

CA-IS376x High-Speed Six-Channel Digital Isolators

1. Features

Robust Galvanic Isolation of Digital Signals

- High lifetime: >40 years
- Up to 5000 V_{RMS} isolation rating (narrow body packages) and up to 5000 V_{RMS} isolation rating (wide body packages)
- ±150 kV/µs typical CMTI
- Wide operating temperature range: -40°C to 125°C
- Schmitt trigger inputs

Interfaces Directly with Most MCUs and FPGAs

- Data rate: DC to 150Mbps
- Accepts 2.5V to 5.5V supplies
- Default output High (CA-IS376xH) and Low (CA-IS376xL) Options

• Low Power Consumption

- 1.5mA per channel at 1Mbps with V_{DD} = 5.0V
- 6.6mA per channel at 100Mbps with V_{DD} = 5.0V

Best in class propagation delay and skew

- 12ns typical propagation delay
- 1ns pulse width distortion
- 2ns propagation delay skew (chip -to-chip)
- 5ns minimum pulse width

No Start-Up Initialization Required

Package Options

- Narrow-body SOIC16-NB(N) package
- Wide-body SOIC16-WB(W) package

Safety Regulatory Approvals

- VDE 0884-17 isolation certification
- UL According to UL1577
- IEC 62368-1, IEC 61010-1, GB 4943.1-2011 and GB 8898-2011 certifications

2. Applications

- Industrial Automation
- Motor Control
- Medical Systems
- Isolated Power Supplies
- Solar Inverters
- Isolated ADC,DAC

3. General Description

The CA-IS376x devices are high-performance six-channel, unidirectional digital isolators with up to 3.75kV_{RMS} (narrowbody package) or 5kV_{RMS} (wide-body package) isolation rating and ultra-fast data rate. The CA-IS376x devices offer high electromagnetic immunity and low emissions at low power consumption while isolating different ground domains and block high-voltage/high-current transients from sensitive or human interface circuitry. Each isolation channel has a logic input and output buffer separated by capacitive silicon dioxide (SiO2) insulation barrier, the integrated Schmitt trigger on each input provide excellent noise immunity.

The CA-IS376x family offers all possible unidirectional channel configurations to accommodate any 6-channel design digital I/O applications, especial for the multiple SPI devices isolation. The CA-IS3760 features six channels transferring digital signals in one direction; The CA-IS3761 device has five forward and one reverse-direction channels; The CA-IS3762 device offers four forward and two reverse-direction channels isolation; The CA-IS3763 provides further design flexibility with three channels in each direction. All devices of this family features default outputs. When the input is either not powered or is open-circuit, the default output is low for devices with suffix L and high for devices with suffix H, see the *Ordering Information* for suffixes associated with each option.

The CA-IS376x series devices are specified over the -40°C to +125°C operating temperature range and are available in 16-pin SOIC narrow body package and 16-pin SOIC wide body package.

Device information

Part number	Package	Package size (NOM)
CA-IS3760	SOIC16-NB (N)	9.90 mm × 3.90 mm
CA-IS3761	SOICTO-IND (IV)	9.90 11111 ^ 3.90 11111
CA-IS3762	COLC16 M/D/M/	10.30 mm × 7.50 mm
CA-IS3763	SOIC16-WB(W)	10.30 IIIII × 7.50 mm

GNDA and GNDB are the isolated grounds for A side and B side respectively.

4. Ordering Information

Table 4-1. Ordering Information

Part Number	Number of Inputs A Side	Number of Inputs B Side	Default Output	Isolation Rating (Kv _{Rms})	Output Enable	Package
CA-IS3760LN	6	0	Low	3.75	No	SOIC16-NB
CA-IS3760LW	6	0	Low	5.0	No	SOIC16-WB
CA-IS3760HN	6	0	High	3.75	No	SOIC16-NB
CA-IS3760HW	6	0	High	5.0	No	SOIC16-WB
CA-IS3761LN	5	1	Low	3.75	No	SOIC16-NB
CA-IS3761LW	5	1	Low	5.0	No	SOIC16-WB
CA-IS3761HN	5	1	High	3.75	No	SOIC16-NB
CA-IS3761HW	5	1	High	5.0	No	SOIC16-WB
CA-IS3762LN	4	2	Low	3.75	No	SOIC16-NB
CA-IS3762LW	4	2	Low	5.0	No	SOIC16-WB
CA-IS3762HN	4	2	High	3.75	No	SOIC16-NB
CA-IS3762HW	4	2	High	5.0	No	SOIC16-WB
CA-IS3763LN	3	3	Low	3.75	No	SOIC16-NB
CA-IS3763LW	3	3	Low	5.0	No	SOIC16-WB
CA-IS3763HN	3	3	High	3.75	No	SOIC16-NB
CA-IS3763HW	3	3	High	5.0	No	SOIC16-WB

