Arquitetura HIL para teste de sistemas embarcados como *vehicle interface* de veículos autônomos baseados no Autoware Projeto – Etapa 1

Gabriel Toffanetto França da Rocha g289320@dac.unicamp.br

Professor Dr. Rodrigo Moreira Bacurau IM420X – Projeto de Sistemas Embarcados de Tempo Real

> Faculdade de Engenharia Mecânica Universidade Estadual de Campinas

> > 8 de outubro de 2024

Schedule

- 1 Introdução
- 2 Proposta
- 3 Arquitetura
- 4 Cronograma
- 5 Referências bibliográficas

Gabriel Toffanetto LMA/FEM/Unicamp Projeto – Etapa 1 8 de outubro de 2024 2 / 24

Introdução

IntroduçãoPropostaArquiteturaCronogramaReferências bibliográficas0●○○○○○○○○○○○○

Contextualização

Figura 1: Veículo Autônomo do LMA.

Figura 2: Diagrama de hardware do VILMA01 (BEDOYA, 2016).

Gabriel Toffanetto LMA/FEM/Unicamp Projeto – Etapa 1 8 de outubro de 2024 4 / 24

O aue é?

- Projeto de software open-source que consiste em todas as funcionalidades requeridas para condução autônoma, em uma arquitetura modular com interfaces e APIs bem definidas;
- Primeiro "all-in-one" open-source software para veículos autônomos.

Princípios

- Projetado para suprir as necessidades de diferentes aplicações autônomas;
- Desenvolvido com as melhores práticas e padrões para alcançar alta qualidade e segurança em produtos para o mundo real.

"Autoware continuously evolves to offer more capability towards curb-to-curb Level 4 autonomous driving."

Arquitetura

ROS - Robot Operation System

O que é?

- Framework para robótica que contempla toda estrutura que um robô precisa;
 - Ferramentas e bibliotecas;
 - Protocolos de comunicação;
 - Interfaceamento.
- Arquitetura baseada em sistema distribuído (ROS 2);
- Alta modularização com reaproveitamento de código próprio ou da comunidade;
- Portabilidade simulação/hardware.

Figura 4: Ecossitema ROS (Open Robotics, 2021).

micro-ROS

O que é?

Framework que leva o ROS 2 à microcontroladores.

Figura 5: Arquitetura micro-ROS (micro-ROS, 2024).

Gabriel Toffanetto LMA/FEM/Unicamp Projeto – Etapa 1 8 de outubro de 2024 8 / 24

Proposta

Gabriel Toffanetto LMA/FEM/Unicamp Projeto - Etapa 1 8 de outubro de 2024 9 / 24

Proposta

Figura 6: Escopo do projeto na arquitetura Autoware.

Figura 7: Arquitetura de teste do hardware.

10 / 24

Vehicle interface

Introdução Proposta Arquitetura Cronograma Referências bibliográficas 000000 000 000 000 000

Proposta

Objetivos

- Desenvolvimento de um sistema embarcado capaz de agir como vehicle interface para um veículo autônomo compatível com o Autoware utilizando o micro-ROS:
- Teste do sistema embarcado por meio de Hardware-In-the-Loop com o simulador CARLA ou AWSIM.

Justificativa

O Autoware é um sistema para carros autônomos em ascensão, sendo importante que sistemas embarcados presentes nesses veículos sejam capazes de se integrar com ele. Dessa forma, a proposta da implementação de um sistema embarcado como vehicle interface garante a interligação entre microcontroladores STM32 ao framework. A validação por meio de HIL se faz interessante por substituir a necessidade de um protótipo real para testes, garantindo mais segurança, praticidade e redução de custos no desenvolvimento do projeto.

Requisitos

Requisitos funcionais

- Comunicação com o Autoware;
- Controle da aceleração, frenagem e direção do veículo;
- Controle dos faróis e luzes de sinalização (seta) do veículo;
- Teleoperação do veículo por um joystick em hardware;
- Troca do modo de operação por meio da switch do joystick;
- Subscrição por meio do micro-ROS em todos os tópicos necessários do Autoware;
- Publicação a partir micro-ROS em todos os tópicos necessários do Autoware.

Requisitos não-funcionais

- A vehicle interface deve ser construída na forma de um pacote portável para outros microcontroladores STM32;
- O interfaceamento com o veículo deve ser intercambiável com diferentes configurações;
- Deve-se garantir sincronização de timestamp entre o Autoware e o microcontrolador;
- O sistema embarcado deve abstraír o veículo como um sistema *Drive-By-Wire* (DBW) para o Autoware.

Componentes

Placa de desenvolvimento NUCLEO-H753ZI

- Microcontrolador STM32H753ZI;
- ARM Cortex-M7;
- 1 MB RAM;
- 2 MB Flash;
- Clock máximo de 480 MHz;
- DMA;
- Comunicação:
 - UART/USART;
 - Ethernet;
 - USB.
- Custo: US\$ 27,00.

Figura 9: NUCLEO-753ZI.

Componentes

Joystick

- Tensão de operação: 3V3 5V;
- \blacksquare Saída analógica referente ao eixo x;
- Saída analógica referente ao eixo y;
- Saída digital referente ao eixo z;
- Custo: R\$ 10,00.

Figura 10: Joystick 2 eixos.

15 / 24

Arquitetura

16 / 24

Diagrama de blocos

Figura 11: Diagrama de blocos da arquitetura HIL.

Esquemático

Figura 12: Esquemático de ligações elétricas.

Cronograma

Modelo de desenvolvimento

Modelo V

Realização e validação de cada etapa do projeto em paralelo.

Figura 13: Modelo de execução das atividades do projeto.

20 / 24

Cronograma

Atividade/Semana	1	2	3	4	5	6	7	8	9
Proposta do projeto									
Projeto de hardware e software									
Integração do STM com o micro-ROS									
Integração do micro-ROS com o Autoware									
Implementação das tarefas do sistema embarcado									
Construção do ambiente de testes									
Realização dos testes									
Escrita do relatório									

Tabela 1: Cronograma de atividades.

- Semana 2: Apresentação Etapa 1
- Semana 4: Apresentação Etapa 2
- Semana 7: Apresentação Etapa 3
- Semana 9: Apresentação Final

Referências bibliográficas

Referências bibliográficas

BEDOYA, O. G. Análise de risco para a cooperação entre o condutor e sistema de controle de veículos autônomos. Tese (Doutor em Engenharia Mecânica) — Universidade Estadual de Campinas, Campinas, SP, fev. 2016. Disponível em: https://repositorio.unicamp.br/Busca/Download?codigoArquivo=471471.

micro-ROS. Overview: Features and Architecture. 2024. Disponível em: https://micro.ros.org/docs/overview/features/>.

Open Robotics. The ROS Ecosystem. 2021. Disponível em: https://www.ros.org/blog/ecosystem/.

The Autoware Fundation. Architecture overview. 2023. Disponível em: https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/.

Obrigado!

Dúvidas?

