

Turunan Hidrokarbon

A. PENDAHULUAN

- Turunan hidrokarbon adalah senyawa turunan homolog alkana yang mengandung gugus fungsi.
- Negus fungsi turunan hidrokarbon terdiri atas:

Nomolog turunan hidrokarbon terdiri atas:

R - X

•		
Homolog	Gugus fungsi	Rumus umum
Alkanol	-OH	$C_nH_{2n+2}O$
Alkoksi alkana	-0-	Cn1 12n+20
Alkanal	-CHO	C _n H _{2n} O
Alkanon	-CO-	C _n i i ₂ nO
Asam alkanoat	-COOH	C _n H _n O ₂
Alkil alkanoat	-COO-	Cni inO2
Haloalkana	-X	$C_nH_{2n+1}X$

B. TATA NAMA TURUNAN HIDROKARBON

- Tata nama turunan hidrokarbon didasarkan atas aturan IUPAC atau menggunakan nama trivial (nama umum/dagang).
- Penamaan IUPAC dan trivial pada turunan hidrokarbon:

Gugus fungsi	IUPAC	Trivial
Alkohol	alkan ol	alkil alkohol
Eter	al koksi alkana	alkil alkil eter
Aldehida	alkan al	alkil aldehida
Aldenida	alkan at	trivi aldehida
Keton/karbonil	alkan on	alkil alkil keton
Karboksil	asam alkan oat	asam trivi oat
		asam alkana
		karboksilat
Ester	alkil alkan oat	alkil trivi at
Halogen	halo alkana	alkil halida

- ▶ Penamaan trivial pada bentuk rantai karbon, cabang dan posisi gugus fungsi:
 - 1) Posisi primer (terikat pada atom C primer)

$$C-C-C-C-OH$$

2) Posisi sekunder (terikat pada atom C sekunder)

$$C-C-C-C$$

3) Posisi tersier (terikat pada atom C sekunder)

$$C - \begin{array}{c} C \\ - C \\ - C \end{array}$$

4) **Posisi iso** (pada rantai karbon terdapat satu cabang pada nomor kedua)

Posisi iso dapat sama dengan posisi sekunder.

5) **Posisi neo** (pada rantai karbon terdapat dua cabang pada nomor kedua)

Posisi neo dapat sama dengan posisi tersier.

Penamaan trivial pada suku-suku homolog alkanal, asam alkanoat dan alkil alkanoat:

Atom C	Nama trivial	Atom C	Nama trivial
1	form-	6	kapro-
2	aset-	7	enant-
3	propio-	8	kapril-
4	butir-	9	pelargon-
5	valer-	10	kapr-

C. KEISOMERAN TURUNAN HIDROKARBON

Neisomeran turunan hidrokarbon terdiri atas:

Isomer	Perbedaan	Homolog
Struktur		
Rantai/ rangka	beda rantai utama/induk atau alkil	seluruh turunan hidrokarbon

Posisi	beda posisi gugus fungsi	selain asam alkanoat
Fungsi	beda homolog, namun sama rumus umum	alkanol-alkoksi alkana, alkanal-alkanon, asam alkanoat-alkil alkanoat
Ruang		
Optis	beda pemutar polarimetri	alkanol atau mengan- dung gugus alkohol

Pada isomer optis, dua buah rumus bangun memiliki nama yang sama, namun berbeda jika dilewatkan cahaya terpolariasi.

- Untuk membedakannya, kedua rumus bangun diberi notasi L- dan D-.
 - Bentuk levo (L-) menyatakan senyawa memutar polarimetri ke kiri.
 - Bentuk dekstro (D-) menyatakan senyawa memutar polarimetri ke kanan.
- ► Hubungan dua isomer optis dapat berupa enansiomer (saling mencerminkan), dan diastereoisomer (tak saling mencerminkan).
- Campuran senyawa enansiomer sejenis bersifat optis aktif, sedangkan campuran dua senyawa enansiomer berbeda (rasemat) bersifat optis tak aktif.
- Keisomeran optis disebabkan oleh atom C kiral (asimetris), yaitu atom karbon yang mengikat 4 gugus yang seluruhnya berbeda.
- Semakin banyak atom C kiral, semakin banyak isomer optis. Jika n adalah jumlah atom C kiral:

jumlah isomer optis = 2ⁿ

D. ALKANOL DAN ALKOKSI ALKANA

Naturan penamaan IUPAC alkanol:

- Penamaan didasarkan atas rantai utama dan diberi akhiran -ol. Gugus alkohol dianggap cabang.
- Posisi cabang dan gugus alkohol ditentukan dengan penomoran rantai utama.
 Penomoran dilakukan sedemikian rupa sehingga gugus alkohol memiliki nomor kecil.

