Deep dive into Kubernetes Networking

Rajat Khanna SDE III @ CommerceIQ

Prerequisites

Kubernetes API Server

Controllers

```
while true:
   X = currentState()
   Y = desiredState()

if X == Y:
   return # Do nothing
   else:
   do(tasks to get to Y)
```

What is NAT?

Kubernetes Networking Model

Requirements for any networking implementation

- All Pods can communicate with all other Pods without NAT
- All nodes can communicate with all Pods without NAT
- The IP that a Pod sees itself as is the same IP that others see it as.

Types of Networking in Kubernetes

- Container to Container Networking
- Pod to Pod Networking
 - Same Node
 - Different Nodes
- Pod to Service Networking
- Pod to Internet Networking (Egress)
- Internet to Pod Networking (Ingress)
 - Layer 4 Load Balancer
 - Layer 7 Ingress Controller

Container to Container Networking

src ctr1 dest ctr2

Container to Container Networking

Life of a Packet

srcpod1destpod2

Life of a Packet: Same Node

Address Resolution Protocol

ARP Lookup Table

IP	MAC ADDRESS
192.168.0.9	00:B0:D0:63:C2:26
192.168.0.2	00:B0:D0:63:C2:28
192.168.0.10	00:B0:D0:63:C2:29

srcpod1destpod2

Life of a Packet: Same Node

Life of a Packet: Across Node

K8s service

- A Kubernetes service allows you to track a set of Pod Ip addresses that are dynamically changing over time.
- Services act as an abstraction over Pods and assign a single virtual IP address to a group of Pod IP addresses.
- Any traffic addressed to the virtual IP of the Service will be routed to the set of Pods that are associated with the virtual IP.
- This allows the set of Pods associated with a Service to change at any time clients only need to know the Service's virtual IP, which does not change.

netfilter

- Networking framework build in linux.
- Allows networking-related operations in the form of customised handlers.
- Functions:
 - Packet Filtering
 - Network Address Translation
 - Port Translation

iptables

• iptables is a user-space program providing a table-based system for defining rules for manipulating and transforming packets using the netfilter framework.

Pod to Service Networking

Pod to Service Networkipa

Life of a Packet

Network

src	pod6
dest	svc1
dest	pod4

Life of a Packet: Response Journey

Internode

Network

s rc	pod4
src	svc1
dest	pod6

Pod to Internet Networking

Pod to Internet Networking

Life of a Packet: Egress

src	pod1
src	vm1 ip
src	internet gw ip
dest	internet

Internet

Internet to Pod Networking

Internet to Pod Networking

Life of a Packet: Traditional Servers

Internet to Pod Networking

srcclientpod3

Life of a Packet: Ingress (Layer 4 Load Balancer)

Networking Types Summarised

Container to Container Networking

Through localhost in the same network namespace

- Pod to Pod Networking
 - Same Node
 - Different Nodes
- Pod to Service Networking
- Pod to Internet Networking (Egress)
- Internet to Pod Networking (Ingress)
 - Layer 4 Load Balancer
 - Layer 7 Ingress Controller

Through Bridge

Through Internode network

Through iptables

Through Internet Gateway

Through NodePort

Thank You!