

Dipartimento di Ingegneria Civile Università di Pisa

Anno accademico 2005 / 2006

GEOTECNICA

Capacità portante delle fondazioni superficiali

Prof. Lo Presti

ROTTURA DI TIPO "GENERALE"

ROTTURA PER "PUNZONAMENTO"

GEOTECNICA

ROTTURA DI TIPO "LOCALE"

Prof. Lo Presti GEOTECNICA

ANALISI LIMITE: (TEOREMA STATICO O DEL LIMITE INFERIORE)

Se esiste un sistema di carichi esterni in equilibrio con una distribuzione di sforzi interni che non viola in nessun punto il criterio di rottura, IL COLLASSO NON SI VERIFICA ED IL SISTEMA DI CARICHI ESTERNI RISULTA NON MAGGIORE DEL VERO CARICO DI COLLASSO

CAPACITA' PORTANTE IN CONDIZIONI DRENATE

IL VALORE DI q_{lim} SI RICAVA DALL'EQUILIBRIO

 $P_a(CUNEORST) = P_p(CUNEOSTZ)$

CAPACITA' PORTANTE IN CONDIZIONI DRENATE

$$P_{a}(RST) = \frac{1}{2} \gamma' H^{2} K_{a} + H \cdot q_{lim} K_{a} - 2c' H \sqrt{K_{a}}$$

$$P_{p}(STZ) = \frac{1}{2} \gamma' H^{2} K_{p} + H \cdot q' K_{p} + 2c' H \sqrt{K_{p}}$$

$$\begin{split} q_{lim} &= \frac{1}{2} \gamma' H \Biggl(\frac{K_p}{K_a} - 1 \Biggr) + 2 c' \frac{\sqrt{K_p} + \sqrt{K_a}}{K_a} + q' \frac{K_p}{K_a}; \ Poichè: \ H = \frac{B}{2} \frac{1}{\sqrt{K_a}} \\ q_{lim} &= 0.5 \gamma' B N_{\gamma} + c' N_c + q' N_{\alpha} \end{split}$$

$$N_{\gamma} = f_1(K_a, K_p) = F_1(\varphi')$$

$$N_c = f_2(K_a, K_p) = F_2(\phi')$$

$$N_q = f_3(K_a, K_p) = F_3(\phi')$$

FATTORI ADIMENSIONALI

DISCONTINUITA' STATICHE

DISCONTINUITA' STATICHE

IPOTESI:

Se ds \rightarrow 0: 2d $\theta \cong \text{sen}(2d\theta)$; $X \rightarrow T$; $BX \cong AX \cong \text{s'-sen}(\varphi')$

Applicazione teorema dei seni (ABX):

$$\frac{\overline{BX}}{\text{sen}(90+\phi')} = \frac{ds'}{\text{sen}(2d\theta)}; \frac{s' \text{sen}(\phi')}{\cos(\phi')} = \frac{ds'}{2d\theta}; 2d\theta \cdot \tan(\phi') = \frac{ds'}{s'}$$

Integrando: $e^{2\vartheta \cdot tan(\varphi')} = \frac{s'_1}{s'_2}$

ANALISI LIMITE (STATICO – U)

$$\mathbf{q}_{\lim} = \mathbf{q} + \mathbf{4} \cdot \mathbf{S}_{\mathbf{u}}$$

GEOTECNICA

CAPACITA' PORTANTE IN CONDIZIONI NON DRENATE (2)

$$\begin{aligned} q_{lim} &= q + 2 \cdot S_u + \Delta s; \ \Delta s = 2 \cdot S_u \cdot sen \vartheta; \ \Delta s = 2 \cdot S_u \cdot \pi / 2 \\ q_{lim} &= q + N_c \cdot S_u; \qquad N_c = 2 + \pi \end{aligned}$$

ANALISI LIMITE (STATICO – U)

Prof. Lo Presti GEOTECNICA

ANALISI LIMITE: (TEOREMA CINEMATICO O DEL LIMITE SUPERIORE)

Se esistono un sistema di carichi esterni e un meccanismo di collasso plastico tali che il lavoro dei carichi esterni per un incremento di spostamento sia uguale al lavoro degli sforzi interni, IL COLLASSO SI VERIFICA ED IL SISTEMA DI CARICHI RISULTA NON MINORE DEL VERO CARICO DI COLLASSO

