Query Processing Notes CSE232 Query Processing · The query processor turns user queries and data modification commands into a query plan - a sequence of operations (or algorithm) on the database - from high level queries to low level commands · Decisions taken by the query processor - Which of the algebraically equivalent forms of a query will lead to the most efficient algorithm? - For each algebraic operator what algorithm should we use to run the operator? - How should the operators pass data from one to the other? (eg, main memory buffers, disk buffers) **Example** Select B,D From R,S Where R.A = "c" \wedge S.E = 2 \wedge R.C=S.C

R	Α	В	C	S	C	D	Е	
	a	1	10		10	Х	2	\triangleright
	b	1	20		20	у	2	
\langle	С	2	10		30	z	2	
	d	2	35		40	x	1	
	e	3	45		50	у	3	
		An	iswer	В	D			
				2	v			

• How do we execute query eventually?

One idea

- Scan relations
- Do Cartesian product
- Select tuples
- Do projection

RxS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	у	2
Bingo! Got one	· ·	2	10	10	X	2
	• /			/		

Relational Algebra - can be enhanced to describe plans...

$$\underline{OR:}\Pi_{B,D}^{\mathsf{FLY}}\big[\,\sigma_{R.A=\text{`c''}\land\,\,S.E=2\,\land\,R.C\,=\,S.C}^{\mathsf{FLY}}\,\big(\,R^{\mathsf{SCAN}}\!X\,\,S^{\mathsf{SCAN}}\!\big)\big]$$

"FLY" and "SCAN" are the defaults

Ex: Plan I

$$\begin{matrix}\Pi_{\text{B,D}}\\ \mid\\ \sigma_{\text{R.A="c"} \land \text{ S.E=2} \land \text{ R.C=S.C}}\\ \mid\\ X\\ S\end{matrix}$$

Another idea:

Plan II $\Pi_{B,D}$ $\sigma_{R,A = "C"}$ $\sigma_{S,E = 2}$ R S

Scan R and S, perform on the fly selections, do hash join, project

Plan III

Use R.A and S.C Indexes

- (1) Use R.A index to select R tuples with R.A = "c"
- (2) For each R.C value found, use S.C index to find matching join tuples
- (3) Eliminate join tuples $S.E \neq 2$
- (4) Project B,D attributes

Algebraic Form of Plan

From Query To Optimal Plan

- Complex process
- · Algebra-based logical and physical plans
- Transformations
- · Evaluation of multiple alternatives

Issues in Query Processing and Optimization

- · Generate Plans
 - employ efficient execution primitives for computing relational algebra operations systematically transform expressions to achieve more efficient combinations of operators
- · Estimate Cost of Generated Plans
 - Statistics
- "Smart" Search of the Space of Possible Plans
 - always do the "good" transformations (relational algebra optimization)
 - prune the space (e.g., System R)
- · Often the above steps are mixed

Example: The Journey of a Query

The Journey of a Query cont'd: Summary of Logical Plan Generator

if cond

refers

only on S

σ_{cond}

- · 4 logical query plans created
- algebraic rewritings were used for producing the candidate logical query plans plans
- the last one is the winner (at least, cannot be a big loser)
- in general, multiple logical plans may "win" eventually

-				
-				

The Journey of a Query Continues at the Physical Plan Generator

Example: Nested SQL query

SELECT title
FROM StarsIn
WHERE starName IN (
 SELECT name
 FROM MovieStar
 WHERE birthdate LIKE '%1960'
);

(Find the movies with stars born in 1960)

Example: Parse Tree

Π title StarsIn condition> IN Π name <tuple> <attribute> Obirthdate LIKE '%1960' starName MovieStar An expression using a two-argument $\boldsymbol{\sigma}\text{, midway}$ between a parse tree and relational algebra Example: Logical Query Plan (Relational Algebra) Π title **O**starName=name Π name StarsIn Obirthdate LIKE '%1960' MovieStar May consider "IN" elimination as a rewriting in the logical plan generator or may consider it a task of the converter Example: Improved Logical Query Plan Π title Question: \bowtie Push project to starName=name StarsIn? Π name StarsIn Obirthdate LIKE '%1960' MovieStar

Example: Generating Relational Algebra

<u>Example:</u> Result sizes are important for selecting physical plans

Example: One Physical Plan

Topics

- Bag Algebra, List Algebra and other extensions
 - name & value conversions, functions, aggregation

