L2: Review of probability and statistics

Probability

- Definition of probability
- Axioms and properties
- Conditional probability
- Bayes theorem

Random variables

- Definition of a random variable
- Cumulative distribution function
- Probability density function
- Statistical characterization of random variables

Random vectors

- Mean vector
- Covariance matrix

The Gaussian random variable

Review of probability theory

Definitions (informal)

- Probabilities are numbers assigned to events that indicate "how likely" it is that the event will occur when a random experiment is performed
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment
- The sample space S of a random experiment is the set of all possible outcomes

Axioms of probability

- Axiom I: $P[A_i] \ge 0$

- Axiom II: P[S] = 1

- Axiom III: $A_i \cap A_j = \emptyset \Rightarrow P[A_i \cup A_j] = P[A_i] + P[A_j]$

Warm-up exercise

- I show you three colored cards
 - One BLUF on both sides.
 - One RED on both sides
 - One BLUE on one side, RED on the other

- I shuffle the three cards, then pick one and show you one side only.
 The side visible to you is RED
 - Obviously, the card has to be either A or C, right?
- I am willing to bet \$1 that the other side of the card has the same color, and need someone in class to bet another \$1 that it is the other color
 - On the average we will end up even, right?
 - Let's try it!

More properties of probability

$$-P[A^C] = 1 - P[A]$$

$$-P[A] \leq 1$$

$$-P[\emptyset] = 0$$

- given
$$\{A_1 ... A_N\}, \{A_i \cap A_j = \emptyset, \forall ij\} \Rightarrow P[\bigcup_{k=1}^N A_k] = \sum_{k=1}^N P[A_k]$$

$$- P[A_1 \cup A_2] = P[A_1] + P[A_2] - P[A_1 \cap A_2]$$

$$-P[\bigcup_{k=1}^{N} A_{k}] = \sum_{k=1}^{N} P[A_{k}] - \sum_{j< k}^{N} P[A_{j} \cap A_{k}] + \dots + (-1)^{N+1} P[A_{1} \cap A_{2} \dots \cap A_{N}]$$

$$-A_1 \subset A_2 \Rightarrow P[A_1] \leq P[A_2]$$

Conditional probability

 If A and B are two events, the probability of event A when we already know that event B has occurred is

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \quad if \ P[B] > 0$$

- This conditional probability P[A|B] is read:
 - the "conditional probability of A conditioned on B", or simply
 - the "probability of A given B"

Interpretation

- The new evidence "B has occurred" has the following effects
 - The original sample space S (the square) becomes B (the rightmost circle)
 - The event A becomes A∩B
- P[B] simply re-normalizes the probability of events that occur jointly with B

Theorem of total probability

- Let B_1 , B_2 ... B_N be a partition of S (mutually exclusive that add to S)
- Any event A can be represented as

$$A = A \cap S = A \cap (B_1 \cup B_2 \dots B_N) = (A \cap B_1) \cup (A \cap B_2) \dots (A \cap B_N)$$

- Since B_1 , B_2 ... B_N are mutually exclusive, then

$$P[A] = P[A \cap B_1] + P[A \cap B_2] + \dots + P[A \cap B_N]$$

and, therefore

$$P[A] = P[A|B_1]P[B_1] + \cdots P[A|B_N]P[B_N] = \sum_{k=1}^{N} P[A|B_k]P[B_k]$$

Bayes theorem

- Assume $\{B_1, B_2 \dots B_N\}$ is a partition of S
- Suppose that event A occurs
- What is the probability of event B_i ?
- Using the definition of conditional probability and the Theorem of total probability we obtain

$$P[B_j|A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^{N} P[A|B_k]P[B_k]}$$

 This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relations in probability and statistics

Bayes theorem and statistical pattern recognition

When used for pattern classification, BT is generally expressed as

$$P[\omega_j|x] = \frac{p[x|\omega_j]P[\omega_j]}{\sum_{k=1}^{N} p[x|\omega_k]P[\omega_k]} = \frac{p[x|\omega_j]P[\omega_j]}{p[x]}$$

- where ω_j is the j-th class (e.g., phoneme) and x is the feature/observation vector (e.g., vector of MFCCs)
- A typical decision rule is to choose class ω_j with highest $P[\omega_j|x]$
 - Intuitively, we choose the class that is more "likely" given observation x
- Each term in the Bayes Theorem has a special name
 - $P[\omega_j]$ <u>prior</u> probability (of class ω_j)
 - $P[\omega_j|x]$ <u>posterior</u> probability (of class ω_j given the observation x)
 - $p[x|\omega_j]$ <u>likelihood</u> (probability of observation x given class ω_j)
 - p[x] normalization constant (does not affect the decision)

- Consider a clinical problem where we need to decide if a patient has a particular medical condition on the basis of an imperfect test
 - Someone with the condition may go undetected (false-negative)
 - Someone free of the condition may yield a positive result (false-positive)

Nomenclature

- The true-negative rate P(NEG | ¬COND) of a test is called its SPECIFICITY
- The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

Problem

- Assume a population of 10,000 with a 1% prevalence for the condition
- Assume that we design a test with 98% specificity and 90% sensitivity
- Assume you take the test, and the result comes out POSITIVE
- What is the probability that you have the condition?

