Feuille 1, Courbes algébriques Ensembles Algébriques Affines

Exercice 1 Montrer que les sous-ensembles algébriques affines propres de \mathbb{A}^1 sont finis.

Exercice 2 Soit $\underline{a} = (a_1, \dots, a_n) \in \mathbb{A}^n$. Montrer que le noyau du morphisme d'algèbres $P\mapsto P(\underline{a})$ de $\mathsf{k}[X_1,\ldots,X_n]$ dans k est l'idéal \mathfrak{m}_a engendré par X_1-a_1,\ldots,X_n-a_n .

Exercice 3 Montrer que $I(\mathbb{A}^n_k) = 0$ si k est un corps infini.

Exercice 4 Montrer que $I(\mathbb{A}^1_{\mathbb{F}_q}) = (X^q - X)$.

Exercice 5 On suppose n=2, $k=\mathbb{R}$. Montrer que

- 1. L'ensemble $V = \{(\cos t, \sin t) \mid t \in \mathbb{R}\}$ est un ensemble algébrique affine.
- 2. L'ensemble $V = \{(t, \sin t) \mid t \in \mathbb{R}\}$ n'est pas un ensemble algébrique affine.
- 3. L'ensemble $V = \{(t, e^t) \mid t \in \mathbb{R}\}$ n'est pas un ensemble algébrique affine.

Exercice 6 Montrer que les ensembles suivants sont des ensembles algébriques affines:

- 1. $V_1 = \{(t, t^2, t^3) \mid t \in \mathsf{k}\} \subseteq \mathbb{A}^3$. 2. $V_2 = \{(t, \frac{1}{t}) \mid t \in \mathsf{k} \setminus 0\} \subseteq \mathbb{A}^2$. 3. $V_3 = \{(t 1, t^2 1) \mid t \in \mathsf{k}\} \subseteq \mathbb{A}^2$.

Exercice 7 Soient $I = (X^2 + Y^2, XY^3)$ et $J = (X^2, Y^3)$.

- 1. Déterminer V(I) et V(J).
- 2. Déterminer I(V(I)) et I(V(J)).

Exercice 8 Soit k un corps infini et $V = \mathbb{A}^2 \setminus \{(0,0)\}.$

- 1. Déterminer I(V) et V(I(V)).
- 2. L'ensemble V est-il un ensemble algébrique affine?

Exercice 9 Determinez si les ensembles algébriques suivantes de \mathbb{A}^2 sont irréductibles:

- 1. Un singleton.
- 2. Une paire de points.

- 3. L'ensemble V(XY).
- 4. Les ensembles V(X-Y) et $V((Y-X)^2)$.
- 5. L'ensemble $V(Y-X^2)$.
- 6. Les ensembles $V(X^2 Y^2)$ et $V(X^2 + Y^2)$.
- 7. L'ensemble $V(Y^4 X^2, Y X)$.

Exercice 10 Dans les cas suivants calculer I(V(J)) et déterminer si V(J) est irréductible :

- 1. $J = (X^3) \subseteq k[X, Y, Z]$.
- 2. $J = (Y X^2, Z XY) \subseteq k[X, Y, Z].$ 3. $J = (X^3 Y^2) \subseteq k[X, Y].$

Exercice 11 Déterminer les composantes irréductibles des ensembles suivants et calculer leurs idéaux premiers :

- 1. V(XY, YZ, XZ).
- 2. $V(X^2 YZY, XZ X)$.
- 3. V(XY, XY + 1).

Exercice 12 Soit $J = (X + Y, Y^2) \subseteq k[X, Y]$. Calculer \sqrt{J} . Verifier que $I(V(J)) = \sqrt{J}$.

Exercice 13 Soit k algebriquement clos. Déterminer les idéaux I(V) pour les ensembles V suivants

- 1. $V = V(XY^3 + X^3Y X^2 + Y)$,
- 2. $V = V(X^2Y, (X-1)(Y+1)^2),$
- 3. $V = V(Z XY, Y^2 + XZ X^2)$.

Exercice 14 On suppose k de caractéristique nulle.

Soit
$$V = \{(t, t^2, \dots, t^n) \in \mathbb{A}_n(\mathsf{k}) \mid t \in \mathsf{k}\}.$$

- 1. Montrer que V est un ensemble algébrique.
- 2. Déterminer I(V) et montrer que

$$\mathsf{k}(V) := \mathsf{k}[X_1, \cdots, X_n]/I(V) \simeq \mathsf{k}[X].$$

3. V est-il irréductible ?

Exercice 15 Soient $V \subset \mathbb{A}^n$ et $W \subset \mathbb{A}^m$ deux sous-ensembles algébriques. Montrer que $V \times W \subset \mathbb{A}^{n+m}$ est un sous-ensemble algébrique affine.

Exercice 16 Soit $M_n(k) = \mathbb{A}_k^{n^2}$, l'espace vectoriel des matrices carrées de taille n et soit $r \in [0, n]$. On pose

$$R_r = \{ M \in M_n(k) \mid \operatorname{Rg}(M) \le r \}$$

Montrer que R_r est un sous-ensemble algébrique affine de \mathbb{A}^{n^2} .