C3 linearization properties

Miguel Cid Flor

April 16, 2025

Ingredients

Set \mathcal{C} of classes $C_0, C_1, C_2, \dots, C_n$. Set \mathcal{D} of pairs (class, set of classes) $\mathcal{C} \times P(\mathcal{C})$. $MRO_D : \mathcal{C} \Rightarrow \prod_{i \in \mathbb{N}} \mathcal{C}$.

Consistency with the hierarchy of classes

Let C be a class with superclasses P_0, P_1, \ldots, P_n , where $n \in \mathbb{N}$. Let the MRO of \mathcal{C} be $MRO(\mathcal{C}) = [\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_m]$, with $m \in \mathbb{N}$ and $\mathcal{M}_0 = \mathcal{C}$.

$${P_1,\ldots,P_n}\subseteq {\mathcal{M}_1,\mathcal{M}_2,\ldots,\mathcal{M}_m}$$

Consistency with the local precedence order

Let $a \cdot s_1$ be $SbStr(a \cdot s_1, P(C))$ and $s_2 \cdot a \cdot s_3$ be $SbStr(s_2 \cdot a \cdot s_3, MRO(C))$.

 $SbStr(\varepsilon, \varepsilon)$

$$SbStr(a \cdot s_1, s_2 \cdot a \cdot s_3)$$
 if $a \notin s_1 \cdot s_2 \cdot s_3$
 $\land SbStr(s_1, s_3)$

$$SbStr: \mathcal{S} \times \mathcal{S} \Rightarrow \{\top, \bot\}$$
$$\mathcal{S} = \Sigma^*$$

Consistency with the local precedence graph

Let $X \in \mathcal{C}$ and $P(X) = [PX_0, \dots, PX_r]$, where $r \in \mathbb{N}$ is a list of superclasses. Let D, B and A be a class.

If $D \in P(B) \setminus P(A)$, then $\exists p, q, 0 , where <math>\mathcal{M}_p = D$, $\mathcal{M}_q = A$.