Chapter 4.3: Solving Radical Functions

Pre-Calculus 11 - Lesson 3

Created by Yi-Chen Lin

June 16, 2025

Overview: Solving Radical Functions

Key Concepts

- A root (radical) function is like a sideways parabola (e.g., $y = \sqrt{x}$)
- The domain starts where the radicand is zero
- To solve radical equations: isolate, square both sides, solve, and check for extraneous roots

1) Understanding Root Functions

Key Points

- $y = \sqrt{x}$ is the top half of a sideways parabola
- $x = y^2$ is a horizontal parabola
- The graph of $y = \sqrt{x}$ starts at x = 0 and only exists for $x \ge 0$

II) Where Does the Radical Function Begin?

Domain of Radical Functions

- The function $y = \sqrt{x a}$ begins at x = a
- The function $y = \sqrt{2x+4}$ begins at x = -2
- The function $y = \sqrt{6-x}$ begins at x = 6

III) Steps for Solving Radical Equations

Solving Steps

- Isolate the radical
- Square both sides to eliminate the radical
- Solve for *x*
- Oheck for extraneous roots by plugging back into the original equation

Example: Solving a Radical Equation

Example

Solve
$$\sqrt{2x-1}=4$$
.

$$\sqrt{2x-1}=4$$

$$2x - 1 = 16$$

$$2x = 17$$

$$x = 8.5$$

Check:
$$\sqrt{2 \times 8.5 - 1} = \sqrt{17 - 1} = \sqrt{16} = 4$$
 (valid)

Practice: Solve the Radical Equations

Practice Problems

$$\sqrt{x+4} = 6$$

$$\sqrt{2x-3} = 5$$

$$\sqrt{3x+1} = x-2$$

$$\sqrt{x-1} + 2 = 7$$

Practice: Solve the Radical Equations - Solution 1a

Solution 1a

Solving:

$$\sqrt{x+4} = 6$$
$$(\sqrt{x+4})^2 = 6^2$$
$$x+4 = 36$$
$$x = 32$$

$$\sqrt{32+4} = \sqrt{36} = 6$$
True!

Practice: Solve the Radical Equations - Solution 1b

Solution 1b

Solving:

$$\sqrt{2x-3} = 5$$
$$(\sqrt{2x-3})^2 = 5^2$$
$$2x-3 = 25$$
$$2x = 28$$
$$x = 14$$

Checking:

$$\sqrt{2(14) - 3} = \sqrt{28 - 3} = \sqrt{25} = 5$$
True!

Practice: Solve the Radical Equations - Solution 1c (Solving)

Solution 1c - Solving

$$\sqrt{3x+1} = x-2$$

$$\sqrt{3x+1} = x - 2$$
$$(\sqrt{3x+1})^2 = (x-2)^2$$
$$3x+1 = x^2 - 4x + 4$$
$$0 = x^2 - 7x + 3$$

Using quadratic formula:

$$x = \frac{7 \pm \sqrt{49 - 12}}{2}$$

$$x = \frac{7 \pm \sqrt{37}}{2}$$

$$x \approx 6.54 \text{ or } x \approx 0.46$$

Practice: Solve the Radical Equations - Solution 1c (Checking)

Solution 1c - Checking

Checking:

• For
$$x = 6.54$$
: $\sqrt{3(6.54) + 1} \approx 4.54$ and $6.54 - 2 = 4.54$ \checkmark

• For
$$x = 0.46$$
: $\sqrt{3(0.46) + 1} \approx 1.54$ and $0.46 - 2 = -1.54 \times 1.54$

Therefore, only x = 6.54 is valid.

Practice: Solve the Radical Equations - Solution 1d

Solution 1d

Solving:

$$\sqrt{x-1} + 2 = 7$$

$$\sqrt{x-1} = 5$$

$$(\sqrt{x-1})^2 = 5^2$$

$$x - 1 = 25$$

$$x = 26$$

Checking:

$$\sqrt{26-1}+2=\sqrt{25}+2=5+2=7$$
True!

Practice: Extraneous Roots or No Solution?

Practice Problems

$$\sqrt{x+3} = -2$$

$$\sqrt{2x-5} = x-3$$

$$\sqrt{x-2} = 2 - x$$

$$\sqrt{4-x} = x+1$$

Practice: Extraneous Roots or No Solution? - Solution 2a

Solution 2a

$$\sqrt{x+3} = -2$$

No solution: square root cannot be negative

Practice: Extraneous Roots or No Solution? - Solution 2b (Solving)

Solution 2b - Solving

$$\sqrt{2x-5} = x-3$$

$$\sqrt{2x - 5} = x - 3$$
$$(\sqrt{2x - 5})^2 = (x - 3)^2$$
$$2x - 5 = x^2 - 6x + 9$$
$$0 = x^2 - 8x + 14$$

Using quadratic formula:

$$x = \frac{8 \pm \sqrt{64 - 56}}{2}$$

$$x = \frac{8 \pm \sqrt{8}}{2}$$

$$x = 4 \pm \sqrt{2}$$

Practice: Extraneous Roots or No Solution? - Solution 2b (Checking)

Solution 2b - Checking

Checking:

• For
$$x = 5.41$$
: $\sqrt{2(5.41) - 5} \approx 2.41$ and $5.41 - 3 = 2.41$ \checkmark

• For
$$x = 2.59$$
: $\sqrt{2(2.59) - 5} \approx 0.41$ and $2.59 - 3 = -0.41 \times 10^{-2}$

Therefore, only x = 5.41 is valid.

