Data Mining Cluster Analysis: Advanced Concepts and Algorithms

Assignment Project Exam Help

https://powcoder.com Introduction to Data Mining, 2nd Edition Add WeChat powcoder by

Tan, Steinbach, Karpatne, Kumar

Outline

- Prototype-based clustering
 - Fuzzy c-means

 Mixture Model Clustering Assignment Project Exam Help

Hard (Crisp) vs Soft (Fuzzy) Clustering

- Hard (Crisp) vs. Soft (Fuzzy) clustering
 - For soft clustering allow point to belong to more than one cluster
 - For K-meanisg ngencerta Prejebje Etivenful Tetipn

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{tt} djst / powcoder_{j=1}^{k} w_{tn} = 1$$

Add WeChat powcoder : weight with which object x_i belongs to cluster

- To minimize SSE, repeat the following steps:
 - Fix and determine w(cluster assignment)
 - Fixw and recompute
- − Hard clustering:w∈ {0,1}

Soft (Fuzzy) Clustering: Estimating Weights

SSE(x) is minimized when $w_{x1} = 1$, $w_{x2} = 0$

Fuzzy C-means

Objective function

p: fuzzifier (p > 1)

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{ij}^{p} dist(\mathbf{x}_{i}, \mathbf{c}_{j})^{2} \qquad \sum_{j=1}^{k} w_{ij} = 1$$
Assignment Project Exam Help

- : weight with which object belongs to cluster
- a power for the height not powersoribe and controls how "fuzzy" the clustering is
- To minimize objective function, repeat the following:
 - Fix and determinew
 - Fixwand recompute
- Fuzzy c-means clustering:*w*∈[0,1]

Fuzzy C-means

SSE(x) is minimized when w_{x1} = 0.9, w_{x2} = 0.1

Fuzzy C-means

Objective function:

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{m} w_{ij}^{p} dist(\boldsymbol{x}_{i}, \boldsymbol{c}_{j})^{2} \qquad \sum_{j=1}^{k} w_{ij} = 1$$

- Assignment Project Exam Help
 Initialization: choose the weights w_{ij} randomly https://powcoder.com
- Repeat: Add WeChat p_{ij}^{m} w_{ij} k_{ij}^{m} – Update centroids:
 - Update weights:

$$w_{ij} = \left(\frac{1}{\operatorname{dist}}(\boldsymbol{x}_i, \boldsymbol{c}_j) \boldsymbol{\dot{\iota}} \boldsymbol{\dot{\iota}} 2\right)^{\frac{1}{p-1}} \sum_{i=1}^{k} \left(\frac{1}{\operatorname{dist}}(\boldsymbol{x}_i, \boldsymbol{c}_j) \boldsymbol{\dot{\iota}} \boldsymbol{\dot{\iota}} 2\right)^{\frac{1}{p-1}} \boldsymbol{\dot{\iota}} \boldsymbol{\dot{\iota}}$$

Fuzzy K-means Applied to Sample Data

An Example Application: Image Segmentation

- Modified versions of fuzzy c-means have been used for image segmentation
 - Especially fMRI images (functional magnetic resonar lessing less) troject Exam Help
- References https://powcoder.com

Gong, Maoguo, Yan Liang, Jiao Shi, Wenping Ma, and Jingjing Ma. "Fuzzy c-means clustering with local information and kernel metric for image segmentation." *Image Processing, IEEE Transactions on* 22, no. 2 (2013): 573-584.

From left to right: original images, fuzzy c-means, EM, BCFCM

 Ahmed, Mohamed N., Sameh M. Yamany, Nevin Mohamed, Aly A. Farag, and Thomas Moriarty. "A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data." *Medical Imaging, IEEE Transactions on* 21, no. 3 (2002): 193-199.

Hard (Crisp) vs Soft (Probabilistic) Clustering

- Idea is to model the set of data points as arising from a mixture of distributions
 - Typically, normal (Gaussian) distribution is used
 - But other distributions have been very profitably used Assignment Project Exam Help
- Clusters are found the content of the statistical distributions
 - Can use a k-means like algorithm, called the Expectation-Maximization (EM) algorithm, to estimate these parameters
 - Actually, k-means is a special case of this approach
 - Provides a compact representation of clusters
 - The probabilities with which point belongs to each cluster provide a functionality similar to fuzzy clustering.

