PAT-NO:

JP407107369A

DOCUMENT-IDENTIFIER: JP 07107369 A

TITLE:

IMAGE PROCESSOR

PUBN-DATE:

April 21, 1995

INVENTOR - INFORMATION:

NAME

KANEDA, KITAHIRO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

CANON INC

N/A

APPL-NO:

JP05265799

APPL-DATE:

September 29, 1993

INT-CL (IPC): H04N005/232

### ABSTRACT:

PURPOSE: To provide an image processor capable of correcting image shake even when image shake exists over a detecting area.

CONSTITUTION: A motion vector between pictures are detected from the image

signal of an object based on correlation arithmetic between the images which

time sequentially continue by a step S 201 and the shaking state of the image

is detected by a step 203 based on motion information of the absolute value,

the spatial distribution, time distribution, etc., of plural motion

calculated by a step S202. When the shake of the pertient image is detected to

be over a detection range, a step S206 controls the focal distance of

optical system, optically changes a shake correction range, controls the angle

of the view of a display image to be an optimum value by syncronizing with the

control of a correction range and magnifies the correction area without

changing apparent angle of view to correct image  $\underline{\mathbf{shake}}$  in a real time without

giving a feeling of incongruity to a photographer.

COPYRIGHT: (C) 1995, JPO

#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

庁内整理番号

(11)特許出國公開番号

## 特開平7-107369

(43)公開日 平成7年(1995)4月21日

(51) Int.Cl.

識別記号

FΙ

技術表示箇所

HO4N 5/232

Z

審査請求 未請求 請求項の数 3 FD (全 18 頁)

(21)出闢番号

特願平5-265799

(22)出順日

平成5年(1993)9月29日

(71)出版人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 金田 北洋

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 液部 敏彦

#### (54) 【発明の名称】 画像処理装置

#### (57)【要約】

【目的】 画像ブレが検出領域を越えて存在する場合でも画像ブレの補正を可能にする画像処理装置を提供する

【構成】 被写体の画像信号中より、時系列に連続した 画像間の相関演算に基づいて、画像間の動きベクトルが ステップS201で検出され、ステップS202で演算 された複数の動きベクトルの絶対値,空間分布,時間分 布等の動き情報に基づいてステップS203で、画像の ブレ状態が検出され、該画像のブレが検出レンジを越え たことが検出され、該画像のブレが検出レンジを越え たことが検出されると、ステップS206で、光学系の 焦点距離が制御され、ブレ補正範囲が光学的に変化さ れ、補正範囲の制御に同期して、表示画像の画角が最適 値に制御され、見かけの画角を変えずに補正領域が拡大 され、撮影者に違和感を与えずに実時間での画像ブレ補 正がなされる。



### 【特許請求の範囲】

【請求項1】 フォーカスレンズ群とズームレンズ群とを含む光学系を介して得られる被写体からの光信号を電気信号に変換して得られる画像信号中より画像間の動きベクトルを検出し、実時間でそのブレを補正する画像処理装置において、時系列に連続した画像間の相関演算を行い画像間の動きベクトルを検出するベクトル検出手段と、該ベクトル検出手段により検出された複数の動きベクトルの絶対値、空間分布、時間分布等の動き情報に基づいて画像のブレ状態を検出するブレ検出手段と、該ブレ、大切を検出するブレ検出手段と、該ブレ、大切を検出されたとき前記光学系の焦点距離を制御してブレ補正範囲を光学的に変化させるブレ補正範囲制御手段と、該ブレ補正範囲制御手段の制御に同期してビューファインダの表示画像の画角を制御する画角制御手段とを具備したことを特徴とする画像処理装置。

【請求項2】 フォーカスレンズ群とズームレンズ群とを含む光学系を介して得られる被写体からの光信号を電気信号に変換して得られる画像信号中より画像間の動きベクトルを検出し、実時間でそのブレを補正する画像処理装置において、時系列に連続した画像間の相関演算を行い画像間の動きベクトルを検出するベクトル検出手段と、該ベクトル検出手段により検出された動きベクトルを加算して現画像の基準点からの絶対偏差を演算する演算手段と、該演算手段により演算された絶対偏差の予め設定した基準補正量を連続して越える回数が予め設定した基準回数値を上回ったとき前記光学系の焦点距離を制御してブレ補正範囲を光学的に変化させるブレ補正範囲制御手段と、該ブレ補正範囲制御手段の制御に同期してビューファインダの表示画像の画角を制御する画角制御手段とを具備したことを特徴とする画像処理装置。

【請求項3】 フォーカスレンズ群とズームレンズ群とを含む光学系を介して得られる被写体からの光信号を電気信号に変換して得られる画像信号中より画像間の動きベクトルを検出し、実時間でそのブレを補正する画像処理装置において、時系列に連続した画像間の相関演算を行い画像間の動きベクトルを検出するベクトル検出手段と、該ベクトル検出手段により検出される動きベクトルの乱れを検出する乱れ検出手段と、該乱れ検出手段により検出される動きベクトルの乱れが予め設定した基準量を越えたとき前記光学系の焦点距離を制御してブレ補正範囲を光学的に変化させるブレ補正範囲制御手段と、該ブレ補正範囲制御手段の制御に同期してビューファイングの表示画像の画角を制御する画角制御手段とを具備したことを特徴とする画像処理装置。

#### 【発明の詳細な説明】

[0001]

【 産業上の利用分野 】本発明は画像処理装置に関し、特にビデオカメラにより撮影された画像のプレを補正する 画像処理装置に関する。 [0002]

