	L#	Hits	Search Text	DBs
1	L1	14035	(scatter\$3 gather\$3) near10 (bit byte element item)	USPAT; US-PGPUB
2	L3	5584	(scatter\$3 gather\$3) near10 (bit byte element item)	EPO; JPO; DERWENT
3	L2	144	1 near20 mask\$3	USPAT; US-PGPUB
4	L4	44	3 near20 mask\$3	EPO; JPO; DERWENT; IBM_TDB
5	L6	2739	(scatter\$3 gather\$3) near20 mask\$3	USPAT; US-PGPUB
6	L10	47646	(reorder\$3 order\$3 rearrang\$3 arang\$3) near10 (bit byte element item)	EPO; JPO; DERWENT; IBM TDB
7	L11	1026	(scatter\$3 gather\$3) near20 mask\$3	EPO; JPO; DERWENT; IBM TDB
8	L12	4	10 and 11	EPO; JPO; DERWENT; IBM TDB
9	L9	103	(reorder\$3 order\$3 rearrang\$3 arang\$3 scatter\$3 gather\$3).ab,ti. and 7	USPAT; US-PGPUB
10	L13	351267	<pre>(reorder\$3 order\$3 rearrang\$3 arrang\$3) near10 (bit byte element item)</pre>	USPAT; US-PGPUB
11	L14	170489	(reorder\$3 order\$3 rearrang\$3 arrang\$3) near10 (bit byte element item)	EPO; JPO; DERWENT; IBM TDB
12	L16	593	6 and 13	USPAT; US-PGPUB
13	L18	15	11 and 14	EPO; JPO; DERWENT; IBM_TDB
14	L17	171	(reorder\$3 order\$3 rearrang\$3 arrang\$3 scatter\$3 gather\$3).ab,ti. and 16	USPAT; US-PGPUB

Sheet 43 of 51

	Docum ent ID	σ	Title	Current OR
1	JP 20020 96461 A		DEVICE FOR IMAGE RECORDING, METHOD FOR CONTROLLING IMAGE RECORDING, AND RECORDING MEDIUM	
2	JP 10096 700 A		APPARATUS FOR INSPECTING FOREIGN MATTER	
3	JP 08201 313 A		DEFECT INSPECTION METHOD FOR TRANSPARENT PLATE-LIKE BODY AND DEVICE THEREOF	
4	JP 07198 625 A		PRINT INSPECTING SENSOR	
5	JP 05079 913 A		STRAY LIGHT FREE FOURIER SPECTROPHOTOMETER	
6	JP 05031 670 A		BLAST PROCESSING METHOD FOR METALLIC PRODUCT	
7	JP 04194 908 A		LIQUID CRYSTAL DISPLAY DEVICE	
8	JP 60024 568 A		COLOR TONER CONCENTRATION DETECTOR	
9	WO 96055 03 A1		DEVICE FOR TESTING OPTICAL ELEMENTS	
10	US 58447 22 A		Polarization beam splitter for colour projection system - has wave blocking element arranged at bottom edge of mask and immersed in prismatic fluid, for minimizing scattering of incident electromagnetic wave	
11	JP 10096 700 A	⊠	Inspection apparatus for detecting adhesion of foreign particles in mask used in exposure system of semiconductor device, LCD element manufacture - has optical correction element arranged in between mask and optical receiving unit that receives reflected light, to correct aberrational defects	
12	JP 09257 685 A	×	Photodetector for measuring particle size distribution in specimen - includes mask on light receiving surface to focus scattered light into fixed area of light receiving element	•
13	US 52989 69 A	⊠	Combined optical train for laser spectroscopy - has first focussing lens located one focal length from centre of sample cell, second focussing lens one focal length ahead of aperture element, and optical masking element between two lenses	
14	EP 55665 5 A	⊠	Grading and evaluating method for optical elements such as lenses - scanning rotated linear wedge shaped beam of white light on entire lens surface and detecting defect scattered light using CCD via mask	
15	US 45989 97 A	⊠	Detector for defects and dust on semiconductor water or video disc - detects scattered light free of diffracted beams from pattern by mask with apertures blocking specular reflections	

Sheet 5 of 6

EIG. 6

_	1			T		
	Docum ent ID	σ	Title	Current OR		
1	US 20040 07876 3 A1		Short edge smoothing for enhanced scatter bar placement	716/2		
2	US 20040 07505 3 A1	⊠	Particle-optical arrangements and particle-optical systems	250/310		
3	US 20040 07312 0 A1	⊠	Systems and methods for spectroscopy of biological tissue	600/478		
4	US 20040 05805 8 A1	Raman-active taggants and thier recognition A1				
5	20040 04701 4 A1	04701 M In-line holographic mask for micromachining				
6	20040 01194 8 A1	US 20040 01194 High accuracy miniature grating encoder readhead using fiber optic receiver channels				
7	US 20040 00834 3 A1 Electromagnetic radiation attenuating and scattering member with improved thermal stability			356/243 .1		
8	US 20030 19139 8 A1 Systems and methods for spectroscopy of biological tissue		600/478			
9	US 20030 15553 2 A1	0030 Electron-beam lithography		250/492 .3		
10	US 20030 11242 1 A1	⊠	Apparatus and method of image enhancement through spatial filtering	355/71		
11	US 20030 10376 0 A1	⊠	OPTICAL ELEMENT HAVING PROGRAMMED OPTICAL STRUCTURES	385/146		
12	US 20030 07752 1 A1	⊠	Method for producing scatter lines in mask structures for fabricating integrated electrical circuits	430/5		
13	US 20030 07658 3 A1 Ultra-broadband UV microscope imaging system with wide range zoom capability		359/357			
14	US 20030 07241 5 A1	☒	Method for producing a scattered radiation grid or collimator	378/154		
15	US 20030 06473 4 A1	Ø	Modified transmission method for improving accuracy for E-911 calls	455/456 .1		
16	US 20030 05304 8 A1	☒	Electron microscope and spectroscopy system	356/301		
17	US 20030 03080 2 A1	⊠	MEASUREMENT OF PARTICLE SIZE DISTRIBUTION	356/336		

