CONJUGATING BINARY SYSTEMS FOR SPACECRAFT THERMAL CONTROL - FINAL REPORT

Appendix C
Aeroassist Flight Experiment Carrier Vehicle
Preliminary Stress Analysis

January 1989

Contract NAS8-36199

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER, AL 35812

By

J.E. Ingram T.O. Murray

Huntsville Engineering Center

(NASA-CR-183609) CCNJUGATING FINARY SYSTEMS FCR SPACECRAFT TEERMAL CONTROL. APPENDIX C: AFROASSIST FLIGHT EXPERIMENT CARRIER VEHICLE FEELIMINARY STRESS ANALYSIS Final Report (Lockheed Missiles and Space Co.) 426 p

N89-25261

Unclas G3/18 0204313

i

AFE CARRIER VEHICLE STRESS ANALYSIS

TABLE OF CONTENTS

<u>SECTION</u>	TITLE	PAGE NO.
	MARGIN OF SAFETY SUMMARY	ii
1.0	INTRODUCTION	1.0
2.0	STRUCTURAL DESCRIPTION	2.0
3.0	MECHANICAL PROPERTIES	3.0
4.0	NASTRAN MODEL	4.0
4.1	Model Description	4.1
4.2	Load Conditions	4.2
5.0	STRESS ANALYSIS	
5.1	Aerobrake Attach Fitting	5.1.
5.2	Solid Rocket Motor (SRM) Attach Bracket	5.2.
5.3	Thruster Support Beam	5.3.
5.4	Trunnion Back-up Structure	5.4.
5.5	Upper and Lower (Isogrid) Panels	5.5.
5.6	Center Cylinder Top and Bottom Rings	5.6.
5.7	Isogrid Panel Splices	5.7.
APPENDIX	X A - CARRIER VEHICLE NASTRAN MODEL	
	BULK DATA ECHO	A.1
APPENDIX	X B - ISOGRD PROGRAM LISTING	B.1

AFE CARRIER VEHICLE STRESS ANALYSIS

MARGIN OF SAFETY SUMMARY

STRUCTURAL COMPONENT	MARGIN OF SAFETY	FAILURE MODE	PAGE NO.
AEROBRAKE ATTACH FITTINGS			
CV FITTING	.88 (U) HIGH (Y)	BENDING	5.1.7
CV FITTING - LUG	.93 (U)	OBLIQUE LOADING	5.1.10
CV FITTING ATTACH BOLTS	.24 (U)	TENSION - SHEAR	5.1.12
CV FITTING - FLANGES	.41 (Y) .09 (U)	BENDING	5.1.13
ATTACH PIN	.05 (U) .52 (Y)	BENDING	5.1.18
ATTACH FASTENERS - AEROBRAKE SIDE	1.17 (U)	TENSION - SHEAR	5.1.22
SRM ATTACH BRACKETS			,
UPPER BRACKET - FLANGES	.48 (U) 1.69 (Y)	CRIPPLING	5.2.8
LOWER BRACKET - TOP PLATE	.05 (U) .36 (Y)	BENDING	5.2.10
CYLINDER PANELS AT SRM BKTS			
BAY 1 BAY 3 BAY 5	.29(U) .00(U) .02(U)	SHEAR-BUCKLING SHEAR-BUCKLING SHEAR BUCKLING	5.2.21 5.2.22 5.2.20
THRUSTER SUPPORT BEAMS	HIGH	BENDING -	5.3.6
TRUNNION FITTING BACK UP STRUCTURE		CRIPPLING	
SUPPORT BEAM CHANNELS	42 (U) 25 (Y)	BENDING	5.4.7

AFE CARRIER VEHICLE STRESS ANALYSIS

MARGIN OF SAFETY SUMMARY (CONT'D)

STRUCTURAL COMPONENT	MARGIN OF SAFETY	FAILURE MODE	PAGE NO.
UPPER AND LOWER ISOGRID PANELS	(SEE SUMMAR IN SECTIONS	RY TABLE FOR ISOC 5)	GRID BARS
CYLINDER RINGS			
TOP RING ANGLE	.48 (U)	BENDING	5.6.7
BOTTOM RING ANGLE	.15 (U)	BENDING	5.6.9
ISOGRID PANEL SPLICES	(SEE SUMMA	RY TABLE IN SECT	ION 5.7)

AFE CARRIER VEHICLE STRESS ANALYSIS

INTRODUCTION

This report presents the assessment of the static strength of the Aeroassist Flight Experiment (AFE) Carrier Vehicle structure. The Carrier Vehicle is the structural component which provides the mounting platform for the experiments, on-board computers, batteries and other "black boxes". In addition, the Solid Rocket Motor (SRM), the Thrusters, and the Aerobrake are all attached directly to the Carrier Vehicle.

The basic approach used in this analysis was to develop a NASTRAN Finite Element Model as a parallel effort to the preliminary design, and to use the internal loads from this model to perform the stress analysis. The loads on the Carrier Vehicle stem from several sources, principally, g forces on the components mounted to the Carrier Vehicle while the AFE is still supported in the Shuttle Payload Bay. The greatest load factors are due to Liftoff and Landing Abort conditions, during which the AFE is supported at the SRM. Because the design loads are given in terms of accelerations at the AFE CG, and because no aerodynamic loads are present on the aerobrake (during these conditions), it has been convenient to use a method of analysis in NASTRAN known as Inertial Relief. This method involves either specifying a set of CG accelerations or applying forces at the CG and representing the Carrier Vehicle and all of its mounted devices with the proper stiffness and mass properties. The masses will produce forces at their attach points in proportion to accelerations of the total system. This procedure obviously depends upon an accurate representation of the mass properties of the entire A major advantage to this technique is that once the mass properties have been satisfactorily modeled, they remain the same for each load condition. New loads may be run on the model by simply applying forces to the CG rather than deriving a new set of forces for all of the separate components.

The regular landing condition is also an inertial relief solution because it, like liftoff and landing abort, has no aerodynamic loading. However it differs from the previous conditions in that the supports

1.0

which react the forces due to acceleration are at the Trunnion points rather than at the SRM Support Ring.

The mass properties of the total AFE model were developed by using structural mass for the Carrier Vehicle elements; i.e., NASTRAN will use the element section properties and the density specified on the MAT (material data) card to calculate the total mass and inertia of the structure. The non-Carrier Vehicle masses (mounted components, SRM, Aerobrake) were represented in the model as concentrated masses located at the component CG. The NASTRAN bulk data for the AFE model is included as Appendix A for reference.

In conducting the strength evaluation of the Carrier Vehicle using the output from the NASTRAN model, it became necessary to develop a post processing computer program to read the output isogrid bar forces and calculate margins of safety. The summary of isogrid margins of safety printed by this program are included in section 5.5 of this report. The listing of this FORTRAN program "ISOGRD" is also given as Appendix B.

2.0 STRUCTURAL DESCRIPTION

The Carrier Vehicle is currently designed as an all aluminum (2219-T87) bolted structure. The upper and lower panels are isogrid construction featuring a simple rectangular cross-section .07" x .50" for each individual isogrid bar. While the Carrier Vehicle is basically hexagonal in planform, and the panels in each bay are shaped the same, most of the panels have some feature that makes it unique. Each unique panel is given in Figures 2.5 through 2.12 which follow. The center cylinder, the avionics panels and the radial beams are all solid sections.

The panels and cylinder are attached using tee and angle sections as splicing members. These sections are shown along with the radial Beam details in Figures 2.13 and 2.14.

Figures 2.15 through 2.18 show the several fittings that provide the load path from the SRM to the Carrier Vehicle and from the Aerobrake to the Carrier Vehicle. These parts with the exception of the connecting pins/bolts are also 2219-T87 aluminum.

,,,,,	3RAM 6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	1 1
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE
Approved by:	Date	STRESS ANALYSIS	Report No.

FIGURE 2.1 AEROASSIST FLIGHT EXPERIMENT REFERENCE CONFIGURATION

FIGURE 2.2 AFE CARRIER VEHICLE STRUCTURE

Page Prepared by: Date 2.2 6-7-88 Title Date Model Checked by: AFE AFE CARRIER VEHICLE Approved by: Date Report No. STIKESS ANALYSIS 59.96 VIEL J 23.6 DIA -SIDE CONPLETE ACE CURRENT 63FD 2.3

Prepared by Date Page 2.3 INGRAM Fitte Checked by: Date Model AFE Report No. CARRIER YEHICLE Approved by: Dato STRESS ANALYSIS - AVIONICS PANEL HINGES AEROBRAKE INTERFACE STRUCTURE (SEE NEXT CHART) - PRESSURANT TANK PROPELLANT TANKS PLACES OM ITTED (AERO BRAKE ATTACH HENT HARDWARE AFE CARRIER VEHICLE TOP PANEL **AELOBRAKE** F19 2.4

FORM LMSC 362 B-3

Prepared by:	Date 4-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	Title	Model
Аրрго ув վ hy	 Date	AFE CARRIER VEHICLE STRESS ANALYSIS	AFE Hepuri No.
	I	The second secon	سينصب بالبناء بالبسا المتعدد فأسم

FIG. 2.5 AFE CV LOWER PANEL - BAY 1

NM LMSC 362 B.3

Prepared by	0-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE
Approved by:	Date	STRESS ANALYSIS	Report No.

FIG. 7.6 APE CV LOWER PANEL - BAY 2

Prepared by:	Date 6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page temp Perm 2,6
Checked by:	Date	Title	Model AFE
Approved by	Date	AFE CARRIER VEHICLE STRESS ANALYSIS	Report No.

FIG 2,7 AGE CV LOWER PANCE - 1364 3

Prepared by Date 6-8-88 INGRAM Charlend by Date Title Model AFE AFE CARRIER VEHICLE Approved by ON nogeft STRESS ANALYSIS 2.0 STRUCTURAL DESCRIPTION (0'TUQ) ORIGINAL PAGE IS OF POOR QUALITY PANEL - BAY LOWER ટ ACE F19 2.8

Checked by:	Date	Title	Model
		AFE CARRIER VEHICLE	AFE
Approved by:	Date	STRESS ANALYSIS	Report No.

FIG. 19 AFE CV LOWER PANEL - 1827 S

M LMSC 362 B.

Proported by

INGRAM

Cho kert by

Approved by

Date

LOCKHEED MISSILES & SPACE COMPANY, INC.

Page Temp Parin

2.9

Model

AFE

STRESS ANALYSIS

Report No.

2.0 STRUCTURAL DESCRIPTION (CONT'D)

FIG. 2.10 AFE CV LOWER PANEL - BAY 6

M LMSC 362 8-3

Prepared by:	Date		Page Temp. Perm.
INGRAM	6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	2.10
Checked by:	Date	Title	Model
Approved by:	_ Date	AFE CARRIER VEHICLE	AFE
		STRESS ANALYSIS	Report No.

FIG. 211 APE CV UPPER PANEL - BAYS 1 \$ 4

Prepared by:	Date 6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by	Date	Title	Model
Approved by	Date	AFE CARRIER VEHICLE STRESS ANALYSIS	AFE Report No.

PANEL - BAYS

UPPER

ટુ

F1G. 2.17 AFE

RM LMSC 362 B-3

repared by	Date 6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp 2.12
hecked by:	Date	Title AFE CARRIER VEHICLE STRESS ANALYSIS	Model AFE Report No.
2.0 STRU	CTURAL F	DESCRIPTION (CONT'D)	
2.0 31120	CTOIC/AL 1	(80/19)	
		,	٠ <u>١</u> ٥
		4	S LOGATION STEELS LOCATION
		PEC C 100 P	9
	 • • • • • • • • • • • • • • • • • • •		NTE.
	7	*	<u>Š</u> F
			<u>.</u>
		4	
u		•	ļ.
			16
			N GY I VICENZ
,			7
			5
			<i>970</i>
	√		
24.85	•		7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
	,		2
		J) L	
——			

_

Propared by	Date 6-7-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm 2.14
Checked by:	Date	Title AFE CARRIER VEHICLE	Model AFE
Approved by:	Date		Report No.
		STRESS ANALYSIS	

FIG 2.15 STM SUPPORT BRACKET / JETTISON SYSTEM
- SIDE VIEW (TYPICAL 3 PLACES)

FORM LMSC 262 D 2

Checked by

Date

2.0 STRUCTURAL DESCRIPTION (CONTID)

FIG. 2.16 SRM SUPPORT BRACICET / JETTISON SYSTEM
- FRONT VIEW (TYPICAL 3 PLACES)

RM LMSC XC 3-3

Page Date Prepared by: LOCKHEED MISSILES & SPACE COMPANY, INC. INGRAM 6-7-88 Title Model Checked by: Date AFE AFE CARRIER VEHICLE Approved by: Date Report No. STRESS ANALYSIS

2.0 STRUCTURAL DESCRIPTION (CONT'D)

FIG. 2.17 AERORRAICE ATTACH FITTING DETAILS

Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY, INC. Date Page 2,17 INGRAM Date Title AFE AFE CARRIER VEHICLE Approved by Date Report No STRESS ANALYSIS 2.0 STRUCTURAL DESCRIPTION (CONT'D) 8.75 -ORIGINAL PAGE IS OF POOR QUALITY LOWER PANEL (REF) 10.00 FIG. 2.18 NORMAL LANDING TRUNNION FITTINGS

(TYPICAL 3 PLACES)

Page Temp Perm Chinckerl by Date Title AFE CARRILE VEHICLE Report No.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3.1 Design Mechanical Properties of 2219 Aluminum Alloy Sheet and Plate

PROPERTIES

MECHANICAL

3.0

SpecificationForm			-								٦	00-A-250/10	7		ای			ŀ								
Temper		Į						1					Succe and punc	Ž.	ا پ										-	
	201	+		1	ŀ	1	ď	7		-	- 1	- 1	-	-4		- 1		ł		٦	187					
Thickness, in	2,000		0.020	9,50		<u>8</u> 8		2.001 2.001			8 8		5.00.4 -1.00.4		0.020		0.040		95.5		8:0	200	2001-	380	<u> </u>	9
Basis		+	4	•	+		_		+			1.	}	+		-		+	3 4	+	3 4	3	3 4	\$	<u>, </u>	
Mechanical properties:		+			+	+	+	+	1					+		+-	_	+			•	4		1	=	-
		55 62			63			<u>:</u>	_					. .	2	63	2	_	2		2	:	:	:		
E _{In} , ksi:	× ×	5 62	63	3	3	9	59	62 63	3	3	8	3	2	28			59	2		3	65	2	65	62	63	61 62
	36	37 47						_						<u>~</u>	51 52	2 52					22	:	:	:	:	:
F		\$	47	\$;	4	47	\$	1	\$	Ç	\$	`	43			53	2	52	21	52	2	22	3	2	49 50
		- 6	\$	48	•	47	48	_							5	- 5	5	_	ç	- ;	Ç					
LT	38	39 49		_			_	_							55			. 7	_		\$ 5		:		:	: :
E. ksi		36					_	:	<u>:</u>	<u>:</u>	:	:		_	2		_		_	38	2	:				
(c/D=1.5)	84	- 5	6	š	-6	7	_				_				-	- 8	8	8	8	8	-				_	
(e/D=2.0)	109 111 121 123 121 123	12	23	121	23	120 122	~						<u>: </u>	-2		2	22.3	2	22	128 126 128 126 128 126 128	128	: :	: :	: :	: :	
(c/D=1.5)				77			- 2					·						ŝ		6	3					
(c/D=2.0)	79 82	2 93	95	: 3	2	93				: :			-	.	8	6	8		3	_	6	:	:	÷	:	<u>:</u> :
e, percent (S Basis):														-							`	: -	:	:	:	:
	: 4	: 4	:	: •	$\frac{\cdot}{\cdot}$	<u>:</u> : •	•	:	<u>: '</u>	$\overline{:}$	_	<u>:</u> :	<u> </u>	$\frac{\cdot}{\cdot}$:	<u>.</u>	:	•	<u>:</u>	<u> </u>	:	:`	:	÷	÷	÷
E, 10º ksi	1	1		_		+		-	1		1	֓֟֟ <u>֟</u>	- 2	-			4	1				•	-	•	7	
E., 10ª ksi												=														
C. 10*ks													0.0													
Physical properties:																							İ			
C, Bucklib (F)											.	0.102 See Figure 3.2.6.0	0.102 Figure 5	.8.6.	_											
a, to nin fa A				,							. Q	See Figure 3.2.6.0 See Figure 3.2.6.0	ure s	9 9												
4														ı												

*Sec Table 3.1.2.1.1. Bearing values are "dry pin" values per Section 1.4.7.1.

bT62 and T81: 0.020-0.039 in., 6 percent; 0.040-0.249 in., 7 percent; T62: 0.250-1.000 in., 8 percent; 1.00-2.000 in., 7 percent.

CThese allowables apply when samples of material supplied in the O or F temper are beat treated to demonstrate response to heat treatment. Properties obtained by the user however, may be tower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.

FORM LMSC 362 B-3

The panel by

INGRAM

Checked by

Date

Da

FORM LMSC 362 B-3

PROPERTIES

MECHANICAL

3.0

Prepared by:	NGRANI	Date 4 - 7 - 88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:		Date	TITLE AFE CARRIER VEHICLE	Model AFE
Approved by:		Date	STRESS ANALYSIS	Report No.

ORIGINAL PAGE IS OF POOR QUALITY

Effect of temperature on the tensile yield strength ($F_{\rm tr}$) of 2219-T87 aluminum alloy bare and clad sheet and plate. 3.2 FIGURE

FORM LMSC 362 B-3

PROPERTIES

していれるよりはと

, 0

Perm	Page Temp.	LOCKHEED MISSILES & SPACE COMPANY, INC.	Date		Prepared by:
1	3.4		6.7-88	INGRAM	
	Model	Title	Date		Checked by:
		ALL CARRILL VEHICLE			
	Report No.	STRESS ANALYSIS	Date		Approved by:
	ACG Report No.	ALL CARRILL VEHICLE			

3.0 MECHANICAL PROPERTIES

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 3.3 Typical tensile stress-strain curves (full range) for 2219-T87 aluminum alloy sheet and plate at room temperature.

4.1 **MODEL DESCRIPTION**

The NASTRAN model of the Carrier Vehicle is a full 360 degree model of all six bays of the vehicle. This was done in spite of the cyclic symmetry of the structure in order to simplify the location of the (mounted component) masses and to allow for the eventual inclusion of those structural components that are not symmetric. This model presently includes nearly 2500 nodes and 7500 elements.

During the beginning of the model development, not only the upper and lower panels, but all panels except the cylinder were considered as isogrid construction. For this reason the majority of the panels are modeled using a triangular pattern for the grid points. present time the avionics panels and the radial beams are solid sections and are consequently represented by triangular plate The upper panel is still an open isogrid (CTRIA) elements. construction and is made up of bar elements to simulate each individual isogrid bar. The lower panel is isogrid construction like the upper panel but with the addition of a .016" thick aluminum This construction is represented by both individual isogrid CBAR elements and CTRIA elements for the thin sheet. The center cylinder is a solid .125" aluminum sheet and is modeled with CQUAD plate elements. The panel splice tee and angle sections and the upper and lower ring angle sections are simulated in the model with CBAR elements.

The SRM is represented in the model by a concentrated mass and inertia (CONM2) located at the point in AFE coordinates specified by the mass properties group. It is connected through rigid (CRIGD) elements to set of plate elements which simulate the mounting ring. The Carrier Vehicle is attached to this ring through a system of brackets, separation bolts and flexures modeled by plate and bar elements. These SRM Support Brackets are located at three equally spaced points around the Support Ring. Sketches of these Brackets are included in the Structural Description section of this report and the NASTRAN details representing the same structure are given in the model plots which follow.

The Aerobrake is presently modeled in a similar method to the SRM. The values from the mass properties table are assigned to a gridpoint at the correct location, and this point is then attached to the Carrier Vehicle at four points. The Aerobrake attach fittings are modeled in enough detail that the fitting flange stresses, attach bolt loads, and connecting pin loads may be obtained from the output.

There are basically two structural configurations modeled at the present time. The liftoff/landing abort model includes the mass and connecting structure associated with the attached SRM. The loads from the Carrier Vehicle & Aerobrake are reacted back into the SRM structure for these conditions as the system is still supported in the payload bay at the support ring. The second model arrangement represents the regular landing configuration in which the AFE has jettisoned the SRM, has been recovered by the Shuttle, and is supported (in the payload bay again) on the three Trunnion fittings. For this configuration the SRM mass and connecting elements have been deleted and the CG node (loading point) has been consequently relocated.

			Page Temp. Perm.
and the state of t	MISS.	BILES & SPACE COMPANY, INC.	4.1.4
Prepared by:	LOCKHEED MISS		Model
INGRAM I	0-11-88 Tille		
Checked by.	AFE AFE	CARRIER VEHICLE	Report No.
		RESS ANALYSIS	
Approved by:	ST	KESS ANALIS	
		1	

4.1 MODEL DESCRIPTION (CONT'D)

ORIGINAL PAGE IS OF POOR QUALITY

PLOT OF TOTAL CARRIER VEHICLE MODEL
SHOWING SEM SUPPORT RING/BRACKETS AND
AEROBRAKE ATTACH FITTINGS

g case Jase 1

Prepared by Date Page INGRAM Checked by: Date Model AFE CARRIER VEHICLE Approved by: Date Report No. STRESS ANALYSIS 41 MOUEL DESCRIPTION (CONT'D) ORIGINAL PAGE IS OF POOR QUALITY UPPER

FORM LMSC 362 B-3

RM LMSC 362 B

Prepared by:	Date	LOCKHEED MICCHES & COAST COAST	Page Temp Perm
INGRAM	6-8-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	4,1.14
Checked by:	Date	Title	Model
	_	AFE CARRIER VEHICLE	AFE
Approved by	Date	STRESS ANALYSIS	Report No.

4.1 MODEL DESCRIPTION (CONT'D)

(S) => BAY NO.

CARRIER VEHICLE PLAN VIEW SHOWING LOCATION AND ORIENTION OF SRM SUPPORT BRACKETS AND TRUNKION FITTINGS.

IM LMSC 362 B-3

Prepared by Date Page LOCKHEED MISSILES & SPACE COMPANY, INC. 10-10-88 INGRAM 4.1.16 Title Charlend by Date Model AFE CARRIER VEHICLE Approved by Date Report No. STREW ANALYSIS 4.1 MODEL DESCRIPTION (CONTID) LOWER BRACKET (PEDESTAL) - TYPICAL BAYS 1,3,5 SKM (REF. UPPER BRACKET) ORIGINAL PAGE IS OF POOR QUALITY 700 Z 7001 7004 7003 2= 65 87 702 7017 Ö 0 0 70-9 1006 7007 7005 7015 7014 7010 7009 7013 7012 7011 7=55.23 .7093 7091 7092 GRIDS ON SUPPORT RING -10.0 - 3.33 +3,33 +10.0

AM I MCC 262 B 2

Prepared by:		Date	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
	INGKAM	10-11-86	LOCKHEED MISSILES & SPACE COMPANT, INC.	4.1.17
Checked by		Date	Title	Model
1 .			AFE CARRIER VEHICLE	
Approved by		Date		Report No.
			STRESS ANALYSIS	

4.1 MOVEL DESCRIPTION (CONT'D)

SRM SUPPORT RING CROSSECTION (@ $\theta = -30^{\circ}$)

OF POOR QUALITY

Prepared by:	NGRAM 10-11-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Chasked by	Date	Title	Model
		AFE CARRIER VEHILLE	
Approved by	Data	STIZESS ANALYSIS	Report No

4.1 MODEL DESCRIPTION (CONT'D)
- SUPPORT RING GUSSETS

Prepared by: (NGRAM	Date 10-18-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	Title ACC (ACC)	4.1.20 Model
Approved by	Date	AFE CARRIER VEHICLE STRESS ANALYSIS	AFE CV Report No.

CRIGO 19999 TRANSFERS LOADS TO
1607 IN VERTICAL AND TRANSLATIONAL DIRECTIONS (NORMAL
TO AXIS OF "TOWEL BAR"). SEE
PAGE PG. 4.1.14 FOR ORIENTATION
OF "TOWEL BAR" IN EACH BAY.

ORIGINAL PAGE IS OF POOR QUALITY

Ingram 6-7-88

AFE CARRIER VEHICLE STRESS ANALYSIS

4.2

LOAD CONDITIONS

There are presently five load conditions which have been run on these Three (Liftoff, Landing Abort, and Regular Landing) are high-g cases which produce internal loads in the Carrier Vehicle from the accelerations of the mounted components and mass of the structure. These three conditions were selected from the ten conditions given in Table 4.2.1 - AFE PRELIMINARY DESIGN LOAD FACTORS (presented below) as the critical cases which envelope The other two conditions are the application of the Thruster forces all others. when the AFE is in flight. One of these is with the SRM still attached and one with the SRM already jettisoned. The assumption made with each of these two conditions is that all Thrusters are acting at once and that the Thrusters are the only forces active during that instant. The purpose in applying these Thruster conditions was to evaluate the local structure in the near vicinity of each of the Thruster groups. The Thruster forces are of such low magnitude that no significant stresses result in the Carrier Vehicle other than at the local backup structure.

TABLE 4.2.1 AFE PRELIMINARY DESIGN LOAD FACTORS

Flight Condition	Load Factor, g			Angular Acceleration, rad/sec		
,	Nx	Ny	- Nz	0×	Öy	02
Lift-Off	-0.4 -4.0	<u>+</u> 1.4	<u>+</u> 2.5	<u>+</u> 10.0	+20.0	<u>+</u> 10.0
Ascent	-1.10 -3.17	<u>+</u> 0.4	+0.25 -0.80	<u>+</u> 0.2	<u>+</u> 0.25	±0.25
Descent	+1.01 -0.15	<u>+</u> 2.5	+2.5 -1.0	<u>+</u> 1.28	+0.02 -0.11	<u>+</u> 0.25
*SRM Burn	TBD	TBD	TBD	TBD	TBD	TBD
*Aeropass	TBD	TBD	TBD	TBD	TBD	TBD
Landing Normal (9.6 fps)	<u>+</u> 2.5	<u>+</u> 1.5	+6.2 -1.7	<u>+</u> 10.0	<u>+</u> 15.1	<u>+</u> 10.0
Landing Abort (6.0 fps)	<u>+</u> 1.6	<u>+</u> 1.3	+3.9 -1.1	<u>+</u> 8.3	<u>+</u> 9.4	<u>+</u> 6.3
Emergency Landing (Ultimate Load)	+4.5 -1.5	<u>+</u> 1.50	+4.5 -2.0			
On-Orbit PRCS	+.017 009	<u>+</u> .009	+.039 029	<u>+</u> .019	+.023 015	<u>+</u> .013
OMS Operation	273	±.0048	089	<u>+</u> .0104	<u>+</u> .0051	<u>+</u> .0045
Notes: Por sub	sequent	stress and	IVELS OF	Intern	I loads	the

Notes: Por subsequent stress analysis of internal loads, the signs of the table should be reversed.

Ingram 6-7-88

AFE CARRIER VEHICLE STRESS ANALYSIS

4.2

LOAD CONDITIONS (CONT'D)

The method of solution as discussed previously, involves using an inertial relief solution in NASTRAN that depends on an accurate representation in the model of the vehicle mass and inertia properties. The structural mass for the Carrier Vehicle panels, splice section bars and cylinder were calculated from an input density and the crossectional areas specified on the property cards. The non-structural mass for the mounted equipment, the SRM, and the aerobrake were assigned via CONM2 cards at the location given in the mass properties table. The NASTRAN program calculates and provides a summary of the total model mass and moment of inertia when the program executes. As can be seen in the following table, the agreement between the model and the original mass property estimates is very close.

TABLE 4.2.2 MASS PROPERTIES SUMMARY TABLE

AFE WITH SRM

	WT DOCUMENT	NASTRAN MODEL	% DIFFERENCE
MASS (ib) INERTIAS (slug-	12540.4 ft ²)	12534.3	0.05
lxx	2525.6	2540.6	-0.59
lyy	1911.6	1921.3	-0.51
Izz	1798.1	1826.2	-1.56

AFE W/O SRM

	WT DOCUMENT	NASTRAN MODEL	% DIFFERENCE
MASS (lb) INERTIAS (slug-ft 2	3567.4)	3585.2	-0.50
lxx	1726.4	1742.9	-0.96
lyy	1106.2	1105.5	0.06
lzz	980.8	1010.7	-3.05

Prepared by:	Date 3-4-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by	Date	ACE CARRIER VEHICLE	Model AFE
Approved by	Date	ATE CARRIER VEHICLE	Report No

5.1 AEROBRAKE ATTACH FITTING ANALYSIS

ORIGINAL PAGE IS OF POOR QUALITY

-2518.0

W

(CONT'D)
ANALYSIS
FITTING
ATTACH
AERORZAKE
1.5

			AFE CAR	RIGR VEHICL	ε
	۲	-2,319.8	-4,724.7	ANALYSIA	3,651.9
No.17.00	<i>a.</i>	-316,3	-1,926.9	1,486,8	1,041,8
LIFT-OFF CONDITION	\ \ '	0.316,0	-2,701.3	2,513,1 -1,486,8	7.040.
}	>	3,671.7	4,826.4	8.101,8-	3,744.4
X8801 FORCES	Z '	-3,708.8	-6,536.5	6,080.6	5,056.4
BAR	Σ	9,435.9	1,105.1	- 9,754.8 205,4	7,237.8
ATTACH BOACKET	525	ধ ত	ھ ہے	92	4 2
E ATTAC	CBAR	1980	7880	48801	58801
AEROBRAKE	BRACKET LOCATION	BAY 16	BAY /2	BAY 3/4	8AY 46

MOST HIGHLY LOADED (CRITICAL) BRACKETS,

AFE

STRESS

CARRIER VEHICLE

ANALYSIS

AFE - CU

	JE I	3-4-88	LOCKH	EED CORP	* *	5.1. 5
			AFE CARRIER STRESS AND	L VEHICLE ALYSIS		AFE CV
NOITI GINOS	۲	3,751.5	2,413.8	p. p51,1-	- 3,909.9	
501CDV	۵	9.046.1-	1,430.9	161.4	0.266,1-	
NORMAL	, ² >	2,145.1	1415.9	- 645.2	-2,234.7	US (VERT)
FORCES ~	>	-4,677.7	6.782	2'000'2	-5,194.6	-6,525.4
X8801 FC	Σ,	5,190.4	3,425.4	-1,561,6	8.101,8 -1,050,1-	W
ET BAR	Σ	7,1919.9	611.7 1.897.8	5,266.6	-4,083,5	
BRACKET	END	9 2	9 D	2-0	৫ 🗷	•
ATTACH	CBAR	10881	10887	48801	58801	
2A KE	+ 6		7,4	7	8AY 4/5	
AEROBRA KE	RRACKET		BAY 1/2	BAY	8AY	

AFE CV

5.1 AEROBRAKE ATTACH FITTING ~ CV SIDE

$$P_a = -1486.8 \text{ lb}$$
 $V_{1a} = V_{1b} = -5,107.8 \text{ lb}$

CRITICAL LOADS FOR END "Q"
REF AFE NASTRAN MODEL
LIFT-OFF LOADS FOR
BAY 3/4 FTG (CBAR 48801)

$$P_b = -316.3$$
 lb
 $V_{1b} = 3671.7$ lb
 $V_{2b} = -1326.0$ lb
 $M_{1b} = 2276.0$ in-lb
 $M_{2b} = -623.0$ in-lb
 $T_b = -2319.8$ in-lb

CRITICAL LOADS FOR END "b"

REF. ARE NASTRAN MODEL

LIFT-OFF LOADS FOR

BAY 1/6 FTG (CBAR 18801)

JEI 3-4-88

5.1.7

AFE

5.1 AEROBRAKE ATTACH FITTING ~ CV SIDE (CONT'D)

$$I_{1} = \frac{2.16 - 2}{(2a)}$$

$$I_{1} = \frac{2.16 (1.47)}{12} = .572 \text{ in}^{4}$$

$$I_{2} = \frac{1.47}{12} (2.16)^{3} = 1.235 \text{ in}^{4}$$

$$A = 1.47 (2.16) = 3.175 \text{ io}^{4}$$

$$K = ab \left[\frac{16}{3} - 3.36 \frac{b}{a} \left(1 - \frac{b^{4}}{12a^{4}} \right) \right]$$

$$K = 1.324$$

$$\begin{cases} I_{1} = \frac{P}{A} + \frac{M_{1} C_{2}}{I_{1}} + \frac{M_{2}C_{1}}{I_{2}} \end{cases}$$

$$f_{b} = \frac{\rho}{A} + \frac{M_{1} C_{2}}{I_{1}} + \frac{M_{2}C_{1}}{I_{2}}$$

$$f_{b} = -\frac{1486.8}{3.175} + \frac{(-9.754.8)(1.08)}{1.235} + \frac{(6080.6)(-.735)}{.572}$$

$$f_{b} = -16,812 \text{ psi}$$

$$MS_{Y} = \frac{51.0}{(1.25 \times 16.8)} - 1 = \frac{+ \text{HIGH}}{8 \text{END.}}$$

$$MS_{N} = \frac{63.0 \text{ *V}}{(2.0)(16.8)} - 1 = \frac{+ .88}{1.25}$$

V-USED Ftu FOR ULTIMATE MARGIN ASSUMING LOADS CAN REVERSE,

ASSUMES MATE TO BE 2219-T87 AL.