【従来の技術】近年、カメラー体型VTR (ビデオテープレコーダ)は、レンズのリァフォーカス化、使用部品の小型化、高密度実装化により全体が大幅に軽量小型化され、更にレンズ自体の高倍率化が進んでおり、三脚などを使用せずに手持ちで高倍率の撮影を行う場合が多くなっている。このために、使用中の僅かな手ブレが撮影画像に画像ブレとなって現われるので、画像ブレの防止が必要になっている。

2

【0003】この場合の画像ブレ防止装置として、慣性振り子式画像ブレ防止装置が、米国特許第295908 8号や米国特許第2829557号で開示されている。 この慣性振り子式画像ブレ防止装置では、補正光学系を ジンバル機構によって可動的に保持し、慣性によって手 ブレなどから生じる画像ブレを防止している。

【0004】また、ビデオカメラのレンズの前玉の前方に可変項角アリズムを配設し、センサによって振動が検出されたとき、プリズムの頂角を制御することにより画像プレを防止する可変項角式画像ブレ防止装置も提案されている。

【0005】更に、撮像素子からの映像信号を画像メモリに記憶させ、その情報によってずれを検知し、ずれ量に応じて画像メモリの読み出しアドレスをシフトすることにより、画像ブレを補正する純電子式画像ブレ防止装置が、特開昭61-248681号公報で提案されている。この純電子式画像ブレ防止装置は、画像ブレの補正に機械的機構が不要で、小型軽量に構成することができ、製造コストも低減できるので近年注目されている。【0006】

2 【発明が解決しようとする課題】しかし、この純電子式 画像プレ防止装置では、光学系の設定条件に対応する画 像プレの検出領域が、前述のセンサ検出方式などに比し て狭いので、画像プレが検出領域を越えることがあり、 このような場合には補正が不可能となる。また、装置を 構成する撮像素子やメモリにより、光学系の設定条件に 対応する装置の補正限界領域が定まり、プレ補正値が補 正限界領域を越えると、それ以上の補正は不可能とな る。更に、画面内の被写体の特性や激しい動きにより、 動きベクトルが検出し難いことがあり、この場合には設 定された光学系の条件下でのブレ補正値の精度が苦しく 低下するという問題がある。

【0007】本発明は、前述した純電子式画像ブレ防止装置の現状に鑑みてなされたものであり、その第1の目的は、画像ブレが検出領域を越え、或は補正限界領域を越えて存在する場合でも、画像ブレの補正を可能にする画像処理装置を提供することにある。また、本発明の第2の目的は、被写体の特性や動きによって動きベクトルが検出し難い場合でも、画像ブレの補正を可能にする画像処理装置を提供することにある。

50 [0008]

【課題を解決するための手段】前記第1の目的を達成す るために、本発明の第1発明(請求項1)は、フォーカ スレンズ群とズームレンズ群とを含む光学系を介して得 られる被写体からの光信号を電気信号に変換して得られ る画像信号中より画像間の動きベクトルを検出し、実時 間でそのブレを補正する画像処理装置において、時系列 に連続した画像間の相関演算を行い画像間の動きベクト ルを検出するベクトル検出手段と、該ベクトル検出手段 により検出された複数の動きベクトルの絶対値、空間分 布、時間分布等の動き情報に基づいて画像のブレ状態を 検出するブレ検出手段と、該ブレ検出手段により画像が 予め設定した所定値を越えてブレていると検出されたと き前記光学系の焦点距離を制御してブレ補正範囲を光学 的に変化させるブレ補正範囲制御手段と、該ブレ補正範 囲制御手段の制御に同期してビューファインダの表示画 像の画角を制御する画角制御手段とを具備したことを特 徴とするものである.

【0009】また前記第1の目的を達成するために、本 発明の第2発明(請求項2)は、フォーカスレンズ群と ズームレンズ群とを含む光学系を介して得られる被写体 20 からの光信号を電気信号に変換して得られる画像信号中 より画像間の動きベクトルを検出し、実時間でそのブレ を補正する画像処理装置において、時系列に連続した画 像間の相関演算を行い画像間の動きベクトルを検出する ベクトル検出手段と、該ベクトル検出手段により検出さ れた動きベクトルを加算して現画像の基準点からの絶対 偏差を演算する演算手段と、該演算手段により演算され た絶対偏差の予め設定した基準補正量を連続して越える 回数が予め設定した基準回数値を上回ったとき前記光学 系の焦点距離を制御してブレ補正範囲を光学的に変化さ 30 せるブレ補正範囲制御手段と、該ブレ補正範囲制御手段 の制御に同期してビューファインダの表示画像の画角を 制御する画角制御手段とを具備したことを特徴とするも のである。

【0010】更に、前記第2の目的を達成するために、本発明の第3発明(請求項3)は、フォーカスレンズ群とを含む光学系を介して得られる被写体からの光信号を電気信号に変換して得られる画像信号中より画像間の動きベクトルを検出し、実時間でそのブレを補正する画像処理装置において、時系列に連続した画像間の相関演算を行い画像間の動きベクトルを検出するベクトルを検出するベクトルの乱れを検出する乱れ検出手段と、該乱れ検出手段により検出される動きベクトルの乱れを検出する乱れ検出手段により検出される動きベクトルの乱れが予め設定した基準量を越えたとき前記光学系の焦点距離を制御してブレ補正範囲を光学的に変化させるブレ補正範囲制御手段と、該ブレ補正範囲制御手段の制御に同期してビューファインダの表示画像の画角を制御する画角制御手段とを具備したことを特徴とするものである。

[0011]

