#### Graded Assignment 4

#### Due date for this assignment: 2024-10-20, 23:59 IST.

You may submit any number of times before the due date. The final submission will be considered for grading.

For all questions involving the Bernoulli distribution, the parameter p is P(x=1).

- 1) Consider a dataset that has 10 zeros and 5 ones. What is the likelihood function if we assume a Bernoulli distribution with parameter p as the probabilistic model?
- $\bigcirc p^{15}$
- $(1-p)^{15}$
- $\bigcirc \ p^{10} \cdot (1-p)^5$
- $p^5 \cdot (1-p)^{10}$
- 2) In the previous question, what is the estimate of  $\hat{p}_{ML}$ ? Enter your answer correct to two decimal places.

### 0.33

3) Consider a dataset that has a single feature (x). The first column in the table below represents the value of the feature, the second column represents the number of times it occurs in the dataset.

| $\boldsymbol{x}$ | Frequency |
|------------------|-----------|
| -1               | 1         |
| 0                | 1         |
| 2                | 4         |
| 4                | 2         |
| 5                | 2         |

If we use a Gaussian distribution to model this data, find the maximum likelihood estimate of the mean.

- $^{\circ}$
- $\bigcirc$  0
- 2.5
- The mean cannot be computed as the variance of the Gaussian is not explicitly specified.

| 5) In the previous question, we use the expected value of the posterior as a point-estimate for the parameter of the Bernoulli distribution. What is $\hat{p}$ ? Enter your answer correct to two decimal places. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   |
| $\bigcirc$ Beta(17,11)                                                                                                                                                                                            |
| ● Beta(18, 12)                                                                                                                                                                                                    |
| $\bigcirc$ Beta(13,17)                                                                                                                                                                                            |
| $\bigcirc$ Beta $(3,2)$                                                                                                                                                                                           |
| $p\sim \mathrm{Beta}(3,2)$<br>The dataset has $15$ ones and $10$ zeros. What is the posterior?                                                                                                                    |

4) Consider a beta prior for the parameter  $\boldsymbol{p}$  of a Bernoulli distribution:



After observing  $10\ \text{data-points}$ , the following is the posterior distribution:

After observing  $10\ \text{data-points}$ , the following is the posterior distribution:



Ignore the values on the Y-axis and just focus on the shapes of the distributions. Which of the following could correspond to the observed data?

#### Common Data for questions (7) to (9)

We wish to fit a GMM with K=2 for a dataset having 4 points. At the beginning of the  $t^{th}$  time step of the EM algorithm, we have  $\theta^{(t)}$  as follows:

$$\pi_1 = 0.3, \quad \pi_2 = 0.7$$

$$\mu_1=2,\quad \sigma_1^2=1$$

$$\mu_2 = 3, \quad \sigma_2^2 = 1$$

The density of the points given a particular mixture is given to you for all four points. f is the density of a Gaussian.

| $x_i$ | $f(x_i \mid z_i = 1)$ | $f(x_i \mid z_i = 2)$ |  |
|-------|-----------------------|-----------------------|--|
| 1     | 0.242                 | 0.054                 |  |
| 2     | 0.399                 | 0.242                 |  |
| 3     | 0.242                 | 0.399                 |  |
| 4     | 0.054                 | 0.242                 |  |

Use three decimal places for all quantities throughout the questions.

7) What is the value of  $\lambda^i_k$  for i=1 and k=2 after the E-step? Enter your answer correct to three decimal places.

# 0.342

8) If we pause the algorithm at this stage (after the E-step) and use the  $\lambda_k^i$  values to do a hard-clustering, what would be the cluster assignment? We use the following rule to come up with cluster assignments:

 $\begin{aligned} z_i &= \operatorname*{argmax}_k \lambda_k^i \\ \text{The answer is in the form of a vector: } \mathbf{z} = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 \end{bmatrix}^T. \end{aligned}$ 

- $\bigcirc \ \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$
- $\bigcirc \quad \begin{bmatrix} 2 & 2 & 2 & 2 \end{bmatrix}^T$
- $\bigcirc \ \begin{bmatrix} 1 & 1 & 2 & 2 \end{bmatrix}^T$
- $\begin{bmatrix} 1 & 2 & 2 & 2 \end{bmatrix}^T$

9) What is the value of  $\mu_1$  after the M-step? Enter your answer correct to three decimal places.

## 1.900

10) A GMM is fit for a dataset with 5 points. At some time-step in the EM algorithm, the following are the values of  $\lambda_k^i$  for all points in the dataset for the  $k^{th}$  mixture after the E-step:

$$\begin{array}{l} \lambda_k^1 = 0.3 \\ \lambda_k^2 = 0.1 \\ \lambda_k^3 = 0.4 \\ \lambda_k^4 = 0.8 \\ \lambda_k^5 = 0.2 \end{array}$$

What is the estimate of  $\pi_k$  after the M-step? Enter your answer correct to two decimal places.

# 0.36

11) What is the value of the following expression after the E-step at time-step t in the EM algorithm? There are 100 data-points and 3 mixtures.





 $\bigcirc$  103

300

1 0

The answer depends on the time-step t we are at