Logic, flow, and Programming

1

The Programmer's job can be broken down into six programming steps:

- 1. Understand the problem
- 2. Plan the logic
- 3. Code the program
- 4. Translate the program into machine language
- 5. Test the Program
- 6. Use the program

The Programmer's job can be broken down into six programming steps:

- 1. Understand the problem
- 2. Plan the logic
- 3. Code the program
- 4. Translate the program into machine language
- 5. Test the Program
- 6. Use the program

3

1. Understand the Problem

- To understand the problem, you much *analyze* it.
- <u>Really understanding</u> the problem can be one of the most **difficult** aspects of programming.
 - Description of what user needs may be vague.
 - User doesn't really know what they want.
 - User changes their mind after seeing sample output.

2. Plan the Logic

- Programmer plans the steps to the program, deciding what steps to include and how to order them
- Two common tools:
 - Flowchart: Pictorial Representation
 - Pseudocode: English-like representation

5

What do we mean by "Logic"

- Most programs conduct "tasks"
- Many of these involve evaluation
 - (requires basic logic or "conditions")

What do we mean by "Logic"

- Most programs conduct "tasks"
- Many of these involve evaluation
 - (requires basic logic or "conditions")
- If <condition> <do action/statement>
 - Else <do action/statement>
- Condition is 'Boolean' (Either True or False)

7

Flowchart

- Pictorial Representation of logical steps to solve a problem
 - Uses Standard Symbols
 - Utilize Formula Notation
 - Typically read:
 - · Top to bottom
 - Left to right

What doesn't the light turn on?

9

What doesn't the light turn on?

- 1. Check if unplugged
 - Yes -> plug in
 - No -> next check
- 2. Check if bulb is burned out
 - Yes -> Replace bulb
 - No -> next check?/repair?/replace?

What doesn't the light turn on?

- 1. Check if unplugged
 - Yes -> plug in
 - No -> next check
- 2. Check if bulb is burned out
 - Yes -> Replace bulb
 - No -> next check?/repair?/replace?

11

Relational Expressions

Operator	Meaning	Example	Value
==	equals	1 + 1 == 2	true
!=	does not equal	3.2 != 2.5	true
<	less than	10 < 5	false
>	greater than	10 > 5	true
<=	less than or equal to	126 <= 100	false
>=	greater than or equal to	5.0 >= 5.0	true

15

17

Logic/Flowchart Practice #1

Vending Machine

- Coin(s) inserted determine if/which item to vend.
 - Nickel, Dime, Quarter (if Penny reject)
 - Undergraduate
 - (assume only water for \$1.25)
 - · Graduate Student multi-item machine
 - (Coke, Diet, Sprint, Root beer: all are \$2.25)

Logic/Flowchart Practice #2

- Take an input date and determine/print the next date.
 - Input is Day, Month, Year
 - For Example: 31 August 2023 -> 1 September 2023
 - Make sure your logic works for any day and any year.