

103

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

Ciossek, Thomas Ullrich, Axel Millauer, Birgit

(ii) TITLE OF INVENTION:

METHODS FOR DIAGNOSIS AND TREATMENT OF MDK1 SIGNAL TRANSDUCTION DISORDERS

(iii) NUMBER OF SEQUENCES:

12

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE:

Lyon & Lyon

(B) STREET:

633 West Fifth Street

Suite 4700

(C) CITY:

(F)

Los Angeles California

(D) STATE:

U.S.A.

(E) COUNTRY:

ZIP:

90071-2066

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE:

3.5" Diskette, 1.44 Mb

storage

(B) COMPUTER:

IBM Compatible

(C) OPERATING SYSTEM:

IBM P.C. DOS 5.0

(D) SOFTWARE:

Word Perfect 5.1

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:

08/368,776

(B) FILING DATE:

January 3, 1995

(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

Prior applications total, including application described below:

none

- (A) APPLICATION NUMBER:
- (B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Warburg, Richard J.

(B) REGISTRATION NUMBER: 32,327

(C) REFERENCE/DOCKET NUMBER: 208/007

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600

(B) TELEFAX: (213) 955-0440

(C) TELEX: 67-3510

(2) INFORMATION FOR SEQUENCE ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4304 base pairs

(B) TYPE: nucleic acid

(C) STRANDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: nucleic

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

AAGCGGCCGG TCTGCAGTCG GAGACTTGCA GGCAGCAAAC ACGGTGCGAA 50 CGAACCGGAG GGGGGAGAGA GAAATCAAAC AGCTAAGCGT GGAGCAGACG 100 GCCTGGGACC CAGAAGGGGA TCGATGCGAG GAGCGCAATA ATAACAACAA 150 TAATAACCCA CTTCGGAGCA AACAGCATCT AAAGAGCTGC GACCCAACTG 200 CAGCCTAAAA AAATCAAACC TGCTCATGCA CCATGGTTGT TCAAACTCGG 250 TTCCCTTCGT GGATTATTTT GTGTTACATC TGGCTGCTTG GCTTTGCACA 300 CACGGGGGAG GCGCAGGCTG CGAAGGAAGT ACTATTACTG GACTCGAAAG 350 400 CACAACAAC AGAATTGGAA TGGATTTCCT CTCCACCCAG TGGGTGGGAA

GAAATTAGTG	GTTTGGATGA	GAACTACACT	CCGATAAGAA	CATACCAGGT	450
GTGCCAGGTC	ATGGAGCCCA	ACCAGAACAA	CTGGCTGCGG	ACTAACTGGA	500
TTTCTAAAGG	CAACGCACAA	AGGATTTTTG	TAGAATTGAA	ATTCACCTTG	550
AGGGATTGTA	ATAGTCTTCC	CGGAGTCCTG	GGAACTTGCA	AGGAAACGTT	600
TAATTTGTAC	TATTATGAAA	CAGACTACGA	CACCGGCAGG	AATATACGAG	650
AAAACCTTTA	TGTTAAAATA	GACACCATTG	CTGCAGATGA	AAGTTTCACA	700
CAAGGTGACC	TTGGTGAAAG	AAAGATGAAG	CTGAACACTG	AGGTGAGAGA	750
GATTGGACCT	TTGTCCAAAA	AGGGATTCTA	TCTTGCCTTT	CAGGATGTAG	800
GGGCTTGCAT	AGCATTGGTT	TCTGTCAAAG	TGTACTACAA	GAAGTGCTGG	850
ACCATTGTTG	AGAACTTAGC	TGTCTTTCCA	GATACAGTGA	CTGGTTCGGA	900
ATTTTCCTCC	TTAGTCGAGG	TCCGTGGGAC	ATGTGTCAGC	AGTGCCGAGG	950
AAGAGGCAGA	AAATTCCCCC	AGAATGCATT	GCAGTGCAGA	AGGAGAGTGG	1000
CTAGTACCCA	TTGGAAAATG	CATCTGCAAA	GCAGGCTATC	AGCAAAAAGG	1050
GGACACTTGC	GAACCCTGTG	GCCGCAGGTT	CTACAAATCT	TCCTCTCAGG	1100
ATCTCCAGTG	TTCTCGTTGT	CCAACCCACA	GCTTCTCTGA	CCGAGAAGGA	1150
TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CGGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700