4

【作用】第1発明の画像処理装置は、被写体からの光信号が電気信号に変換されて得られる画像信号中より、ベクトル検出手段によって、時系列に連続した画像間の相関演算に基づいて画像間の動きベクトルが検出される。次いで、プレ検出手段によって、ベクトル検出手段によって、ベクトル検出手段によって、断聞分布等の動き情報に基づいて、画像のブレ状態が検出される。該ブレ検出手段によって、画像が予め設定した所定値を越えてブレていると検出されると、ブレ補正範囲制御手段によって、フォーカスレンズ群とズームレンズ群とを含む光学系の焦点距離が制御され、ブレ補正範囲が光学的に変化する。そして、ブレ補正範囲制御手段の制御に同期して、画角制御手段によって、ビューファインダの表示画像の画角が最適値に制御され、実時間で画像のブレが補正される。

【0012】第2発明の画像処理装置は、被写体からの光信号が電気信号に変換されて得られる画像信号中より、ベクトル検出手段によって、時系列に連続した画像間の相関演算に基づいて画像間の動きベクトルが検出される。次いで、演算手段によつて検出された動きベクトルが加算され、現画像の基準点からの絶対偏差が演算される。該演算手段により演算された絶対偏差が、予め設定した基準補正値を予め設定した基準回数値以上連続して越えると、ブレ補正範囲制御手段によって、フォーカスレンズ群とズームレンズ群とを含む光学系の焦点距離が制御され、ブレ補正範囲が光学的に変化する。そして、ブレ補正範囲制御手段の制御に同期して、画角制御手段によって、ビューファイングの表示画像の画角が最適値に制御され、実時間で画像のブレが補正される。

【0013】第3発明の画像処理装置は、被写体からの 光信号が電気信号に変換されて得られる画像信号中よ り、ベクトル検出手段によって、時系列に連続した画像 間の相関演算に基づいて画像間の動きベクトルが検出される。次いで、乱れ検出手段によって、動きベクトルの 乱れが検出される。乱れ検出手段で検出される動きベクトルの乱れが予め設定した基準値を越えると、ブレ補正 範囲制御手段によって、フォーカスレンズ群とズームレンズ群とを含む光学系の焦点距離が制御され、ブレ補正 範囲が光学的に変化する。そして、ブレ補正範囲制御手段の制御に同期して、画角制御手段によって、ビューファインダの表示画像の画角が最適値に制御され、実時間で画像のブレが補正される。

[0014]

【実施例】以下、本発明の各実施例を、図面を参照して 順次説明する。

【0015】[第1実施例]まず、本発明の第1実施例を図1乃至図6に基づき説明する。

【0016】図1は本発明の第1実施例に係る画像処理 装置の構成を示すブロック図であり、同図において10 50 は被写体で、該被写体10からの光束は、収束用のフォ

ーカシングレンズ群100、焦点距離を変化させるズー ムレンズ群101及びズーミングによって変化したピン ト面の変化を補正するための補正レンズ群102を介し て、光量を調整する絞り103を通過し、絞り103の 後段に配設された例えば二次元CCDからなる撮像素子 104に収束結像される。摄像素子104では、結像さ れた光像が光電変換されて画像信号が得られ、この画像 信号は撮像素子104の後段に配設されたサンプルホー ルド回路16でサンプルホールドされる。サンプルホー ルド回路16でサンプルホールドされた画像信号は、該 10 サンプルホールド回路16に接続されたオートゲインコ ントロール回路18で、信号レベルが一定となるように ゲインの調整が行われ、オートゲインコントロール回路 18に接続されたA/D変換器20でディジタル信号に 変換され、該A/D変換器20に接続された2水平走査 期間遅延回路22に供給される。

【0017】2水平走査期間遅延回路22では、画像信 号から得られた色差線順次信号が、1 H遅延信号と(0 H+2H) 遅延信号とに分離され、それぞれ2水平走査 期間遅延回路22に接続された輝度信号処理部Bと、色 20 信号処理回路24とに入力される。そして、色信号処理 回路24では、入力信号に基づいて色信号が作成され、 作成された色信号は、色信号処理回路24に接続された フィールドメモリ38に格納される。一方、輝度信号処 理部Bにおいては、遅延回路22からの出力信号がロー パスフィルタ26に入力され、色差線順次信号からキャ リア成分が除去され輝度信号の分離が行われる。このよ うにして得られた輝度信号は、ローパスフィルタ26に 接続されたエンハンサ28に入力され、画質向上のため に被写体のエッジなどに、画像信号の2次微分が付加さ 30 れて高周波成分を強調する処理が行われる。

【0018】このようにして強調処理が行われた輝度信 号は、エンハンサ28に接続されたガンマ処理回路30 に入力され、ハイライト部分での飽和を防ぎ、ダイナミ ックレンジを拡大するガンマ処理が行われ、次いで、ガ ンマ処理回路30に接続されたフィールドメモリ28 と、バンドパスフィルタ32とに入力される。そして、 バンドパスフィルタ32では、動きベクトルを検出する ために有効な空間周波数成分の抽出が行われる。即ち、 バンドパスフィルタ32において、動きベクトルの検出 に不適な画像信号中の低周波成分と高周波成分とが除去 される。また本実施例では、バンドパスフィルタ32の 符号ビットだけを出力するものとし、DCレベルを閾値 として輝度信号が2値化され、バンドパスフィルタ32 より後段の輝度信号は1ビットとなる。バンドパスフィ ルタ32にはフィールドメモリ36が接続してあり、バ ンドパスフィルタ32からの輝度信号は、フィールドメ モリ36に一時的に格納されて、1フールド時間だけ運 延され、フィールドメモリ36に接続された動きベクト ル検出回路34では、1フィールド前の輝度信号と現フ

ィールドの輝度信号とのマッチング演算を実時間処理す Б.