The Normal Distribution

Data. Heights of 14-year-old girls: 1.34, 1.5, 1.43, 1.52, 1.60, 1.58, 1.49,

Formula $\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$

Assignment Project Exam Help

Changing μ shifts the https://powcoder.com

μ: The mean/median/expectation σ (sigma): Standard deviation

Probability density function (PDF)

Note constants:

 $\pi = 3.14159$

e=2.71828

Multivariate Gaussian

Each data point has multiple variables (e.g. height and weight of a person)

Multivariate Gaussian

(to observe the shapes, use: http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html)

Bivariant Gaussian distribution (scatter plot)

https://en.wikipedia.org/wiki/Covariance

Mixture of 3 Gaussians

Add WeChat powcoder

Probability density function (pdf) of $p(\mathbf{x})$

Sampling from a mixture model

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \underline{\mu_k}, \underline{\Sigma_k})$$

Sampling from a Mixture model

```
Generate u = uniform random number between 0 and 1
If u < \pi_1
generate x \sim N(x \mid \mu_1, \Sigma_1)
elseif u < \pi_1 + \pi_2 Assignment Project Exam Help
     generate x hthes://powepoder.com
                      Add WeChat powcoder
elseif u < \pi_1 + \pi_2 + ... + \pi_{K-1}
     generate x \sim N(x \mid \mu_{K-1}, \Sigma_{K-1})
else
     generate x \sim N(x \mid \mu_{\kappa}, \Sigma_{\kappa})
```

Clustering problem using Gaussian mixture model

Given a set of training data, which are produced by Gaussian mixture models, how can you figure out each component Gaussian distribution?

Assignment Project Exam Help

EM-based clustering algorithm (Expectation Maximization)

Expectation stage

The initial estimated parameters are not accurate because you don't really know the "membership" of these data points. So, in the expectation stage, we will re-evaluate the membership distribution by computing a "latent" variable z_nk ().

For hard clustering, z_nk = 1 if the data point n comes from the kth component Gaussian (or 0 if not). For soft/fuzzy clustering, z_nk is the weight of the data point n comes from the kth component Gaussian. Thus, it is between 0 and 1.

The sketch of the EM Algorithm

What EM proposes to do:

- compute p(Z|X,theta), the posterior distribution over z_nk, given our current best guess at the values of theta
 Assignment Project Exam Help
- 2) compute the expected value of the log likelihood ln(p(X,Z|theta)) with respect to the distribution p(Z|X,theta) https://powcoder.com
- 3) find theta_new that maximizes that function.
 This is our new heat put seat the tale of tale of
- 4) iterate...

Theta is the parameters for a Gaussian distribution. Z is the contribution of each sample to a model

Gaussian Mixture example

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

EM produces "soft" labeling

each point makes a weighted contribution to the estimation of ALL components

Formal equations of EM for GMMs

$$\mathbf{E} \qquad \mathbf{\gamma}(z_{nj}) \; = \; \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_k \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \qquad \text{ownership weights (soft labels)}$$

$$\mu_{j} = \frac{\sum_{n=1}^{N} \gamma(z_{ni}) (\mathbf{x}_{n} - \mu_{j})^{\mathsf{T}}}{\sum_{n=1}^{N} \gamma(z_{ni}) (\mathbf{x}_{n} - \mu_{j})^{\mathsf{T}}} \sum_{n=1}^{N} \gamma(z_{ni}) (\mathbf{x}_{n} - \mu_{j})^{\mathsf{T}}$$

$$\pi_j = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nj})$$
 mixing weights

Alternate E and M steps to convergence.

You need to know how to apply EM to one-dimensional data points

Probabilistic Clustering Applied to Sample Data

An example for 1 dimensional samples

Credit: The Elements of Statistical Learning by T.
 Hastie, R. Tibshirani, J. Friedman

Consider the following data set:.

Assignment Project Exam Help									
-0.39		0.94						_	5.53
0.06	0.48	1.01	https	/1 <mark>180</mark> 1	weod	er:ec	17 460	5.28	6.22

- Model the dansity of the data points
- A simple and common way: single Gaussian model

From histogram of the data points, single Gaussian model is poor

Gaussian mixture model with 2 components

Mixture Model

Example

An example of Gaussian mixture model with 2 components.

