

Meng-Gen Tsai plover@gmail.com

July 17, 2021

Contents

Exercise I.1.4. Exercise I.1.5. I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4.	Exercise I.1.4. Exercise I.1.5. I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) Exercise VII: Zeta Functions and L-series	Exercise I.1.5. I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) napter VII: Zeta Functions and L-series	I.1. The G	aussian l	Integ	gei	s.																				
Exercise I.1.5	Exercise I.1.5. I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) Lapter VII: Zeta Functions and L-series	Exercise I.2.7. (Stickelberger's discriminant relation)	Exerc	ise I.1.1.																							
I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4.	I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) Lapter VII: Zeta Functions and L-series	I.2. Integrality Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) napter VII: Zeta Functions and L-series	Exerc	ise I.1.4.																							
Exercise I.2.1	Exercise I.2.1. Exercise I.2.2. Exercise I.2.3. Exercise I.2.4. Exercise I.2.7. (Stickelberger's discriminant relation) Lapter VII: Zeta Functions and L-series	Exercise I.2.1	Exerc	ise I.1.5.																							
Exercise I.2.2	Exercise I.2.2	Exercise I.2.2	I.2. Integra	ality																							
Exercise I.2.3	Exercise I.2.3	Exercise I.2.3	Exerc	ise I.2.1.																							
Exercise I.2.4	Exercise I.2.4	Exercise I.2.4	Exerc	ise I.2.2.																							
	Exercise I.2.7. (Stickelberger's discriminant relation)	Exercise I.2.7. (Stickelberger's discriminant relation) napter VII: Zeta Functions and L -series	Exerc	ise I.2.3.																							
Exercise I.2.7. (Stickelberger's discriminant relation)	hapter VII: Zeta Functions and L -series	hapter VII: Zeta Functions and L -series	Exerc	ise I.2.4.																							
	1	•	Exerc	ise I.2.7.	(St	icl	кel	be	rg	er	$^{\prime}\mathrm{s}$	di	sci	in	ni	na	nt	t 1	rel	lat	tic	n)				
hapter VII: Zeta Functions and L-series	-	•			`												nt	t 1	rel	lat	tic	n)	•	•	•	

Chapter I: Algebraic Integers

I.1. The Gaussian Integers

Exercise I.1.1.

 $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise I.1.4.

Show that the ring $\mathbb{Z}[i]$ cannot be ordered.

Proof. Similar to the fact that i cannot be ordered in \mathbb{C} . Thus i cannot be ordered in $\mathbb{Z}[i]$ either. \square

Exercise I.1.5.

Show that the only units of the ring $\mathbb{Z}[\sqrt{-d}] = \mathbb{Z} + \mathbb{Z}\sqrt{-d}$, for any rational integer d > 1, are ± 1 .

Proof.

(1) Define the norm N on $\mathbb{Z}[\sqrt{-d}]$ by

$$N(x + y\sqrt{-d}) = (x + y\sqrt{-d})(x - y\sqrt{-d}) = x^2 + y^2d,$$

i.e., by $N(z) = |z|^2$. It is multiplicative.

(2) Similar to Exercise I.1.1,

$$x+y\sqrt{-d}\in\mathbb{Z}[\sqrt{-d}]$$
 is a unit $\Longleftrightarrow N(x+y\sqrt{-d})=x^2+y^2d=1$ $\iff x^2=1$ and $y=0$ $\iff x=\pm 1$ and $y=0$.

Hence the only units of the ring $\mathbb{Z}[\sqrt{-d}]$ are ± 1 (d > 1).

I.2. Integrality

Exercise I.2.1.

Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ an algebraic integer?

Proof.

- (1) $\alpha := \frac{3+2\sqrt{6}}{1-\sqrt{6}} = -3-\sqrt{6}$. Since the set of all algebraic integers is a ring, α is an algebraic integer.
- (2) Or show that α satisfies a monic equation $x^2 + 6x + 3 = 0 \in \mathbb{Z}[x]$.

Exercise I.2.2.

Show that, if the integral domain A is integrally closed, then so is the polynomial ring A[t].

Proof.

(1) Suppose A is integrally closed in B. Show that A[t] is integrally closed in B[t]. Suppose $f \in B[t]$ is integral over A[t]. Write

$$f^{n} + g_{1}f^{n-1} + \dots + g_{n-1}f + g_{n} = 0$$

where n > 0 and $g_i \in A[t]$. Hence

$$f^{n} + g_{1}f^{n-1} + \dots + g_{n-1}f = -g_{n} \in A[t]$$

$$\Longrightarrow f(\underbrace{f^{n-1} + g_{1}f^{n-1} + \dots + g_{n-1}}_{:=q}) \in A[t].$$

It is possible to show that $fg \in A[t]$ implies that $f \in A[t]$ and $g \in A[t]$ by using the fact that A is integrally closed in B.

