

10/532264

JC20 Rec'd PCT/PTO 21 APR 2005

SEQUENCE LISTING

<110> Nakagawa, Yasuko
Ono, Yuichi
Sakamoto, Yoshimasa
Mizuhara, Eri
Nakatani, Tomoya
Takai, Yoshimi

<120> GENE SPECIFICALLY EXPRESSED IN
POSTMITOTIC DOPAMINERGIC NEURON PRECURSOR CELLS

<130> 082368-004000us

<150> PCT/JP03/13420
<151> 2003-10-21

<150> JP 2002-307573
<151> 2002-10-22

<160> 28

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 2876
<212> DNA
<213> Mus musculus

<400> 1
gatgagccag atttcgggga ctctgggcca gacataaaat cttccagccc ggagagaatt 60
gtgtcagag aggggctcca gtccagcgtg gtgtgagagg cgtgctatca agaaaagaagt 120
tggaggggaa ccagtgcAAC cctaactcta cgagatcttgg gggtagcacac actcgggatg 180
ctggcctccg ccctcctcgTT tttccttgc tgTTcaaAG gacatgcagg ctcatcgccc 240
catttcctac aacagccaga ggacatggtg gtgtgttgg gggaggaagc cccgctgccc 300
tgcgctctgg gcgcgtacag ggggctcgTG cagtggacta aggatggct ggctctaggg 360
ggcgaaagag accttccagg gtggtccccgg tactggatat cggggattc agccagtggc 420

cagcatgacc tccacattaa gcctgtggaa ttggaagatg aggcatcgta tgagtgccag 480
gcttcgcaag caggctcCG atcacgacca gcccactgc acgtgatggt ccccccagaa 540
gctccccagg tactaggcgg cccctctgtg tctctggTT ctggaggTCC tgaaaatctg 600
acctgtcgga gtcgtgggaa ttcccggacct gcccctgaac tactgtggTT ccgagatggg 660
atccggctgg atgcgagcag cttccaccAG accacgctga aggacaaggc cactggAAC 720
gtggaaaaca ccttattcct gaccCCTTCC agtcatgatg atggcggcac cttgatctgc 780
agagcgcgaa gccaggccCT gcccacaggG agggacacAG ctgttacact gagccttcag 840
tatcccccaa tggtgactct gtctgctgag cccagactg tgcaGGAGGG agagaaggTG 900
actttcctgt gtcaaggCCAC tgcccaggCT cctgtcaCT gctacaggTG ggcgaaggGG 960
ggatccccgg tgctcgggGC acgtgggca aggttgagg tcgttgccaga tgccactttc 1020
ctgactgacg cggtgtcctg cgaggtcAGC aacgcggTC gaagcggccaa cccgagcAcg 1080
gcgcgtggaaAg tggTgtatgg acccattctg caggcaAAAC ctaagtccgt gtccgtggac 1140
gtggggaaAg atgcctcctt cagctgtgtc tggcgcggGA acccacttcc acggataacc 1200
tgaccccgca tgggtggctc tcaggtgctg agtccggGC ccacgctgcg gcttccgtcc 1260
gtggcactgg aggtatgcggg cgactatgtA tgcaggGTG agccgaggAG aacgggtctg 1320
ggaggcggca aagcgcaggc gaggctgact gtgaacgcac cccctgtAGT gacagccctg 1380
caacctgcac cagccttct gaggGGTCTC gctcgctcc agtgtgtggT gtttgcctcc 1440
cctgccccAG actcgggtggT ttggTcttgg gacgaggGCT tcttggaggc aggtcaCTg 1500
ggcaggTTCC tagtggaaAGC ttcccAGCC cggaaAGTGG aggggggaca gggccctggc 1560
cttatttctg tgctacacat ttccggaaACC caggAGTCCG actttaccAC cggcttcaAC 1620
tgcaGtgcCcC gcaaccggcT aggAGAGGGA cgagtccAGA tccacttggg ccgttagAG 1680

ttgctgccta ctgtccggat tggctgggt gcagcatctg cagccacctc ttccttatg 1740
 gtcataactg gagtggctt ctgtgtgg cgccatggct ctctctaa gaaaaagaac 1800
 ttggccggta tcccaggaaag cagcgagggt tccagttcac gtggccctga ggaggagaca 1860
 ggcagcgtg aggaccgggg tcccattgtg cacaccgacc acagtattt gttcttgag 1920
 gaaaaagagg ctctggagac aaaggatcca accaacgggtt actacaaggt tcgaggggtc 1980
 agtgtgagcc ttagcttgg ggaagctct ggaggaggcc tcttcttgcc accggccctc 2040
 ccgatcggtc tcccaggac tcctacttac tatgacttca agccacatct ggacttagtc 2100
 cctccctgca gactgtacag agcgaggga gtttatcttca ccacccccc tccccgtgcc 2160
 ttcaccagct acatgaaacc cacatcctt ggaccccccag atttgagctc tggaaactccc 2220
 ccctcccgat atgctacattt gtctccaccc accaccaggc gtctccagac tcatgtgtga 2280
 atccatctctt ccaagtgaag ggtcttgaa tcttcttgaa gccatatagt gtgttgcca 2340
 gatttctggg gagtcagaac aagttgtatga ccaacccctc caaaaactgaa cattgaagga 2400
 ggaaaagatc attacaagca tcaggactgt tgggtacac tcagttcagc caaagtggat 2460
 ttcaccatgtt ggagaatat ggccgtttt ccatgagaaa gacattcaag atggtgacta 2520
 aatgactaaa tactttgcag agggacaaag atgggaacta gggatacggg tggaaagttagt 2580
 agagaagata tatgaccatc tgcatcaaga ggaaggataa catatgacaa atcaagatga 2640
 aagaataaat ccacccccc cccaccgggt cctggccat aagtatagcc tacatggctg 2700
 ttcattatctt gggaaacaaa atggccacta tcttgactcc ttctttaaag atacagaaaag 2760
 aattgaatcc aaggaatggg gtaggggtgaa aatagaagaa atgaaggggg ctcttgggct 2820
 aagaataactt atgtttaata ataaaaggggg gaggcaaaga tgcaaaaaaaaaa 2876

