On axioms for multiverses of set theory

Kameryn J Williams

University of Hawai'i at Mānoa

RIMS Set Theory Workshop 2019 2019 November 18

Joint work with Victoria Gitman, Michał Tomasz Godziszewsky, and Toby Meadows

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
 - Set-theoretic geology takes a downward look at this multiverse.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Some perspectives: Order-theoretic (Mostowski), modal logic (Hamkins and others), philosophy of math (Friedman, Woodin, and others).

Set-theoretic multiverses

Set theorists have studied many different multiverses.

- The generic multiverse of a model of set theory.
 - Set-theoretic geology takes a downward look at this multiverse.
- S. Friedman's hyperverse of countable transitive models.
- Zermelo's upwardly dynamic conception of set can be seen as a multiverse with worlds V_{κ} for inaccessible κ .

Some perspectives: Order-theoretic (Mostowski), modal logic (Hamkins and others), philosophy of math (Friedman, Woodin, and others).

One perspective: The axiomatic approach. Write down axioms which a multiverse can satisfy.

- Philosophy: What axioms are true of the real multiverse of sets?
- Mathematics: Given a toy multiverse—a collection of set-sized models of set theory—what axioms are true of it?

Multiverse axioms

Hamkins introduced a series of axioms which describe his view of what the set-theoretic multiverse looks like.

- Realizability If M is a world and N is a set- or class-sized model of ZFC in M, then N is a world.
- Closure Under Forcing If M is a world and \mathbb{P} is a poset in M then the multiverse contains a forcing extension of M by \mathbb{P} .
- Countability Every world *M* is an element of a larger world which thinks *M* is countable.

Remark

Under suitable consistency assumptions: The collection of countable transitive models of ZFC form a multiverse satisfying Standard Realizability, Closure Under Forcing, and Countability; and The collection of countable models of ZFC form a multiverse satisfying Realizability, Closure Under Forcing, and Countability.

The well-foundedness mirage axiom

The most provocative of Hamkins's multiverse axioms is his well-foundedness mirage axiom.

• Well-Foundedness Mirage If M is a wold there is another world N with $M \in N$ and $N \models M$ is ω -nonstandard. That is, N sees an embedding of ω^M onto a strict initial segment of ω^N .

WFM has profound consequences for the structure of the multiverse, more so than Hamkins's other axioms. It forces every world to be ω -nonstandard, and more.

Recursive saturation

Definition

A structure is recursively saturated if it realizes every finitely consistent computable type.

Recursive saturation is an important concept in the model theory of nonstandard models.

- Every theory with an infinite model has a countable recursively saturated model.
- ullet Every recursively saturated model of set theory is ω -nonstandard.
- The definable ordinals in a recursively saturated model of set theory are bounded.
- ullet Every element of an ω -nonstandard model of set theory is recursively saturated.

Thus, if a multiverse satisfies Hamkins's WFM axiom then every world in the multiverse must be recursively saturated.

A natural model of the Hamkins multiverse axioms

Theorem (Gitman-Hamkins (2010))

The collection of countable, recursively saturated models of set theory form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Well-Foundedness Mirage.

The main question

Question

Can the Well-Foundedness Mirage axiom be weakened to allow for multiverses with worlds which are not recursively saturated?

The main question

Question

Can the Well-Foundedness Mirage axiom be weakened to allow for multiverses with worlds which are not recursively saturated?

Yes.

Gitman, Godziszewsky, Meadows, and I consider two possible weakenings.

There are some easy ways to ensure a model of set theory is not recursively saturated.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.

There are some easy ways to ensure a model of set theory is not recursively saturated.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

There are some easy ways to ensure a model of set theory is not recursively saturated.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.
- Can weaken being a Paris model to having cofinally many ordinals definable without parameters.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

There are some easy ways to ensure a model of set theory is not recursively saturated.

- No ω -standard model is recursively saturated.
- No Paris model, one whose ordinals are all definable without parameters, is recursively saturated.
- Can weaken being a Paris model to having cofinally many ordinals definable without parameters.
- Can weaken even further to allowing a fixed parameter in the definitions.

