2. Udowodnij, ze $\bigcup \mathcal{P}(\mathcal{A}) = \mathcal{A}$

 \supseteq

Wezmy dowolny $x \in \mathcal{A}$. Z aksjomatu zbioru potegowego wiemy, ze

$$(\exists \ y \in \mathcal{P}(\mathcal{A})) \ x \in y \subseteq \mathcal{A}$$

Dalej, na mocy aksjomatu sumy wiemy, ze

$$x\in\bigcup\{y\}\subseteq\bigcup\mathcal{P}(\mathcal{A}),$$

czyli

$$x \in \bigcup \mathcal{P}(\mathcal{A})$$

 \subseteq

Wezmy dowolny $x \in \bigcup \mathcal{P}(A)$. Z aksojatu sumy wiemy, ze

$$(\exists y \in \mathcal{P}(\mathcal{A})) x \in y \in \mathcal{P}(\mathcal{A}),$$

ale z aksjomatu zbioru potegowego wiemy, ze

$$y \in \mathcal{P}(\mathcal{A}) \iff y \subseteq \mathcal{A}.$$

W takim razie

$$x \in y \subseteq A \implies x \in A$$

3. Niech A bedzie zbiorem niepustym. Ktore z ponizszych twierdzen sa prawdziwe?

(a) Jesli $A=\bigcup A$, to $\emptyset\in A$

Nie, poniewaz

$$A = \bigcup A$$

na przyklad jesli

$$A = \emptyset$$
.

A z aksjomatu ekstensjonalnosci wiemy, ze $\emptyset \notin \emptyset$.

(b) Jesli
$$\emptyset \in A$$
, to $A = \bigcup A$

Nie, wezmy na przyklad

$$A = \{\emptyset, \{7\}\}.$$

Wtedy

$$\bigcup A = \{7\} \supseteq \emptyset,$$

ale

$$\emptyset \notin \{7\} = \bigcup A.$$

(c) Jesli $\bigcup A = \bigcap A$, to $A = \{x\}$ dla pewnego x. TAK:

$$\begin{split} x \in \bigcup A \iff (\exists \ y \subseteq A) \ x \in y \\ x \in \bigcap A \iff (\forall \ y \subseteq A) \ x \in y \\ U = \bigcup A = \bigcap A \\ ((x \in U \iff (\exists \ y \subseteq A) \ x \in y) \iff (x \in U \iff (\forall \ y \subseteq A) \ x \in A)) \implies (\exists \ x) \ A = \{x\} \end{split}$$

4. Ktora z ponizszych rownosci zachodzi dla dowolnego zbioru A?

(a)
$$\bigcap \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcap \mathcal{P}(B) : B \subseteq A \}$$

$$\begin{split} \mathbf{A} &= \{1\} \\ \bigcap \{\mathcal{P}(\mathbf{B}) \ : \ \mathbf{B} \subseteq \mathbf{A}\} &= \bigcap \{\{1\}, \emptyset\} = \emptyset \\ \{\bigcap \mathcal{P}(\mathbf{B}) \ : \ \mathbf{B} \subseteq \mathbf{A}\} &= \{\bigcap \{\{1\}, \emptyset\}, \bigcap \{\emptyset\}\} = \{\emptyset, \emptyset\} = \{\emptyset\} \\ \emptyset &\neq \{\emptyset\} \end{split}$$

(b)
$$\bigcup \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcup \mathcal{P}(B) : B \subseteq A \}$$

TAK:

Pokazemy, ze $L = \mathcal{P}(A) = P$

 $L = \mathcal{P}(A)$

Z aksjomatu sumy wiemy, ze

$$\begin{split} x \in \bigcup \{\mathcal{P}(B) \ : \ B \subseteq A\} \iff & ((\exists \ t \in \{\mathcal{P}(B) \ : \ B \subseteq A\}) \ x \in t) \iff \\ \iff & ((\exists \ t \subseteq A) \ x \in t) \iff \\ \iff & x \in \mathcal{P}(A) \end{split}$$

$$P = \mathcal{P}(A)$$

$$\begin{split} x \in \{\bigcup \mathcal{P}(B) \ : \ B \subseteq A\} &\iff x \in \{y \ : \ ((\exists \ z \subseteq \mathcal{P}(B)) \ y \in z) \land B \subseteq A\} \iff \\ &\iff x \in \{y \ : \ y \in \mathcal{P}(A)\} \iff \\ &\iff x \in \mathcal{P}(A) \end{split}$$

