MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.			
$A = \{3, 5, 6, 8, 9\}$		2 pont	Nem bontható.
	Összesen:	2 pont	
2.			
Az átlagos jövedelem 160 000 Ft.		2 pont	
	Összesen:	2 pont	
3.			
A sütemény összköltsége 640 Ft.		1 pont	

A sütemény összköltsége 640 Ft.	1 pont	
A vaj költsége ennek $\frac{3}{8}$ része.	1 pont	Ez a pont a 240 és a 640 arányának bármilyen formában történő megha- tározásáért jár.
A kérdéses körcikk középponti szöge 135°.	1 pont	
Összesen:	3 pont	

4.		
1) párja C)	1 pont	
2) párja A)	1 pont	
Összesen:	2 pont	

5.		
Az adatokat feltüntető helyes ábra, az út hossza x.	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül jól dolgozik.
$x = \frac{124}{\sin 6.5^{\circ}} \approx$	1 pont	
≈ 1095 méter hosszú az út.	1 pont	Ez a pont jár, ha a vizs- gázó a sin 6,5°-nak más, legalább két tizedesjegyre helyesen kerekített érté- kével jól számol.
Összesen:	3 pont	*

6.		
A metszéspont $M(2; 0)$.	2 pont	Koordinátánként 1-1 pont jár.
Az egyenes meredeksége –2.	1 pont	
Összesen:	3 pont	

7.		
$x^2 + 10x + 21 = (x+5)^2 - 4$	2 pont	
A minimumhely – 5.	1 pont	
A minimum értéke – 4.	1 pont	
Összesen:	4 pont	

Megjegyzések:

- 1. Ha a vizsgázó meghatározza a függvény zérushelyeit (-7 és -3) és ezek segítségével helyesen válaszol, akkor teljes pontszámot kapjon.
- 2. Ha a vizsgázó a függvényt jól ábrázolja és az ábra alapján helyesen válaszol, akkor teljes pontszámot kapjon.

8.		
A) hamis		2 jó válasz esetén 1 pont,
B) hamis	2 pont	l jó válasz esetén 0 pont
C) igaz		jár.
Összesen:	2 pont	

9.		
k = 8	2 pont	Nem bontható.
Összesen:	2 pont	

10.		
<i>B</i> és <i>D</i> az első két helyen 2-féleképpen végezhet.	1 pont	
Mögöttük A , E és F sorrendje $3! = 6$ -féle lehet.	1 pont	
Így összesen $2 \cdot 6 = 12$ -féleképpen érhetnek célba a versenyzők.	1 pont	
Összesen:	3 pont	

11.		
A módusz 5,	1 pont	
a medián 4.	1 pont	
Összesen:	2 pont	

12.		
A kérdezett valószínűség $\frac{3}{8}$ (= 0,375).	2 pont	
Öss	zesen: 2 pont	

II. A

13. a)		
A sorozat differenciáját <i>d</i> -vel jelölve:		45.5
$45,5 = \frac{2 \cdot 2 + (7-1)d}{2} \cdot 7.$	1 pont	$a_4 = \frac{45,5}{7} = 6,5$
13 = 4 + 6d	1 pont	3d = 4.5
d = 1,5	1 pont	
$a_6 = 2 + 5 \cdot 1,5$	1 pont	
A sorozat 6. tagja 9,5.	1 pont	
Összesen:	5 pont	

13. b)		
A sorozat hányadosát q -val jelölve: $5q + 5q^2 = 10$.	1 pont	
$q_1 = -2; q_2 = 1$	2 pont	
Ha a hányados –2, akkor a sorozat első hét tagjának		
összege: $S_7 = 5 \cdot \frac{(-2)^7 - 1}{-2 - 1} =$	1 pont	
= 215.	1 pont	
Ha a hányados 1, akkor a sorozat tagjai megegyez- nek,	1 pont	
így ebben az esetben az első hét tag összege $(7 \cdot 5 =) 35$.	1 pont	
Összesen:	7 pont	

14. a)		
A kérdéses súlyvonalra a <i>P</i> csúcs és a vele szemközti oldal felezőpontja illeszkedik.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
A <i>QR</i> szakasz felezőpontja <i>F</i> (4; –0,5).	1 pont	
A súlyvonal egy irányvektora: \overrightarrow{PF} (10; 0,5).	1 pont	
A súlyvonal egyenlete: $x - 20y = 14$.	2 pont	Bármely ezzel ekvivalens egyenlet is elfogadható.
Összesen:	5 pont	

