

Test report No.

Page **Issued date** Revised date

FCC ID

: 1 of 48

: March 1, 2010

: July 23, 2010 : UOE-0015573942

: 30FE0017-HO-01-A-R2

RADIO TEST REPORT

Test Report No.: 30FE0017-HO-01-A-R2

Applicant

Maxell Seiki, Ltd.

Type of Equipment

RFID UNIT

Model No.

COBAS-Reader 8000

Test standard

FCC Part 15 Subpart C: 2009

Section 15.207 and 15.225

FCC ID

UOE-0015573942

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 30FE0017-HO-01-A-R1. 30FE0017-HO-01-A-R1 is replaced with this report.

Date of test:

January 12 to February 11, 2010

Tested by:

& Kawamura Keisuke Kawamura **EMC Services**

EMC Services

Approved by:

Makoto Kosaka **EMC Services**

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8116

Facsimile : +81 596 24 8124

Test report No. : 30FE0017-HO-01-A-R2 Page : 2 of 48

Page Issued date Revised date FCC ID

: March 1, 2010 : July 23, 2010 : UOE-0015573942

CONTENTS	PAGE
SECTION 1: Customer information	3
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Conducted emission	
SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum	Mask)12
SECTION 7: Other test	,
APPENDIX 1: Photographs of test setup	
Conducted emission	14
Radiated emission	16
Worst Case Position	18
APPENDIX 2: Data of EMI test	21
Conducted emission	21
Fundamental emission and Spectrum Mask	24
Spurious emission	32
20dB Bandwidth and 99% Occupied Bandwidth	
Frequency Tolerance	46
APPENDIX 3: Test instruments	

 Page
 : 3 of 48

 Issued date
 : March 1, 2010

 Revised date
 : July 23, 2010

 FCC ID
 : UOE-0015573942

SECTION 1: Customer information

Company Name : Maxell Seiki, Ltd.

Address : 45-101 Kagamida, Oyamazaki-cho, Otokuni-gun, Kyoto, 618-8558

Japan

Telephone Number : +81-75-951-2921 Facsimile Number : +81-75-952-5873 Contact Person : Yoshiharu Hino

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : RFID UNIT

Model No. : COBAS-Reader 8000 Serial No. : Refer to Clause 4.2

Rating : DC 5.0V Receipt Date of Sample : January 12, 2010

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: COBAS-Reader 8000 is the RFID UNIT.

The EUT has two types of models, with and without ferrite core.

Refer to the following:

[Without ferrite core]

[
Antenna Switching PWB	4ch type	8ch type
The Number of Antennas	1-4	1-8
Model No.	COBAS-Reader 8000	COBAS-Reader 8000

[With ferrite core]

[
Antenna Switching PWB	4ch type	8ch type	
The Number of Antennas	1-4	1-8	
Model No.	COBAS-Reader	COBAS-Reader	

The clock frequency of EUT is 13.56MHz (RF) and 10MHz (CPU).

Equipment Type : Transceiver
Frequency of Operation : 13.56MHz
Type of Modulation : ASK

Antenna Type : LOOP ANTENNA

Antenna connector Type : PH CONNECTOR (MAKER: JST)

Method of Frequency Generation : Crystal Power Supply : DC 5.0V

Operating Temperature : 0 deg. C. to +55 deg. C.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part15 Subpart C: 2009, final revised on December 2, 2009

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional

Radiators

Section 15.207 Conducted limits

Section 15.225: Operation within the band 13.110-14.010MHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 30FE0017-HO-01-A-R2 Test report No.

Page : 5 of 48 **Issued date** : March 1, 2010 : July 23, 2010 Revised date FCC ID : UOE-0015573942

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks		
Conducted emission	ANSI C63.4:2003 7. AC powerline conducted emission measurements	Section 15.207	[QP] 9.0dB 13.56000MHz, N With Tag, 8ch type	Complied			
Conducted emission	<ic>RSS-Gen 7.2.2</ic>	<ic>RSS-Gen 7.2.2</ic>	[AV] 0.9dB 13.56000MHz, N With Tag, 8ch type	Compiled	,		
Electric Field Strength of Fundamental Emission	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.225(a) Section 15.225(a) 67.1dB 13.56000MHz QP, 90deg.		Complied	Radiated		
Linission	<ic> RSS-Gen 4.8, 4.11</ic>	<ic>RSS-210 A2.6</ic>	Without Tag, 4ch type				
Spectrum Mask	ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.225(b)(c)	44.6dB 13.55300MHz QP, 90deg.	Complied	Radiated		
	<ic>RSS-Gen 4.9, 4.11</ic>	<ic> RSS-210 A2.6</ic>	Without Tag, 4ch type				
20dB Bandwidth	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.215(c)	See data	Complied	Radiated		
	<ic> -</ic>	<ic> -</ic>					
Electric Field Strength of Spurious Emission	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.209, Section 15.225 (d)	3.2dB 266.445MHz QP, Horizontal	Complied	Radiated		
1	<ic>RSS-Gen 4.9, 4.11</ic>	<ic>RSS-210 A2.6</ic>	With Tag, 4ch type				
Frequency Tolerance	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.225(e)	See data	Complied	Radiated		
	<ic>RSS-Gen 4.7</ic>	<ic> RSS-210 A2.6</ic>	S-210 A2.6				
Note: UL Japan, Inc.'s EMI Work Procedures No.QPM05 and QPM15							

