Inteligência Artificial

Agentes Lógicos

https://github.com/chaua/inteligencia-artificial

Sumário

Agentes Lógicos

- Humanos possuem conhecimento e raciocinam sobre este conhecimento
- Exemplo: "João jogou uma pedra na janela e a quebrou"

Agentes baseados em conhecimento ou agentes lógicos

Podem lidar mais facilmente com ambientes parcialmente observáveis

- O agente pode usar as suas percepções e conhecimento do mundo
 - inferir aspectos ainda desconhecidos do ambiente
- São flexíveis e podem assumir novas tarefas na forma de objetivos explicitamente descritos

- O componente central é a base de conhecimento
- A base de conhecimento é formada por um conjunto de sentenças

Linguagem lógica de representação de conhecimento

- Deve ser possível:
 - adicionar novas sentenças à base
 - consultar o que se conhece

- Ambas as tarefas podem envolver inferência
 - derivação de novas sentenças a partir de sentenças antigas

Agente genérico

```
function KB-AGENT(percepção) retorna ação
    static: KB, base de conhecimento
            t, contador iniciado em 0
    TELL(KB, MAKE-PERCEPT-SENTENCE(percepção, t))
    ação ← ASK(KB, MAKE-ACTION-QUERY(t))
    TELL(KB, MAKE-ACTION-SENTENCE(ação, t))
    +++
    retorna ação
end
```

Agente genérico

- Processo de execução:
 - 1. Informa a base de conhecimento o que o agente esta percebendo do ambiente
 - 2. Pergunta a base de conhecimento qual a próxima ação que deve ser executada. Um extensivo processo de raciocínio lógico é realizada sobre a base de conhecimento para que sejam decididas as ações que devem ser executadas.
 - 3. Realiza a ação escolhida e informa a base de conhecimento sobre a ação que está sendo realizada.

- Porque utilizar uma linguagem lógica de representação de conhecimento?
 - Facilita a criação dos agentes. É possível dizer o que o agente sabe através de sentenças lógicas
 - O agente pode adicionar novas sentenças a sua base de conhecimento enquanto ele explora o ambiente
 - Abordagem declarativa de criação de sistemas

- O Mundo de Wumpus é um jogo antigo de computador considerado um domínio (ambiente) artificial que fornece grande motivação para o raciocínio lógico
- Apesar de parecer um jogo muito simples quando comparado aos jogos modernos de computador, o Mundo de Wumpus é um excelente ambiente de teste para agentes inteligentes

- O ambiente contém:
 - Salas conectadas por passagens
 - Ouro em alguma sala
 - Poços sem fundo
 - **Wumpus**: monstro que devora qualquer guerreiro que entrar em sua sala
 - O Wumpus pode ser morto pelo agente, mas o agente só tem uma **flecha**

- Medida de desempenho:
 - +1.000 por pegar ouro
 - -1.000 se cair em um poço
 - -1.000 se for devorado pelo Wumpus
 - -1 para cada ação executada
 - -10 pelo uso da flecha.

• Ambiente:

- Malha 4x4 de salas
- O agente sempre começa no quadrado identificado como [1,1] voltado para a direita
- As posições do Wumpus, ouro e poços são escolhidas aleatoriamente

- Ações possíveis:
 - mover-se para frente
 - virar à esquerda
 - virar à direita
 - agarrar um objeto
 - atirar a flecha

Sensores:

- Em quadrados adjacentes ao Wumpus, exceto diagonal, o agente sente o **fedor** do Wumpus;
- Em quadrados adjacentes a um poço, exceto diagonal, o agente sente uma **brisa**
- Quadrados onde existe ouro o agente percebe o **brilho** do ouro
- Ao caminhar contra uma parede o agente sente um impacto
- Quando o Wumpus morre o agente ouve um grito

- Passo 1
 - Sensores[nada, nada, nada, nada, nada]
 - **Conclusão** [1,2] e [2,1] são seguros
 - Movimento escolhido [2,1]

- Passo 2
 - Sensores
 [nada, brisa, nada, nada, nada]
 - Conclusão Há poço em [2,2], [3,1] ou ambos
 - Movimento escolhido [1,1] e depois [1,2]

- Passo 3
 - Sensores
 [fedor, nada, nada, nada, nada]
 - Conclusão

Há Wumpus em [1,3] ou [2,2] Wumpus não pode estar em [2,2] Wumpus em [1,3] Não existe poço em [2,2] Poço em [3,1] [2,2] é seguro

- Movimento escolhido:

[2,2]

Lógica

Lógica

- Base de conhecimento
 - Conjunto de sentenças
 - Linguagem lógica de representação do conhecimento

Conceito de lógica foi organizado principalmente por Aristoteles

"É o conhecimento das formas gerais e regras gerais do pensamento correto e verdadeiro, independentemente dos conteúdos pensados"

Lógica

"Todo homem é mortal"

"Sócrates é um homem"

"Logo, Sócrates é mortal"

Todo X é Y

ZéX

Portanto, Z é Y

Tipos de Lógica

Lógica proposicional (ou lógica Booleana)

- Representa a estrutura de sentenças usando conectivos como: E, OU e NÃO

Lógica de predicados

- Representa a estrutura de sentenças usando conectivos como: ALGUNS, TODOS e NENHUM

Lógica multi-valorada

- Estende valores verdadeiro/falso para incluir um número infinito de GRAUS DE VERDADE

Lógica modal

- Estudo do comportamento dedutivo de expressões como:É NECESSÁRIO QUE e É POSSÍVEL QUE

Lógica temporal

- Representa e raciocina sobre proposições qualificadas em termos do tempo.

Sintaxe

- Especifica todas as sentenças que são bem formadas

- Exemplo na aritmética
 - x + y = 4
 - $\times 4 \times = -$

- Semântica
 - Especifica o significado das sentenças
 - A verdade de cada sentença com relação a cada "mundo possível"

- Exemplo na aritmética: x + y = 4
 - Verdadeira em um mundo no qual x = 2 e y = 2
 - Falsa em um mundo no qual x = 1 e y = 1

- Modelo
 - Especifica um "mundo possível"
 - M é modelo de A, se A é verdadeira em M

- Consequência lógica
 - Quando uma sentença decorre logicamente de outra
 - Notação: $\underline{a + b}$ (b decorre logicamente de a)
 - Pode ser aplicada para derivar conclusões inferência lógica

Base de conhecimento

Nada em [1,1] Brisa em [2,1] Regras do mundo de Wumpus

- Interesse do agente Saber se [1,2], [2,2] e [3,1] são poço
- Modelos possíveis

$$2^3 = 8$$

Modelos possíveis

Modelos possíveis

- Base de conhecimento é falsa em modelos que contradizem o que o agente sabe
- Existem somente 3 modelos onde a base de conhecimento é verdadeira

Modelos possíveis

- Considerando uma conclusão:
 - α_1 = [1,2] não tem poço

- É possível afirmar
 - $KB \models \alpha_1$

Modelos possíveis

Considerando uma conclusão:

$$-\alpha_2 = [2,2]$$
 não tem poço

- É possível afirmar
 - $KB \not\models \alpha_2$

Inferência Lógica

Consequência lógica pode ser usada para produzir inferência lógica

- Algoritmo model checking
 - Numera todos os possíveis modelos para checar se a é verdade em todos os modelos onde a base de conhecimento é verdade

Base de conhecimento

Base de conhecimento

- Base de conhecimento pode ser representada por
 - Lógica proposicional
 - Lógica de primeira ordem

Símbolos

- nomes em letras maiúsculas (P, Q, R, ...)
- podem assumir verdadeiro e falso

Sentenças atômicas

- constituídas por elementos sintáticos indivisíveis

Sentenças complexas

- construídas a partir de sentenças simples com conectivos lógicos
 - NÃO
 - \wedge E
 - v OU
 - ⇒ IMPLICA
 - ⇔ DUPLA IMPLICAÇÃO

Gramática

- Exemplos
 - P
 - Verdadeiro
 - $P \wedge Q$
 - $(P \lor Q) \Rightarrow S$
 - $(P \land Q) \lor R \Rightarrow S$
 - $\neg (P \lor Q)$
 - $\neg (P \lor Q) \Rightarrow R \land S$

- Implicação lógica
 - $P \Rightarrow Q$
 - Se P é verdade então Q também é verdade.
- Equivalência lógica
 - $P \Leftrightarrow Q$
 - Se P é verdade então Q também é verdade
 - Se Q é verdade então P também é verdade.

```
P Q P->Q
V V
V F
F F
F F F
```

• **Semântica**: descreve como calcular o valor verdade de qualquer sentença com base em um mesmo modelo

- Sentenças atômicas:

- Verdadeiro é verdadeiro e falso é falso em todo modelo.
- Valor verdade de todos os símbolos são especificados no modelo

- Sentenças complexas:

- As regras em cada conectivo são resumidas em uma tabela-verdade

Р	Q	¬P	P∧Q	P∨Q	P⇒Q	P⇔Q
F	F	V	F	F	V	V
F	V	٧	F	V	V *	F
V	F	F	F	V	F	F
٧	V	F	V	V	٧	V

- Vocabulário de símbolos
 - $P_{i,j}$ é verdadeiro se existir um poço em $\left[i,j\right]$
 - $B_{i,j}$ é verdadeiro se existir um poço em [i,j]

Base de conhecimento

$$R_1 = \neg P_{1,1}$$

$$R_2 = B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3 = B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4 = \neg B_{1,1}$$

$$R_5 = \neg B_{2,1}$$

Base de conhecimento

$$-R_1 = \neg P_{1,1} - \dots - \dots$$

$$R_2 = B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3 = B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4 = \neg B_{1,1}$$

$$R_5 = \neg B_{2,1}$$

Não há poço em [1,1]

Base de conhecimento

$$R_1 = \neg P_{1,1}$$

$$R_2 = B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3 = B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4 = \neg B_{1,1}$$

$$R_5 = \neg B_{2,1}$$

Não há poço em [1,1]

Uma sala tem brisa se e somente se existe um poço na sala vizinha

Base de conhecimento

$$R_1 = \neg P_{1,1}$$

$$R_2 = B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3 = B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4 = \neg B_{1,1}$$

$$R_5 = \mathbf{A}B_{2,1}$$

Não há poço em [1,1]

Uma sala tem brisa se e somente se existe um poço na sala vizinha

Percepções do agente

Inferência

- derivação de novas sentenças a partir de sentenças antigas

Objetivo

- decidir se $BC \models \alpha$ para alguma sentença α
- Exemplos: $P_{1,2}$? $P_{2,1}$?

Algoritmo

- enumerar todos os modelos e verificar se $\underline{\alpha}$ é verdadeira em todo modelo no qual $\underline{\mathsf{BC}}$ é verdadeira
- Símbolos relevantes: $B_{1,1},\,B_{2,1},\,P_{1,1},\,P_{1,2},\,P_{2,1},\,P_{2,1},\,P_{2,2},\,P_{3,1}$
- 7 símbolos: $2^7 = 128$ modelos possíveis

- Limitações da lógica proposicional
 - Muito simples para representar alguns problemas do mundo real
 - Necessita de um número muito grande de sentenças para problemas complexos

Referências Bibliográficas

Referências Bibliográficas

• S. J. Russell & P. Norvig. **Artificial Intelligence: A Modern Approach**. Prentice Hall, 3rd edition, 2010.