Statistical Modeling of the Red Sea Chlorophyll Concentration and Application to the ERSEM Ecological Model

Thesis by

Denis Dreano

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

Insert Date (Month, Year)

The thesis of Your Full Name is approved by the examination committee

Committee Chairperson: Your advisor's name

Committee Member: Second name

Committee Member: Third name

Copyright ©Year

Your Full Name

All Rights Reserved

TABLE OF CONTENTS

\mathbf{E}	xami	nation	Committee Approval	2
\mathbf{C}	opyri	${f ght}$		3
Li	st of	Figur	es	11
Li	st of	Table	\mathbf{s}	13
1	Intr	oduct	ion and Motivation	15
	1.1	Phyto	plankton and the Red Sea Biology: Importance, Impact, Large-	
		Scale	Features, and Applications	15
		1.1.1	The Importance of Phytoplankton	15
		1.1.2	Red Sea Large-Scale Phytoplankton Dynamics	17
	1.2	Remo	tely-Sensed Chlorophyll Data: Relevance and Challenges for the	
		Red S	ea	18
		1.2.1	Measuring Chlorophyll Concentration	18
		1.2.2	Limitation of Remotely-Sensed Chlorophyll Data	19
	1.3	Mode	ling Chlorophyll: Data-Driven and Physics-Driven Approaches	
		and A	pplications	19
		1.3.1	Why Modeling Chlorophyll?	19
		1.3.2	Data-Driven Approaches	20
		1.3.3	Deterministic Models	21
	1.4	Thesis	s Objectives	21
2	Res	earch	Plan	23
	2.1	Task 1	1: Dataset Building and Exploration	24
		2.1.1	Motivation	24
		2.1.2	Open Questions	24
		2.1.3	Method	24
		2.1.4	Expected Outcomes	24
		2.1.5	Accomplished Word and Preliminary Results	24

2.2	Task 2: Forecasting Chlorophyll Concentration in Regional Aggregates	24
	2.2.1 Motivation	24
	2.2.2 Open Questions	24
	2.2.3 Method	24
	2.2.4 Expected Outcomes	24
	2.2.5 Accomplished Word and Preliminary Results	24
2.3	Task 3: Global Geostatistical Model for Chlorophyll Forecasting $\ . \ .$	24
	2.3.1 Motivation	24
	2.3.2 Open Questions	24
	2.3.3 Method	24
	2.3.4 Expected Outcomes	24
	2.3.5 Accomplished Word and Preliminary Results	24
2.4	Task 4: Local Geostatistical Model for Forecasting	24
	2.4.1 Motivation	24
	2.4.2 Open Questions	24
	2.4.3 Method	24
	2.4.4 Expected Outcomes	24
	2.4.5 Accomplished Word and Preliminary Results	24
2.5	Task 5: Assimilation of 1D Ecological Models and Comparison to Sta-	
	tistical Models	24
	2.5.1 Motivation	24
	2.5.2 Open Questions	24
	2.5.3 Method	24
	2.5.4 Expected Outcomes	24
	2.5.5 Accomplished Word and Preliminary Results	24
2.6	Task 6: Improving an Ecological Model Data Assimilation Scheme	
	through Statistical Predictive Models	24
	2.6.1 Motivation	24
	2.6.2 Open Questions	24
	2.6.3 Method	24
	2.6.4 Expected Outcomes	24
	2.6.5 Accomplished Word and Preliminary Results	24
Refere	nces	25
Appen	dices	31

LIST OF FIGURES

LIST OF TABLES

Chapter 1

Introduction and Motivation

1.1 Phytoplankton and the Red Sea Biology: Importance, Impact, Large-Scale Features, and Applications

1.1.1 The Importance of Phytoplankton

Phytoplankton are unicellular, free-floating, photosynthetic algae that live in the upper layers of bodies of water (ocean, lakes, rivers or ponds). There exists a wide diversity of phytoplankton species. To this date, about 5000 of them have been identified [Tett and Barton, 1995]. Phytoplankton are also highly variable in sizes, ranging from 0.2m for cyanobacteria to 200m for the largest species of diatom [Pal, 2014]. In the oceans, phytoplankton live in the surface layer where there is enough sunlight for photosynthesis.

