Fecho sob Operações Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

25 de setembro de 2019

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q044]

É verdade que a classe de linguagens regulares é fechada sob a operação de união. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir de dois AFNs: N_1 e N_2 . A prova mostra que $L(N) = L(N_1) \cup L(N_2)$.

Se N_1 e N_2 têm 20 estados cada um, quantos estados tem N?

- (A) 20
- (B) 41
- (C) 2^{20}
- (D) 40^2

[Q045]

É verdade que a classe de linguagens regulares é fechada sob a operação de concatenação. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir de dois AFNs: N_1 e N_2 . A prova mostra que $L(N) = L(N_1) \circ L(N_2)$.

Se N_1 e N_2 têm 30 estados cada um, quantos estados tem N?

- (A) 15
- (B) 30
- (C) 60
- (D) 2^{30}

[Q046]

É verdade que a classe de linguagens regulares é fechada sob a operação de estrela. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir do AFN N_1 . A prova mostra que $L(N) = L(N_1)^*$.

Se N_1 tem 10 estados, quantos estados tem N?

- (A) 5
- (B) 9
- (C) 10
- (D) 11

[Q047]

E verdade que a classe de linguagens regulares é fechada sob a operação de união. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_0,F)$ a partir de dois AFNs: $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$. A prova mostra que $L(N)=L(N_1)\cup L(N_2)$.

Podemos dizer que o valor de $\delta(q_0,\epsilon)$ é...

- (A) ∅
- (B) $\{q_1, q_2\}$
- (C) $\delta_1(q_0,\epsilon)$
- (D) $\delta_2(q_0,\epsilon)$

[Q048]

É verdade que a classe de linguagens regulares é fechada sob a operação de concatenação. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_1,F)$ a partir de dois AFNs: $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$. A prova mostra que $L(N)=L(N_1)\circ L(N_2)$.

Se $q \in F_1$, então podemos dizer que o valor de $\delta(q,\epsilon)$ é...

- (A) $\delta_1(q,\epsilon)$
- (B) $\delta_2(q,\epsilon)$
- (C) $\delta_1(q,\epsilon) \cup \{q_2\}$
- (D) $\delta_2(q,\epsilon) \cup \{q_2\}$

[Q049]

É verdade que a classe de linguagens regulares é fechada sob a operação de estrela. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_0,F)$ a partir do AFN $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$. A prova mostra que $L(N)=L(N_1)^*$.

Se $q \in F_1$ e $a \neq \epsilon$, então podemos dizer que o valor de $\delta(q,a)$ é...

- (A) $\delta_1(q, a)$
- (B) $\delta_2(q, a)$
- (C) $\delta_1(q, a) \cup \{q_1\}$
- (D) $\delta_2(q,a) \cup \{q_1\}$

Fecho sob Operações Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

25 de setembro de 2019

