AM II, LEI + BE: Integrais duplos e repetidos e aplicações

Marco Mackaaij

FCT, Universidade do Algarve

Motivação

Recorde se que

$$[a,b]\times[c,d]:=\left\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b\,\wedge\,c\leq y\leq d\right\}$$

é um retângulo no plano.

- Seja $f: R \to \mathbb{R}_0^+$ contínua, onde $R = [a, b] \times [c, d] \subset \mathbb{R}^2$.
- O valor do integral duplo

$$\iint_{R} f \, dA$$

deve ser igual ao volume da região em \mathbb{R}^3 entre o plano-xy e G_f .

- Essa região pode ser aproximada por paralelepípedos, cujo volume é igual a: àrea da base × altura.
- Quantos mais paralelepípedos, melhor a aproximação. O
 "limite" é igual ao volume pretendido.

Uma imagem vale mil palavras

Animação

©2014 Regents of the University of Michigan

▶ Link

Definição

- Seja $f: R \to \mathbb{R}$ uma função **limitada**.
- Seja P uma partição de R:

$$a=x_1\leq x_2\leq \cdots \leq x_m=b$$
 e $c=y_1\leq y_2\leq \cdots \leq y_n=d.$

- Seja $R_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}] \subseteq R$ um **subretângulo**.
- Seja $A_{ij} := \text{Área}(R_{ij}) = (x_{i+1} x_i)(y_{j+1} y_j).$
- Sejam $M_{ij}(f) := \sup_{R_{ii}}(f)$ e $m_{ij}(f) := \inf_{R_{ii}}(f)$.

Uma imagem vale mil palavras

Definição

• Consideremos a soma inferior e a soma superior:

$$s(f,P) := \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} m_{ij}(f) A_{ij},$$

 $S(f,P) := \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} M_{ij}(f) A_{ij}.$

• Para todas as partições P e P' de R:

$$s(f,P) \leq S(f,P')$$

Definição

Definição

A função f diz-se integrável se existir um e um só número real, chamado o integral duplo de f sobre R e denotado por

$$\iint_{R} f \ dA,$$

tal que

$$s(f,P) \leq \iint_R f \, dA \leq S(f,P')$$

para todas as partições P, P' de R.

Funções integráveis

Teorema

Se $f: R \to \mathbb{R}$ for continua, então é integrável.

• Este teorema pode ser generalizado para funções contínuas com domínios D cuja fronteira é constituída por um número finito de curvas diferenciáveis em \mathbb{R}^2 :

Exemplo

Propriedades elementares

Sejam $f,g:D\to\mathbb{R}$ integráveis e $k\in\mathbb{R}$ uma constante. Então, existem as seguintes propriedades:

$$\iint_D f \pm g \ dA = \iint_D f \ dA \pm \iint_D g \ dA.$$

$$\iint_{D} kf \ dA = k \iint_{D} f \ dA.$$

$$\left| \iint_D f \, dA \right| \leq \iint_D |f| \, dA.$$

Propriedades elementares

• Se f(x,y) = 0, excepto para (x,y) pertencentes a um número finito de curvas diferenciáveis em D, então

$$\iint_D f \, dA = 0.$$

• Se $f(x,y) \le g(x,y)$ para todo o $(x,y) \in D$, então

$$\iint_D f \, dA \le \iint_D g \, dA.$$

• Se $D = D_1 \cup D_2$ tal que $D_1 \cap D_2$ seja a reunião dum número finito de curvas diferenciáveis em \mathbb{R}^2 , então

$$\iint_D f \, dA = \iint_{D_1} f \, dA + \iint_{D_2} f \, dA.$$

Integrais repetidos

• Para calcular integrais duplos usam-se integrais repetidos.

Definição

Seja $f: R \to \mathbb{R}$ uma função integrável, onde $R = [a, b] \times [c, d]$. Existem dois **integrais repetidos** de f sobre R:

$$\int_a^b \int_c^d f(x,y) \, dy \, dx := \int_a^b \left[\int_c^d f(x,y) \, dy \right] dx$$

е

$$\int_c^d \int_a^b f(x,y) \, dx \, dy := \int_c^d \left[\int_a^b f(x,y) \, dx \right] \, dy.$$