TGGAAACTAC AGCCCTAGGC TTGATGTTGC CACACTTGAG GAAGCTTCAG GTAAAATGTT TGAAGCGACA GCAGTCTCCA GTGAACAGAA TCCTGTCATC 19 ATAATTGCTG TAGTGGCTGT AGCAGGGACC ATCATCTTGG TGTTCATGGT 19	350 350 350 350 350 350
GTAAAATGTT TGAAGCGACA GCAGTCTCCA GTGAACAGAA TCCTGTCATC 19 ATAATTGCTG TAGTGGCTGT AGCAGGGACC ATCATCTTGG TGTTCATGGT 19	900 950 950
ATAATTGCTG TAGTGGCTGT AGCAGGGACC ATCATCTTGG TGTTCATGGT 19	950 950 950
	000
GTTCGGCTTC ATCATTGGAA GAAGGCACTG TGGTTATAGC AAGGCTGACC 20	50
•	
AAGAAGGGGA TGAAGAACTC TACTTTCATT TTAAATTTCC AGGCACCAAA 20	.00
ACCTACATTG ACCCTGAAAC CTATGAGGAC CCAAATAGAG CTGTCCATCA 21	
ATTCGCCAAG GAGCTAGATG CCTCCTGTAT TAAAATTGAG CGTGTGATTG 21	L50
GTGCAGGAGA ATTTGGAGAA GTTTGCAGTG GTCGTTTGAA ACTTCCGGGC 22	200
CAGAGAGATG TTGCAGTGGC CATAAAAACC CTGAAAGTTG GTTACACAGA 22	250
AAAGCAAAGG AGGGACTTTT TATGCGAAGC AAGCATCATG GGGCAATTTG 23	300
ACCACCCAAA TGTCGTCCAT TTGGAAGGGG TTGTTACAAG AGGGAAGCCT 23	350
GTCATGATTG TGATAGAGTT CATGGAGAAT GGAGCCCTGG ATGCATTTCT 24	100
CAGGAAACAC GATGGGCAGT TTACAGTCAT TCAGTTGGTA GGAATGTTGA 24	150
GAGGTATTGC CGCTGGGATG CGATACTTGG CTGATATGGG ATACGTTCAC 25	500
AGGGACCTTG CAGCGCGCAA CATCCTTGTC AACAGCAATC TTGTTTGTAA 25	550
AGTGTCAGAT TTTGGCCTTT CCCGGGTTAT AGAGGATGAT CCCGAAGCTG 26	500
TCTACACCAC GACTGGTGGA AAAATTCCAG TAAGGTGGAC TGCACCGGAA 26	550
GCCATTCAAT ACCGGAAGTT CACCTCAGCC AGCGATGTGT GGAGCTATGG 27	700
GATTGTCATG TGGGAAGTGA TGTCTTATGG AGAAAGACCT TACTGGGACA 27	750
TGTCAAATCA AGATGTCATT AAAGCGATAG AAGAAGGTTA TCGTTTGCCG 28	800
GCGCCCATGG ATTGCCCAGC TGGTCTTCAC CAGCTAATGC TGGATTGTTG 28	850
GCAGAAAGAT CGGGCGGAAA GGCCAAAGTT TGAGCAGATA GTCGGAATTC 29	900
TAGACAAAAT GATTCGAAAC CCAAGTAGTC TGAAAACACC CCTGGGAACT 29	950
TGTAGTAGAC CCTTAAGCCC TCTTCTGGAC CAGAGCACTC CTGACTTCAC 30	000

TGCCTTCTGT	TCAGTTGGAG	AATGGTTGCA	AGCTATTAAA	ATGGAAAGGT	3050
ATAAGGACAA	CTTCACAGCA	GCGGGTTACA	ACTCACTCGA	GTCAGTGGCC	3100
AGGATGACTA	TCGATGATGT	GATGAGTTTA	GGGATCACAC	TGGTTGGCCA	3150
TCAAAAGAAG	ATCATGAGCA	GCATCCAGAC	TATGCGGGCA	CAAATGTTGC	3200
ATTTACACGG	AACAGGCATC	CAAGTGTGAC	ACATCGGCCT	CCCTCAGATG	3250
AGGCTTAAGA	CTGCAGGAGA	ACAGTTCTGG	CCTTCAGTAT	ACGCATAGAA	3300
TGCTGCTAGA	AGACAGTTGA	TATACTGGGT	CCTTCCTACA	AGAAAGAGAA	3350
GATTTTAGAA	GCACCTCCAG	ACTTGAACTC	CTAAGTGCCA	CCAGAATATA	3400
CAAAAAGGGA	ATTTAGGATC	CACCACTGGT	GGCCAGGAAC	ACAGCAGAGA	3450
CAATAAACAA	AGTACTACCT	GAAAAACATC	CCAACACCTT	GAGCTCTCGA	3500
ACCTCCTTTT	TATCTTATAG	ACTTTTTAAA	AATGTACATA	AAGAATTTAA	3550
GAAAGAATAT	ATTTGTCAAA	TAAAAATCAT	GATCTTATTG	TTAAAATCAA	3600
TGAAATATTT	TCCTTAAAAT	ATGTGATTTC	AGACTATTCT	TTTCCAGAAC	3650
CATCTGTGTT	TATTCTGCTT	AAGGACTTTG	TTTTAGAAAG	TTATTTGTAG	3700
CTTTGGACCT	TTTTAGTGTT	AAATTTATGA	CACGTTACTA	CACTGGGAAC	3750
CTTTGAAGAC	TCTCAAACTT	AAAGGAAAGC	AAAACTACGC	ACATAGTCGA	3800
GGATGGACTT	TGTCCTTCAT	GGCTTTGGTA	TCCTGGCTGT	GTCATTTTGT	3850
TAAACCAGTG	ATGTTTTCAT	ATTGTTTGCT	GATTGGCAGG	TAGTTCAAAA	3900
TTGCAAGTTG	CCAAGAGCTC	TGATATTTT	TAACAGGATT	TTTTTTTTTT	3950
TGTAAAAATC	AGATAACATA	CTAACTTTTC	AATGAAAAA	AAAAAAAAAG	4000
AAGCAATAAT	GATCCATAAA	TACTATAAGG	CACTTTTAAC	AGATTGTTTA	4050
TAGAGTGATT	TACTAGGCAG	AATTTAATAA	AAAAAAAAGA	GAGATGTCAA	4100
ATTTTAGGTT	TATGTGTATA	TGATAAAAGG	CTGAGCTTCG	TCTGAAGATG	4150
CTGGTGAAAG	CAAGACTGGA	AGCGAAGCTC	TCCAGCTTTG	GCTAACCCAA	4200
TCCGAGCACA	TCAAGAGCTT	CAGTCTTGTG	ACAGTAAGAA	ATTTAGGAAC	4250
ATAGTTGACC	TATATTTTGT	ATTCTTTCTT	GTTGAATGCA	GTCCAAATAC	4300

