A Project Report on

Al fresco

Submitted under the course work of ECEN 5023

Ву

Sai Raghavendra Sankrantipati

Project Overview

Home automation is the control and automation of security, light, air conditioning etc., of home appliances such as washers, ovens, or refrigerators. The internetworking of these automated devices with electronics, software, sensors, actuators, and network connectivity is Internet of Things.

Al fresco means "in the open air" in Italian. Our Al fresco is a sensor hub that is placed on a door which monitors temperature, pressure, ambient light, letter counts and a mimic for pattern access to the door. For the implementation of the project EFM32 Leopard Gecko is used as sensor hub and ATMEL SAMB11 is used as master for the sensor hub. An ATMEL designed mobile phone application 'ATMEL Smart' is used to track these changes. Three profiles run in the application which monitors temperature, pressure, and letter count. Along with 3 on board Temperature, Light and Touch sensors 2 extra sensors for Pressure and mail count are implemented using I2C protocol. Transfer between master and slave is done using UART protocol and transfer between client and server is by Bluetooth.

Solved Problems

- In countries like India where every citizen has a smart phone or a phone with minimum Bluetooth service and doesn't have a proper internet connection, Al fresco is used for these basic purposes.
- On-board ambient light sensor is used to turn light on when its night and turn it off during morning in the front garden.
- On board temperature sensor monitors the temperature and sends its information to the mobile application. User can decide on taking a jacket or not by this information.
- Barometric pressure sensor is used to monitor pressure in the front yard and during low
 pressure days it helps to decide on taking an umbrella while going out or decide on turning
 sprinklers on or off.
- Accelerometer is attached to the mail box's lid. When a letter is dropped in it, it's count is recorded and can be displayed on ATMEL Smart application and LCD
- Capacitive touch sensor is used to check pressure, temperature and letter count in LCD.
- Touch sensor is also used to mimic a pattern for door opening.

Hardware Block Diagram

Key Components

- 1. EFM32 Leopard Gecko
 - LETIMER
 - LESENSE
 - LETOUCH
 - Temperature Sensor
 - ADC
 - DMA
 - Ambient Light Sensor
 - UART
 - I2C

2. SAMB11 Xplained Pro

- DMA
- UART
- Bluetooth
- 3. MMA8452Q 3-axis accelerometer
- 4. BME280 Pressure Sensor
- 5. ATMEL Smart Mobile Application
 - Temperature service
 - Pressure in Battery Service.
 - Letter count in Heart Rate Service

Software Flow Chart

Functions used in code:

- CHIP_Init();
- CMUConfiguration();
- LETIMEROSetup();
- accelerometer();
- LETOUCH_Init(sensitivity);
- pattern_check(channels_touched);
- ACMPlowSetup();
- ACMPhighSetup();
- LED1off();
- LED1on();
- ADCSetup();
- DMASetup();
- ADC_Start(ADC0, adcStartSingle);
- BMEI2CSetup();
- BMEEnable();
- BMESetup();
- DataCalibration();
- BMEDisable();
- CircBuff();
- LCD_off();
- LEUARTSetup();

Risk parts

- Capacitive touch pattern as a shared key I'm not sure how robust could this key be and the patterns that could be made using just 4 sensors would be very less.
- Accelerometer has been configured for an interrupt with little movement. What if there were more than a single movement for a single letter input.

Trigger Points

- When the LETIMER Underflow flag is set all the sensors would start working and a spike is seen in Energy profiler.
- When there is a change in ambient light and if it exceeds a limit, it triggers LEDO.
- Temperature is recorded every 10 seconds and on pressing channel 8 of LESENSE its value should be visible. A constant tracking of temperature is done on Atmel Smart App.
- When there is a change in accelerometer an interrupt is seen in energy profiler. Letter count increments and its value is displayed in LCD. On pressing channel 8 of LESENSE letter count can be seen.
- When the pattern on the capacitive sensor matches "GRANTED" is displayed in LCD.
- When capacitive touch sensor is pressed on channel 8 it should display temperature, pressure, and letter count. Spikes are visible in the energy profiler.
- Pressure is recorded every 10 seconds and on pressing channel 8 of LESENSE its value should be visible. A constant tracking of pressure is done on Atmel Smart App.

