Descriptive Statistics (Numerical Data)

Sumanta Basu

Reading

Textbook section 1.6

Numerical Variables

Recall: Types of Variables

Numerical Variables

Numerical variables

- vary in magnitude; has units of measure
- "on number line"; add/subtract makes sense
- continuous (e.g., height)
- discrete (e.g., number of...)

As opposed to Categorical

- vary in "level", no units of measure
- nominal (e.g., favorite food)
- ordinal (e.g., highest degree attained)

Recall: summarizing categorical data

Summarize categorical data

frequencies (counts), proportions

Visualize categorical data

barplots (of counts or proportions)

Question: Can we use these ideas to summarize and visualize numerical data as well?

The Titanic

Goal: describe survival patterns for the passengers

The data: - ~1300 passengers

- · variables:
- · age (in years)
- sex (male/female)
- class (first, second, third)
- survived (yes/no)

The raw data

Open titanic.txt.

Loading into R

```
dat <- read.table("titanic.txt", header=TRUE)
head(dat, n=3)</pre>
```

##		Name	PClass	Age	Sex	Survived
##	1	Allen, Miss Elisabeth Walton	1st	29	female	1
##	2	Allison, Miss Helen Loraine	1st	2	female	0
##	3	Allison, Mr Hudson Joshua Creighton	1st	30	male	0

Frequency Distribution

Recall: main idea of summarizing variables

· List number of distinct levels (e.g. PClass 1st, 2nd, 3rd), calculate their frequencies in data

```
##
## 1st 2nd 3rd
## 322 280 711
```

Same concept can be used to summarize **discrete** numerical variables (e.g. number of days in a week a student checks his facebook account)

```
set.seed(1) # set seed to ensure reproducibility
days = sample(1:7, 150, replace = TRUE) # simulate data on 150 students
table(days)

## days
## 1 2 3 4 5 6 7
## 16 22 20 25 25 22 20
```

Visualizing Frequency Distributions

> barplot is for categorical variables, levels may not have numerical meaning

histogram is for numerical/quantitative variables, plot values on real line in the x-axis

How do we look at the ages?

There are too many to list...

```
library(doBy)
library(openintro); data(COL); twocolors=COL[1:2,1]

dat$Age[1:50] # a look at first 50

## [1] 29.00 2.00 30.00 25.00 0.92 47.00 63.00 39.00 58.00 71.00 47.00 ## [12] 19.00 NA NA NA 50.00 24.00 36.00 37.00 47.00 26.00 25.00 ## [23] 25.00 19.00 28.00 45.00 39.00 30.00 58.00 NA 45.00 22.00 NA ## [34] 41.00 48.00 NA 44.00 59.00 60.00 45.00 NA 53.00 58.00 36.00 ## [45] 33.00 NA NA 36.00 36.00 14.00
```

NA: missing values

Histograms

hist(dat\$Age)

Histograms

- divide up variable into "bins"
- height shows how many people fall in each bin
- summarizes "shape" of distribution

Effect of bin size

hist(dat\$Age, breaks=10)

hist(dat\$Age, breaks=50)

Question: can you separate sub-populations of children and adults?

Frequency versus density

hist(dat\$Age, freq = TRUE)

hist(dat\$Age, freq = FALSE)

freq = TRUE: heights of bars
correspond to counts

freq = FALSE: area of a bar
correspond to proportion

- total area of all bars will be 1
- height of a single bar (density) can be > 1

Histograms for Exploratory Data Analysis

Old Faithful Geyser (Yellowstone, 1948)

Old Faithful Waiting Times

head(faithful)

```
## eruptions waiting
## 1 3.600 79
## 2 1.800 54
## 3 3.333 74
## 4 2.283 62
## 5 4.533 85
## 6 2.883 55
```

mean(faithful\$waiting)

```
## [1] 70.89706
```

Old Faithful Waiting Times

Histogram shows a bimodal distribution – two subgroups of events?

hist(faithful\$waiting, breaks=50)

Histogram of faithful\$waiting

Old Faithful Waiting Times

Bimodal Distribution related to length of eruption?

```
# Mean eruption length for shorter waiting times
mean(faithful$eruptions[faithful$waiting < 70])</pre>
```

[1] 2.134951

```
# Mean eruption length for longer waiting time
mean(faithful$eruptions[faithful$waiting > 70])
```

[1] 4.319255

Old Faithful Eruption Lengths

Distribution of Eruption Lengths – bimodal? multimodal?

```
par(mfrow=c(1,2))
hist(faithful$eruption[faithful$waiting < 70], breaks=25)
hist(faithful$eruption[faithful$waiting > 70], breaks=25)
```

ogram of faithful\$eruption[faithful\$waitiogram of faithful\$eruption[faithful\$waiti

No

What do we look for in a histogram?

