LEVEL-I

1 The locus of the point, which moves such that its distance from (1, −2, 2) is unity, is

(A)
$$x^2 + y^2 + z^2 - 2x + 4y - 4z + 8 = 0$$

(B) $x^2 + y^2 + z^2 - 2x - 4y - 4z + 8 = 0$
(C) $x^2 + y^2 + z^2 + 2x + 4y - 4z + 8 = 0$
(D) $x^2 + y^2 + z^2 - 2x + 4y + 4z + 8 = 0$

(B)
$$x^2 + y^2 + z^2 - 2x - 4y - 4z + 8 = 0$$

(C)
$$x^2 + y^2 + z^2 + 2x + 4y - 4z + 8 = 0$$

(D)
$$x^2 + y^2 + z^2 - 2x + 4y + 4z + 8 = 0$$

The angle between the lines whose direction ratios are 1, 1, 2; $\sqrt{3}$ – 1, – $\sqrt{3}$ – 1, 4 is *2

(A)
$$\cos^{-1}\left(\frac{1}{65}\right)$$

(B)
$$\frac{\pi}{6}$$

(C)
$$\frac{\pi}{3}$$

(D)
$$\frac{\pi}{4}$$

*3. The plane passing through the point (a, b, c) and parallel to the plane x + y + z = 0 is

(A)
$$x + y + z = a + b + c$$

(B)
$$x + y + z + (a + b + c) = 0$$

(C)
$$x + y + z + abc = 0$$

(D)
$$ax + by + cz = 0$$

The equation of line through the point (1, 2, 3) parallel to line $\frac{x-4}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ are 4.

(A)
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{8}$$

(B)
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

(C)
$$\frac{x-4}{1} = \frac{y+1}{2} = \frac{z+10}{3}$$

(D) none of these

The value of k, so that the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$, $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ are perpendicular 5. to each other, is

$$(A) - \frac{10}{7}$$

(B)
$$-\frac{8}{7}$$

$$(C) - \frac{6}{7}$$

*6. The angle between a line with direction ratios 2:2:1 and a line joining (3,1,4,) to (7,2,12)

(A)
$$\cos^{-1}\left(\frac{2}{3}\right)$$

(B)
$$\cos^{-1}\left(\frac{3}{2}\right)$$

(C)
$$\tan^{-1}\left(\frac{2}{3}\right)$$

(D) none of these

7. The equation of a plane which passes through (2, -3, 1) and is normal to the line joining the points (3, 4, -1) and (2, -1, 5) is given by

