Chapter 11 Number-Theoretic Algorithms

Jason Pearson and Sam Demorest

April 5, 2015

Overview

Number Theory Review
Greatest Common Divisor
Euclid's Algorithm
Modular Arithmetic
Solving Modular Linear
Equations
Computing Modular Powers
Computing Modular Powers

Finding Large Prime Numbers
Searching for a Large Prime
Checking if a Number is
Prime

RSA Public-Key Cryptosystem Public-Key Cryptosystems RSA Cryptosystem

Composite and Prime Numbers

Composite Numbers have a divisor other than itself and one. For example 4|20 means that 20=5*4 The divisors of 12 are 1,2,3,4,6 and 12 Prime numbers have no divisors but 1 and itself First 10 Primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Greatest Common Divisor

If h|m and h|n then h is called a common divisor A common divisor is a number that is a factor of both numbers The greatest common divisor is the largest factor for both numbers This is denoted gcd(n,m) For example gcd(12,15) = 3

For any two integers n and m where m \neq 0 the quotient is given by $q=\lfloor n/m\rfloor$ The remainder r of dividing n by m is given by r=n-qm

Greatest Common Divisor (cont)

```
Let n and m be integers, not both 0 and let d = min \{ in + jm \text{ such that } i,j \in Z \text{ and } in + jm > 0 \}
That is, d is the smallest positive linear combination of n and m For example we know gcd(12, 8) = 4, the smallest linear combination is 4 = 3(12) + (-4)8
```

Now suppose we have
$$n\geq 0$$
 and $m>0$ and $r=n$ $mod(m)$ then
$$\begin{split} \gcd(n\ ,\ m)&=\gcd(m\ ,\ r)\\ so\ \gcd(64\ ,\ 24)&=\gcd(24,\ 16)\\ &=\gcd(16,\ 8)\\ &=\gcd(8,\ 0)\\ &=8 \end{split}$$

Least Common Multiple

For n and m where they are both nonzero, the least common multiple is denoted lcm(n,m)

For example lcm(6,9) = 18 because 6|18 and 9|18

The lcm(n,m) is a product of primes that are common to m and n, where the power of each prime in the product is the larger of its orders in n and m

So
$$12 = 2^23^1$$
 and $45 = 3^25^1$ so $lcm(12,45) = 2^23^25^1 = 180$

Prime Factorization

Two integers are relatively prime because the gcd of them is 1 For example $\gcd(12, 25) = 1$ so they are relatively prime If h and m are relatively prime and h divides nm, then h divides m. That is $\gcd(h,m) = 1$ and h|nm implies h|n

Prime Factorization (cont)

Every integer X > 1 can be written as a unique product of primes That is $X = p_1^{k_1} * p_2^{k_2} * ... * p_n^{k_n}$ Where $p_1 < p_2 < ... p_n$ and this representation of n is unique Example being $22,275 = 3^4 * 5^2 * 11$

To solve gcd(3,185,325, 7,276,500) we know $3.185.325 = 3^45^211^213^1$ $7.276.500 = 2^2 3^3 5^3 7^2 11^1$

We then take the common divisors and take the lower power to create the gcd

so
$$gcd(3,185,325, 7,276,500) = 3^35^211^1 = 7,425$$

Euclid's Algorithm

```
Euclid's Algorithm gives us a straight forward way to find the gcd of two numbers int\ gcd(int\ n,\ int\ m) \\ \{ \\ if(m == 0) \\ return\ n; \\ else \\ return\ gcd(m,\ n\ mod\ m); \\ \}
```

Extension to Euclid's Algorithm

```
void Euclid (int n, int m, int gcd, int i, int j){
      if (m == 0) {
           gcd = n; i = 1; j = 0;
      else {
            int iprime, jprime, gcdprime;
            Euclid (m, n mod m, gcdprime, iprime);
            gcd = gcdprime;
            i = iprime;
           j = iprime - |n/m| jprime;
```

Why Use the Other Algorithm?

This other algorithm will give us integers i and j as well So, gcd = in + jmFor Example Euclid(42, 30, gcd, i, j) outputs gcd = 6, i = -2 and j = 36 = -2(42) + 3(30)

Proof Extended Algorithm

Induction Base: In the last recursive call m=0, which means $\gcd(n,\,m)=n$

Since the values of i and j are assigned values 1 and 0 respectively we have

$$in + jm = 1n + 0m = n = gcd(n, m)$$

Induction Hypothesis: Assume in the kth recursive call the values determined for i and j are such that

$$gcd(n,m) = in + mj$$

Then the values returned by that call for i' and j' are values such that

$$gcd(m, n \mod m) = i'm + j'n \mod m$$

Proof Extended Algorithm (cont)

```
Induction Step: We have for the (k - 1)st call that in + mj = j'n + (i' - \lfloor n/m \rfloor j')m
= i'm + j'(n - \lfloor n/m \rfloor m)
= i'm + j'n \mod m
= gcd(m, n \mod m)
= gcd(n,m)
```

The second to last equality is due to the induction hypothesis

Group Theory

A closed binary operation * on a set S is a rule for combining two elements of S to yield another element of S.

