Questions	Réponses
1. Une expression développée est	$\square (x-1)(x+2),$
	$\square x^2 + x - 2,$
	$\Box x(x-1)+2x-2.$
2. Le développement de $(a+b)^2$ est	$\Box a^2 + b^2$,
	$\Box a^2 + ab + b^2,$
	$\Box a^2 + 2ab + b^2.$
3. Le développement de $(a-b)^2$ est	$\Box a^2-b^2$,
	$\Box a^2 + 2ab - b^2,$
	$\Box a^2 - 2ab + b^2.$
4. Le développement de $(a-b)(a+b)$ est	$\Box a^2-b^2$,
	$\Box a^2 + b^2$,
	$\Box a^2 - 2ab + b^2.$
5. Une expression factorisée est	$\Box (x-2)^2 + (x-2)(x-1),$
	$\square (x-2)(2x-3),$
	$\square 2x^2 - 7x + 6.$
6. A = $(x-1)(x+2) - 5(x-1)$	☐ l'expression A peut être factorisée avec un facteur commun évident,
	☐ l'expression A peut être factorisée avec une identité remarquable,
	☐ l'expression A ne peut pas être factorisée.
7. $A = 9x^2 - 2x + \frac{1}{9}$	☐ l'expression A peut être factorisée avec un facteur commun évident,
	☐ l'expression A peut être factorisée avec une identité remarquable,
	☐ l'expression A ne peut pas être factorisée.

Questions	Réponses
1. Pour résoudre l'équation $1 - 3x = 8x + 5$,	$\Box -11x = -4,$
on peut se ramener à la résolution de l'équation	$\Box 11x = -4,$
	$\Box 5x = 6.$
2. Pour résoudre l'équation $(2x-1)(2-3x) = 0,$	
	□ on résout chacune des équations $2x-1=0$ et $2-3x=0$,
	\Box on divise chaque membre de l'équation par $2-3x$.
3. Si $b > c$, alors	□ on ne peut pas comparer $-2b$ et $-2c$,
	$\Box -2b > -2c,$
	$\Box -2b < -2c.$
4. Les solutions de l'inéquation $-2x \ge 4$ sont	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5. Les solutions de l'inéquation $-3x \ge 0$, sont les nombres	$\Box x \ge 0,$
	$\square x \ge 3$,
	$\Box x \leq 0.$
6. Pour résoudre l'équation $2-5x > -2x+1$, on peut se	\Box 1>-7x,
ramener à la résolution de l'équation	\Box $-3x < 1$,
	\Box 3x < 1.
7. « Julie a 15 ans et son père a 42 ans. Dans combien d'années	□ préciser l'inconnue choisie,
l'âge de son père sera égal au double de l'âge de Julie? » Pour résoudre ce problème, il faut commencer par	□ écrire une équation,
	□ résoudre une équation.

Questions	Réponses
1. On ne peut calculer la racine carrée d'un nombre réel a que si \dots	\Box a est un nombre entier,
	$\Box a \geqslant 0,$
	$\Box a \leq 0,$
2. Si a désigne un nombre réel positif, alors \sqrt{a} désigne	\Box le nombre positif dont le carré est a ,
	\Box la moitié de a ,
	\Box le carré de a .
3. Si a désigne un nombre positif, alors $\sqrt{a^2}$ est égal à	$\Box \frac{1}{2}a$,
	\Box a ,
	$\Box \frac{1}{2}a^2$.
4. L'équation $x^2 = 5$	□ n'a pas de solution,
	□ a une seule solution,
	□ a deux solutions opposées.
5. L'équation $2x^2 + 3 = 0$	□ n'a pas de solution,
	□ a une seule solution,
	□ a deux solutions opposées.
6. $\sqrt{2} \times \sqrt{3}$ est égal à	\Box $\sqrt{5}$,
	\Box $\sqrt{6}$,
	□ 6.
7. $\sqrt{\frac{5}{3}}$ est égal à	$\Box \frac{\sqrt{5}}{\sqrt{3}},$ $\Box \frac{\sqrt{5}}{3},$
	\Box $\sqrt{2}$.
8. $\frac{2}{\sqrt{2}}$ est égal à	\square $\sqrt{2}$,
, · ·	$\square 2\sqrt{2}$,
	$\Box \frac{\sqrt{2}}{2}.$
9. $\sqrt{72}$ peut s'écrire	\Box 36 $\sqrt{2}$,
	$\Box 2\sqrt{6}$,
	\Box 6 $\sqrt{2}$,
10. $3\sqrt{20} - \sqrt{45}\sqrt{5}$ peut s'écrire sous la forme	$\Box \ a\sqrt{3}$ avec <i>a</i> nombre entier,
	$\Box \ a\sqrt{5}$ avec <i>a</i> nombre entier,
	$\Box \ a\sqrt{2} + b\sqrt{5}$ avec a et b nombres entiers.

