Курсовая работа

Система построения ожидаемых оценок товара пользователем на основе уже существующих

Введение

- Существует множество сервисов, предоставляющих пользвателям возможность купить (прослушать, прочитать,...) тот или иной товар (музыку, книгу, ...). Как правило, количество предоставляемых товаров значительно превышает объём, с которым человек может справиться своими силами, к тому же это количество со временем растёт
- В связи с этим возникает нужда в рекомендательных системах, которые бы предоставляли пользователю меньшую выборку товаров, с которой он уже мог бы справить своими силами

Введение

• Не все сервисы имеют налаженную возможность оценивать схожесть товаров / пользователей по их характеристикам, не связанным с проставленными оценками, так что определённого внимания заслуживают алгоритмы предсказания ожидаемой оценки, работающие на основе только проставленных оценок

Цель работы

 Разработать инструмент, на основе исключительно данных об уже выставленных оценках предсказывающий, какую оценку пользователь поставит новому для него товару, для возможности дальнейшего использования в алгоритмах рекомендаций

Постановка задачи

- U множество пользователей ресурса (читателей, ...)
- В множество товаров (книг, ...), предлагаемых пользователям
- F матрица, где f_{ij} есть оценка (целое число из интервала [1..10]), поставленная пользователем і товару j

Постановка задачи

Predict: U*B → R, т. e. predict(user, object) = f*_{ij}, где f*_{ij} — ожидаемая оценка, которую пользователь і поставит объекту j, посчитанная на основе имеющихся данных об оценках, данных пользователями объектам

Основные подходы

- Корреляционные модели: хранится вся матрица F, близость u´ к u определяется корреляцией столбцов, близость b´ к b строк
- Латентные модели: хранятся профили пользователей и объектов, близость смотрится по сходству профилей, не требуется хранения всей F
- Для реализации были выбраны корреляционные модели, потому что без дополнения матрицы предпочтений «внешними» данными (тегами, ...), латентные методы теряют своё основное преимущество: решение проблемы «холодного старта»

Примеры существующих алгоритмов

- Общий топ (каждому пользователю просто рекомендуются N товаров с наибольшей средней оценкой)
- Топ похожих товаров (для каждого товара находятся наиболее похожие, которые и рекомендуются на странице этого товара каждому пользователю)
- Общий недостаток перечисленных: отсутсвие персонализации

Примеры существующих алгоритмов

• User-based коллаборативная фильтрация: при предсказывании оценки пользователем і товара ј, выбираются наиболее близкие к і пользователи (т. е. оценившие те же товары на похожие оценки, либо N ближайших, либо которые ближе чем некоторый порог), уже поставившие оценку і, берётся средневзвешенная по их оценкам (вес близость)

Примеры существующих алгоритмов

- Item-based коллаборативная фильтрация: как User-based, только рассматривается близость товаров вместо пользователей
- Недостаток коллаборативной фильтрации: новые и нетипичные пользователи и товары

• Для реализации инструмента предсказания были выбраны алгоритмы User-based и Itembased коллаборативной фильтрации. Каждый из них был реализован в 2 вариантах: для случая хранения матрицы предпочтений как матрицы и для случая хранения её в виде списков оцененных товаров для каждого пользователя (списков оценивших пользователей для каждого товара)

- В качестве меры близости для первого варианта была выбрана косинусная мера как стандартная для задач предсказания оценок;
- Для второго же варианта в качестве меры близости использовалась косинусная мера между общими частями списков оценок, домноженная на долю общей части от объединения списков

- Итоговый алгоритм предсказания оценки в обоих вариантах сводится к следующим шагам:
 - Для каждого пользователя (товара) выбираются другие, близость которых превышает указанный порог и у которых есть оценка в интересующей ячейке матрицы предпочтений
 - Предсказанной оценкой становилась средневзвешенная, где весом оценки была мера близости пользователя, поставившего её (товара, которому поставил интересующий нас пользователь)

- Пусть sim:U*U → R функция близости пользователей (для объектов, соответственно, sim:B*B → R). Тогда шаги алгоритма можно записать в следующем виде:
 - Similar(i) = {u∈U:sim(u,i)>α && $f_{ui}!=0$ }
 - Predict(i,j) = sum(f_{uj}*sim(u,i):u∈Similar(i)) / sum(sim(u,i):u∈Similar(i))

Тестирование

- Для тестирования разработанного алгоритма была взята база данных оценок с сайта shikimori.one, само тестирование проходило следующим образом: для каждойуже известной оценки f_{ij} высчитывалось predict(i,j), модуль разности между предсказанной и актуальной оценкой, потом эти модули суммировались и делились на количество известных оценок
- Т.е. алгоритмы характеризовались средним отклонением предсказания от актуальной оценки

Тестирование

- Test = sum(|predict(i,j)- f_{ij} |: f_{ij} !=0) / |{(i,j): f_{ij} !=0}|
- В итоге среднее смещение для User-based алгоритмов оказалось примерно 1.205, а для Item-based 1.058

Пример работы

• Рассмотрим пользователя 58, его актуальные оценки, а также ожидаемые алгоритмами User-based и Item-based с установленным порогом 0 (т. е. рассматривались все пользователи/объекты)

Актуальные оценки	10	10	10	10	10	5
Предсказание User- based	6.8930	8.0	8.7338	0.0	9.0	7.5877
Предсказание Item- based	8.8979	9.0277	9.0805	8.9386	9.0559	9.9999

Итоги

• Реализован инструмент, способный двумя альтернативными способами вычислять ожидаемую оценку, которую пользователь і поставит объекту ј, оба способа в среднем дают смещение порядка 1,2.