 48
0.60	0.56464	9.75177	0.82534	9.91663	0.68414	9.83514	1.4617	0.16486	34°23′
.61	.57287	.75805	.81965	.91363	.69892	.84443	.4308	.15557	34 57
.62	.58104	.76420	.81388	.91056	.71391	.85364	.4007	.14636	35 31
.63	.58914	.77022	.80803	.90743	.72911	.86280	.3715	.13720	36 06
.64	.59720	.77612	.80210	.90423	.74454	.87189	.3431	.12811	36 40
0.65	0.60519	9.78189	0.79608	9.90096	0.76020	9.88093	1.3154	0.11907	37°15′
.66	.61312	.78754	.78999	.89762	.77610	.88992	.2885	.11008	37 49
.67	.62099	.79308	.78382	.89422	.79225	.89886	.2622	.10114	38 23
.68	.62879	.79851	.77757	.89074	.80866	.90777	.2366	.09223	38 58
.69	.63654	.80382	.77125	.88719	.82534	.91663	.2116	.08337	39 32
0.70	0.64422	9.80903	0.76484	9.88357	0.84229	9.92546	1.1872	0.07454	40°06′
.71	.65183	.81414	.75836	.87988	.85953	.93426	.1634	.06574	40 41
.72	.65938	.81914	.75181	.87611	.87707	.94303	.1402	.05697	41 15
.73	.66687	.82404	.74517	.87226	.89492	.95178	.1174	.04822	41 50
.74	.67429	.82885	.73847	.86833	.91309	96051	.0952	.03949	42 24
0.75	0.68164	9.83355	0.73169	9.86433	0.93160	9.96923	1.0734	0.03077	42°58′
.76	.68892	.83817	.72484	.86024	.9504 5	.97793	.0521	.02207	43 33
.77	.69614	.84269	. 7 1791	.85607	.96967	.98662	.0313	.01338	44 97
.78	.70328	.84713	.71091	.85182	.98926	9.99531	1.0109	.00469	44 41
.79	.71035	.85147	.70385	.84748	1.00 92	0.00400	0.99084	9.99600	45 16
0.80	0.71736	9.85573	0.69671	9.84305	1.0296	0.01268	0.97121	9.98732	45°50′
.81	.72429	.85991	.68950	.83853	.0505	.02138	•95197	.97862	46°25
.82	.73115	.86400	.68222	.83393	.0717	.03008	•93309	.96992	46°59
.83	.73793	.86802	.67488	.82922	.0934	.03879	•91455	.96121	47°33
.84	.74464	.87195	.66746	.82443	.1156	.04752	•89635	.95248	48°08
0.85	0.75128	9.87580	0.65998	9.81953	1.1383	0.05627	0.87848	9.94373	48°42′
.86	.75784	.87958	.65244	.81454	.1616	.06504	.86091	.93496	49 16
.87	.76433	.88328	.64483	.80944	.1853	.07384	.84365	.92616	49 51
.88	.77074	.88691	.63715	.80424	.2097	.08266	.82668	.91734	50 25
.89	.77707	.89046	.62941	.79894	.2346	.09153	.80998	.90847	51 00
0.90	0.78333	9.89394	0.62161	9.79352	1.2602	0.10043	0.79355	9.89957	51°34′
.91	.78950	.89735	.61375	.78799	.2864	.10937	.77738	.89063	52 08
.92	.79560	.90070	.60582	.78234	.3133	.11835	.76146	.88165	52 43
.93	.80162	.90397	.59783	.77658	.3409	.12739	.74578	.87261	53 17
.94	.80756	.90717	.58979	.77070	.3692	.13648	.73034	.86352	53 51
0.95 .96 •97 .98 •99	0.81342 .81919 .82489 .83050 .83603	9.91031 .91339 .91639 .91934	0.58168 ·57352 ·56530 ·55702 ·54869	9. 7 6469 •75 ⁸ 55 •75 ² 28 •745 ⁸ 7 •73933	1.3984 .4284 .4592 .4910 .5237	0.14563 .15484 .16412 .17347 .18289	0.71511 .70010 .68531 .67071 .65631	9.85437 .84516 .83588 .82653 .81711	54°26′ 55 00 55 35 56 09 56 43
1.00	0.84147	9.92504	0.54030	9.73264	1.5574	0.19240	0.64209	9.80760	57°18′

ANS.	SIP	NES.	cosi	INES.	TANG	ENTS.	COTAN	GENTS.	EES.
RADIANS	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	DEGREES
1.00 .01 .02 .03	0.84147 .84683 .85211 .85730 .86240	9.92504 .92780 .93049 .93313 .93571	0.54030 .53186 .52337 .51482 .50622	9.73264 .72580 .71881 .71165 .70434	1.5574 .5922 .6281 .6652 .7036	0.19240 .20200 .21169 .22148 .23137	0.64209 .62806 .61420 .60051 .58699	9.80760 .79800 .78831 .77852 .76863	57°18′ 57 52 58 27 59 01 59 35
1.05 .00 .07 .08	0.86742 .87236 .87720 .88196 .88663	9.93823 .94069 .94310 .94545 .94774	0.49757 .48887 .48012 .47133 .46249	9.69686 .68920 .68135 .67332 .66510	1.7433 .7844 .8270 .8712 .9171	0.24138 .25150 .26175 .27212 .28264	0.57362 .50040 .54734 .53441 .52162	9.75862 .74850 .73825 .72788 .71736	60°10′ 60 44 61 18 61 53 62 27
1.10 .11 .12 .13	0.89121 .89570 .90010 .90441 .90863	9.94998 .95216 .95429 .95637 .95839	0.45360 .44466 .43568 .42666 .41759	9.65667 .64803 .63917 .63008 .62075	1.9648 2.0143 .0660 .1198 .1759	0.29331 .30413 .31512 .32628 .33763	0.50897 -49644 -48404 -47175 -45959	9.70669 .69587 .68488 .67372 .66237	63°02′ 63 36 64 10 64 45 65 19
1.15 .16 .17 .18	0.91276 .91680 .92075 .92461 .92837	9.96036 .96228 .96414 .96596 .96772	0.40849 •39934 •39015 •38092 •37166	9.61118 .60134 .59123 .58084 .57015	2.2345 .2958 .3600 .4273 .4979	0.34918 .36093 .37291 .38512 .39757	0.447 53 .435 58 .42 373 .41 199 .400 34	9.65082 .63907 .62709 .61488 .60243	65°53′ 66 28 67 02 67 37 68 11
1.20 .21 .22 .23 .24	0.93204 .93562 .93910 .94249 .94578	9.96943 .97110 .97271 .97428 .97579	0.36236 ·35302 ·34365 ·33424 ·32480	9.55914 .54780 .53611 .52406 .51161	2.5722 .6503 .7328 .8198 .9119	0.41030 .42330 .43660 .45022 .46418	0.38878 ·37731 ·36593 ·35463 ·34341	9.58970 .57670 .56340 .54978 .53582	68°45′ 69 20 69 54 70 28 71 03
1.25 .26 .27 .28 .29	0.94898 .95209 .95510 .95802 .96084	9.97726 .97868 .98005 .98137 .98265	0.31532 .30582 .29628 .28672 .27712	9.49875 .48546 .47170 .45745 .44267	3.0096 .1133 .2236 .3413 .4672	0.47850 -49322 -50835 -52392 -53998	0.33227 .32121 .31021 .29928 .28842	9.52150 .50678 .49165 .47608 .46002	71°37′ 72 12 72 46 73 20 73 55
1.30 .31 .32 .33 .34	0.96356 .96618 .96872 .97115 .97348	9.98388 .98506 .98620 .98729 .98833	0.26750 .25785 .24818 .23848 .22875	9.42732 .41137 .39476 .37744 .35937	3.6021 .7471 .9033 4.0723 .2556	0.55656 ·57369 ·59144 ·60984 .62896	0.27762 .26687 .25619 .24556 .23498	9.44344 .42631 .40856 .39016 .37104	74°29′ 75 °3 75 38 76 12 76 47
1.35 .36 .37 .38 .39	0.97572 .97786 .97991 .98185 .98370	9.98933 .99028 .99119 .99205 .99286	0.21901 .20924 .19945 .18964 .17981	9.34046 .32064 .29983 .27793 .25482	4.4552 .6734 .9131 5.1774 .4707	0.64887 .66964 .69135 .71411	0.22446 .21398 .20354 .19315 .18279	9.35113 .33036 .30865 .28589 .26196	77°21′ 77 55 78 30 79 04 79 38
1.40 .41 .42 .43 .44	0.98545 .98710 .98865 .99010 .99146	9.99363 .99436 .99504 .99568 .99627	0.16997 .16010 .15023 .14033 .13042	9.23036 .20440 .17674 .14716 .11536	5.7979 6.1654 6.5811 7.0555 7.6018	0.76327 .78996 .81830 .84853 .88092	0.17248 .16220 .15195 .14173 .13155	9.23673 .21004 .18170 .15147 .11908	80°13′ 80 47 81 22 81 56 82 30
1.45 .46 .47 .48 .49	0.99271 .99387 .99492 .99588 .99674	9.99682 ·99733 ·99779 .99821 .99858	0.12050 .11057 .10063 .09067 .08071	9.08100 .04364 .00271 8.95747 .90692	8.2381 8.9886 9.8874 10.983 12.350	0.91583 .95369 .99508 1.04074 .09166	0.12139 .11125 .10114 .09105 .08097	9.08417 .04631 .00492 8.95926 .90834	83°05′ 83 39 84 13 84 48 85 22
1.50	0.99749	9.99891	0.07074	8.84965	14.101	1.14926	0.07091	8.85074	85°57′

CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 14 (continued). - Circular (Trigonometric) Functions.

.57 1.00000 1.00000 1.255.8 1.255.8 3.09891 .00080 6.90109	ANS.	SINES.		COSINES.		TANGENTS.		COTAN	EES.	
.51	RADI	Nat.	Log	Nat.	Log	Nat.	Log.	Nat.	Log.	DEGREES
.56	.51 .52 .53	.99815 .99871 .99917	.99920 .99944 .99964	.06076 .05077 .04079	.78361 .70565 .61050	16.428 19.670 24.498	.21559 .29379 .38914	.06087 .05084 .04082	.78441 .70621 .61086	85°57′ 86 31 87 05 87 40 88 14
.59 0.99982 9.9999201920 8.28336n 52.067 1.7165601921 8.283441	.56 ·57 ·58 ·59	0.99994 1.00000 0.99996 0.99982	9.99997 0.00000 9.99998 9.99992	.01080 .00080 00920 01920	8.03327 6.90109 7.96396n 8.28336n	92.621 1255.8 108.65 52.067	1.96671 3.09891 2.03603 1.71656	.01080 .00080 00920 01921	8.03329	88°49′ 89 23 89 57 90 32 91 06

90°=1.570 7963 radians.

TABLE 15. - Logarithmic Factorials.

Logarithms of the products 1.2.3. n, n from 1 to 100. See Table 17 for Factorials 1 to 20.

See Table 31 for log. Γ (n+1), values of n between 1 and 2.

n.	log (n!)	n.	log (n!)	72.	log (n!)	n.	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	So	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.6077.44	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	72	103.786996	97	151.9831.42
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 16.
HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	cot	h. u	,
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd u
0.00 .01 .02 .03	0.00000 .01000 .02000 .03000	-∞ 8.00001 .30106 .47719 .60218	1.00000 .0005 .00020 .00045 .00080	0.00000 .00002 .00009 .00020	0.00000 .01000 .02000 .02999 .03998	— ∞ 7.99999 8.30097 .47699 .60183	00.003 50.007 33·343 25.013	2.00001 1.69903 1.52301 1.39817	00°00′ 0 34 1 09 1 43 2 17
0.05 .06 .07 .08	0.05002 .06004 .07006 .08009 .09012	8.69915 .77841 .84545 .90355 .95483	1.00125 .00180 .00245 .00320 .00405	0.00054 .00078 .00106 .00139 .00176	0.04996 .05993 .06989 .07983 .08976	8.69861 •77763 •84439 •90216 •95307	20.017 16.687 14.309 12.527 11.141	1.30139 .22237 .15561 .09784 .04693	2 52 3 26 4 00 4 35 5 09
0.10 .11 .12 .13	0.10017 .11022 .12029 .13037 .14046	9.00072 .04227 .08022 .11517 .14755	1.00500 .00606 .00721 .00846 .00982	0.00217 .00262 .00312 .00366 .00424	0.09967 .10956 .11943 .12927 .13909	8.99856 9.03965 .07710 .11151 .14330	10.0333 9.1275 8.3733 7.7356 7.1895	1.00144 0.96035 .92290 .88849 .85670	5 43 6 17 6 52 7 26 8 00
0.15 .16 .17 .18	0.15056 .16068 .17082 .18097 .19115	9.17772 .20597 .23254 .25762 .28136	1,01127 .01283 .01448 .01624 .01810	0.00487 .00554 .00625 .00700 .00779	0.14889 .15865 .16838 .17808 .18775	9.17285 .20044 .22629 .25062 .27357	6.7166 6.3032 5.9389 5.6154 5 3263	0.82715 .79956 .77371 .74938 .72643	S 34 9 08 9 42 10 15 10 49
0.20 .21 .22 .23 .24	0.20134 .21155 .22178 .23203 .24231	9.30392 .32541 .34592 .36555 .38437	1.02007 .02213 .02430 .02657 .02894	0.00863 .00951 .01043 .01139 .01239	0.19738 .20697 .21652 .22603 .23550	9.29529 .31590 .33549 .35416 .37198	5.0665 4.8317 4.6186 4.4242 4.2464	0.70471 .68410 .66451 .64584 .62802	11 23 11 57 12 30 13 04 13 37
0.25 .26 .27 .28	0.25261 .26294 .27329 .28367 .29408	9.40245 .41986 .43663 .45282 .46847	1.03141 .03399 .03667 .03946 .04235	0.01343 .01452 .01564 .01681 .01801	0.24492 .25430 .26362 .27291 .28213	9.38902 .40534 .42099 .43601 .45046	4.0830 3.9324 3.7933 3.6643 3.5444	0.61098 .59466 .57901 .56399 .54954	14 11 14 44 15 17 15 50 16 23
0.30 .31 .32 .33 .34	0.30452 .31499 .32549 .33602 .34659	9.48362 .49830 .51254 .52637 .53981	1.04534 .04844 .05164 .05495 .05836	0.01926 .02054 .02187 .02323 .02463	0.29131 .30044 .30951 .31852 .32748	9.46436 •47775 •49067 •50314 •51518	3.4327 .3285 .2309 .1395 .0536	0.53564 .52225 .50933 .49686 .48482	16 56 17 29 18 02 18 34 19 07
0.35 .36 .37 .38 .39	0.35719 .36783 .37850 .38921 .39996	9.55290 .56564 .57807 .59019 .60202	1.06188 .06550 .06923 .07307 .07702	0.02607 .02755 .02907 .03063 .03222	0.33638 .34521 .35399 .36271 .37136	9.52682 .53809 .54899 .55956 .56980	2.9729 .8968 .8249 .7570 .6928	0.47318 .46191 .45101 .44044 .43020	19 39 20 12 20 44 21 16 21 48
0.40 .41 .42 .43 .44	0.41075 .42158 .43246 .44337 .45434	9.61358 .62488 .63594 .64677 .65738	1.08107 .08523 .08950 .09388 .09837	0.03385 .03552 .03723 .03897 .04075	0.37995 .38847 .39693 .40532 .41364	9.57973 .58936 .59871 .60780 .61663	2.6319 .5742 .5193 .4672 .4175	0.42027 .41064 .40129 .39220 .38337	22 20 22 52 23 23 23 55 24 26
•.45 •.46 •47 •.48 •49	0.46534 .47640 .48750 .49865 .50984	9.66777 .67797 .68797 .69779 .70744	1.102970 .10768 .11250 .11743 .12247	.04256 .04441 .04630 .04822 .05018	0.42190 .43008 .43820 .44624 .45422	9.62521 .63355 .64167 .64957 .65726	2.3702 .3251 .2821 .2409 .2016	0.37479 .36645 .35833 .35043 .34274	24 57 25 28 25 59 26 30 27 01
0.50	0.52110	9 .71692	1.12763	0.05217	0.46212	9.66475	2.1640	0.33525	27 31

TABLE 16 (continued).

HYBERBOLIC FUNCTIONS.

	sinl	n. u	cosl	1. u	tanl	n. u	cot	h. u	gd u
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	ga u
0.50 .51 .52 .53 .54	0.52110 .53240 .54375 .55516 .56663	9.71692 .72624 .73540 .74442 .75330	1.12763 .13289 .13827 .14377 .14938	0.05217 .05419 .05625 .05834 .06046	0.46212 .46995 .47770 .48538 .49299	9.66475 .67205 .67916 .68608 .69284	2.1640 .1279 .0934 .0602 .0284	0.33525 .32795 .32084 .31392 .30716	27°31′ 28 02 28 32 29 02 29 32
0 .55 .56 .57 .58 .59	0.57815 .58973 .60137 .61307 .62483	9.76204 .77065 .77914 .78751 .79576	1.15510 .16094 .16690 .17297 .17916	0.06262 .06481 .06703 .06929	0.50052 .50798 .51536 .52267 .52990	9.69942 .70584 .71211 .71822 .72419	1.9979 .9686 .9404 .9133 .8872	0.30058 .29416 .28789 .28178 .27581	30 02 30 32 31 01 31 31 32 00
0.60 .61 .62 63 .64	0.63665 .64854 .66049 .67251 .68459	9.80390 .81194 .81987 .82770 .83543	1.18547 .19189 .19844 .20510 .21189	0.07389 .07624 .07861 .08102 .08346	0.53705 .54413 .55113 .55805 .56490	9.73001 .73570 .74125 .74667 .75197	1.8620 .8378 .8145 .7919 .7702	0.26999 .26430 .25875 .25333 .24803	32 29 32 58 33 27 33 55 34 24
0.65 .66 .67 .68	0.69675 .70897 .72126 .73363 .74607	9.84308 .85063 .85809 .86548 .87278	1.21879 .22582 .23297 .24025 .24765	0.08593 .08843 .09095 .09351 .09609	0.57167 .57836 .58498 .59152 .59798	9.75715 .76220 .76714 .77197 .77669	1.7493 .7290 .7095 .6906 .6723	0.24285 .23780 .23286 .22803 .22331	34 52 35 20 35 48 36 16 36 44
0 70 .71 .72 .73	0.75858 .77117 .78384 .79659 .80941	9.88000 .88715 .89423 .90123 .90817	1.25517 .26282 .27059 .27849 .28652	0.09870 .10134 .10401 .10670 .10942	0.60437 .61068 .61691 .62307 .62915	9.78130 .78581 .79022 .79453 .79875	1.6546 .6375 .6210 .6050 .5895	0.21870 .21419 .20978 .20547 .20125	37 11 37 38 38 05 38 32 38 59
0.75 .76 .77 .78 .79	0.82232 .83530 .84838 .86153 .87478	9.91504 .92185 .92859 .93527 .94190	1.29468 .30297 .31139 .31994 .32862	0.11216 .11493 .11773 .12055 .12340	0.63515 .64108 .64693 .65271 .65841	9.80288 .80691 .81086 .81472 .81850	1.5744 ·5599 ·5458 ·5321 ·5188	0.19712 .19309 .18914 .18528 .18150	39 26 39 52 40 19 40 45 41 11
0.80 .81 .82 .83	0.88811 .90152 .91503 .92863 .94233	9.94846 .95498 .96144 .96784 .97420	1.33743 .34638 .35547 .36468 .37404	0.12627 .12917 .13209 .13503 .13800	0.66404 .66959 .67507 .68048 .68581	9.82219 .82581 .82935 .83281 .83620	1.5059 -4935 -4813 -4696 -4581	0.17781 .17419 .17065 .16719 .16380	41 37 42 02 42 28 42 53 43 18
0.85 .86 .87 .88 .89	0.95612 .97000 .98398 .99806	9.98051 .98677 .99299 .99916 0.00528	1.38353 .39316 .40293 .41284 .42289	0.14099 .14400 .14704 .15009 .15317	0.69107 .69626 .70137 .70642 .71139	9.83952 .84277 .84595 .84906 .85211	1.4470 .4362 .4258 .4156 .4057	0.16048 .15723 .15405 .15094 .14789	43 43 44 08 44 32 44 57 45 21
0.90 .91 .92 .93	1.02652 .04090 .05539 .06998 .08468	0.01137 .01741 .02341 .02937 .03530	1.43309 .44342 .45390 .46453 .47530	0.15627 .15939 .16254 .16570 .16888	0.71630 .72113 .72590 .73059 .73522	9.85509 .85801 .86088 .86368 .86642	1.3961 .3867 .3776 .3687 .3601	0.14491 .14199 .13912 .13632 .13358	45 45 46 09 46 33 46 56 47 20
0.95 .96 .97 .98	1.09948 .11440 .12943 .14457 .15983	0.04119 .04704 .05286 .05864 .06439	1.48623 .49729 .50851 .51988 .53141	0.17208 .17531 .17855 .18181	0.73978 .74428 .74870 .75307 .75736	9.86910 .87173 .87431 .87683 .87930	1.3517 .3436 .3356 .3279 .3204	0.13090 .12827 .12569 .12317 .12070	47 43 48 06 48 29 48 51 49 14
1.00	1.17520	0.07011	1.54308	0.18839	0.76159	9.88172	1.3130	0.11828	49 36

				EKROLI					
u	sin	h. u	cos	h. u	tan	h. u	co	th u	gd u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	
1.00 .01 .02 .03	1.17 520 .19069 .20630 .22203 .23788	0.07011 .07580 .08146 .08708 .09268	1.54308 .55491 .56689 .57904 .59134	0.18839 .19171 .19504 .19839 .20176	0.76159 .76576 .76987 .77391 .77789	9.88172 .88409 .88642 .88869 .89092	1.3130 .3059 .2989 .2921 .2855	0.11828 .11591 .11358 .11131 .10908	49°36′ 49 58 50 21 50 42 51 04
.05 .06 .07 .08	1.25386 .26996 .28619 .30254 .31903	0.09825 .10379 .10930 .11479 .12025	1.60379 .61641 .62919 .64214 .65525	0.20515 .20855 .21197 .21541 .21886	0.78181 .78566 .78946 .79320 .79688	9.89310 .89524 .89733 .89938 .90139	1.2791 .2728 .2667 .2607 .2549	0.10690 .10476 .10267 .10062 .09861	51 26 51 47 52 08 52 29 52 50
1.10 .11 .12 .13	1.33565 .35240 .36929 .38631 .40347	0.12569 .13111 .13649 .14186 .14720	1.66\\$2 .68196 .69557 .70934 .72329	0.22233 .22582 .22931 .23283 .23636	0.80050 .80406 .80757 .81102	9.90336 .90529 .90718 .90903 .91085	1.2492 .2437 .2383 .2330 .2279	0.09664 .09471 .09282 .09097 .08915	53 11 53 31 53 52 54 12 54 32
1.15 .16 .17 .18	1.42078 .43822 .45581 .47355 .49143	0.15253 .15783 .16311 .16836 .17360	1.73741 .75171 .76618 .78083 .79565	0.23990 .24346 .24703 .25062 .25422	0.81775 .82104 .82427 .82745 .83058	9.91262 .91436 .91607 .91774 .91938	1.2229 .2180 .2132 .2085 .2040	0.08738 .08564 .08393 .08226 .08062	54 52 55 11 55 31 55 50 56 09
1.20 .21 .22 .23 .24	1.50946 .52764 .54598 .56447 .58311	0.17882 .18402 .18920 .19437 .19951	1.81066 .82584 .84121 .85676 .87250	0.25784 .26146 .26510 .26876 .27242	0.83365 .83668 .83965 .84258 .84546	9.92099 .92256 .92410 .92561 .92709	1.1995 .1952 .1910 .1868 .1828	0.07901 .07744 .07590 .07439 .07291	56 29 56 47 57 06 57 25 57 43
1.25 .26 .27 .28 .29	1.60192 .62088 .64001 .65930 .67876	0.20464 .20975 .21485 .21993 .22499	1.88842 .90454 .92084 .93734 .95403	0.27610 .27979 .28349 .28721 .29093	0.84828 .85106 .85380 .85648 .85913	9.92854 .92996 .93135 .93272 .93406	1.1789 .1750 .1712 .1676 .1640	0.071.46 .07004 .06865 .067.28 .06594	58 02 58 20 58 38 58 55 59 13
1.30 ·31 ·32 ·33 ·34	1.69838 .71818 .73814 .75828 . 7 7860	0.23004 .23507 .24009 .24509 .25008	1.97091 .98800 2.00528 .02276 .04044	0.29467 .29842 .30217 .30594 .30972	0.86172 .86428 .86678 .86925 .87167	9.93537 .93665 .93791 .93914 .94035	1.1605 .1570 .1537 .1504 .1472	0.06463 .06335 .06209 .06086 .05965	59 31 59 48 60 05 60 22 60 39
1.35 .36 .37 .38 .39	1.799 0 9 .81977 .84062 .86166 .88289	0.25505 .26002 .26496 .26990 .27482	2.05833 .07643 .09473 .11324 .13196	0.31352 .31732 .32113 .32495 .32878	0.87405 .87639 .87869 .88095 .88317	9.94154 .94270 .94384 .94495 .94604	1.1441 .1410 .1381 .1351 .1323	0.05846 .05730 .05616 .05505 .05396	60 56 61 13 61 29 61 45 62 02
1.40 .41 .42 .43 .44	1.90430 .92591 .94770 .96970 .99188	0.27974 .28464 .28952 .29440 .29926	2.15090 .17005 .18942 .20900 .22881	0.33262 .33647 .34033 .34420 .34807	0.88535 .88749 .88960 .89167 .89370	9.94712 •94817 •94919 •95020 •95119	1.1295 .1268 .1241 .1215 .1189	0.05288 .05183 .05081 .04980 .04881	62 18 62 34 62 49 63 05 63 20
1.45 .46 .47 .48 .49	2.01427 .03686 .05965 .08265 .10586	0.30412 ,30896 .31379 .31862 .32343	2.24884 .26910 .28958 .31029 .33123	0.35196 .35585 .35976 .36367 .36759	0.89569 .89765 .89958 .90147 .90332	9.95216 .95311 .95404 .95495 .95584	1.1165 .1140 .1116 .1093 .1070	0.04784 .04689 .04596 .04505 .04416	63 36 63 51 64 06 64 21 64 36
1.50	2.12928	0.32823	2.35241	0.37151	0.90515	9.95672	1.1048	0.04328	64 51

HYPERBOLIC FUNCTIONS.

u	sin	h. u	cos	h. u	tan	h. u	co	th. u	and and	u
	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gu.	. u
1.50 .51 .52 .53 .54	2.12928 .15291 .17676 .20082 .22510	0.32823 ·33303 ·33781 ·34258 ·34735	2.35241 .37382 .39547 .41736 .43949	0.37151 ·37545 ·37939 ·38334 ·38730	0.90515 .90694 .90870 .91042 .91212	9.95672 .95758 .95842 .95924 .96005	1.1048 .1026 .1005 .0984 .0963	0.04328 .04242 .04158 .04076 .03995	64° 65 65 65 65	05 20 34 48
1.55 .56 .57 .58 .59	2.24961 .27434 .29930 .32449 .34991	0.35211 ·35686 ·36160 ·36633 ·37105	2.46186 .48448 .50735 .53047 .55384	0.39126 ·39524 ·39921 ·40320 ·40719	0.91379 .91542 .91703 .91860 .92015	9 96084 .96162 .96238 .96313 .96386	1.0943 .0924 .0905 .0886 .0868	0.03916 .03838 .03762 .03687 .03614	66 66 66 66 66	02 16 30 43 57
1.60 .61 .62 .63 .64	2.37557 40146 .42760 .45397 .48059	0.37577 .38048 .38518 .38987 .39456	2.57746 .60135 .62549 .64990 .67457	0.41119 .41520 .41921 .42323 .42725	0.92167 .92316 .92462 .92606 .92747	9.96457 .96528 .96597 .96664 .96730	1.0850 .0832 .0815 .0798 .0782	0.03543 .03472 .03403 .03336 .03270	67 67 67 67 68	10 24 37 50 03
1.65 .66 .67 .68 .69	2,50746 •53459 •56196 •58959 •61748	0.39923 .40391 .40857 .41323 .41788	2.69951 .7.2472 .7.5021 .77.596 .80200	0.43129 •43532 •43937 •44341 •44747	0.92886 .93022 .93155 .93286 .93415	9.96795 .96858 .96921 .96982	1.0766 .0750 .0735 .0720 .0705	0.03205 .03142 .03079 .03018 .02958	68 68 68 68 69	15 28 41 53 05
1.70 .71 .72 .73 .74	2.64563 .67405 .70273 .73168 .76091	0.42253 •42717 •43180 •43643 •44105	2.82832 .85491 .88180 .90897 .93643	0.45153 ·45559 ·45966 ·46374 ·46782	0.93541 .93665 .93786 .93906 .94023	9.97100 .97158 .97214 .97269 .97323	1.0691 .0676 .0663 .0649 .0636	0.02900 .02842 .02786 .02731	69 69 69 69 70	18 30 42 54 05
1.75 .76 .77 .78 .79	2.79041 .82020 .85026 .88061 .91125	0.44567 .45028 .45488 .45948 .46408	2.96419 .99224 3.02059 .04925 .07821	0.47191 .47600 .48009 .48419 .48830	0.94138 .94250 .94361 .94470 .94576	9.97376 .97428 .97479 .97529 .97578	1.0623 .0610 .0598 .0585	0.02624 .02572 .02521 .02471 .02422	70 70 70 70 71	17 29 40 51 03
1.80 .81 .82 .83 .84	2.94217 .97340 3.0049 2 .03674 .06886	0.46867 .47325 .47783 .48241 .48698	3.10747 .13705 .16694 .19715 .22768	0.49241 .49652 .50064 .50476 .50889	0.94681 .94783 .94884 .94983 .95080	9.9 7 626 .9 7 673 .97719 .97764 .97809	1.0562 .0550 .0539 .0528 .0518	0.02374 .02327 .02281 .02236 .02191	71 71 71 71 71	14 25 36 46 57
1.85 .86 .87 .88 .89	3.10 1 29 .13403 .16709 .20046 .23415	0.49154 .49610 .50066 .50521 .50976	3.25853 .28970 .32121 .35305 .38522	0.51302 .51716 .52130 .52544 .52959	0.95175 .95268 .95359 .95449 .95537	9.97852 .97895 .97936 .97977 .98017	1.0507 .0497 .0487 .0477 .0467	0.02148 .02105 .02064 .02023 .01983	72 72 72 72 72 72	o8 18 2 9 39 49
1.90 .91 .92 .93	3.26816 .30250 .33718 .37218 .40752	0.51430 .51884 .52338 .52791 .53244	3.41773 .45058 .48378 .51733 .55123	0.53374 .53789 .54205 .54621 .55038	0.95624 .95709 .95792 .95873 .95953	9.98057 .98095 .98133 .98170 .98266	1.0458 .0448 .0439 .0430 .0422	0.01943 .01905 .01867 .01830 .01794	7 ² 73 73 73 73	59 09 19 29 39
.96 .96 .97 .98	3.44321 ·47923 ·51561 ·55234 ·58942	0.53696 .54148 .54600 .55051 .55502	3.58548 .62009 .65507 .69041 .72611	0.55455 .55872 .56290 .56707 .57126	0.96032 .96109 .96185 .96259 .96331	9.98242 .98276 .98311 .98344 .98377	1.0413 .0405 .0397 .0389 .0381	0.01758 .01724 .01689 .01656 .01623	73 73 74 74 74	48 58 07 17 26
2.00	3.62686	0.55953	3.762 2 0	0.57544	0.96403	9.98409	1.0373	0.01591	74	35

	sin	ıh. u	cos	h. u	tan	ıh. u	CO	th. u.	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
2.00 .01 .02 .03	3.62686 .66466 .70283 .74138 .78029	0.55953 .56403 .56853 .57303 .57753	3.76220 .79865 .83549 .87271 .91032	0.57 544 .57963 .58382 .58802 .59221	0.96403 .96473 .96541 .96609	9.98409 .98440 .98471 .98502	1.0373 .0366 .0358 .0351	0.01591 .01560 .01529 .01498 .01469	74°35′ 74 44 74 53 75 02 75 11
2.05 .06 .07 .08 .09	3.81958 .85926 .89932 .93977 .98061	0.58202 .58650 .59099 .59547 .59995	3.94832 .98671 4.02550 .06470 .10430	0.59641 .60061 .60482 .60903 .61324	0.96740 .96803 .96865 .96926 .96986	9.98560 .98589 .98617 .98644 .98671	1.0337 .0330 .0324 .0317 .0311	0.01440 .01411 .01383 .01356 .01329	75 20 75 28 75 37 75 45 75 54
2.10 .11 .12 .13 .14	4.02186 .06350 .10555 .14801 .19089	0.60443 .60890 .61337 .61784 .62231	4.14431 .18474 .22558 .26685 .30855	0.61745 .62167 .62589 .63011 .63433	0.97045 .97103 .97159 .97215 .97269	9.98697 .98723 .98748 .98773 .98798	1.0304 .0298 .0292 .0286 .0281	0.01303 .01277 .01252 .01227	76 02 76 10 76 19 76 27 76 35
2.15 .16	4.23419 .27791 .32205 .36663 .41165	0.62677 .63123 .63569 .64015 .64460	4.35067 .39323 .43623 .47967 .52356	0.63856 .64278 .64701 .65125 .65548	0.97323 -97375 -97426 -97477 -97526	9.98821 .98845 .98868 .98890	1.0275 .0270 .0264 .0259 .0254	0.01179 .01155 .01132 .01110	76 43 76 51 76 58 77 06 77 14
2.20 .21 .22 .23 .24	4.45711 .50301 .54936 .59617 .64344	0.64905 .65350 .65795 .66240 .66684	4.56791 .61271 .65797 .70370 .74989	0.65972 .66396 .66820 .67244 .67668	0.97 574 .97622 .97668 .97714 .97759	9.98934 •98955 •98975 •98996 •99016	.0249 .0244 .0239 .0234 .0229	0.01066 .01045 .01025 .01004 .00984	77 21 77 29 77 36 77 44 77 51
2.25 .26 .27 .28	4.69117 -73937 -78804 -83720 -88684	0.67128 .67572 .68016 .68459 .68903	4.79657 .84372 .89136 .93948 .98810	0.68093 .68518 .68943 .69368 .69794	0.97803 .97846 .97888 .97929 .97970	9.99035 .99054 .99073 .99091	.0225 .0220 .0216 .0211 .0207	0.00965 .00946 .00927 .00909 .00891	77 58 78 05 78 12 78 19 78 26
2.30 .31 .32 .33 .34	4.93696 .98758 5.03870 .09032 .14245	0.69346 .69789 .70232 .70675	5.03722 .08684 .13697 .18762 .23878	0.70219 .70645 .71071 .71497 .71923	0.98010 .98049 .98087 .98124 .98161	9.99127 .99144 .99161 .99178 .99194	.0203 .0199 .0195 .0191 .0187	0.00873 .00856 .00839 .00822 .00806	78 33 78 40 78 46 78 53 79 00
2.35 .36 .37 .38 .39	5.19510 .2482 7 .30196 .35618 .41093	0.71559 .72002 .72444 .72885 .73327	5.29047 •34269 •39544 •44873 •50256	0.72349 .72776 .73203 .73630 .74056	0.98197 .98233 .98267 .98301 .98335	9•99210 .99226 .99241 .99256 .99271	.0180 .0176 .0173 .0169	0.00790 .00774 .00759 .00744 .00729	79 06 79 13 79 19 79 25 79 32
2.40 .41 .42 .43 .44	5.46623 ·52207 ·57847 ·63542 ·69294	0.73769 .74210 .74652 .75093 .75534	5.55695 .61189 .66739 .72346 .78010	0.74484 .74911 .75338 .75766 .76194	0.98367 .98400 .98431 .98462 .98492	9.99285 .99299 .99313 .99327 .99340	1.0166 .0163 .0159 .0156 .0153	0.00715 .00701 .00687 .00673	79 38 79 44 79 50 79 56 80 02
2.45 .46 .47 .48 .49	5.75103 .80969 .86893 .92876 .98918	0.75975 .76415 .76856 .77296 .77737	5.83732 .89512 .95352 6.01250 .07209	0.76621 .77049 .77477 .77906 .78334	0.98522 .98551 .98579 .98607 .98635	9.99353 .99366 .99379 .99391 .99403	0147 .0144 .0141 .0138	0.00647 .00634 .00621 .00609 .00597	80 08 80 14 80 20 80 26 80 31
2.50	6.05020	0.78177	6.13229	0.78762	0.98661	9.99415	1.0136	0.00585	80 37

TABLE 16 (continued).

HYPERBOLIC FUNCTIONS.

	sin	h. u	ços	h. u	tar	ıh. u	cot	h. u		
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd.	u
2.50 .51 .52 .53 .54	6.05020 .11183 .17407 .23692 .30040	0.78177 .78617 .79057 .79497 . 7 9937	6.13229 .19310 .25453 .31658 .37927	0.78762 .79191 .79619 .80048 .80477	0.98661 .98688 .98714 .98739	9.9941 5 .99426 .99438 .99449 .99460	1.0136 .0133 .0130 .0128 .0125	0.00585 .00574 .00562 .00551	80 80	37' 42 48 53 59
2.55 .56 .57 .58 .59	6.36451 .42926 .49464 .56068 .62738	0.80377 .80816 .81256 .81695 .82134	6.44259 .50656 .57118 .63646 .70240	0.80906 .81335 .81764 .82194 .82623	0.98788 .98812 .98835 .98858	9.99470 .99481 .99491 .99501	1.0123 .0120 .0118 .0115	0.00530 .00519 .00509 .00499	81 81	04 10 15 20 25
2.60 .61 .62 .63 .64	6.69473 .76276 .83146 .90085 .97092	0.82573 .83012 .83451 .83890 .84329	6.76901 .83629 .90426 .97292 7.04228	0.83052 .83482 .83912 .84341 .84771	0.98903 .98924 .98946 .98966 .98987	9.99521 .99530 .99540 .99549 .99558	1.0111 .0109 .0107 .0104 .0102	0.00479 .00470 .00460 .00451 .00442	81 81	30 35 40 45 50
2.65 .66 .67 .68 .69	7.04169 .11317 .18536 .25827 .33190	0.84768 .85206 .85645 .86083 .86522	7.11234 .18312 .25461 .32683 .39978	0.85201 .85631 .86061 .86492 .86922	0.99007 .99026 .99045 .99064 .99083	9.99566 •99575 •99583 •99592 •99600	1,0100 .0098 .0096 .0094 .0093	0.00434 .00425 .00417 .00408	82 82 82	55 00 05 09 14
2.70 .71 .72 .73 .74	7.40626 .48137 .55722 .63383 .71121	0.86960 .87398 .87836 .88274 .88712	7.47347 .54791 .62310 .69905 .77578	0.87352 .87783 .88213 .88644 .89074	0.99101 .99118 .99136 .99153 .99170	9.99608 .99615 .99623 .99631	1.0091 .0089 .0087 .0085 .0084	0.00392 .00385 .00377 .00369 .00362	82 82 82	19 23 28 32 37
2.75 .76 .77 .78 .79	7.78935 .86828 .94799 8.02849 .10980	0.89150 .89588 .90026 .90463 .90901	7.85328 .93157 8.01065 .09053 .17122	0.89505 .89936 .90367 .90798 .91229	0.99186 .99202 .99218 .99233 .99248	9.99645 .99652 .99659 .99666 .99672	1.0082 .0080 .0079 .0077 .0076	0.00355 .00348 .00341 .00334 .00328	82 82 82	41 45 50 54 58
2.80 .81 .82 .83 .84	8.19192 .27486 .35862 .44322 .52867	0.91339 .91776 .92213 .92651 .93088	8.25273 .33506 .41823 .50224 .58710	0.91660 .92091 .92522 .92953 .93385	0.99263 .99278 .99292 .99306 .99320	9.99679 •99685 •99691 •99698	1.0074 .0073 .0071 .0070	0.00321 .00315 .00309 .00302 .00296	83 83 83	02 07 11 15
2.85 .86 .87 .88	8.61497 .70213 .79016 .87907 .96887	0.93525 •93963 •94400 •94837 •95274	8.67281 .75940 .84686 .93520 9.02444	0.93816 .94247 .94679 .95110 .95542	0.99333 .99346 .99359 .99372 .99384	9.99709 .99715 .99721 .99726 .99732	1.0067 .0066 .0065 .0063 .0062	0.00291 .00285 .00279 .00274 .00268	83 83 83	23 27 31 34 38
2.90 .91 .92 .93 .94	9.05956 .15116 .24368 .33712 .43149	0.95711 .96148 .96584 .97021 .97458	9.11458 .20564 .29761 .39051 .48436	0.95974 .96405 .96837 .97269 .97701	0.99396 .99408 .99420 .99531 .99443	9.99737 .99742 .99747 .99752 .99757	1.0061 .0060 .0058 .0057 .0056	0.00263 .00258 .00253 .00248	83 83 83	42 46 50 53 57
2.95 .96 .97 .98 .99	9.52681 .62308 .72031 .81851 .91770	0.97895 .98331 .98768 .99205 .99641	9.57915 .67490 .77161 .86930 .96798	0.98133 .98565 .98997 .99429 .99861	0.99454 .99464 .99475 .99485	9.99762 .99767 .99771 .99776 .99780	1.0055 .0054 .0053 .0052 .0051	0.00238 .00233 .00229 .00224 .00220	84 84 84	00 04 08 11
3.00	10.01787	1.00078	10.06766	1.00293	0.99505	9.99785	1.0050	0.00215	84	18

HYPERBOLIC FUNCTIONS.

	sin	h. u	cos	h. u	tan	h. u	cot	h. u	
u	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.	gd. u
3.0 .1 .2 .3	10.0179 11.0765 12.2459 13.5379 14.9654	1.00078 .04440 .08799 .13155 .17509	10.0677 11.1215 12.2866 13.5748 14.9987	1.00293 .04616 .08943 .13273 .17605	0.99505 •99595 •99668 •99728 •99777	9.99785 .99824 .99856 .99882	1.0050 .0041 .0033 .0027 .0022	0.00215 .00176 .00144 .00118	84°18′ 84 50 85 20 85 47 86 11
3.5 .6 .7 .8	16.5426 18.2855 20.2113 22.3394 24.6911	1.21860 .26211 .30559 .34907 .39254	16.5728 18.3128 20.2360 22.3618 24.7113	1.21940 .26275 .30612 -34951 .39290	0.99818 .99851 .99878 .99900 .99918	9.99921 •99935 •99947 •99957 •99964	1.0018 .0015 .0012 .0010	0.00079 .00065 .00053 .00043 .00036	86 32 86 52 87 10 87 26 87 41
4.0 .1 .2 .3 .4	27.2899 30.1619 33.3357 36.8431 40.7193	1.43600 .47946 .52291 .56636 .60980	27.3082 30.1784 33.3507 36.8567 40.7316	1.43629 .47970 .52310 .56652 .60993	0.99933 ·99945 ·99955 ·99963 ·99970	9.99971 .99976 .99980 .99984 .99987	1.0007 .0005 .0004 .0004	0.00029 .00024 .00020 .00016	87 54 88 06 88 17 88 27 88 36
4.5 .6 .7 .8 .9	45.0030 49.7371 54.9690 60.7511 67.1412	1.65324 .69668 .74012 .78355 .82699	45.0141 49.7472 54.9781 60.7593 67.1486	1.65335 .69677 .74019 .78361 .82704	0.9997 5 .99980 .9998 3 .99986 .99989	9.99989 .99991 .99993 .99994 .99995	1.0002 .0002 .0002 .0001 .0001	0.00011 .00009 .00007 .00006 .00005	88 44 88 51 88 57 89 03 89 09

Table 17. Factorials.

See table 15 for logarithms of the products 1.2.3. . . . n from 1 to 100. See table 31 for log. (n+1) for values of n between 1.000 and 2.000.

12	$\frac{I}{n}$:	n: = 1. 2. 3. 4 n	12
I 2 3 4 5	1.	1	1
	0.5	2	2
	.16666 66666 66666 66666 66667	6	3
	.04166 66666 66666 66666 66667	24	4
	.00833 33333 33333 33333 33333	120	5
6 7 8 9 10	0.00138 88888 88888 88888 88889 .00019 84126 98412 69841 26984 .00002 48015 87301 58730 15873 .00000 27557 31922 39858 90653 .00000 02755 73192 23985 89065	720 5040 40320 3 62880 36 28800	6 7 8 9
11	0.00000 00250 52108 38544 17188	399 16800	11
12	.00000 00020 87675 69878 68099	4790 01600	12
13	.00000 00001 60590 43836 82161	62270 20800	13
14	.00000 00000 11470 74559 77297	8 71782 91200	14
15	.00000 00000 00764 71637 31820	130 76743 68000	15
16	0.00000 00000 00047 79477 33239	2092 27898 88000	16
17	.00000 00000 00002 81145 72543	35568 74280 96000	17
18	.00000 00000 00000 15619 20697	6 40237 37057 28000	18
19	.00000 00000 00000 00822 06352	121 64510 04088 32000	19
20	.00000 00000 00000 00041 10318	2432 90200 81766 40000	20

TABLE 18. EXPONENTIAL FUNCTION.

x	$\log_{10}(ex)$	ex	e-x	х	$\log_{10}(ex)$	ex	e-x
0.00 .01 .02 .03	0.00000 .00434 .00869 .01303 .01737	1.0000 .0101 .0202 .0305 .0408	1.000000 0.990050 .980199 .970446 .960789	0.50 .51 .52 .53 .54	0.21715 .22149 .22583 .23018 .23452	1.6487 .6653 .6820 .6989	0.606531 .600496 .594521 .588605 .582748
0.05 .06 .07 .08	0.02171 .02606 .03040 .03474 .03909	1.0513 .0618 .0725 .0833 .0942	0.951229 .941765 .932394 .923116 .913931	0.55 .56 .57 .58 .59	0.23886 .24320 .24755 .25189 .25623	1.7333 •7507 •7683 •7860 •8040	0.576950 .571209 .565525 .559898 .554327
0.10	0.0.4343	1.1052	0.904837	0.60	0.26058	1.8221	0.548812
.11	.04777	.1163	.895834	.61	.26492	.8404	·543351
.12	.05212	.1275	.886920	.62	.26926	.8589	·537944
.13	.05646	.1388	.878095	.63	.27361	.8776	·532592
.14	.06080	.1503	.869358	.64	.27795	.8965	·527292
0.15	0.06514	1.1618	0.860708	0.65	0.28229	1.9155	0.522046
.16	.06949	.1735	.852144	.66	.28663	.9348	.516851
.17	.07383	.1853	.843665	.67	.29098	.9542	.511709
.18	.07817	.1972	.835270	.68	.29532	.9739	.506617
.19	.0825 2	.2092	.826959	.69	.2966	.9937	.501576
0.20	0.08686	1.2214	o.818731	0.70	0.30401	2.0138	0.496585
.21	.09120	.2337	.810584	.71	.30835	.0340	.491644
.22	.09554	.2461	.802519	.72	.31269	.0544	.486752
.23	.09989	.2586	.794534	.73	.31703	.0751	.481909
.24	.10423	.2712	.786628	.74	.32138	.0959	.477114
0.25	0.10857	1,2840	0.778801	0.75	0.32572	2.1170	0.472367
.26	.11292	.2969	.771052	.76	.33006	.1383	.467666
.27	.11726	.3100	.763379	.77	.33441	.1598	.463013
.28	.12160	.3231	.755784	.78	.33875	.1815	.458406
.29	.12595	.3364	.748264	.79	.34309	.2034	.453845
0.30	0.13029	1.3499	0.740818	0.80	0.34744	2.2255	0.449329
.31	.13463	.3634	•733447	.81	.35178	.2479	.444858
.32	.13897	.3771	•726149	.82	.35612	.2705	.440432
.33	.14332	.3910	•718924	.83	.36046	.2933	.436049
.34	.14766	.4049	•711770	.84	.36481	.3164	.431711
0.35 .36 .37 .38 .39	0.1 5200 .1 5635 .16069 .16503 .16937	1.4191 •4333 •4477 •4623 •4770	0.704688 .697676 .690734 .683861 .677057	0.S5 .86 .87 .88 .89	0.36915 ·37349 ·37784 ·38218 ·38652	2.3396 .3632 .3869 .4109	0.427415 .423162 .418952 .414783 .410656
0.40	0.17372	1.4918	0.670320	0.90	0.39087	2.4596	0.406570
.41	.17806	.5068	.663650	.91	.39521	.4843	.402524
.42	.18240	.5220	.657047	.92	.39955	.5093	.398519
.43	.18675	.5373	.650509	.93	.40389	.5345	.394554
.44	.19109	.5527	.644036	.94	.40824	.5600	.390628
0.45	0.19543	1.5683	0.637628	0.95	0.41258	2.5857	0.386741
.46	.19978	.5841	.631284	.96	.41692	.6117	.382893
.47	.20412	.6000	.625002	.97	.42127	.6379	.379083
.48	.20846	.6161	.618783	.98	.42561	.6645	.375311
.49	.21280	.6323	.612626	.99	.42995	.6912	.371577
0.50	0.21715	1.6487	0.606531	1.00	0.43429	2.7183	0.367879

x	$\log_{10}\left(e^{x}\right)$	ex	e-x	x	$\log_{10}\left(e^{x}\right)$	ϵ^x	e-x
1.00 .01 .02 .03	0.43429 .43864 .44298 .44732 .45167	2.7183 .7456 .7732 .8011 .8292	0.367879 .364219 .360595 .357007 .353455	1.50 .51 .52 .53 .54	0.65144 .65578 .60013 .66447 .66881	4.4817 .5267 .5722 .6182 .6646	0.223130 .220910 .218712 .216536 .214381
1.05 .06 .07 .08	0.45601 .46035 .46470 .46904 .47338	2.8577 .8864 .9154 .9447 .9743	0.349938 .346456 .343009 .339596 .336216	1.55 .56 .57 .58 .59	0.67316 .67750 .68184 .68619 .69053	4.7115 .7588 .8066 .8550 •9°37	0.212248 .210136 .208045 .205975 .203926
1.10 .11 .12 .13 .14	0.47772 .48207 .48641 .49975 .49510	3.0042 .0344 .0649 .0957 .1268	0.332871 •329559 •326280 •323033 •319819	1.60 .61 .62 .63 .64	0.69487 .69921 .70356 .70790 .71224	4.9530 5.0028 .0531 .1039 .1552	0.201897 .199888 .197899 .195930 .193980
1.15 .16 .17 .18 .19	0.49944 .50378 .50812 .51247 .51681	3.1582 .1899 .2220 .2544 .2871	0.316637 .313486 .310367 .307279 .304221	1.65 .66 .67 .68 .69	0.71659 -72093 -72527 -72961 -73396	5.2070 .2593 .3122 .3656 .4195	0.192050 .190139 .188247 .186374 .184520
1.20 .21 .22 .23 .24	0.52115 .52550 .52984 .53418 .53 ⁸ 53	3.3201 ·3535 ·3872 ·4212 ·4556	0.301194 .298197 .295230 .292293 .289384	1.70 .71 .72 .73 .74	0.73830 .74264 .74699 .75133 .75567	5.4739 .5290 .5845 .6407 .6973	0.182684 .180866 .179066 .177284 .175520
1.25 .26 .27 .28 .29	0.54287 .54721 .55155 .55590 .56024	3.4903 .5254 .5609 .5966 .6328	0.286505 .283654 .280832 .278037 .275271	1.75 .76 .77 .78 .79	0.76002 .76436 . 7 6870 .77304 .77739	5.7 546 .81 24 .8709 .9299 .9895	0.173774 .172045 .170333 .168638 .166960
1.30 .31 .32 .33 .34	0.56458 .56893 .57327 .57761 .58195	3.6693 .7062 •7434 .7810 .8190	0.272532 .269820 .267135 .264477 .261846	1.80 .81 .82 .83 .84	0.78173 .78607 .79042 .79476 .79910	6.0496 .1104 .1719 .2339 .2965	0.165299 .163654 .162026 .160414 .158817
1.35 •36 •37 •38 •39	0.58630 .59064 .59498 .59933 .60367	3.8574 .8962 .9354 .9749 4.0149	0.259240 .256661 .254107 .251579 .249075	1.85 .86 .87 .88	0.80344 .80779 .81213 .81647 .82082	6.3598 .4237 .4883 .5535 .6194	0.157237 .155673 .154124 .152590 .151072
1.40 .41 .42 .43 .44	0.60801 .61236 .61670 .62104 .62538	4.0552 .0960 .1371 .1787 .2207	0.246597 •244143 •241714 •239309 •236928	1.90 .91 .92 .93	0.82516 .82950 .83385 .83819 .84253	6.6859 .7531 .8210 .8895 .9588	0.149569 .148080 .146607 .145148 .143704
1.45 .46 .47 .48 .49	0.62973 .63407 .63841 .64276 .64710	4.2631 .3060 .3492 .3929 .4371	0.234570 .232236 .229925 .227638 .225373	1.95 .96 .97 .98	0.84687 .85122 .85556 .85990 .86425	7.0287 .0993 .1707 .2427 .3155	0.142274 .140858 .139457 .138069 .136695
1.50	0.65144	4.4817	0.223130	2.00	0.86859	7.3891	0.135335

TABLE 18 (continued).

х	$\log_{10}\left(e^{x}\right)$	ex.	e-x	*x	$\log_{10}\left(e^{x}\right)$	ex	e-x
2.00 .01 .02 .03	0.86859 .87293 .87727 .88162 .88596	7.3891 .4633 .5383 .6141 .6906	0.135335 .133989 .132655 .131336 .130029	2.50 .51 .52 .53 .54	1.08574 .09008 .09442 .09877 .10311	12.182 .305 .429 .554 .680	0.082085 .081268 .080460 .079659 .078866
2.05 .06 .07 .08	o.89030 .89465 .89899 .90333 .90768	7.7679 .8460 .9248 8.0045 .0849	0.128735 .127454 .126186 .124930 .123687	2.55 .56 .57 .58 .59	1.10745 .11179 .11614 .12048 .12482	12.807 .936 13.066 .197 .330	0.078082 .077305 .076536 .075774 .075020
2.10	0.91202	8.1662	0.122456	2.60	1.1291 7	13.464	0.074274
.11	.91636	.2482	.121238	.61	.1335 1	·599	.073535
.12	.92070	.3311	.12003 2	.62	.13785	·736	.072803
.13	.9250 5	.4149	.118837	.63	.14219	·874	.072078
.14	.92939	.4994	.117655	.64	.14654	14.013	.071361
2.15 .16 .17 .18	0.93373 .93808 .94242 .94676 .95110	8.5849 .6711 .7583 .8463 .9352	0.116484 .115325 .114178 .113042 .111917	2.65 .66 .67 .68 .69	1.15088 .15522 .15957 .16391 .16825	14.154 .296 .440 .585 -732	0.070651 .069948 .069252 .068563 .067881
2.20	0.95545	9.0250	0.110803	2.70	1.17260	14.880	0.067206
.21	.95979	.1157	.109701	.71	.17694	15.029	.066537
.22	.96413	.2073	.108609	.72	.18128	.180	.065875
.23	.96848	.2999	.107528	.73	.18562	•333	.065219
.24	.97282	·3933	.106459	.74	.18997	.487	.064570
2.25	0.97716	9.4877	0.105399	2.75	1.19431	15.643	0.063928
.26	.98151	.5831	.104350	.76	.19865	.800	.063292
.27	.98585	.6794	.103312	.77	.20300	.959	.062662
.28	.99019	.7767	.102284	.78	.20734	16.119	.062039
.29	.99453	.8749	.101266	.79	.21168	.281	.061421
2.30	0.99888	9.9742	0.100259	2.80	1.21602	16.445	0.060810
.31	1.00322	10.074	.099261	.81	.22037	.610	.060205
.32	.00756	.176	.098274	.82	.22471	.777	.059606
.33	.01191	.278	.097296	.83	.22905	.945	.059013
.34	.01625	.381	.096328	.84	.23340	17.116	.058426
2.35	1.02059	10.486	0.095369	2.85	1.23774	17.288	0.057844
.36	.02493	.591	.094420	.86	.24208	.462	.057269
.37	.02928	.697	.093481	.87	.24643	.637	.056699
.38	.03362	.805	.092551	.88	.25077	.814	.056135
.39	.03796	.913	.091630	.89	.25511	.993	.055576
2.40 .41 .42 .43 .44	1.04231 .04665 .05099 .05534 .05968	.134 .246 .359 .473	0.090718 .089815 .088922 .088037 .087161	2.90 .91 .92 .93 .94	1.25945 .26380 .26814 .27248 .27683	18.174 •357 •541 •728 •916	0.0550 2 3 .054476 .053934 .053397 .052866
2.45	1.06402	11.588	0.086294	2.95	1.28117	19.106	0.052340
.46	.06836	.705	.085435	.96	.28551	.298	.051819
.47	.07271	.822	.084585	.97	.28985	.492	.051303
.48	.07705	.941	.083743	.98	.29420	.688	.050793
.49	.08139	12.061	.082910	.99	.29854	.886	.050287
2.50	1.08574	12.182	0.082085	3.00	1.30288	20.086	0.049787

x	$\log_{10}(ex)$	ex	e-x	x	$\log_{10}(ex)$	ex	e-x
3.00 .01 .02 .03	1.30288 .30723 .31157 .31591 .32026	20.086 .287 .491 .697	0.049787 .049292 .048801 .048316	3.50 .51 .52 .53 .54	1.52003 .52437 .52872 .53306 .53740	33.115 .448 .784 34.124 .467	0.030197 .029897 .029599 .029305 .029013
3.05 .06 .07 .08	1.32460 .32894 .33328 .33763 .34197	21.115 .328 .542 .758 .977	0.047359 .046888 .046421 .045959 .045502	3.55 .56 .57 .58 .59	1.54175 .54609 .55043 .55477 .55912	34.813 35.163 .517 .874 36.234	0.028725 .028439 .028156 .027876 .027598
3.10 .11 .12 .13 .14	1.34631 .35066 .35500 .35934 .36368	22.198 .421 .646 .874 23.104	0.045049 .044601 .044157 .043718 .043283	3.60 .61 .62 .63 .64	1.56346 .56780 .57215 .57649 .58083	36.598 .966 37.338 .713 38.092	0.027324 .027052 .026783 .026516 .026252
3.15 .16 .17 .18	1.36803 .37237 .37671 .38106 .38540	23.336 .571 .807 24.047 .288	0.042852 .042426 .042004 .041586 .041172	3.65 .66 .67 .68 .69	1.58517 .58952 .59386 .59820 .60255	38.475 .861 39.252 .646 40.045	0.025991 .025733 .025476 .025223 .024972
3.20 .21 .22 .23 .24	1.38974 .39409 .39843 .40277 .40711	24·533 ·779 25·028 ·280 ·534	0.040762 .040357 .039955 .039557 .039164	3.70 .71 .72 .73 .74	1.60689 .61123 .61558 .61992 .62426	40.447 .854 41.264 .679 42.098	0.024724 .024478 .024234 .023993 .023754
3.25 .26 .27 .28 .29	1.41146 .41580 .42014 .42449 .42883	25.790 26.050 .311 .576 .843	0.038774 .038388 .038006 .037628 .037254	3-75 .76 .77 .78 .79	1.62860 .63295 .63729 .64163 .64598	42.521 .948 43.380 .816 44.256	0.023518 .023284 .023052 .022823 .022596
3.30 .31 .32 .33 .34	1.43317 .43751 .44186 .44620 .45054	27.113 •385 •660 •938 28.219	0.036883 .036516 .036153 .035793 .035437	3.80 .81 .82 .83 .84	1.65032 .65466 .65900 .66335 .66769	44.701 45.150 .604 46.063 ·525	0.022371 .022148 .021928 .021710 .021494
3·35 ·36 ·37 ·38 ·39	1.45489 .45923 .46357 .46792 .47226	28.503 .789 29.079 .371 .666	0.035084 .034735 .034390 .034047 .033709	3.85 .86 .87 .88 .89	1.67203 .67638 .68072 .68506 .68941	46.993 47.465 .942 48.424 .911	0.021280 .021068 .020858 .020651 .020445
3.40 .41 .42 .43 .44	1.47660 .48094 .48529 .48963 .49397	29.964 30.265 .569 .877 31.187	0.033373 .033041 .032712 .032387 .032065	3.90 .91 .92 .93	1.69375 .69809 .70243 .70678	49.402 .899 50.400 .907 51.419	0.020242 .020041 .019841 .019644 .019448
3.45 .46 .47 .48 .49	1.49832 -50266 -50700 -51134 -51569	31.500 .817 32.137 .460 .786	0.031746 .031430 .031117 .030807 .030501	3.95 .96 .97 .98 .99	1.71546 .71981 .72415 .72849 .73283	51.935 52.457 .985 53.517 54.055	0.019255 .019063 .018873 .018686
3.50	1.52003	33.115	0.030197	4.00	1.73718	54.598	0.018316

	i di			1			
x	$\log_{10}(e^x)$	ex	ex	x	$\log_{10}(e^x)$	ez	e-x
4.00 .01 .02 .03	1.73718 .74152 .74586 .75021 .75455	54.598 55.147 .701 56.261 .826	0.018316 .018133 .017953 .017774 .017597	4.50 .51 .52 .53	1.95433 .95867 .96301 .96735 .97170	90.017 .922 91.836 92.759 93.691	0.011109 .010998 .010889 .010781
4.05 .06 .07 .08 .09	1.7 5889 .76324 .767 58 .77192 .77626	57·397 ·974 58·557 59·145 ·740	0.017422 .017249 .017077 .016907 .016739	4-55 •56 •57 •58 ••59	1.97604 .98038 .98473 .98907 .99341	94.632 95.583 96.544 97.514 98.494	0.010567 .010462 .010358 .010255 .010153
4.10 .11 .12 .13	1.78061 .78495 .78929 .79364 .79798	60.340 -947 61.559 62.178 .803	0.016573 .016408 .016245 .016083 .015923	4.60 .61 .62 .63 .64	1.99775 2.00210 .00644 .01078 .01513	99.484 100.48 101.49 102.51 103.54	0.010052 .009952 .009853 .009755 .009658
4.15 .16 .17 .18 .19	1.80232 .80667 .81101 .81535 .81969	63.434 64.072 .715 65.366 66.023	0.015764 .015608 .015452 .015299 .015146	4.65 .66 .67 .68 .69	2.01947 .02381 .02816 .03250 .03684	104.58 105.64 106.70 107.77 108.85	0.009562 .009466 .009372 .009279 .009187
4.20 .21 .22 .23 .24	1.82404 .82838 .83272 .83707 .84141	66.686 67.357 68.033 .717 69.408	0.014996 .014846 .014699 .014552 .014408	4.70 .71 .72 .73 .74	2.04118 .04553 .04987 .05421 .05856	109.95 111.05 112.17 113.30 114.43	0.009095 .009005 .008915 .008826 .008739
4.25 ,26 ,27 ,28 ,29	1.84575 .85009 .85444 .85878 .86312	70.105 .810 71.522 72.240 .966	0.014264 .014122 .013982 .013843 .013705	4.75 .76 .77 .78 .79	2.06290 .06724 .07158 .07593 .08027	115.58 116.75 117.92 119.10 120.30	0.008652 .008566 .008480 .008396 .008312
4.30 .31 .32 .33 .34	1.86747 .87181 .87615 .88050 .88484	73.700 74.440 75.189 .944 76.708	0.013569 .013434 .013300 .013168 .013037	4.80 .81 .82 .83 .84	2,08461 .08896 .09330 .09764 .10199	121.51 122.73 123.97 125.21 126.47	0.008230 .008148 .008067 .007987 .007907
4·35 ·36 ·37 ·38 ·39	1.88918 .89352 .89787 .90221	77.478 78.257 79.044 79.838 80.640	0.012907 .012778 .012651 .012525 .012401	4.85 .86 .87 .88 .89	2.10633 .11067 .11501 .11936 .12370	127.74 129.02 130.32 131.63 132.95	0.007828 .007750 .007673 .007597 .007521
4.40 .41 .42 .43 .44	1.91090 .91524 .91958 .92392 .92827	81.451 82.269 83.096 .931 84.775	0.012277 .012155 .012034 .011914 .011796	4.90 .91 .92 .93 .94	2.12804 .13239 .13673 .14107 .14541	134.29 135.64 137.00 138.38 139.77	0.007447 .007372 .007299 .007227
4.45 .46 .47 .48 .49	1.93261 .93695 .94130 .94564 .94998	85.627 86.488 87.357 88.235 89.121	0.011679 .011562 .011447 .011333 .011221	4.95 .96 .97 .98 .99	2.14976 .15410 .15844 .16279 .16713	141.17 142.59 144.03 145.47 146.94	0.007083 .007013 .006943 .006874 .006806
4.50	1.95433	90.017	0.011109	5.00	2.17147	148.41	0.006738

TABLE 18 (continued).

EXPONENTIAL FUNCTION.

x	$\log_{10}(e^x)$	ex	e-x	х	$\log_{10}(e^x)$	ex	e-x
	10810(5)				010/4		
5.00	2.17147	148.41	0.006738	5.0	2.17147	148.41	0.006738
10.	.17582	149.90	.006671	-1	-21490	164.02	.000097
.02	.18016	151.41	.006605	.2	.25833	181.27	.005517
.03	.18450	152.93	.006539	.3	.30176	200.34	.004992
.04	.18884	1 54.47	.006474	•4	-34519	221.41	.004517
5.05	2.19319	1 56.02	0.006409	5.5 .6	2.38862	244.69	0.004087
.06	.19753 .20187	157.59	.006346 .006282	.0	.43205 .47 5 48	270.43 298.87	.003698 .003346
.07 .08	.20137	159.17 160.77	.006220	.7 .8	.51891	330.30	.003028
.09	.21056	162.39	.006158	.9	.56234	365.04	.002739
5.10	2.21490	164.02	0.006097	6.0	2.60577	403.43	0.002479
.11	.21924	165.67	.006036	.ı	.64920	445.86	.002243
.12	.22359	167.34	.005976	.2	.69263	492.75	.002029
.13	.22793	169.02	.005917	-3	.73606	5 44·57	.001836
.14	.23227	170.72	.005858	-4	.77948	601.85	.001662
5.15	2.23662	172.43	0.005799	6.5	2.82291	665.14	0.001 503
.16	.24096	174.16	.005742	.6 -	.86634	735.10	.001360
.17 .18	.24530	175.91	.005685	.7 .8	.90977 .95320	812.41 897.85	.001231
	.24965	177.68	.005628 .005572	.9	.99663	992.27	.001008
.19	.25399	179.47	.0055/2	.9	.99003		.001000
5.20	2.25833	181.27	0.005517	7.0	3.04 0 06	1096.6	0.000912
.21	.26267	183.09	.005462	.1	.0 8349	1212.0	.000825
.22	.26702	184.93	.005107	.2	.1 2692	1339.4	.000747
.23	.27136	186.79 188.67	.005354	-3	.17035	1480.3 1636.0	.000611
.24	.27570	100.07	.005300	·4		-	
5.25	2.28005	190.57	0.005248	7.5 .6	3.25721	1808.0	0.000553
.26	.28439	192.48	.005195	.6	.30064	1998.2	.000500
.27	.28873	194.42	.005144	.7 .8	-34407	2208.3	.000453
	.29307	196.37	.005092		.38750	2440.6 2697.3	.000410
.29	.29742	198.34	.005042	.9	.43093		.0003/1
5.30	2.30176	200.34	0.004992	8.0	3.47436	2981.0	0.000335
.31	.30610	202.35 204.38	.004942	.1	-51779	3294.5	.000304
.32	.31045	204.38	.004893	.2	.56121 .60464	3641.0	.00027.5
•33	.31479	206.44 208.51	.004844 .004796	·3 ·4	.64807	4023.9 4447.1	.000249
•34	.31913	_					3
5.35 .36	2.32348	210.61	0.004748	8.5	3.691 50	4914.8	0.000203
.36	.32782	212.72	.004701	.6	·73493	5431.7	.000184
. 37	.33216	214.86	.004654	.7 .8	.77836 .82179	6002.9 6634.2	.000167
.38	.33650	217.02	.004608		.86522	7332.0	.000151 .000136
.39	.34085	219.20	.004562	.9			.000130
5.40	2.34519	221.41	0.004517	9.0	3.90865	8103.1	0.000123
.41	•34953	223.63	.004472	I.	.95208	8955.3	.000112
.42	.35388	225.88	.004427	.2	.99551	9897.1	101000.
.43	35822	228.15	.004383	-3	4.03894	10938. 12088.	.000091
.44	.36256	230.44	.004339	-4			
5.45	2.36690	232.76	0.004296	9. 5 .6	4.12580	13360.	0.000075 .000068
.46	.37125	235.10	.004254	.6	.16923	14765.	
•47	•37 559	237.46	.004211	.7 .8	.21266	16318.	.000061
.48 .49	·37993 .384 2 8	239.85 242.26	.004169 .004128	.0	.29952	18034. 19930.	.000055 .000050
	2.38862		0.004087	10.0	4.34294	22026.	0.000045
5.50	2.30002	244.69	0.004007	10.0	4.24294	22020.	0.000043

TABLE 19.

Value of e^{x^2} and e^{-x^2} and their logarithms.

х	ex2	log e ^{x²}	e-x2	$\log e^{-x^2}$
0.1	1.0101	0.00434	0.99005	7.99566
2	1.0408	01737	96079	98263
3	1.0942	03909	91393	96091
4	1.1735	06949	85214	93051
5	1.2840	10857	77880	89143
0.6 7 8 9	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 41486 36788	7.84365 78720 72205 64822 56571
1.1	3·3535	0.52550	0.29820	7.47450
2	4·2207	62538	23693	37462
3	5·4195	73396	18452	26604
4	7·0993	85122	14086	14878
5	9·4877	97716	10540	02284
1.6	1.2936 × 10	1.11179	0.77305 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	2.88821
7	1.7993 "	25511		74489
8	2.5534 "	40711		59289
9	3.6966 "	56780		43220
2.0	5.4598 "	73718		26282
2.1	8.2269 " 1.2647×10^{2} 1.9834 " 3.1735 " 5.1801 "	1.91524	0.12155 "	2.08476
2		2.10199	79071 × 10 ⁻²	3.89801
3		29742	50418 "	70258
4		50154	31511 "	49846
5		71434	19305 "	28566
2.6	8.6264 "	2.93583	0.11592 "	3.06417
7	1.4656 × 10 ³	3.16601	68233 × 10 ⁻⁸	4.83399
8	2.5402 "	40487	39367 "	59513
9	4.4918 "	65242	22263 "	34758
3.0	8.1031 "	90865	12341 "	09135
3.1	1.4913×10^{4}	4.17357	0.67055×10^{-4} 35713 18644 95402×10^{-5} 47851	5 .82643
2	2.8001 "	44718		55282
3	5.3637 "	72947		27053
4	1.0482×10^{5}	5.02044		6 .97956
5	2.0898 "	32011		67989
3.6	4.2507 "	5.62846	0.23526 " 11337 " 53553×10^{-6} 24796 " 11254 "	6.37154
7	8.8205 "	94549		05451
8	1.8673 × 10 ⁶	6.27121		7.72879
9	4.0329 "	60562		39438
4.0	8.8861 "	94871		05129
4.1 2 3 4 5	1.9975×10^{7} 4.5809 1.0718×10^{8} 2.5582 6.2296 "	7.30049 66095 8.03010 40794 79446	0.50062×10^{-7} 21830 " 93303×10^{-8} 39089 " 16052 "	8.69951 33905 9.96990 59206 20554
4.6 7 8 9 5.0	1.5476×10^{9} 3.9225 " 1.0142×10^{10} 2.6755 " 7.2005 "	9.1896 7 59357 10.00614 42741 85736	0.64614×10^{-9} 25494 " 98595×10^{-10} 37376 " 13888 "	70.81033 40643 71.99386 57259 14264

TABLE 20. EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\pi}{4}z}$ and $e^{-\frac{\pi}{4}z}$ and their logarithms.

x	$e^{\frac{\pi}{4}x}$	$\log e^{\frac{\pi}{4^x}}$	$e^{-\frac{\pi}{4}z}$	$\log e^{-\frac{\pi}{4}z}$
1	2.1933	0.34109	0.45594	7.65891
2	4.8105	.68219	.20788	-31781
3	1.0551 × 10	1.02328	.94780 × 10 ⁻¹	2.97672
4	2.3141 "	.36438	.43214 "	-63562
5	5.0754 "	.70547	.19703 "	-29453
6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.04656 .38766 .72875 3.06985 .41094	0.89833 × 10 ⁻² .49958 " .18674 " .85144 × 10 ⁻³ .38820 "	3.95344 .61234 .27125 4.93015 .58906
11	5.6498 " 1.2392×10^4 2.7178 " 5.9610 " 1.3074×10^5	3.752 03	0.17700 "	4.24797
12		4.09313	.80700 × 10 ⁻⁴	5.90687
13		-43422	.36794 "	.56578
14		-77532	.16776 "	.22468
15		5.11641	.76487 × 10 ⁻⁵	6.88359
16	2.8675 " 6.2893 " 1.3794×10^{6} 3.0254 " 6.6356 "	5.45751	0.34873 "	6.54249
17		.79860	.15900 "	.20140
18		6.13969	.72495 × 10 ⁻⁶	7.86031
19		.48079	.33053 "	.51921
20		.82188	.15070 "	.17812

TABLE 21.
EXPONENTIAL FUNCTIONS.

Values of $e^{\frac{\sqrt{\pi}}{4}z}$ and $e^{-\frac{\sqrt{\pi}}{4}z}$ and their logarithms.

æ	$e^{\frac{\sqrt{\pi}}{4}z}$	$\log e^{\frac{\sqrt{\pi}}{4}x}$	$e^{-\frac{\sqrt{\pi}}{3}z}$	$\log e^{-\frac{\sqrt{\pi}}{4}x}$
1 2 3 4 5	1.5576 2.4260 3.7786 5.8853 9.1666	0.19244 .38488 .57733 .76977 .96221	0.64203 .41221 .26465 .16992 .10909	T.80756 .61512 .42267 .23023 .03779
6 7 8 9	14.277 22.238 34.636 53.948 84.027	1.15465 .34709 .53953 .73198 .92442	0.070041 .044968 .028871 .018536 .011901	2.84535 .65291 .46047 .26802 .07558
11 12 13 14 15	130.88 203.85 317.50 494.52 770.24	2.11686 .30930 .50174 .69418 .88663	0.0076408 .0049057 .0031496 .0020222 .0012983	3.88314 .69070 .49826 .30582
16 17 18 19 20	1199.7 1868.6 2910.4 4533.1 7060.5	3.07907 .27151 .46395 .65639 .84883	0.00083355 .00053517 .00034360 .00022060 .00014163	4.92093 .72849 .53605 .34361 .15117

TABLE 22. - Exponential Functions.

Value of e^x and e^{-x} and their logarithms.

x	e ^z	log ez	e-x	x	ez	$\log e^x$	e-z
1/64 1/32 1/16 1/10 1/9 1/8 1/7 1/6 1/5	1.0157 .0317 .0645 .1052 .1175 1.1331 .1536 .1814 .2214	0.00679 .01357 .02714 .04343 .04825 0.05429 .06204 .07238 .08686 .10857	0.98450 .96923 .93941 .90484 .89484 0.88250 .86688 .84648 .81873 .77880	1/3 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2	1.3956 .6487 2.1170 .7183 3.4993 4.4817 5.7546 7.3891 9.4877 12.1825	0.14476 .21715 .32572 .43429 .54287 0.65144 .76002 .86859 .97716	0.71653 .60653 .47237 .36788 .28650 0.22313 .17377 .13534 .10540 .08208

TABLE 23. - Least Squares.

Values of
$$P = \frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$. For values of the inverse function see the table on Diffusion.

h.x	0	1	2	3	4	5	6	7	8	9
0.0 .1 .2 .3 .4	.11246 .22270 .32863 .42839	.01128 .12362 .23352 .33891 .43797	.02256 .13476 .24430 .34913 .44747	.03384 .14587 .25502 .35928 .45689	.04511 .15695 .26570 .36936 .46623	.05637 .16800 .27633 .37938 .47548	.06762 .17901 .28690 .38933 .48466	.07886 .18999 .29742 .39921 .49375	.09008 .20094 .30788 .40901 .50275	.10128 .21184 .31828 .41874 .51167
0.5 .6 .7 .8 .9	.52050 .60386 .67780 .74210 .79691	.52924 .61168 .68467 .74800 .80188	.53790 .61941 .69143 .75381 .80677	.54646 .62705 .69810 .75952 .81156	.55494 .63459 .70468 .76514 .81627	.56332 .64203 .71116 .77067 .82089	.57162 .64938 .71754 .77610 .82542	.57982 .65663 .72382 .78144 .82987	.58792 .66378 .73001 .78669 .83423	.59594 .67084 .73610 .79184 .83851
1.0 .1 .2 .3 .4	.84270 .88021 .91031 .93401 .95229	.84681 .88353 .91296 .93606 .95385	.85084 .88679 .91553 .93807 .95538	.85478 .88997 .91805 .94002 .95686	.85865 .89308 .92051 .94191 .95830	.86244 .89612 .92290 .94376 .95970	.86614 .89910 .92524 .94556 .96105	.86977 .90200 .92751 .94731 .96237	.87333 .90484 .92973 .94902 .96365	.87680 .90761 .93190 .95067 .96490
1.5 .6 .7 .8 .9	.96611 .97635 .98379 .98909	.96728 .97721 .98441 .98952 .99309	.96841 .97804 .98500 .98994 .99338	.96952 .97884 .98558 .99035 .99366	.97059 .97962 .98613 .99074 .99392	.97162 .98038 .98667 .99111	.97263 .98110 .98719 .99147 .99443	.97360 .98181 .98769 .99182	.97455 .98249 .98817 .99216 .99489	.97546 .98315 .98864 .99248
2.0 .1 .2 .3 .4	.99532 .99702 .99814 .99886 .99931	.99552 .99715 .99822 .99891	.99 5 72 .99728 .99831 .99897 .99938	.99591 .99741 .99839 .99902 .99941	.99609 .99753 .99846 .99906	.99626 .99764 .99854 .99911	.99642 .99775 .99861 .99915	.99658 .99785 .99867 .99920 .99952	.99673 .99795 .99874 .99924 .99955	.99688 .99805 .99880 .99928
2.5 .6 .7 .8 .9	.99959 .99976 .99987 .99992 .99996	.99961 .99978 .99987 .99993 .99996	.99963 .99979 .99988 .99993 .99996	.99965 .99980 .99989 .99994 .99997	.99967 .99981 .99989 .99994 .99997	.99969 .99982 .99990 .99994 .99997	.99971 .99983 .99991 .99995	.99972 .99984 .99991 .99995 .99997	.99974 .99985 .99992 .99995	.99975 .99986 .99992 .99996 .99998
3.0	,99990	-97799	199999	1.00000						

Taken from a paper by Dr. James Burgess 'on the Definite Integral $\frac{2}{\sqrt{\pi}} \int_{o}^{t} e^{-t^2} dt$, with Extended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694 / h.

$\frac{x}{r}$	О	1	2	3	4	5	6	7	8	9
	.00000 .05378 .10731 .16735 .21268 .26407 .31430 .36317 .41052 .45618 .50000 .54188 .58171 .61942 .65498 .68833 .71949 .74842 .77528	.00538 .05914 .11264 .16562 .21787 .26915 .31925 .36798 .41517 .46064 .50428 .54595 .58558 .62308 .65841 .69155 .72249 .75124 .777785 .80235	.01076 .06451 .11796 .17088 .22304 .27421 .32419 .37277 .41979 .46599 .46599 .50853 .55001 .58942 .66182 .69474 .72546 .75400 .78039 .80469	3 -01614 -06987 -12328 -17614 -22821 -27927 -32911 -37755 -42440 -46952 -51277 -55404 -59325 -636521 -66521 -69791 -72841 -75674 -78291 -80700	-2152 -07523 -12860 -18138 -23336 -23336 -38231 -42899 -47393 -51699 -55806 -59705 -66858 -70106 -73134 -75945 -78542 -78545 -78545	.02690 .08059 13391 .18062 .23851 .28934 .33892 .38705 .43357 .47832 .52119 .56205 .60083 .63747 .76419 .73425 .76214 .78790	.03228 .08594 .13921 .19185 .24364 .34380 .39178 .43813 .43813 .438270 .52537 .56602 .60460 .64102 .67526 .70729 .73714 .76481 .79036	.03766 .09129 .14451 .19707 .24876 .39649 .44267 .48705 .52952 .56998 .60833 .64454 .67856 .71038 .74000 .76746 .79286 .81607	8 .04303 .09663 .14980 .20229 .25388 .30435 .35352 .40118 .44713 .49139 .61205 .64804 .71344 .714285 .77092 .79522 .81828	9 .04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570 .53778 .57782 .61575 .65152 .68510 .71648 .74567 .77270 .79761 .82048
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	.82266 .84335 .86216 .87918 .89450 .90825 .92051 .93141 .94105	.82481 .84531 .86394 .88678 .89595 .90954 .92166 .93243 .94195 .95033	.82695 .84726 .86570 .88237 .89738 .91082 .92280 .93344 .94284 .95111	.82907 .84919 .86745 .88395 .89879 .91208 .92392 .93443 .94371 .95187	.83117 .85109 .86917 .88550 .90019 .91332 .92503 .93541 .94458 .95263	.83324 .85298 .87088 .88705 .90157 .91456 .92613 .93638 .94543 .95338	.83530 .85486 .87258 .88857 .90293 .91578 .92721 .93734 .94627 .95412	.83734 .85671 .87425 .89008 .90428 .91698 .92828 .93828 .94711 .95484	.83936 .85854 .87591 .89157 .90562 .91817 .92934 .93922 .94793 .95557	.84137 .86036 .87755 .89304 .90694 .91935 .93038 .94014 .94874 .95628
3 4 5	.95698 .993 02 .99926	.96346 .99431 ·99943	.96910 .99539 .99956	·97397 99627 ·99966	.9781 7 .99700 .99974	.98176 .99760 .99980	.98482 .99808 .99985	.98743 .99848 .99988	.98962 .99879 .99991	.99147 .99905 .99993

TABLE 25. LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $r_8 = 0.6745 \sqrt{\frac{\Sigma v^2}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .20 34 .1472 .1211 .1053	0.4769 .1947 .1438 .1192	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157	0.3016 .1742 .1349 .1140	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094
50 60 70 80 90	0.0964 .0878 .0812 .0759	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0740 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0779 .0733 .0692	0.0901 .0830 .0774 .0727 .0688	0.0893 .0824 .0769 .0723 .0685	0.0886 .0818 .0764 .0719 .0681

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$

This factor occurs in the equation $r_0 = 0.6745 \sqrt{\frac{\Sigma v^2}{n(n-\ell)}}$ for the probable error of the arithmetic mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0711 .0346 .0229 .0171	0.0643 .0329 .0221 .0167	0.4769 .0587 .0314 .0214 .0163	0.2754 .0540 .0300 .0208 .0159	0.1947 .0500 .0287 .0201 .0155	0.1508 .0465 .0275 .0196 .0152	0.1231 .0435 .0265 .0190 .0148	0.1041 .0409 .0255 .0185	0.0901 .0386 .0245 .0180	0.0795 .0365 .0237 .0175 .0139
50 60 70 80 90	0.0136 .0113 .0097 .0085 .0075	0.0134 .0111 .0096 .0084 .0075	0.0131 .0110 .0094 .0083 .0074	0.0128 .0108 .0093 .0082 .0073	0.0126 .0106 .0092 .0081 .0072	0.0124 .0105 .0091 .0080	0.0122 .0103 .0089 .0079	0.0119 .0101 .0088 .0078 .0070	0.0117 .0100 .0087 .0077 .0069	0.0115 .0098 .0086 .0076 .0068

TABLE 27. - LEAST SQUARES.

Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the approximate equation $r = 0.8453 \frac{\Sigma v}{\sqrt{u(u-t)}}$ for the probable error of a single observation.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0891 .0434 .0287 .0214	0.0806 .0412 .0277 .0209	0.5978 .0736 .0393 .0268 .0204	0.3451 .0677 .0376 .0260 .0199	0.2440 .0627 .0360 .0252 .0194	0.1890 .0583 .0345 .0245	0.1 543 .0 546 .0 332 .0 2 38 .0 186	0.1304 .0513 .0319 .0232 .0182	0.1130 .0483 .0307 .0225 .0178	0.0996 .0457 .0297 .0220
50 60 70 80 90	0.0171 .0142 .0122 .0106 .0094	0.0167 .0140 .0120 .0105 .0093	0.0164 .0137 .0118 .0104 .0092	0.0161 .0135 .0117 .0102 .0091	0.0158 .0133 .0115 .0101	0.0155 .0131 .0113 .0100 .0089	0.0152 .0129 .0112 .0099 .0089	0.0150 .0127 .0111 .0098 .0088	0.0147 .0125 .0109 .0097 .0087	0.0145 .0123 .0108 .0096 .0086

TABLE 28. - LEAST SQUARES.

Values of $0.8453 \frac{1}{n\sqrt{n-1}}$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{1}{n\sqrt{n-1}}$ for the probable error of the arithmetical mean.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.0282 .0097 .0052 .0034	0.0243 .0090 .0050 .0033	0.4227 .0212 .0084 .0047 .0031	0.1993 .0188 .0078 .0045	0.1220 .0167 .0073 .0043 .0029	0.0845 .0151 .0069 .0041 .0028	0.0630 .0136 .0065 .0040	0.0493 .0124 .0061 .0038 .0027	0.0399 .0114 .0058 .0037 .0026	0.0332 .0105 .0055 .0035 .0025
50 60 70 80 90	0.0024 .0018 .0015 .0012 .0010	0.0023 .0018 .0014 .0012 .0010	0.0023 .0017 .0014 .0011	0.0022 .0017 .0014 .0011	0.0022 .0017 .0013 .0011 .0009	0.0021 .0016 .0013 .0011 .0009	0.0020 .0016 .0013 .0011	0.0020 .0016 .0013 .0010	0.0019 .0015 .0012 .0010	0.0019 .0015 .0012 .0010 .0009

Observation equations:

$$\begin{array}{lll} a_1z_1 + b_1z_2 + \dots & l_1z_q = M_1 \text{, weight } p_1 \\ a_2z_1 + b_2z_2 + \dots & l_2z_q = M_2 \text{. weight } p_2 \\ & \dots & \dots \\ a_nz_1 + b_nz_2 + \dots & l_nz_q = M_n \text{, weight } p_n. \end{array}$$

Auxiliary equations:

Normal equations:

$$\begin{array}{l} [\operatorname{paa}]z_1 + [\operatorname{pab}]z_2 + \dots & [\operatorname{pal}]z_q = [\operatorname{paM}] \\ [\operatorname{pab}]z_1 + [\operatorname{pbb}]z_2 + \dots & [\operatorname{pbl}]z_q = [\operatorname{pbM}]. \\ \vdots & \vdots & \vdots & \vdots \\ [\operatorname{pla}]z_1 + [\operatorname{plb}]z_2 + \dots & [\operatorname{pll}]z_q = [\operatorname{plM}]. \end{array}$$

Solution of normal equations in the form,

$$z_1 = A_1[paM] + B_1[pbM] + \dots L_1[plM]$$

 $z_2 = A_2[paM] + B_2[pbM] + \dots L_2[plM]$
 $z_3 = A_3[paM] + B_3[pbM] + \dots L_n[plM]$

gives:

weight of
$$z_1=p_{z_1}=(A_1)^{-1}$$
; probable error of $z_1=\frac{r}{\sqrt{p_{z_1}}}$ weight of $z_2=pz_2=(B_2)^{-1}$; probable error of $z_2=\frac{r}{\sqrt{p_{z_2}}}$.

weight of $z_q=p_{z_q}=(L_n)^{-1}$; probable error of $z_q=\frac{r}{\sqrt{p_{z_2}}}$

wherein

r = probable error of observation of weight unity
= 0.6745
$$\sqrt{\frac{\mathbf{z} \text{ pv}^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \sum v}{\sqrt{n(n-1)}}.$$
 (approx.) = probable error of observation of weight unity.

$$r_{o} = \text{o.6745} \sqrt{\frac{\sum v^{2}}{n \, (n-1)}} = \frac{\text{o.8453} \, \Sigma \, v}{n \sqrt{n-1}} \cdot \quad \text{(approx.)} = \underset{\text{of mean.}}{\text{probable error}}$$

Weighted mean, n observations:
$$r = 0.6745 \, \sqrt{\frac{\Sigma \, \mathrm{p} \, \mathrm{v}^2}{n-1}}; \ r_o = \frac{r}{\sqrt{\Sigma \mathrm{p}}} = 0.6745 \, \sqrt{\frac{\Sigma \, \mathrm{p} \, \mathrm{v}^2}{(n-1) \, \Sigma \, \mathrm{p}}}$$

bable error (R) of a function (2) of the probable errors are respectively, r_1, r_2, \ldots $Z = f(z_1, z_2, \ldots)$ $R^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 r_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 r_2^2 + \cdots$ Probable error (R) of a function (Z) of several observed quantities z₁, z₂, . . . whose

$$Z = f(z_1, z_2, \dots)$$

$$R^2 = \left(\frac{\partial Z}{\partial z_1}\right)^2 r_1^2 + \left(\frac{\partial Z}{\partial z_2}\right)^2 r_2^2 + \dots$$

Examples:

$$Z = z_1 \pm z_2 + \dots$$
 $R^2 = r_1^2 + r_2^2 + \dots$ $Z = Az_1 \pm Az_2 \pm \dots$ $R^2 = Az_1^2 + Bz_1^2 + \dots$ $R^2 = Az_1^2 + Bz_1^2 + \dots$ $R^2 = z_1^2 + z_2^2 + z_1^2 + \dots$

DIFFUSION.

Inverse * values of $v/c = I - \frac{2}{\sqrt{\pi}} \int_0^q e^{-q^2} dq$.

 $\log x = \log (2q) + \log \sqrt{kt}$. t expressed in seconds.

= $\log \delta + \log \sqrt{kt}$. t expressed in days.

 $= \log \gamma + \log \sqrt{kt}.$ "years."

 $k = \text{coefficient of diffusion.} \dagger$

c = initial concentration.

v =concentration at distance x, time t.

v/c	log 2 <i>q</i>	29	log δ	δ	logγ	γ
0.00	+∞	+ ∞	+ \infty	+∞	∞	∞
.01	0.56143	3.6428	3.02970	1070.78	4.31098	20463.
.02	•51719	3.2900	2.98545	967.04	.26674	18481.
.03	•48699	3.0690	.95525	902.90	.23654	17240.
.04	•46306	2.9044	.93132	853.73	.21261	16316.
0.05	0.44276	2.7718	2.91102	814.74	4.19231	15571.
.06	.42486	2.6598	.89311	781.83	.17440	14942.
.07	.40865	2.5624	.87691	753.20	.15820	14395.
.08	.39372	2.4758	.86198	727.75	.14327	13908.
.09	.37979	2.3977	.84804	704.76	.12933	13469.
0.10 .11 .12 .13 .14	0.36664 .35414 .34218 .33067 .31954	2.3262 2.2602 2.1988 2.1413 2.0871	2.83490 .82240 .81044 .79893 .78780	683.75 664.36 646.31 629.40 613.47	4.11619 .10369 .09173 .08022	13067. 12697. 12352. 12029. 11724.
0.15	0.30874	2.0358	2.77699	598.40	4.05828	11436.
.16	.29821	1.9871	.76647	584.08	.04776	11162.
.17	.28793	1.9406	.75619	570.41	.03748	10901.
.18	.27786	1.8961	.74612	557·34	.02741	10652.
.19	.26798	1.8534	.73624	544.80	.01753	10412.
0.20 .21 .22 .23 .24	0.25825 .24866 .23919 .22983 .22055	1.8124 1.7728 1.7346 1.6976 1.6617	2.72651 .71692 .70745 .69868 .68880	532.73 521.10 509.86 498.98 488.43	4.00780 3.99821 .98874 .97937 .97010	9958.9 9744.1 9536.2 9334.6
0.25	0.21134	1.6268	2.67960	478.19	3.96089	9138.9
.26	.20220	1.5930	.67046	468.23	.95175	8948.5
.27	.19312	1.5600	.66137	458.53	.94266	8763.2
.28	.18407	1.5278	.65232	449.08	.93361	8582.5
.29	.17505	1.4964	.64331	439.85	.92460	8406.2
0.30	0.16606	1.4657	2.63431	430.84	3.91560	8233.9
.31	.15708	1.4357	.62533	422.02	.90662	8065.4
.32	.14810	1.4064	.61636	413.39	.89765	7900.4
.33	.13912	1.3776	.60738	404.93	.88867	7738.8
.34	.13014	1.3494	.59840	396.64	.87969	7580.3
0.35	0.12114	1.3217	2.58939	388.50	3.87068	7424.8
.36	.11211	1.2945	.58037	380.51	.86166	7272.0
.37	.10305	1.2678	.57131	372.66	.85260	7122.0
.38	.09396	1.2415	.56222	364.93	.84351	6974.4
.39	.08482	1.2157	.55308	357.34	.83437	6829.2
0.40	0.07563	1.1902	2.54389	349.86	3.82518	6686.2
.41	.06639	1.1652	•53464	342.49	.81593	6545.4
.42	.05708	1.1405	•52533	335.22	.80662	6406.6
.43	.04770	1.1161	•51595	328.06	.79724	6269.7
.44	.03824	1.0920	•50650	320.99	.78779	6134.6
0.45	0.02870	1.0683	2.49696	314.02	3.77825	6001.3
.46	.01907	1.0449	.48733	307.13	.76862	5869.7
.47	.00934	1.0217	.47760	300.33	.75889	5739.7
.48	9.99951	0.99886	.46776	293.60	.74905	5611.2
.49	.98956	0.97624	.45782	286.96	.73911	5484.1
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4

^{*}Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jourof Sci. vol. III. 1897, p. 280. † For direct values see table 23.

TABLE 30 (continued).
DIFFUSION.

v/c	log 2q	29	log δ	δ	log y	γ
			106 0			,
0.50	9.97949	0.95387	2.44775	280.38	3.72904	5358.4
.51	.96929	.93174	.43755	273.87	.71884	5234.1
.52	.95896	.90983	.42722	267.43	.70851	5111.0
.53	.94848	.88813	.41674	261.06	.69803	4989.1
.54	.93784	.86665	.40610	254.74	.68739	4868.4
0.55	9.92704	0.84536	2.39530	248.48	3.67659	4748.9
.56	.91607	.82426	.38432	242.28	.66561	4630.3
.57	.90490	.80335	.37316	236.13	.65445	4512.8
.58	.89354	.78260	.36180	230.04	.64309	4396.3
.59	.88197	.76203	.35023	223.99	.63152	4280.7
0.60	9.87018	0.74161	2.33843	217.99	3.61973	4166.1
.61	.85815	.72135	.32640	212.03	.60770	4052.2
.62	.84587	.70124	.31412	206.12	.59541	3939.2
.63	.83332	.68126	.30157	200.25	.58286	3827.0
.64	.82048	.66143	.28874	194.42	.57003	3715.6
0.65	9.80734	0.64172	2.27560	188.63	3.55689	3604.9
.66	.79388	.62213	.26214	182.87	·54343	3494.9
.67	.78008	.60266	.24833	177.15	·52962	3385.4
.68	.76590	.58331	.23416	171.46	·51545	3276.8
.69	.75133	.56407	.21959	165.80	·50088	3168.7
0.70	9.73634	0.54493	2.20459	160.17	3.48588	3061.1
.71	.72089	.52588	.18915	154.58	.47044	2954.2
.72	.70495	.50694	.17321	149.01	.45450	2847.7
.73	.68849	.48808	.15675	143.47	.43804	2741.8
.74	.67146	.46931	.13972	137.95	.42101	2636.4
0.75	9.65381	0.45062	2.12207	132.46	3.40336	2531.4
.76	.63550	.43202	.10376	126.99	.38505	2426.9
.77	.61646	.41348	.08471	121.54	.36600	2322.7
.78	.59662	.39502	.06487	116.11	.34616	2219.0
.79	•57590	.37662	.04416	110.70	.32545	2115.7
0.80	9.5 5 423	0.35829	2.02249	105.31	3.30378	2012.7
.81	.53150	.34001	1.99975	99.943	.28104	1910.0
.82	.50758	.32180	.97584	94.589	.25713	1807.7
.83	.48235	.30363	.95061	89.250	.23190	1705.7
.84	.45564	.28552	.92389	83.926	.20518	1603.9
0.85	9.42725	0.26745	1.89551	78.615	3.17680	1502.4
.86	.39695	.24943	.86521	73.317	.14650	1401.2
.87	.36445	.23145	.83271	68.032	.11400	1300.2
.88	.32940	.21350	.79766	62.757	.07895	1199.4
.89	.29135	.19559	.75961	57.492	3.04090	1098.7
0.90	9.24972	0.17771	1.71797	52.236	2.99926	998.31
.91	.20374	.15986	.67200	46.989	.95329	898.03
.92	.15239	.14203	.62065	41.750	.90194	797.89
.93	.09423	.12423	.56249	36.516	.84378	697.88
.94	9.02714	.10645	.49539	31.289	.77668	597.98
0.95	8.94783	0.08868	1.41609	26.067	2.69738	498.17
.96	.85082	.07093	.31907	20.848	.60036	398.44
.97	.72580	.05319	.19406	15.633	.47535	298.78
.98	.54965	.03545	.01791	10.421	.29920	199.16
.99	.24859	.01773	9.71684	5.21007	1.99813	99.571
1.00	∞	0.00000	-∞	0.00000	-∞	0.000

TABLE 31.

CAMMA FUNCTION.*

Value of $\log \int_0^\infty e^{-x} x^{n-1} dx + 10$.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-x}x^{n-1}dx \text{ or } \log \Gamma(n) + 10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

n	О	1	2	3	4	5	6	7	8	9
1.00	9.99——————————————————————————————————	97497	95001	92512	90030	87555	85087	82627	80173	77727
1.01		72855	70430	68011	65600	63196	60798	58408	56025	53648
1.02		48916	46561	44212	41870	39535	37207	34886	32572	30265
1.03		25671	23384	21104	18831	16564	14305	12052	09806	07567
1.04		03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	7052 5	68406	66294	64188
1.06	62089	59996	57910	55830	53757	51690	49630	47577	45530	43489
1.07	41.455	39428	37407	35392	33384	31382	29387	27398	25415	23439
1.08	21.469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	88956	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
I.II	65313	63538	61768	60005	58248	56497	54753	53014	51281	49555
I.I2	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
I.I3	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
I.I4	14689	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9699007	97471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44687	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20 1.21 1.22 1.23 1.24	9.9629225 16946 05212 59.4015 83350	27973 15748 04068 92925 82313	26725 14556 02930 91840 81280	25484 13369 01796 90760 80253	24248 12188 00669 89685 79232	23017 11011 99546 88616 78215	09841 98430 87553 77204	20573 08675 97318 86494 76198	19358 07515 96212 85441 75197	18150 06361 95111 84393 74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32429	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20396	19732	19073	18419	17770	17125
1.32	16485	15850	15220	14595	13975	13359	12748	12142	11541	10944
1.33	10353	09766	09184	08606	08034	07466	06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.38	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	7556 5	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	73574	73476
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728

^{*} Legendre's "Exercises de Calcul Intégral," tome ii.

TABLE 31 (continued).

GAMMA FUNCTION.

n	0	1	2	3	4	5	6	7	8	9
1.45	9-9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	73531	73630	73734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75293
1.50	9-9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77-237	77437	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81738
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95857
1.57	96289	96725	97165	97609	98056	98508	98963	99422	99885	00351
1.58	500822	01296	01774	02255	02741	03230	03723	04220	04720	05225
1.59	05733	06245	06760	07280	07803	08330	08860	09395	09933	10475
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19649	20254	20862	21475	22091
1.62	22710	23333	23960	24591	25225	25863	26504	27149	27798	28451
1.63	29107	29766	30430	31097	31767	32442	33120	33801	34486	35175
1.64	35867	36563	37263	37966	38673	39383	40097	40815	41536	42260
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468	51236	52007	52782	53560	54342	55127	55916	56708	57504
1.67	58303	59106	59913	60723	61536	62353	63174	63998	64825	65656
1.68	66491	67329	68170	69015	69864	70716	71571	72430	73293	74159
1.69	75028	75901	76777	77 ⁶ 57	78540	79427	80317	81211	82108	83008
1.70	9.9583912	84820	85731	86645	87563	88484	89409	90337	91268	92203
1.71	93141	94083	95028	95977	96929	97884	98843	99805	00771	01740
1.72	602712	03688	04667	05650	06636	97625	08618	09614	10613	11616
1.73	12622	13632	14645	15661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	37776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	48821	49944	51070	52199	53331	54467
1.77	55606	56749	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	68351	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83918	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848	31182	32520	33860	35204	36551	37900	39254	40610	41969
1.84	43331	44697	46065	47437	48812	50190	51571	52955	54342	55733
1.85	9.9757126	58522	59922	61325	62730	64139	65551	66966	68384	69805
1.86	71230	72657	74087	75521	76957	78397	79839	81285	82734	84186
1.87	85640	87098	88559	90023	91490	92960	94433	95909	97389	98871
1.88	800356	01844	93335	04830	06327	07827	09331	10837	12346	13859
1.89	15374	16893	18414	19939	21466	22996	24530	26066	27606	29148
1.90	9.9830693	32242	33793	35348	36905	38465	40028	41595	43164	44736
1.91	46311	47890	49471	51055	52642	54232	55825	57421	59020	60621
1.92	62226	63834	65445	67058	68675	70294	71917	73542	75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	89957	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	06663	08350	10039
1.95	9.9911732	13427	15125	16826	18530	20237	21947	23659	25375	27093
1.96	28815	3°539	32266	33995	35728	37464	39202	40943	42688	44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62062
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165

TABLE 32.
ZONAL SPHERICAL HARMONICS.*

Degrees	P ₁	P_2	P ₃	P4	P_5	P_6	P ₇
0	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000	+ 1.0000
1	.9998	.9995	.9991	.9985	.9977	.9968	.9957
2	.9994	.9982	.9963	.9939	.9909	.9872	.9830
3	.9986	.9959	.9918	.9863	.9795	.9714	.9620
4	.9976	.9927	.9854	.9758	.9638	.9495	.9329
5	+ 0.9962	+ 0.9886	+ 0.9773	+ 0.9623	+ 0.9437	+ 0.9216	+ 0.8962
6	·9945	.9836	.9674	.9459	.9194	.8881	.8522
7	·9925	.9777	.9557	.9267	.8911	.8492	.8016
8	·9903	.9709	.9423	.9048	.8589	.8054	.7449
9	·9877	.9633	.9273	.8803	.8232	.7570	.6830
10 11 12 13 14	+ 0.9848 .9816 .9781 .9744 .9703	+ 0.9548 ·9454 ·9352 ·9241 ·9122	+ 0.9106 .8923 .8724 .8511 .8283	+ 0.8532 .8238 .7920 .7582 .7224	+ 0.7840 .7417 .6966 .6489	+ 0.7045 .6483 .5891 .5273 .4635	+ 0.6164 .5462 .4731 .3980 .3218
15 16 17 18	+ 0.9659 .9613 .9563 .9511 .9455	+ 0.8995 .8860 .8718 .8568 .8410	+ 0.8042 .7787 .7519 .7240 .6950	+ 0.6847 .6454 .6046 .5624 .5192	+ 0.5471 ·4937 ·4391 ·3836 ·3276	+ 0.3983 .3323 .2661 .2002 .1353	+ 0.2455 + .1700 + .0961 + .0248 0433
20	+ 0.9397	+ 0.8245	+ 0.6649	+ 0.4750	+ 0.2715	+ 0.0719	- 0.1072
21	.9336	.8074	.6338	.4300	.2156	+ .0106	.1664
22	.9272	.7895	.6019	.3845	.1602	0481	.2202
23	.9205	.7710	.5692	.3386	.1057	1038	.2680
24	.9135	.7518	.5357	.2926	.0525	1558	.3094
25	+ 0.9063	+ 0.7321	+ 0.5016	+ 0.2465	+ 0.0009	-0.2040	0.3441
26	.8988	.7117	.4670	.2007	0489	.2478	-3717
27	.8910	.6908	.4319	.1553	0964	.2869	-3922
28	.8829	.6694	.3964	.1105	1415	.3212	-4053
29	.8746	.6474	.3607	.0665	1839	.3502	-4113
30	+ 0.8660	+ 0.6250	+ 0.3248	+ 0.0234	0.2233	-0.3740	0.4102
31	.8572	.6021	.2887	0185	.2595	.3924	.4022
32	.8480	.5788	.2527	0591	.2923	.4053	.3877
33	.8387	.5551	.2167	0982	.3216	.4127	.3671
34	.8290	.5310	.1809	1357	.3473	.4147	.3409
35	+ 0.8192	+ 0.5065	+ 0.1454	0.1714	- 0.3691	-0.4114	- 0.3096
36	.8090	.4818	.1102	.2052	.3871	.4031	.2738
37	.7986	.4567	.0755	.2370	.4011	.3898	.2343
38	.7880	.4314	.0413	.2666	.4112	.3719	.1918
39	.7771	.4059	.0077	.2940	.4174	.3497	.1470
40	+ 0.7660	+ 0.3802	0.0252	- 0.3190	0.4197	- 0.3236	- 0.1006
41	.7547	·3544	.0574	.3416	.4181	.2939	0535
42	.7431	·3284	.0887	.3616	.4128	.2610	0064
43	.7314	·3023	.1191	.3791	.4038	.2255	+ .0398
44	.7193	·2762	.1485	.3940	.3914	.1878	+ .0846
45	+ 0.7071	+ 0.2500	- 0.1768	- 0.4063	- 0.3757	- 0.1484	+ 0.1271
46	.6947	.2238	.2040	.4158	.3568	1078	.1667
47	.6820	.1977	.2300	.4227	.3350	0665	.2028
48	.6691	.1716	.2547	.4270	.3105	0251	.2350
49	.6561	.1456	.2781	.4286	.2836	+ .0161	.2626
50	+ 0.6428	+ 0.1198	- 0.3002	-0.4275	- o.2545	+ 0.0564	+ 0,2854

^{*} Calculated by Mr. C. E. Van Orstrand for this publication.

TABLE 32 (continued).

ZONAL SPHERICAL HARMONICS.

Degrees	P_1	P_2	P_3	P_4	P_{δ}	P_6	P_7
50	+ 0.6428	+ 0.1198	- 0.3002	- 0.4275	- 0.2545	+ 0.0564	+ 0.2854
51	.6293	.0941	.3209	.4239	.2235	.0954	.3031
52	.6157	.0686	.3401	.4178	.1910	.1326	.3154
53	.6018	.0433	.3578	.4093	.1571	.1677	.3221
54	.5878	.0182	.3740	.3984	.1223	.2002	.3234
55	+ 0·5736	0.0065	-0.3886	- 0.3852	- 0.0868	+ 0.2297	+ 0.3191
56	·5592	.0310	.4016	.3698	0509	.2560	.3095
57	·5446	.0551	.4131	.3524	0150	.2787	.2947
58	·5299	.0788	.4229	.3331	+ .0206	.2976	.2752
59	·5150	.1021	.4310	.3119	+ .0557	.3125	.2512
60	+ 0.5000	0.1250	-0.4375	- 0.2891	+ 0.0898	+ 0.3232	+ 0.2231
61	.4848	.1474	-4423	.2647	.1229	.3298	.1916
62	.4695	.1694	-4455	.2390	.1545	.3321	.1572
63	.4540	.1908	-4471	.2121	.1844	.3302	.1203
64	.4384	.2117	-4470	.1841	.2123	.3240	.0818
65	+ 0.4226	0.2321	0.4452	0.1552	+ 0.2381	+ 0.3138	+ 0.0422
66	.4067	.2518	.4419	.1256	.2615	.2997	+ .0022
67	.3907	.2710	.4370	.0955	.2824	.2819	0375
68	.3746	.2895	.4305	.0651	.3005	.2606	0763
69	.3584	.3074	.4225	.0344	.3158	.2362	1135
70 71 72 73 74	+ 0.3420 .3256 .3090 .2924 .2756	- 0.3245 .3410 .3568 .3718 .3860	0.4130 .4021 .3898 .3761 .3611	- 0.0038 + .0267 .0568 .0864	+ 0.3281 ·3373 ·3434 ·3463 ·3461	+ 0.2089 .1791 .1472 .1136 .0788	0.1485 .1808 .2099 .2352 .2563
75 76 77 78 79	+ 0.2588 .2419 .2250 .2079 .1908	- 0.3995 .4122 .4241 .4352 .4454	- 0.3449 ·3275 ·3090 ·2894 ·2688	+ 0.1434 .1705 .1964 .2211	+ 0.3427 .3362 .3267 .3143 .2990	+ 0.0431 + .0070 0290 0644 0990	0.2730 .2850 .2921 .2942 .2913
80	+ 0.1736	- 0.4548	0.2474	+ 0.2659	+ 0.2810	-0.1321	0.2835
81	.1564	.4633	.2251	.2859	,2606	.1635	.2708
82	.1392	.4709	.2020	.3040	,2378	.1927	.2536
83	.1219	.4777	.1783	.3203	,2129	.2193	.2321
84	.1045	.4836	.1539	.3345	,1861	.2431	.2067
85	+ 0.0872	- 0.4886	0.1291	+ 0.3468	+ 0.1577	-0.2638	- 0.1778
86	.0698	.4927	.1038	.3569	.1278	.2810	.1460
87	.0523	.4959	.0781	.3648	.0969	.2947	.1117
88	.0349	.4982	.0522	.3704	.0651	.3045	.0755
89	.0175	.4995	.0262	.3739	.0327	.3105	.0381
90	+ 0.0000	- 0.5000	- 0.0000	+ 0.3750	+ 0.0000	- 0.3125	- 0.0000

ELLIPTIC INTEGRALS.

Values of $\int_{0}^{\frac{\pi}{2}} (1-\sin^{2}\theta \sin^{2}\phi)^{\frac{1}{2}} d\phi$.

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ for different values of the modulus corresponding to each degree of θ between 0 and 90.

θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{\frac{1}{2}}}$	$\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{)\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$	$\sin^2\! heta\!\sin^2\!\phi)^{rac{1}{2}}\!d\phi$	θ	$\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{n-1}}$	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	$\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$	$\sin^2\!\theta \sin^2\!\phi)^{\frac{1}{2}}d\phi$
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0° 1 2 3 4	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
	5709	196153	5707	196087	6	8691	271644	3418	127690
	5713	196252	5703	195988	7	8848	275267	3329	124788
	5719	196418	5697	195822	8	9011	279001	3238	121836
	5727	196649	5689	195591	9	9180	282848	3147	118836
5°	1.5738	0.196947	1.5678	0.195293	50°	1.9356	0.286811	1.3055	0.115790
6	5751	197312	5665	194930	I	9539	290895	2963	112698
7	5767	197743	5649	194500	2	9729	295101	2870	109563
8	5785	198241	5632	194004	3	9927	299435	2776	106386
9	5805	198806	5611	193442	4	2.0133	303901	2681	103169
10° I 2 3 4	1.5828 5854 5882 5913 5946	0.199438 200137 200904 201740 202643	5564 5537 5507 5476	0.192815 192121 191362 190537 189646	55° 6 7 8 9	2.0347 0571 0804 1047 1300	0.308504 313247 318138 323182 328384	1.2587 2492 2397 2301 2206	0.099915 096626 093303 089950 086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1 565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	I	1842	339295	2015	079738
7	6061	205768	5367	186581	2	2132	345020	1920	076293
8	6105	206948	5326	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20° 1 2 3 4	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
	6252	210916	5191	181580	6	3439	369940	1545	062412
	6307	212382	5141	180168	7	3809	376736	1453	058937
	6365	213921	5090	178691	8	4198	383787	1362	055472
	6426	215533	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.17 5545	70° 1 2 3 4	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876		5507	406665	1096	045183
7	6627	220818	4864	172144		5998	414943	1011	041812
8	6701	222732	4803	170348		6521	423596	0927	038481
9	6777	224723	4740	168489		7081	432660	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75° 6 7 8 9	2.7681	0.442176	1.0764	0.031976
1	6941	228943	4608	164583		8327	452196	0686	028819
2	7028	231173	4539	162537		9026	462782	0611	025740
3	7119	233485	4469	160429		9786	474008	0538	022749
4	7214	235880	4397	158261		3.0617	485967	0468	019858
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923	4248	153742	I	2553	512591	0338	014432
7	7522	243575	4171	151393	2	3699	527613	0278	011927
8	7633	246315	4092	148985	3	5004	544120	0223	009584
9	7748	249146	4013	146519	4	6519	562514	0172	007422
40° 1 2 3 4	1.7868	0.252068	1.3931	0.143995	85°	3.8317	0.583396	1.0127	0.005465
	7992	255085	3849	141414	6	4.0528	607751	0086	003740
	8122	258197	3765	138778	7	3387	637355	0053	002278
	8256	261406	3680	136086	8	7427	676027	0026	001121
	8396	264716	3594	133340	9	5.4349	735192	0008	000326
45°	1.8541	0.268127	1.3506	0.130541	90°	~	8	1.0000	

MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is zv.

),				
Body.	Axis.	Weight.	Moment of Inertia Io.	Square of Radius of Gyration ρ_0^2 .
Sphere of radius r	Diameter	$\frac{4\pi wr^3}{3}$	<u>8πιυν⁵</u> 15	$\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	$\frac{4\pi\imath var^2}{3}$	8#war4 15	$\frac{2r^2}{5}$
Ellipsoid, axes 2a, 2b, 2c	Axis 2a	<u>4πτυαδε</u>	$\frac{4\pi wabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi w(r^8-r'^8)}{3}$	$\frac{8\pi z v(r^5-r^{5})}{15}$	$\frac{2(r^5-r^{15})}{5(r^3-r^{13})}$
Ditto, insensibly thin, radius r, thickness dr	Diameter	$4\pi v r^2 dr$	$\frac{8\pi wr^4dr}{3}$	
Circular cylinder, length $2a$, radius r	Longitudinal axis 2a	2π <i>ιυ</i> ar ²	πwar ⁴	$\frac{2r^2}{3}$ $\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	2πrvabc	$\frac{\pi wabc(b^2+c^2)}{2}$	$\frac{b^2+\epsilon^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2a	$2\pi w a (r^2 - r'^2)$	$\pi v a(r^4-r'^4)$	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thick- ness dr	Longitudinal axis 2a	4#wardr	4πwar³dr	y -2
Circular cylinder, length 2a, radius r	Transverse diameter	$2\pi war^2$	$\frac{\pi v a r^2 (3r^2 + 4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b	Transverse axis 2b	2πwabc	$\frac{\pi wabc(3c^2+4a^2)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r	Transverse diameter	$2\pi wa(r^2-r'^2)$	$ \frac{\pi va}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\} $	$\left \frac{r^2 + r'^2}{4} + \frac{a^2}{3} \right $
Ditto, insensibly thin, thickness dr	Transverse diameter	4πwardr	$\pi wa(2r^3 + \frac{4}{3}a^2r)dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	8wabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4wabc	$\frac{2\pi vabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2 b	4wabc	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

(Taken from Rankine.)

STRENGTH OF MATERIALS.

The strength of most materials varies so that the following figures serve only as a rough indication of the strength of a particular sample.

TABLE 35 (a). — Metals.

Name of Metal.	Tensile strength in pounds per sq. in.
Aluminum wire	30000-40000
Brass wire	50000-150000
Bronze wire, phosphor, hard-	
drawn	110000-140000
Bronze wire, silicon, hard-	
drawn	95000-115000
Bronze: Cu, 58.54 parts; Zn,	
38.70; Al, 0.21; with 2.55	
parts of the alloy, Sn, 29.03,	
wrought iron, 58.06, ferro-	60000-75000
manganese, 12.91 Copper wire, hard-drawn	60000-75000
Gold wire	20000
Iron, cast	13000-33000
" wire, hard-drawn	S0000-120000
" " annealed	50000-60000
Lead, cast or drawn	2600-3300
Palladium *	39000
Platinum * wire	50000
Silver * wire	12000
Steel	S0000-330000
" wire, maximum	460000
" Specially treated nickel-	
steel, approx. comp. 0.40	
C; 3.25 Ni; treatment	
secret	250000
" piano wire, 0.033 in.	
diam.	357000-390000
" piano wire, 0.051 in. diam.	325000-337000
Tin, cast or drawn	4000-5000
Zinc, cast " drawn	7000-13000 22000-30000
urawn	22000-30000
	!

* Authority of Wertheim.

According to Boys, quartz fibres have a tensile strength of between 116000 and 167000

pounds per square inch.

TABLE 35 (b). - Stones.*

Material.	Size of test piece.	Resistance to crushing in pds. per sq.in.
Marble Tufa Brownstone Sandstone Granite Limestone	4 in. cubes 2 " " 4 in. cubes 4 " " 4 " "	7600-20700 7700-11600 7300-23600 2400-29300 9700-34000 6000-25000

* Data furnished by the U. S. Geological Survey.

TABLE 35 (c). - Brick.*

Kind of Brick.		Resistance to crushing in pds. per sq. in.					
King of Brick.	Tested flatwise.	Tested on edge.					
Soft burned Medium burned Hard burned Vitrified Sand-lime	1800-4000 4000-6000 6000-8500 8500-25000 1800-4000	1600-3000 3000-4500 4500-6500 6500-20000					

Brick piers laid up in 1 part Portland cement, 3 of sand, have from 20 to 40 per cent the crushing strength of the brick.

TABLE 35 (d). - Concretes.*

Coarse Aggregate.	Proportions by volume. Cement: sand: aggregate.	Size of test piece.	Resistance to crushing in pds. per sq. in.
Sandstone Cinders Limestone Conglomerate Trap	1:5:14 to 1:1:5 1:3:6 " 1:1:3 1:4:8 " 1:2:4 1:6:12 " 1:2:4 1:2:9 " 1:2:4	12 in. cube 12 " " 12 " " 12 " "	1550-3860 790-2050 1200-2840 1080-3830 820-2960

* Data furnished by the U. S. Geological Survey.

^{*} Data furnished by the U. S. Geological Survey.

TABLE 36.

STRENGTH OF MATERIALS.

Average Results of Timber Tests.

The test pieces were SMALL and SELECTED. Endwise compression tests of some of the first lot, made when green and containing over 40 per cent moisture,

some of the list lot, made when green and containing over 40 per cent moisture, showed a diminishing in strength of 50 to 75 per cent.

See also Table 37. A particular sample may vary greatly from these data, which can indicate only in a general way the relative values of a kind of timber. Note that the data below are from selected samples and therefore probably high. The upper lot are from the U. S. Forestry circular No. 15; the lower from the tests made for the 10th U. S. Census.

	TRAN TE	SVERSE STS,	COMPR	ESSION.	SHEAR- ING.
NAME OF SPECIES.	Modulus of rupture. lb./sq. in.	Modulus of elasticity. lbs./sq. in.	to grain. bs./sq. in.	L to grain. lbs./sq. in.	Along the grain. lbs./sq. in.
Long-leaf pine	12,600	2,070,000	8,000	1260	835
Cuban pine	13,600	2,370,000	8,700	I 200	770
Short-leaf pine	10,100	1,680,000	6,500	1050	770
Loblolly pine	11,300	2,050,000	7,400	1150	800
White pine	7,900	1,390,000	5,400	700	400
Red pine	9,100	1,620,000	6,700	1000	500
Spruce pine	10,000	1,640,000	7,300	1 200	800
Bald cypress	7,900	1,290,000	6,000	Soo	500
White cedar	6,300	910,000	5,200	700	400
Douglass spruce	7,900	1,680,000	5,700 8,500	Soo	500
White oak Overcup oak	13,100	2,090,000		2200	1000
Post oak	11,300	1,620,000	7,300	1900	1000
Cow oak	12,300	1,610,000	7,100	3000	1100
Red oak	11,400	1,070,000	7,400 7,200	1900 2300	900
Texan oak	13,100	1,860,000	8,100	2000	900
Yellow oak	10,800	1,740,000	7,300	1800	1100
Water oak	12,400	2,000,000	7,Soo	2000	1100
Willow oak	10,400	1,750,000	7,200	1600	900
Spanish oak	12,000	1,930,000	7,700	1800	900
Shagbark hickory	16,000	2,390,000	9,500	2700	1100
Mockernut hickory	15,200	2.320,000	10,100	3100	1100
Water hickory	12,500	2,080,000	8,400	2400	1000
Bitternut hickory	15,000	2,280,000	9,600	2200	1000
Nutmeg hickory	12,500	1,940,000	8,800	2700	1100
Pecan hickory	15,300	2,530,000	9,100	2800	1200
Pignut hickory	18,700	2,730,000	10,900	3200	1200
White elm	10,300	1,540,000	6,500	I 200	800
Cedar elm	13,500	1,700,000	8,000	2100	1300
White ash	10,800	1,640,000	7,200	1900	1100
Green ash	11,600	2,050,000	8,000	1700	1000 800
Sweet gum	9,500	1,700,000	7,100	1400	800
Poplar	9,400	1,330,000	5,000	1120	
Basswood	8,340	1,172,000	5,190	SSo	i i
Ironwood	7,540	1,158,000		2000	
Sugar maple	16,500	2,250,000	5.27.5 8.800	3600	
White maple	14,640	1,800,000	6,850	25So	
Box elder	7,580	873,000	4,580	1 5So	
Black walnut	11,900	1,560,000	8,000	26S0	
Sycamore •	7,000	790,000	6,400	2700	
Hemlock	9,480	1,138,000	5,400	1100	
Red fir	13,270	1,870,000	7,780	1750	
Tamarack	13,150	1,917,000	7,400	1480	
Red cedar Cottonwood	11,800	938,000	6,300	2000 1100	
Beech	16,200	1,450,000	5,000 6,770	2840	
Decem	10,200	1,7,30,000	0,770	2040	
					1

UNIT STRESSES FOR STRUCTURAL TIMBER EXPRESSED IN POUNDS PER SQUARE INCH.

Recommended by the Committee on Wooden Bridges and Trestles, American Railway Engineering Association, 1909.

	ı				11			-
		BE	NDING.			SHEA	ARING.	
KIND OF TIMBER.		eme fibr		Modulus of elasticity.		llel to grain.	Longit shear in	
	Averag ultimate			Average.	Avera		Average ultimate.	Safe stress.
Douglass fir Long-leaf pine	6100 6500	120		510,000 610,000	690		270 300	110
Short-leaf pine White pine	5600 4400	110	00 1,	480,000 1 30,000	710	170	330 180	1 30 70
Spruce Norway pine	4800 4200		00 1,	310,000 190,000	590	130	170 250	70 100
Tamarack Western hemlock Redwood	4600 5800 5000	110	00 I,	220,000 480,000 800,000	670 630 300	160	260 270*	001
Bald cypress Red cedar	4800 4200	90	00 1,	150,000 860,000	500		_	-
White oak	5700	110	00 1,	1 50,000	840	210	270	110
			C	OMPRE	ssion			of
KIND OF TIMBER.		dicular rain.	Parallel	to grain.	columns 15 diams.		s for safe	Ratio of length of stringer to depth.
	Elastic limit.	Safe stress.	Average ultimate.	Safe stress.	For columns under 15 diams Safe stress.	column	s over 15 seters.†	Ratio
Douglass fir Long-leaf pine Short-leaf pine	630 520 340	310 260 170	3600 3800 3400	1200 1300 1100	900 980 830	1300(1-I	L/60.D L/60.D L/60.D	10
White pine Spruce Norway pine	290 370	150 180 150	3000 3200 2600*	1000 1100 800	750 830 600	1000(1-1	L/60.D L/60.D L/60.D	10
Tamarack Western hemlock	- 440	220	3200* 3500	1000 1200	750	1000(1-1	L/60.D L/60.D) -

3300

3900

2800

3500

68o

830

6Šo

980

900(I-L/60.D) 1100(I-L/60.D) 900(I-L/60.D)

1300(1-L/60.D)

_

12

900

1100

1300

900

150

170

230

450

400

340

470

920

SMITHSONIAN TABLES.

Redwood

Bald cypress Red cedar

White oak

These unit stresses are for a green condition of the timber and are to be used without increasing the liveload stresses for impact.

^{*} Partially air-dry.
† L=length in inches. D=least side in inches.

TABLES 38-39.

ELASTIC MODULI.

TABLE 38. - Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

Substance.	Rigidity Modulus.	Refer- ence.	Substance.	Rigidity Modulus.	Reference.
Aluminum	3350 2580 3550 3715 3700 1240 4060 2450 4780 4213 4450 4664 2850 3950 5210 6706 7975 6940 8108 7505 1710 7820 4359	14 5 10 11 5 5 5 5 5 18 10 19 5 14 5 15 16 17 16 16 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16	Quartz fibre " " Silver " hard-drawn Steel. " cast " cast, coarse gr. " silver- Tin, cast " Zinc " Clay rock Granite Marble Slate	2888 2380 2960 2566 2816 8290 7458 8070 7872 1730 1543 3880 3820 6630 6220 2350 2730 1770 1280 1190 2290	20 21 5 10 16 11 5 19 16 22 - - 23 23 23

References 1-16, see Table 48.

- 17 Grätz, Wied. Ann. 28, 1886.
- 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886.
- 20 Threlfall, Philos. Mag. (5) 30, 1890.
- 21 Boys, Philos. Mag. (5) 30, 1890.
- 22 Thomson, Lord Kelvin.
- 23 Gray and Milne.
- 24 Adams-Coker, Carnegie Publ. No. 46, 1906.

TABLE 39. — Variation of the Rigidity Modulus with the Temperature.

 $n_t = n_o$ (1 – $at - \beta t^2 - \gamma t^3$), where t = temperature Centigrade.

Substanc	e.	210	a 10 ⁶	β108	γ10 ¹⁰		Authori	ty.					
Copper		2652 3200 3972 3900 8108 6940 6632 2566 8290	2158 455 2716 572 206 483 111 387 187	48 36 -23 28 19 12 50 38 59	32 -47 -11 -8 -11 -9	Kohlrausch-Loomis, Pogg. Ann. 141 Pisati, loc. cit. K and L. loc. cit. K and L. loc. cit. K and L. loc. cit. Fisati, loc. cit. Pisati, loc. cit. """"							
	$n_t^* = n_{15} [1 - \alpha (t - 15)];$ Horton, Philos. Trans. 204 A, 1905.												
Copper Copper (com- mercial) Iron Steel	3.80 8.26 8.45	.00039 .00038 .00029	Gold Silve Alur	l er	6.46* 2.45 2.67 2.55	α = .00012 .00031 .00048 .00148	Tin Lead Cadmium Quartz	1.50* 0.80 2.31 3.00	$\alpha = .00416$ $.00164$ $.0058$ $.00012$				

^{*} Modulus of rigidity in 1011 dynes per sq. cm.

TABLE 40.

ELASTIC MODULI.

Young's Modulus.

Young's Modulus = Intensity of longitudinal stress (kg. per sq. mm.). Elongation per unit length

Substance.	Temp. °C	Young's Modulus.	Refer- ence.	Substance.	Temp.	Young's Modulus.	Refer- ence.
Aluminum " annealed Bronze	20 12:3 15 15 15 15 0 - 15:6 20 15:15 12:9 15 15 10 20 19:5 15	7200 7462 1803 1727 9194 7070 11697 20869 20794 20310 21740 11713 15750 20500 8131 5585 20500 81320 12450 10220 9930 10450 112094 11550 12094 11550 123094	1 2 3 3 3 4 4 5 6 6 3 3 3 7 7 8 4 9 9 1 10 0 3 3 3 2 2 3 3 7 7 11 10 9 9 4 11 11 9 5	Nickel-steel, 5½% ni. " " 25%" Palladium, annealed Phosphor-bronze Platinum, drawn " annealed " drawn Silver, drawn " annealed Steel wire, drawn " annealed Steel, cast, drawn " annealed " bessemer " puddle " mild " very soft " haif soft " hard Bismuth Zinc, drawn " cast Glass Carbon Marbles Granites	15 15 15 15 15 15 15 15 15 15 15 15 15 1	19900 18600 9709 12010 17044 15518 16020 15989 7357 7140 18810 17280 19550 21136 21112 20705 20910 20600 3190 8734 4148 1700 (6000 to (8000 1500 (1500 6316 5159	133 133 311 332 1333 333 44 49 1313 135 333 13
" hard drawn	- 11.5	22790 23950 21680	I 2 I I 2	Basic intrusives Rocks: See Nagaoka, Philos. Mag. 1900.	-	8985	24

- Slotte, Acta Soc. Fenn. 26, 1899; 29, 1906.
 Meyer, Wied. Ann. 59, 1896.
- 3 Wertheim, Ann. chim. phys. (3) 12, 1844. 4 Pscheidl, Wien. Ber. II, 79, 1879. 5 Voigt, Wied. Ann. 48, 1893. 6 Amagat, C. R. 108, 1889.

- 7 Kohlrausch, Loomis, Pogg. Ann. 141, 1871. 8 Thomas, Drude Ann. 1, 1900.
- 9 Gray, etc., Proc. Roy. Soc. 67, 1900.
- 10 Baumeister, Wied. Ann. 18, 1883.
- 11 Searle, Philos. Mag. (5) 49, 1900. 12 Cantone, Wied. Beibl. 14, 1890.
- 13 Mercadier, C. R. 113, 1891.
- 14 Katzenelsohn, Diss. Berlin, 1887.
- 15 Wertheim, Pogg. Ann. 78, 1849. 16 Pisati, Nuovo Cimento, 5, 34, 1879.
- References 17-19, see Table 47.

Compiled partly from Landolt-Börnstein's Physikalisch-Chemische Tabellen.

TABLES 41-44.

COMPRESSIBILITY, HARDNESS, CONTRACTION OF ELEMENTS.

TABLE 41. - Compressibility of the More Important Solid Elements.

Arranged in order of the increasing atomic weights. The numbers give the mean elastic change of volume for one megabar (0.987 atm.) between 100 and 500 megabars, multiplied by 105.

Lithium 8.8 Carbon 0.5 Sodium 15.4 Magnesium 2.7 Aluminum 1.3 Silicon 0.16 Red phosphorus 9.0 Sulphur 12.5 Chlorine 95	Potassium Calcium Chromium Manganese Iron Nickel Copper Zinc Arsenic	31.5 5.5 0.7 0.7 0.40 0.27 0.54 1.5	Selenium Bromine Rubidium Molybdium Palladium Silver Cadmium Tin Antimony	11.8 51.8 40. 0.26 0.38 0.84 1.9 1.6 2.2	lodine Cæsium Platinum Gold Mercury Thallium Lead Bismuth	13. 61. 0.21 0.47 3.71 2.6 2.2 2.8
--	--	--	---	--	---	---

Stull, Zeitschr. Phys Chem 61, 1907.

TABLE 42. - Hardness.

From Landolt-Bornstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 1891.

TABLE 43. — Relative Hardness of the Elements,

C B Cr Os Si Ir	10.0 9.5 9.0 7.0 7.0 6.5	Ru Mn Pd Fe Pt As	6.5 5.0 4.8 4.5 4.3 3.5	Cu Sb Al Ag Bi Zn	3.0 3.0 2.9 2.7 2.5 2.5	Au Te Cd S Se Mg	2.5 2.3 2.0 2.0 2.0 2.0	Sn Sr Ca Ga Pb In	1.8 1.8 1.5 1.5 1.5	Li P K Na Rb Cs	0.6 0.5 0.5 0.4 0.3 0.2
--------------------------------	---	----------------------------------	--	----------------------------------	--	---------------------------------	--	----------------------------------	---------------------------------	--------------------------------	--

Rydberg, Zeitschr. Phys Chem 33, 1900

TABLE 44. — Ratio, ρ , of Transverse Contraction to Longitudinal Extension under Tensile Stress. (Poisson's Ratio.)

Metal	Pb	Au	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe
ρ	0.45	0.42	0.39	0.39	0.38	0.35	0.34	0.33	0.33	0.31	0.30	0.28

From data from Physikalisch-Technischen Reichsanstalt, 1907.

ρ for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma$, $\alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite.
$$\frac{10^{10}}{E} = 16.13\alpha^4 + 18.51\beta^1 + 10.42\gamma^1 + 2(38.79\beta^3\gamma^2 + 15.21\gamma^2\alpha^2 + 8.88\alpha^3\beta^3)$$

$$\frac{10^{10}}{T} = 69.52\alpha^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2\alpha^2 + 127.35\alpha^2\beta^2)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325\sin^4\phi + 4.619\cos^4\phi + 13.328\sin^2\phi\cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675\cos^4\phi_2 - 17.536\cos^2\phi\cos^2\phi$$
Fluorspar.
$$\frac{10^{10}}{E} = 13.05 - 6.26(\alpha^4 + \beta^1 + \gamma^4)$$

$$\frac{10^{10}}{T} = 58.04 - 50.08(\beta^3\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Pyrite.
$$\frac{10^{10}}{T} = 18.60 - 17.95(\beta^3\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Rock salt.
$$\frac{10^{10}}{E} = 33.48 - 9.66(\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 154.58 - 77.28(\beta^3\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Sylvine.
$$\frac{10^{10}}{T} = 36.00 - 192.8(\beta^3\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Topaz.
$$\frac{10^{10}}{E} = 4.341\alpha^4 + 3.460\beta^4 + 3.771\gamma^4 + 2(3.879\beta^2\gamma^2 + 2.856\gamma^2\alpha^2 + 2.39\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$$
Quartz.
$$\frac{10^{10}}{T} = 19.665 + 9.060\gamma\alpha^2 + 22.984\gamma^2\gamma^2 - 16.920[(\gamma\beta_1 + \beta\gamma_1)(3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2)]$$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

TABLE 46.

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

Substance.	E _a	E	E_{σ}	Т _а	Authority,
luorspar	1473×106	1008 × 106	010×10^{6}	345×10^{6}	Voigt.†
'yrite'	3530×10^{6}	2530×10^{6}	2310×10^{6}	1075×10^{6}	4.6
lock salt	419×10^{6}	349×10^{6}	303×10^{6}	129×10^{6}	"
	403×10^{6}	339×10^{6}		_	Koch.‡
ylvine	401×10^{6}	209×10^{6}	_		
	372×10^{6}	196×10^{6}	_	655×10^{6}	Voigt.
odium chlorate .	405×10^{6}	319×10^{6}	_	_	Koch.
otassium alum	181×10^{6}	$199 \times 10_{6}$		_	Beckenkamp
Chromium alum .	161×10^{6}	177×10^{6}	_	_	
ron alum	186×10^{6}	_	_	_	"

(b) Orthorhombic System. ||

Substance.	$\mathbf{E_1}$	\mathbf{E}_2	\mathbf{E}_3	E_4	\mathbf{E}_{5}	E_6	Authority.
Barite . Topaz .	620 × 10 ⁶	540 × 10 ⁶ 2890 × 10 ⁶	959×10^{6} 2652×10^{6}	376×10^{6} 2670×10^{6}	702 × 10 ⁶ 2893 × 10 ⁶	740 × 10 ⁶ 3180 × 10 ⁶	Voigt.
			T. 61	<i>m m</i>		m /	.1

	Sub	stai	nce.				$T_{12} = T_{21}$	$T_{13} = T_{31}$	$T_{23} = T_{32}$	Authority.
Barite Topaz			:	:	:	•	283 × 10 ⁶ 1336 × 10 ⁶	293 × 10 ⁶ 1353 × 10 ⁶	121 × 10 ⁶ 1104 × 10 ⁶	Voigt.

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

$$\begin{array}{ll} \text{Mica} & \left\{ \begin{array}{ll} E_{max} = 2213 \times 10^6 \text{ in the principal axis.} \\ E_{min} = 1554 \times 10^6 \text{ at } 45^0 \text{ to the principal axis.} \end{array} \right. \end{array}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
, $E_{45} = 1796 \times 10^6$, $E_{90} = 2312 \times 10^6$,

$$E_0=2165\times 10^6,\quad E_{45}=1796\times 10^6,\quad E_{90}=2312\times 10^6,\\ T_0=667\times 10^6,\quad T_{90}=883\times 10^6.\quad The smallest cross dimension of the prism experimented on (see Table 82), was in the principal axis for this last case.$$

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{90} = 785 \times 10^6$,

$$T_0 = 508 \times 10^6$$
, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcite

$$E_0 = 501 \times 10^6$$
, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.

^{*} In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

nird and equally inclined to all three axes respectively.

† Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.

‡ Koch, "Wied. Ann." 18, p. 325, 1882.

§ Beckenkamp, "Zeit. für Kryst." vol. 10.

|| The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.

¶ Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

COMPRESSIBILITY OF CASES.

TABLE 47. — Relative Volumes at Various Pressures and Temperatures, the volume at 0° C and at 1 atmosphere being taken as 1 000 000.

		Oxygen.			Air.]	Nitrogen		Hydrogen.		
Atm.	00	99 ⁰ ·5	199 ⁰ .5	00	99 ⁰ -4	2000.4	00	99 ⁰ ·5	1990.6	•°	99 ⁰ ·3	2000.5
100 200 300 400 500 600 700 800 900 1000	9265 4570 3208 2629 2312 2115 1979 1879 1800	7000 4843 3830 3244 2867 2610 2417 2268 2151	9095 6283 4900 4100 3570 3202 2929 2718	9730 5050 3658 3036 2680 2450 2288 2168 2070 1992	7360 5170 4170 3565 3180 2904 2699 2544 2415	9430 6622 5240 4422 3883 3502 3219 3000 2828	9910 5195 3786 3142 2780 2543 2374 2240 2149 2068	7445 5301 4265 3655 3258 2980 2775 2616	953 ² 6715 533 ¹ 4515 3973 3589 3300 3085	5690 4030 3207 2713 2387 2149 1972 1832 1720	7 567 5286 4147 3462 3006 2680 2444 2244 2093	9420 6520 5975 4210 3627 3212 2900 2657

Amagat: C. R. 111, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

TABLE 48. - Ethylene.

 $\not v$ at 0° C and I atm. = I.

Atm.	00	100	2 0 ^O	30°	40°	60°	8o°	1000	137 ⁰ -5	1980.5
46 48 50	- 0.176	0.562 0.508 0.420	0.684	0.731	0.814	- - 0.954	- - 1.077	_ _ 1.192	- 1.374	- 1.652
52 54 56 100 150 200 300 500	0.310 0.441 0.565 0.806 1.256 2.289	0.240 0.229 0.227 0.331 0.459 0.585 0.827 1.280 2.321	0.598 0.561 0.524 0.360 0.485 0.610 0.852 1.308		0.471 0.551 0.669 0.908 1.367 2.422	- 0.668 0.649 0.744 0.972 1.431 2.493	0.847 0.776 0.838 1.048 1.500 2.566	1.005 0.924 0.946 1.133 1.578 2.643	1.247 1.178 1.174 1.310 1.721 2.798	1.580 1.540 1.537 1.628 1.985

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

TABLE 49. - Ethylene.

Pressure in		Relative values of pv at —											
meters of mercury.	160.3	20°.3	300.1	400.0	5 0°.0	60°.0	700.0	7 9 ⁰ .9	89°.9	1000,0			
30 60 90 120 150 180 210 240 270 300 320	1950 810 1065 1325 1590 1855 2110 2360 2610 2860 3035	2055 900 1115 1370 1625 1890 2145 2395 2640 2890 3065	2220 1190 1195 1440 1690 1945 2200 2450 2710 2960 3125	2410 1535 1325 1540 1785 2035 2285 2540 2790 3040 3200	2580 1875 1510 1660 1880 2130 2375 2625 2875 3125 3285	2715 2100 1710 1780 1990 2225 2470 2720 2965 3215 3375	2865 2310 1930 1950 2125 2340 2565 2810 3060 3300 3470	2970 2500 2160 2115 2250 2450 2680 2910 3150 3380 3545	3090 2680 2375 2305 2390 2565 2790 3015 3240 3470 3625	3225 2860 2565 2470 2540 2700 2910 3125 3345 3560 3710			

Amagat, Ann. chim. phys. (5) 22, p. 353, 1881,

TABLES 50-52. COMPRESSIBILITY OF GASES.

TABLE 50. - Carbon Dioxide.

Pressure in					Relativ	e values	of pv at —	•			
mercury.	180.2	35 ^c	P. 1 4	10 ⁰ .2	50°.0	60°.0	700.0	80	0.0	90 ⁰ .0	100°.0
30 50 80 110 140 170 200 230 260 290 320	liqui - 625 825 1020 1210 1405 1590 1770 1950 2135	17 7 9 11 13 15 16 18 20	25 1 50 30 20 1 10 1 00 1 90 1 10 60 2	2460 825 980 175 360 550 730 920 8100 2280	2590 2145 1200 1090 1250 1430 1615 1800 1985 2170 2360	2730 2330 1650 1275 1360 1520 1705 1890 2070 2260 2440	2876 252 197 1556 152 164 1816 1996 2166 2346 252	5 26 5 22 18 5 17 5 17 6 19 6 20 6 22 6 24	85 45 15 80 30 90 65	31 20 2845 2440 2105 1950 1975 2075 2210 2375 2550 2725	3225 2980 2635 2325 2160 2135 2215 2340 2490 2655 2830
			R	elativ e v a	lues of pr	ν; <i>p</i> υ at c	o° C. and	ı atm. =	1.		
Atm	o°	100	20 [©]	30°	40 ⁰	60°	800	1000	137°	1980	258°
50 100 150 300 500 1000	0.105 0.202 0.295 0.559 0.891 1.656	0.114 0.213 0.309 0.578 0.913 1.685	0.680 0.229 0.326 0.599 0.938 1.716	0.775 0.255 0.346 0.623 0.963 1.748	0.750 0.309 0.377 0.649 0.990 1.780	0.984 0.661 0.485 0.710 1.054 1.848	1.096 0.873 0.681 0.790 1.124 1.921	1.206 1.030 0.878 0.890 1.201 1.999	1.380 1.259 1.159 1.108 1.362	1.582 1.530 1.493 1.678	1.847 1.818 1.820

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 51. - Compressibility of Gases.

Gas.	p.v. (½ atm.) povo (1 atm.).	$ \frac{1}{p.v.} \frac{d(p.v.)}{dp} = a. $	t	t = 0	Density. O = 32, 0°C P = 76°m	Density. Very small pressure.
$\begin{array}{c} \mathrm{O}_2 \\ \mathrm{H}_2 \\ \mathrm{N}_2 \\ \mathrm{CO} \\ \mathrm{CO}_2 \\ \mathrm{N}_2 \mathrm{O} \\ \mathrm{Air} \\ \mathrm{NH}_3 \end{array}$	1.00038 0.99974 1.00015 1.00026 1.00279 1.00327 1.00026 1.00632	00076 + .00052 00030 00052 00558 00654 00046	11.2° 10.7 14.9 13.8 15.0 11.0	00094 +.00053 00056 00081 00668 00747	32. 2.015 (16°) 28.005 28.000 44.268 44.285	32. 2.0173 28.016 28.003 44.014 43.996

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 52. — Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in metres of mercury, pv, relative.

Air	p	24.07	34.90	45.24	55.30	64.00	72.16	84.22	101.47	214.54	304.04
	pv	26968	26908	26791	26789	26778	26792	26840	27041	29585	32488
O_2	p	24.07 26843	34.S9 26614	_	55.50 26185	64.07 26050	72.15 25858	84.19 25745	101.06 25639	214.52 26536	303.03 28756

Amagat, C. R. 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 53. - Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

essure in Atmos.	Correspon periment	ding Volun ts at Tempe	ne for Ex- erature —	Volume.	Pressure Experime	e in Atmosph nts at Temp	heres for perature —
Pressure Atmos.	58°.0	99°.6	1830.2	v ordine.	580.0	99°.6	183°.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 120 140 160	8560 6360 4040 - - - - - - - - - - - - -	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450		10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2500 1500 1000 500	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10.35 11.85 13.05 14.70 16.70 20.15 23.00 26.40 30.15 35.20 39.60	 - - - - 29.10 33.25 40.95 55.20 76.00

TABLE 54. — Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in	Correspoi perimen	nding Volun ts at Tempe	ne for Ex- erature —	Volume.	Pressure	in Atmosph at Temp	eres for Experature —	eriments
Pressure i	46°.6	99°.6	183°.6	v ordine.	300.2	46°.6	99°.6	183°.0
10 12.5 15 20 25 30 35 40 45 50 55 60 70 80 90	9500 7245 5880 - - - - - - - -	7635 6305 4645 3560 2875 2440 2080 1795 1490 1250 975	- 4875 3835 3185 2680 2345 2035 1775 1590 1450 1245 1125 1035 950	10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2500 1500	8.85 9.60 10.40 11.05 11.80 12.00	9.50 10.45 11.50 13.00 14.75 16.60 18.35 18.30	12.00 13.60 15.55 18.60 22.70 25.40 29.20 34.25 41.45 49.70 59.65	19.50 24.00 27.20 31.50 37.35 45.50 58.00 93.60

^{*} From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

COMPRESSIBILITY OF LIQUIDS.

If V_1 is the volume under pressure p_1 atmospheres at $t^o C$, and V_2 is volume at pressure p_2 and the same temperature, then the compressibility coefficient may be defined at that temperature as:

$$\boldsymbol{\beta}_t = \frac{1}{V_1} \cdot \frac{V_1 - V_2}{p_2 - p_1}.$$

In absolute units (referred to megadynes) the coefficient is $\frac{1}{1.0137}\beta_t$.

Substance.	t.	Pressures.	β. 106	Refer- ence.	Substance.	t.	Pressures.	β. 106	Refer-
Acetone "" Benzole "" "Carbon bisulphide "" "" Chloroform "" "" "" Collodium Ethyl alcohol "" "" "" "" "" "" "" "" "" "" "" "" ""	0 0.00 0.00 0.00 99.5 5.95 17.9 15.4 78.8 0.00 0.00 49.2 0. 20. 40. 65. 100. 14.8 28. 28. 28. 28. 28. 310. 0. 20. 40. 0. 0. 20. 40. 0. 0. 0. 20. 40. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	I-500 500-1000 1000-1500 8.94-36.5 8 8 I-4 I-1 1-500 500-1000 1000-1500 I000-1500 I000-1500 I500-1000	82 59 47 276 83 92 87 126 66 53 43 51 101 122 204 211 206 112 86 81 132 245 4200 1530 245 4200 1530 1530 1530 1530 1530 1530 1530 15	1	Methyl alcohol " " Nitric acid Oils: Almond Olive Paraffin Petroleum Rock Rape-seed Turpentin Toluene " Yylene Paraffins: C ₆ H ₁₄ C ₇ H ₁₆ C ₈ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂₂ C ₁₂ H ₂₆ C ₁₄ H ₃₀ C ₁₆ H ₃₄ Water " " " " " " " " " " " " " " " " " " "	0 100. 18.10 20.3 17. 20.5 14.8 16.5 19.4 20.3 19.7 10. 100. 10. 23. " " " " " 0. 10. 20. 0. 10. 20. 10. 20. 50. 10. 20. 50. 10. 20. 50. 100. 20. 100. 20. 100. 20. 100. 20. 100. 20. 100. 20. 100. 20. 100.	8.68-37.3 8 1-32 - 1	221 120 338 555 63 77 75 60 79 79 132 133 105 52.5 50.0 49.1 41.2 44.2 44.8 44.9 44.9 44.2 44.2 46.1 44.2 46.8	3 2 2 1 1 1 8 6 1 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
" " Ethyl chloride " " Glycerine Mercury Methyl alcohol	20. 40. 0. 11. 15.2 61.5 99.0 20.5 14.8 0. 0.	700-800 700-800 700-800 900-1000 8.5-34.2 8.7-37.2 12.6-34.4 12.8-34.5	62 65 52 138 153 256 495 22 3.92 3.90 104	" 3 " 8 6 9	66 66 68 68 68 68 68 68 68	o. 20.4 48.85 o. o. 20.4 48.85 o. o. o. 48.85	I-500 " 500-1000 1000-1500 " " 1500-2000 2000-2500 2500-3000	47.5 43.4 41.6 41.6 35.8 33.8 32.5 32.4 29.2 26.1 25.4	66 66 66 66 66 66 66 66 66 66 66 66 66

For references see page 80.

COMPRESSIBILITY AND BULK MODULI OF SOLIDS.

	 Compression per unit	1		alues of bulk us in —
Solid.	 volume per atmo. × 106.	Authority.	Grams per sq. cm.	Pounds per sq. in.
Fluorspar Pyrites Quartz Rock salt Sylvine Topaz Tourmaline Brass Copper Delta metal Lead Steel		Voigt	535×10 ⁶ 1384 " 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 1090 " 1202 " 1012 " 374 " 1518 "	7.61×10 ⁶ 19.68 " 12.24 " 12.89 " 5.50 " 3.50 " 24.11 " 130.10 " 15.48 " 17.10 " 14.41 " 5.32 " 21.61 " 5.76 "

Note: Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897; 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:
The following values in cm² / Kg of 106 × Compressibility are given for the corresponding temperatures by Grüneisen

Ann. der Phys. 33, p. 65, 1910.

No.	Glass.	Compressibility.	No.	Glass.	Compres- sibility
665 1299 16 278	Barytborosilicat	7520 5800 4530 3790	2154 S 208 500 S 196	Kalibleisilicat	3660 3550 3510 3470

* Röntgen and Schneider by piezometric experiments obtained 5.0 × 10-6 for rock salt, and 5.6 × 10-6 for sylvine (Wied. Ann., vol. 31).

References to Tables 55 and 56.

Liquids (Table 55):

- 1 Amagat, Ann. chim. phys. (6) 29, 1893.
- 2 Röntgen, Wied. Ann. 44, p. 1, 1891.
- 3 Amagat, C. R. 68, p. 1170, 1869; Ann. chim. phys. (5) 28, 1883.
- 4 Pagliani-Palazzo, Mem. Acad. Lin. (3) 19, 1883.
- 5 Grimaldi, Zeitschr. Phys. Chem. 1, 1887.
- 6 de Metz, Wied. Ann. 41, p. 663, 1890; 47, p. 706, 1892.
- 7 Barus, Sill. Journ. 39, p. 478, 1890; 41, 1891; Bull. U.S. Geol. Surv. 1892.

Solids (Table 56):

Amagat, C. R. 108, p. 228, 1889; J. de Phys. (2) 8, p.197, 1889.

- 8 Quincke, Wied. Ann. 19, p. 401, 1883.
- 9 Amagat, Ann. chim. phys. (6) 22, p. 95, 1891.
- 10 Aimé, Ann. chim. phys. (3) 8, p. 268, 1843.
- 11 Colladon-Sturm, Pogg. Ann. 12, p. 39, 1828.
- 12 Martini.
- 13 de Heen, Bull. Acad. Roy. Belg. (3) 9, 1885.
- 14 Bartoli, Rend Lomb. (2) 28, 29, 1896.
- 15 Protz, Ann. der Phys. (4) 31, p. 127, 1910. See also Bridgman, Proc. Ann. Acad. 48, p. 309,
 - 1912 (H2O) 49, p. 3, 1913 (alcohols, etc.); 49, p. 627, 1914 (high pressure technique).

Buchanan, Proc. Roy. Soc. Edinb. 10, 1880. Voigt, Wied. Ann. 31, 1887; 34, 1888, 36,

1888.

SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé =
$$145 - \frac{145}{\text{Specific Gravity}}$$

	Specific Gravities less than 1.									
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Gravity.					Degrees	Baumé.				
0.60 .70 .80 .90	103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94	85.38 56.67 34.71 17.37	82.12 54.21 32.79 15.83	78.95 51.82 30.92 14.33	75.88 49.49 29.09 12.86	72.90 47.22 27.30 11.41
		1	Spe	ecific Gra	wities gr	eater tha	n I.			
Specific	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Gravity.					Degrees :	Baumé.				
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80	0.00 13.18 24.17 33.46 41.43 48.33 54.38 59.71 64.44	1.44 14.37 25.16 34.31 42.16 48.97 54.94 60.20 64.89	2.84 15.54 26.15 35.15 42.89 49.60 55.49 60.70 65.33	4.22 16.68 27.11 35.98 43.60 50.23 56.04 61.18 65.76	5.58 17.81 28.06 36.79 44.31 50.84 56.58 61.67	6.91 18.91 29.00 37·59 45.00 51.45 57.12 62.14 66.62	8.21 20.00 29.92 38.38 45.68 52.05 57.65 62.61	9.49 21.07 30.83 39.16 46.36 52.64 58.17 63.08	10.74 22.12 31.72 39.93 47.03 53.23 58.69 63.54	11.97 23.15 32.60 40.68 47.68 53.80 59.20 63.99

REDUCTIONS OF WEIGHINGS IN AIR TO VACUO. TABLE 58.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M δ (1/d-1/d₁) where δ = the density (wt. of 1 ccm in grams = 0.0012) of the air during the weighing, d the density of the body, d₁ that of the weights. δ for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for δ = 0.0012. The corrected weight = M+kM/1000.

Density	Co	rrection factor	r, k.	Density	Co	rrection factor	, k.
of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.	of body weighed d.	Pt. Ir. weights d ₁ =21.5.	Brass weights 8.4.	Quartz or Al. weights 2.65.
.5 .6 .7 .75 .80 .85 .90 .95 1.00 1.1 1.2 1.3 1.4	+ 2.34 + 1.91 + 1.66 + 1.55 + 1.41 + 1.36 + 1.28 + 1.21 + 1.14 + 0.94 + .87 + .80 + .75	+ 2.26 + 1.86 + 1.57 + 1.46 + 1.36 + 1.27 + 1.19 + 1.12 + 1.06 + 0.95 + .86 + .78 + .71	+ 1.95 + 1.55 + 1.26 + 1.15 + 1.05 + 0.96 + .88 + .81 + .75 + .64 + .55 + .47 + .40 + .35	1.6 1.7 1.8 1.9 2.0 2.5 3.0 4.0 6.0 8.0 10.0 15.0 20.0	+ 0.69 + .65 + .62 + .58 + .54 + .43 + .24 + .14 + .09 + .06 + .03 + .004	+ 0.61 + .56 + .52 + .49 + .46 + .34 + .26 + .16 + .01 02 06 08	+ 0.30 + .25 + .21 + .18 + .15 + .03 05 15 25 30 33 37 39 40

TABLE 59. - Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (I - s/L).

Let W_s = uncorrected weight of substance, W_l = uncorrected weight of the liquid displaced by the substance, then by definition, $s = LW_s/W_l$. Assuming D to be the density of the balance of weights, $W_s \{1 + 0.0012 (1/S - 1/D)\}$ and $W_l \{1 + 0.0012 (1/L - 1/D)\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cc. of air is 0.0012 gram).

Then the true density
$$S = \frac{W_s \left\{ I + 0.0012 \, \left(I/S - I/D \right) \right\}}{W_l \left\{ I + 0.0012 \, \left(I/L - I/D \right) \right\}} L.$$

But from above $W_s/W_l = s/L$, and since L is always large compared with 0.0012, S - s = 0.0012 (1 - s/L).