Clustering: (number of modes)

No bumps: "uniform"

· 1 bump: "unimodal"

· 2 bumps: "bimodal"

Center: where is the "middle"?

Spread: how much variability is there?

Skewness: lack of symmetry (e.g., one "tail" longer than the other)

Outliers: extreme values that stand out?

Qn: How do we objectively measure the above five?

Summarizing continuous variables

Overview

- Goal: reduce data to a few "talking points"
- For categorical variables counts/frequencies
- For numerical variables more options
- Can be at population level or sample level

A **statistic** is a numerical summary computed from a sample of data.

Measuring Center

Measures of central tendency

Multiple notions of *center*:

Mean - average value

Median - "midpoint" of the data when ordered from smallest to largest

Mode - most common value(s)

Modes can be used to detect number of sub-populations as well

Other measures:

- quartiles
- quantiles / percentiles

Sample mean (in R)

```
x=c(2,1,2,8,2)
sum(x) / length(x)
## [1] 3
mean(x)
## [1] 3
mean(dat$Age, na.rm=TRUE) # calculate mean after removing missing values
## [1] 30.39799
mean(dat$Age)
## [1] NA
```

Sample Mean ("in math")

Given n values, x_1, \ldots, x_n , the sample mean is

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

(pronounced "x bar")

or

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 x_i is the i th value in the data set.

Calculate mean from first principle

```
x = c(1, 2, 3, 5, 6, 7)
mean(x)
```

[1] 4

How about using a for loop?

```
temp = 0
for (i in 1:6){
  temp = temp+x[i]
    # print(i) # see how the value of i changes within a loop
    # print(temp) # see how the value of temp changes within a loop
    # readline() # this command pauses the output until you press ENTER
}
print(temp/6) # this is the value of mean(x)
```

[1] 4

Sample Median (in R)

```
x=c(2,1,2,8,2)
sort(x)
## [1] 1 2 2 2 8
[1] 1 2 2 2 8
median(x)
## [1] 2
median(dat$Age, na.rm=TRUE) # calculate median after removing missing values
## [1] 28
```

Calculating median from first principle

```
age = dat$Age[!is.na(dat$Age)] # remove missing values from the column of Age
length(age) # see how many observations are left
```

[1] 756

```
age_sort = sort(age) # sort the ages from smallest to largest
age_sort[756/2] # pick the middle value
```

[1] 28

```
age_sort[756/2 + 1] # or the next one
```

[1] 28

50% of observations in your data are smaller than the median, that is why it is also called the 50^{th} percentile, or 0.5 quantile

Sample Median, Quartiles and Percentiles

- Given n values, x_1, \ldots, x_n , the sample median is the 50th percentile, i.e. the value such that half of the data lies below and half lies above.
- Equal area of histogram on either side of median.
- first quartile (Q_1): 0.25 quantile or 25^{th} percentile
- third quartile (Q_3): 0.75 quantile or 75^{th} percentile
- · decile, quintile are defined similarly

Median is more robust measure of center than mean

What if we change 8 to 80?

x=c(2,1,2,8,2) mean(x)	xx=c(2,1,2,80,2) mean(xx)
## [1] 3	## [1] 17.4
median(x)	median(xx)
## [1] 2	## [1] 2

In pictures

Median: Equal area

Mean: Balancing point

Right skewed

long right tail (250 observations total)

Right skewed

adding an observation of size 100...

Right skewed

adding an observation of size 1000...

Right skewed

adding an observation of size 3000...