14. b) első megoldás		
(A kérdéses szöget a háromszög oldalvektorai skalár- szorzatának segítségével lehet meghatározni.)	2 pont	
Az oldalvektorok $\overrightarrow{PQ}(12; -5)$ és $\overrightarrow{PR}(8; 6)$.		
A két vektor skalárszorzata a koordinátákból:	14	
$\overrightarrow{PQ} \cdot \overrightarrow{PR} = 12 \cdot 8 + (-5) \cdot 6 (= 66).$	1 pont	
Az oldalvektorok hossza $ \overrightarrow{PQ} = 13$ és $ \overrightarrow{PR} = 10$.	1 pont	
A két vektor skalárszorzata a definíció szerint: $(\overrightarrow{PQ} \cdot \overrightarrow{PR} =) 66 = 13 \cdot 10 \cdot \cos \alpha$, ahol α a két vektor által bezárt szöget jelöli.	1 pont	
Innen $\cos \alpha \approx 0.5077$.	1 pont	
$\alpha \approx 59.5^{\circ}$ (mivel $0^{\circ} < \alpha < 180^{\circ}$).	1 pont	Más, ésszerű és helyes kerekítéssel kapott ered- mény is elfogadható.
Összesen:	7 pont	

14. b) második megoldás		
A <i>PQR</i> háromszög oldalainak hosszát a két pont távolságának kiszámításához használt képlettel határozzuk meg.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
$PQ = 13, PR = 10, QR = \sqrt{137} \ (\approx 11,7)$	2 pont	Két oldal helyes kiszámo- lásáért 1 pont, más eset- ben 0 pont jár.
Írjuk fel a PQR háromszög QR oldalára a koszinusztételt: $\left(\sqrt{137}\right)^2 = 10^2 + 13^2 - 2 \cdot 10 \cdot 13 \cdot \cos \alpha$, (ahol α a háromszög P csúcsánál lévő belső szöget jelöli.)	1 pont	
Innen $\cos \alpha \approx 0.5077$.	2 pont	
$\alpha \approx 59.5^{\circ}$ (mivel $0^{\circ} < \alpha < 180^{\circ}$).	1 pont	Más, ésszerű és helyes kerekítéssel kapott ered- mény is elfogadható.
Összesen:	7 pont	

15. a)		
A járulékokra levont összeg $200\ 000 \cdot 0,17 = 34\ 000\ (Ft).$	1 pont	
A személyi jövedelemadóra levont összeg 200 000 · 1,27 · 0,17 = 43 180 (Ft).	1 pont	
Kovács úr nettó bére: 200 000 – 34 000 – 43 180 + 15 100 =	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
= 137 920 Ft.	1 pont	
Ez a bruttó bérének megközelítőleg a 69%-a.	1 pont	
Összesen:	5 pont	

15. b)		
Ha Szabó úr bruttó bére az adott hónapban <i>x</i> Ft volt, akkor járulékokra 0,17 <i>x</i> Ft-ot,	1 pont	Ez a 2 pont akkor is jár, ha a megoldásból kiderül,
személyi jövedelemadóra pedig 0,17·1,27x Ft-ot vontak le.	1 pont	hogy a vizsgázó gondo- latmenete helyes volt.
$x - 0.17x - 0.17 \cdot 1.27x + 5980 = 173015$	2 pont	
$0.6141x = 167\ 035$	1 pont	
Ebből $x \approx 272~000$.	1 pont	
Szabó úr bruttó bére 272 000 Ft volt.	1 pont	
Összesen:	7 pont	

II. B

16. a)		
Az egyik lehetséges megoldás (a résztvevőket nevük kezdőbetűjével jelölve):	4 pont	Három csúcs helyes fok- száma 1 pontot, négy csúcsé 2 pontot, öt csúcsé 3 pontot ér.
Osszesen:	4 pont	

16. b) első megoldás		
Ha Andi egyetlen mérkőzését Barnabással játszotta volna,	2 pont	Ez a 3 pont jár, ha a vizs- gázó egy gráfon egyér- telműen jelöli az AB élt és
akkor például Feri eddigi mérkőzéseit Barnabással, Csabával, Danival és Enikővel játszotta volna.	1 pont	az F-ből (vagy E-ből) in- duló négy élt.
Ekkor azonban Enikőnek már nem lehet meg a négy mérkőzése, hiszen legfeljebb Csabával, Danival és Ferivel játszhatott volna.	2 pont	Az "ellentmondásra ju- tás" bármilyen helyes in- doklásáért jár ez a 2 pont.
Tehát igazoltuk, hogy Andi az eddig lejátszott egyet- len mérkőzését nem játszhatta Barnabással.	1 pont	
Összesen:	6 pont	

