Math 113, Fall 2019

Midterm 2 definitions, 11/19/2019

Definition: Direct Product of Groups -

$$G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n$$

Definition: Least Common Multiple (lcm) -

Our familiar definition; for example: lcm(12, 30) = 60.

Definition: Group Homomorphism -

Let $\phi: A \to B$ be a homomorphism of groups (that is, A, B are groups). Then

$$\phi(a*b) = \phi(a)*'\phi(b),$$

where $a, b \in A$ and *, *' are the binary opertions on A, B, respectively.

Definition: $\phi[A]$ -

Image of A under homomorphism $\phi: A \to B$, and $\phi[A] = \operatorname{Im}(\phi) \subset B$.

Definition: $\phi^{-1}[B]$ -

Inverse image of B under homomorphism ϕ . If ϕ not one-to-one, this might be $\phi^{-1}[B] \subsetneq A$.

Definition: Kernel of a Homomorphism -

$$\{a\in A: \phi(a)=e'\},$$

where $\phi: A \to B$ and e' is the identity in B.

Definition: Normal Subgroup -

From a theorem, we have three equivalent conditions for a normal subgroup. Let N be a normal subgroup of group G. Then:

- 1) $gng^{-1} \in N, \forall_{g \in G}$ 2) $gNg^{-1} = N, \forall_{g \in G}$ (often take this as definition)
- 3) $gN = Ng, \forall_{g \in G}$ (that is, all left and right cosets of N coincide)

Definition: Canonical Map -

Let $\phi: G \to \phi[G]$ be a homomorphism of groups. Let $H := \ker(\phi)$ (this is a normal subgroup by property of the identity in codomain). Then there are two canonical maps. First, we have

$$\gamma: G \to G/H$$

 $\gamma(g) := gH,$

which maps each element of G to its coset modulo H. Also, we have the other canonical map

$$\mu:G/H\to \phi[G]$$

$$\mu(gH):=\phi(g).$$

Definition: Automorphism -

An automorphism is a self-map homomorphism $\phi: A \to A$.

Definition: Inner Automorphism -

An inner automorphism in a group is of the form

$$i_g(x) = gxg^{-1},$$

for a fixed $g \in G$ and all $x \in G$ and the automorphism $i_q : G \to G$.

Definition: Action of G on itself by conjugation -

As defined in "inner automorphism" above.

Definition: Factor/Quotient Group (G/H) -

Let H be a normal subgroup of G (or let H be the kernel of a homomorphism of group G). Then the **quotient group** G/H is defined via

$$(aH)(bH) := (ab)H,$$

for $a, b \in G$.

Definition: Simple Group -

A simple group is one that is itself nontrivial and has no proper normal subgroups.

Definition: Center Z(G) -

The 'zentrum' or center of a group G is the set

$$\{z \in G : zg = gz, \forall_{g \in G}\}.$$

Definition: Commutator -

A commutator of group G is of the form $aba^{-1}b^{-1}$ for some $a, b \in G$.

Definition: Commutator Subgroup -

The commutator subgroup is the **subgroup generated by** the set of commutators in G:

$${aba^{-1}b^{-1}: a, b \in G}.$$

Definition: Group Action -

Let X be a set and G be a group, and let $*: G \times X \to X$. A **group action** is one that satisfies the following:

- 1) $ex = x, \forall_{x \in X}$.
- 2) $(g_1g_2)(x) = g_1(g_2(x)), \forall_{g_1,g_2 \in G, x \in X}.$

Definition: G-set -

Under the above definition of a group action, X is a G set if it satisfies those two properties for all $x \in X$.

Definition: Faithful Action -

A group action is **faithful** (or the group is faithful) if the only $g \in G$ with gx = x is e.

Definition: Transitive Action -

A group action is **transitive** (or the group is transitive) if

$$\forall_{x_1, x_2 \in X} \exists_{g \in G} : g(x_1) = x_2.$$

Definition: Isotropy Subgroup -

The isotropy subgroup of group G is the subgroup generated by the set

$$\{g:gx=x,\forall_{x\in X}\}.$$

Definition: Ring -

A ring is a set $\langle R, +, \cdot \rangle$ with the following axioms for $a, b, c \in R$:

- R1) $\langle R, + \rangle$ is abelian (addition is commutative).
- R2) · is associative.
- R3) Left and right distributivity laws hold: a(b+c) = ab + ac and (a+b)c = ac + bc.