The values of 0.0012 (1 - s/L) for densities up to 20 and for liquids of density 1 (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

Density of		Corrections.		Density of	Corre	ctions.
substance s.	L= 1 Water.	L=0.852 Xylene.	L=13.55 Mercury.	substance s	L= 1 Water.	L=13.55 Mercury.
0.8 0.9 1. 2. 3. 4. 5. 6. 7. 8. 9.	+ 0.00024 + .00012 0.0000 0012 0024 0036 0060 0072 0084 0096 0108			11. 12. 13. 14. 15. 16. 17. 18. 19.	0.0120 0132 0144 0156 0168 0180 0192 0204 0216 0228	+ 0.0002 + .0001 0.0000 0001 0002 0003 0004 0005 0006

DENSITY OR MASS IN CRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

Aluminum					
Wrought pure	Element.	Physical State.	Grams per cu. cm.*	Tempera- ture.†	Authority.
Wrought pure	Aluminum	onet	2 56 2 50		
Antimony Antimony Accouncedistilled ditto-compressed ditto-c	Aummun		2.50-2.50		
Antimony " ditto-compressed amorphous liquid 1,3845 -183 14 14733 -189 14 14734 14 18 1902. Arsenic Crystallized 5,73 14 3,70 3,70 3,88 5 14 14 18 1902. " amorph. brblack 3,70 3,70 3,88 5 14 15 16 10 1 1 1 1 1 1 1 1			2.05-2.00		Mallet 1994
ditto-compressed amorphous face	Antimony				
Argon	""				Kambaum, 1902.
Arsenic	"				Hérard
Arsenic Arsenic Crystallized amorph. brblack yellow Barium Bismuth Bismuth Solid Berium Bismuth Solid S	Argon			- 182	
Arsenic crystallized 3.73 3.88 Bismuth solid 9.70		"			
	Arsenic	crystallized			
Serium	"			1	Geuther.
Barium Bismuth Solid 9,70 - 9,00 electrolytic vacuo-distilled 10,00 271 vacu			3.88	1	
Bismuth	Barium				Guntz.
	Bismuth				
	44		9.747		Classen, 1890.
			9.781	20	Kahlbaum, 1902.
Boron				271	Vincentini-Omodei. •
Bromine Cadmium Cast S.54-8.57 S.67 Wrought S.67 S.67 Wrought S.67 Wrought S.67 S.67 Wrought S.67 Wrought S.67 S.67 Wrought S.67 S.67 Wrought S.67 S.67 Wrought S.67 S.67 S.67 Wrought S.67	1			271	" "
Bromine Cadmium Cadmium Cadmium Cadmium Cast Wrought S.54-8.57 Wrought S.67 Wrought Wrought S.67 Wrought S.67 Wrought Wrought S.67 Wrought Wrou			2.535		
" vacuo-distilled solid s			2.45		
" vacuo-distilled solid s			3.12		Richards-Stull.
" vacuo-distilled solid liquid 8.648 8.37 318 318 318 318 318 318 318 318 318 318	Cadmium		8.54-8.57		
" vacuo-distilled solid liquid 7-99 318					77 111
" Cæsium Calcium Calcium Carbon diamond J.54 318 " Richards-Brink. Brink. Brink. Richards-Brink. Brink. Brink. Brink. Brink. Brink. Brink. Brink. Wigand. " Muthmann-Weiss. " Drugman-Ramsay. Muthmann-Weiss. " Muthmann-Weiss. " Drugman-Ramsay. Muthmann-Weiss. " Drugman-Ramsay. Drugman-Ramsay. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Drugman-Ramsay. Muthmann-Weiss. " Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Muthmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Muthmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Moissan-Lewar. Muthmann-Weiss. Kahlbaum, 1902. "" Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Noissan-Dewar. de Boisbaudran. Winkler. Humpidge. Noissan. Tilden, Ch. C. 1898. Muth					Kahlbaum, 1902.
Cæsium 1.873 20 Richards-Brink Carbon diamond 3.52 20 Richards-Brink Carbon diamond 3.52 3.52 Muthmann-Weiss Cerium electrolytic 6.79 Muthmann-Weiss 0 Chlorine liquid 1.507 — 33.6 Drugman-Ramsay Chromium 6.92 20 Moissan Tilden, Ch. C. 1898 Cobalt 8.30-8.95 Muthmann-Weiss Muthmann-Weiss Copper cast 8.30-8.95 Muthmann-Weiss " wrought 8.85-8.95 Muthmann-Weiss " electrolytic 8.93-8.95 Muthmann-Weiss " wrought 8.93-8.95 Kahlbaum, 1902. " Brichards-Brink Wingand Muthmann-Weiss " Wrought 8.30-8.95 Kahlbaum, 1902. " S.33-8.95 S.85-8.95 Kahlbaum, 1902. " S.11 4.77 S. Meyer, Z. Ph. Ch. 37 Fluorine liquid <					Vincentini-Omodei.
Calcium diamond 3.52 Brink. Carbon diamond 3.52 Wigand. Cerium electrolytic 6.79 Muthmann-Weiss. Chlorine liquid 1.507 — 33.6 Drugman-Ramsay. Chromium 6.52-6.73 — 33.6 Drugman-Ramsay. Cobalt 8.71 21 Moissan. Columbium 8.30-8.95 Muthmann-Weiss. Copper cast 8.30-8.95 Muthmann-Weiss. " wrought 8.85-8.95 Muthmann-Weiss. " electrolytic 8.88-8.95 Muthmann-Weiss. " wrought 8.9326 20 Kahlbaum, 1902. " 4.77 S. Meyer, Z. Ph. Ch. 37. Noissan-Dewar. Roberts-Wrightson. Gallium 5.93 23 S. Meyer, Z. Ph. Ch. 37. Gold cast 19.3 Winkler. " wrought 19.33 20 " wrought 19.33 20 " Kahlbaum, 1902	l.	ուգաւա		318	District Del 1
Carbon diamond graphite 3.52 Wigand. Cerium electrolytic electrolytic pure 6.79 Muthmann-Weiss. Chlorine liquid 1.507 — 33.6 Drugman-Ramsay. Chromium 6.92 20 Moissan. Tilden, Ch. C. 1898. Cobalt 8.30-8.95 Muthmann-Weiss. Muthmann-Weiss. Muthmann-Weiss. Copper 6.92 20 Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. " drawn 8.93-8.95 Muthmann-Weiss. Muthmann-Weiss. Muthmann-Weiss. " drawn 8.93-8.95 Muthmann-Weiss. Muthmann-Weiss. Muthmann-Weiss. " vacuo-distilled ditto-compressed liquid 8.93-8.95 Muthmann-Weiss. Muthmann-Weiss. Erbium Fluorine 8.93-8.95 S.88-8.95 Muthmann-Weiss. Muthmann-Weiss. Erbium Holiquid 1.14 — 200 Kahlbaum, 1902. Moissan. Erbium 5.93 23 Moissan. Muthmann-Weiss. Muthmann-Weiss. B				20	
Cerium electrolytic pure 7.02 Chlorine Chromium 6.52-6.73 Cobalt Columbium Copper cast drawn wrought electrolytic vacuo-distilled ditto-compressed liquid 7.77 Fluorine Gallium Germanium Glucinum Gold me Gold wrought wrought electrolytic vacuo-distilled ditto-compressed liquid 1.846 Gallium Germanium Glucinum Gold cast wrought wrought electrolytic vacuo-distilled ditto-compressed liquid 1.8593 5.46 20 Kahlbaum, 1902. """ Wrought electrolytic vacuo-distilled ditto-compressed liquid 1.14 — 200 Moissan. Winkler. Humpidge. 19.33 S.46 20 Winkler. Humpidge. 19.33 Wrought vacuo-distilled ditto-compressed liquid 19.33 Wrought 19.33 Wrought 19.33 Wrought 20.15 — 269 Wathmann-Weiss. Muthmann-Weiss. Moissan. Tilden, Ch. C. 1898. Muthmann-Weiss. Winkler. Thumpidge. S.93-8.95 Wathlbaum, 1902. """ Wrought 20.15 — 200 Kahlbaum, 1902. """ Wrought 19.33 200 Kahlbaum, 1902. """ Wrought 19.33 200 Kahlbaum, 1902.		diamond			
Cerium	Carbon				wigand.
Chlorine Chromium Chromium Chromium Cobalt Columbium Copper Copper Cast Grawn Wrought Cound-ditto-compressed Iquid Compressed	Cerium				Muthmann Waiss
Chlorine Chromium liquid 1.507 — 33.6 Drugman-Ramsay. Cobalt Columbium Copper 8.71 21 Moissan. Tilden, Ch. C. 1898. Copper Grad Grawn Grawn Grawn Grawn Getter Gram Gram Gram Gram Gram Gram Gram Gra	" CCITAIN				" " "
Chromium "	Chlorine		1 '	- 22.6	Drugman-Ramsay
Cobalt Columbjum Copper Cast Grawn Wrought electrolytic Wacuo-distilled ditto-compressed Gallium Germanium Glucinum Gold Gold Gold Wrought Fluorine Gold Germanium Glucinum Gold Germanium Glucinum Gold Germanium Glucinum Gold Germanium Glucinum Gold Gold Gilium Gold Gilium Gold Gold Gilium Gold Gold Gold Gold Gold Gold Gold Gold			6.52-6.73	33.0	Drugman Hambuy.
Cobalt Columbium Copper	44	pure	6.92	20	Moissan.
Columbium Copper cast drawn wrought electrolytic vacuo-distilled ditto-compressed liquid 8.4 8.30-8.95 8.83-8.95 8.88-8.95 8.9326 20 Kahlbaum, 1902. " William 8.9376 8.9376 20 Kahlbaum, 1902. " Britionine Gallium Germanium Glucinum Gold Iquid 1.14 1.14 — 200 5.93 Kahlbaum, 1902. Gold 5.93 5.46 23 5.46 Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Gold cast wrought vacuo-distilled ditto-compressed liquid 19.3 18.88 20 19.27 Kahlbaum, 1902. " Vacuo-distilled ditto-compressed liquid 19.27 0.15 20 0 Onnes, 1908.	Cobalt	F		1	Tilden, Ch. C. 1898.
Copper cast drawn wrought electrolytic vacuo-distilled ditto-compressed liquid 8.30-8.95 8.93-8.95 8.93-8.95 8.85-8.95 8.85-8.95 8.85-8.95 8.893-26 8.9376 8.9376 8.217 8.8217 8	Columbium			15	
""" drawn wrought electrolytic 8.93-8.95 8.85-8.95 8.95-8.95 8.85-8.95 8.95-8.95 8.95-8.95 8.85-8.95 8.95-8.95 8.85-8.95 8.95-8.95 8.85-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.95-8.95 8.9	Copper	cast			
" wrought electrolytic vacuo-distilled ditto-compressed liquid	66	drawn	8.93-8.95		
"" vacuo-distilled ditto-compressed liquid 8.9376 8.9376 8.9376 8.217 20 Kahlbaum, 1902. "" "Roberts-Wrightson. St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Fluorine Gallium Germanium Gold "Usan Gold "Vacuo-distilled "Vacuo-distilled ditto-compressed ditto-compressed liquid 19.3 vacuo-distilled 19.33 vacuo-distilled ditto-compressed liquid 20 Kahlbaum, 1902. "" "Koberts-Wrightson. St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Gold "Vacuo-distilled ditto-compressed liquid 19.3 vacuo-distilled 19.33 vacuo-distilled 19.27 20 "" "Connes, 1908. "Helium liquid 0.15 — 269 Onnes, 1908.			8.85-8.95		
"" vacuo-distilled ditto-compressed liquid 8.9376 8.9376 8.9376 8.217 20 Kahlbaum, 1902. "" "Roberts-Wrightson. St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Fluorine Gallium Germanium Gold "Usan Gold "Vacuo-distilled "Vacuo-distilled ditto-compressed ditto-compressed liquid 19.3 vacuo-distilled 19.33 vacuo-distilled ditto-compressed liquid 20 Kahlbaum, 1902. "" "Koberts-Wrightson. St. Meyer, Z. Ph. Ch. 37. Moissan-Dewar. de Boisbaudran. Winkler. Humpidge. Gold "Vacuo-distilled ditto-compressed liquid 19.3 vacuo-distilled 19.33 vacuo-distilled 19.27 20 "" "Connes, 1908. "Helium liquid 0.15 — 269 Onnes, 1908.			8.88-8.95		
" liquid 8.217 Roberts-Wrightson. Erbium 4.77 St. Meyer, Z. Ph. Ch. 37. Fluorine liquid 1.14 — 200 Moissan-Dewar. Gallium 5.93 23 de Boisbaudran. Germanium 1.85 20 Winkler. Gold cast 19.3 Winkler. " wrought 19.33 Yacuo-distilled 18.88 20 Kahlbaum, 1902. " ditto-compressed 19.27 20 " Onnes, 1908. Helium liquid 0.15 — 269 Onnes, 1908.	1 2 1		8.9326		Kahlbaum, 1902.
Erbium Fluorine Gallium Gallium Germanium Glucinum Gold " wrought " vacuo-distilled ditto-compressed Helium Gliquid G.27/ 4.77 1.14			8.9376	20	
Fluorine Gallium Gallium S.93 S.46 S.93 S.46 Solution S.93 S.46 Solution S.93 S.46 Solution S.93 S.46 Solution S.93 Solution	l l	liquid			Koberts-Wrightson.
Gallium 5.93 23 de Boisbaudran. Germanium 5.46 20 Winkler. Glucinum 19.3 Humpidge. Gold 19.3 19.33 wrought 19.33 20 wrought 19.38 20 wrought 19.27 20 Helium liquid 0.15 -269 Onnes, 1908. Onnes, 1908.		1:		1	St. Meyer, Z. Ph. Ch. 37.
Germanium S.46 20 Winkler. Humpidge.		nquia			
Glucinum Gold " wrought " vacuo-distilled ditto-compressed liquid Helium Glucinum 17.85 19.3 19.33 19.33 20 Kahlbaum, 1902. " Onnes, 1908.					
Gold			5.40	20	
" wrought 19.33 18.88 20 Kahlbaum, 1902. " ditto-compressed 19.27 20 " Helium liquid 0.15 — 269 Onnes, 1908.		cast	10.2		rrampiage.
" ditto-compressed 19.27 20 " Helium liquid 0.15 — 269 Onnes, 1908.			10.22	1	
" ditto-compressed 19.27 20 " Helium liquid 0.15 — 269 Onnes, 1908.			18.88	20	Kahlhaum 1002
Helium liquid 0.15 — 269 Onnes, 1908.	"				15011110 401111, 1902.
	Helium				Onnes, 1008.
Expression 1 mand 1 0.070 1 \rightarrow 252 Dewar Ch. News 1004.	Hydrogen	liquid	0.070	- 209 - 252	Dewar, Ch. News, 1904.
Indium 7.28 Richards.				-3-	
,			'		

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

^{*}To reduce to pounds per cu. ft. multiply by 62 4.
† Where the temperature is not given, ordinary atmospheric temperature is understood.

DENSITY OR MASS IN CRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

	1	1		
Element.	Physical State	Grams per cu. cm.*	Temper ature.†	Authority.
Iridium		22.42	17	Deville-Debray
Iodine		4.940	20	Richards-Stull
Iron "	pure	7.85-7.88		
	gray cast	7.03-7.13		
	white cast	7.58-7.73		
"	wrought liquid	7.80-7.90 6.88		Dobarta Access
"	steel	7.60-7.80		Roberts-Austen
Krypton	liquid	2.16	-146	Ramsay-Travers
Lanthanum		6.15	140	Muthmann-Weiss
Lead	cast	11.37	24	Reich
""	wrought	11.36	24	"
"	solid	11.005	325	Vincentini-Omodei
" "	liquid	10.645	325	" "
	vacuo-distilled	11.342	20	Kahlbaum, 1902
Lithium	ditto-compressed	11.347	20 20	Dishard Daint des
Magnesium		0.534 1.741	20	Richards-Brink, '07 Voigt
Manganese		7.42		Prelinger
Mercury	liquid	13.596	0	Regnault, Volkmann
"	"	13.546	20	8
"		13.690	-38.8	Vincentini-Omodei
	solid	14.193	-38.8 -188	Mallet
Molyhdonum		14.383	-188	Dewar, 1902
Molybdenum Neodvmium		9.01 6.06		Moissan
Nickel		8.60-8.90		Muthmann-Weiss
Nitrogen	liquid	0.810	-195	Baly-Donnan, 1902
"	"	0.854	-205	" " " "
Osmium		22.5	203	Deville-Debray
Oxygen	liquid	1.14	-184	
Palladium		12.16		Richards-Stull
Phosphorus	white red	1.83	1	
**	metallic	2.20		TT:44 (
Platinum	metanic	2.34 21.37	1 5 20	Hittorf Richards-Stull
Potassium		0.870	20	Richards-Brink, '07
	solid	0.851	62.1	Vincentini-Omodei
"	liquid	0.830	62.1	" "
Præsodymium		6.475		Muthmann-Weiss
Rhodium		12.44		Holborn Henning
Rubidium Ruthenium		1.532	20	Richards-Brink, '07
Samarium		12.06 7.7-7.8	0	Toby .
Selenium		4.3-4.8		Muthmann-Weiss
Silicon	cryst.	2.42	20	Richards-Stull-Brink
**	amorph.	2.35	15	Vigoroux
Silver	cast	10.42-10.53	ر ا	9
"	wrought	10.6		
	vacuo-distilled	10.492	20	Kahlbaum, 1902
44	ditto-compressed liquid	10.503	20	337-1-1-4
Sodium	nquiu	9.51		Wrightson
"	solid	0.9712	20 97.6	Richards-Brink, '07 Vincentini-Omodei
46	liquid	0.9287	97.6	vincentini-Omodei
4	*	1.0066	— 188	Dewar
Strontium		2.50-2.58		Matthiessen
Sulphur		2.0-2.I		
"	liquid	1.811	113	Vincentini-Omodei

^{*} To reduce to pounds per cubic ft. multiply by 62.4.
† Where the temperature is not given, ordinary atmosphere temperature is understood.

TABLE 60 (continued). — Density or Mass in grams per cubic centimeter and pounds per cubic foot of the elements, liquid or solid.

Element.	Physical State.	Grams per	Tempera- ture.	Authority.
Tantalum Tellurium " Thallium Thorium Tin " " " " " Titanium Tungsten Uranium Vanadium Xenon Yttrium Zinc " " " " " " " Zirconium	crystallized amorphous white, cast " wrought " crystallized " solid " liquid gray liquid cast wrought vacuo-distilled ditto-compressed liquid	16.6 6.25 6.02 11.86 12.16 7.29 7.30 6.97-7.18 7.184 6.99 5.8 4.5 18.6-19.1 18.7 5.69 3.52 3.80 7.04-7.16 7.19 6.92 7.13 6.48 6.44	20 17 226 226 18 13 109	Beljankin. Richards-Stull. Bolton. Matthiessen. Vincentini-Omodei Vincentini-Omodei Mixter. Zimmermann. Ruff-Martin. Ransay-Travers. St. Meyer. Kahlbaum, 1902. "" Roberts-Wrightson.

TABLE 61. - Mass in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grams per cubic centimeter.	Pounds per cubic foot.	Wood.	Grams per cubic centimeter.	Pounds per cubic foot.
Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart	0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40 0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.50 0.83-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60 0.93-1.04	26-42 41-52 40-53 10-25 43-56 62 32-48 59-72 05 24 30-35 43-56 14-16 47 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 27-33 30-44 27-35 58-65	Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	0.60-0.80 0.60-0.93 0.76 1.03 0.56 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 .91 0.66 0.85 0.62-0.75 0.60-0.90 0.61-0.73 0.35-0.5 0.95 0.90 0.40-0.60	37-49 37-58 47 64 35 57 42-62 73-83 20-37 42-44 57 41 53 39-47 37-56 38-45 41-49 22-31 59 24-37 41-55 61 40-43 62 24-37

^{*} Where the temperature is not given, ordinary atmospheric temperature is understood.

86 TABLE 62.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material.	Grams per cu. cm.	Pounds per cu. foot.	Material. ·	Grams per cu. cm.	Pounds per cu. foot.
Agate Alabaster: Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax Beryl Biotite Bone Brick Butter Calamine Caoutchouc Celluloid Cement, set Chalk Charcoal: oak pine Chrome yellow Chromite Cinnabar Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond: Anthracitic Carbonado Diorite Dolomite Ebonite Emery Epidote Feldspar	cu. cm. 2.5-2.7 2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97 2.69-2.7 2.7-3.1 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5 0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44 6.00 4.32-4-57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.52 2.84 1.15 4.0 3.25-3.5 2.55-2.75	156-168 168-173 141-145 163-165 66- 69 180-200 171-172 87-112 125-175 69- 94 150-190 106-125 87-137 53- 54 255-280 57- 62 87 170-190 118-175 35 18- 28 374 270-285 507 122-162 75- 94 56- 57 62-105 65- 71 245-250 104 188-203 157 77 72 250 203-218-159-172	Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava: basaltic trachytic Leather: dry greased Limestone Litharge: Artificial Natural Magnetite Malachite Marble Meerschaum Mica Muscovite Ochre Oligoclase Olivine Opal Orthoclase Paper Paraffin Peat Pitch Porcelain Porphyry Pyrite Quartz Quartzite Resin Rock salt Rutile Sandstone Serpentine	1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 4.5-5. 1.83-1.92 2.7-2.72 2.8-3.0 2.0-2.7 0.86 1.02 1.65-1.78 1.3-1.4 2.68-2.76 9.3-9.4 7.8-8.0 4.9-5.2 3.7-4.1 2.6-2.84 0.99-1.28 2.6-3.2 2.76-3.00 3.5 2.65-2.67 3.27-3.37 2.2 2.58-2.61 0.7-1.15 0.87-0.91 0.84 1.07 2.3-2.5 2.65-2.9 4.95-5.1 2.65 2.70 2.18 6.00-6.5 2.14-2.36 2.50-2.65	
pine Chrome yellow Chromitee Cinnabar Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond: Anthracitic	0.28-0.44 6.00 4.32-4.57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0	18- 28 374 270-285 507 122-162 75- 94 50- 57 62-105 65- 71 245-250	Oligoclase Olivine Opal Orthoclase Paper Paraffin Peat Pitch Porcelain Porphyry Pyrite	2.65-2.67 3.27-3.37 2.2 2.58-2.61 0.7-1.15 0.87-0.91 0.84 1.07 2.3-2.5 2.6-2.9 4.95-5.1	165-167 204-210 137 161-163 44- 72 54- 57 52 67 143-156 162-181 309-318
Diorite Dolomite Ebonite Emery Epidote	2.52 2.84 1.15 4.0 3.25-3.5	157 177 72 250 203–218	Quartzite Resin Rock salt Rutile Sandstone	2.73 1.07 2.18 6.00-6.5 2.14-2.36	170 67 136 374–406 134–147 156–165

TABLE 63.

DENSITY OR MASS IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

TABLES 64-65.

TABLE 64. - DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 62.)

Name and Formula. Density grams Expert cc. Pure compounds, all at 25°C Magnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural artificial cristobalite, artificial Silica glass 2.646 .3779 .4312 2.206 .4533 .453								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name and Formula.	grams	cc. per	Reference.	Name and Formula.	grams	cc. per	Reference.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25°C Magnesia, MgO Lime, CaO Forms of SiO ₂ : Quartz, natural "artificial Cristobalite, artificial Silica glass Forms of Al ₂ SiO ₅ : Sillimanite glass Sillimanite cryst. Forms of MgSiO ₃ : β Monoclinic pyroxene α' Orthorhombic pyroxene β' Monoclinic amphibole γ' Orthorhombic amphibole γ' Orthorhombic amphibole Glass Forms of CaSiO ₃ : α (Pseudo-wollastonite) β (Wollastonite) Glass Forms of Ca ₂ SiO ₄ : α — calcium-orthosilicate β — """ β' — """ Lime-alumina compounds: 3CaO · Al ₂ O ₃ 5CaO · 3Al ₂ O ₃ CaO · 3Al ₂ O ₃ CaO · 5Al ₂ O ₃ 3CaO · 5Al ₂ O ₃ Diopside, natural, cryst. """ artificial, ""	3.306 2.646 2.642 2.319 2.206 2.53 3.022 3.183 3.166 2.849 2.735 2.904 2.906 2.895 3.27 2.965 3.27 2.965 3.29 3.029 2.820 2.972 3.04 3.258 3.265	-3025 -3779 -3785 -4312 -4533 -395 -3309 -3142 -3159 -3510 -3656 -3444 -3454 -307 -3366 -337 -3366 -3365 -329 -3669 -3663	2 " " " " " " " " " " " " " " " " " " "	Albite glass, NaAlSi ₃ O ₈ , art. Albite cryst., NaAlSi ₃ O ₈ , art. Anorthite glass, CaAl ₂ Si ₂ O ₈ , art. Anorthite cryst. CaAl ₂ Si ₂ O ₈ , art. Soda anorthite, NaAlSiO ₄ , art. Borax, glass, Na ₂ B ₄ O ₇ "cryst." Fluorite, natural, CaF ₂ (NH ₄) ₂ SO ₄ (30°) K ₂ Cl, fine powder (30°) Forms of ZnS: Sphalerite, natural* Wurtzite, artificial† Greenockite, artificial Forms of HgS: Cinnabar, artificial Metacinnabar, artificial Minerals: Gehlenite, from Velardena, 2Ca ₂ SiO ₄ CaCO ₃ Hillebrandite, from Velardena, CaSiO ₃ Ca(OH) ₂ Pyrite, natural, FeS Marcasite, natural, FeS Marcasite, natural, FeS ₂ Only 0.15% Fe total impurity, tsame composition as Sphaler-	2.375 2.597 2.692 2.757 2.563 2.36 2.27 3.180 1.765 2.657 1.984 4.090 4.087 4.820 8.176 7.58 3.03 3.005	.3851 .3715 .3627 .3902 .423 .440 .3145 .5066 .3764 .5040 .2444 .2075 .1223 .132 .330 .3328	7 6 6 " " " " " " " " " " " " " " " " "

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4. Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

TABLE 65. - DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

Molten tin 6.982			400° 1600° .280 6.162
------------------	--	--	------------------------------

* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 238.

TABLES 66-67, WEIGHT OF SHEET METAL.

TABLE 66. — Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

Thickness in thou- sandths of a cm.	Iron.	Copper.	Brass.	Aluminum.	Platinum.	Gold.	Silver.
1	78.0	89.0	85.6	26.7	215.0	193,0	105.0
2	156.0	178.0	171.2	53.4	430.0	380.0	210.0
3	234.0	267.0	256.8	80.1	645.0	579.0	315.0
4	312.0	356.0	342.4	106.8	860.0	772.0	420.0
5	390.0	445.0	428.0	133.5	1075.0	965.0	525.0
6	468.0	534.0	513.6	160.2	1290.0	1158.0	630.0
7	546.0	623.0	599.2	186.9	1505.0	1351.0	735.0
8	624.0	712.0	684.8	213.6	1720.0	1544.0	840.0
9	702.0	801.0	770.4	240.3	1935.0	1737.0	945.0
10	780.0	890.0	856.0	267.0	2150.0	1930.0	1050.0

TABLE 67. — Weight of Sheet Metal. (British Measure.)

m: 1	Iron,	Copper.	Brass.	Alum	inum.	Plati	num,
Thickness	Pounds per	Pounds per	Pounds per	Pounds per	Ounces per	Pounds per	Ounces per
in Mils.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.	Sq. Foot.
1 2 3 4 5	.04058 .08116 .12173 .16231 .20289	.04630 .09260 .13890 .18520 .23150	.04454 .08908 .13363 .17817 .22271	.01389 .02778 .04167 .05556 .06945	.2222 .4445 .6667 .8890	.1119 .2237 .3356 .4474 .5593	1.790 3.579 5.369 7.158 8.948
6	.24347	.27780	.26725	.08334	1.3335	.6711	10.738
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527
8	.32463	.37041	.35634	.11112	1.7780	.8948	14.317
9	.36520	.41671	.40088	.12501	2.0002	1.0067	16.106
10	.40578	.46301	.44542	.13890	2.2224	1.1185	17.896

	Go	old.	Silver.		
Thickness in Mils.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	Troy Ounces per Sq. Foot.	Grains per Sq. Foot.	
1	1.4642	702.8	0.7967	382.4	
2	2.9285	1405.7	1.5933	764.8	
3	4.3927	2108.5	2.3900	1147.2	
	5.8570	2811.3	3 1867	1529.6	
4 5	7.3212	3514.2	3 9833	1912.0	
6	8.7854	4217.0	4.7800	2294.4	
7	10.2497	4919.8	5.5767	2676.8	
8	11.7139	5622.7	6.3734	3059.2	
9	13.1782	6325.5	7.1700	3441.6	
10	14.6424	7028.3	7.966 7	3824.0	

TABLE 68.

DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

DENSITY OF CASES.

The following table gives the density of the gases at 0° C, 76 cm. pressure, at sea-level and latitude 45° relative to air as unity and under the same conditions; also the weight of one liter in grams and one cubic foot in pounds.

Gas.	Specific Gravity.	Grams per liter.	Pounds per cubic foot.	Reference.
Air Acetylene Ammonia Argon Bromine Butane Carbon dioxide "monoxide Chlorine Coal gas { from Cyanogen Ethane Fluorine Helium Hydrofluoric acid Hydrobromic acid Hydrobromic acid Hydrogen Hydrogen Nitrogen Nitrous oxide, NO Nitrous oxide, No Oxygen Sulphur dioxide Steam at 100° Xenon	1.000 0.92 0.597 1.379 5.524 2.01 1.5291 0.9672 2.491 0.320 0.740 1.806 1.0494 1.26 1.368 0.7126 2.71 1.2684 0.0696 1.1895 2.868 0.5576 0.09673 1.0367 1.5298 1.0367 1.5298 1.0367 1.5298	1.2928 1.1620 0.7706 1.782 7.1388 2.594 1.9768 1.2566 3.1674 0.414 0.957 2.3229 1.3567 1.697 0.1787 0.894 3.6163 1.6398 0.09004 1.5230 3.708 0.7160 0.9002 1.2514 1.3402 1.9777 1.4292 2.9266 0.581 5.851	.08071 .07254 .04811 .1112 .4457 .16194 .12341 .07807 .19774 .02583 .05973 .14522 .08470 .1059 .01116 .05581 .2258 .10237 .005621 .09508 .2315 .04470 .0558 .07812 .08367 .12347 .08367 .12347 .08363 .3653	Rayleigh; Leduc. Berthelot, 1860. Leduc, C. R. 125, 1897. Ramsey-Travers, Proc. R. Soc. 67, 1900. Jahn, 1882. Frankland, Ann. Ch. Pharm. 71. Guye, Pintza, 1908. Rayleigh, Proc. R. Soc. 62, 1897. Leduc, C. R. 125, 1897. Gay-Lussac. Baume, Perot, J. Ch. et Phys. 1908. Moissan, C. R. 109. Ramsay-Travers, Proc. R. Soc. 67, 1900. Thorpe-Hambley, J. Chem. Soc. 53. Löwig, Gmelin-Kraut, Org. Chem. Guye-Gazarian, 1908. Rayleigh, Proc. R. Soc. 53, 1893. Leduc, C. R. 125, 1897. Watson, J. Ch. Soc. 1910. Thomson. Watson, J. Ch. Soc. 1910. Rayleigh, Proc. R. Soc. 62, 1897. Guye, Davila, 1908. Guye, Pintza, 1908. Rayleigh, Proc. R. Soc. 62, 1897. Jaquerod, Pintza, 1908. Watson, J. Ch. Soc. 1910.

Compiled partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-Chemische Tabellen.

TABLE 70.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

Substance.	w	eight of	the diss		obstance e solutio		parts by	weight	of	ь. С.	Authority.	
	5	10	15	20	25	30	40	50	60	Тетр.	-	
K ₂ O KOH	1.047 1.040 1.073 1.058 0.978	1.098 1.082 1.144 1.114 0.9 5 9	1.153 1.027 1.218 1.169 0.940	1.076 1.284 1.224	1.229	1.421 1.331	1.503 1.410 1.557 1.436	1.538 1.689	1.809 1.666 1.829 1.642	15. 15. 15. 15.	Schiff. " " Carius.	
NII4Cl	1.015 1.031 1.035 1.029 1.041	1.030 1.065 1.072 1.057 1.086	1.044 1.099 1.110 1.085 1.132	1.135 1.150 1.116	1.072 - 1.191 1.147 1.232	- - 1.181 1.286	- - 1.255 1.402	- - -	1	15. 15. 15. 15.	Gerlach. " " " "	
CaCl ₂ + 6H ₂ O AlCl ₃ MgCl ₂ MgCl ₂ +6H ₂ O ZnCl ₂	1.019 1.030 1.041 1.014 1.043	1.072 1.085 1.032	1.061 1.111 1.130 1.049 1.135	1.083 1.153 1.177 1.067 1.184	1.196 1.226 1.085	1.128 1.241 1.278 1.103 1.289	1.176 1.340 - 1.141 1.417	1.225 - - 1.183 1.563	1.276 - - 1.222 1.737	18. 15. 15. 24. 19.5	Schiff. Gerlach. "Schiff. Kremers.	
$\begin{array}{c} CdCl_2 & . & . \\ SrCl_2 & . & . \\ SrCl_2 + 6H_2O \\ BaCl_2 & . & . \\ BaCl_2 + 2H_2O \end{array}$	1.043 1.044 1.027 1.045 1.035	1.092	1.138 1.143 1.082 1.147 1.119		1.254 1.257 1.042 1.269 1.217	1.319 1.321 1.174 - 1.273	1.469 - 1.242 - -	1.653 - 1.317 - -	1.887 - - - -	19.5 15. 15. 15.	Gerlach. " Schiff.	
$\begin{array}{c} \operatorname{CuCl_2} & \dots & \dots \\ \operatorname{NiCl_2} & \dots & \dots \\ \operatorname{HgCl_2} & \dots & \dots \\ \operatorname{Fe_2Cl_6} & \dots & \dots \\ \operatorname{PtCl_4} & \dots & \dots \end{array}$	1.044 1.048 1.041 1.041 1.046	1.091 1.098 1.092 1.086 1.097	1.155 1.157 - 1.130 1.153	1.221 1.223 - 1.179 1.214	1.299	1.360 - - 1.290 1.362	1.527 - - 1.413 1.546	- - 1.545 1.785	- - 1.668	17.5 17.5 20. 17.5	Franz. "Mendelejeff. Hager. Precht.	
$\begin{array}{c} SnCl_2 + 2H_2O\\ SnCl_4 + 5H_2O\\ LiBr\\\\ KBr\\\\ NaBr\\\end{array}$	1.032 1.029 1.033 1.035 1.038	1.070			1.205	1.193 1.252 1.254	1.329 1.274 1.366 1.364 1.408	1.365	1.580 1.467 - -	15. 15. 19.5 19.5	Gerlach. Kremers. "	
$\begin{array}{cccc} \operatorname{MgBr_2} & \cdot & \cdot \\ \operatorname{ZnBr_2} & \cdot & \cdot \\ \operatorname{CdBr_2} & \cdot & \cdot \\ \operatorname{CaBr_2} & \cdot & \cdot \\ \operatorname{BaBr_2} & \cdot & \cdot \end{array}$	1.041 1.043 1.041 1.042 1.043		1.135 1.144 1.139 1.137 1.142	1.189 1.202 1.197 1.192 1.199	1.263 1.258 2.250	1.308 1.328 1.324 1.313 1.327	1.449 1.473 1.479 1.459 1.483	1.623 1.648 1.678 1.639 1.683	1.8 ₇₃	19.5 19.5 19.5 19.5 19.5	66 66 66 66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.043 1.036 1.036 1.038 1.043	1.076 1.077 1.080	1.122	1.164 1.170 1.177	1.216	1.269 1.278 1.292	1.489 1.394 1.412 1.430 1.467	1.693 1.544 1.573 1.598 1.648	1.732 1.775 1.808	19.5 19.5 19.5 19.5	66 66 66	
$\begin{array}{c} \operatorname{CdI}_2 \dots \\ \operatorname{MgI}_2 \dots \\ \operatorname{CaI}_2 \dots \\ \operatorname{SrI}_2 \dots \\ \operatorname{BaI}_2 \dots \end{array}$	1.042 1.041 1.042 1.043 1.043	1.086	1.137 1.138	1.192 1.192 1.196 1.198 1.199	1.252 1.258 1.260	1.318 1.319 1.328	1.474 1.472 1.475 1.489 1.493	1.693	- 1.913 1.908 1.953 1.968	19.5 19.5 19.5 19.5	66 66 66	
NaClO ₃ NaBrO ₃ KNO ₃ NaNO ₃ AgNO ₃	1.035 1.039 1.031 1.031 1.044	1.081 1.064 1.065	1.099	1.176 1.135 1.140	1.229 - 1.180	1.287		- - 1.416 1.675	1.918	19.5 19.5 15. 20.2 15.	" Gerlach. Schiff. Kohlrausch.	

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27. SMITHSONIAN TABLES.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	w	eight of	the dis		ubstanc e soluti		parts b	y weigh	ıt of	. C.	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
NH ₄ NO ₃ Zn(NO ₃) ₂ Zn(NO ₃) ₂ +6H ₂ O Ca(NO ₃) ₂	1.020 1.048 - 1.037		1.146	1.201		1.325	1.456	1.597 1.329	_	17.5	Franz. Oudemans.
$Cu(NO_3)_2$ $Sr(NO_3)_2$	1.044	1.093	_	1.203	-	1.328	1.471	_	-	17.5	1
$Pb(NO_3)_2$ $Cd(NO_3)_2$ $Co(NO_3)_2$ $Ni(NO_3)_2$	1.043 1.052 1.045 1.045	1.091 1.097 1.090	1.143 1.150 1.137	1.199	1.262 1.283 1.252	1.355	1.536 1.465	- 1.759 - -	-	17.5 17.5 17.5	Gerlach. Franz.
$\begin{array}{c} Fe_2(NO_3)_6 \dots \\ Mg(NO_3)_2 + 6H_2O \\ Mn(NO_3)_2 + 6H_2O \\ K_2CO_3 \dots \\ K_2CO_3 + 2H_2O \end{array}$	1.039	1.076 1.038 1.052 1.092	1.117 1.060 1.079 1.141 1.110	1.160 1.082 1.108 1.192	1.210 1.105 1.138	1.261	1.373 1.179 1.235 1.417	1.232 1.307 1.543	1.386	17.5 21 8 15	1
$\begin{array}{c} Na_2CO_3IoH_2O \\ (NH_4)_2SO_4 \\ Fe_2(SO_4)_3 \\ FeSO_4 + 7H_2O \\ MgSO_4 \\ \end{array}.$	1.019 1.027 1.045 1.025 1.051	1.038 1.055 1.096 1.053 1.104	1.084 1.150 1.081		1.098 1.142 1.270 1.141 1.284	1.118 1.170 1.336 1.173	1.226 1.489 1.238	1.287 - - -		15. 19. 18. 17.2	Schiff. Hager. Schiff. Gerlach.
$\begin{array}{l} MgSO + 7H_2O \ . \\ Na_2So_4 + 10H_2O \ . \\ CuSO_4 + 5H_2O \ . \\ MnSO_4 + _4H_2O \ . \\ ZnSO_4 + _7H_2O \ . \end{array}$	1.025 1.019 1.031 1.031 1.027	9.7	1.075 1.059 1.098 1.099 1.089	1.101 1.081 1.134 1.135 1.122	1.129 1.102 1.173 1.174 1.156	1.214	1.303	1.278 - - 1.398 1.351	- - - 1.443	15. 15. 18. 15. 20.5	"" Schiff. Gerlach. Schiff.
Fe ₂ (SO) ₃ +K ₂ SO ₄ +2 ₄ H ₂ O	1.026	1.045	1.066	1.088	1.112	1.141	_	_	_	17.5	Franz.
$Cr_2(SO)_3+K_2SO_4 + 24H_2O$	1.016	1.033	1.051	1.073	1.099	1.126	1.188	1.287	1.454	17.5	
MgSO ₄ + K ₂ SO ₄ + 6H ₂ O · · · (NH ₄) ₂ SO ₄ +	1.032	1.066	1.101	1.138	-	-	-	-	-	15.	Schiff.
$\begin{array}{c} \text{FeSO}_4 + 6\text{H}_2\text{O} \\ \text{K}_2\text{CrO}_4 \end{array}$	1.028		1.090	1.122	I.154 1.225	1.191 1.279	1.397	-	_ _	19. 19.5	"
$K_2Cr_2O_7$ $Fe(Cy)_6K_4$ $Fe(Cy)_6K_3$ $Pb(C_2H_3O_2)_2$ +	1.028	1.059	1.108 1.092 1.070	1.126 1.113	-	-	- - -	-	- - -	19.5 15.	Kremers. Schiff.
$\begin{array}{c} 3H_2O \dots \\ 2NaOH + As_2O_5 \end{array}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	15.	Gerlach.
+ 24H ₂ O	1.020	1.042	1.066	1.089	1.114	1.140	1.194		_	14.	Schiff.
	5	10	15	20	30	40	60	8 o	100		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1.013	1.084 1.028 1.069	1.045			1.294	1.564	-	-	15. 4. 15.	Brineau. Schiff. Kolb. Gerlach.
$C_6H_8O_7$	1.018	1.038	1.058	1.079	1.123	1.170	1.273	-	-	1 5. 1 5.	"
	1.025 1.035 1.037		1.075 1.114 1.118	1.101 1.158 1.165	1.151 1.257 1.271	1.200 1.376 1.400	1.289 - - - 1.501	- - - 1.732	1.838	17.5 15. 14. 13.	Kolb. Topsöe. Kolb.
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1.040 1.035 1.027 1.028	1.082 1.077 1.057 1.056	1.127 1.119 1.086 1.088	1.174 1.167 1.119 1.119	1.273 1.271 1.188 1.184	- 1.385 1.264 1.250	1.676 1.438 1.373	- - 1.450	- - - 1.528	17.5 17.5 15.	Stolba. Hager. Schiff. Kolb.
$C_2H_4O_2$	1.007	1.014	1.021	1.028	1.041	1.052	1.068	1.075	1.055	15.	Oudemans.

DENSITY OF PURE WATER FREE FROM AIR.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from o^0 to 41^0 C, in grams per milliliter 1]

De-				Тег	ths of D	egrees.					Mean
grees Centi- grade.	0	1	2	3	4	5	6	7	8	9	Differ- ences.
0 1 2 3 4	0.999 8681 9267 9679 9922 1.000 0000	8 ₇₄₇ 93 ¹ 5 9 ₇ 11 9937 *9999	8812 93 ⁶ 3 9741 9951 *9996	8875 9408 9769 9962 *9992	8936 9452 9796 9973 *9986	8996 9494 9821 9981 *9979	9053 9534 9844 9988 *9970	9109 9573 9866 9994 *9960	9163 9610 9887 9998 *9947	9216 9645 9905 *0000 *9934	+ 59 + 41 + 24 + 8 - 8
5 6 7 8 9	0.999 9919 9682 9296 8764 8091	9902 9650 9249 8703 8017	9884 9617 9201 8641 7940	9864 9582 9151 8577 7863	9842 9545 9100 8512 7784	9819 9507 9048 8445 7704	9795 9468 8994 8377 7622	9769 9427 8938 8308 7539	9742 9385 8881 8237 7455	9713 9341 8823 8165 7369	- 24 - 39 - 53 - 67 - 81
10 11 12 13	7282 6331 5248 4040 2712	7194 6228 5132 3912 2572	7105 6124 5016 3784 2431	7014 6020 4898 3654 2289	6921 5913 4780 3523 2147	6826 5805 4660 3391 2003	6729 5696 4538 3257 1858	6632 5586 4415 3122 1711	6533 5474 4291 2986 1564	6432 5362 4166 2850 1416	- 95 -108 -121 -133 -145
15 16 17 18	1266 0.998 9705 8029 6244 4347	9542 7856 6058 4152	0962 9378 7681 5873 3955	0809 9214 7505 5686 3757	0655 9048 7328 5498 3558	0499 8881 7150 5309 3358	0343 8713 6971 5119 3158	0185 8544 6791 4927 2955	0026 8373 6610 4735 2752	*9865 8202 6427 4541 2549	—156 —168 —178 —190 —200
20 21 22 23 24	2343 0233 0.997 8019 5702 3286	2137 0016 7792 5466 3039	1930 *9799 7564 5227 2790	1722 *9580 7335 4988 2541	1511 *9359 7104 4747 2291	1301 *9139 6873 4506 2040	1090 *8917 6641 4264 1788	0878 *8694 6408 4021 1535	0663 *8470 6173 3777 1280	0449 *8245 5938 3531 1026	-211 -221 -232 -242 -252
25 26 27 28 29	0770 0.996 8158 5451 2652 0.995 9761	9513 7892 5176 2366 9466	0255 7624 4898 2080 9171	*9997 7356 4620 1793 8876	*9736 7087 4342 1505 8579	*9476 6817 4062 1217 8282	*9214 6545 3782 0928 7983	*8951 6273 3500 0637 7684	*8688 6000 3218 0346 7383	*8423 5726 2935 0053 7083	-261 -271 -280 -289 -298
30 31 32 33 34	6780 3 7 ¹ 4 0561 0.994 7325 4007	6478 3401 0241 6997 3671	6174 3089 *9920 6668 3335	5869 2776 *9599 6338 2997	5564 2462 *9276 6007 2659	5258 2147 *8954 5676 2318	4950 1832 *8630 5345 1978	4642 1515 *8304 5011 1638	4334 1198 *7979 4678 1296	4024 0880 *7653 4343 0953	-307 -315 -325 -332 -340
35 36 37 38 39	0610 0.993 7136 3585 0.992 9960 6263	6784 3226 9593	*9922 6432 2866 9227 5516	*9576 6078 2505 8859 5140		*8883 5369 1782 8120 4389	*8534 5014 1419 7751 4011	*8186 4658 1055 7380 3634	*7837 4301 0691 7008 3255	*7486 3943 0326 6636 2876	-347 -355 -363 -376 -377
40 41	2497 0.991 8661		1734	1352	0971	0587	0203	*9818	*9433	*9047	— 38.

¹ According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907. Smithsonian Tables.

VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY.

Hydrogen Thermometer Scale.

	1									
Temp. C.	.0	.1	.2	•3	-4	-5	.6	-7	.8	.9
0 I 2 3 4	1.000132 073 032 008 000	069 029 006 000	064 026 005 000	059 023 004 001	106 055 020 003 001	100 051 018 002 002	095 047 016 001 003	089 043 013 001 004	084 039 011 000 005	079 035 009 000 007
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	070	075	080	085	090	095	101	106	112	118
8	124	130	137	142	149	156	162	169	176	184
9	191	198	206	214	222	230	238	246	254	263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	01 5*
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	30 5	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874	895	916	938	960
21	981	002*	024*	046*	068*	091*	113*	135*	158*	181*
22	1.002203	226	249	271	295	319	342	364	389	412
23	436	459	483	507	532	556	581	605	629	654
24	679	704	729	754	779	804	829	854	879	905
25	932	958	983	010*	036*	061*	088*	115*	141*	168*
26	1.003195	221	248	275	302	330	357	384	412	439
27	467	495	523	550	579	607	635	663	692	720
28	749	776	806	836	865	893	922	951	981	011*
29	1.004041	069	100	129	160	189	220	250	280	310
30	341	371	403	432	464	494	526	557	588	619
31	651	682	713	744	777	808	840	872	904	936
32	968	001*	033*	066*	098*	132*	163*	197*	229*	263*
33	1.005296	328	361	395	427	461	496	530	562	597
34	631	665	698	732	768	802	836	871	904	940
35	975	009*	044*	078*	115*	150*	185*	219*	255*	290*

Reciprocals of the preceding table.

DENSITY AND VOLUME OF WATER.

The mass of one cubic centimeter at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10° -9 -8 -7 -6	0.99815 843 869 892 912	1.00186 157 131 108 088	+ 35° 36 37 38 39	0.99406 371 336 300 263	1.00598 633 669 706 743
-5 -4 -3 -2 -1	0.99930 945 958 970 979	055 042 031 021	40 41 42 43 44	0.99225 187 147 107 066	1.00782 821 861 901 943
+0	0.99987	1.00013	45	0.99025	1.00985
1	993	007	46	0.98982	1.01028
2	997	003	47	940	072
3	999	001	48	896	116
4	1.00000	1.00000	49	852	162
5 6 7 8 9	0.99999	1.0000I	50	0.98807	1.01207
	997	003	51	762	254
	993	007	52	715	301
	988	012	53	669	349
	981	019	54	621	398
10	0.99973	1.00027	55	0.98573	1.01.448
11	963	037	60	324	705
12	952	048	65	059	979
13	940	060	70	0.97781	1.02270
14	927	073	75	489	576
15	0.99913	1.00087	80	0.97183	1.02899
16	897	103	85	0.96865	1.03237
17	880	120	90	534	590
18	862	138	95	192	959
19	843	157	100	0.95838	1.04343
20	0.99823	1.00177	110	0.9510	1.0515
21	802	198	120	·9434	1.0601
22	780	220	130	·9352	1.0693
23	757	244	140	·9264	1.0794
24	733	268	150	·9173	1.0902
25	0.99708	1.00293	160	0.907 5	1.1019
26	682	320	170	.897 3	1.1145
27	655	347	180	.8866	1.1279
28	627	37.5	190	.87 50	1.1429
29	598	404	200	.8628	1.1590
30	0.99568	1.00434	210	0.850	1.177
31	537	465	220	.837	1.195
32	506	497	230	.823	1.215
33	473	530	240	.809	1.236
34	440	563	250	.794	1.259

^{*} From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41°, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of Ramsey, Young, Waterston, and Hirn.

SMITHSONIAN TABLES.

TABLE 74.
DENSITY OF MERCURY.

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

Temp. C.	Mass in grams per cu. cm.	Volume of r gram in cu. cms.	Temp. C.	Mass in grams per cu. cm.	Volume of r gram in cu. cms.
-10° -9 -8 -7 -6	13.6202	0.0734205	30°	13.5217	0.0739552
	6177	4338	31	5193	9685
	6152	4472	32	5168	9819
	6128	4606	33	5144	9953
	6103	4739	34	5119	40087
-5	13.6078	0.0734873	35	13.5095	0.07.40221
-4	6053	5006	36	5070	035.4
-3	6029	5140	37	5046	0488
-2	6004	5273	38	5021	0622
-1	5979	5407	39	4997	0756
0	13.5955	0.0735540	40	13-4973	0.0740890
1	5930	5674	50	4729	2230
2	5905	5808	60	4486	3572
3	5880	5941	70	4243	4916
4	5856	6075	80	4001	6262
5	13.5831	0.0736208	90	13.3776	0.0747611
6	5807	6342	100	3518	8961
7	5782	6476	110	3283	50285
8	5757	6609	120	3044	1633
9	5733	6743	130	2805	2982
10	13.5708	0.0736877	140	13.2567	0.07 5 4334
11	5683	7010	150	2330	5688
12	5659	7144	160	2093	7044
13	5634	72 78	170	1856	8402
14	5610	7411	180	1620	9764
15 16 17 18 19	13.5585 5560 5536 5511 5487	0.0737545 7679 7812 7946 8080	200 210 220 230	13.1384 1148 0913 0678 0443	0.0761128 2495 3865 5239 6616
20	13.5462	0.0738213	240	13.0209	0.0767996
21	5438	8347	250	12.9975	9381
22	5413	8481	260	9741	70769
23	5389	8615	270	9507	2161
24	5364	8748	280	9273	3558
25	13.5340	0.0738882	290	12.9039	0.0774958
26	5315	9016	300	8806	6364
27	5291	9150	310	8572	7774
28	5266	9284	320	8339	9189
29	5242	9417	330	8105	80609
30	13.5217	0.0739551	340 350 360	12.7872 7638 7405	0.0782033 3464 4900

Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903.
Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895.

DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

Tana extensi	ve bibliograph	y; also Circul	ar 19, 1913.				
Per cent				Temperatures.			
C ₂ H ₅ OH by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
0	0.99973	0.99913	0.99823	0.99708	0.99568	0.99406	0.99225
I	785	7 ² 5	636	520	379	217	034
2	602	54 ²	453	336	194	031	.98846
3	426	3 ⁶ 5	275	157	014	.98849	663
4	258	195	103	.98984	.98839	672	485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	-97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	.97875	685	475
11	267	171	047	.97897	723	527	312
12	145	041	•97910	753	573	371	150
13	026	.97914	775	611	424	216	.96989
14	•97911	790	643	472	278	063	829
15 16 17 18	800 692 583 473 363	669 552 433 313 191	514 387 259 129 .96997	334 199 062 .96923 782	133 .96990 844 697 547	.96911 760 607 452 294	670 512 352 189 023
20	252	068	864	639	395	134	.95856
21	139	.96944	729	495	242	-95973	687
22	024	818	592	348	087	809	516
23	.96907	689	453	199	.95929	643	343
24	787	558	312	048	769	476	168
25	665	424	168	.95895	607	306	.94991
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	.94955	625
28	268	.95996	710	410	098	774	438
29	125	844	548	241	.94922	590	248
30	.95977	686	382	067	741	403	055
31	823	524	212	.94890	557	214	•93860
32	665	357	038	709	370	021	662
33	502	186	.94860	525	180	.93825	461
34	334	011	679	337	.93986	626	257
35	162	.94832	494	146	790	425	051
36	.94986	650	306	•93952	591	221	.92843
37	805	464	114	756	390	016	634
38	620	273	.93919	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	3 ⁸ 5	.91992
41	042	682	314	.92940	558	170	774
42	.93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	776	384	.90985	580	168	750

DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN GRAMS PER MILLILITER.

				_ = = ==			
Per cent C ₂ H ₅ OH				Temperature.			
by weight	10° C.	15° C.	20° C.	25° C.	30° C.	35° C.	40° C.
50	0.92162	0.91776	0.91384	0.90985	0.90580	0.90168	0.89750
51	.91943	555	160	760	353	.89940	519
52	723	333	.90936	534	125	710	288
53	502	110	711	307	.89896	479	056
54	279	.9088 5	485	079	667	248	.88823
55	055	659	258	.89850	437	016	589
56	.90831	433	031	621	206	.88784	356
57	607	207	.89803	392	.88975	55 ²	122
58	381	.89980	574	162	744	319	.87888
59	154	752	344	.88931	512	085	653
60 61 62 63 64	.89927 698 468 237 006	5 ² 3 293 062 .88830 597	.88882 650 417 183	699 466 ² 33 .8 ₇ 998 763	278 044 .87809 574 337	.87851 615 379 142 .86905	417 180 .86943 705 466
65 66 67 68 69	.88 ₇₇₄ 541 308 074 .8 ₇ 8 ₃₉	364 130 .87895 660 424	.8 ₇₉₄ 8 713 477 241 004	527 291 054 .86817 579	.86863 625 387 148	667 429 190 .85950 710	227 .85987 747 507 266
70	602	187	.86766	340	.85908	470	025
71	365	.86949	527	100	667	228	.84783
72	127	710	287	.85859	426	.84986	540
73	.86888	470	047	618	184	743	297
74	648	229	.85806	376	.84941	500	053
75	408	.85988	564	134	698	257	.8 ₃ 809
76	168	747	322	.84891	455	013	564
77	.85927	505	079	647	211	.83768	319
78	685	262	.84835	403	.83966	523	074
79	442	018	590	158	720	277	.8 ₂ 827
80	197	.84772	344	.83911	473	029	578
81	.84950	\$25	096	664	224	.82780	329
82	702	277	.83848	415	.82974	530	079
83	453	028	599	164	724	279	.81828
84	203	.83777	348	.82913	473	027	576
85	.83951	525	095	660	220	.81774	322
86	697	271	.82840	405	.81965	519	067
87	441	014	583	148	708	262	.80811
88	181	.82754	323	.81888	448	003	552
89	.82919	492	062	626	186	.80742	291
90	654	227	.81797	362	.80922	478	028
91	386	.81959	529	094	655	211	.79761
92	114	. 688	257	.80823	384	.79941	491
93	.81839	413	.80983	549	111	669	220
94	561	134	705	272	.79835	393	.78947
95 96 97 98 99	278 .80991 698 399	.80852 566 274 •79975 670	424 138 .79846 547 243	.79991 706 415 117 .78814	555 271 .78981 684 382	.78831 542 247 .77946	670 388 100 .77806 507
100	.79784	360	.78934	506	075	641	203

TABLE 76.

DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUCAR, OR SULPHURIC ACID.

Per cent by weight of substance.	Methyl Alcohol. D $\frac{15^{\circ}}{4^{\circ}}$ C.	Cane Sugar. 20°	Sulphuric Acid. $D \frac{20^{\circ}}{4^{\circ}} C.$	Per cent by weight of substance.	Methyl Alcohol. D 15° C.	Cane Sugar. 20°	Sulphuric Acid. D 200 C.
0 1 2 3 4	0.99913 .99727 .99543 .99370 .99198	0.998234 1.002120 1.006015 1.009934 1.013881	0.99823 1.00506 1.01178 1.01839 1.02500	50 51 52 53 54	0.91852 .91653 .91451 .91248 .91044	1.229567 1.235085 1.240641 1.246234 1.251866	1.39505 1.40487 1.41481 1.42487 1.43503
5 6 7 8	.99029 .98864 .98701 .98547 .98394	1.017854 1.021855 1.025885 1.029942 1.034029	1.03168 1.03843 1.04527 1.05216 1.05909	55 56 57 58 59	.90839 .90631 .90421 .90210 .89996	1.257535 1.263243 1.268989 1.274774 1.280595	1.44530 1.45568 1.46615 1.47673 1.48740
10 11 12 13	.98241 .98093 .97945 .97802 .97660	1.038143 1.042288 1.046462 1.050665 1.054900	1.06609 1.07314 1.08026 1.08744 1.09468	60 61 62 63 64	.89781 .89563 .89341 .89117 .88890	1.286456 1. 2 92354 1.298291 1.304267 1.310282	1.49818 1.50904 1.51999 1.53102 1.54213
15 16 17 18	.97518 -97377 -97237 -97096 -96955	1.059165 1.063460 1.067789 1.072147 1.076537	1.10199 1.10936 1.11679 1.12428 1.13183	65 66 67 68 69	.88662 .88433 .88203 .87971 .87739	1.316334 1.322425 1.328554 1.334722 1.340928	1.55333 1.56460 1.57595 1.58739 1.59890
20 21 22 23 24	.96814 .96673 .96533 .96392 .96251	1.080959 1.085414 1.089900 1.094420 1.098971	1.13943 1.14709 1.15480 1.16258 1.17041	70 71 72 73 74	.87507 .87271 .87033 .86792 .86546	1.347174 1.353456 1.359778 1.366139 1.372536	1.61048 1.62213 1.63384 1.64560 1.65738
25 26 27 28 29	.96108 .95963 .95817 .95668 .95518	1.103557 1.108175 1.112828 1.117512 1.122231	1.17830 1.18624 1.19423 1.20227 1.21036	75 76 77 78 79	.86300 .86051 .85801 .85551 .85300	1.378971 1.385446 1.391956 1.398505 1.405091	1.66917 1.68095 1.69268 1.70433 1.71585
30 31 32 33 34	.95366 .95213 .95056 .94896 .94734	1.126984 1.131773 1.136596 1.141453 1.146345	1.21850 1.22669 1.23492 1.24320 1.25154	80 81 82 83 84	.85048 .84794 .84536 .84274 .84009	1.411715 1.418374 1.425072 1.431807 1.438579	1.72717 1.73827 1.74904 1.75943 1.76932
35 36 37 38 39	.94570 .94404 .94237 .94067 .93894	1.151275 1.156238 1.161236 1.166269 1.171340	1.25992 1.26836 1.27685 1.28543 1.29407	85 86 87 88 89	.83742 .83475 .83207 .82937 .82667	1.445388 1.452232 1.459114 1.466032 1.472986	1.77860 1.78721 1.79509 1.80223 1.80864
40 41 42 43 44	.93720 .93543 .93365 .93185 .93001	1.176447 1.181592 1.186773 1.191993 1.197247	1.30278 1.31157 1.32043 1.32938 1.33843	90 91 92 93 94	.82396 .82124 .81849 .81568 .81285	1.479976 1.487002 1.494063 1.501158 1.508289	1.81438 1.81950 1.82401 1.82790 1.83115
45 46 47 48 49	.92815 .92627 .92436 .92242 .92048	1.202540 1.207870 1.213238 1.218643 1.224086	1.34759 1.35686 1.36625 1.37574 1.38533	95 96 97 98 99	.80999 .80713 .80428 .80143 .79859	1.515455 1.522656 1.529891 1.537161 1.544462	1.83368 1.83548 1.83637 1.83605
50	.91852	1.229567	1.39505	100	·79577	1.551800	

Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at

15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909. According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900. Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, (2) 5, p. 131, 1900.

All reprinted from Circular 19, U.S. Bureau of Standards, 1913.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Town C	Velocity in	Velocity in	A
Substance.	Temp. C.	meters per second.	feet per second.	Authority.
Metals: Aluminum	0_	5104	16740	Masson.
Brass	_	3500	11480	Various.
Cadmium	-	2307	7570	Masson.
Cobalt	-	4724	15500	**
Copper	20	3560	11670	Wertheim.
	100	3290	10800	"
"	200	2950	9690	"
Gold (soft) " (hard)	20	1743 2100	5717 6890	Various.
Iron and soft steel	_	5000	16410	various.
Iron	20	5130	16820	Wertheim.
"	100	5300	17390	"
"	200	4720	15480	"
" cast steel	20	4990	16360	44
	200	4790	15710	"
Lead	20	1227	4026	
Magnesium Nickel		4602	15100	Melde.
Palladium	_	4973	16320 10340	Masson. Various.
Platinum	20	3150 2690	8815	Wertheim.
	100	2570	8437	44
"	200	2460	8079	46
Silver	20	2610	8553	"
"	100	2640	8658	44
Tin	~	2500	8200	Various.
Zinc	-	3700	12140	"
Various: Brick	-	3652	11980	Chladni.
Clay rock	_	3480	11420	Gray & Milne. Stefan.
Granite	_	500 3950	12960	Gray & Milne.
Marble	_	3810	12500	Gray & Mille.
Paraffin	15	1304	4280	Warburg.
Slate	-	4510	14800	Gray & Milne.
Tallow	16	390	1280	Warburg.
Tuff	-	2850	9350	Gray & Milne.
Glass \ \from	-	5000	16410	Various.
Ivory	-	6000	19690	G' 0 G "
Vulcanized rubber	-	3013	9886	Ciccone & Campanile. Exner.
(black)	50	54 31	177	Exiter.
" (red) .	0	69	226	66
" " "	70	34	111	
Wax	17	SSo	2890	Stefan.
	28	441	1450	"
Woods: Ash, along the fibre	-	4670	15310	Wertheim.
" across the rings .	_	1390	4570	"
" along the rings . Beech, along the fibre .	_ [1260	4140 10960	"
" across the rings .	_	3340 1840	6030	"
" along the rings .	_	1415	4640	
Elm, along the fibre .	_	4120	13516	44
" across the rings .	-	1420	4665	"
" along the rings .	- {	1013	3324	"
Fir, along the fibre	-	4640	15220	"
Maple	-	4110	13470	"
Dima "	_	3850	12620	44
Poplar "	_	3320 4280	10900	"
Sycamore "	_	4260	14640	"
	ļ	4450	- 4040	İ

VELOCITY OF SOUND IN LIQUIDS AND CASES.

For gases, the velocity of sound $= \sqrt{\gamma_P / \rho}$, where P is the pressure, ρ the density, and γ the ratio of specific heat at constant pressure to that at constant volume (see Table 265).

Substance.	Temp. C.	Velocity in meters per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol, 95%	12.5	1241.	4072.	Dorsing, 1908.
"	20.5	1213.	3980.	"
Ammonia, conc.	16.	1663.	5456.	"
Benzol	17.	1166.	3826.	"
Carbon bisulphide .	15.	1161.	3809.	"
Chloroform	15.	983.	3225.	"
Ether	15.	1032.	3386.	"
NaCl, 10% sol	15.	1470.	4823.	44
1 3/0	15.	1530.	5020.	
20/0	15.	1650.	5414.	"
Turpentine oil	15.	1326. 1441.	4351. 4728.	46
water, air-iree	10.	1441.	4794	46
	31.	1505.	4/94.	44
" Lake Geneva .	9.	1435.	4708.	Colladon-Sturm.
" Seine river .	15.	1437.	4714.	Wertheim.
" " "	30.	1528.	5013.	46
	60.	1724.	5657.	66
Gases: Air, dry, CO ₂ -free	0.	331.78	1088.5	Rowland.
Gases. III, dry, e og-nee i	0.	331.36	1087.1	Violle, 1900.
" " CO ₂ -free .	0.	331.92	1089.0	Thiesen, 1908.
" 1 atmosphere .	0.	331.7	1088.	Mean.
" 25 "	0.	332.0	1089.	" (Witkowski).
" 50 "	0.	334.7	1098.	" "
" 100 "	0.	350.6	1150.	44 44
"	20.	344.	1129.	
"	100.	386.	1 266.	Stevens.
"	500.	553.	1814.	4.4
"	1000.	700.	2297.	"
Ammonia	0.	415.	1361.	Masson.
Carbon monoxide	0.	337.1	1106.	Wullner.
" "	0.	337.4	1107.	Dulong.
" dioxide	0.	258.0	846.	Brockendahl, 1906.
" disulphide	0.	189.	620.	Masson.
Chlorine	0.	206.4	677.	Martini.
	0,	205.3	674.	Strecker.
Ethylene	0.	314.	1030.	Dulong.
Hydrogen	0.	1269.5	4165.	**
	0.	1286.4	4221.	Zoch.
Illuminating gas	0.	490.4	1609.	
Methane	0.	432.	1417.	Masson.
Nitric oxide	0.	325.		Dulong.
Nitrous oxide	0.	261.8	859.	Dulong.
Oxygen	0.	317.2	7.56.	Masson.
Vapors: Alcohol Ether	0.	230.6 179.2	588.	Masson.
377	0.	401.		44
	100.	401.8	1315.	Treitz, 1903.
"	130.	424.4	1392.	110112, 1903.
	1 130.	4-4-4	1392.	

Note: The values from Ammonia to Methane inclusive are for closed tubes.

TABLES 79-80. MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 79 gives data for the middle octave, including vibration frequencies for three standards of pitch; a = 435 double with the forms of the property of the pro

vibrations per second, is the international standard and was adopted by the American Piano Manufacturers' Associa-tion. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect

4

major triads reduced to one octave, thus:

4	: 5	:	6		4	:	5	:	6
Ė	: 5 A		C	\mathbf{E}	Ġ		Ĕ		\mathbf{D}
16	20		24	30	36		45		54

Other equivalent ratios and their values in E. S. are given in Table 80. By transferring D to the left and using the ratio ro: 12:15 the scale of A-minor is obtained, which agrees with that of C-major except that D = 26 2/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth, also by taking 12 successive perfect or Pythagorean fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 80. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tine" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 79.

	Inte	rval.	Ra	Ratios.		ithms.	Number	of Vib	rations pe	r second.	Beats
Note.	Tem- pered.	Just.	Just.	Tem- pered.	Just.	Tem- pered.	Just.	Just.	Just.	Tem- pered.	for o. 1 E. S.
	E. S.	E. S.						,	0.	0	
c'	0	0.	1.00	1.00000	0.0000	0.00000	256	264	258.7	258.7	1.50
ď	I 2	2.04	1.125	1.05926	.05115	.02509	288	297	291.0	274.0 290.3	1.68
e' f'	3	3.86	1.25	1.18921	.09691	.07526	320	330	323.4	307.6 32 5 .9	1.89
f'	5	4.98	1.33	1.33484	·12494	.12543	341.3	352	344.9	345.3 365.8	2.00
g'	7	7.02	1.50	1.49831 1.58740	.17609	.17560	384	396	388	387.5	2.25
a'	9	8.84	1.67	1.68179	.22185	.22577	426.7	440	431.1	435.0	2.52
b'	10	10.88	1.875	1.88775	.27300	.25086 .27594	480	495	485.0	460.9 488.3	2.83
c''	12	12.00	2,00	2.00000	.30103	.30103	512	528	517.3	517.3	3.00

TABLE 80.

Ke	y o f	С		D		Е	F		G		A		В	С
7 #s 6 " 5 " 4 " 1	C# F# B E A DG C F BB B B C C C C C C C C C C C C C C	0.00 0.00 0.00 22 22	1.14 0.92 1.14 0.92 1.14 0.92 0.72 0.70 0.92 0.70 0.92	2.04 1.82 2.04 2.04 2.04 1.82 1.82	3.18 2.96 2.96 2.74 2.96 2.74 2.96 2.74 2.94 2.94 2.94 2.94 2.72 2.72	4.08 3.86 4.08 3.86 4.08 3.86 4.08 3.86 3.86 3.86 3.86	5.00 4.78 5.00 4.78 4.98 4.98 4.98 4.96 4.76 4.76	6.12 5.90 6.12 5.90 6.12 5.90 5.90 5.68 5.90 5.88 5.88 5.88	7.02 7.02 7.02 7.02 6.80 6.80 6.80	8.16 7.94 8.16 7.94 7.72 7.94 7.72 7.94 7.72 7.92 7.92 7.92 7.92 7.92 7.92	9.06 8.84 9.06 8.84 9.06 9.06 9.884 8.84	9.98 9.76 9.98 9.76 9.93 9.76 9.96 9.96 9.96 9.96 9.74 9.74	11.10 10.88 11.10 10.88 11.10 10.88 11.10 10.88 10.88 10.88 10.88	12.00 12.00 12.00 12.00 12.00 11.78 11.78
Harmon Cycle of Cycle of Mean to Equal 7	fourths ne	8 0.0 0.0 0.0 0.0	(1.71) 1.05) 1.14 0.90 0.76	9 2.04 2.04 1.80 1.93 1.71	(19 2.98) 3.18 2.94 3.11 3.43	3.86 4.08 3.84 3.86	(21 4.70) 5.22 4.98 5.03 5.14	5.51 6.12 5.88 5.79	7.02 7.02 6.78 6.97 6.86	(25 7.73) 8.16 7.92 7.72	9.06 8.82 8.90 8.57	9.69 10.20 9.96 10.07 10.29	15 10.88 11.10 10.86 10.83	16 12.00 12.24 11.76 12.00 12.00

TABLE 81.

ACCELERATION OF GRAVITY.

For Sea Level and Different Latitudes.

Calculated from Helmert's formula:

 $g = 9^{\text{m}}.78030 (1 + 0.005302 \sin^2 \Phi - 0.000007 \sin^2 2\Phi)$

		cm. per sec. per sec.	Log. g	feet per sec. per sec.	Latitude Φ	cm. per sec.	Log. g	feet per sec.
	00	978.030	2.9903522	32.0875	50°	981.066	2.9916982	32.1871
	5	.069	.9903695	.0888	51	.155	•9917376	1001
1	10	.186	.9904214	.0927	52	.244	.9917770	.1930
1	12	.253	.9904512	.0949	5.3	.331	9918156	.1959
	14	-332	.9904863	.0974	54	.418	.9918540	.1987
1	15	978.376	2.9905058	32.0989	55	981.503	2.9918916	32.2015
1	16	-422	.9905262	1004	56	.588	.9919292	.2043
1	17	-47 I	.9905480	.1020	57	.672	.9919664	.2070
	18	-523	.9905710	.1037	58	.754	.9920027	.2097
	19	-577	.99059 50	.1055	59	.835	.9920335	.2124
11	20	978.634	2.9906203	32.1074	60	981.914	2.9920735	32.2150
11	21	.693	.9906465	.1093	61	.992	.9921080	.2175
11	22	-754	.9906736	.1113	62	982.068	.9921415	.2200
	23	.818	.9907019	.1134	63	.142	.9921743	-2224
Ш	24	.884	.9907313	.1156	64	.215	·9922066	.2248
Н	25	978.952	2.9907614	32.1178	65	982.285	2.9922375	32.2271
11	26	979.022	.9907925	.1201	66	-354	.9922680	.2294
	27	.094	•9908 24 4	1224	67	.420	.9922972	.2316
11	28	.168	.990 572	.1249	68	.485	.9923259	.2337
Ш	29	.244	.9908909	.1274	69	.546	.9923529	.2357
1	30	979.321	2.9909250	32.1299	70	982.606	2.9923794	32.2377
1	31	.400	.990060 t	.1325	71	.663	.9924046	-2395
1	32	.481	.9909960	.1351	72	.718	.9924289	.2413
	33	.562	.9910319	.1378	73	.770	.9924519	.2430
	34	.646	.9910691	.1406	74	.820	.9924740	•2447
Ш	35	979.730	2,9911064	32.1433	75	982.866	2.9924943	32.2462
	36	.815	-9911441	.1461	76	.911	.9925142	.2477
	37	.902	.9911827	.1490	77	-952	.9925323	.2490
	38	.989	.9912212	.1518	78	.990	.9925491	.2503
Ш	39	980 077	.9912602	.1547	79	983.026	.9925650	.2514
	40	980.166	2.9912996	32.1576	8o	983.058	2.9925791	32.2525
	41	.255	.9913391	.1605	81	.088	.9925924	.2535
	42	-345	.9913789	.1635	82	.115	.9926043	.2544
1	43	-435	.9914188	.1664	83	.138	.9926145	.2551
	44	.525	.9914587	.1694	84	.159	.9926238	.2558
	45	980.616	3.9914989	32.1724	85	983.176	2.9926312	32.2564
	46	.706	.9915388	.1753	86	.190	.9926375	.2568
Ш	47	.797	.9915791	.1783	87	·20I	.9926423	.2572
	48	-887	.9916190	.1813	88	.209	.9926459	.2574
	49	-977	.9916588	.1842	90	.216	. 99 26 489	+2577

To reduce log. g (cm. per sec. per sec.) to log. g (ft. per sec. per sec.) add log. 0.03280833 = 8.5159842 - 10.

CORRECTION FOR ALTITUDE.

- 0.0003086 cm. per meter when altitude is in meters.
- 0.000003086 ft. per foot when altitude is in feet.

Altitude.	Correction.	Altitude.	Correction.
200 m.	0.0617 cm./sec. ²	200 ft.	0.000617 ft./sec.2
300	.0926	300	.000926
400	.1234	400	.001234
500	.1543	500	.001543
600	. 1852	600	.001852
700	.2160	700	. 0 02 160
800	.2469	800	.002469
900	·2777	900	.002777

In this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 81. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

	T - site of -	E)	Gravit	y, cm.	
Place.	N. +, S	in meters.	Observed.	Reduced to sea level.	Refer- ence.
Singapore Georgetown, Ascension Green Mountain, Ascension Loanda, Angola Caroline Islands Bridgetown, Barbadoes Jamestown, St. Helena Longwood, " Pakaoao, Sandwich Islands Lahaina, " " Haiki, " " Honolulu, " " St. Georges, Bermuda Sidney, Australia Cape Town Tokio, Japan Auckland, New Zealand Mount Hamilton, Cal. (Lick Obs.) " " " " San Francisco, Cal. " " " " Washington, D. C.* Denver, Colo. York, Pa. Ebensburgh, Pa. Allegheny, Pa. Hoboken, N. J. Salt Lake City, Utah Chicago, Ill. Pampaluna, Spain Montreal, Canada Geneva, Switzerland " " Berne, " Zurich, " Paris, France Kew, England Berlin, Germany	1° 17′ -7 56 -7 56 -7 57 -8 49 -10 00 -13 04 -15 55 -15 57 -20 43 -20 56 -21 18 -33 56 -33 56 -33 56 -33 56 -33 56 -33 56 -33 56 -33 56 -33 52 -33 56 -33 56 -33 56 -33 56 -33 56 -33 56 -33 57 -34 47 -37 47 -38 53 -39 58 -40 28 -40 44 -40 46 -41 49 -42 49 -45 31 -46 12 -46 57 -47 23 -48 50 -51 28 -52 30	14 5 686 46 2 18 10 533 3001 3 117 3 2 43 11 6 43 1282 1282 114 114 10 1645 122 651 348 11 1288 165 45 45 40 40 40 40 40 40 40 40 40 40	Observed. 978.08 978.25 978.10 978.15 978.15 978.37 978.18 978.67 978.53 978.28 978.91 978.97 979.77 979.68 979.62 979.96 979.68 979.68 979.68 979.68 979.68 979.68 979.68 979.68 979.68 979.68 979.68 979.68 980.27 979.82 980.11	978.08 978.25 978.23 978.16 978.37 978.18 978.59 978.86 978.93 978.97 979.69 979.62 979.95 979.91 979.92 979.98 980.04 980.11 979.98 980.11 980.27 980.66 980.69 980.74 980.67	1 2 2 2 3 3 3 3 3 2 1 2 1 1 4 5 5 4 5 5 6 6 6 6 4 5 5 7 5 8 9 9 9 8 8 8
Port Simpson, B. C. Burroughs Bay, Alaska Wrangell, " Sitka, " St. Paul's Island, " Juneau, " Pyramid Harbor, " Yakutat Bay, "	54 34 55 59 56 28 57 93 57 97 58 18 59 10	6 0 7 8 12 5 4	981.46 981.51 981.60 981.69 981.67 981.74 981.82 981.83	981.46 981.51 981.60 981.69 981.67 981.74 981.82	4 4 4 4 4 4 4

- Smith: "United States Coast and Geodetic Survey Report for 1884," App. 14.
 Preston: "United States Coast and Geodetic Survey Report for 1890," App. 12.

- 3 Preston: Unid. 1888, App. 14.
 4 Mendenhall: Ibid. 1891, App. 15.
 5 Defforges: "Comptes Rendus," vol. 118, p. 231.
 6 Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
 7 Cohrin and Los Argos: "Comptes Rendus des
- 7 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893.
- 8 Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17." 9 Messerschmidt: Same reference as 7.

[•] For references 1-4, values are derived by comparative experiments with invariable pendulums, the value for Washington taken as 980.111. For the latter see Appendix 5 of the Coast and Geodetic Survey Report for 1901. SMITHSONIAN TABLES.

SUMMARY OF RESULTS OF THE VALUE OF GRAVITY (g) AT STATIONS IN THE UNITED STATES AND ALASKA.*

Station.	Latitude.	Longitude.	Elevation.	g observed.
	0 , ,,	0 , ,,	Meters.	cm./sec.2
Calais, Me	45 11 11	67 16 54	38	980.630
Boston, Mass.	42 21 33	71 03 50	22	980.395
Cambridge, Mass.	42 22 48	71 07 45	1.4	980.397
Worcester, Mass.	42 16 29	71 48 28	170	980.323
New York, N. Y.	40 48 27	73 57 43	38	980.266
Princeton, N. J.	40 20 57	74 39 28	64	980.177
Philadelphia, Pa	39 57 06	75 11 40	16	980.195
Ithaca, N. Y.	42 27 04	76 29 00	247	980.299
Baltimore, Md.	39 17 50	76 37 30	30	980.096
Washington, C. & G. S.	38 53 13	77 00 32	14	980.111
Washington, Smithsonian	38 53 20	77 01 32	10	980.113
Charlottesville, Va.	38 02 01	78 30 16	166	979.937
Deer Park, Md.	39 25 02	79 19 50	770	979.937
Charleston, S. C.	32 47 14	79 56 03	116	979-545
Cleveland, Ohio	41 30 22	81 36 38	210	980.240
Key West, Fla	24 33 33	81 48 25	1	978.969
Atlanta, Ga.	33 44 58	84 23 18	324	979.523
Cincinnati, Ohio	39 08 20	84 25 20	245	980.003
Terre Haute, Ind.	39 28 42	87 23 49	151	980.071
Chicago, Ill.	41 47 25	S ₇ 36 03	182	980.277
Madison, Wis. (Univ. of Wis.)	43 04 35	89 24 00	270	980.364
New Orleans, La.	29 56 58	90 04 14	2	979.323
St. Louis, Mo.	38 38 63	90 12 13	154	980.000
Little Rock, Ark.	34 44 57	92 16 24	89	979.720
Kansas City, Mo	39 05 50	94 35 21	278	979.989
Galveston, Tex	29 18 12	94 47 29		979.271
Austin, Texas (University)	30 17 11	97 44 14	189	979.282
Austin, Texas (Capitol)	30 16 30	97 44 16	170	979.287
Ellsworth, Kan	38 43 43	98 13 32	469	979.925
Laredo, Tex	27 30 29	99 31 12	129	979.081
Wallace, Kan	38 54 44	101 35 26	1005	979.754
Colorado Springs, Col	38 50 44	104 49 02	1841	979.489
Denver, Col	39 40 36	104 56 55	1638	979.608
Pike's Peak, Col	38 50 20	105 02 02	4293	978.953
Gunnison, Col	38 32 33	106 56 02	2340	979.341
Grand Junction, Col	39 04 09	108 33 56	1398	979.632
Green Řiver, Utah	38 59 23	110 09 56	1243	979.635
Grand Canyon, Wyo	44 43 16	110 29 44	2386	979.898
Norris Geyser Basin, Wyo	44 44 09	110 42 02	2276	979.949
Lower Geyser Basin, Wyo	44 33 21	110 48 08	2200	979.931
Pleasant Valley Jct., Utah	39 50 47	111 00 46	2191	979.511
Salt Lake City, Utah	40 46 04	111 53 46	1322	979.802
Ft. Egbert, Eagle, Alaska	64 47 22	141 12 24	174	982.182

^{*} All the values in this table depend on relative determination of gravity and an adopted value for gravity at Washington (Coast and Geodetic Survey Office) of 980.111. This adopted value was the result of the determination in 1900 of the relative value of gravity at Potsdam and at Washington. See footnote on previous page.

LENGTH OF THE SECONDS PENDULUM.

TABLE 84. - Length of Seconds Pendulum at Sea Level for Different Latitudes.*

Lati- tude.	Length in centi- meters.	Log.	Length in inches.	Log.	Lati- tude.	Length in centi- meters.	Log.	Length in inches.	Log.
0 5 10 15 20	99.0950 .0989 .1108 .1302 .1562	1.996052 6069 6121 6206 6320	39.0131 .0152 .0200 .0274 .0378	1.591218 1234 1287 1372 1485	50 55 60 65 70	99.4027 •4471 •4888 •5263 •5587	1.997398 7592 7774 7938 8079	39.1348 .1524 .1687 .1835 .1962	1.592563 2758 2939 3103 3244
25 30 35 40 45	99.1884 .2259 .2672 .3116 .3571	1.996461 6625 6806 7000 7199	39.0506 .0652 .0816 .0990	1.591627 1790 1972 2166 2364	75 So S5 90	99.5850 .6045 .6165 .6206	1.998194 8279 8331 8349	39.2067 .2143 .2190 .2206	1.593360 3444 3496 3514

^{*} Calculated from force of gravity table by the formula $l = g / \pi^2$. For each 100 feet of elevation subtract 0.000596 centimeters, or 0.000235 inches, or .0000196 feet.

TABLE 85. - Length of the Seconds Pendulum.*

determi-	Number of obser- vation stations.	Range of latitude included by the stations.	Length of pendulum in meters. for latitude φ.	Correspond- ing length of pendulum for lat. 45°	Refer- ence.
1799 1816 1821 1825 1827 1829 1830 1833 1869 1876 1884	15 31 8 25 41 5 49 51 73 123	From $+67^{\circ}$ os' to -33° s6' " $+74^{\circ}$ 53' " -51° 21' " $+38^{\circ}$ 40' " -60° 45' " $+79^{\circ}$ 50' " -12° 59' " $+79^{\circ}$ 50' " -51° 35' " -9° 50' " $+51^{\circ}$ 35' " $+79^{\circ}$ 50' " -51° 35' " $+79^{\circ}$ 50' " -51° 35' " $+79^{\circ}$ 50' " -62° 56' " $+79^{\circ}$ 50' " -62° 56' above results	0.990631+.005637 $\sin^2 \phi$ 0.990743+.005466 $\sin^2 \phi$ 0.990580+.005340 $\sin^2 \phi$ 0.990977+.005142 $\sin^2 \phi$ 0.99055+.005679 $\sin^2 \phi$ 0.99055+.005679 $\sin^2 \phi$ 0.99091017+.005087 $\sin^2 \phi$ 0.990914+.005142 $\sin^2 \phi$ 0.990970+.005185 $\sin^2 \phi$ 0.990918+.005262 $\sin^2 \phi$ 0.990910+.005290 $\sin^2 \phi$	0.993450 0.993376 0.993550 0.993548 0.993562 0.993350 0.993550 0.993554 0.993563 0.993549	1 2 3 4 5 6 7 8 9 10 11 12

- 1 Laplace: "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42. 2 Mathieu: "Sur les expériences du pendule;" in "Connaissance des Temps 1816."
- Additions, pp. 314-341, p. 332.
 3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, p. 575.
- 4 Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.
- Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry;" in "Bulletin des Sciences Mathé-
- matiques, etc.," T. 1, pp. 31-43, and 171-184. Paris, 1827.

 6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466.

 7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.

 8 Poisson: "Traité de Mécanique," T. 1, p. 377; "Connaissance des Temps," 1834,

 pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

 9 Unferdinger: "Das Pendel als geodátisches Instrument;" in Grunert's "Archiv," 1869,
- p. 316.
- 10 Fischer: "Die Gestalt der Erde und die Pendelmessungen;" in "Ast. Nach." 1876, col. 87.
- 11 Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 241.
 - 12 Harkness.

^{*} The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).

[†] Calculated from a logarithmic expression given by Unferdinger.

TABLES 86-87. MISCELLANEOUS GEODETIC DATA.*

TABLE 86.

Length of the seconds pendulum at sea level =l=39.012540+0.208268 $\sin^2 \phi$ inches. =3.251045+0.017356 $\sin^2 \phi$ feet. =0.9909910+0.005290 $\sin^2 \phi$ meters.

Acceleration produced by gravity per second per second mean solar time . . . =g=32.086528+0.171293 sin² ϕ feet. =977.9886+5.2210 sin² ϕ centimeters.

Equatorial radius
$$=a=6378206$$
 meters; 3963.225 miles. Polar semi-diameter $=b=6356584$ meters; 3949.790 miles. Reciprocal of flattening $=\frac{a}{a-b}=295.0$ Square of eccentricity $=e^2=\frac{a^2-b^2}{a^2}=0.006768658$ $=\frac{6378388\pm18}{3963.339}$ miles. $=\frac{3963.339}{3949.992}$ miles. $=\frac{3949.992}{3949.992}$ miles.

Difference between geographical and geocentric latitude= $\phi - \phi' = 688.2242'' \sin 2 \phi - 1.1482'' \sin 4 \phi + 0.0026'' \sin 6 \phi$.

Mean density of the Earth=5.5247±0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the Earth=2.67 Mean density outer ten miles of earth's crust=2.40 Harkness.

Moments of inertia of the Earth; the principal moments being taken as A, B, and C, and C the greater:

$$\begin{array}{l} \frac{C-A}{C} = 0.00326521 = \frac{I}{306.259}; \\ C-A = 0.001064767 \, Ea^2; \\ A = B = 0.325029 \, Ea^2; \\ C = 0.326004 \, Ea^2; \end{array}$$

where E is the mass of the Earth and a its equatorial semidiameter.

TABLE 87. - Length of Degrees on the Earth's Surface.

At	Miles p	er degree	Km. pe	r degree	At	Miles p	er degree	Km. pe	er degree
Lat.	of Long.	of Lat.	of Long.	of Lat.	Lat.	of Long.	of Lat.	of Long.	of Lat.
0° 10 20 30 40 45 50	69.17 68.13 65.03 59.96 53.06 49.00	68.70 68.72 68.79 68.88 68.99 69.05	111.32 107.64 104.65 96.49 85.40 78.85 71.70	110.57 110.60 110.70 110.85 111.03 111.13	55° 60 65 70 75 80 90	39.77 34.67 29.32 23.73 17.96 12.05 0.00	69.17 69.23 69.28 69.32 69.36 69.39 69.41	64.00 55.80 47.18 38.19 28.90 19.39 0.00	111.33 111.42 111.50 111.57 111.62 111.67

For more complete table see "Smithsonian Geographical Tables."

TABLE 88. MISCELLANEOUS ASTRONOMICAL DATA.

Length of sidereal year=365.2563578 mean solar days; =365 days 6 hours 9 minutes 9.314 seconds. Length of tropical year= $365.242199870-0.0000062124\frac{t-1850}{1000}$ mean solar days; =365 days 5 hours 48 minutes $\left(46.069 - 0.53675 \frac{t - 1850}{100}\right)$ seconds. Length of sidereal month =27.321661162-0.00000026240 $\frac{t-1800}{100}$ days; = 27 days 7 hours 43 minutes $\left(11.524 - 0.022671 \frac{t - 1800}{100}\right)$ seconds. Length of synodical month =29.530588435—0.00000030696 $\frac{t-1800}{100}$ days; =29 days 12 hours 44 minutes $\left(2.841 - 0.026522 \frac{t-1800}{100}\right)$ seconds. Length of sidereal day = 86164.09965 mean solar seconds. N. B. — The factor containing t in the above equations (the year at which the values of the quantities are required) may in all ordinary cases be neglected. Mean distance from earth to sun = 92900000 miles = 149500000 kilometers. Eccentricity of the earth's orbit = e = $0.01675104 - 0.0000004180 (t - 1900) - 0.000000126 \left(\frac{t - 1900}{100}\right)^{2}$ Solar parallax = 8.7997" ± 0.003 (Weinberg, A. N. 165, 1904) 8.807 ± 0.0027 (Hinks, Eros, 7); 8.799 (Samson, Jupiter satellites; Harvard observations). Lunar parallax = 3422.68". Mean distance from earth to moon = 60.2669 terrestrial radii; = 238854 miles;= 384393 kilometers. Lunar inequality of the earth = L = 6.454''. Parallactic inequality of the moon = Q = 124.80''. Mean motion of moon's node in 365.25 days = $\mu = -19^{\circ} 21' 19.6191'' + 0.14136'' \left(\frac{t - 1800}{100} \right)$ Eccentricity and inclination of the moon's orbit = $e_2 = 0.05490807$. Delaunay's $\gamma = \sin \frac{1}{2} I = 0.044886793$. $I = 5^{\circ} \circ 8' + 3.3546''$ Constant of nutation = 9.2'. Constant of aberration = 20.4962 ± 0.006 (Weinberg, l. c.).* Time taken by light to traverse the mean radius of the earth's orbit $=498.82 \pm 0.1$ seconds (Weinberg); = 498.64 (Samson). Velocity of light = 186330 miles per second (Weinberg); = 299870 ± 0.03 kilometers per second. General precession = 50.2564'' + 0.000222 (t - 1900). Obliquity of the ecliptic = 23° 27' 8.26" - 0.4684 (t - 1900). Gravitation constant = 666.07×10^{-10} cm⁸/gr. sec² + 0.16 × 10⁻¹⁰.

^{*} Recent work of Doolittle's and others indicates a value not less than 20.51.

Table 89. - Planetary Data.

Body.	Reciprocals of masses.	Mean distance from the sun. Km.	Sidereal period. Mean days	Equatorial diameter. Km.	Inclination of orbit.	Mean density. H ₂ O=1	Gravity at surface.
Sun Mercury Venus Earth* Mars Jupiter Saturn Uranus Neptune Moon	I. 6000000. 408000. 329390. 3093500. 1047-35 3501.6 22869. 19700. † 81.45	58 x 10 ⁶ 108 " 149 " 228 " 778 " 1426 " 2869 " 4495 " 38 x 10 ⁴	87.97 224.70 365.26 686.98 4332.59 10759.20 30586.29 60188.71 27.32	1391067 48.42 12394 12756 7320 145250 123040 48590 56040 3473	7°.003 3·393 1.850 1.308 2.492 0.773 1.778 5.147	1.39 4.86 5.2 5.52 3.90 1.36 .63 1.34 1.28 3.37	27.6 ·3 7.9 1.00 ·4 2.6 1.01 ·95 ·97 ·17

^{*} Earth and moon. † Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 3°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful.

Table 90. — Equation of Time.

The equation of time when \pm is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75'th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75'th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the \pm sign gives a rough idea of this variation.

M. S.	M. S.	M. S.	M. S.
Jan. 1 $+ 326 \pm 14$ 15 $+ 925 \pm 9$ Feb. 1 $+ 1342 \pm 4$ 15 $+ 1420 \pm 2$ Mar. 1 $+ 1234 \pm 4$ 15 $+ 99 \pm 6$	Apr. I +4 2± 7 15 +0 8± 5 May I -2 54±10 -3 49± I -2 28± 3 +0 8± 4	Aug. I +6 9±3 I5 +4 24±5 Sept. I +0 2±7	Nov. 1 -16 10 \pm 2 -15 22 \pm 4 Dec. 1 -10 58 \pm 8

Table 91. - Miscellaneous Astronomical Data.

Apex of Solar Motion:

From proper motions, R. $A_{.1810} = 17 \, 51^m$, $Dec._{1810} = + 31.4$ (Weersma, Gron. Publ. 21.) From radial velocities, R. $A_{.1900} = 17^h 54^m$, $Dec._{1900} = + 25.1$ (Campbell, Lick. Bull. 196.) Velocity = 19.5 Km. per sec. (Campbell.)

Nearest star so far as known: a Centauri, parallax = 0.759'' (Gron. Publ. 24) distance = 4.3 light years.

Stars of both greatest proper motion and greatest radial velocity so far as known: *Cordova, V243; proper motion = 8.70" in position angle 130° radial velocity + 242 Km. per sec. (Campbell, Stellar Motions, 1913). Parallax = 0.319" (Gron. Publ. 24, also proper motion). Distance = 10.2 light years.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913):

Sun's magnitude = - 26.5, sending the earth 90,000,000 times as much light as the star Aldebaran.

* Lalande, 1966, R.A. 1910 1h3m.9, Dec. 1910 610.4' in 1913 was found to have a radial velocity (of approach) of 326 Km. per sec. (Mount Wilson Solar Observatory.)

TERRESTRIAL MAGNETISM.

Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1910, for one or more places in each state and territory.

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1800	1900	1010
		-				-				-	-	-
		۰	0	0	0	٥	0	0	0	•	0	0
Ala.	Montgomery	5.6E	5.8E	5.8E	5.6E	5.4E	5.0E	4.5E	3.9E	3.2E	2.8E	2.9E
Alas.	Sitka	-	_	_	_	-	28.7E	29.0E	29.3E	29.5E	29.7E	30.2E
	Kodiak	_		1	_	-	26.1E	25.6E	25.1E	24.7E	24.4E	24.1E
	Unalaska St. Michael	_	_	_	_	_	20.4E	20.IE	19.6E	19.0E	18.3E	17.5E
	St. Michael	_	_	-	_	_	_	_	24.7E	23.1E	22.1E	21.4E
Ariz.	Holbrook	-	-	-	-	13.6E	13.7E	13.8E	13.7E	13.4E	13.5E	13.9E
	Prescott	-	_	-	-	13.3E	13.5E	13.7E	13.6E	13.5E	13.7E	14.3E
Ark.	Little Rock	8.6E	8.8E	9.0E	9.0E	8.8E	8.6E	8.2E	7.6E	7.0E	6.6E.	6.9E
Cal.	Los Angeles	12.1E	12.6E	13.2E	13.6E	14.0E		14.4E	14.6E	14.6E	14.9E	15.5E
	San José	15.0E	15.5E	16.0E	16.4E	16.8E	17.1E	17.3E	17.5E	17.5E	17.8E	18.5E
Cal.	Redding	15.6E	16.1E	16.6E	17.0E	17.4E	17.8E	18.1E	18.2E	18.3E	18.6E	19.3E
Colo.	Pueblo	-	_	-	_	13.8E	13.8E	13.8E	13.5E	13.0E	12.9E	13.3E
	Glenwood Sp.	-	_	_	-	16.1E	16.2E	16.3E	16.1E	15.7E	15.6E	16.1E
Conn.	Hartford	5.1 W	5.6W	6.1W	6.8W	7.5W	8.2W	8.7W	9.4W	9.8W		
Del.	Dover	1.6W	1.9W	2.3W	2.8W	3.4W	4.0W	4.7 W	5.3W	77.9V	6.4W	7.0W
D. C.	Washington	0.5E	0.3E	0.0	0.5W	1.oW	1.7W	2.4W	3.oW	3.6W	4.2W	4.7W
Fla.	Jacksonville	5.1E	5.1E	4.9E	4.6E	4.2E	3.7E	3.1E	2.4E	1.8E	1.3E	1.2E
	Pensacola	7.7E	7.8E	7.7E	7.5E	7.2E	6.8E	6.2E	5.6E	5.0E	4.5E	4.4E
1	Tampa	6.4E	6.2E	5.9E	5.5E	5.0E	4.5E	3.9E	3.3E	2.8E	2.3E	2.0E
Ga.	Macon	5.9E	5.9E	5.7E	5.4E	5.0E	4.5E	3.9E	3.2E	2.6E	2.1E	2.0E
Haw.	Honolulu	_	_	_	_	9.4E	9.4E	9.5E	9.8E	10.1E	10.4E	10.6E
Idaho	Pocatello	_	_	_	_	17.4E	17.7E	17.8E	17.9E	17.7E	17.8E	18.4E
	Boise	_	-	_	_	18.0E	18.4E	18.6E	18.7E	18.6E	18.8E	19.4E
111.	Bloomington	6.3E	6.5E	6.6E	6.5E	6.3E	5.9E	5.4E	4.7E	4.1E	3.6E	3.4E
Ind.	Indianapolis	5.0E	5.1E	5.0E	4.7E	4.4E	3.8E	3.2E	2.6E	2.0E	1.4E	1.1E
	~		_									
Ia.	Des Moines	-	10.2E	10.4E	10.5E	10.4E	10.2E	9.7E	9.1E	8.4E	7.9E	8.1E
Kans.	Emporia	_	-	-	_	11.6E	11.5E	11.2E	10.7E	10.1E	9.8E	10.1E
Ky.	Ness City Lexington	-	E		-	12.4E	12.4E	12.2E	11.9E	11.4E	11.1E	11.4E
Ky.	Princeton	4.5E 6.8E	4.5E	4.4E	4.1E	3.6E	3.1E	2.5E	1.9E	1.2E	0.7E	0.5E
	Princeton	0.8E	7.0E	7.0E	6.8E	6.5E	6.1E	5.6E	5.0E	4.3E	3.8E	3.7E
La.	Alexandria	8.4E	8.7E	8.8E	8.8E	8.7E	8.4E	8.oE	7.4E	6.9E	6.6E	6.8E
Me.	Eastport	13.6W	14.4W	15.2W	16.0W	17.0W	17.7W	18.2W		18.7W	Wo.01	19.4W
	Portland	77o.0	9.6W	10.3W	vo.11	11.6W	12.3W	12.8W	13.4W	13.9W	14.4W	14.8W
Md.	Baltimore	0.9W	1.1W	1.4W	1.9W	2.4W	3.1W	3.8W	4.4W	5.oW	5.6W	6.1W
Mass.	Boston	7.3W	7.8W	8.4W	9.1W	9.8W	10.5W	11.0W	11.5W	12.0W	12.6W	13.1W
Mass.	Pittsfield	5.7W	6.1W	6.7W	7.4W	8.1W	8.7W	9.3W	10.0W	10.4W	11.0W	11.5W
Mich.	Marquette	-	6.7E	6.7E	6.5E	6.0E	5.4E	4.6E	3.8E	3.0E	2.3E	2.0E
	Lansing	-	4.2E	4.1E	3.8E	3.3E	2.8E	2.1E	1.3E	0.5E	o.oE	0.4E
Minn.	Northome	-	10.4E	10.7E	10.8E	10.7E	10.4E	10.0E	9.3E	8.6E	8.0E	8.1E
	Mankato	-	11.3E	11.6E	11.7E	11.6E	11.3E	10.9E	10.4E	9.5E	9.0E	9.1E

^{*} Tables have been compiled from United States Magnetic Tables and Magnetic Charts for 1905, published by the Coast and Geodetic Survey in 1908.

TERRESTRIAL MAGNETISM (continued).

Secular Change of Declination (continued).

State.	Station.	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910
		0	0	0	0	0	0	•	0	0	٥	0
Miss.	Jackson	8.2E	8.4E	8.5E	8.4E	8.2E	7.9E	7.5E	6.9E	6.4E	6.oE	6.2E
Mo.	Sedalia	-	10.0E	10.2E	10.2E	10.1E	9.8E	9.4E	8.7E	8.0E	7.6E	7.9E
Mont.	Forsyth	-	-	-	18.2E	18.5E	18.6E		18.4E	17.9E	17.8E	18.3E
	Helena	-	-	-	18.9E	19.3E	19.6E		19.6E	19.4E	19.5E	20.0E
Nebr.	Hastings	-	11.6E	12.0E	12.1E	12.1E	12.0E	11.7E	11.2E	10.5E	10.2E	10.5E
Nebr.	Alliance	-	_	-	-	15.4E	15.4E		14.8E	14.3E	14.2E	14.5E
Nev.	Elko	-	_	_	_	17.3E 16.3E	17.6E 16.6E	17.7E 16.9E	17.7E 17.0E	17.6E	17.8E	18.3E
NT 17	Hawthorne	7.IW	7.5W	8.2W	8.9W	9.8W	10.5W		17.0E	17.0E 12.0W	17.3E 12.5W	17.8E
N. H.	Hanover Trenton	2.8W	3.1W	3.5W	4.1W	4.7W	5.4W	6.oW	6.7W	7.2W	7.8W	8.4W
N. J.	Trenton	2.011	3.111	3.311	4.1 **			i		-	1	0.4 11
N. M.	Santa Rosa	-	-	-	-	12.7E	12.8E	12.7E	12.5E	12.1E	12.0E	12.4E
	Laguna	-	-			13.4E	13.6E	13.6E	13.4E	13.0E	13.0E	13.5E
N. Y.	Albany	5.6W	5.8W	6.3W	6.9W	7.6W	8.4W	9.1W	9.8W		10.8W	11.4W
	Elmira	2.2W	2.4W	2.8W	3.3W	4.0W	4.8W	5.4W	6.3W	7.0W	7.6W	8.1W
N. C.	Newbern	1.7E	1.6E	1.3E	o.8E	0.3E	0.3W	1.0W	1.6\V	2.2W	2.8W	3.3W
N. C.	Salisbury	3.9E	3.8E	3.6E	3.2E	2.7E	2.1E	1.5E	0.8E	0.2E	0.4W	0.7W
N. Dak.		-	-	-	-	14.5E	14.3E	14.0E	13.5E	12.7E	12.4E	12.8E
	Dickinson	-	-	-	_	17.6E	17.6E	17.4E	17.0E	16.4E	16.2E	16.6E
Ohio	Columbus	3.4E	3.4E	3.2E	2.9E	2.4E	1.8E	1.2E	0.6E	0.0	0.7W	I.IW
Okla.	Okmulgee	-	-	-	-	10.2E	10.1E	9.8E	9.4E	8.8E	8.5E	8.9E
Okla.	Enid	_	_	-	-	11.2E	11.1E	10.9E	10.5E	9.9E	9.7E	10.1E
Oreg.	Sumpter	-	-	-	-	19.3E	19.7E	20.0E	20.2E	20.2E	20.4E	21.0E
	Detroit	16.7E	17.4E	18.0E	18.6E	19.2E	19.7E	20.1E	20.4E	20.5E	20.8E	21.5E
Pa.	Philadelp hia	2.2W	2.4W	2.8W	3.4W		4.8W	5.5W	6.3W	6.8W	7.4W	8.oW
	Altoona	0.5W	0.6W	0.9W	1.3W	1.8W	2.4W	3.1W	3.8W	4.5W	5.1W	5.6W
P. R.	San Juan	-	-	-	-	-	-	-	-	-	1.oW	2.0W
R. I.	Newport	6.6W	7.1W	7.7W	8.4W				10.8W			12.4W
S. C.	Columbia	4.4E	4.3E	4.1E	3.7E	3.2E	2.7E	2.1E	1.4E	o.8E	0.2E	o.iW
S. D.	Huron	-	-,	_	13.1E	13.1E	12.9E	12.6E	12.1E	11.4E	11.1E	11.4E
	Rapid City	-	_	-	_	16.4E	16.4E	16.3E	15.8E	15.3E	15.1E	15.4E
Tenn.	Chattanooga	5.3E	5.3E	5.1E	4.8E	4.4E	3.9E	3.3E	2.6E	2.0E	1.5E	1.3E
	Huntington	-	7.4E	7.4E	7.3E	7.0E	6.6E	6.1E	5.5E	4.9E	4.4E	4.3E
Tex.	Houston	-	8.9E	9.2E	9.3E	9.3E	9.2E	8.9E	8.5E	7.9E	7.7E	8.1E
	San Antonio	-	-	9.6E	9.8E	9.9E	9.8E	9.6E	9.3E	8.9E	8.7E	9.1E
1	Pecos	-	-	10.8E	11.0E	11.1E	11.1E	11.0E	10.8E	10.4E	10.3E	10.7E
Tex.	Floydada	-	-	-	-	11.3E	11.3E	11.2E	10.9E	10.4E	10.3E	10.7E
Utah	Salt Lake	-		-	-	16.4E	16.6E	16.7E	16.5E	16.3E	16.5E	17.0E
Vt.	Rutland	6.8W					10.0W		1	1		
Va.	Richmond	o.8E	o.6E	0.3W		1	1	1	2.5W	1 -		1 '
	Lynchburg	1.9E	1.8E	1.6E	1.2E	o.8E	0.2E	0.5W	1.2W	1.8W	2.4W	2.8W
Wash.	Wilson Creek					21.3E	21.6E	21.9E	21.9E	22.IE	22.4E	22.9E
	Seattle	19 1E	19.7E		20.8E		21.8E	22.1E	22.3E	22.6E		23.5E
W. Va.	Charleston	2.3E	2.2E	2.0E	1.6E			0.2W				
Wis.	Madison	-	8.6E	8.7E	8.6E	1		7.2E	6.4E	5.6E	5.0E	4.9E
Wyo.	Douglas	-	-	-	-	15.8E		16.0E	15.8E	15.4E		15.7E
11	Green River	-	-	-	-	16.8E	17.0E	17.0E	16.9E	16.6E	16.6E	17.0E
<u> </u>		1	1		1		<u> </u>	1	1	1		

TERRESTRIAL MAGNETISM (continued).

TABLE 93. - Dip or Inclination.

This table gives for the epoch January 1, 1905, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

0			75°	80°	85°	900	95°	1000	1050	1100	1150	1200	1250
, ·	0	0	0	0	0	0	0	0	0	0	0	0	0
19	-	-	48.8	49.1	47.5	46.3	44.8	44.2	43.9	-	-	-	-
21 23	-	-	51.0 53.7	51.1	50.0 52.4	49.3 51.8	48.2 50.7	47.0 49.6	46.5 48.8	48.2	_	_	_
25	-	-	56.3	56.0	55.0	54.5	53.2	52.4	51.5	50.6	49.8	48.3	-
27	-	-	58.9	58.1	57.6	56.8	55.6	54.7	53.9	53.1	52.6	51.0	-
29	-	60.7	61.0	60.2	59.8	58.9	58.2	57.2	56.2	55-5	54.8	53.7	-
31	_	63.0 65.0	63.1 65.0	62.6 64.6	62 . 0 64.0	61.3	60.6	59.6 62.0	58.7 61.0	57·7 59.8	56.7 58.9	56.0 58.1	_
35	-	67.0	66.9	66.5	66.0	65.6	64.9	63.7	62.7	62.3	61.0	60.2	-
37	-	68.6	68.9	68.6	68.2	67.7	66.9	66.2	65.1	64.6	62.9	62.2	-
39	-	70.3	70.6	70.4	70.2	69.7	68.8	68.1	67.2	66.1	65.0	64.0	62.8
41 43	_	71.8 73.5	72.2 73.9	72.2 74.1	71.9 73.8	71.4 73.3	70.8 72.6	69.8 71.6	68.9	67.8 69.6	66.8 68.6	65.6 67.5	64.7 66.3
45	74.4	74.8	75.6	75.5	75.4	75.0	74.3	73.6	72.4	71.5	70.3	69.2	68.1
47	75.7	76.2	76.9	76.8	76.9	76.8	76.0	75.2	74.2	73.0	71.8	70.8	69.9
49	76.8	78. ı	78.2	78.3	78.7	78.1	77.5	76.8	75.8	74.5	73.5	72.3	71.4

TABLE 94. - Secular Change of Dip.

Values of magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1st of the years in the heading. The degrees are given in the third column and minutes in the succeeding columns.

Lati- tude.	Longi- tude.		1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
۰		0	,	,	,	,	,	,	,	,	,	,	,	,
25 25 30 30 30	80 110 83 100 115	55+ 49+ 60+ 57+ 54+	49 o8 66 44 53	49 20 70 49 62	48 30 73 58 69	46 39 74 67 71	43 46 73 70 70	40 55 67 65 72	35 61 57 60 75	35 68 51 61 79	39 76 53 68 85	48 86 63 77 91	60 96 78 90 96	77 106 96 105 101
35 35 35 35 40	80 90 105 120 75	66+ 65+ 62+ 60+ 71+	57 65 - 03 82	58 59 06 82	57 51 - 08 78	54 44 32 08 73	45 37 30 97 65	35 32 24 06 55	26 26 24 08 43	21 25 24 11 33	20 25 28 13 27	22 27 34 14 24	30 36 42 12 24	38 48 50 08 24
40 40 40 45 45	90 105 120 65 75	70+ 67+ 64+ 74+ 75+	30 - 116 103	31 - 48 110 99	34 46 101 95	37 56 44 92 90	36 53 44 80 85	32 51 44 68 73	29 51 44 57 62	26 51 44 46 53	25 52 45 35 43	26 56 45 28 38	30 60 48 24 36	36 65 48 20 34
45 45 45 49 49	90 105 122.5 92 120	74+ 72+ 68+ 78+ 72+	81 - 35 26 -	81 - 34 25 26	81 - 37 24 24	79 - 40 22 22	77 40 20 22	75 22 39 20 19	68 20 37 15 20	63 20 34 12	61 21 30 11	59 22 26 09 19	60 24 24 06 18	60 27 20 04 16

TERRESTRIAL MAGNETISM (continued).

TABLE 95 .- Horizontal Intensity.

This table gives for the epoch January 1, 1905, the horizontal intensity, H, expressed in C.G.S. units, corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	9 5 °	1000	105°	1100	115°	1200	1250
0 19 21 23 25 27	-	- - - -	.307 .301 .293 .284 .274	.314 .309 .303 .292 .280	.319 .314 .305 .295 .286	.322 .316 .309 .299 .289	.328 .320 .312 .304 .296	•332 •324 •315 •307 •298	.331 .324 .317 .308 .300	•320 •309 •303	.312 .306	.304 .298	
29 31 33 35 37	- - -	.257 .246 .233 .220	.262 .251 .239 .225 .209	.269 .256 .245 .232 .218	.276 .263 .251 .240 .222	.281 .269 .257 .242 .226	.286 .274 .262 .248 .232	.289 .277 .266 .253 .238	.292 .282 .270 .256	.294 .284 .273 .259 .246	.297 .285 .274 .262	.291 .282 .274 .265	
39 41 43 45 47 49	- .161 .145 .131	.197 .184 .170 .157 .144	.198 .185 .170 .155 .140	.203 .186 .169 .156 .142	.206 .192 .175 .157 .142	.212 .196 .178 .162 .150	.217 .202 .187 .169 .152	.224 .207 .194 .177 .161	.229 .216 .201 .190 .170	.237 .223 .210 .192 .180	.240 .228 .215 .199 .188	.242 .240 .222 .208 .196 .182	.245 .236 .226 .215 .201 .187

TABLE 96. - Secular Change of Horizontal Intensity.

Values of horizontal intensity in C. G. S. units for places designated by the latitude and longitude in the first two columns for January 1 of the years in the heading.

i i													
Latitude.	Longi- tude.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
0 25 25 30 30 30	80 110 83 100	.3099 .3229 .2803 -	.3086 .3218 .2795 -3026	.3073 .3204 .2788 .2961 .3011	.3057 .3189 .2780 .2942 .2996	.3042 .3170 .2772 .2924 .2979	.3025 .3155 .2763 .2907 .2964	.3008 .3143 .2752 .2891 .2952	.2990 .3130 .2740 .2877 .2940	.2970 .3117 .2725 .2865	.2949 .3104 .2706 .2850 .2920	.2920 .3090 .2680 .2830	.2890 .3075 .2644 .2804 .2898
35 35 35 35 40	80 90 105 120 75	.2384	.2379	.2374 - - .1891	.2369 .2462 - .2720 .1902	.2367 .2462 .2620 .2707	.2363 .2461 .2608 .2695	.2359 .2458 .2599 .2683 .1925	.2352 .2455 .2590 .2672 .1930	.2347 .2447 .2583 .2663	.2337 .2437 .2573 .2656 .1928	.2320 .2430 .2560 .2650 .1920	.2296 .2399 .2544 .2644 .1909
40 40 40 45 45	90 105 120 65 75	- - .1504 .1483	.2086	.2082 - - .1525 .1488	.2079 .2272 .2429 .1537 .1495	.2076 .2266 .2420 .1553 .1506	.207 5 .2261 .2412 .1567 .1516	.2074 .2257 .2406 .1578 .1527	.2072 .2253 .2399 .1589 .1538	.2068 .2248 .2392 .1600 .1546	.2060 .2240 .2386 .1608 .1550	.2050 .2230 .2380 .1610 .1550	.2036 .2217 .2379 .1610
45 45 45 49 49	90 105 122.5 92 120	- .2175 .1332 .1841	.1635 - .2170 .1330 .1841	.1633 -2162 .1328 .1840	.1631 .1920 .2153 .1324 .1839	.1628 .1919 .2145 .1321 .1836	.1626 .1918 .2135 .1319 .1831	.1624 .1916 2127 .1318 .1826	.1623 .1913 .2121 .1318 .1821	.1624 .1910 .2117 .1321 .1819	.1623 .1906 .2115 .1324 .1820	.1620 .1900 .2115 .1330 .1820	.1616 .1892 .2115 .1335 .1824

TABLES 97-98.

TERRESTRIAL MAGNETISM (continued).

TABLE 97. - Total Intensity.

This table gives for the epoch January 1, 1905, the values of total intensity, F, expressed in C. G. S. units corresponding to the longitudes in the heading and the latitudes in the first column.

	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
0 19 21 23 25 27	- - -	-	.466 .478 .495 .512	.480 .492 .504 .522 .530	.472 .489 .500 .514 .534	.466 .485 .500 .515	.462 .480 .493 .507	.463 .475 .486 .503	.459 .471 .481 .495	- .480 .487 .505	- - .483 .504	- - - -457 -474	
29 31 33 35 37	- - - -	.525 .542 .551 .563	.540 .55 5 .566 .574	.541 .556 .571 .582	.549 .560 .572 .590	.544 .560 .576 .586	.543 .558 .571 .584 .591	·534 ·547 ·567 ·571 ·590	.525 .543 .557 .558 .582	.519 .531 .543 .557 .573	.515 .519 .530 .540 .553	.492 .504 .518 .533	
39 41 43 45 47 49	- - -599 .587 -574	.584 .589 .599 .599 .604 .626	.596 .605 .613 .623 .618	.605 .608 .617 .623 .622	.608 .618 .627 .623 .626	.611 .614 .619 .626 .657 .626	.600 .614 .625 .624 .628 .638	.600 .600 .614 .627 .630 .639	.591 .600 .608 .628 .624	.585 .590 .602 .605 .616	.568 .579 .589 .590 .602	.55 ² .581 .580 .586 .596	.536 .552 .562 .576 .585

TABLE 98. - Secular Change of Total Intensity.

Values of total intensity in C. G. S. units for places designated by the latitudes and longitudes in the first two columns for January 1 of the years in the heading. (Computed from Tables 92 and 94.)

Lati- tude	Longi- tude.	1855	1860	1865	1870	1875	1880	1885	1890	1895	1900	1905	1910
° 25 25 25 30 30 30	80 110 83 100 115	.5516 .4935 .5800 - .5285	·5493 ·4938 ·5796 -	.5467 .4933 .5790 .5583 .5269	·5434 ·4925 ·5777 ·5570 ·5247	.5400 .4908 .5757 .5544 .5215	.5364 .4902 .5720 .5499 .5194	.5322 .4891 .5668 .5456	.5290 .4883 .5625 .5432 .5167	.5264 .4876 .5600 .5427 .5160	.5247 .4873 .5590 .5421 .5158	.5222 .4868 .5581 .5416	.5206 .4860 .5559 .5405 .5140
35 35 35 35 40	80 90 105 120 75	.6089 - - - .6206	.6080 - - - .6216	.6063 - - - 6220	.6038 .5991 - .5462 .6227	.5996 .5964 .5674 .5433 .6212	.5946 .5942 .5629 .5406 .6182	.5900 .5912 .5610 .5388 .6136	.5863 .5901 .5590 .5374 .6098	.5874 .5882 .5588 .5361 .6070	.5830 .5865 .5585 .5350 .6045	.5818 .5858 .5582 .5332 .6019	.5789 .5852 .5572 .5309 .5985
40 40 40 45 45	90 105 120 65 75	- - .6188 .6454	.6254 - .6186 .6431	.6258 - .6167 .6413	.6264 .6048 .5691 .6152 .6404	.6250 .6019 .5670 .6134 .6412	.6226 .5997 .5651 .6107 .6363	.6208 5986 .5637 .6077 .6327	.6187 .5976 .5620 .6048 .6306	.6170 .5967 .5608 .6019 .6266	.6151 .5963 .5593 .6005 .6247	.6141 ·5953 ·5590 ·5987 .6233	.6135 .5940 .5591 .5962 .6235
45 45 45 49 49	90 105 122.5 92 120	- .5956 .6643	.6465 -5938 .6624 .6100	.6457 -5930 .6604 .6085	.6434 .5918 .6566 .6071	.6408 -5896 .6533 .6061	.6386 .6332 .5864 .6523 .60 2 8	.6330 .6314 .5834 .6472 .6017	.6291 .6303 .5804 .6445 •5995	.6382 .6299 .5776 .6451 .5988	.6264 .6392 .5754 .6447 .5992	.6259 .6284 .5745 .6450 .5986	.6244 .6275 .5728 .6456 .5988

TABLE 99. AGONIC LINE.

The line of no declination appears to be still moving westward in the United States, but the line of no annual change is only a short distance to the west of it, so that it is probable that the extreme westerly position will soon be reached.

Lat.	Longi	tudes of th	e agonic li	ne for the y	ears—
N.	1800	1850	1875	1890	1905
° 25 30	0	o -	0 1 1	o 75.5 78.6	76.1 79.7
35 6 7 8 9	75.2 76.3 76.7 76.9	76.7 77.3 77.7 78.3 78.7	79.0 79.7 80.6 81.3 81.6	79.9 80.5 82.2 82.6 82.2	81.7 82.8 83.5 83.6 83.6
40 I 2 3 4	77.0 77.9 79.1 79.4 79.8	79·3 80.4 81.0 81.2	81.6 81.8 82.6 83.1 83.3	82.7 82.8 83.7 84.3 84.9	84.0 84.6 84.8 85.0 85.5
45 6 7 8 9	- - - -	- - - -	83.6 84.2 85.1 86.0 86.5	85.2 84.8 85.4 85.9 86.3	86.0 86.4 86.4 86.5 87.2

RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

					Magnetic	Element	S.	
Place.	Latitude.	Longitude.	Middle of]	Intensi	ty (C.G.S	. units).
			year.	Declination.	Inclination.	Hor'l.	Ver'l.	Total.
Pawlowsk	59 41 N	30 29E	1907	09.9E	70 37.7 N	.1650	.4694	-4975
Sitka	57 03N	135 20 W	1910	30 16.4E	74 32.2N	.1559	.5637	.5849
Katharinenburg	57 03N	60 38E	1907	10 35.5E	70 52.2N	.1762	.5081	.5378
Rude Skov	55 51 N	12 27 E	1910	9 28.7 W	68 45.0N	.1738	.4468	+4794
Eskdalemuir Stonyhurst	55 19N	3 12 W 2 28 W	1911	18 12.4W	69 37.1 N 68 41.4N	.1685	•4534	.4837
Wilhelmshaven	53 51 N 53 32N	SogE	1912	17 03.6W 11 37.0W	67 30.5N	.1740	·4460 ·4377	.4787 .4737
Potsdam	52 23N	13 04E	1912	8 45.9W	66 20.4N	.1880	.4291	.4685
Seddin	52 17 N	13 01 E	1912	8 47.2 W	66 17.4N	.1884	.4290	.4685
Irkutsk	52 16N	104 16E	1905	1 58.1 E	70 25.0N	.2001	.5625	.5970
De Bilt Valencia	52 06N	5 11 E	1910	12 58.2W	66 46.5N	.1854	.4321	.4702
Clausthal	51 56N 51 48N	10 15W 10 20E	1911	20 38.1 W 10 40.3 W	68 12.1N	.1789	.4473	.4817
Bochum	51 29N	7 14E	1911	11 48.3W				
Kew	51 28N	6 19W	1911	15 55.3W	66 57.2N	.1850	·4349	.4726
Greenwich	51 28N	0 00	1911	15 33.0W	66 52.1N	.1852	· 4 337	.4716
Uccle Hermsdorf	50 48N	4 21 E	1911	13 13 9W	66 oo.1N	.1902	.4273	.4677
Beuthen	50 46N 50 21 N	16 14E 18 55E	1912	7 06.9W 6 12.3W				\
Falmouth	50 09N	5 05 W	1912	17 24.2 W	66 26.6N	.1880	.4312	.4704
Prague	50 05N	14 25E	1910	8 og.6W				
Cracow	50 04 N	19 58E	1911	5 18.1 W	64 15.5N			• • •
St. Helier (Jersey)	49 12N	2 05W	1907	16 27.4W	65 34.5N			.6.0
Val Joyeux Munich	48 49N 48 09N	2 01 E	1911	14 17.6W	64 41.6N 63 08.4N	.1974	.4176	.4619 .4568
Kremsmünster	48 03N	11 37 E 14 08 E	1904	9 31.5W 9 02.4W	03 00.414	.2064	.4075	.4300
O'Gyalla (Pesth)	47 53N	18 12E	1911	6 25.6W		.2107		
Odessa	46 26N	30 46E	1910	3 35.9W 8 17.5W	62 26.9N	.2171	.4161	.4693
Pola	44 52N	13 51E	1911		60 03.6N	.2219	.3853	.4446
Agincourt (Toronto)		79 16W	1910	6 03.9W	74 38.5N	.1627	.5923	.6142
Perpignan Tiflis	42 42N 41 43N	2 53E 2 44 48E	1910	12 44.8W 2 41.6E	56 02.SN	.2545	.3780	-4557
Capodimonte	40 52N	14 15E	1911	2 41.01	56 11.7N		.3/00	
Ebro (Tortosa)	40 49N	0 31E	1911	13 18.6W	57 54.8N	.2326	.3709	.4378
Coimbra	40 12N	8 25W	1911	16 27.4W	58 46.4N	.2301	·3795	.4438
Mount Weather	39 04N	77 53W	1908	3 39.2W 8 33.0E	60 . ONT			.6003
Baldwin Cheltenham	38 47 N 38 44 N	95 10W 76 50W	1908	5 41.4W	68 47.8N 70 35.4N	.1983	·5597 .5626	.5966
Athens	37 59N	23 42E	1908	4 53.0W	52 11.7N	.2620	.3361	.4262
San Fernando	36 28N	6 12W	1911	15 05.2W	54 31.5N	,2489		
Tokio	35 41N	139 45E	1910	4 58.2W	49 07.3N	.3001	.3467	.4585
Tucson	32 15N	110 50W	1910	13 25.SE	59 19.6N	.2741	.4621	.5372
Zi-ka-wei Dehra Dun	31 12N 30 19N	121 26E 78 03E	1907	2 33.6W 2 31.9E	45 36.6N 43 54.8N	.3306 .3326	·3377 .3202	.4726
Helwan	29 52N	31 20E	1912	2 25.4W	40 43.7 N	.3006	.2588	.3967
Barrackpore	22 46N	88 22E	1910	0 55.5E	30 42.2N	.3733	.2217	.4341
Hongkong	22 18N	114 10E	1910	o 00.4E	30 58.8N	.3711	.2228	.4328
Honolulu	21 19N	158 04 W	1910	9 29.7E	39 47.2N	.2916	.2428	.3795
Toungoo Alibág	18 56N 18 38N	96 27E	1910	0 24.9E 0 51.2E	23 02.1N 23 56.1N	.3880 .3687	.1650 .1637	.4216
Vieques	18 00 N	72 52E 65 26W	1912	2 20.6W	49 52.0N	.2886	.3.124	.4478
Antipolo	14 36N		1911		16 18.2N	.3820	.1117	.3981
Kodaikanal	10 14N	77 28E	1910	o 55.0W	3 45.2N	.3748	.0246	- 37 57
Batavia-Butenzorg	6 118	106 49E	1909	0 49.5E	31 09.2S	.3668	.2218	.4286
St. Paul de Loanda	8 48S 13 48S	13 13E	1910	16 12.3W	35 32.2S	.2012	.1437	.4086
Samoa (Apia) Tananarive	18 55S	171 46W 47 32E	1908	9 41.9E 9 29.7 W	29 21.7S 54 05.7S	.3561	.3499	.4319
Mauritius	20 06S	57 33E	1911	9 18.5W	53 30.6S	.2331	.3151	.3920
			§ 1906	8 55.3W	13 57.2S	.2477	.0617	.2553
Rio de Janeiro	22 55S	43 I I W	1910	9 40.0W	• • • •	• • •		
L								

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at oo C. for mercury and at 4° C. for water.

	METRIC MEAS	SURE.		British Meas	SURE.
Cms. of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34-533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grams per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036127
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	0.0568936	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0 9956 3 8	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

	or brass scale and h measure.		r brass scale and measure.		r glass scale and measure.
Height of barometer in inches.	a in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in mm.	a in mm. for temp. C.
15.0 16.0 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5	0.00135 .00145 .00154 .00158 .00163 .00167 .00172 .00176 0.00181 .00185 .00190 .00194 .00203 .00208 .00212 0.00217 .00221 .00221 .00226 .00231 .00236 .00240 .00249	400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640	0.0651 .0668 .0668 .0668 .0700 .0716 .0732 .0749 .0765 .0781 .0797 0.0813 .0830 .0846 .0862 .0878 .0894 .0911 .0927 .0943 .0959	50 100 150 200 250 300 350 400 450 500 520 540 560 580 600 610 620 630 640 650 660 670 680 690	0.0086 .0172 .0258 .0345 .0431 .0517 .0603 0.0689 .0775 .0861 .0895 .0930 .0965 .0999 0.1034 .1051 .1068 .1085 .1103 .1120 .1137 0.1154 .1172
28.0 28.5 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4	0.00254 .00258 .00263 .00265 .00267 .00268 .00270 .00272 0.00274 .00276 .00277 .00279 .00281	650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800	.1056 .1073 .1089 .1105 .1121 0.1137 .1154 .1170 .1186 .1202 .1218 .1235 .1251 .1267 .1283	700 710 720 730 740 750 760 770 780 790 800 850 900 950 1000	.1206 .1223 .1240 .1258 0.1275 .1292 .1309 .1327 .1344 .1361 .1378 0.1464 .1551 .1639 .1723

^{*}The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_I = H_I' - \alpha(I' - I')$ where H_I' is the height at the standard temperature, H' the observed height at the temperature I', and $\alpha(I' - I)$ the correction for temperature. The standard temperature is α 0° C. for the metric system and α 0° F, for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately α 0° F, because of the fact that the brass scale is graduated so as to be standard at α 0° F, while mercury has the standard density at α 0° C.; required, the corresponding reading at α 0° C. Here the value of α 1 is the mean of α 1235 and α 1251, or α 1243; α 1. α 2° C. α 2. N. B.—Although α 1 is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for α 1 and when great accuracy is wanted the proper coefficients have to be deter *The height of the barometer is affected by the relative thermal expansion of the mercury and

same values for a, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

Altitude term. Correction is to be subtracted.

Height			Obse	rved heigh	ht of baro	meter in	millimete	rs.					
above sea level in													
meters.	400	450	500	550	600	650	700	750	800				
							.014	.015	.016				
100 200					,		.028	.030	.032				
300	Co	orrection	in mil	lime-			.041	.044	.047				
400	ters	ters for elevation above sea level in first column											
500 600	and	and height of barometer .077 .082 .088											
700	in to	p line.				.090	.096	.102					
800						.103	.109	.117					
900		,		.108	.118	.115	.123	.131					
1000				.118	.130	.141	.150						
1200				.129	.142	.154	.164		1				
1300		.140 .153 .166 .178 .151 .165 .179 .191											
1400 1500	.151 .165 .179 .191 .205 .157 .157 .172 .188 .204												
1600													
1700		ł	.157	.172 .183	.200	.217							
1800			.177	.194	.212	.230			1.255	1 5000			
2000		.176	.196	215	.235	.255		1 240	1.213	14500			
2100		.185	.206	.226	.247			1.340	1.172	14000			
2200		.194	.216	.237	.259			1.244	1.088	13000			
2300		.203	.236	.248	.283		1.345	1.196	1.004	12500			
2500	.195	.220	.245	.270	.295		1.291	1.149	.962	12000			
2600	.203	.229	.255			1.315	1.184	1.053	.920	11000			
2700 2800	.210	.238	.265	! 		1.255	1.130	1.005	.879	10500			
2900	.227	.256	.285		1.050	1.136	1.076	.957	.837 .795	9500			
3000	.235	.265	-294		.984	1.076	.969	.86i	.753	9000			
3100 3200	.243	.274 .283	1	1	.918	1.016	.915 .861	.813		8500			
3300	.259	.292		1.077	.Ś53 .787	.957 .897	.807	1 ./05		8000 7500			
3400	.267	.201		1.005	.721	.837	·7 53	ļ		7000			
3500 3600	.275	-309	1	-934	.655	-777	.700	i		6500			
3700	.291			.862	.789 .724	.718 .658]		6000 5500			
3800	.299		.779	.718	.658	.598	l	l	İ	5000			
3900 4000	.307		.701	.646	.592					4500			
4117	-		.623	·574 ·503	.526 .461					4000 3500			
<u> </u>	-	.503	.467	.431	-395			in hund: elevation		3000			
		.419	.389	-359		sea l	evel in la	ist columi	n and	2500			
! !	.359	.335	.311	.287		heigh line.	t of baror	neter in b	ottom	2000 1 500			
.192	.179	.167	.155	-5.5]					1000			
.096	.090	.084	.078				ſ	1	ı	500			
32	2 30 28 26 24 22 20 18 16 14												
			hserved	height of	haromete	er in inch	es.	1	!	level in feet.			

REDUCTION OF BAROMETER TO STANDARD CRAVITY.

Reduction to Latitude 45°. - English Scale.

N. B. From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

Latite	1				1	Height o	of the ba	rometer	in inche	es.			
Latiti	ide.	19	20	21	22	23	24	25	26	27	28	29	30
0 °	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.061	Inch. 0.064	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080
5 6 7 8	85 84 83 82 81	0.050 .049 .049 .049	0.052 .052 .052 .051	0.055 .055 .054 .054	0.058 .057 .057 .056 .056	0.060 .060 .059 .059	0.063 .062 .062 .061	0.066 .065 .065 .064 .063	o.o68 .o68 .o67 .o67	0.071 .070 .070 .069	0.073 .073 .072 .072	0.076 .076 .075 .074 .073	0.079 .078 .077 .077 .076
10 11 12 13 14	80 79 78 77 76	0.048 .047 .046 .045	0.050 .049 .049 .048	0.053 .052 .051 .050 .049	0.055 .054 .054 .053 .052	0.058 .057 .056 .055	0.060 .059 .058 .057 .056	0.063 .062 .061 .060	0.065 .064 .063 .062	o.o68 .o67 .o66 .o65	0.070 .069 .068 .067	0.073 .072 .071 .069	0.075 .074 .073 .072 .071
15 16 17 18 19	75 74 73 72 71	0.044 .043 .042 .041 .040	0.046 .045 .044 .043 .042	0.048 .047 .046 .045	0.051 .050 .049 .047 .046	0.053 .052 .051 .050 .048	0.055 .054 .053 .052 .050	0.058 .056 .055 .054 .052	0.060 .059 .057 .056	0.062 .061 .060 .058 .057	0.065 .063 .062 .060	0.067 .065 .064 .062	0.069 .068 .066 .065
20 21 22 23 24	70 69 68 67 66	0.039 .038 .036 .035	0.041 .040 .038 .037 .036	0.043 .042 .040 .039 .037	0.045 .044 .042 .041 .039	0.047 .045 .044 .043 .041	0.049 .047 .046 .044 .043	0.051 .049 .048 .046	0.053 .051 .050 .048 .046	0.055 .053 .052 .050 .048	0.057 .055 .054 .052 .050	0.059 .057 .056 .054 .052	0.061 .059 .057 .055
25 26 27 28 29	65 64 63 62 61	0.033 .031 .030 .028 .027	0.034 .033 .031 .030 .028	0.036 .034 .033 .031 .030	0.038 .036 .034 .033	0.039 .038 .036 .034 .032	0.041 .039 .038 .036	0.043 .041 .039 .037	0.044 .043 .041 .039 .037	0.046 .044 .042 .040 .038	0.048 .046 .044 .042 .039	0.050 .048 .045 .043	0.051 .049 .047 .045 .042
30 31 32 33 34	59 58 57 56	0.025 .024 .022 .021 .019	0.027 .025 .023 .022	0.028 .026 .025 .023 .021	0.029 .027 .026 .024 .022	0.031 .029 .027 .025	0.032 .030 .028 .026	0.033 .031 .029 .027 .025	0.035 .032 .030 .028 .026	0.036 .034 .032 .029	0.037 .035 .033 .030 .028	0.039 .036 .034 .031	0.040 .037 .035 .032 .030
35 36 37 38 39	55 54 53 52 51	0.017 .016 .014 .012	0.018 .016 .015 .013	0.019 .017 .015 .014 .012	0.020 .018 .016 .014	0.021 .019 .017 .015	0.022 .020 .018 .015	0.023 .021 .018 .016	0.024 .021 .019 .017	0.025 .022 .020 .017 .015	0.025 .023 .021 .018	0.026 .024 .021 .019	0.027 .025 .022 .019
40 41 42 43 44	49 48 47 46	0.009 .007 .005 .004 .002	0.009 .007 .006 .004 .002	0.010 .008 .006 .004 .002	0.010 .008 .006 .004 .002	0.011 .009 .006 .004 .002	0.011 .009 .007 .004 .002	0.012 .009 .007 .005 .002	0.012 .010 .007 .005 .002	0.012 .010 .008 .005 .003	0.013 .010 .008 .005	0.013 .011 .008 .005 .003	0.014 .011 .008 .006 .003

^{* &}quot;Smithsonian Meteorological Tables," p. 58.

REDUCTION OF BAROMETER TO STANDARD CRAVITY.*

Reduction to Latitude 45°. - Metric Scale.

N. B. — From latitude 0° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

					He	ight of t	he baro	meter in	millime	ters.			
Latit	ude.	520	560	60 0	620	640	660	68o	700	720	740	760	78o
0 °	90°	mm. 1.38	mm. 1.49	mm. 1.60	mm. 1.65	mm. 1.70	mm. 1.76	mm. 1.81	mm. 1.86	mm. 1.92	mm. 1.97	mm. 2.02	mm. 2.08
5 6 7 8	85 84 83 82 81	1.36 1.35 1.34 1.33 1.32	1.47 1.46 1.45 1.43	1.57 1.56 1.55 1.54 1.52	1.63 1.61 1.60 1.59 1.57	1.68 1.67 1.65 1.64 1.62	1.73 1.72 1.70 1.69 1.67	1.78 1.77 1.76 1.74 1.72	1.84 1.82 1.81 1.79	1.89 1.87 1.86 1.84 1.82	1.94 1.93 1.91 1.89 1.87	1.99 1.98 1.96 1.94 1.92	2.04 2.03 2.01 2.00 1.97
10 11 12 13 14	80 79 78 77 76	1.30 1.28 1.26 1.24 1.22	1.40 1.38 1.36 1.34 1.32	1.50 1.48 1.46 1.44 1.41	1.55 1.53 1.51 1.48 1.46	1.60 1.58 1.56 1.53 1.50	1.65 1.63 1.60 1.58 1.55	1.70 1.68 1.65 1.63 1.60	1.75 1.73 1.70 1.67 1.65	1.80 1.78 1.75 1.72 1.69	1.85 1.83 1.80 1.77 1.74	1.90 1.88 1.85 1.82 1.79	1.95 1.93 1.90 1.87 1.83
15 16 17 18 19	75 74 73 72 71	1.20 1.17 1.15 1.12 1.09	1.29 1.26 1.24 1.21 1.17	1.38 1.35 1.32 1.29 1.26	1.43 1.40 1.37 1.34 1.30	1.48 1.44 1.41 1.38 1.34	1.52 1.49 1.45 1.42 1.38	1.57 1.54 1.50 1.46 1.43	1.61 1.58 1.54 1.51 1.47	1.66 1.63 1.59 1.55 1.51	1.71 1.67 1.63 1.59 1.55	1.75 1.72 1.68 1.64 1.59	1.80 1.76 1.72 1.68 1.64
20 21 22 23 24	70 69 68 67 66	1.06 1.03 1.00 0.96 •93	1.14 1.11 1.07 1.04 1.00	1.22 1.19 1.15 1.11 1.07	1.26 1.23 1.19 1.15 1.10	1.31 1.27 1.23 1.18 1.14	1.35 1.31 1.26 1.22 1.18	1.39 1.35 1.30 1.26 1.21	1.43 1.38 1.34 1.29 1.25	1.47 1.42 1.38 1.33 1.28	1.51 1.46 1.42 1.37 1.32	1.55 1.50 1.46 1.41 1.35	1.59 1.54 1.49 1.44 1.39
25 26 27 28 29	65 64 63 62 61	0.89 .85 .81 .77 .73	0.96 .92 .88 .83 .79	1.03 0.98 .94 .89	1.06 1.02 0.97 .92 .87	1.10 1.05 1.00 0.95 .90	1.13 1.08 1.03 0.98 .93	1.16 1.11 1.06 1.01 0.96	1.20 1.15 1.10 1.04 0.99	1.23 1.18 1.13 1.07 1.02	1.27 1.21 1.16 1.10 1.04	1.30 1.25 1.19 1.13 1.07	1.33 1.28 1.22 1.16 1.10
30 31 32 33 34	59 58 57 56	0.69 .65 .61 .56	0.75 .70 .65 .61	0.80 •75 •70 •65 •60	0.83 .77 .72 .67 .62	0.85 .80 .75 .69	0.88 .82 .77 .71 .66	0.91 .85 .79 .74 .68	0.94 .87 .82 .76 .70	0.96 .90 .84 .78 .72	0.98 .92 .86 .80 .74	1.01 0.95 .89 .82 .76	1.04 0.97 .91 .84 .78
35 36 37 38 39	55 54 53 52 51	0.47 .43 .38 .33 .29	0.51 .46 .41 .36 .31	0.55 .49 .44 .39 .33	0.56 .51 .45 .40 .34	0.58 •53 •47 •41 •35	0.60 •54 •48 •43 •37	0.62 •56 •50 •44 •38	0.64 .58 .51 .45 .39	0.66 ·59 ·53 ·46 ·40	0.67 .61 .54 .48 .41	0.69 .63 .56 .49	0.71 .64 .57 .50 .43
40 41 42 43 44	50 49 48 47 46	0.24 .19 .14 .10	0.26 .21 .16 .10	0.28 .22 .17 .11	0.29 .23 .17 .12 .06	0.30 .24 .18 .12 .06	0.31 .24 .18 .12 .06	0.31 .25 .19 .13	0.32 .26 .19 .13	0.33 .27 .20 .13	0.34 .27 .21 .14	0.35 .28 .21 .14 .07	0.36 .29 .22 .14 .07

^{* &}quot;Smithsonian Meteorological Tables," p. 59.

TABLE 106. - Correction of the Barometer for Capillarity.*

			ı. Me	TRIC MEA	SURE.								
			Неібн	r of Menis	CUS IN MILI	LIME TE RS.							
Diameter of tube in mm.	0.4	0.6	1.6	1.8									
		Correction to be added in millimeters.											
4 5 6 7 8 9 10 11 12 13	0.83 -47 -27 -18 - - - -	1.22 0.65 .41 .28 .20 .15	1.54 0.86 .56 .40 .29 .21 .15 .10	1.98 1.19 0.78 •53 •38 •28 •20 •14 •10	2.37 1.45 0.98 .67 .46 ·33 .25 .18	1.80 1.21 0.82 .56 .40 .29 .21	- I.43 0.97 .65 .46 .33 .24 .18	- - 1.13 0.77 .52 .37 .27 .19					
			2. Bri	TISH MEA	SURE.								
			Нег	GHT OF М Е	NISCUS IN I	NCHES.							
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08					
			Correction	to be added	in hundredtl	s of an inch							
.15 .20 .25 .30 .35 .40 .45 .50	2.36 1.10 0.55 .36 - - -	4.70 2.20 1.20 0.79 .51 .40 -	6.86 3.28 1.92 1.26 0.82 .61 .32 .20	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35	11.56 5.94 3.68 2.30 1.49 1.02 0.68 .47	7.85 4.72 2.88 1.85 1.22 0.83	5.88 3.48 2.24 1.42 0.96 .64	- 4.20 2.65 1.62 1.15 0.71					

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 107. — Volume of Mercury Meniscus in Cu. Mm.

Height of meniscus.	Diameter of tube in mm.													
	14	15	16	17	18	19	20	21	22	23	24			
mm. 1.6 1.8 2.0 2.2 2.4 2.6	157 181 206 233 262 291	185 211 240 271 303 338	214 244 278 313 350 388	245 281 319 358 400 444	280 320 362 406 454 503	318 362 409 459 511 565	356 407 460 515 573 633	398 455 513 574 639 706	444 507 571 637 708 782	492 560 631 704 781 862	541 616 694 776 859 948			

Scheel und Heuse, Annalen der Physik, 33, p. 291, 1910.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = kwav^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

$$P = .00492 v^2$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$P = .00228 v^2$$
.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle α less than 90° to the direction of the wind the pressure may be expressed as $P_{\alpha} = F_{\alpha} P_{90}$.

Table 108, founded on the experiments of Langley, gives the value of F_{α} for different values of α . The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

TABLE 108. — Values of F_a in Equation $P_a = F_a P_{90}$.

	in. × 4.8 in. 6 (nearly).		in. X 12 in.	Plane 6 in. × 24 in. Aspect }.			
α	Fa	α	F_a	α	F _a		
0° 5 10 15 20	0.00 0.28 0.44 0.55 0.62	0° 5 10 15 20	0.00 0.15 0.30 0.44 0.57	0° 5 10 15 20	0.00 0.07 0.17 0.29 0.43		
25 30 35 40 45 50	0.66 0.69 0.72 0.74 0.76	25 30 35 40 45 50	0.69 0.78 0.84 0.88 0.91	25 30 - - - -	0.58 0.71 - - -		

* The following pressures in pounds per square inch show roughly the influence of the shape and size of the resisting surface (Dines' results). The wind velocity was 20.9 miles per hour. The flat plates were $\frac{3}{8}$ in, thick.

Square, sides 4 in						Plate, 6 in. diam. 90° cone at back 1.49
Circle, same area					1.51	Same, cone in front
Rectangle, 16 in. by 1 .					1 70	" sharp 30° cone at back 1.54
Square, 12 in. sides					1.57	" cone in front
Circle, same area		,			1 55	5 in. Robinson cup on 8½ in. of ½ in. rod 1.68
Rectangle, 24 in. by 6					1.59	Same, with back to wind 0.73
Square, sides 16 in					1.52	o in. cup on 6½ in. of § in. rod 1.75
Plate, 6 in. diam. 43 thick					1.45	Same, with back to wind
Ditto, curved side to wind				i	0.02	2½ in. cup on 9¾ in. of ¼ in. rod 2.60
Sphere, 6 in. diam					0.67	Same, with back to wind 1.04

AERODYNAMICS.

On the basis of the results given in Table 108 Langley states the following condition for the soaring of an aeroplane 76.2 centimeters long and 12.2 centimeters broad, weighing 500 grams, — that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

TABLE 109. — Data for the Soaring of Planes 76.2 imes 12.2 cms. weighing 500 Grams, Aspect 6.

Inclination to the horizontal a.	Soaring s	speed $v.$		ded per minute tivity).	Weight of planes of like form, capable of soaring at speed v with the expenditure of one horse power.			
	Meters per	Feet per sec.	Kilogram meters.	Foot pounds.	Kilograms.	Pounds.		
2° 5 10 15 30 45	20.0 15.2 12.4 11.2 10.6 11.2	66 50 41 37 35 37	24 41 65 86 175 336	174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29 15		

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$
Soaring speed $v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_a \cos a}}$
Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{12}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

$$v = \sqrt{\frac{\rho}{k} \frac{1}{F_{\alpha} \cos \beta}}$$
, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination
$$\alpha = -3^{\circ}$$
 0° $+3^{\circ}$ 6° 9° 12° Inclination factor $F_{\alpha} = 0.20$ 0.50 0.75 0.90 1.00 1.05 $\tan \beta = 0.01$ 0.02 0.03 0.04 0.10 0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination α is zero or even slightly negative. Above $\alpha = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TABLE 110. - Friction.

The following table of coefficients of friction f and its reciprocal 1/f, together with the angle of friction or angle of repose ϕ , is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

Material.	f	1/f	φ
Wood on wood, dry """ soapy Metals on oak, dry """ wet """ soapy """ elm, dry """ wet """ """ wet """ damp mortar	2550 .20 .5060 .2426 .20 .2025 .53 .33 .2738 .56 .36 .36 .23 .15 .1520 .3 .0708 .05 .05 .03036 .20 .15 .1520	1/f 4.00-2.00 5.00 2.00-1.67 4.17-3.85 5.00 5.00-4.00 1.89 3.00 3.70-2.86 1.79 2.78 4.35 6.67 6.67-5.00 3.33 14.3-12.50 20.00 33.3-27.6 5.00 9.35 3.33-1.43 2.50 1.67-1.43 1.35 1.96	φ 14.0-26.5 11.5 26.5-31.0 13.5-14.5 11.5 11.5-14.0 28.0 18.5 15.0-19.5 20.0 13.0 8.5 8.5-11.5 16.5 4.0-4.5 3.0 1.75-2.0 11.5 6.1 16.7-35.0 22.0 33.0-35.0 36.5 27.0
" on dry clay	33 .25-1.00 3875 31	3.00 4.00-1.00 2.63-1.33 1.00 3.23 1.23-0.9	18.25 14.0-45.0 21.0-37.0 45.0 17.0 39.0-48.0

^{*} Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

TABLE 111. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 112. - Lubricants For Cutting Tools.

Material.	Turning.	Chucking.	Drilling.	Tapping Milling.	Reaming.
Tool Steel, Soft Steel, Wrought iron Cast iron, brass Copper Glass	dry or oil dry or soda water dry or soda water dry dry turpentine or kerosene	oil or s. w. soda water soda water dry dry	oil oil or s. w. oil or s. w. dry dry	oil oil oil dry dry	lard oil lard oil lard oil dry mixture

Mixture = 1/3 crude petroleum, 2/3 lard oil. Oil = sperm or lard.

Tables 111 and 112 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons. SMITHSONIAN TABLES.

TABLE 113.

VISCOSITY.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille * gave the following formula for calculating the viscosity coefficient in this case: $\mu = \frac{\pi h r^4 s}{8vl}$, where h is the pressure height, r the radius of the tube, s the density of

the fluid, v the quantity flowing per unit time, and I the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence h and I are different. The product Is is the pressure under which the flow takes place. Hagenbach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from

h, according to Hagenbach, is $\frac{c}{\sqrt{2 \cdot g}}$, where g is the acceleration due to gravity. Gartenmeister ‡ points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h should be simply $\frac{v^2}{s}$; and this formula is used in the reduction

of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formula take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the "viscosimeter" commonly used for testing oils useless for our purpose.

The term "specific viscosity" is sometimes used in the headings of the tables; it means the

ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified tem-

perature.

The friction of a fluid is proportional to the size of the rubbing surface, to $\frac{dv}{dx}$, where v is the velocity of motion in a direction perpendicular to the rubbing surface, and to a constant known as the viscosity.

(a) Variation of Viscosity of Water, with Temperature. Dynes per sq. cm.

Temp.	Poiseville. 1846.	Sprung. 1876.	Slotte. 1883.	Thorpe-Roger: 1894.\$	Hosking.	Temp.	Slotte. 1883.	Thorpe-Rogers	Hosking.
0° 5 10 15 20 25 30 35 40 45 50	0.01716 .01515 .01309 .01146 .01008 .00807 .00803 .00721 .00653	0.01778 .01510 .01301 .01135 .01003 .00896 .00802 .00723 .00657 .00602	0.01808 .01524 .01314 .01144 .01089 .00896 .00803 .00724 .00657 .00602	0.01778 .01510 .01303 .01134 .01002 .00891 .00798 .00720 .00654 .00597	0.01793 .01522 .01310 .01142 .01006 .00893 .00800 .00724 .00657 .00600	66 65 70 75 80 85 90	0.00510 .00472 .00438 .00408 .00382 .00358 .00337 .00318 .00301	0.00506 .00468 .00496 .00406 .00380 .00356 .00335 .00310	.00508 .00469 .00436 .00406 .00380 .00356 .00335 .00316 .00300 .00284¶
		(b) Va	riation of	Specific Viscos	ity of Wate	r with	Temperati	ıre. (
0° 5° 10° 15° 20°	.849 .730 .637	35	0.498 .446 .490 .367	55 4 60 65	0.307 .283 .262 .243 .226	75° 80 85 90	0.212 .199 .187 .176 .167	100° 124° 153°	0.158 .124¶ .101¶

^{* &}quot;Comptes rendus," vol. 15, 1842; "Mém. Serv. Étr." 1846.
† "Pogg. Ann." vol. 109, 1860.
‡ "Zeitschr. Phys. Chem." vol. 6, 1890.
§ Thorpe and Rogers, "Philos. Trans." 185A, p. 397, 1894; "Proc. Roy. Soc." 55, p. 148, 1894.
¶ Hosking, Phil. Mag. 17, p. 502, 1909; 18, p. 260, 1909.
¶ de Haas, Diss. Leiden, 1894.

VISCOSITY.

TABLE 114. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

Temp.		Percentage by weight of alcohol in the mixture.													
c.'	0	0 8.21 16.60 3.		34.58	43-99	53.36	75-75	87.45	99.72						
0° 5 10 15 20	0.0181 .0152 .0131 .0114	0.0287 .0234 .0195 .0165	0.0453 .0351 .0281 .0230 .0193	0.0732 .0558 .0435 .0347 .0283	0.0707 .0552 .0438 .0353 .0286	0.0632 .0502 .0405 .0332 .0276	0.0407 .0344 .0292 .0250 .0215	0.0294 .0256 .0223 .0195 .0172	0.0180 .0163 .0148 .0134 .0122						
25 30 35 40 45	0.0090 .0081 .0073 .0067 .0061	0.0123 .0108 .0096 .0086	0.0163 .0141 .0122 .0108	0.0234 .0196 .0167 .0143 .0125	0.0241 .0204 .0174 .0150 .0131	0.0232 .0198 .0171 .0149	0.0187 .0163 .0144 .0127	0.0152 .0135 .0120 .0107 .0097	0.0110 .0100 .0092 .0084 .0077						
50 55 60	0.0056 .0052 .0048	0.0070 .0063 .0058	0.0085 .0076 .0069	0.0109 .0096 .0086	0.0115 .0102 .0091	0.0115 .0102 .0092	0.0102 .0091 .0083	0.0088 .0086 .0073	0.0070 .0065 .0060						

The following tables (115-116) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.†

TABLE 115. - Mineral Oils. ‡

sity.	Flashing point.	Burning point.	Sp. visc	Sp. viscosity. Water at 20° C. = 1.					
Density	○ C.	ng c.	20° C.	50° C.	100° C.				
.931 .921 .906	243 216 189	274 246 208		7.31 3.45	2.9 2.5 1.5				
.921 .917	163 132	190 168	-	27.80 -	2.8 2.6				
.904 .891 .878 .855	170 151 108 42	207 182 148 45	8.65 4.77 2.94 1.65	2.65 1.86 1.48	1.7 1.3 - -				
.905 .894 .866	165 139 90	202 270 224	7.60 2.50	3.10 3.60 1.50	1.5 1.3				

TABLE 116. - 0ils.

Oil.	Density.	o Flashing O point.	o Burning O point.	Viscosity at 19° C., water at 19° C.=1.
Cylinder oil Machine oil Wagon oil " " Naphtha residue	.917 .914 .914 .911	227 213 148 157 134	274 260 182 187 162	191 102 80 70 55
Oleo-naphtha . " " . Oleonid " best quality	.910 .904 .894 .884	219 201 184 185	257 242 222 217	121 66 26 28
Olive oil Whale oil	.916 .879 .875	- - -	- - -	22 9 8

^{*} This table was calculated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a maximum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic acid.

[†] Table 115 is from a paper by Engler in Dingler's "Poly. Jour." vol. 268, p. 76, and Table 116 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity.

† The different groups in this table are from different residues.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

Liquid.		G. %	Coefficient of viscosity.	Temp. Cent.º	Authority.
Ammonia			0.0160	11.9	Poiseuille.
Anisol			0.0111	20.0	Gartenmeister.
Colophonium			3×1016	15.	Reiger.
Di-ethyl ether			0.00276	6.7	Thorpe, Roger.
Glycerine		i	42.20 25.18 13.87 8.30 4.94	2.8 8.1 14.3 20.3 26.5	Schottner. " " " " "
Glycerine and water		94.46 80.31 64.05 49.79	7.437 1.021 0.222 0.092	8.5 8.5 8.5 8.5	66 64 64
Glycol			0.0219	0.0	Arrhenius.
Menthol, solid " liquid			209 × 10 ¹⁰ 0.069	14.9 34.9	Heydweiller.
Mercury* " " " " " " " " " " " " " " " " " "			0.0184 0.0170 0.0157 0.0122 0.0102 0.0093 0.1878 0.9890 0.0077 0.0126 0.0045 0.0359 0.0033 0.0062 0.0053 0.0026 0.0281 0.0213 0.0155 0.0095	-20 0.0 20,0 100.0 200.0 300.0 20.0 15.0 22.3 23.3 24.0 22.2 23.7 22.3 21.0 22.0 21.9 23.3 22.7	Koch. " " " " " Gartenmeister. Brodmann. Bartolli & Stracciati. " " " " " " " " " " " " " " " " " "
Petroleum (Caucasian)			0.0190	17.5	Petroff.
Phenol			0.127	18.3	Scarpa.
Rape oil	· · · · · · · · · · · · · · · · · · ·		25.3 3.85 1.63 0.96	0.0 10.0 20.0 30.0	O. E. Meyer. " "

^{*}Calculated from the formula $\mu = .017 - .000066t + .00000021t^2 - .00000000025t^3$ (vide Koch, Wied. Ann. vol. 14, p. 1881).

SMITHSONIAN TABLES.

VISCOSITY.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.*

			Ter	nperature	Centigra	de.			ence.
Liquid.	00	100	200	300	40 ⁰	500	7º°	900	Reference.
Acetates: Methyl	_	.0046	.0041	.0036	.0032	.0030	_	_	I
Ethyl	-	.0051	.0044	.0040	.0035	.0032	-	~	I
Propyl	-	.0066	.00 59	.0052	.0044	.0039	-	-	I
Allyl	-	,0068	.0061	.0054	.0049	.0044	-	-	1
Amyl	-	.0106	.0089	.0077	.0065	.0058	-	-	I
Acids: Formic	_	.02262	.01804		.01224	.01025	-	_	2 I
Acetic	_	.0150	.0126	.0109	.0094	.0082	_	_	
Propionic	-	.0125	.0107 .0118	.0092	1000.	.0073 .0080	_	_	3
Butyric	_	.0139	.0163	.0136	.0118	.0102	_	_	2
Valeric	_	.0196	.0220	.0130	.0155	.0102		_	2
Salicylic		.0320	.0220	.0222	.0181	.0150	_	_	3
Alcohol: Methyl	.00813	.00686	.00591	.00515	.00450	.00396	-	_	3 4
Ethyl	.01770	.01449	.01192	.00000	.00828	.00608	.00504	_	4
Propyl	.03882	.02917	.02255	.01778	.01403	.01128	.007 57	.00526	4
Butyric	.05185	.03872	.02947	.02266	.017So	.01400	.00926	.00633	4
Allyl	.02144	.01703	.01361	.01165	.00911	.00760	.00548	.00407	4
Isopropyl	.04564	.03245	.02369		.01329	.01026	.00642		4
Isobutyĺ	.08038	.05547	.03906	.02863	.02121	.01609	.00973	.00633	4
Amyl (opinac.)	.08532	.06000	.04341	.03206	.02414	.01849	.01147	.00758	4
Aldehyde	.00267	.00244	.00222	-	-	_	-	-	3 5 4
Aniline	-	-	.0440	.0319	.0241	.0189	-	-	5
Benzole	.00902	.00759	.00649		.00492	.00437	.00351	-	
Bromides: Ethyl	.00478	.00432	.00392	.00357	-	-	- 0	-	4
Propyl	.00645	.00575	.00517	.00467	.00425	.00388	.00328	-	4
Allyl	.00619	.00552	.00496	.00449	.00410	.00374	.00316	-	4
Ethylene	.02435	.02035	.01716	.01.470	.01280	.01124	.00895	.00733	4
Carbon bisulphide	.00429	.00396	.00367	.00342	.00319	_	_	_	6
Carbon dioxide (liq.)	.00099	.00085	.00071	.00319	.00201	_		_	4
Chlorides : Propyl Allyl	.00430	.00358	.00322		.00291	_		_	4
Ethylen e	.01128	.00330	.00833	.00730	.00646	.00576	.00470	-	4
Chloroform	.00700	.00626	.00564	.00511	.00466	.00390	-	_	4
Ether	-	.0026	.0023	.0021	_	-	-	-	I
Ethylbenzole	.00874	.007 58	.00666	.00592	.00529	.00477	.00394	.00330	4
Ethylsulphide	.00 5 5 9	.00496	.00111	.00401	.00363	.00331	.00279	.00237	4
Iodides: Methyl	.00594	.00536	.00487	.00446	.00409	-	-	-1	
Ethyl	.00719	.00645	.00583	.00530	.00484	.00444	.00378	-	
Propyl	.00938	.00827	.00737	.00662	.00598	.00544	.00456	.00387	4
Allyl	.00930	.00819	.00726	.00652	.00588	.00534	.00448	.00381	4
Metaxylol	.00802	.00698	.00615	.00 547	.00491	.00444	.00369	.00313	4
Nitrobenzene	-		.0203	.0170	.0144	.0124	-	-	I
Paraffines: Pentane	.00283	.00256	.00232		-	-	-	_	4
Hexane	.00396	.00355	.00320	.00290	.00264	.00241	.00221	.00214	4
Heptane	.00519	.00460	.00410		.00334	.00303	.00253	.00214	4
Octane	.00703	.00612	.00538	.00478	.00428	.00386	.00318	.00:00	4
Isopenta ne Isohexane	.00273	.00332	.00223		.00247	.00226	_	_	4
Isoheptane	.00371	.00332	.00300	.00342	.00309	.00282	.00235	.00200	4
Propyl aldehyde	.504//	.00423	.0041	.0036	.0033	-	-	-	I
Toluene	.00768	.00668	.00586	.00520	.00466	.00420	.00348	.00292	4
Loidelle	1.22,00	1	1 - 1 - 5 - 0	5.5		7-2	347		ı ,

¹ Pribram-Handl, Wien. Ber. 78, 1878, 80, 1879, 84, 1881.

1897; Proc. Roy. Soc. 55, 1894, 60, 1896; Jour. Chem. Soc. 71, 1897; Chem. News, 75, 1897. 5 Wijkander, Wied. Peibl. 3, 1879. 6 Warburg-Babo, Wied. Ann. 17, 1882.

