دراست دالت عددیت رقم 01

الجزء الأوّل :

 $g(x)=x^4-4x-3:$ لتكن g الدالة العددية المعرّفة على $\mathbb R$ كما يلي

 $(-\infty$ أدرس تغيّرات الدالم g (تحسب النهايات عند أدرس تغيّرات الدالم g

lpha < 0 < eta : أ) بيّن أنّ المعادلة g(x) = 0 تقبل حلّين بالضبط lpha و أ

. $1,78 < \beta < 1,79$ و $-0,7 < \alpha < -0,69$ ب) تحقّق أنّ :

x عيّن إشارة g(x) حسب قيم ج

الجزء الثاني :

الدالة العددية المعرّفة على $\mathbb{R}-\{1\}$ ب $\mathbb{R}-\{1\}$ بياني في المستوي المنسوب $f(x)=rac{x^4+1}{x^3-1}$ الدالة العددية المعرّفة على المستوي المنسوب المستوي ال (2cm) وحدته ($(o; \vec{i}; \vec{j})$ وحدته إلى المعلم المتعامد و المتجانس

. عين نهايات الدالة f عند أطراف مجموعة تعريفها (1

. $(x \neq 1)$ و $f(x) = ax + b + \frac{cx^2 + dx + e}{x^3 - 1}$: حيث $e \cdot d \cdot c \cdot b \cdot a$ و و (1) عين الأعداد الحقيقية (1) عين الأعداد الحقيقية و المراجعة و ا

. ب) استنتج وجود مستقيم مقارب مائل (Δ) للمنحني (C_f) يطلب تعيين معادلته (Δ)

. (Δ) أدرس وضعية المنحني (C_f) بالنسبة للمستقيم

 $f'(x) = \frac{x^2 \times g(x)}{(x^3 - 1)^2}$ يكون: $x \neq 1$ يكون (أ (3)

ب) استنتج الجاه تغيّر الدالم f ، ثمّ شكل جدول تغيّراتها .

. f(eta) و f(lpha) : جf(lpha) عـط حصرا لكل من

1-1 الفاصلة النقطة ذات الفاصلة ($C_{\scriptscriptstyle f}$) عند النقطة ذات الفاصلة (4

 $(C_{\scriptscriptstyle f})$ أنشئ كلا من الماس (T) و (Δ) و المنحنى (5

 $h(x) = rac{x^4 + 1}{|x^3 - 1|}:$ ب ب $\mathbb{R} - \{1\}$ هي الدالة المعرّفة على $h(x) = \frac{x^4 + 1}{|x^3 - 1|}$

أ أكتب h(x) دون رمز القيمة المطلقة.

 (C_f) ب إشرح كيف يتم إنشاء (C_h) المنحني الممثل للدالة (C_h) بانطلاقا من المنحني المثل المثل

ج) أنشئ المنحني (C_h) في نفس المعلم السابق .

حل مختصر للدالة رقم 01

الجزء الأول:

 $g(x)=x^4-4x-3$ بـ: $g(x)=x^4-4x-3$ بـ: الدينا الدالة و المحرّفة على

:g دراسة تغيرات الدالم (1

.
$$\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} x^4 = +\infty$$
 ، $\lim_{x\to -\infty} g(x) = \lim_{x\to -\infty} x^4 = +\infty$: حساب النهایات

. $g'(x)=4x^3-4$: الدالة المشتقة و الدالة g قابلة للإشتقاق على $\mathbb R$ و دالتها المشتقة و الدالة المشتقة .

 $.(x \leq 1: 0 \leq 0: 0 \leq 0: 0 \leq 0: 0$ يذا ڪان $x \leq 1: 0$ ، و منه $x \leq 1: 0$ يکون $x \leq 1: 0$ إذا ڪان

- جدول التغيرات:

$$0\in \left[-6;+\infty
ight[$$
 و $\left[-6;+\infty
ight]$ و أي على المجال $\left[-6;+\infty
ight]$ الدالمة g مستمرة و رتيبة ، و صورة هذا المجال هي أ $-\infty;1$ الدالمة و حيد $g(x)=0$ تقبل حل وحيد a ينتمي إلى أي المعادلة و $g(x)=0$

$$[1;+\infty[$$
 من eta من عادلت $g(x)=0$ بالمثل: المعادلة

.
$$g(-0,69) < 0 < g(-0,7)$$
 . نجد أنّ : $g(-0,69) = \dots$ و $g(-0,7) = \dots$. نجد أنّ : $g(-0,69) = \dots$ اذن : $g(-0,69) = \dots$

1,78 < eta < 1,79: نفس الشيء بالنسبة إلى eta ، سنجد أنّ

(x) اشارة (x) حسب قيم (x)

х	0	(α	β	+∞
g(x)		+ <	-	þ	+

الجزء الثاني:

 $f(x)=rac{x^4+1}{x^3-1}:$ لدينا f الدالة العددية المعرّفة على $f(x)=rac{x^4+1}{x^3-1}:$

1) حساب النهايات:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^4}{r^3} = +\infty \cdot \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^4}{r^3} = -\infty$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^4 + 1}{x^3 - 1} = +\infty \cdot \lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^4 + 1}{x^3 - 1} = -\infty$$

$$f(x)=rac{ax^4+-ax+bx^3-b+cx^2+dx+e}{x^3-1}$$
 : أي الدينا: $f(x)=ax+b+rac{cx^2+dx+e}{x^3-1}$: أي الدينا:

$$f(x)=x+rac{x+1}{x^3-1}:$$
و منه و

$$-\infty$$
 بجوار (C_f) بجوار (Δ) بدول (Δ) بجوار (Δ) بدول (Δ) بجوار (Δ) بجوار (Δ) بدول (Δ)

 $f(x)-x=rac{x+1}{x^3-1}:$ ج $f(x)-x=rac{x+1}{x^3-1}$ ، أي $f(x)-x=rac{x+1}{x^3-1}$

x	$-\infty$ –	1	$+\infty$
x+1	_	+	+
$x^{3}-1$	_	_ (+
f(x)-y	+	_	+
الوضعيت	(Δ) يقع فوق (C_f)	(Δ) يقع تحت (C_f)	
	لع (<u>(</u>) <u>ق</u> (-1;1)		(Δ) يقع فوق (C_f)

3) الدالة المشتقة : الدالة f قابلة للإشتقاق من أجل كل x يختلف عن 1 و دالتها المشتقة هي :

: ين ،
$$f'(x) = \frac{x^2 \times \left[4x(x^3-1)-3(x^4+1)\right]}{(x^3-1)^2}$$
 : ين ، $f'(x) = \frac{4x^3(x^3-1)-3x^2(x^4+1)}{(x^3-1)^2}$

.
$$f'(x) = \frac{x^2 \times g(x)}{(x^3-1)^2}$$
 : و منه $f'(x) = \frac{x^2(x^4-4x-3)}{(x^3-1)^2}$: و منه $f'(x) = \frac{x^2(4x^4-4x-3x^4-3)}{(x^3-1)^2}$

