Информация о создании сетки.

1 вариант

Я ищу наиболее эффективный способ построить сетку с помощью matplotlib, учитывая следующую информацию, координаты каждого узла, какие узлы принадлежат каждому элементу и значение, которое имеет каждый узел. Ниже у меня есть несколько примеров данных и изображение, показывающее, как выглядит сетка.

Ответ

Сначала используйте matplotlib.tri.Triangulation(x, y, triangles), чтобы создать неструктурированную треугольную сетку, где:

- х это одномерный список, содержащий координату х каждого узла;
- у это одномерный список, содержащий координату у каждого узла;
- triangles это «2D-список», содержащий узлы каждого треугольника (0 на основе индекса); Во-вторых, используйте matplotlib.pyplot.triplot(triangulation, linespec), чтобы построить только сетку (только линии), где:
- triangulation это экземпляр, созданный matplotlib.tri.Triangulation(x, y, triangles);
- linespec спецификация линии;
 - B-третьих, используйте matplotlib.pyplot.tricontourf(triangulation, scalars) для построения контуров скалярного поля, где:
- triangulation это экземпляр, созданный matplotlib.tri.Triangulation(x, y, triangles);
- scalars одномерный список, содержащий узловые скалярные данные; Наконец, используйте matplotlib.pyplot.colorbar() и matplotlib.pyplot.show(). Полный код:

```
import matplotlib.pyplot as plt
import matplotlib.tri as tri
nodes x = [0.000, 1.000, 2.000, 0.000, 1.000, 1.750, 1.000]
nodes y = [0.000, 0.000, 0.500, 1.000, 1.000, 1.300, 1.700]
scalars = [1.000, 2.000, 1.000, 2.000, 7.000, 4.000, 5.000]
elements = [
     [0, 1, 4],
     [4, 3, 0],
     [1, 2, 5],
     [5, 4, 1],
     [3, 4, 6],
     [4, 5, 6]
triangulation = tri.Triangulation(nodes_x, nodes_y, elements)
plt.triplot(triangulation, '-k')
plt.tricontourf(triangulation, scalars)
plt.colorbar()
plt.show()
```

Выход:

Если вы хотите визуализировать другие типы 2D-элементов (четырехугольники или элементы более высокого порядка), вы должны сначала «разбить» их на треугольники. Однако, если вы хотите визуализировать 3D-элементы или если вы хотите упростить себе жизнь и сделать код более эффективным / быстрым для больших сеток, вы должны отказаться от matplotlib и использовать что-то вроде VTK.

Напряженность магнитного поля в объеме V≡Ω по закону Био-Савара-Лапласа можно определить:

$$H(q) = \frac{1}{4\pi} \int_{\Omega} \frac{j(r) \cdot (q-r)}{|q-r|^3} d\Omega = \frac{1}{4\pi} \int_{V} \frac{j(r) \cdot (q-r)}{|q-r|^3} dV.$$

Где q и r – радиус-вектора точек наблюдения и источников;

 Ω - исследуемая область, содержащая источники тока.

В декартовой системе координат:

$$H(x_i, y_i, z_i) = \frac{1}{4\pi} \int_V \frac{j((z_0 - z) \cdot (y_0 - y))}{[(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2]^{\frac{3}{2}}} dV$$
 (2)

Посредством дифференцирования выражения (2) могут быть получены слагаемые напряженности магнитного поля по осям x, y и z:

$$H_{x}(x_{i}, y_{i}, z_{i}) = \frac{1}{4\pi} \sum_{k=1, k \neq i}^{N} \frac{j_{k}((z_{i} - z_{k}) \cdot (y_{i} - y_{k}))}{[(x_{i} - x_{k})^{2} + (y_{i} - y_{k})^{2} + (z_{i} - z_{k})^{2}]^{\frac{3}{2}}} \Delta V_{k}$$

$$H_{y}(x_{i}, y_{i}, z_{i}) = \frac{1}{4\pi} \sum_{k=1, k \neq i}^{N} \frac{j_{k}((x_{i} - x_{k}) \cdot (z_{i} - z_{k}))}{[(x_{i} - x_{k})^{2} + (y_{i} - y_{k})^{2} + (z_{i} - z_{k})^{2}]^{\frac{3}{2}}} \Delta V_{k}$$

$$H_{z}(x_{i}, y_{i}, z_{i}) = \frac{1}{4\pi} \sum_{k=1, k \neq i}^{N} \frac{j_{k}((y_{i} - y_{k}) \cdot (x_{i} - x_{k}))}{[(x_{i} - x_{k})^{2} + (y_{i} - y_{k})^{2} + (z_{i} - z_{k})^{2}]^{\frac{3}{2}}} \Delta V_{k}$$

где і — индекс точки центра ячейки расчетной сетки, ΔV_k -объем расчетной ячейки, N — количество ячеек.

