

Comments on the Digital Preservation Repository

Survey of Digital Preservation Systems Karim B. Boughida and Sally Hubbard (The Getty Research Institute)

Daniel Davis

DLF Spring Forum 2007: Pasadena, California April 24th, 2007

Emergence of Digital Preservation Archives

- Most are small institutional or individual implementations
- Emergence of Large Gov't TDR/DPS
 - National Archives and Records Administration
 - Electronics Records Archive
 - Centralized / COTS Core / FOSS Components
 - Government Printing Office
 - Future Digital System
 - Centralized / COTS Core / FOSS Components
 - National Oceanic and Atmospheric Administration
 - Comprehensive Large Array Stewardship Systems
 - Replaces an existing custom production TDR
 - National Institutes of Health
 - National Health Records System
 - Decentralized / To Be Determined / Problematic Business Model
- Corporate DPS are showing up
 - Long tail media value and regulatory compliance

Hard Decisions

- There are always finite resources
 - You cannot keep everything
 - You cannot preserve everything to the same level of service
 - Good, Better, Best approach?
- To what degree do you use commercial products (COTS) and where?
 - COTS at the core may create vendor lock-in (watch indexes)
 - Reduce up-front risk and enable faster development
 - May hide key metadata needed for preservation
 - Are often not well designed to act as components in a service oriented architecture
 - Often lack key preservation features and must be adapted
- To what degree should you use (Free) Open-Source Software (FOSS)?
 - It is not really free but it is cheaper
 - Can enable control of your core mission
 - Most are far from mature
 - Lots of proof-of-concept, few products with sustainable business models

Preservation

- Geographical dispersion is essential (and a way to find the copies)
- COTS products are now supporting integrity and authenticity checks
- COTS products have been supporting media migration for some time
- Format migration is now being introduced
 - COTS and FOSS for format identification, validation, conversion
 - No completed fine-grained format registry for on-line use
- Other than print-equivalent formats and static-web sites, preserving essential characteristics is a work-in-progress
 - e.g. storing algorithms with scientific data sets
- A single, uniform item-level registry/resolver system is unlikely soon
- Innovative authoring and access systems usually ignore preservation
- Links between information must also be preserved
- A comprehensive ready-to-use system (overarching architecture) has not yet emerged but XML and service orientation is the best bet
- A homogeneous (mono-culture) implementation is guaranteed to fail

Items to consider

- If you look hard enough a DPS is needed as a component of any large enterprise system but rarely the whole purpose.
- Institutional questions (NARA-RLG TDR Checklist)
 - What is the sustaining business model?
 - What is the mission, policies, and requirements of the system?
 - What is your tolerance for risk?
- All things will change over a long enough period.
 - Architect for continuous change and non-uniformity
 - The system will never be finished
 - But the information must endure
- All things fail over a long enough period
- There a great economies of scale in infrastructure but little in creativity
- For the foreseeable future it will be a patchwork due to the human nature of funding, competition, cooperation and collaboration

Goals for enabling users

- Creation and publication of new forms of "information units"
- 2. Services to better enable business processes
- 3. **Knowledge** environments that captures semantic and factual relationships among information units
- 4. Promote information *re-use* and *contextualization*
- 5. Facilitate *collaborative activity* and capture information that is created as a byproduct of it
- 6. Preserve the information for future use

Sandy Payette - http://www.vala.org/vala2006/prog2006.htm

Overlap between Web and the Trusted Repository Paradigms

- Both the Web and Trusted Repositories are content-driven systems with overlapping needs
 - Content Creation and Capture, Collaboration
 - Content Storage differs on time scale optimizations
 - Content managers Creation and Collaboration
 - Trusted (preservation) repositories (archives) Long term storage, integrity, and preservation
 - Both require information lifecycle management capabilities
 - Support for other services and applications
- Both need a well-defined trust and security model

The Repository Dilemma

- Must implement a trusted core because:
 - Trust Model
 - All repositories have a significant trust requirement
 - Low fault tolerance for repository content custodianship
 - Specifiable (policy-driven) fault tolerance for mediation capabilities
 - Create (Ingest), Read, Update, and Delete must be transactional
 - Architectural Fit
 - Fit as a component in a SOA
 - Clustering, High-Availability, Transactions, Messaging
 - Federation
- But must also support the Web paradigm

- While Web 2.0 is a major implementation trend among emerging applications
- We can combine the Web, Web 2.0, WOA and SOA into an integrated system that leverages the best qualities of each while providing trusted persistence
 - Move volatility into data and technology stability into code and content.
 - Empower stakeholders with the (controlled) freedom to responsibly use, study, copy and change the system.
 - Embrace consumers as an integral part of the application and content development process.
 - Embrace Web mashups as important model to create composite enterprise applications and opportunistic user applications.
 - Use SOA to create composite services where high reliability and security is needed.
 - Add a preservation architecture as an overlay to Web/Internet architectures.
 - Add preservation capabilities as services.