<210> 2
 <211> 2243
 <212> DNA
 <213> Mus musculus

<400> 2

gagagaattt tggcagaga gaggctccag tccagcgtgg tggagaggc gtgctatcaa 60
 gaaaagaattt ggagggaac cagtgcacc ctaactctac gagatcttgg ggtacacaca 120
 ctcgggatgc tggccctccgc ctcctcggtt ttcctttgtt gttcaagg acatgcagg 180
 tggtcccggt actggatatc gggaaattca gccagtgcc agcatgaccc ccacattaag 240
 cctgtggat tggaaatgtg ggcattcgat gagtgcagg cttcgcaagc aggtctccga 300
 tcacgaccag cccaaactgca cgtgatggtc ccccaagaag ctccccaggat actaggcggc 360
 cccctgtgt ctctgttgc tggagttctt ggaatctga cctgtcgag tcgtgggat 420
 tcccgacactg cccctgaact actgtggtc cgagatggg tccggctgga tgcgagcagc 480
 ttccaccaga ccacgctgaa ggacaaggcc actggaaacag tggaaaacac ctattcctg 540
 acccccttcca gtcattgtg tggcgccacc ttgatctgca gagcgcgaag ccaggccctg 600
 cccacaggga gggacacagc tggatcacgt agccttcaat ggtgactctg 660
 tctgctgagc cccagactgt gcaggaggga gagaagggtga ctttccctgt tcaagccact 720
 gcccgccctc ctgtcaactgg ctacagggtgg gcgaaagggg gatccccggt gctcggggca 780
 cgtggccaa ggttggaggt cgttgcagat gcccacttcc tgaactgagc ggtgtcctgc 840
 gaggtcagca acgcgtcgg aagcgccaaac cgcacgcgg cgctggaaat gttgtatgga 900
 cccattctgc aggaaaacc taagtccctg tccgtggacg tggggaaaga tgcctccttc 960
 agctgtgtctt ggcggggaa cccacttcca cggataaccc ggaccccat ggttggctct 1020
 caggtgctga gctccgggccc cacgctgccc ttccgtccg tggcactgga ggtatgcggg 1080
 gactatgtat gcagggttgc gcccgggaga acgggtctgg gaggcggcaa agcgcaggcg 1140
 aggctgactg tgaacgcacc ccctgttagt acagccctgc aacctgcacc agccttctg 1200
 aggggtcctg ctcgcctcca gtgtgtgggt tttgcctccc ctgccccaga ctcgggtggtt 1260
 tggcttggg acgagggtt cttggaggca ggctcaactgg gcaagggttctt gtcggatggc 1320
 ttcccagccc cggaaatggg ggggggacag ggcctggcc ttatctgt gtcacacatt 1380
 tccggaaacc caggatccga cttaaccacc ggctcaact gcagtgcccg caacccggcta 1440
 ggagaggggac gagtcagat ccacttgggc cgttagagatt tgctgcctac tggccggatt 1500
 gttggctgggt cagcatctgc agccacctt ctccttatgg tcatcaactgg agtggtcctc 1560
 tgctgtggc gccatggctc tctctctaag caaaaagaact tggccggat cccaggaaagc 1620
 agcgagggtt ccagttcacg tggccctgag gaggagacag gcagcgtga ggaccgggtt 1680
 cccattgtgc acaccgacca cagtatttgc gttcttgagg aaaaagaggc tctggagaca 1740
 aaggatccaa ccaacggta ctacaaggatc cgaggggtca gtgtgagcct tagccttggg 1800
 gaagctcctg gaggaggcct tttcttgcca cgcggcttc cgatcggtt cccaggggact 1860
 cctacttact atgacttcaa gccacatcag gacttagtcc tccctgtcag actgtacaga 1920
 gcgaggggcag gttatcttac caccccccattt cccctgtgcc tcaccagcta catgaaaccc 1980
 acatcccttgc gaccccaaga tttgagctt ggaactcccc cttcccgta tgcctaccc 2040

tctccaccca gccaccagcg tctccagact catgtgtcaa tccatctc caagtgaagg 2100
gtcttggaat cttctgtttg ccatatagtg tgttgtccag atttctgggg agtcagaaca 2160
agttgatgac caaccctcc aaaactgaac attgaaggag ggaaagatca ttacaagcat 2220
caggactgtt ggtgtacact cag 2243

<210> 3
<211> 700
<212> PRT
<213> Mus musculus

<400> 3
Met Leu Ala Ser Ala Leu Leu Val Phe Leu Cys Cys Phe Lys Gly His
1 5 10 15
Ala Gly Ser Ser Pro His Phe Leu Gln Gln Pro Glu Asp Met Val Val
20 25 30
Leu Leu Gly Glu Ala Arg Leu Pro Cys Ala Leu Gly Ala Tyr Arg
35 40 45
Gly Leu Val Gln Trp Thr Lys Asp Gly Leu Ala Leu Gly Gly Glu Arg
50 55 60
Asp Leu Pro Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn Ser Ala Ser
65 70 75 80
Gly Gln His Asp Leu His Ile Lys Pro Val Glu Leu Glu Asp Glu Ala
85 90 95
Ser Tyr Glu Cys Gln Ala Ser Gln Ala Gly Leu Arg Ser Arg Pro Ala
100 105 110
Gln Leu His Val Met Val Pro Pro Glu Ala Pro Gln Val Leu Gly Gly
115 120 125
Pro Ser Val Ser Leu Val Ala Gly Val Pro Gly Asn Leu Thr Cys Arg
130 135 140
Ser Arg Gly Asp Ser Arg Pro Ala Pro Glu Leu Leu Trp Phe Arg Asp
145 150 155 160
Gly Ile Arg Leu Asp Ala Ser Ser Phe His Gln Thr Thr Leu Lys Asp
165 170 175
Lys Ala Thr Gly Thr Val Glu Asn Thr Leu Phe Leu Thr Pro Ser Ser
180 185 190
His Asp Asp Gly Ala Thr Leu Ile Cys Arg Ala Arg Ser Gln Ala Leu
195 200 205
Pro Thr Gly Arg Asp Thr Ala Val Thr Leu Ser Leu Gln Tyr Pro Pro
210 215 220
Met Val Thr Leu Ser Ala Glu Pro Gln Thr Val Gln Glu Gly Glu Lys
225 230 235 240
Val Thr Phe Leu Cys Gln Ala Thr Ala Gln Pro Pro Val Thr Gly Tyr
245 250 255
Arg Trp Ala Lys Gly Gly Ser Pro Val Leu Gly Ala Arg Gly Pro Arg
260 265 270
Leu Glu Val Val Ala Asp Ala Thr Phe Leu Thr Glu Pro Val Ser Cys
275 280 285
Glu Val Ser Asn Ala Val Gly Ser Ala Asn Arg Ser Thr Ala Leu Glu
290 295 300
Val Leu Tyr Gly Pro Ile Leu Gln Ala Lys Pro Lys Ser Val Ser Val
305 310 315 320
Asp Val Gly Lys Asp Ala Ser Phe Ser Cys Val Trp Arg Gly Asn Pro
325 330 335
Leu Pro Arg Ile Thr Trp Thr Arg Met Gly Gly Ser Gln Val Leu Ser
340 345 350
Ser Gly Pro Thr Leu Arg Leu Pro Ser Val Ala Leu Glu Asp Ala Gly
355 360 365
Asp Tyr Val Cys Arg Ala Glu Pro Arg Arg Thr Gly Leu Gly Gly Gly
370 375 380
Lys Ala Gln Ala Arg Leu Thr Val Asn Ala Pro Pro Val Val Thr Ala
385 390 395 400

