Suites de fonctions

On a $f_n(x)$ une suite de fonction avec $n \in \mathbb{N}$ et $x \in set R$

Convergence Simple (CS):

- On fixe $x \in \mathbb{R}$
- On étudie la suite numérique $f_n(x)n \in \mathbb{N}$
- $Si \lim_{n \to +\infty} f_n(x) = f alors f_n converge simplement vers f sur | \mathbb{R}$
- $Si \lim_{n \to +\infty} f_n(x) = \pm \infty \ alors \ f_n ne \ converge \ pas \ simplement \ vers \ f \ sur \ |\mathbb{R}$

Rappel:

Si f "ne converge pas simplement alors elle ne converge pas uniformément.

Convergence uniforme (CU):

- On fixe $x \in \mathbb{R}$
- On pose $g_n = |f_n f|$
- On cherche $supp_{x \in \mathbb{R}} g_n(x)$
 - $avec g'_n(x)$
 - avec une inégalité
- On étudie sa limite avec $n \rightarrow \infty$
 - $Si \lim_{n \to +\infty} supp g_n(x) = 0 \ alors f_n converge uniformément vers f sur \mathbb{R}$
 - $Si \lim_{n \to \infty} supp g_n(x) \neq 0$ alors f_n ne converge pas uniformément sur \mathbb{R}