

SHEAVES ON $\mathbb{P}^1 \times \mathbb{P}^1$, BIGRADED RESOLUTIONS, AND COADJOINT ORBITS OF LOOP GROUPS

ROGER BIELAWSKI & LORENZ SCHWACHHÖFER

ABSTRACT. We construct a canonical linear resolution of acyclic 1-dimensional sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ and discuss the resulting natural Poisson structure.

1. INTRODUCTION

The goal of this paper is to present a (yet another) variation on a theme developed by several authors, notably Moser, Adams, Harnad, Hurtubise, Previato [13], [1]–[5], and relating integrable systems, rank r perturbations, spectral curves and their Jacobians, and coadjoint orbits of loop groups.

Let us briefly recall that, given matrices A, Y, F, G of size, respectively, $N \times N$, $r \times r$, $N \times r$, and $r \times N$, one defines a $\mathfrak{gl}_r(\mathbb{C})$ -valued rational map

$$(1.1) \quad Y + G(A - \lambda)^{-1}F,$$

i.e. an element of the loop algebra $\tilde{\mathfrak{gl}}(r)^-$, consisting of loops extending holomorphically to the outside of some circle $S^1 \subset \mathbb{C}$. This determines a (shifted) reduced coadjoint orbit in $\tilde{\mathfrak{gl}}(r)^-$ (see Remark 4.5 for a definition). On the other hand, the polynomial (1.1) also determines (generically) a curve S and a line bundle L of degree $g+r-1$: the curve is defined as the spectrum of (1.1), and L is the dual of the eigenbundle of (1.1). This describes S as an affine curve in \mathbb{C}^2 , and the isospectral flows, corresponding to Hamiltonians on the space of rank r perturbations, linearise on the Jacobian of the projective model of S .

In fact, as shown by Adams, Harnad, and Hurtubise [1, 2], it is more convenient to compactify S inside a Hirzebruch surface F_d , $d \geq 1$. This results in singularities, which may be partially resolved, but it gives a particularly nice description of $\text{Jac}^0(S)$, i.e. of the flow directions.

In this paper, we consider a different compactification of S , namely inside $\mathbb{P}^1 \times \mathbb{P}^1$ and defined as

$$(1.2) \quad S = \left\{ (z, \lambda) \in \mathbb{P}^1 \times \mathbb{P}^1; \det \begin{pmatrix} Y - z & G \\ F & A - \lambda \end{pmatrix} = 0 \right\}.$$

This is a very natural thing to do, but we know of only one occurrence in the literature: the paper of Sanguinetti and Woodhouse [17] (we are grateful to Philip Boalch for this reference). In that paper, in addition to other results, the authors use the above compactification to give a nice picture of the duality phenomenon discussed in [3]. Our application is to another subtlety of the rank r perturbation isospectral flow: the fact that the flow may leave the set where $\text{rank } F = \text{rank } G = r$, without becoming singular. More precisely, we have:

2000 *Mathematics Subject Classification.* 58F07, 14F05, 14H40, 14H70, 22E67.

Theorem 1.1. *Let S be a smooth curve in $\mathbb{P}^1 \times \mathbb{P}^1$, defined by (1.2) and corresponding to a (shifted) rank r perturbation of the matrix A ($r \leq N$). A line bundle $L \in \text{Jac}^{g-r+1}(S)$ corresponds to (A, Y, F, G) with $\text{rank } F = \text{rank } G = r$ if and only if L satisfies:*

$$H^0(S, L(0, -1)) = H^1(S, L(0, -1)) = 0, \quad H^0(S, L(-1, 0)) = 0, \quad H^1(S, L(1, -2)) = 0.$$

We are interested in more than line bundles on smooth curves in $\mathbb{P}^1 \times \mathbb{P}^1$. The above approach generalises to acyclic (i.e. semistable) 1-dimensional sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$, with a fixed bigraded Hilbert polynomial. In Sections 2 and 3, we construct a natural linear resolution of such a sheaf, very much in the spirit of Beauville [6]. This gives us a linear polynomial matrix $M(z, \lambda)$ (up to certain group action). If the support of the sheaf is a smooth curve of bidegree (r, N) , then the matrix has size $r \times N$. As long as the point (∞, ∞) does not belong to the support of the sheaf, then matrices $M(z, \lambda)$ can be identified with the quadruples A, Y, F, G . The space $\mathcal{M}(k, l)$ of the (A, Y, F, G) has a natural Poisson structure, obtained by identifying it with $\mathfrak{gl}_N(\mathbb{C})^* \oplus \mathfrak{gl}_r(\mathbb{C})^* \oplus T^* M_{N \times r}(\mathbb{C})$. Thus we obtain a Poisson structure on the quotient of an open subset of $\mathcal{M}(N, r)$ by $GL_N(\mathbb{C}) \times GL_r(\mathbb{C})$. The (generic) symplectic leaves are known, from [5, 1], to be reduced coadjoint orbits of loop groups. Our aim is to describe these symplectic leaves directly in terms of sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$. We show that they correspond to symplectic leaves of a particular Mukai-Tyurin-Bottacin Poisson structure [14, 18, 8, 9, 10, 11] on the moduli space $M_Q(r, N)$ of simple sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ with (bigraded) Hilbert polynomial $Nx + ry$. The surface $Q = \mathbb{P}^1 \times \mathbb{P}^1$ is an example of a *Poisson surface* [8], and consequently, for every choice of a Poisson structure on Q , i.e. a section s of the anticanonical bundle $K_Q^* \simeq \mathcal{O}(2, 2)$, one obtains a Poisson structure on $M_Q(r, N)$ as a map

$$T_{[\mathcal{F}]}^* M_Q(r, N) \simeq \text{Ext}_Q^1(\mathcal{F}, \mathcal{F} \otimes K_Q) \xrightarrow{\cdot s} \text{Ext}_Q^1(\mathcal{F}, \mathcal{F}) \simeq T_{[\mathcal{F}]} M_Q(r, N).$$

We show that the (generic) symplectic leaves $\mathfrak{gl}_N(\mathbb{C})^* \oplus \mathfrak{gl}_r(\mathbb{C})^* \oplus T^* M_{N \times r}(\mathbb{C})$, i.e. reduced coadjoint orbits in $\widetilde{\mathfrak{gl}(r)^-}$, are the symplectic leaves of the Mukai-Tyurin-Bottacin structure corresponding to $s(z, \lambda) = 1$, i.e. to the anticanonical divisor $2(\{\infty\} \times \mathbb{P}^1 + \mathbb{P}^1 \times \{\infty\})$.

Acknowledgement. We thank Jacques Hurtubise for comments and Philip Boalch for the reference [17].

2. ACYCLIC SHEAVES ON $\mathbb{P}^1 \times \mathbb{P}^1$ AND THEIR RESOLUTIONS

Definition 2.1. Let X be a complex manifold and let \mathcal{F} be a coherent sheaf on X .

