

POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

MBA PROFESSIONAL REPORT

Analysis of the Ship Ops Model's Accuracy in Predicting U. S. Naval Ship Operating Cost

By: Andrew M. Hascall
Andrew M. Matthews
Mihaly Gyarmati
William K. Gantt and
Zsolt Hajdu

June 2003

Advisors: Shu Liao,

John Mutty

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED blank) June 2003 MBA Professional Report 4. TITLE AND SUBTITLE: Analysis of the Ship Ops Model's Accuracy **5. FUNDING NUMBERS** in Predicting U. S. Naval Ship Operating Cost **6. AUTHOR(S):** William K. Gantt, Mihaly Gyarmati, Zsolt Hajdu, Andrew M. Hascall, Andrew M. Matthews 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 **NUMBER** 9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING / ADDRESS(ES) **MONITORING** N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author(s) and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) The purpose of this MBA Project was to investigate and provide a comprehensive analysis of the accuracy of the Ship Ops model used by the US Navy to budget for ship-operating costs. This project was conducted with the sponsorship and assistance of the OPNAV N82 office, also known as the Office of Budget (FMB). The goal of this project was to improve FMB's ability to predict ship-operating costs through the use of an improved Ship Ops model. This project provides an in depth introduction to the Ship Ops model currently in use and an analysis of the model's performance in predicting accurate operating costs. The project also provides suggestions for improvements to the model and tools that can be used to predict costs on an individual ship level that is not possible with the current model. This project observed only limited improvements in predicting Repair Parts and OPTAR cost through the use of regressions based on operational data such as days underway. Significant improvement was observed when the current moving average methodology for predicting Repair Parts cost was replaced with a regression-based prediction based on a sequential independent variable, Fiscal Year. 14. SUBJECT TERMS Cost Analysis, Cost Estimates, Forecasting, Navy, Naval Vessels 15. NUMBER OF

18. SECURITY CLASSIFICA-

Unclassified

TION OF THIS PAGE

PAGES

19. SECURITY CLAS-

SIFICATION OF AB-

Unclassified

STRACT

16. PRICE CODE

20. LIMITATION

UL

OF ABSTRACT

(Combatant), Operating and Support Costs.

17. SECURITY CLASSIFI-

Unclassified

CATION OF REPORT

Approved for public release; distribution is unlimited

ANALYSIS OF THE SHIP OPS MODEL'S ACCURACY IN PRE-DICTING U.S. NAVAL SHIP OPERATING COST

William K. Gantt, Lieutenant, United States Navy Mihaly Gyarmati, Captain, Hungarian Army Zsolt Hajdu, 1st Lieutenant, Hungarian Army Andrew M. Hascall, Lieutenant Commander, United States Navy Andrew M. Matthews, Lieutenant Commander, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTERS OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL June 2003

Authors:	
	William K. Gantt
	Mihaly Gyarmati
	Zsolt Hajdu
	Andrew M. Hascall
	Andrew M. Matthews
Approved by:	Cl., I :
	Shu Liao Lead Advisor
	John Mutty
	Support Advisor
	Douglas A. Brook, Dean
	Graduate School of Business and Public Policy

ANALYSIS OF THE SHIP OPS MODEL'S ACCURACY IN PRE-DICTING U.S. NAVAL SHIP OPERATING COST

ABSTRACT

The purpose of this MBA Project was to investigate and provide a comprehensive analysis of the accuracy of the Ship Ops model used by the US Navy to budget for ship-operating costs. This project was conducted with the sponsorship and assistance of the OPNAV N82 office, also known as the Office of Budget (FMB). The goal of this project was to improve FMB's ability to predict ship-operating costs through the use of an improved Ship Ops model. This project provides an in depth introduction to the Ship Ops model currently in use and an analysis of the model's performance in predicting accurate operating costs. The project also provides suggestions for improvements to the model and tools that can be used to predict costs on an individual ship level that is not possible with the current model. This project observed only limited improvements in predicting Repair Parts and OPTAR cost through the use of regressions based on operational data such as days underway. Significant improvement was observed when the current moving average methodology for predicting Repair Parts cost was replaced with a regression-based prediction based on a sequential independent variable, Fiscal Year.

TABLE OF CONTENTS

I. IN	TRODUCTION	1
A.	BACKGROUND	1
B.	RESEARCH DISCUSSION	3
C.	OBJECTIVES	3
D.	ORGANIZATION OF THE PAPER	3
II. CU	JRRENT MODEL	5
A.	DESCRIPTION	5
1	Feeder Sheets	
	2. Calculation Sheets	
3		
В.		
III. D	ATA COLLECTION	
A.	REVIEW OF PREVIOUS STUDIES	15
B.	COST DATA	16
C.	EMPLOYMENT DATA	17
D.	SHIP CLASSES CHOSEN	18
IV. D	ATA ANALYSIS	21
A.	METHODOLGY	21
B.	APPLICATION	25
C.	RESULTS	26
V. M	ODIFIED MODEL PROPOSAL	35
A.	INTRODUCTION	35
B.	DEVELOPING THE MODIFIED MODEL	36
C.	EVALUATING OUR MODEL	39
D.	RESULTS	50
VI. C	ONCLUSIONS AND RECOMENDATIONS	51
Α	CONCLUSIONS	51

B.	RECOMMENDATIONS	51
C.	AREAS FOR FUTURE RESEARCH	51
1.		
2.		
3. 4.		
4. 5.		
	NDIX A: SHIP OPS MODEL EXAMPLE CALCULATIONS	
A.	APPENDIX DESCRIPTION	53
B.	USEFUL DEFINITIONS	53
C.	FEEDER SHEETS	55
1.	OP-41 List	55
2.		
3.		
4.		
D.	CALCULATION SHEETS	
1.		
2. 3.	(-)	
3. 4.		
5.		
6.	No Special Interest Items (NSI)	67
APPE]	NDIX B: CURRENT MODEL ANALYSIS METHODOLOGY	69
APPE]	NDIX C: SUMMARY OF SIGNIFICANT REGRESSIONS WITH MAPE	121
AOI	E-1 Class	123
AOI	E-6 Class	124
ARS	S Class	126
CG-	47 Class	128
CVI	N-68 Class	130
DD-	963 Class	132
DDO	G-51 Class	134
FFG	G Class	137
LHA	A-1 Class	140
LHI) Class	142

LPD Class	144
LSD-36 Class	146
LSD-41 Class	148
MCM Class	150
MHC Class	152
APPENDIX D: SUMMARY OF SHIP CLASS REGRESSION BY CLASS	155
AOE 1 Class	156
AOE 6 Class	157
ARS 50 Class	158
CG 47 Class	161
DD 963 Class	163
DDG 51 Class	165
FFG 7 Class	166
LHA 1 Class	170
LHD 1 Class	172
LPD 4 Class	175
LSD 36 Class	176
APPENDIX E: SUMMARY OF INDIVIDUAL SHIP REGRESSIONS BY C	CLASS 177
AOE-1 Class	178
AOE-6 Class	180
ARS Class	183
CVN-68 Class	197
DD-963 Class	201
CG-47 Class	211
FFG Class	221
LHA Class	230
LHD Class	232
LPD Class	238
LSD-36 Class	243
LSD-41 Class	248
MCM Class	252

MHC Class	. 257
APPENDIX F: REGRESSIONS TO CALCULATE SUPPLEMENTAL FUNDING	
REQUIREMENTS	. 259
AOE-1 Class	. 261
AOE-6 Class	
ARS Class	. 263
CG-47 Class	. 263
CVN-68 Class	. 265
DD-963 Class	. 266
DDG-51 Class	. 267
FFG Class	. 269
LHA-1 Class	. 271
LHD Class	. 271
LPD Class	. 273
LSD-36 Class	. 274
SR 274	
LSD-41 Class	. 275
MCM Class	. 275
MHC Class	. 276
APPENDIX G: RECOMMENDATIONS FOR DEVELOPING NEW MODELS	. 277
APPENDIX H: MAPE COMPARISON TABLES FOR THE MODIFIED MODELS	. 281
LIST OF REFERENCES	. 283
INITIAL DISTRIBUTION LIST	285

LIST OF FIGURES

Figure 1: Percentages of the Total Navy Budget for O&M,N and 1B1B	2
Figure 2: Ship Ops Model Information Flow Diagram	6
Figure 3: Ship Ops Model FY-CL Constants Sheet	8
Figure 4: Ship Ops Model Inputs for SR, SO and SU	10
Figure 5: Creation of "Prediction from all Actual" (PFAD) Costs	22
Figure 6: Development of PFAD Costs	23
Figure 7: Cost Summary for Pacific Fleet DDG-51 Ship Class FY 2002	27
Figure 8: Prediction Analysis of Pacific Fleet DDG-51 Ship Class Fuel Cost for	FY 2002
	27
Figure 9: Prediction Analysis of Pacific Fleet DDG-51 Ship Class SU, SR and S	O Costs
for 2002	28
Figure 10: Actual Versus PFAD for Pacific Fleet DDG-51 Ships	32

LIST OF TABLES

Table 1: Ship Ops Model Feeder Sheets	7
Table 2: Ship Ops Model Calculation Sheets	9
Table 3: Ship Ops Model Summary Sheets	11
Table 4: Ship Ops Model Summary Sheets	12
Table 5: Prediction Appraisal of Selected Ship Classes' Total Costs	29
Table 6: Prediction Analysis of Selected Ship Classes' Fuel Cost	30
Table 7: Prediction Appraisal of Selected Ship Classes' Utility Cost	31
Table 8: Prediction Analysis of Selected Ship Classes' SR and SO Cost	33
Table 9: Example of TYCOM Cost Data	35
Table 10: Variables used in Regressions	38
Table 11: Best MAPE by Type of Regression SO	41
Table 12: Best MAPE by Type of Regression SR	42
Table 13: MAPE Comparison for PFAD and the Modified Model SR 2002	44
Table 14: MAPE Comparison for PFAD and the Modified Model SR 2001	45
Table 15: MAPE Comparison for PFAD and the Modified Model SR 2000	46
Table 16: MAPE Comparison for PFAD and the Modified Model SO 2002	47
Table 17: MAPE Comparison for PFAD and the Modified Model SO 2001	48
Table 18: MAPE Comparison for PFAD and the Modified Model SO 2000	49
Table 19: Weighted MAPE Summary	50
Table 20: Helpful Definitions of Model Terms and Abbreviations	54
Table 21: List of Variables Used in the Regressions in Appendix C	122
Table 22: List of Variables Used in Regressions in Appendix D	155
Table 23: List of Variables Used in Regressions in Appendix F	260
Table 24: Alternative Model Comparison	278
Table 25: Weights of Ship Year Unit Costs in Model C	279
Table 26: MAPE Comparison for Modified Models SO	281
Table 27: MAPE Comparison for Modified Models SR	282

LIST OF ACRONYMS

APPN Appropriation

BBLS Barrels
CL Claimant

CT Counter Terrorism

CVBG Carrier Battle Group

DNUW Deployed Not Underway

DUW Deployed Underway

FMB Navy Office of Budget

FY Fiscal Year

LANTFLT Atlantic Fleet

LECP Logistics Engineering Change Proposal

MAPE Mean Absolute Percentage Error

MTIS Material Turned Into Stock

NAVSEA Naval Sea Systems Command

NDNU Not Deployed Not Underway

NDU Not Deployed Underway

NEURS Navy's Energy Usage Reporting System

NSI No Special Interest

O&M,N Operations and Maintenance, Navy

O&M,NR Operations and Maintenance, Navy Reserve

OPCON Operational Control

OPMONTH Operating Month

OPNAV Office of the Chief of Naval Operations

OPTAR Operating Target **OPTEMPO** Operation Tempo

OSD Office of the Secretary of Defense

PACFLT Pacific Fleet

PE Program Element

PFAD Predicted From Actual Data

POM Program Objective Memorandum

RS Resouce Sponsor
SF Fuel Cost Element

SO Other Consumable Cost Element

SR Repair Parts Cost Element

SU Utilities Cost Element

TAD Temporary Additional Duty

TYCOM Type Commander

ACKNOWLEDGEMENTS

We would like to acknowledge the support of LCDR Mike McLean at FMB and the individuals at the various Type Commanders that were ready and willing to support our research by providing data and answering our many questions. We also appreciate the patience and encouragement given by our advisors Professor S.S. Liao and Professor J. E. Mutty. Lastly we would like to thank our families for their understanding and support during this process.

I. INTRODUCTION

A. BACKGROUND

"We must challenge every assumption and search for new and better ways to accomplish our tasks. We must refine requirements, conduct innovative operations, and optimally allocate resources to achieve efficiencies and recapitalize the Fleet."

CNO's 2003 Leadership Guidance

The cost of operating Navy ships is difficult to determine, but extremely important to accurately predict. Under-funding in this area could result in the deferral of equipment replacement and spare parts replenishment/consumption, ultimately reducing the Navy's current level of readiness. Over-funding could hinder the Navy's efforts to recapitalize assets in order to meet future threats. As the quote above underscores, the Navy is determined to more accurately predict resource needs in order to fully fund recapitalization efforts.

Within the Operations and Maintenance, Navy (O&M,N) and Operations and Maintenance, Navy Reserve (O&M,NR) appropriations categories, the Mission and Other Ship Operations (1B1B) sub-activity group provides "resources for all aspects of ship operations required to continuously deploy combat ready warships and supporting forces in support of national objectives." (FY 2003 President's Budget) The 1B1B sub-activity group, to be referred to as Ship Ops throughout this paper, resource requirements are determined by the OPNAV N80 (programming) staff. The 1B1B program area is divided into five subprograms:

- 1. Charter
- 2. Fuel
- 3. Utilities
- 4. TAD (Travel and Trainings costs: Temporary Additional **D**uty)
- 5. OPTAR (**Op**erating **Ta**rget: Includes Repair Parts and Consumables purchases)

The Ship Ops sub-activity group includes the costs within each subprogram for all active and reserve ships. The OPNAV N82 office responsible for this sub-activity, also known as the Office of Budget (FMB), must collect inputs, assess requirements and provide resources as necessary to support the requirements. Figure 1 shows the percentages of the total FY 2004 Navy Budget for O&M, N and Ship Ops.

Figure 1: Percentages of the Total Navy Budget for O&M,N and 1B1B

In order to support this sub-activity, N80 must have accurate tools to forecast requirement costs based on fleet inputs. The Ship Operations (Ship Ops) model is used by the OPNAV staff to determine the resource requirements for Ship Ops. The model was developed by the OPNAV N80 (programming) staff several years ago to consolidate inputs from numerous resource sponsors. By consolidating resource sponsor efforts, the model advocates a standardized Navy approach to determining resource requirements for Ship Ops. The existing model uses three-year moving averages and average number of ships in commission to estimate ship-operating costs for the upcoming year.

B. RESEARCH DISCUSSION

FMB feels this model provides a good first estimate of costs, but wants an evaluation of the model as a predictor of actual ship operations costs. FMB has also expressed an interest in the possible development of a more accurate and flexible model. The current model estimates ship costs according to ship class. This model uses a three-year average of previous years' actual operating costs per ship multiplied by the average number of ship years per class. A ship year is defined as a ship in commission for a full year. A ship that is in service for part of a year earns half a ship year no matter what portion of a calendar year it is actually in service.

The model provides FMB with a good first approximation of operating costs for a class of ships. However, FMB feels the model does not provide good information for the effects of increased Operations Tempo (OPTEMPO) in the middle of the year. For instance, if the Abraham Lincoln Carrier Battle Group (CVBG) is extended on deployment, the model is unable to predict the specific additional costs. While, FMB can produce some numbers to estimate additional operating costs, these numbers are not very defensible when requesting increased funding.

C. OBJECTIVES

The intent of this project is to evaluate the current model used by the Office of Budget (FMB) to forecast future operating costs for Navy ships and to develop an improved model if warranted. The strengths and weaknesses of the current model along with input relationships will be identified and analyzed for use in the development of an improved model.

D. ORGANIZATION OF THE PAPER

Chapter II of this paper provides a presentation of the current Ship Ops model including methodology, a description of inputs and outputs, and a description of its use and limitations. Chapter III contains a review of previous studies that have attempted to predict ship operating costs and details the data collected and used to analyze the effective-

ness of the current model. Chapter IV presents the data analysis for the model review including methodology, the results obtained and results validation. Chapter V introduces our proposed modified model and Chapter VI gives recommendations for future research.

II. CURRENT MODEL

A. DESCRIPTION

This chapter provides a narrative description of the current Version 4 of the POM-04 Ship Ops model. It describes model inputs and data flows and provides a list and description of the various model worksheets. To better understand the data manipulation and resulting outputs, Appendix A follows specific data flows and provides example calculations for one ship class in one fleet. It also provides a helpful list of abbreviations and terms used in the various worksheets.

The Ship Ops model is a large Excel file with numerous worksheets linking execution data inputs to cost projection outputs. These worksheets can be grouped into four categories: Feeder Sheets, Calculation Sheets, Summary Sheets and Info Sheets. Because Info Sheets simply provide additional information about the model (e.g.: the modifications made from previous versions) and Summary Sheets merely display and manipulate data from other sheets for presentation purposes, they are irrelevant to our discussion of cost estimation.

The basic flow of data is shown below:

Basic Input \rightarrow Feeder Sheets \rightarrow Calculation Sheets \rightarrow Summary Sheets

The Basic Input from various sponsors is provided to the multiple Feeder Sheets. Feeder Sheets are used to enter data into the model. The basic input data include execution data, escalation rates, fuel prices and underway and deployment status inputs. The calculation sheets, which are linked both to the Feeder Sheets and the Summary Sheets, manipulate these inputs and display the results in the Summary Sheets. Figure 2 is a modified diagram from the 2001 Ship Ops Model User's Guide of the model's data flow for the POM-04 version 4 model.

Figure 2: Ship Ops Model Information Flow Diagram

1. Feeder Sheets

In the version of the model that we used for our analysis there are six Feeder Sheets. Table 1 lists the different feeder sheets with a brief description of the basic input contained in each.

Feeder Sheet	Contents
OP-41 List	The model's main source of execution data. Execution data for SR, SO,SU, and NSI are fed into this sheet to calculate the future requirements based on projected ship years and operating months.
FY-CL Constants	Contains the constants for FY (fiscal year) and CL (claimant). These include days per month, price per barrel, and multipliers based on ship status (Deployed or Non-deployed and Underway or not Underway). It also has price growths and factors for the other fund codes.
FY-CL-RS Constants	Contains constants that vary by resource sponsor (RS).
Incremental SO	Contains one year or multi-year special requirements based on program element (PE), FY and CL. Note: There can be Incremental sheets for each fund code.
Incremental SR	Same as Incremental SO
Burn Rates	Provides most of the input for the Fuel (SF) worksheet. Includes deployed and non-deployed input for days underway per month, days not underway per month, underway burn rates and not underway burn rates

Table 1: Ship Ops Model Feeder Sheets

The primary inputs are the execution data and historical cost data. These inputs are updated in the OP-41 List Feeder Sheet. The numbers are submitted by the Type Commanders and reviewed by the resource sponsors. Execution data consist of operational month and ship years¹, which are based on historical data that include the previous three years, and predicted inputs for the future years. For example, the 2002 version of the model contains actual (historical) information from FY 1999 through 2001. The rest of the execution data (years 2002 till 2009) are estimated by the Fleets and are used for determining future requirements. Cost data for each fund category are entered using actual figures from the previous three years.

Other inputs contained in the Feeder Sheets include various multipliers which are used for adjusting the "raw data" to meet requirements. The FY-CL Constants Feeder

7

¹ Operational month for this model is defined as the sum of months deployed and months non-deployed. A ship year is based on a ship's operational status, if the ship is commissioned, newly commissioned, or decommissioned.

Sheet, shown below in Figure 3, has the multipliers that are applicable regardless of resource sponsors and are constant in a fiscal year (FY) and Fleet Claimant (CL). Here the user can enter the price of fuel per barrel based on the data provided by the Office of the Secretary of Defense (OSD), and also can use the OPTEMPO multiplier to adjust total OPTEMPO figures to meet predicted requirements. These two columns are used in the fuel cost calculation. The constants that change from one resource sponsor to the other are incorporated in the FY-CL-RS Constants Feeder Sheet. This sheet provides the price growth input for SR and SO among others.

Figure 3: Ship Ops Model FY-CL Constants Sheet

The final category of inputs consists of the "normative" data. Primarily these data include standards for burn rate calculations (fuel usage based on a ship's operational status) for deployed and non-deployed ships and standards for OPTEMPO (depending on current CNO goals) that set the standards for underway days for deployed and non-deployed ships. These are not included in the Constants Feeder Sheets.

2. Calculation Sheets

There are currently six Calculation Sheets that provide projected costs for Repair Parts (SR), Other Consumables (SO), Utilities (SU) and Fuel (SF), No Special Interest (NSI), for non-standard yearly requirements, and Counter Terrorism (CT). These costs are calculated separately in the Calculation Sheets and then aggregated in the Summary Sheets. Table 2 lists and describes each Calculation Sheet.

Calculation Sheet	Description
No Special Interest (NSI)	Calculated using input from various feeder worksheets. Baseline is average of the last three years of execution data plus price growth factors.
Repair Parts (SR)	Same as NSI but is adjusted with input from savings initiatives.
OPTAR Other (SO)	Same as NSI
Utilities (SU)	Baseline is the last three years' SU per OP month average. The SU requirement is adjusted for price growth and multiplied by the projected number of op months.
Fuel (SF)	Most complex of the calculation sheets. Includes two main sections for deployed and non deployed status. These are further divided into underway and not underway. Each section determines the total number of barrels of fuel required.
Counter Terrorism (CT)	Same as NSI.

Table 2: Ship Ops Model Calculation Sheets

The fundamental methodology of the cost calculation entails using a three-year moving average of the unit cost (cost/ship years in case of SR and SO, and cost/OPMONTHs in case of SU) of the specific cost element. For example the cost assessment for FY2003 is computed by taking the average unit cost from FY2000 through FY2002 (total cost/total ship years), corrected with the *actual* price growths to get an average unit cost in year 2002 dollars. This value is then multiplied by the *predicted* price growth factor from FY2002 to FY2003 and multiplied by the estimated value of ship years for FY2003. The result will be the base requirement for that year. This base value will be adjusted with the value of estimated savings (where applicable). The adjusted value is the cost estimate for FY2003. Figure 4 shows the diverse types of inputs that are used for SR, SO and SU cost predictions. Notice the different estimated figures established for predicting future cost. We will use this structure to explain our methodology in Chapter IV.

Figure 4: Ship Ops Model Inputs for SR, SO and SU

The calculation of SF differs significantly from the other three cost types, since it uses burn rates based on the standard number of days underway in a deployed or in a non-deployed status. The number of days underway depends on the ship's operational status based on one of five categories. The five operational categories are deployed underway, deployed not underway, not deployed underway, not deployed not underway and repair days. Then using the burn rate norms (calculated from historical consumption data of the NUERS database), multiplied by the predicted/established fuel price one gets fuel cost in each categories, which comprise the total predicted SF expenses. ²

3. Info Sheets

The model also has three explanatory info sheets. There are two "drill" type sheets that allow the user to run "what if" drills without affecting the other worksheets and the other details the list of model changes by version. Table 3 below lists each sheet and provides a brief description.

Info Sheet	Description
Drill Worksheet	Provides cost per year data on the current model. These data assist resource sponsors with what if drills
Fuel OPTEMPO Summary	Used to set the OPTEMPO goals by changing the OPTEMPO multiplier
Model Changes	Provides description of each model change and update

Table 3: Ship Ops Model Summary Sheets

11

_

² NEURS is the Navy's Energy Usage Reporting System. In the NEURS system, ships are required to submit monthly reports listing the amount of fuel used, hours underway, hours cold iron and several other factors detailed in OPNAV INSTRUCTION 4100.11B.

4. Summary Sheets

The model output detailed in the Summary Sheets is based on ship class. Cost projection results are made for ship classes and not for an individual ship. The output can be further grouped by fleet, resource sponsor, program element and fiscal year. The current version of the model contains cost estimates through FY 2009.

The outputs of the Ship Ops model are contained in the nine Summary Sheets that are fed by the calculation sheets. These sheets summarize the output of the model and help provide comparisons for previous FY's. The lowest output level is by ship type. Table 4 provides the title and a brief description of each sheet.

Name	Description
	Provides a summary by PE of the model's current
Model Summary	calculation. Provides resource sponsor and claimant
	totals.
Gross Model Summary	Summarizes the model calculation by ship type and
	feeds the Model Summary sheet
Model vs. PB-03	Charry delta hatrican DD 02 datahasa and the model
Summary	Shows delta between PR-03 database and the model.
PB-03 Summary	Shows the PB-03 data in the Model Summary format.
PB-03 WINPAT	Shows the PB-03 data from a raw WINPAT run.
	Feeds the PB-03 Summary sheet.
Bill Summary	Summarizes element costs by resource sponsor.

Table 4: Ship Ops Model Summary Sheets

B. USE AND LIMITATIONS

The model provides FMB with a summary of predictive costs to be used for resource requests. The model has been in use for about five years and there has not been a detailed comparison of actual costs to predicted costs. The obvious limitations of the model are scalability and flexibility. The summary output provided by this model can only be reduced, at the lowest level, by ship class and sponsor. The user cannot easily input proposed operational adjustments to multiple ships to see the predictive effects on

cost, especially in case of SR and SO, since they are predicted purely based on ship years and numbers in the class of ships.

Another limitation of the model is its reliance on the outputs using a three-year moving average of unit costs. This method provides a simple means for making cost predictions and also can rapidly incorporate the effects of the current environment. Drawbacks to its use in the model are that the third year's data are an estimate and that one-year can have a significant impact in the units output (while planning year 2003's costs, the programmer only had preliminary cost data for 2002 based on the past 6-9 months from the current fiscal year, which is better than a simple prediction, but still not actual cost).

Before analyzing the effectiveness of the model by comparing actual with predicted operating costs, Chapter III will review other studies that have attempted to find methods for ship cost prediction. This chapter will also detail the data that will be used to compare actual costs with those that were predicted by the current Ship Ops model.

III. DATA COLLECTION

A. REVIEW OF PREVIOUS STUDIES

There has not been a previous study that has attempted to analyze the effectiveness of the Ship Operating Model to predict operating costs. However, there have been numerous studies that have attempted to identify drivers that can be used to accurately predict various costs associated with operating ships.

In 1987, Williams used parametric and non-parametric statistical methods to determine the dependency of obligation patterns on operating schedules. The study used two years of operating and OPTAR data from the FF-1052 and CG-27 ship classes. The study could not find a significant relationship between obligation patterns and operating schedules. In 1988, Kuker and Hansen also attempted to relate ship OPTAR obligation patterns to their operating schedules. Using the same ship classes as Williams, they used judgmental and mathematical forecasting models along with multiple regressions to identify relevant cost relationships. The study identified patterns in the OPTAR obligation data that could be attributed to the ship's employment schedule. (Kuker and Hansen, 63). These relationships were used to develop forecasting models that did not work well on an individual ship level but could have some use at a ship class level.

In 1993, Ting attempted to develop operating and support (O&S) cost models for ships by examining manpower, material, maintenance and overhaul costs. The study found that cost relationships between factors other than overhauls were strong. Manpower was found to have the most dramatic effect on predicting O&S costs. (Ting, 59)

In 1998, Catalano attempted to develop an OPTAR allocation model for Pacific Fleet surface ships. Using repair part costs as a dependent variable for each individual ship, the study used the number of months before overhaul, number of months on deployment and if the ship was in a pre-deployment quarter as explanatory variables. The study found mostly insignificant constants and very low R-squares.

Brandt in 1999 used regression analysis to develop a parametric cost model for estimating O&S costs for non-nuclear ships. He used ship displacement, ship length and ship manpower as independent variables to estimate average overall O&S costs. The

study concluded that there is a constant mean of O&S costs for a ship class and that the age of the ship did not have a positive influence on O&S costs as expected.

Given the findings of previous work, our project identifies relationships between repair parts cost (SR) and operational activity. We have also identified a relationship between OPTAR/other cost (SO) and operational activity of surface ships. We have incorporated these relationships into a new ship ops model. In order to establish these relationships we used the following data.

B. COST DATA

Cost data were used in this project for two purposes: first, to evaluate the Ship Ops model's predictive capabilities and second to build a modified model and compare its predictions to that of the existing model. We used various versions of the current model – which were provided by FMB – to gather historical cost data for the appraisal part of our work. The Atlantic and Pacific Fleets, and multiple Type Commanders (TY-COMs) provided the information for the modified model.

However, we had certain qualitative and quantitative reservations regarding the data. The qualitative problem surfaced when we were assessing the current model's accuracy. It appeared we were not looking at the "first estimates" provided by the Ship Ops model (by first estimate we are referring to the predictions that were produced for the purposes of the initial budgeting). Some of the inputs (e.g.: price growth) might have been updated during the fiscal year in order to get more accurate results. The benefit from doing this is that more accurate estimates can support the argument for additional funding when the need arises. Though our analysis uses only actual data, our conclusion could be slightly or significantly different if we compared the "first estimates" to the actual cost figures. Our methodology chosen for the analysis – separating the effects caused by the model's discrepancies and effects stemming from input inaccuracy – ensures that the basic evaluation remains the same regardless of whether we used the "first estimates" or not. The problem resulting from using the updated predictions is that the difference caused by the unreliable inputs may be more significant than we indicated.

Quantitative problems were mainly caused by the problem of data availability. We faced this problem during the process of building the modified model. Since we used various sources, the historical cost data were not always available for the same years. The Navy Energy Usage Reporting System (NEURS) data (days underway while under various Operational Controls (OPCON)) provided by LANTFLT is only available back through FY 96. NEURS data provided by PACFLT goes back through FY 92. Cost data, contained in the models provided by FMB, are only available back through FY 94. This means that we had to find the lowest common denominator, that is, incorporating only those fiscal years into the project where "all" the data were accessible.

When conducting our initial regression analysis it became evident that regressions that did not include price growth factors were more significant than those that did include them. This raised suspicion concerning the validity of the inflation factors used in the model. Further investigation by FMB concluded that the Inflation Category Codes, which are assigned by the TYCOMs, in order to obtain a weighted average inflation factor to be used in the model, were not properly assigned. Therefore, through consultation with FMB, we have concluded it is more relevant to exclude inflation factors - as an independent variable - in regressions used in formulation of a modified model.

The original tasking from FMB was to analyze the model with particular emphasis on SR and SO. While we include some analysis of the remaining components of the model, we have limited our efforts in improving the model to these two Special Interest Items.

C. EMPLOYMENT DATA

In order to determine the number of days a given ship (or in aggregate, a ship class) was underway during a given year, we obtained data from the NEURS database. NEURS is a program the Navy uses to monitor days underway for all surface ships (It primarily records the amounts of fuel used. For our purposes, days underway is the most relevant information). Because the reports submitted by the ships are classified by OP-CON, we were able to determine if a ship was underway while on deployment, underway while not on deployment or even if the ship was underway while deployed in the Fifth

Fleet. With these data we are better able to dissect the employment of ships. For example, if a ship was underway for a total of 100 days in a year, we were able to determine that 50 days were underway not deployed, 30 days were underway deployed and 20 days were underway in the Fifth Fleet. When performing analysis by ship class, the information used was days underway while deployed (aggregation of all deployed OPCONs) and days underway while not deployed. Because of the limited data points available for analysis we were unable to use the additional variable (Deployed to Fifth Fleet) without sacrificing the statistical accuracy of the regressions.

D. SHIP CLASSES CHOSEN

For our analysis of the current model, we chose to use the Pacific Fleet DDG-51 class, because of the amount of the data available. It is a large class and it represents the growth of the fleet. An example is contained in Appendix A. In Chapter IV, we use five ship classes FFG-7, DDG-51, CG-47, DD-963, and LHA-1 to give an overview of the model's accuracy at the ship class level for the period FY97 through FY02. These classes provide a broad representation of the surface fleet. DDG-51 represents a class experiencing growth while FFG-7 and DD-963 are classes experiencing contraction. LHA-1 and CG – 47 are ship classes, that remain stable in numbers throughout the period analyzed.

In our regression analysis, we were limited in the ship classes we were able to study. For example, we were unable to obtain submarine employment data from Naval Sea Systems Command (NAVSEA 08). NAVSEA 08 does not track days underway. They maintain information similar to NEURS, but instead of days underway tracks Effective Full Power Hours for reimbursement to DOE. We performed regression analysis on the following 15 classes of ships that we had all operations data on:

AOE-1	AOE-6	MCM-1	MHC-51	LHA-1
LHD-1	LPD-4	LSD-36	LSD-41	CG-47
DDG-51	DD-963	FFG-7	ARS-50	CVN-68

Table 5: Ship Classes Used in Regression Analysis

Chapter IV analyzes the effectiveness of the model by comparing actual with predicted operating costs. Before presenting our results, this chapter details our methodology and analysis application.

THIS PAGE INTENTIONALLY LEFT BLANK

IV. DATA ANALYSIS

A. METHODOLGY

In this section we will discuss the methodology for evaluating the Ship Ops model. Figure 4 in Chapter 2, depicts the different kinds of data input from which the model predicts a certain year's O&M,N costs. Generally, the model creates an average unit cost (per ship year or per OPMONTH), and then uses *estimated* execution data to generate the predicted basic requirement for the next year. This basic requirement is then adjusted by the *estimated* price growth (percentage growth or decrease) and/or by the *estimated* incremental cost in order to get the adjusted requirement for the given year.³

To filter the inaccuracies of the estimated operational and financial inputs, we created "predicted from all actual data" (PFAD) costs for ex-post prediction. Figure 5 shows the structure of the inputs used in the model to produce these quasi-predicted numbers. Note the difference between Figure 4 (Chapter 2) and Figure 5. The PFAD costs demonstrate what would have happened if all the inputs had been absolutely precise.

-

³ Incremental costs are one time costs such as replacing foam mattresses with spring mattresses. Incremental costs can be determined and used by the RS or CL for each cost element.

Figure 5: Creation of "Prediction from all Actual" (PFAD) Costs

Figure 6: Development of PFAD Costs

Including the actual cost data, we have three numbers for comparison for each cost element: actual, predicted and PFAD. The model's total inaccuracy can be calculated by subtracting the predicted cost from the actual:

$$Model's total inaccuracy = Actual cost - Predicted cost$$

In this way we get the difference between budgeted (predicted) and incurred (actual) costs, which is our focus. However, by using the quasi-predicted PFAD costs, we can decompose this difference into its two main components.

First, by obtaining the difference between PFAD and the predicted costs, we determine the effect of data inaccuracy from the budgeting process:

Effect of source data inaccuracy =
$$PFAD - Predicted cost$$

The second component can be calculated by determining the disparity of the PFAD and the actual cost figures. This difference gives us important information about the model's predictive ability without the noise caused by imprecise inputs.

Effect of the model's
$$method = Actual cost - PFAD$$

Summing the component effects determines the model's total inaccuracy:

Effect of source data inaccuracy + Effect of the model's method = (PFAD cost - Predicted cost) + (Actual cost - PFAD cost) = Actual cost - Predicted cost = Model's total inaccuracy

As we will see in the Results section of this chapter, these two component effects sometimes occur in the same direction (i.e., both underestimate or both overestimate) and combine to increase the total difference. Other times they have opposite effects, resulting in a smaller total difference than would be observed by summing the absolute values of the component effects.

This decomposition method sheds light on problems that are hidden from the observer who only takes into account the total inaccuracy of the model. However, due to the natural variation of actual costs, improving either the accuracy of the source data or the model's predictive ability, will not guarantee improvement in all cases.

B. APPLICATION

Our project focuses on improving the model's method (reducing the second component effect), but we will discuss some input precision (first component) issues. In the second part of the Results section, we use hypothesis testing and the Mean Absolute Percentage Error (MAPE) to examine the difference between the PFAD and actual costs.

1. Hypothesis Test

For our analysis, we want to see if the differences between actual numbers and model predictions are in effect random deviation, or if the differences are statistically significant and a pattern exists in these differences. The null hypothesis is: the mean of the differences (Actual – PFAD) is zero; while the alternative hypothesis is that it is not zero:

$$H_0$$
: $\mu = 0$

$$H_1$$
: $\mu \neq 0$

where μ is the real mean that we do not know, but estimate as \overline{X} . We selected the percentage error as the basic unit for the test, since it is comparable across ship classes as well as years. We calculated p-values for determining the probability of making a Type I

error ⁴ (rejecting the null hypothesis when actually it's true). The p-value is derived from the t-statistic, calculated the following way:

$$t-value = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

where s is the sample standard deviation, and n is sample size.

The p-value is then determined by using a t-distribution table (degrees of freedom equals *n*-1) and the assumption of a two-tailed test since we are interested in probable differences on both ends of the distribution (positive or negative). From the obtained p-value, we can either reject the null hypothesis (which implies that the mean of the differences is not zero, so the model estimates values inaccurately) or accept the null hypothesis (which produces an overall good prediction or insufficient evidence of the opposite).

2. Mean Absolute Percentage Error (MAPE)

The second method, the MAPE, is more frequently used for evaluating the accuracy of forecasting models. It is the average of the prediction's absolute percentage error. It has an advantage of using absolute values for comparison, which eliminates the offsetting effect of opposing (positive and negative) component differences. The MAPE is an absolute value, which can be objectively applied for comparing the relative strength of different forecasting models. But its disadvantage comes from the fact it is a subjective measure when used without a benchmark for comparison.

C. RESULTS

After looking through an example of a single ship class for FY 2002 in this section, we will discuss the overall evaluation of the model. The detailed results of comparisons for all ship classes can be found in Appendix B.

To demonstrate our evaluation of the model we will analyze the Pacific Fleet DDG-51 ship class for FY 2002. Excluding CT and NSI costs, the model predicts the total O&M,N cost fairly well (see Figure 7). The model overestimated the costs by approximately \$17.7 million (\$113.1M - \$95.4M), which is an 18.6% inaccuracy relative to

⁴ Albright, Winston, Zappe; Data Analysis & Decision Making with Microsoft Excel; Duxbury Press, 2002; p. 441.

the actual cost. The component effects are similar, as most of the cost elements exceeded the estimated values.

y	SF	SU	SR	SO	Total	
Actual	\$47,841	\$12,553	\$23,849	\$11,147	\$95,390	
Predicted	\$58,175	\$11,612	\$27,410	\$15,931	\$113,128	
Predicted from All Actual Data	\$54,834	\$11,251	\$28,498	\$15,660	\$110,242	
Actual - Predicted	-\$10,334	\$941	-\$3,561	-\$4,784	-\$17,738	-18.60% -> model total inaccuracy
- Pred. fr Actual - Predicted	-\$3,342	-\$361	\$1,088	-\$271	-\$2,886	-3.03% -> source data inaccuracy
- Actual - Pred. Fr Actual	-\$6,993	\$1,302	-\$4,649	-\$4,513	-\$14,852	-15.57% -> model inaccuracy

Figure 7: Cost Summary for Pacific Fleet DDG-51 Ship Class FY 2002

SF, which has the largest weight in O&M,N costs (in this case 50.2%), was estimated with a fair result (see Figure 8, 21.6% difference between the predicted and actual costs).

<u>SF</u>	value	Full effect Part effect		Weight				
Actual	\$47,841	-\$10,334	-21.60%	50.15%				
Predicted	\$58,175		-6.98%					
Predicted from All Actual Data	\$54,834 ====	-\$6,993	-14.62%		Predicted	VS.	Actual	difference%
- Predicted w/ actual DUWs	\$52,880	-\$5,039	-10.53%		2,402	VS.	2,170	-10.70%
- Predicted w/ actual Burn Rates	\$59,035	-\$11,194	-23.40%		1,239	VS.	1,254	1.20%
- Predicted w/ actual Fuel Prices	\$58,175	-\$10,334	-21.60%		40.32	VS.	40.32	0.00%

Figure 8: Prediction Analysis of Pacific Fleet DDG-51 Ship Class Fuel Cost for FY 2002

Applying the decomposition method to these results uncovers some of the reasons for the difference between actual and predicted costs. The reason for inaccuracies in fuel (SF) cost estimates is not as straightforward as the distinction between model error and source data error (See Figure 6, which shows how the "predicted from all actual data" number is calculated). Since analyzing SF cost prediction is not our primary focus, we will briefly review the results. Depending on where we use actual data (e.g. in the beginning of the flowchart by using actual OPMONTH to calculate DUW from it the way the model does; vice using actual DUW, as we would if the data were available) we get a different decomposition.

Figure 8 shows the effect of the source data inaccuracy which, at 6.98%, seems reasonable. This is true in the case of burn rates and fuel prices, but less convincing in the number of days underway. Fuel price is the same as predicted, since ships use a predetermined fixed price throughout the year and burn rates do not change significantly over time. However, ships in this class were deployed less frequently then expected (for approximately 49 months altogether instead of the predicted 60 months), which caused 150 fewer days underway. This fact is realized in the PFAD, resulting in a lower overestimated value than predicted compared to the actual cost.

On the other hand, the effect of the model's method shows a significant difference (\$-7.0M, which equals a relative difference of -14.6%). One reason could be the way the model calculates burn rate for the repair days underway. It takes the simple average of non-deployed burn rates (underway and not underway), which results in this case a 271 barrels/day consumption, contrary to the real burn rate of 411 barrels per day⁵.

Figure 9: Prediction Analysis of Pacific Fleet DDG-51 Ship Class SU, SR and SO Costs for 2002

28

⁵ Though this difference is significant the repair days underway weight within the SF calculation is small.

In each of the remaining three cases (SU, SR, SO) we can draw similar conclusions. Though the proportion of inaccuracy fluctuates (7.5%, 14.9% and 42.9% see Figure 9), all show the original prediction problems stem mainly from the model's calculation method (effects respectively: 10.4%, 19.5% and 40.5%). Even if the planner had known what was going to happen in the coming year (in terms of the cost drivers and adjustments ship years, operation months price growths, and price growths and incremental costs respectively) using the current model's method, he would have arrived at almost the same result. However, in an individual case it can come from natural variation of costs over time; using across-the-board examples we can determine whether it is a general tendency or not.

For the selected ship classes and for each of the years from 1997 through 2002 we ran comparisons measuring the second component effect (model's inaccuracy). The detailed results are in Appendix B, but percentage errors and the calculated measures from are summarized in the tables below.

Year / CL	DDG- 51CL	CG- 47CL	DD- 963CL	FFG-7CL	LHA- 1CL
1997	-9.39%	-6.49%	-4.34%	-8.87%	18.24%
1998	-12.91%	-0.73%	6.75%	-5.98%	11.30%
1999	1.64%	-2.37%	-3.29%	-0.31%	13.93%
2000	15.36%	22.97%	29.19%	19.41%	16.71%
2001	-5.43%	-4.84%	0.06%	-2.54%	21.00%
2002	-15.57%	-12.35%	-17.20%	-14.55%	-3.51%

p-value =	0.5187		
t-value =	0.65		
		w/o 2000 =	8.14%
StDev =	12.82%	MAPE =	10.24%
Mean =	1.53%	<u> </u>	

Table 5: Prediction Appraisal of Selected Ship Classes' Total Costs

Table 5 shows the overall results obtained by analyzing the selected ship classes' total costs (excluding CT and NSI). The calculated p-value (0.5187) implies strong evidence for not rejecting the null hypothesis, which theoretically means insufficient evi-

dence against H_0 , but practically, it yields a good overall result that implies a good model on the total cost level. However we should highlight the deficiencies of this analysis. By using simple averages we do not take into consideration the different ship classes.

On the other hand, both the MAPE and the adjusted MAPE (by excluding year 2000 data, as discussed in Chapter III, because its fuel cost figures are obviously outliers, for which we could not find convincing explanation) show a fairly good picture. It says, across our sample, the total cost was predicted with an average error of 8-10% underestimation of cost figures. As mentioned before, there is no objective method to evaluate this number. So it is just our perception that determines this as fairly good.

As we will see, the hypothesis test determines whether or not the model makes mistakes systematically or randomly. On the other hand, MAPE gives details about its ex-post precision, regardless of the possible fact that the model was inaccurate more frequently in one direction then the other.

Using the same methodology, we can assess the precision of prediction separately for each cost group. We begin with the fuel cost, see Table 6.

Year / CL	DDG- 51CL	CG- 47CL	DD- 963CL	FFG-7CL	LHA-1CL
1997	3.24%	-7.21%	-3.84%	-34.35%	11.64%
1998	0.94%	5.17%	-0.98%	-30.03%	25.12%
1999	-7.43%	-10.19%	-4.29%	-1.36%	17.40%
2000	54.10%	51.04%	41.89%	51.72%	36.12%
2001	-11.39%	-7.56%	-9.72%	-19.31%	41.49%
2002	-14.62%	-16.82%	-11.86%	-26.00%	15.69%

19.08%

13.51%

t-value = 1.02 p-value = 0.3180

Table 6: Prediction Analysis of Selected Ship Classes' Fuel Cost

The p-value (0.32) gives quite strong evidence against systemic errors, however the MAPE even without year 2000 data shows only a fair result. Especially in certain ship classes (e.g. FFG-7 or LHA-1) this inaccuracy is significant and presents systematic patterns (continuous over and underestimation respectively). However, we should note again, in the case of SF, the predicted value from all actual data heavily depends on where you put actual data into the model. Since this cost group has the most obvious connection to OPTEMPO (e.g. days underway) actual data yield the above results.

Year / CL	DDG- 51CL	CG- 47CL	DD- 963CL	FFG-7CL	LHA- 1CL
1997	16.69%	10.08%	8.99%	11.15%	34.77%
1998	25.30%	12.13%	13.24%	7.84%	-44.10%
1999	7.11%	-9.38%	2.39%	14.95%	12.67%
2000	2.70%	3.39%	2.61%	3.83%	-4.03%
2001	9.36%	-1.86%	2.54%	-5.89%	7.54%
2002	10.37%	14.81%	-11.37%	-0.79%	4.52%

p-value =	0.0348		
t-value =	2.21		
StDev =	13.32%	MAPE =	10.55%
Mean =	5.39%		

Table 7: Prediction Appraisal of Selected Ship Classes' Utility Cost

Results from the analysis of utility cost are somewhat surprising (see the summary in Table 7). Although the MAPE shows the best results among all cost elements, the p-value indicates systematic problems with the model at 96.5% certainty level. This indicates a statistically significant one-direction deviation from the actual data, which is easily observable examining the graph like the one in Figure 10.

Figure 10: Actual Versus PFAD for Pacific Fleet DDG-51 Ships

As the example above also shows, SU cost is mostly underestimated if we use actual execution data as inputs to the model. This seems to be permanent, as the p-value confirmed, but whether it is intended or not we don't know. An intended flaw might be explained by the commonly used under-financing technique (i.e. 90%) in the beginning of the year (when the model is mainly used), in order not to exceed 100% of the obligations by the end of the year, so as to avoid overspending. If it is not intended, it would be worth analyzing more closely. In our view, we think we are observing one of the disadvantages of moving average, which happens if there is a continuous upward or downward trend in the data, where moving average under and overestimates respectively. Correcting this would probably not require big changes in the model (just adding the average difference to the prediction in the case of underestimation), but it will work properly while the (upward) trend continues, otherwise it would have the opposite effect by causing further inaccuracies. The planners probably have more information about future trends based on which they can decide whether or not they are better off with the correction.

Year / CL	DDG- 51CL	CG- 47CL	DD- 963CL	FFG-7CL	LHA- 1CL
CL	SICL	4/CL	903CL	FFG-/CL	ICL
1997	-24.42%	1.59%	1.87%	9.55%	36.91%
1998	-55.64%	-19.26%	4.87%	8.15%	-15.24%
1999	-2.52%	-4.39%	2.82%	7.80%	-10.94%
2000	1.59%	18.78%	25.65%	3.45%	20.70%
2001	0.60%	-0.17%	-1.12%	-5.79%	6.82%
2002	-19.49%	-13.95%	-30.57%	-17.89%	-51.00%

Mean = -4.04% SR
StDev = 19.94% MAPE = 14.12%

t-value = 1.11
p-value = 0.2763

Year / CL	DDG- 51CL	CG- 47CL	DD- 963CL	FFG-7CL	LHA- 1CL
CL	SICL	4/CL	903CL	11 G-7 CL	ICL
1997	-44.46%	-41.52%	-35.06%	-10.34%	-18.13%
1998	-11.16%	6.50%	28.34%	6.07%	26.85%
1999	23.85%	24.20%	-17.26%	-25.70%	23.09%
2000	-57.40%	-21.66%	22.98%	6.54%	5.64%
2001	-6.17%	-9.47%	25.24%	29.83%	8.95%
2002	-40.48%	-17.52%	-16.03%	6.82%	-22.95%

Mean = -5.01% SO
StDev = 24.82% MAPE = 21.34%

t-value = 1.11
p-value = 0.2775

Table 8: Prediction Analysis of Selected Ship Classes' SR and SO Cost

We will discuss the last two cost elements together, because they are calculated using the same method, namely based on ship years (number of ships in commissioned status in a given year). As shown in Table 8 their p-values are very similar, at a minimum showing a lack of sufficient evidence against systematic errors. Despite the fact that this statistical test shows the errors are evenly distributed, there are significant inaccura-

cies, especially in the prediction of SO. These fairly high (in our judgment) MAPE results underpin the need for some improvement in these cases.

Comparison of results across cost elements is debatable due to the different characteristics of spending. But, comparing MAPE results indicates the possibility of improving cost estimation in the last two cases by incorporating some kind of operational data into the model.

Before we begin the discussion of our attempts to improve the model, let us quickly look through the results for full comparisons of year 2002. Since it represents just one year we can draw very limited conclusions about the model's total accuracy.

