Practical Cryptographic Systems

Elliptic Curve Cryptography

Some Housekeeping

- Weekly HW#2 coming out shortly
- Start looking for a project group (proposal due in 1.5 weeks 10/6)!

Last time: Key Strength

Leve	el Protection	Symmetric	Asymmetric	Discrete Logarithm Key Group	Elliptio	Hash
1	Attacks in "real-time" by individuals Only acceptable for authentication tag size	32	-		-	-
2	Very short-term protection against small organizations Should not be used for confidentiality in new systems	64	816	128 816	128	128
3	Short-term protection against medium organizations, medium-term protection against small organizations	72	1008	144 1008	144	144
4	Very short-term protection against agencies, long-term protection against small organizations Smallest general-purpose level, Use of 2-key 3DES restricted to 240 plaintext/ciphertexts, protection from 2009 to 2011	80	1248	160 1248	160	160
5	Legacy standard level Use of 2-key 3DES restricted to 10 ⁶ plaintext/ciphertexts, protection from 2009 to 2018	96	1776	192 1776	192	192
6	Medium-term protection Use of 3-key 3DES, protection from 2009 to 2028	112	2432	224 2432	224	224
7	Long-term protection Generic application-independent recommendation, protection from 2009 to 2038	128	3248	256 3248	256	256
8	"Foreseeable future" Good protection against quantum computers	256	15424	512 15424	512	512

Why Elliptic Curves

- Prior cryptosystems used finite field (\mathbb{Z}_p) based Discrete Log and Factoring
 - These have additional structure that have yielded subexponential time algorithms
- As a result, recommended key sizes are quite large
 - At least 2048 bit keys for RSA and Diffie-Hellman
 - Larger keys means slower operations

Why Elliptic Curves

- Prior cryptosystems used finite field (\mathbb{Z}_p) based Discrete Log and Factoring
 - These have additional structure that have yielded subexponential time algorithms
- As a result, recommended key sizes are quite large
 - At least 2048 bit keys for RSA and Diffie-Hellman
 - Larger keys means slower operations

Elliptic Curves in general do not have subexponential time cryptanalysis so we can use much smaller keys for similar level of security

Elliptic Curves

What is an Elliptic Curve

- A curve defined by an equation $y^2 = x^3 + ax + b$
- These curves were plotted over \mathbb{R}^2

Elliptic Curve Points

- Poincare's method for finding rational points: Take 2 rational points P,Q and define a line that goes through them. We can solve this to find additional rational points. In this process we obtain two new rational points R,-R
- We can define this as a Group law: P+Q = R

Elliptic Curves over Finite Fields

- A Finite Field is an extension of a group that is a group over both addition and multiplication.
 - \mathbb{Z}_p is a field, often denoted as \mathbb{F}_p
- For cryptography we define curves over \mathbb{F}_p
- Weierstrauss form: $y^2 = x^3 + ax + b$, $a, b \in \mathbb{F}_p$, $4a^3 + 27b^2 \neq 0$
 - Every Elliptic Curve can be written in this form

Elliptic Curves as a Group

- We claim Elliptic Curves are a group over "addition", P+Q=R
- Writing the group law formally in terms of (x,y) coordinates requires multiple different cases.
- The identity element is the "point at infinity" \mathcal{O}
- Inverses are points symmetric over the x-axis (R and -R)

Types of Elliptic Curves

- Different Elliptic Curves have advantages
- Curves in Montgomery form have faster addition algorithms
- Edwards curves have a simpler addition group law
 - For $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$:

$$\mathsf{P}_1 + \mathsf{P}_2 = (\frac{x_1 y_2 + x_2 y_1}{1 + d x_2 y_1 y_2}, \frac{y_1 y_2 - x_1 x_2}{1 - d x_2 y_1 y_2})$$

Elliptic Curve Scalar Multiplication

- Classically, scalar multiplication is repeated addition (5x = x+x+x+x)
- Scalar multiplication for Elliptic Curves is repeated group "addition"
- To get point aP, we apply group "addition" on P a times
- There is an efficient algorithm for this: Double and Add. (This is analogous to the square and multiply algorithm we have seen previously)

Elliptic Curves and Discrete Log

- Given a point Q, find a such that Q=aP
- Best known algorithms for EC discrete log (pollard rho, baby-step-giant-step) take time $O(\sqrt{n})$ for group of order n
- Still broken in polynomial time by a quantum computer

Elliptic Curve Diffie-Hellman

ECDSA

Key Generation

An elliptic curve over \mathbb{F}_p

E

G a group generator on E of order n

$$Q = dG$$

Output:

$$pk = Q$$

$$sk = d$$

<u>Signing</u>

Generate random k

Denote r as the x coordinate of kG

$$s = k^{-1}(H(m) + dr) \mod n$$

Output (r, s)

Verification

$$u_1 = H(m)s^{-1} \mod n$$
$$u_2 = rs^{-1} \mod n$$

Check if r matches the x coordinate of $u_1G + u_2Q$

Note about Elliptic Curve Notation

- Because the group law is "addition", many references use additive notation for EC groups (P+Q = R, aP = P+P+P+P)
- So far our previous examples using groups in cryptography used multiplicative notation ($a \cdot b = c$, $g^a = g \cdot g \cdot g \cdot g \cdot g$)
- Generally, in cryptography we use groups abstractly and treat them as multiplicative groups.
 - The underlying group might be additive
 - This is fine because there is a 1-1 mapping for inverses, identities, and group operations

Standardized Elliptic Curves

 Hard to develop curves resistant to known attacks so everyone uses a small set of curves

Standardized Elliptic Curves

- Hard to develop curves resistant to known attacks so everyone uses a small set of curves
- NIST P256
 - Curve over \mathbb{F}_p with $p \approx 2^{256}$
 - Has prime order $log(q) \approx 256$
 - Parameters have a "suspicious" origin

Standardized Elliptic Curves

- Hard to develop curves resistant to known attacks so everyone uses a small set of curves
- NIST P256
 - Curve over \mathbb{F}_p with $p \approx 2^{256}$
 - Has prime order $log(q) \approx 256$
 - Parameters have a "suspicious" origin
- Curve25519
 - Edwards Curve created by Daniel J. Bernstein
 - Simple group law that is protects against common side channels
 - Little point validation needed
 - Great when only x coordinate validation needed

Next time:

Protocols and TLS