

Space X Falcon 9 First Stage Landing Prediction

Assignment: Machine Learning Prediction

Estimated time needed: 60 minutes

Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. In this lab, you will create a machine learning pipeline to predict if the first stage will land given the data from the preceding labs.

Several examples of an unsuccessful landing are shown here:

Most unsuccessful landings are planed. Space X; performs a controlled landing in the oceans.

Objectives

Perform exploratory Data Analysis and determine Training Labels

- create a column for the class
- Standardize the data
- Split into training data and test data

-Find best Hyperparameter for SVM, Classification Trees and Logistic Regression

Find the method performs best using test data

Import Libraries and Define Auxiliary Functions

[1]: import piplite
 await piplite.install(['numpy'])
 await piplite.install(['pandas'])
 await piplite.install(['seaborn'])

We will import the following libraries for the lab

Load the dataframe

Load the data

```
[4]: from js import fetch
import io

URL1 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBH-D50321EN-SkillsNetwork/datasets/dataset_part_2.csv"
resp1 = masit fetch(URL1)

text1 = io.Bytes10((amait resp1.arrayBuffer()).to_py())
data = pd.read_csv(text1)
```

[5]: data.head()

[5]:		FlightNumbe	r	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
	0		2010	-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
	1	2	2012	-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
	2	3	2013	-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
	3	4	2013	-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
	4		2013	-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

[6]: URL2 = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-D508321EN-SkillsNetwork/datasets/dataset_part_3.csv'
resp2 = maif efch(URL2)
text2 = io.BytesIO((maif resp2.arrayBuffer()).to_py())
X = p1.resd_csv(text2)

[7]: X.head(100)

	Fli	ightNumber	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Serial_B1060	Serial_B1062	GridFins_False	GridFins_True	Reused_False	Reused_Tru
	0	1.0	6104.959412	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.
	1	2.0	525.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.
	2	3.0	677.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.
	3	4.0	500.000000	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.
	4	5.0	3170.000000	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.
8	5	86.0	15400.000000	2.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	0.0	1.0	0.0	1)
8	6	87.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0	1.0	0.0	1)
8	7	88.0	15400.000000	6.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	1.0	0.0	1)
8	8	89.0	15400.000000	3.0	5.0	2.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	1.0	0.0	0.0	1.0	0.0	1)
8	9	90.0	3681.000000	1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.

90 rows × 83 columns

TASK 1

Create a NumPy array from the column Class in data, by applying the method to_numpy() then assign it to the variable Y ,make sure the output is a Pandas series (only one bracket df[name of column]).

[8]: Y = data['Class'].to_numpy()

TASK 2

Standardize the data in X then reassign it to the variable X using the transform provided below.

```
[9]: # students get this
  transform = preprocessing.StandardScaler()
                                                                                                                                      X= preprocessing.StandardScaler().fit(X).transform(X)
X[0:5]
X[0:5]

(9): array([[-1.71291154e+00, -1.94814463e-16, -6.53912840e-01, -1.57580457e+00, -9.73440458e-01, -1.65999788e-01, -1.57580457e+00, -9.73440458e-01, -1.65999788e-01, -6.5653671e-01, -1.65999788e-01, -6.5653671e-01, -1.65999788e-01, -6.756538e-01, -6.756538e-01, -6.756538e-01, -6.756538e-01, -6.756538e-01, -6.756559e-01, -6.756559e-01, -6.756559e-01, -6.756559e-01, -6.756559e-01, -6.7565978e-01, -6.7565978e-01, -6.7565978e-01, -6.756978e-01, -6.
                                                                                                                                                                                                                                                                                   1.05909788-01, -1.5975572-01, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5075572-03, -1.5090788-01, -1.0599788-01, -1.0599788-01, -1.5099788-01, -1.5099788-03, -1.5075572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507572-03, -1.507578-03, -1.507578-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -1.5075788-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-01, -7.50772-03, -7.507588-0
                                                                                                                                                                                                                                                                                                       -1.2599788e-01, -1.0599788e-01, -1.0599788e-01
```

```
-1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.0599788-01, -1.059
```

We split the data into training and testing data using the function train_test_split. The training data is divided into validation data, a second set used for training data; then the models are trained and hyperparameters are selected using the function GridSearchCV.