As can be seen in the "Analysis of Prediction for FY 2002" pages of Appendix B, the model's total inaccuracy ranges from a very good result of -0.67% (FFG-7) to a fairly imprecise outcome of 18.6% (DDG-51). Nevertheless, the model's inaccuracy component effect shows mostly a low two-digit difference (fair result). This is sometimes balanced by an opposite deviation caused by imprecise input (especially in case of FFG-7, where all together it results in a very good total effect; however both partial effects show fair outcomes). Greater total inaccuracies occur when both the model's component effect and the input component effect cause errors in the same direction, such as the DDG-51 and LHA-1 ship classes.

However, further analysis can be conducted in the same way it was described in this section, we would like to draw the reader's attention to one more outstanding trend in the 2002 full analysis results. Almost unanimously, the quite considerable total differences at SR and SO (with a highest of –42.9% for DDG-51) come primarily from the component effect of the model's inaccuracy. However, the decomposition method at this level shows no significant problem with the source data (the maximum effect was 8.9% for DD-963).

After analyzing the current techniques to determine predicted costs at the special interest item and ship class level, the next chapter is our attempt to improve upon the current methods of prediction.

V. MODIFIED MODEL PROPOSAL

A. INTRODUCTION

In Chapter V we will discuss our findings for developing a new Ship Ops model. As previously stated our research focuses on improving the predictive capability of the current model in the Special Interest Items of SR (Repair Parts) and SO (OPTAR, Other). We will use as a benchmark for comparison the Mean Absolute Percentage Error (MAPE) analysis completed in Chapter IV. Our modified model will be compared against the current model to determine whether we have succeeded in improving the model's predictive capability.

In order to build a modified model, we took several approaches. First, we collected data from the Type Commanders (TYCOMs) on individual ships. For example, the following is a sample of the data SURFPAC provided for the USS BRIDGE.

AOE			1999	2000	2001	2002
	BRIDGE	CT				\$99,600
		SO	\$904,900	\$1,355,900	\$1,083,300	\$1,495,200
		SR	\$1,115,400	\$1,395,100	\$948,900	\$1,449,300
		SU	\$9,800	\$113,600	\$105,700	\$192,100
			\$2,030,100	\$2,864,600	\$2,137,900	\$3,236,200

Table 9: Example of TYCOM Cost Data

Other TYCOMs provided similar data. We were able to assign costs based on hull number as opposed to aggregating the data into ship classes, as is the process in the current model. This increased the number of data points and offered a different perspective from the current methodology. We also performed regression analysis on the aggregated data in the current model. We looked to find relationships in that data which were more significant than Ship Years.

The primary flaw with the current model is that there are no cost drivers other than Ship Years. In essence the model treats all costs as fixed, based on a ship being in commission during a given year. Our modified model seeks to identify the fixed cost (a constant in the cost equation) and cost drivers related to operations that could reveal the underlying variable cost of operating ships. In order to do this we have collected operational information from the NEURS database which identifies a ship's days underway. Further segregation of the data is possible when one considers the OPCON information found in the NEURS database. From the OPCON, we are able to group a ship's days underway into multiple categories. For example, LANTFLT ships reporting OPCON 08 are underway while not deployed.

In the event we could not determine a relationship between costs and operational variables, we looked to improve on the current model's MAPE by finding relationships between cost data and fiscal year (FY). In most ship classes, we determined a statistically significant relationship exists between costs and the FY. This is especially relevant given the uncertainty surrounding the current inflation factors (discussed in Chapter III). By using FY as an independent variable, we are able to incorporate the historically realized rate of inflation without inputting an arbitrary inflation factor.

In selecting which regressions to use in our modified model, we chose the equation that resulted in the lowest MAPE. In some cases, we were unable to find a relationship between costs and operational data. In other cases, we found marked improvement by including operational data as drivers for forecasting costs. Our modified model incorporates these improvements, where available, with the current method of using three-year averages. We have determined that for SR, our modified model demonstrates its improvement over the current model through its lower overall MAPE (13.39% for the modified model vs. 20.27% for the current model) as well as a MAPE for each ship class that is lower or equal to the current model. For SO, we were able to produce only fractional improvement in MAPE when compared with the original model.

B. DEVELOPING THE MODIFIED MODEL

This section (Tables 11 and 12) presents the regressions that were found to have the lowest MAPE for each of the ship classes analyzed, MAPEs for each model compared can be found in Appendix H. Regressions were run to find relationships between repair parts (SR) cost, consumable (SO) costs and operating data. An independent variable for the year was considered. Referred to as "FY", this variable aimed to include trends from year to year, to include inflation. An indicator variable was included to differentiate between Pacific and Atlantic Fleet ships when regressions were run on all the ships of a class. This variable was referred to as "Pac Flt." This variable has a value of either "1" for a Pacific Fleet ship or "0" for an Atlantic Fleet ship. This variable was not included when the regressions were done for the individual fleets since it was not required.

Based on the information in the NUERS database, five possible independent variables could be considered. The first was days underway while not deployed and was identified as "UW not dep." There were three variables to consider for days underway while deployed. Days underway deployed to the Fifth Fleet Area of Responsibility (AOR) are identified separately in the NUERS database by OPCON code 17. The variable representing this is "code 17" in the following regressions. When ships were deployed but not to the Fifth Fleet AOR, these days were represented by the variable "UW dep not 17". Finally, the variable "Total UW deployed" is the summation of the previous two variables. The last variable "Total UW" considers the total number of days underway deployed and not deployed.

Some exceptions apply. Due to the lack of data points, regressions by class do not consider whether a ship is deployed to the Fifth Fleet or not, only that it is underway deployed. Further, in order to keep with the model's current convention of computing unit cost for SR and SO and then multiplying by the number of Ship Years, we have decided to use the dependant variable SR per ship (or SO per ship) when determining the equation to predict costs by class.

To summarize, the variables used in the following regressions and their meanings are as follows:

	Dependent Variables
SR	A dependent variable to estimate repair parts costs for a ship in the class when using "by hull" data.
SO	A dependent variable to estimate SO for a ship in the class consumable costs for a ship in the class when using "by hull" data.
SR per ship	A dependent variable to estimate SR costs when using class data.
SO per ship	A dependent variable to estimate SO costs when using class data.
	Independent Variables
FY	An independent variable representing the current fiscal year. Fiscal Year 2000 was used as the base (00). Therefore fiscal year 1999 is represented by a negative one (-1) and fiscal year 2001 by a positive one (1).
Pac Flt	A binary (one or zero) indicator variable to represent the fleet in which a ship is home ported. A ship assigned to the Atlantic Fleet would have a value of zero and one assigned to the Pacific Fleet would have a value of one.
UW not dep	Represents the days spent underway and while not in a deployed status. In the NUERS database this is represented by the time spent in code eight.
Code 17	Represents the days underway on deployment while in the 5 th Fleet AOR. This time is represented by code 17 in the NUERS database.
UW dep not 17	Represents the days spent underway and on deployment when operating in areas SO than the 5 th fleet AOR. This is represented by the code nine in the NUERS database.
Total UW deployed	Is the summation of the days under "Code 17" and "Total UW deployed." This represents the total number of days underway while in a deployed status.
Total UW	Represents the total number of days a ship was underway in a year. It is the summation of the time spent in codes eight, nine and seventeen in the NUERS database.
Total UW / SY	The total days underway for a class during a year divided by the ship years. This represents the average number of days underway per ship.

Table 10: Variables used in Regressions

Multiple regressions were run in Minitab (a commercial statistical software package) to consider the various combinations of these variables. In order to find any relationships that exist across an entire class, the ships were aggregated by class and fleet. Then the ships were divided into their respective fleets and further regressions were performed to find any relationships that were fleet specific.

There are a few exceptions to this practice. Only ships from the Atlantic Fleet were considered for the CVN-68 class. Data for the Pacific Fleet ships of this class were not available. The MCM class does not have ships assigned to the Pacific Fleet. Ships are home ported in the Atlantic Fleet, Bahrain and Japan. Although assigned to Japan, for budgeting purposes these ships are considered part of the Atlantic Fleet. Regressions performed on this class of ship were separated by homeport, Atlantic, Bahrain and Japan. The MHC class had a similar issue since these ships are only home ported in Bahrain.

A summary of the regressions, subdivided by Other Consumables (SO) and Repair Parts (SR), can be found in Appendix C. The corresponding MAPE for each regression equation is included. The MAPE was obtained by comparing the error produced by the predictive regression and the actual costs, as discussed in Chapter 4. The complete statistical evaluation of the regressions including an analysis of variance (ANOVA) can be found in Appendices D and E. Only regressions that were significant to the 90% level for the regression, as well as all independent variables, were included in these appendices.

Appendix F includes only the equations from Appendices D and E that consider at least one or more operationally based variables (e.g.: days underway). Appendix F is intended to aid in calculating supplemental costs.

C. EVALUATING OUR MODEL

We established which classes of ships have demonstrated a significant relationship to either an operational variable (days underway) or a sequential variable (FY). We constructed our modified model based on the premise that if we lower the MAPE for any portion of the model we improve the predictive capability of the model. With that in mind, Tables 11 and 12 demonstrate which classes (in which fleets) have a statistically significant relationship with a variable, not included in the current model that could improve the predictive capability over the current model.

\$0	Best Value	Best Method	Best Method Equation
Atlantic Fleet		MARKON AN AVERAGE MENA	
AOE-1CL	10.10%	Original Model	3-year average
AOE-6CL	15.10%	Regression by HULL	SO = 389230 - 95086 FY + 2493 Total UW
MHC-51CL	30.80%	Regression by HULL Combined	SO = 191950 + 46602 FY
LHA-1CL	7.10%	Regression by Class	SO per ship = 2457.304 + 118.0714 FY
LHD-1CL	9.40%	Regression by Class	SO per ship = 2281.057 + 125.4181 FY
LPD-4CL	10.30%	Regression by HULL	SO = 753710 + 49124 FY
LSD-36CL	27.50%	Regression by HULL Combined	SO = 869294 + 226643 FY
LSD-41CL	20.50%	Regression by HULL Combined	SO = 384471 + 46986 FY + 370971 Pac Flt + 1803 Total UW
CG-47CL	6.40%	Regression by Class	SO per ship = 868.7925 + 36.67772 FY
DDG-51CL	6.70%	Regression by Class	SO per ship = 711.387 + 18.74133 FY
DD-963CL	6.00%	Regression by Class	SO per ship = 754.3822 + 18.24094 FY
FFG-7CL	3.70%	Regression by Class	SO per ship = 617.0314 + 24.24533 FY
ARS-50CL	7.00%	Regression by Class	SO per ship = 469.818 + 45.26488 FY
CVN-68CL	9.52%	Original Model	3-year average
Pacific Fleet			
AOE-1CL	16.87%	Original Model	3-year average
AOE-6CL	19.90%	Regression by HULL Combined	SO = 230024 + 585647 Pac Fit + 3912 Total UW
LHA-1CL	10.50%	Regression by Class	SO per ship = 1442.206 + 184.4804 FY + 12.8445 Total UW / SY
LHD-1CL	14.70%	Regression by Class Combined	SO per ship = 2399.275 + 172.722 FY + 447.1553 Pac Fit
LPD-4CL	7.30%	Regression by Class	SO per ship = 1333.153 + 81.15278 FY
LSD-36CL	13.80%	Regression by Class	SO per ship = 1124.714 + 85.91071 FY
LSD-41CL	19.00%	Regression by HULL	SO = 513888 + 3846 Total UW
CG-47CL	14.30%	Regression by HULL Combined	SO = 519990 + 70221 FY + 244877 Pac Fit + 1061 Total UW
DDG-51CL	20.80%	Regression by HULL	SO = 126572 + 40860 FY + 4890 UW N.D. + 5099 UW Depl.Not 17+ 3320 Code 17
DD-963CL	14.40%	Regression by Class Combined	SO per ship = 876.4264 + 42.34407 FY
FFG-7CL	10.60%	Regression by Class Combined	SO per ship = 704.0872 + 36.86082 FY
ARS-50CL	11.80%	Regression by Class Combined	SO per ship = 473.4271 + 46.69583 FY + 231.9125 Pac Fit
CVN-68CL	20.00%	Original Model	3-year average

Table 11: Best MAPE by Type of Regression SO

SR	Best Value	Best Method	Best Method Equation
Atlantic Fleet			
AOE-1CL	9.84%	Original Model	3-year average
AOE-6CL	12.60%	Regression by Class	SR per ship = 1667.023 + 92.30497 FY
MCM-1CL	13.37%	Original Model	3-year average
MHC-51CL	40.00%	Regression by HULL Combined	SR = 492140 + 164273 FY
LHA-1CL	15.20%	Regression by Class Combined	SR per ship = 2148.285 + 91.33448 FY
LHD-1CL	8.63%	Original Model	3-year average
LPD-4CL	10.74%	Original Model	3-year average
LSD-36CL	17.94%	Original Model	3-year average
LSD-41CL	12.84%	Original Model	3-year average
CG-47CL	9.90%	Original Model	3-year average
DDG-51CL	8.90%	Regression by Class	SR per ship = 1328 – 98.0074 FY
DD-963CL	4.40%	Regression by Class	SR per ship = 1958.267 + 65.34286 FY
FFG-7CL	3.00%	Regression by Class	SR per ship = 1450.977 + 43.07232 FY
ARS-50CL	11.90%	Regression by HULL	SR = 414091 + 48712 FY
CVN-68CL	26.90%	Regression by HULL	SR = 3332599 + 731389 FY + 23395 Total UW
Pacific Fleet	9890000000000	20 10 10 MONTH OF THE TOTAL	Single - Maring No. 40th Proceeds of Charles Southern Company of the Company of t
AOE-1CL	19.60%	Regression by HULL Combined	SR = 1582192 + 210046 FY - 446790 Pac F/t
AOE-6CL	14.70%	Regression by HULL Combined	SR = 461317 - 290374 Pac Fit + 10861 UW not dep + 5132 Total UW deploye
LHA-1CL	14.40%	Regression by Class	SR per ship = 2349.507 + 176.3022 FY
LHD-1CL	10.26%	Original Model	3-year average
LPD-4CL	11.65%	Original Model	3-year average
LSD-36CL	2.80%	Regression by HULL	SR = 132195 + 210146 FY + 6100 UW not dep + 3526 Total Dep UW
LSD-41CL	17.00%	Regression by HULL	SR = 881305 - 56488 FY
CG-47CL	9.69%	Original Model	3-year average
DDG-51CL	10.40%	Original Model	3-year average
DD-963CL	9.10%	Regression by Class	SR per ship = 2033.559 + 122.1649 FY
FFG-7CL	4.90%	Regression by Class	SR per ship = 1328.088 + 53.5 FY
ARS-50CL	13.60%	Regression by HULL Combined	SR = 414091 + 57674 FY + 252672 Pac F/t
CNV+68CT	22.23%	Original Model	3-year average

Table 12: Best MAPE by Type of Regression SR

We have demonstrated that in some cases the current model is the most accurate means of predicting costs (Lower MAPE or no significant regressions were found), while in other cases a driver other than ship years is more appropriate. Tables 13 and 14 show the actual cost by class and fleet, the PFAD (the best possible output of the model) and the modified model's predicted cost for 2002, 2001 and 2000.

SR - 2002	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$3,343	0.99%	\$3,092	0.08%	\$3,092	0.08%
AOE-6CL	\$792	0.23%	\$1,113	0.07%	\$1,111	0.07%
MCM-1CL	\$9,176	2.72%	\$7,223	0.74%	\$7,223	0.74%
MHC-51CL	\$1,316	0.39%	\$2,761	0.20%	\$1,641	0.08%
LHA-1CL	\$6,846	2.03%	\$4,248	1.24%	\$4,662	0.95%
LHD-1CL	\$9,015	2.67%	\$9,327	0.09%	\$9,327	0.09%
LPD-4CL	\$4,351	1.29%	\$4,129	0.07%	\$4,129	0.07%
LSD-36CL	\$876	0.26%	\$790	0.03%	\$790	0.03%
LSD-41CL	\$6,714	1.99%	\$5,032	0.67%	\$5,032	0.67%
CG-47CL	\$40,254	11.94%	\$36,397	1.27%	\$36,397	1.27%
DDG-51CL	\$28,455	8.44%	\$25,821	0.86%	\$21,055	2.97%
DD-963CL	\$21,029	6.24%	\$20,728	0.09%	\$21,934	0.26%
FFG-7CL	\$22,554	6.69%	\$21,235	0.42%	\$23,057	0.15%
ARS-50CL	\$832	0.25%	\$740	0.03%	\$1,023	0.05%
CVN-68CL	\$32,033	9.50%	\$24,269	3.04%	\$26,715	1.89%
Pacific Fleet	46 88		127 138		28 78	
AOE-1CL	\$2,682	0.80%	\$2,107	0.22%	\$3,111	0.11%
AOE-6CL	\$2,414	0.72%	\$2,086	0.11%	\$2,493	0.02%
LHA-1CL	\$5,226	1.55%	\$7,891	0.52%	\$8,106	0.55%
LHD-1CL	\$7,068	2.10%	\$7,499	0.12%	\$7,499	0.12%
LPD-4CL	\$5,178	1.54%	\$5,852	0.18%	\$5,852	0.18%
LSD-36CL	\$1,943	0.58%	\$1,690	0.09%	\$2,488	0.13%
LSD-41CL	\$4,899	1.45%	\$5,749	0.21%	\$3,842	0.40%
CG-47CL	\$32,843	9.74%	\$37,424	1.19%	\$37,424	1.19%
DDG-51CL	\$23,849	7.08%	\$28,498	1.15%	\$28,498	1.15%
DD-963CL	\$17,310	5.14%	\$22,602	1.20%	\$21,412	0.98%
FFG-7CL	\$13,580	4.03%	\$16,010	0.61%	\$15,786	0.56%
ARS-50CL	\$1,191	0.35%	\$1,547	0.08%	\$1,564	0.08%
CVN-68CL	\$31,301	9.29%	\$29,518	0.56%	\$29,518	0.56%
WEIGHTED MAPE	20	5) SS	0	<u>15.14%</u>		15.39%
LANTFLEET SUM	\$187,586		\$166,906	D	\$167,188	V12017-01-07-07-07-07-07-07-07-07-07-07-07-07-07-
PACFLEET SUM	\$149,484		\$168,472		\$167,592	
TOTAL SUM	\$337,070		\$335,378		\$334,780	

Table 13: MAPE Comparison for PFAD and the Modified Model SR 2002

SR - 2001	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$3,029	0.95%	\$3,009	0.01%	\$3,009	0.01%
AOE-6CL	\$3,027	0.95%	\$2,798	0.08%	\$2,991	0.01%
MCM-1 CL	\$6,177	1.93%	\$7,724	0.39%	\$7,724	0.39%
MHC-51CL	\$6,001	1.87%	\$449	23.20%	\$1,313	6.70%
LHA-1CL	\$3,863	1.21%	\$4,317	0.13%	\$4,479	0.17%
LHD-1CL	\$7,655	2.39%	\$7,147	0.17%	\$7,147	0.17%
LPD-4CL	\$3,858	1.21%	\$4,191	0.10%	\$4,191	0.10%
LSD-36CL	\$676	0.21%	\$819	0.04%	\$819	0.04%
LSD-41CL	\$3,963	1.24%	\$5,210	0.30%	\$5,210	0.30%
CG-47CL	\$38,524	12.04%	\$33,635	1.75%	\$33,635	1.75%
DDG-51CL	\$23,959	7.49%	\$25,786	0.53%	\$21,648	0.80%
DD-963CL	\$25,002	7.81%	\$21,155	1.42%	\$23,069	0.65%
FFG-7CL	\$25,607	8.00%	\$22,486	1.11%	\$23,905	0.57%
ARS-50CL	\$395	0.12%	\$739	0.06%	\$926	0.07%
CVN-68CL	\$7,251	2.27%	\$33,458	1.77%	\$26,830	1.65%
Pacific Fleet	\$30020740480	100070000000	3102333330	2500000000		256273326
AOE-1CL	\$2,859	0.89%	\$1,655	0.65%	\$2,691	0.06%
AOE-6CL	\$2,317	0.72%	\$1,839	0.19%	\$2,872	0.14%
LHA-1CL	\$7,650	2.39%	\$7,129	0.17%	\$7,577	0.02%
LHD-1CL	\$6,279	1.96%	\$7,122	0.23%	\$7,122	0.23%
LPD-4CL	\$6,006	1.88%	\$5,653	0.12%	\$5,653	0.12%
LSD-36CL	\$1,656	0.52%	\$1,659	0.00%	\$1,665	0.00%
LSD-41CL	\$5,269	1.65%	\$5,165	0.03%	\$3,299	0.98%
CG-47CL	\$35,017	10.94%	\$35,075	0.02%	\$35,075	0.02%
DDG-51CL	\$23,462	7.33%	\$23,320	0.04%	\$23,320	0.04%
DD-963CL	\$22,984	7.18%	\$23,241	0.08%	\$22,635	0.11%
FFG-7CL	\$15,295	4.78%	\$16,181	0.26%	\$15,197	0.03%
ARS-50CL	\$1,520	0.47%	\$1,598	0.02%	\$1,449	0.02%
CVN-68CL	\$30,787	9.62%	\$31,250	0.14%	\$31,250	A 11/2 July 10/4/19
WEIGHTED MAPE				33.01%		15.28%
LANTFLEET SUM	\$158,987	[[\$172,925		\$166,897	015-01-01
PACFLEET SUM	\$161,101		\$160,886		\$159,805	
TOTAL SUM	\$320,088		\$333,811		\$326,702	

Table 14: MAPE Comparison for PFAD and the Modified Model SR 2001

SR - 2000	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$2,665	0.83%	\$2,340	0.12%	\$2,340	0.12%
AOE-6CL	\$3,067	0.96%	\$2,447	0.24%	\$3,334	0.08%
MCM-1 CL	\$7,509	2.35%	\$7,570	0.02%	\$7,570	0.02%
MHC-51 CL	\$873	0.27%	\$480	0.22%	\$984	0.03%
LHA-1CL	\$4,208	1.32%	\$3,182	0.42%	\$4,297	0.03%
LHD-1CL	\$5,449	1.70%	\$6,125	0.19%	\$6,125	0.19%
LPD-4CL	\$4,125	1.29%	\$3,378	0.29%	\$3,378	0.29%
LSD-36CL	\$793	0.25%	\$743	0.02%	\$743	0.02%
LSD-41CL	\$4,924	1.54%	\$4,800	0.04%	\$4,800	0.04%
CG-47CL	\$32,430	10.14%	\$32,459	0.01%	\$32,459	0.01%
DDG-51CL	\$21,917	6.85%	\$20,220	0.58%	\$20,318	0.54%
DD-963CL	\$24,236	7.58%	\$22,508	0.58%	\$25,457	0.36%
FFG-7CL	\$22,179	6.94%	\$20,814	0.45%	\$23,216	0.31%
ARS-50CL	\$889	0.28%	\$562	0.16%	\$828	0.02%
CVN-68CL	\$30,087	9.41%	\$30,070	0.01%	\$27,812	0.77%
Pacific Fleet	122		38			
AOE-1CL	\$1,909	0.60%	\$1,446	0.19%	\$2,271	0.10%
AOE-6CL	\$2,685	0.84%	\$1,599	0.57%	\$2,424	0.09%
LHA-1CL	\$8,035	2.51%	\$6,372	0.66%	\$7,049	0.35%
LHD-1CL	\$6,543	2.05%	\$7,725	0.31%	\$7,725	0.31%
LPD-4CL	\$5,490	1.72%	\$5,417	0.02%	\$5,417	0.02%
LSD-36CL	\$1,704	0.53%	\$1,446	0.10%	\$1,534	0.06%
LSD-41CL	\$5,437	1.70%	\$4,448	0.38%	\$4,407	0.40%
CG-47CL	\$35,726	11.17%	\$29,016	2.58%	\$29,016	2.58%
DDG-51CL	\$19,562	6.12%	\$19,250	0.10%	\$19,250	0.10%
DD-963CL	\$25,828	8.08%	\$19,202	2.79%	\$22,369	1.25%
FFG-7CL	\$14,512	4.54%	\$14,011	0.16%	\$14,609	0.03%
ARS-50CL	\$1,744	0.55%	\$1,311	0.18%	\$1,449	0.11%
CVN-68CL	\$25,273	7.90%	\$21,732	1.29%	\$21,732	1.29%
WEIGHTED MAPE				12.67%		9.50%
LANTFLEET SUM	\$165,351		\$157,697	6 (644)344554	\$163,663	57755776
PACFLEET SUM	\$154,447		\$132,975		\$139,250	
TOTAL SUM	\$319,798	bc 64	\$290,672	5 8	\$302,913	

Table 15: MAPE Comparison for PFAD and the Modified Model SR 2000

SO - 2002	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$2,835	1.22%	\$3,043	0.08%	\$3,043	0.08%
AOE-6CL	\$466	0.20%	\$767	0.08%	\$304	0.11%
MHC-51 CL	\$848	0.37%	\$1,153	0.10%	\$570	0.18%
LHA-1CL	\$7,378	3.18%	\$4,614	1.91%	\$5,387	1.18%
LHD-1CL	\$11,288	4.87%	\$9,699	0.80%	\$7,596	2.37%
LPD-4CL	\$6,339	2.74%	\$5,123	0.65%	\$4,260	1.34%
LSD-36CL	\$1,525	0.66%	\$705	0.77%	\$1,323	0.10%
LSD-41CL	\$6,855	2.96%	\$4,214	1.85%	\$4,073	2.02%
CG-47CL	\$16,497	7.12%	\$12,418	2.34%	\$13,202	1.78%
DDG-51CL	\$17,606	7.60%	\$13,319	2.45%	\$11,458	4.08%
DD-963CL	\$9,412	4.06%	\$8,114	0.65%	\$10,281	0.34%
FFG-7CL	\$12,952	5.59%	\$9,292	2.20%	\$10,648	1.21%
ARS-50CL	\$1,220	0.53%	\$943	0.15%	\$1,121	0.05%
CVN-68CL	\$40,720	17.57%	\$41,281	0.24%	\$41,281	0.24%
Pacific Fleet	ACT ACT	25,09002,00000	200000000000000000000000000000000000000	5000000000	AND	100,000,000
AOE-1CL	\$2,601	1.12%	\$2,918	0.12%	\$2,918	0.12%
AOE-6CL	\$2,449	1.06%	\$2,697	0.10%	\$2,742	0.11%
LHA-1CL	\$7,563	3.26%	\$9,299	0.61%	\$10,636	0.94%
LHD-1CL	\$7,112	3.07%	\$8,500	0.50%	\$9,576	0.79%
LPD-4CL	\$6,667	2.88%	\$8,319	0.57%	\$8,973	0.74%
LSD-36CL	\$2,714	1.17%	\$2,351	0.18%	\$2,593	0.05%
LSD-41CL	\$4,794	2.07%	\$6,907	0.63%	\$4,904	0.05%
CG-47CL	\$12,106	5.22%	\$14,227	0.78%	\$11,426	0.31%
DDG-51CL	\$11,147	4.81%	\$15,660	1.39%	\$13,644	0.88%
DD-963CL	\$8,350	3.60%	\$9,688	0.50%	\$10,092	0.62%
FFG-7CL	\$8,465	3.65%	\$7,888	0.27%	\$9,166	0.28%
ARS-50CL	\$1,231	0.53%	\$1,370	0.05%	\$1,597	0.12%
CVN-68CL	\$20,610	8.89%	\$22,157	0.62%	\$22,157	0.62%
	N	į į	2 1	20.58%		20.70%
LANTFLEET SUM	\$135,941		\$114,683		\$114,546	
PACFLEET SUM	\$95,809		\$111,981		\$110,424	
TOTAL SUM	\$231,750		\$226,664	ļ, ļ	\$224,970	l _e

Table 16: MAPE Comparison for PFAD and the Modified Model SO 2002

SO - 2001	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$2,810	1.14%	\$2,814	0.00%	\$2,814	0.00%
AOE-6CL	\$1,673	0.68%	\$1,811	0.05%	\$1,306	0.19%
MHC-51 CL	\$2,382	0.96%	\$1,271	0.84%	\$477	3.85%
LHA-1CL	\$4,806	1.94%	\$5,023	0.08%	\$5,151	0.13%
LHD-1CL	\$8,654	3.50%	\$6,621	1.07%	\$7,941	0.31%
LPD-4CL	\$5,469	2.21%	\$3,664	1.09%	\$4,014	0.80%
LSD-36CL	\$699	0.28%	\$1,131	0.11%	\$1,096	0.10%
LSD-41CL	\$3,299	1.33%	\$4,015	0.24%	\$4,769	0.41%
CG-47CL	\$13,361	5.40%	\$11,258	1.01%	\$12,684	0.29%
DDG-51CL	\$13,285	5.37%	\$12,159	0.50%	\$12,850	0.18%
DD-963CL	\$9,044	3.66%	\$8,248	0.35%	\$8,808	0.10%
FFG-7CL	\$10,853	4.39%	\$9,200	0.79%	\$10,260	0.25%
ARS-50CL	\$1,063	0.43%	\$835	0.12%	\$1,030	0.01%
CVN-68CL	\$49,336	19.95%	\$39,609	4.90%	\$39,609	4.90%
Pacific Fleet	601	200200000	W.	280000000	460	2010/07/07/0
AOE-1CL	\$4,431	1.79%	\$2,121	1.95%	\$2,121	1.95%
AOE-6CL	\$3,708	1.50%	\$2,613	0.63%	\$2,629	0.62%
LHA-1CL	\$9,678	3.91%	\$8,812	0.38%	\$9,234	0.19%
LHD-1CL	\$8,688	3.51%	\$9,133	0.17%	\$9,057	0.14%
LPD-4CL	\$9,193	3.72%	\$7,723	0.71%	\$8,486	0.31%
LSD-36CL	\$2,155	0.87%	\$2,404	0.09%	\$2,421	0.10%
LSD-41CL	\$7,501	3.03%	\$6,437	0.50%	\$4,044	2.59%
CG-47CL	\$13,333	5.39%	\$14,596	0.47%	\$10,361	1.55%
DDG-51CL	\$12,763	5.16%	\$13,551	0.30%	\$10,951	0.85%
DD-963CL	\$13,239	5.35%	\$9,898	1.81%	\$10,106	1.66%
FFG-7CL	\$11,005	4.45%	\$7,723	1.89%	\$8,761	1.14%
ARS-50CL	\$1,542	0.62%	\$1,347	0.09%	\$1,504	0.02%
CVN-68CL	\$23,319	9.43%	\$21,565	0.77%	\$21,565	0.77%
	ji	2	M	20.91%	3	23.41%
LANTFLEET SUM	\$126,734		\$107,658		\$112,811	
PACFLEET SUM	\$120,555		\$107,923		\$101,241	
TOTAL SUM	\$247,289	ļ l	\$215,582		\$214,053	

Table 17: MAPE Comparison for PFAD and the Modified Model SO 2001

SO - 2000	Actual Cost	Weighting	PFAD	PFAD Weighted MAPE	Best Method's Prediction	Best Method's Weighted MAPE
Atlantic Fleet						
AOE-1CL	\$3,033	1.51%	\$2,489	0.33%	\$2,489	0.33%
AOE-6CL	\$2,267	1.13%	\$2,146	0.06%	\$1,417	0.68%
MHC-51 CL	\$497	0.25%	\$972	0.12%	\$384	0.07%
LHA-1CL	\$4,504	2.24%	\$4,827	0.15%	\$4,915	0.19%
LHD-1CL	\$6,971	3.47%	\$5,451	0.97%	\$6,843	0.06%
LPD-4CL	\$4,929	2.45%	\$3,365	1.14%	\$3,769	0.76%
LSD-36CL	\$745	0.37%	\$1,073	0.11%	\$869	0.05%
LSD-41CL	\$4,803	2.39%	\$3,647	0.76%	\$3,555	0.84%
CG-47CL	\$11,650	5.80%	\$10,681	0.53%	\$12,166	0.25%
DDG-51CL	\$11,547	5.75%	\$9,325	1.37%	\$10,884	0.35%
DD-963CL	\$9,534	4.75%	\$8,968	0.30%	\$9,807	0.13%
FFG-7CL	\$9,545	4.75%	\$8,734	0.44%	\$9,873	0.16%
ARS-50CL	\$944	0.47%	\$697	0.17%	\$940	0.00%
CVN-68CL	\$35,353	17.60%	\$40,652	2.29%	\$40,652	2.29%
Pacific Fleet	51-81 STD1-51-825	12-20-02-220-0	AUT CONTRACTOR	2002/45/46	AAC AAC	.0367323250
AOE-1CL	\$2,203	1.10%	\$2,041	0.09%	\$2,041	0.09%
AOE-6CL	\$2,270	1.13%	\$2,201	0.04%	\$2,629	0.15%
LHA-1CL	\$8,077	4.02%	\$7,622	0.24%	\$8,398	0.15%
LHD-1CL	\$7,317	3.64%	\$9,419	0.81%	\$8,539	0.52%
LPD-4CL	\$6,989	3.48%	\$7,177	0.09%	\$7,999	0.44%
LSD-36CL	\$2,526	1.26%	\$1,933	0.39%	\$2,249	0.15%
LSD-41CL	\$5,417	2.70%	\$5,737	0.15%	\$5,442	0.01%
CG-47CL	\$11,307	5.63%	\$13,756	1.00%	\$9,417	1.13%
DDG-51CL	\$8,180	4.07%	\$12,875	1.49%	\$8,856	0.31%
DD-963CL	\$11,072	5.51%	\$8,527	1.65%	\$9,202	1.12%
FFG-7CL	\$7,645	3.81%	\$7,145	0.27%	\$8,355	0.32%
ARS-50CL	\$1,184	0.59%	\$1,381	0.08%	\$1,411	0.09%
CVN-68CL	\$20,345	10.13%	\$14,274	4.31%	\$14,274	4.31%
				19.34%		14.97%
LANTFLEET SUM	\$106,322		\$103,028	12 V. S. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$108,560	
PACFLEET SUM	\$94,532		\$94,088		\$88,814	
TOTAL SUM	\$200,854		\$197,116		\$197,375	

Table 18: MAPE Comparison for PFAD and the Modified Model SO 2000

D. RESULTS

From the above data, Table 19 below summarizes the Weighted MAPE for each year.

SR	PFAD	Modified Model
2002	15.14%	15.39%
2001	33.01%	15.28%
2000	12.67%	9.50%
Mean	20.27%	13.39%

SO	PFAD	Modified Model
2002	20.58%	20.70%
2001	20.91%	23.41%
2000	19.34%	14.97%
Mean	20.27%	19.69%

Table 19: Weighted MAPE Summary

The above results demonstrate that the modified model is able to lower the overall MAPE verses the PFAD MAPE for SR. For SO, the modified model has a slightly lower MAPE and indicates that the current model predicts SO costs just as well as the model we developed. We feel that these results are appropriate given the focus of our study. Though we were able to establish relationships between SR cost and operational data for several ship classes, the optimal MAPE was generally the result of regressions with FY as an independent variable. This relationship replaces the current methodology of three-year average with a regression equation. Though we did not observe the improvement we had hoped in the SO model, we feel this is caused partially by the nature of spending in this Special Interest Item. SR cost is driven by specific material or inventory deficiency, SO on the other hand has a tendency to be more discretionary. Given the above results, we recommend using a regression-based model to predict cost for SR and SO.

VI. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

By incorporating regression-based predictions for SR we were able to improve the forecasting accuracy, over the last three years, by 6%. However, the improvement was negligible for SO. Regression based predictions improve the predictive capability of the current Ship Ops Model for SR but not for SO. One advantage of the proposed regression based model that should be pointed out is that it provides more flexibility in incorporation of operational data and allow for analysis at the individual ship level.

B. RECOMMENDATIONS

For the ship classes that we were able to determine a significant relationship in predicting costs, we recommend implementing a regression-based model to predict SR and SO. Though the improvement in SO was negligible, the modified model gives the user increased flexibility in predicting costs. We have provided a spreadsheet to FMB that includes our modifications to the current model.

C. AREAS FOR FUTURE RESEARCH

We feel the following represent areas of research that offer the greatest potential for improving cost predictions of O&M,N funds.

1. Alternative Models

By manipulating the drivers used to compute overall cost for Special Interest Items, one could potentially improve the current model without overhauling the current methodology. We performed cursory analysis of the current model by replacing ship years as the driver with OPMONTH and total days underway. We also experimented with extending the period used to obtain the moving average from three years to five. Although detailed analysis of this type of modification is beyond the scope of this project, our initial investigation is included in Appendix G. Our preliminary trials resulted in better MAPEs if we excluded incremental costs and price growths in determining unit costs and future requirements. Further research may be warranted.

2. Submarines

Because submarine data were not available for our study, future research should look to examine relationships between operational variables and submarine SR and SO costs. Additionally, research should be conducted to determine whether SR and SO predictions could be improved through the use of regression equations as opposed to the current three-year average.

3. SF & SU

While the primary focus of our study was SR and SO, we initially (Ch 4) conducted an analysis of the overall model. Though FMB is satisfied with the current model for SF and SU, our preliminary analysis indicates there is potential for improvement in these Special Interest Items as well.

4. Monte Carlo Simulation

One of the more interesting concepts to come out of our research is how to fund individual ships. For example, if a DDG is extended for a given period, should it be funded at the mean level for the class or some other point on the distribution? By collecting the data from the TYCOMs by hull, we have the data necessary to develop the distribution of costs for a given ship class around the mean. Once determined, the distribution of ships in a class could be incorporated into a Monte Carlo simulation (e.g. Crystal Ball) in order to give the decision maker greater information in managing the risk associated with over-funding (denying resources to other commands) or under-funding (potentially impacting the operational readiness of the ship being extended).

5. Analysis of the Data Input Process

Through multiple methods of analysis, we observed that the price growth factors used in the current model merely added error to the model. The potential exists for future research to develop an accurate means to incorporate price growth factors in the current model.

APPENDIX A: SHIP OPS MODEL EXAMPLE CALCULATIONS

A. APPENDIX DESCRIPTION

This appendix provides a detailed step-by-step review of the calculation of each fund code in the Ship Ops model. This appendix is meant to be a supplement to Chapter II, the narrative description of the same process. As stated in Chapter II, the goal is to describe only those parts of the model that are included in cost prediction. To make the description easier we will use only one Resource Sponsor (RS) and one ship class. The following calculations use data for Pacific Fleet, DDG-51 class ships for the POM-04 cycle. Table 9 provides a helpful list of terms and abbreviations with descriptions for the many elements found in the Ship Ops model.

Following the definitions table, we describe the data fields in the various input sheets pertinent to our chosen program element. The following sections detail the calculation of each cost element such as Fuel (SF), Utilities (SU), Other Consumables (SO), Repair Parts (SR), Counter Terrorism (CT) and No Special Interest items (NSI). Separate worksheets are used in the model to calculate the given cost element. At the top of each table, the name of the worksheet is listed. Fields from the actual worksheets are provided to show how the data are structured in the model. Below the tables the content of each column is discussed, including the data source worksheet and the method of calculation. The other two types of worksheets, Info Sheets and Summary Sheets, are not included in this Appendix. Info Sheets, such as the Model Update Info sheet, simply provide useful additional information to the user, but are not used in cost element calculations. Summary Sheets are used to present the output of the model in various formats. Since we set out to evaluate the model's predictive capabilities we can ignore these sheets for the purposes of this project.

B. USEFUL DEFINITIONS

The first step in deciphering this model is to become familiar with the terms and abbreviations used throughout each worksheet. The table below provides a quick, useful reference for the following sections that describe the actual calculations.

Term/Abbreviation	Definition
APPN	Appropriation
BBLS	Barrels
CL	Claimant
DNUW	Deployed, Not Underway
DUW	Deployed, Underway
FY	Fiscal Year
GOLD DISK	A SR cost savings initiative that works to decrease SR expenditures through unit micro miniature repair of circuit cards and other similar parts
LECP	Logistics Engineering Change Proposal. Program that is run by the Naval Inventory Control Point (NAVICP) Mechanicsburg, PA that predicts savings based on system engineering changes. Data for these constants are provided by NAVICP.
MTIS	Material Turned into Stock. Represents SR cost savings from inventory that has been removed from ships and turned into the retail system. The resource sponsor receives the credit.
NDUW	Not Deployed, Underway
NDNUW	Not Deployed and Not Underway.
PDREP	Product Data Reporting and Evaluation Program. System that collects product quality deficiency and supplier performance data. Projects savings from purchasing quality products with lower reject rates. Savings data provided by claimant.
PE	Program Element
OPMO	Operating Months. Number of months that a ship is available for operations (commissioned, not in repair status)
OMN	Operations and Maintenance Navy
RS	Resource Sponsor
SHIP YRS	Ship Years. Determined by number of ships in the class with partial years for commissioning or decommissioning in that year

Table 20: Helpful Definitions of Model Terms and Abbreviations

C. FEEDER SHEETS

The following tables provide excerpts from the Feeder Sheets pertinent to Pacific Fleet DDG-51 cost element determination. Sheet names are found in the blocks above the tables.

1. **OP-41** List

For Pacific Fleet DDG-51 class ships the resource sponsor (RS) is the OPNAV N-76 office (RS = 76 in the model) and the claimant is Commander Pacific Fleet (CL = 70). The OP-41 Feeder Sheet includes the number of ships in the class and the calculated Ship Years based on actual ship status for 1999-2001 and predicted numbers for 2002. It also has the actual cost figures for 1999 and 2000 and the estimated costs for 2001 for each cost element.

[OP-41 List] - [RS=**76**; CL=**70**; PE=**0204222N**; CLASS=**DDG-51CL**]

[Column] Name / YR [Row]	1999 [501]	2000 [539]	2001 [577]	2002 [615]
[J] Count	13	13	15	17
[K] Ship Years	11.7	13	14	16.25
[L] Op Mos	131.3	142	161	180.7
[M] Fuel (SF)	32,145	24,464	9,094	ı
[N] Util (SU)	6,345	6,581	8,441	ı
[O] RP (SR)	18,274	19,562	23,462	ı
[P] OPTAR (SO)	14,984	8,180	12,763	ı
[Q] NSI	849	886	1,113	ı
[R] CT	0	0	0	1
[S] Total	72,597	59,673	88,862	-

2. FY-CL-RS Constants

This constants page provides price growths for the cost elements as provided by the Resource Sponsors. The constants for 1999-2001 are actual costs growth and for 2002 the growth is predicted

[FY-CL-RS Constants]

					OP.	TAR	Repair Parts	NSI/CT
FY-CL-RS	FY	RS	CL	APPN	Price Growth	PDREP	Price Growth	Price Growth
1999 - 70 - 76	1999	76	70	OMN	100.74%	0.9940	95.63%	102.10%
2000 - 70 - 76	2000	76	70	OMN	100.40%	1.0000	98.60%	101.50%
2001 - 70 - 76	2001	76	70	OMN	103.90%	1.0000	111.30%	101.70%
2002 - 70 - 76	2002	76	70	OMN	98.70%	1.0000	98.40%	101.60%

3. FY-CL-Constants

The following two tables show multipliers from the FY-CL Constants sheet provided by the program Claimant used in the determinations of element costs. Historical observations and data are used by the Claimants to determine the multipliers. The 2001 and 2002 BBL prices are estimated based on previous observations and predictions.

[FY-CL Constants]

			Deployed		Non-Deployed				
FY - CL - OMN	Days per Month	DUW/MO Multiplier	Price per BBL	D-not UW/MO Factor	DUW/MO Multiplier	Price per BBL	D-not UW/MO Factor		
1999 - 70 - OMN	30.4	1.03700	\$33.60	0.900	1.2000	\$33.60	0.900		
2000 - 70 - OMN	30.4	0.88100	\$25.20	0.900	0.9915	\$25.20	0.900		
2001 - 70 - OMN	30.4	0.94100	\$41.16	0.900	1.0280	\$41.16	0.900		
2002 - 70 - OMN	30.4	0.98339	\$40.32	0.900	0.9982	\$40.32	0.900		

	OPTAR	Utilities			OPTAR			
FY - CL - OMN	Control	Price Growth	Con- trol	MTIS Growth	Gold Disk/PDREP	100% - ICAS Reduction	PDREP	NSI
1999 - 70 - OMN	100.0%	99.40%	100.0%	95.00%	4.70%	66.67%	0.9940	0.0000
2000 - 70 - OMN	100.0%	95.20%	100.0%	95.00%	4.70%	66.67%	1.0000	0.0000
2001 - 70 - OMN	100.0%	100.50%	100.0%	95.00%	3.13%	66.67%	1.0000	0.0000
2002 - 70 - OMN	100.0%	132.60%	100.0%	95.00%	1.57%	66.67%	1.0000	0.0000

4. Burn Rates

[Burn Rates]

				ОРМО %		Deployed				Non-Deployed			
RS	CL	PE	Class	FY03	DUW per Mo		DNUW per Mo		DUW per Mo		DNUW per Mo		FY04- FY09
76	70	0204222N	DDG-51CL	0.34	19.6	618	10.8	79	9.5	527	20.9	15	0.34

D. CALCULATION SHEETS

1. Fuel (SF)

This is probably the most complex section of the model. The fuel cost calculation method differs significantly from the calculation of the rest of the cost elements. This section is broken down into five subsections. Each shows how the cost is calculated according to the operational status (deployed, non-deployed, underway, not underway) of the ships and the total fuel calculation. Note: Within each calculation description a letter within the () refers to the subsection number. For example, (a) refers to the DUW subsection.

a. DUW (Deployed, Underway)

				Deployed								
EOY Inven- tory X	Ship Years X	OPMO X	ОРМО %	Calc OPMO X	OP MO	DUW/MO	Adj DUW/MO X	Adj OP- TEMPO	Adj Days UW X	Burn Rate UW/Day (BBL)	UW BBL X	UW Fuel Cost (\$000) X
0	16.25	180.7	34.00%	61.4	0.0	19.6	19.2744	57.8	1,184	618	731,83	29,507

Source & Calculation:

EOY Inventory X - Manual correction - Not used here

Ship Years X - [OP-41 List]; [Ship Years] Column [K] – used in subsection e.

OPMO X - [OP-41 List]; [Op Mos] Column [L]

OPMO % - [Burn Rates]; [OPMO %] FY03 Column [F] - Op month % is de-

fined as the percentage of all op months normally spent in a de-

ployed status.

Calc OPMO X = [OPMO X] * [OPMO %] - The calculated op months or number

of op months normally spent in a deployed status.

OP MO - Not used here

DUW/MO - [Burn Rates]; [DUW per Mo] Column [G] – Days underway per

month (one month = 30.4 days constantly)

Adj DUW/MO X = $[DUW/MO] * [OPTEMPO multiplier] \rightarrow [FY-CL Constants];$

[DUW/MO Multiplier] Column [E] - Adjustment made by this

OPTEMPO multiplier in order to reach OPTEMPO goals

Adj OPTEMPO = [Adj. DUW/MO] * 3 - same figure for one quarter

Adj Days UWX = [Calc OPMO X] * [Adj DUW/MO] - This is the total deployed

days underway.

Burn Rate UW/Day (BBL) – [Burn Rates]; [UW BURN] Column [H]

UW BBL = [Burn Rate UW/Day (BBL)] * [Adj Days UW X] - Underway

barrels.

UW Fuel Cost (\$000) X = [UW BBL] * [Price per Barrel]/1,000 -> [FY-CL]; [Price per Barrel]/1,000 -> [FY-CL]/1,000 -> [FY-CL]/1,

BBL] Column [F] - This is the deployed underway fuel cost The fuel price per barrel from the FY-CL worksheet is multiplied by

UW BBL and divided by 1,000.

b. DNUW (Deployed, Not Underway)

							. ,	Deployed TOTAL
Not UW/MO	Adj Not DUW/MO	Adj Days not UW	In port Daily Burn (BBL)	Not UW (BBL)	Not UW Fuel Cost (\$000) X	Cold Iron Days per MO	Total BBLS '000	Total (\$000)
10.8	11.1	684	79.0	53999.06	2,177.24	0.0	785,824.06	31,684.43

Source & Calculation:

Not UW/MO - [Burn Rates]; [DNUW per Mo] Column [I] - Days NOT under-

way per month = 30.4 - DUW/MO - Not used, just to compare

with the next number

 $Adj \ Not \ DUW/MO = 30.4 - Adj \ DUW/MO (1.)$

Adj Days not UW = [Adj Not DUW/MO] * [Calc OPMO X] (subsection a.) - This is

the total deployed days NOT underway.

In port Daily Burn (BBL) – [Burn Rates]; [NUW BURN] Column [J]

Not UW (BBL) = [Adj Days not UW] * [In port Daily Burn (BBL)] – Deployed

NOT underway barrels

Not UW Fuel Cost (\$000) X = [Not UW BBL] * [Price per Barrel]/1,000 -> [FY-CL];

[Price per BBL] Column [F] - This is the deployed NOT underway fuel cost The fuel price per barrel from the FY-CL worksheet is multiplied by NUW BBL and divided by 1,000 to be in thousands

like the other numbers in the table.

Total BBLS '000 & Total (\$000) – Total deployed fuel cost in barrels & in dollars

c. NDUW (Not Deployed, Underway)

Not De- ployed OPMO	Days UW/MO	Adj Days UW/MO	Adj Total Days UW X	UW Daily Burn Rate	UW BBL X	UW Fuel Cost (\$000) X
119.3	9.5	9.5	1,130.99	527	596,031	24,031.98

Source & Calculation:

Not Deployed OPMO = [OPMO] - [Calc OPMO X] - Months in operation, but not deployed

- [Burn Rates]; [DUW per Mo] Column [K] - NOT deployed days

underway per month

Adj Days UW/MO = [Days UW/MO] * [OPTEMPO multiplier] -> [FY-CL Con-

stants]; [DUW/MO Multiplier] Column [H] – Adjustment made by this OPTEMPO multiplier (1.0009) in order to reach OPTEMPO

goals.

