

DRUM:End-To-End Differentiable Rule Mining On Knowledge Graphs

2024-08-20

presenter: Sooho Moon

DMAIS

Ali Sadeghian(*1), Mohammadreza Armandpour(*2), Patrick Ding(2), Daisy Zhe Wang(1),
1-Department of Computer Science, University of Florida
2-Department of Statistics, Texas A&M University

NeurIPS 2019

INDEX

- Main interest
- Problem with previous works
- Architecture
- Experiments
- Conclusion

Main interest

Knowledge Graph(KG) reasoning

- Knowledge graph : 그래프의 특수한 형태로 entity(노드)가 relation(간선)으로 연결되어 있는 구조인 데이터(Knowledge Base, KB)
- KG reasoning : Entity와 relation의 특성들을 학습해 데이터에 대한 추론을 목적으로 함

Most prominent directions for KB reasoning

1. Representation learning(e.g., TransE(2013), ComplEx(2016))

entity와 relation을 latent space로 임베딩해 관계를 학습

장점

- Triple 하나씩 model에 입력되므로 학습 과정이 단순함
- 연속 공간인 latent space에서 학습하므로 gradient base 알고리즘들 사용 가능

단점

- Transductive learning
- 결과들이 해석 가능하지 않음(e.g., 이 벡터는 왜 여기로 임베딩 되었는가?)

Most prominent directions for KB reasoning

2. Rule mining(e.g., TensorLog(2016), NeuralLP(2017))

relation의 결합으로 구성된 논리적 규칙들의 패턴을 학습

장점

- Inductive learning
- 해석 가능한 추론을 도출함

단점

- Rule의 structure(이산적 문제), parameter(연속적 문제)를 동시에 알아내야 함

Why rule mining?

- Transductive, inductive setting 모두에 적용 가능 (데이터가 적거나 노이즈가 많은 KB에서도 모델 사용 가능)
- 추론들이 해석 가능하므로 모델과 인간의 관계를 긴밀하게 해줌 (e.g., 디버깅 용이, 결과 신뢰도 향상)

 $brother(C, A) \leftarrow nephew(A, B), uncle(B, C)$

- Previous approaches for training models on rule mining
 - Predefined statistical measures 사용해 rule을 평가

support, confidence 등의 휴리스틱한 metric들은 평가 이상의 의미가 없음

- Inductive Logic Programming(ILP) system 접근(e.g., FOIL(1990), MDIE(1995))

- Ontological Pathfinding(OP) 접근(e.g., AMIE+(2015))

support, confidence metric을 기반으로 parallelization, partitioning 기술들을 사용해 속도 향상 **However**, 여전히 metric과 이산적 path counting 고유의 한계를 극복하지 못함

- End-to-end differentiable model(e.g., Neural LP(2017))

최초의 neural network + LSTM 기반 rule mining 모델

DRUM(2019)

structure(이산), scoring(연속) 문제를 동시에 다루어 의의가 큼

Background

- Definitions

```
\begin{aligned} \mathbf{KB} : G &= \{(s,r,o) | s,o \in \mathcal{E}, r \\ &\in \mathcal{R} \} \end{aligned} First order logical rule : \mathbf{B} \Longrightarrow H, \mathbf{B} = \land_i \ B_i(\cdot,\cdot)
= H : \text{head predicate}
= B_i : \text{body atom}(\text{e.g.}, livesIn}(\cdot,\cdot) \quad )
```


Background

- Rule Mining

Objective: Learn "closed and connected" first-order logical Horn clauses from KB

$$B_1(x,z_1) \wedge B_2(z_1,z_2) \wedge \cdots \wedge B_T(z_{T-1},y) \implies H(x,y) : \alpha$$

