Resumen Tema 1 Introducción a la Ingeniería de Servidores

Autor: @BlackTyson

Este resumen contiene ejemplos prácticos tipo de otros años

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción a la Ingeniería de Servidores	2
	1.1. ¿Qué es un servidor?	2
	1.2. Componentes de un Sistema Informático	2
	1.3. Clasificación de Sistemas Informáticos	2
	1.4. Tipos de Servidores	
2.	Fundamentos de Ingeniería de Servidores	3
	2.1. Prestaciones	3
	2.2. Fiabilidad	4
	2.3. Seguridad	4
	2.4. Disponibilidad	
	2.5. Escalabilidad	5
	2.6. Coste	
3.	Fórmulas y Leyes Fundamentales	7
	3.1. Relación Prestaciones/Coste	7
	3.2. Speedup	7
	3.3. Ley de Amdahl	8
4.	Preguntas Tipo Examen	9
	4.1. Preguntas Teóricas (Verdadero o Falso)	9
	4.2. Ejercicios Prácticos	9
5.	Resultados de Preguntas Teóricas (Verdadero o Falso)	10
6.	Resolución de Ejercicios Prácticos	11

1. Introducción a la Ingeniería de Servidores

1.1. ¿Qué es un servidor?

Un servidor es un **sistema informático** que, conectado a una red, proporciona servicios a otros dispositivos llamados clientes. Puede ser un equipo sencillo o una bestia de clúster de alta gama.

1.2. Componentes de un Sistema Informático

- Hardware: Todo lo tangible: procesadores, memoria, almacenamiento, cables, etc.
- Software: Sistemas operativos y aplicaciones que hacen que todo funcione.
- Peopleware: Las personas, desde técnicos hasta usuarios, que interactúan con el sistema.

1.3. Clasificación de Sistemas Informáticos

- Por arquitectura de procesamiento:
 - SISD: Una instrucción, un dato. Simple y secuencial.
 - SIMD: Una instrucción, muchos datos. Ideal para tareas paralelas.
 - MISD: Muchas instrucciones, un dato. Poco común.
 - MIMD: Muchas instrucciones y muchos datos. Perfecto para servidores modernos.

■ Por uso:

- General: PCs para tareas diversas.
- Específico: Servidores dedicados a una tarea concreta.

Por arquitectura de servicio:

- Cliente-servidor: Un modelo clásico donde las tareas se dividen entre proveedores (servidores) y demandantes (clientes).
- Cliente-servidor multinivel: Mejora la escalabilidad dividiendo al servidor en niveles.
- Cliente-cola-cliente: Colaboración entre clientes mientras el servidor sincroniza.

1.4. Tipos de Servidores

Aquí están los más importantes:

- Servidor web: Responde a solicitudes HTTP/HTTPS.
- Servidor de bases de datos: Gestiona datos estructurados.
- Servidor de correo: Almacena y distribuye correos electrónicos.
- Servidor DNS: Convierte nombres de dominio en direcciones IP.
- Servidor de impresión: Gestiona solicitudes de impresión en red.

2. Fundamentos de Ingeniería de Servidores

2.1. Prestaciones

Definición: Las prestaciones evalúan la capacidad del servidor para completar tareas de forma eficiente.

Conceptos clave:

- Latencia: Tiempo total desde que se solicita una tarea hasta que se completa, incluyendo cualquier retraso en el procesamiento.
- **Productividad:** Cantidad de trabajo completado por unidad de tiempo, que refleja el rendimiento general del servidor.

Factores que afectan las prestaciones:

- Hardware: Componentes como el procesador, la memoria RAM y el almacenamiento.
- Software: Configuración del sistema operativo y optimización de las aplicaciones.
- Carga de trabajo: Cantidad y tipo de tareas simultáneas.

Mejoras posibles:

- Actualización de componentes físicos para aumentar la velocidad.
- Ajustes en la configuración del sistema operativo.
- Uso de sistemas distribuidos para repartir la carga.

2.2. Fiabilidad

Definición: La fiabilidad mide la capacidad del servidor para operar sin fallos durante un periodo de tiempo determinado.

Factores clave:

- Redundancia: Uso de sistemas como RAID, fuentes de alimentación duplicadas y redes redundantes.
- Tolerancia a fallos: Capacidad de recuperarse automáticamente tras errores.
- Protección eléctrica: Implementación de sistemas UPS para garantizar el suministro de energía.

2.3. Seguridad

Definición: La seguridad protege los servicios y datos contra accesos no autorizados, manipulaciones o ataques.

Aspectos principales:

- Confidencialidad: Garantiza que solo usuarios autorizados accedan a la información.
- Integridad: Protege los datos contra modificaciones no permitidas.
- Disponibilidad: Asegura el acceso continuo a los servicios.

