

SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO) PARA INVERNADEROS DOMESTICOS.

JHON JAIRO VEJAR CABALLERO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA DEPARTAMENTO DE ELECTRICIDAD Y ELECTRÓNICA SAN JOSÉ DE CÚCUTA 2021

SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO) PARA INVERNADEROS DOMESTICOS.

JHON JAIRO VEJAR CABALLERO

PRESENTADO A:

MS. ING. EDWIN JOSÉ VERA ROZO

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERÍA DEPARTAMENTO DE ELECTRICIDAD Y ELECTRÓNICA SAN JOSÉ DE CÚCUTA 2021

RESUMEN

El proyecto tiene por objetivo presentar una herramienta de gran aporte para los invernaderos domesticos el cual tiene como titulo "SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO) PARA INVERNADEROS DOMESTICOS.". Hoy en día la sociedad ha cambiado mucho y con ella las maneras de solucionar las cosas también, mantener un invernadero doméstico resulta complejo, debido a que las plantas se secan por falta de hidratación o por exceso. Se plantea diseñar e implementar un sistema de riego automático controlado por voz en (Python-Arduino). Es un gran complemento para usar en hogares de la ciudad de cucuta. Además este sistema trabaja con un microcontrolador Arduino, y tendrá código python, contará con ayuda del software Visual Studio para establecer el canal de comunicación con el microcontrolador arduino con python, además con ayuda del programa Fritzing que es un programa libre de automatización de diseño electrónico se hará su esquemático, y con Proteus se hará la simulación del circuito, con el fin de colocar en práctica su función.

Palabras Clave — Automatización, Arduino, Invernadero, Python, Visual Studio.

TABLA DE CONTENIDO

I.	INTRODUCCION	7
II.	PLANTEAMIENTO DEL PROBLEMA	7
III.	JUSTIFICACION	8
A.	Beneficios Tecnológicos	9
В.	Beneficios Económicos	9
C.	Beneficio Social	9
IV.	ALCANCES	9
V.	LIMITACIONES Y DELIMITACIONES	9
A.	LIMITACIONES	9
В.	DELIMITACIONES	10
VI.	OBJETIVOS	10
A	. OBJETIVO GENERAL	10
В.	OBJETIVOS ESPECÍFICOS	10
VII.	MARCO REFERENCIAL	10
A.	ANTECEDENTES	10
В.	MARCO TEÓRICO	12
VIII	CRONOGRAMA	12
IX.	PRESUPUESTO	13
A.	PRESUPUESTO DE LOS MATERIALES	13
В.	PRESUPUESTO DEL PERSONAL	14
C.	PRESUPUESTO DEL SOFTWARE	14
X.	DISEÑO METODOLÓGICO	15
XI.	RESUMEN DE INFORMACIÓN	20
A.	. Arduino uno	20
В.	Sensor DHT-11	20
XII.	RESULTADOS	21
XIII	. CONCLUCIONES	23
XIV	. REFERENCIAS BIBLIOGRÁFICAS	24
XV.	APÉNDICES	25

A.	Apéndice : CODIGO EN EL PROGRAMA VISUAL STUDIO SISTEMA DE	RIEGO
AU'	TOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO)	PARA
INV	VERNADEROS DOMESTICOS "LUCY"	25
	Apéndice :SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR V	
(PY	THON-ARDUINO) PARA INVERNADEROS DOMESTICOS "LUCY"	32
C.	Apéndice : Animacion en Blender de Lucy	37

ÍNDICE DE TABLAS

Tabla 1. Cronograma	12
Tabla 2. Presupuesto de los materiales	13
Tabla 3 Presupuesto del Personal	14
Tabla 4 Presupuesto del software	15
Tabla 5. matriz de selección de sensor de humedad	
Tabla 6. matriz de selección factores del sensor de humedad	15
Tabla 7. matriz de selección factores del sensor de humedad - Precisión Humedad	
Tabla 8. matriz de selección factores del sensor de humedad - Costo	16
Tabla 9. matriz de selección factores del sensor de humedad -Alimentación	16
Tabla 10. matriz de selección factores del sensor de humedad -Alimentación	
Tabla 11. matriz de selección factores del sensor de humedad	16
Tabla 12. Matriz de selección Arduino	17
Tabla 13. Matriz de selección Arduino Factores	17
Tabla 14. Matriz de selección Arduino Factores - Costo	
Tabla 15. Matriz de selección Arduino Factores - Tamaño	17
Tabla 16. Matriz de selección Arduino Factores - Alimentación	17
Tabla 17. Matriz de selección Arduino Factores – Pines Analógicos	18
Tabla 18. Matriz de selección Arduino Factores	
Tabla 19. Matriz de selección sensor de humedad	18
Tabla 20. Matriz de selección sensor de humedad Factores	18
Tabla 21. Matriz de selección sensor de humedad Factores - Costos	19
Tabla 22. Matriz de selección sensor de humedad Factores - Dimensiones	19
Tabla 23. Matriz de selección sensor de humedad Factores – Voltaje de Trabajo	19
Tabla 24. Matriz de selección sensor de humedad Factores – Peso	19
Tabla 25. Matriz de selección sensor de humedad Factores – Peso	19

ÍNDICE DE FIGURAS.

Figura 1. Arduino Uno	20
Figura 2. sensor de temperatura y humedad relativa (DHT-11)	20
Figura 3. Simulacion en el programa Proteus	21
Figura 4. Ejecucion del codigo en el programa Arduino	
Figura 5. Verificacion de los sensores en la simulacion del programa Proteus	
Figura 6. Ejecucion del codigo en el programa Visual Studio	
Figura 11. Ejecucion del codigo en el programa Visual Studio	

I. INTRODUCCION

a escasez de agua es un fenómeno natural, pero también es causada por el hombre por sus malas prácticas su distribución es desigual en el tiempo y el espacio, y la mayor parte se desperdicia, contamina y se maneja de manera insostenible. [1]

Este proyecto se centra inicialmente en el poco tiempo que tienen las personas para hidratar sus plantas en sus invernaderos domésticos, particularmente este sistema les ayudará a facilitar la vida de sus invernaderos, llevará un control adecuado de sus plantas lo que proporcionará la satisfacción de las mismas. También contará con sensores de humedad para medir los niveles de hidratación del suelo y sensores de temperatura para medir la humedad del aire, los cuales se activarán, cuando sea necesario. Además en el código contará con un sistema automático que racionará el agua en el día. El sensor de humedad tiene dos puntas las cuales van a estar clavadas en la tierra de la planta, cerca del tallo, con el objetivo de obtener la información más precisa. Contará con ayuda del software Visual Studio para establecer el canal de comunicación con el microcontrolador Arduino con Python, con ayuda del programa Fritzing que es un programa libre de automatización de diseño electrónico, se hará la simulación del circuito, con el fin de colocar en práctica su función. Se usará estos programas ya que son de uso libre lo que le proporcionará al proyecto una mejor economía lo que define que posiblemente sería un proyecto económicamente viable. las plantas necesitan de agua igual que los humanos para sobrevivir. Las plantas absorben nutrientes del suelo ya que gracias a eso realizan diversas funciones fisiológicas en presencia de agua. El riego es necesario cuando no hay suficiente agua en el suelo o cuando no se puede obtener a tiempo del agua de lluvia [2]