9

Algebraic Operators: A Bag	
version	
 Union of R and S: a tuple t is in the result as many times as the sum of the number of times it is in R plus the times it is in S 	
 Intersection of R and S: a tuple t is in the result the minimum of the number of times it is in R and S 	
 Difference of R and S: a tuple t is in the result the number of times it is in R minus the number of times it is in S δ(R) converts the bag R into a set 	
 SQL's R UNION S is really δ(R∪S) Example: Let R={A,B,B} and S={C,A,B,C}. Describe the union, intersection and difference 	
Extended Projection	
 We extend the relational project π_A as follows: The attribute list may include x→y in the list A to indicate 	
 that the attribute x is renamed to y Arithmetic, string operators and scalar functions on attributes are allowed. For example, 	
 a+b→x means that the sum of a and b is renamed into x. c d→y concatenates the result of c and d into a new attribute named y 	
The result is computed by considering each tuple in turn and constructing a new tuple by picking the	
attributes names in A and applying renamings and arithmetic and string operators	
• Example:	
An Alternative Approach to Arithmetic	
and Other 1-1 Computations	
Special purpose operators that for every input tuple they produce one output tuple	
 MULT _{A,B→C}R: for each tuple of R, multiply attribute A with attribute B and put the result in 	
a new attribute named C . - $PLUS_{A,B\to C}R$	
$-CONCAT_{A,B\to C}R$	
 Exercise: Write the above operators using extended projection. Assume the schema 	
of R is $R(A,B,D,E)$.	

Products and Joins

- Product of R and S (R×S):
 - If an attribute named a is found in both schemas then rename one column into R.a and the other into S.a
 - If a tuple *r* is found *n* times in *R* and a tuple s is found *m* times in S then the product contains nm instances of the tuple rs
- Joins
 - Natural Join $R \bowtie S = \pi_A \sigma_C (R \times S)$ where
 - C is a condition that equates all common attributes
 - · A is the concatenated list of attributes of R and S with no duplicates
 - · you may view tha above as a rewriting rule
 - Theta Join
 - · arbitrary condition involving multiple attributes

Grouping and Aggregation

- YGroupByList; aggrFn1 → attr1 .,aggrFnN → attrN
- Conceptually, grouping leads to nested tables and is immediately followed by functions that aggregate the nested table
- Example: $\gamma_{Dept; AVG(Salary) \rightarrow}$ $\mathsf{AvgSal}\,,...,\,\mathsf{SUM}(\mathsf{Salary}) \to \mathsf{SalaryExp}$ Find the average salary for each department SELECT Dept, AVG(Salary) AS AvgSal, SUM(Salary) AS SalaryExp FROM Employee

GROUP-BY Dept

Employee	•	
Name	Dept	Salary
Joe	Toys	45
Nick	PCs	50
Jim	Toys	35
Jack	PCs	40

Dept	Neste Name	d Table Salary	
Toys	Joe Jim	45 35	
PCs	Nick Jack	50 40	

Toys	40	80
PCs	45	90

Grouping and Aggregation: An Alternate approach

- · Operators that combine the GROUP-BY clause with the aggregation operator (AVG,SUM,MIN,MAX,...)
- $\bullet \ \ SUM_{\textit{GroupbyList}; \textit{GroupedAttribute} \rightarrow \textit{ResultAttribute}} R \ corresponds$ to SELECT GroupbyList,

SUM(GroupedAttribute) AS ResultAttribute FROM R GROUP BY GroupbyList

- Similar for AVG,MIN,MAX,COUNT...
- Note that $\delta(R)$ could be seen as a special case of grouping and aggregation
- Example

Sorting and Lists

- · SQL and algebra results are ordered
- Could be non-deterministic or dictated by SQL ORDER BY, algebra τ
- T_{OrderByList}
- A result of an algebraic expression o(exp) is ordered if
 - If o is a т
 - If o retains ordering of exp and exp is ordered
 Unfortunately this depends on implementation of o
 - If o creates ordering
 - Consider that leaf of tree may be SCAN(R)

Relational algebra optimization

- Transformation rules (preserve equivalence)
- · What are good transformations?

