

NP10 800

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subject the company to certain additional company law rules.

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Signed

Dated 7 January 2004

Patents Act 1977 (Rule 16)

050EC02 E768770-1 002658 P01/7700 0.00-0228371 [1]

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

c) any named applicant is a corporate body.

See note (d))

The Patent Office

Cardiff Road Newport South Wales NP10 800

this form)			•	South Wales NP10 8QQ	
1.	Your reference	580G	В		
2.	Patent application number (The Patent Office will fill in this part)	02	28371.1		
3.	Full name, address and postcode of the or of each applicant (underline all surnames)	Renishaw plc New Mills- Wotton-under-Edge Gloucestershire, GL12 8JR			
	Patents ADP number (if you know it)	2691	002		
	If the applicant is a corporate body, give the country/state of its incorporation	Unite	ed Kingdom		
4.	Title of the invention	Workpiece Inspection Method			
 -5.	Name of your agent (if you have one)	E C	Leland et al		
	"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)	Renishaw plc, Patent Department New Mills Wotton-under-Edge Gloucestershire GL12 8JR			
	Patents ADP number (if you know it)				
6.	If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number	Country .	Priority application number (if you know it)	Date of filing (day / month / year) -	
7.	If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application	Number of earlier applic	ation	Date of filing (day / month / year)	
3.	Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if: a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an applicant, or	Yes			

Patents Form 1/77

10.	If you are also filing any of the	following,
•	state how many against each i	tem.

Priority documents	0
Translations of priority documents	0
Statement of inventorship and right to grant of a patent (Patents Form 7/77)	0
Request for preliminary examination and search (Patents Form 9/77)	0
Request for substantive examination (Patents Form 10/77)	0
Any other documents	

11. I/We request the grant of a patent on the basis of this application.

(please specify)

Signature Date 04

Date 04.12.2002

AGENT FOR THE APPLICAN'

Name and daytime telephone number of person to contact in the United Kingdom

A ILES

0

13

0

Claim (s)
Abstract

Drawing (s)

01453 524524

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

WORKPIECE INSPECTION METHOD

This invention relates to a method of inspecting the dimensions of workpieces using coordinate measuring apparatus. Coordinate measuring apparatus includes, for example, coordinate measuring machines (CMM), machine tools, manual coordinate measuring arms and inspection robots. In particular, the invention relates to a method of inspecting the dimensions of a workpiece using a non-contact probe.

It is common practice after workpieces have been produced, to inspect them on a coordinate measuring machine (CMM) having a quill onto which a probe is mounted which can be driven in three orthogonal directions X,Y,Z within a working volume of the machine.

Workpiece measuring probes may be divided into contact
probes and non-contact probes. Contact probes comprise
a housing with a workpiece-contacting stylus
deflectable with respect to the housing. There are two
main types of contact probe. In a touch trigger probe,
the stylus is deflected from a rest position to cause a
signal which indicates that the stylus has touched the
surface of the workpiece. Alternatively a contact
probe may comprise a scanning probe in which the
deflection of the stylus is continuously measured as
the stylus is moved along the surface of the workpiece.

Non-contact probes are positioned close to the surface of the workpiece without touching. The probe detects the proximity of the surface using, for example, capacitance, inductance or optical means.

30

5

10

15

Both contact and non-contact probes suffer from the disadvantage that scanning at a high speed causes dynamic errors in the system due to inertia.

Inaccuracies caused by the dynamic deflection of the probe may be reduced by causing the probe to travel very slowly.

Our previous US Patent No. 4,991,304 discloses a method of inspecting a series of workpieces using a coordinate measuring machine (CMM) in which a contact probe is first calibrated or datumed for each intended direction of probing movement by touching it at a slow speed against a reference object such as a datum ball to provide a set of correction offsets which are stored in the computer and used for subsequent measurement.

The first workpiece to be measured is put on the CMM table and a set of points on the surface of the

20 workpiece are measured at a slow speed to allow accurate readings to be taken. Measurement of the first workpiece is then repeated at a fast speed. The difference between the slow speed readings and the fast speed readings is calculated and stored. The stored error value for each measured point takes into account the dynamic deflections of the machine structure at the fast speed.

