

Parameters, Memories, and Computations in Transformers

Kun Yuan

Center for Machine Learning Research @ Peking University

PART 01

Settings and Basics

Decoder-only Transformer

- GPT is based on the decoder-only transformer
- We will analyze the parameters, memories, and computation costs for decoder-only transformer

Notations

- Number of the transformer layers: l
- Sequence length: s
- Vocabulary size: v
- Embedding representation dims: h

Embedding

Center of Machine Learning Research

• Number of heads: a

• Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

• Number of heads: a

Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

• Number of heads: a

Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

• Number of heads: a

• Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

$$\operatorname{softmax}(\frac{Q_{i}K_{i}^{T}}{\sqrt{h/a}})V_{i} = \operatorname{softmax}\left[\begin{array}{c} & \times & & \\ & & \times & \\ & & & \end{array}\right] \times \left[\begin{array}{c} & h/a \\ & & \\ & & \\ & & & \end{array}\right] s$$

One-head attention

• Number of heads: a

• Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

• Number of heads: *a*

• Dims of each W_{Q_i} , W_{K_i} and W_{V_i} : $h \times \frac{h}{a}$

• Dims of each W_0 : $h \times h$

Feed-forward Layer

$$X' = \operatorname{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Dims of W_1 : $h \times 4h$
- Dims of each W_2 : $4h \times h$

Layer normalization

Then layer normalization computes:

output =
$$\frac{x - \mu}{\sqrt{\sigma} + \epsilon} * \gamma + \beta$$

• Dims of γ and β : h

Probability prediction

$$p = \operatorname{Softmax}(X \cdot W_v + b_v)$$

• Dims of W_v : $h \times v$

PART 02

Parameters analysis

Embedding

- We need to store the embedding with parameters vh
- Position embedding can be ignored when using RoPE and ALiBi

• We need to store W_Q , W_K and W_V

$$3(h^2/a) \times a = 3h^2$$

• We need to store W_0 : h^2

Layer normalization

Then layer normalization computes:

output =
$$\frac{x - \mu}{\sqrt{\sigma} + \epsilon} * \gamma + \beta$$

• Dims of γ and β : h

• We should store γ and β . Since their parameters are much smaller than h^2 and vh, we can ignore them

Feed-forward layers

$$X' = \operatorname{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Dims of W_1 : $h \times 4h$
- Dims of each W_2 : $4h \times h$
- We need to store W_1 and W_2 : $8h^2$
- The storage of b_1 and b_2 can be ignored

Transformer block

Multi-head attentions: 4h²

• Feed-forward layers : $8h^2$

• *l* layers of attentions : $(4h^2 + 8h^2) \times l = 12lh^2$

Probability predictions

$$p = \operatorname{Softmax}(X \cdot W_v + b_v)$$

- Dims of W_v : $h \times v$
- We need to store W_v : hv parameters
- b_v can be ignored

Total parameters

• Embeddings: *vh*

• Attention blocks: $12lh^2$

Probability predictions: vh

Total parameters:

$$12\ell h^2 + 2vh$$

Example: LLaMA parameters

- Now we compare our theoretical evaluations with LLaMA model
- $12\ell h^2 + 2vh$ is a very accurate estimation

实际参数量	Embedding h	Attention层数I	Vocab大小v	预估参数量
6.7B	4096	32	32000	6,704,594,944
13.0B	5120	40	32000	12,910,592,000
32.5B	6656	60	32000	32,323,665,920
65.2B	8192	80	32000	64,948,797,440

PART 03

Computations analysis

Flops

FLOPs: Floating point operations; gauges the total amount of computations

• Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, to compute AB, we need

mnp additions2mnp FLOPsmnp multiplications

 In transformers, we only count computations raised by matrix operations and ignore vector operations since the later is trivial