و منه إشارة f'(x) من إشارة :

و هي موضحت
$$g(x)$$
 ، و هي موضحت $g(x)$

х	-∞ c	α ()	1	β +∞
x^2	+	+	+	+	+
g(x)	+	_	-	_	+
$x^2 \times g(x)$	+	_	-	_	+

x	$-\infty$	α	1	β $+\infty$
f'(x)		þ		þ
f(x)	$-\infty$	$f(\alpha)$	$+\infty$ $f(c)$	$+\infty$ α

جدول التغيرات

$$f(\beta)$$
 ۽ $f(\alpha)$ جصرا ڪل من $f(\alpha)$ ۽ $f(\alpha)$ جصر (1

$$1,23 < lpha^4 + 1 < 1,240....$$
 . اي: $0,23 < lpha^4 < 0,240$. اي: $-0,7 < lpha < -0,69$ لدينا:

$$rac{1}{2}$$
 و $rac{1}{2}$ $rac{1}{2}$

$$\frac{1}{0,34} < -\frac{1}{\alpha^3 - 1} < \frac{1}{1,33}....(2)$$
 : أي

،
$$0.92<-\dfrac{lpha^4+1}{lpha^3-1}<0.93:$$
 بضرب (1) وَ (2) نجد : $\dfrac{1.23}{lpha^3-1}<\dfrac{-\dfrac{lpha^4+1}{lpha^3-1}<\dfrac{1.24}{1.33}:$ بضرب (1) وَ (2) نجد

$$-0.93 < f(lpha) < -0.92:$$
و منه والمنه والمن والمنه والمن والمنه والمنه والمنه والمنه والمنه والمنه والمنه والمنه والمنه والم

$$2,33 < f(eta) < 2,42$$
 : نفس الطريقة مثل حصر $f(lpha)$ ، و نجد أنّ : $f(eta)$ حصر (2

.
$$(T):y=rac{1}{2}x-rac{1}{2}:$$
 و منه $(T):y=f'(-1)(x+1)+f(-1):$ معادلة الماس (4)

5) الإنشاء:

.
$$h(x) = \frac{x^4 + 1}{|x^3 - 1|}$$
 : دينا (6

$$h(x) = \begin{cases} \frac{x^4+1}{x^3-1} = f(x).....(x>1) \\ -\frac{x^4+1}{x^3-1} = -f(x)....(x<1) \end{cases}$$
 المنافقة: $h(x) = \begin{cases} \frac{x^4+1}{x^3-1} = f(x)...(x>1) \\ -\frac{x^4+1}{x^3-1} = -f(x)...(x<1) \end{cases}$

. $]1;+\infty[$ على (C_f) على (C_h) ينطبق على (C_h) على . $]-\infty;1[$ نظير (C_f) بالنسبۃ إلى محور الفواصل على (C_h) بالإنشاء :

دراست دالت عدديت رقم 02

 \cdot (5.cm) ، وحدته ($O; \vec{i}; \vec{j}$) ، وحدته المستوي منسوب إلى المعلم المتعامد و المتجانس

. $x(x^2+y^2)+y^2-3x^2=0$: هي $(O; \vec{i}; \vec{j})$ هي المعلم الذي معادلته هي المعلم ((C)

. $f(x) = \sqrt{\frac{x^2(3-x)}{x+1}}$: نفرض الدالۃ f المعرّفۃ علی f(x) = -1;3 نفرض الدالۃ f(x) = -1;3

. بيّن أنّ المنحني f هو إتحاد المنحنيين (C_1) و (C_2) الممثلين للدالتين f هو إتحاد المنحنيين (C_1) على الترتيب .

. الله عيّن ڪلا من: $\lim_{x \stackrel{\leq}{\longrightarrow} 0} \frac{f(x)}{x}$ وَ $\lim_{x \stackrel{\leq}{\longrightarrow} 0} \frac{f(x)}{x}$ ، ماذا تستنتج ؟ .

ب) فسلر النتائج هندسياً.

. الحسب: $\lim_{x \stackrel{<}{\longrightarrow} 3} \frac{f(x) - f(3)}{x - 3}$ ، مـــاذا تستنتج (3

. $f'(x) = \frac{3x - x^3}{(x+1)\sqrt{x^2(x+1)(3-x)}}$: يكون $x \in \left]-1;0\right[\cup \left]0;3\right[$ كن أنّه من أجل كل (4)

f'(x) ب استنتج اشارة

ج) أحسب: f(x) ، ثمّ فسّر النتيجة هندسياً.

د) شكّــل جدول تغيّرات الدّالة f .

. (C) أنشئ (C_1) ، ثمّ أكمل إنشاء المنحنى (5

حل مختصر للدالت العدديت رقم 02

.
$$x\in\left]-1;3
ight]$$
 مع $y=-f(x)$ او $y=f(x)$ ، و منه $y=-\sqrt{rac{x^2(3-x)}{x+1}}$ او $y=\sqrt{rac{x^2(3-x)}{x+1}}$

. و عليه نقول أنّ (C) هو إتحاد المنحنيين (C_1) و (C_2) الممثلين للدالتين (C) هو إتحاد المنحنيين و عليه نقول أنّ

2) أ) تعيين النهايات:

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{\sqrt{\frac{x^2(x+1)}{x+1}}}{x} = \lim_{x \to 0} \frac{x\sqrt{\frac{3-x}{x+1}}}{x} = \lim_{x \to 0} \sqrt{\frac{3-x}{x+1}} = \sqrt{3} (.$$

. 0 غير قابلة للإشتقاق عند f نستنتج أنّ الدالة f

ب) التفسير الهندسي : نقول أنّ المنحني (C_1) يقبل عند النقطة O(0;0) نصفي مماسين T_1 و T_2 معامل توجيههما T_3 و T_4 على الترتيب ، والنقطة T_4 هي نقطة زاوية .

$$: \mathbf{j}: \lim_{x \to -\infty} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to -\infty} \frac{\sqrt{\frac{x^2(3 - x)}{x}} - 0}{x - 3} = \lim_{x \to -\infty} x \times \frac{\sqrt{3 - x}}{\sqrt{x + 1}} \times \frac{1}{x - 3}$$
 (3)

: ومنه:
$$\lim_{x \longrightarrow -3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \longrightarrow -3} x \times \frac{\sqrt{3 - x}}{\sqrt{x + 1}} \times \frac{-1}{3 - x} = \lim_{x \longrightarrow -3} x \times \frac{\sqrt{3 - x}}{\sqrt{x + 1}} \times \frac{-1}{(\sqrt{3 - x})^2}$$

$$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{-x}{(\sqrt{x + 1})(\sqrt{3 - x})} = -\infty \begin{cases} -3\\ 0^+ \end{cases}$$