Medidas comunes:

- Autenticación segura con contraseñas o sistemas biométricos.
- Uso de encriptación para proteger los datos.
- Actualización periódica del software para prevenir vulnerabilidades.
- Implementación de firewalls y sistemas de detección de intrusos.

2.4. Disponibilidad

Definición: La disponibilidad evalúa el porcentaje de tiempo que el servidor está operativo y accesible para los usuarios.

Factores que afectan la disponibilidad:

- Inactividad planificada: Realización de mantenimiento y actualizaciones.
- Inactividad no planificada: Fallos de hardware o ataques cibernéticos.

Mejoras para la disponibilidad:

- Uso de sistemas modulares para realizar actualizaciones sin interrupciones.
- Arquitecturas distribuidas para añadir redundancia.
- Monitorización continua para identificar problemas rápidamente.

2.5. Escalabilidad

Definición: La escalabilidad mide la capacidad del servidor para adaptarse al incremento de la carga de trabajo.

Tipos de escalabilidad:

- Escalado vertical: Añadir recursos a un servidor existente, como más RAM o procesadores.
- Escalado horizontal: Incorporación de más servidores para distribuir la carga de trabajo.

Mejoras relacionadas:

- Uso de plataformas en la nube que permitan ajustes dinámicos.
- Implementación de arquitecturas paralelas.

2.6. Coste

Definición: El coste incluye todos los recursos necesarios para adquirir, operar y mantener el servidor.

Componentes del coste:

- Hardware: Adquisición de componentes como procesadores y almacenamiento.
- Software: Coste de licencias y configuraciones.
- Energía: Consumo eléctrico y refrigeración del hardware.
- Mantenimiento: Reemplazo de piezas y soporte técnico.

Estrategias para reducir costes:

- Uso de software libre o de código abierto.
- Migración a servicios en la nube para reducir inversiones iniciales.
- Implementación de políticas de eficiencia energética.

3. Fórmulas y Leyes Fundamentales

3.1. Relación Prestaciones/Coste

$$\label{eq:Relacion} \text{Relación prestaciones/coste} = \frac{\text{Productividad}}{\text{Coste}}$$

Elementos:

- 1. Relación prestaciones/coste: Métrica adimensional que compara la eficiencia de diferentes sistemas.
- 2. **Productividad** (P): Cantidad de trabajo realizado por unidad de tiempo, expresada en unidades/s.
- 3. Coste (C): Representa los recursos invertidos, típicamente en \mathfrak{C} .

Ejemplo: Comparando dos servidores, el que tenga mayor relación prestaciones/coste será más eficiente económicamente.

3.2. Speedup

$$S = \frac{t_B}{t_A}$$

Elementos:

- 1. S: Relación adimensional que mide la mejora en rendimiento.
- 2. t_B : Tiempo empleado en completar la tarea antes de la mejora, expresado en s.
- 3. t_A : Tiempo empleado en completar la tarea después de la mejora, expresado en s.

Ejemplo: Si un servidor reduce el tiempo de una tarea de 45 s a 36 s:

$$S = \frac{45}{36} \approx 1,25$$

Esto significa que el sistema es un 25 % más rápido.

3.3. Ley de Amdahl

$$S = \frac{1}{(1-f) + \frac{f}{k}}$$

Elementos:

- 1. S: Speedup global, relación adimensional que mide la mejora en el rendimiento del sistema completo.
- 2. f: Fracción del tiempo total que puede beneficiarse de la mejora, sin unidades (por ejemplo, 0.6 significa 60% del tiempo total).
- 3. k: Factor de mejora de la parte optimizada, relación adimensional (por ejemplo, k=2 significa "2 veces más rápido").

Ejemplo práctico: Supongamos que un disco ocupa el 60% del tiempo total de una tarea (f = 0.6) y se mejora su velocidad al doble (k = 2):

$$S = \frac{1}{(1 - 0.6) + \frac{0.6}{2}} = \frac{1}{0.4 + 0.3} = \frac{1}{0.7} \approx 1.43$$

Esto significa que la mejora global del sistema es de un 43 %.

Ejemplo práctico: Supongamos que un disco ocupa el 60% del tiempo total de una tarea (f = 0.6) y se mejora su velocidad al doble (k = 2):

$$S = \frac{1}{(1 - 0.6) + \frac{0.6}{2}} = \frac{1}{0.4 + 0.3} = \frac{1}{0.7} \approx 1.43$$

Esto significa que la mejora global del sistema es de un 43%.

4. Preguntas Tipo Examen

4.1. Preguntas Teóricas (Verdadero o Falso)

- 1. Un servidor web utiliza el protocolo HTTP para responder solicitudes.
- 2. En un sistema de cliente-servidor, el cliente realiza solicitudes y el servidor las procesa.
- 3. La Ley de Amdahl establece que la mejora global de un sistema depende únicamente del hardware.
- 4. Un servidor DNS convierte nombres de dominio en direcciones IP.
- 5. RAID 0 ofrece redundancia y tolerancia a fallos.
- 6. El coste del servidor incluye solo los gastos de hardware.
- 7. La latencia mide la cantidad de tareas completadas por segundo.
- 8. La escalabilidad horizontal consiste en añadir más recursos a un único servidor.
- 9. La seguridad de un servidor incluye aspectos como la confidencialidad, integridad y disponibilidad.
- 10. La relación prestaciones/coste es una métrica que mide el tiempo de ejecución de un servidor.

