Омский государственный университет им. Ф.М. Достоевского Институт математики и информационных технологий Кафедра алгебры

Аналог теоремы Каца для разрешимых аффинных групповых суперсхем

Дипломная работа

Специальность «Прикладная математика и информатика»

(nodnucь руководителя)

Введение

Главной задачей данной работы было изучение основ теории аффинных групповых схем и обобщение некоторых результатов на суперслучай. Аффинные схемы были введены А. Гротендиком в 1950-х гг. при построении теории схем как обобщение понятия аффинного и квазипроективного многообразий. Одним из главных инструментов теории аффинных схем является теория категорий, хотя изначально теория строилась без теории категорий, в чем можно убедиться, изучая традиционную алгебраическую геометрию ([11]). Основные понятия теории категорий можно найти в [9] или в работе С. Маклейна, одного из авторов теории категорий [10].

В литературе аффинные групповые суперсхемы часто для краткости называют супергруппами. В данной работе я буду для ясности использовать полное название.

Основной задачей этой работы является аналог теоремы Каца для разрешимых аффинных групповых суперсхем. В. Г. Кац в работе [2] о супералгебрах Ли доказал, что супералгебра Ли разрешима тогда и только тогда, когда разрешима ее четная часть. Супералгебры Ли тесно связаны с теоретической физикой, а в теории аффинных схем появляются при изучении супералгебр распределений. Еще один алгебраический объект, тесно связанный с физикой — алгебра Хопфа. Аналогочно тому, что категория аффинных групповых схем дуальна категории алгебр Хопфа ([5]), аффинные групповые суперсхемы дуальны супералгебрам Хопфа, что позволяет развивать одну и ту же теорию либо в терминах суперсхем, либо в терминах супералгебр Хопфа в зависимости от ситуации.

В первом разделе собраны необходимые предварительные сведения: понятия супералгебры, K-функторы, вводится основной объект исследований этой работы — аффинные групповые схемы, доказывается дуальность категорий аффинных групповых суперсхем категории супералгебр Хопфа. Второй раздел описывает супералгебры распределений аффинных групповых суперсхем и их связь с супералгебрами Ли. Некоторые дополнительные сведения для суперслучая можно найти в [6], исходные понятия алгебр распределений аффинных групповых схем можно найти в [5]. Вводится понятие функтора супералгебры Ли $\mathbf{Lie}(G)$. В третьем разделе вводятся понятия связной аффинной групповой суперсхемы. В четвертом разделе понятие разрешимой аффинной групповой схемы ([5], гл. 10) переносится на суперслучай, доказывается обоснованность этой аналогии. В заключительной части доказывается аналог теоремы Каца о разрешимости аффинных групповых суперсхем.

Содержание

1.	Предварительные сведения	4
	1.1. Супералгебры и супермодули	4
	1.2. <i>К</i> -функторы	5
2.	Аффинные групповые суперсхемы	6
	2.1. Аффинные суперсхемы	6
	2.2. Лемма Ионеды	7
	2.3. Групповые K -функторы и аффинные групповые суперсхемы	8
	2.4. Дуальность категорий аффинных групповых суперсхем и супералгебр	
	Хопфа	9
	2.5. Суперкоалгебры и суперкомодули	11
3.	Супералгебры распределений и их связь с супералгебрами Ли	13
	3.1. Супералгебры распределений	13
	3.2. Действие сопряжения и функтор $\mathbf{Lie}(G)$	14
4.	Связные аффиные групповые суперсхемы	15
	4.1	15
	4.2	16
5.	Разрешимость аффиных групповых суперсхем	17
6.	Аналог теоремы Кана	18

1. Предварительные сведения

1.1. Супералгебры и супермодули

Следуя [3] и [8], приведем накоторые стандартные определения и теоремы.

Везде далее K — алгебраически замкнутое поле характеристики p (возможно, p=0). Если p=0, то предполагается, что $p\neq 2$. Супераналог произвольной алгебраической системы определяется введением \mathbb{Z}_2 -градуировки, относительно которой все структурные функции однородны. Так, супералгебра — \mathbb{Z}_2 -градуированное пространство, такое что четность произведения двух \mathbb{Z}_2 -однородных элементов равна сумме их четностей по модулю 2. Если не оговорено противное, то морфизм двух суперсистем одинаковой сигнатуры сохраняет \mathbb{Z}_2 -градуировку. Подробнее с градуированными пространствами можно познакомиться в [7].

Приведем более формальные определения:

Определение 1. Будем называть (векторным) суперпространством пространство $V = V_0 \oplus V_1$ над полем K. Если $\dim V_0 = m, \dim V_1 = n, \mod V = m+n, \operatorname{sdim} V = (m,n)$. Элементы из V_0 называются четными, из V_1 — нечетными.

Определение 2. Супералнеброй над полем K называется суперпространство $A = A_0 \oplus A_1$, наделенное структурой унитарной ассоциативной K-алгебры, такое что $A_i A_j \subset A_{i+j}$, $\varepsilon \partial ei, j = 0, 1$.

Под $cynepudeanom\ A$ подразумевается однородный идеал алгебры.

Пусть V, W — суперпространства. Их тензорное произведение наделяется структурой суперпространства по правилу $|v \otimes w| = |v| + |w| \pmod 2$, где прямыми скобками обозначена четность соответствующего элемента. Итерируя эту процедуру, можно определить тензорное произведение любого числа суперпространств.

Для произвольных суперпространств V,W пространство $\operatorname{Hom}_K(V,W)$ наделяется стандартной структурой суперпространства по правилу $\varphi \in \operatorname{Hom}_K(V,W)_i, \ i=0,1,$ если $\varphi(V_s) \subseteq W_k$, где $i+s \equiv K \pmod 2$. В частности, если определить на K структуру суперпространства с $K_0 = K, \ K_1 = 0$, тогда $V^* = \operatorname{Hom}_K(V,K) = V_0^* \oplus V_1^*$.

