Ring Pattern Matching Theory

Ha Thi Thu Doan¹, Adrián Riesco², and Kazuhiro Ogata¹

Japan Advanced Institute of Science and Technology, Ishikawa, Japan {doanha,ogata}@jaist.ac.jp
Universidad Complutense de Madrid, Madrid, Spain ariesco@fdi.ucm.es

1 Sequences

Let \mathbf{Elt} be the set of (concrete) elements, \mathbf{EV} be the set of element variables and \mathbf{SV} be the set of sequence variables.

Definition 1 (Sequence Patterns). The set SP of sequence patterns is inductively defined as follows:

- 1. $\varepsilon \in \mathbf{SP}$ (the empty sequence);
- 2. For each element $e \in \mathbf{Elt}$, $e \in \mathbf{SP}$;
- 3. For each element variable $E \in \mathbf{EV}$, $E \in \mathbf{SP}$;
- 4. For each sequence variable $S \in \mathbf{SV}$, $S \in \mathbf{SP}$;
- 5. For any sequence patterns $SP_1, SP_2 \in \mathbf{SP}$, $SP_1, SP_2 \in \mathbf{SP}$.

The binary juxtaposition operator used in SP_1 SP_2 is associative, namely that $(SP_1 \ SP_2)$ $SP_3 = SP_1$ $(SP_2 \ SP_3)$ for any sequence patterns $SP_1, SP_2, SP_3 \in$ \mathbf{SP} . ε is an identity of the binary juxtaposition operator, namely that ε SP = SP and $SP \ \varepsilon = SP$ for any sequence patterns $SP \in \mathbf{SP}$.

Sequence patterns that do not have any variables at all are called sequences. Let $\mathbf{Seq} \subseteq \mathbf{SP}$ be the set of all sequences.

A substitution σ is a function from the disjoint union $\mathbf{EV} \uplus \mathbf{SV}$ of \mathbf{EV} and \mathbf{SV} to the disjoint union $\mathbf{Seq} \uplus \mathbf{EV} \uplus \mathbf{SV}$ of \mathbf{Seq} , \mathbf{EV} and \mathbf{SV} . For $E \in \mathbf{EV}$, $\sigma(E)$ is an element $e \in \mathbf{Elt}$ or E and for $S \in \mathbf{SV}$, $\sigma(S)$ is a sequence $seq \in \mathbf{Seq}$ or S. The domain of a substitution σ can be naturally extended to \mathbf{SP} such that $\sigma(\varepsilon)$ is ε , for an element $e \in \mathbf{Elt}$, $\sigma(e)$ is e and for a sequence pattern $SP_1, SP_2 \in \mathbf{SP}$, $\sigma(SP_1 SP_2)$ is $\sigma(SP_1) \sigma(SP_2)$.

Definition 2 (Sequence pattern match). Pattern match between $sp \in \mathbf{SP}$ \mathscr{E} $seq \in \mathbf{Seq}$ is to find all substitutions σ such that $\sigma(sp) = seq$. Let sp =?= seq be the set of all such substitutions.

Elements, element variables and sequence variables used in sequence patterns are called components in the sequence patterns. For $sp \in \mathbf{SP}$, let |sp| be the number of components in it. $sp \in \mathbf{SP}$ can be in the form $ES_1 ES_2 \ldots ES_{|sp|}$, where each ES_i is an element, an element variable or a sequence variable. For $sp \in \mathbf{SP}$, let sp(i), where $i \in \{1, 2, ..., |sp|\}$, be the *i*th element ES_i

in sp. Let $e, e_1, e_2, \ldots \in \mathbf{Elt}, E, E_1, E_2, \ldots \in \mathbf{EV}, S, S_1, S_2, \ldots \in \mathbf{SV}$ and $ES, ES_1, ES_2, \ldots \in \mathbf{Elt} \uplus \mathbf{EV} \uplus \mathbf{SV}$. A binary construct $\mathrm{sv}(S, I)$ that is not in \mathbf{SV} , where S is a sequence variable and I is either 0 or 1, is used as an extra sequence variable. Let \mathbf{SSV} be $\{\mathrm{sv}(S, I) \mid S \in \mathbf{SV}, I \in \{0, 1\}\}$. $\mathbf{SV} \cup \mathbf{SSV}$ may be used as the set of sequence variables instead of \mathbf{SV} .

Definition 3 (Split sequence patterns). For $sp \in \mathbf{SP}$, $\mathrm{split}(sp)$ is a sequence pattern such that each sequence variable S in sp is replaced with $\mathrm{sv}(S,0)$ $\mathrm{sv}(S,1)$. $\mathrm{split}(\varepsilon) = \varepsilon$, $\mathrm{split}(e) = e$ for $e \in \mathbf{Elt}$, $\mathrm{split}(E) = E$ for $E \in \mathbf{EV}$, $\mathrm{split}(S) = \mathrm{sv}(S,0)$ $\mathrm{sv}(S,1)$ for $S \in \mathbf{SV}$ and $\mathrm{split}(SP_1 \ SP_2) = \mathrm{split}(SP_1)$ $\mathrm{split}(SP_2)$ for $SP_1, SP_2 \in \mathbf{SP}$.

Definition 4 (Joining split sequence variables). For $sp \in \mathbf{SP}$ and $seq \in \mathbf{Seq}$, let σ be in (split(sp) =?= seq). join(σ) is the substitution σ' such that for each sequence variable S in sp $\sigma'(S) = \sigma(sv(S,0))$ $\sigma(sv(S,1))$ and for any other variables X $\sigma'(X) = \sigma(X)$. The domain of join can be naturally extended to the set of substitutions such that join(split(sp) =?= seq) is {join(σ) | $\sigma \in (split(sp) =?= seq)$ }.

Proposition 1. For any sequence pattern $sp \in \mathbf{SP}$, any sequence $seq \in \mathbf{Seq}$ and any substitution $\sigma \in (\mathrm{split}(sp) = ?= seq)$, $\mathrm{join}(\sigma)(sp) = seq$.

