812 Section # 9

TA: Sarah Bouchat

31 October 2014

Happy Halloween!

Mean and Variance of a Random Variable

Exercise 1 [Walpole et al. Ex 4.2] In a gambling game, a player tosses three fair coins. The player wins \$5 if all of the coins match (i.e. he gets three heads or three tails). If the three coins do not match, he has to pay \$3. What is his expected gain or loss? If X is the winnings, what is the variance of X?

Exercise 2 [Walpole et al. Ex 4.4] Assume that the number of cars X entering a carwash between 4 and 5 pm has the following probability distribution:

- a. What is the expected number of cars that will enter the car wash?
- b. What is the variance of X?
- c. Let's say the attendant is paid a commission based on the number of cars entering the car wash each hour. Specifically, he receives 2 dollars for every car that enters, but he has to pay 1 dollar to the manager (so he earns 2X - 1). What are his expected earnings over this time period?
- d. What is the variance of his payment?

Exercise 3 Two random variables X and Y are distributed with the following probability distribution:

	Y=1	Y=2	Y=3
X=2	1/12	1/3	1/6
X=4	$^{1}/_{12}$	0	1/12
X=8	$1/_{6}$	1/12	0

- a. What is E(X)?
- b. What is E(Y)?
- c. What is E(XY)?
- d. What is Var(X)?
- e. What is $E\left(\frac{Y}{X}\right)$? f. What is $E\left(X^2 + 3Y\right)$?
- g. Assume that X = 4Z 2. What is E(Z)?
- h. What is Cov[X, Y]?

Exercise 4 BONUS! [Casella and Berger 2.20] A couple decides to continue to have children until a daughter is born. Assume that the probability that a child is a girl is $\frac{1}{2}$. What is the expected number of children that the couple will have? (Hint: model this using the geometric distribution)

^{*}Many thanks to Emily Sellars for past years' section materials!*