4.2. Ejercicios Prácticos

Ejercicio 1: Relación prestaciones/coste Un servidor procesa 2000 solicitudes/s con un coste de 5000. Calcula su relación prestaciones/coste y explica su significado.

Ejercicio 2: Speedup Un sistema tarda 100 s en realizar una tarea antes de una mejora y 70 s después de esta. Calcula el speedup del sistema y el incremento porcentual de velocidad.

Ejercicio 3: Ley de Amdahl En un sistema, el 50 % del tiempo total puede beneficiarse de una mejora, y esta parte es 3 veces más rápida tras una optimización. Aplica la Ley de Amdahl para calcular el speedup global del sistema.

Ejercicio 4: Análisis de rendimiento con Ley de Amdahl Un programa tarda $150 \, \mathrm{s}$. Sabemos que el $30 \, \%$ del tiempo corresponde al procesador, que se mejora $2 \, \mathrm{veces}$, y el $40 \, \%$ al disco, que se mejora $3 \, \mathrm{veces}$. Calcula el tiempo total tras las mejoras.

Ejercicio 5: Comparativa de opciones de mejora Un servidor tiene dos opciones de mejora: - Opción A: Mejorar el almacenamiento (1200 €) para reducir el tiempo en 30 %. - Opción B: Mejorar el procesador (1000 €) para reducir el tiempo en 20 %. Determina cuál opción tiene una mejor relación prestaciones/coste.

5. Resultados de Preguntas Teóricas (Verdadero o Falso)

- 1. Verdadero.
- 2. Verdadero.
- 3. Falso. (También depende de la fracción del tiempo mejorable).
- 4. Verdadero.
- 5. Falso. (RAID 0 no ofrece redundancia ni tolerancia a fallos).
- 6. Falso. (Incluye hardware, software, energía y mantenimiento).

- 7. Falso. (La latencia mide el tiempo total desde que se solicita una tarea hasta que se completa).
- 8. Falso. (La escalabilidad horizontal añade más servidores, no recursos a uno solo).
- 9. Verdadero.
- 10. Falso. (La relación prestaciones/coste mide la eficiencia económica).

6. Resolución de Ejercicios Prácticos

Resolución del Ejercicio 1:

Relación prestaciones/coste = $\frac{\text{Productividad}}{\text{Coste}} = \frac{2000 \, \text{solicitudes/s}}{5000} = 0.4 \, \text{solicitudes/s/}$.

Esto significa que el servidor procesa 0,4 solicitudes/s por cada euro invertido.

Resolución del Ejercicio 2: El speedup se calcula como:

$$S = \frac{t_B}{t_A} = \frac{100 \,\mathrm{s}}{70 \,\mathrm{s}} \approx 1.43.$$

El incremento porcentual de velocidad es:

Incremento =
$$\frac{S-1}{1} \cdot 100 = 43\%$$
.

Resolución del Ejercicio 3: Aplicamos la Ley de Amdahl:

$$S = \frac{1}{(1-f) + \frac{f}{k}} = \frac{1}{(1-0.5) + \frac{0.5}{3}} = \frac{1}{0.5 + 0.1667} \approx \frac{1}{0.6667} \approx 1.5.$$

El speedup global del sistema es 1,5.

Resolución del Ejercicio 4: El tiempo optimizado se calcula con la Ley de Amdahl:

$$S = \frac{1}{(1 - f_1 - f_2) + \frac{f_1}{k_1} + \frac{f_2}{k_2}} = \frac{1}{(1 - 0, 3 - 0, 4) + \frac{0, 3}{2} + \frac{0, 4}{3}}.$$

Resolviendo:

$$S = \frac{1}{0.3 + 0.15 + 0.1333} = \frac{1}{0.5833} \approx 1.71.$$

El tiempo optimizado es:

$$t = \frac{150 \,\mathrm{s}}{S} = \frac{150}{1.71} \approx 87,72 \,\mathrm{s}.$$

Resolución del Ejercicio 5: Para la Opción A:

Prestaciones =
$$\frac{1}{1-0.3}$$
 = 1,43, Relación = $\frac{1,43}{1200}$ \approx 0,00119.

Para la Opción B:

Prestaciones =
$$\frac{1}{1-0.2}$$
 = 1,25, Relación = $\frac{1,25}{1000}$ = 0,00125.

Conclusión: La Opción B tiene una mejor relación prestaciones/coste.