Proof. Let sp be $ES_1 \ldots ES_i \ldots ES_n$. split(sp) is $split(ES_1) \ldots split(ES_i) \ldots$ $split(ES_n)$. Then, $\sigma(split(sp))$ is $\sigma(split(ES_1)) \ldots \sigma(split(ES_i)) \ldots \sigma(split(ES_n))$. If ES_i is an element e, $\sigma(split(ES_i)) = e = join(\sigma)(ES_i)$. If ES_i is an element variable E, $\sigma(split(ES_i)) = \sigma(E) = join(\sigma)(ES_i)$. If ES_i is a sequence variable S, $\sigma(split(ES_i)) = \sigma(sv(S,0) sv(S,1)) = join(\sigma)(ES_i)$. Therefore, $\sigma(split(sp)) = join(\sigma)(sp)$ and thus $join(\sigma)(sp) = seq$.

Lemma 1. For any sequence pattern $sp \in \mathbf{SP}$ and any sequence $seq \in \mathbf{Seq}$, $(sp =?= seq) = \mathrm{join}(\mathrm{split}(sp) =?= seq)$.

Proof. Let $\sigma \in (sp = ?= seq)$. Let σ' be the substitution such that $\sigma'(sv(S, 0)) = \sigma(S)$ and $\sigma'(sv(S, 1)) = \varepsilon$ for each sequence variable S in sp and $\sigma'(X) = \sigma(X)$ for any other variables X. By the construction of σ' , $\sigma'(split(sp)) = seq$ and then $\sigma' \in (split(sp) = ?= seq)$. Moreover, $join(\sigma') = \sigma$ and hence $\sigma \in join(split(sp) = ?= seq)$. From Definition 4, join(split(sp) = ?= seq) is $\{join(\sigma) \mid \sigma \in (split(sp) = ?= seq)\}$. From Proposition 1, $join(\sigma)(sp) = seq$. Hence, $join(\sigma) \in (sp = ?= seq)$.

rtt (that stands for rotate) takes a sequence pattern sp and returns the sequence pattern obtained by rotating sp clockwise. rev (that stands for reverse) takes a sequence pattern sp and returns the sequence pattern obtained by reversing sp. Let sp be $ES_1 ES_2 \dots ES_{|sp|-1} ES_{|sp|}$. rtt $(sp) = ES_{|sp|} ES_1 ES_2 \dots ES_{|sp|-1}$ and rev $(sp) = ES_{|sp|} ES_{|sp|-1} \dots ES_2 ES_1$. Let us suppose that a subscript exp of ES_{exp} used as an element in sp is interpreted as $(exp \mod |sp|) + 1$.

Definition 5 (Reversing substitutions). σ_{rev} is defined as follows: for an element $e \in \mathbf{Elt}$ $\sigma_{rev}(e) = \sigma(e) = e$, for an element variable $E \in (E)$ $\sigma_{rev}(E) = \sigma(E)$ and for a sequence variable $S \in (SV)$ $\sigma_{rev}(S) = rev(\sigma(S))$.

Proposition 2. For any substitution σ , $(join(\sigma_{rev}))_{rev} = join(\sigma)$.

Proof. For each sequence variable S $(\text{join}(\sigma_{\text{rev}}))_{\text{rev}}(S) = \text{rev}((\text{join}(\sigma_{\text{rev}}))(S)) = \text{rev}(\sigma(\text{sv}(S,0))) \ \sigma(\text{sv}(S,1)) \ and for any other variables } X \ \sigma'(X) = \sigma(X).$

Given two sequence patterns $sp, sp' \in \mathbf{SP}$, spsp' holds if there exists a natural number n such that $sp = \mathrm{rtt}^n(sp')$, namely that sp is obtained by rotating sp' finitely many times; spsp' holds if there exists a natural number n such that $sp = \mathrm{rtt}^n(\mathrm{rev}(sp'))$, namely that sp is obtained by reversing sp' once and rotating it finitely many times. For example, let sp and sp' be e_1 S_1 e_2 and e_1 e_2 S_1 (= $\mathrm{rtt}(sp)$) and then (spsp') holds, while (spsp') does not; let sp and sp' be e_1 S_1 e_2 and e_2 e_1 S_1 (= $\mathrm{rtt}(\mathrm{rev}(sp))$) and then (spsp') does not, while (spsp') holds. e_1 S_1 e_2 and e_2 e_1 S_1 (= $\mathrm{rtt}(\mathrm{rev}(sp))$) and then both (spsp') and (spsp') hold.

Definition 6 (Sequence pattern contexts). A sequence pattern context is a sequence pattern $sp \in \mathbf{SP}$ in which one component (say, ith component, where $1 \leq i \leq |sp|$) is replaced with a special symbol called a hole, denoted $sp_{(i)}\{\}$. A hole is treated as an element. Let sp be $ES_1 \dots ES_{|sp|}$ and then $sp_{(i)}\{\}$ is $ES_1 \dots ES_{|sp|}$.

For a sequence pattern or a sequence pattern context spc and a sequence pattern sp, $spc_{(i)}\{sp\}$ is spc in which the ith component in spc is replaced with sp. $(sp_{(i)}\{\})_{(i)}\{sp(i)\} = sp_{(i)}\{sp(i)\} = sp$.

Definition 7 (Correspondent components). Let $sp \in \mathbf{SP}$ be $ES_1 \dots ES_{i-1}$ $ES_i \quad ES_{i+1} \quad \dots \quad ES_{|sp|}$, where $1 \leq i \leq |sp|$ and $sp' \in \mathbf{SP}$ be $ES_1' \quad \dots \quad ES_{j-1}' \quad ES_j' \quad ES_{j+1}' \quad \dots \quad ES_{|sp'|}'$, where $1 \leq j \leq |sp'|$. If $ES_i \quad ES_{i+1} \quad \dots \quad ES_{|sp|} \quad ES_1 \quad \dots \quad ES_{i-1} = ES_j' \quad ES_{j+1}' \quad \dots \quad ES_{|sp'|}' \quad ES_1' \quad \dots \quad ES_{j-1}' \quad \text{or } ES_i \quad ES_{i+1}' \quad \dots \quad ES_{|sp|} \quad ES_1 \quad \dots \quad ES_{i-1} = ES_j' \quad ES_{j-1}' \quad \dots \quad ES_j' \quad ES_{j+1}' \quad \dots \quad ES_{j+1}', \text{ then } ES_j' \quad \text{is the corresponding component in } sp' \text{ to } ES_i \quad \text{in } sp.$

Proposition 3. For any sequence patterns $sp, sp' \in \mathbf{SP}$ and any natural numbers $i \in \{1, \ldots, |sp|\}$ and $j \in \{1, \ldots, |sp'|\}$ such that the jth component sp'(j) in sp' is the corresponding component in sp' to sp(i) in sp, (1) $(spsp') \Leftrightarrow sp_{(i)}\{\}sp'_{(j)}\{\}$ and (2) $(spsp') \Leftrightarrow sp_{(i)}\{\}sp'_{(j)}\{\}$.