Solution

- Fill in the joint frequency table next slide, or
- Apply Bayes rule

	TEST IS	TEST IS	ROW TOTAL
	POSITIVE	NEGATIVE	
	True-positive	False-negative	
HAS CONDITION	P(POS COND)	P(NEG COND)	
EDEE OF	False-positive	True-negative	
FREE OF CONDITION	P(POS ¬COND)	P(NEG ¬COND)	
COLUMN TOTAL			

	TEST IS	TEST IS	ROW TOTAL		
	POSITIVE	NEGATIVE			
HAS CONDITION	True-positive	False-negative			
	P(POS COND)	P(NEG COND)			
	100×0.90	100×(1-0.90)	100		
EDEE OE	False-positive	True-negative			
FREE OF CONDITION	P(POS ¬COND)	P(NEG ¬COND)			
	9,900×(1-0.98)	9,900×0.98	9,900		
COLUMN TOTAL	288	9,712	10,000		

Applying Bayes rule

$$P[cond|+] =$$

$$= \frac{P[+|cond]P[cond]}{P[+]} =$$

$$= \frac{P[+|cond]P[cond]}{P[+|cond]P[cond]} =$$

$$= \frac{0.90 \times 0.01}{0.90 \times 0.01 + (1 - 0.98) \times 0.99} =$$

$$= 0.3125$$

Random variables

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome
 - e.g., weights in a population of subjects, execution times when benchmarking CPUs, shape parameters when performing ATR
- These examples lead to the concept of random variable
 - A random variable X is a function that assigns a real number $X(\xi)$ to each outcome ξ in the sample space of a random experiment
 - $X(\xi)$ maps from all possible outcomes in sample space onto the real line
- The function that assigns values to each outcome is fixed and deterministic, i.e., as in the rule "count the number of heads in three coin tosses"
 - Randomness in X is due to the underlying randomness of the outcome ξ of the experiment
- Random variables can be
 - Discrete, e.g., the resulting number after rolling a dice
 - Continuous, e.g., the weight of a sampled individual

Cumulative distribution function (cdf)

- The cumulative distribution function $F_X(x)$ of a random variable X is defined as the probability of the event $\{X \leq x\}$

$$F_X(x) = P[X \le x] - \infty < x < \infty$$

– Intuitively, $F_X(b)$ is the long-term proportion of times when $X(\xi) \leq b$

- Properties of the cdf
 - $0 \le F_X(x) \le 1$
 - $\lim_{x\to\infty} F_X(x) = 1$
 - $\lim_{x \to -\infty} F_X(x) = 0$
 - $F_X(a) \le F_X(b)$ if $a \le b$
 - $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$

Probability density function (pdf)

The probability density function $f_X(x)$ of a continuous random variable X, if it exists, is defined as the derivative of $F_X(x)$

$$f_X(x) = \frac{dF_X(x)}{dx}$$

For discrete random variables, the equivalent to the pdf is the probability mass function

$$f_X(x) = \frac{\Delta F_X(x)}{\Delta x}$$

- **Properties**
 - $f_X(x) > 0$
 - $P[a < x < b] = \int_a^b f_X(x) dx$
 - $F_X(x) = \int_{-\infty}^x f_X(x) dx$
 - $1 = \int_{-\infty}^{\infty} f_X(x) dx$
 - $f_X(x|A) = \frac{d}{dx} F_X(x|A)$ where $F_X(x|A) = \frac{P[\{X < x\} \cap A]}{P[A]}$ if P[A] > 0

pmf for rolling a (fair) dice

- According to the pdf, this is about 0.62
- This number seems reasonable, right?

- According to the pdf, this is about 0.43
- But, intuitively, we know that the probability should be zero (or very, very small)

- The pdf DOES NOT define a probability, but a probability DENSITY!
- To obtain the actual probability we must integrate the pdf in an interval
- So we should have asked the question: what is the probability of somebody weighting 124.876 lb plus or minus 2 lb?