Algebraic Rewritings: Commutativity and Associativity

Cartesian Product R S S R R S T R S T

Question 1: Do the above hold for both sets and bags? **Question 2**: Do commutativity and associativity hold for arbitrary Theta Joins?

Algebraic Rewritings: Commutativity and Associativity (2)

Question 1: Do the above hold for both sets and bags? **Question 2**: Is difference commutative and associative?

Algebraic Rewritings for Selection: Decomposition of Logical Connectives

Algebraic Rewritings for Selection: Decomposition of Negation

Pushing the Selection Thru Binary Operators: Union and Difference

Exercise: Do the rule for intersection

Pushing Selection thru Cartesian Product and Join

Rules: π,σ combined

Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)

$$\pi_{x}[\sigma_{P}\left(\mathsf{R}\right)] = \quad \pi_{x}\left\{\sigma_{P}\left[\begin{array}{c}\pi_{xz}\\\pi_{x}(\mathsf{R})\end{array}\right]\right\}$$

Pushing Simple Projections Thru Binary Operators

A projection is simple if it only consists of an attribute list

Question 1: Does the above hold for both bags and sets?

Question 2: Can projection be pushed below intersection and difference?

Answer for both bags and sets.

Pushing Simple Projections Thru Binary Operators: Join and Cartesian Product

Where *B* is the list of *R* attributes that appear in *A*. Similar for *C*.

 $\bigcap_{A \in S} \bigcap_{A \in S} \bigcap_{A$

Question: What is B and C?

Exercise: Write the rewriting rule that pushes projection below theta join.

Projection Decomposition

Some Rewriting Rules Related	
to Aggregation: SUM	
55 5	
 σ_{cond} SUM_{GroupbyList;GroupedAttribute}→ResultAttributeR ⇒ SUM_{GroupbyList;GroupedAttribute}→ResultAttribute σ_{cond} R, 	
if $cond$ involves only the $GroupbyList$ • $SUM_{GL;GA\rightarrow RA}(R\cup S)$	
$\Leftrightarrow PLUS_{RA1,RA2:RA} $ $((SUM_{GL;GA\rightarrow RA11}R) \rhd \lhd (SUM_{GL;GA\rightarrow RA2}S)))$ • $SUM_{GL2:RA1\rightarrow RA2}SUM_{GL1;GA\rightarrow RA1}R \Leftrightarrow$	
$SUM_{GL2:RA1\rightarrow RA2}$ Solvin $GL1:GA\rightarrow RA1$ N \hookrightarrow $SUM_{GL2:GA\rightarrow RA2}R$ - Question: does the above hold for both bags and sets?	
· ·	
<u>Derived Rules:</u> $\sigma + \bowtie$ combined	
More Rules can be Derived:	
$\sigma_{pAq}(R \bowtie S) =$	
$\sigma_{pvq}(R\bowtie S) =$	
p only at R, q only at S, m at both R and S	
> Derivation for first one:	
$\sigma_{pAq}(R \bowtie S) =$	
$\sigma_p[R\bowtie\sigma_q(S)]=$	
$[\sigma_{p}(R)] \bowtie [\sigma_{q}(S)]$	

Which are always "good"	
transformations?	
$\Box \ \ \sigma_{\text{p1Ap2}}\left(R\right) \rightarrow \sigma_{\text{p1}}\left[\sigma_{\text{p2}}\left(R\right)\right]$	
□	
$\ \Box \ \pi_{x}[\sigma_{P}(R)] \to \pi_{x} \big\{ \sigma_{P}[\pi_{xz}(R)] \big\}$	
In textbook: more transformations	
more transfermations	
Eliminate common sub-expressionsOther operations: duplicate elimination	
Bottom line:	
 No transformation is <u>always</u> good at the l.q.p level 	
Usually good:– early selections	
- elimination of cartesian products - elimination of redundant subexpressions	
Many transformations lead to "promising" plans	
- Commuting/rearranging joins - In practice too "combinatorially explosive" to	
be handled as rewriting of l.q.p.	

