

INSTALLATION AND OPERATION

USER MANUAL

WWW.UNICORECOMM.COM

# UM982

BDS/GPS/GLONASS/Galileo/QZSS

全系统全频高精度定位定向模块



# 修订记录

| 修订版  | 修订记录                            | 日期         |
|------|---------------------------------|------------|
| R1.0 | 首次发布                            | 2022-05-19 |
|      | 表 2-1: 不使用热启动功能时,V_BCKP 需接 VCC; |            |
|      | 第 3.3 章:新增对 V_BCKP 上下电的要求;      |            |
| R1.1 | 新增第 3.1 小节:最小系统推荐设计;            | 2022-09-09 |
| KI.I | 表 2-4: 更新 IO 阈值;                |            |
|      | 第 5.2 章: 更新湿度卡描述;               |            |
|      | 表 1-1: 更新定向精度(0.1 度/1m 基线)      |            |
|      | 添加第 3.5 章 PCB 封装推荐设计;           |            |
| R1.2 | 优化第 3.2 章外部天线馈电设计;              | 2023-04    |
|      | 优化第 3.3 章模块上电与下电;               |            |
| R1.3 | 添加 PPP 精度指标                     | 2023-09    |

### 权利声明

本手册提供和芯星通科技(北京)有限公司(以下简称为"和芯星通")相应型号产品信息。

和芯星通保留本手册文档,及其所载之所有数据、设计、布局图等信息的一切权利、权益,包括但不限于已有著作权、专利权、商标权等知识产权,可以整体、部分或以不同排列组合形式进行专利权、商标权、著作权授予或登记申请的权利,以及将来可能被授予或获批登记的知识产权。

和芯星通拥有"和芯星通"、"UNICORECOMM"以及本手册下相应产品所属系列名称的注册商标专用权。

本手册之整体或其中任一部分,并未以明示、暗示、禁止反言或其他任何形式对和芯星通拥有的上述权利、权益进行整体或部分的转让、许可授予。

#### **UM982 User Manual**

### 免责声明

本手册所载信息,系根据手册更新之时所知相应型号产品情形的"原样"提供,对上述信息适于特定目的、用途之准确性、可靠性、正确性等,和芯星通不作任何保证或承诺。

和芯星通可能对产品规格、描述、参数、使用等相关事项进行修改,或一经发现手册误载信息后进行勘误,上述情形可能造成订购产品实际信息与本手册所载信息有差异。

如您发现订购产品的信息与本手册所载信息之间存有不符,请您与本公司或当地经销商联系,以获取最新的产品手册或其勘误表。



# 前言

本手册为用户提供有关和芯星通 UM982 模块的硬件组成信息。

# 适用读者

本手册适用于对 GNSS 模块有一定了解的技术人员使用。

### **UM982 User Manual**

# 目录

| 1 | 产品    | 尚介            | 1    |
|---|-------|---------------|------|
|   | 1.1   | 产品主要特点        | 2    |
|   | 1.2   | 技术指标          | 2    |
|   | 1.3   | 模块概览          | 5    |
| 2 | 硬件    | -介绍           | 6    |
|   | 2.1   | 引脚功能描述(图)     | 6    |
|   | 2.2   | 电气特性          | 9    |
|   | 2.2.  | I 最大耐受值       | 9    |
|   | 2.2.2 | 2 工作条件        | 9    |
|   | 2.2.3 | 3 IO 阈值特性     | 10   |
|   | 2.2.4 | 4 天线特性        | 10   |
|   | 2.3   | 机械尺寸          | . 10 |
| 3 | 硬件    | -设计           | .12  |
|   | 3.1   | 最小系统推荐设计      | . 12 |
|   | 3.2   | 外部天线馈电设计      | . 13 |
|   | 3.3   | 模块上电与下电       | . 14 |
|   | 3.4   | 接地与散热         | . 14 |
|   | 3.5   | PCB 封装推荐设计    | . 15 |
| 4 | 生产    | 要求            | .16  |
| 5 | 包装    | <u> </u>      | .17  |
|   | 5.1   | 标签说明          | . 17 |
|   | 5.2   | 句 <b>生</b> 说阳 | 17   |