The next workpiece to be measured is set up on the CMM table and readings are taken at the fast speed. At this speed the readings are inaccurate but repeatable. Each fast reading is adjusted by adding the corresponding stored error value and thus compensating for errors induced by fast reading.

This method has the advantage that a whole series of nominally identical workpieces can be measured at fast speed by making a dynamic error map from only one workpiece.

5

However, a disadvantage of this method is that fast contact scanning of a workpiece causes significant wear of the stylus tip of the probe.

Non-contact probes have the advantage that as there is no contact between the probe and workpiece, there is no wear of the probe.

Another advantage of non-contact probes is that there
are no errors due to measurement force. In contact
probes this is the force exerted by the probe on the
workpiece and causes measurement errors due to bending
of the stylus, coordinate positioning apparatus and
deformable parts of the workpiece.

20

A further advantage is that non-contact probes have a higher surface sensing bandwidth that contact probes and thus provide more responsive measurement when scanning or measuring a workpiece at higher speed.

25

30

However use of a non-contact probe also has several disadvantages. The probe may have radial errors due to the manufacturing process which results in variations of the measurement data for measurements taken at different angles around the probe. This could be corrected for by an elaborate calibration.

In addition non-contact probes, such as inductance and capacitance probes, are influenced by the geometry of

the part being measured and measurement data may vary, for example, between a straight and curved surface at the same distance from the probe. The surface finish of the part may also affect the measurement data from a non-contact probe, particularly for optical probes.

5

10

20

The present invention provides a method of inspecting an artefact using a coordinate measuring apparatus in which an artefact-sensing probe is moved into a position-sensing relationship with each workpiece and a position reading taken, the method comprising the following steps in any suitable order:

- a) placing an artefact on the coordinate measuring apparatus;
- b) measuring said artefact a first time with an artefact-sensing probe in contact mode;
 - c) measuring said artefact a second time with an artefact-sensing probe in non-contact mode;
 - d) generating an error map corresponding to the difference between the measurements taken with the artefact measuring probe in contact mode and the artefact measuring probe in noncontact mode;
- e) measuring subsequent artefacts with the

 artefact measuring probe in non-contact mode;

 and
 - f) correcting the measurements of subsequent artefacts using the error map.
- 30 The same artefact-measuring probe may have both contact and non-contact modes, or these may be provided by two different probes.

The error map enables the non-contact scan to be

corrected for measurement errors, and thus the probe does not need an elaborate calibration.

If the first artefact is substantially identical to the subsequent artefacts, then the error map also corrects for measurement errors of the non-contact probe caused by the geometric influence of the artefact.

In a subsequent embodiment of the invention, the 10 artefact is measured the first time at a slow speed and the artefact is measured the second time at the speed of measurement of subsequent artefacts. Preferably the speed of measurement of subsequent artefacts is a fast speed.

15

5

This method reduces wear on the contact stylus tip and compensates for both dynamic speed errors and measurement errors of the non-contact probe at the same time.

20

30

The artefact may be measured the first time with a contact probe on a high accuracy reference machine, for example a CMM in a calibration laboratory. artefact may then be measured the second time with the 25 non-contact probe on a less accurate in-line (e.g. shop floor) coordinate measuring apparatus. A machine tool, when used for measuring an artefact with a probe would comprise a coordinate measuring apparatus. The error map generated may be used to correct the measurements of subsequent artefacts measured using the non-contact probe and in-line coordinate positioning machine. error map may therefore accommodate one or more of the following errors: non-contact probe measurement errors, measurement errors due to the surface geometry of the

artefact, geometric errors of the in-line machine and dynamic errors of the in-line system.

The artefact-measuring probe in non-contact mode may comprise for example an optical probe, a capacitance probe or an inductance probe. Generally these sensors are one-dimensional or scalar sensors and thus it is an advantage to use them in predefined path measurement mode.

10

5

Preferably the measurements of the workpiece from the contact probe are used to calculate a path for the non-contact probe to follow, especially if the surface of the artefact is non-prismatic/geometric.

