4.7
Monoids, Functors and Monads

Updated: 2021-03-08

© 2015 Robin Hillyard

Monoids, Functors and Monads

- These terms come from category theory. But really, their definitions as far as Scala is concerned are quite simple:
 - for instance, a monoid is just the type of thing we were getting at with our List.x2 method (a.k.a sum)—where List's underlying type must be a monoid:
 - something that can be operated on dyadic-ally and something which has a "zero" (identity) value:

```
def sum: A = {
    @tailrec def inner(as: List[A], x: A): A = as match {
    case Nil => x
    case Cons(hd,tl) => inner(tl,x++hd)
    }
    inner(this,0)
}
```

 You don't really need to remember all this stuff. I will review what's important at the end.

Monoids

- A monoid consists of the following:
 - a type A
 - an associative binary operation, op, that takes two values of type A and combines them into one such that:

```
op(op(x,y),z) == op(x,op(y,z))
for any x: A, y: A, z: A.
```

- an "identity" (zero) value: identity: A that is an identity for op, i.e.
 op(x,identity) == x for any x: A.
- For example:

```
trait Monoid[A] {
  def op(a1: A, a2: A): A
  def identity: A
}
object Monoid {
  val stringMonoid = new Monoid[String] {
    def op(a1: String, a2: String) = a1 + a2
    val identity = ""
  }
  def listMonoid[A] = new Monoid[List[A]] {
    def op(a1: List[A], a2: List[A]) = a1 ++ a2
    val identity = Nil
  }
}
```

Monoids (2)

• There are two important functions on collections that we met briefly in Recursion: *foldRight* and *foldLeft*:

```
def foldLeft[A,B](z: B)(fl: (B, A) => B): B
def foldRight[A,B](z: B)(fr: (A, B) => B): B
```

- These methods are equivalent providing that fl and fr are associative—
 they simply work through a container in different directions—but only
 foldLeft is tail-recursive for List so we'll concentrate on that.
- Here's foldLeft implemented for our own List class from week 2:

```
case class Cons[A](h: A, t: List[A]) extends List[A] {
   def foldLeft[B](z: B)(f: (B, A) => B): B = t.foldLeft(f(z,h))(f)
}

case object Nil extends List[Nothing] {
   def foldLeft[B](z: B)(f: (B, Nothing) => B): B = z
}

Let's reimplement sum on List in terms of foldLeft...
   def sum[B](xs: List[A]): B = xs.foldLeft(B.zero)(B.plus)
```

 Just one snag: B.zero and B.plus are not defined. But if, for any B, zero and plus were defined we'd be all set.

Monoids (2a)

We can do it with implicits (and we can keep B the same as A)...

```
def sum[A: Numeric](xs: List[A]): A = {
   val an = implicitly[Numeric[A]]
   xs.foldLeft(an.zero)(an.plus)
}
```

Monoids (3)

 Let's go back to our stringMonoid and create an intMonoid too (we'll also make op explicit as plus):

```
object Monoid {
  val stringMonoid = new Monoid[String] {
    def plus(a1: String, a2: String) = a1 + a2
    val zero = ""
  }
  def intMonoid[A] = new Monoid[Int] {
    def plus(a1: Int, a2: Int) = a1 + a2
    val zero = 0
  }
}
```

So we would have:

```
def sum[B]: B = foldLeft(intMonoid.zero)(intMonoid.plus(_,_))
```

Therefore, in general, a Monoid is something that is foldable. We could make this
explicit by defining the following type constructor:

```
trait Foldable[F[_]] extends Functor[F] {
  def foldLeft[A,B](z: B)(f: (B, A) => B): B
  def foldRight[A,B](z: B)(f: (A, B) => B): B

def foldableList[A] = new Foldable[List] {
  def map[A,B](as: List[A])(f: A => B): List[B] = as map f
  def foldLeft[A,B](z: B)(f: (B, A) => B): B = ??? // tail recursive
  def foldRight[A,B](z: B)(f: (A, B) => B): B = ??? // NOT tail recursive
}
```

Functors

- Functor is another term from category theory:
 - a functor is just a mapping between two categories (or types in Scala):

```
trait List[+A] { def map[B](f: A=>B): List[B] }
trait Option[+A] { def map[B](f: A=>B): Option[B] }
trait LazyList[+A] { def map[B](f: A=>B): LazyList[B] }
etc. etc. etc.
```

- Notice anything?
 - All the definitions are identical—only the implementations differ.
 - Repetitive code like this is anathema to functional programmers!
 - Let's define a functor trait:

```
trait Functor[F[_]] {
   def map[A, B](fa: F[A])(f: A => B): F[B]
}
object Functor {
   def listFunctor = new Functor[List] {
     def map[A,B](as: List[A])(f: A => B): List[B] = as map f
   }
}
```

Monads

- Monad also comes from category theory. You've heard me mention monads already:
 - A Monad isa Functor (i.e. it implements map):

```
trait List[+A] { def map[B](f: A=>B): List[B] }
trait Option[+A] { def map[B](f: A=>B): Option[B] }
trait LazyList[+A] { def map[B](f: A=>B): LazyList[B] }
etc. etc. etc.
```

 Remember how map2 was basically identical for several different container types? These were all monads! So let's define map2 once and for all...

```
trait Monad[F[_]] extends Functor[F] {
  def map2[A,B,C](ma: F[A], mb: F[B])(f: (A,B)=>C): F[C] =
    flatMap(ma)(a => map(mb)(b => f(a,b)))
}
```

 But flatMap isn't defined: (Except that since this definition is the canonical definition of map2 and we are essentially defining monad as things which support map2, ergo Monad must define flatMap too:

```
trait Monad[F[_]] extends Functor[F] {
  def flatMap[A,B](ma: F[A])(f: A=>F[B]): F[B]
  def map2[A,B,C](ma: F[A], mb: F[B])(f: (A,B)=>C): F[C] =
    flatMap(ma)(a => map(mb)(b => f(a,b)))
}
```

Monads (2)

 Actually, there's a certain flexibility in exactly how we define the primitive methods of *Monad*. Let's think about *map*. If we had a method *unit* which took a value and simply wrapped it (like a single-element *List*) then we could actually write *map* in terms of *flatMap*:

In this definition of *Monad*, *unit* and *flatMap* are abstract methods—they must be defined by implementers of *Monad*. The other two methods are concrete methods defined in terms of the first two.

- So, unit+flatMap is one possible form.
- But why do we care about all this stuff? Because of composability.

Monads (3)

- Articles which (try to) explain monads:
 - https://medium.com/@lettier/your-easy-guide-to-monadsapplicatives-functors-862048d61610
 - https://medium.com/@sinisalouc/demystifying-the-monad-in-scalacc716bb6f534
 - https://medium.com/@yuriigorbylov/monads-and-why-do-they-matter-9a285862e8b4
 - https://medium.com/zendesk-engineering/dont-fear-the-monadf424260f29f6
 - https://medium.com/@evinsellin/teaching-monads-slightlydifferently-2af62c4af8ce

Review: what do you need to remember?

- A type that implements map is a functor.
- A monad is a functor but not all functors are monads.
- For-comprehensions work on monads.
- The reduce method works when the underlying type is a monoid.
- Any type which defines both map and flatMap is a monad—you don't have to declare it explicitly as a monad!
- map can be defined as flatMap(a => unit(f(a)))