Contents

1.	Feat	ures	1
2.	Appl	ications	1
3.	Gene	eral Description	1
4.	Orde	ering Information	2
5.	Revi	sion History	3
6.	Pin C	Configuration and Description	4
7.	Spec	ifications	5
	7.1.	Absolute Maximum Ratings ¹	5
	7.2.	ESD Ratings	
	7.3.	Recommended Operating Conditions	
	7.4.	Thermal Information	5
	7.5.	Power Rating	ε
	7.6.	Insulation Specifications	7
	7.7.	Safety-Related Certifications	8
	7.8.	Electrical Characteristics	

	7.9.	Supply Current Characteristics	10
	7.10.	Timing Characteristics	13
8.	Parar	neter Measurement Information	14
9.	Detai	led Description	16
	9.1.	Overview	16
	9.2.	Functional Block Diagram	16
	9.3.	Device Operation Modes	16
10.	Appli	cation and Implementation	17
11.	Packa	age Information	19
	11.1.	16-Pin Wide Body SOIC Package Outline	19
	11 2	16-Pin Narrow Body SOIC Package Outline	20
	11.2.	10 m Mariow Body Sole rackage Gathire	
12.		ering Temperature (reflow) Profile	
	Solde		21

5. Revision History

Revision Number	Description	Revision date	Page Changed
Version 1.0	N/A		N/A
Version 1.01	Changed V_{IORM} to 1414V, changed V_{IOWM} AC RMS value to 1000V and DC value to 1414V. Updated Power Ratings table.		7, 11, 12, 13
Version 1.02	$V_{\text{IT+(IN)}}$ min value updated to 2V, $V_{\text{IT-(IN)}}$ max value updated to 0.8V and removed $V_{\text{I(HYS)}}$.		9
Version 1.03	Description of $V_{\text{IT+(IN)}}$ changed to High-level Input Voltage, description of $V_{\text{IT-(IN)}}$ changed to Low-level Input Voltage.		9
Version 1.04	Revised POD and tape reel information	2022/12/15	19,22
Version 1.05	Update VDE certification information Update Supply Current information	2023/09/13	7,8 10-12

6. Pin Configuration and Description

Figure 6-1. CA-IS376x pin configuration

Table 6-1. CA-IS376x pin description

	16-SOI	C Pin#				
CA- IS3760	CA- IS3761	CA- IS3762	CA- IS3763	Name	Туре	Description
1	1	1	1	VDDA	Supply	Power supply for side A.
2	2	2	2	VI1	Digital I/O	Digital input 1 on side A, corresponds to logic output 1 on side B.
3	3	3	3	VI2	Digital I/O	Digital input 2 on side A, corresponds to logic output 2 on side B.
4	4	4	4	VI3	Digital I/O	Digital input 3 on side A, corresponds to logic output 3 on side B.
5	5	5	12	VI4	Digital I/O	Digital input 4 on side A/B, corresponds to logic output 4 on side B/A.
6	6	11	11	VI5	Digital I/O	Digital input 5 on side A/B, corresponds to logic output 5 on side B/A.
7	10	10	10	VI6	Digital I/O	Digital input 6 on side A/B, corresponds to logic output 6 on side B/A.
8	8	8	8	GNDA	Ground	Ground reference for side A.
9	9	9	9	GNDB	Ground	Ground reference for side B.
10	7	7	7	V06	Digital I/O	Digital output 6 on side B/A, VO6 is the logic output for the VI6 input on side A/B.
11	11	6	6	VO5	Digital I/O	Digital output 5 on side B/A, VO5 is the logic output for the VI5 input on side A/B.
12	12	12	5	VO4	Digital I/O	Digital output 4 on side B/A, VO4 is the logic output for the VI4 input on side A/B.
13	13	13	13	VO3	Digital I/O	Digital output 3 on side B, VO3 is the logic output for the VI3 input on side A.
14	14	14	14	VO2	Digital I/O	Digital output 2 on side B, VO2 is the logic output for the VI2 input on side A.
15	15	15	15	VO1	Digital I/O	Digital output 1 on side B, VO1 is the logic output for the VI1 input on side A.
16	16	16	16	VDDB	Supply	Power supply for side B.

7. Specifications

7.1. Absolute Maximum Ratings¹

Shanghai Chipanalog Microelectronics Co., Ltd.

	Parameters	Minimum value	Maximum value	Unit
V _{DDA} , V _{DDB}	Power supply voltage ²	-0.5	7.0	V
V _{IN}	Voltage at VI _x , VO _x , EN _x	-0.5	$V_{DD_{-}} + 0.5^{3}$	V
I ₀	Output current	-20	20	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	-65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not be exceed 7 V.

7.2. ESD Ratings

		Numerical value	Unit		
V _{ESD}	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	±6000	V		
Electrostatic discharge	Charged device model (CDM), per JEDEC Specification JESD22-C101, all pins ²	±2000			
Notes:					
1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.					
2. Per JEDEC do	2. Per JEDEC document JEP157, 250V HBM allows safe manufacturing of standard ESD control process.				