AAAA 4304

(2) INFORMATION FOR SEQUENCE ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 998 amino acids
- (B) TYPE: amino acid
- (C) STRANDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile
1 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 55 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 70 75 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln 85 90 95

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 105 110

Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr 115 120 125

Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 130 135 140

Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 145 150 155 160 Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 165 Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys 185 Ile Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 210 220 Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 230 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys 260 265 Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro 320 305 315 Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 325 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 345 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu 360 365 Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser 380 Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 390 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu 415 405 Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala SSSD/27372. v01

420	· 425	430

Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 470 465 Tyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 560 545 550 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 565 570 575 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly 585 Asp Glu Glu Leu Tyr Phe His Phe Lys Phe Pro Gly Thr Lys Thr Tyr 600 Ile Asp Pro Glu Thr Tyr Glu Asp Pro Asn Arg Ala Val His Gln Phe 610 Ala Lys Glu Leu Asp Ala Ser Cys Ile Lys Ile Glu Arg Val Ile Gly 630 Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly 650 Gln Arg Asp Val Ala Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr 670 Glu Lys Gln Arg Arg Asp Phe Leu Cys Glu Ala Ser Ile Met Gly Gln 675 680 685

Phe Asp His Pro Asn Val Val His Leu Glu Gly Val Val Thr Arg Gly 690 Lys Pro Val Met Ile Val Ile Glu Phe Met Glu Asn Gly Ala Leu Asp 710 Ala Phe Leu Arg Lys His Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Arg Tyr Leu Ala Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser 755 Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu Asp Asp Pro Glu Ala Val Tyr Thr Thr Gly Gly Lys Ile Pro Val 795 800 Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala 840 Ile Glu Glu Gly Tyr Arg Leu Pro Ala Pro Met Asp Cys Pro Ala Gly 850 855 Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Ala Glu Arg Pro Lys Phe Glu Gln Ile Val Gly Ile Leu Asp Lys Met Ile Arg Asn 890 885 Pro Ser Ser Leu Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro Leu Ser 910 900 Pro Leu Leu Asp Gln Ser Thr Pro Asp Phe Thr Ala Phe Cys Ser Val Gly Glu Trp Leu Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe 935 Thr Ala Ala Gly Tyr Asn Ser Leu Glu Ser Val Ala Arg Met Thr Ile SSSD/27372. v01

945 950 955 960

Asp Asp Val Met Ser Leu Gly Ile Thr Leu Val Gly His Gln Lys Lys 965 970 975

Ile Met Ser Ser Ile Gln Thr Met Arg Ala Gln Met Leu His Leu His 980 985 990

Gly Thr Gly Ile Gln Val 995

(2) INFORMATION FOR SEQUENCE ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGTH:
 - (B) TYPE:
 - (C) STRANDNESS:
 - (D) TOPOLOGY:
- 610/amino acids
- single
- linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile
1 5 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 55 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 70 75 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln 85 90 95

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 105 110

Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 120 125

Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 130 Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 150 155 145 Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 165 Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile 200 195 Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 235 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp 245 Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg 290 Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 325 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu 365 360 355 Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser 375 Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 395 390

Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly 440 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr Tyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys 485 Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val 510 505 Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro 520 Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 560 555 545 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 565 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly 585 Asp Glu Glu Leu Tyr Phe His Ser Leu Val Thr Asn Glu His Leu Ser L-600 595 Val Leu 610

(2) INFORMATION FOR SEQUENCE ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