Adj Total Days UW X = [Not Deployed OPMO] * [Adj Days UW/MO] - This is the total NOT deployed days underway.

UW Daily Burn Rate - [Burn Rates]; [UW BURN] Column [L] - Non-deployed burn rate

UW BBL X = [Adj Total Days UW X] * [UW Daily Burn Rate] NDUW barrels

UW Fuel Cost (\$000) X = [UW BBL X] * [Price per Barrel]/1,000 -> [FY-CL]; [Price per BBL] Column [I] - This is the NOT deployed underway fuel cost The fuel price per barrel from the FY-CL worksheet is multiplied by UW BBL and divided by 1,000.

d. NDNUW (Not Deployed, Not Underway)

Days not UW/MO	Adj Days not UW/MO	Adj Days not UW Total	Not UW Burn Rate	Not UW BBL X	Not UW BBL (\$000) X	Days Cold Iron	Total BBL X	Total (\$000) X
20.9	20.9	2,494.58	15	37,418.63	1,508.72	0.0	633,450	25,540.70

Source & Calculation:

Days not UW/MO - [Burn Rates]; [DNUW per Mo] Column [M] - Days NOT un-

derway per month = 30.4 - DUW/MO - Not used, just to compare

with the next number

Adj Not UW/MO = 30.4 - Adj days UW/MO (subsection c.)

Adj Days not UW Total = [Adj Not UW/MO] * [Not Deployed OPMO] (subsection c.)

Not UW Burn Rate - [Burn Rates]; [NUW BURN] Column [N]

Not UW BBL X = [Adj Days not UW Total] * [Not UW Burn Rate] – NOT de-

ployed NOT underway barrels

Not UW BBL (\$000) X = [Not UW BBL X] * [Price per Barrel]/1,000 -> [FY-CL]; [Price per BBL] Column [I] - This is the NOT deployed NOT underway fuel cost The fuel price per barrel from the FY-CL worksheet is

multiplied by NUW BBL X and divided by 1,000.

Total BBL X & Total (\$000) X – Total NOT deployed fuel cost in barrels & in dollars

e. Total Fuel Cost

(includes fuel costs incurred for ships in a repair status)

Tot	als				
Ship Type	Total BBL X	Fuel Total (\$000) X	REPMO	Repair Barrels	REPMO Fuel \$000
DDG-51CL	1,442,836	58,175.14	14.3	23561.8	950.01

Source & Calculation:

Total BBL X = [Total BBLS '000 & Total (\$000)] (subsection b.) + [Total BBL

X] (4.)) + [Repair Barrels] – total fuel cost in barrels (op+repair)

Fuel Total (\$000) X = [Total (\$000)] (2.)) + [Total (\$000)] (subsection d.) +

[REPMO Fuel \$000] - total fuel cost in dollars (op+repair)

= DUW + DNUW + NDUW + NDNUW + Repair

REPMO = [Ship Years X] (1.)) * 12 - [OPMO X] (subsection a.)) Months

in repair status - ship years multiplied with 12 in order to get

months commissioned and decreased by operational months

Repair Barrels = [REPMO] * 0.1 * 30.4 * ([UW Daily Burn Rate] (subsection c.)

> + [Not UW Burn Rate] (subsection d.) – Repair fuel cost in barrels - first a constant adjustment to get adjusted repair days, then, it's

multiplied by the average of the NOT deployed burn rates (UW

and NUW)

REPMO Fuel \$000

= [Repair Barrels] * [Price per Barrel]/1,000 -> [FY-CL]; [Price per BBL] Column [I] - This is the Repair fuel cost The fuel price per barrel from the FY-CL worksheet is multiplied by Repair Barrels and divided by 1,000 to be in thousands like the other numbers in the table.

2. **Counter Terrorism (CT)**

The CT cost element is one of the latest additions to the model.

FY01 to FY02 Price Growth	Ship Years	Base Total Rqmnt	ATFP Travel	Phased Replacement	Port Visits	Adj Rqmnt
101.60%	16.3	101		0	602	703

FY01 to FY02 Price Growth - [FY-CL-RS Constants]; [NSI/CT Price Growth] Column [I]

Ship Years - [OP-41 List]; [Ship Years] Column [K]

These are not used directly here.

All the other numbers are from manual input.

3. Repair Parts (SR)

This section consists of two subsections that describe the Incremental SR (a manual adjustment to the SR calculation for one time costs) and the SR sheet.

[Incremental SR] -[YR=2002; RS=76; CL=70; PE=0204222N; CLASS=DDG-51CL]

2002											
POM-04 In- crem Rqmnt	AS-39 Delta	SSN21 Delta	Reserve Equity	CEC	Total						
0				311	311						

Manual inputs. The total number will be used subsequently.

[Repair Parts (SR)] -[YR=2002; RS=76; CL=70; PE=0204222N; CLASS=DDG-51CL]

	2002											
3 YR AVG FY01 Unit				Gold Disk								
Cost	FY01 to FY02 Price	Ship	Base Total	1.57%								
	Growth	Years	Rqmnt	Factor	Savings							
1,781	98.40%	16.3	28,483	0.0157	(446)							

LECP Sav- ings	Incr Rqmnt	MTIS Sav- ings	Adj Rqmnt
35	311	(662)	27,410

Source & Calculation:

3 YR AVG FY01 Unit Cost - Average of the last three years' SR unit cost adjusted (by

appropriate price growths) to FY01 dollars.

FY01 to FY02 Price Growth - [FY-CL-RS Constants]; [Repair Parts Price Growth] Col-

umn [H] – Row [63] expected price growth for getting

FY02 dollars

Ship Years - [OP-41 List]; [Ship Years] Column [K]

Base Total Rqmnt = [3 YR AVG FY01 Unit Cost] * [FY01 to FY02 Price

Growth] * [Ship Years] – Basic requirement in FY02 dol-

lars

- [FY-CL Constants]; [Repair Parts Gold Disk/PDREP]

Column [O] – appropriate factor by year and fleet (and

OMN).

Gold Disk Savings = [Base Total Rqmnt] * [Gold Disk Factor] – Savings com-

ing from Gold Disk prg, constant proportion of basic re-

quirement.

LECP Savings - manual input

Incr Rqmnt - [Incremental SR]; [2002 Total] Column [Q]

MTIS Savings - manual input

Adj Ramnt = [Base Total Ramnt] + [Gold Disk Savings] + [LECP Sav-

ings] + [Incr Rqmnt] + [MTIS Savings] - This gives the to-

tal repair cost estimate for year 2002 in FY02 dollars

4. Other Consumables (SO)

This section is similar to the previous one, also with two sub-sections having the same function.

[Incremental SO] -[YR=2002; RS=76; CL=70; PE=0204222N; CLASS=DDG-51CL]

2002											
Increm Rqmnt	CBR Medici- nals	Sub Force Coil Mat- tress	MEDEVAC	Reserve Ship Equity	Total						
164	55		200		419						

Manual inputs. The total number will be used subsequently.

[OPTAR (SO)] -[YR=2002; RS=76; CL=70; PE=0204222N; CLASS=DDG-51CL]

		2002													
3 YR AVG FY01 Unit Cost	FY01 to FY02 Price Growth	Ship Years	Base Total Rqmnt	MTIS Savings	Increm Rqmnt	Adj Rqmnt									
967	98.70%	16.3	15,511	0	419	15,931									

Source & Calculation:

3 YR AVG FY01 Unit Cost - Average of the last three years' SO unit cost adjusted (by

appropriate price growths) to FY01 dollars.

FY01 to FY02 Price Growth - [FY-CL-RS Constants]; [OPTAR Price Growth] Column

[F] – Row [63] expected price growth for getting FY02 dol-

lars

Ship Years - [OP-41 List]; [Ship Years] Column [K]

Base Total Rqmnt = [3 YR AVG FY01 Unit Cost] * [FY01 to FY02 Price

Growth] * [Ship Years] – Basic requirement in FY02 dol-

lars

MTIS Savings - manual input

Increm Rgmnt - [Incremental SO]; [2002 Total] Column [Q]

Adj Rqmnt

= [Base Total Rqmnt] - [MTIS Savings] + [Increm Rqmnt]— This gives the total other or "consumable" material cost estimate for year 2002 in FY02 dollars

5. Utilities

[Utilities (SU)] -[YR=2002; RS=76; CL=70; PE=0204222N; CLASS=DDG-51CL]

		2002	
3 YR AVG FY00 Unit Cost	FY01 to FY02 Price Growth	Op Months	Rqmnt
48	132.60%	181	11,612

Source & Calculation:

3 YR AVG FY01 Unit Cost

- Average of the last three years' SU unit cost adjusted (by appropriate price growths) to FY01 dollars.

FY01 to FY02 Price Growth

- [FY-CL Constants]; [Utilities Price Growth] Column [L]

- Row [43] expected price growth for getting FY02 dollars - [OP-41 List]; [Op Mos] Column [L] – planned opera-

Ramnt

Op Months

tional months for year 2002 = [3 YR AVG FY01 Unit Cost] *[FY01 to FY02 Price

Growth] * [Op Months] – This gives the total utilities cost estimate for year 2002 in FY02 dollars

66

6. No Special Interest Items (NSI)

Another recent cost element addition to the model.

		2002														
3 YR AVG FY01 Unit Cost	FY01 to FY02 Price Growth	Ship Years	Base Total Rqmnt	NMCI	CIVPE RS	CMD STAFF	TADTAR	Adj Rqmnt								
75	101.60%	16.3	1,234	0	0	0	0	1,234								

Source & Calculation:

Base requirement calculated from the three years' average NSI unit costs, adjusted to FY01 dollars, than multiplied by the growth rate (same as CT's one - [FY-CL-RS Constants]; [NSI/CT Price Growth] Column [I]) and by Ship Years ([OP-41 List]; [Ship Years] Column [K]).

Adjusted requirement is then coming form the sum of base requirements and adjustments (manual inputs).

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B: CURRENT MODEL ANALYSIS METHODOLOGY

This appendix contains the details on our analysis of the original model. For each of the five selected ship classes it lists the following data:

- (1) Appraisal of Model Accuracy table contains the cost that actually occurred and the PFAD costs, the calculated absolute and relative (proportioned to the actual value) differences and relevant MAPE figures for the certain ship class.
- (2) Graphs depict SII and total differences in various decompositions.
- (3) Appraisal of prediction for 2002 shows the detailed calculations used for conducting a full analysis on the original model capability to predict various cost elements. Moreover here we show a visual presentation of calculating Predicted and PFAD figures for year 2002 in order to make our calculations and analysis more transparent.

Primary and Calculated Inputs tables finally summarize the source data we used in our analysis for the certain ship class. It helped us to identify typos and/or unusual inputs as well.

Fleet	PacFleet
Ship Class	DDG-51CL
Program Element	0204222N
OMN/OMNR	OMN
Resource Sponsor (new)	76
Resource Sponsor (old)	86

Appraisal of Model Accuracy

using backcast: 1997-2002

	Year	SF	SU	SR	SO	Total
	1997	\$24,654	\$4,315	\$12,748	\$6,626	\$48,343
	1998	\$29,890	\$5,853	\$15,300	\$9,046	\$60,089
Actuals	1999	\$32,145	\$6,345	\$18,274	\$14,984	\$71,748
	2000	\$24,464	\$6,581	\$19,562	\$8,180	\$58,787
	2001	\$43,083	\$8,441	\$23,462	\$12,763	\$87,749
	2002	\$47,841	\$12,553	\$23,849	\$11,147	\$95,390
	1997	\$23,854	\$3,595	\$15,861	\$9,572	\$52,882
	1998	\$29,608	\$4,372	\$23,814	\$10,056	\$67,849
Predicted from All Actual Data	1999	\$34,535	\$5,894	\$18,735	\$11,410	\$70,573
	2000	\$11,228	\$6,403	\$19,250	\$12,875	\$49,756
	2001	\$47,991	\$7,651	\$23,320	\$13,551	\$92,513
	2002	\$54,834	\$11,251	\$28,498	\$15,660	\$110,242
	1997	\$800	\$720	-\$3,113	-\$2,946	-\$4,539
	1998	\$282	\$1,481	-\$8,514	-\$1,010	-\$7,760
Actual - Pred. Fr Actual	1999	-\$2,390	\$451	-\$461	\$3,574	\$1,175
	2000	\$13,236	\$178	\$312	-\$4,695	\$9,031
	2001	-\$4,908	\$790	\$142	-\$788	-\$4,764
	2002	-\$6,993	\$1,302	-\$4,649	-\$4,513	-\$14,852
	1997	3.24%	16.69%	-24.42%	-44.46%	-9.39%
	1998	0.94%	25.30%	-55.64%	-11.16%	-12.91%
Actual - Pred. Fr Actual	1999	-7.43%	7.11%	-2.52%	23.85%	1.64%
Actual	2000	54.10%	2.70%	1.59%	-57.40%	15.36%
	2001	-11.39%	9.36%	0.60%	-6.17%	-5.43%
	2002	-14.62%	10.37%	-19.49%	-40.48%	-15.57%
	MAPE* =	15.29%	11.92%	17.38%	30.59%	10.05%

^{*} Mean Absolute Percentage Error (avg of the abs value of errors %)

** SF's MAPE without year 2000 = 7.53%

	-18.60% -> model total inaccuracy -3.03% -> source data inaccuracy -15.57% -> model inaccuracy	es Actual difference% 2.170 -10.70% 1.254 1.20% 40.32 0.00%	es A <i>ctual</i> difference% 133.20% 0.45% 174.30 -3.67%	es <i>Actual</i> difference% 99.99% 1.59% 16.00 -1.56% 0 #DIV/0!	es Actual difference% 101.20% 2.47% 16.00 -1.56% 0 #DIV/0!
or 2002	Total \$95,390 \$113,128 \$110,242 -\$17,738 -\$2,886 -\$14,852	hanged valu	hanged values	nanged values vs. Ac vs. vs.	hanged value VS. A VS. A VS. A VS. VS.
Appraisal of prediction for 2002	\$2,849 \$11,147 \$22,440 \$15,931 \$28,498 \$15,660 \$1,088 \$15,660 \$1,088 \$15,660 \$1,088 \$1,088 \$1,088 \$2,513	Ch Predicted 2.402 1,239 40.32	Ct Predicted 132.60% 180.70	Ch Predicted 98.40% 16.25 -1,073	Ch Predicted 98.70% 16.25
isal of pre	\$US \$12,553 \$2 \$11,612 \$2 \$11,251 \$2 \$941 -\$ \$-\$361 \$ \$1,302 -\$	Weight 50.15%	Weight 13.16%	Weight 25.00%	Weight 11.69%
Appra	\$F \$47,841 \$58,175 \$54,834 -\$10,334 -\$3,342 -\$6,993	-21.60% -6.98% -14.62% -10.53% -23.40%	7.50% -2.87% 10.37% 7.08%	-14.93% 4.56% -19.49% -16.86% -13.09%	-2.92% -2.43% -40.48% -46.44% -40.78% -39.15%
7	Predicted from All Actual Predicted from All Actual Data Actual - Predicted - Pred. fr Actual - Predicted - Actual - Pred. Fr Actual	Full effect Part effect -\$10,334 -\$6,993 -\$11,194 -\$11,194	Full effect Part effect \$941	Full effect Part effect -\$3,561 -\$4,649 -\$4,021 -\$4,021	Full effectPart effect -\$4,784 -\$271 -\$4,517 -\$4,364
PacFleet	76 0204222N 0MN 76 86	\$59,035 \$59,035 \$54,834 \$52,880 \$59,035 \$58,175	\$12,559 \$12,559 \$17,512 \$11,564 \$11,200	value \$2 3,942 \$2 7,4 10 \$28,498 \$27,870 \$28,972 \$28,483	value \$15,447_ \$15,931_ \$15,660_ 15,324 15,692 15,692
<u>Inputs:</u> Fleet	Ship Class Program Element OMN/OMNR Resource Sponsor (new) Resource Sponsor (old)	Actual Predicted from All Actual Data - Predicted w/ actual DUWs - Predicted w/ actual Burn Rates - Predicted w/ actual Fuel Prices	Actual Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual oPMONTH	Actual Actual Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual ship year - Predicted w/ actual incr. cost	Actual Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual ship year - Predicted w/ actual incr. cost

	PacFleet	DDG-51CL	0204222N	OMN	w) 76	98
Inputs:	Fleet	Ship Class	Program Element	OMN/OMNR	Resource Sponsor (new)	Recourse Sponeor (old)

PRIMARY INPUTS

	from O	from O	from O	from O	sum ro	from O	from O	determ informa	determ informa	determ	calcula	calcula	from th	determ informa	determ informa	calcula	calcula	from th	from th	from th	from th sheet)	from th	from th sheet)
	ł	≀	≀	≀	≀	ł	ł	ł	1	1	ł	ł	ł	1	1	ł	1	ł	ł	ł	?	?	1
2002	\$47,841	\$12,553	\$23,849	\$11,147	\$95,390	16.00	174.30	0.28	21.08	1.22	633	72	\$40.32	9.17	0.98	534	15	\$40.32	133.20%	%66.66	\$0	101.20%	\$0
2001	\$43,083	\$8,441	\$23,462	\$12,763	\$87,749	14.00	160.56	0.34	18.24	1.05	620	72	\$41.16	8.83	0.95	533	15	\$41.16	100.50%	111.30%	-\$831	103.90%	\$0
2000	\$24,464	\$6,581	\$19,562	\$8,180	\$58,787	13.00	142.00	0.32	17.78	1.03	251	72	\$25.20	8.25	0.88	216	15	\$25.20	95.20%	%09:86	-\$1,285	100.40%	\$0
1999	\$32,145	\$6,345	0,	\$14,984	\$71,748	11.70	131.30	98'0	19.01	1.10	979		\$33.60	9.11	86.0	511	15	\$33.60	99.40%	%£9:56	-\$1,171	100.74%	\$0
1998	\$29,890	\$5,853	\$15,300	\$9,046	\$60,089	10.40	111.00	0.37	17.94	1.03	594	72	\$36.96	7.62	0.82	483	15	\$36.96	97.30%	107.52% 113.95%	-\$225	98.87% 105.45% 108.19% 100.74%	\$0
1997	\$24,654	\$4,315	\$12,748	\$6,626	\$48,343	00'6	100.90	28'0	18.96	1.09	212	72	\$31.08	8.97	96:0	532	15	\$31.08	99.18%	107.52%	-\$1,430	105.45%	\$0
1996	\$17,360	\$3,623	\$11,426	\$8,029	\$40,438	7.40	85.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	98.80%	98.87%	-\$952	98.87%	\$0
1995	0\$	\$1,449	\$8,128	\$2,765	\$12,342	3.60	39.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	98.80%	103.11%	-\$1,054	103.11%	0\$
1994	\$7,093	\$641	\$2,059	\$2,086	\$11,879	1.80	22.00	V/A	V/V	W.A	N/A	N/A	N/A	N/A	W.A	N/A	N/A	N/A	N/A	W/A	\$0	W/A	0\$
Actual Data	SF	ns	SR	OS	Total Cost	Ship Year	OPMONTH	%ОМОО	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

n OP-41 List
n OP-

the model (FY-CL-RS sheet) he model (Incremental SR the model (FY-CL-RS sheet) om the model (Incremental SO neet)

	prediction based on the model's methodology	sum row	from different OP-41 Lists	from different OP-41 Lists	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (FY-CL sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SR sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SO sheet)			
	1	≀	≀	ł	ł	≀	ł	ł	1	1	≀	≀	≀	≀	1	≀	1	1	1	₹	≀	1	?
2002	\$58,175	\$11,612	\$27,410	\$15,931	\$113,128	16.25	180.70	0.34	19.6	0.98	618	62	\$40.32	9.5	1.00	527	15	\$40.32	132.60%	98.40%	-\$1,073	98.70%	\$419
2001	\$52,374	\$7,735	\$21,125	\$13,307	\$94,542	14.00	160.56	0.34	19.6	0.94	620	79	\$41.16	9.5	1.03	533	15	\$41.16	101.60%	101.60%	-\$921	101.74%	\$38
2000	\$11,937	\$6,075	\$19,216	\$12,651	\$49,879	13.00	136.00	0.34	19.6	0.88	251	62	\$25.20	9.5	0.99	216	15	\$25.20	94.30%	%00'86	-\$1,194	98.65%	\$0
1999	\$38,613	\$5,880	\$19,111	\$11,535	\$75,140	11.90	131.00	0.34	19.6	1.04	626	62	\$33.60	9.5	1.20	511	15	\$33.60	99.40%	95.63%	-\$1,135	100.74%	-\$70
1998	\$32,488	\$4,619	\$23,814	\$10,056	\$70,977	10.40	111.00	0.34	19.6	06:0	594	62	\$36.96	9.5	1.20	483	15	\$36.96	102.80%	113.95%	-\$225	108.19%	\$0
1997	\$24,973	\$3,595	\$15,861	\$9,572	\$54,001	9.00	100.90	0.34	19.6	1.00	572	62	\$31.08	9.5	1.06	532	15	\$31.08	99.18%	107.52%	-\$1,430	105.45%	\$0
1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1995	A/N	A/N	A/N	A/N	N/A	N/A	N/A	A/N	A/N	A/N	A/N	A/N	A/N	A/N	A/N	A/N	A/N	N/A	A/N	A/N	A/N	A/N	N/A
1994	N/A	N/A	N/A	A/N	A/N	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Predicted Data	SF	ns	SR	SO	Total Cost	Ship Year	OPMONTH	%OMOO	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Bum Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

78

CALCULATED INPUTS

	~	~	~	~	99	[≀]	. ∞
2002	48.90	123.69	3.0	1,031.0	455.56	1,134.00	2,626.18
2001	22.00	96.17	0.16	809.00 1,003.00	00.699	849.00	2,074.57
2000	45.51	90.26	66.0	809.00	574.50	745.00	401.86 788.98 1,601.62 1,352.85 1,757.06 1,745.50 1,998.90 2,074.57
1999	47.61	81.99	0.33	902.00	542.34	747.00	1,745.50
1998	40.64	77.14	0.49	706.00 729.00	90.18 426.10 506.46	588.00	1,757.06
1997	37.24	63.12	99'0	706.00	426.10	566.00	1,352.85
1996	13.46	73.54	00.00	319.00		634.00	1,601.62
1995	5.79	39.21	0.00	127.00	49.05	403.00	788.98
1994	00.00	20.39	0.66	00.00	00.00	218.00	401.86
Actual Data	Deployed Months	Not-Deployed Months	Maintenance Months	Deployed Days Underway	Deployed Days Not-underway	Not-Deployed Days Underway	Not-Deployed Days Not-Underway

derived from NUERS data derived from NUERS data derived from NUERS data derived from NUERS data = (Deployed Months * 30.4 days) -Depl. Days Underway derived from NUERS data

= (Not-Deployed Months * 30.4 days) - Not-Depl. Days Underway

Predicted Data	1994	1995	1996	1997	1998	1999	2000	2001	2002	
Deployed Months	N/A	N/A	N/A	34.31	37.74	44.54	46.24	54.59	61.44	₹
Not-Deployed Months	N/A	N/A	N/A	66.59	73.26	86.46	89.76	105.97	119.26	₹
Maintenance Months	N/A	N/A	N/A	7.10	13.80	11.80	20.00	7.44	14.30	≀
Deployed Days Underway	N/A	N/A	N/A	671.73	671.73 665.73	905.28	798.45	798.45 1,006.84 1,184.18	1,184.18	₹
Deployed Days Not-underway	N/A	N/A	N/A	371.18	371.18 481.56	448.73	607.24	652.70	683.53	ł
Not-Deployed Days Underway	N/A	N/A	N/A	673.13	673.13 835.16	985.64	845.47	845.47 1,034.90 1,130.99	1,130.99	ł
Not-Deployed Days Not-Underway	N/A	N/A	N/A	1,351.33	1,391.94	1,351.33 1,391.94 1,642.74	1,883.23	1,883.23 2,186.58 2,494.58	2,494.58	ł

Not-Deployed Months * Not-Depl. DUW/MO * Not-Depl.
 OPTEMPO
 Not-Deployed Months * (30.4 - (Not-Depl. DUW/MO * Not-Depl.
 OPTEMPO)

= Deployed Months * (30.4 - (Depl. DUW/MO * Depl. OPTEMPO))

= OPMONTH * (1-OPMO%) = (Ship Year * 12) - OPMONTH = Deployed Months * Depl. DUW/MO * Depl. OPTEMPO

= OPMONTH * OPMO%

Marked - missing data, temporary substituted by predicted/actual/previous data *Italic* - calculated value, used for comparision, but not directly in the model

 Fleet
 PacFleet

 Ship Class
 CG-47CL

 Program Element
 0204221N

 OMN/OMNR
 OMN

 Resource Sponsor (new)
 76

 Resource Sponsor (old)
 86

Appraisal of Model Accuracy

using backcast: 1997-2002

	Year	SF	SU	SR	SO	Total
	1997	\$37,162	\$8,902	\$26,353	\$9,532	\$81,949
	1998	\$47,709	\$9,814	\$27,573	\$14,222	\$99,318
Actuals	1999	\$41,010	\$8,055	\$28,602	\$16,388	\$94,055
	2000	\$29,459	\$8,821	\$35,726	\$11,307	\$85,313
	2001	\$47,147	\$8,736	\$35,017	\$13,333	\$104,233
	2002	\$52,283	\$12,838	\$32,843	\$12,106	\$110,070
	1997	\$39,843	\$8,004	\$25,933	\$13,490	\$87,271
	1998	\$45,241	\$8,623	\$32,882	\$13,298	\$100,044
Predicted from All Actual Data	1999	\$45,189	\$8,810	\$29,859	\$12,422	\$96,280
	2000	\$14,422	\$8,522	\$29,016	\$13,756	\$65,716
	2001	\$50,710				\$109,280
	2002	\$61,076	\$10,936	\$37,424	\$14,227	\$123,663
	1997	-\$2,681	\$898	\$420	-\$3,958	-\$5,322
	1998	\$2,468	\$1,191	-\$5,309	\$924	-\$726
Actual - Pred. Fr Actual	1999	-\$4,179	-\$755	-\$1,257	\$3,966	-\$2,225
	2000	\$15,037	\$299	\$6,710	-\$2,449	\$19,597
	2001	-\$3,563		-\$58	-\$1,263	
	2002	-\$8,793	\$1,902	-\$4,581	-\$2,121	-\$13,593
	1997	-7.21%	10.08%	1.59%	-41.52%	-6.49%
	1998	5.17%	12.13%	-19.26%	6.50%	-0.73%
<u> Actual - Pred. Fr Actual</u>	1999	-10.19%	-9.38%	-4.39%	24.20%	-2.37%
Actual	2000	51.04%	3.39%	18.78%	-21.66%	
	2001	-7.56%	-1.86%	-0.17%	-9.47%	
	2002	-16.82%	14.81%	-13.95%	-17.52%	-12.35%
	MAPE* =	16.33%	8.61%	9.69%	20.15%	8.29%

^{*} Mean Absolute Percentage Error (avg of the abs value of errors %)

^{**} SF's MAPE without year 2000 = **9.39%**

Fleet	PacFleet	-	ı		17 h 00 10 10	9		1 =	
Ship Class	CG-47CL	Actual	\$52.283	\$12 838	\$32 843	\$12.106	Total		
OMN/OMNR Decourse Sporeor (new)	OMN	Predicted from All Actual Data	\$52,289	\$10,952	\$35,455	\$14,247	\$112,943		
Resource Sponsor (old)	98	Actual - Predicted	-\$6	\$1,886	-\$2,612	-\$2,141	-\$2,873	-2.61%	-2.61% -> model total inaccuracy
		- Pred. fr Actual - Predicted - Actual - Pred. Fr Actual	\$8,787	-\$16 \$1,902	\$1,968	-\$20	\$10,720	-	9.74% -> source data inaccuracy
			5	1	- - - -	! :)))	_	
15	on loss	toge hell toget		*45i0/V					
Actual	\$52,283		-0.01%	47.50%					
Predicted	\$52,289		16.81%		•	<u>ნ</u>	Changed values		20.
Predicted from All Actual Data	\$61,076		-16.82%		~	Predicted 4 947	VS.	_	difference%
- Predicted w/ actual DOWS - Predicted w/ actual Burn Bates	454,073 457,020	7,190	-3.42%			1,847	s v	1,817	-1.08% 8.37%
- Predicted w/ actual Fuel Prices	\$52,289		-0.01%			40.32	S	40.32	
								•	
SU	value	Full effect Part effect		Weight					
Actual	81,088 1,088	\$1,886	14.69%	11.66%		Ç	7	į.	
Predicted from All Actual Data	\$10,936	\$1,902	•		_	On Predicted	oriarigeu values vs. Ac	tual	difference%
 Predicted w/ actual price growth 	\$11,002		14.30%		ı	132.60%	vs.	133.20%	0.45%
- Predicted w/ actual OPMONTH	\$10,887	\$1,951	15.20%			133.70	·s ×	132.90	-0.60%
SR	value	Full effect Part effect		Weight					
Actual	\$32,040	-\$2,612	-7.95%	29.84%		Ç	Changed values	ŭ d	
Predicted from All Actual Data	\$37,424		-13.95%		_	Predicted	VS.	stual	difference%
- Predicted w/ actual price growth	\$36,050		-9.77%		ı	98.40%	vs.	%66.66	
- Predicted w/ actual ship year	\$35,455					13.00	۸S.	13.00	
- Predicted W/ actual incr. cost	\$36,829	989,589-	-12.14%			-1,3/3	S	o o	#DIV/0i
OS S	value	Full effect Part effect		Weight					
Actual	\$12,406	-\$2,141	-17.69%	11.00%		ç	opiney pepucah	o	
Predicted from All Actual Data	\$14,227=	\$	-17.52%		•	Predicted	anged valu VS.	tual	difference%
- Predicted w/ actual price growth	14,598		-20.59%		1	%02'86	vs.	101.20%	
- Predicted w/ actual ship year	14,247					13.00	vs.	13.00	
- Predicted w/ actual incr cost	13 876		11 620/			717		(

	PacFleet	CG-47CL	0204221N	OMN	92 (4	98
Inputs:	Fleet	Ship Class	Program Element	OMN/OMNR	Resource Sponsor (new)	Posourco Sponsor (old)

PRIMARY INPUTS

	from OP-41 List	from OP-41 List	from OP-41 List	from OP-41 List	sum row	from OP-41 List	from OP-41 List	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	calculated from NUERS data	calculated from NUERS data???	from the model (FY-CL sheet), same as predicted (fixed)	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	calculated from NUERS data	calculated from NUERS data???	from the model (FY-CL sheet), same as predicted (fixed)	from the model (FY-CL sheet)	from the model (FY-CL-RS sheet)	from the model (Incremental SR sheet)	from the model (FY-CL-RS sheet)	from the model (Incremental SO sheet)
	ł	≀	≀	≀	≀	ł	≀	ł	ł	ł	≀	ł	₹	ł	≀	≀	ł	ł	ł	1	ł	1	ł
2002	\$52,283	\$12,838	\$32,843	\$12,106	\$110,070	13.00	132.90	0.43	17.65	1.02	838	74	\$40.32	9.52	1.02	664	19	\$40.32	133.20%	%66.66	\$0	101.20%	\$0
2001	\$47,147	\$8,736	\$35,017	\$13,333	\$104,233	13.00	140.86	0.38	16.90	0.97	720	74	\$41.16	8.82	0.95	604	19	\$41.16	100.50%	111.30%	-\$1,372	103.90%	\$0
2000	\$29,459	\$8,821	\$35,726	\$11,307	\$85,313	13.00	137.00	0.35	15.08	0.87	424	74	\$25.20	10.40	1.11	185	19	\$25.20	95.20%	98.60%	-\$1,740	100.40%	\$0
1999	\$41,010	\$8,055	\$28,602	\$16,388	\$94,055	13.00	131.50	0.43	18.53	1.07	728	74	\$33.60	9.00	96.0	999	19	\$33.60	99.40%	95.63%	-\$2,556	100.74%	\$0
1998	\$47,709	\$9,814	\$27,573	\$14,222	\$99,318	13.00	141.00	0.37	17.76	1.02	729	74	\$36.96	8.10	0.87	265	19	\$36.96	97.30%	113.95%	-\$4,300	108.19%	\$0
1997	\$37,162	\$8,902	\$26,353	\$9,532	\$81,949	13.00	131.30	0.39	18.06	1.04	629	74	\$31.08	9.57	1.03	619	19	\$31.08	99.18%	107.52%	-\$2,957	105.45%	\$0
1996	\$34,669	\$9,115	\$27,437	\$10,831	\$82,052	13.00	132.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	%08.86	98.87%	-\$2,286	%28.86	-\$89
1995	\$36,148	\$6,936	\$30,496	\$15,143	\$88,723	13.00	130.00	N/A	W/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	W/A	88.80%	103.11%	-\$3,954	103.11%	-\$36
1994	\$39,132	\$8,213	\$15,615	\$11,555	\$74,515	12.30	128.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A	N/A	N/A	\$0	N/A	\$0
Actual Data	SF	ns	SR	OS	Total Cost	Ship Year	OPMONTH	%OMAO	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

	<u> </u>	<u> </u>	<u> </u>	<u> </u>	. 0,	Ψ-	Ψ	Ψ 0,	Ψ 0,	4 0	Ψ 0,	Ψ 0,	4 0	Ψ 0,	Ψ 0,	Ψ 0,	Ψ 0,	Ψ 0,	Ψ 0,	Ψ 0,	Ψ 07	Ψ 07	Ψ 07
	ł	ł	ł	≀	₹	≀	≀	≀	ł	1	ł	ł	1	ł	₹	₹	ł	₹	₹	ł	1	₹	₹
2002	\$52,289	\$10,952	\$35,455	\$14,247	\$112,943	13.00	133.70	0.37	18.1	0.98	737	75	\$40.32	9.9	1.00	629	20	\$40.32	132.60%	98.40%	-\$1,373	98.70%	\$371
2001	\$53,506	\$8,995	\$29,477	\$14,330	\$106,307	13.00	140.86	0.37	18.1	0.94	720	75	\$41.16	6.6	1.03	604	20	\$41.16	101.60%	101.60%	-\$3,794	101.74%	\$37
2000	\$14,315	\$7,886	\$25,962	\$13,516	\$61,680	13.00	128.00	0.37	18.1	0.88	424	75	\$25.20	6.6	0.99	185	20	\$25.20	94.30%	98.00%	-\$4,606	98.65%	\$0
1999	\$48,659	\$8,844	\$27,190	\$12,351	\$97,044	13.00	132.00	0.37	18.1	1.04	728	92	\$33.60	6.6	1.20	999	20	\$33.60	99.40%	%89.36	-\$5,225	100.74%	-\$72
1998	\$50,456	\$9,111	\$32,882	\$13,298	\$105,747	13.00	141.00	0.37	18.1	06.0	729	75	\$36.96	9.9	1.20	597	20	\$36.96	102.80%	113.95%	-\$4,300	108.19%	\$0
1997	\$37,814	\$8,004	\$25,933	\$13,490	\$85,242	13.00	131.30	0.37	18.1	1.00	629	22	\$31.08	6.6	1.06	619	20	\$31.08	99.18%	107.52%	-\$2,957	105.45%	\$0
1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1995	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	A/N	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1994	N/A	N/A	N/A	N/A	ΝΑ	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Predicted Data	SF	ns	SR	OS	Total Cost	Ship Year	OPMONTH	%OMMO	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

prediction based on the model's methodology

prediction based on the model's methodology prediction based on the model's methodology prediction based on the model's methodology

sum row from different OP-41 Lists from different OP-41 Lists from different models (Burn Rate

sheet) from different models (Burn Rate

sheet)
from different models (FY-CL
sheet)
from different models (Burn Rate
sheet)
from different models (Burn Rate
sheet)
from different models (FY-CL
from different models (FY-CL

sheet) from different models (Burn Rate

sheet)
from different models (FY-CL
sheet)
from different models (Burn Rate
sheet)

from different models (Burn Rate sheet) from different models (FY-CL

from different models (FY-CL sheet) from different models (FY-CL-RS

from different models (Incremental SR sheet) from different models (FY-CL-RS

sheet) from different models (Incremental SO sheet)

Actual Data	1994	1995	1996	1997	1998	1999	2000	2001	2002	
Deployed Months	41.16	54.55	35.45	51.67	52.43	26.67	47.48	53.20	57.75	≀
Not-Deployed Months	104.84	86.21	115.55	94.94	89.02	74.92	88.11	87.75	83.17	₹
Maintenance Months	99.0	1.15	0.33	0.33	1.64	0.49	1.97	00.00	0.99	≀
Deployed Days Underway	714.00	971.00	541.00	933.00	931.00 1,050.00	1,050.00	716.00	899.00	1,019.00	≀
Deployed Days Not-underway	537.26	687.32	536.68	637.77	662.87	672.77	727.39	718.28	736.60	ł
Not-Deployed Days Underway	933.00	838.00	1,004.00	933.00 838.00 1,004.00 909.00 721.00 674.00	721.00	674.00	916.00	774.00	792.00	≀
Not-Deployed Days Not-Underway	2,254.14	1,782.78	2,508.72	1,977.18	1,985.21	2,254.14 1,782.78 2,508.72 1,977.18 1,985.21 1,603.57	1,762.54		1,893.60 1,736.37	ł

= (Deployed Months * 30.4 days) -Depl. Days Underway derived from NUERS data

derived from NUERS data derived from NUERS data derived from NUERS data derived from NUERS data = (Not-Deployed Months * 30.4 days) - Not-Depl. Days Underway

Predicted Data	1994	1995	1996	1997	1998	1999	2000	2001	2002	
	N/A	N/A	N/A	48.45	52.03	48.71	47.23	51.98	49.34	≀
	N/A	N/A	N/A	82.85	88.97	83.29	80.77	88.88	84.36	≀
	N/A	N/A	N/A	24.70	15.00	24.00	28.00	15.14	22.30	≀
	N/A	N/A	N/A	876.06	847.55	914.23	753.17	885.28	878.14	₹
	N/A	N/A	N/A	596.81	734.13	566.49	682.69	694.83	621.66	1
	N/A	N/A	N/A	872.71	872.71 1,056.98	989.51	792.81	904.58	833.74	ł
	N/A	N/A	N/A	1,645.94	1,645.94 1,647.74 1,542.57	1,542.57	1,662.54	1,662.54 1,797.46	1,730.95	ł

Not-Deployed Months * Not-Depl. DUW/MO * Not-Depl.
 OPTEMPO
 Not-Deployed Months * (30.4 - (Not-Depl. DUW/MO * Not-Depl.

= Deployed Months * (30.4 - (Depl. DUW/MO * Depl. OPTEMPO))

= OPMONTH * (1-OPMO%) = (Ship Year * 12) - OPMONTH = Deployed Months * Depl. DUW/MO * Depl. OPTEMPO

= OPMONTH * OPMO%

missing data, temporary substituted by predicted/actual/previous data
 calculated value, used for comparision, but not directly in the model

Marked Italic

Fleet	PacFleet
Ship Class	DD-963CL
Program Element	0204223N
OMN/OMNR	OMN
Resource Sponsor (new)	76
Resource Sponsor (old)	86

Appraisal of Model Accuracy using backcast: 1997-2002

	Year	SF	SU	SR	SO	Total
	1997	\$36,875	\$7,218	\$22,937	\$8,367	\$75,397
	1998	\$37,121	\$7,186	\$23,714	\$13,182	\$81,203
Actuals	1999	\$31,897	\$5,458	\$17,479	\$7,556	\$62,390
	2000	\$23,846	\$5,370	\$25,828	\$11,072	\$66,116
	2001	\$32,718	\$5,417	\$22,984	\$13,239	\$74,358
	2002	\$35,238	\$5,765	\$17,310	\$8,350	\$66,663
	1997	\$38,290	\$6,569	\$22,508	\$11,300	\$78,667
	1998	\$37,484	\$6,235	\$22,559	\$9,447	\$75,724
Predicted from All Actual Data	1999	\$33,266	\$5,328	\$16,986	\$8,860	\$64,440
	2000	\$13,858	\$5,230	\$19,202	\$8,527	\$46,817
	2001	\$35,897	\$5,280	\$23,241	\$9,898	\$74,315
	2002	\$39,416	\$6,420	\$22,602	\$9,688	\$78,126
	1997	-\$1,415	\$649	\$429	-\$2,933	-\$3,270
	1998	-\$363	\$951	\$1,155	\$3,735	\$5,479
Actual - Pred. Fr Actual	1999	-\$1,369	\$130	\$493	-\$1,304	-\$2,050
	2000	\$9,988	\$140	\$6,626	\$2,545	\$19,299
	2001	-\$3,179	\$137	-\$257	\$3,341	\$43
	2002	-\$4,178	-\$655	-\$5,292	-\$1,338	-\$11,463
	1997	-3.84%	8.99%	1.87%	-35.06%	-4.34%
	1998	-0.98%	13.24%	4.87%	28.34%	6.75%
<u> Actual - Pred. Fr Actual</u>	1999	-4.29%	2.39%	2.82%	-17.26%	-3.29%
Actual	2000	41.89%	2.61%	25.65%	22.98%	29.19%
	2001	-9.72%	2.54%	-1.12%	25.24%	
	2002	-11.86%	-11.37%	-30.57%	-16.03%	-17.20%
_	MAPE* =	12.09%	6.86%	11.15%	24.15%	10.14%

^{*} Mean Absolute Percentage Error (avg of the abs value of errors %)

** SF's MAPE without year 2000 = 6.14%

Inputs: Fleet	PacFleet	7	Apprai	sal of	Appraisal of prediction for 2002	ion for	2002		
Ship Class	DD-963CF		SF	SU	SR	SO	Total		
Program Element OMN/OMNR	0204223N OMN	Actual	\$35,238	\$5,765 \$6,249	\$17,310	\$8,350	\$66,663		
Resource Sponsor (new)	92	Predicted from All Actual Data	\$39,416	\$6,420	\$22,602	\$9,688	\$78,126	3000	
Resource Sponsor (old)	98	Actual - Predicted - Predicted - Predicted	\$4,971	-\$484 \$171	-\$3,758 \$1,534	192,14-	\$6,753	-7.06% -> model total inaccuracy 10.13% -> source data inaccuracy	total inaccuracy data inaccuracy
		- Actual - Pred. Fr Actual	-\$4,178	-\$655	-\$5,292	-\$1,338	-\$11,463	-17.20% -> model inaccuracy	inaccuracy
Actual	value \$35,238	Full effect Part effect	2.25%	Weight 52.86%					
Predicted	\$34,444	$\langle \rangle$	14.11%		7	Cha	value	es Anticological difference	×
- Predicted W actual DUWs	\$35,216		%90.11- 0.06%		-	1.410	S S	434	°. I . o
- Predicted w/ actual Burn Rates	\$38,710	-83	-9.85%			1,232	NS	_	0
- Predicted w/ actual Fuel Prices	\$34,444	\$794	2.25%			40.32	vs.		,0
NS SN	value	Full effect Part effect		Weight					
Actual	\$9.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	-\$484	-8.40%	8.65%		ō			
Predicted from All Actual Data	\$6,249- \$6-420-	\$171	2.97%		•	Cha <i>Predicted</i>	Changed values	es <i>Actual</i> Idifference%	%
divorse coire le troe /w poteibord	\$5,15¢		7000 0		. 1	132 E00/		9	. 1~
- Predicted w/ actual price grown - Predicted w/ actual OPMONTH	\$6,392	-\$1.52 -\$627	-0.09% -10.87%			105.30	s s		o \ o
		:		:					
SR	value	Full effect Part effect	21 71%	Weight					
Predicted	\$21,068	00.7.0	8.86%	0/ 16:03		Cha	Changed values	ø	
Predicted from All Actual Data	\$22,602		-30.57%		~	Predicted	vs. A	Actual difference%	%i
- Predicted w/ actual price growth	\$21,423	-\$4,113	-23.76%			98.40%	·S ·S	99.99% 1.59%	, 0 ,
- Predicted W/ actual ship year - Predicted W/ actual incr. cost	\$22,008 \$22,008	-\$5,992 -\$4,698				9.40 -940	si si	井	0
00	value	Full effect Part effect		Weight					
Actual Predicted	1000 1000 1000 1000 1000 1000 1000 100	-\$1,261	-15.11% 0.92%	12.53%		Cha	Changed values	ø	
Predicted from All Actual Data	\$9,688-	-\$1	-16.03%		1	Predicted	VS. A	<i>tual</i> diffe	%;
- Predicted w/ actual price growth	9,848					%02'86	vs.		.0
- Predicted w/ actual ship year - Predicted w/ actual increpost	9,711	-\$1,361	-16.30%			9.40	۷S.	9.50 1.05%	,0
- דו מעוטמע אי מטועמו וויטי. טטטו	0,00					707	ń >		

	PacFleet	7DE96-QQ	0204223N	OMN	92 (98
Inputs:	Fleet	Ship Class	Program Element	OMN/OMNR	Resource Sponsor (new)	Resource Sponsor (old)

PRIMARY INPUTS

	from	from	from	from	sum	from	from (deterr	deterr	deterri	calcul	calcul	from t same	deterrinform	deterr inform	calcul	calcul	from t	from 1	from t	from t sheet	from t	from t
	ł	≀	≀	≀	≀	≀	ł	₹	≀	₹	ł	ł	?	1	≀	ł	≀	≀	≀	ł	₹	≀	ł
2002	\$35,238	\$5,765	\$17,310	\$8,350	\$66,663	9.50	107.70	0.36	16.16	0.93	726	74	\$40.32	11.39	1.22	554	17	\$40.32	133.20%	%66.66	\$0	101.20%	\$0
2001	\$32,718	\$5,417	\$22,984	\$13,239	\$74,358	10.50	118.20	0.35	17.46	1.01	601	74	\$41.16	9.34	1.00	511	17	\$41.16	100.50%	111.30%	-\$1,164	103.90%	\$0
2000	\$23,846	\$5,370	\$25,828	\$11,072	\$66,116	11.00	119.00	0.38	17.61	1.02	364	74	\$25.20	8.76	0.94	285	17	\$25.20	95.20%	%09.86	-\$1,395	100.40%	\$0
1999	\$31,897	\$5,458	\$17,479	\$7,556	\$62,390	11.00	121.20	0.41	19.34	1.12	592	74	\$33.60	9.00	96.0	545	17	\$33.60	99.40%	95.63%	-\$3,408	100.74%	\$0
1998	\$37,121	\$7,186	\$23,714	\$13,182	\$81,203	13.00	150.00	0.33	17.62	1.02	289	74	\$36.96	7.55	0.81	525	17	\$36.96	97.30%	107.52% 113.95%	-\$2,728	108.19%	\$0
1997	\$36,875	\$7,218	\$22,937	\$8,367	\$75,397	15.00	152.30	0.44	16.78	26.0	572	74	\$31.08	8.19	0.88	536	17	\$31.08	99.18%	107.52%	-\$2,573	105.45%	\$0
1996	\$36,978	\$6,048	\$20,841	\$10,232	\$74,099	15.00	151.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	98.80%	98.87%	-\$1,736	98.87%	-\$38
1995	\$28,548	\$5,067	\$22,508	\$10,560	\$66,683	15.00	121.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	98.80%	103.11%	-\$2,919	103.11%	-\$18
1994	\$35,992	\$6,883	\$21,840	\$11,202	\$75,917	15.00	137.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$0	N/A	0\$
Actual Data	SF	ns	SR	OS	Total Cost	Ship Year	OPMONTH	%OPMO%	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

om OP-41 List
om

n the model (FY-CL-RS sheet)

n the model (Incremental SR et)

n the model (FY-CL-RS sheet) from the model (Incremental SO sheet)

1995
N/A N/A
N/A N/A
N/A N/A
N/A N/A
A/N A/N
N/A N/A

prediction based on the model's methodology prediction based on the model's methodology prediction based on the model's

methodology prediction based on the model's methodology sum row from different OP-41 Lists from different models (Burn Rate from different models (Burn Rate

heet) rom different models (Burn Rate sheet) rom different models (FY-CL sheet)

from different models (Burn Rate sheet) from different models (Burn Rate sheet) from different models (FY-CL

heet) rom different models (Burn Rate

from different models (FY-CL sheet)
from different models (Burn Rate sheet)
from different models (Burn Rate sheet)
from different models (FY-CL from different models (FY-CL

from different models (FY-CL sheet)
from different models (FY-CL-RS sheet)
from different models (Incremental SR sheet)
from different models (FY-CL-RS

sheet) rom different models (Incremental SO sheet)

	1994	1995	1996	1997	1998	1999	2000	2001	2002
	29.57	57.73	53.09	67.34	49.37	49.17	45.70	41.86	38.93
	89.10	73.25	106.91	99.02	102.43	69.88	70.28	74.20	70.70
	5.92	2.47	0.82	0.33	99.0	0.33	1.15	0.49	00.00
	891.00	941.00	840.00	840.00 1,130.00	870.00	951.00	805.00	731.00	629.00
	919.93	813.99	773.94		917.14 630.85	543.77	584.28	541.54	554.47
	859.00	859.00 647.00	920.00	811.00	773.00	629.00	616.00	693.00	805.00
1	,849.64	1,579.80	2,330.06	2,199.21	,849.64 1,579.80 2,330.06 2,199.21 2,340.87 1,495.35	1,495.35	1,520.51	1,562.68	1,344.28

derived from NUERS data derived from NUERS data derived from NUERS data derived from NUERS data = (Deployed Months * 30.4 days) -

= (Not-Deployed Months * 30.4 days) - Not-Depl. Days Underway

Depl. Days Underway derived from NUERS data

Predicted Data	1994	1995	1996	1997	1998	1999	2000	2001	2002
Deployed Months	W/A	A/A	N/A	28.82	58.95	46.77	46.77	46.45	41.38
Not-Deployed Months	W/A	N/A	N/A	92.45	91.05	72.23	72.23	71.75	63.92
Maintenance Months	N/A	N/A	N/A	27.70	00.9	13.00	13.00	7.80	7.50
Deployed Days Underway	W/A	N/A	N/A	1,124.13	997.43	911.75	774.59	821.78	765.08
Deployed Days Not-underway	N/A	N/A	N/A	695.43	794.65	509.97	647.12	590.38	492.96
Not-Deployed Days Underway	N/A	N/A	N/A	924.61	924.61 1,027.04 814.79	814.79	673.22	693.31	599.76
Not-Deployed Days Not-Underway	N/A	N/A	N/A	1,885.75	1,740.88	1,381.09	1,885.75 1,740.88 1,381.09 1,522.66 1,487.81 1,343.32	1,487.81	1,343.32

= Deployed Months * (30.4 - (Depl. DUW/MO * Depl. OPTEMPO))

= Not-Deployed Months * Not-Depl. DUW/MO * Not-Depl. OPTEMPO

= (Ship Year * 12) - OPMONTH = Deployed Months * Depl. DUW/MO * Depl. OPTEMPO

= OPMONTH * OPMO% = OPMONTH * (1-OPMO%) = Not-Deployed Months * (30.4 - (Not-Depl. DUW/MO * Not-Depl. OPTEMPO))

- missing data, temporary substituted by predicted/actual/previous data - calculated value, used for comparision, but not directly in the model

Marked Italic

Fleet	PacFleet
Ship Class	FFG-7CL
Program Element	0204224N
OMN/OMNR	OMN
Resource Sponsor (new)	76
Resource Sponsor (old)	86

Appraisal of Model Accuracy

using backcast: 1997-2002

	Year	SF	SU	SR	SO	Total
	1997	\$14,449	\$4,838	\$15,297	\$7,323	\$41,907
	1998	\$16,869	\$4,645	\$16,104	\$9,433	\$47,051
Actuals	1999	\$18,386	\$4,467	\$14,301	\$6,492	\$43,646
	2000	\$12,138			\$7,645	\$38,295
	2001	\$17,555	' '		. ,	\$47,515
	2002	\$18,083	\$5,181	\$13,580	\$8,465	\$45,309
	1997	\$19,412	\$4,298	\$13,836	\$8,080	\$45,626
	1998	\$21,934	\$4,281	\$14,791	\$8,860	\$49,866
Predicted from All Actual Data	1999	\$18,636	\$3,799	\$13,185	\$8,160	\$43,780
	2000	\$5,860	\$3,847	\$14,011	\$7,145	
	2001	\$20,945	\$3,876	\$16,181	. ,	
	2002	\$22,784	\$5,222	\$16,010	\$7,888	\$51,903
	1997	-\$4,963	\$540	\$1,461	-\$757	
	1998	-\$5,065	\$364	\$1,313	\$573	-\$2,815
Actual - Pred. Fr Actual	1999	-\$250	\$668	\$1,116	-\$1,668	-\$134
	2000	\$6,278	\$153	\$500	\$500	\$7,432
	2001	-\$3,390				
	2002	-\$4,701	-\$41	-\$2,430	\$577	-\$6,594
	1997	-34.35%	11.15%	9.55%	-10.34%	-8.87%
	1998	-30.03%	7.84%	8.15%	6.07%	-5.98%
Actual - Pred. Fr Actual	1999	-1.36%	14.95%	7.80%	-25.70%	-0.31%
Actual	2000	51.72%	3.83%	3.45%	6.54%	
	2001	-19.31%	-5.89%	-5.79%	29.83%	
	2002	-26.00%	-0.79%	-17.89%	6.82%	-14.55%
	MAPE* =	27.13%	7.41%	8.77%	14.22%	8.61%

^{*} Mean Absolute Percentage Error (avg of the abs value of errors %)
** SF's MAPE without year 2000 = 22.21%

Fleet Ship Class Program Element OMN/OMNR Resource Sponsor (new) Resource Sponsor (old) Actual Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual incr. cost	Value Value Value Value \$15,336 \$21,358 \$15,336 \$21,358 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$16,338 \$17,331 \$16,580 \$14,724 \$117,331	Predicted from All Actual - Predicted from All Actual - Predicted in Actual - Predicted	\$\frac{\text{SF}}{\text{\$\frac{\text{\$\cutexit{\$\text{\$\frac{\text{\$\cutexit{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\citex{\$\frac{\text{\$\circ{\$\frac{\text{\$\circ{\$\frac{\text{\$\frac{\exitinx{\$\circ{\$\circ{\circ{\$\frac{\text{\$\circ{\$\frac{\text{\$\circ{\$\circ{\$\circ{\$\circ{\circ{\$\circ{\circ{\$\circ{\circ{\$\frac{\circ{\$\circ{\$\circ{\$\circ{\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\circ{\$\}}\circ{\$\circ{\$\circ{\$\circ{	Su	SR \$13,580 \$16,300 \$16,300 \$4,720 \$2,720 \$2,430 \$2,430		Changed values W.S. Ac V.S.		-0.67% -> model total inaccuracy 13.88% -> source data inaccuracy 14.55% -> model inaccuracy 1,980
Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual ship year - Predicted w/ actual incr. cost	\$5,635 \$7,888- 8,847 7,864 8,462	X 	-8.81% 6.82% -4.52% 7.10% 0.04%		41	Predicted 98.70% 11.00	Changed values d vs. Ac % vs. 1 00 vs. 7 71 vs.	tual 01.20% 10.00 0	difference% 2.47% -10.00% #DIV/0!

