实验3报告

学号: 2016K8009929011

姓名:段江飞

一、实验任务(10%)

本实验要求实现一个电子表,电子表初始是 23:59:55,具有设置和功能,能够在计时模式设置模式转换,在设置模式的时候,能够设置时分秒。

二、实验设计(30%)

(一) 软件实现

1、计时功能

首先初始化寄存器,利用 t0-t5 分别表示电子表的时分秒的个位和十位,然后设置 count 和 compare 寄存器,compare 设置为 1s 对应的时钟周期数,是 2500 万,开中断,开中断的时候把 ERL 清 0,IE 置 1。当 count 和 compae 相等时会进入时钟中断,在时钟中断中,先给时钟加 1s,然后不修改 count 寄存器,给 compare 寄存器加上一秒对应的时钟周期数,然后返回。

2、进位和显示功能

进位设置成一个单独的函数,有 add_1s,add_1m,add_1h 三个函数入口,分别对应加 1 秒,加 1 分,加 1 小时功能,完成进位之后,会进入 show_time 函数,将 t0-t5 组合起来,存入 numdata 中,在数码管还是哪个显示。

3、设置功能

首先,在 soc 代码中将 confreg 的 btn_key_r[0]和 int_n_i[4]连起来,当按下矩阵键盘上 0 号按键时会进入中断,通过 cause 寄存器判断是时钟中断还是硬件中断,若是硬件中断则进入设置模式,在设置模式中,对按键进行轮询,首先轮询是否又按了一次设置键,若是,则退出设置模式;否则继轮询矩阵键盘上的 1,2,3 号按键,分别对应加 1s,1m 和 1h,在 4 个按键上不断轮询,若按了加 1 键,加 1 过后,则从设置键开始重新轮询。

连续按键功能实现:在查询到按某个按键的时候,经 count 寄存器和设置的五分之一秒对应的时钟周期比较,如果按下的时间超过该值,对按键对应的时分秒进行加 1,然后清空 count,继续判断按键按的时间。

退出设置模式时,要清除中断位,然后重置 count 和 compare 寄存器,eret 返回计时。

(二)硬件实现

在龙芯的 ls132r_top 中声明一个 wire 类型位宽 6 的 int_n_i 变量,和 interface 的 int_n_i 连接,在 soc_lite_top 中连接按键和 int_n_i。

assign cpu.int_n_i = {1'b1, ~confreg.btn_key_r[0], 4'b1111};

(三)验证

1、仿真验证

在 vivado 上仿真,将 1s 对应的时钟周期调为 1000,然后修改 testbench,强制按键,进行测试。

2、上板验证

数码管初始为23:59:55,然后观察进位满足,在计时过程中按设置键和连续加1也都满足,通过上板验证。

三、实验过程(60%)

(一) 实验流水账

1、10月3日晚上11点到凌晨1点40进行试验设计,写了进位和显示函数。

2、10月4日上午10点到晚上9点 完成试验,解决bug,并进行上板验证。

(二) 错误记录

1、错误1

(1) 错误现象

Count 一直累加,但是不进入计时的加 1s,数码管的数值不变。

(2) 分析定位过程

通过看波形图发现 count 和 compare 相等的时候,没有进入时钟中断,然后把 status 和 cause 寄存器拿过来看,发现 status 的 ERL 位为 1,是关中断状态。

(3) 错误原因

CPU 在复位的时候,会将 ERL 为置为 1,我没有注意到这个,需要将 ERL 位置 0, IE 置为 1 才是开中断。

(4) 修正效果

程序开始正确执行,然后开始进行漫长的上板测试,之后又添加连续按键功能。

2、错误2

(1) 错误现象

精确计时问题。

(2) 分析定位过程

Count 寄存器每次清 0, 计时存在累积误差。

(3) 错误原因

每次计时不需对 count 要清 0,只需要修改 compare 寄存器,每次给 compare 寄存器加上 1s 对应的时钟周期数,即便溢出了,修改 compare 也清楚了中断位,接下来,count 会加到溢出之后和 compare 相等才触发中断。

(4) 修正效果

上板测试通过,能连续按键。

四、实验总结

WELL BOOK THE WAR WITH THE WAR WITH THE WAR WAS A STATE OF THE WAS A STATE OF T