Exemplo: integrais repetidos

Exemplo

Sejam
$$f(x,y) = x^2y \ e \ R = [1,2] \times [-3,4]$$
. Então

$$\int_1^2 \int_{-3}^4 x^2y \ dy \ dx = \int_1^2 \left[\int_{-3}^4 x^2y \ dy \right] dx$$

$$= \int_1^2 \left[x^2 \frac{y^2}{2} \Big|_{y=-3}^{y=4} \right] dx$$

$$= \int_1^2 \frac{7x^2}{2} \ dx$$

$$= \frac{7x^3}{6} \Big|_{x=1}^{x=2}$$

$$= \frac{49}{6}$$

Exemplo: integrais repetidos

Exemplo

$$\int_{-3}^{4} \int_{1}^{2} x^{2}y \, dx \, dy = \int_{-3}^{4} \left[\int_{1}^{2} x^{2}y \, dx \right] dy$$

$$= \int_{-3}^{4} \left[\frac{x^{3}}{3}y \Big|_{x=1}^{x=2} \right] dy$$

$$= \int_{-3}^{4} \frac{7y}{3} \, dy$$

$$= \frac{7y^{2}}{6} \Big|_{y=-3}^{y=4}$$

$$= \frac{49}{6}.$$

• O resultado é igual!

Teorema de Fubini

Teorema

Seja
$$f:R \to \mathbb{R}$$
 uma função contínua, onde $R=[a,b] \times [c,d] \subset \mathbb{R}^2$. Então

$$\iint_R f \, dA = \int_a^b \int_c^d f(x,y) \, dy \, dx = \int_c^d \int_a^b f(x,y) \, dx \, dy.$$

Animação

©2014 Regents of the University of Michigan

▶ Link

Domínios regulares

- O Teorema de Fubini também é válido para domínios de integração não-retangulares.
- Seja

$$D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b \land g(x) \le y \le h(x)\},\$$

onde $g, h: [a, b] \to \mathbb{R}$ são diferenciáveis.

Teorema

Seja $f:D\to\mathbb{R}$ uma função contínua. Então

$$\iint_D f \, dA = \int_a^b \int_{g(x)}^{h(x)} f(x, y) \, dy \, dx.$$

Domínios regulares

Seja

$$D := \left\{ (x, y) \in \mathbb{R}^2 \mid g(y) \le x \le h(y) \land c \le y \le d \right\},\,$$

onde $g, h: [c, d] \to \mathbb{R}$ são diferenciáveis.

Teorema

Seja $f:D o\mathbb{R}$ uma função contínua. Então

$$\iint_D f \, dA = \int_c^d \int_{g(y)}^{h(y)} f(x, y) \, dx \, dy.$$

Animação

©2014 Regents of the University of Michigan

▶ Link

Sejam
$$f(x,y)=y$$
 e
$$D=\left\{(x,y)\in\mathbb{R}^2\mid 0\leq x\leq 1\ \wedge\ x^2\leq y\leq x\right\}.$$

Então

$$\iint_{D} y \, dA = \int_{0}^{1} \int_{x^{2}}^{x} y \, dy \, dx$$

$$= \int_{0}^{1} \left[\frac{y^{2}}{2} \Big|_{y=x^{2}}^{y=x} \right] dx$$

$$= \int_{0}^{1} \frac{x^{2}}{2} - \frac{x^{4}}{2} \, dx$$

$$= \left[\frac{x^{3}}{6} - \frac{x^{5}}{10} \right]_{x=0}^{x=1}$$

$$= \frac{1}{15}.$$

Note-se que

$$y = x \Leftrightarrow x = y$$
 e $y = x^2 \Leftrightarrow x = \pm \sqrt{y}$.

Por isso

$$D = \{(x, y) \in \mathbb{R}^2 \mid y \le x \le \sqrt{y} \ \land \ 0 \le y \le 1\}.$$

Então

$$\iint_{D} y \, dA = \int_{0}^{1} \int_{y}^{\sqrt{y}} y \, dx \, dy$$

$$= \int_{0}^{1} \left[xy \Big|_{x=y}^{x=\sqrt{y}} \right] dy$$

$$= \int_{0}^{1} y^{\frac{3}{2}} - y^{2} \, dy$$

$$= \left[\frac{2y^{\frac{5}{2}}}{5} - \frac{y^{3}}{3} \right]_{y=0}^{y=1}$$

$$= \frac{1}{15}.$$

Domínios seccionalmente regulares

Seja D a região em \mathbb{R}^2 delimitada pelas retas $y=0,\ y=x$ e y=2-x.

Repare-se que

$$x = 2 - x \Leftrightarrow 2x = 2 \Leftrightarrow x = 1.$$

Exemplo: domínios seccionalmente regulares

Por isso, pode-se descrever *D* da seguinte forma:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1 \ \land \ 0 \le y \le x\}$$
$$\cup \{(x, y) \in \mathbb{R}^2 \mid 1 \le x \le 2 \ \land \ 0 \le y \le 2 - x\}.$$

Seja $f:D\to\mathrm{R}$ uma função contínua arbitrária. Então

$$\iint_D f \, dA = \int_0^1 \int_0^x f(x,y) \, dy \, dx + \int_1^2 \int_0^{2-x} f(x,y) \, dy \, dx.$$

Exemplo: domínios seccionalmente regulares

Note-se que

$$y = x \Leftrightarrow x = y$$
 e $y = 2 - x \Leftrightarrow x = 2 - y$.