Questions	Réponses
1. $(\sqrt{2})^2$ est un nombre	□ entier,
	□ décimal non entier,
	□ irrationnel.
2. $\frac{3}{4}$ est un nombre	□ entier,
4	□ décimal non entier,
	□ irrationnel.
3. $\frac{7}{3}$ est un nombre	□ entier,
3	□ décimal non entier,
	□ irrationnel.
4. $(1+\sqrt{2})^2$, est un nombre	□ entier,
	□ décimal non entier,
	□ irrationnel.
5. 36 admet	□ six diviseurs,
	□ neuf diviseurs,
	□ douze diviseurs.
6. Le PGCD de 24 et 36 est	□ 4,
	□ 12,
	□ 24.
7. L'algorithme d'EUCLIDE permet de calculer	□ le plus petit diviseur commun à deux nombres,
	\square le reste de la division euclidienne de deux nombres,
	☐ le PGCD de deux nombres.
8. Deux nombres premiers entre eux	□ n'ont aucun diviseur commun,
	□ admettent 1 pour seul diviseur commun,
	□ sont deux nombres dont l'un est multiple de l'autre.
9. Une fraction irréductible est	$\Box \frac{45}{21},$
	21 4220
	$\Box \frac{4220}{542},$
	<u> 17</u>
	$\Box \frac{1}{14}$.
10. Pour rendre irréductible une fraction	□ on soustrait le dénominateur au numérateur,
	□ on divise numérateur et dénominateur par leur PGCD,
	□ on divise numérateur et dénominateur
	par un nombre quelconque, autre que 0.

Questions	Réponses
1. Pour calculer l'image d'un nombre x par la fonction linéaire de	\Box on additionne 4 à x ,
coefficient directeur égal à 4	\Box on divise x par 4,
	\Box on multiplie x par 4.
2. Si f est une fonction linéaire,	\Box l'image de 2 par f est $\frac{5}{4}$,
alors l'écriture $f(2) = \frac{5}{4}$ signifie	\square l'image de $\frac{5}{4}$ par f est 2,
	\Box f multipliée par 2 est égal à $\frac{5}{4}$.
3. Les prix augmentent de 2,5%. Si x désigne le prix initial et $f(x)$ le	□ n'est pas une fonction linéaire,
prix après l'augmentation, alors $f\dots$	\Box est la fonction linéaire de coefficient $\frac{2,5}{100}$,
	□ est la fonction linéaire de coefficient 1,025.
4. On note $V(x)$ le volume d'un cylindre de rayon x et de hauteur 2 cm. La fonction V	□ n'est pas une fonction linéaire,
	□ est la fonction linéaire de coefficient directeur 4,
	\square est la fonction linéaire de coefficient directeur 4π .
5. Dans un repère, la représentation graphique d'une fonction	□ est une droite quelconque,
linéaire	□ est une droite qui passe par l'origine du repère,
	□ est un segment de droite.
6. Dans un repère, la représentation graphique de la fonction	\square (1; a),
linéaire de coefficient directeur <i>a</i> passe le point de coordonnées	\square (a;1),
	\Box (a; a).
7. Cette droite représente une fonction	$\Box a > 0$,
linéaire de coefficient	$ \Box a = 0, $ $ \Box a < 0. $
8. Par la fonction ci-dessus, l'image de -2	□ se lit sur l'axe des abscisses,
	□ se lit sur l'axe des ordonnées,
	□ ne peut pas se lire.
9. On dessine un rectangle ABCD en diminuant de 20% la longueur	□ 0,2,
de chaque côté.	□ 0,8,
Le dessin obtenu est une réduction de ABCD dans un rapport	□ 1,2.
$\sqrt{3}$	\square multipliée par $\sqrt{3}$,
10. On agrandit un prisme droit dans le rapport $\frac{\sqrt{3}}{1}$.	□ multipliée par 3,
Son aire latérale est alors	☐ divisée par 3.
1	1
11. On réduit un cylindre dans le rapport $\frac{1}{4}$.	$\Box \overline{4}$,
Son volume est alors multiplié par	$\square \frac{1}{16}$
	$\Box \frac{1}{64}.$
12. Le débit d'un fleuve est de 24 000 m ³ .	\Box en m ³ ×min,
Ce débit est exprimé	□ en m³/min,
	\Box en min/m ³ .