🔦 Aturan penamaan trivial alkanol:

- 1) **Penamaan** didasarkan atas gugus alkil sebagai cabang gugus alkohol.
- 2) Penamaan ditulis sebagai alkil alkohol.

Contoh:

IUPAC: metanol

Trivial: metil alkohol (spirtus)

IUPAC: etanol

Trivial: etil alkohol (alkohol di pasaran)

IUPAC: 1-propanol Trivial: propil alkohol

IUPAC: 1-pentanol Trivial: pentil alkohol

IUPAC: 3-pentanol

Trivial: sekpentil alkohol

$$\begin{array}{c} CH_{3} \\ | \\ CH_{3}-CH_{2}-C-CH_{3} \\ | \\ OH \end{array}$$

IUPAC: 2-metil-2-butanol Trivial: terspentil alkohol

$$\begin{array}{c} \mathsf{CH_3--CH_2-CH_2-OH} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

IUPAC: 3-metil-1-butanol

Trivial: isopentil alkohol

$$\begin{array}{c} \mathsf{CH}_3 \\ \mathsf{I} \\ \mathsf{CH}_3 - \mathsf{C} - \mathsf{CH}_2 - \mathsf{OH} \\ \mathsf{CH}_3 \end{array}$$

IUPAC: 2,2-dimetil-1-propanol

Trivial: neopentil alkohol

$$CH_3$$

 I
 CH_3 — CH — CH — CH_2 — OH
 CH_3

IUPAC: 2,3-dimetil-1-butanol

Trivial: tidak ada

🔪 Aturan penamaan IUPAC alkoksi alkana:

- Penamaan didasarkan atas gugus karbon di sekitar gugus eter.
 - a. Rantai utama adalah gugus karbon terpanjang.
 - b. Gugus karbon yang lebih pendek dianggap cabang, diberi akhiran –oksi.
- Posisi cabang dan gugus eter ditentukan dengan penomoran rantai utama.

Penomoran dilakukan sedemikian rupa sehingga gugus eter memiliki nomor kecil.

3) **Gugus eter** selalu ditulis paling awal daripada cabang.

🔦 Aturan penamaan trivial alkoksi alkana:

- Penamaan didasarkan atas gugus karbon di sekitar gugus eter.
- Penamaan gugus diurut berdasarkan abjad (sebelum diberi indeks, sek-, ters-, iso-, dan neo-) sesuai nama gugus alkil di sekitar gugus eter sebagai alkil alkil eter.

Contoh:

IUPAC: 1-metoksibutana

Trivial: butil metil eter

$$CH_3 - O - CH_2 - CH - CH_3 \\ CH_3$$

IUPAC: 1-metoksi-2-metilpropana

Trivial: isobutil metil eter

$$CH_3$$
— CH_2 — O — CH_2 — CH_2 — CH_3

IUPAC : 1-etoksipropana Trivial : etil propil eter

IUPAC: 2-etoksipropana

Trivial: etil sekpropil eter/etil isopropil eter

Pada isomer rantai, dua buah rumus bangun memiliki rumus molekul yang sama namun rantai utama berbeda (alkanol) atau gugus alkil berbeda (alkoksi alkana).

