AMENDMENTS TO THE CLAIMS

Docket No.: 5000-0103PUS2

(Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I

where the variables have the following meanings:

 $R^1,\ R^2\ are\ hydrogen,\ nitro,\ halogen,\ eyano,\ C_1\text{-}C_6\text{-alkyl},\ C_1\text{-}C_6\text{-haloalkyl},\ C_1\text{-}C_6\text{-alkoxy},$ $C_1\text{-}C_6\text{-haloalkoxy},\quad C_1\text{-}C_6\text{-alkylthio},\quad C_1\text{-}C_6\text{-haloalkylsulfinyl},\quad C_1\text{-}C_6\text{-haloalkylsulfinyl},$ $C_1\text{-}C_6\text{-haloalkylsulfinyl},\ C_1\text{-}C_6\text{-alkylsulfonyl};$

R3 is hydrogen, halogen or C1-C6-alkyl;

 $R^4, R^5 \text{ are hydrogen, halogen, eyano, nitro, } C_1\text{-}C_4\text{-}alkyl, } C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl, } di(C_1\text{-}C_4\text{-}alkyl)\text{-}amino\text{-}C_1\text{-}C_4\text{-}alkyl, } [2,2\text{-}di(C_1\text{-}C_4\text{-}alkyl)\text{-}1\text{-}hydrazino]\text{-}} C_1\text{-}C_4\text{-}alkyl, } C_1\text{-}C_4\text{-}$

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl: or

R4 and R5 together with the corresponding carbon from a carbonyl or thiocarbonyl group;

Docket No.: 5000-0103PUS2

 R^6 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -halogalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;

R7 is hydrogen or C1-C4-alkyl;

R8 is C1-C4-alkyl;

X is CR¹⁰R¹¹:

Y is O. S. or NR12:

R9, R12 are hydrogen or C1-C4-alkyl;

 R^{10} , R^{11} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -haloalkoxycarbonyl or CONR⁷R⁸; or

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² together form a C₂-C₆-alkane-diyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R15 is a pyrazole of the formula II which is linked in the 4-position

where

R¹⁶ is C₁-C₆-alkyl;

Z is H or SO₂R¹⁷;

R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

with the exception of

 $\label{lem:condition} 4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-di-methyl-5-hydroxy-l\ H-pyrazol$

or an agriculturally useful salt thereof.

 (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula 1 as claims in claim 1, where the variables have the following meanings:

 $R^1,\ R^2\ are\ hydrogen,\ nitro,\ halogen,\ cyano,\ C_1\text{-}C_6\text{-alkyl},\ C_1\text{-}C_6\text{-haloalkyl},\ C_1\text{-}C_6\text{-alkylthio},\ C_1\text{-}C_6\text{-alkylthio},\ C_1\text{-}C_6\text{-alkylsulfinyl},\ C_1\text{-}C_6\text{-haloalkylsulfinyl},\ C_1\text{-}C_6\text{-haloalkylsulfinyl},\ C_1\text{-}C_6\text{-haloalkylsulfinyl};$

R3 is hydrogen, halogen or C1-C6-alkyl;

 R^4 , R^5 are hydrogen, halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, di(C_1 - C_4 -alkoxy)- C_1 - C_4 -alkyl, di(C_1 - C_4 -alkyl)-amino- C_1 - C_4 -alkyl, [2,2-di(C_1 - C_4 -alkyl)-1-hydrazino]- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -

 $C_4\text{-alkoxy-}C_2\text{-}C_4\text{-alkoxy},\ C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-alkyl}\text{-alkyl}\text{-thio},\ C_1\text{-}C_4\text{-alkyl}\text{-alkyl})\text{amino},\ COR^6,\ phenyl\ or\ benzyl,\ it\ being\ possible\ for\ the\ two\ last-mentioned\ substituents\ to\ be\ fully\ or\ partially\ halogenated\ and/or\ to\ have\ attached\ to\ them\ one\ to\ three\ of\ the\ following\ groups:\ nitro,\ cyano,\ C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-alkoxy}\ or\ C_1\text{-}C_4\text{-haloalkyy};\ or$

 $R^4 \ and \ R^5 \ together form \ a \ C_2\text{--}C_6\text{--alkanediyl chain which can be mono- to tetrasubstituted}$ by $C_1\text{--}C_4\text{--alkyl} \ and/or \ which \ can \ be \ interrupted \ by \ oxygen \ or \ by \ a \ nitrogen \ which \ is$ unsubstituted or substituted by $C_1\text{--}C_4\text{--alkyl}; \ or$

 $\ensuremath{R^4}$ and $\ensuremath{R^5}$ together with the corresponding carbon from a carbonyl or thiocarbonyl group;

R⁶ is C₁-C₄-alkyl, C₁-C₄-halogalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₆-alkenyloxy, C₁-C₆-alkenyloxy or NR⁷R⁸:

R⁷ is hydrogen or C₁-C₄-alkyl;

R⁸ is C₁-C₄-alkyl;