	Docum ent ID	σ	Title	Current OR
18	US 20030 03078 3 A1	☒	Consumable tube for use with a flow cytometry-based hematology system	356/39
19	US 20030 03005 5 A1	⊠	Color-filter substrate assembly, method for manufacturing the color-filter substrate assembly, electro-optical device, method for manufacturing electro-optical device, and electronic apparatus	257/72
20	US 20030 01951 8 A1	×	Photovoltaic element and process for the production thereof	136/256
21	US 20030 01685 4 A1	Radiation image processing apparatus, image processing system, radiation image processing method, storage medium, and program		382/132
22	20030 01172 2 A1	01172 Method of fabricating near-field light-generating element 2 A1		349/43
23	20020 18252 3 A1	US 20020 Method for carrying out a rule-based optical proximity correction with simultaneous scatter bar insertion		
24	US 20020 17183 Polarized light scattering spectroscopy of tissue 1 A1		356/369	
25	US 20020 16372 9 A1 FIELD-OF-VIEW CONTROLLING ARRANGEMENTS		359/613	
26	US 20020 16372 8 A1	20 ⊠ Optical sheets or overlays		359/613
27	US 20020 08527 1 A1	Ø	Broad spectrum ultraviolet catadioptric imaging system	359/359
28	US 20020 05727 6 A1	⊠	Data processing apparatus, processor and control method	345/555
29	US 20020 03920 9 A1	⊠	IN-LINE HOLOGRAPHIC MASK FOR MICROMACHINING	359/15
30	US 20020 02549 0 A1 Raman-active taggants and their recognition		430/270 .15	
31	US 20020 02464 3 A1 Projection exposure apparatus having aberration measurement device		355/52	
32	US 20020 02145 1 A1	⊠	Scanning interferometric near-field confocal microscopy with background amplitude reduction and compensation	356/511
33	US 20010 04687 0 A1 Modified transmission method for improving accuracy for E-911 calls		455/456 .2	
34	US 20010 02147 7 A1	⊠	Method of manufacturing a device by means of a mask phase-shifiting mask for use in said method	430/5

bandwidth required to support address searching increases 5 the number of ports in the switch because the memory centralized address cache complicates the task of increasing a single, centralized address cache. However, the use of a each I/O ASIC with access to the address cache is to employ forwarding and aging operations. One technique to provide

performance of the switch.

elaborate queuing methods and would impact the forwarding operation. Strict coherence mechanisms would require inconsistency among caches and preserve correct switch Cache coherence algorithms can be applied to eliminate consistency has a deleterious effect on switch operation. contain identical sets of entries. Such a loss of intersegment situation will result where the segments will not each simultaneously at different cache segments. Consequently, a address cache is employed because different events occur ing and aging operation is more complex when a distributed However, implementing each and every learning, forwardrather than the number of ports in the entire switch. 15 limited by the number of ports supported by each ASIC because the bandwidth required for address searching is the task of increasing the number of ports in the switch I/O ASIC. The use of a distributed address cache simplifies segments, each of which is associated with one particular 10 nied address cache comprises a plurality of separate cache involves the use of a distributed address cache. The distrib-One known solution to the above described problem as the number of ports increases.

BRIEF SUMMARY OF THE INVENTION

address cache. order to maintain consistency throughout the distributed neously shared and acted upon by the cache segments in address learning operations, are serialized and contemporacache segments of the distributed address cache, such as plurality of eache segments is employed, events initiated at switch device in which a distributed address cache having a In accordance with the present invention, in a network

acceptable for aging operations. if it remains unused. Hence, "weak coherence" is also not referenced, it will be removed in a subsequent interval ss not removed after the first aging interval during which it was operations are self correcting. If an address cache entry is cated in part upon recognition that address cache aging be dropped (not implemented). The invention is also prediweak coherency" by which some learning operations may for switch operation, and consistency may be obtained with and every learning operation is implemented, is not required same source device. Hence, "strict coherency," where each learned from any subsequent data units transmitted by the will be employed. Further, the address information can be 45 nevertheless reach the destination device because flooding the switch, the data unit and subsequent data units should not learned when a data unit is initially transmitted through example, if address information for forwarding data units is address eache learning operations are self repairing. For The invention is predicated in part upon recognition that

ASIC at a time. When an address cache update event is courtol of the event bus and to grant control to only one I/O 65 messages. An arbiter is employed to process requests for outy one event message at a time; thus serializing event interconnects all of the I/O ASICs. The event bus carries event message and distributes it via an event sharing bus that cache. The segment that initiates an update creates a cache 60 operations) originate with a single segment of the distributed Address eache update events (learning operations or aging

