NOTAS DE CVV :: TEOREMA DO DIVERGENTE DE GAUSS EM \mathbb{R}^2

TIAGO MACEDO

§1. Motivação.

Lembre que, dados um campo de vetores $V: X \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ e uma curva $\gamma: [a, b] \to C \subseteq \mathbb{R}^2$ diferenciáveis, tais que $C \subseteq X$, o trabalho do campo V sobre a curva C é dado pela integral

$$\int_C V \bullet d\gamma = \int_a^b V(\gamma(t)) \bullet \gamma'(t) dt.$$

No lado direito da equação acima, o termo $V(\gamma(t)) \bullet \gamma'(t)$ vem da projeção do vetor $V(\gamma(t))$ na direção de $\gamma'(t)$, ou seja, na direção em que a curva está indo.

Observe que quando nós fazemos a projeção de $V(\gamma(t))$ na direção de $\gamma'(t)$, nós perdemos a informação de quanto é a componente de $V(\gamma(t))$ na direção perpendicular (normal) à $\gamma'(t)$.

Exemplo. Sejam $V: X \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ um campo de vetore diferenciável e $\gamma: [0,2] \to \mathbb{R}^2$ uma curva diferenciável, tais que im $(\gamma) \subseteq X$:

Suponha que $V(\gamma(1)) = (1, -3)$ e que $\gamma'(1) = (2, -1)$:

Observe que a projeção de $V(\gamma(1))$ em $\gamma'(1)$ é

$$\left(V(\gamma(1)) \bullet \frac{\gamma'(1)}{\|\gamma'(1)\|}\right) \frac{\gamma'(1)}{\|\gamma'(1)\|} = \left((1, -3) \bullet \frac{(2, -1)}{\sqrt{5}}\right) \frac{(2, -1)}{\sqrt{5}} = (2, -1).$$

Portanto $V(\gamma(1)) = (1, -3) \neq (2, -1)$. A diferença é (-1, -2). Observe que essa diferença é a projeção de $V(\gamma(1))$ na direção perpendicular (normal) à (2, -1). De fato, a direção normal à (2, -1) é (1, 2) e

$$\left(V(\gamma(1)) \bullet \frac{(1,2)}{\|(1,2)\|}\right) \frac{(1,2)}{\|(1,2)\|} = \left((1,-3) \bullet \frac{(1,2)}{\sqrt{5}}\right) \frac{(1,2)}{\sqrt{5}} = -(1,2).$$

O Teorema do divergente de Gauss (no caso de \mathbb{R}^2) nos dá uma maneira de calcular a integral de um campo $V: X \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ na direção normal à uma curva fechada $\gamma: [a, b] \to \mathbb{R}^2$. Intuitivamente, o resultado dessa integral é o fluxo do campo V através da curva γ (para fora).

§2. Teorema do divergente.

Para enunciar o Teorema do divergente, nós precisamos, primeiro, definir o que é o divergente de um campo de vetores.

Definição. Dado um campo de vetores $V: X \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ diferenciável, denote as suas coordenadas por $P, Q: X \subseteq \mathbb{R}^2 \to \mathbb{R}$, ou seja, V(x,y) = (P(x,y), Q(x,y)). O divergente de V é a função $\operatorname{div}(V): X \subseteq \mathbb{R}^2 \to \mathbb{R}$ definida por $\operatorname{div}(V) = P_x + Q_y$.

Exemplos.

- (a) Se V(x,y)=(x,y), então P(x,y)=x e Q(x,y)=y. Nesse caso, $P_x=1$, $Q_y=1$ e $\operatorname{div}(V)\colon\mathbb{R}^2\to\mathbb{R}$ é a função constante $\operatorname{div}(V)=2$.
- (b) Se V(x,y)=(y,x), então P(x,y)=y e Q(x,y)=x. Nesse caso, $P_x=0$, $Q_y=0$ e $\operatorname{div}(V)\colon\mathbb{R}^2\to\mathbb{R}$ também é uma função constante, $\operatorname{div}(V)=0$.
- (c) Se $V(x,y)=(x^2+xy,\ 2x+y^3)$, então $P(x,y)=x^2+xy$ e $Q(x,y)=2x+y^3$. Nesse caso, $P_x(x,y)=2x+y,\ Q_y(x,y)=3y^2$, e div $(V):\mathbb{R}^2\to\mathbb{R}$ é a função (não-constante) dada por div $(V)(x,y)=2x+y+3y^2$.

Exercício. Lembre que, para toda função diferenciável $F: X^{\circ} \subseteq \mathbb{R}^2 \to \mathbb{R}$, o seu gradiente é um campo de vetores $\nabla F: X^{\circ} \subseteq \mathbb{R}^2 \to \mathbb{R}^2$. Mostre que $\operatorname{div}(\nabla F) = 0$.

Agora suponha que $X \subseteq \mathbb{R}^2$ é uma região fechada e limitada, cuja fronteira é uma curva diferenciável fechada simples $\gamma \colon [a,b] \to C \subseteq \mathbb{R}^2$, e que $V \colon X \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ é um campo de vetores diferenciável tal que $C \subseteq X$. Denote V(x,y) = (P(x,y), Q(x,y)) e $\gamma(t) = (\mathsf{x}(t), \mathsf{y}(t))$.

O vetor tangente à γ em t é $\gamma'(t) = (\mathsf{x}'(t), \mathsf{y}'(t))$. Portanto $(\mathsf{y}'(t), -\mathsf{x}'(t))$ é um vetor normal à γ em t. (De fato, $(\mathsf{x}'(t), \mathsf{y}'(t)) \bullet (\mathsf{y}'(t), -\mathsf{x}'(t)) = 0$.) Observe que, se γ estiver orientada no sentido anti-horário (ou seja, com X sempre à sua esquerda), esse vetor normal aponta para fora da região X. Assim, a projeção do campo V na direção normal à γ é: $V \bullet (\mathsf{y}', -\mathsf{x}') = P\mathsf{y}' - Q\mathsf{x}'$. Logo o fluxo do campo V através da curva γ (para fora de X) é

$$\int_a^b V \bullet (\mathsf{y}', -\mathsf{x}') \, dt = \int_a^b (P\mathsf{y}' - Q\mathsf{x}') \, dt = \oint_\gamma -Q \, dx + P \, dy.$$

Usando o Teorema de Green na integral de linha do lado direito, obtemos...

Teorema (do divergente de Gauss).

$$\int_a^b V \bullet (y', -x') dt = \iint_X (P_x + Q_y) dx dy = \iint_X \operatorname{div}(V) dx dy.$$

Exercícios. Use o Teorema do divergente para calcular os seguintes fluxos.

- (a) Fluxo do campo V(x,y)=(x,y) através da circunferência de raio 1.
- (b) Fluxo do campo $V(x,y)=(x^2,0)$ através da elipse $\gamma(t)=(2\cos(t),\sin(t)),\ t\in[0,2\pi].$
- (c) Fluxo do campo V(x,y)=(0,y) através da fronteira do quadrado $X=[0,1]\times[0,1]$.
- (d) Fluxo do campo $V(x,y)=\left(\frac{-y}{x^2+y^2},\,\frac{x}{x^2+y^2}\right)$ através da fronteira do anel semicircular $X=\{(x,y)\in\mathbb{R}^2\mid y\geq 0,\ 1\leq x^2+y^2\leq 4\}.$