Рубежный контроль №1

Аброчнов Егор

Группа ИУ5Ц-83Б

Импортируем библиотеки:

Вариант 29

Задание: Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков?

```
import sys
sys.path
import pandas as pd
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Загрузим данные:

df=pd.read_csv('Admission_Predict.csv')

df.head()

	No.	GRE Score	TOEFL Score	University Rating	S0P	LOR
CGPA 0	1	337	118	4	4.5	4.5
9.65 \ 1 8.87	2	324	107	4	4.0	4.5
8.00	3	316	104	3	3.0	3.5
3	4	322	110	3	3.5	2.5
8.67 4 8.21	5	314	103	2	2.0	3.0

Research Chance of Admit

```
0.92
0
          1
1
          1
                          0.76
2
          1
                          0.72
3
          1
                          0.80
4
          0
                          0.65
Узнаем типы полей датасета:
df.dtypes
Serial No.
                        int64
GRE Score
                        int64
TOEFL Score
                        int64
University Rating
                        int64
S0P
                      float64
L0R
                      float64
CGPA
                      float64
Research
                        int64
Chance of Admit
                      float64
dtype: object
Найдем пропуски:
for col_empty in df.columns:
    empty count = df[df[col empty].isnull()].shape[0]
    print('{} - {}'.format(col empty, empty count))
Serial No. - 0
GRE Score - 0
TOEFL Score - 0
University Rating - 0
SOP - 0
LOR - 0
CGPA - 0
Research - 0
Chance of Admit - 0
Пропусков не обнаружено
Построим корреляционную матрицу:
sns.heatmap(df.corr(), cmap='YlGnBu', annot=True, fmt='.1f')
```

<Axes: >


```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row',
figsize=(10,5))
fig.suptitle('Корреляционная матрица')
sns.heatmap(df.corr(), ax=ax, annot=True, fmt='.3f')
```

Корреляционная матрица

Диграмма рассеяния

df.describe()

COD	Serial No.	GRE Score	TOEFL Score	University Rating
SOP count 400.00	400.000000 0000 \	400.000000	400.000000	400.000000
mean 3.4000	200.500000	316.807500	107.410000	3.087500
std 1.0068	115.614301	11.473646	6.069514	1.143728
min 1.0000	1.000000 00	290.000000	92.000000	1.000000
25% 2.5000	100.750000 00	308.000000	103.000000	2.000000
50% 3.5000	200.500000 00	317.000000	107.000000	3.000000
75% 4.0000	300.250000 00	325.000000	112.000000	4.000000
max 5.0000	400.000000 00	340.000000	120.000000	5.000000
	LOR	CGPA	Research	Chance of Admit
count	400.000000	400.000000	400.000000	400.000000 0.724350
std min	0.898478 1.000000	0.596317 6.800000	0.498362 0.000000	0.142609 0.340000

```
25%
                                  0.000000
         3.000000
                     8.170000
                                                    0.640000
50%
         3.500000
                     8.610000
                                  1.000000
                                                    0.730000
75%
         4.000000
                     9.062500
                                  1.000000
                                                    0.830000
         5.000000
                     9.920000
                                  1.000000
                                                     0.970000
max
fig, ax = plt.subplots(figsize=(10,10))
```

sns.scatterplot(ax=ax, x='Serial No.', y='GRE Score', data=df)

<Axes: xlabel='Serial No.', ylabel='GRE Score'>

Отсюда видно, что основная часть колледжей содержит очки GRE в промежутке 300-330

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Serial No.', y='GRE Score', data=df,
hue='University Rating')
```

<Axes: xlabel='Serial No.', ylabel='GRE Score'>

Основная часть высокооцененных колледжей имеет больше 320 очков GRE, но видно, что встречаются высокооцененные с очками ниже 310.

Гистограмма

```
fig, ax = plt.subplots(figsize=(10,10))
sns.histplot(df['University Rating'])
<Axes: xlabel='University Rating', ylabel='Count'>
```


Больше всего колледжей оценено на 3.

Jointplot

sns.jointplot(x='University Rating', y='GRE Score', data=df)
<seaborn.axisgrid.JointGrid at 0x2c8323e1330>

Koмбинация диаграммы рассеивания и гистрограммы.
sns.jointplot(x='SOP', y='GRE Score', data=df, kind='hex')
<seaborn.axisgrid.JointGrid at 0x2c832729390>

Парные диаграммы sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x2c832811120>

sns.pairplot(df, hue='University Rating')

<seaborn.axisgrid.PairGrid at 0x2c8370d54e0>

Ящик с усами

sns.boxplot(x=df['SOP'])

<Axes: xlabel='SOP'>

sns.boxplot(y=df['University Rating'])

<Axes: ylabel='University Rating'>

Скрипачная диаграмма sns.violinplot(x=df['SOP'])

<Axes: xlabel='SOP'>

Скрипачная диаграмма показывает распределение плотности SOP очков.

Сравним с гистограммой

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=df['SOP'])
sns.histplot(df['SOP'])

<Axes: xlabel='SOP', ylabel='Count'>
```


Из гистрограммы видно, что скрипачная показывает распределение плотности SOP очков.