15

20

30

A second aspect of the present invention provides apparatus for inspecting an artefact using a coordinate measuring apparatus and at least one artefact sensing probe, the apparatus comprising a controller adapted to perform the following steps in any suitable order:

- (a) measuring said artefact a first time with an artefact-sensing probe in contact mode;
- (b) measuring said artefact a second time with an artefact-sensing probe in non-contact mode;
- (c) generating an error map corresponding to the difference between the measurements taken with the artefact measuring probe in contact mode and the artefact measuring probe in non-contact mode;
 - (d) measuring subsequent artefacts with the artefact measuring probe in non-contact mode; and
 - (e) correcting the measurements of subsequent artefacts using the error map.

Preferred embodiments of the invention will now be

described by way of example, with reference to the accompanying drawings wherein:

Fig 1 is a schematic diagram of a contact probe mounted on a coordinate measuring machine;

Fig 2 is a schematic diagram of a non-contact probe mounted on a coordinate measuring machine;

5

10

15

Fig 3 is a schematic diagram showing a contact probe scanning a bore of a workpiece;

Fig 4 illustrates the paths of the contact probe and non-contact probe when scanning the bore of Fig 3;

Fig 5 is a flow chart illustrating the scanning method:

Fig 6 is a flow chart illustrating a scanning method according to the second embodiment of the invention; and

Fig 7 illustrates a non-contact probe mounted on an articulating head.

The coordinate measuring machine shown in Fig 1 20 comprises a machine table 12 on which a workpiece 16 may be placed. Preferably this is done by automatic means (not shown) which places each of a succession of substantially nominally identical workpieces from a production run in at least nominally the same position 25 and orientation on the table. An analogue probe 14 having a deflectable stylus 18 and workpiece-contacting tip 20 is mounted on a quill 10 of the machine although other types of contact probes (including touch trigger probes) may also be used. The quill 10 and probe 14 30 may move in X,Y and Z directions under the action of X,Y and Z drives controlled by a computer. X,Y and Z scales (which include counters for the outputs of the scales) show the instantaneous coordinates of the position of the quill on which the probe is mounted in

three dimensions. Signals from the probe indicating the deflection of the probe stylus are combined with the readings from the X,Y and Z scales of the CMM to calculate the position of the stylus tip and thus the surface of the workpiece. Alternatively, with a touch trigger probe a signal indicating that the probe has contacted the surface of the workpiece freezes the scales and the computer takes a reading of the coordinate of the workpiece surface.

10

15

25

30

As thus far described, the machine is conventional. The computer contains a programme which causes the probe to scan the surface of the workpiece or for a touch trigger probe to contact the surface of the workpiece at a plurality of different points sufficient to take all the required dimensions of the workpiece for the inspection operation required.

The analogue and touch trigger probes described both comprise contact probes in which the stylus 18 of the probe 14 is deflected on contact with the workpiece.

Fig 2 shows a non-contact probe 22 mounted on the quill 10 of a coordinate measuring machine, the non-contact probe 22 may comprise, for example, an optical probe, capacitance probe or inductance probe. As the quill 10 moves the probe 22 in a path around the workpiece 16, the probe detects the distance between itself and the surface of the workpiece. Signals from the probe are combined with the readings from the X,Y and Z scales of the CMM to calculate the position of the surface of the workpiece.

Referring to Fig 5, the following procedure is used in

9

the present inspection method. An artefact, such as a calibration artefact or a workpiece, is set up on a coordinate positioning machine 26, for example a CMM, and scanned or measured with a contact probe 28, for example an analogue probe. This contact probe is calibrated for static errors by conventional means, for example as described in US Patent No. 4,991,304 in which a set of correction offsets is calculated by touching the probe at a slow speed against a reference object, such as a datum ball, in a plurality of directions. These correction offsets are then used to correct all subsequent measurements.

The contact probe is exchanged for a non-contact probe,

for example an inductance probe. The workpiece is then

scanned or measured using the non-contact probe 32.

An error map is generated 34 from the difference between the results from the contact scan and the non-contact scan.

Subsequent artefacts are now placed on the CMM and scanned or measured using the non-contact probe 36.

Measurement data corresponding to the subsequent artefacts taken with the non-contact error map may thus be corrected using this error map 38. This method enables the use of an uncalibrated non-contact probe to be corrected for measurement errors.

30

20

Certain features of a workpiece, such as different surfaces and corners, may have an effect on the measurements from a non-contact scan, particularly with inductance and capacitance probes. An advantage of the

present method is that errors due to these effects which may occur during the non-contact scan are corrected by the error map as the measurement data from the contact scan is not effected by these geometric influences. Thus measurements taken using the non-contact probe of subsequent workpieces having the same geometric features will also be corrected for these geometric influences.

