Internship Program Report

By

BANAVATHU SYAM NAYAK-19485A0259

In association with

Contents

ntroduction	3
Program organiser	3
Courtesy	3
Program details	3
nternship program	3
3 rd May2021: Introduction to EPC Industry	1
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae6	ò
7 th May2021: Engineering documentation for Electrical system design7	7
10 th May2021: Engineering documentation for Typical diagrams	3
11 th May2021: Classification of Transformers and Generators9)
12 th May2021: Classification of Switchgare construction and power factor improvement)
17 th May2021: Detailing about UPS system and Busducts	L
18 th May2021: Detailing about Motor Starters and Sizing of motors	<u>)</u>
19 th May2021: Discribing about Earthing system and Lighting Protection13	}
20 th May2021: Lighting or illumination systems and calculations	ŀ
21 th May2021: Lighting or illumination systems using DIALUX software15	;
24 th May2021: Cabling and their calculations and types	5
25 th May2021: Cabling calculations and Cable gland selection17	7
28 th May2021: Load calculations and Transformer sizing calculations18	3
29th May2021: DG set calculations)
2nd june2021: Caluculations of Earthing and Lighting protection20)
5 th june 2021: Cable sizing and cable tray sizing calculations21	L
Conclusion	.22
Foodback:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation		Detailed Engineering work flow	Detailed engineering process
			Document transmission	Document submission and info exchange
			Deliverables types	Different types of deliverables

2

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A		AUT	OCAD	BASIC KE	EYS			
STAND	STANDARD		DRAW		MODIFY		FORMAT	
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO	
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPGLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	X			
		BOUNDARY	ВО					
		DONUT	DO					

EXTRA				DRAF	ring	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	A	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical		
	diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6	Classification of		
	Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement	
	ımprovement			

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	•

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May 2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX software	Lighting or illumination systems	Operation software	of	dialux
----	--	----------------------------------	--------------------	----	--------

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their			
	types and claculations	Cabling calculations	Types of materials	of cabling

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland	Cabling calculations	Cable gland selection
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armour Range		Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	8.0	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
758	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	0.08	90.4	3.15	4.0	114.3	125.7	66.6

28 th May 2021: Load calculations and Transformer sizing calculations

	15	Load calcul	lations		
		and calculations	TR	Load calculations	TR calculations
L		Calculations	3		

Topic details:

List of electrical load calculations.

- 022							02000			W 8			kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ
Б	Equipment No:	Equipment De	escription	Breaker Rating	Breaker Type	No. of Poles	No. of Rating		Motor / Load Rating	Factor [A] / [B]	Factor [C]	Power Factor at Load Factor [C]	Continuo	ous	Intermi	ttent	Stand-by	
								[A]	[B]	[C]	[D]	-					77000	
-				A	_		mA	kW	kW	decimal	decimal	cos φ	kW	kvar	kW	KVAR	kW	kvar
PU2	315	Silica filter feed pump				-		116.62	132.00	0.88	0.93	0.82	125.40	87.53				
PU 2	2314-A	Absorbesnt/Neutral oil pump (W)						33.88	37.00	0.92	0.91	0.78	37.2	29.9				
PU 2	2314 -B	Absorbesnt/Neutral oil pump (S)						29.13	37.00	0.79	0.91	0.78					32.0	25.7
PU2	305	Feed Pump (Seperator)						117.78	132.00	0.89	0.93	0.82	126.6	88.4				
MX2	305	MIXER (W)						118.69	132.00	0.90	0.93	0.82	127.6	89.1				
MX 2	2308	MIXER (S)						118.69	132.00	0.90	0.93	0.82					127.6	89.1
BW2	2313	Blower						50.96	55.00	0.93	0.91	0.78	56.0	44.9				
Rota	ry valve	TK 2313B (I)						4.95	5.50	0.90	0.85	0.73			5.8	5.5		
SC2	314	Screw conveyor (I)						11.44	15.00	0.76		0.73			13.46	12.60		
AG 2	2324A	Citric acid tan agitator (W)						8.60	9.20	0.93	0.85	0.73	10.12	9.47				
AG 2	2324B	Citric acid tank agitator (S)						8.60	9.20	0.93	0.85	0.73					10.1	9.5
AG 2	2305	Citric oil rection vessol agitator						31.25	37.00	0.84	0.91	0.78	34.34	27.55				
AG 2	2309	Lye oil reaction vessel agitator						11.37	15.00	0.76	0.85	0.73	13.38	12.52				
AG 2	2310	Lye oil reaction vessel agitator						11.37	15.00	0.76	0.85	0.73	13.38	12.52				
AG 2	2314	Soap Adsorbant Tank Agitator						19.90	22.00	0.90	0.91	0.78	21.87	17.54				
			571.8 kW		404.0	kVAR				740.0	1218	TOTAL	565.98	419 42	19.28	40.05	169.75	404.04
	mum of non x%E + y%F	nal running plant load :	5/1.0 KW		424.8	KVAR		sqrt (kW² +kVAR²) =	712.3	KVA	TOTAL	565.98	419.42	19.28	18.05	169.75	124.2
	k Load : x%E + y%F	+ 7%(G)	588.7 kW		437.3	kVAR		sqrt (kW2 +kVAR2) =	733.4	kVA	kVA	704.48	5	26.4	1	210.3	3