Определение 3. Пусть A — супералгебра. (Левым) A-супермодулем называется суперпространство V, которое является A-модулем в обычном смысле, такое что $A_iV_j \subseteq V_{i+j}$ для $i,j \in \mathbb{Z}_2$. Правый супермодули определяются аналогично.

Под гомоморфизмом $f:V\to W$ левых A-супермодулей подразумевается линейной отображение (не обязательно однородное), такое что

$$f(av) = (-1)^{|f||a|} af(v), \qquad a \in A, \ v \in V,$$

а для правых A-супермодулей

$$f(va) = f(v)a, \qquad a \in A, \ v \in V.$$

Пусть A, B — супералгебры, а V, W — (левые) супермодули над и B соответственно. Тогда тензорное произведение $A \otimes B$ имеет структуру супералгебры относительно умножения $a \otimes b \cdot c \otimes d = (-1)^{|b||c|}ac \otimes bd, \ a, c \in A, \ b, d \in B$. Более того, суперпространство $V \otimes W$ будет $A \otimes B$ -супермодулем относительно действия $a \otimes b \cdot v \otimes w = (-1)^{|b||v|}ac \otimes bd, \ a, \in A, \ b \in B, \ v \in V, \ w \in W$.

Супералгебра A называется коммутативной, если для любых однородных $a, c \in A$ выполняется $ac = (-1)^{|a||c|}ca$. Несложно убедиться, что если супералгебры A и B коммутативны, то супералгебра $A \otimes B$ также коммутативна.

1.2. K-функторы

Определения, данные в [1] для обычного случая, можно почти дословно перенести на суперслучай. Некоторые из них можно найти в [6].

Введем некоторые предварительные обозначения. K – произвольное поле, \mathbf{SAlg}_K — категория супералгебр над полем K, \mathbf{Sets} — категория множеств, \mathbf{Gr} — категория групп.

Определение 4. K-функтором назовем функтор из категории \mathbf{SAlg}_K в \mathbf{Sets} .

Для K-функторов X, X' обозначим через $\mathrm{Mor}(X, X')$ множество морфизмов из в X'.

Определение 5. Пусть X - K-функтор. K-функтор Y называется подфунктором функтора X, если $\forall A, A' \in \mathbf{SAlg}_K \ \forall \varphi \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, A')$ выполнены условия: $Y(A) \subset X(A)$ и $Y(\varphi) = X(\varphi)|_{Y(A)}$.

Для любого семейства подфункторов $\{Y_i\}_{i\in I}\subset X$ определим функтор-пересечение $\bigcap_{i\in I}Y_i$ следующим образом:

$$\left(\bigcap_{i\in I} Y_i\right)(A) = \bigcap_{i\in I} Y_i(A).$$

Для $f \in \operatorname{Mor}(X, X') \ \forall \ Y' \subseteq X'$ определим функтор-прообраз

$$(f^{-1}(Y'))(A) = f(A)^{-1}(Y'(A))$$
 для $A \in \mathbf{SAlg}_K$.

Нетрудно убедиться, что $\bigcap_{i\in I} Y_i$ и $f^{-1}(Y')$.

Определение 6. Прямым произведением K-функторов X_1 и X_2 называется функтор $(X_1 \times X_2)(A) = X_1(A) \times X_2(A)$ для $A \in \mathbf{SAlg}_K$.

Проекции $p_i: X_1 \times X_2 \to X_i$ являются морфизмами функторов, и $(X_1 \times X_2, p_1, p_2)$ обладает обычными свойствами прямого произведения.

2. Аффинные групповые суперсхемы

2.1. Аффинные суперсхемы

Определение 7. K-функтор SSpR, определенный как

$$(SSpR)(A) = \operatorname{Hom}_{\mathbf{SAlg}_K}(R, A)$$
 для $A \in \mathbf{SAlg}_K$,

называется аффинной суперсхемой. Супералгебра $R \in \mathbf{SAlg}_K$ называется координатной супералгеброй суперсхемы SSpR. Если X = SSpR, то R обозначается K[X].

Пусть X_1, X_2 — аффинные суперсхемы. Тогда

$$K[X_1 \times X_2] = K[X_1] \otimes K[X_2]. \tag{1}$$

Определение 8. Аффинная суперсхема $\mathbf{A}^{m|n} = SSp K[t_1, \dots, t_m|z_1, \dots, z_n]$ называется аффинным (m|n)-суперпространством.

Очевидно, что $\mathbf{A}^{m|n}(B) = B_0^m \oplus B_1^n$ для $B \in \mathbf{SAlg}_K$. В частности, $\mathbf{A}^{1|1}(B) = B$ для любой супералгебры B.

Определение 9. Аффинная суперсхема X называется алгебраической, если $K[X] \simeq K[t_1, \ldots, t_m | z_1, \ldots, z_n] / I$ для некоторых $m, n \in \mathbb{N}$ и конечнопорожденного суперидеала I.

Определение 10. $A \phi \phi$ инная суперсхема X называется редуцированной, если K[X] не содержит нильпотентных элементов, отличных от θ .

Определение 11. Пусть X — аффинная суперсхема, I — суперидеал K[X]. Подфунктор функтора X, определенный как

$$V(I)(A) = \{ \varphi \in \operatorname{Hom}_{\mathbf{SAlg}_{K}}(R, A) \mid \varphi(I) = 0 \}$$

$$\simeq \{ x \in (SSpR)(A) \mid f(x) = 0 \ \forall \ f \in I \}$$

называется замкнутым подфунктором, соответствующим суперидеалу І.