Timeframe

	Description of Work	Date	
Status report I	Work on LETIMER, ADC, DMA, Temperature Sensor, Circular Buffer and LEUART	11-08-2016	Done
Status report II	Work on Pressure Sensor, capacitive sense, ambient light sensor and LCD.	11-29-2016	Done
Phase Three	Work on Temperature and pressure services on ATMEL Smart Application. Taking care of project's energy score and updating conninterval and slave latency	12-6-2016	Done

Test methodology

Component under test	Test condition	Verification for success	Result
LETIMER	Running in a condition with two interrupts	An interrupt should occur when comp1 and comp0 values have reached their limits	verified
ULFRCO Calibration	Calibrated in the very start of program	ULFRCO should be calibrated and a logical ratio should be observed	verified
I2C1	Send commands to read status pressure sensor in route 1	Status should be visible in EFM32	verified
I2C1	Send commands to read status accelerometer sensor in route 0	Status should be visible in EFM32	verified
Ambient light sensor	Cover ambient light sensor	LEDO should turn or remain on	verified
Ambient light sensor	Flash the ambient light sensor	LED0 should turn or remain off	verified
ACMP0	Cover ambient light sensor	LED0 should turn or remain on	verified
ACMP0	Flash the ambient light sensor	LED0 should turn or remain off	verified
ACMP1	Touch any channel of cap sensor	A spike is visible in energy profiler which resembles an interrupt	verified
Temperature Sensor	Touch channel 8 of LESENSE for 2 times	LCD should display temperature	verified
Temperature Sensor	Use cold spray and Touch channel 8 of LESENSE for 2 times	LCD should display change in temperature	verified
Temperature Sensor	Use cold spray	temperature value should be visible on Atmel Smart	verified
ADC	After every 10 seconds	temperature value should be visible on Atmel Smart and LCD	verified
DMA	After every 10 seconds	A call back should be called after the transfer	verified

DMA	Use cold spray	temperature value should be visible on Atmel Smart and LCD	verified
Accelerometer	Read and write to the registers	Read the config registers and status registers after writing to them	verified
Accelerometer	Move the sensor	LCD should display count	verified
Accelerometer	Touch channel 8 of LESENSE for 1 time	LCD should display number of accelerometer interrupts	verified
Circular Buffer	Send series of bytes to UART with no significant time difference	In SAMB11 they should be read in the same order without any overlap	verified
LEUART/EFM32	Send data to SAMB11	Check data in SAMB11	verified
USART / SAMB11	Send data from EFM32	Check data in SAMB11	verified
USART / SAMB11	Send data from EFM32	Data should be visible in BLE services	verified
Barometric Pressure Sensor	Read and write to the registers	Read the config registers and status registers after writing to them	verified
Barometric Pressure Sensor	Touch channel 8 of LESENSE for 3 times	LCD should display count	verified
Barometric Pressure Sensor	Blow air to the sensor putting in a closed environment	Read temperature and pressure raw values and calibrated value is read in EFM32	verified
Barometric Pressure Sensor	Blow air to the sensor putting in a closed environment	Pressure value should be changed in Atmel Smart Plug	verified
Capacitive touch sensor	Touch channel 11 and 10 and 8 and 9	It mimics a key and should display access granted	verified
Capacitive touch sensor	Touch channel 8, first time	LCD should display number of accelerometer interrupts	verified
Capacitive touch sensor	Touch channel 8, second time	LCD should display temperature	verified
Capacitive touch sensor	Touch channel 8, third time	LCD should display pressure	verified
LCD	On touching channel 8 of LESENSE	Either Temperature or pressure or letter count is visible	verified