X is CR10R11;

Y is O, S, or NR¹²;

R9, R12 are hydrogen or C1-C4-alkyl;

 $R^{10},\ R^{11}\ are\ hydrogen,\ C_1-C_4-alkyl,\ C_1-C_4-haloalkyl,\ C_1-C_4-alkoxycarbonyl,\ C_1-C_4-haloalkyl,\ C_1-C_4-alkoxycarbonyl,\ C_1-C_4-haloalkyl,\ C_1-C_4-alkoxycarbonyl,\ C_1-C_4-alkyl,\ C_1-C_4-alkyl,\ C_1-C_4-alkoxycarbonyl,\ C_1-C_4-alkyl,\ C_1-C_4-alkyl,\ C_1-C_4-alkoxycarbonyl,\ C_1-C_4-alkyl,\ C_$

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

5

R15 is a pyrazole of the formula II which is linked in the 4-position

Docket No.: 5000-0103PUS2

where

R16 is C1-C6-alkyl:

Z is H or SO₂R¹⁷;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy:

R¹⁸ is hydrogen or C₁-C₆-alkyl;

with the exception of

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-di-methyl-5-

hydroxy-1H-pyrazol

or an agriculturally useful salt thereof.

- 3. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula I as claimed in claim 1 or 2, where \mathbb{R}^3 is hydrogen.
- (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of formula 1 as claimed in claim 1 or 2, where

R1, R2 are nitro, halogen, cyano, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-

haloalkoxy, C1-C6-alkylthio, C1-C6-haloalkylthio, C1-C6-alkylsulfinyl, C1-C6-haloalkylsulfinyl,

C1-C6-alkylsulfonyl or C1-C6-haloalkylsulfonyl.

5. - 7. (Cancelled)

8. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 1 or 2, where

R4 is halogen, nitro, C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxycarbonyl-C1-

 $C_4\text{-alkyl},\ C_1\text{-}C_4\text{-alkyl}\text{thio-}C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-cyanoalkyl},\ C_3\text{-}C_8\text{-cycloalkyl},\ C_1\text{-}C_2\text{-alkyl}$

C4-alkoxy, C1-C4-alkoxy-C2-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio,

di(C1-C4-alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned

substituents to be fully or partially halogenated and/or to have attached to them one to three of

the following groups: nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-

haloalkoxy;

R5 is hydrogen or C1-C4-alkyl; or

R4 and R5 together form a C2-C6-alkanediyl chain which can be mono- to tetrasubstituted

by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is

unsubstituted or substituted by C1-C4-alkyl.

9. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 1 or 2, where

 $R^4 \ is \ C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}haloalkyl, \ C_1\text{-}C_4\text{-}alkoxycarbonyl or \ CONR}^7 R^8;$

R5 is hydrogen or C1-C4-alkyl; or

 $R^4 \ and \ R^5 \ together form \ a \ C_2\text{--}C_6\text{-alkanediyl chain which can be mono- to tetrasubstituted}$ by $C_1\text{--}C_4\text{-alkyl}$ and/or which can be interrupted by oxygen or by a nitrogen which is

unsubstituted or substituted by C1-C4-alkyl.

10. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 1 or 2, where R4 and R5 are hydrogen.

11. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula 1 as claimed in claim 1 or 2, where R18 is hydrogen.

12. - 15. (Cancelled)

16. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 1 or 2, where

R4 is halogen, nitro, C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkyl, C1-C4-alkoxycarbonyl-C1-

 $C_4\text{-alkyl},\ C_1\text{-}C_4\text{-alkyl}\text{thio-}C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-cyanoalkyl},\ C_3\text{-}C_8\text{-cycloalkyl},\ C_1\text{-}C_2\text{-alkyl}$

C4-alkoxy, C1-C4-alkoxy-C2-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-haloalkylthio,

di(C1-C4-alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned

substituents to be fully or partially halogenated and/or to have attached to them one to three of

Application No. 09/748,006 Amendment dated November 15, 2006 Reply to Office Action of May 15, 2006

the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy:

R5 is hydrogen or C1-C4-alkyl; or

 R^4 and R^5 together form a C_2 - C_0 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a C_2 - C_6 -alkane-diyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

17. - 20. (Cancelled)

21. (Previously Presented) A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 1 or 2 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the information of crop protection products.

