

Escola de Ciências e Tecnologias

Departamento de Informática

Licenciatura em Engenharia Informática

Sistemas Digitais

(1° ano, 1° semestre, 2019/2020)

Docente: Prof.º Doutor Pedro Salgueiro

Relatório do trabalho prático Máquina de Lavar Roupa

Discentes:

Alexandre Costa n°15856 Guilherme Henriques n°45687

> 20 de janeiro de 2020 Évora

Objetivos

Com este trabalho pretende-se desenvolver um sistema de controle para uma máquina de lavar roupa.

Introdução

Este trabalho consiste na criação de um módulo de controlo de água e de um módulo de controlo de lavagem.

O módulo de controlo da água tem como objetivo fornecer a água necessária para a lavagem da máquina, tendo como componentes:

- -Válvula da entrada da água (VA)
- -Sensor de nível de água (SNA)
- -Resistência de aquecimento da água (RAQ)
- -Sensor de temperatura da água (STA)

O módulo de lavagem tem como objetivo a parte da lavagem e de centrifugação, sendo composta por:

- -Movimento para a direita (MD)
- -Movimento para a esquerda (ME)
- -Bomba de água (BA)
- -Sensor de nível de água (SNA)
- -Modo de centrifugação (MC).

Módulo de controlos

Flip flops utilizados:

Neste trabalho foi utilizado o flip flop de tipo T, com a seguinte tabela de excitação.

Q_n	Q_{n+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

Módulo de controlo da água:

Após a máquina ser ligada e o módulo do controlo da água ser ativado, ou seja, tomar o valor 1, a válvula de entrada de água (VA) será ativada. Quando a água atingir o nível necessário o sensor de nível de água (SNA) toma o valor 1, caso contrário, a válvula continua a permitir a entrada de água. Quando o sensor atingir o valor 1 a resistência de aquecimento da água (RAQ) entrará em funcionamento. Assim que a água atingir a temperatura necessária o valor do sensor da temperatura da água (STA) irá ser 1 permitindo que seja iniciada a lavagem. Dando se o fim do modulo de controlo da água (FMCA).

Módulo de controlo da lavagem:

Assim que termine o módulo de controlo da água dá-se início ao módulo de controlo da lavagem. Durante dois ciclos de relógio o motor é rodado para a direita (MD), apos esses dois ciclos o motor é rodado dois ciclos para a esquerda (ME).

A bomba de água (BA) é ativada apos estes 4 ciclos. Enquanto o sensor de nível da água (SNA) não for igual a 0 a bomba de água continua ativa. Assim que o sensor de nível de água toma o valor 0 é ativado o modo de centrifugação juntamente com a bomba de água. Após este estado dá-se fim ao módulo de controlo de lavagem (FMCL).

Desenvolvimento

Módulo de controle da água

Diagrama ASM:

Variaveis de entrada: Variaveis de saida:

-AMCA -VA

-SNA -RAQ

-STA -FMCA

Tabela de verdade:

					Q	Qn		+1					
AMCA	SNA	STA	ESTADO	ESTADO	X1	X0	X1	X0	VA	RAQ	FMCA	T1	T0
			ATUAL	SEGUITNE									
0	-	-	Α	Α	0	0	0	0	0	0	0	0	0
1	-	1	Α	В	0	0	0	1	0	0	0	0	1
-	0	ı	В	В	0	1	0	1	1	0	0	0	0
-	1	ı	В	С	0	1	1	0	1	0	0	1	1
-	-	0	С	С	1	0	1	0	0	1	0	0	0
-	-	1	С	D	1	0	1	1	0	1	0	0	1
-	-	-	D	Α	1	1	0	0	0	0	1	1	1

Mapas de Karnaugh:

T1:

$$T1 = \frac{(X0*X1)}{(SNA*X0)}$$

TO:

	AMCA = 0									
SNA STA	00	01	11	10						
5NA 57A 00	0	0	1	0						
01	0	0	1	1						
11	0	1	1	1						
10	0	1	1	0						

T0 = (STA*X1) + (X1*X0) + (SNA*X0) + (AMCA*X1*X0)

FMCA:

6		AMCA = 1										
NA STA	00	01	11	10								
5NA 57A 00	0	0	1	0								
01	0	0	1	0								
11	0	0	1	0								
10	0	0	1	0								

FMCA= (X1*X0)

RAQ:

•		AMCA =	: 1		
SNA STA	00	01	11	10)
SNA 574 00	0	0	0	1	
01	0	0	0	1	
11	0	0	0	1	
10	0	0	0	1	

	AMCA = 0									
SNA STA	00	01	11		10					
5NA 57A 00	0	0	0		1					
01	0	0	0		1					
11	0	0	0		1					
10	0	0	0		1					

$$RAQ = \frac{(X1*\overline{X0})}{}$$

VA:

	AMCA = 0										
SNA STA	00	01	11	10							
5NA 57A 00	0	1	0	0							
01	0	1	0	0							
11	0	1	0	0							
10	0	1	0	0							

$$VA = (\overline{X1} * X0)$$

Circuito simplificado do módulo da água

Módulo de Controlador de Lavagem

Diagrama ASM:

Variáveis de entrada:

-FMCA

-SNA

Variáveis de saída:

-MD

-ME

-BA

-MC+BA

-FMCL

Tabela de verdade:

					Qn			Qn+1	-										
FMCA	SNA	ESTADO ATUAL	ESTADO SEGUINTE	X2	X1	Х0	X2	X1	Х0	MD	MD	ME	ME	ВА	MC+BA	FMCL	T2	T1	ТО
0	-	Α	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-	Α	В	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
-	-	В	С	0	0	1	0	1	0	1	0	0	0	0	0	0	0	1	1
-	-	С	D	0	1	0	0	1	1	0	1	0	0	0	0	0	0	0	1
-	-	D	E	0	1	1	1	0	0	0	0	1	0	0	0	0	1	1	1
-	-	E	F	1	0	0	1	0	1	0	0	0	1	0	0	0	0	0	1
-	0	F	F	1	0	1	1	1	0	0	0	0	0	1	0	0	0	1	1
-	1	F	G	1	0	1	1	0	1	0	0	0	0	1	0	0	0	0	0
-	-	G	Н	1	1	0	1	1	1	0	0	0	0	0	1	0	0	0	1
-	-	Н	Α	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1

T0:

T1:

		X2 =	1						X2 = 0	
FNCA 5NA 00	00	01	11	10	FNCA SNA	00	()1	11	10
00	0	1	1	0	00	0		1	1	0
01	0	0	1	0	01	0		1	1	0
11	0	0	1	0	11	0		1	1	0
10	0	1	1	0	10	0		1	1	0

$$T1 = (X1*X0) + (\overline{SNA*X0}) + (\overline{X2*X0})$$

T2:

$$T2 = (X1*X0)$$

MD:

A > .	X2 = 1										
NCA SA	00	01	11	10							
FNCA 5NA 00	0	0	0	0							
01	0	0	0	0							
11	0	0	0	0							
10	0	0	0	0							

		X	2 =	0				
FNCASA	00	(01		11	10		
FNCA 5NA 00	0		1		0		1	
01	0		1		0		1	
11	0		1		0		1	
10	0		1		0		1	

$$MD = (X2*X1*X0) + (X2*X1*X0)$$

ME:

KA to	X2 = 1										
NCA SAL	00	01	11	10							
FNCA 5NA 00	1	0	0	0							
01	1	0	0	0							
11	1	0	0	0							
10	1	0	0	0							

X2 = 0							
CA SA	00	01		11	10		
NCA 5NA 00	0	0		1	0		
01	0	0		1	0		
11	0	0		1	0		
10	0	0		1	0		

$$ME = (X2*X1*X0) + (X2*X1*X0)$$

BA:

KA L	X2 = 1					
NCA SAL	00	01		11	10	
FNCA 5NA 00	0	1		0	0	
01	0	1		0	0	
11	0	1		0	0	
10	0	1		0	0	

X2 = 0							
MCA SAL	00	01	11	10			
ENCA 5NA 00	0	0	0	0			
01	0	0	0	0			
11	0	0	0	0			
10	0	0	0	0			

$$BA = \frac{(X2 \times \overline{X1} \times X0)}{(X2 \times \overline{X1} \times X0)}$$

MC+BA:

	X2 = 1							
FNCA 5NA 00	00	01	11	10				
00	0	0	0	1				
01	0	0	0	1				
11	0	0	0	1				
10	0	0	0	1				

X2 = 0							
FNCA SA	00	01	11	10			
FNCA 5NA 00	0	0	0	0			
01	0	0	0	0			
11	0	0	0	0			
10	0	0	0	0			

$$MC+BA = \frac{(X2*X1*X0)}{}$$

FMCL:

A > 1	X2 = 1					
WCA SA	00	01 11		10		
FNCA 5NA 00	0	0		1	0	
01	0	0		1	0	
11	0	0		1	0	
10	0	0		1	0	

6 L	X2 = 0						
NCA SAL	00	01	11	10			
FNCA 5NA 00	0	0	0	0			
01	0	0	0	0			
11	0	0	0	0			
10	0	0	0	0			

FMCL= (X2*X1*X0)

Circuito simplificado do módulo de lavagem

Conclusão

Apesar de não ter sido possível a implementação e integração dos 3 módulos foi possível colocar em prática algumas matérias aprendidas nas aulas de Sistemas Digitais.