Bipolar Differential Pairs

· Differential Signals

- Vary by equal and opposite amounts
 Same average DC value

The immediate question is how do we generate differential signals???

Vilt). Visinut + Van V=(t)=-V, sinut +Van

Notice that: V,-Uz = 2V. cinwt Veig = Vi-Vz . Vocinut

· the Differential Pair

BJT Differential Pair

MOS Differential Pair

· Peview of Common tmitter Configuration

Consider the circuit

Case 1: The bares of Q, and Qz are shorted and connected to a battery.

Voltage Drop across Rc = 1 IEE Rc

-I € Vin, -Vinz = 0, then Vx-Vyz 0

.. If there is perturbation in Vin, and Vinz, the circuit is oblivious to that change. the differential pair rejects changer in input CM level.

Case Z: Vini and Vinz are not the vame (vin, -Vinz \$0)

Guess', Q, is on and has some current Question: I. Q. OH ???

Areume UBE,1 = 800 mV, Ua = 2.5V, Vb = 1.5V thus, Up = Va-Vee, = 1-7V.

Qz is off since Vs,2 > Vo,2.

-. All of I F Flows through Q, In verponse to an imbalance at the input, there came an imbalance to the output. Ux = Vcc - Roles, Yy = Vcc (since Ic.2 =0)

First Input-Output Characteristic

· Characteristic Plot is similar to the plot of differential signals.

this is just an intuitive approach to the differential pair.

Large and Small Signal Analysis of Bipolar Differential Pair

· large - Signal Analysis

. The dope in the gain of an amplifier

. We have obtained graphs for Ux - Uy and Ic., Ia as a function of Vin - Vinz

Objective. Derive equations for Ic., Icz, Vx, Ug, and Vx- Vy as a function of Vin - Vinz .

Notice that:

* These translators are identical (Is, = Is,)

(2) If Vin, - Vinz is positive crough,

 $V:_{n_{2}} = V_{BB, 1} - U_{BB, 2}$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{2}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right) - V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$ $= V_{T} \ln \left(\frac{I_{C_{1}}}{I_{C_{2}}} \right)$

similarly,

Ic, and Icz differs.

· Small-signal Analysis

Basic Concepts:

lemna". If Vin, and Vinz change by

Vr = Va - Re Ic,

If - Peter >>1. amplification happens

 $V_{g} = V_{CC} - R_{C} T_{Cz}$ $V_{g} = V_{CC} - R_{C} T_{Cz}$ $V_{g} = V_{Cz} - R_{C} T_{Cz} - T_{Cz} T_{cz}$ $V_{g} = -R_{C} T_{Cz} - T_{Cz} T_{cz}$ $T_{G} = -R_{C} T_{G} T_{G} - T_{G} T_{G} T_{cz}$ $T_{G} = -R_{C} T_{G} T_{G} T_{G} T_{G} T_{G} T_{cz}$ $T_{G} = -R_{C} T_{G} T_{$

thus, $I_{C_1} - I_{C_2} = I_{EE} \xrightarrow{\Delta V} V_T$ $= \underbrace{I_{C_1} + I_{C_2} = I_{EE}}_{2I_{C_1}} = \underbrace{I_{EE}}_{V_T}$ $= \underbrace{I_{C_1} + I_{C_2} = I_{EE}}_{2I_{C_1}} = \underbrace{I_{EE}}_{V_T}$ $= \underbrace{I_{C_1} + I_{C_2} = I_{EE}}_{V_T}$ $= \underbrace{I_{C_1} + I_{C_2} = I_{EE}}_{V_T}$ $= \underbrace{I_{C_1} + I_{C_2} = I_{EE}}_{V_T}$

· Small-signal Behavior

. Up is considered virtual ground since it obser not change with time.

Vr=-gmRevine vx-vy=-gmRe(Vin,-Vin)

Auz Vx-Vy = -gmle

More on Bipolar Differential Pairs

Additional Examples ".

- outain the voltage gain.

· Biar anditions, Ic. = Ic. = 1 Ic6 sine I. · I. exp(vat), $V_{\phi F} = V_{\tau} \ln \left(\frac{\Sigma_c}{\Sigma_a} \right)$

Upf.1 = UBF,2 = 8 62mV

-R. Itt _ -19.2

. It early effect is considered,

Large Signal Analysis of MOS Differential Pair

Vin, and Vinz are shorted. They are connected to Vcm.