II. PLANTEAMIENTO DEL PROBLEMA

La tierra enfrenta muchos problemas relacionados con el agua, principalmente debido al cambio climático y la creciente demanda de agua. En este sentido, el crecimiento económico y la

demografía son dos grandes amenazas para el planeta. La agricultura consume el 80% del consumo total de agua del mundo.[3]

La creación de un invernadero produce la necesidad y la creación de un artefacto que ayude a limitar el riego de agua el cual debe ser racionado en porciones adecuadas y tener factores clave como lo son la temperatura, Como para cada ser viviente el agua es algo vital, proporciona diferentes reacciones las cuales logra la sobrevivencia del ser, y como no es la exención las plantas la necesita mucho. Cabe de mencionar que este sería uno de los puntos a destacar, el constante seguimiento y alimentación de agua en el invernadero. Es algo que se tiene que tener cuidado y estar en constante seguimiento ya que debe ser aplicada en proporciones adecuadas ya que si no es así, la misma actuaría en contra de su efecto; lo que haría es ahogar a la planta. Este proyecto se centra inicialmente en el poco tiempo que tienen las personas para hidratar sus plantas en sus invernaderos domésticos, particularmente este sistema les ayudará a facilitar la vida de sus invernaderos, llevará un control adecuado de sus plantas lo que proporcionará la satisfacción de las mismas.

III. JUSTIFICACION

Este proyecto se hace en pro de beneficio con el planeta con base a la información suministrada del gasto innecesario de agua en el riego por parte de la agricultura es exorbitante, lo que motiva a encontrar posibles soluciones para dicha problemática; sabemos que esto solo sería un granito de arena para tan gigantesco problema, pero cada cambio se hace con pequeñas cosas. El agua es el origen de toda la vida que existe en la tierra y gracias a ella sobrevivimos. Sin ella, no habrá futuro del planeta ni humanos ni plantas absolutamente nada toda la biodiversidad hay depende de ella. Por ello, es fundamental cuidarla. [4]

Con este proyecto se evitará el desperdicio de agua a la hora de hacer los riegos, solo se aplicaría la necesaria para evitar pérdidas, también contaremos con un sistema automático el cual se ejecutaría en momentos necesario con base a la información suministrada por los sensores lo cual haría que el mismo tenga en cuenta cuando de verdad lo necesita. El acceso al agua es algo que no se debe restringir ya que dependemos de ella pero si no la cuidamos no habrá. El agua es un elemento necesario para todos los organismos vivos y especialmente para los seres humanos,

también es un recurso estratégico para el desarrollo de la economía y la sociedad, ya que de ella dependemos mucho. Y es también una preocupación a nivel internacional ya que a todas las personas sin importar su país la van a necesitar siempre. La disponibilidad de este recurso tan importante es cada vez más preocupante debido al mal uso que hacemos de ella, y las grandes ciudades notan como cada vez hay menos y que se ha presentado aumento de su población lo cual infiere que se va necesitar más. [5]

A. Beneficios Tecnológicos

Implementar esta tecnología de riego trae consigo una tecnificación en los procesos de producción y control de calidad además sin mencionar la automatización de cada proceso, lo cual fomenta el uso de otros tipos de equipos autónomos y de gran utilidad para satisfacer las necesidades que siguen limitando la producción, siendo la más importante el tiempo implementado en cada tarea.

B. Beneficios Económicos

Instalar un sistema de riego implica una conexión inmediata con el depósito de agua, lo cual permite controlar exactamente el consumo de agua y evitar derroches innecesarios que acaban siendo un gasto económico considerable para los agricultores.

C. Beneficio Social

Este proyecto incentiva a las familias establecer huertas en sus hogares, debido a que, aunque el espacio sea pequeño el sistema de riego autónomo es adaptable a cualquier lugar y tipo de plantación.

IV. ALCANCES

Tiene como alcance la implementación en invernaderos domesticos de la ciudad de Cúcuta.

V. LIMITACIONES Y DELIMITACIONES

A. LIMITACIONES

Realizar un proyecto de una automatizacion de forma teorica y con simulaciones tiene su limitataciones debido que al programar los sensores puede ser que no funcionen bien, lo que se quiere aclarar es que la simulacion va salir bien pero es muy diferente cuando se va ejecutar el proyecto en físico.

B. DELIMITACIONES

Este proyecto tiene como duración un semestre educativo y será realizado para los invernaderos domesticos de la ciudad de Cúcuta.

VI. OBJETIVOS

A. OBJETIVO GENERAL

• Diseñar un sistema de riego automatizado controlado por voz en invernaderos.

B. OBJETIVOS ESPECÍFICOS

- Implementar software capaz de establecer un canal de comunicación con el microcontrolador arduino y
 el entorno de Microsoft Visual Studio.
- Crear un asistente virtual capaz de hacer modificación en el microcontrolador arduino.
- Crear codigo en python con reconocimiento de voz.
- Diseñar un circuito con arduino con automatizacion para invernadero.
- Diseñar circuito en fritzing con el fin de hacer las respetivas simulaciones del proyecto.

VII. MARCO REFERENCIAL

A. ANTECEDENTES

1. ANTECEDENTES INTERNACIONALES

A nivel internacional, existen proyectos relacionados como el Proyecto Prototipo de Control de Ingeniería de Riego que aplica tecnología Arduino. Se reduce al riego por aspersión, donde se aplica agua al suelo que ya ha sido regado, o al dividir el arroyo en gotas, humedeciendo el suelo mientras llega a su superficie. Es un método de riego mecanizado que tiene como objetivo un control preciso de la cantidad de agua de riego que garantiza que haya poca perdida de agua frente al clima de la region con una practicas que se podria decir adecuadas que proporciona un mejor rendimiento en los invernaderos. El método propuesto incluye un sistema de riego automático y controlado del tejido herramienta que ayuda a un buen seguimineto del mismo, que asegura un

control preciso del agua superficial aplicada según las condiciones climáticas y agroclimáticas, y permite una cuidadosa implementación del riego completo.[6]

2. ANTECEDENTES NACIONALES

A nivel nacional, se encuentra el siguiente proyecto que lleva como nombre el Sistema de Riego Automático con Arduino, construido en Bogotá, Colombia. En resumen, en una sociedad moderna, mantener jardines contratados es muy complicado mantener vivos y con una buen ahidratacion ademas tener encuenta sus cuidados, porque los jardines se marchitan por falta de agua. Para evitarlo, se propone diseñar un sistema de riego automático con el fin de prevenir estas falencias y erroes comunes del ser humano, combinando soluciones libres de hardware y software para que faciliten el uso del mismo, para medir la humedad del suelo con un respetivo sensor y otro del aire, ya que forman parte del invernadero. Se ha agregado un microcontrolador que seria aquel elemento necesario para el funcionamiento del mismo ya que de el depende la ejecucion del programa, a esta solución, que actúa como un centro operativo para garantizar el suministro de agua y la medición para el invernadero ademas tiene como objetivo mantener las plantas hidratadas. La solución, por tanto, consiste en una aplicación de celular que ayudara al manejo d ela misma que, mediante tecnología Bluetooth, establece un canal de comunicación con el microcontrolador sera motor de la comunicación, permitiendo la transmisión y recepción de las señales generadas por los sensores del sistema y vistas en el telefono, reduciendo así el trabajo humano. [7]