Отображение $I \mapsto V(I)$ из множества суперидеалов K[X] в множество подфункторов X инъективно. Более точно,

Утверждение 1. Для двух суперидеалов I, I' супералгебры K[X]

$$I \subset I' \Leftrightarrow V(I) \supset V(I').$$
 (2)

Доказательство. Прямое утверждение тривиально, поэтому докажем верность обратного. Пусть $V(I') \subset V(I)$. Рассмотрим каноническое отображение $u: K[X] \to K[X]/I'$. $u \in \operatorname{Hom}_{\mathbf{SAlg}_K}(K[X], K[X]/I') = SSp(K[X]/I')$. Т.к. u(I') = 0, то $u \in V(I')(K[X]/I')$. Из условия $V(I') \subset V(I)$ следует, что $u \in V(I')(K[X]/I') \Rightarrow u(I) = 0 \Rightarrow I \subset I'$.

Замкнутый подфунктор является аффинной суперсхемой, т.к. $V(I) \simeq SSp(K[X]/I)$. Замкнутые подфункторы определяют топологию на аффинной суперсхеме SSpR:

$$V(R) = \varnothing, \quad V(0) = SSp R,$$

$$\bigcap_{j \in J} V(I_j) = V\left(\sum_{j \in J} I_j\right), \quad \bigcup_{j \in J} V(I_j) = V\left(\prod_{j \in J} I_j\right)$$

для любого семейства суперидеалов $\{I_j\}_{j\in J}\subset R$.

Пусть X_1, X_2 — аффинные суперсхемы, $I_1 \subset K[X_1], I_2 \subset K[X_2]$ — суперидеалы. Несложно проверить, что

$$V(I_1) \times V(I_2) \simeq V(I_1 \otimes K[X_2] + K[X_1] \otimes I_2). \tag{3}$$

2.2. Лемма Ионеды

Лемма Ионеды — фундаментальное утверждение теории категорий — позволяет вложить любую категорию \mathcal{C} в категорию функторов, определенных в \mathcal{C} . В общем виде Лемму Ионеды можно найти в [10], в этой работе подробнее остановимся на случае для категории \mathbf{SAlg}_K .

Лемма 1 (Ионеда). $\forall R \in \mathbf{SAlg}_K \ \forall K$ -функтора X существует канонический изоморфизм

$$Mor(SSpR, X) \simeq X(R),$$

который задается отображением $f \mapsto f(R)(id_R)$.

Доказательство. Пусть $f \in \text{Mor}(SSp\,R,X)$. Сначала убедимся, что $f(R)(id_R) \in X(R)$. Это следует из того, что $f(R): (SSp\,R)(R) = \text{Hom}_{\mathbf{SAlg}_K}(R,R) \to X(R)$. Далее убедимся, что приведенное отображение действительно является изоморфизмом.

По определению морфизма функторов $\forall A \in \mathbf{SAlg}_K \ \forall u \in \mathrm{Hom}_{\mathbf{SAlg}_K}(B,A)$ коммутативна диаграмма:

$$(SSp R)(B) \xrightarrow{f(B)} X(B)$$

$$(SSp R)(u) \downarrow \qquad \qquad \downarrow X(u)$$

$$(SSp R)(A) \xrightarrow{f(A)} X(A)$$

$$(4)$$

Возьмем R в качестве B и получим, что $f(A)\circ X(u)=(SSp\,R)(u)\circ f(R)$. Обозначим $x_f=f(R)(id_R)$. Принимая во внимание, что $(SSp\,R)(u)(id_R)=u\circ id_R$, получаем

$$f(A)(u) = X(u)(x_f).$$

Отсюда видно, что f однозначно определяется x_f . Осталось построить обратное отображение. Пусть $x \in X(R)$ и $A \in \mathbf{SAlg}_K$. Зададим $f_x(A) : SSp R \to X(A)$ отображе-

нием $u \mapsto X(u)(x)$. Несложно убедиться, что $f_x \in \text{Mor}(SSp\,R,X)$ и что $x \mapsto f_x$ обратно отображению $f \mapsto f_x$.

Следствие 1. Если взять X = SSpR', то получим

$$\operatorname{Mor}(SSp R, SSp R') \simeq \operatorname{Hom}_{\mathbf{SAlg}_{K}}(R', R)$$
 (5)

для любых супералгебр R, R'.

Обозначим эту биекцию $f \mapsto f^*$ и будем называть f^* коморфизмом, соответствующим f. Таким образом, мы получили дуальность категорий аффинных суперсхем и супералгебр.

2.3. Групповые K-функторы и аффинные групповые суперсхемы

Определение 12. Групповым K-функтором будем называть функтор из \mathbf{SAlg}_K в \mathbf{Gr} .

Если взять композицию группового функтора с забывающим функтором из \mathbf{Gr} в \mathbf{Sets} , то групповой K-функтор можно рассматривать как K-функтор. Поэтому все результаты для K-функторов можно перенести на групповые K-функторы.

Пусть G, H — групповые K-функторы. Обозначим через Mor(G, H) множество морфизмов из G в H, если рассматривать G и H как K-функторы; через Hom(G, H) множество морфизмов групповых функторов.

Определение 13. Аффинная групповая суперсхема— групповой K-функтор, который является аффинной суперсхемой, если его рассматривать как функтор.

Определение 14. Пусть G — групповой K-функтор. H называется групповым подфунктором G, если H — подфунктор G и \forall $A \in \mathbf{SAlg}_K$ H(A) — подгруппа в G(A).

Нетрудно убедиться, что пересечение групповых подфункторов — групповой подфунктор, прообраз группового подфунктора относительно гомоморфизма — групповой подфунктор.

Определение 15. Групповой подфунктор H функтора G называется нормальным (соответственно, центральным), если $\forall A \in \mathbf{SAlg}_K \ H(A)$ — нормальная (соответственно, центральная) подгруппа в G(A).

Определение 16. Пусть G — аффинная групповая суперсхема. H — замкнутая аффинная групповая суперподсхема, если H — групповой подфунктор G, который замкнут, если рассматривать H как подфунктор аффинной суперсхемы G.