AFE

ANALYTE GENDING + AKIAL STRESSES AS EQUIVALENT AXIAL STRESS:

CI) REF. SM NO 1 e:

LUG PARAMETERS:

D = .75" (MAX)

t = 1.615" (MIN)

AFE

S.I AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D)

$$\frac{W}{D} = 1.96 \implies k_{t_u} \approx .835 \left(\text{REF FIG. 5a} \right)$$

SECT A-A:

$$I_1 = \frac{(1.47 - .75)(1.615)^3}{12}$$

$$I_1 = .253$$

$$A = (1.47 - .75)(1.615) = 1.163 \text{ m}^2$$

TRANSVERSE LOADING:

$$\frac{a}{D} = \frac{W}{2D} = .98$$

PIN-BEARING SECTION PROPERTIES:

$$I_{BZGAREA} = \frac{.75(1.615)}{12}$$
= .263 NJ

$$f = \frac{V_2}{tr} + \frac{T'e}{I_{br}}$$

$$f_{tr} = \frac{1326.0}{1.211} + \frac{(2402)(.8015)}{.263}$$

$$P_{tu} = K_t \cdot A_t \cdot F_{tu} = 61.2 \text{ K}$$

$$\int_{b} = \frac{M_{1} c_{2}}{I_{1}}$$

$$f_{1} = \frac{2276 (.8075)}{.253}$$

$$R_a = \frac{8448.4}{61,200} = .276$$

$$\Rightarrow \frac{A \cdot \omega}{A \cdot \omega} = .565 \quad (REF FIG. 6c)$$

$$Rtr = \frac{\overline{P}_{tr}}{P_{tr}} (2.0)$$

$$Arr = \frac{(10.26)(2.0)}{(52.64)} = .390$$

100 8 10 6 10 5 10 800 3.7-88 5.1.10 JEI AFC ALE CARKIER VEHICLE STRESS ANALYSIS 5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONTD) - "LUG" ANALYSIS (CONTID) AXIAL , TRANSVERSE LOADING INTERACTION EQUATION: MSu OBLIQUE LOADING (Ra + Rtr 1.6).625 AEROBRAKE / CARRIER VEHICLE ATTACH BOLTS MARRIER VEHICLE CONNECTION: ATTACH FTG TO NASTRAN MODEL DETAIL OF AEROBRAKE ATTACHI FTG. CARRIER VEHICLE SIDE SCALAR SPRING (CELAS2) ELEM REPRESENTS BOLTS 4810X (4809 X (4804 X 4381 •3379 4804X • 3378 CARRIER VEHICLE TOP PANEL ORIGINAL PAGE IS OF POOR QUALITY

AFE

5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D)
- FITTING / CARRIER VEHICLE ATTACH BOLTS

SUMMARY OF CELASZ SPRING FORCES FOR LIFTOFF CONDITION

CRITICAL FASTENER IS 4810 X

TOTAL SHEAR,
$$V = \left[(2977.9)^2 + (3341.4)^2 \right]^{\frac{1}{2}} = 4475.8 \text{ Lb}$$

"TENSION" = $F_2 = 13,166.9 \text{ Lb}$

ASSUMING FASTENER SELECTED IS 1/2" DIA 180 KSI - TENSION (108 KSI - SHEAR) MS 21250 TENSION BOLT OR EQUIV:

$$P_{t_u} = 180 \left(\frac{\pi}{4} D^2 \right) = 35.343 \text{ kif}$$

$$P_{s_u} = 108 \left(\frac{\pi}{4} D^2 \right) = 21.206 \text{ kif}$$

$$R_t = \frac{2.0 (13,167)}{35.343} = .745$$

$$R_s = \frac{2.0 (4.476)}{21.206} = .422$$

* * ASSUMING, LOAPS CAN BE REVERSIBLE,

* DETERMINED TO BE MOST CRITICAL CONDITION FOR THIS STRUCTURE

5.1.12

AFE CARRIER VEHICLE
STRESS ANALYSIS

AFE

5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D)

- FITTING / CARRIER VEHICLE ATTACH BOLT ANALYSIS (CONTID)

BOLT TENSION, SHEAR INTERACTION:

(REF NASA STRUCTURES MANUAL , TABLE A. 3.4.0-1)

$$k^{3}R_{5}^{3} + k^{2}R_{t}^{2} = 1$$

$$k^{3}(.422)^{3} + k^{2}(.745)^{2} = 1$$

BY TRIAL , K = 1.24

$$MS = k-1 = +.24$$

TENS-SHEAR

BENDING ANALYSIS OF ATTACH FTG (CV SIDE)

REF SECTION B-B , PG 5.1.6:

ELEM	Δ	Υ	AY	AY 2	Į.
0	1.7760	1.2300	2.1845	2.6869	.3242
2	.7277	.3675	. 2674	.0983	,0036
3	.8061	. 1225	.0987	.0121	.0040
Σ	3.3098		2,5506	2.7973	. 3318

$$\bar{\gamma} = \frac{\Sigma A \gamma}{\Sigma A} = \frac{2.5506}{3.3098} = .7706$$
 IN

ORIGINAL PAGE IS OF POOR QUALITY

AFE

5.1 AERORPAKE ATTACH FITTING ANALYSIS (CONT'S)

RENDING ANALYSIS OF CV FITTING (CONT'D)

$$f = \frac{M_{7}}{I} = \frac{(7486.4 + 6529.3)(2.0)(1.97-.771)}{1.164}$$

$$MS_{\gamma} = \frac{51.0}{1.25(28.9)} - 1 = \frac{+.41}{1.25(28.9)}$$

$$MS_{u} = \frac{63.0}{2.0 (28.9)} - 1 = \frac{+.09}{}$$

ALLOWABLE CRIPPLING STRESS OF UP-STANDING FLANGE (ONE EDGE FREE) (REF NASA STRUCTURES MANUAL, SECT 4.21)

$$F_{cc} = \frac{.215 (51E3 \cdot 10.8E6)^{1/2}}{(1.97 - .567).75}$$

CRIGHVAL PRINT ID OF POOR QUALITY

AFE

5.1 ATTACH FITTING ANALYSIS - AEROBRAKE SIDE

I. LIFTOFF:

 $M = \bar{P}_{x} (.85)$

 							£
BAY	Pr.	Pe	Pz	Ρ̄χ	جَ ₍	P ₂	M
1/6	313.3	-1,325.3	- 3,672.6	-991.1	-3 672.6	-9340	-842.4
1/2	1,927.2	-2,699.1	4,822.8	- 1373.9	4822,8	-3018.6	-1167.8
3/4	1,489.7	2,509.8	5,105.1	2918.4	5105.1	-35.2	2480.6
4/5	-1,042.1	2085.2	- 3,744.2	1284.8	-3744.2	1945.1	1092.1

AFE

II LANDING ABOART

BAY	Pr	Po	Pa	جَ م	Pr	$\bar{\rho}_z$	М
1/6	1797.2	1782,2	3218.9	2442,0	3218.9	-665.3	2075.7
1/2	-365.8	734.0	-1207.3	452.8	-1207.3	683.8	384.9
3/4	513.4	-243.1	-1148.2	46.2	-1148.2	-566.2	39.3
415	1951.2	-1842.0	3078.4	-619.6	3078.4	-2610.8	-526.7

III REGULAR LANDING

ВАУ	Pr	Po	Pz	$\bar{\rho}_{x}$	Py	Pe	М	,
1/6	1942.7	2143.1	4672.8	2827.3	4672.8	-610.9	2403.2	4
1/2	-/430.4	1412.5	-1289.6	508.1	-1289.6	1945.0	431.9	
3/4	159.3	-645.9	-2064.2	- 479.7	-2064.2	-460.9	-407.7	
4/5-	1991.6	-2233.9	5188.3	- 938.8	5188.3	-2841.7	-798.0	

AFE

Section A-A

where M= FR (1.65)
or M= FO (1.65)

element X8RCZ, X= 1,2,4,5, ball at end B

Wmax = W,+Wz Wmin = Wz-w,

> ORIGINAL PAGE IS OF POOR QUALITY

AFE

5.1 AEROBIZAKE ATTACH FITTING ANALYSIS (CONT'D)

ORIGINAL PAGE IS OF POOR QUALITY

 $X = L_b \omega_{max} = constant = \frac{1.60(8193)}{(8193 + 5910)} = 0.93 in$

	MAX -UMIA								
RESULTANT	Logd Case								
Bay 1	I	I	<i>I</i> II						
1/6 1/2 3/4 4/5	1826 2768 ¥ 2513 2087	1997 736 830 2138	2744 1759 945 7308						

* highest F

If X is measured as shown,

0 < x < 0.93"

shear eg'n
$$V = -F_R + \frac{1}{2} \left[\omega_{max} + \left(\omega_{max} - X \left(\frac{\omega_{max}}{0.93} \right) \right] \times F_R$$

$$= -F_R + \omega_{max} \times - \frac{X^2 \omega_{max}}{1.86}$$

$$| Slope = 0.93 \times \omega_{max} | \omega_{max} \omega$$

$$M_{max}$$
, $(V=0)$; $O=-2768+12416 \times -\frac{\chi^{2}(12416 \times)}{1.86}$

$$6675 \times^{2} - 12416 \times + 2768 = 0$$

 $X = 1.60 - 0.759 - 0.5e$

Mmax = 2768 lb (0.85+0.259) = 3.07 k-i

$$\int_{b} = \frac{\rho}{A} + \frac{Mc}{I}$$

41 8

NIC CARRIER VEHICLE
STRESS ANALYSIS

- ATTACH PIN ANALYSIS (CONT'D)

$$f_b = \frac{5159}{0.442} + \frac{3.07E3(3/8)}{1.55E-2} = 85.9 \text{ ksi}$$

Assuming AZBG steel pin 180 ks; = Ftu

$$MS_u = \frac{180}{2.0(85.9)} - 1 = +0.05$$

$$MS_y = \frac{163}{1.25(85.9)} - 1 = +0.52$$

Prepared by	T.O.M.	Date 3 - 8 - 8 &	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page 1 Page 9 Page 5.1.19
Checked by		Date	TITLE AFE CARRIER VEHICLE	Model AFE
Approved by:		Date	STRESS ANALYSIS	Report No.

AERORRAKE ATTACH FITTING ANALYSIS (CONT'D) 5,1 OF RESULTANT PIN REARING LOADS - SUMMARY

ORIGINAL PAGE IS

						l	<u></u>	1					t	_					
Hont	Sm.n.	5910	2368	4818	6754		P. C. 1 15. 1	3	6 463	2382	2892	6169		(tat	1.43	7261	56 93	3057	
Resultent	3	8153	11451	11275	9362		لم	€ mer	635-9	3301	3724	9592		Reacting	3	1926 990'01	2843	4239	
	3	4290	8737	7218	6753	i,		Enix	6965	2378	984	1965			225	6937	4574	2089	
Ü	(C.a.	2947	111121	11264	9361		a	Lmek	7997	3296	1690	8 264			3 mar	2196	6 342	C687	
•	3	5118.1	424,01	5696	8057		IT.	3	0.8839	1.2832.1	938.2	7112.7		Fe	3	8277	85115	2493	_
•	3	828.5	HZK'O1 H 2891	1569.3	1304.3			3	1114.2	459.3	151.9	115-1.9			3	1340	1,88	404	
	3	5904	4661	367	411			Enin	2113	130.4	5982	3513			3	3/112	3389	2232	
	Umax	5635	2736	509	15.00		. ∝	Cro.	40329	8.08	1958				(5,314)	2974	669%	3094	_
4	3.	8.6484	2354.8	432.8	135.9	ļ	L	3	3475.3	155.6	3065.2	5.02.817 6.19.14 3.870.5		F	3	2560	1,40%	5992	
	3	785.1	381.2	70.9	22.0			3	262.6	25.2	496.2	9.829			3	414	655	431	
1	, o	9.5221	2.699.8	7510.9	2086.8	•		12	7.82.7	734.8	243.0	1842.2	S N		٥	2143.7	1413.6	645.7	
	F	1256.1	6.1.09		35.2	1,3087		الم	1.006	40.3	793.9		14 40		ai L	663.1	1047.3		
	٥	3465.1	5158.7	5317.4 113.4	4/5 3886.4	LANDING ABORT		م ٔ	3575.7	1260.4	9.46	3.080E	REGULAR LANDING		9	1.8105	1615.7 1047.3	1950.7 689.6	
	34	٦/,	۲/۲	4/5	1/5	77		Bey	9/.	2,	3/4	4/2	H RE		Bax	9/,	٦/١	3/4	7

AFE

5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D)

- AEROBRAKE SIDE; ATTACH FASTENER ANALYSIS ORIGINAL PAGE IS OF POOR QUALITY

FITTING ATTACH BOLT SHEAR FORCES:

RESULTANT

BOLT	×	۲	ײ	۲ ²	Pcx	Pex	Px	Pcy	Pex	P	P
1	-75	-2.0	.5625	4.0	353.4	+294.6	648.0	584. 1	-110.5	473.6	802.6
2	.15	-2.0	. 5625	4.0	1 1	t	648.0	1 1	+110.5	1	
3	2.0	75	4.6	.5625		+110.5	463.9		+294.6	878.7	993.6
4	2.0	.75	4.0	,5625		-110.5	242.9		+ 294.6	878.7	911.7
5	.75	2.0	,5425	4,0		-294.6	58.8		+ 110.5	694.6	697.1
6	75	2.0	.5625	4.0		-274.6	58.8		- 110.5	473.6	477.2
7	- 2.0	.75	4.0	.5625	, t	- 110.5	242.9	₩.	-294.6	289.5	377.9
ક	-2.0	75	4.0	,5625	353.4	+110.5	463.9	584.1	- 294.6	289.5	546.8
Σ	<u> </u>		18.25	18.25			2827.2			4672.8	

REF BAY 1/6, REGULAR LANDING: Px = 2827.3 Lb

Ry = 4672.8 Lb

FORCES AT BOLT PATTERN

M = 2403.2 in. 16)

LARGEST SHEAR FORCE ON FAST'R # 3 = 993.6 Lb (LIM)

AFE CARRIER YEHICLE

AFE

STRESS ANALYSIS

5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D) - AEROBRAKE; ATTACH FASTENER ANALYSIS

TENSION LOADS :

ORIGINAL PAGE IS OF POOR QUALITY

$$P_{t} = \frac{\bar{P}_{z}}{2} + \frac{M_{x}(Y)}{\Sigma x^{2} + \Sigma Y^{2}} + \frac{M_{y}(x)}{\Sigma x^{2} + \Sigma Y^{2}}$$

		LIFTOFF		LAN	DING A	BORT	regular landing				
BAY	Pz	Mx	My	Pz	Mx	MY	PZ	Mx	My		
1/6	-934.0	-5508.9	-1486.7	-665.3	4828.4	3663.0	-610.9	7009.2	4241.0		
1/2	-3018.6	7234.2	-2060.9	683.8	-1811,0	679. 2	1945.0	- 1934.4	762.2		
3/4	-35.2	7657.7	4377.6	-566.2	-1722.3	69.3	-460.9	-3096.3	-719.6		
4/5	1945.1	-5616.3	1927.2	- 2610.8	4617.6	-929.4	- 284.1	7182.5	-1408.2		

$$M_X = \bar{P}_Y (1.50)$$
 $M_Y = \bar{P}_X (1.50)$

$$P_{t} = \frac{P_{t}}{8} + \frac{M_{x}(Y)}{36.5} + \frac{M_{y}(x)}{36.5}$$

LIFT OFF, BAY 1/2:

$$P_{t} = -3018.6 + \frac{7234.2(-2)}{8} + (-\frac{200.9}{.75}) = -816.1 \text{ lb}$$

ASSUMING LOADS CAN BE REVERSIBLE, Pt = BIL.1 16 (LIM-TENS)

CONSERVATIVELY ASSUME MAX SHEAR CALCULATED EARLIER AND MAX TENSION FORCES ACT ON SAME FASTENER.

AFE

AFE CARRIER VEHICLE
STRESS ANALYSIS

5.1 AEROBRAKE ATTACH FITTING ANALYSIS (CONT'D)

ATTACH FASTENERS - AEROBRAKE SIDE (CONT'D)

ASSUME $\frac{1}{4}$ " DIA 95 KSI SHEAR, 160 KSI TENSION FASTR P1 = (160)(πD^2) - 7.854 KIP

 $P_{tu} = (160)(\frac{\pi D^2}{4}) = 7.854 \text{ KIP}$

 $P_{su} = (95) \left(\frac{770^2}{4} \right) = 4.663 \text{ KIP}$

 $R_{\pm} = \frac{2.0(816.1)}{7854} = .2078$

 $R_s = \frac{2.0(993.6)}{4663} = 0.4262$

SHEAR-TENSION INTERACTION:

 $k^{3}R_{3}^{3} + k^{2}R_{2}^{2} = 1$

TENS . - SHEAR

 $K^{3}(.0774) + K^{2}(.0432) = 1$

K = 2.17

MS = K-1 =

+ 1.17

AFE CARRIER VEHICLE

15,5

STRESS ANALYSIS 5.1 AEROSPAKE ATTACH FITTING ANALYSIS (CONTID)

ORIGINAL PAGE IS OF POOR QUALITY

Y- direction

$$e/D = \frac{0.4}{0.375} = 1.07$$
 (used $e = 1.5$ in table)

$$f_s = P/A_s = \frac{69516}{2(.25)(0.4-.1875)} = 6.5465$$

$$MS_u = \frac{37}{2.0(6.54)} - 1 = +1.8$$

X- direction

$$f_s = \frac{e}{A_s} = \frac{464}{2(.25)(0.7 - .1875)} = 1.81 \text{ ks}.$$

$$MSu = \frac{37}{2.0(1.21)} - 1 = +\frac{9.2}{}$$

AFE

AFE CARRIER VEHICLE STRESS ANALYSIA

BEARING STRESS

max Presultant = 994 16 @ hole 3

fb = P/Ab = 994 = 10.6 koi

Fbry = 83 ks; } e/D = 1.5

 $MS_{\nu} = \frac{99}{2.0(10.6)} - 1 = +3.7$

 $MS_y = \frac{83}{1.25(10.6)} - 1 = +5.3$

MOTOR (SRM) ATTACH BRACKETS 5,2 ROCKET

- PLAN VIEW OF CARRIER VEHICLE SHOWING NEW LOCATION OF SRM SUPPORT BRACKETS

The state of the s	LOCKHEED MISSILES & SPACE COMPANY, INC.	Fay Ferm
Approved by: Date	AFE CARRIER VEHICLE - SEM SUPPORT STRUCTURE	AFE .
5.2 SIZM ATT	ACH BRACKETS (CONT'D)	
UPPER BIZACICET	33.5 (R) 72.87 (X) 39.6 (R) ×1755 35.3 (R) 766 789 707 709 709 709 709 709 709	
LOWER BRACKET_	X X 7 0 0 2 2 2 X= BAY No. =	1,3,5
	717 (72) — 725 — 55.23 (X) 37.1 (R) 52.7 (X)	
SRM SU - SIDE	PPORT BRACKETS NASTRAN DETAILS	j

Prepared by:	VGRAM	Date 4-26-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:		Date	Title AFE CARRIER VEHICLE	Model AFE
Approved by:		Date	- SRM SUPPORT STRUCTURE	Report No.

5.2 SRM ATTACH BRACKETS (CONT'D)

X= BAY No. = 1,3,5

SRM LOWER SUPPORTBRACKET NASTRAN DETAILS - FRONT VIEW

MSC 362 B-3

Prepared by	Date 6/1/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page temp Perin
Checked by:	Date	AFE CV NASTRAN RESULTS	Model AFE CV
Approved by:	Date		Report No.

5.2 SRM ATTACH BRACKETS (CONT'D)

Q. LIFTOFF

Bay No.	Element	Shear (16)	Bonding (in-16)	Axial (16)	
,	1700	-11,647	7,988	-5,894	
3	3700	4,802	-2,702	-15,239	#ر
5	5700	7,731	-4,582	12,286	
				5 = 10 0 t = 2	-

Z= 8,847

b. LANDING ABORT

Bay No.	Element	Shear (16)	Bending (ix-16)	Axial (16)
1	1700	5,129	-3,513	-2,689
3	3700	-580	302	937
5	5700	-3,951	2,327	-11,962

Z= 13,714

C. THRUSTER LOADS WITH SRM ATTACHED

Bay No.	Element	Shear (6)	Bonding (in-1b)	Axigi (16)
· /	1700	28	-19	-0.7
3	3700	30	-18	-1.0
5	5700	36	-22	2.4

UPPER/LOWER BRACKET ATTACH BOLT LOADS

* worst continution

Prepared by:		Date		Page Temp	Perm
	INGRAM	7-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.2.6	
Checked by:		Date	Title	Model	
			AFE CARRIER VEHICLE		
Approved by:		Date	STRESS ANALYSIS	Report No.	

5.2 SRM ATTACH BRACKETS (CONT'D) - UPPER BRACKET ELEMENT STRESSES

		***************************************	^
ELEMENT	-	JMIT STRESS	<u>(1)</u> (KSI)
2	BAY1 (X=1)	BAY 2 (X=2)	BAY 3 (x=3)
	/	/3\	
X751	-34.530	-64.086	60.634
X752	20.919	-83.170	60.475
K753	11.885	-63.998	-32.096
X754	1 -29.059	- 9.364	- 4.739
X755	-1,455	6.943	- 4.663
X756 CTRIA	-7.107	5.350	4.968
X757	- 6.324	-5.505	4.295
×758	1.661	7.710	-5.314
X760	-11.339	- 4.085	7.418
×765	-7.607	- 2.715	3.124
X774	- 2.360	-9.121	6.039
X775	- 3.357	- 10.586	6.370
X7051	4.646	- 4.565	-4.504
X7052	6.252	-11,046	7.862
X7053	-1.315	-5.16(2.576
X7055	6.432	-7.476	5.675
×7057	-5.355	-7.173	-5,860
×761	- 5,471	-3.194	4.742
×762	- 6, 877	- 3.173	6.457
×763	- 3.732	- 2.940	4.083
x764 COM	- 1.897	-2.229	2,337
×766	- 4.025	-3.594	3,793
×767	- 2.191	1.262	-1.680
×768	1.499	.534	,860
×769	.118	439	, 601
K770	17.203	-12.578	-12,732
×771	5.077	-5.223	-1.792
X772	2,608	-4.482	. 2.469
X773 \$	2.099	- 3.617	3.049

MAX PRINCIPAL STRESS

REF. PG. 5.2.3

THESE STRESSES ARE NOT CONSIDERED REALISTIC AS THEY ARE LOCAL EFFECT OF MOMENT TRANSFERRED FROM BAR X700. WILL BE RECINED.

ONN LINSC 362 8:3

Prepared by: Date		LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
INGRAM	5-3-88		5.7.7
Checked by:	Date	Title	Model AFE CV
Approved by:	Date	- 3 SRM BRACKET SUMMARY	Report No.

5.2 SRM ATTACH BRACKETS (CONT 10)

LOWER BRACKET ELEMENT STRESSES (LIFTOFF CONDITION)

element L	LIMIT STRESS (KSI)		
<u>&</u>	BAY 1 (X=1)	MAY 5 (X:5)	
IOFX	-21.359	24, 273	
x 702	-23.478	29.895	
×703	15.758	-14.043	
x 704	-20.195	22.040	
×765	19.042	-20.184	
× 706	15.886	- 14. 317	
x 7001	13.663	-13.520	
x 7002	11.851	-10.809	
(7003	12.539	-11. 447	
x 7004	-13.469	11.968	
× 7005	6.127	4.908	
(7006	- 8,367	7.863	
(7007)	-8.720	8.410	
800F	-9.550	9.053	
(1009)	-10.322	9.054	
(7010	- 1.598	7.967	
(7011	13.158	-14.085	
7012	- 9 . 865	-12.322	
(7013	-12,662	8,663	
7014	- 6.602	6,463	
× 7015	-9.737	8,939	
(7016	-3.813	5.984	
X 7017	~ 5,708	8.791	
K7018	10,423	3.807	
(7019	-17.530	3,970	
x7020	7. 480	-6.053	
(7021	3.763	- 3.061	
(7091	-16,606	29.709	
x 7092	10.807	-10.397	
×7093	25.227	-9,131	

LMSC 362 B-3

MAX PRINCIPAL STRESS & PEF. FIG. 5

Prepared by:	Date		
INGRAM	8-1-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	Title	5,2,8
		AFE CARRIER VEHICLE	Model
Approved by:	Date	THE THE	
	ľ	STRESS ANALYSIS	Report No.

- UPPER BRACKET STRESS ANALYSIS

SECT A-A

(REF NACA TN 8782 FOR METHOD)

$$b_{\omega} = 4 - 2\left(\frac{.25}{2}\right) = 3.75$$

$$b_{f} = 3.05 - \frac{.25}{2} = 2.925$$

$$\frac{b_{f}}{b_{\omega}} = \frac{2.925}{3.750} = .78$$

$$F_{c} = \frac{k_{W}\pi^{2}E}{12(1-\nu^{2})} \cdot \frac{t_{W}^{2}}{b_{W}^{2}} = \frac{(1.45)(\pi^{2})(10.8 \times 10^{6})(.25)^{2}}{12(1-.33)}$$

MS =
$$\frac{51.0}{1.1(17.2)}$$
 + $\frac{1.69(Y)}{1.1(17.2)}$ MS = $\frac{51.0}{2.0(17.2)}$ - $\frac{1}{2.0(17.2)}$

Prepared by:	Date		Page Temp Perm
INGRAF	1 8-1-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.2.9
Checked by:	Date	Title	Model
		AFE CARRIER VEHICLE	
Approved by:	Date	STRESS ANALYSIS	Report No.

5.2 SRM ATTACH BRACKETS (CONTID)
- UPPER BRACKET STRESS ANALYSIS (CONTID)

NACA TH 3782, FIG. 5:

NACA IN 3782

Prepared by:	Page terrip Perm		
Checked by:	Date	Title APE CV NASTRAN RESULTS	Model AFE CV
Approved by:	Date	- 3 SRM BRACKET SUMMARY	Report No.

5.2 SRM SUPPORT BRACKET STRESS ANALYSIS

THE STRESSES SUMMARIZED IN THE PREVIOUS TABLES REPRESENT THE MAX PRINCIPAL STRESS THAT RESULTS FROM THE COMBINATION OF AXIAL, BENDING AND SHEAR LOADS ON THE ELEMENT.

THE MOST CRITICAL (HIGHLY STRESSED ELEMENT IS CTIZID2 NO. 5702 WHICH IS AT THE TOP END OF THE LOWER BRACKET, ADJACENT TO THE ATTACH BOLT. THIS STRESS RESULTS PRIMARILY FROM BENDING; THEREFORE A SIMPLE COMPARISON TO FTY FLY WILL BE THE FAILURE CRITERIA.

MS =
$$\frac{51.0}{(1.25)(29.895)}$$
 = $\frac{+.36}{}$

$$MS_{ULT} = \frac{63.0}{(2.0)(29.845)} - 1 = \frac{+.05}{}$$

Proposed by	6/2/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page temp term
Chincked by	Date	Title	Model
Approved by:	Date	ALE CV WASTRAND RESOCTS	Aft CV Report No.

5.2 SRM ATTACH BRACKETS (CONT'D) - EFFECT ON CENTER CYLINDER

CYLINDER PANEL ELEMENT STRESSES (LIFTOFF)

Element	Limit Stress (koi) Bay 3
Y. 01	3.01
× 02	4.62
X 03	5.49
x 04	6.90
X 05	8.73
× 06	6.34
X 07	5.02
x 08	7.92
х <i>0</i> 9	-7.57
XIO	2.44
Χιι	-3.26
× 12	-3.04
y /3	3.44
X 14	-4.06
X 15	-5.65
X 16	-7.80
XIZ	-9.07
¥ 18	-7.72
X19	7.29
X 20	-2.55
721	2.53
X ZZ	5.21
7.73	-7.05
*24	-8.24
X 5 £	- 9.96
x 26	-11.24
X 27	-10.44
x 28	2.23
X29 .	2.77
Y.30	3.17

X=300

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by: T.O. Murray	Date 6/2/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	· ·	Model
Approved by:	Date	TILE TOUGHTAIN VERGETS	Report No.

5.7 SRM ATTACH BRACKETS (CONT'D)

CYLINDER PANEL ELEMENT STRESSES (LIFTOFF) (CONTD)

	1
- Element	Limit Stuess (ksi) Bay 3
X 31	6.25
X 3 Z	4,73
x 33	-14.07
X34	-19.14
X35	-19.88
X36	-13.91
XZ>	2,22
X 38	- 2.59
x37	3.82
X40	5.77
X4/	-8.50
X 4 2	-10.17
X 43	-9.22
X44	-9.57
× 45	-8.52
X46	7.85
X48	-2.35
×50	2.65
X5-/	-7.43
X 5 2	-10.99
X 5-3	-8.15
X 54	-4.43
×58	3.62
x 59	-2.93
X 60	-4.66
× 61	-3.29
X 62	-2.54
X 63	3.84

Date Checked by.

Date Title AFE CARRIER VEHICLE

Approved by:

Date STRESS ANALYSIS

Date Page Temp Perm 5, 7, 1, 3

Model AFE CV

Report No.

- MODIFIED UPPER BRACKET (FULL HEIGHT)

IM LMSC 362 B-3

Prepared by: INGRAM	Date 4-78-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	Title APE CARRIER VEHICLE	Model
Approved by:	Date	STRESS ANALYSIS	Report No.

5.2 SRM ATTACH BRACKET

MODEL PLOT OF BRACKET / CYLINDER SEGMENT

FORM I.MSC 362 B-3

P	Prepared by:	Date		
_	INGRAM	6-28-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
C	Checked by:	Date	Title	5.2.15
-			AFE CARRIER VEHICLE	Model
Α.	approved by:	Date		AFE CV
_			STRESS ANALYSIS	Report No.
1				

CURVED PANEL (CYLINDER SEGMENT) BUCKLING ALLOWABLE

MATERIAL: 2219-T87

REF. NACA TN 3783, FIG 49: (INCLUDED ON PG.)
FOR ANALYSIS METHOD.

$$\frac{PANEL 1:}{("LONG" PANEL)} \frac{7}{rt} = \frac{b^2}{rt} (1-v^2)^{1/2} = \frac{(8.9)^2}{(34)(.125)}$$

$$\frac{a}{b} = \frac{L}{b} = \frac{20}{8.9} = 2.25$$

$$T_{cr} = \frac{K_5 \pi^2 E}{12 (1 - v^2)} \left(\frac{t}{b}\right)^2 = \frac{(20) \pi^2 (10.5 \times 10^6)}{12 (1 - .33^2)} \left(\frac{.125}{8.9}\right)^2$$

OF POOR QUALITY

ORM LMSC 362 B.1

Prepared by:		Date	LOCKUEED MICCUES A COLOR COMMISSION	Page Temp Perm
ı	NGRAM	6-28-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.2.16
Checked by:		Date	Title AFE CARRIER VEHICLE	Model AFE CV
Approved by:		Date	AFE CARRIER VEHICLE STRESS ANALYSIS	Report No.

5.2 SRM SUPPORT BRACKET (CONT'D) - CURVED PANEL (CYLINDER SEGMENT) BUCKLING

$$\frac{PANEL 2}{(b_2 > L}$$
=>"WIDE" PANEL)

$$\frac{\rho_{\text{ANEL}} \ 2}{(b_2 > L)} = \frac{b^2}{rt} \ (1-v^2)^{\frac{1}{2}} = \frac{(26.7)^2}{(34)(.125)} (1-.33^2)^{\frac{1}{2}}$$

$$\frac{Z_{b}}{Z_{b}} = \frac{158.3}{158.3}$$

$$\frac{A_{b}}{A_{b}} = \frac{26.7}{158.3} = \frac{1.34}{158.3}$$

$$T_{cr} = \frac{K_{s} \pi^{2} E}{12(1-v^{2})} \left(\frac{t}{b}\right)^{2} = \frac{41(\pi^{2})(10.5 \times 10^{6})}{12(1-.33^{2})} \left(\frac{.125}{26.7}\right)^{2}$$

Prepared by:	1	ate 6-28-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp
		• - 26 - 60 ate	Title	5.2.17 Model
Anna			AFE CARRIER VEHICLE	AFE C
Approved by:		ate	STRESS ANALYSIS	Report No.
5.2 <u>sr</u>	M SUPF	PORT B	RACKETS (CONT'D)	
		10.5	NEL (CYLINDER) BUCKLING AL	LOWARLES
ORIGINAL	PAGE IS			
OF POOR	QUALITY		j	
			115-1	
			1 12/1	ຫ
**			6	plate 1.
\$				upported Continued
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(c) Wide, simply supported plates Figure -9 Continued.
F 19				17g L/y
			•	de, sir Figure
~				c) W1
378			4- 5238	C
(2)			6	
4		Q	6 6 (11)	
NACA			**	
-				
FROM			/X/	ທ ຍ ພາ ໝ
				편. 명.
165		ĺ		s curv
7/2				plate:
				rted rife
5 2∶				suppo ents 3 =
KLI			- 928 No	سوال الالالالا (ع) ع
BUC			\ \	ong s:
2			6	uckling coefficients for various $\frac{k_{B}\pi^{2}E}{2\left(1-v_{e}^{2}\right)}\left(\frac{t}{E}\right)^{2}$: $\mathbb{S}_{b}=\frac{b^{2}}{rt}\left(1-v_{e}^{2}\right)$
SHEAR BUCKLING CURVES]]]	Shear buckling coefficients for various curve tor = $\frac{k_B\pi^2E}{12\left(1-v_e^2\right)}\left(\frac{t}{b}\right)$; $\mathcal{C}_b = \frac{b^2}{rt}\left(\frac{t}{1}-v_e^2\right)^{1/2}$.
2) Sh
	. 1			Figure 49 Shear buckling coefficients for various curved plates.
	•	•	6 6	p)
			*	

Prepared		JGRAM	Date 4-29-88	LOCK	CHEED MISSILES	& SPACE C	OMPANY, IN		ige Temp Pe	P rm
hecked			Date Date	Title	AFE CARRIER VEHICLE STRESS ANDLYSIS Model AFE (Report No.					
5.2	SRI	<u> </u>	ACH A	, NALY 5	1 <u>5</u> (CON T	<u> </u>				
		CYLINI			L SHEAR	,	<u>ses</u>			
		BAY: _	1	LOM	D CONDIT	10N: L	ANDING	ABORT	<u>-</u>	
	1 _M	uk IN	NASTRA CYLIN		MENTS FO	or w	SEGME	int of		
	749	898	727	803	1328	1936	1348	655	912	— UP Pai
	436	238	259	379	605	1061	1138	524	1102	
	266	185	335	359	636	269	1119	1343	1416	
	311	187	198	567	952	1162	2217	3147	2366	
	263	295	440	454	1359	871	902	1144	2380	
	674	319	1142	1240	1318	539	625	1364	2783	Lv
	3	4217	1627	(1925 (1	752					PA
		PANEL	SHE AR	BUCKL	ING MARC	: 24:				
		(conse	ERNATIVE	ELY ASS	UME MAX	SHEAR	. EXISTS		;	
•	トノリ	THRO	00GH00	T PAN	اول:				5	
	1016/15627	PANEL	1:	MAX =	3,147 psi	(LIM)	τ)		15GAM INTERSECT	
	האם האם	MS S	HEAR-BU	= CKLING (38.2 (2.0)(3.15)	(=	HIG	14	BGAL	
	ומאסומר	PANEL MS	2:	TMAX =	1925 psi				RADIAL	

+1.25

FORM LMSC 362 B-3

SHEAR-BUCKLING $=\frac{8.7}{2(1.93)}$

Prepared by	Date 4-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm	
Checked by	Date	AFF (ARRIER VENICLE	AFE CV Report No.	
Approved by:	Date	AFE CARRIER VEHICLE STRESS ANDLYSIS		

5.2 SRM ATTACH ANALYSIS (CONTO) - CYLINDER PRINCIPAL SHEAR STRESSES

BAY: 3 LOAD CONDITION: LANDING ABORT

IN NASTRAN ELEMENTS FOR 60° SEGMENT OF CYLINDER :

474	507	559	592	558	774	869	395	334
330	356	353	244	294	537	628	354	263
310	260	308	236	388	696	528	18	324
291	245	276	305	201	1140	1637	1291	550
239	240	288	386	204	313	296	291	516
192	236 253 418	3 <i>55</i>	252	420	<i>5</i> 98	282	649	838

Z 496

BY COMPARISON TO BAY 1, ALL SHEAR -BUCKLING MARGINS ARE HIGH .

RADIAL BOAM INTERSECT

UPR PANEL

LWR

PANEL

RADIAL BEAN INTERSECT

Prepared by	INGRAM	Date 4-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Tamp Parm
Checked by:		Date	AFE CARRIER VEHICLE	Model AFE CV
Approved by:		Date	STRESS ANALYSIS	Report No.

5.2 SRM ATTACH ANALYSIS (CONTID)
- CYLINDER PRINCIPAL SHEAR STRESSES

BAY: 5 LOAD

LOAD CONDITION: LANDING ABORT

TMAK IN NASTRAN ELEMENTS FOR 60° SEGMENT OF CYLINDER:

2031	2135	2831	2242	1747	4245	2905	2451	2887
1742	1879	2002	2530	2070	4003	3686	2447	2850
1633	1688	1627	2183	4001	4193	3730	3010	3715
1406	1570	1551	2126	4272	* 6702	6501	3748	4034
1647	1498	1447	1900	3450	2678	2458	1256	2405
1465	1406	1293	1350	3140	2014	2272	955	2213

THE LITOR PSI SHEAR STREETS SEEMS TO BE A LOCAL RESULT DUE TO ITS LOCATION AT THE CORNER OF THE FITTING. THEREFORE IT WILL NOT BE USED FOR BUCKLING CALCULATIONS.

