CENTER for DIGITAL SCHOLARSHIP

Incorporating Time into ArcGIS

Matthew L. Sisk

CLIR postdoctoral fellow in data curation and GIS services

Center for Digital Scholarship

Hesburgh Library, University of Notre Dame

library.nd.edu/cds/

Outline

- The Center for Digital Scholarship
- Brief review of GIS concepts
- Illustrating time on a map
- Temporal Data
 - Vector
 - Raster

Center for Digital Scholarship

- Center services:
 - Text Analysis
 - Research design
 - Data management
 - Statistic analysis
 - Geographic Information Services

What is GIS?

CENTER for DIGITAL SCHOLARSHIP

In short: "computerized mapping software" Formal definition

A Geographic Information System (GIS) is a computerized database management system for capture, storage, retrieval, manipulation, analysis and display of spatial (i.e. locationally defined) data

Layers

- A GIS is composed of layers of spatial information
- Can be different types of data
- Everything is referenced to a coordinate system
 - e.g. latitude / longitude

GIS digitally models the real world using:

CENTER for DIGITAL SCHOLARSHIP

Three types of geometry

- -Points
- -Lines
- -Areas

Cells in an image

Data tables

CENTER for DIGITAL SCHOLARSHIP

Raster Data
Based on pixel

Vector Data

Based on discrete points

Rasters

CENTER for SCHOLARSHIP

■ Shadow

Developed

Vectors

Attribute Data

Attribute Data

CENTER for DIGITAL

ObjectID	FIPS_CHT	GMI_CHT	CHTRY_NAME	POP_CNTRY	CURR_TYPE	CURR_C	LANDLO	SQKM	SQMI	Shape
393218	BF	BHS	The Bahamas	272209	Dollar	BSD	N	12163.91	4696.49	Polygon
458752	CS	CRI	Costa Rica	3319438	Colon	CRC	N	51286.8	19801.83	Polygon
458753	PM	PAN	Panama	2562045	Balboa	PAB	N	74445.89	28743.56	Polygon
524288	BH	BLZ	Belize	207586	Dollar	BZD	N	22166.04	8558.31	Polygon
524289	CJ	CYM	Cayman Is.	31777	Dollar	KYD	N	209.25	80.79	Polygon
524290	CU	CUB	Cuba	11102280	Peso	CUP	N	109495.2	42276.1	Polygon
524291	ES	SLV	El Salvador	5752470	Colon	SVC	N	20646.47	7971.6	Polygon
524292	но	HND	Honduras	5367067	Lempira	HNL	N	112618.31	43481.93	Polygon
524293	NU	NIC.	Nicaragua	4275103	Cordoba Oro	NIO	N	128594.63	49650.38	Polygon
589824	АА	ABW	Aruba	67074	Euro	EUR	N'	200.35	77.35	Polygon
589825	DR	DOM	Dominican Republic	7759957	Peso Oro	DOP	N	48516.99	18732.41	Polygon
589826	НА	HTI	Haiti	7044890	Gourde	HTG	N	27254.61	10523	Polygon
589827	JM	JAM	Jamaica	2407607	Dollar	JMD	N	11072.63	4275.14	Polygon
589828	NT	ANT	Netherlands Antilles	191572	Euro	EUR	N	791.72	305.68	Polygon
589829	TK	TCA	Turks & Caicos Is.	14512	US Dollar	USD	N	299.61	115.68	Polygon
655360	GY	GUY	Guyana	754931	Dollar	GYD	N	211507.8	81663.16	Polygon
655361	TD	TTO	Trinidad & Tobago	1292000	Dollar	TTD	N	5030.55	1942.29	Polygon
655362	VE	VEN	Venezuela	19857850	Bolivar	VEB	N'	914737.19	353180.03	Polygon
720896	AC	ATG	Antigua & Barbuda	65212	EC Dollar	XCD	N	538.66	207.98	Polygon
720897	MH	MSR	Montserrat	12771	EC Dollar	XCD	N	112.95	43.61	Polygon
786432	AV	AIA	Anguilla	9208	EC Dollar	XCD	N	91.57	35.36	Polygon
786433	VI	VGB	British Virgin Is.	18194	US Dollar	USD	N	115.74	44.69	Polygon
786434	RQ	PRI	Puerto Rico	3647931	US Dollar	USD	N	9176.41	3543.01	Polygon
786435	SC	KNA	St. Kitts & Nevis	42908	EC Dollar	XCD	N	196.24	75.77	Polygon