This operation must be associative

Must have an identity element for each element in S

For each element in S there must exist an inverse for that element For example with integers $\in Z$ with addition constitute a group.

The identity element is 0 and the inverse of a is -a

A group is said to be finite if S contains a finite number of elements A group is said to be commutative (or abelian) if for all a, $b \in S$

a * b = b * a

$$a*b=b*a$$

Congruency Modulo n

Let m and k be integers and n be a positive integer. If n|(m-k) we say m is congruent to k modulo n, and this is written by $m \equiv k \bmod n$ For Example Since 5|(33-18), $33 \equiv 18 \bmod 5$

The integers 2, 5, 9 are pairwise prime and

 $184 \equiv 4 \mathrm{mod} 2$

 $184 \equiv 4 \mathrm{mod} 5$

 $184 \equiv 4 \bmod 2$

Since 259 = 90 this implies $184 \equiv 4 \bmod 90$

Congruency modulo n is an equivalence relation on the set of all integers.

Equivalence Class Modulo n Containing m

The set of all integers congruent to m modulo n is called the equivalence class modulo n containing m

For example the equivalence class modulo 5 containing 13 is $\{\ldots, -7, -2, 3, 8, 13, 18, 23, 28, 33, \ldots\}$

Equivalence classes modulo n containing m are represented by $[m]_n$ So for our previous example we would represent it by $[3]_5$

The set of all equivalence classes modulo n is denoted $\mathbf{Z}_n = \{[0]_n, [1]_n, ..., [n-1]_n\}$ Example of Addition using $\mathbf{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}$ $[2]_5 + [4]_5 = [6]_5 = [1]_5$

For every positive integer n, $(\mathbf{Z}_n, +)$ is a finite commutative group Every element has an additive inverse so we know the identity element is $[0]_n$

Equivalence Class Modulo n Containing m (cont)

```
Using \mathbf{Z}_5 = \{[0]_5, [1]_5, [2]_5, [3]_5, [4]_5\}
For multiplication [2]_5 * [4]_5 = [8]_5 = [3]_5
This isn't always the case though because not every element in (\mathbf{Z}_n,) has a multiplicative inverse
For example we consider \mathbf{Z}_9
Suppose [6]_9 has a multiplicative inverse [k]_9. Then [6]_9[k]_9 = [6k]_9 = [1]_9
Which means there exists an integer i such that 1 = 6k + 9i which implies \gcd(6,9) = 1 which is not the case
```

Equivalence Class Modulo n Containing m (cont)

This will work if we only include the relatively prime numbers for example

$$z_9^* = \left\{ [1]_1, [2]_9, [4]_9, [5]_q, [7]_9, [8]_9 \right\}$$

Using $(z_9^*,*)$ we have the following multiplicative inverses

$$[1]_9 * [1]_9 = [1]_9$$

$$[2]_9 * [5]_9 = [10]_9 = [1]_9$$

$$[4]_9 * [7]_9 = [28]_9 = [1]_9$$

$$[8]_9 * [8]_9 = [64]_9 = [1]_9$$

The number of elements in z_n^* is given by Euler's totient function

$$\phi\left(n\right)=n\prod_{p:p\mid n}\left(1-rac{1}{p}
ight)$$
 For example

$$\phi$$
 (60) = 60 $\prod_{p:p|60} \left(1 - \frac{1}{p}\right) = 60 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 16$

If the number is prime the totient function is simply $\phi\left(\mathbf{p}\right)=\mathbf{p}-1$

SubGroups

```
G' is said to be a subgroup of G. It is a proper subgroup if S' \neq S
For E, the set of even integers and Z the set of integers.
(E, +) is a proper subgroup of (Z, +)
|S| denotes the number of elements in S it has been shown |S'| |S|
Suppose we have a finite group G = (S, *) and a \in S.
\langle a \rangle = \{a^k \text{ such that k is a positive integer }\}
Clearly \langle a \rangle is closed under *. So, (\langle a \rangle, *) is a subgroup of G.
This new group is called the subgroup generated by a.
If the subgroup genereated by a is G we call a a generator of G
For example (\mathbf{Z}_6, +). We have
<[2]_6>=\{[2]_6,[2]_6+[2]_6,[2]_6+[2]_6+[2]_6,...\}
```