Vin, and Vinz are shorted. They are connected to Vcm.

Thus, $I_1 = I_2 = \frac{1}{2}I_{22}$.

Vr. $U_2 = U_{22} - U_{22}I_{22}$.

If $V_{11} = V_{11}I_{22}$, the differential point is in equilibrium.

In Cox w

· Condition: 1906 should be in saturation

Buestion: What is the minimum value of Vin. - Vinz at which one transistor turns off???

similarly, N× = 100 - 120 201

(Vin.-Vin2) = 2 IO. 2 IO. Amore

(Vin, -Vin 2)2 - 2165 = -9 In (Isa-ID)

If we solve the equation:

observations:

If Vin, -Vinz > 2 Ics , one transistor

3 If Vin, - Vinz exceeds a certain amount, one transistor turns off. The equation is no longer valid.

· what happens if I ar it doubled?

. slope changes to - 62 80 mucor & Irs.

-. Increased linearity around the origin.

· what happens if w is doubled?

:- circuit becomes sharper but less linear.

Small Signal Analysis of MOS Differential Pair

· Small-signal Dehavior of you Differential Prin

· Small-vignal equivalent

Vers, changes by

$$\frac{v_{k-1}v_{y}}{v_{in_{1}}-v_{in_{2}}}=-g_{n}R_{0}$$

$$\frac{v_{x}}{v_{in}} = \frac{-Ro}{\frac{1}{9n} + Rs} \quad \text{or} \quad \frac{v_{x} \cdot v_{y}}{v_{in} \cdot v_{in}} = \frac{-Ro}{\frac{1}{9n} + Rs}$$

Note: Neglecting channel-length modulation

6) What happens if temperature rices ????

> gu I since pu I = 1Av1 V

· P-type Differential Pairs

. the calculations are similar to the NPN BIT

amilar to NMOS

High - Gain Differential Pairs

· We need a load that doesn't satisfy ohm's law.

Approach I: Up is constant

the circuit is equivalent to

, pifferential Pair with Cascade load

4 Ideal current sources can be realized by a PMOS

· Differential Pair with Active load

· Going back to current mirrors,

Vo = Voo- Io (7) for some impedance

I,T = V. 1

NMos current mirror

Conversely, for a PMOS current mirror,

 $V_0 = \pm_0(2)$ for some impedance 2.

Small Signal Behavior of Differential Pair with Active Load

Consider the circuit

· Small-signal Voltage Gain * Pic not AC GNO!!! . This circuit has two signed paths

- (2) How much in the voltage change at the output?

1) the equivalent impedance of

2 Resistance seen by the output node is Conllop, thus,

DVout = DI (Von | Vop)

$$\frac{v_s}{r_d} + \frac{v_{out}}{r_{od}} + g_{mq}v_s = 0$$

$$v_s = \frac{-v_{out}}{r_{od}(2g_{mp})} = \frac{-v_{out}}{r_{op}(2g_{mp})}$$

 $g_{m}v_{i} + \frac{v_{s} - v_{p}}{r_{o,i}} + \frac{v_{3}}{r_{d}} = 0$ $(-) \qquad g_{m,N}\left(v_{i} - v_{z}\right) + \frac{v_{3} - v_{out}}{r_{o}} + \frac{2v_{3}}{r_{d}} = 0$ $g_{m}v_{z} + \frac{v_{out} \cdot v_{p}}{r_{o}} - \frac{v_{3}}{r_{d}} = 0$

$$V_{1}-V_{2}=V_{in_{1}}-V_{in_{2}}, \text{ thus } q_{m,N}\left(V_{in_{1}}-V_{in_{2}}\right)+\frac{V_{6}-V_{out}}{r_{6,N}}+\frac{2V_{8}}{v_{d}}=0$$

$$Since V_{3}=\frac{-V_{out}}{r_{6,p}(zg_{mp})}, \qquad Q_{m,N}\left(V_{in_{1}}-V_{in_{2}}\right)+\frac{-V_{out}}{zg_{mp}v_{6}pv_{6}}, \qquad \frac{2V_{out}}{v_{6N}}=\frac{2V_{out}}{zg_{mp}v_{6}pv_{6}}=0$$