# 1 产品简介

UM982 是和芯星通自主研发的新一代 BDS/GPS/GLONASS/Galileo/QZSS 全系统全频高精度定位定向模组,基于和芯星通自主研发的新一代高精度高性能 GNSS 芯片 — Nebulas IV™设计,主要面向无人机、割草机、精准农业及智能驾考等领域,支持全系统全频点片上 RTK 定位及双天线定向解算,可作为移动站或基站使用。

UM982 可同时跟踪 BDS B1I、B2I、B3I,GPS L1、L2、L5,GLONASS G1、G2,Galileo E1、E5a、E5b,QZSS L1、L2、L5 等多频点信号,支持多系统联合定位和单系统独立定位 模式,用户可灵活配置。UM982 内置先进的抗干扰单元,即使在复杂电磁环境下仍可保证可靠准确的定位精度。

UM982 基于和芯星通 NebulasIV™新一代射频基带一体化 GNSS SoC 芯片,内置双核CPU,并集成高速浮点处理器及 RTK 专用协处理器,采用 22nm 低功耗工艺,支持 1408 个超级通道,可提供更为强大的卫星导航信号处理能力。

UM982 支持丰富的通信接口,包括 UART、l<sup>2</sup>C<sup>\*</sup>、SPI<sup>\*</sup>。此外,还支持 1PPS、EVENT、CAN<sup>\*</sup>等接口,可满足用户在不同场景下的使用需求。



图 1-1 UM982 高精度定位定向模块示意图

<sup>\*</sup> I<sup>2</sup>C、SPI、CAN 为预留接口,暂不支持

# 1.1 产品主要特点

- 16 mm x 21 mm x 2.6 mm 表面贴装
- 支持全系统全频点片上 RTK 定位及双天线定向解算
- 支持 BDS B1I/B2I/B3I + GPS L1/L2/L5 + GLONASS G1/G2 + Galileo E1/E5a/E5b + QZSS L1/L2/L5 + SBAS
- Dual-RTK 双 RTK 引擎技术
- 差分输入 RTCM 格式自适应识别
- 双天线输入
- 支持 3 x UART, 1 x I<sup>2</sup>C<sup>\*</sup>, I x SPI<sup>\*</sup>, 1 x CAN<sup>\*</sup>

# 1.2 技术指标

#### 表 1-1 技术指标

| 基本信息  |                              |
|-------|------------------------------|
| 通道    | 1408 通道,基于 NebulasIV™        |
| 星座    | BDS/GPS/GLONASS/Galileo/QZSS |
|       | BDS: B1I、B2I、B3I             |
|       | GPS: L1C/A、L2P (Y)/L2C、L5    |
| 主天线频点 | GLONASS: G1、G2               |
|       | Galileo: E1、E5a、E5b          |
|       | QZSS: L1、L2、L5               |
|       | BDS: B1I、B2I、B3I             |
|       | GPS: L1C/A、L2C               |
| 从天线频点 | GLONASS: G1、G2               |
|       | Galileo: E1、E5b              |
|       | QZSS: L1、L2                  |
| 电源    |                              |
| 电压    | +3.0 V~3.6 V DC              |