Theorem (Paris (1973))

Every consistent extension of ZF has a Paris model.

The first weakening of the WFM axiom

The weak well-foundedness mirage axiom

• Weak Well-Foundedness Mirage If M is a world there is another world N with $M \in N$ and $N \models M$ is nonstandard (but possibly ω -standard).

A natural model of the weak WFM axiom

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of countable, nonstandard models of set theory form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

This multiverse contains many worlds which are not recursively saturated, e.g. ω -standard models and Paris models.

A natural model of the weak WFM axiom

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of countable, nonstandard models of set theory form a multiverse satisfying Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

This multiverse contains many worlds which are not recursively saturated, e.g. ω -standard models and Paris models.

Theorem (Gitman, Godziszewsky, Meadows, W.)

The collection of countable, nonstandard but ω -standard models of set theory form a multiverse satisfying Standard Realizability, Closure Under Forcing, Countability, and Weak Well-Foundedness Mirage.

No world in this multiverse is recursively saturated.

The second weakening of the WFM axiom

The second weakening of the WFM axiom (Need some set-up first.)

Covering extensions

- $N \supseteq M$ is an end-extension if $b \in {}^{N} a \in M$ implies $b \in M$.
- An end-extension $N \supseteq M$ is covering if there exists $m \in N$ so that $a \in {}^{N} m$ for all $a \in M$.
- $N \supseteq M$ is a rank-extension if $b \in N \setminus M$ implies rank $b > \alpha$ for all $\alpha \in \operatorname{Ord}^M$.

Observe that every rank-extension is a covering end-extension and every elementary end-extension is a rank-extension.

Theorem (Keisler-Morley (1968))

Every countable model of ZFC has an elementary end-extension.

The covering multiverse axioms

- Covering Well-Foundedness Mirage If M is a world then there is a world N with $(k, \in^k) \in N$ so that k is a covering end-extension of M and $N \models k$ is ω -nonstandard.
- Covering Countability If M is a world then there is a world N with $(k, \in^k) \in N$ so that k is a covering end-extension of M and $N \models k$ is countable.

Building a covering axiom multiverse. Step 1: The trellis

 $M=M_0^0$ is a countable and ω -nonstandard Paris model, $U=U_0\in M$ is an ultrafilter on ω^M .

Vertical arrows are elementary end-extensions. We can ensure cofinally many ordinals are definable from a fixed parameter.

Horizontal arrows are ultrapowers, iterating the ultrapower of U_0 along ω^M .

Each world in the trellis is ω -nonstandard but not recursively saturated.

Step 2: Grow the multiverse C(M) on the trellis

- First, add in enough forcing extensions.
 - More precisely: For each $e \in Z$, for each $\operatorname{Ord-cc}$ forcing $\mathbb{P} \subseteq M_e^{\omega}$, for each $G \subseteq \mathbb{P}$ generic over M_e^{ω} , for each $n \in \omega$: place $M_e^n[G \cap M_e^n]$ into $\mathcal{C}(M)$.

Step 2: Grow the multiverse C(M) on the trellis

- First, add in enough forcing extensions.
 - More precisely: For each $e \in Z$, for each $\operatorname{Ord-cc}$ forcing $\mathbb{P} \subseteq M_e^{\omega}$, for each $G \subseteq \mathbb{P}$ generic over M_e^{ω} , for each $n \in \omega$: place $M_e^n[G \cap M_e^n]$ into $\mathcal{C}(M)$.
- Finally, close under set-like realizability.
 - More precisely: For each $M_e^n[G\cap M_e^n]$, if N is a definable over this world model of ZFC so that $M_e^n[G\cap M_e^n]$ thinks N is set-like, then place N into $\mathcal{C}(M)$.