	PacFleet	FFG-7CL	0204224N	OMN	92	98
Inputs:	Fleet	Ship Class	Program Element	OMN/OMNR	Resource Sponsor (new)	Resource Sponsor (old)

PRIMARY INPUTS

	from OP-41 List	from OP-41 List	from OP-41 List	from OP-41 List	sum row	from OP-41 List	from OP-41 List	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	calculated from NUERS data	calculated from NUERS data???	from the model (FY-CL sheet), same as predicted (fixed)	determined from calculated inputs, informative data, not used	determined from calculated inputs, informative data, not used	calculated from NUERS data	calculated from NUERS data???	from the model (FY-CL sheet), same as predicted (fixed)	from the model (FY-CL sheet)	from the model (FY-CL-RS sheet)	from the model (Incremental SR sheet)	from the model (FY-CL-RS sheet)	from the model (Incremental SO sheet)
	≀	≀	ł	ł	ł	ł	ł	ł	ł	ł	≀	ł	ł	ł	ł	≀	ł	ł	₹	ł	ł	ł	ł
2002	\$18,083	\$5,181	\$13,580	\$8,465	\$45,309	10.00	116.60	0.33	18.77	1.08	333	18	\$40.32	10.06	1.08	241	5	\$40.32	133.20%	%66.66	\$0	101.20%	\$0
2001	\$17,555	\$3,660	\$15,295	\$11,005	\$47,515	11.00	115.25	0.31	14.67	0.85	302	18	\$41.16	9.85	1.06	232	5	\$41.16	100.50%	111.30%	-\$1,536	103.90%	\$0
2000	\$12,138	\$4,000	\$14,512	\$7,645	\$38,295	11.00	117.00	0.35	16.65	96.0	126	18	\$25.20	9.10	76.0	94	2	\$25.20	95.20%	%09.86	-\$1,669	100.40%	\$0
1999	\$18,386	\$4,467	\$14,301	\$6,492	\$43,646	11.00	123.00	0.35	16.47	0.95	275	18	\$33.60	9.86	1.06	239	2	\$33.60	99.40%	95.63%	-\$2,099	100.74%	\$0
1998	\$16,869	\$4,645	\$16,104	\$9,433	\$47,051	12.90	139.00	0.34	16.66	0.96	283	18	\$36.96	9.12	0.98	227	5	\$36.96	97.30%	113.95%	-\$3,053	108.19%	\$0
1997	\$14,449	\$4,838	\$15,297	\$7,323	\$41,907	13.00	137.30	0.43	15.32	0.88	283	18	\$31.08	8.99	96.0	233	5	\$31.08	99.18%	107.52%	-\$1,716	105.45%	\$0
1996	\$15,284	\$3,782	\$13,541	\$9,827	\$42,434	13.00	143.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	98.80%	98.87%	-\$1,128	98.87%	-\$69
1995	\$15,345	\$4,613	\$12,123	\$6,715	\$38,796	13.00	135.00	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	%08.86	103.11%	-\$1,572	103.11%	\$0
1994	\$18,519	\$4,770	\$14,894	\$6,329	\$44,512	13.00	135.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$0	N/A	\$0
Actual Data	SF	ns	SR	SO	Total Cost	Ship Year	OPMONTH	%ОМОО	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

	prediction based on the model's methodology	sum row	from different OP-41 Lists	from different OP-41 Lists	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (FY-CL sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SR sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SO sheet)			
	~	_ ~	~	33	4 ₊	~ 00	~	~	~	~ 86	287 ~	19	32	o.5	1.00	240 ~	~	32	~	~	31	~	~
2002	\$15,336	\$5,345	\$16,300	\$8,633	\$45,614	11.00	119.90	0.27		0.98			\$40.32					\$40.32	132.60%	98.40%	-\$1,031	98.70%	\$171
2001	\$15,208	\$3,918	\$14,124	\$7,574	\$40,824	11.00	115.25	0.27	16.8	0.94	302	19	\$41.16	9.5	1.03	232	5	\$41.16	101.60%	101.60%	-\$2,048	101.74%	\$12
2000	\$3,974	\$3,811	\$13,155	\$7,020	\$27,960	11.00	117.00	0.27	16.8	0.88	126	19	\$25.20	9.5	0.99	94	5	\$25.20	94.30%	%00'86	-\$2,430	98.65%	\$0
1999	\$14,278	\$3,768	\$12,499	\$8,113	\$38,659	11.00	122.00	0.27	16.8	1.04	275	19	\$33.60	9.5	1.20	239	5	\$33.60	99.40%	95.63%	-\$2,785	100.74%	-\$47
1998	\$16,814	\$4,523	\$14,791	\$8,860	\$44,988	12.90	139.00	0.27	16.8	06:0	283	19	\$36.96	9.5	1.20	227	5	\$36.96	102.80%	113.95%	-\$3,053	108.19%	\$0
1997	\$13,874	\$4,298	\$13,836	\$8,080	\$40,088	13.00	137.30	0.27	16.8	1.00	283	19	\$31.08	9.5	1.06	233	2	\$31.08	99.18%	107.52%	-\$1,716	105.45%	\$0
1996	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1995	N/A	N/A	N/A	N/A	N/A	Α/N	N/A	N/A	A/N	A/N	A/N	A/N	N/A	N/A	A/N	A/N	A/N	A/N	N/A	N/A	A/N	N/A	N/A
1994	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Predicted Data	SF	ns	SR	OS	Total Cost	Ship Year	OPMONTH	%OMMO	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Burn Rate	Depl. DNUW Burn Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

2007 2002	35.65 38.04 ~	137.62 125.67 ~	0.16 0.33 ~	523.00 714.00	560.76 442.42	1 356 00 1 26/ 00	
2000	41.02	137.15	99.0	683.00	564.01	1.248.00	
1999	1 42.56	140.26	00.00	00.107	913.46 1,081.34 1,007.50 891.55 651.26 592.82	682.00 1,598.00 1,459.00 1,383.00 1,458.00 1,383.00 1,248.00 1,356.00	
1998	3 47.41	4 159.79	99.0	00.067 0	5 651.26	0 1,458.00	
1997	9 59.13	1 153.84	3 0.16	00.906 0	0 891.5	0 1,383.00	
1996	4 69.49	166.51	0.33	,158.00 1,133.00 1,105.00	4 1,007.5	0 1,459.0	
1995	4 72.84	162.16	2 0.99	0 1,133.00	6 1,081.3	0 1,598.00	
1994	68.14	175.99	1.32	1,158.00	913.4	1,682.0	
Actual Data	Deployed Months	Not-Deployed Months	Maintenance Months	Deployed Days Underway	Deployed Days Not-underway	Not-Deployed Days Underway	

= (Deployed Months * 30.4 days) -Depl. Days Underway derived from NUERS data

derived from NUERS data derived from NUERS data derived from NUERS data derived from NUERS data = (Not-Deployed Months * 30.4 days) - Not-Depl. Days Underway

	H6 32.73 ~	~ 87.17	√5 12.10 ~	10 540.78 ~	99 454.30 ~	26 826.63 ~	1,784.60 1,728.86 1,823.26 ~
1007	4 31.46	3 83.79	16.75	5 497.40	5 459.09	9 818.26	1,728.8
2000	31.94	85.06	15.00	472.75	498.25	801.19	1,784.60
1999	5 33.31	5 88.69	10.00	580.24	3 432.26	1,008.95 1,152.00 1,011.11	2,025.49 1,920.01 1,685.19
1998	37.95	2 101.05	15.80	8 573.76	510.40 579.83	5 1,152.00	1,920.01
1997	37.48	99.82	18.70	629.08	510.40	1,008.9	2,025.49
1996	N/A	A/N	N/A	N/A	N/A	N/A	N/A
1995	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1994	A/N	A/N	N/A	N/A	N/A	N/A	N/A
Predicted Data	Deployed Months	Not-Deployed Months	Maintenance Months	Deployed Days Underway	Deployed Days Not-underway	Not-Deployed Days Underway	Not-Deployed Days Not-Underway

= Deployed Months * (30.4 - (Depl. DUW/MO * Depl. OPTEMPO))

= Not-Deployed Months * Not-Depl. DUW/MO * Not-Depl.

= OPMONTH * (1-OPMO%) = (Ship Year * 12) - OPMONTH = Deployed Months * Depl. DUW/MO * Depl. OPTEMPO

= OPMONTH * OPMO%

OPTEMPO = Not-Deployed Months * (30.4 -(Not-Depl. DUW/MO * Not-Depl. OPTEMPO))

Marked - missing data, temporary substituted by predicted/actual/previous data *Italic* - calculated value, used for comparision, but not directly in the model

109

Fleet	PacFleet
Ship Class	LHA-1CL
Program Element	0204411N
OMN/OMNR	OMN
Resource Sponsor (new)	75
Resource Sponsor (old)	85

Appraisal of Model Accuracy

using backcast: 1997-2002

	Year	SF	SU	SR	SO	Total
	1997	\$10,512	\$7,679	\$6,698	\$5,025	\$29,914
	1998	\$20,530	\$4,964	\$5,088	\$8,134	\$38,716
Actuals	1999	\$16,558	\$5,828	\$5,361	\$9,103	\$36,850
	2000	\$9,042	\$5,701	\$8,035	\$8,077	\$30,855
	2001	\$14,644	\$5,553	\$7,650	\$9,678	\$37,525
	2002	\$16,394	\$10,019	\$5,226	\$7,563	\$39,202
	1997	\$9,288	\$5,009	\$4,226	\$5,936	\$24,459
	1998	\$15,372	\$7,153	\$5,863	\$5,950	\$34,339
Predicted from All Actual Data	1999	\$13,678	\$5,090	\$5,948	\$7,001	\$31,716
	2000	\$5,776	\$5,931	\$6,372	\$7,622	\$25,701
	2001	\$8,568	\$5,134	\$7,129	\$8,812	\$29,643
	2002	\$13,822	\$9,566	\$7,891	\$9,299	\$40,578
	1997	\$1,224	\$2,670	\$2,472	-\$911	\$5,455
	1998	\$5,158	-\$2,189	-\$775	\$2,184	\$4,377
Actual - Pred. Fr Actual	1999	\$2,880	\$738	-\$587	\$2,102	\$5,134
	2000	\$3,266	-\$230	\$1,663	\$455	\$5,154
	2001	\$6,076	Ŧ -	\$521	\$866	\$7,882
	2002	\$2,572	\$453	-\$2,665	-\$1,736	-\$1,376
	1997	11.64%	34.77%	36.91%	-18.13%	18.24%
	1998	25.12%	-44.10%	-15.24%	26.85%	11.30%
Actual - Pred. Fr Actual	1999	17.40%	12.67%	-10.94%	23.09%	13.93%
Actual	2000	36.12%	-4.03%	20.70%	5.64%	16.71%
	2001	41.49%		6.82%	8.95%	21.00%
	2002	15.69%	4.52%	-51.00%	-22.95%	-3.51%
	MAPE* =	24.58%	17.94%	23.60%	17.60%	14.12%

^{*} Mean Absolute Percentage Error (avg of the abs value of errors %)

** SF's MAPE without year 2000 = 22.27%

Fleet Ship Class Program Element OMN/OMNR Resource Sponsor (new) Resource Sponsor (new) Resource Sponsor (old) Resource Sponsor (old) Predicted - Predicted w/ actual DuWs - Predicted w/ actual Burn Rates - Predicted w/ actual Fuel Prices - Predicted w/ actual Fuel Prices - Predicted w/ actual Data	PacFleet LHA-1CL 0204411N OMN 75 85 85 819,394 \$19,883 \$10,882 \$19,883 \$19,883 \$19,883 \$19,883 \$10,143 \$9,523	Actual Predicted from All Actual Dredicted - Pred. fr Actual - Predicted - Pred. fr Actual - Predicted - Actual -	\$\frac{\text{SF}}{\$\frac{\text{\$\cute\cute\cute\{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\cute\{\text{\$\frac{\ext{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\ext{\$\frac{\text{\$\cutex{\$\cutex{\$\citil{\$\cutex{\$\citil{\citil{\$\citil{\exitil{\exitilex{\$\citil{\exitil{\$\citil{\exitil{\$\citil{\$\citil{\citil{\$\citil{\$\citiliex{\$\citil{\citil{\citil{\$\citil{\$\citil{\$\citil{\citil{\$\citiliex{\$\citil{\$\citil{\$\citiliex{\$\citil{\$\citil{\$\citil{\exitil{\$\citil{\$\citil{\exitil{\$\citiliex{\$\citilex{\$\citil{\$\citilex{\$\citil{\$\citil{\$\citiliex{\$\citil{\$\citilex{\$\citil{\$\citil{\$\citi	\$10,019 \$5,101 \$	Appraisal of prediction for 2002 sf su sr so rotal \$16,394 \$10,019 \$5,226 \$7,563 \$39,20 \$19,883 \$9,101 \$7,555 \$9,080 \$45,611 \$13,822 \$9,101 \$7,555 \$9,080 \$45,611 \$13,822 \$9,161 \$7,555 \$9,080 \$45,611 \$6,061 \$464 \$7,891 \$9,187 \$5,044 \$2,572 \$453 \$2,136 \$5,137 \$2,572 \$453 \$2,137 \$6,137 \$2,572 \$453 \$2,137 \$6,137 \$2,572 \$453 \$2,242 \$8,56 \$2,59% \$2,242 \$8,56 \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% \$2,56% </th <th>so sylvan for Ending f</th> <th></th> <th>-16.37% - -12.86% - -3.51% - -3.51% c 2,366 40.32 133.20% c</th> <th>-16.37% -> model total inaccuracy -12.86% -> source data inaccuracy -3.51% -> model inaccuracy ctual difference% 5.23% 40.32 0.00% ightharpoonup 133.20% 4.42% 4.42%</th>	so sylvan for Ending f		-16.37% - -12.86% - -3.51% - -3.51% c 2,366 40.32 133.20% c	-16.37% -> model total inaccuracy -12.86% -> source data inaccuracy -3.51% -> model inaccuracy ctual difference% 5.23% 40.32 0.00% ightharpoonup 133.20% 4.42% 4.42%
Actual Predicted from All Actual Predicted Predicted w/ actual price growth - Predicted w/ actual ship year - Predicted w/ actual incr. cost	\$5.256 \$7,555 \$7,555 \$7,680 \$7,680 \$7,555 \$7,766	Full effect Part effect -\$2,329 \$336 -\$2,665 -\$2,665 -\$2,464 -\$2,329 -\$2,540	44.57% 6.43% -51.00% 46.97% 44.57%	Weight 13.33%	Ψ1	Cha <i>Predicted</i> 98.40% 3.00 -211	Changed values <i>d</i> vs. Ac. % vs. 00 vs. 11 vs.	99.99% 3.00	difference% 1.59% 0.00% #DIV/0!
Actual Predicted from All Actual Data - Predicted w/ actual price growth - Predicted w/ actual price growth - Predicted w/ actual ship year - Predicted w/ actual incr. cost	87,563- 89,080- 9,309- 9,080- 9,069- 9,069	Full effect Part effect -\$1,517 -\$1,736 -\$1,746 -\$1,746 -\$1,746 -\$1,747	-20.05% 2.90% -22.95% -23.09% -20.05%	Weight 19.29%	41	Cha <i>Predicted</i> 98.70% 3.00	Changed values d vs. Ac % vs. 1 20 vs. 1 10 vs.	<i>tual</i> 01.20% 3.0	difference

	<u>Inputs:</u>	Fleet PacFleet	Ship Class LHA-1CL	Program Element 0204411N	OMN/OMNR OMN	Resource Sponsor (new) 75	Document (old)
--	----------------	----------------	--------------------	--------------------------	--------------	---------------------------	----------------

PRIMARY INPUTS

Actual Data	1994	1995	1996	1997	1998	1999	2000	2001	2002		
SF	\$11,723	\$14,022	\$18,348	\$10,512	\$20,530	\$16,558	\$9,042	\$14,644	\$16,394	ł	from OP-4
SU	\$3,287	\$7,060	\$6,134	\$7,679	\$4,964	\$5,828	\$5,701	\$5,553	\$10,019	≀	from OP-4
SR	\$4,494	\$3,430	\$5,054	\$6,698	\$5,088	\$5,361	\$8,035	\$7,650	\$5,226	≀	from OP-47
SO	\$5,948	\$4,598	\$6,440	\$5,025	\$8,134	\$9,103	\$8,077	\$9,678	\$7,563	ł	from OP-4
Total Cost	\$25,452	\$29,110	\$35,976	\$29,914	\$38,716	\$36,850	\$30,855	\$37,525	\$39,202	≀	sum row
Ship Year	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	ł	from OP-4
OPMONTH	24.00	28.00	34.00	26.90	31.00	25.10	28.00	26.60	33.90	ł	from OP-4
%OMO%	N/A	N/A	N/A	0.46	0.53	0.59	0.43	0.04	0.23	ł	determined informative
Depl. DUW/MO	N/A	N/A	N/A	7.68	14.00	15.63	14.55	26.55	29.05	ł	determined informative
Depl. OPTEMPO multiplier	N/A	N/A	N/A	0.44	0.81	0.90	0.84	1.53	1.68	?	determined informative
Depl. DUW Burn Rate	N/A	N/A	N/A	975	1,087	926	642	1,154	1,067	≀	calculated
Depl. DNUW Burn Rate	N/A	N/A	N/A	307	307	307	307	307	307	ł	calculated
Depl. Fuel Price	N/A	N/A	A/N	\$31.08	\$36.96	\$33.60	\$25.20	\$41.16	\$40.32	ł	from the m
Not Depl. DUW/MO	N/A	N/A	N/A	9.79	7.73	10.04	6.45	8.10	8.59	ł	determined informative
Not Depl. OPTEMPO multiplier	N/A	N/A	N/A	1.05	0.83	1.08	0.69	0.87	0.92	1	determined informative
Not Depl. DUW Burn Rate	N/A	N/A	N/A	902	1,006	865	1,159	861	948	≀	calculated
Not Depl. DNUW Burn Rate	N/A	N/A	N/A	44	44	44	44	44	44	ł	calculated
Not Depl. Fuel Price	N/A	N/A	A/N	\$31.08	\$36.96	\$33.60	\$25.20	\$41.16	\$40.32	ł	from the m
SU Price Growth	N/A	%08.86	%08.86	99.18%	97.30%	99.40%	95.20%	100.50%	133.20%	ł	from the m
SR Price Growth	N/A	103.11%	98.87%	107.52%	113.95%	95.63%	%09.86	111.30%	%66.66	≀	from the m
SR Incremental Cost	\$0	-\$445	-\$421	-\$751	-\$767	-\$763	-\$149	-\$196	\$0	ł	from the m sheet)
SO Price Growth	N/A	103.11%	98.87%	104.45%	98.87% 104.45% 108.19% 100.74%	100.74%	100.40%	103.90%	101.20%	1	from the m
SO Incremental Cost	0\$	0\$	\$0	\$0	\$0	\$0	\$0	\$0	\$0	ł	from the m sheet)

ative data, not used ined from calculated inputs, ative data, not used ined from calculated inputs, ative data, not used ted from NUERS data ted from NUERS data??? e model (FY-CL sheet), is predicted (fixed) ined from calculated inputs, ative data, not used ined from NUERS data ted from NUERS data?? e model (FY-CL sheet), is predicted (fixed) is predicted (fixed) is predicted (fixed) is model (FY-CL sheet), is predicted (fixed) ed from calculated inputs, -41 List -41 List -41 List -41 List -41 List -41 List

model (FY-CL-RS sheet)

model (Incremental SR

model (FY-CL-RS sheet) model (Incremental SO

	prediction based on the model's methodology	sum row	from different OP-41 Lists	from different OP-41 Lists	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (Burn Rate sheet)	from different models (Burn Rate sheet)	from different models (FY-CL sheet)	from different models (FY-CL sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SR sheet)	from different models (FY-CL-RS sheet)	from different models (Incremental SO sheet)			
	ł	ł	ł	ł	1	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	1
2002	\$19,883	\$9,101	\$7,555	\$9,080	\$45,619	3.00	32.40	0.43	20.2	0.98	1,047	293	\$40.32	8.5	1.00	859	43	\$40.32	132.60%	98.40%	-\$211	98.70%	\$10
2001	\$18,185	\$5,191	\$6,290	\$9,095	\$38,760	3.00	26.60	0.43	20.2	0.94	1,154	293	\$41.16	8.5	1.03	861	43	\$41.16	101.60%	101.60%	-\$396	101.74%	\$466
2000	\$9,623	\$5,874	\$5,924	\$7,489	\$28,910	3.00	28.00	0.43	20.2	0.88	642	293	\$25.20	8.5	0.99	1,159	43	\$25.20	94.30%	%00'86	-\$557	98.65%	\$0
1999	\$13,865	\$5,069	\$5,509	\$6,959	\$31,402	3.00	25.00	0.43	20.2	1.04	926	293	\$33.60	8.5	1.20	865	43	\$33.60	99.40%	95.63%	-\$1,202	100.74%	-\$42
1998	\$19,312	\$7,558	\$5,863	\$5,950	\$38,684	3.00	31.00	0.43	20.2	06:0	1,087	293	\$36.96	8.5	1.20	1,006	43	\$36.96	102.80%	113.95%	-\$767	108.19%	\$0
1997	\$13,271	\$5,009	\$4,226	\$5,936	\$28,441	3.00	26.90	0.43	20.2	1.00	975	293	\$31.08	8.5	1.06	908	43	\$31.08	99.18%	107.52%	-\$751	104.45%	\$0
1996	N/A	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1995	A/N	N/A	N/A	N/A	N/A	N/A	N/A	A/N	N/A	N/A	ΑN	A/N	N/A	ΑN	N/A	N/A	N/A	A/N	N/A	N/A	A/N	A/N	N/A
1994	N/A	N/A	N/A	N/A	A/N	A/N	N/A	N/A	N/A	N/A	A/N	A/N	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Predicted Data	SF	ns	SR	SO	Total Cost	Ship Year	OPMONTH	%OMMO	Depl. DUW/MO	Depl. OPTEMPO multiplier	Depl. DUW Bum Rate	Depl. DNUW Bum Rate	Depl. Fuel Price	Not Depl. DUW/MO	Not Depl. OPTEMPO multiplier	Not Depl. DUW Burn Rate	Not Depl. DNUW Burn Rate	Not Depl. Fuel Price	SU Price Growth	SR Price Growth	SR Incremental Cost	SO Price Growth	SO Incremental Cost

118

	ł	ł	ł	ł	ł	ł	ł
2002	7.71	10.36	0.49	224.00	10.38	89.00	225.94
2001	1.13	18.39	00.00	30.00	4.35	149.00	410.06
2000	12.03	3.41	00.00	175.00	190.71	22.00	81.66
1999	14.84	9.16	0.00	232.00	219.14	92.00	186.46
1998	16.50	7.50	0.00	231.00	270.60	58.00	170.00
1997	12.50	9.40	0.33	96.00	284.00	92.00	193.76
1996	17.00	4.00	0.00	237.00	279.80	42.00	79.60
1995	12.00	9.48	0.33	174.00	277.45 190.80	110.00	123.15 178.19
1994	17.12	88.9	00.00	243.00	277.45	86.00	123.15
Actual Data	Deployed Months	Not-Deployed Months	Maintenance Months	Deployed Days Underway	Deployed Days Not-underway	Not-Deployed Days Underway	Not-Deployed Days Not-Underway

derived from NUERS data derived from NUERS data derived from NUERS data derived from NUERS data = (Deployed Months * 30.4 days) -

= (Not-Deployed Months * 30.4 days) - Not-Depl. Days Underway

derived from NUERS data Depl. Days Underway

 406.86	330.17	352.52	289.37	358.81	329.17	N/A	N/A	Ϋ́	Not-Deployed Days Not-Underway
 157.53	133.18	135.21	181.18 146.12	181.18	139.40	N/A	N/A	N/A	Not-Deployed Days Underway
 145.76	129.39	150.69	100.91	161.76	117.39	N/A	N/A	N/A	Deployed Days Not-underway
 274.82	215.90	212.77	223.61	240.65	231.79	N/A	N/A	N/A	Deployed Days Underway
3.60	9.40	8.00	11.00	5.00	9.10	N/A	N/A	N/A	Maintenance Months
18.57	15.24	16.04	14.33	17.76	15.41	N/A	N/A	N/A	Not-Deployed Months
13.83	11.36	11.96	10.68	13.24	11.49	N/A	N/A	N/A	Deployed Months
2002	2001	2000	1999	1998	1997	1996	1995	1994	Predicted Data

= Deployed Months * (30.4 - (Depl. DUW/MO * Depl. OPTEMPO))

= Not-Deployed Months * Not-Depl. DUW/MO * Not-Depl. OPTEMPO

= (Ship Year * 12) - OPMONTH = Deployed Months * Depl. DUW/MO * Depl. OPTEMPO

= OPMONTH * OPMO% = OPMONTH * (1-OPMO%)

= Not-Deployed Months * (30.4 - (Not-Depl. DUW/MO * Not-Depl. OPTEMPO))

- missing data, temporary substituted by predicted/actual/previous data - calculated value, used for comparision, but not directly in the model Marked

Italic

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C: SUMMARY OF SIGNIFICANT REGRESSIONS WITH MAPE

This appendix is a summary of significant regressions, subdivided by Other Consumables (SO) and Repair Parts (SR). The corresponding MAPE for each regression equation is included. The MAPE was obtained by comparing the error produced by the predictive regression and the actual costs, as discussed in Chapter 4. These regressions were the only regressions considered for inclusion in the modified model developed in Chapter V.

Dependent Variables			
SR	A dependent variable to estimate repair parts costs for a ship in the class when using "by hull" data.		
SO	A dependent variable to estimate SO for a ship in the class consumable costs for a ship in the class when using "by hull" data.		
SR per ship	A dependent variable to estimate SR costs when using class data.		
SO per ship	A dependent variable to estimate SO costs when using class data.		
Independent Variables			
FY	An independent variable representing the current fiscal year. Fiscal Year 2000 was used as the base (00). Therefore fiscal year 1999 is represented by a negative one (-1) and fiscal year 2001 by a positive one (1).		
Pac Flt	A binary (one or zero) indicator variable to represent the fleet in which a ship is home ported. A ship assigned to the Atlantic Fleet would have a value of zero and one assigned to the Pacific Fleet would have a value of one.		
UW not dep	Represents the days spent underway and while not in a deployed status. In the NUERS database this is represented by the time spent in code eight.		
Code 17	Represents the days underway on deployment while in the 5 th Fleet AOR. This time is represented by code 17 in the NUERS database.		
UW dep not 17	Represents the days spent underway and on deployment when operating in areas SO than the 5 th fleet AOR. This is represented by the code nine in the NUERS database.		
Total UW deployed	Is the summation of the days under "Code 17" and "Total UW deployed." This represents the total number of days underway while in a deployed status.		
Total UW	Represents the total number of days a ship was underway in a year. It is the summation of the time spent in codes eight, nine and seventeen in the NUERS database.		
Total UW / SY	The total days underway for a class during a year divided by the ship years. This represents the average number of days underway per ship.		

Table 21: List of Variables Used in the Regressions in Appendix C

AOE-1 Class

SO

By Hull

There were no significant regressions for SO as a dependent variable. No regressions met the 90% significance threshold. This was true for all AOE-1 class ships combined, as well as separated by fleet.

By Class

There are two regressions that meet the 90% significance level for determining SO per ship for the AOE-1 class.

One regression was found to be significant based on combined LANT and PAC data:

One regression was found to be significant based only on LANT data:

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1179276 + 194205 FY - 447725 Pac Flt + 2952 Total UW
MAPE=27.9%
SR = 1582192 + 210046 FY - 446790 Pac Flt
MAPE =19.6%
```

Two regressions were found to be significant for the AOE-1 class ships assigned to the Atlantic Fleet. They are:

```
SR = 1216456 + 168466 FY + 2679 Total UW
MAPE 9.8%
SR = 1582192 + 174494 FY
MAPE 12.0%
```

One regression was found to be significant for the Pacific Fleet. It is:

By Class

There is no statistically significant relationship to predict SR cost for the AOE-1 class.

AOE-6 Class SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

Three regressions were found to be significant for the AOE-6 class ships assigned to the Atlantic Fleet. They are:

```
SO = 389230 - 95086 FY + 2493 Total UW

MAPE = 15.1%

SO = 700259 - 121495 FY

MAPE = 34.6%

SO = 315716 + 3238 Total UW

MAPE = 18.4%
```

No regressions were found to be significant for the AOE-6 class ships assigned to the Pacific Fleet.

By Class

Only one regression equation is significant at 90% for the AOE-6 class.

Based on PAC data:

```
SO per ship = 1445 + 173.8571 FY
MAPE = 39.8%
```

SR

By Hull

One regression was significant for SR for the entire class of ships. It is:

No regressions were significant for the Atlantic or Pacific Fleet ships when considered separately.

By Class

We determined multiple relationships that can be used to predict SR cost for AOE-6 class ships.

One regression was found to be significant using combined data:

```
SR per ship = 1645.112 + 75.20677 FY - 614.088 Pac Flt MAPE = 26.0%
```

One regression was found to be significant using LANT data:

```
SR per ship = 1667.023 + 92.30497 FY MAPE = 12.6%
```

ARS Class

SO

By Hull

One regression was significant for the combined data for this class:

One regression was significant for the Pacific Fleet data for this class:

$$SO = 498460 + 134705 \text{ FY}$$

MAPE = 13.1%

One regression that was significant for the Atlantic Fleet data for this class:

$$SO = 349315 + 36424 \text{ FY}$$

 $MAPE = 13.0$

By Class

Several regressions met the threshold of 90% significance.

Two regressions were found to be significant based on Combined data:

One regression was found to be significant based on LANT data:

One regression was found to be significant based on PAC data:

SR

By Hull

There was one regression that was significant when the ARS class was considered as a whole:

One regression was significant for the Atlantic Fleet ships of ARS class when considered separately:

$$SR = 414091 + 48712 \text{ FY}$$

 $MAPE = 11.9\%$

There were no significant regressions for the ARS class when the Pacific Fleet was considered separately.

By Class

Several relationships were determined for predicting SR cost per ship.

Three regressions were found to be significant using combined data:

```
SR per ship = 408.1503 + 49.92262 FY + 259.3275 Pac Flt

MAPE = 29.6%

SR per ship = 537.814 + 49.92262 FY

MAPE = 37.4%

SR per ship = -78.593 + 66.767 FY + 281.541 Pac Flt + 5.6568 Total UW / SY

MAPE = 25.6%
```

One regression was found to be significant using PAC data:

CG-47 Class

SO

By Hull

Four regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 589434 + 86589 FY + 1312 Total UW

MAPE = 19.0%

SO = 519990 + 70221 FY + 244877 Pac Flt + 1061 Total UW

MAPE = 14.3%

SO = 648018 + 72977 FY + 255457 Pac Flt

MAPE = 14.7%

SO = 753079 + 90914 FY

MAPE 20.25%
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 545267 + 65314 FY + 973 UW not dep + 599 Total UW Deployed

MAPE = 20.1%

SO = 566698 + 65111 FY + 674 Total UW

MAPE = 15.4%

SO = 648018 + 66954 FY

MAPE = 15.1%
```

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

The only regression to meet the 90% significance level is for LANT ships. Using only LANT data:

SR

By Hull

Six regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 2274423 + 279975 FY + 3268 UW not dep + 2655 Total UW Deployed MAPE = 13.2%

SR = 2351259 + 290770 FY - 171724 Pac Flt + 3011 UW not dep + 2896 Total UW Deployed MAPE = 13.0%

SR = 2309035 + 279134 FY + 2736 Total UW MAPE = 13.4%

SR = 2358455 + 290782 FY - 174269 Pac Flt + 2914 Total UW MAPE = 13.1%

SR = 2650403 + 288156 FY MAPE 14.0%

SR = 2710122 + 298352 FY - 145208 Pac Flt MAPE = 13.8%
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 2363303 + 314474 FY + 3231 UW not dep + 2131 Total UW Deployed MAPE = 14.1%
```

```
SR = 2426207 + 313876 FY + 2353 Total UW
MAPE = 14.3%
SR = 2710122 + 320313 FY
MAPE = 14.5%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 2107506 + 242910 FY + 3367 UW not dep + 3944 Total UW Deployed MAPE = 11.2%

SR = 2078288 + 242080 FY + 3901 Total UW MAPE = 11.2%

SR = 2588564 + 251053 FY MAPE = 13.0%
```

By Class

One regression was found to be significant using combined data:

One regression was found to be significant using PAC data:

CVN-68 Class

SO

By Hull

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

There are no regressions that meet the 90% significance level for predicting SO cost per ship in the CVN-68 class.

SR

By Hull

Five regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 2977027 + 681646 FY + 29933 UW not dep + 21332 Total UW deployed MAPE = 27.0%

SR = 3332599 + 731389 FY + 23395 Total UW MAPE = 26.9%

SR = 2977027 + 681646 FY + 29933 UW not dep + 21332 Total UW deployed MAPE = 27.0%

SR = 6472983 + 986941 FY MAPE = 30.4%

SR = 2743518 + 26748 Total UW MAPE = 27.4%
```

By Class

We found no significant relationship between operational factors and SR cost for the CVN-68 class. Further, we found no significant relationship between SR cost and the FY.

DD-963 Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 541424 + 46157 FY + 415501 Pac Flt
MAPE = 17.7%

SO = 331935 + 43634 FY + 372565 Pac Flt + 1856 UW not dep + 1859 Total UW
Deployed.
MAPE = 22.8

SO = 327688 + 43430 FY + 375341 Pac Flt + 1884 UW not dep
+ 2017 UW Dep not 17 + 1673 Code 17
MAPE = 19.5%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 455668 + 39223 FY + 749 Total UW
MAPE = 16.9%
SO = 540313 + 40771 FY
MAPE = 16.1%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 384708 + 65132 FY + 3927 UW not dep + 5179 UW Dep not 17
+ 3310 Code 17
MAPE = 15.9%
SO = 418276 + 60375 FY + 3897 Total UW
MAPE = 16.0%
SO = 448379 + 3882 Total UW
MAPE = 17.7%
```

There are three regressions that are significant at the 90% threshold.

One regression was found to be significant using combined data:

One regression was found to be significant using only LANT data:

One regression was found to be significant using only PAC data:

SR

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 2071522 + 165560 FY

MAPE = 21.7

SR = 1530061 + 152196 FY + 4881 UW not dep

+ 3923 UW Dep not 17 + 3683 Code 17

MAPE = 21.2

SR = 1532637 + 152182 FY + 4860 UW not dep

+ 3807 Total UW Deployed

MAPE = 22.1
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

$$SR = 2065330 + 235108 \text{ FY}$$

 $MAPE = 21.3\%$

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 1341095 + 5605 UW not dep + 8467 UW Dep not 17 + 4489 Code 17

MAPE = 18.4%

SR = 1465298 + 4463 UW not dep + 5898 Total UW Deployed

MAPE = 22.1%

SR = 1398205 + 5716 Total UW

MAPE = 33.9%
```

By Class

One regression was found to be significant using combined data:

One regression was found to be significant using LANT data:

One regression was found to be significant using PAC data:

DDG-51 Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 100447 + 41255 FY + 190405 Pac Flt + 3605 UW not dep
+ 3130 UW Dep not 17 + 2576 Code 17
MAPE = 23.9%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 193428 + 49367 FY + 3030 UW not dep + 1906 UW Dep not 17
+ 1663 Code 17
MAPE = 21.7%
SO = 246691 + 43832 FY + 2107 Total UW
MAPE 23.3%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 126572 + 40860 FY + 4890 UW not dep + 5099 Uw Deployed Not 17+ 3320 Code 17
MAPE = 20.8%

SO = 166433 + 39827 FY + 4378 UW not dep + 4123 Total UW Deployed
MAPE = 21.2%

SO = 180099 + 40288 FY + 4132 Total UW
MAPE = 21.2%
```

By Class

There is one significant regression for DDG-51. It is for LANT ships only.

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 400753 + 10018 UW not dep + 7212 UW Dep not 17 + 7280 Code 17
+ 103074 FY
MAPE = 26.5%
SR = 562075 + 99154 FY + 7482 Total UW
MAPE = 26.8
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 429539 + 113649 FY + 10825 UW not dep + 3968 UW Dep not 17
+ 6475 Code 17
MAPE = 24.5%

SR = 392123 + 112791 FY + 11212 UW not dep
+ 5113 Total UW deployed
MAPE = 24.6 %

SR = 674755 + 92003 FY + 6475 Total UW
MAPE = 27.2%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 248942 + 10652 UW not dep + 11890 Uw Deployed Not 17 + 6623 Code 17 + 120507 FY
MAPE = 23.9%

SR = 366956 + 9136 UW not dep + 9000 Total UW Deployed + 117450 FY
MAPE = 25.2%

SR = 374250 + 9005 Total UW + 117696 FY
MAPE = 25.3 %
```

SR cost for the DDG-51 class as a whole demonstrates a significant relationship when the

data for each fleet are combined. In this case combined data from LANT and PACFLT

DDGs result in an equation that predicts total SR cost at a 95% significance level (5%

higher than our threshold). The equation is as follows:

SR = 10,232 + 1322.072 FY + 7.137979 UW not dep + 4.856984 Total UW deployed

MAPE = 10.4%

*It should be noted that this equation is for predicting total SR cost for the class not for

an individual ship.

Using only LANT data:

SR per ship = 1328 - 98.0074 FY

MAPE = 8.9%

*Here the negative coefficient for fiscal year describes a decline in cost of SR per ship.

This could be due to several factor including learning curve and increased purchasing

power with repair part suppliers. Whatever the reason for the trend, users of the model

must watch closely to observe any change that would indicate a flattening or increase in

SR cost per ship.

FFG Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest

Item. They are:

SO = 253249 + 57776 FY + 298451 Pac Flt + 1936 UW not dep

+ 1010 UW Dep not 17 + 1602 Code 17

MAPE = 19.8%

137

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

By Class

For FFG-7, several regressions meet the 90% significance level.

Two regressions were found to be significant using combined data:

One regression was found to be significant using only LANT data:

One regression was found to be significant using only PAC data:

```
SO per ship = 791.12 + 49.47386 FY MAPE = 12.9%
```

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1114799 + 117170 FY + 3286 UW not dep
+ 1569 Total UW Deployd
MAPE = 17.5%
SR = 1183994 + 140115 FY - 264124 Pac Flt + 3278 UW not dep
+ 2182 Total UW Deployed
MAPE = 16.1%
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 1199609 + 189197 FY + 3498 UW not dep + 1826 Total UW dep MAPE = 15.6%

SR = 1265013 + 187084 FY + 2496 Total UW MAPE = 15.6%

SR = 1556107 + 183410 FY MAPE = 15.9%
```

No regressions were found to be significant for the ships of the Pacific Fleet when considered separately.

Several regressions of SR cost per ship are significant for the FFG-7 class.

Two regressions were found to be significant using combined data:

One regression was found to be significant using LANT data:

One regression was found to be significant using PAC data:

LHA-1 Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

$$SO = 1830385 + 218112 \text{ FY}$$

MAPE = 18.3%

No regressions were found to be significant for the ships of the Pacific Fleet when considered separately.

By Class

The LHA-1 class provides significant relationships between SO costs and operational data. Significant relationships with operational measures (days underway) exist both in the combined data and the PAC data. In the LANT data, SO per ship is only significant when regressed against FY.

Two regressions were found to be significant using combined data:

```
SO per ship = 2687.077 + 167.3601 FY
MAPE = 12.2%
SO per ship = 1530.214 + 155.7285 FY + 10.337 Total UW / SY
MAPE = 12.0%
```

One regression was found to be significant using LANT data:

Two regressions were found to be significant using PAC data:

```
SO per ship = 1442.206 + 184.4804 FY + 12.8445 Total UW / SY MAPE = 10.5%

SO per ship = 2916.774 + 216.6426 FY MAPE = 13.6%
```

SR

By Hull

No regressions were found to be significant for the entire class for this Special Interest Item.

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

$$SR = 2495823 + 467231 \text{ FY}$$

 $MAPE = 24.2\%$

No regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

By Class

One regression was found to be significant using combined data:

One regression was found to be significant using PAC data:

LHD Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 1060138 + 591557 Pac Flt + 4965 Total UW
MAPE = 21.1%
SO = 1195299 + 5858 Total UW
MAPE = 26.3%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

No regressions were found to be significant for the ships of the Pacific Fleet when considered separately.

By Class

In the LHD-1 class several regressions proved significant.

Two regressions were found to be significant using combined data:

One regression was found to be significant using LANT data:

```
SO per ship = 2281.057 + 125.4181 FY
   MAPE = 9.4\%
One regression was found to be significant using PAC data:
```

SO per ship = 2964.655 + 220.0119 FY

MAPE =
$$16.9\%$$

SR

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1156393 + 124175 FY + 9707 UW not dep + 7426 Total Dep UW
MAPE = 15.3
SR = 1290522 + 113189 FY + 7522 Total UW
MAPE = 15.4\%
SR = 1025405 + 11963 UW not dep + 4940 UW Dep not 17 + 11242 Code 17
MAPE 14.8%
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 785076 + 16559 UW not dep + 4675 UW Dep not 17 + 13331 Code 17

MAPE = 12.6%

SR = 827705 + 15099 UW not dep + 8581 Total Dep UW

MAPE = 15.8%

SR = 1196309 + 9152 Total UW

MAPE = 17.8%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 1395677 + 186636 FY + 5703 Total UW

MAPE =11.5%

SR = 2139293 + 231497 FY

MAPE =15.8%

SR = 1396541 + 6391 Total UW

MAPE = 13.1%
```

By Class

No significant relationships were developed between SR cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to exist between SR cost per ship and fiscal year.

LPD Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 459942 + 47618 FY + 493034 Pac Flt + 2381 Total UW MAPE = 15.7%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

$$SO = 753710 + 49124 \text{ FY}$$

 $MAPE = 10.3\%$

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

By Class

LPD-4 class demonstrates significant relationships between SO per ship and FY.

One regression was found to be significant using combined data:

One regression was found to be significant using PAC data:

SR

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 588844 + 87060 FY + 3051 UW not dep + 1639 Total Deployed MAPE = 17.8%

SR = 686844 + 86693 FY + 1544 Total UW
MAPE = 18.2%
```

```
SR = 874094 + 89155 \text{ FY}

MAPE = 20.0\%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 858139 + 76908 \text{ FY}

MAPE = 16.8\%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 515894 + 95973 FY + 3626 UW not dep + 2633 Total Deployed

MAPE = 18.3%

SR = 576194 + 96696 FY + 2593 Total UW

MAPE = 18.5%

SR = 883832 + 102920 FY

MAPE = 22.6%
```

By Class

No significant relationships were developed between SR cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to exist between SR cost per ship and fiscal year.

LSD-36 Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 659230 + 175118 FY + 400311 Pac Flt
MAPE = 27.9%
```

```
SO = 584179 + 562921 Pac Flt
MAPE = 29.8%
SO = 869294 + 226643 FY
MAPE = 27.5%
```

No regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = - 176656 + 10929 Total UW
MAPE = 22.6%
SO = 1018790 + 256620 FY
MAPE 21.2%
By Class
```

In the LSD-36 class the only regression that meets the 90% significance level is for predicting SO in PAC. The equation is:

SR

By Hull

One regression was found to be significant for the entire class for this Special Interest Item:

$$SR = 809213 + 116406 \text{ FY}$$

 $MAPE = 18.3\%$

No regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

Four regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 132031 + 210208 FY + 6168 UW not dep + 3274 UW Dep
+ 3783 Code 17
MAPE = 3.3%

SR = 132195 + 210146 FY + 6100 UW not dep + 3526 Total Dep UW
MAPE = 2.8%

SR = 313960 + 210862 FY + 3385 Total UW
MAPE = 4.9%

SR = 710695 + 237435 FY
MAPE = 10.6%
```

By Class

No significant relationship could be determined to predict SR cost per ship for the LSD-36 class.

