3602. Функцию e^{x+y} разложить в степенной ряд по целым положительным степеням биномов x-1 и y+1.

3603. Написать разложение в ряд Тейлора функции $f(x, y) = \frac{x}{B}$ окрестности точки M(1, 1).

3604. Пусть z — та неявная функция от x и y, определяемая уравнением $z^3-2xz+y=0$, которая при x = 1 и y = 1 принимает значение z = 1.

Написать несколько членов разложения функции з по возрастающим степеням биномов x-1 и y-1.

Изучить типы особых точек следующих кривых и

примерно изобразить эти кривые:

3605. $y^2 = ax^2 + x^3$. 3606. $x^3 + y^3 - 3xy = 0$. 3607. $x^2 + y^2 = x^4 + y^4$. 3608. $x^2 + y^4 = x^4$. 3609. $(x^2 + y^2)^2 = a^2(x^2 - y^2)$. 3610. $(y - x^2)^2 = x^3$.

3611. $(a + x) y^2 = (a - x) x^2$.

3612. Изучить форму кривой $y^2 = (x-a)(x-b) \times$ $\times (x-c)$ в зависимости от значений параметров a, b, o $(a \leq b \leq c)$.

Исследовать особые точки трансцендентных кривых:

3613.
$$y^2 = 1 - e^{-x^2}$$
. 3614. $y^2 = 1 - e^{-x^3}$. 3615. $y = x \ln x$.

$$3616. \ \ y = \frac{x}{1 + e^{1/x}} \ .$$

3617.
$$y = \arctan\left(\frac{1}{\sin x}\right)$$
. 3618. $y^2 = \sin\frac{\pi}{x}$.

3619.
$$y^2 = \sin x^2$$
. 3620. $y^2 = \sin^3 x$.

§ 7. Экстремум функции нескольких переменных

1°. Определение экстремума. Пусть функция $f(P) = f(x_1, \dots, x_n)$ определена в окрестности точки P_0 . Если или $f(P_0) > f(P)$, или $f(P_0) < f(P)$ при $0 < \rho(P_0, P) < \delta$, то говорят, что функция f(P) имеет строгий экстремум (соответственно максимум нли минимум) в точке Ро.

 2° . Необходимое условие экстремума. Дифференцируемая функция $f_{\bullet}(P)$ может достигать экстремума лишь в стационарной точке P_{\bullet} , т. е. такой, что $df_{\bullet}(P_{\bullet})=0$. Следовательно, точки экстремума функции f(P) удовлетворяют системе уравнений $f_{x_i}(x_1, \ldots, x_n) = 0$ $(i = 1, \ldots, n)$.

3°. Достаточное условие экстремума. Функция f(P) в точке P_0 имеет:

а) максимум, если $d_i^*(P_0) = 0$, $d_i^*(P_0) < 0$, при $\sum_{i=1}^{n} |dx_i| \neq 0$, и