(3;0) نستنتج أنّ الدالم f لا تقبل الإشتقاق على يسار g و المنحني (g) يقبل نصف مماس عمودي عند النقطة (g) حساب (g) حساب (g) حساب (g)

$$f'(x) = \frac{\frac{(6x - 3x^2)(x + 1) - (3x^2 - x^3)}{(x + 1)^2}}{2\sqrt{\frac{3x^2 - x^3}{x + 1}}} = \frac{6x^2 + 6x - 3x^3 - 3x^2 - 3x^2 + x^3}{(x + 1)^2} \times \frac{1}{2} \times \sqrt{\frac{x + 1}{3x^2 - x^3}}$$

$$:$$
ني: $f'(x) = \frac{-2x^3 + 6x}{(x+1)^2} \times \frac{1}{2} \times \frac{\sqrt{x+1}}{\sqrt{3x^2 - x^3}} = \frac{2(-x^3 + 3x)}{(\sqrt{x+1})^4} \times \frac{1}{2} \times \frac{\sqrt{x+1}}{\sqrt{3x^2 - x^3}} :$ ني:

$$f'(x) = \frac{-x^3 + 3x}{(\sqrt{x+1})^3} \times \frac{1}{\sqrt{3x^2 - x^3}} = \frac{-x^3 + 3x}{(x+1)\sqrt{x+1}} \times \frac{1}{\sqrt{3x^2 - x^3}} = \frac{3x - x^3}{(x+1)\sqrt{(x+1)(3x^2 - x^3)}}$$

. و منه
$$f'(x) = \frac{3x - x^3}{(x+1)\sqrt{x^2(x+1)(3-x)}}$$
 و منه و المطلوب و المطلوب

f'(x) ب) نلاحظ أنّ إشارة f'(x) من إشارة

: لدينا $3x-x^3=x(3-x^2)=x(\sqrt{3}-x)(\sqrt{3}+x)$. سنلخص الإشارة في الجدول التالي

. D_f ممكن دراسة الإشارة على $\mathbb R$ ، ثم في جدول التغيرات نأخذ الإشارة فقط على (*

x	$-\infty$	$-\sqrt{3}$		0		$-\sqrt{3}$		$+\infty$
x	_		_	þ	+		+	
$3 - x^2$	_	\Diamond	+		+	þ	_	
$(3x - x^3)$	+	-	_	þ	+	þ	_	

ج) حساب النهاية:

$$x=-1$$
 مقارب عمودي للمنحني ، $\lim_{x \longrightarrow -1} f(x) = +\infty iggl\{ 2 \ 0^+ iggl]$ ، و منه المستقيم ذو المعادلة،

f تغيرات الدالم (د

5) الإنشاء:

كتابت الأستاذ : ب.ع

دراست دالت عدديت رقم 03

.
$$f(x) = \frac{-x^3 - 2x^2 + 7x + 12}{(x+2)^2}$$
: ڪما يلي $\mathbb{R} - \{-2\}$ ڪما يلي الدالۃ f المعرّفۃ علی

. $(O; \overrightarrow{i}; \overrightarrow{j})$ المنحني الممثّل لها هِ المستوي المنسوب إلى المعلم المتعامد و المتجانس و المرتا

أ أحسب نهاياتِ الدالم f عند أطراف مجموعة تعريفها . أ

 \cdot ب) فسر هندسیاً النهایت عند

: كين الأعداد الحقيقية: a ، c ، b ، a بحيث من أجل كل x يختلف عن -2 تكون (أ (2

$$f(x) = ax + b + \frac{c}{x+2} + \frac{d}{(x+2)^2}$$

 $-\infty$ و $+\infty$ ب) إستنتج وجود مستقيم مقارب مائل (Δ) للمنحني وجود مستقيم مقارب مائل

. (Δ) ادرس وضعية المنحني (C_f) بالنسبة إلى المستقيم

.
$$f'(x) = \frac{(-x-1)(x^2+5x+10)}{(x+2)^3}$$
 : تكون $x \neq -2$ تكون (3) ابيّن أنّه من أجل كل

ب) استنتج اتجاه تغيّر الدالم f ، ثمّ شكّل جدول تغيّراتها .

. أمع حامل محور الفواصل ، ثمّ حدّد نقط تقاطع (C_f) مع حامل محور الفواصل ، أ(4

ب) حدّد أيضا نقطة تقاطع المنحنى $(C_{\scriptscriptstyle f})$ مع حامل محور التراتيب .

. $(C_{\scriptscriptstyle f})$ أنشئ المنحني (5

. عدد حقيقي . عيّن قيم m حتّى يكون للمعادلة : f(x)=m ثلاث حلول سالبت m

g(x)=f(|x|): هي الدالة المعرّفة على \mathbb{R} كما يلي g(x)=g(x)

أ) بيّن أنّ الدالة g زوجية.

 (C_f) بنطلاقاً من المنحني إنشاء المنحني إنطلاقاً بن المنحني إ (C_g)

. بانشئ المنحني $(C_{_{q}})$ فنص المعلم السابق (ج

f الدائۃ f : f نهایات الدائۃ (1

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-x^3}{x^2} = \lim_{x \to -\infty} (-x) = +\infty \ (\diamond$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{-x^3}{x^2} = \lim_{x \to +\infty} (-x) = -\infty \ (\diamond$$

$$\lim_{x \to -2} f(x) = -\infty \begin{cases} -2 \\ 0^+ \end{cases} (*, \lim_{x \to -2} f(x) = -\infty \begin{cases} -2 \\ 0^+ \end{cases} (*$$

. x=-2 ب) التفسير الهندسي : المنحني $(C_{\scriptscriptstyle f})$ يقبل مستقيم مقارب عمودي معادلته

: با نام
$$f(x) = ax + b + \frac{c}{x+2} + \frac{d}{(x+2)^2} = \frac{ax(x+2)^2 + b(x+2)^2 + c(x+2) + d}{(x+2)^2}$$
 (1)

: بالمطابقة نجد ،
$$f(x) = \frac{ax^3 + 4ax^2 + 4ax + bx^2 + 4bx + 4b + cx + 2c + d}{(x+2)^2}$$

$$f(x)=-x+2+rac{3}{x+2}-rac{2}{(x+2)^2}$$
 : يا نون $egin{cases} a=-1 \ b=2 \ c=3 \end{cases}$ و منه $a=-1$ $a=-2$ $a=-2$ $a=-2$ $a=-2$ $a=-2$

.
$$\lim_{|x| \to \infty} (\frac{3}{x+2} - \frac{2}{(x+2)^2}) = 0$$
 و $f(x) = -x+2 + \frac{3}{x+2} - \frac{2}{(x+2)^2}$ ب بما أنّ :

 $1+\infty$ و $1+\infty$ و $2+\infty$ بجواري $2+\infty$ و $1+\infty$ و و $1+\infty$ و و $1+\infty$

.
$$f(x)-(-x+2)=rac{3}{x+2}-rac{2}{(x+2)^2}=rac{3x+4}{(x+2)^2}$$
 : ندرس إشارة الفرق

x	$-\infty$ –		$\frac{4}{3}$ $+\infty$
$\frac{3x+4}{(x+2)^2}$	_	_ (+
الوضعية	يقع تحت (C_f) (Δ)	يقع تحت (C_f) يقع (Δ)	(Δ) يقع فوق (C_f) يقع (C_f) يقطع (C_f)
		$\left(\frac{-4}{3}\right)$	$(\frac{4}{3};\frac{10}{3})$ النقطة