7.3. Recommended Operating Conditions

	PARAMETER		MIN	TYPE	MAX	UNIT
V_{DDA} , V_{DDB}	Supply voltage on side A, B		2.375	3.30	5.50	V
V _{DD(UVLO+)}	V _{DD} Under-voltage-Lockout Threshold W	hen Supply Voltage is Rising	1.95	2.24	2.375	V
V _{DD(UVLO-)}	V _{DD} Under-voltage-Lockout Threshold When Supply Voltage is Falling		1.88	2.10	2.325	V
V _{HYS(UVLO)}	V _{DD} Under-voltage-Lockout Threshold Hysteresis		70	140	250	mV
		$V_{DDO}^{1} = 5V$	-4			
I _{OH}	High-level Output Current	$V_{DDO} = 3.3V$	-2			mA
		$V_{DDO} = 2.5V$	-1			
	Low-level Output Current	$V_{DDO} = 5V$			4	mA
I_{OL}		$V_{DDO} = 3.3V$			2	
		$V_{DDO} = 2.5V$			1	
V _{IH}	High-level Input Voltage	<u>.</u>	2.0			V
V _{IL}	Low-level Input Voltage				0.8	V
DR	Data Rate		0		150	Mbps
T _A	Ambient Temperature		-40	27	125	°C
Note:			•			
1. V _{DDO} =	Output-side supply V _{DD} .					

7.4. Thermal Information

Thermal Metric		CA-IS3	Unit	
		SOIC16-NB(N)	SOIC16-WB(W)	Onit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	96.2	83.4	°C/W

7.5. Power Rating

	Parameters	Test conditions	MIN	TYPE	MAX	Unit
CA-IS3	760					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			494	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			49	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave.			445	mW
CA-IS3	761					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			494	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			113	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave.			381	mW
CA-IS3	762					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V}, C_{L} = 15 \text{ pF},$			494	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			180	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave.			314	mW
CA-IS3	763					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			494	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			247	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave.			247	mW

Insulation Specifications

Shanghai Chipanalog Microelectronics Co., Ltd.

Davamatava		Took conditions		Value		
	Parameters	Test conditions	W	N	Unit	
CLR	External Clearance	Shortest terminal-to-terminal distance through air	8	4	mm	
CPG	External Creepage	Shortest terminal-to-terminal distance across the package surface	8	4	mm	
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	28	μm	
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	>600	V	
	Material group	Per IEC 60664-1	ı	I		
		Rated mains voltage ≤ 150 V _{RMS}	I-IV	I-IV		
_)	Rated mains voltage ≤ 300 V _{RMS}	I-IV	1-111		
(Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600 V _{RMS}	I-IV	n/a		
		Rated mains voltage ≤ 1000 V _{RMS}	1-111	n/a		
DIN V	VDE V 0884-17:2021-10 ¹	-	1	I		
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	566	V_{PK}	
.,		AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	400	V _{RMS}	
V_{IOWM}	Maximum operating isolation voltage	DC voltage	1414	566	V_{DC}	
V _{IOTM}	Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$, t=60 s (certified); $V_{TEST} = 1.2 \times V_{IOTM}$, t=1 s (100% product test)	7070	5300	V_{PK}	
V _{IOSM}	Maximum surge isolation voltage ²	Test method per IEC 60065, 1.2/50 μ s waveform, $V_{TEST} = 1.6 \times V_{IOSM}$ (qualification) (W) $V_{TEST} = 1.3 \times V_{IOSM}$ (qualification) (N)	7070	5000	V_{PK}	
		Method a, after input/output safety test of the subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10$ s	≤5	≤5		
q_{pd}	Apparent charge ³	Method a, after environmental test of the subgroup 1, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.6 \times V_{IORM}$, $t_m = 10$ s	≤5	≤5	pC	
·	Apparent charge	Method b, at routine test (100% production test) and preconditioning (type test) $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 \text{ s;} \\ V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 \text{ s (W)} \\ V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1 \text{ s (N)}$	≤5	≤5		
C _{IO}	Barrier capacitance, input to output ⁴	$V_{IO} = 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}$	~0.5	~0.5	pF	
		V _{IO} = 500 V, T _A = 25°C	>1012	>1012		
R_{IO}	Isolation resistance ⁴	V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C	>1011	>10 ¹¹	Ω	
		V _{IO} = 500 V at T _S = 150°C	>109	>109		
	Pollution degree		2	2		
UL 157	=	1	•	1		
V _{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification) $V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	5000	3750	V _{RMS}	

Notes:

- This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by 1. means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization test.
- The characterization charge is discharging charge (pd) caused by partial discharge. 3.
- Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