2901 base pairs

(B) TYPE:

nucleic acid

(C) STRANDNESS:

single

115

(D) TOPOLOGY:

linear

(ii) MOLECULE TYPE:

nucleic

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: AAGCGGCCGG TCTGCAGTCG GAGACTTGCA GGCAGCAAAC ACGGTGCGAA 50 CGAACCGGAG GGGGGAGAGA GAAATCAAAC AGCTAAGCGT GGAGCAGACG 100 GCCTGGGACC CAGAAGGGGA TCGATGCGAG GAGCGCAATA ATAACAACAA 150 TAATAACCCA CTTCGGAGCA AACAGCATCT AAAGAGCTGC GACCCAACTG 200 CAGCCTAAAA AAATCAAACC TGCTCATGCA CCATGGTTGT TCAAACTCGG 250 TTCCCTTCGT GGATTATTTT GTGTTACATC TGGCTGCTTG GCTTTGCACA 300 CACGGGGGAG GCGCAGGCTG CGAAGGAAGT ACTATTACTG GACTCGAAAG 350 CACAACAAC AGAATTGGAA TGGATTTCCT CTCCACCCAG TGGGTGGGAA 400 GAAATTAGTG GTTTGGATGA GAACTACACT CCGATAAGAA CATACCAGGT 450 GTGCCAGGTC ATGGAGCCCA ACCAGAACAA CTGGCTGCGG ACTAACTGGA 500 TTTCTAAAGG CAACGCACAA AGGATTTTTG TAGAATTGAA ATTCACCTTG 550 AGGGATTGTA ATAGTCTTCC CGGAGTCCTG GGAACTTGCA AGGAAACGTT 600 TAATTTGTAC TATTATGAAA CAGACTACGA CACCGGCAGG AATATACGAG 650 AAAACCTTTA TGTTAAAATA GACACCATTG CTGCAGATGA AAGTTTCACA 700 750 CAAGGTGACC TTGGTGAAAG AAAGATGAAG CTGAACACTG AGGTGAGAGA GATTGGACCT TTGTCCAAAA AGGGATTCTA TCTTGCCTTT CAGGATGTAG 800 GGGCTTGCAT AGCATTGGTT TCTGTCAAAG TGTACTACAA GAAGTGCTGG 850 ACCATTGTTG AGAACTTAGC TGTCTTTCCA GATACAGTGA CTGGTTCGGA 900 ATTTTCCTCC TTAGTCGAGG TCCGTGGGAC ATGTGTCAGC AGTGCCGAGG 950 AAGAGGCAGA AAATTCCCCC AGAATGCATT GCAGTGCAGA AGGAGAGTGG 1000 CTAGTACCCA TTGGAAAATG CATCTGCAAA GCAGGCTATC AGCAAAAAGG 1050

GGACACTTGC GAACCCTGTG GCCGCAGGTT CTACAAATCT TCCTCTCAGG

ATCTCCAGTG TTCTCGTTGT CCAACCCACA GCTTCTCTGA CCGAGAAGGA

1100

1150

TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CGGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700
ACTCAACACT	CAAAACCAAG	TCCACCTCCG	CCTCCATTAA	TAATCTGAAA	1750
CCGGGAACAG	TGTACGTCTT	TCAGATCCGG	GCGGTCACTG	CTGCCGGTTA	1800
TGGAAACTAC	AGCCCTAGGC	TTGATGTTGC	CACACTTGAG	GAAGCTTCAG	1850
GTAAAATGTT	TGAAGCGACA	GCAGTCTCCA	GTGAACAGAA	TCCTGTCATC	1900
ATAATTGCTG	TAGTGGCTGT	AGCAGGGACC	ATCATCTTGG	TGTTCATGGT	1950
GTTCGGCTTC	ATCATTGGAA	GAAGGCACTG	TGGTTATAGC	AAGGCTGACC	2000
AAGAAGGGGA	TGAAGAACTC	TACTTTCATT	CTTTAGTAAC	AAATGAGCAC	2050
CTGTCAGTTT	TATAAACCGC	AACAATAACT	GTTTAAGACA	ATCAATTTTG	2100
GATAAACAAT	CAACTACAGC	AGAATAAATC	AAGATTTTTA	AGTCCCATTT	2150
TCCTTTATAC	ATTCTGCTTA	TTTTGTTGTT	ATATGTTTAT	TTTTTAAACT	2200
CTGATCTTGA	TTGAATGTGA	TACCATAAGC	ACAGTTAGGC	TGCAGTGTAA	2250
ATATATAAAG	ACATTGTTCT	GAGAGCAGTA	CGATTTCATG	GAAAGATTGT	2300
TTGGTGGCTT	TGTTAAAATT	AATAAAGAAT	TTTTAAGGAT	ATAGTGTAAT	2350
TTTCTTCATT	GCATTAATAT	AACCAAATAT	GCCTACCTAT	CTTTGTCTTG	2400
AACCAAATGA	ATAGATTTGG	AATACTTTAT	TGTAATTGAA	TTTGATATAA	2450

AGTTGACTGA	GCATTTATGT	GTTACCTGCA	TGCTTCTGGG	TGCATTGAAA	2500
TATTTTAACT	TTTAAAATGA	TACTATGTTG	TTTCAATTTT	GACTACCTTT	2550
TGTGAGGCAT	ACTGGCTACC	TCCTCCTATT	AGCTAAGATC	TTCCAAAGCC	2600
TTATAATGAA	AAGTTTATAT	AAACCATTTC	TCTTTCAAAT	CACTGTCATA	2650
CTTGGTCACG	GATCCCAGGA	ATATTGTAAA	TTTTCTAATT	TACTCTGCAC	2700
TTTGTATATC	CAGCCTCTAT	TACCCTCAAG	GTGAATATAA	AACTATGTCT	2750
TTTGAATATT	TCTCTTTGAT	TTTGTGATAG	CAGTCCCTCA	TATCTTGTAC	2800
TAATTTTATG	TATATGTCAA	CAGTGGTTGG	TCTTTAAAAA	TAAATCAAAG	2850
AATAAGTAAA	AAAAAAAAA	ААААААААА	AAAAATAAAA	АААААААА	2900
Α .		•			2901