Por isso, o domínio D também pode ser definido como

$$D = \{(x, y) \in \mathbb{R}^2 \mid y \le x \le 2 - y \land 0 \le y \le 1\}.$$

Logo, o integral duplo de f sobre D também satisfaz

$$\iint_D f \, dA = \int_0^1 \int_V^{2-y} f(x,y) \, dx \, dy.$$

Cálculo de áreas e volumes

Caso geral

Se $f,g:D\to\mathbb{R}$ forem contínuas e $f(x,y)\geq g(x,y)$ para todo o $(x,y)\in D$, então

$$\iint_D f - g \, dA = Vol(V_g^f),$$

onde $V_g^f = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D \land g(x, y) \le z \le f(x, y)\}.$

Caso especial: $g \equiv 0$

Se $f: D \to \mathbb{R}_0^+$ for continua, então

$$\iint_D f \, dA = Vol(V_0^f).$$

Cálculo de volumes e áreas

Áreas: $f \equiv 1$ e $g \equiv 0$

Se f(x,y) = 1 para todo o $(x,y) \in D$, então

$$\iint_D dA = \operatorname{Area}(D).$$

Exemplo: áreas

Exemplo

Vamos calcular a área da região planar delimitada pelas curvas dadas por

$$y = x^2 - 4$$
, $y = \frac{x}{2} + 1$, $y = -\frac{x}{2} + 1$.

Exemplo: áreas

D:
$$y = x^2 - 4$$
, $y = \frac{x}{2} + 1$, $y = -\frac{x}{2} + 1$.

$$x^2 - 4 = \frac{x}{2} + 1 \Leftrightarrow$$
$$x^2 - \frac{x}{2} - 5 = 0 \Leftrightarrow$$

$$x = -2 \lor x = \frac{5}{2}.$$

$$x^2 - 4 = -\frac{x}{2} + 1 \quad \Leftrightarrow \quad$$

$$x^2 + \frac{x}{2} - 5 = 0 \Leftrightarrow$$

$$x = -\frac{5}{2} \lor x = 2.$$

$$\frac{x}{2} + 1 = -\frac{x}{2} + 1 \Leftrightarrow$$

$$x = 0$$
.

Exemplo: áreas

$$\text{Área}(D) = \iint_{D} dA
= \int_{-2}^{0} \int_{x^{2}-4}^{\frac{x}{2}+1} dy \, dx + \int_{0}^{2} \int_{x^{2}-4}^{-\frac{x}{2}+1} dy \, dx
= 2 \int_{0}^{2} \int_{x^{2}-4}^{-\frac{x}{2}+1} dy \, dx
= 2 \int_{0}^{2} -\frac{x}{2} + 1 - (x^{2} - 4) \, dx
= 2 \int_{0}^{2} -x^{2} - \frac{x}{2} + 5 \, dx
= 2 \left[-\frac{x^{3}}{3} - \frac{x^{2}}{4} + 5x \right]_{0}^{2} = \frac{38}{3}.$$

Exemplo

Calcule o volume do sólido delimitado pelos planos dados por

$$x = 0$$
, $y = 0$, $z = 0$, $z = 2 - 2x - y$.

$$V: x = 0, y = 0, z = 0, z = 2 - 2x - y.$$

$$z = 2 - 2x - y$$

$$x = z = 0$$
: $y = 2$;

$$y = z = 0$$
: $x = 1$;

$$x = y = 0$$
: $z = 2$.

$$0 = 2 - 2x - y \quad \Leftrightarrow$$
$$v = 2 - 2x.$$

$$z = 0$$
: $y = 2 - 2x$.

$$D: y = 2 - 2x, x = 0, y = 0.$$

$$Vol(V) = \int_0^1 \int_0^{2-2x} 2 - 2x - y \, dy \, dx$$

$$Vol(V) = \int_0^1 \int_0^{2-2x} 2 - 2x - y \, dy \, dx$$

$$= \int_0^1 \left[2y - 2xy - \frac{y^2}{2} \right]_{y=0}^{y=2-2x} \, dx$$

$$= \int_0^1 2(2-2x) - 2x(2-2x) - \frac{(2-2x)^2}{2} \, dx$$

$$= \int_0^1 2x^2 - 4x + 2 \, dx$$

$$= \left[\frac{2x^3}{3} - 2x^2 + 2x \right]_0^1$$

$$= \frac{2}{3}.$$

Fim de aula

FIQUEM BEM E NÃO DESISTAM DE ESTUDAR!