串行外设接口—SPI模式

朱雪秦 实验与创新实践教育中心

主要内容

◆ SPI总线协议

- > 总线结构
- > 工作模式
- > 数据传输时序
- ◆ MSP430 SPI模块
 - > 模块的特性
 - > 主从机模式
 - > SPI模块寄存器

- ◆ SPI接口是Motorola首先提出的全双工三/四线同步串行外围接口,采用主从模式架构,支持多从设备应用,一般只支持单主设备。
- ◆ 利用3~4条线完成两个芯片之间的双工高速通信。两条数据线用于收发数据, 一条时钟线用于同步,一条作为从机选择。
- ◆ 时钟由主设备控制,当主机发送一字节数据(通过主出从入MOSI引脚)的同时,从机返回一字节数据(通过主入从出MISO引脚)。
- ◆ 总线上允许连接多个设备,在同一时刻只允许一个主机操作总线,并且同时只能与一个从机通信。主机控制数据的传输过程。
- ◆ 目前应用中的数据传输速率可达Mbps级(每秒传输的位数,波特率)。

SPI总线结构

SPI总线可在软件的控制下构成各种简单的或复杂的系统:

- · 1个主MCU和几个从MCU
- · 几个从MCU相互连接构成多主机系统(分布式系统)
- 1个主MCU和1个或几个从I/O设备 <常用>

SPI典型结构如下:

SPI工作模式

◆ 主机模式:

当器件作为主机时,使用一个IO引脚拉低相应从机的选择引脚(STE),传输的起始由主机发送数据来启动,时钟(SCLK)信号由主机产生。通过MOSI发送数据,同时通过MISO引脚接收从机发出的数据

◆ 从机模式:

当器件作为从机时,传输在从机选择引脚(STE)被主机拉低后开始,接收主机输出的时钟信号,在读取主机数据的同时通过MISO引脚输出数据。

SPI电气连接

以4线SPI为例,其通信时需要的4个引脚分别为:

引脚名称	类型	描述	
SCLK	输入/输出	串行时钟,用于同步SPI接口间数据传输的时钟信号。该时钟信号总是由 <mark>主机驱动</mark> ,并且从机接收	
STE	输入	从机选择,SPI从机选择信号是一个 <mark>低有效信号</mark> ,用于指示被选择参与数据传输的从机。每个从机都有各自特定的从机选择输入信号。	
MISO	输入/输出	主入从出,MISO信号是一个单向的信号,它将数据由从机传 输到主机。	
MOSI	输入/输出	主出从入,MOSI信号是一个单向的信号,它将数据从主机传输到从机。	

STE引脚作用

0

◆ STE: 从机模式发送接收允许控制引脚,控制多主从系统中的多个从机。该引脚不用于3线SPI操作,可以在4线SPI操作中使多主机共享总线,避免发生冲突

SPI数据传输

数据传输格式:

通常是高位(MSB)在前,低位(LSB)在后。一些增强型MCU中可以通过软件设置高位在前或低位在前。

下面以8位数据的传输为例,看一下4种不同数据传输格式的时序。首先介绍两个概念:

1.时钟极性:表示时钟信号在空闲时是高电平还是低电平。

2.时钟相位:决定数据是在SCLK的上升沿采样还是在SCLK的结束沿采样。

传输模式

根据时钟极性(CPOL)及相位(CPHA)不同可以组合成4种工作模式: SPI0, SPI1, SP2, SP3.

- (1) SPIO: CPOL=0,CPHA=0
- (2) SPI1: CPOL=0,CPHA=1
- (3) SPI2: CPOL=1,CPHA=0
- (4) SPI3: CPOL=1,CPHA=1

传输模式

◆ 时钟极性(CPOL)定义了时钟空闲状态电平,对传输协议没有重大影响。

➤ CPOL=0: 时钟空闲状态为低电平。

➤ CPOL=1: 时钟空闲状态为高电平。

传输模式

- ◆ 时钟相位(CPHA)定义数据的采样时间。
 - ➤ CPHA=0: 在时钟的第一个跳变沿(上升沿或下降沿)进行数据采样。
 - > CPHA=1: 在时钟的第二个跳变沿(上升沿或下降沿)进行数据采样。

SPI传输时序

SPI特点

◆ 优点:

- (1)接口简单,利于硬件设计与实现。
- (2) 时钟速度快,且没有系统开销。
- (3) 相对抗干扰能力强,传输稳定。

◆ 缺点:

- (1) 缺乏流控制机制,无论主器件还是从器件均不对消息进行确认,主器件无法知道从器件是否繁忙。因此,需要软件弥补,增加了软件开发工作量。
- (2) 没有多主器件协议,必须采用很复杂的软件和外部逻辑来实现多主器件架构。

下列关于SPI的描述,正确的是哪些?