T/F calculation:

Page 18 of 22

June 2021

29th May2021: DG set calculations

16	DG set
	calculations

ROLL NO: 19485A0259

Topic details:

Transformer and DG set calculations, types, sizing or selections

ASSIGNMENT-3 DG SIZING CALCULATIONS Design Data Rated Volence 415 0.77 0.89 Total operating load on DG set in IAVA at 0.77 power factor 712.3 132 Largest motor to start in the sequence - load in KW KW 193 Running kVA of last motor (Cost = 0.91) KVA dering starting 6 method as Soft starter) 1156 KVA Starting KVA of the largest motor 520 KVA Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor) Contingus operation under load -P1 520 Capacity of DG set based on continuous operation under load P1 KVA B Transient Voltage dip during starting of Last motor P2 1675 Total momentary load in KVA KYA (Starting KVA of the last motocoBase load of DG set in KVA 7.91% Subtransient Reactance of Generator (Xd*) (Assumed) Transient Reactance of Generator (%6) 10.065% (Assumed) 85"-000"+851/2 0.089875 Transient Voltage Dip 15% (Max) Transient Voltage dip during Soft starter starting of Last motor 853 P2 = Total momentary load in KVA x 💥 x (1-Transient Voltage Dip) C Overload capacity P3 Capacity of DG set required considering overload capacity 1675 KWA Total momentary load in KVA overcurrent capacity of DG (K) 150% (Ref: IS/IEC 60034-1, Clause 9.3.2) Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K) 1117 KVA

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of			
	Earthing and	Earthing calculations	Lighting protection	
	Lighting	C	calculation	
	protection			
	calculations			

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculation

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and cable tray	Cable sizing calculations	Cable tray calculation
	sizing calculations		,

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

		Cable tary sizing							
LT CABLES CABLE TRAY: FI	POM	LT-4		то		T-5			
CABLE IRAT. FI	KOM	L1-4		10		1-9			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	50	1	46	29	3.25	3.26	
2	PU 2314A	4	25	1	14	22	1.4	1.4	
3	PU2324	4	6	- 1	46	18	0.9	0.9	
4	PU2305	4	70	1	14	29	3.25	3.25	
5	MX2305	4	70	1	46	29	3.25	3.25	
6	MX2308	4	70	1	14	29	3.25	3.26	
7	BW2313	4	35	1	22	24	1.8	1.8	
8	SC2314	4	10	1	22	18	0.9	0.9	
9	AG2324A	4	6	1	40	18	0.9	0.9	
10	AG2305	4	25	1	26	22	1.4	1.4	
11	AG2309	4	10	1	26	18	0.9	0.9	
12	AG2310	4	10	1	26	18	0.9	0.9	
13	AG2314	4	16	1	28	21	1	1	
			-						
	Total			13		296	23.1	23.1	