22. - 23. (Cancelled)

1

24. (Currently Amended) A 3-heterocyclyl-substituted benzoyl compound of formula

9 ADM/mao

Docket No.: 5000-0103PUS2

where the variables have the following meanings:

 R^1 . R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

 R^4 is halogen, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy-carbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R5 is hydrogen or C1-C4-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

R⁶ is hydrogen, C₁-C₄-alkyl, C₁-C₄-halogalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkynyloxy or NR⁷R⁸;

R7 is hydrogen or C1-C4-alkyl;

R⁸ is C₁-C₄-alkyl;

X is Θ , S, NR^9 , CO or $CR^{10}R^{11}$;

Y is O, or S, NR¹² [[or CO]];

R9, R12 are hydrogen or C1-C4-alkyl;

 $R^{10},\ R^{11}\ \text{ are hydrogen},\ C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-alkoxycarbonyl},\ C_1\text{-}C_4\text{-haloalkoxycarbonyl},\ C_1\text{-}C_4\text{-haloalkoxycarbonyl},\ C_1\text{-}C_4\text{-alkoxycarbonyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-alkoxycarbonyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1$

R15 is a pyrazole of the formula II which is linked in the 4-position

where

R16 is C1-C6-alkyl:

Z is H:

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R18 is hydrogen or C1-C6-alkyl;

where X and Y are not simultaneously sulfur;

Docket No.: 5000-0103PUS2

or an agriculturally useful salt thereof.

(Currently Amended) A 3-heterocyclyl-substituted benzoyl compound of formula
1 as claimed in claim 24 where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

R³ is hydrogen, halogen or C₁-C₆-alkyl;

 R^4 is halogen, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -eyanoalkyl, C_3 - C_8 -eycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkylthio, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R5 is hydrogen or C1-C4-alkyl; or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

 $R^6 \ is \ C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}halogalkyl. \ C_1\text{-}C_4\text{-}alkoxy, \ C_1\text{-}C_4\text{-}alkoxy-} C_2\text{-}C_4\text{-}alkoxy, \ C_1\text{-}C_4\text{-}alkoxy, \ C_1\text{-}C_4\text{-}a$

R⁷ is hydrogen or C₁-C₄-alkyl;

R⁸ is C₁-C₄-alkyl;

X is O. S. NR9, CO or CR10R11;

Y is O, S, or NR¹² [[or CO]];

R9, R12 are hydrogen or C1-C4-alkyl;

 $R^{10},\ R^{11}\ are\ hydrogen,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ C_1\text{-}C_4\text{-}alkoxycarbonyl,\ C_1\text{-}C_4-}$ haloalkoxycarbonyl or $CONR^7R^8; or$

R¹⁵ is a pyrazole of the formula II which is linked in the 4-position

where

Z is H:

R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy:

R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously sulfur;

or an agriculturally useful salt thereof.

26. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 24, where R3 is hydrogen.

27. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 24, where

R1, R2 are nitro, halogen, cvano, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-

haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl,

C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl.

28. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 24, where

R4 is C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxycarbonyl or CONR7R8:

R5 is hydrogen or C1-C4-alkyl; or

R4 and R5 together form a C2-C6-alkanediyl chain which can be mono- to tetrasubstituted

by C1-C4-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is

unsubstituted or substituted by C1-C4-alkyl.

29. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 24, where R18 is hydrogen.

30. (Cancelled)

31. (Previously Presented) A 3-heterocyclyl-substituted benzoyl compound of

formula I as claimed in claim 24, where

 $R^4 \ is \ halogen, \ nitro, \ C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}alkoxycarbonyl-}C_1\text{-}C_2\text{-}alkyl, \ C_1\text{-}C_4\text{-}alkyl, \ C_1\text$

 $C_4\text{-alkyl},\ C_1\text{-}C_4\text{-alkylthio-}C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-haloalkyl},\ C_1\text{-}C_4\text{-cyanoalkyl},\ C_3\text{-}C_8\text{-cycloalkyl},\ C_1\text{-}C_2\text{-alkyl},\ C_2\text{-}C_3\text{-cycloalkyl},\ C_3\text{-}C_3\text{-cycloalkyl},\ C_3\text{-cycloalkyl},\ C_3\text{-}C_3\text{-cycloalkyl},\ C_3\text{-}C_3\text{-cycloalkyl},\ C_3\text{-}C_3\text{-cycloalkyl},\ C_3\text{-}C_3\text{-cycloalkyl},\ C_3\text{-$

C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio,

di(C1-C4-alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned

substituents to be fully or partially halogenated and/or to have attached to them one to three of

the following groups: nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-

haloalkoxy;

R5 is hydrogen or C1-C4-alkyl; or

R4 and R5 together form a C2-C6-alkanediyl chain which can be mono- to tetrasubstituted

by C1-C4-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is

unsubstituted or substituted by C1-C4-alkyl; or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} together form a $C_2\text{-}C_6\text{-alkane-diyl}$ chain which can

be mono- to tetrasubstituted by C1-C4-alkyl and/or interrupted by oxygen or by a nitrogen which

is unsubstituted or substituted by C1-C4-alkyl.

32. (Previously Presented) A composition comprising a herbicidally active amount of

at least one 3-heterocyclyl-substituted benzoyl compound of formula I as defined in claim 24 or

25 or of an agriculturally useful salt thereof, and auxiliaries conventionally used for the

information of crop protection products.

33. - 34. (Cancelled)

 (Previously Presented) A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in claim 2, where Z is SO₂R¹⁷.

 (Previously Presented) A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in claim 2, where Z is hydrogen.

16 ADM/mao