: f'(x) = (3)

: بأي
$$f'(x) = \frac{(-3x^2 - 4x + 7)(x + 2)^2 - 2(x + 2)(-x^3 - 2x^2 + 7x + 12)}{(x + 2)^4}$$

: ين
$$f'(x) = \frac{(x+2)\left[(-3x^2-4x+7)(x+2)-2(-x^3-2x^2+7x+12)\right]}{(x+2)^4}$$

: بأي
$$f'(x) = \frac{-3x^3 - 6x^2 - 4x^2 - 8x + 7x + 14 + 2x^3 + 4x^2 - 14x - 24}{(x+3)^3}$$

$$(-x-1)(x^2+5x+10)=-x^3-6x^2-15x-10$$
 . بملاحظۃ اُنّ : $f'(x)=\frac{-x^3-6x^2-15x-10}{(x+3)^3}$

. و هو المطلوب ،
$$f'(x) = \frac{(-x-1)(x^2+5x+10)}{(x+2)^3}$$
 ، و هو المطلوب .

ب) ﴾) جدول الإشارة :

x	$-\infty$ -	2	-1	$+\infty$
-x-1	+	+	ф	_
$x^2 + 5x + 10$	+	+		+
$(x+2)^3$	_ (+		+
f'(x)	_	+	\(\)	_

 $(\Delta < 0: x+2)^3$ من إشارة x+2 ، و إشارة x+10 هي نفس إشارة x+2 هي نفس إشارة x+2

، f(x)=0 ؛ لإيجاد نقط تقاطع المنحني (C_f) مع حامل محور الفواصل نحل المعادلة : f(-3)=0 (أ و $(-x^3-2x^2+7x+12)$. f(-3)=0 فإنّ : f(-3)=0 فإنّ : $-x^3-2x^2+7x+12=0$. إذن : $-x^3-2x^2+7x+12=(x+3)(ax^2+bx+c)$. أي : $-x^3-2x^2+7x+12=ax^3+bx^2+cx+3ax^2+3bx+3c$

$$a=-1$$
ر $a=-1$ $b+3a=1$: $a=-1$ $b+3a=-2$ $c+3b=7$ بالمطابقة نجد $c=4$

$$x - x^3 - 2x^2 + 7x + 12 = (x+3)(-x^2 + x + 4)$$
 إذن:

$$. -x^3-2x^2+7x+12=(x+3)(-x^2+x+4):$$
 يَذِن: $x_2=\frac{-1+\sqrt{17}}{-2}$ يَا يَا $x_1=\frac{-1-\sqrt{17}}{-2}$. أو $x_2=x+4=0$. أو $x_2=x+4=0$. أو $x_2=x+4=0$

. $C(\frac{1-\sqrt{17}}{2};0)$ و منه : $B(\frac{1+\sqrt{17}}{2};0)$ ، A(-3;0) : عند الفواصل عند عامل محور الفواصل عند (C_f . D(0;3) : و منه النقطة و منه النقطة ، f(0)=3 : ب) إيجاد نقط تقاطع و $(C_{\scriptscriptstyle f})$ مع حامل محور التراتيب 5) الإنشاء:

. (أنظر الإنشاء) ، f(x) = m ، لعادلت: f(x) = m ، (أنظر الإنشاء) .

. $g(x)=f(\left|x\right|)$: لدينا (7

. زوجيت g زوجيت $g(-x)=f(\left|x\right|)=g(x)$ زوجيت g زوجيت (أ

 $\left[0;+\infty\right[$ با المجال $\left(C_{g}
ight)$ با المجال $\left(C_{g}
ight)$ با المجال $\left(x\right)=f(x)$ با المجال $\left(x\right)=x$ فإنّ بالمجال $\left(x\right)=x$ فإنّ بالمجال أنّ المحالة $\left(x\right)=x$ ومنه بالمجال بالمجال بالمجال المجال المجال المحالة والمجال أنّ المحالة والمجال المحالة والمحالة وال

ج) الإنشاء:

كتابت الأستاذ : ب.ع

دراست دالت عدديت رقم 04

.
$$\begin{cases} f(x)=x+\sqrt{x^2-2x} &; x\leq 0\\ f(x)=\frac{(x-1)^3}{x^2} &; x>0 \end{cases}$$
 نعتبر الدالۃ f المعرّفۃ علی \mathbb{R} کما یلي:

 $(O; \widetilde{i}; \widetilde{j})$ هو المنحني الممثل للدالم f في المستوي المنسوب إلى المعلم المتعامد و المتجانس و ليكن

 $-\infty$ عند عند $-\infty$ ، ثمّ فسّر بيانياً النتيجة عند f عند f أحسب نهايات الدالم

. 0 عند f أدرس إستمرارية الدالة f

اً) أحسب: $\lim_{x \stackrel{<}{\longrightarrow} 0} \frac{f(x)}{x}$. ماذا يمكن القول بالنسبة للدالة f ؟ . وَ ما هو التفسير الهندسي لهذه النتيجة ؟ . $\lim_{x \stackrel{<}{\longrightarrow} 0} \frac{f(x)}{x}$

،
$$f'(x)=\dfrac{-1}{\sqrt{x^2-2x} imes(\sqrt{x^2-2x}-x+1)}$$
 : بيّن أنّه من أجل ڪل x من $[-\infty;0]$ تكون

.
$$f'(x) = \frac{(x-1)^2 \times (x+2)}{x^3}$$
 : تكون $]0;+\infty[$ تكون أجل كل x من

f . f شكّــل جدول تغيّرات الدالم

 $+\infty$ أيّن أنّ المستقيم (C) الذي معادلته y=x-3 مقارب مائل للمنحني أنّ المستقيم (Δ) بجوار (4

. (Δ) ادرس وضعية المنحني (C) بالنسبة إلى المستقيم

. بيّن أنّ المنحني (C) يقبل نقطة إنعطاف A يطلب تعيين إحداثياها (

(C) أنشئ المستقيمات المقاربة و المنحنى أ

حل مختصر للدالة رقم 04

$$\begin{cases} f(x) = x + \sqrt{x^2 - 2x} & \dots ; x \leq 0 \\ f(x) = \frac{(x-1)^3}{x^2} & \dots ; x > 0 \end{cases}$$

1) حساب النهايات:

: نامی:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[x + \sqrt{x^2 - 2x} \right] = \lim_{x \to -\infty} \left[x + \sqrt{x^2 - 2x} \right] \times \frac{x - \sqrt{x^2 - 2x}}{x - \sqrt{x^2 - 2x}}$$
 (جائی نامی): الم

$$(\sqrt{x^2} = -x; x \le 0) \cdot \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - (x^2 - 2x)}{x - \sqrt{x^2 - 2x}} = \lim_{x \to -\infty} \frac{2x}{x - \sqrt{x^2(1 - \frac{2}{x})}} = \lim_{x \to -\infty} \frac{2x}{x + x\sqrt{1 - \frac{2}{x}}}$$

$$\cdot \lim_{x o -\infty} f(x) = 1$$
 و منه: $\lim_{x o -\infty} f(x) = \lim_{x o -\infty} rac{2x}{x \left| 1 + \sqrt{1 - rac{2}{x}}
ight|} = 1$.

