Основы теории конечных автоматов

Т. А. Новикова

Факультет ВМиК Казахстанский филиал МГУ им.М.В. Ломоносова

15 мая 2016 г.

Алфавит $A = \{a_1, a_2, \dots, a_r\}$ будем называть входным алфавитом, $B = \{b_1, b_2, \dots, b_m\}$ — выходным алфавитом, а через A^{∞}, B^{∞} будем обозначать множества всевозможных последовательностей в алфавитах A, B соответственною

Отображение $\phi: A^{\infty} \to B^{\infty}$ называется детерминированной функцией, если для любого $t = 1, 2, \dots b(t)$ однозначно определяется по $a(1), a(2), \dots, a(t)$.

Отображение $\phi: A^{\infty} \to B^{\infty}$ называется детерминированной функцией, если для любого $t = 1, 2, \dots b(t)$ однозначно определяется по $a(1), a(2), \dots, a(t)$.

Фактически, д-функция переводит последовательности в последовательности: $a_1(1)\dots a_1(t)\dots \to b_1(1)\dots b_1(t)\dots$, $a_2(1)\dots a_2(t)\dots \to b_2(1)\dots b_2(t)\dots$, при этом если $a_1(1)=a_2(1)$, то верно, что $b_1(1)=b_2(1)$ и такой набор равенств может быть продолжен на дальнейшие промежутки времени.

Пусть задана д-функция $\phi: A^{\infty} \to B^{\infty}$. Рассмотрим произвольное слово $\bar{a} = a_1 a_2 \dots a_k \in A^*$. Пусть $a(1), \dots, a(t) \dots$ — произвольная входная последовательность. Рассмотрим

$$\phi(a_1 a_2 \dots a_k a(1) a(2) \dots a(t) \dots) = b_1 b_2 \dots b_k b(1) b(2) \dots b(t) \dots$$

и положим $\phi_{\bar{a}}(a(1)a(2)\dots a(t)\dots)=b(1)b(2)\dots b(t)\dots$ Полученную функцию $\phi_{\bar{a}}$ назовем остаточной функцией для ϕ по слову $\bar{a}\in A^*$.

Детерминированная функция называется ограниченно-детерминированной, если у нее имеется лишь конечное число различных остаточных функций.

Автоматом (инициальным) называется любая шестёрка (A, B, Q, G, F, q_0) , где A, B, Q — кончные алфавиты, $G: A \times Q \to Q, F: A \times Q \to B, q_0 \in Q$ — начальное(инициальное) состояние.

Автоматом (инициальным) называется любая шестёрка (A,B,Q,G,F,q_0) , где A,B,Q — кончные алфавиты, $G:A\times Q\to Q,\,F:A\times Q\to B,\,q_0\in Q$ — начальное(инициальное) состояние.

Входом автомата служит последовательность $a(1)a(2)a(3)\dots a(t)\dots \in A^*$ (конечная или бесконечная), выходом автомата служит последовательность z(t), при этом автомат задаётся системой канонических уравнений:

$$\begin{cases} z(t) = F(x(t), q(t-1)), \\ q(t) = G(x(t), q(t-1)), \\ q(0) = q_0 \end{cases}$$

Отображение $\phi: A^{\infty} \to B^{\infty}$ называется автоматной функцией, если существует автомат, который реализует это отображение.

Отображение $\phi: A^{\infty} \to B^{\infty}$ называется автоматной функцией, если существует автомат, который реализует это отображение.

Утв. Функция является автоматной тогда и только тогда, когда она является ограниченно детерминированной.

Пример. Пусть $A = B = Q = \{0,1\}$ и система канонических уравнений выглядит следующим образом:

$$\begin{cases}
z(t) = q(t-1), \\
q(t) = x(t), \\
q(0) = 0
\end{cases}$$

Такой автомат называется единичной задержкой.

Диаграммой Мура для автомата называется ориентированный граф с множеством вершин Q, у которого каждой паре (a,q) сопоставляется дуга, идущая из вершины q в вершину, соответствующую G(a,q). Этой дуге приписывается пометка (a,F(a,q)). Особым образом помечена вершина, соответствующая начальному состоянию. Диаграмма Мура однозначно задаёт автомат.

Схемой из функциональных элементов и элемента задержки(СФЭЗ) называется схема из функциональных элементов в функциональном базисе, к которому добавлен элемент, реализующий функцию единичной задержки. В схеме из функциональных элементов и элементов задержки допускаются ориентированные циклы, но любой ориентированный цикл должен проходить хотя бы через одну задержку.

В дальнейшем договоримся, что рассматриваем $A = B = \{0, 1\}.$

Схема из функциональных элементов и задержки осуществляет автоматное отображение.

Доказательство. Пусть в схеме имеется r элементов задержки. Пусть i-я задержка R_i приписана вершине v_i , в которую идёт дуга из вершины w_i . Для всех $i = 1, \ldots, r$ удалим из СФЭЗ дуги (w_i, v_i) . Получим СФЭ.

Схема из функциональных элементов и задержки осуществляет автоматное отображение.

Доказательство. Пусть в схеме имеется r элементов задержки. Пусть i-я задержка R_i приписана вершине v_i , в которую идёт дуга из вершины w_i . Для всех $i=1,\ldots,r$ удалим из СФЭЗ дуги (w_i,v_i) . Получим СФЭ.

Входами этой СФЭ будут все входы исходной схемы, а также все вершины $v_i, i=1,\ldots,r$. Выходами полученной СФЭ объявим все выходы исходной схемы и вершины $w_i, i=1,\ldots,r$.

Схема из функциональных элементов и задержки осуществляет автоматное отображение.

Доказательство. Пусть в схеме имеется r элементов задержки. Пусть i-я задержка R_i приписана вершине v_i , в которую идёт дуга из вершины w_i . Для всех $i=1,\ldots,r$ удалим из СФЭЗ дуги (w_i,v_i) . Получим СФЭ.

Входами этой СФЭ будут все входы исходной схемы, а также все вершины $v_i, i = 1, \ldots, r$. Выходами полученной СФЭ объявим все выходы исходной схемы и вершины $w_i, i = 1, \ldots, r$.

Пусть в исходной схеме выходам приписаны переменные z_1, \ldots, z_m , входам — переменные x_1, \ldots, x_n . Вершинам v_i припишем переменные q'_1, \ldots, q'_r , а вершинам w_i — переменные q_1, \ldots, q_r .

В соответствии с определением функционирования СФЭ, для некоторых функций алгебры логики f_i, g_j справедливо:

$$\begin{cases} z_i = f_i(x_1, ..., x_n, q'_1, ..., q'_r), i = 1, ..., m \\ q_j = g_j(x_1, ..., x_n, q'_1, ..., q'_r), = 1, ..., r \end{cases}$$

Но поскольку это выполняется в каждый момент времени, то:

$$\begin{cases} z_i(t) = f_i(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), i = 1, \dots, m \\ q_j(t) = g_j(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), j = 1, \dots, r \end{cases}$$

Но для элемента единичной задержки его выход в момент t совпадает с его входом в момент t-1, тогда:

$$\begin{cases} z_i(t) = f_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), i = 1, \dots, m \\ q_j(t) = g_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), j = 1, \dots, r \\ q_j(0) = 0. \end{cases}$$

Но для элемента единичной задержки его выход в момент t совпадает с его входом в момент t-1, тогда:

$$\begin{cases} z_i(t) = f_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), i = 1, \dots, m \\ q_j(t) = g_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), j = 1, \dots, r \\ q_j(0) = 0. \end{cases}$$

Полученные равенства — канонические уравнения СФЭЗ.

Пусть полученные канонические уравнения задают отображение ψ , осуществляемое схемой σ . Введем переменные $X=(x_1,\ldots,x_n),\ Q=(q_1,\ldots,q_r),$ $Z=(z_1,\ldots,z_m),$ принимающие значения из E_2^n,E_2^r,E_2^m соответственно. Положим $q_0=(0,\ldots,0).$ Тогда каноническая система может быть переписана в виде:

$$\begin{cases} Z(t) = F(X(t), Q(t-1)), \\ Q(t) = G(X(t), Q(t-1)), \\ Q(0) = q_0, \end{cases}$$

где функции F, G не зависят явно от t. Отсюда видно, что отображение, осуществляемое схемой, совпадает с отображением, задаваемым автоматом $(E_2^n, E_2^r, E_2^m, G, F, q_0)$ то есть является автоматной функцией.

