Quantum Computing Seminar 6

YongHyun "Aeren" An

Samsung Research

December 16, 2024 December 23, 2024

• In query model of computation, we access the input by making **queries**.

- In query model of computation, we access the input by making queries.
- We refer to the input as being provided by an oracle or a blackbox.

- In query model of computation, we access the input by making queries.
- We refer to the input as being provided by an oracle or a blackbox.
- The oracle is represented as a function $f: \{0,1\}^n \to \{0,1\}^m$, for some fixed integer n and m.

• Q) Is $U_f: |s\rangle \mapsto |f(s)\rangle$ a valid gate in a quantum circuit?

- Q) Is $U_f: |s\rangle \mapsto |f(s)\rangle$ a valid gate in a quantum circuit?
- Q) Is $U_f: |t,s\rangle \mapsto |t \oplus f(s),s\rangle$ a valid gate in a quantum circuit?

Accessing Oracle

• In query model of classical computation, the oracle is accessed through calling the function $C_f(s) := f(s)$.

- In query model of classical computation, the oracle is accessed through calling the function $C_f(s) := f(s)$.
- In query model of quantum computation, the oracle is accessed through the gate $U_f(|t,s\rangle) := |t \oplus f(s),s\rangle$

- In query model of classical computation, the oracle is accessed through calling the function $C_f(s) := f(s)$.
- In query model of quantum computation, the oracle is accessed through the gate $U_f(|t,s\rangle) := |t \oplus f(s),s\rangle$
- The **cost of a query model classical algorithm** is the number of C_f called.

- In query model of classical computation, the oracle is accessed through calling the function $C_f(s) := f(s)$.
- In query model of quantum computation, the oracle is accessed through the gate $U_f(|t,s\rangle) := |t \oplus f(s),s\rangle$
- The cost of a query model classical algorithm is the number of C_f called.
- The **cost of a query model quantum algorithm** is the number of U_f gate used.

- In query model of classical computation, the oracle is accessed through calling the function $C_f(s) := f(s)$.
- In query model of quantum computation, the oracle is accessed through the gate $U_f(|t,s\rangle) := |t \oplus f(s),s\rangle$
- The cost of a query model classical algorithm is the number of C_f called.
- The cost of a query model quantum algorithm is the number of U_f gate used.
- We're going to see examples of query model quantum algorithms that outperform query model classical algorithms.

Why care about the query model?

Why care about the query model?

1. Query model algorithms can rule out fast quantum algorithms.

Why care about the query model?

- 1. Query model algorithms can rule out fast quantum algorithms.
- 2. The query model of classical computing is well-studied.

Why care about the query model?

- 1. Query model algorithms can rule out fast quantum algorithms.
- 2. The query model of classical computing is well-studied.
- 3. It gives insight into how quantum algorithms work. Instantiating the "black box" in terms of quantum gates can lead to fast quantum algorithms.

Phase kickback

Phase kickback

• For all $a,b \in \{0,1\}$, it's easy to verify that $|a \oplus b\rangle = X^b |a\rangle$.

Phase kickback

- For all $a, b \in \{0, 1\}$, it's easy to verify that $|a \oplus b\rangle = X^b |a\rangle$.
- We can now see that for all $a, b \in \{0, 1\}$,

$$U_f(|b,a\rangle) = |b \oplus f(a)\rangle \otimes |a\rangle = X^{f(a)}|b,a\rangle$$

Phase kickback

- For all $a, b \in \{0, 1\}$, it's easy to verify that $|a \oplus b\rangle = X^b |a\rangle$.
- We can now see that for all $a, b \in \{0, 1\}$,

$$U_f(|b,a\rangle) = |b \oplus f(a)\rangle \otimes |a\rangle = X^{f(a)}|b,a\rangle$$

• Since it holds for all $b \in \set{0,1}$, it must hold for all 1-qubit state \ket{u}

$$U_f(|u,a\rangle) = X^{f(a)}|u,a\rangle$$

Phase kickback

- For all $a, b \in \{0, 1\}$, it's easy to verify that $|a \oplus b\rangle = X^b |a\rangle$.
- We can now see that for all $a, b \in \{0, 1\}$,

$$U_f(|b,a\rangle) = |b \oplus f(a)\rangle \otimes |a\rangle = X^{f(a)}|b,a\rangle$$

• Since it holds for all $b \in \{0,1\}$, it must hold for all 1-qubit state $|u\rangle$

$$U_f(|u,a\rangle) = X^{f(a)}|u,a\rangle$$

• Therefore,

$$U_f(|-,a\rangle) = X^{f(a)} |-\rangle \otimes |a\rangle = (-1)^{f(a)} |-,a\rangle$$

Definition (constant and balanced function)

A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is

- constant if f(s) = f(t) for all $s, t \in \{0, 1\}^n$, and
- **balanced** if $|\{s: f(s) = 0\}| = |\{t: f(t) = 1\}|$.

