8200 Homework 6

March 14, 2025

Exercise 1

Suppose X is path connected and $p:(\tilde{X},\tilde{x_0})\to(X,x_0)$ is a path connected covering space of X. Prove that the number of sheets of this covering space is equal to the index of $p_*(\pi_1(\tilde{X},\tilde{x_0}))$ in $\pi_1(X,x_0)$.

Proof.

Let f be any loop with basepoint x_0 , so that \tilde{f} is it's lift, where X cooresponds to \tilde{X} and x_0 , $\tilde{x_0}$. Let $g \in G = p_*(\pi_1(\tilde{X}, \tilde{x_0}))$, so that $g \circ f$ has the lift $\tilde{g} \circ \tilde{f}$. Note that because \tilde{g} is a loop, $\tilde{g} \circ \tilde{f}$ ends at the same point as \tilde{f} . Then define a function $\phi: G[f] \to p^{-1}(x)$, where $G[f] \mapsto \tilde{f}(1)$. Because \tilde{X} is path connected, ϕ is surjective. Then note that because $\phi(G[f_1]) = \phi(G[f_2])$ implies that $f_1 \circ \bar{f_2}$ lifts to a loop based at $\tilde{x_0}$, so that $[f_1][f_2]^{-1} \in G$, and $g[f_1] = G[f_2]$, so that ϕ is injective. Thus the number of cosets (index) is equal to the number of sheets.

Exercise 2

Construct nonnormal covering spaces of the Klein Bottle by a Klein bottle and by a torus.

Proof.

For the Klein bottle, we need to find a nonnormal subgroup of the Klein bottle. The Klein bottle's fundamental group is $\langle a, b | aba^{-1}b \rangle$. A nonnormal subgroup of this could be $\langle a, b^2 \rangle$, thus there is a nonnormal covering space that cooresponds to it. We know this covering space is a Klein bottle because the subgroup $\langle a, b^2 \rangle$ is isomorphic to the Klein bottle's fundamental group.

For the torus, it's a little bit trickier because the nonnormal subgroup must be isomorphic to the torus's fundamental group, $\langle a, b | ab = ba \rangle$. If we choose the subgroup $\langle a^2, b^2 \rangle$, it's isomorphic to the torus fundamental group, and nonnormal in the Klein bottle fundamental group, so we get a corresponding nonnormal cover.

Exercise 3

Let X be the space obtained from a torus $S^1 \times S^1$ by attaching a Mobius band via a homeomorphism from the boundary circle of the Mobius band to the circle $S^1 \times \{x_0\}$ in the torus. Compute $\pi_1(X)$, describe the universal cover of X, and describe the action of $\pi_1(X)$ on the universal cover. Do the same for the space Y obtained by attaching a Mobius band to $\mathbb{R}P^2$ formed by the 1-skeleton of the usual CW structure on $\mathbb{R}P^2$.

Proof.

Pressed for time and saved this one till the end, so I will just say you have to use Van Kampen to find the fundamental group of this shape, which is just the mobius band wrapping around the torus twice. If I had to guess, the fundamental group would be $\mathbb{Z} * \mathbb{Z}$ or something along those lines.

Exercise 4

Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $\phi(x,y) = (2x,y/2)$. This generates an action of \mathbb{Z} on $X = \mathbb{R} - \{0\}$. Show this action is a covering space action and compute $\pi_1(X \setminus \mathbb{Z})$. Show the orbit space $X \setminus \mathbb{Z}$ is non-Hausdorff, and describe how it is a union of four subspaces homeomorphic to $S^1 \times \mathbb{R}$, coming from the complementary components of the x-axis and the y-axis.

Proof.

The action of \mathbb{Z} on X is given by:

$$n \cdot (x, y) = \phi^{n}(x, y) = (2^{n}x, 2^{-n}y).$$

For each $(x, y) \in X$, choose a neighborhood U small enough so that $\phi^n(U) \cap U = \emptyset$ for all $n \neq 0$. This is possible because ϕ^n scales x by 2^n and y by 2^{-n} , ensuring disjointness for small U. Thus, the action is a covering space action.

Since the action is free and properly discontinuous, the quotient map $X \to X/\mathbb{Z}$ is a covering map with deck transformation group \mathbb{Z} . Therefore:

$$\pi_1(X/\mathbb{Z}) \cong \mathbb{Z}.$$

Consider the orbits of (1,0) and (0,1). The orbit of (1,0) is $\{(2^n,0) \mid n \in \mathbb{Z}\}$, and the orbit of (0,1) is $\{(0,2^{-n}) \mid n \in \mathbb{Z}\}$. These orbits accumulate at (0,0), which is not in X, so their images in X/\mathbb{Z} cannot be separated by disjoint open sets. Thus, X/\mathbb{Z} is non-Hausdorff.