Phytoplankton plays a fundamental role for the ocean ecology. It is the basis of the marine food web and traps most of the energy used by pelagic ecosystems [Pal, 2014]. Zooplankton graze phytoplankton which are then consumed by higher trophic levels. It has been estimated that nearly 98% of the ocean primary productivity comes

from phytoplankton [Pal, 2014]. Phytoplankton are also responsible for maintaining the dissolved oxygen level necessary for other species to survive. However, high phytoplankton concentration also impact their environment by creating dead zones when they die and are decomposed by bacteria, consuming all the available oxygen [Pal, 2014]. Due to the rapid growth of phytoplankton, it responds very well to changes in its environment, making it a key parameter to monitor water quality [Wu et al., 2014].

Phytoplankton place at the bottom of the marine food chain makes it is an important factor for fisheries. Productive fishing zones like the regions in the Arabian seas, Californian coast, north-west African coast and Chilean coast are explained by the upwelling of cold nutrient rich water favourable to phytoplankton growth. On the other hand, the El-Nino phenomenon creates less favourable conditions for phytoplankton in the Eastern Pacific, resulting in a dramatic reduction of fish catches of fisheries in the western coast of South America [Robinson, 2010]. Remotely-sensed chlorophyll data have been routinely used since the last decade to help fisheries predict the timing of phytoplankton blooms [Robinson, 2010]

Phytoplankton also plays the role of a biological CO2 pump and strongly impact the Earth climate. During photosynthesis, phytoplankton captures carbon and releases oxygen. A part of this organic material stays in the food web, either transmitted to higher trophic level, or degraded by bacteria. Another part, however, sinks to the bottom of the ocean and sediments. It is estimated that phytoplankton accounts for 48% of Earth carbon fixation [Pal, 2014].

1.1.2 Red Sea Large-Scale Phytoplankton Dynamics

Typical tropical seas (TTS), like the Red Sea, are characterized by a highly stratified structure, where warm nutrient-depleted surface water is separated from the cold nutrient-rich deep water by a steep gradient of temperature zone called pycnocline. The pycnocline acts as barrier that limits the upward nutrients flow [Mann and Lazier, 2006]. As a result, TTS are oligotrophic and have low chlorophyll concentrations. Until recently, marine biologists have thought that tropical and subtropical seas have therefore a very low productivity. However, recent investigations have contested this idea and shown that different upwelling mechanisms exist that bring new nutrients to the surface water [Mann and Lazier, 2006].

Despite being an oligotrophic and challenging environments for marine life, the Red Sea presents a surprisingly rich and diverse ecosystem [Raitsos et al., 2011], and an very developed coral reef system [Racault et al., 2015]. The source of nutrient for sustaining such a developed ecosystem is not well understood yet, but the interaction with the open sea through the mesoscale eddies is believed to play an important role [Raitsos et al., 2013].

Remotely-sensed data show an important seasonality of the Red Sea chlorophyll concentration, that has been linked to winter deep mixing, and the inversion of the wind direction in the southern Red Sea that enhances the intrusion of nutrient rich Gulf of Aden water [Raitsos et al., 2013]. Despite this strong seasonality, there is a large interannual variability caused by the unpredictable occurrence of large phytoplanktonic blooms. Diverse causes have been hypothesized for these blooms such as wind-induced mixing, eddies or dust storms carrying nutrients [Raitsos et al., 2013].

Although the Red Sea environment is relatively preserved, it is pressured by human activities. An abrupt increase of temperature has occurred in the last decade

that threatens the fragile coral reef system [Raitsos 2011]. Moreover, the increasing urbanization and fishing activity contribute to the fragilization of this unique ecosystem [Acker et al., 2008].

1.2 Remotely-Sensed Chlorophyll Data: Relevance and Challenges for the Red Sea

1.2.1 Measuring Chlorophyll Concentration

Chlorophyll is a molecule present in algae, phytoplankton and plants that is critical for photosynthesis. Chlorophyll is a poor absorber of green light, and is responsible for the coloration of plants. When phytoplankton are present in high concentrations, the water also takes a detectable green coloration (it can also take a red or blue coloration depending on the type of phytoplankton dominating) [Robinson, 2010]. This offers a way to estimate the chlorophyll concentration of the water.

