X

### 위험 고객 관리를 위한 credit card 데이터 분석

Team1

박서영 박지혜 이민준 이상재

#### **INDEX**

- 1. 데이터 소개 및 연구 목적
- 2. 시각화 및 전처리
- 3. 데이터 분석
- 4. 분석 결과 및 보완점









#### 상황 가정

카드를 발급받고 쓰지않거나 연체가 지나치게 길어져 회사에 불이익을 주는 경우가 있다.

이에 예방 차원에서, 카드 발급 시 위험 고객을 분류를 위한 분석 의뢰가 들어왔다.

| D       | MONTHS_ | STATUS |
|---------|---------|--------|
| 5001711 | 0       | Χ      |
| 5001711 | -1      | 0      |
| 5001711 | -2      | 0      |
| 5001711 | -3      | 0      |
| 5001712 | 0       | C      |
| 5001712 | -1      | С      |
| 5001712 | -2      | C      |
| 5001712 | -3      | С      |
| 5001712 | -4      | С      |
| 5001712 | -5      | C      |
| 5001712 | -6      | С      |
| 5001712 | -7      | С      |
| 5001712 | -8      | С      |
| 5001712 | -9      | C      |
| 5001712 | -10     | C      |

# Target data

#### X

### **Credit Card Approval Prediction**

• 2개월 이상 연체된 경우



• 카드를 전혀 사용하지 않은 경우

• 그외나머지



**Target** 

Risk 값 == 1

Risk 값 == 0

### Risk 환산

| ID      | STATUS | Risk |
|---------|--------|------|
| 5001711 | X      | 1    |
| 5001711 | 0      | 0    |
| 5001711 | 0      | 0    |
| 5001711 | 0      | 0    |



| Mean |       | Final Risk |
|------|-------|------------|
| 0.25 | < 0.5 | 0          |

| ID      | STATUS | Risk |
|---------|--------|------|
| 5001712 | С      | 0    |
| 5001712 | 0      | 0    |
| 5001712 | 2      | 1    |
| 5001712 | 2      | 1    |
| 5001712 | 2      | 1    |



| Mean |        | Final Risk |
|------|--------|------------|
| 0.6  | >= 0.5 | 1          |



## **Features**

- 성별
- 차 (유/무)
- 부동산 (유/무)
- 자녀 수
- 연봉
- 수입 종류 상인, 연금 수급자, 공무원, 학생, 그 외
- 가족 타입 결혼 여부, 따로 사는 경우, 미망인, 결혼으로 시민권 획득
- 거주 형태 쉐어아파트, 시립아파트, 오피스텔, 부모님집 거주
- 나이
- 근속년수
- 연락처
- 가족 인원수

### 상관 매트릭스





## 신용 상태 별 카운트





| DAYS | EMPL | .OYED |
|------|------|-------|
|------|------|-------|

-4542

-4542

-1134

-3051

-3051

### YEARS\_EMPLOYED

12

12

3

8

8

-12005

-12005

-21474

-19110

-19110

#### AGE

32

32

58

52

52





<class 'pandas.core.frame.DataFrame'>
Int64Index: 36457 entries, 0 to 36456
Data columns (total 17 columns):

| #         | Column                 | Non-Null Count   | Dtype     |
|-----------|------------------------|------------------|-----------|
| 0         | ID                     | 36457 non-null   | <br>int64 |
| 1         | CODE_GENDER            | 36457 non-null   | object    |
| 2         | FLAG_OWN_CAR           | 36457 non-null   | object    |
| 3         | FLAG_OWN_REALTY        | 36457 non-null   | object    |
| 4         | CNT_CHILDREN           | 36457 non-null   | int64     |
| 5         | AMT_INCOME_TOTAL       | 36457 non-null   | float64   |
| 6         | NAME_INCOME_TYPE       | 36457 non-null   | object    |
| 7         | NAME_EDUCATION_TYPE    | 36457 non-null   | object    |
| 8         | NAME_FAMILY_STATUS     | 36457 non-null   | object    |
| 9         | NAME_HOUSING_TYPE      | 36457 non-null   | object    |
| 10        | AGE                    | 36457 non-null   | int64     |
| 11        | YEARS_EMPLOYED         | 36457 non-null   | int64     |
| 12        | FLAG_WORK_PHONE        | 36457 non-null   | int64     |
| 13        | FLAG_PHONE             | 36457 non-null   | int64     |
| 14        | FLAG_EMAIL             | 36457 non-null   | int64     |
| 15        | CNT_FAM_MEMBERS        | 36457 non-null   | float64   |
| 16        | STATUS                 | 36457 non-null   | float64   |
| d + u = 0 | aa. flaa+64(3)   in+64 | (7) object $(7)$ |           |

