

JACOBIAN HILL	
contenan to polan	
$x = r\cos\theta, y = r\sin\theta$ $\frac{\partial n}{\partial x} = \frac{\partial n}{\partial \theta} = \frac{\partial n}{\partial \theta}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= \cos\theta - \gamma \sin\theta = r\cos^2\theta + r\sin^2\theta$	
contenian to cylindrical coordinates	
$x = x \cos \theta$ $u = x \sin \theta$ $z = z$	
$ \frac{J(x,y,z)}{y,\theta,z} = \frac{\partial(x,y,z)}{\partial(x,\theta,z)} = \frac{\partial}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial z} $	
34 37 37 37 30 32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= \cos \theta - r \sin \theta 0 r \cos^2 \theta + r \sin^2 \theta$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Conterian to polar coordinates	
n=rcos psino, y=rsinpsino, z=rcoso	
$\frac{\int x_1y_1z_1 }{\int x_1y_1z_2 } = \frac{\partial x_1}{\partial x_1} \frac{\partial x_2}{\partial x_2} \frac{\partial x_1}{\partial x_2} \frac{\partial x_1}{\partial x_2}$	
(x,0,0) $(x,0,0)$ $(x,0,0)$ $(x,0,0)$ $(x,0,0)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
= cospsine reaspasse -rsinpsine	
singsino rsingcoso rsinocoso = r28ino	
coso -reino O	

Volume of a solid bounded by surfaces dzdydx 1-x-x2-(1-n)3 dn D

Avg T =
$$\frac{1}{16} \int_{0}^{16} \int_{0}^{16} \frac{1}{(1+n+y+z)^{3}} dz dy dn$$

= $6 \int_{0}^{16} \left[\frac{-1/2}{(1+n+y+z)^{2}} \right]_{0}^{16} dy dn$

= $-3 \int_{0}^{16} \frac{1}{2} - \frac{1}{(1+n+y)^{2}} dy dn$

= $-3 \int_{0}^{16} \frac{1}{4} - \frac{1}{(1+n+y)^{2}} dn$

= $-3 \int_{0}^{16} \frac{1-n}{4} + \frac{1}{2} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{1-n}{4} + \frac{1}{2} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{n}{4} - \frac{1}{1+n} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

= $-3 \int_{0}^{16} \frac{3}{4} - \frac{1}{8} - \log(1+n) \int_{0}^{16} dn$

Find the mass of sphere of radius b if the dennity vouies inveuxity as the square the center. r² són 0 dr dod ø Mass = sino drao 10 0 0 2 = $Kb(2\pi)(-\cos\theta)$ = $-2\pi Kb[\cos\pi - \cos\theta]$ = $-2\pi Kb[-1-1] = 4k\pi b$

Find the moment of inertia of a right circular cylinder of allitude 2h and radius b, relative to the diameter of its median eation with denvity equals k MOI relative to x-axis = \(\int \int \(\gamma^2 + Z^2 \) dz dydn $= K \int \int (y^2 + z^2) dz dy dn$ By changing into cylindrical coordinate system $x = r\cos\theta$, $y = r\sin\theta$, z = z, dzdydm = vdzdrd0Z: -h +0 h
Y: 0 +0 b 0: 0 to 211 28/n2-0+22). ~ dzdrd0 MOI 385n20 + 722) dzdrd0 K 211 0 211 NKTT