Пусть автоматная функция ϕ отображает последовательности в конечном алфавите А в последовательности в конечном алфавите B. Пусть СФЭЗ Σ осуществляет преобразование ψ последовательностей с элементами из E_2^n в последовательности с элементами из E_2^m . Будем говорить, что Σ моделирует ϕ , если существуют отображения $K_1: A \to E_2^n, K_2: B \to E_2^m$, сопоставляющие разным элементам разные элементы и обладающие свойством: для любой последовательности p = a(1)a(2)...a(t) в алфавите A, если $\phi(P) = T = b(1)b(2) \dots b(t)$, TO $\psi(K_1(P)) = K_2(T)$, где $K_1(P) = K_1(a(1))K_1(a(2))...K_1(a(t))$, $K_2(T) = K_2(b(1))K_2(b(2))...K_2(b(t)).$

Для любой автоматной функции существует моделирующая её СФЭЗ в базисе из функциональных элементов дизъюнкции, конъюнкции, отрицания и элемента задержки.

Для любой автоматной функции существует моделирующая её СФЭЗ в базисе из функциональных элементов дизъюнкции, конъюнкции, отрицания и элемента задержки.

Доказательство. Приведем этапы построения такой схемы. Пусть автоматная функция задана своим автоматом $D=(A,B,Q,G,F,q_0)$. Выберем n,m,r так, что $2^n\geq |A|,2^m\geq |B|,2^r\geq |Q|$. Рассмотрим произвольные отображения $K_1:A\to E_2^n,\,K_2:B\to E_2^m,\,K_3:Q\to E_2^r.$ Потребуем дополнительно, чтобы $K_3(q_0)=(0,\ldots,0)$.

Для любой автоматной функции существует моделирующая её СФЭЗ в базисе из функциональных элементов дизъюнкции, конъюнкции, отрицания и элемента задержки.

Доказательство. Приведем этапы построения такой схемы. Пусть автоматная функция задана своим автоматом $D=(A,B,Q,G,F,q_0)$. Выберем n,m,r так, что $2^n\geq |A|,2^m\geq |B|,2^r\geq |Q|$. Рассмотрим произвольные отображения $K_1:A\to E_2^n,\,K_2:B\to E_2^m,\,K_3:Q\to E_2^r.$ Потребуем дополнительно, чтобы $K_3(q_0)=(0,\ldots,0)$.

Рассмотрим отображения $G': E_2^n \times E_2^r \to E_2^r$, $F': E_2^n \times E_2^r \to E_2^m$ такие, что для любых $a \in A, q \in Q$ выполнено:

$$\begin{cases} G'(K_1(a), K_3(q)) &= K_3(G(a, q)), \\ F'(K_1(a), K_3(q)) &= K_2(F(a, q)) \end{cases}$$

Полученные равенства определяют отображения G', F' только для тех пар слов, которые являются кодами некоторых букв в алфавитах A, B. Для остальных пар отображения G', F' доопределяются произвольно.

Полученные равенства определяют отображения G', F' только для тех пар слов, которые являются кодами некоторых букв в алфавитах A, B. Для остальных пар отображения G', F' доопределяются произвольно.

Рассмотрим автомат $H = (E_2^n, E_2^m, E_2^r, G', F', 0)$ с каноническими уравнениями:

$$\begin{cases} Z(t) &= F'(X(t), Q(t-1)), \\ Q(t) &= G'(X(t), Q(t-1)), \\ Q(0) &= \widetilde{0}, \end{cases}$$

По построению видно, что если автомат D преобразует последовательность P в алфавите A в последовательность T в алфавите B, то H преобразует код $K_1(P)$ последовательности P в код $K_2(T)$ последовательности T. Осталось показать, что построенную автоматную функцию можно реализовать схемой.

Рассмотрим каждую из переменных X, Q, Z в виде вектор-набора переменных. Тогда система аналогична следующей:

$$\begin{cases} z_i(t) = f_i(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), \\ q_j(t) = g_j(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), \end{cases}$$

Рассмотрим каждую из переменных X, Q, Z в виде вектор-набора переменных. Тогда система аналогична следующей:

$$\begin{cases} z_i(t) = f_i(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), \\ q_j(t) = g_j(x_1(t), \dots, x_n(t), q'_1(t), \dots, q'_r(t)), \end{cases}$$

Тогда можно построить СФЭ в базисе $\{\lor, \&, \neg\}$ с n+r входами и m+r выходами, реализующую семейство функций:

$$\begin{cases}
z_i = f_i(x_1, \ldots, x_n, q'_1, \ldots, q'_r), \\
q_j = g_j(x_1, \ldots, x_n, q'_1, \ldots, q'_r).
\end{cases}$$

Пусть в этой СФЭ входная переменная q'_j приписана вершине v_j , а выходная переменная q_j — вершине w_j . Добавим дугу (w_j, v_j) и сопоставим вершине v_j элемент задержки. Проделав это для всех пар q'_j, q_j получим СФЭЗ, функционирование которой описывается каноническими уравнениями

$$\begin{cases} z_i(t) &= f_i(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), \\ q_j(t) &= g_j(x_1(t), \dots, x_n(t), q_1(t-1), \dots, q_r(t-1)), \\ q_j(0) &= 0. \end{cases}$$

Будем рассматривать автоматы — пятерки вида (A, B, Q, G, F).

