Applying Gaussian Mixture Model

Georgina Shaw

07/03/2022

Herrin

Only keeping the information we need

Choosing the type of fish to use, this time looking at cod

```
stomach <- df %>%
  filter(Species == "Clupea harengus",
         wprey > 0)
stomach %>%
  group_by(Species) %>%
  summarise(wprey_min = min(wprey),
            wprey_max = max(wprey),
            lmin = min(1),
            lmax = max(1))
## # A tibble: 1 x 5
     Species
                     wprey_min wprey_max
                                            lmin lmax
     <chr>>
                                   <dbl> <dbl> <dbl>
                         <dbl>
                       0.00001
## 1 Clupea harengus
                                    104. 0.0544 17.5
stomach %>%
  group_by(Species) %>%
 filter(wprey == max(wprey))
```

Creating bins for the data

Splitting the data into the bins that have been made

'summarise()' has grouped output by 'Species'. You can override using the '.groups' argument.

```
binned_stomach
```

```
## # A tibble: 30 x 5
## # Groups: Species [1]
##
      Species
                        cut Numbers Biomass
##
      <chr>
                      <int>
                               <dbl>
                                      <dbl> <dbl>
## 1 Clupea harengus 1 0.00110 0.0351 0.0544
## 2 Clupea harengus
                           2 0.0197 0.348 0.655
## 3 Clupea harengus
                                     0.503 1.26
                          3 0.0362
## 4 Clupea harengus
                          4 0.0264
                                     0.162 1.86
## 5 Clupea harengus 5 0.0197
## 6 Clupea harengus 6 0.0230
## 7 Clupea harengus 7 0.0254
                                      0.0546 2.46
                                      0.0575 3.06
                                      0.0717 3.66
## 8 Clupea harengus
                           8 0.0618
                                      0.0663 4.26
## 9 Clupea harengus
                          9 0.115
                                      0.113 4.86
## 10 Clupea harengus
                          10 0.145
                                      0.0913 5.46
## # ... with 20 more rows
```

We convert this into the long table format preferred by ggplot2.

```
binned_stomach <- binned_stomach %>%
  gather(key = "Type", value = "Density", Numbers, Biomass)
```

Histograms

Plot the histogram that represents estimates of the normalised number density and the normalised biomass density

```
binned_stomach %>%
  ggplot(aes(1, Density, fill = Type)) +
  geom_col(position = "dodge") +
  facet_grid(rows = vars(Species), scales = "free_y") +
  xlab("Log of Predator/Prey mass ratio") +
  expand_limits(x = c(0, 30))
```


Kernal Density Estimation

```
xlab("Log of predator/prey mass ratio") +
expand_limits(x = c(0, 29))
```


Gaussian Distribution fit

Plotting the normal distribution for numbers

Now adding biomass

```
stomach %>%
 ggplot() +
 geom_density(aes(1, weight = weight_numbers,
                   fill = "Numbers"),
              adjust = adjust) +
 geom_density(aes(1, weight = weight_biomass,
                  fill = "Biomass"),
              adjust = adjust) +
 xlab("Log of Predator/Prey mass ratio") +
 stat_function(fun = dnorm,
                args = list(mean = fit$mean,
                            sd = fit\$sd),
                colour = "blue") +
 stat_function(fun = dnorm,
                args = list(mean = fit$mean - fit$sd^2,
                           sd = fit$sd),
               colour = "red") +
  expand_limits(x = c(0, 30))
```



```
weighted.sd <- function(x, w) {</pre>
  sqrt(sum(w * (x - weighted.mean(x, w))^2))
fit <- stomach %>%
  summarise(mean = weighted.mean(1, weight_numbers),
            sd = weighted.sd(l, weight_numbers))
stomach %>%
  ggplot() +
  geom_density(aes(1, weight = weight_numbers,
                   fill = "Numbers"),
               adjust = adjust) +
  geom_density(aes(1, weight = weight_biomass,
                   fill = "Biomass"),
               adjust = adjust) +
  xlab("Log of Predator/Prey mass ratio") +
  stat_function(fun = dnorm,
                args = list(mean = fit$mean,
                            sd = fit$sd),
                colour = "blue") +
  stat_function(fun = dnorm,
                args = list(mean = fit$mean - fit$sd^2,
                            sd = fit$sd),
                colour = "red") +
  expand_limits(x = c(0, 30))
```


Gaussaian Mixture Model

The Gaussian Mixture model is the plotting of multiple Gaussian distributions on one plot. The estimates of the parameters are found using expectation maximization (EM), which consists of two steps, the expectation step (E step) and the maximization step (M step).

For this analysis only the the univariant case needs to be considered, with parameters μ_k and σ_k for each k-th component, with k=2. The mixture component weightings are defined as ϕ_k with $\sum_{i=1}^K \phi_i = 1$, so the probabilities add to one.

The E step involves calculating the expectation of of the the assignment of each class for each data point given the model parameters ϕ_k , μ_k and σ_k . The M step involves maximization the expectations calculated in the E step, which updates the values ϕ_k , μ_k and σ_k . Eventually this should converge, giving a maximum likelihood estimate of the parameters.