| 功耗                      | 600 mW¹                  |                            |           |              |         |  |  |
|-------------------------|--------------------------|----------------------------|-----------|--------------|---------|--|--|
| 性能指标2                   |                          |                            |           |              |         |  |  |
|                         | 单点定位 (R                  | MS)³                       | 平面: 1.5 m |              |         |  |  |
|                         |                          |                            | 高程:       | 2.5m         |         |  |  |
|                         | DGPS (RMS)               | DGPS (RMS) <sup>3, 4</sup> |           | 0.4 m+1 ppm  | l<br>   |  |  |
| 定位精度                    |                          |                            | 高程:       | 0.8 m+1 ppm  | 1       |  |  |
|                         | RTK (RMS) <sup>3,4</sup> | ŀ                          | 平面:       | 0.8 cm+1 ppr | m<br>   |  |  |
|                         |                          |                            |           | 1.5 cm+1 ppm |         |  |  |
|                         | PPP (RMS) <sup>5</sup>   |                            | 平面:       | 5 cm         |         |  |  |
|                         |                          |                            | 高程:       | 10 cm        |         |  |  |
| 观测值精度(RMS)              | BDS                      | GPS                        |           | GLONASS      | Galileo |  |  |
| B1I/L1 C/A/G1/E1 伪距     | 10 cm                    | 10 cm                      |           | 10 cm        | 10 cm   |  |  |
| B1I/L1 C/A/G1/E1 载波相位   | 1 mm                     | 1 mm                       |           | 1 mm         | 1 mm    |  |  |
| B3I/L2P(Y)/L2C/G2 伪距    | 10 cm                    | 10 cm                      |           | 10 cm        | 10 cm   |  |  |
| B3I/L2P(Y)/L2C/G2 载波相位  | 1 mm                     | 1 mm                       |           | 1 mm         | 1 mm    |  |  |
| B2I/L5/E5a/E5b 伪距       | 10 cm                    | 10 cm                      |           | 10 cm        | 10 cm   |  |  |
| B2I/L5/E5a/E5b 载波相位     | 1 mm                     | 1 mm                       |           | 1 mm         | 1 mm    |  |  |
| 定向精度 (RMS)              | 0.1 度/1 m 基              | 线                          |           |              |         |  |  |
| PPS 精度 (RMS)            | 20 ns                    |                            |           |              |         |  |  |
| 速度精度 <sup>6</sup> (RMS) | 0.03 m/s                 |                            |           |              |         |  |  |
| 首次定位时间 <sup>7</sup>     | 冷启动<30 9                 | ;                          |           |              |         |  |  |
| ロ いくび [元 - 7] - 7       | 热启动<4 s                  |                            |           |              |         |  |  |
| 初始化时间3                  | <5 s (典型值                | <5 s (典型值)                 |           |              |         |  |  |

<sup>&</sup>lt;sup>1</sup> 双天线 10Hz PVT + 10Hz RTK + 10Hz Heading

<sup>&</sup>lt;sup>2</sup> 该部分内容为针对 UM982 的主天线性能

³测试结果受大气条件、基线长度、GNSS 天线类型、多路径、可见卫星数以及卫星几何构型等影响,可能会有偏差

<sup>4</sup> 测量使用 1 公里基线和天线性能良好的接收机,不考虑可能的天线相位中心偏移误差

<sup>5</sup> 开阔天空且无干扰环境下收敛 20 分钟

<sup>6</sup> 开阔天空,无遮挡场景,99%@静态

<sup>7 -130</sup>dBm @可用星超过 12 颗

### **UM982 User Manual**

| 初始化可靠性3        | >99.9%                       |
|----------------|------------------------------|
| 数据更新率          | 定位测向20 Hz                    |
| <b>奴]后</b> 史初中 | 20 Hz 原始观测量                  |
| 差分数据           | RTCM 3.X                     |
| 数据格式           | NMEA-0183, Unicore           |
| 物理特性           |                              |
| 封装             | 48 pin LGA                   |
| R寸             | 21 mm × 16 mm × 2.6 mm       |
| 重量             | 1.82 g ± 0.03 g              |
| 环境指标           |                              |
| 工作温度           | -40°C~+85°C                  |
| 存储温度           | -55°C~+95°C                  |
| 湿度             | 95% 非凝露                      |
| 振动             | GJB150.16A-2009,MIL-STD-810F |
| 冲击             | GJB150.18A-2009,MIL-STD-810F |
| 通讯接口           |                              |
| UART x 3       |                              |
|                |                              |
| SPI* x 1       | Slave                        |
| CAN* x 1       | 与 UART3 复用                   |
|                |                              |

<sup>\*</sup> 预留接口,暂不支持



### 1.3 模块概览



图 1-2 UM982 结构框图

#### 1. 射频部分

接收机通过同轴电缆从天线获取过滤和增强的 GNSS 信号。射频部分将射频输入信号转换成中频信号,并将中频模拟信号转换为 NebulasIV™芯片(UC9810)所需的数字信号。

#### 2. NebulasIV™芯片(UC9810)

NebulasIV™ 芯片是和芯星通公司新一代全系统全频高精度 SoC 芯片。该芯片采用 22 nm 低功耗工艺,支持 1408 个超级通道,内置双核 CPU,并集成高速浮点处理器及 RTK 专用协处理器,单芯片完成高精度基带处理和 RTK 定位定向解算。