NELMOKK SMILCH DISLISIBULED ADDRESS CACHE IN A COHEKENCE WECHVAISM FOR

BYCKGROUND OF THE INVENTION

The present invention is generally related to network

various devices connected with the network such as comcache includes entries that indicate address information for facilitate the flow of data units in a network. The address Network switches commonly employ an address cache to a network switch. tency of data in segments of a distributed address cache in switches, and more particularly to maintenance of consis-

associated with the address in order to "forward" the data transmission of the data unit via the specified port or ports information contained in that entry is employed to cause If a pertinent entry is located in the address cache then the to the destination address specified in the data unit header. attempts to locate an entry in the address cache that pertains address field. Following receipt of the data unit the switch a header portion with a source address field and a destination or group of devices in the network. Each data unit includes employed for forwarding the data unit to a particular device indicates which port or ports in the switch should be puters and printers. In particular, the address information

information for the first device to "forward" the second data the second data unit. The switch employs the learned address address of the second device from the source address field of the first device via the switch then the switch learns the device responds by transmitting a second data unit back to accomplish transmission to the second device. If the second unknown, the switch floods the first data unit in order to If address information for the second device is also first device from the source address field of the first data unit. second device the switch learns address information for the upon the initial transmission from the first device to the have the address for the first device in its address cache, then to a second device via the switch, and the switch does not beader. If a first data unit is transmitted from a first device employing the source address specified in the data unit address information. Address information can be learned by It is known to update the address eache by "learning" new entry is available in the address eache. network and switch bandwidth is conserved if a pertinent except the port on which the data unit was received. Hence, 30 the data unit by transmitting the data unit from every port be located in the address cache then the switch may "flood" unit toward the destination device. If a pertinent entry cannot

that are not referenced in response to a source address search dance with an "aging" technique. In particular, any entries lized entries in the address cache may be deleted in accoraccurate address information for active data flows, unuti-In an effort to ensure that the address cache contains unit through the network. the second device via a single port without flooding the data second device to efficiently "forward" the data unit toward switch employs the learned address information for the

usnession from the first device to the second device the

unit toward the first device via a single port. In a subsequent

cuits ("ASICs"). Because of limitations in the maximum often implemented on Application Specific Integrated Cir-Input and output ("I/O") functions in a network switch are within a predetermined aging interval are deleted.

access to the address eache in order to enable learning, in a single network switch device. Each I/O ASIC must have practical die size, a plurality of I/O ASICs may be employed

	Docum ent ID	ט	Title	Current OR	
35	US 20010 01640 4 A1	Ø	GaN substrate including wide low - defect region for use in semiconductor element	438/496	
36	US 20010 01493 6 A1	×	Data processing device, system, and method using a table	711/221	
37	US 67010 28 B1	☒	Method and apparatus for fast signal convolution using spline kernel	382/279	
38	US 66899 51 B2	Ø	Photovoltaic element and process for the production thereof	136/256	
39	US 66895 45 B2	☒	Method of fabricating near-field light-generating element	430/321	
40	US 66861 38 B1	i ₩ ikeening			
41	US 66715 26 B1	⊠	Probe and apparatus for determining concentration of light-absorbing materials in living tissue	600/310	
42	US 66678 09 B2	Scanning interferometric near-field confocal microscopy with		356/511	
43	US 66467 42 B1	Optical device and method for multi-angle laser light scatter		356/342	
44	US 66248 90 B2			356/369	
45	US 66181 74 B2	⊠	In-line holographic mask for micromachining	359/15	
46	US 66103 51 B2	☒	Raman-active taggants and their recognition	427/7	
47	US 66097 99 B1	☒	Field-of-view controlling arrangements	359/613	
48	US 65446 94 B2	☒	Method of manufacturing a device by means of a mask phase-shifting mask for use in said method	430/5	
49	US 65206 49 B1	☒	Image projection device and associated method	353/94	
50	US 65194 65 B2	☒	Modified transmission method for improving accuracy for E-911 calls	455/456 .1	
51	US 65074 00 B1	☒	Optical system for multi-part differential particle discrimination and an apparatus using the same	356/338	
52	US 64983 51 B1	☒	Illumination system for shaping extreme ultraviolet radiation used in a lithographic projection apparatus	250/492 .2	
53	US 64905 30 B1	☒	Aerosol hazard characterization and early warning network	702/24	
54	US 64836 38 B1	×	Ultra-broadband UV microscope imaging system with wide range zoom capability		
55	US 64769 10 B1	☒	Light scattering apparatus and method for determining radiation exposure to plastic detectors	356/336	
56	US 64632 90 B1	⊠	Mobile-assisted network based techniques for improving accuracy of wireless location system	455/456 .1	

with I/O ASIC 16 and cache 30 is connected with I/O ASIC 26 is connected with I/O ASIC 14, cache 28 is connected embodiment, cache 24 is connected with I/O ASIC 12, cache coupled to a different I/O ASIC. In the illustrated separate cache segments 24, 26, 28, 30, each of which is includes a distributed address cache having a plurality of protocols and different data transmission rates. The switch different I/O ASICs may support different transmission ports while ASICs 12, 14, 16 include n ports. Further, example, in the illustrated embodiment ASIC 18 includes m I/O ASICs may include different numbers of ports. For 5 employed for receiving and transmitting data units. Different nected with other devices in the network. The ports are Each I/O ASIC includes a plurality of ports that are conbus 20 and a switch fabric 22 such as a crosspoint ASIC. ASICs") 12, 14, 16, 18 that are interconnected via an event

is employed to cause transmission of the data unit via the cache segment 24 then the port index contained in that entry unit header. If a pertinent entry is located in the address that pertains to the destination address specified in the data a data unit by I/O ASIC 12, for example, the address cache particular device or group of devices. Following receipt of should be employed for forwarding the data unit to a address indicator field and port index field indexed by a computers and printers. The address information includes an data units to various devices coupled to the network such as cate address information that may be employed to transmit 20 particularly, the address cache 24 includes entries that indiemployed to facilitate processing of data units. More Referring to FIGS. I and 2, the address cache 24 is

affect the address information in the cache segments. In between cache segments by synchronizing operations that Referring again to FIG. I, consistency is maintained 40 the data unit was received. unit through every port in the switch except the port at which switch 10 may "flood" the data unit by transmitting the data is not located in the address cache segment 24 then the toward the destination device or devices. If a pertinent entry 35 specified port or ports in order to "forward" the data unit 30 24 is searched for an entry with an address indicator field The port index indicates which port or ports in the switch Cache Line Index ("CLI") plus Cache Entry Index ("CEI").

