XII. Hypothesis testing

Instructor: Yanlin Qi

Institute of Transportation Studies
Department of Statistics
University of California, Davis

Sec 8.1 Hypotheses and test procedures

Sec 8.2: z Tests for hypotheses about a population

mean Sec 8.3: The one-sample $\it t$ test

Introduction

Consider the brown egg problem again.

Suppose the weights of the eggs produced at the farm (population) are normally distributed with unknown mean μ but known standard deviation σ = 2 g.

It is claimed by the manufacturer that μ = 65 g.

You bought a carton of 12 eggs, with an average weight of 61.5 g. $\,$

Question. Is such a discrepancy between sample mean and population mean purely due to randomness or significant evidence against the claim?

The formal procedure of hypothesis testing

First, we set up the following hypothesis test:

$$H_0: \mu = 65 \text{ vs } H_1(or H_a): \mu \neq 65$$

in which

- H_0 : **null hypothesis** (statement which we intend to reject)
- *H*₁: **alternative hypothesis** (statement we suspect to be true)

The goal is to make a decision, based on a random sample X_1 , . . . , X_n from the population, whether or not to reject H_0 .

There are two kinds of decisions:

- If the sample "strongly" contradicts H₀, then we reject H₀ and correspondingly accept H₁;
- If the sample "does not strongly" contradict H₀, then we fail to reject H₀, or equivalently we retain H₀.

Remark. This is essentially a <u>proof by contradiction</u> approach.

Remark. There is a perfect analogy to courtroom trial. In this scenario, the following two hypotheses are tested:

- Ho: Defendant is innocent;
- *H_a*: *Defendant is guilty*.

The prosecutor presents evidence to the court, examined by the jury:

- If the jury thinks the evidence is strong enough (significant), the defendant will be convicted (H₀ is rejected and H_a is then accepted);
- Otherwise, the defendant is not found guilty and will be acquitted (the prosecutor has thus failed to convict the defendant due to insufficient evidence).

Remark. It is also possible to use a one-sided alternative:

$$H_0: \mu = 65$$
 vs $H_a: \mu < 65$.

In this case, the null is understood as " μ is at least 65 ($\mu \ge 65$)".

For example, the FDA's main interest is to know whether the eggs are lighter than 65 g (on average). It is not an issue if they are actually heavier (good for customers).

Similarly, for some other consideration, we might want to test

$$H_0: \mu = 65$$
 vs $H_a: \mu > 65$,

where the null is understood as " μ is *at most* 65 ($\mu \le 65$)".

Test statistic

Typically, a test statistic needs to be specified to assist in making a decision. It is often a point estimator for the parameter being tested.

In the brown egg example, we can use \overline{X} as a test statistic to test H_0 : $\mu = 65$ against

H₁: μ ≠ 65: "very small or large" values of X̄ are evidence
 against the null and correspondingly in favor of the alternative
 hypothesis.

 H₁: μ < 65: only "very small" values of X̄ are evidence against the null and correspondingly in favor of the alternative hypothesis.

Decision rules

Clearly, a rule needs to be specified in order to decide when to reject the null H_0 : μ = 65. This also defines a rejection region for the test.

• For
$$H_1: \mu \neq 65:$$

 $|\bar{x} - 65| > c$

• For $H_1: \mu < 65$:

$$\bar{x} < 65 - c$$

• For $H_1: \mu > 65$:

$$\bar{x} > 65 + c$$

Tests of Statistical Hypotheses

- Consider the steel strength problem:
- ♣*H*₀: μ = 500 MPa and *H*₁: μ ≠ 500 MPa
- Suppose a sample of n = 10 specimens is tested

- Decision Rule Based on \bar{x} :
 - If \bar{x} falls close to the hypothesized value of 500 MPa:
 - ❖ This does not conflict with the null hypothesis H_0
 - ♦ We do not have enough evidence to reject H_0 .
 - ❖ If \bar{x} is considerably different from the hypothesized value of 500 MPa:
 - ❖This provides evidence in support of the alternative hypothesis H₁.
 - \star We may reject the null hypothesis H_0 .

Tests of Statistical Hypotheses

- The sample mean can take on many different values
- ❖ Suppose that if $485 \le \bar{x} \le 515$, we will not reject H_0 , otherwise we will reject H_0 in favor of H_1

- The central region is called acceptance region
- The values of \bar{x} that are < 485 and > 515 constitute the critical region for the test
- The boundaries are called critical values

Test errors

There are two kinds of test errors depending on whether H_0 is true or not.