Questions	Réponses
1. $f(x)$ est l'image d'un nombre x par une fonction affine, lorsque	$\Box f(x) = ax^2 + b,$
	$\Box f(x) = ax + b,$
	$\Box f(x) = a\frac{a}{x} + b.$
2. Si f est la fonction affine $x \mapsto -2x + 1$.	$\Box \frac{1}{4}$,
Alors, l'image de $\frac{1}{2}$ est	4
2	□ 5, □ 0.
3. Dans un repère, la droite représentant la fonction affine	□ passe par l'origine du repère et le point A(1; −2),
$x \mapsto -2x + 1$	
	\square passe par les deux points B(0;1) et C(-1;3),
	\square passe par les deux points A(1; -2) et B(0; 1).
4.	☐ Aucune fonction linéaire n'est une fonction affine.☐ Certaines fonctions linéaires sont des fonctions
	affines,
	☐ Toute fonction linéaire est une fonction affine.
5. Dans un repère, la droite de coefficient directeur -1 et d'ordonnée	$\square y = -x + 5,$
à l'origine 5 a pour équation	$\square y = 5x - 1,$
	$\square y = x - 5.$
6. Une droite de coefficient directeur -1 est tracée sur la figure	
7. Soit f la fonction affine $x \mapsto 3x - 1$.	□ augmente de 2,
Lorsque x augmente de 2, $f(x)$	□ augmente de 6,
	□ diminue de 6.
8. Soit f la fonction affine $x \mapsto 2x + 5$.	□ augmente de 2,
Lorsque x augmente de 3, $f(x)$	□ augmente de 6,
	□ diminue de 6.
9. Soit f une fonction affine.	□ -3,
On sait que $f(3) = 4$ et $f(1) = 10$. Le coefficient directeur de la droite représentant f dans le repère	□ 3,
est	$\Box -\frac{1}{3}$.
	3

