Name:	
J#:	Dr. Clontz
Date:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard E1.	

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

	Mark:
Standard E2.	

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Standard E3.

Mark:

Solve the system of linear equations.

$$2x + y - z + w = 5$$
$$3x - y - 2w = 0$$
$$-x + 5z + 3w = -1$$

Standard E4.

Mark:

Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$
$$3x - y + z + w = 0$$
$$2x - 3y - 2z = 0$$
$$-x + 2z + 5w = 0$$

Let V be the set of all real numbers with the operations, for any $x,y\in V,\,c\in\mathbb{R},$

$$x \oplus y = \sqrt{x^2 + y^2}$$

$$c \odot x = cx$$

- (a) Show that the vector addition \oplus is associative: $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- (b) Determine if V is a vector space or not. Justify your answer.

Standard V2.

Mark:

Determine if $\begin{bmatrix} 0 \\ -1 \\ 6 \\ -7 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \\ 3 \end{bmatrix} \right\}$.

Standard V3.
$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Standard V4.

Mark:

subspace of \mathbb{R}^3 .

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x + y + z = 1 (this forms a plane). Determine if W is a

Standard S1.	Mark:
--------------	-------

Determine if the set of polynomials $\{x^2 + x, x^2 + 2x - 1, x^2 + 3x - 2\}$ is linearly dependent or linearly independent

Standard S2.
$$\begin{bmatrix} & & & \\ & & & \\ & 1 & \\ -1 & & 1 \end{bmatrix}, \begin{bmatrix} & 2 & \\ & 0 & \\ & & -2 \end{bmatrix}$$
 is a basis of \mathbb{R}^3

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Standard S4.

Mark:

Let W be the subspace of $M_{2,2}$ given by $W = \operatorname{span}\left(\left\{\begin{bmatrix} 2 & 0 \\ -2 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\right\}\right)$. Compute the dimension of W.

Additional Notes/Marks