		Decision	
		Retain H ₀	Reject H ₀
<i>H</i> ₀	true	Correct decision	Type I error
	false	Type II error	Correct decision

Remark. In the courtroom trial scenario, a type I error is convicting an innocent person, while a type II error is acquitting a guilty person.

- ightharpoonup Rejecting the null hypothesis H_0 when it is true is defined as a type I error
- \clubsuit Failing to reject the null hypothesis H_0 when it is false is defined as a type II error
- Because our decision is based on RVs, we can associate probabilities with the type I and type II errors
 - ❖ The probability of making a type I error is denoted by α
 - $\$ The probability of making a type II error is denoted by β

Type I Error

*It may happen that, even though the true mean strength is 500 MPa, we could select a RS that gives us a sample mean \bar{x} that falls into the critical region

Type II Error

*It may happen that, even though the true mean strength is not 500 MPa, we could select a RS that gives us a sample mean \bar{x} that falls into the acceptance region

Calculating the type-I error probability

Example 0.1. In the brown eggs problem, suppose the true population standard deviation is $\sigma = 2$ grams. A person decides to use the following decision rule (for a sample of size n = 12, i.e., a carton of eggs)

$$|\bar{x} - 65| > 1$$
 \leftarrow rejection region of the test

to conduct the two-sided test

$$H_0: \mu = 65$$
 vs $H_1: \mu \neq 65$.

What is the probability a of making a type-I error? (Answer: 0.0836)

Example 0.2. (cont'd) Consider two different decision rules:

- $|\bar{x} 65| > 0.5$
- $|\bar{x} 65| > 2$

for conducting the same two-sided test. Verify that the corresponding probabilities of making a type-I error are 0.3844, 0.0006, respectively.

Type-I error probabilities of tests with $|\bar{x} - 65| > c$ as rejection regions:

Observation: The larger the threshold (c), the smaller the rejection region (the less often we reject H_0), the smaller the type-I error probability.

Example 0.3. Compute the probability of making a type-I error for the one-sided test H_1 : μ < 65 with each of the following decision rules

•
$$\bar{x} < 65 - 0.5 = 64.5$$

•
$$\bar{x} < 65 - 1 = 64$$

•
$$\bar{x} < 65 - 2 = 63$$

(Answers: 0.1922, 0.0418, 0.0003)

Type-I error probabilities of tests with \bar{x} < 65 – c as rejection regions:

Similarly, the type-I error probability decreases as the threshold (c) is increased.

- ❖Too easy, too good?
- \diamond It seems that by increasing the threshold c (which would shrink the rejection region), we can make the type-I error probability arbitrarily small.
- This seems a bit too easy and too good to be true.
- This is indeed true, as far as only type-I error is concerned, but is it perhaps at the expense of something else?

How is the type-II error affected?

It turns out that reducing the rejection region will cause the probability of making a type-II error to increase:

- Making it hard to reject H₀ is good when H₀ is true (by using a small rejection region, this corresponds to type-I errors).
- But it would be bad when H_0 is false (we actually want to reject H_0 in this case).

The thing is that <u>we don't know which hypothesis is true</u>, so we have to choose a rejection region carefully such that both errors are small.

Illustration for a one-sided test when H_1 is true with $\mu = 64$

$$H_0: \mu = 65 \text{ vs } H_1: \mu < 65$$

$$H_0: \mu = 65 \text{ vs } H_1: \mu < 65$$

Decision rule: $\bar{x} < 65 - c$

Calculating the type-II error probabilities

Consider first the one-sided test

$$H_0: \mu = 65$$
 vs $H_1: \mu < 65$.

When H_0 : μ = 65 is false (H_1 is correspondingly true), μ could be 64, or 63, or any other value contained by H_1 .

For any fixed test with decision rule $x^- < 65 - c$ (c given), the probability of making a type-II error depends on the true value of μ :

$$\beta(\mu) = P$$
 (Fail to reject $H_0 \mid H_0$ false) = $P(X > 65 - c \mid H_1 \text{ true})$

Thus, there is a separate type-II error probability at each μ in H_1

Remark.

