Exam on Differential Equation Dec. 12, 2014

1. (20%)

For the following system, $\frac{d^2y}{dt^2} + 16y = 0$, y(0)=1, y'(0)=0,

- (a) (10%)Find the solution for y(t) and y'(t).
- (b) (10%) Assume that $Y(t) = \begin{vmatrix} y(t) \\ y(y) \end{vmatrix} = \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}$, find the matrix A for the matrix

form, and solve the solution of Y(t).

2. (10%)

For the following system,

$$\frac{dY}{dt} = \begin{bmatrix} -5 & 0 \\ 1 & -3 \end{bmatrix} Y$$
, with the initial condition $Y_0 = (1,0)$

Find the solution with the given initial value.

3. (15%)

For the second-order equation $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 0$, with the initial conditions

$$y(0)=1$$
, $v(0) = 1$, $v = \frac{dy}{dt}$. Find y(t) and v(t).

y(t)=te-2t y(t) e-2t =2te-2t 1 1 (4)= -2e2t - 2e2t +4te2t

kieżtykieżt $\frac{t^2}{2}$ eżt $\frac{t^2}{2}$ tyżeżt \frac

homose

4. (20%)

For the following system,

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 40y = e^{-t}. \quad y(0)=1, y'(0)=0,$$

- (a) (10%) Find the free response of the system.
- (b) (10%) Find the forced response of the system.
- asin10t +boosfot 5. (20%) For the following system, $\frac{d^2y}{dt^2} + 100y = \cos 10t.$ | The following system is the property of the following system in the following system is the following system.

 | The following system is the following system is the following system.
 - (a) (10%) Compute the solution with y(0)=1, y'(0)=0,
 - (b) (5%) Draw y(t) vs. t for the initial valued solution.
 - (c) (5%) Find the steady state solution of the system.

