Some computational results for generalized pressure Schur complement eigenvalues of the surface Stokes problem

Alexander Zhiliakov*

February 4, 2019

1 Bilinear forms and matrices

$$\langle \mathbf{A}\,\bar{\mathbf{u}},\bar{\mathbf{v}}\rangle = \int_{\Gamma} \left(E_s(\mathbf{u}_h) : E_s(\mathbf{v}_h) + \mathbf{u}_h \cdot \mathbf{v}_h + \tau \,u_{h,N} \,v_{h,N} \right) \mathrm{d}s + \rho_u \int_{\Omega_h^{\Gamma}} ([\nabla \mathbf{u}_h]\,\hat{\mathbf{n}}) \cdot ([\nabla \mathbf{v}_h]\,\hat{\mathbf{n}}) \,\mathrm{d}\mathbf{x}, \tag{1}$$

$$\langle \mathbf{B}\,\bar{\mathbf{u}},\bar{\mathbf{q}}\rangle = \tag{2}$$

We set

2 Solution description

 $n_{\mathbf{A}}$ is the number of velocity d.o.f, $n_{\mathbf{S}}$ is the number of pressure d.o.f., $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{n_{\mathbf{S}}}$ is the (approximate) spectrum of \mathbf{S} , and r_i are the residual norm, i.e.

$$r_i \coloneqq \|\mathbf{S}\,\mathbf{x} - \lambda_i\,\mathbf{M}\,\mathbf{x}\|_2$$

Note: $h = 2.6 \times 10^{-2}$ for $\mathbf{P}_2 - P_1$ (the last mesh level) was computed w/ $\epsilon = 10^{-5}$, and everything else w/ $\epsilon = 10^{-4}$. Apparently $\epsilon = 10^{-4}$ did not work for the finest mesh level: λ_2 turned out to be negative for full and normal stabs.

^{*}Department of Mathematics, University of Houston, Houston, Texas 77204 (alex@math.uh.edu).

Figure 1: First three mesh levels for sphere $\,$

Table 1: $\mathbf{P}_1 - P_1$

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	1.32×10^{-2}	1.42	7.48×10^{-1}	1.13	9.58×10^{-1}	1.06
4.17×10^{-1}	570	190	5.12×10^{-3}	1.04	5.77×10^{-1}	1.	8.54×10^{-1}	1.
2.08×10^{-1}	1992	664	4.4×10^{-3}	7.93×10^{-1}	3.87×10^{-1}	1.	6.71×10^{-1}	1.
1.04×10^{-1}	8292	2764	2.01×10^{-3}	7.75×10^{-1}	2.19×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	32736	10912	6.04×10^{-5}	9.81×10^{-1}	1.17×10^{-1}	1.	5.37×10^{-1}	1.
2.6×10^{-2}	131592	43864	3.53×10^{-5}	8.67×10^{-1}	5.72×10^{-2}	1.	5.16×10^{-1}	1.
1.3×10^{-2}	525864	175288	2.16×10^{-6}	7.34×10^{-1}	2.84×10^{-2}	1.	5.04×10^{-1}	1.
h	n .	ng	S	5 0	\mathbf{S}_n		$\mathbf{S}_{ ext{fu}}$	11
h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
h 8.33×10^{-1}	n _A 153	n _S 51						
			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	r_2 2. $\times 10^{-17}$	$r_{n_{\rm S}}$ 8. × 10 ⁻¹⁰	r_2 1. $\times 10^{-7}$	$r_{n_{\mathbf{S}}}$ $4. \times 10^{-8}$	r_2 3. $\times 10^{-7}$	$r_{n_{\mathbf{S}}}$ $1. \times 10^{-7}$
8.33×10^{-1} 4.17×10^{-1}	153 570	51 190	$r_2 \\ 2. \times 10^{-17} \\ 3. \times 10^{-18}$	$r_{n_{\rm S}}$ $8. \times 10^{-10}$ $3. \times 10^{-10}$	$r_2 \\ 1. \times 10^{-7} \\ 6. \times 10^{-7}$	$r_{n_{\mathbf{S}}}$ $4. \times 10^{-8}$ $1. \times 10^{-3}$	r_2 $3. \times 10^{-7}$ $1. \times 10^{-7}$	$r_{n_{\mathbf{S}}}$ $1. \times 10^{-7}$ $8. \times 10^{-4}$
8.33×10^{-1} 4.17×10^{-1} 2.08×10^{-1}	153 570 1992	51 190 664	r_2 $2. \times 10^{-17}$ $3. \times 10^{-18}$ $2. \times 10^{-17}$	$r_{n_{\rm S}}$ $8. \times 10^{-10}$ $3. \times 10^{-10}$ $6. \times 10^{-9}$	r_2 $1. \times 10^{-7}$ $6. \times 10^{-7}$ $6. \times 10^{-8}$	$r_{n_{\rm S}}$ $4. \times 10^{-8}$ $1. \times 10^{-3}$ $9. \times 10^{-4}$	r_2 $3. \times 10^{-7}$ $1. \times 10^{-7}$ $2. \times 10^{-10}$	$r_{n_{\rm S}}$ $1. \times 10^{-7}$ $8. \times 10^{-4}$ $8. \times 10^{-3}$
8.33×10^{-1} 4.17×10^{-1} 2.08×10^{-1} 1.04×10^{-1}	153 570 1992 8292	51 190 664 2764	r_2 $2. \times 10^{-17}$ $3. \times 10^{-18}$ $2. \times 10^{-17}$ $6. \times 10^{-16}$	$r_{n_{S}}$ $8. \times 10^{-10}$ $3. \times 10^{-10}$ $6. \times 10^{-9}$ $9. \times 10^{-10}$	r_2 $1. \times 10^{-7}$ $6. \times 10^{-7}$ $6. \times 10^{-8}$ $2. \times 10^{-8}$	$r_{n_{\rm S}}$ $4. \times 10^{-8}$ $1. \times 10^{-3}$ $9. \times 10^{-4}$ $2. \times 10^{-3}$	r_2 $3. \times 10^{-7}$ $1. \times 10^{-7}$ $2. \times 10^{-10}$ $2. \times 10^{-8}$	$r_{n_{\rm S}}$ $1. \times 10^{-7}$ $8. \times 10^{-4}$ $8. \times 10^{-3}$ $3. \times 10^{-3}$