^{1851.} 2 Gartenmeister, Zeitschr. Phys. Chem. 6, 1890. 3 Rellstab. Diss. Bonn, 1868. 4 Thorpe-Roger, Philos. Trans. 185 A, 1894, 189 A,

^{*} Calculated from the specific viscosities given in Landolt & Börnstein's Phys. Chem. Tab. For inorganic acids, see Solutions.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution. μ stands for specific viscosity, and t for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
BaCl ₂ "	7.60 15.40 24.34	- - -	77.9 86.4 100.7	10 "	44.0 56.0 66.2	30 "	35.2 39.6 47.7	50		_ _ _	Sprung.
Ba(NO ₃) ₂	2.98 5.24	1.027 1.051	62.0 68.1	15	51.1 54.2	25	42.4 44.1	3.5	34.8 36.9	4,5	Wagner.
CaCl ₂ 	15.17 31.60 39.75 44.09	- - -	110.9 2 72.5 670.0	10 "	71.3 177.0 379.0 593.1	30 "	50.3 124.0 245.5 363.2	50 "	- - -	- - -	Sprung.
Ca(NO ₃) ₂	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15 "	74.6 112.7 217.1	25 "	60.0 90.7 156.5	3.5 "	49.9 75.1 128.1	45	Wagner.
CdCl ₂ "	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 "	60.5 70.5 80.4	25 "	49.1 57.5 64.6	35 "	40.7 47.2 53.6	45	"
Cd(NO ₃) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	"	50.1 58.7 69.0	25 "	41.1 48.8 57·3	3.5 "	34.0 41.3 47.5	45	ee
CdSO₄ "	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15 "	61.8 72.4 91.8	25 "	49.9 58.1 73.5	3.5 "	41.3 48.8 60.1	45	66 66 46
CoCl ₂ "	7.97 14.86 22.27	1.081 1.161 1.264	83.0 111.6 161.6	15 "	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35 "	44.9 58.8 85.6	45 "	ee ee
Co(NO ₃) ₂	8.28 15.96 24.53	1.073 1.144 1.229	74·7 87.0 110.4	15 "	57.9 69.2 88.0	25 "	48.7 55.4 71.5	35	39.8 44.9 59.1	45	ec ec
CoSO ₄	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	3.5 "	45.1 61.7 89.9	4.5 "	66 66
CuCl ₂ "	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15 "	67.8 95.8 137.2	25 "	55.1 77.0 107.6	35	45.6 63.2 87.1	45 "	ee ee
Cu(NO ₃) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97.3 126.2 382.9	15 "	76.0 98.8 283.8	25 "	61.5 80.9 215.3	35 "	51.3 68.6 172.2	45 "	66 66 66
CuSO ₄	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124. 5	15 "	61.8 74.0 96.8	25 "	49.8 59.7 75.9	3.5	41.4 52.0 61.8	45	ee ee
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15 "	57.9 66.5 79.9	25 "	48.3 56.4 65.9	35	40.1 48.1 56.4	45 "	66 66
HgCl ₂	0.23 3·55	1.002	- 76.75	10	58.5 59.2	20	46.8 46.6	30	38.3 38.3	40	"

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
HNO ₃ "	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15 "	54.8 57·3 65.5	25 "	45·4 47·9 54·9	35	37.6 40.7 46.2	45	Wagner.
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15 "	61.0 75.0 95.5	25 "	50.0 60.5 77.5	3.5	41.7 49.8 64.3	45 "	"
KCl "	10.23 22.21	- -	70.0 70.0	10	46.1 48.6	30	33.1 36.4	50	_	-	Sprung.
KBr "	14.02 23.16 34.64	- - -	67.6 66.2 66.6	10 "	44.8 44.7 47.0	30 "	32.1 33.2 35.7	50 "	- -		"
KI " "	8.42 17.01 33.03 45.98 54.00	- - - -	69.5 65.3 61.8 63.0 68.8	10 " "	44.0 42.9 42.9 45.2 48.5	30 " "	31.3 31.4 32.4 35.3 37.6	50 " " "	- - - -		66 66 66
KClO ₃	3.51 5.69	- -	71.7 -	10	44.7 45.0	30	31.5 31.4	50	_	-	"
KNO ₃	6.32 12.19 17.60	- - -	70.8 68.7 68.8	10 "	44.6 44.8 46.0	30 "	31.8 32.3 33.4	50 "	- -	- - -	"
$\mathrm{K_{2}SO_{4}}$	5.17 9.77	-	77·4 S1.0	10	48.6 52.0	30	34·3 36.9	50	_	- -	"
K ₂ CrO ₄ " "	11.93 19.61 24.26 32.78	1.233	75.8 85.3 97.8 109.5	10 " "	62.5 68.7 74.5 88.9	30 "	41.0 47.9 54.5 62.6	40 " "	- - -	- - -	" " Slotte. Sprung.
K ₂ C _{r2} O ₇	4.71 6.97	1.032	72.6 73.1	10	55.9 56.4	20	45·3 45·5	30	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93	- - -	96.1 121.3 229.4	10 "	59·7 75·9 142·1	30 "	41.2 52.6 98.0	50 "	- -	- - -	Sprung.
Mg(NO ₃) ₂	18.62 34.19 39.77	1.102 1.200 1.430	99.8 213.3 317.0	15 "	81.3 164.4 250.0	25	66.5 132.4 191.4	35	56.2 109.9 158.1	45	Wagner. "
MgSO ₄	4.98 9.50 19.32	- - -	96.2 130.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50 "	-	- - -	Sprung. "
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 232.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	3° "	55.0 79.4 106.6	40 "	Slotte.
MnCl ₂ " "	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 130.9 256.3 537·3	15 "	71.1 104.2 193.2 393.4	25 " "	57.5 84.0 155.0 300.4	3.5 "	48.1 68.7 123.7 246.5	45 "	Wagner. " "

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	ť	Authority.
Mn(NO ₃) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396.8	I 5 "	76.4 126.0 301.1	25 "	64.5 104.6 221.0	3,5	55.6 88.6 188.8	45	Wagner.
MnSO ₄	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	1.5	98.6 172.2 474·3	25 "	78.3 137.1 347.9	3.5	63.4 107.4 266.8	45	44 44
NaCl "	7.95 14.31 23.22	- - -	82.4 94.8 128.3	10	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50	- - -	- - -	Sprung. "
NaBr "	9.77 18.58 27.27	- - -	75.6 82.6 95.9	10 "	48.7 53.5 61.7	30	34·4 38.2 43.8	50	- - -	-	66 66
NaI " "	8.83 17.15 35.69 55.47	- - - -	73.1 73.8 86.0 157.2	10 " "	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 "	- - -		66 66 66
NaClO ₃ "	11.50 20.59 33.54	-	78.7 88.9 121.0	10	50.0 56.8 75.7	30 "	35·3 40·4 53·0	50 "	-		66
NaNO3 " "	7.25 12.35 18.20 31.55	- - -	75.6 81.2 87.0 121.2	10 "	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50 " "	-	- - -	" "
Na ₂ SO ₄ " "	4.98 9.50 14.03 19.32	- - -	96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50		- '	66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10	66.6 79.3 97.1	20	53·4 63·5 77·3	30	43.8 52.3 63.0	40	Slotte. "
NH ₄ Cl " "	3.67 8.67 15.68 23.37		71.5 69.1 67.3 67.4	10 "	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50	- - -	-	Sprung. " "
NH ₄ Br "	1 5.97 2 5.33 36.88	-	65.2 62.6 62.4	10 "	43.2 43.3 44.6	30	31.5 32.2 34.3	50	- - -	-	66 66
NH ₄ NO ₃ " " "	5.97 12.19 27.08 37.22 49.83	-	69.6 66.8 67.0 71.7 81.1	10	44·3 44·3 47·7 51·2 63·3	30 "	31.6 31.9 34.9 38.8 48.9	"	-	-	
(NH ₄) ₂ SO ₄ "	8.10 15.94 25.51		107.9 120.2 148.4	10	52.3 60.4 74.8	30 "	37.0 43.2 54.1		-		"

	Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	t	Authority.
(NII ₄) ₂ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79.3 88.2 101.1	10	62.4 70.0 80.7	20 "	- 57.8 60.8	30	42.4 48.4 56.4	40 - -	Slotte.
(1	NH ₄) ₂ Cr ₂ O ₇	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10	56.3 57.2 58.8	20	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40	"
N	ViCl ₂ "	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15	70.0 109.7 171.8	25 "	57.5 87.8 139.2	3.5 "	48.2 72.7 111.9	45 "	Wagner. "
N	Ni(NO ₃) ₂ "	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15 "	70.1 105.9 169.7	25 "	57·4 85·5 128.2	35 "	48.9 70.7 152.4	45 "	"
N	IiSO4 	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15	73.5 119.9 224.9	25	60.1 99.5 173.0	35	49.8 75.7 152.4	45 "	cc cc
P	'b(NO ₃) ₂	17.93 32.22	1.179 1.362	74.0 91.8	1,5	59.1 72.5	25	48.5 59.6	3.5	40.3 50.6	45	66
s	r(NO ₃) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	1 5 "	56.0 69.2 93.3	25	45.9 57.8 76.7	35	39.1 48.1 62.3	4.5 "	ee ee
Z	nCl ₂	15.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	1 5 "	72.7 86.6 117.9	25 "	57.8 69.8 90.0	35	48.2 57.5 72.6	4.5 "	ec ec ec
Z	n(NO ₃) ₂	15.95 30.23 44.50	1.115 1.229 1.437	80.7 104.7 167.9	15 "	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35	43.8 57.7 87.9	45 "	ee
Z	nSO ₄	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	"	79.3 118.6 177.4	25 "	62.7 94.2 135.2	35	51.5 73.5 108.1	45 "	ee ee

	Normals	solution.	½ nor	mal.	l nor	mal.	a nor	mal.	
Dissolved salt.	Density.	Specific viscosity.	Density.	Specific viscosity.	Density.	Specifie viscosity.	Density.	Specific viscosity.	Authority.
$\begin{array}{ccccc} A \text{cids}: Cl_2O_3 & . & . \\ & IICl & . & . \\ & HClO_3 & . & . \\ & IINO_3 & . & . \\ & Il_2SO_4 & . & . \end{array}$	1.0562 1.0177 1.0485 1.0332 1.0303	1.012 1.067 1.052 1.027 1.090	1.0283 1.0092 1.0244 1.0168 1.0154	1.003 1.034 1.025 1.011 1.043		1.000 1.017 1.014 1.005 1.022	1.007.4 1.002.5 1.006.4 1.004.4 1.003.5	0.999 1.009 1.006 1.003 1.008	Reyher. " " Wagner.
Aluminium sulphate Barium chloride " nitrate Calcium chloride . " nitrate	1.0550 1.0884 - 1.0446 1.0596	1.406 1.123 - 1.156 1.117	1.0278 1.0441 1.0518 1.0218 1.0300	1.178 1.057 1.044 1.076 1.053	1.0138 1.0226 1.0259 1.0105 1.0151	1.082 1.026 1.021 1.036 1.022	1.0068 1.0114 1.0130 1.0050 1.0076	1.038 1.013 1.008 1.017 1.008	44 44 44 44
Cadmium chloride " nitrate " sulphate Cobalt chloride " nitrate " sulphate	1.0779 1.0954 1.0973 1.0571 1.0728 1.0750	1.134 1.165 1.348 1.204 1.166 1.354	1.0394 1.0479 1.0487 1.0286 1.0369 1.0383	1.063 1.074 1.157 1.097 1.075 1.160	1.0197 1.0249 1.0244 1.0144 1.0184 1.0193	1.031 1.038 1.078 1.048 1.032 1.077	1.0098 1.0119 1.0120 1.0058 1.0094 1.0110	1.020 1.018 1.033 1.023 1.018	46 46 46 46 46
Copper chloride " nitrate	1.0624 1.0755 1.0790 1.1380 1.0243 1.0453	1.205 1.179 1.358 1.101 1.142 1.290	1.0313 1.0372 1.0402 0.0699 1.0129 1.0234	1.098 1.080 1.160 1.042 1.066 1.137	1.0158 1.0185 1.0205 1.0351 1.0062 1.0115	1.047 1.040 1.080 1.017 1.031	1.0077 1.0092 1.0103 1.0175 1.0030	1.027 1.018 1.038 1.007 1.012 1.032	46 46 46 46
Magnesium chloride " nitrate. " sulphate Manganese chloride " nitrate. " sulphate		1.201 1.171 1.367 1.209 1.183 1.364	1.0188 1.0259 1.0297 1.0259 1.0349 1.0365	1.094 1.082 1.164 1.098 1.087	1.0091 1.0130 1.0152 1.0125 1.0174 1.0179	1.044 1.040 1.078 1.048 1.043	1.0043 1.0066 1.0076 1.0063 1.0093	1.021 1.020 1.032 1.023 1.023 1.037	46 46 46 46
Nickel chloride " nitrate " sulphate Potassium chloride . " chromate " nitrate " sulphate	1.0591 1.0755 1.0773 1.0466 1.0935 1.0605	1.205 1.180 1.361 0.987 1.113 0.975 1.105	1.0308 1.0381 1.0391 1.0235 1.0475 1.0305	1.097 1.084 1.161 0.987 1.053 0.982 1.049	1.0144 1.0192 1.0198 1.0117 1.0241 1.0161	1.044 1.042 1.075 0.990 1.022 0.987 1.021	1.0067 1.0096 1.0017 1.0059 1.0121 1.0075	1.021 1.019 1.032 0.993 1.012 0.992 1.008	66 66 66 66
Sodium chloride bromide	1.0401 1.0786 1.0710 1.0554 1.1386	1.097 1.064 1.090 1.065 1.058	1.0208 1.0396 1.0359 1.0281 1.0692	1.047 1.030 1.042 1.026 1.020	1.0107 1.0190 1.0180 1.0141 1.0348	1.024 1.015 1.022 1.012 1.006	1.0056 1.0100 1.0092 1.0071 1.0173	1.013 1.008 1.012 1.007 1.000	Reyher. " " Wagner.
Strontium chloride . " nitrate . Zinc chloride " nitrate " sulphate	1.0676 1.0822 1.0590 1.0758 1.0792	1.141 1.115 1.189 1.164 1.367	1.0336 1.0419 1.0302 1.0404 1.0402	1.067 1.049 1.096 1.086 1.173	1.0171 1.0208 1.0152 1.0191 1.0198	1.034 1.024 1.053 1.039 1.082	1.0084 1.0104 1.0077 1.0096 1.0094	1.014 1.011 1.024 1.019 1.036	" " " "

^{*} In the case of solutions of salts it has been found (vide Arrhennius, Zeits, für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1 n$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits, für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits, für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C.

TABLE 121.-VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 106 times the coefficients of viscosity in C. G. S. units.

Substance.	Temp.	μ.	Refer- ence.	Substance.	Temp. °C.	μ.	Refer- ence.
Acetone	18.0	78.	1	Chloroform .	0.0	95.9	ı
Air	-21.4	163.9	2	"	17.4	102.0	"
"	0.0	173.3	"	"	61.2	189.0	3
"	I 5.0	180.7	"	Ether	0.0	68.9	I
"	99.1	220.3	"	"	16.1	73.2	"
- 44	182.4	255.9	"	"	36.5	79.3	44
	302.0	299.3	"	Ethyl iodide .	72.3	216.0	3
Alcohol: Methyl	66.8	135.	3	Helium	0.0	189.1	3 5
" Ethyl	78.4	142.		"	15.3	196.9	1 7
" Propyl, norm.	97.4	142.	"	"	66.6	234.8	64
" Isopropyl .	82.8	162.	"		184.6	269.9	"
" Butyl, norm	116.9	143.	"	Hydrogen	-20.6	81.9	2
" Isobutyl	108.4	144.	44		I 5.0	88.9	
" Tert. butyl .	82.9	160.	"	"	99.2	105.9	44
Ammonia	0.0	96.	4	"	182.4	121.5	- "
"	20.0	108.	44	"	302.0	139.2	"
Argon	0.0	210.4	5	Mercury	270.0	489.*	8
	14.7	220.8	1	"	300.0	532.*	66
46	17.9	224. I	"	"	330.0	582.*	44
"	99.7	273.3	"	"	360.0	627.*	"
"	183.7	322.1	"	"	390.0	671.*	44
Benzole	19.0	79.	6	Methane	20.0	120.1	4
	100.0	118.	- "	Methyl iodide .	44.0	232.	3
Carbon bisulphide .	16.9	92.4	I	" chloride	15.0	105.2	2
" dioxide	-20.7	129.4	2	"	302.0	213.9	"
	15.0	145.7	"	Nitrogen	-21.5	156.3	7
" "	99.1	186. I	"	"	10.9	170.7	"
""	182.4	222.1	"	"	53.5	189.4	- "
" "	302.0	268.2	"	Oxygen	15.4	195.7	"
" monoxide .	0.0	163.0	4		53.5	21 5.9	- "
" "	20.0	184.0	"	Water vapor .	0.0	90.4	1
Chlorine	0.0	128.7	"	" .	16.7	96.7	"
" • • •	20.0	147.0	"	" "	100.0	132.0	9

- I Puluj, Wien. Ber. 69, (2), 1874.

- 2 Breitenbach, Ann. Phys. 5, 1901. 3 Steudel, Wied. Ann. 16, 1882. 4 Graham, Philos. Trans. Lond. 1846, III. 5 Schultze, Ann. Phys. (4), 5, 6, 1901.

- 6 Schumann, Wied. Ann. 23, 1884. 7 Obermayer, Wien. Ber. 71, (2a), 1875. 8 Koch, Wied. Ann. 14, 1881, 19, 1883. 9 Meyer-Schumann, Wied. Ann. 13, 1881.

TABLE 122. - VISCOSITY OF AIR. 20.2°C.

Holman, Phil. Mag. 1886 Fischer, Phys. Rev. 1909 Grindlay, Gibson, Pr. Roy. Soc.	1.810 × 10-4 1.807	Markowski, ditto. 1904 Tanzler, Ver. D. Phys. G. 1906 Tomlinson, Phil. Trans. 1886	1.835×10 ⁻⁴ 1.836 1.811
1908 Rankine, ditto. 1910 Rapp, unpublished Breitenbach, Wied. Ann. 1899 Schultze, Ann. der Phys. 1901	1.809 1.814 1.810 1.833 1.837	Hogg, Am. Acad. Proc. 1905 Gilchrist	1.812 1.812 1.808 1.812

The viscosity of air at 20.2° may be taken as 1.812×10^{-4} within a probable error of less than 0.2 per cent. Its variation with the temperature may be obtained from Holman's formula = 1715.50×10^{-7} (1 + 0.00275t + 0.00000034t²). See Phys. Rev. 1913, p. 124, where full references may be obtained.

^{*} The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\mu=489$ [1+ 746 (t-270)].

COEFFICIENT OF VISCOSITY OF GASES.

Temperature Coefficients.

If μ_t = the viscosity at t^o C, μ_o = the vicosity at t^o , α = the coefficient of expansion, β , γ , and n = coefficients independent of l, then

- (I) $\mu_t = \mu_0(1 + \alpha t)^n$. (Meyer, Obermayer, Puluj, Breitenbach.)
- (II) $=\mu_0(1+\beta l)$. (Meyer, Obermayer.)

(III)
$$= \mu_o (1 + \alpha t)^{\frac{1}{2}} (1 + \gamma t)^2. \text{ (Schumann.)}$$
(IV)
$$= \mu_o \frac{1 + \frac{C}{273}}{1 + \frac{C}{T}} \sqrt{1 + \frac{t}{273}}. \text{ (Sutherland.)}$$

Gas.	μο107.	a,	Constants.	Range ° C.	Refer- ence.
Air *	1733.1 1811. 2208. - 2208. - 2733. 698.4 1387.9 1497.2 1382.1 1625.2 689. 961.3 922.2 889.03 - 1969. 2348. 857.4 - 1620. 1658.6	a. 0.003665 .003665004003701 .003665 .004158003665 .003665	Constants. $n=0.77$ $C=119.4$ $n=0.7675$ $n=0.7544$ $n=0.7544$; $C=111.3$ $n=0.815$; $C=150.2$ $n=0.8119$ $\gamma=0.00185$ $C=239.7$ $\gamma=0.000889$ $\beta=0.00348$; $n=0.941$ $\beta=0.00269$; $n=0.738$ $n=0.94$ $C=225.9$ $\beta=0.00350$; $n=0.958$ $\beta=0.00381$; $n=0.972$ $n=0.681$; $C=72.2$ $n=0.6852$; $C=80.3$ $n=0.6771$ $C=71.7$ $n=0.681$; $C=72.2$ $n=0.687$; $C=72.2$	Range ° C. 0-100 - 15.0-99.7 99.7-182.9 - 15-100 14.7-99.7 18.7-100 - 12.8-100 -21.5-53.5 17.5-53.5 0-36.5 -21.5-53.5 15.6-157.3 0-15.0 15.3-99.6 99.6-184.6 - 273-380 -21.5-53.5	1 2 3 3 4 4 4 3 3 3 5 6 5 7 7 8 6 7 7 8 6 7 7 8 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Nitrogen Nitrous oxide . Oxygen	1353.3	.003003	$\beta = 0.00209$; $n = 0.730$ $\beta = 0.00345$; $n = 0.929$ n = 0.782; $C = 128.2$	-21.5-100.3 -21.5-100.3	7 " 4

- 1 Holman, Proc. Amer. Acad. 12, 1876; 21,
- 1885; Philos, Mag. (5) 3, 1877; 21, 1886. 2 Breitenbach, Wied. Ann. 5, 1901. 3 Schultze, Ann. Phys. (4) 5, 1901. 4 Rayleigh, Proc. Roy. Soc. 62, 1897; 66, 1900; 67, 1900.
 - * See Table 122 for viscosity of air.

- Schumann, Wied. Ann. 23, 1884.
 Breitenbach, Ann. Phys. 5, 1901.
 Obermayer, Wien. Ber. 73 (2A), 1876.
 Puluj, Wien. Ber. 78 (2), 1878.
 Schultze, Ann. Phys. (4) 6, 1901.

- 10 Koch, Wied. Ann. 19, 1883.

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt_p at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then $dS = -kq \frac{dc}{dr} dt.$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

Copper sulphate	Substance.	с	t°	k	Refer- ence	Substance,	с	t°	k	Refer- ence.
Copper sulphate						Calcium chloride .		8.5		4
Colyper similar 17, 0.397 3										".
Hydrochloric acid 19.2 2.21 2 Copper sulphate 1.95 17. 0.23 10dine			,	0.						"
Todine										
Nitric acid . " 19.5 2.07 2 " "			_			Copper sulphate .				2
Potassium chloride . " 17.5 1.38 2 2 " "					1					
Sodium chloride			/ -							"
Silver nitrate						Glucarina		,		
Sodium chloride " 15.0 0.94 2 " 10/8 10.14 0.329 Urea					- 1	" Grycerine				3
Urea					- 1	"				1 66
Acetic acid . 0.2 13.5 0.77 4 Hydrochloric acid . 4.52 11.5 2.93		"			1	44				"
Barium chloride		0.2				Hydrochloric acid .				4
Glycerine						" "				7.
Sodium actetate	Glycerine	44								"
" chloride " 15.0 0.94 2 " 1.48 0.969 3 Magnesium sulphate 2.18 5.5 0.28 Acetic acid 1.0 12. 0.74 6 " " . 0.541 5.5 0.28 Ammonia " 15.23 1.54 7 " " . 0.541 5.5 0.32 Formic acid " 12. 0.97 7 " " . 0.402 10. 0.34 Glycerine " 10.14 0.339 3 Potassium hydrate 0.75 12. 1.72 Hydrochloric acid " 12. 2.09 6 " " 0.492 12. 1.72 Magnesium sulphate " 7. 0.30 4 " " 0.49 12. 1.70 Potassium bromide " 10. 1.13 8 " nitrate 3.9 17.6 0.89 " hydrate " 15.0 0.94 2 " " 0.375 12. 1.70 " " 14.3 0.964 3 " " 0.3 17.6 1.28 " " 14.2 1.11		1 1	12.		1 5			11.	2.02	- "
Urea	" chloride .	1	15.0		2	" "		II.	1.84	"
Ammonia		66	14.8	0.969	3		2.18	5.5	0.28	4
Formic acid			12.	0.74	6		0.541	5.5	0.32	"
Glycerine		1	15.23	1.54	7		3.23	10.	0.27	"
Hydrochloric acid 12, 2.09 6 12, 1.70 1.7		1	12.	0.97			0.402	10.		"
Magnesium sulphate		1			3					6
Potassium bromide " 10.										"
"hydrate "12. 1.72 6 "1.4 17.6 1.10 Sodium chloride "150 0.94 2 "0.03 17.6 1.26 "hydrate "14.3 0.964 3 "0.02 17.6 1.26 "hydrate "12. 1.11 2 "sulphate 0.95 19.6 0.79 "iodide "10. 0.80 8 "0.02 19.6 0.79 Sulphuric acid "12. 0.254 "0.05 19.6 0.97 Sulphuric acid "12. 0.236 9 "0.02 19.6 0.97 Acetic acid 2.0 12. 0.69 6 "0.02 19.6 1.01 Calcium chloride "10. 0.68 8 "0.02 12. 0.535 Cadmium sulphate "19.04 0.246 9 Sodium chloride 2/8 14.33 1.013 Hydrochloric acid "12. 0.21 """ 4/8 14.33 0.996 <		1			4					1
Sodium chloride " 15.0 0.94 2					8	mitiate.				2 4
"""" """ """ """ """ """ """ """ """ "										"
"hydrate" "12. 1.11 2 "sulphate 0.95 19.6 0.79 "iodide "10. 0.80 8 "". 0.28 19.6 0.86 Sugar "12. 0.254 6 "". 0.05 19.6 0.97 Sulphuric acid "12. 1.12 6 "". 0.02 19.6 1.01 Zinc sulphate "14.8 0.236 9 Silver nitrate 3.9 12. 0.535 Acetic acid 2.0 12. 0.69 6 "". 0.9 12. 0.88 Calcium chloride "10. 0.68 8 "". 0.02 12. 1.035 Cadmium sulphate "19.04 0.246 9 Sodium chloride 2/8 14.33 1.013 Hydrochloric acid "12. 2.21 6 "". 4/8 14.33 0.996 Sollphuric acid "10. 0.90 8 "". 6/8 14.433 0.986 <										"
"iodide "10. 0.80 8 "1.0. 0.28 19.6 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.97 0.93 0.93 0.98 0.99 0.99 0.93 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 <t< td=""><td>" hydrate</td><td></td><td></td><td></td><td>3</td><td>" sulphate</td><td></td><td></td><td>1 -</td><td>"</td></t<>	" hydrate				3	" sulphate			1 -	"
Sugar . " 12. 0.254 6 " " . 0.05 19.6 0.97 Sulphuric acid " 12. 1.12 6 " " . 0.02 19.6 1.01 Zinc sulphate " 14.8 0.236 9 Silver nitrate . 3.9 12. 0.535 Acetic acid . 2.0 12. 0.69 6 " " . 0.9 12. 0.88 Calcium chloride " 10. 0.68 8 " " . 0.02 12. 1.035 Cadmium sulphate " 19.04 0.246 9 Sodium chloride 2/8 14.33 1.013 Hydrochloric acid " 12. 2.21 6 " " 4/8 14.33 0.996 Sodium iodide " 10. 0.90 8 " " 6/8 14.33 0.948 Zinc acetate " 18.05 0.210 9 " " 14/8 14/8		"			8	" " "				"
Sulphuric acid							ı	l		44
Zinc sulphate		"				" "				"
Calcium chloride " 10. 0.68 8 " " . 0.02 12. 1.035		44				Silver nitrate	1	1 /	0.535	"
Cadmium sulphate . " 19.04 0.246 9 Sodium chloride . 2/8 14.33 1.013 Hydrochloric acid . " 12. 2.21 6 " " 4/8 14.33 0.996 Sodium iodide . " 10. 0.90 8 " " 6/8 14.33 0.986 Sulphuric acid . " 12. 1.16 6 " " 10/8 14.33 0.948 Zinc acetate . " 18.05 0.210 9 " " 14/8 14.33 0.917		2.0			6	" "		12.		"
Hydrochloric acid " 12. 2.21 6 " " 4/8 14.33 0.996 Sodium iodide " 10. 0.90 8 " " 6/8 14.33 0.996 Sulphuric acid " 12. 1.16 6 " " 10/8 14.33 0.948 Zinc acetate " 18.05 0.210 9 " " 14/8 14.33 0.917			10.	0.68	8	" "	0.02	12.	1.035	"
Sodium iodide			19.04	0.246	9			14.33	1.013	3
Sulphuric acid . " 12. 1.16 6 " " . 10/8 14-33 0.948 Zinc acetate . " 18.05 0.210 9 " " . 14/8 14-33 0.917			I 2.	2.21			4/8	14.33		1 1
Zinc acetate		1 1						14.33		2
Zine acetate 13.05 0.210 9 14.33 0.91/		1 1			- 1		10/8			"
	Zinc acetate	1				•		14.33		1
		1 1			9					2
Acetic acid [3.0 12. 0.05 - " " 4.05 10. 1.90		3.0			-					"
10. 0.00 8 " 2.35 13. 1.00										".
12: 1.39 0 0.55 16: 1.34										"
	Potassium chloride									"
10, 1.27 0	- cassian chonac.		10.	1.2/		, ,	0.005	10.	1.50	

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

Euler, Wied. Ann. 63, 1897.
 Thovert, C. R. 133, 1901; 134, 1902.
 Heimbrodt, Diss. Leipzig, 1903.
 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

⁵ Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892.

⁷ Abegg, Zeitschr. Phys. Chem. 11, 1893. 8 Schuhmeister, Wien. Ber. 79 (2), 1879. 9 Seitz, Wied. Ann. 64, 1898.

DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.*

Vapor.	Temp. C.	kt for vapor diffusing into hydrogen.	kt for vapor diffusing into air.	kt for vapor diffusing into carbon dioxide.
Acids : Formic	0.0 65.4 84.9 0.0 65.5 98.5 0.0 98.0	0.5131 0.7873 0.8830 0.4040 0.6211 0.7481 0.2118	0.1315 0.2035 0.2244 0.1061 0.1578 0.1965 0.0555 0.1031	0.0879 0.1343 0.1519 0.0713 0.1048 0.1321 0.0375 0.0696
Alcohols: Methyl " Ethyl " Propyl " Butyl Amyl Hexyl	0.0 25.6 49.6 0.0 40.4 66.9 0.0 66.9 83.5 0.0 99.0 0.0	0.5001 0.6015 0.6738 0.3806 0.5030 0.5430 0.3153 0.4832 0.5434 0.2716 0.5045 0.2351 0.4362 0.1998 0.3712	0.1325 0.1620 0.1809 0.0994 0.1372 0.1475 0.0803 0.1237 0.1379 0.0681 0.1265 0.0589 0.1094 0.0499	0.0\$80 0.1046 0.1234 0.0693 0.0898 0.1026 0.0577 0.0901 0.0976 0.0476 0.0884 0.0422 0.0784 0.0351
Benzene	0.0	0.2940	0.0751	0.0527
	19.9	0.3409	0.0877	0.0609
	45.0	0.3993	0.1011	0.0715
Carbon disulphide	0.0	0.3690	0.0883	0.0629
	19.9	0.4255	0.1015	0.0726
	32.8	0.4626	0.1120	0.0789
Esters: Methyl acetate """ Ethyl "" Methyl butyrate Ethyl "" Ethyl "" valerate " valerate	0.0 20.3 0.0 46.1 0.0 92.1 0.0 96.5 0.0 97.6	0.3277 0.3928 0.2373 0.3729 0.2422 0.4308 0.2238 0.4112 0.2050 0.3784	0.0840 0.1013 0.0630 0.0970 0.0640 0.1139 0.0573 0.1064 0.0505	0.0557 0.0079 0.0450 0.0606 0.0438 0.0809 0.0406 0.0756 0.0366 0.0076
Ether	o.o	0.2960	0.0775	0.0552
	19.9	0.3410	0.0893	0.0636
Water	0.0	0.6870	0.1980	0.1310
	49.5	1.0000	0.2827	0.1811
	92.4	1.1794	0.3451	0.2384

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{\rho}\right)^n \frac{76}{\rho}$, where T is temperature absolute and ρ the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_2$, n=1.968; $CO_2 - N_2O$, n=2.05; $CO_2 - H$, n=1.742; CO - O, n=1.75; H - O, n=1.75; O - N, n=1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 126. — Coefficients of Diffusion for Various Gases and Vapors.*

Gas or Vapor diffusing.	Gas or Vapor diffused into.	Temp.	Coefficient of Diffusion.	Authority.
Air Carbon dioxide """ """ Carbon disulphide Carbon monoxide """ """ Ether """ Hydrogen """ "" "" "" "" "" "" "" "" "" "" "" "	Hydrogen Oxygen Air " Carbon monoxide Hydrogen Methane Nitrous oxide Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Carbon dioxide Ethylene Hydrogen Oxygen Air Carbon dioxide Ethulene Ethylene Structure Methane Carbon dioxide Ethane Ethylene Methane Nitrous oxide Oxygen " Carbon dioxide Oxygen " Carbon dioxide Hydrogen Nitrogen Nitrogen Hydrogen Nitrogen Hydrogen Air " Hydrogen	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.661 0.1775 0.1423 0.1360 0.1405 0.1314 0.5437 0.1465 0.0983 0.1802 0.0995 0.1314 0.101 0.6422 0.1802 0.1872 0.0827 0.3054 0.6340 0.5384 0.6488 0.4593 0.4863 0.6254 0.5347 0.6788 0.1787 0.1787 0.1787 0.1710 0.14828 0.2390 0.2475	Schulze. Obermayer. Loschmidt. Waitz. Loschmidt. Obermayer. " Loschmidt. Obermayer. " Loschmidt. Obermayer. " Cobermayer. " " " " " " " " " " " " " " " " " " "

^{*} Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

TABLE 127. - Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2};$ where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal; the time; k, the diffusion constant = the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.

Diffusing Metal.	Dissolving Metal.	Tempera- ture O C.	k.	Diffusing Metal.	Dissolving Metal.	Tempera- ture OC.	k.
Gold	Lead . " . " . " . Bismuth Tin	555 492 251 200 165 100 555 555	3.19 3.00 0.03 0.008 0.004 0.00002 4.52 4.65 4.14	Platinum . Lead Rhodium . Tin Lead Zinc Sodium . Potassium Gold	Lead . Tin Lead . Mercury " . " . " .	492 555 550 15 15 15 15	1.69 3.18 3.04 1.22* 1.0* 1.0* 0.45* 0.40* 0.72*

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

^{*} These values are from Guthrie.

SOLUBILITY OF INORCANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the *anhydrous* salt soluble in 1000 grams of water at the given temperatures.

6.1					Temp	erature (Centigrad	е.	Temperature Centigrade.												
Salt.	ಂ	100	200	300	400	500	60°	70°	8o°	900	1000										
$AgNO_3$ $Al_2(SO_4)_3$	1150	1600 335	2150 362	2700 404	3350 457	4000 521	4700 591	5500 662	6500 731	7600 SoS	9100 Sg1										
$Al_2K_2(SO_4)_4$ $Al_2(NII_4)_2(SO_4)_4$.	30 26	45	66	84	124	1 59	248	270	352	_	1540										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	316	333	357	382	408 408	436	62 464	101	95	6	157 588										
$Ba(NO_3)_2$	50	70	92	116	142	171	203	494 236	524 270	556 306	342										
$CaCl_2$	595 405	650 450	745	1010 565	650	935	1 368	950	960	1 527	1590										
CsCl	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705										
$CsNO_3$ Cs_2SO_4	93 1671	149 1731	230 1787	339 1841	472 1899	644	838	2050	1340	1630	1970										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	818	-	1250	-	1598	-	1791	-	207Š	-	-										
FeCl ₂	1.49 -	-	685	255	²⁹⁵	336 820	390	457	535	1050	735 1060										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744 156	208	91Š 264	330	402	3151 486	550	560	5258 506	430	5357										
$egin{array}{ccccc} \operatorname{HgCl}_2 & . & . & . & . \\ \operatorname{KBr} & . & . & . & . & . \end{array}$	43	66	.74	84	96	113	139	173	243	371	540										
K_2CO_3	540	_	650	1140	760	1210	860 1270	1330	955	1470	1050										
KCl	285	312	343	373	401	429	455	483	510	538	566										
K_2CrO_4	33 589	50 609	71 629	650	670	197 690	260 710	3 ² 5 73 ⁰	396 751	475 771	560 791										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 225	85 277	131 332	390	292 453	522	505 600	-	730	_	1020										
KI	1279	1361	1442	1523	1600	1680	1760	1840	1920	2010	2090										
KNO ₃	133 970	209	316	458 1260	639 1360	855	1099	1380	1690	2040 1680	2460 1780										
K_2 PtCl ₆	7	9	ΙI	14	18	22	26	32	38	45	52										
K_2SO_4 LiOH	74	92 127	111	130	148	165	182	198 144	214 153	228	241										
$MgCl_2$ $MgSO_4$ (7aq)	528 260	535	545	~	575	-	610		660	-	730										
" (6aq)	408	309 422	356 439	409 453	456	504	550	596	642	- 689	738										
NH ₄ Cl	297 119	333	372 210	414 270	458	504	552	602	656	713	773										
NH_4NO_3	1183	-	-	2418	2970	3540?	4300?	5130?	5800	7400	8710										
$(NH_4)_2SO_4.$	706 795	730 845	754 903	780 -	810 10 5 8	844 1160	880 1170	916	953 1185	992	1033										
$Na_2B_4O_7$	-	16	-	39	-	105	200	244	314	408	523										
Na_2CO_3 . (10aq) (7aq)	7 I 204	126 263	335	409	(1aq)	47.5	464	458	452	452	452										
NaCl	356 820	357 890	358	360	363	367	371	37.5	3Š0	385	391										
Na ₂ CrO ₄	317	502	990	-	960	1050	1470	_	1750 1240	-	2040 1260										
$Na_2Cr_2O_7$ NaHCO ₃	1630	1700	1800	1970	2200 127	2480 145	2830 164	3230	3860	-	4330										
Na ₂ HPO ₄	25	39	93	241	639	-	- '	949	-	-	988										
$NaI \dots NaNO_3 \dots$	730	805	1790 880	96 2	2050	2280 1140	2570 1246	1360	2950 1480	1610	3020 1755										

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 128 (concluded) — Solubility of Inorganic Salts in Water; Variation with the Temperature.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

Salt.				,	Гетрега	iture Ce	ntigrade	÷.			
Sait.	o ^O	10 ⁰	200	30°	40 ⁰	500	600	7º°	80°	90°	100°
NaOH	420 32 141 50 196 525 - 272 5 365 770 195 364 442 - 395	515 39 90 305 610 600 6 444 844 339 426 483 - 549	1090 62 287 194 447 700 640 - 8 523 911 533 482 539 10	1190 99 - 400 - 847 680 425 12 607 976 813 535 600 12 876	1290 135 495 482 1026 720 - 15 694 1035 1167 585 667 14	1450 174 - 468 1697 760 502 20 787 1093 1556 631 744 17 926	1740 220 - 455 2067 810 548 24 880 1155 2000 674 831 21 940	255 - 445 - 594 28 977 1214 2510 714 896 25 956	3130 300 437 2488 632 33 1076 1272 3090 750 924 30 972	- 429 2542 688 - 1174 1331 3750 787 962 34 990	- - 330 427 2660 - 776 48 1270 1389 4520 818 1019 40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -2 39 27 442 948	10 - 2 62 37 - -	3 96 49 -	20 - 5 143 62 - -	30 40 6 209 76 - 2069 700	51 25 8 304 92 - 768	16 10 462 109 104	11 13 695 127 72 72 890	16 1110 146 69 860	20 2000 165 58 920	4140 - 47 - 785

TABLE 129. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

Salt.	00	100	20 ⁰	30°	40°	50°	60°	70 ⁰	80°	90 ⁰	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 28 1150 92 2900 3	140	102 69 1390 206 3350 6	159 106 1560 291 -	228 162 1760 433 3810	321 244 1950 595 -	445 358 2180 783 4550 24	635 511 2440 999 - 32	978 708 2730 1250 5750 45	1200 - 3070 1530 - 57	- 1209 3430 1850 7900 69

TABLE 130. - Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

Gas.	oo	100	200	30 ⁰	40 ⁰	50°	60°	70 ⁰	80°
$\begin{array}{c} O_2 \\ H_2 \\ N_2 \\ Br_2 \\ Cl_2 \\ CO_2 \\ H_2S \\ NH_3 \\ SO_2 \end{array}$	3:35	.0551 .00174 .0230 248. 9.97 2.32 5.30 689.	.0443 .00160 .0189 148. 7.29 1.69 3.98 535.	.0368 .00147 .0161 94. 5.72 1.26 - 422. 78.	.0311 .00138 .0139 62. 4.59 0.97	.0263 .00129 .0121 40. 3.93 0.76	.0221 .00118 .0105 28. 3.30 0.58	.0181 .00102 .0089 18. 2.79 - -	.0135 .00079 .0069 11. 2.23 - -

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

CHANCE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.*

	CdSO ₄ 8/3	3H ₂ O at 25°	ZnSO ₄₋₇	H ₂ O at 25°	Mannite	e at 24.05°	NaCl :	at 24.05°
Pressure in atmos- pheres.	Conc. of satd. soln. gs. CdSO ₄ per 100 gs. H ₂ U	Percentage change.	Conc. of satd. solu. gs. ZnSO ₄ per too gs. H ₂ O.	Percentage change.	Conc. of satd. soln. gs. mounite per 100 gs. H ₂ O.	Percentage change.	Conc. of satd. solu. gs. NaCl. per 100 gs. H ₂ U.	Percentage change.
1	76.So	_	57.95		20.66		35.90	_
500	78. 0 1	+ 1.57	57.87	- 0.14	21.14	+ 2.32	36.55	+ 1.81
1000	78.84	+ 2.68	57.65	— 0.52	21,40	+ 3.57	37.02	+ 3.12
1500	_	_	_		21.64	+ 4.72	37.36	+ 4.07

^{*} E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical resume of earlier work along this line.

ABSORPTION OF CASES BY LIQUIDS.*

Temperature					Assor	РТ	ion Coeffi	CIENTS, a_t ,	FOR	r Gase	S IN	WATE	R.		
Centigrade.		Carb dioxi C C	de.	moi	arbon noxide. CO	F	Hydrogen. H	Nitrogen. N		Nitri oxid N(e.	OX	rous ide. ₂ O	С	Oxygen. O
0 5 10 15 20 25 30 40 50		1.79 1.4 1.10 0.99 0.79	50 85 02 01 72 06	0.0354 .0315 .0282 .0254 .0232 .0214 .0200 .0177 .0161		C	0.02110 .02022 .01944 .01875 .01809 .01745 .01690 .01644 .01608	0.02399 0.0738 .02134 .0646 .01918 .0571 .01742 .0515 .01599 .0471 .01370 .0492 .01370 .0400 .01195 .0351 .01074 .0315 .01011 .0263		6 I 5 I 22 00 31	1.048 0.8778 0.7377 0.6294 0.5443 - - -			04925 04335 03852 03856 03137 02874 02646 02316 02080 01690	
Temperature Centigrade.		Air	:	Ammonia. NH ₃						Methane. CH ₄		Hydrogen sulphide. H ₂ S			Sulphur lioxide. SO ₂
0 5 10 15 20 25		.024 .021 .019 .017	79 153 195	9 8 7 6	1174.6 971.5 840.2 756.0 683.1 610.8		3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488		0.054 .048 .043 .039 .034	89 67 03 99	3. 3. 3. 2.	371 965 586 233 905 604		79·79 67.48 5 6.65 47·28 39·37 32·79
			A	BSOF	RPTION (COE	EFFICIENTS,	a_t , for GA	SES	s in A	СОН	or, C ₂	H₅OH.		
Temperature Centigrade.	Carb dioxi CC	de.	Ethyl C ₂ I			ie.	Hydrogen. H	Nitrogen.	0	Nitric oxide. NO	ox	rous ide. ₂ O	Hydrog sulphic H ₂ S	le.	Sulphur dioxide. SO ₂
0 5 10 15 20 25	4.32 3.86 3.51 3.10 2.9. 2.7.	91 14 99 46	3.5 3.3 3.0 2.8 2.7 2.5	323 .5086 886 .4953 882 .4828		5	0.0692 .0685 .0679 .0673 .0667	0.1263 .1241 .1228 .1214 .1204 .1196		0.3161 4.196 .2998 3.836 .2861 3.52 .2748 3.21 .2659 3.01 .2595 2.816		838 525 215 015	17.8 14.7 11.9 9.5 7.4 5.6	Ś 9 4 1	328.6 251.7 190.3 144.5 114.5 99.8

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{23} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 133. - Water and Alcohol in Contact with Air.

TABLE 135 .- Solutions of Salts in Water. †

Temp.	in dy	e tension mes per meter.	Temp.	in dy	e tension ynes per neter.	Temp.	Surface tension in dynes per cen- timeter.
C.	Water.	Ethyl alcohol.	C.*	Water.	Ethyl alcohol.	с.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3	80° 85 90 95 100 -	64.3 63.6 62.9 62.2 61.5

			,
Salt in solution.	Density.	Temp. C.°	Tension in dynes per cm.
BaCl ₂	1.2820	15-16	81.8
CaCl ₂	1.0497	15–16	77·5 95.0
44	1.2773	19	90.2
HC1	1.1190	20	73.6
11.63	1.0242	20	75-3 82.8
KCl	1.1699	15-16	82.S 80.1
66	1.0463	15-16	78.2
$MgCl_2$	1.2338	15-16	90.1 85.2
44	1.0362	15-16	78.0
NaCl	1.1932	20	85.8
"	1.1074	20	So. 5
NH ₄ Cl	1.0758	16	77.6 84.3
44	1.0535	16	81.7 78.8
SrCl ₂	1.3114	15-16	85.6
"	1.1204	15-16	79-4 77.8
K_2CO_3	1.3575	15-16 15-16 15-16	90.9
	1.1576	15-16	Ś1.Ś 77∙5
Na ₂ CO ₃	1.1329	14-15	79.3
66	1.0605	14-15	77.8
KNO_3	1.1263	14	77.2 78.9
NaNO ₃	1.0466	14 12	77.6
64	1.1311	12	83.5 So.o
CuSO ₄	1.1775 1.0276	15-16 15-16	78.6
H_2SO_4	1.8278	15-10	77.0 63.0?
"	1.4453	15	79-7
K ₂ SO ₄	1.2636	15 15-16	79.7 78.0
Maso	1.0360	15-16 15-16	77-4
MgSO ₄	1.2744 1.0680	15-16	S3.2 77.8
Mn ₂ SO ₄	1.1119	15-16	79.1
ZnSO ₄	1.0329 1.3981	15-16 15-16	77·3 83 3
"	1.2830	15-16 15-16	80.7
	1.1039	15-16	77.8

TABLE 134. - Miscellaneous Liquids in Contact with Air.

Aceton 16.8 Acetic acid 17.0 30.2 Amyl alcohol 15.0 24.8 Benzole 15.0 28.8 Butyric acid 15.0 28.7 Carbon disulphide 20.0 20.5 Ether 20.0 Ether 20.0 18.4 Glycerine 17.0 63.14 Hall. Hexane 0.0 21.2 % Schiff, " 68.0 Mercury 18.0 Methyl alcohol . 15.0 20.0 Methyl alcohol . 15.0 20.0 Propyl alcohol . 5.8 25.9 Propyl alcohol . 5.8 25.9 Propyl alcohol	Liquid.	Temp. C.°	Surface tension in dynes per cen- timeter.	Authority.
Turpentine 21.0 28.5 Average of various.	Acetic acid	17.0 15.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 18.0 15.0 20.0 20.0 5.8 97.1 15.0	30.2 24.8 28.8 28.7 30.5 28.3 18.4 63.14 21.2 14.2 520.0 24.7 25.9 25.9 18.0 29.1	Average of various. " Quincke. Average of various. Hall. Schiff. " Average of various. " Magie. Schiff. " " " " "

* This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1800) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1830) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS.

TABLE 136. - Surface Tension of Liquids.*

Liquid.				Specific	Surface ter timeter of l	nsion in dyn- iquid in con	es per cen- tact with —		
Enquici						gravity.	Air.	Water.	Mercury.
Water		•	•			1.0	75.0	0.0	(392)
Mercury						13.543	513.0	392.0	0
Bisulphide of carbon .						1.2687	30.5	41.7	(387)
Chloroform					-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol						0.7906	(24.1)	-	364
Olive oil						0.9136	34.6	18.6	317
Turpentine						0.8867	28.8	11.5	241
Petroleum						•7977	29.7	(28.9)	271
Hydrochloric acid .						1.10	(72.9)	-	(392)
Hyposulphite of soda soluti	on	•	•	•	•	1.1248	69.9		429

TABLE 137. — Surface Tension of Liquids at Solidifying Point.

Substa	nce.		Temperature of solidification.	Surface tension in dynes per centimeter.	Substance.	Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimeter.
Platinum Gold . Zinc . Tin . Mercury Lead . Silver . Bismuth Potassium Sodium		 	2000 1200 360 230 -40 330 1000 265 58	1691 1003 877 599 588 457 427 1390 371 258	Antimony Borax Carbonate of soda Chloride of sodium Water Selenium Sulphur Phosphorus Wax	432 1000 1000 - 0 217 111 43 68	249 216 210 116 87.9‡ 71.8 42.1 42.0 34.1

TABLE 138. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. || They find that a film of oleate of soda solution containing I of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 222).

When the percentage of KNO₃ is diminished, the thickness of the black patch increases. = 3 KNO₃ 0.5 0.0 I For example,

Thickness = $12.4 \ 13.5 \ 14.5 \ 22.1 \ micro-mm$.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

- I part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- 1 part soap to 80 of water gave thickness 29.3 micro-mm.

† Quincke, "Pogg. Ann." vol. 135, p. 661. ‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

" 'Proc. Roy. Soc.' 1877, and " Phil. Trans. Roy. Soc.' 1881, 1883, and 1893.

Note. - Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

^{*} This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 20° C.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

Tem- pera- ture Cent.	Acetone. C ₃ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form. CHCl ₃	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH ₄ O	Turpen- tine. C ₁₀ H ₆
-25° -20 -15 -10 -5	- - - -	- .58 .88 1.29 1.83	4.73 6.16 7.94 10.13	.98 1.35 1.85 2.48	-	- •33 •51 •65 •91	6.89 8.93 11.47 14.61	4.41 5.92 7.81 10.15 13.06	.41 .63 .93 1.35 1.92	1 - 1
0 5 10 15 20	17.96	2.53 3.42 4.52 5.89 7.56	12.79 16.00 19.85 24.41 29.80	3.29 4.32 5.60 7.17 9.10	5.97 10.05 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	16.56 20.72 25.74 31.69 38.70	2.68 3.69 5.01 6.71 8.87	.212944
25 30 35 40 45	22.63 28.10 34.52 42.01 50.75	9.59 12.02 14.93 18.36 22.41	36.11 43.46 51.97 61.75 72.95	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	46.91 56.45 67.49 80.19 94.73	11.60 15.00 19.20 24.35 30.61	.69 - 1.08
50 55 60 65 70	62.29 72.59 86.05 101.43 118.94	27.14 32.64 39.01 46.34 54.74	85.71 100.16 116.45 134.75 155.21	31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	21.99 27.86 35.02 43.69 54.11	126.48 148.11 172.50 199.89 230.49	111.28 130.03 151.19 174.95 201.51	38.17 47.22 57.99 70.73 85.71	1.70 - 2.65 - 4.06
75 80 85 90	138.76 161.10 186.18 214.17 245.28	64.32 75.19 87.46 101.27 116.75	177.99 203.25 231.17 261.91 296.63	72.57 84.33 97.51 112.23 128.69	121.42 140.76 162.41 186.52 213.28	66.55 81.29 98.64 118.93 142.51	264.54 302.28 343.95 389.83 440.18	231.07 263.86 300.06 339.89 383.55	103.21 123.85 147.09 174.17 205.17	6.13 - 9.06
100 105 110 115 120	279.73 317.70 359.40 405.00 454.69	134.01 153.18 174.44 197.82 223.54	332.51 372.72 416.41 463.74 514.88	146.71 166.72 188.74 212.91 239.37	242.85 275.40 311.10 350.10 392.57	169.75 201.04 236.76 277.34 323.17	495·33 555.62 621.46 693·33 771·92	431.23 483.12 539.40 600.24 665.80	240.51 280.63 325.96 376.98 434.18	13.11 - 18.60 - 25.70
125 130 135 140 145	508.62 566.97 629.87 697.44	251.71 282.43 315.85 352.07 391.21	569.97 629.16 692.59 760.40 832.69	268.24 299.69 333.86 370.90 411.00	438.66 488.51 542.25 600.02 661.92	374.69 432.30 496.42 567.46 645.80		736.22 811.65 892.19 977.96	498.05 509.13 647.93 733.71 830.89	34.90 46.40
150 155 160 165 170		433·37 478.65 527·14 568·30 634·07	909.59	454.31 501.02 551.31 605.38 663.44	728.06 798.53 873.42 952.78	731.84 825.92	-	- - - -	936.13	60.50 68.60 77.50 -

VAPOR PRESSURES.

Temperature, Centigrade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₅ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₃ Cl	Methylic ether. C ₂ H ₆ O	$egin{array}{c} ext{Nitrous} \ ext{oxide.} \ ext{N}_2 ext{O} \end{array}$	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₂	Hydrogen sulphide. H ₂ S
-30°	86.61	_	11.02	-	57.90	57.65	-	58. 5 2	28.75	-
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	1 1 1 1	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37·38 47·95 60·79 76·25 94·69	374-93 443.85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	7.47.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 -	415.10 477.80 - -	4664.14 5170.85 6335.98	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	- - - -	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22 -		1 1 1 1	- - -	521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57	- - - -	498.27 561.41 630.16 704.75 785.39	1	-		- - - -	-		- - -
100	4660.82	-	872.28	-	_	-	-	-	_	-

TABLES 140-141.

VAPOR PRESSURE.

TABLE 140. - Vapor Pressure of Ethyl Alcohol.*

Ü	0∘	1°	2°	3>	4 °	5°	6 °	7 °	80	9°			
Temp.			Va	por pressur	e in millim	eters of me	ercury at o	° C.					
0° 10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86			
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	155.80 253.80 400.40 613.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.35 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45			
From	the form	nula log į	$\phi = a + a$	$ba^t + c\beta^t$	Ramsay	and You	ng obtai	n the foll	owing nu	mbers.†			
Ü	0°	10°	20°	30 °	40 °	50°	60°	70°	80°	90°			
Temp.		Vapor pressure in millimeters of mercury at o° C.											
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.			

TABLE 141. - Vapor Pressure of Methyl Alcohol.;

. C.	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°				
Temp.		Vapor pressure in millimeters of mercury at o° C.												
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0				
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4				

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1}.99682424$ (c is negative).

[‡] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33). 8mithsonian Tables.

TABLE 142.
VAPOR PRESSURE.*

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

Temp.	0°	1°	2°	3°	4 °	5 °	6 °	7 °	8°	9°		
				(a) Car	BON Di	SULPHID	Ε.					
0° 10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25		
(b) Chlorobenzene.												
20 ° 3° 4°	8.65 14.95 25.10	9.1.4 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	1 3.42 22.69 37.08	14.17 23.87 38.88		
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25		
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333·35 454·65 608·75	344.15 468.50 626.15	355.25 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65 –		
				(c)]	Вкомові	ENZENE.						
4 0°	-	_	_	_	_	12.40	13.06	13.75	14.47	15.22		
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08		
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25		
150	649.05	666.25	683.So	701.65	719.95	738.55	757.55	776.95	796.70	816.90		
		1	 	((Anil	INE.	1	1	ı			
80 °	18.80 30.10	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06		
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.So 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82		
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45		

^{*} These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

TABLE 142 (continued).

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp.	0 °	1°	2	3°	4°	5°	6°	7 °	8 °	9>
<u></u>				(e) ME	riiyl Sa	LICYLAT	Е.			1
70 °	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4·34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7·42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455.35 585.70 744.35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
			1	(f) Bro	MONAPH	THALINE	Σ.			
110°	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	395.60	405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545.35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
				(g) Merci	JRY.				
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528.63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.8 22.5 6.6 12.3 13.5	36.5 61.0 15.4 22.5 27.0	179.0 34.4 39.0	318.0					
Ba(ClO ₃) ₂	15.8 16.4 16.8 9.9 16.4	33.3 36.7 38.8 23.0 34.8	70.5 77.6 91.4 56.0 74.6	1 50.0 1 06.0 1 39.3	204.7 161.7	205.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.0 17.7 4.1 7.6 8.6	39.8 44.2 8.9 14.8 17.8	95.3 105.8 18.1 33.5 36.7	166.6 191.0 52.7 55.7	241.5 283.3	319.5 368.5			
CdCl ₂	9.6 15.9 17.5 5.5	18.8 36.1	36.7 78.0	57.0 122.2	77.3	99.0			
$CoCl_2$	15.0 17.3 5.8 6.0 6.6	34.8 39.2 10.7 12.3 14.0	83.0 89.0 24.0 25.1 28.6	136.0 152.0 42.4 38.0 45.2	186.4 218.7 51.0 62.0	282.0 81.5	332.0	146.9	189.5
H ₃ AsO ₄	7·3 12.9 10.2 10.3 10.6 10.9	26.5 19.5 21.1 21.6 22.4	30.2 62.8 33.3 40.1 42.8 45.0	46.4 104.0 47.8 57.6 62.1	64.9 148.0 60.5 74.5 80.0	198.4 73.1 88.2	247.0 85.2 102.1	343.2	148.0
KHSO ₄	10.9 11.1 11.5 12.2	21.9 22.8 22.3 24.4	43·3 44.8 48.8	65.3 67.0 74.1	85.5 90.0	107.8 110.5	129.2 130.7	170.0 167.0	198.8
KI	11.6 12.5 13.9 13.9 14.4 15.0	23.6 25.3 28.3 33.0 31.0 29.5	59.0 52.2 59.8 75.0 68.3 64.0	77.6 82.6 94.2 123.8 105.5 99.2	112.2 131.0 175.4 152.0 140.0	132.0 141.5 226.4 209.0 181.8	160.0 171.8 258.5 223.0	210.0 225.5 350.0 309.5	255.0 278.5 387.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.2 12.2 12.1 12.2 13.3	29.5 25.9 25.5 26.2 28.1	60.0 55.7 57.1 60.0 56.8	88.9 95.0 97.0 89.0	122.2 132.5 140.0	155.1 175.5 186.3	188.0 219.5 241.5	253.4 311.5 341.5	309.2 393.5 438.0
$\begin{array}{ccccc} LiIISO_4 & . & . & . \\ LiI & . & . & . \\ Li_2SiFl_6 & . & . & . \\ LiOH & . & . & . \\ Li_2CrO_4 & . & . & . \\ \end{array}$	12.8 13.6 15.4 15. 9 16.4	27.0 28.6 34.0 37.4 32.6	57.0 64.7 70.0 78.1 74.0	93.0 105.2 106.0 120.0	130.0 154.5 171.0	168.0 206.0	264.0	357.0	445.0

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24.5 100.5 101.0 115.8 116.0	47.5 183.3 174.8 205.3	277.0 298.5	377.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0 15.0 10.5 10.9 10.6	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1 111.5	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
$NaClO_3$ $(NaPO_3)_6$	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
NaOIH	11.8 11.6 12.1	22.8 24.4 23.5	48.2 50.0 43.0	77·3 75.0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	172.5 1.46.5 122.1	243.3 189.0	31.4.0 226.2
NaHCO ₂ NaSO ₄	12.9 12.6	24.I 25.0	48.2 48.9	77.6 74.2	102.2	127.8	152.0	198.0	239.4
NaCl	12.3	25.2 25.0	52.I 54.I	80.0 81.3	111.0 108.8	143.0	176.5		
NaBr	12.6	25.9	57.0	89.2	124.2	159.5	197.5	268.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.1 13.2	25.6 22.0	60.2	99.5	1 36.7	177.5	221.0	301.5	370.0
$egin{array}{cccc} Na_2CO_3 & . & . & . \\ Na_2C_2O_4 & . & . & . \\ Na_2WO_4 & . & . & . \end{array}$	14.3 14.5 14.8	27.3 30.0 33.6	53.5 65.8 71.6	80.2 105.8 115.7	111.0 146.0 162.6				
Na ₃ PO ₄ (NaPO ₃) ₃	16.5 17.1 12.8	30.0 36.5 22.0	52.5 42.1	62.7	82.0	103.8	121.0	I 52.2	180.0
$(NH_4)_2SiFl_6$ NH_4Cl	11.5	25.0 23.7	44.5 45.1	69.3	94.2	118.5	138.2	179.0	213.8
NH ₄ HSO ₄	11.5	22.0	46.8	71.0	94.5	118.	139.0	181.2	218.0
$(NH_4)_2SO_4$ NH_4Br	11.0	24.0 23.9	46.5 48.8	69.5 74.1	93.0 99.4	117.0 121.5	141.8 145.5	190.2	228.5
NH ₄ I	12.9 5.0	25.1 10.2	49.8 21.5	78.5	104.5	1 32.3	156.0	200.0	243.5
$NiCl_2$ $Ni(NO_3)_2$	16.1 16.1 12.3	37.0 37.3 23.5	86.7 91.3 45.0	147.0 156.2 63.0	212.8 235.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.2 15.8	20.3 31.0	47.0 64.0	97.4	131.4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.8 17.8 4.9	38.8 42.0 10.4	91.4 101.1 21.5	156.8 179.0 42.1	223.3 267.0 66.2	281.5			
$ZnCl_2$ $Zn(NO_3)_2$	9.2 16.6	18.7 39.0	46.2 93·5	75.0 157.5	107.0 223.8	153.0	195.0		

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 144. — At Low Temperature. Over Ice.

Temperatures Centigrade.

	0	1	2	3	4	5	6	7	8	9
60	mm. 0.00S	mm.	mm. 0.005	mm.	mm.	mm. 0.003	mm.	mm.	mm.	mm.
to		.026 .083	.023	.021	.01Š	.016	0.014	0.012	0.010	0.009
-30	.280	.252	.226	.203	.059 .182	.052	.047 .146	.042	.037	.033
-20 -10	0.770 1.947	0.699 1.780	0.633	0.574 1.486	0.519 1.356	0.469	0.424	0.383	·345 0.933	0.848
-0	4.579	4.215	3.879	3.566	3.277	3.009	2.762	2.533	2.322	2.127

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, 1912.

TABLE 145. - At Low Temperature. Over Water.

	0	1	2	3	4	5	6	7	8	9
-10	mm. 2.144	mm. 1.979	mm. 1.826	mm. 1.684	mm. 1.551	mm. 1.429	mm. 1.315	mm.	mm.	mm.
- 0	4·579 4·579	4.255 4.926	3.952 5-294	3.669 5.685	3.404 6.101	3.158 6.543	2.928 7.014	2.712 7.514	2.509 8.046	2.321 8.610

Taken from Landolt-Börnstein, Physikalisch-Chemische Tabellen, 1912.

TABLE 146. -0° to 50° C. Hydrogen Scale.

Values interpolated between those given by Scheel and Heuse for every degree between 0° and 50° C. Annalen der Physik. (4), 31, p. 731, 1910.

			1				1			т,
	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
00	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm,
1.	4.579 4.926	4.613 4.962	4.647 4.998	4.681	4.715	4.750	4.785	4.820	4.855	4.890
2.	5.294	5.332	5.370	5.034 5.408	5.07 I 5.447	5.107 5.486	5.144	5.181	5.218	5.256
3.	5.685	5.725	5.766	5.807	5.848	5.889	5.525 5.931	5.564 5.973	6.015	5.644 6.058
4.	6.101	6.144	6.187	6.230	6.274	6.318	6.363	6.408	6.453	6.498
1 '			,	150	0.2/4	0.5.0	0.505	0.400	0.433	0.490
5.	6.543	6.589	6.635	6.681	6.728	6.775	6.822	6.870	6.918	6.966
5. 6.	7.014	7.063	7.112	7.171	7.210	7.260	7.310	7.361	6.412	7.463
7· 8.	7.514	7.566	7.618	7.670	7.723	7.776	7.829	7.883	7.937	7.991
	8.046	8.101	8.156	8.212	8.268	8.324	8.381	8.438	8.495	8.552
9.	8.609	8.668	8.727	8.786	8.845	8.905	8.965	9.026	9.087	9.148
10.	0.210	0.272	0.224	0.206	0.45	0.70-	0 -01	26-		00
10. 11.	9.845	9.272	9.334	9.396	9.459	9.522	9.586	9.650	9.715	9.780
12.	10.519	10.589	9.977 10.659	10.043	10.110	10.177	10.245	10.313	10.381	10.450
13.	11.233	11.307	11.381	11.455	11.530	11.605	11.681	11.757	11.834	11.100
14.	11.989	12.067	12.146	12.225	12.304	12.384	12.464	12.545	12.626	12.708
'		· /	'	3	5-4			1-1.545	12.020	12.700
15.	12.790	12.873	12.956	13.039	13.123	13.207	13.292	13.378	13.464	13.550
16.	13.637	13.724	13.812	13.900	13.989	14.078	14.168	14.258	14.350	14.441
17.	14.533	14.625	14.718	14.811	14.905	14.999	15.094	15.190	15.286	15.383
18.	15.480	15.578	15.676	1 5.775	15.874	15.974	16.074	16.175	16.276	16.378
19.	16.481	16.584	16.688	16.792	16.897	17.003	17.109	17.216	17.323	17.430
20.	17.539	17.648	17.757	17.867	17.077	18.088	18.200	18.313	18 426	.0
21.	18.655	18.770	18.886	19.002	17.977	19.236	19.354	19.473	18.426 19.592	18.540
22.	19.832	19.953	20.075	20.197	20.320	20.444	20.569	20.694	20.820	20.947
23.	21.074	21.202	21.330	21.459	21.589	21.720	21.851	21.983	22.116	22.249
24.	22.383	22.518	22.654	22.790	22.927	23.065	23.203	23.342	23.482	23.622
			٥.	'	,	3 - 3	5 - 5	3 34-	J. 1	-3.022
25.	23.763	23.905	24.048	24.192	24.336	24.481	24.627	24.773	24.920	25.068

PRESSURE OF SATURATED AQUEOUS VAPOR.

TABLE 146 (continued). — 0° to 50° C. Hydrogen Scale.

	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
26 ⁰ 27. 28. 29. 30.	mm. 25.217 26.747 28.358 30.052 31.834 33.706	mm. 25.367 26.904 28.524 30.226 32.017	mm. 25.517 27.062 28.690 30.401 32.201	mm. 25.668 27.221 28.857 30.577 32.386	mm. 25.820 27.381 29.025 30.754 32.572 34.483	mm. 25.972 27.542 29.194 30.932 32.759 34.679	nim. 26.125 27.704 29.364 31.111 32.947 34.876	mm. 26.279 27.866 29.535 31.291 33.135	mm. 26.434 28.029 29.707 31.471 33.324 35.273	mm. 26.590 28.193 29.879 31.653 33.514
32.	35.674	35.876	36.079	36.283	36.488	36.694	36.901	37.109	37.318	37.529
33.	37.741	37.953	38.166	38.380	38.595	38.812	39.030	39.249	39.469	39.689
34.	39.911	40.13.1	40.358	40.583	40.809	41.036	41.264	41.493	41.723	41.955
35.	42.188	42.422	42.657	42.893	43.130	43.368	43.607	43.847	44.089	44.332
36. 37. 38. 39.	44.577 47.082 49.708 52.459 55.341	44.82 47.34 49.98 52.74 55.63	45.06 47.00 50.25 53.02	45.30 47.86 50.52 53.30 56.23	45.55 48.12 50.79 53.58 56.53	45.80 48.38 51.06 53.87 56.83	46.05 48.64 51.33 54.16	46.30 48.90 51.60 54.45 57.43	46.56 49.17 51.88 54.75 57.74	46.82 49.44 52.16 55.05 58.05
41.	58.36	58.67	58.98	59.29	59.60	59.92	60.24	60.56	60.88	61.20
42.	61.52	61.84	62.16	62.49	62.82	63.15	63.48	63.81	64.14	64.48
43.	64.82	65.16	65.50	65.84	66.18	66.53	66.88	67.23	67.58	67.93
44.	68.28	68.63	68.99	69.35	69.71	70.07	70.43	70.79	71.16	71.53
45.	71.90	72.27	72.64	73.01	73.38	73.76	74.14	74.52	74.90	75.28
46.	75.67	76.06	76.45	76.84	77.23	77.62	78.02	78.42	78.82	79.22
47.	79.62	80.03	80.43	80.84	81.25	81.66	82.07	82.48	82.90	83.32
48.	83.74	84.16	84.59	85.02	85.45	85.88	86.31	86.74	87.17	87.61
49.	88.05	88.49	88.93	89.37	89.82	90.27	90.72	91.17	91.62	92.08

TABLE 147. 50° to 374° C. Hydrogen Scale.

	0	1	2	3	4	5	6	7	8	9
				mm.						
50°	mm.	mm.	mm.	107.24	112.56	118.11	123.89	129.90	136.16	142.68
60.	92.54	97·24 156.52	163.85	171.47	179.40	187.64	196.19	205.07	214.29	223.86
		244.11	254.82	265.91	277.41	289.32	301.65	314.42	327.64	341.32
70. 80.	233·79 355·47	370.11	385.25	400.90	417.08	433.79	451.07	468.91	487-33	506.36
90.	526.00	546.27	567.19	588.77	611.04	634.01	657.69	682.11	707.20	733-24
100.	760.00	787.57	815.9	845.1	875.1	906.1	937.9	970.6	1004.3	1038.8
110.	1074.5	1111.1	1148.7	1187.4	1227.1	1267.9	1309.8	1352.8	1397.0	1442.4
120.	1488.0	1536.6	1585.7	1636.0	1687.5	1740.5	1794.7	1850.3	1907.3	1965.8
130.	2025.6	2086.9	2149.8	2214.0	2280.0	2347.5	2416.5	2487.3	2559.7	2633.8
140.	2709.5	2787.1	2866.4	2947.7	3030.5	3115.3	3202.1	3290.8	3381.3	3474.0
150.	3568.7	3665.3	3764.1	3864.9	3968.	4073.	4181.	4290,	4402.	4517.
150.	4'-33	4752	4874	4998	5124	5253	5384	5518	5655	5794
170.	5937	608 r	6229	6379	6533	6689	6848	7010	7175	7343
180.	7514	7688	7866	8046	8230	S417	8608	8802	8999	9200
190.	9404	9612	9823	10038	10256	10479	10705	10934	11168	11406
200,	11647	11893	12143	12397	12654	12916	13183	13453	13728	14007
210.	14201	14578	14971	15167	15469	15774	16085	16401	16721	17046
220.	17376	17710	18049	18394	18743	19098	19458	19823	20193	20570
230.	20950	21336.	21728	22125	22528	22936	23350	23770	24195	24626
240.	25064	25506	25956	26412	26873	27341	27815	28294	28780	29272
250.	29771	30276	30788	31308	31833	32364	32903	33448	34001	34561
260.	35127	35700	36280	36868	37463	38065	38675	39291	39915	40547
270.	41186	41832	42487	43150	43820	44498	45184	45879	46580	47290
2 So.	48011	48738	49474	50219	50972	51734	52506	53288	54079	54878
290.	55680	56500	57330	58170	59010	59860	60730	61610	62490	63390
300.	64290	65200	66120	67060	68000	68950	69910	70890	71870	72860
310.	73860	74880	75900	76940	77980	79040	Soiio	81180	82270	83370
320.	84480	85610	86750	87900	89050	90220	91400	92600	93820	95040
330.	96270	97510	98770	100010	101320	102610	103930	105250	106580	107930
340.	109300	110670	112050	113450	114870	116300	117750	119210	120680	122160
350.	123660	125170	126690	128230	129790	131370	132960	134560	136180	137820
360.	139480	141150	142850	144560	146300	148100	149900	151700	153500	155300
370.	157200	159100	161000	163000	164900				l	1

Taken from Landolt-Börnstein Tables and based upon the following data: 50-70°, Nernet, Verh. d. D. Phys. Ges. 12, p. 565, 1910; 70-100°, Regnault, computed by Broch, 1881, improved by Wiebe, ZS. fur Instrum. 13, p. 329, 1893, also Tafeln für die Spannkraft des Wasserdampfes, Braunschweig, 1903; 100-374°, Holborn, Henning, Baumann, Annalen der Physik, 26, p. 833, 1908, 31, p. 945, 1910.

TABLE 148. — Weight in Grains of the Aqueous Vapor contained in a Cubic Foot of Saturated Air.*

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
_10 ∘	0.285 0.481	0.270 0.457	0.257 0.434	0.243 0.411	0.231 0.389	0.218	0.207 0.350	0.196 0.332	0.184	0.174
+0 10 20 30 40	0.481 0.776 1.235 1.935 2.849	0.505 0.816 1.294 2.022 2.955	0.529 0.856 1.355 2.113 3.064	0.554 0.898 1.418 2.194 3.177	0.582 0.941 1.483 2.279 3.294	0.610 0.985 1.551 2.366 3.414	0.639 1.032 1.623 2.457 3.539	0.671 1.079 1.697 2.550 3.667	0.704 1.128 1.773 2.646 3.800	0.739 1.181 1.853 2.746 3.936
50 60 70 80 90	4.076 5.745 7.980 10.934 14.790	4.222 5.941 8.240 11.275 15.234	4.372 6.142 8.508 11.626 15.689	4.526 6.349 8.782 11.987 16.155	4.685 6.563 9.066 12.356 16.634	4.849 6.782 9.356 12.736 17.124	5.018 7.009 9.655 13.127 17.626	5.191 7.241 9.962 13.526 18.142	5.370 7.480 10.277 13.937 18.671	5.555 7.726 10.601 14.359 19.212
100 110	19.7 6 6 26.112	20.335 26.832	20.917 27.570	21.514 28.325	22.125 29.096	22.7 50 29.887	23.392	24.048	24.720	25.408

^{*} See "Smithsonian Meteorological Tables," pp 132-133.

TABLE 149. — Weight in Grams of the Aqueous Vapor contained in a Cubic Meter of Saturated Air.

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-20	0.892	0.810	0.737	0.673	0.613	0.557	0.505	0.457	0.413	0.373
-10	2.154	1.978	1.811	1.658	1.519	1.395	1.282	1.177	1.079	0.982
-0	4.835	4.468	4.130	3.813	3.518	3.244	2.988	2.752	2.537	2.340
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.757
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t-t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters, and a correction is given for each centimeter at the top of the columns.* Ventilating velocity of wet thermometer about 3 meters per second.

t ₁	$\begin{vmatrix} t-t_1 \\ = 0 \end{vmatrix}$	2	4	6	8	10	12	14	16	18	20	ce per
	tions for er centi- r.†	.013	.026	-040	.053	.066	.079	.092	.106	•119	.132	Difference $\int_{\S^0} \text{of } t - t_1$
-10 -9 -8 -7 -6 -5	1.96 2.14 2.33 2.53 2.76	0.96 1.14 1.33 1.53 1.76	0.14 0.33 0.53 0.76				7. 2 0.0	0.100 0.100 0.100 0.100 0.100				
-4 -3 -2 -1	3.01 3.28 3.57 3.88 4.22	2.01 2.28 2.57 2.88 3.22	1.00 1.27 1.56 1.87 2.21	0.27 0.56 0.87 1.21	0.21	Tab Co	4·5 5·5 [‡] .07 5·5 8	0.100				
0 1 2 3 4 5	4.60 4.94 5.30 5.69 6.10	3.60 3.93 4.29 4.68 5.09	2.59 2.92 3.29 3.68 4.09	1.59 1.92 2.28 2.67 3.08	0.59 0.92 1.28 1.66 2.07	0.27 0.66 1.06	0.05					0.100 0.100 0.101 0.101
6 7 8 9	6.53 7.00 7.49 8.02 8.57	5.52 5.99 6.48 7.01 7.56	4.51 4.98 5.47 5.99 6.54	3.50 3.97 4.45 4.98 5.53	2.49 2.96 3.44 3.97 4.51	1.48 1.95 2.43 2.96 3.50	0.48 0.94 1.42 1.94 2.49	0.41 0.93 1.48	0.46			0.101
10 11 12 13 14	9.17 9.79 10.46 11.16 11.91	8.16 8.77 9.44 10.14 10.89	7.14 7.76 8.43 9.12 9.87	6.12 6.74 7.41 8.10 8.85	5.11 5.73 6.39 7.09 7.83	4.09 4.71 5.37 6.07 6.81	3.08 3.69 4.36 5.05 5.79	2.07 2.68 3.34 4.03 4.77	1.06 1.66 2.32 3.01 3.71	0.05 0.64 1.30 1.99 2.69	0.28 0.97 1.67	0.101 0.102 0.102 0.102 0.102
15 16 17 18 19	12.70 13.54 14.42 15.36 16.35	11.68 12.52 13.40 14.34 15.33	10.66 11.50 12.37 13.31 14.30	9.64 10.47 11.35 12.29 13.27	8.62 9.45 10.33 11.26 12.25	7.60 8.43 9.31 10.24 11.22	6.58 7.41 8.28 9.21 10.20	5.56 6.39 7.26 8.19 9.17	4·54 5·37 6·24 7·17 8·15	3.5 ² 4.35 5.22 6.15 7.13	2.50 3.33 4.20 5.13 6.11	0.102 0.102 0.102 0.102 0.102
20 21 22 23 24	17.39 18.50 19.66 20.89 22.18	16.37 17.47 18.63 19.86 21.15	15.34 16.45 17.60 18.83 20.12	14.31 15.42 16.57 17.80 19.09	13.28 14.39 15.54 16.77 18.05	12.26 13.36 14.51 15.74 17.02	11.23 12.33 13.48 14.71 15.99	10.21 11.31 12.46 13.68 14.96	9.18 10.28 11.43 12.66 13.94	8.15 9.25 10.40 11.63 12.91	7.12 8.22 9.37 10.60 11.88	0.103 0.103 0.103 0.103
25 26 27 28 29	23.55 24.99 26.51 28.10 29.78	22.52 23.96 25.48 27.07 28.75	21.49 22.92 24.44 26.03 27.71	20.45 21.89 23.40 24.99 26.67	19.43 20.86 22.37 23.96 25.63	18.39 19.82 21.34 22.92 24.59	17.36 18.79 20.30 21.89 23.56	16.33 17.76 19.27 20.85 22.52	15.30 16.73 18.24 19.82 21.49	14.27 15.70 17.21 18.79 20.46	13.24 14.67 16.18 17.76 19.43	0.103 0.103 0.103 0.103
30 31 32 33 34	31.55 33.41 35.36 37.41 39.57	30.51 32.37 34.32 36.37 38.53	29.47 31.33 33.28 35.33 37.48	28.43 30.29 32.24 34.29 36.44	27.40 29.25 31.21 33.25 35.40	26.36 28.22 30.17 32.22 34.36	0.104 0.104 0.104 0.104 0.104					
35 36 37 38 39	41.83 44.20 46.69 49.30 52.04	40.79 43.16 45.65 48.26 51.00	39·74 42.11 44.60 47.21 49·95	38.70 41.07 43.56 46.17 48.91	37.66 40.03 42.52 45.13 47.86	36.62 38.99 41.48 44.08 46.82	35.58 37.95 40.44 43.04 45.77	34· 5 4 36.90 39·39 41.99 44·73	33.50 35.86 38.35 40.95 43.68	32.46 34.82 37.31 39.91 42.64	31.42 33.78 36.27 38.87 41.59	0.104 0.104 0.104 0.104 0.105
			atad from				-,					

^{*} The table was calculated from the formula $p = p_1 - 0.00066 B(t - t_1) (1 + 0.00115 t_1)$ (Ferrel, Annual Report U. S. Chief Signal Officer, 1886, App. 24).
† When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimeters. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

t ₁	$t-t_1=1$	2	3	4	5	6	7	8
	Dew-point			difference of ometer readi			he above line	e and the
$ \begin{bmatrix} \delta T/\delta B = \\ -10 \end{bmatrix} $.04	.II 17.9	.22	-49				
-9	- 13.2 12.0	16.0	- 22.0					
$\begin{bmatrix} -8 \\ -7 \end{bmatrix}$	10.7 9.5	14.3	19.4 17.1	24.0				
$\begin{bmatrix} -6 \\ \delta T/\delta B = \end{bmatrix}$	8.3 . 03	11.2 .o6	14.9 .11	20.3 .18	.31	-43		
_ 5	-7.I 6.0	-9.7 8.3	— 12.9 11.1	— 17.5 14.8	- 24.5 20.1			
$\begin{vmatrix} -4 \\ -3 \end{vmatrix}$	4.8	6.9	9.4	12.6	16.8	23.4		
$\begin{bmatrix} -2 \\ -1 \end{bmatrix}$	3.6 2.5	5·5 4·2	7.8 6.2	10.5 8.5	13.9 11.5	18.9 15.4	- 21.0	
$\left \begin{array}{c} \delta T/\delta B = \\ 0 \end{array}\right $.02 1.3	.04 — 2.9	- 4.8	6.S	-9.3	.19 — 12.3	.2 6 — 16.5	.38 — 22.9
I 2	0.3	1.7	3.5	5.3	7.6 6.1	10.2 8.3	13.5	18.3
3	+ o.6	0.7 + 0.2	2,2 1.0	3.9 2.6	4.6	6.4	8.9	14.7
$\delta T/\delta B \stackrel{4}{=}$	2.8 .02	1.4 .03	0.0 . 05	1.3 . 07	3.1 .09	4·7 . 11	6.9 .14	9·4 .18
5 6	3.8 4.9	2.6	+ 1.2	— 0.1 + 1.1	1.6 0.2	— 3.2 1.7	- 5.0	- 7.I 5.2
7 8	6.0	3·7 4·9	3.7	2.4	+ 1.1	0.3	3·3 1.8	3-4
9	7.0 8.1	6.0 7.1	4.9 6.1	3·7 5.0	2.5 3.9	+ 1.1 2.6	0.3 + 1.2	1.S 0.1
$\delta T/\delta B = 10$. 01 9.1	. 02 8.3	. 03 7·3	. 05 6.3	.o6 5.2	.08 4.1	.10 2.8	.12 + 1.5
1 I 1 2	10.2	9.3	8.4 9.6	7·5 8·7	6.5 7.8	5·5 6.8	4·3 5.8	3.1
13	12.3	10.4 11.5	10.7	9.9	9.1	8.2	7.2	4.7 6.2
$\delta T/\delta B = 14$	13.3 . 01	12.6 .02	11.9 . 03	11.1 .04	10.3 . 05	9.0 . 06	8.6 . 07	7.6 . 08
15	14.4 15.4	13.7 14.8	13.0 14.1	12.3 13.5	11.5 12.7	10.8	9.9 11.3	9.1 10.5
17 18	16.4	15.8	15.2	14.6	13.9	13.3	12.6	11.8
19	17.5 18.5	16.9 18.0	16.3 17.4	15.7 16.9	15.1 16.3	14.5 15.7	13.8 15.1	13.1 14.4
$\begin{bmatrix} \delta T/\delta B = \\ 20 \end{bmatrix}$. 005 19.5	. 01 19.0	. 015 18.5	. 02 18.0	.02 7 17.4	. 033 16.9	. 04 16.3	.05 15.7
2 I 2 2	20.5 21.6	20.1 21.1	19.6 20.7	19,1 20.2	18.6 19.7	18.1 19.2	17.5 18.7	17.0 18.2
23	22.6	22.2	21.7	21.3	20.8	20.4	19.9	19.4
$\delta T/\delta B \stackrel{24}{=}$	23.6 . 005	23.2 .01	22.8 .015	22.4 .02	22.0 . 025	21.5 .03	21.1 .035	20.6 . 04
25 26	24.6 25.6	24.2 25.3	23.9 24.9	23.5 24.5	23.I 24.2	22.7 23.8	22.2 23.4	21.8 23.0
27 28	26.7 27.7	26.3 27.3	26.6 27.0	25.6 26.7	25.3 26.4	24.9 26.0	24.5	24.I 25.3
$\delta T/\delta B = 0$	28.7	28.4	28.1	27.8	27.4	27.1	25.7 26.8	26.4
30	. 003 29.7	. 006 29.4	.01 29.1	.013 28.8	.017 28.5	.019 28.2	. 022 27.9	. 026 27.6
31 32	30.7 31.7	30.5 31.5	30.2 31.2	29.9 30.9	29.6 30.7	29.3 30.4	29.0 30.1	28.7 29.8
33	32.8 33.8	32.5 33.5	32.2 33.3	32.0 33.0	31.7 32.8	31.5 32.5	31.2 32.3	30.9 32.0
$\delta T/\delta B \stackrel{34}{=} 35$. 003	.005	.008	.010	.013	33.6	.019	.021
36	35.8	34·5 35·5	34·3 35·3	34.1 35.1	33.8 34.9	34.6	33-4 34-4	33.I 34.2
37 38	36.8 37.8	36 6 37.6	36.4 37.4	36.2 37.2	36.0 37.0	35.7 36.8	35.5 36.6	35.3 36.4
39	38.8	38.6	38.4	38.2	38.o	37.9	37.6	37.5

POINTS.

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of from 76 centimeters the corresponding numbers in the lines marked $\delta T/\delta B$ are to be multiplied by the difference, above 76. See examples. Thermometer ventilated at about 3 meters per sec.

t ₁	$t-t_1=9$	10	11	12	13	14	15
	Dew-points	corresponding	to the differe	ence of tempe	rature given i	n the above l	
		wet-i	oulb thermome	eter reading gr	ven in first col	umn.	
			(1) Give		EXAMPLES 10, $t-t_1=5$		
			The	n tabular num	ber for $t_1 = 10$ nd $\delta T / \delta B = 10$	and $t-t_1=5$	is 5.2
			Hen	orrection = 0. ce the dew-po	$_{\text{int is}}^{66 \times 4} = $.		5.44
			The	n, as above, ta	$= 7, t - t_1 = 8.$ bulated number	er=	3.4
			1	$\delta B = \frac{.18 + .12}{2}$ ection = 0.15			.67
			Dew	-point= .			4.07
$\delta T/\delta B =$	·45	.67					
0							
3	20.0 I 5.8	22.2					
$\frac{4}{\delta}T/\delta B =$	12.4	16.8 . 29	-37	.44	-54	.66	.72
5 6	- 19.8 7.4	— 13.1 10.1	- 17.7 13.4	- 18.1	3+		.,-
7 8	5·3 3·3	7.6 5.2	10.1 7.4	13.5	- 18.3 13.5	- 18.3	
9 δ T/δB=	1.6 .14	3.2 .17	5. I .20	7.2	9.9	13.1	— 17.2
10 [']	0.0 + 1.8	- 1.3 + 0.3	- 3.0	- 4·7 2.6	-6.8	9.4	- 12.5
12	3.5	2.2	+ 0.8	0.6	4·3 2.1	6.3 3.7	S.8 5·7
13 14	5.1 6.7	3.9 5.6	2.7 4.5	+ I.3 3.3	+ 1.9	+ 0.5	3.1 0.9
$\begin{array}{c c} \delta T/\delta B = \\ 15 \end{array}$.0 9 8.2	7.2	6.2	.14 5.1	3.9	2.7	+ 1.3
16	9.6 11.0	8.7 10.2	7.8 9.4	6.8 8.5	5.8 7·5	4.7 6.5	3·5 5·5
18	12.4 13.8	11.7 13.1	10.9 12.4	10.1 11.6	9.2 10.8	8.3	7·4 9·1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.об 1 5. I	.07 14.5	.08 13.8	.09 13.1	.10 12.4	.11 11.6	.13
2I 22	16.4 17.6	15.Š 17.1	15.2 16.5	14.5 15.9	13.9 15.3	13.2 14.7	12.5
23	18.9 20.1	18.4 19.6	17.9 19.2	17.3	16.8	16.2 17.6	15.7
$\begin{array}{c c} \delta T/\delta B = \\ 25 \end{array}$.045 21.4	.0 5	.06 20.4	.06	.07	.08	.09
26	22.6	22.1	21.7	20.0	19.5 20.8	19.0 20.3	18.5 19.9
27 28	23.7 24.9	23.4 24.5	22.9 24.2	22.5 23.8	22.I 23.4	21.7 23.0	21.2 22.6
$\delta T/\delta B =$	26. I .03 I	25.7 .0 35	25.4 .041	25.0	.053	.06	23.9
30 31	27.2 28.4	26.9 28.1	26.6 27.8	26.2 27.4	25.9 27.1	25.5 26.8	25.2 26.4
32	29.5 30.7	29.2 30.4	28.9 30.1	28.6 29.8	28.3 29.5	28.0 29.2	27.7 28.9
$\delta T/\delta B =$	31.8 .024	31.5 . 027	31.2 .029	30.9 . 032	30.7 .037	30.4	30.1 . 04
35 36	32.9 34.0	32.6 33.7	32.4 33.5	32.1 33.3	31.S 33.0	31.6 32.8	31.4 32.5
36 37 38	35.1 36.2	34·9 35·9	34.6	34·4 35·5	34.2 35.3	33.9 35.1	33.7 34.8
39	37-3	37.1	35.7 36.8	36.6	36.4	36.2	36.0
SMITHSONIAN	T						

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of the dew-point.		Dev	v-point	(d).		Depression of the dew-point.		Dev	v-point	(d).	
t-d	10	0	+ 10	+ 20	+30	t-d	-10	o	+ 10	+ 20	+ 30
C. O°.0 o.2 o.4 o.6 o.8	100 98 97 95 94	99 97 96 94	99 97 96 95	100 99 98 96 96	100 99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 52 51	57 56 56 55 54	60 59 58 57 57	62 61 60 60 59	64 63 63 62 61
1.0 1.2 1.4 1.6 1.8	92 91 90 88 87	93 92 90 89 88	94 92 91 9 0 89	94 93 92 91 90	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48	53 53 52 51 51	56 55 55 54 53	58 58 57 56 56	61 60 59 59 58
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 38 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 75	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 32	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 72 71 70	75 75 74 73 72	17.5 18.0 18.5 19.0 19.5	28 27 26 25 24	31 30 29 28 27	34 33 32 31 30	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	71 71 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7.2 7.4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14	19 18 17 16	22 21 20 19 18		
8.0	54	57	60	52	64	30.0	12	14	17		

^{*} Abridged from Table 45 of "Smithsonian Meteorological Tables."

TABLE 153.

VALUES OF 0.378e.*

This table gives the humidity term 0.378e, which occurs in the equation $\delta = \delta_0 \frac{h}{760} = \delta_0 \frac{B - 0.378e}{760}$ for the calculation of the density of air containing aqueous vapor at pressure $e : \delta_0$ is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378e, the pressure corrected for humidity. For values of $\frac{h}{760}$ see Table 154. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

Dew Point. °C.	e Vapor Pressure (1ce).	0.378e.	Dew Point. °C.	e Vapor Pressure (water).	0.378e.	Dew Point, °C.	Vapor Pressure (water).	0.378e.
—50 45 40 35 30	0.034 .061 .105 .173 .292	0.01 .02 .04 .07	0 +1 2 3 4	4.579 4.921 5.286 5.675 6.0 88	1.73 1.86 2.00 2.15 2.30	+30 31 32 33 34	31.555 33.416 35.372 37.427 39.586	11.93 12.63 13.37 14.15 14.96
-25 24 23 22 21	0.484 •534 •589 •648 •714	0.18 .20 .22 .24 .27	5 6 7 8 9	6.528 6.997 7.494 8.023 8.584	2.47 2.65 2.83 3.03 3.24	35 36 37 38 39	41.853 44.23 46.73 49.35 52.09	15.82 16.72 17.66 18.65 19.69
—20 19 18 17 16	0.787 .868 .955 1.048 1.148	0.30 .33 .36 .40	10 11 12 13	9.179 9.810 10.479 11.187 11.936	3.47 3.71 3.96 4.23 4.51	40 41 42 43 44	54.97 57.98 61.13 64.43 67.89	20.78 21.92 23.12 24.35 25.66
—15 14 13 12	1.257 1.375 1.506 1.650 1.806	0.48 •52 •57 •62 •68	15 16 17 18	12.728 13.565 14.450 15.383 16.367	4.81 5.13 5.46 5.82 6.19	45 46 47 48 49	71.50 75.28 79.23 83.36 87.67	27.02 28.46 29.95 31.51 33.14
—10 9 8 7 6	1.974 2.154 2.347 2.557 2.785	0.75 .81 .89 .97 1.05	20 21 22 23 24	17.406 18.503 19.661 20.883 22.178	6.58 6.99 7.43 7.90 8.38	50 51 52 53 54	92.17 96.87 101.77 106.88 112.21	34.84 36.62 38.47 40.40 42.42
-5 4 3 2 1	3.032 3.299 3.586 3.894 4.223	1.15 1.25 1.36 1.47 1.60	25 26 27 28 29	23.546 24.987 26.505 28.103 29.785	8.90 9.45 10.02 10.62 11.26	55 56 57 58 59	117.77 123.56 129.59 135.87 142.41	44.52 46.71 48.98 51.36 53.83
0	4· 5 79	1.73	30	31.555	11.93	60	149.21	56.40

^{*} This table is quoted from "Smithsonian Meteorological Tables," p. 225.

RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 154. — Values of $\frac{h}{760}$, from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of moist air at pressure h in terms of the density of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h = B = 0.37%, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 153, or the dew-point may be found and the value of 0.37% taken from Table 153.

h	760
1	0.0013158
2	.0026316
3	.0039474
4	0.0052632
5	.0065789
6	.0078947
7	0.0092105
S	.0105263
9	.0118421

h = 5 gives .0065789.7 "...0009210.03 "...000395.075394

TABLE 155. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

,					Values of	$\log \frac{h}{760}$.				
h	0	1	2	3	4	5	6	7	8	9
80	ī.02228	ī.02767	ī.03300	7.03826	ī.04347	ī.04861	ī.05368	ī.05871	ī.06367	ī.06858
	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100 110 120 130 140	ī.11919 .16 0 58 .19837 .23313	ī.12351 .16451 .20197 .23646 .26841	ī.12779 .16840 .20555 .23976	Ī.13202 .17226 .20909 .24304 .27452	1.13622 .17609 .21261 .24629	ī.14038 .17988 .21611 .24952 .28055	ī.14449 .18364 .21956 .25273 .28354	ī.14857 .18737 .22299 .25591 .28650	ī.15261 .19107 .22640 .25907 .28945	ī.15661 .19473 .22978 .26220 .29237
150	ī.29528	ī.29816	ī.30103	ī.30388	ī.30671	ī.30952	ī.31231	ī.31 509	ī.31784	7.32058
160	.32331	.32601	.32870	-33137	·33403	.33667	.33929	.34190	.34450	·34707
170	.34964	.35218	.35471	-35723	·35974	.36222	.36470	.36716	.36961	·37204
180	.37446	.37686	.37926	-38164	·38400	.38636	.38870	.39128	.39334	·39565
190	.39794	.40022	.40249	-40474	·40699	.40922	.41144	.41365	.41585	·41803
200	ī.42022	1.42238	ī.42454	ī.42668	1.42882	1.43094	1.43305	7.43516	7.43725	1.43933
210	.44141	-44347	.44552	·44757	.44960	.45162	.45364	.45565	.45764	-45963
220	.46161	-46358	.46554	·46749	.46943	.47137	.47329	.47521	.47712	-47902
230	.48091	-48280	.48467	·48654	.48840	.49025	.49210	.49393	.49576	-4975
240	.49940	-50120	.50300	·50479	.50658	.50835	.51012	.51188	.51364	-51539
250	ī.51713	7.51886	7.52059	ī.52231	7.52402	ī.52573	7.52743	7.52912	7.53081	7.53249
260	.53416	·53583	·53749	.53914	·54079	·54243	-54407	.54570	·54732	.5489
270	.55055	·55216	·55376	.55535	·55694	·55852	-56010	.56167	·56323	.56479
280	.56634	·56789	·56944	.57097	·57250	·57403	-57555	.57707	·57858	.5800
290	.58158	·58308	·58457	.58605	·58753	·58901	-59048	.59194	·59340	.5948
300	1.59631	7.59775	ī.59919	7.60063	7.60206	ī.60349	.61887	7.60632	ī.60774	7.6091.
310	.61055	.61195	.61334	.61473	.61611	.61750		.62025	.62161	.6229
320	.62434	.62569	.62704	.62839	.62973	.63107		.63373	.63506	.6363
330	.63770	.63901	.64032	.64163	.64293	.64423		.64682	.64810	.6493
340	.65067	.65194	.65321	.65448	.65574	.65701		.65952	.66077	.6620

DENSITY OF AIR.

Values of logarithms of $\frac{h}{760}$ for values of h between 350 and 800.

h					Values o	$f \log \frac{h}{7^{60}}$.				
	0	1	2	3	4	5	6	7	8	9
350	ī.66325	ī.66449	7.66573	ī.66696	ī.66819	7.66941	7.67064	7.67185	7.67307	ī.67428
360	.67549	.67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.68856	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	.70239	.70352	.70465	.70577	.70690	.70802	.70914
390	.71025	.71136	.71247	.71358	.71468	.71578	.71688	.71798	.71907	.72016
400	7.72125	7.72233	1.72341	7.72449	ī.72557	7.72664	7.72771	7.72878	7.72985	7.73091
410	.73197	-733°3	.73408	.73514	.73619	.73723	.73828	-73932	.74036	.74140
420	.74244	-74347	.74450	.74553	.74655	.74758	.74860	-74961	.75063	.75164
430	.75265	-75366	.75467	.75567	.75668	.75768	.75867	-75967	.76066	.76165
440	.76264	-76362	.76461	.76559	.76657	.76755	.76852	-76949	.77046	.77143
450	7.77240	7.77336	7.77432	7.77528	7.77624	7.77720	7.77815	7.77910	ī.78005	7.78100
460	.78194	.78289	.78383	.78477	.78570	.78664	.78757	.78850	.78943	.79036
470	.79128	.79221	.79313	.79405	.79496	.79588	.79679	.79770	.79861	.79952
480	.80043	.So133	.80223	.80313	.80403	.80493	.80582	.80672	.80761	.80850
490	.80938	.S1027	.81115	.81203	.81291	.81379	.81467	.81554	.81642	.81729
500	7.81816	7.81902	7.81989	ī.82075	7.82162	7.82248	7.82334	7.82419	ī.82505	ī.82590
510	.82676	.82761	.82846	.82930	.83015	.83c99	.83184	.83268	.83352	.83435
520	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	7.85955	7.86034	7.86113	7.86191	7.86270	7.86348	7.86426	7.86504	7.86582	7.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87582	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	7.89734	ī.89806	7.89878	7.89950	7.90022	7.90094	7.90166	1.90238	1.90309	7.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	7.93210	ī.93277	T.93343	1.93410	ī.93476	7.93543	7.93609	ī.93675	7.93741	7.93807
660	.93 ⁸ 73	.93939	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
670	.94526	.94591	.94656	.94720	.94785	.94849	.94913	.94978	.95042	.95106
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95 ⁸ 04	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	7.96428	ī.96490	7.96552	7.96614	7.96676	7.96738	7.96799	7.96861	ī.96922	7.96983
710	.97044	.97106	.97167	.97228	.97288	•97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	•97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	•98547	· .98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	•99134	.99193	.99251	.99309	.99367
750	7.99425	7.99483	7.99540	7.99598	ī.99656	7.99713	1.99771	ī.99828	ī.99886	1.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173

TABLE 156.

VOLUME OF CASES.

Values of 1 + .00367 t.

The quantity 1 + .00367 t gives for a gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at 0^0 .

(a) This part of the table gives the values of r + .00367t for values of t between o° and 10° C. by tenths of a degree.

(b) This part gives the values of 1 + .00367 t for values of t between - 90° and + 1990°.
C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be 682° , 2:

We have for 680 in table (b) the number 3.495^{60} And for 2.2 in table (a) the decimal $\frac{.00807}{3.503^{67}}$ Hence the number for 682.2 is $\frac{.3.495^{60}}{3.503^{67}}$

- (c) This part gives the logarithms of 1 + .00367 t for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of 1 + .00367t for values of t between 400° and 1990° C. by 10° steps.

(a) Values of $1+.00367\,t$ for Values of t between 0° and 10° C. by Tenths of a Degree.

t	0.0	0.1	0.2	0.3	0.4
0 I 2 3 4	1.00000 .00367 .00734 .01101	1.00037 .00404 .00771 .01138	1.00073 .00440 .00807 .01174 .01541	1.00110 .00477 .00844 .01211 .01578	1.00147 .00514 .00881 .01248 .01615
5 6 7 8 9	1.01835 .02202 .02569 .02936 .03303	1.01872 .02239 .02606 .02973 .03340	1.01908 .02275 .02642 .03009 .03376	1.01945 .02312 .02679 .03046 .03413	1.01982 .02349 .02716 .03083 .03450
t	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5 6 7 8	1.00184 .00550 .00918 .01284 .01652 1.02018 .02386 .02752 .03120	1.00220 .00587 .00954 .01321 .01688 1.02055 .02422 .02789 .03156	1.00257 .00624 .00991 .01358 .01725 1.02092 .02459 .02826 .03193 .03560	1.00294 .00661 .01028 .01395 .01762 1.02129 .02496 .02863 .03290	1.00330 .00697 .01064 .01431 .01798 1.02165 .02532 .02899 .03266 .03633

TABLE 156 (continued).

VOLUME OF GASES.

(b) Values of 1 + .00367 t for Values of t between - 90 $^{\circ}$ and + 1990 $^{\circ}$ C. by 10 $^{\circ}$ Steps.

t	00	10	20	30	40
-000	I .00000	0.96330	0.92660	0.88990	0.85320
+ 000	1.00000 1.36700	1.03670	1.07340	1.11010	1.14680
200		1.40370	1.44040	1.47710	1.51380 1.88080
300	1.73400 2.10100	1.77070	1.80740	1.84410	2.24780
400	2.46800	2.1 3770 2.50470	2.17440 2.54140	2.21110 2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27 540	3.31210	3.34880
700	3.56900	3.60570	3.64240	3.67910	3.71580
Soo	3.93600	3.97270	4.00940	4.04610	3.71580 4.08280
900	4.30300	4.33970	4.37640	4.41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	5.18380
1200	5.40400	5.44070	5.47740	5.51410	5.55080
1 300	5.77100	5.80770	5.84440	5.88110	5.91780
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.94540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.60600	7.61270	7.67940	7.71610 8.08310	7.75280 8.11980
1900	7.97300	8.00970	8.04640	8.08310	8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
1	1	1	1		
t	50	60	70	80	90
-000	50 0.81650	60 0.77980	0.74310	0.70640	90 0.66970
-000	0.81650	0.77980	0.74310	0.70640	0.66970
	0.81650 1.18350	0.77980 1.22020	0.74310		0.66970
-000 +000	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720	0.74310	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420 2.32120	0.74310 1.25690 1.62390	0.70640 1.29360 1.66060 2.02760 2.39460	0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050 1.91750	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830
-000 +000 100 200 300 400	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.78920	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.08820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.78920	0.74310 1.25690 1.02390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930
-000 +000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.78920 4.15620 4.52320 4.89020	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.95360	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030
-000 +000 100 200 300 400 500 600 700 800 900 1100	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050	0.77980 1.22020 1.58720 1.95420 2.32120 2.08820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.2966 4.59660 4.96360 5.33060 5.60760 6.06460	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.73430 6.10130
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.65240 5.99120 6.35820 6.72520	0.74310 1.25690 1.62390 1.99090 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.2790 6.39490 6.76190	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260 4.22960 4.59660 4.96360 5.33060 5.60760 6.06460 6.43160 6.79860	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.99990 2.35790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490 6.76190 7.12890	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.66460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.73430 6.10130 6.46830 6.83530 7.20230
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920	0.74310 1.25690 1.02390 1.09090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.66460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.111950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550 7.42250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.92090 2.35790 2.72490 3.09190 3.45890 3.45290 4.5290 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.49560 4.22960 4.59660 4.59660 6.643160 6.79860 7.16560 7.53260 7.59960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 4.26630 4.63330 5.00030 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.93630
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920	0.74310 1.25690 1.02390 1.09090 2.35790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.40560 4.22960 4.22960 4.59660 4.96360 5.33060 5.69760 6.66460 6.43160 6.79860 7.16560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.111950 4.48650 4.85350 5.22050 5.95450 6.32150 6.68850 7.05550 7.42250 7.78950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.45920 7.45920 7.82620	0.74310 1.25690 1.62390 1.92090 2.35790 2.72490 3.09190 3.45890 3.45290 4.5290 4.92690 5.20390 6.02790 6.39490 6.76190 7.12890 7.49590 7.86290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.49560 4.22960 4.59660 4.59660 6.643160 6.79860 7.16560 7.53260 7.59960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530 7.20230 7.50630 7.93630

VOLUME OF

(c) Logarithms of 1 + .00367t for Values

t	0	1	2	3	4	Mean diff. per degree.
-40 -30 -20 -10	ī 931051 .949341 .966892 .983762 0.000000	1.929179 .947546 .965169 .982104 .998403	1.927299 •945744 •963438 •980440 •996801	7.925410 •943934 •961701 •978769 •995192	1.923513 .942117 .959957 .977092 .993577	1884 1805 1733 1067 1605
+ 0 10 20 30 40	0.000000	0.001591	0.003176	0.004755	0.006329	1582
	.015653	.017188	.018717	.020241	.021760	1526
	.030762	.032244	.033721	.035193	.036661	1474
	.045362	.046796	.048224	.049648	.051068	1426
	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078 5 22	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.127529	.128716	1191
100	0.135768	0.136933	0.138094	0.139252	0.140408	1158
110	.147274	.248408	.149539	.150667	.151793	1129
120	.158483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150 160 170 180 190	0.190472 .200632 .210559 .220265	0.191498 .201635 .211540 .221224 .230697	0.192523 .202635 .212518 .222180 .231633	0.193545 .203634 .213494 .223135 .232567	0.194564 .204630 .214468 .224087 .233499	1023 1000 976 956 935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	.249044	.249942	.250837	.251731	897
220	.257054	.257935	.258814	.259692	.260567	878
230	.265784	.266648	.267510	.268370	.269228	861
240	.274343	.275189	.276034	.276877	.277719	844
250	0.282735	0.283566	0.284395	0.285222	0.286048	828
260	.290969	.291784	.292597	.293409	.294219	813
270	.299049	.299849	.300648	.301445	.302240	798
280	.306982	.307768	.308552	.309334	.310115	784
290	.314773	.315544	.316314	.317083	.317850	769
300	0.322426	0.323184	0.323941	0.324696	0.325450	756 743 730 719 707
310	•3 ² 9947	.330692	.331435	.332178	·332919	
320	•337339	.338072	.338803	.339533	·340262	
330	•344608	.345329	.346048	.346766	·347482	
340	•351758	.352466	.353174	.353880	·3545 ⁸ 5	
350	0.358791	0.359488	0.360184	0.360879	0.361573	696
360	-365713	.366399	.367084	.367768	.368451	684
370	-372525	.373201	.373875	.374549	.375221	674
380	-379233	.379898	.380562	.381225	.381887	664
390	-385439	.386494	.387148	.387801	.388453	654

CASES.

of t between -49° and $+399^\circ$ C. by Degrees.

t	5	6	7	8	9	Mean diff. per degree.
-40	7.921608	7.919695	1.917773	7.915843	7.913904	1 926
- 30	.940292	.938460	.936619	.934771	.932915	184 5
- 20	.958205	.956447	.954681	.952909	.951129	1771
- 10	.975409	.973719	.972022	.970319	.968609	1699
- 0	.991957	.990330	.988697	.987058	.985413	1636
+0 10 20 30 40	0.007897	0.009459	0.011016	0.012567	0.014113	1554
	.023273	.024781	.026284	.027782	.029274	1500
	.038123	.039581	.04103.4	.042481	.043924	1450
	.052482	.053893	.055298	.056699	.058096	1402
	.066382	.007748	.069109	.070466	.071819	1359
50	0.0798.47	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	.095486	.096765	.098031	1281
70	.105595	.106843	.108088	.109329	.110566	1243
80	.117917	.119130	.120340	.121547	.122750	1210
90	.129899	.131079	.132256	.133430	.134601	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.152915	.154034	.155151	.156264	.157375	1115
120	.163981	.164072	.166161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
150 160 170 180 190	0.195581 .205624 .215439 .225038 .234429	0.196596 .206615 .216409 .225986 .235357	0.197608 .207605 .217376 .226932 .236283	0.198619 .208592 .218341 .227876 .237207	0.199626 .209577 .219304 .228819 .238129	988 966 946 925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559	.279398	.280234	.281070	.281903	836
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296640	-297445	.298248	805
270	.303034	.303827	.304618	-305407	.306196	790
280	.310895	.311673	.312450	-313226	.314000	776
290	.318616	.319381	.320144	-320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	.333659	·334397	·335135	.335871	.336606	737
320	.340989	·341715	·342441	.343164	.343887	724
330	.348198	·348912	·349624	.359337	.351048	713
340	.355289	·355991	·356693	.357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813	.370493	.371171	.371849	678
370	.375892	.376562	.377232	.377900	.378567	668
380	.382548	.383208	.383868	.384525	.385183	658
390	.389104	.389754	.390403	.391052	.391699	648

VOLUME OF GASES.

(d) Logarithms of $1+.00367\,t$ for Values of t between 400° and 1990° C. by 10° Steps.

t	00	10	20	30	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.515264	.520103	.524889
700	.552547	.556990	.561388	.565742	.570052
800	.595055	.599086	.603079	.607037	.610958
900	.633771	.637460	.641117	.644744	.648341
1100	.702172	.70 5 325	.708455	.711563	.714648
1200	.732715	.735655	.738575	.741475	.744356
1300	.761251	.764004	.766740	.769459	.772160
1400	.788027	.790616	.793190	.795748	.798292
1500	0.813247	o.81 5691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	.843986	.846263
1700	.859679	.861875	.864060	.866234	.868398
1800	.881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	.905602	.907578	.909545
t	50	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500	0.479791	0.485040	0.490225	0.495350	0.500415
600	.529623	.534305	.538938	.543522	.548058
700	.574321	.578548	.582734	.586880	.590987
800	.614845	.618696	.622515	.626299	.630051
900	.651908	.655446	.658955	.662437	.665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	.717712	.720755	.723776	.726776	.729756
1200	.747218	.750061	.752886	.755692	.758480
1300	.774845	.777514	.780166	.782802	.785422
1400	.Soo820	.803334	.805834	.808319	.810790
1500	0.825329	0.827705	o.830069	0.832420	0.834758
1600	.848528	.850781	.853023	.855253	.857471
1700	.870550	.872692	.874824	.876945	.879056
1800	.891510	.893551	.895583	.897605	.899618
1900	.911504	.913454	.915395	.917327	.919251

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.
 C (in feet) = 52494 $\left[1 + \frac{t_0 + t - 64}{900} \right]$ English measures.
 C (in meters) = 16000 $\left[1 + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which Z = difference of height of two stations in feet or meters. B_0 , B = barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values of C.

Eng	LISH MEAS	URES.	ME	TRIC MEAS	URES.
$\frac{1}{2}(t_0+t).$	С	Log C	$\frac{1}{2}(t_0+t).$	С	Log C
Fahr. 10° 15 20 25	Feet. 49928 50511 51094 51677	4.69834 .70339 4.70837 .71330	Cent10° -8 -6 -4 -2	Meters. 15360 15488 15616 15744 15872	4.18639 .19000 .19357 .19712 .20063
30 35 40 45	52261 52844 53428 54011	4.71818 .72300 4.72777 .73248	+ 2 4 6 8	16000 16128 16256 16384 16512	4.20412 .20758 .21101 .21442 .21780
50 55 60 65	54595 55178 55761 56344	4.73715 .74177 4.74633 .75085	10 12 14 16 18	16640 16768 16896 17024 17152	4.22115 .22448 .22778 .23106 .23431
70 75 80 85	56927 57511 58094 58677	4.75532 .75975 4.76413 .76847	20 22 24 26 28	17280 17408 17536 17664 17792	4.23754 .24075 .24393 .24709 .25022
90 95 100	59260 59844 60427	4.77276 .77702 4.78123	30 32 34 36	17920 18048 18176 18304	4.25334 .25643 .25950 .26255

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables, 3 revised ed. 1906-

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

(a) Common Measure.*

Temp. ° F.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
185	17.06	17.09	17. 1 3	17.17	17.20	17.24	17.28	17.32	17.35	17.39
186	17.42	17.47	17.51	17.54	17.58	17.62	17.66	17.70	17.74	17.77
187	17.81	17.85	17.89	17.93	17.97	18.01	18.05	18.08	18.12	18.16
188	18.20	18.24	18.28	18.32	18.36	18.40	18.44	18.48	18.52	18.56
189	18.60	18.64	18.68	18.72	18.76	18.80	18.84	18.88	18.92	18.96
	19.00	19.04	19.08	19.12	19.16	19.21	19.25	19.29	19.33	19.37
191	19.41	19.45	19.49	19.54	19.58	19.62	19.66	19.70	19.75	19.79
192	19.83	19.87	19.91	19.96	20.00	20.04	20.08	20.13	20.17	
193	20.26	20.30	20.34	20.38	20.43	20.47	20.51	20.56	20.60	20.64
194	20.68	20.73	20.78	20.82	20.86	20.91	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.26	21.31	21.35	21.40	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85		21.94	21.99
197	22.03	22.08	22.13	22.17	22.22	22.27	22.31	22.36	22.41	22.45
198	22.50	22.55	22.59	22.64	22.69	22.73	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.12	23.16	23.21	23. 2 6	23.31	23.36	23.40
	23.45	23.50	23.55	23.60	23.65	23.70	23. 7 5	23.79	23.84	23.89
201 202	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24.39
	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.79	24.85	24.90
203	24.95	25.00	25.05	25.10	25.15	25.20	25.26	25.31	25.36	25.41
204	25.46	25.52	25.57	25.62	25.67	25.72	25.78	25.83	25.88	25.94
205	25.99	26.04	26.09	26.15	26.20	26.25	26.31	26.36	26.41	26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207 208	27.06	27.12	27.17	27.23	27.28	27•34	27.39	27.45	27.51	27.56
	27.62	27.67	27.73	27.78	27.84	27.90	27.95	28.01	28.07	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.63	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211	29.33	29.39	29.45	29.51	29.57	29.63	29.68	29.74	29.80	29.86
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

^{*} Pressures in inches of mercury

The values at the lower temperatures are perhaps \frac{1}{2}\% too low. Table (b) is based on more recent data (1913).

SMITHSONIAN TABLES.

PRESSURES.

temperatures of the boiling-point of water. in place of the barometer for the determination of heights.

(b) Metric Measure.*

Temp. ° C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
80°	355.5	356.9	358.4	359.8	361.3	362.7	364.2	365.7	367.1	368.6
Sı	370.1	371.6	37 3. I	374.6	376.1	377.6	379.1	38o.6	382.2	383.7
82	385.2	386.8	388.3	389.9	391.4	393.0	394.6	396.2	397-7	399.3
83	400.9	402.5	404.1	405.7	407.3	408.9	410.5	412.2	413.8	415.4
84	417.1	418.7	420.4	422.0	423.7	425.4	427.0	428.7	430.4	432.1
85	433.8	435.5	437.2	438.9	440.6	442.4	444. I	445.8	447.6	449.3
86	451.1	452.8	454.6	456.4	.458.1	459.9	461.7	463.5	465.3	467.1
87	468.9	470.7	472.5	474-4	476.2	478.0	479-9	481.7	483.6	485.5
88	487.3	489.2	491.1	493.0	494.9	496.8	498.7	500.6	502.5	504.4
89	506.4	508.3	510.2	512.2	514.1	516.1	518.1	520.0	522.0	524.0
90	526.0	528.0	530.0	532.0	534.0	536.0	538.1	540.1	542.2	544.2
91	546.3	548.3	550.4	552.5	554.6	556.6	558.7	560.8	563.0	565.1
92	567.2	569.3	571.4	573.6	575-7	577.9	580.1	582.2	584.4	586.6
93	588.8	591.0	593.2	595.4	597.6	599.8	602.0	604.3	606.5	608.8
94	611.0	613.3	615.6	617.8	620.1	622.4	624.7	627.0	629.4	631.7
95	634.0	636.3	638.7	641.0	643.4	645.8	648.1	650.5	652.9	655.3
96	657.7	660.1	662.5	664.9	667.4	669.8	672.2	674.7	677.2	679.6
97	682.1	684.6	687.1	689.6	692.1	694.6	697.1	699.6	702.2	704.7
98	707.3	709.8	712.4	715.0	717.6	720.2	722.8	725.4	728.0	730.6
99	733.2	735-9	738.5	741.2	743.8	746.5	749.2	751.9	754.6	757.3
100	760.0	762.7	765.4	768.2	770.9	773.7	776.4	779.2	782.0	784.8

st Pressure in millimeters of mercury.

STANDARD WAVE-LENGTHS.

TABLE 159. — Absolute Wave-length of Red Cadmium Line in Air. 760 mm. Pressure, 15° C.

6438.4722 Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895. 6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

6438.4696 (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

TABLE 160. - International Secondary Standards. Iron Arc Lines.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line, $\lambda = 6438.4696$ Ångströms (serving to define an Ångström). 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm.; 6 amp. for λ greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the -, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
4282.408	4547.853	4789.657	5083.344	5405.780	561 5,661	6230.734
4315.089	4592.658	4878.225	5110.415	5434-527	5658.836	6265.145
4375.934	4602.947	4903.325	5167.492	5455.614	5763.013	6318.028
4427.314	4647.439	4919.007	5192.363	5497.522	6027.059	6335.341
4466.556	4691.417	5001.881	5232.957	5506.784	6065.492	6393.612
4494.572	4707.288	5012.073	5266.569	5560.633	6137.701	6430.859
4531.155	4736.786	5049.827	5371.495	5586.772	6191.568	6494.993

TABLE 161. - International Secondary Standards. Iron Arc Lines.

Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.	Wave-length.
3370-789 3399-337 3485-345 3513.821 3556.881	3606.682 3640.392 3676.313 3677.629 3724.380	37 53.61 5 3805.346 3843.261 3850.820 3865.527	3906.482 3907.937 3935.818 3977.746 4021.872	4076.642 4118.552 4134.685 4147.676 4191.443	4233.615 5709.396 6546.250 6592.928 6678.004	67 50.250 58 57.7 59 Ni 5892.882 Ni

⁽¹⁾ Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, *ibid.* 36, p. 1071, 1911; Buisson et Fabry, *ibid.* 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914.

TABLE 162. — Some of the Stronger Lines of Some of the Elements.

Barium . 5535-7 Cæsium . 4555-4 " . 4593-3 589.0 Cadmium . 5589.0 " 5085.8 " 6438.5	Hydrogen Hydrogen "	5875.8 5876.2 4101.8 4340.7 4861.5 6563.0 6708.2	Magnesium " Mercury . Potassium . " . Rubidium .	5167.5 5172.9 5183.8 5461.0 7668.5 7701.9 6298.7	Sodium . " Strontium " Thallium.	5890.2 5896.2 4607.5 5481.2 6408.6 5350.6
---	---------------------	--	--	--	----------------------------------	--

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Angström units (10-7 mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from I, just clearly visible on the map, to 1000 for the II and K lines; below I in order of faintness to 0000 as the lines are more and more difficult to see. This table contains only the lines above 5.

 $\dot{ extbf{N}}$ indicates a line not clearly defined, probably an undissolved multiple line; $extst{s}$, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, - Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

3037.5108 Fe 10 N 3372.947 Ni 6 N 3533.345 Fe 6 6 3047.7258 Fe 20 N 3380.722 Ni 6 N 3536.709 Fe 7 3053.5308 - 7 d? 3414.011 Ni 15 3541.237 Fe 7 3053.5308 - 7 d? 3414.011 Ni 15 3541.237 Fe 7 3053.5258 Ti, Fe 20 3433.715 Ni, Cr 8 d? 3575.5525 Ti, Fe 20 3433.715 Fe 20 3453.715 Ni, Cr 8 d? 3555.079 Fe 9 3507.3698 Fe 8 3441.158 Fe 15 3565.5358 Fe 20 3073.001 Ti, - 6 Nd? 3444.0208 Fe 8 3444.0208 Fe 8 3565.5358 Fe 20 3088.1458 Ti 7 d? 3446.406 Ni 15 3372.014 Ni 6 3134.2308 Ni, Fe 8 3449.583 Co 6 d? 3372.712 Se, - 6 3188.656 -, Fe 6 d? 3453.039 Ni 8 3381.3498 Fe 30 3239.170 Ti 7 3461.801 Ni 8 3381.3498 Fe 30 3242.125 Ti, - 8 3462.950 Co 6 6 3385.105 Fe 6 6 3242.125 Ti, - 8 3460.0158 Fe 6 6 3245.888 V 6 3483.923 Ni 6 3260.21 Fe? 6 3483.923 Ni 6 3271.29 Fe 6 6 3493.7138 Fe 10 Ni 8 3587.370 Co 7 3271.99 Fe 6 6 3493.7138 Fe 10 Ni 8 3587.370 Co 7 3271.99 Fe 6 6 3493.7138 Fe 10 Ni 8 3587.370 Co 7 3271.99 Fe 6 6 3493.7138 Fe 10 Ni 3593.636 Cr 9 3274.0968 Cu 10 3493.114 Ni 10 Wave- length.	Substance,	Inten-	Wave-length.	Substance.	Inten- sity.	Wave- length.	Sub- stance.	Inten- sity.	
3286.898	3037.5108 3047.7258 3053-5308 3054-429 3057.5528 3059.2128 3067.3698 3073.091 3078.7698 3088.1458 3134.2308 3148.656 3236.7038 3242.125 3243.189 3247.6888 3256.021 3267.8348 3271.129 3271.791 3274.0968 3295.9518 3302.5108 3315.807 3318.1608 3320.391 3336.820 3349.597 3365.908 3366.311	Fe Fe Fe Ti, - Ti Ni, Fe Ti Ti Ti, - Ti Ti Ti Ti, - Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti	10 N 20 N 7 d? 10 20 8 6 Nd? 8 d? 7 d? 8 6 6 6 6 6 6 6 7 d? 6 7 d? 6 7 d? 6 7 d? 6 7 d? 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3372-947 3380-722 3414-911 3423-848 3433-715 3440-7628 { 3441-1558 } 3442-118 3444-208 3449-583 3453-039 3458-601 3462-950 3466-0158 3475-5948 3475-59	Ti-Pd Ni Ni Ni Ni Ni, Cr Fe Fe Mn Fo Ni Co Ni Ni Co Fe Fe Ni	10 d? 6 N 15 7 8 d? 20 15 6 d? 8 8 6 d? 6 d? 8 6 d?	3533·345 3536·709 3541·237 3542·232 3555·079 3558·6728 3565·5358 3566·522 3570·2738 3572·014 3572·712 3578·832 3581·3498 3584·800 3585·479 3585·479 3585·859 3587·130 3619·131 3619·131 3619·131 3622·1478 3622·1478 3631·6058 3622·1478	Fe Fe Fe Fe Fe Ni Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe Fe	6 7 7 7 6 9 8 20 10 20 6 6 10 30 6 6 7 6 8 7 6 9 6 8 7 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature

15° C, pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron)—(Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

Wave-length 3300. 3000. 3100. 3200. --.115 --.124 3400. 3500. 3600. -,106 -.148 -.137 - .154 -.155 -.140

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897. SMITHSONIAN TABLES.

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.	Wave-length.	Substance.	Inten- sity.
3647.988s	Fe	12	3826.027s	Fe	20	4045.975s	Fe	30
3651.247	Fe,-	6	3827.980	Fe	8	4055.701s	Mn	36
3651.614	Fe	7	3829.501s	Mg	10	4057.668	_	7
3676.457	Fe, Cr	7 6	3831.837	Ni	6	4063.759s	Fe	20
3680.069s	Fе	9	3832.450s	Mg	15	4068.137	Fe-Mn	6
3684.258s	Fe	7ď?	3834.364	Fe	10	4071.90Ss	Fe	
3685.339	Ti	rod?	3838.435s	Mg-C		4077.885s	Sr	15 8
3686.141	Ti-Fe	6	3840.580s	Fe-C	25 8	4102.000H8	H, In	40N
3687.610s	Fe	6	3841.195	Fe-Mn	10	4121.477S	Cr-Co	6d?
3689.614	Fe	6	3845.606	C-Co	Sd?	4128.251	Ce-V,-	6d
3701.234	Fe	8	3850.118	Fe-Cr	10	4132.235	Fe-Co	10
3705.708s	Fe	9	3856.524s	Fe	8	4137.156	Fe	6
3706.175	Ca, Mn	6d?	3857.805	Cr-C	6d?	4140.089	Fe	6
3709.389s	Fe	8	3858.442	Ni	7	4144.038	Fe	
3716.591 s	Fe	7	3860.055s	Fe-C	20	4167.438	_	15 8 6
3720.084s	Fe	40	3865.674	Fe-C	7	4187.204	Fe	6
3722.692 s	Ni	10	3872.639	Fe	7 6	4191.595	Fe	Ğ.
3724.526	Fe	6	3878.152	Fe-C	8	4202.198s	Fe	8
3732.545s	Co-Fe	6	3878.720	Fe	7Nd?	4226.904sg	Ca	20 d?
3733.469s	Fe-	7d?	3886.434s	Fe	15	4233.772	Fe	6
3735.014s	Fe	40	3887.196	Fe	7 8d	4236.112	Fe	8
3737.281s	Fe	30	3894.211	_	8d	4250.287s	Fe	8
3738.466		6	3895.803	Fe	7 8	42 50.94 5s	Fe	8
3743.508	Fe-Ti	6	3899.850	Fe	8	4254.505s	Cr	8
3745.717s	Fe	8	3903.090	Cr, Fe, Mo	10	4260.640s	Fe	10
3746.058s	Fe	6	3904.023	-	8d	4271.934s	Fe	15
3748.408s	Fe	10	3905.660s	Si	12	4274.958s	Cr	7ď?
3749.631s	Fe	20	3906.628	Fe	10	4308.081sG	Fe	6
3753.732	Fe-Ti	6d?	3920.410	Fe	10	4325.939s	Fe	8
3758.375 s	Fe	15	3923.054	Fe	12d?	4340.634 Η γ	H	20N
37 59 447	Ti	12ď?	3928.075s	Fe	8	4376.107s	Fe	6
3760.196	Fe	5	3930.450	Fe	8	4383.720s	Fe	15
3761.464	Ti	7	3933.523	-	8N	4404.927s	Fe	10
3763.945s	Fe	10	3933.825sK	Ca C- V C-	1000	4415.293s	Fe	8
3765.689	Fe	6 8	3934.108	Co, V-Cr	8N	4442.510	Fe	6
3767.341s	Fe Ni		3944.160s	Al Fe	15	4447.892s	Fe	6
3775.717	Ni Ni	7 6	3956.819	Fe-Ca		4494.738s	Fe	6
3783.674s	Fe		3957.177 s	re-Ca Al	7d?	4528.798	Fe Ti-Co	8
3788.046s	Fe	9 8	3961.674s	-, Zr	20 6N	4534.139		6
3795.1478 3798.655s	Fe	6	3968.350 3968.625sH	-, Zr Ca	700	4549.808	Ti-Co Ba	6d?
3799.693s	Fe		3968.886	Ca	6N	4554.211s	Ti-	8
3/99.093s 3805.486s	Fe	7 6	3969.413	Fe	1	4572.156s	Fe	6
3806.865	Mn-Fe	Sd?		Co-Fe	10 6d?	4603.126	Ti-Co	6
3807.293	Ni	6	3974.904 3977.891s	Fe	6	4629.521s 4679.027s	Fe Fe	6
3807.681	V-Fe	6	39/7.391s 3986.903s	16	6	4703.177s	Mg	10
3814.698	V-1 C	8	4005.408	Fe	7		Ni Ni	6
3815.987s	Fe	15	4030.918s	Mn	10d;	4714.599s 4736.963	Fe	6
3820.586sL	Fe-C	25	4033.224s	Mn	8d?	4754.225s	Mn	
3824.591	Fe	25 6	4034.6448	Mn	6d	4783.613s	Mn	7 6
			. 51			1, - 3 3-		ĭ

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Corrections to reduce Rowland's wave-lengths to standards of Table 160 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

Wave-length Correction	4800. 179	4900. — .176	1 ₇₃	170	166		- 5400. 212	217	5600. 218		5 ⁵ 00.
Wave-length Correction	5800.	5900.	6000.	6100.	6200.	6300.	6400.	6500.	6600.	6700.	6800.

TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 160, p. 172. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.	Wave-lengths.	Class.	Inten- sity.
*2781.840 *2806.985 *2831.559 *2838.341 *2901.382 *2926.584 *2986.460 *3000.453 *3053.070 *3154.202 *3217.389 *3257.603 *3347.932 *3347.932 *3347.932 *3355.741 *3617.789 *3659.521 *3749.487 *3820.430 *3859.913 *3922.917 *3956.682 *4009.718 *4062.451 †4132.063 †4175.639 †4202.031 †4250.791	bi b bi b2	4 7 3 3 4 4 4 4 4 4 4 4 4 4 7 6 6 7 7 7	4337.052 4369.777 4415.128 4443.198 44461.658 4480.746 4528.620 4619.297 4786.811 4871.331 4890.769 4924.773 4939.685 4973.113 5041.076 5041.760 5051.641 5079.227 5079.743 5098.702 5123.729 5127.366 5150.846 5151.917 5194.950 5202.341 5216.279 5227.191 5242.495 5270.356 5328.043 5328.537	b3 b1 b3 c4 c4 c5 c3 a a a a a a a a a a a a a a a a a a	5 3 8 r 3 4 4 3 3 3 4 4 4 3 3 3 4 4 4 3 3 5 5 5 5	5332-909 5341-032 5365-404 5405-780 5434-528 5473-913 5497-521 5501-471 5506-784 ‡5535-419 5563-612 5975-352 6027-059 6065-495 6136-624 6157-734 6165-370 6173-345 6200-323 6213-441 6219-290 6252-567 6254-269 6254-269 6254-269 6265-145 6297-802 6335-342 6430-859 6494-992	a4 a4 a4 a1 a a a a a a a a b b b b b b b b b b	2 5 2 6 6 4 4 3 2 3 2 3 4 4 5 5 6 6 4 5 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8

Measures of Burns. † Means of St. John and Burns.

* Measures of Buths. I Meals of 32, John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines in the region λ 5975-6678 according to Gale and Adams. Group ϵ contains lines showing much larger displacements. The numbers in the class column have the following meaning: 1, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain bright and are widened very unsymmetrically toward the red under pressure.'

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913. 8

For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wavelengths.

Index Letter.	Line due to —	Wave-length in centimeters × 108.	Index Letter.	Line due to-	Wave-length in centimeters × 109.
	60	7621.28*	G	∫ Fe	4308.081
A	(o	7594.06*		(Ca	4307.907
a	-	7164.725	g	Ca	4226.904
В	О	6870.182†	h or H _δ	Н	4102.000
C or H _a	Н	6563.045	Н	Ca	3968.625
α	О	6278.303 ‡	К	Ca	3933.825
$D_{\mathbf{I}}$	Na	5896.155	L	Fe	3820.586
D_2	Na	5890.186	M	Fe	3727.778
D_3	He	5875.985	N	Fe	3581.349
	(Fe	5270.558	0	Fe	3441.155
$\mathbf{E_{I}}$	(Ca	5270.438	P	Fe	3361.327
E_2	Fe	5269.723	Q	Fe	3286.898
b _I	Mg	5183.791	R	∫ Ca	3181.387
b_2	Mg	5172.856	K	(Ca	3179.453
1.	(Fe	5169.220	S ₁)	{ Fe	3100.787
b ₃	(Fe	5169.069	$\left\{\begin{array}{c} S_1 \\ S_2 \end{array}\right\}$	Fe	3100.430
1.	(Fe	5167.678	52)	Fe	3100.046
b 4	Mg	5167.497	s	Fe	3047.725
F or H _β	Н	4861.527	Т	Fe	3020.76
d	Fe	4383.721	t	Fe	2994-53
G' or H _y	н	4340.634	U	Fe	2947.99
f	Fe	4325.939			

[•] The two lines here given for A are stated by Rowland to be; the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A."

† The principal line in the head of B.

‡ Chief line in the a group.

When head of party (for a form) for correction to reduce these values to standard everters.

^{*} Since the merical a group. See Table 163, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 160.

TABLE 166. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- 1 International Candle = 1 Pentane Candle.
- 1 International Candle = 1 Bougie Decimale.
- 1 International Candle = 1 American Candle.
- I International Candle = 1.11 Hefner Unit.
- I International Candle = 0.104 Carcel Unit.

Therefore 1 Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- 1. Standard Pentane Lamp, burning pentane 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate 0.9 candles.
- 3. Standard Carcel Lamp, burning colza oil 9.6 candles.
- 4. Standard English Sperm Candle, approximately 1.0 candles.

Slight differences in candle power are found in different lamps, even when made as accurately as possible to the same specifications. Hence these so-called primary standards should be themselves standardized.

TABLE 167. - Intrinsic Brightness of Various Light Sources.

	Barrows.	Ives & Luckies	sh.	National Electric Lamp Association.
	C. P. per Sq. In. of surface of light.	C. P. per Sq. In. of surface of light.	C. P. per Sq. Mm. of sur- face of light.	C. P. per Sq. In. of surface of light.
Sun at Zenith	600,000 200,000 10,000-50,000 5,000	84,000	130. - 6.2	600,000 200,000 10,000-50,000 5,000
Tungsten incandescent, 1.15 w.p. c. Tungsten incandescent, 1.25 w.p. c. Tantalum incandescent, 2.0 w. p. c. Graphitized carbon filament, 2.5	1,000 750	(115 v .6 amp. d.c.) 3,010 - 1,000 580	1.64 0.9	(1.5 w.p.c.) 2,200 1,000 875 750
w. p. c. Carbon incandescent, 3.1 w. p. c. Carbon incandescent, 3.5 w. p. c. Carbon incandescent, 4.0 w. p. c. Inclosed carbon arc (d. c.)	625 480 375 300 100-500	750 485 400 325	0.75 0.63 0.50	625 480 375 - 100-500
Inclosed carbon arc (a. c.) Acetylene flame (1 ft. burner) Acetylene flame (1 ft. burner) Welsbach mantle Welsbach (mesh)	75-100 	53.0 33.0 31.9 56.0	- 0,082 0,057 0.048 0,067	75-200 75-100 - 20-50
Cooper Hewitt mercury vapor lamp Kerosene flame Candle flame Gas flame (fish tail) Frosted incandescent lamp Moore carbon-dioxide tube lamp	16.7 4-8 3-4 3-8 4-8	14.9 9.0 — 2.7	0.023 0.014 - 0.004	17 3-8 3-4 3-8 2-5 0-3-1-75

Taken from Data, 1911.

TABLE 168. - Visibility of White Lights.

Panas	Candle Power.		
Range.	1	2	
1 sea-mile = 1855 meters	 0.47	0.41	
" "	 1.9	1.6	
	 11.8	10.	

¹ Paterson and Dudding. ² Deutsche Seewarte.

The energy falling on 1 sq. cm. at 1m. from a candle is about 4 ergs per sec. (Rayleigh, about 8 according to Angström.)

EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

	Amperes.	Terminal Watts.	Lumens.	Kw-hours for 100,000 Lumen- hours.	Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.
Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., multiple Flame arc, dc., inclined electrodes Flame arc, dc., vertical electrodes Luminous arc, dc., multiple Open arc, dc., series Magnetite arc, dc., series Flame arc, ac., vertical electrodes Flame arc, ac., inclined electrodes Open arc, dc., series Tungsten series Flame arc, ac., inclined electrodes Inclosed arc, dc., series Luminous arc, dc., series Luminous arc, dc., multiple Tungsten, multiple Nernst, ac., 3-glower Nernst, ac., 3-glower Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, dc., multiple Carbon, 3.1 w. p. c., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, ac., multiple	5.5 5.5 6.6 10.0 3.5 8.0 8.0 6.6 9.6 4.0 10.0 10.0 6.6 6.6 4.0 0.545 1.87 7.5 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 — 6.6 6.6	385 528 550 385 440 440 726 480 320 467 467 467 475 440 60 414 480 425 40 49.6 210 56 550 385 430 285	11,670 11,670 7,370 8,640 4,400 6,140 6,140 6,140 5,340 2,920 626 3,910 3,315 2,870 475 2,160 2,160 2,160 2,160 2,160 626 626 626 626 61,535 1,030 1,124 688	3·3 5·18 7·16 6·37 15·92 7·16 9·55 11·15 8·75 8·75 11·15 12·0 9·55 14·32 15·32 12·6 19·2 19·9 21·3 21·1 29·9 33·6 33·7 35·8 37·4 38·3 41·4	0.339 0.527 0.729 0.837 0.89 0.966 0.968 1.079 1.13 1.275 1.305 1.384 1.405 1.405 1.459 1.547 1.55 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.47 3.50 3.66 3.84 3.94 4.265

Paper by Prof. J. M. Bryant and Mr. H. G. Hake, Engineering Experiment Station, University of Illinois. SMITHSONIAN TABLES.

SENSITIVENESS OF THE EYE TO RADIATION.

(Compiled from Nutting, Bulletin of the Bureau of Standards.)

Radiation is easily visible to most eyes from 0.330 μ in the violet to 0.770 μ in the red. At low intensities approaching threshold values (red vision) the maximum of spectral sensibility lies in the green at about 0.510 μ for 90% of all persons. At higher intensities with the establishment of cone vision the maximum shifts towards the yellow at least as far as 0.560 μ .

λ	.410	.430	.450	.470	.490	.510	.530	.550	.570	.590	.610
Mean sensitiveness	0.02	0.06	0.23	0.49	0.81	1.00	0.81	0.49	0.22	0.077	0.026

TABLE 171. - Variation of Sensitiveness to Radiation of Greater Intensities.

The sensibility is approximately proportional to the intensity over a wide range. The ratio of optical- to radiation-intensity increases more rapidly for the red than for the blue or green (Purkinje phenomenon).

The intensity is given for the spectrum at 0.535μ (green).

Intensity (metre-candles) = Ratio to preceding step =	.00024	.0 0225 9.38	.0360 16	·575	2.30	9.22	36.9 4	147.6 4	590.4 4
Wave-length, λ.				Se	nsitivenes	is.			
0.430µ	.081	.093	.127	.128	.114	.114	-	-	-
.450	-33	.30	.29	.31	.23	.175	.16	-	_
.470	.63	.59	.54	.58	.51	.29	.26	.23	_
.490	.96	(.89)	(.76)	(.89)	(.83)	.50	-45	.38	·35
-505	1.00	1.00	1.00	1.00	-99	(.76)	.66	.61	.54
.520	.88	.86	.86	.94	-99	(.85)	.85	.85	.82
-535	.61	.62	.63	.72	.91	(.98)	.98	.99	.98
-555	.26	.30	-34	.41	.62	.84	-93	-97	.98
.575	.074	.102	.122	.168	(.39)	(.63)	(.76)	(.82)	(.84)
.590	.025	.034	.054	100.	.27	.49	.61	.68	.69
.605	.oo8	.012	.024	.056	.173	-35	(.45)	-54	.55
.625	.004	.004	.011	.027	.098	.20	.27	.35	-35
,650	.000	.000	.003	.007	.025	.060	.085	,122	.133
.670	.000	.000	100.	.002	.007	.017	.025	.030	.030
λ, maximum sensitiveness	.503	.504	.504	.508	.513	.530	.541	-543	.544

TABLE 172. — Sensibility to Small Differences in Intensity measured as a Fraction of the Whole.

I_0 in m. c. \equiv	.670 0.06 0	.605 0. 0056	· 575 o.0029	.505 0.00017	.470 0.00012	.430 0.00012	White 0.00072
I	:16	Köni		a, meas person	ures fro only.	m one r	ormal
1,000,000	-	-	-	-	-	-	.036
200,000	- 1	.042	-	-	-	-	.027
100,000	-	.024	.032	-	-		.019
50,000	.021	.025	.026	-	-	-	.017
20,000	.016	•018	-020	.019	-	-	.017
10,000	.016	-016	.018	.018	-	-	.018
5,000	.018	•016	.017	.016	-	-	.018
2,000	.016	.018	.018	.017	.018	-	-018
1,000	.017	+020	•018	.018	.017	.018	.018
500	.020	+O2 I	+018	.019	.018	.021	.019
200	.022	*O22	+O22	.022	.021	.024	.022
100	.029	.028	+027	.024	.022	.025	.030
50	.038	.038	+032	.025	.025	.027	.032
10	.065	.061	.058	.036	.037	.040	.048
5	.092	.103	.089	.049	.046	.049	.059
1	.258	.212	.170	. 0 80	+088	.074	.123
0.5	.376	.276	.2 I	.091	.096	.097	.188
0.10	-	-	.40	.133	.138	.137	-377
0.05	-	-	-	.183	.185	.154	.484
0.01	-	-	-	.27 t	.289	.249	-
0.005	-	~	~	.325	.300	.312	

The sensibility to small differences in intensity is independent of the intensity (Fechner's law). About 0.016 for moderate intensities. Greater for extreme values. It is independent of wave-length, extremes

excepted (König's law).

Sensibility to slight differences in wavelength has two pronounced maxima (one in the yellow, one in the green) and two slight maxima (extreme blue, extreme red).

The visual sensation as a function of the time approaches a constant value with the lapse of time. With blue light there seems to be a pronounced maximum at 0.07 sec., with red a slight one at 0.12 seconds, with green the sensation rises steadily to its final value. For lower intensities these max. occur later.

An intensity of 500 metre-candles is about that on a horizontal plane on a cloudy

TABLE 173. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902—12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from λ max. = 2930 and max. = 0.470 μ , 6230°; from total radiation, J = $76.8 \times 10^{-12} \times T^4$,

5830°.

TABLE 174. — Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from $e_m = e_0 a^m$, where e_m is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec, zenith distance for other positions (see table 180); e_0 = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

Ę.	Т	ransmis ficien	sion co	ef-				Intens	sity Sol	ar Ene	rgy. A	rbitrary Units.	7		
Wave-length μ	Wash- ington.	Mount Wilson.	Mount Whitney.	ne mile nearer earth.		Mount Whitney.		Mount	Wilson			w	ashing	ton.	
	W _a	Mo	M _o	One ne ez	m = 0	m = 1	m = 1	2	4	6	m= 1	2	3	4	6
0.30 .32 .34 .36 .38 .40 .46 .50 .60 .70 .80 1.50 2.00	(.380) .560 .690 .733 .779 .858 .886 .922 .938	(.460) .520 .580 .635 .676 .729 .832 .862 .900 .950 .970 .980	(.550) .615 .692 .741 .784 .809 .887 .919 .940 .964 .976 .975 .965		54 111 232 302 354 414 618 606 504 364 266 166 63 25	30 68 160 224 278 335 548 557 474 351 260 162 61 23	25 58 135 192 239 302 514 522 454 346 258 163 61* 24*	11 30 78 122 162 220 428 450 409 329 250 160 60* 23*	2 8 26 49 74 117 296 334 331 297 235 154 57* 21*	1 2 9 20 34 62 205 248 268 268 221 147 55*	134 232 426 441 393 312 236 153 59 23	51 130 294 323 306 268 209 141 55 21	19 73 203 237 238 230 185 130 52	7 41 140 174 185 197 164 120 49	3 13 67 94 1112 145 145 102 43 14

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

*Possibly too high because of increased humidity towards noon.

TABLE 175. — The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

Wave-length.		Mou	ınt Whi	tney.			Mount	Wilson			Washir	gton.	
μ μ 0.00 to 0.45 0.45 to 0.70 0.70 to ∞ 0.00 to ∞	.31 .71 .91 1.93	.25 .67 .87 1.78	.19 .62 .85 1.66	3 .16 .58 .82 1.56	.13 .54 .80	.23 .65 .69	.16 .57 .68	.12 .51 .66 1.28	.09 .45 .63	.13 .53 .69 1.35	.06 .40 .62 1.08	.04 .30 .57	.02 .24 .53 .79

TABLE 176. — Distribution of brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

3 1	ave-	μ D 323	μ 0.386	μ 0.433	μ 0.456	μ 0.481	μ 0.501	μ 0.534	μ 0.604	μ 0.670	μ 0.699	μ 0.8 6 6	μ 1.031	μ 1.225	μ 1.655	μ 2.097
Fraction Radius.	0.00 0.40 0.55 0.65 0.75 0.825 0.875 0.92 0.95	144 128 120 112 99 86 76 64 49	338 312 289 267 240 214 188 163 141	456 423 395 368 333 296 266 233 205	515 486 455 428 390 351 317 277 242	511 483 456 430 394 358 324 290 255	489 463 437 414 380 347 323 286 254	463 440 417 396 366 337 312 281 254	399 382 365 348 326 304 284 259 237	333 320 308 295 281 262 247 227 210	307 295 284 273 258 243 229 212 195	174 169 163 159 152 145 138 130	111 108 105.5 103 99 94.5 90.5 86	77.6 75.7 73.8 72.2 69.8 67.1 64.7 61.6 58.7	39.5 38.9 38.2 37.6 36.7 35.7 34.7 33.6 32.3	14.0 13.8 13.6 13.4 13.1 12.8 12.5 12.5

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 177. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length, λ ; a the transmission of radiation by dry air above Mount Wilson (altitude = 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor, a_w , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer 1 cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering. a_w is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than 1000 meters. If B =

the barometric pressure in mm., w, the amount of precipitable water in cm., then $a_B = \overline{a^{00}} \, a_w^w$. w is best determined spectroscopically (Astrophysical Journal, 35, p, 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann, $w = 2.3e_w 10^{-20000}$, e_w being the vapor pressure in cm. at the station, h, the altitude in meters.

λ (μ)	.720 .986 .970 .986 .988 .990	1.74 .990 .990
-------	-------------------------------------	----------------------

Fowle, Astrophysical Journal, 38, 1913.

TABLE 178.—Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea level).

Zenith dist. of zone . 10 ³ × mean ratio sky/sun Mt. Wilson Flint Island . Ditto × area of zone Mt. Wilson . "" Flint Island .	:	0-15 ⁰ 1500* 115 51.0 3.9	35-50° 520 128 91.5 22.5	50-60° 610 150 87.2 21.4	60-70° 660 185 104.3 29.2	70-80° 700 210 117.6 35.3	80-90 ⁰ 720 460 125.3 80.0	-	Sun. - 636 210
Altitude of sun . Sun's brightness, cal. per cm.² per min. Ditto on horizontal surface Mean brightness on normal surface sky × Total sky radiation on horizontal cal. per per m. Total sun + sky, ditto	 10 ⁸ /st		 5° ·533 ·046 423 ·056 ·J02	.15° .900 .233 403 .110 .343	25° 1.233 .524 .385 .162 .686	35° 1.358 .780 365 .189	47½° 1.413 1.041 346 .205 1.246	65° 1.496 1.355 326 .226 1.581	82½° 1.521 1.507 310 .240 1.747

^{*} Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were 636×10^{-8} and 210×10^{-8} , on a horizontal surface, 305×10^{-8} and 77×10^{-8} ; for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface 0.27 and 0.07. Annals of the Astrophysical Observatory of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 179.—Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.

Zenith distance about 50°.

	μ	μ	μ	μ	μ	μ	С	D	þ	F
Place in Spectrum Intensity Sunlight Intensity Sky-light Ratio at Mt. Wilson	0.422 186 1194 642	0.457 232 986 425	0.49I 227 70I 309	0.566 211 395 187	0.614 191 231 121	0.660 166 174 105	102	143	246	316
Ratio computed by Rayleigh Ratio observed by Rayleigh		-	-	- ´	-	-	102 102	164 168	258 291	328 369

TABLE 180. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith Dist.	00	20 ⁰	40 ⁰	60°	7º°	75°	80°	85°	88°
Secant Forbes Bouguer Laplace Bemporad	I.00 I.00 I.00 I.00	1.064 1.065 1.064 -	1.305 1.306 1.305	2.000 1.995 1.990 1.993 1.995	2.924 2.902 2.900 2.899 2.904	3.864 3.809 3.805 -	5.76 5.57 5.56 5.56 5.60	11.47 10.22 10.20 10.20 10.39	28.7 18.9 19.0 18.8 19.8

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

TABLES 181-182.

RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 181. — Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation, A_{\odot} , at earth's mean distance from the sun.

	Motion of			Relati	VB MEA	n Vert	ical In	TENSITY	$\left(\frac{J}{A_{\odot}}\right)$			
Date.	the sun in longi-				I	ATITUD	E NORT	н.				$\frac{A}{A_0}$
	tude.	0°	10°	200	30°	40 °	50 °	60°	70°	80°	90°	
Jan. I Feb. 1 Mar. I Apr. I May I June I July I Aug. I Sept. I Oct. I Dec. I	0.99 31.54 59.14 89.70 119.29 149.82 179.39 209.94 240.50 270.07 300.63 330.19	0.303 .312 .320 .317 .303 .287 .283 .294 .310 .317 .312 .304	0.265 .282 .303 .319 .318 .315 .316 .318 .308 .286	0.220 .244 .279 .312 .330 .334 .333 .330 .316 .289 .251	0.169 .200 .245 .295 .329 .345 .347 .334 .305 .261 .211	0.117 .150 .204 .269 .320 .349 .352 .330 .285 .225 .164	0.066 .100 .158 .235 .302 .345 .351 .318 .256 .183 .114	0.018 .048 .108 .195 .278 .337 .345 .300 .220 .135 .063	0.006 .056 .148 .253 .344 .356 .282 .180 .084	0.013 .101 .255 .360 .373 .295 .139	0.082 .259 .366 .379 .300 .140	1.0335 1.0288 1.0173 1.0009 0.9841 0.9714 0.9666 0.9709 0.9828 0.9995 1.0164 1.0288
Year		0.305	0.301	0.289	0.268	0.241	0.209	0.173	0.144	0.133	0.126	

TABLE 182. - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, one of very low and one of very small, range of temperature.

	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Year.
4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 9 St. Louis 10 San Francisco 11 Yuma 12 New Orleans 13 Massaua 14 Ft. Conger (Greenl'd) 15 Werchoiansk	-21.610.92.84.82.1 + -0.7 + -16.40.8 + +10.1 - +12.3 - +25.6 -	-18.8 - 9.1 - 2.2 - 2.9 - 0.1 - 15.6 - 1.7 - 10.9 - 14.9 - 14.5 - 45.3	$ \begin{array}{c} -11.0 \\ -4.3 \\ +1.2 \\ +3.8 \\ +5.2 \\ -13.4 \\ +6.2 \\ +18.1 \\ +16.7 \\ -33.5 \\ -32.5 \end{array} $	+ 1.9 + 4.8 + 7.3 + 7.9 + 8.3 + 11.7 - 10.4 + 13.4 + 121.0 + 21.0 + 29.0 - 25.3 - 13.7	+10.9 +12.6 +13.6 +13.4 +13.6 +17.7 - 5.3 +18.8 +13.7 +25.1 +23.7 +31.7 -10.0 + 2.0	+17.1 +18.3 +19.1 +19.7 +19.1 +22.9 +0.4 +24.0 +14.7 +29.4 +26.8 +33.5 +0.4 +12.3	+18.9 +20.5 +21.8 +22.2 +22.1 +24.9 + 4.5 +26.0 +33.1 +27.9 +34.8 + 2.8 +15.5	+17.6 +19.3 +20.6 +21.6 +21.2 +23.7 + 3.6 +24.9 +14.8 +32.6 +27.5 -27.5 +1.0 +10.1	+11.6 +14.7 +16.9 +17.9 +16.6 +19.9 -0.3 +20.8 +15.8 +29.1 +25.7 +25.1 +25.2 +25.1	+ 4.1 + 7.8 + 11.1 + 10.3 + 13.4 - 5.8 + 14.2 + 15.2 + 22.8 + 21.0 + 31.7 - 22.7 - 15.0	- 7.6 - 0.2 + 4.8 + 3.6 + 3.3 + 6.9 - 11.8 + 6.4 + 13.5 + 15.9 + 29.0 - 30.9 - 37.8	-15.7 - 7.1 - 0.5 - 1.5 0.0 + 2.3 -14.4 + 2.0 + 13.3 + 13.1 + 27.0 - 33.4 - 47.0	+ 0.6 + 5.5 + 9.2 + 9.1 + 9.7 + 12.6 - 7.1 + 13.1 + 13.2 + 22.3 + 20.0 - 16.7

Lat., Long., Alt. respectively: (1) $+58^{\circ}.5, 63^{\circ}.0$ W, -; (2) +49.9, 97.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 38m.; (5) +41.9, 87.6 W, 251m.; (6) +39.7, 105.0 W, 1613m.; (7) +38.9, 77.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (9) +38.6, 90.2 W, 173m.; (10) +37.8, 122.5 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.9, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W., -; (15) +67.6, 133.8 E, 140m.; (16) -6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

TABLE 183. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena: n_A , n_C , n_D , n_F , n_G , are the indices of refraction in air for A=0.7682 μ , C=0.6563 μ , D=0.5893, F=0.4861, G'=0.4341. $v=(n_D-1)/(n_F-n_C)$. Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handbuch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena Glass."

Catalogue Type = Designation = Melting Number= v =	O 546 Zinc-Crown. 1092 60.7	O 381 Higher Dis- persion Crown. 1151 51.8	O 184 Light Silicate Flint. 451 41.1	O 102 Heavy Silicate Flint. 469 33-7	O 165 Heavy Silicate Flint. 500 27.6	S 57 Heaviest Silicate Flint. 163 22.2
Cd 0.2763µ Cd 2.2837 Cd 2.2980 Cd 3.3610 PM H .4340µ H .4861 Na .5893 H .6563 K .7682 S800µ 1.200 1.600 2.000 2.400	1.56759 1.56372 1.55723 1.534369 1.53897 1.52299 1.51698 1.51446 1.51143 1.5048 1.5008 1.4067	1.57093 1.55262 1.54664 1.53312 1.52715 1.52002 1.51712 1.51368 1.5131 1.5069 1.5024 1.4973	1.65397 1.63320 1.63388 1.59355 1.59355 1.57524 1.57119 1.56669 1.5585 1.5535 1.5487	1,71968 1,70536 1,67561 1,66367 1,643985 1,64440 1,63820 1,6373 1,6277 1,6217 1,6111	1.85487 1.83263 1.78800 1.77091 1.75130 1.74368 1.73530 1.7339 1.7215 1.7151	1.94493 1.91890 1.858995 1.87893 1.86702 1.8650 1.8481 1.8396 1.8316 1.8286

Percentage composition of the above glasses:

- O 546, SiO₂, 65.4; K₂O, 15.0; Na₂O, 5.0; BaO, 9.6; ZnO, 2.0; Mn₂O₃, 0.1; As₂O₃, 0.4; 0 381, SiO₂, 0.54, R₂O₃, 15.0; Na₂O₃, 5.0; DaO, 9.0; ZhO, 2.0; Mh₂O₃, 0.1; As $_{\rm B}$ O₃, 2.5. 0 381, SiO₂, 6.87; PbO, 13.3; Na₂O, 15.7; ZhO, 2.0; Mh₂O₃, 0.01; As₂O₅, 0.2. 0 184, SiO₂, 53.7; PbO, 36.0; K₂O, 8.3; Na₂O, 1.0; Mh₂O₃, 0.06; As₂O₃, 0.3. 0 102, SiO₂, 40.0; PbO, 52.6; K₂O, 6.5; Na₂O, 0.5; Mh₂O₃, 0.09; As₂O₅, 0.3. 0 105, SiO₂, 29.26; PbO, 67.5; K₂O, 3.0; Mh₂O₃, 0.04; As₂O₃, 0.2. SiO₂, 20.26; PbO, 80.2 As₂O₃, 0.2.

- S 57, SiO₂, 21.9; PbO, 78.0; As₂O₅, 0.1.

TABLE 184. - Jona Glasses.

No. and Type of Jena Glass.	$n_{\rm D}$ for D	n _F n _C	$v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$	$n_{\rm D}-n_{\rm A}$	$n_{\rm F}-n_{\rm D}$	$n_{\rm G}$, — $n_{\rm F}$	Specif Weigh
O 225 Light phosphate crown	1.5159	.00737	70.0	.00485	.00515	.00407	2.58
() 802 Boro-silicate crown	1.4967	0765	64.9	0504	0534	0423	2.3
UV 3199 Ultra-violet crown	1.5035	0781	64.4	0514	0546	0432	2.4
O 227 Barium-silicate crown	1.5399	0 909	59-4	0582	0639	0514	2.7
() 114 Soft-silicate crown	1.5151	0910	56.6	0577	0642	0521	2.5
O 608 High-dispersion crown	1.5149	0943	54.6	0595	o 666	0543	2.6
UV 3248 Ultra-violet flint	1.5332	0964	55.4	0611	o68o	0553	2.7
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.7
O 602 Baryt light flint	1.5676	1072	53.0	0675	0759	0618	3.1
S 389 Borate flint	1,5686	1102	51.6	0712	0775	0629	2.8
O 726 Extra light flint	1.5398	1142	47-3	0711	0810	0669	2.8
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	0791	3.1
O t84 " " "	1.5900	1438	41.1	0882	1022	0861	3.2
O 748 Baryt flint	1.6235	1599	39.1	9965	1142	0065	3.6
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.8
O41 " "	1.7174	2434	29.5	1439	1749	1521	4.4
0 165 " "	1.7541	2743	27.5	1607	1974	1730	4.7
S 386 Heavy flint	1.9170	4289	21.4	2451	3100	2808	6.0
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.3

TABLE 185. — Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

No. and Designation.	Mean Temp.	С	D	F	G/	$\frac{-\Delta n}{n}$ 100
S 57 Heavy silicate flint O 154 Light silicate flint O 327 Barvt flint light O 225 Light phosphate crown	58.8° 58.4 58.3 58.1	1.204 0.225 0.008 0.202	0.261 0.014 0.190	2.090 0.334 0.080 0.168	2.810 0.407 0.137 0.142	0.0166 0.0078 0.0079 0.0049

Pulfrich, Wied. Ann. 45, p. 609, 1892.

TABLE 186. - Index of Refraction of Rock Salt in Air.

λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	n.	Observer.
0.185,409 .204470 .291368 .358702 .441587 .486149 .58902 .58932 .656304 .766529 .76824 .78576 .88396	1.89348 1.76964 1.61325 1.57932 1.55962 1.55338 1.553466 1.553399 1.544313 1.540672 1.540702 1.536712 1.53666 1.536138 1.536138	M " " " " " " " " " " " " " " " " " " "	0.88396 .972298 .98220 1.036758 1.1786 1.555137 1.7680 2.073516 2.35728 2.9466 3.5359 4.1252 5.0092	1.534011 1.532532 1.532435 1.531702 1.530372 1.530374 1.528211 1.527440 1.527441 1.526554 1.525863 1.525863 1.525843 1.521648 1.521648	L P L P L P L P L P L P L P P L P	5.8932 6.4825 7.0611 7.9558 8.8398 10.0184 11.7864 12.9650 14.1436 14.7330 15.3223 15.9116 20.57 22.3	1.516014 1.515553 1.513028 1.513467 1.511062 1.508318 1.506804 1.502035 1.494722 1.481816 1.471720 1.460547 1.454404 1.447494 1.447494 1.441032 1.3735 1.340	PLPLP

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where $a^{2} = 2.330165$ $\lambda_{2}^{2} = 0.02547414$ $b^{2} = 5.680137$ $M_{1} = 0.01278685$ $k = 0.0009285837$ $M_{3} = 12059.95$ $\lambda_{1}^{2} = 0.0148500$ $h = 0.000000286086$ $\lambda_{3}^{2} = 3600$. (P) $M_{2} = 0.005343924$

TABLE 187. — Change of Index of Refraction for 1° C in Units of the 5th Decimal Place.

0.202µ +3.134 Mi 0.441µ -3.425 Mi .210 +1.570 " .508 -3.517 " .224 -0.187 " .643 -3.636 " .298 -2.727 " "	
---	--

- Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900. Pl Pulfrich, Wied. Ann. 26, 1892.
- M Martens, Ann. d. Phys. 6, 1901, 8, 1902. Mi Micheli, Ann. d. Phys. 7, 1902.
- RN Rubens and Nichols, Wied. Ann. 60, 1897.

TABLE 188. - Index of Refraction of Silvine (Potassium Chloride) in Air.

λ(μ).	n	Obser- ver.	λ(μ).	n.	Obser- ver.	λ(μ).	n.	Obser- ver.
0.185409 .200090 .21946 .257317 .281640 .308227 .358702 .394415 .467832 .508606 .58933 .67082 .78576 .88398 .98220	1.82710 1.71870 1.64745 1.58125 1.55836 1.54136 1.52115 1.51219 1.50044 1.49620 1.49644 1.49620 1.48669 1.483282 1.481422 1.48084	M " " " " " " " " " " " " " " " " " " "	1.1786 1.7680 2.35728 2.9466 3.5359 4.7146 5.3°39 5.8932	1.478311 1.47824 1.475890 1.47589 1.474751 1.473834 1.47394 1.47394 1.47122 1.47129 1.470013 1.47001 1.468804 1.46880	P W P W P W P W P W P	8.2505 8.8398 10.0184 11.786 12.965 14.144 15.912 17.680 20.60 22.5	1.462726 1.46276 1.460858 1.46092 1.45672 1.45673 1.44919 1.44941 1.44346 1.44345 1.43722 1.42617 1.41403 1.3882 1.369	P W P W P W P W P W RN

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or } = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$

$$a^{2} = 2.174967 \qquad \lambda_{2}^{2} = 0.0255550 \qquad b^{2} = 3.866619$$

$$M_{1} = 0.008344206 \qquad k = 0.000513495 \qquad M_{3} = 5569.715$$

$$\lambda_{1}^{2} = 0.0119082 \qquad h = 0.00000167587 \qquad \lambda_{3}^{2} = 3292.47 \qquad (P)$$

$$M_{2} = 0.00698382 \qquad h = 0.00000167587 \qquad \lambda_{3}^{2} = 3292.47 \qquad (P)$$

W Weller, see Paschen's article. Other references as under Table 187, above.

