ゲルフォント=シュナイダーの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』

ゲルフォント=シュナイダーの定理 (ゲルフォント=シュナイダーのていり、<u>英</u>: Gelfond–Schneider's theorem) は、<u>指数関数</u>の値の超越性に関する定理である。<u>1934年</u>に、<u>アレクサンドル・ゲルフォントとテオドール・シュナイダーによって、それぞれ独立に証明された。</u>

定理の主張

 α を 0,1 以外の代数的数、 β を有理数ではない代数的数としたとき、 $\pmb{\alpha}^{\pmb{\beta}}$ は、超越数である。

系

系1

 $lpha_1,lpha_2$ を 0, 1 以外の代数的数とする。 \loglpha_1/\loglpha_2 は、有理数であるか超越数である。

系2

 $lpha_1,lpha_2,eta_1,eta_2$ を 0 以外の代数的数とする。もし、 \loglpha_1,\loglpha_2 が<u>有理数体</u>上線形独立</u>であるならば、 $eta_1\loglpha_1+eta_2\loglpha_2
eq 0$ である。

例

ゲルフォント=シュナイダーの定理を用いて、以下の数が超越数であることが示される。

- ullet $2^{\sqrt{2}}$ 。(オンライン整数列大辞典の数列 A007507 (https://oeis.org/A007507))
- $\sqrt{2}^{\sqrt{2}}$ 。(オンライン整数列大辞典の数列 A078333 (https://oeis.org/A078333))
- e^{π} (= $(-1)^{-i}$)。これはゲルフォントの定数とよばれる。(オンライン整数列大辞典の数列 A039661 (https://oeis.org/A039661))
- ullet 有理数ではない代数的数 lpha に対する、 $\sinlpha\pi$, $\coslpha\pi$, $anlpha\pi$ 。
- \bullet ilpha が有理数ではない代数的数 lpha に対する、 $\sinhlpha\pi$, $\coshlpha\pi$, $anhlpha\pi$ 。
- 乗法的独立 $\frac{[1]}{[1]}$ である、0, 1 ではない代数的数 lpha, eta に対する、 \loglpha/\logeta 。

歴史

ダフィット・ヒルベルトは、1900年にパリで行われた国際数学者会議において、ヒルベルトの23 の問題と呼ばれる23個の問題のうち、7番目の問題として、「aがoでも1でもない代数的数で、bが代数的無理数であるとき、 a^b は超越数であるか」を提出した。

その後、 $\underline{1929}$ 年に、アレクサンドル・ゲルフォントによって、 β が<u>虚二次体</u>の場合に、 α^{β} が超越数であることを証明し、例えば、 e^{π} が超越数であることを示した。

その直後、ゲルフォントの方法を元にして、<u>カール・ジーゲル</u>は、 β が実二次体の場合に成り立っことを示したが、発表はされなかった。翌年(<u>1930年</u>)、<u>ロディオン・クズミン</u>は、ゲルフォントの方法に基づいて、同じ結果を発表した。

1934年に、ゲルフォントとテオドール・シュナイダーがそれぞれ独立に、βが一般の代数的数の場合に成り立つことを証明した。この結果、ヒルベルトの第7問題が肯定的に証明された。ヒルベルトは、第7問題は大変難しい問題であり、リーマン予想の方が早く解決するのではないかと思っていたが、10年余りで証明されたことを聞いて、大変驚いたという。

ゲルフォント=シュナイダーの定理より、2つの代数的数の対数が有理数体上線形独立であれば、代数的数体上線形独立となるが(系2)、この結果を 2以上の対数に拡張したものが、7フン・ベイカーによって、1966年に発表された(ベイカーの定理を参照)。

脚注

1. $\stackrel{\bullet}{\sim}$ 整数 k, l に対して、 $\alpha^k \beta^l = 1$ ならば、k = l = 0 が成り立つとき、 α, β は、乗法的独立であるという。

関連項目

- ヒルベルトの23の問題
- ベイカーの定理
- 超越数

参考文献

- 杉浦, 光夫編『ヒルベルト23の問題』日本評論社、東京、1997年。
- 塩川, 宇賢『無理数と超越数』森北出版、東京、1999年。
- I., Niven (1956). *Irrational numbers, The Carus Math. Monog.*. Washington: Math. Assoc. of America

「https://ja.wikipedia.org/w/index.php?title=ゲルフォント=シュナイダーの定理&oldid=97853941」から取得