Questions	Réponses
1. Le système $\begin{cases} x+y=5\\ 2x+3y=16 \end{cases}$	□ (6;−1)
$\begin{cases} 2x + 3y = 16 \\ \text{admet pour solution le couple} \end{cases}$	□ (1;−6)
	□ (-1;6)
2. (E) désigne le système $\begin{cases} 2x + y = 1 \\ x - y = 2 \end{cases}$	$\square \left\{ \begin{array}{l} y = 1 - 2x \\ x - 1 - 2x = 2 \end{array} \right.$
Pour résoudre (E), on exprime y en fonction de x à l'aide de la 1 ^{re} équation et on remplace y par cette expression	$\square \begin{cases} y = 1 - 2x \\ x - (1 - 2x) = 2 \end{cases}$
dans la 2 ^e équation. On obtient les deux équations	$\square \left\{ \begin{array}{l} y = 2x - 1 \\ x - (2x - 1) = 2 \end{array} \right.$
3. Pour lire graphiquement la solution du système $(-x+y=5)$	$y = x + 5$ et $y = \frac{1}{2} - \frac{1}{2}x$
$\begin{cases} -x + y = 5 \\ x + 2y = 1 \end{cases}$ on trace dans un repère les droites d'équations	$y = -x - 5$ et $y = \frac{x}{2} - \frac{1}{2}$
	$\Box y = x + 5 \qquad \text{et} y = -2x + 2$
4. Pour lire graphiquement la solution du système $\int -x + y = 5$	□ les abscisses des points d'intersection de (d) et (d') avec l'axe des abscisses,
$\begin{cases} -x + y = 5 \\ x + 2y = 1 \end{cases}$ on trace deux droites (d) et (d') dans un repère.	□ les ordonnées des points d'intersection de (d) et (d') avec l'axe des ordonnées,
La solution est donnée par	□ les coordonnées du point d'intersection de (d) et (d') .
5. Une personne dispose de 6€; elle peut dépenser cette somme soit en achetant 10 croissants et un cake soit en	$\square \begin{cases} 10x + 4y = 6 \\ x + 2y = 6 \end{cases}$
achetant 4 croissants et 2 cakes. Pour calculer le prix d'un croissant et celui d'un cake, on	$\Box \begin{cases} 10x + y = 6 \\ 4x + 2y = 6 \end{cases}$
peut résoudre le système	$\Box \begin{cases} 10x + 2y = 6 \\ x + 4y = 6 \end{cases}$

Questions	Réponses
1. Dans une classe, 12 élèves étudient l'anglais et 13 n'étudient pas l'anglais. La fréquence des élèves de cette classe qui étudient l'anglais est	$ \begin{array}{c} \frac{12}{13}, \\ \frac{25}{12}, \\ \frac{12}{25}, \end{array} $
2. Voici les résultats à un devoir de mathématiques dans une classe de 3^e . $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \Box \frac{5 \times 8 + 6 \times 10 + 12 \times 12 + 2 \times 15}{5 + 6 + 12 + 2}, $ $ \Box \frac{5 \times 8 + 6 \times 10 + 12 \times 12 + 2 \times 15}{8 + 10 + 12 + 15}, $ $ \Box \frac{5 + 6 + 12 + 2}{5 \times 8 + 6 \times 10 + 12 \times 12 + 2 \times 15}. $
3. La médiane de la série 2 – 4 – 5 – 5 – 7 – 11 est	□ 5, □ 7, □ 8.
4. La médiane de la série 2 – 4 – 5 – 7 – 8 – 10 – 18 est	□ 4, □ 5, □ 7.
5. La médiane de la série 2 – 4 – 5 – 6 – 7 – 8 est	□ 4, □ 6, □ 5,5.
6. Voici la répartition des âges des élèves d'une classe de 3^e .	 □ On peut connaître l'âge médian et l'âge moyen, □ On peut connaître l'âge médian mais pas l'âge moyen, □ On ne peut connaître ni l'âge médian ni l'âge moyen.
7. L'étendue d'une série statistique est	□ la plus grande valeur du caractère, □ la plus petite valeur du caractère, □ la différence entre la plus grande et la plus petite des valeurs du caractère.