However, in-situ measurements of chlorophyll are expensive and have limited temporal and spatial coverage [Robinson, 2010]. In-situ measurement of chlorophyll concentration can be gathered through scientific cruises, buoy stations or gliders (unmanned submarines). These methods are expensive to deploy and therefore the coverage is limited. Political issues, like in the Red Sea, is also a barrier to in-situ measurements.

Satellite measurements of chlorophyll provide excellent proxies for phytoplankton concentrations with a good temporal and spatial coverage [Robinson, 2010]. The SeaWIFS, MODIS and MERIS missions have provided an uninterrupted coverage of the world since 1997. High-resolution maps of daily chlorophyll concentration are freely accessible to the scientific community. Despite some limitations, like missing data due to cloud coverage and sunglint, or problematic values in coastal areas, remotely-sensed chlorophyll concentration are used intensively by the scientific community. In regions, like in the Red Sea, where little in-situ measurements are available [Raitsos et al., 2013], it is often the most important data source.

1.2.2 Limitation of Remotely-Sensed Chlorophyll Data

1.3 Modeling Chlorophyll: Data-Driven and Physics-Driven Approaches and Applications

1.3.1 Why Modeling Chlorophyll?

Models can be useful to identify causes behind the chlorophyll patterns we observe in the Red Sea. Many hypotheses have be made about the drivers of chlorophyll concentration in this regions, but some of them have not been yet investigated through models. The role played by the exchange of water with the Gulf of Aden and winter overturning in the northern Red Sea have been successfully modeled a 3D coupled ecological model [Triantafyllou et al., 2014]. However, the interaction between the open sea and coral reefs and the role of sand storms has not been investigated. Models, can also be helpful in discovering new dynamics affecting the chlorophyll concentration. In particular, the interaction between the productivity level of the different regions of the Red Sea has not been studied yet.

Model predictions for chlorophyll concentration also have practical applications. Phytoplankton blooms can be harmful to humans and marine life and are closely monitored in many regions of the world [Pettersson and Pozdniakov, 2013]. In the Red Sea, where tourism and aquaculture are developing it is likely to become a

concern too. Phytoplankton is also directly, and indirectly through zooplankton, the cause of microfouling that affects desalination plants. In 2008-2009, a red tide forced desalination plants along the Gulf of Oman and the Persian Gulf to close [Richlen et al., 2010].

1.3.2 Data-Driven Approaches

On the other hand, data-driven statistical models are relatively easier to apply. They are relevant when the phenomenon producing the data is very complex or poorly known. They have been applied to predict chlorophyll concentration, mostly in small regions that have complex dynamics (see ??). Some statistical models, such as linear regression, GAM or tree regression have the advantage of being easy to interpret, and can be used to understand the dynamics driving the chlorophyll concentration.

Machine Learning Algorithms

Geostatistics

Phenomena such as propagation and diffusion play a key role in the chlorophyll spatial concentration, but are difficult to represent without spatial modeling. There is also a difference in the chlorophyll patterns of different regions of the Red Sea, in particular between the nutrient rich southern Red Sea and the oligotrophic northern Red Sea, and between the open ocean and the coastal waters [Raitsos et al., 2013]. There is however no clear cut division between regions with different pattern, making it difficult to divide the Red Sea into regions. Finally we can expect the different regions of the Red Sea to interact. A model is therefore needed to account for the spatial and temporal interaction of the chlorophyll.

Classical geostatistics is the most widely used spatial statistical model. It models

spatial data as the realization of a two-dimensional Gaussian process, of which one can estimate the parameters. Geostatistics can be easily extended to spatio-temporal datasets. Many flexible ways of constructing space-time covariance functions for these models have been proposed recently. Space-time geostatistics has been applied to many environmental studies, but not to chlorophyll data yet.

1.3.3 Deterministic Models

Ecological ordinary differential equation (ODE) deterministic models are a popular way to model marine ecology. Such models can be as simple as the nutrient-phytoplankton-zooplankton (NPZ) model that only has three variables representing two trophic levels, or as complex as the European regional seas ecosystem model (ERSEM) that has dozens of variables and represents many ecological, biological and chemical interactions. Such a model has been coupled to the MITgcm circulation model used to simulate the Red Sea ecology [Triantafyllou et al., 2014]. However the complexity of these models makes them difficult to parametrize correctly if not enough data is available, which is usually the case [Anderson, 2005].

