Relations

A relation R between arbitrary sets A and B is a subset of the product A×B

We say that R is of type $A \times B$

If $R \subseteq A^2$, we say that R is a binary relation on A.

We will use a R b or R(a, b) for $\langle a, b \rangle \in R$

For $A = \{a, b\}$, there are 16 binary relations on A:

Note that there are four elements (possible pairs) in A^2 , and each relation is a subset of A^2 , so there are $|\wp A^2| = 16$ possibilities.

Diagrams

Let
$$A = \{a_1, a_2\}, B = \{b_1, b_2, b_3\}$$
 and $R = \{\langle a_1, b_1 \rangle, \langle a_2, b_1 \rangle, \langle a_2, b_2 \rangle\}$

The relation R can be represented by this diagram:

Directed Graphs

Let R be a binary relation on $A = \{a_1, a_2, a_3, a_4\}$ with $R = \{\langle a_1, a_2 \rangle, \langle a_2, a_1 \rangle, \langle a_3, a_2 \rangle, \langle a_3, a_3 \rangle\}$ The directed graph of this relation is:

Notice that the direction of the arrows matters

Special representation

The relation R defined by $R = \{(x, y) \in R^2 \mid x + y \le 7\}$ can be represented by:

Matrix Representation

Let $A = \{a_1, a_2\}, B = \{b_1, b_2, b_3\}$ and $R = \{\langle a_1, b_1 \rangle, \langle a_2, b_1 \rangle, \langle a_2, b_2 \rangle\}$ as before. The matrix representation of R is:

$$\left(egin{array}{cccc} \mathsf{True} & \mathsf{False} & \mathsf{False} \\ \mathsf{True} & \mathsf{True} & \mathsf{False} \end{array} \right) \quad \mathsf{or} \quad \left(egin{array}{cccc} \mathsf{T} & \mathsf{F} & \mathsf{F} \\ \mathsf{T} & \mathsf{T} & \mathsf{F} \end{array} \right)$$

Relations

This representation can be generalised to arbitrary finite sets A and B.