Объем $V \equiv \Omega$ разбивается на N элементарных объемов Vj. B центре каждого выбирается точка наблюдения qj

Jk – вектор плотности тока в каждой ячейке.

Модуль вектора ј в каждой ячейке равен:

$$j = p \frac{i}{s}$$

S – площадь поперечного сечения проводника;

і – величина тока. протекающая по проводнику.

р-масштаб

Подробный пример расчета приведен в приложенном файле 1.

Напряженность магнитного поля

Определить напряженность магнитного поля в центре треугольного витка можно по:

$$H = \frac{9i}{2\pi a}$$

Напряженность магнитного поля от одной стороны треугольника:

$$H = \frac{3i}{2\pi a}$$

і – ток, А, а-длина стороны треугольника, м.

Напряженность электрического поля

Рассмотрим систему независимых базисных функций φ_n (функций формы КЭ), где $n \in 1...N$ (N–число узлов сетки). Каждая функция φ_n соответствует своему узлу сетки. В этом узле ее значение равно единице, а в остальных узлах треугольников, имеющих данную точку своей вершиной или лежащей на общей стороне треугольников в случае элементов второго порядка, – нулю. Вне этих элементов φ_n тождественно равна нулю. Искомое решение представляем в виде линейной комбинации базисных функций:

$$\varphi(\mathbf{x}, \mathbf{y}) = \sum_{n=1}^{N} a_n \varphi_n(\mathbf{x}, \mathbf{y}), \tag{12}$$

где a_n – неизвестные коэффициенты (значение потенциала в точке n).

Для вычисления функций формы элементов удобна так называемая естественная система координат [9-13], определяемая тремя относительными координатами L_1, L_2 и L_3 , изображенными на рис. 4,а. Каждая координата для данного треугольного элемента представляет собой отношение расстояния от выбранной точки до одной из сторон у треугольника к высоте h, опущенной на эту сторону из противолежащей развития (рус. 4,6). Величина L_1 изменяется в пределах от нуля до единицы ($0 \le L_1 \le 1$) как и L_2 , L_3 . На рис. 4,8 показаны

линии, вдоль которых координата L_1 постоянна. Каждая из линий параллельна стороне, от которой измерена L_1 .

Описанные координаты называются L-координатами. Эти три величины не являются независимыми и связаны соотношением $L_1 + L_2 + L_3 = 1$.

С помощью приведенной естественной системы координат легко получить, например, функции формы для квадратичного треугольного элемента:

$$\varphi_1 = L_1(2L_1 - 1);$$

$$\varphi_2 = L_2(2L_2 - 1);$$

$$\varphi_3 = L_3(2L_3 - 1);$$

$$\varphi_4 = 4L_1L_2$$
;

$$\varphi_5 = 4L_2L_3$$
;

$$\varphi_6 = 4L_1L_1$$
.

Рис. 3. Треугольный конечный элемент первого порядка

Рис. 4. Треугольный конечный элемент второго порядка

В зависимости от выбранного пользователем порядка конечных элементов дальнейшие вычисления в программе различны. При использовании метода первого порядка вектор напряженности электрического поля Е постоянен для каждого треугольника. Если же используются конечные элементы второго порядка, то вектор напряженности электрического поля изменяется линейным образом внутри каждого элемента. Из (6) и (12) следует представление для вектора напряженности электрического поля в элементарной ячейке:

$$\vec{E} = \sum_{n=1}^{N} a_n \operatorname{grad} \varphi_n$$
.

a

5.2. Алгоритм построения силовой линии поля

Построим силовые линии векторного электростатического поля основываясь на определении силовой линии, как линии, касательная в каждой точке которой совпадает с направлением вектора напряженности поля E, т.е.

$$\frac{dx}{dr} = \frac{E_x}{E}, \frac{dy}{dr} = \frac{E_y}{E}, \frac{dz}{dr} = \frac{E_z}{E}, \tag{204}$$

где $dr=\sqrt{dx^2+dy^2+dz^2}$ и $E=\sqrt{E_x^2+E_y^2+E_z^2}$. Если силовая линия лежит в плоскости, то

$$\frac{dx}{dr} = \frac{E_x}{E}, \ \frac{dy}{dr} = \frac{E_y}{E},\tag{205}$$

где
$$dr = \sqrt{dx^2 + dy^2}$$
 и $E = \sqrt{E_x^2 + E_y^2}$.