If the Gaussian Mixture Model fitted the numbers density then is would be distributed by two Gaussians models such as;

$$n_1(p) \propto \exp\left(-\frac{(p-\mu_1)^2}{2\sigma_1^2}\right),$$

and

$$n_2(p) \propto \exp\left(-\frac{(p-\mu_2)^2}{2\sigma_2^2}\right).$$

Then the biomass density would be given by a two normal distributions but with the means shifted by σ^2 , which would give the following;

$$b_1(p) \propto \exp\left(-\frac{(p - (\mu_1 - \sigma_1^2)^2)}{2\sigma_1^2}\right)$$

$$b_2(p) \propto \exp\left(-\frac{(p - (\mu_2 - \sigma_2^2)^2)}{2\sigma_2^2}\right)$$

Firstly, find the numbers and biomass PPMR for each observation using the definition of each;

$$r_i^{num} = \frac{1}{n} \sum_{i=1}^n \frac{M_i}{m_j}$$

$$r_i^{bio} = \frac{M_i}{\frac{1}{n} \sum_{j=1}^n m_j}$$

Applying Gaussian Mixture Models in different ways First way by calculating each individual PPMR by numbers and biomass and then applying the EM algorithm to find the estimated parameters and then plotting

```
#plot of numbers
ggplot(ppmr, aes(x = numbers)) +
  geom_histogram(binwidth = binsize) +
  ggtitle("Clupea harengus") +
  mapply(
   function(mean, sd, lambda, n, binwidth) {
      stat_function(
        fun = function(x) {
          (dnorm(x, mean = mean, sd = sd)) * n * binwidth * lambda
      )
   },
   mean = my_mix1[["mu"]], #mean
   sd = my_mix1[["sigma"]], #standard deviation
   lambda = my_mix1[["lambda"]], #amplitude
   n = length(ppmr$numbers), #sample size
    binwidth = binsize #binwidth used for histogram
```

Clupea harengus


```
#plot of biomass
ggplot(ppmr, aes(x = biomass), main ="Clupea harengus") +
  geom_histogram(binwidth = binsize) +
  ggtitle("Clupea harengus") +
  mapply(
    function(mean, sd, lambda, n, binwidth) {
      stat_function(
        fun = function(x) {
          (dnorm(x, mean = mean, sd = sd)) * n * binwidth * lambda
        }
     )
    },
    mean = my_mix2[["mu"]], #mean
    sd = my_mix2[["sigma"]], #standard deviation
   lambda = my_mix2[["lambda"]], #amplitude
    n = length(ppmr$biomass), #sample size
    binwidth = binsize #binwidth used for histogram
  )
```

Clupea harengus

Looking at Gaussian distribution for different species

stomach_all <- stom_df %>%

```
select(Species = pred_species,
            wprey = prey_weight_g,
            wpredator = pred_weight_g) %>%
  group_by(Species) %>%
  filter(n() > 1000, wprey > 0) %>%
  mutate(Nprey = 1,
         1 = log(wpredator / wprey),
         weight_numbers = Nprey / sum(Nprey),
         weight_biomass = Nprey * wprey / sum(Nprey * wprey))
unique(stomach_all$Species)
                                      "Scomber scombrus"
##
   [1] "Clupea harengus"
                                      "Pleuronectes platessa"
   [3] "Limanda limanda"
   [5] "Gadus morhua"
                                      "Merluccius merluccius"
##
    [7] "Merlangius merlangus"
                                      "Melanogrammus aeglefinus"
##
   [9] "Eutrigla gurnardus"
                                      "Trachurus trachurus"
                                      "Scophthalmus maximus"
## [11] "Raja clavata"
   [13] "Amblyraja radiata"
                                      "Pollachius virens"
## [15] "Lepidorhombus whiffiagonis"
no_bins <- 30 # Number of bins</pre>
binsize <- (max(stomach_all$1) - min(stomach_all$1)) / (no_bins - 1)</pre>
breaks <- seq(min(stomach_all$1) - binsize/2,</pre>
```

'summarise()' has grouped output by 'Species'. You can override using the '.groups' argument.

Plotting the graphs

Scomber scombrus

number of iterations= 135

Scomber scombrus

Scomber scombrus

Limanda limanda

WARNING! NOT CONVERGENT!
number of iterations= 1000

WARNING! NOT CONVERGENT!
number of iterations= 1000

Limanda limanda

Limanda limanda

Pleuronectes platessa

WARNING! NOT CONVERGENT!
number of iterations= 1000

Pleuronectes platessa

Pleuronectes platessa

Gadus morhua

number of iterations= 446

Gadus morhua

Gadus morhua

Merluccius merluccius

number of iterations= 74

Merluccius merluccius

Merluccius merluccius

Merlangius merlangus

number of iterations= 135

Merlangius merlangus

Merlangius merlangus

Melanogrammus aeglefinus

number of iterations= 705

Melanogrammus aeglefinus

Melanogrammus aeglefinus

Eutrigla gurnardus

number of iterations= 744

WARNING! NOT CONVERGENT!
number of iterations= 1000

Eutrigla gurnardus

Eutrigla gurnardus

Trachurus trachurus

number of iterations= 892

Trachurus trachurus

Trachurus trachurus

Raja clavata

number of iterations= 399

Raja clavata

Raja clavata

Scophthalmus maximus

WARNING! NOT CONVERGENT!
number of iterations= 1000

Scophthalmus maximus

Scophthalmus maximus

Amblyraja radiata

WARNING! NOT CONVERGENT!
number of iterations= 1000

WARNING! NOT CONVERGENT!
number of iterations= 1000

Amblyraja radiata

Amblyraja radiata

Pollachius virens

number of iterations= 668

Pollachius virens

Pollachius virens

Lepidorhombus whiffiagonis

number of iterations= 35

Lepidorhombus whiffiagonis

Lepidorhombus whiffiagonis

