## 代数 K 理论讨论班笔记

中国科学院大学 数学科学学院 张浩



从左至右依次为 Quillen Milnor Grothendieck

2016年3月3日

# 目录

| 1 | $\mathbf{Not}$ | es on $NK_0$ and $NK_1$ of the groups $C_4$ and $D_4$ | 3 |
|---|----------------|-------------------------------------------------------|---|
|   | 1.1            | Outline                                               | 3 |
|   | 1.2            | Preliminaries                                         | 3 |
|   |                | 1.2.1 Regular rings                                   | 3 |
|   |                | 1.2.2 The ring of Witt vectors                        | 4 |
|   |                | 1.2.3 Double relative group                           | 5 |
|   | 1.3            | W(R)-module structure                                 | 5 |
|   | 1.4            | $NK_i$ of the group $C_2$                             | 7 |
|   | 1.5            | $NK_i$ of the group $C_4$                             | 7 |
|   | 1.6            | $NK_i$ of the group $D_4$                             | 7 |

### Chapter 1

# Notes on $NK_0$ and $NK_1$ of the groups $C_4$ and $D_4$

This note is based on the paper [3].

#### 1.1 Outline

**Definition 1.1** (Bass Nil-groups).  $NK_n(\mathbb{Z}G) = \ker(K_n(\mathbb{Z}G[x]) \xrightarrow{x \mapsto 0} K_n(\mathbb{Z}G))$ 

| G                       | $NK_0(\mathbb{Z}G)$ | $NK_1(\mathbb{Z}G)$        | $NK_2(\mathbb{Z}G)$ |
|-------------------------|---------------------|----------------------------|---------------------|
| $C_2$                   | 0                   | 0                          | V                   |
| $D_2 = C_2 \times C_2$  | V                   | $\Omega_{\mathbb{F}_2[x]}$ |                     |
| $C_4$                   | V                   | $\Omega_{\mathbb{F}_2[x]}$ |                     |
| $D_4 = C_4 \rtimes C_2$ |                     |                            |                     |

Note that  $D_4 = \langle \sigma, \tau | \sigma^4 = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$ .

 $V=x\mathbb{F}_2[x]=\oplus_{i=1}^\infty\mathbb{F}_2x^i=\oplus_{i=1}^\infty\mathbb{Z}/2x^i$ : continuous  $W(\mathbb{F}_2)$ -module. As an abelian group, it is countable direct sum of copies of  $\mathbb{F}_2=\mathbb{Z}/2$  on generators  $x^i,i>0$ .

 $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$ , often write  $e^i$  stands for  $x^{i-1} dx$ . As an abelian group,  $\Omega_{\mathbb{F}_2[x]} \cong V$ . But it has a different  $W(\mathbb{F}_2)$ -module structure.

#### 1.2 Preliminaries

#### 1.2.1 Regular rings

We list some useful notations here:

R: ring with unit (usually commutative in this chapter)

R-mod: the category of R-modules,

 $\mathbf{M}(R)$ : the subcategory of finitely generated R-modules,

 $\mathbf{P}(R)$ : the subcategory of finitely generated projective R-modules.

Let  $\mathbf{H}(R) \subset R$ -mod be the full subcategory contains all M which has finte  $\mathbf{P}(R)$ resolutions. R is called regular if  $\mathbf{M}(R) = \mathbf{P}(R)$ .

**Proposition 1.2.** Let R be a commutative ring with unit, A an R-algebra and  $S \subset R$  a multiplicative set, if A is regular, then  $S^{-1}A$  is also regular.

#### 1.2.2 The ring of Witt vectors

As additive group  $W(\mathbb{Z}) = (1 + x\mathbb{Z}[[x]])^{\times}$ , it is a module over the Cartier algebra consisting of row-and-column finite sums  $\sum V_m[a_{mn}]F_n$ , where [a] are homothety operators for  $a \in \mathbb{Z}$ .

additional structure Verschiebung operators  $V_m$ , Frobenius operators  $F_m$  (ring endomorphism), homothety operators [a].

$$[a]: \alpha(x) \mapsto \alpha(ax)$$

$$V_m: \alpha(x) \mapsto \alpha(x^m)$$

$$F_m: \alpha(x) \mapsto \sum_{\zeta^m=1} \alpha(\zeta x^{\frac{1}{m}})$$

$$F_m: 1 - rx \mapsto 1 - r^m x$$

**Remark 1.3.**  $W(R) \subset Cart(R), \prod_{m=1}^{\infty} (1 - r_m x^m) = \sum_{m=1}^{\infty} V_m[a_m] F_m$ . See [1].