(2) Suppose f, g are monic polynomials in B[t]. Show that $fg \in A[t]$ implies that $f \in A[t]$ and $g \in A[t]$. Write

$$f = \prod (t - \xi_i), \qquad g = \prod (t - \eta_j)$$

in some splitting field F of f and g containing the quotient field of B. Note that each ξ_i and each η_j is a root of a monic equation fg in A[t]. Since A is integrally closed in B, ξ_i , $\eta_j \in A$. Hence $f, g \in A[t]$.

(3) To apply part (2), we need to remedy leading coefficients of f and g_n . Take an integer $m > \max\{\deg(f), \deg(g_1), \ldots, \deg(g_n)\}$. Let $f_0 = t^m + f$ be a monic polynomial in B[t]. Hence

$$(f_0 - t^m)^n + g_1(f_0 - t^m)^{n-1} + \dots + g_n = 0$$

$$\Longrightarrow f_0^n + h_1 f_0^{n-1} + \dots + h_n = 0$$

where

$$h_n = t^{mn} + (-1)^{n-1}g_1t^{m(n-1)} + \dots + g_n \in A[t]$$

is also monic. So

$$f_0^n + h_1 f_0^{n-1} + \dots + h_{n-1} f = -h_n \text{ is monic in } A[t]$$

$$\Longrightarrow f_0(\underbrace{f_0^{n-1} + h_1 f^{n-1} + \dots + h_{n-1}}_{:=h_0}) \in A[t] \text{ where}$$

 f_0 and h_0 both are monic in B[t].

Now we can apply part (2) safely.

Exercise I.2.3.

In the polynomial ring $A = \mathbb{Q}[x,y]$, consider the principal ideal $\mathfrak{p} = (x^2 - y^3)$. Show that \mathfrak{p} is a prime ideal, but A/\mathfrak{p} is not integrally closed.

Proof.

- (1) It is easy to show that $x^2 y^3$ is irreducible in A. Hence $\mathfrak{p} = (x^2 y^3)$ is prime since A is a UFD.
- (2) By substituting $x=t^3$, $y=t^2$, $A/\mathfrak{p}\cong \mathbb{Q}[t^3,t^2]$, with quotient field $\mathbb{Q}(t)$ (by noting $t=\frac{x}{y}$). Note that $\mathbb{Q}[t]$ is a UFD, thus is already integrally closed. So the integral closure will be $\mathbb{Q}[t]\supsetneq \mathbb{Q}[t^3,t^2]$. It suggests that A/\mathfrak{p} might not be integrally closed.
- (3) (Reductio ad absurdum) If not, then the element $\frac{x}{y}$ satisfies a monic equation $t^2-y=0\in (A/\mathfrak{p})[t].$ $\frac{x}{y}\in A/\mathfrak{p}$ or $t\in \mathbb{Q}[t^3,t^2]$, which is absurd.

Note.

- (1) Serre's criterion for normality.
- (2) Hence smoothness is the same as normality for affine curves in $\mathbb{Q}[x,y]$. Note that $x^2 - y^3$ is an irreducible cubic with a cusp at the origin (0,0).
- (3) There is an affine variety $X \in \mathbb{Q}[x,y,z]$ such that X is normal but not smooth. $(X = V(x^2 + y^2 z^2)$ for example.)

Exercise I.2.4.

Let D be a squarefree rational integer $\neq 0,1$ and d the discriminant of the quadratic number field $K = \mathbb{Q}(\sqrt{D})$. Show that

$$d = \begin{cases} D & \text{if } D \equiv 1 \pmod{4}, \\ 4D & \text{if } D \equiv 2, 3 \pmod{4}. \end{cases}$$

and that an integral basis of K is given by $\{1, \sqrt{D}\}$ in the second case, by $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ in the first case, and by $\left\{1, \frac{d+\sqrt{d}}{2}\right\}$ in both case.

Proof.

- (1) The Galois group of $K|\mathbb{Q}$ has two elements, the identity and an automorphism sending \sqrt{D} to $-\sqrt{D}$.
- (2) Note that $\alpha \in \mathcal{O}_K$ iff $\operatorname{Tr}_{K|\mathbb{Q}}(\alpha), N_{K|\mathbb{Q}}(\alpha) \in \mathbb{Z}$ (by noting that the equation $x^2 \operatorname{Tr}_{K|\mathbb{Q}}(\alpha)x + N_{K|\mathbb{Q}}(\alpha) = 0$ has a root $x = \alpha$). So given $\alpha = x + y\sqrt{D} \in \mathcal{O}_K$, we have

$$\operatorname{Tr}_{K|\mathbb{Q}}(\alpha) = 2x \in \mathbb{Z},$$

 $N_{K|\mathbb{Q}}(\alpha) = x^2 - Dy^2 \in \mathbb{Z}.$

(3) So $4(x^2-Dy^2)=(2x)^2-D(2y)^2\in\mathbb{Z}$. So $D(2y)^2\in\mathbb{Z}$ since $2x\in\mathbb{Z}$. So $2y\in\mathbb{Z}$ since D is squarefree $\neq 0,1$. Let r=2x,s=2y. Then $r^2-Ds^2\equiv 0\pmod 4$. Note that a square $\equiv 0,1\pmod 4$.

