ALGEBRA LINEAL - Práctica N^04 - Segundo cuatrimestre de 2020 Espacio Dual

Ejercicio 1. Sea $S \subseteq (\mathbb{R}^3)^*$ el subespacio $S = \{\varphi \in (\mathbb{R}^3)^* / \varphi(1, -1, 2) = 0\}$. Hallar una base de S.

Ejercicio 2. Dada la base B del K-espacio vectorial V, hallar su base dual en cada uno de los siguientes casos:

i)
$$V = \mathbb{R}^2$$
, $B = \{(1, -1), (2, 0)\}$

ii)
$$V = \mathbb{R}^3$$
, $B = \{(1, -1, 0), (0, 1, 0), (0, 0, 1)\}$

iii)
$$V = \mathbb{R}_3[X], \ B = \{-X+2, X-1, X^2-3X+2, X^3-3X^2+2X\}$$

Ejercicio 3. Sea $B' = \{\varphi_1, \varphi_2, \varphi_3\}$ la base de $(\mathbb{R}^3)^*$ definida por

$$\varphi_1(x_1, x_2, x_3) = x_1 + x_2$$
 $\varphi_2(x_1, x_2, x_3) = x_1 + x_3$ $\varphi_3(x_1, x_2, x_3) = x_2 + x_3$

Hallar la base B de \mathbb{R}^3 tal que $B' = B^*$.

Ejercicio 4. Sean f_1 , f_2 y $f_3 \in (\mathbb{R}_2[X])^*$ las siguientes formas lineales:

$$f_1(p) = \int_0^1 p(x) dx$$
 $f_2(p) = \int_0^2 p(x) dx$ $f_3(p) = \int_{-1}^0 p(x) dx$

- i) Probar que $\{f_1, f_2, f_3\}$ es una base de $(\mathbb{R}_2[X])^*$.
- ii) Hallar una base B de $\mathbb{R}_2[X]$ tal que $B^* = \{f_1, f_2, f_3\}$.

Ejercicio 5. Sea V un K-espacio vectorial de dimensión n.

- i) Sean $\varphi_1, \ \varphi_2 \in V^* \{0\}$. Demostrar que $\text{Nu}(\varphi_1) = \text{Nu}(\varphi_2) \iff \{\varphi_1, \varphi_2\}$ es linealmente dependiente.
- ii) Sean φ_i $(1 \le i \le r)$ formas lineales en V^* y sea $\varphi \in V^*$ tales que

$$\varphi_1(x) = \varphi_2(x) = \dots = \varphi_r(x) = 0 \implies \varphi(x) = 0.$$

Probar que $\varphi \in \langle \varphi_1, \dots, \varphi_r \rangle$.

iii) Sean φ_i $(1 \le i \le n)$ formas lineales en V^* . Probar que

$$\{\varphi_1, \dots, \varphi_n\}$$
 es base de $V^* \iff \bigcap_{i=1}^n \operatorname{Nu}(\varphi_i) = 0.$

Ejercicio 6. Sea $\varphi \in (\mathbb{R}^3)^*$ definida por $\varphi(x_1, x_2, x_3) = 2x_1 + 3x_2 - x_3$ y sea $E^* = \{\delta_1, \delta_2, \delta_3\} \subseteq (\mathbb{R}^3)^*$ la base dual de la base canónica de \mathbb{R}^3 .

- i) Calcular las coordenadas de φ en E^* .
- ii) Calcular las coordenadas de φ en la base $B^* = \{\delta_1 + \delta_2 + \delta_3, \delta_1 + \delta_2, \delta_1\}.$
- iii) Sea $S \subseteq \mathbb{R}^3$ el subespacio $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 + 3x_2 x_3 = 0\}$ y sea $B \subset \mathbb{R}^3$ la base $B = \{(0, 0, 1), (0, 1, -1), (1, -1, 0)\}$. Encontrar una ecuación para S en la base B.