Sample data points generated from the model

32 A, 19
B.
B:
mean=120
9/19=63.6.
What is
the
standard
deviation
of B?

Mixture model learning

Sample Result

- Due to the apparent bi-modality
 Single Gaussian distribution would not be appropriate
- Assignment Project Exam Help
 A simple mixture model for density estimation
- Associated EMtpolg/prithronder.comying out maximum likelihood estimation Add WeChat powcoder

Goal: figure out the two distributions

- Two separate underlying regimes
 → instead model Y as mixture of two normal distributions:
 - $Y_1 \sim N(\mu_1, \sigma_1^2)$ $Y_2 \sim \text{Alsgingnent Project Exam Help}$ $Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2$

where $\Delta \in \{0, 1\}$ whith $\Delta \in \{0, 1\}$ where $\Delta \in \{$

- Generative representation is explicit: generate a $\Delta \in \{0, 1\}$ with probability We Chat powcoder
- Depending on outcome, deliver Y_1 or Y_2

```
Generate u = uniform random number between 0 and 1 If u < \pi_1 generate x \sim N(x \mid \mu_1, \Sigma_1) elseif u < \pi_1 + \pi_2 generate x \sim N(x \mid \mu_2, \Sigma_2)
```

Latent variable

- Maximum likelihood estimates: μ_1 and σ_1^2 sample mean and variance for those data with $\Delta_i=0$ μ_2 and σ_2^2 sample mean and variance for those data with $\Delta_i=1$
- Estimate of $\pi^{\text{two-intro}}$ by the propertion of $\Delta_i = 1$
- Δ_i is unknowhed We Caltitute play be integrated by the substituting for each Δ_i in its expected value $\gamma_i(\theta) = E(\Delta_i | \theta, \mathbf{Z}) = \Pr(\Delta_i = 1 | \theta, \mathbf{Z})$
- γ_i is also called *responsibility* of model 2 for observation i

Algorithm

EM algorithm for two-component Gaussian mixtures:

1. Take initial guesses for the parameters

$$\hat{\mu}_1$$
, $\hat{\sigma}_1^2$, $\hat{\mu}_2$, $\hat{\sigma}_2^2$, $\hat{\pi}$

2. Expectation Step: compute the responsibilities. Exam Help
$$\hat{\gamma}_i = \frac{\hat{\pi}\phi_{\theta_2}^{\text{SSISMMENT Project Exam Help}}{(1-\hat{\pi})\phi_{\hat{\theta}_1}(y_i) + \hat{\pi}\phi_{\hat{\theta}_2}(y_i)}, i = 1, 2, ..., N$$

$$\text{https://powcoder.com}$$

3. Maximization Step: Compute the weighted means and variances powcoder

$$\begin{split} \widehat{\mu}_1 &= \frac{\sum_{i=1}^N (1-\widehat{\gamma}_i) y_i}{\sum_{i=1}^N (1-\widehat{\gamma}_i)}, \quad \widehat{\sigma}_1^2 = \frac{\sum_{i=1}^N (1-\widehat{\gamma}_i) (y_i-\widehat{\mu}_1)^2}{\sum_{i=1}^N (1-\widehat{\gamma}_i)} \\ \widehat{\mu}_2 &= \frac{\sum_{i=1}^N \widehat{\gamma}_i y_i}{\sum_{i=1}^N \widehat{\gamma}_i}, \qquad \widehat{\sigma}_2^2 = \frac{\sum_{i=1}^N \widehat{\gamma}_i (y_i-\widehat{\mu}_2)^2}{\sum_{i=1}^N \widehat{\gamma}_i} \\ \text{and the mixing probability} \end{split}$$

$$\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_i / N$$

4. Iterate steps 2 and 3 until convergence

Initialization

- Construct initial guesses for $\hat{\mu}_1$ and $\hat{\mu}_2$: choose two of the y_i at random
- Both $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$ set equal to the overall sample variance $\sum_{i=1}^{N} (y_i - \bar{y})^2 / N$
- Mixing proportion $\hat{\pi}$ can be started at the value

e.g. at one iteration, the contribution of y1 to model 1 is 0.3 and to model 2 is 0.7.

Sample y2 to model1's contribution is 0.2 and to model 2 is 0.8.

Then the mean of model 1 from these two samples is (y1*0.3+y2*0.2)/(0.3+0.2)

Example output

Example of Running EM

The final maximum likelihood estimates:

$$\hat{\mu}_1 = 4.62,$$
 $\hat{\sigma}_1^2 = 0.87$ $\hat{\mu}_2 = 1.06,$ $\hat{\sigma}_2^2 = 0.77$ Assignment Project Exam Help

The estimated Gaussian mixture density from this procedure (solid red Purve), along with the responsibilities (dotted green curve):

	iterations	J	$\widehat{\pi}$
	1		0.485
	5		0.493
	10		0.523
)	15		0.544
	20		0.546

Responsibility of each data point to two distributions

Probabilistic Clustering: Dense and Sparse Clusters

Problems with EM

- Convergence can be slow
- Only guarantees finding local maxima Assignment Project Exam Help
- Makes some significant statistical assumptions

Add WeChat powcoder