SOCAR

FRAUD DETECTION

Fast Campus Data Science School 14th

Jaewook Kim

Sanguage Im

Sangwoo Im
Jinseo Lee

PROBLEM.

ACCELERATED GROWTH

APP DOWNLOAD

6.5 M

ACCUMULATED USERS

5.8M

MONTHLY USERS

200K

- ▶ 5.8M Accumulated Users
- Upward Trend of Demand

Source : SOCAR 회사 소개서

"CRASH FOR CASH?"

CAN WE DETECT SCAMS?

LET'S SOLVE WITH MACHINE LEARNING

Machine Learning

HOW IS MACHINE LEARNING APPLIED IN FRAUD DETECTION?

KEY POINT IN FRAUD DETECTION

- Recall $\uparrow = TP / (FN + TP)$
 - Detection Rate 1
 - ▶ Loss ↓
- Precision $\uparrow = TP / (FP + TP)$
 - ▶ Misidentification Rate ↓
 - ▶ Customer Complaint ↓

GOAL

LET'S FIND THE OPTIMAL MODEL!

DATASET

RAW DATA: 16000 X 25

Data Unrevealed upon the Request of Data Provider

1. FRAUD_YN: IMBALANCED DATA

- Of 16,000 accident samples
 - Case 0: 99.74%
 - Case 1: 0.26%
- Definition of Fraud
 - Staged Crash

2. C1 -> ONE_HOT_ENCODING

- Case 1,2 : High frequency
- Different ratio

TOP CATEGORIES					
2	8,296	52%			
1	6,685	42%			
3	563	4%			
5	332	2%			
4	124	1%			

ALL 16,000 **100**%

TOP CATEGORIES					
2	23	56%			
1	16	39%			
3	2	5 %			
ALL	41	100%			

4. C3 -> ONE_HOT_ENCODING

- High frequency of Case 1-3 in Dataset and Fraud
- Different Ratio

TOP CATEGORIES			
	14,635 1,365		
ALL	16,000	100%	

TOP CATEGORIES				
0	37	90%		
1	4	10%		
ALL	41	100%		

- High frequency of Case 4 in Dataset and Fraud
- Different Ratio

- Dataset: 0 (99%)
- Fraud: 0 (100%)
- Similar Ratio

- Dataset
 - **100%**: 13781/86%
 - **)** 0%: 1364/9%
 - Others: 855/5%
- Fraud
 - **100%**: 39/95%
- Different Ratio

- Case1
 - default option in SOCAR APP
 - High frequency in Dataset and Fraud
- Different Ratio

Similar Ratio

TOP CATEGORIES			
0	35	85%	
1	6	15%	
ALL	41	100%	

- Ratio of Case 0
 - Dataset 92%
 - Fraud 85%

TOP C	ATEGORIES	S
	14,719 1,281	
ALL	16,000	100%

TOP CATEGORIES				
0	35	85%		
1	6	15%		
ALL	41	100%		

12. C11-> ONE_HOT_ENCODING

Case 4 & 5 : High frequency in Dataset and Fraud

1 2,242 **14%** 3 917 **6%**

ALL 16,000 **100**%

ALL 41 100%

FRAUD

13. C12 -> ONE_HOT_ENCODING

Different Ratio

3	17	41%
1	9	22 %
2	8	20%
4	7	17%

41 100%

ALL

14. C13 -> ONE_HOT_ENCODING

High frequency of Case 1 in Fraud

- Case 0
 - Dataset: 6,006 / 38%
 - Fraud: 23 / 56%
- Q. Outlier Handling?
- C14 == 0 & C15 == 0
 - Dataset: 4,073 / 25%
 - Fraud: 12 / 29%

Case 0

Dataset: 10,424 / 65%

Fraud: 21 / 51%

Q. Outlier Handling?

17. C16 -> ONE_HOT_ENCODING

Different Ratio

- Different Ratio
- Ratio of Case 0
 - Dataset 67%
 - Fraud 56%

Similar Ratio

- Dataset: Case 1,2,3 = 95%
- Fraud: Case 1,2,3 = 100%
- Q. Outlier Handling?

41 100%

21. C20 -> ONE_HOT_ENCODING

0 & 1:95%

▶ 2 & 3 : one case each

22. C21 -> ONE_HOT_ENCODING

TOP C	TOP CATEGORIES			
0	11,325	71%		
1	3,598	22%		
2	1,077	7%		
ALL	16,000	100%		

TOP CATEGORIES					
0	22	54%			
1	13	32 %			
2	6	15%			
ALL	41	100%			

Fraud: -1 or 0 = 66%

ALL

41 100%

- Fraud_YN
- No significant correlations (~0.02)

- C11 & C13 (0.43)
- C5 & C9 (0.29)
- C14 & C19 (0.27)
- C20, C21, C22, C23 (high correlations)