7.7. Safety-Related Certifications

VDE	UL	cqc	TUV
Certified according to DIN VDE V 0884-17:2021-10 Maximum transient isolation voltage: 7070V _{pk} (SOIC16-WB) and 5300V _{pk} (SOIC16-NB) Maximum repetitive peak isolation voltage: 1414V _{pk} (SOIC16-WB) and 566V _{pk} (SOIC16-WB) Maximum surge isolation voltage: 7070V _{pk} (SOIC16-WB) and 5000V _{pk} (SOIC16-WB)	Certified according to UL 1577 Component Recognition Program SOIC16-NB: 3750 VRMS; SOIC16-WB: 5000 VRMS	Certified according to GB 4943.1-2011 and GB 8898-2011 SOIC16-NB: Basic insulation, 400 V _{RMS} maximum working voltage; SOIC16-WB: Reinforced insulation, 1000 V _{RMS} maximum working voltage (Altitude ≤ 5000 m)	Certified according to EN/IEC 61010-1:2010 (3rd Ed) and EN /IEC 62368-1:2014+A11:2017 5000 V _{RMS} (SOIC16-WB) insulation and 3750V _{RMS} (SOIC16-NB) insulation per EN/IEC 61010-1:2010 (3rd Ed) and EN /IEC 62368-1:2014+A11:2017, working voltage is up to 1000 V _{RMS} (SOIC16-WB) and 400 V _{RMS} (SOIC16-NB)
Certificate number: 40057278 Certificate number: 40052786	Certificate number : E511334	Certificate number SOIC16-NB: CQC20001251750 SOIC16-WB: CQC20001251466	CB Certificate number: JPTUV-111116; DE 2-027880 AK Certificate number: AK 50474784 0001; AK 50474786 0001

Shanghai Chipanalog Microelectronics Co., Ltd.

7.8. Electrical Characteristics

$V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 8-1	V _{DDO} ¹ -0.4	4.8		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 8-1		0.2	0.4	V
V _{IT+(IN)}	High-level Input Voltage		2			V
V _{IT-(IN)}	Low-level Input Voltage				0.8	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Zo	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DD1}^1$ or 0 V, $V_{CM} = 1200V$; See Figure 8-3	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz}, V_{DD} = 5 \text{ V}$		2		pF

Notes:

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. The nominal output impedance of each isolator driver is 50 $\Omega \pm 40\%$.
- 3. Measured from pin to Ground.

$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -2mA; See Figure 8-1	V _{DDO} ¹ -0.4	3.1		V
V _{OL}	Low-level Output Voltage	I _{OL} = 2mA; See Figure 8-1		0.2	0.4	V
V _{IT+(IN)}	Input logic High Voltage		2			V
V _{IT-(IN)}	Input logic Low Voltage				0.8	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200V$; See Figure 8-3	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$, $V_{DD} = 3.3 \text{ V}$		2		pF

Notes:

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. The nominal output impedance of each isolator driver is 50 Ω ± 40%.
- 3. Measured from pin to Ground.

$V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	Parameters	Test conditions	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -1mA; See Figure 8-1	V _{DDO} ¹ -0.4	2.3		V
V _{OL}	Low-level Output Voltage	I _{OL} = 1mA; See Figure 8-1		0.2	0.4	V
V _{IT+(IN)}	Input logic High Voltage		2			V
V _{IT-(IN)}	Input logic Low Voltage				0.8	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at INx or ENx			20	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at INx	-20			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DD1}^1$ or 0 V, $V_{CM} = 1200V$; See Figure 8-3	100	150		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$, $V_{DD} = 2.5 \text{ V}$		2		pF

Notes:

- 1. V_{DDI} = Input-side supply V_{DD} , V_{DDO} = Output-side supply V_{DD} .
- 2. The nominal output impedance of each isolator driver is 50 Ω ± 40%.
- 3. Measured from pin to Ground.

7.9. Supply Current Characteristics

 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified).