(Sugerencia: notar que B^* es la base dual de B y no hacer ninguna cuenta.)

Ejercicio 7. Sea $B \subset \mathbb{R}^2$ la base $B = \{(1,1), (1,-1)\}$. Encontrar las coordenadas de la base dual de B en la base dual de la base canónica de \mathbb{R}^2 .

Ejercicio 8. Sean B_1 y B_2 las bases de \mathbb{R}^3 definidas por $B_1 = \{(1,1,0),(1,0,1),(0,1,1)\}$ y $B_2 = \{(1,1,-1),(1,-1,1),(-1,1,1)\}$. Si $\varphi \in (\mathbb{R}^3)^*$ tiene coordenadas (1,-3,2) respecto de B_1^* , calcular sus coordenadas respecto de B_2^* .

Ejercicio 9. Hallar una base de $S^{\circ} \subseteq V^*$ en los siguientes casos:

i)
$$V = \mathbb{R}^3$$
 y $S = \langle (1, -1, 2), (2, 1, 3), (1, 5, 0) \rangle$

ii)
$$V = \mathbb{R}^4$$
 y $S = \langle (1, 1, -1, 1), (2, -1, 3, 1) \rangle$

iii)
$$V = \mathbb{R}^3$$
 y $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_3 = 0, 2x_1 - x_2 + x_3 = 0\}$

iv)
$$V = \mathbb{R}^4$$
 y $S = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / \begin{cases} x_1 - x_2 + x_3 + x_4 = 0 \\ 2x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 4x_1 - x_2 + 5x_4 = 0 \end{cases} \right\}$

Ejercicio 10. Sea $B = \begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ y sea $S = \{A \in \mathbb{R}^{2 \times 2} / A \cdot B = 0\}$. Sea $f \in S^{\circ}$ tal que $f(I_2) = 0$ y $f\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 3$. Calcular f(B).

Ejercicio 11. Para los siguientes subespacios S y T de V, hallar una base de $(S+T)^{\circ}$ y una base de $(S\cap T)^{\circ}$.

i)
$$V = \mathbb{R}^4$$
, $S = \langle (1, 1, -1, 1), (2, -1, 3, 1) \rangle$, $T = \langle (2, -4, 8, 0), (-1, 1, 2, 3) \rangle$

ii)
$$V = \mathbb{R}^4$$
, $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 - x_3 = 0, x_1 + x_2 + x_4 = 0\}$, $T = \langle (2, 1, 3, 1) \rangle$

iii)
$$V = \mathbb{R}^3$$
, $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 2x_2 + x_3 = 0, 3x_2 - 2x_3 = 0\}$,
$$T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2x_1 - x_2 = 0\}$$

Ejercicio 12. Sea V un K-espacio vectorial de dimensión finita y sean S y T subespacios tales que $V = S \oplus T$. Probar que $V^* = S^{\circ} \oplus T^{\circ}$.

Ejercicio 13. Sea V un \mathbb{Z}_p -espacio vectorial de dimensión n. Probar que

$$\#\{S \subseteq V \text{ subespacio} / \dim(S) = 1\} = \#\{S \subseteq V \text{ subespacio} / \dim(S) = n - 1\}.$$

Calcular dicho número.

Ejercicio 14. Sea $tr: K^{n \times n} \to K$ la forma lineal traza. Dada $A \in K^{n \times n}$, se define $f_A: K^{n \times n} \to K$ como $f_A(X) = tr(A.X)$.

- i) Probar que $f_A \in (K^{n \times n})^* \ \forall A \in K^{n \times n}$.
- ii) Probar que $f_A(X) = 0 \ \forall X \in K^{n \times n} \Rightarrow A = 0$.
- iii) Se define $\gamma: K^{n \times n} \to (K^{n \times n})^*$ como $\gamma(A) = f_A$. Probar que γ es un isomorfismo.

iv) Sea $f: \mathbb{R}^{2\times 2} \to \mathbb{R}$ definida por:

$$f\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = 3x_{11} - 2x_{12} + 5x_{22}.$$

Encontrar una matriz $A \in \mathbb{R}^{2 \times 2}$ tal que $\gamma(A) = f$.