- The probability mass function is a 'true' probability (reason why we call it a 'mass' as opposed to a 'density')
 - The pmf is indicating that the probability of any number when rolling a fair dice is the same for all numbers, and equal to 1/6, a very legitimate answer
 - The pmf DOES NOT need to be integrated to obtain the probability (it cannot be integrated in the first place)

Statistical characterization of random variables

- The cdf or the pdf are SUFFICIENT to fully characterize a r.v.
- However, a r.v. can be PARTIALLY characterized with other measures
- Expectation (center of mass of a density)

$$E[X] = \mu = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance (spread about the mean)

$$var[X] = \sigma^2 = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Standard deviation

$$std[X] = \sigma = var[X]^{1/2}$$

N-th moment

$$E[X^N] = \int_{-\infty}^{\infty} x^N f_X(x) dx$$

Random vectors

- An extension of the concept of a random variable
 - A random vector X is a function that assigns a vector of real numbers to each outcome ξ in sample space S
 - We generally denote a random vector by a column vector
- The notions of cdf and pdf are replaced by 'joint cdf' and 'joint pdf'
 - Given random vector $\underline{X} = [x_1, x_2 ... x_N]^T$ we define the joint cdf as $F_X(\underline{x}) = P_X[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \dots \{X_N \le x_N\}]$
 - and the joint pdf as

$$f_{\underline{X}}(\underline{x}) = \frac{\partial^N F_{\underline{X}}(\underline{x})}{\partial x_1 \partial x_2 \dots \partial x_N}$$

- The term marginal pdf is used to represent the pdf of a subset of all the random vector dimensions
 - A marginal pdf is obtained by integrating out variables that are of no interest

• e.g., for a 2D random vector
$$\underline{X}=[x_1,x_2]^T$$
, the marginal pdf of x_1 is
$$f_{X_1}(x_1)=\int_{x_2=-\infty}^{x_2=+\infty}f_{X_1X_2}(x_1x_2)dx_2$$

Statistical characterization of random vectors

- A random vector is also fully characterized by its joint cdf or joint pdf
- Alternatively, we can (partially) describe a random vector with measures similar to those defined for scalar random variables
- Mean vector

$$E[X] = \underline{\mu} = [E[X_1], E[X_2] \dots E[X_N]]^T = [\mu_1, \mu_2, \dots \mu_N]^T$$

Covariance matrix

$$cov[X] = \Sigma = E\left[\left(\underline{X} - \underline{\mu}\right)\left(\underline{X} - \underline{\mu}\right)^{T}\right] =$$

$$= \begin{bmatrix} E[(x_{1} - \mu_{1})^{2}] & \dots & E[(x_{1} - \mu_{1})(x_{N} - \mu_{N})] \\ \vdots & \ddots & \vdots \\ E[(x_{1} - \mu_{1})(x_{N} - \mu_{N})] & \dots & E[(x_{N} - \mu_{N})^{2}] \end{bmatrix} =$$

$$= \begin{bmatrix} \sigma_{1}^{2} & \dots & \sigma_{1N} \\ \vdots & \ddots & \vdots \\ \sigma_{1N} & \dots & \sigma_{N}^{2} \end{bmatrix}$$

- The covariance matrix indicates the tendency of each pair of features (dimensions in a random vector) to vary together, i.e., to <u>co-vary</u>*
 - The covariance has several important properties
 - If x_i and x_k tend to increase together, then $c_{ik} > 0$
 - If x_i tends to decrease when x_k increases, then $c_{ik} < 0$
 - If x_i and x_k are uncorrelated, then $c_{ik} = 0$
 - $|c_{ik}| \le \sigma_1 \sigma_k$, where σ_i is the standard deviation of x_i
 - $-c_{ii} = \sigma_i^2 = var[x_i]$
 - The covariance terms can be expressed as $c_{ii} = \sigma_i^2$ and $c_{ik} = \rho_{ik}\sigma_i\sigma_k$
 - where ρ_{ik} is called the correlation coefficient

A numerical example

Given the following samples from a 3D distribution

- Compute the covariance matrix
- Generate scatter plots for every pair of vars.
- Can you observe any relationships between the covariance and the scatter plots?
- You may work your solution in the templates below

Example	x ₁	X ₂	x ₃	x ₁ -µ ₁	χ ₂ -μ ₂	x ₃ -μ ₃	$(x_1-\mu_1)^2$	$(x_2-\mu_2)^2$	$(x_3-\mu_3)^2$	$(x_1-\mu_1)(x_2-\mu_2)$	$(x_1-\mu_1)(x_3-\mu_3)$	$(x_2-\mu_2)(x_3-\mu_3)$
1												
2												
3												
4												
Average												