Parameters	Test conditions		SUPPLY CURRENT	MIN	ТҮР	MAX	UNIT
CA-IS3760					'	•	
	V _{IN} = 0V (CA-IS3760L);		I _{DDA}		2.3	3.6	
Complex Command - DC Cinnal	$V_{IN} = V_{DDA}$ (CA-IS3760H)		I _{DDB}		4.0	6.3	
Supply Current – DC Signal	$V_{IN} = V_{DDA}$ (CA-IS3760L);		I _{DDA}		10	16	
	V _{IN} = 0V(CA-IS3760H)		I _{DDB}		4.0	6.3	
		1Mbps	I _{DDA}		6.2	9.9	
	All Channels Switching with 50%	(500kHz)	I _{DDB}		4.5	7.2	mA
Consider Comment AC Cinnal	Duty Cycle Square Wave Clock	10Mbps	I _{DDA}		6.3	10	
Supply Current – AC Signal	Input with 5V Amplitude; $C_L = 15$ pF for Each Channel.	(5MHz)	I _{DDB}		8.3	12.8	
	prior Lacif Chainlei.	100Mbps	I _{DDA}		8.4	13.5	
		(50MHz)	I _{DDB}		46	70.5	1
CA-IS3761							•
	V _{IN} = 0V (CA-IS3761L);		I _{DDA}		2.9	4.6	
Cumply Current DC Cignal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3761H)		I _{DDB}		4.3	6.8	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3761L);		I _{DDA}		9.6	15.3	
$V_{IN} = OV(CA-IS3761H)$			I _{DDB}		5.8	9.2	
Duty Cycle Squ		1Mbps	I _{DDA}		6.3	10	Ī
	All Channels Switching with 50%	(500kHz)	I _{DDB}		5.4	8.5	mA
	Duty Cycle Square Wave Clock	10Mbps	I _{DDA}		7.1	11.2	
	Input with 5V Amplitude; C _L = 15	(5MHz)	I_{DDB}		8.8	13.5	
	prior Each Chainlei.	100Mbps	I _{DDA}		16	25	
		(50MHz)	I _{DDB}		41.4	62.8	
CA-IS3762							•
	V _{IN} = 0V (CA-IS3762L);		I _{DDA}		3.6	5.7	
Cumply Current DC Cignal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3762H)		I _{DDB}		3.9	6.2	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3762L);		I _{DDA}		8.7	13.9	
	$V_{IN} = OV(CA-IS3762H)$		I _{DDB}		6.5	10.4	
		1Mbps	I _{DDA}		6.3	10	
	All Channels Switching with 50%	(500kHz)	I _{DDB}		5.5	8.7	mA
Committee Committee AC Cinnal	Duty Cycle Square Wave Clock Input with 5V Amplitude; C _L = 15	10Mbps	I _{DDA}		7.6	11.9	
Supply Current – AC Signal	pF for Each Channel.	(5MHz)	I _{DDB}		8.2	12.9	
	prior Each Chamier.	100Mbps	I _{DDA}		21.3	32.6	
		(50MHz)	I _{DDB}		34.4	52.5	
CA-IS3763							
	V _{IN} = 0V (CA-IS3763L);		I _{DDA}		3.2	5.1	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3763H)		I _{DDB}		3.2	5.1	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^1$ (CA-IS3763L);		I _{DDA}		7.1	11.4	
	$V_{IN} = OV(CA-IS3763H)$		I _{DDB}		7.1	11.4	1
		1Mbps	I _{DDA}		5.4	8.6	
	All Channels Switching with 50%	(500kHz)	I _{DDB}		5.4	8.6	mA
Cumply Current AC Cia	Duty Cycle Square Wave Clock	10Mbps	I _{DDA}		7.4	11.6	
Supply Current – AC Signal	Input with 5V Amplitude; $C_L = 15$ pF for Each Channel.	(5MHz)	I _{DDB}		7.4	11.6	1
	prior Lacii Chailliei.	100Mbps	I _{DDA}		27.7	42.2	1
		(50MHz)	I _{DDB}		27.7	42.2	1

CHIPANALOG

 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

Parameters	Test conditions		SUPPLY CURRENT	MIN	ТҮР	MAX	UNIT
CA-IS3760					•		
	V _{IN} = 0V (CA-IS3760L);		I _{DDA}		2.2	3.5	
Consider Comment - DC Classel	$V_{IN} = V_{DDA}$ (CA-IS3760H)		I _{DDB}		3.8	6.0	
Supply Current – DC Signal	$V_{IN} = V_{DDA}$ (CA-IS3760L);		I _{DDA}		10.0	16.0	
	V _{IN} = 0V(CA-IS3760H)		I _{DDB}		4.0	6.3	
		1Mbps	I _{DDA}		6.1	9.8	
	All Channels Switching with 50%	(500kHz)	I _{DDB}		4.2	6.6	mA
Consults Consults AC Classel	Duty Cycle Square Wave Clock	10Mbps	I _{DDA}		6.1	9.7	
Supply Current – AC Signal	15 pF for Each Channel.	(5MHz)	I _{DDB}		6.8	10.5	
		100Mbps	I _{DDA}		7.4	11.8	
		(50MHz)	I _{DDB}		32.0	48.9	
CA-IS3761			1				
	V _{IN} = 0V (CA-IS3761L);		I _{DDA}		2.8	4.4	
	$V_{IN} = V_{DDI}^{1}$ (CA-IS3761H)		I _{DDB}		4.1	6.5	
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1}$ (CA-IS3761L);		I _{DDA}		9.4	15.0	
	V _{IN} = 0V(CA-IS3761H)		I _{DDB}		5.6	8.9	
		1Mbps	I _{DDA}		6.2	9.9	
Supply Current – AC Signal	All Channels Switching with 50%	(500kHz)	I _{DDB}		5.1	8.2	mA
	Duty Cycle Square Wave Clock	10Mbps	I _{DDA}		6.6	10.4	
	Input with 3.3V Amplitude; $C_L =$	(5MHz)	I _{DDB}		7.4	11.5	
	15 pF for Each Channel.	100Mbps			12.5	19.4	
		(50MHz)	I _{DDA}		29.7	45.1	
CA-IS3762		(30141112)	I _{DDB}		23.1	43.1	
CA-133702	V _{IN} = 0V (CA-IS3762L);		I		3.4	5.4	
	$V_{IN} = V_{DDI}^{1}$ (CA-IS3762H)		I _{DDA}			5.8	
Supply Current – DC Signal			I _{DDB}		3.7		
	$V_{IN} = V_{DDI}^{1}$ (CA-IS3762L);		I _{DDA}		8.5	13.5	_
	V _{IN} = 0V(CA-IS3762H)	4541	I _{DDB}		6.3	10.0	4
	All Channels Switching with 50%	1Mbps	I _{DDA}		6.1	9.7	mA
	Duty Cycle Square Wave Clock	(500kHz)	I _{DDB}		5.2	8.2	_
Supply Current – AC Signal	Input with 3.3V Amplitude; $C_L =$	10Mbps	I _{DDA}		7.0	11.0	
	15 pF for Each Channel.	(5MHz)	I _{DDB}		7.0	10.9	
		100Mbps	I _{DDA}		16.4	25.2	
		(50MHz)	I _{DDB}		24.7	37.8	
CA-IS3763	T		1				1
	V _{IN} = 0V (CA-IS3763L);		I _{DDA}		3.0	4.7	1
Supply Current – DC Signal	$V_{IN} = V_{DDI}^{1} (CA-IS3763H)$		I _{DDB}		3.0	4.7	1
	$V_{IN} = V_{DDI}^{1}$ (CA-IS3763L);		I _{DDA}		7.0	11.2	_
	V _{IN} = 0V(CA-IS3763H)		I _{DDB}		7.0	11.2	
	411.61	1Mbps	I _{DDA}		5.1	8.1	_ m⊿
	All Channels Switching with 50%	(500kHz)	I _{DDB}		5.1	8.1	
Cumply Current AC Cianal	Duty Cycle Square Wave Clock Input with 3.3V Amplitude; C _L =	10Mbps	I _{DDA}		6.5	10.2	
Supply Current – AC Signal	15 pF for Each Channel.	(5MHz)	I _{DDB}		6.5	10.2	
	15 pri loi Lacii Chainlei.	100Mbps	I _{DDA}		20.1	30.7	
		(50MHz)	I _{DDB}		20.1	30.7	1

