Introduction to Algorithms & Analysis

Instructor: Krishna Venkatasubramanian

CSC 212

Announcements

- Reminders:
 - Go to office hours
 - Self-advocacy --- you have to bring issues are you having with the course to us
- Go to Python tutorial on Fridays @2pm (Library 130)
- Next Quiz September 24
 - Quizzes now move to Tuesdays for the rest of the semester

Algorithms

Definition:

- Any well-developed computational procedure that takes some value or set of values as input and produces some value, or set of values, as output
- A tool to solve computational problems
 - Given a desired input and output relationship, an algorithm specifies a step-by-step procedure to make that happen!

- Example --- Sorting!!!
 - (One of the most common tasks a computer performs)

Sorting

- Input

• A list of unsorted numbers $A = \langle a_1, a_2,a_n \rangle$

Output

• A permutation (re-ordering) of A like $<a'_1,a'_2,....a'_n>$, where $a'_1 <= a'_2 <=$ $<= a'_n$

Generally speaking, can be used for any sorting any set of values. The algorithm must know how to compare values (<, =, or >)

Insertion Sort

Same idea as sorting cards as they are dealt.

Example

Dealing order: 6, 8, 4, 1, 3

(2) 6 8

(3) 4 6 8

(4) 1 4 6 8

(5) 1 3 4 6 8

Card state as each new card is dealt

A 24446789

Python code

REMEMBER:

Python uses 0 index arrays

def InsertionSort(A)

$$key = A[j]$$

$$i = j-1$$

while
$$i \ge 0$$
 and $A[i] > key$

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$A[i+1] = key$$

(they are shown for convenience) It's one long array

Unsorted portion

Sorted portion

5 8 9

key

6

7

2

key = 2

$$j = 1$$
 $A[j] = 2$
 $i = 0$ $A[i] = 5$

def InsertionSort(A)

for
$$j$$
 in range(1, len(A))
 $key = A[j]$
 $i = j-1$

$$A[i+1] = A[i]$$

 $i = i - 1$

$$A[i+1] = key$$

key = 2

def InsertionSort(A)

$$key = A[j]$$

$$i = j-1$$

while $i \ge 0$ and A/i/ > key

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$A[i+1] = key$$


```
j = 1 A[j] = 5
i = -1 A[i] = N/A
def InsertionSort(A)
 for j in range(1, len(A))
     key = A[i]
     i = j-1
     while i \ge 0 and A/i/ > key
          A/i+1/ = A/i/
           i = i - 1
\longrightarrow A[i+1] = key
```

key = 1

$$j = 2$$
 $A[j] = 1$
 $i = 1$ $A[i] = 5$

def InsertionSort(A)

for
$$j$$
 in range(1, len(A))
 $key = A[j]$
 $i = j-1$

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$A[i+1] = key$$

key = 1

def InsertionSort(A)

$$key = A[j]$$

$$i = j-1$$

while $i \ge 0$ and A/i/ > key

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$A[i+1] = key$$

key = 1

$$j = 1$$
 $A[j] = 5$
 $i = 0$ $A[i] = 2$

def InsertionSort(A) for *j in range(1, len(A))* key = A[i]i = j-1while $i \ge 0$ and A/i/ > keyA[i+1] = A[i]i = i - 1A / i + 1 / = key

key = 1

$$j = 1$$
 $A[j] = 5$
 $i = 0$ $A[i] = 2$

def InsertionSort(A)

while i >= 0 and A[i] > key A[i+1] = A[i] i = i - 1 A[i+1] = key

key = 1

$$j = 2$$
 $A[j] = 5$
 $i = 0$ $A[i] = 2$

def InsertionSort(A)

$$key = A[j]$$

$$i = j-1$$

while $i \ge 0$ and A/i/ > key

$$A[i+1] = A[i]$$

$$i = i - 1$$

$$A[i+1] = key$$


```
j = 2 A[j] = 5
i = -1 A[i] = N/A
def InsertionSort(A)
 for j in range(1, len(A))
    key = A[i]
    i = j-1
    while i \ge 0 and A/i/ > key
         A/i+1/ = A/i/
          i = i - 1
A[i+1] = key
```

```
key =
```

i j

$$j = 3$$
 $A[j] = out of range$
 $i = -1$ $A[i] = N/A$

def InsertionSort(A)

 \longrightarrow for j in range(1, len(A)) key = A[i]i = j-1while $i \ge 0$ and A/i/ > keyA/i+1/ = A/i/i = i - 1A[i+1] = key

WE ARE DONE!

