Содержание

1.	Введение и постановка задачи 1.1. Меsh-сети 1.2. Безопасность Мesh-сетей 1.3. Преимущества ячеистой топологии 1.4. Недостатки ячеистой топологии
2.	Сети малого мира 2.1. Примеры сетей малого мира
3.	Обзор существующих моделей
4.	Теоретическая часть работы
5 .	Реализация
6.	Заключение
Сі	писок литературы

Mesh: пространство или промежуток между нитями сети.

Новый английский словарь (М.: Oxford Press, 1932)

1. Введение и постановка задачи

Введем понятие сети как набора объектов (вершин), связанных между собой. Иллюстрацию данного определения можно увидеть на на рис.1. Существуют различные виды сетей: общественные сети, информационные, биологические и т.д.

Также сети различают по их топологиям - путям передачи данных в сети:

Рис. 1: Пример сети.

- Ячеистая (mesh) каждое устройство подключается к другому устройству через определенный канал;
- Топология шины к кабелю, который выступает в качестве общей разделяемой среды передачи данных, подключены все устройства;
- Кольцевая топология каждое устройство соединяется ровно с двумя соседними, а вместе они образуют кольцо;
- Топология звезды все устройства подключаются к одному сетевому устройству;
- Гибридная топология комбинация различных топологий;

В данной работе будут рассматриваться только mesh-сети.

1.1. Mesh-сети

Как отображено на рис.2, в mesh-сети все устройства связаны друг с другом через определенный канал. Mesh-сети бывают:

- Полносвязными (full-mesh);
- Неполносвязными (partial-mesh).

Рис. 2: a) Полносвязная сеть. b) Неполносвязная сеть.

Полносвязная топология

В данной топологии все узлы в сети связаны друг с другом. Если в сети имеется N узлов, каждый узел будет иметь N-1 соединений. Полносвязная сеть обеспечивает избыточность соединений. Поскольку ее реализация будет дороже, чем у неполносвязной, ее обычно резервируют для сетевых магистралей.

Неполносвязная топология

В частично связанной сети не обязательно все узлы связаны друг с другомы. Она более практична по сравнению с полносвязной сетью. Периферийные сети подключаются с использованием неполносвязной сети и подключаются к полноячеистой магистральной сети.

Топология Mesh основана на децентрализованной схеме организации сети, в отличие от типовых сетей, которые создаются по централизованному принципу. Точки доступа, работающие в Mesh-сетях, не только предоставляют услуги абонентского доступа, но и выполняют функции маршрутизаторов/ретрансляторов для других точек доступа той же сети.

Меѕh-сети строятся как совокупность кластеров - зон. Территория, которая покрыта сетями, разделяется на кластерные зоны, число которых теоретически не ограничено. Особенностью такой сети является использование специальных протоколов, позволяющих каждой точке доступа создавать таблицы абонентов сети с контролем состояния транспортного канала и поддержкой динамической маршрутизации трафика по оптимальному маршруту между соседними узлами. При отказе какого-либо из них происходит автоматическое перенаправление трафика по другому маршруту, что гарантирует не просто доставку трафика адресату, а доставку за минимальное время.

Процедура расширения сети в пределах кластера ограничивается установкой новых точек доступа, интеграция которых в существующую сеть происходит автоматически.

1.2. Безопасность Mesh-сетей

Вопросы безопасности Mesh являются весьма актуальными, особенно для систем городского масштаба, которые объединяют муниципальные, абонентские и корпоративные сети. Безопасность сетей обеспечивается в рамках спецификаций стандарта 802.11. Стандарт IEEE 802.11i предусматривает использование в продуктах Wi-Fi таких средств, как поддержка алгоритмов шифрования трафика: TKIP, WRAP и CCMP. Этих алгоритмов достаточно для защиты на уровне абонентского трафика, но на уровне корпоративного пользователя используются дополнительные механизмы, включающие более совершенные способы аутентификации при подключении к сети: более крипто-стойкие методы шифрования, динамическую замену ключей шифрования, использование персональных межсетевых экранов, мониторинг защищенности беспроводной сети, технологию виртуальных частных сетей VPN и т.д.