(A)
$$x + 5y - 6z + 19 = 0$$

(B)
$$x - 5y + 6z - 19 = 0$$

(C)
$$x + 5y + 6z + 19 = 0$$

(B)
$$x - 5y + 6z - 19 = 0$$

(D) $x - 5y - 6z - 19 = 0$

8. Direction cosines of the line joining the points (0, 0, 0) and (a, a, a) are

(A)
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

$$(C)\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

(D) none of these

		x = x + 1 $y = 2$ $z + 2$		
*9.		$-1, 2, -2)$) on the line $\frac{x+1}{2} = \frac{y-2}{-3} = \frac{z+2}{4}$ is		
	$(A)\sqrt{29}$	(B) $\sqrt{6}$		
	(C) $\sqrt{21}$	(D) none of these		
10.	Two lines not lying in the same plane are called			
	(A) parallel(C) intersecting	(B) coincident (D) skew		
	(O) intersecting	(b) skew		
11.	The distance of the point (x, y, z) from the x			
	(A) x (C) 3	(B) y (D) z		
4.0				
12.	A point (x, y, z) moves parallel to $x - axis$. $(A) x$ and y	Which of three variables x, y, z remains fixed? (B) y and z		
	(C) z and x	(D) None of these		
*13.	Let $P = (-2, 3, 5), Q = (1, 2, 3), R = (7, 0, -1)$) then Q divides PR.		
	(A) externally in the ratio 1:2	(B) internally in the ratio 1:2		
	(C) externally in the ratio 3:5	(D) internally in the ratio 1: 3		
14.	The xy plane divides the line segment joining (1, 2, 3) and (-3, 4, -5) internally in the			
	(A) 3:5 (C) 4:3	(B) 3:4 (D) None of these		
	(D) Notice of these			
15.	The direction cosines of the joining $(1, -1, 1)$			
	$(A) < \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0 >$	(B) $<\sqrt{2},-\sqrt{2},0>$		
	$(C) < \frac{1}{2}, \frac{-1}{2}, 0 >$	(D) < 2, -2, 0 >		
	2, 2	(5) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
16.	Two lines with direction cosines $< l_1, m_1, n_1 >$	and $\langle I_2, m_2, n_2 \rangle$ are at right angles iff		
	(A) $I_1 I_2 + m_1 m_2 + n_1 n_2 = 0$	(B) $I_1 = I_2$, $m_1 = m_2$, $n_1 = n_2$		
	(C) $I_1 I_2 = m_1 m_2 = n_1 n_2$	(D) None of these		
17.	The foot of perpendicular from (α, β, γ) on x – axis is			
	(A) (\alpha, 0, 0)	(B) (0, β, 0)		
	(C) $(0, 0, \gamma)$	(D) (0, 0, 0)		
18.	The direction cosines of a line equally inclined to the positive direction of axes are			
	(A) < 1, 1, 1>	(B) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$		
	(1 1 1)	(\dagger3 \dagger3)		
	$(C)\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	(D) None of these		
	(,- ,- ,-,			
19.	A plane meets the co–ordinate axes at P, Q (1, 1, 1). The equation of plane is,	and R such that the centroid of the triangle is		
	(A) $x + y + z = 3$	(B) $x + y + z = 9$		
	(C) $x + y + z = 1$	(D) $x + y + z = 1/3$		
*20.	A plane meets the axes in P, Q and R such that centroid of the triangle PQR is (1, 2, 3)			
	equation of the plane is			

(A)
$$6x + 3y + 2z = 6$$

(B)
$$6x + 3y + 2z = 12$$

$$(C)$$
 6x + 3y + 2z = 1

(D)
$$6x + 3y + 2z = 18$$

21. The direction cosines of a normal to the plane 2x - 3y - 6z + 14 = 0 are

$$(A)\left(\frac{2}{7},\frac{-3}{7},\frac{-6}{7}\right)$$

(B)
$$\left(\frac{-2}{7}, \frac{3}{7}, \frac{6}{7}\right)$$

$$(C) \left(\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7} \right)$$

(D) None of these

*22. The equation of the plane whose intercept on the axes are thrice as long as those made by the plane 2x - 3y + 6z - 11 = 0 is

(A)
$$6x - 9y + 18z - 11 = 0$$

(B)
$$2x - 3y + 6z + 33 = 0$$

(C)
$$2x - 3y + 6z = 33$$

(D) None of these

23. The angle between the planes 2x - y + z = 6 and x + y + 2z = 7 is

(A)
$$\pi/4$$

(B)
$$\pi/6$$

(C)
$$\pi/3$$

(D)
$$\pi/2$$

*24. The angle between the lines x = 1, y = 2 and y + 1 = 0 and z = 0 is

$$(A) 0^{0}$$

(B)
$$\pi/4$$

(C)
$$\pi/3$$

(D)
$$\pi/2$$

LEVEL-II

1. The three lines drawn from O with direction ratios [1, -1, k], [2, -3, 0] and [1, 0, 3] are coplanar. Then k =

2. A plane meets the coordinates axes at A, B, C such that the centroid of the triangle is (3, 3, 3). The equation of the plane is

(A)
$$x + y + z = 3$$

(B)
$$x + y + z = 9$$

(C)
$$3x + 3y + 3z = 1$$

(D)
$$9x + 9y + 9z = 1$$

3. The equation of the plane through the intersection of the planes x - 2y + 3z - 4 = 0, 2x - 3y + 4z - 5 = 0 and perpendicular to the plane x + y + z - 1 = 0 is