MS =
$$\frac{38.2}{\text{SHEAR BUCKLING}} = \frac{1}{(2.0)(4.04)} = \frac{4.73}{(2.0)(4.04)}$$

UPR Panel

LWR PANEL

RADIAL BGAM INTERSECT

LMSC 362 B-3

BEAN INTERSECT

RADIAL

Prepared by:	INGRAM	Date 6-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp	Perm	
Charles de la		'	2	5.2.21		
Checked by	and the second of the second o	Date	AFE CARRIER VEHICLE	Model	cv	
Approved by		Date	STRESS ANALYSIS	Report No.		

OF POOR QUALITY - CYLINDER PRINCIPAL SHEAR STRESSES

> BAY: 1 LOAD CONDITION: LIFTOFF

THAX IN NASTRAN ELEMENTS FOR 60° SEGMENT OF CYLINDER :

> UPR PANEL

LWR

RADIAL BGAM INTERSECT

PANEL

1200	1434	1746	1997	1098	1677	915	1275	1307
1347	1533	1781	2210	1572	2325	2429	138 <i>5</i>	1544
1427	1481	1534	1807	3031	3358	2631	1891	1965
1528	1444	1548	1654	3085	5111*	4445	1592	2902
1547	1600	1484	1419	2245	1593	1609	1787	2 8 55
1545	2455	1774	3155	1895 3341 4311	1212	1455	2106	7.30

1652 2279

PANEL 1: 7 max = 4445 psi

MS

SHEAR - EUCKLING = 38.2

2.0(4.45) -1 =+3.29

FANEL 2: Ymax = 5111 ps:

MS SHEAR BUCKING = 8.7 -1= + .29

* LOCAL GFFECT FROM FITTING - NOT REPRESENTATIVE PANEL STRESS

GEAM INTERSECT RADIAL

ORM LMSC 362 B 3

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by:	Date 4-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE CV
Approved by	Date	STRESS ANALYSIS	Report No.

S. SRM ATTACH ANALYSIS (CONT'D)

- CYLINDER PRINCIPAL SHEAR STRESSES

BAY: 3 LOAD CONDITION: LIFTOFF

THAY IN NASTRAN ELEMENTS FOR 60° SEGMENT OF CYLINDER :

2999	3387	353.2	2476	2242	4338	3360	2594	3232
2179	2095	2048	2348	1867	3140	2576	2465	3304
1898	1901	2126	2061	3177	7640	2777	3194	4069
1775	1780	1747	2210	3961	* 4938	5349	4983	4651
:911	1630	1474	2346	4312	2904	2450	1381	24 29
1703	1418	1402	2773 /	3531	2145	2022	2048	3075

$$MS = \frac{38.2}{2.0(5.35)} - 1 =$$

+ 2.57

PANEL 2: 7 max = 4938 psi

$$MS = \frac{8.7}{2.0(4.34)} - 1 =$$

4.00

BGAM INTERSECT RADIAL

UPR PANEL

LWR PANEL

* LOCAL EFFECT FROM FITTING - NOT REPRESENTATIVE OF OVERALL PANEL STRESS,

BEAN

RADIAL

pared by fi ecked by proved by	NGRAM	Date Date Date	Title	AFE CA		EHICLE	MC.	AFE CV	
-	BAY: _	5 <u>5</u>	LOAI	IS (CON L SHEAD D CONDI MENTS (TION:	IFTOR			
2114	2118	- 	2536	2401	3806	2269	238 3	7631	UI PA
1935	2031	2/7/	2729	1867	3503	3168	2476	2550	
1864	1873	1834	2248	3759	3872	3163	2805	2978	
1906	1738	1837	2254	4087	* 5821	4620	1834	2872	
1902	1954	1699	2075	3213	2579	2081	1113	2537	
2286	3404	2279	1409 *	33 <i>50</i>	1882	1883	855	2761	L
	PANEL		3044 T mg	x = 462	,	ORIGINA! OF POOR	. PAGE QUALN	IS IY	PA
AGAM INTERSECT	PANEL	-,		1= x = 440				SGAM INTERSECT	
משטומר מפשצ	<i>i</i> ~1	1.5.=	8.7 2.0 (4.6		+ ,0	6		RADIAL BGAM	
*	represex			1 ADJACE			NOT	12	

FORM LMSC 362 B-3

Prepared by E. INGRAM	Date 3-78-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Tamp Parm
Checked by:	Date	THRUSTER BEAM ANALYSIS	Model AFE CV
Approved by:	Date		Report No.

5.3 THRUSTER SUPPORT BEAM (CONT'D)

$$\frac{7}{7} = \frac{.1718}{.6031} = .2849$$
 IN

$$I_c = .0845 + .0281 - .6031(.2849)^2 = .0637 iv^4$$

BENDING STRESS:

$$\int_{b}^{2} = \frac{Mv}{I} = -\frac{343.7(1.10 - .2849)}{.0637} = -4398 \text{ psi}$$

ALTHOUGH THIS STRESS LEVEL IS QUITE LOW AND OBVIOUSLY BELOW THE (ALLOWABLE) CRIPPLING STRESS, THERE IS A SLIGHT BEND (APPROX, 4.5°) THAT WILL INTRODUCE A "ICICK" LOAD ON THIS FLANGE. IN EFFECT, IT MAKES THE FLANGE BEHAVE AS IF IT WERE ALREADY CRIPPLED. A SMALL SUPPORT AS SHOWN BELOW WOULD PROVIDE A MEANS TO REACT THE KICK LOAD:

B-B

Prepared by:
E. INGRAM Page Date LOCKHEED MISSILES & SPACE COMPANY, INC. 3-28-88 5.3.5 Checked by: Date Title Model THRUSTER BEAM ANALYSIS AFE CV Approved by: Date Report No. 1 AND 4) 5,3 THRUSTER BEAM AT MID PANEL (BAYS -MODIFICATION TO NASTRAN MODEL TO INCLUDE MID-BAY THRUST SUPPORT : X=1,4 X2454 ×2453 X2451 X2452 X2450 OUT 13'4 (PEF) CYLINDER (REF) THIS VIEW LOOKING DOWN ON BOTTOM PANEL (2) 100 75 VERTICAL SHEAR (LB) 50 25 0 -25 -50 -75 -100 -125 - 130 200 BOUDING (IN-LA) 100 0 -100 VERTICAL -200 -268.6 IN-LB (MAX) - 300

Prepared by:

E. INGRAM

Date

Chine kell by

Date

THRUSTER BEAM ANALYSIS

Report No.

Page Temp Perm

S. 3.6

Model

AFE - CV

Report No.

5.3 THRUSTER BEAM AT MID PANEL (BAYS I AND 4) (CONT'D)

MID PANEL BEAM CROSS SECTION:

ELEM A Y AY AY I.

Σ ,4563 ,1626 ,0839 ,0279

 $T_{c} = .1626 = .3563 \text{ in}$.4563 $T_{c} = .0839 + .0279 - .4563(.3563)^{2} = .0539 \text{ in}$

BENDING STRESS: (AKIAL COMPRESSION LOADS WERE < 10 LB)

$$\int_{b}^{2} = \frac{MY}{I} = -\frac{268.6(1.1 - .3563)}{.0539} = -\frac{3706}{psi}$$

IN ASSENCE OF CRIPPLING ALLOWARLE DATA FOR 2219-TB7 ALUM., USE 2024-T3 DATA CONTAINED IN LOCKHOED STRESS MEMO NO 110

$$e^{b} = (\frac{1.1-.125}{125}) = 7.8$$
, => $f_{cc} = 37.5$ KSI (ONE EDGE FREE)

MS = $\frac{37.5}{3.7(2.0)}$ + HIGH

Construction of

Prepared by: Page LOCKHEED MISSILES & SPACE COMPANY, INC. T.O. Murray 6/3/88 Checked by: Model AFE CV Bottom Panel AFE CV Report No. Approved by: Date Isagrid Layout 5.4 TRUNNION FTG BACK- UP STRUCTURE ANALYSIS NASTRAN MODEL DETAILS OF LOWER PANELS SHOWING 3 TRUNNION LOCATIONS ORIGINAL PAGE IS OF POOR QUALITY XORB ① Yars Trunnian Backup Channels (Typ)

F192. 1

RM LMSC 362 B3

Prepared by: Date Page T.O. Murray LOCKHEED MISSILES & SPACE COMPANY, INC. 6/3/88 5.4.2 Title Model AFE CV Report No. ARE CARRIER VEHICLE Approved by: Date STRESS ANALYSIS 5.4 TRUNNION FTG BACK UP STRUCTURE ANALYSIS (2) 1602 Xors 4 -X264 -1603 ₩X267 Yord -x260 Lx214 "Towel" Bor Oreintation 1601 6 Figure 2.

JRM LMSC 362 B.3

Prepared by. 7.0. Mury 9x	Date 6/3/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE CV
Approved by:	Date		Report No.
		STRESS ANALYSIS	ļ

5.4 TRUNNION FTG BACK UP STRUCTURE ANALYSIS

Figure 3. Enlarged Bottom Isogrid Parel Showing Trunnian Eackup Structure

Node numbering: Bay No × 1,000 + number shown

Element " = Bay No × 10,000 + 2,000 + number shown

Prepared by: Date 6/3/88 T.O. Murray Model APE CARRIER VEHICLE Approved by: Report No. STRESS ANALYSIS 5.4 TRUNNION FTG BACK-UP STRUCTURE ANALYSIS Figure 1 shows the trunnian backup structure on the AFE CV bottom isogrids. An outline of the trunner footing is also shown. Figure 2 shows the oreintation of the trunnion "towel" bars and the grid point so's for the bars. Force components slong the "towel" bor's axes were released for each trunnion. Bar elements were used to spread the regular landing trunnion forces to four nodes on the two "channel" bars for each trunnian. - Trunnian Backup Channels 1267 Ea, 1 (exame) channel 1 902Z TO AFE CG CRIGOR element

1603

ORIGINAL PAGE IS OF POOR QUALITY

PM LMSC 362 B.3

Prepared by:	Murray	Date 6/3/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:		Date	AFE CARRIER VEHICLE	Model AFE CV
Approved by		Date		Report No.
			STRESS ANALYSIS	1 '

TT).	120	0~1	_	76	R	ا ۵		عور				UZE		Α.	1 / 1		10		
1100	200			<u>10</u>	134	<u>ــــــ</u>	<u> </u>	<i></i>		IKU	ر حر	VIC	<u>. </u>	44	JAC	37	12		
	ام	(K = 4)	End B	-12.37	-27.17	-32.13	-28.18	-24.5-9	-16.95	-6.57	0.00	-2.52	-6.53	-6.76	-2.75	-0.49	-1.75	18.0-	1/-0-
s (H2)	Bay	Momen	End A	0.22	-12.36	-33.71	-32.06	-28.26	-32.09	-16.95	64.9-	-0.06	-2.79	89.01-	-6.80	-2.74	-2.34	-1.76	(
& Moments Elements	3	+ (K-1)	End. B	8.56	18.78	22.24	24.10	26.10	15.73	6.08	-0.23	-2.09	-4.72	-5.73	12.6-	-9.09	-7.34	-3.07	
	Bay	Momen	End A	41.0-	8.54	21.56	22.22	24.09	30.34	15.73	6.04	90.0	1.97	3.81	69.5.	-7.76	66.6-	0000	3) (*
Vertic		t_(k-1)_	End B	-3.12	-6.92	19.8-	-4.05	0.50	10.59	-0.20	0.03	- 7.83	-18.72	-21.42	-18.36	-16.52	-17.20	-7.24	0.32
	Bay	Momen	End A	0.01	-3.18	-10.34	-8.55	81.4-	1.24	-0.59	81.0-	0.01	- 7.89	99.42-	. 27.43	18.81-	-28.87-	-17.20	17.14
		Elemont	No.	824 X	62h X	×	×	×	×		- 1	×	×	×	×	×	×	×	1 X 442
	ing Moments (112) Elements	Bending Moments (112) Thonnel Elements Boy 3 Boy 5	Bay 1 (K-ix) Moment (K-ix) Moment (K-ix)	Bay 1 Moment (k-1) End A End B End A End B End A End B	Vertical Bending Moments (112) In Channel Elements (112) Bay Bay 3 Bay 5 Moment (K-ih) Moment	Vertical Bending Moments (H2) In Channel Elements (H2)	Vertical Bending Moments (H2) Channel Elements (H2) Bay Bay Bay Bay Channel Element Ch	Vertical Bending Moments (HZ) In Channel Elements (HZ)	Element Say I	Say	Vertical Bending Moments (112) In Channel Elements (112) In Channel Elements (112)	Say	February Moment (12) February (12) February Elements (12) Rowert (1	Say Bay 3 Bay 5	## Chans Bending Moments (112) Februaria	## Channel Bending Moments (112) ## Channel Elements ## End ## End ## End ## End ## End ## ## End ## End ## End ## End ## End ## ## End ## End ## End ## End ## End ## ## End ## End ## End ## End ## End ## ## End ## End ## End ## End ## End ## ## End ## End ## End ## End ## End ## ## ## Channel Element (h-1) ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## ## ## ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## End ## End ## End ## End ## ## ## ## ## End ## End ## End ## ## ## ## ## End ## End ## End ## End ## ## ## ## ## End ## End ## End ## ## ## ## ## End ## End ## End ## ## ## ## ## ## End ## End ## End ## ## ## ## ## End ## End ## End ## ## ## ## ## ## End ## End ## End ##	## Channel Elements (112) ## Channel Elements (112) ## Channel Elements (112) ## Channel Elements (112) ## End # End	## Channel Bending Moments (112) Channel Elements Elements (112) Channel Elements (112) Channel Elements (112) Channel Elements (112) Channel End A End B End B End A End B End B End A End B End B End B End A End B End B End B End A End B End A End B E	Champain Channel Claments (112) Channel Claments (112)

ORIGINAL PAGE IS OF POOR QUALITY

The vertical bending moments are inultiple factors above the lateral moments. Because the channel section properties are similar for both principle directions, element no. 430 will be considered critical. The related forces for this element are as follows:

 $M_2 = 33.71 \text{ k-n} \text{ (shown)}$ $M_1 = 5.15 \text{ k-m} \text{ (from NASTRAN)}$ P = 3.84 k cutput

ORIGINAL PAGE IS OF POOR QUALITY

4 LMSC 362 B-3

Prepared by: T-O: Murray	Date 6/3/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	Title APE CARRIER VEHICLE	Model AFE CV
Approved by:	Date		Report No.
		STRESS ANALYSIS	

2 2

Section properties: A = 2.375 in $I_2 = 1.157$ in $I_3 = 1.175$ in $I_4 = 1.00$ $C_1 = 1.665$

TRUNNION FTG BACK UP STRUCTURE ANALYSIS

Max loads (from page 5.4.6)

Mz= 33.71 k-in

M,= 5.15 k-in

P = 3.84 k

$$f_{Total} = \frac{3.84 \, k}{2.375 \, h^2} + \frac{5.15 (1.0.)}{1.175} + \frac{33.71 (1.665)}{1.157}$$

$$= 54.51 \, ksi$$

$$14S_{017} = 63.0_{-1} = -0.42_{-2.0(54.51)}$$

The vertical bending moment is lower from the previous analysis but the section is still inadequate.

ORIGINAL PAGE IS OF POOR QUALITY

Ingram 6-8-88 AFE CARRIER VEHICLE STRESS ANALYSIS

5.5 UPPER AND LOWER ISOGRID PANELS

Each isogrid bar in the upper and lower panels is represented by a CBAR element and thus is able to produce individual bar forces (axial, shear, moment and torque) for subsequent stress analysis. During the course of evaluating several hundred isogrid bars per panel for twelve panels and five load conditions and repeating the process for each design/model update, the need for a way to post process the NASTRAN output for the analysis of the isogrid bars has become apparent.

A FORTRAN program has been written and is now in use which reads the NASTRAN ouput and searches for the isogrid bars, identifying them by their property ID. The program then distinguishes between upper and lower panel elements and uses pre-determined allowables to calculate and print the isogrid bar margins of safety. following pages include the calculation of the allowables that are currently being used in this program. The upper panel allowables are based simply on the bar critical (instability) axial and bending loads. The buckling load for these bar elements is based upon an end fixity factor of 2.0 as recommended by the McDonnel-Douglas Isogrid Design Handbook. The lower panel isogrid allowables are based on using the buckling load of the thin triangular panel (determined by NACA 3781) and treating the bar in the same way as an integral stiffener. The output from this "ISOGRD" program is included in this section following the calculation of allowables.

Prepared by:	Date 4-24-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	THE ARRIER VEHICLE	Model AFE
Approved by:	Date	ISOURID PANEL ANALYSIS	Report No.

5.5 UPPER AND LOWER PANEL SKIN BUCKLING ALLOWABLES

I. BUCKLING OF TRIANGULAR PLATE (REF. NACA TN 3781) $T_{cr} = \frac{K\pi^2 E}{12(1-\tau)^2} \left(\frac{t}{h}\right)^2$

@ a = .866 (EQUIL. TRIANGLE), K= 5.0, K; = 13

UNIFORM
$$= (5.)(\pi^2)(10.7 \times 10^6) \left(\frac{.016}{4.2}\right)^2 = 689.8 \text{ psi}$$
COMPRESSION

COMPRESSION TO
$$T_{CF} = \frac{(13.5)(\pi^2)(10.3 \times 10^6)}{12(1-.33^2)} \left(\frac{.016}{4.2}\right)^2 = 1.862.5 \text{ psi}$$
EDGE SHEAR

(a) Uniform compression.

(b) Shear

Prepared by	Date 4-24-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page femp Perm 5.5.3
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model AFE
Approved by:	Date	ISOGRID PANEL ANALYSIS	Report No.

UPPER AND LOWER PANEL BUCKLING ALLOWARLES (CONT'D) 5.5

CRIPPLING ALLOWABLE OF UPSTANDING LEG OF ISOGRID. FIRST ANALYZE ASSUMING THE (BUCKLED) SKIN PROVIDES LATERAL TRANSLATIONAL SUPPORT BUT NOT ROTATIONAL. IR SIMPLE SUPPORTS.

REF SM NO BO C. (A): (USE 2024-TBI PROPERTIES BY SIMILARITY)

$$K_5 = 1.095$$
 $M = 25$
 $K_7 = 55.0 \text{ KSI}$
 $M = 50 = 7.143$

TOTAL -
$$F_{c_{T}} = \frac{F_{c_{Skin}}(A_{Skin}) + F_{c_{STIFF}}(A_{STIFF})}{A_{TOT}}$$

$$F_{c_{T}} = \frac{.690 (4.2)(.016) + 42.9 (.50)(.07)}{(4.2)(.016) + (.50)(.07)}$$

STIFFENER (CBAR) AKIM FORCE:

FC = 15.15 KSI THIS IS THE ALLOWABLE STREW TO BE USED WHEN THE THIN SKIN IS INCLUDED IN THE NAS-TRAN STIFFNESS MATRIX. IT ACC-OUNTS FOR THE FACT THAT THE SKIN WILL BUCKLE EARLY.

Prepared by:	1 -	ate 4-27-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:		Date	Title AFE CARRIER VEHICLE	Model AFE
Approved by:	10	Date	ISOGRID PANEL ANALYSIS	Report No.

UPPER AND LOWER ISOGRID PANELS (CONT'D) PURE BENDING ALLOWABLE OF ISOGRID CROSSECTION

$$T_c = 1.530 \times 10^{-3}$$

APPLY UNIT MOMENT

$$f_{bu} = \frac{M(y')}{I} = -1 \frac{(.50+.016-.0966)}{1.530 \times 10^{-3}} = -274.1 \text{ psi}$$

$$f_{b_{\ell}} = \frac{M(\bar{y})}{I} = -1 \frac{(-.0966)}{1.53 \times 10^{-3}} = 63.1 \text{ psi}$$

DETERMINE MAGNITUDE OF BENDING MOMENT WHEN to

IS EQUAL TO CRIPPLING STRESS OF VERTICAL FLANGE.

$$M = 1 \left(\frac{42,900}{274.1} \right) = 156.6 \text{ IN-LB}$$

COMPRESSION / BENDING INTERACTION (RGF SM NO 70 a, TABLE 1)

CARRIER YEHRLE STRESS ANALYSIS AFE CY

5.5 UPPER AND LOWER ISOGRID PANELS (CONT'D)

ISOGRID LOCAL "BAR" ALLOWARLES ~ UPPER PANEL (NO SKIN)

I. COMPRESSION VALLOWABLE ~ ELASTIC COLUMN BUCKLING

A-A:
$$I = \frac{bh^3}{12} = 14.3 \times 10^{-6} \text{ in}^4$$

$$P_{col} = C \pi^2 \frac{EI}{a^2} = \frac{2.0 \pi^2 (10.3 \times 10^6)(14.3 \times 10^6)}{(4.2)^2}$$

II. TENSION ~ GROSS AREA STRESS = Ftu

$$P = F_{\underline{Lu} \cdot A} = \underline{63,000 (.06)(.490)}$$

S.F. $\underline{2.0}$

* C= 2.0 FROM MODAL ISOGRID DESIGN HOBK, P. 4.8.007

5.5 UPPER AND LOWER INCHES (CONT'S)

h ORIGINAL PAGE IS OF POOR QUALITY

BASELINE ISOGRID BAR OT X,50 => A = 1035

. MAINTAINING CURRENT WEIGHT => 4 = .035

Ь	h	12 3	$\frac{(I/c)}{(I/c)_{\alpha \in C}}$	I
. 25	.140	57.2 x 10,	8.0	4.0
,30	.1167	39.7 × 10 2	4.43	2.776
, 35	.100	· 29.2 × 10	2.917	2.042
.40	.0875	22.3 × 10	1.949	1,559
45	8770.	17.7 x 10	1.375	1.238
.50	.070	14.3 × 10	1.0	1.0

BENDING ALLOWABLE:

$$F_{tu} = M_{ALL} \frac{C}{I}$$
 $b = .07$, $h = .5$, $F_{tu} = 4200$
 $M_{ALL} = \frac{(4200)(.07)(.5)^3}{12(.25)}$

MALL = 122.5 IN-LB , BENDING ALLOWABLE WHEN OPEN ISOGRID

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

0F																																													
MARGIN	1.85	HIGH			7	4	0	<u>ه</u>		ဖ	7 .	2.41																0.91		•	3.74	•	-	4.61	5.54	8 . 15	I	е,	-0.83	HIGH	-0.81	2.65	3.02	ω.	r.
BEND. STRESS RATIO	8						•		0.054					•	•	•					•	•		•	•	•		0.520	•		•			•		•	•			0.007		•	0.147	Τ,	0
BENDING MOMENT	ဖ		4	•	S.	. 79	0	ь.	_	∞.	ς.		Τ.	•	•	ď	۲.	Φ.	35.410	14.464	58.942	906.0	1.528	2.622	4.734	16.368	34.974	81.377	112.984	64.849		23.689	3.027	ا ھ		2.496	5.37	31.886	415.199	1.100	389.611	2.3	8	0.6	.47
AX. STRESS RATIO	es.	9	4	Ŋ	ď	Ç																						0.206													ď	7	5	. 20	. 18
AXIAL FORCE	-186.227	80		12				179.	- 145.008	196.	184	155	147	147	161	€	181	-97.140	-245.893	-63.041	107	- 135.203	122	- 102.987	-81.435	-36.524	100.078	- 109 . 155	- 143.500	-111.017	-110.412	- 137 . 128	112	-94.511	8 8	. 52	10.429	5.7	-177.935	20.7	-132.138	111.7	-113.329	108.47	6.87
BAR ID	12201	12202	12204	12205	12206	12207	12208	12215	12216	12222	12223	12224	12225	12226	12227	12228	12229	12230	12231	12232	12233	12234	12235	12236	12237	12238	12239	12240	12241	12242	12243	12244	12245	12246	12247	12248	12249	12250	12251	12252	12253	12254	12255	12256	12257

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	-0.67	0.22	0.40	HIGH	-0.52	-	-0.77	0.45	0.50	-0.35	-0.07	0.64	2.34	0.32	0.03	1.25	1.72	1.46	1.27	1.88	1.87	2.44	2.42	3.99	2.55	9.11	2.73	4.23	4.83	5.12	0.72	0.92	0.87	1.12	2.28	2.22	0.35	0.29	-0.03	0.53	0.76	H16H	1.21	Τ.	-0.53
BEND. STRESS RATIO	82	0.862	8.		.37																																								1.379
BENDING MOMENT		35	•	25.982	•	-	53.			80		91.220																		÷	•		75.651	•	•	9.	7.757	9.	4	3.5	0.26	5	വ	34.00	215.900
AX. STRESS RATIO	. 15	0.051		0.028	c.	0	Τ.	0	9	Ŋ	C.		ď	φ.	e.							0.280			•								۲,	ď	ď	α.	۲.	7	ď	€.	r:	0	Ξ.	0	
AXIAL FORCE	. 70	Τ.	ď	14.857	φ.	ID.	σ.	25.4	48	42.80	36.33	ლ.	8		169.370	64.	. 99	07.	170.297		177.079	148.481	•		•	-50.097	•	-	85.		00 00 00 00 00 00 00 00 00 00 00 00 00	273.	134.	- 135 . 124	133. 11	131.52	389.20	116.80	8.8	168.69	170.80	-7.09	0.53	5.93	02.88
BAR ID	31	က	က	12320	က	n	n	ന	n	က	က	က	က	က	က	က	က	9	3	က	3	9	9	3	က	ന	က	n	က	6	က	m	ന	(C)	CD	n	9	3	3	3	3	Œ	e	9	12371

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY		٠	•	2.66	HIGH	1.59	1.85	æ	9	-0.20			0.46	4	4						4.57	HIGH	3.35	1.25	0.57	0.07	0.07	4.75	5.72	5.24	HIGH	HIGH	HIGH	Ē	2.15	0.81	ß	0.27	6.85	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	
BEND. STRESS RATIO		•				0.023							0.015							0.008				0.013																				0.005		8
BENDING MOMENT	6	47.924	19.376	4.003	10.354	3.565	2.097	1.137	1.445	2.451	2.398	2.779	2.315	2.654	1.11	1.891	7.461	1.628	1.258	1.273	1.694	1.145	2.010	2.023	1.844	2.952	8.583	1.130	1.075		1.302	1.208	1.285		•	•	3.939	•		•			•	0.855	•	1.289
AX. STRESS RATIO	L	0.555	. 36	0.271	0.	38	.35	ı.	.62	7	0.791	∞.	0.686	?	•	•	•	•	•			0.043		•	•		•		0.149	•	060.0		•	•	0.317	ī.	9	٠.		90.	0.088	90.	.02	0	.07	
AXIAL FORCE	,		191.1	143.7	29.7	-203.656			Ξ.	.7		Ξ.	-363.627	_:	:	_:		:		135.		-22.797						•	-78.832			20.	•	6.8 8	•	92.7	51.1	15.23	7.46	5.82	6.86	-33.690	1.53	۲.	8.09	Ċ
BAR ID	40	12436	12463	12464	12465	13301							13308						13322	13323	13324	13325	13326	13327	13328	13329	13330	13331	13332	13333	13334	13335	13336	13337	13338	13339	13340	34	34	13343	34	13345	34	13347	34	13349

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY		ი.	Ŗ	Ŧ.	3.45	IG	1.94	2.27	1.90	1.63	1.66	1.81	1.90	1.92	8.54	2.05	1.72	1.58	1.49	1.34	1.01	1.00	1.96	1.56	1.43	1.28	1.09	0.88	0.59	1.74	1.35	1.24	1.10	0.94	0.63	0.49	1.47	1.13	1.04	0.93	0.75	0.43	0.30	1.20	06.0	0.82
BEND. STRESS RATIO		0.018	•		0.004		•	0.027	•	900.0		0.008	900.0	•						•								0.013						•						0.00		8	0.5	6	0	0.012
BENDING MOMENT		٠	•	7.	•	80	3.362	. 17	42	•	•	•	0.925	4.414	8.301	0.900	1.285	1.460	1.485	1.388	1.600	7.185	1.439	1.644	1.657	1.677	1.235	2.058	2.294	1.812	1.829	1.845	1.631	0.926	φ.	5.437	0	96	Ő,	1.486	9	7.	4	17	9	.95
AX. STRESS RATIO		0.427	0.387	0.323	0.225	0.042	0.339	0.304	0.345	0.380	0.376	0.356	0.345	0.341	0.09	0.328	0.367	0.387	0.402	0.427	0.497	0.496	0.338	0.390	0.411	0.437	0.479	0.531	0.630	0.365	0.424	0.446	0.475	0.515	0.613	0.666	0.404	0.470	0.490	0.519	0.572	0.699	0.764	4	. 52	. 54
AXIAL FORCE		-226.217	202	-	119	\sim	m	161	182	201	-199.421	-188.603	- 182.746	- 180 . 508	52.459	-173.839	-194.562	-205.301	-212.897	-226.176	-263.553	-262.709	-179.124	-206.904	-217.823	-231.783	-254.017	-281.291	-333.689	-193.187	-224.924	-236.260	-251.778	-273.213	-325.029	-353,112	-213.964	-248.949	-259.676	-274.962	-303.274	-370.346	-404.902	0.53	Ξ.	-290.264
BAR ID	(r)	13400	13401	40	13403	13406	13407	4	13409	4	13411	_	4	~	4	4	4	13419	Ñ	42	13424	13425	4	13427	4	13429	13430	4	4	4	4	4	9	4	13440	4	44	44	13444	4	13446	45	13451	4

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
	173.428	. 89	5.458		
	ro.	7	.93	900.0	
	က္း	9	თ.	•	0.63
	د	. 56	•	8	•
	4 (ů,	•	8	•
		4.	•		1.02
, cc) M	• •	•	5.5	
				38	
		Φ.	•		
		7.			
22 3	332.548	0.627	0.270	0.002	0.59
		. 56	•		
		•	•		
		•	•		
		•			
		ים			
		•	•		
		۲.			
		9 1			0.56
		ກຸດ			
707		•			60.0
		. o			
		, α	0.881		0.22
					•
		0.586	1.583		
					•
		•			•
4 0					
					•
					•
. d					
9 69					0.38
		65			
		9			
		. 56		0	
	24	.73			
3	384.883	.72		0	
	65	. 65		9	0.52

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
5	۲.	Ġ	9	.03	4.
22228	θ.	Τ.	7.859	0.050	0
22	•	Ξ.	16.683	Τ.	α
22		4	20.108	Τ.	
22		C,	3	4	
22		ტ.	. 70	9	7
22	24.	0.236	43.	σ.	
22234	102.652	0.194	.92	0.063	3.96
22	•	0.174		0	
22		0.171			
22		0.151			•
22	•	0.139	11.001	0.070	•
22	68.504	0.129	19.732		5.41
224		0.142	21.742		•
224	•	0.175		0.166	•
22242	•	0.239	ß		
224		0.022	•		HIGH
22244	•	0.182			-0.82
224	•	0.153			5.36
5	•	0.023			HIGH
22	•	0.131	•		6.48
22248	•	0.101	3.655		8.80
22249	•	0.086			HIGH
22250	•	0.072	14.189		HIGH
22251	37.284	0.070	о О	0.126	•
22252	•	0.073	22.442		8.38
22253	•	0.072	ლ		•
22254		0.037	92.		-0.32
22255	•	0.027	9		-0.28
22256	•	0.002		0.120	нІсн
22257	39.323	0.074	2.911		HIGH
22258	19.366	0.037	•	0.013	HIGH
22259	37.272	0.070	•	0.004	HIGH
22260	9.303			•	HIGH
22261	15.606		o,	•	HIGH
22262	5.427		₩.	.02	HIGH
22263	7 . 194		6	٠	HIGH
226	2.785		ď	90.	HIGH
22	-2.385		ö	ø	HIGH
226	-12.233	0.023	2.47	. 33	4.86
226	-17.630		8.19	. 56	1.50
226	-21.325	9	. 87	£.	4.86
26	Ť.	0	15.252	Õ	9.59
22270	33.928	0.064	. 49	.02	HIGH
22	6.4	9	. 22	.02	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
Ç	7.0	٤	000	C	
22335		50.0	250.086	0.00	0.03
10	200	3 8		•	7 1 2
10	5 6			•	ביים לי
22338	. 4	0.040	r e	0.647	26.0
S	18.6	0.035	66.7	•	
~		660.0	7.67		64.49
22341	7	0.082	1.37		
N	7	0.053	7.57		-
$^{\circ}$	49.	0.094	4.360		9.48
a		0.002	5.2	•	
22347	46.704	0.088	Τ.	•	-0.08
a		0.107	45.422	•	3.52
N		0.050	Τ.	•	-0.04
a		0.073	æ	•	HIGH
\sim		0.102	•		7.96
~	70.900	0.134	126.904	.810	0.21
a	105.083	0.198	ťo.	. 294	2.17
22355	56.741	0.107	æ	.014	-0.12
N	6.652	0.013	က	.002	HIGH
a	42.098	0.079	σ.	.073	-0.17
N	46.157	0.087	ņ	. 372	2.78
N	80.301	0.152	79.531	. 508	1.19
N	55.590	0.105	Τ.	. 346	2.83
22363	21.603	0.041	78.310	0.500	1.96
$^{\circ}$			71.959		2.02
a			7		0.14
N		0.102	41.559	•	4.00
∾ י			∞.	•	7.52
N 1			∞.	•	
22371			ත _. 1		
N (ימ	0.783	0.40
N (•	HIGH
v			וים	٠	HIGH
N (`	٠	HIGH
N 1		0.008		•	H
$^{\circ}$. 62	•	2.94
N	35.		٠.		HIGH
N	27.	0	_	•	HIGH
N		0	. 36		HIGH
a			ო		HIGH
3	ė	0	æ	0.192	\blacksquare
7	÷	Ξ	÷		ī.
	ö	-		•	
39	54.	Ξ.	1.540		8.70

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

?	MARGIN OF SAFETY	3.27	2.85	HIGH	7.77	9.22	HIGH	HIGH	HIGH	3.88	7.09	_	9.58	HIGH	HIGH	HIGH	HIGH	-	8.44	HIGH	HIGH	_	8.85	HIGH	HIGH	HIGH	_	5.84	HIGH	HIGH	HIGH	HIGH.	HIGH.	HOLL	57.	-	201	7.59	HIGH	HIGH	HIGH	HIGH	16	Ξ.	2.36	9.
	BEND. STRESS RATIO	. 17	ď	.07	0	60	9	0.	.08	19		80	0.063		0.047		9	` '	- '		0	•	<u>ေ</u>		0.	9	. 18	. 16		0.029		0.031		0.008		5 ;	7 !	Ť, í	0	0		0	8	-	6	0.
	BENDING MOMENT	7.79	9.	1.2	σ.	ლ.	۲.	6.2	2.8	4.	σ.	3. 5	თ	₹ (ლ .	٠, ١	บ เ 4 (ופכ	დ. •			Ė				_		ທ່				4.		1.300	•	•	, n	•	•		•	•	÷	•	1.954	•
	AX. STRESS RATIO	8	5	0	Ξ		•				•	•	0.087	•	•	•	0.021	•	•	•	•	•	0.085	•	•	•	•	•	•	•	•	•	5 8	0.034	3	2	- (ò !	.05	0	80.	o.	. 42	. 29	. 21
	AXIAL FORCE	8.31	. 27	1.93	. 15	2.78	. 20	6.02	വ	48	05	23	45.932	30.639	-26.281	-8.588	2/5.11	18.976	29.237	29.142	37.370	23.913	-44.856	-6.971	13.500	25.598	1.335		ß	7	37.485	9	ס פ	18.259	۰ د	24.992			٠,	œ ·	3.53	5.70	42.27	24.89	7.6	80
	BAR 10	333	33	333	334	334	334	334	334	334	335	335	23352	333	333	300	מים מים	000	336	336	336	336	336	936	23369	33.	337	337	337	337	337	9 0	200	23383	0 0	מ מ מ מ		900	500	333	339	339	23395	339	23398	339

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

10.930 0.070 5.3 10.930 0.053 6.0 10.930 0.053 6.0 13.934 0.056 6.0 13.934 0.024 6.0 13.935 0.024 6.0 14.945 0.025 6.0 15.203 0.026 6.0 16.900 0.025 6.0 17.920 0.025 6.0 17.930 0.025	AR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
65. 750 64. 750 74. 828 74. 828 74. 828 74. 1547 76. 141 76. 141 77. 141 77		88	4	6		7
74 828		5.75	12	25	•	·
71.547 0.135 8.726 0.056 74.599 0.141 7.037 0.045 64.599 0.141 7.037 0.045 68.584 0.132 3.766 0.044 68.584 0.123 3.766 0.024 68.584 0.123 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.133 3.766 0.024 69.735 0.130 5.203 0.024 69.395 0.013 3.734 0.025 69.735 0.013 3.734 0.025 69.736 0.013 3.734 0.025 69.737 0.037 0.037 0.024 69.7384 0.124 1.570 0.011 55 69.7384 0.127 4.644 0.027 67.384 0.127 4.644 0.027 67.384 0.127 4.644 0.027 67.384 0.127 4.644 0.027 67.384 0.127 4.644 0.030 67.441 0.127 4.644 0.030 67.441 0.127 4.644 0.057 67.386 0.111 10.764 0.057 67.387 0.112 7.789 0.057 67.388 0.111 10.764 0.058 68.201 0.107 0.126 55 69.032 0.136 1.535 0.075 69.033 0.136 1.535 0.075 69.035 0.136 1.535 0.036 69.037 0.136 1.535 0.036 69.037 0.136 1.535 0.037 69.038 0.111 10.764 0.059 69.039 0.136 1.536 0.038 69.039 0.136 1.536 0.038 69.039 0.136 1.536 0.038 69.039 0.136 1.536 0.039 69.039 0.136 1.536 0.034 69.032 0.138 1.537 0.034 69.032 0.138 1.537 0.034 69.032 0.138 1.537 0.034		4.82	4	69		0
74.599 0.141 7.037 0.045 64.701 0.045 68.884 0.122 66.925 0.044 68.884 0.123 3.764 0.024 65.225 0.123 3.764 0.024 65.225 0.123 3.764 0.024 65.225 0.123 3.764 0.024 65.225 0.133 88.215 0.024 77 0.354 0.133 88.215 0.024 77 0.354 0.133 88.215 0.025 77 0.356 0.130 0.130 0.025 0.025 0.130 0.025 0.025 0.130 0.025 0.0		1.54	. 13	.72	•	0
64.701 0.122 6.925 0.044 68.584 0.135 13.934 0.089 68.584 0.123 3.734 0.089 65.225 0.133 8.215 0.024 65.225 0.133 8.215 0.024 65.225 0.133 8.215 0.024 65.225 0.133 8.215 0.024 65.225 0.133 8.215 0.024 65.225 0.133 1.944 0.012 17.0354 0.133 1.934 0.024 65.225 0.133 1.934 0.025 17.0356 63.561 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.025 1.		4.59	14	.03	•	8
71.621 0.135 13.934 0.089 68.584 0.129 3.766 0.024 65.225 0.123 3.766 0.024 65.225 0.123 3.766 0.024 65.225 0.133 8.215 0.024 63.595 0.133 8.215 0.024 77.34 0.025 65.205 0.130 5.203 0.025 63.561 0.130 5.203 0.025 17.34 0.025 17.34 0.025 17.34 0.025 17.35 0.014 1.320 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.025 17.34 17.32 0.030 17.32 0.025 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.030 17.32 0.035 17.32 0.035 17.32 0.035 17.32 0.035 17.32 0.035 17.32 0.035 17.32 0.035 17.33 0.0	37	4.70	. 12	.92	•	<u>ი</u>
68.584 0.129 3.766 0.024 65.225 0.133 8.734 0.024 70.354 0.133 8.734 0.024 70.354 0.133 8.215 0.025 69.152 0.133 8.215 0.052 71 69.152 0.133 8.215 0.0052 69.152 0.130 1.944 0.012 70.025 69.152 0.130 1.944 0.012 70.025 69.152 0.013 6.0049 7.	38	1.6	. 13	3.93	•	9
65.225 0.123 3.734 0.024 77.354 0.025 69.125 0.133 8.215 0.052 69.152 0.133 18.215 0.052 69.152 0.133 18.215 0.052 69.152 0.130 1.924 0.012 77.355 0.130 5.203 0.033 66.356 0.012 0.120 0.120 0.012 0.025 0.012 0.025 0.014 0.025 0.014 0.025 0.	39	8.5	. 12	. 76		9
70.354 0.133 8.215 0.052 69.735 0.113 1.944 0.012 69.735 0.120 4.068 0.025 -9.395 0.011 6.761 0.033 6 -9.395 0.011 6.761 0.025 7 -26.048 0.049 4.469 0.025 1 -39.27 0.049 4.469 0.024 1 -50.291 0.049 4.469 0.024 1 -62.350 0.118 1.525 0.012 1 -62.350 0.144 1.630 0.012 1 -9.040 0.144 1.630 0.010 1 -1.45.328 0.040 1.570 0.010 1 -1.45.328 0.040 8.863 0.040 1 -50.459 0.071 1.570 0.010 1 -53.489 0.071 1.570 0.010 1 -53.891 0.071 1.570 0.040 1 -53.892 0.071 1.574 0.050 1	õ	5.2	. 12	. 73	•	0
59.735 0.113 1.944 0.012 1.94 69.152 0.130 5.203 0.033 6 69.152 0.130 5.203 0.033 6 5.595 0.018 3.902 0.026 7.50.291 0.018 3.902 0.025 1.99.227 0.049 4.469 0.024 18.606 0.035 1.922 0.012 90.413 0.171 1.573 0.010 7.6.409 0.144 1.690 0.011 18.606 0.035 1.922 0.011 18.606 0.035 1.922 0.011 18.606 0.035 0.144 1.690 1.011 1.570 0.011 1.570 0.0	91	6.9	. 13	.21		7
69. 152 0. 130 5. 203 0. 033 6 63. 561 0. 120 4.068 0.026 7 63. 561 0. 012 4.068 0. 026 7 -26. 048 0. 049 4. 469 7 -26. 048 0. 049 4. 469 7 -26. 048 0. 049 4. 469 7 -26. 048 0. 049 4. 469 7 -26. 049 0. 049 4. 469 0. 024 7 -26. 350 0. 014 1. 535 0. 012 7 -6. 350 0. 014 1. 535 0. 012 7 -21. 459 0. 017 1 1. 570 0. 010 7 -21. 459 0. 017 1 1. 570 0. 010 7 -21. 459 0. 017 1 8. 923 0. 057 1 H 7 -23. 691 0. 101 3. 272 0. 057 7 -23. 691 0. 101 3. 272 0. 057 7 -20. 038 0. 127 4. 644 0. 030 7 -14. 574 0. 120 4. 565 0. 029 7 -22. 038 0. 110 10. 764 0. 050 7 -23. 038 0. 112 1. 553 0. 056 7 -23. 038 0. 115 9. 303 0. 056 7 -24. 418 0. 108 9. 303 0. 058 7 -25. 041 0. 108 9. 303 0. 058 7 -26. 042 0. 155 29. 501 0. 188 7 -20. 040 0. 156 28. 102 7 -20. 030 0. 156 28. 102 7 -20. 031 0. 113 19. 671 0. 126 7 -20. 032 0. 131 0. 031 7 -20. 032 0. 131 0. 031 7 -20. 033 0. 032 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 032 0. 033 0. 031 7 -20. 033 0. 032 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 031 7 -20. 031 0. 03	92	9.7	Ξ	1.944	•	Φ,
63.561 0.120 4.068 0.026 77 5.595 0.011 6.761 0.043 H 9.029 0.029 H 9.029 0.021 H 9.029 0.029 0.021 H 9.029 0.029	93	9.1	. 13	5.203		ß
5.595 0.011 6.761 0.043 H -9.395 0.018 3.902 0.025 H -26.048 0.049 4.469 0.029 H -30.297 0.074 3.753 0.024 H -50.297 0.095 1.922 0.010 7 -62.350 0.014 1.630 0.010 7 -16.409 0.144 1.690 0.010 7 -18.606 0.035 9.573 0.010 4 -21.459 0.040 8.863 0.061 H -37.785 0.071 8.923 0.057 H -45.328 0.071 8.923 0.057 H -67.3840 0.127 4.565 0.024 H -72.093 0.136 15.749 0.040 -72.09 -72.093 0.136 15.749	46	3.5	. 12	4.068	•	•
-9.395 0.018 3.902 0.025 H -26.048 0.049 4.469 0.029 H -39.227 0.074 3.753 0.0024 H -62.350 0.118 1.535 0.0012 9 -62.350 0.118 1.535 0.0012 7 -62.350 0.171 1.570 0.011 7 -90.413 0.171 1.570 0.010 7 -145.328 0.040 8.863 0.057 H -53.691 0.101 3.272 0.057 H -53.840 0.127 4.644 0.030 6 -144.574 0.273 6.238 0.040 22 -52.093 0.112 7.789 0.059 7 -59.055 0.112 7.789 0.059 7 -59.055 0.115 9.018 0.059 7 -103.386 0.195 16.747 0.107 3 -103.386 0.195 16.747 0.107 3 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.179 55 -50.639 0.132 64.163 0.0410 14.782	99	٠. س	•	6.761	•	-
-26.048 0.049 4.469 0.029 -39.227 0.074 3.753 0.024 H -50.291 0.095 1.922 0.012 9 -62.350 0.118 1.535 0.011 5 -90.413 0.144 1.690 0.011 5 18.606 0.035 9.573 0.061 H -21.459 0.071 8.923 0.057 H -23.691 0.101 3.272 0.057 H -45.328 0.086 6.440 0.041 H -63.840 0.127 4.644 0.029 7 -67.384 0.127 4.644 0.030 6 -144.574 0.273 6.238 0.040 22 -72.093 0.136 11.553 0.074 9 -72.093 0.115 10.764 0.059 7 -59.055 0.111 10.764 0.059 7 -59.055 0.115 9.018 0.059 7 -60.988 0.115 9.018 0.059 7 -60.988 0.115 9.018 0.059 7 -74.418 0.140 11.681 0.075 5 -50.624 0.096 28.102 0.179 5 -50.624 0.096 28.102 0.179 5 -50.624 0.097 33.549 0.126 6 -121.595 0.229 33.549 0.031	8	ი. ი	•	3.902	•	-
-39.227 0.074 3.753 0.024 H -50.291 0.095 1.922 0.012 9 -62.350 0.118 1.535 0.010 -16.409 0.144 1.690 0.011 55 -16.409 0.144 1.690 0.011 -18.606 0.035 9.573 0.061 H -21.459 0.040 8.863 0.057 H -23.691 0.071 8.923 0.057 H -53.691 0.101 3.272 0.029 -144.574 0.127 4.644 0.029 -144.574 0.127 4.644 0.029 -147.499 0.101 3.272 0.029 -147.499 0.101 55 -159.055 0.111 10.764 0.050 -170.098 0.115 9.018 0.050 -171.098 0.115 9.018 0.050 -171.098 0.115 9.018 0.059 -171.098 0.115 9.018 0.059 -171.098 0.116 11.681 0.075 -171.098 0.116 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 11.681 0.075 -171.099 0.110 0.110 0.110 0.110 -171.099 0.110 0.110 0.110 0.110 -171.099 0.110 0.110 0.110 0.110 0.110 -171.099 0.110 0.110 0.110 0.110 0.110 -171.099 0.110	7	26.0	0	4	•	-
-50.291 0.095 1.922 0.012 -62.350 0.118 1.535 0.010 -76.409 0.144 1.690 0.011 18.606 0.035 9.573 0.061 14.606 0.040 8.863 0.061 -21.459 0.071 8.923 0.061 -45.328 0.071 8.923 0.057 -45.328 0.071 8.923 0.057 -47.384 0.127 4.565 0.021 -63.840 0.127 4.565 0.021 -72.093 0.127 4.565 0.020 -72.093 0.136 15.749 0.030 6 -59.055 0.111 10.764 0.050 -59.055 0.112 7.789 0.050 -59.055 0.112 7.789 0.050 -74.418 0.115 9.018 0.059 -74.418 0.116 15.345 0.059 -82.042 0.15 29.501 0.188 -50.624 0.096 28.102 0.179 -50.624 0.013 19.671 0.166 6 -50.032 0.113 19.671 0.166 6 -50.032 0.113 19.671 0.126 6 -50.032 0.132 64.163 0.010 -50.032 0.181 14.782 0.094	22	39.2			•	\blacksquare
-62.350 0.118 1.535 0.010 -76.409 0.144 1.690 0.011 18.606 0.035 9.573 0.001 -14.590 0.071 1.570 0.010 -14.590 0.071 8.923 0.057 HH -15.328 0.086 6.440 0.057 HH -53.691 0.101 3.272 0.021 -63.840 0.120 4.565 0.029 -67.384 0.127 4.644 0.030 -144.574 0.273 6.238 0.040 -144.574 0.273 6.238 0.040 -159.135 0.111 10.764 0.069 -59.135 0.112 7.789 0.050 -59.135 0.112 7.789 0.059 -60.988 0.115 9.018 0.059 -103.386 0.115 9.018 0.059 -103.386 0.115 9.018 0.059 -57.504 0.108 9.303 0.005 -50.624 0.155 29.501 0.188 -5.041 0.010 15.345 0.098 -5.042 0.096 28.102 0.179 -5.041 0.010 15.345 0.0346 -5.042 0.132 64.137 0.346 -69.932 0.132 64.163 0.0410	33	50.2				4
-76.409 0.144 1.690 0.011 55 -90.413 0.171 1.570 0.010 4 18.606 0.035 9.573 0.061 H -37.785 0.040 8.863 0.057 H -45.328 0.086 6.440 0.057 H -53.691 0.101 3.272 0.029 -63.840 0.120 4.565 0.029 -67.384 0.127 4.644 0.030 -144.574 0.273 6.238 0.040 -144.574 0.273 6.238 0.040 -59.055 0.111 10.764 0.069 -59.135 0.112 7.789 0.058 -60.988 0.115 9.018 0.059 -103.386 0.115 9.018 0.059 -103.386 0.115 9.018 0.059 -57.504 0.108 9.303 0.059 -57.504 0.109 15.345 0.098 -50.624 0.096 28.102 0.179 55 -50.624 0.010 15.345 0.0346 -50.41 0.010 15.345 0.0346 -50.624 0.096 28.102 0.179 -50.624 0.013 19.671 0.126 6 -50.032 0.181 14.782 0.091 -69.932 0.181 14.782 0.091	4	62.3				7.48
-90.413 0.171 1.570 0.010 4 18.606 0.035 9.573 0.061 H -21.459 0.040 8.863 0.057 H -33.785 0.086 6.440 0.057 H -53.691 0.101 3.272 0.057 H -63.840 0.127 4.565 0.029 -67.384 0.127 4.644 0.030 6 -144.574 0.273 6.238 0.040 22 -72.093 0.037 15.749 0.040 22 -59.055 0.111 10.764 0.069 77 -59.055 0.112 7.789 0.058 77 -60.988 0.115 9.018 0.059 77 -103.386 0.195 16.747 0.107 33 -103.386 0.195 16.747 0.107 33 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.179 55 -50.832 0.132 64.163 0.0410 11	55	76.4				5.92
18.606 0.035 9.573 0.061 H -21.459 0.040 8.863 0.057 H -37.785 0.071 8.923 0.057 H -45.328 0.086 6.440 0.041 H -53.691 0.101 3.272 0.021 B -67.384 0.127 4.644 0.029 7 -72.093 0.136 15.749 0.040 2 -72.093 0.136 15.749 0.040 2 -74.49 0.090 11.553 0.074 9 -59.055 0.111 10.764 0.069 7 -59.055 0.111 10.764 0.050 7 -59.055 0.111 10.764 0.050 7 -59.055 0.112 7.789 0.050 7 -60.988 0.115 9.018 0.050 7 -74.418 0.108 9.303 0.059 7 -74.418 0.140 11.681 0.075 9 -82.042 0.155 29.501	90	90.4			•	4.85
-21.459 0.040 8.863 0.057 H -37.785 0.071 8.923 0.057 H -45.328 0.086 6.440 0.021 H -53.691 0.101 3.272 0.021 H -67.384 0.127 4.644 0.030 -144.574 0.273 6.238 0.040 2.2 -72.093 0.136 15.749 0.101 55 -47.449 0.090 11.553 0.074 9 -59.055 0.111 10.764 0.069 7 -60.988 0.115 9.018 0.056 7 -60.988 0.115 9.018 0.056 7 -74.418 0.145 9.018 0.058 7 -74.418 0.140 11.681 0.075 55 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.179 55 -50.624 0.096 28.102 0.126 66 -59.032 0.131 14.782 0.034	ရ	8.6		•		HIGH
-37.785 0.071 8.923 0.057 HI -45.328 0.086 6.440 0.041 HI -53.691 0.101 3.272 0.029 HI -63.840 0.120 4.565 0.029 767.384 0.127 4.644 0.030 6144.574 0.127 4.644 0.030 672.093 0.136 15.749 0.101 559.055 0.111 10.764 0.069 759.055 0.111 10.764 0.069 759.135 0.112 7.789 0.050 760.988 0.115 9.018 0.050 7103.386 0.115 9.018 0.058 7103.386 0.115 10.058 757.504 0.108 9.303 0.059 774.418 0.140 11.681 0.075 550.624 0.096 28.102 0.179 550.624 0.096 28.102 0.179 550.624 0.096 28.102 0.179 550.624 0.013 19.671 0.126 659.032 0.181 14.782 0.094 4.	0	21.4	•	•	•	HIGH
-45.328 0.086 6.440 0.041 HI -53.691 0.101 3.272 0.021 8. -63.840 0.127 4.565 0.029 7. -67.384 0.127 4.644 0.030 6. -144.574 0.273 6.238 0.040 2. -72.093 0.090 11.553 0.040 2. -59.055 0.111 10.764 0.069 7. -59.135 0.112 7.789 0.050 7. -60.988 0.112 7.789 0.050 7. -60.988 0.112 7.789 0.050 7. -60.988 0.115 9.018 0.050 7. -74.418 0.108 9.018 0.059 7. -74.418 0.109 11.681 0.059 7. -82.042 0.109 15.345 0.098 6. -50.624 0.096 28.102 0.179 5. -50.41 0.010 54.137 0.126 5. -50.32 0.113 <t< td=""><td><u>-</u></td><td>37.7</td><td>•</td><td>•</td><td>•</td><td>_</td></t<>	<u>-</u>	37.7	•	•	•	_
-53.691 0.101 3.272 0.021 8. -63.840 0.120 4.565 0.029 7. -144.574 0.127 4.644 0.030 6. -172.093 0.273 6.238 0.040 2. -47.449 0.030 11.553 0.0101 5. -59.055 0.111 10.764 0.069 7. -60.988 0.112 7.789 0.059 7. -60.988 0.115 9.018 0.059 7. -60.988 0.115 9.018 0.059 7. -60.988 0.115 9.018 0.059 7. -7.504 0.108 9.018 0.059 7. -74.418 0.109 16.747 0.075 5. -82.042 0.155 29.501 0.107 3. -50.624 0.096 28.102 0.179 5. -50.41 0.010 54.137 0.126 6. -59.872 0.13 0.126 5. -11.595 0.229 33.549	2	45.3		•		_
-63.840 0.120 4.565 0.029 7. -67.384 0.127 4.644 0.030 6.238 0.040 -72.093 0.136 15.749 0.040 2. -47.449 0.036 11.553 0.074 9. -59.055 0.112 7.789 0.069 7. -60.988 0.115 9.018 0.050 7. -60.988 0.115 9.018 0.059 7. -60.988 0.115 9.018 0.059 7. -7.504 0.108 9.303 0.059 7. -74.418 0.140 11.681 0.059 7. -82.042 0.195 16.747 0.075 5. -50.624 0.096 28.102 0.179 5. -50.41 0.010 54.137 0.126 6. -59.872 0.13 0.229 33.549 0.214 4. -60.032 0.181 14.782 0.094 4.	ღ	53.6		•	•	
-67.384 0.127 4.644 0.030 -144.574 0.273 6.238 0.040 2. -72.093 0.136 15.749 0.001 2. -47.449 0.090 11.553 0.004 2. -59.055 0.111 10.764 0.069 7. -60.988 0.112 7.789 0.050 7. -60.988 0.112 7.789 0.050 7. -57.504 0.108 9.303 0.059 7. -74.418 0.140 11.681 0.059 7. -74.418 0.140 15.345 0.098 6. -58.201 0.110 15.345 0.098 6. -82.042 0.155 29.501 0.179 5. -50.624 0.096 28.102 0.179 5. -59.872 0.113 19.671 0.126 6. -59.872 0.113 19.671 0.126 6. -96.032 0.32 0.181 14.782 0.094 4.	4	63.8		•		•
-144.574 0.273 6.238 0.040 2.7 -72.093 0.136 15.749 0.101 5.7 -47.449 0.090 11.553 0.074 9.7 -59.055 0.111 10.764 0.069 7.7 -60.988 0.115 9.018 0.050 7.7 -103.386 0.195 16.747 0.107 7.7 -74.418 0.140 11.681 0.075 5.7 -74.418 0.140 15.345 0.098 6.7 -50.624 0.096 28.102 0.179 5.7 -50.624 0.010 54.137 0.126 6.7 -50.624 0.010 54.137 0.126 6.7 -121.595 0.229 33.549 0.034 4.7	ī.	67.3		•		•
-72.093 0.136 15.749 0.101 5. -47.449 0.090 11.553 0.074 9. -59.055 0.111 10.764 0.069 7. -60.988 0.115 9.018 0.050 7. -60.988 0.115 9.018 0.059 7. -103.386 0.195 16.747 0.107 7. -74.418 0.140 11.681 0.075 7. -74.418 0.140 15.345 0.098 6. -82.042 0.155 29.501 0.188 3. -50.624 0.096 28.102 0.179 5. -50.41 0.010 54.137 0.126 6. -59.872 0.143 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. -96.032 0.181 14.782 0.094 4.		144.5	•	•	•	•
-47.449 0.090 11.553 0.074 9. -59.055 0.111 10.764 0.069 7. -60.988 0.115 9.018 0.050 7. -60.988 0.115 9.018 0.059 7. -103.386 0.108 9.303 0.059 7. -74.418 0.140 11.681 0.075 5. -74.418 0.140 15.345 0.098 6. -82.042 0.155 29.501 0.188 3. -50.624 0.096 28.102 0.179 5. -50.41 0.010 54.137 0.126 6. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. -96.032 0.181 14.782 0.094 4.	<u>ත</u>	72.0	Τ.	5.74		٠
-59.055 0.111 10.764 0.069 759.135 0.112 7.789 0.050 760.988 0.115 9.018 0.056 757.504 0.108 9.303 0.059 7103.386 0.195 16.747 0.107 374.418 0.140 15.345 0.098 658.201 0.110 15.345 0.098 650.624 0.096 28.102 0.179 55.041 0.010 54.137 0.346 55.041 0.013 19.671 0.126 6121.595 0.229 33.549 0.214 296.032 0.181 14.782 0.094 4.	Q.	47.4	0	1.55		•
-59.135	_	59.0	Τ.	0.76	•	•
-60.988	52	59.1	₹.	. 78		•
-57.504 0.108 9.303 0.059 7103.386 0.195 16.747 0.107 374.418 0.140 11.681 0.075 558.201 0.110 15.345 0.098 682.042 0.155 29.501 0.188 350.624 0.096 28.102 0.179 550.41 0.010 54.137 0.346 559.872 0.113 19.671 0.126 6121.595 0.229 33.549 0.214 296.032 0.181 14.782 0.094 4.	9	6.09	Τ.	•		•
-103.386	24	57.5		•		•
-74.418 0.140 11.681 0.075 5.5 -58.201 0.110 15.345 0.098 6. -82.042 0.155 29.501 0.188 3. -50.624 0.096 28.102 0.179 5. -5.041 0.010 54.137 0.346 5. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. 69.932 0.181 14.782 0.094 4.		103.38		6.74		
-58.201 0.110 15.345 0.098 6. -82.042 0.155 29.501 0.188 3. -50.624 0.096 28.102 0.179 5. -5.041 0.010 54.137 0.346 5. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. -96.032 0.181 14.782 0.094 4.	<u>.</u>	74.41		1.68		•
-82.042 0.155 29.501 0.188 3. -50.624 0.096 28.102 0.179 5. -5.041 0.010 54.137 0.346 5. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. -96.032 0.181 14.782 0.094 4.	32	58.20		5.34	•	•
-50.624 0.096 28.102 0.179 5. -5.041 0.010 54.137 0.346 5. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. -96.032 0.181 14.782 0.094 4.	39	82.04	•	9.50		٠
-5.041 0.010 54.137 0.346 5. -59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. 69.932 0.132 64.163 0.410 1. -96.032 0.181 14.782 0.094 4.	0	50.62	•	8.10	•	•
-59.872 0.113 19.671 0.126 6. -121.595 0.229 33.549 0.214 2. 69.932 0.132 64.163 0.410 1. -96.032 0.181 14.782 0.094 4.	0	5.04		4.13		•
-121.595 0.229 33.549 0.214 2. 69.932 0.132 64.163 0.410 196.032 0.181 14.782 0.094 4.	53	59.87	=	9.67	•	
69.932		121.59	. 22	3.54		•
-96.032 0.181 14.782 0.094 4.	69	9.93	. 13	4.16		•
	1.5	96.03	18	4.78		•

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	ω.		1.22		80	Ť.	2.60	5.34	HIGH	0	•	Ŧ.	1.26	2.82	2.80	2.60	2.61	3.58	5.71	HIGH	8.51	5.73	3.58	2.40	2.01	3, 14	3.69	6.22	3.84	5.16	7.26	HIGH	16	4.	∞.	۲.	3.79	4	16	HIGH	HIGH	HIGH	6.75		16
BEND. STRESS RATIO			0.032					0.075	0.091	0.114	0.136	0.233	0.267	0.088	0.002	0.007	0.004	0.056	0.053	0.030	0.065	0.087	0.183	0.047	0.117	0.050	0.044	0.063	0.018	0.056	0.020	0.016	0.019	0.033	0.049	0.077	0.059	0.057	0.095	0.026	0.022	0.012	0.015	0.034	0.162
BENDING MOMENT	4	•	5.029	•	•	•	•	•	•	17.822	•	•	•	•	•	•	•	•		•		13.613	80	7	•	7	•		•	•		•	•	•	•			•			ທ	∞.	ო	e.	25.328
AX. STRESS RATIO	.54	44	0.449	. 34	34	ო.		Τ.	0	Ξ.	. 25	. 38	.34	ņ	. 26	•		•		0.076		•				0.236	•			0.156		0.084		0.093			. 20	•	90.	.03	0	.03	0.128	37	9
AXIAL FORCE	-289.500	4		9	0	ø	_	_	ro.		œ	co.	n	Τ.	4	-147.040	-146.619	-112.401	-75.874	-40.208	-51.260	-71.346	-88.479	-153.525	-163.664	-125.201	-110.882	-69.186	-108.913	-82.606	-63.597	-44.412	-37.507	49.	57.	86.	•	115.	•	Ģ.	4	Ö	œ	95.	21.298
BAR ID	23	23	32234	53	23	53	23	23	2	32241	32242	32243	32244	32245	32246	32247	32248	32249	32250	32251	32252	32253	32254	32255	32256	32257	32258	32259	32260	32261	32262	32263	32264	32265	32266	32267	32268	32269	32270	32271	32272	32273	32274	32275	32278

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOA

DS	MARGIN OF SAFETY		•	•					•	3.49	•		•	•		1.85	33.38	6.73	- - - -	0.81	1.78	2 07	7.37	4. C	2.57	3.93	3.33	3.93	HIGH	6.82	9.61	HIGH.	78.6	20.7	H1GH	E I	1.86	4	. 0		4	9	C	2.58
LIFTOFF LOAD	BEND. STRESS RATIO	Ξ	16	.02	.08	90.	. 13	14	.02	3	. 15	9		<u>ဗ</u>	. 35										0.189								0.078	2 6	80	8	50		90	9	0	9	C	
J TITLED:	BENDING MOMENT	8.05	0.	4.3	. 25	.37	. 29	.33	.66	.71	96	.97	. 77	4.	.82	. is	4 6	9 6	7.	- (5 6		- E	, α	29.665	Τ.	9	۲.	σ.	r.	73	. 21	- a	8.4	. 10	2	37	38	92		50	. 28	48	1.397
E NASTRAN RUN	AX. STRESS RATIO	Ŋ	7	3	7	Τ.	ď	7	Τ.	Τ.	Τ.		4	- '	4. (. د	- 1	7.	٠, ۲	., c	•	•	•	•	0.226	•	•	•	•	•	.07	9.6	0.323	; ⊊	0	င်	3.4	29	Ñ	1	Ξ	9.	32	0.279
FROM AF	AXIAL FORCE	7.21	7.05	7	7.73	9.28	3.69	9.73	īŪ.	.2	œ.	0.69-	769.	593.	234.	. .	2 6		700	9 1	-15/./11	2 5	-44	6	-119.573	O	-88.163	ë	9.007	49.	39	24.	115 940	עני	2 2	α	9	92	24	ത	43	2.94	73.47	
	BAR ID	233	234	234	32342	234	32346	a	234	234	232	235	235	235	233	32356	2 0	יי מיני	200	ט נ	957	900	900	236	32370	237	237	2	237	237	237	32379	9 6 6	238	238	238	239	239	239	23	239	239	C	23

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

	// 🗨	20	⊃ <	SAFETY
1.581	066.0	6.379	0.041	0.0
	•	•	Ť.	-0.01
	•	•	0.084	1.07
	•	•	03	1.24
	•	œ (.05	1.26
	•	•	14	0.72
	•		12	0.20
	•	ی د	•	C0
	•	15 054	2 0	20.0
				1.45
	•	•		1.76
	•	•	•	1.87
		7	•	1.40
	•			0.18
	•	ď	•	0.57
	•	•	•	0.57
	•	•		
	•	•		
	•	•	0.042	2.51
	•	ū.	•	
	•	•	•	•
	•	ġ	. 16	•
	•	•	9	٠
		•	.05	•
	•	•		•
	•	•	.02	
	•	•	.02	•
	•	•	•	
	•	•	9	4.79
	•	•		0
		ص	5	ū
	ღ.	•	90.	9
	₹.	•	0	ტ
	4.	ö	90.	4
	Ю.	•		ď.
	Ξ.	•		Τ.
	0.150		0.007	5.66
	۲.	•		9
	Ξ.			3
	0	•	0	Τ,
	_	•	0.078	С.
	ď	•	.0	σ.