Leu Gln Pro Ala Pro Ala Phe Leu Arg Gly Pro Ala Arg Leu Gln Cys
 405 410 415
 Val Val Phe Ala Ser Pro Ala Pro Asp Ser Val Val Trp Ser Trp Asp
 420 425 430
 Glu Gly Phe Leu Glu Ala Gly Ser Leu Gly Arg Phe Leu Val Glu Ala
 435 440 445
 Phe Pro Ala Pro Glu Val Glu Gly Gly Gln Gly Pro Gly Leu Ile Ser
 450 455 460
 Val Leu His Ile Ser Gly Thr Gln Glu Ser Asp Phe Thr Thr Gly Phe
 465 470 475 480
 Asn Cys Ser Ala Arg Asn Arg Leu Gly Glu Gly Arg Val Gln Ile His
 485 490 495
 Leu Gly Arg Arg Asp Leu Leu Pro Thr Val Arg Ile Val Ala Gly Ala
 500 505 510
 Ala Ser Ala Ala Thr Ser Leu Leu Met Val Ile Thr Gly Val Val Leu
 515 520 525
 Cys Cys Trp Arg His Gly Ser Leu Ser Lys Gln Lys Asn Leu Val Arg
 530 535 540
 Ile Pro Gly Ser Ser Glu Gly Ser Ser Ser Arg Gly Pro Glu Glu Glu
 545 550 555 560
 Thr Gly Ser Ser Glu Asp Arg Gly Pro Ile Val His Thr Asp His Ser
 565 570 575
 Asp Leu Val Leu Glu Glu Lys Glu Ala Leu Glu Thr Lys Asp Pro Thr
 580 585 590
 Asn Gly Tyr Tyr Lys Val Arg Gly Val Ser Val Ser Leu Ser Leu Gly
 595 600 605
 Glu Ala Pro Gly Gly Leu Phe Leu Pro Pro Pro Ser Pro Ile Gly
 610 615 620
 Leu Pro Gly Thr Pro Thr Tyr Tyr Asp Phe Lys Pro His Leu Asp Leu
 625 630 635 640
 Val Pro Pro Cys Arg Leu Tyr Arg Ala Arg Ala Gly Tyr Leu Thr Thr
 645 650 655
 Pro His Pro Arg Ala Phe Thr Ser Tyr Met Lys Pro Thr Ser Phe Gly
 660 665 670
 Pro Pro Asp Leu Ser Ser Gly Thr Pro Pro Phe Pro Tyr Ala Thr Leu
 675 680 685
 Ser Pro Pro Ser His Gln Arg Leu Gln Thr His Val
 690 695 700

<210> 4
 <211> 650
 <212> PRT
 <213> Mus musculus

<400> 4

Met Leu Ala Ser Ala Leu Leu Val Phe Leu Cys Cys Phe Lys Gly His
 1 5 10 15
 Ala Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn Ser Ala Ser Gly Gln
 20 25 30
 His Asp Leu His Ile Lys Pro Val Glu Leu Glu Asp Glu Ala Ser Tyr
 35 40 45
 Glu Cys Gln Ala Ser Gln Ala Gly Leu Arg Ser Arg Pro Ala Gln Leu
 50 55 60
 His Val Met Val Pro Pro Glu Ala Pro Gln Val Leu Gly Gly Pro Ser
 65 70 75 80
 Val Ser Leu Val Ala Gly Val Pro Gly Asn Leu Thr Cys Arg Ser Arg
 85 90 95
 Gly Asp Ser Arg Pro Ala Pro Glu Leu Leu Trp Phe Arg Asp Gly Ile
 100 105 110
 Arg Leu Asp Ala Ser Ser Phe His Gln Thr Thr Leu Lys Asp Lys Ala