result of activity at an I/O ASIC, the event message is placed sharing bus 20. When an event message is generated as a The arbiter device 42 is employed to manage the event

illustrated embodiment address cache event messages which

one event message at any point in time. Hence, in the bus 48 in the illustrated embodiment limit transmission to

control bus for I/O ASIC 14 includes request line 44, grant

bus 48 and a control bus per I/O ASIC. As an example, the

Arbiter device 42. The event bus 20 includes a shared data

connected with an interface 21 in each I/O ASIC and an

address cache event messages are serialized and shared via

provided to all of the other I/O ASICs in the switch. that I/O ASIC, until an event message is serialized and

"Referring now to HG: 3; in the illustrated embodiment

initiating I/O ASIC does not act upon the address cache update event may be initiated by any I/O ASIC, but the

throughout the distributed address cache. An address cache

neously acted upon in order to maintain consistency

particular, distributed address cache update events such as

are broadcast via the data bus 48 are serialized.

Input/Output Application Specific Integrated Circuits ("I/O data units in a network. The switch 10 includes a plurality of FIG. I illustrates a switch 10 that facilitates movement of 65

INVENTION DELVITED DESCRIPTION OF THE

FIG. 7 is a flow diagram that illustrates an age scan 60 line 46 and busy line 50. The physical limitations of the data receive queue; and

FIG. 6 is a flow diagram that illustrates control of a

usami queue;

FIG. 5 is a flow diagram that illustrates control of a 55 the event sharing bus 20. The event sharing bus 20 is

manoe of the switch;

queuing learn events without impacting forwarding perfor-

HG. 4 is a flow disgram that illustrates a method for

and event bus for serialization of distributed address cache FIG. 3 is a block diagram that illustrates use of the arbiter

distributed address cache;

FIG. 2 is a diagram that illustrates a segment of the

in accordance with the present invention;

FIG. I is a block diagram of a network switching device 45 address learning operations are serialized and contempora-

tion with the Drawing of which: following Detailed Description of the Invention, in conjunc-

The invention will be more fully understood from the

VIEWS OF THE DRAWING BRIEF DESCRIPTION OF THE SEVERAL

with ownership rights to the entry. of an entry is therefore determined by the cache segment an event that causes removal of the entry for aging. Aging

the entry. Only the owner of an entry is permitted to initiate entry to be stored in the cache segments is the sole owner or that the ASIC that generates the learn event that causes the deemed to be the owner of the entry. The indicator is set such whether the cache segment in which the entry is stored is address cache includes an ownership field that indicates be dependent upon an ownership indicator. Each entry in the tion the aging of entries in the distributed address cache may

In accordance with one embodiment of the present invensegments are updated. before transmission of a cache event message, no cache queue is flushed (deleted). Since the message is deleted match is indicated, the cache event message in the transmit

cache line index of any message in the transmit queue. If a of the message in the receive queue is compared against the event message from the receive queue, the cache line index performed. When an I/O ASIC completes processing of an cache event message is not generated and the update is not warrants a cache update, but the transmit queue is full, a If a condition occurs at a distributed cache segment that 15

current event. message until all ASICs have completed processing the arbiter from granting the event bus for another cache event arbiter and processes the event. The busy signals prevent the including the originating ASIC, asserts a busy signal to the 10 an event message has been received, each of the ASICs, event bus are stored in a receive queue for processing. Once vis the event bus. Event messages that are received from the event bus, the event message is broadcast to all the ASICs signal to the arbiter. When the arbiter grants control of the I/O ASIC managing the cache segment asserts its request the event sharing bus. After queuing the event message, the

	Docum ent ID	σ	Title	Current OR		
57	US 64490 23 B2	Ø	Active matrix liquid crystal display device	349/62		
58	US 64479 59 B1	×	Amplitude mask for writing long-period gratings	430/5		
59	US 64435 79 B1	⊠	Field-of-view controlling arrangements	359/613		
60	US 64406 54 B1	☒	Photographic element containing an electrically-conductive layer	430/529		
61	US 64406 15 B1	⊠	Method of repairing a mask with high electron scattering and low electron absorption properties	430/5		
62	US 64373 53 B1	X	Particle-optical apparatus and process for the particle-optical production of microstructures	250/492 .23		
63	US 64207	S 2 4207 🛛 Electron beam imaging apparatus				
64	US 64080 49 B1	US Apparatus, methods, and computer programs for estimating and correcting scatter in digital radiographic and tomographic				
65	US 63777 26 B1	US 63777 ⊠ Transverse mode transformer				
66	US 63625 15 B1	US 63625 GaN substrate including wide low-defect region for use in				
67	US 63340 59 B1	US 63340 Modified transmission method for improving accuracy for e-911		455/404 .2		
68	US 63231 02 B1	Ø	Method of manufacturing a semiconductor device	438/424		
69	US 63134 67 B1	×	Broad spectrum ultraviolet inspection methods employing catadioptric imaging	250/372		
70	US 63046 26 B1	Ø	Two-dimensional array type of X-ray detector and computerized tomography apparatus	378/19		
71	US 62951 20 B1	⊠	Position detection technique applied to proximity exposure	355/53		
72	US 62854 39 B1	⊠	Position detection technique applied to proximity exposure	355/53		
73	US 62485 10 B1	Ø	Motion picture intermediate film with process surviving antistatic backing layer	430/396		
74	US 62464 51 B1	Ø	Stereoscopic image displaying method and stereoscopic image apparatus	349/15		
75	US 62330 56 B1	⊠	Interferometric at-wavelength flare characterization of EUV optical systems	356/520		
76	US 62330 43 B1	☒	Position detection technique applied to proximity exposure	355/53		
77	US 61779 94 B1	⊠	Relating to the measurement of particle size distribution	356/343		
78	US 61772 37 B1	⊠	High resolution anti-scatter x-ray grid and laser fabrication method	430/320		
79	US 61335 76 A	⊠	Broad spectrum ultraviolet inspection methods employing catadioptric imaging	250/461 .1		