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

35	MARGIN OF SAFETY		0.23					0.29	0.21	0.20	0.19	0.50	0.29	0.31	0.39	69.0	O . 43.	0.84	0.17	1.95	5.24	2.07	1.39	3.08	0.67	0.0	0. C	45	0.46	0.49	0.49	0.80	1.26	1.68	75.0	- 6	23.0	20.0	5 C	0 0	0.44	0.25	0.51	69.0
LIFTOFF LOADS	BEND. STRESS RATIO	0.086		0.074	•		•	0.088	0.076		0.150	0.100	0.095	0.022	0.102	0.151	0.07	0.003	0.415	0.037	0.01	0.022	0.015	40.0	0.043	0.233	0.030	80.0	0.034	0.024	0.046	•	•	•	•	0.034	•	5 5	•	0.7	.02		.07	. 26(
, TITLED:	BENDING MOMENT	13.520	12.581	11.661	7.419	24.444	13.914	13.743	11.847	5.978	23.419	15.728	14.861	3.516	15.911	23.615	17.17	40.0	65.038	5.754	2.716	2.4.0	2.316	2.103	6.759	20.430	7.841 6.536	6.33	5.263	3.767	7.246	19.490	9.010	666.6	181.0	. t.	3 265	603.6	13.541	11, 185		.04	11.145	.77
E NASTRAN RUN	AX. STRESS RATIO	5	0.801	•	•	•	•	•	•	0.830	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.935	•			•	•	•	0.366	`. '	o o	9 1	. "		8	9	7		Ó
FROM AFE	AXIAL FORCE	-279.633	-424.468	-470.860	473	438	294	404	433	-439.677	427	342	403	404	1/6	200	0 0) () (7 6	2 2	44.064	171.921	221.001	234.026	314.278	105.206	340 577	364 615	361.353	354.448	353.660	280.246	231.400	193.734	203.203	479.797	399 940	338.608	619.519	74	367.511	90	46	62
	BAR ID	347	33476	33477	33478	33479	33480	33481	33482	33483	33484	33485	33486	33487	33488	0.04 cc	00400	0.400	400	0.4400	33300	0000	33302	20000	33504 33505	2250	33510	33511	33512	33513	33514	33515	33518	33319	33320	3352	33523	33524	33530	353	35	353	354	355

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

22	MARGIN OF SAFETY	2.56	2.23	3.84	4.92	2.78	2.91	2.79	2.32	1.82	2.83	4.39	5.24	8 . 49.	HIGH	2.94	90.0	-0.14	0.35	2.34	1.62	3.27	HI GH	5.81	HIGH	HIGH	5.44	-0.85	HIGH	-0.82	2.14	2.25	2.27	5. 10	9.35	5.27	HIGH	HIGH	3.41	2.94	-0.51	-0.41	1.22	3.89	4.01	4 . 12
LIFIUTE LUA	BEND. STRESS RATIO	0.020	0.192	0.062	0.142	0.170	0.230	0.253	0.251	0.279	0.126	0.064	0.061	0.056	990.0	0.352	0.837	0.963	0.676	0.163	0.282	0.073	0.107	0.058	0.037	0.084	0.168	2.848	0.001	2.601	0.185	0.193	0.182	0.075	0.043	0.040	0.021	0.029	0.406	0.121	1.457	1.262	0.452	0.104	0.102	0.071
4 11 CED:	BENDING MOMENT	3, 167	30.078	9.672	22.286	26.681	35.953	39.623	39.247	43.746	19.699	9.962	9.616	8.820	10.369	55.176	131.083	150.751	105.939	25.502	44.120	11.441	16.764	9.010	5.857	13.232	26.289	446.057	1.138	407.280	28.924	30.157	28.536	11.702	6.744	6.229	3.282	₹	~	ന	228.107	\sim	70.767	16.288	16.016	11.183
E NASIRAN KUN	AX. STRESS RATIO		3			0.220	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	•	ä	ď	•		•	•	0	.02	9	. 22	₽.	£.	0.201	. 18	0.181	188
EOK	AXIAL FORCE	148.4	-134.649	106	-72.017	16	-95.263	92	112	- 130.980	124	94	8	52	-33.482	-49	Ξ	23	124	136	144	118	33	74	35	9.563	58	9/	2	172	4	133	135	-81.165	9	82	34	5	9	5	54	ဗ		-98.257	-96.037	-98.210
	BAR ID	42225	42226	42227	42228	42229	42230	42231	42232	42233	42234	42235	42236	42237	42238	42239	42240	42241	42242	42243	42244	42245	42246	42247	42248	42249	42250	42251	42252	42253	42254	42255	42256	42257	42258	42259	42260	42261	42262	42263	42264	42265	42266	42267	42268	42269

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	0	2.91	3	Τ.	æ,	თ.	0	C.		HIGH	HIGH	HIGH	H16.	HIGH	HIGH	HIGH	HIGH		6.55	2.50	• 1	_	9.40	•	0.25						-0.55	0.29	HIGH	0.28	HIGH	-0.33	6.56	HIGH	7	٠	1.10	ı.
BEND. STRESS RATIO		•	•	•	•	•			•	•	•	•		•			•	•	•	•	•	•	•	•	0.869	•			•	•	•						•	•	•	•	•	•
BEND ING MOMENT	~		4.	e.	ö	Ŋ.	6	e.	ю.	તં	•	ກໍຜ	. 4	4	Ψ.	4.	Ω.	Ŕ	₹	e.	4, 1	'n.	ໝີ່ຕ	Эц	136 . 126	6	œ	o.	7	28.	4 (2 6	33.863	1	. <i>-</i>	4	•	•	Ġ	œ.	ei,	•
AX. STRESS RATIO	. 13	. 17	Τ.	0.134	Τ.		Ö	0.092	•	0, 1	9	0.020	? 0										0.012		0.020	0.077	•	•		•		•	0.018		0	. 15	. 12	.07	₽.	. 15	5	1 4
AXIAL FORCE	0.61	4	0.83	1.26	3.57	4.24	2.06	8.56	8 0	21.664	2. C2	17.580	4	5.9	9	3.7	3. 5	28.4	e.	<u>.</u>	, ,	•	ທ່າ	; =	-10.455	-	•	S.	24.006	37.0	9 0	200	-9.719	_	26.1	9	4.7	1.5	7.57	2.28	. 49	6.43
BAR ID	233	42333	233	233	233	233	233	233	234	34	234	42343 42346	234	234	234	235	235	235	42354	235	235	233	42358	250	42363	236	236	236	236	237	423/1	100	4 (1	237	237	37	6	238	23	238	42387	239

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

LL.																																								
MARGIN OF SAFETY	1.25	0.41	1.30	2.59	2.98	1.95	0.57	0.77	0.67	89	0.50	2.83	3.29	4.48	2.92	1.26	1.36	1.11	1.10	1.80	1.81	HIGH	3.99	HIGH	4.16	4.95	7.86	9.00	50.0	1.80	1.89	2.80	3.21	5.72	HIGH	HIGH	HIGH	8.07	•	G
BEND. STRESS RATIO	0.032	9 9	. 48	0.364	20.				0.056 0.165																				- 9	0	9	9	.07	990.0	.05	0.	0.4	0.028	ō	9
BENDING MOMENT	4.935 16.146	- 9		9 4				o i	യഥ	ົດ		~				ດ			ġ	ď		o.	œ		o.				. თ								•	4.444	•	•
AX. STRESS RATIO	0.443																																						Ŧ.	0.
AXIAL FORCE	9.0	94.	9 1	ກ ແ ~ ຕ	32.4	78.7	31.8	92.0	5 G	86.7	30.4	126.9	22.2	96.2	34.6	30.8	19.7	48.3	50.5	0.1	64.4	9.9	03.2	38.0	97.8	88.3	- 59.551 - 75.664	ם כ	43	56	89	136.828	46	30	8	40	é		23 23	38.6
BAR ID	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	333	933	ກຕ	(.)	(.)	(') (., ,	43344	43346	(.)	(.)	(.)	(')	C	(')	(')	(') (ייי	יי ניי	(1)	(7)	C) (" (י כי	" (43365	, (7)	43368	43369	43370	43371	43372	43373	43374	43375	43376	43377	37	43379

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY		-0.60		0.23			•		0.18		0.35	-0.37			0.41		0.13				-0.25	•	0.32	0.34	0.17	0.18	60.0	0.35	99.0	0.45	0.35	0.38	0.48	0.53	0.80	0.57	0.59	0.74	0.78	1.01	•	0.95	1.1	7	1.19
BEND, STRESS RATIO	. 63	0.662	. 19	٠.	. 20	. 42	0	. 20	•			0.298	•	•	•	•			•		•	•	•	•	•	0.082		•	0	0	0		<u>,</u>	0.025	.05	.03	6	0.020	9	.05	0	0	8	.02	
BENDING MOMENT	.05	.71	.83	. 83	. 29	. 17	. 29	. 33	. 56		4	46.730	۲.	28.275	Φ.	4	Īυ.	Φ,	4	Τ.	∞.	7	4	4	ď	•	0	4.389	. 55	. 26	Φ.	6.793	۲.	Φ.	4	œ	ņ	ď	0	. 15	Τ.	.80	. 48	. 93	٠.
AX. STRESS RATIO	7.	σ.	ဖ	۲.	Φ.	σ.	e.	9	œ.		•	1.469	•	-	•	•		•	•		•	•	•		•	•		•	•	٠.	۲.	۲.	9	9	ı.	9	9	IJ	ĸ.	4	ស	ı,	4	4	4
AXIAL FORCE	379.067											778.825																			74	۲.	4		۲.	Ψ.	Τ.	œ	4	.65	. 18	.98	250.594	218.201	σ.
BAR ID	43435	343	34	344	344	344	344	345	4	34	4	3	43456	34	43459	34	46	4	46	346	34	346	346	346	347	347	347	347	34	347	347	347	347	347	348	348	34	348	48	48	43486	43487	43488	43489	4

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
u,	876.97	۳	ß	0.160	4
3	111	٧.	œ	0.119	-0.32
P.	ທີ	٧.	-	0.199	Τ.
ë.	340	Ψ.	က	0.215	₹.
e	410	Ψ.	4	0.156	•
ຕ	454	w.	2	0.081	•
e.		Ψ.	0	0.147	•
ë	437	w.	8	0.117	•
3	595	Τ.	ល	0.102	•
33	520	0)	6	0.126	
9	519	o,	Ŕ	0.141	
8	440	ω,	23.393	0.149	0.15
3	423	۲.	-	0.075	
8	358	Ψ.	_	0.177	•
9		۲.	e	0.147	
9	443	œ		0.051	
35	463	æ	ø	0.104	
107	465	80	ø	0.105	
E)	418	۲.		0.088	
ш,	355	9	(0)	0.151	
LC)		9		0.125	
35	387	۲.		0.052	
35	415.	۲.	o	0.065	•
35	409	۲.	Ö	0.066	
35	341	9		0.091	
35	301.	RJ.	-	0.075	
35	346	ø.		0.015	
ഥ	363.	9		0.039	
35	313.	Ω.		0.040	
35	223.	4		0.016	
35	313.	ທຸ		0.071	
ഥ	256.	4		0.056	
35	289.	ın.		0.282	
22		₹.	÷	0.071	
5		ď		0.053	
57		ហ		0.020	
22		9	ď	0.082	
∾ .	65.	m.		0.065	
22	50	4	4.	0.157	
22	97.	e.	ιö.	0.105	
5	31.	4		0.179	
\sim	71.	e.		0.005	
22	3.	ဖ		0.119	
52223	335.607	0.633	17.452	0.111	0.53
22	84.	m	•	0.250	•

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

ļ	MARGIN OF Safety	0	_	4.32	σ	Ò	÷	4.88	2.35	HIGH	1.58	1.56	2.11	2.08.	2.33	2.32	1.90	1.25	3.07	2.17	HI GH	1.30	0.52	4.49	2.26	2.05	1.23	1.10	2.20	3.00	1.75	0.97	0.29	3.38	4.07	0.43	0.75	8.95	2.59	3.91	1.35	0.18	0.51	1.28	2.17	0.23
	BEND, STRESS RATIO	.02		0	0.	6	0.	Ó		•	•	•	0.047	•	•	•	0.002	•	•	•	00.00	•	•	•	•	•	•	•		•			Τ.	Ξ.	Ξ.	۲.		ю.	. 36	. 24	.46	87	60	٠	. 49	. 88
	BENDING MOMENT					•	•			•		•	7.388	•		•	•			•	•		•	•		•				18.269		•			30	•		ıΩ.	Ε.	œ	ω.	•	ıΩ.	94.570	7	ω.
	AX. STRESS RATIO											•	0.316		•			•					•					•	*					•					•					-	.02	8
	AXIAL FORCE	0.3	נט	€.	σ.	۲.	۲.	o,	0	۲,	205.144	œ.	167.739	η,	۱ -	- 1	יפ	4.	ဖ	₹.	₹.	຺	₹.	œ	0	œ.	φ	ຫຼ	Ø.	ď	9	0	∞ :	۲.	4 ·	32.7	4	51.528	S.	ъ.	'n,	28.2	<u>.</u>	2.7	σ,	ED.
	BAR ID	52270	52271	52272	52273	52274	52275	52278	52279	52280	52281	52282	52283	52286	52287	52288	52289	52290	52293	52294	52295	52296	52297	52300	52301	52302	52303	52304	52308	52309	ന	ကေ	ന	(7)	n 1	(m.	3	m	ന	((2)	m	(ന	ო

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	•	1.72		•	1.23	•	•	8.06	•	•	•	1.06	•	•			06.0	0.82	1.02	1.21	1.20	1 .8	2.40	0.47	1.34	1.37	1.77	6.23	1.10	7.78	3.22	2.23	1.27	4.56	1.85	2.49	1.84	0.82	0.29	\blacksquare	Ō	4.69	2.41	1.1
BEND. STRESS RATIO	0.	0	0	•	90.	•	•	•	•	0.130	•	600.0	•	003	•	0.012	•	•	0.028	•	660.0	•	0.045	•	0.017	•	0.030		•	•	8		2	80	ō	•	9	<u>0</u>	.02	.03	.05	0	9	<u>o</u>
BENDING MOMENT	. 97	11.941	61	0	•	1.599	•	4	ო	•		1.365							•			7.566		•	2.641			ო.	2.895		10.742	•	င်္	99	. 47	. 34	. 46	7	.21	. 50	32	4.642	. 18	. 27
AX. STRESS RATIO		0.356										0.485																																
AXIAL FORCE	17.23	188.8	99.	80.98	232.69	209.48	9.9	-57.52	0.	269.4	257.8	-257.273			247.3				261.	238.	231.		153	354			190.129	72.		29				. 88	- 185.790	5	85.77	290.47	0.71	19.92	. 38	95.0	-154.839	51.08
BAR ID	52391	52392	52393	52394	52396	52397	52398	52399	52400	52401	52402	52403	10404	52406	52407	52408	52409	52410	52411	52412	52413	52414	52415	52425	52426	52427	52443	52444	52445	52446	52447	52463	52464	52465	53301	53302	53303	53304	53305	53306	53307	53308	53313	53314

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
53383	7	13	3	0	(2)
38	IJ	0.134	0.915	ŏ	6.45
m	16.42	٠,	1.840	9	IG
338	61.33	•	8.157	0.052	7.24
n	47.18	•	1.710		ндн
ന	-45.593	•	0.433	8	нІдн
ന	75.5	•	0.308		
ന		•	0.162		4.36
ന	127.0	•	0.194		
53395	151.14	0.285	3.332		2.49
ന	356.	•	22.196		
ကျ	272.3	•	4.453		0.94
ന (216.	•	1.490		1.45
53400	-172.543	•	1.102		2.07
53401	9	•	0.110		4.04
53402	•	•	0.747		HIGH
53403	202.721	•	3.067		1.61
53406			8.395		0.95
53407	-294.135	•	3.264		0.80
53408	•	•	2.815		0.83
53409	-278.742		2.738	0.017	06.0
8			2.345	0.015	1.10
母 '	-161.410		0.846	0.005	2.28
8	•		1.679		2.52
53413			10.359		9.72
53415	-301.527		1.112	0.007	0.76
53416			2.785	0.018	0.55
34			4.420	0.028	0.47
53418	-381.359		4.566	0.029	0.39
34			2.630	0.017	0.88
9.0	-101.834	•	0.111	0.001	4.20
9 (-65		3.262	0.021	7.06
3 6	348		2.489	0.016	0.52
53425	-438.625	0.828	6.828	0.044	0.20
ָרָ לָּרָ	0000		920.7	0.048	-0.07
ָרָ הַל	0.275	0.703	1.247	0.046	0.41
5 6				0.078	0.21
52450	0. vu v			- :	0.55
2 6	760	0.232	- u	- c	0.64
53456	30.40			3 8	7.74
3.				3 8	· •
7	-30.80	- <	· +	3 6	170
34	2.2	. –) (7	5 8	F 07
ં	9		rα	0.026	3 17
	! : !) i ·	•	,	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	4 93		. 15	3.81	5.97	HIGH	HIGH	HIGH	HIGH	1.52	1.22	I	0.43	0.43	0.4	0.79	0.40	0.13	-0.07	7 . 16	•	•	•		•	•	•				•	•	0.33	•	1.15		0.93		2.59		16	4.94	Τ.	IG
BEND. STRESS RATIO	0.011	0.016	0.018	0.00	0.023	0.025	0.030	0.035	0.079	0.045	0.010	0.176	0.031	0.024	0.021	0.031	0.030	0.016	0.036	0.046	0.052	0.033	0.019	0.036	0.041	0.056	0.047	0.011	0.028	0.046	0.051	0.020	0.003	0.047	0.019	0.042	0.063	0.178	0.113	0.025	0.012	0.032	0.014	0.018
BENDING MOMENT	75	50	2.868	4	9.	.84	. 62	. 55	. 35	.02	1.49	ច.	. e	8.0	9 6	. נ	9	4 (י פ	7	•	φ.	0	9	ו ניז	٠.	<u>ن</u> ا	٠.	4.	٠. (ກຸເ	ים פי	ט פ			52	80	7.8	9	0	.84	.05	. 15	2.836
AX. STRESS RATIO	9	0.098	9		•	•	0.086	•	•	•	•	0.014	0.696	0.699	0.839	0.336	2 000	200.	0.073	0.138	0.658	0.721	0.772	0.729	0.487	0.257	0.660	0.672	0.691	0.657	0.47G	0.397	0.638	0.565	0.463	0.558	0.511	0.602	7		0	. 16	. 24	0.08
AXIAL FORCE	-89.168	1.87		. 60	-75.304	43.	45.	•	o O	œ.	38.	-7.667	o o	•	707 650	•		•			348.988		•			<u>.</u>	4 9 0 0 0	20	99	4 t 20 t	, , ,	0 0 0	• œ	66	45	95.	70.	₩.	35.	7	•	.94	28.00	42.
BAR ID	53522	53523	53524	53530	53531	53532	53539	53540	53550	53553	53554	53559	13301	23362	53563	22200	2000	0000	1337	1000/4	535/5	535/6	53577	53578	535/8	ກ (358	י כי	200	מ מ מ	ממ ממ ממ	מ מ מ מ	53588	358	35	53591	35	35	220	220	N	220	220	62206

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR 10	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
62379	-32.894	0.062		•	нісн
$^{\circ}$	11.03	.02	•	•	H1GH
62384	25.4	.04	1.458	0.00	HIGH
. 7	29.7	Š.	•	•	HIGH
62386		2	•	•	HOI!
чс	- - -	0.052		•	H 2H
10	•	3 5		•	
ľ		5 5		5 6	H16H
62393	o.		•		HIGH
$^{\circ}$		0.050		0.029	H1GH
α	5.7	•	2.788	•	HIGH
62397	4 (•	HIGH
62398	ů.	0.018	5.034	0.032	HOH
νc	4 C	•	•	•	HIGH
10	•	•	3.722	0.024	הונים הונים
10		•	•	•	7 98
62403	_	٠.		690.0	
62404		•		0.062	H ₀ H
62405		•	8.328	0.053	HIGH
62406	- 106.962	•	ς.	0.013	3.94
62407	-52.215	•	7	0.114	7.26
62408	-9.457	•	29.480	0.188	HIGH
62409	27.062	•	ص	090.0	-
62410	4 4 4	•	•	0.144	6.99
	-43.480		<u>.</u> د	0.289	
62412		0.026	•	0.235	20.00
62413		•		0.703	0.04
62415	100	•		0.240	
63301	Ξ.			0.017	0.65
63302	4	•			3.03
63303	46.8	0	•	0.022	_
63304	142.9		•	•	٠.
63305	1.96	ღ		•	9
90869	94	. 17	•	•	9
330	_. ග	. 28	5.866	•	4
330	9	. 13		0.021	4
9	92.8	ლ .		•	1.73
331	227.4	. 42		•	ი.
7	-163.723	0.309	2.407	0.015	3 12
200	63.0		5 2	•	
63322	193.	0.364	7.9	0.040	1.74

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
1					
9 (9	٠	3.562		7.54
9	÷		•	•	HIGH
63391	•		0.654	0.004	HIGH
ဗ	œ			•	HSH
33		٠,	•	0.029	HIGH
63394	•		•	•	
96889	31.	0.248		0.011	
63397	105.758		0.211	0.001	4.01
63338		91.	0.516	•	4.99
63338	75.070		1.118	0.003	6.05
63400	62.201	0.117	1.331	•	7.50
63401			1.237	0.008	нісн
63402		•	0.961	•	HIGH
63403			3.964	•	нісн
63406	80.794	0.152	1.427	•	5.55
63407	•		0.416		•
63408	•		0.822	0.005	7.78
63409			2.061		
63410			2.844		HIGH
34	4.177	٠.	2.829	•	ндн
63412	104		2.820		4.06
34	-254.115	٠.	3.688		1.08
63415	62.301	Τ.	1.353		•
34	61.283		1.317		•
34	•		2.187		8.49
63418	54.445	0.103	3.287	0.021	8.63
34	•		3.592		HIGH
63420			5.441		8.39
63421	4		2.377		œ
63424	4		2.329		
63425	•		2.748		5.78
63426	109.650		4.982		•
63432	75.328		4.755		5.93
63433			7		4.32
63440	•		10.842		7.89
63450	α.		14 . 700		-
63455	4.		0.783		5.25
63456	84.		0.889		•
3457	0	0.203	5.689		3.85
63463	•		0.949		1.02
63464	92.		0.652	0.004	1.75
34	•	0.350	0.788		1.86
346	42.	0	3.758		HIGH
63470	•	.68	2.378	0.	
34	78.	. 52	0.406	8	06.0

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LIFTOFF LOADS

MARGIN OF SAFETY	0.91	2.29	2.60		4.26	1.64	•	•	3.19	2.17	٠.	\blacksquare	2.90			3.69		H	3.71	5.54								•	6.75	•		9	4
BEND. STRESS RATIO	0.031	•		•	0.038											0.028				0.016						0.016				0.014	.02	0	0.035
BENDING MOMENT	4.827	8.001		•	•	0	•	Τ.	9	4	7	4	8.614	•	4.479	•	3.323	•		2.519	•	•		•	Τ.	2.525	9	•	2.047	2.150	4.610	Τ.	5.420
AX. STRESS RATIO	0.522	. 29 7	. 26		0.187						0.344	•			0.210		0.150	0.084					Τ.	Τ.	Τ.	0.155	Τ.	Τ.	0.128	0.143	Ξ.	0.130	0.180
AXIAL FORCE		38.4	39.2		99.	- 198 . 709	9		25.	•	-182.072		•	-104.157	÷		-79.718	-44.653	•	ö	6	•		-92.073		-82.174		-81.860	0.8	-75.617	9.4	œ.	-95.591
BAR ID	63539 63540	63553 63553	63554	63229	63561	63562	63563	63568	63269	63570	63571	63574	63575	63576	63577	63578	63229	63580	63581	63582	63583	63584	63585	63586	63587	63588	63289	329	35	က	32	35	63595

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED. LANDING ABORT LOADS

ri LUADS	MARGIN OF SAFETY	-0.21	Ξ.		1.87	0.20	HIGH	-0.50	1.70	-		1.58	3, 15	HIGH	6.45	2.70	g / .	H :	HIGH.	I GI	I GI	HIGH	HIGH	HI GH	HIGH	Į.	HIGH	HIGH	HIGH	HIGH	Ĥ	•	٠	3.70 7.00	05.7	<u> </u>	51.	HIGH	1.48	4	•	4	3.08	4	- - - -	0.32
LANDING ADOR	BEND. STRESS RATIO	Ξ.	ıD.		0	æ	0	4	. 46	9	. 64	. 54	ღ.	5	9 !	4.	2:	- ;	S	5	80	90	.03	.03		.02	•	7	0.064	9	9	ŏ.	5	0.369	4	0.106	- ?	6	. 57	. 53	.34	. 26	.08	ღ.	0.571	œ.
	BENDING MOMENT	3.91	82.517	6.10	. 28	138.285	_	4	2.66	1.64	1.53	5.80	ນ	ĊΙ	5 / G	œ ·		٠.		•	ლ		5.216	•		4.117	n.	о О		٠	6.752	6.490	ni 1	57.824		16.547		e. (9.27	7	3.84	1.7	3.5	4 0	89.443	131.417
	AX. STRESS RATIO	•	•	•	•	•	•	•	•	•	•	•	•	0.019	•	•	•	•	•	•		•	•	•	0.019	•	•	•	0.041	0.039	•	٠	•	0.038	•	•		.07	•	90.	٠	.03	Ö	90		0
	AXIAL FORCE	7.	•	÷.	83.	4.	ري ريا	78.	ω	4	27.	20	41.	9	0	<u> </u>	<u>.</u>	4 6	<u>.</u>	<u>.</u> ,	0	φ.	o ·	4	თ	₹.	₹.	7	21.604	<u>.</u>	27.	91.	· (٠,	12.783		<u> </u>	S.	4.	4	œ.	9	6.64	ය ගු	Ö
	BAR ID		က	က	က	က	က	C	က	က	က	က	က၊	12332	っ (n (י כ	າ ເ	n (.n	?) ((n)	12341	ෆ ා	ი 1	ຕ	ო -	က		ი 1	က၊	ຄເ	ນ ເຄີຍ	12355	ם כ	12337	<u>י</u>	36	36	9	Ö	36	36	36	12370	က

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

	OF																																											
RT LOADS	MARGIN C SAFETY	3.30	2.64	9.63	6.75	3.19	3.84	2.48	1.53	5.36	3.42	HIGH	5.26	3.73	2.39	H 10	H16H	7 . 0 .	64. 6.	0. 4	8.77	HIGH	9.73	8.06	HIGH	HIGH	3.80	4.24	4.25	6.28	1511	15 H	HIGH	HIGH	HIGH	HIGH	0	7.34	6.42	ß	HIGH		-	HIGH
LANDING ABORT	BEND. STRESS RATIO				•	•		•			•	•	0.011								0.00										00.0	0.00							0.007		0.004		0	0.004
I TITLED:	BENDING MOMENT	34.146	တ	0.519	2.241	3.360	0.477	0.321	1.493	1.564	1.660	1.921	1.752	6.332	1.102	7.430	7 077		1.153	56.0	1.517	2.053	0.874	0.985	0.747	2.050	5.558	3.356	0.993	0.976	. 7 40	0.701	1.026	1.005	0.614	1.872	2.790	3.208	1.032	0.720	0.684	0.514	0.524	0.701
E NASTRAN RUN	AX. STRESS RATIO																															0.051												
FROM AF	AXIAL FORCE		41.	•		25.	9	152.	60		.	•	84.		200		7 6	•	2 2	9		4.	49.	58.	45.	29.	80		8			-27.015		43.		<u>6</u>				<u>.</u> .	. ,	œ (-6.270	თ
	BAR ID	45		12464	12465	13301	13302	13303	13304	13305	13306	13307	13308	56.00	133.14	1333	13324	1332	13323	13324	13325	13326	13327	13328	13329	13330	13331	13332	13333	13334	1336	13337	13338	13339	13340	13341	13342	13343	13344	13345	13346	13347	13348	13349

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

FORCE RATIO MOMENT RI 133.458 0.252 2.098 0 45.596 0.180 0.363 0 45.849 0.087 1.422 0 45.849 0.012 0.881 0 151.421 0.286 4.670 0 150.218 0.283 1.659 0 130.218 0.283 1.659 0 130.218 0.283 1.659 0 148.396 0.207 0.316 0 148.397 0.207 0.317 0 148.398 0.207 0.317 0 148.399 0.200 0.460 0 145.374 0.292 0.510 0 145.374 0.298 0.207 0.510 0 147.3781 0.298 0.207 0.516 0 148.354 0.353 0.207 0.516 0 149.3781 0.208 0.207 0.548 0 149.3781 0.208 0.207 0.0062 0 140.359 0.309 0.104 0 140.359 0.309 0.209 0.106 140.359 0.309 0.209 0.106 140.359 0.309 0.213 0 140.359 0.309 0.213 0 140.309 0.271 0.350 0 140.309 0.309 0.213 0 140.309 0.309 0.309 0 140.309 0		
133.458 0.252 2.098 73.336 0.180 0.363 73.336 0.138 1.036 45.849 0.087 1.422 -6.525 0.012 0.881 150.835 0.228 3.781 150.218 0.286 4.670 150.218 0.283 1.659 132.510 0.286 4.670 109.706 0.207 0.911 109.706 0.202 0.911 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 144.928 0.207 0.987 145.974 0.292 0.219 145.974 0.208 0.219 147.939 0.209 0.104 149.749 0.324 0.208 141	BEND. STRESS RATIO	MARGIN OF SAFETY
95.596 0.180 0.363 73.336 0.180 0.363 74.336 0.0138 1.036 75.336 0.012 0.881 75.421 0.288 3.781 750.218 0.228 3.781 750.218 0.228 3.781 750.218 0.228 3.781 750.218 0.222 0.311 770.351 0.222 0.311 770.351 0.223 2.2405 780.320 0.240 780.320 0.250 0.364 780.320 0.250 0.364 780.320 0.320 0.251 780.320 0.320 0.251 780.320 0.320 0.251 780.320 0.320 0.104 780.330 0.324 0.384 781.324 0.323 0.489 781.324 0.324 0.320 782.334 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.324 783.330 0.324 0.335 784.890 0.273 0.353 784.890 0.273 0.350 783.283 0.324 0.332 785.883 0.364 0.687 785.891 0.303 0.364 785.892 0.303 0.366		2.96
73.336 0.138 1.036 45.849 0.087 1.422 -6.525 0.012 0.881 151.421 0.286 4.670 150.218 0.286 4.670 150.218 0.286 4.670 117.919 0.222 0.911 109.706 0.222 0.911 109.706 0.207 0.917 109.654 0.207 0.917 117.919 0.207 0.917 117.919 0.207 0.917 117.919 0.207 0.917 117.919 0.209 0.209 148.639 0.290 0.209 148.639 0.290 0.209 148.639 0.290 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.639 0.209 0.910 148.630 0.300 0.910 148.630 0.300 0.910 149.781 0.300 0.910 149.781 0.300 0.910 140.910 0.300 0.910 140.910 0.200 0.910	0.002	4.54
45.849 0.087 1.422 -6.525 0.012 0.881 150.835 0.228 3.781 150.835 0.286 4.670 150.218 0.283 1.659 147.919 0.222 0.911 109.706 0.207 0.917 109.654 0.207 0.917 109.654 0.207 0.917 109.655 0.207 0.917 109.654 0.207 0.917 109.706 0.207 0.917 109.706 0.207 0.917 109.707 0.207 0.917 144.928 0.207 0.917 153.459 0.292 0.50 144.928 0.207 0.50 144.928 0.207 0.50 144.928 0.209 0.50 145.944 0.209 0.50 160.121 0.324 0.61 160.327 0.324 0.62 143.781 0.274 0.384 147.539 0.324 0.36 144.890 </td <td></td> <td>6.22</td>		6.22
-6.525 0.012 0.881 120.835 0.228 3.781 151.421 0.286 4.670 150.218 0.283 1.659 117.919 0.223 0.911 109.706 0.207 0.917 109.654 0.207 0.917 109.654 0.203 2.405 147.951 0.203 2.405 148.639 0.203 0.887 148.639 0.290 0.460 149.700 0.375 0.510 147.928 0.292 0.510 147.929 0.292 0.510 147.929 0.292 0.510 160.841 0.324 0.654 160.380 0.271 0.654 160.380 0.273 0.271 160.380 0.273 0.654 160.380 0.354 0.654 160.380 0.359 0.196 215.120 0.309 0.146 171.539 0.324 0.384 171.539 0.374 0.568 266.234 0.502 2.213 175.913 0.364 0.661 175.913 0.364 0.936 275.604 0.520 2.485 160.746 0.273 0.354 175.913 0.364 0.687 175.910 0.206 0.480	600.0	HIGH
120.835 0.228 3.781 151.421 0.288 4.670 150.218 0.283 1.659 132.510 0.283 1.659 132.510 0.220 0.911 109.706 0.207 0.917 109.654 0.207 0.917 144.928 0.203 2.405 154.617 0.292 0.510 144.928 0.275 0.510 144.928 0.275 0.510 147.370 0.354 0.654 160.421 0.302 0.207 160.421 0.302 0.207 160.421 0.302 0.104 160.421 0.302 0.104 160.421 0.303 0.106 160.421 0.303 0.106 171.539 0.303 0.354 171.651 0.312 0.350 172.883 0.364 0.687 172.883 0.364 0.687 172.883 0.364 0.503 172.890 0.273 0.356 172.891 0.303 0.364		\vdash
421 0.286 4.670 218 0.283 1.659 510 0.222 0.336 706 0.207 0.917 654 0.203 2.405 951 0.203 2.405 974 0.290 0.917 459 0.290 0.987 974 0.292 0.910 427 0.292 0.910 974 0.292 0.523 617 0.292 0.523 120 0.292 0.523 121 0.292 0.523 122 0.293 0.523 124 0.298 0.523 125 0.302 0.548 126 0.354 0.654 127 0.359 0.146 128 0.309 0.146 129 0.309 0.146 123 0.353 0.968 124 0.273 0.958 124 0.273 0.968 127 0.312 0.968 128		•
218 0.283 1.659 919 0.222 0.336 919 0.222 0.911 654 0.207 0.917 639 0.207 0.917 639 0.203 2.405 974 0.290 0.460 974 0.292 0.510 974 0.292 0.523 617 0.292 0.523 617 0.292 0.523 617 0.293 0.523 617 0.293 0.523 617 0.293 0.523 617 0.293 0.523 774 0.293 0.523 774 0.302 0.196 773 0.460 0.548 774 0.303 0.146 773 0.303 0.146 774 0.303 0.146 773 0.303 0.146 773 0.303 0.146 774 0.303 0.273 0.568 774 0.273 0.568		2.47
510 0.250 0.336 .919 0.222 0.911 .706 0.207 0.911 .706 0.207 0.917 .654 0.207 0.875 .639 0.203 2.405 .974 0.273 0.523 .978 0.273 0.523 .770 0.295 0.460 .770 0.297 0.490 .770 0.298 0.523 .770 0.298 0.523 .770 0.298 0.530 .770 0.364 0.654 .734 0.268 0.612 .734 0.369 0.196 .739 0.353 0.196 .739 0.353 0.196 .739 0.353 0.146 .739 0.371 0.661 .739 0.371 0.661 .739 0.371 0.568 .730 0.273 0.568 .731 0.273 0.350 .740 0.273 0.350 .750 0.373 0.364 .750 0.375 0.364 .770 0.375 0.376 .770 0.377 0.489 .770 0.377 0.364 .770 0.273 0.376 .770 0.370 0.376	•	
919 0.222 0.911 706 0.207 0.917 654 0.207 0.917 639 0.223 2.405 639 0.223 2.405 974 0.275 0.887 617 0.275 0.887 617 0.290 0.460 742 0.275 0.523 610 0.273 0.523 611 0.273 0.523 612 0.298 0.654 614 0.273 0.654 615 0.274 0.654 616 0.274 0.654 617 0.298 0.612 618 0.274 0.612 619 0.274 0.612 610 0.274 0.612 611 0.274 0.661 620 0.373 0.489 631 0.489 632 0.373 0.568 893 0.273 0.568 894 0.273 0.350 620 0.312 0.511 621 0.411 0.936 604 0.520 2.485 604 0.520 2.485	0.002	•
654 0.207 0.917 654 0.207 0.917 653 0.223 2.405 639 0.228 0.460 974 0.275 0.510 928 0.290 0.460 770 0.245 0.523 617 0.292 0.530 770 0.345 0.523 617 0.292 0.530 774 0.268 0.612 774 0.268 0.612 774 0.302 0.219 841 0.302 0.219 842 0.303 0.104 380 0.371 0.661 779 0.359 0.184 779 0.359 0.196 779 0.359 0.196 779 0.359 0.196 779 0.371 0.661 889 0.273 0.350 620 0.373 0.350 621 0.411 0.356 621 0.411 0.356 622 0.332 0.661 634 0.502 2.213 883 0.364 0.687 664 0.500 0.753		
654 0.207 0.875 639 0.223 2.405 639 0.223 2.405 645 0.228 0.887 647 0.290 0.650 770 0.345 0.520 770 0.345 0.520 770 0.345 0.520 771 0.292 0.50 772 0.354 0.654 773 0.320 0.27 773 0.320 0.104 773 0.320 0.104 773 0.320 0.106 773 0.359 0.106 774 0.271 0.661 890 0.273 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.568 940 0.273 0.350 651 0.364 0.661 883 0.364 0.687 660 0.200 0.753		
951 0.223 2.405 536 0.012 5.170 639 0.280 0.887 974 0.292 0.460 928 0.275 0.510 929 0.273 0.523 617 0.292 0.530 770 0.345 0.654 204 0.298 0.612 074 0.298 0.27 074 0.298 0.27 074 0.302 0.219 121 0.302 0.196 122 0.359 0.196 134 0.359 0.146 125 0.371 0.062 173 0.359 0.146 173 0.359 0.146 173 0.353 0.384 126 0.351 0.364 0.568 134 0.502 2.213 135 0.354 0.350 137 0.411 0.936 148 0.266 0.480 148 0.266 0.480 <td></td> <td>•</td>		•
536 0.012 5.170 459 0.280 0.887 974 0.290 0.460 974 0.273 0.510 928 0.273 0.523 617 0.292 0.530 770 0.345 0.654 204 0.268 0.612 074 0.298 0.527 121 0.302 0.219 122 0.352 0.104 138 0.302 0.104 139 0.353 0.146 173 0.460 0.548 173 0.460 0.548 173 0.460 0.548 173 0.460 0.548 173 0.460 0.548 174 0.353 0.668 123 0.353 0.568 124 0.502 2.213 125 0.312 0.350 126 0.312 0.350 127 0.312 0.350 128 0.324 0.661 128		•
639 0.280 0.887 459 0.290 0.460 974 0.275 0.510 928 0.273 0.523 617 0.292 0.530 770 0.345 0.530 770 0.354 0.527 121 0.359 0.196 734 0.406 0.548 734 0.406 0.548 734 0.359 0.146 779 0.371 0.658 946 0.371 0.661 890 0.273 0.568 913 0.273 0.568 913 0.273 0.350 620 0.273 0.350 620 0.273 0.350 620 0.273 0.350 620 0.273 0.364 621 0.411 0.936 624 0.520 2.485 604 0.520 2.485		HIGH
459 0.290 0.460 974 0.273 0.510 928 0.273 0.523 770 0.345 0.490 427 0.345 0.490 427 0.268 0.654 204 0.268 0.612 074 0.298 0.227 121 0.302 0.219 1380 0.350 0.196 173 0.460 0.548 173 0.460 0.548 173 0.271 0.062 173 0.324 0.384 153 0.324 0.384 153 0.353 0.489 154 0.353 0.489 153 0.568 0.568 10 0.312 0.503 10 0.312 0.511 10 0.312 0.511 10 0.312 0.511 10 0.312 0.511 10 0.312 0.511 10 0.312 0.511 10 0.3		2.56
974 0.275 0.510 928 0.273 0.523 617 0.292 0.530 770 0.345 0.654 204 0.268 0.612 074 0.298 0.227 121 0.302 0.219 841 0.320 0.219 841 0.320 0.104 734 0.460 0.548 734 0.460 0.489 539 0.324 0.668 539 0.324 0.668 946 0.468 4.029 234 0.502 2.213 890 0.273 0.568 913 0.364 0.661 883 0.364 0.687 604 0.520 2.485 910 0.266 0.480		2.45
928 0.273 0.523 617 0.292 0.530 770 0.345 0.654 724 0.354 0.654 704 0.298 0.219 841 0.302 0.219 841 0.320 0.104 380 0.359 0.196 773 0.309 0.146 773 0.309 0.146 539 0.324 0.661 539 0.324 0.384 354 0.350 620 0.273 0.350 620 0.273 0.350 620 0.273 0.350 620 0.341 0.936 377 0.411 0.936 910 0.266 0.489		2.63
617 0.292 0.530 770 0.345 0.490 724 0.354 0.654 7074 0.298 0.612 7074 0.302 0.219 841 0.320 0.104 380 0.359 0.196 734 0.359 0.196 779 0.309 0.146 779 0.309 0.146 779 0.359 0.146 779 0.350 0.146 779 0.351 0.661 883 0.364 0.511 651 0.411 0.936 377 0.482 1.424 604 0.520 2.485 910 0.266 0.489		2.66
770 0.345 0.490 427 0.354 0.490 1204 0.268 0.612 074 0.302 0.227 121 0.302 0.219 841 0.329 0.104 380 0.359 0.196 173 0.371 0.062 173 0.374 0.466 173 0.374 0.489 512 0.397 0.489 512 0.397 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.350 620 0.312 0.351 620 0.364 0.661 604 0.520 2.485 910 0.266 0.480		2.43
427 0.354 0.654 204 0.268 0.612 074 0.302 0.219 841 0.302 0.219 120 0.359 0.196 120 0.406 0.548 734 0.371 0.062 779 0.371 0.062 779 0.374 0.46 512 0.397 0.48 512 0.353 0.48 946 0.468 4.029 234 0.502 2.213 890 0.273 0.561 620 0.312 0.511 620 0.312 0.661 883 0.364 0.687 604 0.520 2.485 910 0.266 0.480		1.90
204 0.268 0.612 074 0.298 0.227 121 0.302 0.219 841 0.359 0.196 120 0.406 0.548 734 0.460 2.842 779 0.309 0.146 539 0.324 0.384 539 0.353 0.468 512 0.397 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.350 620 0.312 0.350 913 0.332 0.661 913 0.332 0.661 910 0.520 2.485 910 0.266 0.480 746 0.266 0.480		1.83
121 0.227 121 0.302 0.219 380 0.359 0.196 120 0.406 0.548 734 0.460 2.842 781 0.271 0.062 779 0.309 0.146 539 0.324 0.384 512 0.353 0.468 512 0.353 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.561 620 0.312 0.511 620 0.312 0.661 883 0.364 0.687 604 0.520 2.485 910 0.266 0.480		2.73
384 0.302 0.219 385 0.320 0.104 386 0.320 0.104 373 0.466 0.548 374 0.271 0.062 375 0.324 0.384 376 0.373 0.368 377 0.373 0.350 377 0.482 1.424 604 0.520 2.485		2.35
380 0.359 0.196 734 0.406 0.548 774 0.406 0.548 775 0.309 0.146 539 0.324 0.384 553 0.353 0.468 546 0.468 4.029 534 0.502 2.213 890 0.273 0.350 620 0.273 0.350 620 0.312 0.511 630 0.273 0.350 640 0.520 2.485 651 0.411 0.936 604 0.520 2.485 604 0.520 0.753		2.31
120 734 734 0.460 0.271 0.062 779 0.309 0.314 0.384 354 0.353 0.489 374 0.353 0.489 374 0.502 2.213 890 0.273 0.350 620 0.273 0.350 620 0.373 0.350 620 0.373 0.350 621 0.373 0.350 620 0.373 0.350 621 0.312 0.350 621 0.312 0.350 0.350 0.373 0.350 0.373 0.350 0.373 0.350 0.373 0.350 0.373 0.350 0.374 0.350 0.374 0.350 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.377 0.376 0.377 0.376 0.377 0.376 0.377 0.376 0.377 0.376 0.377 0.376 0.377 0.376 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.376 0.377 0.376 0.376 0.376 0.376 0.377 0.377 0.378 0.37	3 5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
734 0.460 2.842 779 0.271 0.062 539 0.309 0.146 539 0.324 0.384 354 0.353 0.489 366 0.468 4.029 234 0.502 2.213 890 0.273 0.350 620 0.273 0.350 620 0.273 0.350 631 0.411 0.936 377 0.482 1.424 604 0.520 2.485 910 0.266 0.480		1.78
781 0.271 0.062 779 0.309 0.146 539 0.324 0.384 3124 0.384 0.384 312 0.387 0.568 234 0.502 2.213 890 0.273 0.350 620 0.312 0.511 913 0.332 0.661 883 0.364 0.687 604 0.520 2.485 604 0.520 2.485 746 0.266 0.480 746 0.303 0.753		1.17
539 0.309 0.146 539 0.324 0.384 354 0.353 0.489 512 0.397 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.350 620 0.312 0.511 913 0.364 0.661 651 0.411 0.936 604 0.520 2.485 910 0.266 0.480 746 0.303 0.753		2.69
539 0.324 0.384 354 0.353 0.489 946 0.397 0.568 934 0.502 2.213 890 0.273 0.350 620 0.312 0.511 913 0.332 0.661 883 0.364 0.687 651 0.411 0.936 377 0.482 1.424 604 0.520 2.485 910 0.266 0.480 746 0.266 0.480 7753 0.753		2.24
354 0.353 0.489 946 0.397 0.568 946 0.468 4.029 234 0.502 2.213 890 0.273 0.350 620 0.312 0.511 913 0.364 0.661 883 0.364 0.687 651 0.411 0.936 377 0.482 1.424 604 0.520 2.485 910 0.266 0.480 746 0.303 0.753		2.09
512 0.397 0.568 946 0.468 4.029 .234 0.502 2.213 .890 0.273 0.350 .620 0.312 0.511 .813 0.332 0.661 .651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480		1.83
946 0.468 4.029 .234 0.502 2.213 .890 0.273 0.350 .620 0.312 0.511 .813 0.332 0.661 .651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480		1.52
234 0.502 2.213 890 0.273 0.350 620 0.312 0.511 813 0.364 0.687 651 0.411 0.936 377 0.482 1.424 604 0.520 2.485 910 0.266 0.480		1.13
.620 0.273 0.350 .620 0.312 0.511 .913 0.364 0.661 .651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480		66.0
. 620 0.312 0.511 .913 0.332 0.661 .883 0.364 0.687 .377 0.411 0.936 .377 0.520 2.485 .910 0.266 0.480 .746 0.303 0.753		2.66
.913 0.332 0.661 .883 0.364 0.687 .651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480		2.20
.883 0.364 0.687 .651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480 .746 0.303 0.753		2.01
.651 0.411 0.936 .377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480 .746 0.303 0.753		1.75
.377 0.482 1.424 .604 0.520 2.485 .910 0.266 0.480 .746 0.303 0.753		1.43
.604 0.520 2.485 .910 0.266 0.480 .746 0.303 0.753		1.07
.910 0.266 0.480 .746 0.303 0.753	0.016	0.92
746 0.303 0.753		2.76
0000	8	2.30
. 606 0. 324 0. /42		2.09