(A)
$$x - y + 2 = 0$$

(B)
$$x - z + 2 = 0$$

(C)
$$y - z + 2 = 0$$

(D)
$$z - x + 2 = 0$$

4. The coordinates of the point of intersection of the line $\frac{x+1}{1} = \frac{y+3}{3} = \frac{z+2}{-2}$ with the plane

$$3x + 4y + 5z = 5$$
 are

(A)
$$(5, 15, -14)$$

(C)
$$(1, 3, -2)$$

(D)
$$(3, 12, -10)$$

5. The angle between the line $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z-2}{4}$ and the plane 2x + y - 3z + 4 = 0 is

(A)
$$\cos^{-1} \left(\frac{-4}{\sqrt{406}} \right)$$

(B)
$$\sin^{-1} \left(\frac{-4}{\sqrt{406}} \right)$$

*6.

*6.	The angle between the lines whose direct $l^2 + m^2 - n^2 = 0$ is given by	tion cosines satisfy the equations $I + m + n = 0$,
	(A) $\frac{2\pi}{3}$	(B) $\frac{\pi}{6}$
	(C) $\frac{5\pi}{6}$	(D) $\frac{\pi}{3}$
*7.	The angle between the line $\frac{x-2}{2} = \frac{y+1}{-1} = \frac{x-2}{2}$	_
	$(A) \cos^{-1}\left(\frac{4}{21}\right)$	(B) $\sin^{-1}\left(-\frac{4}{21}\right)$
	(C) $\sin^{-1}\left(\frac{6}{21}\right)$	(D) $\sin^{-1}\left(\frac{4}{21}\right)$
*8.	Shortest distance between lines $\frac{x-6}{1} = \frac{y-6}{-2}$	
	(A) 108 (C) 27 (D)	(B) 9 None of these
9.	The acute angle between the plane $5x - 4y$ (A) $\sin^{-1} \left(\frac{5}{\sqrt{90}} \right)$	y + 7z - 13 = 0 and the y-axis is given by
	(A) $\sin^{-1}\left(\frac{3}{\sqrt{90}}\right)$	(B) $\sin^{-1}\left(-\frac{4}{\sqrt{90}}\right)$
	$(C) \sin^{-1}\left(\frac{7}{\sqrt{90}}\right)$	(D) $\sin^{-1}\left(\frac{4}{\sqrt{90}}\right)$
10.	The planes $x + y - z = 0$, $y + z - x = 0$, $z + z = 0$ (A) in a line (B) taken two at a time in parallel lines	x - y = 0 meet
	(C) in a unique point	(D) none of these
11.	The graph of the equation $x^2 + y^2 = 0$ in the	three dimensional space is
		(B) (0, 0) point (D) x - y plane
12.	A line making angles 45° and 60° with the prespectively, makes with the positive directi	positive directions of the x – axis and y – axis on of z – axis an angle of
	(A) 60 ⁰ (C) both (A) and (B)	(B) 120 ⁰ (D) Neither (A) nor (B)
13.	The angle between two diagonals of a cube is	
	$(A) \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$	(B) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
	(C) $\cos^{-1}\left(\frac{1}{3}\right)$	(D) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
14.	If a line makes angles α , β , γ with the axes, then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma =$	
	(A) – 1 (C) 2	(B) 1 (D) – 2

15.	The equation $(x - 1)$. $(x - 2) = 0$ in three di (A) a pair of straight line (C) a pair of intersecting planes	mensional space is represented by (B) a pair of parallel planes (D) a sphere
*16.	The equation of the plane containing the linthrough the point $(2, 1, -1)$ is $(A) x + y - z = 4$ $(C) x + y + z + 2 = 0$	e $2x + z - 4 = 0$ and $2y + z = 0$ and passing (B) $x - y - z = 2$ (D) $x + y + z = 2$
*17.	The locus of xy + yz = 0 is, in 3 – D; (A) a pair of straight lines (C) a pair of parallel planes	(B) a pair of parallel lines(D) a pair of intersecting planes
18.	The lines $6x = 3y = 2z$ and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z}{-4}$ (A) parallel (D) intersecting	-3 -6 (B) skew (D) coincident
*19.	The line $\frac{x-x_1}{0} = \frac{y-y_1}{1} = \frac{z-z_1}{2}$ is (A) parallel to $x - axis$ (C) perpendicular to YOZ plane	(B) perpendicular to x – axis (D) None of these
20.	For the line I: $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and plant the one/s which is/are true :- (A) I lies on P (C) I is perpendicular to P	the P: $x - 2y - z = 0$; of the following assertions (B) I is parallel to P (D) None of these
21.	The co-ordinates of the point of intersection $x+y-z=3$ are (A) $(2, 1, 0)$ (C) $(1, 2, -6)$	of the line $\frac{x-6}{-1} = \frac{y+1}{0} = \frac{z+3}{4}$ and the plane (B) $(7, -1, -7)$ (D) $(5, -1, 1)$
*22.	The Cartesian equation of the plane perperpassing through the origin is (A) $2x - y + 2z - 7 = 0$ (C) $2x - y + 2z = 0$	ndicular to the line, $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$ and (B) $2x + y + 2z = 0$ (D) $2x - y - z = 0$