Алгоритм

- Задание распределения точечных зарядов.
- 1.1. Электрические заряды $q_n, n = 1, 2, ..., N_q$.
- 1.2. Координаты зарядов X_n, Y_n, Z_n , где $n = 1, 2, ..., N_q$.
- 2. Задается Δr фиксированной длины шага.
- 3. Задается начальная точка x_0, y_0, z_0 силовой линии.
- Задается условие окончания счета.
- 4.1. Предельное число шагов N.
- Условие A() окончания счета.

- Инициализация.
- 5.1. Инициализация счетчика цикла i = 0.
- 5.2. Инициализация элементов массива: $x = x_0, y = y_0, z = z_0$.
- 5.3. Запись начальных значений элементов x, y, z в массив $\{x, y, z\}$.
- 6. while $i \le N$

6.1.1.
$$E_x(x, y, z) = \sum_{n=1}^{N_q} E_x(x - X_n, y - Y_n, z - Z_n)$$
.

6.1.2.
$$E_y(x, y, z) = \sum_{n=1}^{N_q} E_y(x - X_n, y - Y_n, z - Z_n)$$
.

6.1.
$$E_x(x, y, z), E_y(x, y, z), E_z(x, y, z).$$

6.1.1. $E_x(x, y, z) = \sum_{n=1}^{N_q} E_x(x - X_n, y - Y_n, z - Z_n).$
6.1.2. $E_y(x, y, z) = \sum_{n=1}^{N_q} E_y(x - X_n, y - Y_n, z - Z_n).$
6.1.3. $E_z(x, y, z) = \sum_{n=1}^{N_q} E_z(x - X_n, y - Y_n, z - Z_n).$
6.1.4. $E(x, y, z) = \sqrt{E_x^2 + E_y^2 + E_z^2}.$

6.1.4.
$$E(x, y, z) = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

6.2.
$$\Delta x = \Delta r E_x / E$$
, $\Delta y = \Delta r E_y / E$, $\Delta z = \Delta r E_z / E$.

6.3.
$$x = x + \Delta x, y = y + \Delta y, z = z + \Delta z$$
.

- 6.4. Запись текущих значений элементов x, y, z в массив $\{x, y, z\}$.
- 6.5. if A(x,y,z)=="true" then goto 7
- 6.6. i = i + 1
- 6.7. end {while}
- 7. Процедура построения графика $\{x_n, y_n, z_n\}_{n=1}^N$.

Комментарии. $E_x \equiv E_x(x,y,z), E_y \equiv E_y(x,y,z), E_z \equiv E_z(x,y,z),$ $E \equiv E(x, y, z)$. Данный алгоритм можно с небольшими изменениями использовать для построенияя силовых линий произвольных векторных полей.

Пример построения изолиний

Пример 1.6. Имеется два тонких проволочных кольца радиусом R каждое, оси которых совпадают (рис. 10). Заряды колец равны q и -q. Найти разность потенциалов между центрами колец, отстоящих друг на расстоянии h=0.52 см, если R=0.30 см и q = 0.40 мкКл.

Решение

Рис. 10. К примеру 1.6

Пусть центры колец лежат на оси z, а начало координат поместим в центр нижнего кольца. Потенциал $\varphi_n(r_n)$ n-го кольца в точке А равен

$$\varphi_n(\mathbf{r}_n) = \int \frac{k_0 dq_n}{|\mathbf{r}_n - \mathbf{R}_n|} =$$

$$= \int_0^{2\pi} \frac{k_0 \lambda_n R_n d\alpha}{\sqrt{(x_n - X_n)^2 + (y_n - Y_n)^2 + (z_n - Z_n)^2}},$$
(37)

где $n=1,2,~X_n=R_n\cos\alpha,~Y_n=R_n\sin\alpha,~Z_1=0$ или $Z_2=h,~\lambda_n$ — линейная плотность заряда. Для произвольной точки наблюдения А интеграл (37) проще вычислить численно, для этого воспользуемся квадратурной формулой прямоугольников [15]:

$$\varphi_n(\mathbf{r}_n) = \Delta \alpha \sum_{m=1}^{N} \frac{k_0 \lambda_n R_n}{\sqrt{A_n - B_n \cos \alpha_m - C_n \sin \alpha_m}},$$
 (38)

где
$$A_n = x_n^2 + y_n^2 + (z_n - Z_n)^2 + R_n^2$$
, $B_n = 2R_n x_n$, $C_n = 2R_n y_n$.