cated by step 82. Flow then returns to step 70. generated and placed in the event transmit queue as indi-15 is not full as determined in step 80, a learn event message is entry is located and the event transmit queue of the I/O ASIC 80, flow returns to step 70. If no pertinent address cache transmit queue of the I/O ASIC is full as determined in step pertinent address cache entry is located and the event $_{10}$ cache entry is located then flow returns to step 70. If no mine whether there is a pertinent entry. If a pertinent address source address and the address cache is scanned to deterby step 78, the loaded data unit is examined to determine the address specified in the header of the data unit. As indicated Address information is learned by employing the source transmitted via the specified port(s) as indicated by step 76. 74. If a pertinent entry is located then the data unit is output ports (other than the receive port) as indicated in step is located then the data unit is flooded to some or all of the

When the transmit event queue is emplied, the age scan process stalls and the next address entry is not scanned. 12. If the event transmit queue is not empty the age scan ASIC when control of the data bus is granted to the I/O ASIC proadcast via the data bus 48 and acted upon by each I/O 40 transmit queue 52. The delete entry event message 88 is a delete entry event message 88 is loaded into the event 12 has ownership of the entry, then the entry is selected and empty, and an entry is cligible for deletion, and the I/O ASIC and all aging bits are reset. If the event transmit queue 52 is which the aging bit is not set become eligible for deletion After a predetermined interval has passed, the entries for matches the source address, the aging bit is set for that entry. and an entry is located in the address cache segment 24 that operation). When a data unit is received by the I/O ASIC 12 30 ownership of the entry (or a software generated management can only be deleted via a message from the I/O ASIC with embodiment of the aging protocol, a distributed cache entry caches the ownership bit is not set. In accordance with this ASIC 12 has ownership of the entry. In the other segment 25 operation. For the purposes of the present description, I/O caused the address cache entry to be installed via a learn the cache segment that is connected with the I/O ASIC that ownership bit. The ownership bit is only set in the entry in information. Each cache entry includes an aging bit and an 20 ensure that the address cache contains accurate address to remove unutilized address cache entries and to help Referring to FIGS. 2 and 7, an aging protocol is provided

144, flow returns to step 128. step 124. If the scan is not complete as determined at step scan is complete as determined at step 144, flow returns to the address is decremented as indicated by step 142. If the 60 delete message is then queued as indicated by step 140 and affirmative, the age bit is cleared as indicated by step 138. A returns to step 128. If the result of the tests at step 130 is returns to step 124. If the scan is not complete then flow If the scan is complete, as determined at step 136, flow 55 L32 and the address is decremented as indicated by step 134. result is negative, the age bit is cleared as indicated by step Deletion occurs when age=0 and ownership=1. If the test for a possible delete condition as indicated by step 130. indicated by step 128, whereupon the cache entry is tested 50 location. Flow loops until the transmit queue is empty as as indicated by step 124. The address is then set to the first FIG. 7. The method is initiated when the age interval expires A method for aging address cache entries is illustrated in process continues.

message is queued for transmission as indicated by step 90. illustrated in FIG. 5. The process begins when a cache event A method for controlling the transmit event queue is

> message once the event message has been loaded into the queues in the switch. Each I/O ASIC acts upon the event receive queue 62 of I/O ASIC 14 and any other event receive received in event receive queue 60 of I/O ASIC 12, event each I/O ASIC in the switch. The event message 53 is event transmit queue 54 is broadcast on the data bus 48 to bus 48 to I/O ASIC 14, the event message 53 loaded in the mined criteria. When the arbiter 42 grants control of the data 48 to one I/O ASIC at a time in accordance with predeter-42 processes the requests and grants control of the data bus apportion control of the data bus 48. In particular, the arbiter from I/O ASIC 14 and any other I/O ASICs in the switch to in response to the request for control of the event sharing bus 53 before the event is distributed. The arbiter 42 is operative associated address cache do not act upon the event message event bus 20. As previously described, the I/O ASIC 14 and bus request to the arbiter 42 via the request line 44 of the event transmit queue 54, the I/O ASIC 14 asserts its event in no eache update. If the event message 53 is loaded into the into the event transmit queue 54 and is discarded, resulting condition occurs then the event message 53 is not loaded event transmit queue 54 is not empty when a cache update message 53 is loaded into the event transmit queue 54. If the is empty when an event message is generated the event more than one event message. If the event transmit queue 54 ment the event transmit queues 52, 54 will not accommodate 52, and an event message 53 generated at I/O ASIC 14 is placed in event transmit queue 54. In the illustrated embodigenerated at I/O ASIC 12 is placed in event transmit queue in an event transmit queue. For example, an event message

duene to only implement storage for a single cache update the address cache, the I/O ASIC asserts its busy signal to While acting upon the event message, such as by updating respective receive queue in that I/O ASIC.