T: length of rule

 $-z_i$: entity variable

lpha : confidence value of H

특정 rule의 B_i 찾기 위해 이산 공간 탐색 + α 학습 위해 연속 공간 탐색

Differentiable formulation

n이 entity의 개수일 때 각 entity를 one-hot vector로 표현 : $\{oldsymbol{v}_1, \cdots, oldsymbol{v}_n\}$

$$\mathbf{v}_2 = [0,1,0,\cdots,0]^T$$

특정 relation B_r 에 대한 entity 인접 행렬 : $m{A}_{B_r}$

$$\mathbf{A}_{B_r} = \begin{pmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \quad \stackrel{\bullet}{\blacktriangleright} \quad B_r(v_1, v_n)$$

Differentiable formulation

$$B_{1}(x, z_{1}) \wedge B_{2}(z_{1}, z_{2}) \wedge \cdots \wedge B_{T}(z_{T-1}, y)$$

$$\mathbf{v}_{x}^{T} \cdot \mathbf{A}_{B_{1}} \cdot \mathbf{A}_{B_{2}} \cdots \mathbf{A}_{B_{T}} \cdot \mathbf{v}_{y}$$

위 수식의 결과(스칼라)는 x에서 y로 B_{r_i} 를 타고 이어질 수 있는 경로의 개수와 일치

Objective function

- 각 head relation H에 대해 다음 식을 maximize 하는 적절한 lpha 를 찾는 것

$$\omega_{H}(\boldsymbol{\alpha}) \doteq \sum_{s} \alpha_{s} \prod_{k \in p_{s}} \mathbf{A}_{B_{k}}$$

학습하고자 하는 rule에 대해 indexing 하는 s, s에 따른 body atom 집합 $p_{\scriptscriptstyle S}$

$$O_{\scriptscriptstyle{H}}(\boldsymbol{\alpha}) \doteq \sum_{(x,H,y) \in KG} \mathbf{v}_x^T \boldsymbol{\omega}_{\scriptscriptstyle{H}}(\boldsymbol{\alpha}) \mathbf{v}_y$$

- 최종적으로 H에 대해 optimize 하고 싶은 함수

■ Neural LP의 한계

- 기존 수식 $O_H(\alpha)$ 은 over-parameterization 문제에 봉착함($O(|\mathcal{R}|^T)$) 따라서 수식 $w_H(\alpha)$ 를 아래와 같이 수정함

$$\Omega_H^I(\mathbf{a}) \doteq \prod_{i=1}^T (\sum_{k=0}^{|\mathcal{R}|} a_{i,k} \mathbf{A}_{B_k})$$
 $A_{B_0} = I_n$: 길이 T 이하의 모든 rule들을 학습할 수 있도록 해줌

- 위 수식은 Neural LP의 근간 수식과 거의 일치하고 파라미터 개수는 $T(|\mathcal{R}|+1)$
- 하지만 DRUM 저자들은 위 수식을 optimize 하는 것은 필연적으로 높은 confidence를 가지는 틀린 rule을 학습함을 증명함

■ Neural LP의 한계 증명(Theorem 1)

"특정 깊이에서의 무의미한 relation의 confidence가 지나치게 클 수 있음"

- 실험적으로도 위 정리를 따르는 틀린 rule들이 Neural LP를 통해 발견됨 (결과는 experiments에서)

DRUM

- 다시 돌아와 길이가 T 이하인 rule들에 대한 confidence 개수는 $(|\mathcal{R}|+1)^T$
- 이는 각 axis 크기가 $|\mathcal{R}| + 1$ 인 T차원 텐서로 볼 수 있음
- 즉 $B_{r_1} \wedge B_{r_2} \wedge \cdots \wedge B_{r_T}$ 에 해당하는 confidence는 (r_1, r_2, \dots, r_T) 위치에 저장되는 confidence value tensor라고 할 수 있음

DRUM

- $\Omega^I_{_H}(\mathbf{a})$ 는 confidence value tensor의 rank one approximation으로 해석할 수 있음
- Rank L approximation(rank one 포함)은 L이 클수록 텐서를 더 정확히 근사 가능

$$\Omega_H^L(\mathbf{a}, L) \doteq \sum_{j=1}^L \{ \prod_{i=1}^T \sum_{k=0}^{|\mathcal{R}|} a_{j,i,k} \mathbf{A}_{B_k} \}$$

(a) Original image A.

