

Angular-Rate Sensor XV-3500CB Prototype PCB User's Guide

Table of contents

Chapte	r1. Overview	1
-	Introduction	
1.2	Quick Start	
Chapte	r2. Hardware Description	2
•	Hardware components on board	
2.2	Port Definition	2
2.3	Mechanical Drawing	3
	r3.Notice	
•	r4.Contact Us	

Angular-Rate Sensor XV-3500CB Prototype PCB

NOTES:

Product Version : Ver 1.0

Document Version : Ver 1.0

Chapter 1. Overview

1.1 Introduction

Thanks for purchasing the angular-rate sensor module of Sure Electronics. This module can help users record instant angular rate in conjunction with peripheral circuits and provide data needed for analyzing the rotation of objects. It has a wide application in intelligent control, such as automobile, sports facilities, toys and digital camera.

Fig 1

1.2 Quick Start

1Feed this module with either +5V or +3.3V power, but not simultaneously.

- 2 The voltage output from "ANA0" port of angular-rate sensor indicates the variation of angular rate.
- 3 The voltage output from angular-rate sensor module can be obtained via I²C interface after analog-to-digital conversion.
- 4 In case that users need to use this module on PCB, two strips of 12-pin holes or similar pin header sockets (Users may refer to "2.3 mechanical drawing" in "chapter 2 Hardware Description" for dimensions) shall be reserved for connection with this module. Besides, the port sequence and definitions requirement shall be met. (Users may refer to "2.2 Port Definition" in "Chapter 2 Hardware Description" for details)

Chapter 2. Hardware Description

2.1 Hardware components on board

(1) Angular-rate sensor: XV-3500CB chip(2) Analog-to-Digital chip: mcp3421 chip

2.2 Port Definition

Port mark	Port description
IICCLK,IICDAT	The clock and the data end of I ² C interface
NC	No connection
+5V	+5V Power input end
GND	GND
+3.3V	This port outputs 3.3V if powered by +5V supply; or separately used
	as positive pole of +3.3V power supply
ANA0	Analog voltage output end of angular-rate sensor

2.3 Mechanical Drawing

Symbol	L	L1	W	W1
Inch	1.30	0.10	0.75	0.60
mm	33.02	2.54	19.05	15.24

Chapter 3. Notice

1. Parameters list of angular-rate sensor module

(1)Operating Condition

Item	Symbol	Specifications		Remarks	
		Min.	Тур	Max.	
Operating Voltage	V _{DD}		5V/3.3V		GND=0V
Operating temperature	T _{OPR}	-20℃		+80℃	
Output Current	I _{ANA}	0		<u>+</u> 100uA	Analog Voltage
Output Current	I _{I2C}	0		<u>+</u> 10mA	I ² C interface

(2) Electrical Characteristics

Item	Symbol	Specifications			Remarks
		Min.	Тур	Max.	
Scale Factor	So		0.65mV/deg/s		
Limit Scale Factor	Sp			<u>+</u> 5%	Ta=+25℃
Accuracy					
Scale Factor	Spt			<u>+</u> 5%	Based +25℃
Temperature					
sensitivity					
Bias	Vo	Vr-50mV	Vr	Vr+50mV	Ta=+25℃
Reference Voltage	Vr	1320mV	1350mV	1380mV	If module is
					stable
Defection Range	1	-100deg/s		+100deg/s	
Phase Delay	Ф20		4(degree)		At 20Hz phase
					delay angle
Frequency	BW		200Hz		Phase delay
Response					angle 90°
Power Consumption	lop		1.9mA		ANA0:No Load
					Condition

2. Notes on the use of I²C data and clock port

The AD readout can be obtained via I^2C interface; both data and clock end are needed to connect with Vdd via pull-up resistor. The selection of resistance value depends on the mode of I^2C interface, which are standard (100kbits/sec) and fast (400kbits/sec) ranging from $1k\Omega\sim10k\Omega$. The selection range for High speed (3.4Mbits/sec) is a threshold of lower than $1k\Omega$.

The address bytes written into the MCP3421 is 1101000X (for both standard and fast mode) after the start bit is sent out via data cable. AD conversion value and configuration bytes can be read (while MCP 3421 is in its default setting) if "X" stands for 1. If "X" stands for 0, the next would be writing configuration bytes into MCP 3421. So AD conversion value and configuration bytes can be read. The address byte could also be 00001YYY (High speed mode). The bits YYY are unique to the High-Speed (HS) mode master. This byte is referred to as High-Speed (HS) Mode Master Code (HSMMC).

Users may refer to the related documents of MCP3421 for the operation of I²C interface, detailed time parameters, configuration of register and the calculation of AD value.

Appendix1: Schematic

Appendix2: PCB layout

Chapter4.Contact Us

Sure Electronics Co., Ltd.

5F, Zone A,

Qinhuai Technology Innovation Center 105-2 DaMing Rd (Zip Code : 210022)

Nanjing

PRC

Tel: +86-25-66606340 (English Service) GMT1am-10am

Fax: +86-25-66606346

Website: www.sure-electronics.net

www.sureelectronics.net www.sure-electronics.com