Questions	Réponses
1. Soit ABC un triangle rectangle en C. Alors $\cos \widehat{B}$ est égal à	$\Box \frac{AC}{AB}$
	AB
	$\Box \frac{BC}{BC}$
	AB NP
2. MNP est un triangle rectangle en P. $\sin \widehat{M}$ est égal à	$\Box \frac{Nr}{MN}$
	MN
	$\Box \frac{MN}{MP}$
	\Box MP
	MN
3. EFG est un triangle rectangle en F. $\tan \widehat{G}$ est égal à	$\Box \frac{\mathrm{FG}}{\mathrm{EF}}$
	EF
	□ □ EG
	_ EF
	FG
4. M est le point du quart de cercle ci-contre de centre l'origine du repère et	□ (sin(30°); cos(30°))
de rayon 1. Les coordonnées de M sont	$\Box \left(\cos(30^{\circ}); \sin(30^{\circ})\right)$
	□ (sin(30°); tan(30°))
5. L'arrondi au degré de la mesure de l'angle aigu \widehat{A} tel que $\tan(\widehat{A}) = 0,6$	□ 31°
est	□ 37°
	□ 53°
6. Dans la situation ci-contre, pour calculer	$\square \cos(\widehat{C})$
AB, on utilise	$\Box \sin(\hat{C})$
n.	\Box tan(\hat{C})
7. Dans la situation ci-contre, pour calculer	$\Box \cos(\widehat{B})$
AC, on utilise	\square $\sin(\widehat{B})$
	□ tan(B̂)
8. Quel que soit l'angle aigu de mesure x ,	\Box dépend de x
la valeur de $\cos^2 x + \sin^2 x$	□ est toujours égale à 1
	□ est toujours égale à 2
9. Quel que soit l'angle aigu de mesure x ,	$\Box (\sin x)(\cos x)$
la valeur de $\tan x$ est égale à	$\Box \frac{\cos x}{\cos x}$
	$\sin x$
	$\Box \frac{\sin x}{}$
	$\cos x$

Questions	Réponses
1. Dans la situation ci-contre, pour calculer AC, on utilise 5 N	$\Box \cos(\widehat{\mathbf{B}})$
$A \sim 2 M \qquad A \sim B$	\square $sin(\widehat{B})$ \square $tan(\widehat{B})$
2. Dans la situation ci-contre, le théorème de THALÈS permet	$\Box \frac{OA}{OB} = \frac{OD}{OC} = \frac{AB}{CD}$
d'écrire	$\Box \frac{OA}{OC} = \frac{OB}{OD} = \frac{AB}{CD}$
D	$\Box \frac{OA}{OD} = \frac{OB}{OC} = \frac{AB}{CD}$
3. Avec les données de la figure à main levée ci-contre, on peut affirmer que la	□ 3,3
longueur de FM est égale à N A M 2 (FM)//(EN)	$\Box \frac{10}{3}$
E E	□ 4
4. ABC est un triangle tel que AB = 3cm et AC = 4cm. M est un point de (AB) et N, un point de (AC), tel que : AM = 1,5cm et	☐ A,M,B et A,N,C sont dans cet ordre,
AN = 2cm Pour pouvoir en déduire que : (MN) // (BC), il faut savoir aussi que	\Box A, M, B et A, C, N sont dans cet ordre,
Tour pouvoir en deduite que : (MIV) // (DO), il faut savoir aussi que	\Box A, N, B et A, M, C sont dans cet ordre.
5. Avec les données ci-contre A 4 B 1 M	□ on calcule BC avec le théorème de Pytha-
3	GORE,
C	□ on calcule BC avec le théorème de THALÈS,
	□ on ne peut pas calculer BC