Расширим функции F, G таким образом, чтобы они были определены для любого слова $\overline{a} = (a(1), a(2), \dots, a(m))$ и любого состояния $q \in Q$.

Два состояния q_i и q_j автомата (A, B, Q, G, F) называются отличимыми, если существует входное слово $\overline{a} \in A^*$ такое, что $F(\overline{a}, q_i) \neq F(\overline{a}, q_j)$. При этом слово \overline{a} называют экспериментом, отличающим состояния q_i, q_j , а величину $I(\overline{a})$ — длиной этого эксперимента.

Два состояния q_i и q_j автомата (A, B, Q, G, F) называются отличимыми, если существует входное слово $\overline{a} \in A^*$ такое, что $F(\overline{a}, q_i) \neq F(\overline{a}, q_j)$. При этом слово \overline{a} называют экспериментом, отличающим состояния q_i, q_j , а величину $I(\overline{a})$ — длиной этого эксперимента.

Lemma

Пусть в автомате (A, B, Q, G, F) есть 2 состояния q_u и q_v , отличимые экспериментом длины p и не отличимые более коротким экспериментом. Тогда для любого k, где $1 \le k \le p$, существуют 2 состояния, отличимые экспериментом длины k и не отличимые более коротким экспериментом.

Доказательство. Пусть состояния q_u, q_v отличимы экспериментом \overline{a} длины p и не отличимы экспериментом меньшей длины. Пусть $F(\overline{a}, q_u) = \overline{b}, F(\overline{a}, q_v) = \overline{c}$. Тогда $\overline{b} \neq \overline{c}$, причем отличаются они последней буквой. Разобьем все слова $\overline{a}, \overline{b}, \overline{c}$ на два подслова $\overline{a} = \overline{a_1} \overline{a_2}, \overline{b} = \overline{b_1} \overline{b_2},$ $\overline{c} = \overline{c_1} \overline{c_2}$, где $I(\overline{a_2}) = I(\overline{b_2}) = I(\overline{c_2})$.

Доказательство. Пусть состояния q_u, q_v отличимы экспериментом \overline{a} длины p и не отличимы экспериментом меньшей длины. Пусть $F(\overline{a}, q_u) = \overline{b}$, $F(\overline{a}, q_v) = \overline{c}$. Тогда $\overline{b} \neq \overline{c}$, причем отличаются они последней буквой. Разобьем все слова $\overline{a}, \overline{b}, \overline{c}$ на два подслова $\overline{a} = \overline{a_1} \overline{a_2}, \overline{b} = \overline{b_1} \overline{b_2},$ $\overline{c} = \overline{c_1} \overline{c_2}$, где $I(\overline{a_2}) = I(\overline{b_2}) = I(\overline{c_2})$.

Пусть $G(\overline{a_1}, q_u) = q'$, $G(\overline{a_1}, q_v) = q''$. Тогда $F(\overline{a_2}, q') = \overline{b_2}$, $F(\overline{a_2}, q'') = \overline{c_2}$. Так как $\overline{b_2}$ и $\overline{c_2}$ отличаются только последней буквой, то q', q'' отличимы экспериментом длины $I(\overline{a_2}) = k$.

Продолжение. Допустим теперь, что q' и q'' отличимы экспериментом $\overline{a_3}$ длины $I(\overline{a_3} < k)$. Тогда $F(\overline{a_3}, q') = \overline{b_3}$, $F(\overline{a_3}, q'') = \overline{c_3}$, $\overline{b_3} \neq \overline{c_3}$.

Продолжение. Допустим теперь, что q' и q'' отличимы экспериментом $\overline{a_3}$ длины $I(\overline{a_3} < k)$. Тогда $F(\overline{a_3}, q') = \overline{b_3}$, $F(\overline{a_3}, q'') = \overline{c_3}$.

Но тогда $F(\overline{a_1a_3}, q_u) = \overline{b_1b_3}$, $F(\overline{a_1a_3}, q_v) = \overline{c_1c_3}$ и $\overline{b_1b_3} \neq \overline{c_1c_3}$. А это значит, что состояния q_u, q_v отличимы экспериментом длины $I(\overline{a_1a_3}) = p$, а это противоречит условию.