2.4. Дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа

Пусть G — групповой K-функтор, $A, B \in \mathbf{SAlg}_K$, $u \in \mathrm{Hom}_{\mathbf{SAlg}_K}(A, B)$, Групповая структура на G(A) определяет морфизмы K-функторов (для каждого функтора коммутативная диаграмма из определения морфизма функторов):

умножение $m_G: G \times G \to G \ (m_G(A) -$ умножение в группе G(A)),

$$G(A) \times G(A) \xrightarrow{m_G(A)} G(A)$$

$$G(u) \times G(u) \downarrow \qquad \qquad \downarrow G(u)$$

$$G(B) \times G(B) \xrightarrow{f(A)} G(B)$$

$$(6)$$

единица $1_G: SSp K \to G \ (1_G(A): f \mapsto 1_{G(A)}$ для $f \in (SSp K)(A)),$

$$(SSp K)(A) \xrightarrow{1_G(A)} G(A)$$

$$(SSp K)(u) \downarrow \qquad \qquad \downarrow (SSp K)(u)$$

$$(SSp K)(B) \xrightarrow{1_G(A)} G(B)$$

$$(7)$$

обратная функция $i_G: G \to G$ $(i_G(A): g \mapsto g^{-1}$ для $g \in G(A))$

$$G(A) \xrightarrow{i_G(A)} G(A)$$

$$G(u) \downarrow \qquad \qquad \downarrow G(u)$$

$$G(B) \xrightarrow{i_G(A)} G(B)$$

$$(8)$$

Пусть G — аффинная групповая суперсхема. Согласно следствию 1 каждому из этих морфизмов единственным образом советствует свой коморфизм.

коумножение
$$\Delta_G=m_G^*:K[G]\to K[G]\otimes K[G],$$
 коединица $\varepsilon_G=1_G^*:K[G]\to K,$ антипод $s_G=i_G^*:K[G]\to K[G],$

Из аксиом групповой структуры следуют аксиомы коумножения, коединицы и антипода. Ниже эти аксиомы записаны в виде коммутативных диаграмм. Ассоциативность

умножения $g_1(g_2g_3) = (g_1g_2)g_3$ переходит в коассоциативность коумножения:

$$K[G] \xrightarrow{\Delta} K[G] \otimes K[G]$$

$$\downarrow^{id \otimes \Delta} \qquad \qquad (9)$$

$$K[G] \otimes K[G] \xrightarrow{\Delta \otimes 1} K[G] \otimes K[G] \otimes K[G]$$

Аксиома единицы eg = ge = g переходит в аксиому коединицы:

$$K \otimes K[G] = K[G] = K[G] \otimes K$$

$$\downarrow id \otimes id \qquad \qquad \downarrow \Delta \otimes id \qquad \qquad \downarrow id \otimes id \qquad (10)$$

$$K \otimes K[G] \xleftarrow{\varepsilon \otimes 1} K[G] \otimes K[G] \xrightarrow{1 \otimes \varepsilon} K[G] \otimes K$$

Аксиома обратного элемента $gg^{-1}=g^{-1}g=e$ переходит в аксиому антипода:

Следуя Свидлеру, будем писать $\Delta(c) = \sum c_1 \otimes c_2$ (подробнее о коструктурах и соответствующих обозначениях будет рассказано ниже). Тогда вышеуказанные аксиомы записываются в виде:

$$(\Delta \otimes id) \circ \Delta = \Delta \circ (id \otimes \Delta) \qquad \sum c_{11} \otimes c_{12} \otimes c_2 = \sum c_1 \otimes c_{21} \otimes c_{22} =: \sum c_1 \otimes c_2 \otimes c_3,$$

$$(\varepsilon \otimes id) \circ \Delta = id = (id \otimes \varepsilon) \circ \Delta$$
 $c = \sum \Delta(c_1)c_2 = \sum c_1\Delta(c_2),$

$$m \circ (id \otimes s) \circ \Delta = \eta \circ \varepsilon = m \circ (s \otimes id) \circ \Delta \qquad \varepsilon(c) = \sum c_1 s(c_2) = \sum s(c_1) c_2,$$

где η — единица K[G], m — умножение в $K[G] \otimes K[G]$.

Определение 17. Супералгебра вместе с коумножением, коединицей и антиподом, удовлетворяющими аксиомам 9, 10, 11 называется супералгеброй Хопфа.

Таким образом, имеем дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа.

Определение 18. Пусть — супералгебра Хопфа. Суперидеал I называется суперидеалом Хопфа, если $\Delta(I) \subseteq C \otimes I + I \otimes C$, $I \subseteq \mathcal{M} = \ker \varepsilon$, $s(I) \subseteq I$.

Аналогично топологии, определенной на аффинной суперсхеме в пункте 2.1, на аффинной групповой суперсхеме топология определяется замкнутыми подфункторами V(I), соответствующими супеидеалам Хопфа.

2.5. Суперкоалгебры и суперкомодули

Для простоты изложения материала супералгебры Хопфа были определены как объекты, дуальные аффинным групповым суперсхемам. Можно было сначала определить супералгебры Хопфа как, изначально приняв аксиомы 9, 10, 11. В этом разделе всетаки будут приведены некоторые стандартные понятия. Подробное изложение для случая обычных, неградуированных систем, можно найти в [4].

Суперпространство, наделенное коумножением и коединицей с соответствующими аксиомами называется суперкоалгеброй (соответственно, коалгеброй, если рассматривать неградуированные алгебры). Супералгебра, которая в то же время является и суперкоалгеброй, называется супербиалгеброй. Таким образом, супералгебра Хопфа — супербиалгебра с антиподом.

