

Towards Energy-efficient Federated Learning via INT8-based Training on Mobile DSPs

Jinliang Yuan, Shangguang Wang, Hongyu Li, Daliang Xu, yuanchun Li, Mengwei Xu, Xuanzhe Liu

Peking University

Beijing University of Posts and Telecommunications

Tsinghua University

Al-driven Web Applications -

History suggestions

Page recommend

Input prediction

Vicious prediction

Private user data

Federated Learning Algorithm

Strict protect

③ Upload ΔW

4 Download global model

High accuracy

Is Federated Learning Algorithm enough to protect data?

No! The **energy** is the main fence.

Such huge energy is unacceptable.

 $\mathbf{E}(\text{Training VGG16 on CIFAR-10}) = \mathbf{E}(\text{Watch TikTok/YouTube for 12/24 hours}) = \mathbf{E}(\text{Play video game for 9 hours})$

Why energy consumption is so huge?

DNN models are trained on **GPUs**

- floating computation
- matrix manipulation

For phones, they need executing on **CPUs**

- integer computation
- general computing

We observe there is **DSP** on the phone

It's energy friendly and can handle matrix manipulation

Models	CPU, FP32		CPU	, INT8	DSP, INT8	
Middels	T	E	T	E	T	E
MobileNet-V1	11.4	88.2	4.3	22.7	2.5	5.4
MobileNet-V2	8.6	64.8	4.6	22.9	3.1	5.4
ResNet-50	78.7	597.6	27.8	131.4	9.2	28.8
Inception-V4	266.3	1,980	81.5	399.6	17.2	59.4
EfficientNet-V2	33.0	187.2	13.4	59.4	8.44	12.6

	FP32 Acc. (%)	Octo Acc. (%)	Acc. Degradation (%)		
GoogLeNet, FM	99.1 - 99.5	97.9 - 98.6	0.9 - 1.2		
GoogLeNet, CF	97.8 - 99.2	97.6 - 98.8	0.2 - 0.4		
AlexNet, FM	95.6 - 98.4	92.8 - 94.3	2.8 - 4.1		
AlexNet, CF	91.8 - 95.2	86.1 - 87.3	5.7 – 7.9		
VGG11, FM	97.5 - 98.8	94.4 – 96.5	2.3 - 3.1		
VGG11, CF	97.2 - 99.5	96.5 - 98.6	0.7 - 0.9		

Save energy 32X, speeds up 9X

Accuracy losses only 2%

Challenge: Directly using DSP with FL is impractical

Low and slow convergence

Low scalability

GOAL: How to design an **energy efficient** and **high accuracy** algorithm with DSP?

Key Idea: FP32-INT8

(a) Traditional FP32-based FL

(b) Proposed INT8-based FL

Design1:

$$w(t+1) = w(t) - \sum_{k=1}^{K} \frac{n_k}{n} \Delta w_d^k(t+1)$$

Error-Compensated Aggregation

$$= w(t) - \sum_{k=0}^{K} \frac{n_k}{n} (w_d(t) - w_d^k(t+1))$$

$$= w(t) - \sum_{k=1}^{K} \frac{n_k}{n} (w_d(t) - w_d^k(t+1))$$
Quantization Error
$$= \underbrace{w(t) - w_d(t)}_{k=1} + \underbrace{\sum_{k=1}^{K} \frac{n_k}{n} w_d^k(t+1)}_{k=1}.$$
Q-FedAvg

Pipelined Batch Quantization

(a) Traditional four procedures of local training on device

(b) Pipeline procedures: parallelization of P₂ on CPU and P₄ on DSP

Evaluation Results

Algorithms	FEMNIST		CIFAR-10			CIFAR-100			
	Acc (%)	T (hours)	E (kJ)	Acc (%)	T (hours)	E (kJ)	Acc (%)	T (hours)	E (kJ)
FloatFL (#1)	82 (1↓)	0.57	0.56	84 (3↓)	8.94	42.5	71 (2↓)	7.58	2.2
QuanFL (#1)	80	0.40	0.62	82	6.17	53.1	67	3.09	2.6
Q-FedUpdate (#2)	81	0.14	0.18	81	2.80	18.9	69	1.71	0.9
Q-FedUpdate (L)	81	0.12 (4.8×)	0.04 (14×)	81	2.40 (3.7×)	4.6 (9×)	69	1.61 (4.7×)	0.21 (10×)
Q-FedUpdate (M)	81	0.08 (7.1×)	0.02 (28×)	81	1.77 (5.1×)	3.0 (14×)	69	1.47 (5.2×)	0.14 (16×)
Q-FedUpdate (H)	81	0.07 (8.1×)	0.02 (28×)	81	1.62 (5.5×)	2.7 (16×)	69	1.44 (5.3×)	0.13 (17×)

Time speeds up 6x

Accuracy losses only 2%

Energy saves 21X

Thanks

Q&A