115	120	125													
Thr	Gly	Thr	Val	Glu	Asn	Thr	Leu	Phe	Leu	Thr	Pro	Ser	Ser	His	Asp
130							135				140				
Asp	Gly	Ala	Thr	Leu	Ile	Cys	Arg	Ala	Arg	Ser	Gln	Ala	Leu	Pro	Thr
145						150				155				160	
Gly	Arg	Asp	Thr	Ala	Val	Thr	Leu	Ser	Leu	Gln	Tyr	Pro	Pro	Met	Val
						165				170				175	
Thr	Leu	Ser	Ala	Glu	Pro	Gln	Thr	Val	Gln	Glu	Gly	Glu	Lys	Val	Thr
						180				185				190	
Phe	Leu	Cys	Gln	Ala	Thr	Ala	Gln	Pro	Pro	Val	Thr	Gly	Tyr	Arg	Trp
						195				200				205	
Ala	Lys	Gly	Gly	Ser	Pro	Val	Leu	Gly	Ala	Arg	Gly	Pro	Arg	Leu	Glu
						210				215				220	
Val	Val	Ala	Asp	Ala	Thr	Phe	Leu	Thr	Glu	Pro	Val	Ser	Cys	Glu	Val
						225				230				240	
Ser	Asn	Ala	Val	Gly	Ser	Ala	Asn	Arg	Ser	Thr	Ala	Leu	Glu	Val	Leu
						245				250				255	
Tyr	Gly	Pro	Ile	Leu	Gln	Ala	Lys	Pro	Lys	Ser	Val	Ser	Val	Asp	Val
						260				265				270	
Gly	Lys	Asp	Ala	Ser	Phe	Ser	Cys	Val	Trp	Arg	Gly	Asn	Pro	Leu	Pro
						275				280				285	
Arg	Ile	Thr	Trp	Thr	Arg	Met	Gly	Gly	Ser	Gln	Val	Leu	Ser	Ser	Gly
						290				295				300	
Pro	Thr	Leu	Arg	Leu	Pro	Ser	Val	Ala	Leu	Glu	Asp	Ala	Gly	Asp	Tyr
						305				310				320	
Val	Cys	Arg	Ala	Glu	Pro	Arg	Arg	Thr	Gly	Leu	Gly	Gly	Lys	Ala	
						325				330				335	
Gln	Ala	Arg	Leu	Thr	Val	Asn	Ala	Pro	Pro	Val	Val	Thr	Ala	Leu	Gln
						340				345				350	
Pro	Ala	Pro	Ala	Phe	Leu	Arg	Gly	Pro	Ala	Arg	Leu	Gln	Cys	Val	Val
						355				360				365	
Phe	Ala	Ser	Pro	Ala	Pro	Asp	Ser	Val	Val	Trp	Ser	Trp	Asp	Glu	Gly
						370				375				380	
Phe	Leu	Glu	Ala	Gly	Ser	Leu	Gly	Arg	Phe	Leu	Val	Glu	Ala	Phe	Pro
						385				390				400	
Ala	Pro	Glu	Val	Glu	Gly	Gly	Gly	Pro	Gly	Leu	Ile	Ser	Val	Leu	
						405				410				415	
His	Ile	Ser	Gly	Thr	Gln	Glu	Ser	Asp	Phe	Thr	Thr	Gly	Phe	Asn	Cys
						420				425				430	
Ser	Ala	Arg	Asn	Arg	Leu	Gly	Glu	Gly	Arg	Val	Gln	Ile	His	Leu	Gly
						435				440				445	
Arg	Arg	Asp	Leu	Leu	Pro	Thr	Val	Arg	Ile	Val	Ala	Gly	Ala	Ala	Ser
						450				455				460	
Ala	Ala	Thr	Ser	Leu	Leu	Met	Val	Ile	Thr	Gly	Val	Val	Leu	Cys	Cys
						465				470				480	
Trp	Arg	His	Gly	Ser	Leu	Ser	Lys	Gln	Lys	Asn	Leu	Val	Arg	Ile	Pro
						485				490				495	
Gly	Ser	Ser	Glu	Gly	Ser	Ser	Ser	Arg	Gly	Pro	Glu	Glu	Glu	Thr	Gly
						500				505				510	
Ser	Ser	Glu	Asp	Arg	Gly	Pro	Ile	Val	His	Thr	Asp	His	Ser	Asp	Leu
						515				520				525	
Val	Leu	Glu	Glu	Lys	Glu	Ala	Leu	Glu	Thr	Lys	Asp	Pro	Thr	Asn	Gly
						530				535				540	
Tyr	Tyr	Lys	Val	Arg	Gly	Val	Ser	Val	Ser	Leu	Ser	Leu	Gly	Glu	Ala
						545				550				560	
Pro	Gly	Gly	Gly	Leu	Phe	Leu	Pro	Pro	Pro	Ser	Pro	Ile	Gly	Leu	Pro
						565				570				575	
Gly	Thr	Pro	Thr	Tyr	Tyr	Asp	Phe	Lys	Pro	His	Gln	Asp	Leu	Val	Pro
						580				585				590	
Pro	Cys	Arg	Leu	Tyr	Arg	Ala	Arg	Ala	Gly	Tyr	Leu	Thr	Thr	Pro	His
						595				600				605	

Pro	Arg	Ala	Phe	Thr	Ser	Tyr	Met	Lys	Pro	Thr	Ser	Phe	Gly	Pro	Pro
610				615					620						
Asp	Leu	Ser	Ser	Gly	Thr	Pro	Pro	Phe	Pro	Tyr	Ala	Thr	Leu	Ser	Pro
625					630				635					640	
Pro	Ser	His	Gln	Arg	Leu	Gln	Thr	His	Val						
				645					650						

