Medical Neuroscience | Tutorial Notes

Molecular Mechanisms of Action Potential Generation

MAP TO NEUROSCIENCE CORE CONCEPTS¹

NCC2. Neurons communicate using both electrical and chemical signals.

LEARNING OBJECTIVES

After study of the assigned learning materials, the learner will:

- 1. Describe the molecular properties of sodium and potassium channels that explain the voltageand time-dependent permeability changes underlying action potential generation.
- 2. Describe the molecular mechanisms for establishing chemical gradients for sodium and potassium across the neuronal plasma membrane.

TUTORIAL OUTLINE

- I. Introduction: review the Hodgkin-Huxley model of the action potential (see Figures 3.8 & 3.9²)
 - A. THE ACTION POTENTIAL IS EXPLAINED BY VOLTAGE-DEPENDENT AND TIME- DEPENDENT CHANGES IN THE PERMEABILITY OF THE NEURONAL MEMBRANE TO $N\alpha^+$ AND K^+
 - B. this model explains the *threshold* for the generation of an action potential (see **Box 3B**) and the *all-or-none* (regenerative) character of the action potential (see **Figure 3.9**)
 - C. review the ionic basis of the action potential by viewing an online animation that accompanies *Neuroscience*, 5th. *Ed.*, Chapter 2: **Animation 2.3 The Action Potential** [click here]
- II. Functional and molecular models of Na⁺ and K⁺ channels
 - A. functional model (see **Figure 4.3**)
 - 1. Na $^+$ channels: Closed \Leftrightarrow open \Leftrightarrow inactivated \Leftrightarrow closed
 - 2. K^+ channels: Closed \Leftrightarrow open \Leftrightarrow closed
 - B. molecular model (see Figures 4.6 & 4.8)
 - 1. integral membrane proteins
 - a. a series of membrane-spanning domains

¹ Visit **BrainFacts.org** for *Neuroscience Core Concepts* (©2012 Society for Neuroscience) that offer fundamental principles about the brain and nervous system, the most complex living structure known in the universe.

² Figure references to Purves et al., *Neuroscience*, 5th Ed., Sinauer Assoc., Inc., 2012. [click here]

- i. "pore loop" that forms the channel for the selective passage of a certain ionic species
- ii. "voltage-sensor" comprised of a segment of positively charged amino acid residues in an helical structure that changes its conformation in response to changes in membrane potential (see Figure 4.8)
- iii. segment that allows for the aggregation of subunits (or the folding of a single subunit) into a functional three-dimensional channel structure
- b. extracellular domain
 - i. may include a segment that binds certain toxins
- c. intracellular domain
 - i. may include a segment of amino acids that "plugs" the pore during sustained depolarization (inactivation)
- C. some channels are comprised of a single protein sequence (Na^+), others require the aggregation of multiple subunits (K^+)
- D. CLINICAL APPLICATION: several skeletal and cardiac muscle disorders appear to be the consequences of faulty ion channels, produced by mutations in the genes that encode channel proteins (see **Box 4D**)

IV. Ion pumps

A. pumps, exchangers and transporters establish concentration gradients that are discharged when ions flow through channels (see **Figure 4.9**)

B. Na⁺/K⁺ ATPase

- 1. experiments demonstrated that Na⁺ efflux is linked to K⁺ influx and the supply of intracellular ATP (see **Figure 4.10A**)
- 2. stoichiometry of ionic fluxes
 - a. THREE Na⁺ ions are transported out of cell for every TWO K⁺ ions transported into cell
 - b. therefore, the pump is **electrogenic**: since there is a net loss of one positive charge for each cycle, pump activity can hyperpolarize the plasma membrane
- 3. model of pump activity (see **Figure 4.10B**)
 - a. integral membrane protein
 - b. intracellular domain with sites for ATP binding and hydrolysis
 - c. phosphorylation/dephosphorylation cycle of the pump induces a series of conformational changes that allow for the translocation of Na^+ and K^+ across the plasma membrane

- d. view an online animation that accompanies *Neuroscience*, 5th. *Ed.*, Chapter 4: **Animation 4.2 the Sodium-Potassium Pump** [click here]
- C. there are other important pumps and ion exchangers for maintenance of Ca⁺⁺, Cl⁻ and H⁺ homeostasis (see **Figure 4.9**)