Proof. (1) (\Rightarrow) There exists a natural number m such that $\operatorname{rtt}^m(sp)$ is sp(i) $sp(i+1) \dots sp(i-1)$ and there exits a natural number n such that $\operatorname{rtt}^n(sp')$ is sp'(j) $sp'(j+1) \dots sp'(j-1)$. Because of spsp', $\operatorname{rtt}^m(sp) = \operatorname{rtt}^n(sp')$ and then $(\operatorname{rtt}^m(sp))_{(1)}$ $\{\} = (\operatorname{rtt}^n(sp'))_{(1)}$ $\{\} = \operatorname{rtt}^n(sp')_{(1)}$ $\{\} = \operatorname{rtt}^n(sp')_{(1)}$ $\{\} = \operatorname{sp}'_{(j)}$ $\{\} = \operatorname{rtt}^n(sp')_{(1)}$ $\{\} = \operatorname{sp}'_{(j)}$ $\{\} = \operatorname{rtt}^n(sp')_{(1)}$ $\{\} = \operatorname{rtt}^n(sp')_{(1)}$ $\{\} = \operatorname{sp}'_{(j)}$ $\{\} = \operatorname{rtt}^n(sp'_{(j)})_{(1)}$ $\{\} = \operatorname{sp}'_{(j)}$ $\{\} = \operatorname{sp}'_{($

 $(\operatorname{rtt}^n(sp'_{(j)}\{\}))_{(1)}\{sp'(j)\} \ \ and \ \ then \ \ \operatorname{rtt}^{-m}((\operatorname{rtt}^m(sp_{(i)}\ \{\}))_{(1)}\{sp(i)\}) = sp \ \ and \ \ \operatorname{rtt}^{-n}((\operatorname{rtt}^n(sp'_{(j)}\{\}))_{(1)}\{sp'(j)\}) = sp'. \ \ Thus, \ spsp'.$

 $(2) \ (\Rightarrow) \ There \ exists \ a \ natural \ number \ m \ such \ that \ \mathrm{rtt}^m(sp) \ is \ sp(i) \ sp(i+1) \dots sp(i-1) \ and \ there \ exits \ a \ natural \ number \ n \ such \ that \ \mathrm{rtt}^n(\mathrm{rev}(sp')) \ is \ sp'(j) \ sp'(j-1) \dots sp'(j+1). \ Because \ of \ spsp', \ \mathrm{rtt}^m(sp) = \mathrm{rtt}^n(\mathrm{rev}(sp')) \ and \ then \ (\mathrm{rtt}^m(sp))_{(1)} \ \{\} = (\mathrm{rtt}^n(\mathrm{rev}(sp')))_{(1)} \ \{\}. \ \mathrm{rtt}^{-m}((\mathrm{rtt}^m(sp))_{(1)} \ \}) = sp_{(i)} \ \{\} \ and \ \mathrm{rtt}^{-n}((\mathrm{rtt}^n(\mathrm{rev}(sp')))_{(1)} \ \}) = (\mathrm{rev}(sp'))_{(j)} \ \}. \ Therefore, \ sp_{(i)} \ \{\} \ sp'_{(j)} \ \}$ $\{\}. \ (\Leftarrow) \ There \ exists \ a \ natural \ number \ m \ such \ that \ \mathrm{rtt}^m(sp_{(i)} \ \}) \ is \ sp(i+1) \dots sp(i-1) \ and \ there \ exits \ a \ natural \ number \ n \ such \ that \ \mathrm{rtt}^n(\mathrm{rev}(sp'_{(j)} \ \})) \ is \ sp'(j-1) \dots sp'(j+1). \ Because \ of \ sp_{(i)} \ \{\}sp'_{(j)} \ \}, \ \mathrm{rtt}^m(sp_{(i)} \ \}) = \mathrm{rtt}^n(\mathrm{rev}(sp'_{(j)} \ \}) \ is \ sp'(j-1) \dots sp'(j+1). \ Because \ of \ sp_{(i)} \ \{\}sp'_{(j)} \ \}, \ \mathrm{rtt}^m(sp_{(i)} \ \}) \ (\mathrm{rev}(sp'_{(j)} \ \}))_{(1)} \ \{sp(i)\}. \ Because \ sp'(j) \ in \ sp' \ is \ the \ corresponding \ component \ to \ sp(i) \ in \ sp, \ sp'(j) = sp(i). \ Therefore, \ (\mathrm{rtt}^m(sp_{(i)} \ \}))_{(1)} \ \{sp(i)\} = (\mathrm{rtt}^n(\mathrm{rev}(sp'_{(j)} \ \}))_{(1)} \ \{sp'(j)\} \ and \ then \ \mathrm{rtt}^{-m}((\mathrm{rtt}^m(sp_{(i)} \ \}))_{(1)} \ \{sp(i)\} = sp \ and \ \mathrm{rtt}^{-n} \ ((\mathrm{rtt}^n \ (\mathrm{rev}(sp'_{(j)} \ \})))_{(1)} \ \{sp'(j)\}) = \mathrm{rev}(sp'). \ Thus, \ spsp'.$

2 Rings

Definition 8 (Rings). For $sp \in SP$, [sp] is called a ring pattern and satisfies (1) the rotative law ([sp] = [rtt(sp)]) and (2) the reversible law ([sp] = [rev(sp)]). When sp is a sequence $seq \in Seq$, [seq] is called a ring.

Proposition 4. For any sequence patterns $sp, sp' \in \mathbf{SP}$ and natural numbers $m, n, if[sp] = [sp'], then (1)[sp] = [rtt^m(sp')]$ and (2)[sp] = [rev^n(sp')].

