File Organization

Radhika Rani Chintala

File Organization

Part-1

Agenda

- Introduction
- Storage Devices
- Secondary Storage devices
- Hardware Mechanism of Disk drive
- Tertiary Storage devices

Introduction

The collection of data that makes up a computerized database must be stored physically on some computer **storage** medium.

The DBMS software can then retrieve, update, and process this data as needed.

Computer storage media form Primary storage a Storage Hierarchy that Secondary storage includes two main categories: Tertiary storage

Storage Devices

Primary Storage

- Direct access by CPU.
- Fast access to data
- Limited storage capacity.
- More expensive.
- Volatile
- Main memory & faster cache memory.

Secondary Storage

- No direct access to CPU
- Slow access to data
- Large capacity
- Less expensive
- Non-Volatile
- Online devices
- Magnetic disk & Flash memory
- Most databases are stored permanently on magnetic disks

Tertiary Storage

- No direct access to CPU
- Slower access to data
- Large capacity
- Less expensive than disks
- Non-Volatile
- Offline devices
- Magnetic tapes & Optical disks
- Used for backing up databases

Secondary Storage Devices

Magnetic Disk

- Stores large amounts of data.
- The device that holds the disks is referred to as a hard disk drive, or HDD.
- Basic unit of data is a bit.
- By magnetizing an area on a disk, it can represent a bit value of either 0 or 1.
- Bits are grouped into bytes (or characters) -- > 4 to 8 bits.
- Capacity of a disk = No. of bytes it can store
- Hard disks can hold from several hundred gigabytes up to a few terabytes.

Hardware description of Disk Devices

- Made of magnetic material
- Shaped as a thin circular disk
- Protected by a plastic or acrylic cover.
- Single-sided disk and Double-sided disk.
- 3.5" & 2.5" diameter.
- Disks are assembled into a **disk pack**, which may include many disks and therefore many surfaces.

• **Disk Pack:** Which include multiple disks and thus many surfaces.

• **Tracks:** Information is stored on a disk surface in concentric circles of small width, where each circle is called a **track**.

• Cylinder: Tracks with the same diameter on the various surfaces are called a cylinder.

• **Sectors:** Track usually contains a large amount of information, so it is divided into smaller blocks called sectors.

- **Disk Block:** The division of a track into equal-sized **disk blocks** (or **pages**) is set by the operating system during disk formatting (or initialization).
- Sectors subdivided or combined into blocks during initialization.

- Data Transfer: Data transfer b/w main memory and disk takes place in units of disk blocks.
- **Hardware Block Address** = (cylinder number, track number, block number)
- Logical block address(LBA) = number between 0 and n (assuming the total capacity of the disk is n + 1 blocks).
- Buffer: a contiguous reserved area in main memory that holds one disk block.
- **Cluster**(several contiguous blocks) may be transferred as a unit. In this case, the buffer size is adjusted to match the number of bytes in the cluster.

12 **DBMS** File Organization Radhika Rani Chintala

Movable-

head disks

Interfacing Disk Drives to Computer Systems

Disk Controller: Controls the disk drive and interfaces it to the computer system.

Seek time

• Time taken by the disk controller to position the read/write head on the correct track.

Rotational delay or latency

• Rotational time taken to position the beginning of the desired block under the read/write head.

Block transfer time

• Time taken to transfer the data

Bulk Transfer

• Transfer several consecutive blocks on the same track or cylinder.

Total Block Transfer Time Calculation

Total time = Seek time + Rotational delay + Block transfer time

Bulk transfer rate = Seek time + Rotational delay + (n * Block transfer time)

Tertiary Storage Devices

Magnetic Tapes

- Sequential access devices .
- high-capacity.
- Data is stored on reels. Similar to audiotapes or videotapes.
- A tape drive is required
- A read/write head is used to read or write data blocks on tape.
- Blocks may be larger than those for disks
- Slow access devices
- Used for Backing up the database

Storage Devices Magnetic Disks Hardware Mechanism of Disk drive Magnetic Tapes

Summary of Part-1

File Organization

Part-2

File Organization

Part-2

Agenda

- Buffer Management
- Various ways of formatting and storing file records on disk.

- Various types of operations that are typically applied to file records.
- Three primary methods for organizing file records on disk:
 - > unordered records
 - > ordered records
 - hashed records.

Buffer Management

Buffering of Blocks

Multiple Buffers: When several blocks need to be transferred from disk to main memory, several buffers can be reserved in main memory to speed up the transfer.

Disk I/O Processor: Controller that takes care of I/O operations.

Parallel processing of Buffers: While one buffer is being read or written, CPU can process data in the other buffer. CPU processing and Disk I/O processing can be done parallelly.

Double Buffering

- Reading and processing can proceed in parallel.
- The CPU can start processing a block once its transfer to main memory is completed; at the same time, the disk I/O processor can be reading and transferring the next block into a different buffer.

Placing File Records on Disk

Files, Fixed-Length Records, and Variable-Length Records

- File: a sequence of records. All records in a file are of the same record type.
- Fixed-length records: Every record in the file has exactly the same size (in bytes).
- Variable-length records: Different records in the file have different sizes.

Three Storage Formats

- Fixed Length Record
- Variable Length Record with Separator
- Variable Length Record with multiple Separators

(a) A fixed-length record with six fields and size of 71 bytes.

(b) A record with two variable-length fields and three fixed-length fields

	Name	Ssn	Salary	Job_code	Department	
	Smith, John	123456789	XXXX	XXXX	Computer	
1	1	12 2	21 2	5 5	29	

Separator Characters

(c) A variable-field record with three types of separator characters

Record Blocking

- When the block size > record size, each block will contain numerous records
- When the record size > block size, each record occupies multiple blocks.
- For a file of fixed-length records of size R bytes, with B >= R, we can fit

bfr (blocking factor) = $\lfloor B/R \rfloor$ records per block

Unused space in each block = B - (bfr * R) bytes

Spanned & Unspanned Records

• Unspanned Records:

- A record is found in one and only one block.
- Records do not span across block boundaries.
- Used with fixed-length records having B > R

• Spanned Records:

- Records are allowed to span across block boundaries.
- Used with variable-length records having R > B

Allocating File blocks on Disk

Contiguous Allocation

- The file blocks are allocated to consecutive disk blocks.
- Reading a file is very fast.
- But expanding a file is difficult.

Linked Allocation

- Each file block contains a pointer to the next file block.
- Easy to expand a file
- But reading a file is slow

Indexed Allocation

 One or more index blocks contain pointers to the actual file blocks.

It is also common to use combinations of these techniques.

Operations on Files

File Operations

- Open
- Reset
- Find (or Locate)
- Read (or Get)
- FindNext
- Delete
- Modify

- Insert
- Close
- Scan
- FindAll
- Find (or Locate) n
- FindOrdered
- Reorganize

Files of Unordered Records

and Ordered Records

Files of Unordered Records and Ordered Records

Files of Unordered Records

- Also called as **Heap Files or Pile Files**.
- Records are stored in the same order in which they are created.
- Insert operation: Fast
- Search (or Update) operation: Slow
- Delete operation: Slow
- Deleting a record creates a hole in the page.

Files of Ordered Records

- Also called as **Sorted Files**.
- Ordering Field: Records are sorted on the values of one or more fields.
- Insert operation: Poor
- Search (or Update) operation: Fast
- Delete operation: Fast

Summary of Part-2

Buffer Management

Placing File Records on Disk

Operations on Files

Files of Unordered and Ordered Records