【0019】動きベクトル検出回路34からは、動きべ クトルの水平方向成分と垂直方向成分とに対応する信号 が出力され、これらの信号が動きベクトル検出回路34 に接続された論理制御装置120に入力され、論理制御 装置120ではこれらの信号に基づいて、時々刻々の画 像の基準位置からの偏差の演算が行われる。このように して演算された偏差信号は、論理制御装置120に接続 されたメモリ読み出し制御回路42に入力され、該メモ リ読み出し制御回路42によって、演算された偏差位置 が中心となるように、即ち動きベクトルを相殺するよう に、該メモリ読み出し制御回路42に接続されたフィー ルドメモリ38の読み出し位置が制御される。該制御さ れた信号は、フィールドメモリ38に接続された電子ズ ーム回路40において、所望の大きさに直線補間での変 換が行われ、該変換により得られる画像信号が、画像ブ レを補正された画像信号として、電子ズーム回路40に 接続されたD/A変換器44によってアナログ信号に変 換されて出力端子48から出力される。

【0020】また、本実施例では、ズームレンズ群10 1の位置エンコーダの位置検出信号が論理制御装置12 0に入力され、論理制御装置120がズーム駆動回路1 31に接続され、ズーム駆動回路131がズームレンズ 群101を駆動するモータ133に接続されている。そ して、論理制御装置120は、動きベクトル検出回路3 4で検出した動きベクトルの絶対値、空間分布、時間分 布等の動き情報に基づいて画像のブレ状態を検出する機 能(ブレ検出手段)と、画像が予め設定した所定値を越 えてプレていることが検出されるとズーム駆動回路13 1を作動させてズームレンズ群101を移動しプレ補正 範囲を光学的に変化させる機能(ブレ補正範囲制御手 段)と、該光学的変化に同期してエレクトリックビュー ファインダ(EVF)の表示画像の画角を最適値に制御 する機能(画角制御手段)とを有する。

【0021】次に、本実施例に係る画像処理装置におけ る論理制御装置120の動作を、図2のフローチャート を参照して説明する。

【0022】図2は論理制御装置120の動作を示すフ ローチャートである。同図のステップS201におい て、論理制御装置120によって、動きベクトル検出回 路34から、動きベクトルの水平方向成分と垂直方向成 分とに対応する信号が各フィールド毎に取り込まれ、ス テップS202に進む。このステップS202では、論 理制御装置120によつて、所定画面位置での動きベク トルが積分され、画面の基準位置からの偏差が演算さ れ、得られた偏差に基づいて画像ブレが求められ、該画 像ブレを補正する画像ブレ補正信号が求められる。この 場合の偏差の演算では、個々の動きベクトルの信頼性も 50 評価され、これが積分処理においても反映され、より正

確な偏差の演算が行われる。

【0023】次いでステップS203に進み、論理制御 装置120によつて、前記ステップS201で取り込ん だ動きベクトルに基づき、現在の画像プレが、動きベク トル検出回路34の検出レンジを越えるか否かの判定が 行われる。そして、画像プレが動きベクトル検出回路3 4の検出レンジを越えていると判定されると、現状態で の画像プレ補正は不可能と判断してステップS207に 進んで補正領域の拡大処理が行われる。また、前記ステ ップS203で、画像プレが動きベクトル検出回路34 の検出レンジを越えていないと判定されると、ブレ補正 可能であることを意味し、ステップS204に進んで、 論理制御装置120によつて、前記ステップS201で 取り込んだ動きベクトルと、前記ステップS202で求 めた動きベクトルの積分値の空間的な分布。或は時間的 な変動とに基づいて、画面内のブレのある領域に基づい て防掘動作を行うべく補正対象領域が決定された後、ス テップS205に進む。

【0024】ステップS205では、論理制御装置12 0によつて、前記ステップS204で決定された補正対 20 象領域の動きベクトル積分値が抽出され、最終的な画像 ブレ補正値が求められる。次いで、ステップS206に 進んで、論理制御装置120によつて、前記ステップS 205で求めた画像ブレ補正値が、フィールドメモリ3 8の読み出しアドレスに換算され、実際にメモリを制御 する指令が発せられ、その画像プレ補正値に基づいてメ モリからの画像の読み出し範囲をシフトし、画像の動き を相殺する。そして、電子ズーム回路40にメモリから の読み出し範囲の大きさに応じた所望の拡大または縮小 率を与える命令が発せられ、最終的な出力画像の画角が 30 通常の画角に戻される。

【0025】次に、本実施例に係る画像処理装置におけ る画像ブレ判定動作と補正領域の変更動作とを、図3万 至図6を参照して説明する。

【0026】図3は画像プレ判定動作を示すフローチャ ート、図4は補正領域の変更動作を示すフローチャー ト、図5は動きベクトルの説明図、図6は補正領域変更 の説明図である。

【0027】図3のステップS301では、論理制御装 置120によって、画面内の動きベクトルが所定量をオ ーバしているか否かを検出する空間カウンタの検出画面 位置i、jがリセットされ、ステップS302に進ん で、位置i、jでのX方向動きベクトルMVX(i、 j)、Y方向動きベクトルMVY(i、j)が、それぞ れ所定の閾値TH1、TH2を越えているか否かが判定 される。これらの閾値TH1、TH2は、動きベクトル 検出回路34で検出し得る最大の動き量に設定されてい る。ステップS302で、位置i、jでのX方向動きべ クトルMVX(i、j)、Y方向動きベクトルMVY

