# Traffic Sign Recognition

Anshul Bhardwaj

## Problem Statement

- Automated Traffic Sign recognition is an important part of self-driving vehicles.
- Traffic Signs can provide range of variations between classes in terms of colors and shape.
- In this project, I develop Deep Learning algorithms that will train on German Traffic Signs image dataset and them use these algorithms to classify unlabeled Traffic Signs images. The deep learning models will be built using Convolutional Neural Network and Transfer Learning.

# Clients / Intended Audience

 This model can be used by anyone who wants to what makes an automated self driving system.

#### Dataset

- The dataset used for this project is taken from Kaggle
- <a href="https://www.kaggle.com/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign">https://www.kaggle.com/meowmeowmeowmeowmeowmeowmeowmeow/gtsrb-german-traffic-sign</a>
- The dataset contains around 40000 train images and 12000 test images. Metadata is also provided.

Exploratory
Data Analysis

Distribution of Classes



#### **Meta Images**



Meta\28.png

Meta\27.png

Meta\29.png

Meta\30.png

Meta\35.png



#### Image Augmentation

#### **Training**

- I build three model using CNN and Transfer Learning
- First model was build using Transfer Learning with ResNet5oV2 Model
- Second model was built using CNNs
- Third model was build using Transfer Learning with VGG19 Model
- Accuracy was used as metric in all three models
- ADAM optimizer was used in all three models

#### **Model Performances / Histories**



## **Model Testing**

• Model accuracies for the models were as follows

| Model Name       | Accuracy |
|------------------|----------|
| CNN Model        | 98.72%   |
| ResNet50V2 Model | 96.61%   |
| VGG19 Model      | 98.33%   |

• CNN model performed the best.

Confusion
Matrix
Heatmap for
CNN model



- 700

- 600

- 300

- 100

# Ensemble of the Models

 Ensembling of the models had shown the significant improvement in accuracy

Ensemble model performance were as follows –

| Type of Ensemble            | Accuracy |
|-----------------------------|----------|
| Mean Ensemble (Soft Voting) | 99.07 %  |
| Weighted Ensemble           | 99.10 %  |
| Mode Ensemble (Hard Voting) | 98.72 %  |

• Weighted Ensemble had shown highest accuracy.

### Classification Report of Weighted Ensemble

|          | precis <mark>io</mark> n | recall | f1-score | support |
|----------|--------------------------|--------|----------|---------|
| 0        | 1.00                     | 1.00   | 1.00     | 60      |
| 1        | 0.99                     | 1.00   | 1.00     | 720     |
| 2        | 1.00                     | 0.99   | 1.00     | 750     |
| 3        | 1.00                     | 0.98   | 0.99     | 450     |
| 4        | 1.00                     | 0.99   | 0.99     | 660     |
| 5        | 0.98                     | 1.00   | 0.99     | 630     |
| 6        | 1.00                     | 0.98   | 0.99     | 150     |
| 7        | 1.00                     | 1.00   | 1.00     | 450     |
| 8        | 0.99                     | 1.00   | 1.00     | 450     |
| 9        | 0.99                     | 1.00   | 0.99     | 480     |
| 10       | 1.00                     | 1.00   | 1.00     | 660     |
| 11       | 0.99                     | 0.99   | 0.99     | 420     |
| 12       | 1.00                     | 0.98   | 0.99     | 690     |
| 13       | 1.00                     | 1.00   | 1.00     | 720     |
| 14       | 0.97                     | 1.00   | 0.99     | 270     |
| 15       | 0.93                     | 1.00   | 0.96     | 210     |
| 16       | 1.00                     | 0.99   | 1.00     | 150     |
| 17       | 1.00                     | 0.97   | 0.99     | 360     |
| 18       | 1.00                     | 0.97   | 0.98     | 390     |
| 19       | 1.00                     | 1.00   | 1.00     | 60      |
| 20       | 0.91                     | 1.00   | 0.95     | 90      |
| 21       | 0.83                     | 1.00   | 0.90     | 90      |
| 22       | 1.00                     | 0.96   | 0.98     | 120     |
| 23       | 0.97                     | 1.00   | 0.98     | 150     |
| 24       | 1.00                     | 0.98   | 0.99     | 90      |
| 25       | 0.99                     | 0.99   | 0.99     | 480     |
| 26       | 0.99                     | 1.00   | 0.99     | 180     |
| 27       | 0.93                     | 0.85   | 0.89     | 60      |
| 28       | 0.99                     | 1.00   | 0.99     | 150     |
| 29       | 0.99                     | 1.00   | 0.99     | 90      |
| 30       | 0.98                     | 0.94   | 0.96     | 150     |
| 31       | 0.99                     | 1.00   | 0.99     | 270     |
| 32       | 0.97                     | 1.00   | 0.98     | 60      |
| 33       | 0.99                     | 1.00   | 1.00     | 210     |
| 34       | 1.00                     | 1.00   | 1.00     | 120     |
| 35       | 1.00                     | 1.00   | 1.00     | 390     |
| 36       | 1.00                     | 0.99   | 1.00     | 120     |
| 37       | 0.98                     | 1.00   | 0.99     | 60      |
| 38       | 1.00                     | 1.00   | 1.00     | 690     |
| 39       | 1.00                     | 0.99   | 0.99     | 90      |
| 40       | 1.00                     | 0.96   | 0.98     | 90      |
| 41       | 1.00                     | 0.95   | 0.97     | 60      |
| 42       | 1.00                     | 1.00   | 1.00     | 90      |
| accuracy |                          |        | 0.99     | 12630   |
| acro avg | 0.98                     | 0.99   | 0.99     | 12630   |
| hted avg | 0.99                     | 0.99   | 0.99     | 12630   |
| avB      | 0.55                     | 0.55   | 0.55     | 12000   |

#### Future Improvements

- More Image augmentation
- Class balancing through Image augmentation
- Increase the input image dimension
- Use More Image generators for better ram management
- Make the models reproducible.