PRE-PROCESSING 1

ONE_HOT_ENCODING, OUTLIER, RESAMPLING

CATEGORICAL DATA: APPLY ONE-HOT-ENCODING

|--|

• C3

C11

► C12

C13

▶ C16

► C20

C21

c16_1	c16_2	c16_3	c16_4	c16_5	c20_0	c20_1	c20_2	c20_3	c21_0	c21_1	c21_2
1	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	0	0	0	1	0
0	0	1	0	0	1	0	0	0	1	0	0
1	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	0	0	1	0	0

OUTLIERS IN C14, C15, C19

PRE-PROCESSING 1: OUTLIERS CHECK (SCALER)

- Standard Scaler (X)
 - May not be optimal if feature is not normally distributed
 - ▶ Cannot guarantee balanced feature scales in the presence of outliers

- Min Max Scaler (X)
 - Effective if the distribution is not normal or standard deviation is small
 - Sensitive to the presence of outliers

► Robust Scaler (O)

- ▶ Centering and scaling statistics of this scaler based on percentiles
- Not influenced by a few number of very large marginal outliers

PRE-PROCESSING 1: RESAMPLING (OVERSAMPLING, UNDERSAMPLING, HYBRID)

Re-sampling techniques used in our dataset due to strong between-class imbalance

MODELING 1

USING ROBUSTSCALER

BASELINE

Logistic Regression and SVM were not able to detect any fraud cases in both train and test datasets whereas RandomForest seemed overfitted.

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.99736	0.0	0.0	0.997757	0.0	0.0
1	SupportVectorMachine	0.99736	0.0	0.0	0.997757	0.0	0.0
2	RandomForest	1.00000	1.0	1.0	0.997757	0.0	0.0

GRID SEARCH (SCORING = "RECALL")

Although we expected better results from GridSearch, the performance of Random Forest in train set depreciated and the performances of Logistic Regression and SVM remained the same

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.99736	0.0	0.0	0.997757	0.0	0.0
1	SupportVectorMachine	0.99736	0.0	0.0	0.997757	0.0	0.0
2	RandomForest	0.99736	0.0	0.0	0.997757	0.0	0.0

OVER-SAMPLING (SMOTE)

```
X_train.shape, y_train.shape

((12879, 53), (12879,))

X_train_over.shape, y_train_over.shape

((25690, 53), (25690,))
```

- Although data was successfully over-sampled, over-sampling led to overfitting.
- Potential Solution:
 - Try another over-sampling method!

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.998677	0.999844	0.997509	0.997116	0.0	0.0
1	SupportVectorMachine	0.998443	0.999376	0.997509	0.997116	0.0	0.0
2	RandomForest	0.996497	0.994648	0.998365	0.992951	0.0	0.0

OVER-SAMPLING (RANDOM OVERSAMPLING)

Random_state = 3

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.827092	0.793176	0.884936	0.685037	0.004065	0.571429
1	SupportVectorMachine	0.839665	0.780904	0.944258	0.660045	0.003766	0.571429
2	RandomForest	0.990308	0.980984	1.000000	0.970522	0.000000	0.000000

Random state = 11

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.827287	0.794522	0.882912	0.690804	0.004141	0.571429
1	SupportVectorMachine	0.831102	0.758039	0.972674	0.618392	0.003356	0.571429
2	RandomForest	0.996730	0.993503	1.000000	0.987824	0.000000	0.000000

Random_state = 22

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.828883	0.795647	0.885091	0.690804	0.004141	0.571429
1	SupportVectorMachine	0.844492	0.788086	0.942390	0.679590	0.003003	0.428571
2	RandomForest	0.989763	0.979936	1.000000	0.967959	0.000000	0.000000

- Random Oversampling improved performances of Logistic Regression and SVM.
- ► However, Random Forest did not perform well in both over-sampling methods.

UNDER-SAMPLING

Random Undersampling

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.867647	0.878788	0.852941	0.522269	0.002681	0.571429
1	SupportVectorMachine	0.955882	0.969697	0.941176	0.567767	0.002963	0.571429
2	RandomForest	0.852941	0.852941	0.852941	0.492470	0.002524	0.571429

NearMiss (Version 3)

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	1.000000	1.0	1.000000	0.201538	0.001604	0.571429
1	SupportVectorMachine	0.941176	1.0	0.882353	0.192887	0.001587	0.571429
2	RandomForest	0.926471	1.0	0.852941	0.238706	0.001683	0.571429

Condensed NN

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.859551	0.680000	0.500000	0.829221	0.005639	0.428571
1	SupportVectorMachine	0.792135	0.434783	0.294118	0.790131	0.004587	0.428571
2	RandomForest	0.876404	0.700000	0.617647	0.810958	0.005093	0.428571

- We applied three different undersampling methods.
- However, under-sampling did not improve performances of our models.

DILEMMA & SOLUTION

- Yet outputs of over-sampling and under-sampling may be reasonable, all of results either show low performances on test recall or have considerable difference between train and test precision which may imply overfitting.
- Therefore, we decided to apply ensemble models specialized in handling imbalanced data.

