#### Gradient Descent

Andrew L. Mackey

Artificial Intelligence University of Arkansas – Fort Smith

Spring 2023

## **Topics**

- Prerequisites
- ② Gradient Descent Algorithms
- Convergence
- 4 Regularization

### **Terminology**

- Epoch a step that covers all the training examples
- Learning Rate  $(\alpha)$  also called the step size, represents a fixed constant or a value that decays over time as the learning process continues.
- Loss Function  $\mathcal{L}(\mathbf{X}, \mathbf{y}, \hat{\mathbf{y}})$  the amount of utility lost by predicting h(x) = y when the correct answer is f(x) = y. We view this as a function that needs to be minimized.

## Training Data X

Let X be a matrix comprised of p number of features.

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \dots & \mathbf{x}_p \end{bmatrix}$$

Each of the features would be represented as follows:

$$\mathbf{x}_1 = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ \vdots \\ x_{n1} \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ \vdots \\ x_{n2} \end{bmatrix} \qquad \mathbf{x}_3 = \begin{bmatrix} x_{13} \\ x_{23} \\ x_{33} \\ \vdots \\ x_{n3} \end{bmatrix} \qquad \dots \qquad \mathbf{x}_p = \begin{bmatrix} x_{1p} \\ x_{2p} \\ x_{3p} \\ \vdots \\ x_{np} \end{bmatrix}$$

## Training Data X (cont.)

We can define  $\mathbf{X}$  as the following set of observations:

$$\mathbf{X} = egin{bmatrix} \mathbf{x^{(1)}} \\ \mathbf{x^{(2)}} \\ \mathbf{x^{(3)}} \\ \vdots \\ \mathbf{x^{(n)}} \end{bmatrix}$$
 where  $\mathbf{x^{(i)}} = \begin{bmatrix} x_{i1} & x_{i2} & x_{i3} & \cdots & x_{ip} \end{bmatrix}$ 

## Training Data X (cont.)

Since X is defined as a matrix comprised of n rows (or observations) and p features, we can represent it as follows:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1p} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2p} \\ x_{31} & x_{32} & x_{33} & \cdots & x_{3p} \\ \vdots & & \ddots & & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \cdots & x_{np} \end{bmatrix}$$

# Training Data X (cont.)

We will add a column vector of 1's to the start of the matrix to represent the bias term.

$$\mathbf{X}_{n \times (p+1)} = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{13} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & x_{23} & \cdots & x_{2p} \\ 1 & x_{31} & x_{32} & x_{33} & \cdots & x_{3p} \\ \vdots & & \ddots & & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n3} & \cdots & x_{np} \end{bmatrix}$$

### Weights w

For each of the p features and 1 bias term (the column vector of 1's), we will maintain a vector of weights  $\mathbf{w}$ . We will use  $w_0$  to represent the weight for the bias term.

$$egin{aligned} \mathbf{w} \ (p+1) imes 1 \end{aligned} = egin{bmatrix} w_0 \ w_1 \ w_2 \ w_3 \ dots \ w_p \end{bmatrix}$$

#### **Functions**

We will define the function  $h(\cdot)$  to represent our model as it produces a hypothesis of the correct solution based on the  $\mathbf{x}^{(i)}$  input data.

$$h: \mathbb{R}^{p+1} \to \mathbb{R}$$

Our function  $h_{\mathbf{w}}(\cdot)$  will use the weights  $\mathbf{w} = \{w_0, w_1, ..., w_p\}$  we generate to multiply by the input vector  $\mathbf{x}^{(i)}$  (starting with a feature with the value of  $x_0 = 1$  and values for the other p features).

$$h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} = \mathbf{x} \mathbf{w} = \sum_{i=0}^{p} w_i x_i$$

## **Topics**

- Prerequisites
- @ Gradient Descent Algorithms
- Convergence
- 4 Regularization

### Batch Gradient Descent (BGD)

Sums the loss over N training examples for every step.

#### **Algorithm 1** Batch Gradient Descent

- 1: **procedure** Gradient-Descent(  $\mathbf{X}$  ,  $\mathbf{y}$  ,  $\alpha$  )
- 2:  $\mathbf{w} \leftarrow \text{initialize to be any point in the parameter space}$
- 3: i = 0
- 4: **while not** converged **do**
- 5: **for** k = 1 to p **do**

6: 
$$w_k = w_k - \alpha \frac{\partial}{\partial w_k} \left[ \mathcal{L}(\mathbf{y}, h_{\mathbf{w},b}(\mathbf{X})) \right]$$

7: 
$$b = b - \alpha \frac{\partial}{\partial b} \left[ \mathcal{L}(\mathbf{y}, h_{\mathbf{w}, b}(\mathbf{X})) \right]$$

- 8:  $i \leftarrow i + 1$
- 9: Update convergence values

## Batch Gradient Descent (BGD)

- *i* the current iteration number
- b − the bias weight
- w the vector of weights
- X the matrix of training data
- *p* the number of features
- y the vector of responses
- $\mathcal{L}(\cdot)$  the loss function

### Stochastic Gradient Descent (SGD)

Sums the loss over a randomly selected training example at each step.

