Escalonamento de Sono e Efeito Recuperação em Baterias de Nodos em Redes de Sensores sem Fio

Leonardo Martins Rodrigues¹ Carlos B. Montez¹ Paulo Portugal² Francisco Vasques²

¹Prog. de Pós-Grad. em Eng. de Automação e Sistemas (PPGEAS) Universidade Federal de Santa Catarina (UFSC)

²Faculdade de Engenharia da Universidade do Porto (FEUP) Porto – Portugal

Florianópolis, Abril de 2014

Sumário

- Introdução
- 2 Fundamentação Teórica
- Modelo
- 4 Resultados
- 6 Conclusão
- 6 Perguntas

Introdução

Redes de Sensores sem Fio (RSSF)

- Conjunto de nodos espalhados aleatoriamente com capacidade de autogerenciamento [1];
- Objetivo: monitorar algum fenômeno no ambiente (esforço colaborativo);
- Aplicações: indústria, meio ambiente, militar, saúde, etc.;
- Problema: gerenciamento energético, escalonamento do sono, etc.;

Baterias

- Dispositivo capaz de transformar energia química em elétrica;
- Componentes: Ânodo, Cátodo, Eletrólito e eletrodos;

Tecnologias: Ni-Cd, Ni-MH, Li-ion, Li-polymer, etc.;

Baterias: Efeitos intrínsecos

- Efeito da Taxa de Capacidade (Rate Capacity Effect):
 - Dependência entre capacidade atual e a magnitude da corrente aplicada;
 - Ex.: altas correntes de descarga reduzem significativamente a capacidade;
- Efeito Recuperação (Recovery Effect):
 - Capacidade de recuperar carga quando nenhuma carga externa está conectada;

Modelos de Baterias

- Objetivos:
 - Modelar o comportamento (n\u00e3o linear) das baterias;
 - Estimar o tempo de vida de uma bateria de acordo com as cargas aplicadas;
- Tipos: Eletroquímico, Circuito Elétrico, Analíticos, Estocásticos, Híbridos;

Modelo Analítico: Kinect Battery Model (KiBaM) [2]

- Modelo abstrato e bastante intuitivo;
- Dois tanques: Carga Disponível e Carga Limite;

Modelo Analítico: Kinect Battery Model (KiBaM) [2]

- Fluxo de carga depende dos parâmetros: $(h_2 h_1)$ e k;
- Modela adequadamente os Efeitos Taxa de Capacidade e Recuperação [3];

Modelo Analítico: Kinect Battery Model (KiBaM) [2]

$$\begin{cases}
i = i_0 e^{-k't} + \frac{(y_0 k'c - l)(1 - e^{-k't})}{k'} - \frac{lc(k't - 1 + e^{-k't})}{k'} \\
j = j_0 e^{-k't} + y_0(1 - c)(1 - e^{-k't}) - \frac{l(1 - c)(k't - 1 + e^{-k't})}{k'},
\end{cases} (1)$$

$$k' = \frac{k}{c(1-c)}, \quad y0 = i0 + j0;$$

Escalonamento do Sono (Sleep Scheduling)

- Objetivos:
 - Realizar o rodízio entre os nodos para poupar energia;
 - Escolher adequadamente a ordem de execução das tarefas;
 - Aumentar o tempo de vida da rede;
- Tarefas que precisam de maior carga devem executar primeiro [4];
- Inserir períodos ociosos entre tarefas favorece a bateria [5];

Escalonamento do Sono (Sleep Scheduling)

Modelo

- Objetivos específicos do trabalho:
 - Observar o aumento no tempo de vida de uma RSSF quando o Efeito Recuperação faz parte da rotina dos nodos;
 - Simular de forma adequada o Efeito Taxa de Capacidade;
- Ambiente de simulação: GNU Octave;
- Modelo escolhido: KiBaM (analítico);
- Constantes: $k = 10^{-5}$ e c = 0,625;

Modelo

Tabela: Cargas utilizadas nas simulações.

Tarefa	Carga (mA)	Tempo de execução (min)	
A	40	10	
В	20	5	
C	5	0 - 20	

Cenário 1:

Cenário 1:

Tabela: Tempos obtidos no Cenário 1.

Situação	Sleep Mode	Tarefa(s)	Tempo (min)
1	Não	Α	1200 (20,00 h)
2	Sim (8 <i>h</i>)	$A \rightarrow C \rightarrow A$	1550 (25,83 h)

• Aumento percentual: 29, 16%;

Cenário 2:

Cenário 2:

Tabela: Tempos obtidos no Cenário 2.

Situação	Sleep Mode	Tarefa(s)	Tempo (min)
1	Não	Α	1200 (20,00 h)
2	Sim (5 <i>min</i>)	AC	1455 (24, 25 h)
3	Sim (10 <i>min</i>)	AC	1680 (28, 00 h)
4	Sim (20 <i>min</i>)	AC	2070 (34, 50 h)

- Aumento percentual (1|3): 40,00%;
- Aumento percentual (1|4): 72,50%;

Cenário 3:

Tabela: Tempos obtidos no Cenário 3.

Situação	Sleep Mode	Ordenação	Tempo (min)
1	Não	{AB}	555 (09, 25 <i>h</i>)
2	Sim (10 <i>min</i>)	ACB}	725 (12, 08 <i>h</i>)
3	Sim (10 <i>min</i>)	{ABC}	750 (12, 50 h)
4	Não	{BA}	570 (09, 50 h)
5	Sim (10 <i>min</i>)	{BCA}	750 $(12, 50 \ h)$
6	Sim (10 <i>min</i>)	{BAC}	750 (12, 50 h)

Cenário 4:

Cenário 4:

Cenário 4:

Tabela: Tempos obtidos no Cenário 4.

Situação	Sleep Mode	Tarefa(s)	Tempo (min)
1	Não	Α	1202,00 (20,03 h)
*	Sim (S/ Recuperação)	AC	1382, 30 (23, 03 h)
2	Sim (10 <i>min</i>)	AC	1662, 76 (27, 71 h)

- Aumento percentual (1|2): 38, 33%;
- Aumento percentual (*|2): 20, 32%;

Conclusão

- O consumo energético dos nodos é relevante no contexto das RSSF;
- O Efeito da Taxa de Capacidade e, principalmente, o Efeito Recuperação desempenham importante papel no tempo de vida da bateria de um nodo;
- Em uma RSSF com diversos nodos, alguns podem coletar informações enquando outros recuperam energia;

Trabalhos Futuros

- Expandir as simulações para diversos nodos.
- Avaliar o desempenho do KiBaM em baterias Li-ion.
- Integrar o modelo de bateria em uma ferramenta voltada para simulação de RSSF, como o OMNeT++;

Perguntas

Referências bibliográficas

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless Sensor Networks: A Survey," *Computer Networks*, vol. 38, no. 4, pp. 393–422, 2002.

Perguntas

