On the Round Complexity of Randomized Byzantine Agreement

Ran Cohen, Iftach Haitner, **Nikolaos Makriyannis**, Matan Orland & Alex Samorodnitsky

To appear in DISC'19

Randomized BA & Problem Statement

- Each P_i holds input $v_i \in \{0,1\}$.
- Agreement: All honest parties output the same bit.
- Validity: $\exists i$ s.t. (honest) P_i outputs v_i .

We prove bounds on the halting probability after 1 or 2 rounds.

Randomized BA & Problem Statement

- Each P_i holds input $v_i \in \{0,1\}$.
- Agreement: All honest parties output the same bit.
- Validity: $\exists i$ s.t. (honest) P_i outputs v_i .

We prove bounds on the halting probability after 1 or 2 rounds.

Micali's BA (ITCS'17) halts after 3 rounds with constant probability.

We Show

BA Protocol Security Threshold		Halting Probability in round 2
n/3	o(1)	$1-\Theta(1)$
n/4	1/2 + o(1)	$1-\Theta(1)$

We Show

BA Protocol Security Threshold		Halting Probability in round 2
n/3	o(1)	$1-\Theta(1)$
n/4	1/2 + o(1)	$1-\Theta(1)$

For all* BA protocols and under plausible combinatorial assumption:

BA Protocol Security Threshold	Halting Probability in round 2
n/3	<i>o</i> (1)
n/4	1/2 + o(1)

Our Technique

• We follow the classic blueprint for deterministic protocols:

Our Technique

• We follow the classic blueprint for deterministic protocols:

• However, for randomized protocols, the above chain fails.

The randomness can be used to distinguish adjacent executions.

Our Technique (cont'd)

• Solution:

Abort (certain) parties to uncouple randomness from output.

Our Technique (cont'd)

• Solution:

Abort (certain) parties to uncouple randomness from output.

• Our attack gives rise to an isoperimetric-type inequality.

Unrealistic cases reduce to KKL & Friedgut's junta theorem.

General case is left as open problem.

Thank You!

Available on eprint & arXiv:

https://eprint.iacr.org/2019/868

https://arxiv.org/abs/1907.11329