16. b) második megoldás		
Feri a négy meccse között vagy játszott Andival,	1 pont	
vagy nem.	1 point	
Ha játszott vele, akkor Andi az egyetlen meccsét nem	1 pont	
játszhatta Barnabással.	1 point	
Ha nem játszott vele, akkor Feri Barnabással, Csabá-	1 nont	
val, Danival és Enikővel játszott.	1 pont	
Ez utóbbi esetben Enikőre is igaz, hogy vagy játszott		
Andival vagy nem. Ha játszott vele, akkor Andi az	1 pont	
egyetlen meccsét nem játszhatta Barnabással,	_	
ha nem, akkor Enikő a maradék három meccsét Bar-	1	
nabással, Csabával és Danival játszotta le.	1 pont	
Ekkor viszont már Barnabás a két meccsét Enikővel		
és Ferivel játszotta, tehát nem játszhatta Andival (aki	1 pont	
csak Danival játszhatott).	-	
Összesen:	6 pont	

16. c)		
A játékosok kiválasztása helyett a lejátszott – illetve nem lejátszott – mérkőzéseiket vizsgáljuk.	2 pont	Ez a 2 pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
Összesen $\left(\frac{6 \cdot 5}{2}\right)$ 15 mérkőzés szükséges (összes eset száma).	2 pont	
7	1	
Eddig 8 mérkőzés zajlott le,	1 pont	
tehát 7 mérkőzést kell még lejátszani (kedvező esetek száma).	1 pont	
A keresett valószínűség $\frac{7}{15}$ ($\approx 0,47$).	1 pont	Százalékban megadott helyes válasz is elfogadható.
Összesen:	7 pont	

17. a) első megoldás		
Ha $x < 3$, akkor $(3 - x > 0$, ezért)	1 pont	
$x+2 \ge 0$, vagyis $x \ge -2$.	1 pont	
A 3-nál kisebb számok halmazán tehát a [-2;3[intervallum minden eleme megoldása az egyenlőtlenségnek.	1 pont	$A-2 \le x < 3$ jelölés is elfogadható.
Ha $x > 3$, akkor $(3 - x < 0$, ezért)	1 pont	
$x + 2 \le 0$, vagyis $x \le -2$.	1 pont	
A 3-nál nagyobb számok halmazában nincs ilyen elem, tehát a 3-nál nagyobb számok között nincs megoldása az egyenlőtlenségnek.	1 pont	
A megoldáshalmaz: [-2;3[.	1 pont	
Összesen:	7 pont	

17. a) második megoldás		
A vizsgázó megrajzolja (vázolja) az $x \mapsto x + 2$ és az $x \mapsto 3 - x$ elsőfokú függvények grafikonját, vagy a számláló és a nevező előjelét külön-külön helyesen állapítja meg számegyenes segítségével vagy szövegesen indokolva.	2-2 pont	Ha a függvények mono- tonitása és zérushelye is jól jelenik meg az ábrán, akkor jár ez a 2-2 pont
Megállapítja, hogy a]-∞;-2[intervallum elemei nem megoldások.	1 pont	Szöveges vagy a szám-
Megállapítja, hogy a [-2;3[intervallum elemei mind megoldások.	1 pont	egyenes segítségével, áb- rával alátámasztott in- doklás egyaránt elfogad-
Megállapítja, hogy a [3;+∞[intervallum elemei nem megoldások.	1 pont	ható.
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó a 3-at elfogadja megoldásként, akkor ezért 2 pontot veszítsen. Ha a vizsgázó a (–2)-t nem adja meg megoldásként (nem vizsgálja az egyenlőséget), akkor ezért 1 pontot veszítsen.