dtypes: float64(3), int64(7), object(7)

memory usage: 5.0+ MB



### NAME\_HOUSING\_TYPE







|   | NAME_HOUSING_TYPE | STATUS |
|---|-------------------|--------|
| 0 | Rented apartment  | 0.0    |
| 1 | Rented apartment  | 0.0    |
| 2 | House / apartment | 1.0    |
| 3 | House / apartment | 1.0    |
| 4 | House / apartment | 1.0    |

|   | NAME_HOUSING_TYPE   | STATUS   |
|---|---------------------|----------|
| 0 | Co-op apartment     | 0.392857 |
| 1 | House / apartment   | 0.182715 |
| 2 | Municipal apartment | 0.205674 |
| 3 | Office apartment    | 0.194656 |
| 4 | Rented apartment    | 0.206957 |

### 거주 타입 별 신용상태를 수치화

### X

### **Credit Card Approval Prediction**



성별 변수 전처리

### FLAG\_OWN\_CAR







### FLAG\_OWN\_REALTY







|       | ID      | CODE_GENDER | FLAG_OWN_CAR | FLAG_OWN_REALTY | CNT_CHILDREN | AMT_INCOME_TOTAL | NAME_INCOME_TYPE | NAME_EDUCATION_TY |
|-------|---------|-------------|--------------|-----------------|--------------|------------------|------------------|-------------------|
| 2     | 5008806 | 0           | 1            | 1               | 0            | 112500.0         | 0.182741         | 0.1789            |
| 3     | 5008808 | 1           | 0            | 1               | 0            | 270000.0         | 0.188339         | 0.1789            |
| 4     | 5008809 | 1           | 0            | 1               | 0            | 270000.0         | 0.188339         | 0.1789            |
| 5     | 5008810 | 1           | 0            | 1               | 0            | 270000.0         | 0.188339         | 0.1789            |
| 6     | 5008811 | 1           | 0            | 1               | 0            | 270000.0         | 0.188339         | 0.1789            |
|       |         |             |              |                 |              |                  |                  |                   |
| 36452 | 5149828 | 0           | 1            | 1               | 0            | 315000.0         | 0.182741         | 0.1789            |
| 36453 | 5149834 | 1           | 0            | 1               | 0            | 157500.0         | 0.188339         | 0.2020            |
| 36454 | 5149838 | 1           | 0            | 1               | 0            | 157500.0         | 0.178966         | 0.2020            |
| 36455 | 5150049 | 1           | 0            | 1               | 0            | 283500.0         | 0.182741         | 0.1789            |
| 36456 | 5150337 | 0           | 0            | 1               | 0            | 112500.0         | 0.182741         | 0.1789            |

34928 rows × 17 columns

### 모든 변수의 관측값을 숫자벡터로 전처리



|       | AGE   | STATUS |
|-------|-------|--------|
| 2     | 51-60 | 1.0    |
| 3     | 51-60 | 1.0    |
| 4     | 51-60 | 1.0    |
| 12    | 41-50 | 1.0    |
| 13    | 41-50 | 1.0    |
|       |       |        |
| 36432 | 51-60 | 1.0    |
| 36434 | 61-70 | 1.0    |
| 36437 | 31-40 | 1.0    |
| 36442 | 41-50 | 1.0    |
| 36452 | 41-50 | 1.0    |

