

Mahindra University Hyderabad

École Centrale School of Engineering Minor-2 Exam

Program: B. Tech.

Branch: CM Subject: Stochastic Processes (MA2213)

Year: II

Semester: II

Date: 19/04/2025

Start Time: 10:00 AM

Time Duration: 1.5 Hours

Max. Marks: 20

Instructions:

1) Answer all the questions.

2) All questions are self-explanatory; no clarification will be provided during the exam.

Course outcomes (COs)

CO 1: Apply stochastic processes for modeling time-evolving random events.

CO 2: Understand the existence of different types of limits, continuity, differentiability, and integrability.

CO 3: Apply and analyze stochastic filtering techniques and signal processing applications.

CO 4: Understand Markov processes and their applications.

Q.No.	Questions	Marks	CO	BL	PO	PI
						Code
1	 Let R_X(τ) = σ²e⁻⁻² be the autocorrelation function of random process X(t). (i) Does X(t) have a mean square derivative? If so, find its mean and autocorrelation function. (ii) Does X(t) have a mean square integral? If so, find its mean and autocorrelation function. 	5	CO2	L2	PO2	2.2.1
2	A linear system with input $Z(t)$ is described by $X'(t) + \alpha X(t) = Z(t), t \geq 0, \ X(0) = 0.$ Find the output $X(t)$ if the input is a zero-mean Gaussian random process with autocorrelation function given by $R_X(\tau) = \sigma^2 e^{-2 \tau }$.	5	CO2	L3	PO2	2.2.3

Q.No.	Questions	Marks	CO	BL	РО	Code
3	 Let X(t) = A cos(2πωt), where A is a random variable with mean m and variance σ². (i) Evaluate ⟨X(t)⟩_T, find its limit as T → ∞, and compare with m_X(t). (ii) Evaluate ⟨X(t+τ)X(t)⟩_T, find its limit as T → ∞, and compare with R_X(t+τ,t). 	5	CO2	L5	PO2	2.2.1
4	 Let X(t) be a WSS Gaussian random process with R_X(τ) = e^{- τ}. (i) Find the Fourier series expansion for X(t) in the interval [0, T]. (ii) Find the probability distribution of the coefficients in the Fourier series. 	5	CO3	L3	PO2	2.3.2

Bloom's Level wise Marks Distribution

Course Outcome wise Marks Distribution

BL – Bloom's Taxonomy Levels:

1 – Remembering, 2 – Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 – Creating

CO - Course Outcomes PO - Program Outcomes

PI Code - Performance Indicator Code