FCC 15.31 (e)
This EUT provides stable voltage (DC5.0V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

The EUT has a unique coupling/antenna connector (PH connector). Therefore the equipment complies with the requirement of 15.203.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Band Width	RSS-Gen 4.6.1	RSS-Gen 4.6.1	N/A	N/A	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Conducted emission
(semi-	(<u>+</u> dB)
anechoic	150kHz-30MHz
chamber)	
No.1	2.6dB
No.2	2.9dB
No.3	3.3dB
No.4	2.8dB

Test room (semi- anechoic	Radiated emission (10m*)(<u>+</u> dB)			Radiated emission					
chamber)					(3m*)(<u>+</u> dB)				
	9kHz	30MHz	300MHz	9kHz	30MHz	300MHz	1GHz	18GHz	26.5GHz
	-30MHz	-300MHz	-1GHz	-30MHz	-300MHz	-1GHz	-18GHz	-26.5GHz	-40GHz
No.1	2.7dB	4.8dB	5.0dB	2.9dB	4.8dB	5.0dB	3.9dB	4.5dB	4.4dB
No.2	-	-	-	3.5dB	4.8dB	5.1dB	4.0dB	4.3dB	4.2dB
No.3	-	-	-	3.8dB	4.6dB	4.7dB	4.0dB	4.5dB	4.4dB
No.4	-	-	-	3.5dB	4.4dB	4.9dB	4.0dB	4.6dB	4.5dB

^{*10}m/3m/1m = Measurement distance

Frequency counter (<u>+</u>)					
Normal condition Extreme condition					
7 x 10 ⁻⁶	9 x 10 ⁻⁶				

Conducted emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Radiated emission test(3m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

receptione: 101 370 2	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration Number	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, and Test instruments

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The mode is used:

Mode	Remarks*
Communication mode (Tx)	With Tag
	Without Tag
	Antenna terminated with dummy load

- *The EUT was operated in a manner similar to typical use during the tests.
- *The EUT Transmits and Receives at the same time and there is no receiving mode.
- *The EUT does not have a simultaneous transmission function.
- *There is no difference for all of the antenna specification.
- *The EUT has two types of models, with and without ferrite core.

The test was performed with a model without ferrite core as a representative since a model without ferrite core had had the worst level in pre-check.

-Software details;

Production company: Takaya Corporation Product name: RF-ID Monitor soft

Version: 1.5.5.0

- <Major function used at the test>
- * Continuous Tag communication ON/OFF
- * Modulation ON/OFF
- * Ch selection

This software does not have a Power Control function.

The test was performed with Default value written on RF module ROM.

Mass-produced product will have same level as it.

Test Item	Operating mode*
Conductedemission	Tx with Tag and without Tag
Electric Field Strength of Fundamental Emission	Tx with Tag and without Tag
Spectrum Mask	Tx with Tag and without Tag
20dB Bandwidth	Tx with Tag and without Tag
Electric Field Strength of Spurious Emission	Tx with Tag and without Tag
Frequency Tolerance	Tx Mod off Mod on

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

Frequency Tolerance:

Temperature : -30 deg.C.(minimum) to + 50deg.C.(maximum)

(-30deg.C.: Reference, Step 10deg.C.)

Voltage : DC 5.75V, DC 4.25V (DC 5.0V $\pm 15\%$)

*This EUT provides stable voltage (DC5.0V) constantly to RF Module regardless of input voltage

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 9 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

4.2 Configuration and peripherals

[4ch type]

- : Standard Ferrite Core
- * Cabling and setup were taken into consideration and test data was taken under worse case conditions.
- * In case the core is attached to the EUT (with core model), the EUT has two patterns of core's position.
- 1 Ferrite Core, Model No. TFC-23-11-14 (Manufacturer: KITAGAWA INDUSTRIES CO.,LTD.), 15cm from Item A, 3 turns.
- 1 Ferrite Core, Model No. TFC-23-11-14 (Manufacturer: KITAGAWA INDUSTRIES CO.,LTD.), 20cm from Item B, 3 turns.

The Ferrite Core is attached to either Item A or Item B.

Description of EUT and Support equipment

No.	Item Model number Seria		Serial number	Manufacturer	Remarks
A	RFID UNIT	COBAS-Reader 8000	000002	Takaya corp.	EUT
В	Antenna	TR3-A401-CS13	000002-1 to 000002-4	Takaya corp.	EUT
C	DC Power Supply	TXL50-05S	08216411	TRACO POWER	-
D	Personal Computer	nx9000	CNF3281X66	hp	-
Е	AC Adaptor	PPP014S	565C50AU40ZRDU	hp	-
F	Tag	IT-1I(N)2	E0 04 01 00 1F C5 B7 DA	Maxell Seiki, Ltd.	*1)

^{*1)} Used for With Tag.