LSD-41 Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 574808 + 51171 FY + 412390 Pac Flt
MAPE 22.5
SO = 384471 + 46986 FY + 370971 Pac Flt + 1803 Total UW
MAPE =20.5%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

One regression was found to be significant for the ships of the Pacific Fleet when considered separately:

By Class

No regressions proved significant for predicting SO cost for the LSD-41 class.

SR

By Hull

One regression was found to be significant for the entire class for this Special Interest Item:

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 988392 + 129041 \text{ FY}

MAPE = 22.6\%
```

One regression was found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 881305 - 56488 \text{ FY}

MAPE = 17.0\%
```

No significant relationships were developed between SR cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to exist between SR cost per ship and fiscal year.

MCM Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

$$SO = 216334 + 23261 \text{ FY}$$

MAPE = 9.5%

Two regressions were found to be significant for the ships home-ported in Japan when considered separately:

One regression was found to be significant for the ships home-ported in Bahrain when considered separately:

$$SO = 286603 + 19472 \text{ FY}$$

 $MAPE = 9.7\%$

No significant relationships were developed between SO cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to exist between SO cost per ship and fiscal year.

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 792553 + 125855 FY + 2878 Total UW
MAPE = 19.9%
SR = 1032911 + 137868 FY
MAPE = 22.7%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 980124 + 191390 \text{ FY}

MAPE = 17.6\%
```

One regression was found to be significant for the ships homeported in Japan when considered separately:

```
SR = 903463 + 131279 \text{ FY}

MAPE = 13.6\%
```

No regressions were found to be significant for the ships homeported in Bahrain when considered separately:

No significant relationships were developed between SR cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to ex-

ist between SR cost per ship and fiscal year.

MHC Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest

Item. They are:

SO = 191950 + 46602 FY

MAPE = 30.8%

SO = 66933 + 1605 Total UW

MAPE 35.1%

By Class

No significant relationships were developed between SO cost per ship and any of the op-

erational variables we studied. Further, no significant relationship was determined to ex-

ist between SO cost per ship and fiscal year.

SR

By Hull

One regression was found to be significant for the entire class for this Special Interest

Item. They are:

SR = 492140 + 164273 FY

MAPE = 40.0 %

152

No significant relationships were developed between SR cost per ship and any of the operational variables we studied. Further, no significant relationship was determined to exist between SR cost per ship and fiscal year.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D: SUMMARY OF SHIP CLASS REGRESSION BY CLASS

This appendix details the regressions performed on a "by class" basis. "By class" implies that the costs for a class for an entire year were aggregated into one data point. Complete statistical analysis for each regression is included. Only those regressions that were significant to the ninety percent level for the regression and each independent variable were considered.

The variables

	Dependent Variables
SR/ship	A dependent variable to estimate repair parts costs when using "by class" data.
SO/ship	A dependent variable to estimate SO consumable costs when using "by class" data.
	Independent Variables
FY	An independent variable representing the current fiscal year. Fiscal Year 2000 was used as the base (00). Therefore fiscal year 1999 is represented by a negative one (-1) and fiscal year 2001 by a positive one (1).
Pac Flt	A binary (one or zero) indicator variable to represent the fleet in which a ship is home ported. A ship assigned to the Atlantic Fleet would have a value of zero and one assigned to the Pacific Fleet would have a value of one.
UW not dep	Represents the days spent underway and while not in a deployed status. In the NUERS database this is represented by the time spent in code eight.
Code 17	Represents the days underway on deployment while in the 5 th Fleet AOR. This time is represented by code 17 in the NUERS database.
UW dep not 17	Represents the days spent underway and on deployment when operating in areas SO than the 5 th fleet AOR. This is represented by the code nine in the NUERS database.
Total UW de-	Is the summation of the days under "Code 17" and "Total UW deployed."
ployed	This represents the total number of days underway while in a deployed status.
Total UW	Represents the total number of days a ship was underway in a year. It is the summation of the time spent in codes eight, nine and seventeen in the NU-ERS database.

Table 22: List of Variables Used in Regressions in Appendix D

AOE 1 Class

Regression Analysis: SO/ship versus FY2 (AOE 1 - Combined) MAPE = 25.4%

The regression equation is SO/ship = 1428 + 98.7 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1427.7
 119.9
 11.91
 0.000

 FY2
 98.71
 35.36
 2.79
 0.014

S = 324.1 R-Sq = 35.8% R-Sq(adj) = 31.2%

Analysis of Variance

Source DF SS MS F Ρ Regression 1 818539 818539 7.79 0.014 Residual Error 14 1470196 105014 Total 15 2288735

Unusual Observations

Obs FY2 SO/ship Fit SE Fit Residual St Resid 14 1.00 2215.5 1526.4 147.9 689.1 2.39R

R denotes an observation with a large standardized residual

Regression Analysis: SO/ship versus FY2 (AOE 1 - LANT) MAPE = 11.9%

The regression equation is SO/ship = 1424 + 80.0 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1423.8
 106.3
 13.39
 0.000

 FY2
 80.01
 31.35
 2.55
 0.023

S = 287.4 R-Sq = 31.7% R-Sq(adj) = 26.9%

Analysis of Variance

Source DF SS MS F 537720 537720 6.51 0.023 Regression 1 1155995 82571 Residual Error 14 Total 15 1693715

Unusual Observations

 Obs
 FY2
 SO/ship
 Fit
 SE Fit
 Residual
 St Resid

 14
 1.00
 2215.5
 1503.8
 131.2
 711.7
 2.78R

R denotes an observation with a large standardized residual

AOE 6 Class

Regression Analysis: SO/ship versus FY 2 (AOE 6 – PAC) MAPE = 39.8%

The regression equation is SO/ship = 1445 + 174 FY 2

Predictor	Coef	SE Coef	T	P
Constant	1445.3	235.2	6.15	0.002
FY 2	173.86	83.14	2.09	0.091

S = 439.9 R-Sq = 46.7% R-Sq(adj) = 36.0%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	846337	846337	4.37	0.091
Residual Error	5	967701	193540		
Total	6	1814038			

Regression Analysis: SR/ship versus FY 2, Fleet 0=lant (AOE 6 Combined) MAPE=26.0%

The regression equation is

SR/ship = 1645 + 75.3 FY 2 - 614 Fleet 0=lant

Predictor	Coef	SE Coef	T	P
Constant	1645.4	123.8	13.29	0.000
FY 2	75.27	31.98	2.35	0.036
Fleet 0=	-614.0	139.4	-4.41	0.001

S = 267.5 R-Sq = 65.6% R-Sq(adj) = 59.9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	1636926	818463	11.44	0.002
Residual Error	12	858835	71570		
_					

Total 14 2495761

Source DF Seq SS FY 2 1 247864 Fleet 0= 1 1389062

Unusual Observations

 Obs
 FY 2
 SR/ship
 Fit
 SE Fit
 Residual
 St Resid

 11
 -1.00
 308.0
 956.1
 106.1
 -648.1
 -2.64R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2 (AOE 6 – LANT) MAPE=12.6%

The regression equation is SR/ship = 1667 + 92.3 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1667.0
 114.1
 14.60
 0.000

 FY 2
 92.30
 33.66
 2.74
 0.034

S = 218.1 R-Sq = 55.6% R-Sq(adj) = 48.2%

Analysis of Variance

Source DF SS MS F Ρ Regression 1 357849 357849 7.52 0.034 Residual Error 6 285514 47586 7 Total 643363

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 7 -6.00 750.0 1113.2 140.8 -363.2 -2.18R

R denotes an observation with a large standardized residual

ARS 50 Class

Regression Analysis: SO/ship versus FY 2 (ARS 50 – PAC) MAPE = 16.4%

The regression equation is SO/ship = 709 + 48.1 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 708.97
 55.77
 12.71
 0.000

 FY 2
 48.15
 16.44
 2.93
 0.026

S = 106.6 R-Sq = 58.8% R-Sq(adj) = 52.0%

Analysis of Variance

Source DF SS MS F Ρ Regression 1 97364 97364 8.57 0.026 11358 Residual Error 6 68148 Total 7 165512

Regression Analysis: SO/ship versus FY2 (ARS 50 – LANT) MAPE = 7.0%

The regression equation is SO/ship = 470 + 45.3 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 469.82
 17.67
 26.59
 0.000

 FY2
 45.265
 5.210
 8.69
 0.000

S = 33.77 R-Sq = 92.6% R-Sq(adj) = 91.4%

Analysis of Variance

DF Source SS MS F Regression 1 86054 86054 75.47 0.000 Residual Error 6 6841 1140 Total 92895

Regression Analysis: SO/ship versus FY2 (ARS 50 – Combined) MAPE = 28.6%

The regression equation is SO/ship = 589 + 46.7 FY2

Predictor	Coef	SE Coef	Т	P
Constant	589.38	53.28	11.06	0.000
FY2	46.70	15.71	2.97	0.010

S = 144.0 R-Sq = 38.7% R-Sq(adj) = 34.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	183162	183162	8.83	0.010
Residual Error	14	290304	20736		
Total	15	473466			

Regression Analysis: SO/ship versus FLT 0=LANT, FY2 (ARS 50 – Combined) MAPE = 11.8%

The regression equation is SO/ship = 473 + 232 FLT 0=LANT + 46.7 FY2

Predictor	Coef	SE Coef	T	P
Constant	473.43	33.96	13.94	0.000
FLT 0=LA	231.91	38.02	6.10	0.000
FY2	46.696	8.297	5.63	0.000

S = 76.04 R-Sq = 84.1% R-Sq(adj) = 81.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	398296	199148	34.44	0.000
Residual Error	13	75170	5782		
Total	15	473466			

Source DF Seq SS FLT 0=LA 1 215134 FY2 1 183162

Unusual Observations

Obs FLT 0=LA SO/ship Fit SE Fit Residual St Resid 7 1.00 268.8 425.2 39.6 -156.4 -2.41R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2, FLT 0=LANT (ARS 50 – Combined) MAPE = 29.6%

The regression equation is SR/ship = 408 + 49.9 FY 2 + 259 FLT 0=LANT

Predictor	Coef	SE Coef	T	P
Constant	408.37	58.55	6.98	0.000
FY 2	49.95	14.31	3.49	0.004
FLT 0=LA	259.37	65.56	3.96	0.002

S = 131.1 R-Sq = 68.2% R-Sq(adj) = 63.3%

Analysis of Variance

Source DF MS SS F Ρ 2 478652 239326 13.92 0.001 Regression Residual Error 13 223469 17190

Total 15 702120

Source DF Seq SS FY 2 1 209550 FLT 0=LA 1 269102

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 6 1.00 198.0 458.3 68.2 -260.3 -2.33R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2 (ARS 50 – Combined) MAPE = 37.4%

The regression equation is SR/ship = 538 + 49.9 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 538.05
 69.40
 7.75
 0.000

 FY 2
 49.95
 20.47
 2.44
 0.029

S = 187.6 R-Sq = 29.8% R-Sq(adj) = 24.8%

Analysis of Variance

Source DF SS MS F 209550 209550 5.96 0.029 Regression 1 Residual Error 14 492570 35184 Total 15 702120

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 6 1.00 198.0 588.0 85.6 -390.0 -2.34R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2, FLT 0=LANT, Total UW / SY (ARS 50 – Combined) MAPE = 25.6%

The regression equation is

SR/ship = -78 + 66.8 FY 2 + 281 FLT 0 = LANT + 5.66 Total UW / SY

SE Coef Predictor Coef Т Ρ -0.30 0.772 -78.5 264.2 Constant FY 2 66.76 16.00 4.17 0.002 FLT 0=LA 281.48 67.81 4.15 0.002 Total UW 5.659 3.079 1.84 0.096

S = 120.9 R-Sq = 76.0% R-Sq(adj) = 68.8%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	463733	154578	10.57	0.002
Residual Error	10	146239	14624		
Total	13	609972			

Source DF Seq SS FY 2 1 125299 FLT 0=LA 1 289041 Total UW 1 49394

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 6 1.00 198.0 409.8 68.1 -211.8 -2.12R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2 (ARS 50 – PAC) MAPE = 19.5%

The regression equation is SR/ship = 751 + 80.0 FY 2

Predictor	Coef	SE Coef	T	P
Constant	750.95	60.29	12.46	0.000
FY 2	79.97	17.78	4.50	0.004

S = 115.2 R-Sq = 77.1% R-Sq(adj) = 73.3%

Analysis of Variance

MS 268612 Source DF SS F Ρ Regression 268612 20.23 0.004 1 13275 Residual Error 6 79648 Total 7 348260

CG 47 Class

Regression Analysis: SO/ship versus FY2 (CG 47 – LANT) MAPE = 6.4%

The regression equation is SO/ship = 869 + 36.7 FY2

Predictor	Coef	SE Coef	T	P
Constant	868.79	36.47	23.82	0.000
FY2	36.68	10.75	3.41	0.014

S = 69.69 R-Sq = 66.0% R-Sq(adj) = 60.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	56501	56501	11.63	0.014
Residual Error	6	29140	4857		
Total	7	85641			

Regression Analysis: SR/ship versus FY 2 (CG 47 – Combined) MAPE = 15.9%

The regression equation is SR/ship = 2535 + 101 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2535.2
 139.2
 18.21
 0.000

 FY 2
 100.95
 41.05
 2.46
 0.028

S = 376.2 R-Sq = 30.2% R-Sq(adj) = 25.2%

Analysis of Variance

DF Source SS MS F Regression 1 856104 856104 6.05 0.028 1981362 Residual Error 14 141526 15 2837465 Total

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 1 -6.00 888.9 1929.4 171.7 -1040.6 -3.11R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY2 (CG 47 – PAC) MAPE = 16.7%

The regression equation is SR/ship = 2589 + 179 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2588.6
 209.4
 12.36
 0.000

 FY2
 178.66
 61.75
 2.89
 0.028

S = 400.2 R-Sq = 58.2% R-Sq(adj) = 51.3%

Analysis of Variance

DF Source SS MS F Regression 1 1340636 1340636 8.37 0.028 Residual Error 6 960996 160166 Total 7 2301631

Unusual Observations

Obs FY2 SR/ship Fit SE Fit Residual St Resid 1 -6.00 889 1517 258 -628 -2.05R

R denotes an observation with a large standardized residual

DD 963 Class

Regression Analysis: SR/ship versus FY 2 (DD 963 – PAC) MAPE = 17.8%

The regression equation is SR/ship = 999 + 66.5 FY 2

Predictor	Coef	SE Coef	T	P
Constant	998.52	96.56	10.34	0.000
FY 2	66.45	28.47	2.33	0.058

S = 184.5 R-Sq = 47.6% R-Sq(adj) = 38.8%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	185459	185459	5.45	0.058
Residual Error	6	204319	34053		
Total	7	389778			

Regression Analysis: SO/ship versus FY2 (DD 963 – LANT) MAPE = 6.0%

The regression equation is SO/ship = 754 + 18.2 FY2

Predictor	Coef	SE Coef	T	P
Constant	754.38	32.23	23.41	0.000
FY2	18.241	9.503	1.92	0.103

S = 61.59 R-Sq = 38.0% R-Sq(adj) = 27.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	13975	13975	3.68	0.103
Residual Error	6	22759	3793		
Total	7	36734			

Regression Analysis: SO/ship versus FY2 (DD 963 – Combined) MAPE = 14.4%

The regression equation is SO/ship = 876 + 42.3 FY2

Predictor	Coef	SE Coef	T	P
Constant	876.43	57.42	15.26	0.000
FY2	42.34	16.93	2.50	0.025

S = 155.2 R-Sq = 30.9% R-Sq(adj) = 25.9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	150614	150614	6.25	0.025
Residual Error	14	337107	24079		
Total	15	487720			

Unusual Observations

0bs	FY2	SO/ship	Fit	SE Fit	Residual	St Resid
8	1.00	1260.9	918.8	70.8	342.1	2.48R

R denotes an observation with a large standardized residual

Regression Analysis: Sr/ship versus FY2 (DD 963 – Combined) MAPE = 12.7%

The regression equation is Sr/ship = 2025 + 123 FY2

Predictor	Coef	SE Coef	Т	P
Constant	2025.46	88.38	22.92	0.000
FY2	123.30	26.06	4.73	0.000

R-Sq = 61.5% R-Sq(adj) = 58.8%S = 238.9

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	1277123	1277123	22.38	0.000
Residual Error	14	798818	57058		
Total	15	2075941			

Unusual Observations

0bs	FY2	Sr/ship	Fit	SE Fit	Residual	St Resid
1	-6.00	746.8	1285.6	109.0	-538.8	-2.54R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2 (DD 963 – LANT) MAPE = 4.4%

The regression equation is SR/ship = 1958 + 65.3 FY 2

Predictor	Coef	SE Coef	T	P
Constant	1958.27	55.92	35.02	0.000
FY 2	65.34	16.49	3.96	0.007

S = 106.9 R-Sq = 72.4% R-Sq(adj) = 67.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	179327	179327	15.70	0.007
Residual Error	6	68521	11420		
Total	7	247848			

Unusual Observations

Obs FY 2 SR/ship Fit SE Fit Residual St Resid 6 1.00 2193.2 2023.6 69.0 169.5 2.08F 2.08R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY 2 (DD 963 – PAC) MAPE = 9.1%

The regression equation is SR/ship = 2034 + 122 FY 2

Predictor	Coef	SE Coef	Т	P
Constant	2033.6	112.7	18.04	0.000
FY 2	122.16	33.25	3.67	0.010

S = 215.5 R-Sq = 69.2% R-Sq(adj) = 64.1%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	626819	626819	13.50	0.010
Residual Error	6	278555	46426		
Total	7	905373			

DDG 51 Class

Regression Analysis: SO/ship versus FY2 (DDG 51 – LANT) MAPE = 6.7%

The regression equation is SO/ship = 711 + 18.7 FY2

Predictor	Coef	SE Coef	T	P
Constant	711.39	30.73	23.15	0.000
FY2	18.741	9.061	2.07	0.084

S = 58.72 R-Sq = 41.6% R-Sq(adj) = 31.9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	14752	14752	4.28	0.084
Residual Error	6	20687	3448		
Total	7	35439			

Regression Analysis: SR versus FY2, U/W non-dep, U/W dep (DDG 51 – Combined) MAPE = 10.4%

-This is a prediction for SR cost for the entire class not per ship

The regression equation is

SR = 10233 + 1322 FY2 + 7.14 U/W non-dep + 4.86 U/W dep

Predictor	Coef	SE Coef	Т	P
Constant	10233	3230	3.17	0.010
FY2	1322.1	445.6	2.97	0.014
U/W non-	7.138	1.868	3.82	0.003
U/W dep	4.857	2.250	2.16	0.056

S = 1070 R-Sq = 97.7% R-Sq(adj) = 97.0%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 3
 484611148
 161537049
 141.00
 0.000

 Residual Error
 10
 11456758
 1145676

Total 13 496067906

Source DF Seq SS FY2 1 467830737 U/W non- 1 11444039 U/W dep 1 5336372

Unusual Observations

Obs FY2 SR Fit SE Fit Residual St Resid 7 -6.00 2086 3856 677 -1770 -2.13R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY2 (DDG 51 – LANT) MAPE = 8.9%

The regression equation is SR/ship = 1328 - 98.0 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1328.16
 98.27
 13.51
 0.000

 FY2
 -98.01
 28.98
 -3.38
 0.015

S = 187.8 R-Sq = 65.6% R-Sq(adj) = 59.9%

Analysis of Variance

Source DF SS MS F 403429 403429 0.015 Regression 1 11.44 Residual Error 6 211628 35271 Total 7 615058

FFG 7 Class

Regression Analysis: SR/ship versus FY 2 (FFG 7 – PAC) MAPE = 12.9%

The regression equation is SR/ship = 791 + 49.5 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 791.12
 65.10
 12.15
 0.000

 FY 2
 49.47
 19.20
 2.58
 0.042

S = 124.4 R-Sq = 52.5% R-Sq(adj) = 44.6%

Analysis of Variance

Source DF SS MS F 1 102802 102802 6.64 0.042 Regression Residual Error 6 92862 15477 7 Total 195664

Regression Analysis: SO/ship versus FY2 (FFG 7 – LANT) MAPE = 3.7%

The regression equation is SO/ship = 617 + 24.2 FY2

Predictor	Coef	SE Coef	T	P
Constant	617.03	15.55	39.69	0.000
FY2	24.245	4.584	5.29	0.002

S = 29.71 R-Sq = 82.3% R-Sq(adj) = 79.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	24689	24689	27.97	0.002
Residual Error	6	5295	883		
Total	7	29984			

Regression Analysis: SO/ship versus FLT 0=LANT, FY2 (FFG 7 – Combined) MAPE = 9.9%

The regression equation is SO/ship = 649 + 111 FLT 0=LANT + 36.9 FY2

Predictor	Coef	SE Coef	Т	P
Constant	648.59	41.36	15.68	0.000
FLT 0=LA	111.00	46.31	2.40	0.032
FY2	36.86	10.11	3.65	0.003

S = 92.61 R-Sq = 59.4% R-Sq(adj) = 53.2%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	163417	81708	9.53	0.003
Residual Error	13	111506	8577		
Total	15	274922			

 Source
 DF
 Seq SS

 FLT 0=LA
 1
 49284

 FY2
 1
 114133

Unusual Observations

Obs FLT 0=LA SO/ship Fit SE Fit Residual St Resid 14 1.00 1000.5 796.4 48.2 204.0 2.58R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: SO/ship versus FY2 (FFG 7- Combined) MAPE = 10.6%

The regression equation is SO/ship = 704 + 36.9 FY2

Predictor Constant FY2	Coef 704.09 36.86	SE Coef 39.65 11.69	T 17.76 3.15	P 0.000 0.007		
S = 107.2	R-Sq = 4	11.5% R-S	q(adj) = 3	7.3%		
Analysis of Va	riance					
Source Regression Residual Error Total	DF 1 14 15	SS 114133 160790 274922	MS 114133 11485	F 9.94	P 0.007	
Unusual Observations						

Obs FY2 SO/ship Fit SE Fit Residual St Resid 14 1.00 1000.5 740.9 48.9 259.5 2.72R

R denotes an observation with a large standardized residual

Regression Analysis: SR/Ship versus FY2, FLT 0=LANT (FFG 7 – Combined) MAPE = 9.4%

The regression equation is SR/Ship = 1532 + 75.6 FY2 - 231 FLT 0=LANT

Predictor	Coef	SE Coef	Т	P
Constant	1532.36	58.59	26.15	0.000
FY2	75.64	14.32	5.28	0.000
FLT 0=LA	-231.25	65.60	-3.53	0.004

S = 131.2 R-Sq = 75.6% R-Sq(adj) = 71.9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	694541	347270	20.17	0.000
Residual Error	13	223783	17214		
Total	15	918324			

Source DF Seq SS FY2 1 480635 FLT 0=LA 1 213906

Unusual Observations

Obs FY2 SR/Ship Fit SE Fit Residual St Resid 7 -6.00 487.0 847.2 68.3 -360.2 -3.22R

R denotes an observation with a large standardized residual

Regression Analysis: SR/Ship versus FY2 (FFG 7 – Combined) MAPE = 13.3%

The regression equation is SR/Ship = 1417 + 75.6 FY2

Predictor	Coef	SE Coef	T	P
Constant	1416.73	65.42	21.66	0.000
FY2	75.64	19.29	3.92	0.002

S = 176.8 R-Sq = 52.3% R-Sq(adj) = 48.9%

Analysis of Variance

Source DF SS MS F Regression 15.37 0.002 1 480635 480635 Residual Error 14 437689 31264

15 918324 Total

Unusual Observations

Obs FY2 SR/Ship Fit SE Fit Residual St Resid -6.00 487.0 962.9 80.7 -475.9 -3.02R

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY2 (FFG 7 – LANT) MAPE = 3.0%

The regression equation is SR/ship = 1451 + 43.1 FY2

Predictor Coef SE Coef Т Ρ 0.000 Constant 1450.98 30.99 46.83 FY2 43.072 9.137 4.71 0.003

R-Sq = 78.7% R-Sq(adj) = 75.2% S = 59.22

Analysis of Variance

Source DF SS MS F 1 77919 77919 22.22 Regression 0.003 Residual Error 6 21040 3507 Total 7 98960

Unusual Observations

Obs FY2 SR/ship Fit SE Fit Residual St Resid 1.00 1600.4 1494.0 38.2 106.4 2.35R 6

R denotes an observation with a large standardized residual

Regression Analysis: SR/ship versus FY2 (FFG 7 – PAC) MAPE = 4.9%

The regression equation is SR/ship = 1328 + 53.5 FY2

Predictor Coef SE Coef Т Р 44.04 Constant 1328.09 30.16 0.000 FY2 53.50 12.99 4.12 0.006

S = 84.16 R-Sq = 73.9% R-Sq(adj) = 69.5%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	120214	120214	16.97	0.006
Residual Error	6	42495	7082		
Total	7	162709			

Unusual Observations

Obs FY2 SR/ship Fit SE Fit Residual St Resid 1 -6.00 1145.7 1007.1 54.3 138.6 2.16R

R denotes an observation with a large standardized residual

LHA 1 Class

Regression Analysis: SO/ship versus FY2 (LHA 1 – Combined) MAPE = 12.2%

The regression equation is SO/ship = 2687 + 167 FY2

Predictor	Coef	SE Coef	T	P
Constant	2687.0	130.1	20.66	0.000
FY2	167.34	38.36	4.36	0.001

S = 351.6 R-Sq = 57.6% R-Sq(adj) = 54.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	2352205	2352205	19.03	0.001
Residual Error	14	1730365	123597		
Total	15	4082569			

Regression Analysis: SO/ship versus FY2, TOT/sy (LHA 1 – Combined) MAPE = 12.0%

The regression equation is

SO/ship = 1530 + 156 FY2 + 10.3 TOT/sy

Predictor	Coef	SE Coef	T	P
Constant	1529.9	640.3	2.39	0.036
FY2	155.70	43.66	3.57	0.004
TOT/sy	10.340	5.633	1.84	0.094

S = 345.6 R-Sq = 60.8% R-Sq(adj) = 53.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	2033614	1016807	8.51	0.006
Residual Error	11	1313651	119423		
Total	13	3347265			

 Source
 DF
 Seq SS

 FY2
 1
 1631195

 TOT/sy
 1
 402420

Regression Analysis: SO/ship versus FY 2, tot/sy (LHA 1 – PAC) MAPE = 10.5%

The regression equation is SO/ship = 1442 + 184 FY 2 + 12.8 tot/sy

Predictor	Coef	SE Coef	T	P
Constant	1442.2	751.7	1.92	0.113
FY 2	184.48	48.83	3.78	0.013
tot/sy	12.844	6.404	2.01	0.101

S = 298.9 R-Sq = 83.9% R-Sq(adj) = 77.5%

Analysis of Variance

Source DF SS MS F Regression 2 2330628 1165314 13.04 0.010 89352 Residual Error 5 446761 7 Total 2777388

Source DF Seq SS FY 2 1 1971228 tot/sy 1 3593

Regression Analysis: SO/ship versus FY 2 (LHA 1 – PAC) MAPE = 13.6%

The regression equation is SO/ship = 2917 + 217 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2916.8
 191.8
 15.21
 0.000

 FY 2
 216.64
 56.56
 3.83
 0.009

S = 366.6 R-Sq = 71.0% R-Sq(adj) = 66.1%

Analysis of Variance

Source DF SS MS F Ρ Regression 1 1971228 1971228 14.67 0.009 6 806160 134360 Residual Error 7 2777388 Total

Regression Analysis: SO/ship versus FY2 (LHA 1 – LANT) MAPE = 7.1%

The regression equation is SO/ship = 2457 + 118 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2457.3
 156.7
 15.68
 0.000

 FY2
 118.07
 46.22
 2.55
 0.043

S = 299.6 R-Sq = 52.1% R-Sq(adj) = 44.1%

Analysis of Variance

Source DF SS MS Regression 1 585516 585516 6.52 0.043 6 89735 Residual Error 538410 7 1123926 Total

Unusual Observations

0bs	FY2	SO/ship	Fit	SE Fit	Residual	St Resid
3	-2.00	2876	2221	108	654	2.34R

R denotes an observation with a large standardized residual

Regression Analysis: SR/Ship versus FY2 (LHA 1 – Combined) MAPE = 15.2%

The regression equation is SR/Ship = 2148 + 91.3 FY2

Predictor	Coef	SE Coef	T	P
Constant	2148.3	127.2	16.89	0.000
FY2	91.33	37.50	2.44	0.029

S = 343.7 R-Sq = 29.8% R-Sq(adj) = 24.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	700727	700727	5.93	0.029
Residual Error	14	1653433	118102		
Total	15	2354160			

Regression Analysis: SR/ship versus FY2 (LHA 1 – PAC) MAPE = 14.4%

The regression equation is SR/ship = 2350 + 176 FY2

Predictor	Coef	SE Coef	Т	P
Constant	2349.5	174.6	13.46	0.000
FY2	176.30	51.48	3.42	0.014

S = 333.6 R-Sq = 66.2% R-Sq(adj) = 60.5%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	1305463	1305463	11.73	0.014
Residual Error	6	667811	111302		
Total	7	1973275			

LHD 1 Class

Regression Analysis: SO/ship versus FY2, FLT 0=LANT (LHD 1 – Combined) MAPE = 14.7%

The regression equation is SO/ship = 2399 + 173 FY2 + 447 FLT 0=LANT

Predictor	Coef	SE Coef	T	P
Constant	2399.3	195.3	12.29	0.000
FY2	172.72	47.72	3.62	0.003
FLT 0=LA	447.2	218.7	2.04	0.062

S = 437.4 R-Sq = 57.1% R-Sq(adj) = 50.5%

Analysis of Variance

Source DF SS MS F Regression 2 3305755 1652878 8.64 0.004 13 2486642 191280 Residual Error 15 5792398 Total

Source DF Seq SS FY2 1 2505964 FLT 0=LA 1 799791

Unusual Observations

Obs FY2 SO/ship Fit SE Fit Residual St Resid 5 -2.00 3455 2501 156 954 2.34R

R denotes an observation with a large standardized residual

Regression Analysis: SO/ship versus FY2 (LHD 1 – Combined) MAPE = 15.6%

The regression equation is SO/ship = 2623 + 173 FY2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2622.9
 179.3
 14.63
 0.000

 FY2
 172.72
 52.86
 3.27
 0.006

S = 484.5 R-Sq = 43.3% R-Sq(adj) = 39.2%

Analysis of Variance

Total 15 5792398

Unusual Observations

Obs FY2 SO/ship Fit SE Fit Residual St Resid 5 -2.00 3455 2277 124 1178 2.51R

R denotes an observation with a large standardized residual

Regression Analysis: SO/ship versus FY 2 (LHD 1 – PAC) MAPE = 16.9%

The regression equation is SO/ship = 2965 + 220 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2964.7
 289.5
 10.24
 0.000

 FY 2
 220.01
 85.38
 2.58
 0.042

S = 553.3 R-Sq = 52.5% R-Sq(adj) = 44.6%

Analysis of Variance

Source DF SS MS F Regression 1 2033020 2033020 6.64 0.042 Residual Error 6 1836946 306158 7 3869966 Total

Regression Analysis: SO/ship versus FY2 (LHD 1 – LANT) MAPE = 9.4%

The regression equation is SO/ship = 2281 + 125 FY2

Predictor	Coef	SE Coef	Т	P
Constant	2281.1	145.1	15.72	0.000
FY2	125.42	42.80	2.93	0.026

S = 277.4 R-Sq = 58.9% R-Sq(adj) = 52.0%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	660648	660648	8.59	0.026
Residual Error	6	461662	76944		
Total	7	1122309			

Unusual Observations

Obs FY2 SO/ship Fit SE Fit Residual St Resid 3 -2.00 1441.0 2030.2 100.4 -589.2 -2.28R

R denotes an observation with a large standardized residual

LPD 4 Class

Regression Analysis: SO/ship versus FY2, FLT 0=LANT (LPD 4 – Combined) MAPE= 28.8%

The regression equation is SO/ship = 983 + 48.7 FY2 + 269 FLT 0=LANT

Predictor	Coef	SE Coef	T	P
Constant	983.0	102.1	9.62	0.000
FY2	48.72	24.96	1.95	0.073
FLT 0=LA	269.0	114.4	2.35	0.035

S = 228.8 R-Sq = 41.8% R-Sq(adj) = 32.9%

Analysis of Variance

DF SS F Source MS Ρ Regression 488932 4.67 0.030 2 244466 Residual Error 13 680260 52328 Total 15 1169192

Source DF Seq SS FY2 1 199389 FLT 0=LA 1 289543

Unusual Observations

Obs FY2 SO/ship Fit SE Fit Residual St Resid 11 -2.00 213.0 885.6 81.8 -672.6 -3.15R

R denotes an observation with a large standardized residual

Regression Analysis: SO/ship versus FY 2 (LPD 4 – PAC) MAPE = 7.3%

The regression equation is SO/ship = 1333 + 81.2 FY 2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1333.15
 58.23
 22.89
 0.000

 FY 2
 81.15
 17.17
 4.73
 0.003

S = 111.3 R-Sq = 78.8% R-Sq(adj) = 75.3%

Analysis of Variance

Source DF SS MS F Regression 1 276602 276602 22.34 0.003 Residual Error 6 74300 12383 7 350902 Total

LSD 36 Class

Regression Analysis: SO/ship versus FY 2 (LSD 36 - PAC) MAPE = 13.8%

The regression equation is SO/ship = 1125 + 85.9 FY 2

Predictor	Coef	SE Coef	T	P
Constant	1124.71	83.45	13.48	0.000
FY 2	85.91	24.61	3.49	0.013

S = 159.5 R-Sq = 67.0% R-Sq(adj) = 61.5%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	309987	309987	12.19	0.013
Residual Error	6	152589	25431		

Total 7 462576

APPENDIX E: SUMMARY OF INDIVIDUAL SHIP REGRESSIONS BY CLASS

This Appendix considers regressions that are structured to produce an equation to calculate SR cost on an individual ship. These regressions are grouped by class of ship. Following the regression equation a Mean Absolute Percentage Error is provided when this model is used to backcast costs. Regressions were performed for all the ships of a class. Further regressions were performed once the ships were grouped by the fleet to which they are assigned and then by class. This was done to see if any other relationships might be discovered that were fleet specific.

To summarize, the variables used in the following regressions and their meanings are as follows:

Dependent Variables			
SR	A dependent variable to estimate repair parts costs when using "by hull" data.		
SO	A dependent variable to estimate SO consumable costs when using "by hull" data.		
	Independent Variables		
FY	An independent variable representing the current fiscal year. Fiscal Year 2000 was used as the base (00). Therefore fiscal year 1999 is represented by a negative one (-1) and fiscal year 2001 by a positive one (1).		
Pac Flt	A binary (one or zero) indicator variable to represent the fleet in which a ship is home ported. A ship assigned to the Atlantic Fleet would have a value of zero and one assigned to the Pacific Fleet would have a value of one.		
UW not dep	Represents the days spent underway and while not in a deployed status. In the NUERS database this is represented by the time spent in code eight.		
Code 17	Represents the days underway on deployment while in the 5 th Fleet AOR. This time is represented by code 17 in the NUERS database.		
UW dep not 17	Represents the days spent underway and on deployment when operating in areas SO than the 5 th fleet AOR. This is represented by the code nine in the NUERS database.		
Total UW de-	Is the summation of the days under "Code 17" and "Total UW deployed."		
ployed	This represents the total number of days underway while in a deployed status.		
Total UW	Represents the total number of days a ship was underway in a year. It is the summation of the time spent in codes eight, nine and seventeen in the NU-ERS database.		

Table 23: List of Variables Used in Regressions in Appendix E

AOE-1 Class

SO:

There were no significant regressions for SO as a dependent variable. No regressions met the 90% significance threshold. This was true for all AOE-1 class ships combined as well as separated by fleet.

SR:

Combined:

Regression Analysis: EMRM versus two digit year, Pac Flt, Total_1

```
The regression equation is
EMRM = 1179276 + 194205 two digit year - 447725 Pac Flt + 2952 Total_1
MAPE 27.9%

        Predictor
        Coef
        SE Coef

        Constant
        1179276
        262025

        two digi
        194205
        56987

        Pac Flt
        -447725
        148635

        Total_1
        2952
        1782

                                                                                         Т
                                                                                                               Ρ
                                                                                  4.50 0.000
                                                                                                 0.004
                                                                                     3.41
                                                                                   -3.01
                                                                                                      0.009
                                                                                    1.66
                                                                                                     0.120
S = 307701
                               R-Sq = 61.3\% R-Sq(adj) = 53.0\%
Analysis of Variance

        Source
        DF
        SS
        MS
        F
        P

        Regression
        3 2.10240E+12 7.00800E+11 7.40 0.003
        7.40 0.003

        Residual Error
        14 1.32552E+12 94680153575
        94680153575

Total
                   17 3.42792E+12
```

 Source
 DF
 Seq SS

 two digi
 1 9.87195E+11

 Pac Flt
 1 8.55520E+11

 Total_1
 1 2.59684E+11

Regression Analysis: EMRM versus two digit year, Pac Flt

```
The regression equation is

EMRM = 1582192 + 210046 two digit year - 446790 Pac Flt

MAPE 19.6%

Predictor Coef SE Coef T P

Constant 1582192 102801 15.39 0.000

two digi 210046 59352 3.54 0.003

Pac Flt -446790 157031 -2.85 0.012

S = 325085 R-Sq = 53.8% R-Sq(adj) = 47.6%

Analysis of Variance
```

Source DF SS MS F P Regression 2 1.84271E+12 9.21357E+11 8.72 0.003

Residual Error 15 1.58521E+12 1.05680E+11

Total 17 3.42792E+12

Source DF Seq SS two digi 1 9.87195E+11 Pac Flt 1 8.55520E+11

Atlantic Fleet

Regression Analysis: EMRM versus two-digit year, Total 1

The regression equation is

EMRM = 1216456 + 168466 two digit year + 2679 Total_1

MAPE 9.8%

SE Coef Predictor Coef Т Ρ 198754 1216456 6.12 0.000 Constant two digi 168466 49580 3.40 0.011 Total 1 2679 1363 1.97 0.090

S = 221304 R-Sq = 70.0% R-Sq(adj) = 61.4%

Analysis of Variance

Source DF SS MS F P
Regression 2 7.98273E+11 3.99136E+11 8.15 0.015

Residual Error 7 3.42828E+11 48975435200

Total 9 1.14110E+12

Source DF Seq SS two digi 1 6.08966E+11 Total_1 1 1.89307E+11

Regression Analysis: EMRM versus two digit year

The regression equation is

EMRM = 1582192 + 174494 two digit year

MAPE 12.0%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1582192
 81558
 19.40
 0.000

 two digi
 174494
 57670
 3.03
 0.016

S = 257909 R-Sq = 53.4% R-Sq(adj) = 47.5%

Analysis of Variance

Source DF SS MS F P Regression 1 6.08966E+11 6.08966E+11 9.16 0.016

Residual Error 8 5.32135E+11 66516868567

Total 9 1.14110E+12

Unusual Observations

Obs two digi EMRM Fit SE Fit Residual St Resid 1 2.00 2402636 1931181 141262 471455 2.18R

Pacific Fleet

Regression Analysis: EMRM versus two digit year

The regression equation is EMRM = 1099850 + 281150 two digit year MAPE 27.2%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1099850
 156304
 7.04
 0.000

 two digi
 281150
 127622
 2.20
 0.070

S = 403575 R-Sq = 44.7% R-Sq(adj) = 35.5%

Analysis of Variance

Source DF SS MS F P Regression 1 7.90453E+11 7.90453E+11 4.85 0.070

Residual Error 6 9.77235E+11 1.62873E+11

Total 7 1.76769E+12

AOE-6 Class

SO:

Combined

Regression Analysis: OTHER versus Pac Flt, Total 1

The regression equation is OTHER = 230024 + 585647 Pac Flt + 3912 Total_1 MAPE = 19.9%

SE Coef Predictor Coef Τ 230024 185603 1.24 0.237 Constant Pac Flt 585647 131199 4.46 0.001 Total_1 3912 1297 3.02 0.010

S = 256106 R-Sq = 72.9% R-Sq(adj) = 68.7%

Analysis of Variance

Source DF SS MS F P
Regression 2 2.29535E+12 1.14768E+12 17.50 0.000

Residual Error 13 8.52674E+11 65590285747

Total 15 3.14802E+12

Source DF Seq SS Pac Flt 1 1.69829E+12 Total_1 1 5.97065E+11

Regression Analysis: OTHER versus Pac Flt, UW not dep, Total UW deployed

The regression equation is

OTHER = -7758 + 577636 Pac Flt + 7567 UW not dep + 3842 Total UW deployed MAPE = 21.7%

Predictor	Coef	SE Coef	Т	P
Constant	-7758	241872	-0.03	0.975
Pac Flt	577636	126043	4.58	0.001
UW not d	7567	2806	2.70	0.019
Total UW	3842	1245	3.08	0.009

S = 245807 R-Sq = 77.0% R-Sq(adj) = 71.2%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 3 2.42297E+12 8.07657E+11 13.37 0.000
 13.37 0.000

Residual Error 12 7.25053E+11 60421051436

Total 15 3.14802E+12

Source DF Seq SS Pac Flt 1 1.69829E+12 UW not d 1 1.49664E+11 Total UW 1 5.75023E+11

Atlantic Fleet:

Regression Analysis: OTHER versus 2 digit year, Total_1

The regression equation is

OTHER = 389230 - 95086 2 digit year + 2493 Total_1

MAPE = 15.1%

Predictor	Coef	SE Coef	T	P
Constant	389230	155842	2.50	0.047
2 digit	-95086	42999	-2.21	0.069
Total_1	2493	1169	2.13	0.077

S = 162403 R-Sq = 68.8% R-Sq(adj) = 58.4%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2 3.49558E+11 1.74779E+11
 6.63
 0.030

Residual Error 6 1.58248E+11 26374710426

Total 8 5.07806E+11

Source DF Seq SS 2 digit 1 2.29616E+11 Total_1 1 1.19941E+11

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 4 1.00 238253 523506 78325 -285253 -2.01R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 700259 - 121495 2 digit year MAPE = 34.6%

Predictor	Coef	SE Coef	T	P
Constant	700259	67393	10.39	0.000
2 digit	-121495	50545	-2.40	0.047

S = 199352 R-Sq = 45.2% R-Sq(adj) = 37.4%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 2.29616E+11
 2.29616E+11
 5.78
 0.047

Residual Error 7 2.78190E+11 39741390125

Total 8 5.07806E+11

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = 315716 + 3238 Total_1 MAPE = 18.4%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 315716
 189907
 1.66
 0.140

 Total_1
 3238
 1396
 2.32
 0.054

S = 202564 R-Sq = 43.4% R-Sq(adj) = 35.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 2.20580E+11 2.20580E+11 5.38 0.054

Residual Error 7 2.87226E+11 41032300600

Total 8 5.07806E+11

Unusual Observations

Obs Total_1 OTHER Fit SE Fit Residual St Resid 4 92 238253 613580 83445 -375327 -2.03R

R denotes an observation with a large standardized residual

SR:

Combined:

Regression Analysis: EMRM versus Pac Flt, UW not dep, Total UW deployed

The regression equation is

 ${\tt EMRM}=461317$ - 290374 Pac Flt + 10861 UW not dep + 5132 Total UW deployed ${\tt MAPE=14.7\$}$

Predictor	Coef	SE Coef	Т	P
Constant	461317	306456	1.51	0.158
Pac Flt	-290374	159699	-1.82	0.094
UW not d	10861	3555	3.06	0.010
Total UW	5132	1578	3.25	0.007

S = 311442 R-Sq = 56.4% R-Sq(adj) = 45.5%

Analysis of Variance

Source DF SS MS F P Regression 3 1.50481E+12 5.01602E+11 5.17 0.016

Residual Error 12 1.16395E+12 96996154337

Total 15 2.66876E+12

Source	DF	Seq SS
Pac Flt	1	1.31603E+11
UW not d	1	3.46986E+11
Total UW	1	1.02622E+12

Unusual Observations

0bs	Pac Flt	EMRM	Fit	SE Fit	Residual	St Resid
5	0.00	2541076	1914109	154057	626967	2.32R

R denotes an observation with a large standardized residual

Atlantic and Pacific Fleets:

There were no significant regressions for either Atlantic or Pacific Fleets when the data were considered separately.

ARS Class

SO

Combined

Regression Analysis: OTHER versus two digit year, Pac Flt

The regression equation is OTHER = 349315 + 69185 two digit year + 181906 Pac Flt MAPE = 18.6%

Predictor	Coef	SE Coef	T	P
Constant	349315	32911	10.61	0.000
two digi	69185	19001	3.64	0.002
Pac Flt	181906	50273	3.62	0.003