#### 3. 外部接口

UM982 包含 UART、I<sup>2</sup>C\*、SPI\*、CAN\*、PPS、EVENT、RTK\_STAT、PVT\_STAT、ERR\_STAT、RESET\_N 等外部接口。

<sup>\*</sup>I<sup>2</sup>C、SPI、CAN 为预留接口,暂不支持

# 2 硬件介绍

# 2.1 引脚功能描述(图)



图 2-1 UM982 管脚图

表 2-1 引脚说明

| 序号 | 引脚名称    | I/O | 描述                            |
|----|---------|-----|-------------------------------|
| 1  | GND     | _   | 地                             |
| 2  | ANT1_IN | I   | GNSS 天线信号输入(主天线)              |
| 3  | GND     | _   | 地                             |
| 4  | GND     | _   | 地                             |
|    |         |     | 当模块主电断电时,V_BCKP 给和 RTC 及相关寄存  |
| 5  | V_BCKP  | 1   | 器供电。电平要求 2.0V~3.6V。常温@25℃,模块主 |
|    |         |     | 电断电时,V_BCKP 的工作电流小于 60uA。     |



| 序号  | 引脚名称      | I/O   | 描述                                 |
|-----|-----------|-------|------------------------------------|
|     |           |       | 不使用热启动功能时,V_BCKP 需接 VCC,不能接地       |
|     |           |       | 或者悬空。                              |
| 6   | SPIS_CSN  | I     | 从 SPI 片选输入                         |
| 7   | SPIS_MOSI | I     | 从 SPI 数据输入                         |
| 8   | SPIS_CLK  | I     | 从 SPI 时钟输入                         |
| 9   | SPIS_MISO | 0     | 从 SPI 数据输出                         |
| 10  | SPIS_SDRY | 0     | 从 SPI 中断输出                         |
| 11  | RSV       | _     | 保留管脚,必须悬空                          |
| 12  | RSV       | _     | 保留管脚,必须悬空                          |
| 13  | RSV       | _     | 保留管脚,必须悬空                          |
| 1.4 | CDD CTAT  | 0     | 异常指示,高电平有效。模块系统自检不通过时,输            |
| 14  | ERR_STAT  | 0     | 出高电平;模块自检通过输出低电平。                  |
| 15  | DVT CTAT  | 0     | PVT 定位指示,高电平有效。模块能进行定位时输出          |
| 15  | PVT_STAT  | 0     | 高电平;不定位输出低电平。                      |
| 16  | DTV CTAT  | 0     | RTK 定位指示,高电平有效。RTK 固定解时输出高电        |
| 10  | RTK_STAT  | O     | 平;其他定位状态或者不定位输出低电平。                |
| 17  | RXD1      | I     | 串口 1 接收,LVTTL 电平                   |
| 18  | TXD1      | 0     | 串口 1 发送,LVTTL 电平                   |
| 19  | RXD2      | I     | 串口 2 接收,LVTTL 电平                   |
| 20  | TXD2      | 0     | 串口 2 发送,LVTTL 电平                   |
| 21  | SCL       | I/O   | I <sup>2</sup> C 时钟                |
| 22  | SDA       | I/O   | I <sup>2</sup> C 数据                |
| 23  | VCC       | POWER | 供电电源(+3.3 V)                       |
| 24  | VCC       | POWER | 供电电源(+3.3 V)                       |
|     |           |       | BIF:Built-in Function(内部功能),建议加通孔测 |
| 25  | BIF       | _     | 试点与 10K 上拉电阻,不能悬空/接地/接电源/外设        |
|     |           |       | 10                                 |
|     |           |       |                                    |