(b) Rank-1 approximation $\widehat{\boldsymbol{A}}(1)$.(c) Rank-2 approximation $\widehat{\boldsymbol{A}}(2)$

(d) Rank-3 approximation $\widehat{A}(3)$.(e) Rank-4 approximation $\widehat{A}(4)$.(f) Rank-5 approximation $\widehat{A}(5)$.

■ DRUM이 해결해야할 문제들

- 1. 하나의 H에 대해서는 파라미터 개수가 $LT(|\mathcal{R}| + 1)$ 이지만 전체 개수는 $O(|R|^2)$ 이므로 여전히 무거움
- 2. 또한 Ω^L_H 를 **직접** optimize 하는 것은 특정 head의 학습 결과를 다른 head까지 영향을 주지 못한다는 한계가 존재
- + 3. 어떤 relation 은 같은 rule 에 올 수 없음(e.g., father_of(X,...) + wife_of(X,...))

Bidirectional RNN

$$\begin{aligned} \mathbf{h}_i^{(j)},\,\mathbf{h}_{T-i+1}^{\prime(j)} &= \mathbf{BiRNN}_j(\mathbf{e}_H,\,\mathbf{h}_{i-1}^{(j)},\,\mathbf{h}_{T-i}^{\prime(j)}),\,\,\text{+ gradient clipping, LSTM} \\ [a_{j,i,1},\cdots,\,a_{j,i,|\mathcal{R}|+1}] &= f_{\theta}([\,\mathbf{h}_i^{(j)},\,\mathbf{h}_{T-i+1}^{\prime(j)}]), \end{aligned}$$

Statistical Relation Learning

- UMLS(biomedical relations), Kinship(Australian tribes), Family(bloodlines of multiple families)

Table 2: Experiment results with maximum rule length 2 and 3

		Family			UMLS			Kinship					
			Hits@			Hits@		Hits@)			
		MRR	10	3	1	MRR	10	3	1	MRR	10	3	1
T=2	Neural-LP DRUM-1 DRUM-4	.91 .92 .94	.99 1.0 1.0	.96 .98 .99	.86 .86 .89	.75 .80 .81	.92 .97 .98	.86 .93 .94	.62 .66 .67	. 62 .51 .60	.91 .85 .92	.69 .59 .69	. 48 .34 .44
T=3	Neural-LP DRUM-1 DRUM-4	.88 .91 .95	.99 .99 .99	.95 .96 .98	.80 .85 .91	.72 .77 .80	.93 .96 .97	.84 .92 .92	.58 .63 .66	.61 .57 .61	.89 .88 .91	.68 .66 .71	.46 .43 .46

: comparison with inductive models

Statistical Relation Learning

Detecate		U	MLS		Kinship				
Datasets	MRR	Hits@1	Hits@3	Hits@10	MRR	Hits@1	Hits@3	Hits@10	
ConvE	0.94	0.92	0.96	0.99	0.83	0.98	0.92	0.98	
ComplEx	0.89	0.82	0.96	1	0.81	0.7	0.89	0.98	
MINERVA	0.82	0.73	0.90	0.97	0.72	0.60	0.81	0.92	
NTP^1	0.88	0.82	0.92	0.97	0.6	0.48	0.7	0.78	
NTP- λ^1	0.93	0.87	0.98	1	0.8	0.76	0.82	0.89	
NTP 2.0	0.76	0.68	0.81	0.88	0.65	0.57	0.69	0.81	
DRUM	0.81	0.67	0.94	0.98	0.61	0.46	0.71	0.91	

[:] Comparison with transductive models

Nonetheless, DRUM is much faster(1.2 min) vs NTP(-λ)(+8 hours) on Kinship

Knowledge Graph Completion

- WN18RR, FB15k-237 respectively challenging variants of WN18, FB15k

Table 4: Transductive link prediction results. The results are taken from [25] [46] and [40] Table 9: Transductive link prediction results