(2) INFORMATION FOR SEQUENCE ID NO: 5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH:

626 amino acids

(B) TYPE:

amino acid

(C) STRANDNESS:

single

(D) TOPOLOGY:

linear

(ii) MOLECULE TYPE:

peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile 1 5 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 55 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 70 75 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln

SSSD/27372. v01

85 90 95

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 105 Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 170 Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 210 215 Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 235 Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp 245 255 Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys 260 Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser 280 Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg 290 295 Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 340 350 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu

		355					360				8	365		•	
Cys	Lys 370	Arg	Cys	Ser	Trp	Glu 375	Gln	Gly	Glu	Суѕ	Val 380	Pro	Cys	Gly	Ser
Asn 385	Ile	Gly	Tyr	Met	Pro 390	Gln	Gln	Thr	Gly	Leu 395	Glu	Asp	Asn	Tyr	Val 400
Thr	Val	Met	Asp	Leu 405	Leu	Ala	His	Ala	Asn 410	Tyr	Thr	Phe	Glu	Val 415	Glu
Ala	Val	Asn	Gly 420	Val	Ser	Asp	Leu	Ser 425	Arg	Ser	Gln	Arg	Leu 430	Phe	Ala
Ala	Val	Ser 435	Ile	Thr	Thr	Gly	Gln 440	Ala	Ala	Pro	Ser	Gln 445	Val	Ser	Gly
Val	Met 450	Lys	Glu	Arg	Val	Leu 455	Gln	Arg	Ser	Val	Gln 460	Leu	Ser	Trp	Gln
Glu 465		Glu	His	Pro	Asn 470	Gly	Val	Ile	Thr	Glu 475	Tyr	Glu	Ile	Lys	Tyr 480
Tyr	Glu	Lys	Asp	Gln 485	Arg	Glu	Arg	Thr	Tyr 490	Ser	Thr	Leu	Lys	Thr 495	Lys
Ser	Thr	Ser	Ala 500	Ser	Ile	Asn	Asn	Leu 505	Lys	Pro	Gly	Thr	Val 510	Tyr	Val
Phe	Gln	Ile 515	Arg	Ala	Val	Thr	Ala 520	Ala	Gly	Tyr	Gly	Asn 525	Tyr	Ser	Pro
Arg	Leu 530	Asp	Val	Ala	Thr	Leu 535	Glu	Glu	Ala	Ser	Gly 540	Lys	Met	Phe	Glu
Ala 545	Thr	Ala	Val	Ser	Ser 550	Glu	Gln	Asn	Pro	Val 555	Ile	Ile	Ile	Ala	Val 560
Val	Ala	Val	Ala	Gly 565	Thr	Ile	Ile	Leu	Val 570	Phe	Met	Val	Phe	Gly 575	Phe
Ile	Ile	Gly	Arg 580	Arg	His	Cys	Gly	Tyr 585	Ser	Lys	Ala	Asp	Gln 590	Glu	Gly
Asp	Glu	Glu 595	Leu	Tyr	Phe	His	Ser 600	Leu	Tyr	Arg	Glu	Arg 605	Gly	Asp	Gly
Met	Glu 610	Lys	Thr	Gln	His	Asn 615	Lys	Lys	Trp	Met	Ile 620	Ala	Ser	Cys	Ser

Arg Leu 625

(2) INFORMATION FOR SEQUENCE ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	2323 base pairs
(B)	TYPE:	nucleic acid
(0)	COLD VIDVECC	gingle

(C) STRANDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: nucleic

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

		•			
AAGCGGCCGG	TCTGCAGTCG	GAGACTTGCA	GGCAGCAAAC	ACGGTGCGAA	50
CGAACCGGAG	GGGGGAGAGA	GAAATCAAAC	AGCTAAGCGT	GGAGCAGACG ·	100
GCCTGGGACC	CAGAAGGGGA	TCGATGCGAG	GAGCGCAATA	ATAACAACAA	150
TAATAACCCA	CTTCGGAGCA	AACAGCATCT	AAAGAGCTGC	GACCCAACTG	200
CAGCCTAAAA	AAATCAAACC	TGCTCATGCA	CCATGGTTGT	TCAAACTCGG	250
TTCCCTTCGT	GGATTATTTT	GTGTTACATC	TGGCTGCTTG	GCTTTGCACA	300
CACGGGGGAG	GCGCAGGCTG	CGAAGGAAGT	ACTATTACTG	GACTCGAAAG	350
CACAACAAAC	AGAATTGGAA	TGGATTTCCT	CTCCACCCAG	TGGGTGGGAA	400
GAAATTAGTG	GTTTGGATGA	GAACTACACT	CCGATAAGAA	CATACCAGGT	450
GTGCCAGGTC	ATGGAGCCCA	ACCAGAACAA	CTGGCTGCGG	ACTAACTGGA	500
TTTCTAAAGG	CAACGCACAA	AGGATTTTTG	TAGAATTGAA	ATTCACCTTG	550
AGGGATTGTA	ATAGTCTTCC	CGGAGTCCTG	GGAACTTGCA	AGGAAACGTT	600
TAATTTGTAC	TATTATGAAA	CAGACTACGA	CACCGGCAGG	AATATACGAG	650
AAAACCTTTA	TGTTAAAATA	GACACCATTG	CTGCAGATGA	AAGTTTCACA	700
CAAGGTGACC	TTGGTGAAAG	AAAGATGAAG	CTGAACACTG	AGGTGAGAGA	750
GATTGGACCT	TTGTCCAAAA	AGGGATTCTA	TCTTGCCTTT	CAGGATGTAG	800
GGGCTTGCAT	AGCATTGGTT	TCTGTCAAAG	TGTACTACAA	GAAGTGCTGG	850

