A Survey on Unsupervised Graph Representation Learning

Yuanhao Xiong, Xiangning Chen, Li-Cheng Lan, Lucas Tecot

Background

- Learning good latent representations from raw features is key to machine learning problems.
- A more practical scenario: unsupervised setting
- Great progresses in computer vision such as MoCo and SimCLR, and natural language such as word2vec and BERT
- How about unsupervised graph representation learning (GRL)?

Selected Methods

- DeepWalk
- Node2vec
- GraphSAGE
- ARGA & ARVGA
- DGI
- GMI
- GCN + SS

Problem Formulation

- Undirected graph G = {V, E}
 - V is a set of nodes, E is a set of edges
 - \circ e_k is in the form of (v_i, v_j)
- Feature matrix X
 - \circ **X** = {x₁, ..., x_N}, N is the number of nodes in the graph
 - \circ $x_i \in R^F$ represents the raw features of node i
- Adjacency matrix A
- Objective
 - o Learn an encoder, E, $\mathbb{R}^{N \times F} \times \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times F'}$
 - \circ E(X,A) = Z = {z₁,z₂,...,z_N}
 - No label information is leveraged

A General Framework

A General Framework

Table 1: A comparison of different methods.

Method	Encoder	Score	Loss	Sampling
DeepWalk (node2vec)	Embedding	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{z}_j)$	$-\log(S) - \log(1 - \widetilde{S})$	+: random walk neighbors -: non-neighboring nodes ¹
GraphSAGE	GCN	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{z}_j)$	$-\log(S) - \log(1 - \widetilde{S})$	+: random walk neighbors -: non-neighboring nodes
ARGE	GCN	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{z}_j)$	$-\log(S) - \log(1 - \widetilde{S})$	+: prior distribution -: graph encoder
ARVGE	GCN	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{z}_j)$	$-\log(S) - \log(1 - \widetilde{S}) + KL(p(\cdot) q(\cdot))$	+: prior distribution -: graph encoder
DGI	GCN	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{W}\mathbf{s})$	$-\log(S) - \log(1-\widetilde{S})$	+: original graph -: corrupted graph
GMI	GCN	$\sigma(\mathbf{z}_i^{\mathrm{T}}\mathbf{W}\mathbf{x}_j)$	See Eq. (2)	+: original graph-: corrupted graph

DeepWalk

 Similar to the idea of word2vec that words appearing in the same context should be close in the high-dimensional embedding space

 DeepWalk defines the context of a certain node v as a sequence of nodes present in a random wandering starting from v

 Use negative sampling to maximize the co-occurrence probability with a positive node in the context, and minimize the probability for another randomly sampled negative node

Node2Vec

- Node2Vec uses biased random walk
 - Instead of BFS or DFS
- Assume we just random walk from node t to node v

- distance=0: go back to the node t
- distance=1: stay around the node *t*
- distance=2: leave away from the node *t*
- The probability is controlled by two parameters *p* and *q*
 - If p is small, the random walk be more local
 - If q is small, the random walk will walk further

GraphSAGE

- Method:
 - Generates the node embedding by using its neighbors
 - The neighbors are sampled to reduce time complexity
- Aggregate functions: MEAN, Pooling, or LSTM
- Inductive: Able to generate decent embedding for unseen nodes

ARGA & ARVGA

: Adversarially Regularized Graph (Variational) Autoencoder : $f(\mathbf{Z}^{(l)}, \mathbf{A} | \mathbf{W}^{(l)}) = \phi(\widetilde{\mathbf{D}}^{-\frac{1}{2}} \widetilde{\mathbf{A}} \widetilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{Z}^{(l)} \mathbf{W}^{(l)})$

Encoder

 $\{$ Variational $\longrightarrow q(\mathbf{z_i}|\mathbf{X},\mathbf{A}) = \mathcal{N}(\mathbf{z}_i|oldsymbol{\mu}_i, \mathrm{diag}(oldsymbol{\sigma}^2))$

Decoder

 $p(\hat{\mathbf{A}}_{ij} = 1 | \mathbf{z}_i, \mathbf{z}_j) = \operatorname{sigmoid}(\mathbf{z}_i^{\top}, \mathbf{z}_j)$

 $\mathbb{E}_{q(\mathbf{Z}|(\mathbf{X},\mathbf{A}))}[\log p(\hat{\mathbf{A}}|\mathbf{Z})]$

Objective

 \vdash Variational $\longmapsto \mathbb{E}_{q(\mathbf{Z}|(\mathbf{X},\mathbf{A}))}[\log p(\hat{\mathbf{A}}|\mathbf{Z})] - \mathbf{KL}[q(\mathbf{Z}|\mathbf{X},\mathbf{A}) \parallel p(\mathbf{Z})]$

Adversarial $\min \max_{\mathbf{z} \sim p_z} [\log \mathcal{D}(\mathbf{z})] + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\log (1 - \mathcal{D}(\mathcal{G}(\mathbf{X}, \mathbf{A})))]$ Regulation

DGI & GMI

DGI & GMI

• Objective of DGI:

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\mathbf{z}_{i}, \mathbf{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\mathbf{z}}_{j}, \mathbf{s} \right) \right) \right] \right),$$