 1 – β(μ) is the probability of making a correct decision by rejecting
 H₀ when it is false:

$$1 - \beta(\mu) = P \text{ (Reject } H_0 \mid H_0 \text{ false)} = P (\bar{X} < 65 - c \mid H_1 \text{ true)}$$

- It is called the power of the test (at μ).
- We would like
 - the type-II error probability $\beta(\mu)$ for a given μ to be small, and
 - the power of the test at the given μ to be large (80% or bigger).

We demonstrate here how to find $\beta(64)$, the probability of making a type-II error when $\mu = 64$, by the following decision rules:

$$x^{-} < 65 - c$$

By definition,

$$\beta(64) = P(X > 65 - c \mid \mu = 64)$$

$$= P\left(\frac{\bar{X} - 64}{2/\sqrt{12}} > \frac{(65 - c) - 64}{2/\sqrt{12}} \mid \mu = 64\right)$$

$$= P(Z > \sqrt{3}(1 - c)) = 1 - \Phi(\sqrt{3}(1 - c)) = \begin{cases} 0.1922, & c = 0.5\\ 0.5, & c = 1\\ 0.9582, & c = 2 \end{cases}$$

$$c = 1$$
 $c = 2$

What about other values of c (and also other values of μ)?

Observations on the type-II errors (type-I error probability decreases as c increases):

- For fixed value μ: the larger c (the smaller the rejection region, and thus the harder to reject H₀), the larger the type-II error.
- For fixed test (c): the closer
 μ is to the value in H₀ (65),
 the larger the type II error.

Type-II error probabilities for two-sided tests can be computed similarly, but the process is a little harder.

Example 0.4. Consider the two-sided test:

$$H_0: \mu = 65$$
 vs $H_1: \mu \neq 65$

along with the following decision rule:

$$|\bar{x} - 65| > c$$
.

Find the probability of making a type-II error when μ = 64 for each value of c = 0.5, 1, 2.

(Answer: $\beta(64) = P(|\bar{X} - 65| < c | \mu = 64)$, 0.9582, 0.4997, 0.1875 = which has the same trend as c increases)

How to control both errors together

Previously we assumed that both sample size n and test threshold c are fixed so as to evaluate the type-I and type-II errors of the test

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu < \mu_0 \text{ (or } \mu \neq \mu_0)$

<u>Here we consider the inverse design problem</u> by assuming the two types of error probabilities are given first:

- type-I error probability a (called level of the test) \leftarrow typically 5%
- type-II error probability β (at a specified value μ) \leftarrow typically 20%
- and then trying to determine the required values of $\it c$ and $\it n$ as follows:

1. For the given level of the test i.e., α , solve

$$\alpha = P(\text{Reject } H_0 \mid H_0 \text{ true})$$

$$= P(\bar{X} < \mu_0 - c \mid \mu = \mu_0)$$

$$= P\left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} < -\frac{c}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right)$$

$$= P\left(Z < -\frac{c}{\sigma/\sqrt{n}}\right) \longrightarrow \frac{c}{\sigma/\sqrt{n}} = z_{\alpha}$$

This yields that $c=z_{\alpha}\frac{\sigma}{\sqrt{n}}$. That is, a level test for H_{a} : $\mu<\mu_{0}$ (for a fixed sample size n) is

$$\bar{x} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$$
, or equivalently, $\frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} < -z_\alpha$

2. For the choice of , choose sample size n to achieve type-II error probability β at an alternative value $\mu = \mu'$:

$$\beta = P(\text{Fail to reject } H_0 \mid H_0 \text{ false})$$

$$= P(\bar{X} > \mu_0 - c \mid \mu = \mu')$$

$$= P\left(\frac{\bar{X} - \mu'}{\sigma/\sqrt{n}} > \frac{\mu_0 - c - \mu'}{\sigma/\sqrt{n}} \mid \mu = \mu'\right)$$

$$= P\left(Z > -z_\alpha + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right)$$

This yields that

$$z_{\beta} = -z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}$$
, and thus, $n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 - \mu'}\right)^2$.

Example 0.5. Assume the setting of the brown eggs example (with known $\sigma = 2$, but sample size n TBD). Consider the following one-sided test

$$H_0: \mu = 65$$
 vs $H_a: \mu < 65$

with corresponding decision rule

$$\bar{x} < 65 - c$$

Choose n, c so that the test has level 5% and power 80% (at μ = 64).