ACCATTGTTG	AGAACTTAGC	TGTCTTTCCA	GATACAGTGA	CTGGTTCGGA	900
ATTTTCCTCC	TTAGTCGAGG	TCCGTGGGAC	ATGTGTCAGC	AGTGCCGAGG	950
AAGAGGCAGA	AAATTCCCCC	AGAATGCATT	GCAGTGCAGA	AGGAGAGTGG	1000
CTAGTACCCA	TTGGAAAATG	CATCTGCAAA	GCAGGCTATC	AGCAAAAAGG	1050
GGACACTTGC	GAACCCTGTG	GCCGCAGGTT	CTACAAATCT	TCCTCTCAGG	1100
ATCTCCAGTG	TTCTCGTTGT	CCAACCCACA	GCTTCTCTGA	CCGAGAAGGA	1150
TCATCCAGGT	GTGAATGTGA	AGATGGGTAC	TACAGAGCTC	CTTCTGATCC	1200
ACCATACGTT	GCATGCACGA	GGCCTCCCTC	TGCACCACAG	AACCTTATTT	1250
TCAATATCAA	TCAAACGACT	GTAAGTTTGG	AATGGAGTCC	TCCGGCTGAC	1300
AACGGGGGAA	GAAACGATGT	CACCTACAGA	ATACTGTGTA	AGCGGTGCAG	1350
TTGGGAACAG	GGAGAATGTG	TGCCATGCGG	AAGTAACATT	GGATACATGC	1400
CCCAGCAGAC	GGGATTAGAG	GATAACTATG	TCACTGTCAT	GGACCTACTT	1450
GCCCATGCAA	ATTACACTTT	CGAAGTTGAA	GCTGTAAATG	GAGTTTCGGA	1500
CTTAAGCAGA	TCCCAGAGGC	TCTTCGCTGC	TGTTAGCATC	ACCACCGGTC	1550
AAGCAGCTCC	CTCGCAAGTG	AGTGGAGTCA	TGAAGGAGCG	AGTACTGCAG	1600
CGGAGTGTGC	AGCTTTCCTG	GCAGGAGCCG	GAGCATCCCA	ATGGAGTCAT	1650
CACGGAATAT	GAAATCAAGT	ATTATGAGAA	AGATCAACGG	GAAAGGACGT	1700
ACTCAACACT	CAAAACCAAG	TCCACCTCCG	CCTCCATTAA	TAATCTGAAA	1750
CCGGGAACAG	TGTACGTCTT	TCAGATCCGG	GCGGTCACTG	CTGCCGGTTA	1800
TGGAAACTAC	AGCCCTAGGC	TTGATGTTGC	CACACTTGAG	GAAGCTTCAG	1850
GTAAAATGTT	TGAAGCGACA	GCAGTCTCCA	GTGAACAGAA	TCCTGTCATC	1900
ATAATTGCTG	TAGTGGCTGT	AGCAGGGACC	ATCATCTTGG	TGTTCATGGT	1950
GTTCGGCTTC	ATCATTGGAA	GAAGGCACTG	TGGTTATAGC	AAGGCTGACC	2000
AAGAAGGGGA	TGAAGAACTC	TACTTTCATT	CTCTTTACAG	GGAAAGGGGA	2050
GACGGGATGG	AAAAGACACA	GCACAATAAG	AAGTGGATGA	TTGCATCGTG	2100
CTCTCGTTTG	TAGGTCTCTT	TTCCTAATCA	ACACTATGAT	TTTGAAGTAC	2150

GCGTACACGA	AGCAAACGGG	AAGAGATAAG	GAATTAGCAT	TGTGAACCTG	2200
ACTGTAATCC	TCTCTTCCGG	AAAGAGATGA	GATGCTATTG	CGATGAGAAT	2250
GTACAACTTG	CACCTTGAAA	${\tt TCTTTTTGA}_{.}$	TAATTAGTGC	TCAGGGGAGG	2300
GGGGGGAAG	TAGAGAAAGC	AAA			2323