Algorithms for Relational	
Algebra Operators Three primary techniques	
- Sorting	
– Hashing	
Indexing	
Three degrees of difficulty	
 data small enough to fit in memory 	
 too large to fit in main memory but small enough to be handled by a "two-pass" 	
algorithm	
 so large that "two-pass" methods have to be generalized to "multi-pass" methods (quite unlikely nowadays) 	
uninely nowadays)	
The dominant cost of operators running	
on disk:	
on disk.	
Count # of disk blocks that must be read	
(or written) to execute query plan	
To estimate costs, we use additional	
parameters:	
B(R) = # of blocks containing R tuples	
f(R) = max # of tuples of R per block	
M = # memory blocks available	
Sorting information	
•	
HT(i) = # levels in index I	
Caching information (eg, first levels of index always cached)	
LB(i) = # of leaf blocks in index i	

Clustering index

Index that allows tuples to be read in an order that corresponds to a sort order

Α	
10	
15	
17	
19	
35	
37	

Clustering can radically change cost

- Clustered relation

 R1 R2 R3 R4

 R5 R5 R7 R8

- Clustering index

Pipelining can radically change

cost

- Interleaving of operations across multiple operators
- Smaller memory footprint, fewer object allocations
- · Operators support:
 - open()
 - getNext()
 - close()
- · Simple for unary
- Pipelined operation for binary discussed along with physical operators

par	ent
class project open() { return child.open() }	open() getNext() close()
getNext() { return child.getNext() }	
cr	nild

<u>Example</u>	R1 R2 over common attribu	ite C	
First we will simplements	see main memory-based ations		
Iteration in	<u>sin</u> (conceptually – without		
taking into	account disk block issues) h $r \in R1$ do		
for e	ach $s \in R2$ do r.C = s.C then output r,s pai	r	
11 1	1.0 = 3.0 then output 1,3 par		
(1) if R1 and	(conceptually) R2 not sorted, sort them	•	
	$T(R1)) \ \land \ (j \leq T(R2)) \ do$		
else if I	$C = R2\{j\}.C$ then outputTuple R1 $\{i\}.C > R2\{j\}.C$ then $j \leftarrow j+1$		
eise ii i	R1{ i }.C < R2{ j }.C then i ← i+1		

Procedure Output-Tuples While (R1{ i }.C = R2{ j }.C) \land (i \leq T(R1)) do $[jj \leftarrow j;$ while (R1{ i }.C = R2{ jj }.C) \land (jj \leq T(R2)) do [output pair R1{ i }, R2{ jj }; $jj \leftarrow jj+1$] $i \leftarrow i+1$] Example R1{i}.C R2{j}.C 1 10 5 1 2 20 20 2 3 20 3 20 30 30 4 4 5 5 40 30 50 6 52 7 • Join with index (Conceptually) Assume R2.C index For each $r \in R1$ do [$X \leftarrow index (R2, C, r.C)$ for each $s \in X$ do output r,s pair] Note: $X \leftarrow index(rel, attr, value)$ then X = set of rel tuples with attr = value

 Hash join (conceptual) Hash function h, range 0 → k Buckets for R1: G0, G1, Gk Buckets for R2: H0, H1, Hk 	
Algorithm (1) Hash R1 tuples into G buckets (2) Hash R2 tuples into H buckets (3) For i = 0 to k do match tuples in Gi, Hi buckets	
Simple example hash: even/odd	
R1 R2 Buckets 2	
Factors that affect performance	
(1) Tuples of relation stored physically together?	
(2) Relations sorted by join attribute?	
(3) Indexes exist?	
(5) III. GONGO ONIGE.	

Disk-oriented Computation Model	
 There are M main memory buffers. Each buffer has the size of a disk block 	
The input relation is read one block at a time.	
 The cost is the number of blocks read. If B consecutive blocks are read the cost is 	
B/d.	
 The output buffers are not part of the M buffers mentioned above. 	
 Pipelining allows the output buffers of an operator to be the input of the next one. 	
- We do not count the cost of writing the output.	
Martaga	
Notation	
• <i>B</i> (<i>R</i>) = number of blocks that <i>R</i> occupies	
• $T(R)$ = number of tuples of R	
• $V(R,[a_1, a_2,, a_n]) = \text{number of distinct}$ tuples in the projection of R on $a_1, a_2,,$	
a_n	
One-Pass Main Memory	
Algorithms for Unary Operators Assumption: Enough memory to keep the relation	
 Projection and selection: Scan the input relation R and apply operator one tuple at a 	
time Incremental cost of "on the fly" operators is 0	
Duplicate elimination and aggregation	
- create one entry for each group and compute the aggregated value of the group	
- it becomes hard to assume that CPU cost is negligible • main memory data structures are needed	

One-Pass Nested Loop Join Assume B(R) is less than M Tuples of R should be stored in an efficient lookup structure • Exercise: Find the cost of the algorithm below for each block Br of R do store tuples of Br in main memory for each each block Bs of S do for each tuple s of Bs join tuples of s with matching tuples of R Generalization of Nested-Loops for each chunk of M-1 blocks Br of R do store tuples of Br in main memory for each each block Bs of S do for each tuple s of Bs join tuples of s with matching tuples of R Exercise: Compute cost Simple Sort-Merge Join · Assume natural join on C while Pr!=EOF and Ps!=EOF Sort R on C using the twoif *Pr[C] == *Ps[C] phase multiway merge sort do_cart_prod(Pr,Ps) - if not already sorted else if *Pr[C] > *Ps[C] Ps++ · Sort S on C else if *Ps[C] > *Pr[C] • Merge (opposite side) Pr++ - assume two pointers Pr, Ps to tuples on disk, initially pointing a function do_cart_prod(Pr,Ps) the start val=*Pr[C] while *Pr[C]==val - sets R', S' in memory

store tuple *Pr in set R'

store tuple *Ps in set S';

output cartesian product

while *Ps[C]==val

of R' and S'

· Remarks:

needed)
- Cost:

- Very low average memory

requirement during merging (but

no guarantee on how much is

Efficient Sort-Merge Join

- Idea: Save two disk I/O's per block by combining the second pass of sorting with the ``merge".
- Step 1: Create sorted sublists of size M for R and S
- Step 2: Bring the first block of each sublist to a buffer
 - assume no more than M sublists in all
- Step 3:Repeatedly find the least C value c among the first tuples of each sublist. Identify all tuples with join value c and join them.
 - When a buffer has no more tuple that has not already been considered load another block into this buffer.

Efficient Sort-Merge Join Example

Assume that after first phase of multiway sort we get 4 sublists, 2 for *R* and 2 for *S*.

Also assume that each block contains two tuples.

R										18
	1	2	4	5	6	9	12	15	19	20
_										
S				17						
	2	4	16	5 1	8	19 2	20			

Two-Pass Hash-Based Algorithms

- General Idea: Hash the tuples of the input arguments in such a way that all tuples that must be considered together will have hashed to the same hash value.
 - If there are M buffers pick M-1 as the number of hash buckets
- · Example: Duplicate Elimination
 - Phase 1: Hash each tuple of each input block into one of the M-1 bucket/buffers. When a buffer fills save to disk.
 - Phase 2: For each bucket:
 - · load the bucket in main memory,
 - treat the bucket as a small relation and eliminate duplicates
 - · save the bucket back to disk.
 - Catch: Each bucket has to be less than M.
 - Cost:

,		
,		
,		
,		
,		
,		
,		

Hash-Join Algorithms · Assuming natural join, use a hash function that - is the same for both input arguments R and S - uses only the join attributes • Phase 1: Hash each tuple of R into one of the M-1 buckets R_i and similar each tuple of S into one of S_i • Phase 2: For *i=1...M-1* - load Riand Sin memory - join them and save result to disk Question: What is the maximum size of buckets? · Question: Does hashing maintain sorting? Index-Based Join: The Simplest Version Assume that we do natural join of R(A,B) and S(B,C)and there's an index on S for each Br in R do for each tuple r of Br with B value b use index of S to find tuples $\{s_1, s_2, \ldots, s_n\}$ of S with B=boutput {rs₁,rs₂,...,rs_n} **Cost:** Assuming *R* is clustered and non-sorted and the index on S is clustered on B then B(R)+T(R)B(S)/V(S,B) + some more for reading index **Question:** What is the cost if *R* is sorted? Opportunities in Joins Using Sorted Indexes · Do a conventional Sort-Join avoiding the sorting of one or both of the input operands