TASK 3

Use the function train_test_split to split the data X and Y into training and test data. Set the parameter test_size to 0.2 and random_state to 2. The training data and test data should be assigned to the following labels.

X_train, X_test, Y_train, Y_test

```
[10]: X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2) print ('Train_set:', X_test., shape, Y_train.shape) print ('Test_set:', X_test., shape, Y_test_shape)

Train_set: ('72, 33) ('72,)

Test_set: ('18, 83) (18,)

we can see we only have 18 test samples.

[11]: Y_test_shape

[11]: (18,)
```

TASK 4

Create a logistic regression object then create a GridSearchCV object logneg_cv with cv = 10. Fit the object to find the best parameters from the dictionary

We output the GridsearchCV object for logistic regression. We display the best parameters using the data attribute best params and the accuracy on the validation data using the data attribute best score.

```
[14]: print("tuned hyperparameters: (best parameters) ",logreg_cv.best_params_)
print("accuracy:",logreg_cv.best_score_)

tuned hyperparameters: (best parameters) {'C': 0.01, 'penalty': '12', 'solver': '1bfgs'}
accuracy: 0.8464287314285713
```

TASK 5

Calculate the accuracy on the test data using the method score:

[15]: logreg_cv.score(X_test, Y_test)

[15]: 0.83333333333333334

Lets look at the confusion matrix:

[16]: yhat=logreg_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

Examining the confusion matrix, we see that logistic regression can distinguish between the different classes. We see that the major problem is false positives.

TASK 6 ¶

Create a support vector machine object then create a GridSearchCV object svm_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

```
[18]: grid_search = GridSearchCV(svm, parameters, cv=10) svm_cv = grid_search.fit(X_train, Y_train)
```

[19]: print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)

tuned hyperparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'} accuracy : 0.8482142857142856

TASK 7

Calculate the accuracy on the test data using the method score :

- [20]: svm_cv.score(X_test, Y_test)
- [20]: 0.83333333333333334

[21]: yhat=svm_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

TASK 8

Create a decision tree classifier object then create a GridSearchCV object tree_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

tree = DecisionTreeClassifier()

[40]: grid_search = GridSearchCV(tree, parameters, cv=10) tree_cv = grid_search.fit(X_train, Y_train)

tuned hyperparameters :(best parameters) {'criterion': 'gini', 'max_depth': 6, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'} accuracy : 0.8732142857142856

[30]: print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_) print("accuracy :",tree_cv.best_score_)

unted hpyerparameters:(best parameters) {'criterion': 'gini', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'best'} accuracy : 0.8732142857142857

TASK 9

Calculate the accuracy of tree_cv on the test data using the method score :

- [31]: tree_cv.score(X_test, Y_test)
- [31]: 0.77777777777778

We can plot the confusion matrix

[32]: yhat = tree_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

TASK 10

Create a kinearest neighbors object then create a GridSearchCV object knn_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters .

 $grid_search = GridSearchCV(KNN, parameters, cv=10) \ knn_cv = grid_search.fit(X_train, Y_train)$

[45]: print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)

tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1} accuracy : 0.8482142857142858

TASK 11

Calculate the accuracy of knn_cv on the test data using the method score :

- [36]: knn_cv.score(X_test, Y_test)
- [36]: 0.8333333333333334

We can plot the confusion matrix

[37]: yhat = knn_cv.predict(X_test)
plot_confusion_matrix(Y_test,yhat)

TASK 12

Find the method performs best:

```
[38]: print('Accuracy for Logistics Regression method:', logreg_cv.score(X_test, Y_test))
print('Accuracy for Support Vector Machine method:', svm_cv.score(X_test, Y_test))
print('Accuracy for Decision tree method:', tree_cv.score(X_test, Y_test))
print('Accuracy for K nearsdt neighbors method:', knm_cv.score(X_test, Y_test))
```

Accuracy for Logistics Regression method: 0.83333333333334 Accuracy for Support Vector Machine method: 0.833333333333334 Accuracy for Decision tree method: 0.8333333333333334 Accuracy for K nearsdt neighbors method: 0.8333333333333334

Authors

Pratiksha Verma

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description				
2022-11-09	1.0	Pratiksha Verma	Converted initial version to Jupyterlite				