Introduction and Applications

Prof. Raj (Instructor), HMW-Alexander (Noter) January 24, 2017

Back to Index

Contents

1	Advantages of WSN
2	Sensors & Actuators
3	Energy 3.1 State of the Practice
4	Core Principles 4.1 Laws and Principles to Follow
	4.2 Challenges
	4.3 Why not adapt "end-to-end" Lookup tables in routers
	4.4 Fine-Grained Time and Location
	4.5 Coverage Measure
	4.6 In-Netowyk Processing

Resources

• Lecture

1 Advantages of WSN

- Small size
- (Relatively) low cost of nodes
- Reduce (eliminate?) cost of wiring
- \bullet Self-configuring and self-optimizing
- Self-healing: redundancy and fault-tolerance
- Long lifetimes (?)
- Interfacing with the physical world.

2 Sensors & Actuators

3 Energy

- Energy: a measure of being able to do work.
- Unit: 1 J(Joule) = one watt per seconde

3.1 State of the Practice

The energy cost of communication is very expensive.

4 Core Principles

4.1 Laws and Principles to Follow

- Propagation laws for communications:
 - Think volume:
 - * Surface area of a sphere of radius $r = 4\pi r^2$
 - Think signal quality:
 - * Multipath effects result from radio signals reaching a receiver by two or more paths (Rayleigh fading)
 - * Attenuation results from dissipation of energy
 - * Frequency shifts from **Doppler effect**
 - Think noise:
 - * Ambient white noise
 - * Interference from other electro-magnetic sources.
- Physical distribution
- Estimation theory for detection
- Control and hybrid systems theory for control.

4.2 Challenges

- Scale
 - Network control and routing
 - Collaborative signal and information processing
- Limited access
 - Security
 - Limited energy
- Extreme dynamics
 - Ad-Hoc network discovery
 - Tasking and querying

4.3 Why not adapt "end-to-end" Lookup tables in routers

- Internet routes data using IP addresses in packets and lookup tables in routers
 - humans get data by "naming data" to a search engine
 - Many levels of indirection between name and IP address
 - embedded, energy-constrained, unattended systems cannot tolerate communication overhead of indirection.

4.4 Fine-Grained Time and Location

fine-grained localization and time synchronization needed to detect events in 3-D space and improve estimation across nodes.

4.5 Coverage Measure

- Area coverage: fraction of area covered by sensors
- Detectability: probability that sensors detect moving objects
- Node coverage: fraction of sensors covered y other sensors.

4.6 In-Netowrk Processing

- Communication expensive when limited power and bandwidth
- so perform data processing in network.

4.7 Distributed Representation and Sotrage

- Data-centric protocols, in-netowrk processing
- Pattern-triggered data collection

4.8 Sensor Database System

Sensor database supports distributed query processing over sensor network

4.9 New WSN Paradigms

- Self-configuration systems that adapt to unpredictable environment
- Leverage data processing inside the network
 - exploit computation near data to reduce communication
 - collaborative signal processing
 - achieve desired global behavior with localized algorithms
- Long-lived, unattended, un-tethered, low duty-cycle systems