The space X decomposes into four quadrants based on the x-axis and y-axis. Each quadrant is homeomorphic to $S^1 \times \mathbb{R}$, as the angular component corresponds to S^1 and the radial component to \mathbb{R} . The action preserves these quadrants, so X/\mathbb{Z} is a union of four subspaces homeomorphic to $S^1 \times \mathbb{R}$.

Exercise 5

For a covering space $p: \tilde{X} \to X$ connected, locally path-connected, and semilocally simply-connected, show:

- (a) The components of \tilde{X} are in one-to-one correspondence with the orbits of the action of $\pi_1(X, x_o)$ on the fiber $p^{-1}(x_0)$.
- (b) Under the Galois corrspondence between connected covering spaces of X and subgroups of $\pi_1(X, x_0)$, the subgroup corresponding to the component of \tilde{X} containing a given lift $\tilde{x_0}$ of x_0 is the *stabilizer* of $\tilde{x_0}$, the subgroup consisting of elements whose action on the fiber leaves $\tilde{x_0}$ fixed.

Proof.

- (a) Let $p: \tilde{X} \to X$ be a connected, locally path-connected, and semilocally simply-connected covering space. Fix a basepoint $x_0 \in X$ and consider the fiber $p^{-1}(x_0)$. The fundamental group $\pi_1(X, x_0)$ has the following action on $p^{-1}(x_0)$: for $[\gamma] \in \pi_1(X, x_0)$ and $\tilde{x}_0 \in p^{-1}(x_0)$, the action is defined by lifting γ to a path in \tilde{X} starting at \tilde{x}_0 and taking its endpoint. Each component of \tilde{X} is path-connected, and the restriction of p to a component is a covering map. For a fixed $\tilde{x}_0 \in p^{-1}(x_0)$, the orbit of \tilde{x}_0 under the action of $\pi_1(X, x_0)$ consists of all points in $p^{-1}(x_0)$ that lie in the same component of \tilde{X} as \tilde{x}_0 . This is because we have two cases:
 - If \tilde{x}_1 is in the same component as \tilde{x}_0 , there is a path $\tilde{\gamma}$ in \tilde{X} from \tilde{x}_0 to \tilde{x}_1 . Projecting $\tilde{\gamma}$ to X gives a loop γ in X based at x_0 , and the action of $[\gamma]$ on \tilde{x}_0 sends it to \tilde{x}_1 .
 - Conversely, if \tilde{x}_1 is in the orbit of \tilde{x}_0 , there exists a loop γ in X such that the lift of γ starting at \tilde{x}_0 ends at \tilde{x}_1 . This implies \tilde{x}_0 and \tilde{x}_1 are in the same component of \tilde{X} .

Thus, the components of \tilde{X} are in one-to-one correspondence with the orbits of the action of $\pi_1(X, x_0)$ on $p^{-1}(x_0)$.

(b) Under the Galois correspondence, connected covering spaces of X correspond to subgroups of $\pi_1(X, x_0)$. Let \tilde{X}_0 be the component of \tilde{X} containing a given lift \tilde{x}_0 of x_0 . The subgroup of $\pi_1(X, x_0)$ corresponding to \tilde{X}_0 is the stabilizer of \tilde{x}_0 . The stabilizer of \tilde{x}_0 is the subgroup $H \leq \pi_1(X, x_0)$ consisting of elements $[\gamma]$ such that the lift of γ starting at \tilde{x}_0 ends at \tilde{x}_0 . Thus it is sufficient to show that this subgroup H cooresponds to the covering space \tilde{X}_0 .

The covering map $p|_{\tilde{X}_0}: \tilde{X}_0 \to X$ has H as its fundamental group. This follows from the lifting criterion: loops in X lift to loops in \tilde{X}_0 if and only if they are in H. By Galois correspondence, H is the subgroup associated with \tilde{X}_0 . Thus, the subgroup corresponding to \tilde{X}_0 is the stabilizer of \tilde{x}_0 .

