Math 5210 Assignment 4. Monotone Convergence Theorem

- 1. Let $\{a_n\}$ be a sequence of non-negative real numbers. Show that the partial sums for the infinite series $\sum_{n=1}^{\infty} a_n$ form a monotone series.
- 2. What is the approximation property for the infimum of a set A? If $m = \inf(A)$, prove that there is a sequence $a_n \in \text{with } \lim a_n = m$. Follow the proof given in class.
- 3. Give a detailed proof of the MCT in the case of a monotone decreasing sequence which is bounded below. Follow the proof given in class.
- 4. If 0 < r < 1, show that $\lim_{n \to \infty} r^n = 0$. Note that with $a_n = r^n$, $a_{n+1} = ra_n$. What happens if $0 \le r \le 1$?
- 5. Let $a_1 \in (0,1)$ Prove that $a_{n+1} = \sqrt{a_n + 1} 1$ is a increasing sequence which converges to 0. What happens if $a_0 = 0$, if $a_0 = -1$?
- 6. Suppose $a_1 \ge 2$ and $a_{n+1} = 2 + \sqrt{a_n 2}$. Show that a_n converges to 2 or 3. How does the limit depend upon the value of a_1
- 7. (Bonus) Let $0 < b_1 < a_1$ and let

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 and $b_{n+1} = \sqrt{a_n b_n}$

- a) Show that $0 < b_n < a_n$
- b) Show that b_n is increasing and bounded above.
- c) Show that a_n is decreasing and bounded below.
- d) Show that $0 < a_{n+1} b_{n+1} < (a_1 b_1)/2^n$
- e) Conclude that the sequences a_n and b_n converge to a common limit.