4.5 Sprawdzic, ze para nieuporzadkowana, suma i zbior potegowy sa zdefiniowane jednoznacznie.

para nieuporzadkowana jest zdefiniowana jednoznacznie Zalozmy niewprost, ze istnieja pary

$$\{a, b\} = \{c, d\}$$

$$((x \in \{a,b\} \iff (x = a \lor x = b)) \iff (x \in \{c,d\} \iff (x = c \lor x = d))) \iff ((x = a \lor x = b) \iff x = c \lor x = d) \iff ((a = c \land b = d) \lor (a = d \land b = c))$$

i cyraneczka komutuje

5. Udowodnij, ze aksjomat pary wynika z pozostalych aksjomatow teorii ZF_0 .

Z aksjomatu zbioru pustego i zbioru potegowego mozemy skonstruowac zbior

$$P = \mathcal{P}(\mathcal{P}(\emptyset)) = \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$$

W wersji uproszczonej chcemy napisac formule arphi(t,z,a,b), ktora

$$(\forall t)(\exists !y) \varphi(t,z,a,b)$$

$$(t = \emptyset \land z = a) \lor (t = \{\emptyset\} \land z = b) \lor (t \neq \emptyset \land t \neq \{\emptyset\} \land x = \emptyset)$$

Wersja krotsza

$$(t = \emptyset \land z = a) \lor (t \neq \emptyset \land z = b)$$

Czyli z aksjomatu zastepowania nasza funkcja produkuje zbior $y = \{a, b\}$

$$(\forall a)(\forall b)(\forall x)(\exists y)(\forall z)(z \in y \iff (\exists t \in x) \varphi(t, z, a, b))$$

6. Udowodnij, ze aksjomat wyrozniania wynika z pozostalych aksjomatow teorii ${\sf ZF}_0$

Wezmy dowolny zbior x i dowolna formule $\varphi(t, \overline{a})$.

Rozpatrzmy dwa przypadki:

- 1. Nie istnieje y \in x takie, ze $\varphi(y, \overline{a}) == \text{true}$. Wtedy po przefiltrowaniu mam \emptyset .
- 2. Istnieje $y \in x$ takie, ze $\varphi(y, \overline{z}) == true$. Wowczas konstrukcja mojego przefiltrowanego zbioru uzywajaca aksjomat zastepowania i formule $\sigma(t, z, \overline{a})$

$$(t = z \land \varphi(t, \overline{a})) \lor (y = z \land \neg \varphi(t, \overline{a}))$$

7. Udowodnij (w teori ZF), ze $\neg \; (\exists \; x_1,...,x_n) \; x_1 \in x_2 \in ... \in x_n \in x_1$

Poniewaz jestesmy ekstra upierdliwi, to konstruujemy sobie zbiorek $s=\{x_1,...,x_n\}$. Wezmy pare

$$\{x_1, x_1\}$$

i jego sume $\bigcup \{x_1, x_1\}$. Dalej $\bigcup \{\{x_1, x_1\}, \{x_2, x_2\}\}$ i znowu sume tego. Analogicznie dalej.

Z aksjomatu regularnosci wiemy, ze istnieje takie k, ze x_k jest elementem \in -minimalnym utworzonego wyzej zbioru. W takim razie

$$(\forall \ y \in s) \ y \notin x_k.$$

Rozwazmy dwa przypadki:

1. k = 1

Wtedy $x_n \notin x_1$ i mamy sprzecznosc.

2. $k \neq 1$

Wtedy $x_{k-1} \notin x_k$ i mamy sprzecznosc.

8. Udowodnij (w teorii ZF), ze

$$\neg(\exists f)(fnc(f) \land dom(f) = \omega \land (\forall n \in \omega)f(n+1) \in f(n))$$

Zalozmy, ze f jest funckja, dla ktorej ta formula nie smiga.

 \triangle sa affiniczne <3

Zbiorek $p_{ysio} = \{f(0), f(1), ...\}$ tworzymy zastepujac przy pomocy aksjomatu zastepowania elementy dziedziny dom(f) przez odpowiadające im elementy obrazu, gdzie formula bylaby tak naprawde relacja rownowazna naszej funkcyji ($\psi(t,z,f)$)

$$z = f(t)$$

W takim razie istnieje k takie, ze f(k) jest elementem \in -minimalnym zbioru p_{ysio} . Ale w takim razie nie moze zajsc $f(k+1) \in f(k)$. Wiec mamy sprzecznosc <3

