CS6190: Probabilistic Modeling Homework 3 MCMC

Gopal Menon 15 April, 2018

1(a) Gibbs Sampling of noisy image with Ising prior only.

The sampled images are shown for various values of α and β . The variance values shown should be disregarded as that part of the energy function is not used.

noisy-message.png , Alpha = 0 , Beta = 1 , Variance = 1

noisy-yinyang.png , Alpha = 0 , Beta = 0.75 , Variance = 1

1(b) Here are the posterior images for 10 burn in and 20 denoising iterations. The parameter values I used were $\alpha = 0$, $\beta = 1$ and $\sigma^2 = 1$.

noisy-message.png, Alpha = 0, Beta = 1, Variance = 1

50 100 150 200 250 300 noisy-yinyang.png , Alpha = 0 , Beta = 1 , Variance = 1

- 1(c) Final estimates for $\sigma^2 = 1$.
- ## [1] "Standard deviation estimate for noisy message: 1.188"
- ## [1] "Standard deviation estimate for noisy yinyang: 1.5856694784"
 - 2. Say you are given data (X,Y), with $X \in \mathbb{R}^d$ and $Y \in \{0,1\}$. The goal is to train a classifier that will predict an unknown class label \tilde{y} from a new data point \tilde{x} . Consider the following model:

$$Y \sim Ber\left(\frac{1}{1 + e^{-X^T\beta}}\right),$$

 $\beta \sim N(0, \sigma^2 I).$

This is a **Bayesian logistic regression** model. Your goal is to derive and implement a Hamiltonian Monte Carlo sampler for doing Bayesian inference on β .

(a) Write down the formula for the unormalized posterior of $\beta | Y$, i.e.,

$$p(\beta|y; x, \sigma) \propto \prod_{i=1}^{n} p(y_i|\beta; x_i) p(\beta; \sigma)$$

$$= \prod_{i=1}^{n} \left(\left[\frac{1}{1 + e^{-x_i^T \beta}} \right]^{y_i} \left[1 - \frac{1}{1 + e^{-x_i^T \beta}} \right]^{1 - y_i} \right) \frac{1}{\sqrt{(2\pi)^k |\sigma^2 I|}} e^{\left(-\frac{1}{2} \beta^T (\sigma^2 I)^{-1} \beta \right)}$$

(b) Show that this posterior is proportional to $exp(-U(\beta))$, where

$$\begin{split} U(\beta) &= \sum_{i=1}^{n} (1-y_i) x_i^T \beta + \log(1+e^{-x_i^T \beta}) + \frac{1}{2\sigma^2} \|\beta\|^2 \\ p(\beta|y;x,\sigma) &\propto \prod_{i=1}^{n} \left(\left[\frac{1}{1+e^{-x_i^T \beta}} \right]^{y_i} \left[1 - \frac{1}{1+e^{-x_i^T \beta}} \right]^{1-y_i} \right) \frac{1}{\sqrt{(2\pi)^k |\sigma^2 I|}} e^{\left(-\frac{1}{2}\beta^T (\sigma^2 I)^{-1} \beta \right)} \\ &= \prod_{i=1}^{n} \left(\left[\frac{1}{1+e^{-x_i^T \beta}} \right]^{y_i} \left[\frac{e^{-x_i^T \beta}}{1+e^{-x_i^T \beta}} \right]^{1-y_i} \right) \frac{1}{\sqrt{(2\pi)^k |\sigma^2 I|}} e^{\left(-\frac{\|\beta\|^2}{2\sigma^2} \right)} \\ \log\left(p(\beta|y;x,\sigma) \right) &\propto -\sum_{i=1}^{n} y_i \log\left(1+e^{-x_i^T \beta} \right) + \sum_{i=1}^{n} (1-y_i) - x_i^T \beta - \sum_{i=1}^{n} (1-y_i) \log\left(1+e^{-x_i^T \beta} \right) - \frac{1}{2\sigma^2} \|\beta\|^2 \\ &= -\sum_{i=1}^{n} y_i \log\left(1+e^{-x_i^T \beta} \right) - \sum_{i=1}^{n} (1-y_i) x_i^T \beta - \sum_{i=1}^{n} \log\left(1+e^{-x_i^T \beta} \right) + \sum_{i=1}^{n} y_i \log\left(1+e^{-x_i^T \beta} \right) - \frac{\|\beta\|^2}{2\sigma^2} \\ &= -\sum_{i=1}^{n} (1-y_i) x_i^T \beta - \sum_{i=1}^{n} \log\left(1+e^{-x_i^T \beta} \right) - \frac{1}{2\sigma^2} \|\beta\|^2 \\ &\Rightarrow p(\beta|y;x,\sigma) \propto \exp\left(-U(\beta) \right), \text{ where} \\ &U(\beta) = \sum_{i=1}^{n} (1-y_i) x_i^T \beta + \sum_{i=1}^{n} \log\left(1+e^{-x_i^T \beta} \right) + \frac{1}{2\sigma^2} \|\beta\|^2 \end{split}$$

2(e) Trace plots of the β sequence and histograms are shown below.

Trend for bias multiplier

Histogram for bias multiplier

Trend for Sepal.Length multiplier

Histogram for Sepal.Length multiplier

Trend for Sepal.Width multiplier

Histogram for Sepal.Width multiplier

Trend for Petal.Length multiplier

Histogram for Petal.Length multiplier

Petal.Length multiplier

Trend for Petal.Width multiplier

Histogram for Petal.Width multiplier

2(f) A variance σ^2 value of 1 was used, with a step size ϵ of 0.04 and number of steps L of 40.

[1] "The zero-one loss was 2"