Soumons TKS TRIAL HSC 2003 ExTENSION !

$$(4) \ \ d \ \ fa_{1}^{-1}(1+x^{2}) = \frac{1}{1+(1+x^{2})^{2}} \times 2x = \frac{2x}{1+(1+x^{2})^{2}}$$

(d) quiets of lines one 2 at -3.

Tank =
$$\left| \frac{2 - (-3)}{1 + 2(-3)} \right| = \frac{5}{5} = 1$$

. nate ayk is $\left(\frac{450}{1550} \right)$

$$(4) \quad P(-1) = 0 \implies (-1)^{2k+1} - (-1)^{2k} + 4c = 0$$

$$(4) \quad (4) \quad (4$$

$$(\frac{1}{4}) + (\frac{1}{4} - \frac{1}{4}) + (\frac{1}{4$$

2 70

(ii) from (i), 2 sin
$$(n - \frac{\pi}{3}) = J_2$$

... sin $(n - \frac{\pi}{3}) = J_2 = \frac{1}{J_2}$
... $n - \frac{\pi}{3} = \frac{\pi}{4}$ or $\frac{3\pi}{4}$
... $n - \frac{\pi}{3} = \frac{\pi}{4}$ or $\frac{3\pi}{4}$

(c) (i)
$$\mu = 4-x$$
 $\mu = x = 0$, $\mu = 4$

$$\frac{d\mu}{dx} = -2x \quad m \quad d\mu = 0 \quad d\mu = x = 0$$

$$\therefore \quad I = -\frac{1}{2} \int_{0}^{d\mu} \frac{d\mu}{dx} = \frac{1}{2} \int_{0}^{\mu} \frac{d\mu}{dx} = \frac{1}{2} \int_{0}^{\mu} \frac{d\mu}{dx}$$

$$= \frac{1}{2} \cdot 2[\mu + \frac{1}{2}]^{\mu}$$

1一星十二

$$x_1 = 1.2 - e^{1.44} - 1.2 - 3 = 1.1977...$$

<u></u>

x = 550 px 552.

(ii)
$$T = \frac{2T}{7}$$
 . $x = \frac{2T}{7}$
. $b = 10 \text{ cm} \left(\frac{2T}{7} \cdot \frac{7}{5}\right) = 10 \text{ cm} \left(\frac{2T}{3}\right)$
. $b = 10 \text{ cm} \left(\frac{2T}{7} \cdot \frac{7}{5}\right) = -5$

(c)
$$\binom{5}{3} \div \binom{n-1}{2} = \frac{n!}{(n-3)! \cdot 3!} \div \frac{(n-1)!}{(n-3)! \cdot 3!}$$

$$= \frac{n!}{(n-3)! \cdot 3!} \times \frac{(n-3)! \cdot 2!}{(n-1)!} = \frac{n!}{3}$$

(ii) PB = PS + AS = PD + AD , four -direction off = a + a \(p' + \frac{1}{p_1} \)

= 2a + a \(p' + \frac{1}{p_1} \)

= 2a + a \(p' + \frac{1}{p_1} \)

(iv) If PB is a diameter, the reduce is a + \frac{1}{2} \(p' + \frac{1}{p_1} \),

4 the earter is \(\frac{2ap+2aq}{2ap+2aq} \cdots - \frac{1}{p_1} \),

= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{1}{p_1} \) \), \\
= \((a \(p - \frac{

7-=6.00 1-=20 0

. deriction is a torget to slocinello

we have
$$\frac{dV}{dt} = \frac{dV}{dx}$$
. $\frac{dx}{dx}$

$$= \frac{dV}{dx}$$
. $\frac{dx}{dt}$. $\frac{dt}{dt}$

$$= 3x^2$$
. $\frac{1}{12x}$. (12.6)

9 (

in if E(r) is a mutaple of 5, 50 is E(2+1)

but, E(0) is a mutaple of 5, 50 is E(2+1)

in E(1) is a mutaple of 5 by induction

$$(4) (i)$$

$$(x^{-i}) (x^{-i}) \neq 0$$

(ii)
$$(L)$$
 $\frac{d(Lv)}{dx} = 10x - 4x$

i. $\frac{1}{2}v^{2} = 5x^{2} - x^{4} + C$, c = contact

i. $\frac{1}{2}v^{2} + x^{4} - 5x^{2} = C$

when $x = \sqrt{2}$, $v = 2$

i. $\frac{1}{2} + 4 - 10 = C = -4$

= 0.246, 3 d.p.

(ii) from (i),
$$y = fr(2x) - fr(x+i)$$

 $\therefore \frac{dy}{dx} = \frac{-2}{-3x} - \frac{1}{x+i}$
 $= \frac{1}{x} - \frac{1}{x+i} = \frac{x+i-x}{x(x+i)}$

= 1 + 0 for my =

Man
$$g=0$$
, $\frac{-2x}{x+1}$ = 1
 $\frac{-2x=x+1}{3}$ × interupt in

(1)
$$A = \int_{0}^{L} x dy = \int_{0}^{L} \frac{e^{\frac{\pi}{4}}}{e^{\frac{\pi}{4}}} dy , for (ii)$$

$$= \left[\left[\left(e^{\frac{\pi}{4}} + 1 \right) \right]_{0}^{L} \right]$$

= 1~(++2)-1,3