Proof. Let us suppose [sp] = [sp']. (1) By induction on m. (1.1) Base case (m=0) can be discharged from the assumption [sp] = [sp']. (1.2) Induction case (m=k+1). From Definition 8, $[\operatorname{rtt}^k(sp')] = [\operatorname{rtt}^{k+1}(sp')]$. From this and the induction hypothesis $[sp] = [\operatorname{rtt}^k(sp')]$, $[sp] = [\operatorname{rtt}^{k+1}(sp')]$. (2) By induction on n. (2.1) Base case (n=0) can be discharged from the assumption [sp] = [sp']. (2.2) Induction case (n=k+1). From Definition 8, $[\operatorname{rev}^k(sp')] = [\operatorname{rev}^{k+1}(sp')]$. From this and the induction hypothesis $[sp] = [\operatorname{rev}^k(sp')]$, $[sp] = [\operatorname{rev}^{k+1}(sp')]$.

For any sequence patterns $sp, sp' \in \mathbf{SP}$, if $([sp] = [sp']) \Rightarrow [sp] = [\operatorname{rtt}(sp')] \land [sp] = [\operatorname{rev}(sp')]$, then $[sp] = [\operatorname{rtt}(sp)]$ and $[sp] = [\operatorname{rev}(sp)]$ because the equivalence relation is reflexive, namely [sp] = [sp]. Therefore, Definition 8 can be rephrased as follows:

Definition 9 (Another definition of rings). For $sp, sp' \in \mathbf{SP}$, [sp] = [sp'] is inductively defined as follows: (1) [sp] = [sp] and (2) if [sp] = [sp'], then $[sp] = [\mathrm{rtt}(sp')]$ and $[sp] = [\mathrm{rev}(sp')]$.

Let sp be ES_1 ES_2 ... $ES_{|sp|-1}$ $ES_{|sp|}$. $\mathrm{rtt}^{-1}(sp)$ is ES_2 ... $ES_{|sp|-1}$ $ES_{|sp|}$ ES_1 and $\mathrm{rev}^{-1}(sp)$ is $ES_{|sp|}$ $ES_{|sp|-1}$... ES_1 ES_2 . Therefore, $\mathrm{rtt}^{-1} = \mathrm{rev} \circ \mathrm{rtt} \circ \mathrm{rev}$ and $\mathrm{rev}^{-1} = \mathrm{rev}$.

Proposition 5. For any sequence patterns $sp, sp' \in \mathbf{SP}$, if [sp] = [sp'], then $[sp] = [rtt^{-1}(sp')]$ and $[sp] = [rev^{-1}(sp')].$

Proof. This is derived from $rtt^{-1} = rev \circ rtt \circ rev$, $rev^{-1} = rev$ and Proposition 4.

Definition 10 (Ring pattern match). For $sp \in SP$ and $seq \in Seq$, pattern match between [sp] and [seq] is to find all substitutions σ such that $[\sigma(sp)] =$ [seq]. Let [sp] =?= [seq] be the set of all such substitutions.

Definition 11 (Sequences rotated and/or reversed). For $sp \in SP$, [[sp]]is the set of sequences inductively defined as follows: (1) $sp \in [[sp]]$ and (2) if $sp' \in [[sp]], then rtt(sp') \in [[sp]] and rev(sp') \in [[sp]].$

Proposition 6. For any sequence patterns $sp, sp' \in \mathbf{SP}$, if $sp' \in [[sp]]$, then ${\rm rtt}^{-1}(sp') \in [[sp]] \ and \ {\rm rev}^{-1}(sp') \in [[sp]].$

Proof. This is derived from $rtt^{-1} = rev \circ rtt \circ rev$, $rev^{-1} = rev$ and Definition 11.

Proposition 7. For any sequences $seq, seq', seq'' \in SP$ and any natural number $i \in \{1, \ldots, |seq|\}$ and $j \in \{1, \ldots, |seq'|\}$ such that seq'(j) is the correspond component to seq(i), seq is $e_1 \ldots e_{i-1} e_i e_{i+1} \ldots e_{|sp|}$ and seq' is $e'_1 \dots e'_{j-1} \ e'_j \ e'_{i+1} \dots \ e'_{|sp'|}, \ (1) \ if \ seq_{(i)}\{\} seq'_{(j)}\{\}, \ then \ [seq_{(i)}\{seq''\}] = [seq'_{(j)}], \ (1) \ if \ seq_{(i)}\{seq''_{(j)}\} = [seq''_{(j)}], \ (1) \ if \ seq_{(i)}\{seq''_{(i)}\} = [seq''_{(i)}], \ (1) \$ $\{seq''\}\]$, and (2) if $seq_{(i)}$ $\{\}$ $seq'_{(i)}$ $\{\}$, then $[seq_{(i)} \{seq''\}] = [seq'_{(i)} \{rev]$ $(seq'')\}].$

Proof. (1) Let seq be $e_1 \ldots e_{i-1} \ e_i \ e_{i+1} \ldots e_{|seq|}$ and seq' be $e_1' \ldots e_{j-1}' \ e_j' \ e_{j+1}' \ldots e_{|seq'|}'$. (1) Because $seq_{(i)}$ {} $seq_{(j)}'$ {}, $e_{i+1} \ldots e_{|seq|} \ e_1 \ldots e_{i-1} = e_{j+1}'$... $e'_{|seq'|} e'_1 \dots e'_{j-1}$ and then $seq'' e_{i+1} \dots e_{|seq|} e_1 \dots e_{i-1} = seq'' e'_{j+1} \dots e'_{|seq'|} e'_1 \dots e'_{j-1}$. Therefore, $[seq_{(i)}\{seq''\}] = [seq'_{(j)}\{seq''\}]$. (2) Because $\begin{array}{l} (2) \ Because \\ seq_{(i)}\{\}seq'_{(j)}\{\}, \ e_{i+1}\dots e_{|seq|} \ e_{1}\dots e_{i-1} = \ e'_{j-1}\dots e'_{1} \ e'_{|seq'|}\dots e'_{j+1} \ and \ then \\ seq'' \ e_{i+1}\dots e_{|seq|} \ e_{1}\dots e_{i-1} = seq'' \ e'_{j-1}\dots e'_{1} \ e'_{|seq'|}\dots e'_{j+1}. \ \text{rev} \ (seq'' \ e'_{j-1}\dots e'_{1} \ e'_{|seq'|} \ e'_{j-1}\dots e'_{j+1} \ seq_{(i)} \{seq''\}] \\ = [seq'_{(j)} \ \{rev(seq'')\}]. \end{array}$

Lemma 2. For sequence patterns $sp, sp' \in \mathbf{SP}$, $(sp' \in [[sp]]) \Leftrightarrow ([sp] = [sp'])$.