Questions	Réponses
1. Soit M est un point de la sphère de centre A et de rayon 5cm. Alors	□ AM < 5,
	□ AM = 5,
	□ AM > 5.
2. Soit P est un point de la boule de centre A et de rayon 5cm. Donc	\square AP \leq 5,
	\square AP > 5,
	□ AP ≤ 10.
3. L'aire de la surface d'une sphère de rayon R est	$\Box \frac{4}{3}\pi R^3,$
	$\Box \frac{4}{3}\pi R^2,$
	$\Box 4\pi R^2$.
4. Le volume de la boule de rayon R est	$\square \frac{4}{3}\pi R^3$,
	$\Box \frac{1}{3}\pi R^3,$
	$\Box \frac{4}{3}\pi R^2.$
5. Un plan coupe une sphère selon	□ un carré,
	□ un cercle ou un ovale,
	□ un cercle ou un point.
6. Un plan coupe une sphère de centre O selon un cercle ${\mathscr C}$ de centre I et de	□ isocèle en O,
M est un point de \mathscr{C} . Alors, le triangle OIM est	□ rectangle en O,
	□ rectangle en I.
7. La section d'un parallélépipède rectangle par un plan parallèle à une face	□ un triangle,
est	□ un rectangle,
	□ un hexagone.
8. La section d'un parallélépipède rectangle par un plan parallèle à une	□ un triangle,
arête est	□ un rectangle,
	□ un hexagone.
9. La section d'un cylindre de révolution par un plan parallèle à sa base	un rectangle,
est	□ un ovale
	□ un cercle.
10. La section d'un cylindre de révolution par un plan parallèle à son axe	□ un rectangle,
est	□ un triangle,
	□ un hexagone.
11. La section d'une pyramide à base triangulaire par un plan parallèle à sa	□ un rectangle,
base est	□ un triangle,
	□ un hexagone.
12. Un cône de révolution est coupé par un plan parallèle à la base. Ce plan	□ deux cônes,
partage le cône en	un cône réduit et un tronc de cône,
	□ un cône et une pyramide.
13. Une pyramide à base carrée de hauteur 8 cm est coupée par un plan	□ 2,25 cm,
situé à 3 cm du sommet de la pyramide et parallèle à sa base.	
La section a un côté de 6 cm. Le côté de la base de la pyramide est de	□ 11 cm,
20 000 do la base do la pjianido coi do	□ 16 cm.

Questions	Réponses
	· K
	→B C
1. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux sur la figure	
	D D
	A C
	B
	C A
	C
	□ → D
2. Si $\overrightarrow{AM} = \overrightarrow{EK}$, alors	☐ AMEK est parallèlogramme,
	☐ AMKE est parallèlogramme,
	☐ KEMA est parallèlogramme.
3. Si MNPQ est un parallélogramme, alors	$\square \overrightarrow{MP} = \overrightarrow{NQ},$
	\square $\overrightarrow{MN} = \overrightarrow{PQ}$,
	$\square \overrightarrow{MQ} = \overrightarrow{NP}$.
4. Si N est le symétrique de M par rapport à A, alors	$\square \overrightarrow{AM} = \overrightarrow{AN},$
i orri escre symetrique de mi par rapport arri, alorsim	$\square \overrightarrow{MA} = \overrightarrow{AN},$
	$\overrightarrow{MA} = \overrightarrow{NA},$ $\overrightarrow{MA} = \overrightarrow{NA},$
F. Donald Construction of Letter 21 and LADI 21 and Construction	
5. Pour démontrer que I st le milieu de [AB], il suffit de démontrer que	□ AI = IB
	$\Box AB = \frac{1}{2}AB$
	$\square \overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$
6. D'après la relation de CHASLES	$\square \overrightarrow{MN} - \overrightarrow{NA} = \overrightarrow{MA},$
	$\square \overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{MN},$
	$\square \overrightarrow{MN} - \overrightarrow{AN} = \overrightarrow{MA}.$
7. ABCD est un parallélogramme. Donc	$\square \overrightarrow{BA} - \overrightarrow{BD} = \overrightarrow{BC},$
	$\square \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BD},$
	$\Box \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{BC},$ $\Box \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{AC}.$
	\square AB - AD = AC.
8. Sur la figure ci-dessus, ABCD est un carré de centre I.	□ BI,
\overrightarrow{CD} – \overrightarrow{IA} n'est pas égal à	
$^{\mathrm{D}}$	\square \overrightarrow{IC} ,
	П IC,
$_{\mathrm{A}}$	□ I D.