180,	Description	Equipment Mis	Oscition	Consumed Load MW	-	totage (f)	of Car	ed Starting and Carried	Lost P.F. Raining	SN 9 Standing	Noter I Starte	f two	Type	lie.ef Rem	Sa.of Cons	No jun2	Current Rating (A)	Denting factor 81	Dending factor 12	Denting Sector 103	Dending Suiter 64	Overall Desiring Sector	Denited Current (A)	Cable Long®: (III)	Cable Resistance (OtmoWil)	Cable Neutration (Distraction)	Personal (Renormal)	Voltage árco (Rossing) (N)	drop (Sturring)	drop (starting)	Cable size result	(m) (c) (c) (c) (c) (c)
1	TA MCC.	PUDITE	Sites fibr led pure	65.58	- 72	415	3 11	556,76	92	6.8	.03	1 25	1 2	1 1	40	. 50	ART	028	0.0		8 10	0.892	49371	25	4017	#UF	8637T	#225	6822	60171	WL7	MO1.
2	LYNCO	F9/2014A	Contentiads signs	917	2	415	3 -3	7 223	95	0.8	0.09	48	- 3	1 1	40	25	AND	038	0.0		1	0.002	40171	60	#RD1	FUT	和文件	#IDF	Milf:	#EDIT	WEST	PED1
2	TAMCO	PUCTOR	Ditto Acid Task pump	420	7.5	45	3 6	11.3	92	0.8	.03	0.5	9.12	1 1	40	(B)	4500	038	9.9	1 1	8 17	0.002	#1271	10	#8371	PUT	和工作	#世方:	#RUT	#171	WEST	807 1
4	LYNED	PUDE	Feet Purci Secentri	6734	12	415	3 11	3 32.65	35	1.5	62	1.55	- 3	1.1	40	70	457	028	3.9		1.	0.85	40211	75	4001	457	HER	483	6 071	400	ARCH.	#R071
1	LYNCO	M COSE	Mare	80788	75	415	3 11	12,805	32	6.0	0.8	1 55	5552	101	40	70	REF	038	0.0		1	0.892	40271	28	P (0)	#R271	MITT	#ISF1	#R151	4000	AREA !	A101
	LYNCO	M/CS/28	Unar	67.50	18	415	3 11	10 708.0F	32	1.5	0.8	1 55	- 2	1 1	40	- 20	480	038	0.3		- 1	0.82	48271	128	#R371	#R271	MITT	4007	4815	4000	ATES:	#8071
2	TA MCC	BWZEI	Sove	2011	- 52	415	3 6	7 30.05	35	0.5	- 03	1.15	- 2	1 1	40	78	4800	0.28	0.3	1	1	0.892	40271	55	43171	#827°	MITT	4007	481F1	400	4925	#800
6	LY NCC	502314	Screen conveyor	154	7,6	46	3 1	4 6834	0.5	6.5	- 08	1 15	- 2	1 1	40	10	ARX	038	23	1 1 3	8 10	0.802	41271	8	RU	#ECT:	研生作	(FET)	#R81	4010	#ES	MODE
1	TA MCD	A2253A	offic add fan agfaiter	415	7.6	415	3 8	1 112	0.5	1.8	0.2	1 25	2	13	4.0	0.80	ART	0.00	0.0		8 10	0.002	ATEN.	- 85	#107	#07	和工作	#200	#00F	40.0%	(WEF)	#801
13	LYMCD	ACCINE	cate of matter meet aglater	12.62	22	48	3 3	5. 1開報	7.5	6.5	.03	1.5	2	11	40	2	ARET	036	0.0		1.	0.865	49211	70	#tj/	#RCF	MIXT	報告と	#tD1	#10	ATCY!	- AU
11	LY NCC	A02000	estredo me space	\$50	12	465	3 1	3 87.50	32	63	0.0	1.5		HCT.	40	10	ART	028	0.3		1.0	082	48371	. 15	#127	#E71	HILL	#ET	#REF	#ILIT	#EX	MODE
12	FAWCO		ye of readon were agricon	\$30	12	455	3 : 1	3 FT FE	32	8.5	0.0	55	- 3	1	40	10	ARC	. 038	3.3		1	082	#EET!	- 17	4007	FEE	HIXT	#707T	#0(F)		#HEFT	
n	TANCO	A6(2)14	Solo schochert an i sglador	11.32	15	415	3 1	8 11884	02	2.5	.00	55	- 3	1	40	16	ARCH	038	3.3	1	1	0.852	#RECT	=	ett)	#EFF	報文月	#207	報告	#ttr:	with:	MED!
\pm										3 1																		- 5				
- T		- 1		2 5		S 1		2		10.0		1				0. 23			0 1			3						- 3			1 7	

1. Describerts; brant 1-13, 12 (13) 31

Ordering faits for depth or supprace trappeats
Ordering faits for depth of large
Ordering faits for depth of large
Ordering faits for depth of large
2 (1) faits from group faits for spalling ordering ordering of depth of larged
2 (1) faits from group faits (1) faits from standard play 153
3 (Samplan 1970; 1.4 Ordering, 107) faits from group faits (1) faits (1) faits from group faits (1) faits from group faits (1) faits (1)