- (i) The *support* of \mathcal{F} is the complex subspace $\text{supp } \mathcal{F}$ of X defined as the zero-locus of the annihilator (in \mathcal{O}_X) of \mathcal{F} . The dimension $\dim \mathcal{F}$ of \mathcal{F} is the dimension of its support.
- (ii) \mathcal{F} is *pure*, if $\dim \mathcal{E} = \dim \mathcal{F}$ for all non-trivial coherent subsheaves $\mathcal{E} \subset \mathcal{F}$.
- (iii) \mathcal{F} is *acyclic* if $H^*(\mathcal{F}) = 0$.

Remark 2.2. In the case of 1-dimensional sheaves on a smooth surface X , purity of \mathcal{F} means that, at every point $x \in \text{supp } \mathcal{F}$, the skyscraper sheaf \mathbb{C}_x does not embed into \mathcal{F}_x . In addition, a 1-dimensional sheaf \mathcal{F} on a smooth surface X is pure if and only if it is *reflexive*, i.e. after performing the duality $\mathcal{F} \mapsto \mathcal{E}xt_X^1(\mathcal{F}, K_X)$ twice, we obtain back \mathcal{F} (up to isomorphism) (see [9, §1.1]).

In the remainder of the paper, **all sheaves are coherent**.

We shall now consider sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$. For any $p, q \in \mathbb{Z}$ we denote by $\mathcal{O}(p, q)$ the line bundle $\pi_1^* \mathcal{O}(p) \otimes \pi_2^* \mathcal{O}(q)$, where $\pi_1, \pi_2 : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1$ are the two projections. We shall also denote by ζ and η the two affine coordinates on $\mathbb{P}^1 \times \mathbb{P}^1$.

Let \mathcal{F} be a sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$. Associated to \mathcal{F} is its *bigraded Hilbert polynomial*

$$(2.1) \quad P_{\mathcal{F}}(x, y) = \sum_{x, y \in \mathbb{Z}} \chi(\mathcal{F}(x, y)).$$

The sheaf \mathcal{F} is 1-dimensional if and only if $P_{\mathcal{F}}$ is linear.

We begin by describing a canonical resolution of acyclic 1-dimensional sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$.

Theorem 2.3. *Let \mathcal{F} be a 1-dimensional acyclic sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$. Then \mathcal{F} has a linear resolution by locally free sheaves of the form*

$$(2.2) \quad 0 \rightarrow \mathcal{O}(-2, -1)^{\oplus k} \oplus \mathcal{O}(-1, -2)^{\oplus l} \xrightarrow{M(\zeta, \eta)} \mathcal{O}(-1, -1)^{\oplus (k+l)} \rightarrow \mathcal{F} \rightarrow 0,$$

for some $k, l \geq 0$.

Conversely, any \mathcal{F} defined as cokernel of a map $M(\zeta, \eta)$ as above with $\det M(\zeta, \eta) \neq 0$ is acyclic and 1-dimensional.

Remark 2.4. Let \mathcal{F} be a 1-dimensional acyclic sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$ with $P_{\mathcal{F}}(x, y) = lx + ky$. Then \mathcal{F} is semistable with respect to $\mathcal{O}(1, 1)$.

Remark 2.5. This resolution is canonical, but not necessarily *minimal*, in the sense of being obtained from the minimal resolution of the bigraded module $\bigoplus_{i, j \in \mathbb{Z}} H^0(\mathcal{F}(i, j))$.

Proof. Let $h^0(\mathcal{F}(0, 1)) = k$ and $h^0(\mathcal{F}(1, 0)) = l$, so that $P_{\mathcal{F}} = lx + ky$. Let $\mathcal{E} = \mathcal{F}(1, 1)$, and let $\mathbf{\Gamma}_*(\mathcal{E}) = \bigoplus_{i, j \in \mathbb{Z}} H^0(\mathcal{E}(i, j))$ be the associated bigraded module over the bigraded ring $\mathbf{S} = \bigoplus_{i, j \in \mathbb{Z}} H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(i, j))$. Furthermore, let $\mathbf{\Gamma}_*(\mathcal{E})|_{\geq 0} = \bigoplus_{i, j \geq 0} H^0(\mathcal{E}(i, j))$ be its truncation. Owing to [12, Lemma 6.8], the sheaf associated to $\mathbf{\Gamma}_*(\mathcal{E})|_{\geq 0}$ is again \mathcal{E} . Moreover, [12, Theorem 6.9] implies, as $\mathcal{E}(-1, -1)$ is acyclic, that the natural map

$$H^0(\mathcal{E}) \otimes H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(p, q)) \longrightarrow H^0(\mathcal{E}(p, q))$$

is surjective for any $p, q \geq 0$. Therefore, we have a surjective homomorphism

$$\mathbf{S}^{\oplus (k+l)} \rightarrow \mathbf{\Gamma}_*(\mathcal{E})|_{\geq 0} \rightarrow 0$$

of bigraded \mathbf{S} -modules. Since \mathcal{E} is of pure dimension 1, its projective dimension is 1, and, hence, the above homomorphism extends to a linear free resolution

$$0 \rightarrow \bigoplus_{i=1}^{k+l} \mathbf{S}(-p_i, -q_i) \rightarrow \bigoplus_{i=1}^{k+l} \mathbf{S} \rightarrow \mathbf{\Gamma}_*(\mathcal{E})|_{\geq 0} \rightarrow 0,$$

where $p_i, q_i \geq 0$ and $p_i + q_i > 0$ for each i . The corresponding sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ give us a locally free resolution of \mathcal{E} :

$$(2.3) \quad 0 \rightarrow \bigoplus_{i=1}^{k+l} \mathcal{O}(-p_i, -q_i) \rightarrow \bigoplus_{i=1}^{k+l} \mathcal{O} \rightarrow \mathcal{E} \rightarrow 0.$$

Since $H^*(\mathcal{E}(-1, -1)) = 0$, either $p_i = 0$ or $q_i = 0$ for every i . Since $h^0(\mathcal{E}(-1, 0)) = k$, we deduce, after tensoring (2.3) with $\mathcal{O}(-1, 0)$, that $\sum p_i = k$. Similarly $\sum q_i =$

l . Since $h^1(\mathcal{E}) = 0$, none of the p_i or q_i can be greater than 1, and so, all nonzero p_i and all nonzero q_i are equal to 1. This proves the existence of resolution (2.2).