 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

V _{IN} = 0V (CA-IS3760L);						
V _{IN} = 0V (CA-IS37601)·					•	
- 4		I _{DDA}		1.9	2.7	
$V_{IN} = V_{DDA}$ (CA-IS3760H)		I _{DDB}		3.6	5.2	1
$V_{IN} = V_{DDA}$ (CA-IS3760L);		I _{DDA}		6.8	10.4	1
V _{IN} = 0V(CA-IS3760H)		I _{DDB}		3.8	5.5	1
	1Mbps	I _{DDA}		4.3	6.6] A
	(500kHz)	I _{DDB}		4.8	6.9	mA
	10Mbps	I _{DDA}		4.6	6.9	
	(5MHz)	I _{DDB}		14.7	19.8	
15 pri for Each Charmer.	100Mbps	I _{DDA}		5.7	8.5	
	(50MHz)	I _{DDB}		28.9	39.0	
V _{IN} = 0V (CA-IS3761L);		I _{DDA}		2.1	3.2	
$V_{IN} = V_{DDI}^{1} (CA-IS3761H)$		I _{DDB}		3.3	4.8	
$V_{IN} = V_{DDI}^{1}$ (CA-IS3761L);		I _{DDA}		6.3	9.6	
V _{IN} = 0V(CA-IS3761H)		I _{DDB}		4.3	6.4	1
	1Mbps	I _{DDA}		4.3	6.4	
S S	(500kHz)	I _{DDB}		4.5	6.6	mA
	10Mbps	I _{DDA}		4.6	6.9	
	(5MHz)	I _{DDB}		11.4	15.5	
15 pri for Each Chairner.	100Mbps	I _{DDA}		7.6	10.8	
	(50MHz)	I _{DDB}		23.1	31.2	
V _{IN} = 0V (CA-IS3762L);		I _{DDA}		2.6	4.2	
$V_{IN} = V_{DDI}^{1} (CA-IS3762H)$		I _{DDB}		3.5	5.5	
$V_{IN} = V_{DDI}^1$ (CA-IS3762L);		I _{DDA}		6.0	9.6	
$V_{IN} = OV(CA-IS3762H)$		I _{DDB}		5.3	8.3	
411.61	1Mbps	I _{DDA}		4.8	7.4	mA
	(500kHz)	I _{DDB}		5.2	8.0	
	10Mbps	I _{DDA}		8.6	12.4	
	(5MHz)	I _{DDB}		12.6	18.6	
	100Mbps	I _{DDA}		14.8	21.2	
	(50MHz)	I _{DDB}		23.3	36.3	
,						
		I _{DDA}		2.7	4.0	
		I _{DDB}		2.7	4.0	
-		I _{DDA}		5.2	8.0	
V _{IN} = 0V(CA-IS3763H)		I _{DDB}		5.2	8.0	
All Channels Cuit-bire with 5000	1Mbps	I _{DDA}		4.0	6.1	mA
	(500kHz)	I _{DDB}		4.0	6.1	
	10Mbps	I _{DDA}		4.8	7.0	
· · · · · · · · · · · · · · · · · · ·	(5MHz)	I _{DDB}		4.8	7.0	
	100Mbps	I _{DDA}		11.3	16.0	
	(50MHz)	I _{DDB}		11.3	16.0	
	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; $C_L = 15 \text{ pF}$ for Each Channel. $V_{IN} = 0V \text{ (CA-IS3761L)};$ $V_{IN} = V_{DDI}^{1} \text{ (CA-IS3761H)}$ $V_{IN} = V_{DDI}^{1} \text{ (CA-IS3761H)}$ All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; $C_L = 15 \text{ pF}$ for Each Channel. $V_{IN} = 0V \text{ (CA-IS3762L)};$ $V_{IN} = V_{DDI}^{1} \text{ (CA-IS3762H)}$ $V_{IN} = V_{DDI}^{1} \text{ (CA-IS3762L)};$	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel. V _{IN} = 0V (CA-IS3761L); V _{IN} = V _{DDI} ¹ (CA-IS3761H) V _{IN} = V _{DDI} ¹ (CA-IS3761H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel. V _{IN} = 0V (CA-IS3762L); V _{IN} = V _{DDI} ¹ (CA-IS3762H) V _{IN} = 0V (CA-IS3762L); V _{IN} = V _{DDI} ¹ (CA-IS3762H) V _{IN} = V _{DDI} ¹ (CA-IS3762H) V _{IN} = V _{DDI} ¹ (CA-IS3762H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel. V _{IN} = 0V (CA-IS3763H) V _{IN} = 0V (CA-IS3763L); V _{IN} = V _{DDI} ¹ (CA-IS3763L); V _{IN} = V _{DDI} ¹ (CA-IS3763H) V _{IN} = 0V (CA-IS3763L); V _{IN} = V _{DDI} ¹ (CA-IS3763H) All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel. All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel.	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; CL = 15 pF for Each Channel.	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; CL = 15 pF for Each Channel.	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5v Amplitude; CL = 15 pF for Each Channel.	All Channels Switching with 50% Duty Cycle Square Wave Clock Input with 2.5V Amplitude; C _L = 15 pF for Each Channel. 10Mbps IoDA 10Mbps IoDA 14.7 19.8 10Mbps IoDA 10Mbps IoDA 14.7 19.8 10Mbps IoDA 10.8