ANALISI LIMITE: (CINEMATICO - U)

CINEMATICO - STATICO

FATTORE DI CAPACITA' PORTANTE N_a

IPOTESI:

$$\gamma'=0; \qquad c'=0$$

Ricordando che:
$$\frac{S'_1}{S'_2} = e^{2\vartheta \cdot tan(\varphi')}$$

Osservando che:
$$q = s'_2 (1 - sen\phi')$$
;

$$q_{lim} = s'_1 (1 + sen \phi'); \ \vartheta = \pi/2$$

$$q_{lim} = q' \cdot N_q;$$
 $N_q = \frac{1 + \text{sen}\phi'}{1 - \text{sen}\phi'} e^{\pi \tan \phi'}$

FATTORE DI CAPACITA' PORTANTE N_c

IPOTESI: $\gamma' = 0$

Teoremi degli stati corrispondenti (Caquot 1934);

$$q_{lim} + c'/\tan \phi' = N_q (q'+c'/\tan \phi')$$

 $q_{lim} = q'N_q + c'N_c;$ $N_c = (N_q - 1)/\tan \phi'$

FATTORE DI CAPACITA' PORTANTE N,

```
IPOTESI: q' = 0; c' = 0 

(AZIZI 2000): z_e = B \tan \phi'; q'_e = \gamma' B \tan \phi'

q_{lim} + q'_e = N_q q'_e; q_{lim} = \frac{1}{2} \gamma' B N_{\gamma}; N_{\gamma} = 2(N_q - 1) \cdot \tan \phi'
```


SOLUZIONE APPROSSIMATA DI TERZAGHI (1943)

IPOTESI:

- Fondazione nastriforme
- Attrito fondazione terreno
- carico baricentrico e verticale
- piani di posa e campagna orizzontali
- tratto BC = spirale logaritmica ($R = R_o e^{\theta \tan \phi'}$). Polo in A se $\gamma' = 0$. Se $\gamma' \neq 0$, ricerca per tentativi.

Equilibrio limite globale, sovrapposizione effetti: c', γ', q', ϕ'

Prof. Lo Presti GEOTECNICA

FORMULA GENERALE DI BRINCH-HANSEN (1970)

$$\begin{split} q_{lim} &= 0.5\gamma' \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma} + \\ &+ q' \cdot N_{q} \cdot s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q} + \\ &+ c' \cdot N_{c} \cdot s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c} \end{split}$$

$$N_q = \tan^2\left(45 + \frac{\varphi'}{2}\right) \exp(\pi \tan \varphi')$$

$$N_{\gamma} = 2(N_{q} + 1)\tan\varphi'$$

$$N_c = (N_q - 1)\cot \varphi'$$

FORMULA GENERALE DELLA CAPACITA' PORTANTE

$$N_{\gamma}, N_{q}, N_{c} = fattori di capacità portante = f(\phi')$$

$$s_{\gamma}, s_{q}, s_{c} = fattori di forma = f(\phi', L/B)$$

$$d_{\gamma}, d_{q}, d_{c} = fattori di profondità = f(\phi', z_{min}/B)$$

$$i_{\gamma}, i_{q}, i_{c}$$
 = fattori di inclinazione della risultante di carico = $f(\phi', H/N)$

$$b_{\gamma}, b_{q}, b_{c}$$
 = fattori di inclinazione della base della fondazione = $f(\phi', \alpha)$

$$g_{\gamma}, g_{q}, g_{c} =$$
 fattori di inclinazione della superficie del terreno = $f(\phi', \omega)$

CONCETTO DELL'AREA EFFICACE

B' L' = area efficace

B L = area della fondazione

$$B' = B - 21_1$$

$$L' = L - 21_2$$

Meyerhof, 1953

FONDAZIONE EFFETTIVA EQUIVALENTE

FATTORE DI FORMA

$$s_{\gamma} = 1 + 0.1 \cdot \frac{B}{L} \cdot \frac{1 + \sin \phi'}{1 - \sin \phi'}$$

$$S_q = S_{\gamma}$$

$$s_c = 1 + 0.2 \cdot \frac{B}{L} \cdot \frac{1 + \sin \phi'}{1 - \sin \phi'}$$

FATTORE DI PROFONDITA'

$$B \ge D$$
: $d_q = 1 + 2\frac{D}{B}\tan\varphi'(1 - \sin\varphi')^2$

$$B \ge D$$
: $d_q = 1 + 2 \tan \varphi' (1 - \sin \varphi')^2 \tan^{-1} \left(\frac{D}{B}\right)$

$$d_c = d_q - \frac{1 - d_q}{N_c \tan \varphi'}$$

$$d\gamma = 1$$

UTILIZZARE:

D_{min} per calcolare q' e d_q

D per calcolare q'

D₁ per calcolare d_q

FATTORE DI INCLINAZIONE

H=risultante delle forze orizzontali

N=risultante delle forze verticali

$$i_{\gamma} = \left[1 - \frac{H}{N + BLc'\cot\varphi'}\right]^{(m+1)}$$

$$i_q = \left[1 - \frac{H}{N + BLc \cot \varphi}\right]^m$$

$$i_c = i_q - \frac{1 - i_q}{N_c \tan \varphi'}$$

$$m = \frac{2 + B/L}{1 + B/L}$$

TESTI FATTORE DI INCLINAZIONE DELLA BASE DELLA FONDAZIONE

$$b_{q} = (1 - \alpha \tan \varphi')^{2} \cong b_{\gamma}$$

$$b_{c} = b_{q} - \frac{1 - b_{q}}{N_{c} \tan \varphi'}$$

FATTORE DI INCLINAZIONE DEL PIANO DI CAMPAGNA

$$g_{q} = (1 - \tan \varpi)^{2} \cong g_{\gamma}$$

$$g_{c} = g_{q} - \frac{1 - g_{q}}{N_{c} \tan \varphi'}$$

Prof. Lo Presti GEOTECNICA

GEOTECNICA

FORMULA DI BRINCH – HANSEN TERRENI COESIVI SATURI

$$\phi \mathbf{u} = \mathbf{0}^{\circ}$$

$$q_{lim} = c_u^{\star} \cdot N_c^o \cdot s_c^o \cdot d_c^o \cdot i_c^o \cdot b_c^o \cdot g_c^o + \sigma_{vo}$$

$$N_c^0 = \pi + 2 = 5.14$$

$$s_c^0 = 1 + 0.2 \frac{B}{I}$$

$$d_c^o = 1 + 0.4 \frac{D}{B}$$
 per $B \ge D$

$$d_c^0 = 1 + 0.4 \tan^{-1} \frac{D}{B}$$
 per $B < D$

$$i_c^0 = 1 - \frac{mH}{BLc_uN_c}$$
; $m = \frac{2 + B/L}{1 + B/L}$

$$b_c^o = 1 - \frac{2\alpha}{\pi + 2}$$
 ; $g_c^o = 1 - \frac{2\omega}{\pi + 2}$

(*) Valore medio mobilitato lungo la superficie di rottura

PRESSIONE AMMISSIBILE

TERRENI GRANULARI, CONDIZIONI DRENATE:

$$q_{amm} = \frac{q_{\lim}}{F_{s}}$$

$$2.5 \le F_s \le 4$$

TERRENI COESIVI, CONDIZIONI NON DRENATE:

$$q_{amm} = \frac{N_c c_u}{F_s} + \sigma_{v0}$$

$$2.5 \le F_s \le 4$$

Prof. Lo Presti

GEOTECNICA

PRESSIONE LIMITE NEL CASO DI TERRENI GRANULARI: ASPETTI PECULIARI

- Curvatura di inviluppo di rottura
- Rottura progressiva
- Dipendenza dell'angolo di resistenza al taglio dal livello di deformazione (picco – residuo)

Prof. Lo Presti

GEOTECNICA

CURVATURA DELL'INVILUPPO DI ROTTURA

- 1. Si assume una legge che descriva l'inviluppo;
- 2. Si assumono valori dei parametri che definiscono l'inviluppo considerato;
- 3. Si calcola un valore di primo tentativo di q_{lim};
- 4. Si stima il valore medio di σ_{ff} lungo la superficie di scorrimento mediante la seguente formula empirica (De Beer 1965):

$$\sigma'_{ff} = \frac{1}{4} (q_{\lim} + 3\sigma_{v0}) (1 - \sin\varphi'_{s})$$

- 5. Si calcola un nuovo valore di φ_s '= f (parametri, σ_{ff} ')
- 6. Si calcola un nuovo valore q_{lim} con il valore di ϕ_s ottenuto al punto precedente.

33