Conversely, if \mathcal{F} admits a resolution of the form (2.2), then it is 1-dimensional. The long exact cohomology sequence implies that \mathcal{F} is acyclic. \square

Let us write $n = k + l$. The polynomial matrix $M(\zeta, \eta)$ in (2.3) has size $n \times n$ and is of the form

$$(2.4) \quad (A_0 + A_1 \zeta \quad B_0 + B_1 \eta),$$

with $A_0, A_1 \in \text{Mat}_{n,k}(\mathbb{C})$, $B_0, B_1 \in \text{Mat}_{n,l}(\mathbb{C})$. Let us denote by $\mathcal{A}(k, l)$ the space of such matrices with nonzero determinant. The group $GL_n(\mathbb{C}) \times GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ acts on $\mathcal{M}(k, l)$ via:

$$(2.5) \quad (g, h_1, h_2) \cdot (A(\zeta) \quad B(\eta)) = g (A(\zeta) \quad B(\eta)) \begin{pmatrix} h_1^{-1} & 0 \\ 0 & h_2^{-1} \end{pmatrix},$$

and we can restate Theorem 2.3 as follows:

Corollary 2.6. *There exists a natural bijection between*

- (a) *isomorphism classes of 1-dimensional acyclic sheaves \mathcal{F} on $\mathbb{P}^1 \times \mathbb{P}^1$ such that $h^0(\mathcal{F}(0, 1)) = k$, $h^0(\mathcal{F}(1, 0)) = l$, and*
- (b) *orbits of $GL_{k+l}(\mathbb{C}) \times GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\mathcal{A}(k, l)$.* \square

For a sheaf define by (2.2), we can describe its support as follows. As a set, the support of \mathcal{F} is

$$S = \{(\zeta, \eta) \in \mathbb{P}^1 \times \mathbb{P}^1; \det M(\zeta, \eta) = 0\}.$$

Let us write $\det M(\zeta, \eta) = \prod_{i=1}^s q_i(\zeta, \eta)^{k_i}$, where q_i are irreducible polynomials. We define the *minimal polynomial* $p_M(\zeta, \eta)$ of M as $\prod_{i=1}^s q_i(\zeta, \eta)^{r_i}$, where

$$r_i = \max\{a_i b_i; \text{at a generic point, } M(\zeta, \eta) \text{ has a Jordan block of size } a_i \text{ with eigenvalue } q_i(\zeta, \eta)^{b_i}\}.$$

Then:

Proposition 2.7. *The support of \mathcal{F} is the curve $(S, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}/(p_M))$.* \square

Let us now fix the support S . For simplicity, we shall assume that it is an *integral* curve in the linear system $|\mathcal{O}(k, l)|$ on $\mathbb{P}^1 \times \mathbb{P}^1$, i.e. S is given by an irreducible polynomial $P(\zeta, \eta)$ of bidegree (k, l) , $k, l \geq 1$. This immediately implies that the rank of \mathcal{F} is constant, i.e. \mathcal{F} is locally free. Theorem 2.3 and Corollary 2.6 imply

Corollary 2.8. *Let $P(\zeta, \eta)$ be an irreducible polynomial of bidegree (k, l) , and $S = \{(\zeta, \eta); P(\zeta, \eta) = 0\}$ the corresponding integral curve of genus $g = (k-1)(l-1)$. There exists a canonical biholomorphism*

$$\text{Jac}^{g-1}(S) - \Theta \simeq \{M \in \mathcal{A}(k, l); \det M = P\} / GL_n(\mathbb{C}) \times GL_k(\mathbb{C}) \times GL_l(\mathbb{C}).$$

Similarly, let $\mathcal{U}_S(r, d)$ be the moduli space of semistable vector bundles (locally free sheaves) on S . For $d = r(g-1)$ define the generalised theta divisor Θ as the set of bundles with nonzero section. Then we have:

Corollary 2.9. *Let $P(\zeta, \eta)$ be an irreducible polynomial of bidegree (k, l) , and $S = \{(\zeta, \eta); P(\zeta, \eta) = 0\}$ the corresponding integral curve of genus $g = (k-1)(l-1)$. There exists a canonical biholomorphism*

$$\mathcal{U}_S(r, r(g-1)) - \Theta \simeq \{M \in \mathcal{A}(kr, lr); \det M = P^r\} / GL_{nr}(\mathbb{C}) \times GL_{kr}(\mathbb{C}) \times GL_{lr}(\mathbb{C}).$$

3. A GEOMETRIC RESOLUTION

There is a much more geometric way of constructing resolution (2.2), which works under mild assumptions on the sheaf \mathcal{F} (cf. [7] for the case of σ -sheaves).

Definition 3.1. Let \mathcal{F} be a 1-dimensional sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$ and let $\pi_1, \pi_2 : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1$ be the two projections. We say that \mathcal{F} is *bipure*, if \mathcal{F} has no nontrivial coherent subsheaves supported on $\{z\} \times \mathbb{P}^1$ or on $\mathbb{P}^1 \times \{z\}$ for any $z \in \mathbb{P}^1$.

Let now \mathcal{F} be an acyclic and bipure sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$ with Hilbert polynomial $lx + ky$. As in the proof of Theorem 2.3, we consider the sheaf $\mathcal{E} = \mathcal{F}(1, 1)$. Let D_ζ and D_η denote the divisors $\{\zeta\} \times \mathbb{P}^1, \mathbb{P}^1 \times \{\eta\}$. We set

$$(3.1) \quad V_\zeta = \{s \in H^0(\mathcal{E}); s|_{D_\zeta} = 0\}, \quad W_\eta = \{s \in H^0(\mathcal{E}); s|_{D_\eta} = 0\}.$$

For any ζ and η , consider the maps

$$\mathcal{E}(-1, 0) \rightarrow \mathcal{E}, \quad \mathcal{E}(0, -1) \rightarrow \mathcal{E},$$

given by multiplication by global non-zero sections of $\mathcal{O}(1, 0)$ and $\mathcal{O}(0, 1)$, vanishing at ζ and η , respectively. Since \mathcal{E} is bipure, these maps are injective, and therefore $V_\zeta \simeq H^0(\mathcal{E}(-1, 0)), W_\eta \simeq H^0(\mathcal{E}(0, -1))$ for any ζ, η . In particular $\dim V_\zeta = k, \dim W_\eta = l$, for any ζ and η . Therefore, $\zeta \mapsto V_\zeta$ and $\eta \mapsto W_\eta$ are subbundles of $H^0(\mathcal{E}) \otimes \mathcal{O}$ on \mathbb{P}^1 . They are isomorphic to $H^0(\mathcal{E}(-1, 0)) \otimes \mathcal{O}(-1)$, and to $H^0(\mathcal{E}(0, -1)) \otimes \mathcal{O}(-1)$. The isomorphism is realised explicitly via the map: $H^0(\mathcal{E}(-1, 0)) \otimes \mathcal{O}(-1) \rightarrow H^0(\mathcal{E}) \otimes \mathcal{O}$, defined as

$$H^0(\mathcal{E}(-1, 0)) \otimes \mathcal{O}(-1) \ni (s, (a, b)) \xrightarrow{m} (b\zeta - a)s \in H^0(\mathcal{E})$$

(here $(a, b) \in l$, where l is the fibre of $\mathcal{O}(-1)$ over $[\zeta]$), and similarly for the subbundle W . We now define a vector bundle U on $\mathbb{P}^1 \times \mathbb{P}^1$, the fibre of which at ζ, η is $V_\zeta \oplus W_\eta$, i.e.:

$$U \simeq (H^0(\mathcal{E}(-1, 0)) \otimes \mathcal{O}(-1, 0)) \oplus (H^0(\mathcal{E}(0, -1)) \otimes \mathcal{O}(0, -1)).$$

