Graph theory

Glossary

• Graph G (V, E):

• V: vertices set

• **E**: edges set

• **Degree**: number of vertices

• Walk: series of connected vertices

• Path: walk without repeated vertices

• Closed walk: walk where $v_0 = v_n$

• Cycle: closed walk without repeating vertices

• **Euler path**: visit each edge once

• Hamilton path: visit each vertex once

• Directed graph: edges are ordered pairs

• Ancestor: v, Successor: u in

• degin(v): number of incoming edges into v

• degout(v): number of outgoing edges into v

Graph Representation

Adjacency matrix

matrix where
$$A_{uv} = \left\{ egin{array}{ll} 1 & ext{if}(u,v) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

Graph:

Matrix:

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Adjacency list

Array of linked lists, where Adj[u] contains a list containing all the neighbors of u.

Graph: Same as above

List:

