Studio 6: Work and Kinetic Energy

Warm-Up Activity

A block is moving to the right (displacement $\Delta \vec{s}$) while a hand exerts a force of magnitude F_0 on the block.

- In each case, is the work done by the hand positive, negative, or zero?
- How does the absolute value of the work compare in the three cases?

A Deeper Model for Interactions

- Quantities
 - Energy
 - Work $W = \int_{r_i}^{r_f} \vec{F} \cdot d\vec{r}$
 - Kinetic Energy $K = \frac{1}{2}mv^2$
- Laws
 - Work-energy theorem $W_{\text{net,ext}} = \Delta E_{\text{total}}$

S6-1: Reversing a Block

- A block is initially moving to the right on a level, frictionless surface. The system consists of only the block.
- A hand exerts a constant horizontal force on the block that causes the block to slow down (stage 1), then move in the opposite direction while speeding up (stage 2).

• For each stage:		Displacement		Force by Hand		$W_{ m by\ hand}$	$W_{ m net,ext}$
- Draw a free-body		Direction	Sign	Direction	Sign	Sign	Sign
diagram for the block.	Stage 1						
- Determine	Stage 2						
whether the work done by each force is positive, negative, or zero.							

- Fill in the table:

S6-2: Pushing Boxes Together

Two identical blocks, A and B, are initially at rest on a level, frictionless surface. System AB consists of **both blocks**.

At time $t = t_1$, hands begin to push the blocks toward each other.

Each hand exerts a constant horizontal force of magnitude F_0 .

At time $t = t_2$, each block has moved a distance d_0 from its initial position.

- (1) Determine if the **change in kinetic energy** of system AB is *positive*, *negative*, or *zero*.
- (2) Determine if the work done by **each force** is *positive*, *negative*, or *zero*.
- (3) Determine if the **net work** on system AB is *positive*, *negative*, or *zero*.
- (4) Check to see if your answers are consistent with the work-energy theorem.

S6-3: Dragging a Box

- You are pulling a box with known mass m at the angle shown below. The box moves from x = 0 to x = d. Find the work done by the rope in each of the following situations:
 - (A) The tension is constant.
 - (B) The tension decreases linearly from $3T_0$ to T_0 .
- If the box began at rest, find the final speed of the box in each of the situations above.
- Don't forget to make sense of your answers!

Main Ideas

- Energy is a powerful, ubiquitous concept that can help us solve a wide array of physics problems.
- Energy is a *scalar*—it is not a vector.
- There are different forms of energy, and energy can be transferred between objects and between forms.