Definition (constant and balanced function)

A function $f: \{0,1\}^n \rightarrow \{0,1\}$ is

- constant if f(s) = f(t) for all $s, t \in \{0, 1\}^n$, and
- **balanced** if $|\{s: f(s) = 0\}| = |\{t: f(t) = 1\}|$.

Deutsch's problem

Input	a function $f:\set{0,1} o \set{0,1}$		
Output	0 if f is constant, 1 if f is balanced		

Classical algorithm

Classical algorithm

• Any classical algorithm must make at least 2 oracle calls, because regardless of querying f(0) or f(1), it must know the other value to determine the answer.

•
$$|\pi_1\rangle = (H \otimes H) |10\rangle = |-,+\rangle = \frac{1}{\sqrt{2}} |-,0\rangle + \frac{1}{\sqrt{2}} |-,1\rangle$$

•
$$|\pi_1\rangle = (H \otimes H) |10\rangle = |-,+\rangle = \frac{1}{\sqrt{2}} |-,0\rangle + \frac{1}{\sqrt{2}} |-,1\rangle$$

•
$$|\pi_2\rangle = U_f |\pi_1\rangle = \frac{1}{\sqrt{2}}U_f |-,0\rangle + \frac{1}{\sqrt{2}}U_f |-,1\rangle = \frac{1}{\sqrt{2}}(-1)^{f(0)} |-,0\rangle + \frac{1}{\sqrt{2}}(-1)^{f(1)} |-,1\rangle$$

•
$$|\pi_1\rangle = (H \otimes H) |10\rangle = |-,+\rangle = \frac{1}{\sqrt{2}} |-,0\rangle + \frac{1}{\sqrt{2}} |-,1\rangle$$

•
$$|\pi_2\rangle = U_f |\pi_1\rangle = \frac{1}{\sqrt{2}}U_f |-,0\rangle + \frac{1}{\sqrt{2}}U_f |-,1\rangle = \frac{1}{\sqrt{2}}(-1)^{f(0)}|-,0\rangle + \frac{1}{\sqrt{2}}(-1)^{f(1)}|-,1\rangle$$

= $(-1)^{f(0)}|-\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle + (-1)^{f(0)\oplus f(1)}|1\rangle\right) = (-1)^{f(0)}|-\rangle \otimes \begin{cases} |+\rangle & \text{if } f(0) = f(1) \\ |-\rangle & \text{otherwise} \end{cases}$

•
$$|\pi_2\rangle = (-1)^{f(0)} |-\rangle \otimes \begin{cases} |+\rangle & \text{if } f(0) = f(1) \\ |-\rangle & \text{otherwise} \end{cases}$$

•
$$|\pi_2\rangle = (-1)^{f(0)} |-\rangle \otimes \begin{cases} |+\rangle & \text{if } f(0) = f(1) \\ |-\rangle & \text{otherwise} \end{cases}$$

•
$$|\pi_3\rangle = \begin{cases} (-1)^{f(0)} |-\rangle \otimes |0\rangle & \text{if } f(0) = f(1) \\ (-1)^{f(0)} |-\rangle \otimes |1\rangle & \text{otherwise} \end{cases}$$

Summary of results for the Deutsch's problem

Model	Classical (Deterministic)	Classical (Probabilistic)	Quantum
Cost	2	2	1

Definition (addition and inner product of bitstrings)

For $x = x_{n-1} \cdots x_0$ and $y = y_{n-1} \cdots y_0 \in \{0, 1\}^n$,

- $x \oplus y = (x_{n-1} \oplus y_{n-1}) \cdots (x_0 \oplus y_0)$
- $x \cdot y = x_{n-1} \cdot y_{n-1} \oplus \cdots \oplus x_0 \cdot y_0$

Definition (addition and inner product of bitstrings)