Table 2: $\mathbf{P}_2 - P_1$

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	3.22×10^{-1}	1.73	8.27×10^{-1}	1.17	9.68×10^{-1}	1.07
4.17×10^{-1}	3240	190	9.17×10^{-2}	1.08	6.45×10^{-1}	1.	8.56×10^{-1}	1.
2.08×10^{-1}	11718	664	1.78×10^{-1}	8.31×10^{-1}	5.49×10^{-1}	1.	6.75×10^{-1}	1.
1.04×10^{-1}	48762	2764	1.04×10^{-1}	8.13×10^{-1}	5.14×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	193014	10912	2.99×10^{-3}	9.89×10^{-1}	5.02×10^{-1}	1.	5.34×10^{-1}	1.
2.6×10^{-2}	775998	43864	1.17×10^{-3}	7.9×10^{-1}	4.96×10^{-1}	1.	5.17×10^{-1}	1.
h	n .		\mathbf{S}_0					
	n .	ng	S	S ₀	\mathbf{S}_n		\mathbf{S}_{fu}	11
h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
h 8.33×10^{-1}	n _A 789	n _S 51						
			r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$	r_2	$r_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	r_2 $4. \times 10^{-9}$	$r_{n_{\rm S}}$ 4. × 10 ⁻¹⁰	r_2 2. × 10 ⁻⁸	$r_{n_{\mathbf{S}}}$ $2. \times 10^{-7}$	r_2 2. $\times 10^{-7}$	$r_{n_{\mathbf{S}}}$ $3. \times 10^{-7}$
8.33×10^{-1} 4.17×10^{-1}	789 3240	51 190	r_2 $4. \times 10^{-9}$ $6. \times 10^{-12}$	$r_{n_{\rm S}}$ $4. \times 10^{-10}$ $4. \times 10^{-9}$	r_2 $2. \times 10^{-8}$ $7. \times 10^{-10}$	$r_{n_{\mathbf{S}}}$ $2. \times 10^{-7}$ $4. \times 10^{-2}$	r_2 $2. \times 10^{-7}$ $3. \times 10^{-10}$	$r_{n_{\mathbf{S}}}$ $3. \times 10^{-7}$ $4. \times 10^{-2}$
8.33×10^{-1} 4.17×10^{-1} 2.08×10^{-1}	789 3240 11718	51 190 664	r_2 $4. \times 10^{-9}$ $6. \times 10^{-12}$ $1. \times 10^{-10}$	$r_{n_{S}}$ $4. \times 10^{-10}$ $4. \times 10^{-9}$ $3. \times 10^{-9}$	r_2 $2. \times 10^{-8}$ $7. \times 10^{-10}$ $2. \times 10^{-6}$	$r_{n_{\rm S}}$ $2. \times 10^{-7}$ $4. \times 10^{-2}$ $7. \times 10^{-3}$	r_2 $2. \times 10^{-7}$ $3. \times 10^{-10}$ $2. \times 10^{-9}$	$r_{n_{\rm S}}$ $3. \times 10^{-7}$ $4. \times 10^{-2}$ $1. \times 10^{-2}$