Module 5

Direct Formal Proof

Ex 1: P: p
$$p \rightarrow q$$
 $p \rightarrow q$ $p \rightarrow s$ p

(i)
$$P \rightarrow Q$$
 P_2
(iii) $Q \rightarrow Q$ P_2
(iii) $Q \rightarrow Q$ (i), (ii), Modus Ponens
(iv) $P \wedge Q \rightarrow Q$ (i), (iii), Rule of Conjunction
(v) $Q \wedge P \rightarrow Q$ (i), (iii), Rule of Conjunction
(v) $Q \wedge P \rightarrow Q$ (iv), (v), Modus Ponens.

Steps (i)-(vi) Mow that IP is true.

Rule of Inference	Name of Rule
$\begin{array}{c} p \\ p \to q \\ \hline \vdots q \end{array}$	Rule of Detachment (Modus Ponens)
$\begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array}$	Law of the Syllogism
$\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots & \neg p \end{array}$	Modus Tollens
$\begin{array}{c} p \\ q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$\begin{array}{c} p \vee q \\ \hline \neg p \\ \hline \therefore q \end{array}$	Rule of Disjunctive Syllogism
$\frac{\neg p \to F_o}{\therefore p}$	Rule of Contradiction
$p \land q$ $\therefore p$	Rule of Conjunctive Simplification
$\frac{p}{\therefore p \lor q}$	Rule of Disjunctive Amplification
$\begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \therefore r \end{array}$	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ \hline q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$\begin{array}{c} p \to q \\ r \to s \\ \hline \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array}$	Rule of the Destructive Dilemma

: (t) ~ conclusion.

(i)
$$P$$
(ii) $P \rightarrow (q, Vr)$ P_2
(iii) (q, Vr) (i), (ii) Modus Ponens

$$\begin{array}{ccc} (iV) & q \rightarrow 5 & P3 \\ (V) & \neg 5 & P4 \end{array}$$

(vii), (viii), Modus ponens

Spring2021@ERAU

P5

Direct Formal Proof

Rule of Inference	Name of Rule
$ \begin{array}{c} p \\ p \to q \\ \hline \vdots \qquad q \end{array} $	Rule of Detachment (Modus Ponens)
$\begin{array}{c} p \to q \\ \hline q \to r \\ \hline \vdots p \to r \end{array}$	Law of the Syllogism
$ \begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots \neg p \end{array} $	Modus Tollens
$\begin{array}{c} p \\ q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$ \begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \vdots \qquad q \end{array} $	(Rule of Disjunctive Syllogism
$ \begin{array}{ccc} \neg p \to F_o \\ \vdots & p \end{array} $	Rule of Contradiction
$p \wedge q$ $\therefore p$	Rule of Conjunctive Simplification
$\frac{p}{\therefore p \lor q}$	Rule of Disjunctive Amplification
$ \begin{array}{c c} & p \land q \\ \hline & p \rightarrow (q \rightarrow r) \\ \hline & \vdots & r \end{array} $	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$\begin{array}{c} p \rightarrow q \\ r \rightarrow s \\ \hline \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array}$	Rule of the Destructive Dilemma

<u>Ex 3</u>: ℙ: p P2 $p \rightarrow (q \wedge r)$ **P**3

$$\begin{pmatrix}
i \\
j
\end{pmatrix}
\qquad P_1$$

$$\begin{pmatrix}
i \\
j
\end{pmatrix}
\qquad P_2$$

$$(y) \rightarrow t$$

(i), (ii) Modus Ponens.

(iv), (v), rule of Modus Ponens

00 steps (i)-(vi) Show Pis ralid/true.

Rule of Inference	Name of Rule
$ \begin{array}{c} p \\ p \to q \\ \hline \vdots q \end{array} $	Rule of Detachment (Modus Ponens)
$\begin{array}{c} p \to q \\ \hline q \to r \\ \hline \vdots p \to r \end{array}$	Law of the Syllogism
$\begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots & \neg p \end{array}$	Modus Tollens
$\begin{array}{c} p \\ q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$\begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \therefore q \end{array}$	Rule of Disjunctive Syllogism
$\frac{\neg p \to F_o}{\therefore p}$	Rule of Contradiction
$\begin{array}{c} p \wedge q \\ \hline \therefore p \end{array}$	Rule of Conjunctive Simplification
$\frac{p}{\therefore p \lor q}$	Rule of Disjunctive Amplification
$\begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \therefore r \end{array}$	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ \hline p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$\begin{array}{c} p \to q \\ r \to s \\ \hline \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array}$	Rule of the Destructive Dilemma

Ex 4:
$$\mathbb{P}$$
: $(f \lor s) \to m$ $\uparrow l$ $m \to c$ $\uparrow 2$ $\uparrow 3$ \therefore $\uparrow s$

$$\begin{array}{ccc}
\begin{pmatrix}
\hat{1} & m \rightarrow C & P_2 \\
\langle \hat{1} & \uparrow & C & P_3 \\
\langle \hat{1} & \uparrow & \uparrow & C & P_3
\end{pmatrix}$$

(vi), rule of conjuctive simplification.

