

Articles you can write on your site

Shraddhesh Chaturvedi <shraddhesh1@gmail.com>

Sun, Sep 6, 2015 at 12:17 PM

To: Jitender Singh <jsinghdrdo@gmail.com>

OPTICS:

- 1. Explain optics of lens with one surface polished
- 2. Refraction at spherical surfaces and sign conventions.

Heat:

- 1. When can we apply ideal gas equation? When it is not valid?
- 2. What is CP and CV and their use in work calculations. Explain degrees of freedom for different type of molecules.

MECHANICS:

- 1. When and about which point we can / cannot apply conservation of momentum.
- 2. When can we apply energy conservation? When it is not applicable? It can be applied for rolling friction case but not for sliding friction.
- 3. Discussion of some problems on variable mass system.
- 4. Calculate moment of inertia of some regular shapes
- 5. Rolling and slipping of a wheel on an incline.
- 6. Non-inertial frames and solving problems in them. Use Free Body Diagrams to explain.
- 7. Discussion of friction force(mu-s and mu-k) and its direction in rectilinear and rotation motion.

HYDRO-STATICS and DYNAMICS:

- 1. Explain Archimedes principle with examples.
- 2. Explain Bernoulli's equation and continuity equation. When these can be used?

Waves:

- 1. Doppler's effect, sign convention and its use when reflection occurs.
- 2. Physics of standing waves, nodes and antinodes.
- 3. Interference of Young's double slit, how it changes if we place a mica sheet in front of one slit/ place a lens in front of one slit and some variations.

Electricity:

- 1. How to identify the capacitors / resistors in series and parallel?
- 2. How to apply Kirchoof's law Capacitors / Resistors?
- 3. Calculate Electric Field and potential of some regular shapes.(With and without Gauss Law)

Magnetism:

- 1. How to find the direction of magnetic force on a moving charge or a current carrying conductor?
- 2. Explain electromagnetic induction and solve some IIT problems.

AC Circuits:

1. Discuss LCR circuits and ways of solving them. Charging and discharging time calculations.

SHM and Circular Motion:

- 1. How to prove a motion is simple harmonic? Some sample problems.
- 2. Physics of Springs
- 3. Motion in a vertical plane non-uniform circular motion

Gravitation:

1. How to apply conservation of energy in presence of a potential barrier? Solve a problem.

Modern Physics:

1. Bohr's formulae for radius, energy etc for Hydrogen like atom with atomic number Z = 1. Derive some general expressions.

You can search below physics books at archive.org to give a link on your site:

How Things Work The Physics of Everyday Life	37,753 KB
AP_Physics_2_Student_Work_Book copy	7,685 KB
RautreauSavin-ModernPhysics	13,448 KB
Matveev-Electricity-and-Magnetism	41,297 KB
1000-solved-problems-in-modern-physics2	7,619 KB
lotsOfProbs	426 KB
intro_physics_1_review	2,875 KB
hyprob1	217 KB
S. P. Myasnikov, T. N. Osanova-Selected Problems on Physics-Mir Publishers	3,010 KB
B. S. Belikov-General methods for solving physics problems-Mir Publishers Mos	2,360 KB
kirodov-problems-in-atomic-and-nuclear-physics	43,521 KB
karasov-the-world-is-built-on-probability	23,354 KB
Bukhovtsev-et-al-Problems-in-Elementary-Physics	28,247 KB
Rinsky-Problems-in-Physics-Mir	22,016 KB
kan Sena-A-Collection-of-Questions-and-Problems-in-Physics	24,395 KB
🕍 Wolkenstein-Problems-in-General-Physics-Mir	28,025 KB
🕍 Zubov-Shalnov-Problems-in-Physics-Mir	19,734 KB