 $= \{[2]_6, [4]_6, [0]_6, [2]_6, ...\}$

If G = (S, *) is a group, $S' \subseteq S$, and G' = (S', *) is a group then

SubGroups (cont)

When generating a subgroup we can stop once we reach the identity element ord(a) is the least positive integer t such that $a^t = e$ where e is the identity element Consider the group $(\mathbf{Z}_6, +)$. We have $\langle [3]_6 \rangle = \{[3]_6, [3]_6 + [3]_6\} = \{[3]_6, [0]_6\}$ and $<[2]_6>=\{[2]_6,[2]_6+[2]_6,[2]_6+[2]_6+[2]_6\}=\{[2]_6,[4]_6,[0]_6\}$ Clearly $<[1]_6>={\bf Z}_6$

SubGroups (cont)

Euler proved for any integer n $\[\] 1$ for all $[m]_n \in \mathbf{Z}_n$ $(|m|_n)^{\phi(n)} = |1|_n$ Consider the group $(\mathbf{Z}_{20},*)$ We have that $\phi(20) = 20 \prod_{p:p|20} \left(1 - \frac{1}{p}\right) = 20 \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{2}\right) = 8$ and $([3]_{20})^8 = [6561]_{20} = [1]_{20}$

Also Fermat has shown that if p is prime then for all
$$[m]_p \in \mathbf{Z}_p$$
 $\left([m]_p\right)^{p-1} = [1]_p$ For example group $(\mathbf{Z}_7,*)$. We have that $\left([2]_7\right)^{7-1} = [64]_7 = [1]_7$

Pre Solving Modular Linear Equations

```
The modular equation  [m]_n x = [k]_n  for X, where X is an equivalence class modulo n, and m, n > 0.  < [6]>_8 = \{[0]_8, [6]_8, [4]_8, [2]_8\}  the equation  [6]_8 x = [K]_8  has a solution if and only if [k]_8 is [0]_8, [6]_8, [4]_8, or[2]_8 For example, solutions to  [6]_8 x = [4]_8  are  x = [2]_8  and  x = [6]_8
```

Pre Solving Modular Linear Equations (cont)

```
Consider the group (\mathbf{Z}_n, +) For any [m]_n \in \mathbf{Z}_n we have that [m]_n = [d]_n = \{[0]_n, [d]_n, [2d]_n, \dots, [(nd-1)d]_n\} where d = \gcd(n, m). This means ord([m]_n) = |<[m]_n > | = \frac{n}{d}
```

The equation $[m]_n x = [k]_d$ has a solution if and only if d | where d = gcd(n,m). Furthermore if the equation has a solution it has d solutions.

There is only a solution for every equivalence class $[k]_n$ if and only if $\gcd(n,m)=1$

Pre Solving Modular Linear Equations Examples

Using the group $(\mathbf{Z}_8, +)$. Since $\gcd(8,5) = 1$ So, $[5]_8x = [k]_8$ has exactly one solution when solving for any k that is a member of $< [5] >_8$. When k = 3 we know that $x = [7]_8$ Using the same group we use 6 instead so $\gcd(8,6) = 2$ So, $[6]_8x = [k]_8$ has exactly two solutions when solving for any k that is a member of $< [6] >_8$. When k = 4 we know that $k = [6]_8$ and $k = [2]_8$

Solving Modular Linear Equations

Let $d = \gcd(n,m)$ and let i and j be integers such that d = in + jm Suppose further $d \mid k$ Then the equation $[m]_n x = [k]_n$ has solution $x = \left[\frac{jk}{d}\right]_n$ For example, consider $[6]_8 x = [4]_8$ we have $\gcd(8,6) = 2$ 2 = (1) 8 + (-1) 6 and $2 \mid 4$ so it must have the solution $x = \left[\frac{-1(4)}{2}\right]_8 = [-2]_8 = [6]_\delta$ This is only one solution though to solve the other we use the equation $[j + \frac{wn}{d}]_n$ for $w = 0, 1, \ldots, d - 1$ So for the other solution we have $[6 + \frac{1(8)}{2}]_8 = [10]_8 = [2]_8$

Psuedocode For Solving Modular Linear Equations

```
void solvelinear ( int n, int m, int k) index l; int i, j, d; Euclid(n,m,d,i,j); if (d|k) for(w=0; w_i=d-1; w++) \\ cout_{ii} \left[\frac{jk}{d} + \frac{wn}{d}\right]_n;
```

Worst Case Time Complexity is Exponential in terms of input size

Computing Modular Powers

Searching for a Large Prime

Checking if a Number is Prime

Public-Key Cryptosystems

RSA Cryptosystem