GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Instrumentation Device Materials (Code: 3321702)

Diploma Programmes in which this course is offered	Semester in which offered		
Instrumentation and Control Engineering	Second Semester		

1. RATIONALE

Instrumentation is an essential component of the modern Industry. Therefore it is desired that the diploma engineering student should be able to identify the materials used for electrical, thermal, Optical and mechanical Instrumentation devices based on its properties.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

i. Use relevant material for various instrumentation devices.

3. TEACHING AND EXAMINATION SCHEME

	ching So		Total Credits (L+T+P)	Examination Scheme Theory Marks			Total	
L	Т	P	C	ESE	PA	ESE	PA	Marks 100
3	0	0	3	70	30	00	00	

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of **practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. **DETAILED COURSE CONTENT**

Unit	Major Learning Outcomes	Topics and Sub-topics			
Unit– I Electrical Materials	1a. Describe the properties of various conducting and resistive materials	1.1 Conductivity, Resistivity, thermal conductivity, resistivity, temperature coefficient of resistance			
	1b. Identify the types of resistors 1c. Calculate the value and tolerance of resistor using color codes	 1.2 Carbon composition, carbon film, cracked carbon, metal oxide film, wire-wound, variable resistors. 1.3 Standard color code of resistors. 1.4 Standard ranges of resistors. 			
	1d. Describe the relevant properties of various classes of insulating materials 1e. Describe testing of materials of insulator	 1.5 Insulating materials such as ceramic, mica, glass, rubber, resins, wax varnishes, Porcelain, Polymer, 1.6 Flash over test (For Insulator according to British Standard) 			
	If. Identify the types of materials used for various capacitors Determine the value of capacitor using color codes	mica, silvered mica, ceramic plastic foil, electrolytic, variable capacitor (single and			
	Identify the type of material used for inductors Describe the properties of various semiconductor materials	f 1.10 Type of semiconductors - Intrinsic, extrinsic,			
Unit– II Magnetic Materials	2a. Classify different magnetic materials	2.1 Paramagnetic, Diamagnetic, Ferromagnetic, Ferrimagnetic, Anti-ferromagnetic, Soft and hard magnetic materials, ferrites			
	2b.Describe the relevant properties of various magnetic materials	2.2 Magnetisation curve, hysteresis loop, Magnetostriction and factors affecting permeability and hysterisis			
	2c.Select the relay based on its properties	2.3 Mechanical, Electromagnetic, Solid state relay, reed relay and their contact materials(Cu, Au, Pt, Fe, Ag)			
Unit –III Thermo electric materials	3a.Describe the properties of materials used in Thermocouple 3b.Identify colour code of different extension leads of Thermocouple	3.1 Principle of Thermocouple, types Thermocouple (B,E,J,K,N,R,S,T,M,P, Chromel-gold/iron , Type C (tungsten 5% rhenium – tungsten 26% rhenium), operating temperature ranges, Current and Voltage range,			
	3c.Describe the relevant properties of materials used in RTD	 3.2 Construction of Thermocouple 3.3 Resistance Temperature Detector (RTD)			
	3d. Describe the relevant properties of materials used	3.4 Material Posessing Positive Temperature Coefficient (PTC) and Negative Temperature			

Unit	Major Learning Outcomes	Topics and Sub-topics
	in Thermistor	Co-efficient(NTC) of resistance, Thermistor
Unit – IV Instrument ation primary component materials	4a. Name the type of materials used in Instrumentation primary component	 4.1 Materials used in 'Bourdon tube' Phosphor Bronze. Stainless Steel Beryllium copper and Monel. 4.2 Materials used in 'diaphragms' Butyl rubber, Nitril rubber, Neoprene, Natural/synthetic rubber, White natural rubber, White butyl, Viton, Hypalon, aluminum, beryllium copper, bi-metal, brass, bronze, copper, exotic metals, exotic metal alloys, ferrous, gold, spring steel, tempered steel, steel & stainless steel, Carbon steel, Cobalt steel, capsule. 4.3 Materials used in 'Bellows' Polyurethane, PVC, Neoprene Coated Nylon, Hypalon Coated Nylon, Aluminum Coated, Fiber glass, Teflon Coated Fiber glass, Silicon Impregnated Fiber glass. 4.4 Materials used in 'Control valve' Iron, Cast steel, Bronze, Monel, Butyl, Alloy 20 Buna_N, Yeoprene, Viton, EPT, Silicon, Hypalon 316 S.S. with their properties. 4.5 Materials used in Orifice, Venturi, Pitot tube, Flow-nozzle(Brass, CS, SS316,SS304, SS316L, Monel, Hastelloy-C).
Unit- V Optoelectro nic devices materials	5a. Discuss the relevant properties of materials used in various optoelectronic devices	 5.1. Photo emissive cells (antimony with alkali metals like caesium, potassium, sodium) 5.2. Photoconductive cells - Cadmium sulphide (CdS), Cadmium Selenide(CdSe), Lead Selenide, Lead Telluride and Indianoid 5.3. Photovoltaic cells - Silicon including single-crystalline Silicon, multi crystalline Silicon, and amorphous Silicon 5.4. Photodiode & Phototransistor - Germanium 800 - 1700, Indium gallium arsenide 800 - 2600, Lead sulphide ~1000 Silicon - 3500 5.5. Semiconductor materials used for LED,LCD,LDR,IR,LASER

