Aula 4 – Cluster Analysis

terça-feira, 24 de outubro de 2023 19:33

Variáveis segmentadoras - Variáveis que conseguem dividir um grupo

ANÁLISE DE AGRUPAMENTOS

CLUSTER ANALYSIS

- ANÁLISE DE AGRUPAMENTOS CLUSTER ANALYSIS
- Padronização das variáveis :

Os métodos baseados em distância são afetados pela diferença de escala entre os valores das variáveis/atributos, sendo necessário normalizar os atributos.

	Base C	riginal	Base com Padronização da Variáveis								
id	Salário	Idade				id	Salário	idade			
1	16.284	47				1	1,64	1,71			
2	3.500	22	Média	Salário 8.539,5	Idade 31,1	2	-1,07	-0,97			
3	13.751	24	Desvio	4.716,4	9,3	3	1,10	-0,76			
4	4.751	24				4	-0,80	-0,76			0
5	6.751	25				5	-0,38	-0,65	+		
6	8.750	26				6	0,04	-0,54			

Importante padronizar as medidas. Veja nesse exemplo que a "distância" entre salários é extremamente superior à distância entre Idades

ANÁLISE DE AGRUPAMENTOS MÉTODO HIERÁRQUICO

• Dendograma - Representação Gráfica de Agrupamento Aglomerativo

Exemple

Exercício Python - Clusterização países por recordes em provas de corrida

<<Arquivo e pyib.zip>>

Agrupamento (Clusterização): Consiste em segmentar os registros do conjunto de dados em subconjuntos ou clusters, de tal forma que os elementos de um cluster compartilhem propriedades comuns que os distingam de elementos nos demais clusters. O objetivo nesta tarefa é maximizar a similaridade intracluster e minimizar a similaridade intercluster.

Outliers


```
In [9]: # Excluindo outliers e selecionando somente as variáveis segmentadoras
aux = dados[dados['pmaratm'] < 180]
dados_semout = aux.drop(['PAIS'], axis=1)
dados_semout.describe()</pre>
```

ıt[9]:								
-1.		p100ms	p200ms	p400ms	p800mm	p1500mm	p3000mm	pmaratm
	count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000
	mean	11.303137	22.987451	51.652157	2.007843	4.144510	8.939804	150.399804
	std	0.326224	0.764214	2.142184	0.063853	0.186089	0.501017	9.325974
	min	10.490000	21.340000	47.600000	1.890000	3.840000	8.100000	135.250000
	25%	11.110000	22.520000	49.895000	1.965000	3.995000	8.535000	143.450000
	50%	11.310000	22.920000	51.560000	2.000000	4.100000	8.810000	148.270000
	75%	11.495000	23.365000	52.940000	2.060000	4.270000	9.250000	154.800000
	max	12.130000	25.100000	56.230000	2.150000	4.540000	10.070000	174.180000

3 dados foram dropados

Correlações

É possível fazer clusterização com variáveis categóricas, mas são técnicas muito específicos

- Vemos que todas as correlações são positivas (conforme uma variável aumenta, outra umenta também.
- Porém conforme mais similares as provas são (100 e 200, 200 e 400), maior a correlação

ANÁLISE DE AGRUPAMENTOS

CLUSTER ANALYSIS

Padronização das variáveis:

Os métodos baseados em distância são afetados pela diferença de escala entre os valores das variáveis/atributos, sendo necessário normalizar os atributos

Padronização - Transforma os valores em números de desvios padrões a partir da média. É dada por: :

$$Z=rac{X-\overline{X}}{S}$$
 Onde : $X=$ Média da variáve $S=$ desvio padrão

Padronização das variáveis :

Os métodos baseados em distância são afetados pela diferença de escala entre os valores das variáveis/atributos, sendo necessário normalizar os atributos.

