Lab 12 - Prime Numbers

- 1.- It took me around 4 hours to complete this assignment
- 2. The hardest part, which I don't feel comfortable about of what I did where the FOR loops, i believe there's something wrong about them, maybe when writing the code it would be easier to figure out what's it. It was also hard to think about a good method to do the algorithm without diving and using the modulus operator.
- 3. It was clear, I just read the instructions wrong and noticed it few hours before the due date.

Pseudocode

1 n <- GET prompt user for a number n

2 list_1 <- 2,3,4,5,6,7,8, 10...n

3 not prime <- [empty list]

4 READ list 1

5 FOR number in list 1

- 6 FOR counter in list 1:
- 7 review number <- number * counter
- 8 add review_number to not_prime
- 9 IF review number not it not prime list:
- 10 PUT review_number ##This will be a prime number

Program Trace

	number	counter	review_number
5	2	2	0
6	2	2	0
7	2	2	4
6	2	3	4
7	2	3	6
6	2	4	6
7	2	4	8
6	2	5	8
7	2	5	10
5	3	2	10
6	3	2	10
7	3	2	6

And so on...

Algorithmic Efficiency

At this point it has an efficiency of O(n log n) since I'm using a loop inside another loop, which will slow the execution by double because it is looping the list in two different occations, despit that we don't need to review the numbers a double of times. It would be better to change this efficiency.