University of Colorado Boulder 10-27-2016

Sleep mode	Disable accelerometer	Current should be below 1.7 uA	verified
Temperature Service	Connect to SAMB11 using ATMEL Smart	Temperature calculated in EFM32 should be visible	verified
Pressure Service	Connect to SAMB11 using ATMEL Smart App	Pressure calculated in BME by EFM32 should be visible	verified

Difficulties Encountered:

• For the challenge to integrate two sensors using I2C, different cases were tried like using route 2 for one sensor in I2C1 and other on route 0. Finally Route 0 and Route 1 have worked fine.

Making a pattern, which is channel 11, channel 10, channel 8 and channel 9, has taken a lot of time for logic to get framed.

- Integrating more than 1 service on the Bluetooth is another difficulty came across the work.
- Implementing Light Sense while Capacitive touch is active is one more difficulty I came across.

Functionality of Project:

- 1. LFXO oscillator is enabled and sleep counter is set
- 2. ULFRCO is calibrated using TIMER 1 and TIMER 2 by using HFRCO and LFRCO.
- **3.** LETIMERO is enabled and underflow flag is set for every 10 seconds. An interrupt occurs when COMP1 flag and UF flag set.
- **4.** LESENSE is initialized with channel 8, 9, 10 and 11 for scanning. ACMP1 is used by LESENSE and interrupt occurs when any of the channel is touched.
- **5.** Accelerometer Is turned on and all the control registers were configured for motion detection using I2C1 in Route 0 position. SDA and SCL ports are disabled.
- **6.** A function for pattern is called in while loop. It checks for channel 11 interrupt, then for channel 10 interrupt, then for channel 8 interrupt and finally for channel 9 interrupt. If any of the case fails EFM32 goes into EM2 mode.
- **7.** When the COMP1 interrupt occurs, Light Sense is turned on which stands for 0.04 seconds.
- **8.** When Underflow interrupt occurs ACMPO status is recorded twice with both high and low ambient light values. LEDO is turned on and off per the status of ACMPO. ACMPO and light sense is turned off.
- **9.** Pressure sensor is configured and uncalibrated readings were recorded and appropriate calculations were made to generalize pressure. BME 280 is configured using I2C1 on route 2 position. After pressure being calculated SDA, SCL and Vdd input for BME is disabled.
- **10.** ADC is initialized with temperature sensor as input. 1000 readings were recorded and transferred using DMA. Average of these values were calculated.
- **11.** Finally, all these values are sent to a circular buffer. After all the values being added LEUART is enabled and transfer begins.
- **12.** These values were read in SAMB11 and first 4 bytes were for temperature service and another four for pressure service.
- **13.** After connecting to SAMB11 using ATMEL SMART Temperature Service and Battery Service would be visible which displays temperature and pressure respectively.
- **14.** When channel 8 of LESENSE is touched once, number of interrupts were displayed on LCD. If its pressed again LCD should display temperature and on pressing channel 8 again LCD should display pressure.
- **15.** If the channels of LESENSE were pressed in the following order 11, 10, 8 and 9 "GRANTED" would be displayed on LCD.
- 16. LCD is turned off in LETIMERO IRQ handler.

Lessons Learned:

Mainly, this project is done in the most professional way. From giving proposal to updating statuses, everything is happened in the corporate style. Secondly, 5 sensor's value were used using 2 transfer protocols and peripherals like ADC, DMA, ACMP and TIMERS were used. Most importantly, this project is developed in lowest possible energy which makes it a direct consumer product.

Conclusion:

Successful implementation of Alfresco by 5 sensors using several peripherals in the low energy mode is implemented. Both Silicon Lab's Leopard Gecko and ATMEL SAMB11 are implemented together in a Bluetooth Smart device application where ATSAMB11 is the master of the system and Leopard Gecko is the sensor hub.

It was a wonderful learning experience and gave me a real insight into Internet of Things. The project is further extendable.