 $1-\infty$ المنحنى (C) بجوار y=1 مقارب أفقى للمنحنى الستقيم ذو المعادلة y=1

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x-1)^3}{x^2} = \lim_{x \to +\infty} \frac{x^3}{x^2} = +\infty \ (\clubsuit$$

: 0 عند f دراسة إستمرارية الدالة f

$$\int_{x \to 0}^{\infty} f(x) \neq f(0):$$
 دینا $\int_{x \to 0}^{\infty} f(x) \neq f(0):$ $\int_{x \to 0}^{\infty} f(x) = \lim_{x \to 0} \frac{(x-1)^3}{x^2} = -\infty$

. 0 منه نقول أنّ الدالم f ليست مستمرة عند

 $\lim_{x \stackrel{<}{\longrightarrow} 0} \frac{f(x)}{x}$: شاب (3)

$$\cdot \lim_{x \xrightarrow{\leq \to 0}} \frac{f(x)}{x} = \lim_{x \xrightarrow{\leq \to 0}} \frac{x + \sqrt{x^2 - 2x}}{x} = \lim_{x \xrightarrow{\leq \to 0}} \frac{x + \sqrt{x^2 (1 - \frac{2}{x})}}{x} = \lim_{x \xrightarrow{\leq \to 0}} \frac{x \left[1 - \sqrt{1 - \frac{2}{x}}\right]}{x} = -\infty$$

 $oldsymbol{lpha}$) إذن : نقول أن الدالم f لا تقبل الإشتقاق عند 0 .

 \cdot O(0;0) يقبل نصف مماس عمودي عند النقطة: المندسي: المندسي الهندسي و النقطة (C

$$\cdot:\left]-\infty;0
ight]$$
 علی $f'(x)$ علی (\star (ب

$$f'(x) = 1 + \frac{2x - 2}{2\sqrt{x^2 - 2x}} = 1 + \frac{x - 1}{\sqrt{x^2 - 2x}} = \frac{\sqrt{x^2 - 2x} + x - 1}{\sqrt{x^2 - 2x}} = \frac{\sqrt{x^2 - 2x} + x - 1}{\sqrt{x^2 - 2x}} \times \frac{\sqrt{x^2 - 2x} - (x - 1)}{\sqrt{x^2 - 2x} - (x - 1)}$$

.
$$f'(x) = \frac{x^2 - 2x - (x-1)^2}{\sqrt{x^2 - 2x} \times \sqrt{x^2 - 2x} - x + 1} = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{x^2 - 2x - (x-1)^2}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x} - x + 1)} : \mathbf{y}(x) = \frac{-1}{\sqrt{x^2 - 2x} \times (\sqrt{x^2 - 2x}$$

.
$$\sqrt{x^2-2x} imes\sqrt{x^2-2x}-x+1>0$$
 : يكون $x\in\left]-\infty;0\right[$ نلاحظ أنّه من أجل

 $[-\infty;0]$ و بالتالي ستكون[0:f'(x)<0: ، أي أنّ الدالم [f] متناقصة تماما على

$$: \left]0;+\infty
ight]$$
 علی $f'(x)$ علی (*

$$f'(x) = \frac{3(x-1)^2 \times x^2 - 2x \times (x-1)^3}{x^4} = \frac{x(x-1)^2 \left[3x - 2(x-1)\right]}{x^4} = \frac{x(x-1)^2 \times (x+2)}{x^4}$$

.
$$f'(x) = \frac{(x-1)^2 \times (x+2)}{x^3}$$
 : ومنه

. (
$$x=1$$
 نلاحظ أنّه من أجل $f'(x):f'(x)\geq 0:x\in \left]0;+\infty\right[$ تنعدم من أجل نلاحظ أنّه من أجل

 $[0;+\infty]$ و منه : الدالة f متزايدة على

f: f تشكيل جدول تغيرات الدالت

f معرفت عند 0 ، أي ، f(0)=0 ، لكن نهايت الدالم أن الدالم f معرفت عند f ، أي ، f(0)=0 ، لكن نهايت الدالم على على يمين f هي f(0)=0 ، لكن نهايت الدالم أن الدالم

: أي: الستقيم (Δ) مقارب للمنحنى (C) بجوار أنّ الستقيم أنّ الستقيم أنّ أنّ الستقيم (Δ)

: نامی:
$$\lim_{x \to +\infty} f(x) - (x-3) = \lim_{x \to +\infty} \left[\frac{(x-1)^3}{x^2} - (x-3) \right] = \lim_{x \to +\infty} \frac{x^3 - 2x^2 + 3x - 1 - x^2(x-3)}{x^2}$$

$$\lim_{x \to +\infty} f(x) - (x-3) = \lim_{x \to +\infty} \frac{3x-1}{x^2} = \lim_{x \to +\infty} \frac{3x}{x^2} = \lim_{x \to +\infty} \frac{3}{x} = 0$$

 $+\infty$ و منه المستقيم Δ مقارب مائل للمنحني الميتقيم و منه المستقيم و منه المستقيم و منه المستقيم Δ

3x-1 ب) الوضعية : أي ندرس إشارة $\dfrac{3x-1}{x^2}$ ، و منه الإشارة من إشارة x

x	0	$\frac{1}{3}$ $+\infty$
3x-1	_	+
	(Δ) يقع تحت (C)	(Δ) يقع فوق (C)
الوضعية	اعند النقطة	(Δ) يقطع (C)
	$(\frac{1}{3})$	(3)

5) نلاحظ من خلال جدول التغيرات للدالم f أنّ الدالم f' تنعدم عند 1 و لا تغيّر إشارتها ، إذن النقطة A(1,0) هي نقطة إنعطاف للمنحني A(1,0) ، أي : النقطة A(1,0) هي نقطة إنعطاف للمنحني A(1,0) ، أي : النقطة A(1,0) الإنشاء :

دراست دالت عدديت رقم 05

الجزء الأوّل:

.
$$f(x) = x - \sqrt{1 + x^2}$$
 : نعتبر الدالة f المعرّفة على $\mathbb R$ كما يلي الدالة ونعتبر الدالة المعرّفة على

. $(O; \overset{
ightharpoonup}{i;j})$ هو المنحنى الممثل للدالم f يه المستوي المنسوب إلى المعلم المتعامد و المتجانس و ليكن