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

	Distribution of Theor		heory M	arks		
Unit	Unit Title	Teaching	R	U	A	Total
No.		Hours	Level	Level	Level	
I	Electrical materials	10	10	05	03	18
II	Magnetic Materials	08	08	02	02	12
III	Thermoelectric materials	08	08	05	02	15
IV	Instrumentation primary	06	06	02	02	10
	component materials					
V	Optoelectronic Devices Materials	10	08	04	03	15
	Total	42	40	18	12	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXPERIMENTS

Not applicable

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

- 7.1 Students should deliver a seminar in groups on materials used in various Instrumentation devices and advances/latest trends in instrumentation devices & materials.
- 7.2Students may be asked to collect photographs using internet which is relevant to field application of various topics & have to prepare learning materials using it.
- 7.3Students activities like: course/ topic based seminars, preparation of chart/ poster/ real life component on plywood board for wall mounting, Internet based assignments.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication		
1	Sawhney, A. K.	Electrical & Electronic	Dhanpat Rai & Sons,2005 or		
		Measurement and Instrumentation	later		
2	Jain, R. K.	Mechanical and Industrial	Khanna Publishers, 2005 or		
		Measurement	later		
3	LIPTAK. B G	Instrument Engineers' Handbook,	C R C Press ,2000 or later		
		Volume Two: Process Control			
		and Optimization			
4	Considine and	Process Instruments And Control	McGraw-Hill ,2005 or later		
	Ross	Handbook			
5	Ml Gupta, Ajay	Electrical Engineering Material &	Dhanpat Rai Publishing Co (p)		
	Sharma	Electronic Components	Ltd, 2003		
6	Madhuri Joshi	Electronic Components and	Shroff Publishers &		
		Materials	Distributors		
			Private Ltd.		
7	S.K. Bhattacharya	Electrical & Electronics	Khanna		
		Engineering Materials			
		Component			

B. List of Software/Learning Websites

- 1.www.ims.uconn.edu/~alpay/Courses/.../Lecture% 2019.ppt
- 2.ecmdownloads.weebly.com/uploads/7/5/4/.../magnetic_properties.ppt
- 3.http://www.corrosionfluid.com/total_valve_solutions.aspx
- 4. http://www.corrosionfluid.com/expansion-joints-bellows-flexible-connectors-ptfe-plastic-rubber. as px
- 5.http://www.corrosionfluid.com/piping.aspx
- 6.http://www.globalsupplyline.com.au/pdfs/catalogues/apv/Valve-Material-Application.pdf
- 7.http://www.customadvanced.com/bellows-materials.html
- 8.http://www.pressuresolutions.co.za/pdf/technical/P202%20Pressure%20Gauge%20Construction.pdf
- 9.http://www.engineeringtoolbox.com/saunders-valves-flow-coefficients-d_227.html
- 10.http://www.thomasnet.com/illinois/metal-diaphragms-22421002-1.html

- 11.http://www.globalspec.com/learnmore/sensors_transducers_detectors/pressure_sensing/pressure_sensors_instruments
- 12.http://www.pyromation.com/catalog/gen06.pdf
- 13.http://www.radio-electronics.com/info/data/semicond/photo_diode/structures-materials.php
- 14.http://www.eere.energy.gov/basics/renewable_energy/pv_cell_materials.html

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnic

- 1. **Prof. R .R. Manchiganti** , HOD IC ENGG., Government Polytechnic, Gandhinagar
- 2. Prof. A. M. Patel, I/C HOD IC ENGG., Government Polytechnic, Palanpur
- 3. **Prof. M.M. Mulchandani**, OSD, CEC, AHMEDABAD
- 4. Prof. S. K. Raval, Lecturer IC ENGG., Government Polytechnic Ahmedabad
- 5. Prof. M. A. Modi, Lecturer IC ENGG., Government Polytechnic, Palanpur

Co-ordinator and Faculty Member from NITTTR Bhopal

- 1. **Dr.(Ms)** C.S.Rajeshwari, Professor, Dept. of Electrical & Electronics Engg,
- **2. Dr.(Mrs) Anjali Potnis**, Assistant Professor, Dept. of Electrical & Electronics Engg,