Contoh isomer rantai:

Alkanol, contoh: berikut ini isomer rantai C₇H₁₆O,

1. 1-heptanol (rantai utama C₇)

2. 5-metil-1-heksanol (rantai utama C₆)

3. 3,4-dimetil-1-pentanol (rantai utama C_5)

Alkoksi alkana, contoh: berikut ini isomer rantai $C_5H_{12}O$,

1. 1-metoksibutana (rantai utama C₄)

2. 1-metoksi-2-metilpropana (rantai utama C₃)

3. 2-metoksi-2-metilpropana (rantai utama C₃)

- ▶ Pada isomer posisi, dua buah rumus bangun memiliki rumus molekul yang sama namun nomor gugus fungsi berbeda (alkanol) atau posisi gugus fungsi berbeda (alkoksi alkana).
- Contoh isomer posisi:

Alkanol

Misalnya 3-pentanol dengan rumus molekul $C_5H_{12}O$, memiliki keisomeran posisi dengan,

1. 1-pentanol

2. 3-metil-2-butanol

3. 2,2-dimetil-1-propanol

Alkoksi alkana

Misalnya 1-metoksipentana dengan rumus molekul $C_6H_{14}O$, memiliki keisomeran posisi dengan,

1. 1-etoksibutana

2. 1-propoksipropana

- Pada isomer fungsi, dua buah rumus bangun memiliki rumus umum yang sama namun homolog (keluarga) yang berbeda.
- Contoh isomer fungsi:

Senyawa dengan rumus molekul C₅H₁₂O,

1. 1-pentanol

2. 1-metoksi butana

Pada isomer optis, dua buah rumus bangun memiliki nama yang sama, namun menghasilkan cahaya terpolarisasi berbeda.

Contoh isomer optis:

2-butanol

$$\begin{array}{c|ccccc} CH_{3}-CH_{2}-CH-CH_{3} \\ & & \\ OH \\ & & \\ H \\ & & \\ H_{5}C_{2}-C^{*}-CH_{3} \\ & & \\ OH \\ & & \\ H_{3}C-C^{*}-C_{2}H_{5} \\ & & \\ OH \\ & & \\ HO \\ L-2-butanol \\ & & \\ D-2-butanol \\ \end{array}$$

3-metil-3-heksanol

$$\begin{array}{c|cccc} CH_3 & CH_2 - CH_2 - C & -CH_2 - CH_3 \\ \hline CH_3 & CH_3 & CH_3 & CH_3 \\ \hline CH_3 & CH_3 & CH_3 \\ \hline CH_7C_3 - C^* - C_2H_5 & CH_5 \\ \hline OH & CH_3 & CH_2 - C^* - C_3H_7 \\ \hline OH & CH_3 & CH_2 - CH_3 \\ \hline CH_3 & CH_3 - CH_3 \\ \hline C$$

L-3-metil-3-heksanol

D-3-metil-3-heksano

E. ALKANAL DAN ALKANON

Naturan penamaan IUPAC alkanal:

- Penamaan didasarkan atas rantai utama dan diberi akhiran -al. Gugus aldehida dianggap cabang, namun atom karbonnya dihitung sebagai rantai utama.
- 2) **Posisi cabang** ditentukan dengan penomoran rantai utama.

Atom karbon gugus aldehida dihitung sebagai rantai utama dan selalu menjadi atom karbon nomor 1 (gugus aldehida tidak perlu diberi nomor).

🔦 Aturan penamaan trivial alkanal:

- Penamaan didasarkan atas jumlah atom C dan bentuk rantai.
- 2) **Penamaan ditulis** sebagai trivialdehida.

Contoh:

IUPAC: metanal

Trivial: formaldehida (formalin)

IUPAC: heksanal

Trivial: kaproaldehida

IUPAC: 4-metilpentanal Trivial: isokaproaldehida

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3--} \mathsf{C--} \mathsf{CH_2--} \mathsf{CHO} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

IUPAC: 3,3-dimetilbutanal Trivial: neokaproaldehida

IUPAC: 2-etilbutanal

Trivial: sekkaproaldehida

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} - \mathsf{CH_2} - \mathsf{C} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

IUPAC: 2,2-dimetilbutanal Trivial: terskaproaldehida

Naturan penamaan IUPAC alkanon:

- Penamaan didasarkan atas rantai utama dan diberi akhiran -on. Gugus keton dianggap cabang, namun atom karbonnya dihitung sebagai rantai utama.
- Posisi cabang dan gugus keton ditentukan dengan penomoran rantai utama.

Penomoran dilakukan sedemikian rupa sehingga gugus keton memiliki nomor kecil.

🔦 Aturan penamaan trivial alkanon:

- Penamaan didasarkan atas gugus karbon di sekitar gugus keton.
- Penamaan gugus diurut berdasarkan abjad (sebelum diberi indeks, sek-, ters-, iso-, dan neo-) sesuai nama gugus alkil di sekitar gugus keton sebagai alkil alkil keton.

Contoh:

IUPAC: 2-heksanon

Trivial: butil metil keton

IUPAC: 3-heksanon

Trivial: etil propil keton

$$CH_3$$
— CO — CH_2 — CH — CH_3 | CH_3

IUPAC: 4-metil-2-pentanon Trivial: isobutil metil keton

Pada isomer rantai, dua buah rumus bangun memiliki rumus molekul yang sama namun rantai utama berbeda (alkanal) atau gugus alkil berbeda (alkoksi alkana).

Contoh isomer rantai:

Alkanal, contoh: berikut ini isomer rantai C₆H₁₂O,

1. heksanal (rantai utama C₆)

2. 3-metilpentanal (rantai utama C₅)

3. 3,3-dimetilbutanal (rantai utama C₄)

Alkanon, contoh: berikut ini isomer rantai $C_6H_{12}O$,

1. 2-heksanon (rantai utama C₆)

2. 4-metil-2-pentanon (rantai utama C₅)

3. 3,3-dimetil-2-butanon (rantai utama C₄)

- Pada isomer posisi, dua buah rumus bangun memiliki rumus molekul yang sama namun posisi gugus fungsi berbeda.
- 🔌 **Alkanal** tidak mempunyai isomer posisi.
- Contoh isomer posisi alkanon:

Misalnya 2-heptanon dengan rumus molekul $C_7H_{14}O$, memiliki keisomeran posisi dengan,

1. 3-heptanon

2. 4-heptanon

- ▶ Pada isomer fungsi, dua buah rumus bangun memiliki rumus umum yang sama namun homolog (keluarga) yang berbeda.
- Contoh isomer fungsi:

Senyawa dengan rumus molekul C₆H₁₂O,

1. heksanal

2. 3-heksanon

F. ASAM ALKANOAT DAN ALKIL ALKANOAT

🔦 Aturan penamaan IUPAC asam alkanoat:

- 1) **Penamaan** didasarkan atas rantai utama dan diberi kata asam di depan dan akhiran –oat. Gugus karboksil dianggap cabang, namun atom karbonnya dihitung sebagai rantai utama.
- 2) **Posisi cabang** ditentukan dengan penomoran rantai utama.

Atom karbon gugus karboksil dihitung sebagai rantai utama dan selalu menjadi atom karbon nomor 1.

🔦 Aturan penamaan trivial asam alkanoat:

Nama trivial 1

- Penamaan didasarkan atas jumlah atom C dan bentuk rantai.
- 2) **Penamaan ditulis** sebagai asam trivioat.

Nama trivial 2

- Penamaan didasarkan atas rantai utama sebagai alkana yang diberi kata asam didepannya. Gugus karboksil dianggap cabang, dan atom karbonnya tidak dihitung sebagai rantai utama.
- Posisi cabang dan gugus karboksil ditentukan dengan penomoran rantai utama.
 Penomoran dilakukan sedemikian rupa sehingga gugus keton memiliki nomor kecil.
- 3) **Gugus karboksil** selalu ditulis paling akhir dan diberi akhiran –at.
- 4) **Penamaan ditulis** sebagai asam alkana karboksilat.

Contoh:

IUPAC: asam metanoat

Trivial: 1) asam formiat

2) tidak ada

IUPAC: asam etanoat

Trivial: 1) asam asetat

2) asam metana karboksilat

$$CH_3$$
— CH_2 — CH_2 — CH_2 — $COOH$

IUPAC : asam heksanoat

Trivial: 1) asam kaproat

2) asam pentana-1-karboksilat

IUPAC: asam 4-metilpentanoat

Trivial: 1) asam isokaproat

2) asam 3-metilbutana-1-karboksilat

$$CH_3$$

 $|$
 $CH_2 - C - CH_2 - COOH$
 $|$
 CH_3

IUPAC: asam 3,3-dimetilbutanoat

Trivial: 1) asam neokaproat

2) asam 2,2-dimetil-1-karboksilat

IUPAC : asam 2-etilbutanoat

Trivial: 1) asam sekkaproat

2) asam pentana-3-karboksilat

Aturan penamaan IUPAC alkil alkanoat:

- Penamaan didasarkan atas gugus karbon di sekitar gugus ester.
 - Gugus karbon yang berikatan dengan O gugus ester adalah rantai utama diberi akhiran –oat.
 - b. Gugus karbon yang berikatan dengan C gugus ester dianggap sebagai alkil dan diletakkan di depan.
- Posisi cabang pada rantai utama ditentukan dengan penomoran rantai utama.
 Atom karbon gugus ester dihitung sebagai rantai utama dan selalu menjadi atom karbon nomor 1.

Aturan penamaan trivial alkil alkanoat:

- 1) **Penamaan** didasarkan atas jumlah atom C dan bentuk rantai.
- 2) **Penamaan ditulis** sebagai alkil trivioat.

Contoh:

IUPAC: propil propanoat

Trivial: propil propionat

IUPAC: etil butanoat

Trivial: etil butirat

IUPAC: metil pentanoat

Trivial: metil valerat

$$\begin{array}{c} \mathsf{CH_3} \mathbf{--} \mathsf{CH} \mathbf{--} \mathsf{CH_2} \mathbf{--} \mathsf{COO} \mathbf{--} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

IUPAC: metil-3-metilbutanoat

Trivial: metil isovalerat

$$CH_3 - CH - COO - CH_2 - CH_3$$

$$CH_3$$

IUPAC: etil-2-metilpropanoat

Trivial: etil isobutirat/etil sek butirat

IUPAC: metil-2,2-dimetilpropanoat

Trivial: metil neovalerat/metil tersvalerat

▶ Pada isomer rantai, dua buah rumus bangun memiliki rumus molekul yang sama namun rantai utama berbeda (asam alkanoat) atau gugus alkil berbeda (alkil alkanoat).

Contoh isomer rantai:

Asam alkanoat, contoh: berikut ini isomer rantai $C_6H_{12}O_2$,

1. asam heksanoat (rantai utama C₆)

2. asam 3-metilpentanoat (rantai utama C₅)

Alkil alkanoat, contoh: berikut ini isomer rantai $C_6H_{12}O$,

1. metil pentanoat (rantai utama C₆)

2. metil-3-metilbutanoat (rantai utama C₅)

- Pada isomer posisi, dua buah rumus bangun memiliki rumus molekul yang sama namun posisi gugus fungsi berbeda.
- Asam alkanoat tidak mempunyai isomer posisi.
- Contoh isomer posisi alkil alkanoat:

Misalnya pentil etanoat dengan rumus molekul $C_7H_{14}O_2$, memiliki keisomeran posisi dengan,

1. butil propanoat

2. propil butanoat

- ▶ Pada isomer fungsi, dua buah rumus bangun memiliki rumus umum yang sama namun homolog (keluarga) yang berbeda.
- Contoh isomer fungsi:

Senyawa dengan rumus molekul C₆H₁₂O₂,

1. asam heksanoat

2. propil propanoat

G. HALOALKANA

Naturan penamaan IUPAC haloalkana:

- 1) **Penamaan** didasarkan atas rantai utama. Halogen dianggap cabang, dan diberi akhiran –o.
- 2) **Posisi cabang dan halogen** ditentukan dengan penomoran rantai utama.
 - a. Penomoran dilakukan sedemikian rupa sehingga halogen memiliki nomor kecil.
 - b. Jika terdapat >1 halogen, maka prioritas penomoran adalah F > Cl > Br > I.
- 3) **Cabang sejenis** yang jumlahnya >1 cukup ditulis sekali, namun diberi indeks (di-, tri-, tetra-, dst.).
- 4) **Jika terdapat lebih dari satu** macam jenis cabang, maka urutan penamaan cabang diurut berdasarkan abjad dalam bahasa Inggris (sebelum diberi indeks, sek-, ters-, iso-, dan neo-).