### **UM982 User Manual**

| 序号 | 引脚名称    | I/O | 描述                                 |
|----|---------|-----|------------------------------------|
|    |         |     | BIF:Built-in Function(内部功能),建议加通孔测 |
| 26 | BIF     | _   | 试点与 10K 上拉电阻,不能悬空/接地/接电源/外设        |
|    |         |     | IO                                 |
| 27 | TXD3    | 0   | 串口 3 发送,可复用为 CAN TXD,LVTTL 电平      |
| 28 | RXD3    | I   | 串口 3 接收,可复用为 CAN RXD,LVTTL 电平      |
| 29 | RSV     | _   | 保留管脚,必须悬空                          |
| 30 | PPS     | 0   | 秒脉冲,输出脉宽和极性可调                      |
| 31 | RSV     | _   | 保留管脚,必须悬空                          |
| 32 | EVENT   | 1   | 事件输入信号,频度和极性可调                     |
| 33 | RESET_N | I   | 系统复位,低电平有效,电平有效时间不少于 5 ms          |
| 34 | GND     | _   | 地                                  |
| 35 | GND     | _   | 地                                  |
| 36 | ANT2_IN | I   | GNSS 天线信号输入(从天线)                   |
| 37 | GND     | _   | 地                                  |
| 38 | RSV     | _   | 保留管脚,必须悬空                          |
| 39 | RSV     | _   | 保留管脚,必须悬空                          |
| 40 | RSV     | _   | 保留管脚,必须悬空                          |
| 41 | GND     | _   | 地                                  |
| 42 | RSV     | _   | 保留管脚,必须悬空                          |
| 43 | GND     | _   | 地                                  |
| 44 | RSV     | _   | 保留管脚,必须悬空                          |
| 45 | GND     | _   | 地                                  |
| 46 | RSV     | _   | 保留管脚,必须悬空                          |
| 47 | RSV     | _   | 保留管脚,必须悬空                          |
| 48 | RSV     | _   | 保留管脚,必须悬空                          |
|    |         |     |                                    |



# 2.2 电气特性

# 2.2.1 最大耐受值

表 2-2 最大绝对额定值

| 参数             | 符号                    | 最小值  | 最大值 | 单位    |
|----------------|-----------------------|------|-----|-------|
| 供电电压(VCC)      | VCC                   | -0.3 | 3.6 | V     |
| 输入管脚电压         | V <sub>in</sub>       | -0.3 | 3.6 | V     |
| GNSS 主/从天线信号输入 | ANT1_IN/ANT2_IN       | -0.3 | 6   | V     |
| 主/从天线射频输入功率    | ANT1_IN/ANT2_IN input |      | +10 | dBm   |
| 工/ 外人织剂 频桶八列平  | power                 |      | 110 | ubili |
| 存储温度           | T <sub>stg</sub>      | -55  | 95  | °C    |

### 2.2.2 工作条件

表 2-3 工作条件

| 参数                      | 符号               | 最小值 | 典型值 | 最大值 | 单位 | 条件          |
|-------------------------|------------------|-----|-----|-----|----|-------------|
| 供电电压 (VCC) <sup>8</sup> | VCC              | 3.0 | 3.3 | 3.6 | V  |             |
| VCC 最大纹波                | $V_{rpp}$        | 0   |     | 50  | mV |             |
| 工作电流 <sup>9</sup>       | l <sub>opr</sub> |     | 180 | 300 | mA | VCC = 3.3 V |
| 工作温度                    | $T_{opr}$        | -40 |     | 85  | °C |             |
| 功耗                      | Р                |     | 600 |     | mW |             |

<sup>8</sup> 此范围已经包含了电源纹波,即在考虑纹波的情况下,VCC 供电电压范围还必需在 3.0V~3.6V 之间。

 $<sup>^{9}</sup>$  由于产品内部装有电容,上电时刻会产生冲击电流。在实际应用场景下,需评估确认冲击电流导致的电压跌落对系统的影响。

# 2.2.3 IO 阈值特性

表 2-4 IO 阈值特性

| 参数      | 符号                     | 最小值      | 典型值 | 最大值     | 单位 | 条件                      |
|---------|------------------------|----------|-----|---------|----|-------------------------|
| 输入管脚低电平 | $V_{\text{in\_low}}$   | 0        |     | 0.6     | V  |                         |
| 输入管脚高电平 | $V_{\text{in\_high}}$  | VCC*0.7  |     | VCC+0.2 | V  |                         |
| 输出管脚低电平 | $V_{out\_low}$         | 0        |     | 0.45    | V  | I <sub>out</sub> = 2 mA |
| 输出管脚高电平 | $V_{\text{out\_high}}$ | VCC-0.45 |     | VCC     | V  | I <sub>out</sub> = 2 mA |