Proof. $(sp' \in [[sp]]) \Rightarrow ([sp] = [sp'])$ is proved by induction on Definition 11. (1) Base case in which $sp \in [[sp]]$ holds. [sp] = [sp] holds because of Definition 6. (2) Induction case in which $\mathrm{rtt}(sp') \in [[sp]]$ and $\mathrm{rev}(sp') \in [[sp]]$ hold. $sp' \in$ [[sp]] holds from Proposition 6. From the induction hypothesis ([sp] = [sp']) and Definition 9, therefore, [sp] = [rtt(sp')] and [sp] = [rev(sp')] hold.

 $(sp' \in [[sp]]) \Leftarrow ([sp] = [sp'])$ is proved by induction on Definition 9. (1) Base case in which [sp] = [sp] holds. $sp \in [[sp]]$ holds because of Definition 11. (2) Induction case in which [sp] = [rtt(sp')] and [sp] = [rev(sp')] hold. [sp] =[sp'] holds from Proposition 5. From the induction hypothesis $(sp' \in [[sp]])$ and Definition 11, therefore, $\operatorname{rtt}(sp') \in [[sp]]$ and $\operatorname{rev}(sp') \in [[sp]]$ hold.

Let sp be e_1 S_1 e_4 S_2 and sp' be $\operatorname{rev}(sp)$, namely S_2 e_4 S_1 e_1 . Clearly, $sp' \in [[sp]]$ and [sp] = [sp']. Let us consider a substitution σ such that $\sigma(S_1) = e_2$ e_3 , $\sigma(S_2) = e_5$ e_6 and $\sigma(X) = X$ for any other variable X. $\sigma(sp)$ is e_1 e_2 e_3 e_4 e_5 e_6 and $\sigma(sp')$ is e_5 e_6 e_4 e_2 e_3 e_1 . Clearly, $\sigma(sp') \notin [[\sigma(sp)]]$ and $[\sigma(sp)] \neq [\sigma(sp')]$. If spsp' does not hold but spsp' holds, we need to reverse the sequence that replaces each sequence variable. $\sigma_{rev}(sp')$ is e_6 e_5 e_4 e_3 e_2 e_1 . Therefore, $\sigma_{rev}(sp') \in [[\sigma(sp)]]$ and $[\sigma(sp)] = [\sigma_{rev}(sp')]$.

Lemma 3. For any sequence pattern $sp \in \mathbf{SP}$ and any substitution σ , for each $sp' \in [[sp]]$ if spsp', then $[\sigma(sp)] = [\sigma(sp')]$; if spsp', then $[\sigma(sp)] = [\sigma_{rev}(sp')]$.

Proof. By induction on the number of element and sequence variable occurrences in sp.

- (1) Base case in which the number is 0. Because sp does not have any variables, $\sigma(sp) = sp$, $\sigma(sp') = sp'$ and $\sigma_{rev}(sp') = sp'$. From Lemma 2, [sp] = [sp'].
- (2) Induction case in which the number is k+1. Let us arbitrarily choose a component that is a variable in sp and the component be the ith component sp(i) in sp. Let sp be sp_1 sp(i) sp_2 . sp' can be obtained by rotating and/or reversing sp and then must have the correspondent component in sp' to sp(i) in sp. Then, sp' can be sp'_1 sp(i) sp'_2 .
- (2.1) Let us suppose that spsp' holds. From Proposition 3, $(sp_1 \ sp_2)(sp'_1 \ sp'_2)$. By induction hypothesis, $[\sigma(sp_1 \ sp_2)] = [\sigma(sp'_1 \ sp'_2)]$ and then $[\sigma(sp_1) \ \sigma(sp_2)] = [\sigma(sp'_1) \ \sigma(sp'_2)]$. From Lemma 7, $[\sigma(sp_1) \ \sigma(sp(i)) \ \sigma(sp_2)] = [\sigma(sp'_1) \ \sigma(sp(i)) \ \sigma(sp'_2)]$. Hence, $[\sigma(sp_1 \ sp(i) \ sp_2)] = [\sigma(sp'_1 \ sp(i) \ sp'_2)]$.
- (2.2) Let us suppose that spsp' holds. From Proposition 3, $(sp_1 \ sp_2)$ $(sp'_1 \ sp'_2)$. By induction hypothesis, $[\sigma(sp_1 \ sp_2)] = [\sigma_{rev}(sp'_1 \ sp'_2)]$ and then $[\sigma(sp_1) \ \sigma(sp_2)]$ $= [\sigma_{rev}(sp'_1) \ \sigma_{rev}(sp'_2)]$. From Lemma 7, $[\sigma(sp_1) \ \sigma(sp(i)) \ \sigma(sp_2)] = [\sigma_{rev}(sp'_1) \ rev(\sigma(sp(i))) \ \sigma_{rev}(sp'_2)]$. Beause $rev(\sigma(sp(i))) = \sigma_{rev}(sp(i))$, $[\sigma(sp_1 \ sp(i)) \ sp_2)] = [\sigma_{rev}(sp'_1 \ sp(i) \ sp'_2)]$.

Definition 12 (Ring pattern match simulated (1)). For $sp \in \mathbf{SP}$ and $seq \in \mathbf{Seq}$, pattern match between sp and [[seq]] is to find all substitutions σ such that $\sigma(sp) = seq'$ for some $seq' \in [[seq]]$. Let sp = ?= [[seq]] be the set of all such substitutions.

Lemma 4. For any sequence pattern $sp \in \mathbf{SP}$ and any sequence $seq \in \mathbf{Seq}$, ([sp] =?= [seq]) = (sp =?= [[seq]]).