<210> 5
<211> 2980
<212> DNA
<213> Homo sapiens

<400> 5
cccgagacc caggccgcgg aactggcagg cgtttcagag cgtcagaggc tgccgatgag 60
cagacttggg ggactccagg ccagagacta ggctggcga agagtgcgcgt gtgaaggggg 120
ctccggggcca gggtgacagg aggcgtgctt gagaggaaga agttgacggg aaggccagtg 180
cgacggcaaa tctcgtaac cttgggggac gaatgctcg gatgcgggat cccgcctcc 240
tcgtcctcctt cttctcgctt agagggagag caggccgcgc gccccatttc ctgcaacagc 300
cagaggaccc ggtgggtctg ctgggggagg aagcccgct gccgtgtgct ctgggcgcct 360
actgggggctt agttcagtgg actaagagtgg ggctggccctt agggggccaa aggacactac 420
cagggtggtc cgggtactgg atatcaggga atgcagccaa tggccagcat gacccatcaca 480
ttaggcccgtt ggagcttagag gatgaagcat catatgaatg tcaggctaca caagcaggcc 540
tccgctccag accagccaa ctgcacgtgc tggccccccc agaagcccc caggtgtctgg 600
gccccccctc tgtgtctctg gttgctggag ttcctgcgaa cctgcacatgt cgagccgtg 660
ggatgcccccc ctatccccctt gaattgctgtt ggttccgaga tggggctctg ttggatggag 720
ccaccccttcca tcagacccttgc ctgaaggaag ggacccttgg gtcagtggag agcaccttaa 780
ccctgacccccc ttccat gatgatggag ccaccccttgc ctgcccggcc cggagccagg 840
ccctgccccac aggaagagac acagctatca cactgacccct gcaagtacccc ccagaggtga 900
ctctgtctgc ttgcacacac actgtgcagg agggagagaa gtcattttc ctgtgccagg 960
ccacagccca gcctctgtc acaggctaca ggtggccaaa agggggctct ccgggtctcg 1020
ggggccgcgg gccaagggtta gaggtcggtt cagacgcctc gttcctgact gagcccggt 1080
cctgcgaggtt cagcaacgccc gtgggtagcg ccaaccgcag tactgcgtt gatgtgtctgt 1140
ttgggcccattt tctgcaggca aagccggagc ccgtgtccgtt ggacgtgggg gaagacgctt 1200
ccttcagctgtt cgcctggcgc gggAACCCGC ttccacgggtt aacctggacc cggccgggtg 1260
gcfgcgcagggtt gctggctctt ggagccacac tgcgtcttcc gtcgtgtgggg cccgaggacg 1320
caggcgactatgtgtcaga gctgaggctg ggctatcggtt ctcgcggggc ggcgcgcgg 1380
aggctcggtt gactgtgaac gtcctccctt tagtgaccgc ctcgcactct gcgcctgcct 1440
tcctgagggg ccctgctcgc ctccagtgtc tgggtttcgc ctctccgc ccagatgcgc 1500
tggctctggcc ttggatgag ggcttcctgg aggccgggtt gcagggccgg ttctgggtgg 1560
agacattccc tggcccttccatc tggccaggag agccgcgggg gactgggtcc gggctgtatc tctgtgtctac 1620
acatttcggg gaccaggag tctgacttta gcaggagctt taactgcgtt gcccgaaacc 1680
ggctggcga gggagggtgcc caggccagcc tggccgttag agacttgctg cccactgtgc 1740
ggatagtggc cggagggtgcc gtcgcacca caactctct tatggtcatc actgggggtgg 1800
ccctctgtgtt ctggccccc acgcaaggccct cagcctcttt ctccgagcaa aagaacctga 1860
tgcgaatccc tggcagcagc gacggctcca gttcacgagg tcctgaagaa gaggagacag 1920
gcagccgcga ggaccggggc cccattgtgc acactgacca cagtgtatc gttctggagg 1980
agaaaaggggac tctggagacc aaggacccaa ccaacggta ctacaaggtc cgaggagtca 2040
gtgtgagcctt gaggcccttgc gaaaggccctt gaggaggtctt ctccctgcca ccaccctccc 2100
cccttggccccc cccaggacc ctcacccctt atgacttcaa cccacacccctg ggcacgggtcc 2160
ccccctgtcag actttacaga gccaggccag gctatctcac cacacccccc cctcgagctt 2220
tcaccagcta catcaaaaccc acatccttttggcccccaga tctggccccc gggactcccc 2280
ccttccata tgcgtcccttcccacccatc gccacccgcgt tctccagact cacgtgtgac 2340
atctttccaa tggaaagagtc ctgggatctc caacttgcca taatggatttgc ttctgatttc 2400
tgaggcgcca ggacaagtttgc ggcacccatc tcctccaaaa ctgaacacaa ggggagggaa 2460
agatcattac atttgtcagg agcatttgc tacagtgc acgccaagag gagatgcccc 2520
aagtgggagc aacatggccca cccaaatatgc ccacccatcc cccgggttaa aagagattca 2580
agatggcagg taggcctttt gaggagagat gggacagggg cagtgggtgt tgggagtttgc 2640
ggccggggat ggaagggttttctagccact gaaagaagat atttcaagat gaccatctgc 2700
attgagagga aaggttagcat aggtatagatg aagatgaaga gcataccagg cccaccctg 2760
gctctccctgtt agggaaactt tgctcgccca atggaaatgc agccaagatg gccatataact 2820

cccttaggaac ccaagatggc caccatcttg attttacttt ccttaaagac tcagaaaagac 2880
ttggacccaa ggagtgggga tacagtgaga attaccactg ttggggcaaa atattggat 2940
aaaaaatattt atgttataataaaaaaaaaa gtcaaagagg 2980

<210> 6
<211> 708
<212> PRT
<213> Homo sapiens

<400> 6
Met Leu Arg Met Arg Val Pro Ala Leu Leu Val Leu Leu Phe Cys Phe
1 5 10 15
Arg Gly Arg Ala Gly Pro Ser Pro His Phe Leu Gln Gln Pro Glu Asp
20 25 30
Leu Val Val Leu Leu Gly Glu Ala Arg Leu Pro Cys Ala Leu Gly
35 40 45
Ala Tyr Trp Gly Leu Val Gln Trp Thr Lys Ser Gly Leu Ala Leu Gly
50 55 60
Gly Gln Arg Asp Leu Pro Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn
65 70 75 80
Ala Ala Asn Gly Gln His Asp Leu His Ile Arg Pro Val Glu Leu Glu
85 90 95
Asp Glu Ala Ser Tyr Glu Cys Gln Ala Thr Gln Ala Gly Leu Arg Ser
100 105 110
Arg Pro Ala Gln Leu His Val Leu Val Pro Pro Glu Ala Pro Gln Val
115 120 125
Leu Gly Gly Pro Ser Val Ser Leu Val Ala Gly Val Pro Ala Asn Leu
130 135 140
Thr Cys Arg Ser Arg Gly Asp Ala Arg Pro Thr Pro Glu Leu Leu Trp
145 150 155 160
Phe Arg Asp Gly Val Leu Leu Asp Gly Ala Thr Phe His Gln Thr Leu
165 170 175
Leu Lys Glu Gly Thr Pro Gly Ser Val Glu Ser Thr Leu Thr Leu Thr
180 185 190
Pro Phe Ser His Asp Asp Gly Ala Thr Phe Val Cys Arg Ala Arg Ser
195 200 205
Gln Ala Leu Pro Thr Gly Arg Asp Thr Ala Ile Thr Leu Ser Leu Gln
210 215 220
Tyr Pro Pro Glu Val Thr Leu Ser Ala Ser Pro His Thr Val Gln Glu
225 230 235 240
Gly Glu Lys Val Ile Phe Leu Cys Gln Ala Thr Ala Gln Pro Pro Val
245 250 255
Thr Gly Tyr Arg Trp Ala Lys Gly Gly Ser Pro Val Leu Gly Ala Arg
260 265 270
Gly Pro Arg Leu Glu Val Val Ala Asp Ala Ser Phe Leu Thr Glu Pro
275 280 285
Val Ser Cys Glu Val Ser Asn Ala Val Gly Ser Ala Asn Arg Ser Thr
290 295 300
Ala Leu Asp Val Leu Phe Gly Pro Ile Leu Gln Ala Lys Pro Glu Pro
305 310 315 320
Val Ser Val Asp Val Gly Glu Asp Ala Ser Phe Ser Cys Ala Trp Arg
325 330 335
Gly Asn Pro Leu Pro Arg Val Thr Trp Thr Arg Arg Gly Gly Ala Gln
340 345 350
Val Leu Gly Ser Gly Ala Thr Leu Arg Leu Pro Ser Val Gly Pro Glu
355 360 365
Asp Ala Gly Asp Tyr Val Cys Arg Ala Glu Ala Gly Leu Ser Gly Leu
370 375 380
Arg Gly Gly Ala Ala Glu Ala Arg Leu Thr Val Asn Ala Pro Pro Val
385 390 395 400
Val Thr Ala Leu His Ser Ala Pro Ala Phe Leu Arg Gly Pro Ala Arg

