Instruções: responda e justifique brevemente as suas respostas nesta folha.

1. (1 valor) Determine uma base do espaço linear das soluções da equação diferencial homogénea

$$\ddot{x} - 9\dot{x} = 0.$$

1
$$e^{3t}$$
 e^{-3t}

2. (1 valor) Determine a solução da equação diferencial linear

$$\dot{x} + 2x = e^{-t} .$$

com condição inicial x(0) = 0.

$$x(t) = e^{-t} - e^{-2t}$$

3. $(1 \ valor)$ Determine a solução geral (ou seja, todas as soluções) da equação diferencial linear homogénea

$$\ddot{x} + 2\dot{x} + 5x = 0.$$

$$e^{-t} \left(a\cos(2t) + b\sin(2t) \right) \text{ com } a, b \in \mathbb{R}.$$

4. (1 valor) Determine a solução da equação diferencial linear homogénea

$$\ddot{x} + 2\dot{x} + 5x = 0$$

com condições iniciais x(0) = 2 e $\dot{x}(0) = 0$.

$$x(t) = e^{-t} (2\cos(2t) + \sin(2t))$$

5. $(1\ valor)$ Determine uma (ou seja, apenas uma) solução da equação diferencial linear não homogénea

$$\ddot{x} + 2\dot{x} + x = 4\cos(t).$$

$$x(t) = 2\sin(t)$$

6. (1 valor) Determine uma base ortonormada do plano $P = \{x - 2y + z = 0\} \subset \mathbb{R}^3$.

Por exemplo, a base formada pelos vetores

$$\mathbf{u}_1 = \left(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}\right) \qquad \text{ e} \qquad \quad \mathbf{u}_2 = \left(1/\sqrt{2}, 0, -1/\sqrt{2}\right)$$

7. (1 valor) Determine o ponto do plano $P=\{x-2y+z=0\}\subset\mathbb{R}^3$ mais próximo do ponto $\mathbf{v}=(1,0,2).$

8.	$(1\ valor)$ Calcule a fatorização QR (ou seja, determine uma matriz ortogonal Q e uma matriz triangular superior R tais que $A=QR)$ da matriz
	$A = \left(\begin{array}{cc} 0 & 5 \\ 2 & 3 \end{array}\right)$

$$\left(\begin{array}{cc} 0 & 5 \\ 2 & 3 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 2 & 3 \\ 0 & 5 \end{array}\right)$$

$$T(x,y) = (x - iy, iy).$$

Determine o operador adjunto T^* e a composição T^*T .

$$T^*(x,y) = (x, ix - iy)$$
 e $T^*T = (x - iy, ix + 2y)$

10.	(1 valor) Determine a matriz que define, relativamente à base canónica, um operador ortogonal
	$R: \mathbb{R}^2 \to \mathbb{R}^2 \text{ tal que } R(1,0) = (0,-1).$
	Por exemplo,

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{array} \right)$$

representa, na base canónica de \mathbb{C}^2 , um operador

- O hermítico ○ hemi-hermítico O unitário
- 12. (1 valor) Se B é uma matriz complexa $n\times n$ arbitrária, então B^*-B é
 - O hemi-hermítica O unitária) hermítica
- 13. (1 valor) Se A é uma matriz quadrada real arbitrária, então $A^{\top}A$ é
 - O anti-simétrica O simétrica O ortogonal
- 14. (1 valor) Se A e B são duas matrizes hermíticas $n \times n$, então [A, B] = AB BA é hermítica.
 - O Verdadeiro () Falso
- 15. (1 valor) Se A é uma matriz complexa unitára $n \times n$, então as suas colunas formam uma base ortonormada de \mathbb{C}^n .
 - \(\) Verdadeiro () Falso
- 16. $(1 \ valor)$ Uma matriz quadrada complexa U é unitária se
- $\bigcirc U^* = U \qquad \bigcirc U^*U = I \qquad \bigcirc U^*U = UU^*$

17. $(1 \ valor)$ Existe uma matriz ortogonal R tal que

$$R^2 = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

 \bigcirc Verdadeiro O Falso

18. (1 valor) A função $y(x) = e^{-x^2/2}$ é solução da equação diferencial

- $\bigcirc \frac{dy}{dx} + y = 0 \qquad \qquad \bigcirc \frac{dy}{dx} + xy = 0 \qquad \qquad \bigcirc \frac{d^2y}{dx^2} + xy = 0$

19. (1 valor) No espaço euclidiano complexo \mathbb{C}^n , $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ se e só se $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$.

- O Verdadeiro
- O Falso

20. (1 valor) Se a matriz quadrada complexa A é hermítica, então todos os seus valores próprios são números reais.

- Verdadeiro
- O Falso

1º teste

Instruções: responda e justifique brevemente as suas respostas nesta folha.

1. (1 valor) Determine uma base do espaço linear das soluções da equação diferencial homogénea

$$\ddot{x} - 4\dot{x} = 0$$
.

$$1 e^{2t} e^{-2t}$$

2. (1 valor) Determine a solução da equação diferencial linear

$$\dot{x} + 3x = e^{-2t} .$$

com condição inicial x(0) = 0.

$$x(t) = e^{-2t} - e^{-3t}$$

3. (1 valor) Determine a solução geral (ou seja, todas as soluções) da equação diferencial linear homogénea

$$\ddot{x} + 4\dot{x} + 5x = 0.$$

$$e^{-2t} \left(a \cos(t) + b \sin(t) \right) \text{ com } a, b \in \mathbb{R}.$$

4. (1 valor) Determine a solução da equação diferencial linear homogénea

$$\ddot{x} + 4\dot{x} + 5x = 0$$

com condições iniciais x(0) = 1 e $\dot{x}(0) = 0$.

$$x(t) = e^{-2t} \left(\cos(t) + 2\sin(t) \right)$$

5. (1 valor) Determine uma (ou seja, apenas uma) solução da equação diferencial linear não homogénea

$$\ddot{x} + 2\dot{x} + x = 4\sin(t).$$

$$x(t) = -2\cos(t)$$

6. (1 valor) Determine uma base ortonormada do plano $P = \{2x - y - z = 0\} \subset \mathbb{R}^3$. Por exemplo, a base formada pelos vetores

$$\mathbf{u}_1 = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$$
 e $\mathbf{u}_2 = (0, 1/\sqrt{2}, -1/\sqrt{2})$

7. (1 valor) Determine o ponto do plano $P = \{2x - y - z = 0\} \subset \mathbb{R}^3$ mais próximo do ponto $\mathbf{v} = (0, 1, 2)$.

8.	(1 valor) Calcule a fatorização	QR	(ou seja,	${\rm determine}$	uma	${\it matriz}$	ortogonal	Q ϵ	e uma	$_{\mathrm{matriz}}$
	triangular superior R tais que	A =	QR) da:	$_{ m matriz}$						

$$A = \left(\begin{array}{cc} 0 & 8 \\ 4 & 6 \end{array}\right)$$

$$\left(\begin{array}{cc} 0 & 8 \\ 4 & 6 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 4 & 6 \\ 0 & 8 \end{array}\right)$$

$$T(x,y) = (ix, -ix + y).$$

Determine o operador adjunto T^* e a composição TT^* .

$$T^*(x,y) = (-ix + iy, y)$$
 e $TT^*(x,y) = (x - y, -x + 2y)$

10. (1 valor) Determine a matriz que define, relativamente à base canónica, um operador ortogonal $R: \mathbb{R}^2 \to \mathbb{R}^2 \text{ tal que } R(1,0) = (0,1).$

Por exemplo,

$$A = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

- 11. (1 valor) Se B é uma matriz complexa $n \times n$ arbitrária, então $B^* + B$ é
 - hemi-hermítica
- O unitária
-) hermítica
- 12. (1 valor) Se A é uma matriz quadrada real arbitrária, então $A^{\top}A$ é
 - O anti-simétrica
- O ortogonal
- O simétrica

13. (1 valor) A matriz

$$A = \left(\begin{array}{cc} 1/\sqrt{2} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{2} \end{array} \right)$$

representa, na base canónica de \mathbb{C}^2 , um operador

- hemi-hermítico
- unitário
-) hermítico
- 14. (1 valor) Se $A \in B$ são duas matrizes hermíticas $n \times n$, então i[A, B] = i(AB BA) é hermítica.
 - Verdadeiro
- 15. (1 valor) Existe uma matriz ortogonal R tal que

$$R^2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

- O Verdadeiro
- () Falso
- 16. $(1 \ valor)$ Uma matriz quadrada complexa U é unitária se

$$\bigcup U^*U = I$$

$$\bigcirc U^*U = UU^* \quad \bigcirc U^* = U$$

$$\bigcirc U^* = U$$

17.	(1 valor) No espaço euclidiano	complexo \mathbb{C}^2 ,	$\langle \mathbf{x}, \mathbf{y} \rangle = 0$ se e só se	$\ \mathbf{x} + \mathbf{y}\ ^2 = \ \mathbf{x}\ ^2 + \ \mathbf{y}\ ^2.$
	(/ 1 3	,	()0 /	

18. (1 valor) A função $y(x) = e^{-x^2/2}$ é solução da equação diferencial

 $\bigcirc \frac{dy}{dx} + y = 0 \qquad \qquad \bigcirc \frac{d^2y}{dx^2} + xy = 0 \qquad \qquad \bigcirc \frac{dy}{dx} + xy = 0$

 \bigcirc Verdadeiro

○ Falso

19. (1 valor) Se A é uma matriz real ortogonal $n \times n$, então as suas colunas formam uma base ortonormada de \mathbb{R}^n .

O Verdadeiro

O Falso

20. $(1 \ valor)$ Se a matriz quadrada complexa A é hermítica, então todos os seus valores próprios são números imaginários puros.

O Verdadeiro

O Falso

Instruções: responda e justifique brevemente as suas respostas nesta folha.

1. $(1 \ valor)$ Identifique a matriz simétrica A que define a forma quadrática

$$Q(x,y) = 3x^2 - 2xy + 3y^2$$

e determine os seus valores próprios.

2. $(1 \ valor)$ Determine uma matriz ortogonal U que diagonaliza a matriz simétrica A do exercício 1, ou seja, tal que $U^{\top}AU$ seja diagonal.

3. (1 valor) Identifique e esboce a cónica definida pela equação cartesiana

$$3x^2 - 2xy + 3y^2 - 2 = 0$$

4. (1 valor) Determine os valores máximo e mínimo da forma quadrática Q(x,y), definida no exercício 1, na circunferência unitária $\mathbf{S}^1=\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$.

5. (1 valor) Calcule os valores e vetores próprios da matriz de Pauli

$$H = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right) \, .$$

6. $(1\ valor)$ Calcule os valores singulares da matriz

$$B = \left(\begin{array}{cc} 0 & 1\\ 0 & 0 \end{array}\right)$$

7. $(1\ valor)$ Calcule o grupo a um parâmetro e^{tB} gerado pela matriz B definida no exercício 6.

8. $(1 \ valor)$ Dê uma definição do grupo SO(3).

9. (1 valor) Determine a solução do sistema

$$\left\{ \begin{array}{cc} \dot{q} = & q+p \\ \dot{p} = & -q+p \end{array} \right.$$

com condições iniciais (q(0), p(0)) = (1, 1).

10. (1 valores) Considere o sistema não homogéneo

$$\left\{ \begin{array}{ll} \dot{q} = & q+p \\ \dot{p} = & -q+p+\cos(t) \end{array} \right.$$

Determine a solução com condições iniciais (q(0), p(0)) = (0, 0).

11. $(1 \ valor)$ Se existe uma base ortonormada de \mathbb{C}^n formada por vetores próprios do operador $L:\mathbb{C}^n\to\mathbb{C}^n$ então o operador L é normal. O Verdadeiro O Falso
12. $(1 \ valor)$ Toda matriz quadrada real invertível A é um produto $A=PU$ de uma matriz positiva P e uma matriz orthogonal U . O Verdadeiro O Falso
13. (1 valor) Se H é uma matriz quadrada hermítica, então e^H é unitária. \bigcirc Verdadeiro \bigcirc Falso
14. (1 valor) Se A e B são matrizes quadradas hermíticas então $e^{A+B}=e^Ae^B$. \bigcirc Verdadeiro \bigcirc Falso
15. (1 valor) As formas quadráticas $Q(x,y)=xy$ e $P(x,y)=x^2-y^2$ são linearmente equivalentes (ou seja, existe uma transformação linear invertível $(x,y)\mapsto (x',y')=(ax+by,cx+dy)$ tal que $P(x',y')=Q(x,y)$). \bigcirc Verdadeiro \bigcirc Falso
16. (1 valor) Os semi-eixos do elipsoide $2x^2 + 2xy + 2y^2 = 1$ são \bigcirc 1 e 3 \bigcirc 1 e $\sqrt{3}$ \bigcirc 1 e $1/\sqrt{3}$
17. (1 valor) Toda matriz $A \in \mathbf{SU}(2)$ admite um vetor próprio com valor próprio $\lambda = 1$. \bigcirc Verdadeiro \bigcirc Falso
18. $(1\ valor)$ A álgebra de Lie (o espaço tangente na identidade) do grupo unitário $\mathbf{U}(2)$ é \bigcirc o espaço linear das matrizes complexas 2×2 simétricas. \bigcirc o espaço linear das matrizes complexas 2×2 com traço nulo. \bigcirc o espaço linear das matrizes complexas 2×2 anti-hermíticas.
19. (1 valor) Existe uma matriz quadrada real A tal que $A^{\top}A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$. \bigcirc Verdadeiro \bigcirc Falso
20. (1 valor) Considere o sistema linear definido por $\left\{ \begin{array}{ll} \dot{x}=&4x-y\\ \dot{y}=&2x+y \end{array} \right.$ A origem é

 \bigcirc um nodo instável. \bigcirc um ponto de sela. \bigcirc um foco estável.