Theorem (Теорема Мура)

Если в автомате (A,B,Q,G,F) состояния q_i и q_j отличимы и |Q|=r, то существует эксперимент \overline{a} , отличающий q_i и q_j , длины $I(\overline{a}) \leq r-1$.

Theorem (Теорема Мура)

Если в автомате (A,B,Q,G,F) состояния q_i и q_j отличимы и |Q|=r, то существует эксперимент \overline{a} , отличающий q_i и q_j , длины $I(\overline{a}) \leq r-1$.

Доказательство. Пусть состояния q_i и q_i отличимы экспериментом длины р и не отличимы более коротким экспериментом. Разобьем все состояния нашего автомата на несколько классов R_m таким образом, что два состояния попадают в один класс R_m , если они не отличимы экспериментом длины m. R_m , устроенное таким образом, задает отношение эквивалентности на множестве вершин. Полученные таким образом классы эквивалентности обозначим $Q_1^{(m)}, Q_2^{(m)}, \dots, Q_m^{(m)}$. Заметим, что $s(0) = 1, Q = Q_1^{(0)}.$

Продолжение. Рассмотрим, как изменяются классы при увеличении длины эксперимента. Два состояния, различимых экспериментом длины m будут различимы экспериментами длины m+1, т.е. они останутся в разных классах.

По лемме для любого $m=0,1,\ldots,p-1$ существуют 2 состояния, отличимые экспериментом длины m+1 и не отличимые экспериментом длины m. Значит, хотя бы один из классов эквивалентности относительно R_m распадется на два при R_{m+1} . Тогда

$$1 = s(0) < s(1) < \ldots < s(p-1) < s(p) \le r \Rightarrow p \le r-1.$$

Существует пример автомата, показывающий, что эксперимент меньшей длины не обязан различать состояния.

Пусть 2 автомата (A, B, Q_1, G_1, F_1) и (A, B, Q_2, G_2, F_2) имеют одинаковые входной и выходной алфавиты. Пусть $q_i \in Q_1, q_j \in Q_2$. Будем говорить, что эксперимент $\overline{a} \in A^*$ отличается состояния q_i и q_j , если $F(\overline{a}, q_i) \neq F(\overline{a}, q_j)$.

Пусть 2 автомата (A, B, Q_1, G_1, F_1) и (A, B, Q_2, G_2, F_2) имеют одинаковые входной и выходной алфавиты. Пусть $q_i \in Q_1, q_j \in Q_2$. Будем говорить, что эксперимент $\overline{a} \in A^*$ отличается состояния q_i и q_j , если $F(\overline{a}, q_i) \neq F(\overline{a}, q_j)$.

Theorem

Пусть даны 2 автомата (A, B, Q_1, G_1, F_1) и (A, B, Q_2, G_2, F_2) . Пусть $|Q_1| = r$, $|Q_2| = m$ и $q_i \in Q_1$, $q_j \in Q_2$. Тогда, если q_i и q_j отличимы, то существует отличающий их эксперимент $\overline{a}: I(\overline{a}) \leq r + m - 1$.

Доказательство. Рассмотрим автомат (A, B, Q, G, F), в котором $Q = Q_1 \cup Q_2$ и диаграмма которого получается объединением диаграмм исходных автоматов. Тогда |Q| = r + m и по теореме Мура эти два состояния отличимы экспериментом длины $I(\overline{a}) \leq r + m - 1$.

Доказательство. Рассмотрим автомат (A, B, Q, G, F), в котором $Q = Q_1 \cup Q_2$ и диаграмма которого получается объединением диаграмм исходных автоматов. Тогда |Q| = r + m и по теореме Мура эти два состояния отличимы экспериментом длины $I(\overline{a}) \leq r + m - 1$.

Существует автомат, для которого указанная оценка не может быть понижена.

Примеры. Пусть

f(x(1), x(2), ..., x(t), ...) = y(1)y(2)...y(t)... Выяснить, является ли эта функция детерминированной:

- ② $y(t) = x(1) \cdot x(2) \cdot ... \cdot x(t) \cdot x(t+2) \rightarrow x(1), t \ge 1.$
- **3** $y(t) = x(\sqrt{3/2t}), t \ge 1.$
- **1** y(1) = y(2) = 1, $y(t) = x(2^{t-1} t)$ при $t \ge 3$.