
Uncovering the Built Environment & Demographic Drivers of Shared Micromobility Usage in Denver

Fatemeh Ahmadipour^a, Dr. Aditi Misra^a, Dr. Wesley Marshall^a, Dr. Manish Shirgaokar^b

- a. Department of Civil Engineering, University of Colorado Denver
- b. Department of Urban and Regional Planning, College of Architecture and Planning, University of Colorado Denver

Agenda

Introduction

- Background
- Research Gap & Contribution

Methodology

- Study Area
- Explanatory

Variables

Model Specification

Results

- Estimation Findings
- Key Takeaways

Summary

- Summary
- Limitation and
 Future Research

Background

Ridership recovery & growth

- Shared micromobility rebounds
 Strongly After COVID-19
- In 2023: 157 million trips
 nationwide (+20% compared to 2022)

Rising safety risks

- Micromobility injuries ↑ 21% in
 2022 vs. 2021
- E-scooter injuries ↑ 22% in 2022
- ERs seeing increasing e-scooter
 cases

Background

Managing micromobility growth through trip mapping

- Identify high-use corridors
- Highlight underserved neighborhoods
- Detect crash-prone areas
- Guide infrastructure investments

Research Gap & Contribution

- **1. Comparative approach:** one of the first comparative studies of e-bike & e-scooter usage at the CBG level in Denver
- **2. Methodological contribution**: Applies Truncated Negative Binomial (TNB) model to micromobility research
- **3. Policy relevance**: Provides an interpretable alternative to black-box ML and complex spatial regressions, while still capturing spatial patterns (CBD proximity, land-use diversity)

Method - Study Area

Why Denver?

- High micromobility usage & national leader in adoption
- Strong infrastructure investments & policy support
- Reliable, publicly available trip data

Distribution of Shared E-bike and E-scooter Volumes at CBG Level in Denver

E-bike Trip Volume per CBG in Denver, October 2018 to March 2025 (Data Source: Ride Report)

E-scooter Trip Volume per CBG in Denver, October 2018 to March 2025 (Data Source: Ride Report)

Explanatory Variables

Socio-economic and Demographic (SED):

- % Male
- % Aged 18–34
- %White
- Median household income
- %Households with 2+ cars
- % with bachelor's or higher

Land use and built environment (LU&BE):

- Population density
- Job per household
- Employment and household entropy
- Employment entropy
- Regional diversity
- Multi modal intersection density
- Aggregate frequency of transit service
- Number of bus stations in each CBG

Proximity Indicators (PI):

- Distance from CBG center to the nearest LRT station
- Distance from CBG center to CBD

Model Specification

Truncated negative binomial model

$$\mathbf{P}(\mathbf{Y} = \mathbf{y}) = \frac{\Gamma(\mathbf{y} + 1/\alpha)}{\Gamma(1/\alpha)\mathbf{y}!} \left(\frac{1}{1 + \alpha\mu}\right)^{1/\alpha} \left(\frac{\alpha\mu}{1 + \alpha\mu}\right)^{\mathbf{y}}, \qquad \mathbf{y} = 0, 1, 2, \dots$$

$$P^*(Y = y|Y > 0) = \frac{P(Y = y)}{1 - P(Y = y)}, y = 1, 2, 3, ...$$

$$\mathbf{P}(\mathbf{Y}=0) = \left(\frac{1}{1+\alpha\mu}\right)^{1/\alpha}$$

$$\mathbf{P}^*(\mathbf{Y} = \mathbf{y}) = \frac{\frac{\Gamma(\mathbf{y} + 1/\alpha)}{\Gamma(1/\alpha)\mathbf{y}!} \left(\frac{1}{1 + \alpha\mu}\right)^{1/\alpha} \left(\frac{\alpha\mu}{1 + \alpha\mu}\right)^{\mathbf{y}}}{1 - \left(\frac{1}{1 + \alpha\mu}\right)^{1/\alpha}}, \qquad \mathbf{y} = 1, 2, 3, \dots$$