3. ANTECEDENTES REGIONALES

A nivel regional, se desarrolla el siguiente proyecto relativo al diseño y automatización de un sistema de riego para una finca ganadera de 9 hectáreas, tecnología celular (móvil) utilizando la tarjeta Adafruit FONA 808 GSM / GPS. Por SMS y utilizando la red móvil 2G en combinación con placa arduino, una bomba de 5 hp, dos paletas de riego, se pueden controlar dos válvulas solenoides, muestra el nivel del tanque a lo largo del tiempo en tiempo real, flujo, presión y voltaje del sistema de suministro de energía. El sitio de estudio está ubicado en la localidad de Sabana de Torres, donde las condiciones para recibir y operar un sistema de riego son muy difíciles.[8]

B. MARCO TEÓRICO

El riego por goteo es el más eficiente método de suministro de agua y nutrientes a los cultivos. Entrega el agua y fertilizantes directamente a la zona radicular del cultivo, en la cantidad correcta y en el momento adecuado, por lo tanto, cada planta recibe exactamente lo que necesita, cuando lo necesita para desarrollarse óptimamente. Gracias al riego por goteo, los productores pueden tener mejores rendimientos mientras ahorran agua, así como fertilizantes, energía e incluso agroquímicos. [9]. La automatización del sistema de riego, se basa en la sustitución del control manual por controladores automáticos, lo cual pretende ahorrar mano de obra, ahorrar agua, ahorrar energía, incrementar la eficiencia del riego e incrementar la productividad del cultivo. En Orbes, implementamos el servicio para que el sistema logre ser lo más eficiente posible y ahorrar tanto suministros como costos. [10]

VIII. CRONOGRAMA

CRONOGRAMA																
		MESES														
ACTIVIDADES	SE	PTIE	ME	RE	0	CTI	JBI	RE	NC	VIE	MB	RE	DICIEMBRE		RE	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Asignación de Proyecto																
Definición de los objetivos principales y específicos.																
Análisis de mercadeo, técnico, económico y socio económico.																
Definición de los problemas – Justificaciones.																
Entrega de avances sobre el anteproyecto																
Análisis del entorno, oportunidades y necesidades																
Realización del project charter																
Prediseño de la encuesta																
Aplicación de la encuesta																
Análisis de oferta. Demanda, comercialización y precios.																
Realización del documento final																
Simulaciones del proyecto																
Verificación de Simulaciones																
Realización del documento final																
Entrega del documento																

Tabla 1. Cronograma

En la siguiente tabla se visualiza la organización del tiempo en el proyecto desde su inicio hasta su final se aclara el tiempo por semanas.

IX. PRESUPUESTO

A. PRESUPUESTO DE LOS MATERIALES

PRESUPUESTO PARA EL DISEÑO DEL SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN INVERNADEROS								
Elemento	Unidades	Precio por unidad	Costo					
Arduino nano (atmega328p)	1	\$ 16.500	\$ 16.500					
Cable Jumper	30	\$ 200	\$ 6.000					
Protoboard (400 Puntos)	1	\$ 7.500	\$ 7.500					
Estaño para soldar(100cm)	1	\$ 1.300	\$ 1.300					
Mini Bomba De Agua Sumergible Proyectos Arduino 3vdc-6vdc	1	\$ 12.000	\$ 12.000					
Sensor de humedad del suelo SparkFun (con terminales roscados)	1	\$ 7.500	\$ 7.500					
Sensor Dht11	1	\$ 9.500	\$ 9.500					
Sensor Nivel De Agua Horizontal - Nivel De Liquido Flotador	1	\$ 12.500	\$ 12.500					
		Costo Total	\$ 72.800					

Tabla 2. Presupuesto de los materiales

En la siguiente tabla se visualiza el presupuesto de los materiales necesarios sin contar el presupuesto del personal ni el sowtfare, obsevamos que el costo de los materiales salieron economicamente viable se denota que el valor del precio de los materiales es de \$ 72.800 pesos colombianos, Se establecio un medio de comunicación con un proveedor fuera de la ciudad el cual se habia trabajo en un anterior proyecto lo que proporciono obtener mejores costos.

B. PRESUPUESTO DEL PERSONAL

PRESUPUESTO PARA EL DISEÑO DEL SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN INVERNADEROS								
Personal	Nombre	Tasa Estándar	Tasa sobretiempo					
Ingeniero P1	Manuel Rodríguez	Trabajo	20,000/hora	26,000/hora				
Tecnólogo Fredy Bustamante		Trabajo 8,000/hora		10,400/hora				
Técnico	José Pabón	Trabajo	6,000/hora	7,800/hora				
Estudiante Jhon Jairo Vejar Trabajo 6,000/hora 7,800/hor								

Tabla 3 Presupuesto del Personal

Fuente: Autor

En la siguiente tabla se visualiza el presupuesto del personal, el cula va hacer fuente vital para la ejecucion del mismo, se estableciero medidas las cuales nos proporciona tener un tiempo adecuado, sin perder el mismo lo que nos va a proporcionar costos mas bajos.

C. PRESUPUESTO DEL SOFTWARE

PRESUPUESTO DEL SOFTWARE PARA EL DISEÑO DEL SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN INVERNADEROS						
Nombre	Tipo	Costo				
Arduino	Material	80,000				
Proteus Material 400,00						
Fritzing Material 30,400						
Blender	Material	100,000				

Visual Studio	Material	0
Python	Material	0
Paquete office	Material	219,000
	Costo Total	829,400

Tabla 4 Presupuesto del software

Fuente: Autor

En la siguiente tabla se visualiza el presupuesto del software para la ejecucion del proyecto, esta herramientas facilitaran la construccion delmismo, tambien se debe mencionar que hay software de libre lo que ayuda que salga economico la ejecucion del mismo.

X. DISEÑO METODOLÓGICO

El diseño de investigación según Hernández, Fernández y Batista (2006) "se refiere al plan o estrategia concebida para obtener la información que se desea" en este sentido, plantea 3 diseños de investigación: a) experimental, b) cuasiexperimental y c) no experimental. Con base a lo siguiente vamos a definir cada una, y así tomar el tipo de investigación que corresponde a este proyecto.