6419 rows × 2 columns



나이구간 별 위험군에 속한 고객 카운트



이상치 제거 및 수치화

### 1. Logistic Regression

1) Logistic Regression Model

Log(Y/(1-Y)) = -0.0052X1-0.0226X2-0.0272X3-0.3639X4+0.1861X5+0.2076X6+0.3296X7+0.1101X8+0.9562X9-0.3174X10-0.5299X11+0.0523X12+0.0991X13-0.1656X14-0.3653X15

2) 위험군에 속할 확률(연체할 확률)

Y = exp( -0.0052 CODE\_GENDER - 0.0226 OWN\_CAR - 0.0272 OWN\_REALTY - 0.3639 CHILDREN + 0.1861 INCOME + 0.2076 INCOME\_TYPE + 0.3296 EDUCATION\_TYPE + 0.1101 MARRIED + 0.9562 HOUSING\_TYPE - 0.3174 AGE - 0.5299 YEARS\_EMPLOYED + 0.0523 WORK\_PHONE + 0.0991 PHONE - 0.1656 EMAIL - 0.3653 FAMILY ) / 1+ exp(-0.0052 CODE\_GENDER - 0.0226 OWN\_CAR - 0.0272 OWN\_REALTY - 0.3639 CHILDREN + 0.1861 INCOME + 0.2076 INCOME\_TYPE + 0.3296 EDUCATION\_TYPE + 0.1101 MARRIED + 0.9562 HOUSING\_TYPE - 0.3174 AGE - 0.5299 YEARS\_EMPLOYED + 0.0523 WORK\_PHONE + 0.0991 PHONE - 0.1656 EMAIL - 0.3653 FAMILY )

\* 데이터를 Scaling 하지 않았을 때 회귀계수 - 회귀계수 값이 너무 작음

```
array([[-7.16359899e-11, -2.11536362e-11, -6.11366463e-11, -3.54933194e-11, -7.73645944e-06, -1.61627251e-11, -1.58885756e-11, -1.62631104e-11, -1.59904449e-11, -4.10934833e-09, -5.04720196e-10, -1.85144274e-11, -2.19337958e-11, -7.76231485e-12, -1.94173179e-10]])
```



#### 3) 모델링 결과

- 위험군에 속할 확률에 가장 영향을 미치는 변수 : 'HOUSING TYPE', 'YEARS\_EMPLOYED'
- 'HOUSING TYPE'에 따라 위험군에 속할 확률 증가 부모님 집 > 일반(건물 소유) > 오피스텔 > 월세 > 시립 아파트 > 쉐어 하우스
- 'YEAR\_EMPLOYED'에 따라 위험군에 속할 확률 감소

#### \* 'HOUSING TYPE' 별 위험군에 속할 확률

| Housing Type | 가중치(스케일링) | 가중치*회귀계수(0.9562) | 가중치*회귀계수/0.5 |
|--------------|-----------|------------------|--------------|
| 쉐어하우스        | 1         | 0.9562           | 1.9124       |
| 일반           | 0.0378    | 0.03614436       | 0.07228872   |
| 시립아파트        | 0.1436    | 0.13731032       | 0.27462064   |
| 오피스텔         | 0.133     | 0.1271746        | 0.2543492    |
| 렌트 하우스(월세)   | 0.1506    | 0.14400372       | 0.28800744   |
| 부모님 집        | 0         | 0                | 0            |

- 'HOUSING TYPE'이 렌트 하우스일 경우가 부모님 집에 살 경우보다 연체를 할 확률(위험군에 속할 확률)이 28% 높음



#### 성능평가 – Confusion Matrix

### **Logistic Regression**



|                                       | precision    | recall       | f1-score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0.0<br>1.0                            | 0.82<br>0.00 | 1.00<br>0.00 | 0.90<br>0.00         | 9409<br>2118            |
| accuracy<br>macro avg<br>weighted avg | 0.41<br>0.67 | 0.50<br>0.82 | 0.82<br>0.45<br>0.73 | 11527<br>11527<br>11527 |

- Accuracy(정확도) : 전체 데이터 중 맞게 예측한 데이터의 비율 모델 정확도 82%
- Precision(정밀도): 예측한 것 중에 맞게 예측한 비율

Good client : 82% Bad client : 0%

• Recall(재현율): 실제값 중에 맞게 예측한 비율

Good client: 100%

Bad client : 0% -> 예측 실패

- 결론: type2 error(위험군을 비위험군으로 예측)
- F1-score(정밀도와 재현율의 조화평균) : Good client 분류의 성능이 좋다.