Proof. Let $\sigma \in ([sp] = ?= [seq])$. $[\sigma(sp)] = [seq]$ by Definition 10. $\sigma(sp) \in [[seq]]$ due to Lemma 2. Thus, $\sigma \in (sp = ?= [[seq]])$.

Let $\sigma \in (sp = ?= [[seq]])$. Let $seq' \in [[seq]]$ such that $\sigma(sp) = seq'$. [seq'] = [seq] due to Lemma 2 and then $[\sigma(sp)] = [seq]$. Hence, $\sigma \in ([sp] = ?= [seq])$. \square

Definition 13 (Ring pattern match simulated (2)). For $sp \in \mathbf{SP}$ and $seq \in \mathbf{Seq}$, pattern match between [[sp]] and seq is to find all substitutions σ such that $\sigma'(sp') = seq$ for some substitution σ' and some $sp' \in [[sp]]$ and if spsp', then $\sigma = \sigma'$ and if spsp', then $\sigma = \sigma'_{rev}$. Let [[sp]] = seq be the set of all such substitutions.

Note that ([[sp]] =?= seq) \subset ([sp] =?= [seq]) but ([sp] =?= [seq]) $\not\subset$ ([[sp]] = ?= seq).

Lemma 5. For any sequence pattern $sp \in \mathbf{SP}$, any sequence $seq \in \mathbf{Seq}$ and any substitution $\sigma \in (sp = ?= [[seq]])$, there exist σ' and a sequence $seq' \in [[seq]]$ such that $\sigma = \mathrm{join}(\sigma')$, $\sigma'(\mathrm{split}(sp)) = seq'$ and there exists $sp' \in [[\mathrm{split}(sp)]]$ such that $\sigma'(sp') = seq$. Besides, $\sigma \in \mathrm{join}([[\mathrm{split}(sp)]] = ?= seq)$.

Proof. Let sp be $ES_1 ES_2 ... ES_m$ and seq be $e_1 e_2 ... e_n$.

If there exists $i \in \{1, ..., m\}$ such that $\sigma(ES_i)$ is $... e_n e_1 ...$ or $... e_1 e_n ...$, ES_i is a sequence variable S that is replaced with sv(S, 0) sv(S, 1) in split(sp).

If $\sigma(S)$ is ... e_n e_1 ..., then $\sigma'(\operatorname{sv}(S,0))$ is ... e_n , $\sigma'(\operatorname{sv}(S,1))$ is e_1 ... and $\sigma'(\operatorname{sv}(S',0))$ is $\sigma(S')$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any other sequence variable S' in sp , and $\sigma'(E) = \sigma(E)$ for any element variable E in sp . By the construction of σ' , $\sigma = \operatorname{join}(\sigma')$ and $\sigma'(\operatorname{split}(\operatorname{sp})) = \sigma(\operatorname{sp})$, where $\sigma(\operatorname{sp}) \in [[\operatorname{seq}]]$. Let sp' be $\operatorname{sv}(S,1)$ split (ES_{i+1}) ... split (ES_{i-1}) sv(S,0). Then, $\operatorname{sp}' \in [[\operatorname{split}(\operatorname{sp})]]$ and $\sigma'(\operatorname{sp}') = \operatorname{seq}$. Therefore, $\sigma' \in ([[\operatorname{split}(\operatorname{sp})]] = ?= \operatorname{seq})$ because of spsp' from Definition 13. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(\operatorname{sp})]] = ?= \operatorname{seq})$ from Definition 4.

If $\sigma(S)$ is ... e_1 e_n ..., then $\sigma'(\operatorname{sv}(S,0))$ is $\operatorname{rev}(\ldots e_1)$, $\sigma'(\operatorname{sv}(S,1))$ is $\operatorname{rev}(e_n\ldots)$ and $\sigma'(\operatorname{sv}(S',0))$ is $\operatorname{rev}(\sigma(S'))$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any other sequence variable S' in sp , and $\sigma'(E) = \sigma(E)$ for any element variable E in sp . By the construction of σ' , $\sigma = \operatorname{join}(\sigma'_{\operatorname{rev}})$ and $\sigma'_{\operatorname{rev}}(\operatorname{split}(\operatorname{sp})) = \sigma(\operatorname{sp})$, where $\sigma(\operatorname{sp}) \in [[\operatorname{seq}]]$. Let sp' be $\operatorname{rev}(\operatorname{sv}(S,1) \operatorname{split}(ES_{i+1}) \ldots \operatorname{split}(ES_{i-1}) \operatorname{sv}(S,0))$. Then, $\operatorname{sp}' \in [[\operatorname{split}(\operatorname{sp})]]$ and $\sigma'_{\operatorname{rev}}(\operatorname{sp}') = \operatorname{seq}$. Therefore, $\sigma'_{\operatorname{rev}} \in ([[\operatorname{split}(\operatorname{sp})]] = ?= \operatorname{seq})$ because of spsp' from Definition 13. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(\operatorname{sp})]] = ?= \operatorname{seq})$ from Definition 4.

If there exists no $i \in \{1, \ldots, m\}$ such that $\sigma(ES_i)$ is $\ldots e_n e_1 \ldots or \ldots e_1 e_n \ldots$, there must be $i \in \{1, \ldots, m\}$ such that $\sigma(ES_i)$ is $e_1, e_1 \ldots or \ldots e_1$. If $\sigma(ES_i)$ is e_1 , there are two possible cases: (1) $\sigma(ES_i ES_{i+1} \ldots ES_{i-1}) = seq$ and (2) $\sigma(ES_i ES_{i-1} \ldots ES_{i+1}) = seq$.

Case (1) can be treated in the same way as the case in which $\sigma(ES_i)$ is $e_1 \dots$ In either case, $\sigma'(\operatorname{sv}(S',0))$ is $\sigma(S')$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any sequence variable S' in sp, and $\sigma'(E) = \sigma(E)$ for any element variable E in sp. By the construction of σ' , $\sigma = \operatorname{join}(\sigma')$ and $\sigma'(\operatorname{split}(sp)) = \sigma(sp)$, where $\sigma(sp) \in [[\operatorname{seq}]]$. Let sp' be $\operatorname{split}(ES_i)$ $\operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1})$. Then, $sp' \in [[\operatorname{split}(sp)]]$ and $\sigma'(sp') = \operatorname{seq}$. Therefore, $\sigma' \in ([[\operatorname{split}(sp)]] = ?= \operatorname{seq})$ because of $\operatorname{spsp'}$ from Definition 13. Hence $\sigma \in \operatorname{join}([[\operatorname{split}(sp)]] = ?= \operatorname{seq})$ from Definition 4.