Mode

```
x=c(2,1,2,8,2)
table(x)
```

In pictures

Weighted Average

If a discrete random variable takes values x_1, \ldots, x_k with frequencies f_1, \ldots, f_k , its average can be calculated as

$$\frac{x_1f_1 + x_2f_2 + \dots + x_kf_k}{f_1 + f_2 + \dots + f_k}$$

head(days)

[1] 2 3 5 7 2 7

table(days)

days ## 1 2 3 4 5 6 7 ## 16 22 20 25 25 22 20

mean(days)

[1] 4.113333

(1*16+2*22+3*20+4*25+5*25+6*22+7*20)/150

measures of central tendency and loss minimization

Mean, median and quantiles are less ad hoc than you would think

Imagine you are trying to approximate a data set of numerical variables by a single number c (short for "center")

It makes sense to find a c which minimizes a reasonable notion of "overall distance" from all the data points

measures of central tendency and loss minimization

```
x = c(1, 2, 3, 4, 5, 6, 6, 7)
```

Find a number c such that $\sum_{i=1}^{n} |x_i - c|$ is as small as possible

```
c = 1
sum(abs(x-c)) # same as |x1-c| + |x2-c| + ... + |xn - c|
```

[1] 26

Try different values of c and see if c=median(x) gives you the minimum value

Try on your own: can you write a for loop to search over different values of *c*?

measures of central tendency and loss minimization

```
x = c(1, 2, 3, 4, 5, 6, 6, 7)
```

Find a number c such that $\sum_{i=1}^{n} (x_i - c)^2$ is as small as possible

```
c = 1

sum((x-c)^2) # same as (x1-c)^2 + (x2-c)^2 + ... + (xn - c)^2
```

[1] 116

Try different values of c and see if c=mean(x) gives you the minimum value

Measuring Spread or Dispersion

Quantifying "spread"

Range: maximum minus minimum

rth quantile, aka *(100r)th percentile*: value such that (100r)% of values are below it and 100(1-r)% are above.

Quartiles

1st quartile: 25th percentile

2nd quartile: 50th percentile (aka...?)

• 3rd quartile: 75th percentile

Interquartile range (IQR): 3rd quartile minus 1st quartile

Variance and standard deviation

The boxplot

The boxplot

Labeled dot plot and boxplot of number of characters in 50 emails

$$n = ?$$

- Upper whisker is at most $Q_3 + 1.5 \times IQR$ (but falls back to largest point below that), likewise for lower whisker.
- Q1: 25% of emails have at least __?__ characters
- **Q2**: 25% of emails have at most ___?__ characters
- Q3: ___?___ emails have "unusually" high number of characters
- Q4: Distribution of characters is left/right(?) skewed

John Tukey (1915-2000)

"Numerical quantities focus on expected values, graphical summaries on unexpected values." –John Tukey

Selected contributions (many more!)

- box plot
- Fast Fourier Transform
- coined terms: "bit" and "software" (and "scagnostics")

boxplot(dat\$Age, main="Ages")

boxplot(Age ~ Sex + PClass, data=dat)

Variance and standard deviation

Sample variance - Measures *dispersion* of individual data points about \bar{x} , expressed in *squared* units of x

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

```
x=c(2,1,2,8,2)

xbar = mean(x)

n = length(x)

sum((x-xbar)^2) / (n-1)
```

[1] 8

var(x)

[1] 8

Variance and standard deviation

Sample standard deviation - Measures *dispersion* of individual data points about \bar{x} , expressed in *the same units* as x

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

```
x=c(2,1,2,8,2)
sqrt(var(x))
```

[1] 2.828427

sd(x)

[1] 2.828427

Calculate variance using "for" loop

```
x=c(2,1,2,8,2)
xbar = mean(x)
n = length(x)

xvar = 0
for (i in 1:n){
    xvar = xvar+(x[i]-xbar)^2
}
xvar = xvar/(n-1)
xvar
```

[1] 8

Variance and standard deviation

- sensitive to every observation
- always non-negative
- they're zero if and only if all values are equal
- don't specify shape!

Report std dev in words:

"roughly, the average distance of observations from the mean ..."

More on quantifying spread

Why n-1 and not n in sample standard deviation?

Population Parameters: N units in a population, data: x_1, x_2, \dots, x_N

$$x_1, x_2, \ldots, x_N$$

- Population mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
- Population std dev: $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2}$

One "degree of freedom" lost to calculate sample mean (\bar{x}) (on a more technical term, using 1/n leads to biased estimate of σ)

More on quantifying spread

Why not just use
$$\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$
?

