Hochschule Bremen
City University of Applied Sciences

ANS – Experiment 9 DC-DC Converter

<u>Gruppe</u> Marius Ingwersen Alexander Beckmann

Inhalt

- 1 Einleitung / Motivation
- 2 Aufgabenstellung
- 3 Dc-Dc Wandler
 - Simulation / Messung / Vergleich der Messergebnisse
- 4 SMPS / Schaltnetzteil
 - Simulation / Messung / Vergleich der Messergebnisse
- 5 Schwierigkeitsgrad
- 6 Ergebnisse / Diskussion

Einleitung / Motivation

- Änderung des Spannungsniveaus einer Gleichspannung zu anderem Gleichspannungsniveau
- Dc-Dc Wandler besitzt höheren Wirkungsgrad als Vorwiderstand
- Analog oder digital umsetzbar
- Alltägliche Verwendung in der Informationselektronik

<u>Aufgabenstellung Experiment 9</u>

Dc-Dc Wandler

SMPS / Schaltnetzteil

Diskussion

Schaltung Dc-Dc Wandler

- Eingehende Dreiecksspannung
- Referenzspannung als Gleichspannung
- Op. wirkt als Komparator
 - Vergleich welcher Eingang größere Momentanspannung besitzt
 - Negative oder positive Spannung wird durchgeschaltet

Dc-Dc Wandler

Dc-Dc Wandler

Simulation / Schaltungsaufbau

Einleitung

Dc-Dc Wandler

Vergleich der Messergebnisse

Einleitung

Dc-Dc Wandler

Einfluss der Referenzspannung

- Varieren der Referenz-Spannung wirkt sich auf Ausgangsspannung aus
- Abtastintervalle werden verändert
- Komparator f
 ür Abstastintervalle zuständig

Einleitung

Schaltung SMPS

- Eingehender Puls
- Op1 wirkt als Schmitt-Trigger
- Op2 wirkt als Komparator
 - Vergleich der Referenzspannung zur ausgeregelten Spannung

SMPS / Schaltnetzteil

Einleitung

Simulation / Schaltungsaufbau

Einleitung

3V Referenzspannung

SMPS

Einleitung

1V Referenzspannung

SMPS

Einleitung

Einstellung Schmitt Trigger

R4 = 1K Ohm

R4 = 4.7K Ohm

Schaltung SMPS

Zusammenfassung:

- Schmitt Trigger erzeugt Kippstufe
 - Festes Fenster in welchem Ausgangsspannung sein kann
 - Upper / Lower Threshold
 - R4 und R3 bestimmen Kippfenster
- Rückführung zum erhalten einer konstanten Ausgangsspannung

SMPS / Schaltnetzteil

- Bestimmung der Bauteilgrößen
- Festlegung der Eingangssignale
- LTSpice Modell f
 ür die Op's
- Keine Erklärung für zweite Schaltung
- Keinerlei Spezifikationen der Bauteilgrößen

Ergebnisse / Diskussion

- Dc -Dc Wandler lässt sich auch im analogen Bereich umsetzen
- Über einen einfachen Komparator lassen sich verschiedene Spannungen generieren
- Das Hinzufügen eines Regelkreises ermöglicht es ein durchgehendes konstantes Ausgangssingal zu erreichen
- Einzelne Experimente verlangen das Wissen aus vorherigen Experimenten

Einleitung

Danke für eure Aufmerksamkeit!