```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: Data = pd.read_csv("/Users/paulwen/OneDrive - The University of Texas at Au

In [3]: Data.describe()

Out[3]:

	frzr4	frzr2
count	500.000000	500.000000
mean	-78.950004	-80.042102
std	1.590001	1.052367
min	-83.397327	-83.105795
25%	-80.073219	-80.757600
50%	-78.861037	-80.010948
75%	-77.841418	-79.284328
max	-75.047915	-77.134292

In [4]: Data.hist()

Out[4]: array([[<AxesSubplot:title={'center':'frzr4'}>, <AxesSubplot:title={'center':'frzr2'}>]], dtype=object)


```
In [12]: sns.kdeplot(Data["frzr4"], color="b", fill=True, alpha=0.05)
 sns.kdeplot(Data["frzr2"], color="r", fill=True, alpha=0.05)
```

Out[12]: <AxesSubplot:xlabel='frzr4', ylabel='Density'>


```
In [8]: | mySummary = Data.describe()
```

```
In [9]: mySummary.to_csv("Paulsummary.csv")
```

```
In [10]: myread = pd.read csv("Paulsummary.csv")
```

```
In [11]: display(myread)
```

	Unnamed: 0	frzr4	frzr2
0	count	500.000000	500.000000
1	mean	-78.950004	-80.042102
2	std	1.590001	1.052367
3	min	-83.397327	-83.105795
4	25%	-80.073219	-80.757600
5	50%	-78.861037	-80.010948
6	75%	-77.841418	-79.284328
7	max	-75.047915	-77.134292

```
In [ ]: # Comparing two freezer, the freezer 2 works better than the freezer 4.
   Freezer 4 needs more attention than freezer 2.
```