### Algorithm 2 Stochastic Gradient Descent

```
1: procedure Stochastic-Gradient-Descent (\mathbf{X}, \mathbf{v}, \alpha)
            \mathbf{w} \leftarrow \text{initialize to be any point in the parameter space}
 2:
 3:
            i = 0, i = 0
            while not converged do
 4:
                  for i = 1 to n do
 5:
                        Obtain record \mathbf{x}^{(j)}
 6:
                        for k=1 to p do
                            w_k = w_k - \alpha \frac{\partial}{\partial w_k} \left[ \mathcal{L}^{(j)}(\mathbf{y}, h_{\mathbf{w}, b}(\mathbf{x}^{(j)})) \right]
 8:
                       b = b - \alpha \frac{\partial}{\partial b} \left[ \mathcal{L}^{(j)}(\mathbf{y}, h_{\mathbf{w}, b}(\mathbf{x}^{(j)})) \right]
 9:
                        i \leftarrow i + 1
10:
                  Update convergence values
11:
```

# Stochastic Gradient Descent (SGD)

- *i* the current iteration number
- j the current training record (the vector is  $\mathbf{x}^{(j)}$ )
- b the bias weight
- w the vector of weights
- X the matrix of training data
- p − the number of features
- **y** the vector of responses
- $\mathcal{L}(\cdot)$  the loss function

### Mini-batch Gradient Descent (MBGD)

Sums the loss over a batch of m examples out of N possible.

### Algorithm 3 Mini-batch Gradient Descent

```
1: procedure Mini-batch-Gradient-Descent (\mathbf{X}, \mathbf{v}, \alpha)
             \mathbf{w} \leftarrow \text{initialize to be any point in the parameter space}
 2:
 3:
            i = 0, i = 0
 4:
            while not converged do
                   \mathbf{B} \leftarrow \text{create batches of size } m \text{ from } \mathbf{X} \text{ where } |\mathbf{B}^{(i)}| = m \text{ training records}
 5:
                   for j = 1 to |\mathbf{B}| batches do
 6:
                         for k = 1 to p do
                              w_k = w_k - \alpha \frac{\partial}{\partial w_k} \left[ \mathcal{L}^{(j)} (\mathbf{y}, h_{\mathbf{w}, b}(\mathbf{x}^{(j)})) \right]
 8:
                        b = b - \alpha \frac{\partial}{\partial b} \left[ \mathcal{L}^{(j)} (\mathbf{y}, h_{\mathbf{w}, b}(\mathbf{x}^{(j)})) \right]
 9:
                         i \leftarrow i + 1
10:
                   Update convergence values
11:
```

## Mini-batch Gradient Descent (MBGD)

- *i* the current iteration number
- *j* the current batch
- **B** the collection of batches as  $\mathbf{B}^{(1)}$ ,  $\mathbf{B}^{(2)}$ , ...,  $\mathbf{B}^{(|\mathbf{B}|)}$  where  $|\mathbf{B}|$  is the total number of batches.
- m the number of records per batch
- b − the bias weight
- w the vector of weights
- X the matrix of training data
- p − the number of features
- **y** the vector of responses
- $\mathcal{L}(\cdot)$  the loss function

## **Topics**

- Prerequisites
- @ Gradient Descent Algorithms
- 3 Convergence
- 4 Regularization

### Algorithm Termination

- As the algorithms run, we need to determine when it is appropriate to terminate. We establish some **convergence criteria** for this.
- ullet One approach is to calculate the percentage of change between iterations:  $\Delta_{
  m \%cost}$
- We then need to establish what is the threshold  $\epsilon$  that the percentage of change must exceed to continue to justify adjusting the weights and iterating, thus we establish the following must remain true to continue:

$$\Delta_{\text{``cost}} \ge \epsilon$$

### Convergence Criteria

$$\Delta_{\text{\% cost}} = \frac{\mid \mathcal{L}_{i-1}\big(\textbf{y}, \textit{h}_{\textbf{w},\textit{b}}(\textbf{X})\big) - \mathcal{L}_{i}\big(\textbf{y}, \textit{h}_{\textbf{w},\textit{b}}(\textbf{X})\big) \mid \times 100}{\mathcal{L}_{i-1}\big(\textbf{y}, \textit{h}_{\textbf{w},\textit{b}}(\textbf{X})\big)}$$

We will select the parameter  $\epsilon$  and establish convergence once  $\Delta_{\% \ \rm cost} < \epsilon$ .