Tabla 5. matriz de selección de sensor de humedad

FACTORES	DHT11	DHT21	DHT22	SHT3X	suma	FP
Precisión Humedad	1/10	10	1	1	12,10	0,368
Costo	10	5	1/5	1/10	15,30	0,465
Alimentación	10	5	1/10	1/5	15,30	0,465
Tamaño	5	1/10	1/5	10	15,30	0,465
TOTAL					58,00	

Tabla 6. matriz de selección factores del sensor de humedad

	DHT11	DHT21	DHT22	SHT3X	suma	PO
DHT11	х	1/10	1/5	1/5	20,00	0,608
DHT21	10	х	1/5	1/5	0,50	0,015
DHT22	5	1/5	х	1	6,20	0,188
SHT3X	5	1/5	1	x	6,20	0,188
TOTAL					32,90	

Tabla 7. matriz de selección factores del sensor de humedad - Precisión Humedad

	DHT11	DHT21	DHT22	SHT3X	suma	PO
DHT11	х	5	5	10	20,00	0,930
DHT21	1/5	x	1/5	1/10	0,50	0,023
DHT22	1/10	1/5	x	1/5	0,50	0,015
SHT3X	1/10	1/5	1/5	x	0,50	0,015
TOTAL					21,50	

Tabla 8. matriz de selección factores del sensor de humedad - Costo

	ALIMENTACIÓN						
	DHT11	DHT21	DHT22	SHT3X	suma	PO	
DHT11	х	5	10	5	20,00	0,930	
DHT21	1/5	х	1/10	1/5	0,50	0,023	
DHT22	1/10	1/5	x	1/5	0,50	0,015	
SHT3X	1/10	1/5	1/5	x	0,50	0,015	
TOTAL					21,50		

Tabla 9. matriz de selección factores del sensor de humedad -Alimentación

	TAMAÑO						
	DHT11	DHT21	DHT22	SHT3X	suma	PO	
DHT11	x	10	5	1/10	15,10	0,369	
DHT21	1/5	x	1/5	1/10	0,50	0,012	
DHT22	1/5	5	x	1/10	5,30	0,130	
SHT3X	5	10	5	x	20,00	0,489	
TOTAL					40,90		

Tabla 10. matriz de selección factores del sensor de humedad -Alimentación

	Precisión Humedad	Costo	Alimentación	Tamaño	
	FP PO	FP PO	FP PO	FP PO	PF
DHT11	0,2236	0,4326	0,4326	0,1717	1,260
DHT21	0,0056	0,0108	0,0108	0,0057	0,033
DHT22	0,0693	0,0071	0,0071	0,0603	0,144
SHT3X	0,0693	0,0071	0,0071	0,2274	0,311

Tabla 11. matriz de selección factores del sensor de humedad

		ARDUINO						
	FACTORES	MICRO	NANO	UNO	MEGA			
\$	Costo	19990	18000	45000	65000			
\Box	Tamaño	30 x 18 mm	45 x 18 mm	8 x 5.51 x 2.49 cm	101.52 x 53.3			
1	Alimentación	7Vdc ≤ Vcc ≤ 9Vdc	7Vdc ≤ Vcc ≤ 12Vdc	6 V ≤ Vcc ≤ 12 V	7 V ≤ Vcc ≤ 12 V			
O	Pines Analógicas	12	8	6	16			

Tabla 12. Matriz de selección Arduino

FACTORES	MICRO	NANO	UNO	MEGA	suma	FP
Costo	5	10	1/5	1/10	12,10	0,295
Tamaño	10	5	1/5	1/10	15,30	0,373
Alimentación	1	1	1/5	1/10	15,30	0,373
Pines Analógicas	5	5	1/5	10	15,30	0,373
TOTAL					58,00	

Tabla 13. Matriz de selección Arduino Factores

	COSTO						
	MICRO	NANO	UNO	MEGA	suma	PO	
MICRO	x	1/5	5	10	15,20	0,371	
NANO	5	х	5	10	20,00	0,488	
UNO	1/5	1/10	x	5	5,30	0,129	
MEGA	1/5	1/10	1/5	х	0,50	0,012	
TOTAL					41,00		

Tabla 14. Matriz de selección Arduino Factores - Costo

	MICRO	NANO	UNO	MEGA	suma	РО
MICRO	x	1/5	5	10	15,20	0,420
NANO	1/5	x	5	10	15,20	0,420
UNO	1/10	1/5	х	5	5,30	0,129
MEGA	1/10	1/5	1/5	x	0,50	0,012
TOTAL					36,20	

Tabla 15. Matriz de selección Arduino Factores - Tamaño

	ALIMENTACIÓN					
	MICRO	NANO	UNO	MEGA	suma	РО
MICRO	х	1	5	10	16,00	0,442
NANO	1	x	5	10	16,00	0,442
UNO	1/5	1/5	x	5	5,40	0,132
MEGA	1/5	1/5	1/5	x	0,60	0,015
TOTAL					38,00	

Tabla 16. Matriz de selección Arduino Factores – Alimentación

	PINES ANALÓGICAS						
	MICRO	NANO	UNO	MEGA	suma	PO	
MICRO	х	1/5	5	10	15,20	0,420	
NANO	1/5	x	5	10	15,20	0,420	
UNO	1/10	1/5	х	5	5,30	0,146	
MEGA	1/10	1/5	1/5	х	0,50	0,014	
TOTAL					36,20		

Tabla 17. Matriz de selección Arduino Factores – Pines Analógicos

	Costo	Tamaño	Alimentación	Pines Analógicas	
	<u>FP PO</u>	<u>FP PO</u>	<u>FP PO</u>	<u>FP PO</u>	PF
MICRO	0,1094	0,1567	0,1649	0,1567	0,588
NANO	0,1440	0,1567	0,1649	0,1567	0,622
UNO	0,0381	0,0482	0,0491	0,0546	0,190
MEGA	0,0036	0,0046	0,0055	0,0052	0,019

Tabla 18. Matriz de selección Arduino Factores

Tabla 19. Matriz de selección sensor de humedad

FACTORES	HL-69	XH-m214	CAPACITIVO	ANTICORROSIVO YI100	suma	FP
Costo	10	1/10	5	1/5	15,30	0,250
Dimensiones	10	5	1/10	1/5	15,30	0,250
Voltaje de trabajo	1	1/10	1	1/5	15,30	0,250
Peso	1/5	5	10	1/10	15,30	0,250
TOTAL					61,20	

Tabla 20. Matriz de selección sensor de humedad Factores

	COSTO							
	HL-69	XH-m214	CAPACITIVO	ANTICORROSIVO YI100	suma	PO		
HL-69	х	10	5	10	25,00	0,492		
XH-m214	1/10	х	1/5	5	5,30	0,104		
CAPACITIVO	1/5	10	x	5	15,20	0,299		
ANTICORROSIVO YI100	1/10	5	1/5	x	5,30	0,104		
TOTAL					50,80			

Tabla 21. Matriz de selección sensor de humedad Factores - Costos

DIMENSIONES						
	HL-69	XH-m214	CAPACITIVO	ANTICORROSIVO YI100	suma	PO
HL-69	х	5	10	5	20,00	0,437
XH-m214	1/5	x	5	5	10,20	0,223
CAPACITIVO	1/10	1/5	×	1/10	0,40	0,009
ANTICORROSIVO YI100	1/5	5	10	x	15,20	0,332
TOTAL					45,80	

