MATH 701 Homework 3

Let G and H be groups, and let $1_G, 1_H$ be the identities of G and H.

Problem 1.6.1 Let $\varphi: G \to H$ be a homomorphism.

- (a) Prove that $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}^+$.
- (b) Do part (a) for n = -1 and deduce that $\varphi(x^n) = \varphi(x)^n$.
- (a) This follows quickly from induction. The base case is trivial. For the induction step, let $n \in \mathbb{N}$ and suppose that for all n' < n, $\varphi(x^{n'}) = \varphi(x)^{n'}$. Then we have

$$\varphi(x^n) = \varphi(x^{n-1}x) = \varphi(x)^{n-1}\varphi(x) = \varphi(x)^n$$

by the homomorphism property and induction hypothesis.

(b) Using the homomorphism property, we have

$$\varphi(x^{-1})\varphi(x) = \varphi(x^{-1}x) = \varphi(1_G) = 1_H$$

and

$$\varphi(x)\varphi(x^{-1}) = \varphi(xx^{-1}) = \varphi(1_G) = 1_H,$$

so the inverse of $\varphi(x)$ is $\varphi(x^{-1})$. Thus, $\varphi(x)^{-1} = \varphi(x^{-1})$. Let $n \in \mathbb{Z}$. If $n \geq 0$, then we have $\varphi(x^n) = \varphi(x)^n$ from part (a). Otherwise, -n > 0, and we have

$$\varphi(x^n) = \varphi\left(\left(x^{-1}\right)^{-n}\right) = \varphi(x^{-1})^{-n} = \left(\varphi(x)^{-1}\right)^{-n} = \varphi(x)^n.$$

Therefore, $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}$.

Problem 1.6.2 If $\varphi: G \to H$ is an isomorphism, prove that $|\varphi(x)| = |x|$ for all $x \in G$. Deduce that any two isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$. Is the result true if φ is only assumed to be a homomorphism?

Let $x \in G$ and n := |x|. Then we have

$$\varphi(x)^n = \varphi(x^n) = \varphi(1_G) = 1_H$$

by Problem 1.6.1, so $|\varphi(x)| \leq n$. Now let n' such that $\varphi(x)^{n'} = 1_H$. Then we have

$$\varphi(x^{n'}) = \varphi(x)^{n'} = 1_H = \varphi(1_G),$$

so since φ is an isomorphism and thus injective we have $x^{n'} = 1_G$. So we must have $n' \geq |x|$, and thus $|\varphi(x)| \geq |x|$. Therefore $|\varphi(x)| = |x|$.

Nathan Bickel

It follows quickly that two isomorphic groups have the same number of elements of order n for all $n \in \mathbb{N}$: all the elements of order n in one group will have order n under the isomorphism in the other group, and visa versa.

The result is not true in general if φ is not injective, as this is used in the proof. An example where the order of $\varphi(x)$ is less than x is easy to construct.

Problem 1.6.3 If $\varphi: G \to H$ is an isomorphism, prove that G is abelian if and only if H is abelian. If $\varphi:G\to H$ is a homomorphism, what additional conditions on φ (if any) are sufficient to ensure that if G is abelian, then so is H?

 (\Rightarrow) Suppose G is abelian. Let $c,d\in H$, and let $a:=\varphi^{-1}(c)$ and $b:=\varphi^{-1}(d)$. Then we have

$$cd = \varphi(a)\varphi(b) = \varphi(ab) = \varphi(ba) = \varphi(b)\varphi(a) = dc.$$

 (\Leftarrow) Suppose H is abelian. Let $a, b \in G$. Then we have

$$\varphi(ab) = \varphi(a)\varphi(b) = \varphi(b)\varphi(a) = \varphi(ba),$$

so ab = ba by the injectivity of φ .

It is sufficient for φ to be surjective: we can rewrite the proof of the forward direction to be such that a and b are elements of G such that $\varphi(a) = c$ and $\varphi(b) = d$, which are guaranteed to exist by surjectivity.