Level - III

*1. The length of projection of the segment joining (x_1, y_1, z_1) and (x_2, y_2, z_2) on the line

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$
 is

(A)
$$||(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)||$$

(A)
$$||(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)||$$
 (B) $||\alpha(x_2 - x_1) + \beta(y_2 - y_1) + \gamma(z_2 - z_1)||$

(C)
$$\left| \frac{x_2 - x_1}{l} + \frac{y_2 - y_1}{m} + \frac{z_2 - z_1}{n} \right|$$

(D) None of these

The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-5}{5}$ is 2.

$$(A)\frac{1}{6}$$

(B)
$$\frac{1}{\sqrt{6}}$$

(C)
$$\frac{1}{\sqrt{3}}$$

(D)
$$\frac{1}{3}$$

The equation of the plane through the point (-1, 2, 0) and parallel to the lines 3.

$$\frac{x}{3} = \frac{y+1}{0} = \frac{z-2}{-1}$$
 and $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$ is

(A)
$$2x + 3y + 6z - 4 = 0$$

(B)
$$x - 2y + 3z + 5 = 0$$

(C)
$$x + y - 3z + 1 = 0$$

(D)
$$x + y + 3z = 1$$

The distance of the plane through (1, 1, 1) and perpendicular to the line $\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{4}$ *4.

from the origin is

$$(A)\frac{3}{4}$$

(B)
$$\frac{4}{3}$$

(C)
$$\frac{7}{5}$$

*5. The reflection of the point (2, -1, 3) in the plane 3x - 2y - z = 9 is

$$(A)\left(\frac{26}{7},\frac{15}{7},\frac{17}{7}\right)$$

(B)
$$\left(\frac{26}{7}, \frac{-15}{7}, \frac{17}{7}\right)$$

$$(C)\left(\frac{15}{7},\frac{26}{7},\frac{-17}{7}\right)$$

(D)
$$\left(\frac{26}{7}, \frac{17}{7}, \frac{-15}{7}\right)$$

6. The co-ordinates of the foot of perpendicular from the point A (1, 1, 1) on the line joining the points B (1, 4, 6) and C (5, 4, 4) are

(A) (3, 4, 5)

(B) (4, 5, 3)

(C)(3, -4, 5)

(D) (-3, -4, 5)

The equation of the right bisecting plane of the segment joining the points (a, a, a) and 7. (-a, -a, -a); $a \ne 0$ is

(A) x + y + z = a

(B) x + y + z = 3a

(C) x + y + z = 0

(D) x + y + z + a = 0

The angle between the plane 3x + 4y = 0 and the line $x^2 + y^2 = 0$ is 8. $(A) 0^{\circ}$