Tabla 22. Matriz de selección sensor de humedad Factores - Dimensiones

VOLTAJE DE TRABAJO						
	HL-69	XH-m214	CAPACITIVO	ANTICORROSIVO YI100	suma	РО
HL-69	x	10	1	5	16,00	0,422
XH-m214	1/10	x	1/5	1/5	0,50	0,013
CAPACITIVO	1	10	x	5	16,00	0,422
ANTICORROSIVO YI100	1/5	5	1/5	x	5,40	0,142
TOTAL					37,90	

Tabla 23. Matriz de selección sensor de humedad Factores – Voltaje de Trabajo

PESO						
	HL-69	XH-m214	CAPACITIVO	ANTICORROSIVO YI100	suma	РО
HL-69	х	1/5	1/10	5	5,30	0,147
XH-m214	5	х	1/5	5	10,20	0,283
CAPACITIVO	5	5	х	10	20,00	0,556
ANTICORROSIVO YI100	1/5	1/5	1/10	x	0,50	0,014
TOTAL					36,00	

Tabla 24. Matriz de selección sensor de humedad Factores – Peso

	Precisión Humedad	Costo	Alimentación	Tamaño	
	FP PO	FP PO	FP PO	FP PO	PF
Precisión Humedad	0,1230	0,1092	0,1055	0,0368	0,375
Costo	0,0261	0,0557	0,0033	0,0708	0,156
Alimentación	0,0748	0,0022	0,1055	0,1389	0,321
Tamaño	0,0261	0,0830	0,0356	0,0035	0,148

Tabla 25. Matriz de selección sensor de humedad Factores – Pes

XI. RESUMEN DE INFORMACIÓN

A. ARDUINO UNO

El Arduino Uno es una placa de microcontrolador de código abierto basada en el microcontrolador Microchip ATmega328P esta herramieta sera de gran utilizada para el proyecto ya que sera la encargada de la comunicación y procesamiento de los datos [11].

Figura 1. Arduino Uno

Fuente: Pagina Web [12]

B. SENSOR DHT-11

Compatible con codigo Arduino, útil en aplicaciones proyectos académicos asi como este que lo utilizamos con una herramienta para relacionar el seguimiento y control automático de temperatura y humedad que son aquellas variables que necesitamos. Ademas como tiene bajo costo y de media precisión a un bajo precio es ideal para utilizarlo en este proyecto.[13]

Figura 2. sensor de temperatura y humedad relativa (DHT-11)

Fuente: Pagina Web [14]

XII. RESULTADOS

Figura 3. Simulacion en el programa Proteus

Fuente: Autor

Figura 4. Ejecucion del codigo en el programa Arduino

Figura 5. Verificacion de los sensores en la simulacion del programa Proteus

Fuente: Autor

Figura 6. Ejecucion del codigo en el programa Visual Studio

XIII. CONCLUCIONES

Se puede concluir, pues que este proyecto fue de gran enseñanza, Ya que en lo personal fue un reto la parte de la programación pues no había tenido la experiencia de poder mezclar 3 código un programa. además pues las simulaciones fue una herramienta nueva que tuve la oportunidad de aprender a desarrollar en Blender que ayudo a las animaciones. Además cabe mencionar que cada código era un reto, pues se tendría que conectarse uno con el otro para así llevar a cabo la simulación o el proyecto como tal. Además en la mayoría de este proyecto está diseñado en forma empírica ya que no hay bases fundamentales de conceptos o cursos sobre el tema y por otra parte. He aprendido a desarrollar cómo se puede llevar a cabo un verdadero proyecto. La automatización abre puertas con el fin de que se podría desarrollar mejores proyectos y llevarlos a cabo ya que es una buena herramienta de aprendizaje y como hoy en día la mayoría de las cosas se automatiza por la calidad y precisión en sus funciones, ya que aumenta drásticamente el tiempo sin pérdida del mismo y aumenta la producción. En este caso gracias a la automatización se ahorra agua. ya que es un elemento que gastamo de manera exorbitante y no tenemos cuidado del mismo y no tenemos preocupación, de este elemento dependemos y lo peor de todo y que hacemos como si nada con este proyecto se ahorra la suficiente agua, Claro sabemos que simplemente es un aporte mínimo tan grande problema que hay, Pero si no comenzamos a aportar llegar al momento que ya no haya la suficiente para todos sabemos que la población aumenta cada día más y con ello aumenta su gasto por eso es importante llevar a cabo proyectos como estos que promueven el cuidado del agua y enfatiza la más mínima pérdida de la misma. La es la agrícola especie que en ellas la que nos proporcionan un elemento necesario cómo lo es, cada cada vez vemos Menos plantas y árboles por la misma avaricia del ser humano por acabar todo lo que tiene lo que promueve Es la falta de elementos necesarios para la vida como ser y ocasiona daños a la población los invernaderos en casa son aquellos que aportan un mínimo granito tan grande problema que existen también con esta problemática. de mencionar que la simulación se realizó en proteus una herramienta de Gran facilidad para las simulaciones con ayuda del programa específicamente el código en arduino y python se llevó a cabo este proyecto que Garantizar el efectivo y eficaz uso del agua. Dependemos de la misma pero no hacemos cuidado por eso la idea de este proyecto está centrado más en ayudar está necesidad que vemos a nivel mundial.

XIV. REFERENCIAS BIBLIOGRÁFICAS

- [1] UNESCO, "Abordar la escasez y la calidad del agua." https://es.unesco.org/themes/garantizar-suministro-agua/hidrologia/escasez-calidad (accessed Sep. 15, 2021).
- [2] F. Y. CAMPO, "La importancia del riego en los cultivos | Finca y Campo." http://www.fincaycampo.com/2014/09/la-importancia-del-riego-en-los-cultivos/ (accessed Sep. 15, 2021).
- [3] AQUAE FUNDACION, "El consumo de agua en la agricultura de regadío | Fundación Aquae." https://www.fundacionaquae.org/5-000-litros-de-agua-1-kilo-de-arroz-el-uso-del-agua-en-la-agricultura/ (accessed Sep. 15, 2021).
- [4] AQUAE, "Cuidado del agua: consejos para protegerla | Fundación Aquae." https://www.fundacionaquae.org/consejos-para-cuidar-del-agua/ (accessed Sep. 15, 2021).
- [5] TWENERGY, "Soluciones para la escasez de agua: Proyectos y Propuestas | Twenergy." https://twenergy.com/ecologia-y-reciclaje/contaminacion/soluciones-creativas-en-mexico-ante-crisis-de-escasez-de-agua-1531/ (accessed Sep. 15, 2021).
- [6] G. H. CAYO CABRERA, "Prototipo De Control De Riego Tecnificado Aplicando La Tecnología Del Arduino," *Rev. Investig. Altoandinas J. High Andean Investig.*, vol. 17, no. 1, pp. 2–9, 2015, doi: 10.18271/ria.2015.84.
- [7] A. A. Guijarro-Rodríguez, ; Lorenzo, J. C. Torres, D. K. Preciado-Maila, B. Nagib, and Z. Manzur, "N° 37) Año 2018 Pág," vol. 39, p. 27.
- [8] G. Marín Ardila and I. Electrónico, "Diseño y automatización de un sistema de riego para una parcela ganadera de 9 hectáreas," 2019, Accessed: Sep. 17, 2021. [Online]. Available: https://repository.upb.edu.co/handle/20.500.11912/6694.
- [9] Netafim, "Riego por Goteo | Netafim." https://www.netafim.com/es-pe/drip-irrigation/ (accessed Sep. 17, 2021).
- [10] O. Agricola, "Automatización de Sistemas de Riego Orbes Agricola SAC." https://www.orbesagricolasac.com/automatizacion-de-sistemas-de-riego/ (accessed Sep. 17, 2021).
- [11] Arduino.CL, "Arduino UNO | Arduino.cl Compra tu Arduino en Línea." https://arduino.cl/arduino-uno/ (accessed Nov. 19, 2021).
- [12] B. Arduino, "Arduino Uno Rev3 Tienda Oficial Arduino." https://store.arduino.cc/products/arduino-uno-rev3 (accessed Nov. 20, 2021).
- [13] M. Hoolter, "Cómo utilizar el DHT11 para medir la temperatura y humedad con Arduino." https://programarfacil.com/blog/arduino-blog/sensor-dht11-temperatura-humedad-arduino/ (accessed Nov. 20, 2021).
- [14] J. Martinez, "Sensor de temperatura y humedad relativa DHT11." https://naylampmechatronics.com/sensores-temperatura-y-humedad/57-sensor-detemperatura-y-humedad-relativa-dht11.html (accessed Nov. 20, 2021).

