17.1: Vector Fields

Definition. (Vector Fields in Two Dimensions)

Let f and g be defined on a region R of \mathbb{R}^2 . A **vector field** in \mathbb{R}^2 is a function \mathbf{F} that assigns to each point in R a vector $\langle f(x,y), g(x,y) \rangle$. The vector field is written as

$$\mathbf{F}(x,y) = \langle f(x,y), g(x,y) \rangle$$
 or $\mathbf{F}(x,y) = f(x,y)\mathbf{i} + g(x,y)\mathbf{j}$.

A vector field $\mathbf{F} = \langle f, g \rangle$ is continuous or differentiable on a region R of \mathbb{R}^2 if f and g are continuous or differentiable on R, respectively.

Example. Sketch the vector field $\mathbf{F} = \langle 0, x \rangle$.

Example. Sketch the vector field $\mathbf{F} = \langle 1 - y^2, 0 \rangle$ for $|y| \leq 1$.

Example. Sketch the vector field $\mathbf{F} = \langle -y, x \rangle$.

Definition. (Radial Vector Fields in \mathbb{R}^2)

Let $\mathbf{r} = \langle x, y \rangle$. A vector field of the form $\mathbf{F} = f(x, y)\mathbf{r}$, where f is a scalar valued function, is a **radial vector field**. Of specific interest are the radial vector fields

$$\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y \rangle}{|\mathbf{r}|^p} = \frac{\mathbf{r}}{|\mathbf{r}|} \frac{1}{|\mathbf{r}|^{p-1}},$$

where p is a real number. At every point (expect the origin), the vectors of this field are directed outward from the origin with a magnitude of $|\mathbf{F}| = \frac{1}{|\mathbf{r}|^{p-1}}$.

Example. Let C be the circle $x^2 + y^2 = a^2$, where a > 0.

a) Show that at each point of C, the radial vector field $\mathbf{F}(x,y) = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{\langle x,y \rangle}{\sqrt{x^2 + y^2}}$ is orthogonal to the line tangent to C at that point.

b) Show that at each point of C, the rotation vector field $\mathbf{G}(x,y) = \frac{\langle -y,x\rangle}{\sqrt{x^2+y^2}}$ is parallel to the line tangent to C at that point.

Definition. (Vector Fields and Radial Vector Fields in \mathbb{R}^3)

Let f, g, and h be defined on a region D of \mathbb{R}^3 . A **vector field** in \mathbb{R}^3 is a function \mathbf{F} that assigns to each point in D a vector $\langle f(x,y,z), g(x,y,z), h(x,y,z) \rangle$. The vector field is written as

$$\mathbf{F}(x,y,z) = \langle f(x,y,z), g(x,y,z), h(x,y,z) \rangle \quad \text{or} \quad \mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}.$$

A vector field $\mathbf{F} = \langle f, g, h \rangle$ is continuous or differentiable on a region D of \mathbb{R}^3 if f, g, and h are continuous or differentiable on D, respectively. Of particular importance are the **radial vector fields**

$$\mathbf{F}(x, y, z) = \frac{\mathbf{r}}{|\mathbf{r}|^p} = \frac{\langle x, y, z \rangle}{|\mathbf{r}|^p},$$

where p is a real number.

Example. Sketch the vector field $\mathbf{F}(x,y,z) = \langle 0, 0, 1 - x^2 - y^2 \rangle$, for $x^2 + y^2 \leq 1$.

Definition. (Gradient Fields and Potential Functions)

Let φ be differentiable on a region of \mathbb{R}^2 or \mathbb{R}^3 . The vector field $=\nabla \varphi$ is a **gradient** field and the function φ is a **potential function** for **F**.

Example. Sketch and interpret the gradient field associated with the temperature function $T = 200 - x^2 - y^2$ on the circular plane $R = \{(x, y) : x^2 + y^2 \le 25\}$.

Example. Sketch and interpret the gradient field associated with the velocity potential $\varphi = \tan^{-1}(xy)$.