Naturan penamaan haloalkana:

- 1) **Penamaan** didasarkan atas gugus alkil sebagai cabang halogen (jika tunggal).
- 2) **Penamaan ditulis** sebagai alkil halogen. Contoh:

IUPAC: klorometana Trivial: metil klorida

IUPAC: 2-bromopropana Trivial: isopropil bromida

IUPAC: 4,5-dibromo-3,5-dikloro-1,2-difluoro-3-iodo-4-metilpentana

Trivial: tidak ada

H. REAKSI-REAKSI TURUNAN HIDROKARBON

- Reaksi-reaksi umum pada turunan hidrokarbon terdiri atas:
 - 1) Reaksi pembakaran/redoks

Adalah reaksi redoks dengan jalan pembakaran menggunakan O₂.

T. Hidrokarbon +
$$O_2 \rightarrow CO_2 + H_2O$$

Reaksi pembakaran terjadi pada seluruh homolog turunan hidrokarbon.

Contoh reaksi pembakaran:

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

2) Reaksi substitusi

Adalah reaksi penggantian 1 atom H dengan unsur lain (biasanya halogen).

$$3+2 \rightarrow 4+1$$

Reaksi substitusi terjadi pada seluruh turunan hidrokarbon.

Contoh reaksi substitusi:

3) Reaksi adisi (reduksi)

Adalah reaksi penjenuhan/pemutusan ikatan rangkap oleh H_2 , X_2 atau HX.

$$3+2 \rightarrow 5$$

Reaksi adisi terjadi pada homolog turunan hidrokarbon selain alkohol dan eter.

Contoh reaksi adisi:

$$\begin{array}{c} O \\ | \\ CH_{3}-CH_{2}-C-H \\ | \\ O \\ | \\ CH_{3}-C-O-CH_{3} \\ \end{array} + \begin{array}{c} H_{2} \rightarrow CH_{3}-CH_{2}-C-H \\ | \\ H \\ \\ CH_{3}-C-O-CH_{3} \\ | \\ H \\ \end{array}$$

4) Reaksi eliminasi

Adalah reaksi pembentukan ikatan rangkap dengan melepas dua gugus di sekitar 2 atom C yang berikatan, dan melepas X₂, HX atau H₂O. Reaksi eliminasi menggunakan dehidrator berupa H₂SO₄ pekat pada suhu 180°C.

$$5 \rightarrow 3 + 2$$

Reaksi eliminasi terjadi pada seluruh homolog turunan hidrokarbon.

Pada reaksi eliminasi HX atau H₂O berlaku **aturan Saytzeff** tentang arah eliminasi.

Atom H yang tereliminasi adalah yang terikat pada atom C yang mengikat lebih sedikit atom H (miskin makin miskin).

Contoh reaksi eliminasi:

$$CH_3 - CH(OH) - CH_3 \quad dapat \ ditulis$$

$$CH_3 - CH - CH_2 \quad \xrightarrow{H_2SO_4} CH_3 - CH = CH_2 + H_2O$$

$$CH_3 - CHBr - CH_3 \quad dapat \ ditulis$$

$$Br \quad H \quad H_2SO_4 \quad CH_3 - CH = CH_2 + HBr$$

$$CH_3 - CH - CH_2 \quad \xrightarrow{H_2SO_4} CH_3 - CH = CH_2 + HBr$$

Reaksi-reaksi alkohol dan eter:

 Reaksi dengan logam alkali Alkohol

$$2R-OH + 2M \rightarrow 2R-ONa + H_2$$

Eter (tidak bereaksi)

Contoh:

$$2C_2H_5$$
-OH + 2Na \rightarrow 2C₂H₅-ONa + H₂

2) Reaksi dengan fosfor trihalogen (PX₃) Alkohol

$$3R-OH + PX_3 \rightarrow 3R-X + P(OH)_3$$

Eter (tidak bereaksi)

Contoh:

$$3C_2H_5-OH + PCl_3 \rightarrow 3C_2H_5-Cl + H_3PO_3$$

3) Reaksi dengan fosfor pentahalogen (PX₅) Alkohol (menghasilkan asam halida)

$$R-OH + PX_5 \rightarrow RX + HX + POX_3$$

Eter (tidak menghasilkan asam halida)

$$R_1-O-R_2 + PX_5 \rightarrow R_1X + R_2X + POX_3$$

Contoh:

$$C_2H_5-OH + PCl_5 \rightarrow C_2H_5-Cl + HCl + POCl_3$$

 $CH_3-O-C_2H_5 + PCl_5 \rightarrow CH_3-Cl + C_2H_5-Cl + POCl_3$

4) Reaksi dengan asam halida (HX) Alkohol

$$R-OH + HX \rightarrow RX + H_2O$$

Eter (tidak menghasilkan asam halida)

Eter hanya bereaksi dengan asam halida terkuat, yaitu **HI**.