XV. APÉNDICES

A. Apéndice: CODIGO EN EL PROGRAMA VISUAL STUDIO SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO) PARA INVERNADEROS DOMESTICOS "LUCY"

```
import speech_recognition as sr
import pyttsx3
import pywhatkit
import urllib.request
import json
import datetime
import wikipedia
import pyautogui, webbrowser
import AVMSpeechMath as sm
import serial
import sys
import time
# UFPS
# NOMBRE: Jhon Jairo Vejar Codigo: 1161702
# SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN INVERNADEROS "LUCY"
name = 'lucy'
key = 'AIzaSyDhUcZpLfLI-3k31KJmcoqkq2q12TB17yM'
flag = 1
google = 43,271
direc = 198,50
buscar = 360,136
cancion = 424,322
pausa = 131,567
#led=0
#mot=95
#serialArduino = serial.Serial("COM5",9600)
listener = sr.Recognizer()
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[0].id)
engine.setProperty('rate', 178)
engine.setProperty('volume', 0.7)
def talk(text):
    engine.say(text)
   engine.runAndWait()
talk('Bienvenido a casa yon vejar, ¿como puedo ayudarte?')
```



```
def listen():
   flag = 1
   try:
        with sr.Microphone() as source:
            print("Escuchando...")
            voice = listener.listen(source)
            rec = listener.recognize google(voice, language='es-ES')
            rec = rec.lower()
            if name in rec:
                print(rec)
                rec = rec.replace(name, ' ')
                flag = run(rec)
            else:
                talk("Vuelve a intentarlo, no reconozco: " + rec)
                print(rec)
   except:
        pass
   return flag
def run(rec):
   if 'reproduce' in rec:
        music = rec.replace('reproduce', '')
        talk('Reproduciendo ' + music)
        pywhatkit.playonyt(music)
   elif 'enciende invernadero' in rec:
       #import pyautogui
       # pyautogui.displayMousePosition()
       # con el anterior puedo ubicar el mouse en la pantalla lo cual facilita el uso de
pyautogui .JJVC.
       \#google = 43,271
       #pyautogui.typewrite('prueba 1')
       #pyautogui.press("enter")
       #pyautogui.click(x=100, y=200)
       # abrir(google,click=2)
       #abrir(direc)
       def abrir(pos,click=1):
           pyautogui.moveTo(pos)
           pyautogui.click(clicks=click)
       esc=1979,1070
       abrir(esc)
       time.sleep(1)
       Arduino=1877,70
       abrir(Arduino,2)
       time.sleep(10)
       verificar=16,70
       abrir(verificar)
```



```
pos=87,993
   pyautogui.moveTo(pos)
   time.sleep(10)
   pyautogui.drag(70, 0, duration=1) # move right
   time.sleep(2)
   pos2=145,883
   pyautogui.moveTo(pos2)
   pyautogui.drag(1790, 0, duration=1)
   pyautogui.hotkey("ctrl","c")
   time.sleep(1)
   esc=1979,1070
   abrir(esc)
   time.sleep(1)
   proteus=1836,234
   abrir(proteus,2)
   time.sleep(8)
   pos3=817,382
   pyautogui.moveTo(pos3)
   pyautogui.click(button='right')
   pos4=826,382
   abrir(pos4)
   time.sleep(2)
   pos5=866,405
   abrir(pos5)
   time.sleep(1)
   pyautogui.hotkey("ctrl","a")
   time.sleep(2)
   pyautogui.hotkey("ctrl","v")
   time.sleep(2)
   pos5=1212,309
   abrir(pos5)
   time.sleep(2)
   pos6=32,1010
   abrir(pos6)
   time.sleep(1)
   time.sleep(10000)
elif 'realiza un dibujo' in rec:
```



```
for i in range (101):
            time.sleep(0.05)
            sys.stdout.write("\r%d %%" % i)
            sys.stdout.flush()
        #import pyautogui
        # pyautogui.displayMousePosition()
        # con el anterior puedo ubicar el mouse en la pantalla lo cual facilita el uso de
pyautogui .JJVC.
        \#google = 43,271
        #pyautogui.typewrite('prueba 1')
        #pyautogui.press("enter")
        #pyautogui.click(x=100, y=200)
        # abrir(google,click=2)
        #abrir(direc)
        def abrir(pos,click=1):
           pyautogui.moveTo(pos)
           pyautogui.click(clicks=click)
        esc=1979,1070
        abrir(esc)
        bsc=150,1070
        abrir(bsc)
        pyautogui.typewrite('paint')
        time.sleep(1)
        pyautogui.press("enter")
        time.sleep(1)
        pyautogui.hotkey("alt","space")
        time.sleep(0.5)
        pyautogui.typewrite("x")
        time.sleep(1)
        pn=845,531
        abrir(pn)
        distance = 200
        while distance > 0:
                pyautogui.drag(distance, 0, duration=0.5) # move right
                distance -= 5
                pyautogui.drag(0, distance, duration=0.5) # move down
                pyautogui.drag(-distance, 0, duration=0.5) # move left
                distance -= 5
                pyautogui.drag(0, -distance, duration=0.5) # move up
   elif 'cuantos suscriptores tiene' in rec:
       name subs = rec.replace('cuantos suscriptores tiene', '')
urllib.request.urlopen(f'https://www.googleapis.com/youtube/v3/channels?part=statistics&f
orUsername={name subs.strip()}&key={key}').read()
        subs = json.loads(data)["items"][0]["statistics"]["subscriberCount"]
        talk(name_subs + " tiene {:,d}".format(int(subs)) + " suscriptores!")
```



```
elif 'enviar mensaje por whatsapp' in rec:
        webbrowser.open(f'https://web.whatsapp.com/send?phone={+573022249692}')
        sleep(45)
        pyautogui.typewrite('prueba 1')
       pyautogui.press("enter")
    elif 'hora' in rec:
       hora = datetime.datetime.now().strftime('%I:%M %p')
        talk("Son las " + hora)
    elif 'busca' in rec:
       order = rec.replace('busca', '')
        wikipedia.set lang("es")
        info = wikipedia.summary(order, 1)
        talk(info)
    elif 'busca en google' in rec:
       pywhatkit.search(rec)
       talk('Estoy Buscando en Google')
    elif 'cuéntame un chiste' in rec:
        talk('no soy graciosa pero me sé un chiste, ay va, ¿Por qué lloraba el libro de
matemáticas?, ¡Porque tenía muchos problemas!, jaja no te lo esperabas cierto')
    elif 'que eres' in rec:
        talk('soy una asistente virtual, diseñada con el fin de facilitar la vida
cotidiana, fui diseñada por yon vejar')
        #Autor Jhon Jairo Vejar
    elif 'cuéntame un trabalengua' in rec:
       talk('no sé muchos pero me sé un trabalengua, ay va, Tres tristes tigres, comen
trigo en un trigal, un tigre, dos tigres, tres tigres.')
    elif 'cuéntame un poema' in rec:
       talk('ay va, entrando a modo poeta, Cada vez que pienso en ti, mis ojos rompen en
llanto; y muy triste me pregunto, ¿por qué te quiero tanto?')
    elif 'cuánto es' in rec:
       res = sm.getResult(rec)
        talk(res)
    elif 'enviar mensaje por voz' in rec:
        talk("Que deseas enviarle")
        listen
        print(rec)
        sleep(10)
        talk(rec)
    elif 'encender led' in rec:
        led = 1
        mot = 95
        cad = str(led) + ","+ str(mot)
        serialArduino.write(cad.encode('ascii'))
        talk('Bueno yon!')
   elif 'abrir youtube' in rec:
        #import pyautogui
        # pyautogui.displayMousePosition()
        # con el anterior puedo ubicar el mouse en la pantalla lo cual facilita el uso de
pyautogui .JJVC.
        canciones = ["kurt sonreir", "kurt la mujer perfecta"]
```



```
def abrir(pos,click=1):
            pyautogui.moveTo(pos)
            pyautogui.click(clicks=click)
        abrir(google,click=2)
        time.sleep(2)
        pyautogui.hotkey("alt", "space")
        time.sleep(0.5)
        pyautogui.typewrite("x")
        time.sleep(1)
        abrir(direc)
        pyautogui.typewrite("www.youtube.com")
        pyautogui.hotkey("enter")
        time.sleep(30)
        for i in range(len(canciones)):
            print(i)
            abrir(buscar)
            pyautogui.typewrite(canciones[i])
            pyautogui.hotkey("enter")
            time.sleep(10)
            abrir(cancion)
            time.sleep(15)
        abrir(pausa)
        print("programa terminado Jhon Vejar")
   elif 'abrir instagram' in rec:
        #import pyautogui
        # pyautogui.displayMousePosition()
        # con el anterior puedo ubicar el mouse en la pantalla lo cual facilita el uso de
pyautogui .JJVC.
        def abrir(pos,click=1):
            pyautogui.moveTo(pos)
            pyautogui.click(clicks=click)
        abrir(43,271,click=2)
        time.sleep(2)
        pyautogui.hotkey("alt","space")
        time.sleep(0.5)
        pyautogui.typewrite("x")
        time.sleep(1)
   elif 'apagar luz' in rec:
        talk('bueno yon!')
```



```
led=0
        mot = 95
        cad = str(led) + ","+ str(mot)
        serialArduino.write(cad.encode('ascii'))
    elif 'abrir puerta' in rec:
        talk('bueno yon!')
        led = 1
        mot=0
        cad = str(led) + ","+ str(mot)
        serialArduino.write(cad.encode('ascii'))
    elif 'tapar puerta' in rec:
        talk('bueno yon!, jaja no te lo esperabas cierto')
        led = 1
        mot = 95
        cad = str(led) + ","+ str(mot)
        serialArduino.write(cad.encode('ascii'))
    elif 'deten el servicio' in rec:
        flag = 0
        talk("Saliendo...")
        talk("Vuelve a intentarlo, no reconozco: " + rec)
        cad = str(led) + ","+ str(mot)
        serialArduino.write(cad.encode('ascii'))
    return flag
while flag:
    flag = listen()
```


