7.0 Limits and derivatives (12.1 IB SL)

Dr. Huson

September 7, 2017

Drui

Prior learning

Limits of sequences

Convergence and divergence

Limit of a function

Limit of a function Examples

Limit of a function Example (b)

Continuity

How do we use limits?

► CCSS: Limits

▶ Do Now: Prior learning problems

► Lesson: Introduction to limits

► Homework:

Prior learning

- ► Factoring polynomials
- Expanding powers of binomials
- Rational exponents

Limits of sequences

Consider this sequence. If it went on forever, what would it's value be?

Element	Value
u_1	$\frac{1}{3}$
u_2	4 9
u_3	13 27
u_4	40 81
:	:

Limits of sequences

Notation:

$$\lim_{n\to\infty}u_n=L$$

"The limit as n approaches infinity of u sub n equals L."

Element	Value
u_1	1 3 4 9
<i>u</i> ₂	
из	$\frac{13}{27}$
<i>u</i> ₄	40 81
:	:

Convergence and divergence

Definition

A Convergent sequence approaches a fixed value (real number).

Example: $\frac{1}{3}, \frac{4}{9}, \frac{13}{27}, \frac{40}{81}, \dots$ (approaches $\frac{1}{2}$)

A Divergent sequence does not converge.

Example: 1, 1, 2, 3, 5, 8, 13, ...

Example 1 page 197
Exercise 7A

Definition

A function, f(x), is said to have a limit for a specific input value, c, if as x gets sufficiently close to c (from either side), f(x) gets close to a value, L.

Notation:

$$\lim_{x\to c} f(x) = L$$

Example

Find the limit or state that it does not exist.

- (a) $\lim_{x\to 2} x^2$
- (b) $\lim_{x \to 1} \frac{x^2 1}{x 1}$
- (c) $\lim_{x\to 0} f(x)$ where $f(x) = \begin{cases} 1 & \text{for } x \geq 0 \\ -1 & \text{for } x \leq 0 \end{cases}$

Example 2(b) pg. 198 Find the limit or state that it does not exist.

$$\lim_{x\to 1}\frac{x^2-1}{x-1}$$

Three approaches: graphing, algebra, data table

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Graphing:

Note the discontinuity.

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Algebra:

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

$$x \neq 1$$

$$\lim_{x\to 1}\frac{x^2-1}{x-1}$$

Data table:

0.9	0.99	0.999	1.001	1.01	1.1
1.9	1.99	1.999	2.001	2.01	2.1

Continuity

Definition

A function, f(x), is said to be continuous if for all values, c, in its domain, f(c) exists and, $\lim_{x\to c} f(x) = f(c)$

Informally, if the function can be drawn without lifting your pencil, it is continuous.