- a. 全双工同步串行通信
- b. 接收与发送可以同时进行
- c. 在同一时刻只允许一个主机操作总线,且同时只能与 一个从机通信
- d. 时钟由从机产生

主要内容

- ◆ SPI总线协议
 - > 总线结构
 - > 工作模式
 - > 数据传输时序

- ◆ MSP430 SPI模块
 - > 模块的特性
 - > 主从机模式
 - > SPI模块寄存器

通用串行通信接口(USCI)模块

- ◆ 通用串行通信接口(USCI)模块支持多种串行通信模式。不同的USCI 模块支持不同的模式
 - ➤ USCI_Ax 模块支持:
 - ✓ UART 模式
 - ✓ IrDA 通信的脉冲整形
 - ✓ LIN 通信的自动波特率检测
 - ✓ SPI 模式
 - ➤ USCI_Bx 模块支持:
 - ✓I2C 模式
 - ✓ SPI 模式

MSP430 SPI模块特点

- > 支持3线或4线SPI操作
- > 支持7位或8位数据格式
- > 接收和发送有单独的移位寄存器
- > 接收和发送有独立的缓冲器
- > 接收和发送有独立的中断能力
- > 时钟的极性和相位可编程
- > 主模式的时钟频率可编程
- > 传输速率可编程
- > 支持连续收发操作
- > 支持主从方式 Page 17

SPI模式原理框图

raye 10

主模式

MSP430 USCI作为主机、外围设备作为从机

从模式

外围设备作为主机,MSP430 USCI作为从机

SPI模式下可用的USCI寄存器

USCI_Ax和USCI_Bx都有SPI模块,下面以USCI_Bx为例,介绍相关寄存器

名称	描述	访问	复位值	寄存器访问
UCBxCTLW0	USCI_Bx控制字0	读/写	0001h	字
UCBxBRW	USCI_Bx波特率控制字	读/写	0000h	字
UCBxMCTL	USCI_Bx调制器控制			
UCBxSTAT	USCI_Bx状态寄存器	读/写	00h	字节
UCBxRXBUF	USCI_Bx接收缓存	读/写	00h	字节
UCBxTXBUF	USCI_Bx发送缓存	读/写	00h	字节
UCBxI2COA	USCI_Bx I2C本机地址	读/写	0000h	字
UCBxI2CSA	USCI_Bx I2C从机地址	读/写	0000h	字
UCBxICTL	USCI_Bx中断控制	读/写	0200h	字
UCBxIE	USCI_Bx中断使能	读/写	00h	字节
UCBxIFG	USCI_Bx中断标志	读/写	02h	字节
UCBxIV	USCI_Bx中断向量	读	0000h	字

SPI课上实验

◆ 内容: 电子纸屏幕显示。参考源代码(4.1-E-Ink.zip),自行设计显示字符内容

◆ 要求:

- ➤ 结合电子纸屏幕用户手册和课上SPI通信的内容,学习电子纸屏幕的驱动代码。
- ▶ 更改实现自定义的电子纸屏幕显示内容:字符,图片
- > 实现电子纸屏幕的动态显示:利用GPIO中断,实现某按键按下一次,即显示一行字符。再次按下,则显示另一行字符。(字符内容自定义),例如

:

Chapter 1	A moving and speaking puppet
Chapter 2	Growing nose
Chapter 3	Donkey ears
Chapter 4	A good boy Pinocchio

SPI作业

提示:

电子纸屏幕硬件接线图——相关引脚电子纸屏幕用户手册——如何写入字符

GDE0213B1datasheet-电子墨水屏数据手册.pdf

往届作品

视频