- INFORMATION FOR SEQ ID NO: 7: (2)
 - SEQUENCE CHARACTERISTICS:
 - LENGTH: (A)

6 amino acids

(B) TYPE: amino acid

STRANDEDNESS: (C)

single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE:

peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:

Ala Ala Thr Ala Ala Ala

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids

(B) TYPE: amino acid

STRANDEDNESS: (C) TOPOLOGY:

single linear

(ii) MOLECULE TYPE:

peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:

Ala Ala Thr Ala Ala Ala

(D)

- (2) INFORMATION FOR SEQ ID NO:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

His Arg Asp Leu Ala Ala

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6 amino acids (B) TYPE: amino acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(ix) FEATURE:

(D) OTHER INFORMATION: Xaa in position 2 is valine

or methionine; Xaa in

position 5 is phenylalanine

or tyrosine.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Asp Xaa Trp Ser Xaa Gly 5

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 993 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile 1 5 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 55 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 70 75 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln 85 90 95

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 105 110

Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 120 125

Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 130 135 140

Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 145 150 155 160

Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 165 170 175

Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys 180 185 190

Ile Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile 195 200 205

Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 210 215 220

Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 225 230 235 240

Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp 245 250 255

Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys

260 265 270 Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser 280 Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser 340 Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 385 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu 410 Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly 440 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln 450 455 Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 470 475 Tyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys 485 490 Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val 500 Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro

520

515

Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val Val Ala Val Ala Gly 550 545 560 Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe Ile Ile Gly Arg Arg 565 570 His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly Asp Glu Glu Leu Tyr Phe His Phe Lys Phe Pro Gly Thr Lys Thr Tyr Ile Asp Pro Glu Thr 595 Tyr Glu Asp Pro Asn Arg Ala Val His Gln Phe Ala Lys Glu Leu Asp 615 Ala Ser Cys Ile Lys Ile Glu Arg Val Ile Gly Ala Gly Glu Phe Gly 635 630 Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly Gln Arg Asp Val Ala Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Cys Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn 680 Val Val His Leu Glu Gly Val Val Thr Arg Gly Lys Pro Val Met Ile 690 695 Val Ile Glu Phe Met Glu Asn Gly Ala Leu Asp Ala Phe Leu Arg Lys 705 710 715 His Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly 725 730 Ile Ala Ala Gly Met Arg Tyr Leu Ala Asp Met Gly Tyr Val His Arg 745 Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys 765 755 760 Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu Asp Asp Pro Glu Ala 775 Val Tyr Thr Thr Gly Gly Lys Ile Pro Val Arg Trp Thr Ala Pro 795 790

Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr 825 820 Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala Ile Glu Glu Gly Tyr 840 Arg Leu Pro Ala Pro Met Asp Cys Pro Ala Gly Leu His Gln Leu Met 860 Leu Asp Cys Trp Gln Lys Asp Arg Ala Glu Arg Pro Lys Phe Glu Gln 865 Ile Val Gly Ile Leu Asp Lys Met Ile Arg Asn Pro Ser Ser Leu Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro Leu Ser Pro Leu Leu Asp Gln 905 Ser Thr Pro Asp Phe Thr Ala Phe Cys Ser Val Gly Glu Trp Leu Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe Thr Ala Ala Gly Tyr 935 Asn Ser Leu Glu Ser Val Ala Arg Met Thr Ile Asp Asp Val Met Ser 960 950 955 Leu Gly Ile Thr Leu Val Gly His Gln Lys Lys Ile Met Ser Ser Ile 970 965 Gln Thr Met Arg Ala Gln Met Leu His Leu His Gly Thr Gly Ile Gln 985 990 980 Val

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:

994 amino acids

(B) TYPE:

amino acid

(C) STRANDEDNESS:

single

(D) TOPOLOGY:

linear

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Val Val Gln Thr Arg Phe Pro Ser Trp Ile Ile Leu Cys Tyr Ile 1 5 10 15

Trp Leu Leu Gly Phe Ala His Thr Gly Glu Ala Gln Ala Ala Lys Glu 20 25 30

Val Leu Leu Asp Ser Lys Ala Gln Gln Thr Glu Leu Glu Trp Ile 35 40 45

Ser Ser Pro Pro Ser Gly Trp Glu Glu Ile Ser Gly Leu Asp Glu Asn 50 55 60

Tyr Thr Pro Ile Arg Thr Tyr Gln Val Cys Gln Val Met Glu Pro Asn 65 70 75 80

Gln Asn Asn Trp Leu Arg Thr Asn Trp Ile Ser Lys Gly Asn Ala Gln 85 90 95

Arg Ile Phe Val Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu 100 105 110

Pro Gly Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr 115 120 125

Glu Thr Asp Tyr Asp Thr Gly Arg Asn Ile Arg Glu Asn Leu Tyr Val 130 135 140

Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser Phe Thr Gln Gly Asp Leu 145 150 155 160