Для расчета потенциала от двух колец воспользуемся принципом суперпозиции (28)

$$\varphi(\mathbf{r}_1) = \varphi_1(\mathbf{r}_1) + \varphi_2(\mathbf{r}_1).$$
 (39)

 24

Значения потенциала на оси n-го кольца ($x_n = y_n = 0$) определяются интегралом (37), который приводится к виду

$$\varphi_n(z_n) = \frac{k_0 q_n}{\sqrt{R_n^2 + (z_n - Z_n)^2}}.$$
 (40)

Разность потенциалов равна $\Delta \varphi = \varphi_1(0) + \varphi_2(0) - \varphi_1(h) - \varphi_2(h)$. Составим программу расчета.

Составим программу расчета.

- 01 #Разность потенциалов между центрами колец
- 02 import math as mt
- 03 k0=9.0e9; R=0.3; h=0.52; q=4.0e-7;
- 04 Dph=2*k0*q*(1/R-1/mt.sqrt(R*R+h*h));
- 05 print('Dph=',Dph)

Комментарий к программе. Строки: 01 – комментарий; 02 – подключение пакета \mathbf{math} ; 03 – определение исходных данных; 04 – вычисление разности потенциалов $\Delta \varphi$ (Dph) между центрами колец; 05 – вывод результатов расчета.

Приведем результаты расчета разности потенциалов:

```
>>> Dph= 12006.66111625015 >>>
```

Дополнение. Построим сечения эквипотенциальных поверхностей плоскостью y=0. В этой плоскости $\varphi(\mathbf{r})=\varphi(x,0,z)$. Для построения изолиний воспользуемся функцией contour() пакета matplotlib.

Составим программу расчета.

- 01 #Сечение плоскостью у=0 эквипотенциальной поверхности
- 02 import numpy as np
- 03 import matplotlib.pyplot as plt
- 04 k0=9.0e9; R=0.3; h=0.52; q=4.0e-7; NP=200; N=100;
- 05 da=2*np.pi/NP; D1=k0*q/2/np.pi; D2=-D1;
- 06 xmin=-1.5*R; xmax=1.5*R; zmin=-0.5*R; zmax=h+0.5*R;

 $^{^{5}}$ Изолиния (линия уровня) есть кривая, которая получается сечением поверхности, описываемой функцией $z=\varphi(x,y)$, плоскостью $z={
m const.}$

```
07 xl=np.linspace(xmin,xmax,N);
08 zl=np.linspace(zmin,zmax,N);
09 X,Z=np.meshgrid(x1,z1);
10 A=X**2+Z**2+R*R; B=2*R*X; s=0;
11 for i in range(0,NP):
      alp=i*da;
12
13
       s=s+1./np.sqrt(A-B*np.cos(alp));
14 ph=D1*da*s;
15 A=X**2+(Z-h)**2+R*R; s=0;
16 for i in range(0,NP):
17
      alp=i*da;
18
      s=s+1./np.sqrt(A-B*np.cos(alp));
19 ph=ph+D2*da*s;
20 plt.gca().set_aspect('equal', adjustable='box')
21 cs=plt.contour(ph,40,colors='k',linewidths=2);
22 plt.clabel(cs,fmt='%6.0f');
23 plt.text(48,14,r'0',fontsize=16)
24 plt.text(48,82,r'H',fontsize=16)
25 plt.xlabel('$x$',fontsize=16)
26 plt.ylabel('$z$',fontsize=16)
27 plt.show()
```

Комментарий к программе. Строки: 01 – комментарий; 02 – подключение пакета **numpy**; 03 – подключение пакета **matplotlib.pyplot** для графического вывода изолиний $\varphi(x,z) = \text{const}$; 04–05 – определение исходных данных; 06 – определение размера расчетной области, лежащей в плоскости y = 0; 07–09 – задание расчетной сетки и вспомогательного массива X, Z для расчета изолиний поля; 10 – расчет массивов коэффициентов A, B; 11–19 – вычисление $\varphi(X, Z)$ в узлах координатной сетки; 20–27 – графический вывод изолиний.