Objective of GMI:

$$I(\mathbf{z}_{i}; \mathbf{x}_{j}) = -sp(-\mathcal{D}(\mathbf{z}_{i}, \mathbf{x}_{j})) - \mathbb{E}_{\tilde{\mathbb{P}}}[sp(\mathcal{D}(\mathbf{z}_{i}, \mathbf{x}'_{j}))], \qquad I(\mathbf{z}_{i}; \mathcal{G}_{i}) = \sum_{j}^{i_{n}} w_{ij}I(\mathbf{z}_{i}; \mathbf{x}_{j}) + I(w_{ij}; a_{ij}),$$

$$I(w_{ij}; a_{ij}) = a_{ij}logw_{ij} + (1 - a_{ij})log(1 - w_{ij}). \qquad with \quad w_{ij} = \sigma(\mathbf{z}_{i}^{T}\mathbf{z}_{j}),$$

GCN with SS

- Self-Supervision Scheme
 - Pretrain-Finetune: little gain, especially for large datasets
 - Multi-Task: more effective as regularization term

Pretext Tasks

- Node clustering: simply based on the feature matrix
 - less informative when the dataset is large and the feature dimension is low
- Graph partitioning: group nodes based on the topology
 - ensure that the number of connecting edges between subsets is minimized, general and effective

Pros and Cons

- DeepWalk & node2vec:
 - Simple but do not fully leverage the graph structure
 - Use look up table, can not generalize to other nodes

ARGA & ARVGA

- Encoder-decoder structure to obtain hidden features by reconstructing the graph
- Focus more on adjacent relationships, less suitable for node classification

DGI & GMI

- Based on mutual information maximization, theoretical support
- Sensitive to the mutual information estimator

GCN with SS

- Combined with supervised learning by fine-tuning the pretrained embeddings
- More flexible

Evaluation Metric

- Node classification: accuracy
- Link prediction: average precision

Table 2: Statistics of the datasets used in experiments.

Dataset	Type	#Nodes	$\#\mathbf{Edges}$	#Features	#Classes
Cora	Citation network	2,708	5,429	1,433	7
Citeseer	Citation network	3,327	4,732	3,703	6
PubMed	Citation network	19,717	44,338	500	3

Experimental Results

Table 3: Summary of results in terms of classification accuracies. In the first column, we highlight the kind of data available to each method during training (**X**: features, **A**: adjacency matrix, **Y**: labels). "GCN" corresponds to a two-layer GCN encoder trained in a supervised manner.

Available data	Method	Cora	Citeseer	Pubmed
X	Raw features	$47.9\pm0.4\%$	$49.3\pm0.2\%$	$69.1 \pm 0.3\%$
${f A}$	DeepWalk	$67.2 \pm 1.4\%$	$43.2 \pm 1.4\%$	$65.3 \pm 0.3\%$
<u>A</u>	Node2Vec	$70.9 \pm 1.0\%$	$48.1 \pm 1.4\%$	$68.7 \pm 1.0\%$
\mathbf{X},\mathbf{A}	GraphSAGE	$76.6\pm1.6\%$	$67.4\pm1.0\%$	$78.7 \pm 0.7\%$
\mathbf{X}, \mathbf{A}	ARGE	$78.6 \pm 0.2\%$	$70.2 \pm 0.7\%$	$76.7 \pm 0.6\%$
\mathbf{X}, \mathbf{A}	ARVGE	$80.5\pm0.9\%$	$70.0 \pm 1.3\%$	$77.7 \pm 0.9\%$
\mathbf{X}, \mathbf{A}	DGI	$81.8 \pm 0.6\%$	$70.7\pm0.8\%$	$76.8\pm0.8\%$
\mathbf{X}, \mathbf{A}	GMI	$\textbf{82.0} \pm \textbf{0.1}\%$	$\textbf{71.2} \pm \textbf{0.4}\%$	$\textbf{79.5} \pm \textbf{0.4\%}$
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	Planetoid	75.7%	64.7%	77.2%
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	GCN	81.5%	70.3%	79.0%
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	GCN + SS (Clustering)	$81.6 \pm 0.6\%$	$70.7\pm0.8\%$	$78.8 \pm 0.4\%$
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	GCN + SS (Partition)	$\textbf{81.8} \pm \textbf{0.7}\%$	$\textbf{71.3} \pm \textbf{0.7}\%$	$\textbf{80.0} \pm \textbf{0.7}\%$

Experimental Results

Table 4: Results of the link prediction task in citation networks. Average precision is reported.

Method	Cora	Citeseer	Pubmed
DeepWalk	92.0 ± 0.6	91.3 ± 0.5	91.3 ± 0.3
Node2Vec	91.7 ± 0.2	85.1 ± 1.0	76.3 ± 0.3
GraphSAGE	88.6 ± 1.1	84.8 ± 1.3	83.8 ± 0.5
ARGE	92.1 ± 0.3	88.0 ± 0.6	96.4 ± 0.9
ARVGE	92.5 ± 0.2	89.4 ± 0.7	$\textbf{96.6} \pm \textbf{0.4}$
DGI	91.7 ± 1.3	92.4 ± 0.6	94.9 ± 0.1
GMI	$\textbf{95.5} \pm \textbf{1.0}$	$\textbf{94.3} \pm \textbf{0.5}$	96.0 ± 0.2

Future Direction

- A more fair evaluation protocol.
- Negative sampling strategies.
- Generalization to large and realistic graphs.