INDEX OF REFRACTION.

TABLE 189. - Index of Refraction of Fluorite in Air.

λ (μ)	12	Obser- ver	λ (μ)	n	Obser- ver	λ (μ)	71	Obser- ver.
0.1856 .19881 .21441 .22045 .25713 .32525 .34555 .39681 .48607 .58930 .65618 .68671 .71836 .76040 .8840 1.1786 1.3756	1.50940 1.49629 1.48462 1.47762 1.46476 1.44987 1.44214 1.43713 1.43357 1.43250 1.43157 1.43262 1.42787 1.42690 1.42641	S	1 4733 1.5715 1.6206 1.7680 1.9153 1.9644 2.0626 2.1608 2.2100 2.3573 2.5537 2.6519 2.7502 2.9466 3.1430 3.2413 3.5359 3.8306	1.42641 1.42596 1.42582 1.42507 1.42437 1.42413 1.42359 1.42388 1.42199 1.42088 1.42016 1.41971 1.41826 1.41707 1.41612 1.41379 1.41120	P	4.1252 4.4199 4.7146 5.0092 5.3036 5.5955 5.8932 6.4825 7.0718 7.6612 8.2505 8.8398 9.4291 51.2 01.1 ∞	1.408 55 1.40 559 1.40 559 1.30 529 1.30 529 1.30 142 1.38 719 1.36 505 1.36 505 1.34 444 1.33 079 1.31 612 3.47 2.66 2.63	P

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda_{r}^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where $a^{2} = 2.03882$ $f = 0.00002916$ $M_{3} = 5114.65$
 $M_{1} = 0.0062183$ $b^{2} = 6.09651$ $\lambda_{r}^{2} = 1260.56$
 $\lambda_{1}^{2} = 0.007706$ $M_{2} = 0.0061386$ $\lambda_{r} = 0.0940\mu$
 $\epsilon = 0.0031999$ $\lambda_{r}^{2} = 0.00884$ $\lambda_{r} = 35.5\mu$ (P)

TABLE 190. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 191. - Index of Refraction of Iceland Spar (CaCO3) in Air.

λ (μ)	n_o	n_e	Obser- ver.	λ (μ)	n_o	ne	Observer.	λ (μ)	920	220	Obser- ver.
0.198 .200 .208 .226 .298 .340 .361 .410 .434 .486	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755 1.6678	1.5780 1.5765 1.5664 1.5492 1.5151 1.5056 1.5022 1.4964 1.4943	M " C M C M "	0.508 •533 •589 .643 .656 .670 .760 .768 .So1	1.6653 1.6628 1.6584 1.6550 1.6544 1.6537 1.6500 1.6497 1.6487	1.4896 1.4884 1.4864 1.4849 1.4843 1.4843 1.4826 1.4826 1.4822	M " " " " — M C "	0.991 1.229 1.307 1.497 1.682 1.749 1.849 1.908 2.172 2.324	1.6438 1.6393 1.6379 1.6346 1.6313 1.6280	1.4802 1.4787 1.4783 1.4774 1.4764 1.4757	C

C Carvallo, J. de Phys. (3), 9, 1900.
 M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902.
 P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann. 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899, S Starke, Wied. Ann. 60, 1897.

TABLE 192. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

λ	η λ	n	λ	n	λ	n	λ	n
.500 2 .506 2 .508 2	.140	1.945 1.909 1.879 1.857 1.834	0.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	o. 636 .647 .659 .669 .696	1.647 1.758 1.750 1.743 1.723	0.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood,
Phil. Mag 1903.

Tables 193-194. INDEX OF REFRACTION.

TABLE 193. — Index of Refraction of Quartz (SiO2).

Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray,	Temperature ° C.	Wave- length.	Index Ordinary Ray.	Index Extraordinary Ray.	Tempera- ture ° C.
0.185 .193 .198 .206 .214 .219 .231 .257 .274 .340 .396 .410 .486 0.598	1.67582 .65997 .65090 .64038 .63041 .62494 .61399 .59622 .58752 .56748 .55815 .55650 .54968	1.68999 .67343 .66397 .65300 .64264 .63698 .62560 .60712 .59811 .57771 .56600 .55896	18 14 14 14 14 14 14 14 14 14 14 14 14 14	0.656 .686 .760 1.160 .969 2.327 .84 3.18 .63 .96 4.20 5.0 6.45 7.0	1.54189 .54099 .53917 .5329 .5216 .5156 .5039 .4944 .4799 .4679 .4569 .417 .274 1.167	1.55091 .54998 .54811 Rubens.	18 "

Except Rubens' values, - means from various authorities.

TABLE 194. - Indices of Refraction for various Alums.*

R	ıty.	°. C.		I	ndex of ref	fraction for	the Fraun	hofer lines			
K	Density.	Temp.	а	В	С	D	Е	ъ	F	G	
			Alu	minium Al	ums. RAl	(SO ₄) ₂ +12	H ₂ O.†				
Na NH ₃ (CH ₃) K Rb Cs NH ₄	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	I.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 ·45749 ·45996 ·45999 ·46203 ·46288 ·50209	1.44412 .45941 .46181 .46192 .46386 .46481	1.44804 .46363 .46609 .46618 .46821 .46923 .51076	
	Chrome Alums. RCr(SO ₄) ₂ +12H ₂ O.†										
Cs K Rb NH ₄ Tl	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808	
			I	ron Alums	. RFe(SC) ₄) ₂ +12H ₂ (0.†				
K Rb Cs NH ₄ Tl	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112	

^{*} According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
† R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

TABLE 195.

INDEX OF REFRACTION.

Various Monorefringent or Optically Isotropic Solids.

Substance					Line of Spectrum.	Index of Refraction.	Authority.
Agate (light color) .					red	1.5374	De Senarmont.
Albite glass					Ð	1.4890	Larsen, 1909.
Ammonium chloride .					D	1.6422	Grailich.
Anorthite glass					Ď.	1.5755	Larsen, 1909.
Arsenite			•		D	1.755	DesCloiseaux.
Barium nitrate					D	1.5716	Fock.
Bell metal					D	1.0052	Beer.
					(Li	2.34165)	
Blende				•	} Na	2.36923 }	Ramsay.
					(T1	2.40069	
					(C	1.46245)	
Boric acid						1.46303	
					(F	1.47024	Bedson and
					(C	1.51222	Carleton Williams.
Borax (vitrified) .					$\left\{ \tilde{D} \right\}$	1.51484	
					(F	1.52068 J	
Camphor					D	§ 1.532	Kohlrausch.
campioi	•	•	•	•		1.5462	Mulheims.
Diamond (colorless) .					∫red	2.414	DesCloiseaux.
Diamond (coloriess) .	٠	•	•	•	} green	2.428	Descroiseaux.
					(B)	2.46062 2.46986	
Diamond (brown) .		•				2.46986 }	Schrauf.
					(E	2.47902)	
Ebonite				•	D	1.6	Ayrton & Perry.
					∫ A	2.03	
					B	2.19	
Fuchsin						2.33	Means.
· [G	1.97	
					(H	1.32	
Garnet (different varietie	120				D	1.74 to \	Various.
'	,,	•	•	•		1.90	
Gum arabic					red	1.480	Jamin.
	•			•	"	1.514	Wollaston.
Lime CaO					D	1.832	Wright, 1909.
Magnesium oxide .			•		D	1.734	Wright, 1909.
Obsidian					D	{ 1.482 to }	Various.
		•	-	•		1.496	
Opal					D	{ I.406 }	"
1		-	-	•		1.450	Wallastan
Pitch	٠	•	•	•	red	1.531	Wollaston.
Potassium bromide .	•		•	•	D "	1.5593	Topsöe and
" chlorstannate	•	•		•	"	1.6574	Christiansen.
louide .	•	•	•	•	"	1.6666)	Gladstone & Dale.
Phosphorus	•	•	•	- 1	red	2.1442 1.619	Jamin.
Resins: Aloes Canada balsam	•	•	•	•	red		Wollaston.
	•	•	•	•	"	1.528	Jamin.
Colophony .	٠	•	•	4	**	1.548) aiiiii.
Copal Mastic	٠	•	•	•	"	1.528	Wollaston.
Mastic Peru balsam	•	•	•	•	D	1.535	Baden Powell.
reru baisam	•	•	٠	•	ſ A	1.593 2.612	Daddii I Owell.
					B	2.680	
Selenium, vitreous .					{ c	, , , , , , , , , , , , , , , , , , ,	Wood.
					Ď	2.729	
(hwanida					TD d	2.93	
Silver { bromide	•	•	•	•	- P	2.253	Wernicke.
Silver chioride.	٠	•	•	•	"	2.061	wernicke.
(iodide	•	•	•	•	"	1.5150	Dussaud.
Sodium chlorate .	•	•	•	٠	"	1.5150	Dussaud. DesCloiseaux.
Spinel	•	•	•	.	"	1.5667	Fock.
Strontium nitrate .	•	•	•			1.500/	I UCA.
1							

TABLE 196. INDEX OF REFRACTION.

Uniaxial Crystals.

		Index of	refraction.	
Substance.	Line of spectrum.	Ordinary ray.	Extraordin- ary ray.	Authority.
Alunite (alum stone) Ammonium arseniate Anatase Apatite Benzil Beryl Brucite Calomel Cinnabar Corundum (ruby, sapphire, etc.) Dioptase Dolomite Emerald (pure) Gehlenite Greenockite Ice at — 8° C. Idocrase Ivory Magnesite Nephelite Potassium arseniate "" Rutil Silver (red ore) Sodium arseniate " nitrate " phosphate Strychnine sulphate Tin stone Tourmaline (colorless)	D red D red S red D D D D Ted red D D D D D D D D D D D D D D D D D D D	1.573 1.577 2.5354 1.6390 1.6588 1.589 to 1.570 1.560 1.9732 2.854 1.767 to 1.767 1.667 to 1.667 to 1.668 1.309 1.719 to 1.722 1.539 1.717 1.541 1.564 1.459 1.583 1.4459 1.446 1.997 1.633 to	1.592 1.524 2.4959 1.6345 1.6784 1.582 to 1.566 1.581 2.6559 3.199 1.759 1.723 1.506 to 1.512 1.529 1.313 1.720 1.541 1.515 1.501 2.9029 2.881 1.467 1.336 2.452 1.519 2.093 1.616 to	Levy & Lacroix. De Senarmont. Schrauf. " DesCloiseaux. Various. Kohlrausch. Dufet. DesCloiseaux. " Various. DesCloiseaux. Wright, 1908. Merwin, 1912. Meyer. DesCloiseaux. Kohlrausch. Mallard. Bowen, 1912. DesCloiseaux. De Senarmont. Bärwald. Fizeau. Baker. Schrauf. Dufet. Martin. Grubenman. Heusser.

BIAXIAL CRYSTALS.

Substance.	Line of	Ind	ex of Refract	ion.	Authority.
	trum.	Minimum.	Interme- diate.	Maximum.	
Amphibole	D red D D D D D D D D D D D D D D D D D D D	1.633 1.632 1.55.49 1.8771 1.5693 1.576 1.5697 1.5301 1.67.20 1.636 1.4467 1.509 1.5140 1.5208 1.605 1.432 1.5601 1.661 1.5190 1.7202 1.3346 1.493 1.640 1.7307 1.9505 1.6294 1.638 to	1.642 1.638 1.5587 1.8823 1.5752 1.583 1.6935 1.6816 1.6779 1.637 1.4694	1.657 1.643 1.5634 1.8936 1.6130 1.589 1.7324 1.6859 1.6810 1.648 1.4724 1.514 1.5433 1.526 1.460 1.5977 1.526 1.460 1.5977 1.5260 1.8197 1.5260 1.8197 1.5260 1.8197 1.5260 1.679 1.679 1.679 1.637 1.637 1.633 to 1.623 1.623	Lévy-Lacroix. Lévy-Lacroix. Wright 1910. Arzruni. Mülheims. Bowen 1912 Liweh. Rudberg. Des Cloiseaux. Various. Dufet. Bowen 1912. Kohlrausch. Mülheims. Wright 1908. Genth, Penfield. Means. Pulfrich. Des Cloiseaux. " Dufet. Schrauf. Topsöe & Christiansen. Wright 1908. Calderon Schrauf. Mülheims. Various. Means.
Zinc sulphate	D	1.4568	1.4Š01	1.4836	Topsöe & Christiansen.

TABLE 198.

INDEX OF REFRACTION.

Indices of Refraction relative to Air for Solutions of Salts and Acids.

						ces of ref	fraction	for s	spectrum	lines.			
	Substance	э.	Density.	Temp. C.	С	D	F		\mathbf{H}_{γ}	н		Aut	hority.
				(a) S	COLUTION	IN WA	TFR.						
٠	mium c m chloi	hloride "ide .	1.067 .025 .398 .215	27°.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	.3505 .4427 .3965	9 .449	515 938 206	 	1.393 .362 .466 .416	243 001 078	Will	
Nitric Potash	acid (caust ium chl	acid . ic) loride . "	double	20.75 18.75 11.0 solution normal normal	1.40817 .39893 .40052 .34087 .34982 .35831	.4018 .4028 .3427 .3517	1 .400 1 .400 8 .347 9 .350	S57 S68 719 545	- - 1.35049 ·35994 .36890	-	100	Frau Benc	nhofer.
	caustic n chlor "		1.376 .189 .109 .035	21.6 18.07 18.07 18.07	1.41071 •37562 •35751 •34000	.3778 -3595	9 .38; 9 .36.	322 142	- 1.38746 .36823 .34969	-		Will Schu "	
	n nitrat iric acio " "		1.358 .811 .632 .221 .028	22.8 18.3 18.3 18.3 18.3	1.38283 ·43444 ·42227 ·36793 ·33663	.4366 .4246 .3700	9 ·44 6 ·429 9 ·37	168 167 168	-	1.401 .448 .436 .381	883 594 1 5 8	Will	
Zinc cl	loride "		1.359 .209	26.6 26.4	1.39977 .37292	1.4022			_	1.417		4	
				(b) Solu	TIONS IN	Етнуц	Асоно	L.					
"	66		0.789 .932	25.5 27.6	1.35791 ·35372	1.3597 ·3555		395 986	_	1.370	094 562	Will	igen.
urate		rly sat- ated) .	-	16.0 16.0	.3918 .3831					Kun	dt.		
a 4.5	per cer	nt. solut	ion $\mu_A =$	oform al 1.4593, phe gives	$t_B = 1.40$	$595,~\mu_F$	(green) ==	1.4514,	μ_G (b)	lue) = 1	·4554·
		(0	Solutio	ons of Po	rassium	Permano	GANATI	E IN	WATER.	*			
Wave- length in cms. × 106.	Spec- trum line.	Index for 1 % sol.	Index for 2 % sol.	Index for 3 % sol.	Index for 4 % sol.	Wave- length in cms. X 10 ⁶ .	Spec- trum line.	f	or	ndex for % sol.	f	dex or o sol.	Index for 4 % sol.
68.7 65.6 61.7 59.4 58.9 56.8 55.3 52.7 52.2	B C - D - E -	1.3328 ·3335 ·3343 ·3354 ·3353 ·3362 ·3366 ·3363 ·3362	1.3342 .3348 .3365 .3373 .3372 .3387 .3395 -	1.3365 .3381 .3393 .3412 .3417 	1.3382 .3391 .3410 .3426 .3426 .3445 .3438	51.6 50.0 48.6 48.0 46.4 44.7 43.4 42.3	F - - - - -	·3 ·3 ·3 ·3	3374 3377 381 397 407	33 ⁸ 5 33 ⁸ 3 3395 3402 3421 - 3442	·3 ·3	- 3386 - 3398 3414 3426 - 3457	1.3404 .3408 .3413 .3423 .3439 .3452 .3468

^{*} According to Christiansen.

INDEX OF REFRACTION.

Indices of Refraction of Liquids relative to Air.

Substance.	Temp.	In	dex of refr	action for s	pectrum li	nes.	Authority.
Substance.	С.	С	D	F	Н	н	Tuthority.
Acetone Almond oil	10° 0 20 21.4 15.1	1.3626 -4755 -5993 -5410 -5508	1.3646 .4782 .5863 .5475 .5572	1.3694 .4847 .6041 .5647 .5743	.6204	- - - 1.6084	Korten. Olds. Weegmann. Willigen. Baden Powell.
Benzene†	10 21.5 20 20	1.4983 •4934 •5391 •6495	1.5029 -4979 - .6582	1.5148 .5095 .5623 .6819	- - -5775 .7041	1.5355 ·5304 - .7289	Gladstone. "Landolt. Walter.
Carbon disulphide ‡	0 20 10 19 10 22.5	1.6336 .6182 .6250 .6189 .6007	1.6433 .6276 .6344 .6284 .6104	1.6688 .6523 .6592 .6352 .6389	1.6920 .6748 - - -	1.7175 .6994 .7078 .7010 .7039 .6985	Ketteler. Gladstone. Dufet. Baden Powell. "
Chinolin Chloroform	20 10 30 20 23.5	1.6094 -4466 - -4437 .6077	1.6171 .4490 .4397 .4462 .6188	1.6361 •4555 - •4525 .6508	1.6497 - - - -	.4661 .4561 -	Gladstone. Gladstone & Dale. "" Lorenz. Willigen.
Ether	15 0 10 20 15	1.3554 .3573 .3677 .3636 .3596 .3621	1.3566 ·3594 ·3695 ·3654 ·3614 ·3638	1.3606 .3641 .3739 .3698 .3657 .3683	- -3773 -3732 -3690 -	1.3683 .3713 - - - .3751	Gladstone & Dale. Kundt. Korten. ". Gladstone & Dale.
Glycerine	20 15 0	1.4706 .3308 .4738 .4345	- 1.3326 .4763 .4573	1.4784 .3362 .4825 .4644	1.4828 - - -	- .3421 -	Landolt. Baden Powell. Olds. "
Turpentine oil	10.6 20.7 20 20	1.4715 .4692 .4911 .3312	1.4744 .4721 .4955 .3330	1.4817 ·4793 ·5070 ·3372	- - .5170 .3404	1.4939 .4913 - ·3435	Fraunhofer. Willigen. Bruhl. Means.

^{*} Weegmann gives $\mu_D = 1.59668 - .000518 t$. Knops gives $\mu_F = 1.61500 - .00056 t$.

[†] Weegmann gives $\mu_D = 1.51474 - .000665 t$. Knops gives $\mu_D = 1.51399 - .000644 t$.

[‡] Wiillner gives $\mu_C = 1.63407 - .00078 t$; $\mu_F = 1.66908 - .00082 t$; $\mu_h = 1.69215 - .00085 t$.

[§] Dufet gives $\mu_D = 1.33397 - 10^{-7} (125 t + 20.6 t^2 - .000435 t^6 - .00115 t^4)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D = 1.33373 - 10^{-7} (20.14 t^2 + .000494 t^4)$.

TABLE 200.

INDEX OF REFRACTION.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 \equiv \frac{n_0 - 1}{1 + at} \frac{p}{760}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, a the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury.

	(a) Indices of refraction.											
Spectrum	103 (n-1)	Spectrum	103 (n-1)	Wave-	(n-1) 103.							
line.	Air.	line.	Air.	length.	Air.	O.	N.	Н.				
A B C D E F G H K L	.2905 .2911 .2914 .2922 .2933 .2943 .2962 .2978 .2980 .2987	M N O P Q R S T U	.2993 .3003 .3015 3023 .3031 .3043 .3053 .3064 .3075	4861 .5461 .5790 .6563 .4360 .5462 .6709 6.709 8.678	.2951 .2936 .2936 .2919 .2919 .2937 .2918 .2881 .2888	.2734 .2717 .2710 .2698 .2743 .2704 .2683 .2643 .2650 sons; the	.3012 .2998 	.1406 .1397 .1393 .1387 .1418 .1397 .1385 .1361				

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for o° Centigrade and 760 mm. pressure.

Substance.	Kind of light.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh. 1.001700-1.001823	Hydrogen Hydrogen sul- { phide } Methane	white D D white	1.000138-1.000143 1.000132 Burton, 1.000644 Dulong, 1.000623 Mascart, 1.000443 Dulong.
Bromine Carbon dioxide	D white D white D	1.001132 Mascart. 1.000449–1.000450 1.000448–1.000454 1.001500 Dulong. 1.001478–1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D D white D	1.000444 Mascart. 1.000549-1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- oxide Chlorine Chloroform	white white white D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436-1.001464	Nitrogen Nitrous oxide . Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen Ethyl alcohol . Ethyl ether Helium	white D D D D	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036 Ramsay.	Pentane Sulphur dioxide " "	D D white D white	1.000271-1.000272 1.001711 Mascart. 1.000665 Dulong, 1.000686 Ketteler. 1.000261 Jamin.
Hydrochloric { acid }	white D	1.000449 Mascart. 1.000447 "	66	D	1.000249-1.000259

MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

TABLE 201. — Liquids, $n_D (0.589\mu) = 1.74$ to 1.87.

In 100 parts of methylene iodide at 20° C, the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI₃) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the SnI₄ will prevent discoloration.

CHI ₃ .	SnI ₄ .	AsI ₃ .	SbI ₃ .	S.	n _{na} at 20°.
	25 25		I 2 I 2		1.764 1.783 1.806
40	30 27 27	13 16	7	6	1.764 1.783 1.806 1.820 1.826 1.842 1.853 1.868
35	31	16	8	10	1.868

TABLE 202. — Resin-like Substances, n_D (0.589 μ) = 1.68 to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Per cent Iodides.	00.	10.	20,	30.	40.	50.	60.	70.	80.
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 203. — Permanent Standard Resinous Media, n_D (0.589 μ) = 1.546 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

Per cent Rosin.	00.	10.	20.	30.	40.	50.	60.	70.	80.	90.	100.
Index of refraction	1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

TABLES 204-205.

OPTICAL CONSTANTS OF METALS.

TABLE 204.

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length, λ^1 measured in the metal, is reduced in the ratio $1:e^{-2\pi k}$ or for any distance d, $1:e^{-\frac{2\pi d k}{\lambda^1}}$; for the same wave-length measured in air this ratio becomes $1:e^{-\frac{2\pi d k k}{\lambda^1}}$. We is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, ϕ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\overline{\psi}$ (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

$$k\!=\!tan\;2\overline{\psi}\;(\tau-\cot^2\!\overline{\phi})\;and\;n=\frac{\sin\;\overline{\phi}\;tan\;\overline{\phi}}{(\tau+k^2)^{\frac{1}{2}}}\;(\tau+\frac{1}{2}\;\cot^2\bar{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R =computed percentage reflection.

TABLE 205.

(The points have been so selected that a smooth curve drawn through them very closely indicates the characteristics of the metal.)

7		$\bar{\phi}$	J		Compi	ıted.		
Metal.	λ	φ	Ψ	n	k	nk	R	Authority.
	μ						%	
Cobalt	0.231	640311	29°39	1.10	1.30	1.43	32.	Minor.
1	.275	70 22	29 59	1.41	1.52	2.14	46. 66.	
	.500	77 5 79 0	3 I 53 3 I 25	2.35	1.87	3.72 4.40	69.	Ingersoll.
1	1.00	81 45	29 6	3.63	1.58	5.73	73.	· "
	1.50	83 21	26 18	5.22	1.29	6.73	75.	46
	2.25	83 48	26 5	5.65	1.27	7.18	76.	
Copper	.231	65 57 65 6	26 14 28 16	1.39	1.05	1.45 1.47	32.	Minor.
	.500	65 6 70 44	33 46	1.10	2,13	2.34	56.	"
	.650	74 16	41 30	0.44	7.4	3.26	86.	Ingersoll.
1	.870	78 40	42 30	0.35	0.11	3.85	91.	"
	1.75	84 4	42 30	0.83	11.4	9.46	96.	"
	2.25 4.00	85 13 87 20	42 30 42 30	1.03	11.4	21.3	97.	FörstFréed.
	5.50	88 oo	41 50	3.16	9.0	28.4	l	"" ""
Gold	1.00	81 45	44 00	0.24	28.0	6.7	1	14 14
	2.00	85 30	43 56	0.47	26.7	12.5	1	"
1	3.00	87 05	43 50	0.80	24.5	19.6		""
Iridium	1.00	88 15 82 10	43 25 29 15	1.81 3.85	18.1 1.60	33. 6.2		
Triam	2.00	83 10	29 40	4.30	1.66	7.1		66 66
	3.00	81 40	30 40	3.33	1.79	6.0		" "
	5.00	79 00	32 20	2 27	2.03	4.6		
Nickel	0.420	72 20	31 42	1.41	1.79	2.53	54.	Tool.
	0.589	76 I 78 45	31 41 32 6	2.10	1.86	3-33 4-36	62.	Drude. Ingersoll.
	1.00	80 33	32 2	2.63	2.00	5.26	74.	riigerson.
	2.25	84 21	33 30	3.95	2.33	9.20	85.	"
Platinum	1.00	75 30	37 00	1.14	3.25	3.7		FörstFréed.
	3.00	74 30	39 50	0.70	5.06	3.5		
	5.00	73 50 72 00	4I 00 42 IO	0.52	6.52	3.4 3.t		11 11
Silver	0.226	62 41	22 16	1.41	0.75	1.11	18.	Minor,
	.293	63 14	18 56	1.57	0.62	0.97	17.	"
	.316	52 28	15 38	1.13	0.38	0.43	4.	"
	·332 •395	52 I 66 36	37 2 43 6	0.41	1.61	0.65 1.91	32. 87.	"
	.500	72 31	43 29	0.17	17.1	2.94	93.	"
	.589	75 35	43 47	0.18	20.6	3.64	95.	44
	·75°	79 26	44 6	0.17	30.7	5.16	97.	Ingersoll.
	1.00	82 0 84 42	44 2	0.24	29.0	6.96	98.	
	2.25	86 18	43 48 43 34	0.45	23.7 19.9	10.7	98.	**
	3.00	87 10	42 40	1.65	12.2	20.1	33.	FörstFréed.
, , l	4.50	88 20	41 10	4.49	7.42	33-3		" "
Steel	0.226	66 51	28 17	1.30	1.26	1.64	35.	Minor.
	.257	68 35 69 57	28 45 30 9	1.38	1.35	1.86 2.09	40.	44
	.500	75 47	29 2	2.09	1.50	3.14	57.	"
	.650	77 48	27 9	2.70	1.33	3.59	59.	IngersolI.
	1.50	81 48	28 51	3.71	1.55	5.75	73.	"
	2.25	83 22	30 36	4.14	1.79	7.41	80.	•

Drude, Annalen der Physik und Chemie, 30, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

TABLES 206-207. OPTICAL CONSTANTS OF METALS.

TABLE 206.

Metal.	λ.	n.	k.	R.	Ref.	Metal.	λ.	n.	k.	R.	Ref.
Al.* Sb.* Bi.†† Cd.* Cr.* Cb.* Au.† I. crys. Ir.* Fe.§	μ 0.589 .589 white .589 .579 .257 .441 .589 .579 .257 .441 .589 .589	1.44 3.04 2.26 1.13 2.97 1.80 0.92 1.18 0.47 3.34 2.13 1.01 1.28 1.51 2.01	5.32 4.94 	83 70 85 70 41 28 42 82 30 75 16 28 33 62	1 1 2 1 3 3 4 4 4 4 4 4 4 4 4 4 4 1	Rh.* Se.‡ Na. (liq.) Ta.* Sn.* W.* Zn.*	μ 0.579 .400 .490 .589 .760 .589 1.25 2.25 .589 .579 .589 .579 .257 .441	1.54 2.94 3.12 2.93 2.60 4.18 3.67 3.53 .004 2.05 1.48 2.76 3.03 0.55 0.93	4.67 2.31 1.49 0.45 0.06 0.09 0.08 2.61 2.31 5.25 2.71 3.51 0.61 3.19	78 44 35 25 20 38 33 31 99 44 82 49 58 20 73	3 5 5 5 5 6 6 6 1 3 1 3 3 4 4
Mg.* Mn.* Hg. (liq.) Pd.* Pt.†	.589 .579 .326 .441 .589 .668 .579 .257 .441 .589	0.37 2.49 0.68 1.01 1.62 1.72 1.62 1.17 1.94 2.63 2.91 1.09 1.16 1.30	4.42 3.89 2.26 3.42 4.41 4.70 3.41 1.65 3.16 3.54 3.66 1.16 1.23 1.97	93 64 66 74 75 77 65 37 58 59 24 25 43	1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	λ = wave k = absor (1) Drude used, Ann. 36, p. 824, deutsch. Pl Meier, Ann (5) Wood, Ingersoll, se * solid, † as film in va	rption in e, see Ta der Phys 1889; (aysik. C ales der Phil. M e Table electrol	ndex, Rable 205 sik und 3) v. Tes. 12 Physicag. (6) 205.	S = refl 5; (2) K Chemi Warten , p. 10 k, 10, I , 3, 60	ection. Cundt, p le, 34, p berg, 5, 1910 5, 581, 1 7, 1902	orism . 477, Verh. ; (4) 1903; ; (6)

TABLE 207. - Reflecting Power of Metals.

Wave- length	Al.	Sb.	Cd.	Co.	Graph- ite.	Ir.	Mg.	Mo.	Pd.	Rh.	Si.	Ta.	Te.	Sn.	M	Va.	Zn.
μ								Pe	er cen	ts.							
.5 .6 .8 I.0 2.0 4.0 7.0 IO.0	71 82 92 96 98 98	53 54 55 60 68 71 72	72 87 96 98 98	67 72 81 93 97	22 24 25 27 35 48 54 59	- -78 87 94 95 96 96	72 73 74 74 77 84 91	46 48 52 58 82 90 93 94 95	- 72 81 88 94 97	76 77 81 84 91 92 94 95	34 32 29 28 28 28 28 28	38 45 64 78 90 93 94 -	- 49 48 50 52 57 68 -	- 54 61 72 81 84 85	49 51 56 62 85 93 95 96 96	57 58 60 61 69 79 88	- 80 92 97 98 98

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 197, 1911. The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles.

According to Fresnel the amount of light reflected by the surface of a transparent medium $= \frac{1}{2} \left\{ A + B \right\} = \frac{1}{2} \left\{ \frac{\sin^2{(i-r)}}{\sin^2{(i+r)}} + \frac{\tan^2{(i-r)}}{\tan^2{(i+r)}} \right\}; A \text{ is the amount polarized in the plane of incidence; } B \text{ is that polarized perpendicular to this; } i \text{ and } r \text{ are the angles of incidence and refraction.}$

TABLE 208. — Light reflected when $i = 0^{\circ}$ or Incident Light is Normal to Surface.

n.	$\frac{1}{2}(A+B)$.	n.	$\frac{1}{2}(A+B)$.	п.	$\frac{1}{2}(A+B).$	n.	$\frac{1}{2}(A+B).$
1.00 1.02 1.05 1.1 1.2 1.3	0.00 0.01 0.06 0.23 0.83	1.4 1.5 1.6 1.7 1.8 1.9	2.78 4.00 5.33 6.72 8.16 9.63	2.0 2.25 2.5 2.75 3. 4.	11.11 14.06 18.37 22.89 25.00 36.00	5. 5.83 10. 100. ∞	44·44 50.00 66.67 96.08 100.00

TABLE 209. — Light reflected when n is near Unity or equals 1+dn.

i.	А.	В.	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$ *
0° 5 10 15 20 25 30 45 40 45 50 65 70 75 80 85	1.000 1.015 1.063 1.149 1.282 1.482 1.778 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85	1.000 .985 .939 .862 .752 .612 .444 .260 .088 .000 .176 1.081 4.000 12.952 42.884 167.16 971.21 16808.08	1.000 1.000 1.001 1.005 1.017 1.047 1.111 1.240 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53 17069.36	0.0 1.5 6.2 14.3 26.0 41.5 60.0 79.1 94.5 100.0 94.5 79.1 60.0 41.5 26.0 14.3 6.2 1.5

TABLE 210. — Light reflected when n = 1.55.

i.	r.	А.	В.	đA.t	$dB.\dagger$	$\frac{1}{2}(A+B)$.	$\frac{A-B}{A+B}$
0 /	0,						
0	0 0.0	4.65	4.65	0.130	0.130	4.65	0.0
5	3 13.4	4.70	4.61	.131	.129	4.65	1.0
10	6 25.9	4.84	4.47	.135	.126	4.66	4.0
15	9 36.7	5.00	4.24	• I 4 I	.121	4.66	9.1
20	12 44.8	5.45	3.92	.150	.114	4.68	16.4
25	15 49.3	5.95	3.50	.161	.105	4.73	25.9
30	18 49.1	6.6.4	3.00	.175	•094	4.82	37.8
35	21 43.1	7.55	2.40	101.	.081	4.98	51.7
40	24 30.0	8.77	1.75	.210	.066	5.26	66.7
45	27 8.5	10.38	1.08	.233	.049	5.73	81.2
50	29 37.1	12.54	0.46	.263	.027	6.50	92.9
55	31 54.2	15.43	0.05	.303	.007	7.74	99.3
60	33 58.1	19.35	0.12	-342	013	9.73	98.8
65	35 47.0	24.69	1.13	-375	032	12.91	91.2
70	37 19.1	31.99	4.00	.400	050	18.00	77.7
75	38 32.9	42.00	10.38	.410	060	26.19	61.8
75 80	39 26.8	55.74	23.34	-370	069	39 54	41.0
82 30	39 45.9	64.41	34.04	+320	06 ₇	49.22	30.8
85 o	39 59.6	74.52	49.03	.250	061	61.77	20.6
86 o	40 3.6	79.02	56.62	.209	055	67.82	16.5
87 o	40 6.7	83.80	65.32	.163	046	74.56	12.4
88 o	40 8.9	88.88	75.3 t	811.	036	82.10	8.3
89 0	40 10.2	94.28	86.79	.063	022	90.54	4.1
90 0	40 10.7	100.00	100.00	•000	000	100.00	0.0

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization the Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.or.

Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

SMITHSONIAN TABLES.

TABLES 211-212.

REFLECTION OF METALS.

TABLE 211. - Perpendicular Incidence and Reflection.

The numbers give the per cents of the incident radiation reflected.

.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0	.420 .450 .500 .550 .600 .650	.251 .288 .305 .316 .326 .338 .357	Wave-length, µ.
	85.7 86.6 88.2 88.1 89.1	-	Silver-backed Glass,
-	72.8 70.9 71.2 69.9 71.5 72.8		Mercury-backed Glass.
84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2	83.3 83.4 83.3 82.7 83.0 82.7 83.3	67.0 70.6 72.2 - 75.5 81.2 83.9	Mach's Magnalium. 69.41+31.Mg.
63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2	47.2 49.2 49.3 48.3 47.5 51.5 54.9	35.8 37.1 37.2 39.3 43.3 44.3	Brandes-Schünemann Alloy. $32Cu + 34Sn + 29Ni + 5Fe$.
70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	56.4 60.0 63.2 64.0 64.3 65.4 66.8	29.9 37.7 41.7 - 51.0 53.1	Ross' Speculum Metal, $68.2Cn + 31.8Sn$,
69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2	56.6 59.4 60.8 62.6 64.9 66.6 68.8	37.8 42.7 44.2 45.2 46.5 48.8 49.6	Nickel, Electrolytically Deposited.
	48.8 53.3 59.5 83.5 89.0 90.7	-	Copper. Electrolytically Deposited.
58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.9 35.0 37.2 40.3 45.0 47.8	Steel, Untempered,
88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 97.9	32.7 37.0 43.7 47.7 71.8 80.0 83.1	25.9 24.3 25.3 24.9 27.3 28.6	Copper.
70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	51.8 54.7 58.4 61.1 64.2 66.5 69.0	33.8 38.8 39.8 - 41.4 - 43.4 45.4	Platinum. Electrolytically Deposited,
94.9 	29.3 33.1 47.0 74.0 84.4 88.9 92.3	38.8 34.0 31.8 - 28.6 - 27.9 27.1	Gold. Electrolytically Defosited.
91.0 93.7 95.7 95.9 97.0 97.8 96.6	, -	-	Brass, (Trowkridge),
96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3	86.6 90.5 91.3 92.7 92.6 94.7 95.4	34.1 21.2 9.1 4.2 14.6 55.5 74.5 81.4	Silver. Chemically Deposited.

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 212. - Percentage Diffuse Reflection from Miscellaneous Substances.

Wave- length			np-blac	ene	hor.	black ctrol.	leaves.	oxide.	oxide.	oxide.	Paper.	onate.	alt.	velvet.	felt.	brick.
μ μ	Paint.	Rosin.	Sperm	Acety	Camphor	Pt. black electrol.	Green	Lead	Al. ox	Zinc	White	Lead	Asphalt	Black	Black	Red b
*.60 *.95	3.2	1.3	1.1	o.6 .8	1.3	I,I	25.	52.	84. 88. 21.	82. 86. 8.	75. 18.	89. 93. 29.	15.	1.8	14. 21.	30.
4.4 8.8 24.0	3.2 3.8 4.4	3.0	.9 1.3 4.0	1.2 2.1	1.6	1.4 2.1 4.2		51. 26. 10.	2. 6.	3. 5.	5.	11.		3.7		12.

^{*}Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

TRANSMISSIBILITY FOR RADIATION OF JENA GLASSES.

TABLE 213.

Coefficients, a, in the formula $I_t = I_0 a^t$, where I_0 is the Intensity before, and I_0 after, transmission through the thickness t, expressed in centimeters. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

T t.Cl				Сое	fficient	of trai	nsmissi	on, a.			
Type of Glass. λ ==	·375 µ	390 #	.400 /	u .434	μ .43	6 μ.	455 µ	-477 H	.503 μ	.58ο μ	.677 µ
O 340, Ord. light flint O 102, H'vy silicate flint O 93, Ord. " " O 203, " " crown O 598, (Crown)	.3S8 - - .5S3	.456 .025 - .583	.463	.50	02 .50 7 57 .80	66 14 06	.834 .663 .807 .822 .770	.880 .700 .899 .860 .771	.880 .782 .871 .872 .776	.878 .828 .903 .872 .818	.939 .794 .943 .903 .860
λ =	ο.7 μ	ο.95 μ	1.1 μ	1.4 μ	1.7 μ	2.0 /	u 2.3	μ 2.5	μ 2.7 μ	2.9 μ	3.1 μ
S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " "	1.00 - .98 .99 .98 1.00 1.00	.99 .98 - .96 - - -	.94 .95 .97 .95 .99 .99 .98	.90 .90 - .99 - - -	.85 .84 .95 .99 .98 .98 .99	.81 .67 .93 .91 .94 .95 .98	.9	.8 .2 .7 .0 .7 .2 .8 .8 .9	7 .18 4 .71 1 60 9 .75 4 .78 7 .90 9 .92	-47 .48 .45 .54 .66	- .27 .29 .32 .34 .50 .53

TABLE 214.

Note: With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of 1 mm.

						Wave	-lengtl	in μ.					
No. and Type of Glass.			Visibl	e Spec	trum.				Ultr	a-viole	t Spect	rum.	
	.644 µ	.578 μ	.546 µ	.509 µ	.480 µ	.436 µ	.405 µ	.384 μ	.361 µ	.340 µ	. 3 32 μ	.309 µ	.28ο μ
F 3815 Dark neutral F 4512 Red filter F 2745 Copper ruby	·35 ·94 ·72	·35 .05 ·39	·37	·35	·34 ·45	.30	.15	.06					
F 4313 Dark yellow F 4351 Yellow F 4937 Bright yellow	.98 .98	·97 ·97 I.0	.93 .96 1,0	.83 .93 .99	.09 ·44 ·74	.15	.31	.28	.22	.18	.14	.06	
F 4930 Green filter F 3873 Blue filter F 3654 Cobalt glass, transparent for outer	-17	.50	.64	.62 .18	.50	. 73	.69	.5 9	.36	.10			
red F 3653 Blue, ultraviolet F 3728 Didymium, str'g	-	-	_	.15	.44 .11	.85 .65	1.0 1.0	1.0	1.0	I.O I.O	1.0	.58 .81	.18
bands	•99	.72	•99	.96	.95	.96	•99	.99	.89	.89	•77	•54	

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 215. - Transmissibility of Jena Ultra-violet Glasses.

No. and Type of Glass.	Thickness.	0.397 μ	ο.383 μ	0.361 μ	0.346 μ	0.325 μ	0.309 μ	0.28ο μ
UV 3199 Ultra-violet " " UV 3248 " " "	1 mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm.	1.00 0.99 0.95 1.00 0.98 0.96	1.00 0.99 0.95 1.00 0.98 0.87	1.00 0.99 0.89 1.00 0.98 0.79	1.00 0.97 0.70 1.00 0.92 0.45	1.00 0.90 0.36 0.98 0.78 0.08	0.95 0.57 0.91 0.38	0.56

TABLE 216.

TRANSMISSIBILITY FOR RADIATION.

Transmissibility of the Various Substances of Tables 166 to 175.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm. thick plate in %:

		•										
λ	9	10	12	13	14	15	16	17	18	19	20.7	23.7μ
	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	0.6	0.

Pfluger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness: $280\mu\mu$, 95.5%; 231.86%; 210.77%; 186.70%.

Metallic reflection at 0.110 μ , 0.156, 51.2, and 87μ .

Sylvine: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

	-												
ĺ	λ	9	10	11	12	13	14	15	16	17	18	19 20.7	23.7μ
	%	100.	98.8	99.0	99.5	99.5	97.5	95-4	93.6	92.	86.	76. 58.	15.

Metallic reflection at 0.11.14, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 µ.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

λ	8μ	9	10	11	12μ
%	84.4	54.3	16.4	1.0	0

Metallic reflection at 24 \mu, 31.6, 40 \mu.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of k in the formula $i = i_0 e^{-kt}$ (d in cm.):

For the ordinary ray:

	λ	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	2.74μ
-	k	0.0	0.0	0.03	0.13	0.74	1.92	3.00	1.92	1.21	1.74	2.36

λ	2.83	2.90	2.95	3.04	3.30	3-47	3.62	3.80	3.98	4.35	4.52	4.83µ
k	1.32	0.70	1.80	4.71	22.7	19.4	9.6	18.6	∞	6.6	14.3	6.1

For the extraordinary ray:

λ	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	4.67µ
k	0.14	0.08	0.43	1.32	0.89	1.79	2.04	1.17	0.89	1.07	2.40

λ	4.91	5.04	5.34	5.50 μ
k	1.25	2.13	4.41	12.8

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222\mu, 94.2\%; 0.214, 92; 0.203, 83.6; 0.186, 67.2\%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar): For the ordinary ray:

2.83 2.95 3.07 3.17 3.3S 3.67 3.82 3.96 4.12 4.50µ 2.72 k 0.20 1.26 1.61 0.31 0.15 2.01 7.30 0.20 0.47 0.57 3.41

For the extraordinary ray:

λ	2.74	2.89	3.00	3.08	3.26	3.43	3-52	3.59	3.64	3.74	3.91	4.19	4.36µ
k	0.0	0.11	0.33	0.26	0.11	0.51	0.76	1.88	1.83	1.62	2.22	3.35	8.0

For λ>7 μ, becomes opaque, metallic reflection at 8.50μ, 9.02, 20.75-24.4μ, then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

TABLES 217-218. TRANSMISSIBILITY OF RADIATION.

TABLE 217. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared

Color.	Thick- ness. mm.	Water solutions of	Grammes of substance in 100 c.cm.	Optical centre of band.	Transmission.
Red " Yellow " Green " Bright { blue } Dark } blue }	20 20 20 15 15 20 20 20 20	Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO ₄ .7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl ₂ .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO ₄ .5aq. Crystal-violet, 5BO Copper sulphate, CuSO ₄ .5aq.	0.005 10. 30. 10. 0.025 60. 10. 0.02	0.6659 0.5919 0.5330 0.4885 0.4482	begins about 0.718μ. ends sharp at 0.639μ. 0.614-0.574μ, 0.540-0.505μ 0.526-0.494 and 0.494-0.458μ 0.478-0.410μ

TABLE 218. — Color Screens.

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365µ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916µ.
Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790µ. The former should be dilute and the cosine added until

the green line disappears. Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible,

In the following those marked with a * are transparent to a more or less degree to the ultra-violet: * Cobalt chloride: solution in water, — absorbs 0.50-.53µ; addition of CaCl₂ widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40μ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37μ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praesodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band at 0.435-.485\mu. Absorption below 0.34.

Picric acid absorbs 0.36-.42\mu, depending on the concentration.

Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23\(\mu\).

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet.

Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33\mu. These limits vary with the concentration.

Aesculin: absorbs below 0.363μ, very useful for removing the ultra-violet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-viol**e**t.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infra-red.

TRANSMISSIBILITY OF RADIATION.

TABLE 219. — Color Screens. Jena Glasses.

	Kind of Glass.	Maker's No.	Color.	Region Transmitted.	Thick- ness. mm.
I Ia	Copper-ruby Gold-ruby	2728 459 ^{III}	Deep red Red	Red, yellow; in thin layers also blue and violet.	1.7
2 2a	Uranium	454 ^{III} 455 ^{III}	Bright yellow Bright yellow, fluoresces.	Red, yellow, green to E _b ; in } thin layer also blue	16.
3	Nickel	440 ^{III}	Bright yellow-brown	Red, yellow, green (weakened), blue (very weakened)	II.
4 4a 4b	Chromium	414 ¹¹¹ 433 ¹¹¹ 431 ¹¹¹	Greenish-yellow	Yellowish-green	5. 2-3
5 6	Chromium Copper chromium Green-filter	432 ^{III}	Yellow-green Grass-green	Yellowish-green, some red Green	2.5 5. 5.
7 8 10	Copper	438 ¹¹¹	Blue, as CuSO ₄	Green, blue, violet	5-12
11	Blue-violet	447 ¹¹¹	Blue, as cobalt glass	Blue, violet	5· 2-5
12	Cobalt Nickel Violet	424 ¹¹¹ 450 ¹¹¹ 452 ¹¹¹	Dark violet	Blue, violet, extreme red Violet (G-H), extreme red Violet (G-H), some weakened	4-5 6. 7.
14 15 16	Gray	444 ^{III} 445 ^{III}		All parts of the spectrum weakened	8-1.0

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Über Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

1st by 2728 (deep red) and 2742 (blue, like copper sulphate). 2nd by 454^{III} (bright yellow) and 447^{III} (blue, like cobalt glass). 3rd by 433^{III} (greenish-yellow) and 424^{III} (blue).

Thicknesses necessary in above: 2728, 1.6-1.7 mm.; 2742, 5; 454^{III}, 16; 447^{III}, 1.5-2.0; 433^{III}, 2.5-3.5; 424¹¹¹, 3 mm.

Three-fold division into red, green and blue (with violet): 2728, 1.7 mm.; 414¹¹¹, 10 mm.; 447¹¹¹, 1.5 mm., or by 2728, 1.7 mm.; 436¹¹¹, 2.6 mm.; 447¹¹¹, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color projection: 2745, red; 438111, green; 447111, blue violet;

corresponding closely to Young's three elementary color sensations.

Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

TABLE 219a. — Water Vapor.

Values of a in $I = I_0 e^{ad}$, d in c. m. I_0 ; I, intensity before and after transmission.

Wave-length μ,	.186	.193	.200	.210	.220	.230	.240	.260	.300	.415
a	.0688	.0165	.009	.0061	.0057	.0034	.0032	.0025	.0015	.00035
Wave-length μ,	.430	.450	.487	.500	.550	.600	.650	·779	.865	-945
a	.00023	.0002	.0001	.0002	.0003	.0016	.0025	.272	.296	.538

First 9; Kreusler, Drud. Ann. 6, 1901,; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann. 55, 1895; last 3, Nichols, Phys. Rev. 1. See Rubens, Ladenburg. Verh. D. Phys. Ges. 1911, for extinction coefs., reflective power and index of refraction, 1 µ to 18 µ.

TABLE 220. - Tartaric Acid; Camphor; Santonin; Santonio Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

p=number grams of the active substance in 100 grams of the solution.

c= "" solvent " " " ubic centimeter "

active " " cubic centimeter "

q= " active Right-handed rotation is marked +, left-handed --.

Line of spectrum.	Wave-length according to Angström in cms. × 106.	Tartaric acid,* CuH_6O_6 , dissolved in water. $q = 50 \text{ to } 95$, temp. $= 24^{\circ}$ C.	Camphor,* $C_{10}H_{16}O$, dissolved in alcohol. $q = 50$ to 95 , temp. $= 22.9^{\circ}$ C.	Santonin,† $C_{15}H_{18}O_3$, dissolved in chloroform. $q = 75$ to 96.5 , temp. $= 20^{\circ}$ C.
B C D E b ₁ b ₂ F	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83	$\begin{array}{l} + 2^{\circ}.748 + 0.09446 q \\ + 1.950 + 0.13030 q \\ + 0.153 + 0.17514 q \\ - 0.832 + 0.19147 q \\ - 3.598 + 0.23977 q \\ - 9.657 + 0.31437 q \end{array}$	38°.549 — 0.0852 q 51.945 — 0.0964 q 74.331 — 0.1343 q 79.348 — 0.1451 q 99.601 — 0.1912 q 149.696 — 0.2346 q	$\begin{array}{c} -140^{\circ}.1 + 0.2085 \text{ g} \\ -149.3 + 0.1555 \text{ g} \\ -202.7 + 0.3086 \text{ g} \\ -285.6 + 0.5820 \text{ g} \\ -302.38 + 0.6557 \text{ g} \\ -365.55 + 0.8284 \text{ g} \\ -534.98 + 1.5240 \text{ g} \end{array}$
		Santonin,† $C_{15}H_{18}O_3$, * dissolved in alcohol. $c=1.782$. temp. = z° C.	Santonin,† $C_{15}H_{18}O_3$ dissolved in alcohol. $c = 4,046$. temp. = 20° C. dissolved chlorofor $c = 3.1-3c$ temp. = 20° C.	Santonic acid, in $C_{15}H_{20}O_4$, dissolved in chloroform. c c $= 27.102$.
B C D E b ₁ b ₂ F e G	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.97 42.26	— 110.4° — 118.8 — 161.0 — 222.6 — 237.1 — 261.7 — 380.0	442° 484′ 504 549 693 754 991 1088 1053 1148 	- 49° 47°.56 - 57 52.7° - 74 60.41 - 105 84.56 - 112 - 87.88 - 137 101.18 - 197 - 131.96 - 230 -
		* Arndtsen, "Ann. Cl † Narini, "R. Acc. de ‡ Stefan, "Sitzb. d. W	nim. Phys." (3) 54, 1858. i Lincei," (3) 13, 1882. lien. Akad." 52, 1865.	

TABLE 221. - Sodium Chlorate; Quartz.

Sodium	chlorate (G	uye, C. R.	108, 1889).	Quartz	(Soret & S	arasin, Arch.	de Gen.	1882, or C. R	. 95, 1882).*
Spec- trum line.	Wave- length.	Temp. C.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.	Spec- trum line.	Wave- length.	Rotation per mm.
a B C D E F G G H L M N P Q R T Cd ₁₈	71.769 67.889 65.073 59.085 53-233 48.912 45-532 42.834 40.714 38.412 37.352 35.818 33.931 32.341 30.645 29.918 28.270 25.038	15°.0 17.4 20.6 18.3 16.0 10.1 14.5 13.3 14.0 10.7 12.9 12.1 11.9 13.1 12.8 12.2 11.6	2°.068 2.318 2.599 3.104 3.841 4.587 5.331 6.005 6.754 7.654 8.100 8.861 9.801 10.787 11.921 12.424 13.426 14.965	A a B C D1 D2 E F G h H K L M	76.04 71.836 68.671 65.621 58.951 58.891 52.691 48.607 43.072 41.012 39.681 39.333 38.196 37.262	12°.668 14.3°04 15.746 17.318 21.684 21.727 27.543 32.773 42.6°04 47.481 51.193 52.155 55.625 58.894	$\begin{array}{c} Cd_9 \\ N \\ Cd_{10} \\ O \\ \end{array}$	36.090 35.818 34.655 34.406 34.015 33.600 32.858 32.470 31.798 27.467 25.713 23.125 22.645 21.935 21.431	63°.628 64.459 69.454 70.587 72.448 74.571 78.579 80.459 84.972 121.052 143.266 190.426 201.824 220.731 235.972

^{*} The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

TABLE 222.

NEWTON'S RINGS.

Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for re- flected light.	Color for transmitted	mill	nickness ionths o nch for -	f an	Order.	Color for re- flected light.	Color for trans- mitted	milli	ickness onths o ch for-	fan
Or	nected light.	light.	Air. Water.		Glass.	ō	nected fight.	light.	Air.	Water.	Glass.
I.	Very black Black Beginning of black . Blue	White Yellowish	0.5 1.0 2.0	0.4 0.75 1.5	0.2 0.9		Yellow Red Bluish red	Bluish green	27.I 29.0 32.0	20.3 21.7 24.0	17.5 18.7 20.7
	White Yellow Orange . Red	red Black Violet .	2.4 5.2 7.1 8.0 9.0	1.8 3.9 5.3 6.0 6.7	1.5 3.4 4.6 4.2 5.8	IV.	Bluish green . Green Yellowish green .	Red .	24.0 35·3	25.5 26.5	22.0 22.7 23.2
II.	Violet Indigo Blue	White .	11.2 12.8 14.0	3.4 9.6 10.5	7.2 8.4 9.0	v.	Red Greenish	Bluish green	40.3	30.2	26.0
	Green Yellow Orange . Bright red	Red Violet Blue	15.1 16.3 17.2 18.2	11.3 12.2 13.0	9.7 10.4 11.3	VI.	Red	Red .	46.0 52.5	34·5 39·4	39·7 34·0
111.	Scarlet Purple Indigo	_	19.7 21.0 21.1	14.7 15.7 17.6	12.7 13.5 14.2	VII.	blue Red Greenish	_	58.7 65.0	46 48.7	38.0 42.0
	Blue Green	Yellow . Red	23.2	17.5 18.6	15.1 16.2	, 111	blue Reddish white .	_	72.0 71.0	53.2 57.7	45.8 49.4

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: $R_{1.5}$ indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimeter.

Order.	Color.	Posi-	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi- tion.	Thick- ness.
I.	Red * .	R _{1 5}	28.4		Red*. Bluish red*.	R _{3 5} BR _{3 5}	76.5 81.5	VI.	Green * Green * Red	G _{6 0} G _{6 5} R _{6 0}	141.0 147.9 154.8
11.	Blue	$\frac{B_{2.5}}{G_{2.5}}$	30.5 35.3 40.9 45.4	IV.	Green .	G _{4 0} G _{4 5}	84.1 89.3	VII.	Red* . Green .	R _{6 5}	154.5
777	Orange *	R _{2 5}	49.1 52.2		Yellow green * Red * .	YG _{4.5}	96.4 10 5 .2		Green*. Red Red* .	G _{7 5} R _{7 0} R _{7 5}	178.7 186.9 193.6
III.	Blue * .	B _{3 0} B _{3 5}	55.9 57.7 60.3	v.	Green . Green*. Red	G _{5 0} G _{5 5}	111.9 118.8 126.0	VIII.	Green . Red	G _{8 0} R _{8 0}	200.4 211.5
		Y _{3 5}	65.6 71.0		Red * .	R _{5 0} R _{5 5}	133.5				

^{*} The colors marked are the same as the corresponding colors in Newton's table.

CONDUCTIVITY FOR HEAT.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_l = k_0 \left[1 + \alpha \left(\ell - \ell_0\right)\right]$. k_0 is the resistance at ℓ_0 , the lower temperature of the bracketed pairs in the table, k_l that at temperature ℓ and α is a constant.

Substance.	t	k _t	a	Authority.	Substance.	t	k _t	Authority.	
Aluminum	18 100 0 100 18 100 0 100	0.480 { .492 } .0442 } .0396 { .0194 } .0161 { .2041 } .2540 { .2460 } .2827 }	.00030 001041 0021 .002445	2 1 2 1	Carborundum Slate		.00050 .0036 .00033 .0016 .00013 .00028 .00510 .00550	12	
Cadmium	18	.222 (00038	2	Magnesia . { nom to	-	.00045		
Constantin 60Cu+40Ni	18 100 18	.215 { .5402 { .6405 } .918 { .908 {	.00227 00013	2 2	Marbles, lime- stone, cal- cite, com- pact dolo- mite	_	.00470	}6	
German silver .	0	.0700 }	.002670	I	Micaceous flagstone:		6	_	
Iron (cast) {	18	.108 (0001	2	along cleavage across cleavage .	-	.00632	6	
" (wrought)	18	.108 }	0001	2	Paraffine	0	.00014	8 9	
Lead {	18	.142 } .083 { .076 }	0001	2	Pasteboard	100	.00168	9 8 11	
Mercury {	0	.0148 }	.0055	4	" " powder	-	.0026	11	
Magnesium	0-100 20	.0189 \$.3760	-	I	Quartz	-	.00036	6	
84Cu+4Ni+ }	18	.5186 } .6310 }	+.0026	2	hard grit to	-	.00545	50	
Nickel	18	.1420	-	2	Sawdust	-	.00012	8	
Palladium	18	.1683 .1664 }		2	Serpentine (Corn-wall red)	_	.004.11	6	
Platinum }	100	.1733 \$	+.00051	2	Slate:	ĺ			
Steel (hard) " (soft)	-	.0620	_	5	along cleav- from age to	-	.00550	}6	
Silver }	18	1.006 }	00017	2	across cleav- from	-	.00315	16	
Tin	0	.1528	000687	ı	age to Snow, compact layers	_	.00360		
Wood's alloy	100	.1423 \	00000/		Strawboard	-	.00033	8	
, (18	.0319 .2653 }	_	4	Vulcanite Vulcanized (from	-	.00087	6	
Zinc }	100	.2619)	00016	2	rubber (soft) (to	-	.00054	6	
Concrete (cinder) (stone)	-	.00081	_	3	Wax (bees) Wood, fir:	-	.00000	8	
(stone)		.0022	_	3	parallel to axis. perpendicular to	-	.00030	8	
					axis	-	.00009	8	
1 Lorenz. 4 H. F. Weber. 6 H. L. & D. † 8 G. Forbes. 10 Stefan. 2 J + D*. 5 Kohlrausch. 7 Hjeltström. 9 R. Weber. 11 Lees-Chorlton. 3 Norton. 12 Hutton-Blard.									

^{*} Jaeger and Diesselhorst.

[†] Herschel, Lebour, and Dunn (British Association Committee).

TABLE 224. THERMAL CONDUCTIVITIES AT HIGH TEMPERATURES.

Material.	Authority.	Temperature Centigrade Degrees.	Calories p	Conductivity per sec. per er cm. cube.		
Nickel	Angell I	300 400 600 700	.126 .117 .088 .069			
Aluminum	Angell ¹	800 1000 1200 100 200 300 400	.068 .064 .058 .49 .55 .64			
Iron	Hering	600 100 – 727 100 – 912	1.01 .202 .184			
Copper	Hering	100 - 1245 100 - 197 100 - 268	.191 1.043 .969			
Graphite (Artificial)	Hering Hansen ²	100 - 370 100 - 541 100 - 837 100 - 390 100 - 546 100 - 720 100 - 914 30 - 2830 2800 - 3200	.931 .902 .858 .338 .324 .306 .291 .162			
Amorphous Carbon Graphite brick Carborundum brick Magnesia brick Gas retort brick	Hansen ² Hering Wologdine " "	90 - 110 180 - 220 350 - 450 500 - 700 37 - 163 170 - 330 240 - 523 283 - 597 100 - 360 100 - 751 100 - 842 300 - 700 150 - 1200 50 - 1130 100 - 1125	.1:			
Building and terra cotta Silica brick Stoneware mixtures Porcelain (Sèvres) Fire clay brick Limestone Granite	" " Poole 3	15 - 1100 100 - 1000 70 - 1000 165 - 1055 125 - 1220 40 100 350 100 200 500	.002 t .0029 t .0039 t .0032 t .0046 t .0032 t	29 to .0053 139 to .0047 132 to .0054 446 to .0057 139 to .0049 132 to .0035 45 to .0050 43 to .0097		

Angell, Phys. Rev. 33, p. 421, 1911; Clement, Egy, Eng. Exp. Univers. of Ill., Bul. 36, 1909; Dewey, Progressive Age, 27, p. 772, 1909; Hering, Trans. Am. Inst. Elect. Eng. 1910; Poole, Phil. Mag. 24, p. 45, 1912; Wologdine, Bull. Soc. Encouragement, 111, p. 879, 1909; Electroch. and Met. Ind. 7, pp. 383, 433, 1909; Woolson, Eng. News, 58, p. 166, 1907; heat transmission by concretes. Actual values not given; Hansen, Trans. Amer. Electrochem. Soc. 16, p. 329, 1909; Richards, Met. and Chem. Eng. 11, p. 575, 1913.

¹ Taken from Angell's curves.

² Values calculated from results expressed in other units. The max. and min. do not relate to variability in material, but to possible errors in the method.

³ Taken from Poole's curves.

SMITHSONIAN TABLES.

CONDUCTIVITY FOR HEAT.

TABLE 225. - Various Substances,

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Asbestos paper -				
Blotting paper -	Blotting paper - -	Substance.		k _t	thor-
		Blotting paper . Carbon Portland cement . Cork Cotton wool . Cotton pressed . Chalk . Ebonite Felt Falnnel (dry) . Glass { from . Haircloth Leather, cow-hide "chamois. Linen Silk . Caen stone (build-ling limestone) } Calc's sandstone {	0 0 - 49 0 0	.00015 .000405 .00071 .000717 .000043 .000033 .00200 .00087 .00012 .0011 } .0023 } .000087 .000042 .00223 .00068 .00042 .00015 .00021	1 1 2 2 1 1 3 1 1 4 5 5 5 5 5

TABLE 226. - Water and Salt Solutions.

Substa	Substance.		t o	k _s	Au- thor- ity.			
Water " " " "	"		- 0 9-15 4 30 18	.002 .00120 .00136 .00129 .00157	1 2 2 3 4 5			
Solution wate CuSO ₄ KCl . NaCl . H ₂ SO ₄ " ZnSO ₄ "	r	1.160 1.026 33\frac{3}{3}\% 1.054 1.100 1.180 1.134 1.136	4·4 13 10–18 20.5 20.5 21 4·5 4·5	.00118 .00116 .00267 .00126 .00128 .00130 .00118	2 4 6 5 5 5 2 2			
1 Bottomley. 4 Graetz. 2 H. F. Weber. 5 Chree. 3 Wachsmuth. 6 Winkelmann.								

- I G. Forbes.
 2 H., L., & D.*
 3 Various.
 4 Neumann.
 5 Lees-Chorlton.

TABLE 227. - Organic Liquids.

Substance.	<i>t</i> 0	$\underset{\times}{\overset{k_t}{\times}}$	а	Authority.			
Acetic acid Alcohols: amyl .	9-15 9-15	.472 .328	_	Į I			
ethyl .	9-15	.423	-	1			
methyl	9-15	-495	-	1			
Benzole	5	-333	-	1			
Carbon disulphide	9-15	-343	_	1			
Chloroform	9-15	.288	_	I			
Ether	9-15	.303	_	I			
Glycerine	9-15	.637	0.12	2			
Oils: olive	-	-395	-	3 3 2			
castor	-	.425	_	3			
petroleum .	13	·355	110.0	2			
turpentine .	13	.325	0.0067	2			
Vaseline	-	-44	-	4			
I H. F. Weber. 3 Wachsmuth. 2 Graetz. 4 Lees.							

TABLE 228. - Gases.

Substance.	t o	k _t ×10000	a	Authority.			
Air	0 0 0 0	.568 .389 .458 .499 .307	.00190 .00260 .00548	I 2 I I I			
Ethylene Helium Hydrogen Methane	0 0 7-8	·395 3·39 3·27 .647	.00445 .00318 .00175	I 2 I I			
Nitrogen Nitrous oxide . Oxygen	7-8 7-8 7-8	.524 .350 .563	.00446	I			
I Winkelmann. 2 Schwarze.							

^{*} Herschel, Lebour, and Dunn (British Association Committee).

DIFFUSIVITIES.

The diffusivity of a substance $=h^2=k/c\rho$, where k is the conductivity for heat, c the specific heat and ρ the density. (Kelvin.) The values are mostly for room temperatures, about 18°C.

Material.	Diffusivity.	Material.	Diffusivity.
Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air Asbestos (loose) Brick (average fire) " (" building)	.139 .0678 .339 .467 1.133 1.182 0.173 .121 .237 .883 .0327 .152 .240 .243 1.737 0.407 .402 .179 .0035	Coal	.0118 .0064 .0133 .0033 .005 .0031 .0014

Taken from "An Introduction to the Mathematical Theory of Heat Conduction," Ingersoll and Zobel, 1913.

SMITHSONIAN TABLES.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO₂ or SO₂ and water, which is assumed to be in a state of vapor.

Substance.	Small calories per gram of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols: Amyl	8958	Favre and Silbermann.
Ethyl	7183	« «
Methyl	5307	66 66 66
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	ιι ιι ιι
Coke	7000	ιι ιι ι <u>ι</u>
Carbon disulphide	3244	Berthelot.
Dynamite, 75 %	1 290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	13063	Favre and Silbermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	46
Oils: Lard • • • .	9200–9400	"
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" " refined .	11045	66
" Russian	10800	46
Woods: Beech with 12.9% H ₂ O	4168	Gottlieb.
Birch " 11.83 "	4207	44
Oak " 13.3 "	3990	46
Pine " 12.17 "	4422 .	cc

TABLE 231.

HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

(a) Coals.

Coal.	Moisture.	Volatil e Matter.	Fixed Carbon.	Ash.	Sulphur.	Hydrogen	Carbon.	Nitrogen.	Oxygen.	Calories per gram.	B. T. U.'s per pound.
Lignite { Low grade High grade Sub-bitu- { Low grade	38.81 33.38 22.71 15.54 11.44 3.42 2.7 3.26 2.07 2.76 3.33	25.48 27.44 34.78 33.93 34.36 14.5 14.57 9.81 2.48 3.27	29.62	8.42 9.56 5.91 5.37 10.71 3.39 7.3 3.97 9.30 12.69 9.12	.97 .94 .29 .58 4.94 .58 .99 .54 1.74 .60	7.09 6.77 6.14 5.89 5.25 4.58 4.76 3.62 2.23 3.08	37.45 41.31 52.54 60.08 60.06 77.98 80.65 84.62 80.28 79.22 81.35	.50 .67 1.03 1.05 1.02 1.29 1.82 1.02 1.47 .68 .79	45.57 40.75 34.09 27.03 17.88 11.51 4.66 5.09 3.59 4.64 5.06	3526 3994 5115 5865 6088 7852 7845 8166 7612 6987 7417	6347 7189 9207 10557 10958 14134 14121 14699 13702 12577 13351

(b) Peats (air dried).

From	Vol- Hydro- Carbon.	Fixed Carbon.	Ash.	Sul- phur.	Hydro- gen.	Carbon.	Nitro- gen.	Oxygen.	Calories per gram.	B. T.U.'s per pound,
Franklin Co., N. Y.	б7.10	28.99	3.91	.15	5.93	57.17	1.48	31.36	5726	10307
Sawyer Co., Wis.	56.54	27.92	15.54		4.7 I	51.00	1.92	26.54	4867	8761

(e) Liquid Fuels.

Fuel.	Specific Gravity at 15° C.	Calories per gram.	British Thermal Units per pound.
Petroleum ether	.684694 .710730 . 7 90800	12210-12 2 20 11100-11400 11000-11200	21978-21996 19980-20520 19800-20160
Fuel oils, heavy petroleum or refinery residue Alcohol, fuel or denatured	.960–.970	10200-10500	18360-18900
with 7-9 per cent water and denaturing material	.8196–.8202	6440–6470	11592-11646

Table compiled by U. S. Geological Survey.

CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

Explosive.	Specific gravity.	Number of large calories developed by 1 kilogram of the explosive.	Pressure developed in own volume after elimination of surface in- fluence.	Unit disruptive charge by ballistic pendulum.	Rate of detonation. Cartridges 14 in. diam.	Duration of flame from 100 grams of explosive.	Length of flame from 100 grams.	Cartridge 14 in. transmitted explosion at a distance of	Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.	Ignition occurred in 4% firedamp& coal dust mixture with
			Kg. per sq. cm.	Grams.	Meters per second.	Millisec- onds.	Inches.	Inches.	Grams,	Grams.
(A) Forty-per-cent nitro- glycerin dynamite	1,22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
(B) FFF black blasting powder	1.25	789.4	4817	374 [†] 45 ⁸ *	469,4‡	925.	54.32	-	154.4 126.9 4.1	25
(C) Permissible explo- sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000
(D) Permissible explo- sive; ammonium nitrate class	0.97	992.8	7300	279*	3438§	.483	25.68	1	89.8 27.5 75.5	800
(E) Permissible explo- sive; hydrated class	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over
		(Chemical	Analyse	s.	<u>'</u>		<u>'</u>		
(A) Moisture		· · · · · · · · · · · · · · · · · · ·	0.91 39.68 42.46 13.58 3.37 0.80 70.57 17.74 10.89 7.89 24.02 36.25 9.20 21.31 0.97 0.36	(E) I	Moisture Ammon Sulphur Starch Wood p Poisono Mangane Sand Moisture Nitrogly Ammon Sand . Coal . Clay . Ammon Zinc sull	ium n ulp us ma ese pe cerin ium n ium si	tter roxide itrate ilphate (7HO)			0.23 83.10 0.46 2.61 1.89 2.54 2.64 6.53 2.34 30.85 9.94 1.75 11.98 7.64 8.96 6.89 19.65

[†] Two pounds of clay tamping used. || For 300 grammes.

[‡] Rate of burning.

^{*} One pound of clay tamping used. § Cartridges 13/4 in. diam.

Compiled from U. S. Geological Survey Results, - "Investigation of Explosives for use in Coal Mines, 1909." SMITHSONIAN TABLES.

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

$\begin{array}{c} CaO \\ CO_2 \\ CO \\ CO_2 \\ Cl_2O \\ Cu_2O \end{array}$	3284 78 5 9 2141 7796	CaCl ₂	4255	CaS	2300	
$egin{array}{c} \operatorname{CO}_2 \\ \operatorname{Cl}_2 \mathrm{O} \\ \operatorname{Cu}_2 \mathrm{O} \end{array}$			- 1	-	-	1 2
$\begin{array}{c} \operatorname{Cl_2O} \\ \operatorname{Cu_2O} \end{array}$	7790	-	-	, -	-	3
Cu ₂ O		- 1	-	- 1	- 1	3
	- 254	CoC1	- 520	-		I
	321	CuCl	520 819	CuS	158	I
CuO	585	CuCl ₂	019		130	4
H _o O		HCl	22000	H ₂ S	2250	3
44		1 1			, " _ "	1 5
"		!	- 1	- 1	- '	5
FeO		FeCl ₂	1464	FeSH ₂ O	428	3
-		FeCl ₃	1714	- 1	- '	3
I_2O_5	177	- !	-	- 1	- '	I
PbO	243		400			I
MgO	6077					I
				MnSH ₂ O ₂	941	I
				Has	84	1
		ngC12		Ingo	04	I
		1 ['		1 - 1		ı
1		1 - 1	_	1 - '	_	i
		_	_	i _ '	_	ı
1 2 5		1 - '	_	l - '	-	7
44		-	-	_	_	I
K ₂ O	1745	KCl	2705	K_2S	1312	8
$Ag_2()$	27	AgCl	271	Ag ₂ S	24	I
Na ₂ O	3293	NaCl	4243	Na_2S	1900	8
		_	-	-	-	I
·		- C-C1	1	_		2
	573			1 _	_	7
· I	1185	311014	1009	_		4
ZnO "	1314	ZnCl ₂	1495	_	-	I
 	-		1		1	
Combined	Heat	Combined with N + O.	Heat	Combined with C+O	Heat	Author-
to form—	units.	to form —	units.	to form—	units.	Au
	-	2 210)		6.60		-
	7997			1	0730	I
	2557					I
	96450	HNU3				I
		T1 (3.5.0.)		PhCO	814	I
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	312	10003		ı
	12390	_	_	_	_	I
K ₂ SO ₄	4416	KNO ₃	3061	K ₂ CO ₃	3583	I
			266		561	I
. Na ₂ SO ₄	7119				5Š41	I
. ZnSO ₄	3538		-	-	-	I
			<u> </u>			
	AUTHOR	ITIES.				
	H ₂ O " FeO - I ₂ O ₅ PbO MgO MnOH ₂ O Hg ₂ O Hg ₂ O NO NO NO ₂ P ₂ O ₅ " " K ₂ O Ag ₂ O Na ₂ O SO ₂ SnO - ZnO " Combined with S+O ₄ to form— CaSO ₄ CuSO ₄ H ₂ SO ₄ FeSO ₄ PbSO ₄ MgSO ₄ - K ₂ SO ₄ Ag ₂ SO ₄ Ag ₂ SO ₄ Na ₂ SO ₄ - CuSO ₄ -	H ₂ O 34154 " 34800 " 34417 FeO 1353	H ₂ O	H2O	H2O	H ₂ O

8 Woods.

4 Joule. 6 Average of seven different. 2 Berthelot.

^{*} Combustion at constant pressure.

COMBINATION.

caused to combine with oxygen or the negative radical, the numbers indicate the amount of water, in the same from o° to ι° C. by the addition of that heat.

			In dilute solution	ons.			ior-		
Substance.	Forms —	Heat units.	Forms —	Heat units.	Forms -	Heat units.	Author- ity.		
Calcium Carbon — Diamond .	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	$CaS + H_2O$	2457	I 2		
"	-	-	-	-	_	_	3		
" — Graphite .	-	-	~	-	-	_	3		
Chlorine	_	_	-	_	_		I		
	_	_	_	_	_	-	i		
"	_	-	-	-	-	_	4		
Hydrogen	-	-	-	-	-		3 5		
"	-	-	-	_	_	_	5		
Iron	FeO + H ₂ O	1220*	FeCl ₂ + H ₂ O	1785	_	_	3		
"	- 1120	-	FeCl ₈	2280	_	_	3		
Iodine	-	-	-	-	-] -	I		
Lead			$PbCl_2$	3 68	- C	-	I		
Magnesium	${ m MgO_2H_2}$	9050 🕈	$egin{array}{c} \mathbf{MgCl_2} \ \mathbf{MnCl_2} \end{array}$	7779	MgS	4784	I		
Manganese Mercury	_	_	M11C12	2327	_	_	I		
"	-	-	$HgCl_2$	299	_	_	I		
Nitrogen	-	-		- "	_	-	1		
	-	-	-	-	-	-	I		
Phosphorus (red)	_	-	_	_	_	_	I		
" (yellow).			_	_	_	_	7		
" "	_	_	_	_	_	-	ľ		
Potassium	K_2O	2110*	KCl	2592	K_2S	1451	8		
Silver	-	-	- N. GI	-	, - a	-	I		
Sodium Sulphur	$ m Na_2O$	3375	NaCl	4190	Na ₂ S	2260	8		
"	_	_	_	_	_	-	2		
Tin	_	_	$SnCl_2$	691	_	-	7		
	-	-	SnCl ₄	1344	-	-	7		
Zinc	-	-	7C1	_	-	-	4		
	-	-	ZnCl ₂	1735	_	_	I		
			In dilute solution	ns.			Author- ity.		
Substance.	Forms —	Heat units.	Forms —	Heat units.	Forms —	Heat units.	Aut ity.		
Calcium		_	$Ca(NO_3)_2$	2175	_	_	ı		
Calcium	CuSO ₄	3150	$Cu(NO_3)_2$ $Cu(NO_3)_2$	5175		1 -	I		
Hydrogen	H_2SO_4	105300	HNO ₈	24550	_	-	I		
Iron	FeSO ₄	4210	$Fe(NO_3)_3$	2134	-	-	I		
Lead		12120	$Pb(NO_3)_2$	475	_	_	I		
Magnesium	MgSO ₄	13420	$ m Mg(NO_3)_2 = Hg(NO_3)_2$	8595	_	_	I		
Mercury Potassium	K_2SO_4	4324	KNO_3	335 2860	_	_	I		
Silver	Ag_2SO_4	753	$AgNO_3$	216	-	-	I		
Sodium	Na_2SO_4	7160	NaNO ₃	4620	Na ₂ CO ₃	5995	I		
Zinc	ZnSO ₄	3820	$Zn(NO_3)_2$	2035	_	-	I		
		Аитн	ORITIES.						
1 Thomsen. 3 Favre and Silbermann. 5 Hess. 7 Andrews. 2 Berthelot. 4 Joule. 6 Average of seven different. 8 Woods.									

^{*} Thomsen.

[†] Total heat from elements.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in large calories per kilogram or in small calories or therms per gram by H; the total heat from 0° C, in the same units by H. The pressure is that due to the vapor at the temperature T.

Substance.	Formula.	Т	Н	H'	Authority.
Acetic acid	$C_2H_4O_2$	1180	84.9	-	Ogier.
Air	_	-	50.97	~	Fenner-Richtmyer.
Alcohol: Amyl	C ₅ H ₁₂ O	131	120	_	Schall.
Ethyl	C_2H_6O	78.1	205	255	Wirtz.
"	"	0 50	236	255 236 264	Regnault.
"	"	100	-	267	"
46		150	-	285	
Methyl	CH ₄ O	64.5	2.67 289	307 289	Wirtz. Ramsay and Young.
"	"	50	-	274	
	"	100 150	_	246 206	
"	44	200	~	152	4 4 4
		238.5	~	44.2	
Ammonia	NH ₃	7.S	294.2 291.3	_	Regnault.
"	"	16	297.4	-	44
		17	296.5	-	
Benzene	C_6H_6	80.1	92.9	127.9	Wirtz.
Bromine	Br	61	45.6	-	Andrews.
Carbon dioxide, solid liquid .	$\overset{\mathrm{CO}_2}{``}$	25	72 22	138.7	Favre. Cailletet and Mathias.
" "	46	ō	72.23 57 . 48	_	., ., .,
16 16 16	46	12.35 22.04	44.97 31.8	-	Mathias.
	44	29.85	14.4	-	"
	44	30.82	3.72	-	44
" disulphide	CS _E	46.1 0	83.8 90	94.8 90	Wirtz. Regnault.
	"	100	~	100.5	- "
	"	140	-	102.4	
Chloroform	CHCl ₃	60.9	58.5	72.8	Wirtz.
Ether	$C_4H_{10}O$	34.5	88.4	107	" Andrews.
"	44	34.9	90.5 94	94	Regnault.
	44	50 120	-	115.1 140	44
Iodine	I		23.95	-	Favre and Silbermann.
Mercury	Hg	757	43.9 3 65	_	Mean.
	N N	357		_	Alt.
Nitrogen		— 195.6	47.65		Alt.
Oxygen	0	-182.9	50.97	-	
Sulphur dioxide	$S_{"}^{O_2}$	30	91.2 80.5	_	Cailletet and Mathias.
	"	65	68.4	-	
Turpentine	$C_{10}H_{10}$	1 59.3	74.04	_	Brix.
Water	$_{\mathrm{H_2O}}$	100	535.9	_	Andrews.
" · · · · ·	44	100	_	637	Regnault.

LATENT HEAT OF VAPORIZATION.*

Substance, formula, and temperature.	$I=$ total heat from fluid at o° to vapor at t° . $r=$ latent heat at t° .	Authority.
Acetone, C_3H_6O , -3° to 147°.	$l = 140.5 + 0.36644 t - 0.000516 t^{2}$ $l = 139.9 + 0.23356 t + 0.00055358 t^{2}$ $r = 139.9 - 0.27287 t + 0.0001571 t^{2}$	Regnault. Winkelmann.
Benzol, C ₆ H ₆ , 7° to 215°.	$l = 109.0 + 0.24429 t - 0.0001315 t^2$	Regnault.
Carbon dioxide, CO ₂ , -25° to 31°.	$r^2 = 118.485 (31 - t) - 0.4707 (31 - t^2)$	Cailletet and Mathias.
Carbon disulphide, CS_2 , -6° to 143°.	$ l = 90.0 + 0.14601 t - 0.000412 t^{2} $	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$l = 52.0 + 0.14625 t - 0.000172 t^{2}$ $l = 51.9 + 0.17867 t - 0.0009599 t^{2} + 0.000003733 t^{3}$ $r = 51.9 - 0.01931 t - 0.0010505 t^{2} + 0.00003733 t^{3}$	Regnault. Winkelmann.
Chloroform, CHCl ₃ , — 5° to 159°.	$l = 67.0 + 0.1375 t$ $l = 67.0 + 0.14716 t - 0.0000937 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann.
Nitrogen, N.	r = 68.85 - 0.2736 T	Alt.
Nitrous oxide, N_2O , -20° to 36°.	$r^2 = 131.75 (36.4 - t) - 0.928 (36.4 - t)^2$	Cailletet and Mathias.
Oxygen, O.	r = 60.67 - 0.2080 T	Alt.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842t - 0.000340t^2$	Mathias.
Water, H ₂ O.	$r = 94.210 (365 - t)^{0.81249}, 30^{\circ} - 100^{\circ}$ $r = 538.46 - 0.6422 (t - 100) - 0.000833 (t - 100)^{2},$ $100^{\circ} - 180^{\circ}$ $r = 539.66 - 0.718 (t - 100), 120^{\circ} - 180^{\circ}$	Henning.

^{*} Quoted from Landolt & Börnstein's "Phys. Chem. Tab."

TABLE 235.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per Ribigram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	С	T	Н	Authority.
Alloys: 30.5Pb + 69.5Sn 36.9Pb + 63.1Sn 63.7Pb + 36.3Sn	PbSn ₄ PbSn ₃ PbSn Pb ₂ Sn	183 179 177.5 176.5	17. 15.5 11.6 9.54	Spring.
Britannia metal, 9Sn + 1Pb . Rose's alloy, 24Pb + 27.3Sn + 48.7Bi	-	236 98.8	28.0*	Ledebur. Mazzotto.
Wood's alloy $\begin{cases} 25.8 \text{Pb} + 14.7 \text{Sn} \\ + 52.4 \text{Bi} + 7 \text{Cd} \end{cases}$	_	75·5	8.40	Wazzotto.
Aluminum	$\begin{array}{c} \text{Al} \\ \text{NH}_3 \\ \text{C}_6\text{H}_6 \\ \text{Br} \end{array}$	658. 75. 5.4 7.3	76.8 108. 30.6 16.2	Glaser. Massol. Mean. Regnault.
Bismuth	Bi Cd CaCl ₂ +6H ₂ O Cu	268 320.7 28.5 1083	12.64 13.66 40.7 42.	Person. " Mean.
Iron, Gray cast	- - I	- - -	23. 33. 50. 11.71	Gruner. " " Favre and Silbermann.
Ice	H ₂ O "	0	79.63 79.59	Dickinson, Harper, Osborne.† Smith.†
" (from sea-water)	$H_2O + 3.535$ of solids	-8.7	54.0	Petterson.
Lead	Pb Hg C ₁₀ H ₈ Ni Pd	3 ² 7 -39 7 9.8 ₇	5.36 2.82 35.62 4.64	Mean. Person. Pickering. Pionchon. Violle.
Phosphorus Platinum Potassium Potassium nitrate	P Pt K KNO ₃	1545 44.2 1755 62 333.5	36.3 4.97 27.2 15.7 48.9	Petterson. Violle. Joannis. Person.
Phenol	C ₆ H ₆ O - Ag Na	25.37 52.40 961 97	24.93 35.10 21.07 31.7	Petterson. Batelli. Person. Joannis.
" nitrate	$ \begin{array}{c} \operatorname{NaNO_3} \\ \operatorname{Na_2HPO_4} \\ + \operatorname{12H_2O} \end{array} $	305.8 36.1	64.8 ₇ 66.8	
Spermaceti	S Sn	43.9 115 232	36.98 9-37 14.0	Batelli. Person. Mean.
Wax (bees)	Zn	61.8	42.3 28.13	46

^{*} Total heat from 0° C.
† U. S. Bureau of Standards, 1913, in terms of 15° calorie.
‡ 1993, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

MELTING-POINTS OF THE CHEMICAL ELEMENTS.

The metals in heavier type are often used as standards.

The melting-points are reduced as far as possible to a common temperature scale which is the one used by the United States Bureau of Standards in certifying pyrometers. This scale is defined in terms of Wien's law with C₂ taken as 14500, and on which the melting-point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

Element.	Melting- point.	Remarks.	Element.	Melting- point.	Remarks.
Aluminum	658±1	Most samples give 657 or less (Burgess).	Manganese Mercury Molybdenum	1260 - 38.7	Burgess-Waltenberg Mendenhall-Forsythe
Antimony	630 ± 1	"Kahlbaum" pu- rity.		² 535 840 — 252	(Muthmann-Weiss.)
Argon Arsenic	— 188 500	Ramsay-Travers.		1452	Day, Sosman, Burgess, Waltenberg.
Barium Beryllium	850 <ag< td=""><td>(Guntz.)</td><td>Niobium Nitrogen</td><td>1950 — 211</td><td>v. Bolton. (Fischer-Alt.)</td></ag<>	(Guntz.)	Niobium Nitrogen	1950 — 211	v. Bolton. (Fischer-Alt.)
Bismuth Boron	270 (> 2000 }	Adjusted. Weintraub.	Osmium	About 2700	(Waidner - Burgess, unpublished.)
Bromine	$\frac{1 < 2500}{-7.3}$		Oxygen Palladium	-230?	(Waidner-Burgess, Nernst-Warten-
Cadmium Cæsium	321 26	Range : 320.7- 320.9. Range : 26.37-			burg.)
Calcium	805	25.3 Adjusted.	Phosphorus Platinum	44.2 1755 ± 20	See Note.
Chlorine Carbon Cerium	- 102 (>3500) 645	(Olszewski.) Sublimes.	Potassium Præsodymium Rhodium	62.3 940 1910	(Muthmann-Weiss.) (Mendenhall-Inger-
Chromium	>1520	Burgess-Walten- berg		38.5	soll.)
Cobalt	1478	Burgess-Walten- berg	Samarium	1900? 1300-1400	(Muthmann-Weiss.)
Copper	1083±3	Mean, Holborn- Day, Day- Clement.	Selenium Silicon Silver	217 1420 961 + 1	Saunders. Adjusted. Adjusted.
Erbium Fluorine	— 223	(Moissan - De-	Sodium Strontium Sulphur	97	Between Ca and Ba? Various forms, See
Gallium Germanium	30.1 < Ag	,	Tantalum	2800	Landolt-Börnstein. Adjusted from Waid-
Gold Hydrogen Indium	$ \begin{array}{c c} & 1063 \pm 3 \\ & -259 \\ & 155 \end{array} $	Adjusted. (Thiel.)	Tellurium Thallium	45I 302	ner-Burgess == 2910. Adjusted.
Fodine Iridium	114	Range: 112-115. Mendenhall In-	Thorium Tin	> 1700 < Pt 231.9 $\pm .2$	
Iron	1530	gersoll. Burgess-Walten-	Titanium Tungsten	1795 2950	Burgess-Waltenberg. Mean, Waidner-Burgess and Warten-
Krypton Lanthanum	— 169 S10	berg. (Ramsay). (Muthmann-	Uranium Vanadium	Near Mo	burg. Moissan. Burgess-Waltenberg.
Lead Lithium	327±0.5	(Kahlbaum,)	Xenon Zinc	- 140 419 + 0.5	Ramsay.
Magnesium	651	(Grube) in clay crucibles, 635.	Zirconium	Si	Troost.

TABLE 237.

BOILING-POINTS OF THE CHEMICAL ELEMENTS.

Element.	Range.	Boiling- point.	Observer; Remarks.
Aluminum Antimony Argon Arsenic " Barium Bismuth Boron Bromine Cadmium Casium Carbon " Chlorine Chromium Copper Fluorine Helium	449-450 280-310 1420-1435 59-63 	point. o 1800. 1440186.1 -360 1430 1778. 670. 3600 33.6 2200. 2310 187 267.	Greenwood, Ch. News, 100, 1909. """"""""""""""""""""""""""""""""""
Fluorine Helium Hydrogen Iodine Iron Krypton Lead Lithium Magnesium Manganese Mercury Neon Nitrogen ()xygen ()zone Phosphorus Potassium Rubidium		-187267252.6 >200. 2450151.7 1525. 1400. 1120. 1900. 357239195182.7 -119. 288. 712. 696.	Moisson-Dewar, C. R. 136, 1903.
Selenium Silver Sodium Sulphur Tellurium Thallium Tin Xenon Zinc	664-694 - 742-757 444-7-445 - - - - 916-942	690. 1955. 750. 444.7 1390. 1280. 2270. —109.1 930.	Greenwood, l. c. Perman; Ruff-Johannsen. Mean. Deville-Troost, C. R. 91, 1880. v. Wartenberg, 25 Anorg. Ch. 56, 1908. Greenwood, l. c. Ramsay, Z. Phys. Ch. 44, 1903.

DENSITIES AND MELTING AND BOILING POINTS. INORGANIC COMPOUNDS.

Substance.	Chemical Formula.	Density about 20° C.	Melting- point C.	Authority.	Boiling- point C.	Pres- sure mm.	Authority.
Aluminum chloride	AlCl ₃	_	190.	1	183°	752	ī
" nitrate	Al(NO ₃) ₃ +9H ₂ O	_	72.8	2	103	/5-	
Aluminum oxide	Al_2O_3	4.00	2020	11	_		- 1
Ammonia	NH_3	4.00	-75.	3	-33.5	760	7
Ammonium nitrate	NH ₄ NO ₃	1.72	165.		22.2	700	
" sulphate	$(NH_4)_2SO_4$	1.77	1.10.	4	-	_	7
" phosphite .	$NH_4H_2PO_3$		123.	5	_	_	
Antimony trichloride	SbCl ₃	3.06	73.	_	223.	760	
" pentachloride.	SbCl ₅	2.35	3.	11	102.	68	14
Arsenic trichloride	AsCl ₃	2.20	<u></u> −18.	8	130.2	760	
Arsenietted hydrogen	AsH ₃	-	-113.5	6	— 54.8	'"	² 3
Barium chloride	BaCl ₂ .2H ₂ O	3.10	113.	9		-	-
" nitrate	$Ba(NO_3)_2$	3.24	575.	24	_	-	-
" perchlorate	$Ba(ClO_4)_2$		505.	10	_	_	-
Bismuth trichloride	BiCl₃	4.56	232.5	-	440.	760	- 1
Boric acid	$\mathrm{H_{3}BO_{3}}$	1.46	185.	-	_	-	-
" anhydride	B_2O_3	1.79	57.7	-	-	- 1	- 1
Borax (sodium borate) .	$Na_2B_4O_7$	1.69	561+	9		-	- 1
Cadmium chloride	$CdCl_2$	4.05	560.	25	900.±	-	9
" nitrate	$Cd(NO_3)_2 + 4H_2O$	2.45	59-5	2	132.	760	4
Calcium chloride	CaCl ₂	2.26	774.	-		-	-
" "	CaCl ₂ +6H ₂ O	1.68	29.6	-	-	_	-
" nitrate	$Ca(NO_3)_2$	2.36	499.	24	-	- ,	-
	$Ca(NO_3)_2 + 4H_2O$	1.82	42.3	26	_	_	-
Carbon tetrachloride	CCl ₄	1.59	-24.	22	76.7	760	23
" trichloride	C_2Cl_6	1.63	184.	-	_	-	6
monoxide	CO	- 1	207.	6	190.	760	6
dioxide	CO_2	-	<u>-57</u> .	3	8o.	subl.	
disdipinde	CS_2	1.26 1.81	I10.	13	46.2	760	=
Chloric acid	$\begin{array}{c} \operatorname{HClO_4} + \operatorname{H_2O} \\ \operatorname{ClO_2} \end{array}$	1.01	50. —76.	15	-		21
Chrome alum	$KCr(SO_4)_2 + 12H_2O$	1.83		3	9.9	731	21
" nitrate	$Cr_2(NO_3)_6 + 18H_2O$	1.03		2	170	760	2
Cobalt sulphate	$CoSO_4$	3.53	37.	16	170.	700	
Cupric chloride	CuCl ₂	3.05	97· 498.	9		_	_
Cuprous "	Cu_2Cl_2	3.7	421.	-	1000	760	9
Cupric nitrate	$Cu(NO_3)_2 + 3H_2O$	2.05	114.5	2	170.	760	2
Hydrobromic acid	HBr		-86. ₇	3	-68.7	7,00	-11
Hydrochloric "	HC1	_	-111.3	17	-83.1	755	17
Hydrofluoric "	HFI	.99	-92.3	6	<u>-36.7</u>	755	17
Hydriodic "	HI		-51.3	17		760	_
Hydrogen peroxide	$\mathrm{H_{2}O_{2}}$	1.5	-2.	18	-35·7 80.2	47	20
" phosphide	PH_3	-	-132.5	6	_	_	-
" sulphide	H_2S	-	86.°	3	-62.	-	-
Iron chloride	FeCl ₃	2.80	301.	- 1	-	_	<u> </u>
" nitrate	$Fe(NO_3)_3 + 9H_2O$	1.68	47.2	2	-	-	
surphate	$FeSO_4 + 7H_2O$	1.90	64.	16		-	-
Lead chloride	PbCl ₂	5.8	500.	9	900.土	760	-0
" metaphosphate	$Pb(PO_3)_2$	-	800.	9	-	-	-11
Magnesium chloride	MgCl ₂	2.18	708.	9			- 1
" nitrate	$Mg(NO_3)_2 + 6H_2O$	1.46	90.	2	143.	760	2
sulphate	MgSO ₄ +5H ₂ O	1.68	150.	16	-	-6-	- 1
Manganese chloride	$MnCl_2+4H_2O$	2.01	87.5	19	106.	760	19
" nitrate " sulphate	$\frac{\text{Mn(NO}_3)_2 + 6\text{H}_2\text{O}}{\text{MnSO}_3 + 6\text{H}_2\text{O}}$	1.82	26.	2	129.		2
Mercurous chloride	$\begin{array}{c} \text{MnSO}_4 + 5\text{H}_2\text{O} \\ \text{Hg}_2\text{Cl}_2 \end{array}$	2.09	54.	16	-	-	- 1
Mercuric chloride	$\begin{array}{c} \operatorname{Hg_2Cl_2} \\ \operatorname{HgCl_2} \end{array}$	7.10	450±		20.5	-	- 1
mercure emoride	11gC12	5.42	282.		305.		-1

^{1,} Friedel and Crafts; 2, Ordway; 3, Faraday; 4, Marchand; 5, Amat; 6, Olszweski; 7, Gibbs; 8, Baskerville; 9, Carnelly: 10, Carnelly and O'Shea; 11, Ruff: 13, Wroblewski and Olszewski; 14, Anschütz: 15, Roscoe; 16, Tilden; 17, Ladenburg: 18, Stadedl: 10, Clarke, "Const. of Nature"; 20, Bruhl; 21, Schacherl; 22, Tamman; 23, Thorpe; 24, Ramsay; 25, Lorenz; 26, Morgan.

DENSITIES AND MELTING- AND BOILING-POINTS. INORGANIC COMPOUNDS.

Substance.	Chemical Formula.	Density about 20° C.	Melting- point C.	Authority.	Boiling- point C.	Pressure mm.	Authority.
Nickel carbonyl	NiC ₄ O ₄ Ni(NO ₃) ₂ + 6H ₂ O NiO NiSO ₄ + 7H ₂ O HNO ₃ N ₂ O ₅ NO N ₂ O ₄ N ₂ O ₃ N ₂ O H ₃ PO ₄ H ₃ PO ₄ H ₃ PO ₃ PCl ₃ POCl ₃ P ₃ S ₆ P ₂ S ₅ P ₄ S ₃ P ₂ S ₃ K ₂ CO ₃ K ₂ CO ₃ K ₂ CO ₃ K ₂ CO ₄ KCN KClO ₄ KCl KNO ₃ K ₁ C ₂ PO ₄ KCS KNO ₃ K ₁ C ₂ PO ₄ KHSO ₄ AgCl AgNO ₃ AgCl AgNO ₃ Ag2O ₄ AgPO ₃ Ag ₂ SO ₄ NaClO ₃ NaClO ₄ Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ SO ₄ Na ₂ CO ₃ +10H ₂ O Na ₂ HPO ₄ +1 ₂ H ₂ O Na ₂ SO ₄ +10H ₂ O		725. 56.7 9942. 3015510.1 -82102.4 40.± 72111.8 +1.3 297. 275. 168. 290.± 840.± 372. 975610. \$61. 341. 96. 205. 451. 208.7 486. 849. 482. 655.± 800. 318. 315. 248. 482. 852. 344. 32.38 481. 970. 42. 884. 32.38 48.16 -70.4 -0.55 35.	1 2 - 3 4 5 - 8 7 8 8 10 - 12 13 - 15 17 - 15 15 15 15 15 15 15 15 15 15 15 15 15	43° 136.7 - 86. 48153. 24. 0.± -89.8 - 76. 108. 490	760 " " " " " " " " " " " " " " " " " " "	4my - 2 - 16 9 6 - 8 - 19 25
Sulphur trioxide	$\begin{array}{c} SO_{3} \\ SnCl_{4} \\ SnCl_{2} \\ ZnCl_{2} \\ ZnCl_{2} + 3H_{2}O \\ Zn(NO_{3})_{2} + 6H_{2}O \\ ZnSO_{4} + 7H_{2}O \end{array}$	1.91 2.28 - 2.91 - 2.06 2.02	15. -33. 250. 365. 6.5 36.4 50.	23 24 29 26 3 3	46.2 114. 605. 710. - 131.	760 " " - 760	19 - 2 - 2

^{1,} Mond, Langer, Quincke; 2, Ordway; 3, Tilden; 4, Erdmann; 5, R. Weber; 6, Olszewski; 7, Birhaus; 8, Ramsay; 9, Deville; 10, Wroblewski; 11, Day, Sosman, White; 12, Ramme; 13, Meyer; 14, Lemoine; 15, Carnelly; 16, Mitscherlich; 17, LeChatelier; 18, Carnelly, O'Shea; 19, Thorpe; 20, Amat; 21, Mendelejeff; 22, Marignac; 23, Besson; 24, Clarke, "Const. of Nature"; 25, Isambert; 26, Mylius; 27, Hevesy; 28, Retgers; 29, Grünauer; 30, Richards and others.

* Under pressure 138 mm. mercury.

Substance.	Melting-point at 1 kg/sq. cm.	Highest experimental pressure : kg/sq. cm.	dt/dp at 1 kg/sq. cm.	△ t. (observed) for 1000 kg/sq. cm.	Reference.
Hg K Na Sn Bi Cd Pb	- 38.85 59.7 97.4 231.9 270.9 320.9 327.4	1 2000 2800 2800 2000 2000 2000 2000 2000	0.00511 .0136 .0082 .00317 — 0.00344 0.00609	5.1* 13.8 8.2 3.17 -3.44 6.09 7.77	1 2 2 3 3 3 3 3

^{* \$\}Delta\$ t (observed) for 10000 kg/sq. cm. is 50.80.

References.—1. P. W. Bridgman, "Proc. Am. Acad." 47, pp. 391-96, 416-19, 1911.

2. G. Tammann, "Kristallisieren und Schmelzen," Leipzig, 1903, pp. 98-99.

3. J. Johnston and L. H. Adams, "Am. J. Sci." 31, p. 516, 1911.

A large number of organic substances, selected on account of their low melting-points, have also been investigated: by Tammann, loc. cit.; G. A. Hulett, "Z. Physik. Chem." 28, p. 629, 1899; Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913. The results for water are given in the following table.

TABLE 240. - Effect of Pressure on the Freezing-Point of Water (Bridgman*).

Pressuret: kg/sq. cm.	Freezing-point.	Phases in Equilibrium.
I	0.0	Ice I — liquid.
1000	-8.8	"
2000	- 20.15	
2115	- 22.0	Ice I — ice III — liquid (triple point).
3000	— 18.40	Ice III — liquid.
3530	 17.0	Ice III — ice V — liquid (triple point).
4000	- 13.7	Ice V — liquid.
6000	1.6	"
6380	+ 0.16	Ice V — ice VI — liquid (triple point).
8000	12.8	Ice VI — liquid.
12000	37.9	"
16000	57.2	"
20000	73.6	"

^{*} P. W. Bridgman, "Proc. Am. Acad." p. 47, 441-558, 1912.

^{† 1} atm. = 1.033 kg/sq. cm.

TABLE 241. - Melting-point of Mixtures.

	Ī				Meltin	ng-point	s, C°.					ce.
Metals.				Percent	age of r	netal in	second o	column.				Reference.
	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	Ref
Pb. Sn.	326	295	276	262	240	220	190	185	200	216	232	1
Bı.	322	290	-	-	179	145	126	168	205	-	268	7 8
Te.	322	710	790	880	917	760	600	480	410	425	446	
Ag.	328	460	545	590	620	650	705	775	840	905	959	9
Na.	-	360	420	400	370	330	290	250	200	130	96	13
Cu.	326	870	920	925	945	950	955	985	1005	1020	1084	2
Sb.	326	250	275	330	395	440	490	525	560	600	632	16
Al. Sb.	650	750	840	925	945	950	970	1000	1040	1010	632	17 18
Cu.	650	630	600	560	540	58o	610	755	930	1055	1084	
Au.	655	675	740	800 6 00	855	915 580	970	1025	1055	675	1062	10
Ag.	650	625	615 620	600	590 580	550 560	575	570	650	750	954	17
Zu. Fe.	654	640 860		000			530	510	475	425	419	11
Sn.	653 650		1015	625	1145 620	1145 605	1220	1315	1425 560	1500	1515	3
Sb. Bi.	632	645	635				590	570		540	232 268	17
SD. Bl. Ag.	630		590	575	555	540	520	470	4º5 68o	330 850		
Su.	622	595 600	570	545	520 480	500 430	505	545	310	255	959 232	9
Zn.	632		570 510	525	570	565	395 540	350 525	510	470	419	17
Ni. Sn.	1455	555 1380	1200	540 1200	1235	1290	1305	1230	1060	800	232	17
Na. Bi.	96	425	530	590	645	690	720	730	715	570	268	13
Cd.	96	125	185	245	285	325	330	340	360	390	322	13
Cd. Ag.	322	420	520	610	700	760	805	850	895	940	954	17
Tl.	321	300	285	270	262	258	245	230	210	235	302	14
Zn.	322	280	270	295	313	327	340	355	370	390	419	11
Au. Cu.	1053	910	890	895	905	925	975	1000	1025	1060	1084	4
Ag.	1064	1062	1061	1058	1054	1049	1039	1025	1006	982	963	5
Pt.	1075	1125	1190	1250	1320	1380	1455	1530	1610	1685	1775	20
K. Na.	62	17.5	-10	-3.5	5	11	26	41	58	77	97.5	15
Hg.		-7.5	-	3.3		90	110	135	162	265	77-3	13
Tî.	62.5	133	165	188	205	215	220	240	280	305	301	14
Cu. Ni.	1080	1180	1240	1200	1320	1335	1380	1410	1430	1440	1455	17
Ag.	1082	1035	990	945	010	870	830	788	814	875	960	9
Sn.	1084	1005	890	755	725	680	630	580	530	440	232	12
Zn.	1084	1040	995	930	900	88o	820	78o	700	580	419	6
Ag. Zn.	959	850	755	705	6gc	660	630	610	570	505	419	11
Sn.	959	870	750	630	550	495	450	420	375	300	232	9
Na. Hg.	96.5	90	, 8o	70	60	45	22	55	95	215		13

- 1 Means, Landolt-Börnstein-Roth Tabellen.
- 2 Friedrich-Leroux, Metal. 4, 1907.

- 2 Friedrich-Leroux, Metal. 4, 1907. 3 Gwyer, Zs. Anorg. Ch. 57, 1908. 4 Means, L.-B.-R. Tabellen. 5 Roberts-Austen Chem. News, 87, 2, 1903. 6 Shepherd J. ph. ch. 8, 1904. 7 Kapp, Diss., Königsberg, 1901. 8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897.
- 194A, 201, 1900.
- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.
 12 " " Phil. Trans. 202A, 1, 1903.

- 1895.
- 19 Reinders, Z. Anorg. Chem. 25, 113, 1896. 20 Erhard and Schertel, Jahrb. Berg-u. Hüttenw-Sachsen. 1879, 17.

TABLE 242. - Alloy of Lead, Tin, and Bismuth.

		Per cent.								
Lead Tin	32.0 15.5 52.5	25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33·3 33·3 33·3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0
Solidification at	96°	1010	125 ⁰	1280	145°	1480	1610	1810	182°	234 ^C

Charpy, Soc. d'Encours, Paris, 1901.

TABLE 243. - Low Melting-point Alloy.

			F	er cent			
Cadmium	10.8 14.2 24.9 50.1	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9.4 34.4 50.0	7.1 - 39.7 53.2	6.7 43·4 49·9
Solidification at	65.50	67.50	68.50	68.5°	76.5°	89.5°	95 ⁰

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

Substance.	Formula	Temp. ○ C.	Den- sity.	Melting- point	Boiling-point.	Authority.
		(a) Para	ffin Series	$S: C_n H_{2n+2}$	
Methane*	CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀ C ₅ H ₁₂ C ₆ H ₁₄ C ₇ H ₁₆ C ₈ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂₂ C ₁₁ H ₂₄ C ₁₂ H ₂₆ C ₁₃ H ₂₈ C ₁₄ H ₃₀ C ₁₆ H ₃₄ C ₁₇ H ₃₆ C ₁₈ H ₃₈ C ₁₉ H ₄₀ C ₂₁ H ₄₄ C ₂₂ H ₄₆ C ₂₃ H ₄₆ C ₂₃ H ₄₈ C ₂₄ H ₅₀ C ₂₇ H ₅₆ C ₃₁ H ₆₆ C ₃₁ H ₆₆ C ₃₂ H ₆₆ C ₃₁ H ₆₆ C ₃₁ H ₆₆ C ₃₁ H ₆₆ C ₃₂ H ₆₆ C ₃₁ H ₆₆ C ₃₁ H ₆₆ C ₃₂ H ₆₆ C ₃₅ H ₆₆	48. 51. 60. 68.	0.415 .446 .536 .60 .647 .663 .701 .719 .733 .745 .775 .775 .777 .777 .777 .777 .778 .778	-184 -171.4 -195	-165, -93, -45, 1, 36,3 69, 98,4 125,5 150, 173, 195, 214, 234, 252, 270, 287, 303, 317, 330, 121, 142,5 142	Olszewski, Young. Ladenburg, " Young, Hainlen. Butlerow, Young. Thorpe, Young. Schorlemmer. Thorpe, Young. " " " " " " " " " " " " " " " " " " "
	(b)	Olefines	s, or the	e Ethylen	e Series: C _n I	H _{2n} .
Ethylene Propylene Butylene Amylone Hexylene Octylene Nonylene Decylene Undecylene Tridecylene Tridecylene Pentadecylene Hexadecylene Hexadecylene Gotadecylene Eicosylene Cerotene Melene		20. -31. 15. -12. -4. 18. 0	0.610 -635 -76 -763 -722 -767 -773 -794 -814 -792 -791 -871 -	-31. -12. -4. 18.	103. 50.2 1. 36. 69. 9699. 122123. 140142. 175. 196197. 212214. 233. 127.‡ 247. 155.‡ 179.‡ 390400.	Wroblewski or Olszewski. Ladenburg, Krügel. Sieben. Wagner or Saytzeff. Wreden or Znatowicz. Morgan or Schorlemmer. Möslinger. Beilstein, "Org. Chem." """" Bernthsen. Krafft. Bernthsen. Krafft, Mendelejeff, etc. Krafft. Beilstein, "Org. Chem." Bernthsen.

^{*} Liquid at—11.° C. and 180 atmospheres' pressure (Cailletet),
† " + 4.° " 46 " " 46
Boiling-point under 15 mm. pressure.
§ In vacuo

SMITHSONIAN TABLES.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp.	Specific gravity.	Melting- point.	Boiling- point.	Authority.		
	(c) A	cetylene	Series :	C_nH_{2n}	-2.			
Acetylene	$C_2\Pi_2$	-	-	 81.	— 85.	Villard.		
Allylene	C_3H_4 C_4H_6	_	_	_	+ 18.	Bruylants, Kutsche-		
						roff, and others.		
Propylacetylene Butylacetylene	$C_5H_8 \\ C_6H_{10}$	_	_	_	48.–50. 68.–70.	Bruylants, Taworski. Taworski.		
Oenanthylidene	C ₇ H ₁₂	-	-	-	100101.	Beilstein, and oth-		
Caprylidene	C ₈ H ₁₄	0.	0.771		133134.	ers. Behal.		
Undecylidene	$C_{11}H_{20}$	-	-	_	210215.	Bruylants.		
Dodecylidene	$C_{12}H_{22} \ C_{14}H_{26}$	-9. + 6.5	.810 .806	- 9. + 6.5	105.* 134.*	Krafft.		
Hexadecylidene	C ₁₆ H ₃₀	20.	.804	20.	160.*	46		
Octadecylidene	$C_{18}H_{34}$	30.	.802	30.	184.*	44		
	(d) Mona	tomic al	cohols:	$C_n\Pi_{2n}$	+ιOH.			
Methyl alcohol	СН ₃ ОН	0.	0.812	_	66.			
Ethyl alcohol	C_2H_5OH	0.	.806	-130.1		7 0 1 4711		
Propyl alcohol	C ₃ H ₇ OH	0.	.817	_	97.	From Zander, "Lieb.		
Butyl alcohol	C_4H_9OH $C_5H_{11}OH$	0.	.823	_	117.	Ann." vol. 224, p. 85, and Krafft, "Ber."		
Hexyl alcohol	$C_6H_{13}OH$	0.	.833	-	I 57.	vol. 16, 1714,		
Heptyl alcohol	C ₇ H ₁₅ OH	0.	.836	-	176.	" 19, 2221, " 22, 2260		
Octyl alcohol Nonyl alcohol	$C_8H_{17}OH$ $C_9H_{19}OH$	0.	.839	<u>-</u> 5.	195.	" 23, 2360, and also Wroblew-		
Decyl alcohol	$C_{10}H_{21}OH$.839	+ 7.	231.	ski and Olszewski,		
Dodecyl alcohol	$C_{12}H_{25}OH$	24.	.831	24.	143.*	" Monatshefte,"		
Tetradecyl alcohol	C ₁₄ H ₂₉ OH		.824	38.	167.*	vol. 4, p. 338.		
Hexadecyl alcohol Octadecyl alcohol	$C_{16}H_{33}OH \\ C_{18}H_{37}OH$.813	50. 59.	190.*			
	(e) Ale	coholic e	thers:	C_nH_{2n+}	₂ O.	1		
Dimethyl ether	C ₂ H ₆ O	-	-	-	- 23.6	Erlenmeyer, Kreich-		
Diothyl other	C ₄ H ₁₀ O		0.731	- 117	+ 34.6	Regnault, Olszewski.		
Diethyl ether Dipropyl ether	$C_6H_{14}O$	4.	.763		90.7	Zander and others.		
Di-iso-propyl ether	$C_6H_{14}O$	0.	.743	-	69.	"		
Di-n-butyl ether	$C_8H_{18}O$	0.	.784	-	141.	Lieben, Rossi, and others.		
Di-sec-butyl ether	$C_8H_{18}O$	21.	.756	_	121. 122.	Kessel. Reboul.		
Di-iso-butyl " Di-iso-amyl "	0 11 0	15.	.762	_	170175.	Wurtz.		
Di-sec-hexyl "		-	'-'	-	203208.	Erlenmeyer and		
Di-norm-octyl "	C ₁₆ H ₃₄ O	17.	.805	-	280282.	Wanklyn. Moslinger.		
(f) Ethyl ethers: $C_nH_{2n+2}O$.								
Ethyl-methyl ether	C ₃ H ₈ O	0.	0.725	_	11.	Wurtz, Williamson.		
" propyl "	$C_5H_{12}O$	20.	0.739	-	6364.	Chancel, Brühl.		
" iso-propyl ether . " norm-butyl ether	$\begin{array}{c} C_5H_{12}O \\ C_6H_{14}O \end{array}$	0.	·745	_	54· 92.	Markownikow. Lieben, Rossi.		
" iso-butyl ether .	$C_{6}H_{14}O$	-	.751	-	78.–So.	Wurtz.		
" iso-amyl ether .	$C_7H_{16}O$	18.	.764	-	112.	Williamson and others.		
" norm-hexyl ether	C ₈ H ₁₈ O	-	-	_	134137.	Lieben, Janeczek.		
" norm-heptyl ether	$C_9H_{20}O$	16.	.790	_	165.	Cross.		
" norm-octyl ether	C ₁₀ H ₂₂ O	17.	·794		182184.	Moslinger.		

^{*} Boiling-point under 15 mm. pressure. † Liquid at $-11.^{\circ}$ C, and 180 atmospheres' pressure (Cailletet).

DENSITIES, MELTINC-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

(g) Miscellaneous.

Substance.	Chemical formula.	Density and temperature.	Melting- point, C.	Boiling- point, C.	Authority.
Acetic Acid Acetone Aldehyde	$\begin{array}{c} { m CH_3COOH} \\ { m CH_3COCH_3} \\ { m C_2H_4O} \\ { m C_6H_5NH_2} \\ { m C_7H_6O_2} \\ { m C_6H_6} \\ { m (C_6H_6)_2CO} \end{array}$	1.115 0° 0.812 0° 0.806 0° 1.038 0° 0.90	16.7 -94.6 -120. -8. 62. 121. 5.58 48.	118.5 56.1 +20.8 183.9 249. 80.2 305.9	Young Young Holborn-
Butter	$C_{10}H_{16}O \ C_{6}H_{5}OH \ CS_{2}$	0.86-7 0.99 10 1.060 21 1.292 0	30.± 176. 43. −110.	209 . 182. 46.2	Henning
" tetrachlor- ide Chlorbenzene Chloroform Cyanogen Ethyl bromide	$CCl_4 \ C_6II_5Cl \ CHCl_3 \ C_2N_2 \ C_2II_5Br$	1.582 21 1.111 15 1.257 0	-30. -40. -65. -35.	76.7 132. 61.2 —21. 38.4	Young
,, chloride., ,, ether., ,, iodide Formic acid Gasolene	C ₂ H ₅ Cl C ₄ H ₁₀ O C ₂ H ₅ I HCOOH	0.918 8 0.736 0 1.944 14 1.242 0 0.68 ±	-141.6 -118, 8.6	14. 34.6 72. 100.8 70-90	
Glucose Glycerine Iodoform Lard Methyl chloride .	CHO(HCOH) ₄ CH ₂ OH C ₃ H ₃ O ₃ CH1 ₃	1.56 1.269 0 2.25 25 0.992 — 24	1.46. 20. 119. 38.± —103.6	290. -24.I	
Methyl iodide Napthalene	$C_6H_4\cdot C_4H_4$	2.285 15 1.152 15	-64. 80.	42.3 218.0	Holborn- Henning
Nitrobenzol Nitroglycerine Olive oil Oxalic acid	$C_{6}H_{5}O_{2}N \ C_{3}H_{5}N_{3}O_{9} \ C_{9}H_{2}O_{4} \cdot 2H_{2}O$	1.212 7.5 1.60 0.92 1.68	5.	300.±	
Paraffin wax, soft. " " hard Pyrogallol Spermaceti	C ₆ H ₃ (OH) ₃	1.46 40	38-52 52-56 133. 45:±	350-390 390-430 293.	
Starch Sugar, cane Stearine Tartaric acid	$C_{6}H_{10}O_{5} \ C_{12}H_{22}O_{11} \ (C_{18}H_{35}O_{2})_{3}C_{3}H_{5} \ C_{4}H_{6}O_{6}$	1.56 1.588 20 0.925 65		160.	
Tallow, beef	$C_6H_5CH_3 \ C_6H_4(CH_3)_2$	0.882 00 0.863 20 0.864 20	54.	111. 142. 140.	
" (p) · · ·	"	0.861 20	15.	138.	

TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1110 11111) 011	ty of these determine						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance.	% CaO Al ₂ O ₃ S	iO ₂	Transformation.	Temp.			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CaSiO ₃ Ca ₂ SiO ₄ Ca ₃ Si ₂ O ₇ Ca ₃ SiO ₅ Ca ₃ Al ₂ O ₆ Ca ₅ Al ₆ O ₁₄ CaAl ₂ O ₄ Ca ₃ Al ₁ O ₁₈ Al ₂ SiO ₅ CaAl ₂ SiO ₅ CaAl ₂ Si ₂ O ₇ CaAl ₂ Si ₂ O ₇	48.2 — 5 65. — 3 65. — 3 65. — 3 58.2 — 4 73.6 — 2 62.2 37.8 — 4 47.8 52.2 — 3 47.8 64.6 — 2 48.7 75.2 — 62.8 3 20.1 36.6 4 40.8 37.2 2	1.8	Melting γ to β and reverse β to α and reverse Dissociation into Ca ₂ SiO ₄ and liquid Dissociation into Ca ₂ SiO ₄ and CaO Dissociation into CaO and liquid Melting Melting Melting Melting Melting Melting Melting Melting Melting Melting Melting Melting Melting Dissociation into Ca ₂ SiO ₄ +	1420 ±2 1475 ±5 1900 ±5 1535 ±5 1455 ±5			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	UTECTICS.		EUTECTICS.				
	Crystalline Phases.	% CaO Al ₂ O ₃ SiO ₂	Melting Temp.	Crystalline Phases. % CaO Al ₂ O ₃ Si	iO ₂ Melting Temp.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} Ca,SiO_3\\ 3CaO,2SiO_2\\ Ca,SiO_4\\ CaO.\\ Al_2SiO_5,SiO_2\\ Al_2SiO_5,Al_2O_3\\ CaAl_2Si_2O_8\\ CaSiO_3 \end{array} \} $	54·5 — 45·5 67·5 — 3 ² ·5 — 13. 87. — 64. 36.	1455± 2065± 1610 1810	$ \left\{ \begin{array}{c} Ca_2Al_2SiO_7 \\ CaSiO_3 \\ CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \\ Ca_2SiO_4 \\ CaAl_2O_4 \end{array} \right\} \left\{ \begin{array}{c} 38. & 20. & 42 \\ 29.2 & 39. & 31 \\ 29.5 & 39. & 31 \\ 49.5 & 43.7 \end{array} \right.$.8 1380			
$ \left\{ \begin{array}{c} \text{SiO}_2\text{CasIo}_3 \\ \text{Ca}_2\text{Al}_2\text{SiO}_4 \\ \text{Ca}_2\text{Si}\text{O}_4 \\ \text{Al}_2\text{O}_3 \\ \text{CaAl}_2\text{Si}_2\text{O}_8 \\ \text{CaAl}_2\text{Si}_2\text{O}_8 \\ \text{Al}_2\text{SiO}_5, \text{SiO}_2 \\ \end{array} \right\} \left\{ \begin{array}{c} \text{49.6} 23.7 26.7 \\ \text{49.6} 23.7 26.7 \\ \text{I545} \end{array} \right. \left\{ \begin{array}{c} \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_3\text{SiO}_7 \\ \text{Ca}_2\text{SiO}_4 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text{SiO}_7 \\ \text{Ca}_2\text{Al}_2\text$	$\begin{array}{c} \mathrm{SiO_2} & \{\\ \mathrm{CaAl_2Si_2O_8} & \{\\ \end{array}$			QUINTUPLE POINTS.				
Al_2SiO_5,SiO_2 9.8 19.8 70.4 1345 Ca_2SiO_4 48.3 $42.$ 9.7 1345	$ \begin{array}{c c} Ca_{2}Al_{2}SiO_{7} \\ Ca_{2}SiO_{4} \\ Al_{2}O_{8} \\ CaAl_{2}Si_{2}O_{8} \end{array} $	49.6 23.7 26.7		$\left\{ \begin{array}{c} Ca_{3}SiO_{7} \\ Ca_{2}SiO_{4} \end{array} \right\} \left\{ \begin{array}{c} 48.2 \\ 11.9 \end{array} \right. 39$	9.9 1335			
1 CaoAloSiO7 / CaAloO4)					9.7 1380			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ca_3Al_{10}O_{18}$ { $Ca_2Al_2SiO_7$ }		"	$ \begin{array}{c c} & \text{CaAl}_2\text{Si}_2\text{O}_8 \\ & \text{Al}_2\text{O}_3 \end{array} \} \begin{array}{c} & \text{15.6} & 36.5 & 43.6 \end{array} $	7.9 1512			
$ \left(\begin{array}{c} CaAl_2O_4 \\ Ca_2Al_2SiO_7 \\ CaAl_2O_4 \\ Ca_3Al_1OO_{18} \end{array} \right) \left(\begin{array}{c} Al_2SiO_5 \\ Ca_3Al_2O_1OO_{18} \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} Ca_3Al_2O_1OO_{18} \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_5 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right) \left(\begin{array}{c} al_1SiO_7 \\ Ca_2Al_2SiO_7$	$\left. egin{array}{l} \operatorname{Ca_2Al_2SiO_7} \\ \operatorname{CaAl_2O_4} \\ \operatorname{Ca_3Al_{10}O_{18}} \end{array} ight\}$			$ \begin{array}{c c} Ca_{3}Al_{10}O_{18} \\ Ca_{2}Al_{2}SiO_{7} \end{array} $ 31.2 44.5 2.	4.3 1475			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cc} \operatorname{Ca_2Al_2SiO_7} & \{\\ \operatorname{Ca_2Al_2SiO_7} & \} \end{array}$	_		QUADRUPLE POINTS.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{pmatrix} {\sf CaSiO_3} & {\sf SiO_7} & {\sf Ca_2Al_2SiO_7} & {\sf Cal_2Al_2SiO_7} & {\sf Cal_2A$			3CaO.2SiO ₂ } 55.5 — 4.	4.5 1475			

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

weight, then a reference	e number.					
Molecular Lowering.	g. mol. 1000 g H ₂ O	Molecular Lowering.	g. mol. 1000 g. H ₂ O	Molecular Lowering.	g. mol.	Molecular Lowering.
Pb(NO ₃) ₂ , 331.0: 1, 2. 0.000362 5.5° .001204 5.30 .002805 5.17 .005570 4.97 .01737 4.69 .5015 2.99 Ba(NO ₃) ₂ , 261.5: 1. 0.000383 5.6° .001259 5.28 .002681 5.23 .005422 5.13 .008352 5.04 Cd(NO ₃) ₂ , 226.5: 3. 0.00298 5.4° .00689 5.25 .01997 5.18 .04873 5.15 AgNO ₃ , 167.0: 41, 5. 0.1506 3.32° .5001 2.96 .8645 2.87 1.749 2.27 2.953 1.85 3.856 1.64 0.0560 3.82 .1401 3.58 .3490 3.28 KNO ₃ , 101.9: 6, 7. 0.0100 3.5 .0500 3.41 .1000 3.51 .200 3.19 .250 3.08 .500 2.94 .750 2.81 1.000 2.66 NaNO ₃ , 85.09: 2, 6, 7 0.0100 3.6° .250 3.46 .0500 3.44 .2000 3.44	0.0500 .1000 .2000 .500 1.000 LiNO ₃ , 69.07: 9. 0.0398 .1671 .4728 1.0164 Al ₂ (SO ₄) ₃ , 342.4: 0.0131 .0261 .0543 .1086 .217 CdSO ₄ , 208.5: 1, 1 0.000704 .002685 .01151 .03120 .1473 .4129 .7501 1.253 K ₂ SO ₄ , 174.4: 3, 5, 0.00200 .00398 .00865 .0200 .0500 .1000 .200 .454 CuSO ₄ , 159.7: 1, 4 0.000286 .000843 .002279 .006670 .01463 .1051 .2074	3.47° 3.42° 3.326 3.14 3.4° 3.35° 3.35° 3.35° 3.83° 10. 3.6° 4.9° 4.6° 4.9° 4.6° 4.6° 4.7° 5.4° 5.3° 4.7° 4.6° 4.6° 4.32° 4.7° 3.3° 3.1° 5.6° 4.9° 4.6° 4.32° 4.7° 3.3° 3.1° 5.3° 3.1° 5.3° 3.1° 5.4° 5.3° 5.4° 5.3° 6,10° 6	0.4978 .8112 1.5233 BaCl ₂ , 208.3: 3, 6 0.00200 .04805 .100 .200 .500 .586 .750 CdCl ₂ , 183.3: 3, 1 0.00299 .00690 .0200 .0541 .0818 .214 .429 .858 1.072 CuCl ₂ , 134.5: 9. 0.0350 .1337 .3380 .7149 CoCl ₂ , 129.9: 9. 0.0276 .1094 .2369 .4399 .538 CaCl ₂ , 111.0: 5, 1 0.0100 .05028 .1006 .5077 .946 2.432	2.02° 2.01° 2.28 2.01° 2.28 5, 13. 5.5° 5.2 5.0° 4.80 4.69 4.80 4.64 4.11 3.93 3.39 3.03 2.71 2.75 4.9° 4.81 4.92 5.32 5.0° 4.91 5.0° 4.91 5.32 5.1° 4.92 5.32 5.0° 4.91 5.33 5.30 5.53 5.30 5.53 5.30 5.53 5.30 5.30	MgCl ₂ , 95.26: 6, 0.0100 .0500 .1500 .3000 .6099 KCl, 74.66: 9, 17 0.02910 .05845 .112 .3139 .476 1.000 1.989 3.269 NaCl, 58.50: 3, 20 0.0339 .01000 .0221 .04949 .1081 .2325 .4293 .700 NH,Cl, 53.52: 6, 0.0100 .0200 .0350 .1000 .2000 .4000 .7000 LiCl, 42.48: 9, 15 0.00992 .0455 .09952 .2474 .5012 .7939 BaBr ₂ , 297.3: 14 0.100 .150	14. 5.1° 4.98 4.96 5.186 5.186 5.69 -19. 3.54° 3.41 3.37 3.286 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
.500 3.24 .5015 3.30 1.000 3.15 1.0030 3.03 NH ₄ NO ₃ , 80.11: 6, 8. 0.0100 3.6° .0250 3.50	.8898 MgSO,, 120.4: 1, 0.000675 .002381 .01263 .0580 .2104	1.76 4, 11. 3.29 3.10 2.72 2.65 2.23	3.469 3.829 0.0478 .153 .331 .612 .998	11.5 14.4 5.2 4.91 5.15 5.47 6.34	.500 AlBr ₃ , 267.0: 9. 0.0078 0.5559 1.1971 -4355	5.18 1.4° 1.2 1.07 1.07
			Kahlanhara			

¹ Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
20 Loomis, Wied. Ann. 51, 1896.
21 Kablenberg, J. Phys. Ch. 20, 1896.
22 Loomis, Wied. Ann. Ch. 12, 1902.
23 Loomis, Wied. Ann. 60, 1897.
24 Rootelberg, J. Phys. Ch. 20, 1896.
25 Loomis, Wied. Ann. 61, 123, 1909.
26 Loomis, Wied. Ann. 51, 1894.
27 Loomis, Wied. Ann. 51, 1894.
28 Loomis, Wied. Ann. 51, 1894.
28 Loomis, Wied. Ann. 51, 1894.
29 Loomis, Wied. Ann. 51, 1894.

LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

				1			
	Molecular Lowering.		Molecular Lowering.		Molecular Lowering.		Molecular Lowering.
,	la in	a mal	3.5	a mol	Big	a mot	13.5
g. mol.	o cc	g. mol.	e e	g. mol	ver le	g mol.	o te
1000 g. H ₂ O	[0] W	1000 g. H ₂ O	20	1000 g. H ₂ O	[] S []	1000 g. H ₂ O	25
1 1	27		41		12		걸니
				-			-
-				** 0:0			0
CdBr ₂ , 272.3: 3, 1	4.	KOH, 56.16: 1, 15	, 23.	Na ₂ SiO ₃ , 122.5: 1	5.	0.472	2.20°
0.00324	5.1°	0.00352	3.60°	0.01052	6.4°	·944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28	(COOH) -0.001	
		.05006		.2099	4.66	(COOH) ₂ , 90.02:	4, 15.
.0719	3.39		3.43			0.01002	3.3°
.1122	3.18	.1001	3.42	·5 ² 33	3.99	.02005	3.19
.220	2.96	.2003	3.424	HCl, 36.46:		.05019	3.03
.440	2.76	230	3.50	1-3, 6, 13	, 18, 22.	.1006	2.83
.800	2.59	.465	3.57	0.00305	3.68°	.2022	2.64
	2.35			.00695	3.66		
CuBr ₂ , 223.5: 9.		CH ₃ OH, 32.03: 2	, 25.	.0100		.366	2.56
0.0242	5.1°	0.0100	1.80		3.6	.648	2.3
.0817	5. I	.0301	1.82	.01703	3.59	C ₃ H ₅ (OH) ₃ , 92.06	- 1
.2255	5.27	.2018	1.811	.0500	3.59		1.86°
.6003	5.89	1.046	1.86	.1025	3.56	0.0200	
	3.09		1.88	.2000	3.57	.1008	1.86
CaBr2, 200.0: 14.	į.	3.41		.3000	3.612	.2031	1.85
0.0871	5.1°	6.200	1.944			.535	1.91
.1742	5.18	C2H5OH, 46.04:		.464	3.68	2.40	1.98
.3484	5.30	1, 12, 17	24-27	.516	3.79		2.13
		0.000402	1.67°	1.003	3.95	5.24	- 1
.5226	5.64	l '	1.67	1.032	4.10	$(C_2H_5)_2O$, 74.08:	24
MgBr ₂ , 184.28: 14	4.	.004993	1.07	1.500	4.42	0.0100	1.60
0.0517	5.4°	.00100	1.81			.0201	1.67
.103	5.16	.02892	1.707	2.000	4.97	.1011	1.72
	5.10	.0705	1.85	2.115	4.52		
.207	5.26	.1292	1.829	3.000	6.03	.2038	1.702
.517	5.85	.202.4	1.832	3.053	4.90	Dextrose, 180.1:	24, 30.
KBr, 119.1: 9, 21.			1.032	4.065	5.67	0.0198	i.Š4°
0.0305	3.61°	.5252	1.834			.0470	1.85
		1.0891	1.826	4.£57	6.19		1.05
.1850	3.49	1.760	1.83	HNO ₃ , 63.05: 3,	13, 15	.1326	1.87
.6801	3.30	3.901	1.92	0.02004	3.55°	.4076	1.894
.250	3.78		2.02	.05015		1.102	1.921
.500	3.56	7.91			3.50	T10	-
		11.11	2.12	.0510	3.71	Levulose, 180.1:	24, 25
CdI ₂ , 366.1: 3, 5,	22.	18.76	1.81	.1004	3.48	0.0201	1.S7°
0.00210	4.5°	0.0173	1.80	.1059	3.53	.2050	1.871
.00626	4.0	.0778	1.79	.2015	3.45	·554	2.01
.02062	3.52		- 72	.250	3.50	1.384	2.32
.04857	2.70	K ₂ CO ₃ , 138.30: 6	0		3.50	2.77	- 1
		0.0100	5.1°	. 500	3.62		3.04
.1360	2.35	.0200	4.93	1.000	3.80	CHO, 342.2: 1, 2	4, 26.
•333	2.13	.0500	4.7 I	2.000	4.17	0.000332	1.900
.684	2.23	.100	4.54	3.000	4.64	.001410	1.87
.888	2.51	.200		H ₃ PO ₂ , 66.0: 29.	, ,	.009978	1.86
VI 166 21 - 1			4.39		2000		1.88
KI, 166.0: 9, 2.	3.50	Na ₂ CO ₃ , 106.10: 6).	0.1260	2.90°	.0201	
0.0651	3·5°	0.0100	5.1°	.2542	2.75	.1 305	1.88
.2782	3.50	.0200	4.93	.5171	2.59	H ₂ SO ₄ , 98.08:	ļ
.6030	3.42	.0500	4.64	1.071	2.45		31-33.
1.003	3.37	.1000				0.00461	4.80
	3.31		4.42	HPO, 82 0: 4, 5.	2.00	•	
SrI ₂ , 341.3: 22.	0	.2000	4.17	0.0745	3.0°	.0100	4.49
0.054	5.1°	Na ₂ SO ₃ , 126.2: 28		.1241	2.8	.0200	4.32
.108	5.2	0.1044	4.51°	.2482	2.6	.0461	4.10
.216	5.35	·3397	3.74	1.00	2.39	.100	3.96
.327	5.52	.7080	3.38	H ₃ PO ₄ , 98.0: 6, 2		.200	3.85
		'			2. 2.S°	l e	
NaOH, 40.06: 15.		Na ₂ HPO ₄ , 142.1:	22, 20	0.0100		.400	3.98
0.02002	3.45°	10010.0	5.0°	.0200	2.68	1.000	4.19
.05005	3.45	.02003	4.84	.0500	2.49	1.500	4.96
.1001	3.41	.05008	4.60	.1000	2.36	2.000	5.65
.2000	3.407	.1002	4.34	.2000	2.25	2.500	6.53
.2300	3.40/	.1002	4.24		3	2.300	~. 55

¹⁻²⁰ See page 217.
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1000.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894.
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

SMITHSONIAN TABLES.

²⁷ Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 0, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902. 33 Jones-Murray, Am. Ch. J. 30, 1903.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the hoiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

Salt.	1 ° C.	2 °	3∘	40	5 °	7 0	10°	15°	20○	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.0 6.0 12.0 4.7 6.0	31.1 11.5 25.5 9.3 12.0	47·3 16·5 39·5 13·6 18·0	63.5 21.0 53.5 17.4 24.5	(71.6 gi 25.0 68.5 20.5 31.0	ves 4° 32.0 101.0 26.4 44.0	.5 rise 41.5 152.5 34.5 63.5	of temp 55.5 240 0 47.0 98.0	69.0 331.5 57.5 134.0	84.5 443.5 67.3 171.5
KCl K ₂ CO ₃ KClO ₃ KClO ₃ KI KNO ₃ KNO ₃	9.2 11.5 13.2 15.0 15.2	16.7 22.5 27.8 30.0 31.0	23.4 32.0 44.6 45.0 47.5	29.9 40.0 62.2 60.0 64.5	36.2 47·5 74.0 82.0	48.4 60.5 99.5 120.5	(57.4 78.5 134. 188.5	103.5	rise of 8 127.5 (220 giv	6°.5) 152.5 es 18°.5)
$\begin{array}{c} K_2C_4H_4O_6+\frac{1}{2}H_2O \\ KNaC_4H_4O_6 \\ \vdots \\ KNaC_4H_4O_6 \\ \downarrow Cl. \\ LiCl. \\ \vdots \\ LiCl+2H_2O \\ \end{array}.$	18.0 17.3 25.0 3.5 6.5	36.0 34.5 53.5 7.0 13.0	54.0 51.3 84.0 10.0	72.0 68.1 118.0 12.5 26.0	90.0 84.8 157.0 15.0 32.0	126.5 119.0 266.0 20.0 44.0	182.0 171.0 554.0 26.0 62.0	284.0 272.5 5510.0 35.0 92.0	390.0 42.5 123.0	510.0 50.0 160.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.0 41.5 4.3 6.6 9.0	22.0 87.5 8.0 12.4 18.5	33.0 138.0 11.3 17.2 28.0	44.0 196.0 14.3 21.5 38.0	55.0 262.0 17.0 25.5 48.0	77.0 22.4 33.5 68.0	30.0 (40.7 99.5	41.0	.8 rise)	334-5 60.1
$ \begin{array}{ c c c c c } \hline NaC_2H_3O_2 + 3H_2O & . \\ Na_2S_2O_3 & . & . \\ Na_2HPO_4 & . & . \\ Na_2C_4H_4O_6 + 2H_2O & . \\ Na_2S_2O_3 + 5H_2O & . \\ \hline \end{array} $	14.9 14.0 17.2 21.4 23.8	30.0 27.0 34.4 44.4 50.0	46.1 39.0 51.4 68.2 78.6	62.5 49.5 68.4 93.9 108.1	79·7 59·0 85·3 121·3 139·3	118.1 77.0 183.0 216.0		152.0	6250.0 214.5 3°.4 rise)	311.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34.1 39. 6.5 10.0 15.4	86.7 93.2 12.8 20.0 30.1	177.6 254.2 19.0 30.0 44.2	369.4 898.5 24.7 41.0 58.0	1052.9 (5555.5 29.7 52.0 71.8	gives 39.6 74.0 99.1	56.2 10S.0	88.5	248.0	337.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0 24.0 17.0 19.0 29.0	40.0 45.0 34.4 40.0 58.0		81.0 81.4 70.0 86.0 116.0	103.0 97.6 87.0 112.0 145.0	123.0 169.0		540.0	1316.0	484.0 50000.0
Salt. 40	00	30°	80°	100°	120°	140	160	0 180	200	240°
	2.5 I 3.5 I 2.0 I 3	222.0 21.7 50.8 370.0 774.0	314.0 152.6 230.0 2400.0 (infinit	185.0 345.0 4099.0 y gives	526. 8547.	3 800.	1 312 0 1333			

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (small calories when A is grams). Temperatures are in Centigrade degrees.

Substance.	A	В	С	D	E	F	G	Н
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85 30 75 110 140 250 60 25 25 25 25 25 25	H ₂ O-100 """ """ """ """ """ """ """ """ """	NH ₄ NO ₃ -25 "" " NH ₄ Cl-25	10.7 13.3 13.2 10.7 10.8 10.8 13.6	- 4.7 - 5.1 - 5.3 - 8.0 - 11.7 - 12.4 - 13.6	15.4 18.4 18.5 18.7 22.5 23.2 27.2 26.0 22.0 20.0 19.0 17.0 0.9		
Na ₂ CO ₃ (cryst.) . KNO ₃	20 13 30 25 45 50 33 1 1	" " " " " " " " " " " " " " " " " " "	-	I — I — I — I — I — I — I — I — I — I —	- 2.0 - 2.85 - 10.9 - 15.4 - 16.75 - 17.75 - 21.3 - 37.0 - 36.0 - 35.0 - 35.0	1.0 1.85 9.9 14.4 15.75 16.75 20.3 36.0 35.0 34.0 29.0	- - - - - - - - - - - - - - - - - - -	 0.0 17.0 27.0
$CaCl_2 + 6H_2O$ { Alcohol at 4°	I I I I I I I I I I I I I I I I I I I	4.32 " 7.92 " 13.08 " 0.35 " .49 " .61 " .70 " .81 " 1.23 " 2.46 " 4.92 " 73		- I - I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 25.0 - 20.0 - 16.0 	24.0 19.0 15.0 - - - - -	- 7.0 - 3.1 - 2.1 - 0.0 - 19.7 - 39.0 - 54.9† - 40.3 - 21.5 - 9.0 - 4.0	273.0 553.0 967.0 52.1 49.5 40.3 30.0 46.8 88.5 192.3 392.3
Chloroform Ether Liquid SO ₂	- - - 1 1 1 1	CO ₂ solid " " " " H ₂ O75 " .94 " "	- - - - - -	- - 20 20 10	- 72.0 - 77.0 - 77.0 - 82.0 5.0 - 4.0 - 4.0 - 4.0	-	- - - - - -	33.0 21.0 34.0 40.5
NH ₄ NO ₃ . {	I	Snow " H_2O -1.20 Snow " II_2O -1.31 Snow " II_2O -3.61 Snow "	- - - - - - -	0 10 0 10 0 10	- 4.0 - 14.0 - 14.0 - 17.5† - 17.5† - 8.0 - 8.0	-	- - - - - -	122.2 17.9 129.5 10.6 131.9 0.4 327.0

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanudler, Rudorf, and Tollinger.

[†] Lowest temperature obtained.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.*

 $\theta = \text{Critical temperature}.$

P = Critical pressure in atmospheres.

 ϕ = Critical volume referred to volume at 0° and 76 centimeters pressure.

d =Critical density in grams per cubic centimeter.

a, b, Van der Waals constants in
$$\left(p + \frac{a^2}{v^2}\right) \left(v - b\right) = r + \alpha t$$
.

Substance.	θ	P	φ	ď	a × 10 ⁵	p × 106	Observer
Air	-140.0	39.0	_	_	2 57	1 560	I
Alcohol (C ₂ H ₆ O) .	243.6	62.76	0.00713	0.288	2407	3769	2
" (CH ₄ O) .	239.95	78.5	- "	-	1898	2992	3
Ammonia	130.0	15.0	-	-	798	1606	4
Argon	-117.4	52.9	-	-	259	1348	3 4 5 3 6 - 7 8
Benzol	288.5	47.9	-	0.305	3726	5370	3
Bromine	302.2	_	0.00605	1.18	1434	2020	6
Carbon dioxide .	31.2	7.3.	0.0044	0.46	717	1908	-
" monoxide.	-141.1	35.9	-	-	275	1683	7
" disulphide	277.7	78.1	-	-	2197	3227	
Chloroform	260.0	54.9	-	-	2930	4450	9
Chlorine	141.0	83.9	-	-	1157	2259	4
"	146.0	93.5		-	1063	2050	10
Ether	197.0	35.77	0.01584	0.208	3496	6016	11
	194.4	35.61	0.01344	0.262	3464	6002	3
Ethane	32.1	49.0	-	_	1074	2848	12
Ethylene · ·	9.9	51.1	<u> </u>	-	886	2533	-
Helium	<-268.0	-	-	-	5	700	13
Hydrogen	-240.8	14.	-	-	42	880	14
" chloride.	51.25	86.0	-	-	692	1726	15
"	52.3	86.0	-	0.61	697 888	1731	4
" sulphide.	100.0	88.7	_	-	462	1926	I
Krypton · ·	-62.5	54.3	_	-		1776	5
Methane	-81.8	54.9	_	_	376	1557	
	− 95.5	50.0	_	_	357	1025	5,13
Neon .	<205.0	29.	_	_	257	1160	2,,2
Nitric oxide (NO).	- 93.5	71.2	_	0.44	259	1650	I
Nitrogen monovide	146.0	35.0	_	0.44	- 59	1030	1 1
Monoride	25.4	750	0.0048	0.41	720	1888	4,17
(N_2O)	35·4 —118.0	75.0 50.0	0.0040	0.6044	273	1420	I I
Oxygen		78.9	0.00587	0.0044	1316	2486	9,17
Sulphur dioxide . Water	155.4 358.1	70.9	0.00387			-400	6
water	350.1	217.5	0.00.0/4	-	1089	1 362	16
	374.	21/.3			1 -109	1 302	

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.
- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886.

- (3) Young, Phil. Mag. 1900. (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84,
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.
- (6) Nadejdine, Beibl. 9, 1885.
- (7) Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.
- (8) Hannay, Pr. Roy. Soc. 32, 1882.

- (9) Sajotschewsky, Beibl. 3, 1879.
 (10) Knietsch, Lieb. Ann. 259, 1890.
 (11) Batelli, Mem. Torino (2), 41, 1890.

- (12) Cardozo, Arch. sc. phys. 30, 1910. (13) Kamerlingh-onnes, Comno. Phys. tab. (13) Kameringh-ennes, Commo. Thys. tab.
 Leiden, 1908, 1909, Proc. Amst. 11,
 1908, C. R. 147, 1908.
 (14) Olszewski, Ann. Phys. 17, 1905.
 (15) Ansdell, Chem. News, 41, 1880.
 (16) Holborn, Baumann Ann. Phys. 31, 1910.

- (17) Cailletet, C. R. 102, 1886; 104, 1887.

*Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion; A_1 is the authority for C; M is the mean coefficient of expansion between 0° and 100° C.; α and β are the coefficients in the equation $l_t = l_0$ (1 + $\alpha l + \beta l^2$), where l_0 is the length at 0° C. and l_t the length at l_0 C.; l_0 is the authority for l_0 , l_0 and l_0 .

Substance.	t	C × 10 ⁴	A 1	M× 104	a × 104	β × 10 ⁶	A_2
Aluminum	40	0.2313	I	0.2220	_	_	2
	600	.3150	3				
"	-191 to +16	.1835	4	-	.23536	.00707	5
Antimony:		0.5			1]	١ .
Parallel to cryst, axis	40	.1692	I				
Perp. to axis	40	.0882	1				
Mean	40	.1152	1	.1056	.0923	.0132	6
Arsenic	40	.0559	1	- 1	, ,		
Bismuth:	,	337		1			1
Parallel to axis	40	.1621	1 1				İ
Perp. to axis	40	.1208	1				
Mean	40	.1346	I	.1316	.1167	.0149	6
Cadmium	40	.3069	I	.3159	.2693	.0466	6
Carbon:	·	5 /		3 37			
Diamond	40	.0118	I				
Gas carbon	40	.0540	1				
Graphite	40	.0786	I		.0055	.0016	13
Anthracite	40	.2078	I				
Cobalt	40	.1236	1				
Copper	40	.1678	I	.1666	.1481	.0185	6
	-191 to +16	.1400	4		.16070	.00403	5
Gold	40	.1443	I	.1470	.1358	.0112	6
Indium	40	.4170	1	,	0.5		
Iron:		` '	1				
Soft	40	.1210	I				
Cast	40	.1061	1				
"	-191 to +16	.0850	4				
Wrought	-18 to 100	.1140	7	-	.11705	.005254	8
Steel	40	.1322	I		.09173	.008336	8
" annealed	40	.1095	1	.1089	.1038	.0052	9
Lead	40	.2924	I	.2709	.273	.007.4	6
Magnesium	40	.2694	1				
Nickel	40	.1279	1	-	.13460	.003315	8
"	—191 to +16	.1012	4				
Osmium	40	.0657	1				
Palladium	40	.1176	I	-	.11670	.002187	8
Phosphorus	0-40	1.2530	10		0000		
Platinum	40	0.0899	I	-	.08868	.001324	8
l'otassium	0-50	.8300	11				1
Rhodium	40	-0850	I				
Ruthenium	40	.0963	I				1
Selenium	40	-3680	I	.6604	_	-	12
Silicon	40	.0763	I		-0		
Silver	40	•192I	I	_	.18270	.004793	8
	-191 to +16	.1704	4				
Sulphur:			1.				
Cryst. mean	40	.6413		1.180	-	_	12
Tellurium	40	.1675	I	.3687	-	_	12
Thallium	40	.3021	I	1	1		1
Tin	40	.2234	I	.2296	.2033	.0263	6
Zinc	40	.2918	I	.2976	-2741	.0234	0
	<u> </u>	1	1	1			

1 Fizeau.4 Henning.8 Holborn-Day.11 Hagen.2 Calvert, Johnson5 Dittenberger.9 Benoit.12 Spring.and Lowe.6 Matthiessen.10 Pisati and De13 Day and Sos-3 Chatelier.7 Andrews.Franchis.man.

The above table has been partly compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthiessen, "Proc. Roy. Soc.," vol. 15.

The Holbern-Day and Day and Sosman data are for temperatures from 200 to 10000 C. The Dittenberger, 00 to 6000 C.

LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

				expansion, and 21 the auto			
Substance.	t	C×104	Α.	Substance.	t	C × 10 ⁴	Α.
D				Platinum-silver:			
Brass:		0.1875	I	1Pt+2Ag	0-100	0.1523	4
Cast . ·	0-100	0.1875	I	Porcelain	20-790	0.0413	10
Wire	"	0.1930	1 11	" Bayeux .	1000-1400	0.0553	20
		.1783193	-	Quartz:	1000 1400	0.0333	
71.5Cu+27.7Zn+	40	0.1859	2	Parallel to axis .	o–8o	0.0797	6
0.3Sn+0.5Pb	40 0100	0.1906	3		-190 to +16		
71Cu+29Zn ·	0-100	0.1900	4	Perpend." " .	o-8o	0.1337	
Bronze: 3Cu+1Sn	16.6-100	0.1844	5	Quartz glass	-190 to +16		
36u+15n · · ·	16.6–350	0.2116	5.	Rock salt	40	0.4040	
" " '	16.6-957	0.1737	5	Speculum metal .	0-100	0.1933	
86.3Cu+9.7Sn+	10.0-95/	0.1/3/	3	Topaz:		755	
4Zn	40	0.1782	3	Parallel to lesser			
1				horizontal axis	44	0.0832	8
l C - 1) mile 1	0-80	0.1713	6	Parallel to greater			- 1
2.28n+ \ soft	"	0.1708	6	horizontal axis	"	0.0836	8
Caoutchouc	_	.657686	2	Parallel to verti-		_	
"	16.7-25.3	0.770	7	cal axis	44	0.0472	8
Constantine	4-29	0.1523		Tourmaline:			
Ebonite	25.3-35.4	0.842	7	Parallel to longi-			
Fluor spar: CaF ₂ .	0-100	0.1950	8	tudinal axis	"	0.0937	8
German silver .	4.6	0.1836	8	Parallel to hori-	1		
Gold-platinum:		3	1	zontal axis	"	0.0773	8
2Au+1Pt	"	0.1523	4	Type metal	16.6-254	0.1952	
Gold-copper:		33		Vulcanite	0-18	0.6360	22
2Au+1Cu	64	0.1552	4	Wedgwood ware .	0-100	0.0890	5
Glass:				Wood:			
Tube	44	0.0833	I	Parallel to fibre:	1		
44	"	0.0828	9	Ash	• "	0.0951	
Plate	44	0.0891	10	Beech	2-34	0.0257	
Crown (mean) .	44	0.0897	10	Chestnut.	1 "	0.0649	
"	50-60	0.0954	ΙI	Elm		0.0565	
Flint	- "	0.0788	11	Mahogany .	":	0.0361	
Jena ther- 16111)	0-100	0.081	12	Maple		0.0638	
mometer normal f		-		Oak	1 "	0.0492	
" 59 ¹¹¹ .	"	0.058	12	Pine	"	0.0541	24
"".	-191 to +16		13	Walnut		0.0658	24
Gutta percha	20	1.983	14	Across the fibre:	1 "	. 6	
Ice	-20 to -1	0.51	15	Beech	"	0.614	24
Iceland spar:			1	Chestnut	- "	0.325	24
Parallel to axis .	o–So	0.2631	6	Elm		0.443	24
Perpendicular to			1	Mahogany .		0.404	24
axis		0.0544	6	Maple Oak			24
Lead-tin (solder)			١.	Pine.		0.544	24
2Pb+1Sn	0-100	0.2508	16	Walnut	"	0.341	24
Magnalium	12-39	0.238		Wax: White	10-26	2.300	25
Marble	15-100	1.0662	17 18	WAX: WHILE	26-31	3.120	25
Paraffin	0-16	1	18	"		4.860	25
	16-38	1.3030	18	"	31-43	1 5.227	25
	38-49	4.7707	10		43-57	3.22/	- 5
Platinum-iridium	40	0.0884	1,		I		
10Pt+1Ir	40	0.0004	3		1	1	
l					T	1.00	,
r Smeaton.	8 Pfaff.			14 Russner.	20 Deville a	nd Tro	ost.
2 Various.	9 Deluc.			15 Mean.	21 Scheel.		
3 Fizeau.	10 Lavoisier	and Lapl	ace	. 16 Stadthagen.	22 Mayer.		
4 Matthiessen.	11 Pulfrich.			17 Fröhlich.	23 Glatzel.		
5 Daniell.	12 Schott.			18 Rodwell.	24 Villari.		
	13 Henning.			19 Braun.	25 Kopp.		
7 Kohlrausch.							
L					-		

CUBICAL EXPANSION OF SOLIDS.

If v_2 and v_1 are the volumes at t_2 and t_1 respectively, then $v_2 = v_1$ (1 + $C\Delta t$), C being the coefficient of cubical expansion and Δt the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.*

Substance.	t or Δt	C × 104	Authority.
Antimony	0-100 0-100	0.3167	Matthiessen Pfaff
Bismuth			Matthiessen
	0-100	0.3948	Matthlessen "
Copper	0-100	0.4998	Fizeau
Emerald	40	0.0354	1 izeau
Galena	40 0-100		Pfaff
Glass, common tube	0-100	0.558 0.276	Regnault
" hard			Regnaun
" Jena, borosilicate	0-100	0.214	
jena, borosincate	20-100	0.156	Scheel
59 III pure silica	0-80	0.156	Chappuis
Gold	0-00	0.0129	Matthiessen
		0.4411	Brunner
Ice	2OI	1.1250	
Iron	0-100	0.3550	Dulong and Petit Matthiessen
Lead	001-0	o.8 <i>3</i> 99	Russner
Paraffin	20	5.88	
Platinum	0-100	0.265	Dulong and Petit
Porcelain, Berlin	20	0.081.4	Chappuis and Harker
Potassium chloride	0-100	1.094	Playfair and Joule
mittale	0-100	1.967	
suipitate.	20	1.0754	Tutton
Quartz	0-100	0.3840	Pfaff
Rock salt	50-60	1.2120	Pulfrich
Rubber	20	4.87	Russner
Silver	001-0	0.5831	Matthiessen
Sodium	20	2.1364	E. Hazen
Stearic acid	33.8 - 4 5 .5	8.1	Корр
Sulphur, native	13.2-50.3	2.23	"
Tin	0-100	0.6889	Matthiessen
Zinc	0-100	0.8928	"

^{*} For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289.

SMITHSONIAN TABLES.

CUBICAL EXPANSION OF LIQUIDS.

If V_o is the volume at 0° then at t° the expansion formula is $V_t = V_o (1 + \alpha t + \beta \ell^2 + \gamma \ell^3)$. The table gives values of α , β and γ and of C, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation and A the authority.

Ethyl, 30% by vol	3 4a 6 6 6 6 1 5a 5a 7 7
Acetone Alcohol: Amyl Ethyl, 30% by vol	3 4a 6 6 6 6 1 5a 5a 7 7
Alcohol: Amyl Ethyl, 30% by vol $18-39$	4a 6 6 6 6 1 5a 5a 7
Amyl —15-80 8.9001 0.6573 1.18458 0.902 44 Ethyl, 30% by vol. 18-39 0.2928 10.790 —11.87 —6 6 "50% " 0-39 0.7450 1.85 0.730 —6 6 "500 atmo. press. 0-40 0.866 ————————————————————————————————————	6 6 6 1 5 5 2 7
Ethyl, 30% by vol	6 6 6 1 5 5 2 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 1 5a 5a 2 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5a 5a 2 7
"3000""". 0-40 0.524 - - - 1 Methyl . 0-61 1.1342 1.3635 0.8741 1.199 56 Benzol . . 0-59 1.06218 1.27776 0.80648 1.237 57 Bromine . . 0-59 1.06218 1.87714 -0.30854 1.132 2 Calcium chloride: . .8% solution 18-25 0.07878 4.2742 - 0.250 7 40.9% " 17-24 0.42383 0.8571 - 0.458 7 Carbon disulphide -34-60 1.13980 1.37065 1.91225 1.218 44 500 atmos. pressure 0-50 0.940 - - - - 1 Carbon tetrachloride 0-76 0.581 - - - 1 - Carbon tetrachloride 0-63 1.10715 4.66473 -1.74328 1.273 4 Chloroform 0-63 1.51324 2.35918 4.00512 1.656 4	1 5a 5a 2 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5a 5a 2 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5a 2 7 7
Bromine . . 0-59 1.06218 1.87714 -0.30854 1.132 2 Calcium chloride : 5.8% solution . 18-25 0.07878 4.2742 - 0.250 7 40.9% " 17-24 0.42383 0.8571 - 0.458 7 Carbon disulphide . -34-60 1.13980 1.37065 1.91225 1.218 43 500 atmos. pressure . 0-50 0.940 - - - - 1 Carbon tetrachloride . 0-76 1.18384 0.89881 1.35135 1.236 4 Chloroform . 0-63 1.10715 4.66473 -1.74328 1.273 4 Ether . 1.5-38 1.51324 2.35018 4.00512 1.656 4 Glycerine . 0.4853 0.4895 - 0.505 8	7 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Chloroform	4b
Ether	4b
Glycerine - 0.4853 0.4895 - 0.505 8 Hydrochloric acid:	4a .
	8
	1
	9
Mercury	
Olive oil 0.6821 1.1405 -0.539 0.721 10	
Pentane 0-33 1.4646 3.09319 1.6084 1.608 14	14
Potassium chloride: 24.3% solution 16-25 0.2695 2.080 - 0.353 7	-
24.3% solution 16–25 0.2695 2.080 - 0.353 7 Phenol 36–157 0.8340 0.10732 0.4446 1.090 11	
Petroleum:	
	12
Sodium chloride:	17
	9
Sodium sulphate:	1
	9
Sulphuric acid:	
	9
	9
Water	5b

AUTHORITIES.

- 1. Amagat: C. R. 105, p. 1120; 1887.
- 2. Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
- 3. Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855.
- b. Lieb. Ann. 93, p. 129; 1855. 6. Recknagel: Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866.
- Drecker: Wied. Ann. 34, p. 952; 1888.
 Emo: Ber. Chem. Ges. 16, 1857; 1883.

- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.
- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
 11. Pinette: Lieb. Ann. 243, p. 32; 1888.
 12. Frankenheim: Pogg. Ann. 72, p. 422;

- 1847.
- 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1; 1903.
- 14. Thorpe and Jones: J. Chem. Soc. 63, p. 273; 1893.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

Coefficient a	t Constant Volu	ıme.		Coefficient at Constant Pressure.				
Substance.	Pressure cm.	Coefficient × 100.	Reference.	Substance.	Pressure	Coefficient X	Reference.	
Air " " " " " " " " " " " " " " " " " "	.6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 51.8 51.8 59.8 100.0 76. 56.7 .025 .47 .93 11.2 76.4 100.0 .06 .53 100.2 100.2 76007 .255 .51 1.9 18.5 75.9 76. 76.	-37666 -37172 -36630 -36580 -36580 -36650 -36650 -36963 -36963 -36972 -36985 -36972 -36985 -36972 -37262 -37262 -37262 -37263 -36565 -3656 -37002 -36548 -36564 -36682 -4161 -3984 -36683 -3696 -3831 -36683 -36683 -36681 -36681 -36681	1 " " 2 3 4 4 3 1 " " 2 4 " " " 5 3 4 4 6 " " " 2 6 6 " " " 7 6 6 " " " 8 8 " " " 3 3 " " " 3 3 " " " " "	Oxygen, $E = 0$ Nitrogen, $E = 0$	he calculation of and 100° (e change of variable). 3662(1 — .00; 3662(1	on of the C. Expansion of the C. Expansion of the C. Expansion of the Conference of	e ex- nsion ander),),)),)), of the	

Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.

Meas. 13, 1903.
3 Regnault, Ann. chim. phys. (3)5, 1842.
4 Keunen-Randall, Proc. R. Soc. 59, 1896.

⁶ Baly-Ramsay, Phil. Mag. (5), 38, 1894.
7 Andrews, Proc. Roy. Soc. 24, 1876.
8 Meleander, Acta Soc. Fenn. 19, 1891.
9 Amagat, C. R. 111, 1890.
10 Hirn, Théorie méc. chaleur, 1862.

MECHANICAL EQUIVALENT OF HEAT.

TABLE 255. - Summary.

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900.

