Symbolic inductive bias for visually grounded learning of spoken language

Grzegorz Chrupała

Automatic Speech Recognition

A major commercial success story in Language Technology

Very strong supervision

l can see you

Weaker supervision: Visually grounded spoken language

Data

- Flickr8K Audio Caption Corpus (Harwath and Glass 2016)
 - Written captions read by crowd workers
 - 8K images, five audio captions each

Existing models

- Convolutional neural network applied to a spectrogram
 - Harwath and Glass 2016 (NIPS)
- Multi-layer Highway recurrent network applied to Mel-frequency Cepstral Coefficient features
 - Chrupała et al 2017 (ACL)

Learning language via visual grounding

- Closer to human language learning
- May be easier to obtain data
 - Low-resource languages
 - Languages with no standard writing system
 - Cantonese, Hokkien
- BUT: difficult, less constrained task

Inductive bias

The **inductive bias** of a learning algorithm is the **set of assumptions** that the learner uses to predict outputs given inputs that it has **not encountered**.

(Recurrent) Neural Networks

- RNN: autoregressive neural nets.
- Do not assume any linguisticallymotivated structure.
- They may discover the existence of discrete phonemes in speech, despite this lack of bias.

Learned representations encode phonemes

Alishahi et al 2017 (CoNLL)

Inject inductive bias via Multi-task learning

- Human learners biases encoded in the genome via evolution
- ML biases encoded via
 - Architectural design
 - Multi-task learning

Inductive bias via architecture

- Bias encoded as hard constraint on architecture.
- Example: Chung et al 2017 (ICLR)
- But hard to get to work
 - Kádár et al 2018 (COLING)

Pipeline vs MTL

Pipeline Speech Text ASR Meaning NLU

MTL

MTL

- Text only used for training (not as input)
- Representations able to encode text, but can encode other info
- No hard constraint on representations, just a nudge.

Questions

- Does MTL help?
 - Because of inductive bias or extra data?
- Which parameters should be shared?
- Which should be which task-specific?

Three-task model

- Tasks
 - Speech/Image
 - Speech/Text
 - Text/Image
- Tasks share some parameters

Project two modalities to joint space

Image encoder

Encoders

- Image
 - Fixed CNN
 - Linear projection
- Speech
 - CNN layer
 - GRU RNN layers

Text encoder

- Text
 - Embedding layer (symbol lookup)
 - GRU RNN layers
- Text = sequence of characters

Evaluation metrics

- Image retrieval
 - Encode an image into joint speech/image space
 - Rank images by distance
 - Check how good the ranking is
 - Recall@K (higher better)
 - Median rank of correct image (lower better)
- Speaker identity decodability (lower better)
 - Logistic regression model on encoded speech

Experimental conditions

- Vary number of tasks (1-3)
- Vary which layers are shared
- Vary whether tasks are trained on same or different data
 - Flickr8K speech, text, image
 - Libri speech, text

Results on validation data

Data	Tasks	\mathbf{S}	Τ	S2I	S2T	T2S	T2I	R@10	Medr	Spkr
NA	1	2	•	2	•	•	•	0.218	63.8	0.297
Joint	2	2	1	2	0	0	•	0.279	42.3	0.101
Disjoint	2	2	1	2	0	0	•	0.280	41.3	0.177
Joint	3	2	1	2	0	0	1	0.281	39.7	0.085
- .										
Joint	3	4	1	0	0	0	0	0.248	46.3	0.211
Joint Disjoint	3 3	$\frac{4}{2}$	1 1	$\frac{0}{2}$	0 0	0 0	0	0.248 0.280	46.3 41.7	0.211 0.177

1-task vs 2-task vs 3-task

Speech/Text helps. Quite a bit.

Text/Image doesn't.

(joint)

Joint vs disjoint

Same/different data makes no difference → MTL helps because of inductive bias

(3-task)

Full vs partial sharing

Sharing 2 bottom layers of speech encoder works better than sharing all 4 layers.

(disjoint)

Speaker decodability

Better models: more speakerinvariant.

Compared to previous work

Compared to previous single task approaches

Data	Tasks	\mathbf{S}	Τ	s2i	$\mathrm{S}2\mathrm{T}$	T2s	T2I	R@10	Medr	Spkr
NA	1	Harwath and Glass 2015						0.179	_	_
NA	1	Chrupala et al 2017						0.253	48	-
NA	1	2	•	2	•	•	•	0.244	51	0.312
Joint	3	2	1	2	0	0	1	0.296	34	0.096

(test set)

Current and future work

- Speech transcription in addition to current Speech/Text task
- Compare against pipeline architecture in a controlled fashion
- Evaluate with varying data size for auxiliary task