Ecological Models

Data Assimilation

1.4 Thesis Objectives

Chapter 2

Research Plan

- 2.1 Task 1: Dataset Building and Exploration
- 2.1.1 Motivation
- 2.1.2 Open Questions
- 2.1.3 Method
- 2.1.4 Expected Outcomes
- 2.1.5 Accomplished Word and Preliminary Results
- 2.2 Task 2: Forecasting Chlorophyll Concentration in Regional Aggregates
- 2.2.1 Motivation
- 2.2.2 Open Questions
- 2.2.3 Method
- 2.2.4 Expected Outcomes
- 2.2.5 Accomplished Word and Preliminary Results

REFERENCES

- [Abualnaja et al., 2015] Abualnaja, Y., Papadopoulos, V. P., Josey, S. A., Hoteit, I., Kontoyiannis, H., and Raitsos, D. E. (2015). Impacts of climate modes on air-sea heat exchange in the red sea. *Journal of Climate*, page 150106132132005.
- [Acker et al., 2008] Acker, J., Leptoukh, G., Shen, S., Zhu, T., and Kempler, S. (2008). Remotely-sensed chlorophyll a observations of the northern red sea indicate seasonal variability and influence of coastal reefs. *Journal of Marine Systems*, 69(3-4):191–204.
- [Alvera-Azcarate et al., 2007] Alvera-Azcarate, A., Barth, A., Beckers, J. M., and Weisberg, R. H. (2007). Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. *Journal of Geophysical Research-Oceans*, 112(C3).
- [Anderson, 2005] Anderson, T. R. (2005). Plankton functional type modelling: running before we can walk? *Journal of Plankton Research*.
- [Beckers and Rixen, 2003] Beckers, J. M. and Rixen, M. (2003). EOF calculations and data filling from incomplete oceanographic datasets. *Journal of Atmospheric and Oceanic Technology*, 20(12):1839–1856.
- [Brewin et al., 2013] Brewin, R. J. W., Raitsos, D. E., Pradhan, Y., and Hoteit, I. (2013). Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence. *Remote Sensing of Environment*, 136:218–224.
- [Brown et al., 2000] Brown, P. E., Karesen, K. F., Roberts, G. O., and Tonellato, S. (2000). Blur-generated non-separable space-time models. *Journal of the Royal Statistical Society Series B-Statistical Methodology*, 62:847–860.
- [Butenschon and Zavatarelli, 2012] Butenschon, M. and Zavatarelli, M. (2012). A comparison of different versions of the SEEK Filter for assimilation of biogeochemical data in numerical models of marine ecosystem dynamics. *Ocean Modelling*, 54-55:37–54.

- [Camps-Valls et al., 2006] Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Amoros-Lopez, J., and Calpe-Maravilla, J. (2006). Retrieval of oceanic chlorophyll concentration with relevance vector machines. *Remote Sensing of Environment*, 105(1):23–33.
- [Ciavatta et al., 2014] Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G., Polimene, L., and Allen, J. I. (2014). Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling. *Progress in Oceanography*, 127:74–95.
- [Ciavatta et al., 2011] Ciavatta, S., Torres, R., Saux-Picart, S., and Allen, J. I. (2011). Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? *Journal of Geophysical Research-Oceans*, 116.
- [Cressie and Huang, 1999] Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. *Journal of the American Statistical Association*, 94(448):1330–1339.
- [Fontana et al., 2013] Fontana, C., Brasseur, P., and Brankart, J. M. (2013). Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data. *Ocean Science*, 9(1):37–56.
- [Gneiting, 2002] Gneiting, T. (2002). Nonseparable, stationary covariance functions for spacetime data. *Journal of the American Statistical Association*, 97(458):590–600.
- [Gneiting et al., 2007] Gneiting, T., Genton, M. G., and Guttorp, P. (2007). Geostatistical space-time models, stationarity, separability, and full symmetry. *Statistical Methods for Spatio-Temporal Systems*, 107:151–175.
- [Gneiting and Guttorp, 2010] Gneiting, T. and Guttorp, P. (2010). Continuous parameter spatio-temporal processes. *Handbook of Spatial Statistics*, 97:427–436.
- [Gokaraju et al., 2011] Gokaraju, B., Durbha, S. S., King, R. L., and Younan, N. H. (2011). A machine learning based spatio-temporal data mining approach for detection of harmful algal blooms in the Gulf of Mexico. *Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 4(3):710–720.