Analysis

Termination

• We terminate this case when j goes out of bounds

Correctness

- beginning of for-loop: if A[1.. i] sorted, then
- end of for-loop: A[1.. i+1] sorted.

Efficiency: time/space

- Depends on input size n
- Space: roughly *n*

Running Time

- In general time taken by algorithm grows with the size of the input
- So, traditionally, running time is defined as a function of the size of the input
- Input size depends upon the problem
 - For sorting problem it depends on number of values being sorted (e.g., size of input array)
 - For graph algorithms input depends on two values, # of vertices and # of edges of the network

Running Time Assumptions

 Running time of an algorithm in the number of primitive (basic) operations – steps --- executed

- Typically, we say each basic operation i takes a constant amount of time c_i
 - Note, <u>different primitive step may take a different</u> <u>amount of time</u>
 - But the time for that step is always the same, a constant

[IMPORTANT] 0-Index & 1-index

Python uses zero index for its code. So do many programming languages

Cormen et al. uses one-index in its pseudocode

 Therefore, you might notice some of differences in the code you see on the slides and in the textbook!!

Running Time of Insertion Sort

Assume 0 index Assume n elements	Cost	Times
<pre>def InsertionSort(A) for j in range(1,len(A))</pre>	c1	n
key = A[j]	c2	n-1
<pre># insert A[j] into the sorted portion of the A</pre>	c3	0
i = j −1	c4	n -1 WHY
while $i > 0$ and $A[i] > key$	c 5	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	c6	$\sum_{j=2}^{n} (t_j - 1)$
i = i - 1	c7	$\sum_{j=2}^{n} (t_j - 1)$
A[i+1] = key	c8	n-1

Running time for Insertion Sort

$$T(n)$$

$$= c1 * n + c2(n - 1) + c4(n - 1)$$

$$+ c5 \sum_{j=2}^{n} t_j + c6 \sum_{j=2}^{n} (t_j - 1)$$

$$+ c7 \sum_{j=2}^{n} (t_j - 1) + c8(n-1)$$

Best Case Analysis

- When will the algorithm take the least amount of time?
 - When the array is already sorted (t_i = 1)
 - So the T(n) will be

$$T(n) = c1 * n + c2(n-1) + c4(n-1) + c5(n-1) + c8(n-1)$$

- Or T(n) is of the form An +B
- Linear function of input size, which is n

Worst Case Analysis

- When will the algorithm take the most amount of time?
 - When the array inverse sorted (t_i = j)
 - So the T(n) will be

$$[n(n+1)/2] - 1 \qquad n(n-1)/2 \qquad WHY?$$

$$= c1 * n + c2(n-1) + c4(n-1) + c5 \sum_{j=2}^{n} t_j + c6 \sum_{j=2}^{n} (t_j - 1) + c7 \sum_{j=2}^{n} (t_j - 1) + c8(n-1)$$

- Or T(n) is of the form An² + Bn + C
- Quadratic function of input size, which is n

More on Worst Case Analysis

- Gives the upper-bound on the running time for ANY input
 - We cannot do any worse than this! IT will never take any longer.
- Worst case for an algorithm occurs fairly often --- example search algorithms --- which don't find an entry in a database
- Average case analysis --- this computes on average how much running time of an algorithm
- This is useful sometimes, but most often it takes the same ball-park amount as the worst case.
 - What's the average case T(n) for Insertion sort?
 - Depends on how many times the while loop executes on average.

Growth Functions

- We have used some simplifying abstractions to ease our analysis
 - replaced individual constants in the final value of T(n)
- Actually, we will use even more simplifications and and just focus on the leading terms of the formula
 - like *an*² for the worst-case analysis
- This is because the order terms bn and c (lower-order terms) will always be < an²
- Next time we shall see how to represent the running time using what's called the Big-O and Big-Theta notations!