Practice: Extraneous Roots or No Solution? - Solution 2c (Solving)

Solution 2c - Solving

$$\sqrt{x-2}=2-x$$

$$\sqrt{x-2} = 2 - x$$
$$(\sqrt{x-2})^2 = (2-x)^2$$
$$x-2 = 4 - 4x + x^2$$
$$0 = x^2 - 5x + 6$$

Using quadratic formula:

$$x = \frac{5 \pm \sqrt{25 - 24}}{2}$$

$$x = \frac{5 \pm 1}{2}$$

$$x = 3 \text{ or } x = 2$$

Practice: Extraneous Roots or No Solution? - Solution 2c (Checking)

Solution 2c - Checking

Checking:

• For
$$x = 3$$
: $\sqrt{3-2} = 1$ and $2-3 = -1 \times 1$

• For
$$x = 2$$
: $\sqrt{2-2} = 0$ and $2-2 = 0$

Therefore, only x = 2 is valid.

Practice: Extraneous Roots or No Solution? - Solution 2d (Solving)

Solution 2d - Solving

$$\sqrt{4-x}=x+1$$

$$\sqrt{4-x} = x + 1$$
$$(\sqrt{4-x})^2 = (x+1)^2$$
$$4-x = x^2 + 2x + 1$$
$$0 = x^2 + 3x - 3$$

Using quadratic formula:

$$x = \frac{-3 \pm \sqrt{9 + 12}}{2}$$

$$x = \frac{-3 \pm \sqrt{21}}{2}$$

$$x \approx 0.79 \text{ or } x \approx -3.79$$

Practice: Extraneous Roots or No Solution? - Solution 2d (Checking)

Solution 2d – Checking

Checking:

- For x = 0.79: $\sqrt{4 0.79} \approx 1.79$ and 0.79 + 1 = 1.79 \checkmark
- For x = -3.79: $\sqrt{4 (-3.79)} \approx 2.79$ and $-3.79 + 1 = -2.79 \times 10^{-2}$

Therefore, only x = 0.79 is valid.

Practice: Expand/FOIL with Radicals

Practice Problems

$$(x + \sqrt{3})(x - \sqrt{3})$$

$$(2+\sqrt{5})(2-\sqrt{5})$$

$$(x+2\sqrt{2})(x-2\sqrt{2})$$

$$(3+\sqrt{7})(3-\sqrt{7})$$

Practice: Expand/FOIL with Radicals - Solutions (1/2)

Solutions

$$(x+\sqrt{3})(x-\sqrt{3})$$

$$= x^{2} - x\sqrt{3} + x\sqrt{3} - (\sqrt{3})^{2}$$
$$= x^{2} - 3$$

$$(2+\sqrt{5})(2-\sqrt{5})$$

$$= 4 - 2\sqrt{5} + 2\sqrt{5} - (\sqrt{5})^2$$
$$= 4 - 5$$

= -1

Practice: Expand/FOIL with Radicals - Solutions (2/2)

Solutions

$$(x+2\sqrt{2})(x-2\sqrt{2})$$

$$= x^{2} - 2x\sqrt{2} + 2x\sqrt{2} - (2\sqrt{2})^{2}$$
$$= x^{2} - 8$$

$$(3+\sqrt{7})(3-\sqrt{7})$$

$$= 9 - 3\sqrt{7} + 3\sqrt{7} - (\sqrt{7})^{2}$$

$$= 9 - 7$$

$$= 2$$

Practice: Solve and Extraneous Roots

Step-by-Step Example

i)
$$-4 + \sqrt{3x + 4} = 2$$

 $-4 + \sqrt{3x + 4} = 2$
 $\sqrt{3x + 4} = 6$
 $3x + 4 = 36$
 $3x = 32$
 $x = 10.66$

ii)
$$\sqrt{3x+1} = 2x - 6$$

 $(\sqrt{3x+1})^2 = (2x-6)^2$
 $3x+1 = (2x-6)(2x-6)$ (FOIL)
 $3x+1 = 4x^2 - 24x + 36$
 $0 = 4x^2 - 27x + 35$
 $4x^2 - 27x + 35 = 0$

The 'Extraneous Root' is a solution that does not satisfy the original equation. Always check your answers!

Extraneous Roots: Graphical Explanation

Graphical Meaning of Extraneous Roots

Key Points:

- The extraneous root is at the intersection on the bottom side of the parabola.
- It does not satisfy the original radical equation.
- We only want the intersection on the top (actual root).

We don't want the "Extraneous Root"!