Answer:
$$c = z_{\alpha} \frac{\sigma}{\sqrt{n}} = 0.658, \quad n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 - \mu'}\right)^2 = 25.$$

Remark. For a two-sided test such as

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

with corresponding decision rule

$$|\bar{x} - \mu_0| > c$$

the two equations (for determining n, c) become

$$\alpha = P \text{ (Reject H}_0 \mid \text{H}_0 \text{ true}) = P (|\bar{X} - \mu_0| > c \mid \mu = \mu_0)$$

$$\beta = P \text{ (Fail to reject H}_0 \mid \text{H}_0 \text{ false}) = P (|\bar{X} - \mu_0| < c \mid \mu = \mu')$$

The first equation has an exact solution

$$c = z_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$

but the second equation only has an approximation solution:

$$n pprox \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_0 - \mu'} \right)^2$$
.

The corresponding level α test is

$$|\bar{x} - \mu_0| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
, or equivalently, $\left| \frac{x - \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$

Example 0.6. Redo the preceding example but instead for a two-sided test

$$H_0: \mu = 65$$
 vs $H_a: \mu \neq 65$

with decision rule

$$|x^{-} - 65| > c$$

Answer:

$$c = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 0.693, \quad n \approx \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_0 - \mu'}\right)^2 = 32$$

Connection to confidence intervals

In the last example, the rejection region of the two-sided test at level α is

$$|\bar{x} - 65| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

which is equivalent to

$$65 \notin (\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad \text{(CI)}$$

$$65 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad 65 \quad 65 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
rejection region
$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
confidence interval

That is, we reject the null at level α if and only if the $1-\alpha$ confidence interval <u>fails to capture</u> the claimed value 65.

There is a similar connection between one-sided tests and one-sided confidence intervals: We <u>reject the null</u> at level α if and only if <u>65 is outside</u> the one-sided confidence interval at level α :

$$\bar{x} < 65 - z_{\alpha} \frac{\sigma}{\sqrt{n}} \iff 65 \notin (-\infty, \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$$

One can thus use a 1- or 2-sided $1-\alpha$ confidence interval to conduct the corresponding hypothesis test at level α :

- Confidence interval captured μ = 65: Do not reject H_0
- Confidence interval failed to capture μ = 65: Reject H_0

Note the relationship between and interpretation of:

 $1 - \alpha$ (confidence level) and α (level of the test).

Summary

A hypothesis test has the following components:

- Population: e.g., all brown eggs produced by the farm, whose weights have a normal distribution with unknown mean μ but known variance σ^2
- Null and alternative hypotheses: H_0 : $\mu = \mu_0 \text{ vs } H_a$: $\mu \neq \mu_0$;
- Random sample from the population: $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$
- Test statistic: e.g., \bar{X}
- Decision rule (based on a specified rejection region):
- $|\bar{x} \mu_0| > c$

Evaluation of the test:

· Type-I error:

$$\alpha = P \text{ (Reject H}_0 \mid \text{H}_0 \text{ true}) = P (|\bar{X} - \mu_0| > c \mid \mu = \mu_0)$$

If α is specified first as the level of the test, then set $c=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ (or for $c=z_{\alpha}\frac{\sigma}{\sqrt{n}}$ a one-sided test)

• Type-II errors (at a given $\mu = \mu'$)

$$\beta = P$$
 (Fail to reject H₀ | H₀ false) = $P(|\bar{X} - \mu_0| < c|\mu = \mu')$

To control both errors, we first choose c (dependent on n) to attain level α , then choose sample size n to achieve power $1 - \beta$ at μ' :

When σ^2 is *known*, a level α test for μ is

• $H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$:

Reject
$$H_0$$
 if and only if $|\bar{x} - \mu_0| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

• $H_0: \mu = \mu_0 \text{ vs } H_1: \mu < \mu_0$:

Reject
$$H_0$$
 if and only if $\bar{x} - \mu_0 < -z_\alpha \frac{\sigma}{\sqrt{n}}$

• $H_0: \mu = \mu_0 \text{ vs } H_1: \mu > \mu_0$:

Reject
$$H_0$$
 if and only if $\bar{x} - \mu_0 > z_\alpha \frac{\sigma}{\sqrt{n}}$

To achieve a type-II error probability of β at an alternative value μ' , the required sample size is

· for the two-sided test:

$$n pprox \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_0 - \mu'} \right)^2$$

for both one-sided tests:

$$n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 - \mu'}\right)^2$$