- This is also used in practice, known as mean absolute deviation (MAD)
- Not differentiable, so hard to do calculus or analytical work

Percentiles and z-scores

Bell-shaped Distribution

Unimodal, reasonably symmetric data distributions are fairly common

Normal (Gaussian / bell-shaped) distributions often used as an approximation

Bell-shaped distributions are completely specified by mean and std dev

Empirical Rule

For bell-shaped distributions, roughly

- 68% of data are within ± 1 std dev of mean
- 95% of data are within ± 2 std dev of mean
- 99.7% of data are within ± 3 std dev of mean

Example

Prelim 1 results are out. The histogram of scores looks roughly bell-shaped, with mean 60 and standard deviation 5.

You scored 65. What percentage of students scored more than you?

What is your percentile score?

About 95% of students scored between ___?___ and ___?___

z-score

Alice scored 70 in prelim 1. How many std dev above/below mean is her score?

Standardized score (or z-score):
$$z = \frac{observed\ value-mean}{stddev}$$

Measures how far an individual value falls from mean, in the unit of std deviation

Standardization helps (e.g., compare student scores across sections)

Common thumbrule to detect extreme observations (z-score beyond -3 or 3)

Empirical Rule (in terms of z-scores)

For bell-shaped distributions, roughly

- 68% of data have z-scores between -1 and 1
- 95% of data have z-scores between -2 and 2
- 99.7% of data have z-scores between -3 and 3

Why not use the actual percentile calculated from data, rather than bell-curve approximation?

easier to calculate, commonly used in practice

Skewness

Measure of Skewness

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{(x_i - \mu)}{\sigma} \right)^3$$

Skewness in R

```
library(e1071)
x = c(1,2,2,3,3,3,4,4,5)
# hist(x, breaks = 0:5)
skewness(x)
## [1] 0
x = c(1,2,2,3,3,3,4,4,10)
skewness(x)
## [1] 1.53069
x = c(-10,2,2,3,3,3,4,4,5)
skewness(x)
## [1] -1.890539
```

Relationships between variables

Graphical displays

Categorical vs. Categorical - stacked/unstacked bar charts

Numerical vs. Categorical - side-by-side boxplots

Numerical vs. Numerical - scatterplots

Numerical vs. Numerical vs. Categorical

coded scatterplots

Categorical vs. Categorical

Number surviving

Numerical vs. Categorical

Canadian Prestige Data (1971)

- ~100 occupations
- education avg number of yrs of education beyond grade 4
- income
- women % women in occupation
- prestige "Pineo-Porter" score
- type blue collar, white collar, professional

library(car)
View(Prestige)

Canadian Prestige Data (1971)

	education [‡]	income [‡]	women [‡]	prestige *	census [‡]	type
physio.therapsts	13.62	5092	82.66	72.1	3137	prof
pharmacists	15.21	10432	24.71	69.3	3151	prof
general.managers	12.26	25879	4.02	69.1	1130	prof
mining.engineers	14.64	11023	0.94	68.8	2153	prof
gov.administrators	13.11	12351	11.16	68.8	1113	prof
osteopaths.chiropractors	14.71	17498	6.91	68.4	3117	prof
medical.technicians	12.79	5180	76.04	67.5	3156	wc
veterinarians	15.94	14558	4.32	66.7	3115	prof
secondary.school.teachers	15.08	8034	46.80	66.1	2733	prof
pilots	12.27	14032	0.58	66.1	9111	prof
nurses	12.46	4614	96.12	64.7	3131	prof
accountants	12.77	9271	15.70	63.4	1171	prof
economists	14.44	8049	57.31	62.2	2311	prof

Numerical vs. Numerical

Numerical vs. Numerical

make a scatterplot...

plot(prestige~education, data=Prestige)

The scatterplot

best way to visualize relationship between two quantitative variables

x-axis

- predictor
- "explanatory variable"
- "independent variable"

y-axis

- response
- "dependent variable"

Adding a smoother

Adding a smoother

Numerical vs. Numerical vs. Categorical

Numerical vs. Numerical vs. Categorical

Numerical vs. Numerical vs. Numerical

Color shows proportion of women in occupation

Visualize all pairs at once

pairs(Prestige)