List of cables used

No.	Name	Length (m) Shield			Remark	
			Cable	Connector		
1	Antenna Cable	1.3	Shielded	Unshielded	=	
2	Antenna Cable	1.3	Shielded	Unshielded	-	
3	Antenna Cable	1.3	Shielded	Unshielded	-	
4	Antenna Cable	1.3	Shielded	Unshielded	-	
5	DC Cable	2.3	Unshielded	Unshielded	-	
6	RS-232C Cable	2.3	Unshielded	Unshielded	-	
7	AC Cable	0.8	Unshielded	Unshielded	-	
8	DC Cable	1.8	Unshielded	Unshielded	-	
9	AC Cable	1.7	Unshielded	Unshielded	-	

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

[8ch type]

- : Standard Ferrite Core
- * Cabling and setup were taken into consideration and test data was taken under worse case conditions.
- * In case the core is attached to the EUT (with core model), the EUT has two patterns of core's position.
- 1 Ferrite Core, Model No. TFC-23-11-14 (Manufacturer: KITAGAWA INDUSTRIES CO.,LTD.), 15cm from Item A, 3 turns.
- 1 Ferrite Core, Model No. TFC-23-11-14 (Manufacturer: KITAGAWA INDUSTRIES CO.,LTD.), 20cm from Item B, 3 turns

The Ferrite Core is attached to either Item A or Item B.

Description of EUT and Support equipment

No.	Item Model number Ser		Serial number	Manufacturer	Remarks
A	RFID UNIT	COBAS-Reader 8000	000001	Takaya corp.	EUT
В	Antenna	TR3-A401-CS13	000001-1 to 000001-8	Takaya corp.	EUT
C	DC Power Supply	TXL50-05S	08216411	TRACO POWER	-
D	Personal Computer	nx9000	CNF3281X66	hp	-
Е	AC Adaptor	PPP014S	565C50AU40ZRDU	hp	-
F	Tag	IT-1I(N)2	E0 04 01 00 1F C5 B7 DA	Maxell Seiki, Ltd.	*1)

^{*1)} Used for With Tag.

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	Antenna Cable	1.3	Shielded	Unshielded	-
2	Antenna Cable	1.3	Shielded	Unshielded	-
3	Antenna Cable	1.3	Shielded	Unshielded	-
4	Antenna Cable	1.3	Shielded	Unshielded	-
5	Antenna Cable	1.3	Shielded	Unshielded	-
6	Antenna Cable	1.3	Shielded	Unshielded	-
7	Antenna Cable	1.3	Shielded	Unshielded	-
8	Antenna Cable	1.3	Shielded	Unshielded	-
9	DC Cable	2.3	Unshielded	Unshielded	-
10	RS-232C Cable	2.3	Unshielded	Unshielded	-
11	AC Cable	0.8	Unshielded	Unshielded	-
12	DC Cable	1.8	Unshielded	Unshielded	-
13	AC Cable	1.7	Unshielded	Unshielded	-

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 30FE0017-HO-01-A-R2 Test report No.

Page : 11 of 48 **Issued date** : March 1, 2010 Revised date : July 23, 2010 FCC ID : UOE-0015573942

SECTION 5: Conducted emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0m by 2.0m, raised 0.8m above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN)/ Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane. All unused 50ohm connectors of the LISN(AMN) were resistivity terminated in 50ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber or a Measurement Room.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and AV Measurement range : 0.15-30MHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum Mask)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0m by 2.0m, raised 0.8m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical (angle of loop antenna: 0deg., 45deg., 90deg., and 135 deg.) and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	From 9kHz	From 90kHz	From 150kHz	From	From	Ab	ove
	to 90kHz	to 110kHz	to 490kHz	490kHz to	30MHz to	1G	Hz
	and			30MHz	1GHz		
	From 110kHz						
	to 150kHz						
Instrument used	Test Receiver				Spectrum	Analyzer	
Detector	PK/AV	QP	PK/AV	QP	QP	PK	AV
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz	RBW: 1MHz	RBW: 1MHz
						VBW: 1MHz	VBW: 10Hz

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

This EUT has two transmitting modes which tag is put close to the EUT or not. The test was performed with and without tag.

The test was performed with and without tag.

* FCC Part 15 Section 15.31 (f)(2) / IC RSS-Gen 4.11 (9kHz-30MHz)

9kHz 490kHz [Limit at 3m] = [Limit at 300m] - $40 \log \left(\frac{3}{300} \right)$

 $490\text{kHz} - 30\text{MHz}[\text{Limit at 3m}] = [\text{Limit at 30m}] - 40\log\left(\frac{3}{30}\right)$

Measurement range : 0.09M-1GHz
Test data : APPENDIX
Test result : Pass

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 48
Issued date : March 1, 2010
Revised date : July 23, 2010
FCC ID : UOE-0015573942

SECTION 7: Other test

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
20dB Bandwidth	100kHz	1kHz	3kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 3%	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth	20dB Bandwidth	of Span	of RBW				
Frequency Tolerance	-	-	-	-	-	-	Frequency counter

Test data : APPENDIX
Test result : Pass

Figure 1: Direction of the Loop Antenna

Top View (Horizontal)

Antenna was not rotated.

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN