Problem Set 4

Information and Coding Theory

March 14, 2021

CLAYTON SEITZ

Problem 0.1. This is the first problem

Solution.

$$\Delta(C) = \min_{x_1, x_2 \in C} \Delta(x_1, x_2)$$
$$= \min_{x_1, x_2 \in C} \Delta(0, x_2 - x_1)$$
$$= \min_{x \in C} \mathbf{wt}(x)$$

Since the code is linear, $x_2 - x_1 \in C$. Now, we consider the parity check matrix $H \in \mathbb{F}_2^{r \times n}$ where $n = 2^r - 1$. We will find the dimension, block length, and distance for such a code. First, the dimension of the code $\dim(C)$ is r+1 since the rank of H is r. The block length is then 2^{r+1} and the distance is 3. Now, consider the Hamming code $C : \mathbb{F}_2^k \to \mathbb{F}_2^n$ which is formally defined as the set of x in the null space in of the parity check matrix:

$$C = \{x \in \mathbb{F}_2^n | Hx = 0\}$$

where $H \in \mathbb{F}_2^{k \times n}$ is the parity check matrix. We can also define the dual code C^{\perp} to be the code with generator matrix H^T and parity check matrix G^T .

To see why this is possible, we will use the fact that we have defined our code C to be the vectors x that lie in the null space of the parity matrix H. Now, the definition of our code requires that H(x) = H(G(w)) = 0 which means that the generator matrix G is a matrix with columns equal to the basis vectors of the null space of H i.e. HG = 0. This is equivalent to saying that the columns of H^T form the basis of the null space of G^T :

$$HG = 0 \iff G^T H^T = 0$$

Therefore H^T can be viewed as the generator matrix and G^T the parity check matrix for the dual code C^{\perp} .

Problem 0.2. We will now show that we can get good distance codes from linear compression

Solution.

$$\begin{split} \underset{Z \sim (\mathbf{Bern}(p))^n}{\mathbb{P}} \left[\mathbf{Decom}(HZ) \neq Z \right] &= 1 - \underset{Z \sim (\mathbf{Bern}(p))^n}{\mathbb{P}} \left[\mathbf{Decom}(HZ) = Z \right] \\ &= 1 - \underset{w \in \mathbb{F}_q^m}{\sum} \underset{Z \sim (\mathbf{Bern}(p))^n}{\mathbb{P}} \left[\mathbf{Decom}(w) = Z \right] \end{split}$$

where we have used that

$$\underset{Z \sim (\mathbf{Bern}(p))^n}{\mathbb{P}} \left[\mathbf{Decom}(HZ) = Z \right] = \sum_{w \in \mathbb{F}_q^m} \underset{Z \sim (\mathbf{Bern}(p))^n}{\mathbb{P}} \left[\mathbf{Decom}(w) = Z \right]$$

This last equality follows from that if we are considering any particular compressed w then the probability another draw $Z \sim (\mathbf{Bern}(p))^n$ will be the same as $\mathbf{Decom}(w)$ is q^{-M} only in the case that the compression algorithm is a bijection. In other words, if multiple Z map to the same w after compression, the probability of error will be nonzero.

$$\sum_{w \in \mathbb{F}_q^m} \mathbb{P}_{Z \sim (\mathbf{Bern}(p))^n} \left[\mathbf{Decom}(w) = Z \right] \geq \sum_{w \in \mathbb{F}_q^m} \mathbb{P}_{Z \sim (\mathbf{Bern}(p))^n} \left[\underset{Z: HZ = w}{\mathbf{argmin}} \left\{ \mathbf{wt}(Z) \right\} = Z \right]$$

Problem 0.3. Mixing polynomials

Solution.

We are given two sequences of values (b_1, \ldots, b_n) and (c_1, \ldots, c_n) which are the result of evaluating polynomials f_1 and f_2 at points a_i , respectively. Notice that for any particular a_i we have that the sum $f_1(a_i) + f_2(a_i) = b_i + c_i$ and the product $f_1(a_i) \cdot f_2(a_i) = b_i \cdot c_i$ which of course do not change upon swapping b_i and c_i . If y is the sequence of values received, then we can write a bivariate polynomial

$$h(x,y) = y^2 - y(f_1(x) + f_2(x)) + f_1(x) \cdot f_2(x)$$

= $(y - f_1(x))(y - f_2(x))$

If we can perform such a factorization of h(x, y) then we can descramble $f_1(x)$ and $f_2(x)$.

In the second case, we are given a value β_i at each point in the domain a_i but we don't know whether β_i came from $f_1(x)$ or $f_2(x)$. However, we are given the guarantee that the number of points coming from $f_1(x)$ satisfies $\frac{n}{3} \leq n_1 \leq \frac{2n}{3}$ and the points coming from $f_2(x)$ satisfies $\frac{n}{3} \leq n_2 \leq \frac{2n}{3}$ where $n = n_1 + n_2$.

We can recast this problem by thinking of the points that came from one polynomial, say $f_1(x)$, as "errors" and define an error polynomial e that is zero when $y \neq f_1(x)$. Then, we can use the Reed-Solomon decoding scheme to solve for $f_2(x)$. Once we have $f_2(x)$, finding $f_1(x)$ is straightforward: use Lagrange interpolation again on the difference between $f_2(x)$ and y.

Recall that Lagrange interpolation requires that $k \leq n - t$ where n is the total number of points, t the number of errors, and k is the degree of the polynomial to interpolate. We can still apply Lagrange interpolation here since $k \leq \frac{n}{3}$ because $t = \frac{2n}{3}$ is the maximum number of "errors" which must be true since we have already been told $k < \frac{n}{6}$.