LAST NAME:					FIRST NAME:				CLE:	Dahal 4pm Li 1pm		
								I	i 5:30pm	Zweck 11:	30am	Zweck 1pm
1	/10	2	/10	3	/10	4	/10	5	/10			
6	/10	7	/10	8	/10	0	/1(10	/10	Т	/100	

MATH 2415 Final Exam, Fall 2019

No books or notes! **NO CALCULATORS! Show all work and give complete explanations**. This 2 hours 45 mins exam is worth 100 points.

(1) [10 pts] Let D be the portion of the disc $x^2 + y^2 \le 9$ that lies in the third quadrant of the xy-plane. Calcuate $\iint_D x \, dA$.

(2)	[10	pts
(4)	110	Dro

(a) Find the (level set) equation of the plane through the point (1,2,3) that is perpendicular to the line with parametrization $\mathbf{r}(t) = (2-3t, 4+6t, -1-t)$.

(b) Find parametrizations of **two** different lines that go through the point (1,0,2) and are parallel to the plane 3x - 2y + 4z = 10.

- (3) [10 pts]
- (a) Use vectors to find the area of the parallelogram with vertices A = (1,1), B = (2,6), C = (3,4) and D = (4,9).

(b) Make a sketch that shows how to project the vector $\mathbf{v} = \mathbf{i}$ onto the vector $\mathbf{w} = \mathbf{i} + \sqrt{3}\mathbf{j}$. Use your sketch to find the component of \mathbf{v} in the direction \mathbf{w} .

(4)	[10]	pts	Let (C be	the	half-circle	given	by	$x^{2} + y^{2}$	$^{2} = 4$	with a	x > 0),	oriented	counter-	-clock	wise.

(a) Calcuate $\int_C x \, ds$.

(b) Without doing any calculation, find $\int_C y^3 ds$. Explain your reasoning!

(c) Let $f(x,y) = xe^{x^2+y^2}$. Find $\int_C \nabla f \cdot d\mathbf{r}$.

- (5) [10 pts]
- (a) Sketch the surface $x^2 y^2 + z^2 = 2$ for $0 \le y \le \sqrt{2}$. [Hint: Convert into an appropriate cylindrical coordinate system.]

(b) Show that the line through the point (1,0,1) in the direction of the vector $(-1,\sqrt{2},1)$ lies on the surface in (a). Add this line to your sketch in (a).

(6) [10 pts] Find the absolute maximum and minimum of the function $z = f(x, y) = x^2 - 2x - 2y^2 + 8y$ on the triangular domain with vertices (0, 0), (4, 0), and (0, 4).

(7) [10 pts] Sketch the solid, E, in the first octant that is bounded by the planes x+z=2 and 2y+z=2. Calculate $\iiint_E z \, dV$.

(0)	[10pts]
(0)	TUDUS

(a) Sketch the curve obtained by intersecting the surfaces whose equations in spherical coordinates are given by $\rho = 2$ and $\phi = \pi/3$. Write down a parameterization of the form $(x, y, z) = \mathbf{r}(t)$ for this curve.

(b) Let E be the solid region $x^2 + y^2 + z^2 \le 16$. Calculate $\iiint_E z^4 dV$.

(9) [10 pts] Use an appropriate change of variables to evaluate $\iint_R x \, dA$, where R is the parallelogram bounded by the lines $x-3y=0, \ x-3y=2, \ 2x-y=1, \ {\rm and} \ 2x-y=6.$

