Bool'sche Algebra Benjamin Tröster, HTW Berlin

Bool'sche Algebra

Fahrplan

Recap

Einleitung

Erfüllbarkeit & Äquivalenz

Beweisstrategien

Aussagenlogik

Definition (Aussagenlogik)

Aussagenlogik, als Teilgebiet der Logik, befasst sich mit Aussagen und der Verknüpfung von Aussagen mittels *Junktoren*.

- Junktoren sind logische Verknüpfungen
- Klassische Junktoren:
 - ▶ Negation $\neg P$
 - ▶ Implikation/Subjunktion/Konditional $P \Rightarrow Q$
 - ightharpoonup Äquivalenz/Bikonditional/Bisubjunktion $P \Leftrightarrow Q$
 - ► Konjunktion $P \land Q$
 - ▶ Disjunktion $P \lor Q$

[Rau08]

Bool'sche Algebra nach Huntington (Wichtig!)

Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge $\mathcal{V}:\{0,1\}$ mit den Verknüpfungen $\cdot(\wedge),+(\vee)$, sodass $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$, also $\{0,1\}\times\{0,1\}\to\{0,1\}$.

- ► Kommutativgesetze (K): $a \cdot b = b \cdot a$ bzw. a + b = b + a
- Distributivgesetze (D): $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ bzw. $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ▶ Neutrale Elemente (N): $\exists e, n \in \mathcal{V}$ mit $a \cdot e = a$ und a + n = a
- ▶ Inverse Elemente (I): $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

Darstellungen & Bool'sche Funktionen

► Wahrheitstabelle

а	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

▶ Algebraische Darstellung: $y = ((0 \land x) \lor (1 \lor x))$

Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
 - ► $(a \Rightarrow b)$ für $(\neg a \lor b)$ Implikation
 - ▶ $(a \Leftarrow b)$ für $(b \Rightarrow a)$ Inversion der Implikation
 - $ightharpoonup (a \Leftrightarrow b)$ für $(a \Rightarrow b) \land (a \Leftarrow b)$ Äquivalenz
 - ▶ $(a \oplus b) fr \neg (a \Leftrightarrow b Antivalenz oder Exklusiv-ODER/XOR)$
 - $ightharpoonup \neg (a \lor b) NOR$
 - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
 - ► ∧ bindet stärker als ∨
 - ▶ ¬ bindet stärker als ∧
 - → bindet starker als /
- Klammerung
 - Gleiche Verknüpfungen: linksassoziativ zusammengefasst

Beispiel

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

Beispiel

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$Y = (\neg a \land \neg b) \lor (a \land b)$$

- ► Erfüllbarkeit & Äquivalenz
- ▶ De Morgan Regeln
- Universelle Operatoren
- Beweisstrategien & Induktion Strukturelle Induktion
- Dualitätsprinzip
- Normalformen
- ▶ Bitweise logische Operationen, Bit-Maskierung
- Einführung Logikgatter

Erfüllbarkeit

Definition (Erfüllbarkeit)

Sei φ ein beliebiger boolescher Ausdruck. φ heißt

- erfüllbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 1$.
- ightharpoonup widerlegbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 0$.
- unerfüllbar, wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 0 ist.
- ightharpoonup allgemeingültig, wenn wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 1 ist.

Einen allgemeingültigen Ausdruck bezeichnen wir auch als Tautologie.

Erfüllbarkeit/Unerfüllbar/Allgemeingültig

- $\phi = \neg x$
- $ightharpoonup \neg (x \land \neg x)$

Äquivalenz

Definition (Äquivalenz)

Zwei bool'sche Ausdrücke φ und ψ sind äquivalent, falls sie dieselbe Funktion repräsentieren. In anderen Worten: φ und ψ sind genau dann äquivalent, wenn für alle Variablenbelegungen x_1, \ldots, x_n die folgende Beziehung gilt:

$$\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n)=\psi(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

D.h. Zwei bool'sche Ausdrücke ϕ und ψ sind genau dann äquivalent, wenn der Ausdruck $\varphi \Leftrightarrow \psi$ eine Tautologie ist.

Mithilfe von Wahrheitstafeln, algebraischer Umformung oder durch erzeugen einer Normalform können wir die Äquivalenz feststellen.

Beweisstrategien

- Direkter Beweis
 - ▶ Annahme: A ist allgemeingültig, durch richtiges Schließen: $A \Rightarrow B$
- ► Indirekter Beweis:
 - Annahme das Aussage korrekt, durch Negation der Annahme muss der Schluss falsch sein
- ► Vollständige Induktion
 - ightharpoonup Beweise für Aussagen über die natürlichen Zahlen $\mathbb N$
 - ▶ Basierend auf den Peano-Axiomen für N

Beweisregeln

- Abtrennungsregel
- ► Fallunterscheidung
- Kettenschluss
- Indirekter Beweis
 - ▶ Sind $A \Rightarrow B$ und $A \Rightarrow \neg B$ allgemeingültig, so ist $\neg A$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land (A \Rightarrow (\neg B))) \Rightarrow (\neg A)$
- ► Kontraposition: Ist $A \Rightarrow B$ allgemeingültig, so ist $(\neg B) \Rightarrow (\neg A)$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $(A \Rightarrow B) \Rightarrow ((\neg B) \Rightarrow (\neg A)).$

Vollständige Induktion

- ▶ Drei Teile:
 - ► Induktionsanfang (IA) & Induktionsannahme
 - ► Induktionsschritt (IS)
 - ► Induktionsschluss

Beispiel: Vollständige Induktion

Theorem

$$\forall n (n \in \mathbb{N}_0 \to 2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

Beweis.

Prädikat:
$$\varphi(n) \equiv (2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

- 1. Induktions an fang (IA): $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt (IS):

$$\varphi(n) \Rightarrow \varphi(n^{+})$$

$$2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1} = 2^{(n+1)+1} - 1$$
Anm.: $2^{0} + 2^{1} + \dots + 2^{n} = 2^{n+1} - 1$

$$\Leftrightarrow 2^{n+1} - 1 + 2^{n+1} = 2^{(n+1)+1} - 1$$
Anm.: $a^{n} + a^{m} = 2^{n+m}$

$$\Leftrightarrow 2^{n+2} - 1 = 2^{(n+2)} - 1\sqrt{n}$$

Beweis.

Prädikat:
$$\varphi(\mathbf{n}) \equiv (2^0 + 2^1 + \dots 2^{\mathbf{n}} = 2^{\mathbf{n}+1} - 1)$$

- 1. Induktionsanfang: $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt:

$$\varphi(n) \Rightarrow \varphi(n^{+})$$

$$2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+1} - 1 + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+2} - 1 = 2^{(n+2)} - 1$$

3. Induktionsschluss:

nach IA und IS
$$\Rightarrow \varphi(n)(\forall n(\varphi(n)))$$

Strukturelle Induktion

► Vollständige Induktion ist eine Spezialfall der strukturellen Induktion

Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli).
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

Quellen II

Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.