(4) If
$$D \equiv 1 \pmod{4}$$
, then
$$r^{2} - Ds^{2} \equiv r^{2} - s^{2} \pmod{4}$$

$$\Rightarrow r \text{ and } s \text{ has the same parity}$$

$$\Rightarrow \mathcal{O}_{K} = \left\{ \frac{r + s\sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_{K} = \left\{ \frac{r - s}{2} + s \cdot \frac{1 + \sqrt{D}}{2} : r \equiv s \pmod{2} \right\}$$

$$\Rightarrow \mathcal{O}_{K} = \mathbb{Z} + \mathbb{Z} \frac{1 + \sqrt{D}}{2}.$$

So $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \frac{1+\sqrt{D}}{2} \\ 1 & \frac{1-\sqrt{D}}{2} \end{vmatrix}^2 = D.$$

(5) If $D \equiv 2, 3 \pmod{4}$, then $r^2 - Ds^2 \equiv r^2 + 2s^2 \text{ or } r^2 + s^2 \pmod{4}$ $\Longrightarrow \text{both } r \text{ and } s \text{ are even}$ $\Longrightarrow \text{both } x \text{ and } y \text{ are rational integers}$ $\Longrightarrow \mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{D}.$

So $\{1, \sqrt{D}\}$ is an integral basis of K. Hence

$$d = \begin{vmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{vmatrix}^2 = 4D.$$

(6) By (4)(5), $\left\{1, \frac{d+\sqrt{d}}{2}\right\}$ is an integral basis of K for any case.

Exercise I.2.7. (Stickelberger's discriminant relation)

The discriminant d_K of an algebraic number field K is always $\equiv 0 \pmod{4}$ or $\equiv 1 \pmod{4}$. (Hint: The discriminant $\det(\sigma_i \omega_j)$ of an integral basis ω_j is a sum of terms, each prefixed by a positive or a negative sign. Writing P (resp. N) for the sum of the positive (resp. negative) terms, one find $d_K = (P - N)^2 = (P + N)^2 - 4PN$.)

Proof (Hint).

(1) Let S_n be the symmetric group of degree n, and A_n be the alternating group of degree n. So

$$\det(\sigma_i \omega_j) = \sum_{\pi \in S_n} \left(\operatorname{sgn}(\pi) \prod_{i=1}^n \sigma_i \omega_{\pi(i)} \right)$$
$$= \sum_{\substack{\pi \in A_n \text{ } i=1 \\ :=P}} \prod_{i=1}^n \sigma_i \omega_{\pi(i)} - \sum_{\substack{\pi \in S_n - A_n \text{ } i=1 \\ :=N}} \prod_{i=1}^n \sigma_i \omega_{\pi(i)}.$$

- (2) Note that $\sigma_i(P+N)=P+N$ and $\sigma_i(PN)=PN$ for all σ_i . Hence $P+N, PN \in \mathbb{Q}$. Therefore $P+N, PN \in \mathbb{Q} \cap \mathcal{O}_K=\mathbb{Z}$.
- (3) By (1)(2),

$$d_K = \det(\sigma_i \omega_j)^2$$

$$= (P - N)^2$$

$$= (P + N)^2 - 4PN$$

$$\equiv 0, 1 \pmod{4}.$$

Chapter VII: Zeta Functions and L-series

VII.1. The Riemann Zeta Function

Exercise VII.1.4.

For the power sum

$$s_k(n) = 1^k + 2^k + 3^k + \dots + n^k$$

one has

$$s_k(n) = \frac{1}{k+1}(B_{k+1}(n) - B_{k+1}(0)).$$

Proof. By Exercise VII.1.3,

$$x^{k} = \frac{1}{k+1}(B_{k+1}(x) - B_{k+1}(x-1)).$$

Hence the telescoping sum is

$$s_k(n) = \sum_{x=1}^n x^k$$

$$= \sum_{x=1}^n \frac{1}{k+1} (B_{k+1}(x) - B_{k+1}(x-1))$$

$$= \frac{1}{k+1} (B_{k+1}(n) - B_{k+1}(0)).$$