Определение 19. V называется правым суперкомодулем над суперкоалгеброй, если задано линейное отображение $\tau: V \to V \otimes C$, называемое кодействием суперкоалгебры на V, которое сохраняет градуировку и для которого коммутативны следующие диаграммы коммутативны:

Любая суперкоалгебра может быть наделена структурой суперкомодуля над собой, тогда кодействием является коумножение. Пусть V,W- (правые) суперкомодули над суперкоалгебрами C и B соответственно. Тензорное произведение $C\otimes B$ наделяется структурой суперкоалгебры по правилу $\Delta_{C\otimes B}(c)=(c\otimes b)=\sum (-1)^{|b_1||c_2|}(c_1\otimes b_1)\otimes (c_2\otimes b_2)$, где $\Delta_C(c)=\sum c_1\otimes c_2,\ \Delta_B(b)=\sum b_1\otimes b_2$. Более того, суперпространство $V\otimes W$ будет $C\otimes B$ -суперкомодулем относительно кодействия $\tau_{v\otimes W}(v\otimes w)=\sum (-1)^{|w_1||c_2|}(v_1\otimes w_1)\otimes (c_2\otimes b_2)$, где $\tau_V(v)=\sum v_1\otimes c_2,\ \tau_W(w)=\sum w_1\otimes b_2$.

Если $\varphi: C \to C'$ — гомоморфизм суперкоалгебр, то произвольный C-суперкомодуль будет и C'-суперкомодулем относительно кодействия $(id \otimes \varphi)_{\tau_V}$. Если C — супербиалгебра, то отображение $m: C \otimes C \to C$, индуцированное умножением, является гомоморфизмом суперкоалгебр. В частности, если V, W — левые -суперкомодули, то мы

получаем диагональное кодействие $(id\otimes m)_{\tau_{V\otimes W}}$ супербиалгебры C на $V\otimes W$. Более того $V\otimes W$ и $W\otimes V$ изоморфны как C-суперкомодули относительно изоморфизма перестановки $t:v\otimes w\mapsto (-1)^{|v||w|}w\otimes v,\ v\in V,\ w\in W.$

3. Супералгебры распределений и их связь с супералгебрами Ли

Супералгебры распределений позволяют установить связь аффинных групповых суперсхем с супералгебрами Ли, а введение функтора $\mathbf{Lie}(G)$ позволяет использовать функторный язык для изучения супералгебр Ли. Доказательства утверждений, приведенных в этом разделе, опущены. Их можно найти в [1, 5, 6].

3.1. Супералгебры распределений

Пусть X — аффинная суперсхема. Повторим определения, приведенные в [6] и [1]. Элемент из $\mathrm{Dist}_n(X,\mathcal{M}) = (K[X]/\mathcal{M}^{n+1})^*$ будем называть распределением на X с носителем в \mathcal{M} порядка $\leqslant n$, где \mathcal{M} — максимальный идеал супералгебры K[X]. Имеем

$$\bigcup_{n\geq 0} \mathrm{Dist}_n(X,\mathcal{M}) = \mathrm{Dist}(X,\mathcal{M}) \subseteq K[X]^*.$$

Если $g:X\to Y$ — морфизм аффинных суперсхем, то он порождает морфизм суперпространств $dg_{\mathcal{M}}:\mathrm{Dist}(X,\mathcal{M})\to\mathrm{Dist}(Y,(g^*)^{-1}(\mathcal{M}))$ такой, что

$$dg_{\mathcal{M}}(\mathrm{Dist}_n(X,\mathcal{M})) \subseteq \mathrm{Dist}_n(Y,(g^*)^{-1}(\mathcal{M})) \qquad \forall n \geqslant 0.$$

Если X = V(I) — замкнутая подсуперсхема в Y, то $\mathrm{Dist}(X,\mathcal{M})$ отождествляется с $\{\varphi \in \mathrm{Dist}(Y,\mathcal{M}) \mid \varphi(I) = 0\}$, где $I \subseteq \mathcal{M}$.

Если X — алгебраическая аффинная групповая суперсхема и $\mathcal{M} = \ker \varepsilon_X$, то $\mathrm{Dist}(X,\mathcal{M})$ обозначается как $\mathrm{Dist}(X)$. В этом случае $\mathrm{Dist}(X)$ имеет структуру супералгебры Хопфа с умножением $\varphi\psi(f) = \sum (-1)^{|\varphi||\psi|} \varphi(f_1) \psi(f_2)$ для $\varphi, \psi \in \mathrm{Dist}(X), f \in K[X]$, и коумножением $\Delta_X(f) = \sum f_1 \otimes f_2$, с единицей ε_X , коединицей $\varepsilon_{\mathrm{Dist}(X)}: \varphi \mapsto \varphi(1)$ и антиподом $s_{\mathrm{Dist}(X)}(\varphi)(f) = \varphi(s_X(f))$ для $\varphi \in \mathrm{Dist}(X)$ и $f \in K[X]$.

 $\mathrm{Dist}(X)$ — фильтрованная алгебра, т.е. $\forall m,n\geqslant 0\mathrm{Dist}_m(X)\mathrm{Dist}_n(X)\subseteq \mathrm{Dist}_{m+n}(X)$. Рассмотрим суперпространство $\mathrm{Lie}(X)=\{\varphi\in\mathrm{Dist}_1(X)\mid \varphi(1)=0\}$. Его можно наделить структурой супералгебры Ли, положив $[\varphi,\psi]=\varphi\psi-(-1)^{|\varphi||\psi|}\varphi\psi$.

Замечание 1. Супералгебра Ли не является алгеброй Ли в обычном смысле — аксиомы выполняются в учетом четности элементов, а именно $\forall \varphi, \psi, \rho \in \text{Lie}(X)$

$$[\varphi, \psi] = (-1)^{|\varphi||\psi|} [\psi, \varphi],$$

$$(-1)^{|\rho||\varphi|}[[\varphi,\psi],\rho] + (-1)^{|\psi||\rho|}[[\rho,\varphi],\psi] + (-1)^{|\varphi||\psi|}[\psi,[\rho,\varphi]] = 0.$$

Как супералгебра Хопфа $\mathrm{Dist}(X)$ кокоммутативна, т.е. $\sum \varphi_1 \otimes \varphi_2 = \sum (-1)^{|\varphi_1||\varphi_2|} \varphi_2 \otimes \varphi_1$.