Figure 5.8
Introduction to Geospatial Technologies, Second Edition

© 2014 W. H. Freeman and Company

Illustrating time

- Adds an additional dimension to the map
 - Makes it even harder to represent

 Spatialtemporal Visualization: Techniques for representing time on a map

Illustrating time on a map

Single static map

• Specific graphic variables and symbols are used to indicate change or to represent an event. Figure 6.19(a) applies color tints to represent the age of the built-up areas;

Series of static maps

A single map in the series represents a 'snapshot' in time. Together, the maps depict a
process of change. Change is perceived by the succession of individual maps
depicting the situation in successive snapshots. It could be said that the temporal
sequence is represented by a spatial sequence, which the user has to follow, to
perceive the temporal variation. The number of images is, however, limited since it is
difficult for the human eye to follow long series of maps (Figure 6.19(b));

Animated map

 Change is perceived to happen in a single image by displaying several snapshots after each other just like a video cut with successive frames. The difference with the series of maps is that the variation is deduced not from a spatial sequence but from real 'change' in the image itself

Static Maps

Mount Mazama and Mount St. Helens Ash Fall

CENTER for DIGITAL

Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813 by Charles Minard, 1861

In 1861, Charles Joseph Minard, a French engineer created a flow map that graphed out the ill-fated march of 1812 by Napoleon's soldiers to and from Moscow during the brutal winter months. Shows the horrific morbidity of Napoleon's soldiers over time and space as they marched to Russia and then back to Poland.

The area (pink and black) is scaled to the size of the army

CENTER for

Time Series Maps

CENTER for DIGITAL

Presidental Elections 1928-2000

LARSHIP

Oregon Hoover _____64% Smith ____34% U.S. Hoover ____59% Smith ____41%

	Oregon	
	Roosevelt _	_ 58%
	Hoover	37%
1	Thomas	4%
j	U.S.	
	Roosevelt _	58%
1	Hoover	_40%
1	Thomas	2%

Oregon Roosevelt_ Landon	63% 29%
Lemke	5%
U.S.	
Roosevelt_	61%
Landon	37%
Lombo	2%

Oregon Roosevelt _ Wilkie	_ 53% _ 45%
U.S. Roosevelt_ Wilkie	_55% _46%

%
%
%
%

Oregon Truman Dewey Wallace	46% 49% 3%
U.S. Truman Dewey Thurmond _ Wallace	50% 45% 2% 2%

VERSITY OF TRE DAME ourgh Libraries

CENTER for DIGITAL SCHOLARSHI

Animated Maps

Time in ArcGIS

CENTER for DIGITAL SCHOLARSHIP

Hesburgh Libraries

- Vector: Time tools
 - Need to have repeated features
 - Not repeated fields
- Raster: NetCDF Tools
 - Each time is a different layer
 - Hard to process in ArcGIS
 - Other GIS packages are better
- For both types of data, can create animations or query particular times

Data Links

- Atlas of Historic County Boundaries
 - http://publications.newberry.org/ahcbp/

- National Historic Geographic Information System
 - https://www.nhgis.org/

- NOAA's Gridded Climate Datasets
 - http://www.esrl.noaa.gov/psd/data/gridded/

GIS resources in the library

- Center for Digital Scholarship
 - Bank of 8 computers with extensive GIS software
 - ESRI ArcGIS
 - DIVA-GIS
 - GRASS
 - Quantum GIS
 - Google Earth Professional
 - 42" sheet-feed map scanner
 - 8 baseline GPS units and 2 high-end data collectors

GIS resources in the library

- Staff
 - Matthew Sisk (CDS): General GIS questions, Data acquisition and management, Satellite imagery analysis
 - Milan Budhathoki (CRC): Industry GIS, Vector analysis, GIS Analysis