For
$$x = x_{n-1} \cdots x_0$$
 and $y = y_{n-1} \cdots y_0 \in \{0, 1\}^n$,

- $x \oplus y = (x_{n-1} \oplus y_{n-1}) \cdots (x_0 \oplus y_0)$
- $x \cdot y = x_{n-1} \cdot y_{n-1} \oplus \cdots \oplus x_0 \cdot y_0$
- For $a \in \{0, 1\}$,

$$H\ket{a} = \frac{1}{\sqrt{2}} \sum_{b \in \{0,1\}} (-1)^{a \cdot b} \ket{b}$$

Definition (addition and inner product of bitstrings)

For $x = x_{n-1} \cdots x_0$ and $y = y_{n-1} \cdots y_0 \in \{0, 1\}^n$,

- $\bullet \ x \oplus y = (x_{n-1} \oplus y_{n-1}) \cdots (x_0 \oplus y_0)$
- $x \cdot y = x_{n-1} \cdot y_{n-1} \oplus \cdots \oplus x_0 \cdot y_0$
- For $a \in \{0, 1\}$,

$$H\ket{a} = rac{1}{\sqrt{2}} \sum_{b \in \{0,1\}} (-1)^{a \cdot b} \ket{b}$$

• For $x \in \{0,1\}^n$,

$$H^{\otimes n} |x\rangle = H |x_{n-1}\rangle \otimes \cdots \otimes H |x_0\rangle$$
$$= \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$$

1. Initial state: $|10\cdots 0\rangle$

- 1. Initial state: $|10\cdots 0\rangle$
- 2. After the 1st layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$

- 1. Initial state: $|10\cdots 0\rangle$
- 2. After the 1st layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$
- 3. After the 2nd layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$

- 1. Initial state: $|10\cdots 0\rangle$
- 2. After the 1st layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$
- 3. After the 2nd layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$
- 4. After the 3rd layer:

$$\ket{-}\otimesrac{1}{2^n}\sum_{x\in\set{0,1}^n}\sum_{y\in\set{0,1}^n}(-1)^{f(x)+x\cdot y}\ket{y}$$

Deutsch-Jozsa Algorithm

- 1. Initial state: $|10\cdots 0\rangle$
- 2. After the 1st layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$
- 3. After the 2nd layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$
- 4. After the 3rd layer:

$$\left|-
ight
angle \otimes rac{1}{2^n} \sum_{x \in \set{0,1}^n} \sum_{y \in \set{0,1}^n} (-1)^{f(x) + x \cdot y} \left|y
ight
angle$$

5. Probability of the result being $r \in \{0,1\}^n$:

Deutsch-Jozsa Algorithm

- 1. Initial state: $|10\cdots 0\rangle$
- 2. After the 1st layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$
- 3. After the 2nd layer: $|-\rangle \otimes \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$
- 4. After the 3rd layer:

$$|-
angle\otimesrac{1}{2^{n}}\sum_{x\in\set{0,1}^{n}}\sum_{y\in\set{0,1}^{n}}(-1)^{f(x)+x\cdot y}\ket{y}$$

5. Probability of the result being $r \in \{0,1\}^n$:

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

We'll look at two problems solvable by the Deutsch-Jozsa algorithm.

We'll look at two problems solvable by the Deutsch-Jozsa algorithm.

Deutsch-Jozsa problem

Input	a function $f: \set{0,1}^n o \set{0,1}$ which is either constant or balanced	
Output	0 if f is constant, 1 if f is balanced	

Classical algorithm (deterministic)

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

Classical algorithm (probabilistic)

• We can randomly choose a bitstring and query k = 30 times.

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

- We can randomly choose a bitstring and query k = 30 times.
- If *f* is constant, all *k* outputs will be the same.

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

- We can randomly choose a bitstring and query k = 30 times.
- If *f* is constant, all *k* outputs will be the same.
- If f is balanced, the outputs will contain both 0 and 1 with probability $1-\frac{1}{2^{29}}$.

Classical algorithm (deterministic)

• Any classical algorithm must make at least $2^{n-1} + 1$ oracle calls, because regardless of the result of first 2^{n-1} queries, the answer can still be either constant or balanced.

- We can randomly choose a bitstring and query k = 30 times.
- If *f* is constant, all *k* outputs will be the same.
- If f is balanced, the outputs will contain both 0 and 1 with probability $1-\frac{1}{2^{29}}$.
- Therefore, judging that f is constant or not depending on whether the output contains both 0 or 1 has failure probability equal or less than $\frac{1}{2^{29}}$.

