	NAME: Himanshu Dixit ROM NO.: 21103262 BATCH: BAD
	Mathematics - I (15BIIMAZII)
	Tutorial Sheet - 4
d.1.	ε ει ^{ην-1} 1
	(a) for convergence: use scibinize Test i) Until < Un is Truc for in series ii) lim Un = lim (-1) = 0 $n \to \infty$ $n \to \infty$
	Rence, lebruize test is satisfies sovies in convergence (P>0)
	(b) for absolute convergence: Unl is convergence Unl is and according to p-series test
	P > 1, 1 Uni is Convergent: Rence, Absolute convergent when p>1
Q-2·	$\frac{2-3+4-5+}{1^2}$
	Series is Alternating suries & un = (-1)** (n+1)
	According leibinize Test (1) This is Alternating decreasing somes Dim (-1) n+1 = 0 n+00 (n2)
	hence, series is convergence as lettinge Test satisfies.
	Now, check for un = n+1 Let Vn = 1 > Un Acc. to D- Alambart Test :-
	$\frac{\lim U_n = \lim n+1/n }{n+\infty} = 1; = 1; = 1;$ $\frac{\lim U_n = \lim n+\infty }{ n+\infty } = 1;$ $\frac{\lim U_n = \lim n+\infty }{ n+\infty } = 1;$ $\frac{\lim U_n = \lim n+\infty }{ n+\infty } = 1;$ $\frac{\lim U_n = \lim u_n }{ u_n } = 1;$ $\frac{\lim U_n = \lim u_n }{ u_n } = 1;$ $\frac{\lim U_n = \lim u_n }{ u_n } = 1;$ $\frac{\lim U_n = \lim u_n }{ u_n } = 1;$ $\frac{\lim U_n = \lim u_n }{ u_n } = 1;$

	, age
	Vn is divergence as $p=1$ to luni is divergence.
	oo series is condionally convergence.
Q·3·	
	This is Power series! Un = nan-1
	$U_{n+1} = (n+1) n^n$
	Ace. to D. Alambert ratio test:
	$\frac{\lim_{n\to\infty} U_{n+1} = \lim_{n\to\infty} (n+1)n^n = 1n }{n\to\infty}$
- Company	if In (1) > sovies is Convergent
	1 1×1 >1 → sevies is divergent
9.4.	$\frac{x-x^3+x^5+\dots}{3}$
	$U_n = (2n-1)^{2n-1}$
F Balanja	2n-1
	$U_{n+1} = \chi^{2n+1}$
	2n+1
	Acc: to ratio test:
	$\frac{\lim_{n\to\infty} U_{n+1} = \lim_{n\to\infty} \frac{2^{2n+1}}{2^{2n+1}} \times 2^{n-1}}{n\to\infty}$
	$= \lim_{n\to\infty} \left x^2 \left(\frac{1}{2} - \frac{1}{n} \right) \right = x^2$
	22 < 1 → Suince convergence in -1 Kn &1
	2=1 test fail, 2>1 → soules divergena
	$x = \pm 1$
	N=1
	$v_n = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \dots$ $v_n = -\left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{3}\right)$
	Both satisfies leibinge Test Rence, sours is converge
	In $x = \pm 1$ 3. Convergence in $-1 \le x \le 1$ A

9.5.	1+ acosx + a2cos2x + a3cos3x+ + a7cos7x +
	$Un = a^n cosnn$
	Un - U COSNIC
	$ Un = a^n \cos nx = a^n $
	$a^n a_{snx} \leq a^n c_{snx} \leq a^n $
	By Geometric Progression Test: 8 = 101
	if $x < 1$ GP is convergence and by M-Test.
	By Geometric Progression Test: 8 = 1al if $X < 1$ GP is convergence and by M-Test. Un is uniform convergence
Q-6-	$\frac{\sum n(n+2)^n}{3^{n+1}} = \sum a_n z^n \text{et}.$
	:. To find radius of convergence:
	lin Charles and and I do to
	i. To find radius of convergence: $\lim_{n\to\infty} \frac{c_{n+1}}{c_n} = \frac{z_{in}}{n} \frac{n+1}{n} \times \frac{3^{n+1}}{n} = \lim_{n\to\infty} \frac{1+1}{n} = 1$ $\lim_{n\to\infty} \frac{c_{n+1}}{c_n} = \lim_{n\to\infty} \frac{1+1}{n} \times \frac{3^{n+1}}{n} = 1$
	$\frac{1}{3} = 1 : R = 3 \text{ My}$
	8 R
	Region of Convergence is: Z \le R
	$ x+2 \leq 3$
	-3 ≤ x+2 ≤ 3
	-5 < x < 1 A
1	
1	