Estimating cost of query plan	
(1) Estimating <u>size</u> of results	
(2) Estimating # of IOs	
Estimating result size	
Keep statistics for relation R	
- T(R) : # tuples in R - S(R) : # of bytes in each R tuple	
– B(R): # of blocks to hold all R tuples	
– V(R, A) : # distinct values in R for attribute A	
<u>Example</u>	
R A B C D A: 20 byte string	
cat 1 10 a cat 1 20 b dog 1 30 a B: 4 byte integer C: 8 byte date	
dog 1 40 c D: 5 byte string bat 1 50 d	
T(R) = 5 $S(R) = 37$	
V(R,A) = 3 $V(R,C) = 5V(R,B) = 1$ $V(R,D) = 4$	

Size estimates for $W = R1 \times R2$

$$\mathsf{T}(\mathsf{W}) = \\ \mathsf{T}(\mathsf{R1}) \times \mathsf{T}(\mathsf{R2})$$

$$S(W) = S(R1) + S(R2)$$

$\underline{\text{Size estimate}} \ \text{for W} = \sigma_{\text{Z=val}} \left(R \right)$

$$S(W) = S(R)$$

$$T(W) = ?$$

Example

₹	Α	В	C	D
	cat	1	10	а
	cat	1	20	b
	dog	1	30	а
	dog	1	40	С
	bat	1	50	d

$$W = \sigma_{z=val}(R) \quad T(W) = \frac{T(R)}{V(R,Z)}$$

What about $W = \sigma_{z \ge val}(R)$?	
T(W) = ?	
• Solution # 1:	
T(W) = T(R)/2	
 Solution # 2: T(W) = T(R)/3 	
Solution # 3: Estimate values in range	
Example R z	
$ \begin{array}{ccc} \text{Min=1} & V(R,Z)=10 \\ \downarrow & W= \sigma_{z \ge 15} (R) \\ \text{Max=20} \end{array} $	
f = 20-15+1 = 6 (fraction of range)	
$T(W) = f \times T(R)$	
Equivalently: $f \times V(R,Z) = fraction of distinct values$	
$T(W) = [f \times V(Z,R)] \times \underline{T(R)} = f \times T(R)$	
V(Z,R)	

Let x = attributes of R1y = attributes of R2 Case 1 $X \cap Y = \emptyset$ Same as R1 x R2 Case 2 $W = R1 \bowtie R2 \qquad X \cap Y = A$ R1 | Assumption: $\Pi_{A}\,R1\,\subseteq\Pi_{A}\,R2\,\Rightarrow\,$ Every A value in R1 is in R2 (typically A of R1 is foreign key of the primary key of A of R2) $\Pi_A R2 \subseteq \Pi_A R1 \implies \text{Every A value in R2 is in R1}$ "containment of value sets" (justified by primary key - foreign key relationship) Computing T(W) when A of R1 is the foreign key $\Pi_A R1 \subseteq \Pi_A R2$ R1 | A | B | C R2 A D 1 tuple of R1 matches with exactly 1 tuple of R2 T(W) = T(R1)so

Size estimate for W = R1 ⋈ R2

Another way to approach when

$$\Pi_A\,R1\ \subseteq \Pi_A\,R2$$

1 tuple matches with $\frac{T(R2)}{V(R2,A)}$ tuples...

so
$$T(W) = \frac{T(R2) \times T(R1)}{V(R2, A)}$$

•
$$V(R1,A) \le V(R2,A)$$
 $T(W) = T(R2) T(R1) \over V(R2,A)$

•
$$V(R2,A) \le V(R1,A)$$
 $T(W) = \frac{T(R2) T(R1)}{V(R1,A)}$

[A is common attribute]

In general W = R1 ⋈ R2

$$T(W) = \frac{T(R2) T(R1)}{max\{ V(R1,A), V(R2,A) \}}$$

Combining estimates on subexpressions: Value preservation

Value preservation may have to be pushed to a weird assumption (but there's logic behind it!)