- [Handcock and Wallis, 1994] Handcock, M. S. and Wallis, J. R. (1994). An approach to statistical spatial-temporal modeling of meteorological fields. *Journal of the American Statistical Association*, 89(426):368–378.
- [Hohn et al., 1993] Hohn, M. E., Liebhold, A. M., and Gribko, L. S. (1993). Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth (lepidoptera: Lymantriidae). *Environmental Entomology*, 22(5):1066–1075.
- [Jeong et al., 2006] Jeong, K. S., Kim, D. K., and Joo, G. J. (2006). River phytoplankton prediction model by artificial neural network: Model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. *Ecological Informatics*, 1(3):235–245.
- [Kim et al., 2014] Kim, Y. H., Im, J., Ha, H. K., Choi, J. K., and Ha, S. (2014). Machine learning approaches to coastal water quality monitoring using GOCI satellite data. *Giscience & Remote Sensing*, 51(2):158–174.
- [Korres et al., 2012] Korres, G., Triantafyllou, G., Petihakis, G., Raitsos, D. E., Hoteit, I., Pollani, A., Colella, S., and Tsiaras, K. (2012). A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits. *Journal of Marine Systems*, 94:S102–S117.
- [Lee et al., 2003] Lee, J. H. W., Huang, Y., Dickman, M., and Jayawardena, A. W. (2003). Neural network modelling of coastal algal blooms. *Ecological Modelling*, 159(2-3):179–201.
- [Mann and Lazier, 2006] Mann, K. H. and Lazier, J. R. N. (2006). *Dynamics of marine ecosystems: Biological-Physical Interactions in the Oceans*. Blackwell Publishing.
- [Miles and He, 2010] Miles, T. N. and He, R. (2010). Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery. *Continental Shelf Research*, 30(18):1951–1962.
- [Mulia et al., 2013] Mulia, I. E., Tay, H., Roopsekhar, K., and Tkalich, P. (2013). Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-Environment Research, 7(4):279–299.
- [North et al., 2011] North, G. R., Wang, J., and Genton, M. G. (2011). Correlation models for temperature fields. *Journal of Climate*, 24(22):5850–5862.

- [Pal, 2014] Pal, R. (2014). An introduction to phytoplanktons: diversity and ecology. Springer, New York.
- [Pettersson and Pozdniakov, 2013] Pettersson, L. H. and Pozdniakov, D. V. (2013). Monitoring of harmful algal blooms. Springer-Praxis books in geophysical sciences. Springer, published in association with Praxis Publishing, Chichester, UK.
- [Racault et al., 2015] Racault, M. F., Raitsos, D. E., Berumen, M. L., Brewin, R. J., Platt, T., Sathyendranath, S., and Hoteit, I. (2015). Phytoplankton phenology indices in coral reef ecosystems: application to ocean-colour observations in the red sea. Submitted.
- [Raitsos et al., 2011] Raitsos, D. E., Hoteit, I., Prihartato, P. K., Chronis, T., Triantafyllou, G., and Abualnaja, Y. (2011). Abrupt warming of the red sea. *Geophysical Research Letters*, 38(14).
- [Raitsos et al., 2013] Raitsos, D. E., Pradhan, Y., Brewin, R. J., Stenchikov, G., and Hoteit, I. (2013). Remote sensing the phytoplankton seasonal succession of the Red Sea. *PLoS One*, 8(6).
- [Richlen et al., 2010] Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A., and Anderson, D. M. (2010). The catastrophic 2008-2009 red tide in the arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate cochlodinium polykrikoides. *Harmful Algae*, 9(2):163–172.
- [Robinson, 2010] Robinson, I. S. (2010). Discovering the ocean from space: the unique applications of satellite oceanography. Springer praxis series geophysical sciences 4110. Springer, New York, 1st edition.
- [Sirjacobs et al., 2011] Sirjacobs, D., Alvera-Azcrate, A., Barth, A., Lacroix, G., Park, Y., Nechad, B., Ruddick, K., and Beckers, J.-M. (2011). Cloud filling of ocean colour and sea surface temperature remote sensing products over the southern north sea by the data interpolating empirical orthogonal functions methodology. *Journal of Sea Research*, 65(1):114–130.
- [Stein, 2005] Stein, M. L. (2005). Spacetime covariance functions. *Journal of the American Statistical Association*, 100(469):310–321.
- [Steinmetz et al., 2011] Steinmetz, F., Deschamps, P. Y., and Ramon, D. (2011). Atmospheric correction in presence of sun glint: application to meris. *Optics Express*, 19(10):9783–9800.

