

Machine Learning Practical # 2

Name	Ninad Karlekar	Roll Number	22306A1012
Subject/Course:	Machine Learning	Class	M.Sc. IT – Sem III
Topic	Concept Learning	Batch	Batch 1

Topic: Concept Learning / two-way classification / binary classification

a) AIM: Implement and demonstrate the find-s algorithm for finding the most specific.

DESCRIPTION:

1. Training dataset table (input data):

	Α	В	C	D	E	F	G
1	sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
2	Sunny	Warm	Normal	Strong	Warm	Same	Yes
3	Sunny	Warm	High	Strong	Warm	Same	Yes
4	Rainy	Cold	High	Strong	Warm	Change	No
5	Sunny	Warm	High	Strong	Cool	Change	Yes
6							

2.: Write the right hypothesis/function from historical data

One of the often-used statistical concepts in machine learning is the hypothesis. It is notably employed in supervised machine learning, where an ML model uses a dataset to train a function that most effectively translates input to related outputs.

In this code person enjoys sport if weather is sunny, airtemp is warm, wind is strong

3. How Does It Work?

It eliminates attribute that do not affect target column

4: Code and output:

```
import csv
num_attributes = 6
a = []

print("\n The Given Training Dataset \n")
with open('Book1.csv','r') as csvfile:
   reader = csv.reader(csvfile)
   count = 0
   for row in reader:
      if count == 0:
        print(row)
```

```
count+=1;
     else:
       a.append(row)
       print(row)
       count+=1
print("\n The initial value of hypothesis: ")
hypothesis = ['0'] * num attributes
print(hypothesis)
for j in range(0,num_attributes):
  hypothesis[j]= a[0][j];
  print(hypothesis)
print("\n find S:finding a Maximally specific Hypothesis\n")
for i in range(0,len(a)):
  if a[i][num attributes]=="Yes":
    for j in range(0,num attributes):
       if a[i][i]!=hypothesis[i]:
         hypothesis[i]='?'
       else:
          hypothesis[j] = a[i][j]
  print("for training example no :{0} the hypothesis is".format(i),hypothesis)
     The Given Training Dataset
   ['sky', 'AirTemp', 'Humidity', 'Wind', 'Water', 'Forecast', 'EnjoySport']
   ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes']
['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes']
['Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'No']
   ['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
   ₽
          The initial value of hypothesis:
         ['0', '0', '0', '0', '0', '0']
     ['Sunny', '0', '0', '0', '0', '0']
C→
     ['Sunny', 'Warm', '0', '0', '0', '0']
['Sunny', 'Warm', 'Normal', '0', '0', '0']
['Sunny', 'Warm', 'Normal', 'Strong', '0', '0']
     ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', '0']
     ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same']
```

```
find S:finding a Maximally specific Hypothesis
  for training example no :0 the hypothesis is ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same'] for training example no :1 the hypothesis is ['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same'] for training example no :2 the hypothesis is ['Sunny', 'Warm', '?', 'Strong', 'Warm', 'Same'] for training example no :3 the hypothesis is ['Sunny', 'Warm', '?', 'Strong', '?', '?']
    ['Sunny', 'Warm', '?', 'Strong', '?', '?']
import csv
a = []
with open('book2.csv', 'r') as csvfile:
     next(csvfile)
     for row in csv.reader(csvfile):
           a.append(row)
for x in a:
  print(x)
print("\nThe total number of training instances are : ",len(a))
num attribute = len(a[0])-1
print("\nThe initial hypothesis is : ")
hypothesis = ['0']*num_attribute
print(hypothesis)
for i in range(0, len(a)):
     if a[i][num attribute] == 'yes':
          print ("\nInstance ", i+1, "is", a[i], " and is Positive Instance")
          for j in range(0, num attribute):
                if hypothesis[j] == '0' or hypothesis[j] == a[i][j]:
                      hypothesis[j] = a[i][j]
                else:
                      hypothesis[j] = '?'
          print("The hypothesis for the training instance", i+1, " is: " ,
hypothesis, "\n")
     if a[i][num attribute] == 'no':
```

```
print ("\nInstance ", i+1, "is", a[i], " and is Negative Instance Hence
Ignored")
             print("The hypothesis for the training instance", i+1, " is: " ,
hypothesis, "\n")
print("\nThe Maximally specific hypothesis for the training instance is ",
hypothesis)
     ['some', 'small', 'no', 'affordable', 'many', 'no']
             ['many', 'big', 'no', 'expensive', 'one', 'yes']
['some', 'big', 'always', 'expensive', 'few', 'no']
             ['many', 'medium', 'no', 'expensive', 'many', 'yes']
['many', 'small', 'no', 'affordable', 'many', 'yes']
 ₽
        The total number of training instances are: 5
       The initial hypothesis is:
        ['0', '0', '0', '0', '0']
  Instance 1 is ['some', 'small', 'no', 'affordable', 'many', 'no'] and is Negative Instance Hence Ignored
The hypothesis for the training instance 1 is: ['many', '?', 'no', '?', '?']
  Instance 2 is ['many', 'big', 'no', 'expensive', 'one', 'yes'] and is Positive Instance
The hypothesis for the training instance 2 is: ['many', '?', 'no', '?', '?']
  Instance 3 is ['some', 'big', 'always', 'expensive', 'few', 'no'] and is Negative Instance Hence Ignored
The hypothesis for the training instance 3 is: ['many', '?', 'no', '?', '?']
  Instance 4 is ['many', 'medium', 'no', 'expensive', 'many', 'yes'] and is Positive Instance
The hypothesis for the training instance 4 is: ['many', '?', 'no', '?', '?']
  Instance 5 is ['many', 'small', 'no', 'affordable', 'many', 'yes'] and is Positive Instance
The hypothesis for the training instance 5 is: ['many', '?', 'no', '?', '?']
  The Maximally specific hypothesis for the training instance is ['many', '?', 'no', '?', '?']
```