BALANCED RANDOM FOREST CLASSIFIER

A balanced random forest randomly under-samples each boostrap sample to balance it

EASY ENSEMBLE CLASSIFIER

- An ensemble of AdaBoost learners trained on different balanced boostrap samples
- ▶ Balancing achieved by random under-sampling

RUSBOOST CLASSIFIER

- ▶ Random under-sampling integrated in the learning of AdaBoost
- During learning, the problem of class balancing is alleviated by random under-sampling the sample at each iteration of the boosting algorithm.

ENSEMBLE WITH RESAMPLING

- > Since the difference between recalls of RUSBoost in train/test is significant, we decided to exclude RUSBoost in our modeling.
- ▶ Compared to Balanced Random Forest, Easy Ensemble performed better in every score.
- ▶ Hence, we chose EasyEnsemble as our main ensemble model.

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	BalancedRandomForest	0.576054	0.005829	0.941176	0.470682	0.001817	0.428571
1	EasyEnsemble	0.677848	0.008128	1.000000	0.521948	0.002679	0.571429
2	RUSBoost	0.765976	0.009223	0.823529	0.696892	0.001063	0.142857

PRE-PROCESSING 2

USING MIN-MAX SCALER
AFTER OUTLIER REMOVAL

OUTLIERS IN C14, C15, C19: REMOVED

MODELING 2

USING MIN-MAX SCALER
AFTER OUTLIER REMOVAL

BASELINE

With hope that outlier removal may increase our models' performances, we proceeded outlier removal. However, there was no significant improvement in the performance.

Before Outlier Removal

After Outlier Removal

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.99736	0.0	0.0	0.997757	0.0	0.0
1	SupportVectorMachine	0.99736	0.0	0.0	0.997757	0.0	0.0
2	RandomForest	1.00000	1.0	1.0	0.997757	0.0	0.0

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.997357	0.0	0.0	0.997755	0.0	0.0
1	SupportVectorMachine	0.996424	0.0	0.0	0.995189	0.0	0.0
2	RandomForest	1.000000	1.0	1.0	0.997755	0.0	0.0

GRID SEARCH (SCORING = "RECALL")

> Similar to the comparison of baselines, after outlier removal, there was no improvement at all on the performance

Before Outlier Removal

After	Out	lier	Rem	oval
	U U U			

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.99736	0.0	0.0	0.997757	0.0	0.0
1	SupportVectorMachine	0.99736	0.0	0.0	0.997757	0.0	0.0
2	RandomForest	0.99736	0.0	0.0	0.997757	0.0	0.0

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	LogisticRegression	0.997357	0.0	0.0	0.997755	0.0	0.0
1	SupportVectorMachine	0.997357	0.0	0.0	0.997755	0.0	0.0
2	RandomForest	0.997357	0.0	0.0	0.997755	0.0	0.0

COMPARISON BETWEEN MODELING 1 AND 2

► Modeling 1 : Using Robust Scaler

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	BalancedRandomForest	0.576054	0.005829	0.941176	0.470682	0.001817	0.428571
1	EasyEnsemble	0.677848	0.008128	1.000000	0.521948	0.002679	0.571429
2	RUSBoost	0.765976	0.009223	0.823529	0.696892	0.001063	0.142857

▶ Modeling 2 : Using MinMaxScaler After Outlier Removal

	model name	train accuracy	train precision	train recall	test accuracy	test precision	test recall
0	BalancedRandomForest	0.597170	0.006140	0.941176	0.441309	0.002295	0.571429
1	EasyEnsemble	0.576881	0.006208	1.000000	0.440026	0.002290	0.571429
2	RUSBoost	0.809468	0.006130	0.441176	0.654586	0.002788	0.428571

- Although Balanced Random
 Forest and Easy Ensemble using
 MinMaxScaler showed decent
 performances on recall, their
 accuracies and precisions were
 lower than those of
 EasyEnsemble.
- Hence, we chose EasyEnsemble using RobustScaler as our main model.

VALIDATION

EASY ENSEMBLE CLASSIFIER

▶ 3-Fold Cross Validation

each accuracy : [0.5658048 0.57861635 0.53226182] each precision : [0.00428036 0.00441014 0.00496032] each recall : [0.72727273 0.72727273 0.83333333]

average accuracy : 0.5588943240934855
average precision : 0.004550274873633767

average recall : 0.76262626262627

Test

• Accuracy: 0.5219

• Precision : 0.0027

▶ Recall: 0.5714

CONCLUSION

LIMITATION

- Extremely imbalanced dataset
 - Avoid overfitting when dealing imbalanced data
- ▶ Time constraint
 - Insufficient time to study the newly found models in depth
 - Not able to confirm if our model is optimal
- Lack of understanding of specific columns
 - No further explanation from the company due to security issues

LESSON

- ▶ GOOGLE it FIRST!
 - What we want to implement is already implemented by smart ones!
- Let's approach the problem in various ways!
 - You will never know before you try.
- The difference between training data and field data is large.
- ▶ How can the insights from EDA be better applied in modeling?
- Are the best parameters really the best ones?

SOCAR

THANK YOU!