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ELECTRICAL LOAD CALCULATIONS LV MCC

												kW = [A] / [D]	-	Consumed L	oad	kVAR = kW >	ctan φ	
).	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Efficiency at Load Factor [C]	Power Factor at Load	Continuo	ous	Intermi	ttent	Stand-l	ру	Rem
							[A]	[B]	[C]	[D]	Factor [C]							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
	PU2315	Cilian filter food numa					116.62	132.00	0.88	0.00	0.00	125.40	87.53					
<u>.</u>	PU 2314-A	Silica filter feed pump Absorbesnt/Neutral oil pump (W)					33.88	37.00	0.88	0.93 0.91	0.82 0.78	37.2	29.9					
	PU 2314-A PU 2314 -B	Absorbesnt/Neutral oil pump (W) Absorbesnt/Neutral oil pump (S)					29.13	37.00	0.92	0.91	0.78	37.2	29.9			32.0	25.7	
	PU2305	Feed Pump (Seperator)					117.78	132.00	0.79	0.91	0.78	126.6	88.4			32.0	25.7	
	MX2305	MIXER (W)					118.69	132.00	0.89	0.93	0.82	120.6	89.1					
	MX 2308	MIXER (S)					118.69	132.00	0.90	0.93	0.82	127.0	09.1			127.6	89.1	
	BW2313	Blower					50.96	55.00	0.90	0.93	0.82	56.0	44.9			127.0	09.1	
;	Rotary valve	TK 2313B (I)					4.95	5.50	0.90	0.85	0.78	30.0	44.3	5.8	5.5			
)	SC2314	Screw conveyor (I)					11.44	15.00	0.90	0.85	0.73			13.46	12.60			
)	AG 2324A	Citric acid tan agitator (W)					8.60	9.20	0.70	0.85	0.73	10.12	9.47	13.40	12.00			
, 	AG 2324B	Citric acid tank agitator (V)					8.60	9.20	0.93	0.85	0.73	10.12	3.47			10.1	9.5	
2	AG 2305	Citric oil rection vessol agitator					31.25	37.00	0.84	0.03	0.73	34.34	27.55			10.1	3.5	
3	AG 2309	Lye oil reaction vessel agitator					11.37	15.00	0.76	0.85	0.73	13.38	12.52					
4	AG 2310	Lye oil reaction vessel agitator					11.37	15.00	0.76	0.85	0.73	13.38	12.52					
	AG 2314	Soap Adsorbant Tank Agitator					19.90	22.00	0.90	0.91	0.78	21.87	17.54					
,	7.0 2011	Soap / tabbibant rank/ tghato/					10.00	22.00	0.00	0.01	00	21.01	17.01					
_																		
	Maximum of norn (Est. x%E + y%F)	n I running plant load : 571.8 kW	l	424.8	kVAR		sqrt (I	kW² +kVAR²) =	712.3	kVA	TOTAL	565.98	419.42	19.28	18.05	169.75	124.24	
	Peak Load : (Est. x%E + y%F	588.7 kW + z%G)		437.3	kVAR		sqrt (l	kW² +kVAR²) =	733.4	kVA	kVA	704.4	5	26.4	1	210.36	5	

1) Load factor, Efficiency and Power factor.

Load Rating (kW)	Efficiency	Power facto
<= 20	0.85	0.73
> 20 - <= 45	0.91	0.78
> 45 - < 150	0.93	0.82
>= 150	0.94	0.91

2) Coincidence factors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and standby load.

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	565.98	419.4		(i)
b. Intermittent load / Diversity Factor	19.28	18.1		(ii)
c. Stand-by load required as consumed load	169.75	124.2		(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	588.7	437.3	733.35	
Future expansion load (20% capacity)	117.7	87.5	146.67	
Total Load =	706.5	524.7	880.03	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load = 733.4 kVA
Spare capacity = 146.7 kVA
Required capacity = 880.0 kVA
Transformer rated capacity = 750 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

$$P_T = 750 \text{ KVA}$$
 (%Z)= 5.19 & Ratio X/R = 5.4
Hence , %R = = 0.941 %
%X = = 5.10 %
 $P_M = 132 \text{ KW having (K} = 6 & C = 1 & Cos θ = 0.93 & Eff. η = 0.83 & Cos Θs = 0.21 \\ P_S = = 1026.04 \text{ KVA}$
Cos θ_S = 0.25 , Corresponding to Angle θ_S = 77.8776 Degrees for which Sin θ_S = 0.98
 $P_B = 475.134 \text{ KVA}$ & PB in KW is = 403.863 & P_B in Kvar = 237.567 \therefore Cos θ_B = 0.85 , Corresponding to Angle θ_S = 31.7883 Degrees, for which Sin θ_S = 0.53
 $P_{CP} = 619.332 \text{ KW}$
 $P_{CQ} = 1240.73 \text{ KVAR}$
 $P_C = 1386.71 \text{ KVA}$
Cos θ_C = 0.44662 , where as Sin θ_C = 0.895

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 6.5%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

750 kVA transformer selected.