The workpiece may be scanned using a probe which 10 operates in both contact and non-contact modes. A single probe may be a combined touch trigger, contact scanning and non-contact probe. For example a combined touch trigger and non-contact probe may follow a path around the workpiece taking touch trigger points and 15 then move around the path a second time taking noncontact measurements. Alternatively a combined touch trigger and non-contact probe may be brought into contact with a surface of the workpiece to obtain a trigger point and then reversed away from the surface 20 to enable a non-contact measurement to be taken. method allows the non-contact probe to be calibrated.

A second embodiment of the invention will now be

described with reference to Fig 6. In this embodiment,
a workpiece having an unknown surface, from a series of
workpieces to be measured is set up on the CMM 40 and
scanned or measured at a slow speed with the contact
probe 42. At this slow speed, the dynamic errors of the
system are negligible.

The workpiece is then scanned using the non-contact probe 44. This scan is carried out at a speed at which the subsequent workpieces will also be scanned. This

is a fast speed to facilitate high speed inspection.

As before, an error map is generated 46 corresponding to the difference between the results from the slow speed contact scan and the fast speed non-contact scan.

5

25

Subsequent workpieces in the series of workpieces are set up on the CMM and scanned by the CMM using the non-contact probe 48. The data relating to the subsequent workpieces is corrected by the error map 50. The subsequent parts are measured at substantially the same speed as before, i.e. the fast speed of the non-contact probe.

15 Fig 3 illustrates a bore 24 of a workpiece 16 being scanned with a contact probe 14. The path of the workpiece-contacting probe 14 when scanning the bore 24 is shown as A in Fig 4. This profile accurately depicts the surface of bore 24 as the contact probe is calibrated to eliminate static errors and the bore is scanned slowly to reduce dynamic errors.

The data collected from the contact scan may be used to calculate a path C along which the non-contact probe travels to scan the bore 24. This path C is offset from profile A.

The surface of the bore 24 as measured by the noncontact scan is shown by profile B. This profile B may
less accurately depict the surface of the bore 24 than
profile A as the non-contact probe has not been
calibrated for either static or dynamic errors or
radial errors due to manufacture and geometric features
of the surface. The differences d between profiles A

and B are used to calculate error values by which subsequent non-contact scans are corrected.

5

10

This method thus has the advantage that both dynamic and static errors of the non-contact measurement method are compensated for. Dynamic speed errors are compensated for by the initial slow scan with the contact probe and static errors are compensated for by the initial slow scan being carried out with a calibrated probe.

Non-contact probes are usually one-dimensional and it is thus necessary to calculate the path of the non-contact scan to follow. The measurements taken by the contact probe may be used to calculate the path for the non-contact probe to follow. For example this path may be offset from the measured surface of the artefact a certain distance X.

It may not be necessary to use data collected from the contact scan to calculate the path of the non-contact scan. For example, if the workpiece has nominally predefined features, the non-contact scan can be easily ascertained from these features. Furthermore, if a multi-dimensional non-contact sensor is used, the workpiece may be measured using unknown path techniques.

The invention is not limited to the coordinate

measuring apparatus providing movement of the probe
relative to the artefact along three orthogonal axes.

For example, the coordinate measuring apparatus may
comprise a rotary table on which the artefact is placed
which allows the artefact to be rotated relative to a

probe.

Alternatively, or additionally, the probe may be mounted on an articulating head which may have one or more rotational degrees of freedom. Fig 7 illustrates 5 a non-contact probe 22, for example an inductance probe, mounted on an articulating head 52 which is in turn mounted on a spindle 10 of a coordinate measuring machine. The articulating head 52 comprises a fixed 10. housing 54 which is mounted to the machine spindle 10. A second housing 56 is rotatable with respect to the first housing 54 about an axis A1. The non-contact probe 22 is mounted rotatably to the second housing 56 and is rotatable about a second axis A2, orthogonal to 15 the A1 axis. The artefact may be measured by the probe mounted on such an articulating head by rotation of the probe by the head or a combination of rotation and translation of the head by the coordinate measuring apparatus.

Fig 2

Fig 6

GB0305326