Exercise 6

Consider covering spaces $p: \tilde{X} \to X$ with \tilde{X} and X connected CW complexes, the cells of \tilde{X} projecting homeomorphically onto cells of X. Restricting p to the 1-skeleton then gives a covering space $\tilde{X}^1 \to X$ over the 1-skeleton of X. Show:

- (a) Two such covering spaces $\tilde{X}_1 \to X$ and $\tilde{X}_2 \to X$ are isomorphic if and only if the restrictions $\tilde{X}_1^1 \to X^1$ and $\tilde{X}_2^1 \to X^1$ are isomorphic.
- (b) $\tilde{X} \to X$ is a normal covering if and only if $\tilde{X}^1 \to X^1$ is normal.
- (c) The groups of deck transformations of the coverings $\tilde{X} \to X$ and $\tilde{X}^1 \to X^1$ are isomorphic, via the restriction map.

Proof.

- (a) Let $p_1: \tilde{X}_1 \to X$ and $p_2: \tilde{X}_2 \to X$ be covering spaces with \tilde{X}_1 and \tilde{X}_2 connected CW complexes, and assume the cells of \tilde{X}_1 and \tilde{X}_2 project homeomorphically onto cells of X. Let $\tilde{X}_1^1 \to X^1$ and $\tilde{X}_2^1 \to X^1$ be the restrictions to the 1-skeletons.
 - (\Rightarrow) If $\tilde{X}_1 \to X$ and $\tilde{X}_2 \to X$ are isomorphic, there exists a homeomorphism $f: \tilde{X}_1 \to \tilde{X}_2$ such that $p_2 \circ f = p_1$. Restricting f to the 1-skeletons gives a homeomorphism $f|_{\tilde{X}_1^1}: \tilde{X}_1^1 \to \tilde{X}_2^1$ that commutes with the covering maps, so $\tilde{X}_1^1 \to X^1$ and $\tilde{X}_2^1 \to X^1$ are isomorphic.
 - (\Leftarrow) If $\tilde{X}_1^1 \to X^1$ and $\tilde{X}_2^1 \to X^1$ are isomorphic, let $g: \tilde{X}_1^1 \to \tilde{X}_2^1$ be a homeomorphism such that $p_2 \circ g = p_1|_{\tilde{X}_1^1}$. Since \tilde{X}_1 and \tilde{X}_2 are CW complexes and the cells project homeomorphically, g extends uniquely to a homeomorphism $f: \tilde{X}_1 \to \tilde{X}_2$ satisfying $p_2 \circ f = p_1$. Thus, $\tilde{X}_1 \to X$ and $\tilde{X}_2 \to X$ are isomorphic.
- (b) (\Rightarrow) If $\tilde{X} \to X$ is normal, then for any two lifts $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x)$ of a point $x \in X$, there exists a deck transformation $f: \tilde{X} \to \tilde{X}$ such that $f(\tilde{x}_1) = \tilde{x}_2$. Restricting f to \tilde{X}^1 gives a deck transformation of $\tilde{X}^1 \to X^1$, so $\tilde{X}^1 \to X^1$ is normal.
 - (\Leftarrow) If $\tilde{X}^1 \to X^1$ is normal, then for any two lifts $\tilde{x}_1, \tilde{x}_2 \in p^{-1}(x)$ of a point $x \in X^1$, there exists a deck transformation $g: \tilde{X}^1 \to \tilde{X}^1$ such that $g(\tilde{x}_1) = \tilde{x}_2$. Since \tilde{X} is a CW complex and the cells project homeomorphically, g extends uniquely to a deck transformation $f: \tilde{X} \to \tilde{X}$. Thus, $\tilde{X} \to X$ is normal.
- (c) Let $\operatorname{Deck}(\tilde{X} \to X)$ and $\operatorname{Deck}(\tilde{X}^1 \to X^1)$ denote the groups of deck transformations of $\tilde{X} \to X$ and $\tilde{X}^1 \to X^1$, respectively. Define the restriction map:

$$\Phi: \operatorname{Deck}(\tilde{X} \to X) \to \operatorname{Deck}(\tilde{X}^1 \to X^1), \quad f \mapsto f|_{\tilde{X}^1}.$$

Then note that:

- Φ is injective: If $f|_{\tilde{X}^1} = g|_{\tilde{X}^1}$, then f = g because \tilde{X} is a CW complex and f and g agree on the 1-skeleton.
- Φ is surjective: For any deck transformation $g: \tilde{X}^1 \to \tilde{X}^1$, g extends uniquely to a deck transformation $f: \tilde{X} \to \tilde{X}$ because the cells of \tilde{X} project homeomorphically onto cells of X.

Thus, Φ is an isomorphism, and the groups of deck transformations are isomorphic.