3.2. Действие сопряжения и функтор ${\bf Lie}(G)$

Определение 20. Пусть $A \in \mathbf{SAlg}_K$. Супералгеброй дуальных чисел называется $A[\varepsilon_0, \varepsilon_1] = \{a + \varepsilon_0 b + \varepsilon_1 c \mid a, b, c \in A\}, \ |\varepsilon_i| = i, \ \varepsilon_i \varepsilon_j = 0, \ i, j \in \{0, 1\}.$

Имеем проективный $p_A:A[\varepsilon_0,\varepsilon_1]\to A$ и инъективный $i_A:A\to A[\varepsilon_0,\varepsilon_1]$ морфизмы супералгебр, определенные как $a+\varepsilon_0b+\varepsilon_1c\mapsto a$ и $a\mapsto a$ соответственно.

Определение 21. Функтором супералгебры Ли будем называть функтор $\mathbf{Lie}(G)$, определенный как

$$\mathbf{Lie}(G) = \left(G(A[\varepsilon_0, \varepsilon_1]) \stackrel{G(p_A)}{\longrightarrow} G(A) \right), \qquad A \in \mathbf{SAlg}_K.$$

Пусть V — суперпространство. Определим функтор V_a из категории \mathbf{SAlg}_K в категорию векторных суперпространств: $V_a(A) = V \otimes A$.

Лемма 2. Существует изоморфизм абелевых групповых функторов $\mathrm{Lie}(G)_a \simeq \mathrm{Lie}(G)$, который задается отображением

$$(v \otimes a)(f) = \varepsilon_G(f) + (-1)^{|a||f|} \varepsilon_{v \otimes a} v(f) a, \qquad v \in \text{Lie}(G) = (\mathcal{M}/\mathcal{M}^2)^*, a \in A, f \in K[G].$$

Для более подробной информации см. [5].

Если мы отождествляем $\mathrm{Lie}(G)\otimes A$ с $\mathrm{Hom}_K(\mathcal{M}/\mathcal{M}^2,A)$ при помощи отображения $(v\otimes a)(f)=(-1)^{|a||f|}v(f)a$, то вышеуказанный изоморфизм может быть представлен отображением

$$u \mapsto \varepsilon_G + \varepsilon_0 u_0 + \varepsilon_1 u_1, \qquad u \in \operatorname{Hom}_K(\mathcal{M}/\mathcal{M}^2, A).$$

Определение 22. Рассмотрим действие аффинной групповой суперсхемы G на функтор $\mathbf{Lie}(G)$:

$$(g,x)\mapsto G(i_a)(g)\,x\,G(i_A)(g)^{-1},\qquad g\in G(A),\ x\in \mathbf{Lie}(G)(A),\ A\in\mathbf{SAlg}_K.$$

Это действие называется сопряжением и обозначается Ad.

Лемма 3. Сопряжение линейно. В частности, оно порождает морфизм аффинных групповых схем $G \to \mathrm{GL}(\mathrm{Lie}(G))$.

4. Связные аффиные групповые суперсхемы

4.1.

Определение 23. Алгебраическая аффинная групповая суперсхема G = SSpA называется псевдосвязной, если $\bigcap_{n>0} \mathcal{M}^n = 0$, где $\mathcal{M} = \ker s_A$.

Лемма 4. Пусть G — алгебраическая аффинная групповая суперсхема. Суперидеал $I = \bigcap_{n\geqslant 0} \mathcal{M}^n$ является суперидеалом Хопфа, а аффинная групповая суперподсхема $G^{[0]} = V(I)$ нормальна и связна.

Доказательство. По определению $s_A(\mathcal{M}) = \mathcal{M}$.

$$\Delta_A(\mathcal{M}^n) \subseteq \sum_{0 \leqslant i \leqslant} \mathcal{M}^i \otimes \mathcal{M}^{n-i} \subseteq \bigcap_{0 \leqslant i \leqslant} (\mathcal{M}^i \otimes A + A \otimes \mathcal{M}^{n-i})$$

$$\Delta_A(I) \subseteq \bigcap_{n\geqslant 0} \Delta_A(\mathcal{M}^n) \subseteq \bigcap_{n\geqslant 0} (\mathcal{M}^n \otimes A + A \otimes \mathcal{M}^n) = I \otimes A + A \otimes I.$$

 $G^{[0]}$ называется nceedocesзной компонентой G. Очевидно, что G псевдосвязна тогда и только тогда, когда $G=G^{[0]}$.

Лемма 5 (Теорема Крулля о пересечении). Пусть $A - \kappa$ онечнопорожденная коммутативная супералгебра и $V - \kappa$ онечнопорожденный A-супер κ омодуль. Для любого суперидела $I \subseteq A \bigcap_{n \ge 0} I^n V = v \in V \mid \exists \ x \in I_0 : (1-x)v = 0.$

Утверждение 2. Пусть $\pi: G \to H$ — эпиморфизм алгебраических аффинных групповых суперсхем. Если char K=0, то порожденная эпиморфизмом короткая последовательность супералгебр Πu

$$0 \to \operatorname{Lie}(\ker \pi) \to \operatorname{Lie}(G) \xrightarrow{d\pi} \operatorname{Lie}(H) \to 0$$

является точной.