We obtain an injective map of sheaves $\mathcal{U} \rightarrow H^0(\mathcal{E}) \otimes \mathcal{O}$. Let \mathcal{G} be the cokernel, i.e.

$$(3.2) \quad 0 \rightarrow \mathcal{U} \longrightarrow H^0(\mathcal{E}) \otimes \mathcal{O} \longrightarrow \mathcal{G} \rightarrow 0.$$

We claim that $\mathcal{G} \simeq \mathcal{E}$, and so (3.2) is a natural resolution of \mathcal{E} . To prove this, tensor the resolution (2.2) by $\mathcal{O}(1, 1)$ to obtain:

$$(3.3) \quad 0 \rightarrow \mathcal{O}(-1, 0)^{\oplus k} \oplus \mathcal{O}(0, -1)^{\oplus l} \xrightarrow{M(\zeta, \eta)} \mathcal{O}^{\oplus(k+l)} \rightarrow \mathcal{E} \rightarrow 0.$$

Clearly, the middle term is identified with $H^0(\mathcal{E}) \otimes \mathcal{O}$. For any ζ_0 , consider the image of $M(\zeta_0, \eta)$ restricted to $\mathcal{O}(-1, 0)^{\oplus k}|_{\zeta_0} \oplus 0$. This image does not depend on η , and since \mathcal{F} is bipure, it is exactly V_{ζ_0} , defined in (3.1), i.e. sections vanishing on $\zeta_0 \times \mathbb{P}^1$. Similarly, for any η_0 , the image of $M(\zeta, \eta_0)$ restricted to $0 \oplus \mathcal{O}(0, -1)^{\oplus l}|_{\eta_0}$ is precisely W_{η_0} . Hence, there are canonical isomorphisms between both first and second terms in resolutions (3.2) and (3.3), which commute with the horizontal maps. Therefore $\mathcal{G} \simeq \mathcal{E}$.

4. POISSON STRUCTURE AND ORBITS OF LOOP GROUPS

According to Corollary 2.6, acyclic sheaves with Hilbert polynomial $lx + ky$ correspond to orbits of $GL_{k+l}(\mathbb{C}) \times GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\mathcal{A}(k, l)$, where $\mathcal{A}(k, l)$ is the set of polynomial matrices defined in (2.4) and the action is given in (2.5).

We now make the following assumption about the sheaf \mathcal{F} :

$$(4.1) \quad (\infty, \infty) \notin \text{supp } \mathcal{F}.$$

This can be, of course, always achieved via an automorphism of $\mathbb{P}^1 \times \mathbb{P}^1$. In terms of the matrix $M(\zeta, \eta)$ corresponding to \mathcal{F} , (4.1) means that $\det(A_1, B_1) \neq 0$. We can, therefore, use the action of $GL_{k+l}(\mathbb{C})$ to make (A_1, B_1) equal to minus the identity matrix, so that $M(\zeta, \eta)$ becomes

$$(4.2) \quad \begin{pmatrix} X - \zeta & F \\ G & Y - \eta \end{pmatrix}, \quad X \in \text{Mat}_{k,k}(\mathbb{C}), Y \in \text{Mat}_{l,l}(\mathbb{C}), G, F^T \in \text{Mat}_{l,k}(\mathbb{C}).$$

The residual group action is that of conjugation by the block-diagonal $GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$. We denote this group by K .

Remark 4.1. We are, essentially, in the situation of [5]. The only difference is that we do not fix X or Y .

We denote by $\mathcal{M}(k, l)$ the space of all matrices of the form (4.2), which we identify with quadruples (X, Y, F, G) as above. The action of $K = GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\mathcal{M}(k, l)$ is given by

$$(4.3) \quad (g, h) \cdot (X, Y, F, G) = (gXg^{-1}, hYh^{-1}, gFh^{-1}, hGg^{-1}).$$

Let us also write $\mathcal{S}(k, l)$ for the set of isomorphism classes of acyclic sheaves with Hilbert polynomial $lx + ky$ on $\mathbb{P}^1 \times \mathbb{P}^1$, which satisfy (4.1). The content of Corollary 2.6 is that there exists a natural bijection

$$(4.4) \quad \mathcal{M}(k, l)/K \simeq \mathcal{S}(k, l).$$

4.1. Poisson structure. The vector space $\text{Mat}_{k,l} \times \text{Mat}_{l,k}$ has a natural K -invariant symplectic structure: $\omega = \text{tr}(dF \wedge dG)$. On the other hand, $\text{Mat}_{k,k} \simeq \mathfrak{gl}_k(\mathbb{C})^*$ and $\text{Mat}_{l,l} \simeq \mathfrak{gl}_l(\mathbb{C})^*$ have canonical Poisson structures, and therefore, $\mathcal{M}(k, l)$ has a natural K -invariant Poisson structure. If $\mathcal{M}(k, l)^0$ is the subset of $\mathcal{M}(k, l)$, on which the action of K is free and proper, then $\mathcal{M}(k, l)^0/K$ is a Poisson manifold, and, consequently, we obtain a Poisson structure on the corresponding subset of acyclic sheaves with Hilbert polynomial $lx + ky$ and satisfying (4.1). We shall now want to describe symplectic leaves of $\mathcal{M}(k, l)^0/K$ in terms of sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$.

First of all, let us describe sheaves corresponding to symplectic leaves in $\mathcal{M}(k, l)$. Such a leaf is determined by fixing conjugacy classes of X and Y . On the other hand, conjugacy classes of $k \times k$ matrices correspond to isomorphism classes of torsion sheaves on \mathbb{P}^1 , of length k . This correspondence is given by associating to a matrix $X \in \text{Mat}_{k,k}(\mathbb{C})$ the sheaf \mathcal{G} via

$$(4.5) \quad 0 \rightarrow \mathcal{O}(-1)^{\oplus k} \xrightarrow{X - \zeta} \mathcal{O}^{\oplus k} \rightarrow \mathcal{G} \rightarrow 0.$$

If, for example, X is diagonalisable with distinct eigenvalues ζ_1, \dots, ζ_r of multiplicities k_1, \dots, k_r , then $\mathcal{G} \simeq \bigoplus_{i=1}^r \mathbb{C}^{k_i}|_{\zeta_i}$, i.e. $\mathcal{G}|_{\zeta_i}$ is the skyscraper sheaf of rank k_i .

Proposition 4.2. *Let P be a conjugacy class of $k \times k$ matrices. The bijection (4.4) induces a bijection between*

- (i) *orbits of $GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\{(X, Y, F, G) \in \mathcal{M}(k, l); X \in P\}$, and*
- (ii) *isomorphism classes of sheaves \mathcal{F} in $\mathcal{S}(k, l)$ such that $\mathcal{F}|_{\eta=\infty}$ is isomorphic to \mathcal{G} defined by (4.5).*

Proof. At $\eta = \infty$, the matrix (4.2) becomes $\begin{pmatrix} X - \zeta & 0 \\ G & -1 \end{pmatrix}$. The statement follows from (4.5) and (2.2). \square

Therefore symplectic leaves on $\mathcal{M}(k, l)$ correspond to fixing isomorphism classes of $\mathcal{F}|_{\eta=\infty}$ and of $\mathcal{F}|_{\zeta=\infty}$. Symplectic leaves on $\mathcal{M}(k, l)^0/K$ are of course smaller than K -orbits of symplectic leaves on $\mathcal{M}(k, l)^0$. They are obtained by fixing X and Y and taking the symplectic quotient of $\text{Mat}_{k,l} \times \text{Mat}_{l,k}$ by $\text{Stab}(X) \times \text{Stab}(Y)$. We shall describe sheaves corresponding to a particular symplectic leaf in the case when X and Y are diagonalisable.