The Normal or Gaussian distribution

– The multivariate Normal distribution $N(\mu, \Sigma)$ is defined as

$$f_X(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

For a single dimension, this expression is reduced to

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The Gaussian Distribution

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})\right\}$$

Three-class 2D problem with equal priors

$$\mu_1 = \begin{bmatrix} 3 & 2 \end{bmatrix}^T$$
 $\mu_2 = \begin{bmatrix} 7 & 4 \end{bmatrix}^T$ $\mu_3 = \begin{bmatrix} 2 & 5 \end{bmatrix}^T$

$$\Sigma_1 = \begin{bmatrix} 2 & \\ & 2 \end{bmatrix}$$
 $\Sigma_1 = \begin{bmatrix} 2 & \\ & 2 \end{bmatrix}$

Three-class 2D problem with equal priors

$$\mu_1 = [3 \ 2]^T$$
 $\mu_2 = [5 \ 4]^T$ $\mu_3 = [2 \ 5]^T$

$$\Sigma_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\Sigma_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\Sigma_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Three-class 2D problem with equal priors

$$\mu_1 = \begin{bmatrix} 3 \ 2 \end{bmatrix}^T \qquad \mu_2 = \begin{bmatrix} 5 \ 4 \end{bmatrix}^T \qquad \mu_3 = \begin{bmatrix} 2 \ 5 \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix} \qquad \Sigma_2 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix} \qquad \Sigma_3 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix}$$

Three-class 2D problem with equal priors

$$\mu_1 = [3\ 2]^T$$

$$\mu_2 = [5 \ 4]^T$$

$$\mu_1 = [3 \ 2]^T$$
 $\mu_2 = [5 \ 4]^T$ $\mu_3 = [2 \ 5]^T$

$$\Sigma_1 = \begin{bmatrix} .5 \\ & .5 \end{bmatrix}$$
 $\Sigma_2 = \begin{bmatrix} 1 \\ & 1 \end{bmatrix}$ $\Sigma_3 = \begin{bmatrix} 2 \\ & 2 \end{bmatrix}$

$$\Sigma_2 = \begin{bmatrix} 1 \end{bmatrix}$$

$$\Sigma_3 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Zoom out

Three-class 2D problem with equal priors

$$\mu_1 = \begin{bmatrix} 3 & 2 \end{bmatrix}^T \qquad \mu_2 = \begin{bmatrix} 5 & 4 \end{bmatrix}^T \qquad \mu_3 = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \qquad \Sigma_2 = \begin{bmatrix} 1 & -1 \\ -1 & 7 \end{bmatrix} \qquad \Sigma_3 = \begin{bmatrix} .5 & .5 \\ .5 & 3 \end{bmatrix}$$

$$\mu_1 = [3 \ 2]^T$$
 $\mu_2 = [5 \ 4]^T$ $\mu_3 = [3 \ 4]^T$

$$\mu_3 = [3 \ 4]^4$$

$$\Sigma_3 = \begin{bmatrix} .5 & .5 \\ .5 & 3 \end{bmatrix}$$

Gaussian distributions are very popular since

- Parameters (μ, Σ) uniquely characterize the normal distribution
- If all variables x_i are uncorrelated $(E[x_ix_k] = E[x_i]E[x_k])$, then
 - Variables are also independent $(P[x_ix_k] = P[x_i]P[x_k])$, and
 - $-\Sigma$ is diagonal, with the individual variances in the main diagonal
- Central Limit Theorem (next slide)
- The marginal and conditional densities are also Gaussian
- Any linear transformation of any N jointly Gaussian rv's results in N rv's that are also Gaussian
 - For $X = [X_1 X_2 \dots X_N]^T$ jointly Gaussian, and $A_{N \times N}$ invertible, then Y = AX is also jointly Gaussian

$$f_Y(y) = \frac{f_X(A^{-1}y)}{|A|}$$

Central Limit Theorem

- Given <u>any</u> distribution with a mean μ and variance σ^2 , the sampling distribution of the mean approaches a normal distribution with mean μ and variance σ^2/N as the sample size N increases
 - No matter what the shape of the original distribution is, the sampling distribution of the mean approaches a normal distribution
 - N is the sample size used to compute the mean, not the overall number of samples in the data
- Example: 500 experiments are performed using a uniform distribution
 - N = 1
 - One sample is drawn from the distribution and its mean is recorded (500 times)
 - The histogram resembles a uniform distribution, as one would expect
 - N = 4
 - Four samples are drawn and the mean of the four samples is recorded (500 times)
 - The histogram starts to look more Gaussian
 - As *N* grows, the shape of the histograms resembles a Normal distribution more closely