**Proposition 1.4.**  $[1] = V_1 = F_1$ : multiplicative identity. There are some identities:

$$V_m V_n = V_{mn}$$

$$F_m F_n = F_{mn}$$

$$F_m V_n = m$$

$$[a] V_m = V_m [a^m]$$

$$F_m [a] = [a^m] F_m$$

$$[a] [b] = [ab]$$

$$V_m F_k = F_k V_m, \text{ if } (k, m) = 1$$

We call a W(R)-module M continuous if  $\forall v \in M$ ,  $\operatorname{ann}_{W(R)}(v)$  is an open ideal in W(R), that is  $\exists k$  s.t.  $(1-rx)^m * v = 0$  for all  $r \in R$  and  $m \geq k$ . Note that if A is an R-module, xA[x] is a continuous W(R)-module but that xA[[x]] is not.

#### 1.2.3 Double relative group

You can skip this subsection for first reading. We will use the results in 1.4.

Let R be any ring (not necessarily commutative), if  $I, J \subset R$  are ideals such that  $I \cap J = 0$ , then there is an exact sequence

$$K_3(R,I) \longrightarrow K_3(R/I,I+J/J) \longrightarrow I/I^2 \otimes_{R^e} J/J^2 \xrightarrow{\psi} K_2(R,I) \longrightarrow K_2(R/I,I+J/J) \longrightarrow 0$$

where  $R^e = R \otimes_{\mathbb{Z}} R^{op}$ ,  $\psi([a] \otimes [b]) = \langle a, b \rangle$ , see [4] 3.5.10 or [2] p. 195.

In the case  $I \cap J = 0$ ,  $K_2(R, I, J) \cong I/I^2 \otimes_{R^e} J/J^2$ .

我的疑问: if R is commutative, whether  $K_2(R, I, J) = I \otimes_R J$  or not?

**Lemma 1.5.** Let (R, I, J) satisfy the following Cartesian square

$$\begin{array}{ccc} R & \longrightarrow & R/I \\ \downarrow & & \downarrow \\ R/J & \longrightarrow & R/I + J \end{array}$$

suppose  $f: (R, I) \longrightarrow (R/J, I + J/J)$  has a section g, then

$$0 \longrightarrow I/I^2 \otimes_{R^e} J/J^2 \longrightarrow K_2(R,I) \longrightarrow K_2(R/I,I+J/J) \longrightarrow 0$$

is split exact.

**Relative group** For relative K-group, there is an exact sequence

$$K_3(R,I) \longrightarrow K_3(R) \longrightarrow K_3(R/I) \longrightarrow K_2(R,I) \longrightarrow K_2(R) \longrightarrow K_2(R/I) \longrightarrow K_1(R,I) \longrightarrow K_1(R) \longrightarrow K_1(R/I)$$

#### 1.3 W(R)-module structure

 $W(\mathbb{F}_2)$ -module structure on  $V = x\mathbb{F}_2[x]$  See Dayton& Weibel [1] example 2.6, 2.9.

$$V_m(x^n) = x^{mn}$$

$$F_d(x^n) = \begin{cases} dx^{n/d}, & \text{if } d|n\\ 0, & \text{otherwise} \end{cases}$$

$$[a]x^n = a^n x^n$$

 $W(\mathbb{F}_2)$ -module structure on  $\Omega_{\mathbb{F}_2[x]} = \mathbb{F}_2[x] dx = \bigoplus_{i=1}^{\infty} \mathbb{F}_2 e^i$  Dayton& Weibel [1] example 2.10

$$V_m(x^{n-1} dx) = mx^{mn-1} dx$$
 
$$F_d(x^{n-1} dx) = \begin{cases} x^{n/d-1} dx, & \text{if } d | n \\ 0, & \text{otherwise} \end{cases}$$
 
$$[a]x^{n-1} dx = a^n x^{n-1} dx$$

**Remark 1.6.**  $\Omega_{\mathbb{F}_2[x]}$  is **not** finitely generated as a module over the  $\mathbb{F}_2$ -Cartier algebra or over the subalgebra  $W(\mathbb{F}_2)$ .

