Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{96} \cdot \left(\frac{\sqrt{6}}{4} - \frac{1}{\sqrt{6}}\right) = 4\sqrt{6} \cdot \frac{6-4}{4\sqrt{6}} =$	3p
	=6-4=2	2 p
2.	(3n+1)(n-1)=0	2 p
	Cum n este număr natural, obținem $n = 1$	3 p
3.	$2x + 5 = 6x - 3 \Leftrightarrow 4x = 8$	3p
	x=2	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2 p
	Numerele naturale de două cifre, care au cifra zecilor egală cu dublul cifrei unităților sunt 21, 42, 63 și 84, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{90} = \frac{2}{45}$	1p
5.	Panta dreptei AB este egală cu 1, panta dreptei AC este egală cu $3-a$	2p
	$1 \cdot (3 - a) = -1$, deci $a = 4$	3 p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \sin 30^\circ = \frac{1}{2}$	2p
	$\sqrt{3} \cdot \sin 60^\circ + \sin 30^\circ - 4\sin^2 30^\circ = \sqrt{3} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} - 4 \cdot \frac{1}{4} = \frac{3}{2} + \frac{1}{2} - 1 = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$2 \circ 3 = -2 \cdot 3 + 4 \cdot 2 + 4 \cdot 3 - 12 =$	3p
	=-6+8+12-12=2	2p
2.	$x \circ y = -xy + 4x + 4y - 12 = -yx + 4y + 4x - 12 =$	2p
	$=y\circ x$, pentru orice numere reale x și y , deci legea de compoziție " \circ " este comutativă	3 p
3.	$x \circ y = -xy + 4x + 4y - 16 + 4 =$	2p
	=-x(y-4)+4(y-4)+4=-(x-4)(y-4)+4, pentru orice numere reale x şi y	3 p
4.	$x \circ 4 = -(x-4)(4-4) + 4 =$	3p
	$=-(x-4)\cdot 0+4=4$, pentru orice număr real x	2 p
5.	$x \circ x = -(x-4)^2 + 4$, pentru orice număr real x	2p
	$-(x-4)^2 + 4 = x \Leftrightarrow (x-4)(x-3) = 0$, deci $x = 3$ sau $x = 4$	3 p
6.	$a_4 = a_1 + 3r = -5 + 3 \cdot 3 = 4$	2p
	$a_1 \circ a_2 \circ a_3 \circ a_4 = (a_1 \circ a_2 \circ a_3) \circ 4 = 4$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det A = \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot 2 =$	3p
	=1+2=3	2p
2.	$B(1) + B(3) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix} =$	3р
	$=2\begin{pmatrix}1&2\\0&1\end{pmatrix}=2B(2)$	2p
3.	$\det(B(x)) = \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-x\cdot 0=1$, pentru orice număr real x	3р
4.	$B(x) \cdot B(y) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} =$	3p
	=B(x+y), pentru orice numere reale x și y	2p
5.	$A \cdot B(x) = \begin{pmatrix} 1 & x+2 \\ -1 & -x+1 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} 1-x & 2+x \\ -1 & 1 \end{pmatrix}, \text{ pentru orice număr real } x$	3p
	$A \cdot B(x) = B(x) \cdot A \Leftrightarrow x = 0$	2 p
6.	$B(2^m + 2^n) = B(2^{m+n} - 2)$, de unde obţinem $2^m + 2^n = 2^{m+n} - 2 \Leftrightarrow 2^{m+n} - 2^m - 2^n + 1 = 3$, deci $(2^m - 1)(2^n - 1) = 3$	3р
	Cum m şi n sunt numere naturale, obţinem perechile $(1,2)$ şi $(2,1)$	2p