САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра теоретических основ электротехники

Лабораторная работа 5 "Метод Ньютона"

Студент гр. 0307 _______Латин Я.М. Преподаватель ______Солнышкин С.Н.

Санкт-Петербург 2022

Содержание

1	Зада	иние	2
	1.1	Численно решить методом Ньютона уравнение	2
	1.2	Численно решить методом Ньютона систему уравнений	2
2	Реш	ение уравнения	2
3	Реш	ение системы	4
4	Лист	гинг функций и сценариев	7
	4.1	f.m	7
	4.2	$\mathrm{df.m} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	4.3	wg1.m	7
	4.4	w1.m	7
	4.5	f1.m	8
	4.6	f2.m	8
	4.7	ff.m	8
	4.8	$\mathrm{dff.m} \ \ldots \ $	8
	4.9	wg2.m	9
	4 10	w_{2} m	9

1 Задание

1.1 Численно решить методом Ньютона уравнение

$$7.8x^2 - 3.1x - 2.4 = 2.1\sin(4.7x - 3.2)$$

1.2 Численно решить методом Ньютона систему уравнений

$$\begin{cases} 4e^{-0.8y} - 3x = 9e^{0.7x} - 2y - 5\\ 6x^4 + 7y^6 = 881 - 229x - 775y \end{cases}$$

2 Решение уравнения

Уравнение в стандартной форме:

$$f(x) = 0$$
, где $f(x) = 4e^{-0.8y} - 3x - 9e^{0.7x} + 2y + 5$

Производная:

$$f'(x) = -\frac{987\cos\left(\frac{47x}{10} - \frac{16}{5}\right) - 1560x + 310}{100}$$

Полученные значения уравнений:

$$x_1 = -0.51641140973316$$

$$x_2 = 0.9817349514171161$$

Таблица 1. Первый корень.

k	x_k	$f(x_k)$
0	-0.5	-0.3054037002801488
1	-0.5167492544118317	0.006413807394519244
2	-0.5164115415239419	2.501003745436492e-06
3	-0.5164114097331801	3.810285420513537e-13
4	-0.51641140973316	0
5	-0.51641140973316	0

Таблица 2. Второй корень.

k	x_k	$f(x_k)$
0	1	0.2052605281314848
1	0.9826077281554022	0.009340570687955463
2	0.9817371325150148	2.32840705227666e-05
3	0.9817349514308014	1.460960241672637e-10
4	0.981734951417116	-1.332267629550188e-15
5	0.9817349514171161	4.440892098500626e-16
6	0.9817349514171161	4.440892098500626e-16

x_1 =-0.51641140973316, x_2 =0.981734951417116

Рисунок 1. График уравнения

3 Решение системы

$$\begin{cases} f_1(x,y) = 0 \\ f_2(x,y) = 0 \end{cases} \Leftrightarrow \vec{f}(\vec{r}) = \vec{0}, \ \vec{r}^* = \lim_{k \to \infty} \vec{r}_k, \ \vec{r}_{k+1} = \vec{r}_k - (\vec{f}'(\vec{r}_k))^{-1} \vec{f}(\vec{r}_k), \end{cases}$$

$$\vec{f}(\vec{r}) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} 4\exp(-0.8y) - 3x - 9\exp(0.7x) + 2y + 5 \\ 6x^4 + 7y^6 - 881 + 229x + 775y \end{pmatrix}$$

$$\vec{f}(\vec{r}) = \begin{pmatrix} (f_1(x,y))'_x & (f_1(x,y))'_y \\ (f_2(x,y))'_x & (f_2(x,y))'_y \end{pmatrix} =$$

$$= \begin{pmatrix} \left(-\frac{63\exp\left(\frac{7x}{10}\right)}{10} - 3 \right) & \left(\frac{16\exp\left(\frac{-4y}{5}\right)}{5} \right) \\ (624x^3 + 229) & (42y^5 + 775) \end{pmatrix}$$

Полученные значения уравнений:

 $\vec{r}_1^* = (-0.01352039310251973, 1.122683354922814)$

 $\vec{r}_2^* = (1.648549264084652, -2.668437851904707)$

Таблица 3. Первая пара корней.

k	x_k	y_k	$f_1(x_k, y_k)$	$f_2(x_k, y_k)$
0	0	1.1	-0.1408683532736745	-16.09907299999986
1	-0.013499810094	1.12277425374	-0.0001268803060	0.081970636395226
2	-0.013520393341	1.122683356609	3.3821372369402e-09	1.378521346850e-06
3	-0.013520393102	1.122683354922	-1.7763568394e-15	-1.136868377216e-13
4	-0.013520393102	1.122683354922	1.7763568394e-15	1.136868377216e-13

Таблица 3. Вторая пара корней.

k	x_k	y_k	$f_1(x_k,y_k)$	$f_2(x_k, y_k)$
0	1.6	-2.8	4.589637320134111	727.953727999999
1	1.66002753417	-2.684153121745	0.13179360310917	82.32259370818
2	1.64874971524	-2.668690117782	0.00171555298062	1.30577927845479
3	1.64854931841	-2.668437917997	4.07641311817030e-07	0.0003426307775953
4	1.64854926408	-2.668437851904	3.55271367880050e-14	2.41016095969e-11
5	1.64854926408	-2.668437851904	-1.1546319456101e-14	-1.364242052659e-12
6	1.64854926408	-2.668437851904	1.77635683940025e-15	9.094947017729e-13
7	1.64854926408	-2.668437851904	8.88178419700125e-15	4.547473508864e-13