Embedding

Word embedding: 2svh

Multi-head attentions

$$6(sh^2/a) \times a = 6sh^2$$

$$\operatorname{softmax}(\frac{Q_{i}K_{i}^{T}}{\sqrt{h/a}})V_{i} = \operatorname{softmax}\left[s\right] \times \left[s\right] \times \left[s\right] \times \left[s\right] \times \left[s\right] \times \left[s\right]$$

$$(2s^2h/a + 2s^2h/a) \times a = 4s^2h$$

 $2sh^2$ Flops

Feed-forward layers

$$X' = \operatorname{ReLU}(A \cdot W_1 + b_1) \cdot W_2 + b_2$$

- Dims of W_1 : $h \times 4h$
- Dims of each W_2 : $4h \times h$
- $AW_1 + b_1$ needs: $8sh^2$ $A'W_2 + b_2$ needs: $8sh^2$ 16 sh^2

Transformer block

• Multi-head attentions: $8sh^2 + 4s^2h$

• Feed-forward layers: $16sh^2$

• *l* layers of attentions :

$$(8sh^2 + 16sh^2 + 4s^2h) \times l = 24slh^2 + 4s^2lh$$

Probability predictions

$$p = \operatorname{Softmax}(X \cdot W_v + b_v)$$

- Dims of W_v : $h \times v$
- We need to : 2shv FLOPs

Total forward FLOPs

- Embeddings: 2svh
- Attention blocks: $24lsh^2 + 4s^2lh$
- Probability predictions: 2svh

Total forward FLOPs:

$$\ell(24sh^2 + 4s^2h) + 4svh$$

When using batch-size b, the total forward FLOPs:

$$b\ell(24sh^2 + 4s^2h) + 4bsvh$$

Total forward-backward FLOPs

The backward computations are twice amount of the forward computations

Total forward-backward FLOPs

$$(b\ell(24sh^2 + 4s^2h) + 4bsvh) \times 3 = 3(b\ell(24sh^2 + 4s^2h) + 4bsvh)$$

When h^2 dominates, the above FLOPs can be simplified as $72bs\ell h^2$

When h^2 dominates, the parameters can be simplified as $P=12\ell h^2$

Since T = bs is the number of tokens, we thus have FLOPs = 6TP

Example: GPT3-175B

GPT-175B: 175B parameters, 300B tokens

$$6 imes 174600 imes 10^6 imes 300 imes 10^9 = 3.1428 imes 10^{23} flops$$

Model	Total train compute (PF-days)	Total train compute (flops)	Params (M)	Training tokens (billions)	Flops per param per token	Mult for bwd pass	flops per active param per token	params active for each token
T5-Small	2.08E+00	1.80E+20	60	1,000	3	3	1	0.5
T5-Base	7.64E+00	6.60E+20	220	1,000	3	3	1	0.5
T5-Large	2.67E+01	2.31E+21	770	1,000	3	3	1	0.5
T5-3B	1.04E+02	9.00E+21	3,000	1,000	3	3	1	0.5
T5-11B	3.82E+02	3.30E+22	11,000	1,000	3	3	1	0.5
BERT-Base	1.89E+00	1.64E+20	109	250	6	3	2	1.0
BERT-Large	6.16E+00	5.33E+20	355	250	6	3	2	1.0
RoBERTa-Base	1.74E+01	1.50E+21	125	2,000	6	3	2	1.0
RoBERTa-Large	4.93E+01	4.26E+21	355	2,000	6	3	2	1.0
GPT-3 Small	2.60E+00	2.25E+20	125	300	6	3	2	1.0
GPT-3 Medium	7.42E+00	6.41E+20	356	300	6	3	2	1.0
GPT-3 Large	1.58E+01	1.37E+21	760	300	6	3	2	1.0
GPT-3 XL	2.75E+01	2.38E+21	1,320	300	6	3	2	1.0
GPT-3 2.7B	5.52E+01	4.77E+21	2,650	300	6	3	2	1.0
GPT-3 6.7B	1.39E+02	1.20E+22	6,660	300	6	3	2	1.0
GPT-3 13B	2.68E+02	2 31E+22	12,850	300	6	3	2	1.0
GPT-3 175B	3.64E+03	3.14E+23	174,600	300	6	3	2	1.0