<u>Deep Learning Course Syllabus – Artificial Intelligence College – AASTMT (Al-Alamin)</u>

Weeks	Topics
1	Perceptron
	Perceptron structure
	Perceptron learning algorithm
	Perceptron limitations
2	Multilayer perceptron (MLP)
	MLP architecture
	Forward propagation
	Backpropagation
3	• Activation functions
	Overview of activation functions used in MLP.
	Comparison of different activation functions and their effects and MLP performance.
	on MLP performance. • Adaptive activation functions (e.g., Swigh, Looky Pol II)
	 Adaptive activation functions (e.g., Swish, Leaky ReLU) Activation functions for specific applications
4	Regularization Techniques
_	Dropout regularization
	 L1 and L2 regularization (weight decay)
	 Batch normalization and its effects on MLP training
	 Early stopping and its role in preventing overfitting
5	Optimization Algorithms
6	Introduction to convolution neural network
7	 Architecture of CNN (convolution and pooling)
8	• Padding
	• Strides
	 The advantages of CNN and it's applications
	Training CNN from scratch
	Using pretrained convnets
9	Deep learning for text and sequences
10	 One hot encoding
	Word embedding
	Understanding Vanilla Recurrent neural network
	RNN model

	Backpropagation through timeVanishing gradients with RNN
11	Gated recurrent unit (GRU)
12	• Long short-term memory (LSTM)
13	Bidirectional LSTM
	Attention mechanism
14	Generative adversarial network (GANs)
15	Project discussions
16	Final exam