

Aufgabe 2
Tim Neutze
5578777
Lorenzo Tecchia
5581906
2023.05.19

Contents

_	Task 1	4
	1.1 c)	
	1.2 d)	4
2	Task2	5
	2.1 a)	5
	2.2 b)	
	2.3 c)	6
3	Task 3	7
4	Task 5	8

List of Figures

Task 1

1.1 c)

1.2 d)

Task2

2.1 a)

If we chose the machine M as follows:

$$M = (q_0, \emptyset, \delta, q_0, q_0)$$

Then it can be proved that the only language accepted by a machine which has only the start state is the empty string ϵ . So the second machine would have as complement language

$$\Sigma^* \backslash \epsilon \to \epsilon \backslash \epsilon = \emptyset$$

remembering that $\emptyset^* = \epsilon$.

So this would mean that the machine M' would be something similar to this.

Thus meaning that no language could be accepted by this machine.

2.2 b)

2.3 c)

Task 3

Task 5