^{..} $V_{DDI} = Input-side supply V_{DD}$

Shanghai Chipanalog Microelectronics Co., Ltd.

7.10. Timing Characteristics

 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 8- 1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8- 1		0.2	4.5	ns
t _{sk(o)}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-Part Output Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 8- 1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8- 1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8- 1		8	12	μs
t _{SU}	Start-up Time			15	40	μs

Notes:

- tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ (over recommended operating conditions, unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	Con Figure 9, 1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8- 1		0.2	4.5	ns
t _{sk(o)}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-Part Output Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time	See Figure 8- 1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8- 1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8- 1		8	12	μs
t _{SU}	Start-up Time			15	40	μs

Notes:

- tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

V_{DDA} = V_{DDB} = 2.5 V ± 10%, T_A = -40 to 125°C (over recommended operating conditions, unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time	See Figure 8- 1	5.0	12.0	15.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}	See Figure 8- 1		0.2	4.5	ns
t _{sk(o)}	Channel-to-Channel Output Skew Time ¹	Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to Part Output Skew Time ²			1.0	5.0	ns
t _r	Output Signal Rise Time	See Figure 8-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8- 1		2.5	4.0	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8- 1		8	12	μs
t _{SU}	Start-up Time			15	40	μs
N1 - 4			•			

Notes:

tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

2. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

8. Parameter Measurement Information

Notes:

- 1. A square wave generator provide V_{IN} input signal with the following characteristics: frequency \leq 100kHz, 50% duty cycle, tr \leq 3ns, tf \leq 3ns, Z_{out} = 50 Ω . At the input, 50 Ω resistor is required to terminate input generator signal. It is not needed in actual application.
- 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8-1 Switching Characteristics Test Circuit and Voltage Waveforms

Notes:

- 1. Power Supply Ramp Rate = 10 mV/ns. VDDI should ramp over 2.375V, and less than 5.5V.
- 2. C_L = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8- 2 Default Output Delay Time Test Circuit and Voltage Waveforms

Notes:

- 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude, rise time <10ns and fall time <10ns, to reach common-mode transient noise with > $150kV/\mu s$ slew rate.
- 2. CL = 15pF and includes external circuit (instrumentation and fixture etc.) capacitance.
- 3. Pass-fail criteria: the output must remain stable.
- 4. C_{BP} (0.1 ~ 1uF) is bypass capacitance.

Figure 8- 3 Common-Mode Transient Immunity Test Circuit

9. Detailed Description

9.1. Overview

The CA-IS376x are a family of six-channel digital galvanic isolators using Chipanalog's full differential capacitive isolation technology. These devices have an ON-OFF keying (OOK) modulation scheme to transfer digital signals across the SiO2 based isolation barrier between circuits with different power domains. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal and recovery input signal at output through a buffer stage. With this OOK architecture, CA-IS376x family of devices build a robust data transmission path between different power domains without any special start-up initialization requirements. These devices also incorporate advanced full differential techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching.

9.2. Functional Block Diagram

The conceptual block diagram of a digital capacitive isolator, Figure 9-1 shows a functional block diagram of a typical channel; Figure 9-2 shows the operating waveform of a typical channel. Each channel of the CA-IS376x is unidirectional, only passes data in one direction as indicated in the functional diagram. Each device of this family features six unidirectional channels that operate independently with guaranteed data rates from DC up to 150Mbps.

