TP 3 : grandeurs thermodynamiques d'un micro-ordinateur

Groupe LTB

12 mars 2023

1 Objectifs

On cherche à déterminer la valeur des grandeurs physiques suivantes :

- La masse équivalente en eau $m_{\rm calo}$ d'un calorimètre
- La masse m, les dimensions spatiales et la capacité thermique C d'un micro-ordinateur Raspberry Pi 3

2 Matériel

- Raspberry Pi
- Alimentation continue
- Carte SYSAM
- Calorimètre

3 Manipulations

3.1 Séance 1

3.1.1 Masse en eau du calorimètre

On suit le protocole suivant pour déterminer $m_{\rm calo}$.

- 1. Le laboratoire est initialement à la température $T_{\rm a}=20~{\rm ^{\circ}C}$
- 2. On met dans le calorimètre $m_{\rm eau}=200~{\rm g}$ d'eau chaude à $T_{\rm c}=52~{\rm ^{\circ}C}$
- 3. On mesure après thermalisation (pas trop longue pour éviter les fuites thermiques) la température de l'eau $T_{\rm f}=47~^{\circ}{\rm C}$
- 4. La masse équivalente en eau du calorimètre est donnée par

$$m_{\rm calo} = \frac{T_{\rm c} - T_{\rm f}}{T_{\rm f} - T_{\rm a}} m_{\rm eau} = 37 \text{ g}$$

En prenant $c_{\rm eau}=4.18~{\rm kJ~K^{-1}~kg^{-1}}$ on en déduit $C_{\rm calo}=167~{\rm J/K}.$

3.1.2 Capacité thermique de l'ordinateur

On mesure les grandeurs I_{inst} , I_{eff} et T en fonction du temps avec 1000 points uniformément répartis sur une durée d'acquisition de 10 min (une mesure toute les 600 ms).

- 1. Avant calculs, $\langle T \rangle_{\rm i} = 18{,}98$ °C et la valeur moyenne de $I_{\rm inst}$ est de 288 mA
- 2. Lancement des calculs à t = 1 min
- 3. Fin des calculs à t = 381,6 s. Pendant les calculs, on a
 - la tension U = 5 V
 - l'intensité $\langle I_{\rm inst} \rangle = 381~{\rm mA}$
 - la puissance $\langle P \rangle = 1,90 \text{ W}$
 - le travail électrique W = 612 J
- 4. Régime station naire de thermalisation : sur les 100 dernières secondes, $\langle T \rangle_{\rm f} = 20{,}63~^{\circ}{\rm C}$

La valeur de C est obtenue par

$$C = \frac{W}{\langle T \rangle_{\rm f} - \langle T \rangle_{\rm i}} - C_{\rm calo} = 204 \text{ J/K}$$

3.1.3 Masse de l'ordinateur

La grandeur donnée par le vendeur est m=45 g.

Avec la valeur obtenue pour C, on en déduit la capacité thermique massique moyenne de l'ordinateur

$$c = \frac{C}{m} = 4.5 \text{ kJ K}^{-1} \text{ kg}^{-1}$$

Commentaires:

- La valeur tabulée de la capacité thermique massique du silicium, composant principal des circuits imprimés est $c_{\rm silicium}=0.7~{\rm kJ~K^{-1}~kg^{-1}}$
- La valeur tabulée de la capacité thermique massique du PVC (souple), qui compose la gaine des câbles connectés à l'ordinateur est $c_{\rm PVC}=0.9~{\rm kJ~K^{-1}~kg^{-1}}$
- La masse donnée par le vendeur ne prend pas en compte l'enceinte en plastique (PCV rigide), ni les câbles (PVC souple) connectés à l'ordinateur