Name.	Method.	Scale.	Result.	Temp. °C.
Joule Rowland	Mechanical . Mechanical .		4.173 4.195 4.187 4.181	16.5 10. 15. 20.
Reynolds-Morby.	Mechanical .		4.176 4.1832	25. Mean- calory.
Griffiths	Electrical $\frac{\mathrm{E}^2 t}{\mathrm{R}}$	Latimer-Clark = 1.4342v at 15°C. International Ohm	4.198 4.192 4.187	1 5. 20. 25.
Schuster-Gannon Callendar-Barnes	Electrical Eit.	(Latimer-Clark = 1.4340v. at 15°) C., Elec. Chem. Equiv. Silver (= 0.001118g Latimer-Clark = 1.4342v. at 15° C.	4.1905 4.179	19.1 40.

TABLE 256.—Reduced to Gram-calory at 20° C. (Nitrogen thermometer).

Joule	4.169 × 10 ⁷ ergs 4.181 "" 4.192 "" 4.189 "" 4.186 ""	* 4.169 × 10 ⁷ ergs. 4.181 " " 4.184 " " 4.181 " " 4.178 " "
-------	--	---

^{*} Admitting an error of 1 part per 1000 in the electrical scale.

The mean of the last four then gives

1 small (20°C) calory = 4.181×10^7 ergs.

1 small (15° C) calory = 4.185×10^7 ergs assuming sp. ht. of water at 20° = 0.9990.

TABLE 257 .- Conversion Factors for Units of Work.

	Joules Watts X sec. Volt-amp. per sec.	Small 15 ⁰ Calories.	Ergs.	Kilo- gram- meters.	Foot-poundals.	Foot-pounds.
I joule = I watt × second I small I5° calory = I erg =	1 4.185	0.2389 1 0.2389×10 ⁻⁷	10 ⁷ 4.185×10 ⁷	g* 4.185 g* 10-7 g*	23.73 99.31 23.73×10^{-7}	$ \frac{\frac{23.73}{g\dagger}}{\frac{99.31}{g\dagger}} $ $ \frac{\frac{23.73}{g\dagger}}{g\dagger} \times 10^{-7} $
r kilogmeter = r foot-poundal = r foot-pound =	g* .04214	0.2389g* .01007	g*×10 ⁷ 421400. 421400g†	1 .04214 g*	23.73g* 1 g†	23.73 r g† I

^{*} g = 9.80 m. per sec. per sec. at latitude 450, sea level. † g = 32.2 ft. per sec. per sec. " " " " "

TABLE 258.

SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

Element.	Range * of Temperature, ° C.	Specific heat.	Refer- ence.	Element.	Range * of Temperature, ° C.	Specific heat.	Refer- ence.
			× 0		° C.		≥ 5
Aluminum .	-250 0 100 250	0.1428 .2089 .2226 .2382		Iodine lridium	9-98 186-+18 18-100 20-100	0 0541 .0282 .0323 .1189	25 26 "
Antimony.	500 16–100 15	.2739 .2122 .0489	43	" wrought .	15-100 1000-1200 500	.1152 .1989 .176	28 "
"	100 200 0-100 0-100	.0503 .0520 .0822 .0861	3	" hard-drawn " " " Lanthanum	0-18 20-100 -185-+20	.0986 .1146 .0958	29 " 4
Barium Bismuth	-185-+20 -186	.068	4 5 6	Lanthanum . Lead	0-100 15 100 300	.0448 .0299 .0311 .0338	15 2 "
" fluid .	75 20-100 280-380	.0309 .0302 .0363	7 8	" fluid .	to 310 " 360 18-100	.0356 .0410 .03096	30 43
Boron	0-100 7820 13-45 21	.307 .0843 .107	9 10 11 2	Lithium	16-256 100 0	.03191 .5997 .7951	31
(4	100 200 300	.0551 .0570 .0594 .0617	"	" " Magnesium	50 100 190 —185- + 20	.9063 1.0407 1.3745 0.222	"
Cæsium	0-26 -185-+20 0-181	.0482	12 4 13	"	60 325 625	.2492 .3235 .4352	7 "
Carbon, graphite	—50 +11 977	.114 .160 .467	14	Manganese .	20-100 60 325	.2492 .1211 .1783	"
" diamond " " . Cerium	-50 +11 985 0-100	.0635 .113 .459 .0448	" " 15	"	20-100 100 0 100	.1211 .0979 .1072 .1143	31 "
Chlorine, liquid Chromium	0-24 200 0	.2262 .0666 .1039	16 17	Mercury	-185-+20 0 85	.032 .03346 .0328	4 32 "
" · · · · · · · · · · · · · · · · · · ·	100 600 —185-+20	.1121 .1872 .086	4	"	100 250 —185- + 20	.03284 .03212 .062	4
Cobalt	500 1000 -182-+15 15-100	.1452 .204 .0822 .1030	18 " 19	"	60 475 20-100 -185-+20	.0647 .0750 .0647	7 " 4
Copper	17 100 15-238	.0924 .0942 .09510	2 " 43	"	100 300 500	.1128 .1403 .1299	18
" " Callium liquid	-181 - +13 $23 - 100$.1259 .0868 .0940	20 21 "	"	1000 18-100 19-98	.1608 .109 .0311	26 10
Gallium, liquid . " solid . Germanium . Gold .	to 113 12-23 0-100 -185-+20	.080 .079 .0737 .033	22 22 23 4	Palladium	-186-+18 0-100 0-1265 0-51	.0528 .0592 .0714 .1829	26 24 "
Indium	0-100 0-100	.0316	24 13	" yellow " .	13-36 -186-+20	.202	33

See opposite page for References. See Table 260 for supplementary data.

^{*}Where one temperature alone is given, the "true" specific heat is given; otherwise, the "mean" specific heat.

SPECIFIC HEAT.

TABLE 258. - Specific Heat of the Chemical Elements (continued).

Platinum -186-+18 0.0293 26 Sulphur -188-+18 0.137 36 """ 100 .0275 344 "hombic "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-52 .1809 "monoclin" 0-12 .235 2 .1810 .000 .000 .000 .000 .000 .000 .0000 .000 .000 .000 <t< th=""><th>Element.</th><th>Range * of Temperature, °C.</th><th>Specific Heat.</th><th>Refer- ence.</th><th>Element.</th><th>Range * of Temperature, °C.</th><th>Specific Heat.</th><th>Refer- ence.</th></t<>	Element.	Range * of Temperature, °C.	Specific Heat.	Refer- ence.	Element.	Range * of Temperature, °C.	Specific Heat.	Refer- ence.
" fluid. 907-1100 .0748 " "	Piatinum "" "" "" "" "" "" "" "" "" "" "" "" "	-186-+18 0-100 100 500 700 900 1100 1500 500 1100 1500 -185-+20 10-97 0-100 -188-+18 -185-+20 -39.8 +57.1 232 -18679 -79-+18 0-100 23 100 500 17-507 800	0.0293 .0323 .0275 .0356 .0368 .0380 .0407 .0358 .0368 .170 .0580 .0611 .068 .123 .1360 .1833 .2029 .0496 .0559 .0544 .0559 .05987	26 24 34 35 4 25 13 36 4 14 26 13 21	Sulphur "rhombic monoclin liquid Tantalum crys. Tallurium crys. Thallium "rhorium Tin "cast fluid "fluid "	-188-+18 0-54 0-52 110-147 -185-+20 1400 -188-+18 15-100 -185-+20 20-100 0-100 -19679 -76-+18 21-109 250 1100 -185-+20 0-100 -185-+20 0-100 1000 0-98 0-100 -192-+20 20-100 0-100 -100-100	0.137 .1728 .1809 .235 .033 0.043 .047 .0483 .0326 .0276 .0486 .0551 .05709 .0758 .082 .1125 .036 .0357 .035	36 333 2 4 -36 37 4 27 38 26 30 18 4 39 4 40 -41 40 27

- 1 Bontschew.
- Naccari, Atti Torino, 23, 1887-88.
 Wigand, Ann. d. Phys. (4) 22, 1907.
 Nordmeyer-Bernouli, Verh. d. phys. Ges. 9, 1907; 10,
- т908. Giebe, Verh. d. phys. Ges. 5, 1903. Lorenz, Wied. Ann. 13, 1881. Stücker, Wien. Ber. 111, 1905.

- 7 Stücker, Wien. Ber. 114, 1905. 8 Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847;
- 9 Moisson-Gautier, Ann. chim. phys. (7) 17, 1896. 10 Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861. 11 Andrews, Pog. Ann. 75, 1848.

- 12 Eckardt-Graefe, Z. Anorg. Ch. 23, 1900. 13 Bunsen, Pogg. Ann. 141, 1870; Wied. Ann. 31, 1887. 14 Weber, Phil. Mag. (4) 49, 1875. 15 Hillebraud, Pog. Ann. 158, 1876.
- 16 Knietsch.
- 17 Adler, Beibl. 27, 1903. 18 Pionchon, C. R. 102-103, 1886. 19 Tilden, Phil. Trans. (A) 201, 1903.
- 20 Richards, Ch. News, 68, 1893.
- 21 Trowbridge, Science, 8, 1898.

- 22 Berthelot, Ann. d. chim. (5) 15, 1878.
 23 Pettersson-Hedellius, J. Pract. Ch. 24, 1881.
 24 Violle, C. R. 85, 1877; 87, 1878.
 25 Regnault, Ann. d. chim. (2) 73, 1840; (3) 63, 1861.
 26 Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.
 27 Schmitz, Pr. Roy. Soc. 72, 1903.
 28 Nichol, Phil. Mag. (5) 12, 1881.
 29 Hill, Verh. d. phys. Ges. 3, 1901.
 30 Spring, Bull. de Belg. (3) 11, 1886; 29, 1895.
 31 Laemmel, Ann. d. Phys. (4) 16, 1905.
 32 Barnes-Cooke, Phys. Rev. 16, 1903.
 33 Wiegand, Fort. d. Phys. 1906.
 31 Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903; Phil. Trans.

- 34 Tilden, Pr. Roy. Soc. 66, 1900, 71, 1903; Phil. Trans.

- (A) 19d4, 19do; 20t, 19d3; (A) 19d4, 19do; 20t, 19d3. 35 White, Phys. Rev. 28, 19d9. 36 Dewar, Ch. News, 92, 19d5. 37 Kopp, Phil. Trans. London, 155, 1865. 38 Nilson, C. R. 96, 1883. 39 Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
- 40 Mache, Wien. Ber. 106, 1897. 41 Blümcke, Wied. Ann. 24, 1885.
- 42 Mixter-Dana, Lieb. Ann. 169, 1873.
- 43 Magnus, Ann. d. Phys. 31, 1910.
- * When one temperature alone is given, the "true" specific heat is given; otherwise, the "mean" specific heat. Compiled in part from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen

TABLE 259. - Specific Heat of Water and of Mercury.

	Specific Heat of Water.								Specific Heat of Mercury.				
Temper- ature, °C.	Barnes.	Rowland.	Barnes- Regnault.	Temper- ature, °C.	Barnes	Barnes- Regnault.	Temper- ature,°C.	Specific Heat.	Temper- ature,°C.	Specific Heat.			
-5	1.0155	-	-	60	0.9988	0.9994	0	0.03346	90	0.03277			
0	1.0091	1.0070	1.0094	65	.9994	1.0004	5	.03340	100	.03269			
+5	1.0050	1.0039	1.0053	70	1.0001	1.0015	10	.03335	110	.03262			
10	I.0020	1.0016	1.0023	80	1.0014	1.0042	15	.03330	120	.03255			
15	1.0000	1.0000	1.0003	90	1.0028	1.0070	20	.03325	130	.03248			
20	0.9987	•999I	0.9990	100	1.0043	1.0101	25	.03320	140	.03241			
25	.9978	.9989	.9981	120	-	1.0162	30	.03316	150	.0324			
30	.9973	.9990	.9976	140	-	1.0223	35	.03312	170	.0322			
35	.9971	•9997	.9974	160	_	1.0285	40	.03308	190	.0320			
40	.9971	1.0006	.9974	180	-	1.0348	50	.03300	210	.0319			
45	.9973	1.0018	.9976	200	_	1.0410	60	.03294	-	-			
50	.9977	1.0031	.9980	220	-	1.0476	70	.03289	-	-			
55	.9982	1.0045	.9985	_	_	-	80	.03284	-	-			

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.) d, Phil. Trans. A 211, p. 199, 1911. Barnes-Regnault's as revised by Peabody; Steam Tables. Bousfield, Phil. Trans. A 211, p. 199, 1911.

The mercury data from 0° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

TABLE 260. — Additional Specific Heats of the Chemical Elements.

Element.	Temperature.	Sp. Heat.	Refer- ence.	Element.	Temperature.	Sp. Heat.	Refer- ence.
Boron Bromine	-240.6° -190.0 -19082 -761 +16-+100 +16-+304 -19178 -76-0 -19179 -76-0 -244.0 -185.0 -19083 -76-0 +15-+238 -90-+17 -19180 -773 +18-+10126	.2250 .0707 .1677 .0702 .0573 .1255 .005 .027 .0720 .0035 .0532 .0720 .0878 .0951 .0485 .0454 .0303 .0310	1 " 2 " 3 " 4 2 " 6 " 2 " 1 " 2 " 3 4 4 " 2 3 " 4 4 " 2 3 " 4 4 " 2 3 " 4 4 " 2 3 " 4 4 " 4 4 " 4 4 " 4 4 4 " 4 4 4 4 " 4	Lithium Manganese . Mercury, sol.	-19180 -78-0 -78-0 -75-19 -18879 -79-+15 -7742 -363 -19180 -78-0 -19183 -77-0 -19082 -76-2 0-+200 0-+300 0-+400 0-+500 0-+600 0-+500 0-+900 0-+1000 0-+1100		2 " " " " " " " " " " " " " " " " " " "
1. Nernst, Lindemann, 1910, 1911. 2. Kosef, Ann. der Phys. 36, 1911. 3. Magnus, Ann. der Phys. 31, 1910. 4. Estreicher, Straniewski, 1912. 5. Harker — Proc. Phys. Soc., London, 19 p. 703, 1905. Fe = .01C, .02Si, .03S, .04I trace Mn.							

TABLE 261. — Mean Specific Heats of Quartz, Silica Glass, and Platinum from zero, C., to the temperature named.

The mean specific heats of quartz above 550° are here increased by the heat (2.3 calories) of the inversion at 575° . The accuracy is probably better than 2 per mille.

Interval.	Quartz.	Silica Glass.	Platinum.	Obs.—calculated for P
0-100°	.1870	.1845	_	_
0-300°	.2169	.2124	.03283	.00000
0-300° 0-500°	.2382	.2303	.03363	+.00012
0-550°	.2441	_	_	_
0-600°	.2520	-	_	. –
o-700°	.2555	.2433	.03424	+.00005
0-900°	.2555 .2608	.2523	.03487	.00000
0-11000	.2654	_	.03551	00004
0-1300°	_	-	.03620	00003

The results for Platinum follow the formula:

Sp. Heat = $.03174 + .000 0034 \theta$ very closely. If the formula were strictly correct the true specific heat at any temp, would be: $.03174 + .000 006 8 \theta$, which is probably true to 1% as it is. Determinations by W. P. White. Geographical Laboratory.

TABLES 262-263.

TABLE 262. - Specific Heat of Various Solids.*

Solid.	Temperature C.	Specific Heat.	Authority.†
Alloys: Bell metal Brass, red "yellow 80 Cu+20 Sn 83.7 Cu+11.3 Al German silver Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi "14.24 Sn Rose's alloy: 27.5 Pb+48.9 Bi+23.6 Sn "Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn "(fluid) Miscellaneous alloys: 17.5 Sb+29.9 Bi+18.7 Zn+33.9 Sn 37.1 Sb+62.9 Pb	Temperature C. 15-98 0 0 14-98 20-100 0-100 5-50 100-150 -77-20 20-89 5-50 100-150 20-99 10-98 16-99	0.0858 .08991 .08931 .0862 .10432 .09464 .0345 .0426 .0356 .0552 .0426	R L R Ln T M " S S " M " R Ln P P
" (fluid) 63.7 Pb+36.3 Sn 46.7 Pb+53.3 Sn 63.8 Bi+36.2 Sn 46.9 Bi+53.1 Sn Gas coal Glass, normal thermometer 16 ^{III} " French hard thermometer " crown " flint Ice " " India rubber (Para) Paraffin " " fluid Vulcanite	144-358 12-99 10-99 20-99 20-1040 19-100 - 10-50 10-50 -188252 -78188 -1878 ?-100 -20- +3 -19- +20 0-20 35-40 60-63 20-100	.03500 .04507 .04507 .04504 .3145 .1988 .1869 .161 .117 .146 .285 .463 .481 .3768 .5251 .6939 .622 .712	R " " " " Z H M " " G-T R W " " B " A M

TABLE 263. - Specific Heat of Various Liquids.*

Liquid.	Temper- ature °C.		Author- ity.	Liquid.	Temper- ature °C.		
Alcohol, ethyl	-20 0 40 5-10 15-20 15 30 10 40 65 53 65 0 15-50 14	0.5053 .548 .648 .590 .601 .514 .520 .340 .423 .482 .529 .576 .350	R " " G " " H-D " " B " R E A	$\begin{array}{ccccc} Nitrobenzole & . \\ Napthalene, C_{10}H_8 & . & . \\ . & . \\ Oils: castor & . \\ . \\$	28 80-85 90-95 - 5.4 6.6 - 0 21-58 10 65 - 85 -15 0 +20 -20	0.362 .396 .439 .434 .438 .471 .387 .411 .364 .490 .534 .764 .775 .787	A B W H W W R Pa H-D " " DMG

These specific heat tables are compiled partly from more extended tables in Landolt-Börnstein-Meyerhoffer's Tables.
 For references see Table 263, page 242.
 SMITHSONIAN TABLES.

TABLE 263. - Specific Heat of Various Liquids.

Liquid.	Tempera- ture °C.		Author- ity.	Liquid.	Tempera- ture °C.		Author- ity.
CaCl ₂ , sp. gr. 1.20	0 +20 -20 0 +20 12-15 12-14 13-17 20-52 20-52	0.712 .725 .651 .663 .676 .848 .951 .975 .842	DMG " " " Pa " " Ma		17.5	o.876 ·975 ·942 ·983 ·791 ·978 ·980 ·938 ·903	TH
E, Emo. Ln, Luginen. G, Griffiths. M, Mazotto.					T, Tomlison. S, Schüz. Th, Thomsen. W, Wachsmuth. Wn, Winkelmann. Z. Zouloff.		

TABLE 264. - Specific Heat of Minerals and Rocks.

Andalusite	Substance.	Tempera-	Specific Heat.		Substance.	Tempera-	Specific Heat.	Refer-
Anhydrite, CaSO4		ture C.	rieat.	ence.		ture C.	Treat.	- Circci
Anhydrite, CaSO4	A 1.1 '		- 168		Pools salt	12.45	0.210	6
Apatite								
Asbestos				- 1				1 1
Augite			- 0					
Barite, BaSO ₄	1							
Beryl 15–99							_	
Borax Na ₂ B ₄ O ₇ fused 16-98 .2382 4 Zinco blende, ZnS .0-100 .1146 1 Calcspar, CaCO ₃ .0-50 .1877 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 1 .0-100 .2005 .0-100 .2004 1 .0-100 .0-10								
Calcspar, CaCO ₃								
Casiderite, SnO ₃		_				_		
""" 0-300 .2204 1 Basalt, fine, black 12-100 .1996 6 Casiderite, SnO₃ .16-98 .0933 4 """" 20-470 .1996 9 Corundum .9-98 .1976 4 """" 470-750 .243 9 Cryolite, Al₂Fl₀6NaF 16-99 .2522 2 """" 750-880 .626 9 Fluorite, CaF₂ .15-99 .2154 4 """" 880-1190 .323 9 Galena, PbS .0-100 .0466 5 Dolomite .20-98 .222 3 Garnet .16-100 .1758 2 Gneiss .17-99 .196 10 Hematite, Fe₂O₃ .15-99 .1645 2 """ 17-213 .214 10 Hornblende .20-98 .1949 3 Lava, Aetna .23-100 .201 11 Magnetite .18-45 .156 6 """" 31-776 .259 11 </td <td>Calcspar, CaCO₃</td> <td></td> <td></td> <td>-</td> <td></td> <td>21-51</td> <td>.132</td> <td>0</td>	Calcspar, CaCO ₃			-		21-51	.132	0
Casiderite, SnO ₃ 10–980933 4	"							
Casiderite, SnO ₃	"		.2204	I				1 - 1
Cryolite, Al ₂ Fl ₆ .6NaF . 16–99 .2522 2 " " " 750–880 .626 9 Fluorite, CaF ₂ . 15–99 .2154 4 " " " 880–1190 .323 9 Galena, PbS . 0–100 .0466 5 Dolomite . .20–98 .222 3 Garnet . .16–100 .1758 2 Gneiss . .17–99 .196 10 Hematite, Fe ₂ O ₃ . .15–99 .1645 2 " . .17–213 .214 10 Hornblende . .20–98 .1952 3 Kaolin . .12–100 .192 7 Hypersthene . .20–98 .1949 3 Lava, Aetna . .23–100 .201 11 Magnetite . .18–45 .156 6 " " . .31–776 .259 11 Malachite, Cu ₂ CO ₄ . H ₂ O 15–99 .1763 2 " " Kilauea . .25–100 .197 11 " (K) . .20–98 .2080 3 Quartz sand . .25–100 .197 11 Orthoclase . .15–99 .1877 2 Sands	Casiderite, SnO ₃		.0933	4				
Cryolite, AlgFl ₆ .6NaF 10-99 .2522 2 " " " 750-300 .020 9		9-98			N.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cryolite, Al ₂ Fl ₆ .6NaF .	16-99	.2522	2				
Garnet		15-99	.2154					
Hematite, Fe ₂ O ₃ . 15-99 .1645 2	Galena, PbS.	0-100	.0466	5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Garnet	16-100	.1758	2			.196	
Hypersthene 20-98 1914 3 Kaolin 20-98 224 3 Labradorite 20-98 1949 3 Lava, Aetna 23-100 201 11 Magnetite 18-45 1156 6 " " 31-776 259 11 Malachite, Cu ₂ CO ₄ ·H ₂ O 15-99 1763 2 " Kilauea 25-100 197 11 Mica (Mg) 20-98 2061 3 Marble 15-100 216 12 Mica (Mg) 20-98 2080 3 Marble 15-100 216 12 Oligoclase 20-98 2048 3 Quartz sand 20-98 191 3 Orthoclase 15-99 1877 2 Sandstone 20-98 191 3 Sandstone 22 Pyrites, copper 15-99 1291 2 Pyrolusite, MnO ₂ 17-48 159 Guartz, SiO ₂ 12-100 188 7 7 7 7 7 7 7 7 7	Hematite, Fe-O2	I 5-99	.1645	2		17-213	.214	
Hypersthene 20-98 .1914 3 Kaolin 20-98 .224 3 Lava, Aetna 23-100 .201 11 Magnetite	Hornblende	20-98	.1952	3			.192	
Labradorite 20-98 1949 3 Lava, Aetna 23-100 .201 11	Hypersthene		.1914	3	Kaolin	20–98		3
Malachite, Cu ₂ CO ₄ . H ₂ O 15-99 .1763 2 "Kilauea . 25-100 .197 11 .197 11 Mica (Mg)		20-08	.1949	3	Lava, Aetna .	23-100	.201	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Magnetite		.156	6		31-776	.259	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				2	" Kilauea .	25-100	-197	II
" (K) . 20-98 .2080 3 Marble . 0-100 .21 - Oligoclase . 20-98 .2048 3 Quartz sand . 20-98 .191 3 Orthoclase . 15-99 .1291 2 Sandstone . - .22 - Pyrolusite, MnO2 . 17-48 .159 6 1 Lindner 6 Kopp 11 Eartoli Quartz, SiO2 . . 0 .1737 8 3 Ulrich 8 Pionchon """ 9 Roberts-Austen, Rücker			.2061	3	Limestone	15-100	.216	12
			.2080	3	Marble	0-100	.21	-
			.2048	3	Ouartz sand .	20-98	.191	3
Pyrites, copper . 15–99 .1291 2 Pyrolusite, MnO2 . 17-48 .159 6 Quartz, SiO2 . .12-100 .188 7 0 .1737 8 3 .1737 8 .3 .1737 8 .2 .	0 3 1			2	Sandstone	_	.22	-
Pyrolusite, MnO2. . 17-48 .159 6 1 Lindner. 6 Kopp. 11 Eartoli. Quartz, SiO2 . 12-100 .188 7 2 Oeberg. 7 Joly. 12 Morano. """. . 0 .1737 8 3 Ulrich. 8 Pionchon. """. . 350 .2786 8 4 Regnault. 9 Roberts-Austen, Rücker.						l	1	1
Quartz, SiO2 . . 12-100 .188 7 2 Oeberg. 7 Joly. 12 Morano. """. 2786 8 3 Ulrich. 8 Pionchon. """. . . .2786 8 4 Regnault. 9 Roberts-Austen, Rücker.			1		. Lindner 6 K	opp I	r Barto	li
" " 350 .2786 8 4 Regnault. 9 Roberts-Austen, Rücker.						- F F		
" " 350 .2786 8 4 Regnault. 9 Roberts-Austen, Rücker.			1	1 8			2 Mola	110.
4 Regnault. 9 Roberts-Austen, Rucker.		-			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		ton Diic	lear
1 5 111den. 10 R. Weber.	4 4				11 T L.C. / L		icii, Kuc	WC1.
		1 300 1200	.505		5 111den. 10 K	wener.		

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 265.
SPECIFIC HEATS OF GASES AND VAPORS.

Substance.	Range of Temp, °C.	Sp. Ht. Constant Pressure.	Authority.	Range of Temp. °C.	Mean Ratio of Specific Heats. C _P /C _v .	Authority.
Acetone, C ₈ H ₆ O	26-110 27-179 129-233 -30-+10 0-100 0-200 20-440 20-630 20-800	0.3468 0.3740 0.4125 0.2377 0.2374 0.2375 0.2366 0.2429 0.2430	Wiedemann. Regnault. " Holborn and Austin.	5-1.4	1.4025	Lummer and Pringsheim.
Alcohol, C_2H_5OH . " C_2H_3OH . Ammonia .	108-220 - 101-223 23-100 27-200	0.4534 0.4580 0.5202 0.5356	Regnault. Regnault. Wiedemann.	53 100 100 0	1.133 1.134 1.256 1.3172 1.2770	Jaeger. Stevens, " Wüllner.
Argon	24-216 20-90 34-115 35-180 116-218 83-228 19-388 -28- +7	0.5125 0.1233 0.2990 0.3325 0.3754 0.0555 0.0553	Regnault. Dittenberger. Wiedemann. " Regnault. " Strecker. Regnault.	0 20 60 99.7 20-388	1.667 1.403 1.403 1.105 1.293	Niemeyer. Pagliani. " Stevens Strecker. Lummer and
" " " " " " " " " " " " " " " " " " "	15-100 11-214 23-99 26-198 86-190 13-202	0.2025 0.2169 0.2425 0.2426 0.1596 0.1241	" Wiedemann. " Regnault.	0 100 3-67 20-340	1.403 1.395 1.205 1.323	Pringsheim. Wüllner. " Beyme. Strecker.
Chloroform, CHCl ₃ Ether, C ₄ H ₁₀ O	16-343 27-118 28-189 69-224 27-189 25-111	0.1125 0.1441 0.1489 0.4797 0.4618 0.4280	Strecker. Wiedemann. "Regnault. Wiedemann.	0 22-78 99.8 3-46 42-45 12-20	1.336 1.102 1.150 1.025 1.029 1.024	Martini. Beyme. Stevens. Beyme. Müller. Low.
Hydrochloric acid, HCl Hydrogen " "	13-100 22-214 28-+9 12-198 21-100	0.1940 0.1867 3.3996 3.4090 3.4100	Strecker. Regnault. " " Wiedemann.	20 100 4–16	1.389 1.400 1.4080	Strecker. " Lummer and Pringsheim.
" sulphide, H ₂ S Methane, CH ₄ Nitrogen "	20-206 18-208 0-200 20-440 20-630 20-800	0.2451 0.5929 0.2438 0.2419 0.2464 0.2497	Regnault. " Holborn and Austin. "	10-40	1.276 1.316 1.41	Müller. " Cazin.
Nitric oxide, NO Nitrogen tetroxide, NO ₂	13-172 27-67 27-150 27-280	0.2317 1.625 1.115 0.65	Regnault. Berthelot and Olger.	-	1.31	Natanson.
Nitrous oxide, N ₂ O	16-207 26-103 27-206 13-207	0.2262 0.2126 0.2241 0.2175	Regnault. Wiedemann. "Regnault.	0 100 5-14	1.311	Wüllner. " Lummer and
"	20-440 20-630 16-202	0.2240 0.2300 0.1544	Holborn and Austin. Regnault.	16-34	1.256	Pringsheim. Müller.
Water vapor, H ₂ O	100 180	0.4655 0.421 0.51	Thiesen.	78 94	1.274	Beyme. Jaeger.

THERMOMETERS.

TABLE 266. - Gas and Mercury Thermometers.

If t_B , t_N , t_{CO2} , t_{16} , t_{59} , t_7 , are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16^{11} , 59^{11} , and "verre dur" (Tonnelot), respectively, then

verte dur (100ncto), respectively, then
$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.55541 + 0.0048240.t - 0.000024807.t^2 \right] *$$

$$t_{\rm CO2} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[-0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{16} = \frac{(100 - t)t}{100^2} \left[-0.67039 + 0.0047351.t - 0.000011577.t^2 \right] t$$

$$t_{\rm H} - t_{59} = \frac{(100 - t)t}{100^2} \left[-0.31089 + 0.0047351.t - 0.000011577.t^2 \right] t$$

TABLE 267. $t_H - t_{16}$ (Hydrogen - 16^{III}).

	o°	ıo	20	3°	4 °	5°	6°	7 °	80	90
o°	.000	—.007°	o13°	019	—.025°	—.o31°	036°	042°	—.047°	051°
10	05 6	—.o61				- .077	— .080	084	 087	090
20	093	—.0 96		101	103	105	107	109	110	112
30	113	114	115	 .116	117	- .118	119	119	1 19	-,120
40	120	 .120	120	120	119	 .119	—.118	118	117	—. 116
50	—. 116	115	- .114	113	—.III	110	109	107	106	-,104
60	—. 103	101	—.099	097	096	094	092	090	 .087	—. 085
. 70	083	081	078	— .076	074	071	—. 069	066	064	061
` So	— .058	056	o53	050	048	045	042	— .039	— .036	 .033
ეთ	030	027	024	021	018	015	012	009	006	003
100	.000					-				_
			i	1						

TABLE 268. $t_H - t_{59}$ (Hydrogen - 69^{111}).

	oo	10	20	3°	40	5°	60	7°	80	90
0° 10	.000° —.024	003° 025	027	028	030	—.o31	016° 032	033	034	- .035
20 30 40 5 0	035 038 034 026	036 037 033 025	036 037 032 024	037 037 032 023	037 037 031 022	037 036 030 021	038 036 029 020	038 035 028 019	03\$ 035 02\$ 018	038 034 027 017
60 70 80	016 008 001	015 007 001	015 006 .000	0.14 00.5	013 005 +.001	01 2 004 +.001	011 003 +.001	010 003 +.002	009 002 +.002	008 001 +.002
100	+.002	+.002	+.002	+.002	+.002	+.002	+.001	+.001	100.+	.000

TABLE 269. (Hydrogen -16^{111}), (Hydrogen -59^{111}).

	-5°	-100	-150	200	-25°	-30°	-35°
t _H — t ₁₆	+0.04°	+0.08°	+0.3°	+0.19°	+0.25°	+0.32°	+0.40°
t _H — t ₅₉	+0.02°	+0.04°	+0.07°	+0.10°	+0.14°	+0.18°	+0.23°

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

^{*} Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888. † Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Ztg. 1807.

AIR AND MERCURY THERMOMETERS.

TABLE 270. $t_{AIR} - t_{16}$. (Air - 16^{III}.)

°C.	00	I _O	20	3°	4°	5°	60	7°	80	90
0 10 20 30 40 50 60 70 80	.000049083103110107096078054028	006 053 086 104 110 107 095 076 052 025	012 057 089 105 111 106 093 074 049 023	017 061 091 106 111 105 092 072 047 020	022 065 093 107 110 104 090 070 044 017	027 068 095 108 110 103 088 067 041 014	032 071 097 109 110 086 065 039 011	037 074 099 110 101 084 062 036 009	04I 077 10I 110 109 100 082 060 034 006	045 080 102 110 108 098 080 057 031
100 110 120 130 140 150 160 170 180	.000 +.028 +.053 +.074 +.090 +.098 +.097 +.084 +.059 +.019	+.003 +.030 +.055 +.076 +.091 +.098 +.096 +.082 +.055 +.014	+.006 +.033 +.057 +.078 +.092 +.098 +.095 +.080 +.052 +.009	+.008 +.035 +.060 +.080 +.093 +.099 +.078 +.048 +.004	+.011 +.038 +.062 +.081 +.094 +.099 +.093 +.076 +.045 001	+.014 +.041 +.064 +.083 +.095 +.099 +.092 +.073 +.041 007	+.017 +.043 +.066 +.084 +.096 +.098 +.090 +.071 +.037 013	+.019 +.046 +.068 +.086 +.096 +.089 +.068 +.033 019	+.022 +.048 +.070 +.087 +.097 +.098 +.088 +.065 +.028	+.025 +.050 +.072 +.089 +.097 +.097 +.086 +.062 +.023 031
200 210 220 230 240 250 260 270 280 290 300	038 113 208 325 466 632 825 -1.048 -1.301 -1.588 -1.908	045 122 219 338 481 650 846 -1.072 -1.328 -1.618	051 130 230 351 497 668 867 -1.096 -1.356	058139241365513687889 -1.121 -1.384 -1.680	0661482523785297069111.1461.4121.711	073 158 264 392 546 725 933 -1.171 -1.440 -1.743	080168275407562745955 -1.196 -1.469 -1.776	088177287421579765978 -1.222 -1.498 -1.808	096187300436597785 -1.001 -1.248 -1.528 -1.841	105 198 312 450 614 805 -1.025 -1.274 -1.558 -1.874

TABLE 271. tAIR - t59. (Air - 59111.)

°C.	00	ı°°	2°	3°	4°	5°	6°	7°	80	90
100 110 120 130 140 150 160 170 180 190 200	.000 .000 002 004 008 013 019 028 039 052 067	.000 .000 —.002 —.004 —.008 —.013 —.020 —.029 —.040 —.053	.000 .000 —.002 —.005 —.009 —.014 —.021 —.030 —.041 —.055	.000001002005009015021031043056	.000 —.001 —.002 —.006 —.010 —.016 —.022 —.032 —.044 —.057	.000001003006010016023033045059	.000001003006011016024034046060	.000001003007011017025035048062	.000002004007012018026037049064	.000 002 004 008 012 019 027 038 051 066

GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 272. - tH-tM (Hydrogen-Mercury).

Temper- ature, C.	Thuringer Glass.*	Verre dur. Tonnelot.†	Resistance Glass.*	English Crystal Glass.*	Choisy-le- Roi.*	122 ^{III} .*	$\begin{array}{c} Nitrogen \\ Thermometer. \\ T_H - T_N, \dagger \end{array}$	CO ₂ Thermometer. TH—T _{CO₂} .†
0	0	0	0	0	0	0	0	0
0	.000	.000	.000	.000	.000	.000	.000	.000
10	- .075	052	066	008	007	005	006	025
20	125	085	108	001	004	—.oo6	010	043
30	156	102	—.13 1	+.017	+.004	002	oii	054
40	— .168	107	140	十.037	+.014	+.001	011	059
50	 .166	103	135	十.057	+.025	+.004	009	- .059
60	150	090	- .119	+.073	+.033	+.008	005	053
70	124	072	095	+.079	+.037	+.009	ooı	044
80	—.oSS	—.o5o	—.o6Š	+.070	+.032	+.007	+.002	—.ogī
90	047	—. 026	034	+.046	+.022	+.006	+.003	016
100	.000	.000	.000	.000	.000	.000	.000	.000
L								

^{*} Schlösser, Zt. Instrkde. 21, 1901.

TABLE 273. - Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of $59^{\rm HI}$ glass.

Air.	59 ^{III} .	Air.	59 ^{III} .
0 100 200 300 325 350	0 0. 100. 200.4 304.1 330.9 358.1	0 375 400 425 450 475 500	0 385.4 412.3 440.7 469.1 498.0 527.8

Mahlke, Wied. Ann. 1894.

TABLE 274. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

Hydrogen.	Toluol.*	Alcohol I.*	Alcohol II.*	Petrolether.†	Pentane.‡
0 -10 -20 -30 -40 -50 -60	0.00 -8.54 -16.90 -25.10 -33.15 -41.08	0.00 -9.31 -18.45 -27.44 -36.30 -45.05 -53.71	0 0,00 -9.44 -18.71 -27.84 -36.84 -45.74 -54.55	- - - - - - -42.6	0.00 -9.03 -17.87 -26.5 5 -35.04 -43.36 -51.50
—70 —100 —150 —200	—56.63 — — —	-62.31 - -	-63.31 - -	80.2 113.0 140.7	—59.46 —82.28 —116.87 —146.84

^{*} Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

[†] Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

TABLE 275. - Platinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by pt = 100 { (R - R₀) /(R₁₀₀ - R₀) }, where R is the observed resistance at t° C., R₀ that at O°, R₁₀₀ at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by t - pt = δ { t/100 - 1 } t/100 where δ is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between - 23° and 450° when δ has been determined by the boiling point of sulphur (445°.) See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909.

TABLE 276. — Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

Mean = 273.10° C. (ice point)

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907.

Scale Corrections for Gas Thermometers.

Temp.	Constan	t pressure =	= 76 cm.	Constant v	olume ⊗ _o :	= 273.10 C.
C.	He	Н	N	He	Н	N
-250° -200 -100 - 50 + 25 + 50 + 75 + 150 + 200 + 1500	+0.10 + .03 + .009 002 002 002 + .005 + .01 + .07 + .24	+0.26 +0.03 +0.004 002 003 002 + .003 + .01 + .04 + .01		.000 .000 .000 .000	+0.06 + .01.4 + .000 .000 .000 .000 + .001 + .002 + .01 +0.0.4	

See Burgess, The Present Status of the Temperature Scale, Chemical News, 107, p. 169, 1913.

TABLE 277. - Standard Points for the Calibration of Thermometers.

Substance.	Point.	Atmos-	Crucible.	Tempe	ratures.
Substance.	Foliit.	phere.	Crucibie.	°C.	Thermodynamic.
Water Napthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li ₂ SiO ₃ Diopside, pure Nickel Cobalt Palladium Anorthite, pure Platinum	boiling, 760 mm. """ melting or solidify. boiling, 760 mm. melting or solidify. solidification melting or solidify. """ melting melting melting melting melting melting """ melting """ melting """ melting """ melting	air	graphite graphite graphite " " platinum magnesia and Mg. aluminate magnesia platinum	100.00 218.0 305.85 ± 0.1 320.8 ± 0.2 419.3 ± 0.3 444.45 ± 0.1 629.8 ± 0.5 658.5 ± 0.6 900.0 ± 0.7 1062.4 ± 0.8 1201.0 ± 1.0 1391.2 ± 1.5 1452.3 ± 2.0 1489.8 ± 2.0 1549.2 ± 2.0 1549.5 ± 2.0 1752. ± 5.* 1755. ± 5.†	100.00 218.0 305.9 320.9 419.4 444.55 630.0 658.7

^{*} Thermoelectric extrapolation. † Optical extrapolation.

⁽Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils – 252.7°; O, boils – 182.9°; Hg. freezes – 37.7°; Alumina melts 2000°; Tungsten melts 3000°.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

The Stem Correction is proportional to $n\beta(T-t)$: where n is the number of degrees in the exposed stem; β is the apparent coefficient of expansion of mercury in the glass; T is the measured temperature; and t is the mean temperature of the exposed stem determined by another thermometer, exposed some 10 cm. from, and at about half the height of, the exposed stem of the first.

For temperatures up to 100° C, the value of β is for:

Jena glass XVI^{III} or Greiner and Friedrich resistance glass,
$$\frac{1}{6300}$$
 or 0.000159; Jena glass 59^{III}, $\frac{1}{6100}$ or 0.000164.

At 100° the correction is in round numbers 0.01° for each degree of the exposed stem; at 200° 0.02°; and for higher temperatures proportionately greater. At 500° it may amount to 0.07° for each exposed degree.

Tables 278-280 are taken from Rimbach, Zeitschrift für Instrumentenkunde, 10, 153, 1890, and apply to thermometers of Jena or of resistance glass.

TABLE 278. - Stem Correction for Thermometer of Jena Glass (0°-360° C.).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t' = that of the surrounding air 1 dm. away; n = the length of the exposed thread.

	Correction to be added to the Reading t.											
n	t-t'											
~	70°	80°	90°	100°	120°	140°	160°	180°	200°	220°		
10	0.01	0.01	0.03	0.04	0.07	0.10	0.13	0.17	0.19	0.21		
20	0.08	0.12	0.14	0.19	0.25	0.28	0.32	0.40	0.49	0.54		
30	0.25	0.28	0.32	0.36	0.42	0.48	0.54	0.66	0.78	0.87		
40	0.30	0.35	0.41	0.48	0.60	0.67	0.77	0.92	1.08	1.20		
50 60	0.41	0.46	0.52	0.59	0.79	0.89	0.98	1.16	1.38	1.53		
60	0.52	0.60	0.68	0.79	0.99	1.11	1.23	1.46	1.70	1.Š7		
70	0.63	0.74	0.85	0.98	1.20	1.32	1.45	1.70	1.99	2.21		
80	0.75	0.87	10.1	1.15	1.38	1.53	1.70	1.98	2.29	2.54		
90	0.87	0.99	1.13	1.28	1.62	1.82	1.94	1.25	2.60	2.89		
100	0.98	1.12	1.29	1.47	1.82	2.03	2.20	2.55	2.92	3.24		
120	_	-	-	1.88	2.28	2.49	2.68	3.13	3.59	3.96		
140	-	-	-	-	2.75	2.97	3.22	3.75	4.24	4.69		
160	-	-	-	-	-	3.35	3.So	4.35	4.92	5.45		
180	-	-	-	-	-	-	4.37	4.99	5.63	6.22		
200	-	-	-	-	-	-	-	5.68	6.34	6.98		
220	-	-	-	-	-	-	-	-	7.05	7.82		

See "The correction for Emergent Stem of Mercurial Thermometer." Buckingham, Bul. Bur. of Standards, 8, p. 239, 1912.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

TABLE 279. — Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length I to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; n = the length of the exposed thread.

		Co	ORRECTION	TO BE	ADDED T	о Тнекм	OMETER	Reading	.*		
					t —	- t'					
n	70○	80°	90°	100°	120°	140°	160°	180°	200°	220°	n
10° 20 30 40	0.02 0.13 0.24 0.35	0.03 0.15 0.28 0.41	0.05 0.18 0.33 0.48	0.07 0.22 0.39 0.56	0.11 0.29 0.48 0.68	0.17 0.38 0.59 0.82	0.21 0.46 0.70 0.94	0.27 0.53 0.78 1.04	0.33 0.61 0.88 1.16	0.38 0.67 0.97 1.28	10° 20 30 40
50 60 70 80	0.47 0.57 0.69 0.80	0.53 0.66 0.79 0.91	0.62 0.77 0.92 1.05	0.72 0.89 1.06 1.21	0.88 1.09 1.30 1.52	1.03 1.25 1.47 1.71	1.17 1.42 1.67 1.94	1.31 1.58 1.86 2.15	1.44 1.74 2.04 2.33	1.59 1.90 2.23 2.55	50 60 70 80
90 100 110 120	0.91 1.02 - -	1.04 1.18 - -	1.19	1.38 1.56 1.78 1.98	1.73 1.97 2.19 2.43	1.96 2.18 2.43 2.69	2.20 2.45 2.70 2.95	2.42 2.70 2.98 3.26	2.64 2.94 3.26 3.58	2.89 3.23 3.57 3.92	90 100 110 120
130 140 150 160	-	- - -		- - -	2.68 2.92	2.94 3.22 - -	3.20 3.47 3.74 4.00	3.56 3.86 4.15 4.46	3.89 4.22 4.56 4.90	4.28 4.64 5.01 5.39	130 140 150 160
170 180 190 200		-	- - -	- - -		-	4.27 4.54 -	4.76 5.07 5.38 5.70	5.24 5.59 5.95 6.30	5.77 6.15 6.54 6.94	170 180 190 200
210	<u>-</u> -	-	_	-	-	-	-	-	6.68 7.04	7·35 7·75	210 220

^{*} See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 280. — Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° 0).

Divided into tenth degrees; degree length about 4 mm.

	Correction to be added to the Reading $oldsymbol{t}$.											
	t-t'											
n	30°	35°	40 °	45 °	50°	5 5 °	60°	65 °	70°	75 °	80°	85 °
10 20 30 40 50 60 70 80 90	0.04 0.12 0.21 0.28 0.36 0.45	0.04 0.12 0.22 0.29 0.38 0.48	0.05 0.13 0.23 0.31 0.40 0.51	0.05 0.14 0.24 0.33 0.42 0.53	0.05 0.15 0.25 0.35 0.44 0.55	0.06 0.16 0.25 0.37 0.46 0.57 0.66	0.06 0.17 0.27 0.39 0.48 0.60 0.69 0.76	0.07 0.18 0.29 0.41 0.50 0.63 0.71 0.81	0.08 0.19 0.31 0.43 0.53 0.66 0.75 0.87 0.99	0.09 0.20 0.33 0.45 0.57 0.69 0.81 0.93 1.06 1.18	0.10 0.22 0.35 0.48 0.61 0.73 0.87 1.00	0.10 0.23 0.37 0.51 0.65 0.78 0.92 1.06 1.20

TABLE 281. - Standard Calibration Curve for Pt. - Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

Tin	ium " "	1062.6 10296 1082.8 10534 1201. 11941 1391.5 14230 1452.6 14973 1549.5 16144 1755. 18608
-----	---------	--

E micro- volts.	0	1000.	2000.	3000.	4000. EMPERAT	5000. URES, °(6000.	7000.	8000.	9000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.0 17.8 34.5 50.3 65.4 80.0 94.1 107.8 121.2 134.3 147.1	147.1 159.7 172.1 184.3 196.3 208.1 219.7 231.2 242.7 254.1 205.4	265.4 276.6 287.7 298.7 309.7 320.6 331.5 342.3 353.0 363.7 374.3	374.3 384.9 395.4 405.9 416.3 426.7 437.1 447.4 457.7 467.9 478.1	478.1 488.3 498.4 508.5 518.6 528.6 538.6 548.6 558.5 568.4 578.3	578.3 588.1 597.9 607.7 617.4 627.1 636.8 646.5 656.1 665.7 675.3	675.3 684.8 694.3 703.8 713.3 722.7 732.1 741.5 750.9 760.2 769.5	760.5 778.8 778.0 797.2 806.4 815.6 824.7 833.8 842.9 852.0 861.1	861.1 870.1 879.1 888.1 897.1 906.1 915.0 923.9 932.8 941.6 950.4	950.4 959.2 968.0 976.7 985.4 994.1 1002.8 1011.5 1020.1 1028.7 1037.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E micro- volts.	10000.	11000.	12000		TEMPERAT		5000. C.	16000.	17000.	r8000.	E micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	1037-3 1045-9 1054-4 1062-9 1071-4 1079-0 1088-4 1096-9 1105-4 1113-8 1122-2	1122.2 1130.6 1139.0 1147.4 1155.8 1164.2 1172.5 1180.9 1189.2 1197.6 1205.9	1205. 1214. 1222. 1230. 1247. 1255. 1264. 1272. 1281. 1289.	2	7.7	80.7 89.0 97.3 105.6 13.8 22,0 130.2 138.4 146.6	454.8 463.0 4471.2 4479.4 4487.7 496.0 504.3 512.6 520.9 529.2 537.5	1537.5 1545.8 1554.1 1562.4 1570.8 1579.1 1587.5 1595.8 1604.2 1612.5 1620.9	1620.9 1629.2 1637.6 1645.9 1654.3 1662.6 1670.9 1679.3 1687.6 1690.0	1704.3 1712.6 1721.0 1720.3 1737.7 1746.0 1754.3	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

TABLE 282. - Standard Calibration Curve for Copper - Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

following fixed points:
Water, boiling-point, 100°, 4276 microvolts; Napthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 1000 mv.; Benzophenone, boiling-point, 395.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

E. micro-	0	1000.	2000.	3000.	4000.	5000.		7000.	8000.	9000.	E micro-
volts.					Темри	ERATURES,	°C.				volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	0.00 2.60 5.17 7.73 10.28 12.81 15.33 17.83 20.32 22.80 25.27	25.27 27.72 30.15 32.57 34.98 37.38 39.77 42.15 44.51 46.86 49.20	49.20 51.53 53.85 56.16 58.46 60.76 63.04 65.31 67.58 69.83 72.08	72.08 74.31 76.54 78.76 80.97 83.17 85.37 87.56 89.74 91.91	94.07 96.23 98.38 100.52 102.66 104.79 106.91 109.02 111.12 113.22	115.31 117.40 119.48 121.56 123.63 125.69 127.75 129.80 131.84 133.88	143.99 146.00 148.00 150.00	155.95 157.92 159.89 161.86 163.82 165.78 167.73 169.68 171.62 173.56	175.50 177.43 179.36 181.28 183.20 185.11 187.02 188.93 190.83 192.73	194.62 196.51 198.40 200.28 202.16 204.04 205.91 207.78 209.64 211.50 213.36	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.
E	10000.	1100		1	13000.	14000.	15000.	16000.	17000.	18000.	E
micro- volts.					Темр	ERATURES,	°C.	·	•		micro- volts.
0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	213.36 215.21 217.06 218.91 220.75 222.50 224.43 226.26 228.00 231.72	233. 235. 237. 239. 240. 242. 244. 244. 246. 248.	56 25 38 25 20 25 01 25 82 25 63 26 43 26 23 26	9.82 11.61 3.40 55.18 66.96 68.74 90.52 92.29 94.06 95.83 97.60	267.60 269.36 271.12 272.88 274.64 276.40 278.15 270.90 281.65 283.39 285.13	285.13 286.87 288.61 290.35 292.08 293.81 295.54 297.26 298.98 300.70 302.42	302.42 304.14 305.85 307.56 309.27 310.98 312.69 314.39 316.09 317.79 319.49	319.49 321.19 322.88 324.57 326.26 327.95 329.64 331.32 333.00 334.68 336.36	336.36 338.04 339.72 341.40 343.07 344.74 346.41 348.08 349.75 351.42 353.09	353.09	0. 100. 200. 300. 400. 500. 600. 700. 800. 900.

RADIATION CONSTANTS.

TABLE 283. - Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature T^0 (absolute, C) to one at t^0 is equal to

where
$$\sigma = 1.374 \times 10^{-12}$$
 gram-calories per second per sq. centimeter.
= 8.26 × 10⁻¹¹ " " minute " " = 5.75 × 10⁻¹² watts per sq. centimeter.

The distribution of this energy in the spectrum is represented by Planck's formula:

$$J_{\lambda} = C_{\mathrm{I}} \lambda^{-5} \left[e^{\lambda \tilde{T}} - 1 \right]^{-1}$$

where f_{λ} is the intensity of the energy at the wave-length λ (λ expressed in microns, μ) and e is the base of the Napierian logarithms.

$$C_1 = 9.226 \times 10^{-23} \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 3.86 \times 10^{-22} \text{ for } J \text{ in } \frac{watts}{cm.^2}$$
 $C_2 = 1.4450 \text{ for } \lambda \text{ in } cm.$
 $J_{\text{max}} = 3.11 \times 10^{+4} \ T^6 \text{ for } J \text{ in } \frac{gram. \ cal.}{sec. \ cm.^2} = 1.30 \times 10^{+6} \ T^6 \text{ for } J \text{ in } \frac{watts}{cm.^2}$

 $\lambda_{\max} T = 0.2910 \text{ for } \lambda \text{ in } cm.$

h = Planck's unit = elementary "Wirkungs quantum" = 6.83×10^{-27} ergs. sec.

k = constant of entropy equation = 1.42 × 10⁻¹⁶ ergs./degrees.

TABLE 284. — Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at ℓ° C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula.

t° C ∫	t° C	J	t° C	J	t° C	J	t° C	J	t° C	J
-220 -210 -200 -190	7 —50 7 —40 3 —30	65 84 107 134 165 201 245 294 350 416 488	-10 -8 -6 -4 -2 0 +2 +4 +6 +8 +10	571 588 606 625 643 662 682 701 722 744 765	+12 +14 +16 +18 +20 +22 +24 +26 +28 +30 +32	787 808 831 855 879 903 928 953 979 1005	+34 +36 +38 +40 +42 +44 +46 +48 +50 +52 +54	1059 1087 1115 1145 1174 1204 1234 1265 1298 1330 1363	+56 +58 +60 +70 +80 +100 +200 +1000 +2000 +5000	1400 1430 1470 1650 1850 2070 2310 5960 313×10 ³ 318×10 ⁴ 921×10 ⁵

TABLE 285. — Values of J_{λ} for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used $C_1 = 8346$ and $C_2 = 14349$, and for the unit of time the day. For 10°, the values for J_A have been multiplied by 10, for the other temperatures by 100.

λ	<i>T</i> = 100° C	30° C	15° C	o° C	−30° C	-80° C	λ	100° C	30° C	15° C	0° C	_3°° C	—80° C
μ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 80 469 1047 1526 1768 1810 1724 1573 1398 1225 1063 918 792 683	0 41 508 1777 3464 4954 5928 6382 6386 6127 5712 5222 4713 4220 3759	0 18 272 1085 2296 3481 4352 4834 4979 4833 4633 4300 3930 3930 3930 3198	0 7 138 628 1454 2353 3646 3781 3798 3676 3467 3215 3215 3214 2674	0 1 27 172 493 931 1372 1730 1971 2098 2114 2090 2004 1889 1760	0 0 1 8 39 105 203 316 426 520 592 640 666 673 663	μ 18 19 20 21 22 23 24 25 26 28 30 40 50 80	511 443 386 337 295 228 202 179 142 114 44 20	2961 2626 2329 2068 1840 1639 1462 1307 1170 947 771 311 146 77	2557 2281 2034 1816 1622 1448 1105 1047 850 696 285 135 72 25	2175 1954 1754 1574 1413 1270 1141 1028 926 757 623 259 124 66 24	1491 1363 1242 1129 1026 931 846 768 698 579 482 209 102 55	623 594 561 527 494 460 428 398 369 317 272 130 67 38
17	590	3340	2862	2417	1626	649	100	2	12	ΙĬ	10	9	7

COOLING BY RADIATION AND CONVECTION.

TABLE 286. - At Ordinary Pressures.

According to McFarlane* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^2$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-8}t^{2}$$

when the surface is that of polished copper. In these equations, e is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Valu	e of e.	Ratio.
Polished surface.	Blackened surface.	Katio.
.000178	.000252	.707
.000186	.000266	.699
.000193	.000279	.692
.000201	.000289	.695
.000207	.000298	.694
.000212	.000306	.693
.000217	.000313	.693
.000220	.000319	.693
.000223	.000323	.690
.000225	.000326	.690
.000226	.000328	.690
.000226	.000328	.690
	Polished surface. .000178 .000186 .000193 .000201 .000207 .000212 .000217 .000220 .000223 .000225	.000178 .000252 .000186 .000266 .000193 .000279 .000201 .000289 .000207 .000298 .000212 .000306 .000217 .000313 .000220 .000319 .000223 .000323 .000225 .000326 .000226 .000328

TABLE 287. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 80 C.

Polishe	d surface.	Blacken	ed surface.
t	et	t	et
Pri	essure 76 cm	s. of Mer	CURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455
Pres	SSURE 10.2 CM	is. of Me	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791 .00490
PR	ESSURE 1 CM	. of Merc	CURY.
65 60 50 40 30 23.5	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00639 .00569 .00146

^{* &}quot;Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

COOLING BY RADIATION AND CONVECTION.

TABLE 288. — Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosu	re 16° C., $t = 408^\circ$ C.	Temp. of enclosure 17° C., $t = 505^{\circ}$ C.					
Pressure in mm.	et	Pressure in mm.	et				
740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.09.‡ .053 .034 .013 .0046 .00052 .00019 Lowest reached } but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 "				

TABLE 289. — Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

Tomp of		Pressure in mo.							
Temp. of wire in Co.	10.0	1.0	0.25	0.025	About o.1 M.				
100° 200 300 400 500 600 700 800 900	0.14 .31 .50 .75 	0.11 .24 .38 .53 .69 .85	0.05 .11 .18 .25 .33 .45	0.01 .02 .04 .07 .13 .23 .37 .56	0.005 .0055 .0105 .025 .055 .13 .24 .40				

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

PROPERTIES OF STEAM.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gram or the kilogram is taken as the unit of mass.

Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grams per sq. centimeter $= \rho$.	Pressure in atmospheres.	Total heat of evaporation from o° at $t^{\circ} = H$.	Heat of liquid $= h$.	Heat of evaporation $= H - h$.	Outer latent or external-work heat $= A \rho v$.*	Total heat of steam $=H-A \rho v$.	Inner latent or internal-work heat $=H-(h+A\rho r)$.	Liters per gram, or cubic meters per kilog. = v.	Ratio of inner latent heat to volume of steam.
0° 5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017	606.5 608.0 609.5 611.1 612.6	0.00 5.00 10.00 15.00 20.01	606.5 603.0 599.5 596.0 592.6	31.07 31.47 31.89 32.32 32.75	575.4 576.5 577.7 578.8 579.8	575.4 571.5 567.7 563.7 559.8	210.66 150.23 108.51 79.35 58.72	2.732 3.805 5.231 7.104 9.532
25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	614.1 615.6 617.2 618.7 620.2	25.02 30.03 35.04 40.05 45.07	585.6 582.1	33.20 33.66 34.12 34.59 35.06	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.64 16.59 21.54 27.70 35.26
50 55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	621.7 623.3 624.8 626.3 627.8	50.09 55.11 60.13 65.17 70.20	568.2 564.7 561.1	35.54 36.02 36.51 37.00 37.48	586.2 587.2 588.3 589.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44.49 55.65 69.02 84.94 103.75
75 80 85 90 95	348 353 358 363 368	288. 5 0 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7	0.380 .466 .570 .691 .834	629.4 630.9 632.4 633.9 635.5	75.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	37.96 38.42 38.88 39.33 39.76	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181.5 216.0 255.7
100 105 110 115 120	373 378 383 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	637.0 638.5 640.0 641.6 643.1	100.5 105.6 110.6 115.7 120.8	536.5 533.0 529.4 525.8 522.3	40.20 40.63 41.05 41.46 41.86	596.8 597.9 599.0 600.1 601.2	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 3125.6	2371. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	518.7 515.1 511.6 508.0 504.4	42.25 42.63 43.01 43.38 43.73	602.4 603.5 604.7 605.8 607.0	476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
150 155 100 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4.712 5.380 6.120 6.940 7.844	652.2 653.8 655.3 656.8 658.3	151.5 156.5 161.7 166.9 172.0	500.8 497.2 493.5 489.9 486.3	44.43 44.76	609.3 610.5 611.7 612.9	456.7 452.8 448.8 444.8 440.9	0.3839 0.3388 0.3001 0.2665 0.2375	1190. 1336. 1496. 1669. 1856.
175 180 185 190 195	448 453 458 463 468	6717.4 7546.4 8453.2 9442.7 10520.	9133. 10260. 11490. 12838, 14303.	8.839 9.929 11.123 12.425 13.842	659.9 661.4 662.9 664.4 666.0	177.2 182.4 187.6 192.8 198.0	482.7 479.0 475.3 471.7 468.0	45.71 46.01 46.30 46.59 46.86	614.2 615.4 616.6 617.9 619.1	436.9 433.0 429.0 425.0 421.1	0.2122 0.1901 0.1708 0.1538 0.1389	2059. 2277. 2512. 2763. 3031.
200	473	11689.	15892.	15.380	667.5	203.2	464.3	47.13	620.4	417.1	0.1257	3318.

^{*} Where A is the reciprocal of the mechanical equivalent of the thermal unit.

there A is the recipical of the mechanical equivalent of the distribution of the dist

TABLE 291. PROPERTIES OF STEAM.

British Measure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dweishauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B T. U.	Total heat per pound of steam in B. T. U.
1 2 3 4 5	144 288 43 ² 57 ⁶ 7 ²⁰	0.068 .136 .204 .272	102.0 126.3 141.6 153.1 162.3	334.23 173.23 117.98 89.80 72.50	0.0030 .0058 .0085 .0111	70.1 94.4 109.9 121.4 130.7	980.6 961.4 949.2 940.2 932.8	62.34 64.62 66.58 67.06 67.89	1043. 1026. 1011. 1007.	1113.0 1120.4 1127.0 1128.6 1131.4
6 7 8 9	864 1008 1152 1296 1440	0.408 .476 .544 .612 .680	170.1 176.9 182.9 188.3 193.2	61.10 53.00 46.60 41.82 37.80	0.0163 .0189 .0214 .0239 .0264	138.6 145.4 151.5 156.9 161.9	926.7 921.3 916.5 912.2 908.3	68.58 69.18 69.71 70.18 70.61	995.2 990.5 986.2 982.4 979.0	1133.8 1135.9 1137.7 1139.4 1140.9
11	1584	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	97 5.8	1142.3
12	1728	.816	202.0	31.90	.0314	170.7	901.5	71.34	97 2.8	1143.5
13	1872	.884	205.9	29.58	.0338	174.7	898.4	71.68	97 0.0	1144.7
14	2016	.952	209.5	27.59	.0362	178.4	895.4	72.00	967 .4	1145.9
15	2160	1.020	213.0	25.87	.0387	181.9	892.7	72.29	965.0	1146.9
16	2304	1.088	216.3	24.33	0.0411	185.2	890.1	72.57	962.7	1147.9
17	2448	.156	219.4	22.98	.0435	188.4	887.6	72.82	960.4	1148.9
18	2592	.224	222.4	21.78	.0459	191.4	885.3	73.07	958.3	1149.8
19	2736	.292	225.2	20.70	.0483	194.3	883.1	73.30	956.3	1150.6
20	2880	.360	227.9	19.72	.0507	197.0	880.9	73.53	954.4	1151.4
21	3024	1.429	230.5	18.84	0.0531	199.7	878.8	73.74	952.6	1152.2
22	3168	-497	233.0	18.03	.0554	202.2	876.8	73.94	950.8	1153.0
23	3312	-565	235.4	17.30	.0578	204.7	874.9	74.13	949.1	1153.7
24	3456	-633	237.7	16.62	.0602	207.0	873.1	74.32	947.4	1154.4
25	3600	-701	240.0	15.99	.0625	209.3	871.3	74.51	945.8	1155.1
26 27 28 29 30	3744 3888 4032 4176 4320	1.769 .837 .905 .973 2.041	242.2 244.3 246.3 248.3 250.2	15.42 14.88 14.38 13.91 13.48	0.0649 .0672 .0695 .0619	211.5 213.7 215.7 217.8 219.7	869.6 867.9 866.3 864.7 863.2	74.69 74.85 75.01 75.17 75.33	944.3 942.8 941.3 939.9 938.5	1155.8 1156.4 1157.1 1157.7 1158.3
31	4464	2.109	252.1	13.07	0.0765	221.6	861.7	75.47	937.2	1158.8
32	4608	.177	253.9	12.68	.0788	223.5	860.3	75.61	935.9	1159.4
33	4752	.245	255.7	12.32	.0811	225.3	858.9	75.76	934.6	1159.9
34	4896	.313	257.5	11.98	.0835	227.1	857.5	75.89	933.4	1160.5
35	5040	.381	259.2	11.66	.0858	228.8	856.1	76.02	932.1	1161.0
36	5184	2.449	260.8	11.36	0.0881	230.5	854.8	76.16	931.0	1161.5
37	5328	.517	262.5	11.07	.0903	232.2	853.5	76.28	929.8	1162.0
38	5472	.585	264.0	10.79	.0926	233.8	852.3	76.40	928.7	1162.5
39	5616	.653	265.6	10.53	.0949	235.4	851.0	76.52	927.6	1162.9
40	5760	.722	267.1	10.29	.0972	236.9	849.8	76.63	926.5	1163.4
41 42 43 44 45	5904 6048 6192 6336 6480	2.789 .857 .925 .993 3.061	268.6 270.1 271.5 272.9 274.3	9.83 9.61 9.41 9.21	0.0995 .1018 .1040 .1063 .1086	238.5 239.9 241.4 242.9 244.3	848.7 847.5 846.4 845.2 844.1	76.75 76.86 76.97 77.07 77.18	925.4 924.4 923.3 922.3 921.3	1163.9 1164.3 1164.7 1165.2 1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	843.1	77.29	920.4	1166.0
47	6768	.197	277.0	8.84	.1131	247.0	842.0	77.39	919.4	1166.4
48	6912	.265	278.3	8.67	.1153	248.3	841.0	77.49	918.5	1166.8
49	7056	·333	2 79.6	8.50	.1176	249.7	840.0	77.58	917.5	1167.2

PROPERTIES OF STEAM.

British Measure.

Pressure in peunds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51	7344	.469	282.1	8.19	.1221	252.2	838.0	77.76	915.7	1168.0
52	7488	.537	283.3	8.04	.1243	253.5	837.0	77.85	914.9	1168.3
53	7632	.605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	.673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.9	7.63	0.1310	257.1	834.2	78.12	912.3	1169.4
56	8064	.810	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1169.8
57	8208	.878	289.2	7.38	.1355	259.5	832.3	78.29	910.6	1170.1
58	8352	.946	290.3	7.26	.1377	260.7	831.5	78.37	909.8	1170.5
59	8496	4.014	291.4	7.14	.1400	261.8	830.6	78.45	909.0	1170.8
60	8640	4.082	292.5	7.03	0.1422	262.9	829.7	78.53	908.2	1171.2
61	8784	.150	293.6	6.92	.1444	264.0	828.9	78.61	907.5	1171.5
62	8928	.218	294.7	6.82	.1466	265.1	828.0	78.68	906.7	1171.8
63	9072	.286	295.7	6.72	.1488	266.1	827.2	78.76	905.9	1172.1
64	9216	.354	296.7	6.62	.1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4.422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66	9504	.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67	9648	.558	299.8	6.34	.1577	270.4	824.0	79.04	903.1	1173.4
68	9792	.626	300.8	6.25	.1599	271.4	823.2	79.11	902.3	1173.7
69	9936	.694	301.8	6.17	.1621	272.4	822.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273.4	821.6	79.25	900.9	1174.3
71	10224	.830	303.7	6.00	.1665	274.3	820.9	79.32	900.2	1174.6
72	10368	.898	304.6	5.93	.1687	275.3	820.1	79.39	899.5	1174.9
73	10512	.966	305.5	5.85	.1709	276.3	819.4	79.46	898.8	1175.1
74	10656	5.034	306.5	5.78	.1731	277.2	818.7	79.53	898.1	1175.4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	79.59	897.5	1175.7
76	10944	.170	308.3	5.63	.1775	279.1	817.2	79.65	896.9	1176.0
77	11088	.238	309.2	5.57	.1797	280.0	816.5	79.71	896.2	1176.2
78	11232	.306	310.1	5.50	.1818	280.9	815.8	79.77	895.6	1176.5
79	11376	.374	310.9	5.43	.1840	281.8	815.1	79.83	895.0	1176.8
80	11520	5.442	311.8	5.37	0.1862	282.7	\$14.4	79.89	894.3	1177.0
81	11664	.510	312.7	5.31	.1884	283.6	\$13.8	79.95	893.7	1177.3
82	11808	.578	313.5	5.25	.1906	284.5	\$13.0	80.01	893.1	1177.6
83	11952	.646	314.4	5.19	.1928	285.3	\$12.4	80.07	892.5	1177.8
84	12096	.714	315.2	5.13	.1949	286.2	\$11.7	80.13	891.9	1178.0
85 86 87 88 89	12240 11384 12528 12672 12816	5.782 .850 .918 .986 6.054	316.0 316.8 317.6 318.4 319.2	5.07 5.02 4.96 4.91 4.86	0.1971 .1993 .2015 .2036 .2058	287.0 287.9 288.7 289.5 290.4	811.1 810.4 809.8 809.2 808.5	80.19 80.25 80.30 80.35 80.40	891.3 890.7 890.1 889.5 888.9	1178.3 1178.6 1178.9 1179.0
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	\$0.45	888.4	1179.5
91	13104	.190	320.8	4.76	.2102	292.0	807.3	\$0.50	887.8	1179.8
92	13248	.258	321.6	4.71	.2123	292.8	806.7	\$0.56	887.2	1180.0
93	13392	.327	322.4	4.66	.2145	293.6	806.1	\$0.61	886.7	1180.3
94	13536	.396	323.1	4.62	.2166	294.3	805.5	\$0.66	886.1	1180.5
95	13680	6.463	323.9	4·57	0.2188	295.1	804.9	80.71	885.6	1180.7
96	13824	.531	324.6	4·53	.2209	295.9	804.3	80.76	885.0	1180.9
97	13968	.599	325.4	4·48	.2231	296.7	803.7	80.81	884.5	1181.2
98	14112	.667	326.1	4·44	.2252	297.4	803.1	80.86	884.0	1181.4
99	14256	.735	326.8	4·40	.2274	298.2	802.5	80.91	883.4	1181.6

TABLE 291 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fah r.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100	1,400	6.803	327.6	4.356	0.2295	298.9	802.0	80.95	882.9	1181.8
101	1,4544	.871	328.3	.316	.2317	299.7	801.4	81.00	882.4	1182.1
102	1,4688	.939	329.0	.276	.2338	300.4	800.8	81.05	881.9	1182.3
103	14832	7.007	329.7	.237	.2360	301.1	800.3	81.10	881.4	1182.5
104	1,4976	.075	330.4	.199	.2381	301.9	799.7	81.14	880.8	1182.7
105	15120	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	15264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	15408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	15552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	15696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110 111 112 113 114	15840 15984 16128 16272 16416	7.483 .551 .619 .687	334·5 335·2 335·8 336·5 337·2	3.984 .950 .917 .885 .853	0.2510 .2531 .2553 .2574 .2596	306.1 306.8 307.5 308.2 308.8	796.5 795.9 795.4 794.9 794.4	81.41 81.45 81.50 81.54 81.58	877.9 877.4 876.9 876.4 875.9	1184.0 1184.2 1184.4 1184.6 1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	875.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	\$1.82	\$73.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	\$1.86	\$72.7	1186.1
122	17568	.299	342.2	.615	.2766	314.1	790.3	\$1.90	\$72.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	\$1.94	\$71.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	\$1.98	\$71.4	1186.7
125	18000	8.503	344.1	3.534	0.2830	316.0	788.9	\$2.02	870.9	1186.9
126	18144	.571	344.7	.507	.2851	316.6	788.4	\$2.06	870.5	1187.1
127	18288	.639	345.3	.481	.2872	317.2	787.9	\$2.09	870.0	1187.2
128	18432	.708	345.9	.456	.2893	317.8	787.5	\$2.13	869.6	1187.4
129	18576	.776	346.5	.431	.2915	318.4	787.0	\$2.17	869.2	1187.6
130	18720	8.844	347.1	3.406	0.2936	319.0	786.5	\$2.21	868.7	1187.8
131	18864	.912	347.6	.382	.2957	319.7	786.1	\$2.25	868.3	1188.0
132	19008	.980	348.2	.358	.2978	320.3	785.6	\$2.28	867.9	1188.1
133	19152	9.048	348.8	.334	.2999	320.9	785.1	\$2.32	867.5	1188.3
134	19296	.116	349.4	.310	.3021	321.5	784.7	\$2.35	867.0	1188.5
135	19440	9.184	349.9	3.287	0.3042	322.1	784.2	82.38	866.6	1188.7
136	19584	.252	350.5	.265	.3063	322.6	783.8	82.42	866.2	1188.8
137	19728	.320	351.1	.442	.3084	323.2	783.3	82.45	865.8	1189.0
138	19872	.388	351.6	.220	.3105	323.8	782.9	82.49	865.4	1189.2
139	20016	.456	352.2	.199	.3126	324.4	782.4	82.52	865.0	1189.4
140 141 142 143 144	20160 20304 20448 20592 20736	9.524 .592 .660 .728 .796	352.8 353.3 353.9 354.4 355.0	3.177 .156 .135 .115	0.3147 .3168 .3190 .3211 .3232	325.0 325.5 326.1 326.7 327.2	782.0 781.6 781.1 780.7 780.3	82.56 82.59 82.63 82.66 82.69	864.6 864.2 863.8 863.4 863.0	1189.5 1189.7 1189.9 1190.0 1190.2
145	20880	9.864	355.5	3.074	0.3253	327.8	779.8	82.72	862.6	1190.4
146	21024	.932	356.0	.054	•3274	328.4	779.4	82.75	862.2	1190.5
147	21168	10.000	356.6	.035	•3295	328.9	779.0	82.79	861.8	1190.7
148	21312	.068	357.1	.016	•3316	329.5	778.6	82.82	861.4	1190.9
149	21456	.136	357.6	.997	•3337	330.0	778.1	82.86	861.0	1191.0

TABLE 291 (continued).

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
150 151 152 153 154	21600 21744 21888 22032 22176	.272 .340 .408 .476	358.2 358.7 359.2 359.7 360.2	2.978 .960 .941 .923 .906	o.3358 ·3379 ·3400 ·3421 ·3442	330.6 331.1 331.6 332.2 332.7	777·7 777·3 776.9 776.5 776.1	82.89 82.92 82.95 82.98 83.01	860.6 860.2 859.9 859.5 859.1	1191.2 1191.3 1191.5 1191.7 1191.8
155	22320	10.544	360.7	2.888	0.3462	333.2	775.7	83.04	858.7	1192.0
156	22464	.612	361.3	.871	.3483	333.8	775.3	83.07	858.3	1192.1
157	22608	.680	361.8	.854	.3504	334.3	774.9	83.10	858.0	1192.3
158	22752	.748	362.3	.837	.3525	334.8	774.5	83.13	857.6	1192.4
159	22896	.816	362.8	.820	.3546	335.3	774.1	83.16	857.2	1192.6
160	23040	10.884	363.3	2.803	o.3567	335.9	773.7	83.19	856.9	1192.7
161	23184	.952	363.8	.787	.3588	336.4	773.3	83.22	856.5	1192.9
162	23328	11.020	364.3	.771	.3609	336.9	772.9	83.25	856.1	1193.0
163	23472	.088	364.8	.755	.3630	337.4	772.5	83.28	855.8	1193.2
164	23616	.157	365.3	.739	.3650	337.9	772.1	83.31	855.4	1193.3
165 166 167 168 169	23760 23904 24048 24192 24336	.293 .361 .429 .497	365.7 366.2 366.7 367.2 367.7	2.724 .708 .693 .678 .663	0.3671 .3692 .3713 .3734 .3754	338.4 338.9 339.4 339.9 340.4	771.7 771.3 771.0 770.6 770.2	83.34 83.37 83.39 83.42 83.45	855.1 854.7 854.3 854.0 853.6	1193.5 1193.6 1193.8 1193.9 1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	.633 .701 .769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.8
175	25200	.11.905	370.5	2.578	0.3879	343-4	767.9	83.62	851.6	1194.9
176	25344	.973	371.0	.564	.3900	343-9	767.6	83.64	851.2	1195.1
177	25488	12.041	371.4	.550	.3921	344-3	767.2	83.67	850.9	1195.2
178	25632	.109	371.9	.537	.3942	344-8	766.8	83.70	850.5	1195.4
179	25776	.177	372.4	524	.3962	345-3	766.5	83.73	850.2	1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	.313 .381 .449 .517	372.8 373·3 373·7 374·2 374·6	2.510 ·497 ·485 ·472 ·459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1195.6 1195.8 1195.9 1196.1 1196.2
185	26640	12.585	375.1	2.447	0.4087	348.1	764.3	83.88	848.2	1196.3
186	26784	.653	375.5	.434	.4108	348.6	764.0	83.90	847.9	1196.5
187	26928	.721	376.0	.422	.4129	349.1	763.6	83.92	847.5	1196.6
188	27072	.789	376.4	.410	.4150	349.5	763.3	83.95	847.2	1196.7
189	27216	.857	376.8	.398	.4170	350.0	762.9	83.97	846.9	1196.9
190	27360	12.925	377·3	2.386	0.4191	350.4	762.6	83.99	846.6	1197.0
191	27504	.993	377·7	·374	.4212	350.9	762.2	84.02	846.3	1197.1
192	27648	13.061	378·2	·362	.4233	351.3	761.9	84.04	845.9	1197.3
193	27792	.129	378.6	·351	.4254	351.8	761.6	84.06	845.6	1197.4
194	27936	.197	379·0	·339	.4275	352.2	761.2	84.08	845.3	1197.5
195	28080	13.265	379·4	2.328	0.4296	352.7	760.9	84.10	845.0	1197.7
196	28224	•333	379·9	.317	.4316	353.1	760.5	84.13	844.7	1197.8
197	28368	•401	380·3	.306	.4337	353.6	760.2	84.16	844.4	1197.9
198	28512	•469	380·7	.295	.4358	354.0	759.9	84.19	844.0	1198.1
199	28656	•537	381·1	.284	.4379	354.4	759.5	84.21	843.7	1198.2

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
200	28800	13 605	381.6	2.273	0.4399	354.9	7 59.2	84.23	843.4	1198.3
201	28944	13.673	382.0	.262	.4420	355.3	7 58.9	84.26	843.1	1198.4
202	29088	13.742	382.4	.252	.4441	355.8	7 58.5	84.28	842.8	1198.6
203	29232	13.810	382.8	.241	.4461	356.2	7 58.2	84.30	842.5	1198. 7
204	29376	13.878	383.2	.231	.4482	356.6	7 57.9	84.33	842.2	1198.8
205	29520	13.946	383.7	2.221	0.4503	357.1	757.5	84.35	841.9	1199.0
206	29664	14.014	384.1	.211	·4523	357.5	757.2	84.37	841.6	1199.1
207	29808	14.082	384.5	.201	·4544	357.9	756.9	84.40	841.3	1199.2
208	29952	14.150	384.9	.191	·4564	358.3	756.6	84.42	841.0	1199.3
209	30096	14.218	385.3	.181	·4585	358.8	756.2	84.44	840.7	1199.4
210 211 212 213 214	30240 30384 30528 30672 30816	14.386 14.454 14.522 14.590 14.658	385.7 386.1 386.5 386.9 3 ⁸ 7.3	2.171 .162 .152 .143 .134	0.4605 .4626 .4646 .4666 .4687	359.2 359.6 360.0 360.4 360.9	755.9 755.6 755.3 755.0 754.7	84.46 84.48 84.51 84.53 84.55	840.4 840.1 839.8 839.5 839.2	1199.6 1199.7 1199.8 1199.9
215	30960	14.726	387.7	2.124	0.4707	361.3	754·3	84.57	838.9	1200.2
216	31104	14.794	388.1	.115	.4727	361.7	754·0	84.60	838.6	1200.3
217	31248	14.862	388.5	.106	.4748	362.1	753·7	84.62	838.3	1200.4
218	31392	14.930	388.9	.097	.4768	362.5	753·4	84.64	838.0	1200.5
219	31536	14.998	389.3	.088	.4788	362.9	753·1	84.66	837.7	1200.7

260 TABLE 292.

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY = V.

Date.	V Cm. per sec.	Mean.	Determined by	Reference.
1856 1868 1869 1874 1879 1879 1879 1880 1881 1882 1883 1884 " 1886 1886–8 " " 1888 1889 1890 1891 1892 1896 1898 1898 1899	2.75-2.92 × 10 ¹⁰ 2.71-2.88 2.86-3.00 2.950-3.018	3.11×10 ¹⁰ 2.84 2.81 2.90 2.981 2.96 2.967 2.955 2.999 2.87 2.963 3.019 3.015 3.009 2.92 3.000 2.996 3.009 2.991 3.001 2.9973 3.026 3.009 2.9971	R. Kohlrausch and W. Weber. Maxwell. Thomson and King. McKichan. Rowland. Ayrton and Perry. Hockin. Shida. Stoletow. Exner. J. J. Thomson. Klemenčič. Colley. Himstedt. Thomson, Ayrton and Perry. Rosa. J. J. Thomson and Searle. Pellat. Abraham. Hurmuzescu. Perot and Fabry. Webster. Lodge and Glazebrook. Rosa and Dorsey.	Pogg. Ann. 99; 1856. Phil. Trans.; 1868. B. A. Report; 1869. Phil. Mag. 47; 1874. Phil. Mag. 28; 1889. Phil. Mag. 7; 1879. B. A. Report; 1879. B. A. Report; 1880. Jour. de Phys.; 1881. Wien. Ber.; 1882. Phil. Trans.; 1883. Wien. Ber. 83, 89, 93; 1881-6. Wied. Ann. 28; 1886. Wied. Ann. 29, 33, 35; 1887-8. Electr. Rev. 23; 1888-9. Phil. Trans.; 1890. Jour. de Phys. 10; 1891. Ann. Chim. et Phys. 10; 1897. Ann. Chim. et Phys. 10; 1897. Ann. Chim. et Phys. 10; 1898. Phys. Rev. 6; 1898. Cam. Phil. Soc. 18: 1899. Bull. Bur. Standards 3; 1907.

The last of the above determinations is the result of an extended series of measurements upon various forms of condensers, and is believed to be correct within 1/100 per cent. This, however, assumes that the International Ohm is 10 9 c.g.s. units. The value of V is therefore subject to one-half the error of the International Ohm.

ABSOLUTE MEASUREMENTS OF CURRENTS AND OF THE ELECTRO-MOTIVE FORCE OF STANDARD CELLS.

Date				Electro			chemical n of Silv		es.
1872 Clark	Date.	Observer.	Method.	Cell at	Cell at	Paper Volta-	Cup Volta-	Septum Volta-	References.
1872 Clark Sine Galvanometer 1.4562 - - - - - - - - -				Volts.	Volts.	Mg.	Mg.	Mg.	
1910 Haga and Boerema Tangent Galvanometer - 1.01825 - - -	1873 1882 1884 1886 1887 1890 1896 1898 1903 1904 1905 1907 1907 1908 1908 1908 1908	F. Kohlrausch Mascart F. and W. Kohlrausch Rayleigh and Sedgwick Gray Koepsel Potier and Pellat Kahle† Patterson and Guthe Carhart and Guthe Carhart and Guthe Callendar and King Pellat tand Leduc Van Dijk and Kunst Guthe Van Dijk Ayrton, Mather and Smith Smith, Mather and Lowry Janet, Laporte and Jouaust ‡ Janet, Laporte and de la Gorce Guillet ‡ Pellat ‡ Haga and Boerema Rosa, Dorsey and Miller Rosa, Vinal and McDaniel	Sine Galvanometer Tangent Galvanometer Current Balance Tangent Galvanometer Current Balance Sine Galvanometer Electromag. Balance Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Electrodynamometer Revision of 1904 work Current Balance With the above Current Balance With the above Current Balance Electrodynamometer Tangent Galvanometer Tangent Galvanometer University Balance Electrodynamometer Tangent Galvanometer Current Balance With the above Current Balance With the above Current Balance With the above	I.4573 I.4562	I.0183 I.0183 I.01819 I.01812 I.01812 I.01812 I.01831	1.1363 -1.11794 1.11740 -1.1192 -1.1195 1.11823 -1.11827 1.11827	I.II773	1.1156 1.1183 1.1192 1.1183 1	

- 1 Proc. Roy. Soc. May 30th, 1872 (Values in B. A. volts at 1,5 S C.).
 2 Pogg. Ann. vol. 149, p. 170 (anode wrapped in clotb).
 3 J. de Phys. vol. 1, p. 109, vol. 3, p. 283.
 4 Wied. Ann. vol. 27, p. 1, 1886.
 5 Phil. Trans. A, vol. 27, p. 1, 1886.
 6 Phil. Mag. vol. 22, p. 380, 1886.
 7 Ann. d. Phys. vol. 19, p. 249, 1906.
 17 Phil. Trans. A, vol. 27, p. 463, 1908.
 18 Phil. Trans. A, vol. 27, p. 545, 1908.
 19 Bull. Int. Soc. Electr. vol. 8, p. 459, 1908. C. R. vol. 153, p. 718, 1911.
 20 Bull. Int. Soc. Electr. vol. 8, p. 523, 1908.
 21 Bull. Int. Soc. Electr. vol. 8, p. 533, 1908.
 22 Bull. Int. Soc. Electr. vol. 8, p. 535, 1908.
 23 Proc. Ak. Wiss. Amster. vol. 13, p. 587.
 24 Bull. Bureau Standards, vol. 13, p. 587.
 25 Bull. Sullent Soc. Electr. vol. 8, p. 573, 1908.
 27 Proc. Ak. Wiss. Amster. vol. 13, p. 587.
 28 J. C. R. vol. 136, p. 1649. (Muslin and filter paper both 20 Arch. Neer. Sci. IIIA, vol. 3, p. 324, 1913.
- * The values given in these columns are not strictly absolute volts since they were in most cases determined in terms of an absolute ampere and an international ohm. Hence they may be called "semi-absolute." No absolute determinations of the ohm have been made in recent times, but some are in progress.

 † Other values usually given as Kahle's results and officially used by the Reichsanstalt are voltameter determinations.

To include them here would necessitate including many others similarly made. The value 1.1183 includes 5 filter paper determinations out of 26 observations

‡ These values have been corrected for the difference between the French ohm at this time and that in use elsewhere. (C. R. vol. 153, p. 718.)

Measurements prior to Van Dijk (1906) and the subsequent filter paper voltameter determinations are now only of historical interest, but the large amount of work done in recent years makes these early determinations of especial interest. The errors due to the use of filter paper and other impurities (acid, alkali, colloidal matter, etc.) in the voltameter electrolyte make it impossible to apply corrections. The values for the cell are not readily comparable owing to variations in the voltage of the cell itself and the unit of resistance. See Dorn, Wiss. Abhl. der Phys. Tech. Reich., vol. II, p. 257. Since 1911 the voltage adoptage dorbed for the Weston Normal Cell at 20° C. is 1.0183 international volts in all the leading countries. The international volt is to be distinguished from the absolute volt since it is based on the definition of the mercury ohm and the silver voltameter, taking the electrochemical equivalent of silver to be 1.11800 mg per coulomb. The difference between the international volt and the absolute volt is negligible for practical purposes. The temperature coefficient of the Weston Normal Cell (saturated type) is given in Table 294. The new value of the Weston cell was adopted in the United States on Innuary 1. 1011. adopted in the United States on January 1, 1911.

262

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

		(a) Double Fluid Ce	LLS.		(a) Double Fluid Cells.													
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.													
Bunsen	Amalgamated zinc	$\begin{cases} 1 \text{ part } H_2SO_4 \text{ to } \end{cases}$	Carbon	Fuming H ₂ NO ₃ .	1.94													
"	" "	44	"	HNO ₃ , density 1.38	1.86													
Chromate .		$ \left\{ \begin{array}{l} \text{12 parts } K_2Cr_2O_7 \\ \text{to 25 parts of} \\ H_2SO_4 \text{ and 100} \\ \text{parts } H_2O \end{array} \right \right\} $	"	$ \left\{ \begin{array}{ll} \text{I part } H_2SO_4 \text{ to} \\ \text{I2 parts } H_2O \end{array} \right. \right\} $	2.00													
" .		$\left\{\begin{array}{cc} \text{1 part } H_2SO_4 \text{ to} \\ \text{12 parts } H_2O \end{array}\right\}$	"		2.03													
Daniell* .	£\$ £\$	$\left\{\begin{array}{cc} \text{1 part } H_2SO_4 \text{ to} \\ \text{4 parts } H_2O \end{array}\right\}$	Copper	Saturated solution \ of CuSO ₄ +5H ₂ O \	1.06													
	ee ee	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to} \\ \text{12 parts } H_2O \text{.} \end{array} \right\} $	"	66	1.09													
		$ \begin{cases} 5\% & \text{solution of } \\ \text{ZnSO}_4 + 6\text{H}_2\text{O} \end{cases} $	66	"	1.08													
" .	66 66	{ 1 part NaCl to } 4 parts H ₂ O . }	68	"	1.05													
Grove		$ \left\{ \begin{array}{c} \text{I part } H_2SO_4 \text{ to } \\ \text{I2 parts } H_2O . \end{array} \right\} $	Platinum	Fuming HNO ₃	1.93													
		Solution of ZnSO ₄	"	HNO ₃ , density 1.33	1.66													
"	" "	$\left\{\begin{array}{l} H_2SO_4 \text{ solution, } \\ \text{density 1.136.} \end{array}\right\}$	"	Concentrated HNO ₃	1.93													
"		$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ \text{density 1.136.} \end{array} \right\}$	"	HNO ₃ , density 1.33	1.79													
"		$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ \text{density 1.06} \end{array} \right\}$	"	"	1.71													
"		$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ \text{density 1.14} \end{array} \right\}$	"	HNO ₃ , density 1.19	1.66													
"		$\left\{ \begin{array}{l} H_2SO_4 \text{ solution,} \\ \text{density 1.06} \end{array} \right\}$	"		1.61													
"		NaCl solution	"	" density 1.33	1.88													
Marié Davy		$\left\{\begin{array}{c} 1 \text{ part } H_2SO_4 \text{ to } \\ 12 \text{ parts } H_2O \end{array}\right\}$	Carbon	Paste of protosulphate of mercury and water	1.50													
Partz		Solution of MgSO ₄	"	Solution of K ₂ Cr ₂ O ₇	2.06													

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.
		(b) SINGLE FLUID CELLS.		
Leclanche	Amal.zinc	Solution of sal-ammo-	Carbon. Depolari- zer: manganese peroxide with powdered carbon	1.46
Chaperon Edison-Lelande .		Solution of caustic } potash }	Copper. Depolar- (izer: CuO)	0.98
Chloride of silver	Zinc	{ 23 % solution of sal- } ammoniac }	} zer: silver chl'ride ∫	1.02
Law		15 % " " 1 pt. ZnO, 1 pt. NH ₄ Cl,	Carbon	1.37
Dry cell (Gassner)	"	3 pts. plaster of paris, 2 pts. ZnCl ₂ , and water to make a paste	46	1.3
Poggendorff	Amal. zinc	Solution of chromate of potash $\{$ 12 parts $K_2Cr_2O_7 + \}$	"	1.08
		$\left\{\begin{array}{c} 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O \end{array}\right.$	66	2.01
J. Regnault	" "	$\left\{\begin{array}{c} \text{1 part } H_2SO_4 + \\ \text{12 parts } H_2O + \\ \text{1 part } CaSO_4 \end{array}\right.$	Cadmium	0.34
Volta couple	Zinc	H_2O	Copper	0.98
		(c) STANDARD CELLS.		
Weston normal .	{Cadmi'm} { am'lgam}	{ Saturated solution of } CdSO ₄	$ \begin{cases} & \text{Mercury.} \\ \text{Depolarizer: paste} \\ \text{of} & \text{Hg}_2\text{SO}_4 \text{ and} \\ \text{CdSO}_4 \dots \dots \end{cases} $	1,0183* at 20° C
Clark standard .	{ Zinc } { am'lgam }	$\left\{ \begin{array}{c} \text{Saturated solution of} \\ \text{ZnSO}_4 \end{array} \right\}$	$\begin{cases} & \text{Mercury.} \\ & \text{Depolarizer: paste} \\ & \text{of } & \text{Hg}_2\text{SO}_4 \text{and} \\ & \text{ZnSO}_4 . . . \end{cases}$	1.434‡ at 15°C
		(d) Secondary Cells.		
Lead accumulator	Lead	$\left\{ \begin{array}{ll} H_2SO_4 \text{ solution of} \\ \text{density I.I} & . & . \end{array} \right\}$	PbO ₂	2.2†
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	"	1.68 to 0.85, av-
" (2) Main	Amal. zinc Amal. zinc	$ZnSO_4$ solution H_2SO_4 density ab't 1.1	" in H_2SO_4 .	(erage 1.3. 2.36 2.50
Edison	Iron	KOH 20 % solution .	A nickel oxide .	of full discharge.

c* E. M. F. hitherto used at Bureau of Standards. See p. 251. The temperature formula is $E_t = E_{20} - 0.0000406$ (t-20) - 0.00000065 $(t-20)^2 + 0.00000001$ $(t-20)^3$. The value given is that adopted by the Chicago International Electrical Congress in 1893. The temperature formula is $E_t = E_{15} - 0.00119$ (t-15) - 0.000007 $(t-15)^2$.

[†] F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different stages of charge:

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	Carbon,	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.
Distilled water	(.oI to (.17) — — — — — — — — — — — — — — — — — — —	.269 to .100 127 .103 .070 475 396	.148653605652	.171 139 - - 189 - -	856 .059	334 364 	
1 to 5 by weight 5 to 1 by weight	(.oi)	-	-	120	-	- 25	-
Concentrated sulphuric acid Concentrated nitric acid Mercurous sulphate paste Distilled water containing { trace of sulphuric acid	(3.0) (.55) to (.85)	1.113 ~ - -	- - -	72 to 1.252	1.3 to 1.6 .672		- - 24I

^{*} Everett's "Units and Physical Constants: "Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution : saturated at 15° C.	Zinc sulphate solution: sp. gr. 1.25 at 16°.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. 21nc sulphate.	Strong nitric acid.
Distilled water	.100	.231	-	_	_	043	-	.164	-	-
Alum solution: saturated	_	014	-	-	-	-	_	-	-	-
at 16°.5 C	_	-	-	-	-	-	.090	-	-	-
Copper sulphate solution: \\ saturated at 15° C \	_	-	-	043	-	-	_	.095	.102	-
Sea salt solution: sp. gr. (-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: (saturated at 15°.5 C.	-	348	-	-	-	_	-	_	-	-
Zinc sulphate solution: (sp. gr. 1.125 at 16°.9 C.	-	-	_	-	-	_	-	-	-	-
Zinc sulphate solution: (saturated at 15°.3 C)	284	-	-	200	-	095	_	-	-	-
One part distilled water + 3 parts saturated zinc sulphate solution	_	-	-	-	-	102	-	_	-	-
Strong sulphuric acid in distilled water:							_		_	
1 to 20 by weight		-	_	_	_	_	_		_	_
1 to 10 by volume	358	_	-	_	_	_	-	_		
1 to 5 by weight	.429	-	-	-	_	_	_	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid .			-	_	-	-	-	-	-	-
Mercurous sulphate paste . Distilled water containing \(\)	_	-	•475	-	_	_	-	-	-	079
trace of sulphuric acid.	_		_	_	_	_	_	_		.078

Ayrton and Perry's results, prepared by Ayrton.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

The following results are the "Volta differences of potential," as measured by an electrometer. They represent the difference of the potentials of the air near each of two metals placed in contact. This should not be confused with the junction electromotive force at the junction of two metals in metallic contact, which has a definite value, proportional to the coefficient of Peltier effect. The Volta difference of potential has been found to vary with the condition of the metallic surfaces and with the nature of the surrounding gas. No great reliance, therefore, can be placed on the tabulated values.

The temperature of the substances during the experiment was about 18° C.

	Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass.
Carbon	٥	.370	.485	.858	.113	·795	1.096†	1.208†	.414†
Copper	—·370	0	.146	.542	238	.456	.750	.894	.087
Iron	— .485†	146	0	.401†	369	.313†	.600†	·744†	064
Lead	858	542	401	0	—.77 I	099	.210	·357†	472
Platinum	→ .113†	.238	.369	.771	٥	.690	.981	1.125†	.287
Tin	- .795 [†]	 458	313	.099	690	٥	.281	.463	372
Zinc	-1.096†	750	600	216	981	.281	0	.144	679
" amalgam	— 1.20S†	894	- .744	- .357†	-1.125†	463	144	0	822
Brass	414	- .oS ₇	.064	.472	287	-372	.679	.822	0

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temperature, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

^{*} Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strengtl gran	of the solution in molecules per liter.	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Silver.
No. of molecules.	Salt.		Differe	ence of poten	tial in centiv	olts.	
0.5 1.0 1.0 0.5	$egin{array}{l} H_2SO_4 \\ NaOH \\ KOH \\ Na_2SO_4 \\ Na_2S_2O_3 \end{array}$	0.0 -32.1 -42.5 1.4 -5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 0.2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	95.8 104.0 120.9 64.8
1.0 1.0 0.5 0.5	KNO ₃ NaNO ₃ K ₂ CrO ₄ K ₂ Cr ₂ O ₇ K ₂ SO ₄	11.8‡ 11.5 23.9‡ 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8
0.5 0.25 0.167 1.0	$({ m NH_4})_2{ m SO_4} \ { m K_4FeC_6N_6} \ { m K_6Fe_2}({ m CN)_2} \ { m KCNS} \ { m NaNO_3}$	-0.5 -6.1 41.0§ -1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57.6‡ 41.2 130.9 52.7 49.0	101.5 — ‡ 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6?
0.5 0.12 5 1.0 0.2 0.167	SrNO ₃ Ba(NO ₃) ₂ KNO ₃ KClO ₃ KBrO ₃	14.8 21.9 — ‡ 15-10‡ 13-20‡	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8
1.0 1.0 1.0 1.0	NH₄Cl KF NaCl KBr KCl	2.9 2.8 — 2.3 —	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52-6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6
0.5 - 1.0 0.5 0.5	$egin{array}{l} { m Na_2SO_3} \\ { m NaOBr} \\ { m C_4H_6O_6} \\ { m C_4H_6O_6} \\ { m C_4H_4KNaO_6} \\ \end{array}$	-8.2 18.4 5.5 4.1 -7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6 ‡ 54.4\$ 57.6 42-47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7

^{* &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

[‡] Not constant.

[§] After some time.

A quantity of bromine was used corresponding to NaOH = 1.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C. difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power =Q=dE/dt=A+Bt, where A is the thermoelectric power at \circ° C., B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt=0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/\mathcal{I} , in which Q is in volts, T is the absolute temperature of the junction, and $\mathcal{I}=4.19$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb, $=BT\theta/\mathcal{I}$, in which B is in volts per degree C., T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the cold junction to the hot. When B is positive, the current flows in the metal considered from the cold junction to the hot. When B is positive, B in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power of a couple composed of two metals, I and 2, is given by subtracting the value for 2 from that for 1; when this

The table has been compiled from the results of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts. The value for constantin was reduced from results given in Landoit-Börnstein's tables. The thermoelectric powers of antimony and bismuth alloys are given by Becquerel in the

reference given below.

Substance.	A Microvolts.	B Microvolts,	at mean	ctric power temp. of microvolts).	Neutral pointAB	Author-
Aluminum Antimony, comm'l pressed wire axial equatorial ordinary Argentan Arsenic Bismuth, comm'l pressed wire equatorial argentan argenta		-0.0039 -1 -0.0506 -1 -0.0424 -1 -0.0101 -0.0482 -1 -0.0000 -0.0094 -1 -0.0506 -0.2384 -0.0506	0.68 -6.0 -22.6 -26.4 -17.0 12.95 13.56 97.0 89.0 65.0 45.0 -3.48 -1.52 -0.10 -3.8 -1.2 -3.0 -16.2 -17.5 -0.00 -2.03 0.413 -22.8	0.56	195	T M " " B T B M " " B T B M " " T M B M B " T M B M B " T M B M B " T M B M B " T M B M B " T M B M B M B M B M B M B M B M B M B M

TABLES 298 (continued)-299. - THERMOELECTRIC POWER.

TABLE 298. - Thermoelectric Power (continued).

Substanc e.	A Microvolts.	B Microvolts.	at mean	etric power temp of nicrovolts).	Neutral point $-\frac{A}{B}$.	Author-
Palladium Phosphorus (red) Platinum (malleable) wire another specimen Platinum-iridium alloys: 85 % Pt+15 % Ir 95 % Pt+5 % Ir Selenium Silver (pure hard) wire Tellurium β Tellurium β Tin (commercial) " Zinc "pure pressed	6.182.57 0.607.90 -5.90 -6.152.1211.27 0.43 -2.32	0.0355 	6.9 -29.9 -0.9 -2.42 8.828.03 -5.63 -6.26 -8072.41 -3.00 -10.62 -50215001600.1 0.33 -2.79 -3.7	-5.23	-174 347 -55 - [-1274] 444 [-1118]144 347 78 -98	T B M " T " " B " " M B T T M B B H H H " M T " M M T " M M T " M M T " M M T " M M T " M M M T " " M M M T " " M M M T " " M M M T " " M M M T " " M M M T " " M M M M

Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin. Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

M T

B Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ = 0.04, Tea 1.7 e. m. units.)

TABLE 299. — Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as — 1.9.

Substance.	Relative quantity.	Thermoelec tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.	Substance.	Relative quantity.	Thermoelec- tric power in microvolts.
Antimony Cadmium	806 } 696 }	227	Antimony Zinc	2) I }	43	Bismuth Antimony	4 }	-51.4
Antimony Cadmium Zinc	4 2	146	Tin Antimony Cadmium	12)	35	Bismuth Antimony	8 }	-63.2
Antimony Cadmium	So6) 696 }	137	Zinc	3)	33	Bismuth Antimony	10}	-68.2
Bismuth Antimony	806 }	_	Antimony Tellurium	10}	10.2	Bismuth Antimony	12 } I }	-66.9
Zinc Antimony	406 } 806 }	95	Antimony Bismuth	10	8.8	Bismuth Tin	2 }	60
Zinc Bismuth	406	8.1	Antimony Iron	4 t	2.5	Bismuth Selenium	10 }	-24.5
Antimony Cadmium	4 2	76	Antimony Magnesium	8 1	1.4	Bismuth	12 }	-31.1
Lead Zinc	I	/0	Antimony Lead	8 }	-0.4	Zinc Bismuth	12 }	
Antimony Cadmium	4 2	46	Bismuth	-	— 43.8	Arsenic Bismuth	1 }	-46.0
Zinc Tin	I	40	Bismuth Antimony	2 1	-33.4	Bismuth sulphide	1 }	68.1

TABLE 300. - Thermoelectric Power against Platinum.

One junction is supposed to be at o°C; + indicates that the current flows from the o° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.*

Tempera- ture, ° C.	Au.	Ag.	90%Pt+ 10%Pd.	10%Pt+ 90%Pd.	Pd.	90%Pt+ 10%Rh.	90%Pt+ 10%Ru.	Ir.	Rħ.
-185 -80 +100 +200 +300 +400 +500 +600 +700 +800 +1000 +1100 +(1300) +(1500)	-0.15 -0.31 +0.74 +1.8 +3.0 +4.5 +6.1 +7.9 +12.0 +14.3 +16.8	-0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +10.6 +13.2 +16.0	-0.11 -0.09 +0.26 +0.62 +1.0 +1.5 +1.9 +2.4 +2.9 +3.4 +3.8 +4.3 +4.8	+0.24 +0.15 -0.19 -0.31 -0.37 -0.18 +0.12 +0.61 +1.2 +2.1 +4.2	+0.77 +0.39 -0.56 -1.20 -2.0 -2.8 -3.8 -4.9 -6.3 -7.9 -9.6 -11.5	+2.3 +3.2 +4.1 +5.1 +6.2 +7.2 +8.3 +9.5 +10.6 +13.1 +15.6	-0.53 -0.39 +0.73 +1.6 +2.6 +3.6 +4.6 +5.7 +6.9 +8.0 +10.4 +11.6 +14.2 +16.9	-0.28 -0.32 +0.65 +1.5 +2.5 +3.6 +4.8 +6.1 +7.6 +9.1 +10.8 +12.6 +14.5 +18.6 +23.1	-0.24 -0.31 +0.65 +1.5 +2.6 +3.7 +5.1 +6.5 +8.1 +9.9 +11.7 +13.7 +15.8 +20.4 +25.6

^{*} Holborn and Day.

TABLE 301 .- Thermal E. M. P. of Pure Platinum Against Platinum-Rhodium Alloys, in Millivolts.*

				10 p. ct.						
t	1 p. ct.	5 p. ct.	Low.	High.	Stan- dard.	15 p. ct.	20 p. ct.	30 p. ct.†	40 p. ct.†	100 p. ct.‡
100°	0.21	0.55	0.63	0.64	0.64	0.65				0.65
200	0.42	1.18 1.85	1.41 2.28	1.43	1.43	1.50		2.24	2.45	1.51
300	0.63	2.53	3.21	2.32 3.26	2.32 3.25	2.4I 3.45	3.50	2.34 3.50	2.45 3.64	2.57 3.76
400 500	1.05	3.22	4.17	4.23	4.23	4.55	4.60	4.74	4.93	5.08
600	1.25	3.92	5.16	5.24	5.23	5.71	5.83	6.06	6.31	6.55
700	1.45	4.62	6.19	6.28	6.27	6.94	5.83 7.18	7.49	7.Š0	8.14
800	1.65	5.33	7.25	7.35	7.33	8.23	8.60	9.01	9.37	9.87
900	1.85	6.05	8.35	8.46	8.43	9.57	10.09	10.67	11.09	11.74
1000	2.05	6.79	9.47	9.60	9.57	10.96	11.65	12.42	12.94	13.74
1100	2.25	7.53	10.64	10.77	10.74	12.40	13.29	14.33	14.99	15.87
1200	2.45	8.29	11.82	11.97	11.93	13.87	14.96 16.65	16.39	17.13	
1300	2.65 2.86	9.06 9.82	13.02	13.18	13.13	15.38 16.98	18.39	20.67	19.51 21.73	20.46
1400	3.06	10.56	14.22 15.43	14.39 15.61	14.34 15.55	18.41	20.15	20.07		
1600	3.26	11.31	16.63	16.82	16.75	19.94	21.90			
1700	3.46	12.05	17.83	18.03	17.95	21.47	23.65			
1755	3.56	12.44	18.49	18.70	18.61	22.31	24.55			

^{*} Carnegie Institution, Pub. 157, 1911.

SMITHSONIAN TABLES.

† Holborn and Wien, 1892.

[‡] Holborn and Day, mean value, 1899.

TABLE 302. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 298, as there shown. Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

	Calories per ampere-hour.										
	Sb. ‡	Sb. com- mercial.	Bi. pure.	Bi. §	Cd.	German Silver.	Fe.	Ni.	Pt.	Ag.	Zn.
Jahn*	_	-	-	-	62	-	— 3.61	4.36	0.32	41	58
Le Roux† .	13.02	4.8	19.1	25.8	0.46	2.47	2.5	-	-	-	.39

* "Wied. Ann." vol. 34, p. 767.
† "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
‡ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
§ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 303. — Peltier Effect, Fe-Constantan, Ni-Cu, 0 — 560° C.

Temperature.	oo	200	130 ⁰	240°	320 ⁰	560°	
Fe-Constantan	3.1	3.6	4.5	6.2	8.2	12.5	in Gram. Cal. X-108
Ni-Cu	1.92	2.15	2.45	2.06	1.91	2.38	per coulomb.

TABLE 304. - Peltier Electromotive Force in Millivolts.

Metal against Copper.	Sb.	Fe.	Cd.	Zn,	Ag.	An.	Pb.	Sn.	A1.	Pt.	Pd.	Ä.	Bi.
Le Roux .	— 5.64	-2.93	53	45	_	-	-	-	-	-	-	-	+22.3
Jahn	-	-3.68	72	68	48	-	-	-	-	+.37	-	+5.07	-
Edlund	-	-2.96	16	01	+.03	+.33	+.50	+.56	+.70	+1.02	+2.17	-	+17.7
Caswell	-	-	-	-	+.03	-	-	-	+.70	+.85	-	+6.0	+16.1

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM.

1883 L 1884 M 1887 K 1887 K 1882 G 1888 G 1890 W 1890 D 1891 Jo 1894 Jo 1895 H	Lord Rayleigh Lord Rayleigh Mascart Rowland Cohlrausch Glazebrook Wuilleumeier Ouncan and Wilkes ones Ones Himstedt	Rotating coil Lorenz method Induced current Mean of several methods Damping of magnets Induced currents . Mean effect of induced currents Lorenz method Lorenz method Mean effect of induced	0.98651 .98677 .98611 .98644 .98660 .98665	0.95412 .95412 .95374 .95349 .95338 .95352	106.24 106.21 106.33 106.32 106.32 106.29
1890 D 1891 Jo 1894 Jo 1895 H	Ouncan and Wilkes	currents Lorenz method Lorenz method Lorenz method	.98686 .98634 -		106.34 106.31
	Ayrton and Jones . Guillet	current Lorenz method Mean effect of induced cur		- -	106.33 106.28 106.27
		a calibrated 1000-0hm c Means	0.98651	0.95366	106.20
1884 W 1884 H 1884 H 1884 R	Wild	Damping of magnet Earth inductor Induced current Rotating coil Mean effect of induced cu German silver coils certifie Mean effect of induced cu German silver coils certifie Lorenz method Damping of magnet 2 phase	d by makers rrent, using	-	106.03 106.19 105.37 106.16 105.89 105.98 105.93 106.24 106.27

The legal value of the ohm is the resistance of a column of mercury of uniform cross-section, weighing 14.4521 gms., and having a length of 106.30 cms. This is known as the international ohm. Mercury ohms conforming to these specifications have been prepared in recent years at the Physikalisch-Technische Reichsanstalt, the National Physical Laboratory, and the Bureau of Standards. The wire standards of resistance at the above-named laboratories agree in value to within two parts in 100000. Hence there is a very close agreement in the values of precision resistances calibrated at these laboratories.

TABLE 306. 273

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin (1862) from Matthiessen's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the densities found by Matthiessen, namely, 10-468, 19-265, and 8-95.

Substance.	Resistance at o° C, of a wire one cm. long, one sq. cm. in section.	Resistance at o° C. of a wire one metre long, one mm. in diam.	Resistance at o° C. of a wire one metre long, weighing one gram.	Resistance at ο° C. of a wire one foot long, τότσ in. in diam.	Resistance at o° C. of a wire one foot long, weighing one grain.	Percentage increase of resistance for 12 C. increase of temp. at zo° C.
Silver annealed	1.460 × 10-6	0.01859	.1 523	8.781	.2184	0.377
" hard drawn	1.585 "	0.02019	.1659	9.538	.2379	-
Copper annealed	1.584 "	0.02017	.1421	9.529	.2037	0.388
" hard drawn	1.619 "	0.02062	.1449	9.741	.2078	-
Gold annealed	2.088 "	0.02659	.4025	12.56	.5771	0.365
" hard drawn	2.125 "	0.02706	.4094	12.78	.5870	-
Aluminium annealed	2.906 "	0.03699	.0747	17.48	.1071	-
Zinc pressed	5.613 "	0.07146	.4012	33.76	·57 53	0.365
Platinum annealed	9.035 "	0.1150	1.934	54-35	2.772	-
Iron "	9.693 "	0.1234	.7551	58.31	1.083	-
Nickel "	12.43 "	0.1583	1.057	74.78	1.515	-
Tin pressed	13.18 "	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14 "	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35.42 "	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9 "	1.667	12.86	787.5	18.43	0.354
Mercury "	94.07 "	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, 1 part Pt, by weight	24-33 "	0.3098	2.919	146.4	4.186	0.031
German silver	20.89 "	0.2660	1.825	125.7	2.617	0.044
Gold-silver, 2 parts Au, } 1 part Ag, by weight .	10.84 "	0.1380	1.646	65.21	2.359	0.065

SPECIFIC RESISTANCE OF METALS.

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° is taken as 94.1 microhms.

Substance.	State.	Temperature, °C.	Resistance.	Authority.
Aluminum	c. p.	- 189.	0.64	Niccolai, 1907.
64	"	-100.	1.53	
46	"	0.	2.62	" "
"	64	+ 100.	3.86	" "
46	"	400.	š.o	""
66		20.	2.828	See p. 284.
Antimony		- 190.	10.5	Eucken, Gelhoff.
44		0.	38.6	Mean.
66	liquid	+860.	120.	de la Rive.
Arsenic		٥.	35-	Matthiessen.
Bismuth		18.	119.0	Jäger, Diesselhorst.
bisinuti		100.	160.2	
Cadmium	drawn	- 160.	2.72	Lees, 1908.
Cadimum	"	18.	7.54	Jäger, Diesselhorst.
46	"	100.	9.82	" "
	liquid	318.	34.1	Mean.
Cæsium	nquia	— 187.	5.25	Guntz, Broniewski.
casium,		0.	19.	Mean.
Calcium	99.5 pure	20.	10.5	Moissan, Chavanne
Chromium	32.2 Lane	0.	2.6	Shukow.
Cobalt	99.8 pure	20.	9.7	Reichardt, 1901.
Copper	annealed	20.	1.724	See p. 284.
Copper	hard-drawn	20.	1.77	" " "
"	electrolytic	-206.	.144	Dewar, Fleming,
	electrolytic "	+ 205.	2.92	Dickson.
"	pure	400.	4.10	Niccolai, 1907.
Gallium	pure	0.	53.	Guntz, Broniewski.
Gold	99.9 pure	- 183.	0.68	D, F, D, 1898.
Gold	99.9 parc	0.	2.22	Mean.
	pure, drawn	18.	2.42	J, D, 1900.
66	99.9 pure	194.5		D, F, D, 1898.
Indium	99.9 pure	0.	3·77 8·37	Erhardt, 1881.
Iridium		— 186.	1.92	Broniewski, Hack-
main		0,	6.10	spill, 1911.
"		+100.	8.3	"""
Iron	pure, soft	-205.3	.652	D, F, D, 1898.
"	pure, sort	— ₇₈ .	5.32	", ", ", ",
"	" "	0.	8.85	
"	" "	+ 98.5	17.8	
66	"	196.1	21.5	
4	46	400.	43.3	Niccolai, 1907.
steel · · ·	cast	ord.	19.1	Kohlrausch.
steel · · ·	"	yel. ht.	104.	"
66	66	wh. ht.	114.	44
"	piano-wire	VII. III.	11.8	Strouhal, Barus, '83.
66	temp. glass, hard	0.	45.7	
16	" " yellow	0.	27.	" " "
"	" " blue	0.	20.5	" "
46	" " soft	0.	15.9	" " "
Lead	cold-pressed	-183.	6.02	D, F, D, 1898.
read	" "	— 78.	14.1	ei 16 61 61
44	44 44	0.	20.4	
46	"	90.4	28.0	
66	"	196.1	36.9	
16		318.	94.	Vincentini, Omodei
Lithium	solid	-187.	1.34	Guntz, Broniewski.
Liuiiuiii	30114	1 .0/.	5-	1

TABLE 307 (continued) .

SPECIFIC RESISTANCE OF METALS.

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° C is taken as 94.1 microhms.

Substance.	State.	Temperature, °C.	Resistance.	Authority.
Lithium, continued """ Manganese Magnesium "" "" Mercury "" "" "" "" "" "" "" "" "" "" "" "" ""	liquid free from zn. " " " " " " pure solid " " " "	0. 99.3 230. —183. — 78. 0. 98.5 400. —183.5 —147.5 —102.9 — 50.3 — 39.2 — 36.1	8.55 12.7 45.2 5.0± 1.00 2.97 4.35 5.99 11.9 6.97 10.57 15.04 21.3 25.5 80.6	Authority. Guntz, Broniewski. Bernini, 1905. Shukow. Dewar, Fleming, Dickson, 1898. D, F, D, 1898. Niccolai, 1907. D, F, D, 1898. """ """ """ """ """ """ """
" " " " " " " " " " " " " " " " " " "	liquid " " " " pure " "	0.0 10. 20. 50. 100. 200. 350. —182.5 —78.2 0. 94.9 400.	94.07 94.92 95.74 98.50 103.25 114.27 135.5 1.44 4.31 6.93 11.1 60.2 9.5	Strecker, 1885. Grimaldi, 1888. Vincentini,Omodei, 1890. Fleming, 1900. " " " " Niccolai, 1907. Blau, 1905.
Osmium	very pure """ """ wire "" "" ""	-183. -78. 0. 98.5 -203.1 -97.5 0. 100. 400. -186. -78.3 0.	2.78 7.17 10.21 13.79 2.44 6.87 10.96 14.85 26.0 0.70 3.09 4.69	Dewar, Fleming, '96 """" D, F, D. """" Niccolai, 1907. Broniewski, Hack- spill, 1911.
Rubidium	solid "liquid electrolytic " " " " 999.8 pure	100190. 0. 40183 78. 0. 98.15 192.1 400. 18 20178 78.3 0. 50.	6.66 2.5 11.6 19.6 0.390 1.021 1.468 2.062 2.608 3.77 1.629 58.± 24.8 0.80 2.86 4.48 5.32	" "Hackspill, 1910. " " D, F, D, 1898. " " " " " " " " Niccolai, 1907. Jäger, Diesselhorst — Matthiessen, 1857. Guntz, Broniewski 1909. "

TABLES 307, 308.

SPECIFIC RESISTANCE OF METALS.

TABLE 307 (concluded).

The resistance is here given as the resistance in microhms per cm. cube when the specific resistance of mercury at 0° C. is taken as 94.1 microhms.

Substa	ance.	State.	Temperature, C.	Resistance.	Authority.		
Tantalum Tellurium Thallium " " Titanium Tin " " " " " " " " " " " " " " " " " " "		Pure Pure "" "" Trace Fe "" "" "" Liquid	-19.6° -18378. 98.5 -18378. 0. 91.45 17618378. 0. 92.45 191.5	14.6 21.5 4.08 11.8 17.60 24.7 3.19 3.40 8.8 13.0 18.2 23.6 1.02 3.34 5.75 8.00 10.37	Pirani. Matthiessen, 1852. Dewar, Fleming, Dickson, 1898. """"""""""""""""""""""""""""""""""		

TABLE 308. - Temperature Resistance Coefficients.

If R_0 is the resistance at the temperature t_0 , and R_t at the temperature t, then R_t may over small ranges of temperature be approximately represented by the formula $R_t = R_0 (1 + at)$.

			See		r		See
Substance.	Temperature.	a.	at foot.	Substance.	Temperature.	a.	at foot.
			-				
Aluminum	18-100° C.	0.0030		Nickel	0–100° С.	0.0062	
"	$t_0 = 25^\circ$	0.0039	I	WICKEI			3
	100	.0034	2 "	"	$t_0 = 25^{\circ}$	0.0043	2
	500	.0040	1 "	"	100	.0043	١,,
Bismuth	0-100	.0030	l _ l		500 1000	.0030	"
Cadmium	0-100	.00430	_	Palladium	0-100	.0037	1
Copper	see p. 284-85	.0040	_	Platinum	0-100	.0035	3
"	$t_0 = 100^{\circ}$.0038	2	Silver	0~100	.0037	"
"	400	.0030		4	$t_0 = 25^{\circ}$.0030	2
"	1000	.0062	"	"	100	.0036	"
Gold	18-100	.00368	1	"	500	.0030	"
" annealed	$t_0 = 100^{\circ}$.0025	2	Tantalum	0-100	.0033	6
" "	500	.0035	~	Tin	18-100	.0033	ľ
" "	1000	.0049	"	Tungsten	18-100	.0045	1 "
Iron, pure	0-100	.0062	3	""	$t_0 = 500^{\circ}$.0043	2
" "	t _o == 25°	.0052	2	"	1000	.0089	"
""".	100	.0068	"	Zinc	0-100	.0040	3
"""	500	.0147	"				1-
""	1000	.0050	66	Advance	$t_0 = 12^{\circ}$	+.000020	2
steel	glass, h'd	.0016	4	"	50	000008	"
	blue	.0033	"	"	100	000007	"
"	piano wire	.0032	46	"	200	+.000007	"
Lead	18-100	.0043	1	Constantin .	12	+.000008	["]
Magnesium	0-100	.0038	3	" .	25	+.000002	"
"	$t_0 = 25^{\circ}$.0050	2	" .	100	000033	"
"	100	.0045	"	" .	200	000020	۱ "
"	500	.0036	"	" .	500	+.000027	"
"	600	.0100	"	Manganin	12	+.000006	"
Mercury*	0-15	.00088	5		25	.000000	"
Molybdenum .	$t_0 = 25^{\circ}$.0033	2	"	100	000042	"
	100	.0034	"	"	250	000052	"
	500	.0050	"	"	475	.000000	"
" · ·	1000	.0048	"	"	500	000110	"

1, Jäger, Diesselhorst, Wiss. Abh. D., Phys. Tech. Reich. 3, p. 269, 1900; 2, Somerville, Phys. Rev. 31, p. 261, 1910. 33, p. 77, 1911; 3, Dewar, Fleming, 1893, 1896; Strouhal, Barus, 1883; 5, Glazebrook Phil. Mag. 20, p. 343, 1885; 6, Pirani.

^{*} Mercury, $R = R_0 (t + .00089t + 000001t^2)$.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

Conductivity in mhos or $\frac{1}{\text{ohms per cm. cube}}$ = C_t = C_o (1-at+bt2).

		1		ī	1 :		
Metals and alloys.	Composition by weight.	$\frac{C_0}{10^4}$	a X 10 ⁶	b×109	Authority		
Gold-copper-silver	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574 529 1830	924 93 7280	I 1 1		
Nickel-copper-zinc	{ 12.84 Ni + 30.59 Cu + } 6.57 Zn by volume }	4.92	444	51	1		
Brass	Various	12.2 – 15.6 12.16 14.35	1-2×10 ³ -	- - -	3		
German silver	Various	3-5 3·33	- 360	-	4		
Aluminum bronze		7.5-8.5	5-7 × 10 ²	-	2		
Phosphor bronze		10-20	_	-	2		
Silicium bronze		41	_	_	5		
Manganese-copper	30 Mn + 70 Cu	1.00	40	_	4		
Nickel-manganese-copper	3 Ni + 24 Mn + 73 Cu	2.10	-30	_	4		
Nickelin	(18.46 Ni + 61.63 Cu + 19.67 Zn + 0.24 Fe + 0.19 Co + 0.18 Mn)	3.01	300	-	4		
Patent nickel	(25.1 Ni + 74.41 Cu + 0.42 Fe + 0.23 Zn + (0.13 Mn + trace of cobalt	2.92	190	-	4		
Rheotan	\left\{ \begin{array}{l} 53.28 \text{ Cu} + 25.31 \text{ Ni} + \\ 16.89 \text{ Zn} + 4.46 \text{ Fe} + \\ 0.37 \text{ Mn} \cdot \cdo	1.90	410	-	4		
Copper-manganese-iron . " " "	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe 69.7 Cu + 29.9 Ni + 0.3 Fe .	4.98 1.30 2.60	120 22 120	- - -	6 6 7		
Manganin	84 Cu + 12 Mn + 4 Ni	2.3 2.04	6 8	-	2		
¹ Matthiessen. ⁸ W. Siemens. ⁵ Van der Ven. ⁶ Feussner. ² Various. ⁴ Feussner and Lindeck. ⁶ Blood. ⁷ Jaeger-Diesselhorst.							

SMITHSONIAN TABLES.

CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.* The values of C_o were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mhos. The conductivity is taken as $C_t = C_o$ ($t - at + bt^2$), and the range of temperature was from 0° to t = t = t = t.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula $P = P_e \frac{1}{\bar{\mu}}$, where l is the observed and l' the calculated conducting power of the mixture at 100° C., and P_e is the calculated mean variation of the metals mixed.

	Weight %	Veight % Volume %				Variation per 100° C.		
Alloys.	of first named.		104	a × 10 ⁶	δ × 10 ⁹	Observed.	Calculated.	
GROUP 1.								
Sn ₆ Pb	77.04	83.96	7.57	3890	8670	30.18	29.67	
	82.41	83.10	9.18	4080	11870	28.89	30.03	
	78.06	77.71	10.56	3880	8720	30.12	30.16	
	64.13	53.41	6.40	3780	8420	29.41	29.10	
	24.76	26.06	16.16	3780	8000	29.86	29.67	
	23.05	23.50	13.67	3850	9410	29.08	30.25	
	7.37	10.57	5.78	3500	7270	27.74	27.60	
		G	ROUP 2.					
Lead-silver (Pb ₂₀ Ag) .	95.05	94.64	5.60	3630	7960	28.24	19.96	
Lead-silver (PbAg) .	48.97	46.90	8.03	1960	3100	16.53	7.73	
Lead-silver (PbAg ₂) .	32.44	30.64	13.80	1990	2600	17.36	10.42	
Tin-gold $(Sn_{12}Au)$ (Sn_5Au)	77·94	90.32	5.20	3080	6640	24.20	14.83	
	59·54	79.54	3.03	2920	6300	22.90	5.95	
Tin-copper	92.24	93·57	7.59	3680	8130	28.71	19.76	
	80.58	83.60	8.05	3330	6840	26.24	14.57	
	12.49	14·91	5.57	547	294	5.18	3.99	
	10.30	12·35	6.41	666	1185	5.48	4.46	
	9.67	11·61	7.64	691	304	6.60	5.22	
	4.96	6.02	12.44	995	705	9.25	7.83	
	1.15	1·41	39.41	2670	5070	21.74	20.53	
Tin-silver	91.30	96.52	7.81	3820	8190	30.00	23.31	
	53.85	75.51	8.65	3770	8550	29.18	11.89	
Zinc-copper †	36.70	42.06	13.75	1370	1340	12.40	11.29	
	25.00	29.45	13.70	1270	1240	11.49	10.08	
	16.53	23.61	13.44	1880	1800	12.80	12.30	
	8.89	10.88	29.61	2040	3030	17.41	17.42	
	4.06	5.03	38.09	2470	4100	20.61	20.62	

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at 0° C. and s the corresponding specific resistance, s(a + m) = n.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

For steel m = -.000303 and n = .0020

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

^{*} From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154.

[†] Hard-drawn.

TABLE 310. - Conducting Power of Alloys.

		GR	OUP 3.				
	Weight %	Volume %	Co		9 × 10 ₀	Variation 1	per 100° C.
Alloys.	of first	named.	104	a × 10 ⁶	0 × 10°	Observed.	Calculated.
Gold-copper †	99.23 90.55	98. 36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53
Gold-silver †	87.95 87.95 64.80 64.80 31.33 31.33	79.86 79.86 52.08 52.08 19.86	13.46 13.61 9.48 9.51 13.69	1090 1140 673 721 885 908	793 1160 246 495 531 641	10.09 10.21 6.49 6.71 8.23 8.44	9.65 9.59 6.58 6.42 8.62 8.31
Gold-copper †	34.83 1.52	19.1 7 0.71	12.94 53.02	864 3320	570 7300	8.07 25.90	8.18 25.86
Platinum-silver †	33·33 9.81 5.00	19.65 5.05 2.51	4.22 11.38 19.96	330 774 1240	208 656 1150	3.10 7.08 11.29	3.21 7.25 11.88
Palladium-silver †	25.00	23.28	5.38	324	154	3.40	4.21
Copper-silver†	98.08 94.40 76.74 42.75 7.14 1.31	98.35 95.17 77.64 46.67 8.25	56.49 51.93 44.06 47.29 50.65 50.30	3450 3250 3030 2870 2750 4120	7990 6940 6070 5280 4360 8740	26.50 25.57 24.29 22.75 23.17 26.51	27.30 25.41 21.92 24.00 25.57 29.77
Iron-gold †	13.59 9.80 4.76	27.93 21.18 10.96	1.73 1.26 1.46	3490 2970 487	7010 1220 103	27.92 17.55 3.84	14.70 11.20 13.40
Iron-copper †	0.40	0.46	24.51	1 5 50	2090	13.44	14.03
Phosphorus-copper † . " † .	2.50 0.95	_	4.62 14.91	476 1320	145 1640	-	-
Arsenic-copper †	5.40 2.80 trace	-	3.97 8.12 38.52	516 736 2640	989 446 4830	- - -	-

* Annealed.

† Hard-drawn.

TABLE 311. - Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

B+S Gage	18	16	14	12	10	8	6	5	4	3	2	1	0	00	0000
Amperes	3	6	12	17	24	33	46	54	65	76	90	107	1 27	150	210

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity =84% of cu. Preece gives as formula for fusion of bare wires $I=ad^{\frac{3}{2}}$, where d=diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

RESISTANCE OF METALS AND

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*

When the temperature is raised above 0° C. the coefficient decreases for the pure metals, as is shown by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature =	1000	200	00	- 80°
Metal or alloy.	Spe	ecific resistance	e in c. g. s. uni	its.
Aluminium, pure hard-drawn wire	4745	3505	3161	-
Copper, pure electrolytic and annealed	1920	1457	1 349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	13970†	9521	8613	-
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	8752	8221	6133
Silver, pure wire	2139	1647	1 5 5 9	1138
Tin, pure wire	1 3867	10473	9575	6681
German silver, commercial wire	35720	34707	34524	33664 14482
Palladium-silver, 20 Pd + 80 Ag	15410	14984	14961	
Phosphor-bronze, commercial wire	9071	8588	8479	8054
Platinoid, Martino's platinoid with 1 to 2% tungsten	44590	43823	43601	43022
Platinum-iridium, So Pt + 20 Ir	31848	29902	29374	27 504
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	13755	10778
Platinum-silver, 66.7 Ag + 33.3 Pt	27404	26915	26818	26311
Carbon, from Edison-Swan incandescent } lamp	-	4046×10 ³	4092×10³	4189×10³
Carbon, from Edison-Swan incandescent } .	3834×10 ³	3908×10 ³	3955×103	4054×10 ³
Carbon, adamantine, from Woodhouse and } Rawson incandescent lamp	6168×108	6300×108	6363×10³	6495×108

^{* &}quot; Phil. Mag." vol. 34, 1892.

[†] This is given by Dewar and Fleming as 13777 for 96°.4, which appears from the other measurements too high.

SMITHSONIAN TABLES.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

Temperature ==	- 100°	- 182°	— 197°	Mean value of temperature co-
Metal or alloy.	Specific resis	stance in c. g.	s. units.	efficient between - 100° and + 100° C.*
Aluminum, pure hard-drawn wire	1928	894	_	.00446
Copper, pure electrolytic and annealed	7 57	272	178	431
Gold, soft wire	1207	604	-	375
Iron, pure soft wire	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	6110	1900	-	538
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	5671	2553	-	428
German silver, commercial wire	33280	32512	-	035
Palladium-silver, 20 Pd + 80 Ag	14256	13797	-	039
Phosphor-bronze, commercial wire	7883	7371	-	070
Platinoid, Martino's platinoid with 1 to 2% } tungsten	42385	41454	-	025
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	087
Platinum-rhodium, 90 Pt + 10 Rh	9834	7134	_	312
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	-	024
Carbon, from Edison-Swan incandescent .	4218×108	4321×10 ³	_	-
Carbon, from Edison-Swan incandescent } .	4079×10 ³	4180×10³	-	031
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6533×10³	_	-	029

^{*} This is α in the equation $R = R_0$ (1 + αI), as calculated from the equation $\alpha = \frac{R_{100} - R_{-100}}{200 R_0}$.

TABLE 313. - Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.*

No.	ŀ	Sind of	f glass	•		Density.		a	ъ		с	Rang ten Centig	ge of ip, grade.
I	Test-tube gla	ss				-	13.	86	044	.00	0065	00-	·250°
2	66 66 66					2.458	14.	24	055	.00	01	37-	131
3	Bohemian gla	iss				2.43	16.	2 I	043	.00	00394	60-	174
4	Lime glass (J	apane	ese m	anu	ıfacture).	2.55	13.	14	031	00	0021	10-	85
5	" "	"			" .	2.499	14.	002	025	00	006	35-	95
6	Soda-lime gla	ss (F	rencl	h fla	ısk) .	2.533	14.	58	049	.00	0075	45-	·I 20
7	Potash-soda l	ime g	lass			2.58	16.	34	042	5 .00	00364	66-	193
8	Arsenic enam	el fli	nt gla	ıss		3.07	18.	17	055	.00	0088	105-	135
9	Flint glass (T	homs	son's	ele	ctrometer	3.172	18.	021	036	00	00091	100-	-200
10	Porcelain (wh	ite e	vapoi	atir	ng dish) .	-	1 5.	65	042	.00	005	68-	-290
		Con	IPOSIT	ion	OF SOME OF	THE ABOV	e Si	PEC1M	ENS OF	Glass.			
	Number of spec	imen :	=		3	4			5	7	8		9
Sil	ica				61.3	57.2		70	.05	75.65	54.2	5	5.18
Po	tash				22.9	21.1		I	.44	7.92	10.5	, 1	3.28
So	da				Lime, etc.	Lime, e	tc.	14	.32	6.92	7.0		-
Le	ad oxide .				by diff.	by dif	f.	2	.70	-	23.9	3	10.1
Li	me				1 5.8	16.7		10	0.33	8.48	0.3		0.35
Ma	ignesia .				-	-			-	0.36	0.2		0.06
Ar	senic oxide				***	-			-	-	3.5		-
Alı	umina, iron oxi	de, e	tc.		-	-		I	·45	0.70	0.4		o.6 7

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 314. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

Temperature.	450°	500°	575°	600°	700°	750 ⁰	800°	9000	10000
Glass Porcelain Quartz	-32. -	—6. —	-1.5 -16.	8 -9.8	-0.17 -2.8	-0.1 -1.6 -10.	-0.06 70 -6.40	 0.30 2.60	- -0.12 -1.00

Somerville, Physical Review, 31, p. 261, 1910.

TABULAR COMPARISON OF WIRE GAGES.

Gage No.	American Wire Gage (B. & S.) Mils.	American Wire Gage (B. & S.) mm.	Steel Wire Gage* Mils.	Steel Wire Gage* mm.	Stubs' Steel Wire Gage Mils.	(British) Standard Wire Gage Mils.	Birmingham Wire Gage (Stubs') Mils.	Gage No.
7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 24 25 27 28 29 30 31 32 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50	460. 410. 305. 325. 289. 229. 204. 182. 162. 144. 128. 114. 102. 64. 57. 51. 45. 40. 36. 32. 228.5 22.6 20.1 17.9 14.2 12.6 11.3 10.0 8.9 8.0 7.1 6.3 5.0 4.5 4.0 3.5 3.1	11.7 10.4 0.3 8.3 7.3 6.5 8.8 5.2 4.6 4.1 3.7 3.3 2.01 2.50 2.30 2.30 2.05 1.83 1.03 1.45 1.20 1.15 1.02 0.01 .81 .72 .62 .57 .51 .40 .36 .32 .29 .25 .227 .202 .180 .160 .143 .127 .113 .101 .090 .080	490.0 461.5 430.5 393.8 362.5 336.5 283.0 262.5 243.7 225.3 207.0 162.0 177.0 148.3 135.0 120.5 105.5 80.0 72.0 62.5 54.0 47.5 41.0 34.8 31.7 28.6 25.8 23.0 20.4 18.1 17.3 16.2 15.0 14.0 15.0 16.2 16.2 17.0 16.2 17.0 16.2 17.0 18.1 19.0 1	12.4 11.7 10.9 10.0 9.2 8.4 7.8 7.2 6.7 6.2 5.7 6.2 5.7 5.3 4.9 4.5 4.1 3.77 3.43 3.06 2.68 2.93 1.83 1.59 1.37 1.21 1.04 0.88 .81 .73 .66 .58 .52 .46 .439 .411 .381 .356 .335 .325 .300 .264 .241 .220 .216 .203 .191 .178 .168 .157 .152 .147 .140 .132 .127 .112 .117	227. 219. 212. 207. 204. 201. 109. 107. 104. 101. 188. 185. 180. 178. 172. 168. 164. 161. 155. 153. 151. 148. 148. 149. 119. 110. 108. 106. 103. 101. 09. 97. 95. 92. 88. 81. 70. 77. 75. 72. 66.	500. 464. 432. 400. 372. 348. 324. 300. 276. 252. 232. 212. 192. 1176. 160. 141. 128. 116. 104. 92. 80. 72. 64. 56. 48. 40. 36. 32. 28. 24. 22. 20. 18. 16.4 11.6 10.8 10.0 9.2 8.1 11.6 10.8 10.0 9.2 8.4 4.4 4.0 3.6 5.2 8.4 4.1 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4 4.0 3.6 3.2 2.8 4.4	454. 425. 380. 300. 284. 259. 220. 203. 180. 165. 148. 134. 120. 109. 95. 83. 72. 65. 58. 49. 42. 35. 32. 28. 22. 28. 22. 49. 41. 41. 42. 43. 44. 44. 44. 45. 46. 47. 48. 49. 40. 40. 40. 40. 40. 40. 40. 40	7-0 6-0 5-0 4-0 3-0 2-0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 21 25 27 28 29 30 31 32 33 34 35 37 38 39 40 41 42 43 44 45 50

^{*} The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

WIRE TABLES.

TABLE 316. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the coöperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1913, by the International Electrotechnical Commission and takes the Resistivity at 20° C. of an annealed copper wire one meter long weighing one gram as equal to 0.15328 ohm. This standard corresponds to a conductivity of 58. × 10⁻⁵ cgs. units, and a density of 8.89, at 20° C.

In the various units of mass and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm-inch at 20° C. 10,371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is $a_{20} = 0.00393$ or $a_0 = 0.00427$. However, the temperature coefficient is proportional to the conductivity, and hence the change of resistivity per degree C. is a constant, 0.000597 ohm (meter, gram). The "constant mass" temperature coefficient of any sample is

$$a_t \!=\! \! \frac{\text{0.000597} + \text{0.000005}}{\text{resistivity in ohms (meter, gram) at t° C}}.$$

The density is 8.89 grams per cubic centimeter at 20° C., which is equivalent to 0.3212 pounds per cubic inch.

The values in the tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper

may be taken as about 2.7 per cent higher resistivity than annealed copper.

The aluminum tables are based on a figure for the conductivity published by the U. S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Mass resistivity, in ohms (meter, gram) at 20° C 0.070	4
" " (mile, pound) at 20° C 436.	
Mass per cent conductivity	
Volume resistivity, in michrom-cm. at 20° C 2.828	
" in microhm-inch at 20° C 1.11	3
Volume per cent conductivity 61.00	%
Density, in grams per cubic centimeter 2.70	
Density, in pounds per cubic inch	'5

TABLES 317, 318.

WIRE TABLES.

TABLE 317.—Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

Ohms (meter, gr 1m) at 20° C.	Per cent conductivity.	ao	a 15	a 20	a ₂₅	a ₃₀	a 50
0.161 3.4	95% 96%	0.004 03	0.003 80	0.003 73	0.003 67	0.003 60 .003 64	0.003 36 .003 39
.158 02 .157 53	97 % 97 ·3 %	.004 I3 .004 I4	.003 8g .003 90	.003 81 .003 82	.003 74	.003 67 .003 68	.003 42
.156 40 .154 82	98°0 99°0	.004 I7 .004 22	.003 93	.003 85	.003 78 .003 82	.003 71 .003 74	.003 45 .003 48
.153 28	100%	.004 27 .004 31	.004 01	.003 93	.003 85	.003 78	.003 52

Note. — The fundamental relation between resistance and temperature is the following:

$$R_t = R_{t_i}(t + a_{t_i}[t - t_i]),$$

where $a_{\mathbf{t}_1}$ is the "temperature coefficient," and \mathbf{t}_1 is the "initial temperature" or "temperature of reference."

The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}.$$

TABLE 318.—Reduction of Observations to Standard Temperature. (Copper.)

	Correcti	ons to reduce	Resistivity t	o 20° C.	Factors to re	educe Resista	nce to 20° C.	
Temper- ature C.	Ohm (meter, gram).	Microhm— cm.	Ohm (mile, pound).	Microhm— inch.	For 96 per cent con- ductivity.	For 98 per cent con- ductivity.	For 100 per cent con- ductivity.	Temper- ature C.
0	+0.011 94	+0.1361	+ 68.20	+0.053 58	1.0816	1.0834	1.0853	0
5	+ .008 96	+ .1021	+ 51.15	+ .040 18	1.0600	1.0613	1.0626	5
10	+ .005 97	+ .0681	+ 34.10	.026 79	1.0392	1.0401	1.0409	10
11	+ .005 37	+ .0612	+ 30.60	.024 II	1.0352	1.0359	1.0367	11
12	+ .004 78	+ .0544	+ 27.28	+ .021 43	1.0311	1.0318	1.0325	12
13	+ .004 18	+ .0476	+ 23.87	+ .018 75	1.0271	1.0277	1.0283	13
14	+ .003 58	+ .0408	+ 20.46	+ .016 c7	1.0232	1.0237	1.02.12	14
15	+ .002 99	+ .0340	+ 17.05	+ .013 40	1.0192	1.0196	1.0200	15
16	+ .002 39	+ .0272	+ 13.64	+ .010 72	1.0153	1.0156	1.0160	16
17	+ .001 79	+ .0204	+ 10.23	+ .008 04	1.0114	1.0117	1.0119	17
18	+ .001 19	+ .0136	+ 6.82	+ .005 36	1.0076	1.0078	1.0079	18
19	+ .000 60	+ .0068	+ 3.41	+ .002 68	1.0038	1.0039	1.0039	19
20 2 I 2 2	000 60 001 19	0068 0136	- 3.41 - 6.82	002 68 005 36	1.0000 0.9962 .9925	1.0000 c.9962 •9924	1.0000 0.9961 .9922	20 2 I 2 2
23	001 70	0204	- 10.23	008 04	.9888	.9886	.9883	23
24	002 39	0272	- 13.64	010 72	.9851	.9848	.9845	24
25	002 99	0340	- 17.05	013 40	.9815	.9811	.9807	25
26	003 58	0408	- 20.46	016 07	.9779	.9774	.9770	26
27	004 18	0476	- 23.87	018 75	.9743	.9737	.9732	27
28	004 78	0544	- 27.28	021 43	.9707	.9701	.9695	28
29	005 37	0612	- 30.69	024 II	.9672	.9665	.9658	29
30	005 97	0681	- 34.10	026 79	.9636	.9629	.9622	30
35	008 96	1021	- 51.15	040 18	.9464	•9454	.9443	35
40	011 94	1361	- 68.20	053 58	.9298	.9285	.9271	40
45	014 93	1701	- 85.25	066 98	.9138	.9122	.9105	45
50	017 92	2042	- 102.30	080 37	.8983	.8964	.8945	5 0
55	020 90	2382	-119.35	093 76	.8833	.8812	.8791	55
60	023 89	2722	-136.40	107 16	.8689	.8665	.8642	60
65	026 87	3062	-153.45	120 56	.8549	.8523	.8497	65
70	029 86	34°3	-170.50	133 95	.8413	.8385	.8358	70
75	032 85	3743	-187.55	147 34	.8281	.8252	.8223	75

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.). English Units.

C	Diameter	Cross-Sect	ion at 20° C.		Ohms per 1	1000 Feet.*	
Gage No.	in Mils. at 20° C.	Circular Mils.	Square Inches.	0° C (=32° F)	20° C (=68° F)	(= 122° F)	75° C (= 167° F)
0000	460.0	211 600.	0.1662	0.045 16	0.049 01	0.054 79	0.059 61
	409.6	167 800.	.1318	.056 95	.061 80	.069 09	.075 16
	364.8	133 100.	.1045	.071 81	.077 93	.087 12	.094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
I	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162.0	26 2 50.	.020 62	.3640	.3951	.4416	.4805
7	144.3	20 820.	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
9	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
10	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
11	90.74	8234.	.006 467	1.161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3 ² 57 ·	.002 558	2.934	3.184	3.560	3.873
16	50.82	2 58 3 ·	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048 ·	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.792
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
2I	28.45	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 251 7	29.82	32.37	36.18	39.36
26	15.94	254.1	.000 199 6	37.61	40.81	45.63	49.64
27	14.20	201.5	.000 1 58 3	47.42	51.47	57·53	62.59
28	12.64	159.8	.000 1 2 5 5	59.80	64.90	72·55	78.93
29	11.26	126.7	.000 099 5 3	75.40	81.83	91·48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8.928	79.70	.000 062 60	119.9	130.1	145.5	158.2
32	7.950	63.21	.000 049 64	151.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260.9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8	659.6	737.4	802.2
39	3.531	12.47	.000 009 793	766.4	831.8	929.8	1012.
40	3.145	9.888	.000 007 766	966.5		1173.	1276.

^{*} Resistance at the stated temperatures of a wire whose length is 1000 feet at 200 C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

					Feet per	Ohm.	
Gage No.	Diameter in Mils. at 20° C.	Pounds per 1000 Feet.	Feet per Pound.	°° C (=32° F)	20° C (=68° F)	50° C (=122° F)	(=167° F)
0000	460.0	640 .5	1.561	22 140.	20 400.	18 250.	16 780.
	409.6	507.9	1.968	17 560.	16 180.	14 470.	13 300.
	364.8	402 .8	2.482	13 930.	12 830.	11 480.	10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
I	289.3	253.3	3.947	8758.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	101.9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40.30	4.917	203.4	170.0	156.6	140.1	128.8
19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.1 1	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1,223	817.7	42.28	38.96	34.85	32.03
25	17.90	0,9699	1031.	33.53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
30	10.03	.3042	3287.	10.52	9.691	8.669	7.968
31	8.928	.2413	4145.	8.341	7.685	6.875	6.319
32	7.950	.1913	5227.	6.614	6.095	5.452	5.011
33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1203	8310.	4.160	3.833	3.429	3.152
35	5.615	.095 42	10 480.	3.299	3.040	2.719	2.499
36	5.000	.075 68	13 210.	2.616	2.411	2.156	1.982
37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
39 40	3.531 3.145	.037 74 .029 93	26 500. 33 410.	1.305	0.9534	1.075 0.8529	0.9886 .7840

[•] Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

	Diameter		Ohms per Pound.		Pounds per Ohm.
Gage	in Mils	°° C.	20° C.	50° C.	20° C.
No.		(=32° F.)	(=68° F.)	(=122° F.)	(=68° F.)
0000	460.0	0.000 070 51	0.000 076 52	0.000 085 54	13 070.
	409.6	.000 1121	.000 1217	.000 1360	8219.
	364.8	.000 1783	.000 1935	.000 2163	5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
I	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	.001 237	.001 383	808.6
4	204.3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
6	162.0	.004 581	.004 972	.005 558	201.1
7	144.3	.007 284	.007 905	.008 838	126.5
8	128.5	.011 58	.012 57	.014 05	79.55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	31.47
11	90.74	.046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.2271	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	-4733	.5136	.5742	1.947
17	45.26	-7525	.816 7	.9130	1.224
18	40.30	1.197	1.299	1.452	0.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.836	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33·37	37.31	.029 97
26	15.94	48.89	53.06	59.32	.018 85
27	14.20	77:74	84.37	94.32	.011 85
28	12.64	123:6	134.2	1 50.0	.007 454
29	11.26	196:6	213.3	2 38.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539·3	602.9	.001 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1 524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128 .	.000 1824
37	4.453	8032.	8717.	9744•	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	.000 028 54

WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

	Diameter	Cross Section		Ohms per	Kilometer.*	
Gage No.	in mm. at 20° C.	in mm. ² at 20° C.	o° C.	20° C.	50° C.	75° C.
0000	11.68	107.2	0.1482	0.1608	0.1798	0.1956
000	10.40	85.03	.1868	.2028	.2267	.2466
00	9.266	67.43	.2356	.2557	.2858	.3110
0	8,252	53.48	.297 I	.3224	.3604	.3921
I	7,348	42.41	.3746	.4066	•4545	.4944
2	6,544	33.63	.4724	.5127	•5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1,296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.62.4	6.054	6.571	7·345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.650	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.02.4	0.8231	19.30	20.95	23.42	25.48
19	0.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
21	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	-3255	48.80	52.96	59.21	64.41
23	·5733	.2582	61.54	66.79	74.66	81,22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	·4547	.1624	97.85	106.2	118.7	129.1
26	·4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625. 5	678.8	758.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994-5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.006 318	2514.	27 29.	3051.	3319.
40	.079 87		3171.	3441.	3847.	4185.

^{*}Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

	Diameter	Kilograms	Meters		Meters pe	er Ohm.*	
Gage No.	in mm. at 20° C.	Kilometer.	per Gram.	∘° C.	20° C.	50° C.	75° C.
0000	11.68	953.2	0.001 049	6749.	6219.	5563.	5113.
000	10.40	755.9	.001 323	5352.	4932.	4412.	4055.
00	9.266	599.5	.001 668	424 5 .	3911.	3499.	3216.
0	8.252	475.4	.002 103	3366.	3102.	2774.	2550.
I	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4.115	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547.3	503.1
8	3.264	74.37	.013 45	526.6	485.2	434.0	399.0
9	2.906	58.98	.016 96	417.6	384.8	344-2	316.4
10	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
11	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95.71	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	0.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	·3455	20.49	18.88	16.89	15.53
23	·5733	2.295	·4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11.87	10.62	9.764
25	-4547	1.443	.6928	10.22	9.417	8.424	7.743
26	-4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	0.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	.5709	1.752	4.042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.34 2	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33 34 35	.1798 .1601 .1426	.2258 .1791 .1420	4.429 5.584 7.042	1.599 1.268 1.006	1.473 1.168 0.9265	1.318 1.045 0.8288	0.9606 .7618
36	.1270	.1126	8.879	0.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	.4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	·3799
39 40	.089 69 .079 87	.056 17 .044 54	17.80 22.45	•3977 •3154	.3664 .2906	.3278	.3013 .2390

^{*} Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

Gage	Diameter in mm.		Ohms per Kilogram.		Grams per Ohm.
No.	at 20° C.	₀° C.	20° C.	50° C.	20° C.
0000	11.68	0.000 155 4	0.000 168 7	0.000 188 6	5 928 000.
	10.40	.000 247 2	.000 268 2	.000 299 9	3 728 000.
	9.266	.000 393 0	.000 426 5	.000 476 8	2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
I	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
9	2.906	.040 60	.044 06	.049 26	22 690.
10	2.588	.064 56	.070 07	.078 33	14 270.
11	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	56.45
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	1404.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.20 1	349.3
19	0.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	·5733	26.81	29.10	32.53	34.36
24	.5106	42.63	46.27	51.73	21.61
25	•4547	67.79	73.57	82.25	13.59
26	•4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	2 95.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	0.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344-	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770.	48590.	54310.	.020 58
40	.079 87	71180.	77260.	86360.	.012 94

Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Units.

		Cross	Section.	1	T		1
Gage No.	Diameter in Mils.	Circular Mils.	Square Inches.	Ohms per 1000 Feet.	Pounds per 1000 Feet.	Pounds per Ohm.	Feet per Ohm.
0000	460.	212 000.	0.166	0.0804	195.	2420.	12 400,
	410.	168 000.	.132	.101	154.	1520.	9860,
	365.	133 000.	.105	.128	122.	957·	7820.
0	325.	106 000.	.0829	.16 t	97.0	60 2.	6200.
I	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94. 2	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.1	37·2	1 540.
7	144.	20 800.	.0164	.817	19.1	23·4	1 220.
8	128.	16 500.	.0130	1.03	15.2	14·7	970.
10 10	114. 102. 91.	13 100. 10 400. 8230.	.0103 .008 15 .006 47	1.30 1.64 2.07	12.0 9.55 7.57	9.26 5.83 3.66	770. 610. 484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	0.911	241.
15	57·	3260.	.002 56	5.22	2.99	·573	191.
16	51.	2580.	.002 03	6.59	2.37	·360	152.
17	45·	2050.	.001 61	8.31	1.88	·227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95·5
19	36.	1290.	.001 01	13.2	1.18	.0897	75·7
20	32.	1020.	.000 802	16.7	0.939	.0564	60.0
21	28.5	810.	.000 636	21.0	·745	.0355	47.6
22	25.3	642.	.000 505	26.5	·591	.0223	37.8
23	22.6	509.	.000 400	33.4	·468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11,8
28	12.6	160.	.000 126	106.	.147	.001 38	9,39
29	11.3	127.	.000 099 5	134.	.117	.000 868	7,45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36	5.0	25.0	.000 019 6	681.	.0230	.000 033 8	1.47
37	4.5	19.8	.000 015 6	858.	.0182	.000 021 2	1.17
38	4.0	15.7	.000 012 3	1080.	.0145	.000 013 4	0.924
39	3.5	12.5	.000 009 79	1360.	.0115	.000 008 40	·733
40	3.1	9.9		1720.	.0091	.000 005 28	.581

Hard-Drawn Aluminum Wire at 20° C.

American Wire Gage (B. & S.) Metric Units.

			Wile Gage (B.	& S.) Metric G		2
Gage	Diameter	Cross Section	Ohms per	Kilograms per	Grams per	Ohms per
No.	in mm.	in mm. ²	Kilometer.	Kilometer.	Ohm.	Meter.
0000	11.7	107.	0.264	289.	1 100 000.	3790.
000	10.4	85.0	•333	230.	690 000.	3010.
00	9.3	67.4	•419	182.	434 000.	2380.
0	8.3	53·5	.529	144.	273 000.	1890.
I	7.3	42·4	.667	114.	172 000.	1500.
2	6.5	33.6	.841	90.8	108 000.	1190.
3	5.8	26.7	1.06	72.0	67 900.	943.
4	5.2	21.2	1.34	57.1	42 700.	748.
5	4.6	16.8	1.69	45.3	26 900.	593.
6	4.1	13.3	2.13	35.9	16 900.	470.
7	3.7	10.5	2.68	28.5	10 600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
10 11	2.91 2.59 2.30	6.63 5.26 4.17	4.26 5.38 6.78	17.9 14.2 11.3	4200. 2640. 1660.	235. 186. 148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	0.823	34·4	2.22	64.7	29.1
19	0.91	.653	43·3	1.76	40.7	23.1
, 20	.81	.518	54.6	1.40	25.6	18.3
21	.72	.411	68.9	1.1 1	16.1	14.5
22	.64	.326	86.9	0.879	10.1	11.5
23	.57	.258	110.	.697	6.36	9.13
24	.51	.205	138.	·553	4.00	7.24
25	.45	.162	174.	·438	2.52	5.74
26	.40	.129	220.	·348	1.58	4.55
27	.36	.102	277.	.276	0.995	3.61
28	.32	.0810	349.	.219	.626	2.86
29	.29	.0642	440.	.173	.394	2.27
30	.25	.0509	555·	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	0.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	2230.	.0342	.0153	.448
37	.113	.0100	2820.	.0271	.00963	•355
38	.101	.0080	3550.	.0215	.00606	.262
39	.090	.0063	4480.	.0171	.003 81	.223
40	.080	.0050	5640.	.0135	.002 40	

TABLES 323, 324. DIELECTRIC STRENGTH.

TABLE 323. - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

Spark length. cm.	R = o. Points.	R = 0.25 cm.	R = 0.5 cm.	R = 1 cm.	R = 2 cm.	R = 3 cm.	$R = \infty$. Plates.
0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 3.0 4.0 5.0	- - - 3720 4680 5310 5970 6390 6340 8070 8670 9960 10140 11250 12210 13050	- - 5010 8610 11140 14040 15990 17130 18960 20670 22770 24570 28380 29580	1560 2460 3300 4050 4740 8490 11460 14310 16950 19740 23790 26190 29970 33060	1530 2430 3240 3990 4560 8490 11340 14340 17220 20070 24780 27810 37260 45480	2340 3060 3810 4560 8370 11190 14250 16650 20070 25830 29850	4500 7770 10560 13140 16470 19380 26220 32760	4350 7590 10650 13560 16320 19110 24960 30840

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 324. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length.	R = 1 cm.	R=1.92	R = 5	R = 7.5	R = 10	R = 15
0.08 .10 .15 .20	3770 4400 5990 7510 9045	4380 5940 7440 8970	4330 5830 7340 8850	4290 5790 7250 8710	4245 5800 7320 8760	4230 5780 7330 8760
0.30 •35 •40 •45 •50	10480 11980 13360 14770 16140	10400 11890 13300 14700 16 0 70	10270 11670 13100 14400 15890	10130 11570 12930 14290 15640	10180 11610 12980 14330 15690	10150 11590 12970 14320 15690
0.6 .7 .8 0.9 1.0	18700 21350 23820 26190 28380	18730 21380 24070 26640 29170	18550 21140 23740 26400 28950	18300 20980 23490 26130 28770	18350 20990 23540 26110 28680	18400 21000 23550 26090 28610
1.2 1.4 1.6 1.8 2.0	32400 35850 38750 40900 42950	34100 38850 43400	33790 38850 43570 48300	33660 38580 43250 47900 52400	33640 38620 43520	33620 38580

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

TABLES 325, 326. DIELECTRIC STRENGTH.

TABLE 325. - Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

cm.	Alter- nt.		Steady por	tentials.		CII.	nts. Alter-	Steady p	otentials.
Spark length, cm.	2	Ball ele	ctrodes.	Cup ele	ctrodes.	Spark length, cm	ints. ,	Ball ele	ctrodes.
park	Dull points. nating cur	R=1 cm.	R=2.5 cm.	Proje	ction.	park	Dull points. nating curi	D	0
S	<u> </u>	K=1 cm.	K=2.5 cm.	4-5 mm.	1.5 mm.	<u> </u>	D ₀	R=1 cm.	R=2.5 cm.
0.3	-	-	-	-	11280	6.0	61000	_	86830
0.5	-	17610	17620	-	17420	7.0 8.0		52000	
0.7	-	_	23050	-	22950	l.	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	7 3000	74300	91930
1.2	-	33800	36810	-	36700	12.0	82600	-	93300
1.5	-	37930	44310	_	44510	14.0	92000	-	94400
2.0	29200	42320	56000	56500	56530	15.0	-	-	94700
2.5	_	45000	65180	0	68720	16.0	101000	_	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3.5	.0	_	75300	_	92400	25.0	140600		1
4.0	48500	49100	78600	101700	103800	30.0	165700		1
4.5	-6	-	81540	-	114600	35.0	190900		
5.0	56500	50310	83800	-	126500				1 .
5.5	_	_	_	-	135700				

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4.5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 326. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths I.

Pressure. cm. Hg.	l=0.04	l=0.06	l=0.08	l=0.10	l=0.20	l=0 30	l=0.40	l=0.50
2 4 6	-	- 483 582 771	- 567 690 933	648 795 1090	744 1015 1290 1840	939 1350 1740 2450	1110 1645 2140 3015	1266 1915 2505 3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-Meyerhoffer).

For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO₂ in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

DIELECTRIC STRENGTH.

TABLE 327. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

Substance.	Kilovolts per cm	Substance.		Kilovolts per cm.	Substance.	Kilovolts per cm.
Ebonite Empire cloth	20 30-60 100-200 40-90	Castor	1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 1.0 "	190 130 70 140 185 90 190 80 50 200 90 170 75 215 160 180 85 195 90 160	Manilla Paraffined	770 150 25 500 100-250 75 350 400 230 450 45-75 160-500 90-130

TABLE 328. - Potentials in Volts to Produce a Spark in Kerosene.

Spark length.	Electrodes Balls of Diam. d.							
mm.	0.5 cm.	ı cm.	2 cm.	3 cm.				
0,1	3800	3400	2750	2200				
.2	7 500	6450	4800	3500				
-3	10250	9450	7450	4600				
•4	11750	10750	9100	5600				
	13050	12400	11000	6900				
.5 .6 .8	14000	13550	12250	8250				
.8	15500	15100	13850	10450				
1.0	16750	16400	15250	12350				

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904.

