Is Apriori Fast Enough? — Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent (k 1)-itemsets to generate candidate frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - 10⁴ frequent 1-itemsets will generate 10⁷ candidate 2-itemsets
 - $_{\circ}$ To discover a frequent pattern of size 100, e.g., {a₁, a₂, ..., a₁₀₀}, one needs to generate 2¹⁰⁰ ≈ 10³⁰ candidates.
 - Multiple scans of database:
 - Needs n+1 scans, n is the length of the longest pattern

Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

Construct FP-tree from a Transaction DB

	TID	Items bought	(ordered) frequ	ent items
	100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
	200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
	300	$\{b, f, h, j, o\}$	$\{f, b\}$	
	400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	(3)
	500	{a, f, c, e, l, p, m, n}	$\{f, c, a, m, p\}$	2) / \(\bigcirc_{\bigcirc}\)
Ste	eps:	(1)	Header Table	
1.	Scan DB	once, find frequent	Item frequency h	read /> f:4 /-> c:1
1-itemsets (single items)		\overline{f} 4	•-+' [
_	Od f		c 4	•> c:3/ b:1> b:1
۷.		ler frequent items in $\begin{bmatrix} a & 3 \end{bmatrix}$		
	frequency descending order		b 3	• a:3 p:1
3	Scan DB	again, construct FP-	m 3	•
٥.		ting with most	p 3	$m:2 \rightarrow b:1$
	_	item per transaction	min_support = 0.5	n:2 m:1

Step 1: From FP-tree to Conditional Pattern Base

- Starting at the frequent header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Conditional pattern bases

item	cond. pattern base
c	f:3
а	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Mining Frequent Patterns by Creating Conditional Pattern-Bases

Item	Conditional pattern-base	Conditional FP-tree	
р	{(fcam:2), (cb:1)}	{(c:3)} p	
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m	
b	{(fca:1), (f:1), (c:1)}	Empty	
а	{(fc:3)}	{(f:3, c:3)} a	
С	{(f:3)}	{(f:3)} c	
f	Empty	Empty	

Lift

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate,
 although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89 \qquad lift(B,\neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$