Definition: Commutative Ring -

A ring where multiplication \cdot is commutative as well.

Definition: Ring Homomorphism -

Let $\phi: R \to R'$ be a morphism between rings R, R'. Then ϕ is a ring homomorphism if we have the following (2) properties for $a, b \in R$:

- 1) $\phi(a+b) = \phi(a) + \phi(b)$.
- 2) $\phi(ab) = \phi(a)\phi(b)$.

Definition: Ring Isomorphism -

A ring homomorphism where ϕ is bijective.

Definition: \mathbb{Z}_n -

This is $\mathbb{Z}_n := \langle \mathbb{Z}_n, +, \cdot \rangle = \{0, 1, 2, \dots, n-1\}.$

Definition: Unity, Ring With Unity Element, Ring With Unity Element 1, Ring With Unity Element $1 \neq 0$ -

The unity element of a ring is the **unique multiplicative identity**. By convention, in a ring we call this 1 and save 0 to denote the additive identity. It may happen that the multiplicative and additive identity are the same, in which case we have 1 = 0. However, we often want $1 \neq 0$ and specify as such.

Definition: Multiplicative Inverse -

Let a be an element in ring R with unity 1. Then a^{-1} is a multiplicative inverse of a if $aa^{-1} = a^{-1}a = 1$.

Definition: Unit -

Let $a, b \in R$ with unity 1. Then a, b are units of ring R if ab = ba = 1.

Definition: Group of Units -

Collection of units of a ring with unity.

Definition: Division Ring (Skew Field), Field -

A division ring is a ring with unity where all elements are units (have multiplicative inverses). If this division ring is commutative, we call this a field.

Definition: Direct Product of Rings -

Simply $R_1 \times R_2 \times \cdots \times R_i \times \cdots \times R_n$, where all R_i are rings. We have that the direct product is commutative or has unity if and only if all of the R_i are commutative or have unity, respectively.

Definition: Subring, Subfield -

A subring is a subset of ring $\langle R \rangle$ under the induced operations of the enclosing ring R. We define a subfield similarly.

Definition: Zero Divisor -

Let a, b be **nonzero** elements of ring R with additive identity 0. If ab = 0 (not necessarily in both ways), then a, b are zero divisors.

Definition: Ring with No Zero Divisors -

A ring has no zero divisors **if and only if** (multiplicative) cancellation laws hold.

Definition: Integral Domain -

An integral domain is a commutative ring with unity $1 \neq 0$ with no zero divisors.

Definition: Integral Subdomain -

A subdomain of $\langle R, +, \cdot \rangle$ is a **subset** S of R such that $\langle S, +_S, \cdot_S \rangle$ is an integral domain.

Definition: Characteristic of a Ring -

For n summands $a+a+\cdots+a$, we write this as $n \cdot a$, keeping the dot because n might not be an element of R. If there exists some n for which $n \cdot a = 0$ for all $a \in R$, then the least such n is the characteristic of the ring. If no such n exists, by convention we take the characteristic of the ring to be 0.

Definition: Euler's totient function $\varphi(n)$ -

We assume this to denote Euler's totient function, where $\varphi(n)$ denotes the number of positive integers k less than or equal to n where $\gcd(k,n)=1$ (number of lesser positive integers relatively prime to n).

We use this in Euler's generalization of Fermat's little theorem, where Euler's generalization gives

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
,

where $\varphi(p) = p - 1$ when p is prime. Also, the number of nonzero elements of \mathbb{Z}_n that are **not zero-divisors** is given by $\varphi(n)$.

The set G_n of nonzero elements of \mathbb{Z}_n that are not zero-divisors forms a group under multiplication, modulo n.

This theorem is the basis behind Euler's generalization.

Definition: Field of Quotients -

Every integral domain D can be **enlarged to** a field F where every element of F can be expressed as a **quotient** of two elements in D.

We call this field F a field of quotients of D.

Definition: Polynomial -

For our purposes, we define a polynomial $f(x) \in F[x]$ to be the linear combination of $a_i \in F$ and indeterminate x, given by

$$\sum_{i=0}^{\infty} a_i x^i,$$

where $a_i = 0$ for all i > n where n is the "degree" of the polynomial. Hence a polynomial has a finite number of nonzero terms.