اً) أحسب: f(x) ، ثمّ فسّر النتيجة هندسياً . أ

 $-\infty$ بيّن أنّ المستقيم (d) ذو المعادلة y=2x مقارب مائل للمنحني

.
$$\sqrt{1+x^2}-x>0$$
 : يكون x يكون عدد حقيقي عدد حقيقي أنّه من أجل كل عدد حقيقي أنّه من أجل أ

f بنگل حدول تغیرات الدالت f

. 0 عند النقطة ذات الفاصلة (C) عند النقطة ذات الفاصلة (T) عند النقطة في المنحني

(C) أنشئ الماس (T) و المنحنى (3)

f(x) > 2x - 1 بيانياً المتراجحة:

 $x(1+f(rac{1}{x}))=1+f(x):$ يكونx>0 يكون يأبّه من أجل كل

$$g(x)= an x-\sqrt{1+ an^2 x}$$
 $-rac{\pi}{2}< x<rac{\pi}{2}$ ب $-:$ $\left]-rac{\pi}{2};rac{\pi}{2}
ight]$ لتكن الدالمة $g(rac{\pi}{2})=0$

. g ليكن (Γ) هو المنحنى المثل للدالم

.
$$\lim_{x \stackrel{<}{\longrightarrow} \frac{\pi}{2}} g(x) = g(\frac{\pi}{2})$$
 بيّن أنّ : (1

. أحسب: g(x) أحسب: $\lim_{x \longrightarrow -\frac{\pi}{2}} g(x)$ ، ثمّ فسّر النتيجة هندسياً.

.
$$g(x)=\dfrac{\sin x-1}{\cos x}$$
 : يكون ي $\left|-\dfrac{\pi}{2};\dfrac{\pi}{2}\right|$ من أجل ڪل x من أجل ڪل (1)

ب) أدرس تغيّرات الدالم g ، ثمّ أنشئ منحناها (Γ) في معلم آخر . المجزء الثالث :

$$\begin{cases} h(x)=x-\sqrt{1+x^2}...... & x\leq 0 \\ h(x)=2-x-\sqrt{x^2-4x+5} & & x\geq 2 \end{cases}$$
 لتكن الدالة t المعرّفة على t المعرّفة على t

x=1 بيّن أنّ المستقيم الذي معادلته : x=1 هو محور تناظر للمنحني (x=1

. h شكل جدول تغيّرات الدالة (2

. f أنشئ $(C_{_{b}})$ فضس معلم الدائم (3

المسألة مأخوذة من أحد كتب المغرب الشقيق مع تعديل يوافق المنهاج الجزائر

حل مختصر للدالة رقم 05

الجزء الأول:

 $\lim_{x \to +\infty} f(x)$: عساب النهاية (أ (1

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left[x-\sqrt{1+x^2}\right] = \lim_{x\to +\infty} \frac{x-\sqrt{1+x^2}}{x+\sqrt{1+x^2}} \times x + \sqrt{1+x^2} = \lim_{x\to +\infty} \frac{-1}{x+\sqrt{1+x^2}} = 0 \begin{cases} -1 \\ +\infty \end{cases}$$

 $+\infty$ إذن المنحني (C) يقبل حامل محور الفواصل كمستقيم مقارب بجوار

$$: \lim_{x \to -\infty} f(x) - 2x = \lim_{x \to -\infty} -x - \sqrt{1+x^2}$$
 بيان أنّ المستقيم (d) مقارب مائل بجوار $= -\infty$ ، أي نحسب

$$\lim_{x \to -\infty} f(x) - 2x = (-x - \sqrt{1 + x^2}) \times \frac{-x + \sqrt{1 + x^2}}{-x + \sqrt{1 + x^2}} = \frac{-1}{-x + \sqrt{1 + x^2}} = 0 \begin{cases} -1 \\ +\infty \end{cases}$$

 $-\infty$ بجوار (C) بجوار مائل للمنحنى المنتقيم بعوار الأمنان بالمنتقيم

: نميّز حالتين ،
$$x$$
 من أجل عدد حقيقي x ، نميّز حالتين ، أبيان أنّ ؛ $\sqrt{1+x^2}-x>0$

$$1.\sqrt{1+x^2}-x=rac{1}{\sqrt{1+x^2}+x}>0$$
 : يكون $x\geq 0$ حالت (*

.
$$\sqrt{1+x^2}-x>0$$
 : يكون $x<0$ يكون . $\sqrt{1+x^2}-x>0$. و منه من أجل كل عدد حقيقي $x<0$ يكون . $x<0$

.
$$f'(x) = 1 - \frac{2x}{2\sqrt{1+x^2}} = 1 - \frac{x}{\sqrt{1+x^2}} = \frac{\sqrt{1+x^2}-x}{\sqrt{1+x^2}} > 0: f'$$
ب) جساب (ب

. \mathbb{R} منه: الدالم f متزایدة تماما علی

x	$-\infty$		+∞
#// \			
f'(x)		<u>+</u>	
f(x)		<i>/</i>	0
	$-\infty$		

○ *) جدول التغيرات : -

$$(T):y=x-1:$$
 و منه $(T):y=f'(0)(x-0)+f(0):$ ج) معادلة الماس

(3) أ) الإنشاء :

ب) حل المتراجحة : f(x)>2x-1 (المحلول هي المجالات التي يكون فيها المنحني (C) فوق المستقيم ذو المعادلة . $S=\left]-\infty;0\right]$ إذن : y=2x-1

الجزء الثاني:

.
$$\lim_{x \stackrel{<}{-} \stackrel{\pi}{\longrightarrow} \frac{\pi}{2}} g(x) = g(\frac{\pi}{2})$$
: بيان أنّ (1

: نينا:
$$\lim_{x \longrightarrow \frac{\pi}{2}} g(x) = \lim_{x \longrightarrow \frac{\pi}{2}} \left[\tan x - \sqrt{1 + \tan^2 x} \right] = \lim_{x \longrightarrow \frac{\pi}{2}} f(\tan x)$$
 ، اي

$$\lim_{x o rac{\pi}{2}} g(x) = g(rac{\pi}{2}):$$
و منه $\lim_{x o rac{\pi}{2}} g(x) = g(rac{\pi}{2}):$ و منه $\lim_{x o rac{\pi}{2}} g(x) = 0$ و منه $\lim_{x o +\infty} f(x) = 0$

 $\lim_{x \longrightarrow -rac{\pi}{2}} g(x)$ حساب (2

$$\int_{x o -\infty}^{\lim} an x = \lim_{x o -\frac{\pi}{2}} \frac{\sin x}{\cos x} = -\infty$$
ائي: $\int_{x o -\infty}^{\lim} an x = \lim_{x o -\frac{\pi}{2}} \frac{\sin x}{\cos x} = -\infty$ ائي: $\int_{x o -\infty}^{\lim} f(x) = -\infty$

$$x=-rac{\pi}{2}$$
 و منه $x=-rac{\pi}{2}$ ، إذن : المستقيم ذو المعادلة منه والمعادي المنحني المنحني ومنه المنحني ومنه ومنه المنحني المنحني المنحني المنحني ومنه المنحني المنحني المنحني المنحني المنحني ومنه المنحني الم

