Real and Complex Analysis Solutions

Salvador Castagnino scastagnino@itba.edu.ar

Exercise 3.

Let's assume that ϕ is not convex in (a,b) then there exist $x,y \in (a,b)$ and $t_0 \in [0,1]$ such that

$$\phi((1-t_0)x+t_0y) > (1-t_0)\phi(x)+t_0\phi(y)$$

and without loss of generality let's assume x < y. Let's define $g, h : [0, 1] \to R$ such that,

$$g(t) = \phi((1-t)x + ty)$$
$$h(t) = (1-t)\phi(x) + t\phi(y)$$

and let f = h - g. We define the nonempty sets $A = \{t \in [0, t_0) \mid f(t) = 0\}$ and $B = \{t \in (t_0, 1] \mid f(t) = 0\}$ given that f(0) = f(1) = 0, and let $t_a = \sup A$ and $t_b = \sup B$, we want to see that $t_a \in A$ and $t_b \in B$. Let $\{a_n\}$ and $\{b_n\}$ be sequences in A and B which converge to t_a and t_b respectively, by continuity of f we can see that

$$0 = \lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(t_a)$$

then $t_a \in A$ and the proof for $t_b \in B$ is analogous. As $f(t_0) < 0$ then $t_a < t_0 < t_b$ and by continuity of f and the definition of t_a and t_b we have that f(t) < 0 for all $t \in (t_a, t_b)$. Finally we take $x' = (1 - t_a) x + t_a y$ and $y' = (1 - t_b) x + t_b y$ and by working algebraically over $f(\frac{t_a + t_b}{2}) < 0$ we arrive at the following inquality

$$\phi\left(\frac{x'+y'}{2}\right) > \frac{\phi(x') + \phi(y')}{2}$$

which is a clear contradiction, as we wanted. This concludes the proof.

Observation This proof shows that to see that convexity holds it sufices to show that given each pair of points $x, y \in (a, b)$ there exists a $t \in [0, 1]$ (not necessarily $\frac{1}{2}$) such that $\phi((1-t)x+ty) \leq (1-t)\phi(x)+t\phi(y)$.

Exercise 4

Observation

Let $0 < r < p < s < +\infty$ with p-r=s-p which is the same as 2p=r+s then using Holder's inequality we get,

$$||f||_p^p = ||f^p||_1 = ||f^{\frac{r}{2}}f^{\frac{s}{2}}||_1 \le ||f^{\frac{r}{2}}||_2 ||f^{\frac{s}{2}}||_2 = (||f||_r^r ||f||_s^s)^{\frac{1}{2}}$$

thus,

$$||f||_p^p \le \sqrt{||f||_r^r ||f||_s^s}$$

Exercise 10. Given that $fg \geq 1$ and both f and g are positive we have $f \geq \frac{1}{g}$ and using Holder's inequality and the fact that $\mu\left(\Omega\right) = 1$,

$$1 = \|1\|_1 = \|g^{\frac{1}{2}}g^{-\frac{1}{2}}\|_1 \le \|g^{\frac{1}{2}}\|_2 \|g^{-\frac{1}{2}}\|_2 = (\|g\|_1 \|g^{-1}\|_1)^{\frac{1}{2}} \le (\|g\|_1 \|f\|_1)^{\frac{1}{2}}$$

thus,

$$1 \leq \int_{\Omega} f \; d\mu \int_{\Omega} g \; d\mu$$