Advanced Mechanics Problem set #1

- 1. Prove:
 - a) $\Sigma_{k}(\epsilon_{ijk}\epsilon_{lmk)} = \delta_{il}\,\delta_{jm}$ $\delta_{im}\,\delta_{jl}$
 - b) $Ax(BxC) = (A \cdot C)B (A \cdot B)C$
 - c) $d/dt (\mathbf{r} \times (\mathbf{v} \times \mathbf{r})) = r^2 \mathbf{a} + (\mathbf{r} \cdot \mathbf{v})\mathbf{v} (\mathbf{v}^2 + \mathbf{r} \cdot \mathbf{a})\mathbf{r}$
- 2. Find the angle between the surfaces defined by $r^2 = 24$ and $x + y + z^2 = 20$ at (2,2,-4).
- 3. A particle moves in an orbit defined by $r = A\sin(\omega t)\mathbf{i} + 3A\cos(\omega t)\mathbf{j}$.
 - a) Find v and a of the particle.
 - b) Find the speed of the particle at time, $t = 2\pi/\omega$.
 - c) Find the angle between v and a at time, $t = 2\pi/\omega$.