9 MARGIN SAFETY : SAFETY LANDING ABORT LOADS BEND. STRESS RATIO 0.003 0. 0F SOGRID BAR FORCES AND MARGINS ROM AFE NASTRAN RUN TITLED: 2.095 0.510 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 0.345 1.333 1.469 1.333 1.469 0.696 0.958 1.406 0.958 0. STRESS RATIO 0.016
0.031
0.069
0.107
0.117
0.117
0.088
0.098
0.072
0.088
0.072
0.088
0.172
0.173
0.174
0.174
0.174
0.174
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175
0.175 ¥ -47.121 -46.071 -51.918 -51.918 -51.918 -52.965 -74.717 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -65.651 -67.716 -149.200 -111.607 -90.078 -90.078 -90.078 -123.310 -1 8.251 -16.667 -36.753 -53.235 -62.078 -58.798 -56.114 -37.931 AXIAL FORCE 10 13509 13510 13511 13512 13513 13513 13513 13513 13520 13520 13521 13531 13551

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
~	67.07		.3	0	ω.
22	9.44	0.112	5.325	0.034	7
22229	. 33		. 79	0	7.62
22	57.02	•	2		•
223	47.95	60.	5.47	•	æ
22232	25.35		63.60	•	
22233	13.89	•		•	1.00
22234	9.66	•	5	•	4.25
22235	71.71		.46	•	•
22236	- 38	0.116	46	0.016	7.58
7577	20.00	•	8	•	9.63
22230	-44.901	0.083	•	9 6	HIGH
2222	20.00	•	٠,		
22241	40.0	20.0	17 588		L 00
22242	500	•	່ ແ		80.0°
22243	6.7		-		
22244	6.63				-0 65
22245	87.04		4		
22246	49		C		•
22247	Ö	60	2.693	0.017	
22248					15.H
22249	•				HEIH
22250					HSIH
22251	-24.761	0.047	7.		HIGH
22252	20.		Τ.		HIGH
22253			. 12		7.49
22254		0.010	88		
22255	œ.	0.147			
22256	-57.532	0.109	30.822	0.197	
22257	. 99	0.125	•		06.90
22258	36.	0.070	•	8	HIGH
22259	α.	0.128	1.661		6.76
22260	19.8	0.036	1.624		HIGH
22261	ල. ල	0.044	1.411		HIGH
22262	-	0.040	1.605		HIGH
22263	6.2		4.941		HIGH
22264	13.47		.95		HDIH.
22265	2.0		5.058	0	HIGH
22	7.6		33.106	Ŋ	80.6
226	•				
226	.5	05	2.12	7	•
226	7.9			0	HIGH
22270	7.62	.05	.56	0	HIGH
22	1.32	8	6.	0	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

MARGIN OF SAFETY	1.25		HIGH	•	2.48	4	∞.	<u>ත</u>		\mathbf{H}	\vdash	0.61			. 1	2.97	4.88		_			•	•	•	•	•	•	•	•	•		6.68				_		8.42	4	7	HIGH	\blacksquare	HIGH
BEND. STRESS RATIO			0.001									. 668																														0.001	0
BENDING MOMENT	5.51			. 49	91	۲.						109.308													•	68.039			•	•	•	7.375	•							9	18	1.036	. 49
AX. STRESS RATIO	. 16	Ñ	•	•	Ξ.	•	•	•	•		•	0.089	# 0.0 860	090.0	0.043	0.040	0.142	0.178	0.019	690.0	0.078	0.131	0.144	0.122	0.137	0.097	0.142	0.140	0.137	0.149	0.136	0.126	0.129	0.137	0.138	0.083	0.095	0.101	0.112	0.115	0.046	0.054	90.
AXIAL FORCE	87.292	_	16.148	4	o.		4	40.176	49.543	20.913	ا به	-47.396	-20.164	3	-22.899					36.				64.	•	•	75.	74.	72	90 5		-66.529		-72.739							4 (-28.832	ю.
BAR 1D	23	23	23	23	23	23	23	23	23	23	53	2234/ 22348	3 6	23	23	23	23	33	23	23	23	23	53	23	g.	53	23	23	53	יי אני	3 6	33	23	23	23	23	23	23	23	23	23	23	23

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
23334	. 7	0.005	5.432	0.035	I
333	9.89		74		6.43
333	68.		9	•	•
23340	82.0		. 78	•	5.40
23341			.25		
23342		0.07	ກຸ (HIGH.
23344				00.0	_
23345	-6.708	0.03	3.590	0.00%	H.E.
23350	•		83		80.09
23351	-58.919		σ.		
23352	64.4	0.122	4	0.009	7.21
23353	۲.		.31		7.05
23354	45.456		. 77	0.005	HIGH
23355	39.921		٠. ۲	•	HIGH
23357	19 9 49		•	0.008	E 2
23363	-27.472		•		
23364	38		1.020	0.007	E ISI
23365	45		•		HIGH
23366	-49.636		1.274		9.65
ကျ	43.458				HIGH
23368	33.919		1.072	•	HIGH
23369	29.217		-		HIGH
23370	25.985		1.877	0.012	HIGH
23371	34.573		4.736	•	HIGH
23376	1.492		7.409	0.047	HEH
23378	2.1				E I
23379	28				HSIH
23380	32		99		HIGH
23382	50.012		•		9.38
23383	31.411			0.004	HIGH
333	26.656		•	•	HIGH
333	28.801		•	0.013	HIGH
າ ເ	13.639		.41	0.022	H5IH
י כי	20.177		7.5		HIGH
מ מ מ	x 0 (8	HIGH
n (\circ	0.002	. 5	8	_
) () ()	ָס (ς.	•	HIGH
900	2 9	<u> </u>	<u></u>		-
900	2:	0.0	. 7	0.001	
מ מ מ	-141.330	Ň	, i	Ō,	•
23398	7 6	٠ بح	ıc.	0.010	3.70
5	5	0	0.388	0.003	•

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

מ מ	MOMENT	RATIO	SAFETY
	. 268	0	HIGH
.037	Ξ		HIGH
.026 3	. 661	.02	HIGH
900	Τ.	0.026	н16н
.018	•	0.011	HIGH
030	•	0.011	HIGH
.027		6	HIGH
.015			HIGH
.024	Τ.		HIGH
.025	Τ.		HIGH
.024	4		HIGH
.024	┺.		HIGH
.031	•		HIGH
.026	•		HIGH
.045	•		HIGH
.033	•	•	HIGH
.032			HIGH
.028			HIGH
.022			нісн
.017			HIGH
.018	ď		HIGH
. 161		•	5.13
.082	٠		HIGH
.055			HIGH
.044	•		HIGH
030	•		HIGH
.018			HIGH
600			HIGH
. 143			5.99
.067			HIGH
.070			HIGH
.063	•		HIGH
.042			HIGH
.024			HIGH
.012			HIGH
.054			HIGH
.027	•	.02	HIGH
.011	•	.02	HIGH
.022	ď		нІСН
100	۲.		HIGH
.036	۲.		HIGH
960	Τ.		9.05
.050	. 26		HIGH
.066 1	٠.	. 12	9.89
.058	٠.	.02	HIGH
0.0024 0.0024 0.0024 0.0024 0.0026 0.0024 0.0024 0.0024 0.0024 0.0022			6685 6685 6685 6685 6685 6685 6685 6685 6685 6685 6695 6697 6697 6697 6697 6697 6697 6697 6788

	ISOGRID FROM AFE	BAR FORCES E NASTRAN RU	AND MARGINS IN TITLED:	OF SAFETY LANDING ABORT	RT LOADS
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
32232	66	0.051		0.011	нІвн
23	38.8	•	1 24	.07	H
200			0 000	0.148	6.64
223	6	0.018	0 0	0.003	H51H
223	0.	•	58		HIGH
223	90		. 75		HIGH
22	~ . ∞				HIGH
32240	-0.738	0.00	0.287	0.002	HIGH
224	4.4				5 E
24	7.2		3.501		HIGH
24	- -		. 82		HIGH
24	ı,		•		HIGH
32246			90.	•	HJ :
7 6	- U	800.0			# 10 H
1 7	P C		0.552	0.00	# 3
25	9.0				
25	9		9		HBIH
25	3.6		.69		HIGH
25	13		٠.	•	HIGH
0 0	-8.09		α. ι	0.012	HIGH
נו ק	-22.946	0.043	1.794		# 15 E
25	-4.82	•	•	0.010	H H
25	ω.			0.025	HOIH
2	1.152		•		HIGH
50	o.		•		HIGH
32261	ი, (9.983	0.064	HIGH
4 0	3.67	20.00		600.0 00.00	I 3
10	90			00.00	H
26	0				HIGH
56	4		ū		HIGH
26	12.80	0	۲.	•	HIGH
32268	-14.435	0.027	0.675	0.004	HIGH
2 7	20.00	, c	9 6	0.00	5 1
27	9.53	50	5 8	0.00	E E
27	6.42	.03	88	0	FIE
27	6.65		13	•	HIGH
32274	9.9	Ö	7		HIGH
\sim $^{\circ}$	-2.694	0.005	0.200	0.001	
~	э. Э	0	ຫ.	900.0	HIGH

	ABORT LOADS
JF SAFETY	LANDING
ISOGRID BAR FORCES AND MARGINS OF	FROM AFE NASTRAN RUN TITLED:

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
32339	39.010	0.074		8	HIGH
234	7.6		•		9.82
234	5.2	0.029	•		HIGH
234	9				HIGH
234	20.5	0.005	•	8	HIGH
23	2.4		•		HIGH
32347	-3.5	•		•	HIGH.
5.5	9.6				HIGH
234				•	HIGH
32350	-8.572	0.016	2.748	0.018	HIGH
200	- 5		7	•	HIGH
222			œ, d	•	HIGH
32334 32355	-25.214		۰ .9		_
יי היי			- (•	66.6
אר האני	מיני	7.00	. c		HIGH
200			<u>ب</u>		1011
200	2 C				HIGH
900	46.41		1.093		HIGH
32362	ວິນ		•		8.53
236	43.40		1.256		HIGH
$^{\circ}$	42.		1.234		HIGH
N	-35.279		•	0.005	HIGH
$^{\circ}$	50		•		9.58
$^{\circ}$	52.58		0.485		9.07
$^{\circ}$	•		1.138		9.44
$^{\circ}$	•		1.190		HIGH
$^{\circ}$	S		2.339	0.015	HIGH
32375	-65.241	0.123	0.151		7.12
$^{\circ}$	58.		0.313		•
0	വ	0.106	•		8.45
N (ຄູ		•		œ
N	6				φ.
N (83		•		5.31
N	. 3				7
. 7	64.			0.005	ņ
\sim	61.90				ū
238	59.3				თ.
32390	9		0.357		7.82
239	6.09		•	•	9
ල (ا ۔ س	₹.		0.005	•
239	66.56	. 12		<u>.</u>	Ō.
239	ص ص	=		.02	7.32
239	4.47	.08	7.1	8	HIGH
239	က္ပဲ၊	0.140	0.223	0.001	6.13
32398	2.51	. 15	. 56	0.004	4

	LANDING ABORT LOADS
OF SAFETY	LANDING
9	_
ISOGRID BAR FORCES AND MARGINS	TLED:
AND	E N
FORCES	STRAN RI
BAR	ZAZ
SOGRID	FROM AFE NASTRAN RUN TITLED:

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RAIIO	MARGIN OF SAFETY
332	3.1	5		ć	
33329	-62.015	0.117	2.145	0.014	7 51
333	28.32	.05		03	2
333	<u>ب</u>		1.968	•	6.35
333	2.07		1.453	0.009	
33333	5.56	•			7.08
	15.98	.03	Ŕ	0.019	HIGH
n (44.36	0.	•		
33	67.54		٠	Ö.	6.71
334	32.48	0.0	•		HIGH
4444	-26.919		•	03	
י י	. ע	- c	2.036	0.013	7.27
334	444	•	•	5 8	בי בי בי בי
334	1.89	90			E I
33350	0.93				63
33	0.2	0	5.702	0.036	-
ന	. 7		•		HIGH
n	. 7	•	•	.02	HIGH
თ.	54.654	0.103	•		8.65
33355	9	•	-		HIGH
ന		0.051	•	0.016	HIGH
332		•	-		HIGH
ന	50	•	•	.07	HIGH
336	•	8	•		HIGH
က၊			•	9	HIGH
ကျ	4		•	0.	HIGH
ကျ	41.856	0.079	•	0	H1GH
ကျ	9	•			HIGH
33369	1.14	•	•	0	HIGH
337	; ;	•	2.507		HIGH
333/1	ດ່	60.	•		HIGH
"	12.5/4	0.024	10.845	0.069	HIGH HIGH
755	, , ,	5 5	•		
5 6	17 22	, c			E 21 2
338		. 4	•		15 T
338	24	. 9			
38	4.40		•	800	Helm
338	ဖ	0	0		H5IH
338	4.915		.84		HIGH
338	9.	8	2.210		HIGH
338	5.48	ō	. 29	.05	HIGH
88	-20.969		7.217	0.046	HIGH
33391	13.94	0	. 76	8	HIGH

	LOADS
	ABORT
F SAFETY	LANDING
AND MARGINS OF SAFETY	IN TITLED:
ISOGRID BAR FORCES	ROM AFE NASTRAN RUN
-	4

1 OF																																													
MARGIN SAFETY	4.82	3.14	3.28	4.08	4.97	3.85	2.94	3.33	4.31	5.00	2.94	2.93	3.99	6.29	3.02	2.92	60.9	1.1	6.38	HIGH	7.80	4.83	3.44	2.05	0.97	6.27	5.84	3.73	3.08	2.48	1.93	1.94	3.33	5.97	3.76	2.49	2.41	2.15	2.13	1.56	2.12	•		•	5.47
BEND. STRESS RATIO	.02	0.034		0.020		0.070	0.025	0.027	0.026	0.045	0.045	0.030	0.031	0.028	0.062	0.049	0.028	0.152	0.031	0.011	0.012	0.010	0.004	0.017	0.100	0.025	0.024	0.024	0.016	0.010				•		0.028	•	•	0.035			0.051	0.7	č	0.170
BENDING MOMENT	.07		.39	14	σ.		σ.	7	0	7.091	7.119	4.705	4.798	4.438	999.6	7.728	4.439	23.774	4.814	1.779	1.920	1.534	0.585	2.721	15.704	3.871	3.827	3.776	2.511	1.534	1.414	6.420	1.066	61		.33	.07		. 55	82	8	05	o.	6	6.5
AX. STRESS RATIO	17	0.239	.23	0.196	0.162	0.197	0.252	0.229	0.187	0.162	0.249	0.252	0. 198	0.135	0.241	0.250	0.139	0.438	0.133	0.020	0.113	0.171	0.225	0.327	0.490	0.136	0.145	0.210	0.245	0.287	0.341	0.336	0.231	0.140											0.110
AXIAL FORCE	0.18	6.68	ď	ω.	ъ.	4.	ë			86.033					27.	132.609			70.626	2	\circ	-90.798	ത	ന	ത	-72.085	-76.634	Ξ	59	151	180	178	122	က	2	150	155	167	-167.606	205	168	140.68	. 59	115.16	58.0
BAR ID	347	347	347	34	347	33480	33481	33482	33483	33484	33485	33486	33487	33488	33489	33490	33491	33492	33499	33500	33501	33502	33503	33504	33505	33509	33510	33511	33512	33513	33514	33515	33518	33519	33520	33521	33522	33523	33524	33530	33531	33532	35	354	33550

	ABORT LOADS
JF SAFETY	LANDING
MARGINS C	RUN TITLED:
FORCES AND	TRAN RUN 1
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN

90 P																																											
MARGIN	HIGH	\blacksquare		5.42	HIGH	HIGH	HEH	HIGH	1 2		E E	HIGH	8.77	6.63	1.73	1.20	2.87	HIGH	HIGH	HIGH	HIGH	HIGH	$\overline{}$			-0.66	_	-0.59	HIGH	H101H	HIGH	HIGH	HIGH	H51H	5 6	H	F 1 6	2.87	0.00	0.34	4.78	HELE	
BEND. STRESS RATIO	0.021	0.013	0		= :	7 !		2	- 6	0.00	38	0	0	.21			4	9	7	0.019	.02	ö	8	0.026		80		9		0.114					00.0		0.142		י ני	•	0.280	<u>ن</u> د	0.068
BENDING MOMENT		2.049	•		•		•			•		2.593		ω.	ö	•	ъ.	4.	ď			1.966	•	4.085	1.47	.03	o.	3.88	8.65	7.91	90	-	9 6		5 0	2 . 6	2 0	23.620 146.07E	0	20.0	20.00	٠. ن	0.600
AX. STRESS RATIO	0.076	0.084	<u></u>	•	S	5.5	5 8	5 8	•	2 6	90	.08	₽.			•		•		0.048				0.103			0.017				•	8 8		0.03									20.0
AXIAL FORCE	40.207	4.60		27.73	٧,	4.4 9.4	מ מ מ	9.9.0 0.00			. e.	43.316	3.5	4.	27.	7	-22.559	- -	ä	25.645	ū.	. .	'n		94.532	•	၈ ု	9	34	م	•	4.152		9 703		30,333		-31 025	70.00	70.00	-34.430	17 17	000
BAR ID	42225	22	777	7 0	777) (א כי פי	7 6	200	3 6	223	223	12238	22	224	224	224	224	224	224	2	224	24	224	225	225	225	225	225	N (225	1223/	2 4 4	12260	200	200	2 6	12263	2 6	077	977	226	00771

	LOAD
	ABORT
OF SAFETY	LANDING
MARGINS	FE NASTRAN RUN TITLED:
AND	E N
FORCES	STRAN RI
BAR	NAN
ISOGRID	FROM AFE NASTRAN

BENDING MOMENT 79.946 34.281 79.946 34.281 79.946 34.281 77.293 7	AX. STRESS BEING MAINTING MAIN
--	--

ISOGRID BAR FORCES AND MARGINS OF SAFETY

AVTAL	V CIDEC	ш	CIAC	0
RCE	AX. SIRESS RATIO	MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
		.65	0	
629	•	. 78	.03	1.67
Ň	•	. 29	•	2.30
54 / 268	0.228	7.1061	0.007	3.39 HTCH
m		. 12		H
io	,	•	6	HIGH
018	•	•		9.94
622	•	•	.05	.6.94
085		•	.02	1.98
) 49 0 40		4.196	0.027	2.79
067	•	•	•	2.00
370			0.101	2.03
. 269				2.39
. 764				6.27
508	•		•	8.41
.078		•	•	HIGH
.310		•	•	HIGH
. 766		•	•	2.11
		•		3.24
	•			3.26
116.386		•	•	3.53 0.03
		•	•	Б. с.
		•	•	E I
Ψ			.03	5.45
Ψ				HIGH
4.652		•		8.63
. 120		•		HIGH
		•		HIGH
. 451	•		0.026	H
3.960		•		2.28
1 7 6		•	5 6	
4 4 5		•	5 6	
. C.C.	•	•	č	
696		4 605	5 6	٠.
၈			0.	HIGH
Ñ		•	0	HIGH
.405			0	HIGH
ū			8	HIGH
5.655	0	•	6	HIGH
	8	1.730	0 011	1011
			•	

	LOAD
	ABORT L
OF SAFETY	LANDING
Ö	
ISOGRID BAR FORCES AND MARGINS	ITLED:
AND	⊢ Z
FORCES	STRAN RI
BAR	NAN
ISOGRID	FROM AFE NASTRAN RUN TITLED:

ROM AFE
AX. ST RAT
Ö
o o
o c
o O
0.
o.
o ·
o c
o o
o.
o
o ·
o (
0 0
o c
o c
Ö
o.
o O
o c
Ö
o
o .
o o
395 U.36
o
o
o ·
o ·
o (
o 0
o o
000
9 0
0.0
0.22
Ý

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

tı.																																											
MARGIN OF SAFETY	0		0.74	ເດ	6	Τ.	4	•	9		∞.	1.13	. ·	. . .	1.06	1.01	1.06	1.33	1.62	1.31	1.28	1.28	1.48	1.96	1.53	•	•	•	•	2.68	•	•	•	1.23	•		•	ß	ღ	7	1.23	6	1.62
BEND. STRESS RATIO	C		0							0.019		0.069	•	0.046				0.036										0.042			0.028	•	<u> ر</u>				0.130		. 12	90	9	1.	15
BENDING MOMENT			5.797	•	•	œ.						10.769		7.155																			3 6			8.128		რ		0	. 26	.93	23.798
AX. STRESS RATIO	Φ.	7	0.572	ε.	RJ.	4	.37	5	φ.		ີ.	0.461	•	0.470			•				•											. r	. .	4		0.206	N	. 16	.39	. 29	43	39	34
AXIAL FORCE	ω.	94	03.	88	65.	4 -	99	70.	27.	88 6	, d	244.148	2 5	248.861	57.	62	ລີຂ	25	92	227.788	35	÷ 3	က်	7		ဗွ်	84	ດ່າ	47.		75 260	-201 306			-129.014		1.7	88.367	о О	57.67	227.7	08.37	182.57
BAR ID	(.)	43562	43563	(.)	(·)	(,)	43567	(,, (43569	יט כי	"	435/2	, (*.	43575	(*)	(")	(7)	(T)	יניו	C) (וכים	ו כיו	ro (י ני	וכיו	(C) (וכח	(7) (ית:	43397	י כ	, c		i N	52205	52206	N	52208	~	N	N	52223	7

	14.																																							
ABORT LOADS	MARGIN OF Safety	HIGH	H 1011	7.70		3.41	H16H	5.03 HIGH	2.71	ı.	3, 16	3.87	4.24	9. G	2.13	5.15	3.90	HIGH		1.1	9. 4 9. 6	3.67	1.80	1.45	6.16	o . / o	. 08 1.08	0.31	HIGH	-	0.32	0.63	2.30 5.43	H10H	8.57	0.40	1.61	•		0.60
OF SAFETY LANDING	BEND. STRESS RATIO		0.002					0.007			.03	•	0.00		0.004		•		0.032		0.075			0.124	0.104	0.108	0.234	0.148	0.198			٠ ب	0.120	! -			90	9	œ	0.619
AND MARGINS V TITLED:	BENDING MOMENT		0.250		•	•	•	0.229	•	•	٠	6.912	•	٠.				0.301	5.021	9,	5.052	6.782	14.236	19.488	16.301	16.033 28.808	36.630	23.189		22.724		ດເ	46.477	_	. 4	4.0	0	e.	r.	96.986
BAR FORCES AND MARG : NASTRAN RUN TITLED	AX. STRESS RATIO	0.063				0.226	•	0.001			0.238			0.241					0.295		0.175						0.402			0.			0.232							
ISOGRID E FROM AFE	AXIAL FORCE	-33.323	-32.295 -45.697	. 7	Φ.	9.60	7 0		2	148	126	- 106.559	2 6	127	169	-78.551	•	-11.	•	4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-92.818		181.	•	-63.901		213.		თ	12.547	7.4		23.0				•	۲.	•	-
	BAR ID	27	27	227	227	227	727	52280	228	52282	228	(4 (v ()	"	CA	CA.	α	α	CA C	46	52301	CA.	CA	$^{\circ}$.v c	NO	S	CA.	α	C4 (\sim	46	52323	S	C/I	a	N	0	52330	23

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

!					
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
C	9	Ξ.	-	0.007	O)
52392	4.44	. 17	-		4.27
C	ღ.	9		•	HIGH
~	2.5	0			HIGH
α	79.2		4	•	1.94
52397	129.906	0.245	1.141	0.001	
$^{\circ}$	= .3		•		3.76
C/I	2.2				C
α	æ				5.44
~	4 .5				ω.
C4	9.2		•		2.10
a	Ľ,				4
a	150.461				r.
a	o				Τ.
C	65.2				Θ.
a	∞.				Φ.
a	162.233				
2	4				
24	•				
24	Ö				
4			2.413		
24					
24					
24	87.717			0.034	
24					
24	144.601			0.008	2.66
24	180				
24	-149.550		2.987	0.019	
52444	63		•		
24			•	0.025	
24	58		•		7.67
α			•		4.82
246	39		•	0	2.78
24	193		•		1.74
46	50.		•	0	8.80
က	64.		•		2.21
53302	94.24		•	0.048	1.69
က	197.73		•		
53304	. 42			0	1.11
က	39.62		•	8	0.56
co .	38.17		•	90.	HIGH
က	30.80		•	0	•
930 930	04.79			90.	
က	186.655	0.352	•	0	
53314	29.22		.94	.03	1.30

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

MARGIN OF SAFETY	-	6.70	HIGH	5.84		_	•	•	•	2.98	•	•		-	8.88	1.31	4.52	3.19	2.88	2.62	2.75	5. 12	5.02	. . .	2.88	2.00	1.63	1.21	1.69	HIGH HIGH	1.67		0.46	1.35	0.7	1.07	1.04	2.81	4		•	HIGH	2.18
BEND. STRESS (RATIO		600.0						0.009				0.014											0.042																				
BENDING E	0.527	1.354	1.865	18.224	C)	1.574	1.410	1.402	0.973	2.488	V T	2.269	3.292	3.538	3.132	10.116	8.089	5.274	3.219	6.325	6.842	6.862	6.632	33.948	7 . 190	7.116	8.682	8.843 0.043	9.0/2	4 173	12.392	0	ന	23.228	ຫ	တ	o	œ	$^{\circ}$	8.867	12.884	10.649	. 76
AX. STRESS RATIO	Ξ.	Ţ.	90.	_	٠. '	0.	Ξ.																0.162									0.478										0.002	က
AXIAL FORCE	85.856	8.73	0	5.15	2.04	က က (ر ا رو	m, (റ	132.91/) 7	. ~	œ	24.682	53	-224.967	93	25	36	4	139.302	84.407	86.002	7	8 'S	4 6	198.285	מ מ	ט ק	0.335	92	253.336	54	9	36	85	129.978	12.46	9.	69.93	. 16	0.	- 159.030
BAR ID	53383	33	53385	E (S (2	5 6	939	933	ה ה ה	53397	0.00	33	~	m	53402	~	53406	m	m.	34	34 +	341	53412	4 -	4 4	7 7	24	- + - +	nor	342	342	53425	342	m	343	344	345	7	345	7	346	%	346

ABORT LOADS	MARGIN OF SAFETY	4.33	4 G	2.64	0			5.00 9.00																	0.85		1.68	÷.÷	•		•		٠	2.98	9.12	בים בים בים	H GH	HSIH	
OF SAFETY LANDING	BEND. STRESS RATIO		•		•	•		•	•		•	•	•	•		•	•		•	•		•	•	•	0.040		•	•			•			•	•				
S AND MARGINS RUN TITLED:	BENDING MOMENT	4.0		. ∞	9	0	រ ខា	80 G	19.816	2.7	9.3		<u>.</u> د	· ຕ - ຄ	9	ó	α.	4.0	ი. 4	- 4			24.128	•	6.254		. 20	7.364		5.323			4		٠ .	0 7	. o	52	í
BAR FORCES NASTRAN R	AX. STRESS RATIO					•	•	0.142																	0.537											5 6	9	0	1
ISOGRID E FROM AFE	AXIAL FORCE	. 45	9 KG	8.95	1.98	ij,	6.61		n	274.	72.	-379.406	434	292	348.	403.		-71.	-301.766	320		190.	129.	287.	-284.798	252.	191	-248.921 -245.559	23	197.	171.1	91.5	162.6	126.	ο α 4. α	9.6	5 7	4.59	6
	BAR ID	53522	53524	53530	53531	53532	53539	53540 53550	53553	53554	53559	53561	53563	53568	53569	53570	53571	53574	53575	53577	53578	53579	53580	53581	53583	53584	53585	53586) (T)	(C)	n	ကျ	r) (ית כי	чс	1 C	S	220	000