Основываясь на статье [2] можно сделать следующие выводы:

1.3. Преимущества ячеистой топологии

- В случае сбоя одного устройства сеть продолжит функционировать в том же режиме.
- Просто локализовать неисправность.
- Передача данных более стабильна, так как сбои не выводит всю систему из строя передача данных реализуется другим путем.
- Проблем с трафиком нет, так как для каждого компьютера есть выделенная двухточечная связь.
- Эта топология обеспечивает несколько путей для достижения нужного узла и соответственно хорошую устойчивость.
- Добавление новых устройств не нарушает передачу данных.

1.4. Недостатки ячеистой топологии

- Реализация такой сети дороже по сравнению с иными сетевыми топологиями, т.е. звездой, шиной, двухточечной топологией.
- Требуемая мощность оборудования должна быть выше, так как узлы остаются активными все время и распределяют нагрузку между собой.
- Некоторые устройства будут избыточными в схеме передачи данных.

2. Сети малого мира

В статье М. Е. Дж. Ньюмана, К. Мура и Д. Дж. Уоттса [4] сети малого мира описываюся по аналогии с сетью друзей. В сети друзей присутствует "кластеризация", означающая, что двое ваших друзей с гораздо большей вероятностью также будут друзьями друг друга, чем два человека, выбранных случайным образом из популяции. Во-вторых, такая сеть демонстрирует "эффект маленького мира", а именно, что любые два человека могут установить контакт, пройдя лишь короткую цепочку промежуточных знакомств. Американский психолог Милграм провел интересное исследование [5], в котором определил количество знакомств, необходимое для установления связи между данными людьми. Поскольку Милграм жил в Бостоне, он выбран далекий от Бостона город - Небраска, и случайно выбранным людям были розданы конверты, которые нужно было передать в Бостон. Конверты можно было передавать только через своих знакомых и родственников. Милграм получил весьма неожиданный результат: в среднем каждый конверт прошел через шесть человек. Так и родилась теория "шести рукопожатий". Т.е. каждый человек связан с любым другим цепью не больше шести личных знакомств. В этом смысле о нашем мире говорят как о малом мире - "small world".

Рассмотрим неориентированную сеть, и определим l как среднее геодезическое (т.е. кратчайшее) расстояние между парами вершин в сети:

$$l = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij},$$

где d_{ij} - наикоротчайшее расстояние между вершинами i и j. Существуют пары вершин, которые не имеют соединительного пути. Обычно таким парам присваивается бесконечное геодезическое расстояние. Значение l также становится бесконечным. Чтобы избежать этой проблемы, в таких сетях обычно определяется среднее геодезическое расстояние между всеми парами, которые имеют соединительный путь. Пары, которые попадают в два разных компонента, исключаются из среднего значения.

Альтернативный способ определения l:

$$l^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i>j} d_{ij}^{-1}$$

Эффект малого мира имеет очевидные последствия для динамики процессов, происходящих в сетях. Например, если рассматривать распространение информации или чего-либо еще по сети, эффект малого мира подразумевает, что это распространение будет быстрым в большинстве сетей реального мира. Это влияет на количество "прыжков", которые должен совершить пакет, чтобы добраться с одного компьютера на другой в Интернете, количество этапов путешествия для пассажира самолетом или поездом, время, необходимое для распространения болезни среди населения, и так далее.

С другой стороны, эффект малого мира также математически очевиден. Хотя число вершин на расстоянии r от центральной вершины в большинстве случаев растет экспоненциально с увеличением r, значение l будет увеличиваться как logn. Таким образом, в последние годы термин "эффект малого мира" приобрел более точное значение: считается, что сети демонстрируют эффект малого мира, если значение l масштабируется логарифмически или медленнее в зависимости от размера сети при фиксированной средней степени.

Логарифмическое масштабирование может быть доказано для различных сетевых моделей [7, 8, 9, 10, 11] а также наблюдался в различных сетях реального мира [12, 13, 14]. В некоторых сетях средние расстояния между вершинами увеличиваются медленнее, чем log n. Боллоба С. и Риордан [15] показали, что сети со степенным распределением степеней (раздел 3.3) имеют значения l, которые увеличиваются не быстрее, чем log n/log log n (см. также [16]), а Коэн и Хэвлин [17] привели аргументы, которые предполагают, что фактическое изменение может быть, даже медленнее, чем это.

Одну из моделей малого мира предложили Ваттс и Строгац [6]. Эта модель представляет собой одномерную регулярную решетку, состоящую из N узлов, где каждый узел соединен только со своими k ближайшими соседями и наложены периодические граничные условия, т.е. решетку свернули в кольцо. После чего каждую связь с вероятностью $\phi << C_1$ перебрасывали на другой случайно выбранный узел. Правда при такой процедуре есть вероятность появления изолированных узлов.