	Base Or	iginal	Ba	ase com	Padroniz	ação da Variá	/eis
id	Salário	Idade			id	Salário	idade
1	16.284	47			1	1,64	1,71
2	3.500	22	Salário Média 8.539,5	Idade 31,1	2	-1,07	-0,97
3	13.751	24	Desvio 4.716,4	9,3	3	1,10	-0,76
4	4.751	24			4	-0,80	-0,76
5	6.751	25			5	-0,38	-0,65
6	8.750	26			6	0,04	-0,54

In [14]: # feature Scaling
 cols = dados_semout.columns
 from sklearn.preprocessing import StandardScaler
 scaler = StandardScaler().fit(dados_semout)
 dados_scaled = scaler.transform(dados_semout)
 dados_scaled = pd.DataFrame(dados_scaled, columns=[cols])

dados_scaled.describe().round(2)
Out[14]:

	p100ms	p200ms	p400ms	p800mm	p1500mm	p3000mm	pmaratm
count	51.00	51.00	51.00	51.00	51.00	51.00	51.00
mean	-0.00	0.00	0.00	-0.00	0.00	0.00	-0.00
std	1.01	1.01	1.01	1.01	1.01	1.01	1.01
min	-2.52	-2.18	-1.91	-1.86	-1.65	-1.69	-1.64
25%	-0.60	-0.62	-0.83	-0.68	-0.81	-0.82	-0.75
50%	0.02	-0.09	-0.04	-0.12	-0.24	-0.26	-0.23
75%	0.59	0.50	0.61	0.82	0.68	0.63	0.48
max	2.56	2.79	2.16	2.25	2.15	2.28	2.56

Melhor valor é 1,64 desvios padrão abaixo da média

Pior valor é 2.58 desvios padrão acima da média

Nesse caso específico porque quanto menor o tempo melhor (récorde)

Método KMEANS

MÉTODOS NÃO HIERÁRQUICOS - KMEANS

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

from sklearn.cluster import KMeans

```
wcss = []
for i in range(1, 12):
    kmeans = KHeans(n_clusters = i, max_iter = 300, n_init = 10, random_state = 0)
    kmeans.fit(dados_scaled)
    wcss.append(kmeans.inertia_)
# Mostra o Grófico
plt.plot(range(1, 12), wcss)
plt.title('0 Hetdo Elbow - Curva de Cotovelo')
plt.xibel('Mumero de Clusters')
plt.ylabel('MCSS') #within cluster sum of squares
plt.show()
 # No código acima plotamos o somatório da variância dos dados em relação ao número de clusters
# para conseguir verificar até que ponto com o aumento do número de clusters não existe ganho.
 # É sempre bam lembrar que a escolha do parâmetro K é de extrema importância para a tarefa de agrupamento
# e deve ser corretamente alinhado com as regras do negócio ou problema que esteja resolvendo
                                      O Metodo Elbow - Curva de Cotovelo
       350
       300
       250
  200 x
                                                                                                                                                   Momento que devemos parar de aumentar o número dos clusteres
       150
       100
         50
                                                                                                                   10
                                                                                              8
                                                          Numero de Clusters
       In [19]: Segmentos = Modelo_Kmeans.fit(dados_scaled)
Segmentos
                     C:\ProgramData\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1436:
leak on Windows with MKL, when there are less chunks than available threads.
ariable OMP_NUM_THEEADS=1.
warnings.warn[
                     KMeans(n_clusters=5, n_init=10, random_state=0)
       In [20]: Segmentos.cluster_centers_
      Centróides de cada grupos
Tem que ter cuidado para não ter muitas variáveis colineares
(ticket médio/volume médio/valor total)
```

Técnica não supervisionada DBSCAN

Vai procurar regiões de densidade

Dados de CRM - Vai com K-Means

parametros

Donumero minimo de l'enta Timendo do Reco class sklearn.cluster.DBSCAN(pps=0.5, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None

In [12]: modelo = DBSCAN(eps=0.2, min_samples=5, metric='euclidean').\
 fit(dbscan_df)

Out[12]: DBSCAN
DBSCAN(eps=0.2)

To [47]. # como £icon eluctorizado