17. b)		
$5 \cdot 3^x = 20$	1 pont	
$3^x = 4$	1 pont	
$x = \log_3 4$	1 pont	$x \lg 3 = \lg 4$
$x \approx 1,2619$	1 pont	Csak a megadott alakért jár ez a pont.
Összesen:	4 pont	

17. c)		
(A megadott egyenlet cos <i>x</i> -ben másodfokú,) így a megoldóképlet felhasználásával	1 pont	
$\cos x = 0.5$	1 pont	
vagy cos x = -2.	1 pont	
Ez utóbbi nem lehetséges (mert a koszinuszfüggvény értékkészlete a [-1; 1] intervallum).	1 pont	
A megadott halmazban a megoldások: $-\frac{\pi}{3}$, illetve $\frac{\pi}{3}$.	2 pont	Ha a vizsgázó a megadott alaphalmazt nem veszi figyelembe vagy fokban (jól) adja meg a válaszát (–60°; 60°), akkor l pontot kapjon.
Összesen:	6 pont	

18. a)		
Az oldallap-háromszögekben a 2 cm-es oldalhoz tartozó magasság hossza (a Pitagorasz-tételt alkalmazva) $\sqrt{3^2-1^2} = \sqrt{8} \ (\approx 2,83) \ (\text{cm}).$	1 pont	
Egy oldallap területe $\frac{2 \cdot \sqrt{8}}{2} (\approx 2,83) \text{ (cm}^2).$	1 pont	
A test felszíne: $A \approx 22,6 \text{ cm}^2$.	1 pont	
A testet alkotó gúlák magassága megegyezik annak az egyenlő szárú háromszögnek a magasságával, amelynek szára a gúlák oldalélével, alapja a gúla alapjának átlójával egyezik meg.	1 pont	Ez a pont akkor is jár, ha a megoldásból (például megfelelő ábrából) kide- rül, hogy a vizsgázó gon- dolatmenete helyes volt.
A gúla <i>m</i> magasságára (a Pitagorasz-tételt alkalmaz- va): $m^2 = 3^2 - \left(\frac{2 \cdot \sqrt{2}}{2}\right)^2$.	1 pont	
$m = \sqrt{7} \ (\approx 2,65) \ (cm)$	1 pont	
A gúla térfogata: $V = \frac{1}{3} \cdot 2^2 \cdot \sqrt{7} \ (\approx 3,53) \ (\text{cm}^3).$	1 pont	
A test térfogata ennek kétszerese,	1 pont	
azaz megközelítőleg 7,1 cm ³ .	1 pont	
Összesen:	9 pont	

Megjegyzés: Ha a vizsgázó a feladat megoldása során rosszul kerekít, vagy válaszában nem kerekít, akkor ezért összesen 1 pontot veszítsen.

Ha a vizsgázó valamelyik válaszát mértékegység nélkül adja meg, akkor ezért összesen 1 pontot veszítsen.

18. b) első megoldás		
Az összes (egyenlően valószínű) eset száma $8^4 (= 4096)$.	1 pont	
5-nél többet dobni háromféleképpen lehet (6, 7, 8).	1 pont	
Az olyan esetek száma, amelyben mind a négy dobás 5-nél nagyobb 3 ⁴ (= 81).	1 pont	
Pontosan három 5-nél nagyobb dobás úgy lehetséges, hogy a négy dobás közül az egyik nem ilyen.	1 pont	Ez a pont akkor is jár, ha a megoldásból kiderül, hogy a vizsgázó gondo- latmenete helyes volt.
Az ilyen esetek száma $4 \cdot (3 \cdot 3 \cdot 3 \cdot 5) (= 540)$.	2 pont	Ha a vizsgázó egyetlen hibája, hogy nem szoroz 4-gyel, akkor 1 pontot kapjon.
A kedvező esetek száma 81 + 540 = 621.	1 pont	
A kérdezett valószínűség $\frac{621}{4096}$ ($\approx 0,152$)	1 pont	Százalékban megadott helyes válaszért is jár ez a pont.
Összesen:	8 pont	

18. b) második megoldás		
$P(\text{egy adott dobás 5-nél nagyobb}) = \frac{3}{8}$	2 pont	
P(mind a négy dobás nagyobb 5-nél) =		
$= \left(\frac{3}{8}\right)^4 (\approx 0.0198)$	1 pont	
P(három dobás nagyobb 5-nél, egy nem) =		Ha a vizsgázó egyetlen
$= {4 \choose 1} \cdot \left(\frac{3}{8}\right)^3 \cdot \frac{5}{8} (\approx 0,1318)$	2 pont	hibája, hogy nem szoroz 4-gyel, akkor 1 pontot kapjon.
A kérdéses valószínűség ezek összege, azaz	1 pont	
≈ 0,152.	2 pont	Százalékban megadott helyes válaszért is jár ez a pont.
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó a binomiális eloszlás képletét használva helyesen válaszol, akkor teljes pontszámot kapjon.