Asam iodida cukup (1:1)

Eter + HI → Alkohol + Haloalkana

$$R_1-O-R_2 + HI \rightarrow R_1OH + R_2I$$

Asam iodida berlebih (1:2)

$$R_1-O-R_2 + 2HI \rightarrow R_1I + R_2I + H_2O$$

Contoh:

$$C_2H_5-OH + HCl \rightarrow C_2H_5-Cl + H_2O$$

 $CH_3-O-C_2H_5 + HI \rightarrow CH_3-OH + C_2H_5-I$
 $CH_3-O-C_2H_5 + 2HI \rightarrow CH_3-I + C_2H_5-I + H_2O$

5) Reaksi eliminasi

Disebut juga reaksi **dehidrasi alkohol** karena melepas air.

Alkohol

$$\begin{array}{c} \text{H}_2\text{SO}_4\,\text{p}\\ \text{Alkohol} &\longrightarrow \text{Eter} + \text{H}_2\text{O}\\ \text{130-140}^\circ\text{C} \end{array}$$

$$2R-OH \rightarrow 2R-O-R + H_2O$$

$$\begin{array}{c} H_2SO_4 p \\ \hline Alkohol \longrightarrow Alkena + H_2O \\ \hline 170-180^{\circ}C \end{array}$$

$$R-OH \rightarrow R=R + H_2O$$

Eter (tidak bereaksi)

Contoh:

6) Reaksi dengan oksidator (oksidasi)

Oksidator terdiri atas:

- a. Oksidator lemah, yaitu tembaga pijar (CuO).
- b. Oksidator kuat, yaitu ion $Cr_2O_7^{2-}$ dan MnO_4^- pada suasana asam (H^+) .

Alkohol

Alkohol P. +
$$Cr_2O_7^{2-}/MnO_4^- + H^+$$

 \rightarrow Asam Alkanoat + $Cr^{3+}/Mn^{2+} + H_2O$

Alkohol S. +
$$Cr_2O_7^{2-}/MnO_4^{-}$$
 + H^+
 \rightarrow Alkanon + Cr^{3+}/Mn^{2+} + H_2O

Alkohol sekunder tidak teroksidasi oleh oksidator lemah, sedangkan alkohol tersier tidak teroksidasi sama sekali.

Eter (tidak bereaksi)

Contoh:

CH₃-CH₂-OH + CuO
$$\rightarrow$$
 CH₃-CHO + Cu + H₂O
CH₃-CH₂-OH + Cr₂O₇²⁻ + H⁺ \rightarrow
CH₃-COOH + 2Cr³⁺ + H₂O
OH
CH₃-CH—CH₃ + MnO₄⁻ + H⁺ \rightarrow
CH₃-CO-CH₃ + Mn²⁺ + H₂O

Reaksi-reaksi aldehida dan keton:

1) Reaksi adisi H₂

Reaksi adisi H₂ adalah kebalikan dari reaksi alkohol dengan oksidator.

Aldehida

Aldehida/Alkanal + H₂ → Alkohol Primer

$$R-CHO + H_2 \rightarrow R-CH_2-OH$$

Keton

Keton/Alkanon + H₂ → Alkohol Sekunder

$$R_1$$
-CO- R_2 + $H_2 \rightarrow R_1$ -CH(OH)- R_2

$$\begin{array}{c} O & OH \\ CH_{3}-CH_{2}-C-H & + H_{2} \rightarrow & CH_{3}-CH_{2}-CH_{2} \\ O & OH \\ CH_{3}-C-CH_{3} & + H_{2} \rightarrow & CH_{3}-CH-CH_{3} \\ \end{array}$$

Reaksi dengan oksidator (oksidasi)

Oksidatornya adalah oksidator lemah berupa pereaksi Tollens dan pereaksi Fehling.