	ABORT LOADS
OF SAFETY	LANDING ABORT
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

r LOADS	MARGIN OF SAFETY	HIGH		HIGH	HIGH	HIGH	HIGH	HIGH	7.57	8.37	HIGH	HIGH	HIGH	99.9	HIGH	7.08	8.50	HIGH	HI GH	HIGH	8.11	8.01	9.11	HIGH	HIGH	7.14	7.69	9.75	HIGH	HIGH	7	8.17	9. 19	HIGH:	H1GH		. 93	5.00	т Ю	ទ	9	۲.	æ	9.38	o.	īÿ	
	BEND. STRESS RATIO	8		0.0		•	0.008					•	0.032				•	•						0					0.014				0.008								0	05	02		02	05	
	BENDING MOMENT			3.213					-				4.977		4																																
	AX. STRESS RATIO	0.5	0	.05		9		8	0.116	0.060	0.081	0.064	0.083	0.126	0.087	0.094	0.102	0.078	0.011	0.002	0.106	0.109	0.097	0.056	0.00	0.122	0.115	0.092	0.065	0.041	0.120	0.109	0.08	0.077	0.000		0.00	0.097	0.092	0.085	0.109	0.101	0.100	0	8	60	
	AXIAL FORCE	30.56	27.2	99.	17.	•	~	÷	÷.	÷	က်	4	44.165	، فو	0	oj.	4.	<u>.</u>	5.972	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40.790	•	•		•	ή,	4.1		е. С	52.899	٠ ا	•	- :	
	BAR ID	26	26	62265	26	26	26	26	62270	62271	62272	62273	62274	62275	62278	62279	62280	62281	62282	62283	62286	62287	62288	62289	62290	62293	62294	62295	62296	62297	62300	62301	62302	62303	62308	80220	62340	62310	0700	62312	62316	62317	62318	62319	62320	62323	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

MARGIN OF Safety	HIGH	HIGH	HIGH	HIGH	HIGH	66.6	-	HIGH	HIGH	HIGH	8.59	\blacksquare	HIGH	HIGH	9.47	8.57	HIGH	HIGH	9.52	8.39	8.20	3.95	6.65	6.41	HIGH	3.46	HIGH	5.02	5.32	8.32	HIGH	0.94	9.62	9.88	2.28	7.19	HIGH	6.29	_	1.92		5.98		•	
BEND. STRESS N RATIO					•	0.080		0.003		0.007		•									0.034																		0.044				0.026		
BENDING MOMENT	20.885	5.088	•			•	•	0.472	•	•	8.692	•	3.887	•		•	13.966	•	3.087	•	5.317	ö	•	6.254	•	38.197		Θ.	•	6.463	•	_	o.	•	•	•	•				•	5.848		R.	
AX. STRESS RATIO		0.011	•					0.038			0.098										0.106			0.131			0	0.165			0.042					0.120		0.136	0	0.337	4	Τ.	60	Č	
AXIAL FORCE	-16.664	5.95	ö	0	- -	- -		Ö		4	-51.894	9.615	•	38.	50.	-53.508	-38.880	-37.412	-49.848	-56.078	-56.183	-76.021	20	-69 ' 69	-42.414	73.		87.	-37.556	54	2 1			-43.027	•	რ.	4.	ď.	-23.881	78.	3.24	_	9.5	200	
BAR 1D	62379	a	α	a	a	$^{\prime\prime}$	a	62391	N	α	α	a	$^{\circ}$	$^{\alpha}$	62399	62400	62401	62402	62403	62404	62405	62406	62407	62408	62409	62410	241	62412	62413	62414	62415	63301	63302	63303	63304	63305	90889	63307	330	63313	က	331	332	63321	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

OF.																																												
MARGIN C		9	HIGH	HIGH	HIGI4	16		5.38	6.88	8.67	E I GI	9.63		8.07	HIGH	HIGH	HIGH	HIGH	HIGH	7.72	2.78		HIGH	HI GH	HIGH	HIGH	8.23	HIGH	3.30	3.26	HIGH	HIGH	œ	4.85	0	Ö	7	3.46						
BEND. STRESS RATIO	0.078	0.095	0.014	900.0	0.007	0.065	900.0	0.003	0.003	0.013	0.020	0.019	0.088	0.017	0.017	0.013	0.034	0.047	0.047	0.047	0.195	0.035	0.035	0.041	0.055	0.059	0.083	0.019	090.0	0.048	0.083	0.114	0.145	0.218	0.302	0.182	0.110		0.087			0.122		
BENDING MOMENT				0.969				0.537	•	1.983	•		•		•	•	•	7.288	•			5.550							9.410	•			•		•									
AX. STRESS RATIO	. 12	Ξ.	0.	ě.	05	0	•	•	•	0.103			•					•		0.110	•			•	•			•			0.052			0	2	Τ.	ල	9	7	. 16	. 15	60	. 25	. 21
AXIAL FORCE	. 52	1.31	.05	15.838	. 58	18.87	06.79	83.04	7.70	-54.565	40.4	-49.331	05.6	58.0	47.	35.	25.			58.219	60	30.		₩.	•			46.	. 62	22.0	CA I	20.5	9. 4.	9 I	9.7c	97.3	ດ ເຄ	16.5	29.7	5.0	1.30	51.02		
BAR ID	ຕ	(C)	n	63392	ന ത	ന	.T) (თ (יס פי	63399 63400	, c	63402	က	ന	63407	က	340	34	34	63412	◂	63415	4	4	63418	34	63420	~	63424	~	342	3.45 10.45 10.45	543	446	145 1040	3.45 1.45 1.45	345	34	346	346	34	346	c)	4

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: LANDING ABORT LOADS

0F																																				
MARGIN	SAFETY	4.66	4.87	2.75	66.9	HIGH	1.67	8.56	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HBIH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	6.48
BEND. STRESS	RATIO	0.164	. 12				0.394				0.082				0.116	0.124	0.033	0.071	0.072	0.068			0.043			0.061	0.077	0.038		0.037	0.043					
BENDING	MOMENT		19.208		6	. 58		4.92	12.641	14.959	12.851	9.983	14.442	15.070	18.171	19.401	5.184	11.178	11.202	10.693	16.002			9.406					6.061		•	4.043	•	•	3.055	
AX. STRESS	RATIO	0.134	14	. 17	660.0	0.020	0.179	0.088	0.031	0.026	0.073	0.001		0.044		0.055	0.011	0.024			0			0.037			0.046						0.070		0.071	0.132
AXIAL	FORCE	•	76.833		52.377	•		-46.772	16.500	-13.614	38.641			23.461	-24.029	28.990	5.633	12.489	22.939	17.511		22.328	9.103	•	26.244	25.899		Φ.	28.183	σ.		•		41.552	7.	69.816
BAR ID		63239	63540	63220	63223	63554	63229	63561	63562	63263	63568	63269	63570	63571	63574	63575	63576	63577	63578	63229	63580	63581	63582	63583	63584	63585	63586	63587	co -	ຕ	က	ຕ	359	n	359	63295

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: ZEGULAR LANDING LOADS

MARGIN OF SAFETY	LC:	HIGH	Q	HIGH			_	4.97	0.74	5.01	3.49	HIGH	2.81	8 .0	0.20	20.4	4 28	5.04	2.81	2.45	HIGH	HB1H					0.43		1.30	2.46	٠.	1511	2.56	2.47	2.04	HIGH	-0.85	\vdash	-0.80	1.68	•	2.54	_
BEND. STRESS RATIO			•		•	•		•			•			•		-										•						0.036							41	3	. 16	0.092	0.
BENDING		Ö					-	27	_																				•		•	5.664	8		ю.	•	•	•	۲.	34.674	Ŋ.	14.411	•
AX. STRESS RATIO	•	•	•	•	•	•	•	•	•	•	•			•	•			•	•		•			•			•	•		•	•	0.055								•	. 26	0.267	.07
AXIAL FORCE		9.569	œ.	4-	67.	9	27.	ص	52	. 88		•	-	, (218	146.	86.	6	38.	148.	ď.	1 3	œ.	94	أ	ö	ق	128		147	2001 1003) (V	о О	7	•	ė	94	25.	217.	59.	142	4	œ. σ
BAR ID	20	12202	20	20	20	2	20	12215	N	12222	N (. 7	νc	4 6	10	(C	S	$^{\circ}$	N	N	S	2	$^{\circ}$	2	CI	12240	N (12242	V	и c	12246	C	C	3	2	25	25	25	12254	25	25	25

	R A	CES V RU	ND MARGIN TITLED: (S OF SAFETY الانکاکا	LOADS
٥	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
7	45.	.08	90	. 74	
	٠. ن ض	0.221	. 56	∞ . 1	0.10
	. 72	4 6	8/.	. 73	
			5.394	Óι	
	ے :	•	1 561	6 6 6	. t
			າ ຄ - ຄ	? ?	-0.78
	93.	0.176	38.	. 88	0.01
	•	•	0	8	HIGH
	13.780	•	52.16	•	0.02
_		•	0 r		0.23
	26.	0.050			
_		0.058			76.0
		•	N		4.43
36		•	6		HIGH
		0.020	Ö		\vdash
		•			7.64
	v c	0.043	•		HIGH
	15.108	0.029	8.551 5.369	0.055	H H
	4				Į.
343	ď				H
	س	•	•		HIGH
	œ.		ä		HIGH
	o.	0.038	ė.		HIGH
349	4.	•	•		HIGH
_	· .	٠	•		HI CH
		0.00	1.570		E 5
354	. ~				HIGH
	•	•	•	0.677	0.92
		0.035	54.640		4 . 18
		•	. 29	<u>+</u>	HIGH
58	Ö	•	. 28	4	\blacksquare
- (0. (. 12	1.35	8	
~ (39.285	.07	54.40	. 98	•
	ប្រ	0 (<u>~</u>	œ, ι	•
	00.1	5 6	0.21	. 51	•
	ים מיפ	9.0	6.47	96	4.07
	D 4	0.363	94.301	0.027	1.73 0.66
0	0.12	. 1.	45.00	3 6	. C
	-43.493	0.082	200.375	1.280	-0.38

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: (たいしar Landing LO/

FROM AFE NASTRAN RUN AXIAL AX. STRESS FORCE RATIO -287.035	TITLED: (ÆKA) LAR LANDING LOADS BENDING BEND. STRESS MARGIN OF MOMENT RATIO SAFETY	0.356 0.	0.611	0.262 5.	.0- 6893	0.031 0.	0.015	600.0	0.012 0.	0.008 00.00	200.0	0.012	0.068	0.008	0.002	0.005	0.078	o c	510.0	600.0	0.008	900.0	0.003 HI		0.061	0.037 0.	0.009	0.008	900 0	0.005 HI 800.00	O.003 HI	0.003	0.004 4.2	0.012 3.	0.031	0.035	0.003	7.00.0	0.00 0.00	200.0	700.0
	ROM AFE NASTRAN RUN XIAL AX. STRESS DRCE RATIO	287.035 0.542 55	27.399 0.052 95	36.982 0.070 41	36.021 0.257 139	323.218 0.610 4	224.232 0.423 2	246.605 0.465 1	0.000	3.121 0.025 1 3.462 0.139	5.016 0.047	9.294 0.036 1	.211 0.565 10	.613 0.731 1	0.096 0	. /81 0.135 0	507 0 715	. 337 O. 716 4	519 0.348	939 0.209 1	761 0.083 1	.594 0.063 0	.544 0.082 0 611 0.154	603 0 190	792 0.609 9	426 0.539 5	719 0.449	.058 0.274 1 493 0.178 1	743 0.105 0	149 0.074 0	0 0.091 0	956 0.134 0	801 0.192 0	868 0.207 1	0.434 4 0.434 4	638 0.414 5	001 0.373	872 0 171	8.825 0.111 0	4 397 0 084 0	

ISOGRID BAR FORCES AND MARGINS OF SAFETY

	ISOGRID FROM AFE	BAR FORCES E NASTRAN RU	ND MARGI TITLED:	NS OF SAFETY 化三ム JLAR LANDING	LOADS
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
39	3.78	· ·	C.	S	
6	3.96	· Ci	4	0.003	• ব
₹	4.54	C.	9	0	တ
4	7.35	cá	۳,	0.	တ
4	9.07	٠.	ď	8	9
4	3.07	Ċ	9	.03	4
4	4.47	٠,	Τ.		œ
4.	5.75	٩.	ú		ব
4.	3.20	4	4		4
4.	6.84	4	Ċ		4
13410	235.640	0.445	d.	0.008	1.25
† 4	9 6	יי ע	. r		xo ∙
4	7.2	. ק	י ע	•	1 C
. 4	3.19	ניי	. 6		Nα
4	4.21	۷.	. ~		\circ
4	8.92	4	4		
13418	7.71	ш,	4		ത
4	1.41	Ψ.	4		ဖ
4	3.92	œ.	₹.	•	$^{\circ}$
13421	4 . 35	œ.	ω.		-
4,	3.57	₹.	ır.	•	4
4,	88.6	۱ ۲	e. (•	•
4 4	9.36	ı, ı			ത
13427	24.2	si (ri, c		٠,
すて	9 . e	יפ	ກຸດ		4 (
† 4	2 . K	`. a	S		N 7
13432	5 5	. 4	<u>,</u> σ		- 4
4	0.61	্ত	. ຕ		-
4	3.69	מו	Τ.		ത
4,	6.20	E.	7		~
4.	9.4	ω.	e,		വ
13437	7.32	,	φ. (4
* *	9 G	• •	<u>،</u> د		უ (
13440	200.294	ح رت	- u		ഗ
44	46.04		. מ	•	? •
4	62.60	. 4	7		- C
44	77.28	מו	: –		ര
4	94.10	ın.	6		က
4	05.75	LD.	Τ.		7
4. 15	8.48	(C)	9		_
13451	191.424	0.361	2.054	0.013	1.76
י ר	2	9	?	5	+0

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: REGULAR LANDING LOADS

		1	! !		
DAM 10	FORCE	AX. SIRESS RATIO	MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
13509	2.36	Ξ	.68		7.49
5	1.38	9	.68		HIGH
51	9.15	6	0.859	•	HIGH
51	1.69	90.	.98		HIGH
_	0.62	<u>6</u>	0	•	4
2	63.58	. 12	ď		7.32
ر ا	5.58	7	ı.		Τ.
5			3.492	0.022	7.83
2	4.	.0	•	•	HIGH
52	4 I	0	1.323		HIGH
22	7	6	1.507	•	HIGH
13522	26.	0.051	1.622	0.010	HIGH
22	43.7	80	•	0	HIGH
52	7	<u>♀</u>			8.14
52	7.	.02	•		HIGH
52	œ.	•	•		HIGH
22	9		•		HIGH
S	т. Т.		•		HIGH
53	3.0	•	•		HIGH
ß	ω.		•		HIGH
53	6.9	•	•		HIGH
53	2.0		•		HIGH
53	6.4		•		HIGH
53	۲.		•		HIGH
TO.	g. 8	0.017	•		HIGH
6	ი ი		•		HIGH
53	4	9			HIGH
54	σ.	.03	•		HIGH
	7.0	. 22	•		3.35
54	03.0	1 0	٠		
S	4	. 12	•		7.24
13547	49.6		2.129	0.014	9.62
S i	9.9	.08	•		HIGH
13549	42.0	.07	•		HIGH
22	E	.05	-		16
22	223.5	. 42			ღ
S)	191	က	•	0.005	1.76
വ	41.2	. 26		•	۲.
55	09.2	50	1.928		œ
	92.8	. 17	œ		9
22	84.2	. 15	œ		3
23	63.7	2	Ŋ.		7
ဖ	412.1	11	2.230		3
13562	33.2	Ö	9		Ŋ
26	240.8	0.454	æ.	0.005	7

 RAY INCORPTION BAR FORCES AND MARGINS OF SAFETY
 FROM AFE NASTRAN RUN ITITED: REAUL STREES
 MARGIN OF SAFETY

 BAR ID
 AXIAL
 AX. STREES
 BENDING
 BEND. STREES
 MARGIN OF SAFETY

 22228
 29.908
 0.056
 6.911
 0.044
 HIGH

 22228
 29.908
 0.056
 6.911
 0.042
 HIGH

 22229
 30.347
 0.057
 13.928
 0.049
 HIGH

 22223
 174
 0.057
 13.928
 0.049
 HIGH

 22223
 174
 0.057
 13.928
 0.049
 HIGH

 22223
 174
 0.057
 14.073
 0.049
 HIGH

 22223
 174
 0.059
 16.708
 0.040
 HIGH

 22224
 14.187
 0.035
 1.073
 0.029
 HIGH

 22224
 16.845
 0.029
 1.174
 0.029
 HIGH

 22224
 16.845
 0.029
 1.174
 0.029
 HIGH

 22224
 10.986
 1.8.391
 0.016
 HIGH<

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: \emph{Reg} ULAR LANDING LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
22334	T.		16		
233	4		290.120		-0.70
233	9		0.273		
233	œ		ø		
233	4		_		0.74
233	0		ß		4
234	_		Ŕ		9
234	_		ın.		
234	N		4		2.76
22343	61.187	0.115	26.328	0.168	5.27
234			œ		3.41
234	œι		-		-0.22
234	ומ		63		3.10
234	0		_		0.34
235	ເຄ		_		1.37
235	0		Ö		4.63
235	σ		ß		0.76
235	0		4		8.75
235	7		-		-0.03
235	n				HIGH
235	_				-0.02
235	0				1.26
N			ď		2.89
236	4				2.70
236	9				1.16
236	ဖ				1.46
236	ເດ				0.50
236	വ				3.75
236	O				3.88
237	0				1.71
237	4				1.36
237	ω				0.35
237	121.2				3.14
237	121.31				3.16
237	137.69				2.31
237	156.01				1.91
237	162.47				1.08
238	140.16				2.76
238	143.92			05	2.66
238	147.88		Ö	90.	2.47
238	165.32		÷	0	2.10
238	8.13		•	. 1 5	1.82
239	4		1.030	8	2.55
23	. 62		0.660	Õ	2.40
239	-156.481		4.018	0.	2.37

NG LOADS	S MARGIN OF SAFETY	0.	3.46	۲.	7. 4	r 00	16	_	4.02		3. to		•	HIGH	H 5	7 24	5.77	4.42	5.21	7.83	HIGH		E E	8.56	_	•	5.4/ 6.45		HIGH	HIGH	H 101	ביים ביים	HELE	HIGH	-	7.	7.57	Ö (2.35
S OF SAFETY	BEND. STRES RATIO	.04	0.030	•					•	0.036				•		0.0					0.003	•					0.00			0.014			0	8	8	8	9	3 8	00.00 00.00
AND MARGINS OF IN TITLED: REGU	BENDING MOMENT	9.	F 1	. 5	2 ~	. ო	4	ď	ص ِ ا	5.621											0.479										ې و	٦ ,		ĸ.	Ñ	38	. 50	, c	0.535
BAR FORCES E NASTRAN RU	AX. STRESS RATIO	12	0.222	- c	10	Ι.	0	0	- .	0.124	. ~	Τ.		O	, c	· –					0.064					= =	0.133	.05	0.	80	0.060	3 8	8	.05	08	€.	- (ָה ה ה	0.263
ISOGRID FROM AF	AXIAL FORCE	3.88	17.6	0 0	120.1	67.01	34.20	-47.37	7 . 7	-65.881 -97.145	16.2	102.89	5.58	5 C	24 39	62.50	8.27	97.84	85.21	59.23	-33.879	10.75	46.65	2.69	42.14	60.16 84.94	- 6	0.78	8	65.	20.0	, c	20.38	29.33	6.25	69.89	-61	7 . 4.	139.1
	BAR ID	(5)		96	334	334	334	334	334	23351	335	332	335	2 2 3 3	335	336	336	336	336	336	20 6	337	337	337	337	700	23380	338	338	900	מ מ מ מ מ מ	939	339	339	339	339	23395	000	23399

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: RECALL LAR LANDING LOADS

					1
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
7	. 65	4	Ξ.	9	•
34	57.85	₽.	٠.		•
23484	. 42	0.135	1.157		
3	Ξ.	. 17	C.	0	4.67
8	Τ.	. 16	Ψ.		
₹.	64.	Τ.	œ.	0.012	
34	Φ.	14	œ.	6	
C	83.5		O,	9	
n	72.7		w _.	0	•
(C)	80		ш,		5.58
(T)	69		0)		•
	-83.671	0.158	3.886	0.025	5.27
(T)	73		ď		•
23499	48.		Τ.		9.88
C)	•		O)		HIGH
23501	•		Φ.		HIGH
က	•	0.072	9		HIGH
n	•		ď		8.61
ന	•		Tt.		
n	•		9		
(T)	9		ID.	•	3.82
C)	05.		9		Τ.
351		0.041	9	0.010	HIGH
23511			9	•	HIGH
351	•		ניי	•	HIGH
-			1.140	Ō.	7 . 19
351	•		ır.		5.11
351	•		ω.		4.40
351			4		HIGH
23519	•	900.0	2.228		HIGH
352	•		σ.		HIGH
23521		8	σ.	0.012	16
352	•	₹.	o.		•
352		Τ.	Ξ.		5.59
352	4	0.161	ď	.02	
353	┷.	Τ.	4	9	
353	0	Ξ.	Ε,	.02	
Ċ.	6.5	Ψ.	ιn.	.03	
353	9	Ξ.	ď	.05	•
354	7.71	. 16	<u>.</u>	90.	•
322		Ž	œ.	. 13	4.40
322	6.05	2	er,	.02	•
355	1.73	5	8.2	Ö	5.25
32	6	0	22.658	4	6 .80
Ö	161.040	0.304	4	<u>0</u>	•

LOADS	MARGI SAFET
ISOGRID BAR FORCES AND MARGINS OF SAFETY	BEND. STRESS
FROM AFE NASTRAN RUN TITLED:兄ららしar Landing LOADS	RATIO
IND MARGINS	BENDING
I TITLED:	MOMENT
D BAR FORCES A	AX. STRESS
FE NASTRAN RUN	RATIO
ISOGRII	AXIAL
FROM AI	FORCE
	0

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
223	4.	.04	. 75	8	HIGH
223	-29.677		4.871	0.	-
223	œ	.03	9.54	. 12	HIGH
32235	44			0.571	0.55
223	÷	9	4.07	.34	4.11
2	-	0.002	9	. 23	-
223	91.	. 17	0.14	<u>.</u>	3.36
3	62.	=	. 72	9	7.24
224	38.	.07	90	.05	HIGH
~	30		۲.		HIGH
224		•	ო.	8	HIGH
224	28	0.054			HIGH
224	32.		ი ი	•	\blacksquare
224	ç.		6.0	0.070	3.60
224	50	•	ღ.	•	•
2	4-	•	ဖ	•	
224	5		75.338	•	2.13
224			8.673	•	\blacksquare
225			7.365		99.6
225			4.473	•	HIGH
225			3.979	•	HIGH
225			0.828	•	HIGH
225			1.083	•	HIGH
225			1.477	•	HIGH
225			1.070	•	HIGH
a			14.463	0.092	3.85
225			17.267	•	
55			47.115	•	1.85
226			28.446	•	HIGH
2	-3.724	0.001	24.181		HIGH
226			2.544		HIGH
226		0.038	1.606	•	HIGH
226		•	1.908	•	HIGH
226	24.	9	0.788	•	HIGH
226	24	9	0.488	•	HIGH
226	21.	9	0.664	•	HIGH
226	26.	0	0.570	8	HIGH
226	ä	80	_	0	HIGH
227	-1.488	8	4	Ť.	HIGH
2	E	0	6.84	9	H1GH
227	21.	9	8. 17	÷.	HIGH
177		03	0.03	9	HIGH
7 6	4 (56	9 6		G
322/5	180.654	0.341		0.307	1.14
7	3.76	Ž.	3.14		2.69

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: REGULAR LANDING LOADS

BAK 10	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
32339	18	.03	9	8	HIGH
234	17.9	0.034	4.385	0.028	-
234	9.80	.07	.85		HIGH
က	27.71	•	e.	0.002	HIGH
234	₹. ნ	.07	8	•	HIGH
234	0 I	0.	. 29	•	HIGH
		0.032	.68	•	HIGH
234	•	60 (4	0.037	HIGH
4	4	•	. 26		HIGH
32	2 ·	•	9	0.017	HIGH
35	4 O	٠	•	•	HIGH
32353	٠,	0.005	0.425	0.003	HIGH
32	7	0	•	•	HIGH
35	9	•	•	•	HIGH
35	E.	0	•		HIGH
32	ш;		1.298	•	HIGH
35	е.			•	HIGH
36			•	0.002	HIGH
36	•	.05		•	HIGH
36	•	0	•	•	HIGH
36	•			800.0	HIGH
36	•		1.608	0.010	HIGH
m	51.955		0.248	0.002	9.20
236			•	0.035	HIGH
/	•	0.056	•	•	HIGH
237	•	.05	1.347	600.0	HIGH
237		.05	4.249	•	HIGH
237		. 17	14.227	0.091	4.18
237	•	<u>6</u>	•		8.71
23	29.004		1.263		HIGH
237	•	9	•	0.011	HIGH
$^{\circ}$	•	.05	7.859		HIGH
238	•	. 17	÷.	0.265	2.67
238	•	.08	•	0.130	8.03
238	•	0.032			HIGH
238	•	ö	5.057		HIGH
23	8.95	•	•	•	HIGH
239	41	90	ö	0.197	7.37
239	40.04	.07	•	•	5.91
239	23.85	Ŏ.	'n	•	8.33
23	0.19	0	8 . 496	S	HIGH
239	-4.32	8	8. 1	.05	HIGH
m.	54.0	0.479	43.989	. 28	0.70
33	34 . 18	0.253	6.90	0.236	2.00
239	159.11	ი.	3.85	.40	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: CEAJLAR LANDING LOADS