### **2. KNN**

- 1) K값 변화에 따른 정확도
- k가 작으면 노이즈에 민감하게 반응 -> k =2 대신 k = 4를 채택

- 2) 성능평가 ROC curve
- AUC = 0.5895
- -> 값이 작으므로 성능이 좋지 않음





#### 성능평가 – Confusion Matrix



### **KNN**

• Accuracy(정확도): 전체 데이터 중 맞게 예측한 데이터의 비율 모델 정확도 83%

• Precision(정밀도): 예측한 것 중에 맞게 예측한 비율

Good client : 84% Bad client : 58%

• Recall(재현율) : 실제값 중에 맞게 예측한 비율

Good client: 97% Bad client: 20%

• 결론: type2 error(위험군을 비위험군으로 예측)

• F1-score(정밀도와 재현율의 조화평균):

Good client 분류의 성능은 좋지만 Bad client 분류의 성능은 좋지 않음



### 3. Decision tree



#### 1) 모델링 결과:

- 나이가 41.5세보다 적은 사람

집의 형태가 Co-op apartment, Municipal apartment, Office apartment, Rented apartment인 사람 (HOUSING\_TYPE > 0.2)

결혼 여부가 Separated인 사람 (FAMILY\_STATUS > 0.194)

가족 수가 2.5명보다 많은 사람

집의 형태가 Co-op apartment, Municipal apartment, Rented apartment인 사람은 Bad client로 예측 (HOUSING\_TYPE > 0.211)

- 나이가 41.5세보다 많은 사람 근속 연수가 4.5년보다 많은 사람 자녀 수가 1.5명보다 많은 사람 근속 연수가 5.5년보다 적은 사람 총 수입이 130500위안보다 적은 사람은 Bad client로 예측

|   | NAME_HOUSING_TYPE   | STATUS   |
|---|---------------------|----------|
| 0 | Co-op apartment     | 0.392857 |
| 1 | House / apartment   | 0.189843 |
| 2 | Municipal apartment | 0.213652 |
| 3 | Office apartment    | 0.209924 |
| 4 | Rented apartment    | 0.212174 |
| 5 | With parents        | 0.181869 |
|   |                     |          |

| ME_FAMILY_STATUS     | STATUS                         |
|----------------------|--------------------------------|
| 6: 7                 |                                |
| Civil marriage       | 0.198302                       |
| Married              | 0.189796                       |
| Separated            | 0.209700                       |
| Single / not married | 0.188238                       |
| Widow                | 0.194517                       |
|                      | Separated Single / not married |



- 2) 성능평가 ROC curve
- AUC = 0.5512
- -> 값이 작으므로 성능이 좋지 않음





#### 성능평가 – Confusion Matrix



|                                       | precision    | recall       | f1-score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0.0<br>1.0                            | 0.82<br>0.65 | 1.00<br>0.01 | 0.90<br>0.01         | 9409<br>2118            |
| accuracy<br>macro avg<br>weighted avg | 0.73<br>0.79 | 0.50<br>0.82 | 0.82<br>0.46<br>0.74 | 11527<br>11527<br>11527 |

### <u>Decision tree</u>

- Accuracy(정확도): 전체 데이터 중 맞게 예측한 데이터의 비율 모델 정확도 82%
- Precision(정밀도) : 예측한 것 중에 맞게 예측한 비율