Gly Glu Arg Lys Met Lys Leu Asn Thr Glu Val Arg Glu Ile Gly Pro 165 170 175

Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys 180 185 190

Ile Ala Leu Val Ser Val Lys Val Tyr Tyr Lys Lys Cys Trp Thr Ile 195 200 205

Val Glu Asn Leu Ala Val Phe Pro Asp Thr Val Thr Gly Ser Glu Phe 210 215 220

Ser Ser Leu Val Glu Val Arg Gly Thr Cys Val Ser Ser Ala Glu Glu 225 230 235 240

Glu Ala Glu Asn Ser Pro Arg Met His Cys Ser Ala Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Ile Cys Lys Ala Gly Tyr Gln Gln Lys Gly Asp Thr Cys Glu Pro Cys Gly Arg Arg Phe Tyr Lys Ser Ser Ser Gln Asp Leu Gln Cys Ser Arg Cys Pro Thr His Ser Phe Ser Asp Arg Glu Gly Ser Ser Arg Cys Glu Cys Glu Asp Gly Tyr Tyr Arg Ala Pro Ser Asp Pro Pro Tyr Val Ala Cys Thr Arg Pro Pro Ser Ala Pro Gln 330 Asn Leu Ile Phe Asn Ile Asn Gln Thr Thr Val Ser Leu Glu Trp Ser Pro Pro Ala Asp Asn Gly Gly Arg Asn Asp Val Thr Tyr Arg Ile Leu 355 Cys Lys Arg Cys Ser Trp Glu Gln Gly Glu Cys Val Pro Cys Gly Ser Asn Ile Gly Tyr Met Pro Gln Gln Thr Gly Leu Glu Asp Asn Tyr Val 390 395 385 Thr Val Met Asp Leu Leu Ala His Ala Asn Tyr Thr Phe Glu Val Glu 405 410 415 Ala Val Asn Gly Val Ser Asp Leu Ser Arg Ser Gln Arg Leu Phe Ala Ala Val Ser Ile Thr Thr Gly Gln Ala Ala Pro Ser Gln Val Ser Gly 435 445 Val Met Lys Glu Arg Val Leu Gln Arg Ser Val Gln Leu Ser Trp Gln 455 450 Glu Pro Glu His Pro Asn Gly Val Ile Thr Glu Tyr Glu Ile Lys Tyr 470 475 Tyr Glu Lys Asp Gln Arg Glu Arg Thr Tyr Ser Thr Leu Lys Thr Lys 490 485 Ser Thr Ser Ala Ser Ile Asn Asn Leu Lys Pro Gly Thr Val Tyr Val 505

Phe Gln Ile Arg Ala Val Thr Ala Ala Gly Tyr Gly Asn Tyr Ser Pro 520 Arg Leu Asp Val Ala Thr Leu Glu Glu Ala Ser Gly Lys Met Phe Glu 530 Ala Thr Ala Val Ser Ser Glu Gln Asn Pro Val Ile Ile Ile Ala Val 550 Val Ala Val Ala Gly Thr Ile Ile Leu Val Phe Met Val Phe Gly Phe 570 Ile Ile Gly Arg Arg His Cys Gly Tyr Ser Lys Ala Asp Gln Glu Gly Asp Glu Glu Leu Tyr Phe His Cys Thr Lys Thr Tyr Ile Asp Pro Glu Thr Tyr Glu Asp Pro Asn Arg Ala Val His Gln Phe Ala Lys Glu Leu Asp Ala Ser Cys Ile Lys Ile Glu Arg Val Ile Gly Ala Gly Glu Phe 625 Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Pro Gly Gln Arg Asp Val . 650 Ala Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Cys Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro 685 680 675 Asn Val Val His Leu Glu Gly Val Val Thr Arg Gly Lys Pro Val Met 695 Ile Val Ile Glu Phe Met Glu Asn Gly Ala Leu Asp Ala Phe Leu Arg 720 715 710 705 Lys His Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg 730 725 Gly Ile Ala Ala Gly Met Arg Tyr Leu Ala Asp Met Gly Tyr Val His 745 Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys 765 760 Lys Val Ser Asp Phe Gly Leu Ser Arg Val Ile Glu Asp Asp Pro Glu 780 775 770

Ala Val Tyr Thr Thr Gly Gly Lys Ile Pro Val Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp 810 Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro 825 Tyr Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala Ile Glu Glu Gly Tyr Arg Leu Pro Ala Pro Met Asp Cys Pro Ala Gly Leu His Gln Leu 850 855 Met Leu Asp Cys Trp Gln Lys Asp Arg Ala Glu Arg Pro Lys Phe Glu 870 875 Gln Ile Val Gly Ile Leu Asp Lys Met Ile Arg Asn Pro Ser Ser Leu 890 Lys Thr Pro Leu Gly Thr Cys Ser Arg Pro Leu Ser Pro Leu Leu Asp 900 905 910 Gln Ser Thr Pro Asp Phe Thr Ala Phe Cys Ser Val Gly Glu Trp Leu 920 Gln Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe Thr Ala Ala Gly Tyr Asn Ser Leu Glu Ser Val Ala Arg Met Thr Ile Asp Asp Val Met 945 950 960 Ser Leu Gly Ile Thr Leu Val Gly His Gln Lys Lys Ile Met Ser Ser 965 970 975 Ile Gln Thr Met Arg Ala Gln Met Leu His Leu His Gly Thr Gly Ile 985 990

Gln Val