- [Taylor et al., 2013] Taylor, M. H., Losch, M., Wenzel, M., and Schroter, J. (2013). On the sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. *Journal of Climate*, 26(22):9194–9205.
- [Tett and Barton, 1995] Tett, P. and Barton, E. D. (1995). Why are there about 5000 species of phytoplankton in the sea. *Journal of Plankton Research*, 17(8):1693–1704.
- [Triantafyllou et al., 2013] Triantafyllou, G., Hoteit, I., Luo, X., Tsiaras, K., and Petihakis, G. (2013). Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea. *Journal of Marine Systems*, 125:90–100.
- [Triantafyllou et al., 2014] Triantafyllou, G., Yao, F., Petihakis, G., Tsiaras, K. P., Raitsos, D. E., and Hoteit, I. (2014). Exploring the red sea seasonal ecosystem functioning using a three-dimensional biophysical model. *Journal of Geophysical Research: Oceans*, 119(3):1791–1811.
- [Waite and Mueter, 2013] Waite, J. N. and Mueter, F. J. (2013). Spatial and temporal variability of chlorophyll-a concentrations in the coastal Gulf of Alaska, 1998-2011, using cloud-free reconstructions of SeaWiFS and MODIS-Aqua data. *Progress in Oceanography*, 116:179–192.
- [Wang and Yang, 2013] Wang, H. and Yang, X. (2013). Prediction and elucidation of algal dynamic variation in Gonghu Bay by using artificial neural networks and canonical correlation analysis.
- [Weikert, 1987] Weikert, H. (1987). Plankton and the pelagic environment, pages 90–111. Pergamon Press, Oxford.
- [Wu et al., 2014] Wu, N. C., Huang, J. C., Schmalz, B., and Fohrer, N. (2014). Modeling daily chlorophyll a dynamics in a german lowland river using artificial neural networks and multiple linear regression approaches. *Limnology*, 15(1):47–56.
- [Yao et al., 2014] Yao, F. C., Hoteit, I., Pratt, L. J., Bower, A. S., Kohl, A., Gopalakrishnan, G., and Rivas, D. (2014). Seasonal overturning circulation in the red sea: 2. winter circulation. *Journal of Geophysical Research-Oceans*, 119(4):2263–2289.
- [Zhai and Bower, 2013] Zhai, P. and Bower, A. (2013). The response of the red sea to a strong wind jet near the tokar gap in summer. *Journal of Geophysical Research-Oceans*, 118(1):422–434.

[Zhan et al., 2014] Zhan, P., Subramanian, A. C., Yao, F. C., and Hoteit, I. (2014). Eddies in the red sea: A statistical and dynamical study. *Journal of Geophysical Research-Oceans*, 119(6):3909–3925.

APPENDICES

A Appendix A Title

Detailed experimental procedures, data tables, computer programs, etc. may be placed in appendices. This may be particularly appropriate if the dissertation or thesis includes several published papers.

B Appendix B Title

Your content goes here.

C Papers Submitted and Under Preparation

- Author 1 Name, Author 2 Name, and Author 3 Name, "Article Title", Submitted to Conference/Journal Name, further attributes.
- Author 1 Name, Author 2 Name, and Author 3 Name, "Article Title", Submitted to Conference/Journal Name, Mon. Year.