	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.77	Avg
	Efficiency	0.89	Avg
	Total operating load on DG set in kVA at 0.77 power factor	712.3	-
	Largest motor to start in the sequence - load in KW	132	KW
	Running kVA of last motor (CosØ= 0.91)	193	KVA
	Charlies	6	(Considering starting
	Starting current ratio of motor	1156	method as Soft starter) KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	1130	KV/
		520	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	520	KVA
	(Total operating load in Kerr Namining Kerror last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	520	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	1675	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	xd''' =(xd"+xd')/2	0.089875	(/issumed)
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor	853	
	P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip) (Transient Voltage Dip)	855	KVA
С			
·	Overload capacity P3		
	Capacity of DG set required considering overload capacity	1675	KVA
	Total momentary load in KVA	1075	NVA
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	1117	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	520	KVA
	•	853	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2		KVA
	Overload capacity P3	1117	KVA
	Considering the last value amongst P1, P2 and P3	1117	KVA
	Hence, Existing Generator 1117 KVA is adequate to cater the loads as per r scheduled loads	e-	
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

Assignment 4 2 Earthing 17 Maximum line-to-ground fault in kA for 1 sec Earthing material (Earth rod & earth strip) GI Depth of earth flat burrial in meter 0.5 Average depth / length of Earth rod in meters 4.5 Soil resistivity Ω -meter 7.5 Ambient temperature in deg C 55 80 140 Plot dimensions (earth grid) L x B in meters Number of earth rods in nos. 6

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
$I_{l\text{-g}}$ - RMS fault current in $kA = 50 \text{ KA}$	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
K0 - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
K0 - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123

Ac - Required conductor cross section in sq.mm	114
Earth flat area in mm	12
Earth flat area (including 25% corrosion allowance) in mm	15
Selected flat size W * Thk in sq mm	20
Rg - Grid resistance Grid resistance can be calculated using Eq. 52 of IEEE 80	

7.5
440
0.5
200

Rg - Grid resistance 0.048

Rr - Earth Electrode resistance

ρ - Soil resistivity in Ω -meter, 16.96	7.5
<i>n</i> - No of earth electrodes	6
Lr - Length of earth electrode in meter	4.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	11200

Rr - Earth Electrode resistance 2.75561

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:
$$\begin{array}{c|c} R_s & \square & \frac{R_g \square R_2 \square m}{2R_m} \end{array}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil

Rs - Total earthing system resistance 0.048 Ohms The calculated resistance grounding system is less than the allowable 1 Ω value.

Location	Mangalore
Building	Concrete, Industrial
Type of Building	Flat Roofs (a)
Building Length (L)	14
Building breadth (W)	4
Building Height (H)	5

Risk Factor Calculation

1 Collection Area (A_c)

Ac	= (L*W) + (2*L*H) + (2*W*H) + (3.14*H*H)
	214 E

2 Probability of Being Struck (P)

Р	=	$A_c * N_g * 10^{-6}$
		0.00059755

3 Overall weighing factor

4 Overall Risk Factor	Ро	=	P * Wo
		=	0.115
Wo - Overall weighing factor		=	A * B * C * D * E
e) Type of country (E)		=	0.3
d) Degree of isolation (D)		=	1.0
c) Contents or consequential effects (C)		=	0.8
b) Type of construction (B)		=	0.4
a) Use of structure (A)		=	1.2

Po = P*Wo Po = 6.88378E-05 Pa 10⁻⁵

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	=	2(L+W)	
	=	36	Mts.
6 Down Conductors			
Perimeter of building	=	36	Mts.
No. of down conductors based on perimeter	=	2	Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