Лемма 6. Пусть G — алгебраическая аффинная груповая суперсхема, H_1, H_2 — суперподсхемы G, H_1 псевдосвязна. Тогда $H_1 \subseteq H_2 \Leftrightarrow \mathrm{Dist}(H_1) \subseteq \mathrm{Dist}(H_2)$, а если $\mathrm{char}\, K = 0$, то $H_1 \subseteq H_2 \Leftrightarrow \mathrm{Lie}(H_1) \subseteq \mathrm{Lie}(H_2)$

Пемма 7. Если G псевдосвязна или связна, то из Lie(G)=0 следует G=E. B частности, если char K=0 и G алгебраическая, то $G^{(0)}=G^{[0]}$.

Это важное утверждение позволяет пользоваться при рассмотрении алгебраических аффинных групповых суперсхем в случае поля нулевой характеристики использовать опредения связности и псевдосвязности как эквивалентные.

4.2.

Определение 24. Подфунктор $\mathbf{Z}(G)$ групового K-функтора G называется центральным, если H – подфунктор в G и $\forall A \in \mathbf{SAlg}_K$ H(A) –

Утверждение 3. Пусть G — аффинная групповая суперсхема. $\mathbf{Z}(G)$ — замкнутая аффинная групповая подсуперсхема в G.

 \square оказательство.

Утверждение 4. Если G связна, $\operatorname{char} K = 0$, то $\operatorname{Lie}(\mathbf{Z}(G)) = \mathbf{Z}(\operatorname{Lie}(G))$.

 $oxed{arDelta}$ оказательство.

Теорема 1. Пусть char K = 0, G - cвязная аффинная групповая суперсхема, I -максимальный абелев суперидеал в Lie(G). Существует $H \triangleleft G$: Lie(H) = I.

Доказательство. Обозначим L = Lie(G). Доказательство проведем индукцией по $\dim L$. Предположим, что если H — связная аффинная групповая суперсхема и $\dim \text{Lie}(H) < \dim L$, то утверждение выполнено для H.

Рассмотрим действие $\mathbf{Ad}: G \to \mathrm{GL}(I)$, $\ker \mathbf{Ad} = R$. Пусть $J = \mathrm{Lie}(R) = \{x \in L | [x,I] = 0\}$. Очевидно, $I \subseteq J$.

Если $\dim J \leqslant \dim L$, то по предположению индукции утверждение выполнено для R, т.е. $\exists \ H \lhd R : \mathrm{Lie}(H) = I$. Поскольку $H \lhd R$ и $R \lhd G$ как ядро \mathbf{Ad} , то $H \lhd G$, следовательно, утверждение выполнено для G.

Рассмотрим случай dim $J=\dim L$. Т.к. G алгебраическая, то dim $L<\infty\Rightarrow J=L$. Отсюда следует, что [L,I]=0, а в силу определения центра $I\subseteq \mathbf{Z}(L)$. По условию I — максимальный суперидеал $\Rightarrow I$ не может быть собственным подмножеством $\Rightarrow I=\mathbf{Z}(L)$. По лемме 4 получаем, что $I=\mathrm{Lie}(\mathbf{Z}(G))$, а $\mathbf{Z}(G)\lhd G$.

5. Разрешимость аффиных групповых суперсхем

Для того, чтобы сформулировать определение разрешимой супергруппы, сначала необходимо определить коммутант супергруппы.

Пусть S — алгебраическая матричная супергруппа. Рассмотрим отображение $S \times S \to S$, переводящее (x,y) в $xyx^{-1}y^{-1}$. Ядро I_1 соотвествующего отображения $K[S] \to K[S] \otimes K[S]$ состоит из функций, зануляющихся на всех коммутаторах из S; таким образом, замкнутое множество, им определяемое, является замыканием коммутаторов. Аналогично имеем отображение $S^{2n} \to S$, переводящее (x_1,y_1,\ldots,x_n,y_n) в $x_1y_1x_1^{-1}y_1^{-1}\cdots x_ny_nx_n^{-1}y_n^{-1}$. Соответствующее отображение $K[S] \to \otimes^{2n} K[S]$ имеет ядро I_n , определяющее замыкание произведения n коммутаторов. Очевидно, что $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$

Коммутаторная подгруппа в S — объединение произведений из n коммутаторов по всем n, поэтому идеалом функций, зануляющихся на S является $I = \bigcap I_n$. Замкнутое множество, определяемое идеалом I, является замыканием коммутаторной подгруппы. Это замкнутая нормальная подгруппа в S, которую будем называть коммутантом $\mathscr{D}S$. Итерируя эту процедуру, получаем цепочку замкнутых подгрупп \mathscr{D}^nS . Если S разрешима как абстрактрая группа, то последовательность \mathscr{D}^nS достигает $\{e\}$.

Все эти рассуждения могут быть проведены и в общем случае. Пусть G - аффинная групповая суперсхема над полем K. Имеем отображения $G^{2n} \to G$, которые соответствут $K[G] \to \otimes^{2n} K[G]$ с ядрами I_n , удовлетворяющими условию $I_1 \supseteq I_2 \supseteq \ldots$ Если $f \in I_{2n}$, то $\Delta(f)$ обращается в нуль на $K[G]/I_n \otimes K[G]/I_n$ в силу того, что при перемножении двух произведений по n коммутаторов образуется произведение 2n коммутаторов. Поэтому $I = \bigcap I_n$ определяет замкнутую подгруппу $\mathscr{D}S$.

Определение 25. Будем называть супергруппу G разрешимой, если \mathcal{D}^nG тривиальна для некоторого n.

Замечание 2. Все коммутаторы G(R) лежат в $\mathscr{D}G(R)$, $\mathscr{D}G$ - нормальная подгруппа в G.

Теорема 2. Пусть G – алгебраическая супергруппа. Если G связна, то и $\mathcal{D}G$ связна. Доказательство.

Утверждение 5. $I = \bigcap I_n$ - суперидеал Хопфа

Утверждение 6. $\mathscr{D}G$ – нормальная подгруппа в G.

Утверждение 7. $I_{n+1} \subseteq I_n$

Утверждение 8. I – наименьшая замкнутая подгруппа G, содержащая произведение любых коммутаторов

Утверждение 9. G абелева $\Leftrightarrow Lie(G)$ абелева.