Приведем результаты расчета изолиний.

На рис. 11 точки сгущения эквипотенциальных линий являются точками пересечения плоскостью y=0 проводов колец. Значение потенциала φ_0 в точке 0 (центр нижнего кольца) равно 6 кВ, а в точке Н (центр верхнего кольца) $\varphi_H = -6$ кВ, тогда разность потенциалов между точками 0 и Н равна 12 кВ, что согласуется с ранее выполненным расчетом.

Otbet: $\Delta \varphi = 12 \text{ kB}$.

ис. 11. Изолинии в сечениях эквипотенциальных поверхностей тоскостью y=0. По оси абсцисс x изменяется от -0.45 до 0.45 м, э оси ординат z — от 0 до 0.67 м

пример расчета напряженности электрического поля

Рассмотрим пример вычисления напряжённости электрического поля. Пусть имеется N зарядов величиной q, расположенных на отрезке на расстоянии d друг от друга. Какова напряжённость электрического поля на расстоянии r от центра отрезка? Для решения этой задачи воспользуемся формулой напряженности точечного заряда:

$$E = k \frac{q}{s^2}$$

Где s — расстояние до конкретного заряда. Напряженность, в силу симметрии, направлена перпендикулярно отрезку, поэтому достаточно рассматривать проекции напряженностей на нормаль к нему. Если х - координата заряда, то:

$$E = \sum_{i=1}^{N} \frac{qr}{(x^2 + r^2)^{3/2}}$$

Эта сумма легко считается с помощью вложенных циклов, однако на Phyton, лучше воспользоваться возможностями работы с массивоподобными структурами. Реализация этой идеи выглядела следующим образом (пропуская задание параметров):

import numpy as np

import matplotlib as plt

X = np.linspace(-0.5, 0.5, 10000).reshape(N, 1)

R = np.linspace(0.01, 1.5, 100)

E = k*q*R/((X**2)+(R**2))**1.5

E = sum(E[:,:])

В нашем случае система из положительных и отрицательных зарядов:

_τ

Электрический потенциал в произвольной точке М:

$$\varphi_+ = \frac{\tau}{4\pi\varepsilon} \frac{r_2 - r_1}{r_1 r_2}$$

Напряженность электрического поля в произвольной точке М:

$$E = \frac{\tau_{+}}{4\pi\varepsilon} \frac{r_{2}^{2} - r_{1}^{2}}{(r_{1}r_{2})^{2}}$$

Оборудование, расположенное в машинном отделении электровоза имеет положительный заряд ($\boldsymbol{\phi}_{1....}\boldsymbol{\phi}_{n}$) корпус электровоза – отрицательный ($\boldsymbol{\phi}_{0}$ =0).

$$U = \varphi_+ - \varphi_0 = \frac{\tau}{4\pi\varepsilon} \frac{r_2 - r_1}{r_1 r_2}$$
$$\tau = \frac{U \cdot 4\pi\varepsilon r_1 r_2}{(r_2 - r_1)}$$

U – напряжение, B. ϵ равно $8.85*10^{-12}$.

Потенциал электрического поля проводника произвольной формы:

$$\varphi = \frac{\tau}{4\pi\varepsilon r}$$

Напряженность электрического поля

$$E = \frac{\tau}{4\pi\varepsilon r^2}$$

Размеры и расстояния основных источников ЭП и МП в электровозе ${\rm B}{\rm J}{\rm 80}^{\rm c}$ показаны на рисунке 1.

1 — выпрямительная установка; 2 — переходный реактор; 3— тяговый трансформатор; 4 — сглаживающий реактор, 7- медная труба. * - по длине машинного отделения (II....XV) необходимо провести расчет поля (10600x600).

Желтым покрашена сетка, в нашем случае мы ее рассматриваем как экран, он может быть и сплошной. Формулы для расчета экрана приведены в конце.

Упрощенная схема расположения основных источников энергетической нагрузки ЭМП в кузове электровоза представлена на рисунке 2.