```
R-Sq = 68.4\% R-Sq(adj) = 64.2\%
S = 104075
```

Analysis of Variance

Source DF SS MS F P
Regression 2 3.51912E+11 1.75956E+11 16.24 0.000
Residual Error 15 1.62474E+11 10831580731

17 5.14386E+11 Total

Source DF Seq SS two digi 1 2.10099E+11 Pac Flt 1 1.41813E+11

Unusual Observations

OTHER Fit 890900 669589 Residual St Resid Obs two digi OTHER SE Fit 2.00 46544 221311 2.38R

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 498460 + 134705 two digit year MAPE = 13.1%

Predictor	Coef	SE Coef	T	P
Constant	498460	41578	11.99	0.000
two digi	134705	33948	3.97	0.007

S = 107353 R-Sq = 72.4% R-Sq(adj) = 67.8%

Analysis of Variance

Source DF SS MS F P Regression 1 1.81454E+11 1.81454E+11 15.74 0.007

Residual Error 6 69147958500 11524659750

Total 7 2.50602E+11

Atlantic Fleet

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 349315 + 36424 two digit year MAPE = 13.0%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 349315
 19017
 18.37
 0.000

 two digi
 36424
 13447
 2.71
 0.027

S = 60137 R-Sq = 47.8% R-Sq(adj) = 41.3%

Analysis of Variance

Source DF SS MS F P Regression 1 26534592610 26534592610 7.34 0.027

Residual Error 8 28931779187 3616472398

Total 9 55466371796

SR

Combined

Regression Analysis: EMRM versus two digit year, Pac Flt

The regression equation is

EMRM = 414091 + 57674 two digit year + 252672 Pac Flt

MAPE = 13.6%

Predictor Coef SE Coef Т Р 35361 0.000 Constant 414091 11.71 two digi 57674 20415 2.83 0.013 Pac Flt 252672 54014 4.68 0.000

S = 111820 R-Sq = 70.7% R-Sq(adj) = 66.8%

Analysis of Variance

Source DF SS MS F P Regression 2 4.52002E+11 2.26001E+11 18.07 0.000

Residual Error 15 1.87555E+11 12503699720

Total 17 6.39557E+11

Source DF Seq SS two digi 1 1.78388E+11 Pac Flt 1 2.73614E+11

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
12	0.00	914200	666763	40831	247437	2.38R
15	-1.00	379800	609088	50007	-229288	-2.29R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus two-digit year

The regression equation is

EMRM = 414091 + 48712 two digit year

MAPE = 11.9%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 414091
 21801
 18.99
 0.000

 two digi
 48712
 15416
 3.16
 0.013

S = 68940 R-Sq = 55.5% R-Sq(adj) = 50.0%

Analysis of Variance

Source DF SS MS F P Regression 1 47456594338 47456594338 9.99 0.013

Residual Error 8 38022184621 4752773078

Total 9 85478778958

Unusual Observations

Obs two digi EMRM Fit SE Fit Residual St Resid 3 0.00 554915 414091 21801 140824 2.15R

R denotes an observation with a large standardized residual

CG-47 Class

SO

Combined

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is OTHER = 589434 + 86589 2 digit year + 1312 Total_1

MAPE = 19.0%

Predictor SE Coef Coef Т Р 589434 53255 0.000 Constant 11.07 2 digit 86589 14512 5.97 0.000 Total_1 1311.5 397.7 3.30 0.001

S = 210666 R-Sq = 29.8% R-Sq(adj) = 28.6%

Analysis of Variance

Source DF SS MS F P Regression 2 2.23863E+12 1.11932E+12 25.22 0.000

Residual Error 119 5.28124E+12 44380182751

Total 121 7.51987E+12

Source DF Seq SS 2 digit 1 1.75605E+12 Total_1 1 4.82579E+11

Unusual Observations

Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
16	-1.00	1164800	746792	36467	418008	2.01R
19	2.00	1993500	930489	32133	1063011	5.11R
40	-1.00	1166000	704823	28957	461177	2.21R
47	2.00	1507000	959343	32949	547657	2.63R
59	2.00	1503200	961966	33137	541234	2.60R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year, Pac Flt, Total_1

The regression equation is

OTHER = $519990 + 70221 2 \text{ digit year} + 244877 \text{ Pac Flt} + 1061 \text{ Total_1} \text{ MAPE} = 14.3\%$

Predictor	Coef	SE Coef	Т	P
Constant	519990	44946	11.57	0.000
2 digit	70221	12183	5.76	0.000
Pac Flt	244877	32596	7.51	0.000
Total_1	1061.0	330.2	3.21	0.002

S = 174000 R-Sq = 52.5% R-Sq(adj) = 51.3%

Analysis of Variance

Source DF SS MS F P
Regression 3 3.94731E+12 1.31577E+12 43.46 0.000

Residual Error 118 3.57256E+12 30275915803

Total 121 7.51987E+12

Source DF Seq SS 2 digit 1 1.75605E+12 Pac Flt 1 1.87869E+12 Total_1 1 3.12569E+11

Unusual Observations

MAPE = 14.7%

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
19	2.00	1993500	1041112	30352	952388	5.56R
47	2.00	1507000	1064453	30601	442547	2.58R
59	2.00	1503200	1066575	30708	436625	2.55R
92	2.00	1338206	865198	38919	473008	2.79R
112	2.00	1244372	873686	40481	370686	2.19R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year, Pac Flt

The regression equation is OTHER = 648018 + 72977 2 digit year + 255457 Pac Flt

Predictor	Coef	SE Coef	Т	P
Constant	648018	21596	30.01	0.000
2 digit	72977	12620	5.78	0.000
Pac Flt	255457	33676	7.59	0.000

S = 180688 R-Sq = 48.3% R-Sq(adj) = 47.5%

Analysis of Variance

Source DF SS MS F P Regression 2 3.63474E+12 1.81737E+12 55.67 0.000

Residual Error 119 3.88513E+12 32648128005

Total 121 7.51987E+12

Source DF Seq SS 2 digit 1 1.75605E+12 Pac Flt 1 1.87869E+12

Unusual Observations

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
19	2.00	1993500	1049429	31404	944071	5.31R
	2.00		2017127	01101	2110.1	
47	2.00	1507000	1049429	31404	457571	2.57R
59	2.00	1503200	1049429	31404	453771	2.55R
92	2.00	1338206	793972	33218	544234	3.06R
112	2.00	1244372	793972	33218	450400	2.54R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 753079 + 90914 2 digit year MAPE 20.25%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 753079
 20099
 37.47
 0.000

 2 digit
 90914
 15036
 6.05
 0.000

S = 219162 R-Sq = 23.4% R-Sq(adj) = 22.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.75605E+12 1.75605E+12 36.56 0.000
Residual Error 120 5.76382E+12 48031838224

Total 121 7.51987E+12

Unusual Observations

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
16	-1.00	1164800	662165	26952	502635	2.31R
19	2.00	1993500	934907	33400	1058593	4.89R
40	-1.00	1166000	662165	26952	503835	2.32R
47	2.00	1507000	934907	33400	572093	2.64R
59	2.00	1503200	934907	33400	568293	2.62R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: OTHER versus 2 digit year, UW not dep, Total Deploy

The regression equation is OTHER = 545267 + 65314 2 digit year + 973 UW not dep + 599 Total Deployed UW MAPE = 20.1%

Predictor	Coef	SE Coef	T	P
Constant	545267	45975	11.86	0.000
2 digit	65314	10773	6.06	0.000
UW not d	973.2	447.5	2.17	0.033
Total De	598.5	312.6	1.91	0.060

S = 127072R-Sq = 40.4% R-Sq(adj) = 37.7%

Analysis of Variance

Source DF SS MS F P
Regression 3 7.21593E+11 2.40531E+11 14.90 0.000
Residual Error 66 1.06572E+12 16147266502

69 1.78731E+12 Total

Source DF Seq SS 2 digit 1 6.27604E+11 UW not d 1 34807500612 Total De 1 59181828131

Unusual Observations

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
4	1.00	543842	788680	45201	-244838	-2.06R
40	2.00	1338206	836748	34847	501458	4.10R
60	2.00	1244372	816430	38875	427942	3.54R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is OTHER = 566698 + 65111 2 digit year + 674 Total_1 MAPE 15.4%

Predictor	Coef	SE Coef	Т	P
Constant	566698	39351	14.40	0.000
2 digit	65111	10757	6.05	0.000
Total_1	673.9	300.9	2.24	0.028

S = 126900R-Sq = 39.6% R-Sq(adj) = 37.8%

Analysis of Variance

Source DF SS MS F P Regression 2 7.08373E+11 3.54187E+11 21.99 0.000

Residual Error 67 1.07894E+12 16103571911
Total 69 1.78731E+12

Source DF Seq SS 2 digit 1 6.27604E+11 Total_1 1 80769599814

Unusual Observations

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
40	2.00	1338206	826982	33089	511224	4.17R
60	2.00	1244372	832373	34605	411999	3.37R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 648018 + 66954 2 digit yearMAPe 15.1%

 Coef
 SE Coef
 T
 P

 648018
 15609
 41.52
 0.000

 66954
 11037
 6.07
 0.000
 Predictor Constant 2 digit

S = 130593R-Sq = 35.1% R-Sq(adj) = 34.2%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1 6.27604E+11 6.27604E+11 36.80 0.000
 36.80 0.000

 Residual Error
 68 1.15971E+12 17054542910
 7054542910

 Total
 69 1.78731E+12

Unusual Observations

Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
40	2.00	1338206	781927	27035	556279	4.35R
60	2.00	1244372	781927	27035	462445	3.62R

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is OTHER = 667532 + 81913 2 digit year + 1754 Total_1 MAPE = 36.2

Predictor	Coef	SE Coef	T	P
Constant	667532	97636	6.84	0.000
2 digit	81913	27510	2.98	0.005
Total_1	1754.4	700.8	2.50	0.016
S = 221414	R-Sq = 2	4.7% R-S	q(adj) = 21	L.6%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2
 7.87393E+11
 3.93696E+11
 8.03
 0.001

 Residual Error
 49
 2.40217E+12
 49023976006

 Total
 51
 3.18957E+12

Source DF Seq SS 2 digit 1 4.80164E+11 Total_1 1 3.07229E+11

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 4 2.00 1993500 1055917 51639 937583 4.35R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 896989 + 85948 2 digit year MAPE =17.1%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 896989
 35362
 25.37
 0.000

 2 digit
 85948
 28873
 2.98
 0.004

S = 232783 R-Sq = 15.1% R-Sq(adj) = 13.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 4.80164E+11 4.80164E+11 8.86 0.004

Residual Error 50 2.70940E+12 54188067358

Total 51 3.18957E+12

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 4 2.00 1993500 1068886 54017 924614 4.08R

R denotes an observation with a large standardized residual

SR

Combined

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total Deploy

The regression equation is

 ${\tt EMRM} = 2274423 + 279975 \ 2 \ {\tt digit\ year} + 3268 \ {\tt UW\ not\ dep} + 2655 \ {\tt Total\ Deployed\ UW} \ {\tt MAPE} = 13.2 \%$

SE Coef Predictor Coef Т Р 17.28 0.000 Constant 2274423 131630 2 digit 279975 32386 8.64 0.000 UW not d 3268 1245 2.63 0.010 Total De 2654.6 896.8 2.96 0.004

S = 469704 R-Sq = 43.2% R-Sq(adj) = 41.8%

Analysis of Variance

Source DF SS MS F P Regression 3 1.98232E+13 6.60772E+12 29.95 0.000

Residual Error 118 2.60334E+13 2.20622E+11

Total 121 4.58565E+13

Source	DF	Seq SS
2 digit	1	1.76414E+13
UW not d	1	2.48661E+11
Total De	1	1.93316E+12

Imnignal	Observations
Unusuai	Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
16	-1.00	3817800	2488203	116206	1329597	2.92R
28	-1.00	3660800	2397947	101141	1262853	2.75R
39	2.00	2446500	3505634	115104	-1059134	-2.33R
53	0.00	1672000	2651015	43076	-979015	-2.09R
87	2.00	4436981	3371686	85829	1065295	2.31R
96	1.00	4169321	3075767	68087	1093554	2.35R
97	2.00	4176974	3111317	82272	1065657	2.30R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Pac Flt,

The regression equation is

 ${\tt EMRM}$ = 2351259 + 290770 2 digit year - 171724 Pac Flt + 3011 UW not dep + 2896 Total Deployed UW

MAPE = 13.0%

Predictor	Coef	SE Coef	Т	P
Constant	2351259	136262	17.26	0.000
2 digit	290770	32525	8.94	0.000
Pac Flt	-171724	89967	-1.91	0.059
UW not d	3011	1238	2.43	0.017
Total De	2896.4	895.9	3.23	0.002

S = 464530 R-Sq = 44.9% R-Sq(adj) = 43.1%

Analysis of Variance

Source DF SS MS F P
Regression 4 2.06094E+13 5.15234E+12 23.88 0.000
Residual Error 117 2.52472E+13 2.15788E+11

Total 121 4.58565E+13

Source DF Seq SS 2 digit 1 1.76414E+13 Pac Flt 1 6.07016E+11 UW not d 1 1.05585E+11 Total De 1 2.25540E+12

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
16	-1.00	3817800	2427502	119245	1390298	3.10R
28	-1.00	3660800	2329023	106345	1331777	2.95R
39	2.00	2446500	3445809	118072	-999309	-2.22R
87	2.00	4436981	3465284	98029	971697	2.14R
91	1.00	1973525	2900988	72914	-927463	-2.02R
96	1.00	4169321	3171532	83973	997789	2.18R
97	2.00	4176974	3193392	92029	983582	2.16R
105	0.00	1965420	2908092	82574	-942672	-2.06R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Total 1

The regression equation is

EMRM = 2309035 + 279134 2 digit year + 2736 Total_1

MAPE = 13.4%

Predictor	Coef	SE Coef	Т	P
Constant	2309035	118423	19.50	0.000
2 digit	279134	32271	8.65	0.000
Total 1	2735.9	884.4	3.09	0.002

S = 468461 R-Sq = 43.1% R-Sq(adj) = 42.1%

Analysis of Variance

Source DF SS MS F P Regression 2 1.97413E+13 9.87065E+12 44.98 0.000

Residual Error 119 2.61152E+13 2.19456E+11

Total 121 4.58565E+13

Source DF Seq SS 2 digit 1 1.76414E+13 Total_1 1 2.09994E+12

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
16	-1.00	3817800	2538782	81091	1279018	2.77R
28	-1.00	3660800	2445761	63622	1215039	2.62R
39	2.00	2446500	3504772	114790	-1058272	-2.33R
53	0.00	1672000	2651025	42962	-979025	-2.10R
87	2.00	4436981	3359769	83349	1077212	2.34R
96	1.00	4169321	3080635	67438	1088686	2.35R
97	2.00	4176974	3105328	81467	1071646	2.32R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Pac Flt, Total 1

The regression equation is

EMRM = 2358455 + 290782 2 digit year - 174269 Pac Flt + 2914 Total_1 MAPE = 13.1%

Predictor	Coef	SE Coef	T	P
Constant	2358455	119491	19.74	0.000
2 digit	290782	32388	8.98	0.000
Pac Flt	-174269	86657	-2.01	0.047
Total_1	2914.2	877.8	3.32	0.001

S = 462582 R-Sq = 44.9% R-Sq(adj) = 43.5%

Analysis of Variance

Source DF SS MS F P Regression 3 2.06067E+13 6.86889E+12 32.10 0.000

Residual Error 118 2.52499E+13 2.13982E+11

Total 121 4.58565E+13

Source DF Seq SS 2 digit 1 1.76414E+13 Pac Flt 1 6.07016E+11 Total_1 1 2.35830E+12

Unusual Observations							
Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid	
16	-1.00	3817800	2435454	95141	1382346	3.05R	
28	-1.00	3660800	2336370	83101	1324430	2.91R	
39	2.00	2446500	3444771	117211	-998271	-2.23R	
87	2.00	4436981	3464585	97418	972396	2.15R	
91	1.00	1973525	2899863	71910	-926338	-2.03R	
96	1.00	4169321	3173803	81122	995518	2.19R	
97	2.00	4176974	3193560	91631	983414	2.17R	
105	0.00	1965420	2909248	81576	-943828	-2.07R	

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year

The regression equation is EMRM = 2650403 + 288156 2 digit year MAPE 14.0%

Predictor	Coef	SE Coef	T	P
Constant	2650403	44469	59.60	0.000
2 digit	288156	33267	8.66	0.000

S = 484898 R-Sq = 38.5% R-Sq(adj) = 38.0%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	1.76414E+13	1.76414E+13	75.03	0.000
Residual Error	120	2.82152E+13	2.35127E+11		

Total 121 4.58565E+13

Unusua	l Observat	ions				
Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
16	-1.00	3817800	2362247	59632	1455553	3.02R
28	-1.00	3660800	2362247	59632	1298553	2.70R
53	0.00	1672000	2650403	44469	-978403	-2.03R
87	2.00	4436981	3226716	73898	1210265	2.53R
91	1.00	1973525	2938559	51113	-965034	-2.00R
96	1.00	4169321	2938559	51113	1230762	2.55R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Pac Flt

The regression equation is EMRM = 2710122 + 298352 2 digit year - 145208 Pac Flt MAPE = 13.8%

Predictor	Coef	SE Coef	T	P
Constant	2710122	57570	47.08	0.000
2 digit	298352	33641	8.87	0.000
Pac Flt	-145208	89771	-1.62	0.108

S = 481665 R-Sq = 39.8% R-Sq(adj) = 38.8%

Analysis of Variance

Source DF SS MS F P Regression 2 1.82484E+13 9.12418E+12 39.33 0.000

Residual Error 119 2.76082E+13 2.32001E+11

121 4.58565E+13 Total

DF 1 1 Seq SS Source 1 1.76414E+13 2 digit Pac Flt 1 6.07016E+11

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
16	-1.00	3817800	2266562	83713	1551238	3.27R
28	-1.00	3660800	2266562	83713	1394238	2.94R
87	2.00	4436981	3306827	88550	1130154	2.39R
91	1.00	1973525	3008474	66678	-1034949	-2.17R
96	1.00	4169321	3008474	66678	1160847	2.43R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total Deploy

The regression equation is

EMRM = 2363303 + 314474 2 digit year + 3231 UW not dep + 2131 Total Deployed UW MAPE =14.1%

Predictor	Coef	SE Coef	T	P
Constant	2363303	172173	13.73	0.000
2 digit	314474	40346	7.79	0.000
UW not d	3231	1676	1.93	0.058
Total De	2131	1171	1.82	0.073

S = 475875R-Sq = 50.8% R-Sq(adj) = 48.6%

Analysis of Variance

SS Source DF MS F Source PF SS Source Regression 3 1.54625E+13 5.15415E+12 22.76 0.000

Residual Error 66 1.49461E+13 2.26457E+11

69 3.04086E+13

Source DF Seq SS 2 digit 1 1.43640E+13 UW not d 1 3.47804E+11 Total De 1 7.50619E+11

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
35	2.00	4436981	3482607	115979	954374	2.07R
39	1.00	1973525	2955675	83567	-982150	-2.10R
44	1.00	4169321	3139536	100402	1029785	2.21R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Total 1

The regression equation is

 $EMRM = 2426207 + 313876 2 digit year + 2353 Total_1$

MAPE = 14.3%

Predictor	Coef	SE Coef	T	P
Constant	2426207	147019	16.50	0.000
2 digit	313876	40187	7.81	0.000
Total 1	2353	1124	2.09	0.040

S = 474106R-Sq = 50.5% R-Sq(adj) = 49.0%

Analysis of Variance

 Source
 DF
 SS
 MS

 Regression
 2 1.53486E+13 7.67428E+12

 Residual Error
 67 1.50601E+13 2.24777E+11
 F 34.14 0.000

Total 69 3.04086E+13

DF Seq SS Source 2 digit 1 1.43640E+13 1 9.84523E+11 Total_1

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
35	2.00	4436981	3477462	115322	959519	2.09R
39	1.00	1973525	2942423	81149	-968898	-2.07R
44	1.00	4169321	3163586	94151	1005735	2.16R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 2710122 + 320313 2 digit year

MAPE = 14.5%

T SE Coef Predictor Coef 46.68 0.000 Constant 2710122 58058 320313 41053 7.80 0.000 2 digit

S = 485746 R-Sq = 47.2% R-Sq(adj) = 46.5%

Analysis of Variance

Source MS DF SS F Regression 1 1.43640E+13 1.43640E+13 60.88

Residual Error 68 1.60446E+13 2.35950E+11

69 3.04086E+13 Total

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
35	2.00	4436981	3350747	100559	1086234	2.29R
39	1.00	1973525	3030435	71106	-1056910	-2.20R
44	1.00	4169321	3030435	71106	1138886	2.37R

Pacific Fleet

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total Deploy

The regression equation is

EMRM = 2107506 + 242910 2 digit year + 3367 UW not dep + 3944 Total Deployed UW MAPE = 11.2%

Predictor	Coef	SE Coef	T	P
Constant	2107506	210969	9.99	0.000
2 digit	242910	56162	4.33	0.000
UW not d	3367	1913	1.76	0.085
Total De	3944	1433	2.75	0.008

S = 451737 R-Sq = 36.6% R-Sq(adj) = 32.6%

Analysis of Variance

Source MS SS Regression 3 5.65227E+12 1.88409E+12 Residual Error 48 9.79518E+12 2.04066E+11 3 5.65227E+12 1.88409E+12 9.23 0.000

51 1.54475E+13 Total

Seq SS 1 4.09680E+12 1 104789917 Source 2 digit UW not d Total De 1 1.54499E+12

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
1	-1.00	3817800	2598187	158763	1219613	2.88R
13	-1.00	3660800	2464090	137809	1196710	2.78R
24	2.00	2446500	3462659	175798	-1016159	-2.44R
44	2.00	4108000	3130497	122787	977503	2.25R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Total 1

The regression equation is

EMRM = 2078288 + 242080 2 digit year + 3901 Total_1 MAPE = 11.2%

Predictor	Coef	SE Coef	T	P
Constant	2078288	197520	10.52	0.000
2 digit	242080	55654	4.35	0.000
Total_1	3901	1418	2.75	0.008

S = 447927 R-Sq = 36.4% R-Sq(adj) = 33.8%

Analysis of Variance

SS F Source DF MS Regression 14.00 0.000 2 5.61618E+12 2.80809E+12

Residual Error 49 9.83127E+12 2.00638E+11

Total 51 1.54475E+13

Source	DF	Seq SS
2 digit	1	4.09680E+12
Total 1	1	1.51938E+12

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
1	-1.00	3817800	2561872	132102	1255928	2.93R
13	-1.00	3660800	2429224	109153	1231576	2.83R
24	2.00	2446500	3471479	173070	-1024979	-2.48R
38	0.00	1672000	2565966	68539	-893966	-2.02R
44	2.00	4108000	3155464	106574	952536	2.19R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 2588564 + 251053 2 digit year

MAPE = 13.0%

Predictor	Coef	SE Coef	T	P
Constant	2588564	72379	35.76	0.000
2 digit	251053	59097	4.25	0.000

S = 476459 R-Sq = 26.5% R-Sq(adj) = 25.1%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	4.09680E+12	4.09680E+12	18.05	0.000
Residual Error	50	1.13507E+13	2.27013E+11		

Total 51 1.54475E+13

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
1	-1.00	3817800	2337511	110561	1480289	3.19R
13	-1.00	3660800	2337511	110561	1323289	2.86R
44	2.00	4108000	3090670	110561	1017330	2.20R

R denotes an observation with a large standardized residual

CVN-68 Class

SO:

Atlantic Fleet

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is OTHER = 5204351 + 781017 2 digit year + 20101 Total_1 MAPE = 16.2%

Predictor	Coef	SE Coef	T	P
Constant	5204351	806073	6.46	0.000
2 digit	781017	262038	2.98	0.008
Total_1	20101	5368	3.74	0.002

S = 1599008 R-Sq = 63.3% R-Sq(adj) = 59.0%

Analysis of Variance

 Source
 DF
 SS
 MS

 Regression
 2
 7.50910E+13
 3.75455E+13

 Residual Error
 17
 4.34660E+13
 2.55683E+12
 MS F P 2 7.50910E+13 3.75455E+13 14.68 0.000

19 1.18557E+14 Total

DF Seq SS 1 3.92460E+13 2 digit Total_1 1 3.58451E+13

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 2.00 13912179 10967421 724042 2944758 2.07R 18 -2.00 10058182 6717716 621856 3340466 2.27R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = 4575298 + 23681 Total_1 MAPE = 18.6%

Predictor Coef SE Coef Constant 4575298 932889 4.90 0.000 6274 0.001 Total_1 23681 3.77

S = 1917464 R-Sq = 44.2% R-Sq(adj) = 41.1%

Analysis of Variance

Source DF SS MS F Regression 14.25 0.001 1 5.23771E+13 5.23771E+13

18 6.61800E+13 3.67667E+12 Residual Error

19 1.18557E+14 Total

Unusual Observations

Total_1 OTHER Fit SE Fit Residual St Resid Obs 209 13912179 9524728 645706 4387451 2.43R

R denotes an observation with a large standardized residual

SR:

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total UW dep

The regression equation is

EMRM = 2977027 + 681646 2 digit year + 29933 UW not dep + 21332 Total UW deployed

MAPE = 27.0%

Predictor	Coef	SE Coef	T	P
Constant	2977027	1086374	2.74	0.015
2 digit	681646	322751	2.11	0.051
UW not d	29933	11066	2.70	0.016
Total UW	21332	7056	3.02	0.008

S = 1924825 R-Sq = 59.9% R-Sq(adj) = 52.4%

Analysis of Variance

Source DF SS MS F P Regression 3 8.87016E+13 2.95672E+13 7.98 0.002

Residual Error 16 5.92792E+13 3.70495E+12

Total 19 1.47981E+14

Source DF Seq SS 2 digit 1 3.81828E+13 UW not d 1 1.66560E+13 Total UW 1 3.38628E+13

Unusual Observations

Obs 2 digit EMRM Fit SE Fit Residual St Resid 3 2.00 11802664 8081935 964745 3720729 2.23R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Total_1

The regression equation is

EMRM = 3332599 + 731389 2 digit year + 23395 Total_1

MAPE = 26.9%

Predictor Coef SE Coef Т P 0.003 Constant 3332599 956804 3.48 731389 311038 2.35 0.031 2 digit Total_1 23395 6372 3.67 0.002

S = 1898013 R-Sq = 58.6% R-Sq(adj) = 53.7%

Analysis of Variance

Source DF SS MS F P Regression 2 8.67391E+13 4.33696E+13 12.04 0.001

Residual Error 17 6.12417E+13 3.60245E+12

Total 19 1.47981E+14

Source DF Seq SS 2 digit 1 3.81828E+13 Total_1 1 4.85563E+13

Unusual Observations

Obs 2 digit EMRM Fit SE Fit Residual St Resid 3 2.00 11802664 7719718 814950 4082946 2.38R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total UW dep

The regression equation is

EMRM = 2977027 + 681646 2 digit year + 29933 UW not dep

+ 21332 Total UW deployed

Predictor Coef SE Coef Т Ρ 2.74 2977027 1086374 0.015 Constant 681646 2 digit 322751 2.11 0.051 UW not d 29933 11066 2.70 0.016 Total UW 21332 7056 3.02 0.008

S = 1924825 R-Sq = 59.9% R-Sq(adj) = 52.4%

Analysis of Variance

Regression 2 SS MS F Р 3 8.87016E+13 2.95672E+13 7.98 0.002

Residual Error 16 5.92792E+13 3.70495E+12

19 1.47981E+14

DF Source Seq SS 2 digit 1 3.81828E+13 UW not d 1 1.66560E+13 Total UW 1 3.38628E+13

Unusual Observations

Obs 2 digit EMRM Fit. SE Fit Residual St Resid 2.00 11802664 8081935 964745 3720729 2.23R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 6472983 + 986941 2 digit year

MAPE = 30.4%

Predictor Coef SE Coef Т 0.000 6472983 557870 11.60 Constant 2 digit 986941 394474 2.50 0.022

S = 2469795 R-Sq = 25.8% R-Sq(adj) = 21.7%

Analysis of Variance

Source SS MS F Regression 1 3.81828E+13 3.81828E+13 6.26 0.022

Residual Error 18 1.09798E+14 6.09989E+12

Total 19 1.47981E+14

Unusual Observations

Obs 2 digit EMRM Fit SE Fit Residual St Resid 1.00 1854746 7459924 727373 -5605178 -2.37R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Total 1

The regression equation is $EMRM = 2743518 + 26748 Total_1$ MAPE = 27.4%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2743518
 1033093
 2.66
 0.016
 T Constant 3.85 0.001 Total_1 26748 6948

S = 2123424R-Sq = 45.2% R-Sq(adj) = 42.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 6.68201E+13 6.68201E+13 14.82 0.001
Residual Error 18 8.11607E+13 4.50893E+12

19 1.47981E+14

Unusual Observations

Fit Obs Total_1 EMRM Residual St Resid SE Fit 125 11802664 6087022 3 477332 5715642 2.76R

R denotes an observation with a large standardized residual

DD-963 Class

SO

Combined

Regression Analysis: OTHER versus Two digit year, Pac Flt

The regression equation is OTHER = 541424 + 46157 Two digit year + 415501 Pac Flt $\mathtt{MAPE} = 17.7\%$

Predictor	Coef	SE Coef	Т	P
Constant	541424	25294	21.40	0.000
Two digi	46157	14894	3.10	0.003
Pac Flt	415501	40669	10.22	0.000

S = 199280 R-Sq = 57.2% R-Sq(adj) = 56.4%

Analysis of Variance

Source DF SS MS F P Regression 2 5.47626E+12 2.73813E+12 68.95 0.000

Residual Error 103 4.09041E+12 39712688246

105 9.56666E+12

Source DF Seq SS Two digi 1 1.33096E+12 Pac Flt 1 4.14530E+12

Unusual Observations

orrana	at obbet vac	10110				
0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
11	1.00	55250	587581	30874	-532331	-2.70R
64	2.00	209400	1049238	38029	-839838	-4.29R
84	2.00	1754200	1049238	38029	704962	3.60R
103	1.00	1486000	1003081	31417	482919	2.45R
103	1.00	1486000	1003081	31417	482919	

Regression Analysis: OTHER versus Two digit year, Pac Flt, ...

The regression equation is

OTHER = 331935 + 43634 Two digit year + 372565 Pac Flt + 1856 UW not dep + 1859 Total UW Deployed

MAPE = 22.8

Predictor	Coef	SE Coef	T	P
Constant	331935	56302	5.90	0.000
Two digi	43634	13709	3.18	0.002
Pac Flt	372565	39323	9.47	0.000
UW not d	1855.9	541.4	3.43	0.001
Total UW	1858.7	419.3	4.43	0.000

S = 183169 R-Sq = 64.6% R-Sq(adj) = 63.2%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 4 6.17801E+12 1.54450E+12 46.03 0.000
 46.03 0.000

 Residual Error
 101 3.38865E+12 33551021985
 33551021985

Total 105 9.56666E+12

Source	DF.	Seq SS
Two digi	1	1.33096E+12
Pac Flt	1	4.14530E+12
UW not d	1	42618236888
Total UW	1	6.59135E+11

Unusual Observations

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
64	2.00	209400	860437	54173	-651037	-3.72R
75	2.00	1052400	1168520	71408	-116120	-0.69 X
84	2.00	1754200	1079546	41250	674654	3.78R
92	1.00	1395200	1021361	42491	373839	2.10R
97	2.00	1430400	1076147	47759	354253	2.00R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Two digit year, Pac Flt, ...

The regression equation is

OTHER = 327688 + 43430 Two digit year + 375341 Pac Flt + 1884 UW not dep + 2017 UW Dep not 17 + 1673 Code 17

MAPE = 19.5%

Predictor	Coef	SE Coef	T	P
Constant	327688	57412	5.71	0.000
Two digi	43430	13774	3.15	0.002
Pac Flt	375341	40022	9.38	0.000
UW not d	1883.6	547.5	3.44	0.001
UW Dep n	2017.2	563.0	3.58	0.001
Code 17	1673.0	607.5	2.75	0.007

S = 183918 R-Sq = 64.6% R-Sq(adj) = 62.9%

X denotes an observation whose X value gives it large influence.

DF

Source

Regression Residual En Total		5 6.18409E 100 3.38257E 105 9.56666E			6.56	0.000	
Source	DF	Seq SS					
Two digi	1	1.33096E+12					
Pac Flt	1	4.14530E+12					
UW not d	1	42618236888					
UW Dep n	1	4.08685E+11					
Code 17	1	2.56535E+11					
Unusual Obs	servat	tions					
Obs Two	digi	OTHER	Fit	SE Fit	Resid	ual St	Resid
10	2 00	160118	71/522	76000	-25/	N 0 1	1 E2 V

SS MS F

P

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
10	2.00	460448	714532	76990	-254084	-1.52 X
64	2.00	209400	859583	54431	-650183	-3.70R
84	2.00	1754200	1081341	41634	672859	3.76R
92	1.00	1395200	1023024	42845	372176	2.08R
103	1.00	1486000	1125563	44049	360437	2.02R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence

Atlantic Fleet

Regression Analysis: OTHER versus Two digit year, Total 1

The regression equation is

OTHER = 455668 + 39223 Two digit year + 749 Total_1

MAPE = 16.9%

Predictor	Coef	SE Coef	T	P
Constant	455668	45554	10.00	0.000
Two digi	39223	12044	3.26	0.002
Total_1	749.3	373.4	2.01	0.049

S = 135085R-Sq = 20.6% R-Sq(adj) = 17.9%

Analysis of Variance

Source 2 2.83453E+11 1.41/2/2
Regression 2 2.83453E+11 1.41/2/2
60 1.09488E+12 18247967640
7 27933E+12 MS F 7.77 0.001 2 2.83453E+11 1.41727E+11

Source DF Seq SS 1 2.09976E+11 1 73477704836 Two digi Total_1

Unusual Observations

Obs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
2	2.00	351506	619533	31531	-268027	-2.04R
11	1.00	55250	500885	45795	-445635	-3.51R
16	2.00	936921	640513	32853	296408	2.26R
21	1.00	268131	569071	23146	-300940	-2.26R
32	2.00	951775	682473	43652	269302	2.11R
39	-2.00	135903	413938	35406	-278035	-2.13R
46	2.00	877135	596305	33985	280830	2.15R

Regression Analysis: OTHER versus Two digit year

The regression equation is OTHER = 540313 + 40771 Two digit year MAPE = 16.1%

Predictor	Coef	SE Coef	T	P
Constant	540313	17620	30.66	0.000
Two digi	40771	12314	3.31	0.002

S = 138396 R-Sq = 15.2% R-Sq(adj) = 13.8%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	2.09976E+11	2.09976E+11	10.96	0.002
Residual Error	61	1.16836E+12	19153373168		

Total 62 1.37833E+12

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
2	2.00	351506	621855	32282	-270349	-2.01R
11	1.00	55250	581084	22906	-525834	-3.85R
16	2.00	936921	621855	32282	315066	2.34R
21	1.00	268131	581084	22906	-312953	-2.29R
32	2.00	951775	621855	32282	329920	2.45R
39	-2.00	135903	458770	28140	-322867	-2.38R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: OTHER versus Two digit year, UW not dep, ...

The regression equation is

OTHER = 384708 + 65132 Two digit year + 3927 UW not dep + 5179 UW Dep not 17

+ 3310 Code 17

MAPE = 15.9%

Predictor	Coef	SE Coef	T	P
Constant	384708	129295	2.98	0.005
Two digi	65132	29873	2.18	0.036
UW not d	3927	1121	3.50	0.001
UW Dep n	5179	1344	3.85	0.000
Code 17	3309.6	994.5	3.33	0.002

S = 213225 R-Sq = 44.2% R-Sq(adj) = 38.3%

 Source
 DF
 SS
 MS

 Regression
 4 1.36579E+12 3.41448E+11

 Residual Error
 38 1.72766E+12 45464844900
 DF SS MS 4 1.36579E+12 3.41448E+11 7.51 0.000

42 3.09346E+12 Total

DF Seq SS Source Two digi 1 1.83851E+11 1 2299301338 UW not d 1 6.76154E+11 UW Dep n 1 5.03488E+11 Code 17

Unusual Observations

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
1	2.00	209400	660283	103735	-450883	-2.42R
18	-1.00	876700	1091200	127629	-214500	-1.26 X
21	2.00	1754200	1141987	66077	612213	3.02R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: OTHER versus Two digit year, Total 1

The regression equation is

OTHER = 418276 + 60375 Two digit year + 3897 Total_1

MAPE = 16.0%

Predictor	Coef	SE Coef	T	P
Constant	418276	113922	3.67	0.001
Two digi	60375	29334	2.06	0.046
Total_1	3896.7	792.6	4.92	0.000

S = 212935 R-Sq = 41.4% R-Sq(adj) = 38.4%

Analysis of Variance

F Source DF SS MS Regression 2 1.27980E+12 6.39901E+11 14.11 0.000

Residual Error 40 1.81365E+12 45341341870

42 3.09346E+12

Source DF Seq SS Two digi 1 1.83851E+11 1 1.09595E+12 Total_1

Unusual Observations

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
1	2.00	209400	683203	96129	-473803	-2.49R
21	2.00	1754200	1143014	57513	611186	2.98R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = $448379 + 3882 \text{ Total}_1$ MAPE = 17.7%

Predictor	Coef	SE Coef	T	P
Constant	448379	117353	3.82	0.000
Total 1	3881.9	823.2	4.72	0.000

