Introduction to Deep Convolutional Neural Networks

Present	ation · March 2016	
CITATIONS	5	READS
3		1,821
1 author	r:	
	Asifullah Khan	
	Pakistan Institute of Engineering and Applied Sciences	
	221 PUBLICATIONS 3,455 CITATIONS	
	SEE PROFILE	
Some of	f the authors of this publication are also working on these related p	projects:
Project	Bioinformatics View project	
Project	Watermarking and Its Applications View project	

Introduction to Deep Convolutional Neural Networks

Dr. Asifullah Khan,
Professor,
DCIS, PIEAS, Islamabad,
Pakistan

Outline

- Artificial Neurons and Perceptron
- Building blocks of CNN
 - Convolution
 - Pooling
- Motivations for CNN
- Working of a CNN
- Why use Hierarchical Learning
- Visualizing CNN Activations (features)
- Deep CNN architectures: case studies
- Transfer Learning

Biological neuron

Image from: http://hplusmagazine.com/2012/10/17/four-statements-about-the-future

Single layer perceptron

Image from: https://battleprogrammer.wordpress.com/2011/03/23/jaringan-syaraf-tiruan-apa-apa-apa/

Multi-layered Neural Net

Image from: Pasini, Antonello. "Artificial neural networks for small dataset analysis." *Journal of thoracic disease* 7.5 (2015): 953.

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Image

1	0	1
0	1	0
1	0	1

Filter/kernel

1,	1_×0	1,	0	0
0,0	1,	1 _{×0}	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

1	1,	1,0	0 _{×1}	0
0	1,0	1,	1,0	0
0	0,1	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

4	3	

Image

1	1	1,	0,0	0,
0	1	1,0	1,	0,×0
0	0	1,	1,0	1,
0	0	1	1	0
0	1	1	0	0

4	3	4

Image

1	1	1	0	0
0 _{×1}	1,0	1,	1	0
O _{×0}	0 _{×1}	1,0	1	1
0 _{×1}	0,×0	1,	1	0
0	1	1	0	0

4 3 4

Image

1	1	1	0	0
0	1	1	1	0
0	0	1 _{×1}	1 _{×0}	1,
0	0	1,0	1,	0 _{×0}
0	1	1,	0,0	0 _{×1}

$$W_{conv} = W_{img} - W_{filt} + 1$$

$$H_{conv} = H_{img} - H_{filt} + 1$$

4	3	4
2	4	3
2	3	4

Image

Convolved Feature

Convolution and Correlation becomes the same if the Kernel is symmetric; no effect from flipping. In Machine Learning community, mostly correlation Kernels are used.

Image from: http://www.slideshare.net/uspace/ujavaorg-deep-learning-with-convolutional-neural-network

Pooling

Pooling

One of our Proposed CNN Architecture;

featureMapSize = [(inputsize - filtersize + 2xzeropadding)/stride]+1 pooledMapSize = [(inputsize - filtersize)/stride]+1

Filters/Kernels/Mask/Feature-extractor

Motivation for CNN

- Invariant Features: Detection and classification independent of pose, scale, illumination, occlusion and clutter
- Dynamic Feature Extraction: how could an artificial vision system learn appropriate internal representations automatically, the way humans seem to by simply looking at the world?
- Reduced Learnable Parameters compared to a BackPropagator.
- Hierarchical Learning

Motivation for CNN; Invariance

Goal

 Detection and classification independent of pose, scale, illumination, occlusion and clutter

Static Feature Extraction: Standard image classification approach

Input

Extract features

Use simple classifier e.g., logistic regression, SVMs

Static Feature Extraction: many hand crafted Features exist...

... but very painful to design

Dynamic Feature Extraction: Change Image Classification Approach?

Input

Extract features dynamically

Use simple classifier e.g., SVM, etc.

Face

Motivation for CNN; Less Parameters

Cons of multilayer perceptron

- The number of trainable parameters becomes extremely large. For example, a 24 × 24 input layer would already have 576 connections per single neuron in the hidden layer
- Secondly, it offers little or no invariance to shifting, scaling, and other forms of distortion
- Hand-crafted feature extraction requires a great deal of time

Motivation for CNN; Less Parameters

Motivation for CNN; Hierarchical Learning

- Hubel/Wiesel Architecture
- D. Hubel and T. Wiesel (Nobel Prize 1981)
- Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Motivation for CNN: Hierarchical Learning

Motivation for CNN; Hierarchical Learning

 In 1995, Yann LeCun and Yoshua Bengio introduced the concept of CNN

 Neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex of the cat

Motivation for CNN; Why use hierarchical multi-layered models?

visual scenes are hierarchically organized

Slide credit: Dr. Richard E. Turner presentation (2014)

Motivation for CNN; Why use hierarchical multi-layered models?

biological vision is hierarchically organized

Motivation for CNN; Why use hierarchical multi-layered models?