6. Аналог теоремы Каца

Лемма 8. Обозначим $Lie(G) = L = L_0 \oplus L_1$. $Lie(G_{ev}) = L_0$.

$$\square$$
оказательство.

Лемма 9. $A\phi\phi$ инная групповая суперсхема G абелева \Leftrightarrow Lie(G) абелева.

Доказательство. Достаточно доказать, что $\mathrm{Dist}(G)$ абелева $\Leftrightarrow K[G]^*$ кокоммутативна.

Теорема 3 (Кац). Супералгебра Ли $L = L_0 \oplus L_1$ разрешима тогда и только тогда, когда разрешима алгебра Ли L_0 .

Доказательство можно найти в статье [2]. Теперь все готово для доказательства основной теоремы этой работы.

Теорема 4. Пусть char K = 0, G - связная алгебраическая аффинная групповая суперсхема. G разрешима \Leftrightarrow Lie(G) разрешима \Leftrightarrow G_{ev} разрешима.

Доказательство. a) Предположим, что G разрешима, т.е. для некоторого $n \in \mathbb{N}$

$$G \triangleright G' \triangleright G'' \triangleright \dots \triangleright G^{(n)} = 1.$$
 (13)

Рассмотрим абелев фактор G/G'. Отображение $\pi: G \to G/G'$ является эпиморфизмом алгебраических аффинных групповых суперсхем, следовательно по утверждению 2 имеем точную последовательность

$$0 \to \operatorname{Lie}(G') \to \operatorname{Lie}(G) \to \operatorname{Lie}(G/G') \to 0,$$

Откуда получаем, что $\text{Lie}(G') \subseteq \text{Lie}(G)$. Поскольку фактор G/G' абелев, то по лемме 9 Lie(G/G') абелева, а значит и фактор Lie(G)/Lie(G') = Lie(G/G') абелев. Рассматривая таким образом все факторы цепочки (13), получаем цепочку

$$\operatorname{Lie}(G) \rhd \operatorname{Lie}(G') \rhd \operatorname{Lie}(G'') \rhd \ldots \rhd \operatorname{Lie}(G^{(n-1)} \rhd 0,$$

в которой все факторы абелевы, то есть Lie(G) разрешима.

Обратно, предположим, что Lie(G) разрешима, то есть существует цепочка

$$\operatorname{Lie}(G) > I_1 > I_2 > \dots > I_n = 0. \tag{14}$$

Рассмотрим I_{n-1} . Т.к. $I_n=0$, то I_{n-1} — максимальный суперидеал $\mathrm{Lie}(G)$. При этом он абелев, как и все суперидеалы этой цепочки. Тогда по теореме 1 существует нормальная суперподсхема $H_{n-1} \triangleleft G$: $\mathrm{Lie}(H_{n-1}) = I_{n-1}$. Суперидеал I_{n-1} абелев \Rightarrow $\mathrm{Lie}(H_{n-1})$ абелева \Rightarrow абелевы H_{n-1} и G/H_{n-1} .

Теперь рассмотрим $\operatorname{Lie}(G)/I_{n-1} = \operatorname{Lie}(G/H_{n-1})$. $I_{n-1} - \operatorname{максимальный}$ абелев суперидеал $\operatorname{Lie}(G/H_{n-2}) \Rightarrow \exists H_{n-2} \lhd G/H_{n-1} : \operatorname{Lie}(H_{n-2}) = I_{n-2}$. Таким образом, мы получили $\operatorname{Lie}(H_{n-1}) \lhd \operatorname{Lie}(H_{n-2})$, а по лемме 6 получаем, что $H_{n-1} \lhd H_{n-2}$. Аналогичным образом продолжая разбирать цепочку (14) вверх, получаем цепочку

$$G \vartriangleright H_1 \vartriangleright \ldots \vartriangleright H_{n-2} \vartriangleright H_{n-1} \vartriangleright E$$

в которой все факторы абелевы, то есть G разрешима.

Таким образом, мы доказали, что G разрешима $\Leftrightarrow \mathrm{Lie}(G)$ разрешима.

б) По теореме 3 Lie(G) разрешима тогда и только тогда, когда разрешима $\text{Lie}(G)_0$. По лемме 8 $\text{Lie}(G)_0 = \text{Lie}(G_{ev})$, а из первой части доказательства следует, что $\text{Lie}(G_{ev})$ разрешима тогда и только тогда, когда G_{ev} разрешима. Таким образом доказана вторая эквивалентность, а с ней и вся теорема.

Заключение

Список литературы

- [1] J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Inc., Orlando, Florida, 1987.
- [2] V.G. Kac. Lie superalgebras. Advanced in Mathematics, 26:8–96, 1977.
- [3] A. Kleshchev. Linear and projective representations of symmetric groups. Cambridge University Press, 2005.
- [4] M.E. Sweedler. Hopf Algebras. W.A. Benjamin, Inc., New York, 1969.
- [5] W.C. Waterhouse. Introduction to Affine Group Schemes. Springer Verlag, 1979.
- [6] A.N. Zubkov. Affine quotients of supergroups. *Transformation Groups*, 14(3):713–745, 2009.
- [7] И.В. Аржанцев. Градуированные алгебры и 14-я проблема Гильберта. МЦНМО, Москва, 2009.
- [8] А.Н. Зубков. О некоторых свойствах общих линейных супергрупп и супералгебр Шура. Алгебра и логика, 45(3):257–299, 2006.
- [9] А. Деляну И. Букур. Введение в теорию категорий и функторов. Мир, Москва, 1972.
- [10] С. Маклейн. Категории для работающего математика. ФИЗМАТЛИТ, 2004.
- [11] И.Р. Шафаревич. Основы алгебраичческой геометрии. Наука, Москва, 1988.