Questions	Réponses
1. Le vecteur représenté ci-dessous a pour coordonnées	□ (4;7)
	□ (−4;−7)
	□ (4; -7)
2. Dans un repère, les vecteurs \vec{u} et \vec{v} ont pour coordonnées respectives	$\Box a = b \text{ et } c = d$
$\begin{pmatrix} a \\ b \end{pmatrix}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$.	$\Box a = d \text{ et } b = c$
Si $\overrightarrow{u} = \overrightarrow{v}$, alors	$\Box a = c \text{ et } b = d$
3. Dans un repère, on considère les points $A(2; -3)$ et $B(-1; 4)$.	$ \Box x = 2 - (-1) \text{ et } y = -3 - 4 $
Les coordonnées $(x; y)$ du vecteur \overrightarrow{AB} sont alors	x = -1 - 2 et $y = 4 - (-3)$
	$ \Box x = 4 - 2 \text{ et } y = -1 - (-3) $
4. Dans un repère, on considère les points A(2; -3) et B(-1 ; 4). Les coordonnées (x_I ; y_I) du milieu I de [AB] sont alors	$\Box x_{\rm I} = \frac{2 + (-1)}{2} \text{ et } y_{\rm I} = \frac{-3 + 4}{2}$
	$\Box x_{\rm I} = \frac{2 - (-1)}{2} \text{ et } y_{\rm I} = \frac{-3 - 4}{2}$
	$\Box x_{\rm I} = 2 + (-1) \text{ et } y_{\rm I} = -3 + 4$
5. Dans un repère, on considère les points A(2; -3) et B(-1; 4). La distance AB est alors	$\Box (2-(-1))^2+(-3-4)^2$
	\Box (2 - (-1)) + (-3 - 4)
	$\Box \sqrt{((-1)-2)^2+(4-(-3))^2}$

Questions	Réponses
1. ABC est le triangle équilatéral ci-dessous. C A B	☐ A ne peut pas avoir pour image C par une rotation de centre B
	☐ A a pour image C par une rotation de centre B et d'angle 60° dans le sens contraire à celui des aiguilles d'une montre
	☐ A a pour image C par une rotation de centre B et d'angle 60° dans le sens des aiguilles d'une montre
2. Soit un point P et ABC un triangle tel que : $AB = 5$ cm, $AC = 3$ cm et $\widehat{BAC} = 30^{\circ}$. A', B', C' sont les images respectives de A, B, C par une rotation d'angle de 80° de centre P. Alors	\Box A'B' = 5 cm. A'C' = 3 cm et $\widehat{B'A'C'}$ = 110°,
	\Box A'B' = 10 cm. A'C' = 6 cm et $\widehat{B'A'C'}$ = 50°,
	□ A'B' = 5 cm. A'C' = 3 cm et $\widehat{B'A'C'}$ = 30°.
3. Pour construire l'image d'un segment [AB] par une rotation, il suffit de construire	□ les images de deux points quelconque de AB,
	□ le images de A et B,
	□ l'image du milieu de [AB].
4. A, B, M, N, C sont les points du cercle ci-dessous de centre O. Alors un autre angle que l'angle \widehat{BAC} de mesure 30° est	□ ĈMÑ,
B N N	□ BOC,
	□ BMC.
5. Sur la figure ci-dessus, l'angle \widehat{BOC}	□ 15°,
	□ 30°,
	□ 60°.
6. Un décagone régulier est inscrit dans un cercle de centre O. On passe d'un sommet au sommet suivant par une rotation de centre O est d'angle	□ 36°,
	□ 72°,
	□ 108°.
7. A,B,C sont trois sommets consécutifs d'un pentagone régulier. La mesure de l'angle \widehat{ABC} est	□ 54°,
	□ 72°,
	□ 108°.
8. Un hexagone régulier est inscrit dans un cercle de rayon 5 cm. Son côté mesure en cm	□ 5,
	□ cos 30°,
	□ 5sin60°.