messages at different I/O ASICs. This permits the receive differences in the amount of time taken to process event at each I/O ASIC is synchronized, thereby compensating for Hence, the start time for processing each new event message delays granting control of the data bus 48 to any I/O ASIC. assertion of the busy signal by any I/O ASIC the arbiter 42 delay broadcast of further event messages. In response to

because it is based on stale eache line state. indicated, the message in the transmit queue is flushed receive queue, the conflict line is sampled. If a conflict is line 65. As the last step in processing a message from the detector indicates conflicts to the receive queue via signal event messages relate to the same cache line. The conflict determine if a conflict exists: A conflict exists when both conflict detector 64 compares the queued event messages to queue 54 are provided to the conflict detector 64. The of both the event receive queue 62 and the event transmit to preserve consistency in the cache segments. The contents receive side. Conflict detection and resolution is employed the transmit side and execution of the operation on the line may change between queuing of the event message on messages are queued for transmission, the state of the cache which indicate the memory location to update. Since event Cache update events are generated with a CLI and CEI

a pertinent entry as indicated by step 72. If no pertinent entry the address eache is scanned to determine whether there is examined to determine the specified destination address and into memory as indicated by step 70. The loaded data unit is by an I/O ASIC. Initially, the received data unit is loaded to identify ports to be used in forwarding a data unit received tions is depicted in FIG. 4. The address cache is employed A method for carrying out forwarding and learning opera-

	Docum ent ID	σ	Title	Current	
80	US 61181 59 A	☒	Electrically programmable memory cell configuration	257/390	
81	US 61153 44 A	☒	Device and method for optical data storage having multiple optical states	369/100	
82	US 61009 78 A	⊠	Dual-domain point diffraction interferometer	356/498	
83	US 61009 71 A	×	Surface inspection tool	356/237 .2	
84	US 60493 73 A	Ø	Position detection technique applied to proximity exposure	355/53	
85	US 60347 76 A	Ø	Microroughness-blind optical scattering instrument.	356/369	
86	US 60159 76 A Fabrication apparatus employing energy beam				
87	US 60059 16 A Apparatus and method for imaging with wavefields using inverse scattering techniques				
88	US 59993 10 A Ultra-broadband UV microscope imaging system with wide range zoom capability				
89	US 59662 On-axix mask and wafer alignment system				
90	US 59561	59561 🛛 Broad spectrum ultraviolet catadioptric imaging system		359/357	
91	US 59521 ☑ Topcoat for motion picture film 65 A		430/510		
92	US 59404 68 A	⊠	Coded aperture X-ray imaging system	378/57	
93	US 59332 30 A	⊠	Surface inspection tool	356/237 .2	
94	US 59239 09 A	Ø	Distance measuring device and a camera using the same	396/114	
95	US 59103 99 A	⊠	Backing layer for motion picture film	430/517	
96	US 58895 80 A	⊠	Scanning-slit exposure device	355/67	
97	US 58741 77 A	⊠	Strut aligning fixture	428/596	
98	US 58689	⊠	Fabrication method with energy beam	216/66	
99	US 58300 64 A	collectively exceed chance expectations and thereby			
100	US 58074 48 A	⊠	Solid object generation	156/58	
101	US 57988 27 A	Apparatus and method for determination of individual red			
102	US 57891 19 A	⊠	Image transfer mask for charged particle-beam	430/5	

indicator. of said pathway in response to assertion of said "busy" said update message and said arbiter delays granting control output circuit asserts a "busy" indicator while processing 5. The apparatus of claim 4 wherein said second input/

mitted via said pathway. tuzt address eache segment once the learn event is trans-10 pathway, and adding an entry for said new address to said circuit by queuing a learn event for transmission via said from a data unit received via a port of the first input/output processor is operative to facilitate learning a new address 6. The apparatus of claim I wherein said first update

data unit and set to a second state at all other cache A method for controlling the receive queue is illustrated ownership indicator that is set to a first state for the address 7. The apparatus of claim 6 wherein said entry includes an

aging indicator that is set to a first state when said entry is 8. The apparatus of claim 7 wherein said entry includes an

state and subsequently resets the aging indicator in each identify entries where the aging indicator is set to a second that periodically scans the distributed address cache to 9. The apparatus of claim 8 further including a scanner 20 accessed for comparison with a source address.

ownership indicator in the first distributed address cache ner to have its aging indicator set to a second state and the 30 distributed address cache segment is identified by the scanout the distributed address cache if the entry in the first via said pathway that prompts deletion of said entry throughcircuit is further operative to queue an event for transmission 10. The apparatus of claim 9 wherein the first input/output 25 entry to the second state.

between said receive and transmit queues. conflict comparitor that detects cache line index matches 35 I/O circuits contain a receive queue, transmit queue and 11. The apparatus of claim I wherein said first and second segment is set to the first state.

40 the transmit queue when a conflict is detected. second update processors flush update messages stored in 12. The apparatus of claim II wherein said first and

circuit, comprising the steps of: said first input/output circuit to said second input/output and a pathway through which data can be transmitted from 45 and a second cache segment of the distributed address cache, cache, a second input/output circuit having at least one port one port and a first cache segment of the distributed address a switch including a first input/output circuit having at least 13. A method for updating a distributed address cache in

input/output circuit; receiving a data unit via at least one port of the first

from the data unit; examining the data unit to determine a source address

determined source address; address cache for an entry that is pertinent to the searching the first cache segment of the distributed

ston via said pathway if a pertinent entry is not located enqueuing an address learn event message for transmis-

in said first cache segment; and

14. The method of claim 13 further including the step of address learn event is transmitted via said pathway. adding a new entry to the first cache segment once the

message at any point in time. limiting transmission via said pathway to no more than one 15. The method of claim 13 further including the step of address learn event is transmitted via said pathway. adding a new entry to the second cache segment once the