For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

TABLE 329. — Electrical Resistance of Straight Wires with Alternating Currents of Different Frequencies.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of			Fre	quency n =		
wire in millimeters.	60	100	1 000	10000	100 000	1 000 000
0.05 0.1 0.25 0.5 1.0 2 3 4 5 7.5 10 15 20 25 40	1.001 1.003 1.016 1.044 1.105 1.474 3.31	*1.001 1.002 1.008 1.038 1.120 1.247 1.842 4.19	1.001 1.006 1.021 1.021 1.210 1.503 2.136 2.736 3.38	*I.00I I.008 I.120 I.437 I.842 2.240 3.22 4.19	*1.001 1.003 1.047 1.503 2.756 4.00	*1.001 1.008 1.247 2.240 4.19

Values between 1.000 and 1.001 are indicated by *1.001.

The change of resistance of wires other than copper (iron wires excepted) may be calculated from the above table, making use of the fact that the change of resistance is a function of the argument $p = 2\pi r \sqrt{2n\lambda}$ where r = radius of cross-section, n = frequency, $\lambda =$ conductivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 330. - Electrical Resistance for High Frequencies.

For which the high frequency resistance will be less than 1 per cent greater than direct current resistance.

Wave-length.		or Advan c e ire.	Manganin	Platinum	Copper	
wave-length.	Diameter.	Maximum Current.	Diameter.	Diameter.	Diameter.	
m.	mm.	amp.	mm.	mm.	mm.	
100	0.30	3.5	0.29	0.13	0.006	
200	0.46	4.5	0.40	0.29	0.045	
300	0.57	5.5	0.50	0.27	0.09	
400	0.66	7.0	0.60	0.30	0.10	
600	0.83	8.0	0.75	0.37	0.15	
800	0.98	10.0	0.88	0.42	0.20	
1000	1.10	11.5	0.99	0.50	0.21	
I 200	1.20	12.5	1.10	0.57	0.22	
1 500	1.30	14.0	1.21	0.63	0.26	
2000	1.52	17.0	1.38	0.73	0.30	
3000	1.80	24.0	1.62	0.80	0.33	

Advance wire is practically identical electrically with constantan, while for high resistance German silver the values are nearly the same as for manganin. The column of the table under maximum current gives the approximate current which may be carried by the various sizes without undue heating. The current capacity of the manganin is very nearly the same.

From Austin, Jour. Wash. Acad. of Sci. 2, p. 190, 1911.

TABLE 331.
WIRELESS TELEGRAPHY.

Wave-Length in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhenries and Microfarads.

Meters.	n	LC	Meters.	n	LC	Meters.	n	L C
100 110 120 130 140 150 160 170 180	3,000,000 2,727,000 2,500,000 2,308,000 2,143,000 2,000,000 1,875,000 1,667,000 1,579,000	0.00282 0.00341 0.00405 0.00476 0.00552 0.00633 0.00721 0.00813 0.00912	600 610 620 630 640 650 660 670 680 690	500,000 491,800 485,500 476,200 468,700 461,500 454,500 447,800 434,800	0.101 0.105 0.108 0.111 0.115 0.119 0.123 0.126 0.130 0.134	1100 1110 1120 1130 1140 1150 1160 1170 1180	272,700 270,300 267,900 265,500 263,100 260,900 258,600 256,400 254,200 252,100	0.34I 0.347 0.353 0.359 0.366 0.372 0.379 0.385 0.399
200 210 220 230 240 250 260 270 280 290	1,500,000 1,429,000 1,364,000 1,304,000 1,250,000 1,254,000 1,111,000 1,071,000 1,034,000	0.0113 0.0124 0.0136 0.0149 0.0162 0.0176 0.0190 0.0205 0.0221	700 710 720 730 740 750 760 770 780 790	428,600 422,500 416,700 411,000 405,400 400,000 394,700 389,600 384,600 379,800	0.138 0.142 0.146 0.150 0.154 0.158 0.163 0.167 0.171	1200 1210 1220 1230 1240 1250 1250 1270 1280	250,000 247,900 245,900 243,900 241,900 240,000 238,100 236,200 234,400 232,600	0.405 0.412 0.419 0.426 0.433 0.440 0.447 0.454 0.461 0.468
300 310 320 330 340 350 360 370 380 390	1,000,000 967,700 937,500 909,100 882,400 859,100 833,300 810,800 789,500 769,200	0.0253 0.0270 0.0288 0.0307 0.0326 0.0345 0.0365 0.0385 0.0406 0.0428	800 810 820 830 840 850 860 870 880 890	375,000 370,400 365,900 361,400 357,100 352,900 348,800 344,800 340,900 337,100	0.180 0.185 0.189 0.194 0.199 0.203 0.208 0.213 0.218	1300 1310 1320 1330 1340 1350 1360 1370 1380 1390	230,800 229,000 227,300 225,600 223,900 222,200 220,600 218,900 217,400 215,800	0.476 0.483 0.490 0.498 0.505 0.513 0.521 0.529 0.536
400 410 420 430 440 450 460 470 480 490	750.000 731,700 714,300 697,700 681,800 666,700 652,200 638,300 625,000 612,200	0.0450 0.0473 0.0496 0.0520 0.0545 0.0570 0.0596 0.0622 0.0649 0.0676	900 910 920 930 940 950 960 970 980 990	333.300 329,700 326,100 322.600 319,100 315,900 312,500 309,300 306,100 303,000	0.228 0.233 0.238 0.243 0.249 0.254 0.259 0.265 0.270 0.276	1,400 1,410 1,420 1,430 1,440 1,450 1,460 1,470 1,480 1,490	214,300 212,800 211,300 209,800 208,300 206,900 205,500 204,100 202,700 201,300	0.552 0.559 0.567 0.576 0.584 0.592 0.600 0.608 0.617 0.625
500 510 520 530 540 550 560 570 580 590	600,000 588,200 576,900 566,000 555,600 545,500 533,700 526,300 517,200 508,500	0.070.4 0.0732 0.0761 0.0791 0.0821 0.0851 0.0883 0.0915 0.0947 0.0981	1000 1010 1020 1030 1040 1050 1060 1070 1080 1090	300,000 297,000 294,100 291,300 288,400 285,700 283,600 280,400 277,800 277,500	0.281 0.287 0.293 0.293 0.305 0.310 0.316 0.322 0.328 0.335	1500 1510 1520 1530 1540 1550 1560 1570 1580 1590	200,000 198,700 197,400 196,100 194,800 193,600 192,300 191,100 189,900 188,700	0.633 0.642 0.650 0.659 0.668 0.676 0.685 0.694 0.703

Prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

WIRELESS TELECRAPHY.

Wave-Length, Frequency and Oscillation Constant.

Meters.	n	LC	Meters.	n	LC	Meters.	n	LC
1600 1610 1620 1630 1640 1650 1660 1670 1680	187,500 186,300 185,200 184,100 182,900 181,800 180,700 179,600 178,600 177,500	0.721 0.730 0.739 0.748 0.757 0.766 0.776 0.785 0.794 0.804	2000 2100 2200 2300 2400 2500 2600 2700 2800 2900	150,000 142,900 130,400 130,400 125,000 125,000 115,400 111,100 107,100	1.13 1.24 1.36 1.49 1.62 1.76 1.90 2.05 2.21 2.37	6000 6100 6200 6300 6400 6500 6600 6700 6800 6900	50,000 49,180 48,550 47,620 46,870 46,150 45,450 44,780 44,120 43,480	10.1 10.5 10.8 11.1 11.5 11.9 12.3 12.6 13.0
1700 1710 1720 1730 1740 1750 1760 1770 1780	176,500 175,400 174,400 173,400 172,400 171,400 170,500 169,400 168,500 167,600	0.813 0.823 0.833 0.842 0.852 0.862 0.872 0.882 0.892	3000 3100 3200 3300 3400 3500 3600 3700 3800 3900	100,000 96,770 93,750 90,910 88,240 85,910 83,330 81,080 78,950 76,920	2.53 2.70 2.88 3.07 3.26 3.45 3.65 3.85 4.06 4.28	7000 7100 7200 7300 7400 7500 7600 7700 7800 7900	42,860 42,250 41,670 41,100 40,540 40,000 39,470 38,460 38,460 37,980	13.8 14.2 14.6 15.0 15.4 15.8 16.3 16.7 17.1
1800 1810 1820 1830 1840 1850 1860 1870 1880	166,700 165,700 164,800 163,900 163,900 162,200 161,300 160,400 159,600	0.912 0.923 0.933 0.943 0.953 0.973 0.974 0.985	4000 4100 4200 4300 4400 4500 4600 4700 4800 4900	75,000 73,170 71,430 69,770 68,180 66,670 65,220 63,830 62,500 61,220	4.50 4.73 4.96 5.20 5.45 5.70 5.96 6.22 6.49 6.76	8000 8100 8200 8300 8400 8500 8600 8700 8800 8900	37,500 37,040 36,590 36,140 35,710 35,290 34,880 34,480 34,090 33,710	18.0 18.5 18.9 19.4 19.9 20.3 20.8 21.3 21.8 22.3
1900 1910 1920 1930 1940 1950 1960 1970 1980	157,900 157,100 156,300 155,400 154,600 153,800 153,100 152,300 151,500 150,800	1.016 1.026 1.037 1.048 1.059 1.070 1.081 1.092 1.103	5000 5100 5200 5300 5400 5500 5600 5700 5800 5900	60,000 58,820 57,690 56,600 55,560 54,550 53,570 52,630 51,720 50,850	7.04 7.32 7.61 7.91 8.21 8.51 8.83 9.15 9.47 9.81	9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 10000	33,330 32,970 32,610 32,260 31,910 31,590 31,250 30,930 30,610 30,310 30,000	22.8 23.3 23.8 24.3 24.9 25.4 25.9 26.5 27.6 28.1

300

WIRELESS TELECRAPHY.

Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by E= constant (h^2/λ^2) I^2 , where h is the length of the oscillator, λ , the wave-length and I the current at its center. For a flat-top antenna E= 1600 (h^2/λ^2) I^2 watts; 1600 h^2/λ^2 is called the radiation resistance.

(h = height to center of capacity of conducting system.)

h= Wave- Length λ	40 Ft.	60 Ft.	So Ft.	100 Ft.	120 Ft.	160 Ft.	200 Ft.	300 Ft.	450 Ft.	600 Ft.	1200 Ft.
972	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm	ohm
200	6.0	13.4	24.0	37.0	54.0	95.0		1			1
300	2.7	6.0	10.6	16.5	23.8	42.4		1	ŀ		1
400	1.5	3.4	6.0	9.3	13.4	23.8		1			li
600	0.66	1.5	2.7	4.1	6.0	10.6	16.4	37.4	84.0	149.0	1
800	0.37	0.84	1.5	2.3	3.4	6.0	9.2	21.0	47.0	84.0	
1000	0.24	0.54	0.95	1.5	2.1	3.8	6.0	13.5	30.0	54.0	215.0
1200	0.17	0.37	0.66	1.03	1.5	2.6	4. I	9.3	21.0	37.0	149.0
1 500	11.0	0.24	0.42	0.66	0.95	1.7	2.6	6.0	13.4	24.0	95.0
2000		0.13	0.24	0.37	0.54	0.95	1.5	3.4	7.5	13.4	54.0
2500			0.15	0.24	0.34	0.61	0.95	2.2	4.8	8.6	34.0
3000			0.11	0.17	0.24	0.42	0.66	1.5	3.4	6.0	24.0
4000			0.06	0.09	0.13	0.24	0.37	0.84	1.9	3.4	13.4
5000							0.24	0.53	1.20	2.2	8.6
6000							0.16	0.37	0.84	1.5	6.0
7000							0.12	0.27	0.61	1.1	4.4

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

INTERNATIONAL ATOMIC WEIGHTS. ELECTROCHEMICAL EQUIVALENTS.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 35, p. 1807, 1913).

The Electrochemical equivalent of Silver is 0.0011180 gram. sec.—1 amp.—1. (See definition of International Ampere, p. xxxiii.) The electrochemical equivalent for any other element is

atomic weight element $\times \frac{.0011180}{\text{atomic weight silver}} \times \frac{.0011180}{\text{valency}} \text{ gm. sec.}^{-1} \text{ amp.}^{-1}.$

The equivalent for iodine has been recently (1913) determined at the Bureau of Standards as 1.3150. The valencies given are only those commonly shown by the elements.

Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.	Substance.	Symbol.	Relative atomic wt. Oxygen=16.	Valency.
Aluminum Antimony Argon Arsenic Barium	Al Sb A As Ba	27.1 120.2 39.88 74.96 137.37	3. 3, 5. 0. 3, 5.	Mercury Molybdenum Neodymium Neon Nickel	Hg Mo Nd Ne Ni	200.6 96.0 144.3 20.2 58.68	1, 2. 4, 6. 3. 0. 2, 3.
Bismuth Boron Bromine Cadmium Cæsium	Bi B Br Cd Cs	208.0 11.0 79.92 112.40 132.81	3, 5. 3. 1. 2.	[ation) Niton (Ra eman- Nitrogen Osmium Oxygen Palladium		222.4 14.01 190.9 16.00 106.7	3, 5. 6, 8. 2. 2, 4.
Calcium	Ca	40.07	2.	Phosphorus	P	31.04	3, 5.
Carbon	C	12.00	4.	Platinum	Pt	195.2	2, 4.
Cerium	Ce	140.25	3, 4.	Potassium	K	39.10	1.
Chlorine	Cl	35.46	1.	Praseodymium	Pr	140.6	3.
Chromium	Cr	52.0	2, 3, 6.	Radium	Ra	226.4	2.
Cobalt	Co	58.97	2, 3.	Rhodium	Rh	102.9	3.
Columbium	Cb	93.5	5.	Rubidium	Rb	85.45	1.
Copper	Cu	63.57	1, 2.	Ruthenium	Ru	101.7	6, 8.
Dysprosium	Dy	162.5	3.	Samarium	Sa	150.4	3.
Erbium	Er	167.7	3.	Scandium	Sc	44.1	3.
Europium	Eu	152.0	3·	Selenium	Se	79.2	2, 4, 6.
Fluorine	F	19.0	1.	Silicon	Si	28.3	4.
Gadolinium	Gd	157.3	3·	Silver	Ag	107.88	1.
Gallium	Ga	69.9	3·	Sodium	Na	23.00	1.
Germanium	Ge	72.5	4·	Strontium	Sr	87.63	2.
Glucinum Gold Helium Holmium Hydrogen	Gl Au He Ho H	9. 1 197.2 3.99 163.5	2. I, 3. O. 3. I.	Sulphur Tantalum Tellurium Terbium Thallium Thorium	S Ta Te Tb Tl Th	32.07 181.5 127.5 159.2 204.0 232.4	2, 4, 6. 5. 2, 4, 6. 3. 1, 3.
Indium	In	114.8	3.	Thulium	Tm	168.5	3·
Iodine	I	126.92	1.	Tin	Sn	119.0	2, 4·
Iridium	Ir	193.1	4.	Titanium	Ti	48.1	4·
Iron	Fe	55.84	2, 3.	Tungsten	W	184.0	6.
Krypton	Kr	82.92	0.	Uranium	U	238.5	4, 6.
Lanthanum	La	139.0	3.	Vanadium	V	51.0	3, 5.
Lead	Pb	207.10	2, 4.	Xenon	Xe	130.2	o.
Lithium	Li	6.94	1.	Ytterbium	Yb	173.0	3.
Lutecium	Lu	174.0	3.	Yttrium	Yt	89.0	3.
Magnesium	Mg	24.32	2.	Zinc	Zn	65.37	2.
Manganese	Mn	54.93	2, 3, 7.	Zirconium	Zr	90.6	4.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohl-

rausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electrochemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:— Let K_{18} = conductivity of the solution at 18° C. relative to mercury at 0° C.

 $K_{18}^{w} = \text{conductivity of the solvent water at 18° C. relative to mercury at 0° C.}$ Then $K_{18} = K_{18}^{w} = \text{conductivity of the electrolyte in the solution measured.}$

 $\frac{k_{18}}{m} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."}$

TABLE 334. — Value of k_{18} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KCl	NaCl	$AgNO_3$	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.000001	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.0001	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 335. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

Salt dissolved.	Grams per liter.	m	Temp.	Density.	Salt dissolved.	Grams per liter.	m	Temp. C.	Density.
KCl	74.59 53.55 58.50 42.48 104.0 68.0 165.9 101.17 85.08 169.9 65.28 61.29 98.18	I.0 I.0009 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0 I.0	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7 - 18.3 18.3	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	$\begin{array}{c} \frac{1}{2}K_2SO_4\\ \frac{1}{2}Na_2SO_4\\ \frac{1}{2}Li_2SO_4\\ \frac{1}{2}Li_2SO_4\\ \frac{1}{2}ZnSO_4\\ \frac{1}{2}ZnSO_4\\ \frac{1}{2}CuSO_4\\ \frac{1}{2}K_2CO_3\\ \frac{1}{2}Na_2CO_8\\ KOH\\ HCl\\ HNO_3\\ \frac{1}{2}H_2SO_4\\ \end{array}$	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.004 1.0014 1.0006	18.9 18.6 18.6 18.6 5.3 18.2 18.3 17.9 18.8 18.6 18.6	1.0658 1.0602 1.0445 1.0573 1.0774 1.0576 1.0576 1.0517 1.0477 1.0161 1.0318 1.0300

SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

Salt dissolved.	m= 10	5	3	I	o 5	0.1	.05	.03	10.
¼K ₂ SO ₄	- - - -	770 752	827 900 825 572	919 968 907 75 ²	672 958 997 948 839	73 ⁶ 1047 1069 1035 983	897 1083 1102 1078 1037	959 1107 1123 1101 1067	1098 1147 1161 1142 1122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	35 ¹	487 - - 150 448	658 - - 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - 60	82 82 - 180 398	146 151 - 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 - 660 0.5	240 - 1270 2.6	430 381 254 1560 5.2	617 594 427 1820	694 671 510 1899	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl	600 610 148 423 0.5	1420 1470 160 990 2.4	2010 2070 170 1314 3·3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved.	.006	.002	,001	.0006	,0002	1000,	.00006	.00002	100001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1130 1162 1176 1157 1140	1181 1185 1197 1180	1207 1193 1203 1190 1180	1220 1199 1209 1197 1190	1241 1209 1214 1204 1199	1249 1209 1216 1209 1207	1254 1212 1216 1215 1220	1266 1217 1216 1209 1198	1275 1216 1207 1205 1215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1031 1068 982 740 1033	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744 773 933 939 976	861 881 980 979 998	919 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 796	975 934 874 3118 995	970 935 790 2927 1133	97 ² 943 715 2077 1328	975 939 697* 1413* 1304*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3438 3421 858 2141 116	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF μ . TEMPERATURE COEFFICIENTS.

TABLE 337. - Limiting Values of u.

This table shows limiting values of $\mu = \frac{k}{m}$.108 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	μ	Salt.	μ	Salt.	μ	Salt.	μ
½K2SO4 .	1280	∄BaCl₂ .	1150	½MgSO₄ .	1080	$\frac{1}{2}\mathrm{H}_2\mathrm{SO}_4$.	3700
ксі	1220	⅓KClO₃ .	1150	$\frac{1}{2}$ Na ₂ SO ₄ .	1060	HCl	3500
кі	1220	$rac{1}{2}\mathrm{BaN}_2\mathrm{O}_6$.	I I 2O	$\frac{1}{2}$ ZnCl	1040	HNO ₃	3500
NH ₄ Cl	1210	½CuSO₄ .	1100	NaCl	1030	$\frac{1}{3}\mathrm{H_3PO_4}$.	1100
KNO ₃	1210	AgNO ₃ .	1090	NaNO ₃ .	980	кон	2200
_	-	½ZnSO4 .	1080	$\mathrm{K_{2}C_{2}H_{3}O_{2}}$	940	½Na₂CO₃ .	1400

If the quantities in Table 336 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 337 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetres.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H₃PO₄ in dilute solution seems to approach a monobasic acid, while H₂SO₄ shows two maxima, and like H₃PO₄ approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 338. — Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KC1	0.0221	кі	0.0219	$\frac{1}{2}\mathrm{K}_{2}\mathrm{SO}_{4}$.	0.0223	½K₂CO₃	0.0249
NH ₄ Cl	0.0226	KNO3	0.0216	$\frac{1}{2}$ Na ₂ SO ₄ .	0.0240	$\frac{1}{2}$ Na ₂ CO ₃	0.0265
NaCl	0.0238	NaNO3	0.0226	½Li₂SO₄ .	0.0242	кон	
LiCl	0.0232	AgNO ₃	0.0221	½MgSO₄ .	0.0236	HCl	0.0194
½BaCl₂	0.0234	$\frac{1}{2}$ Ba(NO ₃) ₂	0.0224	½ZnSO₃ .	0.0234	$_{\frac{1}{2}\mathrm{H}_{2}\mathrm{SO}_{4}}$	0.0162
$\frac{1}{2}$ ZnCl $_2$	0.0239	KC1O ₃	0.0219	½CuSO₄ .	0.0229	111.00	
$\frac{1}{2}$ MgCl ₂ .	0.0241	KC₂H₃O₂ .	0.0229	-	-	$\begin{cases} \frac{1}{2} H_2 SO_4 \\ \text{for } m = .001 \end{cases}$	0.01 59

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

Concentration in gram equivalents.

 $Equivalent \ conductance \ in \ \frac{reciprocal \ ohms \ per \ centimeter \ cube}{gram \ equivalents \ per \ cubic \ centimeter}$

	cen-		Equiv	alent co	nductanc	e at the	follow	ing ° C	tempera	tures.	
Substance.	Concen- tration.	180	2 5 ^O	500	75 ⁰	1000	1280	156 ⁰	2180	2810	306 ⁰
Potassium chloride . " " . " " . Sodium chloride .	0 2 10 80 100 0 2	126.3 122.4 113.5 112.0 109.0 105.6	146.4 141.5 - 129.0	(232.5) 215.2 194.5	(321.5) -295.2 -264.6	393 377 342 336 362 349	(519) - 470 - 415 -	625 588 560 498 490 555 534	825 779 741 638 760 722	930 874 723 970 895 820	1120 1008 910 720 1080 955 860
" "	10 80 100	93.5 92.0	-	-	-	336 301 296	-	511 450° 442	685 500	674	680
Silver nitrate	0 2 10 20	115.8 112.2 108.0 105.1	- - -	- - -	- - -	367 353 337 326	-	570 539 507 488	780 727 673 639	965 877 790	935 818
" "	40 80	96.5 94.6	_ 	- -	- -	312 294 289	-	462 432	599 552	680 614	680 604
Sodium acetate	0 2 10	78.1 74.5 71.2	- - -		- - -	285 268 253	- - -	450 421 396	660 578 542	- -	924 801 702
" " " Magnesium sulphate " " " " " " " " " " "	80 0 2 10 20 40 80 100 200	63.4 114.1 94.3 76.1 67.5 59.3 52.0 49.8 43.1	~ 1 - 1 - 1	-		221 426 302 234 190 160 136 130	-	340 690 377 241 195 158 133 126	452 1080 260 143 110 88 75		
Ammonium chloride """ "Ammonium acetate . """	200 0 2 10 30 0 10 25	43.1 131.1 126.5 122.5 118.1 (99.8) 91.7 88.2	141.7		-	(415) 399 382 - (338) 300 286	-	(628) 601 573 - (523) 456 426	(841) 801 758	-	(1176) 1031 925 828

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

Calatan	Concentration.		Equiv	alent cor	iductanc	e at th	e follow	ing ° C	tempera	itures.	
Substance.	Con	180	25°	500	75°	1000	1280	1560	2180	2810	3060
Barium nitrate	0 2 10 40 80	116.9 109.7 101.0 88.7 81.6	- - - -	-	-	385 352 322 280 258	- - -	600 536 481 412 372	840 715 618 507 449	828 658 503 430	1300 824 615 448
Potassium sulphate	100 0 2 10 40 80	79.1 132.8 124.8 115.7 104.2 97.2	- - - -	-		249 455 402 365 320 294	- - -	715 605 537 455 415	1065 806 672 545 482	1460 893 687 519 448	1725 867 637 466 396
" "	100 0 2 10 80	95.0 379.0 373.6 368.1 353.0	-	-	- - - -	286 850 826 807 762	- - -	1085 1048 1016 946	1265 1217 1168 1044	1380 1332 1226 1046	1424 1337 1162 862
Nitric acid	100 0 2 10 50	350.6 377.0 371.2 365.0	421.0 413.7 406.0 393.3	570 559 548 528	706 690 676 649	754 826 806 786 750	945 919 893 845	929 1047 1012 978 917	1006 (1230) 1166	-	(1380) 1156
Sulphuric acid	100 0 2 10	346.4 383.0 353.9 309.0	385.0 (429) 390.8 337.0	516 (591) 501 406	632 (746) 561 435	728 891 571 446	817 (1041) 551 460	880 1176 536 481	563 533	- - -	454* (2030) 637
Potassium hydrogen sulphate Phosphoric acid """"	50 100 2 50 100 0 2 10	253.5 233.3 455.3 295.5 263.7 338.3 283.1 203.0	273.0 251.2 506.0 318.3 283.1 376 311.9 222.0	323 300 661.0 374.4 329.1 510 401 273	356 336 754 403 354 631 464 300 168.6	384 369 784 422 375 730 498 308 168	417 404 773 446 402 839 508 298	448 435 754 477 435 930 489 274 142	502 483	_	474*
Acetic acid	50 100 0 10 30	122.7 96.5 (347.0) 14.50 8.50	_	157.8 122.7 - -	129.9	128 (773) 25.1 14.7	-	108 (980) 22.2 13.0	(1165) 14.7 8.65	_	(1268)
Sodium hydroxide	80 100 0 2 20 50	5.22 4.67 216.5 212.1 205.8 200.6	- - - -	-	-	9.05 8.10 594 582 559 540	-	8.00 - 835 814 771 738	5.34 4.82 1060 930 873	-	1.57
Barium hydroxide	0 2 10 50	222 215 207 191.1 180.1	256 - 235 215.1 204.2	389 359 342 308 291	(520) 4 449 399 373		(760) 664 549 503	722 593 531			
Ammonium hydrox-	0 10 30 100	(238) 9.66 5.66 3.10	(271)	(404) - 5·35	(526) - 6.70	(647) 23.2 13.6 7.47	(764) - -				1.33

^{*} These values are at the concentration 80.0.

THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

	Concen-	Ŀ	Quivalent	conduct	ance at t	he follow	ing ° C 1	temperatu	re.
Substance.	tration.	00	180	250	50°	75°	1000	1280	1560
Potassium nitrate	0 2	80.8 78.6	126.3	145.1	219 212.7	299 289.9	384 370-3	485 460.7	580 551
	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435-4	520.4
" " · · · ·	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
Potassium oxalate	100	67.2	104.5 127.6	120.3	180.2 230	244.I 322	308.5 419	379 · 5 538	447·3 653
" "	2	79·4 74·9	119.9	139.2	215.9	300.2	389.3	489.I	587
" "	12.5	69.3	111.1	129.2	199.1	27 5. I	354.1	438.8	524.3
	50	63	IOI	116.5	178.6	244.9	312.2	383.8	449.5
" "	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
· " · · · ·	200	55.8	88.4	102.3	155	210.9	265.1	321.9	37 2.1
Calcium nitrate	0	70.4 66.5	112.7	130.6	202 191.9	282 266. 7	369	474	575 529.8
" "	2 12.5	61.6	107.1 98.6	123.7	176.2	244	346.5 314.6	438.4 394.5	473.7
" "	50	55.6	88.6	102.6	157.2	216.2	276.8	343	473.7 405.I
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
" "	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7
Potassium ferrocyanide.	0	98.4	159.6	185.5	288	403	527		
	0.5	91.6	-	171.1	2.28	225.2	127.6		
	2.	84.8	137	158.9 131.6	243.8	335.2 271	427.6 340		
	12.5 50	71 58.2	93.7	108.6	163.3	219.5	272.4		
	100		84.9	98.4	148.1	198.1	245		
	200	53 48.8	77.8	90.1	135.7	18o.6	222.3		
" "	400	45-4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide	0	91	1 50	176	277	393 166.2	521		
	2	46.9	7.5	86.2	127.5		202.3		
Calcium ferrocyanide .	12.5	30.4 88	48.8 146	56.5 171	83.1 271	107 386	129.8		
" " "	2	47.I	75.5	86.2	130	300	312		
"	12.5	31.2	49.9	57.4	- 30				
" "	50	24.1	38.5	44.4	64.6	81.9			
" "	100	21.9	35.1	40.2	58.4	73.7 68.7	84.3		
" "	200	20.6	32.9	37.8	55		77.5		
Potassium citrate	400 0	20.2	32.2 124.6	37.1	54 228	67.5	76.2 420		
rotassium citrate	0.5	76.4	124.0	144.5 139.4	220	320	420		
" "	2	7 I	115.4	134.5	210.1	293.8	381.2	1	
" "	5	67.6	109.9	128.2	198.7	276.5	357.2	1	
" "	12.5	62.9	101.8	118.7	183.6	254.2	326		
	50	54.4	87.8	102.1	1 57.5	215.5	273		
" "	100	50.2	80.8	93.9 81	143.7	196.5	247.5		
Lanthanum nitrate	300	43.5	69.8	81 142.6	123.5	167 313	209.5	534	651
Lanthanum intrate	2	75.4 68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
46 46	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
"	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
" "	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
" "	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2
	<u> </u>		l	<u> </u>	<u> </u>			<u> </u>	

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 341. - The Equivalent Conductance of the Separate Ions.

Ion.	oc	180	25°	500	75°	1000	128°	1560
K	40.4	64.6	74·5	115	159	206	263	317
	26	43.5	50.9	82	116	155	203	249
	40.2	64.5	74·5	115	159	207	264	319
	32.9	54.3	63·5	101	143	188	245	299
	33	55 ²	65	104	149	200	262	322
	30	51 ²	60	98	142	191	252	312
	35	61	72	119	173	235	312	388
$\begin{array}{c} \text{Cl} & \dots & \dots \\ \text{NO}_3 & \dots & \dots \\ \text{C}_2\text{H}_8\text{O}_2 & \dots & \dots \\ \frac{1}{2}\text{SO}_4 & \dots & \dots \\ \frac{1}{3}\text{C}_6\text{H}_5\text{O}_7 & \dots & \dots \\ \frac{1}{4}\text{Fe}(\text{CN})_6 & \dots & \dots \end{array}$	41.1 40.4 20.3 41 39 36 58	65.5 61.7 34.6 68 ² 63 ² 60 95	75.5 70.6 40.8 79 73 70	116 104 67 125 115 113 173	160 140 96 177 163 161 244	207 178 130 234 213 214 321	264 222 171 3°3 275	318 263 211 370 336
Н	240	314	350	465	565	6 ₄₄	7 ² 2	777
	105	172	192	284	360	439	5 ² 5	592

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 342.- Hydrolysis of Ammonium Acetate and Ionization of Water.

Temperature.	Percentage hydrolysis.	Ionization constant of water.	Hydrogen-ion concen- tration in pure water. Equivalents per liter.		
t	100h	K _W ×10 ¹⁴	C _H ×10 ⁷		
0	-	0.089	0.30		
18	(0.35)	0.46	0.68		
25	-	0.82	0.91		
100	4.8	48.	6.9		
1 56	18.6	223.	14.9		
218	52.7	461.	21.5		
306	91.5	168.	13.0		

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

DIELECTRIC CONSTANTS.

TABLE 343. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospheric Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

Gas.	Temp.	refer	c constant red to	Authority.
Uas.	°C.	Vacuum=1	Air=r	Authority.
Air	0 -	1.000590 1.000586	I.000000	Boltzmann, 1875. Klemenčič, 1885.
Ammonia	20	1.00718	1.00659	Bädeker, 1901.
Carbon bisulphide	0	1.00290 1.00239	1.00231 1.00180	Klemenčič. Bädeker.
Carbon dioxide	0	1.000946 1.000985	1.000356 1.000399	Boltzmann, Klemenčič,
Carbon monoxide "	0	1.000690 1.000695	1.000100	Boltzmann. Klemenčič.
Ethylene	0	1.00131 1.00146	1.00072 1.00087	Boltzmann. Klemenčič.
Hydrochloric acid	100	1.00258	1.00199	Bädeker.
Hydrogen	0	1,000264 1.000264	0.999674 0.999678	Boltzmann. Klemenčič.
Methane	0	1.000944 1.000953	1.000354 1.000367	Boltzmann. Klemenčič.
Nitrous oxide (N_2O) " "	0	1.00116	1.00057 1.0004 1	Boltzmann. Klemenčič.
Sulphur dioxide	0 0	1.00993 1.00905	1.00934 1.00846	Bädeker. Klemenčič.
Water vapor, 4 atmospheres	145	1.00705	1.00646	Bädeker.

TABLE 344. - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.

If D_{θ} = the dielectric constant at the temperature θ° C., D_{t} at the temperature t° C., and α and β are quantities given in the following table, then

$$D_{\theta} = D_t \left[\mathbf{I} - \mathbf{\alpha}(t - \theta) + \beta(t - \theta)^2 \right].$$

The temperature coefficients are due to Bädeker.

Gas.	a	β	Range of temp. O C.
Ammonia	5.45 × 10 ⁻⁶	2.59 × 10 ⁻⁷	10-110
Sulphur dioxide	6.19×10 ⁻⁶	1.86 × 10 ⁻⁷	0-110
Water vapor .	1.4×10 ⁻⁴	-	145

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that $D-\mathfrak{i}$ is approximately proportional to the density.

TABLES 345, 346.

DIELECTRIC CONSTANTS (continued).

TABLE 345. - Change of the Dielectric Constant of Gases with the Pressure.

Gas.		Pressure atmos.	Dielectric constant.	Authority.
Air " " " " " " " " " " " " " " " " " "	19	20 40 60 80 100 20 40 60 80 100 120 140 160 180 10 20 40 40	1.0108 1.0218 1.0330 1.0439 1.0548 1.0101 1.0196 1.0294 1.0387 1.0482 1.0579 1.0674 1.0760 1.0845 1.020 1.060 1.010	Tangl, 1907. " " " " " " Occhialini, 1905. "

TABLE 346. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimeters is denoted by ∞ .

Substance.	emp. ler		Dielectric constant.	Author- ity.	Substance.	Temp. ° C.	Wave- length, cm.	Dielectric constant.	Author-
Alcohol: Amyl	18 frozen -120 -80 -40 0 +20	% " 200 73 % " " 200 75 53 4 0.4 % "	2.4 30.1 23.0 17.4 16.0 10.8 4.7 2.7 54.6 44.3 35.3 28.4 25.8 24.4 23.0 20.6 8.8 5.0 3.07 58.0	I I I I I I I I I I I I I I I I I I I	Alcohol: Methyl " " " " Propyl " " " " Acetone " " " Acetic acid " " " Amyl acetate Amylene	-50 0 +20 17 -120 -60 0 +25 -80 0 15 17 18 15 17 19 19	∞ " " 75 ∞ " " 1200 200 73 ** ** ** ** ** ** ** ** ** ** ** ** **	45.3 35.0 31.2 33.2 46.2 33.7 24.8 22.2 12.3 33.8 26.6 21.8,5 20.7 10.3 7.07 6.29 4.81 2.20	I I I 2 I I I I 2 5 5 5 6 7 8 8 6 2 2 9 10

References on page 311.

TABLE 346 (continued).

DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimeters is designated by $\infty\,.$

Substance.	Temp.	Wave- length cm.	Diel. const.	Author- ity.	Substance.	Temp. ° C.	Wave- length cm.	Diel. const.	Author- ity.
Anilin	18 18 19 23 20 17 18 17 14 17 —So —	73 84 ∞ 73 ∞ 73 ∞ " " " " " " " " " " " " "	7.316 2.288 2.26 3.18 2.624 4.95 2.24 7.05 5.67 4.368 4.30 3.05 2.266 2.12 1.53 4.35 19.0 62.0 58.5 56.2 39.1 2.66 1.880 84.7	11 2 12 13 2 11 2 10 " " " " " " " " " " " " " " " " " "	Nitrobenzol	19 18 17 18 17 17	∞ " " " " " " " " " " " " " " " " " " "	9.9 42.0 41.0 37.8 35.1 36.45 34.0 1.949 2.83 4.67 3.10 2.25 3.02 3.11 3.03 2.13 2.85 3.02 3.11 3.03 2.17 9.68 2.51 2.37 2.37 81.07	2
1 Abegg-Seitz, 1 2 Drude, 1896. 3 Marx, 1898. 4 Lampa, 1896. 5 Abegg, 1897. 6 Thwing, 1894. 7 Drude, 1898. 8 Francke, 1893. 9 Löwe, 1898.	899.	10 Landolt-Jahn, 1892. 11 Turner, 1900. 12 Schlundt. 13 Tangl, 1903. 14 Coolidge, 1899. 15 v. Lang, 1896. 16 Nernst, 1894. 17 Calvert, 1900. 18 Hasenöhrl, 1896. 19 Arons-Rubens, 1892. 19 Hopkinson, 1881. 21 Salvioni, 1888. 22 Tomaszewski, 1888. 23 Heinke, 1896. 24 Marx. 25 Fuchs.							

DIELECTRIC CONSTANTS OF LIQUIDS (continued).

TABLE 347. - Temperature Coefficients of the Formula:

$$D_{\boldsymbol{\theta}} = D_{\mathbf{t}}[\mathbf{1} - \boldsymbol{\alpha}(t - \boldsymbol{\theta}) + \boldsymbol{\beta}(t - \boldsymbol{\theta})^{2}].$$

Substance.	a	β	Temp. range, C.	Authority.
Amyl acetate Aniline	0.0024 0.00351 0.00106 0.000966 0.000922 0.00410 0.00459 0.0057 0.00163 0.01067 0.00364 0.000921 0.000977 0.004474 0.004583 0.00436	0.0000087 0.00000060 0.000015 	0-13 20-181 22-181 - - 0-13 20-181 5-20 0-76 4-25 20-181	Löwe. Ratz. Hasenöhrl. Ratz. Tangl. "Ratz. Drude. Hasenöhrl. Heinke, 1896. "" Hasenöhrl. Ratz. Tangl. Heerwagen. Drude. Coolidge. Tangl.

(See Table 344 for the signification of the letters.)

TABLE 348. — Dielectric Constants of Liquified Gases.

A wave-length greater than 10000 centimeters is designated by ∞ .

Substance.	Temp. ○ C.	Wave- length cm.	Dial. constant.	Authority.	Substance.	Temp.	Wave- length cm.	Dial. constant.	Authority.
Air	-191 -34 14 -5 0 +10 +15 -60 -20 +10 0 +14 23 21 10 50 90	% 75 75 130 % " " " " " " " " " " " " " " " " " "	I.432 I.47-1.50 2I-23 I6.2 I.608 I.583 I.540 I.526 2.150 2.030 I.970 I.940 2.08 I.88 2.52 about 95 5.93 4.92 3.76	1 2 3 4 5	Nitrous oxide	-88 -5 +5 +15 -182 40 60 80 100 120 1440 154.2	% " " " " " " " " " " " " " " " " " " "	1.938 1.630 1.578 1.520 1.491 1.465 13.75 14.0 12.5 10.8 9.2 7.8 6.4 4.8 2.1	8 5 98 46
1 v. Pirani, 19 2 Bahn-Kiebit 3 Goodwin-Th	z, 1904.	n. 180	5	Linde	dge, 1899. 7 c, 1895. 8 sheim, 1904. 9		nöhrl,	1901. 1900. ewar, 1896.	

TABLE 349. - Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constants,

Turner.			Dru	de.		Nernst.	
Substance.	Diel. const.	Acete	one in benzol a	watera	cohol in		
7	λ = ∞. 2.288	Per cent by weight.	Density 16°.	Dielectric constant.	Temp.	Per cent Dielectr	
Benzol	2.266 2.376 4.36 ⁷ 7.29 ⁸ 10.90 27.71 36.45	0 20 40 60 80	0.885 0.866 0.847 0.830 0.813 0.797	2.26 5.10 8.43 12.1 16.2 20.5	0.1% 0.3 0.4 0.5 0.5 0.6	100 90 80 70 60	26.0 29.3 33.5 38.0 43.1
		Wat	ter in acetone a	nt 19°, λ ==	75 cm.		'
		0 20 40 60 80 100	0.797 0.856 0.903 0.940 0.973 0.999	20.5 31.5 43.5 57.0 70.6 80.9	0.6% 0.5 0.5 0.5 0.5 0.5		

TABLE 350. - Dielectric Constants of Solids.

Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.	Substance.	Condi- tion.	Wave- length, cm.	Dielectric constant.	Author- ity.
Asphalt		∞	2.68	ı		Temp.	1		l l
Barium sul-					Iodine (cryst.) .	23	75	4.00	2
phate	_	75	10.2	2	Lead chloride .				
Caoutchouc .	_	8	2.22	3	(powder)	-	"	42	2
Diamond	_	"	16.5	ĭ	" nitrate .	-	"	16	2
"	_	75	5.50	2	" sulphate.	- 1	"	28	2
Ebonite	_	8	2.72	4	" molybde-				
	-	44	2.86	5	nate	-	"	24	2
"	_	1000	2.55	6	Marble		Į.	_	1 1
Glass *	Density.				(Carrara)	\ -	"	8.3	2
Flint (extra					Mica	-	∞ .	5.66-5.97	5
heavy) .	4.5	∞	9.90	7	"	-	"	5.80-6.62	15
Flint (very					Madras, brown	-	44	2.5-3.4	16
light)	2.87	"	6.61	7	" green	-	"	3.9-5.5	16
Hard crown	2.48	"	6.96	7	" ruby.	-		4.4	16
Mirror	-	"	6.44-7.46	5 8	Bengal, yellow	-		2.8	16
"	-	"	5.37-5.90		" white.	-		4.2	16
"	- 1	600	5.42-6.20	8	" ruby .	-	"	4.2-4.7	16
Lead (Pow-	1		_		Canadian am-	ì	"		1 - [
ell)	3.0-3.5	∞	5.4-8.0	9	ber	-	"	3.0	16
Jena	1				South America	-	"	5.9	16
Boron .	-	44	5.5–8.1 7.8–8.5	10	Ozokerite (raw)	-	. "	2.21	I
Barium .	-	"	7.8-8.5	10	Paper (tele-	1	"	1	1
Borosili-	}				phone)	-	44	2.0	17
cate .	-	44	6.4-7.7	I	" (cable) .	1 -	- "	2.0-2.5	18
Gutta percha.	l	-	3.3-4.9	11	Paraffine	Melting		2.46	
11 _	Temp.		0			point.		2.32	19
Ice	<u> </u>	1200	2.85	12		44-46		2.10	20
"	— 18	5000	3.16	13		54-56	1	2.14	20
[[" • • • •	—190	75	1.76-1.88	14		74-76		2.10	20
L	<u> </u>	1	<u>!</u>	1	11				

References on p. 314.

^{*} For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900. " " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

TABLES 350, 351.

DIELECTRIC CONSTANTS (continued).

TABLE 350. - Dielectric Constants of Solids (continued).

Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author-	Substance.	Condi- tion.	Wave- length, cm.	Diel. constant.	Author-	
Paraffine Phosphorus: Yellow . Solid Liquid . Porcelain: Hard (Royal B'l'n) Seger " . Figure " . Selenium Shellac	47.°6 56.°2 - - - - - - - - - -	61 61 75 80 80 "" "" 75 \$\infty\$ 1000 \$\infty\$"	2.16 2.25 3.60 4.1 3.85 5.73 6.61 6.84 7.44 6.60 6.13 6.14 3.10 2.95-3.73 3.67	21 21 22 22 22 22 15 15 15 15 12 23 23 4 24 25	Sulphur Amorphous Cast, fresh " " Cast, old . Liquid . Strontium sulphate Thallium carbonate " nitrate . Wood Red beech . " " Cast " " " Cast	near melting-point fibres	75 75 75 75 ∞ 75 75 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	3.98 3.80 4.22 4.05 3.95 3.60 3.90 3.42 11.3 17 16.5 dried 4.83-2.51 7.73-3.63 4.22-2.46 6.84-3.64	I 2 1 18 2 2 18 2 2 1	
1 v. Pirani, 1903. 2 Schmidt, 1903. 3 Gordon, 1879. 4 Winklemann, 1889. 5 Elsas, 1891. 6 Ferry, 1897. 7 Hopkinson, 1891.			10 Löwe, 1898. 11 (submarine-data). 12 Thwing, 1894. 13 Abegg, 1897. 14 Behn-Kiebitz, 1904. 15 Starke, 1897. 16 E. Wilson.			18 Fallinger, 1902. 19 Boltzmann, 1875. 20 Zietkowski, 1900. 21 Hormell, 1902. 22 Schlundt, 1904. 23 Vonwiller-Mason, 1907. 24 Wullner, 1887.				

TABLE 351. - Dielectric Constants of Crystals.

17 Campbell, 1906.

Da, $D\beta$, $D\gamma$ are the dielectric constants along the brachy, macro and vertical axes respectively.

25 Donle.

Substance,	Wave- length,	Diel. const.		uthor- ity.	Substance.	Wave-	Diel, const.			Author- ity.
- Dabbanet.	cm.	⊥ Axis.	Axis.	Au		cm.	Da	Dβ	Дγ	Au
UNIAXIAL: Apatite Beryl " Calcspar Dolomite Leeland spar Quartz " Rutil (TiO ₂). Tourmaline	1000 75 75	9.50 7.85 7.10 6.05 8.49 8.78 7.80 8.50 4.69 4.32 89 7.13 6.75 12.8	7.40 7.44 6.05 5.52 7.56 8.29 6.80 8.00 5.06 4.46 4.34 4.60 173 6.54 5.65	1 4 5 1 1 4 6 6 6 1 1 4	RHOMBIC: Arragonite	∞ 75 ∞ 75 75 75 0 "" " 75 75 75	6.97 7.65 7.70 25.4 5.26 6.09 6.70 3.81	7.68 10.09 12.20 18.5 23.2 6.05 5.08 6.92 3.97 3.85 3.85	7.00 7.70 8.30 19.2 8.28 4.48 8.89 4.77 4.66 4.66	7 7 7 8 7
2 Starke, 1897.			v. F	inger, 1902. Frani, 1903. ry, 1897.	7 Borel, 1893. 8 Boltzmann, 1875.					

7 Hopkinson, 1891. 8 Arons-Rubens, 1891. 9 Gray-Dobbie, 1898.

PERMEABILITY OF IRON.

TABLE 352. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction *B*, and permeability μ, corresponding to the magneto-motive forces *H* recorded in the first column. The first specimen is taken from a paper by Rowland,* and refers to a welded and annealed ring of "Burden's Best" wrought iron. The ring was 6.77 cms. in mean diameter, and the bar had a cross sectional area of 0.016 sq. cms. Specimens 2-4 are taken from a paper by Bosanquet,† and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.725 cms., and the thickness of the bars 2.535, 1.295, and 7.7544 cms. respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 5 is from Ewing's book,‡ and refers to one of his own experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

	Specin	nen 1	2		3		4		5		igh re- lity wn
Н	В	μ	В	μ	В	μ	В	μ	В	μ	paratively high uizing force re- n permeability s, a thin drawn specimen 5.
0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0	80 330 1450 4840 9880 12970 14740 16390	400 660 1450 2420 1976 1297 737 328	126 377 1449 4564 9900 13023 14911 16217 17148	630 754 1449 2282 1980 1302 746 324 171	65 224 840 3533 8293 12540 14710 16062 17900	3 ² 5 448 840 1766 1659 1254 735 3 ² 1 179	85 214 885 2417 8884 11388 13273 13890 14837	425 428 885 1208 1777 1139 664 278 148	22 74 246 950 12430 15020 15790	110 148 246 475 2486 1502 789	Note. — The comparatively high value of the magnetizing force required for maximum permeability when the specimen is a thin drawn wire is noticeable in specimen 5.

TABLE 353. - Permeability of Transformer Iron.§

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/l the magneto-motive force per centimetre length of the iron circuit: B the total induction through the magnetizing coil; B/a the induction per square centimetre of the mean section of the iron circuit; B/l the magnetic reluctance of the iron circuit; B/l the permeability of the iron, a being taken as the mean cross section of the iron circuit as it exists in the transformer, which is thus slightly greater than the actual cross section of the iron.

		(a) Westingi	ouse No	, 8 Transforms	ers (abo	UT 2500 WAT	гтѕ Сар	асіту).		
			First sp	ecimen.		Second specimen.				
M	$\frac{M}{l}$	В	$\frac{B}{a}$	$\frac{M}{B}$	$\frac{Bl}{Ma}$	В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma	
20 40 60 80 100 120 140 160 180 200 220 260	0.597 1.194 1.791 2.338 2.985 3.582 4.179 4.776 5.373 5.970 6.567 7.761	218 × 10 ³ 587 " 878 " 1091 " 1219 " 1330 " 1405 " 1475 " 1532 " 1581 " 1618 "	1406 3790 5660 7040 7860 8580 9060 9510 9880 10200 10430 10910	0.917 × 10 ⁻⁴ 0.681	2360 3120 3180 2960 2640 2410 2186 2000 1850 1720 1590 1410	16×10 ⁴ 49 " 82 " 104 " 118 " 124 " 131 " 135 " 140 " 142 " 144 "	1032 3140 5290 6710 7610 8000 8450 8450 8930 9030 9160 9290	1.25×10 ⁻⁴ 0.82 " 0.73 " 0.77 " 0.85 " 0.97 " 1.07 " 1.18 " 1.29 " 1.41 " 1.53 "	1730 2640 2970 2820 2560 2250 2036 1830 1690 1540	

^{* &}quot;Phil. Mag." 4th series, vol. xlv. p. 151.
† Ibid. 5th series, vol. xix. p. 73.
‡ "Magnetic Induction in Iron and Other Metals."

[§] T. Gray, from special experiments.

PERMEABILITY OF TRANSFORMER IRON.

		(b) W	ESTINGH	ouse No	э. 6 Т	RANSFO	RMERS	(ABO	υT	:800 WA	ттѕ Сара	сітү).	
					First s	pecim	en.					Second s	pecimen.	
ЛІ		$\frac{M}{l}$,	В	$\frac{B}{a}$		$\frac{M}{B}$	$\frac{B}{M}$			В	$\frac{B}{a}$	$\frac{M}{B}$	$\frac{Bl}{Ma}$
20 40 60 80 100 120 140 160 180		0.62 .23 .85 2.46 3.08 3.70 1.31 1.93 5.55	147 442 697 862 1010 1060 1090 1120	7 " 2 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0	1320 3980 6280 7770 8550 9106 9550 9820 10100	1.3 0.9 0.8 0.9 1.0 1.1 1.3 1.4 1.6	6 " 9 " 9 " 7 "	21. 32' 33' 31. 27' 24 22 19' 18	50 90 40 70 50 10 90	6 8	00 " 40 " 70 "	1940 5540 7440 8880 9460 9910 10300 10500	0.93×10 ⁻⁴ 0.64 " 0.72 " 0.81 " 0.95 " 1.09 " 1.23 " 1.37 " 1.51 "	3140 4490 4030 3590 3060 2670 2430 2180 1970
	(c) Westinghouse No. 4 Transformer (about 1200 Watts Capacity).					(đ) :	Гном	ISON	-Houst	n 1500 W	ATTS TRANSFO	RMER.		
М	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$		$\frac{Bl}{Ma}$	M	$\frac{M}{l}$		В	$\frac{B}{a}$	$\frac{M}{B}$	Bl Ma
20 40 60 80	0.69 1.38 2.07 2.76	406 573 659		1470 4066 5730 6590	1.36× 0.98 1.05	10 ⁻⁴	2140 2940 2770 2390	20 40 60 80 100 120 160	0.4 0.8 1.2 1.6 2.1 2.5	4 6 8 0 2	70×10 142 " 214 " 265 " 309 " 348 " 408 "	1 560 3160 4770 5910 6890 7760 9100	2.86×10 ⁻⁴ 2.81 " 2.81 " 3.02 " 3.24 " 3.45 " 3.92 "	3730 3780 3790 3520 3280 3080 2710
100	3·45 4·14	714	"	7140	1.40	"	2070	200 240 280 320 360	4.2 5.0 5.8 6.7	0 4 8 2 6	456 " 495 " 524 " 550 " 573 "	10200 11000 11690 12270 12780	4·39 " 4·87 " 5·35 " 5·82 " 6·29 "	2430 2190 1990 1820 1690
140	4.83	777	••	7770	1.80	••	1610	400 440	8. ₄ 9.2		591 " 504 "	13180	6.78 " 7.28 "	1570

TABLE 354. - Magnetic Properties of Iron and Steel.

	Electro-	Good	Poor	Steel.	Cast	Electrica	l Sheets.
	lytic Iron.	Cast Steel.	Cast Steel.	Steel.	Iron.	Ordinary.	Silicon Steel.
Chemical composition in per cent Si Mn P S	0.024 0.004 0.008 0.008 0.001	0.04.4 0.00.4 0.40 0.04.4 0.027	0.56 0.18 0.29 0.076 0.035	0.99 0.10 0.40 0.04 0.07	3.11 3.27 0.56 1.05 0.00	0.036 0.330 0.260 0.040 0.068	o.o36 3.90 o.o90 o.oo9 o.oo6
Coercive force {	2.83 [0.36]	I.5I [0.37]	7.1 (44.3)	16.7 (52.4)	1 I.4 [4.6]	[1.30]	[0.77]
Residual B }	11400 [10800]	10000]	10500)	1 3000 (7 500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for H=150 {	19200 [18900]	18800 [19100]	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
$4\pi I$ for saturation . $\Big\{$	21620 [21630]	21420 [21420]	20600 (20200)	19800 (18000)	16400 [16800]	[20500]	[19260]

E. Gumlich, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum.

Parentheses indicate hardening by quenching from cherry-red.

TABLE 355. - Cast Iron in Intense Fields.

	Soft Cast	Iron.			Hard Cas	st Iron.	
Н	В	I	μ	Н	В	I	μ
114 172 433 744 1234 1820 12700 13550 13500	9950 10800 13900 15750 17300 18170 31100 32100 32500 33650	782 846 1070 1280 1280 1300 1465 1475 1488	87.3 62.8 32.1 21.2 14.0 10.0 2.5 2.4 2.4 2.2	142 254 339 684 915 1570 2020 10900 13200 14800	7860 9700 10850 13050 14050 15900 16800 26540 28600	614 752 836 983 1044 1138 1176 1245 1226	55.4 38.2 30.6 19.1 15.4 10.1 8.3 2.4 2.2 2.0

B. O. Peirce, Proc. Am. Acad. 44, 1909.

TABLE 356. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of Radial	Ratio of Ave H at Mean		Ratio of Hysteresis for Uniform Distribution to Actual Hysteresis.			
Width to Diameter of Ring.	Rectangular Cross-section.	Circular Cross-section.	Rectangular Cross-section.	Circular Cross-section.		
1/2	1.0986	1.0718	1.112	1.084		
1/3	1.0397	1.0294	1.045	1.033		
1/4	1.0216	1.0162	1.024	810.1		
1/5	1.0137	1.0102	1.015	110.1		
1/6	1.0094	1.0070	1.010	1.008		
1/7	1.0069	1.0052	1.008	1.006		
1/8	1.0052	1.0040	1.006	1.004		
1/10	1.0033	1.0025	1.003	1.002		
1/19	1.0009	1.0007	1.00.1	1.001		

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

COMPOSITION AND MACNETIC

This table and Table 358 below are taken from a paper by Dr. Hopkinson * on the magnetic properties of iron and steel. which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by 4π . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetivous magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

N-					Chemic	al analys	is.	
No. of Test.	Description of specimen.	Temper.	Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos- phorus.	Other substances.
I	Wrought iron	Annealed	-	-	_	_	-	-
2	Malleable cast iron	"	-	_	_	_	_	
3	Gray cast iron Bessemer steel	_	0.045	0.200	0.030	None.	0.040	_
4	Whitworth mild steel	Annealed	0.000	0.153	0.016	44	0.042	- 1
5 6	" " .	"	0.320	0.438	0.017	0.042	0.035	-
7	u u	∫ Oil-hard-	"	44	"	"	"	_
11 1	,, ,,	ened	0.890	0.165	0.005	0.081	0.019	_
8		Annealed Oil-hard	0.090	0.105	6.003	0.001	6.019	_
9	" " .	ened			"	"		-
10	Hadfield's manganese } .	-	1.005	12.360	0.038	0.204	0.070	-
11	Manganese steel	Asforged	0.674	4.730	0.023	0.608	0.078	-
12		Annealed		••	"			-
13		Oil-hard- ened	"	"	"	"	"	-
14	" "	As forged	1.298	8.740	0.024	0.094	0.072	-
15		Annealed	"		"	"	"	
16		Oil-hard-	"	"	"	"	"	-
17	Silicon steel	As forged Annealed	0.685	0.694	"	3.438	0.123	_
18		(Oil-hard-	۱ .,		"		"	
19		ened						
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr.
21		Annealed (Oil-hard-					i	
22	"	ened	"	"	"	"	"	"
23	" "	As forged	0.687	0.028	"	0.134	0.043	1.195 Cr.
24	££ £6	Annealed	"	"	"	"	"	"
25		{ Oil-hard- ened	"	"	"	46	"	44
26	Tungsten steel	As forged	1.357	0.036	None.	0.043	0.047	4.649 W.
27		Annealed	1	"	"	"	"	. "
		(Hardened			1 "			
28	" "	in cold		"	."	"	1 "	. "
		(water (Hardened)
29	""	in tepid	"	"	"	"	"	"
1 29		water				1	1	
30	" " (French) .	∫ Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.
	" "	Very hard	0.855			0.151	0.089	2.353 W.
31	Gray cast iron	- laid	3.455	0.312		2.044	1 -	2.064 C.t
33	Mottled cast iron	-	2.581	0.610		1.476		1.477 C.†
34	White " "	-	2.036			0.764	0.458	-
35	Spiegeleisen	_	4.510	7.970	Trace.	0.502	0.128	_
l		1	1		1	1		1

^{*} Phil. Trans. Roy. Soc. vol. 176.

[†] Graphitic carbon.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:—Energy dissipated \equiv coercive force \times maximum induction $\div \pi$

Temper. Celectrical resisting Correction Correcti	gy dis- ed per cle. 3356 4742 3937 7137 7289 6120 5786 2366
Malleable cast iron Caray	1742 3°37 7137 5289 5120 5786
7	5786 2366
9 " " Oil-hard-lened .01695 16120 8736 19.38 - 99 99 16120 8736 19.38 - 99 16120 8736 19.38 - 99 16120 8736 19.38 - 99 1720	- 1
10 steel	
12	-
13	4567 3963
15 " " Annealed .06316 1985 540 24.50 50.39 11	1941
16 ened	5474
	-
18 " " Annealed .06185 14701 8149 7.80 10.74 3	5740 6485
19 " " Oil-hard- .06195 14696 8084 12.75 17.14 59	9619
21 " " Annealed .01942 14848 7570 8.98 12.24 4	1439 2425
11 ened	9455
23 " " Annealed .01849 13233 6489 15.40 19.79 6	5944 4842
ened 1 3 3 3	7050
	8568 60315
28 " " Hardened in cold water .02274 - - - -	-
	19500
[30 (17ehen)) ened [103004 14400 0043 47.7 1.1	6864
31 " " Very hard .04427 12133 6818 51.20 70.69 19	7660
32 Gray cast iron	39789 11072
	r / -
35 Spiegeleisen .10520 385 77 - -	36383

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 357. TABLE 358.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 357. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force.	Specimen	ı (iron).	Specim (annealed	en 8 steel).	Specimen 9 8 tempe		Specin (cast in	
H	В	μ	В	μ	В	μ	В	μ
1	-	-	-	_	_	_	265 700	265 350
3	200	- 100	-	_	_	_	1625	542 600
5	10050 12550	1255	1 52 5 9000	300 900	750 1650	150 165	3000 50 0 0	500
20 30	14550 15200	7 ² 7 507	11500 12650	57 5 422	5 ⁸ 75 9 ⁸ 75	294 329	6000 6500	300 217
40 50	15800 . 16000	395 320	13300 13800	332 276	11600 12000	290 240	7100 7350	177 149
70	16360 16800	234 168	14350	205	13400 14500	191	7900 8500	113 85
I 50	17400	116	14900 15700	149 105 80	15800	105	9500	63
200	17950	90	16100	30	10100	80	10190	51

Tables 359-363 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.52. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and \(\mu\) have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C. TABLE 359.

	S	oft iron at o	° C.		Ì	Sof	t iron at 100	o° C.	
Н	S	I	В	μ	Н	S	I	В	μ
100 200 400 700 1000	180.0 194.5 208.0 215.5 218.0 218.5	1408 1521 1627 1685 1705 1709	17790 19310 20830 21870 22420 22670	177.9 96.5 52.1 31.2 22.4 18.9	100 200 400 700 1000 1200	180.0 194.0 207.0 213.4 215.0 215.5	1402 1511 1613 1663 1674 1679	17720 19190 20660 21590 22040 22300	177.2 96.0 51.6 29.8 21.0 18.6

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C. TABLE 360.

		Steel at oo	C.		1	S	teel at 100°	C.	
Н	S	I	В	μ	Н	S	I	В	μ
100	165.0	1283	16240	162.4	100	165.0	1278	16170	161.7
200	181.0	1408	17900	89.5	200	180.0	1395	17730	88.6
100	193.0	1 500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	1552	20210	28.9	700	197.0	1527	19890	28.4
000	203.5	1583	20900	20.9	1000	199.0	1543	20380	20.4
1200	205.0	1595	21240	17.7	1 500	203.0	1 57 3	21270	14.2
3750†	212.0	1650	24470	6.5	3000	205.5	1593	23020	7.7
				ļ	5000	208.0	1612	25260	5.1

* "Phil. Mag." 5 series, vol. xxix.

[†] The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 331.)

MAGNETIC PROPERTIES OF METALS.

TAELE 361. - Cobalt at 100° C.

Н	S	I	В	μ
200	106	848	10850	54.2
300	116	928	11960	39.9
500	127	1016	13260	26.5
700	131	1048	13870	19.8
1000	134	1076	14520	14.5
1 500	138	1104	15380	10.3
2500	143	1144	16870	6.7
4000	145	1164	18630	4.7
6000	147	1176	20780	3.5
9000	149	1192	2398o	2.6
At o°	C. this		n gave th	e fol-
	lov	wing rest	ılts:	
7900	154	1232	23380	3.0

TABLE 362. - Nickel at 100° C.

H	S	I	В	μ
100	35.0	309	3980	39.8
200	43.0	380	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	60.43	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1 500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.1
9000	59-4	524	15585	1.7
1 2000	59.6	526	18606	1.5
At oo C	. this sp	pecimer	i gave th	ie fol-
	lowi	ng rest		
12300	67.5	595	19782	1.6

TABLE 363. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

Н	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
I 2000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, \$dB/dH'\$ is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 364. — Lowmoor Wrought Iron.

Н	I	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 365. — Vicker's Tool Steel.

Н	I	В	μ
6210 9970 12120 14660 15530	1 5So		2.97 2.60 2.36

TABLE 366. — Hadfield's Manganese Steel.

Н	I	В	μ
1930	55	2620	1.36
2380	55 84	3430	1.44
3350	84	4400	1.31
5920	III	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 367. - Saturation Values for Steels of Different Kinds.

		H	I	В	μ
	Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon	17600	1770 1660	39880 38860	2.27
3	Crucible steel for making chisels, containing about 0.6 per	19470	1480	38010	1.95
4 5	Finer quality of 3 containing about 0.8 per cent carbon Crucible steel containing 1 per cent carbon	18330 19620	1580 1440	38190 37690	2.08 1.92
	Whitworth's fluid-compressed steel	18700	1590	38710	2.07

^{* &}quot; Phil. Mag." 5 series, vol. xxix, 1890.

^{† &}quot;Phil. Trans. Roy. Soc." 1885 and 1889.

TABLE 368.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur* and by Lord Rayleigh.† The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100 H, or I = 15 H + 100 H. The experiments were made on an annealed ring of round bar 1.013 cms. radius, the ring having a radius of 0.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1 H, or I = 6.4 H +5.1 H^2 . The forces were reduced as low as 0.00004 c. g. s., the relation of k to H remaining constant.

First experiment.			Second ex	eperiment.
Н	k	I	Н	k
.01580 .03081 .07083 .13188 .23011	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903	15.50 18.38 20.49 25.07 32.40 35.20

TABLES 369, 370.-DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg t in 1881, reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, | where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. ¶ Extensive investigations have since been made by a number of investigators.

TABLE 369. - Soft Iron Wire.

(From Ewing's 1885 paper.)

Total induction per sq. cm.	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000	420 800 1230 1700 2200 2760 3450 4200 5000 5820 6720 7650 8650 9670	0.74 1.41 2.18 3.01 3.89 4.88 6.10 7.43 8.84 10.30 11.89 13.53 15.30 17.10

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of 900 soft iron wires 1 mm. diameter and 6 meters long.** The dissipation of energy in watts is for 100 complete cycles per second.

Mean maximum induction density in core.	Total observed dissipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs.	Hysteresis loss of energy in watts per 112 lbs.	Hysteresis loss of energy in ergs per cu. cm. per cycle.
1000	43.2	4	39.2 80.2	602
2000	96.2	16	80.2	1231
3000	158.0	36 64	122.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	209.5	3217
6000	390.1	144	246.1	3779
l	<u> </u>	l	l	!

TABLE 370. - Cable Transformers.

^{* &}quot;Wied. Ann." vol. xi. ‡ "Wied. Ann." vol. xiii. p. 141. || "Wied. Ann." vol. 6.

[&]quot; Phil. Mag." vol. xxiii.

^{41. \$ &}quot;Phil. Trans. Roy. Soc." vol. 175.

¶ "Proc. Roy. Soc." 1882, and "Trans. Roy. Soc." 1885.

** "Proc. Inst. of Elect. Eng." Lond., 1892.

DEMAGNETIZING FACTORS FOR RODS.

TABLE 371.

H= true intensity of magnetizing field, H' = intensity of applied field, I= in-

tensity of magnetization, H = H' - NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of / to about 1/7 the value when unsaturated; for values of \mathcal{B} (= $\mathcal{H}+4\pi I$) less than 10000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

			Value	s of N× 104.					
			Cylinder,						
Ratio of				1	Ballistic Step	Method.			
Length to Diameter.	Ellipsoid.	Uniform Magneti-	Magneto- metric Method	Dubois.	Shudden Pract	nagen for l	Range of ancy.		
		zation.	(Mann).		Diame	ter.			
				0.158 cm,	0.3175 cm.	1.111 Cm.	1.905 cm.		
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 206 181 132 101 80 65 54 26 16	- 630 280 160 70 39 25 18 13 9.8 7.8 6.3 2.8 1.57 0.39	6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2	2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8	- - - 388 234 160 116 88 69 56 46 23 12.5	- - 350 212 145 106 66 41 21	1960 1075 671 343 209 149 106 63 41		

TABLE 372.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

Ratio of	Values o	of K×104,
Length to Diameter.	Diameter 0.3175 cm.	Diameter
15 20 25 30 40 50 60 80 100	- - - - - - - 30.9 18.6 12.7 9.25 5.5 3.66 1.83	85.2 53.3 36.6 27.3 16.6 11.6 8.45 5.05 3.26 1.67

<sup>C. R. Mann, Physical Review, 3, p. 359; 1896.
H. DuBois, Wied. Ann. 7, p. 942; 1902.
C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).</sup>

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments* that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed \pm 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

1	a.
Iron Norway iron Wrought bar Commercial ferrotype plate Annealed " " Annealed " " Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft galvanized wire Annealed cast steel Soft annealed annealed steel Soft annealed annealed land annealed	.01445 .01300 .01365 .01459 .02348 .0122 .0156 .0385 .0120

^{* &}quot;Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method.

Loss per cycle per $cc = AB^2 + bnB^n$, where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

		Ergs p	er Gran	nme per (Cycle.					er Pound a d 10000 G	
Designation.	Thick- ness.	10000 G		5000 Ga		x	y	a	rent		
	cnı.	Hyste- resis.	Eddy Currents at	Hyste- resis.	Eddy Currents at				Eddy Current Loss for Gage No. 29. ‡	Ifyste- resis.	Total.
Unannealed			186	562	46	1.51	2.02	0.00490	0.41	4.35	4.76
A B	0.0399	1599 1156		384	36	1.59	1.89	.00358	0.44	3.14	3.58
C	.0320	1032	134	356	70	1.51	1.79	.00319	0.47	2.81	3.28
Ď	.0381	1009	184	353	48	1.52	1.94	.00312	0.44	2.74	3.18
Annealed											
E	.0476	735	236	246	58	1.58	2.02	.00227	0.36	2.00	2.36
F	.0280	666	100	220	27	1.60	1.88	.00206	0.44	1.81	2.25
G	.0394	563	210	193	54	1.54	1.96	.00174	0.47	1.53	2.00
H*	.0307	412	146	138.5	39	1.58	1.90	.00127	0.54	1.12	1.66
I I	.0318	341	202	111.5	55	1.62	1.88	.00105	0.70	0.93	1.63
K *	.0282	394	124	130	32	1.61 1.61	1.90 1.88	.00122	0.54	1.07	1.57
L	.0346	381	184	125	50	1.61	1.81	.00110	0.535	0.96	1.57
M M	.0338	354	200 178	127	57 46	1.55	1.95	.00115	0.55	1.01	1.56
N N	.0335	372 321	210	105	56	1.62	1.90	.00009	0.63	0.87	1.50
P	.0437	334	184	107	50	1.64	1.88	.00103	0.34	0.91	1.25
Silicon steels									İ		
	.0361	303	54	98	15	1.63	-	.00094	0.14	0.825	0.965
Q† R	.0315	288	42	93	11	1.64	-	.00089	0.15	0.78	0.93
S T	.0452	278	7.2	90	18	1.63	-	.00086	0.12	0.755	0.875
	.0338	250	60	78	18	1.68	-	.00077	0.18	0.68	0.86
U	.0346	270	42	86	12	1.66	-	.00084	0.12	0.735	0.855
V*	.0310	251.5		79	13	1.68	-	.00078	0.17	0.005	0.695
W * X	.0305	197	43	62.3 64.2	16.6	1.65	_	.00062	0.10	0.545	0.665
^	.0430	200	03	04.2	10.0	1.03		1.00002		2.343	- 3-3

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. — For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

[•] German.

† English.

‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

MAGNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = cIH\left(r - \lambda \frac{dr}{d\bar{\lambda}}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, I the length of the path through the substance, II the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, IH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," * and a number of values of it are given in Tables 376–380. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used:-

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becquerel,† Quincke,§ Koepsel, Arons, Kundt,** Jahn,†† Schönrock,‡‡ Gordon,§§ Rayleigh and

Sidgewick, || Perkin, T Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0120 and for water as 0.0130 at 20° C.

* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

1 "Ann. de Chim. et de Phys." [3] vol. 52, p. 129, 1858.

2 "Wied. Ann." vol. 24, p. 606, 1885.

3 "Wied. Ann." vol. 24, p. 456, 1885.

4 "Wied. Ann." vol. 26, p. 456, 1885.

4 "Wied. Ann." vol. 23, p. 21, 161, 1885.

** "Wied. Ann." vol. 43, p. 280, 1891.

1 "Ziets, für Phys. Chem." vol. 11, p. 753, 1893.

\$\$ "Proc. Roy. Soc." 36, p. 4, 1883.

1 "Jour. Chem. Soc." 176, p. 343, 1885.

4 "Jour. Chem. Soc." 176, p. 343, 1885.

TABLE 376. MAGNETO-OPTIC ROTATION.

Solids.

Substance.	Formula.	Wave- length.	Verdet's Constant. Minutes.	Temp. C.	Authority.
Amber	ZnS C PbB_2O_4 Se $Na_2B_4O_7$ Cu_2O	μ 0.589 " " 0.687 0.589 0.687	0.0095 0.2234 0.0127 0.0600 0.4625 0.0170 0.5908	18-20° 15 15 15 15 15	Quincke. Becquerel. " " " "
Fluorite	CaFl ₂	0.2534 .3655 .4358 .4916 .589 I.oo 2.50 3.00	0.05989 .02526 .01717 .01329 .00897 .00300 .00049	20 " " " " "	Meyer, Ann. der Physik, 30, 1909.
Glass, Jena: Medium ph Heavy crow Light flint, Heavy flint ""	O451 . O500 .	0.589 "	0.0161 0.0220 0.0317 0.0608 0.0888	18 " "	DuBois, Wied. Ann. 51, 1894.
Zeiss, Ultraviolet		0.313 0.405 0.436	0.0333 0.0674 .0369 .0311	16 "	Landau, Phys. ZS. 9, 1908.
Quartz, along axis, i.e., plate cut ⊥ to axis	SiO ₂	0.2194 .2573 .3609 .4800 .5892 .6439	0.1587 .1079 .04617 .02574 .01664 .01368	20 " " "	Borel, Arch. sc. phys. 16, 1903.
Rock salt	NaCl	0.2599 .3100 .4046 .4916 .6708 1.00 2.00	0.2708 .1 561 .0775 .0483 .0245 .01050 .00262	20 " " " "	Meyer, as above.
Sugar, cane: along axis IIA	$C_{12}H_{22}O_{11}$	0.451 .540 .626	.0122 .0076 .0066	20 "	Voigt, Phys. ZS. 9, 1908.
axis IIA ¹	-	0.451 .540 .626	0.0129 .0084 .0075	"	
Sylvine	KCI	0.4358 .5461 .6708 .90 1.20 2.00 4.00	0.0534 .0316 .02012 .01051 .00608 .00207	20 	Meyer, as above.

TABLE 377. MAGNETO-OPTIC ROTATION.

Liquids: Verdet's Constant for $\lambda = 0.589\mu$.

Substance.	Chemical formula.	Density in grams per c. c.	Verdet's constant in minutes.	Temp. C.	Authority.
Acetone Acids: Acetic "Butyric "Formic "Hydrochloric "Hydrochloric "Hydroiodic "Nitric "Sulphuric Alcohols: Amyl "Ethyl "Ethyl "Propyl Benzol Bromides: Bromoform "Ethyl "Ethylene "Methyl "Arsenic "Carbon "Chlorides: Amyl "Arsenic "Carbon "Chloroform "Ethyl "Ethylene "Methyl "Methylene Carbon bisulphide "" Chlorides: Amyl "Arsenic "Carbon "Chloroform "Ethyl "Ethylene "Methyl "Hethylene "Methyl "Methylene "Methyl "Hethylene "Methyl "Methyl "Hethyl "Methyl "Methyl "Methyl "Methyl "Methyl "Methyl "Methyl "Methyl "Methyl "Propyl Nitrates: Ethyl "Methyl "Propyl Paraffins: Heptane "Hexane	C ₃ H ₆ O C ₂ H ₄ O ₂ C ₄ H ₄ O ₂ C ₄ H ₄ O ₂ C ₄ H ₂ O ₂ HCl HBT HI HNO ₃ H ₂ SO ₄ C ₅ H ₁₁ OH C ₄ H ₅ OH C ₂ H ₅ OH C ₃ H ₇ OH C ₅ H ₆ C CHBr ₃ C ₂ H ₅ Br C ₄ H ₅ Br C ₇ H ₄ Br ₂ CH ₂ Br ₂ CS ₂ " CHCl AsCl ₃ C ₂ H ₅ Cl C ₂ H ₄ Cl C ₂ H ₅ Cl C ₂ H ₅ Cl C ₃ H ₅ Cl C ₄ H ₅ Cl C ₅ H ₅ I C ₄ H ₅ Cl C ₅ H ₅ I C ₅ H ₇ Cl C ₆ H ₁₄ C ₆ H ₁₄ C ₅ H ₁₂ P S C ₇ H ₈ H ₂ O	0.7947 1.0561 0.9663 1.2273 1.2072 1.7859 1.9473 1.5190 0.8021 0.7900 0.7920 0.8042 0.8786 2.9021 1.4486 2.1871 1.7331 2.4971 1.4823 0.9169 1.2589 1.3361 1.9417 2.2832 1.7658 1.1149 1.2157 1.0622 0.68880 0.6743 0.6332 1.06332 0.8581	0.0113 .0105 .0105 .0124 .0343 .0515 .0070 .0121 .0128 .0124 .0112 .0093 .0120 .0297 .0317 .0183 .0268 .0205 .0276 .0433 .0420 .0140 .0138 .0164 .0138 .0164 .0170 .0162 .0393 .0151 .0437 .0296 .0297 .0317 .0162 .0393 .0151 .0437 .0296 .0297 .0317 .0317 .0317 .0318 .0422 .0321 .0164 .0170 .0162 .0393 .0151 .0296 .0393 .0368 .0376 .0376 .0376 .0376 .0376 .0377 .0384 .0293 .0384 .0293 .03131	20° 21 15 " " " 13 15 20 " " " " 15 " " " " " " " " " " " " " "	Jahn. Perkin. " " " " " " " " " " " " " " " " " "
Xylene	C ₈ H ₁₀	0.8746	.0263	27	Schönrock.

MACNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for $\lambda = 0.589 \mu$.

	per c. c.	constant in minutes.	Temp. C.	*	Chemical formula.	Density, grams per c. c.	Verdet's constant in minutes.	Temp. C.	_
HBr	0.9715 1.3775 1.1163 1.1573 1.0762 1.0158 1.9057 1.4495 1.1760 0.8918 1.2805 1.2805 1.2805 1.2805 1.2806 1.1337 1.1608 1.2491 1.1337 1.1608 1.2491 1.1337 1.1424 1.0876 1.1351 1.0876 1.1351 1.0876 1.1351 1.1416 1.1906 1.1066 1.10718 1.2897 1.138 1.2897 1.1732 1.1732 1.1732 1.1531 1.1541	in minutes. 0.0129 0.0244 0.0168 0.0204 0.0168 0.0140 0.0499 0.0323 0.0205 0.0153 0.0126 0.0166 0.01176 0.0162 0.0163 0.0151 0.0165 0.0152 0.0186 0.0153 0.0151 0.0164 0.0163 0.0151 0.0165 0.0152 0.0186 0.0140 0.0140 0.0140 0.0140 0.0140 0.0175 0.0178 0.0165 0.0179 0.0165 0.0179 0.0165 0.0179 0.0165 0.0179 0.0165 0.0152 0.0179 0.0160 0.0157 0.0165		J P P " " " " " " " " " " " " " " " " "		grams	constant	Temp. C. 20° " 15 " 16 " 20 15 " " 17 " 18 " 19 " 10 " 11 15 " " " 11 15 " " " " " " " " " " " " " " " " " " "	J. B. S. B. " " J. " " " " " " " " " " " " " " " "
"Fe ₂ Cl ₆ " " " " "	1.1093 1.6933 1.5315 1.3230 1.1681 1.0864 1.0445 1.0232	0.0118 -0.2026 -0.1140 -0.0348 -0.0015 0.0081 0.0113	66	44	CdSO ₄ "CdsO ₄ "Li ₂ SO ₄ MnSO ₄ K ₂ SO ₄ NaSO ₄	1.0938 1.1762 1.0890 1.1762 1.2441 1.0475	0.0133 0.0139 0.0136 0.0137 0.0138 0.0133	44 44 44 44	"

^{*} J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 326 for references.

TABLE 379. - Magneto-Optic Rotation.

Gases,

Substa	nce.		 Pressure.	Temp.	Verdet's constant in minutes.	Authority.
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide		 :	 Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary 70° C. Ordinary " " " 20° C.	6.83×10 ⁻⁶ 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " " Bichat.

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 380. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

N f l	Magnetic	Verdet's co	nstant.	Wave-length	Kundt's
Name of substance.	susceptibility.	Number.	Authority.	of light in cms.	constant
Cobalt	+ 0.0126 × 10 ⁻⁵ - 0.0751 " - 0.0694 " - 0.0633 " - 0.0566 " - 0.0541 " - 0.0876 " - 0.0716 " - 0.0982 "		Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁵ 6.56 ' 5.89 " " " "	3.99 3.15 2.63 0.01 -4.00 -5.4 -5.6 -5.8 -14.9 -17.1 -17.7

TABLE 381. - Values of Kerr's Constant.*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

	Spectrum	Wave- length							
Color of light.	line.	in cms.	Cobalt.	Nickel.	Iron.	Magnetite.			
Red	Li a	67.7	0.0208	-0.0173	0.0154	+0.0096			
Red	-	62.0	0.0198	-0.0160	-0.0138	+0.0120			
Yellow	D	58.9	-0.0193	-0.0154	-0.0130	+0.0133			
Green	ь	51.7	-0.0179	-0.0159	0.0111	+0.0072			
Blue	F	48.6	-o.o18o	-0.0163	-0.0101	+0.0026			
Violet	G	43.1	-0.0182	-0.0175	-0.0089	-			

^{*} H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 382. - Dispersion of Kerr Effect.

Wave-length.	0.5μ	1.0μ	1.5μ	2.0µ	2.5μ
Steel	—II'.	— 16′.	—14'.	—II'.	<u>-9'.0</u>
Cobalt	- 9.5	—11.5	— 9.5	—II.	-6.5
Nickel	— 5.5	- 4.0	0	+1.75	+3.0

Field Intensity = 10,000 C. G. S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 383. — Dispersion of Kerr Effect.

Mirror.	Field (C. G. S.)	.41µ	.44μ	.4Sµ	.52µ	.56μ	.60µ	.64μ	.66μ
Iron	21,500	25	26	28	31	36	42	44	45
Cobalt	20,000	36	35	- ⋅34	- ⋅35	35	- 35	35	36
Nickel	19,000	16	15	13	13	14	14	14	14
Steel	19,200	27	28	31	− .35	38	40	44	- -45
Invar	19,800	22	23	24	23	23	22	23	23
Magnetite	16,400	07	02	+.04	+.06	+.08	+.06	+.04	+.03

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

MAGNETIC SUSCEPTIBILITY.

If $\mathfrak T$ is the intensity of magnetization produced in a substance by a field strength $\mathfrak P$, then the magnetic susceptibility $H=\mathfrak T/\mathfrak P$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if H_0 is the susceptibility of water, (p/100) H+(1-p/100) H_0 .

Ag								
AgC	Substance.	Suscep- tibility.	Temp.	Remarks	Substance.	Suscep- tibility.	Temp.	Remarks
AgCl -0.28 Air, 1 Atm. +0.024 15 Mb +0.65 18 Al, 1 Atm. +0.65 18 Crys. MgSO4 +0.65 18 A, 1 Atm. -0.10 0 MgSO4 +0.55 18 Au -0.15 18 MmCl +11.1 18 Ba. -0.71 18 MnSO4 +100. 18 6 Be +0.79 15 Ng.1 Atm. 0.007 16 WH3 -1.1 18 Sol Br -0.36 20 NaCO3 -1.1 NaCO3 -0.007 16 NH3 -1.1 NaCO3 -0.007 16 NH3 -1.1 NaCO3 -0.007 16 NaCO3 -0.10 17 Pow NaCO3 -0.10 17 Pow NaCO3 10 H2O -0.46 17 NaCO3 10 H2O -0.46 18 NaCO3 10 H2O -0.46 17 NaCO3 10 H2O -0.46 17 NaCO3	Ag	-0.19	18°		K ₂ CO ₃	-0.50	20°	Sol'n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+0.024	15		Mb		18	
A, 1 Atm		+0.65	18			+0.55	18	
As	$Al_2K_2(SO_4)_{424}H_2O$	-1.0		Crys.	$MgSO_4$	-0.40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.3				+122.		Sol'n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								"
Be							10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Down			-0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	Powa.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			10					Powd.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Sol'n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaÕ			Powd.			20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CaCl_2$		19	- 66	P, white	-0.90	20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CaCO_3$, marble						1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cd	-0.17					l	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+6.3				-0.25	15	Powd.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$: - 1						Sol'n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Call
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_0^{Ol_2}$			1				Soin
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Co(N()_{2})_{2}$	士57.		44				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0.28		Powd.	Sb			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			18				18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CuCl_2$	+12.	20	Sol'n	Si		18	Crys.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CuSO_4$	10.	20			-0.44	20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17					1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				Sol'n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			19					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				FOWU.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0			1.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							18	
$\ H_2SO_4 \dots \ +o.78 \ 20 \ CH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3O$	H ₂ O		20		$ZnSO_4$	-0.40		
$\ H_2SO_4 \dots \ +o.78 \ 20 \ CH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3OH_3O$	HCl						18	
TUNO I AND INCLINE I ONO I	H_2SO_4						1	
	HNO_3	-0.70	20		C_2H_5OH	-0.80		
Hg -0.19 20 C_8H_7OH -0.80 $C_9H_5OC_9H_5$ -0.60 20	Ing · · · · ·						1	
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	10						20	
		. —					1	
KCl							22	
KI					Paraffin			
KOH -0.35 22 Sol'n Petroleum -0.91		-0.35		Sol'n		0.91		
$K_2SO_40.42 20 Toluene0.77 $		0.42	20					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \text{KNO}_3 $ $ \text{-o.33} $ 20 $ \text{Xylene} $ $ \text{-o.81} $	1717 C3 · · · ·	0.33	20		Ayiene	-0.81		

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Houda, Annalen der Physik (4), 32, 1910.

TABLES 385-387. RESISTANCE OF METALS. MACNETIC EFFECTS. 333 TABLE 385.—Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

Proportional Values of Resistance.											
-192°	-135°	-100°	-37°	o°	+18°	+60°	+1000	+183°			
0.40 1.16	0.60	0.70	0.88	1.00	1.08	1.25 1.26	1.42	1.79			
2.32	1.35	1.20	1.10	1.18	I.2I I.32	1.31	1.46 1.51	1.82			
5.90	2.88	2.00	1.50	1.43	1.42	1.46	1.57	1.87			
10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92			
15.2	6.95	4.11	2.38	2.02	1.93	1.79 1.88	1.80 1.87	1.96			
19.8	9.50	5.40	2.81	2.33	2.20	1.97 2.22	1.95 2.10	2.03			
30.7	18.2	9.8 12.2	4.20	3.17 3.62	2.86 3.25	2.46 2.69	2.28 2.45	2.17			
	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8 25.5	0.40 0.60 1.16 0.87 2.32 1.35 4.00 2.06 5.00 2.88 8.60 3.80 10.8 4.76 12.9 5.82 15.2 6.95 17.5 8.15 19.8 9.50 25.5 13.3 30.7 18.2	0.40 0.60 0.70 1.16 0.87 0.86 2.32 1.35 1.20 4.00 2.06 1.60 5.90 2.88 2.00 8.60 3.80 2.43 10.8 4.76 2.93 12.9 5.82 3.50 15.2 6.95 4.11 17.5 8.15 4.76 19.8 9.50 5.40 25.5 13.3 7.30 30.7 18.2 9.8	0.40 0.60 0.70 0.88 1.16 0.87 0.86 0.96 2.32 1.35 1.20 1.10 4.00 2.06 1.60 1.20 8.60 3.80 2.43 1.72 10.8 4.76 2.93 1.94 12.9 5.82 3.50 2.16 15.2 6.95 4.11 2.38 17.5 8.15 4.76 2.60 19.8 9.50 5.40 2.81 25.5 13.3 7.30 3.50 3.50 2.16 25.5 13.3 7.30 3.50	0.40 0.60 0.70 0.88 1.00 1.16 0.87 0.86 0.96 1.08 2.32 1.35 1.20 1.10 1.18 4.00 2.06 1.60 1.29 1.30 5.90 2.88 2.00 1.50 1.43 8.60 3.80 2.43 1.72 1.57 10.8 4.76 2.93 1.94 1.71 12.9 5.82 3.50 2.16 1.87 15.2 6.95 4.11 2.38 2.02 17.5 8.15 4.76 2.60 2.18 19.8 9.50 5.40 2.81 2.33 25.5 13.3 7.30 3.50 2.73 30.7 18.2 9.8 4.20 3.17	0.40 0.60 0.70 0.88 1.00 1.08 1.11 0.87 0.86 0.96 1.08 1.11 1.16 1.15 1.25 1.20 1.10 1.18 1.21 1.40 2.06 1.60 1.29 1.30 1.32 1.35 1.20 1.10 1.18 1.21 1.21 1.21 1.21 1.22 1.22 1.22	0.40	0.40			

TABLE 388. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at 0° and H=0 .

H	-190°	-75°	00	+18°	+1000	+1820
0	+0 +0.20	0 +0.23	0 +0.07	0 +0.07 +0.03	0 +0.96 +0.72	0 +0.04 -0.07
2000 3000 4000 6000	+0.17 0.00 -0.17 -0.19	+0.16 -0.05 -0.15 -0.20	+0.03 -0.34 -0.60 -0.70	-0.36 -0.72 -0.83	-0.14 -0.70 -1.02	-0.60 -1.15 -1.53
8000 10000 12000	-0.19 -0.18 -0.18 -0.18	-0.23 -0.27 -0.30 -0.32	-0.76 -0.82 -0.87 -0.91	-0.90 -0.95 -1.00 -1.04	-1.15 -1.23 -1.30 -1.37	-1.66 -1.76 -1.85 -1.95
14000 16000 18000 20000	-0.17 -0.17 -0.16	-0.35 -0.38 -0.41	-0.94 -0.98 -1.03	-1.09 -1.13 -1.17	-1.44 -1.51 -1.59	-2.05 -2.15 -2.25
25000 30000 35000	-0.14 -0.12 -0.10	-0.49 -0.56 -0.63	-1.12 -1.22 -1.32	-1.29 -1.40 -1.50	-1.76 -1.95 -2.13	-2.50 -2.73 -2.98

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 387. — Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

Metal.	Field Strength in Gausses.	Per cent Increase.	Authority.
Nickel " Cobalt Cadmium Zine Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron Nickel steel	diverse results, crease in weak i in strong.	-1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.01 +0.004 +0.003 +0.002 +0.001 +0.0003 +0.001 +0.0003 +0.01 +0.01 +0.02 to 0.34 +0.02 to 0.16 mens show very to sually an infields, a decrease	Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906. "" "" "" "" "" "" "" "" "" "" "" "" "

TABLE 388. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primarycurrent; $\frac{dt}{dx}$ = primary temperature gradient; E = breadth, and D = thickness, of specimen; H = intensity of field. C. G. S. units.

> Hall effect (Galvanomagnetic difference of Potential), $E = R \frac{HI}{D}$ " **Te**mperature), $T = P \frac{HI}{D}$ Ettingshausen effect ("

Nernst effect (Thermomagnetic "Potential), $E = QHB\frac{dt}{dx}$ Leduc effect ("Temperature), $T = SHB\frac{dt}{dx}$

Substance.	Values of R.	P × 106.	Q × 10 ⁶ .	S × 108.
Tellurium	+400 to 800 + 0.9 " 0.22 +.012 " 0.033	+200 +2 -0.07	+360000 +9000 to 18000 -700 " 1700	+400 +200 +69
Heusler alloy	+.010 " 0.026 +.007 " 0.011	-0.06	+1600 " 7000 -1000 " 1500	+39
Cobalt	+.0016 " 0.0046 - +.00055	+0.01	+1800 " 2240 -54 " 240	+13 +13
Iridium	+.00040 +.00009	-	up to —5.0 —5.0 (?)	+5
Tin	0003 0002 00052	- - -	-4.0 (?) - -90 to 270	-2 -18
German silver	00054 00057 to .00071 0009			
Manganese	—.00093 — 0007 to .0012	-	+50 to 130	− 3
Silver	0008 " .0015 0023 00094 to .0035	-	-46 " 430	—41
Aluminum	00036 " .0037 0045 " .024	+0.04 to 0.19	+2000 " 9000	— 45
Carbon	—.017 — up to 16.	+5. +3 to 40	+ 100 + up to 132000	-200

TABLE 389. - Variation of Hall Constant with the Temperature.

	-	Bisı	muth.1		Antimony.2						
Н	-1S2°	-90°	-23°	+11.50	+1000	Н	-186	0 -79	+21.50	+58°	
1000 2000 3000 4000 5000 6000	62.2 55.0 49.7 45.8 42.6 40.1	28.0 25.0 22.9 21.5 20.2 18.9	17.0 16.0 15.1 14.3 13.6 12.9	13.3 12.7 12.1 11.5 11.0 10.6	7.28 7.17 7.06 6.95 6.84 6.72	1750 3960 6160	0.26; 0.25; 0.24;	0.24	3 0.211	0.203	
					Bismuth	1. ³			_		
Н	+14.50	+104	0 12	5°	1890	2120	239 ⁰	259 ⁰	269 ⁰	270 ⁰	
890	5.28	2.57	2.	12	1.42	1.24	1.11	0.97	0.83	0.77*	

¹ Barlow, Ann. der Phys. 12, 1903.

² Everdingen, Comm. Phys. Lab. Leiden, 58.

³ Traubenberg, Ann. der Phys. 17, 1905.

* Melting-point.

Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik. 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

SMITHEORIER Teneral**

TABLES 390-392. RÖNTGEN (X-RAYS) RAYS.

Röntgen rays are produced whenever an electric discharge passes through a highly exhausted tube. The disturbance is propagated in straight lines probably with the velocity of light, affects photographic plates, excites phosphorescence, ionizes gases and suffers neither deviation by magnetic forces nor measurable refraction in passing through media of different densities. With extreme exhaustion in the tube they have an appreciable effect after passing through several millimeters of brass or iron. The quality by which it is best to classify the rays is their hardness which is the greater the greater the exhaustion. It is conveniently measured by the amount of absorption which they suffer in passing through a layer of aluminum or tin foil of standard thickness. The number of ions which the rays produce in 1 sec. in passing through 1 cu. cm. of a gas depends upon its nature and pressure. The absorption of any substance is equal to the sum of the absorption of the individual molecules and the absorption due to any molecule is independent of the nature of the chemical compound of which it forms a part, of its physical state, and probably of its temperature.

TABLE 390. - Ionization due to Röntgen Rays in Various Gases.

Gas.	Relative i	Density.			
Gas.	Soft rays, Strutt.	Hard rays, Eve.	Delisity.		
Hydrogen	.11	.42	0.069		
Air	1.00	1.00	1.00		
Oxygen	1.39	_	1.11		
Carbon dioxide	1.60	-	1.53		
Cyanogen	1.05		1.86		
Sulphur dioxide	7.97	2.3	2.19		
Chloroform	31.9	4.6	4.32		
Methyl iodide	72.0	13.5	5.05		
Carbon tetrachloride	45.3	4.9	5.3I		
Hydrogen sulphide	_	.9	1.18		

Strutt, Proc. Roy. Soc. 72, p. 209, 1903; Eve, Phil. Mag. 8, p. 610, 1904.

When Röntgen rays pass through matter they produce secondary Röntgen rays as well as cathodic rays. The former are of two types: the first is like the original rays and may be regarded as scattered primary rays; the second type varies with the nature of the material struck and is independent of the primary rays. If the atomic weight of the material struck is less than that of Calcium then the first type alone is present. The higher the atomic weight of the material struck the more penetrating is the secondary radiation given out. This is shown in the following table where λ is the reciprocal of the distance (cm.) in Al, through which the rays must pass in order that their intensity is reduced to 1/2.7 of its original intensity.

TABLE 391. — Röntgen Secondary Rays.

Element.	Cr.	Fe.	Со-	Ni.	Cu.	Zn.	As.	Se.	Sr.	Ag.	Sn.
Atomic weight	52. 367.	55.8 239.	59.0 193.	58.7 160.	63.6 129.	65.4 106.	75.0 61.	79.2 51.	87.6 35.2	108. 6.75	4.33

The secondary cathodic rays seem to be independent of the material struck and of the intensity of the original rays. The velocity of these secondary rays depends upon the hardness of the original rays. The following table gives the thickness in cm. of the gas at 760 mm., o° C. necessary to reduce the energy of the cathodic rays to one half (t) as well as λ as above defined.

TABLE 392. - Röntgen Secondary Cathodic Rays.

Element,		t	λ			
	Air.	Hydrogen.	Air.	Hydrogen		
Fe Cu Zn As Sn	.0080 .0135 .0164 .0255 .176	.041 .073 .091	87.2 51.9 42.7 27.4 3.97	17.0 9.5 7.7		

Beatty, Phil. Mag. 20, p. 320, 1910.

TABLES 393, 394. RÖNTCEN (X-RAYS) RAYS.

TABLE 393. — Mean Absorption Coefficients, $\frac{\lambda}{d}$.

If I_0 be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then $I = I_0 e^{-\lambda x}$ gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the density d.

	Absorber.												
Radiator.	C.	Mg.	Al.	Fe.	Ni.	Cu.	Zn.	Ag.	Sn.	Pt.	Au.		
Cr. Fe. Co. Ni. Cu. Zn. As. Se.	15.3 10.1 8.0 6.6 5.2 4.3 2.5 2.0	126. 80. 64. 52. 41. 35. 19. 16.	136. 88. 72. 59. 48. 39. 22. 19.	104. 66. 67. 314. 268. 221. 134. 116.	129. 84. 67. 56. 63. 265. 166.	143. 95. 75. 62. 53. 56. 176. 150.	170. 112. 92. 74. 61. 50. 204. 175.	580. 381. 314. 262. 214. 175. 105. 88. 13.	714. 472. 392. 328. 272. 225. 132. 112.	(517.) 340. 281. 236. 194. 162. 106. 93. 56.	(507.) 367. 306. 253. 210. 178. 106. 100.		

Barkla, Sadla, Phil. Mag. 17, p. 739, 1909.

TABLE 394. - X-Ray Spectra and Atomic Numbers.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits characteristic Röntgen radiations. These have been analyzed and the wave-lengths obtained by Moseley (Phil. Mag. 27, p. 703, 1914) using a crystal of potassium ferrocyanide as a grating. The "K" series of elements shows 2 lines, α and β , the "L" series several. The wave-lengths of the α and β lines of each series are given in the following table. $Q_K = (v/\frac{3}{4} \ v_0)^\frac{1}{2}; \ Q_L = (v/\frac{5}{36} \ v_0)^\frac{1}{2}$ where v is the frequency of the α line and v_0 the fundamental Rydberg frequency. The atomic number for the K series $= Q_K + \iota$; for the L series $= Q_L + 7.4$ approximately. $v_0 = 3.29 \times 10^{15}$.

Element.	a line λχιο ⁸ cm.	Q_{K}	Atomic Number N	β line λχιο ⁸ cm.	Element.	α line λχιο ⁸ cm.	$Q_{\mathbf{L}}$	Atomic Number N	β line λχιο ⁸ cm.
Al Si Cl K Ca Ti V Cr Mn Fe Co Ni Cu Zn Yt Zr Cb Mo Ru Pd Ag	8.364 7.142 4.750 3.759 3.368 2.758 2.519 2.301 2.111 1.946 1.798 1.662 1.549 1.445 0.838 0.794 0.750 0.721 0.638 0.560	12.0 13.0 16.0 18.0 19.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 38.1 39.1 40.2 43.6 45.6 46.6	13 14 17 19 20 22 23 24 25 26 27 28 29 30 39 40 41 42 44 46 47	7.912 6.729 3.463 3.094 2.524 2.297 2.093 1.818 1.765 1.629 1.506 1.402 1.306	Zr Cb Mo Ru Rh Pd Ag Sn Sb La Ce Pr Nd Sa Eu Gd Ho Er Ta W Oss Ir Pt Au	6.091 5.749 5.423 4.861 4.622 4.385 4.170 3.619 3.458 2.676 2.567 (2.471) 2.382 2.208 2.130 2.057 1.914 1.790 1.525 1.486 1.397 1.316 1.287	32.8 33.8 34.8 36.7 37.7 39.6 42.6 49.5 50.6 51.5 55.5 56.6 60.6 65.5 69.6 70.6 71.4	40 41 42 44 45 46 47 50 51 57 58 69 62 63 64 66 68 73 74 76 77 78	5.507 5.187 4.660 4.168 3.245 2.471 2.360 2.265 2.175 2.008 1.925 1.853 1.711 1.591 1.330 1.201 1.155 1.121 1.092

Moseley's summary condensed is as follows: Every element from Al to Au is characterized by an integer N which determines its X-ray spectrum; N is identified with the number of positive units of electricity in its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights except where the latter disagrees with the order of the chemical properties. Known elements correspond with all the numbers between 13 and 79 except 3. There are here 3 possible elements still undiscovered. The frequency of any line in the X-ray spectrum is approximately proportional to A (N-b)², where A and b are constants. All X-ray spectra of each series are sinilar in structure differing only in wave-lengths.

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor infected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or

iquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit α , β , or γ rays. α rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The β rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and dentical in type with the cathode rays of a vacuum tube. The γ rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain themical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.

Table 398 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is reserved for references. In the three radioactive series each successive product (except Ur. Y, and Ra. C_2) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an a particle (helium, atomic weight = 4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law. $I = I_{0}e^{-\lambda t}$ where $I_{0} = \text{radioactivity when } t = 0$, I that at the time t, and t the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the

lecay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures it Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards or governments requiring them.

TABLE 395. - Relative Phosphorescence Excited by Radium.

(Becquerel, C. R. 129, p. 912, 1899.)

Without	screen,	Hexagonal zinc blende .		13.36	With screen			.04
**	44	Pt. cyanide of barium .		1.99	16 61			.05
**	4.6	Diamond		1.14	11 11			10.
"	"	Double sulphate Ur and K.		1.00	" "			.31
"	6.6	Calcium fluoride		.30	" "			.02

The screen of black paper absorbed most of the α rays to which the phosphorescence was greatly due. For the last olumn the intensity without screen was taken as unity. The γ rays have very little effect.

TABLE 396. — The Production of α Particles (Helium).

(Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 1910.)

Radioactive substance (1 gram	.)		a particles per sec.	Helium per year.
Uranium . Uranium in equilibrium with products Thorium "Radium . Radium in equilibrium with products	:	:	2.37 × 10 ⁴ 9.7 × 10 ⁴ 2.7 × 10 ⁴ 3.4 × 10 ¹⁰ 13.6 × 10 ¹⁰	2.75 × 10 ⁻⁵ cu. mm. 11.0 × 10 ⁻⁵ · · · · · 3.1 × 10 ⁻⁵ · · · · · 39 · · · · · 158 · · · ·

TABLE 397. - Heating Effect of Radium and its Emanation.

(Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

		Heating effect in gram	ı-calories per hour per	gram radium.						
α rays. β rays. γ rays. Total.										
Radium Emanation	:	25.1 28.6	-	=	25.1 28.6					
Radium A Radium B + C .	_:	30.5 39·4	4-7	6.4	30.5 50.5					
Totals	.	123.6	4-7	6.4	134.7					

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc.

RADIOACTIVITY.

 $\Gamma=1/2$ period = time when body is one-half transformed. $\lambda=$ transformation constant (see previous page). The initial velocity of the α particle is deduced from the formula of Geiger $V^3=aR$ where R= range and assuming the velocity for RaC of range 7.06 cm, at 20° is 2.06 \times 10° cm. per sec., i.e. v = 1.077 r $^{1/3}$.

			RANIUM-RA	ADIUM G	ROUP.							
			Transforma-		a rays.							
	Atomic Weights.	½ Period P	tion Constants. $\lambda = \frac{.6931}{P}$	Rays.	Range. 760 ^{mm} , 15 ⁰ C.	Initial Velocity.	Kinetic Energy	Whole no. of ions produced.				
	 		P		c.m.	c.m. per s.	Ergs.	By an a particle,				
Uranium 1 Uranium 2 Uranium X Ur. Y	238.5 234.5 230.5 230.5 ?	5×10 ⁹ y 10 ⁶ yrs 24.6 d 1.5 d	1.4×10 ⁻¹⁶ y 7×10 ⁻⁷ y .0282 d .46 d	α α β+γ β	2.50 2.90	1.45×10 ⁹	.65×10 ⁻⁵	1.26×10 ⁵				
Ionium Radium Ra Emanation Radium A	230.5 226.4 222 218	2×10 ⁵ yr? 2000 y 3.85 d 3.0 m	3.5×10 ⁻⁶ y .000346 y .180 d .231 m	α α+β α α	3.00 3.30 4.16 4.75	1.56 " 1.61 " 1.73 " 1.82 "	.75 " .79 " .92 " 1.01 "	1.40 " 1.50 " 1.74 " 1.88 "				
Radium B Radium C Ra C ₂ Ra O, radio-lead Ra E.	214 210 210 210 214	26.8 m 19.5 m 1.4 m 16.5 y 5.0 d	.0258 m .03 5 5 m .495 m .042 y .139 d	$ \begin{array}{c c} \beta + \gamma \\ a + \beta + \gamma \\ \beta \\ \text{slow } \beta \\ \beta + \gamma \end{array} $	6.94	2.06 "	1.31 "	2.37 "				
Ra F. Polonium	210	136 d	.00510 d	a	3.77	1.68 "	.87 ''	1.63 "				
			ACTINIU	M GROU	Р.							
Actinium Radio-Act. Actinium X Act. Emanation Actinium A Actinium B Actinium C Actinium D	A A-4 A-8 A-12 A-16 A-16 A-20	? 19.5 d 10.2 d 3.9 s .002 s 36 m 2.1 m 4.7 m	-0355 d .068 d .178 s 350 s .0193 m .33 m	none $a+\beta$ a a a slow β a $\beta+\gamma$	4.80 4.40 5.70 6.50 5.40	1.83×10 ⁹ 1.76 " 1.94 " 2.02 " 1.89 "	1.02×10 ⁻⁵ -94 " 1.15 " 1.25 "	1.89×10 ⁵ 1.79 "1 2.10 " 2.27 " 2.02 "				
			THORIU	M GROU	Р.							
Thorium Mesothorium 1 Mesothorium 2 Radiothorium Thorium X Th. Emanation Thorium B Thorium B Thorium C Thorium C Thorium C	232 228 228 228 224 220 216 212 212 212 208	1.3×10 ¹⁰ y 5.5 y 6.2 hr 2 yrs 3.65 d 54 sec 0.14 sec 10.6 h 60 m very short 3.1 m	5.3×10-11 .126 yr .112 h .347 y .190 d .0128 s 4.95 s .0654 h .0118 m 224 m	α none β+γ α α+β α β+γ α β+γ α+β α β+γ	2.72 3.87 5.7 5.5 5.9 5.0 8.6	1.50×10 ⁹ 1.70 " 1.94 " 1.90 " 1.97 4 1.85 " 2.22 "	.69×10-5 .89 " 1.15 " 1.10 " 1.19 " 1.05 " 1.53 "	1.32×10 ⁵ 1.66 " 2.1 " 2.0 " 2.2 1.9 " 2.9 "				
Potassium Rubidium	39.1 85.5	;	}	β β								

 $\mu=$ coefficient of absorption for β rays in terms of cms. of aluminum, μ_I , of the γ rays in cms. of lead so that if J_0 is the incident intensity, J that after passage through d cms., $J=J_0e^{-d\mu}$.

URANIUM-RADIUM GROUP.							
	βг	ays.	γ rays.				
	Absorption CoefficienI =μ	Velocity Light = 1	Absorption Co-ef. $= \mu_1$	Remarks.			
	c.m1		c.m1				
Urı	_	_	-	I gram U emits $2.37 \times 10^4 \alpha$ particles per sec.			
Ur 2				Not separable from Ur 1.			
Ur X	15, 510	Wide range	.72	β rays show no groups of definite velocities. Chemically allied to Th.			
Ur Y	. –	-		Probably branch product. Exists in small quantity.			
lo		-		Chemically properties of and non-separable from Thorium.			
Ra	312	.52, .65	_	Chemically properties of Ba. 1 gr. emits per sec. in equilib. 13.6 × 10 ¹⁰ a particles.			
Ra Em	-	_	_	Inert gas, density 111 H, boils —65° C, density solid 5-6, condenses low pressure —150° C.			
Ra A		-	_	Like solid, has + charge, volatile in H,			
Ra B	13, 80, 890	.36 to .74	4 to 6	400°, in O about 550°. Volatile about 400° C. in H. Separated pure by recoil from Ra A.			
Ra C Ra C ₂	13, 53 13	.80 to .98	.50	Volatile in H about 430°, in O about 1000°. Probably branch product. Separated by recoil from Ra C.			
Ra D	•33• •39	.33, .39	_	Separated with Pb. not yet separable from it. Volatile below 1000°.			
Ra E Ra F	43	Wide range	Easy abs.	Separated with Bi. Probably changes to Pb. Volatile about 1000°.			
		Α.	CTINIUM (
Act	_	_	l –	Probably branch product Ur. series.			
Rad. Act	140		_	Chemically allied to Lanthanum.			
Act X Ac. Em.	140	_	=	Chemical properties analogous to Ra. Inert gas, condenses between —120° and			
Act A	_		_	—150°. Analogous to Ra A. Volatile above 400°.			
Act B Act C	Very soft	_	=	" " Ra B. " " 700°. " " Ra C.			
Act D	28.5		.217 (Al)	(Obtained by recoil).			
		Т	HORIUM C	GROUP.			
Th.	_	_	-	Volatile in electric arc. Colorless salts not			
Mes. Th. 1		.37 to .66	-	spontaneously phosphorescent. Chemical property analogous to Ra from which non-separable.			
Mes. Th. 2 Rad. Th.	20 to 38.5	_	· <u>5</u> 3	Chemically allied to Th., non-separable			
Th. X Th. Em.	About 330	.4751	=	from it. Chemically analogous to Ra. Inert gas, condenses at low pressure between —120° and —150°.			
Th. A Th. B	110.	.63 .72	=	+charged, collected on — electrode. Chemically analogous to Ra B. Volatile			
Th. C ₁	15.6	_	Weak	above 630° C. Chemically analogous to Ra C. Volatile above 730°.			
Th. C2	-	-		Th.C ₂ and Th.D are probably respectively			
Th. D	24.8	.3, .4, .93-5	.46	β and α ray products from Th.C _I . Got by recoil from Th.C. Probably transforms to Bi.			
K Rb.	38, 102 380, 1020			Activity = 1/1000 of Ur. ,, = 1/500 of Ur.			
	J/						

TABLES 399-401. RADIOACTIVITY.

TABLE 399.—Stopping Powers of Various Substances for α Rays.

s, the stopping power of a substance for the a rays is approximately proportional to the square root of the atomic weight, w.

Substance	H ₂	Air	O ₂	C ₂ H ₂	C ₂ H ₄	Al	N ₂ O	CO ₂	CH ₃ Br	CS ₂	Fe
s	.24	1.0	1.05	1.11	1.35	1.45	1.46	1.47	2.09	2.18	2.26
v w	.26	1.0	1.05	1.17	1.44	1.37	1.52	1.51	2.03	1.95	1.97
Substance	Cu	Ni	Ag	Sn	C ₆ H ₆	C ₅ H ₁₂	C ₂ H ₅ I	CCl ₄	Pt	Au	Pb
s · · ·	2.43	2.46	3.17	3·37	3·37	3.59	3.13	4.02	4.16	4.45	4.27
v w · · ·	2.10	2.20	2.74	2.88	3·53	3.86	3.06	3.59	3.68	3.70	3.78

Bragg, Philosophical Magazine, 11, p. 617, 1906.

TABLE 400. — Absorption of β Rays by Various Substances.

 μ , the coefficient of absorption for β rays is approximately proportional to the density, D. See Table 398 for μ for Al.

Substance	B 4.65	C 4.4 12	Na 4.95 23	Mg 5.1 24.4	Al 5.26 27	Si 5-5 28	P 6.1 31	S 6.6 3 ²	K 6.53 39	Ca 6.47 40
Substance	Ti	Cr	Fe	Co	Cu	Zn	Ar	Se	Sr	Zr
	6.2	6.25	6.4	6.48	6.8	6.95	8.2	8.65	8.5	8.3
	48	52	56	59	63.3	65.5	75	79	87.5	90.7
Substance	Pd	Ag	Sn	Sb	I	Ba	Pt	Au	Pb	U
	8.0	8.3	9.46	9.8	10.8	8.8	9.4	9.5	10.8	10.1
	106	108	118	120	126	137	195	197	207	240

For the above data the β rays from Uranium were used. Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 401. — Absorption of γ Rays by Various Substances.

	Density.	Radium rays.		Uraniu	m rays.	Th. D.	Meso. Th2	Range of thickness	
Substance.		μ (cm)-1	1∞µ/D	$\mu(\mathrm{cm})^{-1}$	ı∞μ/D	μ(cm) ⁻¹	μ(cm)-1	cm.	
Hg Pb	13.59	.642 •495	4.72 4.34	.832 .725	6.12 6.36	.462	.620	.3 to 3.5 .0 " 7.9	
Cu Brass . Fe Sn Zn Slate Al	8.81 8.35 7.62 7.24 7.07 2.85 2.77	.351 .325 .304 .281 .228 .118	3.98 3.89 3.99 3.88 3.93 4.14 4.06	.416 .392 .360 .341 .329 .134 .130	4.72 4.70 4.72 4.70 4.65 4.69 4.69	.294 .271 .250 .236 .233 .096	·373 ·355 ·316 ·305 ·300	.o " 7.6 .o " 5.86 .o " 7.6 .o " 5.5 .o " 6.0 .o " 9.4	
Glass . S Paraffin .	2.52 1.79 .86	.105 .078 .042	4.16 4.38 4.64	.122 .092 .043	4.84 5.16 5.02	.089 .066 .031	.083 .050	.0 " 11.3 .0 " 11.6 .0 " 11.4	

In determining the above values the rays were first passed through one cm. of lead.

Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

RADIOACTIVITY.

TABLE 402. — Total Number of Ions produced by the α , β , and γ Rays.

The total number of ions per second due to the complete absorption in air of the β rays due to I gram of radium is 9×10^{14} , to the γ rays, 13×10^{14} .

The total number of ions due to the α rays from 1 gram of radium in equilibrium is 2.56imes10 16 . If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.1 parts to the α , 3.2 to the β , 47to the y rays. (Rutherford, Moseley, Robinson.)

TABLE 403. - Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie (10-8Curie) and the microcurie (10-6Curie)]. The rate of production of this emanation is 1.24×10-9 cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm., OOC.) assuming the emana-

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of 10-3 unit in a chamber of large dimensions. 1 curie = 2.5×103 Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10⁻¹² to 350×10⁻¹².

TABLE 404. - Vapor Pressure of the Radium Emanation in cms. of Mercury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°. -127° -101° -65° -56° -10° +17° +49° +73° +100° +104° (crit) Vapor Pressure. 0.9 5 76 100 500 1000 2000 3000 4500 4745

TABLE 405. - References to Spectra of Radioactive Substances.

Radium spectrum:

Demarçay, C. R. 131, p. 258, 1900. Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc. Radium emanation spectrum:

Roy. Soc. A 83, p. 50, 1909. Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910. Polonium spectrum:

MISCELLANEOUS CONSTANTS (ATOMIC, MOLECULAR, ETC.).

Elementary electrical charge, charge on electron, I/2 charge ($e = 4.774 \times 10^{-10}$ e. s. u. (M) = 1.519×10⁻²⁰ e. m. u. on a particle, $=1.591\times10^{-19}$ coulombs m = about 6×10-58 grams. Mass of an electron, $1 = \text{about } 1 \times 10^{-13} \text{ cm}.$ Radius of an electron, $N = 6.06 \times 10^{28} \text{ gr}^{-1} \text{ (M)}$ Number of molecules per gram molecule, $n = 2.70 \times 10^{19} (M)$ Number of gas molecules per cc., 760mm, occ, Kinetic energy of a molecule at o°C, $E_0 = 5.62 \times 10^{-14} \text{ ergs. (M)}$ $\epsilon = 2.06 \times 10^{-16} \text{ ergs/degrees}$ Constant of molecular energy, E₀/T, Constant of entropy equation (Boltzmann), = R/N } $k = 1.37 \times 10^{-16}$ " (M) $= p_0 V_0 / TN = (2/3) \epsilon,$ $h = 6.62 \times 10^{-27}$ erg. sec. (M) Elementary "Wirkungsquantum," $= 1.64 \times 10^{-24} \text{ gram}.$ Mass of hydrogen atom, = about 10-8 cm. Radius of an atom, Gas constant, R = 22.412/273.1 for 1 gram molecule of an ideal gas. Pressure in atmospheres, g = 980.6, vol. in liters, R = .08207 liter. Atm/grm.

	H_2	He	N_2	O_2	Xe	CO_2	H ₂ O
Sq. rt. of mean sq. molec. veloc., cm./sec. at o°C.×10 ⁻⁴ Mean free path cm. ×10 ⁶	18.4 18.	13.1 28.	4.93 9.4	4.61 9.9	2.28 56	3.92 6.4	7.08 7.2 3.8

(M) Millikan, Phys. Rev. 2, p. 109, 1913. The other values are mostly means.

PERIODIC SYSTEM OF THE ELEMENTS.

	О	I	II	III	IV	v	VI	VII	
	-	R ₂ O	RO	R_2O_3	RO_2	R_2O_5	RO ₃	R_2O_7	RO4 # Oxides
	-	_	-		RH ₄	RH_3	RH ₂	RH	- 🚜 Hydrides
	He 4	Li 7	G1 9	В	C 12	N 14	()	F 19	-
	Ne 20	Na 23	Mg 24	Al 27	Si 28	P 31	S 32	C1 35	-
	A 40	K 39	Ca 40	Sc 44	Ti 48	V 51	Cr 52	Mn 55	Fe Ni Co 56 59 59
	-	Cu 64	Zn 65	Ga 70	Ge 72	As 75	Se 79	Br 80	_
	Kr 82	Rb 85	Sr 88	Yt 89	Zr 91	Cb 94	Mo 96	-	Ru Rh Pd 102 103 107
	-	Ag 108	Cd 112	In 115	Sn 119	Sb 120	Te 128	I 127	-
	X 128	Cs 133	Ва 137	La 139	Ce 140	~	-	-	-
	-	-	-	-	-	- -	- -	- -	<u>-</u> -
	-	<u>-</u>	- -	Yb 173	- -	Ta 181	W 184	-	Os Ir Pt 191 193 195
	-	Au 197	Hg 201	Tl 204	Pb 207	Bi 208	-	- -	- -
	-	-	Ra 2 2 6	-	Th 232	-	U 238	<u>-</u> -	-

APPENDIX.

DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications" (see pages xxxvi, 261), "deposits silver at the rate of 0.001118 of a gram per second."

The ampere = I coulomb per second = I volt through I ohm = Io^{-1} E. M. U. = 3 \times IO 9 E. S. U.*

Amperes = $volts/ohms = watts/volts = (watts/ohms)^{\frac{1}{2}}$.

Amperes \times volts = amperes $^2 \times$ ohms = watts. ANGSTROM. Unit of wave-length = 10^{-10} meter.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in = 29.929 in. = 760.18 mm. Hg. 32° F. French = 760 mm. of Hg. 0° C. = 29.922 in. = 14.70 lbs. per sq. in.

BOUGIE DECIMALE. Photometric standard; see page 178.

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1 °F. = 252 gram-calories.

CALORY. Small calory = gram-calory = therm = quantity of heat required to raise one

gram of water at its maximum density, one degree Centigrade.

Large calory = kilogram-calory = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 237.

CANDLE. Photometric standard, see page 178.

CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard = 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part.

Photometric standard; see page 178.

CIRCULAR AREA. The square of the diameter = 1.2733 X true area.

True area = 0.785398 × circular area. COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. = 10^{-1} E. M. U. = 3×10^{9} E. S. U.

Coulombs = $(volts-seconds)/ohms = amperes \times seconds$.

CUBIT = 18 inches. DAY. Mean solar day. = 1440 minutes = 86400 seconds = 1.0027379 sidereal day.

Sidereal day = 86164.10 mean solar seconds.

DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon.
DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

C. G. S. unit of force = that force which acting for one second on one gram pro-DYNE. duces a velocity of one centimeter per second.

= weight in grams divided by the acceleration of gravity in cm. per sec. ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited in an electrolytic cell by an electrical current to the quantity of electricity.

ENERGY. See Erg. ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.

For conversion factors see page 237. FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity. = 10⁻⁹ E. M. U. = 9 × 10¹¹ E. S. U.

The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

^{*} E. M. U. = C. G. S. electromagnetic units. E. S. U. = C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high.

For conversion factors see page 237.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 237.

The acceleration produced by gravity.

g. The acceleration produced by gravity. GAUSS. A unit of intensity of magnetic field = 1 E. M. $U_{\bullet} = \frac{1}{3} \times 10^{-10}$ E. S. U.

GRAM. See page 6.
GRAM-CENTIMETER. The gravitation unit of work = g. ergs.
GRAM-MOLECULE, = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula $G \frac{m_1 m_2}{r_3} = 666.07 \times 10^{-10} \text{ cm.}^3/\text{gr. sec.}^2$

For further conversion factors see page 237.

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without selfinduction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs × volts)/4.181 in small calories.

The heat in small or gram-calories per second = (amperes² × ohms)/4.181 = volts²/

(ohms × 4.181) = (volts × amperes)/4.181 = watts/4.181. HEAT. Absolute zero of heat = -273.13° C, -459.6° Fahrenheit, -218.5° Reaumur. HEFNER UNIT. Photometric standard; see page 178.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."= 10° E. M. U. = ½ × 10⁻¹¹ E. S. U. HORSE-POWER. The practical unit of power = 33,000 pounds raised one foot per min-

ute. = 550ft. pds. per sec. = 0. 746 kilowatt = 746 watts. JOULE. Unit of work = 10^7 ergs.

Ioules = (volts² × seconds)/ohms = watts × seconds = amperes² × ohms × sec.

For conversion factors see page 237.

JOULE'S EQUIVALENT. The mechanical equivalent of heat = 4.185 × 10⁷ ergs. See page 227.

KILODYNĖ. 1000 dynes. About 1 gram.

LITER. See page 6. LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 0.987 atmospheres. MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.
METER CANDLE. The intensity lumination due to standard candle distant one meter. MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.
MICROFARAD. One millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON. (μ) = one millionth of a meter.

MIL. One thousandth of an inch.
MILE. See pages 5, 6.
MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI-. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same node

again = 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days

(mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electromagnetic units, and "is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10^{3} E. M. U. = $\frac{1}{9}$ × 10^{-11} E. S. U.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms.

Siemens' ohm = 0.94080 international ohms. See page 272. PENTANE CANDLE. Photometric standard. See page 178.

 $PI = \pi$ = ratio of the circumference of a circle to the diameter = 3.14159265359. POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound. RADIAN = $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ} 17' 45'' = 206625''$.

SECOHM. A unit of self-induction = I second $\times I$ ohm.

APPENDIX. 347

THERM = small calory = quantity of heat required to warm one gram of water at its temperature of maximum density one degree Centigrade.

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water

at its temperature of maximum density one degree Fahrenheit = 252 gram-calories. VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one international ohm, will produce a current of one international ampere, and which is represented sufficiently well for practical use by 1000/1434 of the electromotive force between the poles or electrodes of the voltaic cell known as Clark's cell, at a temperature of 15° C and prepared in the manner described in the accompanying specification, = 108 E. M. U. = 1/300 E. S. U. See pages xxxiv and 261.

VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 107 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts = volts × amperes = amperes × ohms = volts²/ohms (direct current or alternating current with no phase difference).

For conversion factors see page 237.

Watts \times seconds = Joules.

WEBER. A name formerly given to the coulomb.

YEAR. See page 109.

Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. 9.314 seconds.

= 365Sidereal 6 9 48́ = 36546+ 5 Ordinary

Tropical same as the ordinary year.

INDEX.

For the definition of units, see Appendix.

EA	PAGE.
a rays, absorptive powers for definition and properties Aberration constant Absorption coefficient: air 181, a-rays β-rays γ-rays X-rays 335, Absorption of light: atmospheric color screens Jena glasses by liquids Absorption of light: atmospheric 181, color screens Jena glasses various crystals Acceleration of gravity 104-Aerodynamic data: soaring data wind pressures Agonic line Air: density masses transmissibility for, of radiation 181, viscosity of Air thermometer, comparisons Air: transmissibility of, for radiation 181, Alcohol: density 98-vapor pressure viscosity Alloys: densities electrical conductivity of 277-resistance of resistance of 1273-low temp. melting-points specific heats thermal conductivity thermoelectric powers Alternating currents, resistance of wires for Altitudes, determination of by barometer of a few stations Aluminum, resistance wire table, English metric Alums: indices of refraction Antilogarithms 26-Apex, solar motion Aqueous solutions: boiling-points densities alcohols 98-diffusion of electrolytic conductivities 302-Aqueous vapor: pressure 554-saturated, weight of transparency 55-	40 Boiling-point, raising of, by salts in solution . 219
definition and properties	of water and barometric pressure . 170
Aberration constant	82 Brightness of various lights
Absorption coefficient: air 181,	82 Brightness of various lights
a-rays	British weights and measures 7-10
β-rays	140
γ-rays	7 rays, absorption coefficients for
X-rays 335.	Cadmium line, wave-length of red 172
Absorpton of gases by liquids	14 Candle energy from 178
Absorption of light: atmospheric 181	83 Candle power standard
color screens	Calibration curves for thermo-elements
Jana alagge	points standard for thermometer
verious ervetele	Consists associate industries associate
Acceleration of gravity	Capacity, specific inductive, crystals 314
Acceleration of gravity 104-	gases 309
Aerodynamic data: soaring data	25 inquids 310
wind pressures :	Candle power, standard
Agonic line	solids
Air: density	62 Capillarity, correction to barometer for 123
masses	82 liquids
transmissibility for, of radiation 181,	82 liquids near solidifying point 146
viscosity of	36 salt solutions in water
Air thermometer, comparisons	thickness of soap films
Air: transmissibility of, for radiation 181.	82 Carcel unit
Alcohol: density	00 Carrying canacity of wires
vapor pressure	10 Cells, voltaic: composition, E. M. F. 262-262
viscosity	double-fluid
Allows densities	87 Goodford
Alloys, densities	secondary
electrical conductivity of 277-	single-fluid
resistance of	standard
low temp	storage
melting-points	222 Chemical, electro-, equivalents
specific heats	equivalent of silver . 261, 301
thermal conductivity	cos Chemical elements: atomic weights 301
thermoelectric powers	boiling-points
Alternating currents, resistance of wires for	compressibility
Altitudes determination of by barometer	60 conductivity, thermal 205
of a few stations	83 densities 82 or
Aluminum recietance	electro-chemical equivalents 301
Aluminum, resistance	hardness equivalents 301
wire table, Eligibil	malting points
All discontinuous and a second	meiting-points
Alums: indices of ferraction	resistance, electrical . 274–270
Antilogarithms 20	specific fleats 238, 240
Apex, solar motion	thermal conductivities 205
Aqueous solutions: boiling-points :	expansion, linear . 232
densities	92 Circular functions: argument (0') 32
alcohols	100 (radians) 37
diffusion of	38 Coals, heat of combustion of
electrolytic conductivities 302-	308 Cobalt, magnetic properties of
Aqueous vapor: pressure	55 Color screens
saturated, weight of	56 Combination, heat of
transparency	82 Combustion, heat of: coals
electrolytic conductivities 302- Aqueous vapor: pressure	densities 8.3, or
Atmosphere aqueous vapor in 157	S2 fuels (liquid) 210
transmissibility for radiation 181	Real Deats are
Atomio numbere	Compressibility chemical elements
Atomic numbers	Compressibility, chemical elements
Atomic weights	gases
	inquids
β rays, absorption coefficients	solids 80
Barometer: boiling temperature of water for va-	Concretes: resistance to crushing 68
rious heights 170-1	71 Conductivity, electrical: see Resistance.
correction for capillarity	alloys
latitude, inch	21 alternating currents, effect of , 207
metric	magnetic field, effect of
sea level	electrolytic
temperature	ro equivalent 205-208
heights determination of hy	60 ionio (conserta ione)
Determination of Dy	62 coording molecular
Batteries: composition, electromotive forces 2	specific molecular 303
Baume scale: conversion to densities	of miniting values 304
Bismuth, resistance of, in magnetic field 3	33 temp'ture coef 304
"Back-body" radiation	glass and porc'l'n, temp'ture
Boiling-points: chemical elements	18 coef
inorganic compounds 219, 2	18 coef
β rays, absorption coefficients . Barometer: boiling temperature of water for various heights	25 liquids 207
	•

207	Differential formulæ
Conductivity, thermal: salt solutions 207 solids 205 solids, high temperature . 206 solids, high temperature	Diffusion: aqueous solutions, water 138
solide bigh temperature, 206	gases and vapors: coefficients 140
water 207	metals into metals
Contact differences of potential 264-267	Vapors
Convection, cooling by	Diffusivities thermal
Conversion factors for work units	Dip, magnetic
Conductivity, thermal; Salt solutions 205 solids, high temperature 205 solids, high temperature 206 water 207 Convection, cooling by 252-253 Conversion factors for work units 237 Salumé to specific gravities Since Salumé to specific gravities Since Salumé to specific gravities Since Salumé to specific gravities Since Salumé to specific gravities Salumé to s	Differential formulæ 12
Cooling by radiation, perfect radiator	Dispersion of Kerr Constant
Copper wire tables	Dynamical equivalent of thermal unit 237
English units 286	
metric units	e, value of e^x , e^{-x} , and their logarithms 48 log. e^x , e^x , from 0 to 10 48 e^{x^2} e^{-x^2} , and their logarithms 54
Cosines, circular natural	ex, e-x, and their logarithms
luporbolic natural 41	$er^2 = x^2$ and their logarithms
logarithmic 41	e_{4x}^{π} , $e_{4x}^{-\pi}$, and their logarithms 55
Cotangents, circular natural 32,37	$e_4^{\alpha}x$, e_4^{α} , and their logarithms
logarithmic 32.37	$e^{\frac{\sqrt{\pi}}{4}x}$, $e^{-\frac{\sqrt{\pi}}{4}x}$, and their logarithms 55
hyperbolic natural	e 4 1, e 4 1, and then 15
logarithmic	$\frac{e^x+e^{-x}}{2}$, and their logarithms 41
Critical data for gases	2, and then logarithms.
concretes 68	$\frac{e^x-e^{-x}}{2}$, " " 41
stones 68	- 2 ,
timber, wood	Earth: data
Crystals: dielectric constant	densities
elasticity	distance from sun
indices of refraction	miscellaneous data
transmissibility for radiation 200	Flacticity: crystals
Cubical thermal expansion: gases 236	moduli of rigidity 71
liquids 235	modulus, Young's
Solids 234	Electric lights, efficiency of
Curie unit of radioactivity	Electrical conductivity: alloys
Cutting tools lubricants for	magnetic field, effect of 333
Cyclic magnetization, energy losses in 322-325	Electrical resistance: see Conductivity.
Cyclic magnetic	metals and alloys, low temp. 280
Declination, secular change of magnetic 111	ohm, various determinations 272
Degrees, length of, on earth	specific: metallic wires 273
Demagnetizing factors for fods	metals
Density: air: values of $h7/60 \dots 162$	metals 274 temperature coefficients 276 temperature effect, glass
alcohol: aqueous ethyl 98–99	Flortricity specific heat of
Declination, secular change of magnetic 111	temperature effect, glass . 282 Electricity, specific heat of
alloys : : · · · · · · · · · · · · · · · · ·	Electrochemical equivalents 301, 261
aqueous alconol 90 99	silver 301, 201
salt acid, basic solutions 92	Electrolytic conductivity:
sulphuric acid 100	equivalent 305-308
chemical elements 83, 91	ionic 308
earth	specific molecular 303
gases	limiting values 304
inorganic compounds	temp. coer 304
mercury	Electromagnetic system of units
metals 83	Electromagnetic / electrostatic units - 1 263
minerals	secondary 263
organic compounds	single fluid 262
water	standard 201, 203
Dow points	storage 203
Dielectric constant: (specific inductive capacity)	liquids-liquids in air
calibration, standards for . 313	metals in salt solutions . 267
crystals 314	Peltier
gases, atm. pressure 309	salts with liquids 264
temperature coef. 300	solids-solids in air 200
liquids 310-311	thermo-electric 200-270
Dielectric constant: (specific inductive capacity) calibration, standards for 313 crystals 314 gases, atm. pressure 310 pressure 310 temperature 310 solids 310 311 temperature coef.	Special limiting values 304
solids	Elementary Wirkungsquantum
Dielectric strength: air: alternating potential . 204	Flowerts: atomic weights 301
bielectric strength: an alternating potential 294 kerosene 296	boiling-points
large enark-gans	compressibility
large spark-gaps 295 pressure effect 295 various materials 296	conductivity, thermal 205
various materials 296	densities
Difference of potential:	electrochemical via
cells: double fluid 203	melting-points
secondary 203	periodic system
single fluid	resistance, electrical 274-276
storage	specific heats
storage	spectra (prominent lines)
metals in salt solutions . 267	
salts with liquids 204	Capalitation
solids-solids in air	
Peltier	Emanation, radium
platinum couples 269	Emission of pertect radiator

INDEX. 35I

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gases: densities
Equation of time	diffusion
Equilibrium, radioactive	expansion of
ionic 302	expansion, thermal
silver 201, 301	indices of refraction
Energy data relating to solar	magnetic susceptibility
Entropy equation constant	magneto-optic rotation
Errors, probable	refractive indices of
Ethyl alcohol, specific gravity of aqueous 98	solubility of
Entertic mixtures, melting-points	specific heats 243
Expansion, thermal: cubical, crystals 334	thermal conductivity
gases 330	viscosity of
solids 333	volume of (1+0.00376t) 164-168
linear, elements 332	Gas thermometry
various 333	Gages, wire
Explosives composition etc	Geometric units, conversion factors for 2
Exponential functions: e^x , e^{-x} , their logs 48	Glass: indices of refraction 184
$\log e^x$, $x=0-10$ 48	silica, specific heat
log, e^x , $x = 0 - 10$	various 201–202
$e^{\pi}_{4}x, e^{-4}x$ "	electric resistance, temp. variation 282
$\sqrt{\pi}$ $\sqrt{\pi}$	Glass vessels, volumes of
$e^{-\frac{1}{4}x}$, $e^{-\frac{1}{4}x}$, their logs 55	Gravitation constant
$e^{x}+x^{-x}$	correction to barometer
$\frac{e^x + x^{-x}}{2}$, their logs 41	Gudermanians 41
$\frac{e^{x}-e^{-x}}{2} \qquad \qquad \qquad 41$ diffusion integral 60 gudermanians 41 hyperbolic sines 41 cotangents 41 tangents 41 tangents 41 logs, hyperbolic sines 41 cosines 41 cosines 41 cotangents 41 cosines 41 cotangents 41	Gases: densities 91 dielectric constants 309, 310 diffusion 140 expansion of 164-168 expansion, thermal 236 heat, conductivity for 207 indices of refraction 193 magnetic susceptibility 332 magneto-optic rotation 330 refractive indices of 193 sound, velocity of, in 102 solubility of 142, 114 specific heats 2213 thermal conductivity 207 thermal expansion 236 viscosity of 136 volume of (1+0.003760) 164-168 Gas thermometry 244-247 Gages, wire 283 Geodetic data 108 Geometric units, conversion factors for 2 Glass: indices of refraction 184 silica, specific heat 240 transmissibility of Jena 199 various 201-202 electric resistance, temp, variation 282
	Hall effect
diffusion integral 60	Hardness
gudermanians 41	Harmonics, zonal 64
hyperbolic sines 41	combustion: coals
cotangents . 41	explosives 211
tangents 41	fuels liquid 210
logs, hyperbolic sines . 41	peats
cotangents 41	liquids 207
cotangents 41 tangents 41 probability integral 56, 57	salt solutions 207
probability integral . 56, 57	solids 205
problem in the second s	solids high temperature 206
Eye, sensitiveness of, to radiation 180	Hall effect
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water 207 diffusivities 208 latent heat of fusion
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water . 207 diffusivities . 208 latent heat of fusion . 216 vaporization .214,251-259 mechanical equivalent of . 237 specific: elements . 238, 240 gases . 243 liquids . 241 mercury . 239 minerals . 242 rocks . 242 solids . 241 vapores . 243
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water . 207 diffusivities . 208 latent heat of fusion . 216 vaporization .214, 254-759 mechanical equivalent of . 237 specific: elements . 238, 240 gases . 243 liquids . 241 mercury . 239 minerals . 242 rocks . 242 solids . 241 vapors . 243 water . 239
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water 207 diffusivities 208 latent heat of fusion 216 vaporization 214, 254-259 mechanical equivalent of 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water 207 diffusivities 208 latent heat of fusion 216 vaporization 214, 25,1-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268
Eye, sensitiveness of, to radiation 180	solids, high temperature 206 water 207 diffusivities 208 latent heat of fusion 214, 254-759 waporization 214, 254-759 mechanical equivalent of 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 vater 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169
Eye, sensitiveness of, to radiation 180	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation 180	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation 180	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238,240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 243 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials n! 1-20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials $n!$ 1–20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials $n!$ 1–20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vaporis 242 vaporis 243 vapors 243 vapors 243 vapors 243 vapors 243 vapors 246 vapors 268 Heating effect, radium 337 Heat, specific, 'of electricity 268 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Heights determinations of by barometer 169 Humidity, relative 160 Humidity, relative 160 Humidity term, 0.378¢ 161 Hydrogen thermometer 244 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic sines, natural 41 logarithmic 41 Hysteresis: soft iron cable transformer 322 steel, transformer 325 various substances 324
Eye, sensitiveness of, to radiation . 180 Fabry-Buisson, standard arc Fe wave-lengths . 172 Factorials $n!$ 1–20	diffusivities 208 latent heat of fusion 216 vaporization 214,254-259 mechanical equivalent of 237 specific: elements 238, 240 gases 243 liquids 241 mercury 239 minerals 242 rocks 242 solids 241 vapors 242 solids 241 vapors 243 water 239 Heating effect, radium 337 "Heat, specific," of electricity 268 Hefner photometric unit 178 Heights determinations of by barometer 169 Helium, — relation to radium 337 Horizontal intensity of earth's field 115 Humidity, relative 160 Humidity, relative 160 Humidity term, 0,378e 161 Hyperbolic cosines, natural 41 logarithmic 41 Hyperbolic cotangents, natural 44 Hyperbolic cotangents, natural 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic instance 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 44 Hyperbolic 141 logarithmic 141 logarit

Index of refraction: glass	Liquids: magneto-optic rotation 328 potential differences with liquids 264 salts 267 salts 264 specific heats 241 surface tensions 145-146 thermal conductivity 207 expansion 235 vapor pressures 147-155 velocity of sound 102 viscosity 129-130 Logarithms 2600-2000 24 anti- 28 29 2000-1,0000 30 Lowering of freezing-points by salts 127, 183 Lowering of freezing-points by salts 126 Lunar parallax 109 Mache redinactivity unit
Iceland spar 180	potential differences with liquids 264
metals 195–196	salts 261
monorefringent solids 188	specific heats
nitroso-dimethyl-aniline . 180	surface tensions
rock-salt	expansion
salt solutions 191	vapor pressures
silvine	velocity of sound
Inductive capacity, specific; calibration st ds 313	Logarithms
gases, atm. pressure 300	1000-2000
pressure coef . 309	anti
temp. coef 310 liquids 310 temp. coef 312	Longitude of a few stations
temp. coef 312	Lowering of freezing-points by salts
Solids 313-314	Libricants for cutting tools
Inorganic compounds; boiling-points	Bullar paranax 109
melting-points 219	Mache radioactivity unit
temp. coef. 312 solids 313-314 Inertia, table of moments of 67 Inorganic compounds: boiling-points 219 Insulators, resistances 282 temperature coefficients 282 Integral, diffusion 60 elliptic 56 gamma function 56 probability 54, 57-58 Integrals, elementary 12 Intensity, horizontal, of earth's field 114 secular variation 114	Mache radioactivity unit 341 Macher radioactivity unit 12 Macherin's theorem 12 Magnetic field: bismuth, resistance in 333 Ettingshausen effect 334 galvanomagnetic effects 334 Hall effect 334 Leduc effect 334 Nernst effect 334 nickel, resistance in 333 resistance of metals in 333 thermo-magnetic effects 334 Magnetic observatories, magnetic elements 317 Magnetic properties: of cobalt at 100° C 321 iron: hysteresis 322-325 permeability 34
Integral diffusion	Ettingshausen effect 333
elliptic 56	galvanomagnetic effects 334
gamma function	Hall effect
Integrals, elementary	Nernst effect
Intensity, horizontal, of earth's field 114	nickel, resistance in
secular variation 114	optical rotation 326–331
total, of earth's field	thermo-magnetic effects 231
	Magnetic observatories, magnetic elements 117
Ionization of water	Magnetic properties: of cobalt at 100° C 321
Ionization, a, b, y, rays	permeability 322-325
X-rays	
Ions: equivalent conductivity of 308	saturated 321 weak fields 322
magnetic properties of, weak fields	weak neids 322
Intrinsic brightness of various lights 178 Ionization of water 308 Ionization, $a, β, γ$, rays 337, 341 $α$ 338 Ions: equivalent conductivity of 308 Iron: hysteresis in soft 322 magnetic properties of, weak fields 322 permeabilities 315-320 standard arc lines, Fabry-Buisson 172 secondary, standards 176 tertiary standards 176	nickel at 100° C 321
permeabilities 315-320	Magnetic susceptibility, liquids, gases 332
standard arc lines, rably-buisson 172	Magnetism, terrestrial: agonic line
tertiary standards 176	declination
	dip
Joule's (mechanical) equivalent of heat 237	inclination 113
Kerosene, dielectric strength 296 Kerr's constant 331 Kerr's constant, dispersion of 331 Kundt's constant 330 definition of 330	intensity, horizontal 114
Kerr's constant	total 115
Kundt's constant	Magneto-optic rotation
definition of	Masses of the earth and planets
Lamps, efficiency of various electric	concrete 68
Latent heat of fusion	metals 68
Vaporization	stones
Latitudes of a few stations	woods 69-70
Least squares	Mechanical equivalent of heat
Leduc thermomagnetic effect	entectics
Light: indices of refraction 184-196	inorganic compounds 219
reflection of; function of "n" 197	minerals
sensitiveness of eye to	(low melting-points) 222
Lamps, efficiency of various electric 179 Latent heat of fusion 214, 254, 255 Latitude correction to barometer 121, 122 Latitudes of a few stations 117, 183 Least squares 56-59 Legal electrical units XXXVIII Leduc thermomagnetic effect 334 Light: indices of refraction 184-196 reflection of; function of "n" 197 metals 195-198 sensitiveness of eye to 180 transmissibility to, of substances 109-202 polarized: rotation of plane by solutions 203	organic compounds 223
polarized: rotation of plane by solutions . 203	Meniscus volume of mercury
rotation, magneto 326–331 wave-lengths: cadmium st'd line 172	Mercury: density of
elements brighter lines 173 l	electric resistance of 273-274
st'd iron arc. Fabry 172	pressure of columns of
Fraunhofer lines	specific heat 239
Velocity of	Vapor pressure
eniciency of electric 179 [indices of refraction 105–106
visibility of white	optical constants
Linear thermal expansion coef. of elements 232 various 233	Saturated 321 weak fields 322 magnetite 321 magnetite 321 magnetite 321 mickel at 100° C 321 Magnetic susceptibility, liquids, gases 332 Magnetic units, conversion formule 3 Magnetism, terrestrial: agonic line 116 dip 113 horizontal intensity 114 inclination 113 intensity, horizontal 114 inclination 113 intensity, horizontal 114 fotal 115 observatories 117 Magneto-optic rotation 326-331 Masses of the earth and planets 110 Materials, strength of: bricks 68 stones 68 stones 68 stones 68 stones 68 stones 69-70 Mechanical equivalent of heat 237 Melting-points: chemical elements 216 mixtures (alloys) 222 inorganic compounds 219 minerals 226 mixtures (alloys) 222 Organic compounds 223 organic compounds 224 mixtures (alloys) 222 Organic resistance of 273-274 meniscus, volume of mercury 123 Mercury: density of 99 electric resistance of 273-274 meniscus, volume of 123 pressure of columns of 124 pressure of columns of 128 specific heat 239 pressure of columns of 128 specific heat 239 pressure of columns of 128 specific heat 239 pressure of columns of 128 specific heat 239 pressure of columns of 128 specific heat 239 pressure of columns of 125-106 indices of refraction 195-106 optical constants 105-106 indices of refraction 105-106 indices of refraction 105-106 indices of refraction 105-106 indices
Liquids: absorption of gases by	reflection of light by 195-196,198
capillarity of 145–146	refractive indices
conductivity, thermal 207	reflection of light by
densities 83, 90, 94-100	sheet, weight of
dielectric constants	Metallic reflection
diffusion, aqueous solutions 138	Methyl alcohol, density of aqueous 100
expansion, thermal	Metric weights and measures: British equiv 7-10
magnetic susceptibility	Minerals, densities of

Minerals, specific heats of	242	Radiation: Planck's formula resistance, wireless telegraphy sensitiveness of the eye to "solar constant" of solar, monthly change Stefan's formula transmissibility of atmosphere to		251
Minerals, specific heats of Mixtures, freezing Moduli of elasticity: rigidity Young's Molecular conductivities: equivalent specific Molecular magnitudes Molecules per cu. cm. gas Moments of inertia Monthly temperature means Moon's light and radiation Musical scales	230	sensitiveness of the eye to	: :	180
Young's	72	"solar constant" of		181
Molecular conductivities: equivalent	305-308	soiar, monthly change Stefan's formula		183
Molecular magnitudes	342	transmissibility of atmosphere to	181,	182
Molecules per cu. cm. gas	342	Radii of gyration		67
Monthly temperature means	183	Radium	337-	-341
Moon's light and radiation	110	Radium emanation	337-	341
Musical scales	103	Reflection of light; by metals	106	337
Nernst thermo-magnetic difference of potent	tial . 334	terms of "n" and "i"	, ,	197
Neutral points, thermo-electric	268-269	various substances Refraction, indices of values		198
Nickel: Kerr's constants for	331	crystals	185-	-190
Nernst thermo-magnetic difference of potent Neutral points, thermo-electric Newton's rings and scale of colors Nickel: Kerr's constants for magnetic properties of, at 100° C resistance in magnetic field . Nitroso-dimethyl-aniline, refractive index Numbers atomic	321	fluorite		186
Nitroso-dimethyl-aniline, refractive index	186	glass		184
Numbers atomic	336	Iceland spar		186
Nutation	109	nquids	105-	192
Observatories, magnetic, elements	117	transmissibility of atmosphere to Radii of gyration Radio-activity Radium Radium emanation Radio-active equilibrium Reflection of light: by metals terms of "n" and "i" various substances Refraction, indices of: alums crystals fluorite gases and vapors glass lecland spar liquids metals monorefringent solids nitroso-dimethyl-anili quartz		188
Ohm, various determinations of	272	nitroso-dimethyl-anili	ne .	186
Oils, viscosity of	128	rock-salt	: :	185
Organic compounds, boiling-points	223-224	salt solutions		191
melting-points	223-224	solids, isotropic	: :	188
Observatories, magnetic, elements Olm, various determinations of legal value Oils, viscosity of Organic compounds, boiling-points densities melting-points Oscillation constant, wireless telegraphy	298	rock-salt		160
Parallax: solar; lunar	100	alloys, low temperature		280
Parallax: stellar	110	alternating current, effect of .		297
Pendulum, length of seconds	208, 271	aluminum		284
Periodic system of the elements	343	electrolytic, see Conductivity.		204
Parallax: solar; lunar Parallax: stellar Peltier effect Pendulum, length of seconds Periodic system of the elements Permeabilities, magnetic 315-317 Phosphorescence from radio-active bodies	, 320-321	glass and porcelain		282
Photometric standards	178	magnetic field, of bismuth in .	: :	333
Pi, π , value of	12	Resistance: see also Conductivity. alloys, low temperature alternating current, effect of aluminum copper electrolytic, see Conductivity. glass and porcelain legal unit of magnetic field, of bismuth in metals in nickel in		333
Plane, data for the soaring of a	125	metals at low temperatures .	: :	280
Planetary data	110	ohm, various determinations of		272
Platinum resistance thermometer	247	radiation, wireless telegraphy		300
Poisson's ratio	73	metals in nickel in metals at low temperatures ohm, various determinations of platinum, thermometer radiation, wireless telegraphy specific; metals vires 230, temperature variation 276, 280,	274-	-276
by metallic reflection	197	temperature variation 276, 280, Rigidity, modulus of	282.	285
rotation by magnetic field	326-331	Rigidity, modulus of		71
Potential difference: cells: double fluid .	263	temperature variation Ring correction (magnetization) Rock-salt, indices of refraction Rods, demagnetizing factors for Röntgen rays ray spectra Rotation of polarized light: by solutions Rotation, magneto-optic formulae gases Kerr's constant liquids solids solutions Verdet's constant	: :	317
secondary	263	Rock-salt, indices of refraction		185
single filled standard	261, 263	Röntgen rays	335-	323 -336
storage	263	ray spectra		336
contact: iiquid-iiquid liquid-salt .	204	Rotation, magneto-optic; formulæ	: :	203 326
metal-liquid	267	gases		330
sond-sond .	204-205	Kerr's constant liquids		33I
kerosene .	296	solids		327
thermoelectric	268-271	verdet's constant	326-	329
Precession	109	Rowland's standard wave-lengths		173
barometric and boiling water	170-171	Salts, lowering of freezing-point by raising boiling- Saturation, magnetic, for steel Scales, musical Screens, color Seconds pendulum Secondary batteries Sections of wires Shearing tests of timber Shear metal, weights of		227
heights	169	raising "boiling-""		229
water columns, " "	118	Saturation, magnetic, for steel		321
wind	124	Screens, color	201-	-202
Pressure effect on melting-points solubility	221	Secondary batteries		263
Pressure, vapor: alcohol, ethyl and methyl	149	Sections of wires	. ;	283
aqueous	154-155	Shearing tests of timber	. 69	⊬70 80
Periodic system of the elements Permeabilities, magnetic Permeabilities, magnetic Permeabilities, magnetic Phosphorescence from radio-active bodies Photometric standards Pi, π, value of Planck's radiation formula Plane, data for the soaring of a Planetary data Planetary data Planetary fata Planetis, miscellaneous data Platinum resistance thermometer Poisson's ratio Polarized light: by reflection by magnetic field solutions Potential difference: cells double fluid secondary single fluid standard storage contact: liquid-liquid liquid-salt metal-liquid solid-solid sparking: air kerosene various thermoelectric Precession Pressure: barometric measures barometric and boiling water heights mercury columns, due to water columns, due to water columns, due to water columns, due to water columns, due to water columns, due to water columns, due to mercury salt solutions	151	Sheet metal, weights of . Silica glass specific heats Silver, electro-chemical equivalent		240
salt solutions	152 147-155	Silvine, indices of refraction	261,	301
Probable errors	. 56-59	Silvine, indices of refraction Sines, natural and logarithmic, circular	. 32	2-40
aqueous in atmosphere mercury salt solutions various Probable errors Probability tables Purkinje's phenomenon	. 56-59	hyperbolic. Sky-light, comparison with sunlight	41	T82
a and a second and	100	Soaring of planes, data for	: :	125
Quartz fibers, strength of refractive index of specific heat	68	Solar constant of radiation		181
specific heat	240	energy, data of	181~	-183
		motion		110
Radiation: black-body	251	hyperbolic. Sky-light, comparison with sunlight Soaring of planes, data for Solar constant of radiation distance from earth energy, data of motion parallax radiation monthly change spectrum temperature	: :	183
cooling by, and convection	252-253	spectrum	181,	183
cyc, achientiveness of, to	100 1	temperature		101

Solar wave-lengths, Rowland's Solids: compressibility densities dielectric constant electrical resistance hardness indices of refraction magneto-optic rotation by thermal conductivity expansion Solubility gases pressure effect salts Solutions: boiling-point, raising by salts in boiling-points of aqueous	173	Sun: parallax 109 radiation 181 spectrum 173, 181 temperature 181 Surface tension 145-146 Sylvine, refractive indices 185
densities	. 83-87	Spectrum
dielectric constant	313	temperature
electrical resistance	272-297	Surface tension
indices of refraction	185-190	Syrvine, reflactive marces
magneto-optic rotation by	327	Tangents circular, natural 32, 37
expansion	232-234	hyperbolic natural
Solubility gases	142	logarithmic 41
pressure effect	143	Telegraphy wireless 208 200
Solutions: boiling-point, raising by salts in	229	Temperature, critical, for gases
boiling-points of aqueous	229	resistances for low 280
electrolytic	302~308	sun's
densities of aqueous 92-9	3, 98-100	thermodynamic 247
freezing-points, lowering by salt	138	Tensile strengths 68-70
of aqueous	227	Tension, surface
indices of refraction	191	Sylvine, refractive indices 185
potential (contact) differences .	264-267	declination, secular change 111
specific heats	241-242	dip
viscosities	131-135	horizontal intensity
Sound, velocity of, in solids	101 .	secular change 114 inclination 113
liquids and gases .	102	inclination
Specific gravity, see Density.	294-290	observatories
heat of air	243	total intensity 115
gases	238, 240	total intensity
liquids	241	Thermal conductivities: gases
mercury	239	salt solutions 207
platinum	240	solids, high temperature 200
quartz	240	water 207
solids	2.11	Thermal expansion: cubical: crystals 234
vapors	243	gases 236
water	239	liquids 235
solutions pases pressure effect salts Solutions: boiling-point, raising by salts in boiling-points of aqueous conductivity, thermal electrolytic densities of aqueous freezing-points, lowering by salt indices of refraction magneto-optic rotation of potential (contact) differences specific heats surface tensions viscosities Sound, velocity of, in solids liquids and gases Sparking potentials Specific gravity, see Density heat of air elements gases liquids mercary minerals and rocks platinum quartz silica glass solids vapors water "Specific heat of electricity" Specific inductive capacity: gases liquids molecular conductivities resistance viscosity: gases and vapors liquids solutions Spectra: elements, brighter lines iron, Fabry-Buisson Röntgen ray solar, Fraunhofer lines Rowland's measures Squares, least, tables Standard calibration temperature Standard calis Stars, parallax Stars, velocities of Stean tables: metric units common Steel: magnetic properties: hysteresis Stance tremeth of permeabilities Stente ables: metric units common Steel: magnetic properties: hysteresis Stance strength of Stente ables: metric units common Steel: magnetic properties: hysteresis Stance strength of	309-310	Thermal diffusivities
liquids	310-312	various 233
molecular conductivities	303-304	Thermodynamic ice-point
resistance	273-276	Thermodynamic scale of temperature 247
viscosity: gases and vapors	130-137	Peltier effect 268 271
solutions	131-135	Thermo-elements, calibration curves 250
Spectra: elements, brighter lines	172	Thermo-magnetic effects
Röntgen ray	336	59, 100° to 200° C 245
solar, Fraunhofer lines	177	high-temperature-59 246
Squares, least, tables	. 47-49	16, 59, -5° to -35° C 244
Standard calibration temperature	247	59, 0° to 100° C 244
wave-lengths: Fabry-Ruisson	201-203	various
primary	172	standard calibration points 247
Rowland	173	Thermometer stem correction 248–249 Thormson thermo-electric effect
tertiary	176	Timber, strength of
Standards, photometric	178	Time equation of
Stars, parallax	110	Tools, lubricants for cutting
Stars, velocities of	110	Transformation points, minerals
common "	254	steels energy losses in 322-325
Steel: magnetic properties: hysteresis . 319	, 322–325	Transmissibility to radiation: atmospheric . 181, 182
Stefan-Boltzmann radiation formula Steflar velocities Stone: strength of thermal conductivity Storage betteries	315-322	crystals 200 glass 199 water 202 Trigonometric functions: arguments (°)
Stellar velocities	110	water 202
Stone: strength of	68	Trigonometric functions: arguments $({}^{\circ})$ 32
Storage batteries	263	(radians) . 37
Strength of materials: bricks	68	United States weights and measures, conversion
concrete metals	68	to metric units 5-6 Units of measurement: definitions, see APPENDIX.
stones	68	conversion factors 2-3
timber, woods Sugar, densities aqueous solutions	. 69-70	discussion, see Introduction.
Sulphuric acid, densities aqueous solutions	100	ratio of electro-magnetic to static 260
Sun: constant of radiation disk; distribution of intensity	181	V, ratio of electro-magnetic to -static units 260
distance from earth	109	Vacuo, reduction of densities 82
light; ratio to sky-light	182	weighings 82 Vapor, aqueous: vapor pressure 154–155
motion	110	pressure of, in atmosphere 157

Vapor, aqueous: relative humidity	60 Water: ionization of
(saturated) weight of 1	solutions in: boiling-points
Vaporization, latent heat of	
for steam 254, 2	diffusion
Vapors: densities	electrolytic conduction 302-308
diffusion of	solutions of alcohol, densities 98–100
indices of refraction	
pressures: alcohol, ethyl, methyl 1.	
aqueous 154-1	vapor pressure
mercury	vapor, pressure of, in atmosphere 157
salt solutions	
various 147-1	transparency of
specific heats	viscosity: absolute, temp. var
viscosity	37 specific, temp, var
Velocity of light	Wave-lengths: cadmium red line
sound; in gases and liquids 1	
solids	Fabry-Buisson iron arc lines 172
stars	
sun	iron lines, Fabry-Buisson 172
Verdet's constants: Verdet and Kundt's 3.	primary standards
gases	
liquids	secondary standards
solids	
solutions, aqueous 3	tertiary standards 176
Viscosity: alcohol in water	wireless telegraphy 208–300
gases 136-1	Weighings-reduction to vacuo 82
liquids	Weights and measures: British to metric 9-10
vapors	metric to British 7-8
water: temperature variation 1	metric to U.S 6
specific: gases	U. S. to metric 5
oils	28 Weights of bodies 67
solutions	35 Weights of sheet metal 80
vapors 136-1,	37 Wind pressures
water: temp. var	27 Wire gages
Visibility of white lights	78 Wire tables, aluminum English
Voltaic cells: composition, E. M. F 262-20	63 " metric
double-fluid	63 copper English 286
secondary	53 " metric 280
single-fluid	52 Wires, carrying capacity of
standard	63 Wireless telegraphy 208-300
storage	53 Woods: densities of 8 =
/olts, legal (international) xxxvi, 20	or strength of 60-70
Volume of mercury meniscus	23
Volumes: critical, for gases	31 X-rays
gases	
glass vessels, determinations of	Yearly temperature means
Vater: boiling-points for various pressures:	Young's modulus of elasticity
common measures 1	70
metric measures 1	
densities, temperature variation 95, 9	
,	104

The Riverside Press

CAMBRIDGE \cdot MASSACHUSETTS U \cdot S \cdot A

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 7

NEW SUBSPECIES OF MAMMALS FROM EQUATORIAL AFRICA

ΒY

EDMUND HELLER Naturalist, Smithsonian African Expedition

(Publication 2272)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
JUNE 24, 1914

The Lord Galtimore (Press BALTIMORE, MD., U. S. A.

NEW SUBSPECIES OF MAMMALS FROM EQUATORIAL AFRICA

By EDMUND HELLER

NATURALIST, SMITHSONIAN AFRICAN EXPEDITION

Further study of the collection of mammals from British East Africa and Uganda now in the United States National Museum, secured by the Smithsonian African Expedition under the direction of Colonel Roosevelt and the Paul J. Rainey African Expedition, has brought to light the several new forms of carnivores and rodents described in the present paper.