:
$$g(x) = \tan x - \sqrt{1 + \tan^2 x} = \frac{\sin x}{\cos x} - \sqrt{1 + (\frac{\sin x}{\cos x})^2} = \frac{\sin x}{\cos x} - \sqrt{\frac{\cos^2 x + \sin^2 x}{\cos^2 x}}$$
 الدينا: $g(x) = \frac{\sin x - 1}{\cos x}$ و منه: $g(x) = \frac{\sin x - 1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$ و منه: $g(x) = \frac{\sin x}{\cos x} - \sqrt{\frac{1}{\cos^2 x}} = \frac{\sin x}{\cos x} - \frac{1}{\cos x}$

 $\cdot g$ با دراسة تغيرات الدالة g

:g'(x) حساب (*

$$. \ g'(x) = \frac{\cos x \times \cos x - (-\sin x)(\sin x - 1)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x - \sin x}{\cos^2 x} = \frac{1 - \sin x}{\cos^2 x}$$

$$. \ x \in \left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$$
 من أجل كل $x \in \left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$ ، إذن : الدالة $x = 1 - \sin x > 0$ نعلم أنّ : $x = 1 - \sin x > 0$

f'(x) + f(x) $-\infty$

♦) الإنشاء:

الجزء الثالث:

أوّلاً نلاحظ أنّ D_h متناظرة بالنسبة إلى 1 ، ثانياً نحسب: D_h أوّلاً نلاحظ أنّ أي:

 $:2-x\leq 0$ حالت (*

$$h(2-x) = 2 - x - \sqrt{1 + (2-x)^2} = 2 - x - \sqrt{1 + 4 + x^2 - 2x} = 2 - x - \sqrt{x^2 - 2x + 5} = h(x)$$

 $:2-x\geq 2$ حالت (*

.
$$h(2-x) = 2 - (2-x) - \sqrt{(2-x)^2 - 4(2-x) + 5} = x - \sqrt{x^2 + 1} = h(x)$$

$$h(2-x)=h(x):$$
 يكون ون $\left[-\infty;0\right]$ يكون من أجل كل x من أجل كل من أجل كل من أجل كا

. $(C_{\scriptscriptstyle h})$ محور تناظر للمنحنى x=1 معود المنحنى و منه المنحنى

: h تشكيل جدول تغيرات الدالة (2

.
$$h(x)=f(x):\left]-\infty;0\right]$$
 لدينا على المجال (*

 (C_h) على المجال $[2;+\infty[$ نكمل جدول التغيرات بالحفاظ على قيم f(x) و نغير إتجاه الدالم ، f نكمل جدول التغيرات بالحفاظ على قيم x=1 . x=1 بناظر المنحني x=1 بالنسبة إلى المستقيم ذو المعادلم .

\boldsymbol{x}	2	+∞
f'(x)		_
f(x)	- 1 ·	<u></u> -∞

$$\left[2;+\infty
ight[$$
 جدول التغيرات على المجال $*$

$:(C_{_h})$ إنشاء (3

كتابت الأستاذ : ب.ع

دراست دالت عدديت (مثلثيت) رقم 06 +07

المسألة رقم 01 :

نعتبر الدالة f المعرفة على \mathbb{R} كما يلي : $\sin 3x - 3\sin x$ ، و ليكن و المعرفة على \mathbb{R} منحناها البياني في المستوي $.~(O; \vec{i}; \vec{j})$ المنسوب إلى المعلم المتعامد و المتجانس

- 2π ييّن أنّ الدالمة f دورية و دورها هو (1
- . $(C_{\scriptscriptstyle f})$ أدرس شفعية الدالة f ، ماذا تستنتج بالنسبة للمنحني (2
 - أ) قارن بين f(x) وَ $f(\pi-x)$. فسر النتيجة هندسياً . أ
 - f باستنتج مما سبق مجالا لدراسة الدالم
- . $f'(x) = -6\sin x imes \sin 2x$: بيّن أنّه من أجل كل عدد حقيقى x تكون (4
 - . $\left|0;\frac{\pi}{2}\right|$ أدرس تغيّرات الدالم f على المجال (5
 - $\left[-2\pi;2\pi
 ight]$ انشئ المنحني $\left(C_{_{f}}
 ight)$ على أنشئ المنحني (6

المسألة رقم 02:

$$f(x)=x \cdot an x:$$
دالۃ معرّفۃ علی $\int -rac{\pi}{2}; rac{\pi}{2}$ بے دالۃ معرّفۃ علی f

- 1) أدرس شفعية الدالم f . (2) أحسب نهايات الدالم f عند حدود مجموعة تعريفها .

.
$$f'(x)=rac{2x+\sin 2x}{2\cos^2 x}$$
 : تكون $\left]-rac{\pi}{2};rac{\pi}{2}
ight[$ تكون (3

.
$$g(x)=2x+\sin 2x$$
 : كما يلي والمعرّفة على $\left[0;rac{\pi}{2}
ight]$ كما يلي (أ (4)

$$\cdot \left[0; rac{\pi}{2}
ight]$$
 أدرس تغيّرات الدالم g على (*

$$\left[0;rac{\pi}{2}
ight]$$
 ب $\left[0;rac{\pi}{2}
ight]$ على المجال

.
$$\left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$$
 گا على المجال المدالة f على المجال (5

.
$$\frac{\pi}{4}$$
 عند ذات الفاصلة ($C_{\scriptscriptstyle f}$) للمنحني (T) عند ذات الفاصلة (6

.
$$(O; \vec{i}; \vec{j})$$
 و المنحني (C_f) في المستوي المنسوب إلى المعلم المتعامد و المتجانس (أ ((C_f)

.
$$(E)$$
 : $an x = rac{1}{x}$: حيث (E) برا ماهو عدد حلول المعادلة

حل المسألة 01

 $f(x) = \sin 3x - 3\sin x$ دينا:

 $f(x+2\pi)$ بثبات أنّ f دورية ، و دورها f : أي نحسب أي اثبات أنّ أ

: نامی
$$f(x+2\pi) = \sin 3(x+2\pi) - 3\sin(x+2\pi) = \sin(3x+6\pi) - 3\sin(x+2\pi)$$

.
$$f(x+2\pi)=f(x)$$
 ، و منه : $f(x+2\pi)=\sin 3x-3\sin x$

. $\left[-\pi;\pi
ight]$ النائة f دورية و دورها 2π ، لهذا يمكن دراستها على مجال طوله 2π ، و ليكن المجال

:f أ) شفعية الدالة أ(2)

$$f(-x) = \sin(-3x) - 3\sin(-x) = -\sin 3x + 3\sin x = -(\sin 3x - 3\sin x) = -f(x)$$

. و منه : الدالم f فرديم ، إذن : المنحنى $(C_{\scriptscriptstyle f})$ يقبل المبدأ f كمركز تناظر

 $oldsymbol{\cdot} \left[0;\pi
ight]$ نستنتج أنّه يمكن أن ندرس الدالة f على المجال (*