Problem 1.6.4 Prove that the multiplicative groups $\mathbb{R} \setminus \{0\}$ and $\mathbb{C} \setminus \{0\}$ are not isomorphic.

We have that |i|=4 in \mathbb{C} , but there are no elements of order 4 in \mathbb{R} . So by Problem 1.6.1, no isomorphism can exist.

Problem 1.6.5 Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Since \mathbb{R} and \mathbb{Q} are different cardinalities (by the Cantor diagonalization argument), there is no bijection between them. Therefore, no isomorphism can exist.

Problem 1.6.8 Prove that if $n \neq m$, S_n and S_m are not isomorphic.

Since the factorial function is injective, we have $|S_n| = n! \neq m! = |S_m|$, so the cardinalities are different. Therefore, no bijection and therefore no isomorphism can exist.

Problem 1.6.13 Let $\varphi: G \to H$ be a homomorphism. Prove that the image of $\varphi, \varphi(G)$, is a subgroup of H. Prove that if φ is injective then $G \cong \varphi(G)$.

Let $c, d \in \varphi(G)$ and let $a, b \in G$ such that $c = \varphi(a), d = \varphi(b)$. Then we have

$$cd^{-1} = \varphi(a)\varphi(b)^{-1} = \varphi(a)\varphi(b^{-1}) = \varphi(ab^{-1}),$$

which is in $\varphi(G)$ since $ab^{-1} \in G$. Since $1_H \in \varphi(G)$, then, $\varphi(G)$ is a subgroup of H.

Suppose φ is injective. Then define $\psi: G \to \varphi(G)$ by $\psi(g) = \varphi(g)$. Clearly, ψ is also an injective homomorphism, and it is surjective by definition. Thus, ψ is an isomorphism from G to $\varphi(G)$.

Problem 1.6.14 Let $\varphi: G \to H$ be a homomorphism. Define the kernel of φ to be $\{g \in G \mid \varphi(g) = 1_H\}$ (so the kernel is the set of elements in G which map to the identity of H, i.e., is the fiber over the identity Nathan Bickel

of H). Prove that the kernel of φ is a subgroup of G. Prove that φ is injective if and only if the kernel of φ is the identity subgroup of G.

Let $a, b \in \ker(\varphi)$. Then we have

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1}) = \varphi(a)\varphi(b)^{-1} = 1_H 1_H^{-1} = 1_H,$$

so $ab^{-1} \in \ker(\varphi)$. Therefore, $\ker(\varphi)$ is a subgroup of G (since it is non-empty).

 (\Rightarrow) Suppose φ is injective. Since we have that $\varphi(1_G) = 1_H$, any $a \in G$ such that $\varphi(a) = 1_H$ will satisfy $a = 1_G$ by injectivity. So $\ker(\varphi) = \{1_G\}.$

 (\Leftarrow) Suppose $\ker(\varphi) = \{1_G\}$. Let $a, b \in G$ such that $\varphi(a) = \varphi(b)$. Then we have $\varphi(a)\varphi(b)^{-1} = 1_H$, so $\varphi(ab^{-1}) = 1_H$ and thus $ab^{-1} \in \ker(\varphi)$. Thus we must have $ab^{-1} = 1_G$ (since 1_G is the only element in $\ker(\varphi)$), so a = b. Therefore, φ is injective.

Problem 1.6.18 Prove that the map from G to itself defined by $g \mapsto g^2$ is a homomorphism if and only if G is abelian.

 (\Rightarrow) Suppose φ is a homomorphism. Let $a,b\in G$. Then we have

$$a(ab)b = a^2b^2 = \varphi(a)\varphi(b) = \varphi(ab) = (ab)^2 = a(ba)b$$

by the homomorphism property. Left-multiplying by a^{-1} and right-multiplying by b^{-1} then yields ab = ba.

 (\Leftarrow) Suppose G is abelian. Let $a, b \in G$. Then we have

$$\varphi(a)\varphi(b)=a^2b^2=a(ab)b=a(ba)b=(ab)^2=\varphi(ab)$$

by commutativity, so φ is a homomorphism.