	(C) 60°	(D) 90°
9.	If the points $(0, -1, -2)$; $(-3, -4, -5)$; $(-6, -6, -6)$;	7, -8) and (x, x, x) are non-coplanar then x = (B) -1 (D) 0
*10.	The equation of the plane through intersection and perpendicular to the plane $5x + 3y + 6z$ (A) $7x - 2y + 3z + 81$ (C) $23x + 14y - 9z + 48 = 0$	on of planes $x + 2y + 3z = 4$ and $2x + y - z = -5$ + $8 = 0$ is (B) $23y + 14x - 9z + 48 = 0$ (D) $51x + 15y - 50z + 173 = 0$
11.	The equation of the plane passing through t 4x + 3y + 2z + 1 = 0 and the origin is (A) $3x + 2y + z + 1 = 0$ (C) $2x + 3y + z = 0$	he intersection of planes $x + 2y + 3z + 4 = 0$ and (B) $3x + 2y + z = 0$ (D) $x + y + z = 0$
12.	If the plane $x + y - z = 4$ is rotated through $5x + y + 2z = 4$ then equation of the plane in (A) $5x + y + 4z + 20 = 0$ (C) $x + 5y + 4z = 20$	00° about the line of intersection with the plane its new position is (B) $5x + y + 4z = 20$ (D) None of these
13.	The equation of the plane passing through t $4x - 5y - 4z = 1$ and $2x + y + 2z = 8$ and the (A) $32x - 5y + 8z = 83$ (C) $32x - 5y + 8z + 83 = 0$	
14.	The equation of the plane passing through t x - axis is (A) $x + 2y = 4$ (C) $x + y + z = 4$	he points $(2, 1, 2)$ and $(1, 3, -2)$ and parallel to (B) $2y + x + z = 4$ (D) $2y + z = 4$
15.	The equation of the plane passing through t joining the points $(2, 6, 1)$ and $(1, 3, 0)$ is $(A) x + 3y + z + 11 = 0$ $(C) 3x + y + z = 11$	he point $(-3, -3, 1)$ and is normal to the line (B) $x + y + 3z + 11 = 0$ (D) None of these
*16.		tres of its distances from the six faces of a cube ts, then the distance of the point from (1,1, 1) is (B) a constant equal to 7 units. (D) a constant equal to 49 units.
17.	Planes are drawn parallel to the co–ordinate $(3, -4, -5)$. The length of the edges of the p (A) 4, 6, 8 (C) 2, 4, 5	
18.	The length of a line segment whose projecti (A) 7 (C) 5	ons on the co-ordinate axes are 6, -3, 2, is (B) 6 (D) 4

- 19. The direction cosines of a line segment whose projections on the co–ordinate axes are 6, -3, 2, are
 - $(A)\bigg(\frac{6}{7},\frac{-3}{7},\frac{2}{7}\bigg)$

 $(\mathsf{B})\left(\frac{-6}{7},\frac{3}{7},\frac{2}{7}\right)$

 $(C)\left(\frac{6}{7},\frac{-3}{7},\frac{-2}{7}\right)$

- (D) None of these
- 20. If P, Q, R, S are (3, 6, 4), (2, 5, 2), (6, 4, 4), (0, 2, 1) respectively then the projection of PQ on RS is
 - (A) 2 units

(B) 4 uints

(C) 6 uints

- (D) 8 uints
- 21. Let f be a one-one function with domain (-2, 1, 0) and range (1, 2, 3) such that exactly one of the following statements is true. f(-2) = 1, $f(1) \ne 1$, $f(0) \ne 2$ and the remaining two are false. The distance between points (-2, 1, 0) and (f(-2), f(1), f(0)) is
 - (A) 2

(B) 3

(C) 4

(D) 5

ANSWERS

LEVEL -I

1. Α A D 5. 9.

С 2. 6. Α 3 7. A A

A C 4. 8.

10. 11. 12. 13.

(D) (D) (B) (B) (A) A

14. 15.

16. 17.

18. 19.

(A) (B) (A) (D) (A) (C) (C) (D)

20. 21.

22. 23.

24.

LEVEL -II

A B D 1. 5. 9.

2. В 6. 10. D С 3. 7. В В

A B 4. 8.

11. 12. 13. 14. 15. 16.

(D) (C) (B) (A) (B) (D) (D) (B) 17.

18.

19.

20.

21. 22.

(D) (C)

Level - III

1.

(A) (B) 2.

(D) (C) (B) A 3.

4. 5. 6.

7. 8.

(C) (A) (A) (D) (B) (B) 9.

10.

11. 12.

- 13. 14. 15. 16. 17. 18. 19. 20. 21. (A) (D) (A) (B) (D) (A) (A) (A) (D)