Good client: 82% Bad client: 65%

• Recall(재현율): 실제값 중에 맞게 예측한 비율

Good client: 100%

Bad client : 1% -> 예측 실패

- 결론: type2 error(위험군을 비위험군으로 예측)
- F1-score(정밀도와 재현율의 조화평균) : Good client 분류의 성능은 좋지만 Bad client 분류의 성능은 좋지 않음



#### 성능평가 – Confusion Matrix



|                                       | precision    | recall       | f1—score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0.0<br>1.0                            | 0.82<br>1.00 | 1.00<br>0.00 | 0.90<br>0.00         | 9409<br>2118            |
| accuracy<br>macro avg<br>weighted avg | 0.91<br>0.85 | 0.50<br>0.82 | 0.82<br>0.45<br>0.73 | 11527<br>11527<br>11527 |

### **4. SVM**

• Accuracy(정확도): 전체 데이터 중 맞게 예측한 데이터 의 비율 모델 정확도 82%

• Precision(정밀도): 예측한 것 중에 맞게 예측한 비율

Good client: 82% Bad client: 100%

• Recall(재현율) : 실제값 중에 맞게 예측한 비율

Good client: 100%

Bad client : 0% -> 예측 실패

• 결론: type2 error(위험군을 비위험군으로 예측)

F1-score(정밀도와 재현율의 조화평균) :
 Good client 분류의 성능이 좋다.

#### X

### SVM ROC커브

- AUC = 0.6610
- -> 값이 작으므로 성능이 좋지 않음



### 5. Ensemble Modeling

| 모델                       | 정확도                 |
|--------------------------|---------------------|
| Logistic Regression      | 0.8162              |
| K neighbors Classifier   | <mark>0.8268</mark> |
| Decision Tree Classifier | 0.8168              |
| SVM                      | 0.8166              |
| Voting Classifier        | 0.8162              |

Hard voting(Majority Voting) -> 과반수가 같은 오답을 제시할 경우 앙상블은 오답을 채택

KNN이 정확도가 가장 높았다.



### **Ensemble Modeling**

#### 성능평가 – Confusion Matrix



|                                       | precision    | recall       | f1-score             | support                 |
|---------------------------------------|--------------|--------------|----------------------|-------------------------|
| 0.0<br>1.0                            | 0.82<br>0.00 | 1.00<br>0.00 | 0.90<br>0.00         | 9409<br>2118            |
| accuracy<br>macro avg<br>weighted avg | 0.41<br>0.67 | 0.50<br>0.82 | 0.82<br>0.45<br>0.73 | 11527<br>11527<br>11527 |

• Accuracy(정확도): 전체 데이터 중 맞게 예측한 데이터 의 비율 모델 정확도 82%

• Precision(정밀도) : 예측한 것 중에 맞게 예측한 비율

Good client: 82%

Bad client : 0% -> 예측 실패

• Recall(재현율) : 실제값 중에 맞게 예측한 비율

Good client: 100%

Bad client : 0% -> 예측 실패

• 결론: type2 error(위험군을 비위험군으로 예측)

• F1-score(정밀도와 재현율의 조화평균) : Good client 분류의 성능이 좋다.

### <u>분석 결과 및 보완점</u>

- 로지스틱 회귀분석 결과
  - 고객이 연체할 확률에 영향을 미치는 변수는 <mark>거주 형태</mark>와 <mark>근속연수</mark>이다.
  - 거주 형태가 렌트하우스일 경우가 부모님 집에 살 경우보다 연체를 할 확률(위험군에 속할 확률)이 28% 높다.
- 고객이 연체할 확률에 미치는 영향이 높은 변수
  - Decision Tree : 나이
  - Logistic Regression : 거주 형태
- 전체 모델의 정확도는 높으나 위험 고객을 찾아내는데 아쉬움이 있었다.
- 주어진 데이터 외에 좀 더 다양하게 컬럼을 추가하지 못하였다.
- → 추가자료 크롤링으로 컬럼 결합 및 해체 등을 시도해보고 모델링했다면 type 2 error를 줄이는데 더 효과적이었을 것 같다.

# Thank you

X

Team1

박서영 박지혜 이민준 이상재