Case (2) can be treated in the same way as the case in which $\sigma(ES_i)$ is ... e_1 . In either case, $\sigma'(\operatorname{sv}(S',0))$ is $\operatorname{rev}(\sigma(S'))$ and $\sigma'(\operatorname{sv}(S',1))$ is ε for any sequence variable S' in sp , and $\sigma'(E) = \sigma(E)$ for any element variable E in sp . By the construction of σ' , $\sigma = \operatorname{join}(\sigma'_{\operatorname{rev}})$ and $\sigma'_{\operatorname{rev}}(\operatorname{split}(\operatorname{sp})) = \sigma(\operatorname{sp})$, where $\sigma(\operatorname{sp}) \in [[\operatorname{seq}]]$. Let sp' be $\operatorname{rev}(\operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1}) \operatorname{split}(ES_i))$. Then, $\operatorname{sp}' \in [[\operatorname{split}(\operatorname{sp})]]$ and $\sigma'_{\operatorname{rev}}(\operatorname{sp}') = \operatorname{seq}$. Therefore, $\sigma'_{\operatorname{rev}} \in ([[\operatorname{split}(\operatorname{sp})]] = ?= \operatorname{seq})$ because of spsp' from Definition 13.

Lemma 6. For any sequence pattern $sp \in \mathbf{SP}$, any sequence $seq \in \mathbf{Seq}$ and any substitution $\sigma \in \mathrm{join}([[\mathrm{split}(sp)]] = ?= seq), \ \sigma \in ([sp] = ?= [seq]).$

Proof. Let sp be ES_1 ES_2 ... ES_m and seq be e_1 e_2 ... e_n . Let σ' be an arbitrary substitution in ([[split(sp)]] =?= seq) from which σ is constructed, namely that $\sigma = \text{join}(\sigma')$. Let $sp' \in [[\text{split}(sp)]]$ such that $\sigma''(sp') = seq$, if split(sp)sp', then $\sigma' = \sigma''$ and if split(sp)sp', then $\sigma' = \sigma''_{rev}$. There are four possible cases: (1) sp' is $\text{split}(E_i)$ $\text{split}(E_{i+1})$... $\text{split}(E_{i+1})$

sv(S,0) and (4) sp' is sv(S,0) rev(split(ES_{i-1}))... rev(split(ES_{i+1})) sv(S,1). (1) For each ES_j for $j=1,2,\ldots,m$, we calculate $\sigma''(\text{split}(ES_j))$ and $\sigma(ES_j)$. There are three possible cases: (1.1) ES_j is an element e, (1.2) ES_j is an element variable E and (1.3) ES_j is a sequence variable S. (1.1) $\sigma''(\text{split}(e)) = e$ and $\sigma(e) = e = \sigma''(\text{split}(e))$. (1.2) $\sigma''(\text{split}(E)) = \sigma''(E)$ and $\sigma(E) = (\text{join}(\sigma''))(E) = \sigma''(E) = \sigma''(\text{split}(E))$. (1.3) $\sigma''(\text{split}(S))$ and $\sigma(S)$ are calculated as follows:

```
\sigma''(\operatorname{split}(S)) = \sigma''(\operatorname{sv}(S,0) \operatorname{sv}(S,1))
```

$$\begin{split} \sigma(S) &= (\mathrm{join}(\sigma''))(S) = \sigma''(\mathrm{sv}(S,0)) \ \sigma''(\mathrm{sv}(S,1)) \\ &= \sigma''(\mathrm{split}(S)) \end{split}$$

Therefore, $\sigma(ES_j) = \sigma''((\operatorname{split}(ES_j)))$ and then $\sigma(ES_i \ ES_{i+1} \dots ES_{i-1})$ is calculated as follows:

```
\sigma(ES_i \ ES_{i+1} \dots ES_{i-1}) = \sigma(ES_i) \ \sigma(ES_{i+1}) \dots \sigma(ES_{i-1})
= \sigma''((\operatorname{split}(ES_i))) \ \sigma''((\operatorname{split}(ES_{i+1}))) \dots \sigma''((\operatorname{split}(ES_{i-1})))
= \sigma''(\operatorname{split}(ES_i) \ \operatorname{split}(ES_{i+1}) \dots \operatorname{split}(ES_{i-1}))
= \sigma''(\operatorname{sp'})
```

Because $\sigma''(sp') = seq$ from the assumption, $\sigma(ES_i ES_{i+1} \dots ES_{i-1}) = seq$. Because $spES_i ES_{i+1} \dots ES_{i-1}$, $[\sigma(sp)] = [\sigma(ES_i ES_{i+1} \dots ES_{i-1})]$ from Lemma 3. Thus, $[\sigma(sp)] = [seq]$ and then $\sigma \in ([sp] = ?= [seq])$.