Рисунок 2. График системы

4 Листинг функций и сценариев

```
f.m
  4.1
1 function y = f(x)
y = 7.8*x^2-3.1*x-2.4-2.1*\sin(4.7*x-3.2);
       df.m
  4.2
1 function y = df(x)
     y = -(987*\cos((47*x)/10-16/5)-1560*x+310)/100;
  4.3 wg1.m
1 a = -0.65; b = 1.1;
2 t=a:(b-a)/1000:b;
3 plot(t, f(t), 'b'), grid on
  4.4 w1.m
1 format long g
a = -0.65; b = 1.1;
3 x10 = -0.5; x20 = 1;
4 \text{ n}1=5; \quad \text{n}2=6;
5 x=x10; xx=x; yy=f(x); kk=0;
6 for k=1:n1
7 = x - f(x) / df(x);
    xx=[xx;x]; yy=[yy;f(x)]; kk=[kk;k];
9 end
10 res11 = [kk, xx, yy]
11 \ x1=x;
12 x=x20; xx=x; yy=f(x); kk=0;
13 for k=1:n2
```

```
x=x-f(x)/df(x);
14
     xx = [xx; x]; yy = [yy; f(x)]; kk = [kk; k];
15
16 end
17 \operatorname{res} 12 = [kk, xx, yy]
18 x2=x;
19 x1, x2
20 t=a:(b-a)/1000:b;
21 plot(t, f(t), 'b', x1, 0, 'ro', x2, 0, 'ro'), grid on
22 title (sprintf ('x 1=\%1.15g, x 2=\%1.15g', x1, x2))
  4.5
       f1.m
1 function z = f1(x,y)
     z = 4*exp(-0.8*y)-3*x-9*exp(0.7*x)+2*y+5;
       f2.m
  4.6
1 function z = f2(x,y)
     z = 6*x.^4+7*y.^6-881+229*x+775*y;
2
       ff.m
  4.7
1 function z = ff(x,y)
     z = zeros(2,1); z(1)=f1(x,y); z(2)=f2(x,y);
2
       dff.m
  4.8
1 function z=dff(x,y)
     z=zeros(2,2);
2
     z(1,1) = -(63*exp((7*x)/10))/10-3;
3
     z(1,2)=2-(16*exp(-(4*y)/5))/5;
4
     z(2,1)=24*x^3+229;
5
     z(2,2)=42*y^5+775;
6
```

wg2.m 1 ax = -5, bx = 4, ay = -4, by = 2;2 x=ax: (bx-ax)/1000:bx; y=ay:(by-ay)/1000:by; $3 \left[xx, yy \right] = meshgrid(x, y);$ 4 z=f1(xx,yy); $5 \quad contour(x,y,z,[0,0],'b'), \quad grid \quad on$ 6 z=f2(xx,yy);7 hold on $8 \operatorname{contour}(x, y, z, [0, 0], 'g'), \operatorname{grid} \operatorname{on}$ 9 hold off 4.10 w2.m1 format long g 2 ax = -5; bx = 5; ay = -4; by = 4; $3 \times 10 = 0; y10 = 1.1; n1 = 4;$ 4 x20=1.6; y20=-2.8; n2=7; 5 = x10; y=y10;6 xx=x; yy=y;7 z1=f1(x,y); z2=f2(x,y); kk=0;8 for k=1:n19 $r = [x; y]; r = r - dff(x, y) \setminus ff(x, y);$ 10 x=r(1); y=r(2); 11 xx = [xx; x]; yy = [yy; y]; kk = [kk; k];12 z1 = [z1; f1(x,y)]; z2 = [z2; f2(x,y)];13 end 14 res21 = [kk, xx, yy, z1, z2]15 x=x20; y=y20; 16 xx=x; yy=y;

17 z1=f1(x,y); z2=f2(x,y); kk=0;

4.9

```
18 for k=1:n2
19 r = [x; y]; r = r - dff(x, y) \setminus ff(x, y);
20 \text{ x=r (1)}; \text{ y=r (2)};
21 xx = [xx; x]; yy = [yy; y]; kk = [kk; k];
22 z1 = [z1; f1(x,y)]; z2 = [z2; f2(x,y)];
23 end
24 \text{ res} 22 = [kk, xx, yy, z1, z2]
   [n,m] = size(res21);
25
26 \text{ x} 21 = \text{res} 21 (n, 2), \text{ y} 21 = \text{res} 21 (n, 3)
   [n,m] = size (res22);
27
28 \times 22 = res22(n,2), y22 = res22(n,3)
29 ax=-5; bx=5; ay=-4; by=4;
30 x=ax:(bx-ax)/1000:bx; y=ay:(by-ay)/1000:by;
   [xx, yy] = meshgrid(x, y);
32 z=f1(xx,yy);
33 \operatorname{contour}(x, y, z, [0, 0], b), grid on
34 z=f2(xx,yy);
   hold on
35
36 \operatorname{contour}(x, y, z, [0, 0], 'g'), \operatorname{grid} \operatorname{on}
   plot (x21, y21, 'ro', x22, y22, 'ro')
37
38 title (sprintf ('x 1=\%1.15g, y 1=\%1.15g, x 2=\%1.15g, y 2=\%1.15g
      ', x21, y21, x22, y22))
39 hold off
```