Estimation Findings

_	E-bike				E-scooter		
Variables	Estimat e	Std. Error	P-Value	Estimate	Std. Error	P-Value	
(Intercept)	10.93	0.04	0.00	13.00	0.03	0.00	
% aged 18–34	0.08	0.05	0.07	0.13	0.04	0.00	
% Female	-0.06	0.04	0.10	-0.03	0.03	0.3	
%Households with 2+ cars	-0.13	0.04	0.00	-0.14	0.04	0.00	
Jobs per household	0.10	0.04	0.02	0.10	0.04	0.01	
Employment and Household entropy	0.14	0.05	0.01	-	-	-	
Employment entropy	-	-	-	0.09	0.03	0.01	
Regional Diversity	0.10	0.05	0.06	0.19	0.03	0.00	
Intersection density in terms of multi-modal intersections	0.06	0.04	0.11	0.07	0.03	0.04	
Number of bus stations	0.24	0.05	0.00	0.21	0.04	0.00	
Aggregate frequency of transit service within 0.25	-	-	-	0.13	0.04	0.00	
Distance to the nearest LRT	-0.34	0.06	0.00	-0.30	0.04	0.00	
Distance to CBD	-1.12	0.04	0.00	- 1.2 7	0.04	0.00	
LL(B)	-5822.2				- 6962.3		
AIC	11668.4				13950.6		
BIC	11718.7				14005.4		
pseudo_ rho sq	0.065				0.074		
Number of Observations		490			502		

Socio-Economic & Demographic (SED)

- Young adults (18–34):
 - +8% e-bike trips (marginal)
 - +14% e-scooter trips (strong, significant)
- Multi-car households (2+ vehicles):
 - -12% e-bike trips (significant)
 - –13% e-scooter trips (significant)
- Female residents (%):
 - Slight negative effect (not significant)

Proximity Indicators

Distance to CBD

- e-bikes: -67% trips (coef. -1.12, p < 0.001)
- e-scooters: -72% trips (coef. -1.27, p <
 0.001)

Closer to CBD → much higher usage

Distance to Light Rail

- e-bikes: -29% trips (coef. -0.34, p < 0.001)
- e-scooters: -26% trips (coef. -0.30, p <0.001)

Closer to transit → higher usage

Land Use & Built Environment:

Jobs-per-household

- E-bike: coef. = 0.10 (p = 0.02), +10% trips
- E-scooter: coef. = 0.10 (p = 0.01), +10% trips

Regional diversity

- E-bike: coef. = 0.10 (p = 0.06), +10% trips (marginal)
- E-scooter: coef. = 0.19 (p < 0.001), +20%trips

Employment and household entropy index

• E-bike: coef. = 0.14 (p = 0.01), +15% trips

Employment entropy index

• E-scooter: coef. = 0.09 (p = 0.01), +9% trips

Multi-modal intersections

E-scooter: coef. = 0.07 (p = 0.04), +7% trips

Bus stops

- E-bike: coef. = 0.24 (p < 0.001), +27% trips
- E-scooter: coef. = 0.21 (p < 0.001), +23% trips

Transit service frequency

E-scooter: coef. = 0.13 (p < 0.001), +14% trips

Summary

Younger populations drive demand

- Young adults are early adopters of micromobility
- E-scooters especially popular with 18–34
 due to affordability & app-based access

Car ownership suppresses micromobility

- Multi-car households show reduced ebike & e-scooter use
- Reinforces car-dependence as a barrier to shared mobility adoption

Centrality matters most

• Strongest predictor: proximity to CBD

Micromobility complements transit

- Higher usage near light rail, bus stops, and frequent service areas
- Supports role of e-bikes and e-scooters as first-/last-mile solutions
- Built environment shapes usage differently

Limitations & Future Research

Data Limitation

 No origin-destination data → limits ability to estimate true demand at the CBG level

Future Research Directions

- Incorporate OD data to better inform planning
- Examine individual user preferences for routes & infrastructure
- Use link-level infrastructure data (e.g., bike lanes) to design stronger
 safety interventions

Thank you

Any Question?

Fatemeh Ahmadipour

Ph.D. Student
Department of Civil Engineering
University of Colorado Denver

E-mail: fatemeh.ahmadipour@ucdenver.edu