THOS

Jackals and Coyotes

The jackals and their American representatives the coyotes are separable from the true wolves, which are typical of the genus Canis, by several constant dental characters which seem to justify the recognition of the group under the generic name Thos first proposed by Oken in 1816 for the Indian jackal, Canis aureus. Oken placed four specific names under his group name Thos, the last of which, Canis vulgaris, he particularly mentions as being the Thos of the ancients and on this account it should stand as the type of the genus. Canis vulgaris is a synonym of C. aureus. Thos may be defined as a group of Canidac having long slender Vulpes-like canines, small outer incisors, small carnassials, upper molar teeth with well marked cingulums and the fourth lower premolar with a minute extra cusp on its hinder border. The genus Canis or the wolves are distinguishable by their much thicker and shorter canines; their greatly enlarged outer incisors which are more than twice the size of the inner ones, being somewhat hyena-like in this respect; large carnassial teeth; upper molars without a definite cingulum; and the fourth lower pre-molar without a third cusp on its posterior border.

East equatorial Africa or rather Northeast Africa generally is supplied with more species of jackals than any other region. Three distinct species are found living together on the same plains over most of the territory of British East Africa. The most distinct of the three species in coloration is the black-backed or *T. mesomelas* which has the black of the back sharply marked off from the bright rufous of the sides. The Indian species, *T. aureus*, which here reaches

its southern limit in Africa, approaches mesomelas closely in shape of skull and the large size of its reddish ears but differs by the broken character of its black dorsal area which merges indefinitely into the color of the sides. The best marked species of the three in skull characters is the side-striped jackal or T. adustus which has a long slender shout and very long *Uulpes*-like canine teeth. coloration, however, it is not always easily distinguishable from the Indian but it may be recognized with certainty by its small dark colored ears and the presence of a more or less well marked white tail tip. An excellent series consisting of 68 specimens of skins with their skulls are in the National Museum from British East Africa representing the three species referred to above. A comparison of this material shows several well marked forms occupying definite geographical or faunal areas. The races of African jackals thus far described have come from South Africa or from Abyssinia and the Sudan and none of the names thus far proposed seem to be applicable in a restricted sense to the East African races which are described in the following pages.

KEY TO THE RACES AND SPECIES OF JACKALS OCCURRING IN BRITISH EAST AFRICA

- A¹ Black of back not sharply defined against light color of sides; foreleg marked by a black stripe in front; chin dark brown or blackish in marked contrast to the light color of the throat.
 - - C¹ Underparts ochraceous-rufous, the hair basally dark gray; tail with a few white hairs at tip or none..........T. adustus bweha
 - B² Sides merging gradually into the dark color of the back; backs of the ears ochraceous; tail black tipped; snout short, the nasal bones not extending as far posteriorly as the maxillaries; bony palate not reaching as far posteriorly as last molar......T. aureus

THOS ADUSTUS BWEHA, new subspecies

Elgon Side-striped Jackal

Type from Kisumu, British East Africa; adult male, number 182342, U. S. Nat. Mus.; collected by Edmund Heller, January 20, 1912; original number 2663.

Characters.—The Elgon side-striped jackal, Thos adustus bweha, resembles most closely the Abyssinian race kaffensis described by Neumann from the headwaters of the Sobat River in southwestern Abyssinia. It may be distinguished from that race by the much darker color of the legs and the reddish character of the dorsal hair basally. From *notatus* it differs by the darker underparts which are washed with ochraceous-rufous, and are dark haired basally throughout. The legs are a deep russet heavily black lined on their upper parts, the hind quarters being especially deep and rich in coloring. The back is heavily black-lined and merges into the black of the sides so that the side-striped effect is quite obscured or absent entirely. The tail is not conspicuously white-tipped as in *notatus*, this feature being reduced to a few scattered white hairs hidden among the black hairs of the tip. The tail is shorter and the foot averages smaller than that of notatus. The flesh measurements of the type were: head and body, 720 mm.; tail, 310; hindfoot, 148; ear from notch, 90. Skull: condylo-incisive length, 152; greatest length, 160; zygomatic width, 82; interorbital width, 27; postorbital width, 30; nasals 13.4×58; length of upper cheek to front of canine, 68; width of mesopterygoid fossa, 14.5; length of palate, 80; length of incisive foramina, 10. The skull shows considerable age, the sagittal crest being a high knife-like ridge and the basisphenoidal sutures obliterated. This specimen is unfortunately somewhat abnormal having two pairs of upper carnassial teeth, the smaller pair being inside the larger.

The collection contains three additional adult males from the type locality and two from the Uasin Gishu Plateau. The latter are more heavily lined with black than those from the Kavirondo country, but otherwise are quite indistinguishable from them. Two skins and four skulls are in the National Museum from Mashonaland, which represent the Zambesi race *holubi*. These are distinguishable from

bwcha by their rufous-backed ears and their larger skulls and body size generally.

The Swahili name for the jackal and the one commonly adopted by the interior tribes now in touch with European civilization is bwcha. Distinctive names for the three species occurring together throughout the country do not appear to be in use among any of the tribes.

THOS ADUSTUS NOTATUS, new subspecies

Loita Side-striped Jackal

Type from the Loita Plains, British East Africa; young adult male, number 181486, U. S. Nat. Mus.; collected by Edmund Heller, April 16, 1911; original number 2033.

Characters.—Thos adustus notatus may be distinguished from all other races by its white underparts, the whole throat, chest and belly being white, the hair of the throat and chest being white to the roots but dark gray basally on the belly. From typical adustus of South Africa it may be further distinguished by its smaller size, the skull being decidedly smaller, by its drab instead of russet ears and the brighter rufous of the dorsal hair basally. It resembles adustus in the light color of its legs which are ochraceous-buff, the foreleg having a black stripe from the shoulder to the knee. The tail is conspicuously tipped by pure white as in adustus. It differs from brocha of the Kavirondo and Uasin Gishu region by its light underparts, light colored legs, white tipped tail and distinctiveness of the black side stripe. The tail is considerably longer than in brocha but the general body size is the same.

The flesh measurements of the type were: head and body, 715 mm.; tail, 390; hindfoot, 165; ear from notch, 80. Skull: condylo-incisive length, 152; greatest length, 157; zygomatic breadth, 80; interorbital width, 26.5; postorbital width, 30.5; nasals, 14×58; length of upper cheek teeth to outer edge of canine, 70; length of upper carnasial, 13.9; width of mesopterygoid fossa, 14.8; length of palate, 79. Skull somewhat immature with distinct sutures and lacking a sagittal crest.

Besides the type there is in the National Museum another adult male from the Loita Plains which resembles the type closely in color and an immature female from the same locality which shows a fulvous wash on the underparts, which may be a sexual color difference rather than individual in character. The type has been compared with two adult male specimens from south of the Zambesi River representing typical adustus.

THOS AUREUS BEA, new subspecies

Southern Golden Jackal

Type from the Loita Plains, British East Africa; adult female, number 162904, U. S. Nat. Mus.; collected by Edmund Heller, July 4, 1909; original number, 200.

Characters.—Thos aureus bea may be distinguished from the more northern African races by its much smaller body size and lighter coloration generally, the ears and legs being of a decidedly lighter fulvous shade. Compared to variegatus, the Abyssinia race, the size is much less, the difference in skull length being 25 millimeters less. Typical aureus of India differs only racially from these North Africa jackals which have usually been treated as a race of anthus originally described from Senegal. In skull characters and coloration the African resembles the Indian and Asiatic races of aureus so closely that their relationship is better shown by placing them under the Indian jackal as subspecific forms. The present form is the most southern race and the only one to extend south of the equator. doubtless reaches its extreme southern limit in central German East Africa but no specimens have yet been reported from that region. In a general way this jackal coincides, in its geographical range, with the striped hyena throughout Africa and Asia.

The type is an adult female in fresh pelage, the back being heavily lined or overlaid by black from the nape to the tip of the tail which is wholly black and has the hair everywhere basally vinaceous. The underparts are whitish or pale buff, the hair being uniform to the roots. The backs of the ears and the legs are bright ochraceous, the forelegs having a black stripe in front over the knee similar to the black stripe on adustus. Worn specimens often have the median area of the back lacking the black hair tips but the sides still retaining them, which produces a side-striped effect quite similar to the sidestriped effect of adustus. Young and immature specimens lack the black lining of the back and are consequently much lighter colored than the adults.

The flesh measurements of the type were: head and body, 640 mm.; tail, 275; hindfoot, 140; ear from notch, 99. Skull: condyloincisive length, 140; greatest length, 150; zygomatic breadth, 77; interorbital breadth, 23.5; postorbital constriction, 26; nasals, 13.2×53; length of upper cheek teeth including canine, 65; length of upper carnassial, 15.5; length of palate, 71; width of mesopterygoid fossa, 14; length of incisive foramina, 11.

Five specimens are in the National Museum from the plains north of Mount Kenia which mark the eastern limits of the Laikipia Plateau. Two additional specimens from the Loita Plains, one from the Rift Valley near Mount Suswa and another from Lake Naivasha complete the series.

THOS MESOMELAS ELGONAE, new subspecies

Highland Black-backed Jackal

Type from the Uasin Gishu Plateau, British East Africa, altitude 8,000 feet; adult male, number 164699, U. S. Nat. Mus.; collected by Edmund Heller, November 13, 1909; original number, 466.

Characters.—Thos mesomelas elgonae resembles most closely the Athi or coast race memillani but may be distinguished from it by its darker coloration, larger size and heavier coat. The underparts are darker than those of the desert race, being ochraceous-buff, the hair basally being quite grayish and the sides are duller ochraceous-rufous. The tail is tipped with black and the backs of the ears are tawny. From mesomelas of South Africa this race differs by its less rufous underparts and absence of rufous on the head.

The type measured in the flesh: head and body, 600 mm.; tail, 325; hindfoot, 150; ear from notch, 100. Skull: condylo-incisive length, 141; greatest length, 145; zygomatic breadth, 84; interorbital width, 28.5; postorbital constriction, 30; nasals, 13×48; length of upper cheek teeth including canine, 62.5; length of palate, 70; width of mesopterygoid fossa, 14.3; length of upper carnassial, 16.5.

A series of 10 specimens are in the collection from the type locality, which agree with the type in the character of their ventral coloration and long heavy coat. This is a highland race confined apparently to the upper elevations of the Nile watershed.

THOS MESOMELAS MCMILLANI, new subspecies

Athi Black-backed Jackal

Type from Mtoto Andei station, British East Africa, altitude 2,500 feet; adult female, number 181483, U. S. Nat. Mus.; collected by Edmund Heller, April 5, 1911; original number 2003.

Characters.—Thos mesomelas memillani differs from typical mesomelas of South Africa by its smaller body size and less rufous coloration. The underparts are especially light, the throat and belly being white or pale buff instead of rufous as in mesomelas and the hair of these parts is light to the roots rather than gravish basally.

This race approaches in its light coloration closely *schmidti* of Somaliland but it differs from this form by the absence of rufous on the head and the white tipped tail. The tip of the tail is marked by a tuft of white hair, a feature not found in the series of 35 skins from the Loita Plains and the northern Guaso Nyiro districts, all of which have black tips. The type is in fresh pelage and has the black back well marked and sharply contrasted from the bright ochraceous-rufous sides and legs. The hair of the back basally is hair-brown of Ridgway. The backs of the large ears are ochraceous and the chin is white like the throat in color.

The flesh measurements were: head and body, 600 mm.; tail, 350; hindfoot, 140; ear from notch, 95. The skull shows considerable age and has a high, well developed sagittal crest. Condylo-incisive length, 137; greatest length, 146; zygomatic breadth, 82; interorbital width, 29.5; postorbital constriction, 31.5; nasals, 13.2×53; length of upper cheek teeth including canine, 62.5; length of palate, 67; width of mesopterygoid fossa, 15.5; length of upper carnassial, 15.

The type is unique in the possession of the distinct white tail tip but a large series (35) of specimens from the Loita Plains, the northern Guaso Nyiro district, Athi Plains and Taveta, Kilimanjaro district, which are closely similar to the type in their white underparts, have the tail black tipped. This race is confined to the coast drainage and the lower parts of the Rift Valley and is the only jackal which is found in the low desert nyika country.

Named for William N. McMillan to whom the Smithsonian African Expedition is indebted for his generous hospitality at Juja Farm and in Nairobi.

HELIOSCIURUS RUFOBRACHIATUS SHINDI, new subspecies

Taiti Red-legged Squirrel

Type from the summit of Mount Umengo, Taita Hills, British East Africa, altitude, 6,000 feet; adult male, number 182768, U. S. Nat. Mus.; collected by Edmund Heller, November 11, 1911; original number 4731.

Characters.—Most closely related to Heliosciurus rufobrachiatus undulatus of Kilimanjaro but differing by having paler underparts, buffy-ochraceous in tone without the rufous cast of that form. The dorsal surface is lighter with less black lining than in undulatus. The feet differ by being ochraceous and never as dark as the rufous of undulatus. There are no apparent differences in size or proportion of parts.

8

The flesh measurements were: head and body, 225 mm.; tail, 283; hindfoot, 55; ear, 18. Skull; condylo-incisive length, 50; zygomatic breadth, 32; nasals, 18×8.2; interorbital width, 17; postorbital width, 16.5; length of upper tooth row, 11; diastema, 11.5.

This squirrel is confined to the remnant of forest covering the extreme summit of the Taita Hills, where it is very rare. The type was the only individual seen during a fortnight's stay on the summit of Umengo Mountain. It has been compared with the type of undulatus which was collected by Dr. L. W. Abbott on Mount Kilimanjaro and is now in the National Museum. Among the Wataita tribe this squirrel is known as "shindi."

TATERA NIGRACAUDA PERCIVALI, new subspecies

Lorian Black-tailed Gerbille

Type from the Lorian Swamp, British East Africa, altitude 700 feet; adult female, number 183945, U. S. Nat. Mus.; collected by A. Blaynev Percival; original number 792.

Characters.—Tatera nigricauda percivali differs from the race iconica from the middle course of the Guaso Nyiro drainage by its duller or paler dorsal coloration, the reduction of black lining on the back and the smaller body size. The pelage throughout is much shorter and thinner, a condition brought about by the extremely arid and hot conditions of the Lorian desert which lies at an altitude of only 700 feet.

Flesh measurements: head and body, 133 mm.; tail, 170; hindfoot, 35; ear, 21. Skull: condylo-incisive length, 35.5; zygomatic breadth, 20; interorbital breadth, 8; nasals, 4×16.5; length of upper tooth row, 6.5; diastema, 10.8; length of incisive foramina, 7.8; mastoid breadth of skull, 18.2.

The type is the only specimen in the National Museum.

EPIMYS KAISERI TURNERI, new subspecies

Kavirondo Bush Rat

Type from Kisumu, British East Africa; adult female, number 183395, U. S. Nat. Mus.; collected by H. J. Allen Turner; original number 5121.

Characters.—Nearest in coloration to Epimys kaiseri hindei of the Athi River drainage but decidedly darker, the dorsal surface russet rather than ochraceous, the underparts gray instead of buff, and the

feet drab, not white as in the other East African races. From *medicatus* of Mumias it differs decidedly by its shorter tail, the tail being considerably less than the head and body while in the former it is much greater. The skull differs from that of *medicatus* by its more arched dorsal profile, longer snout, smaller size and greater concavity to the antorbital plate on its outer margin.

Flesh measurements of the type: head and body, 155 mm.; tail, 135; hindfoot, 27; ear, 22. Skull: condylo-incisive length, 35; zygomatic breadth, 19; interorbital breadth, 5.5; nasals, 4.8×16; length of upper tooth row, 6.5; diastema, 10; length of incisive foramina, 8.5.

Ten specimens besides the type are in the collection from Kisumu where they were secured in the papyrus beds on the margin of Kavirondo Bay. This race appears to be confined to the papyrus beds of the Victoria Nyanza, the rising country immediately back of the lake being occupied by the long-tailed, light-colored medicatus.

Named for H. J. Allen Turner of Nairobi to whom the writer is indebted for much assistance in collecting mammal specimens throughout the Kavirondo country.

EPIMYS CONCHA ISMAILIAE, new subspecies

Gondokoro Multimammate Mouse

Type from Gondokoro, Uganda; adult male, number 165108, U. S. Nat. Mus.; collected by J. Alden Loring, February 23, 1910; original number 9056.

Characters.—This race is allied most closely to Epimys concha blainei of Chak-Chak, Bahr-el-Ghazal River, but may be distinguished by its larger feet and longer tail. The coloration is quite as in blainei, the dorsal surface being wood-brown slightly darker on the midline and the underparts are white, the hair basally dark gray.

The flesh measurements of the type were: head and body, 108 mm.; tail, 115; hindfoot, 24. Skull: Condylo-incisive length, 26.5; zygomatic breadth, 13.5; interorbital width, 4.1; nasals, 3.4×12; length of upper tooth row, 4.7; diastema, 7.4; length of incisive foramina, 6.8.

A series of 20 specimens are in the National Museum. Ten of these are from the type locality and the others are from Nimule and the stations just north of it on the Gondokoro Road which follows the east bank of the Nile.

EPIMYS KAISERI CENTRALIS, new subspecies

Nile Bush Rat

Type from Rhino Camp, Lado Enclave, British East Africa; adult male, number 165035, U. S. Nat. Mus.; collected by J. Alden Loring, January 11, 1910; original number 8633.

Characters.—The coloration of this race resembles closely that of Epimys kaiseri norae of the northern Guaso Nyiro drainage of British East Africa but differs by its less buffy tone to the dorsal surface and by the much shorter tail and wider skull.

Flesh measurements of the type were: head and body, 148 mm.; tail, 162; hindfoot, 30. Skull: condylo-incisive length, 35; zygomatic breadth, 19; interorbital width, 5.8: nasals, 4.5×15; length of upper tooth row, 5.8; diastema, 10; length of incisive foramina, 9.

A series of 38 specimens are in the National Museum from Rhino Camp, Lado Enclave. Others somewhat less typical in character are from Unyoro, Uganda, and from Nimule and Gondokoro in northern Uganda.

MUS GRATUS SORICOIDES, new subspecies

Taita Pygmy Mouse

Type from Mount Mbololo, Taita Hills, British East Africa; adult male, number 183544, U. S. Nat. Mus.; collected by Edmund Heller, November 8, 1911; original number 4675.

Characters.—Like Mus gratus of Ruwenzori but underparts much more buffy or rather ochraceous in tone. Body size somewhat less, both the feet and skull being smaller but the tail is longer. The dorsal color is bister-brown lined by black medially and bordered on the lower sides by an indefinite band of bright fulvous. The underparts are ochraceous, the hair basally gray. Feet buffy. This race is confined to the remnants of forest still left on the extreme summits of the Taita Hills at elevations of 5,000 or 6,000 feet. Two additional specimens are in the collection from Mbolobo Mountain and one other from Umengo Mountain.

Flesh measurements of the type: head and body, 60 mm.; tail, 59; hindfoot, 13; ear, 11. Skull: condylo-incisive length, 17.3; zygomatic breadth, 9.3; interorbital breadth, 3.5; nasals, 2.3×8.2; length of upper tooth row, 3.3; diastema, 4.5; length of incisive foramina, 4.2.

OENOMYS HYPOXANTHUS VALLICOLA, new subspecies

Naivasha Rusty-nosed Rat

Type from Lake Naivasha, British East Africa; adult female, number 162614, U. S. Nat. Mus.; collected by J. Alden Loring, July 15, 1909; original number 6640.

Characters.—This is a much lighter and smaller race than bacchante of the Mau and Kikuyu escarpments bounding the Rift Valley to the west and the east of Naivasha. In coloration it approaches nearer editus of Ruwenzori but is less rufous or rusty and is somewhat smaller in body size. The skull is shorter decidedly than that of editus but equals it in zygomatic width.

Flesh measurements of the type: head and body, 160 mm.; tail, 184; hindfoot, 31. Skull: condylo-incisive length, 34; zygomatic breadth, 17; interorbital width, 5.5; nasals, 4.6×15; length of upper tooth row, 7; diastema, 10; length of incisive foramina, 7.8.

Three other specimens from Naivasha are in the collection and they agree in coloration with the type.

ARVICANTHIS ABYSSINICUS VIRESCENS, new subspecies

Olivaceous Grass Rat

Type from Voi, British East Africa; adult male, number 183922, U. S. Nat. Mus.; collected by Edmund Heller, November 15, 1911; original number 4775.

Characters.—Arricanthis abyssinicus virescens resembles nairobae most closely from which it may be readily distinguished by its darker dorsal coloration, which is heavily lined by blackish hairs having a distinct greenish iridescence. The body size is considerably smaller and the skull shows relatively smaller bulke, and teeth, and narrower and more slender nasal bones. In the tone of its dark dorsal coloration it resembles nubilans of the Kavirondo region but it differs from this race by its white underparts and its much smaller body size.

The flesh measurements were: head and body, 125 mm.; tail, 103; hindfoot, 26; ear, 16.5. Skull: condylo-incisive length, 30; zygomatic breadth, 16.8; interorbital breadth, 4.8; nasals, 4.8×12; length of upper tooth row, 6.2; width of first upper molar, 2; diastema, 8.8; length of incisive foramina, 6.2.

The type is unique. It has been compared with a large series of topotypes of both *nairobac* and *nubilans* in the National Museum and is readily distinguishable from both of these races.

LEMNISCOMYS DORSALIS MEARNSI, new subspecies

Kikuyu Single-striped Grass Rat

Type from Fort Hall, British East Africa, altitude 6,200 feet; adult female, number 163616, U. S. Nat. Mus.; collected by J. Alden Loring, September 11, 1909; original number 7152.

Characters.—Lemniscomys dorsalis mearnsi is an intensely ferruginous form of dorsalis differing from the Taita race maculosus by richer coloring and larger size. The rump and hindlegs are bright ferruginous which, farther forward on the shoulders, becomes less intense and quite ochraceous in tone. The underparts are uniform white in sharp contrast to the bright ochraceous-rufous sides.

The flesh measurements of the type are: head and body, 131 mm.; tail, 140; hindfoot, 31; ear, 12. Skull: condylo-incisive length, 33; zygomatic breadth, 17; interorbital breadth, 5; nasals, 4.4×13; length of upper tooth row, 6.5; diastema, 9.3; length of incisive foramina, 7.

Two other specimens from Fort Hall complete the series of this race which represents altitudinal as well as inland limits of this coast species.

ACOMYS IGNITIS MONTANUS, new subspecies

Marsabit Spiny Mouse

Type from the north slope of Mount Marsabit, British East Africa; altitude 4,600 feet; adult female; number 182901 U. S. Nat. Mus.: collected February 26, 1911, by A. Blayne Percival; original number, 300.

Characters.—Resembling Acomys ignitus in general features as well as in quality of the pelage but coloration much grayer and duller and size larger. Dorsal coloration vinaceous-drab, the sides brighter or pure vinaceous but not sharply marked from the darker middorsal region. Underparts and feet pure white, the hair white to the roots. Tail and ears drab-gray.

Flesh measurements of the type: head and body, 90 mm.; tail, 92; hindfoot, 17; ear. 16.5. Skull wanting. Another topotype also with skull missing is in the collection. The race is a mountain form living at an elevation of 4,000 feet or more and is larger and duller colored than the low desert forms to which it is related all of which are confined to the lower desert levels below 2,500 feet in altitude.

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 63, NUMBER 8

EXPLORATIONS AND FIELD-WORK OF THE SMITHSONIAN INSTITUTION IN 1913

(Publication 2275)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1914

The Lord Baltimore Press

Looking north from foot of Kinney Lake toward Whitehorn Peak. On the right the cliff at the foot of Robson Peak. Miss Helen B. Walcott on beach in foreground. Robson Park, British Columbia, Canada. Photograph by C. D. Walcott, 1913.

EXPLORATIONS AND FIELD-WORK OF THE SMITH-SONIAN INSTITUTION IN 1913

INTRODUCTION

There is here presented a general account of the exploration and field-work conducted by the Smithsonian Institution and its several branches, including the United States National Museum, in various parts of the world during the calendar year 1913. These explorations were made by means of allotments from the Smithsonian funds, from Congressional appropriations, and through the coöperation of other institutions and of individuals engaged or interested in geological, biological, or anthropological investigations.

The Institution and its branches were thus represented in a large number of field parties whose researches have tended to increase the general knowledge in various subjects, and have added much valuable material to the collections of the National Museum. Owing to its limited funds, the Institution was unable to participate in several additional enterprises in which opportunities for representation were offered.

In the preparation of the present account the direct statements of those who participated in the field-work have been employed, with one or two exceptions, while nearly all the photographs were made by the explorers themselves.

Some of the work carried on in 1913 was in continuation of operations begun in previous years and reported in part in accounts heretofore published by the Institution.¹

Three Government branches of the Institution are represented in this report: The National Museum, although having no specific funds for exploration work, avails itself as far as possible of all opportunities presented for making collections in the field: the Bureau of American Ethnology engages largely in field-work, which is covered in detail in the annual report of that bureau: and the

⁴ Expeditions Organized or Participated in by the Smithsonian Institution in 1910 and 1911. Smithsonian Misc. Coll., Vol. 59, No. 11, 1912.

Explorations and Field-Work of the Smithsonian Institution in 1912. Smithsonian Misc. Coll., Vol. 60, No. 30, 1913.

Astrophysical Observatory at times conducts special expeditions both in the United States and abroad, in connection with its regular work of studying the physical properties of the sun and their effect on the earth.

Both the National Museum and the National Zoological Park received during the year many donations and accessions presented or collected by collaborators in this country and abroad who have no official connection with either branch. The remaining branches under the Smithsonian Institution were not represented by any field parties, and therefore are not mentioned in this account.

Fto. 1.—Looking northeast toward the top of Robson Peak from Rainbow Brook, one-quarter mile south of Lake Kinney. Robson Park, British Columbia, Canada. Photograph taken while clouds and mist were drifting over the upper part of the peak. The summit of the peak is 8,800 feet above the camera. The view shows the southwest face of the peak. Photograph by C. D. Walcott, 1013.

GEOLOGICAL EXPLORATIONS IN THE CANADIAN ROCKIES

In continuation of his previous geological researches in the Canadian Rockies, Dr. Charles D. Walcott, Secretary of the Institution, revisited during the field season of 1913, the Robson Peak district in British Columbia and Alberta, and the region about Field, British Columbia. At the latter place he received the members of the International Geological Congress.

Fig. 2.—Robson Peak from a ridge above and north of east end of Berg Lake, showing north side of peak. Robson Park, British Columbia, Canada. Photograph by C. D. Walcott, 1913.

Fig. 3.—Hunga Glacier from south slope of Munim Peak, with Phillips and other mountains to the south. Robson Park, British Columbia, Canada, Photograph by C. D. Walcott, 1913.

On this trip to Robson Peak, Dr. Walcott approached from the west side, in order to study the local geological section which he considers one of the finest in the world. From the west foot of Robson Peak, Whitehorn Peak rises on the north to a height of 7,850 feet above Lake Kinney (frontispiece), and on the east the cliffs of Robson rise tier above tier from the surface of the lake to the summit of the peak, a vertical distance of 9,800 feet. The base of this geo-

Fig. 4.—Phillips Mountain, from Robson Pass, looking over the front of Hunga Glacier. Robson Park, British Columbia, Canada. Photograph by C. D. Walcott, 1013.

logical section is shown on the right of the frontispiece, and the upper half by figure 1, while figure 2 illustrates a profile of 7,500 feet of the section.

From beneath the base of the mountain at Lake Kinney, the strata slope gently upward so that more than 4,000 feet in thickness of beds, which pass under Robson Peak, are exposed in ledges to the north and south. A considerable portion of this thickness is shown in the dark peak to the left of Whitehorn Peak in the frontispiece.

Owing to exceptionally good climatic conditions, the season of 1013 proved unusually favorable for viewing Robson Peak. Fre-

Fig. 5.—Brook entering Berg Lake, one mile southwest of Robson Pass. View taken about half a mile from the lake. Robson Park, British Columbia. Canada. Photograph by C. D. Walcott, 1913.

quently in the early morning the details of the snow slopes on the summit of the peak were beautifully outlined. Toward evening,

6

however, the mists driven in from the warm currents of the Pacific, 300 miles away, shrouded the mountain from view (fig. 7).

Fig. 6.—Camp on the north side of Robson Pass. Photograph by C. D. Walcott, 1913.

From the slopes of Titkana Peak, west of the great Hunga Glacier (figs. 3 and 4), a wonderful view is obtained of the snow fields and falling glaciers east of Robson Peak. The glacial streams come

Fu. 7.- View from Walcott Camp, looking westward over President Range after sunset when the mist is driving eastward over the mountains. Near Field, British Columbia, Canada. Photograph by C. D. Walcott, 1013.

Fig. 8. Panoramic view of west side of foot of Hunga Glacier where the stream forming the head-waters of Grand Fork comes from hereath the ice and flows westward into Berg Lake. Robson Park, British Columbia, Canada. Photograph by C. D. Walcott, 1013.

Fre. 9.—View looking out from the fossil quarry over Burgess Pass, to the right of the mountain, the Van Horne Range in the distance, the President Range and Emerald Lake. On the left the Kicking Horse Valley, Mount Dennis, and in the distance Mount Vaux. Near Field, British Columbia, Canada. Photograph by C. D. Walcott, 1913.

Fig. 10.—North end of the fossil quarry above Burgess Pass on the slope of the ridge between Mount Wapta and Mount Field, 4,000

tumbling down the slopes (fig. 5) and often disappear beneath the glacier to reappear at its foot with the volume of a river (fig. 8).

At Field, British Columbia, work was continued at the great Canebrian fossil quarry, where a large collection of specimens was secured. The conditions were such that it was necessary to do much heavy blasting to reach the finest fossils which occur in the lower layers of rock. Figure 10 shows the north end of the quarry below the sharp

Fig. 11.—South end of fossil quarry, where many of the most beautiful specimens were secured from the lower three feet of beds. Near Field, British Columbia, Canada. Photograph by C. D. Walcott, 1913.

summit of Mount Wapta, and, in the distance, the President Range with Emerald Lake at its base. The south end of the quarry is illustrated by figure 11; here the solid beds were blasted out to a depth of 22 feet.

Owing to the presence of a fault line, just north of the quarry, and the twist and compression of the rocks south of it, the available area for successful collecting is limited to about 200 feet. In other localities where the shale outcrops on the ridges in the vicinity, com-

F16, 12.—View of the west cliff of the valley of the Thousand Falls. On the trail from Lake Kinney to Berg Lake. Photograph by R. C. W. Lett. Grand Trunk Pacific Railway, 1013.

Fig. 13.—Summit of Mount Resplendent, with the mist driving over the three members of the Alpine Club of Canada. Photograph by P. L. Tait, British Columbia, 1913.

pression and shearing have so changed the character of the rock that it is impossible to obtain fossils in a condition to be of service.

The collections of 1913 contain a number of very important additions to this ancient Cambrian fauna, and many fine additional examples of species found in 1012.

Fig. 14.—Bowlder train on the surface of the west side of Hunga Glacier, overlooking the Robson Pass, British Columbia. The Secretary of the Smithsonian Institution is standing beside the bowlder. Photograph by Miss Helen B. Walcott, 1913.

GEOLOGIC HISTORY OF THE APPALACHIAN VALLEY IN MARYLAND

Dr. R. S. Bassler, curator of paleontology in the U. S. National Museum, spent a month during the summer of 1913, in the Appalachian Valley of Maryland and the adjoining States, studying the Postpaleozoic geologic history of the region, as indicated by the present surface features. His studies, which were under the joint auspices of the U. S. National Museum and the Maryland Geological Survey, were in continuation of work carried on during the previous summer when the sedimentary rocks of the region were mapped in detail, the final object being the preparation of a report on the Lower

Paleozoic strata of Maryland, to complete a series of memoirs published by that State. Owing to the brevity of this account, only a few points in the physiographic history will be noted here.

Since Carboniferous time western Maryland has been above the sea, and its rocks have accordingly been subjected to a long period of aerial erosion. During Jurassic time, the area remained stationary for so long a period that the surface of the land in the Appalachian province was reduced to a rolling plain. Later uplift raised this

Fig. 15.—Jurassic (Schooley) peneplain, preserved in the Blue Ridge of Maryland. Photograph by Bassler.

plain still higher above sea level, and in Maryland only remnants of the old surface are preserved in the flat skyline of the highest mountains. This ancient plain, or Schooley peneplain, as it is termed, is well preserved on the top of the Blue Ridge, as shown in figure 15.

A second great period of erosion occurred in early Tertiary time, the effects of which were chiefly in the Appalachian Valley proper, where the erosion is indicated by a pronounced plain at an elevation of about 750 feet. This plain was formed only on the softer Paleozoic rocks, and, because of its prominence near Harrisburg, Pennsylvania, is known as the Harrisburg peneplain. Conococheague Creek traverses the Harrisburg peneplain in Maryland, and has dissected it

considerably, as shown in figure 16, but the even skyline of the ancient plain is still clearly evident.

Other factors in the geologic history of Maryland are recorded in the well defined gravel terraces along the major streams of the area and in great alluvial fans of large and small bowlders, spreading out at the foot of the larger mountains and sometimes reaching a depth of 150 feet. All of these phenomena have been plotted and will form a part of the geologic map of the region.

Fig. 16.—Dissected Early Tertiary (Harrisburg) peneplain, west of Hagerstown, Maryland. Photograph by Bassler.

COLLECTING FOSSIL ECHINODERMS IN ILLINOIS

The special field explorations maintained by Mr. Frank Springer, associate in paleontology in the U. S. National Museum, were continued during the season of 1913 by his private collector, Frederick Braun. The purpose of these explorations is to obtain additional material for use in Mr. Springer's monographs upon the fossil crinoidea, now in course of preparation, but they also result in important accessions of excellent specimens for the completion of the exhibition series in the hall of Invertebrate Paleontology in the National Museum.

The investigations of the past summer were confined to the Kaskaskia rocks of Monroe and Randolph Counties, Illinois. They were systematically carried on in connection with the geological work for the State of Illinois, in progress at the same time under the direction of Professor Weller, in order to have the benefit of accurate determinations of the horizons from which the collections were made, with reference to the several subordinate formations into which the

Fig. 17.—Portion of a slab of fossil Crinoids from Illinois, Photograph by National Museum.

Kaskaskia of that region is divided. In this way it was hoped to rectify some confusion as to the stratigraphic relation of a number of species described in the Geological Reports of Illinois and Iowa. The operations were successful in this respect, and at the same time six large boxes of fine specimens were obtained. Among the specimens there are a number of slabs covered with Crinoids not hitherto found in that formation, in an excellent state of preservation. A portion of one slab, containing 22 specimens of 9 different species, is shown in the accompanying illustration (fig. 17). This specimen and

others of similar character, giving a complete representation of the Kaskaskia crinoidal fauna, are being prepared for installation in the exhibition hall of the National Museum.

FURTHER EXPLORATION OF THE CUMBERLAND PLEISTOCENE CAVE DEPOSIT

In May, 1913, Mr. J. W. Gidley, assistant curator of fossil mammals in the U. S. National Museum, made a second visit to the Pleistocene cave deposit near Cumberland, Maryland, which proved even

Fig. 18.—Near view of part of excavation made near Cumberland, Maryland, by U. S. National Muscum party. Photograph by Armbruster.

more successful than the one of the previous year, reported in the account of the Smithsonian explorations of 1912.

Many new forms were added to the collection, and much better material was obtained of several species represented only by jaw fragments in the first collection. The collection now contains upward of 300 specimens, representing at least 40 distinct species of mammals, many of which are now extinct. Among the better preserved specimens are several nearly complete skulls and lower jaws. The more important animals represented are two species of bears, two species of a large extinct peccary, a wolverine, a badger, a martin, two porcupines, a woodchuck, and the American eland-like antelope.

Fig. 19.—View from opposite side of railroad cut showing fossil deposits at bottom, near track, and traces of ancient opening at top of cliff. Photograph by Armbruster.

These species are all new and, with the exception of the American eland, the dog, and one of the bears, which Mr. Gidley has already described, have not yet been named.

Other species represented by more fragmentary material include the mastodon, tapir, horse, and beaver, besides several species of the smaller rodents, shrews, bats, and others.

This strange assemblage of fossil remains occurs hopelessly intermingled and comparatively thickly scattered through a more or less unevenly hardened mass of cave clays and breccias, which completely filled one or more small chambers of a limestone cave, the material together with the bones evidently having come to their final resting place through an ancient opening at the surface a hundred feet or more above their present location. The deposit is at present exposed at the bottom of a deep cut through which the Western Maryland Railroad has built its tracks. The railroad excavation first brought to light the ancient bone deposit and incidentally made access to the fossils comparatively easy. It is proposed to continue work on this important deposit during the next season.

A FOSSIL HUNTING EXPEDITION IN MONTANA

While engaged in Geological Survey work in northwestern Montana in 1912, Mr. Eugene Stebinger discovered a promising locality of vertebrate fossil remains. The following summer (1913), under the auspices of the U. S. Geological Survey, Mr. Charles W. Gilmore, assistant curator of fossil reptiles in the National Museum, headed an expedition for the purpose of obtaining, if possible, a representative collection from this area.

In July a camp was established on Milk River, some thirty-five miles north and west of Cut Bank, Montana, on the Blackfeet Indian Reservation. Four weeks were spent here in collecting, the work being confined entirely to the Upper Cretaceous (Belly River beds) as exposed in the bad-lands for ten miles along this stream. Later, in August, camp was moved some fifty miles south on the Two Medicine River, and two weeks were spent working in the same geological formation.

Taking into consideration the short time at the disposal of the party, the results of the expedition were most gratifying. Between

Smithsonian Misc. Coll., Vol. 60, No. 27, 1913.
 Proceedings U. S. National Museum, Vol. 40, No. 2014, 1913.

500 and 600 separate fossil bones were obtained, many of them of large size. The most notable discovery was a new Ceratopsian or horned dinosaur, the smallest of its kind known. There were portions of five individuals of this animal recovered, representing nearly all parts of the skeleton, so that it will be possible to mount a composite skeleton for exhibition. In this connection, it is perhaps of interest to know that, although Ceratopsian fossils were first dis-

Ftg. 20.—Fossil beds as exposed on Milk River, Montana. The small Ceratopsian dinosaur was found in the breaks in the foreground. Photograph by Gilmore.

covered in the Rocky Mountain region in 1855, and portions of a hundred or more skeletons have been collected, this is the first individual to be found having a complete articulated tail and hind foot. It thus contributes greatly to our knowledge of the skeletal anatomy of this interesting group of extinct reptiles.

Another noteworthy find was a partial skeleton of one of the Trachodont or duck-billed dinosaurs. This animal was only recently

⁴ Mr. Gilmore's description of this extinct reptile is to be found in the Smithsonian Misc. Coll., Vol. 63, No. 3, 1014.

Fig. 21.—Fossil beds as exposed on Two Medicine River, Montana. Camp of fossil hunters in the foreground. Photograph by Gilmore.

F16, 22.—Fossil leg bone of a dinosaur shown as found in the ground, on Milk River, Montana. Photograph by Stebinger.

described from specimens obtained in Canada, and its discovery in Montana greatly extends its known geographical and geological range. The species was not before represented in the National Museum collections.

Less perfect skeletons of carnivorous and armored dinosaurs, turtles, crocodiles, and ganoid fishes were also obtained. Altogether the material is a most welcome addition to the fossil vertebrate collection in the National Museum, which has been deficient in representatives of this highly interesting but little known fauna.

LIFE ZONES IN THE ALPS

During the summer of 1904, Messrs, G. S. Miller, Jr. and Leonhard Stejneger, of the National Museum, visited the Western Alps in an endeavor to ascertain the limits of the life zones which, in that part of Europe, might correspond to those of North America established chiefly through the efforts of the U. S. Biological Survey. That a system of such life zones exists in Europe has long been more or less vaguely stated by authors, but although a definite correlation was established by the gentlemen mentioned, certain points, especially the interrelation of the zones corresponding to the so-called Canadian and Hudsonian life zones in America, were greatly obscured by the long continued interference of man and animals with Nature, such as the grazing—of cattle in the high Alps, deforestation, and, more recently, artificial reforestation.

It was thought that the eastern Alps might show more primitive conditions, and in the spring of 1913. Mr. Stejneger took advantage of an opportunity to visit the mountain region between Switzerland and the head of the Adriatic, through a small grant from the Smithsonian Institution. Unseasonable and rainy weather interfered greatly with the carrying out of his investigation. He arrived in the town of Bassano at the foot of the Venetian Alps on April 20, 1913, it being his plan to study the life zones of the Val Sugana and the plateau of the Sette Comuni from that point. This plateau descends abruptly to the Venetian plain on the south, while to the east and north it is separated from the mass of the Eastern Alps by the Val Sugana, or the valley of the river Brenta, and on the west by the lower part of the valley of the Adige, or Etsch. It is intersected by the boundary line between Italy and Austrian Tirol.

From April 21 to May 6, he made a series of excursions from Bassano, Levico, and Trento as successive headquarters, during

F16, 23.—Mouth of Val Frenzela, at Valstagna, northern Italy.

Photograph by Stejneger.

Fig. 24.—Plateau of the Sette Comuni, northern Italy, looking east from Gallio. Monte Grappa in the background. The valley is the beginning of Val Frenzela. Photograph by Stejneger.

which time he completely circled the territory, and crossed the plateau once on foot. In spite of the backwardness of the season, he was able to trace the boundaries of the Austral life zones in considerable detail, as well as to gather data which connect with the previous correlation of these zones in the Western Alps and with the corresponding zones in North America. It was found that the bottom of the entire Val Sugana belongs to the Upper Austral zone. Owing to the rainy and inclement weather the results were less satisfactory in the higher regions, though some important data corroborating previous conclusions were obtained.

The time from May 7 to May 20 was spent in a study of the Etsch Valley in Tirol, from Trento to Schlanders, and of its tributary, the Eisak, from Bozen to its source on the Brenner Pass.

The elaboration of the detailed observations will be incorporated with a general report on the biological reconnoissance of the Western Alps.

To this preliminary statement are appended two illustrations showing the character of the country in which the observations were made. Figure 23 is a view of the mouth of Val Frenzela, the narrow valley through which the descent from the Sette Comuni was effected, near Valstagna, a small town a few miles north of Bassano. Figure 24 represents the plateau near the commune of Gallio, about 3,500 feet above the sea, looking east toward Monte Grappa and showing the beginning of Val Frenzela.

DR. ABBOTT'S EXPEDITION IN DUTCH EAST BORNEO AND CASHMERE

In continuation of the exploring and collecting carried on through the generosity of Dr. W. L. Abbott, by Mr. H. C. Raven, in Dutch East Borneo, it may be said that the work is going forward with excellent results.

Dr. W. L. Abbott is continuing his personal explorations in Cashmere, which he undertook a year ago, and, although the Museum has received no detailed report, some fine specimens of manimals have been added to the collections and many more are expected.

In a letter received in January, 1913, Dr. Abbott says that in his last shipment the only really good specimen is a queer little silvery grey shrew about 74 millimeters long, quite different from anything he has before seen, of which there are four specimens from Skoro Loomba, east of Shigar. There is also a magnificent snow leopard with its complete skeleton.

Fig. 25.—View from Leh, looking toward the Khardery Pass up the valley to the right. Observe the cultivation in terraces, all irrigated. The elevation is 11,200 feet. The hills in the background are from 20,000 to 21,000 feet elevation. Photograph from Abbott.

F16, 26.—Shepherds with load-carrying sheep. Each animal carries from 12 to 30 pounds. They bring salt from Tibet to Ladak and carry back grain. Photograph from Abbott.

During the three months' trip which Dr. Abbott spent in Baltistan, in northwestern Cashmere, he secured about 280 skins which have been presented to the National Museum.

After a sojourn in England, he expected to return to Cashmere in May, and march to Ladak. He also intended to visit Nubra, and go east along the frontier to the Dipsang Plains where he hoped to secure specimens of a certain vole from Kara Korum Pass, as well as the little Tibetan fox, known to the Cashmere furriers as the "King Fox." At the time of the letter he anticipated a four months' trip during the summer of 1913.

This expedition, the results of which have been delayed in transit, was very successful. The small fox was obtained, also several wolves, lynxes, and many smaller mammals. The accompanying illustrations have been made from photographs sent by Dr. Abbott.

MARINE INVERTEBRATES FROM THE "EASTERN SHORE," VA.

In July, 1913, Mr. John B. Henderson, Jr., a regent of the Smithsonian Institution, and Dr. Paul Bartsch, of the National Museum, made a short trip to Chincoteague, on the Atlantic shore of Accomac County, Va., for the purpose of securing exhibition material of marine invertebrates and ascertaining the local marine fauna, particularly that of the mollusca. Owing to the inaccessibility of this strip of coast, generally known as the "Eastern Shore," collectors seem to have neglected it. At any event, there appear to be but few records and no critical lists published of the shallow water shells from any locality between Cape May, N. J., and Beaufort, N. C.

The chief objects of this trip were to determine of just what elements the molluscan fauna consisted; to see how many, if any, species of southern range lapped over from Hatteras, and what northern species still persisted in this faunal area. The collectors were fortunate in their somewhat haphazard choice of a locality, for they encountered at Chincoteague a greater variety of stations than can probably be found at any other point along this section of the coast.

Here there are interior sounds of very considerable extent which are very shallow (4 to 12 ft.), more or less thickly sown with oyster beds and with patches of eel grass, the bottom ranging from hard sand, through varying degrees of hard elay, to soft mud.

They found also the unusual feature of a bight or protected cove formed by the southward drift at the southern end of Assateague Island, protected from heavy wave action by a long, curved sand spit. This bight has a soft mud bottom, with a temperature possibly

Fig. 27.— Medusa from Chincoteague, Virginia. Collected by Mr. Henderson and Dr. Bartsch. Photographed in alcohol by National Museum.

eight degrees less than that of the open sea. The mud brought up with the dredge seemed almost icy to the touch. This condition is probably produced by cold springs seeping through the floor of the bight. This colder water of the bight yielded to their dredge *Voldia limatula*, large and fine, and *Nucula proxima*, whereas just around the protective spit of sand, on the ocean side, they found dead Terebras of two species, some young *Busycon perversa* and a valve of *Cardium robustum*; a somewhat startling association of species.

Then there was the open sea, which here presumably differs in no manner from other open sea stations along the 200 miles or more of this coast. The bottom drops off very gradually to the edge of the continental shelf, some 75 or 100 miles out. The open sea stations which they occupied were, as might be expected, very poor. The smooth, hard sand bottom seemed almost barren of life, and the softer patches that were explored contained only many dead shells, mostly small bivalves. The work in the open sea was scarcely a good test, although the collectors made probably 20 hauls reaching out from the shore some 4 or 5 miles, but the chart soundings indicated more promising areas of pebbly bottom a few miles beyond what they considered the safety zone for a small motor boat.

The inner waters of the sound were found to be unexpectedly rich in molluscan life, the species, for the most part, not having been taken previously outside or in the bight.

Only two full working days were spent here, where the party was fortunate in securing an excellent boat and obliging skipper. The material has been identified with great care, and the results of the expedition will be published in the Proceedings of the U. S. National Museum.

EXPERIMENTS WITH CERIONS IN THE FLORIDA KEYS

In the second issue of the Smithsonian exploration pamphlet, attention was called to experiments with Cerions, conducted by Dr. Bartsch, under the auspices of the Carnegie Institution. The plantings of Bahama Cerions made upon the Florida Keys were visited in the latter part of April and early June by Dr. Bartsch, and a de-

¹ Smithsonian Misc. Coll., Vol. 66, No. 30, 1913, pp. 58-62,

tailed report of his findings is published in the annual report of the Director of the Department of Marine Biology of the Carnegie Institution of Washington (Carnegie Year Book, 1913, pp. 217-219). The results of these experiments so far obtained may be summed up as follows:

Fig. 28.—" Peanut" shells on living vegetation, Key West, Florida.
Photograph by Bartsch.

After looking over the entire plantings, Dr. Bartsch is inclined to believe that, with the exception of the Tea Table and Indian Keys, the colonies are doing as well as might be expected. It is also quite possible that when the young in the various colonies attain a larger size, a good many more will be found in the various places, in fact,

a good many may be present in places where they were not discovered previously, for the nepionic shells are quite small and hard to find.

Judging from the young collected, which were born on these Keys, the first generation will be like the parent generation unless decided

F₁₆, 29.—" Peanut" shells on living vegetation, Key West, Florida. Photograph by Bartsch.

changes should take place in the later whorls, which have not as yet been developed. The largest specimens found have only seven postnuclear whorls, leaving two to three whorls still to be developed, and these make up fully half of the length of the shell. If the present

Fig. 30.—" Peanut" shells on dead stump, Key West, Florida.
Photograph by Bartsch.

tendencies prevail in the adult shell, then it can be seen that the somaplasm has not at once responded to the change of environment. The reaction of the germ-plasm to the changed environment will await interpretation until the next generation presents itself.

Dr. Bartsch likewise kept a record of the birds seen on the various Keys visited between Miami, Florida, and the Tortugas, and has published this also in the Carnegie Year Book for 1913, pp. 220-222, with the hope that it may prove useful to students of bird migration.

Fig. 31.—Detail view of "Peanut" shells on dead stump, Key West, Florida. Photograph by Bartsch.

BIRD STUDIES IN ILLINOIS

Mr. Robert Ridgway, curator of the division of birds, U. S. National Museum, has been working on the completion of National Museum Bulletin No. 50, Birds of North and Middle America, and has done some exploration work in the field in connection with this work.

Recently he made a trip to the Little Wabash River, about 16 miles southwest of Olney, Illinois, in order to ascertain what species of birds were wintering in the dense thickets of the bottom lands, and to obtain evidence as to the presence there of a decided element of the Austroriparian or Lower Austral fauna and flora.

Mr. Ridgway's residence in this locality during the winter has been of extreme interest; it is the first time he has had an opportunity to make natural history observations since his first trip to this region forty-seven years ago. He was thus enabled to compare present conditions with those existing on the occasion of his first visit, and has secured some valuable information for incorporation in his exhaustive monograph.

FISHES FROM THE REGION OF QUATERNARY LAKE LAHONTAN

The Museum has received through the Bureau of Fisheries a collection of fishes from the various river and lake basins that were

F16. 32.—A breakfast catch of Tahoe Trout. Photograph by Snyder.

at one time connected with the quaternary Lake Lahontan. Twenty-one species are represented, 15 of which are native fishes, including not only all that are now known to inhabit the basin, but also 5 that are as yet undescribed. The collection was made by John O. Snyder, of Stanford University, while engaged in an investigation of the region under the direction of the Bureau of Fisheries.

Lake Lahontan, which in quaternary time was a large body of water, very irregular in shape, extended over a considerable part of

Fig. 33.—Mountain meadow in the high Sierra, one of the sources of the Truckee River. Photograph by Snyder.

Fig. 34.—Truckee River, outlet of Lake Tahoe, California. Photograph by Snyder.

the region now included in northern Nevada and eastern California. It was no doubt a magnificent lake, including as it did a number of large and beautiful islands, with the great snow-capped wall of the Sierra on one side and the endless shimmering desert on the other. Even now, though dwindled and shrunken through desiccation, its glory has not all departed. For although one may travel for days over the wind-driven sands of its parched floor, the great terraces and castellated crags of its ancient shores tower at times hundreds of feet on either side, and there still remain a number of small though

Fig. 35.—Humboldt River near the Palisades, Nevada. Photograph by Snyder.

very beautiful lakes and several rivers of considerable size which were once tributaries of the greater lake. The waters of none of these reach the ocean but ultimately disappear through evaporation, or sink into the loose, dry sands of the desert.

Lake Tahoe, near the crest of the Sierras, 6,247 feet above the sea, has 195 square miles of clear water which reaches a depth of 1,645 feet. Its outlet, the Truckee River, plunges down 2,300 feet in a distance of about 100 miles, finally bifurcating and entering Pyramid and Winnennucca Lakes. The former is 30 miles long and 12 wide, the water having a depth of over 350 feet. It embraces some pictur-

esque islands, two of which should be permanently reserved by the Government, for they shelter thousands of birds during the nesting

Fig. 36.—The Needles, Pyramid Lake. Photograph by Paine.

Fig. 37.—Tufa domes, Pyramid Lake. Photograph by Paine.

season. Humboldt, Quinn, Walker, and Carson Rivers, and also Honey, Walker, and Carson Lakes are parts of this system.

These rivers and lakes are well supplied with fishes, exceedingly abundant in number, although representing but a few species. Of chief interest and value among these are the trout which appear to have found here the most advantageous conditions for growth and development. At least 2 native species occur, Salmo henshawi, the large cut-throat which occasionally reaches a weight of over 20 lbs., and S. regalis, the royal silver trout, much smaller than the former, but a most beautiful fish, remarkable for the brilliant silver of its sides and the unparalleled blue of its dorsal surface. Formerly the lakes and rivers of the region fairly swarmed with trout, and during the spawning season they often entered the rivers in such numbers that it was difficult for them to find room in the channels. Several species of suckers and large minnows occur in countless numbers.

Fig. 38.—Bird Island, Pyramid Lake. Photograph by Paine.

Of these Chasmistes cujus, the Kouiewee of the Piute Indians, inhabits only Pyramid and Winnemucca Lakes. It lives in their depths, and is never seen until in the spring, when great schools suddenly appear at the mouth of the Truckee River, crowd up the channel and cover the bars, often pushing each other out of the water in their struggles to find room enough to deposit their eggs. Formerly this was an occasion of rejoicing among the Indians, for here were numbers of large, fat fishes which only need be kicked out of the water and hung on the bushes to dry. The Piutes still continue to cure them in large quantities for winter food. A small white fish abounds in favorable places. Some of the minnows reach a foot in length, bite

a fly or small spoon, and occasionally contribute to the eamper's breakfast.

A study of the fish fauna of the basin bears out the conclusions of geologists regarding its long isolation. Nearly all of the species are distinct from those of neighboring systems, and some belong to groups of very restricted distribution. An account of the fishes, their habits and distribution will appear in a future bulletin of the Bureau of Fisheries.

CACTUSES AND DESERT PLANTS FROM THE WEST INDIES AND SOUTHWESTERN UNITED STATES

Dr. J. N. Rose, associate in botany, U. S. National Museum (at present connected with the Carnegie Institution of Washington

Fig. 30.—St. John's Harbour, British West Indies. The high point on the right is Rat Island, used as the Government Leper Asylum. Part of the town of St. John's is shown, the seat of government of the Leeward Islands under British control. Photograph by Russell.

in the preparation of a monograph of the Caetaceae of America), accompanied by Messrs. William R. Fitch and Paul G. Russell, spent over ten weeks in travel and field-work in the West Indies in the spring of 1913. As this was an unusual opportunity to obtain very valuable material needed for the collections of the National Museum and for use in making exchanges, the Museum detailed Mr. Russell

for the trip. This expedition formed a part of the larger scheme of studying in the field the desert plants of both North and South America, which had been organized by Dr. N. L. Britton, Director of the New York Botanical Garden, and Doctor Rose, in connection

Fig. 40.—A Cereus (C. lepidotus Salm-Dyck) common on these islands. Near St. John's, Antigua. Photograph by Russell.

with their Cactus Investigation for the Carnegie Institution of Washington. Doctor Britton also took a party to the West Indies. Both parties started from New York City January 25. Doctor Britton and his assistants explored St. Thomas, St. Jan and others of the Virgin Islands, Porto Rico, and Curacao. His collection consisted of more than 3,000 species, comprising two sets, one of which has been sent to the National Museum as an exchange.

Fig. 41.—A specimen of the Century plant (Agave obducta Trelease) showing an immature flowering stalk. Near English Harbour, Antiqua. Photograph by Russell.

Fig. 42.—Specimens of the Melon-cactus (Cactus intortus Mill.) and Century plant (Agave obducta Trelease) on promontory near English Harbour. Antigua. English Harbour was once a fortified British stronghold. Admiral Nelson here fitted up part of his fleet for the Battle of Trafalgar. Photograph by Russell.

At the same time, Doctor Rose's party visited St. Thomas, St. Croix, St. Kitts, Antigua, and Santo Domingo. Knowing that the Museum greatly needed duplicates for exchange purposes, general collecting was done whenever possible. Dr. Rose's collection consisted of more than 1,200 species and about 7,000 specimens. Of these, one set has been mounted for the Museum and has become a part of the study series of the herbarium. A second set was sent to the New York Botanical Garden, while other sets have been sent to the Bureau of Science at Manila, and to the Royal Botanical Garden and Museum at Berlin, for use by Dr. I. Urban in the preparation of his Flora of Santo Domingo.

While especial attention was given to collecting the Cactus flora, a large general botanical collection was made. In this there are some new species, one in particular being a very remarkable Annona from the desert plain at Azua, Santo Domingo.

In addition to the herbarium material, 12 boxes and crates of living plants, chiefly Cacti, were sent from the West Indies by Doctor Rose, and two boxes of living plants were sent to Lady Katharine A. Hanbury's garden at La Mortola, Italy, in exchange for specimens and courtesies shown to Doctor Rose when in Europe in 1912.

Many packages of seeds, bulbs, cuttings, etc., were obtained for exchange purposes of the Museum or for study by the various workers in the U. S. Department of Agriculture.

PLANTS FROM SOUTHWESTERN UNITED STATES

In September and October, Doctor Rose, accompanied by Wm. R. Fitch, made extensive botanical collections in southeastern Colorado, New Mexico, and western and southern Texas. While the trip was made primarily for the purpose of collecting and studying the Cacti of this region, many other flowering plants were obtained, a full set of which has been mounted and placed in the National Herbarium.

THE FLORA OF WESTERN NORTH CAROLINA

During the latter part of August and early September, 1913, Mr. Paul C. Standley, of the Division of Plants, U. S. National Museum, and Mr. H. C. Bollman, of the Smithsonian Institution, spent four weeks camping in the mountains of western North Carolina, near Montreat, Buncombe County. Although undertaken primarily as a vacation trip, advantage was taken of the opportunity for study of the flora of this most interesting region. Over seven hundred speci-

mens of plants were secured, besides small lots of some of the common and easily collected animals. Special attention was devoted to the mosses, hepatics, and lichens, in which the region abounds, and a representative collection of each of these groups was secured. Lists of the species of cryptogams have been prepared for publication.

Fig. 43.—Mountain brook near Montreat, North Carolina. Photograph by Standley.

The mountains of North Carolina are of great interest botanically, since they support a varied flora, many of whose components are not found elsewhere. Western North Carolina was visited by some of the earliest American botanists who collected here the types of many of the typically mountain plants. Although numerous botanists have explored the region, many of its divisions are still unexplored and yield rich returns to the collector.

About Montreat the mountains are covered with an almost virgin chestnut forest, traversed by numerous small, swift streams of clear, cold water, bordered with hemlocks. There is an abundant undergrowth of rhododendron and laurel, two of the handsomest of North American shrubs, which attain their greatest perfection in the southern Appalachians. The herbaceous vegetation consists of many

Fig. 44.—Chestnut forest near Montreat, North Carolina. Photograph by Standley.

species, some of them of limited distribution. A small sphagnum bog, in particular, yielded a large number of rare plants.

The most interesting excursion made during the month's camp was to the summit of Mount Mitchell, the highest peak in eastern North America—6,710 feet. By trail, it is distant about sixteen miles from Montreat. The trail at first follows a logging railroad which is being extended into the mountains, then strikes through the heavy

spruce and balsam forest covering the higher slopes. This primeval forest, which resembles in its general appearance those of the Rocky Mountains, unfortunately seems destined to disappear in the near future; indeed, it has already been removed from a large area, and desolation left in its stead. It is deeply to be regretted that as Mount Mitchell is made more accessible by the railroad its chief beauty will be destroyed.

A single night was spent on the summit of the mountain. A cabin was built here and maintained by the State some years ago, but it is now abandoned and has fallen into decay. At the summit of Mount

Fig. 45.—Artificial fountain near Black Mountain, North Carolina. It is fed from a reservoir on a neighboring mountain. Photograph by Standley.

Mitchell is a monument which marks the grave of the man whose name it bears, who lost his life while engaged in exploring its slopes. From this point at sunrise a wonderful view is obtained of the vast mass of mountains which cover the adjacent region, their valleys filled with a sea of clouds above which the higher peaks rise like rugged islands.

A small collection of plants was made upon the peak, a locality whose flora is little known. The flora, strangely enough, is not particularly interesting, for it includes but few species. The vegetation is remarkable chiefly for the large number of introduced plants it includes. These have doubtless been transported by the visitors who ascend the mountain each year. In spite of the altitude of Mount

Mitchell, it yields none of the boreal plants which make the floras of the mountains of New England so interesting. The lower mountains of North Carolina, and some of the other high peaks, are much more interesting botanically than this, the loftiest of them all.

ANCIENT MICA MINES OF NORTH CAROLINA

In April, 1913, W. H. Holmes, head curator of the department of anthropology, visited the mica mines of western North Carolina, making such observations as seemed necessary for a reasonable comprehension of the nature and extent of the ancient operations.

Fig. 46.—Section of an aboriginal mica mine: A, General schistose formation: B, Mica-bearing vein; C, Old digging partly filled up; D, Ancient dumps.

Mica was in very general use among the Indian tribes east of the Great Plains and was mined by them at many points in the Appalachian highlands from Georgia to the St. Lawrence River. From these sources it passed by trade or otherwise to remote parts of the country and is found especially in burial mounds, stone graves, and ordinary burials throughout the Mississippi Valley. The crystals of mica are of diversified shapes and sizes, reaching in some cases upwards of two feet in dimensions. They separate readily into sheets of very attractive appearance, which are transparent or translucent, displaying various silvery and amber hues. Mica crystals occur distributed through narrow veins of quartz and feldspar which extend at various angles through the inclosing schistose formations.

Although probably serving few practical purposes the sheets were highly prized by the aborigines for the manufacture of personal ornaments and for sacrificial and mortuary purposes. It is stated on good authority also that they were used as mirrors.

Mr. Holmes visited a number of mines in the vicinity of Spruce-tree and Bandana, Yancey County, and near Bakersville in Mitchell County. The most important workings in the first mentioned locality are known as the Sink Hole mines, near Bandana. Although these mines have been operated extensively in recent years, sufficient traces of the old work remain to convey a fair notion of the nature and extent of the prehistoric mining. There are two main groups of pittings, each approximately 1,000 feet in length and 20 to 60 feet in

Fig. 47.—Stone picks used in excavating and freeing the crystals of Mica.

width. The original depth in many cases was upwards of 40 feet, but recent operations of white miners have served to change their appearance, and to fill up the deeper excavations. The pittings are surrounded by a somewhat uneven ridge of detritus derived from the excavations, which has been added to in places by the modern miners, and has been dug into of late years to recover the mica rejected and thrown out by the aborigines.

An important site of the ancient operations now known as the Clarissa mine, three miles east of Bakersville, Mitchell County, was also visited. This is probably the best preserved and most striking of the aboriginal workings in this general region, and serves to illustrate the importance of the mica industry in prehistoric times. Entering a

low ridge at an oblique angle, the excavation reaches a depth of nearly 100 feet. The outer margin is buried beneath heavy bodies of ancient dump material which now supports numerous chestnut trees, the trunks of which are four or five feet in diameter. The modern operators of the mine who have worked the vein at the upper end to the depth of 300 feet have filled the old trenches deserted by the aborigines.

So far as could be determined, the implements used in excavating the decomposed schists and breaking up the vein material, thus freeing the mica crystals, were rude picks and hammers of stone, a few examples of which were found. Drawings of these are shown in figure 47.

Mr. Holmes extended his reconnoissance into South Carolina, where an ancient mound of large dimensions, situated twelve miles below Columbia on the Congaree River, was examined. A plan of the mound was made, and an examination of an ancient burial site on the edge of the mound yielded numerous relics of pottery and stone.

Near Waynesboro, Georgia, a number of ancient village sites and certain outcrops of flint, where the aborigines had obtained the material for their implements, were examined. Later, in the spring, Mr. Holmes visited St. Louis, Missouri, with the view of studying the very interesting collections owned in that city, and accompanied by Mr. Gerard Fowke spent a day at Mill Creek, Illinois, making collections on the ancient quarry and shop sites of that locality. He later extended his excursion to Davenport, Madison, Milwaukee, Chicago, and Columbus, for the purpose of making studies in the museums of those cities.

ANTHROPOLOGICAL EXPLORATION IN PERU

Dr. Aleš Hrdlička, of the National Museum, has made a second report concerning his field-work in Peru during the past year, in connection with the Panama-California Exposition at San Diego, for which a very important exhibit in physical anthropology is being prepared. The investigations extended over several hundred miles of the Peruvian coast and over hitherto unexplored regions in the western Cordilleras. The objects of this trip, which occupied the first four months of 1013, were to determine the anthropological relations

⁴ Anthropological Work in Peru in 1913, with Notes on the Pathology of the Ancient Peruvians. Smithsonian Misc. Coll., Vol. 61, No. 18, 1014.

of the ancient Peruvians of the mountains with those of the coast, and to extend the investigations which Dr. Hrdlička has carried on for many years, regarding Indian and especially pre-Columbian pathology.

The expedition was a very strenuous one, but proved remarkably successful. Over 100 ancient cemeteries and many ruins, a large

Fig. 48.—The picturesque town of Huarochiri, in the western Cordillera of central Peru. Photograph by Hrdlička.

percentage of which were previously unknown to science, were examined and over 30 boxes of skulls and other material for future study were collected for the U. S. National Museum and the Museum at San Diego.

Dr. Hrdlička reports that skeletal material, which formerly abounded in Peru and is essential to scientific research, is fast disappearing, and in a few years can not be gathered without the expenditure of much time and money.

The results of the expedition will prove of unusual value to anthropology. While some of the links in the chain of evidence are still missing, it can now be said with certainty that the Peruvian coast from Chiclayo, in the north, to Yauca, in the south—a distance of over 600 miles—was peopled predominantly before the advent of the whites by one and the same physical type of Indian. These Indians were of medium height, with short and broad skulls, and

Fig. 49.--The ruins of the Incaic Temple of the Sun, at Pachacamac, Peru. Photograph by Hrdlička.

moderately to strongly developed muscles according to the locality. The most important fact ascertained in this connection was that both the Chimu and Nascas, two of the foremost cultural groups of ancient Peru, were identical and, as regards physical characteristics, inseparable parts of this coast people.

According to their location, the people of old Peru were either fishermen or farmers. They seem to have been organized into numerous political groups, which developed smaller or greater cultural differences according to environment and other influences.

F16, 50—Ancient cemetery in Peru; a typical example of the waste of pottery and bones by the despoiling peons. Photograph by Hrdlička.

Fig. 51.—Cache, by the explorer, of ancient pottery left behind by vandals after despoliation of a cemetery south of Huacho, Peru.

Photograph by Hrdlička.

Some of their smaller dwellings were made of reeds, while larger structures were built of small uncut stones, sun-dried brick, or blocks of adobe. Their knowledge of weaving, pottery-making, and decoration was surprising. They wove from native cotton and llama wool, and their designs indicate changes brought about by time and other influences. The native dress consisted principally of a poncho shirt, a loin cloth, and sandals, with occasionally a simple head-gear.

The pre-Columbian Peruvians of the coast knew the uses of gold.

Fig. 52.—Indian hut and inhabitants, with a ruin-covered hill known at Llaxwa, in the rear, located in the Sierras, south-east of Nasca, Peru. Photograph by Hrdlička.

silver, and copper, and worked these metals to some extent, especially copper or "bronze" in the manufacture of weapons. Their common weapons were a metal or stone mace, a wooden club, a copper axe and knife, the sling, and in some regions the bow and arrow. Their implements were the whorl, weaving sticks, looms, cactus-spine or bone needle, bone needle-holders, sharpened sticks, copper knives and axes, hoes and fishing paraphernalia, including nets, sinkers, reed-bundle boats or balsas, and peculiar rafts which were paddled.

Throughout the whole territory along the coast the people deformed the heads of their infants by applying pressure to the forehead probably by means of pads and bandages, which process flattened the back of the head as well. They did not practice filing, cutting, or chipping the teeth, or other mutilations which would leave marks on the skeletons.

These natives seem to have been free from general bodily ailments before the advent of the white men; on the other hand they suffered from several peculiar local diseases affecting the hip-bone, the head, and the ear.

Fig. 53.—A party of vandals in an old cemetery on the railroad from Ancon to Huacho, Peru. Photograph by Hrdlička.

The people of the mountains possessed a good average development of the body and of the skull, and were even freer than the coast people from disease. Wounds were, however, common, and in some of the districts serious wounds of the head were frequently followed by the operation known as trepaning, and although this was often crudely done, it was successful in many cases. This practice was probably carried on even after the coming of the Spaniards.

The results of the expedition failed to strengthen the theories of any great antiquity of man in Peru, tending rather to prove the contrary. Aside from the cemeteries or burial caves of the common coast or mountain people, and their archeological remains, there was no sign of human occupation of these regions. Not a trace suggesting anything older than the well-represented pre-Columbian Indian was found anywhere; and neither the coast nor the mountain population, so far as studied, can be regarded as very ancient in the regions they inhabited. No signs indicated that any group occupied any of the sites for even as long as 20 centuries; nor does it seem that any of these people developed their culture, except in some particulars, in these places.

ARCHEOLOGICAL EXPLORATIONS IN WESTERN NEW MEXICO Mr. F. W. Hodge, ethnologist-in-charge of the Bureau of American Ethnology, in the early autum of 1913 made a reconnoissance of

Fig. 54.—Character of masonry shown in one of the house-groups of the compound. Note the failure of the builders to "break" the joints and the consequent weakening of an otherwise excellent wall. The face of the stones is pecked to smoothness and all the stones are artificially squared. Photograph by Nusbaum.

a group of ruins on a mesa rising from the southwestern margin of the Cebollita valley, about 20 miles south of Grant, Valencia County, New Mexico, and only a few yards from the great lava flow that has spread over the valley to the westward for many miles. While no very definite information regarding the origin of this ruined pueblo

Fig. 55.—Stone outer wall of a defensive structure near the mesa rim. This wall is about 132 feet long in the clear, and is pierced only by small loopholes. Photograph by Nusbaum.

Fig. 56.—Skeleton, with burial accompaniments, found in a small cist. Photograph by Nusbaum.

Fig. 57.—View southward across Cebollita valley. New Mexico. The lower mesa across the valley is that on the summit of which are situated the chief ruins described. Photograph by Nusbaum.

Fig. 58.—Smaller reservoir, probably chiefly a natural depression, in the rocky floor of the mesa-top; looking southward. Photograph by Nusbaum.

has yet been obtained, there is reason to suppose that it was occupied by ancestors of the Tanyi, or Calabash, clan of the Acoma tribe, and is possibly the one known to them as Kowina.

These ruins consist of a number of house-groups forming a compound, built on an almost impregnable height, and designed for de-

Fig. 59.—Small cliff-house on the northern side of Cebollita valley. Photograph by Xusbaum

fence; not only the groups but the individual houses have the form of fortifications, while the vulnerable point of the mesa rim is protected by means of a rude breastwork of stones.

The outer wall, which protects the whole mesa, is built of exceptionally fine masonry, probably the finest work to be found in ancient

pueblo ruins of the Southwest. The building stones have been dressed to shape, matched for size, and their faces finished by pecking, with such labor as to confirm the belief that this ancient village was designed for permanent occupancy. Altogether the work proves of great interest, and it is suprising to note the one failing, on the part of these early builders: they seem to have been unaware of the necessity of breaking the vertical joints in the courses of masonry, thus causing many weak points in the otherwise excellent walls.

Among the special features of interest which Mr. Hodge discovered were a burial cist where skeletons, pottery, and the remains of a mat were found; three small cliff lodges situated in the sides of the cliffs; several ceremonial rooms or kivas associated with the ruined houses, and the remains of the early reservoirs of the inhabitants.

A full report on the exploration of this interesting pueblo will be made by Mr. Hodge in a later publication.

ANTIQUITIES OF THE WEST INDIES

Dr. J. Walter Fewkes, ethnologist in the Bureau of American Ethnology, spent January, February, March, and part of April, 1913, in the West Indies, studying the prehistoric antiquities of the Lesser Antilles, and gathering material for a proposed monograph on the aborigines of these islands. He examined numerous local collections, and visited many village sites, prehistoric mounds, shellheaps, and bowlders bearing incised pictographs.

The most extensive excavations during these months were made at Erin Bay, Trinidad, in a shellheap of considerable size, where he found a valuable collection of animal heads made of terra cotta and stone, and other objects illustrating the early culture of that island. From Trinidad he went to Barbados, where he found evidences of the former existence of cave people living in a shell age or one in which stone was replaced by shell. Excavations were later made at a village site of the Black Caribs at Banana Bay, Balliceaux, a small island near St. Vincent, and a small collection was gathered from it.

He obtained many drawings of specimens in a rich collection from St. Kitts and Nevis, owned by Mr. Connell, and examined the shell-heaps at Salt River, Christianstadt, St. Croix, and at Indian River, Barbados. The collection of prehistoric objects obtained from St. Croix, Danish West Indies, was ample to prove that the early culture of the inhabitants of this island was more closely related to the culture

of Porto Rico than to that of St. Vincent. The material obtained in this field-work will be embodied in a report which Dr. Fewkes has in preparation on the magnificent collection of West Indian prehistoric objects owned by George G. Heye, Esq., of New York. The exploration was done in coöperation with the Heye Museum.

Field-work in the West Indian islands was supplemented by a visit to those museums in Europe where extensive Antillean collections exist. Angust, September, and October were devoted to studying prehistoric West Indian objects in Berlin, Bremen, Copenhagen, Vienna, and Leipzig. While in the first mentioned city he employed Mr. W. von den Steinen to make drawings of the originals of the Guesde Collection and many other objects from Hayti, Porto Rico, and the Lesser Antilles.

In the Bremen Museum a stone collar was found to have its knob modified into a reptilean head, an unique feature that would seem to shed light on the meaning of these objects. The Museum at Copenhagen has a rare ceremonial celt connecting petaloid stone axes with stone heads.

These field-studies and examinations of museum specimens have led Dr. Fewkes to the conclusion that in prehistoric times there existed in the Antilles a race of sedentary people having a form of culture extending from Trinidad to Porto Rico. This culture differed in minor details, in the various islands, as the style of stone implements, pottery, and other objects of material culture in all these islands shows. It was preceded by a life in caves which survived in western Cuba and the western peninsula of Hayti down to the time of the discovery by Columbus. The Caribs, who came comparatively late, brought a different culture that overlaid and, in a measure, absorbed the preceding culture in the Lesser Antilles. In other words, evidences were found of at least three distinct types of culture in the Lesser Antilles: cave, agricultural, and Carib. The second or agricultural type was found to have the subdivisions localized in the following groups of islands: Cuba, Santo Domingo, and Porto Rico; St. Kitts, including Nevis; the volcanic chain of islands from Guadeloupe to Grenada; Barbados; and Trinidad.

As with all other sciences, the highest form of research in culture history is comparative. It is universally conceded that the race inhabiting the New World, when discovered, had not advanced in autochthonous development beyond the neolithic age, whereas in Asia, Europe, and Africa a neolithic age was supplemented by one in which metals had replaced stone for implements. In the Old World

this polished stone epoch had been preceded by a paleolithic stone age not represented, so far as is known, in America. The ethnology and archeology of our Indians therefore form only a chapter, and that a brief one, or a segment of a much more extended racial evolution, as illustrated in Asia, Europe, and Africa.

It is profitable to compare the neolithic stone ages in the New World and the Old in order to appreciate rightly the position of the American Indian in the advance of human history, and his relation to the dawn of human history.

In order to carry on comparative studies of the stone age of aboriginal America and the corresponding age in the Old World, Dr. Fewkes spent six months in field and museum work in Europe and Africa. He visited the prehistoric mounds, dolmens, and megalithic monuments at Stendal and Stöckheim in Altmark, a short distance from Berlin, and examined the finely installed collections from these localities in local museums. He also visited the island of Rügen, in the North Sea, where there are many prehistoric mounds, Huns' graves, workshops, and megalithic and other remains of the neolithic inhabitants. The many antiquities from this island in the museum at Stralsund furnished considerable data for a comparative study of artifacts from this part of Europe with similar objects from North America.

Dr. Fewkes believes that the time is past when the great ruins in our Southwest should be left to destruction by the elements, after smaller objects have been extracted from them. In order to protect these ruins he has inaugurated, under the direction of the Smithsonian Institution, at Casa Grande, Spruce-tree House, and Cliff Palace, a scientific method of excavation and repair. In order to improve his methods by becoming better acquainted with excavation and repair work adopted by the ablest European archeologists, he visited Egypt, Greece, and Italy (Pompeii).

He found in some cases that whereas repair work in the Old World is often neglected and cannot be called very scientific, and some of the excavated ruins have been left in very bad condition for future students, the majority are being carefully protected after excavation, in a manner well worth study by those who aspire to the most advanced standards.

The best archeological repair work in Egypt may be seen on the Temple of Amen Ra at Karnak, and the mortuary temples, the Ramesseum, Medinet-Habu, and the Seteum, from which were obtained valuable suggestions. The admirable repair of the hypo-style

hall of the Temple of Amen Ra, by M. Le Grain, is the most important ever attempted on an ancient building.

Part of his time in Egypt was devoted to comparative problems, and he was also able to give some attention, all too limited, to evidences of convergence and parallelism in the neolithic or predynastic culture of the Nile Valley with that of the Gila. He investigated more especially remarkable lines of similarity in artificial methods of water supply, in both regions, and the influence of coöperation of predynastic villages in building great irrigation canals, on the development of a higher social organization. He had always in mind the collection of material bearing on interrelationship of climatic conditions and early culture in the Nile Valley.

AMONG THE EAST CHEROKEE INDIANS OF NORTH CAROLINA

Mr. James Mooney, ethnologist in the Bureau of American Ethnology, spent the summer of 1913, June 18 to October 4, inclusive, with the East Cherokee Indians in the mountains of western North Carolina, among whom he had made his first field studies in 1887. These Indians, numbering some 1,000, live upon a small reservation in Swain and Jackson Counties with several outlying settlements farther to the west. They are a part of the historic Cherokee Nation formerly holding the whole mountain region of the southern Alleghenies until removed by military force in 1838 to the Indian Territory, where they now number about 30,000 of pure or mixed blood. Those in North Carolina are the descendants of some hundreds who made their escape from the troops and were finally, through the good offices of their friend, Col. Wm. 11. Thomas, allowed to remain and settle upon lands purchased for them with their share of the fund originally appropriated for their removal to the west. There are still living among them several who remember the removal.

Constituting from the beginning the most conservative and pureblooded element of the tribe, protected by their mountain barriers from outside influences and never having been subjected to the shock of forced removal to a distant and strange environment, these East Cherokees remain to-day the conservators of the ancient traditions, and exemplars of the aboriginal life once common in varying degree to all the tribes of the Gulf States. Until 1881, when the first school was established, they continued virtually unchanged. Since then, schools, railroads, and lumber industries have made rapid advance, which, with the passing of the older generation, must before many years bring to a close the Indian period. On this occasion, Mr. Mooney made headquarters in the largest and most conservative settlement, locally known as Raven Town or Big Cove, some 12 miles from the agency, over a very rough mountain road impassable for vehicles during a part of the year. Here, shut in by the highest peaks east of the Mississippi, some 500 Indians dwell in fairly comfortable two-room log cabins perched high up on

Fig. 60.—Cherokee potter; Katalsta, daughter of Yanagûski, "Drowning Bear," Head chief of the East Cherokee about 1838. Photograph by Mooney.

the slopes of the mountains, always near a convenient spring. They till their fields of corn and beans, which extend sometimes even up to the crest of the ridge—Some have oxen, and a few have horses, but the great majority cultivate their fields by hand, and travel always on foot.

While many are nominally Christians, and most of the younger people can speak English, they still, as a community, adhere to their ancient rites of the Green Corn dance, the "going to water" at every new moon, the fishing and hunting charms, the medicine man, and the native ball game. Many of the women are expert in basket making, in a variety of patterns, but the pottery art, which flourished a few years ago, is now virtually extinct. The blow-gun, formerly used for shooting small game, is now almost a thing of the past, together with the head turban and the moccasin.

Although the outer life and semblance are thus altered, the possession of a native alphabet or syllabary, invented by a mixed blood of the tribe nearly a century ago, has enabled their priests and doctors to preserve their ancient ritual prayers and formulas without change and apparently almost without diminution from the remote past. By good fortune some twenty-five years ago Mr. Mooney was enabled to obtain some hundreds of these Cherokee manuscript formulas, the secret possession of their leading priests. Many others have been obtained on later visits, in addition to much miscellaneous ethnologic material, until the collection now numbers approximately 600 formulas, perhaps the equivalent of as many printed quarto pages, covering every occasion of Indian life, war, love, hunting, fishing, agriculture, medicine, games and ceremonials. This collection of aboriginal American literature is unique and without parallel. As a revelation of primitive psychology it is invaluable. The antiquity of the formulas is sufficiently indicated by the abundance of archaic forms and references, many of which cannot now be explained even by the priests, who simply say, "This is the way it was given to us." Many of these formulas are highly poetic.

The explanation of those originally obtained, almost one-half the whole collection, was procured from the principal recognized priests of that time, all of whom are now dead. At the same time, all the words of the formulas were glossarized, and all the plants mentioned in the medical prescriptions collected, and labeled with their Indian names, and later identified botanically by experts of the Smithsonian Institution. Other formulas have been translated and explained during subsequent visits. During the last summer the number was considerably enlarged by the best known teachers. All those then untranslated were translated and glossarized, and the additional plants named therein collected. The whole body was then revised from the beginning, so that nearly every formula has now had the interpretation of at least three recognized authorities. There is still a paucity in certain classes as compared with others, notably in the formulas relating to war and to the ball play, as compared with those relating

to medicine and love. This deficiency may be supplied by future gatherings, but for the formulas already translated, it may be confidently affirmed that no important additional light is now procurable.

While the formulas constitute the largest body of aboriginal American literature extant, the plant collection constitutes probably the largest ethno-botanic collection from any one tribe, comprising some 700 species with Cherokee names and uses, nearly all of which have been scientifically identified by expert botanists. This collection represents the combined plant knowledge of the principal doctors in the tribe.

Opportunity was also afforded for special studies and observations, particularly of the ceremonial "going to water," and augury with the beads to forecast the health prospect and life-span of each member of the family, before partaking of the first corn of the new crop.

CEREMONIAL DANCES OF THE CREEKS IN OKLAHOMA In July and August, Dr. John R. Swanton of the Bureau of Ethnology visited the territory of the old Creek Nation in Oklahoma,

Fig. 61.—The "Feather" dance, Fish Pond square ground. Photograph by Swanton.

to attend several of the ceremonial dances or busks about which he had collected much information in previous years. He witnessed four of these ceremonials; that of the Eufaula Creeks near Eufaula, McIntosh County, those of the Hilibi and Fish Pond Creeks near Hanna, in Hughes County, and that of the Tukaba'tci near Yeager. Notes were taken on all of them and a number of photographs were obtained of the first three. Considerable supplementary information

Fig. 62.—The women's dance, Fish Pond square ground.

Photograph by Swanton.

Fig. 63.—"Feather" dance, Hilibi square ground. Photograph by Swanton.

was secured from the older men regarding the busk ceremonial and other ancient usages.

When the ceremonies were over Dr. Swanton visited the Indians in Seminole County, who still speak Hitchiti, a language formerly current throughout southern Georgia, and recorded several texts. He also secured the coöperation of a Hitchiti Indian, able to write in the missionary alphabet, to obtain other texts after his departure.

CEREMONIES AND RITUALS OF THE OSAGE

During the year 1913, Mr. Francis LaFlesche of the Bureau of American Ethnology secured the songs and rituals of five different Osage ceremonies. Two of these are practically complete; the others are fragmentary, but enough information was obtained to give a fair idea as to their significance. These rites are: Wa-dó-ka We-ko, Scalp Ceremony; Wa-zhiń-ga-o, Bird Ceremony for boys; Wa-wa-thon, Peace Ceremony; Zhin-gá-zhin-ga Zha-zhe Tha-dse, Naming of a Child; and We-xthe-xthe, Tattooing Ceremony.

Owing to the superstitious hold these rites still have upon the people, together with the fact that every initiated person obtained his knowledge at a great expense, it was almost impossible to procure complete texts of any of the ceremonies.

The Tattooing Ceremony is of peculiar interest. It was more difficult to secure information concerning it than of any other ceremony. In earlier times only the warrior who had won war honors was entitled to have the ceremony performed and have the war symbols tattooed upon his body. If his means permitted it, they might also be placed upon any number of his relatives. These war symbols were his marks of distinction as a man of valor, for the strength and life of the tribe depended upon the prowess of the warriors. In those days there were but few who were entitled to have the ceremony performed, because war honors were not easily won and few were wealthy enough to afford the expense of the ceremonies. When, during the last century, wars between the various tribes ceased, the real significance of the rite vanished, but the superstitious belief that the symbolic figures meant long life to the individual so tattooed, remained prominently in the minds of the people.

About the time that the right of the honored warrior to the exclusive use of the Tattooing Ceremonies came to an end, a new condition arose which materially changed the character of the rite. From the sales of lands to the United States the Osage tribe acquired a wealth by which a greater number of its members were enabled to

have performed the tattooing, as well as other ceremonies. It was then that this ancient rite became the means by which any individual could publicly display his affection toward a relative.

Fig 64.—An Osage Indian with tattooing.

Figure 64 shows designs tattooed upon the body of a man. Those on a woman are more elaborate and cover the upper part of her body, breast and back, and the lower part of her legs. Figure 65 shows

three implements used in tattooing. Each of these is made of wood about the length of a pencil. To the lower end are attached needles arranged in a straight row, and to the upper end are fastened four small rattles made of the large wing quills of the pelican. This

Fig. 65.—Three implements used in Osage tattooing. Photograph by DeLancey Gill.

bird is referred to in one of the dream rituals as, Mon-thin-the-donts'a-ge, He-who-becomes-very-old-while-yet-going. In certain passages of the ritual it is intimated that these implements were originally made of the wing bone of this bird and were used for doctoring as well as for tattooing. The coloring matter employed in tattooing is made of charcoal mixed with kettle black and water. The charcoal is made from certain trees that serve as symbols of long life in the war ceremonies. Tail feathers of the pileated woodpecker are used for putting on the ink and drawing the lines.

On November 17, 1910, Wa-cé-ton-zhin-ga, one of the prominent men of the Pa-ci-n-gthin band (Hill-top Dwellers) died. It was learned that he had a Wa-xó-be-ton-ga, a Great Wa-xó-be. This is a white pelican, the bird which is supposed to have revealed, through a dream, the mysteries of tattooing and to have supplied the implements. On February 16, 1911, Wa-cé-ton-zhin-ga's widow after much persuasion reluctantly consented to part with this sacred object (the Great Wa-xó-be), together with its buffalo hair and rush mat cases. It was thus secured by the writer, and now has a place in the United States National Museum.

A STUDY OF SIOUX MUSIC

The field-work of Miss Frances Densmore during the season of 1913 was concentrated on the southern portion of the Standing Rock

Fig. 66.—Indians dancing the Grass Dance at Bull Head. Photograph by Miss Densmore.

reservation, which lies in the State of South Dakota. Many acquaintances had been made on a previous visit to the locality, and the earlier knowledge gained of the Indians opened the way for intensive work along the lines which had been selected, *i. c.*, songs of war, songs connected with the use of medicinal herbs, and songs of tribal social organizations. As in previous years, the songs were recorded phonographically, about 130 songs being secured in this manner for the Bureau of American Ethnology.

In connection with this work Miss Densmore collected about 120 specimens, illustrating the old arts and industries as well as the customs of war and the practice of medicine. Twenty herbs said to have medicinal properties were secured from medicine men who use them in treating the sick. These herbs were identified at the Department of Agriculture in Washington, and a number of them were found to be in use among physicians of the white race.

Fig. 67.—Indian equipment for boiling meat without a kettle. Photograph by Miss Densmore.

During the celebration of July Fourth, at Bull Head, many old dances were given. Figure 66 shows the Indians at this celebration of the Grass Dance. A demonstration of the manner of boiling meat without a kettle was also given, Miss Densmore witnessing the process and afterward purchasing the entire equipment, shown in figure 67. This was of interest in connection with the subjects under investigation, as it was a method used in old times by Indians on the war path or buffalo hunt. The paunch of a freshly killed animal was suspended between three stakes, water was placed in it, and brought to the boiling point by means of heated stones. Meat was

thoroughly cooked in this manner. A portion of the meat thus prepared was secured in connection with the apparatus.

Many of the war songs were illustrated by native drawings. Figure 68 shows a man known as Jaw, an old warrior with a wide reputation

Fig. 68.—Jaw, an old Sionx warrior, whose horse-stealing expeditions are illustrated by his own drawings in the background. Photograph by Miss Densmore.

for stealing horses. Behind him is one of his drawings depicting such an expedition.

A medicine man with his drum is shown in figure 69. This man was named White Paw Bear, and proved a valuable informant to Miss

Densmore. He was a close friend of the famous chieftain Sitting Bull.

Fig. 60. White Paw Bear, a medicine man with his drum. Photograph by Miss Densmore.

Miss Densmore attended a large feast given in her honor by Red Fox, the Sioux chief who adopted her two years previously in place of his daughter. This adoption was ratified later by the tribe.

STRANGE RITES OF THE TEWA INDIANS

Mrs. M. C. Stevenson continued her comparative study among the Tewa Indians of the Rio Grande valley, in behalf of the Bureau of American Ethnology. A close relationship was found to exist among all the Pueblo Indians, especially in their essential beliefs, resulting in a great brotherhood between them. Living in an arid land the cry of their souls was and is—"rains to water the earth."

Primitive man sought to define the mysteries of Nature, to account for its phenomena; thus primitive philosophy was born, and then re-

Fig. 70.—Plaza and kiva of the Sun people, San Ildefonso. X denotes the entrance to the kiva. Photograph by Mrs. Stevenson.

ligion and ritualism crept in. The Pueblo Indian began at an early period to create a pantheon of gods of his worship, gods to be appealed to for the good things of life, and angry gods to be propitiated, and thus, long ago, a most complicated system of religion and rituals developed among such peoples of the Southwest as had homes constructed of stone, clay, and plaster.

The more clever men of the past ages differentiated their gods into two classes, anthropic, principally ancestral, and zooic, and these men assumed to dominate the remainder of the people by asserting their direct communication with the gods. Through their power and influence with these gods they were next in importance to the gods themselves. Their doctrines taught that: The gods who bring good are exacting, and man must comply with the demands of his gods in order that the godly blessings may be bestowed upon him. He must not only perform the religious duties assigned him, but observe proper intelligence in the performance of these rites. "In the far past Avä"nyu, the great plumed serpent, whose home is in the depths of the lake of the departed, determined to take a journey over the upper plane so that he could look below and observe the people of this world.

Fig. 71.—Circular kiva at Pueblo of Nambe, New Mexico. Photograph by Vroman.

Upon viewing a certain village on the summit of a mesa not many miles from the present pueblo of San Ildefonso on the Rio Grande, he discovered that though the people were devout, their rituals were all wrong and as a punishment for their ignorance he converted them into si'de (small bird), Mexican pajarito, and had them fly away. Since that time the deserted village has been called Si'de ge, small bird place. These ruins are known to the outside world as the Pajarito ruins.

Religion and ritual kept pace with the development of man. The peoples more remote from the long-continued influence of Roman Catholic priests, retain more of their elaborate rituals and native paraphernalia than those who have been under the control of the Church.

Fig. 72.—Rain priest of Sun people of Nambe. Photograph by Mrs. Stevenson.

Priesthoods and fraternities were organized, and chambers were built in which to invoke and propitiate the gods. These chambers were circular and built under ground, symbolizing the innermost world whence the people came. As the people ascended from these chambers, they symbolized their emergence from the innermost world

Ftg. 73.—Juan Gonzales, associate rain priest, and present governor of San Ildefonso. Photograph by Mrs. Stevenson.

into this world; and, although most of the kivas, or Hopi ceremonial chambers, at the present time, are above ground or partially so, they

still represent the undermost world, the coming out still symbolizing the emergence from the undermost world, and the kiva the undermost world itself. The kiva is a prominent feature of the archeological remains of the Southwest, there is seldom a mesa, cliff, or cavate ruin where these ceremonial chambers are not to be found. They are the substantial evidence of the worship of the cliff dwellers. The underground structures have undergone changes since the oppression of the invading Spaniard. In the Tewa village of San Ildefonso, for example, the under-ground circular kiva was abandoned after the first departure of the Spanish invaders; in fact, there is not a pre-Spanish building in the village. The ruins of the old village are barely distin-

Fig. 74.—Zuñi personators of the rain gods. Photograph by Mrs. Stevenson.

guishable in the fields, while the present village stands a short distance to the north. The first kiva constructed by these people after the coming of the Spaniards was round and built principally above ground, but before another kiva was constructed the people decided to build these chambers in rectangular form and in line with their dwellings, so that they would not be distinguished by the Spanish enemy. Many other pueblos adopted the plan of the rectangular kiva situated among the dwelling houses.

The Tewa are divided into the Sun and Ice peoples, therefore there are two kivas, one for each people. Every male child must be initiated into one of the kivas in order to be eligible to dance with the gods after death in the undermost world. The female child is passed

78

through impressive ceremonies by a priest of the kiva, just after birth, and is carried into the presence of the rising sun on the twelfth day. As the tiny infant is held up facing the sun the following prayer is offered to the Sun father: "May the child grow to womanhood; may she speak with one tongue, be gentle and kind to all, and may all be gentle and kind to her. May her life be so full of love for all the world, and may her acts be so pure that she may be blessed with the love of the Sun father, so that her span of life may be complete, that she may not die, but live long, and become a child again,

Fig. 75.—Learning to photograph. A fine likeness of the rain priest of the lee People. The woman at the tub is his mother. Photograph by Mrs. Stevenson.

and so sleep, not die, to awake in the world with the gods. May she ever inhale more of the sacred breath of life."

In order that the rain priest may come into closer communion with the gods he must mortify the flesh. Semi-annually, at the winter and summer solstice, the rain priests of the Sun and Ice people retire, each with his associates, into the kivas for a retreat of four days and nights, to pray for rains, observing strict fasts, taking only meal-bread, and drinking popcorn water. Here it is that the rain gods are specially invoked. The rain priests do not pray with their lips—"hearts speak to hearts." While the priests practice deceptions upon the people and even delude themselves, when they leave their retreat,

it is evident from their expressions that their minds and bodies have been elevated above worldly thoughts.

Whence come the rains so devoutly prayed for? By direction of the Council of the Gods, the shadow people fill their vases and longnecked gourd jugs from the waters of the six regions, and, ascending to the upper plane, provided there are sufficient clouds to protect the rain makers from view of the people of this world, they proceed to water such portions of the earth as have been assigned to them by the Council. The Tewa priests have given such close observation to

Fig. 76.—Kiva of the Ice People, San Ildefonso. X shows upper entrance. Two trees are by the lower entrance. This kiva is headquarters for the buffalo ceremonial. Photograph by Mrs. Stevenson.

the winds and clouds that they are quite weatherwise, and seldom select a time for a rain dance, when rains do not follow.

Zooic worship has to do with the healing of the sick, the beast gods acting as mediators between man and the anthropic gods. The most shocking ceremony associated with the zooic worship of the Tewa is the propitiation of the rattlesnake with human sacrifice to prevent further destruction from the venomous bites of the reptile. The greatest secrecy is observed and the ceremonies are performed without the knowledge of the people except those directly associated with the rite which is performed quadrennially. Although many legends of the various Pueblos have pointed indirectly to human sacrifice in

the past, it was a revelation to Mrs. Stevenson when she was informed that this rite was observed by the Tewa at the present time; and, while it is said to exist only in two of the villages, she has reason to believe that they are not exceptions. In one village the subject is said to be the youngest female infant; in the other village an adult woman is reported to be sacrificed, a woman without husband or children being selected whenever possible. The sacrificial ceremonies occur in the kiva. The subjects are drugged with *Datura meteloides* until life is supposed to be extinct. At the proper time the body is placed upon a sand painting on the floor before the table altar and the ceremony proceeds amid incantations and strange performances.

Fig. 77.—Lucindra Jackson, Yonkalla tribe, Kalapuya family. Photograph from Frachtenberg.

The infant is nude, and the woman is but scantily clad. After the flesh has decomposed and nothing but the bones remain the skeleton is deposited, with offerings, beneath the floor of an adjoining room of the kiva. The entire ceremony is performed with the greatest solemnity.

NOTES ON THE ALSEA AND KALAPUYAN INDIANS

The opening of the year found Dr. Leo J. Frachtenberg in Siletz, Oregon, completing the linguistic and ethnological studies that were commenced in 1910 among the Alsea Indians. In addition to im-

Fig. 70.—William Smith, an Alsea Indian, about 65 years of age. Photograph from Frachtenberg.

Fig. 78.—Mary Harris, who died in 1910, the last of the Willapas. Photograph from Frachtenberg,

portant new linguistic material, he obtained a number of myths belonging chiefly to the Coyote cycle. This work was brought to a successful close towards the end of March.

In the early part of June he went to Bay Center, Washington, where he was told could be found, still extant, some members of the Willapa tribe, an important branch of the Pacific group of the

Fig. 80.- William Hartless, a Kalapuya Indian about 65 years of age. Photograph from Frachtenberg.

Athapascan family. Unfortunately, upon close investigation, these reported Willapas proved to belong to the Chehalis tribe of the Salish family, a circumstance that substantiated his previously expressed belief that the Willapa Indians are entirely extinct. Upon his return to Siletz, Oregon, Dr. Frachtenberg began work on the Kalapuyan family, collecting linguistic notes and mythological material until the middle of September, when the work had to be discontinued for lack of funds.

FIELD-WORK AMONG THE CATAWBA, FOX, SUTAIO, AND SAUK INDIANS

From a study of Sionan and Muskogean languages, it appeared that these stocks resemble each other morphologically as compared

Fig. 81.—The Brown Family, Catawba Indians. Photograph by Michelson.

Fig. 82.—Catawba Children, Photograph by Michelson.

with other American Indian languages. It therefore became a matter of importance that Catawba, a Siouan language of the Southeast, should be investigated to determine how close these resemblances were, and whether it was possible that both stocks were derived from a common ancestor, but had differentiated at an early date. Accordingly, Dr. Truman Michelson of the Bureau of Ethnology left for South Carolina in May, 1913. Unfortunately, though a goodly number of individual words were collected, it was found that barely half a dozen persons were left who could give simple connected phrases, and only one or two who could give connected

Fig. 83.—An old Cheyenne who remembers a little of the Sutaio language. Photograph by Michelson.

texts, but upon examination it was found that even the few texts which Dr. Michelson collected were extremely fragmentary. Under these conditions it is likely that it will not be possible to unravel the structure of the language in detail, and hence the problems presented above remain unsolved.

In July, Dr. Michelson arrived in Tama, Iowa, to renew his researches among the Fox Indians. After making arrangements for

future work in August, he left for Montana to ascertain whether the Sutaio were a missing link connecting the Cheyenne with the normal Algonquian. The number of persons who remembered anything of the language were few, and none who could dictate connected texts were found. However, it seems clear from the individual words collected, that Sutaio will not shed any light on Cheyenne.

Fig. 84.— David A. Harris, Chief of the Catawba Tribe.—Photograph by Michelson.

Upon his return to lowa at the end of the month, he renewed his work with the Fox Indians. He was particularly successful in working out their social organization. A few more important myths were collected, and a number of those collected previously were translated. During his stay among the Foxes he also secured a number of ethnological specimens for the National Museum.

In October, Dr. Michelson left for Kansas to investigate the Sauk and Fox of the Missouri and adjacent tribes. A preliminary survey was all that was attempted owing to the inclemency of the weather. Some myths, obtained among the Foxes of Iowa, were also translated, and the investigator returned to Washington for office work.

Fig. 85.- A Catawba hearth with pottery. Photograph by Michelson.

EXPEDITION OF THE ASTROPHYSICAL OBSERVATORY

Mr. L. B. Aldrich proceeded to Mount Wilson in July, 1913, for the purpose of measuring the solar radiation. He was joined there at the end of August by Director Abbot. Several kinds of work were undertaken; first, the usual spectro-bolometric determination of the solar constant of radiation. This work has now been carried on during every summer at Mount Wilson from 1905 to 1913 inclusive, excepting the year 1907. It has resulted in showing an irregular variability of the sun from day to day, and a dependence of the sun's radiation on the number of sun-spots. It has also yielded a value of the solar constant of radiation believed to be correct within one per cent. Since there have been criticisms of the value, however, on the ground that it is impossible to correctly estimate the losses of radiation in the earth's atmosphere, it was felt desirable to check the result by sending up self-registering apparatus attached to free balloons to the highest possible altitudes.

This work was undertaken by Mr. Aldrich in July in coöperation with the United States Weather Bureau. Balloons were sent up on five days from Santa Catalina Island, carrying in each instance a self-registering pyrheliometer devised and tested at the Smithsonian Astrophysical Observatory, and a self-registering apparatus of the Weather Bureau, which records the temperature, pressure, and humidity of the atmosphere.

All the balloons carrying pyrheliometers were fortunately recovered, and in one instance the flight reached the altitude of about 33,000 meters, or 108,000 feet. The registering pyrheliometers behaved very well with the exception that their temperature sunk lower than was expected, so that in each case the mercury in the stem of the

Fig. 86.—Observing station of Astrophysical Observatory on Mount Wilson with new tower telescope. Photograph by Abbott.

thermometers was frozen at an altitude of from 40 to 50 thousand feet, and therefore their records did not extend as high as the flights of the balloons. Nevertheless these measurements are obtained at altitudes above the highest clouds, and where the water-vapor and dust of the atmosphere is almost inappreciable. The results reached do not differ from what would be expected in view of the value of

the intensity of the solar radiation outside the atmosphere, as computed from the ordinary measurements of the Astrophysical Observatory. It is expected that the observations will be repeated with improved apparatus in the year 1914.

After the arrival of Mr. Abbot, the new tower telescope was completed and prepared for observations of the distribution of brightness over the sun's disk. A solar image of about 9 inches in diameter is formed in this telescope by the use of mirrors, without lenses. The distribution of brightness along the diameter of the disk is observed at different colors of light by means of the spectro-bolometer. It is found that the sun is much brighter at the center of the disk than

Fig. 87.—Diagram showing Brightness Distribution along Sun's Diameter.

it is near the edge, and that this contrast of brightness is greater for red light than for violet light.

The distribution of brightness along the sun's disk was observed on nearly 50 days, in connection with measurements of the intensity of the solar radiation as it would be outside the atmosphere. The results show in 1913, as in former years, a variability of the solar radiation from day to day. Mong with this variability of the amount of the radiation, there is also shown a variability of the distribution of the brightness along the diameter of the sun's disk. This result is very interesting and important, for it enables the variability of the sun to be observed in two independent ways at the same observatory.

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 9

THE OLFACTORY SENSE OF INSECTS

ΒY

N. E. McINDOO, Ph. D., Bureau of Entomology, Washington, D. C.

(Publication 2315)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
NOVEMBER 21, 1914

The Lord Galtimore (Press BALTIMORE, MD., U. S. A.

THE OLFACTORY SENSE OF INSECTS

By N. E. McINDOO, Ph. D., BUREAU OF ENTOMOLOGY, WASHINGTON, D. C.

CONTENTS					
Introduction	I				
Sense of smell in general	2				
Spiracles as seat of olfactory organs	3				
Structure near spiracles as seat of olfactory organs	5				
Glands of head and thorax as seat of olfactory organs	6				
Œsophagus as seat of olfactory organs	6				
"Internal superior surface" as seat of olfactory organs	7				
Different parts as seat of olfactory organs	7				
Folded skin beneath antennæ as seat of olfactory organs	7				
Rhinarium as seat of olfactory organs					
Plate between eyes and beneath antennæ as seat of olfactory organs					
Mouth cavity as seat of olfactory organs	8				
Epipharynx as seat of olfactory organs	9				
Palpi as seat of olfactory organs	9				
Antennæ as seat of olfactory organs					
(1) Without experiments					
(2) With experiments	14				
Various structures on antennæ as olfactory organs					
Caudal styles ("abdominal antennæ") as seat of olfactory organs					
Organs on bases of wings and on legs as olfactory organs	36				
Olfactory organs on the appendages and sternum of spiders	40				
Summary of author's experiments	51				
Literature cited	=6				

INTRODUCTION

Since no one has ever collected the views of the various writers on the sense of smell in insects, the literature that bears directly on this subject is here briefly discussed for the use of students on this subject. Abstracts and translations of this literature have been made by the writer and his wife, Emma Pabst McIndoo, and the discussion is from these abstracts and translations. Minor details may have been incorrectly stated in some cases, but it is believed that each view as a whole is given correctly. The views of a few authors have been cited from others, because the original works were not accessible. After a short discussion of the sense of smell in general, the

names of the various writers and their views are grouped under heads according to the seat of the olfactory organs which these writers favor. A few writers fail to advocate any particular view but they criticize certain ones. Such writers are placed under the head which they criticize.

This discussion was originally written as the second part of the author's (1914a) paper on "The Olfactory Sense of the Honey Bee." On account of the great length of this paper it was necessary to omit the discussion. Since the first part of the paper was published a few more references have been collected and the author (1914b) has written a second paper on the same subject concerning the Hymenoptera. Several letters have also been received requesting that a complete discussion be published. Another reason for publishing this discussion is to reveal the chaos which now exists on this subject so that students may hereafter replace such chaos by facts.

The author is grateful in various ways to Dr. E. F. Phillips, in charge of bee culture investigations, and to Miss Mabel Colcord, librarian of the Bureau of Entomology, for invaluable aid in securing references.

SENSE OF SMELL IN GENERAL

Aristotle is the earliest author whose writings on the sense of smell in insects are available. He says:

As for insects, both winged and wingless, they can detect the presence of scented objects afar off, as for instance bees and enipes detect the presence of honey at a distance; and they do so recognizing it by smell. Many insects are killed by the odor of brimstone; ants, if the apertures to their dwellings be smeared with powdered origanum and brimstone, quit their nests; and most insects may be banished with burnt bart's horn, or by burning of gum styrax.

Virgil was a beckeeper as well as a poet. The ancients used roasted or burnt crabs in the treatment of certain bee diseases, but Virgil warned beekeepers that the odors arising from such materials are injurious to bees. He also reports that certain strongly scented plants were rubbed on the tree where a swarm of bees was collecting, so that these odors might prevent them from going farther.

Pliny states that the odors of origanum, of common lime, and of sulphur kill ants. Gnats hunt for acids and do not approach things which are sweet.

Varro (1735) infers that bees can distinguish odors, and that they are sensitive to perfumes which come from odoriferous objects; in this respect their preferences differ greatly.

Æliani (1744) asserts that bees smell anything with a foul odor or anything smeared with odors, and that they cannot tolerate an offensive smell, nor do they like sweet, delicious odors.

Rösel and Klemann (1747) remark that it is clearly understood that certain butterflies have a very acute sense of smell and that one sex certainly perceives the odor of the other from a distance.

Romanes (1877) is certain that moths smell, although they may detect the odor from ammonia through their whole system.

The Peckhams (1887) in their experiments on wasps used two essential oils—peppermint and wintergreen—maple syrup, and warm and cold chicken bones. They say:

We conclude from these experiments that wasps have a strong sense of smell, but that they pay little attention to odors, however powerful, which do not denote the presence of something which they can utilize as food.

From the foregoing it is evident that the belief in a sense of smell in insects is general and that some insects are able to distinguish between various odors. From the time of Aristotle to the present no one has ever denied that insects can smell, yet no one has ascertained the relative sensitiveness for any particular species.

SPIRACLES AS SEAT OF OLFACTORY ORGANS

Sulzer in 1761, according to Lubbock (1899), was the first to suggest that the spiracles are the seat of the olfactory organs. Later, however, he abandoned this view and adopted the antennal theory in 1776.

Dumeril (1797) asserts that all insects possess a more or less acute sense of smell. He was the first to advocate strongly the view that insects, like all other animals that live in the air, have their olfactory organ located at the entrance of the respiratory system. The air charged with odoriferous particles passes into the tracheæ through the spiracles and here these particles stimulate multitudes of nerves and thus the sensation of smell is produced. He thought that the tracheal walls consist of a membrane which is clothed with olfactory nerves, against which the odoriferous particles from foreign bodies strike. Later the same author (1823) remarks that the perception of odors is then, like all the other sensations, physical—a kind of touch in which the bodies, should that be their nature, impinge upon the olfactory nerves. Dubois (1890) held the same opinion, saying that the first excitation is a mechanical one, like that which occurs in the sensation of touch. Hermbstädt (1811) asserts the opinion

now generally prevalent, that taste and smell are chemical senses, while sight, hearing and touch are purely mechanical.

Baster (1798), cited from Perris (1850), believes that olfactory stimuli are received by the tracheæ, either at their apertures or throughout their whole extent.

Lehmann (1799), according to Lacordaire (1838), was the first who actually performed experiments to determine the location of the olfactory apparatus. He made a round aperture, surrounded by wax, in a glass bottle, in the center of which was a paper diaphragm. The antennæ or entire head of an insect was then inserted into this aperture. He next introduced into the bottle strongly odoriferous substances, such as burnt feathers, burning sulphur, etc. None of the insects subjected to this test reacted, but when the same substances were placed near the remaining part of the insect, the specimen made violent movements which showed the effect these substances had upon it. He concluded, therefore, that the head is not the seat of olfaction and that it must lie in the tracheæ near their external openings. As the antennæ are covered with hard chitin, while the tracheal walls are clothed with very thin, chitinous membranes, critics contend that such strong irritating odors mechanically irritate the tracheæ and that these odors cannot so affect the antennæ on account of the hard chitin.

Cuvier (1805) thinks that since all other air-breathing animals have the organs of smell located at the entrance of the respiratory organs, we should find it at the entrance of the tracheæ in insects, as Baster suggested. He added that the internal membrane of the tracheæ, being moist, appears properly to fulfill this office, and that in the insects in which the tracheæ form numerous vesicles these tracheæ appear to be excellently suited for the seat of smell. The antennæ do not seem to fulfill any of these required conditions.

Straus-Durckheim (1828) believed that the seat of olfaction is located at the entrance of the tracheæ because he discovered, in the environs of the spiracles, nerves which are large enough to belong to a special sense organ.

Lacordaire (1838), after discussing the experiments of Huber and Lehmann, says that from all the preceding we can conclude that we know nothing positive about the seat of smell and that the hypothesis which locates it in the respiratory organs is yet the most rational of all.

Brullé (1840), after briefly discussing the sense of smell in articulate animals, remarks that the organ of smell is not known in these

animals, unless it is to be assigned to the apertures of the respiratory organs.

Of the foregoing six authors who advocate the theory that the spiracles are the seat of olfaction, Lehmann is the only one who experimented on the subject. The others seem to think that an analogy with higher animals is sufficient proof. Lehmann's experiments indicate that the seat of smell is not located in the head and assumes that the tracheæ are the only other place in which these organs could be located. No one has found any nerves or any kind of sense organ, which suggest an olfactory function, in the walls of the tracheæ or in the spiracles of the bee. This theory has been long since abandoned.

STRUCTURE NEAR SPIRACLES AS SEAT OF OLFACTORY ORGANS

Joseph (1877) postulated three conditions necessary for an olfactory apparatus: (1) It must come in contact with moving air; (2) it must be continually moistened, and (3) the olfactory substance must be in the form of a gas. If one of these three conditions is lacking, olfaction is impossible. According to these conditions no one has sought the seat of smell in any place other than at the entrance of the tracheæ, and the assumption that insects smell with their antennæ or buccal organs is completely inadmissible. In spite of the fact that their autennæ had been removed and in spite of their clumsv flying, a number of Necrophorus vespillo (carrion beetles) found a carcass wrapped in paper at a distance of 20 feet. The same result was obtained with the flesh-fly (Musca) Sarcophaga carnaria and with other insects. A short distance from the spiracles, toward the median line of the thorax and abdomen, he reports finding a peculiar structure which he called the "regio olfactoria." This olfactory region is completely covered by a delicate membrane perforated by pores, the largest of which are for gland exits and the smallest for hairs. Beneath this membrane lies a peculiar layer of cells.

Thus, not favoring the view that the spiracles are the seat of smell, and in order to comply with the above three conditions, Joseph assumed the existence of an organ near the spiracles which communicates with the air cavities of the tracheæ. Of course, being connected with the tracheæ and being continually moistened by the glands, it is easy to see that the necessary conditions would be fulfilled. No drawing of this organ is given and no such structure is found in the honey bee.

GLANDS OF HEAD AND THORAX AS SEAT OF OLFACTORY ORGANS

Ramdohr (1811) states that many species of insects, and among them the bee, have a well-marked sense of smell. He failed to find olfactory organs in the spiracles, but conceived the idea that odors come into the mouth through the lumen of the proboscis. He found behind the mouth a tube which is divided into three branches, the smallest of which runs along the resophagus above the first thoracic ganglion and soon divides into two smaller tubes which pass into the thorax and seem to connect with the large tracheæ coming from the first spiracle. The other two branches pass at right angles into the sides of the head, where they expand into four small sacs which differ from air tubes in having walls that are soft, thick and trans-A thick tissue of the finest tracheæ covers these various tubes. Ramdohr also mentioned nerves running to his supposedly olfactory organ. He was led to believe that air carrying odors passes through the lumen of the proboscis into these small sacs and, as their walls are soft and perforated with minute air tubules, that they act as an organ of smell. Referring to Snodgrass (1910) and judging from the foregoing description, Ramdohr probably mistook the thoracic salivary gland for the branch accompanying the œsophagus, and the salivary glands in the posterior part of the head for the other two branches

ŒSOPHAGUS AS SEAT OF OLFACTORY ORGANS

Treviranus (1816) infers that the smelling organs in various families of insects are located in the throat. In all the insects discussed the resophagus is dilated, as in the bee, in front of the stomach into a large sac-like reservoir, which he thought is perhaps for the purpose of drawing air into the throat. He believed that in the presence of strong-smelling substances the antennæ do not produce noticeable movements. He further stated that the olfactory apparatus of higher animals and the antennæ and palpi of insects are as different in structure as organs can ever be. In order to smell, higher animals must inhale the odoriferous particles. On the contrary, the antennæ and palpi do not conform with this general rule; in most insects these appendages are not coated with a mucous skin and the interior is carefully guarded against the entrance of odoriferous air. Treviranus therefore infers that the sac-like reservoir "honey stomach" in the bee, is for the purpose of drawing odorous air into the æsophagus.

"INTERNAL SUPERIOR SURFACE" AS SEAT OF OLFACTORY ORGANS

After discussing the various views concerning the location of the organs of smell, Burmeister (4836) concludes as follows:

Thus insects, according to my opinion, would smell with the internal superior surface, if 1 may so call it, which is provided all over with ramifications and nets of nerves, since this is always kept moist by the blood distributed through the body and by transpired chyle, the same as is surmised of the superior Mollusca.

Further, the same authority wrote.

Various authors consider the antennæ as olfactory organs, but with what right? A hard, horny organ, displaying no nerve upon its surface, can not possibly be the instrument of smell, for we always find in the olfactory organ a soft, moist, mucous membrane, furnished with numerous nerves.

What Burmeister means by "internal superior surface" is not clear.

DIFFERENT PARTS AS SEAT OF OLFACTORY ORGANS

Schelver (1798), cited from Lacordaire (1838), and Comparetti (1800), according to Perris (1850), place the seat of smell in different parts for different families, as follows: The club of the antennæ in lamellicorns, the proboscis in the Lepidoptera, and certain frontal cells, which have never been seen since by any one else, in the Orthoptera.

FOLDED SKIN BENEATH ANTENNÆ AS SEAT OF OLFACTORY ORGANS

Rosenthal (1811), cited by Burmeister (1836), "described a folded skin at the forchead, beneath the antennæ, to which two fine nerves passed, and which he considers the organ of smell in the flies *Musca domestica* and (*Musca*) Calliphora vomitoria; and he observed, after the destruction of the part, a deficiency of the function which had previously strongly exhibited itself."

The honey bee has no such structure as that described by Rosenthal.

RHINARIUM AS SEAT OF OLFACTORY ORGANS

Kirby and Spence (1826) regard the rhinarium as the location of the organs of smell. The rhinarium or nostril-piece is the foremost portion of the clypeus just above the labrum; it consists of circular pulpy cushions, covered by a membrane transversely marked with fine striæ. These fleshy cushions, like the upper surface of the tongue, are beset with minute black tubercles carrying bristles.

No such structure as the rhinarium exists in the bee.

PLATE BETWEEN EYES AND BENEATH ANTENNÆ AS SEAT OF OLFACTORY ORGANS

Paasch (1873) claims that no nerves coming from the brain lead to the tracheæ and that the olfactory organ need not necessarily be connected with the breathing apparatus. He reasons that its location should correspond with that found in higher animals. He found a peculiar plate situated between the eyes and beneath the antennæ and extending to the base of the proboscis. This plate possesses a groove whose edges are beset with stiff bristles, and many tracheal branches; it also has nerve connections. This he regards as the olfactory organ. This plate does not exist in the honey bee.

MOUTH CAVITY AS SEAT OF OLFACTORY ORGANS

After having cut off the antennæ of some queen bees, Huber (1807) was rather inclined to regard these appendages as the olfactory organ, but later (1814) after many experiments he concluded that the organ of smell resides in the mouth itself or in the parts depending upon it.

The following is a brief summary of his later work concerning the olfactory sense: Not only do bees have an acute sense of smell, but they possess the memory of sensations. For example, in the fall we placed some honey in a window and the bees came to it in great number. The honey was removed and the shutter of the window was closed all winter. The following spring, when we opened the shutter, bees returned to the same window, although there was then no honey at this place. They remembered that it had been there previously and an interval of several weeks had not effaced the acquired impression. Bees not eating appear more responsive to odors, while those eating honey are reluctant to move when odors are brought near them. To ascertain how different odors affect bees he used mineral acids and volatile alkalies presented on a pencil brush to the opening of the mouth; these did not affect them. Musk placed in front of the hives did not irritate the bees much. Assafcetida mixed with honey was put at the entrance of hives; the bees ate the honey and were not annoved by this odor which is obnoxious to us. Bees are greatly affected by the odors from camphor and the poison from bee stings.

To locate the region of the body in which the olfactory organ is found, Huber brought a pencil brush, which had been dipped into turpentine oil, near the abdomen, thorax and head. He saw a response only when it was in the region of the head and decided that the organ of smell is located only in the head. He next placed an ex-

tremely fine pencil brush wet with the same oil near the eyes, antenna, proboscis and mouth cavity. The only response observed was when the brush came near the mouth cavity. He obtained the same result, only more pronounced, when oil of origanum was used. The mouths of several bees were filled with flour paste and when this was dry they were released. Honey, turpentine and oil of cloves, either in fixed or volatile alkalies, did not produce any response.

EPIPHARYNX AS SEAT OF OLFACTORY ORGANS

Wolff (1875) found many peculiar hairlike organs on the epipharynx of the honey bee; each organ consists of a small cone with a pit in the summit bearing a small hair. He regarded these cones as having an olfactory function and believed that the mandibular glands pour a liquid upon the surface of the epipharynx which keeps these cones moist and capable of absorbing odoriferous particles. He explained the inhalation of these particles into the preoral cavity as brought about through the contraction of the air sacs situated near the mouth.

Harting (1879), in discussing Wolff's olfactory organs, inferred that Wolff tried to homologize the epipharynx with the nose of higher animals whereas there is not the slightest reason for such an homology.

To determine whether the mouth cavity and the epipharynx are the seat of the olfactory organs, the author repeated Huber's experiment of filling the mouth cavity with flour paste. With the aid of a small pencil brush the mouth cavities of 20 worker bees were thus filled. When the paste had become perfectly dry, the bees were put into observation cases. They seemed otherwise entirely normal, but lived only 7½ days as an average, whereas unmutilated workers in the same cases lived 9 days and 3 hours. When tested with the oils of peppermint, thyme and wintergreen, their average reaction time was 2.68 seconds. The average for the same odors with normal workers was 2.64 seconds. It would seem that neither the buccal cavity nor the epipharynx has anything to do with olfaction.

PALPI AS SEAT OF OLFACTORY ORGANS

Lyonnet (1745) thinks that the palpi should be considered as the organs of smell rather than those of taste.

Bonnsdorf (1792) and Knoch (1798), according to Perris (1850), regarded the palpi as olfactory organs, but Knoch believes that the maxillary palpi only are for smell, while the labial palpi are for taste.

According to Marcel de Serres (1811), even if insects have their olfactory organs located at the entrance of the respiratory organs, the view that the palpi serve as organs of smell does not contradict the former view, because the palpi communicate both internally and externally with the air. This view resembles Duponchel's theory (1840), except that the latter author considers the antennæ of certain water insects as having a respiratory function. Duponchel thought that the antennæ were provided with minute perforations through which the air passed.

Newport (1838) performed many experiments with certain insects (Sylphæ) and he concludes that they find their food by smell but he did not think that the olfactory organs are found either in the antennæ or spiracles. He says:

Hence, I think it must appear * * * from the motion of the palpi and the avidity with which the insect darted upon the food when held in front of it, it seems but fair to conclude that the sense of smelling must certainly reside in the head.

We may include Newport with those who believe that the palpi are the seat of olfaction.

Driesch (1839) favors the opinion that the seat of the olfactory organ is located in the palpi.

Perris (1850) found that after the amputation of the palpi insects showed none or only a very little sensibility to odors. In the articulates the sense of smell resides in the antennæ and in the palpi; but the antennæ are destined to perceive odors from both afar and near, while the palpi perceive odors from afar only. As far as the palpi are concerned he thinks that the seat of smell lies in their last joint. Cornalia (1856) also shared this view.

Plateau (1885) performed many experiments by cutting off the palpi. He ascertained that the amputation of both maxillary and labial palpi did not destroy the olfactory sense.

Wasmann (1889) favors the view that the group of delicate peglike papillæ on the tips of the palpi probably function as olfactory organs.

To ascertain whether the palpi of the honey bee bear the organs of smell, the author cut off the labial palpi and maxillæ of 19 workers at their bases. When put into observation cases these bees appeared normal in all other respects, but certainly were not completely normal, for they lived only 24 hours on an average. When tested with the oils of peppermint, thyme and wintergreen, honey and comb, pollen and leaves and stems of pennyroyal their average reaction time was 4

seconds, whereas for the same odors with unmutilated bees the average was 3.4 seconds. Since these appendages carry several porelike organs, we may either attribute the 0.6 second difference in reaction time to the view that these appendages really aid in receiving odor stimuli, or to the injury caused by the operation, or to both of these views combined.

Breithaupt (1886) describes some porelike sense organs on the base of the proboscis of the bee. To determine whether these have an olfactory use, the author cut off the proboscides of 22 workers. These bees seemed normal in most respects, but lived only 7 hours on an average. When tested with the oils of peppermint, thyme and wintergreen the average reaction time was 2.9 seconds, while for the same odors with unmutilated bees the average was 2.6 seconds. We can probably attribute this difference of 0.3 second to the abnormality of the mutilated bees.

Janet (1911) describes a sense organ in the mandible of the honey bee which he thinks may have an olfactory function. To ascertain this experimentally, the mandibles of 20 workers were amputated close to the base by the author. These bees appeared completely normal, although they lived only 7 days on an average. When tested with the oils of peppermint, thyme and wintergreen, honey and comb, pollen, and leaves and stems of pemyroyal, they gave an average reaction time of 4.8 seconds, while the average for the same odors with unmutilated bees was 3.4 seconds. We may attribute this slight difference in reaction time either to the injury caused by the amputation, or to the view that the mandibles help to perceive odors, or to both.

ANTENNÆ AS SEAT OF OLFACTORY ORGANS

(1) WITHOUT EXPERIMENTS

Reaumur (1734) was the first to suggest that the olfactory organs of insects lie in their antennæ.

Lesser (1745) says that the sense of smell of some insects is more acute than that of man. He gives as two proofs of this, (1) that they find their food with this sense, (2) that they scent food farther than man does. He says that the antennæ are "noses" and that they enable their owners to smell odors near or far away.

Baster (1770) remarks that no one doubts that insects can smell, for flies, purely through olfaction, find their way to tainted meat. He also states that water insects can smell. Baster states that no insects, whether living in the air, under water, or in the earth, have the seat of smell in the antennæ.

Sulzer (1776) contends that insects have an acute sense of smell and spoke of bees coming for honey when it is placed in a spoon under a window. He believes that the olfactory apparatus is located in the antennæ.

Fabricius (1778) infers that the seat of smell belongs to the antennæ.

Bonnet (1781) asserts that diverse insects have the sense of smell exquisitely developed, but that we do not know where the seat of this sense lies. He suggests the antennæ as a possible location.

In discussing the probable uses of the antennæ, Olivier (1789) regarded them as olfactory in function.

Latreille (1804) regards the fact that many male insects have the antennæ better developed than the females of the same species as evidence that these appendages are the seat of olfaction. The greater number of insects that live in animal matter, in decayed vegetables, or in stagnant water generally have the antennæ better developed than those that live elsewhere. A more perfect olfaction would be necessary to these insects, and the organization of the antennæ seems to be adapted for this purpose.

After discussing Marsham's account of ichneumon flies, Samouelle (1819) states, "From these remarks may we not infer that the antennæ may be the organ of smelling?".

De Blainville (1822) and Robineau-Desvoidy (1828), cited from Perris (1850), state that the antennæ are olfactory organs.

After briefly discussing the various views concerning the seat of olfaction, Carus (1838) confesses that the opinion of Rosenthal, combined with that of Reaumur, appears to him to be the best. Hence he believes that the seat of olfaction lies in the folded skin beneath the antennæ as well as on the surface of the antennæ.

Since the antennæ of the male are often better developed than those of the female, Percheron (1841) states that the antennæ of the male aid the eyes in searching for the female. He infers that the antennæ are used for smelling.

Goureau (1841) thinks that the antennæ may be organs of olfaction besides being organs of touch and hearing.

Pierret (1841) also favors the view that the seat of olfaction lies in the antennæ.

Robineau-Desvoidy (1842) speaks of an olfactory apparatus as nothing less than an ordinary organ of touch which is capable of receiving invisible stimuli. By analogy he thinks that the antennæmust be the organs of smell.

Slater (1848) firmly believes that the antennæ are olfactory organs. He says that the antennæ seem to be the real organs for this sense or for a sense closely allied to it.

According to Dufour (1850) both the organs of audition and olfaction are found on the antennæ. The distal joints, which have a spongy texture, are the ones that bear the sense of smell, for here the odoriferous atoms can fall upon this special texture and the impulse can be transmitted to the cerebral ganglion.

Claparède (1858) asserts that absolutely nothing warrants us in locating in the antennæ the sense of hearing rather than that of olfaction or any other function, but he favors the view that the organs of smell are there.

Dönhoff (1861) from various experiments contends that bees learn the location of honey and of the queen through the antennæ. He placed a stick near the antennæ of a bee and these appendages remained quiet. When a stick wet with honey was similarly placed, the bee at once extended these appendages in the direction of the stick. When one places a foul-smelling substance like tobacco juice near the antennæ, the bee moves away. When one places a stick wet with honey or tobacco juice near a bee with amputated antennæ the insect shows no response of any kind. He thinks that the olfactory organ was removed by cutting off the tip of the antennæ.

Noll (1869) asserts that butterflies have a fine sense of smell as shown by the way in which they find prepared food when placed in a box covered with screen wire and having only a slit through which these insects may enter. This is shown by the way in which the males are able to find the females. He regards the antennæ as the olfactory organs, at least for the male.

Wonfor (1874) says:

That it is the sense of smell which directs the blow-fly to the deposition of the larvæ is shown by the fact that she has laid them on *stapelias*, a carrion-odonred hothouse plant, and on silk with which tainted meat had been covered. Notwithstanding the view of Hicks he considers one of the functions of the antennæ as that of smell.

Fabre (1882) remarks that it is incontestable that insects have a very highly developed sense of smell. Carrion beetles run from all sides to the place where a dead mole lies. If we admit that the seat of smell lies in the antennæ he contends that it is difficult to comprehend how such an appendage of hard chitinous rings, articulated end to end, is able to fulfill the office of a nose. The organization of a true nose and that of the antennæ have nothing in common.

Henneguy (1904) state that the organ of olfaction is probably located in the antennæ and the buccal palpi.

(2) WITH EXPERIMENTS

Dugés (1838) was the first to experiment with the antennæ of insects. He cut off the antennæ of two male (Bombyx) Eudia pavonia minor and then these insects were unable to find a female that they had previously been able to locate while their antennæ were intact. Also, after having extirpated the antennæ of many blow-flies, (Musca) (Calliphora vomitoria), and a large viviparous fly, Sarcophaga carnaria, he ascertained that they were unable to find putrid meat as before. He felt satisfied that olfaction resides in the antennæ.

Lefebvre (1838) was the first observer to experiment with a *bcc*. He placed a long needle, whose end had been plunged into ether, near a piece of sugar which a bee was eating. The bee moved its antennæ towards the needle and then passed them several times between the legs. He brought this needle near the legs and spiracles, and since he noticed no response from these parts, he concluded that the antennæ are olfactory organs. As a control he used a needle without ether in the same manner. Next he mutilated the antennæ of several wasps (Fcspa). All their organs for perceiving odor stimuli seemed to be at the extremity of these appendages.

Küster (1844) declares that bees have a very acute sense of smell. He reports some that found a store of honey; even a week after they had carried away all the honey they still continued to come to the same place in search of more food. Since vertebrates carry their olfactory organs on the front of their head, under and between the eyes, he tried by analogy to locate the corresponding organs of the bee on the antennæ.

Perris (1850) repeated Dugés' experiment by holding many specimens of different families and genera over the mouths of vials containing alcohol, turpentine, or ether. At times he obtained the same results as did Dugés, at other times none at all, using the same individuals after intervals of one-half hour; but more often the antennæ or palpi exhibited more or less violent movement. He also repeated the experiments of Huber on various insects by stopping up their buccal cavities with wax, paste and gum. When they were set free he did not notice any signs of inconvenience. By such experiments he failed to locate the seat of the organs of smell in or near the mouth as Huber did. After having placed a brush dipped in turpentine, ether or wild thyme near the spiracles he concluded that odor-stimuli are not received by the respiratory apparatus.

In his summary Perris says: (1) By amputating the extremity of the antennæ the olfactory sense is not destroyed but it is weakened, and by cutting them off at the base the sense of smell is totally or partially destroyed; (2) covering the antennæ with a layer of india rubber renders these organs insensitive; (3) sometimes a little sensibility is shown when the palpi are amputated. Thus in the articulates the organs of smell reside in the antennæ and in the palpi, but the antennæ recognize odors from afar and from near by, while the palpi recognize only distant odors. In the plumose, flabellate or pectinate antennæ olfactory organs are present in all the branched parts. In the simple and setaceous or filiform antennæ the organs of smell are principally in the last joints and diminish toward the base. In antennæ terminated with a club the organs of smell are exclusively in the club. He believes that the organs of smell are present in the last joint of the palpi.

Cornalia (1856) says that the manner in which insects move the antennæ shows that these appendages serve for searching when the odor is scattered. He observed a male *Bombyx mori* that was trying to enter a small box in which a female was enclosed. After he had cut off the antennæ of this male it approached the box with uncertainty and sometimes did not go to the box at all. The same result was obtained by covering the antennæ. His view is similar to that of Perris in that the seat of olfaction lies in both the antennæ and palpi.

Garnier (1860) is certain that articulated animals perceive odors. Bees that go foraging for a long distance quickly recognize their hives without the aid of their acute vision. An organ of olfaction, wherever one may observe it, is an expansion of very fine skin, abundantly supplied with vessels and nerves, and moistened with a viscid fluid which permits the intimate contact of the odor. He does not state where the olfactory apparatus lies in insects, but he denies that the antennæ performs such a function, because when the knobs of the antennæ or the entire antennæ of individuals of the Genus Necrophagus were detached, the insects returned immediately to the body of a mole from which they had been temporarily removed.

Balbiani (1866) put unmutilated female butterflies in one box and in a second box he placed males of the same species. Some of the latter had their antennæ cut off. As soon as the box containing the females was placed under that of the males, the unmutilated males moved their antennæ, vibrated their wings and quickly moved their legs, while the mutilated ones remained perfectly quiet. In this experiment he says that sight and hearing were excluded and thinks that olfaction brought about by the antennæ is entirely responsible for these responses of the males.

Forel (1874, 1885) says that myricids (ants) appear to have the sense of touch highly developed in the antennæ, while in the antennæ of *Tapinoma* (ants) the sense of smell is better developed. If individuals of either genus are deprived of their antennæ they cannot guide themselves and are not able to distinguish companions from enemies or even to discover food placed at their sides. While deprived of the anterior part of the head and of the entire abdomen they preserve all their faculties. The same author (1878a) claims that the moving-back and forth of the wings enables insects to scent certain substances by means of their antennæ. Olfaction may cause certain flying insects to proceed in a given direction.

Forel (1878b) used three wasps that had previously fasted. The first was left intact, both antenne of the second were cut off, and the anterior part of the head up to the compound eyes of the third was cut off. After a short rest a needle dipped in honey was brought near the first insect. It at once directed both antenne toward the needle with rapid movements and followed the needle when it was slowly moved away. Exactly the same thing took place in the wasp with the anterior part of the head cut off, and thus with the nerve endings of the mouth, the pharynx, and Wolff's olfactory organs lacking. It was quite different with the one with the removed antenne. It remained near the needle motionless, did not react to honey at all, and did not follow the needle.

Forel (1908, p. 92) cites some of his experiments performed in 1878. He found the putrid bodies of a hedgehog and a rat infested by a swarm of carrion-feeding beetles belonging to several genera. He collected more than 40 specimens from the carcasses and removed their antennæ. Then he placed them all at one place in the grass and moved the dead bodies a distance of 28 paces from the beetles and concealed them in a tangle of weeds. Examination the next day revealed the fact that not one of the mutilated beetles had found the carcasses, and repeated experiments gave the same results. No beetle without its antennæ was ever found on the dead animals, although at each examination new individuals of the several species were present. On the supposition that the mutilation itself might make the beetles abnormal to such an extent that they did not care to eat, Forel next cut off all the feet on one side of the body from a dozen beetles with their antennæ intact and changed the location of the dead bodies again. The next day five of this lot were found on the carcasses.

Trouvelot (1877) performed various experiments on the antennæ of many butterflies, several promethea silkworm moths, and some

ants. From these experiments he concludes that the antennæ are the organs of smell, but he thinks that the sense of smell in insects is very different from that sense in the human species. He regards it as a kind of feeling or smelling at a great distance by some process now entirely unknown.

Layard (1878) relates the experiments of a certain French naturalist who immersed a long-snouted weevil in wax so that it was covered all over except the tip of the antennæ. When tested with oil of turpentine it became violently excited and endeavored to escape. Another had only the tips of its antennæ coated with wax, and neither turpentine nor any other strong-smelling substance affected it. From this he infers that the organ of smell is present in the tips of the antennæ of weevils.

Slater (1878) says:

That wasps have an acute scent and seek their prey or their food by its means, will be generally admitted * * *. When a wasp is flying it keeps its antennæ advanced and extended, so as to be in the most favourable position for receiving an impression from odoriferous substances.

Chatin (1880) states that when one brings a needle wet with ether, creosote, essence of wild thyme, or clove oil near the head of a bee it moves its antennæ, vibrates them vigorously, and directs them away from the odorous substance; if one repeats the same experiments near the spiracles no such movements are manifested. Also, when the antennæ are cut off no responses occur.

Lubbock (1882) experimented with a large female ant. He placed a feather of a pen almost against the antennæ of this ant without it moving in the least. Next he dipped the pen in essence of musk and repeated the experiment. The antennæ were at once retracted. With a second ant he used essence of lavender and observed the same results. Many more of his experiments indicate that ants have a highly developed sense of smell.

Porter (1883) experimented on a butterfly with a piece of gum camphor on the end of a broom straw. He says:

Whenever I put the camphor end near to its head and mouth parts, it would begin to struggle with all its might to get away from the fumes of the camphor; thus showing not only that it disliked the smell of camphor, but also that it did not smell with its antennæ. After experiments have shown the same thing of other insects.

This butterfly was affected little, if at all, by the extirpation of its antennæ while some humble bees become very sick after the loss of their antennæ; they, however, recovered after awhile. Some other humble bees are not affected at all by such an operation.

Graber (1885) severely criticizes the view that the antennæ are the seat of the olfactory sense. He experimented on many species with various odors, and makes the following claims: (Formica rufa) and flies (Lucilia caesar L.) without antennæ still possess the sense of smell; this fact shows that the perception of odors is not accomplished by the antennæ alone. (2) În Silpha thoracica deprived of antennæ, the odor of the essence of rosemary is manifestly perceived, while assafætida does not affect the insects at all. Thus the antennæ are those parts of the body which are most sensible to odors. (3) From the comparative experiments on the excitability of the antennæ, the palpi, and the cerci (caudal styles) in Gryllotalpa gryllotalpa L. (vulgaris), the palpi are more sensible to odors than the antennæ. (4) The palpi of *Lucanus* are sometimes the most easily excited, at other times the antennæ, according to the odors employed. From similar experiments on *Periplaneta*, some intact, others several days after they were operated on, it seems that the reception of odor stimuli is accomplished by the cerci. Graber is inclined to the view that insects do not have any special olfactory organ, and that when the odoriferous emanations are intense they may be perceived by the surfaces of the body that are covered with thin chitin and provided with terminal excitable nerves

Plateau (1886) used four *Blatta* (cockroaches), two with their maxillary and labial palpi cut off and their antennæ left intact and the other two with the antennæ cut off and the palpi left intact. These four insects were put into a large circular dish 8 inches in diameter. This vessel contained a bed of fine sand and in the center there was a round pasteboard box 2 inches in diameter and 2 inches high. Food was put into this box, and these insects were observed each day for a month. Each day he saw one or two *Blatta* eating the food, and in every instance these were the insects with unmutilated antennæ, and he concluded that the antennæ are the olfactory organs in *Blatta*.

Graber (1887) repeated Plateau's experiments by using many cockroaches and declares that it is sufficiently proved that cockroaches deprived of their antennæ smell little or none at all, and that the antennæ in these insects actually function as olfactory organs. He also says that for cockroaches (and some other insects) it is shown that the olfactory sense lies in the antennæ but this is not the case in all insects.

Dubois (1895) touched the scent glands situated at the tip end of the abdomen of a female moth with a glass rod and then brought this rod, which had no odor perceptible to him, near a male of the same species that had its antennæ cut off. The male at once vibrated its wings and started toward the rod.

Fielde (1901a), who has made a special study of ants, claims in her various papers that ants have a keen sense of smell. The same author (1901b) asserts that,

The power of perceiving the individual track lies in the tenth segment of the antennæ. When deprived of this segment the ant is no longer able to find her way in with the pupæ, but wanders about helpless and bewildered. Ants deprived of nearly all of the eleventh and twelfth segments continued to carry the pupæ through the runs of the maze, though with diminished physical vigor. The ant could pick up her scent so long as a tenth segment was intact, and no longer.

Miss Fielde clipped the antennæ with sharp scissors and 15 days after the operation about 40 per cent of the ants recovered from the effect of the shock.

Before their recovery the ants were listless and abnormally irritable; and they attacked with self-destructive violence any moving thing that touched them. One antennæ performs all the functions of a pair. *** Every Stenamma fulvum piceum has an odor manifest in all parts of her animate body, and discerned by herself and by other ants through the eleventh segment of the antennæ.

The commingled odors of all the ants in the nest constitute what she calls the "aura" of the nest.

It is diffused in air or ether from the animate occupants of the nest, and it is discerned by the ant through the twelfth, the distal, segment of the antennæ.

When deprived of the distal segment the ants were not alarmed when introduced into the nest of aliens; they did not flee, nor did they endeavor to hide; thus their behavior is strikingly different from that of unmutilated ants. Also she found (1907) that queens deprived of their antennæ did not behave normally.

So long as the eighth and ninth segments of the antennæ are uninjured, the ant may continue to lift and care for the eggs, larvæ, or pnpæ, but after the removal of these segments she loses all interest in the young and performs no further work in the nursery. * * * Marked ants of two hostile colonies, when clipped across the tenth segments, associated freely and amicably with one another during several days in the care of the pupæ belonging to one of the two colonies.

A paper by the same author (1903a) summarizes the foregoing and adds observations on some of the segments not heretofore mentioned. The following perceive these particular odors: The eleventh or distal segment, the nest odor; the tenth, the colony odor; the ninth, the individual track; the eighth and seventh, the inert young; the sixth

and fifth, the odor of enemies. Miss Fielde (1903b) claims that feuds between the same species living in different communities are caused by a difference of odor. Also, (1904) fear and hostility are excited by a strange ant odor. She (1905) decides that ants have a specific and progressive odor; the former is received by organs near the proximal end of the funiculus, while the latter is received among ants by organs in the penultimate joint of the funiculus.

Piéron (1906), basing his conclusion on the interpretations of Fielde and others, remarks that recognition in ants by odor is well established, and that sections of the antennæ have shown that the organs of smell are those of recognition.

Wheeler (1910) believes that the olfactory organs of ants are located in the antennæ, but he refutes Miss Fielde's theory that each segment of the antenna perceives a particular odor. He asserts:

She says: "The organ discerning the nest-aura, and probably other local odors, lies in the final joint of the antenna, and such odors are discerned through the air; the progressive odor or the incurred odor is discerned by contact, through the penultimate joint; the scent of the track by the antepenultimate joint, through the air; the odor of the inert young, and probably that of the queen also, by contact, through the two joints above, or proximal to those last mentioned, while the next above these also discerns the specific odor by contact."

This statement not only lacks confirmation by other observers, but seems to be the only one which implies that the olfactory organs of an animal may exhibit regional differentiations. This has not even been claimed for dogs, which nevertheless possess extremely delicate powers of odor discrimination and association. This would be no serious objection, however, if we were able to discover the slightest support for Miss Fielde's hypothesis in the structure of the antennæ. We do, indeed, find in the funiculi a variety of sensillæ, as has been shown in Chapter IV, but none of these is confined to a single joint or to two joints. Miss Fielde, moreover, completely ignores the tactile organs of the antennæ and makes this surprising statement:

"During five years of fairly constant study of ants I have seen no evidence that their antenna are the organs of any other sense than the chemical sense."

Many of her interpretations of the behavior of ants with mutilated antennæ are open to the obvious objection that she tacitly denies the existence of perception where there is no visible response or where the animal inhibits certain of its activities. If we add to this objection the very limitations of the method, *i. c.*, the necessity of removing all the joints distal to the one whose function is being tested, and the consideration that the hypothesis is not needed to explain the facts, it will be seen that we are not sufficiently justified in regarding the ants' antenna as an organ made up of a series of specialized "noses."

Barrows (1907) says:

I have found that *Drosophila ampelophila* (the vinegar fly) has a large saclike pit, which contains sense cones, situated in the end of the terminal (third) segment of the antennæ.

Gum on the antennæ did not prove satisfactory for abolishing sense of odors, nor could they be burnt off without considerable injury to the fly. He etherized some flies and cut the joint off with fine scissors and declares that the other did not affect the results of the experiments with odors.

It, therefore, seems certain that the sense of smell is absent, or at least greatly reduced in flies that have lost the terminal joints of the antennæ.

He thinks that these flies when normal find their food wholly by smell.

When one antenna is lost and the other antenna is stimulated by food odor, circus movements are carried out in such a way as to prove that the fly orients normally by an unequal stimulation on the antennæ.

Kellogg (1907) informs us that the female silkworm moth protrudes a paired scent organ from the hindmost abdominal segment. A male moth with antennæ intact and with eyes blackened finds a female immediately and with just as much precision as when his eyes are not blackened. A male with the antennæ extirpated and eyes not blackened does not find the female unless by accident. Males with antennæ intact become greatly excited when a female is brought within several inches of them. If the excised scent glands are laid near the female from which they were taken, the males always neglect the near-by live female and go directly to the scent glands and try to copulate with them. A male with its left antenna removed, when within 3 or 4 inches of a female with protruded scent glands, becomes greatly excited and moves in circles around her to the right. A male with right antennæ off circles to the left.

Sherman (1909) discusses the sense of smell in insects without even giving any references or without performing any experiments.

He says: "The organs of smell are the antennæ." Insects that feed upon decaying matter find their food almost entirely by smell. When their antennæ are removed they are unable to find their food even though it is quite near and in full view. "This indicates that the sense of sight is defective and that of smell very acute."

To ascertain if the antennæ of honey bees, ants and hornets carry the olfactory organs, the author performed the following experiments. Worker bees with one antenna pulled off are much less pugnacious than are those with the antennæ intact, and they "pay less attention" to each other. They appear otherwise normal, except that their ability to communicate is considerably decreased. In observation cases they live only 63/4 days while workers with unmutilated antennæ live 91/8 days under the same conditions. When tested with the three essential oils—peppermint, thyme and wintergreen—

their reaction time was 4.6 seconds, which is exactly double the reaction time when workers with unmutilated antennæ are used.

Bees with one antenna pulled off and with 2 to 8 joints of the other one cut off never "pay any attention" to each other and very seldom are seen fighting, but are just as apt to fight a hive-mate as a stranger. The greater the number of joints severed, the less number of days they live and the more abnormal are they. On an average they live only 5 days and 11 hours. When tested with the three essential oils the following reaction times were obtained:

Seconds				Seco					
2	joints	missii	ng	15	6	joints	missin	g	27
4		"		-1-1	7	**	44		98
5	6.6	64		56	8	* *	6.6		. 88

Bees with both antennæ pulled off live only 19 hours in observation cases and are completely abnormal in behavior. They always fail to respond to odors. When both antennæ are cut off at the bases, the bees live only 2 hours. They are also entirely abnormal and fail to respond to odors.

Bees with their antennæ covered with either shellac or celloidin do not live long and are quite abnormal. Bees with the antennæ covered with vaseline soon remove this substance and then behave normally again. Bees having the antennæ covered with liquid glue are abnormal until they remove the glue with their antenna cleaners. To prevent this removal the tarsi of the front legs including the antenna cleaners were burnt off with a red-hot needle. One-fourth of the bees so mutilated died within 12 hours, but the remainder appeared quite normal in every other way. On the second day the entire flagellum of each antenna was covered with liquid glue. These workers were quite abnormal and most of them did not live long. However, after gluing the flagella of many bees, 21 were finally obtained that were fairly normal and their reaction time to the three essential oils was 2.0 seconds, while the reaction time of the same odors for unmutilated bees was 2.6 seconds. These 21 workers lived only 24 hours on an average. The odor from the glue did not affect these results.

Both antennæ of 95 workers were burnt off with a red-hot needle. These workers were quite abnormal and lived only 17 hours. Seven of them recovered sufficiently from the operation to respond to odors; while the others failed to respond. The reaction time of the 7 workers used to the three essential oils was 4 seconds.

Since the effect of the shock caused by mutilating the antennæ may have produced the abnormality in all the bees experimented with, 30 workers were immersed in water for 15 minutes. When removed

they appeared entirely lifeless and the antennæ were pulled off at once. They revived and lived thereafter only 19 hours. When tested with odors they failed to respond and like all the other bees made completely abnormal, they scarcely moved when touched with a pencil.

Since bees whose antennæ are mutilated after they become adults are abnormal, the antennæ of 400 worker pupæ were cut off. Several days later these workers emerged normally from their cells, but lived thereafter only 5 days.

The funiculi of 12 workers of *Formica* were cut off. These ants were then returned to a Fielde nest. They were slightly hostile to each other and to their unmutilated sisters. They failed to eat food and to catch flies, but their unmutilated sisters continually ate food and soon caught flies. The funiculi of 50 more workers of *Formica* were cut off. When returned to their cage, these ants were quite irritable and invariably attacked one another, and as a result several were killed.

The funiculi of 2 soldiers, 10 large workers and 7 small workers of *Camponotus* were cut off. When returned to their nest these ants attacked one another for three hours, then they became very inactive and responded to odors only slowly. The next day they were still quite inactive and "paid no attention" to anything, except when they came in contact with each other, they still fought one another. When tested with odors they failed to respond. At no time did they eat or drink.

The funiculi of 30 winged virgin females of *Formica* were cut off. When placed in experimental cases they were quite abnormal. Five of them failed to respond to odors and scarcely moved when touched with a pencil. These auts were discarded from the experiments. When tested with the three essential oils, the other 25 gave a reaction time of 4.38 seconds, while the reaction time for unmutilated sister females was 2.12 seconds. Confined in a Fielde nest, these mutilated ants lived only 10 hours.

The funiculi of 30 winged virgin females of *Formica* were covered with liquid glue. These ants were completely abnormal and five of them failed to respond to odors. When tested with the three essential oils the other 25 gave a reaction time of 5.78 seconds. They lived 6 days on an average.

The flagella of 25 *l'espula maculata* were cut off. In behavior these mutilated hornets were abnormal and lived only 1 day and 13 hours in observation cases. When tested with the three essential oils some of them responded promptly; some responded slowly, and a few failed to respond at all. All of those which failed to respond to

odors scarcely moved when touched with a pencil. These were discarded and the flagella of the others were cut off. The 25 used in these experiments gave a reaction time of 3.09 seconds which is 0.66 second greater than the same reaction time for normal hornets.

In conclusion under this head it is seen that about four-fifths of the writers cited advocate the view that the antennæ are the seat of the organs of olfaction. Most of these observers have not said whether the mutilated insects that they used were normal. The inactivity or state of rest of many of these speciments indicates abnormality. In regard to Miss Fielde's ants, only 40 per cent recovered from the effect of the shock and in all probability all of these were more or less abnormal. When the antennæ of ants, hornets and bees are mutilated in the slightest degree, as ascertained by the author, the insects are more or less abnormal. The results obtained by using any insect with mutilated antennæ are, therefore, in all probability more or less erroneous. Judging from the author's experiments there is no reason to assume the presence of the olfactory organs in the antennæ, because the differences in reaction times between the reaction times of the mutilated insects and those of unmutilated ones may be attributed to the abnormality of the insects which is probably always caused by the operations. At most it can be claimed only that the antennæ may assist in the receiving of odor stimuli.

Since the organs in the antennæ of ants, hornets and bees, and probably all insects, fail to receive most, if not all, odor stimuli, the true olfactory organs must be looked for elsewhere.

VARIOUS STRUCTURES ON THE ANTENNÆ AS OLFACTORY ORGANS

Before entering into a discussion of the antennal organs of insects, a brief description illustrated with drawings of the antennæ of the honey bee and their organs will first be given.

The antenna of the bee consists of two portions: the proximal part, called the scape, and the distal portion, the flagellum. Each portion is more or less cylindrical in shape. The scape consists of a single long, slender joint, while the flagellum consists of 11 short joints in the worker and queen and of 12 in the drone.

When an antenna is examined under the microscope with a strong transmitted light its surface is seen to be covered with small bright spots and also various kinds of hairs. In order not to overlook any of these peculiar structures, several pairs of these appendages from young bees just emerged from their cells were removed and perma-

Fig. 1.—Antennal organs of the honey bee copied from Schenk. A, an antennal joint of a drone, showing a few of the many pore plates (PorPl) and a group of Forel's flasks (FFl), x 150; B, pore plates and Forel's flasks from a drone's antenna, x 600; C, pore plates (PorPl), pegs (Pg), and tactile hairs (THr) from a worker's antenna, x 600; D, internal anatomy of a pore plate and of a tactile hair; E, the same of a peg; F, the same of a tactile hair; G, the same of a Forel's flask; H, the internal anatomy of a pit peg. D-H, x 600.

nently mounted. In these antennae there is no dark pigment to obscure any of the antennal organs. To illustrate these various structures modified copies of Schenk's drawings (1903) are given (fig. 1).

Figure 1, A, shows the small bright spots (PorPl) on the drone antenna magnified 150 times. This drawing also shows still smaller bright spots (FF1) which are difficult to find. Formerly the larger bright spots were termed "pits" but later they were called "pore plates," "pore canals," and "sensilla placodea," while the smaller spots bear the names "Forel's flasks" and "sensilla ampullacea." In this discussion the former will be known as pore plates and the latter as Forel's flusks. Figure 1, B, represents these organs of the drone bee enlarged 600 diameters. Figure 1, C, shows the pore plates (PorPl) and two kinds of hairs from the antenna of a worker, enlarged 600 diameters. The stouter of these hairs (Pg) bear the names, "pegs," "clubs," and "sensilla basiconica," and the more slender ones (THr) "hairlike structures" and "sensilla trichodea." In this discussion the stout hairs are designated pegs and the slender ones tactile hairs. A fifth antennal organ whose external opening is not drawn by Schenk has the same superficial appearance as Forel's flasks and probably cannot be distinguished from them externally. These structures have been termed "pit pegs," "champagne-cork organs," and "sensilla cœloconica." They are here designated pit pegs.

Figure 1, D-II, show the internal anatomy of the five antennal sense organs. Figure 1, D, shows the structure of a pore plate and of a tactile hair. The chitin (Ch) is solid black, the sense fibers (SF) and sense cell ganglion (SCG) are represented by fine broken lines. Since the sense fibers in Schenk's drawing are defective and are not attached to the plate (Pl) as the writer has observed them many times in his sections, and as Schenk represents them in Fcspa, they are here drawn as they really exist. The plate is a hard and comparatively thick chitinous disc completely covering the pore canal (PorCl). However, at its margin there is a deep groove (Gv) entirely surrounding the plate. To stimulate the sense fibers attached to the plate the odors must first pass through this hard chitinous plate.

Figure 1, E, shows a peg with its sense fibers running half-way to the tip of the hair. At its base the chitin is relatively thick while at the tip it is thin. If this structure is an olfactory organ, the odors must first pass through the thin chitin at the tip of the peg to stimulate the sense fibers. Figure 1, F, is a tactile hair. Figure 1, G and H, represent a Forel's flask and a pit peg respectively. Both of these

are nothing less than hairs inside of pits, and the only difference between them is the shape of the flask. If they are olfactory organs, odors must enter the small apertures and pass through the thin chitin at the tip of the hairs inside the pits, to stimulate the sense fibers.

In drones, the antennal organs are found on only the distal nine joints of the flagellum and in workers and in queens on the distal eight joints. According to Schenk, the pore plates are present on all of these joints, and while they are abundant on both the dorsal and ventral sides of the male antennæ, in the female antennæ nearly all of them occur on the dorsal side. On both antennæ of a male there are about 31,000 and on those of a female only about 4,000; however, those of the female are considerably larger. Pegs are entirely absent from the drone antennæ, while they are abundant on those of workers and of queens. As a rule they are at the distal end of the joint on the dorsal side. The male antennæ are always devoid of tactile hairs whereas those of the female have many. Forel's flasks and pit pegs are moderately numerous in both sexes, but slightly less abundant in the female antennæ.

Some of these antennal organs, or at least modifications of them are present in the antennæ of all species of insects with probably one or two exceptions. In butterflies and moths pore plates are entirely absent and pegs are almost wanting. However, the place of the pegs seems to be taken by end rods, which are very similar in structure but are more club-shaped. Butterflies and moths also have bristle-like tactile hairs.

Pore plates, pegs, Forel's flasks, pit pegs and end rods have all been considered as olfactory organs by various authors, who, in trying to prove their views, assert that odors can pass through the hard chitin of these organs so that the nerve fibers inside may be stimulated. While these authors declare that this is possible in insects, they acknowledge that it would be impossible in the higher animals.

Erichson (1847), according to Hicks (1859c), first observed the pore plates and hairs on the antennæ of insects. He considered the pore plates as olfactory organs for two reasons: (1) He thought that the numerous hairs on the antennæ protect and keep these plates moist, so that odors can pass through them, and (2) they are more numerous in those insects whose smell is acute.

Burmeister (1848) describes the pits found on the antennæ of lamellicorn beetles. These are a variety of the pit pegs, and he attributes an olfactory function to them.

Vogt (1851), according to Wonfor (1874), discovered that the antennæ are covered with minute pores which are apparently filled

with fine hairs. He thinks that these structures perform a function combining those of smell and touch.

Bergmann and Leuckart (1852) say that when one brings a drop of ether on the tip of a needle near the head of an insect it moves and strokes its antennæ. They speak of many pits on the antennæ; from the base of these pits arise small papillæ which they regard as olfactory organs.

Leydig (1860, 1886) made a thorough investigation of the pore plates discovered by Erichson. He found these pore plates not only in the antennae of most insects but also discovered that they are modified into peculiar, peglike organs in the remaining insects, and in the crustaceans and myriapods. Leydig regarded these organs of questionable function as olfactory. In 1860 he thought that the palpi have a function similar to that of the antennae.

Lespés (1858) compares the pore plates to the ears of higher animals and denies their olfactory office.

Hicks (1859b and c) thinks that the pore plates are cavities filled with fluid, closed in from the outer air by a delicate membrane to which a nerve is attached. He regards the pore plates as auditory organs and says:

If we assign an olfactory function to these organs, one difficulty presents itself, viz: that for the odorous particles to affect the nerve they must reach it through a membrane and a stratum of fluid.

Landois (1868) experimented with the stag beetle (Lucanus cervus). He does not doubt that this beetle can smell, for if exposed to the fumes of sulphuric acid, or ammonia or to tobacco smoke it draws in its antennæ quickly. If the ends of the antennæ are removed it still draws in the remainder of these appendages with the same rapidity as when the antennæ are intact. He found two kinds of sense hairs on the antennæ of this insect and pits filled with small hairs. He thinks, however, that olfaction is performed by none of these organs.

Grimm (1869) describes three kinds of hairs and a pitlike organ on the antennæ of beetles but does not regard any of these as an olfactory apparatus. He put a beetle with entire antennæ into a box which had a glass cover and an opening at the bottom covered with thin cloth. After this beetle had become quiet he put a piece of dung to the opening. The beetle at once came to the opening and tried to tear the cloth. Later he cut off its antennæ and repeated the experiment, and the beetle came to the opening as before. By repeating these experiments many times he concluded that the antennæ of

beetles do not function as smelling organs. Also he infers, like Leydig, that there may be some olfactory rods or pegs on the palpi of this beetle.

Gegenbaur (1870) briefly discusses the antennal organs described by Erichson, Burmeister and Leydig but fails to express his own opinion concerning their function.

Lowne (1870) believes that the olfactory apparatus of the blowfly is located in the third antennal joint. This joint is remarkably dilated and is covered with minute openings which communicate with little sacs in the interior.

Müller (1871) found stiff hairs and pore plates on the flagella of the antennæ of a female bee, but only pore plates on those of the male bee. He thinks that the pore plates are olfactory organs and that male bees have a better olfactory sense than the females for the following reasons: (1) A male bee has one more joint in the flagellum: (2) all of these joints are longer, and (3) wider, and (4) the pore plates are so close together that they crowd out the stiff hairs.

Claus (1872) thinks that many insects have a well developed olfactory sense and that the surface of the antennæ is the seat of the sense of smell, basing this conclusion upon the work of Erichson and that of Leydig.