S.NO.	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of ph Curren	Motor Starting t Current (A)	Load P.F. Running	SIN Ф Running	Motor P.F Staring	SIN Ф Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)		Cable Resistance (Ohms/kM)		Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)		OD of Cable (mm)	Gland size
	PU2315	Silica filter feed pump	116.6	32 132.00	415	3 202.8	1216.85	8.0	0.6	0.8	0.5	2	1	4.0	95	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
	PU 2314-A	Absorbesnt/Neutral oil pump (W)	33.8	37.00	415	3 58.9	353.52	8.0	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)	29.1	37.00	415	3 50.7	303.95	8.0	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	60	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	PU2305	Feed Pump (Seperator)	117.7	78 132.00	415	3 204.8	1228.96	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	MX2305	MIXER (W)	118.6	39 132.00	415	3 206.4	1238.45	8.0	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	MX 2308	MIXER (S)	118.6	39 132.00	415	3 206.4	1238.45	8.0	0.6	0.8	0.5	2	1	4.0	120	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	BW 2313	Blower	50.9	96 55.00	415	3 88.6	531.73	8.0	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	Rotary valve	TK 2313B (I)	4.9	95 5.50	415	3 8.6	51.65	8.0	0.6	0.8	0.5	2	1	4.0	4	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	SC2314	Screw conveyor (I)	11.4	15.00	415	3 19.9	119.37	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
	AG 2324A	Citric acid tan agitator (W)	8.6	9.20	415	3 15.0	89.74	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	110	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
	AG 2324B	Citric acid tank agitator (S)	8.6	9.20	415	3 15.0	89.74	0.8	0.6	0.8	0.5	2	1	4.0	4	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
	AG 2305	Citric oil rection vessol agitator	31.2	25 37.00	415	3 54.3	326.07	8.0	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
	AG 2309	Lye oil reaction vessel agitator	11.3	15.00	415	3 19.8	118.64	8.0	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	32
	AG 2310	Lye oil reaction vessel agitator	11.3	15.00	415	3 19.8	118.64	0.8	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!		#REF!		20s
	AG 2314	Scap Adsorbant Tank Agitator	19.9	90 22.00	415	3 34.6	207.64	0.8	0.6	0.8	0.5	2	1	4.0	10	#REF!	0.98	0.9	1	1	0.882	#REF!	65	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
				1																			1									$\overline{}$
																																_
						\vdash														1		1							-			
																				†		1										
																				†		1										
			1	1												†				†		1								1		
			1	1												†				†		1								1		
	ı	J	1	1	1	ı 1	1	1		1	1	l l					l	l	1			1		l .	l	1	1	ı	·			

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

1

	ABLES	1 + ·				T		1	1
CABL	LE TRAY: FROM	LT-4	1	ТО	L	.T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4.0	95	1	33	33	4	4	
2	PU 2314-A	4.0	25	1	22	22	1.4	1.4	
3	PU 2314 -B	4.0	10	1	18	18	0.9	0.9	
4	PU2305	4.0	70	1	29	29	3.25	3.25	
5	MX2305	4.0	70	1	29	29	3.25	3.25	
6	MX 2308	4.0	120	1	37	37	5	5	
7	BW2313	4.0	35	1	24	24	1.8	1.8	
8	Rotary valve	4.0	4	1	17	17	0.6	0.6	
9	SC2314	4.0	6	1	18	18	0.7	0.7	
10	AG 2324A	4.0	6	1	18	18	0.7	0.7	
11	AG 2324B	4.0	4	1	17	17	0.6	0.6	
12	AG 2305	4.0	25	1	22	22	1.4	1.4	
13	AG 2309	4.0	25	1	22	22	1.4	1.4	
14	AG 2310	4.0	10	1	18	18	0.9	0.9	
15	AG 2314	4.0	10	1	18	18	0.9	0.9	
16									
17 18									
19									
20									
21									
Maxin Consi	Total culation num Cable Diameter: ider Spare Capacity of Cable Tray:		37 30%	mm	I	Result Selected Cable T Selected Cable T	ray Depth:	0.K 0.K	
alcu alcu	nce between each Cable: lated Width of Cable Tray: lated Area of Cable Tray:	0 0 0	mm mm Sq.mm		Selected Cable To Selected Cable To	ray Size:	0.K 0.K	Including Spare Capacit	
elec elec elec	Layer of Cables in Cable Tray: ted No of Cable Tray: ted Cable Tray Width: ted Cable Tray Depth: ted Cable Tray Weight Capacity:	1 1 600 100 90	Nos. mm mm Kg/Meter		Required Cable T Required Nos of Required Cable T Type of Cable Tra	Cable Tray: ray Weight:	600 x 100 1 90.00 Ladder	mm No Kg/Meter/Tray	
уре	of Cable Tray: Area of Cable Tray:		Ladder 60000	Sq.mm		Cable Tray Width Cable Tray Area I		100% 100%	