8

H2を越えていると判定されると、ステップS303に 進んで、空間カウンタがインクリメントされ、ステップ S304に進む。前記ステップS302で、位置i、j でのX方向動きベクトルMVX(i、j)、Y方向動き ベクトルMVY(i、j)の何れもが、閾値TH1、T H2を越えていないと判定されると、前記ステップS3 03を実行せずに直接ステップ5304に進む。

【0028】ステップS304では、画面内の全ての動 きベクトルの処理が終了したか否かが判定され、終了し ていないと判定されると、前記ステップS302に戻 る。また、前記ステップS304で、画面内の全ての動 きベクトルの処理が終了したと判定されると、ステップ S305に進んで、画面内で動きベクトルが閾値を越え た箇所の個数が、予め設定した所定値TH3を越えたか 否かの判定が行わる。動きベクトルが関値を越えた箇所 の個数が、予め設定した所定値TH3を越えていると、 ステップS306に進んで、時間カウンタがインクリメ ントされ、また、予め設定した所定値TH3を越えてい ない場合には、ステップS308に進んで時間カウンタ がリセットされる.

【0029】ステップS306或はステップS308を 実行後は、ステップS307に進んで、時間カウンタの 計数値が予め設定した所定値TH4を越えたか否かが判 定される。時間カウンタの計数値が予め設定した所定値 TH4を越えていると、最終的に画像ブレが検出領域を 越えていて、補正不可能な程度に大きいと判定され、前 記図2のステップS207に進んで補正領域の変更が行 われる。また、時間カウンタの計数値が予め設定した所 定値TH4を越えていない場合には、画像プレは普通で あると判定され、前記図2のステップ5204に進んで 画像プレの補正が継続される。

【〇〇30】一般に、画像プレ量が大きい場合には、検 出される動きベクトルの空間分布が画像ブレ量と共に大 きくなるとは限らず、図5に示すように、検出される動 きベクトルは大きく振り切れてしまい、空間分布は不均 一に検出されることが多い。これに対して、本実施例で は、動きベクトルの空間分布、時間分布を適確に評価し て処理が行われ、画像ブレの補正が困難であることを正 確に識別することができる。そして、本実施例では、画 像ブレが所定値を越えていると判定された場合には、ブ レ補正を可能にするために、前述のように撮影者に違和 感を与えずに補正範囲が拡大され、画像ブレの補正が可 能になる。

【0031】ところで、前記図3のステップS307 で、画像プレが現状態では補正不能と判定されると、前 記図2のステップS207のルーチンである図4のステ ップS401に進んで、論理制御装置120によって、 ズーム駆動回路131が作動され、所定の駆動パルスが モータ133に供給され、該モータ133によってズー (i、j)の何れか一方でも、対応する閾値TH1、T 50 ムレンズ群101が、ワイド方向に撮影者に目立たない 程度に所定量移動される。次いで、ステップS402に進んで、論理制御装置120の指令によって、前記ステップS401で光学的に拡大した画角を、電子的に同量だけテレ方向にズーミングさせる。この場合、画角の変化はズームレンズ群101のパルス駆動により管理されており、その変化は理論的に求まるので、該変化に対応してフィールドメモリ38のメモリ読み出し位置と、電子ズーム回路40に与える拡大率とを変化させる処理を行えばよい。

【0032】図6は前述のステップS401とステップ 10 S402との動作状態を示し、光学ズームと電子ズーム とを微小に交互に繰り返すことにより、撮影者に目立た ないように実際の画角を変化させ補正領域を拡大するこ とができる。

【0033】図4のフローチャートに戻って、ステップ S403では光学ズーム動作により、ズームレンズ群1 01がワイド端に当接したか否かが判定され、ズームレンズ群101がワイド端に当接したと判定されると、論理制御装置120の指令によって、直ちにズーム動作は中断され、その時点の画角での防掘制御が行われる。ま 20 た、前記ステップS403で、ズームレンズ群101がワイド端に当接していないと判定されると、ステップS404に進んで、予め設定した画角の拡大処理が終了したか否かが、動作開始時のモータ133のパルス数と、現在のパルス数の相対変化を監視して行われ、相対変化値が所定値を越えると画角の拡大処理が終了したと判定される。

【0034】このように、第1実施例によると、画像のブレが検出レンジを越えて発生し、現状では補正不能な状態になったことを適確に検出し、該状態ではEVF上 30の見かけの画角を変えずに補正領域を拡大することにより、撮影者に違和感を与えずに画像ブレの補正が可能になる。

【0035】[第2実施例]次に、本発明の第2実施例を図7に基づき説明する。

【0036】第1実施例では、図3の画像ブレ判定ルーチン内において、時間カウンタを連続的に所定の条件を満足しなければリセットしていたのに対して、本実施例は、過去所定フィールド内の時間カウンタの値が所定値以上の場合、画像ブレ大と判定するようにしたものである。

【0037】図7は、本実施例に係る画像処理装置における画像ブレ判定動作を示すフローチャートである。同図において、ステップS701乃至706は、第1実施例における図3のステップS301乃至306と同一であるから、その説明を省略する。ステップS707において、所定フィールド内の時間カウンタが所定値TH4を越えていると画像ブレが補正不可能な程度に大きいと判定され、前記図2のステップS207に進み、補正領域の変更が行われる。また、所定フィールド内の時間力

10

ウンタが所定値TH4を越えていない場合には、画像ブレは普通であると判定され、前記図2のステップS204に進んで画像ブレの補正が継続される。

【0038】なお、本実施例におけるその他の構成及び 作用効果は、第1実施例と同一である。

【0039】[第3実施例]次に、本発明の第3実施例を図8乃至図11を参照して説明する。図8は本実施例に係る画像処理装置における論理制御装置の動作を示すフローチャート、図9は同画像処理装置における画像ブレ判定動作を示すフローチャート、図10は同画像処理装置における補正値算出の説明図、図11は同画像処理装置における補正限界領域の説明図である。