Рис. 3: Пример малого мира с четырьмя перебросами (L=16) а) - каждый узел соединен со своими ближайшими соседями $(\kappa=2)$, b) - каждый узел соединен с четырьмя соседями $(\kappa=4)$

Формально расстояние до них от любого узла будет бесконечным. Во избежание этого, Ньюман (Newman) и Ваттс предложили связи не перебрасывать, а просто добавлять. Остановимся на этом варианте модели подробнее Среднее расстояние между концами добавленных связей есть: $\xi = \frac{N}{k\phi N} = \frac{1}{k\phi}$. Так как существует только один характерный размер системы X, то и безразмерное отношение среднего

Так как существует только один характерный размер системы X, то и безразмерное отношение среднего расстояния между узлами графа к числу всех узлов графа N может зависеть только от безразмерной величины: $l = Nf(\frac{N}{\xi})$, где f(x) - масштабирующая функция.

$$f(x) = \begin{cases} const, x \ll 1\\ \frac{\log(x)}{x}, x \gg 1 \end{cases}$$

Как уже упоминалось выше, существует много способов определения корреляционного радиуса. Предположим, что $\xi \sim \phi^{\tau}$. Покажем с помощью ренорм-группового преобразования (для $\kappa=2$), что T=1. Итак пусть имеем: $l=Nf(Nf^{\tau})$.

2.1. Примеры сетей малого мира

Свойства маленького мира обнаруживаются во многих явлениях реального мира, включая веб-сайты с меню навигации, пищевые сети, электросети, сети обработки метаболитов, сети нейронов мозга, сети избирателей, телефонный звонок графики, сети аэропортов и социальные сети влияния. Культурные сети, семантические сети и словесные сети совместной встречаемости также оказались сетями небольшого мира.

Сети из связанных белков обладают свойствами небольшого мира, такими как степенное распределение, подчиняющееся распределению степеней. Точно так же транскрипционные сети , в которых узлами являются гены , и они связаны, если один ген оказывает повышающее или понижающее генетическое влияние на другой, обладают свойствами малых мировых сетей.

3. Обзор существующих моделей

4. Теоретическая часть работы

5. Реализация

Даная исследователься работы нацелна создание макета обмена данных в группе мобильных агентов, взаимодействующих в mesh-сети обладающей свойствами "малого мира". Возможные технологии для реализации модели:

- GNS3
- Docker

6. Заключение

Список литературы

- [1] M. E. J. Newman, The Structure and Function of Complex Networks
- [2] Geeks For Geeks, Advantage and Disadvantage of Mesh Topology
- [3] Осипов И.Е, Технологии и средства связи #4, 2006
- [4] M. E. J. Newman, C. Moore, and D. J. Watts, Mean-Field Solution of the Small-World Network Model, 2000
- [5] S. Milgram, "The small world problem," Psychol. Today 2, 60–67 (1967)
- [6] D. J. Watts & S. H. Strogatz, "Collective dynamics of small-world' networks," Nature 393, 440–442 (1998)
- [7] B. Bollobas, The diameter of random graphs, Trans. Amer. Math. Soc., 267 (1981), pp. 41–52.
- [8] B. Bollobas, Random Graphs, 2nd ed., Academic Press, New York, 2001.
- [9] F. Chung and L. Lu, The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 15879–15882.
- [10] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Metric Structure of Random Networks, Preprint 0210085 (2002)
- [11] A. Fronczak, P. Fronczak, and J. A. Holyst, Exact Solution for Average Path Length in Random Graphs, Preprint 0212230 (2002)
- [12] R. Albertand A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), pp. 47–97
- [13] M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64 (2001), art. no. 016132
- [14] M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 404–409.
- [15] B. Bollob as and O. Riordan, The Diameter of a Scale-Free Random Graph, preprint, Department of Mathematical Sciences, University of Memphis, 2002
- [16] A. Fronczak, P. Fronczak, and J. A. Holyst, Exact Solution for Average Path Length in Random Graphs, Preprint 0212230 (2002);
- [17] . Cohen and S. Havlin, Scale-free networks are ultrasmall, Phys. Rev. Lett., 90 (2003), art. no. 058701.