Arithmétique : Examen du 18 décembre 2024

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable: Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- Exercice 1.

- a) Montrer que l'ordre multiplicatif de 2 dans $\mathbb{Z}/49\mathbb{Z}$ est 21.
- b) Quel est la décomposition en facteurs irréductibles de $X^7 + 1$ dans $\mathbb{F}_2[X]$?
- c) En écrivant $X^{49} + 1 = (X^7)^7 + 1$, trouver la décomposition en facteurs irréductibles de $X^{49} + 1$ dans $\mathbb{F}_2[X]$. Justifier.

- EXERCICE 2.

- a) Montrer que $X^6 + X^3 + 1$ est irréductible dans $\mathbb{F}_2[X]$.
- b) Quel est l'ordre d'une racine γ de $X^6 + X^3 + 1$ dans \mathbb{F}_{64} ?
- c) Soit $\beta = \gamma + 1$. Calculer les valeurs de β^{2^i} , i = 1, 2, ... 6, et en déduire, en justifiant, que le polynôme minimal P(X) de β est de degré 6.
- d) Montrer que β est un élément primitif de \mathbb{F}_{64} .
- e) Quel est le polynôme minimal P(X) de β ?
- EXERCICE 3. On considère les suites binaires $(a_i)_{i\geqslant 0}$ engendrées par la récurrence linéaire

$$a_i = a_{i-2} + a_{i-4} + a_{i-5} + a_{i-6}. (1)$$

- a) Quel est le polynôme de rétroaction h(X) de cette récurrence?
- b) Montrer que X est d'ordre 21 dans $\mathbb{F}_2[X]/h(X)$.
- c) En déduire que h(X) est irréductible.
- d) Quelle est la période de n'importe quelle suite non nulle vérifiant la récurrence (1)?
- e) Soit α une racine de h(X) dans \mathbb{F}_{64} . Calculer $\operatorname{Tr}(\alpha)$ où $\operatorname{Tr}()$ désigne la trace de \mathbb{F}_{64} sur \mathbb{F}_2 .
- f) Montrer que α^3 est dans le sous-corps à huit éléments de \mathbb{F}_{64} .
- g) En déduire, sans faire de calcul supplémentaire et en utilisant la définition de Tr(), que $Tr(\alpha^3) = 0$.

- h) Sans faire de calcul supplémentaire, en déduire la valeur de $\mathrm{Tr}(\alpha^5)$.
- i) Donner les dix premiers symboles de la suite (a_i) définie par $a_i = \text{Tr}(\alpha^i)$ (en commençant à a_0).
- j) Calculer le polynôme minimal de $\beta = \alpha + 1$.
- k) Montrer que β est un élément primitif de \mathbb{F}_{64} .
- l) On considère la suite $(b_i)_{i\geqslant 0}$ définie par $b_i=a_i+a_{i+1}$, où la suite (a_i) est la suite définie en i). Donner une expression de b_i+a_{i+d} sous la forme d'une trace et en déduire que si b_i est une décalée de (a_i) , alors β doit être une puissance de α . En déduire que (b_i) n'est pas une décalée de (a_i) .

Pour les deux exercices suivants, α désigne un élément de \mathbb{F}_{16} racine du polynôme $X^4 + X + 1$. Il sera utile de disposer du tableau suivant qui donne les valeurs des puissances successives de α .

1	α	α^2	α^3	α^4	$lpha^5$	$lpha^6$	α^7
1	α	α^2	α^3	$\alpha + 1$	$\alpha^2 + \alpha$	$\alpha^3 + \alpha^2$	$\alpha^3 + \alpha + 1$
α^8	α^9	α^{10}	α^{11}	$lpha^{12}$	$lpha^{13}$	α^{14}	$lpha^{15}$
$\alpha^2 + 1$	$\alpha^3 + \alpha$	$\alpha^2 + \alpha + 1$	$\alpha^3 + \alpha^2 + \alpha$	$\alpha^3 + \alpha^2 + \alpha + 1$	$\alpha^3 + \alpha^2 + 1$	$\alpha^3 + 1$	1

- EXERCICE 4. Soit C le code cyclique de longueur 15 de polynôme générateur $g(X) = X^4 + X + 1$.
 - a) Quelle est la dimension et la distance minimale de ce code?
 - b) En notation polynomiale, on considère le mot $y = X + X^4 + X^8 + X^{10}$. Le mot y appartient-il au code C? Sinon, quel est le mot de C le plus proche?
- EXERCICE 5. Le but de l'exercice est de trouver le polynôme de $\mathbb{F}_2[X]$, de poids 2, $P(X) = X^i + X^j$, $0 \le i, j \le 14$, tel que

$$P(\alpha) = \alpha$$
$$P(\alpha^3) = \alpha^2 + 1$$

a) Poser $\alpha^i = x$ et $\alpha^j = y$, et utiliser l'identité $x^3 + y^3 = (x+y)(x^2 + xy + y^2)$ pour en déduire un système algébrique de la forme

$$x + y = a$$
$$xy = b$$

- b) Trouver un polynôme Q(X) de $\mathbb{F}_{16}[X]$ de degré 2 dont x et y sont racines.
- c) Poser $x = x_0 + x_1\alpha + x_2\alpha^2 + x_3\alpha^3$ où $x_0, x_1, x_2, x_3 \in \mathbb{F}_2$. Transformer l'équation Q(x) = 0 en un système linéaire sur \mathbb{F}_2 d'inconnues x_0, x_1, x_2, x_3 .
- d) Résoudre le système. Quel est le polynôme $P(X) = X^i + X^j$?