# 2.2.4 天线特性

表 2-5 天线特性

| 参数     | 符号        | 最小值 | 典型值 | 最大值 | 单位 | 条件 |
|--------|-----------|-----|-----|-----|----|----|
| 最佳输入增益 | $G_{ant}$ | 18  | 30  | 36  | dB |    |

# 2.3 机械尺寸

表 2-6 尺寸

| 参数 | 最小值(mm) | 典型值(mm) | 最大值(mm) |
|----|---------|---------|---------|
| A  | 20.80   | 21.00   | 21.50   |
| В  | 15.80   | 16.00   | 16.50   |
| С  | 2.40    | 2.60    | 2.80    |
| D  | 2.78    | 2.88    | 2.98    |
| Е  | 0.95    | 1.05    | 1.15    |
| F  | 1.55    | 1.65    | 1.75    |
| G  | 1.17    | 1.27    | 1.37    |
| Н  | 0.70    | 0.80    | 0.90    |
| K  | 1.40    | 1.50    | 1.60    |
| M  | 4.10    | 4.20    | 4.30    |



| 参数 | 最小值(mm) | 典型值(mm) | 最大值(mm) |
|----|---------|---------|---------|
| N  | 3.70    | 3.80    | 3.90    |
| Р  | 2.00    | 2.10    | 2.20    |
| R  | 0.90    | 1.00    | 1.10    |
| X  | 0.72    | 0.82    | 0.92    |



图 2-2 UM982 机械图

# 3 硬件设计

# 3.1 最小系统推荐设计



图 3-1 UM982 最小系统推荐设计

L1: 推荐使用 0603 封装的 68nH 射频电感

C1: 推荐使用 100nF + 100pF 两个电容并联

C2: 推荐使用 100pF 电容

C3: 推荐使用  $n*10\mu F+1*100nF$  电容并联,总容值不小于  $30\mu F$ 

R1: 推荐使用 10kΩ电阻



### 3.2 外部天线馈电设计

从模块外部给天线提供馈电,可以选用高耐压、大功率的馈电芯片;还可以在馈电电路上增加气体放电管、压敏电阻、TVS管等大功率的防护器件,可有效提高防雷击与防浪涌的能力。

⚠ 如果 ANT\_BIAS 天线馈电和模块 VCC 主供电是相同的电源轨,则天线端引入的 ESD、 浪涌、过压会加到模块 VCC 主供电上,从而导致模块的损坏。建议 ANT\_BIAS 采用独 立的电源轨,以降低模块损坏的概率。



图 3-2 UM982 外部天线馈电参考电路

#### 备注:

① L1 和 L2: 馈电电感,推荐 0603 封装的 68nH 射频电感;

② C1和 C3: 去耦电容,推荐各由 100nF/100pF 两个电容并联;

③ C2和 C4:隔直电容,推荐100pF的电容;

④ D1和 D4: ESD 二极管,应选用支持高频信号(2000MHz以上)的 ESD 防护器件;

⑤ D2 和 D3: TVS 二极管,根据馈电电压、天线耐压等指标选择钳位特性达标的 TVS 管

### 3.3 模块上电与下电

#### VCC

- 模块 VCC 上电起始电平需要低于 0.4V。
- 模块 VCC 上电电源坡道必须是单调的,不能有平缓处。
- 模块 VCC 上电的下冲与振铃需小于 5% VCC。
- VCC 上电波形,从 10%到 90%的上升时间需在 100µs~1ms 范围内。
- 上电时间间隔,模块 VCC 下电低于 0.4V 后,到下一次开始上电,时间间隔需大于 500 ms。

#### V BCKP

- 模块 V\_BCKP 上电起始电平需要低于 0.4V。
- 模块 V\_BCKP 上电电源坡道必须是单调的,不能有平缓处。
- 模块 V\_BCKP 上电的下冲与振铃需小于 5% V\_BCKP。
- V\_BCKP 上电波形,从 10%到 90%的上升时间需在 100µs~1ms 范围内。
- 上电时间间隔,模块 V\_BCKP 下电低于 0.4V 后,到下一次开始上电,时间间隔需大于 500ms。

# 3.4 接地与散热



图 3-3 UM982 接地与散热焊盘(底视图)

