FI FCTRIC VFHICLE X DRIVING RANGE PREDICTION - FV X DRP

Relatório de progresso

David P Coutinho Artur I Ferreira david.coutinho@isel.pt

arturj@isel.pt

David A. S. G. Albuquerque A43566@alunos.isel.pt

Instituto Superior de Engenharia de Lisboa

3 de Maio de 2022

Outline

Introdução

Diferenças entre veículos eRange Que fatores influenciam o eRange? Aplicação a desenvolver Desafios de implementação

Estado da arte

Datasets Implementações

Trabalho realizado

Trabalho futuro

Objetivos

Diagrama de Gantt

Introdução - Diferenças entre veículos

- Diferenças:
 - Densidade de energia
 - Quantidade de postos para atestar
- Semelhanças:
 - Estimação de autonomia
 - Estimação do range de condução

Introdução - eRange

- Cálculo das estimativas de distância de condução restante que um veículo elétrico pode efetuar relativamente ao estado de carga da sua bateria - eRange
- Aliviar a ansiedade do condutor

EV dashboard¹

a-canadian-winter/. Accessed: 2022-05-02.

¹2019 Jaguar I-Pace in a Canadian Winter. https://autotrader.ca/editorial/20190402/2019-jaguar-i-pace-in-

Introdução - Que fatores influenciam o eRange?

- SOC (State of charge) indica o estado de carga da bateria
- Travagem regenerativa
- Consumo instantâneo
- Estado do ar condicionado / Aquecimento
- Condições atmosféricas
- Inclinação da estrada
- Tração dos pneus
- Carga a transportar
- (entre outros)

²Bogdan Ovidiu Varga, Arsen Sagoian, and Florin Mariasiu. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges". In: *Energies* (2019).

Introdução - Aplicação a desenvolver

Fase de Geração

Fase de Generalização

Introdução - Desafios de implementação

- Escassez de datasets
 - Protegidos Competição comercial
 - Necessários para teste de algoritmos
- Escolha dos algoritmos de machine learning
- Dependência de vários fatores aumenta a complexidade do problema
 - Limitado aos fatores existentes nos datasets SOC, IEC, etc.
 - Seleção de fatores mais relevantes

Estado da arte - Datasets

- EV Database³ Características de carros elétricos
- VED Dataset⁴ Dados de condução de um Nissan Leaf (2013).
- Classic EV X Project⁵ Dados de condução de um BMW i3 94Ah (2016-2017) - obtidos por simulação.
- Emobpy⁶ Ferramenta de simulação de dados condução de veículos elétricos

³Electric Vehicle Database.

https://ev-database.org/car/1011/Nissan-Leaf. Accessed: 2022-04-12.

⁴G. S. Oh, David J. Leblanc, and Huei Peng. Vehicle Energy Dataset (VED), A Large-scale Dataset for Vehicle Energy Consumption Research. 2019.

⁵David Coutinho. "Classic EV X Project Driving Range Prediction". Draft version. July 2021.

⁶Carlos Gaete-Morales et al. "An open tool for creating battery-electric

Estado da arte - Datasets

	VED dataset	Emobpy	Classic EV X Project	
Tipo de viagens	Reais	Simuladas	Simuladas	
Número de viagens	507	Infinitas	1	
Modelos de veículos	1	102	1	
Parâmetros úteis	velocidade, estado de carga bateria, potência do aquecimento, potência do ar condicionado, currente da bateria, voltagem da bateria, tempo	distância, consumo instantâneo, potência média, tempo	consumo instantâneo, bateria restante, velocidade, tempo	

Estado da arte - Implementações

- Algoritmo básico
- Algoritmo baseado em historial com janela deslizante
- Uso combinado de Gradient Boosting Regression Trees⁷
- Ensemble learning⁸ com:
 - Decision Tree
 - Random Forest
 - K-Nearest Neighbor
- Self-Organizing Maps⁹ (e híbridos com Regression Trees¹⁰)
- Redes neuronais com Multiple Linear Regression¹¹

⁷Liang Zhao et al. "Machine Learning-Based Method for Remaining Range Prediction of Electric Vehicles". In: *IEEE Access* (2020).

 $^{^{8}}$ Irfan Ullah et al. "Electric vehicle energy consumption prediction using stacked generalization: an ensemble learning approach". In: International Journal of Green Energy (2021).

⁹Chung-Hong Lee and Chih-Hung Wu. "A Novel Big Data Modeling Method for Improving Driving Range Estimation of EVs". In: IEEE Access (2015).

¹⁰B. Zheng et al. "A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles". In: 2016 IEEE Global Communications Conference (GLOBECOM). 2016.

¹¹Cedric De Cauwer et al. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions". In: *Energies* (2017).

Trabalho realizado

- Estudo do problema e soluções existentes
- Estudo de datasets
- Implementação de dois algoritmos para cálculo do eRange:
 - Algoritmo "básico"
 - $eRange = \frac{FBE}{AEC} \cdot SOC[km]$
 - Algoritmo history-based¹²
 - $eRange(k) = \frac{FBE}{\sum_{n=0}^{N-1} w_i \cdot AEC(k-i)} \cdot SOC(k)[km]$

¹²David Pereira Coutinho. Classic EV X Project Driving Range Prediction TECHNICAL REPORT (draft version). July 2021.

Classic EV X Project Dataset - BMW i3 94Ah

¹³David Pereira Coutinho. Classic EV X Project Driving Range Prediction TECHNICAL REPORT (draft version). July 2021.

https://github.com/davidalb97/TFM18-2122i. Accessed: 2022-05-03.

¹⁴TFM18 Project Git repository.

VED Dataset - Nissan Leaf

Algoritmo básico vs history-based¹⁵, 16

¹⁵David Pereira Coutinho. Classic EV X Project Driving Range Prediction TECHNICAL REPORT (draft version). July 2021.

https://github.com/davidalb97/TFM18-2122i. Accessed: 2022-05-03.

¹⁶ TFM18 Project Git repository.

Trabalho futuro

- Arquitetura de projeto
 - Avaliação e escolha do algoritmo de machine learning
- Implementação da aplicação
 - Integração do dataset
 - Implementação do modelo
 - Comparação com modelos existentes
- Avaliação experimental
- Análise de resultados
- Conclusões

Diagrama de Gantt

Name :	Start Date :	End Date :	Duration :	Progress %	Dependency :
Project Report Delivery	Mar 15, 2022	Mar 15, 2022	1 day	100	
→ Writting the document	Mar 15, 2022	Sep 15, 2022	132.75 days	0	
Finalization - Results & Conclusion	Aug 01, 2022	Sep 01, 2022	24 days	0	4FS
Document revision	Sep 01, 2022	Sep 13, 2022	9 days	0	6FS-1 days
Writting the document	Mar 15, 2022	Sep 15, 2022	132.88 days	0	
Project Testing	Jul 11, 2022	Jul 29, 2022	15 days	0	17FS+19 days
Valid estimations	Jul 29, 2022	Jul 29, 2022	0 days	0	
Project Implementation	Mar 28, 2022	Jul 28, 2022	89 days	0	
Implemented Model	Jun 13, 2022	Jun 13, 2022	0 days	0	15FS+20 days
Project Architecture	Mar 16, 2022	Jun 06, 2022	58.88 days	0	
Dataset integration	May 16, 2022	May 16, 2022	0 days	0	14FS+15 days
Choosen Machine Learning Algorithms	Apr 25, 2022	Apr 25, 2022	0 days	0	

Obrigado