أ) مقارنت f(x) و $f(\pi-x)$ ، ثم تفسير النتيجة هندسياً :

$$f(\pi-x) = \sin 3(\pi-x) - 3\sin(\pi-x) = \sin(3\pi-3x) - 3\sin(\pi-x) = \sin(2\pi+\pi-3x) - 3\sin(\pi-x)$$
 . $f(\pi-x) = f(x)$. $f(\pi-x) = \sin(3\pi-3x) - 3\sin(\pi-x) = \sin(2\pi+\pi-3x) - 3\sin(\pi-x)$

. $x=rac{\pi}{2}$ إذن : كتفسير هندسي نقول أنّ المنحني (C_f) يقبل محور تناظر و هو المستقيم ذو المعادلة

$$\left[0; \frac{\pi}{2}
ight]$$
ب) نستنتج مما سبق أنّه يمكننا دراسة الدالة f على المجال

.
$$f'(x) = 3 \times \cos 3x - 3 \times \cos x = 3(\cos 3x - \cos x) : f'(x)$$
 حساب (4

$$\cos a - \cos b = -2\sin(rac{a+b}{2}) imes\sin(rac{a-b}{2})$$
نعلم انّ:

،
$$f'(x) = 3(\cos 3x - \cos x) = 3(-2)\sin(\frac{3x+x}{2}) \times \sin(\frac{3x-x}{2})$$
 : أي

. و هنه $f'(x) = -6\sin 2x imes \sin x$ ، و هو المطلوب

:f دراسة تغيرات الدالة (5

$$\sin 2x \geq 0$$
 ، اُي: $1 \leq x \leq 0$ ، يكون $1 \leq 2x \leq \pi$ ، و منه $1 \leq x \leq \pi$ و أَم ينا على المجال $1 \leq x \leq \pi$ ، و منه و أن ي

$$\left[0; \frac{\pi}{2}
ight]$$
 و بالتالي الدالة f متناقصة على $f'(x) \leq 0: x \in \left[0; \frac{\pi}{2}
ight]$ ، و بالتالي الدالة

♦) جدول التغيرات:

x	0	$\frac{\pi}{2}$
f'(x)	_	
f(x)		-4

6) الإنشاء:

حل المسألة 02

 $f(x) = x \cdot \tan x$: لدينا

:f دراست شفعیت الدالت (1

 $1. \, D_f$ ولاً : نلاحظ أنّ 0 هو مركز لـ أولاً

. f(-x)=-x. $\tan(-x)=-x imes-\tan x=x imes\tan x=f(x)$: ثانياً وجيت . f(-x)=-x و منه الدالۃ f زوجیت .

2) حساب النهايات:

.
$$\lim_{x \longrightarrow -\frac{\pi}{2}} \tan x = \lim_{x \longrightarrow -\frac{\pi}{2}} \frac{\sin x}{\cos x} = -\infty \begin{cases} -1 \\ 0^+ \end{cases}$$
 في ناب المهام ال

.
$$\lim_{x \xrightarrow{-<} \frac{\pi}{2}} \tan x = \lim_{x \xrightarrow{-<} \frac{\pi}{2}} \frac{\sin x}{\cos x} = +\infty \begin{cases} 1 \\ 0^+ \end{cases}$$
ن ن ن
$$\lim_{x \xrightarrow{-<} \frac{\pi}{2}} f(x) = \lim_{x \xrightarrow{-<} \frac{\pi}{2}} x \times \tan x = +\infty$$

: f' حساب (3

$$f'(x) = \frac{\sin x \times \cos x + x}{\cos^2 x}$$
 : أي $f'(x) = 1 \times \tan x + \frac{1}{\cos^2 x} \times x = \frac{\sin x}{\cos x} + \frac{x}{\cos^2 x}$

$$(\sin 2x = 2\sin x imes \cos x:$$
نظرب في 2 و نقسم على 2) نجد: $f'(x) = \frac{2\sin x imes \cos x + 2x}{2\cos^2 x}$ نجد:

. إذن
$$f'(x)=rac{\sin 2x+2x}{2\cos^2 x}$$
 ، و هو مطلوب

. $g(x) = 2x + \sin 2x$: دراسة تغيّرات الدالم g حيث (4

 $g'(x) = 2 + 2.\cos 2x$ الدالة المشتقة: (*

.
$$0 \leq 2 + 2.\cos 2x \leq 4$$
 ؛ و منه $-2 \leq 2.\cos 2x \leq 2$ ، و منه $-1 \leq \cos 2x \leq 1$ نعلم أنّ

.
$$\left|0;\frac{\pi}{2}\right|$$
 و بالتالي : الدالة g متزايدة على المجال $g'(x)\geq 0$ إذن نستنتج أنّ

$$x\in\left[0;rac{\pi}{2}
ight]$$
نلاحظ من جدول التغيرات أنّه من أجل كل $x\in\left[0;rac{\pi}{2}
ight]$ نلاحظ من جدول التغيرات أنّه من أجل كل

$$\cdot \left[0; rac{\pi}{2}
ight]$$
 على $f'(x) \geq 0$ ، إذن $f'(x) \geq 0$ على $g(x) \geq 0$ ، بما أنّ ، $f'(x) = rac{g(x)}{2\cos^2 x}$ ؛ بدينا ب

$$\left[0; \frac{\pi}{2} \right]$$
 و بالتالي : الدالة f متزايدة على

: يكون يا الدالة
$$f$$
 زوجية ، فستكون متناقصة على $\left[-\frac{\pi}{2};0\right]$ ، أي $=$ جدول تغيرات الدالة f على $=$ 2 يكون (5) بما أنّ الدالة $=$ 1 نسبتكون متناقصة على $=$ 2 بما أنّ الدالة $=$ 3 بما أنّ الدالة $=$ 4 بما أنّ الدالة $=$ 5 بما أنّ الدالة $=$ 1 بكون $=$ 1 بكون

 $: \frac{\pi}{4}$ عند النقطة ذات الفاصلة (T) عند النقطة ذات الفاصلة (6

$$\text{, } (T): y = (\frac{\pi}{2}+1)(x-\frac{\pi}{4}) + \frac{\pi}{4}: ين \text{, } \begin{cases} f(\frac{\pi}{4}) = \frac{\pi}{4} \\ f'(\frac{\pi}{4}) = \frac{\pi}{2} + 1 \end{cases} \text{, i.g.} \text{, } (T): y = f'(\frac{\pi}{4})(x-\frac{\pi}{4}) + f(\frac{\pi}{4}) \text{ (...)}$$

.
$$(T):y=(\frac{\pi}{2}+1)x-\frac{\pi^2}{8}$$
 : ومنه $(T):y=(\frac{\pi}{2}+1)x-\frac{\pi^2}{8}-\frac{\pi}{4}+\frac{\pi}{4}$: أي

7) أ) الإنشاء:

ب) عدد الحلول المعادلة: $an x = rac{1}{x}: an x = rac{1}{x}$ ب) عدد الحلول المعادلة: (E): an x = 1 أي $(E): x \cdot an x = 1$ ، معناه $(E): x \cdot an x = 1$. و منه المعادلة تقبل حلين متمايزين .

كتابت الأستاذ : ب.ع