60 Steps (i)- (vii) show IP is true

Spring2021@ERAU

Direct Formal Proof

Rule of Inference	Name of Rule
$\begin{array}{c} p \\ p \to q \\ \hline \therefore q \end{array}$	Rule of Detachment (Modus Ponens)
$\begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array}$	Law of the Syllogism
$ \begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots \neg p \end{array} $	Modus Tollens
$\begin{array}{c} p \\ q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$\begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \therefore q \end{array}$	Rule of Disjunctive Syllogism
$ \begin{array}{ccc} \neg p \to F_o \\ \vdots & p \end{array} $	Rule of Contradiction
$p \wedge q$ $p \wedge q$	Rule of Conjunctive Simplification
$\frac{p}{\therefore p \lor q}$	Rule of Disjunctive Amplification
$\begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \vdots r \end{array}$	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ \hline p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$ \begin{array}{c} p \to q \\ r \to s \\ \hline \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array} $	Rule of the Destructive Dilemma

(i) 79 (ii) 9 V P P3

(i), (ii) Rule of Disjunctive Syllogism.

 $(i^{\vee}) \longrightarrow r$ $P \rightarrow r$

(iii), (iv) Modus Ponens.

Steps (i) (v) show P is valid

Rule of Inference	Name of Rule
$ \begin{array}{c} p \\ p \to q \\ \vdots q \end{array} $	Rule of Detachment (Modus Ponens)
$\begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array}$	Law of the Syllogism
$ \begin{array}{c} p \to q \\ \hline \neg q \\ \hline \vdots \neg p \end{array} $	Modus Tollens
$\begin{array}{c} p \\ \hline q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$\begin{array}{c} p \lor q \\ \hline \hline \begin{matrix} \neg p \end{matrix} \\ \hline \hline \begin{matrix} \ddots \end{matrix} \end{matrix}$	Rule of Disjunctive Syllogism
$ \begin{array}{ccc} \neg p \to F_o \\ \vdots & p \end{array} $	Rule of Contradiction
$p \land q$ $\therefore p$	Rule of Conjunctive Simplification
$\frac{p}{\therefore p \lor q}$	Rule of Disjunctive Amplification
$ \begin{array}{c} p \wedge q \\ p \rightarrow (q \rightarrow r) \\ \hline \vdots \qquad r \end{array} $	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$\begin{array}{c} p \to q \\ r \to s \\ \hline \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array}$	Rule of the Destructive Dilemma

Spring2021@ERAU

Direct Formal Proof

Rule of Inference	Name of Rule
$ \begin{array}{c} p \\ p \to q \\ \vdots q \end{array} $	Rule of Detachment (Modus Ponens)
$ \begin{array}{c} $	Law of the Syllogism
$ \begin{array}{c} p \to q \\ \neg q \\ \hline \vdots \neg p \end{array} $	Modus Tollens
$\begin{array}{c} p \\ q \\ \hline \therefore p \wedge q \end{array}$	Rule of Conjunction
$\begin{array}{c} p \vee q \\ \hline \neg p \\ \hline \therefore q \end{array}$	Rule of Disjunctive Syllogism
$ \begin{array}{ccc} $	Rule of Contradiction
$p \land q$ $\therefore p$	Rule of Conjunctive Simplification
p $\therefore p \lor q$	Rule of Disjunctive Amplification
$ \begin{array}{c} p \wedge q \\ p \to (q \to r) \\ \hline \vdots \qquad r \end{array} $	Rule of Conditional Proof
$\begin{array}{c} p \to r \\ q \to r \\ \hline \vdots (p \lor q) \to r \end{array}$	Rule for Proof by Cases
$\begin{array}{c} p \to q \\ r \to s \\ \hline p \lor r \\ \hline \vdots q \lor s \end{array}$	Rule of the Constructive Dilemma
$\begin{array}{c} p \to q \\ r \to s \\ \neg q \lor \neg s \\ \hline \vdots \neg p \lor \neg r \end{array}$	Rule of the Destructive Dilemma