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

We focus on the probability for $r = 0 \cdots 0$.

$$\mathcal{P}(0\cdots 0) = \left|\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)}\right|^2 = \begin{cases} 0 & \text{if } f \text{ is balanced} \\ 1 & \text{if } f \text{ is constant} \end{cases}$$

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

We focus on the probability for $r = 0 \cdots 0$.

$$\mathcal{P}(0\cdots 0) = \left|\frac{1}{2^n}\sum_{x\in\{0,1\}^n} (-1)^{f(x)}\right|^2 = \begin{cases} 0 & \text{if } f \text{ is balanced} \\ 1 & \text{if } f \text{ is constant} \end{cases}$$

Therefore, we judge that f is constant if and only if the output is $0 \cdots 0$.

Summary of results for the Deutsch-Jozsa problem

Model	Classical (Deterministic)	Classical (Probabilistic)	Quantum
Cost	$2^{n-1}+1$	Some constant	1

Bernstein-Vazirani problem

Input	a function $f: \set{0,1}^n o \set{0,1}$ satisfying $f(x) = s \cdot x$ for some fixed bitstring s	
Output	bitstring s	

Classical algorithm

Classical algorithm

• Any classical algorithm must make at least n oracle calls, because it needs to distinguish 2^n possible cases.

Classical algorithm

- Any classical algorithm must make at least n oracle calls, because it needs to distinguish 2^n possible cases.
- On the other hand, querying all bitstrings with exactly one 1 allows us to extract s one by one.

Classical algorithm

- Any classical algorithm must make at least n oracle calls, because it needs to distinguish 2^n possible cases.
- On the other hand, querying all bitstrings with exactly one 1 allows us to extract s one by one.
- Therefore, *n* oracle calls is the best we can do.

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$P(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

Since $f(x) = s \cdot x$ for some $s \in \{0, 1\}^n$,

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{(s \oplus r) \cdot x} \right|^2 = \begin{cases} 1 & \text{if } s = r \\ 0 & \text{if } s \neq r \end{cases}$$

Quantum algorithm (Deutsch-Jozsa Algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot r} \right|^2$$

Since $f(x) = s \cdot x$ for some $s \in \{0, 1\}^n$,

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{(s \oplus r) \cdot x} \right|^2 = \begin{cases} 1 & \text{if } s = r \\ 0 & \text{if } s \neq r \end{cases}$$

Therefore, the measurement result is always s.

Summary of results for the Bernstein-Vazirani problem

Model	Classical (Deterministic)	Classical (Probabilistic)	Quantum
Cost	n	n	1

Simon's Algorithm

Simon's problem

Input	a function $f: \{0,1\}^n \to \{0,1\}^m$ satisfying $[f(x) = f(y)] \iff [(x = y) \lor (x \oplus s = y)]$ for all bitstring x and y , for some fixed bitstring s	
Output	bitstring s	

Classical algorithm

Classical algorithm

• If a classical algorithm had queried two distinct bitstrings x and y with f(x) = f(y), it can determine $s = x \oplus y$.

Classical algorithm

- If a classical algorithm had queried two distinct bitstrings x and y with f(x) = f(y), it can determine $s = x \oplus y$.
- On the other hand, if it had queried no such pair of bitstrings, s can be any bitstring.

Classical algorithm

- If a classical algorithm had queried two distinct bitstrings x and y with f(x) = f(y), it can determine $s = x \oplus y$.
- On the other hand, if it had queried no such pair of bitstrings, s can be any bitstring.
- By the birthday paradox, we're expected to require $\Omega(\sqrt{2^n})$ queries before finding such pair of x and y.

Quantum algorithm (Simon's algorithm)

• Initial state: |0 ⋅ ⋅ ⋅ 00 ⋅ ⋅ ⋅ 0⟩

- Initial state: |0 · · · 00 · · · 0⟩
- After the 1st layer: $\frac{1}{\sqrt{2^n}}\sum_{x\in\{\,0,1\,\}^n}|0\cdots0\rangle\,|x\rangle$

- Initial state: |0 · · · 00 · · · 0⟩
- After the 1st layer: $\frac{1}{\sqrt{2^n}}\sum_{x\in\{\,0,1\,\}^n}|0\cdots0\rangle\,|x\rangle$
- After the 2nd layer: $\frac{1}{\sqrt{2^n}}\sum_{x\in\{\,0,1\,\}^n}|f(x)\rangle\,|x\rangle$

- Initial state: |0 · · · · 00 · · · · 0⟩
- After the 1st layer: $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |0 \cdots 0\rangle |x\rangle$
- After the 2nd layer: $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |f(x)\rangle |x\rangle$
- After the 3rd layer:

$$\frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle |y\rangle$$

Quantum algorithm (Simon's algorithm)

- Initial state: |0 · · · 00 · · · 0⟩
- After the 1st layer: $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |0 \cdots 0\rangle |x\rangle$
- After the 2nd layer: $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |f(x)\rangle |x\rangle$
- After the 3rd layer:

$$\frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} \sum_{y \in \{0,1\}^{n}} (-1)^{x \cdot y} \ket{f(x)} \ket{y}$$

• Probability of the result being $r \in \{0,1\}^n$:

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} \left| f(x) \right\rangle \right|^2$$

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x:f(x)=y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x:f(x)=y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

• f is an one-to-one function in this case.