Ejercicio 15. Sea $\varphi \in (K^{n \times n})^*$ tal que $\varphi(A.B) = \varphi(B.A) \ \forall A, B \in K^{n \times n}$. Probar que existe $\alpha \in K$ tal que $\varphi = \alpha.tr$. Deducir que si $\varphi(A.B) = \varphi(B.A) \ \forall A, B \in K^{n \times n} \ y \ \varphi(I_n) = n$, entonces $\varphi = tr$.

Ejercicio 16. Sean $\alpha_0, \ldots, \alpha_n \in K$, $\alpha_i \neq \alpha_j$ si $i \neq j$. Para cada $i, 0 \leq i \leq n$, se define $\epsilon_{\alpha_i} : K_n[X] \to K$ como $\epsilon_{\alpha_i}(P) = P(\alpha_i)$.

- i) Probar que $B_1 = \{\epsilon_{\alpha_0}, \dots, \epsilon_{\alpha_n}\}$ es una base de $(K_n[X])^*$.
- ii) Sea $B = \{P_0, \dots, P_n\}$ la base de $K_n[X]$ tal que $B^* = B_1$. Probar que el polinomio

$$P = \sum_{i=0}^{n} \beta_i . P_i$$

es el único polinomio en K[X] de grado menor o igual que n tal que, para todo i, $0 \le i \le n$, $P(\alpha_i) = \beta_i$. Este polinomio se llama el polinomio interpolador de Lagrange.

iii) Probar que existen números reales a_0, \ldots, a_n tales que, para todo $P \in \mathbb{R}_n[X]$,

$$\int_0^1 P(x) dx = \sum_{i=0}^n a_i . P(\alpha_i).$$

Hallar a_0 , a_1 y a_2 en el caso en que n=2, $\alpha_0=1$, $\alpha_1=\frac{1}{2}$ y $\alpha_2=0$.

Ejercicio 17. Sean V y W K-espacios vectoriales de dimensión finita y sea $f:V\to W$ una transformación lineal. Se define la función $f^t:W^*\to V^*$ de la siguiente manera:

$$f^t(\varphi) = \varphi \circ f \quad \forall \, \varphi \in W^*.$$

 f^t se llama la función transpuesta de f.

- i) Probar que f^t es una transformación lineal.
- ii) Probar que $\operatorname{Nu}(f^t) = (\operatorname{Im}(f))^{\circ}$ y que $\operatorname{Im}(f^t) = (\operatorname{Nu}(f))^{\circ}$.
- iii) Sean $V = \mathbb{R}^2$ y $W = \mathbb{R}^3$ y sea $f(x_1, x_2) = (2x_1 x_2, 3x_1, x_1 2x_2)$. Si $B_1 = \{(1, 2), (1, 3)\}$ y $B_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$, calcular $|f|_{B_1B_2}$ y $|f^t|_{B_3^*B_1^*}$.
- iv) Si B_1 y B_2 son bases de V y W respectivamente, probar que

$$|f^t|_{B_2^*B_1^*} = (|f|_{B_1B_2})^t.$$

Ejercicio 18. Sea V un \mathbb{C} -espacio vectorial. Sean $f,g\in V^*$ tales que $f,g\in V^*$. Probar que f=0 ó g=0.

Ejercicio 19. Sea V un \mathbb{C} -espacio vectorial de dimensión finita. Sean $v_1, \ldots, v_n \in V$ vectores no nulos. Probar que existe una forma lineal $\varphi \in V^*$ tal que $\varphi(v_i) \neq 0 \ \forall i, 1 \leq i \leq n$.