Page: 1 of 1

Homework Assignment 7

K-Means clustering.

Please, provide your **complete solutions** to the following problems. Final answers only, even if correct will earn zero points for those problems.

Problem 7.1. (10 points) Provide an example of when **clustering** would be useful in **actuarial practice**.

Problem 7.2. (20 points) As you know from class, in K-means clustering, our objective is to minimize

$$\sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2$$

The above is a difficult formula to compute with, but there is an alternative called the *centroid formula*:

$$2\sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{kj})^2$$

where

$$\bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{ij}$$

is the j^{th} component of the centroid \bar{x}_k of the k^{th} cluster.

Prove that the above formula is correct.

Problem 7.3. (5 points) A K-means clustering algorithm based on squared Euclidean distance with K=2 produced these clusters:

What is the value of the objective function, i.e., the function minimized by the clustering algorithm?

Problem 7.4. (15 points) Source: MAS-II, Spring 2019.

You have decided to perform K-means clustering with K = 2 on the following data set and have already randomly assigned the clusters as follows:

Observation	x_1	x_2	Initial Cluster
1	5	5	2
2	4	6	2
3	3	0	1
4	5	3	1
5	5	1	2
6	3	6	1
7	2	5	2

- The centroid of the initial cluster 1 is (3.667, 3).
- The centroid of the initial cluster 2 is (4, 4.25).

Calculate the Euclidean distance of Observation 5 from the final centroid of Cluster 2.