Step 2: Grow the multiverse C(M) on the trellis

- First, add in enough forcing extensions.
 - More precisely: For each $e \in Z$, for each $\operatorname{Ord-cc}$ forcing $\mathbb{P} \subseteq M_e^{\omega}$, for each $G \subseteq \mathbb{P}$ generic over M_e^{ω} , for each $n \in \omega$: place $M_e^n[G \cap M_e^n]$ into $\mathcal{C}(M)$.
- Finally, close under set-like realizability.
 - More precisely: For each $M_e^n[G\cap M_e^n]$, if N is a definable over this world model of ZFC so that $M_e^n[G\cap M_e^n]$ thinks N is set-like, then place N into $\mathcal{C}(M)$.

(Need to restrict to Ord -cc forcings and set-like models to make later arguments work. Use Ord -cc-ness to get that $G \cap M_e^n$ is generic over M_e^n . And use the restriction to set-like models to get covering extensions by moving up the trellis.)

Our main theorem

M is a countable, ω -nonstandard Paris model, $\mathcal{C}(M)$ is the covering multiverse grown from M.

Theorem (Gitman, Godziszewsky, Meadows, W.)

 $\mathcal{C}(M)$ is a multiverse satisfying Set-Like Realizability, Closure Under Ord-cc Forcing, Covering Countability, and Covering Well-Foundedness Mirage.

A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)

Take M_e^n and $\mathbb{P} \subseteq M_e^n$ an Ord-cc forcing. Let $\mathbb{P}^+ \subseteq M_e^\omega$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^ω then G meets every antichain, each of which is a set in M_e^ω by Ord-cc-ness. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So $\mathcal{C}(M)$ contains a forcing extension of M_e^n by \mathbb{P} .

A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)

Take M_n^n and $\mathbb{P} \subseteq M_n^n$ an Ord-cc forcing. Let $\mathbb{P}^+ \subseteq M_n^\omega$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^{ω} then Gmeets every antichain, each of which is a set in M_e^{ω} by Ord-cc-ness. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So C(M)contains a forcing extension of M_e^n by \mathbb{P} .

(Covering Countability for worlds in the trellis)

Take M_e^n and look at a forcing extension of M_e^{n+1} which collapses V_α to be countable where α is above M_e^n . Then $(k, \in^k) = (V_\alpha, \in) \in M_e^{n+1}[G]$ witnesses Covering Countability for M_{e}^{n} .

A partial sketch of the proof

(Worlds in the trellis have Ord-cc forcing extensions)

Take M_e^n and $\mathbb{P} \subseteq M_e^n$ an $\mathrm{Ord}\text{-}\mathrm{cc}$ forcing. Let $\mathbb{P}^+ \subseteq M_e^\omega$ be the forcing defined by the same formula. Then if $G \subseteq \mathbb{P}^+$ is generic over M_e^ω then G meets every antichain, each of which is a set in M_e^ω by $\mathrm{Ord}\text{-}\mathrm{cc}\text{-}\mathrm{ness}$. So G meets every antichain in M_e^n , so $G \cap M_e^n$ is generic over M_e^n . So $\mathcal{C}(M)$ contains a forcing extension of M_e^n by \mathbb{P} .

(Covering Countability for worlds in the trellis)

Take M_e^n and look at a forcing extension of M_e^{n+1} which collapses V_α to be countable where α is above M_e^n . Then $(k, \in^k) = (V_\alpha, \in) \in M_e^{n+1}[G]$ witnesses Covering Countability for M_e^n .

(Covering WFM for worlds in the trellis)

Take M_e^n , with M_e^{n+1} as an elementary end-extension. But M_e^{n+1} is a definable, set-like class in M_{e-1}^{n+1} , which sees that M_e^{n+1} is ω -nonstandard. Cut off M_e^{n+1} at an ordinal above M_e^n to get $(k, \in^k) \in M_{e-1}^{n+1}$ witnessing Covering WFM for M_e^n .

Open questions

Question

Can we get a multiverse for the covering axioms which satisfies Closure Under (Tame) Class Forcing and full Realizability? That is, can we drop the restrictions to Closure Under Ord-cc Forcing and Set-Like Realizability?

Question

Is there a natural model of the covering multiverse axioms?

Thank you!