

Scanned by TapScanner

	DATE:
3.	Tentukan deret cosmus fourier fungs: $f(x) = (K+1)-x$, $0 \le x \ge (K+1)!$
	Solusi
	mara fungsi menjadi: $f(x) = (4+1)-x$
	$f(x) = 5 - x$ $\text{Batas} : 0 \le x \le 5$
	Karena mengandung derek Cosinus muica merupakan fungsi genap. Juga karena batas 0 < x < 5 dimana f(x) selalu positif, maka fungsi sena
	Periodik dengan periode $2 \times 5 = 10$, maka koefisien founiernya: $A_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$
	$Q_0 = \frac{1}{5} \int_0^5 (5-x) dx$
	$-\frac{1}{5} \cdot \left(5x - \frac{1}{2}x^2\right) \Big _{0}^{5}$
	$-\frac{1}{5} \cdot \left(5(5) - \frac{1}{2}(25) - 0 \right)$
	$=\frac{1}{5}\cdot\left(25-\frac{25}{20}\right)-\frac{1}{5}\cdot\frac{25}{2}-\frac{25}{10}-\frac{5}{2}$
	$an = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi}{L} x dx, n=1,2,3$
	$= \frac{2}{5} \int_{5}^{5} (5-x) (05 \frac{n\pi}{5} dx$
	$= \frac{2}{5} \left\{ \frac{2}{5} \cos \frac{n\pi}{5} - \frac{5}{5} \times \cos \frac{n\pi}{5} \right\} d\pi$
	$= \frac{2}{5} \left(\frac{5}{n\pi} \sin \frac{n\pi x}{5} \right)^5 - \left[\frac{x}{n\pi} \sin \frac{n\pi x}{5} + \left(\frac{1}{n\pi} \right)^2 (05 n\pi x) \right]^5$

DATE:
$An = \frac{2}{5} \left(\frac{5}{nx} \cdot 8in nx(5) - \frac{5}{nn} 8in nnx \right)$
$-2\left(\frac{5}{n\pi}\right)^{2}\left(\cos n\pi - 5\right) = \frac{4}{\sin^{2}\pi^{2}}$
= In genap, nilai = 0
n gangii, 4
Sn ² N ²
Jadi derek Costhus fourier:
$\frac{1}{\Gamma(x)} = A_0 + \sum_{n=1}^{\infty} A_n \cdot Cos \frac{n\pi}{L} \times$
$= \frac{5}{a} + \frac{4}{25\pi^2 \cos x\pi + \frac{1}{5}\pi^2 \left(\cos \left(\frac{2\pi x}{5}\right)\right)}$
merci deret cosinus fourier nya:
$f(x) = \frac{5}{2} + \frac{4}{25\pi^2} (05 \times \pi + \frac{1}{5} \pi^2 (05 \times \pi \times \pi + \frac{1}{5} \pi^2 (05 \times \pi \times $