# Convergence Criteria (cont.)

•  $\mathcal{L}_i(\cdot)$  can be viewed as the loss function for the  $i^{\text{th}}$  iteration for N number of iterations.

$$\left[\mathcal{L}_{i=1}(\cdot) \quad \mathcal{L}_{i=2}(\cdot) \quad \cdots \quad \mathcal{L}_{i=k}(\cdot) \quad \cdots \quad \mathcal{L}_{i=N-1}(\cdot) \quad \mathcal{L}_{i=N}(\cdot) \quad \right]$$

- $\mathcal{L}_i(\cdot)$  simply represents that the loss function we choose is calculated with  $\mathbf{y}$  and  $h_{\mathbf{w},b}(\mathbf{X})$ .
  - y represents the true value for an observation
  - **w** and *b* represent the weights and bias nodes the model will use (some notations will represent *b* as  $w_0$ )
  - **X** represents the input (exercise caution as some notations will require all data to be passed into the loss function for calculation in matrix form **X** whereas some loss functions only require an input vector/observation, generally denoted as **x** or  $\mathbf{x}^{(i)}$ )
  - $h_{\mathbf{w},b}(\mathbf{X})$  is sometimes denoted as  $\hat{\mathbf{y}}$

## Loss Function Example



### Loss Function Example

The loss function values will continue to decline as you adjust the weights.



### Loss Function Example

Eventually, the weight adjustments will lead to diminishing reductions in the loss function. Once the percentage of overall difference in the loss function per iteration reaches  $\epsilon$ , we use this as an early stopping criterion and terminate.



## **Topics**

- Prerequisites
- ② Gradient Descent Algorithms
- Convergence
- 4 Regularization

### Regularization

Regularization is the process of explicitly penalizing complex models (or hypotheses).

This is similar to performing *feature selection* to remove attributes that do not add value or relevance to a model.

## Regularization (cont.)

Regularization is a technique the helps algorithms avoid *overfitting*. It serves as a penalty term. We often measure this in the following form:

$$\mathsf{Cost} = \mathsf{Loss} + \lambda \cdot \mathsf{Complexity}$$

- $\lambda$  a constant parameter we select for our model
- Complexity we define some function to be added to our loss function that increases the cost with more complex models.
  - $\bigcirc$   $L_1$  regularization:

$$L_1(\mathbf{w}) = ||\mathbf{w}||_1 = \sum_i |w_i|^1$$

Q  $L_2$  regularization:

$$L_2(\mathbf{w}) = ||\mathbf{w}||_2 = \mathbf{w}^T \mathbf{w} = \sum_i w_i^2$$

## Regularization (cont.)

Suppose our loss function  $\mathcal{L}(\mathbf{y}, h_{\mathbf{w}}(\mathbf{X}))$  is defined as follows:

$$\mathcal{L}(\mathbf{y}, h_{\mathbf{w}}(\mathbf{X})) = (\mathbf{y} - h_{\mathbf{w}}(\mathbf{X}))^{T} (\mathbf{y} - h_{\mathbf{w}}(\mathbf{X})) = \sum_{i}^{n} (y_{i} - h_{\mathbf{w}}(\mathbf{x}^{(i)}))^{2}$$

Thus, our loss function is:

$$\mathcal{L}(\mathbf{y}, h_{\mathbf{w}}(\mathbf{X})) = \sum_{i}^{n} (y_{i} - h_{\mathbf{w}}(\mathbf{x}^{(i)}))^{2}$$

We want to balance between an accurate solution and the complexity of the solution, we can employ the use of a q regularization penalty (i.e.  $L_1$  or  $L_2$ ) with some constant  $\lambda$ .

$$\mathcal{L}(\mathbf{y}, h_{\mathbf{w}}(\mathbf{X})) = \sum_{i}^{n} (y_{i} - h_{\mathbf{w}}(\mathbf{x}^{(i)}))^{2} + \lambda \cdot L_{q}(\mathbf{w})$$

## Regularization (cont.)

We commonly set q to be 1 or 2. For example, if we select q=2, we will have the  $L_2(\mathbf{w})$  cost added to our loss function:

$$\mathcal{L}(\mathbf{y}, h_{\mathbf{w}}(\mathbf{X})) = \sum_{i}^{n} (y_{i} - h_{\mathbf{w}}(\mathbf{x}^{(i)}))^{2} + \lambda \cdot \sum_{k}^{p} w_{k}^{2}$$

- This penalty term biases the weight vector **w** to be closer to the origin.
- $\lambda$  is the **regularization parameter** that trades off minimizing the loss on the training set and the magnitude of the parameters  $\mathbf{w}$ .
- When the magnitude of the parameter values become relatively large, this is generally an indication of overfitting.