Figure 9-1 Functional Block Diagram of a Single Channel

Figure 9- 2 Conceptual Operation Waveforms of a Single Channel

9.3. Device Operation Modes

Table 9-1 lists the operation modes for the CA-IS376x devices.

Table 9-1. Operation Mode

V_{DDI}^1	V _{DDO} ¹	INPUT (VIx) ²	OUTPUT (VOx)	OPERATION
		Н	Н	Normal operation mode:
		L	L	A channel output follows the logic state of its input.
PU	PU			Default output mode:
	. •	Open	Default	When input VIx is open, the corresponding channel
		Орен	Belault	output goes to its default logic state. Default is <i>High</i>
				for CA-IS376xH and Low for CA-IS376xL.
				Default output mode:
PD	PU	x	Default	When V _{DDI} is unpowered, a channel output assumes
'		^	Belaute	the logic state based on its default option. Default is
				High for CA-IS376xH and Low for CA-IS376xL.
x	PD	Х	Undetermined	If the output side V _{DDO} is unpowered, a channel
_ ^	יי	^	Ondetermined	output is undetermined. ⁴

Notes:

- 1. V_{DDI} = Input-side supply V_{DD}; V_{DDO} = Output-side supply V_{DD}; PU = Powered up ($V_{DD} \ge V_{DD(UVLO+)}$); PD = Powered down ($V_{DD} \le V_{DD(UVLO_-)}$); X = Irrelevant; H = High level; L = Low level; Z = High Impedance.
- 2. A strongly driven input signal can weakly power the floating V_{DD} through an internal protection diode and cause undetermined output.
- 3. It is recommended to connect the enable inputs to external logic high or low level when the CA-IS376x operates in noisy environments.
- 4. The outputs are in undetermined state when $V_{DD(UVLO_{-})} < V_{DDI}$, $V_{DDO} < V_{DD(UVLO_{+})}$.

10. Application and Implementation

The CA-IS376x isolation ICs provide complete galvanic isolation between two power domains, protecting circuits from high common-mode transients and faults, eliminating ground loops. In many applications, digital isolators are replacing optocouplers because they can reduce the power requirements and take up less board space while offering the same isolation capability. The CA-IS376x devices are the high-performance, six-channel digital isolators. Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the CA-IS376x devices only require two external bypass capacitors to operate. To reduce ripple and the chance of introducing data errors, bypass VDDA and VDDB pins with $0.1\mu F$ to $1\mu F$ low-ESR ceramic capacitors to GNDA and GNDB respectively. Place the bypass capacitors as close to the power supply input pins as possible. Figure 10-1 shows typical operating circuit of the CA-IS3763; Figure 10-2 is the typical applications for CA-IS37xx series products.

Figure 10- 1 Typical Application Circuit of CA-IS3763

Figure 10- 2 Typical Applications for the CA-IS37xx Series Digital Isolators

11. Package Information

CHIPANALOG

11.1. 16-Pin Wide Body SOIC Package Outline

TOP VIEW

FRONT VIEW

RECOMMMENDED LAND PATTERN

LEFT SIDE VIEW

Note:

1. All dimensions are in millimeters, angles are in degrees.

11.2. 16-Pin Narrow Body SOIC Package Outline

RECOMMENDED LAND PATTERN

TOP VIEW FRONT VIEW FRONT VIEW

Note:

1. All dimensions are in millimeters, angles are in degrees.

Shanghai Chipanalog Microelectronics Co., Ltd. 12. Soldering Temperature (reflow) Profile

Figure 12-1 Soldering Temperature (reflow) Profile

Table 12-1 Soldering Temperature Parameter

Profile Feature	Pb-Free Assembly
Average ramp-up rate(217 $^{\circ}{\mathbb{C}}$ to Peak)	3℃ /second max
Time of Preheat temp(from 150 $^{\circ}{\mathbb{C}}$ to 200 $^{\circ}{\mathbb{C}}$)	60-120 second
Peak temperature	260 +5/-0 ℃
Time to be maintained above 217 $^{\circ}\mathrm{C}$	60-150 second
Time within 5 $^{\circ}$ C of actual peak temp	30 second
Ramp-down rate	6 °C/second max.
Time from 25 $^{\circ}$ C to peak temp	8 minutes max

13. Tape and Reel Information

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
КО	Dimension designed to accommodate the component
	thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package	Package	Pins	SPQ	Reel	Reel	A0	В0	КО	P1	W	Pin1
	Туре	Drawing			Diameter	Width W1	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
					(mm)	(mm)						
CA-IS3760LN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3760LW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3760HN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3760HW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3761LN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3761LW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3761HN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3761HW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3762LN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3762LW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3762HN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3762HW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3763LN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3763LW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1
CA-IS3763HN	SOIC	N	16	2500	330	16.4	6.40	10.30	2.10	8.00	16.00	Q1
CA-IS3763HW	SOIC	W	16	1000	330	16.4	10.90	10.70	3.20	12.00	16.00	Q1

14. Important statement

The above information is for reference only and used for helping Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com