Predicción de Consumo Energético en Ciudades Inteligentes

Proyecto de Procesamiento de Grandes Volúmenes de Datos

Autores:

[Amalia Beatriz Valiente Hinojosa] [Noel Pérez Calvo]

Fecha: 17 de octubre de 2025

1. ¿Qué se pretende lograr?

El objetivo central del proyecto es **predecir el consumo energético en distintas zonas de una ciudad inteligente**, utilizando técnicas de procesamiento de grandes volúmenes de datos mediante las plataformas *Hadoop* y *Apache Spark*. A través del análisis de datos históricos de consumo eléctrico, se busca anticipar la demanda en las próximas horas, detectar picos de consumo y evaluar el impacto de las condiciones climáticas sobre el uso energético urbano.

2. Dataset seleccionado

Nombre: Household Electric Power Consumption Dataset

Fuente: Kaggle / UCI Machine Learning Repository

Formato: CSV (valores separados por punto y coma ";")

URL: https://www.kaggle.com/datasets/uciml/electric-power-consumption-data-set

3. Justificación del dataset

Volumen

El conjunto de datos contiene más de **dos millones de registros**, correspondientes a mediciones minuto a minuto del consumo eléctrico de un hogar durante casi **cuatro años** (2006–2010). Su tamaño aproximado de 120 MB en formato CSV, y el incremento que supone su almacenamiento distribuido en *HDFS*, permiten simular un entorno realista de **procesamiento de grandes volúmenes de datos**, adecuado para la aplicación de tecnologías como *Hadoop* y *Spark*.

Características

El dataset incluye variables como:

- Fecha y hora de cada registro.
- Potencia activa y reactiva global.
- Voltaje y corriente.
- Energía submedida en tres zonas del hogar (Sub_metering_1, 2 y 3).

Estas variables conforman una **serie temporal multivariable**, adecuada para tareas de predicción y análisis de patrones de consumo. Además, los datos presentan una variabilidad natural y cierto nivel de ruido, lo que refleja condiciones reales de consumo y permite evaluar técnicas de limpieza y modelado robustas.

Pertinencia

El conjunto de datos resulta altamente pertinente para los objetivos del proyecto, ya que:

- Contiene registros reales de consumo energético, directamente relacionados con la meta de predecir la demanda eléctrica.
- Su granularidad temporal (minuto a minuto) facilita el análisis de patrones horarios, diarios y estacionales.
- Puede combinarse con datos meteorológicos (temperatura, humedad, precipitaciones) para analizar el impacto del clima en la demanda, fortaleciendo el enfoque de ciudades inteligentes.

Conclusión

El dataset seleccionado constituye una base sólida para el desarrollo del proyecto, ya que ofrece volumen, calidad y relevancia suficientes para implementar un sistema de predicción energética escalable mediante herramientas de procesamiento distribuido. De esta manera, se busca contribuir al diseño de estrategias de eficiencia y sostenibilidad energética en el contexto de las ciudades inteligentes.