Рисунок 2 — Упрощенная схема расположения основных источников энергетической нагрузки ЭМП в кузове электровоза

К основным источникам электрических и магнитных полей, энергетической нагрузки ЭМП в кузове электровоза относят:

- тяговый трансформатор, над которым расположен переходной реактор (на рисунке 4 не показан);
 - главный контроллер (ГП);

- выпрямительные установки ВУ1 (ВУ1.1 и ВУ1.2) и ВУ2 (ВУ2.1 и ВУ2.2) с рубильниками РУБ ВУ1 и РУБ ВУ2;
 - сглаживающие реакторы СР1 и СР2;

В качестве токоведущих частей, соединяющих между собой основные источники, применяют шины прямоугольного сечения 100×8 мм и 80×6 мм. По величинам тока и напряжения, расположению и сечению шин можно рассчитать энергию ЭМП.

Размеры шин, по которым протекает ток: Трансформатор — Главный контроллер 100х8мм, Главный контроллер - выпрямительная установка 80х6мм, выпрямительная установка — сглаживающий реактор — ТЭД 100х8мм.

Для общего понятия: Ток через токоприемник (на крыще электровоза) течет по медной трубе (30х3 мм, удельная электропроводимость меди $\gamma_{\rm al}$ = $5,9\cdot10^7$ См/м, а длина трубы l=1500 мм) к первичным выводам тягового трансформатора.

Рис 4

1. Соответственно нужен расчет электрических и магнитных полей от трубы.

Рисунок 2 Модель для расчета энергетической нагрузки ЭМП

Плотность тока по сечению провода:

$$J = \frac{i}{\pi R^2}$$

Напряженность магнитного поля вне трубы

$$H = \frac{i}{2\pi r}$$

где i — ток электрооборудования, A; R — радиус медной трубы, м; r — расстояние от медного стержня трубы до рассматриваемой точки M, м;

Ток имеет гармоники

Номер гармоники	Частота гармоники, f	Ток переменный, А	
1	50	От 0 до 300	% от 1 гармоники
3	150		30,61
5	250		14,69
7	350		6,12
9	450		4,29
11	550		2.82
13	650		1,96
15	750		1,47
17	850		0,98
19	950		0,87
21	1050		0,66
23	1150		0,49

2. Далее ток (1750 A) от выводов тягового трансформатора (U=1218 B напряжение) течет по шинам (длина 1500 мм, размер 100х8 мм. Кол-во:7 шт). Так как ток протекает по медным шинам, то удельная электропроводимость меди γ_{a1} =5,9·10⁷ См/м

Тяговый трансформатор утоплен в электровоз, видно только выводы.

Необходимо провести расчет электрических и магнитных полей от шин.

В соответствии с рис 3 напряженность магнитного поля можно определить:

$$H_{x} = -\frac{I}{2ab} \Big[(y+b) \big(\beta_{1} - \beta_{2} \big) + (y-b) (\alpha_{1} - \alpha_{2}) + (x+a) \ln \frac{\theta_{2}}{r_{2}}$$

$$- (x-a) \ln \frac{\theta_{1}}{r_{1}} \Big]$$

$$H_{y} = \frac{I}{2ab} \Big[(x+a) \big(\beta_{2} - \alpha_{2} \big) + (x-a) \big(\beta_{1} - \alpha_{1} \big) + (y+b) \ln \frac{\theta_{2}}{\theta_{1}}$$

$$- (y-b) \ln \frac{r_{2}}{r_{1}} \Big]$$

$$H_{\rm M} = \sqrt[2]{H_x + H_y}$$

Плотность тока:

$$J = \frac{I}{2a2b}$$

a — uирина, b — выcота uины.

3. Далее переменный ток поступает на Главный контроллер (напряжение изоляции – 3000 В, номинальный ток силовых контакторов – 1300 А.)

Напряженность магнитного поля в объеме $V \equiv \Omega$ находится по закону Био-Савара-Лапласа (стр 2 , 3)

Можно рассматривать фигуру —пластины, тогда напряженность магнитного поля можно определить:

$$H_{\rm M} = \frac{I}{\pi l} \operatorname{arctg} \frac{l}{2d} \,, \tag{2.51}$$

где I — ток на ГП , I — длина пластины, d — расстояние до расчетной точки.

Рисунок 2.30 – К вычислению напряженности магнитного поля пластин

Токи протекают от одного оборудования к другому по шинам: 80х6 мм. Длина и расположение указаны на рис.3).

4. **Далее ток течет к выпрямительной установке** – выпрямленный ток – 3150 A, выпрямленное напряжение 1400 B.