UM982 模块中间矩阵形的 35 个焊盘用于接地与散热,在 PCB 设计时须接到大面积地平面上,以加强模组散热。



# 3.5 PCB 封装推荐设计

UM982 的 PCB 封装推荐设计参见下图。



图 3-4 PCB 封装推荐设计

#### 说明:

为了方便测试,功能管脚焊盘设计的较长、超出模块外框较多。例如:

- detail C 描述的焊盘超出模块外框 1.77mm;
- detail A 描述的焊盘超出模块外框 0.47mm;因这些焊盘是射频管脚,希望其在表层的 走线尽量短,减小外部干扰对射频信号的影响,所以设计的适当短一些。

# 4 生产要求

#### 推荐焊接温度曲线图如下:



图 4-1 焊接曲线图 (无铅)

#### 升温阶段

● 升温斜率: 最大 3°C/s

● 升温温度区间: 50°C-150°C

#### 预热阶段

● 预热阶段时间: 60s-120s

● 预热温度区间: 150°C-180°C

#### 回流阶段

● 超过熔点温度 217°C的时间: 40s-60s

● 焊接峰值温度: 不超过 245°C

#### 冷却阶段

● 降温斜率: 最大 4°C/s





- 为防止模块焊接中出现脱落,请不要将模组设计在板卡背面焊接,且最好不要经历两次焊接循环。
- 焊接温度的设置取决于产品工厂的诸多因素,如主板特性、锡膏类型、锡膏厚度等, 请同时参考相关 IPC 标准以及锡膏的指标。
- 由于有铅焊接温度相对较低,若采用此焊接方式,请优先考虑板卡上的其他元器件。
- 钢网的开孔方式需要满足客户自身产品设计要求以及检验规范,钢网厚度推荐使用 0.15mm。

# 5 包装

### 5.1 标签说明



图 5-1 标签说明

### 5.2 包装说明

UM982 模块使用载带、卷盘方式(适用于主流表面贴装设备),包装在真空密封的铝 箔防静电袋中,内附干燥剂防潮。采用回流焊工艺焊接模块时,请严格遵守 IPC 标准对模 块进行温湿度管控,由于载带等包装材料只能承受 55°C的温度,在进行烘烤作业时需要将 模块从包装中取出。



图 5-2 UM982 模块包装示意



- 厚度 0.35mm
- 3.13 英寸卷轮卷装长度: 6.816 米 (前段空包长度: 0.408 米,零件包装长度: 6米,后段空包长度: 0.408米)
- 4.13 英寸卷轮包装零件总颗数:284 颗(前段空包颗数:17 颗,实际包装零件 颗数: 250 颗,后段空包颗数: 17 颗)
- 5. 所有尺寸设计参照 EIA-481-C-2003
- 6. 载带在 250mm 长度以内最大弯曲度不超过 1mm (见下图)





图 5-3 模组载带图纸

表 5-1 包装说明

| 项目     | 描述                                             |
|--------|------------------------------------------------|
| 模块数量   | 250 片/卷                                        |
|        | 料盘: 13 英寸                                      |
| 卷盘尺寸   | 外径 330±2 mm,内径 180±2 mm,内径宽 44.5±0.5 mm,壁厚 2.0 |
|        | $\pm$ 0.2 mm                                   |
| <br>载带 | 模块间距(中心距): 24 mm                               |

用户贴片前需要查看包装内湿度卡标识,湿度卡的 30%标识圈颜色正常应显示为蓝色 (如下图 5-4 所示);若湿度卡的 20%标识圈颜色显示为粉色、30%标识圈显示为淡紫色 (如下图 5-5 所示),需按要求进行烘焙后再贴片。UM982 模块的湿度敏感等级为 3,与湿敏等级相关的包装及操作注意事项参照标准 IPC/JEDEC J-STD-033,用户可至网页www.jedec.org 自行下载查看。



图 5-4 湿度卡的 30%标识圈显示为蓝色



图 5-5 湿度卡的 20%标识圈显示为粉红色

UM982 模块在真空密封的铝箔防静电袋中的保存期限(shelf life)为 1 年。

#### 和芯星通科技(北京)有限公司

#### **Unicore Communications, Inc.**

北京市海淀区丰贤东路 7 号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094

www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com



www.unicorecomm.com