Měření parametrů signálu při příjmu DAB/DAB+

1 Výsledky měření:

Vzhledem k tomu, že výsledný protokol obsahuje fotografie ze 2 laboratorních cvičení a jeho velikost překračuje 5MB. Přidávám odkaz na protokol ve verzi s fotkama, kterou si můžete stáhnout z mého github repozitáře zde: PDF final

Tento dokument je verzí bez fotografií!!!

Z níže naměřených hodnot je patrné, že s zlepšujícím se C/N se zlepšuje i SNR, což odpovídá teoretickým předpokladům. Zajímavé však je, pro nízké C/N (přibližně do C/N=15) nemá téměř žádný význam zvyšovat výkon vysílače, protože zlepšení SNR je minimální. Zvláštní však je, že pro určité hodnoty C/N, vyšlo naměřené SNR lepší pro výstupní výkon vysílače -50dBm než pro -20dBm. Tuto zvláštnost přisuzuji především nesprávnému odečtu SNR z ovládacího softwaru pro DAB radio, protože hodnoty SNR během měření nebyly stabilní. Ručně nakreslená spektra společně s podpisem jsou na konci tohoto dokumentu.

závislost SNR na C/N pro $P = -20, -50$ a -70 dBm								
C/N : P		-50 dBm	-20 dBm					
40	25,4	33,5	31,9					
35	25,8	31,4	31,8					
30	25,2	30,7	29,6					
25	24,4	27,5	26,4					
20	22,6	24,4	24,1					
17	20,5	21,4	21,3					
15	19,2	20,1	19,7					
12	16,6	17,1	17,2					
10	14,7	15,1	15,2					
5	10,2	10,4	10,4					
3	8,5	8,5	8,5					
0	6	6,1	6					

Následující změřené hodnoty odpovídají opět závislosti SNR na C/N. Nicméně tentokrát jsou všechny hodnoty změřeny pro výstupní výkon -50dBm a mění se vysílací módy (TM II, III a IV). Z naměřených hodnot vychází nejlepší SNR pro mód TM III. Nicméně i tomto měření bylo prováděno odečítání hodnot SNR s poměrně značnou chybou, protože hodnoty SNR nebyly stabilní.

Závislost SNR na C/N pro $TM = II$, III a IV							
CN : TM	I	II	III	IV			
40	33,5	32,2	32,4	32,2			
35	31,4	31,2	32,5	29,7			
30	30,7	30,5	30,6	28,6			
25	27,5	27,5	28,2	26,4			
20	24,4	24,4	24,4	23,5			
17	21,4	22	21,8	21,4			
15	20,1	19,8	20,1	20			
12	17,1	16,9	17,4	16,8			
10	15,1	15,2	15	15,2			
5	10,4	10,4	10,9	10,2			
3	8,5	8,5	8,2	8,8			
0	6,1	6,1	6,1	5,8			

Poslední měření se zabývá vlivem únikových kanálů (RA6,RA12, TU6 a TU12) na výsledné SNR. Únikové kanály RA simulují pohyb přijímače ve venkovské oblasti rychlostí $100~\rm km/h$. TU pak pohyb přijímače v městských oblastech rychlostí $50~\rm km/h$. Vzhledem k tomu, že při tomto měření SNR probíhalo odečítání SNR hodnot pomocí aproximace od oka.. Z důvodu rozkmitu SNR řádově $\pm 10 \rm dB$ jsou výsledky k dalšímu komentáři značně spekulativní. Pokud však budeme výsledkům věřit, lze usoudit, že vysílaní DAB je odolnější proti únikovému kanálu TU.

Závislost SNR na C/N pro únikové kanály									
CN: FADE	RA 4	RA 6	TU 6	TU 12					
40	21,8	32,7	29,1	27,7					
35	19,7	29,1	25,5	26,4					
30	15,5	28,1	26,4	26,2					
25	13,5	20	24,7	24,6					
20	12,6	14,3	21,7	21,5					
17	10,2	14,1	19,2	19					
15	11	15	17,3	17					
10	8,4	10,6	13,7	14,9					
5	5,5	7	9,8	11,3					
0	2,7	3,5	4,8	5,4					

2 Přijaté DAB vysílání:

Celkově bylo přijato 17 DAB vysílání. Následující obrázky zachycují seznam přijatých stanic a servisní informace pro vybrané DAB vysílání.

Pribliziné spektrum vssilaného DAB signeth Pout=-50 dBm CN= 30dB

SPEKTRUM S ULIKOUSM KANA'LEM (JE TO POUZE NA'ERT Lo nemi éphi smost - michte realisount TU a RA Méditous'

Podpis: FILIP PAUL

B-/

Komprimace MPEG-2 a zabezpečení videosignálu FEC

1 Porovnání výsledků měření:

Bohužel jsem si neuložil výsledky chybovosti BER pro všechna měření (jak je napsáno v návodu). Samotný BER by asi bylo možno získat porovnáváním vstupního souboru .m2v s výstupním souborem .m2v. Do tohoto kroku jsem se však nepouštěl a výsledné hodnocení je tak vztaženo k subjektivnímu vjemu výsledné kvality obrazu po dekódování.

Porovnávané výstupy jsou vztaženy k modelu kanálu tvořeného dolní propustí FIR filtru s parametry:

• Mezní kmitočet: 0.45

Řád filtru: 31

• Váhovací posloupnost: Hammingovo okno

Parametry filtru byly voleny metodou "pokus omyl" tak, aby se pro každé kódování nacházely ve výsledném dekódovaném videu alespoň nějaké artefakty. Následující obrázky jsou screenshoty z dekódovaných videí. Zcela jednoznačně lze říci, že nejhorší kvalitu má kódování DVB-C, kde je obraz pro zvolený filtr už téměř nerozpoznatelný v celé délce videa. Toto kódování má však nejnižší redundanci a generovaný soubor ".fec" má poloviční velikost oproti DVB-S a DVB-T. Kódování DVB-T a DVB-S jsou z hlediska kvality obrazu velmi podobná. Zde mohou být mírně zavádějící screenshoty obou kódování, kde je pro DVB-S patrný artefakt v obrazu zatímco DVB-T je zcela bez artefaktů. Nicméně to platí pouze pro daný okamžik videa.

DVB-T a DVB-S kódování však mají větší redundanci oproti DVB-C a s tím související vyšší náročnost na kódování/dekódování.

Figure 1: DVB-C

Figure 2: DVB-T

Figure 3: DVB-S

Podpis je přiložen v protokolu z laboratorní úlohy č.6.