4.2. Orbits of $GL_k(\mathbb{C})$ and matrix-valued rational maps. We consider now only the action of $GL_k(\mathbb{C}) \simeq GL_k(\mathbb{C}) \times \{1\} \subset K$ on $\mathcal{M}(k, l)$. We fix a semisimple conjugacy class of X , i.e. we suppose that X is diagonalisable, with distinct eigenvalues ζ_1, \dots, ζ_r of multiplicities k_1, \dots, k_r . The stabiliser of X is then isomorphic to $\prod_{i=1}^r GL_{k_i}(\mathbb{C})$. If the action of $GL_k(\mathbb{C})$ is to be free, we must have $k_i \leq l$, $i = 1, \dots, r$. Let us diagonalise X , so that X has the block-diagonal form $(\zeta_1 \cdot 1_{k_1 \times k_1}, \dots, \zeta_r \cdot 1_{k_r \times k_r})$, and let F_i, G_i denote the $k_i \times l$ and $l \times k_i$ submatrices of F, G such that rows of F and the columns of G have the same coordinates as the block $\zeta_i \cdot 1_{k_i \times k_i}$. The action of $GL_k(\mathbb{C})$ is free and proper at (X, Y, F, G) if and only if $\text{rank } F_i = \text{rank } G_i = k_i$ for $i = 1, \dots, r$.

As in [5, 1], we can associate to each element of $\mathcal{M}(k, l)$ a $\text{Mat}_{l,l}(\mathbb{C})$ -valued rational map:

$$(4.6) \quad R(\zeta) = Y + G(\zeta - X)^{-1}F.$$

The mapping $(X, Y, F, G) \mapsto R(\zeta)$ is clearly $GL_k(\mathbb{C})$ -invariant. If X is diagonalisable, as above, i.e. $X = (\zeta_1 \cdot 1_{k_1 \times k_1}, \dots, \zeta_r \cdot 1_{k_r \times k_r})$, then

$$(4.7) \quad R(\zeta) = Y + \sum_{i=1}^r \frac{G_i F_i}{\zeta - \zeta_i}.$$

We clearly have:

Lemma 4.3. *Let P be a semisimple conjugacy class of $k \times k$ matrices with eigenvalues ζ_1, \dots, ζ_r of multiplicities k_1, \dots, k_r . The map $(X, Y, F, G) \mapsto R(\zeta)$ induces a bijection between*

- (i) $GL_k(\mathbb{C})$ -orbits on $\{(X, Y, F, G) \in \mathcal{M}(k, l)^0; X \in P\}$, and
- (ii) the set $\mathcal{R}_l(P)$ of all rational maps of the form

$$R(\zeta) = Y + \sum_{i=1}^r \frac{R_i}{\zeta - \zeta_i},$$

where $\text{rank } R_i = k_i$. \square

4.3. Orbits of loop groups. A rational map of the form (4.6) may be viewed as an element of a loop Lie algebra $\tilde{\mathfrak{gl}}(l)^-$, consisting of maps from a circle S^1 in \mathbb{C} , containing the points ζ_i in its interior, which extend holomorphically outside S^1 (including ∞). The group $\widetilde{GL}(l)^+$, consisting of smooth maps $g : S^1 \rightarrow GL_l(\mathbb{C})$, extending holomorphically to the interior of S^1 , acts on $\tilde{\mathfrak{gl}}(l)^-$ by pointwise conjugation, followed by projection to $\tilde{\mathfrak{gl}}(l)^-$. In particular, if all eigenvalues of X are

distinct, then the action is

$$g(\zeta) \cdot \left(Y + \sum_{i=1}^r \frac{R_i}{\zeta - \zeta_i} \right) = Y + \sum_{i=1}^r \frac{g(\zeta_i) R_i g(\zeta_i)^{-1}}{\zeta - \zeta_i}.$$

Therefore, if we fix conjugacy classes of the R_i , we obtain an orbit of $\widetilde{GL}(l)^+$ in $\widetilde{\mathfrak{gl}}(l)^-$. We shall now consider quotients of such orbits by $\text{Stab}(Y)$ and describe which sheaves correspond to elements of such an orbit. Let us give a name to such quotients:

Definition 4.4. The quotient of an orbit of $\widetilde{GL}(l)^+$ in $\widetilde{\mathfrak{gl}}(l)^-$ by $GL_l(\mathbb{C})$ is called a *semi-reduced orbit*.

Remark 4.5. In the literature (see, e.g. [1]–[5]) a *reduced orbit* is the symplectic quotient of an orbit by $H_Y = \text{Stab}(Y)$. The $GL_l(\mathbb{C})$ -moment map on $\widetilde{\mathfrak{gl}}(l)^-$ is identified with $Y + \sum_{i=1}^r R_i$, so that a reduced orbit is obtained by fixing the value of $a = \pi(\sum_{i=1}^r R_i)$, where π is the projection $\mathfrak{gl}_l(\mathbb{C}) \rightarrow \mathfrak{gl}_l(\mathbb{C})/\mathfrak{h}_Y^\perp$ (with \perp is taken with respect to tr), and dividing by $\text{Stab}(a) \subset \text{Stab}(Y)$. Therefore, if $\text{Stab}(Y)$ fixes a , then a reduced orbit can be identified with a subset of a semi-reduced orbit.

Let us, therefore, fix a semi-reduced orbit of $\widetilde{GL}(l)^+$. We choose r distinct points ζ_1, \dots, ζ_r in \mathbb{C} . Furthermore, we choose $r+1$ conjugacy classes Q_0, Q_1, \dots, Q_r of $l \times l$ matrices. This data determines a semi-reduced orbit $\Upsilon = \Upsilon(Q_0, \dots, Q_r)$ of $\widetilde{GL}(l)^+$ defined as

$$(4.8) \quad \Upsilon = \left\{ R(\zeta) = Y + \sum_{i=1}^r \frac{R_i}{\zeta - \zeta_i}; Y \in Q_0, \forall_{i \geq 1} R_i \in Q_i \right\} / GL_l(\mathbb{C}).$$

Let

$$(4.9) \quad k_i = \text{rank } Q_i, \quad i = 1, \dots, r, \quad k = \sum_{i=1}^r k_i.$$

In the notation of Lemma 4.3, $\Upsilon \subset \mathcal{R}_l(P)$, where P is the semisimple conjugacy class of $k \times k$ matrices with eigenvalues ζ_i of multiplicities k_i .