(2) For each ES_j for $j=1,2,\ldots,m$, we calculate $\sigma''(\text{rev}(\text{split}(ES_j)))$ and $\sigma(ES_j)$. There are three possible cases: (2.1) ES_j is an element e, (2.2) ES_j is an element variable E and (2.3) ES_j is a sequence variable S. (2.1) $\sigma''(\text{rev}(\text{split}(e))) = e$ and $\sigma(e) = e = \sigma''(\text{rev}(\text{split}(e))) = \text{rev}(\sigma''(\text{rev}(\text{split}(e))))$. (2.2) $\sigma''(\text{rev}(\text{split}(E))) = \sigma''(E)$ and $\sigma(E) = (\text{join}(\sigma''_{\text{rev}}))(E) = \sigma''(E) = \sigma''(\text{rev}(\text{split}(E))) = \text{rev}(\sigma''(\text{rev}(\text{split}(E))))$. (2.3) $\sigma''(\text{rev}(\text{split}(S)))$ and $\sigma(S)$ are calculated as follows:

```
\begin{split} \sigma''(\operatorname{rev}(\operatorname{split}(S))) &= \sigma''(\operatorname{rev}(\operatorname{sv}(S,0) \ \operatorname{sv}(S,1))) \\ &= \sigma''(\operatorname{sv}(S,1) \ \operatorname{sv}(S,1)) \end{split}
```

$$\begin{split} &\sigma(S) = (\mathrm{join}(\sigma''_{\mathrm{rev}}))(S) = \sigma''_{\mathrm{rev}}(\mathrm{sv}(S,0)) \ \sigma''_{\mathrm{rev}}(\mathrm{sv}(S,1)) \\ &= \mathrm{rev}(\sigma''(\mathrm{sv}(S,0))) \ \mathrm{rev}(\sigma''(\mathrm{sv}(S,1))) \\ &= \mathrm{rev}(\sigma''(\mathrm{sv}(S,1)) \ \sigma''(\mathrm{sv}(S,0))) = \mathrm{rev}(\sigma''(\mathrm{rev}(\mathrm{split}(S)))) \end{split}$$

Therefore, $\sigma(ES_j) = \text{rev}(\sigma''(\text{rev}(\text{split}(ES_j))))$ and then $\sigma(ES_{i+1} \dots ES_{i-1} ES_i)$ is calculated as follows:

```
\sigma(ES_{i+1} \dots ES_{i-1} ES_i) = \sigma(ES_{i+1}) \dots \sigma(ES_{i-1}) \sigma(ES_i)
= \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_{i+1}))))\dots
    \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_{i-1})))) \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_i))))
= \operatorname{rev}(\sigma''(\operatorname{rev}(\operatorname{split}(ES_i)))
           \sigma''(\text{rev}(\text{split}(ES_{i-1}))) \dots \sigma''(\text{rev}(\text{split}(ES_{i+1}))))
= \operatorname{rev}(\sigma''(sp'))
Because \sigma''(sp') = seq from the assumption, \sigma(ES_{i+1} \dots ES_{i-1} ES_i) = rev(seq).
Because spES_{i+1} \ldots ES_{i-1} ES_i, [\sigma(sp)] = [\sigma(ES_{i+1} \ldots ES_{i-1} ES_i)] from
Lemma 3. Moreover, [seq] = [rev(seq)] from Proposition 4. Thus, [\sigma(sp)] = [seq]
and then \sigma \in ([sp] = ?= [seq]).
     (3) rtt(sp') is calculated as follows:
= \operatorname{sv}(S,0) \operatorname{sv}(S,1) \operatorname{rev}(\operatorname{split}(ES_{i+1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i-1}))
= \operatorname{split}(ES_i) \operatorname{rev}(\operatorname{split}(ES_{i+1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i-1}))
Because \sigma''(sp') = seq, there exists a natural number k such that \sigma''(\text{rtt}(sp')) =
\operatorname{rtt}^k(seq). As what has been done for case (1), we have \sigma(ES_i ES_{i+1} \dots ES_{i-1}) =
\operatorname{rtt}^k(seq). Because \operatorname{spES}_i ES_{i+1} \dots ES_{i-1}, [\sigma(sp)] = [\sigma(ES_i ES_{i+1} \dots ES_{i-1})]
from Lemma 3. Moreover, [seq] = [rtt^k(seq)] from Proposition 4. Thus, [\sigma(sp)] =
[seq] and then \sigma \in ([sp] =?= [seq]).
     (4) rtt(sp') is calculated as follows:
\operatorname{rtt}(sp')
= \operatorname{sv}(S, 1) \operatorname{sv}(S, 0) \operatorname{rev}(\operatorname{split}(ES_{i-1})) \ldots \operatorname{rev}(\operatorname{split}(ES_{i+1}))
= \operatorname{rev}(\operatorname{split}(ES_i)) \operatorname{rev}(\operatorname{split}(ES_{i-1})) \dots \operatorname{rev}(\operatorname{split}(ES_{i+1}))
Because \sigma''(sp') = seq, there exists a natural number k such that \sigma''(\text{rtt}(sp')) =
\operatorname{rtt}^k(seq). As what has been done for case (2), we have \sigma(ES_{i+1} \ldots ES_{i-1} ES_i)
```

= rev(rtt^k(seq)). Because sp $ES_{i+1} \dots ES_{i-1} ES_i$, $[\sigma(sp)] = [\sigma(ES_{i+1} \dots ES_{i-1} ES_i)]$ from Lemma 3. Moreover, $[seq] = [rev(rtt^k(seq))]$ from Proposition 4. Thus, $[\sigma(sp)] = [seq]$ and then $\sigma \in ([sp] = ?= [seq])$.

Lemma 7. For any sequence pattern $sp \in \mathbf{SP}$ and any sequence $seq \in \mathbf{Seq}$, join([[split(sp)]] =?= seq) = (sp =?= [[seq]])).

Proof. Let $\sigma \in \text{join}([[\text{split}(sp)]] =?= seq)$. Let σ' be an arbitrary substitution in ([[split(sp)]] =?= seq) from which σ is constructed, namely that $\sigma = \text{join}(\sigma')$. Let $\text{split}(sp') \in [[\text{split}(sp)]]$ such that if split(sp') split(sp), $\sigma'(\text{split}(sp')) = seq$ and if split(sp') split(sp), $\sigma''(\text{split}(sp')) = seq$ such that $\sigma' = \sigma''_{\text{rev}}$. Then, $\sigma(sp') = seq$. From Lemma 3, $[\sigma(sp)] = [\sigma(sp')]$. Therefore, $[\sigma(sp)] = [seq]$. From Lemma 4, $\sigma \in (sp =?= [[seq]])$. Let $\sigma \in (sp =?= [[seq]])$. From Lemma 5, $\sigma \in (sp =?= seq)$.

Theorem 1. For any sequence pattern $sp \in \mathbf{SP}$ and any sequence $seq \in \mathbf{Seq}$, join([[split(sp)]] =?= seq) = ([sp] =?= [seq]).

Proof. It is derived from Lemma 4, Lemma 5 and Lemma 6. □