```
S = 221179  R-Sq = 35.2\%  R-Sq(adj) = 33.6\%
```

Source	DF	SS	MS	F	P
Regression	1	1.08773E+12	1.08773E+12	22.23	0.000

Residual Error 41 2.00573E+12 48920143282

Total 42 3.09346E+12

Unusual Observations

0bs	Total_1	OTHER	Fit	SE Fit	Residual	St Resid
1	37	209400	592009	88612	-382609	-1.89 X
21	155	1754200	1050073	36997	704127	3.23R

R denotes an observation with a large standardized residual ${\tt X}$ denotes an observation whose ${\tt X}$ value gives it large influence.

SR

Combined

Regression Analysis: EMRM versus Two digit year

The regression equation is

EMRM = 2071522 + 165560 Two digit year

MAPE = 21.7

Predictor	Coef	SE Coef	T	P
Constant	2071522	60477	34.25	0.000
Two digi	165560	45053	3.67	0.000

S = 621897 R-Sq = 11.5% R-Sq(adj) = 10.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	5.22269E+12	5.22269E+12	13.50	0.000
Residual Error	104	4.02227E+13	3.86756E+11		

Total 105 4.54453E+13

Unusual Observations									
Obs	Two digi	EMRM	Fit	SE Fit	Residual	St			
11	1.00	41797	2237082	73615	-2195285				
21	1.00	698013	2237082	73615	-1539069				
39	-2.00	338476	1740401	110964	-1401925				

-2.49R -2.29R 64 2.00 61000 2402642 106022 -2341642 -3.82R 94 1.00 929000 2237082 73615 -1308082 -2.12R

Resid -3.55R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit year, UW not dep, ...

The regression equation is

<code>EMRM</code> = 1530061 + 152196 Two digit year + 4881 UW not dep + 3923 UW Dep not 17 + 3683 Code 17

MAPE = 21.2

D 31	Q F	GD G f		ъ			
Predictor	Coef	SE Coef	T	P			
Constant	1530061	185337	8.26	0.000			
Two digi	152196	43831	3.47	0.001			
UW not d	4881	1791	2.73	0.008			
UW Dep n	3923	1834	2.14	0.035			
Code 17	3683	1890	1.95	0.054			
S = 601844	R-Sq =	19.5% F	R-Sq(adj) =	16.3%			
Analysis of Variance							

Source	DF	SS	MS	F	P
Regression	4	8.86145E+12	2.21536E+12	6.12	0.000
Residual Error	101	3.65839E+13	3.62217E+11		
_					

Total 105 4.54453E+13

Source DF Seq SS 1 5.22269E+12 Two digi UW not d 1 6.35045E+11 UW Dep n 1 1.62860E+12 1 1.37511E+12 Code 17

Unusual Observations

Obs	Two digi	EMRM	Fit	SE Fit	Residual	St Resid
11	1.00	41797	1713642	184209	-1671845	-2.92R
21	1.00	698013	2117589	95144	-1419576	-2.39R
34	2.00	3372169	1946717	178000	1425452	2.48R
35	1.00	3189538	1872619	136212	1316919	2.25R
46	2.00	3421375	2239581	122710	1181794	2.01R
64	2.00	61000	2015052	160434	-1954052	-3.37R
93	2.00	1406700	2636851	135500	-1230151	-2.10R
94	1.00	929000	2296652	101772	-1367652	-2.31R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit ye, UW not dep, Total UW Dep

The regression equation is

EMRM = 1532637 + 152182 Two digit year + 4860 UW not dep+ 3807 Total UW Deployed

MAPE = 22.1

Predictor	Coef	SE Coef	Т	P
Constant	1532637	182299	8.41	0.000
Two digi	152182	43617	3.49	0.001
UW not d	4860	1768	2.75	0.007
Total UW	3807	1316	2.89	0.005

S = 598912 R-Sq = 19.5% R-Sq(adj) = 17.1%

Analysis of Variance

DF Source SS MS F Ρ Regression 8.23 0.000 3 8.85841E+12 2.95280E+12 Residual Error 102 3.65869E+13 3.58695E+11

Total 105 4.54453E+13

DF Source Seq SS 1 5.22269E+12 1 6.35045E+11 1 3.00067E+12 Two digi UW not d Total UW

ıal Observat	ions				
Two digi	EMRM	Fit	SE Fit	Residual	St Resid
1.00	41797	1715274	182453	-1673477	-2.93R
1.00	698013	2113325	82583	-1415312	-2.39R
2.00	3372169	1948793	175692	1423376	2.49R
1.00	3189538	1874378	134194	1315160	2.25R
2.00	3421375	2240422	121770	1180953	2.01R
2.00	61000	2016840	158467	-1955840	-3.39R
2.00	1808200	2823681	224215	-1015481	-1.83 X
2.00	1406700	2637047	134823	-1230347	-2.11R
1.00	929000	2299690	95751	-1370690	-2.32R
	Two digi 1.00 1.00 2.00 1.00 2.00 2.00 2.00 2.00	1.00 41797 1.00 698013 2.00 3372169 1.00 3189538 2.00 3421375 2.00 61000 2.00 1808200 2.00 1406700	Two digi EMRM Fit 1.00 41797 1715274 1.00 698013 2113325 2.00 3372169 1948793 1.00 3189538 1874378 2.00 3421375 2240422 2.00 61000 2016840 2.00 1808200 2823681 2.00 1406700 2637047	Two digi EMRM Fit SE Fit 1.00 41797 1715274 182453 1.00 698013 2113325 82583 2.00 3372169 1948793 175692 1.00 3189538 1874378 134194 2.00 3421375 2240422 121770 2.00 61000 2016840 158467 2.00 1808200 2823681 224215 2.00 1406700 2637047 134823	Two digi EMRM Fit SE Fit Residual 1.00 41797 1715274 182453 -1673477 1.00 698013 2113325 82583 -1415312 2.00 3372169 1948793 175692 1423376 1.00 3189538 1874378 134194 1315160 2.00 3421375 2240422 121770 1180953 2.00 61000 2016840 158467 -1955840 2.00 1808200 2823681 224215 -1015481 2.00 1406700 2637047 134823 -1230347

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Atlantic Fleet

Regression Analysis: EMRM versus Two digit year, Total 1

The regression equation is

 $EMRM = 1720829 + 228806 Two digit year + 3050 Total_1$

MAPE = 29.4%

Predictor	Coef	SE Coef	T	P
Constant	1720829	199173	8.64	0.000
Two digi	228806	52659	4.35	0.000
Total_1	3050	1633	1.87	0.067

S = 590628 R-Sq = 28.1% R-Sq(adj) = 25.8%

Analysis of Variance

Source DF SS MS F P Regression 2 8.19941E+12 4.09970E+12 11.75 0.000

Residual Error 60 2.09305E+13 3.48842E+11

Total 62 2.91299E+13

Source DF Seq SS Two digi 1 6.98227E+12 Total_1 1 1.21714E+12

Unusual Observations

0bs	Two digi	EMRM	Fit	SE Fit	Residual	St Resid
11	1.00	41797	1974032	200229	-1932235	-3.48R
21	1.00	698013	2251546	101199	-1553533	-2.67R
34	2.00	3372169	2248582	206355	1123587	2.03R

Regression Analysis: EMRM versus Two digit year

The regression equation is

EMRM = 2065330 + 235108 Two digit year

MAPE = 21.3%

Predictor	Coef	SE Coef	T	P
Constant	2065330	76717	26.92	0.000
Two digi	235108	53613	4.39	0.000

S = 602558 R-Sq = 24.0% R-Sq(adj) = 22.7%

Source	DF	SS	MS	F	P
Regression	1	6.98227E+12	6.98227E+12	19.23	0.000
Danidual Bassas	C 1	0 014775.10	2 (207(0.11		

Residual Error 61 2.21477E+13 3.63076E+11 Total 62 2.91299E+13

Total

Immenal	Observations
UHUSUAL	ODSEL VALIOUS

0bs	Two digi	EMRM	Fit	SE Fit	Residual	St Resid
11	1.00	41797	2300438	99730	-2258641	-3.80R
21	1.00	698013	2300438	99730	-1602425	-2.70R
39	-2.00	338476	1595115	122517	-1256639	-2.13R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: EMRM versus UW not dep, UW Dep not 17, Code 17

The regression equation is

EMRM = 1341095 + 5605 UW not dep + 8467 UW Dep not 17 + 4489 Code 17MAPE = 18.4%

Predictor	Coef	SE Coef	Т	P
Constant	1341095	347084	3.86	0.000
UW not d	5605	3004	1.87	0.070
UW Dep n	8467	3616	2.34	0.024
Code 17	4489	2676	1.68	0.101

S = 573905 R-Sq = 17.9% R-Sq(adj) = 11.6%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 3 2.80101E+12 9.33671E+11 2.83 0.051

 Residual Error
 39 1.28453E+13 3.29366E+11

 Total
 42 1.56463E+13

Source	DF	Seq SS
UW not d	1	64849569939
UW Dep n	1	1.80961E+12
Code 17	1	9 26557E+11

Unusual Observations

Obs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
1	37	61000	1548486	249450	-1487486	-2.88R
12	203	1808200	2478942	323957	-670742	-1.42 X
18	0	2224800	2602689	331303	-377889	-0.81 X
21	115	3502600	2256745	141918	1245855	2.24R
30	62	1406700	2563098	159777	-1156398	-2.10R
31	38	929000	2272189	112031	-1343189	-2.39R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus UW not dep, Total UW Deployed

The regression equation is

EMRM = 1465298 + 4463 UW not dep + 5898 Total UW Deployed

MAPE = 22.1%

Predictor	Coef	SE Coef	T	P
Constant	1465298	316486	4.63	0.000
UW not d	4463	2704	1.65	0.107
Total UW	5898	2144	2.75	0.009

S = 572331 R-Sq = 16.3% R-Sq(adj) = 12.1%

Analysis of Variance

Source DF SS MS F P
Regression 2 2.54379E+12 1.27189E+12 3.88 0.029

Residual Error 40 1.31025E+13 3.27563E+11

Total 42 1.56463E+13

Source DF Seq SS UW not d 1 64849569939 Total UW 1 2.47894E+12

Unusual Observations

Obs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
1	37	61000	1630423	230944	-1569423	-3.00R
12	203	1808200	2371253	299342	-563053	-1.15 X
21	115	3502600	2214440	133235	1288160	2.31R
30	62	1406700	2514620	149653	-1107920	-2.01R
31	38	929000	2301349	106768	-1372349	-2.44R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus Total 1

The regression equation is

 $EMRM = 1398205 + 5716 Total_1$

MAPE = 33.9%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1398205
 302056
 4.63
 0.000

 Total_1
 5716
 2119
 2.70
 0.010

S = 569296 R-Sq = 15.1% R-Sq(adj) = 13.0%

Analysis of Variance

Source DF SS MS F P Regression 1 2.35831E+12 2.35831E+12 7.28 0.010

Residual Error 41 1.32880E+13 3.24097E+11 Total 42 1.56463E+13

Unusual Observations

Obs	Total_1	EMRM	Fit	SE Fit	Residual	St Resid
1	37	61000	1609693	228079	-1548693	-2.97RX
21	155	3502600	2284168	95226	1218432	2.17R
31	151	929000	2261304	92069	-1332304	-2.37R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

CG-47 Class

SO

Combined

Regression Analysis: OTHER versus 2 digit year, Pac Flt, ...

The regression equation is

OTHER = 100447 + 41255 2 digit year + 190405 Pac Flt + 3605 UW not dep

+ 3130 UW Dep not 17 + 2576 Code 17

MAPE = 23.9%

Predictor	Coef	SE Coef	T	P
Constant	100447	45478	2.21	0.029
2 digit	41255	10311	4.00	0.000
Pac Flt	190405	28429	6.70	0.000
UW not d	3605.1	479.2	7.52	0.000
UW Dep n	3130.4	377.2	8.30	0.000
Code 17	2576.1	390.2	6.60	0.000

S = 158674 R-Sq = 61.0% R-Sq(adj) = 59.5%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	5	5.34730E+12	1.06946E+12	42.48	0.000
Residual Error	136	3.42414E+12	25177513142		

Total 141 8.77144E+12

Source DF Seq SS 2 digit 1 7.46818E+11 Pac Flt 1 1.20302E+12 UW not d 1 2.59729E+11 UW Dep n 1 2.04017E+12 Code 17 1 1.09756E+12

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
8	2.00	1172700	780733	35029	391967	2.53R
23	2.00	30000	373362	45585	-343362	-2.26R
52	2.00	1348200	832682	37557	515518	3.34R
56	1.00	428018	776730	29168	-348712	-2.24R
79	2.00	997738	1034670	61444	-36932	-0.25 X
100	2.00	775025	424495	28918	350530	2.25R
106	2.00	189952	507411	27770	-317459	-2.03R

R denotes an observation with a large standardized residual ${\tt X}$ denotes an observation whose ${\tt X}$ value gives it large influence.

Regression Analysis: OTHER versus 2 digit year, Total_1

The regression equation is OTHER = 212997 + 51850 2 digit year + 2984 Total_1 MAPE = 24.3%

Predictor	Coef	SE Coef	T	P
Constant	212997	38099	5.59	0.000
2 digit	51850	11600	4.47	0.000
Total_1	2983.8	289.9	10.29	0.000

S = 181008 R-Sq = 48.1% R-Sq(adj) = 47.3%

Analysis of Variance

Source DF SS MS F P Regression 2 4.21727E+12 2.10864E+12 64.36 0.000

Residual Error 139 4.55417E+12 32763803341

Total 141 8.77144E+12

Source DF Seq SS 2 digit 1 7.46818E+11 Total_1 1 3.47045E+12

Unusual Observations

Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
1	-1.00	862000	480413	22367	381587	2.12R
8	2.00	1172700	653865	24228	518835	2.89R
52	2.00	1348200	785152	26156	563048	3.14R
56	1.00	428018	864590	28693	-436572	-2.44R
67	1.00	434479	834752	26395	-400273	-2.24R
79	2.00	997738	1155143	52046	-157405	-0.91 X
106	2.00	189952	585238	25802	-395286	-2.21R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: OTHER versus 2 digit year, Pac Flt, Total_1

The regression equation is OTHER = 151319 + 40916 2 digit year + 177117 Pac Flt + 2920 Total_1 MAPE = 25.5

Predictor	Coef	SE Coef	T	P
Constant	151319	34880	4.34	0.000
2 digit	40916	10352	3.95	0.000
Pac Flt	177117	27531	6.43	0.000
Total_1	2919.8	255.4	11.43	0.000

S = 159334 R-Sq = 60.1% R-Sq(adj) = 59.2%

Analysis of Variance

Source DF SS MS F P
Regression 3 5.26797E+12 1.75599E+12 69.17 0.000

Residual Error 138 3.50347E+12 25387430260

Total 141 8.77144E+12

Source DF Seq SS 2 digit 1 7.46818E+11 Pac Flt 1 1.20302E+12 Total_1 1 3.31813E+12

Unusual Observations						
Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
8	2.00	1172700	740205	25198	432495	2.75R
15	-1.00	53400	375114	35522	-321714	-2.07R
19	1.00	59300	392710	36143	-333410	-2.15R
23	2.00	30000	410267	40355	-380267	-2.47R
52	2.00	1348200	868676	26432	479524	3.05R
56	1.00	428018	779114	28539	-351096	-2.24R
67	1.00	434479	749916	26716	-315437	-2.01R
79	2.00	997738	1053614	48457	-55876	-0.37 X
100	2.00	775025	428777	28848	346249	2.21R

R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.

Atlantic Fleet

The regression equation is OTHER = 193428 + 49367 2 digit year + 3030 UW not dep + 1906 UW Dep not 17+ 1663 Code 17 MAPE = 21.7%

82 cases used 1 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	193428	52976	3.65	0.000
2 digit	49367	10732	4.60	0.000
UW not d	3029.5	600.8	5.04	0.000
UW Dep n	1906.2	397.9	4.79	0.000
Code 17	1662.6	439.1	3.79	0.000

S = 134235R-Sq = 49.4% R-Sq(adj) = 46.8%

Analysis of Variance

Source SS MS F 4 1.35709E+12 3.39272E+11 18.83 0.000 Regression 77 1.38746E+12 18018943361

Residual Error

81 2.74455E+12 Total

Source	DF	Seq SS
2 digit	1	4.79421E+11
UW not d	1	1.98520E+11
UW Dep n	1	4.20840E+11
Code 17	1	2.58307E+11

Unusua	al Observat	ions				
0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
9	1.00	428018	708085	29771	-280067	-2.14R
10	2.00	947631	664645	33036	282987	2.18R
16	2.00	1003701	734418	40679	269283	2.11R
20	2.00	997738	919818	67669	77920	0.67 X
21	2.00	775025	495143	29842	279883	2.14R
32	2.00	1067228	775254	49623	291974	2.34R
33	2.00	189952	564822	28771	-374870	-2.86R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is

OTHER = 246691 + 43832 2 digit year + 2107 Total_1

MAPE 23.3%

Predictor	Coef	SE Coef	T	P
Constant	246691	37775	6.53	0.000
2 digit	43832	11117	3.94	0.000
Total_1	2106.9	292.3	7.21	0.000

S = 141064 R-Sq = 47.0% R-Sq(adj) = 45.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	1.41014E+12	7.05072E+11	35.43	0.000

Residual Error 80 1.59194E+12 19899191688 Total 82 3.00208E+12

DF Source Seq SS Source Seq SS 2 digit 1 3.76083E+11 Total_1 1 1.03406E+12

TTmuaual	Observations
unusuai	observations

Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
9	1.00	428018	714013	29696	-285995	-2.07R
10	2.00	947631	667247	27360	280384	2.03R
20	2.00	997738	926397	52925	71340	0.55 X
21	2.00	775025	475519	29893	299507	2.17R
32	2.00	1067228	778914	36277	288314	2.11R
33	2.00	189952	523977	26895	-334025	-2.41R
35	2.00	0	334355	43642	-334355	-2.49R

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: Other versus 2 digit year, UW not dep, ...

The regression equation is

Other = 126572 + 40860 2 digit year + 4890 UW not dep + 5099 Uw Deployed Not 17 + 3320 Code 17

MAPE = 20.8%

Predictor	Coef	SE Coef	Т	P
Constant	126572	68919	1.84	0.072
2 digit	40860	18857	2.17	0.035
UW not d	4890.3	762.8	6.41	0.000
Uw Deplo	5099.2	697.7	7.31	0.000
Code 17	3320.1	620.6	5.35	0.000

S = 163427 R-Sq = 66.2% R-Sq(adj) = 63.7%

X denotes an observation whose X value gives it large influence.

DF SS MS F P 4 2.82760E+12 7.06900E+11 26.47 0.000
 Source
 DF
 SS
 MS

 Regression
 4 2.82760E+12 7.06900E+11

 Residual Error
 54 1.44226E+12 26708426481

58 4.26986E+12 Total

DF Seq SS Source 1 85295937688 2 digit UW not d 1 23911017304 1 1.95402E+12 Uw Deplo 1 7.64378E+11 Code 17

Unusual Observations

0bs	2 digit	Other	Fit	SE Fit	Residual	St Resid
12	2.00	1348200	905673	52507	442527	2.86R
36	2.00	1172700	760894	46679	411806	2.63R

R denotes an observation with a large standardized residual

Regression Analysis: Other versus 2 digit year, UW not dep, Total UW Dep

The regression equation is

Other = 166433 + 39827 2 digit year + 4378 UW not dep + 4123 Total UW Deployed MAPE = 21.2%

Predictor	Coef	SE Coef	Т	P
Constant	166433	66188	2.51	0.015
2 digit	39827	19192	2.08	0.043
UW not d	4378.5	716.7	6.11	0.000
Total UW	4123.2	422.5	9.76	0.000

S = 166413 R-Sq = 64.3% R-Sq(adj) = 62.4%

Analysis of Variance

SS F DF MS Source Regression 3 2.74673E+12 9.15577E+11 33.06 0.000

Residual Error 55 1.52313E+12 27693189980 Total 58 4.26986E+12

Source DF Seq SS 1 85295937688 2 digit UW not d 1 23911017304 Total UW 1 2.63752E+12

Unusual Observations

onusual observacions							
0bs	2 digit	Other	Fit	SE Fit	Residual	St Resid	
12	2.00	1348200	893424	52983	454776	2.88R	
36	2.00	1172700	740855	46062	431845	2.70R	

R denotes an observation with a large standardized residual

Regression Analysis: Other versus 2 digit year, Total 1

The regression equation is Other = 180099 + 40288 2 digit year + 4132 Total_1

MAPE = 21.2%

Predictor	Coef	SE Coef	T	P
Constant	180099	57417	3.14	0.003
2 digit	40288	19020	2.12	0.039
Total_1	4132.4	418.8	9.87	0.000

S = 165190 R-Sq = 64.2% R-Sq(adj) = 62.9%

Analysis of Variance

Source DF SS MS F P Regression 2 2.74173E+12 1.37087E+12 50.24 0.000

Residual Error 56 1.52812E+12 27287889172

Total 58 4.26986E+12

Source DF Seq SS 2 digit 1 85295937688 Total_1 1 2.65644E+12

Unusual Observations

Obs	2 digit	Other	Fit	SE Fit	Residual	St Resid
12	2.00	1348200	909464	36890	438736	2.72R
36	2.00	1172700	727638	33713	445062	2.75R

R denotes an observation with a large standardized residual

SR

Combined

The regression equation is EMRM = 400753 + 10018 UW not dep + 7212 UW Dep not 17 + 7280 Code 17 + 103074 two digit year

MAPE = 26.5%

Predictor	Coef	SE Coef	T	P
Constant	400753	112247	3.57	0.000
UW not d	10018	1249	8.02	0.000
UW Dep n	7212	1002	7.20	0.000
Code 17	7280	1027	7.09	0.000
two digi	103074	27088	3.81	0.000

S = 421850 R-Sq = 51.4% R-Sq(adj) = 50.0%

Analysis of Variance

Source DF SS MS F P
Regression 4 2.57757E+13 6.44392E+12 36.21 0.000

Residual Error 137 2.43802E+13 1.77958E+11

Total 141 5.01559E+13

Source DF Seq SS UW not d 1 2.56278E+12 UW Dep n 1 1.12639E+13 Code 17 1 9.37240E+12 two digi 1 2.57664E+12

Unusual Observations							
Obs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid	
7	68	2338300	1288095	67435	1050205	2.52R	
28	0	2085600	1228027	118595	857573	2.12R	
41	0	2177600	1218429	84325	959171	2.32R	
79	114	2812633	2963370	156879	-150736	-0.38 X	
100	67	2513652	1278077	67712	1235574	2.97R	
101	97	2455176	1578604	69428	876572	2.11R	
109	87	2196434	1272281	49063	924153	2.21R	

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus two digit year, Total 1

The regression equation is

EMRM = 562075 + 99154 two digit year + 7482 Total_1

MAPE = 26.8

Predictor	Coef	SE Coef	T	P
Constant	562075	90138	6.24	0.000
two digi	99154	27445	3.61	0.000
Total_1	7482.4	685.9	10.91	0.000
S = 428246	R-Sq = 4	9.2% R-	Sq(adj) = 48	8.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	2.46640E+13	1.23320E+13	67.24	0.000
Residual Error	139	2.54919E+13	1.83395E+11		

Total 141 5.01559E+13

Source DF Seq SS two digi 1 2.83999E+12 1 2.18240E+13 Total_1

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
7	2.00	2338300	1269190	67926	1069110	2.53R
34	2.00	2725200	1867785	59749	857415	2.02R
79	2.00	2812633	2862950	123137	-50317	-0.12 X
100	2.00	2513652	1261707	68301	1251944	2.96R
101	2.00	2455176	1486180	59495	968996	2.28R
109	0.00	2196434	1213047	43610	983387	2.31R

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Atlantic Fleet

Regression Analysis: EMRM versus two digit year, UW not dep, ...

The regression equation is

 ${\tt EMRM}$ = 429539 + 113649 two digit year + 10825 UW not dep + 3968 UW Dep not 17 + 6475 Code 17

MAPE = 24.5%

81 cases used 2 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	429539	165818	2.59	0.011
two digi	113649	31154	3.65	0.000
UW not d	10825	1866	5.80	0.000
UW Dep n	3968	1170	3.39	0.001
Code 17	6475	1276	5.08	0.000

S = 388425 R-Sq = 49.3% R-Sq(adj) = 46.6%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	4	1.11298E+13	2.78245E+12	18.44	0.000
Residual Error	76	1.14665E+13	1.50874E+11		
	~ ~	0 05060- 10			

Total 80 2.25963E+13

Source DF Seq SS two digi 1 2.77103E+12 UW not d 1 2.76147E+12 UW Dep n 1 1.70996E+12 Code 17 1 3.88734E+12

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
20	2.00	2812633	2924579	198015	-111946	-0.34 X
21	2.00	2513652	1382141	89317	1131511	2.99R
36	0.00	2196434	1371351	56693	825083	2.15R
60	1.00	447032	1236015	73983	-788983	-2.07R

R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus two digit ye, UW not dep, Total UW dep

The regression equation is

EMRM = 392123 + 112791 two digit year + 11212 UW not dep

+ 5113 Total UW deployed

MAPE = 24.6 %

81 cases used 2 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	392123	164976	2.38	0.020
two digi	112791	31371	3.60	0.001
UW not d	11212	1860	6.03	0.000
Total UW	5113.0	870.5	5.87	0.000

S = 391208 R-Sq = 47.8% R-Sq(adj) = 45.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 1.08119E+13 3.60397E+12 23.55 0.000
Residual Error 77 1.17844E+13 1.53044E+11

Total 80 2.25963E+13

 Source
 DF
 Seq SS

 two digi
 1 2.77103E+12

 UW not d
 1 2.76147E+12

 Total UW
 1 5.27939E+12

Unusi	ual Observat	ions				
Obs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
20	2.00	2812633	2749725	158290	62908	0.18 X
21	2.00	2513652	1368897	89487	1144755	3.01R
36	0.00	2196434	1367551	57039	828883	2.14R
60	1.00	447032	1222470	73918	-775438	-2.02R

R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus two digit year, Total 1

The regression equation is

EMRM = 674755 + 92003 two digit year + 6475 Total_1

MAPE = 27.2%

Predictor	Coef	SE Coef	T	P
Constant	674755	117046	5.76	0.000
two digi	92003	34445	2.67	0.009
Total_1	6474.8	905.6	7.15	0.000

S = 437092R-Sq = 43.1% R-Sq(adj) = 41.7%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	2	1.15668E+13	5.78339E+12	30.27	0.000
Residual Error	80	1.52839E+13	1.91049E+11		
Total	82	2.68507E+13			

Source DF Seq SS two digi 1 1.80086E+12 Total_1 1 9.76592E+12

two digi	EMRM	Fit	SE Fit	Residual	St Resid
2.00	2812633	2678194	163990	134439	0.33 X
2.00	2513652	1292576	92624	1221075	2.86R
2.00	2455176	1486822	81359	968354	2.25R
2.00	0	858761	135227	-858761	-2.07R
0.00	2196434	1238067	55865	958367	2.21R
	2.00 2.00 2.00 2.00	2.00 2812633 2.00 2513652 2.00 2455176 2.00 0	2.00 2812633 2678194 2.00 2513652 1292576 2.00 2455176 1486822 2.00 0 858761	2.00 2812633 2678194 163990 2.00 2513652 1292576 92624 2.00 2455176 1486822 81359 2.00 0 858761 135227	2.00 2812633 2678194 163990 134439 2.00 2513652 1292576 92624 1221075 2.00 2455176 1486822 81359 968354 2.00 0 858761 135227 -858761

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Pacific Fleet

Regression Analysis: EMRM versus UW not dep, Uw Deployed Not 17, ...

The regression equation is

EMRM = 248942 + 10652 UW not dep + 11890 Uw Deployed Not 17 + 6623 Code 17 + 120507 Two digit Year

MAPE = 23.9%

Predictor	Coef	SE Coef	T	P
Constant	248942	170772	1.46	0.151
UW not d	10652	1890	5.64	0.000
Uw Deplo	11890	1729	6.88	0.000
Code 17	6623	1538	4.31	0.000
Two digi	120507	46724	2.58	0.013
S = 404950	R-Sq = 6	51.5% R-S	q(adj) = 58	3.6%

Source DF SS MS F P
Regression 4 1.41281E+13 3.53203E+12 21.54 0.000
Residual Error 54 8.85514E+12 1.63984E+11

Total 58 2.29833E+13

Source DF Seq SS UW not d 1 72609260679 Uw Deplo 1 9.93164E+12 Code 17 1 3.03307E+12 Two digi 1 1.09081E+12

Unusual Observations

Obs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
10	0	2177600	1381796	104431	795804	2.03R
32	68	2338300	1214273	99209	1124027	2.86R
42	58	1116000	2031938	139987	-915938	-2.41R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus UW not dep, Total UW Dep, Two digit Year

The regression equation is

EMRM = 366956 + 9136 UW not dep + 9000 Total UW Deployed
+ 117450 Two digit Year

MAPE = 25.2%

Predictor	Coef	SE Coef	Т	P
Constant	366956	165857	2.21	0.031
UW not d	9136	1796	5.09	0.000
Total UW	9000	1059	8.50	0.000
Two digi	117450	48091	2.44	0.018

S = 417002 R-Sq = 58.4% R-Sq(adj) = 56.1%

Analysis of Variance

Source DF SS MS F P Regression 3 1.34193E+13 4.47309E+12 25.72 0.000

Residual Error 55 9.56400E+12 1.73891E+11

Total 58 2.29833E+13

Source DF Seq SS UW not d 1 72609260679 Total UW 1 1.23095E+13 Two digi 1 1.03719E+12 Unusual Observations

0bs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
32	68	2338300	1223134	102068	1115166	2.76R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Total 1, Two digit Year

The regression equation is

EMRM = $374250 + 9005 \text{ Total}_1 + 117696 \text{ Two digit Year}$ MAPE = 25.3 %

Predictor	Coef	SE Coef	Т	P
Constant	374250	143653	2.61	0.012
Total_1	9005	1048	8.59	0.000
Two digi	117696	47587	2.47	0.016

S = 413293 R-Sq = 58.4% R-Sq(adj) = 56.9%

Analysis of Variance

Source DF SS MS F P Regression 2 1.34179E+13 6.70893E+12 39.28 0.000

Residual Error 56 9.56542E+12 1.70811E+11

Total 58 2.29833E+13

Source DF Seq SS Total_1 1 1.23730E+13 Two digi 1 1.04488E+12

Unusual Observations

Obs Total_1 EMRM Fit SE Fit Residual St Resid 32 68 2338300 1221989 100380 1116311 2.78R

R denotes an observation with a large standardized residual

FFG Class

SO

Combined

Regression Analysis: OTHER versus two digit year, Pac Flt, ...

123 cases used 3 cases contain missing values

Predictor	Coef	SE Coef	Т	P
Constant	253249	48824	5.19	0.000
two digi	57776	11261	5.13	0.000
Pac Flt	298451	32310	9.24	0.000
UW not d	1936.1	427.2	4.53	0.000
UW Dep n	1010.3	471.5	2.14	0.034
Code 17	1602.5	524.4	3.06	0.003

S = 160149 R-Sq = 60.8% R-Sq(adj) = 59.1%

Analysis of Variance

DF SS MS 5 4.64516E+12 9.29033E+11 Source F Regression 36.22 0.000

Residual Error 117 3.00079E+12 25647759218

122 7.64595E+12

Source	DF	Seq SS
two digi	1	1.61569E+12
Pac Flt	1	2.43825E+12
UW not d	1	2.63868E+11
UW Dep n	1	87836177153
Code 17	1	2.39525E+11

Unusual Observations

Obs	two digi	OTHER	Fit	SE Fit	Residual	St Resid
7	2.00	1132400	816334	36230	316066	2.03R
26	2.00	1106818	497093	35167	609725	3.90R
43	1.00	1338200	968024	46382	370176	2.41R
74	2.00	95200	814761	53352	-719561	-4.77R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus two digit year, Pac Flt, Total 1

The regression equation is OTHER = 284174 + 57251 two digit year + 283864 Pac Flt + 1494 Total_1 MAPE = 19.8%

123 cases used 3 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	284174	45732	6.21	0.000
two digi	57251	11341	5.05	0.000
Pac Flt	283864	31912	8.90	0.000
Total_1	1493.7	355.0	4.21	0.000

R-Sq = 59.1% R-Sq(adj) = 58.1%S = 162101

Analysis of Variance

Source SS MS 3 4.51903E+12 1.50634E+12 Regression 57.33 0.000

Residual Error 119 3.12692E+12 26276654417

122 7.64595E+12 Total

Source	DF	Seq SS
two digi	1	1.61569E+12
Pac Flt	1	2.43825E+12
Total 1	1	4.65095E+11

Unusual Observations

Obs	two digi	OTHER	Fit	SE Fit	Residual	St Resid
5	1.00	1159000	837394	25348	321606	2.01R
7	2.00	1132400	797555	35641	334845	2.12R
15	1.00	1205600	883698	29045	321902	2.02R
26	2.00	1106818	506223	35198	600595	3.80R
43	1.00	1338200	958383	40969	379817	2.42R
74	2.00	95200	900620	30176	-805420	-5.06R
83	2.00	1004538	657086	36536	347452	2.20R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus two digit year, Pac Flt

The regression equation is OTHER = 460315 + 57856 two digit year + 303944 Pac Flt MAPE = 19.2%

123 cases used 3 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	460315	19639	23.44	0.000
two digi	57856	12103	4.78	0.000
Pac Flt	303944	33677	9.03	0.000

S = 173013 R-Sq = 53.0% R-Sq(adj) = 52.2%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2 4.05394E+12 2.02697E+12 67.72 0.000

Residual Error 120 3.59202E+12 29933476392

Total 122 7.64595E+12

Source DF Seq SS two digi 1 1.61569E+12 Pac Flt 1 2.43825E+12

Unusual Observations

Obs	two digi	OTHER	Fit	SE Fit	Residual	St Resid
15	1.00	1205600	822114	26776	383486	2.24R
26	2.00	1106818	576026	33132	530792	3.13R
43	1.00	1338200	822114	26776	516086	3.02R
74	2.00	95200	879970	31779	-784770	-4.61R
83	2.00	1004538	576026	33132	428512	2.52R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 465728 + 63906 2 digit year MAPE = 17.7%

Predictor	Coef	SE Coef	T	P
Constant	465728	13856	33.61	0.000
2 digit	63906	9768	6.54	0.000
S = 124907	R-Sq = 3	34.9% R-Sc	g(adj) = 34	1.0%

Source	DF	SS	MS	F	P
Regression	1	6.67840E+11	6.67840E+11	42.81	0.000
Residual Error	80	1.24813E+12	15601657346		
maka 1	0.1	1 015075.10			

Total 81 1.91597E+12

esid
4.19R
2.47R
3.36R
2.63R
2.64R
3

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year, Total_1

The regression equation is

OTHER = 395351 + 64795 2 digit year + 603 Total_1

MAPE = 17.4%

Predictor	Coef	SE Coef	T	P
Constant	395351	38961	10.15	0.000
2 digit	64795	9617	6.74	0.000
Total_1	603.3	312.9	1.93	0.057

S = 122838 R-Sq = 37.8% R-Sq(adj) = 36.2%

Analysis of Variance

Source DF SS MS F P
Regression 2 7.23935E+11 3.61968E+11 23.99 0.000
Residual Error 79 1.19204E+12 15089072538

Total 81 1.91597E+12

Source DF Seq SS 2 digit 1 6.67840E+11 Total_1 1 56095857129

Unusual Observations

Obs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
7	2.00	1106818	568381	27831	538437	4.50R
17	2.00	895746	613029	26579	282717	2.36R
32	2.00	765101	529767	41210	235334	2.03RX
39	2.00	1004538	629319	30800	375219	3.16R
61	-1.00	75753	370377	22785	-294624	-2.44R
75	-2.00	14169	265762	43653	-251593	-2.19RX

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Pacific Fleet

Regression Analysis: OTHER versus 2 digit year, Total 1

The regression equation is OTHER = 399035 + 46848 2 digit year + 2818 Total_1 MAPE = 19.2%

Predictor	Coef	SE Coef	T	P
Constant	399035	105911	3.77	0.001
2 digit	46848	28361	1.65	0.106
Total_1	2817.8	768.7	3.67	0.001

S = 209756R-Sq = 29.5% R-Sq(adj) = 26.1%

Analysis of Variance

SS Regression 2 7.54654E+11 3.77327E+11 8.58 0.001

Residual Error 41 1.80390E+12 43997530668

43 2.55855E+12 Total

DF Seq SS Source 1 1.63407E+11 2 digit 1 5.91247E+11 Total 1

Unusual Observations

0bs	2 digit	OTHER	Fit	SE Fit	Residual	St Resid
7	2.00	1132400	709698	69512	422702	2.14R
43	2.00	95200	904124	53509	-808924	-3.99R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = 410151 + 2911 Total_1

MAPE = 20.0%

Coef SE Coef Т Predictor Ρ 410151 107851 3.80 0.000 Constant Total_1 2911.3 782.2 3.72 0.001

S = 214029R-Sq = 24.8% R-Sq(adj) = 23.0%

Analysis of Variance

MS F DE+11 13.85 0.001 Regression 1 SS 1 6.34599E+11 6.34599E+11

Residual Error 42 1.92395E+12 45808439945

43 2.55855E+12 Total

Unusual Observations

Obs Total_1 OTHER Fit SE Fit Residual St Resid 7 77 1132400 634322 53506 498078 2.40R 43 146 95200 835202 34184 -740002 -3.50R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus UW not dep, UW Dep, Code 17

The regression equation is

OTHER = 367734 + 3749 UW not dep + 2382 UW Dep + 3003 Code 17

MAPE = 20.5%

Predictor	Coef	SE Coef	Т	P
Constant	367734	119646	3.07	0.004
UW not d	3749	1035	3.62	0.001
UW Dep	2382	1077	2.21	0.033
Code 17	3003.3	985.1	3.05	0.004

S = 210464R-Sq = 30.7% R-Sq(adj) = 25.6%

Analysis of Variance

F Source DF SS MS Р Regression 3 7.86747E+11 2.62249E+11 5.92 0.002

Residual Error 40 1.77181E+12 44295161101

43 2.55855E+12

Source DF Seq SS 1 2.31568E+11 UW not d 1 1.43446E+11 UW Dep Code 17 1 4.11732E+11

Unusual Observations

UW not d OTHER Fit SE Fit Residual St Resid 7 77 1132400 656392 54883 476008 2.34R 89090 43 0 95200 715476 -620276 -3.25R

R denotes an observation with a large standardized residual

SR

Combined

Regression Analysis: EMRM versus two digit ve, UW not dep, Total UW Dep

The regression equation is

EMRM = 1114799 + 117170 two digit year + 3286 UW not dep + 1569 Total UW Deployd

MAPE = 17.5%

123 cases used 3 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	1114799	97485	11.44	0.000
two digi	117170	22146	5.29	0.000
UW not d	3286.1	866.2	3.79	0.000
Total UW	1568.9	734.1	2.14	0.035

S = 326899R-Sq = 26.7% R-Sq(adj) = 24.8%

Analysis of Variance

DF Source SS MS F 3 4.62560E+12 1.54187E+12 14.43 0.000 Regression

Residual Error 119 1.27167E+13 1.06863E+11

122 1.73423E+13 Total

Source	DF	Seq SS
two digi	1	3.07395E+12
UW not d	1	1.06349E+12
Total UW	1	4.88156E+11

Unusual Observations

Obs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
7	2.00	2405900	1602166	63208	803734	2.51R
50	2.00	2510504	1737895	54472	772609	2.40R
78	2.00	2590602	1490440	79329	1100162	3.47R
97	1.00	2419458	1774171	68271	645287	2.02R
105	-1.00	127519	1214510	54004	-1086991	-3.37R
119	-2.00	7051	880460	106052	-873409	-2.82RX

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Regression Analysis: EMRM versus two digit year, Pac Flt, ...

The regression equation is

 ${\tt EMRM}$ = 1183994 + 140115 two digit year - 264124 Pac Flt + 3278 UW not dep + 2182 Total UW Deployd

MAPE = 16.1%

123 cases used 3 cases contain missing values

Predictor	Coef	SE Coef	T	P
Constant	1183994	92480	12.80	0.000
two digi	140115	21367	6.56	0.000
Pac Flt	-264124	61603	-4.29	0.000
UW not d	3277.9	809.1	4.05	0.000
Total UW	2182.5	700.5	3.12	0.002

S = 305357 R-Sq = 36.6% R-Sq(adj) = 34.4%

Analysis of Variance

Source DF SS MS F P
Regression 4 6.33967E+12 1.58492E+12 17.00 0.000

Residual Error 118 1.10026E+13 93242757262

Total 122 1.73423E+13

Source DF Seq SS two digi 1 3.07395E+12 Pac Flt 1 1.68126E+12 UW not d 1 6.79240E+11 Total UW 1 9.05211E+11

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
7	2.00	2405900	1452502	68590	953398	3.20R
50	2.00	2510504	1884744	61336	625760	2.09R
78	2.00	2590602	1605176	78785	985426	3.34R
105	-1.00	127519	1260223	51560	-1132704	-3.76R
119	-2.00	7051	903764	99212	-896713	-3.11R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total UW dep

The regression equation is

<code>EMRM = 1199609 + 189197 2 digit year + 3498 UW not dep + 1826 Total UW dep MAPE = 15.6%</code>

Predictor	Coef	SE Coef	T	P
Constant	1199609	109044	11.00	0.000
2 digit	189197	25311	7.47	0.000
UW not d	3498	1003	3.49	0.001
Total UW	1826.3	907.4	2.01	0.048

S = 322929 R-Sq = 45.5% R-Sq(adj) = 43.4%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 3 6.77920E+12 2.25973E+12 21.67 0.000
 21.67 0.000

 Residual Error
 78 8.13409E+12 1.04283E+11
 21.67 0.000

Total 81 1.49133E+13

Source DF Seq SS 2 digit 1 5.50084E+12 UW not d 1 8.55877E+11 Total UW 1 4.22478E+11

Unusual Observations

Obs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
33	2.00	2907909	1812350	75258	1095559	3.49R
34	2.00	2590602	1728405	87555	862197	2.77R
61	-1.00	127519	1241263	59904	-1113744	-3.51R
75	-2.00	7051	821216	121477	-814165	-2.72R

R denotes an observation with a large standardized residual

MTB > regr c7 2 c5 c17 c20 c21

Regression Analysis: EMRM versus 2 digit year, Total 1

The regression equation is

EMRM = 1265013 + 187084 2 digit year + 2496 Total_1

MAPE = 15.6%

Predictor	Coef	SE Coef	T	P
Constant	1265013	103748	12.19	0.000
2 digit	187084	25609	7.31	0.000
Total_1	2495.6	833.3	2.99	0.004

S = 327103 R-Sq = 43.3% R-Sq(adj) = 41.9%

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2
 6.46055E+12
 3.23028E+12
 30.19
 0.000

 Residual Error
 79
 8.45274E+12
 1.06997E+11
 0.000

Total 81 1.49133E+13

Source DF Seq SS 2 digit 1 5.50084E+12 Total_1 1 9.59710E+11

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
31	2.00	1377377	2045960	77283	-668583	-2.10R
32	2.00	1694969	1659146	109738	35823	0.12 X
33	2.00	2907909	1806385	76153	1101524	3.46R
34	2.00	2590602	1746491	88066	844111	2.68R
61	-1.00	127519	1242637	60673	-1115118	-3.47R
75	-2.00	7051	890845	116245	-883794	-2.89RX

R denotes an observation with a large standardized residual

 ${\tt X}$ denotes an observation whose ${\tt X}$ value gives it large influence.

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 1556107 + 183410 2 digit year

MAPE =15.9%

Predictor	Coef	SE Coef	T	P
Constant	1556107	38050	40.90	0.000
2 digit	183410	26823	6.84	0.000

S = 343010 R-Sq = 36.9% R-Sq(adj) = 36.1%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	5.50084E+12	5.50084E+12	46.75	0.000
Regidual Error	80	9 41245E+12	1 17656E+11		

81 1.49133E+13 Total

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
33	2.00	2907909	1922927	68643	984982	2.93R
53	1.00	2419458	1739517	48583	679941	2.00R
61	-1.00	127519	1372697	44432	-1245178	-3.66R
75	-2.00	7051	1189287	62767	-1182236	-3.51R

R denotes an observation with a large standardized residual

Pacific Fleet

No regressions were significant.

LHA Class

SO

Combined

Regression Analysis: OTHER versus Pac Flt

The regression equation is OTHER = 1830385 + 1146365 Pac Flt MAPE = 18.0%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1830385
 173896
 10.53
 0.000

 Pac Flt
 1146365
 235456
 4.87
 0.000

S = 549908 R-Sq = 54.2% R-Sq(adj) = 51.9%

Analysis of Variance

Source DF SS MS F P Regression 1 7.16811E+12 7.16811E+12 23.70 0.000

Residual Error 20 6.04797E+12 3.02398E+11

Total 21 1.32161E+13

Unusual Observations

Obs Pac Flt OTHER Fit SE Fit Residual St Resid 1 0.00 2892981 1830385 173896 1062596 2.04R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 1830385 + 218112 two digit year MAPE = 18.3%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1830385
 147517
 12.41
 0.000

 two digi
 218112
 104310
 2.09
 0.070

S = 466489 R-Sq = 35.3% R-Sq(adj) = 27.3%

Analysis of Variance

Source DF SS MS F P Regression 1 9.51461E+11 9.51461E+11 4.37 0.070

Residual Error 8 1.74090E+12 2.17612E+11

Total 9 2.69236E+12

Pacific Fleet

There were no significant regressions.

SR

Combined

There were no significant regressions.

Atlantic Fleet

Regression Analysis: EMRM versus two digit year

```
The regression equation is EMRM = 2495823 + 467231 two digit year MAPE = 24.2%
```

Predictor	Coef	SE Coef	T	P
Constant	2495823	303496	8.22	0.000
two digi	467231	214604	2.18	0.061

S = 959737 R-Sq = 37.2% R-Sq(adj) = 29.4%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	4.36610E+12	4.36610E+12	4.74	0.061
Residual Error	8	7.36876E+12	9.21095E+11		

Total 9 1.17349E+13

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
2	2.00	5526726	3430286	525670	2096440	2.61R

R denotes an observation with a large standardized residual

Pacific Fleet

There were no significant regressions.

LHD Class

SO

Combined

Regression Analysis: OTHER versus Pac Flt, Total UW

The regression equation is OTHER = 1060138 + 591557 Pac Flt + 4965 Total UW MAPE = 21.1%

Predictor	Coef	SE Coef	T	P
Constant	1060138	294293	3.60	0.001
Pac Flt	591557	248919	2.38	0.025
Total UW	4965	2171	2.29	0.031

S = 650219 R-Sq = 33.6% R-Sq(adj) = 28.5%

Analysis of Variance

Source DF SS MS F P Regression 2 5.56270E+12 2.78135E+12 6.58 0.005

Residual Error 26 1.09924E+13 4.22785E+11

Total 28 1.65551E+13

Source DF Seq SS Pac Flt 1 3.35079E+12 Total UW 1 2.21191E+12

Unusual Observations

Obs Pac Flt OTHER Fit SE Fit Residual St Resid 21 1.00 56800 2446073 195796 -2389273 -3.85R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Total UW

The regression equation is OTHER = 1195299 + 5858 Total UW MAPE = 26.3%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1195299
 312611
 3.82
 0.001

 Total UW
 5858
 2315
 2.53
 0.018

S = 703962 R-Sq = 19.2% R-Sq(adj) = 16.2%

Analysis of Variance

Source DF SS MS F P Regression 1 3.17491E+12 3.17491E+12 6.41 0.018

Residual Error 27 1.33802E+13 4.95563E+11

Total 28 1.65551E+13

Unusual Observations

Obs Total UW OTHER St Resid Fit SE Fit Residual -2075835 21 160 56800 2132635 156670 -3.02R 25 63 2995200 1564375 190196 1430825 2.11R R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: OTHER versus Total UW

The regression equation is OTHER = 1109434 + 4534 Total UW MAPE = 17.6%

Predictor Coef SE Coef T 5.40 0.000 Ρ Coef Constant 1109434 Total UW 4534 205519 1600 2.83 0.013

R-Sq = 34.9% R-Sq(adj) = 30.5%S = 384443

Analysis of Variance

Source DF SS MS F Regression Ρ 8.03 0.013 1 1.18697E+12 1.18697E+12 Residual Error 15 2.21694E+12 1.47796E+11

16 3.40391E+12 Total

Unusual Observations

0bs	Total UW	OTHER	Fit	SE Fit	Residual	St Resid
2	44	2098745	1308940	146311	789805	2.22R
11	31	370431	1249995	162880	-879564	-2.53R

R denotes an observation with a large standardized residual

Pacific Fleet

There were no significant regressions.

SR

Combined

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total Dep UW

The regression equation is

 ${\tt EMRM}$ = 1156393 + 124175 2 digit year + 9707 UW not dep + 7426 Total Dep UW MAPE = 15.3

Predictor	Coef	SE Coef	T	P
Constant	1156393	254629	4.54	0.000
2 digit	124175	64670	1.92	0.066
UW not d	9707	3016	3.22	0.004
Total De	7426	1479	5.02	0.000

S = 442904R-Sq = 57.3% R-Sq(adj) = 52.2%

Analysis of Variance

MS F P Source SS Regression 3 6.59329E+12 2.19776E+12 Residual Error 25 4.90410E+12 1.96164E+11 3 6.59329E+12 2.19776E+12 11.20 0.000

28 1.14974E+13 Total

Source DF Seq SS 2 digit 1 1.35444E+12 UW not d 1 2.96171E+11 Total De 1 4.94268E+12

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
1	2.00	3999581	3140435	179414	859146	2.12R
11	1.00	604176	1581494	182401	-977318	-2.42R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus 2 digit year, Total UW

The regression equation is

EMRM = 1290522 + 113189 2 digit year + 7522 Total UW

MAPE = 15.4%

Predictor	Coef	SE Coef	T	P
Constant	1290522	195709	6.59	0.000
2 digit	113189	62925	1.80	0.084
Total UW	7522	1466	5.13	0.000

S = 440256R-Sq = 56.2% R-Sq(adj) = 52.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2 6.45793E+12 3.22897E+12 16.66 0.000
 16.66 0.000

 Residual Error
 26 5.03946E+12 1.93826E+11
 1.93826E+11

Total 28 1.14974E+13

Source DF Seq SS 2 digit 1 1.35444E+12 Total UW 1 5.10349E+12

Unusual Observations

0bs	2 digit	EMRM	Fit	SE Fit	Residual	St Resid
1	2.00	3999581	3134164	178184	865417	2.15R
4	2.00	3071911	2186372	148619	885539	2.14R
11	1.00	604176	1636898	168754	-1032722	-2.54R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus UW not dep, UW Dep not 17, Code 17

The regression equation is

EMRM = 1025405 + 11963 UW not dep + 4940 UW Dep not 17 + 11242 Code 17MAPE 14.8%

Predictor	Coef	SE Coef	Т	P
Constant	1025405	259353	3.95	0.001
UW not d	11963	3185	3.76	0.001
UW Dep n	4940	1933	2.56	0.017
Code 17	11242	2045	5.50	0.000

S = 432053 R-Sq = 59.4% R-Sq(adj) = 54.5%

Source DF SS MS F P
Regression 3 6.83065E+12 2.27688E+12 12.20 0.000

Residual Error 25 4.66675E+12 1.86670E+11

Total 28 1.14974E+13

Source DF Seq SS UW not d 1 94479522260 UW Dep n 1 1.09253E+12 Code 17 1 5.64363E+12

Unusual Observations

0bs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
4	89	3071911	2090130	122465	981781	2.37R
11	31	604176	1396265	175567	-792089	-2.01R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus UW not dep, UW Dep not 17, Code 17

The regression equation is

EMRM = 785076 + 16559 UW not dep + 4675 UW Dep not 17 + 13331 Code 17 MAPE = 12.6%

Predictor	Coef	SE Coef	T	P
Constant	785076	288202	2.72	0.017
UW not d	16559	3543	4.67	0.000
UW Dep n	4675	2271	2.06	0.060
Code 17	13331	2496	5.34	0.000

S = 403864 R-Sq = 75.6% R-Sq(adj) = 69.9%

Analysis of Variance

Source DF SS MS F P Regression 3 6.55764E+12 2.18588E+12 13.40 0.000

Residual Error 13 2.12038E+12 1.63106E+11

Total 16 8.67802E+12

Source DF Seq SS UW not d 1 1.32441E+12 UW Dep n 1 5.80655E+11 Code 17 1 4.65257E+12

Unusual Observations

0bs	UW not d	EMRM	Fit	SE Fit	Residual	St Resid
4	89	3071911	2258840	139357	813071	2.14R
14	129	2231250	2921206	235797	-689956	-2.10R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus UW not dep, Total Dep UW

The regression equation is EMRM = 827705 + 15099 UW not dep + 8581 Total Dep UW

MAPE = 15.8%

Predictor	Coef	SE Coef	T	P
Constant	827705	342197	2.42	0.030
UW not d	15099	4161	3.63	0.003
Total De	8581	2029	4.23	0.001

S = 480301 R-Sq = 62.8% R-Sq(adj) = 57.5%

Analysis of Variance

Source DF SS MS F P Regression 2 5.44837E+12 2.72418E+12 11.81 0.001

Residual Error 14 3.22965E+12 2.30689E+11

Total 16 8.67802E+12

Source DF Seq SS UW not d 1 1.32441E+12 Total De 1 4.12396E+12

Unusual Observations

Obs UW not d EMRM Fit SE Fit Residual St Resid 1 61 3999581 3070140 239310 929441 2.23R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Total UW

The regression equation is EMRM = 1196309 + 9152 Total UW MAPE = 17.8%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1196309
 270560
 4.42
 0.000

 Total UW
 9152
 2106
 4.35
 0.001

S = 506108 R-Sq = 55.7% R-Sq(adj) = 52.8%

Analysis of Variance

Source DF SS MS F P Regression 1 4.83584E+12 4.83584E+12 18.88 0.001

Residual Error 15 3.84217E+12 2.56145E+11

Total 16 8.67802E+12

Unusual Observations

Obs Total UW EMRM Fit SE Fit Residual St Resid 4 89 3071911 2010843 133961 1061068 2.17R

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: EMRM versus 2 digit year, Total UW

The regression equation is EMRM = 1395677 + 186636 2 digit year + 5703 Total UW MAPE =11.5%

Predictor	Coef	SE Coef	T	P
Constant	1395677	268750	5.19	0.001
2 digit	186636	87529	2.13	0.062
Total UW	5703	1895	3.01	0.015

S = 334043 R-Sq = 64.4% R-Sq(adj) = 56.5%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2
 1.81425E+12
 9.07125E+11
 8.13
 0.010

Residual Error 9 1.00426E+12 1.11585E+11

Total 11 2.81851E+12

Source DF Seq SS 2 digit 1 8.03861E+11 Total UW 1 1.01039E+12

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 2139293 + 231497 2 digit year

MAPE =15.8%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 2139293
 141939
 15.07
 0.000

 2 digit
 231497
 115892
 2.00
 0.074

S = 448849 R-Sq = 28.5% R-Sq(adj) = 21.4%

Analysis of Variance

Source DF SS MS F P Regression 1 8.03861E+11 8.03861E+11 3.99 0.074

Residual Error 10 2.01465E+12 2.01465E+11

Total 11 2.81851E+12

Regression Analysis: EMRM versus Total UW

The regression equation is EMRM = 1396541 + 6391 Total UW

 $\mathtt{MAPE} = 13.1\%$

Predictor Coef SE Coef T P Constant 1396541 312798 4.46 0.001 Total UW 6391 2173 2.94 0.015

S = 388794 R-Sq = 46.4% R-Sq(adj) = 41.0%

Analysis of Variance

Source DF SS MS F P Regression 1 1.30691E+12 1.30691E+12 8.65 0.015

Residual Error 10 1.51160E+12 1.51160E+11

Total 11 2.81851E+12

LPD Class

SO

Combined

Regression Analysis: Other versus Two digit year, Pac Flt, Total 1

The regression equation is Other = 459942 + 47618 Two digit year + 493034 Pac Flt + 2381 Total_1 MAPE = 15.7%

Predictor	Coef	SE Coef	T	P
Constant	459942	89188	5.16	0.000
Two digi	47618	23530	2.02	0.049
Pac Flt	493034	61268	8.05	0.000
Total_1	2381.4	637.7	3.73	0.001

R-Sq = 66.8% R-Sq(adj) = 64.6%S = 210176

Analysis of Variance

F DF SS Source MS P Regression 3 3.99960E+12 1.33320E+12 30.18 0.000 Residual Error 45 1.98783E+12 44174018866

48 5.98743E+12 Total

 Source
 DF
 Seq SS

 Two digi
 1 6.39653E+11

 Pac Flt
 1 2.74385E+12

 Total_1
 1 6.16102E+11

Unusual Observations

0bs	Two digi	Other	Fit	SE Fit	Residual	St Resid
3	0.00	675000	1122054	53948	-447054	-2.20R
14	0.00	793800	1210166	45019	-416366	-2.03R
17	0.00	1763800	1286370	46477	477430	2.33R
23	-1.00	1918900	1353059	71665	565841	2.86R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: Other versus Two digit year

The regression equation is Other = 753710 + 49124 Two digit year MAPE = 10.3%

Predictor	Coef	SE Coef	T	P
Constant	753710	21502	35.05	0.000
Two digi	49124	15204	3.23	0.004

S = 107509R-Sq = 31.2% R-Sq(adj) = 28.2%

Source	DF	SS	MS	F	P
Regression	1 1.20	657E+11 1.20)657E+11	10.44	0.004

Residual Error 23 2.65840E+11 11558256384

Total 24 3.86497E+11

Pacific Fleet

Regression Analysis: Other versus Total 1

The regression equation is Other = 691450 + 4762 Total_1 MAPE = 15.0%

Predictor	Coef	SE Coef	Т	P
Constant	691450	142414	4.86	0.000
Total_1	4762	1112	4.28	0.000

S = 245729 R-Sq = 45.5% R-Sq(adj) = 43.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.10701E+12 1.10701E+12 18.33 0.000
Residual Error 22 1.32842E+12 60382945961

Table 1 22 1.32012E:12 0

Total 23 2.43544E+12

Regression Analysis: Other versus UW not dep, Uw Deployed not, Code 17

The regression equation is Other = 629996 + 5102 UW not dep + 6866 Uw Deployed not 17 + 3522 Code 17 MAPE = 14.4%

Predictor	Coef	SE Coef	T	P
Constant	629996	222707	2.83	0.010
UW not d	5102	2748	1.86	0.078
Uw Deplo	6866	2074	3.31	0.003
Code 17	3522	1456	2.42	0.025

S = 243255 R-Sq = 51.4% R-Sq(adj) = 44.1%

Analysis of Variance

Source DF SS MS F P Regression 3 1.25198E+12 4.17325E+11 7.05 0.002

Residual Error 20 1.18346E+12 59173053252

Total 23 2.43544E+12

Source DF Seq SS UW not d 1 89187985964 Uw Deplo 1 8.16632E+11 Code 17 1 3.46156E+11

Unusual Observations

Obs UW not d Other Fit SE Fit Residual St Resid 4 66 1449200 966731 81280 482469 2.10R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

SR

Combined

Regression Analysis: EMRM versus Two digit ye, UW not dep, Total Deploy

The regression equation is

 ${\tt EMRM}$ = 588844 + 87060 Two digit year + 3051 UW not dep + 1639 Total Deployed MAPE = 17.8%

Predictor Coef SE Coef Т Ρ 588844 110552 5.33 0.000 Constant 0.000 Two digi 87060 22265 3.91 UW not d 3051 1323 2.31 0.026 Total De 1638.8 618.7 2.65 0.011

S = 202703 R-Sq = 34.8% R-Sq(adj) = 30.5%

Analysis of Variance

Source DF SS MS F P Regression 3 9.87893E+11 3.29298E+11 8.01 0.000

Residual Error 45 1.84897E+12 41088313672

Total 48 2.83687E+12

Source DF Seq SS Two digi 1 6.60225E+11 UW not d 1 39366552211 Total De 1 2.88301E+11

Unusual Observations

Obs Two digi **EMRM** Fit SE Fit Residual St Resid 26 2.00 671000 1129292 58450 -458292 -2.36R 2.00 60790 388917 2.01R 44 1350195 961278

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit year, Total 1

The regression equation is

EMRM = 686844 + 86693 Two digit year + 1544 Total_1

MAPE = 18.2%

Predictor Coef SE Coef T Ρ 0.000 80665 Constant 686844 8.51 Two digi 86693 22421 0.000 3.87 Total_1 1544.4 618.7 2.50 0.016

S = 204139 R-Sq = 32.4% R-Sq(adj) = 29.5%

Analysis of Variance

Source DF SS MS F P Regression 2 9.19929E+11 4.59965E+11 11.04 0.000

Residual Error 46 1.91694E+12 41672556508

Total 48 2.83687E+12

Source DF Seq SS Two digi 1 6.60225E+11 Total_1 1 2.59704E+11 Unusual Observations

0bs	Two digi	EMRM	Fit	SE Fit	Residual	St Resid
26	2.00	671000	1133595	58768	-462595	-2.37R
44	2.00	1350195	960618	61219	389577	2.00R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit year

The regression equation is

EMRM = 874094 + 89155 Two digit year

MAPE = 20.0%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 874094
 31282
 27.94
 0.000

 Two digi
 89155
 23613
 3.78
 0.000

S = 215201 R-Sq = 23.3% R-Sq(adj) = 21.6%

Analysis of Variance

Source DF SS MS F P Regression 1 6.60225E+11 6.60225E+11 14.26 0.000

Residual Error 47 2.17664E+12 46311525078

Total 48 2.83687E+12

Atlantic Fleet

Regression Analysis: EMRM versus Two digit year

The regression equation is

EMRM = 858139 + 76908 Two digit year

MAPE = 16.8%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 858139
 36630
 23.43
 0.000

 Two digi
 76908
 25901
 2.97
 0.007

S = 183148 R-Sq = 27.7% R-Sq(adj) = 24.6%

Analysis of Variance

Source DF SS MS F P Regression 1 2.95739E+11 2.95739E+11 8.82 0.007

Residual Error 23 7.71493E+11 33543160441

Total 24 1.06723E+12

Unusual Observations

Obs Two digi EMRM Fit SE Fit Residual St Resid 9 2.00 1442333 1011954 63444 430379 2.50R

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: EMRM versus Two digit ye, UW not dep, Total Deploy

The regression equation is

 ${\tt EMRM}$ = 515894 + 95973 Two digit year + 3626 UW not dep + 2633 Total Deployed MAPE = 18.3%

Predictor	Coef	SE Coef	T	P
Constant	515894	166540	3.10	0.006
Two digi	95973	41594	2.31	0.032
UW not d	3626	2013	1.80	0.087
Total De	2633	1033	2.55	0.019

S = 227321 R-Sq = 39.1% R-Sq(adj) = 30.0%

Analysis of Variance

Source DF SS MS F P
Regression 3 6.63247E+11 2.21082E+11 4.28 0.017

Residual Error 20 1.03350E+12 51675001346

Total 23 1.69675E+12

Source DF Seq SS Two digi 1 3.17776E+11 UW not d 1 9795094743 Total De 1 3.35676E+11

Unusual Observations

Obs Two digi EMRM Fit SE Fit Residual St Resid 24 2.00 671000 1227427 95296 -556427 -2.70R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit year, Total 1

The regression equation is

EMRM = 576194 + 96696 Two digit year + 2593 Total_1 MAPE = 18.5%

Predictor SE Coef Τ Ρ Coef 0.000 Constant 576194 130384 4.42 Two digi 96696 40935 2.36 0.028 2593 1015 2.56 0.018 Total_1

S = 223812 R-Sq = 38.0% R-Sq(adj) = 32.1%

Analysis of Variance

Source DF SS MS F P
Regression 2 6.44822E+11 3.22411E+11 6.44 0.007

Residual Error 21 1.05192E+12 50091659519

Total 23 1.69675E+12

Source DF Seq SS Two digi 1 3.17776E+11 Total_1 1 3.27047E+11

Unusual Observations

Dbs Two digi EMRM Fit SE Fit Residual St Resid 24 2.00 671000 1228580 93805 -557580 -2.74R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus Two digit year

The regression equation is

EMRM = 883832 + 102920 Two digit year

MAPE = 22.6%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 883832
 55982
 15.79
 0.000

 Two digi
 102920
 45709
 2.25
 0.035

S = 250361 R-Sq = 18.7% R-Sq(adj) = 15.0%

Analysis of Variance

Source DF SS MS F P
Regression 1 3.17776E+11 3.17776E+11 5.07 0.035

Residual Error 22 1.37897E+12 62680518470

Total 23 1.69675E+12

LSD-36 Class

SO

Combined

Regression Analysis: OTHER versus 2 digit year, Pac Flt

The regression equation is

OTHER = 659230 + 175118 2 digit year + 400311 Pac Flt

MAPE = 27.9%

Predictor	Coef	SE Coef	T	P
Constant	659230	119727	5.51	0.000
2 digit	175118	63354	2.76	0.017
Pac Flt	400311	170164	2.35	0.037

S = 308515 R-Sq = 62.6% R-Sq(adj) = 56.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 1.91025E+12 9.55124E+11 10.03 0.003

Residual Error 12 1.14217E+12 95181226526

Total 14 3.05242E+12

Source DF Seq SS 2 digit 1 1.38349E+12 Pac Flt 1 5.26760E+11

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 11 2.00 2017900 1409777 144667 608123 2.23R R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Pac Flt

The regression equation is OTHER = 584179 + 562921 Pac Flt MAPE = 29.8%

Predictor	Coef	SE Coef	T	P
Constant	584179	143328	4.08	0.001
Pac Flt	562921	196260	2.87	0.013

S = 379210 R-Sq = 38.8% R-Sq(adj) = 34.0%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1 1.18302E+12 1.18302E+12 8.23 0.013
 8.23 0.013

Residual Error 13 1.86940E+12 1.43800E+11

Total 14 3.05242E+12

Unusual Observations

 Obs
 Pac Flt
 OTHER
 Fit
 SE Fit
 Residual
 St Resid

 11
 1.00
 2017900
 1147100
 134071
 870800
 2.45R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 869294 + 226643 2 digit year MAPE = 27.5

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 869294
 92627
 9.38
 0.000

 2 digit
 226643
 69040
 3.28
 0.006

S = 358301 R-Sq = 45.3% R-Sq(adj) = 41.1%

Analysis of Variance

Source DF SS MS F P Regression 1 1.38349E+12 1.38349E+12 10.78 0.006

Residual Error 13 1.66893E+12 1.28380E+11

Total 14 3.05242E+12

Unusual Observations

Obs 2 digit OTHER Fit SE Fit Residual St Resid 11 2.00 2017900 1322581 162404 695319 2.18R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

Atlantic Fleet

No regressions were significant.

Pacific Fleet

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = - 176656 + 10929 Total_1 MAPE = 22.6%

SE Coef Predictor Coef Т P 0.779 Constant -176656 601007 -0.29 Total_1 10929 4850 2.25 0.065

S = 358491 R-Sq = 45.8% R-Sq(adj) = 36.8%

Analysis of Variance

F Source DF SS MS 1 6.52484E+11 6.52484E+11 5.08 0.065 Regression

6 7.71093E+11 1.28515E+11 Residual Error

7 1.42358E+12 Total

Unusual Observations

Obs Total_1 OTHER Fit SE Fit Residual St Resid 4 139 2017900 1342453 153561 675447 2.09R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 1018790 + 256620 2 digit year MAPE 21.2%

Predictor Coef SE Coef Т P 7.37 Constant 1018790 138297 0.000 2 digit 256620 112919 2.27 0.063

S = 357080R-Sq = 46.3% R-Sq(adj) = 37.3%

Analysis of Variance

Regression DF SS MS F P Regression 1 6.58538E+11 6.58538E+11 Residual Error 6 7.65038E+11 1.27506E+11 Total 7 1.42358E+12 5.16 0.063

SR

Combined

Regression Analysis: EMRM versus 2 digit year

The regression equation is EMRM = 809213 + 116406 2 digit yearMAPE = 18.3%

Predictor	Coef	SE Coef	T	P
Constant	809213	50370	16.07	0.000
2 digit	116406	37543	3.10	0.008

S = 194840R-Sq = 42.5% R-Sq(adj) = 38.1%

Analysis of Variance

SS F Regression 1 3.64955E+11 3.64955E+11 0.008 9.61

13 4.93512E+11 37962485129 Residual Error

14 8.58468E+11 Total

Unusual Observations

2 digit EMRM Fit -2.00 995290 576401 Fit SE Fit Residual St Resid 92471 418889 2.44R

Atlantic Fleet

No regressions were significant

Pacific Fleet

Regression Analysis: EMRM versus 2 digit year, UW not dep, ...

The regression equation is EMRM = 132031 + 210208 2 digit year + 6168 UW not dep + 3274 UW Dep + 3783 Code 17

MAPE = 3.3%

Predictor	Coef	SE Coef	Т	Р
Constant	132031	124632	1.06	0.367
2 digit	210208	18569	11.32	0.001
UW not d	6168	1441	4.28	0.023
UW Dep	3274.0	914.9	3.58	0.037
Code 17	3783.0	920.1	4.11	0.026

S = 55299R-Sq = 98.6% R-Sq(adj) = 96.7%

Analysis of Variance

DF MS F Regression Source SS P Regression 4 6.36016E+11 1.59004E+11 Residual Error 3 9174014535 3058004845 52.00 0.004

Total 7 6.45190E+11

Source DF Seq SS 1 5.63754E+11 2 digit 1 11426544621 UW not d 1 9144550373 UW Dep Code 17 1 51690806971

Regression Analysis: EMRM versus 2 digit year, UW not dep, Total Dep UW

The regression equation is

EMRM = 132195 + 210146 2 digit year + 6100 UW not dep + 3526 Total Dep UW

MAPE = 2.8%

Predictor	Coef	SE Coef	Т	P
Constant	132195	113424	1.17	0.309
2 digit	210146	16899	12.44	0.000
UW not d	6100	1306	4.67	0.010
Total De	3525.5	725.1	4.86	0.008

S = 50326R-Sq = 98.4% R-Sq(adj) = 97.3%

Analysis of Variance

DF Source SS MS F 3 6.35059E+11 2.11686E+11 0.000 83.58 Regression

Residual Error 4 10130978444 2532744611

7 6.45190E+11

Source DF Seq SS 2 digit 1 5.63754E+11 UW not d 1 11426544621 Total De 1 59878393435

Regression Analysis: EMRM versus 2 digit year, Total 1

The regression equation is

EMRM = 313960 + 210862 2 digit year + 3385 Total_1

MAPE = 4.9%

Predictor	Coef	SE Coef	T	P
Constant	313960	124325	2.53	0.053
2 digit	210862	24162	8.73	0.000
Total_1	3385	1034	3.27	0.022

S = 71970R-Sq = 96.0% R-Sq(adj) = 94.4%

Analysis of Variance

Source DF SS MS F Ρ 2 6.19291E+11 3.09646E+11 59.78 0.000 Regression

5 25898323838 5179664768 Residual Error

Total 7 6.45190E+11

Source DF Seq SS 2 digit 1 5.63754E+11 Total_1 1 55537592662

Regression Analysis: EMRM versus 2 digit year

The regression equation is

EMRM = 710695 + 237435 2 digit year

MAPE = 10.6%

Predictor Coef SE Coef T Ρ 45121 15.75 0.000 Constant 710695 2 digit 237435 36841 6.44 0.001

S = 116502R-Sq = 87.4% R-Sq(adj) = 85.3%

Source	DF	SS	MS	F	P
Regression	1	5.63754E+11	5.63754E+11	41.54	0.001
D '1 1 D	_	01405016500	12550650550		

Residual Error 6 81435916500 13572652750

Total 7 6.45190E+11

LSD-41 Class

SO

Combined

Regression Analysis: OTHER versus Two digit year, Pac Flt

The regression equation is OTHER = 574808 + 51171 Two digit year + 412390 Pac Flt MAPE 22.5 Coef Predictor SE Coef Т 574808 13.63 0.000 Constant

42180 Two digi 51171 24494 2.09 0.042 64163 0.000 Pac Flt 412390 6.43

S = 226966 R-Sq = 51.9% R-Sq(adj) = 50.0%

Analysis of Variance

SS Source DF MS F Regression 2 2.78461E+12 1.39231E+12 Residual Error 50 2.57567E+12 51513385293 2 2.78461E+12 1.39231E+12 27.03 0.000

52 5.36028E+12 Total

Source DF Seq SS Two digi 1 6.56663E+11 Pac Flt 1 2.12795E+12

Unusual Observations

Obs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
3	0.00	514500	987198	47921	-472698	-2.13R
7	1.00	1659100	1038369	47921	620731	2.80R
8	-1.00	1445200	936026	59129	509174	2.32R
24	2.00	1187798	677151	65913	510647	2.35R

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Two digit year, Pac Flt, Total 1

The regression equation is OTHER = 384471 + 46986 Two digit year + 370971 Pac Flt + 1803 Total_1 MAPE =20.5%

Predictor	Coef	SE Coef	Т	P
Constant	384471	86833	4.43	0.000
Two digi	46986	23391	2.01	0.050
Pac Flt	370971	63368	5.85	0.000
Total_1	1802.9	729.2	2.47	0.017

S = 216180 R-Sq = 57.3% R-Sq(adj) = 54.7%

Source	DF	SS	MS	F	P
Regression	3	3.07033E+12	1.02344E+12	21.90	0.000

Residual Error 49 2.28996E+12 46733813537

Total 52 5.36028E+12

Source	DF	Seq SS
Two digi	1	6.56663E+11
Pac Flt	1	2.12795E+12
Total 1	1	2.85712E+11

Unusual Observations

0bs	Two digi	OTHER	Fit	SE Fit	Residual	St Resid
7	1.00	1659100	1045817	45743	613283	2.90R
8	-1.00	1445200	957253	56970	487947	2.34R
16	2.00	970347	550558	81011	419789	2.09R
24	2.00	1187798	656928	63311	530870	2.57R
42	2.00	767141	885894	105208	-118753	-0.63 X

R denotes an observation with a large standardized residual

X denotes an observation whose X value gives it large influence.

Atlantic Fleet

Regression Analysis: OTHER versus Two digit year

The regression equation is OTHER = 577158 + 85242 Two digit year MAPE 24.8

Predictor	Coef	SE Coef	Т	P
Constant	577158	24767	23.30	0.000
Two digi	85242	17823	4.78	0.000

S = 133208 R-Sq = 45.9% R-Sq(adj) = 43.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 4.05902E+11 4.05902E+11 22.87 0.000
Residual Error 27 4.79100E+11 17744441035

28 8.85002E+11

Unusual Observations

Obs Two digi OTHER Fit SE Fit Residual St Resid 9 2.00 1187798 747641 44403 440157 3.50F 3.50R

Pacific Fleet

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = 513888 + 3846 Total_1 MAPE= 19.0%

Predictor	Coef	SE Coef	T	P
Constant	513888	164717	3.12	0.005
Total_1	3846	1210	3.18	0.004
S = 244284	R-Sq = 3	1.5% R	-Sq(adj) =	28.3%

Source	DF	SS	MS	F	P
Regression	1	6.02658E+11	6.02658E+11	10.10	0.004
Dogidual Errors	2.2	1 212045.12	E0674E0E174		

22 1.31284E+12 59674525174 Residual Error

Total 23 1.91550E+12

Unusual Observations

Obs	Total_1	OTHER	Fit	SE Fit	Residual	St Resid
7	135	1659100	1033137	50274	625963	2.62R
24	230	1158200	1398533	131228	-240333	-1.17 X

SR

Combined

Regression Analysis: EMRM versus Two digit year, Pac Flt

The regression equation is EMRM = 987132 + 110765 Two digit year - 158856 Pac FltMAPE = 26.5%

Predictor	Coef	SE Coef	T	P
Constant	987132	34713	28.44	0.000
Two digi	110765	20158	5.49	0.000
Pac Flt	-158856	52804	-3.01	0.004

S = 186783R-Sq = 40.2% R-Sq(adj) = 37.8%

Analysis of Variance

Regression 2 SS MS F 16.83 0.000 2 1.17404E+12 5.87019E+11

Residual Error 50 1.74440E+12 34887917028

52 2.91843E+12 Total

Source DF Seq SS 1 8.58282E+11 Two digi Pac Flt 1 3.15757E+11

Unusual Observations

0bs	Two digi	EMRM	Fit	SE Fit	Residual	St Resid
5	2.00	1528000	1049806	48661	478194	2.65R
16	2.00	1635732	1208662	54243	427070	2.39R
36	-1.00	1114400	717511	48661	396889	2.20R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus Two digit year

The regression equation is EMRM = 988392 + 129041 Two digit year MAPE = 22.6%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 988392
 30321
 32.60
 0.000

 Two digi
 129041
 21819
 5.91
 0.000

S = 163080 R-Sq = 56.4% R-Sq(adj) = 54.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1
 9.30194E+11
 9.30194E+11
 34.98
 0.000

 Residual Error
 27
 7.18067E+11
 26595090169
 0.000

Total 28 1.64826E+12

Unusual Observations

Obs Two digi Fit SE Fit Residual St Resid EMRM 2.00 1 1635732 1246474 54360 389258 2.53R 54360 22 2.00 2.01R 1555162 1246474 308688

R denotes an observation with a large standardized residual

Pacific Fleet

Regression Analysis: EMRM versus Two digit year

The regression equation is EMRM = 881305 - 56488 Two digit year MAPE= 17.0%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 881305
 43393
 20.31
 0.000

 Two digi
 -56488
 30369
 -1.86
 0.076

S = 212490 R-Sq = 13.6% R-Sq(adj) = 9.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.56219E+11 1.56219E+11 3.46 0.076

Residual Error 22 9.93346E+11 45152089188

Total 23 1.14956E+12

Unusual Observations

Obs Two digi EMRM Fit SE Fit Residual St Resid 5 -2.00 1528000 994280 73609 533720 2.68R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

MCM Class

SO

Combined

Regression Analysis: OTHER versus two digit year, Total 1

The regression equation is OTHER = 191822 + 22134 two digit year + 604 Total_1 MAPE = 13.4%

Predictor	Coef	SE Coef	T	P
Constant	191822	13944	13.76	0.000
two digi	22134	4099	5.40	0.000
Total_1	603.8	152.4	3.96	0.000

S = 39426 R-Sq = 54.0% R-Sq(adj) = 51.9%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 2 82032106705 41016053353
 26.39
 0.000

Residual Error 45 69949299274 1554428873

Total 47 1.51981E+11

Source DF Seq SS two digi 1 57629871415 Total_1 1 24402235290

Unusual Observations

Obs two digi OTHER Fit SE Fit Residual St Resid 39 2.00 405708 314588 11658 91120 2.42R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 216334 + 23261 two digit year MAPE = 9.5%

Predictor	Coef	SE Coef	T	P
Constant	216334	5658	38.23	0.000
two digi	23261	4037	5.76	0.000

S = 29853 R-Sq = 56.1% R-Sq(adj) = 54.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 29584591743 29584591743 33.20 0.000

Residual Error 26 23171829827 891224224

Total 27 52756421570

Unusual Observations

0bs	two digi	OTHER	Fit	SE Fit	Residual	St Resid
3	2.00	326224	262855	10208	63369	2.26R
4	2.00	341543	262855	10208	78688	2.80R

R denotes an observation with a large standardized residual

<u>Japan</u>

S = 38081

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 270038 + 29781 two digit year MAPE = 8.9%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 270038
 12042
 22.42
 0.000

 two digi
 29781
 8515
 3.50
 0.008

Analysis of Variance

Source DF SS MS F P Regression 1 17737801850 17737801850 12.23 0.008

Residual Error 8 11601287715 1450160964

R-Sq = 60.5%

Total 9 29339089565

Unusual Observations

Obs two digi OTHER Fit SE Fit Residual St Resid 1 2.00 405708 329599 20858 76109 2.39R

R-Sq(adj) = 55.5%

R denotes an observation with a large standardized residual

Regression Analysis: OTHER versus Total 1

The regression equation is OTHER = 173739 + 1187 Total_1 MAPE = 11.3%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 173739
 33477
 5.19
 0.001

 Total_1
 1187.4
 381.1
 3.12
 0.014

S = 40702 R-Sq = 54.8% R-Sq(adj) = 49.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 16085718653 16085718653 9.71 0.014

Residual Error 8 13253370912 1656671364

Total 9 29339089565

Unusual Observations

0bs	Total_1	OTHER	Fit	SE Fit	Residual	St Resid
1	130	405708	328102	22647	77606	2.29R

Bahrain

Regression Analysis: OTHER versus two digit year

The regression equation is OTHER = 286603 + 19472 two digit year MAPE = 9.7%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 286603
 12463
 23.00
 0.000

 two digi
 19472
 8813
 2.21
 0.058

S = 39412 R-Sq = 37.9% R-Sq(adj) = 30.1%

Analysis of Variance

Source DF SS MS F P Regression 1 7583526180 7583526180 4.88 0.058

Residual Error 8 12426743306 1553342913

Total 9 20010269486

Unusual Observations

Obs two digi OTHER Fit SE Fit Residual St Resid 2 2.00 394456 325547 21587 68909 2.09R

 $\ensuremath{\mathtt{R}}$ denotes an observation with a large standardized residual

SR

Combined

Regression Analysis: EMRM versus two digit year, Total_1

The regression equation is

EMRM = 792553 + 125855 two digit year + 2878 Total_1

MAPE = 19.9%

Predictor Coef SE Coef Т Ρ 792553 97868 8.10 0.000 Constant two digi 125855 28768 4.37 0.000 Total_1 2878 1070 2.69 0.010

S = 276726 R-Sq = 40.6% R-Sq(adj) = 38.0%

Analysis of Variance

Source DF SS MS F P Regression 2 2.35657E+12 1.17829E+12 15.39 0.000

Residual Error 45 3.44599E+12 76577515857

Total 47 5.80256E+12

Source DF Seq SS two digi 1 1.80216E+12 Total_1 1 5.54413E+11

Unusual Observations

0bs	two digi	EMRM	Fit	SE Fit	Residual	St Resid
12	1.00	1800408	1188955	50525	611453	2.25R
38	-2.00	1995090	912127	89127	1082963	4.13R

R denotes an observation with a large standardized residual

Regression Analysis: EMRM versus two digit year

The regression equation is EMRM = 1032911 + 137868 two digit year MAPE = 22.7%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 1032911
 42607
 24.24
 0.000

 two digi
 137868
 30286
 4.55
 0.000

S = 294899 R-Sq = 31.1% R-Sq(adj) = 29.6%

Analysis of Variance

Source DF SS MS F P
Regression 1 1.80216E+12 1.80216E+12 20.72 0.000

Residual Error 46 4.00040E+12 86965247036

Total 47 5.80256E+12

Unusual Observations

Obs two digi **EMRM** Fit SE Fit Residual St Resid 1.00 1170779 53360 2.17R 12 1800408 629629 38 -2.00 1995090 757175 72491 1237915 4.33R

R denotes an observation with a large standardized residual

Atlantic Fleet

Regression Analysis: EMRM versus two digit year

The regression equation is EMRM = 980124 + 191390 two digit year

MAPE = 17.6%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 980124
 39110
 25.06
 0.000

 two digi
 191390
 27905
 6.86
 0.000

S = 206344 R-Sq = 64.4% R-Sq(adj) = 63.0%

Analysis of Variance

Source DF SS MS F P Regression 1 2.00288E+12 2.00288E+12 47.04 0.000

Residual Error 26 1.10702E+12 42577801017

Total 27 3.10991E+12

Unusual Observations

Obs two digi EMRM Fit SE Fit Residual St Resid 12 1.00 1800408 1171514 49751 628894 3.14R

<u>Japan</u>

Regression Analysis: EMRM versus two digit year

The regression equation is EMRM = 903463 + 131279 two digit year MAPE = 13.6%

Predictor	Coef	SE Coef	Т	P
Constant	903463	53327	16.94	0.000
two digi	131279	37708	3.48	0.008
S = 168635	R-Sq = 6	50.2% R-S	Sq(adj) = 5	5.3%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	3.44682E+11	3.44682E+11	12.12	0.008
Residual Error	8	2.27503E+11	28437877086		
Total	9	5 72185E+11			

Bahrain

There were no significant regressions.

MHC Class

SO

Regression Analysis: OTHER versus 2 digit year

The regression equation is OTHER = 191950 + 46602 2 digit year MAPE = 30.8%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 191950
 13492
 14.23
 0.000

 2 digit
 46602
 8788
 5.30
 0.000

S = 47732 R-Sq = 70.1% R-Sq(adj) = 67.6%

Analysis of Variance

Source DF SS MS F P Regression 1 64065866492 64065866492 28.12 0.000

Residual Error 12 27339614865 2278301239

Total 13 91405481357

Regression Analysis: OTHER versus Total UW

The regression equation is OTHER = 66933 + 1605 Total UW MAPE 35.1%

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 66933
 46455
 1.44
 0.175

 Total UW
 1605.5
 667.9
 2.40
 0.033

S = 71705 R-Sq = 32.5% R-Sq(adj) = 26.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 29705901221 29705901221 5.78 0.033

Residual Error 12 61699580136 5141631678

Total 13 91405481357

Unusual Observations

Obs Total UW OTHER Fit SE Fit Residual St Resid 1 80 346982 195369 22155 151613 2.22R

R denotes an observation with a large standardized residual

SR

Regression Analysis: EMRM versus 2 digit year

The regression equation is EMRM = 492140 + 164273 2 digit year MAPE = 40.0 %

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 492140
 43170
 11.40
 0.000

 2 digit
 164273
 28118
 5.84
 0.000

S = 152722 R-Sq = 74.0% R-Sq(adj) = 71.8%

Analysis of Variance

 Source
 DF
 SS
 MS
 F
 P

 Regression
 1 7.96076E+11 7.96076E+11 34.13 0.000
 34.13 0.000

 Residual Error
 12 2.79890E+11 23324152965
 34.13 0.000

 Total
 13 1.07597E+12

APPENDIX F: REGRESSIONS TO CALCULATE SUPPLEMENTAL FUNDING REQUIREMENTS

The regressions presented in Chapter Five summarize those with the best MAPE regardless of variables included in the equation. Only regressions that include independent variables for operational data are included in this appendix. While these variables did not optimize MAPE for our modified model they are significant to the ninety percent level for the regression as well as each independent variable.

Regressions were run to find relationships between repair parts (SR) cost, consumable (SO) costs and operating data. An independent variable for the year was considered. Referred to as "FY" this variable aimed to include trends from year to year, to include inflation. An indicator variable was included to differentiate between Pacific and Atlantic Fleet ships when regressions were run on all the ships of a class when aggregated. This variable was referred to as "Pac Flt." This variable has a value of either "1" for a Pacific Fleet ship or "0" for an Atlantic Fleet ship. This variable was not included when the regressions were done for the individual fleets since it was not required.

Based on the information in the NUERS database, five possible independent variables could be considered. The first was Days Underway while not deployed and was identified as "UW not dep." There were three variables to consider for days underway while deployed. Days underway deployed to the Fifth Fleet Area of Responsibility (AOR) are identified separately in the NUERS database by OPCON code 17. The variable representing this is "code 17" in the following regressions. When ships were deployed but not to the Fifth Fleet AOR, these days were represented by the variable "UW dep not 17". Finally, the variable "Total UW deployed" is the summation of the previous two variables. The last variable "Total UW" considers the total number of days underway deployed and not deployed.

Some exceptions apply. Due to the lack of data points, regressions by class do not consider whether a ship is deployed to Fifth Fleet or not, only that it is underway deployed. Further, in order to keep with the model's current convention of computing unit cost for SR and SO and then multiplying by the number of Ship Years, we have decided

to use the dependent variable SR per ship (or SO per ship) when determining the equation to predict costs by class.

To summarize, the variables used in the following regressions and their meanings are as follows:

SR	A dependent variable to estimate repair parts costs when using "by hull" data.
SO	A dependent variable to estimate SO consumable costs when using "by hull" data.
SR per ship	A dependent variable to estimate SR costs when using class data.
SO per ship	A dependent variable to estimate SO costs when using class data.
FY	An independent variable representing the current fiscal year. Fiscal Year 2000 was used as the base (00). Therefore fiscal year 1999 is represented by a negative one (-1) and fiscal year 2001 by a positive one (1).
Pac Flt	A binary (one or zero) indicator variable to represent the fleet in which a ship is home ported. A ship assigned to the Atlantic Fleet would have a value of zero and one assigned to the Pacific Fleet would have a value of one.
UW not dep	Represents the days spent underway and while not in a deployed status. In the NUERS database this is represented by the time spent in code eight.
Code 17	Represents the days underway on deployment while in the 5 th Fleet AOR. This time is represented by code 17 in the NUERS database.
UW dep not 17	Represents the days spent underway and on deployment when operating in areas SO than the 5 th fleet AOR. This is represented by the code nine in the NUERS database.
Total UW de- ployed	Is the summation of the days under "Code 17" and "Total UW deployed." This represents the total number of days underway while in a deployed status.
Total UW	Represents the total number of days a ship was underway in a year. It is the summation of the time spent in codes eight, nine and seventeen in the NUERS database.
Total UW / SY	The total days underway for a class during a year divided by the ship years. This represents the average number of days underway per ship.

Table 23: List of Variables Used in Regressions in Appendix F

Multiple regressions were run in Minitab (a commercial statistical software package) to consider the various combinations of these variables. In order to find any relationships that exist across an entire class, the ships were aggregated by class and fleet.

Then the ships were divided into their respective fleets and further regressions were performed to find any relationships that were fleet specific.

There are a few exceptions to this practice. Only ships from the Atlantic Fleet were considered for the CVN-68 class. Data for the Pacific Fleet ships of this class were not available. The MCM class does not have ships assigned to the Pacific Fleet. Ships are home ported in the Atlantic Fleet, Bahrain and Japan. Although assigned to Japan, for budgeting purposes these ships are considered part of the Atlantic Fleet. Regressions performed on this class of ship were separated by homeport, Atlantic, Bahrain and Japan. The MHC class had a similar issue since these ships are only home ported in Bahrain.

A summary of the regressions follows with the corresponding MAPE for each regression equation. The MAPE was obtained by comparing the error produced by the predictive regression and the actual costs, as discussed in Chapter 4. The complete statistical evaluation of the regressions including an analysis of variance (ANOVA) can be found in Appendices C and D.

The regressions are subdivided by Other Consumables (SO) and Repair Parts (SR).

AOE-1 Class

SR

By Hull

One regression was found to be significant for the entire class for this Special Interest Item:

```
SR = 1179276 + 194205 FY - 447725 Pac Flt + 2952 Total UW MAPE=27.9%
```

One regression was found to be significant for the AOE-1 class ships assigned to the Atlantic Fleet:

SR = 1216456 + 168466 FY + 2679 Total UW MAPE 9.8%

AOE-6 Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 230024 + 585647 Pac Flt + 3912 Total UW

MAPE = 19.9%

SO = -7758 + 577636 Pac Flt + 7567 UW not dep + 3842 Total UW deployed

MAPE = 21.7%
```

Two regressions were found to be significant for the AOE-6 class ships assigned to the Atlantic Fleet. They are:

```
SO = 389230 - 95086 FY + 2493 Total UW
MAPE = 15.1%
SO = 315716 + 3238 Total UW
MAPE = 18.4%
```

No regressions were found to be significant for the AOE-6 class ships assigned to the Pacific Fleet.

SR

By Hull

One regression was significant for SR for the entire class of ships. It is:

```
SR = 461317 - 290374 Pac Flt + 10861 UW not dep + 5132 Total UW deployed MAPE=14.7%
```

ARS Class

SR

By Hull

There was one regression that was significant when the ARS class was considered as a

SR per ship =
$$-78.593 + 66.767$$
 FY + 281.541 Pac Flt + 5.6568 Total UW / SY MAPE = 25.6%

CG-47 Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 589434 + 86589 FY + 1312 Total UW

MAPE = 19.0%

SO = 519990 + 70221 FY + 244877 Pac Flt + 1061 Total UW

MAPE = 14.3%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 545267 + 65314 FY + 973 UW not dep + 599 Total UW Deployed
MAPE = 20.1%
SO = 566698 + 65111 FY + 674 Total UW
MAPE = 15.4%
```

One regression was found to be significant for the ships of the Pacific Fleet when considered separately:

SR

By Hull

Four regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 2274423 + 279975 FY + 3268 UW not dep + 2655 Total UW Deployed MAPE = 13.2%

SR = 2351259 + 290770 FY - 171724 Pac Flt + 3011 UW not dep + 2896 Total UW Deployed MAPE = 13.0%

SR = 2309035 + 279134 FY + 2736 Total UW MAPE = 13.4%

SR = 2358455 + 290782 FY - 174269 Pac Flt + 2914 Total UW MAPE = 13.1%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

CVN-68 Class

SO

By Hull

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

SR

By Hull

Four regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 2977027 + 681646 FY + 29933 UW not dep + 21332 Total UW deployed MAPE = 27.0%

SR = 3332599 + 731389 FY + 23395 Total UW MAPE = 26.9%

SR = 2977027 + 681646 FY + 29933 UW not dep + 21332 Total UW deployed MAPE = 27.0%

SR = 2743518 + 26748 Total UW MAPE = 27.4%
```

DD-963 Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 331935 + 43634 FY + 372565 Pac Flt + 1856 UW not dep + 1859 Total UW Deployed.

MAPE = 22.8

SO = 327688 + 43430 FY + 375341 Pac Flt + 1884 UW not dep + 2017 UW Dep not 17 + 1673 Code 17

MAPE = 19.5%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 455668 + 39223 FY + 749 Total UW MAPE = 16.9%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 384708 + 65132 FY + 3927 UW not dep + 5179 UW Dep not 17
+ 3310 Code 17
MAPE = 15.9%
SO = 418276 + 60375 FY + 3897 Total UW
MAPE = 16.0%
SO = 448379 + 3882 Total UW
MAPE = 17.7%
```

SR

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1530061 + 152196 FY + 4881 UW not dep
+ 3923 UW Dep not 17 + 3683 Code 17
MAPE = 21.2
SR = 1532637 + 152182 FY + 4860 UW not dep
+ 3807 Total UW Deployed
MAPE = 22.1
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 1341095 + 5605 UW not dep + 8467 UW Dep not 17 + 4489 Code 17

MAPE = 18.4%

SR = 1465298 + 4463 UW not dep + 5898 Total UW Deployed

MAPE = 22.1%

SR = 1398205 + 5716 Total UW

MAPE = 33.9%
```

DDG-51 Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 100447 + 41255 FY + 190405 Pac Flt + 3605 UW not dep
+ 3130 UW Dep not 17 + 2576 Code 17
MAPE = 23.9%
SO = 212997 + 51850 FY + 2984 Total UW
MAPE = 24.3%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 193428 + 49367 FY + 3030 UW not dep + 1906 UW Dep not 17
+ 1663 Code 17
MAPE = 21.7%
SO = 246691 + 43832 FY + 2107 Total UW
MAPE 23.3%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 126572 + 40860 FY + 4890 UW not dep + 5099 Uw Deployed Not 17+ 3320
Code 17
MAPE = 20.8%
SO = 166433 + 39827 FY + 4378 UW not dep + 4123 Total UW Deployed
MAPE = 21.2%
SO = 180099 + 40288 FY + 4132 Total UW
MAPE = 21.2%
```

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 400753 + 10018 UW not dep + 7212 UW Dep not 17 + 7280 Code 17
+ 103074 FY
MAPE = 26.5%
SR = 562075 + 99154 FY + 7482 Total UW
MAPE = 26.8
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 429539 + 113649 FY + 10825 UW not dep + 3968 UW Dep not 17
+ 6475 Code 17
MAPE = 24.5%

SR = 392123 + 112791 FY + 11212 UW not dep + 5113 Total UW deployed
MAPE = 24.6 %

SR = 674755 + 92003 FY + 6475 Total UW
MAPE = 27.2%
```

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 248942 + 10652 UW not dep + 11890 Uw Deployed Not 17 + 6623 Code 17
+ 120507 FY
MAPE = 23.9%
SR = 366956 + 9136 UW not dep + 9000 Total UW Deployed
+ 117450 FY
MAPE = 25.2%
```

FFG Class

SO

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 253249 + 57776 FY + 298451 Pac Flt + 1936 UW not dep
+ 1010 UW Dep not 17 + 1602 Code 17
MAPE = 19.8%
SO = 284174 + 57251 FY + 283864 Pac Flt + 1494 Total UW
MAPE = 19.8%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 399035 + 46848 FY + 2818 Total UW

MAPE = 19.2%

SO = 410151 + 2911 Total UW

MAPE = 20.0%

SO = 367734 + 3749 UW not dep + 2382 UW Dep + 3003 Code 17

MAPE = 20.5%
```

SR

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1114799 + 117170 FY + 3286 UW not dep + 1569 Total UW Deployd MAPE = 17.5%

SR = 1183994 + 140115 FY - 264124 Pac Flt + 3278 UW not dep + 2182 Total UW Deployd MAPE = 16.1%
```

Two regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 1199609 + 189197 FY + 3498 UW not dep + 1826 Total UW dep MAPE = 15.6%

SR = 1265013 + 187084 FY + 2496 Total UW MAPE = 15.6%
```

LHA-1 Class

SO

By Class

No regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO per ship = 1530.214 + 155.7285 FY + 10.337 Total UW / SY MAPE = 12.0%

SO per ship = 1442.206 + 184.4804 FY + 12.8445 Total UW / SY MAPE = 10.5%
```

LHD Class

SO

By Hull

Two regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SO = 1060138 + 591557 Pac Flt + 4965 Total UW
MAPE = 21.1%
SO = 1195299 + 5858 Total UW
MAPE = 26.3%
```

One regression was found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SO = 1109434 + 4534 Total UW
MAPE = 17.6%
```

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 1156393 + 124175 FY + 9707 UW not dep + 7426 Total Dep UW MAPE = 15.3

SR = 1290522 + 113189 FY + 7522 Total UW MAPE = 15.4%

SR = 1025405 + 11963 UW not dep + 4940 UW Dep not 17 + 11242 Code 17 MAPE 14.8%
```

Three regressions were found to be significant for the ships of the Atlantic Fleet when considered separately:

```
SR = 785076 + 16559 UW not dep + 4675 UW Dep not 17 + 13331 Code 17

MAPE = 12.6%

SR = 827705 + 15099 UW not dep + 8581 Total Dep UW

MAPE = 15.8%

SR = 1196309 + 9152 Total UW

MAPE = 17.8%
```

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 1395677 + 186636 FY + 5703 Total UW
MAPE =11.5%
SR = 1396541 + 6391 Total UW
MAPE = 13.1%
```

LPD Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

Two regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SO = 691450 + 4762 Total UW
MAPE = 15.0%
SO = 629996 + 5102 UW not dep + 6866 Uw Deployed not 17 + 3522 Code 17
MAPE = 14.4%
```

SR

By Hull

Three regressions were found to be significant for the entire class for this Special Interest Item. They are:

```
SR = 588844 + 87060 FY + 3051 UW not dep + 1639 Total Deployed
MAPE = 17.8%
SR = 686844 + 86693 FY + 1544 Total UW
MAPE = 18.2%
```

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 515894 + 95973 \text{ FY} + 3626 \text{ UW} \text{ not dep} + 2633 \text{ Total Deployed} MAPE = 18.3\%
```

LSD-36 Class

SO

One regression was found to be significant for the ships of the Pacific Fleet when considered separately:

SR

By Hull

Three regressions were found to be significant for the ships of the Pacific Fleet when considered separately:

```
SR = 132031 + 210208 FY + 6168 UW not dep + 3274 UW Dep
+ 3783 Code 17
MAPE = 3.3%

SR = 132195 + 210146 FY + 6100 UW not dep + 3526 Total Dep UW
MAPE = 2.8%

SR = 313960 + 210862 FY + 3385 Total UW
MAPE = 4.9%
```

LSD-41 Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

One regression was found to be significant for the ships of the Pacific Fleet when considered separately:

SR

No regressions were significant for this SII.

MCM Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

One regression was found to be significant for the ships home-ported in Japan when considered separately:

SR

By Hull

One regression was found to be significant for the entire class for this Special Interest Item. They are:

MHC Class

SO

By Hull

One regression was found to be significant for the entire class for this Special Interest Item:

```
SO = 66933 + 1605 Total UW
MAPE 35.1%
```

SR

No regressions were significant for this SII.

APPENDIX G: RECOMMENDATIONS FOR DEVELOPING NEW MODELS

We conducted our analysis of the current model and our development of a modified model with an overall precept that any change to the model must be statistically significant at the 90% level. While the current model may not be statistically significant, we did not feel comfortable replacing parts of the current model without the statistical significance to support the change. If we relaxed the requirement for all changes to be statistically significant we could explore other options for improving the model without completely overhauling the current methodology.

Here is an example of potential models. Models A, B and C use the current methodology of a three year moving average but instead of multiplying unit cost by Ship Years as the driver, we use OPMONTH, total days underway and a weighted mix of ship year, OPMONTH and total days underway respectively. The current model's methodology is maintained but the drivers are different. To gain further insight into the potential for altering the current model to improve its output we developed sub-models to models A, B and C. We have labeled them A1, A2, B1, etc. In each sub-model 1, incremental costs were excluded for each year. In sub-model 2, in addition to excluding incremental costs, price growth factors were excluded. As an initial analysis of this methodology, we have developed backcasts for the selected five ship classes below and calculated the MAPE based on 6 years for each model.

		MAP	Es of	Improvement		
Model Codes	Description	SR	so	SR - 2.04%	SO.	
Original	Original	14.12%	21.34%			
Model O2	+ w/o inc. cost and price growth	12.08%	20.48%		0.86%	
Model A	based on OPMONTH	17.11%	22.57%	-	-	
Model A1	+ w/o inc. costs	15.31%	22.53%	-	79	
Model A2	+ w/o price growth	13.46%	21.87%	0.65%	64	
Model B	based on TDUW	25.22%	25.69%	- 1	-	
Model B1	+ w/o inc. costs	23.30%	25.69%	374	25	
Model B2	+ w/o price growth	20.57%	25.70%	-	-	
Model C	Optimized mix of SYr, OPM and TDUW	13.76%	20.53%	0.36%	0.81%	
Model C1	+ w/o inc. costs	12.27%	20.48%	1.85%	0.86%	
Model C2	+ w/o price growth	11.12%	20.28%	3.00%	1.06%	
Overall Results	Best value:	11.12%	20.28%			
	Best Model:	Model C2	Model C2			

		MAP	Es of	Improvement	
Model Codes	Description	SR	so	SR	SO
Original	Original	11.75%	22.28%	75	165
Model O2	+ w/o inc. cost and price growth	9.96%	20.83%	1.79%	1.44%
Model A	based on OPMONTH	13.26%	22.07%	5	0.20%
Model A1	+ w/o inc. costs	11.28%	22.02%	0.47%	0.25%
Model A2	+ w/o price growth	9.45%	20.92%	2.30%	1.35%
Model B	based on TDUW	16.51%	24.50%	4	194
Model B1	+ w/o inc. costs	14.66%	24.50%		0.0
Model B2	+ w/o price growth	12.72%	23.78%	-	100
Model C	Optimized mix of SYr, OPM and TDUW	11.29%	21.26%	0.45%	1.02%
Model C1	+ w/o inc. costs	9.32%	21.20%	2.43%	1.07%
Model C2	+ w/o price growth	8.77%	20.59%	2.98%	1.69%
Overall Results	Best value:	8.77%	20.59%		
	Best Model:	Model C2	Model C2		

Table 24: Alternative Model Comparison

In Model A, which uses the same three year moving average as the original model, but calculates unit costs based on OPMONTH instead of ship years, we see some improvement. As we can see in Table 23, A2 results in a better MAPE on the selected sample, especially if we exclude the LHA-1 ship class, which seems to be an outlier. However, the limited number of ships is a small sample and limits our ability to draw conclusions but demonstrates an area for future research

Model B, which uses unit costs based on total days underway, produces an even worse MAPE in our sample. This alone does not say that days underway has no relationship with the certain cost elements, but it suggests that we can exclude the simple solu-

tion of just changing the cost-driver for SR and SO to total days underway for all classes in the model. Again, it does not mean the lack of relationship (relationship in this case was actually not even examined statistically), it just says, there is not a simple connection between the cost elements as a whole and total day underway. In fact, as our research has shown, when applied on class-by-class basis operational variables such as days underway can have a significant relationship with cost.

For Model C we used the solver function of Microsoft Excel to find the optimal mix of unit costs based on ship years, OPMONTH and total days underway. Changing the weight of these cost drivers, we optimized the weighting of each variable with the objective of minimizing MAPE of each ship class in our sample separately. For instance Table 24 shows the weight of ship years at the optimum solution.

Weights of Syr	С	1	C1	1	C2	
in the best cases	SR	SO	SR	SO	SR	SO
DDG-51	0%	0%	0%	0%	0%	0%
CG-47	100%	9%	23%	4%	55%	0%
DD-963	81%	100%	83%	100%	0%	100%
FFG-7	100%	33%	100%	38%	81%	56%
LHA-1	100%	100%	100%	100%	100%	100%
Average:	76%	48%	61%	48%	47%	51%

Table 25: Weights of Ship Year Unit Costs in Model C

Though Model C resulted in significant improvement, it is more an interesting experiment than an easily usable and established method. Just like regressions, it was aimed to reduce errors (here measured by MAPE). The interesting concept from this model is that, based on past data, we constructed a simple model that determines which cost-driver has the biggest influence on cost. In the case of LHA-1, ship years are clearly the best independent variable from the examined three. While in other cases, the significance of ship year is quite mixed and changes with model variants. We see the potential for further study in this area.

Potentially the most important take away from Table 23 is the difference in sub-model (e.g. A2) and the primary model (e.g. A). In every case, excluding incremental cost and price growth factors results in an improved MAPE. This discovery led us to compare the original model and the original without these factors and, as shown above (O vs. O2), by excluding them we observe an improved MAPE. This is further evidence that, as has previously been discussed, the manners in which price growth factors are determined as well as the incremental cost determination process are areas for potential research.

These models represent a potential means of improving the model without using regression analysis. The advantage of such potential improvements is that the resulting model would be in very much the same format as the original. Further research is required to determine whether such a change would be an improvement overall.

APPENDIX H: MAPE COMPARISON TABLES FOR THE MODIFIED MODELS

so	Original Model MAPE	Regr. MAPE by HULL	Combined Regr. MAPE by HULL	Regr. MAPE by Class	Combine d Regr. MAPE by Class	Best Value	Best Method
Atlantic Fleet							
AOE-1CL	10.10%	No Signif.	No Signif.	11.9%	25.4%	10.10%	Original Model
AOE-6CL	56.04%	15.10%	19.90%	No Signif.	No Signif.	15.10%	Regression by HULL
MHC-51CL	70.86%	No Signif.	30.80%	No Signif.	No Signif.	30.80%	Regression by HULL Combined
LHA-1CL	17.31%	18.30%	18.00%	7.1%	12.0%	7.10%	Regression by Class
LHD-1CL	17.68%	17.60%	21.10%	9.4%	14.7%	9.40%	Regression by Class
LPD-4CL	75.43%	10.30%	15.70%	No Signif.	28.8%	10.30%	Regression by HULL
LSD-36CL	52.35%	No Signif.	27.50%	No Signif.	No Signif.		Regression by HULL Combined
LSD-41CL	27.20%	24.80%	20.50%	No Signif.	No Signif.	20.50%	Regression by HULL Combined
CG-47CL	12.28%	15.10%	14.30%	6.4%	No Signif.	6.40%	Regression by Class
DDG-51CL	13.52%	21.70%	23.90%	6.7%	No Signif.	6.70%	Regression by Class
DD-963CL	8.77%	16.10%	17.70%	6.0%		6.00%	Regression by Class
FFG-7CL	10.29%	17.40%	19.20%	3.7%		3.70%	
ARS-50CL	16.93%	13.00%	18.60%	7.0%	하느 그 사람이 가게 하지 않다.	7.00%	
CVN-68CL	9.52%	16.20%	N/A	No Signif.	No Signif.	9.52%	Original Model
Pacific Fleet	0000000000	ramo nono acces		- 10 		90004999999	NAMES OF THE PARTY
AOE-1CL	16.87%	No Signif.	No Signif.	No Signif.	25.4%	16.87%	Original Model
AOE-6CL	26.38%	No Signif.	19.90%		No Signif.	19.90%	Regression by HULL Combined
LHA-1CL	17.60%	No Signif.	18.00%	10.5%	12.0%	10.50%	Regression by Class
LHD-1CL	21.84%	No Signif.	21.10%	16.9%	14.7%	14.70%	Regression by Class Combined
LPD-4CL	11.93%	14.40%	15.70%	7.3%	28.8%	7.30%	Regression by Class
LSD-36CL	18.38%	21.20%	27.50%	13.8%	No Signif.	13.80%	Regression by Class
LSD-41CL	23.50%	19.00%	20.50%	No Signif.		19.00%	Regression by HULL
CG-47CL	20.15%	17.10%	14.30%	No Signif.	No Signif.	14.30%	Regression by HULL Combined
DDG-51CL	30.59%	20.80%	23.90%	No Signif.	No Signif.	20,80%	Regression by HULL
DD-963CL	24.15%	15.90%	17.70%	17.8%	14.4%	14.40%	Regression by Class Combined
FFG-7CL	14.22%	19.20%	19.20%	12.9%	10.6%	10.60%	Regression by Class Combined
ARS-50CL	14.97%	13.10%	18.60%	16.4%	11.8%		Regression by Class Combined
CVN-68CL	20.00%	WA	WA	No Signif.	No Signif.	20.00%	Original Model

Table 26: MAPE Comparison for Modified Models SO

SR	Original Model MAPE	Regr. MAPE by HULL	Combined Regr. MAPE by HULL	Regr. MAPE by Class	Combine d Regr. MAPE by Class	Best ∀alue	Best Method
Atlantic Fleet							
AOE-1CL	9.84%	13.40%	19.60%	No Signif.	No Signif.	9.84%	Original Model
AOE-6CL	15.16%	No Signif.	14.70%	12.60%	26.00%	12.60%	Regression by Class
MCM-1CL	13.37%	17.60%	19.90%	No Signif.	No Signif.	13.37%	Original Model
MHC-51CL	50.81%	No Signif.	40.00%	No Signif.	No Signif.	40.00%	Regression by HULL Combined
LHA-1CL	19.35%	24.20%	No Signif.	No Signif.	15.20%	15.20%	Regression by Class Combined
LHD-1CL	8.63%	12.60%		No Signif.	11.80%	8.63%	Original Model
LPD-4CL	10.74%	16.80%		No Signif.		10.74%	Original Model
LSD-36CL	17.94%	No Signif.	18.30%	No Signif.		17.94%	Original Model
LSD-41CL	12.84%	22.60%		No Signif.	No Signif.	12.84%	Original Model
CG-47CL	9.90%	14.10%	13.00%	No Signif.	15.90%	9.90%	Original Model
DDG-51CL	22.87%	70.000	26.50%	8.90%	10.40%	8.90%	Regression by Class
DD-963CL	7.40%	21.30%	21.20%	4.40%	12.70%	4.40%	Regression by Class
FFG-7CL	6.72%	15.60%	16.10%	3.00%	9.40%	3.00%	Regression by Class
ARS-50CL	28.45%		13.60%	No Signif.	25.60%	11.90%	Regression by HULL
CVN-68CL	66.83%	26.90%	N/A	No Signif.	No Signif.	26.90%	Regression by HULL
Pacific Fleet							
AOE-1CL	50.21%	27.20%		No Signif.	No Signif.	19.60%	Regression by HULL Combined
AOE-6CL	71.47%	No Signif.	14.70%	No Signif.	26.00%	14.70%	Regression by HULL Combined
LHA-1CL	23.60%	No Signif.	No Signif.	14.40%	15.20%	14.40%	Regression by Class
LHD-1CL	10.26%	11.50%	15.30%	No Signif.	No Signif.	10.26%	Original Model
LPD-4CL	11.65%	18.30%	17.80%	No Signif.	No Signif.	11.65%	Original Model
LSD-36CL	12.41%	2.80%		No Signif.		2.80%	Regression by HULL
LSD-41CL	18.05%	17.00%	26.50%	No Signif.	No Signif.	17.00%	Regression by HULL
CG-47CL	9.69%	11.20%	13.00%	16.70%	15.90%	9.69%	Original Model
DDG-51CL	17.38%	23.90%	26.50%	No Signif.	10.40%	10.40%	Regression by Class Combined
DD-963CL	11.15%	18.40%	21.20%	9.10%	12.70%	9.10%	Regression by Class
FFG-7CL		No Signif.	16.10%	4.90%	9.40%	4.90%	Regression by Class
ARS-50CL	27.90%	No Signif.	13.60%	19.50%	25.60%		Regression by HULL Combined
CVN-68CL	22.23%	N/A	N/A	No Signif.	No Signif.	22.23%	Original Model

Table 27: MAPE Comparison for Modified Models SR

LIST OF REFERENCES

Albright, S.C., Wayne L.W. and Zappe C., *Data Analysis & Decision Making with Microsoft Excel*. Pacific Grove, California: Duxbury Press, 2002.

Brandt, J. M. A Parametric Cost Model for Estimating Operating Costs of US Navy (Non-Nuclear) Surface Ships. Master's Thesis, Naval Postgraduate School, Monterey, California, June 1999.

Catalano, J.A., *Toward an OPTAR Allocation Model for Surface Ships of the Pacific Fleet*. Master's Thesis, Naval Postgraduate School, Monterey, California, December 1988.

CNO Guidance for 2003. Retrieved 5 March 2003 from http://www.chinfo.navy.mil/navpalib/cno/clark-guidance2003.html.

Kuker, K.L. and Craig D.H., *A Feasibility Study of Relating Surface Ships OPTAR Patterns to their Operating Schedules*. Master's Thesis, Naval Postgraduate School, Monterey, California, June 1998.

OPNAV Instruction 4100.11b (27 Sep 1989). Navy Energy Usage Reporting System. Retrieved 24 January 2003 from http://neds.nebt.daps.mil/Directives/4100b11.pdf.

Ting, Chu-wu, *Estimating Operating and Support Cost Models for U.S. Naval Ships*. Master's Thesis, Naval Postgraduate School, Monterey, California, December 1993.

Williams, T.D. An Analysis of Selected Surface Ship OPTAR Obligations and their Dependency on Operating Schedules and Other Factors. Master's Thesis, Naval Postgraduate School, Monterey, California, June 1987.

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

- 1. Defense Technical Information Center Fort Belvoir, Virginia
- 2. Dudley Knox Library Naval Postgraduate School Monterey, California
- 3. Professor Shu S. Liao Naval Postgraduate School Monterey, California
- 4. Professor John E. Mutty
 Naval Postgraduate School
 Monterey, California
- 5. LT Kyle Gantt Naval Postgraduate School Monterey, California
- 6. LCDR Drew Hascall
 Naval Postgraduate School
 Monterey, California
- 7. LCDR Andrew M. Matthews Naval Postgraduate School Monterey, California
- 8. 1st LT Zsolt Hajdu Naval Postgraduate School Monterey, California
- 9. CPT Mihaly Gyarmati Naval Postgraduate School Monterey, California