Thanks to Proposition 4.2, the conjugacy class P determines $\mathcal{F}|_{\eta=\infty}$, which, in the case at hand, is $\bigoplus_{i=1}^r \mathbb{C}^{k_i}|_{(\zeta_i, \infty)}$. Similarly, Q_0 determines the isomorphism class of $\mathcal{F}|_{\zeta=\infty}$. We now discuss the significance of the other conjugacy classes Q_1, \dots, Q_r .

We claim that they determine the isomorphism class of $\mathcal{F}|_{\eta^2=\infty}$, i.e. of \mathcal{F} restricted to the first order neighbourhood of $\eta = \infty$. Indeed, consider again the canonical resolution (2.2) of \mathcal{F} with $M(\zeta, \eta)$ given by (4.2). Let $\tilde{\eta} = 1/\eta$ be a local coordinate near $\eta = \infty$, so that

$$M(\zeta, \tilde{\eta}) = \begin{pmatrix} X - \zeta & \tilde{\eta}F \\ G & \tilde{\eta}Y - 1 \end{pmatrix}.$$

Using action (2.5), we can multiply $M(\zeta, \tilde{\eta})$ on the right by $\begin{pmatrix} 1 & 0 \\ 0 & (1 - \tilde{\eta}Y)^{-1} \end{pmatrix}$. On the scheme $\tilde{\eta}^2 = 0$, we have $(1 - \tilde{\eta}Y)^{-1} = 1 + \tilde{\eta}Y$, and so $M(\zeta, \tilde{\eta})$ becomes (on $\tilde{\eta}^2 = 0$):

$$\begin{pmatrix} X - \zeta & \tilde{\eta}F \\ G & -1 \end{pmatrix}.$$

To describe $\mathcal{F}|_{\tilde{\eta}^2=0}$, it is enough to describe it near each ζ_i , i.e. to describe $\mathcal{G}_i = \mathcal{F}|_{U_i \times \{\tilde{\eta}^2=0\}}$, where U_i is an open neighbourhood of ζ_i (not containing the other ζ_j). The resolution (2.2) of \mathcal{F} restricted to $U_i \times \{\tilde{\eta}^2=0\}$ becomes

$$0 \rightarrow \mathcal{O}(-2, -1)^{\oplus k_i} \oplus \mathcal{O}(-1, -2)^{\oplus l} \xrightarrow{M_i(\zeta, \tilde{\eta})} \mathcal{O}(-1, -1)^{\oplus (k_i+l)} \rightarrow \mathcal{G}_i \rightarrow 0,$$

where

$$M_i(\zeta, \tilde{\eta}) = \begin{pmatrix} \zeta_i - \zeta & \tilde{\eta} F_i \\ G_i & -1 \end{pmatrix}.$$

This implies that we have an exact sequence

$$(4.10) \quad 0 \rightarrow \mathcal{O}(-2, -1)^{\oplus k_i} \xrightarrow{(\zeta_i - \zeta) + \tilde{\eta} F_i G_i} \mathcal{O}(-1, 0)^{\oplus k_i} \rightarrow \mathcal{G}_i \rightarrow 0,$$

on $U_i \times \{\tilde{\eta}^2=0\}$. Therefore \mathcal{G}_i is determined by the $GL_{k_i}(\mathbb{C})$ -conjugacy class of $F_i G_i$, which is the same as the $GL_l(\mathbb{C})$ -conjugacy class of $G_i F_i$. Lemma 4.3 and formula (4.7) imply that the conjugacy class of $G_i F_i$ is Q_i . Thus, the conjugacy classes Q_1, \dots, Q_r , which determine the orbit (4.8), correspond to the isomorphism class of $\mathcal{F}|_{\tilde{\eta}^2=0}$. Observe that the support of \mathcal{G}_i is given by $\det((\zeta_i - \zeta) + \tilde{\eta} F_i G_i) = 0$. In other words, the eigenvalues of $F_i G_i$ give $\frac{\zeta - \zeta_i}{\tilde{\eta}}$ at $(\zeta, \tilde{\eta}) = (\zeta_i, 0)$, i.e. the first order neighbourhood of $\text{supp } \mathcal{F}$ at (ζ_i, ∞) .

Summing up, we have:

Theorem 4.6. *There exists a natural bijection between elements of the semi-reduced rational orbit (4.8) of $\widetilde{GL}(l)^+$ in $\widetilde{\mathfrak{gl}}(l)^-$ and isomorphism classes of 1-dimensional acyclic sheaves \mathcal{F} on $\mathbb{P}^1 \times \mathbb{P}^1$ such that*

- (i) *the Hilbert polynomial of \mathcal{F} is $P_{\mathcal{F}}(x, y) = lx + ky$.*
- (ii) *$(\infty, \infty) \notin \text{supp } S$, and $\mathcal{F}|_{\eta=\infty} \simeq \bigoplus_{i=1}^r \mathbb{C}^{k_i}|_{(\zeta_i, \infty)}$.*
- (iii) *The isomorphism class of $\mathcal{F}|_{\zeta=\infty}$ corresponds to Q_0 , as in Proposition 4.2.*
- (iv) *The isomorphism class of $\mathcal{F}|_{\eta^2=\infty}$ corresponds to conjugacy classes Q_1, \dots, Q_r , as described above.* \square

Remark 4.7. A variation of this result is probably well known to the integrable systems community (at least when \mathcal{F} is a line bundle supported on a smooth curve S). We think it useful, however, to state it in this language and in full generality.

4.4. Symplectic leaves of $\mathcal{M}(k, l)^0/K$. We can finally describe symplectic leaves of $\mathcal{S}(k, l)$, i.e. sheaves corresponding to a particular symplectic leaf L in $\mathcal{M}(k, l)/K$, at least in the case when $L \subset \mathcal{M}(k, l)^0/K$, and X and Y are semisimple. As we already mentioned in §4.1, a symplectic leaf in $\mathcal{M}(k, l)^0/K$ is obtained by fixing X and Y , as well as a coadjoint orbit $\Lambda \subset \mathfrak{h}^*$ of $H = \text{Stab}(X) \times \text{Stab}(Y)$. If $\mu : \text{Mat}_{k,l} \times \text{Mat}_{l,k} \rightarrow \mathfrak{h}^*$ is the moment map for H , then the symplectic leaf determined by these data is:

$$(4.11) \quad L = \{(X, Y, F, G) \in \mathcal{M}(k, l)^0; X \text{ and } Y \text{ are given, } \mu(F, G) \in \Lambda\}/H.$$