	WN18RR					FB15K-237			
		Hits				Hits			
	MRR	@10	@3	@1	MRR	@10	@3	@1	
R-GCN [36]	_	_	_	_	.248	.417	.258	.153	
DistMult [45]	.43	49	.44	.39	.241	.419	.263	.155	
ConvE [10]	.43	.52	.44	.40	.325	.501	.356	.237	
ComplEx [42]	.44	.51	.46	41_	.247	.428	.275	.158	
TuckER [2]	.470	.526	.482	.443	.358	.544	.394	.266	
ComplEx-N3 [25]	.47	.54	_		.35	.54		_	
RotatE [40]	.476	.571	.492	.428	.338	.533	.375	.241	
Neural LP [46]	.435	.566	.434	.371	.24	.362	_	_	
MINERVA [8]	.448	.513	.456	.413	.293	.456	.329	.217	
Multi-Hop [27]	.472	.542	_	.437	.393	.544	_	.329	
DRUM (T=2)	.435	.568	.435	.370	.250	.373	.271	.187	
DRUM (T=3)	.486	.586	.513	.425	.343	.516	.378	.255	

	WN18						
			Hits				
	MRR	@10	@3	@1			
DistMult	.822	.936	.914	.728			
ComplEx	.941	.947	.936	.936			
Gaifman	_	.939	_	.761			
R-GCN	.814	.964	.929	.697			
TransE	.495	.943	.888	.113			
ConvE	.943	.956	.946	.935			
Neural LP	.94	.945	_	_			
DRUM	.944	.954	.943	.939			

Quality and Interpretability of the Rules

- 특정 rule의 상위 confident 3개에 대한 평가(빨간색은 틀린 논리)

Table 7: Top 3 rules obtained by each system learned on *family* dataset

Neural LP	$\begin{aligned} & brother(B,A) \leftarrow sister(A,B) \\ & brother(C,A) \leftarrow sister(A,B), sister(B,C) \\ & brother(C,A) \leftarrow brother(A,B), sister(B,C) \end{aligned}$	$wife(C, A) \leftarrow husband(A, B), husband(B, C)$ wife(B, A) \leftarrow husband(A, B) $wife(C, A) \leftarrow daughter(B, A), husband(B, C)$	$son(C, A) \leftarrow son(B, A), brother(C, B)$ $son(B, A) \leftarrow brother(B, A)$ $son(C, A) \leftarrow son(B, A), mother(B, C)$
DRUM	$\begin{aligned} & brother(C,A) \leftarrow nephew(A,B),uncle(B,C) \\ & brother(C,A) \leftarrow nephew(A,B),nephew(C,B) \\ & brother(C,A) \leftarrow brother(A,B),sister(B,C) \end{aligned}$	$\begin{aligned} & wife(A, B) \leftarrow husband(B, A) \\ & wife(C, A) \leftarrow mother(A, B), father(C, B) \\ & wife(C, A) \leftarrow son(B, A), father(C, B) \end{aligned}$	$\begin{aligned} son(C,A) \leftarrow nephew(A,B), brother(B,C) \\ son(C,A) \leftarrow brother(A,B), mother(C,B) \\ son(C,A) \leftarrow brother(A,B), daughter(B,C) \end{aligned}$

: Head relation은 우에서 좌로, body atom은 좌에서 우로 읽음

Conclusion

Problems

- 이산 공간과 연속 공간을 동시에 optimize
- Neural LP의 한계
- Transductive system

DRUM

- Neural LP를 계승해 neural network를 사용한 Bidirectional RNN 기반 모델
- 학습 결과를 여러 head relation으로 공유 가능
- 간접적으로 score function을 optimize 하여 경량성 제공

Contact: Sooho Moon (Email: moonwalk725@cau.ac.kr)