B. Apéndice :SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN (PYTHON-ARDUINO) PARA INVERNADEROS DOMESTICOS "LUCY"

```
/ * SISTEMA DE RIEGO AUTOMATIZADO CONTROLADO POR VOZ EN INVERNADERO * /
/ * Vejar J., Estudiante, UFPS * /
/ * Programa Ingeniería Electrónica, Universidad Francisco de Paula
Santander, II-2021 * /
#include < DHT . h >
#include < Wire . h >
#include < LiquidCrystal . h >
LiquidCrystal 1cd (7,6,5,4,3,2);
// Se colocaran tres sensores con el fin de obtener seis variables
// Definimos el pines digitales donde se conectara los sensores
#define HT1 A0 /// SENSOR 1 ////
#define HT2 A1 /// SENSOR 2 / ///
#define HT3 A2 /// SENSOR 3 ////
// Dependiendo del tipo de sensor
#define DHTTYPE DHT11 // DHT 11
// Inicializamos el sensor DHT11
DHT dhtl (HT1, DHTTYPE); // Indica el pin con el que trabajamos y el
DHT dht2 (HT2, DHTTYPE);
DHT dht3 (HT3, DHTTYPE);
/////// SENSOR 1 ///////
int ref = 30;
int refl = 40;
/////// SENSOR 2 ////// int ref2-30;
int ref2 = 30;
int ref3 = 40;
/////// SENSOR 3 ///////
int ref4 = 30;
int ref5 = 40;
String lineal = "HI:";
String linea2 = "T1:";
String linea3 = "H2:";
String linea4 = "T2:";
String linea5 = "H3:";
String linea6 = "T3:";
void setup () {
 // Inicializamos comunicación Lcd
 lcd . comenzar ( 20 , 4 );
 // Comenzamos los sensores DHT ////
 dhtl . comenzar ( ) ; // Iniciamos el sensor 1
 dht2 . comenzar ( ) ; // Iniciamos el sensor 2
 dht3 . comenzar ( ) ; // Iniciamos el sensor 2
```