Let X be diagonal, written as in §4.2, i.e. $X = (\zeta_1 \cdot 1_{k_1 \times k_1}, \dots, \zeta_r \cdot 1_{k_r \times k_r})$ and let $F_i, G_i, i = 1, \dots, r$, be the corresponding submatrices of F and G . Then $\text{Stab}(X) \simeq \prod_{i=1}^r GL_{k_i}(\mathbb{C})$, and the moment map is the projection of the $GL_k(\mathbb{C})$ -moment map, i.e. $(F, G) \mapsto FG$, onto the Lie algebra of $\text{Stab}(X)$. In other words, the $\text{Stab}(X)$ -moment map can be identified with [5]:

$$(4.12) \quad \mu_X(F, G) = (F_1 G_1, \dots, F_r G_r).$$

Similarly, if Y is diagonal with s distinct eigenvalues of multiplicities l_1, \dots, l_s , then we obtain $l_i \times k$ and $k \times l_i$ submatrices G^i, F^i . The stabiliser of Y is isomorphic to $\prod_{i=1}^s GL_{l_i}(\mathbb{C})$ and the moment map is

$$(4.13) \quad \mu_Y(F, G) = (G^1 F^1, \dots, G^s F^s).$$

Therefore, an orbit Λ corresponds to $r + s$ conjugacy classes $\pi_1, \dots, \pi_r, \rho_1, \dots, \rho_s$ of $k_i \times k_i$ matrices for the π_i , and $l_j \times l_j$ matrices for the ρ_j . The leaf L will be contained in $\mathcal{M}(k, l)^0/K$ if and only if each conjugacy class consists of matrices of maximal rank (k_i or l_j). From the discussion in the previous subsection, we immediately obtain:

Proposition 4.8. *Let L be a symplectic leaf of the Poisson manifold $\mathcal{M}(k, l)^0/K$, defined as in (4.11) with semisimple X and Y . Then the image of L under the bijection (4.4) consists of isomorphism classes of sheaves \mathcal{F} in $\mathcal{S}(k, l)$ such that the isomorphism class of $\mathcal{F}|_{\zeta^2=\infty}$ and of $\mathcal{F}|_{\eta^2=\infty}$ is fixed (and determined by L). \square*

Spelling things out, X determines $\mathcal{F}|_{\eta=\infty} \simeq \bigoplus_{i=1}^r \mathbb{C}^{k_i}|_{(\zeta_i, \infty)}$, and each π_i , $i = 1, \dots, r$, determines \mathcal{F} restricted to a neighbourhood of (ζ_i, ∞) in $\{\eta^2 = \infty\}$ via (4.10). Similarly, Y and the ρ_j determine $\mathcal{F}|_{\zeta^2=\infty}$.

Remark 4.9. Symplectic leaves of $\mathcal{M}(k, l)^0/K$ can be also identified with reduced orbits (cf. Definition 4.5) of $\widetilde{GL}(l)^+$ in $\widetilde{\mathfrak{gl}}(l)^-$. Therefore, the last proposition describes sheaves corresponding to a reduced orbit with Y semisimple. Furthermore, if we view $\mathcal{M}(k, l)^0/K$ as an open subset of the moduli space of semistable sheaves with Hilbert polynomial $lx + ky$, then this map is a symplectomorphism between the Mukai-Tyurin-Bottacin symplectic structure, described in the introduction, and the Kostant-Kirillov form on a reduced orbit of a Lie group. For an open dense set, where \mathcal{F} is a line bundle on a smooth curve, this follows from results in [2, 4]. Since both symplectic structures extend everywhere, they are must be isomorphic everywhere.

Example 4.10. If we want \mathcal{F} to be a line bundle over its support, then we must require that all k_i and all l_j are equal to 1. A symplectic leaf in $\mathcal{M}(k, l)^0/K$ is now given by fixing diagonal matrices $X = \text{diag}(\zeta_1, \dots, \zeta_k)$ and $Y = \text{diag}(\eta_1, \dots, \eta_l)$ with all ζ_i and all η_j distinct, as well as the diagonal entries of FG and GF , and quotienting by the group of $(k+l) \times (k+l)$ diagonal matrices (acting as in (4.3)). If the diagonal entries of FG are fixed to be $\alpha_1, \dots, \alpha_k$, and the diagonal entries of GF are β_1, \dots, β_l , then the corresponding subset of $\mathcal{S}(k, l)$ consists of sheaves \mathcal{F} supported on a 1-dimensional scheme S such that

$$S \cap \{\eta^2 = \infty\} = \bigcup_{i=1}^k \left\{ \zeta - \zeta_i = \frac{\alpha_i}{\eta} \right\}, \quad S \cap \{\zeta^2 = \infty\} = \bigcup_{j=1}^l \left\{ \eta - \eta_j = \frac{\beta_j}{\zeta} \right\}$$

and the rank of \mathcal{F} restricted to $S \cap \{\eta^2 = \infty\}$ and $S \cap \{\zeta^2 = \infty\}$ is everywhere 1.

Remark 4.11. We expect that Proposition 4.8 remains true if X or Y are not semisimple.

5. RANK k PERTURBATIONS

Let us now assume that $k \leq l$. In [1], the authors consider Hamiltonian flows on a subset \mathcal{M} of $\mathcal{M}^0(k, l)/K$, where $\text{rank } F = \text{rank } G = k$. It is clear from the

previous section that a generic symplectic leaf of $\mathcal{M}^0(k, l)/K$ is not contained in \mathcal{M} . Therefore a flow may leave \mathcal{M} without becoming singular. Since such Hamiltonian flows on a particular symplectic leaf can be linearised on the Jacobian of a spectral curve, it is interesting to know which points of the (affine) Jacobian are outside of \mathcal{M} . We are going to give a very satisfactory answer to this, in terms of cohomology of line bundles.

Let us therefore define the following set:

$$(5.1) \quad \mathcal{M}(k, l)^1 = \{M \in \mathcal{M}(k, l) ; \text{rank } F = \text{rank } G = k\}.$$

Remark 5.1. The manifold of $GL_k(\mathbb{C})$ -orbits in $\mathcal{M}(k, l)^1$ with $X = 0$ and fixed Y , can be identified with the set $\{Y + GF\}$, i.e. with the *space of rank k perturbations of the matrix Y* , as considered first by Moser [13] ($k = 2$), and, then by many other authors, in particular Adams, Harnad, Hurtubise, Previato [5, 1].

