Задача А. Автобусы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Эта задача с открытыми тестами. Ее решением является набор ответов, а не программа на языке программирования. Тесты указаны в самом условии, от вас требуется лишь ввести ответы на них в тестирующую систему.

Вадим добирается до места проведения олимпиады по информатике на автобусе. Он пришел на остановку в H часов и M минут. Все автобусы в его городе начинают движение с этой остановки в 8:00, а последний автобус проезжает через неё не позднее 22:00. Ему подходят автобусы двух типов: автобусы первого типа проходят через остановку Вадима каждые A минут, второго — каждые B минут. Вадим, конечно, очень торопится, поэтому, когда автобус приходит, он сразу же в него садится. Если автобус приходит одновременно с Вадимом, то он тоже успевает в него сесть. Помогите Вадиму выяснить, какое минимальное количество минут ему придётся ждать.

Формат входных данных

Первая строка входных данных содержит целое число H ($0 \le H \le 23$). Вторая строка входных данных содержит целое число M ($0 \le M \le 59$). Третья строка входных данных содержит целое число A ($1 \le A \le 14 \cdot 60 + 1$). Четвертая строка входных данных содержит целое число B ($1 \le B \le 14 \cdot 60 + 1$).

Формат выходных данных

Если в этот день Вадим дождётся автобуса, требуется вывести одно целое число — минимальное количество минут, которое ему придётся ждать. Иначе требуется вывести число "-1" (без кавычек).

Примеры

стандартный ввод	стандартный вывод
9	2
13	
5	
9	
22	0
0	
10	
10	
23	-1
15	
20	
40	

Замечание

В первом примере Вадим сядет на автобус первого типа, который придёт в 9:15, поэтому ждать ему придётся 2 минуты. Во втором примере Вадиму доступны автобусы обоих типов, которые в 22:00 будут на его остановке, поэтому ждать не придётся. В третьем примере Вадим не успеет ни на один автобус.

Тесты

Тест	Н	M	A	В
1	0	0	15	23
2	8	1	841	841
3	12	15	5	15
4	21	55	10	100
5	8	0	123	456
6	17	23	5	12
7	13	47	13	26
8	11	11	190	191
9	10	48	462	381
10	20	44	178	360

Задача В. Фишки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вадим почти готов к началу своего путешествия от дома до места проведения олимпиады по информатике. На каждую олимпиаду Вадим берет с собой фишки, которые, по его мнению, приносят ему удачу. Каждая из этих фишек окрашена в один из k цветов. Фишек i-го цвета у Вадима n_i штук. Вадим хочет решить все задачи олимпиады, поэтому сегодня ему нужны с собой фишки всех цветов. Все фишки хранятся в одной коробке, из которой Вадим достает их не глядя. Помогите ему понять, какое наименьшее количество фишек ему придётся достать, чтобы гарантированно вытащить фишки всех цветов?

Формат входных данных

В первой строке входных данных дано целое число k ($1 \le k \le 10^6$) — количество цветов. Далее в k строках записаны числа $n_1, ..., n_k$ ($1 \le n_i \le 10^3$) — количества фишек 1, ..., k цвета соответственно.

Формат выходных данных

Выведите одно целое число — наименьшее количество фишек, которое нужно достать, чтобы гарантированно получить фишки всех цветов.

Примеры

стандартный ввод	стандартный вывод
2	8
5	
7	
3	17
6	
6	
10	

Задача С. Вдохновение

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Программирование — занятие творческое и тоже требует вдохновения! Вадим, подводя итоги последних нескольких дней, поделился с вами своими наблюдениями. Дни Вадима отличаются друг от друга наличием вдохновения. Вадим считает, что в течение дня у него может быть вдохновение для решения алгоритмических задач, вдохновение для написания промышленного кода или вдохновение для того и другого. Дни, когда вдохновение присутствует и для того, и для другого, называются продуктивными, поскольку именно тогда Вадим больше всего преуспевает в разработке своих проектов. В некоторые дни вдохновения может не быть совсем, ни для алгоритмов, ни для промышленного кода — это не страшно, даже Вадиму иногда нужно отдыхать и отвлекаться от программирования! Назовем такие дни днями отдыха.

Вадим поделился с вами статистикой за n дней, а именно, вам известно, что a дней были продуктивными, b дней Вадим испытывал вдохновение для решения алгоритмических задач, c дней Вадим испытывал вдохновение для написания промышленного кода. Теперь вам стало интересно, какое количество дней отдыха было среди этих n дней? В случае, если Вадим ошибся, и такие числа n, a, b, c не могли получиться при подсчете, вам нужно сообщить об этом.

Формат входных данных

Вводятся четыре целых неотрицательных числа n,a,b,c ($0 \le n,a,b,c \le 10^8$), по одному в каждой строке. n обозначает суммарное количество дней, о которых Вадим делится статистикой, a — количество продуктивных дней, b — количество дней, когда Вадим испытывал вдохновение для решения алгоритмических задач, c — количество дней, когда он испытывал вдохновение для написания промышленного кода.

Формат выходных данных

Выведите единственное число — количество дней отдыха среди n дней. В случае, если Вадим ошибся, и данные числа n, a, b, c не могли получиться, выведите число -1. Гарантируется, что если ответ на задачу существует, то он единственный.

Примеры

стандартный ввод	стандартный вывод
7	2
2	
4	
3	
7	-1
4	
4	
3	

Замечание

В первом примере из условия Вадим делится с вами наблюдениями за неделю. Например, у него могло быть подходящее настроение для алгоритмических задач 4 дня с понедельника по четверг, а для промышленного программирования — 3 дня со среды по пятницу. Тогда среда и четверг были продуктивными днями, а суббота и воскресенье — днями отдыха. Поэтому ответ на этот тест равен 2. Во втором примере из условия данные числа n, a, b, c не могли получиться, поэтому ответом является специальное число -1.

Задача D. Аудитории

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Вадим добрался до места проведения олимпиады по информатике, где имеются аудитории со всеми номерами от 1 до n. Теперь среди них надо найти аудиторию, в которой проводится олимпиада. Из-за волнения Вадим забыл её номер, но что-то он всё-таки помнит — номер нужной аудитории состоит только из цифр x и y в любом количестве (возможно, в номере встречается только одна цифра из этих двух, также x и y могут совпадать). Вадим собирается заходить в аудитории, номер которых может подойти, и спрашивать, не в них ли проводится олимпиада по информатике. Помогите Вадиму понять, какое наибольшее количество аудиторий ему придётся проверить, чтобы найти ту, в которой проводится олимпиада.

Формат входных данных

В первой строке входных данных записано целое число n ($1 \le n \le 10^6$) - количество аудиторий. Во второй строке записано целое число x ($0 \le x \le 9$) - первая цифра, которую запомнил Вадим. В третьей строке записано целое число y ($0 \le y \le 9$) - вторая цифра, которую запомнил Вадим.

Формат выходных данных

Если среди номеров аудиторий есть состоящие из цифр x и y, необходимо вывести одно целое число - наибольшее количество аудиторий, которое Вадиму придётся проверить. Если таких номеров нет, необходимо вывести число "-1" (без кавычек).

Примеры

стандартный ввод	стандартный вывод
15	4
1	
4	
3	-1
7	
9	

Замечание

В первом примере среди номеров от 1 до 15 есть четыре номера, состоящих только из цифр 1 и 4, - это 1,4,11,14. Во втором примере среди номеров 1,2,3 нет номеров, состоящих только из цифр 7 и 9.