CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 23 FEBBRAIO 2012

Svolgere i seguenti esercizi, qiustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Scrivere la definizione di dominio di integrità e quella di campo. Fornire, ove possibile, un esempio di:

- (i) anello che non sia un dominio di integrità;
- (ii) dominio di integrità che non sia un campo;
- (iii) campo;
- (iv) campo che non sia un dominio di integrità.

Esercizio 2. (i) in \mathbb{Z} , il numero 4^{27} divide $1.203.721^4$?

- (ii) Determinare i numeri $m \in \mathbb{N}^{\#}$ tali che $[2]_m + [15]_m = [7]_m + [2]_m$. (iii) Determinare i numeri $m \in \mathbb{N}^{\#}$ tali che $[3]_m + [7]_m = [11]_m + [5]_m$ e $[3]_m \cdot [7]_m = [11]_m \cdot [5]_m$.

Esercizio 3. Si consideri l'applicazione

$$f \colon X \in \mathcal{P}(\mathbb{Z}) \longmapsto \begin{cases} -1 & \text{se } X \text{ è infinito} \\ \operatorname{rest}(|X|, 5) & \text{se } X \text{ è finito} \end{cases} \in \mathbb{Z}.$$

- (i) Determinare $f(\mathcal{P}(\mathbb{Z}))$.
- (ii) Per ogni $x \in f(\mathcal{P}(\mathbb{Z}))$ determinare un $X \in \mathcal{P}(\mathbb{Z})$ tale che f(X) = x.

Posto $K := \{x \in \mathbb{Z} \mid 1 \le x \le 10\}, \text{ sia } T = \{X \in \mathcal{P}(K) \mid f(X) = 0\}.$

- (iii) Caratterizzare, in termini dei loro ordini, gli elementi di T e determinare |T|, facendo uso di un'opportuna nozione di calcolo combinatorio.
- (iv) Stabilire se (T, \subseteq) è un reticolo; in caso di risposta affermativa dire se esso è distributivo e se è complementato.

Esercizio 4. Dare la definizione di polinomio irriducibile nell'anello dei polinomi su un campo. Enunciare il Teorema di Ruffini ed il Teorema di Ruffini generalizzato.

Nell'anello $(\mathbb{Z}_3[x], +, \cdot)$ si considerino i sottoinsiemi

$$A = \{x^2k \mid k \in \mathbb{Z}_3[x]\}, \qquad B = \{f \in \mathbb{Z}_3[x] \mid f(\bar{0}) = \bar{0}\}, \qquad e \qquad C = \{(x - \bar{1})h \mid h \in \mathbb{Z}_3[x]\}.$$

- (i) Verificare che A è chiuso rispetto a \cdot e +; verificare poi che (A, +) è un gruppo.
- (ii) B contiene A? Se sì, lo contiene strettamente?
- (iii) Descrivere $B \cap C$.
- (iv) Determinare la forma ed il numero dei polinomi di grado 4 appartenenti a $B \cap C$.
- (v) Determinare, se possibile, un polinomio di grado 4 appartenente a $B \cap C$ che sia prodotto di tre polinomi irriducibili.
- (vi) Determinare, se possibile, un polinomio di grado 4 appartenente a $B \cap C$ che sia prodotto di tre polinomi irriducibili e che ammetta $\bar{2}$ come radice.