6483237

F1G.2B

Tinnerwallsapphire_i = deltaT2_i + 273 · K + Touterwall_i
Tmaxquartz_i = 1170 · K
Tmaxsapphire_i = 1400 · K

F I G. 3

Total Thermal Plus Hoop Stress on Bulb as a Fraction of Tensile Strength

F | G. 4

SAPPHIRE / QUARTZ COMPARISON

PROPERTIES	Units	Sapphire ¹	Alumina ²	Quartz³
Softening Temperature	၁့	2030	2000	1597
Maximum Operating Temperature	၁့	1400	1400	006
Thermal Conductivity @ 600°K	W/cm⁰K	0.189	0.035	0.017
Expansion Coefficient @ 25-1100°C	y₀w/w	8.8×10 ⁻⁵	8.3x10 ⁻⁶	4.8x10 ⁻⁷
Tensile Strength @ 25°C ⁴	isd	155000	NA	0002
Max Transmittance 0.3-0.9nm (1.0mm wall)	1.0-100%	0.98 (clear)	0.84 (trans- luscent)	0.94 (clear)

¹ Single crystal alumina ² Poly-crystalline alumina

nina 3

⁴ For tubes: Burst Pressure [2 X Wall Thickness X Tensile Strength @ Temp.] / Tube ID

FABLE 1

Temperature	Tensile Strength Sapphire	Tensile Strength Quartz
25°C	155000 psi	7000 psi
500°C	80000 psi	16500 psi
1000°C	73000 psi	24000 psi
1400°C	56000 psi	FAILURE

FOR TUBES

Burst Pressure - (2 X Wall Thickness X Tensile Strength @ Temp)/ID

TABLE 2

THERMAL CONDUCTIVITY (W/CM·K)

TEMP (°C)	SAPPHIRE	QUARTZ
25	0.46	0.0138
800	0.17	0.018
1000	0.105	0.03

TABLE 3