МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Тема: Знакомство с программированием гетерогенных систем в стандарте Open CL

Студент гр. 0303	 Морозов А.Ю
Преподаватель	Сергеева Е.И.

Санкт-Петербург

Цель работы.

Познакомиться с Open CL — фреймворком для написания компьютерных программ, связанных с параллельными вычислениями на различных графических процессорах.

Задание.

Реализовать расчёт фрактала Мандельброта на OpenCL. Визуализировать результат. В отчёте произвести оценку производительности.

Выполнение работы.

Первым шагом, следуя инструкции в репозитории, был установлен драйвер Open CL и подключена библиотека clew.

Реализованная программа, рассчитывающая фрактал Мандельброта, состоит из 4 основных блоков:

- 1) Выбор девайса.
- 2) Компиляция kernel-кода под выбранный девайс.
- 3) Запуск программы.
- 4) Сохранение результата в виде картинки.

Выбор девайса производится функцией $create_device$, которая посредством функций clGetPlatformIDs и clGetDeviceIDs выбирает нужный нам девайс и возвращает его id.

Компиляция kernel-кода производится функцией build_program, которая читает реализованный код из файла kernel.cl и посредством функций clCreateProgramWithSource и clBuildProgram собирает программу, готовую к исполнению, и возвращает ее.

Запуск программы осуществляется функцией *invoke_kernel*, которая перетает в собранный *kernel*-код аргументы с помощью функции *clSetKernelArg*, запускает вычисления с помощью функции *clEnqueueNDRangeKernel* и по завершению вычислений переносит результаты из предоставленного буфера на host с помощью функции *clEnqueueReadBuffer*.

Для сохранения результата был использован формат ppm. Файл PPM — цветное 24-битное растровое изображение, сохраненное в простом несжатом текстовом формате Portable Pixmap. Файл содержит данные о высоте и ширине изображения, максимальном значении цвета и триплеты RGB каждого пикселя. Сохранение производится функцией *save_result*, которая создает файл и записывает в него цвета для каждого вычисленного пикселя.

Оценка производительности.

Таблица 1 — Сравнение производительности для разных размеров изображения при размере work_group = $\{256, 1\}$.

Размер изображения, W = H (пиксели)	Время вычисления (миллисекунды)
128	1.76
256	1.48
512	1.65
1024	2.97
2048	5.29
4096	16.7

Таблица 2 — Сравнение производительности для разных размеров work_group при размере изображения 1024 * 1024 пикселя.

Paзмер work_group, {size, 1}	Время вычисления (миллисекунды)
4	4.64
8	3.67
16	3.39
32	2.89
64	2.88
128	2.86
256	2.98

Вывод: неверно подобранный размер work_group может существенно увеличить время выполнения программы.

Выводы.

В ходе выполнения лабораторной работы было проведено знакомство с Ореп CL – фреймворком для написания компьютерных программ, связанных с параллельными вычислениями на различных графических процессорах. Была реализована программа, производящая расчет фрактала Мандельброта и сохраняющая результат в виде ррт картинки. Было проведено исследование зависимости времени выполнения вычислений от размеров изображения и размера work_group и получены сведения о том, что: неверно подобранный размер work_group может существенно увеличить время выполнения программы.