Напряженность магнитного поля в объеме $V \equiv \Omega$ находится по закону Био-Савара-Лапласа (стр 2 , 3)

ИТОГ:

$$H_{\text{кс}} + H_{\text{оборудовани}}$$
я= $H_{\text{маш отделения}}$
 $E_{\text{кс}} + E_{\text{оборудования}} = E_{\text{маш отделения}}$
 $3 = H_{\text{маш отделения}} * E_{\text{маш отделения}}$

Эффективность экранирования металлического сетчатого экрана с учетом технологического процесса и качества монтажа экрана, длины волны низкочастотного поля определяется из соотношения [121]:

$$\beta_{H} = 0.012 \sqrt{\frac{d_{9}}{\rho}} Z_{H}^{3} \sqrt{\frac{\lambda}{R_{9}}} e^{\frac{\pi d_{S}}{S - d_{S}}} , \qquad (2.49)$$

где d — толщина материала экрана, мм; s — шаг сетки, м; ρ — удельное сопротивление материала экрана, Ом·м; Z_H — волновое сопротивление магнитного поля; $R_{\mathfrak{g}}$ — эквивалентный радиус экрана, м; λ — длина волны в воздухе, м; m — наибольший размер отверстия в экране, м; δ — глубина проникновения, м; $d_{\mathfrak{g}}$ — эквивалентная толщина сетки, равная $\pi r^2/s$, м; $d_{\mathfrak{g}}$ — диаметр провода сетки, м.

Эквивалентный радиус экрана равен:

$$R_{2}=0.62\sqrt[3]{blh},$$

где b — ширина экрана, м; l — длина экрана, м; h — высота экрана, м.

Так как $\frac{2\pi R_9}{\lambda} \ll 1$, то волновое сопротивление магнитного поля равно:

$$Z_{\rm H}={\rm Z_0}\,{2\pi{\rm R}_{\scriptscriptstyle 9}\over\lambda}$$

где Z_0 – волновое сопротивление поля, Ом; λ – длина волны в воздухе, м.

Расчет эффективности экранирования магнитного поля проведен для следующих условий: ширина экрана b =2,6 м; длина экрана l=12,7 м; высота экрана h=2,2 м, волновое сопротивление поля Z_0 =377 Ом, радиус провода сетки r =0,5 мм, шаг сетки S=12 мм

Эффективность экранирования (магнитного поля) сплошным экраном можно определить по формуле [138]:

$$\beta = 1 + \frac{0.66\mu_r k}{r}$$

где r — радиус экрана; μ_r — относительная магнитная проницаемость материала экрана; k — толщина экрана, м

Радиус экрана [138] можно определить как

$$r = \sqrt[3]{\frac{3abc}{4\pi}}$$

где a, b, и c- размеры стенки ВВК.

Экран (сетка) для электрического поля

Эффективность плоского экрана из сетки приближенно может быть определена из выражения :

$$\mathfrak{I}_{M} = 60 \cdot \pi \frac{1}{R_{np} \cdot a} \frac{\delta}{2\sqrt{2d}} e^{\frac{d}{\delta}}$$

где R_{np} — сопротивление 1 м одной проволоки постоянному току, Ом/м; a — шаг сетки, м d — толщина сетки, м; δ — толщина поверхностного слоя, м.

Расчет эффективности экранирования ограждения высоковольтной камеры для условий: сопротивление 1 м одной проволоки диаметром 1 мм постоянному току принимаем 0,153 Ом/м, глубина проникновения 0,0023 м, толщина поверхностного слоя 0,001 м, шаг сетки — 0,015 м.

Учет экрана (сплошного). Так как напряженность электрического поля необходимо определить за стальной перегородкой ВВК (при γ_{a2} = 10^7 См/м), то линейная плотность заряда изменится на величину: $\tau_1=\frac{2\gamma_{a1}}{\gamma_{a1}+\gamma_{a2}}\tau=2\cdot 10^{-7}\tau$

Эффективность экранирования определяется для экранов электровоза $\mathsf{B}\mathsf{Л80}^\mathsf{c}$, приведенных в таблице 1.

Таблица 1– Характеристики экранов на электровозе ВЛ80^с

Экран	Размер, мм	Толщина, мм	Материал
Кузов электровоза	15200×2800×3500	2,5	Сталь
Ограждение высоковольтной камеры (сетка с шагом 15 мм)	12700×2200×2600	1	Сталь