【0040】本実施例に係る画像処理装置は、上述した第1実施例における図1と基本的には同一構成であるから、同図を流用して説明する。特に本実施例の論理制御装置は、動きベクトル検出回路34が検出した動きベクトルを加算し、画像の基準点からの絶対偏差を演算し、その演算値が基準補正値を連続して所定回越えると、ズーム駆動回路131を作動させて、ズームレンズ群101を移動し、ブレ補正範囲を光学的に変化させ、同時に該光学的変化に同期して、エレクトリックビューファインダ(EVF)の表示画像の画角を最適値に制御する機能を有する。本実施例のその他の構成は第1実施例と同一であるから、その説明を省略する。

【0041】本実施例に係る画像処理装置の動作を、図 8のフローチャートを参照して説明する。

【0042】まず、ステップS801において、論理制御装置120によって、動きベクトル検出回路34から、動きベクトルの水平方向成分と垂直方向成分とに対応する信号が、各フィールド毎に取り込まれた後、ステップS802に進む。このステップS802では、論理制御装置120によつて、所定画面位置での動きベクトルが積分され、画面の基準位置からの偏差が演算され、得られた偏差に基づいて画像ブレ補正信号が求められる。この偏差の演算では、個々の動きベクトルの信頼性も評価され、これが積分処理においても反映され、より正確な偏差の演算が行われる。

【0043】次いでステップS803に進み、論理制御装置120によつて、前記ステップS801で取り込んだ動きベクトルと、前記ステップS802で求めた動きベクトルの積分値の空間的な分布、或は時間的な変動とに基づいて、補正対象領域が決定された後ステップS804では、論理制御装置120によつて、前記ステップS803で決定された補正対象領域の動きベクトル積分値が抽出され、最終的にX方向ブレ補正値HOSEIX、Y方向ブレ補正値HOSEIX、Y方向ブレ補正値HOSEIXが画像ブレ補正値として求められる。

を超えていると画像ブレが補正不可能な程度に大きいと 【0044】次いでステップS805に進んで、論理制 判定され、前記図2のステップS207に進み、補正領 御装置120によつて、前記ステップS801で取り込 域の変更が行われる。また、所定フィールド内の時間カ 50 んだ動きベクトルに基づき、現在の画像ブレが、補正限

される。

界領域を越えるか否かの判定が行われる。そして、画像プレが補正限界領域を越えていると判定されると、画像プレ神正が現状では不可能と判断してステップS807に進んで補正領域の拡大処理が行われる。また、ステップS805で、画像プレが補正領域を越えていないと判定されると、ステップS806に進んで、論理制御装置120によつて、前記ステップS804で求めた画像プレ補正値が、フィールドメモリ38の読み出しアドレスに換算され、実際にメモリを制御する指令が発せられ、その画像プレ補正値に基づいてメモリからの画像の読み10出し範囲をシフトレ、画像の動きを相殺する。そして、電子ズーム回路40にメモリからの読み出し範囲の大きさに応じた所望の拡大または縮小率を与える命令が発せられ、最終的な出力画像の画角が通常の画角に戻される。

【0045】次に、参照して本実施例に係る画像処理装置における画像ブレの判定動作を、図9のフローチャートを説明する。

【0046】まず、ステップS901で、前記図8のス テップS804で求められたX方向ブレ補正値HOSE 20 IX、Y方向ブレ補正値HOSEIYの少くとも一方が 所定の閾値TH1、TH2を越えているか否かが判定さ れる。ここで、X方向プレ補正値HOSEIX、Y方向 ブレ補正値HOSE I Yは、図10に示すように、前記 図8のステップS804で求められた補正対象領域内の 動きベクトルの積分値の平均である。また、閾値TH 1、TH2は図11に示すように、フィールドメモリ3 8 (図1参照)上から所定の縮小率の画像を切り取る際 は、中心からX方向、Y方向に設定されたオフセット値 で、画像ブレを補正できる限界値に設定されている。 【0047】ステップS901で、X方向プレ補正値H OSEIX、Y方向ブレ補正値HOSEIYの少くとも 一方が、対応する関値TH1、TH2を越えたと判定さ れると、ステップS902に進んで、ブレ補正値が所定 関値を越えたことを計数する時間カウンタがインクリメ ントされる。また、X方向プレ補正値HOSEIX、Y 方向プレ補正値HOSEIYの両方が、対応する閾値T H1、TH2を越えていないと判定されると、スイップ S903に進んで時間カウンタがリセットされる。ステ ップS902或はステップS903を実行後は、ステッ プS904に進んで、時間カウンタの計数値が、予め設 定した所定回数を越えたか否かが判定され、所定回数を 越えていると、最終的に補正がすでに補正限界領域(図 11参照)を大きく越えていて、現状ではそれ以上の補 正は不可能と判断する.