Value preservation of join attribute

If in doubt, think in terms of probabilities and matching records A SID of Student appears in CSEEnroll with probability 1000/20000 i.e., 5% of students are enrolled in CSE • A SID of Student appears in Honors with probability 500/20000 • i.e., 2.5% of students are honors students => An SID of Student appears in the join result with probability 5% x 2.5% • On the average, each SID of CSEEnroll appears in 10,000/1,000 tuples • i.e., each CSE-enrolled student has 10 enrollments • On the average, each SID of Honors appears in 5,000/500 tuples · i.e., each honors' student has 10 honors \Rightarrow Each Student SID that is in both Honors and CSEEnroll is in 10x10 result tuples \Rightarrow T(result) = 20,000 x 5% x 2.5% x 10 x 10 = 2,500 tuples Foreign-to-primary Students(SID, ...) Honors (HID, SID, ...) CSEenroll(EID, SID, ...) T(Students) = 20,000 T(Students) = 5,000T(Students) = 10,000 V(SID, Students) = 20,000 V(SID. Students) = 500 V(SID, Students) = 1,000 $T(CSEenroll(EID, SID, ...) \bowtie Students(SID, ...) \bowtie Honors (HID, SID, ...)) = ?$ Plan Enumeration · A smart exhaustive algorithm - According to textbook's Section 16.6 - no ppt notes · The INGRES heuristic for plan enumeration Arranging the Join Order: the Wong-Youssefi algorithm (INGRES) Sample TPC-H Schema Nation(NationKey, NName) Customer (CustKey, CName, NationKey) Order (OrderKey, CustKey, Status) Find the names of Lineitem (OrderKey, PartKey, Quantity suppliers that Product(SuppKey, PartKey, PName) sell a product Supplier(SuppKey, SName) that appears in a line item of an order SELECT SName made by a FROM Nation, Customer, Order, LineItem, Product, Supplier customer who WHERE Nation.NationKey = Cuctomer.NationKey AND Customer.CustKey = Order.CustKey is in Canada AND Order.OrderKey=LineItem.OrderKey AND LineItem.PartKey= Product.Partkey AND Product.Suppkey = Supplier.SuppKey AND NName = "Canada"

Challenges with Large Natural Join Expressions

For simplicity, assume that in the query

- 1. All joins are natural
- 2. whenever two tables of the FROM clause have common attributes we join on them

Multiple Possible Orders

Wong-Yussefi algorithm assumptions and objectives

- Assumption 1 (weak): Indexes on all join attributes (keys and foreign keys)
- Assumption 2 (strong): At least one selection creates a small relation
 - A join with a small relation results in a small relation
- Objective: Create sequence of indexbased joins such that all intermediate results are small

Hypergraphs

- relation hyperedges
 two hyperedges for same relation are possible
 each node is an attribute
 can extend for non-natural equality joins by merging nodes

Small Relations/Hypergraph Reduction

After a bunch of steps...

Multiple Instances of Each Relation

SELECT S.SName FROM Nation, Customer, Order, LineItem L, Product P, Supplier S, LineItem LE, Product PE, Supplier Enron names of suppliers WHERE Nation.NationKey = Cuctomer.NationKey
AND Customer.CustKey = Order.CustKey
AND Order.OrderKey=L.OrderKey whose products appear in an AND L.PartKey= P.Partkey order made by a customer AND P.Suppkey = S.SuppKey AND Order.OrderKey=LE.OrderKey who is in AND LE.PartKey= PE.Partkey
AND PE.Suppkey = Enron.SuppKey
AND Enron.Sname = "Enron" Cayman
Islands and an Enron product AND NName = "Cayman" appears in the same order

Multiple Instances of Each Relation

Multiple choices are possible

The basic dynamic programming approach to enumerating plans

for each sub-expression

 $op(e_1 e_2 \dots e_n)$ of a logical plan

- (recursively) compute the best plan and cost for each subexpression e_i
- for each physical operator opp implementing op
 - evaluate the cost of computing op using op^p and the best plan for each subexpression e_i
 - (for faster search) memo the best opp

Local suboptimality of basic approach and the Selinger improvement

- Basic dynamic programming may lead to (globally) suboptimal solutions
- Reason: A suboptimal plan for e_1 may lead to the optimal plan for $op(e_1e_2\dots e_n)$
 - Eg, consider $e_1 \triangleright_A e_2$ and
 - $-\,$ assume that the optimal computation of e_{1} produces unsorted result

 - It could have paid off to consider the suboptimal computation of e, that produces result sorted on A
- Selinger improvement: memo also any plan (that computes a subexpression) and produces an order that may be of use to ancestor operators

Using dynamic programming to optimize a join expression

- Goal: Decide the join order and join methods
- Initiate with n-ary join ${}^{\triangleright}_{C}(e_1e_2\dots e_n)$, where c involves only join conditions
- Bottom up: consider 2-way non-trivial joins, then 3-way non-trivial joins etc

 "non trivial" -> no cartesian product