Problem 1.6.20 Let Aut(G) be the set of all isomorphisms from G onto G. Prove that Aut(G) is a group under function composition (called the automorphism group of G and the elements of Aut(G) are called automorphisms of G).

We prove the axioms:

• Closure: Let $\sigma, \tau \in Aut(G)$. We claim that $\sigma\tau$ is an automorphism of G. Let $a, b \in G$. Then we can use that σ and τ are both homomorphisms to write

$$\sigma\tau(ab) = \sigma(\tau(ab)) = \sigma(\tau(a)\tau(b)) = \sigma(\tau(a))\sigma(\tau(b)) = \sigma\tau(a)\sigma\tau(b),$$

showing that $\sigma\tau$ is a homomorphism. Since σ and τ are both bijective, there exist inverses σ^{-1} and τ^{-1} . So $(\sigma\tau)^{-1} = \tau^{-1}\sigma^{-1}$ exists, and thus $\sigma\tau$ is bijective. So $\sigma\tau$ is an automorphism of G.

- Associativity: Function composition is known to be associative.
- **Identity:** The identity function id_G is clearly in Aut(G).
- Inverses: Any $\sigma \in \text{Aut}(G)$ has an inverse σ^{-1} since it is bijective, and since σ^{-1} is also an automorphism, it is in Aut(G).

Therefore, Aut(G) is a group under function composition.

Problem 1.6.23 Let G be a finite group which possesses an automorphism σ such that $\sigma(g) = g$ if and only if g = 1. If σ^2 is the identity map from G to G, prove that G is abelian (such an automorphism σ is called fixed point free of order 2).

Define $f: G \to G$ by $f(x) = x^{-1}\sigma(x)$ for all $x \in G$. We claim that f is injective. To see this, let $x, y \in G$ such that f(x) = f(y). Then we have

$$f(x) = f(y)$$

$$\Rightarrow x^{-1}\sigma(x) = y^{-1}\sigma(y)$$

$$\Rightarrow \sigma(x)\sigma(y)^{-1} = xy^{-1}$$

$$\Rightarrow \sigma(xy^{-1}) = xy^{-1}$$
(multiplying by inverses)
(homomorphism property)
$$\Rightarrow xy^{-1} = 1$$
(property of σ)
$$\Rightarrow x = y$$
.

So f is injective. Since G is finite, it follows that f is a bijection since the domain equals the codomain.

We now show that G is abelian. Let $a, b \in G$, and set $\alpha := f^{-1}(a), \beta := f^{-1}(b)$. Then, we have

$$ab\sigma(ba) = f(\alpha)f(\beta)\sigma\left(f(\beta)f(\alpha)\right)$$

$$= \alpha^{-1}\sigma(\alpha)\beta^{-1}\sigma(\beta)\sigma\left(\beta^{-1}\sigma(\beta)\alpha^{-1}\sigma(\alpha)\right)$$

$$= \alpha^{-1}\sigma(\alpha)\beta^{-1}\sigma(\beta)\sigma(\beta^{-1})\sigma(\sigma(\beta))\sigma(\alpha^{-1})\sigma(\sigma(\alpha)) \qquad \text{(homomorphism property)}$$

$$= \alpha^{-1}\sigma(\alpha)\beta^{-1}\sigma(\beta)\sigma(\beta)^{-1}\beta\sigma(\alpha)^{-1}\alpha \qquad \text{(using } \sigma^2 = id_G)$$

$$= 1, \qquad \text{(repeated cancellation of inverses)}$$

and a similar calculation shows that $\sigma(ba)ab = 1$. So we have

$$ab\sigma(ba) = \sigma(ba)ba$$

$$\implies ab(ba)^{-1} = \sigma(ab)^{-1}\sigma(ab)$$

$$\implies ab(ba)^{-1} = 1$$

$$\implies ab = ba.$$

Therefore, G is abelian.