Definition: R[x] -

We define R[x] as the set of all "polynomials in x" with coefficients in the ring R. If R is commutative, then so is R[x]; if R has unity $1 \neq 0$, then 1 is also unity for R[x].

Definition: Evaluation Homomorphism $\phi_{\alpha}(f)$ -

This is a very formal definition but probably important for field theory.

Let F be a subfield of a field E, let $\alpha \in E$, and let x be an indeterminate. The map

$$\phi_{\alpha}: F[x] \to E$$

$$\phi_{\alpha}(a_0 + a_1 x + \dots + a_n x^n) := a_0 + a_1 \alpha + \dots + a_n \alpha^n$$

for $(a_0 + a_1x + \cdots + a_nx^n) \in F[x]$ is a homomorphism of F[x] into E. The homomorphism ϕ_{α} is **evaluation at** α .

When in doubt, probably take the definition simply as evaluation at α .

Definition: Zero of a polynomial -

Let $f(x) := a_0 + a_1 x + \dots + a_n x^n \in F[x]$ and let $\phi_\alpha : F[x] \to E$ be an evaluation homomorphism, where F is a subfield of field E. Define

$$f(\alpha) := \phi_{\alpha}(f(x)) = a_0 + a_1 \alpha + \dots + a_n \alpha^n$$

so that if $f(\alpha) = 0$, then α is a **zero of the polynomial** f(x).

Definition: Degree of a polynomial -

We defined $f(x) := a_0 + a_1x + \cdots + a_nx^n$. The degree is n (guaranteed to be finite). Now if f(x) = 0, the zero polynomial, the degree is undefined, but sometimes defined as -1 or $-\infty$ (where the latter makes it so the product of a zero polynomial with another gives the sum of each polynomial's degree).

Definition: Irreducible over F, Reducible Polynomials -

A nonconstant polynomial $f(x) \in F[x]$ is **irreducible over** F (or an irreducible polynomial in F[x]) if f(x) cannot be expressed as a product g(x)h(x) where g(x),h(x) have lesser degree than f(x). If f(x) is not irreducible over F, then it is reducible over F.

Definition: Kernel of a Ring Homomorphism -

Let $\phi: R \to R'$ be a homomorphism of rings. Then we define the kernel as

$$\ker(\phi) := \{ a \in R : \phi(a) = 0' \},\$$

where 0' is the additive identity in the target R'. We equivalently write $\ker(\phi) = \phi^{-1}[0']$.

Now this $\ker(\phi)$ is the same as the kernel of the group homomorphism of $\langle R, + \rangle$ into $\langle R', + \rangle$, given by ϕ .

Definition: Ideal -

An ideal of a ring is **the additive subgroup** N of ring R with

$$aN \subseteq N$$
, $Nb \subseteq N$, $\forall_{a,b \in R}$.

Now this is analogous to the definition of a Normal subgroup (which allowed us to form a factor group). Notice that the Kernel of a ring homomorphism is an ideal, just as the Kernel of a group homomorphism is a normal subgroup.

Definition: Prime Ideal -

An ideal $N \neq R$ in a commutative ring R is a **prime ideal** if $ab \in N$ implies EITHER $a \in N$ OR $b \in N$, for all $a, b \in R$.

For the following, we only care for the "Ideal Structure in F[x]"; however, the definitions will be general for commutative rings. But assume F is a field.

Definition: Principal Ideal -

Let R be a commutative ring with unity and take $a \in R$. Then the principal ideal generated by a is:

$$\langle a \rangle := \{ ra \mid r \in R \},$$

which is the ideal of all multiples of a. Alternatively, N is a principal ideal of R if $N = \langle a \rangle$ for some $a \in R$.

Definition: Factor (Quotient) Ring -

Let N be an ideal of ring R. Then the additive cosets of N form a **factor** (**quotient**) ring R/N (of R by N) with the binary operations defined for $a, b \in R$ as:

$$(a+N) + (b+N) = (a+b) + N$$

 $(a+N)(b+N) = ab + N.$

Definition: Canonical Map $R \to R/N$ -

Let N be an ideal of R. This gives rise to the canonical map

$$\gamma: R \to R/N$$
$$\gamma(x) := x + N,$$

where γ is a ring homomorphism with kernel N.

Then this gives rise to another canonical map $\mu:R/N\to \phi[R]$ given by $\mu(x+N):=\phi(x)$ so that

$$\phi(x) + \mu \gamma(x).$$