405	410	415
Leu Gln Cys Leu Val Phe Ala Ser Pro Ala Pro Asp Ala Val Val Trp		
420	425	430
Ser Trp Asp Glu Gly Phe Leu Glu Ala Gly Ser Gln Gly Arg Phe Leu		
435	440	445
Val Glu Thr Phe Pro Ala Pro Glu Ser Arg Gly Gly Leu Gly Pro Gly		
450	455	460
Leu Ile Ser Val Leu His Ile Ser Gly Thr Gln Glu Ser Asp Phe Ser		
465	470	475
Arg Ser Phe Asn Cys Ser Ala Arg Asn Arg Leu Gly Glu Gly Ala		
485	490	495
Gln Ala Ser Leu Gly Arg Arg Asp Leu Leu Pro Thr Val Arg Ile Val		
500	505	510
Ala Gly Val Ala Ala Ala Thr Thr Leu Leu Met Val Ile Thr Gly		
515	520	525
Val Ala Leu Cys Cys Trp Arg His Ser Lys Ala Ser Ala Ser Phe Ser		
530	535	540
Glu Gln Lys Asn Leu Met Arg Ile Pro Gly Ser Ser Asp Gly Ser Ser		
545	550	555
Ser Arg Gly Pro Glu Glu Glu Thr Gly Ser Arg Glu Asp Arg Gly		
565	570	575
Pro Ile Val His Thr Asp His Ser Asp Leu Val Leu Glu Glu Lys Gly		
580	585	590
Thr Leu Glu Thr Lys Asp Pro Thr Asn Gly Tyr Tyr Lys Val Arg Gly		
595	600	605
Val Ser Val Ser Leu Ser Leu Gly Glu Ala Pro Gly Gly Leu Phe		
610	615	620
Leu Pro Pro Pro Ser Pro Leu Gly Pro Pro Gly Thr Pro Thr Phe Tyr		
625	630	635
Asp Phe Asn Pro His Leu Gly Met Val Pro Pro Cys Arg Leu Tyr Arg		
645	650	655
Ala Arg Ala Gly Tyr Leu Thr Thr Pro His Pro Arg Ala Phe Thr Ser		
660	665	670
Tyr Ile Lys Pro Thr Ser Phe Gly Pro Pro Asp Leu Ala Pro Gly Thr		
675	680	685
Pro Pro Phe Pro Tyr Ala Ala Phe Pro Thr Pro Ser His Pro Arg Leu		
690	695	700
Gln Thr His Val		
705		

<210> 7
 <211> 2976
 <212> DNA
 <213> Homo sapiens

<400> 7
 ggaactggc aggcgtttca gagcgtcaga ggctgcggat gagcagactt ggaggactcc 60
 agccagaga ctaggctggg cgaagagtgc agcgtgaagg gggctccggg ccagggtgac 120
 aggaggcgta cttgagagga agaagttgac gggaaaggcca gtgcacggc aaatctcgta 180
 aaccttgggg gacgaatgct caggatgcgg tccccggcc tcctcgctt cctcttctgc 240
 ttccagagggc gagcaggccc gtcgccccat ttccctgcaac agccagagga cctgggtgg 300
 ctgctggggg aggaagcccc gtcgcccgtgt gctctggcg cctactgggg gctagttcag 360
 tggactaaga gtgggctggc ctagggggc caaaggggacc taccagggtg gtcccggtac 420
 tggatatacg ggaatgcagc caatggccag catgacacct acattaggcc cgtggagcta 480
 gaggatgaag catcatatga atgtcaggtc acacaaggcag gcctccgctc cagaccagcc 540
 caactgcacg tgctggtccc cccagaagcc ccccaagggtc tgggcggccc ctctgtgtct 600
 ctgggtgctg gagttctgc gaacctgaca tgtcggagcc gtggggatgc ccccccgtgcc 660
 cctgaattgc tgtggttccg agatggggtc ctgttggatg gagccacctt ccatcagacc 720
 ctgctgaagg aagggacccc tgggtcagtg gagacaccc taaccctgac cccctttcag 780
 ccatgatgat ggagccaccc ttgtctggcc ggcccgagc caggccctgc ccacaggaag 840