In general, for any map  $R \longrightarrow S$  of communicative rings, the S-module  $\Omega^1_{S/R}$  (relative Kähler differential module  $\Omega_{S/R}$ ) is defined by

generators:  $ds, s \in S$ ,

relations: d(s+s') = ds + ds', d(ss') = sds' + s'ds, and if  $r \in R$ , dr = 0.

**Remark 1.7.** If  $R = \mathbb{Z}$ , we often omit it. In the previous section,  $\Omega_{\mathbb{F}_2[x]} = \Omega^1_{\mathbb{F}_2[x]/\mathbb{Z}}$ .

As abelian groups,  $x\mathbb{F}_2[x] \xrightarrow{\sim} \Omega_{\mathbb{F}_2[x]}, x^i \mapsto x^{i-1}dx$ . However, as  $W(\mathbb{F}_2)$ -modules,

$$V_m(x^i) = x^{im},$$
  
$$V_m(x^{i-1}dx) = mx^{im-1}dx$$

 $x^{im}$  is corresponding to  $x^{im-1}dx$  but not to  $mx^{im-1}dx$ . So they have different  $W(\mathbb{F}_2)$ -module structure.

Remark 1.8. 一个不知道有没有用的结论, see [3]

There is a  $W(\mathbb{F}_2)$ -module homomorphism called de Rham differential

$$D \colon x\mathbb{F}_2[x] \longrightarrow \Omega_{\mathbb{F}_2[x]}$$
$$x^i \mapsto ix^{i-1}dx$$

Then ker  $D = H_{dR}^0(\mathbb{F}_2[x]/\mathbb{F}_2)$  is the de Rham cohomology group and coker  $D = HC_1^{\mathbb{F}_2}(\mathbb{F}_2[x])$  is the cyclic homology group. Note that  $HC_1(\mathbb{F}_2[x]) = \sum_{l=1}^{\infty} \mathbb{F}_2 e_{2l}$  where  $e_{2l} = x^{2l-1} dx$ , and  $H_{dR}^0(\mathbb{F}_2[x]) = x^2 \mathbb{F}_2[x^2]$ .

#### 1.4 $NK_i$ of the group $C_2$

First, consider the simplest example  $G = C_2 = \langle \sigma \rangle = \{1, \sigma\}$ . There is a Rim square

$$\mathbb{Z}[C_2] \xrightarrow{\sigma \mapsto 1} \mathbb{Z}$$

$$\sigma \mapsto -1 \downarrow \qquad \qquad \downarrow q$$

$$\mathbb{Z} \xrightarrow{q} \mathbb{F}_2$$

Since  $\mathbb{F}_2$  (field) and  $\mathbb{Z}$  (PID) are regular rings,  $NK_i(\mathbb{F}_2) = 0 = NK_i(\mathbb{Z})$  for all i.

By Mayer–Vietoris sequence, one can get  $NK_1(\mathbb{Z}[C_2]) = 0$ ,  $NK_0(\mathbb{Z}[C_2]) = 0$ . Note that the similar results are true for any cyclic group of prime order.

#### 1.5 $NK_i$ of the group $C_4$

#### 1.6 $NK_i$ of the group $D_4$

## References

- [1] B. H. Dayton and C. A. Weibel. Module structures on the Hochschild and cyclic homology of graded rings. In *Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991)*, pages 63–90. Kluwer Acad. Publ., Dordrecht, 1993.
- [2] Eric Friedlander and MR Stein. Algebraic K-Theory. Proc. conf. Evanston, 1980. Springer, 1981.
- [3] Charles Weibel.  $NK_0$  and  $NK_1$  of the groups  $C_4$  and  $D_4$ . Comment. Math. Helv, 84:339–349, 2009.
- [4] Charles A Weibel. The K-book: An introduction to algebraic K-theory. American Mathematical Society Providence (RI), 2013.

# 索引

regular ring, 4