}

```
/// Declaramos funciones de los pines ////
 pinMode ( A5 , SALIDA ) ; /// TEMPERATURA 1
 pinMode ( 13 , SALIDA ) ; /// HUMEDAD 1
 pinMode ( A4 , SALIDA ) ;
                              //// TEMPERATURA 2
 pinMode ( A3 , SALIDA ) ; /// HUMEDAD 2
 pinMode ( 12 , SALIDA ) ; /// TEMPERATURA 3
 pinMode ( 11 , SALIDA ) ; /// HUMEDAD 3
 /// Presentacion 1 //
 lcd . setCursor ( 0 , 0 );
 lcd . imprimir ( "\ n UFPS" );
 retraso ( 3000 ) ;
 lcd . claro ( );
 lcd . setCursor ( 0 , 0 );
 lcd . print ( "Nombre: Jhon Vejar \ n Codigo: 1161702 \ n" );
 retraso ( 3000 ) ;
 lcd . claro ( );
 /// Mensaje de bienvenida 1 //
 lcd . setCursor ( 0 , 0 );
 lcd . imprimir ("BIENVENIDOS SISTEMA DE RIEGO \ n" ) ;
 retraso ( 3000 ) ;
 lcd . claro ( );
 lcd . setCursor ( 0 , 0 );
 lcd . print ( "AUTOMATIZADO CONTROLADO POR \ n" ) ;
 retraso ( 3000 ) ;
 lcd . claro ( ) ;
 lcd . setCursor ( 0 , 0 );
 lcd . print ( "VOZ EN INVERNADEROS LUCY" ) ;
 retraso ( 3000 ) ;
 lcd . claro ( ) ;
void loop ( ) {
 // Esperamos 5 segundos entre medidas
 delay ( 5000 ) ;
 /////// SENSOR 1 ////////
 // Leemos la humedad relativa
 float h = dhtl . readHumidity ( );
 // Leemos la temperatura en grados centigrados (por defecto)
 float t = dhtl . readTemperature ( );
 // Leemos la temperatura en grados Fahreheit
 float f = dhtl . readTemperature ( verdadero ) ;
 // Comprobamos si ha habido algún error en la lectura
 if (isnan (h) || isnan (t) || isnan (f)) {
   lcd . println ( "Error al obtener los datos del sensor DHT11" ) ;
```


volver ; }

```
/////// SENSOR 2 ////////
 // Leemos la humedad relativa
 float h2 = dht2 . readHumidity ( );
 // Leemos la temperatura en grados centigrados (por defecto)
 float t2 = dht2 . readTemperature ( );
 // Leemos la temperatura en grados Fahreheit
 float f2 = dht2 . readTemperature ( verdadero ) ;
 /////// SENSOR 3 /////
 // Leemos la humedad relativa
 float h3 = dht3 . readHumidity ( );
 // Leemos la temperature en grad centigrados (por defecto)
 float t3 = dht3 . readTemperature ();
 // Leemos la temperatura en grados Fahreheit
 float f3 = dht3 . readTemperature ( verdadero ) ;
 // Comprobamos si ha habido algún error en la lectura
 if (isnan (h2) | isnan (t2) || isnan (2)) {
   lcd . println ( "Error al obtener los datos del sensor DHT11" ) ;
 volver;
lcd . setCursor ( 0 , 0 );
lcd . print ( lineal ) ;
lcd . imprimir (h);
lcd . imprimir ( "%" ) ;
lcd . setCursor ( 10 , 0 ) ;
lcd . imprimir ( linea2 ) ;
lcd . imprimir ( t );
lcd . impresión ( "C" ) ;
lcd . setCursor ( 0 , 1 );
lcd . imprimir ( linea3 );
lcd . imprimir ( h2 );
lcd . imprimir ( "%" );
lcd . setCursor ( 10 , 1 ) ;
lcd . imprimir ( linea4 ) ;
lcd . imprimir ( t2 );
lcd . impresión ( "C" ) ;
lcd . setCursor ( 0 , 2 );
lcd . imprimir ( linea5 );
lcd . imprimir ( h3 ) ;
lcd . println ( "%" ) ;
lcd . setCursor ( 10 , 2 );
lcd . imprimir ( linea6 );
lcd . imprimir (t3);
lcd . impresión ( "C" ) ;
```



```
retraso (2000);
/// SENSOR 1 ///
if ( t > ref ) {
 digitalWrite (A5, HIGH);
 lcd . setCursor ( 0 , 3 );
 lcd . print ( "Ventilador 1 ON" );
 retraso (1000);
 lcd . claro ( );
}
demás
 escritura digital ( A5 , BAJA ) ;
 lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "Ventilador 1 APAGADO" ) ;
 retraso ( 1000 ) ;
 lcd . claro ( );
/// SENSOR 1 ///
if ( h < refl )</pre>
 digitalWrite ( 13 , HIGH ) ;
 lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "BOMBA 1 ON" );
 retraso ( 1000 ) ;
 lcd . claro ( ) ;
}
else
 digitalWrite ( 13 , BAJO ) ;
 lcd . setCursor ( 0 , 3 ) ;
 lcd . imprimir ( "BOMBA 1 APAGADO" );
 retraso ( 1000 ) ;
 lcd . claro ( ) ;
}
/// SENSOR 2 ///
si ( t2 > ref2 ) {
 escritura digital ( A4 , ALTA ) ;
 lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "Ventilador 2 ENCENDIDO" ) ;
 retraso (1000);
 lcd . claro ( );
}
else
 digitalWrite ( A4 , LOW ) ;
```



```
lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "Ventilador 2 APAGADO" ) ;
 retraso (1000);
 lcd . claro ( );
}
si ( h2 < ref3 ) {</pre>
 escritura digital ( A3 , ALTA ) ;
 lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "BOMBA 2 ON" ) ;
 retraso ( 1000 ) ;
 lcd . claro ( ) ;
}
else
{
 digitalWrite (A3, LOW);
 lcd . setCursor ( 0 , 3 );
 lcd .imprimir ( "BOMBA 2 APAGADO" );
 lcd . claro ( );
 retraso (1000);
/// SENSOR 3 ///
si (t3 > ref4) {
 escritura digital ( 12 , ALTA ) ;
 lcd . setCursor ( 0 , 3 ) ;
 lcd . imprimir ( "FAN3 ON" ) ;
 retraso ( 1000 ) ;
 lcd . claro ( );
}
else
 digitalWrite ( 12 , LOW ) ;
 lcd . imprimir ( "Ventilador 3 APAGADO" );
 retraso ( 1000 ) ;
 lcd . claro ( );
}
si ( h3 < ref5 ) {</pre>
 escritura digital ( 11 , ALTA ) ;
 lcd . setCursor ( 0 , 3 ) ;
 lcd . imprimir ( "Ventilador 3 ENCENDIDO" ) ;
 retraso ( 1000 ) ;
 lcd . claro ( ) ;
}
demás
```



```
{
 digitalWrite ( 11 , BAJO ) ;
 lcd . setCursor ( 0 , 3 );
 lcd . imprimir ( "BOMBA 3 APAGADO" ) ;
  retraso ( 1000 ) ;
  lcd . claro ( ) ;
retraso ( 500 ) ;
}
```

C. APÉNDICE: ANIMACION EN BLENDER DE LUCY

Figura 7. Animacion en Blender de Lucy