Pereaksi Tollens (perak amoniakal), $[Ag[(NH_3)_2]^+$ tereduksi menjadi Ag (cermin perak), sedangkan pereaksi Fehling, $Cu(OH)_2$ tereduksi menjadi Cu_2O (endapan merah bata).

Aldehida

Keton (tidak bereaksi)

Reaksi-reaksi karboksil dan ester:

1) Reaksi dengan basa kuat

Reaksi netralisasi (karboksil/asam alkanoat)

R-COO⁻H⁺ + Kat⁺OH⁻ → R-COOKat⁺ + H⁺OH⁻ **Reaksi saponifikasi/penyabunan** (ester/alkil alkanoat)

(akan dipelajari di bagian Biokimia)

Contoh:

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

 $C_2H_5COOH + KOH \rightarrow C_2H_5COOK + H_2O$

2) Reaksi esterifikasi-hidrolisis ester

Merupakan dua reaksi yang berkebalikan.

Reaksi esterifikasi

Reaksi hidrolisis ester

Alkil Alkanoat (Ester) + Air → Asam Alkanoat (Karboksil) + Alkohol

Contoh:

asam propanoat metanol

Reaksi-reaksi haloalkana:

1) Reaksi substitusi

Adalah reaksi penggantian 1 atom halogen dengan gugus –OH dari basa kuat, menghasilkan alkanol.

Contoh:

$$C_2H_5Cl + KOH \rightarrow C_2H_5OH + KCl$$

 $CH_3I + NaOH \rightarrow CH_3OH + NaI$

2) Reaksi eliminasi

Reaksi eliminasi ini seperti reaksi eliminasi umum.

Contoh:

$$CH_3 - CHF - CH_2F \quad dapat \ ditulis$$

$$F \quad F$$

$$CH_3 - CH - CH_2$$

$$CH_3 - CH - CH_2$$

$$CH_3 - CHBr - CH_3 \quad dapat \ ditulis$$

$$F \quad H$$

I. KEGUNAAN TURUNAN HIDROKARBON

Kegunaan alkohol dan eter:

- 1) Bahan bakar spirtus (CH_3OH) dan etanol (C_2H_5OH).
- 2) Alkohol rumah tangga 70% (C₂H₅OH).
- 3) Sebagai pelarut organik.

- 4) Zat antiketukan penambah nilai oktan, yaitu MTBE (metil tersbutil eter) dan etanol (C_2H_5OH) .
- 5) Bahan baku industri, misalnya serat dan plastik.
- 6) Bahan baku senyawa lain, misalnya formaldehida, asetaldehida dan ester.

🔌 Kegunaan aldehida dan keton:

- 1) Formalin (formaldehida) untuk pengawet biologis (HCHO).
- 2) Sebagai pelarut organik, misalnya *thinner*, aseton/propanon (penghilang kuteks).
- 3) Bahan baku industri, misalnya plastik termoset (tahan leleh) dan parfum.

🔦 Kegunaan karboksil (asam karboksilat):

- Asam format sebagai penggumpal lateks/ getah pohon karet dan penyamakan kulit (HCOOH).
- 2) Asam cuka sebagai campuran makanan (CH₃COOH).

Kegunaan ester:

Ester	Reaksi esterifikasi		terifikasi
LStei	Juku	A. alkanoat	Alkohol
Buah	≤10	suku rendah	suku rendah
Lilin	>10	suku tinggi	suku tinggi
Lemak	>10	suku tinggi	gliserol

 Ester buah-buahan (essence) digunakan untuk campuran makanan yang menghasilkan aroma, dan sebagai pelarut organik.

Ester	Aroma	
etil format	rum	
metil salisilat	sarsaparila	
metil sinamat	stroberi	
propil asetat	pir	
etil nonanoat	anggur	
geranil butirat	ceri	
isoamil asetat	pisang	
oktil asetat	jeruk	
nonil kaprilat	Jeruk	
metil butirat	apel	
amil valerat	aper	
etil butirat	nanas	
amil asetat	Tidilas	

- 2) Ester lilin (*wax*) digunakan untuk membatik, pemoles mobil dan lantai.
- 3) Ester lemak (*fat*) digunakan untuk pembuatan sabun, minyak goreng, mentega dan margarin.

