36-710: Advanced Statistical Theory

Fall 2018

Lecture 13: February 26

Lecturer: Alessandro Rinaldo Scribes: Ojash Neopane

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Preliminaries

Definition 13.1 (Operator Norm of a Symmetric Matrix) Let $\mathbf{A} \in S^{d \times d}$ be a symmetric $d \times d$ matrix. Then the operator norm of \mathbf{A} , denoted $||\mathbf{A}||_{op}$ is defined as

$$||\mathbf{A}||_{op} \coloneqq \max_{x \in \mathbb{S}^{d-1}} |x^T \mathbf{A} x| \tag{13.1}$$

Definition 13.2 (Sub-Gaussian Random Vector) A vector $\mathbf{x} \in \mathbb{R}^d$ is vector sub-gaussian ($\mathbf{x} \in SG_d(\sigma^2)$ with parameter σ if for all $\mathbf{v} \in \mathcal{S}^{d-1}$

$$\mathbb{E}[\exp(\mathbf{v}^T(\mathbf{x} - \mu))] \le \exp(\lambda^2 \sigma^2 / 2) \tag{13.2}$$

13.2 Concentration Inequalities for Covariance Matrices

Theorem 13.3 Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be an i.i.d sequence of σ sub-gaussian random vectors such that $\mathbb{V}[\mathbf{x}_1] = \Sigma$ and let $\hat{\Sigma}_n := \frac{1}{n} \sum_{i=1}^n x_i x_i^T$ be the empirical covariance matrix. Then there exists a universal constant C > 0 such that, for $\delta \in (0,1)$, with probability at least $1-\delta$

$$\frac{||\hat{\Sigma}_n - \Sigma||_{op}}{\sigma^2} \le C \max\left\{\sqrt{\frac{d + \log(2/\delta)}{n}}, \frac{d + \log(2/\delta)}{n}\right\}$$
(13.3)

If $d/n \to 0$ then the confidence interval goes to 0 at a rate of $\sqrt{d/n}$ which is the minimax rate

Proof: We break the proof up into two steps:

- 1. Use a discretization argument to reduce the problem to task of computing the maximum of finitely many random variables
- 2. Use standard concentration inequalities

Step 1:

Lemma 13.4 Let $\mathbf{A} \in S^{d \times d}$ and let N_{ϵ} be an ϵ -net of \mathbb{S}^{d-1} . Then

$$||\mathbf{A}||_{op} \le \frac{1}{1 - 2\epsilon} \max_{y \in N_{\epsilon}} |y^T \mathbf{A} y| \tag{13.4}$$

Proof of Lemma 13.4:

Let $y \in N_{\epsilon}$ satisfy $||x - y|| \le \epsilon$. Then

$$|x^{\mathbf{A}}x - y^{T}\mathbf{A}y| = |x^{T}\mathbf{A}(x - y) + y^{T}\mathbf{A}(x - y)|$$
(13.5)

$$\leq |x^T \mathbf{A}(x-y)| + |y^T \mathbf{A}(x-y)| \tag{13.6}$$

Looking at $|x^T \mathbf{A}(x-y)|$ we have

$$|x^T \mathbf{A}(x-y)| \le ||\mathbf{A}(x-y)|| ||x||$$
 (13.7)

$$\leq ||\mathbf{A}||_{op} \underbrace{||x-y||}_{\leq \epsilon} \underbrace{||x||}_{=1} \tag{13.8}$$

$$\leq ||\mathbf{A}||_{op}\epsilon \tag{13.9}$$

Applying the same argument to $|y^T \mathbf{A}(x-y)|$ gives us $|x^{\mathbf{A}}x - y^T \mathbf{A}y| \leq 2\epsilon ||\mathbf{A}||_{op}$. To complete the proof, we see that $||\mathbf{A}||_{op} = \max_{x \in \mathbb{S}^{d-1}} x^T \mathbf{A}x \leq 2\epsilon ||\mathbf{A}||_{op} + \max_{y \in N_{\epsilon}} y^T \mathbf{A}y$. Rearranging the equation gives $||\mathbf{A}||_{op} \leq \frac{1}{1-2\epsilon} \max_{y \in N_{\epsilon}} y^T \mathbf{A}y$ as desired.

Step 2:

Applying Lemma 13.4 on $\hat{\Sigma}_n - \Sigma$ with $\epsilon = 1/4$ we have

$$||\hat{\Sigma}_n - \Sigma||_{op} \le 2 \max_{v \in N_{1/4}} |v^T(\hat{\Sigma}_n - \Sigma)v|$$
 (13.10)

Additionally, we know that $N_{1/4} \leq 9^d$. From here, we can apply standard cocentration tools as follows:

$$\mathbb{P}(||\hat{\Sigma}_n - \Sigma||_{op} \ge t) \le \mathbb{P}(\max_{v \in N_{1/4}} |v^T(\hat{\Sigma}_n - \Sigma)v| \ge t/2)$$
(13.11)

$$\leq |N_{1/4}|\mathbb{P}(|v_i^T(\hat{\Sigma}_n - \Sigma)v_i| \geq t/2) \tag{13.12}$$

We rewrite $v_i^T(\hat{\Sigma}_n - \Sigma)v_i$ as follows:

$$v_i^T(\hat{\Sigma}_n - \Sigma)v_i = \frac{1}{n} \sum_{i=1}^n (v_i^T x_j)^2 - \mathbb{E}[(v_i^T x_j)^2]$$
 (13.13)

$$= \frac{1}{n} \sum_{i=1}^{n} z_j - \mathbb{E}[z_j]$$
 (13.14)

where z_j 's are independent and by assumption $v_i^T x_j \in SG(\sigma^2)$ so that $z_j - \mathbb{E}[z_j] \in SE((16\sigma^2)^2, 16\sigma^2)$. Applying the sub-exponential tail bound gives us

$$\mathbb{P}(|v_i^T(\hat{\Sigma}_n - \Sigma)v_i| \ge t/2) \le 2\exp\left\{-\frac{n}{2}\min\left\{\left(\frac{t}{32\sigma^2}\right)^2, \frac{t}{32\sigma^2}\right\}\right\}$$
(13.15)

so that

$$\mathbb{P}(||\hat{\Sigma}_n - \Sigma||_{op} \ge t) \le 2 \cdot 9^d \exp\left\{-\frac{n}{2} \min\left\{ (\frac{t}{32\sigma^2})^2, \frac{t}{32\sigma^2} \right\} \right\}$$
 (13.16)

Inverting the bound gives the desired result

13.3 Matrix Concentration Inequalities

Theorem 13.5 (Matrix Bernstein) Let X_1, \ldots, X_n be independent mean 0 symmetric $d \times d$ random matrices such that $||X||_{op} \leq C$ almost surely. Then for any $t \geq 0$

$$P(||\sum X_i|| > t) \le 2d \exp(-\frac{t^2}{2(\sigma^2 + Ct/3)})$$
(13.17)

where
$$\sigma^2 = ||\sum \mathbb{E}[X_i]||_{op}$$

Some applications of matrix concentration inequalities include:

- Solving Linear Systems
- Matrix Multiplication
- Sub Sampling
- Sparsification methods for spectral clustering
- Dimensionality Reduction
- Compressed Sensing
- Network Models

For a more in-depth discussion on these topics, refer to [tropp2012user, tropp2015introduction]

References

[tropp2012user] J. Tropp, "User-friendly tail bounds for sums of random matrices," [tropp2015introduction] J. Tropp, "An introduction to matrix concentration inequalities,"