【0048】このように、ステップS904で、時間カウンタの計数値が、予め設定した所定回数を越えたと判定されると、図4を参照して説明した第1実施例と同の補正領域の拡大が行われ、撮影者に目立たないように実際の画角を変化させ、補正領域を拡大する処理が実行50

【0049】このように第3実施例によると、補正限界領域を越えるような画像ブレが発生し、現状では補正不能な状態になったことを適確に検出し、該状態ではEV下上の見かけの画角を変えずに補正領域を拡大することにより、撮影者に違和感を与えずに画像ブレの補正が可能になる。

12

【0050】[第4実施例]次に、本発明の第4実施例を、図12を参照して説明する。

【0051】図12は本実施例に係る画像処理装置における補正値算出の説明図である。上述した第3実施例の図10では補正対象領域内の動きベクトル積分値の平均を取っているが、本実施例は図12に示すように、補正対象領域内の動きベクトル積分値のメジアン(中央値)を取るようにしたものである。

【0052】本実施例におけるその他の構成及び作用効果は、第3実施例と同一である。

【0053】[第5集施例]次に、本発明の第5実施例を、図13及び図14を参照して説明する。図13は本実施例に係る画像処理装置の動作を示すフローチャート、図14は同装置の画像プレ判定動作を示すフローチャートである。

【0054】本実施例に係る画像処理装置は、第1実施例の図1と基本的には同一構成であるから、同図を流用して説明する。特に本実施例の論理制御装置は、動きベクトル検出回路34が検出した動きベクトルから動きベクトルの乱れを検出し、当該乱れが予め設定した基準量を越えると、ズーム駆動回路131を作動させて、ズームレンズ群101を移動し、ブレ補正範囲を光学的に変化させ、同時に該光学的変化に同期して、エレクトリックビューファインダ(EVF)の表示画像の画角を最適値に制御する機能を有する。本実施例のその他の構成は第1実施例と同一であるから、その説明を省略する。

【0055】本実施例に係る画像処理装置の動作を、図13のフローチャートを参照して説明する。

【0056】まず、ステップS1301において、論理制御装置120によって、動きベクトル検出回路34から、動きベクトルの水平方向成分と垂直方向成分とに対応する信号が各フィールド毎に取り込まれた後、ステップS1302に進む。このステップS1302では、論理制御装置120によつて、所定画面位置での動きベクトルが積分され、画面の基準位置からの偏差が演算され、得られた偏差に基づいて画像ブレが求められる。該画像ブレを補正する画像ブレ補正信号が求められる。この場合の偏差の演算では、個々の動きベクトルの信頼性も評価され、これが積分処理においても反映され、より正確な偏差の演算が行われる。

【0057】次いで、ステップS1303に進み、論理 制御装置120によつて、前記ステップS1301で取 り込んだ動きベクトルに基づき、画面内に激しく動き回 13

る被写体が存在するなどの理由で、動きベクトルの乱れに基づく画像乱れが基準量を越えて生じ、現状では画像ブレの補正が不能であるか否かが判定される。そして、動きベクトルの乱れが基準量を越えて発生し、ブレの補正が不能と判定されると、ステップS1307に進んで補正領域の拡大処理が行われる。また前記ステップS1303で、動きベクトルの乱れが基準量以下でブレの補正が可能と判定されると、ステップS1304に進んで、論理制御装置120によつて、前記ステップS1301で取り込んだ動きベクトルと、前記ステップS13 1002で求めた動きベクトルの積分値の空間的な分布、或は時間的な変動とに基づいて、補正対象領域が決定された後、ステップS1305に進む。

【0058】このステップS1305では、論理制御装置120によつて、前記ステップS1304で決定された補正対象領域の動きベクトル積分値が抽出され、最終的な画像プレ補正値が求められる。次いで、ステップS1306に進んで、論理制御装置120によつて、前記\*

14

- \*ステップS1305で求めた画像ブレ補正値が、フィールドメモリ38(図1参照)の読み出しアドレスに換算され、実際にメモリを制御する指令が発せられ、その画像ブレ補正値に基づいてメモリからの画像の読み出し範囲をシフトし、画像の動きを相殺する。そして、電子ズーム回路40(図1参照)にメモリからの読み出し範囲の大きさに応じた所望の拡大または縮小率を与える命令が発せられ、最終的な出力画像の画角が通常の画角に戻される。
- 10 【0059】次に、図14のフローチャートを参照して本実施例に係る画像処理装置における画像ブレ判定動作を説明する。

【0060】まず、ステップS1401で、前記図13のステップS1301で取り込まれた1フィールド前と現フィールドの画像間の同ベクトルに基づいて、X方向及びY方向それぞれの空間的な乱れ強さRMSX、RMSYが、下記(1)式に基づいて演算される。

[0061]

RMSX= $\Sigma$  {MVXAVE-MVX(i, j)}  $^{2}$ /(i×j-1) RMSY= $\Sigma$  {MVYAVE-MVY(i, j)}  $^{2}$ /(i×j-1)

(1)

ここで、「MVXAVE」、「MVYAVE」はそれぞれX方向、Y方向の動きベクトルの空間平均値、MVX(i, j)、MVY(i, j)はそれぞれX方向、Y方向の動きベクトル、i, jは動きベクトルのX方向、Y方向の個数である。

【0062】図14のフローチャートに戻って、ステップS1402では、前記ステップS1401で演算した X方向及びY方向それぞれの空間的な乱れ強さRMS X、RMSYの少くとも一方が、所定の関値TH1. T 30 H2を越えているか否かが判定される。乱れ強さRMS X、RMSYの少くとも一方が、所定の関値TH1. T H2を越えていると判定されると、ステップS1403 に進んで、ブレ補正値が所定の関値を越えたことを計数 する時間カウンタがインクリメントされる。また、前記 ステップS1402で乱れ強さRMSX、RMSYの両 方が、所定の関値TH1, TH2を越えていないと判定 されると、ステップS1404に進んで、時間カウンタ がリセットされる。

【0063】ステップS1403或はステップS140 40 4を実行後は、ステップS1405に進んで、時間カウンタの計数値が、予め設定した所定回数を越えたか否かが判定される。前記係数値が所定回数を越えていると、最終的には例えば激しく動き回る被写体が多く存在し動きベクトルの乱れが多く、画像プレ補正が不能であると判断される。