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) =$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Case $s \neq 0 \cdots 0$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Case $s \neq 0 \cdots 0$

ullet f is a two-to-one function in this case.

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x: f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x: f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Case $s \neq 0 \cdots 0$

- *f* is a two-to-one function in this case.
- $\mathcal{P}(r) =$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x : f(x) = y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x : f(x) = y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Case $s \neq 0 \cdots 0$

- *f* is a two-to-one function in this case.
- $\mathcal{P}(r) = \begin{cases} \frac{1}{2^{n-1}} & \text{if } s \cdot r = 0\\ 0 & \text{otherwise} \end{cases}$

Quantum algorithm (Simon's algorithm)

$$\mathcal{P}(r) = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot r} |f(x)\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \left| \sum_{y \in \{0,1\}^m} \sum_{x:f(x)=y} (-1)^{x \cdot r} |y\rangle \right|^2$$

$$= \frac{1}{2^{2n}} \sum_{y \in \{0,1\}^m} \left| \sum_{x:f(x)=y} (-1)^{x \cdot r} \right|^2$$

Case $s = 0 \cdots 0$

- f is an one-to-one function in this case.
- $\mathcal{P}(r) = \frac{1}{2^n}$

Case $s \neq 0 \cdots 0$

- *f* is a two-to-one function in this case.
- $\mathcal{P}(r) = \begin{cases} \frac{1}{2^{n-1}} & \text{if } s \cdot r = 0\\ 0 & \text{otherwise} \end{cases}$

Note that in both cases, we're picking r with $s \cdot r = 0$ uniformly at random.

• We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.

- We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.
- The probability that a random set of n-1 bitstring r_{n-2}, \dots, r_0 is linearly independent is at least

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) \approx 0.288788$$

- We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.
- The probability that a random set of n-1 bitstring r_{n-2}, \dots, r_0 is linearly independent is at least

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) \approx 0.288788$$

• Therefore, we need to run the circuit at most (n-1)/0.288788 < 4n times on average to obtain such set of bitstrings.

- We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.
- The probability that a random set of n-1 bitstring r_{n-2}, \dots, r_0 is linearly independent is at least

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) \approx 0.288788$$

- Therefore, we need to run the circuit at most (n-1)/0.288788 < 4n times on average to obtain such set of bitstrings.
- We can use any method of our choice (such as guassian elimination) to find a non-zero bitstring t such that $r_i \cdot t = 0$ for all i.

- We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.
- The probability that a random set of n-1 bitstring r_{n-2}, \dots, r_0 is linearly independent is at least

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) \approx 0.288788$$

- Therefore, we need to run the circuit at most (n-1)/0.288788 < 4n times on average to obtain such set of bitstrings.
- We can use any method of our choice (such as guassian elimination) to find a non-zero bitstring t such that $r_i \cdot t = 0$ for all i.
- If $f(0 \cdots 0) = f(t)$, we know that s = t.

- We use the above circuit to find a set of linearly independent set of bitstrings r_{n-2}, \dots, r_0 with $r_i \cdot s = 0$.
- The probability that a random set of n-1 bitstring r_{n-2}, \dots, r_0 is linearly independent is at least

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{2^k} \right) \approx 0.288788$$

- Therefore, we need to run the circuit at most (n-1)/0.288788 < 4n times on average to obtain such set of bitstrings.
- We can use any method of our choice (such as guassian elimination) to find a non-zero bitstring t such that $r_i \cdot t = 0$ for all i.
- If $f(0 \cdots 0) = f(t)$, we know that s = t.
- Otherwise, f must be one-to-one, so $s = 0 \cdots 0$.

Summary of results for the Simon's problem

Model	Classical (Deterministic)	Classical (Probabilistic)	Quantum
Cost	$\Theta(\sqrt{2^n})$	$\Theta(\sqrt{2^n})$	$\Theta(n)$

The End