> deasserted as indicated by step 104 and flow returns to step step 103. Upon receipt of the flush signal, the full signal is transmit control then waits for a flush signal as indicated by The request is then deasserted as indicated by step 102. The the queued message is broadcast as indicated by step 100. step 90. When a grant is received as determined at step 96, step 108. Flow returns to waiting for a queued message at by step 106 and the full signal is deasserted as indicated by determined in step 98, the request is deasserted as indicated in step 96. If a flush is received while waiting for a grant as indicated by step 94 and waiting for a grant as determined control flow then loops on asserting the event bus request as to prevent further queue events as indicated by step 92. The After receiving an event message the full signal is asserted

> signal as indicated by steps 118 and 122. final step before returning to step 110 is to deassent the busy the transmit queue if required as indicated by step 120. The sampled as indicated by step 116 and a flush is indicated to executed as indicated by step 114, the conflict signal is current operation is complete. After the queued message is to prevent further messages from being received until the control logic asserts its busy signal as indicated by step 112 is received from the event bus as indicated by step 110. The in FIG. 6. The process begins when a cache event message

> the spirit and scope of the appended claims. embodiments but rather should be viewed as limited only by invention should not be viewed as limited to the disclosed tion will be apparent to those skilled in the art. Therefore, the invention, other embodiments and variations of the inven-Having described the preferred embodiments of the

> second device in a communications network, comprising: switch that transmits a data unit from a first device to a 1. Apparatus for updating a distributed address cache in a What is claimed is:

updating said first address cache segment; address information, and a first update processor for of the distributed address cache operable to store operable to receive the data unit, a first cache segment a first input/output circuit including at least one port

csche segment; and update processor for updating said second address operable to store address information, and a second second cache segment of the distributed address cache a second input/output circuit having at least one port, a

onthnt citemit said first input/output circuit to said second input/ a pathway through which data can be transmitted from

address cache. indicative of changes to be made in the distributed address-cache_segment, said-update-message-beingprocessor via said pathway prior to updating said first transmit an update message to said second update said first update processor circuit being operative to 50

contain substantially identical address information. cache segment and said second address cache segment 2. The apparatus of claim 1 wherein said first address

ports transmission of a single update message at any point in 60 3. The apparatus of claim 1 wherein said pathway sup-

only one input/output circuit at a time. arbiter being operative to grant control of said pathway to request generated by said first input/output circuit, said 65 pathway to the first input/output circuit in response to a managing control of said pathway by granting control of the 4. The apparatus of claim 3 further including an arbiter for

	Docum ent ID	σ	Title	Current		
103	US 57861 34 A	×	Motion picture print film	430/517		
104	US 57841 60 A	Ø	Non-contact interferometric sizing of stochastic particles	356/496		
105	US 57708 63 A	×	Charged particle beam projection apparatus	250/492		
106	US 57472 32 A	Ø	Motion imaging film comprising a carbon black-containing backing and a process surviving conductive subbing layer	430/514		
107	US 57436 12 A	×	Liquid crystal projector	353/97		
108	US 57175 18 A	7175 Broad spectrum ultraviolet catadioptric imaging system 8 A				
109	US 57126 85 A	US 57126 ☑ Device to enhance imaging resolution				
110	US 56795 05 A	⊠	Photographic element useful as a motion picture print film	430/523		
111	US 56506 31 A	US 56506 ⊠ Electron beam writing system				
112	US 56400 13 A	⊠	Infrared sensor having a heat sensitive semiconductor portion that detects and absorbs infrared rays	250/338 .4		
113	US 56019 67 A	⊠	Blue sensitized tabular emulsions for inverted record order film	430/505		
114	US 55944 78 A	⊠	Ink jet recording apparatus for divisionally driving a recording head with a plurality of ink jet orifices grouped into blocks	347/41		
115	US 55880 32 A	☒	Apparatus and method for imaging with wavefields using inverse scattering techniques	378/8		
116	US 55878 19 A	⊠	Display device	349/106		
117	US 55439 12 A	⊠	Reflectometry of an optical waveguide using a low coherence reflectometer	356/73. 1		
118	US 55395 14 A	☒	Foreign particle inspection apparatus and method with front and back illumination	356/237 .4		
119	US 55348 68 A	☒	Method and system for the detection and measurement of air phenomena and transmitter and receiver for use in the system	342/26		
120	US 55176 60 A	☒	Read-write buffer for gathering write requests and resolving read conflicts based on a generated byte mask code	711/117		
121	US 54716 28 A	Ø	Multi-function permutation switch for rotating and manipulating an order of bits of an input data byte in either cyclic or non-cyclic mode	712/223		
122	US 54691 76 A	☒	Focused array radar	342/375		
123	US 54628 37 A	☒	Method of fabricating high density printed circuit board	430/311		
124	US 54480 75 A	☒	Electron-beam exposure system having an improved rate of exposure throughput	250/492 .22		
125	US 54384 08 A	Ø	Measuring device and method for the determination of particle size distributions by scattered light measurements	356/336		

20. The method of claim 19 further including the step of setting an aging indicator in the entry to a first state when said entry is employed to forward the data unit to the second

21. The method of claim 20 further including the step of periodically scanning the distributed address cache to identify entries where the aging indicator is set to a second state and subsequently resetting the aging indicator in each entry to the second state.

22. The method of claim 21 further including the step of the first input/output circuit queuing an event that prompts deletion of said entry throughout the distributed address cache segment is identified by the seamer and the ownership indicator in the first address cache segment is set to the first state.

16. The method of claim 15 further including the step of the first input/output circuit requesting control of said pathmaps when an event message is generated by the first input/output circuit, said request being processed by an input/output circuit, said request being processed by an

17. The method of claim 16 further including the step of the arbiter granting control of the pathway to the first in put/output circuit in response to the request generative to said first input/output circuit, said arbiter being operative to grant control of said pathway to only one input/output circuit at a time.