agacacagct atcacactga gcctgcagta ccccccagag gtgactctgt ctgcttcgcc 900
 acacactgtg caggagggag agaaggcat tttcctgtgc caggccacag cccagcctcc 960
 tgtcacaggc tacaggtggg caaaaaggggg ctctccggg ctcggggccc gcccccaag 1020
 gtttagaggtc gtggcagacg cctcggtcct gactgagccc gtgtccgtcg agtgcagcaa 1080
 cggcgtgggt aggcacaacc gcaactgtc gctggatgtg ctgtttggc cgattctgca 1140
 gccaagccg gagccgtgt cgctggacgt gggggaaagac gcttcctca gctgcgcctg 1200
 ggcgggaaac ccgctccac gggtaacccgt gaccgcgc ggtggcgcgc aggtgctggg 1260
 ctctggagcc acactgcgtc ttcgtcggt gggggcccgag gacgcaggcg actatgtgt 1320
 cagagctgag gctggctat cgggcctgca gggcgccgc gcggaggctc ggctgactgt 1380
 gaacgtccc ccagtagtga ccgcctgca ctctgcgcct gccttcctga gggggcctgc 1440
 tcgcctccag tgtctgggtt tcgcctctcc cgccccagat gccgtggctc ggtcttgga 1500
 tgagggcttc ctggaggcg ggtcgaggg cccgttcctg gtggagacat tccctgccc 1560
 agagagccgc gggggactgg gtccggcct gatctctgt ctacacattt cggggaccca 1620
 ggagtctgac tttagcagga gcttaactg cagtgcccgg aaccggctgg gcgagggagg 1680
 tggccaggcc agcctggcc gtagagactt gctgcccact gtgcggatag tggccggagt 1740
 ggcgcgtgcc accacaactc tccttatgtt catcaactggg gtggccctct gctgctggcg 1800
 ccacagcaag gcctcagccct ctttcctccga gcaaaaagaac ctgatgcgaa tccctggcaag 1860
 cagcgcacggc tccagttcac gaggtcctga agaagaggag acaggcagcc gcgaggaccg 1920
 gggccccatt gtgcacactg accacagtg tctggttctg gaggagaag ggactctgga 1980
 gaccaaggac ccaaccaacg gttactacaa ggtccgagga gtcagtgtga gcctgagcc 2040
 tggcgaagcc cctggaggag gtctcttcct gccaccaccc tcccccttg gggccccagg 2100
 gacccttacc ttctatgact tcaacccaca cctgggcatt gtccccccctt gcaacttta 2160
 cagagccagg gcaggctatc tcaccacacc ccaccctcgat gcttcacca gctacatcaa 2220
 acccacatcc tttggggccc cagatctggc ccccccggact ccccccctcc catatgctgc 2280
 cttccccaca cctagccacc cgcgtctcca gactcacgtg tgacatcttt ccaatggaag 2340
 agtcctggga tctccaaactt gccatcctgg attgttctga tttctgagga gccaggacaa 2400
 gtggcgcacc ttactcctcc aaaactgaac acaagggggag ggaaagatca ttacatttgc 2460
 caggagcatt tgtatacagt cagctcagcc aaaggagatg ccccaagtgg gagcaacatg 2520
 gccacccaat atgcccaccc attccccggt gtaaaaagaga ttcaagatgg caggttaggc 2580
 ctggaggag agatggggac agggcagttt gttggggag tttggggccg gatggaaagt 2640
 ttttcttagc cactgaaaga agatatttca agatgaccat ctgcatttag agaaaaggta 2700
 gcataggata gatgaagatg aagagcatac caggccccac cctggctctc cctgagggga 2760
 actttgctcg gccaatggaa atgcagccaa gatggccata tactccctag gaacccaaga 2820
 tggccaccat cttgattta ctttccttaa agacacagaa agacttggac ccaaggagtg 2880
 gggatacagt gagaattacc actgttgggg caaaatattt ggataaaaaat atttatgttt 2940
 aataataaaa aaaagtcaaa aaaaaaaaaa aaaaaaa 2976

<210> 8
 <211> 196
 <212> PRT
 <213> Homo sapiens

<400> 8
 Met Leu Arg Met Arg Val Pro Ala Leu Leu Val Leu Leu Phe Cys Phe
 1 5 10 15
 Arg Gly Arg Ala Gly Pro Ser Pro His Phe Leu Gln Gln Pro Glu Asp
 20 25 30
 Leu Val Val Leu Leu Gly Glu Glu Ala Arg Leu Pro Cys Ala Leu Gly
 35 40 45
 Ala Tyr Trp Gly Leu Val Gln Trp Thr Lys Ser Gly Leu Ala Leu Gly
 50 55 60
 Gly Gln Arg Asp Leu Pro Gly Trp Ser Arg Tyr Trp Ile Ser Gly Asn
 65 70 75 80
 Ala Ala Asn Gly Gln His Asp Leu His Ile Arg Pro Val Glu Leu Glu
 85 90 95
 Asp Glu Ala Ser Tyr Glu Cys Gln Ala Thr Gln Ala Gly Leu Arg Ser
 100 105 110
 Arg Pro Ala Gln Leu His Val Leu Val Pro Pro Glu Ala Pro Gln Val
 115 120 125
 Leu Gly Gly Pro Ser Val Ser Leu Val Ala Gly Val Pro Ala Asn Leu
 130 135 140

Thr Cys Arg Ser Arg Gly Asp Ala Arg Pro Ala Pro Glu Leu Leu Trp
 145 150 155 160
 Phe Arg Asp Gly Val Leu Leu Asp Gly Ala Thr Phe His Gln Thr Leu
 165 170 175
 Leu Lys Glu Gly Thr Pro Gly Ser Val Glu Ser Thr Leu Thr Leu Thr
 180 185 190
 Pro Phe Gln Pro
 195