【0064】このように、ステップS1405で、時間 カウンタの計数値が、予め設定した所定回数を越えたと 判定されると、図4を参照して説明した第1実施例と同 一の補正領域の拡大処理が行われ、撮影者に目立たない※50

※ように実際の画角を変化させ補正領域を拡大する処理が 実行される。

【0065】本実施例のように、複数の動きベクトルから画像のブレ補正値を求める場合には、動きベクトルがある程度揃っていないと、補正値の精度は若しく悪化してしまう。このような画像状態は、前述のように被写体が画面内で激しく動き回っている場合や、動きベクトルが求め難い形状の被写体が存在する場合などに発生す

60 る。しかし、本実施例では、このようなブレ補正が不能な状態が発生すると、該発生を動きベクトルの空間的な乱れ強さで適確に識別検出し、撮影者に目立たないように実際の画角を変化させ補正領域を拡大する処理が実行されるので(図6参照)、動きベクトルの乱れの小さい被写体を画面内に位置させて、画像ブレの補正を行うことが可能になる。

【0066】このように第5実施例によると、動きベクトルに基準量を越える乱れが生じ、画像のブレ補正が不能な状態が発生すると、該状態になったことを適確に検出し、該状態ではEVF上の見かけの画角を変えずに補正領域を拡大することにより、動きベクトルの乱れの少ない画像を画面に取り入れて、画像ブレの補正を可能にすることができる。

【0067】ところで、第5実施例では、前記(1)式 に基づき動きベクトルの乱れの強さをX方向とY方向で 独立に求め、補正の可能性を判断したが、下記(2)式 に示すようにX方向とY方向とを同時に判断してもよ

[0068]

【数1】

## $RMSXY = \sqrt{[MVXAVE - MVX[i, j]]^2}$

#### + $\{MVYAVE-MVX(i, j)\}^2$ ] / $(i \times j-1)$

· · (2)

ここで、「MVXAVE」,「MVYAVE」はX方向,Y方向の動きベクトルの空間平均値、MVX(i,j),MVY(i,j)は、X方向,Y方向の動きベクトル、i,jは動きベクトルのX方向,Y方向の個数である。

#### [0069]

【0070】また、第2発明の画像処理装置によれば、被写体の画像信号中より、画像間の動きベクトルが検出され、検出された動きベクトルが加算され、現画像の基準点からの絶対偏差が演算され、該絶対偏差が、予め設定した基準補正値を、基準回数値以上連続して越えたことを検出して、補正限界領域を越えるような画像プレの30発生を適確に検出し、この状態ではフォーカスレンズ群、ズームレンズ群を含む光学系の焦点距離が制御され、ブレ補正範囲が光学的に変化し、ブレ補正範囲の制御に同期して、ビューファインダの表示画像の画角が最適値に制御される。このために、補正限界領域を越える画像プレが発生しても、ビューファインダ上の見かけの画角を変えずに補正領域が拡大され、撮影者に違和感を与えずに実時間での画像プレ補正が可能になる。

【0071】更に、第3発明の画像処理装置によれば、被写体の画像信号中より、画像間の動きベクトルが検出 40 され、該動きベクトルの乱れが検出され、検出される動きベクトルの乱れが、予め設定した基準値を越え画像のブレ補正が不能な状態が発生すると、該状態を適確に検出し、フォーカスレンズ群、ズームレンズ群を含む光学系の焦点距離が制御され、ブレ補正範囲が光学的に変化し、ブレ補正範囲の制御に同期して、ビューファインダの表示画像の画角が最適値に制御される。このために、動きベクトルの乱れが大きくて該動きベクトルの検出が\*

\*できない場合に、ビューファインダ上の見かけの画角を 変えずに補正領域が拡大され、動きベクトルの乱れの少ない画像を画面に取り入れて、実時間での画像ブレ補正 が可能になる。

#### 10 【図面の簡単な説明】

【図1】本発明の第1実施例に係る画像処理装置の構成を示すブロック図である。

【図2】同画像処理装置における論理制御装置の動作を 示すフローチャートである。

【図3】同画像処理装置における画像ブレ判定動作を示すフローチャートである。

【図4】同画像処理装置における表示画像補正動作を示すフローチャートである。

【図5】同画像処理装置における動きベクトルの説明図

【図6】同画像処理装置における補正領域変更動作の説明図である。

【図7】本発明の第2実施例に係る画像処理装置における画像ブレ判定動作を示すフローチャートである。

【図8】本発明の第3 実施例に係る画像処理装置の動作を示すフローチャートである。

【図9】同画像処理装置における画像ブレ判定動作を示すフローチャートである。

【図10】同画像処理装置における補正値算出の説明図 30 である。

【図11】同画像処理装置における補正限界領域の説明 図である。

【図12】本発明の第4実施例に係る画像処理装置における補正値算出の説明図である。

【図13】本発明の第5実施例に係る画像処理装置における論理制御装置の動作を示すフローチャートである。

【図14】同画像処理装置における画像ブレ判定動作を示すフローチャートである。

#### 【符号の説明】

- 40 22 2水平走査期間遅延回路
  - 24 色信号処理回路
  - 28 エシハンサ
  - 30 ガンマ補正回路
  - 32 バンドパスフィルタ
  - 34 動きベクトル検出回路(ベクトル検出手段)

120 論理制御回路(ブレ検出手段、ブレ補正範囲制御手段、画角制御手段、演算手段、乱れ検出手段)

16

【図1】



【図5】













[図10]











### 【図12]



【図9】



)





【図14】