18. The method of claim 17 further including the step of said second input/output circuit asserting a "busy" indicator my granting control of said pathway in response to assertion of said "busy" indicator.

19. The method of claim 13 further including the step of

unit.

designating ownership of said entry by setting an ownership indicator in said entry to a first state for the address cache indicator in said entry to a first state for the address cache indicator in said entry to a first state for the address cache indicator.

.

	Docum ent ID	ט	Title	Current OR		
126	US 54384 05 A	Ø	Device and method for testing optical elements	356/239 .2		
127	US 53827 73 A	Ø	Apparatus and method for fabricating a perforated web by light	219/121 .7		
128	US 53531 33 A	☒	A display having a standard or reversed schieren microprojector at each picture element	349/5		
129	US 53314 46 A	⊠	Liquid crystal optical element and a laser projection apparatus using polymer dispersed liquid crystal	349/5		
130	US 53194 81 A	⊠	Encapsulated liquid crystal optical read/write storage medium and system	349/171		
131	US 52989 69 A	2989 🛛 Combined optical train for laser spectroscopy 9 A				
132	US 52989 68 A	US Combined optical train for laser spectroscopy				
133	US 52744 20 A	US 52744 Beamsplitter type lens elements with pupil-plane stops for				
134	US 52242	US 52242 Sulffet for gathering write requests and resolving read conflicts by matching read and write requests				
135	US 51626	US Photographic scanner with reduced susceptibility to				
136	US 50981 81 A	US 50981 Ophthalmic measuring apparatus				
137	US 50669 97 A	⊠	Semiconductor device	257/211		
138	US 50468 47 A	⊠	Method for detecting foreign matter and device for realizing same	356/338		
139	US 50400 20 A	⊠	Self-aligned, high resolution resonant dielectric lithography	355/53		
140	US 50399 07 A	⊠	Sparkle-free color display	313/478		
141	US 50281 35 A	⊠	Combined high spatial resolution and high total intensity selection optical train for laser spectroscopy	356/340		
142	US 49881 84 A	⊠	Ophthalmic disease detection apparatus	351/221		
143	US 49223 08 A	⊠	Method of and apparatus for detecting foreign substance	356/237 .4		
144	US 48988 04 A	×	Self-aligned, high resolution resonant dielectric lithography	430/311		
145	US 48568 97 A	US Raman spectrometer having Hadamard electrooptical mask and		356/301		
146	US 48283 85 A	US Autolensmeter				
147	US 48213 04 A	Detection methods and apparatus for non-destructive				
148	US 47647 76 A	⊠	Thermo transfer printer	347/232		

05/03/2004, EAST Version: 1.4.1

101 HPS Trailer Page

Walk-Up_Printing

UserID:

Printer: cpk2_2c21_gbkbptr

Summary

Printed	Pages	Document
	,	

123

15

Total (4)

12006141344

səidon	Dəssini	peruna	Səbey	nocument
ļ	0	۷۱ '	۷١	2002628005
L	0	13	13	12002e89e39
L	0	111	111	1200SL

123 15

	Docum ent ID	ט	Title	Current OR		
149	US 46783 25 A	×	Apparatus for measuring optical properties of paper	356/73		
150	US 46680 89 A	Ø	Exposure apparatus and method of aligning exposure mask with workpiece	356/139 .07		
151	US 46424 71 A	Ø	Scattered radiation smoke detector	250/574		
152	US 46105 41 A	☒	Foreign substance inspecting apparatus	356/239 .8		
153	US 45989 97 A	Ø	Apparatus and method for detecting defects and dust on a patterned surface	356/237 .5		
154	US 44958 17 A	Ø	Ultrasonic imaging device	73/624		
155	US 44822 14 A	device for applying light to a linear array of magneto-optical light switches, notably for optical printers				
156	US 44213 91 A	US 44213 ⊠ Auto eye-refractometer				
157	US 43558 97 A	US Near-simultaneous measurements at forward and back scatter 43558 angles in light scattering photometers				
158	US 43259 10 A	US 43259 ⊠ Automated multiple-purpose chemical-analysis apparatus				
159	US 43242 58 A	US 43242 ⊠ Ultrasonic doppler flowmeters		600/455		
160	US 42265 33 A	Ø	Optical particle detector	356/338		
161	US 41737 57 A	Ø	Liquid crystal display device	345/50		
162	US 41013 83 A	Ø	Process for testing microparticle response to its environment	435/5		
163	US 40700 98 A	☒	Fisheye projection lens system for 35mm motion pictures	359/725		
164	US 40506 38 A	☒	Radioactive matter containing waste gas treating installation	241/222		
165	US 39725 98 A	☒	Multifaceted mirror structure for infrared radiation detector	359/853		
166	US 39281 40 A	☒	Apparatus and process for testing microparticle response to its environment	435/32		
167	US 38389 08 A	⊠	GUIDED LIGHT STRUCTURES EMPLOYING LIQUID CRYSTAL	349/19		
168	US 37604 71 A	☒	METHOD OF MAKING AN ELECTROMECHANICAL FILTER	29/25.3 5		
169	37448 78 A	US 37448 ⊠ LIQUID CRYSTAL MATRIX WITH CONTRAST ENHANCEMENT		349/177		
170	US 37137 43 A	×	FORWARD SCATTER OPTICAL TURBIDIMETER APPARATUS	356/338		
171	US 36472 79 A		COLOR DISPLAY DEVICES	349/23		

101

Printed by HPS Server

Walk-Up_Printing

Printer: cpk2_2c21_gbkbptr

11 - L

Copies

:9miT

Document Listing

15:07:39

Selected Pages Page Range

04/21/04 Date:

123 15

111

13

4

Total (4)

US006141344

12005712964

689689900SN

N2002958002

Document

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)