Sec. 2.2 Examples of Linear Programming Problems

LP
$$\rightarrow$$
 single linear function $y = \frac{a}{x} + b$

Yate per unit of x

#(units)

Ex.1 (the diet problem): How to determine the most economical diet that satisfies the basic minimum nutritional needs for good health? Formulate this as a LP. Assume that the values of a, b, and c in the table below are given.

units proposed	201	xr	· ·	Xn	mini requir.
Foods →	F,	F ₂	V	Fn	
I_1 (ingredient) \downarrow	A an			ain	Ь
Ir					b2
	(nutritio	nal conten	of each		
Im	amp			amn	bm
unit costs \$	c,	Cr		Cn	

Sol. Step 1. understand/organize given info (see the given data table above).

Step 2. Formulation in individual variables. let $x_i = \text{``}\#(\text{units})$ of food $i\text{''} \ge 0$, i=1, ...,n. (shown in table)

ingredient j requirement:

$$\begin{array}{c|c}
\hline
a_{j_1}x_{l+1} + a_{j_2}x_{l+1} + a_{j_n}x_n
\end{array} \Rightarrow \begin{array}{c|c}
b_j
\end{array}$$

$$\begin{array}{c|c}
c_j \leq m
\end{array}$$
total cost: $c_1x_{l+1} + \cdots + c_nx_n$

Step 3. Compact formulation (in vector-matrix):

Step 4. std LP: ...

Step 5. Solve std LP. (not www)

Step 6. State answer (at east x^* , z^*). #

	Units proposed	X ₁	X ₂	<u>X</u> n	mini requir.
	Foods >	F ₁	F ₂	 <u>Fn</u>	
	I_1 (ingredient) \downarrow	a ₁₁	a ₁₂	a _{1n}	b ₁
)	I_2				b ₂
		(nutritio			
	<u>I</u> m	a _{m1}	a _{m2}	<u>a_{mn}</u>	<u>b</u> m
	unit costs \$	C ₁	C ₂	<u>C</u> n	

Ex.3 (shipping/transportation, e.g. automobiles): $a_1 b_2 c_3 - b_4 b_4$

Assembly plants Dealers $a_1 \xrightarrow{\chi_{ij}} a_t \xrightarrow{c_{ij}} b_1$... $(x_{ij} \text{ at unit cost } c_{ij})$... $a_m \xrightarrow{} b_n$

Assume(balanced system): total of a = total of b

(P): How to determine the shipping sizes that would meet the needs of dealers with the minimal total shipping cost? Formulate this as a LP.

Sol. Step 1. understand/organize given info.

Step 2. Formulation in individual variables. let $x_{ij} = \#(m)$ from some $\bar{\imath}$ to Jest 5

Ex2'. (kitchen cabinet manufacturing)

Cabinet data (per unit of cabinet):

Cabinet type	Wood	Labor	Revenue	Proposed
(1 unit)	(units)	(units)	(per unit)	#(units)
Bookshelf	10	2	100	\mathbf{x}_1
With Doors	12	4	150	X ₂
With Drawers	25	8	200	X 3
Custom	20	12	400	X4

Total (available units): 5000 1500 maximized

(P): How to allocate labor and wood capacities that would result in the maximal total revenue? Formulate this as a LP.

#

Sol. Introduce different numbers of units for different types of cabinets, as shown in table.

(LP) max
$$z = x_1 + x_2 + x_3 + x_4$$
 ---- total revenue

s.t.
$$x_1 + x_2 + x_3 + x_4 \le 5000$$
 ----- wood limit $x_1 + x_2 + x_3 + x_4 \le 1500$ ----- labor limit $x_i \ge 0$, $i=1,2,3,4$. ----- meaningful values.