Chadima (1873), after examining the hairlike structures on the antennæ and palpi of crustaceans, insects and myriapods, which Leydig (1860) regarded as most probably olfactory organs, says that the smelling organs of arthropods have not yet been found. He states that none of these hairs is perforated at its tip. He thinks investigators will have more success in solving this problem if they look on the olfactory sense as being connected with the breathing apparatus.

Forel (1874) counted five different kinds of organs on the antennæ of ants—(1) olfactory knobs or pegs, (2) tactile hairs, (3) pore plates, (4) Forel's flasks and (5) pit pegs. Forel (1902) judging from the works of Hicks, Leydig, Hauser, Kräpelin and himself remarks that all the reputed olfactory structures of the antennæ are modified pore canals bearing hairs. They come under three chief forms—pore plates, olfactory knobs, and olfactory hairs. At times the last two can hardly be distinguished from one another. Chitin, even if very thin, always covers the end of the nerve. Forel's flasks and pit pegs have no relation to smell because they are lacking in the insects with acute smell (wasps) and are present in great abundance in insects (bees) with poor sense of smell. The same author (1908, pp. 95 and 96) still regards the pit pegs and Forel's flasks as a

physiological enigma. They are generally absent, but are present in ants and aphidids, are quite abundant in the domestic bee, are present but not abundant in bumble bees, and are absent in wasps; nevertheless, he thinks they have nothing to do with olfaction. In dragonflies and cicadas the antennæ are rudimentary and the sense of smell is poor. The organs of smell of insects are in general situated in the antennæ, especially in their swollen or perfoliate parts where the antennal nerve ramifies. "These 'horns,' these 'ears' form, therefore, a famous nose in spite of Wolff and Graber." Thus Forel believes that the antennæ are the olfactory organs, yet he does not state what particular antennal organs receive the olfactory stimuli.

Bertè (1877) states that none of the antennal organs in fleas is for olfaction.

Lubbock (1877) discusses the antennal organs but does not venture to suggest their functions.

According to Vom Rath (1888), Lubbock (1883) found the same structures on the antennæ as did Forel (1874), although the details are somewhat different. Neither Forel nor Lubbock ventures to ascribe an olfactory function to any one of the five antennal organs, but by their many experiments, particularly on ants, both are thoroughly convinced that the antennæ carry the olfactory apparatus.

Graber (1878) describes a pitlike sense organ in the antennæ of flies. This was long before described by Leydig as an olfactory apparatus, but Graber regards it as an auditory organ.

Mayer (1878, 1879) regards the pitlike organs or pore plates as being most probably olfactory in function.

Reichenbach (1879) thinks that the small pits filled with hairlike structures are the olfactory organs in insects.

Hauser (1880) studied the behavior of various insects before and after the removal of the antennæ. When the antennæ were cut off many individuals soon became sick and died, although some of them lived thereafter for many days. In insects with their antennæ dipped in melted paraffin, the behavior was similar to that of those with the antennæ amputated. He placed 12 individuals (beetles) *Philonthus æncus* R. one at a time in an inverted beaker whose bottom was removed. He slowly placed a clean glass rod in front of the head and the insect gave no response. He then repeated the operation with a glass rod dipped in carbolic acid. When this was 4 inches away the insect was much affected, it lifted and moved its head in different directions and made quick forward movements with its antennæ. When the glass rod was brought nearer it moved away quickly and

drew its antennæ through its mouth. The reaction to turpentine and acetic acid was more violent. Next he cut off the antennæ. On the second day after the operation he repeated the experiments, but the insects failed to respond to any one of these three strong odors. After the operation the beetles ate with a greater appetite and some of them lived more than two months thereafter. From these experiments he concludes that the beetles lost the olfactory sense by the removal of the antennæ.

Experiments with species of several other genera gave the same results but those with beetles of the genera Carabus, Melolontha, and Silpha were less satisfactory. These never completely failed to respond to strong-smelling substances. If they are exposed for a long time to the odors the insects deprived of their antenna become restless and walk away from the glass rod, yet all the movements are less energetic. The entire reaction is indefinite and weakened. Experiments with Hemiptera gave a still less favorable result. After the loss of the antennæ these insects reacted almost as well as they did with their antennæ intact.

Hauser performed the following experiments to ascertain the value of the antennæ in the search for food. He placed beetles (Silpha) in a large box whose bottom was covered with moss. In one corner of the box he put a small glass with a small opening, the glass containing foul meat. As long as the insects possessed their antennæ they regularly found the meat in the glass after some time, while after the removal of the antennæ they never came in contact with it. Similar experiments were performed with flies of three genera. A vessel containing spoiled meat was placed on a table by an open window. Soon several flies came to the meat. Then he closed the window and cut off the antennæ at the third joint. Thereafter not one of these flies came in contact with this meat.

Hauser next ascertained the value of the antennæ to the male in finding the females. Male and female beetles and butterflies were placed in large boxes. As long as they were normal in every respect they mated freely, but when the antennæ were cut off they copulated only occasionally.

Hauser, who worked extensively and thoroughly on the antenna of insects of all orders, found many differences in the various orders but among different Hymenoptera the differences in distribution and structure of the antennal organs are comparatively slight. According to him, V cspa (a wasp) possesses about three times as many pegs as does the honey bee, and for this reason V cspa has better offactory

perception. Formica (an ant) has far more pegs than pore plates, contrary to the rule in hymenopterous insects. In conclusion Hauser asserts that in almost all insects the olfactory organ consists of (1) a large nerve arising from the cephalic ganglion which runs out into the antenna, (2) a recipient end apparatus which represents rod cells modified from hypodermal cells with which the fibers of those nerves are connected, (3) a supporting and accessory apparatus which is formed by the pore plates and pegs filled with a serous fluid. When both pore plates and pegs are present they both function in smelling according to their number; when one of these organs is absent then the other one functions entirely as an olfactory receptor.

Kräpelin (1883), according to Schenk (1903), considers the pore plates and pegs as smelling organs and translating from Vom Rath (1888) Kräpelin thinks that the olfactory organ is also located in the palpi.

Schiemenz (1883) regards the pegs as touch organs, while the pore plates and Forel's flasks probably serve as olfactory organs.

Sazepin (1884) worked chiefly on the antennæ of myriapods, but he also spent some time in working out the anatomy of the antennæ of Vespa. By comparing the anatomy of the myriapods' antennæ and with that of Vespa he found that as a whole there is a great similarity, but while the olfactory pegs in Vespa are closed at their tip, they are open in what he calls the olfactory pegs in myriapods.

Witlaczil (1885) worked on the antennæ of certain bugs. Since their antennal pits, called olfactory pits by Hauser, are covered by a membrane he thinks that they can scarcely be called olfactory organs.

Vom Rath (1887, 1888), like most authors on this subject, regards the olfactory sense as located in the sense pegs of the antennæ and probably also in the pore plates. By making a comparative study of all the antennal organs in arthropods, Vom Rath (1895) found a great similarity in the structure of each set of organs. The sense pegs are not by any means confined solely to the antennæ but are found on all the mouth parts, in the mouth cavity, and even over the entire body. It is possible that many pegs serve for the reception of the stimuli of weak odors from a distant object and others for the olfactory perception of those nearer. It may be that the pegs of each kind, and also the pore plates, are especially responsive to certain kinds of odors. He believes that the pegs on the palpi possess an olfactory function and possibly for odors close at hand. Moreover, these pegs elsewhere may have the same function.

Ruland (1888), who made a thorough comparative anatomical study of insect antennæ, contends that only such hair structures as those which are perforated at the tips can be sensitive to chemical stimuli. Pegs are found in all orders of insects and, since myriapods and crustaceans possess similar structures, these organs may be considered as the chief form of olfactory organs in the arthropods. Ruland regards the pit pegs and Forel's flasks found in most insects as simple pit pegs, while the compound pits, as seen in the antennæ of flies and butterflies, he calls compound pit pegs. He believes that all three sets of these organs are organs for the reception of stimuli from certain olfactory substances. To determine whether all of the hair structures are perforated at their tips, he put the antennæ into boiling caustic potash. After such treatment he observed that they were all open at the end. In the investigations made by the author it was learned that caustic potash within a short time not only destroys all of the internal tissue but it soon dissolves thin chitin. All who have studied these structures before and since 1888 assert that these hairlike organs are tipped with very thin chitin through which the odorous particles must pass. In the observations made by the author these structures in the antennæ of the honey bee have not shown a single hair which is open in the slightest degree at the tip and it is probable that in Ruland's treatment the caustic potash dissolved the thin chitin at the tip.

Nagel (1892, 1894, 1909, the views set forth in the first reference being cited by various authors,) states that, in his opinion, the antennæ are generally the olfactory organs of insects—not, however, without exception. That insects, after amputation of the antennæ, seem incapable of perceiving odors is not sufficient proof that the antennæ are olfactory organs. He declares (1894) that organs with thick chitinous walls cannot function in smelling, but he thinks that the olfactory pegs, being tipped with thin chitin, are capable of receiving olfactory stimuli. He asserts that these olfactory pegs are found on other parts of the body besides the antennæ. He (1909) does not doubt that in many insects the palpi may assist in smelling. In the antennæ of a May beetle there are four different kinds of pitlike organs (varieties of pit pegs), all of which may be olfactory in function. In the Hymenoptera the antennæ are the only seat for their highly developed olfactory sense. In some Hymenoptera both pore plates and pegs, while in others only the pore plates, function in smelling. In ants the pegs and knee-shaped bristles probably serve this purpose; in Lepidoptera the pit pegs function for smelling when the insect flies, the end rods serving such a purpose while the insect is resting; in Diptera the pit pegs, similar to those of butterflies, are the olfactory organs. Nagel repeated most of Hauser's experiments and seems to be convinced that the antenne are almost always, if not always, the seat of the organs of olfaction. When one or more of these organs are absent the next best, histologically considered, must perform the olfactory work; and when all the antennal organs are wanting, as in *Ephemera vulgata*, a pseudoneuropteron, he imagines that the insect cannot smell.

Dahlgren and Kepner (1908) regard the knob-shaped, pitlike antennal organs of *Necrophorus* as the olfactory organs. They found glandlike cells beneath the hypodermis which they believe to be associated with these pits and perhaps aid in receiving odor stimuli.

Nearly all of the foregoing observers have overlooked the sense organ found in the second antennal joint of insects. This is called Johnston's organ. In *l'espa* the upper end, or the nerve rod, of the organ penetrates the articulating chitin between the second and third joints and comes to the surface. From its structure an olfactory sense might be attributed to it. According to Child (1894a and b), who experimented extensively with mosquitoes, this organ serves as a combined touch and auditory apparatus and has nothing to do with olfaction.

Lubbock (1899) says:

Forel and I have shown that in the bee the sense of smell is by no means very highly developed. Yet their antenna is one of those most highly organized. It possesses—besides 200 cones [pegs], which may probably serve for smell—as many as 20,000 pits [pore plates]; and it would certainly seem unlikely that an organization so exceptionally rich should solely serve for a sense so slightly developed.

From this fact and his numerous experiments Lubbock regards the antenne as the seat of the organs of olfaction, yet he does not commit himself as to the particular antennal organs which receive the odor stimuli.

Börner (1902) states that only a few of the hair structures on the antenne of Collembola may be regarded as olfactory organs.

Schenk (1903) claims that the fact that the males of Apidæ (bees) do not possess any pegs does not argue against the view that these structures are olfactory organs for (1) the pit pegs, which certainly have an olfactory function, are common to the antennæ of males, queens and workers, and (2) in hunting for the females the olfactory sense appears to be of second place to sight. In the summary of his observations on Lepidoptera Schenk asserts that the pit pegs function

as smelling organs, because they are more highly developed and more advantageously distributed on the antennæ in the males so that they may be of the greatest use in scenting the females. The end pegs also aid in olfaction, particularly when the insect is resting. He does not think that the pore plates in Hymenoptera have an olfactory use, and he regards this view as based on insufficient data. Olfaction in the Vespidæ (wasps) is accomplished by the pegs, because the pit pegs are almost absent, while in the bees the pegs and pit pegs both are olfactory in use; but since the male bees do not have these pegs, the sense of smell is entirely performed by the pit pegs.

Röhler (1905) made a special study of the antennal organs in a grasshopper, (Tryralis) Acridella nasuta L. On the antennae he found only three kinds of organs, viz: bristles, pegs and pit pegs. Of these three he regards only the pit pegs as olfactory in function, and the females have only about two-thirds as many of them as have the males. This additional number of pit pegs greatly aids the males in finding the females.

Cottreau (1905) discusses the sense of smell of insects in a popular way, without performing any experiments or citing any references. He says that the olfactory organs are the pits and papillae, distributed abundantly on the antennae and without doubt in certain regions on the mouth parts.

In discussing olfaction and antennal sense organs of insects Berlese (1906) seems to infer that there can be no doubt that the antennæ are really the seat of the smelling organs.

In a comprehensive study of the morphology of the chitinous sense organs of *Dytiscus marginalis*, a water beetle, Hochreuther (1912) finds seven different kinds of organs. Of these seven only the hollow pit pegs (hohle Grubenkegel) are probably olfactory in function. They not only occur on the antennæ and mouth parts, but a few are found on the thorax and perhaps a few on the coxæ of the first two pairs of legs.

CAUDAL STYLES ("ABDOMINAL ANTENN.E") AS SEAT OF OLFACTORY ORGANS

Packard (1870) discovered that the caudal styles of the female *Chrysopila* (a fly) possess a peculiar sense organ. On the posterior edge of the upper side of each style there is a single, large, round sac with quite regular edges. Its diameter is equal to one-third of the length of the style. Dense, fine hairs project inward from its edge, and the bottom of this shallow pit is a clear, transparent membrane devoid of hairs. Since this same insect possesses no antennal organs

Packard believes that this structure is an olfactory apparatus. He calls this a "simple nose," while in the caudal styles of the cockroach there is a "compound nose."

ORGANS ON BASES OF WINGS AND ON LEGS AS OLFACTORY ORGANS

While examining the organs on the halteres of flies, Hicks (1857) discovered on the bases of the wings peculiar structures which he called vesicles, arranged in a single row extending some little distance up the vein on both sides of the wing, but principally on the upper side. By examining insects of other orders he ascertained that these organs are not confined to the Diptera. He believes that they are found in all insects, and they were present in all specimens examined by him. They exist on both sides of the wing, but chiefly on the upper side of the base on the subcostal vein and in the Hemiptera on the costal vein. Those on the hind wing are generally larger in size and greater in number.

In Moths they are very apparent, being greatest in the Noctuæ [Noctuidæ] and Bombycidæ. There are about 100 vesicles on the upper surface of the posterior wing, and half that number beneath, besides some few on the nervures [veins]. In the butterfly they are smaller, but arranged in more definite groups, about three in number. In Coleoptera and Neuroptera they are arranged in long rows along the subcostal nerve; they are more apparent in Coleoptera than in Neuroptera. In the Hymenoptera, for instance the bee, they are found in a rounded group of about forty on each side.

Are they organs of smell, as suggested by Mr. Purkiss? As the olfactory organ has never yet been decided on, it seems to me not improbable that they be the organs of that sense; for, first, it is not likely that they should be the organ of hearing, as they are in constant motion, and situated near the source of the hum of the wings, so that other sounds would be drowned, 2ndly, it is not necessary that the power of smell should be in the head. It is situated in the commencement of the air passages in the upper animals probably because the current of air or water passing the olfactory nerves is there most powerful; but in the spiracle-breathing insects the greatest currents are in the neighborhood of the wing, and near the greatest thoracic spiracle. The motion of the halteres also permits a greater exposure to odors floating in the air.

He claims that the organs on the halteres and on the base of the wings are similar in structure and probably have the same function, that of smell. He was able to trace a nerve to each group of organs, the one going to the hind wing being the larger.

Hicks (1859a) presented a second paper concerning these organs in which he asserts:

I may here repeat that each of these structures consists of very thin and transparent, hemispherical or more nearly spherical projections from the

cuticular surface, beneath which the wall of the nervure is deficient, so as to allow a free communication with its interior; these organs are arranged in rows on the halteres and in variously shaped groups in the wings.

He examined one or more species of about two dozen genera representing all of the insect orders. He observed these organs in the honey bee, in Vespa, and in all other species examined by him except Corysus [Corizus], the bedbug (Cimex lectularius), an apterous beetle, and the flea (Pulex irritans). Usually these structures consist of two groups on the upper, and one scattered group on the under side of the subcostal vein, amounting in Ophion to from 200 to 300 above, and perhaps 100 beneath, with a smaller group at the end of the vein. In the Diptera these vesicles are found both on the wings and halteres. In the Coleoptera they are highly developed and occur in numerous groups on the subcostal vein, mostly at the widest part, but are also scattered along it to the joint of the wing. In Carabus (a beetle) they are found on veins other than the subcostal. In many beetles the vesicle is overarched by a hair, which probably protects the organ. He could distinguish no differences in the sexes except that the vesicles were slightly larger in the females, due to their greater size. These organs are most perfectly developed in the Diptera, slightly less perfectly developed in the Coleoptera, rather less so in the Lepidoptera, only slightly developed in the Neuroptera, scarcely at all in the Orthoptera, and only a trace of them exists in the Hemiptera. He gives several drawings, but they represent only the superficial appearances.

Hicks (1860) discovered these same vesicles on the trochanter and femur, chiefly on the former, in all the insects he examined. In Formica rufa (an ant) these structures are numerous and exist both on the trochanter and femur. A few small groups of these vesicles are also present on the proximal end of the tibia in this ant. In the honey bee these organs are not so abundant on the legs but are located at the same places as on the ant. The vesicles on the legs, like those on the wings, consist of a thin, delicate membrane

stretching over, and closing in from the air, a tubular aperture in the chitinlayer of the part. This aperture may be circular or oval, the tube varying in length according to the thickness of the integument, curved as in the Hornet, or forming a globular cavity as in Silpha. The delicate membrane which covers over this aperture is generally level, sometimes leaving a ridge or a minute papilla in its center.

Hicks gives drawings showing the disposition of these vesicles or pores on the wings and legs of many of the species examined. He saw nerves running to all of these organs and gives a very good idea concerning their structure, although since our modern technique of making stained sections was entirely unknown in his time we should not expect his drawings to represent the finer anatomy of these pores. He used the following technique:

After cutting off the wing and washing it well in water or spirits of wine, and draining off the major part by blotting paper, I immerse it in spirits of turpentine for a week or two, after which it is placed in Canada balsam between glass in the normal way, taking care not to heat it, as that renders the nerve too transparent. In those parts which are too dark for observation, I have been enabled to render them colorless by Chlorine.

In regard to smell in insects and the function of the pores on the legs Hicks says:

The delicacy with which odours are perceived by many insects argues an olfactory apparatus of considerable perfection; and it seems to me not impossible that these latter named organs [those on the legs] may be in some way connected with the sense of smell, or perhaps with some sense not to be found in the Vertebrata.

To summarize Hicks' three papers, he discovered these pores on the balteres and on the bases of the wings of all Diptera examined; on the bases of all four wings of the four-winged tribes; on the trochanter and femur of all insects, and occasionally on the tibia. He examined many species representing various insect orders and found these pores even on the lower insects, such as the earwig. In such wingless insects as the worker and soldier ants, he infers that these pores are much more abundant on the legs than they are on these appendages in the winged insects. Hicks suggested an olfactory function for all of these pores, whether on the legs or wings, but he performed no experiments of any kind.

Weinland (1890) and several others have made a special study of the halteres or balancers of flies and the sense organs on the bases of these appendages. Weinland distinguishes four kinds of structures on the halteres, all of which are similar in most respects and differ only in minor details. Their internal anatomy is similar to that of Hicks' vesicles. Of these four structures Weinland calls only one of them Hicks' papillæ, and neither he nor anyone else except Hicks and Bolles Lee (1885) has ever attributed an olfactory sense to any of the structures on the balancers.

Guenther (1901) studied the nerve endings found in butterfly wings. He spent a short time on the anatomy of Hicks' vesicles but failed to recognize them as the ones which Hicks first described in 1857. Guenther calls them sense domes (Sinneskuppeln). He describes the external appearance of them as being light spots whose

thin chitin is arched in the shape of a dome. Each light spot is surrounded by a dark, chitinous ring. The internal anatomy consists of a sense cell, sense fiber, and a flasklike cavity with its chitinous cone. All of these parts are almost identical to those in Hymenoptera described by the author but Guenther failed to see the sense fiber join the aperture at the bottom of the flask. Thus his drawing shows a thin chitinous arch or dome which completely closes the external end of the flask, the sense fiber running up against this chitinous dome. If he had prepared more sections and used light colored stains such as safrain and not dark stains like hamatoxylins, he could certainly have seen the sense fiber join the aperture in the dome. Guenther tries to liken these pores to the membrane canals of Vom Rath. A similar dome-shaped membrane was found in the antennæ of lamellicorn beetles by Hauser, Kräpelin, Vom Rath, and others, but these bear a little hair at their center. Hauser attributes an olfactory function to such structures, but Guenther shares the opinion with Vom Rath and Graber that they have an auditory rôle.

Janet (1904) found porelike sense organs in large numbers in all the ants that he examined. These pores are either widely separated or, more frequently, united into groups. They occur on the labial palpi and on the tongue, and there are some on the pharvux, besides many on the legs. Janet recognizes those on the legs as the same vesicles or organs that Hicks describes in 1860. In a wasp (Vespa) and an ant (Formica) their disposition is almost identical with that in the honey bee. Janet's drawings of the superficial aspects of these pores are very similar to those of the author but on account of the small size of the specimens he seems to have had trouble in understanding their internal anatomy. According to him, all the pores, whether on the mouth parts or legs, have a similar structure, and they resemble the structure of the olfactory pores found in the honey bee; however, there are a few slight differences. He calls the chitinous cone an umbel, which is always separated from the surrounding chitin by a chamber. This chamber communicates with the exterior by means of the pore. The sense fiber, or his manubrium, runs into the umbel, and he thinks that it spreads out over the inner surface of the umbel and does not open into the chamber. Thus the umbel forms a thin layer of chitin which separates the end of the sense fiber from the external air. The rôle of these organs is evidently to permit the end of the nerve to become distributed on a surface relatively large and separated from the air only by a thin layer of permeable chitin. Janet fails to give drawings that show the sense fibers running all the way to the umbel and apparently has not seen the way in which the nerves actually end in the umbels.

Janet (1907) describes and gives a drawing of one of these same organs that he found near the articulation of the wing of a queen ant. Its morphology is the same as described above. Thus in ants, according to Janet, we see that Hicks' vesicles are not only found on the legs, but also near the wing articulations and probably also on the mouth parts. According to their anatomy, as Janet describes it, these organs function as some kind of a chemical sense and in fact are as suitable to perceive olfactory stimuli as are the antennal organs, if not more suitable.

Wesché (1904) remarks that a certain bot-fly has a highly developed sense of smell, equal to that of many mammals. This fly has large antennæ containing sense organs that are larger than those in some other flies; some of these organs are known to function as a keen olfactory sense.

I think that where the antenme are not particularly sensitive, the palpi have this structure to compensate. We thus see that the palpi, like the antenme, can bear organs of three senses—touch, taste, and smell; but I do not think that any one palpus has more than two of these senses developed at the same time.

Besides making such broad statements concerning the senses of insects, the same writer describes and gives drawings of some sense organs that he thinks entirely new. Some of these he found on the legs, which are without doubt Hicks' vesicles. He observed these organs in *Vespa* and in many Diptera and his description of their superficial appearance fits what has been seen by the author. Wesché remarks that these organs are possibly auditory or for some unknown sense; however, he says nothing about their internal anatomy or any literature relating to them.

Freiling (1909) spent a short time studying the anatomy of Hicks' vesicles as found in the wings of butterflies. While Guenther found these sense domes (Sinneskuppeln) in great numbers, irregularly scattered on the veins near the base of butterfly wings, Freiling regards them as regularly distributed in the same location. The superficial appearance, as he has drawn it, is similar to that of the bee. He shows a large bipolar sense cell with its sense fiber running to the apparent opening in these organs but he thinks that the sense fiber ends [clublike] just beneath the apparent aperture. He worked three weeks trying to get good sections of these organs and succeeded in getting only one specimen from which he obtained fairly good sections. Freiling gives only one drawing each of the external and the

internal structure of these organs, and the latter is drawn diagrammatically. In this he fails to show the chitinous cone, and the end of the sense fiber is represented as separated from the exterior by the thin layer, forming the dome. On this incorrect interpretation of the anatomy, he, like Guenther, speculates on their probable function and concludes that these sense domes may serve as some kind of a barometric device or as an apparatus for measuring the force of the air against the wing.

Berlese (1909, pp. 678-684) calls all the dome-shaped organs of insects "sensilli campaniformi o papilliformi." The campaniform type is found on the mandibles, antennæ, legs and wings. Their domes never project above the general surface of the surrounding chitin. The papilliform type occurs only on the halteres. Here the domes project above the surface of the chitin. In schematic drawings he shows how the domes may have been derived from a portion of the chitin originally not arched. Berlese regards the function of these organs as unknown.

While studying the morphology of the chordotonal organs in the honey bee and ants, Schön (1911) found two rows of small cones on the proximal end of each tibia. A sense cell lies just beneath each cone and the peripheral end of the sense fiber runs into the cone. These sense cells connect with the chordotonal organ located in the middle and distal end of the tibia. Schön has certainly mistaken Hicks' vesicles for cones, because the external appearance of these vesicles often resembles cones when observed without the cylindrical tibia being properly rotated. These organs always lie near the edge of the tibia, and when one looks down upon them their apertures look like cones, but when the tibia is rotated slightly, so that they lie on the median line of the tibia, the optical illusion becomes evident.

Hochreuther (1912) describes and gives drawings of the dome-shaped organs (kuppelförmigen Organe) in a manner somewhat similar to that of Janet. Each organ is located at the bottom of a chitinous flask, the mouth of which communicates with the exterior. Instead of the peripheral end of the sense fiber coming into direct contact with the air in the flask, it apparently stops just beneath the chitinous dome. No true chitinous cone is present, but his terminal strand (Terminalstrang) resembles it somewhat in general appearance. He finds a few of these dome-shaped organs on the epicranium near the margin of the eyes, 11 on the first and second joints of the antennæ, a few on the dorsal side of the labrum, very few on the dorsal side of the mandibles, several on the maxillæ, about 18 on the first four joints of the first legs, about 10 on the first three joints of

the second legs, and a few on the trochanter of the third legs. He evidently has not examined the wings. Thus according to Hochreuther these organs are rather widely distributed. Since the per-

Fig. 2.--Diagram of ventral view of a worker bee, showing the location of the different groups of olfactory pores as indicated by the numbers.

ipheral ends of the sense fibers do not come into contact with the outside air, but connect with the tops of the domes, he suggests that they receive some kind of mechanical stimuli, although he performed no experiments to determine their function.

The following results were obtained by the author. The disposition of Hicks' vesicles (called olfactory pores by the author) is best understood by referring to the numbers in figures 2, 3 and 4 of the

Fig. 3.—Diagram of dorsal view of a worker bee, showing the location of the different groups of olfactory pores as indicated by the numbers.

honey bee. Groups 1 to 5 lie on the bases of the wings as indicated by the numbers 1 to 5. Groups 6 to 18 lie on the legs. Group 19 to 21 lie on the sting of the worker and queen (fig. 4). The same organs are found on the mouth parts of all the hymenopterous insects

examined, but they have not yet been thoroughly studied. The antennae of the honey bee and probably the antennae of all Hymenoptera do not carry any of the organs first described by Hicks.

The olfactory pores in other hymenopterous insects are similar in position to those of the honey bee. Among the 29 species examined, these pores vary much in the number of groups and in the number of pores contained in the individual groups. As a rule, the lower the insect the fewer the groups and more isolated are the pores. Cimber, regarded as the lowest hymenopteron, has the least number of groups of all the species examined, but it stands fourth in regard to the number of isolated pores. Its total number of pores is larger

Fig. 4.—Diagram of lateral view of a worker bee's sting and its accessory parts, showing the location of the olfactory pores as indicated by the numbers.

than that of many of the higher forms. Among ants the variations are also great. For the legs of ants the number of pores varies from 211 to 356 and for the winged ants the total number varies from 463 to 1,090. The smallest specimen among the ants and the second smallest one of all the Hymenoptera examined is a female with 463 pores as the lowest number. The drone honey bee with 2,608 pores has the highest number. The smallest specimen examined is a wasp with 688 pores. The following table including 6 of the 29 species examined will illustrate the variations in the number of olfactory pores as found on the three pairs of legs and the two pairs of wings. The letters "F," "M," "H" and "G" stand for front, middle, hind and grand, in the order named. The "Total" means all the pores found on all 6 legs, and the "G. total" means all the pores found on all 6 legs and all 4 wings combined.

TABLE I Average number of olfactory pores on the legs and wings of Hymenoptera

				2 F. 1egs.	2 M. legs.	3 H. legs.	Total.	6 F. wings.	4 H. wings.	17 G. total.
Cimbicidæ.	Cimbex	americana Leach.	No. of porce in groups.	17	2	7	:	9 89+.	. 37.3 4	5 9
			No. of isolated pores.	711 9	6 92	6 118	375	9	-	28 1216
Braconidæ.	Microgaster mamestra? Vier.		No. of porce in groups.	21 +2	39 30	36 43	211	319	92	625
E			No. of groups.	∞	x	x	:	:		:
	Formica obscuriventris Forel.	Major.	pores. No. of pores in groups.	to 71	32 76	36 77	332	:	:	<u>:</u>
æ.		· · · -	No. of groups.	\propto	×	∞	<u> </u>	9	+	÷.
Formicidæ.		Winged.	pores.	32 80	33 83	31 83	: :	320	. i	34 760,
ħ			No. of groups. Los of groups.	× ×	χ	x	342	.: .: .:	=	34 7(
		Winged.	Yores No. of pores in groups.	4 ¹ 79	37 79	38 82	9	70t	134	28.892
			No. of groups	- 9	6 3	9	356		:	-87 -87
Vespidæ.	Vespula ma- culata Linn.		ni estoq 10. oK squorg	29	70	† 9	:	1036	τ , τ χ	:
Ve			Xo. of isolated porcs.	90	701 8	- 8 - 8	473	6 1036	: :	34 1957
idæ.	Bombus sp.		squorg.	95 ×		83 8				1
Bombidæ.			No. of isolated force. In No. of pores in	132 (523	to/	00+"	34 1627
	<u> </u>		s luong to .oN	_ ∞	∞	∞	:	9	+	34
	.Apis mellifica Linn.	Apis mellifica Linn.	pores. ni sorot to .o.4 squorg	96		137 101	= :	970	540	1 +0
			No. of groups. No. of isolated	6 128			+69	9	4	28 2204
Apidæ.			ni sorot to. ol. groups.	1 25			_ :	840	470	
			No. of isolated pores.	90			15.2		:	28 1762
			groups.	77 6				1232 6	766 4	
	ħ	φ.	No. of isolated pores. No. of pores in	91			019	1.2	7	2608

In size the olfactory pores vary much. Those of an ant vary more in size than do those of the hornet or honey bee. The pores on the wings are always much smaller than are those on the legs and they vary less in size. In proportion to the sizes of an ant and of a worker honey bee, the pores of the ant are much larger.

Under the microscope with transmitted light the olfactory pores appear as bright spots. At the first glance they resemble hair sockets (fig. 5, PorApHr) from which the hairs have been pulled, but after

Fig. 5.—Group 6 of the olfactory pores from the hind leg of a worker bee, showing the external appearance, x 700.

a closer examination a striking difference is usually seen. Each bright spot is surrounded by a dark line, the pore wall (figs. 5 and 6, PorW). Outside this line the chitin (fig. 5, PorB) may be light or dark in color, but inside the line the chitin (figs. 5 and 6, ChL) is almost transparent, and at the center there is an opening, the pore aperture (figs. 5 and 6, PorAp).

The olfactory pores consist of inverted flasks in the chitin and of spindlelike sense cells lying beneath the mouths of the flasks (fig. 6). About two-thirds of the space at the bottom of the flask is occupied by a hollow chitinous cone (fig. 6, Con) which is not separated from

the surrounding chitin, but only stains less deeply. In a typical olfactory pore the neck (NkFl) of the flask is wide and the mouth (MF) is flaring. The sense fiber (SF) of the sense cell (SC) pierces the bottom of the cone and enters the round, oblong, or slitlike pore aperture (PorAp). The nerve fiber (NF) soon runs to a nerve. It is thus seen that the cytoplasm (Cyt) in the peripheral end of the sense fiber comes in direct contact with the air containing odorous particles and that odors do not have to pass through a hard membrane in order to stimulate the sense cells as is claimed for the antennal organs.

To determine the function of these pores the wings, legs and stings of many worker honey bees were mutilated. The behavior of the mutilated bees was carefully studied, and they were tested with odors

Fig. 6.—Cross section of a typical olfactory pore with its sense cell (SC) from the tibia of the hind leg of a worker bee, x 700.

in the same manner as were unmutilated ones. The stings of 100 workers were pulled out. These bees lived 30 hours on an average. Twenty of them were tested with odors. They responded only slightly more slowly than unmutilated bees. The wings of 28 workers were pulled off. When tested with odors, these bees responded one-eighth as rapidly as normal bees. The bases of the wings of 20 workers were covered with liquid glue. When tested, these bees responded also one-eighth as rapidly as unmutilated ones. The pores on the legs of 20 workers were covered with a mixture of beeswax and vaseline. When tested, these bees responded two-fifths as rapidly as unmutilated workers. The wings were pulled off and the pores on the legs of 20 workers were covered with the beeswaxvaseline mixture. When tested with odors, these workers responded one-twelfth as rapidly as unmutilated workers. All of the workers with mutilated wings and legs lived just as long in the observation cases as did unmutilated workers, and they were absolutely normal

in all respects except that they reacted to odors more slowly. Controls proved that the odors themselves from the glue and beeswax-vaseline mixture did not affect the reaction times.

The preceding experiments were repeated by using ants and hornets with mutilated wings and legs. When tested with the odors from the oil of peppermint, oil of thyme, oil of wintergreen, honey and comb, leaves and stems of pennyroyal, and formic acid from other ants, four deälated females of *Formica* gave a reaction time of 2.89 seconds. The reaction time for winged females of the same species is 2.45 seconds. The niches from which wings of these four females arises were examined. In seven of the eight niches, pores were seen.

All four wings of each of 25 virgin females of Formica were pulled off. When tested with the above six odors, these ants gave a reaction time of 2.85 seconds. After an examination it was found that 62 per cent of the detached wings had broken off just beyond the groups of pores, thus the pores on only 38 per cent of the wings were lost. When the wings are shed naturally only 21 per cent of the pores are lost, while 79 per cent are not prevented from functioning, because the wings devoid of pores always break off at a weak place in the chitin just distal to the groups of pores. Furthermore, sections through the stubs of the wings of dealated females show that the sense cells are normal.

The wings of 7 males of *Formica* were pulled off. When tested with the six odors, these ants gave a reaction time of 3.50 seconds, while the reaction time for the same ants before the wings were pulled off is 2.63 seconds. They were normal in all respects other than their slowness in responding to odors. Only 8 per cent of the pores belonging to the wings were left intact while 92 per cent were pulled off with the wings.

The bases of the wings of 25 winged females of *Formica* were covered with liquid glue and the pores on the legs were covered with the beeswax-vaseline mixture. Confined singly these ants were not able to remove the glue, but they did remove much of the vaseline and smeared some of it over their spiracles, which certainly accounts for their short lives. When tested, they gave a reaction time of 5.21 seconds, which is slightly more than twice the reaction time for their unmutilated sister females.

• When tested, 25 dealated females of *Camponotus* gave a reaction time of 3.25 seconds. Their wing niches were filled with liquid glue thus covering the pores on the stubs of the wings, and the pores

on the legs were covered with the beeswax-vaseline mixture. These females now appeared normal in all respects other than their slowness in responding to odors. When tested, they gave a reaction time of 7.94 seconds, which is more than twice the reaction time obtained before using the glue and vaseline.

The wings of 25 males of *Camponotus* were pulled off. These ants appeared normal in all respects except their slowness in responding to odors. When tested, they gave a reaction time of 3.49 seconds, which is one and a fourth times the reaction time of unmutilated males. Only 12 per cent of the pores on the wings were left intact.

The wings of 21 workers of *Vespula maculata* were pulled off. These hornets appeared normal in all respects other than their slowness in responding to odors. When tested with the three essential oils, they gave a reaction time of 6.35 seconds, which is almost three times the reaction time for sister hornets with wings intact. Only 22 per cent of the pores on the wings were left intact.

OLFACTORY ORGANS ON THE APPENDAGES AND STERNUM OF SPIDERS

In 1878 Bertkau noticed some slitlike cuticular organs on the legs of spiders. Since that date five other observers, including the present writer, have studied these structures. They are called lyriform organs on account of their shape.

The author (1911) made a special study of the morphology and physiology of the lyriform organs of spiders. He used in his studies 39 species representing 27 of the 38 families. These organs in spiders exist both as isolated slits and as groups containing several slits, and their position is relatively constant. The groups are located at the distal end of each joint of the legs, pedipalpi, chelicera (mouth parts), pedicle, and spinnerets. They exist on both sides of the foregoing appendages and as a rule each joint of the legs and pedipalps possesses the following number of groups: Coxa I, trochanter 3, femur 2, patella 3, tibia 3, metatarsus 1, and occasionally the tarsus I; each cheliceron usually has 4, each pedicle 2, and only occasionally is a group present on one of the spinnerets. The isolated slits not only occur irregularly scattered on the joints of all the above-named appendages, but also on the remaining mouth parts, on the sternum, and a few on the ventral side of the abdomen. Thus it is seen that the disposition of the lyriform organs is similar to that of Hicks' vesicles; however, the vesicles are situated at the proximal instead of the distal ends of the joints and less seldom exist as isolated structures irregularly distributed, as are the isolated slits. A few of Hicks' vesicles exist on the mouth parts but none is found on the sternum and abdomen, except those in the sting, which might be compared in position to the lyriform organs on the spinnerets of spiders. Since spiders have no wings, possibly all the slits on the mouth parts, sternum, pedicle, and the ones on the abdomen exclusive of those on the spinnerets, replace all the pores that exist on the wings of insects.

A great difference in the number of groups and isolated slits was found in the different species. The spiders that hunt for their food and use no webs in capturing their prey, without exception have the most slits, while those that live in caves and catch their food entirely by means of webs have the least number. The common cobweb spider (Theridium tepidariorum) catches its prey wholly by webs; it does not live in caves and may be considered as intermediate between hunting spiders with highly developed lyriform organs and cave spiders with degenerated lyriform organs. By counting all the slits on the surface of this cobweb spider, we find that an average spider possesses 1,770 slits, whereas considering an average worker bee, we have already seen that it possesses 2,270 pores. As stated by the other observers, lyriform organs have now been found in 7 of the 9 orders belonging to the Arachnida.

A lyriform organ is composed usually of several single slits which lie side by side and more or less parallel with each other. group of slits is generally surrounded by a border, produced by a difference in pigmentation, which gives the lyre shape to the organ. Inside the border the pigmentation is usually much lighter than outside; hence a group appears as a light spot, while the superficial appearance of a slit reminds one of a long, slightly bent spindle that has an aperture either at the center or nearer one end than the other. A cross section of a slit shows that the aperture passes entirely through the cuticula and unites with the sense fiber of a large spindlelike sense cell lying at the base of the thick hypodermis. a cross section of a slit with its sense fiber may be likened to a greatly flattened funnel. The innervation of a lyriform organ is identical with that of a group of olfactory pores, except that in the former the sense fibers unite with the base of the apertures, whereas in the latter the sense fibers connect with the top of the apertures.

So far as the writer knows, structures similar to lyriform organs and Hicks' pores have never been looked for in crustaceans. It is very probable, however, that this class of arthropods possesses some kind of organs that take the place of lyriform organs and Hicks' pores.

While experimenting with odors, it was found that spiders possess a true olfactory sense. Many individuals of two species representing two widely separated genera were used. They responded not only to five different essential oils, which are sometimes regarded as irritants, but also to both fresh and decayed buttercup flowers, decayed snails, squash bugs, and Phalangids. The usual reaction is to move away from the odor, but they also quickly moved their pedipalpi, chelicera and legs, and very often rubbed their legs and other appendages. The average reaction time of a ground spider (Lycosa lepida) to oils of peppermint, thyme and wintergreen was 9 seconds and for a jumping spider (Phidippus purpuratus) 4.6 seconds, while for the worker bee the same average is only 2.6 seconds. The differences in reaction time may be explained by the fact that Lycosa is rather sluggish, Phidippus is very active, while the bee is extremely lively. However, as a worker bee possesses 500 pores more than a spider and since it responds about twice as quickly it would appear that its sense of smell is more highly developed.

All the lyriform organs (single slits not included) on the legs, pedipalpi, chelicera, mouth parts, and sternum were carefully varnished with yellow vaseline. The following day they were tested with the five oils—peppermint, thyme, wintergreen, clove and bergamot. Thus it was ascertained that they responded nine times more slowly after varnishing than before.

Hindle and Merriman (1912) proved experimentally that Haller's organ is olfactory in function and that it is a means by which ticks are able to recognize their hosts. In *Hamaphysalis punctata* this organ consists of a minute cavity, containing sensory hairs, and is associated with a specially modified region of the hypodermis. In ticks (Acarina) it is always located on the external dorsal surface of the tarsus of the first pair of legs. Hansen (1893) found a few scattered lyriform organs in acarinids which may also aid in receiving odor stimuli.

SUMMARY OF AUTHOR'S EXPERIMENTS

The following table is a tabulated summary of the author's experiments with spiders and Hymenoptera to determine the location of the olfactory organs. The odors used for the spiders are those from the essential oils of peppermint, thyme, wintergreen, clove, and bergamot. The "three odors" used for the Hymenoptera are those from oil of peppermint, oil of thyme, and oil of wintergreen. The

TABLE II

Summary of author's experiments with spiders and Hymenoptera to determine the location of the olfactory organs

	Experiment.	Averag tion	e reac- time.	N- of	Average length	
Species.		for for three six odors.		No. of indi- vid- uals tested.	of life in cap- tivity.	
		Sec.	Sec.		Days.	Hrs.
♀Phidippus	Unmutilated. Normal in behavior.		5.0	1 I		
Ŷ 	Pedipalpi pulled off. Normal in behavior.	· · · · · ·	5.2	11		
φ	Pedipalpi and maxillæ pulled off. Normal in behavior.	· · · · · ·	6.0	ΙΙ		
♂+♀Lycosa	Unmutilated. Normal in be-		7.0	15		
? +♀ "	havior. Lyriform organs covered with vaseline. Normal in behavior.		61.0	15		
♀Formica	Unmutilated. Winged, nor- mal in behavior.	2.I2	2.45	25	14	10
ç "	Funiculi cut off. Abnormal in behavior.	4.38		25	О	19
Ŷ ·	Funiculi glued. Abnormal in behavior.	5.78		25	6	О
ç "	Dëalated. Normal in behavior.	2.50	2.89	4	142	О
ç	Wings pulled off. Normal in behavior.	2.32	2.85	25	10	o
¢ "	Bases of wings glued and legs covered with vaseline. Normal in behavior.	4.73	5.21	25	3	. 0
,	Unmutilated. Winged, normal in behavior.	2.21	2.63	17		ed low.
?	Wings pulled off. Normal in behavior.	3.00	3.50	7	5	0
ECamponotus	Dealated. Normal in behavior.	2.32	3.25	25		eral ths.
*	Glue in wing niches and legs covered with vaseline. Normal in behavior.		7.94	22		eral ths.
	Winged. Normal in behavior.	2.29	2.74	25	23	9
•	Wings pulled off. Normal in behavior.	2.91	3.49	25	, 7	2
∛ Major Campo- notus	Unmutilated. Normal in be- havior.	2.32	3.22	25	. 26	8
Minor Cam-	Unmutilated. Normal in behavior.	2.27	3.09	25	26	8
ponotus ∛Vespula ,	Unmutilated. Winged, nor- mal in behavior.	2.43		25	9	. 7
	Flagella cut off. Abnormal in behavior.	3.09		25	I	13
	Wings pulled off. Normal in behavior.	6.35		21	4	8

TABLE II-Continued

Summary of author's experiments with spiders and Hymenoptera to determine the location of the olfactory organs

		Average reac- tion time.				
Species.	E_{X} periment.	for three six odors.		No. of indi- vid- uals tested.	Average length of lite in captivity.	
		Sec.	Sec.		Days.	Hrs.
4 Apis	Unmutilated. Winged, nor- mal in behavior.	2.64	3.40	37	9	.3
· · · · · · · · · · · · · · · · · · ·	Maxillæ and labial palpi cut off. Abnormal in behavior.	3 - 3	4.0	19	ī.	0
¥ 4	Proboscis cut off. Abnormal	2.9		22	O	7
* "	Mandibles cut off. Abnor- mal in behavior.	3.5	4.8	20	7	0
* **	Flour paste in mouth. Abnormal in behavior.	2.68		20	7	1.2
* "	Wings cut off beyond pores. Normal in behavior.	3.0		17	9	2,3
: "	Stings extracted. Normal in behavior.	2,86		20	I	6
: "	Glue on thorax as control. Normal in behavior.	2.76		19	9	.3
* · · · · · · · · · · · · · · · · · · ·	Vaseline on abdomen as con-	2.73		18	9	3
·	trol. Normal in behavior. Flagella burned off. Abnor-	4.00		7	o	17
* "	mal in behavior. Flagella glued. Abnormal	2.90		21	1	O
÷	in behavior. Wings pulled off. Normal	22,20	27.10	28	9	20
·	in behavior. Bases of wings glued. Nor-	18.50	28.20	20	9	3
·	mal in behavior. Pores on legs covered with yaseline. Normal in be-	5.20	8,00	20	9	3
٢ "	havior. Wings pulled off and pores on legs covered with vas- eline. Normál in behavior.	36.90	40.00	20	9	5

"six odors" used for the ants and hornets are those from oil of peppermint, oil of thyme, oil of wintergreen, honey and comb, leaves and stems of pennyroyal, and formic acid. The "six odors" used for the honey bees are the same as those used for ants and hornets, except pollen was employed instead of formic acid.

The preceding table shows the following: (1) When the pedipalpi (slightly comparable to the antenna of insects) of spiders are pulled off, the arachnids are normal in behavior and the reaction time is practically the same as when unmutilated individuals are

used. (2) But when the antennæ of Hymenoptera are mutilated in the slightest degree, the insects are abnormal, and the reaction times are slower than when unmutilated individuals are used, although it is quite possible that the slower reaction times are caused by the abnormal behavior of the insects rather than due to the theory that some of the olfactory organs are prevented from functioning. (3) When the maxillæ of spiders are pulled off, no abnormal behavior results, but the reverse is true for the honey bee. In both cases the reaction time is slightly slower. (4) When the mouth parts of honey bees are mutilated, the insects are abnormal and the reaction times are slightly increased, which may be due to the abnormality of the insects, or to the view that the pores on these appendages are prevented from functioning, or to both of these conditions combined. (5) When the wings are pulled off artificially, most of the pores on these appendages are lost and the reaction times are considerably increased. (6) When the pores on the wings are covered with glue the reaction times are much increased. (7) When most of the pores on the legs are covered with vaseline, the reaction times are greatly increased. (8) When either spiders or Hymenoptera are so mutilated that most of the olfactory pores are prevented from functioning, the reaction times are increased many times, and the mutilated individuals used are absolutely normal in all respects other than their ability to smell.

DISCUSSION

The following criticisms concerning the physiological experiments performed with the antennæ of various insects may be offered. Most of the previous observers have studied the behavior of the insects investigated in captivity for only a short time, while the remainder have paid no attention at all to the behavior of their unmutilated insects. They cut off either a few joints of both antennæ, or these entire appendages, or varnished them with paraffin, rubber, etc. When a few joints are severed the sense of smell is apparently weakened. This is true for bees also as ascertained by the author. When both antennæ are amputated or varnished the insects, as a rule, fail to respond to substances which normally affect the olfactory sense. They generally fail to respond to odors held near them and fail to find food in captivity, and do not return to putrid meat and dead bodies when removed from such food. Males so mutilated do not as a rule, seek females and show no responses when females are placed near them. Such experiments were seriously criticised until Hauser in 1880 presented his apparently conclusive results. Many

of the insects on which he experimented with the antennæ amputated became sick and soon died. Most of them failed to respond when the antenne were mutilated, although Carabus, Meloloutha, and Silpha responded slightly, while all the Hemiptera that he used responded almost as well with their antennæ off as they did with them intact. Only 40 per cent of the ants from which Miss Fielde cut the antennæ recovered from the effect of the shock. Not one of these observers has studied the behavior of the species under observation sufficiently to know exactly how long they live in captivity with their antennæ either intact or mutilated. No one, except Miss Fielde, has kept a record of the death of the mutilated and normal insects accurate enough so that one might know what percentage died from the operation. To cut off some other appendage or even the lower part of the head, as Forel did, is not a fair test, because such operations seldom expose sense cells and never any nerve equal in size to that of the antennæ, unless one pulls off the wings. When the wings are pulled off the large nerve is severed between the masses of sense cells and thorax, and the sense cells are not exposed to the air, as they are when antennæ are cut off. Even if the antennæ are cut through the scape, the large masses of sense cells belonging to Johnston's organs are severed. When the lower part of the head or the tarsi are cut off, as Forel did, no nerves are exposed to the air except ends of small nerves. From the foregoing it is only reasonable to assume that when the antennæ of any insect are injured in the least degree, the insect is no longer normal and if it fails to respond to odors placed near it, this negative response may be caused by the injury.

The following criticisms based on a consideration of the morphology of the antennæ may also be offered. In the honey bee the pore plates can scarcely be considered as olfactory organs, because the drone has almost eight times as many as the queen, and responds to the odors presented in slightly more than one-half the time. It is true that those of the queen are considerably larger, but even on this basis the reaction times are not comparable. The pegs may be entirely eliminated as olfactory organs, because they are absent in the drone, but are abundant in the worker and the queen. Drones, queens and workers have about the same number of Forel's flasks and pit legs. Schenk's view that the pegs receive odor stimuli in the queens and workers, while Forel's flasks and the pit pegs function in this way in the drones is inconsistent, because if the latter two structures function for such a purpose in the drones why should

they not also in the females? Since these two structures are few in number and many times smaller than the pegs, we cannot compare them physiologically. Thus it is seen that not one of these antennal organs of the honey bee offers a solution for the ratios obtained with the use of the various odors. If the reaction time of each caste of the honey bee is compared with the total number of olfactory pores a consistent inverse ratio is obtained. A drone has 2,600 pores and responds in 2.9 seconds; a worker possesses 2,200 pores and responds in 3.4 seconds and a queen has 1,800 pores and responds in 4.9 seconds.

Pore plates are not the olfactory apparatus in all insects, because they are entirely absent in the Lepidoptera. The pegs cannot be the olfactory organs in all insects, for they are absent in many male bees and almost wanting in Lepidoptera, although possibly the end rods in butterflies and moths are homologous. According to Vom Rath, pegs are found not only on the antennæ and mouth parts but also all over the body, and Nagel found them elsewhere than on the antennæ. If the pegs are the olfactory organs and if insects with amputated antennæ are normal, then why do not such insects respond positively at least slightly to odors instead of negatively, as most observers claim?

It is certain that spiders can smell, yet they have no antennae nor any organs that may be compared to the antennal organs of insects. Hence, this is another argument against the antennæ as being organs of smell. All insects either have antennal organs like those described for the bee, or modifications of them, yet no two authors who have studied them have agreed concerning their function. Such chaos can be replaced by facts, only when the behavior of the insects investigated is thoroughly studied and when experiments are performed in ways other than on the antennæ alone. Then it will be realized that the antennæ can no longer be regarded even as a possible seat of the sense of smell in insects.

In conclusion, it seems that the organs called the olfactory pores by the author are the true olfactory apparatus in Hymenoptera and possibly in all insects and that the antennæ play no part in receiving odor stimuli.

LITERATURE CITED

The authors marked with an * were not accessible to the writer, and their views are cited from the writings of others.

ÆLIANI. 1744. De Animalibus, quæ Apibus inimica sunt. Natura Animalium, Londini, t. l. Lib. I, Cap. 58, p. 60.

- ARISTOTLE. The works of Aristotle, translated into English, vol. 4. Historia Animalium by Thompson, Oxford, 1910. Book 4, 8, p. 534a.
- Balbiani, E. G. 1866. Note sur les antennes servant aux insectes pour la recherche des sexes. Ann. Soc. Ent. France, t. 6, (4), Bul., p. xxxyiii.
- Barrows, W. M. 1907. The reactions of the pomace fly, *Drosophila ampelophila* Loew, to odorous substances. Journ. Exp. Zool., vol. 4, pp. 515-537.
- Baster, Job. 1770. Over het Gebruik der Sprieten by de Insecten. Hollandsche Maatschappye der Weetenschappen te Haarlem. (2 Deel, pp. 147-182.
- Bergmann und Leuckart. 1852. Anat.-physiol. Uebersicht des Theirreichs, pp. 453-454.
- Berlese, Antonio. 1906-1909. Gli insetti, vol. 1, pp. 610-633.
- Bertè, F. 1877. Contribuzione all'anatomia ed alla fisiologia della antenne degli Afanitteri. Atti Reale Accad. dei Lincei, vol. 2, serie terza, Roma 1877-1878, pp. 24-29, with 1 pl.
- Bonnet, Charles. 1781. Collection des œuvres, t. 7, pp. 124-125.
- *Bonnsdorf. 1792. De fabrica, usus differentiæ palparum in insectis. Dissertatio, Aboæ.
- Börner, Carl. 1902. Ueber das Antennalorgan III der Collembolen, etc. Zool. Anz., Bd. 25, pp. 92-106.
- Breithauft, P. F. 1886. Ueber die Anatomie und die Functionen der Bienenzunge. Arch. f. Naturgesch., Bd. 52, pp. 47-112, with 2 pls.
- Brullé. 1840. Introduction à l'histoire naturelle des Insectes Coléopteres by Castelnau, t. 1, pp. 78-79.
- Burmeister, II. 1836. Manual of entomology, translation by W. E. Shuckard, pp. 297-298.
- Carus. 1838. Traité d'anatomie comparée, t. 1, paragraph 411, pp. 216-217.
- Chadima, Jos. 1873. Ueber die von Leydig als Geruchs-Organe bezeichneten Bildungen bei den Arthropoden. Mittheil, d. naturwissenschaft. Ver. für Steiermark, Graz. pp. 36-44.
- Chatin, J. 1880. Les organes des seus dans la série animale, Paris, pp. 274-281.
- Child, C. M. 1894a. Beiträge zur Kenntnis der antennalen Sinnesorgane der Insecten. Preliminary communication. Zool. Anz., 17 Jahrg., pp. 35-38.
- —— 1894b. Ein bisher wenig beachtetes antennales Sinnesorgan der Insekten, mit besonderer Berücksichtigung der Culiciden und Chironomiden. Zeitsch. f. wiss. Zool., Bd. 58, pp. 475-528.
- CLAPARÈDE. 1858. Zur les prétendus organes, auditifs des antennes chez les Coléopteres lamellicornes et autres insectes. Ann. Sci. Nat., Zool., t. 10 (4), pp. 236-250.
- CLAUS, C. 1872. Grundzüge der Zoologie, Zweite Autlage, p. 570.
- *Comparetti. 1800. Dinamica animale degli insetti, 2, Padoue, p. 442.
- Cornalia. 1856. Monografia del bombice del gelso. Memoria dall' I. R. Instituto Lombardo di Scienze, Milan, pp. 304-305.
- Cottreau, Jean. 1905. L'odorat chez les insectes. La Nature, Ann. 34, Sem. 1, p. 39.

CUVIER. 1805. Leçons d'anatomie comparée, t. 2, p. 675.

Dahleren Ulric and Kepner, W. A. 1908. Principles of animal histology. New York. MacMillan Co., pp. 264-266.

DE BLAINVILLE. 1822. Principes d'anatomie comparée, vol. 1, p. 339.

Dönhoff. 1801. Vom Geruchsorgan der Bienen, Bd. 1, Bienenzeitung, Theoretischer Theil, pp. 507-500.

DRIESCH, 1839. Odorat des insectes. Journ. l'Institut, Paris, t. 7, No. 294 p. 279.

Dubois, R. 1890. Sur la physiologie comparée de l'olfaction. Comptes Rendus. Acad. Sei. Paris, t. 111, pp. 66-68.

DUFOUR, LÉON. 1850. Quelques mots sur l'organe de l'odorat et sur celui de l'ouie dans les insectes. Ann. Sci. nat., Zool., t. 14 (3), pp. 179-184.

Dugés. 1838. Traité de physiologie comparée, t. 1. pp. 160-161.

Duméril. 1797. Extrait d'une dissertation sur l'organe de l'odorat dans les insectes. Bul. Soc. Philom., Paris, vol. 1, second part, p. 34.

DUPONCHEL. 1840. Réflexions sur l'usage des antennes dans les insectes. Revue Zoologique de M. Guerin Méneville, Paris, pp. 75-79.

*Erichson. 1847. De fabrica et usu antennarum in insectis Berolini, typis fratrum Unger, 4, (15 pag., 1, Kupfertafel).

Fabre, J. H. 1882. Nouveaux souvenirs entomologiques. Paris, pp. 29-32.

Fabricius, I. C. 1778. Philosophia Entomologica.

FIELDE, A. M. 1901a. A study of an ant. Proc. Acad. Nat. Sci. Phila., vol. 53, pp. 425-449.

---- 190th. Further study of an ant. *Ibidem*, pp. 521-544.

--- 1903a. Artificial mixed nests of ants. Biol. Bul., vol. 5, no. 6, November, pp. 320-325.

——— 1904. Power of recognition among ants. Biol. Bul., vol. 7, no. 5, October, pp. 227-250.

——— 1905. The progressive odor of ants. Biol. Bul., vol. 10, no. 1, December, pp. 1-10.

— . 1907. Suggested explanations of certain phenomena in the lives of ants, with a method of tracing ants to their respective communities. Biol. Bul., vol. 13, no. 3, August, pp. 134-137.

Forel, Auguste. 1874. Les fourmis de la Suisse. Ouvrage Soc. Helvétique des Sci. Nat.

— 1878a. Beitrag zur Kenntniss der sinnesempfindungen der Insekten. Mittheil. d. Münchener Ent. Ver., 2 Jahrg., 1 Heft, p. 21.

Verhdlgn. v. internat. zool.-Congr., Berlin, pp. 806-815.

- Freiling, Hans H. 1909. Duftorgane der werblichen Schmetterlinge nebst Beiträgen zur Kenntnis der Sinnesorgane auf dem Schmetterlingsflügel und der Duftpinsel der Männehen von Danais und Euplea. Zeitsch. f. wiss. Zool., Bd. 92, pp. 210-290 with 17 text figs. and 6 pls.
- Garnier, M. J. 1800. De l'usage des autennes chez les insectes. Mém. d'Acad. des Sci. d'Amiens, t. 1 (2), pp. 480-501.
- Gegenbaur, C. 1870. Grundzüge der vergleichenden Anatomie, Zweite Auflage, pp. 387-388.
- GOUREAU, 1841. Ann. Soc. Ent. France, t. 10, Bul. pp. xii-xv.
- Graber, Veit. 1878. Ueber neue otocystenartige Sinnesorgane der Insekten. Arch. f. Mikr. Anat., Bd. 16, pp. 36-57.

- GRIMM, O. v. 1809. Bettrag zur Anatomie der Fuhler der Insekten. Bul. L'Acad. Imp. des Sci. de St. Pétersbourg, t. 14, pp. 66-74.
- GUENTHER, KONRAD. 1901. Ueber Nervenendigungen auf dem Schmetterlingsflügel. Zool. Jahrb., Anat., vol. 14, pp. 551-572, with 1 pl.
- HANSEN, H. J. 1893. Organs and characters in different orders of arachmids. Entomologiske Meddelelser, pp. 136-251.
- Harring, P. 1879. Reukorgaan der insekten. Album der Natuur, Haarlem. Wetensch. Bijblad, p. 71.
- HAUSER, GUSTAV. 1880. Physiologische und histologische Untersuchungen über das Geruchsorgan der Insekten. Zeitsch. f. wiss. Zool., Bd. 34, Heft. 3, pp. 367-403, with 2 pls.
- Henneguy, L. F. 1904. Les insectes, Paris, pp. 138-139.
- HERMBSTÄDT, FRIED. 1811. Ueber die Gerüche und die physischen Ursachen ihrer Erzeugung. Der Gesellschaft Naturforschender Freunde zu Berlin, Jahrg. 5, pp. 111-124.
- Піскs, J. B. 1857. On a new organ in insects. Journ. Linn. Soc. London, Zool., vol. 1, pp. 136-140, with 1 pl.

- HINDLE, E. and MERRIMAN, G. 1912. The sensory perceptions of Argas persicus. Parasitology, vol. 5, no. 3, September, Cambridge Univ. Press, pp. 214-216.
- Hochreuther, Rudolf. 1912. Die Hautsinnesorgane von *Dytiscus marginalis* L., ihr Bau und ihre Verbreitung am Körper. Zeitsch, f. wiss. Zool., Bd. 103, pp. 1-114.
- Huber, Francois. [Quoted by Jurine L., 1807.] Nouville Méthode de classer les Hyménoptères, t. 1. Genève, Introd., pp. 8-9.
- 1814. Nouvelle observations sur les abeilles, t. 2, sec. édit. pp. 375-393.

- Janet, Charles. 1904. Observations sur les fourmis. Limoges, pp. 17-22.
- 1907. Anatomie du corselet et histolyse des muscles vibrateurs, après le vol nuptial, chez la reine de la fourmis (*Lasius niger*). Limoges, pp. 46-48.
- Joseph, G. 1877. Ueber Sitz und Bau der Geruchorgane bei den Insecten. Ber. 50 Vers. Deutscher Naturf. und Aerzte, München, pp. 174-176.
- Kellogg, V. L. 1907. Some silkworm moth reflexes. Biol. Bul. vol. 12, no. 3, February, pp. 152-154.
- Kirby and Spence. 1826. Introduction to entomology, vol. 3, pp. 455-456 and vol. 4, pp. 249-255.
- *Knoch. 1798. In Lehmann's De sensibus externis animalium, etc.
- *Krapelin, Karl. 1883. Ueber die geruchsorgane der Gliederthiere, Hamburg.
- Küster. 1844. Zool. Notizen. (Die Fühlhörner sind die Riechorgane der Insecten.) Isis von Oken, pp. 647-655.
- Lacordaire, 1838. Introduction à l'entomologie, t. 2, pp. 228-234.
- Landois, H. 1868. Das Gehörorgan des Hirschkafers (*Lucanus cervus*). Arch. f. Mikr. Auat. Bd. 4, pp. 88-95.
- LATREILLE. 1804. Histoire naturelle des crustacés et des insectes, t. 2, pp. 49-51.
- LAYARD, CONSUL E. L. 1878. Smell and hearing in insects. Nature, vol. 18, pp. 301-302.
- *Lee, A. Bolles. 1855. Les balanciers des Diptères. Rec. Zool. Suisse, t. 2. Lefebyre, Alex. 1838. Note sur le sentiment olfactif des antennes. Ann. Soc. Ent., France, t. 7, pp. 395-399.
- *Lehmann. 1799. De usu antennarum, Leipsig, p. 27.
- Lespes, Ch. 1858. Mémoire sur l'appareil auditif des Insectes. Ann. Sci. Nat. Zool., t. 9, (4), pp. 225-249.
- Lesser, P. 1745. Théologie des insectes, translated from the German by Lyonnet, t. 2, pp. 7, 8, 11, 12.
- LEYDIG, FRANZ. 1860. Ueber Geruchs und Gehörorgane der Krebse und Insecten. Arch. f. Anat. und Phys., pp. 265-314, with 3 tables.
- Lowne. 1870. The organs of hearing and smell in insects. Amer. Naturalist, vol. 4, p. 127.
- Lubbock, Sir John. 1877. On some points in the anatomy of ants. Monthly Micr. Journ., vol. 18, pp. 121-142.
- *_____ 1883. Ameisen, Bienen und Wespen. Internat. wiss. Bibl., Bd. 57, p. 197 ff.
- Lyonnet, P. 1745. In Lesser's Théologie des insectes, t. 2, p. 9 in note.
- MARCEL DE SERRES. 1811. De l'odorat, et des organes qui paroissent en etre le siège, chez les Orthòpteres. Ann. du Muséum d' Hist. Nat., t. 17, pp. 426-442.

- MAYER, PAUL. 1878. Sopra certi organi di senso nelle antenne dei Ditteri. Reale Accad. dei Lincei, Roma, pp. 3-12, with 1 pl.
- McIndoo, N. E. 1911. The lyriform organs and tactile hairs of araneads. Proc. Phila. Acad. Nat. Sci., vol. 63, pp. 375-418, with 4 pls.
- ----- 1914a. The olfactory sense of the honey bee. Journ. Exp. Zool., vol. 16, no. 3, April, pp. 265-346, with 24 text figs.
- Müller, H. 1871. Anwendung der Darwinschen Lehre auf Bienen. Leppstadt, pp. 63-68.
- *NAGEL, W. A. 1892. Die neidern Sinns der Insekten. Tübingen.

- Newport, George, 1838. On the use of the antennæ of insects. Trans. Ent. Soc. London, vol. 2, pp. 229-248.
- Noll. 1869. Feiner Geruch bei Schmetterlingen. Zoolog. Garten, Bd. 10, pp. 254-255.
- OLIVIER, 1789. Article on "Antennes et Antennules." Encyclopédie méthodique, p. 142.
- Paasch, A. 1873. Von den Sinnesorganen der Insekten im Allgemeinen, von Gehör- und Geruchsorganen im Besondern. Troschel's Arch. f. Naturgesch., 39 Jahrg., pp. 248-275.
- Packard, A. S. 1870. Abdominal sense-organs in a fly. Amer. Naturalist, Essex Institute, vol. 4, pp. 690-691.
- Peckham, G. W. and E. G. 1887. Some observations on the special senses of wasps. Proc. Nat. Hist. Soc. of Wisconsin, pp. 91-132.
- Percheron, A. 1841. Essai sur la valeur relative des organes dans les insectes, pour servir de base à une classification de ces animaux. Comptes Rendus Acad. Sci., Paris, t. 13. p. 1101.
- Perris, Ed. 1850. Mémoire sur le Siège de l'Odorat dans les Articulés. Ann. Sci. Nat., Zool., t. 14, (3), pp. 149-178.
- Piéron, H. 1906. Le rôle de l'olfaction dans la reconnaissance der fourmis. Comptes Rendus Acad. Sci. Paris, t. 143, pp. 845-848.
- Pierret. 1841. Ann. Soc. Ent. t. 10, Bul. pp. 10-11.
- Plateau, Félix. 1885. Expériences sur le rôle des Palpes chez les arthropodes maxillés. Première partie, palpes des insectes broyeurs. Bul. Soc. Zool. de France, vol. 10, pp. 67-90.
- PLINY. Histoire naturelle de Pline, traduction nouvelle par M. Ajasson de Grandsagne, t. 7, Paris, 1830, Livre 10, 90 70, p. 351.
- PORTER, C. J. A. 1883. Experiments with the antennæ of insects. Amer. Naturalist, vol. 17, pp. 1238-1245.

RAMDOHR. 1811. Ueber die Organe des Geruchs und Gehörs der gemeinen Biene. Magazine der Gesellschaft naturf. Freunde zu Berlin, 5 Jahrg., pp. 386-390.

RÉAUMUR. 1734. Mémoires à l'histoire des insectes, t. 1, Paris.

REICHENBACH, H. 1879. Allgemeines über Sinnesorgane. Vortrag. Bericht über die Senkenberg, naturf. Ges., p. 136.

*Robineau-Desvoid, 1828, Recherches sur l'organisation vertébrale des crustacés et des insectes.

----- 1842. Sur l'usage réel des antennes chez les insectes. Ann. Soc. Ent. France, t. 11, Bul., pp. xxiii-xxvii.

Röhler, Ernest. 1905. Beiträge zur Kenntnis der Sinnesorgane der Insecten. Zool. Jahrb. Anat., 22, pp. 225-288, with one text fig. and 2 pls.

Romanes, G. J. 1877. Smell and hearing in moths. Nature, vol. 17, p. 82.

RÖSEL und KLEMANN. 1747. Insecten Belustigung, Theil I, p. 19 under "Geruch in Register."

ROSENTHAL, 1811. Ueber den Geruchsinn der Insekten. Reil's arch. f. die Physiologie, T. 10, Halle, p. 427.

RULAND, FRANZ. 1888. Beiträge zur Kenntnis der antennalen Sinnesorgane der Insekten. Zeitsch. f. wiss. Zool., Bd. 46, pp. 602-628.

Samouelle, George, 1819. Entomologist's Compendium, London, pp. 26-27. Sazepin. Basil. 1884. Ueber den histol. Bau und die Vertheilung der nervösen Endorgane auf den Fühlern die Myriopoden. Mém. de l'Acad. Impér. d. Sci. de St. Pétersburg, t. 32 (7), no. 9, pp. 1-20.

*Schelver, 1798. Versuch einer naturgeschichte der Sinneswerkzeuge bei den Insekten, in — 8°, Gottingæ, p. 46.

Schenk, Otto. 1903. Die antennalen Hautsinnesorgane einiger Lepidopteren und Hymenopteren, mit besonderer Berüchsicktigung der sexuellen Unterscheide. Zool. Jahrb. Bd. 17, pp. 573-618, with four text figs. and 2 pls.

Schiemenz, Paulus. 1883. Ucher des Herkommen des Futtersaftes und die Speicheldrüsen der Bienen, nebst einem Anhange über das Riechorgan. Zeitsch. f. wiss. Zool., Bd. 38, pp. 71-135, with 3 pls.

Schön, Arnold. 1911. Bau und Entwicklung des tibialen chordotonalorgans bei der Honigbiene und bei Ameisen. Zool. Jahrb. Anat. und Ont., Bd. 31, pp. 439-472, with 9 text figs, and 3 pls.

SHERMAN, FRANKLIN, JR. 1909. The senses of insects. Journ. Elisha Mitchell Sci. Soc., vol. 25, pp. 78-84.

Slater, J. W. 1848. Ueber die Function der Antennen bei den Insecten. Froriep's Notizen, III, no. 155, p. 6.

1878. The seat of the sense of smell in insects. Entomologist, vol. 11, p. 233.

SNODGRASS, R. E. 1910. The anatomy of the honey bee. U. S. Dept, of Agriculture, Bur. of Ent., Tech. Ser. 18, Washington, Gov. Printing Office.

Straus-Durckheim. 1828. Anatomie des Animaux Articulés, pp. 420-422.

Sulzer, J. H. 1776. Abgekürzte Geschichte der Insecten, Erster Theil, p. 16. Treviranus. 1816. Ueber den Sitz des Geruchssinns bey den Insekten. Vermischte Schriften anat. und physiol., Bd. 1, Göttingen, pp. 146-155.

Trouvelot, L. 1877. The use of the antennæ in insects. Amer. Naturalist, vol. 11, pp. 193-196.

VARRO. 1735. Scriptores Rei Rusticæ Veteres Latini curante Gesnere, Lipsiæ, Lib. 3, Cap. 16, p. 378.

- VIRGIL, Virgil's Georgies, Liber quartus, lines 47-50, 62-64.
- *Vogt. 1851. Zool. Briefe, vol. 1, Frankfurt a. M., pp. 516-517.
- VOM RATH, O. 1887. Ueber die Hautsinnesorgane der Insecten. Preliminary Communication. Zool. Anz. 10, Jahrg., pp. 627-631 and 645-649.

- Wasmann, E. 1880. Zur Bedeutung der Palpen bei den Insekten. Biol. Centralblatt, Bd. o. no. 10, pp. 303-308.
- Weinland, Ernst. 1800. Ueber die Schwinger (Halteren) der Dipteren. Zeitsch. f. wiss. Zool., Bd. 51, pp. 55-166 with 5 pls.
- Wesché, W. 1904. Some new sense-organs in Diptera. Journ. Quekett Mier. Club, vol. 9 (2), pp. 91-104.
- WITLACZIL, E. 1885. Die Anatomie der Psylliden (Hemiptera). Zeitsch. f. wiss, Zool., Bd. 42, p. 600.
- Wheeler, W. M. 1910. Ants. Their structure, development and behavior. New York. Columbia Univ. Press, pp. 500-511.
- Wolff, O. J. B. 1875. Das Riechorgan der Biene nebst einer Beschreibung des Respirationswerkes der Hymenopteren, etc. Nova Acta der Kls. Leop-Carol, Deut. Akad. der Naturf, vol. 38, pp. 1-251, with 8 pls.
- Wonfor, T. W. 1874. The antennæ of insects. Science-Cossip, pp. 20-31,

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 63, NUMBER 10

ARCHEOLOGY OF THE LOWER MIMBRES VALLEY, NEW MEXICO

(WITH EIGHT PLATES)

BY

J. WALTER FEWKES

(Publication 2316)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1914

The Lord Gastimore (Press BALTIMORE, MD., U. S. A.

ARCHEOLOGY OF THE LOWER MIMBRES VALLEY, NEW MEXICO

By J. WALTER FEWKES (WITH EIGHT PLATES)

Introduction

Evidences of the existence of a prehistoric population in the Lower Mimbres Valley, New Mexico, have been accumulating for many years, but there is little definite knowledge of its culture and kinship. It is taken for granted, by some writers, that the ancient people of this valley lived in habitations resembling the well-known terraced dwellings called pueblos, many of which are still inhabited along the Rio Grande; but this theory presupposes that there was a close likeness in the prehistoric architectural remains of northern and southern New Mexico. It may be said that while there were many likenesses in their culture, the prehistoric inhabitants of these two regions possessed striking differences, notably in their architecture, their mortuary customs, and the symbolic ornamentation of their pottery.

As the former inhabitants of the Mimbres Valley have left no known descendants of pure blood, and as there is a scarcity of historical records, we must rely on a study of archeological remains to extend our knowledge of the subject. Much data of this kind has already been lost, for while from time to time numerous instructive relics of this ancient culture have been found, most of these objects have been treated as "curios" and given away to be carried out of the country, and thus lost to science. Some of these relics belong to a type that it is difficult to duplicate. For instance, it is particularly to be regretted that the numerous votive offerings to water gods, including fossil bones, found when the "sacred spring" at Faywood near the Mimbres was cleaned out, have not been studied and described by some competent archeologist. The arrowheads, lancepoints, and "cloud-blowers" from this spring are particularly fine examples, the most important objects of the collection being now in the cabinet of Mrs. A. R. Graham of Chicago.1

¹ In a letter to Professor W. H. Holmes, published in his paper, "Flint Implements and Fossil Remains from a Sulphur Spring at Afton, Indian Terri-

The valley of the Mimbres has never been regarded as favorable to archeological studies, but has practically been overlooked, possibly because of the more attractive fields in the regions to the north and west, so that only very meager accounts have been published.

The present article, which is a preliminary report on an archeological excursion into this valley in May and June, 1914, is an effort to add to existing knowledge of the archeology of the valley. During this reconnaissance the author obtained by excavation and purchase a collection of prehistoric objects which have added desirable exhibition material to the collections in the U. S. National Museum.²

HISTORICAL

The recorded history of the inhabitants of the Mimbres is brief. One of the earliest descriptions of the valley, in English, is found in Bartlett's "Personal Narrative," published in 1854. In his account of a trip to the copper mines at the present Santa Rita, Bartlett records seeing a herd of about twenty black-tailed deer, turkeys and other game birds, antelopes, bears, and fine trout in the streams. He

tory," Mr. A. R. Graham gives an instructive account of cleaning out the Faywood Hot Springs where he found the following relies: (1) parts of skulls and bones of several human beings; (2) over fifty spearheads and arrowheads of every shape and style of workmanship, the spearheads being valuable for their size and symmetry; (3) nine large warclubs made of stone; (4) a large variety of teeth of animals as well as large bones of extinct animals; (5) the most interesting relics are ten stone pipes from four to seven inches in length; (6) flint hatchet and a stone hammer, together with stones worn flat from use; beads made of vegetable seed and bird bones; part of two Indian bows with which was found a quiver in which was quite a bunch of long, coarse black hair that was soon lost after being dried.—Amer. Anthrop., n. s., vol. 4, pp. 126, 127.

¹ The Santa Rita mines early attracted the conquistadors looking for gold, and were worked in ancient times by the Spaniards, the ores obtained finding an outlet along a road down the valley to the city of Chihuahua. The prehistoric people also mined native Mimbres copper, and probably obtained from these mines and from those in Cook's Range, the native copper from which were made the hawk-bells sometimes found in Arizona and New Mexico. From these localities also were derived fragments of float copper often found in Southwestern ruins and commonly ascribed to localities in Mexico. From here came also a form of primitive stone mauls used in early days of the working of the mines.

² The National Museum had nothing from the Lower Mimbres before this addition, although it has a few specimens, without zoic designs, from Fort Bayard, in the Upper Mimbres. The latter are figured by Dr. Hough, Bull. 87. U. S. National Museum.

says very little, however, about antiquities, although he passed through a region where there are still several mounds indicating ruins. Bartlett writes (op. cit., vol. 1, p. 218):

On April 29, hearing that there were traces of an ancient Indian settlement about balf a mile distant, Dr. Webb went over to examine it, while we were getting ready to move. He found a good deal of broken pottery, all of fine texture. Some of it bore traces of red, black, and brown colors. He also found a stone mortar about eight inches in diameter. I have since understood that this was the seat of one of the earliest Spanish missions; but it was abandoned more than a century ago, and no traces remain but a few heaps of crumbling adobes, which mark the site of its dwellings.

This ruin was situated near the Rio Grande, twenty-three miles from Mule Spring, on the road to the Mimbres. Bartlett does not tell us how he learned that this was an early mission site, but from the pottery it is evident that it was an "ancient Indian settlement."

After having examined the configuration of the country through which Bartlett passed, and having compared it with statements in his description, the present writer thinks that Bartlett camped on May 1, 1853, near the Oldtown ruin and that the place then bore the name Pachetehu. This camp was nineteen [eighteen 5] miles from Cow Spring and thirteen miles from the copper mines.

Bartlett records that he found, near his camp, "several old Indian encampments with their wigwams standing and about them fragments of pottery." Although not very definite, these references might apply either to the Oldtown ruin and some others a few miles up the river, or to more modern Apache dwellings.

Mr. F. S. Dellenbaugh claims that Coronado, in 1540, passed through the valley of the Mimbres on his way to Cibola, and that this place was somewhere in this region, instead of at Zuñi, as taught by Bandelier and others. The present writer recognizes that the question of the route of Coronado is one for historical experts to answer, but believes that new facts regarding the ruins in the Mimbres may have a bearing upon this question and are desirable. While it can no longer be said in opposition to Dellenbaugh's theory that there are no ruins in the valley between Deming and the Mexican border, we have not yet been able to discover whether the ruins here described were or were not inhabited in 1540.

The fragmentary notice of the ruins in the Upper Mimbres and Silver City region by Bandelier is one of the best thus far published, although he denies the existence of ruins now known in the great stretch of desert from Deming to the Mexican boundary. Regarding the ruins on the Upper Mimbres, Bandelier writes:

Toward this center of drainage the aboriginal villages on the Rio Mimbres have gravitated as far south nearly as the flow of water is now permanent. They are very abundant on both sides of the stream, wherever the high overhanging plateaux have left any habitable and tillable space; they do not seem to extend east as far as Cook's Range, but have penetrated into the Sierra Mimbres farther north, as far as twenty miles from the river eastward. . . . The total number of ruins scattered as far north as Hincks' Ranch on a stretch of about thirty miles along the Mimbres in the valley proper, I estimate at about sixty. I have not seen a village whose population I should estimate at over one hundred, and the majority contained ten. They were built of rubble in mud or adobe mortar, the walls usually thin, with overwings, and a fireplace in the corner, formed by a recess bulging out of a wall. Toward the lower end of the permanent water course, the ruins are said to be somewhat extensive.

Professor U. Francis Duff, in an article on the "Ruins of the Mimbres Valley," adds a number of new sites to those mentioned above and contributes important additions to our knowledge of the prehistoric culture of the valley.

Dr. Walter Hough, who compiled from Bandelier and Duff, and made use of unpublished information furnished by Professor De Lashmutt and others, enumerates twenty-seven ruins in the Silver City and Mimbres region to which he assigns the numbers 147-174. Many more ruins "might have been included in this list, but it is not the author's purpose, at this time, to mention individual pueblo sites but rather to call attention to the evidences of ruins in the Lower Mimbres Valley as an introduction to the study of pottery there collected. The ruin from which the majority of the bowls here considered were obtained does not appear to have been mentioned by Bandelier. Duff, or Hough.

The last-mentioned author makes the following reference to figures on the pottery from the Mimbres region: "The decoration is mainly geometric. From the Mimbres he [Professor De Lashmutt] has seen a realistic design resembling a grasshopper, and from Fort Bayard another representing a four-legged creature. Mrs. Owen has a

¹ Archæological Institute of America, American Series, vol. 4, Final Report, Part 2, pp. 356, 357.

² American Antiquarian, vol. 24, p. 397, 1902.

^a Bandelier (op. cit., p. 357) speaks of sixty ruins in a small section thirty miles along the river.

specimen from Fort Bayard bearing what is described as a 'fish design.'" Dr. Hough likewise points out that

pottery from some sites [ruins] is also different from that of any other [Pueblo] region and is affiliated, in some respects, with that of the Casas Grandes, in Chihuahua which lies in the low foot-hills of Sierra Madre. This is especially true in reference to fragments of yellow ware found here [the Florida Mountains] which in both form and color of decoration is manifestly like that of Casas Grandes.²

The latest and thus far the most important contribution to our knowledge of the prehistoric people of the Mimbres we owe to Mr. C. L. Webster, who has published several articles on the antiquities of the Upper Mimbres, in "The Archæological Bulletin." He has made known several new village sites along the valley and has mentioned, for the first time, details regarding Mimbres ruins and the objects found in them. Practically nothing has thus far been recorded on the antiquities of the region immediately about Deming, nor of those south of that important railroad center to the Mexican border.

In an article on "Some Burial Customs Practiced by the Ancient People of the Southwest," Mr. Webster describes and figures a human burial on the Lower Mimbres not far from the "Military Post," situated near Oldtown. It was found in the plain some distance from any indications of prehistoric settlement. He says:

An exploration of it [a burial] revealed that originally a circular excavation, perhaps three feet in diameter and slightly more in depth, had been made in the ground; and afterwards the body placed at the bottom of this excavation in a sitting posture with the knees somewhat drawn up and arms to the side, and then a very large earthen olla, of a reddish color, was set over it, bottom side up, thus protecting it from the earth which was afterwards thrown in, filling up the excavation.

Mr. Webster shows that the Mimbres aborigines did not always bury their dead in a contracted or seated posture. He speaks also of intramural or house burials in the valley of Rio Sapillo, a tributary of the Upper Gila, not far from the source of the Mimbres. In this region he dug down in one of the central rooms of a ruin about three feet below the surface, where he says (p. 73):

Near the bottom of this excavation hard red clay was encountered, which on opening up proved to contain the well-preserved skeleton of an adult person

¹ Bull. 35, Bur. Amer. Ethn., p. 83. See also an article subsequently published on the Culture of the Ancient Pueblos of the Upper Gila River Region, Bull. 87, 1913, U. S. National Museum, in which several bowls with geometrical designs from Fort Bayard are figured.

² Bandelier found that Mimbres pottery resembles that of several regions, including Casas Grandes.

³ The Archæological Bulletin, vol. 3, No. 3, p. 70.

which had been placed at length on its back with arms at its side. Over the face of this one [human burial] had been placed a rather large shallow dish, through the bottom of which a hole about the size of a five cent piece, or a little larger, had been carefully drilled. This hole was so located as to occupy a position between the eyes when placed over the face. This body was resting on a bed of red clay like that which had covered it. Near the first body was a second body which had been buried in exactly the same way, and had a similar perforated dish over its face. Under this first or upper tier of bodies a second tier of bodies was discovered which had been buried exactly the same way as the upper tier—each one resting separate and alone, though near together, each one tightly enveloped in stiff red clay.

All the vessels placed over the faces showed the action of fire, and it was plain to be seen they had once been used in cooking. The method practised here was to first spread down a layer of red plastic clay, then lay the body upon it, place the perforated dish over the face and finally plaster all with a covering of the same clay. This same method was followed in every case observed.

SITES OF RUINS IN THE LOWER MIMBRES VALLEY

The portion of the Sierra Madre plateau called Lower Mimbres, or Antelope Valley, extends from where the Mimbres sinks below the surface at Oldtown to Lake Palomas in Mexico, twenty-five miles south of Deming. According to some writers this region has no prehistoric ruins, but several of the beautiful specimens described and figured in the present article came from this valley, and there are doubtless many others, equally instructive, still awaiting the spade of the archeologist. The purest form of the Mimbres prehistoric culture is found in the lower or southern part of this plain, but it extends into the hills far up the Mimbres almost to its source.

The plateau on which the prehistoric Mimbres culture developed is geographically well marked, and distinguished from other regions of the Southwest geographically and biologically, facts reflected in human culture. The cultural gateway is open to migrations from the south rather than from the east, north, or west.

The evidences drawn from the poor preservation of the walls of the ruins, and the paucity of historical references to them, instead of indicating absence of a prehistoric population suggest the existence of a very ancient culture that had been replaced by wandering Apache tribes years before the advent of the Spaniards. Chronologically the prehistoric people belongs to an older epoch than the Pueblo, and its culture resembles that which antedated the true Pueblos.¹

¹ During the author's stay in Deming he was much indebted to Dr. S. D. Swope for many kindnesses, among which was an opportunity to study his valuable collection, now in the high school of that city. He was also greatly

The ruins here considered do not belong to the same type as those of the Lower Gila and Salt, although they may be contemporaneous with them, and may have been inhabited at the same time as those on the Casas Grandes River in northern Chihuahua. Not regarded as belonging to the same series of ruins as those on the Upper Gila and Salt rivers, they are not designated numerically with them.

Although the indications of an ancient prehistoric occupancy of the Mimbres are so numerous, they are so indistinct and have been so little studied that any attempt here to include all of them would be premature. Remains of human occupancy occur in the plain about Deming, and can be traced northward along the river east and west into the mountains, and south into Mexico.

The author has observed many evidences of former settlements along the Upper Mimbres which have not yet been recorded. The indications are, as a rule, inconspicuous, appearing on the surface of the ground in the form of rows of stones or bases of house walls, fragments of pottery, and broken stone implements, such as metates and manos. These sites are commonly called "Indian graves," skeletons often having been excavated from the enclosures outlined by former house walls. There are also evidences of prehistoric ditches at certain points along the Mimbres, showing that the ancients irrigated their small farms.

No attempt is made here to consider all the ruins of the Mimbres or of the Antelope plain in the immediate neighborhood of Deming, but only those that have been visited, mainly ruins from which the objects here described were obtained.

Although few of the walls of the ancient buildings rise high above ground, they can be readily traced in several places. From remains that were examined it appears that the walls were sometimes built of stone laid in mortar and plastered on the inside, or of adobe strengthened at the base with stones and supported by logs, a few of which have been found in place upright. No differentiation of sacred and secular rooms was noticed, and no room could be identified as belonging to the type called kiva. The floors of the rooms were made of "caleche," hardened by having been tramped down; the fireplace was placed in one corner, on the floor, and the entrance to the room was probably at one side. To all intents and purposes these dwellings were probably not unlike those fragile wattle-walled structures found

aided by Mr. E. D. Osborn and several other citizens, and takes this opportunity to thank all who rendered assistance in his studies. The photographs reproduced in the present paper were made by Mr. Osborn.

very generally throughout the prehistoric Southwest, and supposed to antedate the communal dwellings or pueblos of northern New Mexico.

The two aboriginal sites in the Mimbres Valley that have yielded the majority of the specimens here figured and described are the Oldtown ruin and the Osborn ruin, a small village site twelve miles south of Deming and four miles west of the Florida Mountains. There are some differences in general appearance and variations in the minor archeological objects from these two localities, but it is supposed that specimens from both indicate a closely related, if not identical, culture area.

About a year ago Mr. E. D. Osborn, of Deming, who had commenced excavation in these ruins, obtained from them a considerable collection of pottery and other objects. His letters on the subject and his photographs of the pottery, sent to the Bureau of American Ethnology, first led the author to visit southern New Mexico to investigate the archeology of the Mimbres.

VILLAGE SITE NEAR OSBORN RANCH 2

A few extracts from Mr. Osborn's letters regarding this site form a fitting introduction to a description of the sites and the objects from them:

At the present time [December 8, 1913] the nearest permanent water to this place [site of the cemetery] is either the Palomas Lake in Mexico, twenty-five miles south, or thirty miles north, where the Mimbres River sinks into the earth. This supposed Pueblo site is situated upon a low sandy ridge which at this point makes a right-angle bend, one part running south and the other west from the angle. The top and sides of the ridge, also the "flat" enclosed between the areas of the ridge, to the extent of about an acre, is littered all over with fragments, charcoal and debris containing bones to the depth of from one to three feet. There are also a great many broken metates and grinding stones. . . . In digging on top of this ridge, near the angle, we occasionally found what appeared to have been adobe wall foundations, but not sufficiently large to determine the size or shape of any building. In digging on the ridge a few stone implements were found, including one fine stone axe, stone paint pots and mortars, and a few arrowheads, also two bone awls and a few shell beads and bracelets, the last all broken. The only article of wood was the stump of a large cedar post full of knots, badly decayed; it had been burned off two or three inches below the surface of the ground. The cemetery was found on the inner slope of the angle facing the southwest. In a

¹ Specimens were also found by Mr. Osborn at the Byron Ranch ruin, at the Black Mountain site, and elsewhere.

² This is the ruin called Osborn ruin in subsequent descriptions.

large proportion of cases the body was placed upon its back, feet drawn up against the body, knees higher than the head; sometimes the head was face up and sometimes it was pressed forward so the top of the head was uppermost. In other interments the body was extended its full length with face up. A large majority of the skulls had a bowl inverted over them, though I judge twenty per cent were without any bowl.... In a great many instances after the body had been placed in the grave with bowl over the head, a little soil was filled in, and about one foot of adobe mud was added and tramped down then filled up with soil. This adobe mud is almost like rock, making it difficult to dig up the bowl without smashing it.... No article of any kind except the bowl over the head was found in any grave. In one case a bowl was found with a skull under it and under that skull was another bowl and another skull.

Few evidences of upright walls of buildings are found at or near this site. The surface of the ground in places rises into low mounds devoid of bushes, which grow sparingly in the immediate neighborhood, but no trees of any considerable size were noticed in the vicinity. Before work began at this place the only signs of former occupancy by aborigines, besides walls, were a few broken fragments of ancient pottery, metates, or a burnt stump protruding here and there from the ground. None of the house walls projected very high above the surface of the ground. Excavations in the floors of rooms at this point yielded so many human skeletons that the place was commonly referred to as a cemetery, but all indications support the conclusion that it was probably a village site with intramural interments.

The human burials here found had knees flexed or drawn to the breast in the "contracted" position, sometimes with the face turned eastward. The skeletons were sometimes found in shallow graves, but often were buried deeply below the surface. Almost without exception the crania had bowls fitted over them like caps. The graves as a rule are limited to soft ground, the bowls resting on undisturbed sand devoid of human remains. In some instances there appears to have been a hardened crust of clay above the remains, possibly all that is left of the floor of a dwelling. The indications are that here, as elsewhere, the dead were buried under the floors of dwellings, as is commonly the case throughout the Mimbres Valley. While there is not enough of the walls above ground to show the former extent

¹ On some of the skulls excavated at Sikyatki. Arizona, in 1895, the author found concave disks of kaolin perforated in the center. One of these disks is represented in Fig. 356, p. 729, 17th Ann. Rep. Bur. Amer. Ethnol. In an article on "Urn Burial in the United States" (Amer. Anthrop., vol. 6, No. 5), Mr. Clarence B. Moore, quoting his own observations and those of many others, records burials in which an inverted mortar, bowl, basket, or other object was placed over the skull of the dead, and shows the wide distribution of the custom.

of the dwellings, the indications are that they were extensive and have been broken down and washed away.

OLDTOWN RUIN

Near where the Mimbres leaves the hills and, after spreading out, is lost in the sand, there was formerly a "station," on the mail route, called Mimbres, but now known as Oldtown. Since the founding of Deming, the railroad center, the stage route has been abandoned and Mimbres (Oldtown) has so declined in population that nothing remains of this settlement except a ranch-house, a school-house, and a number of deserted adobe dwellings.

Oldtown lies on the border of what must formerly have been a lake and later became a morass or cienega, but is now a level plain lined on one side with trees and covered with grass, affording excellent pasturage. From this point the water of the Mimbres River is lost, and its bed is but a dry channel or arroyo which meanders through the plain, filled with water only part of the year. In the dry months the river sinks below the surface of the plain near Oldtown reappearing at times where the subsoil comes to the surface, and at last forms Palomas Lake in northern Mexico.

In June, when the author visited Oldtown, the dry bed of the Mimbres throughout its course could be readily traced by a line of green vegetation along the whole length of the plain from the Oldtown site to the Florida Mountains.¹

The locality of emergence of the Mimbres from the hills or where its waters sink below the surface is characteristic. The place is surrounded by low hills forming on the south a precipitous cliff, eighty feet high, which the prehistoric inhabitants chose as a site of one of their villages; from the character and abundance of pottery found, there is every reason to suppose this was an important village.

The Oldtown ruin is one of the most extensive seen by the author during his reconnoissance in the Deming Valley, although not so large as some of those in the Upper Mimbres, or on Whiskey Creek, near Central. Although it is quite difficult to determine the details of the general plan, the outlines of former rectangular rooms are indicated by stone walls that may be fairly well traced. There seem to have been several clusters of rooms arranged in rows, separated by square or rectangular plazas, unconnected, often with circular depressions between them.

¹ A beautiful view of the valley can be obtained from the top of Black Mountain, above the small ruin at its base, that will be mentioned presently.

There is considerable evidence of "pottery hunting" by amateurs in the mounds of Oldtown, and it is said that several highly decorated food bowls adorned with zoic figures have been taken from the rooms. It appears that the ancient inhabitants here, as elsewhere, practised house burial and that they deposited their dead in the contracted position, placing bowls over the crania (fig. 1).

The author excavated several buried skeletons from a rectangular area situated about the middle of the Oldtown ruin, surrounded on three sides by walls. The majority of the dead were accompanied

Fig. 1.—Urn burial. (Schematic.)

with shell beads and a few turquoise ornaments, and on one was found a number of shell tinklers made of the spires of seashells. One of the skeletons excavated by Mr. Osborn appeared to have been enclosed in a stone cist with a flat slab of stone covering the skull. The remains of a corner post supporting the building stood upright on this slab.² In another case a skull was found broken into fragments by the large stone that had covered it. Several skeletons had no bowls

¹ The drawings of pottery designs in this article were made by Mrs. M. W. Gill; the stone and other objects were drawn by Mr. R. Weber.

² A significant feature in the Mimbres form of "urn burial" is the invariable puncturing of the bowl inverted over the head. The ancient Peruvians in some instances appear to have "killed" their mortuary bowls, and life figures depicted on Peruvian pottery are sometimes arranged in pairs as in the Mimbres.

over the heads, an exceptional feature in Mimbres burials; and in some instances the bowl had been placed over the face. In the case of numerous infant interments the bowl covered the whole skeleton.

RUIN ON BYRON RANCH

This ruin lies not far from the present course of the Mimbres near the Little Florida Mountains. The place has long been known as an aboriginal village site and considered one of the most important in the valley. The remains of buildings cover a considerable area. They have a rudely quadrangular form, showing here and there depressions and lines of stones, evidently indicating foundations of rooms, slightly protruding from the ground. Although this ruin has been extensively dug over by those in search of relics, no systematic excavations seem to have been attempted. It is said that valuable specimens have been obtained here, and fragments of pottery, arrowheads, and broken stone implements are still picked up on the surface.

The important discovery of burial customs of the ancient Mimbreños was made by Mr. Duff at this ruin. He excavated below the floor of one of the rooms and found a human cranium on which was inverted a food bowl pierced in the middle, the first example of this custom noted in the Mimbres region.

RUIN NEAR DEMING

About seven miles northwest of Deming, in a field on the north side of the Southern Pacific Railroad, there is a small tract of land

Fig. 2.—Paint mortar. Diam. 21/2".

showing aboriginal artifacts strewn over the surface, affording good evidence of prehistoric occupation. There are no house walls visible at this place, and only a few fragments of food bowls, but in the course of an hour's search several small mortars (fig. 2), paint grinders and other objects were procured at this place.

¹ Although not placed in the proper locality on his map, this ruin seems to be one of the "pueblos" (Nos. 162-164) mentioned by Dr. Hough.

PREHISTORIC SITE NEAR BLACK MOUNTAIN

Walls and outlines of rooms indicated by rows of stones mark remains of a prehistoric settlement at the base of Black Mountain, eight or nine miles northwest from Deming. Here occur many fragments of pottery, broken metates, and manos, and other indications of occupation by man. On top of Black Mountain there are rude cairns or rings of stones apparently placed there by human hands.

The fragments of pottery taken from the ruin at the base of Black Mountain are very different from those from Oldtown and other typical Mimbres ruins. Its color on the outside is red, with a white interior surface decorated with black geometric designs, the border is flaring often with exceptional exterior decoration. These bowls have broken encircling lines—a feature yet to be found in other Mimbres pottery—and none of the few pieces yet obtained from the ruin near Black Mountain has animal pictures. The whole appearance of this pottery recalls old Gila ware and suggests an intrusion from without the Mimbres region, possibly from the north and west.

The circles of stones on the top of Black Mountain have many points of resemblance to similar structures on hilltops near Swarts' Ranch on the Upper Mimbres, described by Mr. Webster, as follows:

The tops of nearly all the mountains of this valley, and particularly those here mapped, are occupied by hundreds of rock mounds, breastworks, pits, etc. The region shown in plate 3, and which represents an area about one mile in length and three-fourths mile in width, exhibits 240 of these structures. These rock mounds are composed of more or less rounded rocks gathered from the region, and generally weighing from four to eight pounds each; although many are smaller: and again others weigh from twenty-five to fifty pounds or more each. These structures are generally circular: although at times they are ovate, and again assume an oblong or linear marginal outline. They vary considerably in size, although usually being only from three to four feet in diameter: the linear ones being from six to eight feet or more in length. Some of the larger circular mounds assume a diameter of seven to eight feet. The height of these mounds varies considerably; but as a rule assume a height ranging from one to one and a half feet.

The distance apart of these structures is variable; being as a general thing from five to fifteen feet; but not infrequently they are only two to four feet apart: at other times, however, they may be observed to be from sixty to ninety feet or more distant from each other.

¹ Archæological and Ethnological Researches in Southwestern New Mexico, Part 2, Ruin, Ancient Work Shop, Rock Mounds, etc., at Swarts' Ranch. (The Archæological Bulletin, vol. 4, No. 1, p. 14, 1913.)

Mr. Webster discovered on a rocky ridge near Swarts' ruin, somewhat higher on the Mimbres than Brockman's Mill, seven similar earthen pits of much interest, which remind the author of subterranean or half-sunken dwellings. They are saucer-shaped or linear depressions, averaging about two feet in depth; when circular they are from five to fifteen feet in diameter the linear form in one instance being fifty feet long. Some of these have elevated margins, others with scarcely any marginal ridge. The western margin in one instance has a "wall of rounded stones."

There are similar saucer-shaped depressions near Brockman's Mills and elsewhere in the Mimbres, almost identical with "pit dwellings" found by Dr. Hough near Los Lentes. These saucer-like depressions, often supposed to have been the pits from which adobe was dug, were also places of burial, the dead being presumably interred under or on the floors; the original exeavation being a dwelling that was afterwards used as a burial place for the dead. Their form suggests the circular kiva of the Pueblos and has been so interpreted by some persons.

RUINS ON THE MIMBRES RIVER FROM OLDTOWN TO BROCKMAN'S MILLS

On low terraces elevated somewhat above the banks of the river, between Oldtown and Brockman's Mills, there are several village sites, especially on the western side. The most important of these is situated about four miles north of Oldtown. The ruin at the Allison Ranch, situated at the Point of Rocks where the cliffs come down to the river banks, is large and there are many pictographs nearby. The ruins at Brockman's Mills on the opposite or eastern side of the river lie near the ranch-house. Many rooms, some of which seem to have walls well plastered, can be seen just behind the corral. North of the ruin is a hill with low lines of walls like trincheras. On some of the stones composing these walls and on neighboring scattered boulders, there are well-made pictographs.

PICTOGRAPHS

Pictographs occur at several localities along the Mimbres. As these have a general likeness to each other and differ from those of other regions, they are supposed to be characteristic of the prehistoric

¹ For a description of ruins at Swarts' and Brockman's Mills see C. L. Webster, Archæological and Ethnological Researches in Southwestern New Mexico. (The Archæological Bulletin, vol. 3, No. 4.)

² It is said that a Spanish bell in the Chamber of Commerce at Deming, was dug up on this ranch near the ruin. This bell might indicate an old mission at this place.

Fig. 3.—Pictographs.

people. They are generally pecked on the sides of boulders or on the face of the cliffs in the neighborhood of prehistoric sites of dwellings. Although there is only a remote likeness between these pictographs and figures on pottery, several animal forms are common to the two.

The most important group of pictographs (fig. 3) seen by the author are situated about nine miles from Deming in the western foot-hills of Cook's Peak.¹ Some of the pictographs recall decorations on bowls from Pajarito Park.

Another large collection of Mimbres pictographs, visited by the author, is found at Rock Canyon, three or four miles above Oldtown, at a point where the cliffs approach the western bank of the river. On the river terrace not far above this collection of pictures, also on the right bank of the river, lies the extensive ruin of a prehistoric settlement, the walls of which project slightly above the surface. This ruin has been dug into at several points revealing several fine pieces of pottery, fragments of metates, and other implements, which are said to have been found in the rooms. A mile down the valley overlooking the river there is another cluster of pictures at a ruin called "Indian graveyard," probably because human skeletons have been dug out of the floors of rooms.

MORTARS IN ROCK IN PLACE

One of the characteristic features of the Mimbres ruins, but not peculiar to them, are mortars or circular depressions worn in the horizontal surface of rock in place. They are commonly supposed to have been used as mortars for pounding corn, and vary in size from two inches to a foot in diameter, being generally a foot deep. We find them occurring alone or in clusters. Good examples of such depressions are found near the Byron ruin, in the neighborhood of the ruins along Whiskey Creek, at Oldtown, and elsewhere. There is a fine cluster of these mortars nine miles from Deming, near the pictographs in the Cook's Range. Similar mortars have been repeatedly described and often figured. Mr. Webster has given the most complete account of this type of mortars in a description of the aucient ruins near Cook's Peak.² On the surface of the southwestern

¹ The author visited these rocks in company with Dr. Swope, who has known of them for many years.

² Archæological and Ethnological Researches in Southwestern New Mexico, Part 4. (The Archæological Bulletin, vol. 5, No. 2, p. 21.)

point of a low hill to the north of an ancient ruin at Cook's Peak, according to this observer,

occurs a feature which the writer had nowhere else seen, save on the east side of the same mountain. I refer to the great number of mortars which occur in this sandstone back a few feet to the north of the ruins, and which were made and long used by the ancient pueblo-dwellers. There exists at this one place fifty-three of these mortars, nearly all of them occurring in an area of surface not more than seventy-five or eighty feet in diameter. Nearly all the mortars are circular or sub-circular in outline, symmetrical and smooth inside, and the upper edge or margin usually rounded by the pestle. In a few cases, however, these mortars have an oblong or subovate outline, somewhat like some forms of metates found among the ruins.

These mortars often contract to a point at the bottom, when circular in marginal outline, although at times are longer than broad, as just stated, and in this case have a more flattened bottom. They vary from two to eleven inches in diameter, the smallest forms being those apparently only just begun, and are few in number. The deepest mortar observed was seventeen inches, though the great majority of them would vary perhaps from four to ten inches in depth. Often the rock was smooth and polished around the margin of the mortars, and [their distances apart] vary from a few inches to several feet from each other.

At times these mortars would be located on the top of a large block of sandstone which might happen to occupy this area; these boulders sometimes being four to five feet in diameter and perhaps four feet in height. It was plain to be seen that this ancient mill-site was long used by these peculiar people, but just why so many quite similar mortars should have been made here and used by these people is a matter of conjecture.

It seems certain that a sufficiently large number of people could not have been congregated here, under ordinary conditions, to warrant the forming of so many mortars for the purpose of grinding food.²

The present writer accepts the theory that these rock depressions were used in pounding corn or other seeds, but their great number in localities where ruins are insignificant or wanting is suggestive. We constantly find arable land near them, indicating that communal grinding may have been practised, and suggesting a large population living in their immediate neighborhood, which may have left no other sign of their presence.

MINOR ANTIQUITIES

The artifacts picked up on the surface near ruins or excavated from village sites resemble so closely those from other regions of the Southwest that taken alone these do not necessarily indicate special

¹ Mr. Webster describes "ancient pueblos" on the western side of this group of mountains as well as on the eastern slope of Cook's Range. Certain cave lodges, or walled caves, in a wild canyon on the east side of Cook's Peak are supposed by him to be the recent work of Apaches.

culture areas. A few of the more common forms from the Mimbres are here figured for comparison, but, with the exception of the pottery, there is little individuality shown in the majority of these objects. Among other objects may be mentioned stone implements, mortars, idols, bone implements, shell ornaments, and pottery.

STONE IMPLEMENTS

The stone axes are not very different from those of the Rio Grande and the Gila, but it is to be noticed that they are not so numerous as in

Fig. 4.—Stone axe. Length 8%".

Fig. 5.—Arrow polisher. Length 3½", breadth 2½".

the latter region, and are probably inferior in workmanship, fine specimens indeed being rare. The majority of the axes (fig. 4) are single grooved, but a few have two grooves. In Dr. Swope's collection, now in the Deming High School, there is a fairly good double-bladed axe.

Miss Mnutt, of Deming, has a remarkable collection of arrowpoints gathered from many localities in the valley, and also a few fine spearpoints, conical pipes, and other objects taken from the sacred spring at Faywood Hot Spring. A beautiful arrow polisher found near Deming is shown in figure 5. The pipes from the Mimbres take the form of tubular cloudblowers, specimens of which are shown in figure 6. Apparently these pipes were sometimes thrown into sacred springs, but others have been picked up on the surface of village sites or a few feet below the surface.

Fig. 6.—Cloud blowers. Faywood Hot Springs. (Swope collection.) 1/2 nat. size.

Lateral and top views of one of the characteristic forms of small stone mortars with a handled projection on one side is shown in figure 7. This specimen is in the Swope collection in the Deming

Fig. 7.—Handled mortar. (Swope collection.) Length 1034".

High School. In the same collection there are also two beautiful tubular pipes, or cloud-blowers, from the same spring.

The stone mortars from Mimbres ruins vary in size. Many are simply spherical stones with a depression on one side; others are larger but still spherical, or ovate; while others have square or

rectangular forms. The most remarkable feature in these is the presence of a handle on one side, which occasionally is duplicated, and in one instance four knobs or legs project from the periphery. These projections appear to characterize the mortars of the Mimbres, although they are not confined to them, as the form occurs in other regions of New Mexico and in California. One of the most instructive of these small spherical paint mortars, now owned by Mr. E. D. Osborn, has ridges cut in high relief on the outside.

Metates and manos, some broken, others whole, are numerous and can be picked up on almost every prehistoric site. While some of these metates are deeply worn, showing long usage, others have margins but slightly raised above the surface. The majority of metates found on the sites of habitations have no legs, but a typical Mexican metate with three knobs in the form of legs was presented to the National Museum by the Rev. E. S. Morgan, of Deming. Metates are sometimes found in graves with skeletons, presumably those of women. Several ancient metates are now in use as household implements in Mexican dwellings.

If the size of the population were to be gauged by the number of mortars and manos found, certainly the abundance of these implements would show that many people once inhabited the plain through which flows the Mimbres River. Narrow, flat stone slabs have an incised margin on one end. Their use is problematical. The frequency of stone balls suggests games, but these may have been used as weapons; or again, they were possibly used in foot races, as by the Hopi of to-day.

COPPER OBJECTS

Native metallic copper was formerly abundant at the Santa Rita mines, and there is every probability that the material out of which some of the aboriginal copper bells were made was found here, and that these mines were the source of float copper found in Arizona ruins. Although no copper implements were found by the author in the Mimbres ruins, he has been told that objects of copper apparently made by the aborigines have been found in some of the graves.¹

¹ Elaborate metal objects of early historical times have been found at various places in the Mimbres. The best of these is a fragment of an elaborately decorated stirrup, now owned by Mr. Pryor of the Nan Ranch. A copper church bell was found near his house, and other metal objects belonging to the historic epoch are reported from various ruins in the valley.

STONE IDOLS

The author saw several stone idols that were reported to have been obtained from ruins in the Mimbres Valley. These idols represent frogs (fig. 8), bears, mountain lions, and other quadrupeds, and have much the same form as those from ancient ruins in Arizona.

Fig. 8.—Frog fetish. Black Mountain Ruin. (Swope collection.) Length 31/2".

On the backs of several of these stone idols are incised figures, like arrowheads tied to Zuñi fetishes, or possibly rain-cloud figures. In one instance they were made on an elevated ridge, which unfortunately was broken. The author has also seen several small amulets,

Fig. 9.—Fetish. Byron Ranch. (Swope collection.) Length 5¾".

Fig. 10.—Fetish. Byron Ranch. (Swope collection.) Length 6¾". perforated apparently for suspension. The stone idols here figured (figs. 8, 9, 10) were presented to the Deming High School by Dr. Swope.

¹Similar stone idols from the San Pedro Valley and other localities, in Arizona and New Mexico, have mortar-like depressions on their backs.

SHELL BRACELETS AND CARVED SHELLS

Two or three shell bracelets were excavated from Mimbres ruins, and there were also found carved shells and tinklers not unlike those of northern New Mexico ruins. Some of these when excavated were found near the head and are supposed to have been earrings. Five shell rings were still on the bones of the forearm of a child when found. One of the shell bracelets owned by Mr. Osborn was cracked but was pierced on each side of the break, indicating where it had been mended; another had figures incised on its surface, and a third had the edges notched, imparting to it a zigzag shape, like that of a serpent. Many shell beads, spires of shells used for tinklers, and other shell objects, all made of genera peculiar to the Pacific Ocean, were found during the excavations.

Pottery

FORMS AND COLORS

The comparatively large number of vases, food bowls, and other forms of decorated smooth ware in collections from the Mimbres is

Fig. 11.—Braided handle.
½ nat. size.

Fig. 12.—Small bowl. Diam. 31/2".

largely due to their use in mortuary customs, and the fact that almost without exception they were found placed over the skulls of the dead. Although the largest number of vessels are food bowls, there are also cups with twisted handles (fig. 11), bowls (fig. 12), vases, dippers, and other ceramic forms found in pueblo ruins.¹

Coarse, undecorated vessels showing coils, indentations, superficial protuberances, and other rude decorations like those so well known in Southwestern ruins, are well represented. Some of these were

¹ One of the exceptional forms of pottery has a flat rectangular base, the four sides being formed by bending up segments of a circular disk (fig. 18).

used as cooking vessels, as shown by the soot still adhering to their outer surface. While the majority of bowls were broken in fragments when found, a few were simply pierced through the bottom; one or two were unbroken or simply notched at the edge.

The colors of Mimbres ware are uniform and often striking. There are good specimens of black and white ware; also red, black, and yellow with brown decorations are numerous. Some of the best pieces are colored a light orange. Many of the fragments are made of the finest paste identical in color and finish with ware from Casas Grandes, Chihuahua, which furnishes the best prehistoric pottery from the Southwest. No effigy jar, or animal formed vase, however, exists in any collections from the Mimbres examined by the author.

Ruins in the Lower Mimbres have thus far yielded a larger variety and a finer type of pottery than ruins on the banks of the river among the hills, which is in part due to the extent of excavations. The Oldtown potters developed a kind of pottery with characteristic ornamentation found both in ruins in the plain to the south and along the narrow valley of the Mimbres to the north.

The Mimbres pottery, like all other ancient ware from the Southwest, frequently shows evidences of having been mended. Holes were drilled near the breaks and fibers formerly united the parts thus holding the bowl together even though broken. As one goes south, following the course of the river, the character of the pottery changes very slightly, but if anything is a little better.

The food bowls generally have a rounded base, but one specimen is flat on the bottom. The edges of the bowls from the ruin at Black Mountain are curved outward, an exceptional feature in ancient Pueblo vessels but common in modern forms.

PICTURES ON MIMBRES POTTERY

The great value of the ceramic collection obtained from the Mimbres is the large number of figures representing men, animals, and characteristic geometrical designs, often highly conventionalized, depicted on their interiors. These figures sometimes cover a greater part of the inner surface, are often duplicated, and are commonly surrounded by geometrical designs or simple lines parallel with the outer rim of the vessel. It is important to notice the graceful way in which geometrical figures with which the ancient potters decorated their bowls are made to grade into the bodies of animals, as when animal figures become highly conventionalized into geometrical designs. Although these decorations are, as a rule, inferior to

those of the Hopi ruin, Sikyatki, the figures of animals are more numerous, varied, and realistic.

The ancients represented on their food bowls men engaged in various occupations, such as hunting or ceremonial dances, and in that way have bequeathed to us a knowledge of their dress, their way of arranging their hair, weapons, and other objects adopted on such occasions. They have figured many animals accompanied by conventional figures which have an intimate relation to their cults and their social organization. Although limited in amount and imperfect in its teaching this material is most instructive.

Fig. 13.—Hunters. Oldtown Ruin. (Osborn collection.)

GROUP OF HUNTERS

An instructive group of human figures is drawn on a deep red and white food bowl (fig. 13), which measures ten inches in diameter. It is evident that this design represents three hunters following the trail of a horned animal, probably a deer. This trail is represented on the surface of the bowl by a row of triangles, while the footprints of the hunters extend along its side. It may be noted that although there are three hunters, the trails of two only are represented, and that the hunters are barefoot. They have perhaps lost the trail and

are looking the opposite way, while the animal has turned back on his path. The footprints of the deer in advance of the hunters are tortuous, showing want of decision on the part of the animal. The three hunters are dressed alike, wearing the close-fitting jacket probably made of strips of skin woven together like that found by Dr. Hough in a sacrificial cave at the head of the Tulerosa, New Mexico. Each carries a bow and arrow in his right hand, and in his left a stick which the leader uses as a cane; the second hunter holds it by one end before him, and the third raises it aloft. These objects are supposed to represent either weapons or certain problematic wooden staffs with feathers attached, like divining rods, by which the hunters are in a magical way directed in their search. The first hunter "feels" for the lost trail by means of this rod.

An examination of the pictures of the arrows these hunters carry shows that each has a triangular appendage at the end representing feathers, and small objects, also feathers, tied to its very extremity. The hair of the third hunter appears to be a single coil hanging down the back, but in the other two it is tied in a cue at the back of the head. The eyes are drawn like the eyes on Egyptian paintings, that is, the eye as it appears in a front view is shown on the side of the head. The right shoulders of all are thrown out of position, in this feature recalling primitive perspective. The information conveyed by this prehistoric picture conforms with what is known from historical sources that the Mimbres Valley formerly abounded in antelopes, and we have here a representation of an aboriginal hunt.

FIGURE OF A WOMAN

A black and white bowl (pl. I, fig. I) is twelve and one-half inches in diameter and six inches deep. Upon this bowl is drawn a figure of a human being, probably a woman or a girl, seen from the front. Although portions of the figure are not very legible, such details as can be made out show a person wearing a blanket that extends almost to the knees leaving arms and legs bare, the lower limbs being covered. The head is square, as if masked, with hair tied at each lower corner. Although these appendages may be meant to represent ear-pendants, it is more likely that they are whorls of hair, as is still customary in Pueblo ceremonies in personations of certain maidens. Across the forehead are alternating black and white square figures arranged in two series, recalling corn or rain-cloud symbols. The neck is adorned by several strands of necklaces, the outermost of which, almost effaced, suggests rectangular ornaments. The garment worn by the

figure is evidently the ceremonial blanket of a Pueblo woman, for no man wears this kind of garment. It has a white border and from its middle there hangs a number of parallel lines representing cords or a fringe, evidently the ends of a sash by which the blanket was formerly tied about the waist. It is instructive to notice that we find similar parallel lines represented in a picture of a girl from Sikyatki where the blanket has the same rectangular form as in the prehistoric Mimbres picture. There can be no question that in this case it represents a garment bound with a girdle, or that the picture was intended for that of a girl or a woman. We have in this picture evidence that the same method of arranging the hair was used in the Mimbres Valley as in northern New Mexico. The leg wrappings suggest those used by Pueblo women, especially the Hopi, whose leggings are made of long strips of buckskin attached to the moccasins and wound around the lower limbs.

PRIEST SMOKING

The third human figure, found on a black and white bowl from a Mimbres ruin, is duplicated by another of the same general character depicted on the opposite side of the bowl. These figures (fig. 14) are evidently naked men with bands of white across the faces. The eyes are represented in the Egyptian fashion. In one hand each figure holds a tube, evidently a cloud-blower or a pipe, with feathers attached to one extremity, and in the other hand each carries a triangular object resembling a Hopi rattle or tinkler. The posture of these figures suggest sitting or squatting, but the objects in the extended left hand would indicate dancing. The figure is identified as a man performing a ceremonial smoke which accompanies ceremonial rites.

MAN WITH CURVED STICK

One of the most instructive food bowls found at Oldtown, now owned by Mr. Osborn, has on it a picture of two hunters, one on each side of an animal (fig. 15). One of these hunters carries in his hand a stick crooked at the end, its form suggesting a throwing stick. Both hunters have laid aside their quivers, bows, and arrows, which are shown behind them. The picture of an animal between them has been so mutilated by "killing" or breaking the bowl that it is impos-

¹ Called also a "wedding blanket" since it is presented to a girl on marriage by her husband's family.

² 17th Ann. Rep. Bur. Amer. Ethnol., pl. 129, fig. a.

² The hand of the hunter pictured on a bowl already described (fig. 13), also carried a curved stick.

Fig. 14.—Priest smoking. Osborn Ruin.

Fig. 15.—Man with curved stick. Oldtown Ruin. (Osborn collection.) Diam. 5½".

sible to identify it. From the end of this crook to the body of the animal there extend two parallel lines of dots indicating the pathway of a discharged weapon. Near the body of the animal these rows of dots take a new direction, as if the weapon had bounded away or changed its course. The rows of dots are supposed to represent lines of meal by which Pueblos are accustomed to symbolically indicate trails or "roads."

There is, of course, some doubt as to the correct identification of the crooked staff as a throwing stick, for as yet no throwing stick has been found in the Mimbres ruins. The resemblance of the crooked stick to those on certain Hopi altars and its resemblance to emblems of weapons carried by warrior societies is noteworthy. Crooked sticks of this character have been found in caves in the region north of the Mimbres.'

We find a survival of a similar crook used as sacred paraphernalia in several of the Hopi ceremonies, where they play an important rôle. As the author has pointed out, crooked sticks or guelas (fig. 16) identified as ancient weapons surround the sand picture of the Antelope altar in the Snake Dance at Walpi, and in Snake altars of other Hopi pueblos, but it is in the Winter Solstice Ceremony, or the Soyaluña, at the East Mesa of the Hopi, that we find special prominence given to this warrior emblem. During this elaborate festival every Walpi and Sitcomovi kiva regards one of these guelas as especially efficacious for the warriors, and it is installed in a prominent place on the kiva floor, as indicated in the author's account of that ceremony.²

The following explanation of these crooks was given him by the priests:

These crooks or gnelas have been called warrior prayer sticks, and are symbols of ancient weapons. In many folk tales it is stated that warriors overcame their foes by the use of gnelas which would indicate that they had something to do with ancient war implements. Their association with arrows on the Antelope altars adds weight to this conclusion.

The picture from Oldtown ruin of the hunter who has laid aside the quiver, bow, and arrow, and is using a similar gnela, corroborates this interpretation.

Not all crooked sticks used by the Hopi are prayer sticks, or weapons, for sometimes in Hopi ceremonials a number of small shells are

¹ Bull. 87, U. S. National Museum.

² The Winter Solstice Ceremony at Walpi. Amer. Anthrop., 1st ser., vol. 11, Nos. 3, 4, pp. 65-87, 101-115.

³ An ancient crook found in a cave near Silver City is figured by Dr. Hough. Bull. 87, U. S. National Museum,

tied to the extremity of a crooked stick forming a kind of rattle. In the Flute Ceremony a crooked stick is said to be used to draw down the clouds when the rain they contain is much desired.

Figure 16 is a representation of one of the crooks which was specially made for use in the Soyaluña at Walpi, in 1900. Similar crooks were set upright in a low mound of sand on the floors of all the kivas. Extending from the base of the crook to the ladder there

Fig. 16.—Hopi curved stick. Length 8".

was sprinkled a line of meal called the road (of blessings), over which was stretched a feathered string attached to the end of the crook. Midway in the length of the crook was attached a packet of prayer meal wrapped in cornhusk and a feather of the hawk, a bird dear to warriors, and other objects, which indicated a prayer offering. At the termination of ceremonies in which these crooks are made and blessed as prayer emblems by the Hopi they are deposited in shrines as recorded.

The crook (gnela) is used as a prayer emblem of warriors because it has the form of an ancient weapon, and while it assumes modifications in different Hopi ceremonies it apparently has one and the same intent, as in Soyaluña. This crook is sometimes interpreted as symbolically representing an old man with head bent over by age, but this interpretation is probably secondary to that suggested above, as so often happens in the interpretations given by primitive priests.

The true interpretation of the crooked prayer stick was pointed out by the author in his article on "Minor Hopi Festivals," as follows:

This crook is believed by the author to be a diminutive representation of an implement akin to a throwing stick, the object of which is to increase the

Fig. 17.—Human figure running. Oldtown Ruin. (Osborn collection.)
Diam. 7½".

velocity of a shaft thrown in the air. Its prototype is repeatedly used in Hopi rites, and it occurs among Hopi paraphernalia always apparently with the same or nearly the same meaning.

In figure 17 is represented a person running with outstretched banded arms, holding in the left hand a bow, and in the other a straight stick. The head is circular with cross lines, a round, dotted eye, and two triangular ears. Another representation shows a human figure with a bow and arrow before the hands, accompanied by three animals, the middle one being a bird and the two lateral, quadrupeds.

¹ Amer. Anthrop., n, s., vol. 4, p, 502.

By far the most unusual group of human forms consists of two figures, one male, the other female, depicted on another bowl. The action in which these two are engaged is evident. The female figure has dependent breasts and wears a girdle. One hand is raised and brought to the face and the other carries a triangular object. The female figure has three parallel marks on the cheek, like the Hopi war-god. Behind the woman are several curved lines depicting unidentified objects.

The figure shown on one bowl (fig. 18) has several marked features, but the author is unable to suggest any theory of identification. It seems to be a seated figure with a human head, arms, and legs, the toes and fingers being like hands and feet. The forearm is drawn on the shoulder in the same way as in the one of the hunters (fig. 13).

Fig. 18.—Unidentified animal and bowl of unusual form. Oldtown Ruin. (Osborn collection.)

The eye, nose, and mouth are also human, but the body is more like that of an animal. The appendages back of the head are similar to those interpreted as feathers on the heads of certain animal designs.

On the theory that this is a seated human figure it is interesting to speculate on the meaning of the curved object represented on the surface of the bowl, extending from one hand to the foot. This object has the general form of a rabbit stick or boomerang, still used by the Hopi in rabbit hunting.¹

¹ Rabbits are abundant in the Mimbres Valley and several well-drawn pictures of this animal are found on the pottery.

The well-drawn figure painted on a bowl (pl. 1, fig. 2) from Oldtown ruin represents a man with knees extended and arms raised as if dancing. This picture has characteristic markings on the face, but otherwise is not distinctive.

QUADRUPEDS

Wolf.—Although there are not sufficiently characteristic features represented in the next figure (pl. 2, fig. 1) to identify it satisfactorily, the form of the head, tail, mouth, and ears suggests a wolf. The square design covering one side of the body seems to the

Fig. 19.—Antelope. (Osborn collection.) Diam. 10".

author not to belong to the animal itself, for an Indian who could represent an animal as faithfully as those here pictured would not place on it such markings unless for a purpose. It resembles the small blankets sometimes worn by pet dogs or horses among white people, which is a lame explanation, as dog and horse blankets were

¹ This picture resembles that of a wolf depicted on the east wall of the warrior chamber at Walpi. See Amer. Anthrop. n. s., vol. 4, pl. 22.

² Pictures of the mountain lien by Pueblo artists, at least among the Hopi, have the tail turned over the back. The animal on the Mimbres bowl having no horns is not a horned deer or antelope.

^a The decoration of the bodies of animals with rectangular figures is a common feature in Mimbres pottery, as will be seen in pictures of birds soon to be considered.

unknown among Indians. The only theory the author has formed regarding this geometrical figure is that it is a variant of the Sikyatki habit of accompanying a figure of an animal with a representation of his shrine. This bowl is of black and white ware and is eleven inches in diameter by five and one-half inches deep.

Antelope.—There are two figures of an animal with branching horns, supposed to be an antelope, an animal formerly common in Mimbres Valley. In one of these (fig. 10) the head is held downward as if the animal were feeding; in the other (fig. 20) the neck is

F16, 20.—Antelope, Osborn Ruin, Diam, 10".

extended. A pair of markings on the neck are identical with those on pictures of the antelope still painted on modern pottery made by the Zuñi. A band, resembling a checkerboard, is drawn across the body of one; on the other are parallel lines.

Another figure referred to as an antelope appears to represent a young fawn, since, while it has all the characteristics of this animal,

¹ In addition to the figure with the hunters which is probably a deer, as it has not the antelope marks on the neck.

² These horns are represented on a plane at right angles to that in which they naturally lie.

the horns are wanting. This specimen (fig. 21) was found at Oldtown. The rectangular shape so often given to the bodies of animals drawn on Mimbres pottery is well shown in this specimen.

Fig. 21.—Fawn. Oldtown Ruin.

Fig. 22.—Rabbit. Oldtown Ruin. Diam. 71/2".

Mountain Sheep.—It is evident from the form of the unbranched horns, the slender legs, and the head, that either a mountain sheep or mountain goat was intended to be represented in plate 2, figure 2.

The markings on the body are symbolic, suggesting lightning, and it may be added that the Hopi depict the lightning on the artificial horns mounted on caps and worn by them in presentations of dances in which they personate mountain sheep.

Rabbit or Hare.—The pictured representation (fig. 31) of a quadruped whose hindlegs are larger than the forelegs and whose long backward extending ears are prominent features, probably represents a rabbit or a hare. The eyes recall figures of birds depicted on bowls from the Little Colorado ruins in Arizona, where eyes are

Fig. 23.—Mountain lion or wild cat. (Osborn collection.)

Fig. 25.—Bird E. Osborn Ruin. (Osborn collection.)

depicted on one side of the head in violation of a law of perspective in which only one eye can appear on a lateral view. The figure appears to have a tuft of grass in the mouth. The geometric markings on the body are different from those of any known species of rabbit and belong to the category of symbolic designs.

The author excavated at Oldtown a food bowl, the figure on which was undoubtedly intended for a rabbit (fig. 22). The head, ears, body, legs, and tail are well made, leaving no question of the intention of the artist; but if there were any doubt of the identification it is dispelled by the representation of the mouth, on which the sensitive hairs or bristles are represented.

Mountain Lion.—One of the Oldtown bowls is decorated with a representation of the wild cat or mountain lion, and is a fair example of archaic design (fig. 23). The feature that distinguished this quadruped is the position of the tail which, like those of Pueblo pictures of mountain lions or cats, is bent forward over the back.

Both head and body are rectangular and the legs are short and stumpy with sharp curved claws. The ears, mouth, and teeth have characteristic features of carnivora and the tail is banded, especially near the end.

The geometric design on the side of the body consists of an angular, S-shaped design with two equal armed stars, the latter associated with the mountain lion in Pueblo symbolism. The single figure drawn on this bowl occupied the middle of the interior, but in the next bowl this figure is duplicated.

The two figures on another bowl also represent some cat, or mountain lion, but the geometric figure on its body differs so much from the first specimen that it may belong to a different genus. The geometrical designs occur on both the anterior and posterior extremities of the rectangular body and consist of triangular figures with parallel lines and terraces recalling rain-clouds. This bowl is owned by Mr. E. D. Osborn, and was found at Oldtown. The decorations on the two quadrants alternating with the animal figures are bands from which other markings radiate to the side of the bowl.

Badger.—The quadruped drawn on the inside of a bowl found at Oldtown, and now owned by Mr. E. D. Osborn, has some resemblances to a badger, especially in the head, ears, teeth, and tail. The geometrical design on the body of this animal consists of an unequal sided rectangle enclosing four triangles with angles so approximated as to form an enclosed rectangle. The head has two bands extending longitudinally, apparently conventionalized markings characteristic of this animal, as they do not occur on deer, wildcats, or mountain sheep.

Birds.—As has been pointed out in the author's identifications of designs on Sikyatki pottery, those representing birds are among the most abundant. The same holds also in the pottery from the Mimbres, where several figures identified as birds occur on food bowls. Two of these are duplicated on the same vessel, practically the same figure being repeated on opposite sides. In the latter case each member of the pair faces in an opposite direction or is represented as if moving with the middle of the bowl on the left.

¹ 17th Ann. Rep. Bur. Amer. Ethnol., p. 682.

² This is known as the sinistral circuit and is regarded as beneficial in Hopi ceremonials.

NO. 10

37

The various birds differ considerably in their forms, organs, attitudes, and appendages. Two of the pictures seem to represent the same bird, but the others belong to different genera. There are one or two figures in which feathers can be distinguished, but as a rule they are fewer in number and the feathers less conventionalized than in Sikyatki pottery.

Pending the difficulty in identifying the various designs representing birds, they are designated by letters A, B, C, D, etc.

Bird A.—The figure shown in plate 3, figure 1, is represented by two designs, practically the same, repeated so far as appendages go, but quite different in the ornamentation of their bodies. One of these has the same geometrical figure on its body as on one of the quadruped pictures, the second has a different design. Both birds have wings outspread as if in flight, in which the feathers are well drawn in detail, especially the wing on the side turned toward the That on the opposite side is simply uniformly black. The feathers of its companion on the other side of the bowl are indicated by parallel lines. The tail is long and forked at the extremity, suggesting a hawk, and is decorated for two-thirds of its length with cross-hatched and parallel lines. A triangular appendage arises from the under side of the tail at the point where the line decoration ends, forming an appendage which is likewise represented in the companion picture.

Bird B.—Bird B (pl. 3, fig. 2) is painted on the interior of a food bowl of black and white ware, ten inches in diameter by five inches deep. Its body is oval, the head erect and undecorated, and the tail twisted from a horizontal into a vertical plane as is customary in representation of lateral views of birds from Pueblo ruins. The geometric figure on the body is unfortunately somewhat obscured by the plaster used in mending, but several parallel bars that may represent feathers of the wings show through it, and a number of other designs or parallel lines are apparent. An appendage of triangular form hangs from the lower margin of the body and indicates the position of one leg; the other leg is missing.

Bird C.—Bird C, shown in plate 4, figure 1, occurs on a black and white bowl that measures ten inches in diameter, five and one-half inches in depth. The figure occupies the circular zone in the middle of the bowl and is enclosed by parallel lines which surround the bowl near the rim. The top of the head, which is globular, is white in color, the beak projecting and the eyes comparatively large. The body is likewise globular and is covered by a square geometrical design the details of which are considerably obscured by the hole in the middle of

the jar. A number of parallel lines of unequal length, turned downward, hang from the rear of the body and form the tail. The long legs suggest a wading bird, and the widely extended claws point to the same identification.

Bird D.—One of the most instructive figures of birds occurs on a bowl from Oldtown ruin. This bowl (fig. 24) is now owned by Mr. E. D. Osborn, by whom it was found. The bird depicted on it is seen from the back; its wings are drooping, and parallel lines indicate feathers. The legs, drawn backward, terminate in three toes, and the tail, slightly bent to one side, is composed of several feathers.

Fig. 24.—Bird D. (Osborn collection.)

Fig. 29.—Unidentified animal. Oldtown Ruin. (Osborn collection.)

The head is globular with two eyes on the back and a short pointed beak. As in all other zoic figures the geometric figures on the back of the body are the most characteristic. The middle of the body is occupied by an oval design through which may be seen the perforation with which the bowl was killed. At one end there is a triangular design with cross lines which extend partly over the oval figure where, except at one point, they are obscure.

Four quadrilateral designs are distributed at intervals around the oval figure. Each of these has sides of about equal length and a dot medially placed in a smaller figure contained in a larger.

Bird E.—The bird shown in figure 25 (p. 35) from the Osborn ruin has a body form not unlike that of plate 4, figure 1, but the geometric

design on the body, although rectangular, has incurved sides and is covered with cross lines suggesting a net. Its neck is girt by four rings, head small, without feathers, eye minute, bill comparatively long and pointed recalling that of a suipe which is also suggested by long legs and in a measure by the form of the tail.

This bird is undoubtedly aquatic, as indicated by the figure of a fish which it appears to be on the point of capturing or devouring.

Bird F.—The bird shown in plate 4, figure 2, is different from any of the above and is distinguished readily by the four curved lines on the head suggesting the quail. The pointed tail is marked above and below with deutations, formed by a series of rectangular figures which

Fig. 26.—Bird G. Oldtown Ruin. (Osborn collection.) Diam. 10".

diminish in size from body attachment to tip. The body itself is marked posteriorly with parallel lines, rectangular and curved figures suggesting wings.

The bowl (fig. 26) has three animals figured upon it forming a graceful combination. The most striking represents a long-billed bird with one wing notched on the inner margin. The tail of this bird is differently drawn from any of the other birds in the collection and has representations of six feathers. In front of this bird, with the point of the snout at the tip of the bill of the bird, is a lizard-shaped head covered with scales and two round eyes. The other remarkable figure also has extended forelegs, but the body is so broken that identification is quite impossible. Like the figure of the lizard, it also has a lozenge head and two eyes. The geometrical designs on the body are characteristic.

ANIMALS NOT IDENTIFIED

Unidentified Animal.—It is difficult to tell exactly what animal was intended to be represented by that shown in plate 5, figure 2. Its head and mouth are not those of any of the horned animals already considered, although it has some anatomical features recalling a mountain sheep. The extension back of the body has a remote likeness to a fish, but may be a bird or simply a conventional design. The geometrical figure covering the side of the body bears some likeness to one depicted on a bird, as shown in plate 3, figure 1. The same geometrical figure sometimes also occurs separated from any animal form in Sikyatki pottery.¹

The bowl is ten inches in diameter, five inches in depth, and the figures are painted red on a white ground.

Unidentified Animal.—One of the most remarkable of many figures on bowls from Oldtown in the collection of Mr. E. D. Osborn is shown in figures 27, 29 (p. 38). Three colors enter into the decoration of this bowl, black, white, and brown, and there are two types of ornamentation, one zoic, the other geometric. The bowl itself was much broken when found, but not so mutilated as to hide the main designs.

The zoic figures represent animals with square bodies, four legs, ears, head, and tail like a young antelope. There is no design on the side of the body, but in its place four broad parallel bands extend from the belly across the bowl. Each group of parallel lines changes its direction, widening in their course or near the ends where they enlarge for the accompanying figure. The markings on the necks of these figures suggest those on fawns.

The elaborate geometric figure composed of a scroll and commalike dot and eye is a highly conventionalized symbol, possibly of some animal, as a bird's head, common on Casas Grandes pottery.

There is a bowl on exhibition in the Chamber of Commerce at Deming with a picture of a quadruped resembling a deer, but the base is so fractured in killing that it is difficult to determine the shape of the body or its decoration.

Unidentified Animal.—One of the most instructive figures of the collection appears in duplicate on a large food bowl (pl. 5, fig. 1). This vessel is black and white in color and measures fifteen inches in

¹ 17th Ann. Rep. Bur. Amer. Ethnol., pls. 121a, 138c. There are one or two examples of Sikyatki pottery where a geometrical design is attached to an animal figure which leads to the belief that possibly the figure attached to the rear of the above may not represent a part of another animal but rather a geometrical design of unknown significance, in this particular recalling old time Hopi ware.

NO. IO

diameter by six inches deep. The two designs occur on the two sides of the interior of the bowl, the middle of which is left without decoration.

The body of this creature is elongated and tapers backward, being continued into a tail like that of the lizard. The head is long and the snout pointed. Only two legs are represented, and these are situated far back on the body near the point of the origin of the tail from the body. A lozenge-shaped symbol forms the geometrical design on the side.

F16, 27.—Unidentified animal. Oldtown Ruin. (Osborn collection.)

The presence of only two legs in this figure would seem to indicate that a bird was intended, but no bird has a tail like this figure; and the prehistoric potters of the Mimbres certainly knew how to draw a bird much better than this would imply. The exceptional features of this drawing, doubtless intentional, belong neither to flesh, fish, nor fowl, rendering its identification doubtful.

GRASSHOPPER 1

A figure on a bowl here represented (pl. 6, fig. 1) is painted in "black or brown on a background of bluish wash over a yellow color."

¹ This figure may also be identified as a locust.

This bowl is eleven inches in diameter, five inches in depth. The figure is a remarkable one, having features of several animals, but none of these are more pronounced than its insectiform characters, among which may be mentioned the antennæ, three legs on one side (evidently three pairs of legs, for that in the back is simply introduced in violation of perspective), and an extended segmented abdomen attached to the thorax and terminating in a recurved tip. The character of the appendages to the thorax, or the wings, leaves no doubt that a flying animal was intended, and the legs and head being like an orthopterous insect, it may be provisionally identified as a "grass-hopper."

While the general form of head, thorax, and body appear from an inspection of the figure, it may be well to call attention to certain special features that illustrate primitive methods of drawing. The most striking of these is seen in the abnormal position of the leg which arises from the thorax on the back in the rear of the so-called wings. This abnormal position was introduced by the artist to show the existence and form of the legs on the right side; the appendage corresponds with one of the three on the left side, which have the proper position but are much smaller. A similar delineation of organs out of place not seen or turned away from the observer was common among the prehistoric artists of the Pueblo region and is paralleled by the representation of two eyes on one side of the head already mentioned. The two "wings," each ending in white circles with dots or crosses, are supposed, on the theory that this is a grasshopper, to represent wing covers or elvtra, which of course the prehistoric people of the Mimbres did not differentiate from folded wings. It is possible that wing cover and wing may be represented on one side and that corresponding organs on the right side of the body are omitted. The thorax is covered with regularly arranged rows of dots formed by parallel lines crossing at an angle, forming purely arbitrary decoration representing the geometric designs on the bodies of other animals.

FROCS AND BIRDS

One of the few bowls obtained on which animals of two species were depicted on the same vessel was excavated by the author at Oldtown. This remarkably fine specimen (pl. 7, fig. 1) has figures of

¹ Possibly depicted on a food bowl because grasshoppers were eaten by the prehistoric people of the Mimbres.

two birds and two frogs 'drawn in opposite quadrants, being unique in this particular. The two birds and frogs are not very unlike those already described but have certain characteristic features, especially in the geometric designs on their bodies.

The bowl is warped into an irregular shape and made of thin ware, probably distorted in firing. It was found under the floor of one of the central rooms in the Oldtown ruin, almost completely covering the skeleton of a baby.

On another bowl (pl. 6, fig. 2) there is depicted a frog very like that last mentioned. The frog being an amphibian was undoubtedly greatly reverenced by the ancient people of the Mimbres Valley.

HORNED SNAKE

The serpent with a horn on the head is pretty generally regarded as a supernatural being, and its pictures and effigies occur on modern Hopi, Zuñi, and other Pueblo paraphernalia. It is an ancient conception, for it is figured on prehistoric pottery from all parts of the Pueblo area, having been found as far south as Casas Grandes in Chihuahua. It is to be expected that a people like the ancient Mimbreños who adorned their pottery with so many well drawn zoic figures would have included the horned serpent, provided this reptile was a member of their pantheon. The nearest approach to a figure of such a monster is found on a large pottery fragment found by Mr. Osborn twelve miles south of Deming. This fragment covered the eranium of a skeleton and was perforated or "killed" like a whole bowl.

A very large number of pictures of the horned snake from localities all over the Southwest might be mentioned, but a few examples are adequate to show how widespread the conception was in ancient times. They occur among the Tewa, Keres, Zuñi, Hopi and other Pueblos and vary greatly in details, but in all instances preserve the essential symbolic feature—a horn on the head and a serpentine body.

The horned serpent is known to the Hopi as the plumed serpent, and when represented by them has a bundle of hawk feathers as well as a horn attached to the head. Effigies of this being, also with horn

¹ A picture of a horned toad on a food bowl was recorded from Cook's Peak by Professor Webster, and there is a picture of what appears to be the same reptile in Mr. Osborn's collection. It is of course sometimes difficult to positively distinguish representations of frogs, toads, lizards, and Gila monsters, but the anatomical features are often well indicated.

and feathers, are used in several ceremonies, as the Winter Solstice, and a dramatic festival which occurs yearly in March. Wooden representations of the same horned snake are carried as insignia by a warrior society called the Kwakwantu, in the New Fire Ceremony. The priests of the Tewan pueblo, Hano, among the Hopi also have effigies of the horned snake, the worship of which their ancestors brought to Arizona from New Mexico. These effigies are yearly made of clay and form conspicuous objects on the December altars of that pueblo.

Fig. 28.—Serpent. Osborn Ruin. (Osborn collection. E. D. Q. Jr. del.)

The head shown in figure 28 has a horn curving forward almost identical with that on the head of a horned serpent on a bowl from Casas Grandes in the Heye collection. Its gracefully sinuous body is decorated with alternating geometric figures, curves and

¹ The Winter Solstice Ceremony. Amer. Anthrop., 1st ser., vol. 11, Nos. 3, 4, pp. 65-87, 101-115.

² A Theatrical Performance at Walpi. Proc. Washington Acad. Sci. vol. 2, pp. 605-629. Native pictures of the Hopi horned snake may be found, pl. 26, 21st Ann. Rep. Bur. Amer. Ethnol.

³ The horned serpent cult at Walpi is said to have been introduced from the south.

straight lines.⁴ Accompanying the figure of a serpent is a well-drawn picture of a turtle which is decorated on the carapace with a rectangular area on which is painted a geometric figure recalling that on bodies of birds and some other animals.

FISHES

One of the bowls (fig. 30) from the Oldtown ruin has two fishes depicted on opposite sides of the inner surface. These fishes resemble trout and are of different colors, black and reddish brown figures

Fig. 30.—Fish. Oldtown Ruin. Diam. 9".

painted on a white ground. They are represented as hanging from two parallel lines surrounding the rim of the bowl. These fishes are so well drawn that there is no doubt what animal was intended to be here represented. On the interior of another bowl excavated by the author at Oldtown there is a picture of a fish which recalls the two

¹Of all the designs representing the horned snake known to the author this picture from the Mimbres resembles most closely the pictures of this being on pottery from Casas Grandes. It has, however, the single horn found on the clay image in the Hano altar of the Winter Solstice Ceremony, although quite unlike figures on pottery from the Pajarito region. The bodily decorations in the Mimbres bowl are unlike those of the Hopi horned snake.

just mentioned.¹ It may be mentioned that fishes are not represented in the beautiful specimens of pottery from Sikyatki,² possibly for the simple reason that there are no streams containing fish in the neighborhood of Hopi ruins. In the Mimbres, however, fish are still found and were no doubt formerly abundant and well known to the prehistoric inhabitants,³ being looked upon by them as water symbols in much the same way as the frog is at present regarded by Zuñi and Hopi.

Another fish figured on a bowl from Oldtown, is unfortunately broken near the tail. The accompanying decoration has apparently another figure behind this fish, but its complete form is obscured by the perforation made in killing the vessel.

The most problematical of all the life figures on the Mimbres pottery is shown in plate 7, figure 2. This figure occurs on a black and white food bowl, eleven inches in diameter, four and one-half inches in depth. In support of the theory that the two figures here depicted represent fishes, we have the pointed head without neck, the operculum as a white crescentic design, two fins (pectoral ventral, and anal), the median (adipose?) dorsal fin unpaired, and a long tail bifurcated at the extremity. The resemblance of these figures to the undoubted fishes on bowls previously mentioned is conclusive evidence that they represent the same animal.

GEOMETRICAL FIGURES

The geometrical designs on Mimbres pottery are rectangular, curved, and spiral, the first form being the most common. These units are arranged in twos or fours, and although they consist often of zigzag or stepped figures, the triangle and rectangle predominate. The geometrical designs are rarely colored, but commonly filled in with hachures and parallel lines. There are seldom decorations on the outside of the Mimbres bowls, in which respect they differ from ancient Hopi (Sikyatki) vessels elsewhere figured. Conversely, that part of the interior of the bowl which surrounds the central design, oftentimes elaborately ornamented in Mimbres pottery, is very simply

¹The Mimbres formerly had many more fishes than at present, and Bartlett records that his men often brought in fine trout for his camp. These, with turkeys, quail, deer and antelopes, led him to say that his "fare might be called sumptuous in some respects" (op. cit., p. 236).

² Fishes are sometimes represented on Keresan pottery.

³ As elsewhere mentioned in this paper, one of the bird figures (fig. 25) has a fish in its mouth.

⁴ 17th Ann. Rep. Bur. Amer. Ethnol., Part 2, figs. 277-355.

decorated in Sikyatki pottery. Encircling lines on Mimbres pottery are continuous, whereas at Sikyatki they are broken at one or more points by intervals known as the "life gateways" or "lines of life." The geometrical figures on the inside of every bowl sometimes surround a central region on which no figures of animals or human beings are drawn, but which is perforated.

The more strikingly characteristic forms of geometrical figures are shown in designs on plate 8. Certain of the geometrical figures drawn on the sides of animals as on the wolf (pl. 2, fig. 1), the antelope (figs. 19 and 20), the mountain sheep (pl. 2, fig. 2), the unidentified animal and bird (figs. 18 and 25), the reptile (fig. 28),

Fig. 31.—Rabbit and geometrical designs.

also appear without the animals and probably have the same significance 2 in both instances.

No geometrical figures were identified as representing sun, moon, earth, or rain-clouds. A few crosses, circles, triangles, and irregular quadrilateral designs combined with zigzag stepped figures and interlocked spirals and highly interesting swastikas (fig. 31) form the

¹ Ceremonially, every piece of pottery is supposed by the Hopi to be a living being, and when placed in the grave of the owner, it was broken or killed to let the spirit escape to join the spirit of the dead in its future home. There is no evidence that the Sikyatki mortuary pottery was purposely broken when deposited in the grave, and probably no need of perforating it to allow free exit of the spirit, for the broken encircling line, "life gateway," absent in Mimbres pottery, but almost universally present in ancient Hopi pottery, answered the same purpose, in their conception.

^{*}Following Hopi analogies, where these geometrical figures frequently occur with animals they may have the same symbolic meaning as when alone, and represent shrines or prayer-offering houses.

majority of the designs.¹ Several geometric designs, as those on the bodies of figures 25 and 26, appear on Sikyatki pottery (see 17th Ann. Rep. Bur. Amer. Ethnol., plate 121); others resemble Pueblo symbols of wide distribution, but the majority are unique. The geometric designs on the bodies of life-figures vary with the animal depicted, but the same genus of animals does not always have the geometric figure, although almost identical designs occur on the bodies of different genera. It is recognized that a comparison of designs on Southwestern pottery shows a general uniformity in geometrical pattern which renders it very difficult to distinguish different local areas of development, and may be the result of more extensive inter-

Fig. 32.—Geometrical figure. (Osborn collection.)

change of ideas and a greater uniformity of cultural conditions. The pottery of the Mimbres shares with the rest of the Southwest several well-known geometrical designs which no doubt date back to an earlier epoch than the evolution of animal figures, but it also has several decorations of geometrical patterns (fig. 32) that are peculiar to it and which, taken with the characteristic zoic figures, serve to differentiate it from other local areas. Mimbres pottery as pointed out by others has a general likeness to that from Casas Grandes Valley in Chihuahua, a resemblance which no doubt increases as we follow the river to Lakes Palomas and Guzman.² The resemblance is not close

¹ Unfortunately there are few decorated vases represented in the collection, but exploration in the field may later bring many of these to light.

² The author brought to Washington fragments of a food bowl from the ruin near Byron Ranch, identical with Casas Grandes ware.

enough to indicate identity, but we have enough material to support the belief that the archeological area in which it occurs is Mexican, unlike that of any other ceramic area in Arizona or New Mexico. Here a specialized symbolism has been developed which is different from that of the Rio Grande, or the Upper Gila-Salt area, and that characteristic of the great Lower Gila in which lie the compounds like Casa Grande. The Mimbres Valley archeologically is the northern extension of a culture area which reached its highest development on Casas Grandes River.

Conclusions

Geographically the Mimbres Valley is the northern extension of the drainage area of the large interior plateau, the lowest level of which is occupied by Palomas, Guzman, and other so-called lakes. The Casas Grandes, Mimbres, and other rivers contribute their scanty waters to these lakes, which have no outlets into the sea. As a rule the thirsty sands along the course of the river drink up the surplus waters of the Mimbres or cause them to sink beneath the surface, to reappear when the configuration of lower clay or rock formations forces them from subterranean courses. Considering the similarity in climatic and geographical conditions in the northern and southern ends of this plateau, we would expect to find cultural likenesses in the prehistoric inhabitants of the Mimbres and Casas Grandes valleys, but such is not the case. The absence of relief decoration combined with painting, so common in the pottery from the Casas Grandes region, separates the Mimbres ware from that found far to the south.1

There are evidences that the course of the Mimbres River through Antelope Plain has from time to time changed considerably, and although a section of its bed now lies east of the Florida Mountains, the river probably formerly made its way to the west of the same in its course to Mexico. Modifications or changes in the bed of this river have had in the past much to do with the shifting of population and obliteration of prehistoric sites, either by washing them away entirely or burying them out of sight or deeply below the surface. This concealment of evidences of prehistoric occupancy has also been aided by frequent sandstorms, when considerable quantities of soil have been transported from place to place and deposited on walls or covered implements lying on the surface of the ground. It is also

¹ We must look to renewed explorations to shed light on this and many other questions which the paucity of material is yet insufficient to answer.

possible that there has been a slow change of climate, causing a desiccation which may have been so widespread that the inhabitants of the plain were driven up river into the hills where water was more abundant, but it is well to remember that abandoned settlements or ruins exist on the banks of the Mimbres where there is still abundant water, as well as in the plain which is dry.

The depth of the present water level, as shown by drilling for wells, varies in different places in the valley, but in the neighborhood of the hills there are many springs. The configuration of the surface of the hard clay strata lying beneath the soil here and there often forces the water to rise to the surface, and ruins occur at points where at present there are no signs of surface water, although at the time they were inhabited there may have been more water.¹ Whether or not this water was brought to certain ruins by a system of artificial irrigation, the canals of which have been obliterated, we cannot say, but there is only scanty evidence that the climate here, as elsewhere, has radically changed since man occupied the valley.²

Although there is a remote likeness between the terraced house or pueblo community of northern New Mexico * and the prehistoric houses of the Lower Mimbres, its closest resemblance is to an antecedent type, for it is possible that the terraced pueblo culture in the Rio Grande Valley was preceded by another. This earlier type of habitation of the Mimbres Valley was like the fragile-walled house of the natives inhabiting a large part of Arizona and New Mexico before the Puebloan, and we have evidence that this older style of building was scattered over the present Pueblo area. There is no evidence of a terraced dwelling or pueblo more than one story high

¹ In dry seasons the river flows under the superficial soil at a varying depth, but in floods it follows the surface bed.

² As the author has pointed out in several articles, the abandonment of Southwestern ruins is due to a variety of causes, chief of which are changes of climate. It is often due to other more local causes, as attacks by hostiles, salinity of soil, poor site for defence, presence of wizards, contagious diseases, etc.

³ The designation "pueblo ruins" sometimes applied to any cluster of ancient house walls in Colorado, Utah, New Mexico, and Arizona, should be restricted to a well-defined architectural type which originated and reached its highest development in a small area in New Mexico. It was eventually carried by colonists in all directions from the center of origin, becoming intrusive as far west as the Hopi, Zuñi, and Little Colorado. The boundaries of this type never extended into Mexico in prehistoric times. The ruins along the Mimbres are not community houses of terraced character and should not be called pueblo ruins.

in the Mimbres or the inland basin in which it lies. In other words the ruins of the Mimbres may be regarded as older than true pueblo ruins, resembling an earlier type of dwelling that antedated, in the Rio Grande Valley, the terraced houses.

The author does not find any architectural features in the remains of the prehistoric habitations of the Mimbres Valley suggesting Casa Grande compounds, or those massive buildings with encircling walls which are characteristic of the plains of the Gila. Although the walls of the Casas Grandes, in Chihuahua, are constructed in the same way and out of material like those of Casa Grande on the Gila, the architectural feature, an encircling wall of the latter, has not yet been recognized on the Sierra Madre plateau. Objects found in the Gila ruins are somewhat different in form from those of Chihuahua, while pottery from the Gila Valley ruins and that from the inland plateau in northern Chihuahua is markedly different, with very divergent symbolism. Not only do forms of stone implements of a shape unknown in southern Arizona occur in southern New Mexico. but also the methods of disposal of the dead differed among the two people. The latter practised inhumation only, the other both cremation and inhumation. The aborigines of the Mimbres Valley placed a bowl over the head or face of the dead, a practice which, so far as known, does not appear to have been so commonly in vogue in inhumation of the prehistoric people of the Lower Gila plants.

The conventional geometric symbols on prehistoric Mimbres pottery are readily distinguished from those on ware from Tulerosa, a tributary of the San Francisco. The most significant feature of the Mimbres pottery is that fifty per cent of the figures on it represent men or animals, while out of a hundred bowls from the Gila not more than two or three are ornamented with zoic designs. As we know comparatively nothing of the pottery of the sources of the Upper Gila and that part of its course which lies between the Tulerosa and the Mimbres, we can at present venture very little information on ceramic relations, but similarities or mixtures would naturally be expected, due to contact or overlapping, the type of the one valley overlaying that of the other or mingling with it.

The sources of the Upper Salt, the largest tributary of the Gila, lie far from the Mimbres, and close relationship in the pottery of the

¹This statement is made with reservation, as the true architectural form of the Casas Grandes of Chihuahua is not yet known. The published plans show no encircling wall like that of Casa Grande on the Gila; probably the Casas Grandes of Chihuahua belong to a highly specialized type different from others.

ancient people inhabiting its banks is not found or expected. It is not known whether the pottery from the Upper Salt and that from the Upper Gila is similar, for our museums have no extensive collections from the latter region from which to make comparisons and draw conclusions. We know practically nothing of the prehistoric culture of the Upper Gila.

The aborigines of the Mimbres, like those of some of the former dwellers in Pajarito Park in New Mexico, practised a modified form of urn burial, but the latter rarely decorated their pottery with figures of animals. As compared with known Pueblo ceramics, the Mimbres pottery appears to be more closely allied to ancient Keresan than to old Tewan. Judging from what remains, the houses architecturally had little in common with true pueblos. There are no evidences of circular subterranean kivas with pilasters, ventilators, deflectors, and niches, as in northern New Mexico, although there is a fairly large proportion of subterranean rooms or pit dwellings which may have been their prototypes. Architecturally the prehistoric habitations of the Mimbres Valley represent an old house form widely distributed in the Pueblo region or that antedating the pueblo or terraced-house type before the kiva had developed.

There are not sufficient data at hand to determine satisfactorily the kinship of the prehistoric inhabitants of Mimbres Valley, but as far as may be juded by pottery symbols it may be supposed that their culture resembled that of other sedentary people of New Mexico and Arizona in early times, as well as that of peoples of Chihuahua. It appears to the author that there are so many cultural similarities among the sedentary people which inhabited the Sierra Madre plateau, of which the Antelope Plain of Mimbres Valley is only a northern extension, that we may regard their culture as closely related. A specialized high development of this inland culture took place along the Casas Grandes River, culminating in Chihuahua. The Mimbres Valley was inhabited by people somewhat less developed in culture.

Although the ancients of the Mimbres were related on the one side to the Pueblos of New Mexico and on the other to more southern people, that relationship existed between the ancestors of the same rather than with modern Pueblos, and reached back to a time before

While neither the terraced nor the "compound" type of architecture has been seen in the Mimbres for the reason that both were specialized in their distinct geographical areas, the fragile-walled, jacal type of habitation is identical in form, though not in time, in all three localities.

the terraced communal house type originated. This type of house arose in northern New Mexico and spreading from this center extended down the San Juan as far as the Hopi, while modifications are also found in certain ruins on the Gila and Little Colorado, which, like Zuñi, it profoundly influenced, but its influence never reached as far as the Lower Mimbres.

A comparison of the limited archeological material from the Mimbres with that from other localities in the Southwest suggests a provisional hypothesis that the prehistoric culture of this valley was not modified by terraced architecture nor greatly affected by that of the Lower Gila type, both of which evolved independently and locally, but belonged to an older type with which it had much in common.

FIG. 1.—WOMAN DANCER. BLACK AND WHITE WARE. 12 BY 6 INCHES. OSBORN RUIN FIG. 2.—DANCING FIGURE. RED DECORATION. DIAMETER 5 INCHES. OSBORN RUIN

FIG. 1. TWO WOLVES. BLACK AND WHITE WARE. 11 BY 5 12 INCHES. OSEORN RUIN

FIG. 2. MOUNTAIN SHEEP BLACK AND WHITE WARE. 11 BY 5 12 INCHES. OSBORN RUIN

FIG. 1.—BIRD A. RED AND WHITE WARE. 9 BY 4 INCHES. OSBORN RUIN FIG. 2.—BIRD B. BLACK AND WHITE WARE. 10 BY 5 INCHES. OSBORN RUIN

FIG. 1. BIRD C. BLACK AND WHITE WARE. 10 BY 512 INCHES. OSEORN RUIN

FIG. 2. BIRD F RED AND WHITE WARE. DIAMETER 8 INCHES OSEORN RUIN

FIG. 1.—PROBLEMATICAL ANIMAL. BLACK AND WHITE WARE, 15 BY 6 INCHES. OSBORN RUIN FIG. 2.—PROBLEMATICAL ANIMAL. RED DECORATION, OSBORN RUIN

FIG. 1.—GRASSHOPPER. RED FIGURE. DIAMETER 5 INCHES. OSBORN RUIN
FIG. 2.—FROG. DIAMETER 10 INCHES. OSBORN RUIN

FIG. 1. FROGS AND BIRDS. BLACK AND WHITE WARE. DIAMETER ABOUT 12 INCHES OLDTOWN RUIN

FIG. 2. FISHES. BLACK AND WHITE WARE. 11 BY 4^{T_2} INCHES

GEOMETRICAL DESIGNS. DIAMETER 1 7 NATURAL SIZE

3 9088 01421 4548