9. Udowodnij, ze aksjomat wyboru jest rownowazny zdaniu $(\forall \ x)(((\forall \ y \in x) \ y \neq \emptyset) \implies (\exists \ f) \ fnc(f) \land \ dom(f) = x \land (\forall \ y \in x)f(y) \in y)$

 $\mathtt{AKSJOMAT} \iff \mathtt{FUNCKJA}$

 \Leftarrow

Czyli potrzebuje skonstruowac majac funckje zbior wartosci tejze funkcji. Robie to zastepujac elementy dziedziny przez ich wartosci na mocy aksjomatu zastepowania. Wystarczy pokazac, ze to rzeczywiscie jest selektor.

$$(\forall y \in x)(\exists !t) t \in s \cap y$$

Wezmy dowolne $y \in x$. Z definicji funkcji wiemy, ze $f(y) \in y$. W takim razie $f(y) \cap y = f(y)$.

Dlaczego jest to jedyne? Jesli istnialyby dwa t_1,t_2 bedace w selektorze i w y, to wowczas $f^{-1}[t_1] \neq f^{-1}[t_2]$, bo f jest funkcja. Ale poniewaz x jest rozlaczna rodzina zbiorow, to nie moze byc, ze sie pokryja dwa zbiory zeby oba mialy t_1 i t_2 . sprzecznosc.

 \Longrightarrow

Na mocy aksjomatu wyboru biere selektor s z rodziny x. Teraz chce zastapic jego elementy parami uporzad-kowanymi gdzie poprzednik to zbior do ktorego dany element nalezy, a nastepnik to on sam. Piszemy formuly $\theta(t,z,x,s)$

$$(t \notin s \ \land \ z = \emptyset) \lor ((\exists \ y \in x) \ t \in y \ \land \ z = \langle t, y \rangle)$$

alternatywnie, biore $x \times s$ i filtruje na mocy aksjomatu wyrozniania przy pomocy formuly $\rho(t,x,s)$

$$s \cap \bigcup x \in x \cap t$$

10. Udowodnij, ze aksjomat wyboru jest rownowazny faktowi, ze jesli $\langle X_i : i \in I \rangle$ jest niepusta rodzina zbiorow niepustych, to iloczyn kartezjanski $\prod_{i \in I} X_i$ jest niepusty. Sformuluj powyzszy fakt bez uzycia pojecia rodziny indeksowanej.

AKSJOMAT WYBORU ⇐⇒ NIEPUSTE

Wezmy dowolna rozlaczna rodzine zbiorow niepustych $\mathcal{X} = \{X_i \,:\, i \in I\}$

Wiemy, ze to jest niepusty zbior funkcji z indeksow w sumy zbiorow X_i , wiec moge wziac z niego pewna funkcje, m. Do mojego selektora chce wrzucic po jednym elemencie z kazdego elementu mojej rodziny, wiec zrobie to wrzucajac do niego wartosci m dla poszczegolnych $i \in I$, bo mam aksjomat zastepowania (zastepuje m przez m(i) - funkcje jej obrazem).

Pokazemy, ze jest to faktycznie selektor.

Wezmy dowolny element $o \in \mathcal{X}$. Chce pokazac, ze $o \cap m(i)$ ma tylko jeden element. Istnieje co najmniej jeden, bo istnieje $i \in I$ takie, ze

$$m(i) \in o$$
.

Z drugiej strony, jesli istnialoby wiecej niz jeden, to istnialyby $i,j \in I$ takie, ze $i \neq j$ oraz

$$m(i) \in o m(j) \in o$$
,

to wowczas elementy \mathcal{X} nie bylyby rozlaczne, tzn $X_i \cap X_i \neq \emptyset$.

 \Longrightarrow

Mam podana niepusta indeksowana rodzine niepustych zbiorow.

Z 9 mamy, ze aksjomat wyboru jest ronowazny funkcji wyboru, wiec polecmy z funkcja wyboru.

Wiem, ze istnieje funkcja wyboru z \mathcal{X} . Nalezy do iloczynu kartezjanskiego, tj jej domena jest I, a zbiorem wartosci jest suma \mathcal{X} . Czyli moge zrobic druga funkcje, ktora dla $i \in I$ daje mi konkretnie element z X_i . Jest to element zbioru kartezjanskiego. Korzystam z aksjomatu zastepowania.

11. Rozwazmy indeksowana rodzine zbiorow niepustych $\langle A_i:i\in I\rangle$, taka, ze $\bigcap_{i\in I}A_i\neq\emptyset$. Czy do niepustosci $\prod_{i\in I}A_i$ potrzebujemy aksjomatu wyboru?