We now ask which acyclic sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ correspond to orbits of $K = GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\mathcal{M}(k, l)^1$. We have:

Proposition 5.2. *Let $k \leq l$. The bijection of Corollary 2.6 induces a bijection between:*

- (i) *orbits of $GL_k(\mathbb{C}) \times GL_l(\mathbb{C})$ on $\mathcal{M}(k, l)^1$, and*
- (ii) *isomorphism classes of acyclic sheaves \mathcal{F} on $\mathbb{P}^1 \times \mathbb{P}^1$ with Hilbert polynomial $P_{\mathcal{F}}(x, y) = lx + ky$, which satisfy, in addition, (4.1) and*

$$H^0(\mathcal{F}(-1, 1)) = 0 \text{ and } H^1(\mathcal{F}(1, -1)) = 0.$$

Proof. Consider short exact sequences

$$0 \rightarrow \mathcal{O}(-1)^{\oplus k} \xrightarrow{(X - \zeta, G)^T} \mathcal{O}^{\oplus(k+l)} \longrightarrow \mathcal{W}_1 \rightarrow 0,$$

$$0 \rightarrow \mathcal{O}(-1)^{\oplus l} \xrightarrow{(F, Y - \eta)^T} \mathcal{O}^{\oplus(k+l)} \longrightarrow \mathcal{W}_2 \rightarrow 0.$$

The condition that G has rank k is equivalent to \mathcal{W}_1 being a vector bundle, isomorphic to $\mathcal{O}(1)^{\oplus k} \oplus \mathcal{O}^{\oplus(l-k)}$. This is equivalent to $H^0(\mathcal{W}_1 \otimes \mathcal{O}(-2)) = 0$. On the other hand, we claim that the condition that F has rank k is equivalent to $H^1(\mathcal{W}_2 \otimes \mathcal{O}(-2)) = 0$. Indeed, any coherent sheaf on \mathbb{P}^1 splits into sum of line bundles $\mathcal{O}(i)$ and a torsion sheaf [16]. Since \mathcal{W}_2 has a resolution as above, we know that all degrees i in the splitting are nonnegative, and F has rank k if and only if all i are strictly positive, which is equivalent to $H^1(\mathcal{W}_2 \otimes \mathcal{O}(-2)) = 0$.

We can use the above exact sequences to obtain two further resolutions of $\mathcal{E} = \mathcal{F}(1, 1)$:

$$(5.2) \quad 0 \rightarrow \mathcal{O}(-1, 0)^{\oplus k} \rightarrow \pi_2^* \mathcal{W}_2 \rightarrow \mathcal{E} \rightarrow 0,$$

$$(5.3) \quad 0 \rightarrow \mathcal{O}(0, -1)^{\oplus l} \rightarrow \pi_1^* \mathcal{W}_1 \rightarrow \mathcal{E} \rightarrow 0,$$

where the maps between first two terms are given by the embedding in $\mathcal{O}^{\oplus(k+l)}$ followed by the projection onto the quotients \mathcal{W}_2 , \mathcal{W}_1 . Tensoring (5.2) with $\mathcal{O}(0, -2)$ shows that $H^1(\mathcal{W}_2(-2)) = 0$ if and only if $H^1(\mathcal{E}(0, -2)) = 0$, i.e. $H^1(\mathcal{F}(1, -1)) = 0$. Similarly, tensoring (5.3) with $\mathcal{O}(-2, 0)$ shows that $H^0(\mathcal{W}_1(-2)) = 0$ if and only if $H^0(\mathcal{E}(-2, 0)) = 0$, i.e. $H^0(\mathcal{F}(-1, 1)) = 0$. \square

Remark 5.3. In the case $k = l$, $H^0(\mathcal{E}(-2, 0)) = 0$ implies that $\mathcal{E}(-2, 0)$ is acyclic (and similarly, $H^1(\mathcal{E}(0, -2)) = 0$ implies that $\mathcal{E}(0, -2)$ is acyclic). In other words $\mathcal{G} = \mathcal{E}(-1, 0)$ satisfies $H^*(\mathcal{G}(-1, 0)) = H^*(\mathcal{G}(0, -1)) = 0$. Furthermore, the resolution (5.3) becomes the following resolution of \mathcal{G} :

$$(5.4) \quad 0 \rightarrow \mathcal{O}(-1, -1)^{\oplus k} \rightarrow \mathcal{O}^k \rightarrow \mathcal{G} \rightarrow 0.$$

In the case when $S = \text{supp } \mathcal{G}$ is smooth and \mathcal{G} is a line bundle, the corresponding part of $\text{Jac}^{g+k-1}(S)$ and the resolution (5.4) have been considered by Murray and Singer in [15].

REFERENCES

- [1] M.R. Adams, J. Harnad, and J. Hurtubise, ‘Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows’, *Comm. Math. Phys.* 134 (1990), 555–585.
- [2] M.R. Adams, J. Harnad, and J. Hurtubise, ‘Darboux coordinates and Liouville-Arnold integration in loop algebras’, *Comm. Math. Phys.* 155 (1993), 385–413.
- [3] M.R. Adams, J. Harnad, and J. Hurtubise, ‘Dual moment maps into loop algebras’, *Lett. Math. Phys.* 20 (1990), 299–308.
- [4] M.R. Adams, J. Harnad, and J. Hurtubise, ‘Coadjoint orbits, spectral curves and Darboux coordinates’, in *The geometry of Hamiltonian systems (Berkeley, 1989)*, 9–21, Springer, New York, 1991.
- [5] M.R. Adams, J. Harnad, and E. Previato, ‘Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras’, *Comm. Math. Phys.* 117 (1988), 451–500.
- [6] A. Beauville, ‘Determinantal hypersurfaces’, *Michigan Math. J.* 48 (2000), 39–64.
- [7] R. Bielawski and L. Schwachhöfer, ‘Pluricomplex geometry and hyperbolic monopoles’, arXiv:1104.2270
- [8] F. Bottacin, ‘Poisson structures on moduli spaces of sheaves over Poisson surfaces’ *Invent. Math.* 121 (1995), 421–436.
- [9] D. Huybrechts and M. Lehn, *The geometry of moduli spaces of sheaves*, Vieweg & Sohn, Braunschweig, 1997.
- [10] J.C. Hurtubise and E. Markman, ‘Surfaces and the Sklyanin bracket’, *Comm. Math. Phys.* 230 (2002), 485–502.
- [11] J.C. Hurtubise and E. Markman, ‘Elliptic Sklyanin integrable systems for arbitrary reductive groups’, *Adv. Theor. Math. Phys.* 6 (2002), 873–978.
- [12] D. Maclagan and G. Smith, ‘Multigraded Castelnuovo–Mumford regularity’, *J. Reine Angew. Math.*, 571 (2004), 179–212.
- [13] J. Moser, ‘Geometry of quadrics and spectral theory’, in: *The Chern Symposium, Berkeley 1979*, 147–188, Springer, New York-Berlin, 1980.
- [14] S. Mukai, ‘Symplectic structure of the moduli space of sheaves on an abelian or $SL(N)$ surface’ *Invent. Math.* 77 (1984), 101–116.
- [15] M.K. Murray and M.A. Singer, ‘On the complete integrability of the discrete Nahm equations’, *Comm. Math. Phys.* 210 (2000), 497–519.
- [16] D. Quillen, ‘Quaternionic algebra and sheaves on the Riemann sphere’, *Quart. J. Math. Oxford Ser. (2)* 49 (1998), no. 194, 163–198.
- [17] G. Sanguinetti and N.M.J. Woodhouse, ‘The geometry of dual isomonodromic deformations’, *J. Geom. Phys.* 52 (2004), 44–56.
- [18] A.N. Tyurin, ‘Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g > 0$ ’, *Math. USSR Izvestiya* 33 (1989), 139177.

SCHOOL OF MATHEMATICS, UNIVERSITY OF LEEDS, LEEDS LS2 9JT, UK

FAKULTÄT FÜR MATHEMATIK, TU DORTMUND, D-44221 DORTMUND, GERMANY