# Wuhan-coronavirus homologue map

Kou Amano

# Background and Objective

Background: At the beginning of 2020, global risk of infection of coronavirus is spreded. The pandemic started in 2019 and governments announced a state of emergency. In Japan, the government adopted PCR as a diagnosis method of the infection. But the selection of prmers infruence the accuracy greatly. Objective: Therefor, I provide a "map" of homological region of coronavirus to other viruses and annimals to help the primer design.

# Data

#### Vertebrates:

- Bat (NW\_017738920.1 .. NW\_017802358.1; 63439frgs)
  Dog (NC\_006583.3 .. NC\_006621.3; 39chrs)
- Camel (NC\_044511.1 .. NC\_044547.1; 37chrs)
- Cat (NC\_018723.3 .. NC\_018741.3; 19chrs)
- Viruses:
  - 7554 genomes of viruses or phages
- Beluga (NW\_022097992.1 .. NW\_022103895.1; 5904frgs)
  Ferret (NW\_004569142.1 .. NW\_004576923.1; 7782frgs)
  Pig (NC\_010443.5 .. NC\_010462.3; 20chrs)
  - Human (NC\_000001.4 .. NC\_000024.3; 24chrs)
  - Mouse (NC\_000067.6 .. NC\_000087.7; 21chrs)
  - Wuhan-corona virus genome (MN908947.3)
- Rabbit (NC\_013669.1 .. NC\_013690.1; 22chrs)
- Rock Pigeon (NW\_004973171.1 .. NW\_004988092.1; 14922frgs)
- Turkey (NC\_015011.2 .. NC\_015042.2; 32chrs)

# Method

#### blast

DB: makeblastdb -in <<input file>> -out <<DB name>> -dbtype nucl -parse\_seqids Query: megablast -d <<DB name>> -i <<query sequence>> -W 10 > <<output file>>

#### self-blast

Fragmentation: fragment bf=<<input file>> S=25 G=25 cs=1 > <<output file>>

DB: same as above. Query: same as above.

#### window-fourrier

1. Fragmentation: 30 fragments – 1000 bases

2. Conversion: "A" -> 1, "T" -> -1, "G" -> I, "C" -> -I

3. Fourier transform: Ft (<<each fragment>>)

### selection of frequent homologues

Vertebrate: base-hit count >= 5; seq-lenght >= 5 Viruses: base-hit count >= 18; seq-lenght >= 5