- Shallow architectures are inefficient at representing deep functions
- Deep net, deep (enriched) features

These units fine-tune the features learned by those in the previous layer

Params: 5x5+5=30 Params: 5x3+6+2=23

Motivation for CNN; Hierarchical Representation

Example

very high level representation:

slightly higher level representation

raw input vector representation:

Yoshua Bengio (2009)

Working of Convolutional Neural Networks

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant features
- Classification layer at the end

Working of Convolutional Neural Network

- Feed-forward feature extraction:
- 1. Convolve input with filters
- 2. Non-linearity (ReLU)
- 3. Spatial pooling
- 4. Normalization

Supervised training of convolutional filters by backpropagating classification error.

A CNN can be both Generative and Discriminative Learning Mechanism

Working of Convolutional Neural Network

Feed-forward feature extraction:

Working of Convolutional Neural Network

- CNN is a type of feed-forward artificial neural network.
- Individual neurons are tiled in such a way that they respond to overlapping regions in the visual field
- The lower layers obtain low-level features (like pixels, edges, lines and corners) while the higher layers obtain high-level features (like shapes)
- The more layers the network has, the higher-level features it will get

Working of Convolutional Neural Network; Convolutional layer

- Unlike a hand-coded convolution kernel (Sobel, Prewitt, Roberts), in a CNN, the parameters of each convolution kernel are trained by the backpropagation algorithm
- Convolution operators extract different features of the input
- There are many convolution kernels in each layer, and each kernel is replicated over the entire image with the same parameters (weights and bias)

Working of Convolutional Neural Network: **Convolutional layer**

- Dependencies are local
- Translation invariance
- Few parameters (filter weights)
- Stride can be greater than 1 (faster, less memory)

Input

Feature Map

Working of Convolutional Neural Network: **Non-linearity**

- Per-element (independent)
- Options:
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear unit (ReLU)
 - Simplifies backpropagation
 - Makes learning faster
 - Avoids saturation issues→ Preferred option

Working of Convolutional Neural Network: Pooling Layer

- In order to reduce variance, pooling layers compute the max or average value of a particular feature over a region of the image
- This will ensure that the same result will be obtained, even when image features have small translations
- This is an important operation for object classification and detection

Working of Convolutional Neural Network: Pooling Layer

- Sum or max
- Non-overlapping / overlapping regions
- Role of pooling:
 - Invariance to small transformations
 - Larger receptive fields (see more of input)

Max

Sum

Working of Convolutional Neural Network: Normalization

- Within or across feature maps
- Before or after spatial pooling

Feature Maps

Feature Maps
After Contrast Normalization

Visualizing activations in CNN

Visualizing activations

Zeiler, Matthew (2014)

Visualizing activations in CN cont...

Visualizing activations

Zeiler, Matthew (2014)

Deep CNN recent examples: GoogLeNet (ILSVRC 2014 winner)

Inception module

Szegedy, et al (2015)

Deep CNN recent examples:

ResNet (ILSVRC 2015 winner)

Residual learning: a building block

152 layers; 3.57 top 5% error ImageNet 2012 dataset; 1000 classes, 1.28 million training Images, 50K validation images, 100 K test images; millions of parameters; Kaiming He, et al. (2015)

CNN; Competition in Depth

Transfer Learning; Image Classification example

Transfer Learning; Image Classification example

Convolutional Neural Networks

To ponder on:

- Computational cost vs. performance/results
- What should be the filter sizes at different layers?
- How much pooling?
- How many neurons to keep in different layers?
- How many layers to employ?
- How to increase generalization of a CNN?
 - Use a good cross-validation startegy
 - Use pruning (Dropout, Swapout, etc.)
 - Use unsupervised pre-training

References

- http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionulsingConvolution/
- Tutorial on Deep Learning and Applications Honglak Lee (University of Michigan)
- http://docs.gimp.org/en/plug-in-convmatrix.html
- https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
- http://www.slideshare.net/AhmedMahany/convolutionneural-networks
- http://www.robots.ox.ac.uk/~vgg/research/text/index.html

References cont...

- http://learning.eng.cam.ac.uk/pub/Public/Turner/Teaching/mllecture-3-slides.pdf
- LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.
- Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." Computer vision—ECCV 2014. Springer International Publishing, 2014. 818-833.
- Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends® in Machine Learning 2.1 (2009): 1-127.
- Szegedy, Christian, et al. "Going deeper with convolutions." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2015.
- He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015).