<210> 9
 <211> 1532
 <212> DNA
 <213> Homo sapiens

<400> 9
 cccagagacc caggccgcgg aactggcagg cgtttcagag cgtcagaggc tgcggatgag 60
 cagacttggc ggactccagg ccagagacta ggctggcgca agagtcgagc gtgaaggggg 120
 ctccggggcca gggtgacagg aggctgtctt gagaggaaga agttgacggg aaggccagtg 180
 cgacggcaaa tctcgtgaac cttgggggac gaatgcttag gatgcgggtc cccgccttc 240
 tcgtccttc tttctgttc agagggagag caggcccgtc gccccatttc ctgcaacagc 300
 cagaggaccc ggtgggtctg ctggggcgagg gaggtgccc ggcgcgcctg gggcgtagag 360
 cctcagcctc tttctcccgag caaaaagaacc tgatgcgaat ccctggcagc agcgacggct 420
 ccagttcacg aggtctgtaa gaagaggaga caggcagccg cgaggaccgg ggcgcattt 480
 tgcacactga ccacagtcat ctgggtctgg aggaggaagg gactctggag accaaggacc 540
 caacccaacgg ttactacaag gtccgaggag tcagtgtgag cctgagccctt ggcaagccc 600
 ctggaggagg tctcttcctg ccaccaccc ccccccattgg gccccccagg accccctaccc 660
 tctatgactt caaccacac ctgggcattgg tccccccctg cagactttac agagccaggg 720
 caggctctct caccacaccc caccctcgag ctttcaccag ctacatcaaa cccacatcct 780
 ttggggccccc agatctggcc cccgggactc ccccccattttcc atatgctgcc tttcccacac 840
 cttagccaccc gcgtctccag actcacgtgt gacatcttc caatggaaaga gtcctggat 900
 ctccaaacttg ccataatggg ttgttctgtat ttctgaggag ccaggacaag ttggcgaccc 960
 tactcctcca aaactgaaca caagggggagg gaaagatcat tacatttgc agagcattt 1020
 gtatacagtc agctcagcca aaggagatgc cccaaagtggg agcaacatgg ccacccaata 1080
 tgcccaccta ttccccgggtg taaaagagat tcaagatggc aggttaggccc tttgaggaga 1140
 gatggggaca gggcagtggg tggggggagt ttggggccgg gatggaaagt gtttctagcc 1200
 actgaaagaa gatattcaa gatgaccatc tgcattgaga ggaaaggtag cataggatag 1260
 atgaagatga agagcataacc aggccccacc ctggctctcc ctgagggaa cttgctcg 1320
 ccaatggaaa tgcagccaag atggccatat actccctagg aacccaagat ggccaccatc 1380
 ttgattttac ttcccttaaa gactcagaaa gacttggacc caaggagtgg ggatacagtg 1440
 agaattacca ctgttggggc aaaatattgg gataaaaaata tttatgtta ataataaaaa 1500
 aaagtcaaag aggcaaaaaaa aaaaaaaaaaa aa 1532

<210> 10
 <211> 219
 <212> PRT
 <213> Homo sapiens

<400> 10
 Met Leu Arg Met Arg Val Pro Ala Leu Leu Val Leu Leu Phe Cys Phe
 1 5 10 15
 Arg Gly Arg Ala Gly Pro Ser Pro His Phe Leu Gln Gln Pro Glu Asp
 20 25 30
 Leu Val Val Leu Leu Gly Glu Gly Ala Gln Ala Ser Leu Gly Arg
 35 40 45
 Arg Ala Ser Ala Ser Phe Ser Glu Gln Lys Asn Leu Met Arg Ile Pro
 50 55 60
 Gly Ser Ser Asp Gly Ser Ser Ser Arg Gly Pro Glu Glu Glu Thr
 65 70 75 80
 Gly Ser Arg Glu Asp Arg Gly Pro Ile Val His Thr Asp His Ser Asp
 85 90 95

Leu Val Leu Glu Glu Gly Thr Leu Glu Thr Lys Asp Pro Thr Asn
 100 105 110
 Gly Tyr Tyr Lys Val Arg Gly Val Ser Val Ser Leu Ser Leu Gly Glu
 115 120 125
 Ala Pro Gly Gly Gly Leu Phe Leu Pro Pro Pro Ser Pro Leu Gly Pro
 130 135 140
 Pro Gly Thr Pro Thr Phe Tyr Asp Phe Asn Pro His Leu Gly Met Val
 145 150 155 160
 Pro Pro Cys Arg Leu Tyr Arg Ala Arg Ala Gly Tyr Leu Thr Thr Pro
 165 170 175
 His Pro Arg Ala Phe Thr Ser Tyr Ile Lys Pro Thr Ser Phe Gly Pro
 180 185 190
 Pro Asp Leu Ala Pro Gly Thr Pro Pro Phe Pro Tyr Ala Ala Phe Pro
 195 200 205
 Thr Pro Ser His Pro Arg Leu Gln Thr His Val
 210 215

<210> 11
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adapter for cDNA amplification

<400> 11
 cagctccaca acctacatca ttccgt 26

<210> 12
 <211> 12
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adapter for cDNA amplification

<400> 12
 acggaatgat gt 12

<210> 13
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adapter for cDNA amplification

<400> 13
 gtccatcttc tctctgagac tctggc 26

<210> 14
 <211> 12
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Adapter for cDNA amplification

<400> 14

accagagtct ca 12
<210> 15
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Adapter for cDNA amplification

<400> 15
ctgatgggtg tcttctgtga gtgtgt 26
<210> 16
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Adapter for cDNA amplification

<400> 16
acacactcac ag 12
<210> 17
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Adapter for cDNA amplification

<400> 17
ccagcatcga gaatcagtgt gacagt 26
<210> 18
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Adapter for cDNA amplification

<400> 18
actgtcacac tg 12
<210> 19
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Adapter for cDNA amplification

<400> 19
gtcgatgaac ttgcactgtc gatcgt 26
<210> 20
<211> 12

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Adapter for cDNA amplification		
<400> 20		
acgatcgaca gt		12
<210> 21		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for RACE method		
<400> 21		
ggctttacac tttatgttc cggctc		26
<210> 22		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for RACE method		
<400> 22		
cagctatgac catgattacg ccaagc		26
<210> 23		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for RACE method		
<400> 23		
aggcgattaa gttggtaac gccagg		26
<210> 24		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for RACE method		
<400> 24		
ccagtcacga cgttgtaaaa cgacgg		26
<210> 25		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer for RACE method		

<400> 25
cttcccgat gctaccttgt ctccac 26

<210> 26
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for RACE method

<400> 26
tccatcttc caagtgaagg gtcttg 26

<210> 27
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for RACE method

<400> 27
ccaacagtcc tgcattgttg taatga 26

<210> 28
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer for RACE method

<400> 28
tccttcaatg ttcagtttg gagggg 26