33328 -140.640 0.265 4.478 0.029 2.14 33329 -140.640 0.265 4.478 0.004 2.14 33329 -168.251 0.014 0.715 0.004 2.14 33331 -6.001 0.011 0.715 0.005 HIGH 33332 -2.2.271 0.043 1.886 0.015 HIGH 33334 -103.232 0.180 2.328 0.015 HIGH 33334 -103.232 0.180 0.232 0.010 HIGH 33341 -103.242 0.012 1.729 0.011 HIGH 33341 -105.647 0.022 1.729 0.011 HIGH 33342 -10.647 0.024 1.729 0.011 HIGH 33341 -10.647 0.022 1.729 0.011 HIGH 33342 -10.647 0.024 1.729 0.011 HIGH 33350 -16.86 0.024 1.729 0.011 HIGH	BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
3329 -168.251 0.317 2.213 0.014 3330 -147.415 0.278 6.965 0.004 3331 -22.721 0.043 1.386 0.005 3333 -22.721 0.046 1.805 0.012 3334 -95.433 0.180 2.328 0.015 3334 -103.232 0.180 2.328 0.015 3344 -122.511 0.325 5.338 0.011 3340 -123.100 0.232 3.062 0.015 3344 -126.677 0.244 6.424 0.011 3345 -10.647 0.020 11.239 0.010 3346 -123.100 0.232 3.062 0.010 3347 -12.686 0.020 11.239 0.010 3345 -10.647 0.020 11.29 0.010 3345 -10.8823 0.149 1.496 0.010 3345 -10.8823 0.149 1.459 0.010	332	140.64		•	.02	7.
3330 -147.415 0.278 6.965 0.044 3331 -6.001 0.011 0.715 0.005 3333 -2.2721 0.043 1.386 0.005 3334 -95.433 0.180 2.328 0.015 3334 -102.511 0.325 3.062 0.015 3334 -103.510 0.325 3.062 0.015 3340 -172.511 0.325 3.062 0.016 3341 -10.647 0.024 0.014 3342 -10.647 0.024 0.014 3342 -10.647 0.024 0.014 3344 -12.622 0.084 1.729 0.010 3344 -12.686 0.024 1.729 0.011 3344 -12.686 0.022 1.729 0.011 3344 -12.686 0.023 1.445 0.024 3355 -18.845 0.032 1.445 0.014 3355 -18.845 0.032	332	168.25	0.317	•	0.	Ξ.
3331 -6.001 0.011 0.715 0.005 3332 -22.721 0.043 1.386 0.009 3334 -95.433 0.180 1.386 0.003 3334 -103.232 0.180 2.328 0.012 3338 -172.511 0.325 5.338 0.015 3340 -122.612 0.244 6.424 0.010 3341 -129.557 0.244 6.424 0.010 3342 -10.647 0.020 1.496 0.010 3344 -12.622 0.062 1.496 0.010 3344 -17.139 0.032 1.496 0.010 3344 -17.139 0.032 1.496 0.010 3344 -17.139 0.032 1.445 0.010 3355 -100.383 0.189 5.916 0.010 3355 -100.383 0.189 5.916 0.011 3355 -100.383 0.189 5.916 0.011	333	147.41	0.278		9	r.
3332 -22.721 0.044 1.386 0.003 3333 -22.721 0.046 1.386 0.0012 3334 -95.433 0.180 2.328 0.015 3338 -103.232 0.180 0.017 3340 -12.511 0.325 3.038 0.015 3341 -129.557 0.244 6.424 0.011 3342 -10.647 0.020 1.496 0.010 3344 -32.622 0.062 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3345 -10.441 0.020 1.729 0.010 3345 -10.647 0.020 1.729 0.010 3352 -18.823 0.149 1.249 0.010 3354 -10.03 1.394 0.014 0.026 3354 -10.049 0.132 1.494 0.014 3354 -10.149	333	8	0.011		8	HIGH
3333 24,297 0.046 1,805 0.012 3334 -195,433 0.180 2.328 0.015 3334 -103,232 0.195 17.344 0.111 3339 -172,511 0.325 3.062 0.020 3340 -123,100 0.232 3.062 0.013 3341 -10,647 0.024 6.424 0.010 3343 -44,482 0.084 1.597 0.010 3343 -44,482 0.084 1.597 0.010 3344 -17,139 0.032 1.729 0.011 3344 -17,139 0.032 1.729 0.011 3350 -17,139 0.032 1.745 0.011 3351 -100,383 0.182 4.027 0.026 3351 -100,383 0.182 4.027 0.026 3351 -100,383 0.182 4.027 0.016 3351 -100,383 0.182 4.027 0.016 3351 -100,383 0.182 4.027 0.016 3352 </td <td>333</td> <td>-22.721</td> <td>0.043</td> <td>•</td> <td>8</td> <td>HIGH</td>	333	-22.721	0.043	•	8	HIGH
3334 -95, 433 0.180 2.328 0.015 3338 -103.232 0.195 17.344 0.111 3339 -172.511 0.325 5.338 0.014 3340 -123.100 0.232 3.062 0.024 3341 -129.557 0.244 6.424 0.010 3342 -40.647 0.020 1.496 0.010 3342 -40.647 0.032 3.145 0.010 3342 -40.647 0.032 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3344 -32.622 0.062 1.729 0.010 3355 -16.866 0.296 16.878 0.010 3354 -17.139 0.032 1.455 0.016 3355 -18.823 0.182 4.027 0.018 3354 -14.845 0.033 1.345 0.016	333	24.297	0.046	•	6	HIGH
3338 -103.232 0.195 17.344 0.111 3339 -172.511 0.325 5.338 0.034 3341 -129.557 0.244 6.424 0.010 3342 -10.647 0.020 1.496 0.010 3342 -10.647 0.020 1.496 0.010 3342 -10.647 0.020 1.496 0.010 3343 -32.622 0.062 1.729 0.010 3345 -17.139 0.032 1.729 0.010 3350 -156.866 0.296 16.878 0.010 3351 -17.139 0.032 1.455 0.024 3352 -16.886 0.296 16.878 0.017 3353 -96.205 0.182 4.027 0.024 3354 -14.845 0.038 1.152 0.017 3355 -49.620 0.017 2.53 0.016 3354 -49.845 0.039 1.52 0.016	333	-95.433	0. 180	•	<u>.</u>	D
3339 -172.511 0.325 5.338 0.034 3340 -12.511 0.325 5.338 0.034 3341 -129.557 0.244 6.444 0.041 3342 -10.647 0.024 1.496 0.010 3344 -32.622 0.084 1.729 0.011 3344 -32.622 0.084 1.729 0.011 3350 -156.866 0.296 16.878 0.010 3351 -100.383 0.189 5.916 0.024 3351 -100.383 0.189 5.916 0.024 3351 -100.383 0.189 5.916 0.024 3351 -100.383 0.189 5.916 0.024 3352 -14.845 0.028 1.940 0.012 3354 -14.845 0.028 2.668 0.016 3354 -14.845 0.028 2.942 0.016 3355 -49.156 0.039 2.143 0.016	333	103	0.195	•	•	ω
3340 -123.100 0.232 3.062 0.020 3341 -129.557 0.244 6.424 0.041 3342 -40.647 0.020 1.496 0.010 3343 -44.482 0.084 1.597 0.010 3344 -32.622 0.062 1.729 0.010 3350 -16.866 0.036 18.78 0.010 3351 -100.383 0.149 3.445 0.010 3352 -78.823 0.189 5.916 0.024 3353 -14.845 0.024 4.027 0.026 3354 -14.845 0.028 5.916 0.017 3355 -96.205 0.182 4.027 0.026 3354 -14.845 0.033 1.940 0.017 3355 -96.205 0.048 1.940 0.017 3364 -68.948 0.075 2.493 0.016 3365 -48.131 0.039 2.548 0.017	333	172	0.325	•	•	0
3341 -129.557 0.244 6.424 0.041 3342 -10.647 0.020 1.496 0.010 3344 -32.622 0.062 1.729 0.010 3345 -17.139 0.032 3.445 0.010 3350 -156.866 0.032 1.729 0.010 3351 -10.0383 0.049 1.818 0.024 3352 -78.823 0.182 4.027 0.024 3353 -96.205 0.182 4.027 0.024 3354 -14.845 0.028 2.668 0.017 3354 -14.845 0.028 2.668 0.017 3354 -14.845 0.028 2.942 0.016 3354 -14.845 0.023 1.940 0.017 3354 -49.156 0.033 1.940 0.017 3365 -41.845 0.034 2.588 0.017 3365 -41.841 0.039 0.049 0.013 3366 -41.841 0.074 2.588 0.017 3367	334	123	0.232		•	Ò
3342 -10,647 0.020 1.496 0.010 3343 -44,482 0.084 1.597 0.010 3344 -32 0.084 1.729 0.010 3345 -17,139 0.032 3.145 0.020 3350 -156.866 0.296 16.878 0.020 3351 -100.383 0.189 5.916 0.024 3352 -78.823 0.149 3.811 0.024 3353 -96.205 0.149 3.811 0.024 3354 -14.845 0.028 2.668 0.017 3355 -49.156 0.093 1.940 0.017 3355 -49.156 0.093 1.940 0.017 3355 -49.156 0.093 1.940 0.016 3356 -49.620 0.075 2.492 0.016 3356 -49.620 0.094 2.573 0.016 3363 -41.801 0.094 2.548 0.017 3364 -68.948 0.013 2.493 0.013 3365	334	129	0.244	•	•	3.03
3343 -44,482 0.084 1.597 0.010 3344 -32,622 0.062 1.729 0.011 3345 -17.63 0.026 16.878 0.010 3350 -156.86 0.026 16.878 0.010 3351 -100.383 0.189 5.916 0.020 3352 -78.823 0.149 3.811 0.024 3353 -96.205 0.149 3.811 0.024 3354 -49.156 0.093 1.940 0.017 3355 -49.156 0.093 1.940 0.017 3356 -39.620 0.094 2.492 0.016 3356 -49.156 0.093 1.940 0.017 3363 -5.94 0.142 1.520 0.014 3364 -6.898 0.017 2.588 0.017 3365 -41.801 0.079 2.408 0.013 3366 -41.801 0.079 2.408 0.015 3369 -41.947 0.079 2.408 0.015 3370	334	-10.647	0.020	•	•	HIGH
3344 -32.622 0.062 1.729 0.011 3345 -17.139 0.032 1.729 0.011 3350 -156.866 0.036 16.878 0.020 3351 -100.383 0.189 5.916 0.024 3352 -78.823 0.182 4.027 0.026 3353 -96.205 0.0182 4.027 0.024 3354 -14.845 0.028 2.668 0.017 3355 -49.620 0.033 1.940 0.017 3356 -39.620 0.075 2.493 0.016 3357 -49.620 0.094 2.573 0.016 3364 -68.948 0.013 2.688 0.017 3365 -48.131 0.091 2.588 0.017 3366 -41.947 0.079 2.688 0.017 3366 -41.947 0.079 2.688 0.017 3370 -36.253 0.049 3.249 0.017 3374 -57.321 0.068 2.918 0.015 3374	334	-44.482	0.084	•	•	HI GH
3345 -17.139 0.032 3.145 0.020 3350 -156.866 0.296 16.878 0.108 3351 -160.383 0.189 5.916 0.038 3352 -78.823 0.149 3.811 0.024 3354 -14.845 0.028 2.668 0.017 3355 -49.156 0.093 1.940 0.017 3356 -39.662 0.094 2.549 0.016 3357 -49.620 0.094 2.573 0.016 3357 -49.620 0.094 2.573 0.016 3356 -49.848 0.030 2.688 0.017 3363 -41.801 0.091 2.588 0.017 3364 -68.948 0.030 2.688 0.017 3365 -41.801 0.091 2.588 0.017 3367 -25.995 0.049 2.449 0.017 3369 -41.801 0.069 2.943 0.015	334	-32.622	0.062	•	•	HIGH
3350 -156.866 0.296 16.878 0.108 3351 -100.383 0.189 5.916 0.038 3352 -96.205 0.149 5.916 0.034 3353 -96.205 0.0182 4.027 0.024 3354 -14.845 0.028 2.668 0.017 3355 -49.156 0.093 1.940 0.017 3356 -39.662 0.075 2.492 0.015 3357 -49.620 0.094 2.543 0.016 3356 -48.131 0.094 2.573 0.016 3364 -68.348 0.013 2.688 0.017 3365 -41.801 0.091 2.588 0.017 3366 -41.801 0.079 2.493 0.017 3367 -25.995 0.049 2.493 0.017 3369 -41.947 0.068 2.943 0.015 3371 -84.778 0.168 2.918 0.015	334	-17.139	0.032	•		HIGH
3351 -100.383 0.189 5.916 0.038 3352 -78.823 0.149 3.811 0.024 3353 -96.205 0.018 4.027 0.026 3354 -14.845 0.028 2.668 0.017 3355 -49.620 0.075 2.492 0.016 3357 -49.620 0.075 2.492 0.016 3363 -59.303 0.112 11.520 0.014 3364 -68.948 0.130 2.088 0.017 3365 -48.131 0.091 2.588 0.017 3366 -48.131 0.091 2.588 0.017 3366 -48.131 0.079 2.688 0.017 3367 -25.995 0.049 3.249 0.017 3368 -53.594 0.101 1.349 0.001 3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.160 2.295 0.015 3373 -57.321 0.099 2.295 0.015 3381	332	156	0.296	•	•	
3352 -78 823 0.149 3.811 0.024 3353 -96.205 0.182 4.027 0.026 3354 -14.845 0.033 1.940 0.017 3355 -49.65 0.033 1.940 0.017 3356 -39.620 0.075 2.492 0.016 3363 -59.303 0.112 11.520 0.014 3364 -68.948 0.130 2.088 0.014 3365 -48.131 0.091 2.588 0.017 3365 -48.131 0.091 2.588 0.017 3365 -48.131 0.091 2.588 0.017 3367 -25.995 0.049 3.249 0.017 3367 -25.995 0.049 2.403 0.015 3379 -41.947 0.079 2.493 0.015 3371 -84.778 0.068 2.918 0.015 3379 -28.212 0.089 2.295 0.015 3381 -52.212 0.024 8.938 0.052 3381	332	8	0.189	•	•	•
3353 -96.205 0.182 4.027 0.026 3354 -14.845 0.028 2.668 0.017 3355 -39.156 0.033 1.940 0.012 3356 -39.662 0.075 2.573 0.016 3363 -59.303 0.112 11.520 0.014 3364 -68.948 0.130 2.088 0.017 3365 -48.131 0.091 2.588 0.017 3365 -48.131 0.091 2.588 0.017 3366 -41.801 0.079 2.688 0.017 3367 -55.94 0.101 1.349 0.017 3368 -41.947 0.079 2.403 0.019 3379 -41.947 0.079 2.947 0.019 3379 -41.947 0.041 7.941 0.051 3379 -28.212 0.068 2.918 0.015 3380 -12.52 0.024 8.938 0.015 3381 -52.212 0.029 0.021 0.021 3382	332	-78.823	0.149	•		•
3354 -14.845 0.028 2.668 0.017 3355 -49.156 0.093 1.940 0.012 3356 -39.662 0.075 2.492 0.016 3363 -59.303 0.112 11.520 0.016 3363 -59.303 0.112 11.520 0.014 3364 -68.948 0.030 2.088 0.017 3365 -48.131 0.091 2.588 0.017 3366 -41.801 0.079 2.688 0.017 3367 -55.995 0.049 3.249 0.017 3368 -61.041 1.349 0.017 3369 -41.947 0.079 2.403 0.015 3370 -36.253 0.068 2.947 0.015 3371 -84.778 0.069 2.918 0.015 3371 -84.778 0.069 2.295 0.015 3371 -57.321 0.099 2.295 0.015 3380 -12.507 0.099 0.664 0.005 3381 -52.507	332	-96.205	0.182	•	•	4.46
3355 -49.156 0.093 1.940 0.012 3356 -39.662 0.075 2.492 0.016 3357 -49.620 0.074 2.573 0.016 3363 -59.303 0.112 11.520 0.074 3364 -68.948 0.013 2.088 0.013 3365 -48.131 0.091 2.588 0.017 3366 -41.801 0.079 2.688 0.017 3367 -25.995 0.049 3.249 0.017 3369 -41.947 0.079 2.403 0.015 3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3376 -21.234 0.041 7.941 0.035 3377 -57.321 0.099 2.295 0.015 3378 -52.212 0.099 2.295 0.015 3381 -52.896 0.100 3.396 0.052 3381 -52.896 0.100 0.083 0.064 3384	332	-14.845	0.028		•	HIGH
3356 -39.662 0.075 2.492 0.016 3357 -49.620 0.094 2.573 0.016 3363 -68.948 0.130 2.088 0.013 3365 -48.948 0.013 2.088 0.017 3365 -48.948 0.013 2.088 0.017 3365 -41.801 0.079 2.688 0.017 3366 -41.801 0.079 2.688 0.017 3369 -41.947 0.049 3.249 0.021 3370 -36.253 0.068 2.947 0.015 3371 -84.778 0.068 2.947 0.015 3376 -36.253 0.068 2.947 0.015 3377 -57.321 0.099 2.295 0.015 3378 -52.21 0.099 2.295 0.015 3381 -52.896 0.100 3.396 0.052 3381 -52.896 0.100 3.396 0.005 3382 -62.507 0.099 0.664 0.004 3386	335	-49.156	0.093	•	•	9.73
3357 -49.620 0.094 2.573 0.016 3363 -59.303 0.112 11.520 0.074 3365 -48.131 0.091 2.088 0.017 3366 -41.8131 0.091 2.588 0.017 3366 -41.8131 0.0991 2.588 0.017 3367 -25.995 0.049 3.249 0.017 3369 -41.947 0.079 2.403 0.005 3370 -36.253 0.068 2.947 0.015 3371 -84.778 0.068 2.947 0.015 3374 -57.321 0.068 2.947 0.015 3377 -57.321 0.099 2.295 0.015 3378 -52.12 0.099 2.295 0.015 3378 -52.12 0.099 2.295 0.015 3381 -52.896 0.100 3.396 0.052 3381 -52.896 0.100 3.396 0.005 3382 -62.505 0.118 0.836 0.006 3386	332	-39.662	0.075	•		HIGH
3363 -59.303 0.112 11.520 0.074 3364 -68.948 0.130 2.088 0.013 3365 -48.131 0.091 2.688 0.017 3366 -41.941 0.079 2.688 0.017 3367 -25.995 0.049 3.249 0.007 3369 -41.947 0.079 2.403 0.015 3370 -36.253 0.068 2.947 0.015 3371 -84.778 0.068 2.947 0.019 3371 -84.778 0.069 2.947 0.019 3373 -57.321 0.041 7.941 0.035 3374 -57.321 0.099 2.295 0.015 3378 -52.12 0.099 2.295 0.015 3381 -52.896 0.100 3.396 0.057 3381 -52.896 0.100 3.396 0.005 3383 -52.507 0.099 0.664 0.004 3386 -31.63 0.063 7.532 0.007 3386	335	-49.620	0.094	•	•	09.6
3364 -68.948 0.130 2.088 0.013 3365 -48.131 0.091 2.588 0.017 3366 -41.801 0.093 2.588 0.017 3367 -25.995 0.049 3.249 0.017 3368 -53.594 0.101 1.349 0.003 3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3374 -57.321 0.041 7.941 0.035 3378 -52.212 0.099 2.295 0.015 3380 -12.552 0.053 2.408 0.057 3381 -52.896 0.100 3.396 0.005 3383 -62.505 0.118 0.836 0.005 3386 -31.03 0.063 7.532 0.017 3386	336	-59.303	0.112	•	•	7.18
3365 -48 131 0.091 2.588 0.017 3366 -41.801 0.079 2.688 0.017 3367 -25.995 0.049 3.249 0.021 3369 -41.947 0.079 2.403 0.015 3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.068 2.947 0.019 3374 -57.321 0.041 7.941 0.035 3378 -52.212 0.049 2.295 0.019 3378 -52.212 0.099 2.295 0.015 3380 12.552 0.024 8.938 0.055 3381 -52.896 0.100 3.396 0.055 3381 -52.507 0.099 0.664 0.005 3383 -45.100 0.095 0.064 0.007 3386 -3.163 0.063 7.532 0.004 3386 -3.255 0.061 4.587 0.002 3396 -32.255 0.061 4.587 0.002 3396 <t< td=""><td>336</td><td>-68.948</td><td>0.130</td><td>•</td><td>•</td><td>99.9</td></t<>	336	-68.948	0.130	•	•	99.9
3366 -41.801 0.079 2.688 0.017 3367 -25.995 0.049 3.249 0.021 3368 -53.594 0.101 1.349 0.003 3370 -36.253 0.068 2.947 0.015 3371 -84.778 0.068 2.947 0.015 3371 -84.778 0.060 5.431 0.035 3374 -57.321 0.041 7.941 0.051 3377 -57.321 0.048 2.918 0.015 3379 -28 0.099 2.295 0.015 3380 12.52 0.024 8.938 0.053 3381 -52.896 0.100 3.396 0.053 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3386 -3163 0.063 7.532 0.048 3396 -32.55 0.061 4.587 0.002 3399 -32.255 0.061 4.587 0.006	336	-48.131	0.091	•	•	9.92
3367 -25.995 0.049 3.249 0.021 3368 -53.594 0.101 1.349 0.009 3369 -41.947 0.079 2.403 0.015 3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.160 5.431 0.035 3371 -57.321 0.041 7.941 0.035 3372 -57.321 0.099 2.295 0.019 3378 -52.212 0.099 2.295 0.015 3380 12.552 0.024 8.938 0.057 3381 -52.896 0.100 3.396 0.057 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3384 -45.100 0.085 1.306 0.004 3386 -33.163 0.063 7.532 0.048 3386 -32.255 0.061 4.587 0.006 3390 -32.255 0.061 4.587 0.006	936	-41.801	0.079	•	•	HIGH
368 -53.594 0.101 1.349 0.009 369 -41.947 0.079 2.403 0.015 370 -36.253 0.068 2.947 0.015 371 -84.778 0.068 2.947 0.015 374 -57.321 0.041 7.941 0.035 377 -57.321 0.099 2.295 0.015 378 -52.212 0.099 2.295 0.015 379 -28.031 0.053 2.408 0.015 380 12.552 0.024 8.938 0.057 381 -52.896 0.100 3.396 0.057 382 -62.505 0.118 0.836 0.005 384 -45.100 0.085 1.306 0.004 385 -41.038 0.077 2.715 0.048 390 -32.255 0.061 4.587 0.006 391 -14.733 0.028 0.336 0.006	36	-25.995	0.049	•	•	HIGH
369 -41.947 0.079 2.403 0.015 370 -36.253 0.068 2.947 0.019 371 -84.778 0.160 5.431 0.035 376 -21.834 0.041 7.941 0.051 377 -57.321 0.099 2.918 0.019 378 -52.31 0.099 2.295 0.019 379 -28.031 0.053 2.408 0.015 380 12.552 0.024 8.938 0.057 381 -52.896 0.100 3.396 0.057 382 -62.505 0.118 0.836 0.004 384 -45.100 0.085 1.306 0.004 385 -41.038 0.077 2.715 0.017 386 -33.163 0.061 4.587 0.029 390 -32.255 0.061 4.587 0.006 391 -14.733 0.028 0.336 0.006	96	-53.594	0.101	•	•	8.87
3370 -36.253 0.068 2.947 0.019 3371 -84.778 0.160 5.431 0.035 3376 -21.834 0.041 7.941 0.051 3377 -57.321 0.108 2.918 0.019 3378 -52.12 0.093 2.295 0.015 3379 -28.031 0.053 2.408 0.015 3380 12.552 0.024 8.938 0.057 3381 -52.896 0.100 3.396 0.022 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3385 -45.100 0.085 1.306 0.008 3386 -33.163 0.063 7.532 0.048 3396 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	336	-41.947	0.079	•	•	HIGH
3371 -84.778 0.160 5.431 0.035 3376 21.834 0.041 7.941 0.051 3373 -57.321 0.108 2.918 0.019 3378 -52.212 0.099 2.295 0.015 3380 12.552 0.024 8.938 0.015 3381 -52.896 0.100 3.396 0.057 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3385 -45.100 0.085 1.306 0.008 3386 -33.163 0.063 7.532 0.048 3390 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	337	36	0.068		•	HIGH
3376 21,834 0.041 7.941 0.051 3377 -57,321 0.108 2.918 0.019 3378 -28.212 0.099 2.295 0.015 3380 12.552 0.024 8.938 0.015 3381 -52.896 0.100 3.396 0.057 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3384 -45.100 0.085 1.306 0.008 3386 -3.163 0.0677 2.715 0.017 3396 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	337	84	0.160	•	•	5.14
3377 -57.321 0.108 2.918 0.019 3378 -52.212 0.099 2.295 0.015 3379 -28.031 0.053 2.408 0.015 3380 12.552 0.024 8.938 0.057 3381 -52.896 0.100 3.396 0.005 3383 -52.507 0.099 0.664 0.004 3384 -45.100 0.085 1.306 0.008 3385 -41.038 0.077 2.715 0.048 3386 -33.163 0.063 7.532 0.048 3390 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	337	_	•	•	•	HIGH
3378 -52.212 0.099 2.295 0.015 3379 -28.031 0.053 2.408 0.015 3380 12.552 0.024 8.938 0.057 3381 -52.896 0.100 3.396 0.057 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3384 -45.100 0.085 1.306 0.008 3385 -41.038 0.067 2.715 0.017 3386 -33.163 0.063 7.532 0.048 3390 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	337	57		•		8.17
3379 -28.031 0.053 2.408 0.015 3380 12.552 0.024 8.938 0.057 3381 -52.896 0.100 3.396 0.022 3382 -62.505 0.118 0.836 0.005 3383 -52.507 0.099 0.664 0.004 3384 -45.100 0.085 1.306 0.008 3385 -31.63 0.063 7.532 0.048 3390 -32.255 0.061 4.587 0.029 3391 -14.733 0.028 0.936 0.006	337	22	•	. 29	•	60.6
3380 12.552 0.024 8.938 0.057 HI 3381 -52.896 0.100 3.396 0.022 8. 3382 -62.505 0.118 0.836 0.005 7. 3383 -52.507 0.099 0.664 0.004 9. 3384 -45.100 0.085 1.306 0.008 HI 3385 -31.63 0.077 2.715 0.017 HI 3386 -33.163 0.061 4.587 0.029 HI 3391 -14.733 0.028 0.936 0.006 HI	337	28	•	9.	•	HIGH
3381 -52.896 0.100 3.396 0.022 8. 3382 -62.505 0.118 0.836 0.005 7. 3383 -52.507 0.099 0.664 0.004 9. 3384 -45.100 0.085 1.306 0.008 HI 3385 -41.038 0.077 2.715 0.017 HI 3386 -33.163 0.061 4.587 0.048 HI 3390 -32.255 0.061 4.587 0.006 HI 3391 -14.733 0.028 0.936 0.006 HI	338	2.55	•	.93		HIGH
3382 -62.505 0.118 0.836 0.005 7. 3383 -52.507 0.099 0.664 0.004 9. 3384 -45.100 0.085 1,306 0.008 HI 3385 -41.038 0.077 2.715 0.017 HI 3386 -33.163 0.063 7.532 0.048 HI 3390 -32.255 0.061 4.587 0.029 HI 3391 -14.733 0.028 0.936 0.006 HI	338	52.89	•	. 39	•	8.90
3383 -52.507 0.099 0.664 0.004 9. 3384 -45.100 0.085 1,306 0.008 HI 3385 -41.038 0.077 2.715 0.017 HI 3386 -33.163 0.063 7.532 0.048 HI 3390 -32.255 0.061 4.587 0.029 HI 3391 -14.733 0.028 0.936 0.006 HI	338	62.50		.83	•	7.47
384 -45.100 0.085 1.306 0.008 HI 385 -41.038 0.077 2.715 0.017 HI 386 -33.163 0.063 7.532 0.048 HI 390 -32.255 0.061 4.587 0.029 HI 391 -14.733 0.028 0.936 0.006 HI	38	52.50		99.	•	60.6
385 -41.038 0.077 2.715 0.017 HI 386 -33.163 0.063 7.532 0.048 HI 390 -32.255 0.061 4.587 0.029 HI 391 -14.733 0.028 0.936 0.006 HI	38	5.10	•	9	•	HIGH
3386 -33.163 0.063 7.532 0.048 HI 3390 -32.255 0.061 4.587 0.029 HI 3391 -14.733 0.028 0.936 0.006 HI	338	41.03	•	.71	•	HIGH
3390 -32.255 0.061 4.587 0.029 HI 3391 -14.733 0.028 0.936 0.006 HI	338	3.16		. 53	•	HIGH
3391 -14.733 0.028 0.936 0.006 HI	339	2.25		. 58		HIGH
	33	4.73		.93		HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: KEGULAR LANDING LOADS

					ı
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
33475	69.05	31	74	0.	2.13
33476	7.95	.46	. 23		1.13
33477	7.75	.48	. 26	.03	1.05
33478	236.461	4		6	1.24
33479	7.79	.39	. 73		1.50
33480	1.77	. 36	.98	0	1.72
33481	2.49	45	. 55		1.18
33482	9.	. 44	. 78		1.22
33483	0.		φ.		
33484	2		9.415	0.060	
33485	io O		ĸ.		1.34
33486	ω. Θ		4		1.26
33487	-		ເນ		1.51
33488	ω.		9.		1.93
33489	ю		9	9	1.54
33490	±.		7.170	.04	1.48
33491	9.6		•	0	2.40
33492	E.				0.61
33499	Φ.		•	0	3.72
33500	0				HIGH.
33501	4		•		4.42
33502	147.8				
33503	Θ.				1.81
33504	250.2				
33505	341.9		•		•
33209	140.4		•		•
33510	138.5				2.80
33511	187.4				•
33512	208.7		•		1.54
33513	-229.185	0.432	1.258	800.0	1.31
33514	253.0		•		1.09
33515	e.				1.11
33518	193.2		•	•	1.74
33519	129.7			9	3.02
33520	202.4		•	.02	1.61
352	258.4		•	.02	1.04
35	248.6			0	1.13
352	253.4			0	•
352	4			0.	
323	_			.03	0.48
35	Φ.		.98	.02	•
353	28.7			.03	•
23	7.2		80		1.21
354	95.2		30	.05	
35	9.9	•	9.	<u>0</u>	ī.

ISOGRID BAR FURCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: \$250 LAR LANDING LOADS

			!)
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN DF SAFETY
42225		4	5.100	.03	Φ.
222	61.	Ξ	-	.03	7.35
22	44	0.083	4.003	.02	D
222	27.	0	2.28	Τ.	HIGH
22	165.		5.06	. 16	1.84
223	184	ღ.	9.04	ď	1.29
23	215.	4	2.29	. 27	0.97.
22	94.	ı.	.31	. 23	•
223	323.	9	4.58	4	
23	ė.	Ξ.	. 55		6.97
22	00	Ξ.	. 23		7.77
42236	-49.352	0.093	44	600.0	9.71
77	27.	0	ထ	.03	HIGH
223	4 5	0.		9	ΙG
223	-52.	9	52.84	. 33	•
7 6	155.	S, (29.22		-0.01
224	188.		0.34	96.	
42242		4.	5.65		0.07
224	263.	4	8.39	. 24	
224	269.	S.	0.23	က	
22	ب	₹.	83	0	6.14
224	m.	0	9.73	0	HIGH
224	₹.	Τ.		0	7.81
224	ë.	0	2.73		HIGH
224	4	0	1.41	0	HIGH
225	62.	Ξ	6	Τ.	5.47
225	8	ღ.	œ	85	-0.85
225	-26.	.05	1.13	8	HIGH
225	244.66	.46	.36	Ō.	-0.83
42254	219.05	4	9	ď	1.06
225	211.60	. 39	. 24		1.07
225	09.54	39	37.775	ď	•
225	63.25	Ξ	თ	6	7.31
3	8.26	.07	. 16	0.	_
225	63.80	. 12	. 95	0	7.24
226	30.53	. 05	O3	0	HIGH
226	თ	.02	4.68	0	H
52	7.60	6	2.56	40	ø
226	17.82	. 22	21.76	. 13	6
226	78.37	14	.93	44	-0.52
7	126.75	. 23	93.16	ď	4
226	143.9	. 27	0.5	45	0
226	142.1	56	9.78	7	
42268	137.4	0.259	19.639	0.125	2.50
226	-139.741	. 26	.68	Q	ij

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: ZEGOLAR LANDING LOADS

MARGIN OF SAFETY	σ	0	<u>ر</u>	J.	Τ.	. 7	7.	6.92	3.44	HIGH	HIGH	HIGH	3.04	8.46	H16H	HIGH	15.	_	•	2.10												•	-0.21	E :	_	0.22	Ō	-0.24	HIGH	HIGH	7	1.84	S	Œ
BEND. STRESS RATIO										0.024										0.203														•	•	0.839	•	•			•		•	0.007
BENDING MOMENT	94	8.96	0	œ	က	ď	œ		က်	က်		o i		17.190				ກ -	· c	52.603 65.944		. 4		•	œ.	ö	ë	ë	ın.	₹.	123.015	س	٠,	18.561		<u>.</u>	-	•	•		4.	•	۲.	1.074
AX. STRESS RATIO	4	6	Τ.	÷.	0.089	₽.	•		•	•	•	0.033	•	•	•	•	•	•	•	0.090														2 6	0.069	80.	9	60	0.	Ŏ.	Ξ	Ξ	60	0.112
AXIAL FORCE	5.12	3.16	. 28	4.95	7.27	5.16	0.	47		30.125		<u>-</u> 5							. 6		4					22.	47.	45.		12	2	999	٠,		9	44	9.	വ	1.52	1.57	8.	8.67	T	59.531
BAR 1D	233	233	42334	233	233	233	233	233	234	234	23	234	7 0	42347	200	000	200	0 C	220	23	235	235	35	36	236	236	236	236	236	236	237	2 6	7 6 6	7 6	2 6	757	731	237	238	238	238	œ	238	239

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: (ZZZJ LAR LANDING LOADS

MARGIN OF SAFETY	1.10	HIGH	HIGH	HIGH	8.14	0	2.62	œ	1.47	HIGH	HIGH	HIGH	I	2.67	•	2.52	•		2.00	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	16	4	4.83	ď	0	7	٦.		_	_	_	HIGH	HIGH	HIGH		1	7	7	α	3.78
BEND. STRESS RATIO	0	0											•	•				•	•			•	•	•	•	0.097		•		•	•	•	•		•	•	•	•	.05	•	0		•	c	0.037
BENDING MOMENT	.71	Ö	•	•	•	•	•	<u>~</u>	•	•	•	4.625	9	19.827	•	•	•	•	•	•	•	•	•	•	ຕ່	15.215	•	•	•	•	•	•	•	.03	0	ි ි	-	. 18	.03	. 95	. 53	. 43	7	90	83
AX. STRESS RATIO	46	0	8	6	.08	Ť.	. 27	. 35	С.		•	0.005	•	•	•	•	•	•	•	•		•	•	•	•	0.031	۲.	₹. '	Ŋ	7	Ŋ		₽.	0	8	0	03	.02	0	80.	Ξ	14	₽.	20	Ň
AXIAL FORCE	. 73	62	49	05	. 55	2	45.86	79	9.16	. 66	92	-2.563	. 48	. 23	. 23	94	<u>∞</u>	2	39	9	┺.	ď	e.	15.9	~	16.366	∞ '	انعم	ம்	4	. 37	27.9	88	. 55	20	ဝ	69	<u>ඉ</u>	. 16	. 46	. 50	8	1.2	85	9.23
BAR ID	333	333	33	333	33	333	333	334	334	334	334	334	334	334	334	332	332	n	335	335	332	335	332	93	335	336	996	ကျ	336	336	336	336	336	336	33	337	337	7		37	~	37	က	37	43379

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: REGULAR LANDING LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
343	5		0	0.448	6
43438	-266.263	0.502	55.636	0.355	0.50
344	107		ď	0.145	7
344	123		6	0.089	0
344	9		ä	0.142	ນ
34	41	0.266		0.324	4
344	187		'n.	0.228	е,
345	-120.649		œ.	0.170	9
345	-145.198		Ö	0.067	r.
34	\sim		œ.	0.183	9
345	-64.615		'n	0.273	4
345	-298.628			0.035	7.
345	-291.602		ď	0.079	7.
345	52.763		•	0.083	6
345	-131.258		ß.	0.160	4
346	-159.240		ď	0.078	3
9	-176.126		•	0.114	æ
346	-135.429		-	0.140	4
9	-218.780		•	0.039	4
346	-301.995			0.057	۲.
34	-356.625		•	0.058	4
346	- 138.773			0.114	T.
346	- 165.154		Ö	0.070	-
346	-176.994		•	0.071	o.
34	-211.731		ö	990.0	4
34	-216.522				4
43472	-256.180				Ö
34	-191.779		•		۲.
34	-141.278				9
43475	-171.915			0.054	0
34	-194.578		•		9
34	- 199 . 449				9
34	- 197 . 784				9
8	-182.136			₽.	7
34	-141.086			.03	7
348	-174.138			.03	0
348	-182.598		•	.03	80
	-176.418			.02	σ.
348	- 162 . 700			Ŧ.	0
48	28		•	.03	0
3486	Τ.			0	2
48	1.40		•	8	ď
48	8.9			.08	7
348	2.9				ij
43490	-153.803			.05	6

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED:配込い LAR LANDING LOADS

LOADS	MARGIN OF	SAFETY	1.63		•	•	•	•	•	•				•	•		3.75	3.74	3.29	3.31	3.75	3.93	3.82	8.8	3.91	4.37	5.24	3.79	4 . 36	5.34	06.90	4.93 84	8.66	6.59	4.59	0.23	9.81	HIGH	HIGH	7.61	HIGH	4.49	r.	8.75	<u>ي</u>	4
GO LAR LANDING	BEND. STRESS	-																												0.017																
1 TITLED:配合い	BENDING	MOMENT		Ö		ຫ	, ,	œ				ທ		4	ຫົ						œ.									2.719				ö	ω.		ທີ						۲.		7.521	•
FE NASTRAN RUN	AX. STRESS	-	.37	. 38	.30	€ -	ლ (•	•	•	•	•			•	•	•	•	•	•	٠	•	•	•		•	•			0.158		, ,							.05	Ŧ.	.08	0	.03	₽.	1 4	. 12
F ROM AF	AXIAL	FORCE	•	95.	9		160.858															95.	5 8				0 (83.615					58.	•	Ġ	4.	•	÷.	e.	33.326	7	4.	œ.	4
	BAR ID		9	356	56	356	43565	356	356	356	356	35	32	32	ຄຸ	ຄຸ	נו מינו	נו נו	ກ່	ກເ	ກ່	ຄຸດ	ກ່	33	Ωı	33	ט נ	ΩĽ	י כ	43588 43588	u	ລິດ	35	35	22	22	55	22	2	22	22	22	22	22	22	22

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED:化びょうしar LANDING LOADS

			•		•
BAR 1D	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
- (4			85	42	
52271		•	9		
	. –		12 871	Ò	, ca
(1)	ישו	•	. 0	200	
CA	13.		-	2 5	
a	4.6		- E	.32	
C	-11.924		ο,	. 49	
CA	8	•	2.5	20	
CA	٦.		7.8	Τ.	
52281	5.7	•	. .		9.18
C	4 .	•	4	. 20	
52283		0.055	89,586		1.32
0	9. 0.		7.7	Ŋ.	1.30
α	20.9		ص -	14	HIGH
\sim	ຫຼຸ ໝູ່		7	0	HIGH
C 1	<u>ত</u> (•	α. α. :	. 12	\vdash
. 7	26.0		. 7	ဓ္	4.81
α	6		œ	Τ.	HIGH
\sim	9		4	90.	HIGH
C)	9		4.2	0	HIGH
$^{\circ}$			m.	Ġ	
52297	4 0		2.4		4.74
a	3.6		σ.	0	HIGH
52301	œ.		6 426	0.	HIGH
$^{\circ}$	8	-	<u>ග</u>	•	HIGH
52303	5.7	•	12.534	•	HIGH
$^{\circ}$	נט		ი.	•	\mathbf{H}
$^{\circ}$	<u>.</u>		4	•	6.01
$^{\circ}$	4 .	•	۲.	•	HIGH
52310	σ.	•	m.	0.028	HIGH
N	න ට		œ.	•	HIGH
\sim		•	9	•	_
7 (4 •		ici c	0 0	•
у (1 (יִמ	3:	•
52318	•	0.1/5	18.624	- (4.02
2 0	1		9 (5.	HIGH
200	٠.			0.5	_
232	4		9	₽.	4.92
232	<u>.</u>		3.94	٠,	
232	32		2	.34	Ξ.
232	8		9	. 95	0
232	6	0	4.63	03	o,
23	2.96	. 17	0.42	. 25	۲.
52330	100.026	0. 189	51.305	0.328	2.02
23	6.02	. 48	9.71	. 95	Τ.

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: RECAULAR LANDING LOADS

				CAN LAINDING	LOADS
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF
			1		
52391	αο.	•	9		9
23	57.7	•	o.		0
23	Φ.	•	9		6
23	59.1	•	m.		œ.
23	19.0	•	Φ.		
23	ď	•	Τ.		_
23	Τ.	•	۲.		HIGH
23	o,	•	က		HIGH
24	55.1	•	4		8.09
24	er,	•	4		0.12
24	260.6	•	ø.		0.15
24	œ.	•	ĸ.		HIGH
24	Τ.	•	o.		9.82
24	36.7	•	m.		8.04
24	Ξ.	•	4		0.44
24	232.6	•	Ŋ		0.43
24	18.7	•	0		HIGH
24	7.0	•	Τ.		5.48
24	162.3	•	Ŋ		1.36
24	149.9	•	က		•
24	05.9	•	œ		2.16
24	4	•	0		3.58
24	10.6	•	39.135	0.250	2.37
24	₹.	•	ø.		HIGH
24	ď	•	Τ.		•
24	39.2	•	œ		
24	ლ.		Τ.		•
24	21.9	•	۲.		•
24	σ.	•	4		•
24	33.6	•	9		7.05
24	08.3	•	4		•
2	œ	•	₹.		•
24	299.1	•	92.3		•
24	31.9	•	7		•
24	0.66	•	4		
33	50.8	•	۲.		•
33	62.5	•	€.		
33	9	•	7		
33	8.80	•	ĸ.		•
33	0	•	ď		
33	43.3	•	ro.		•
330	9	•	4	0	
330	-75.895	0.143	12.369	0.079	5.45
93	ď	•	Ñ	0	
33.1	σ.	•	<u>~</u>	0	

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: DEGOLAR LANDING LOADS

 BAR ID
 AXIAL
 AX. STRESS
 BENDING
 FRADIO
 RADIO
 CADO

 55523
 G61 J77
 AXIAL
 AX. STRESS
 BENDING
 RADIO
 STRESS
 MARCIN O

 55523
 G61 J77
 O.115
 11 J170
 O.071
 G.78

 55524
 G61 J77
 O.115
 11 J170
 O.071
 G.78

 55524
 G61 J77
 O.115
 11 J170
 O.071
 G.78

 55524
 G61 J77
 O.105
 11 J170
 O.071
 G.78

 55534
 G61 J77
 O.105
 11 J170
 O.071
 G.78

 5554
 G61 J77
 O.105
 11 J170
 O.071
 G.78

 5555
 G61 J77
 O.144
 J90
 O.147
 G.78

 555
 G75
 O.149
 J18 J25
 O.148
 G.78

 555
 G75
 O.149
 J18 J35
 O.147
 G.78

 555
 G75
 O.148
 J2.38
 G.71
 G.78

 555
 G75
 O.14

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED:Rこいしar LANDING LOADS

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
226	16.49	.03	75	8	нісн
26	_	0.024	7	02	
62265	23.8		S	0.029	HIGH
226	17.7		. 69		HIGH
22	4.0		7	0.012	HIGH
62268	ເບ ໝຸ່	0.049	1.432		HIGH
62269	27.4			600.0	HIGH
62270	- 0		<u>0</u>		\blacksquare
62271		•	-		1.10
62272	24.456	0.046	16.890	0.108	HIGH
67779	- i	•	•		_
622/4	25.538		. 45		_
62278	י ה		И		4.62
62279	. 6	•			0.00 0.00
62280	. 0				٠ +
62281	+.5				•
62282	-30.233				_
62283	₽.				HIGH
62286	Ξ.				HIGH
62287	2.389		20.813		HIGH
62288	5.7				HIGH
62289	₽. -		•		HIGH
62290	ග . ∶		•		
62293			•		HIGH
62294	9.1	0.012	10.852	690.0	HIGH
62295	0.7-		•		HIGH
62296	27.2		•		\blacksquare
62297	න න		•		7.98
62300	ວ		•		HIGH
62301	4		-		HIGH
62302	188 188 198	0.034	•		HIGH
62303	8.6		•		HIGH
62304	ית נית	•	7.477		HIGH
62308	م	<u></u>	•		HIGH
62309	80	0	2.718		HIGH
62310	9	.03	æ		HIGH
62311	23.39	.04	. 72		HIGH
62312	9.0	•	•		HIGH
62316	. 47	0.001	96		HIGH
62317	-	•	œ	.03	HIGH
62318	.48	<u>.</u>	4	0	HIGH
62319	4.97	0.009	62	0.	HIGH
	÷.,	-	2.900	0.019	
2	35	8	8	Ξ.	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: 定さっ LAR LANDING LOADS

ANDING LOADS TRESS MARGIN OF SAFETY	6.07		H.GH	HOIH		4.98	8.09	HIGH	HIGH	H51H	5.32	17.1 10.1 10.1	HEL	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	3.99	ביין ני	8.44 H1GH	2.95	3.73	7.39	0.05	8.03	7 . 96	HIGH	HEIH	HIGH	HIGH	HBIH	•		HIGH	\vdash	6.91	HIGH	
ED:K-54 J LAK LA ING BEND. ST ENT RATIO		•	0.037			•		•		Τ,		?	9 0	90	.07	9	.08	.07	0	T	† (0.233	32	. 39	. 22		7	9	0.032	· –	0	0	Τ.	0	.07	.07	.05	8	.04	•
BEND MOM	- 1	. 54 4 C	5.783	.07	34	S	2			۲.	O t	` a	משיכ	۲.	0	ır.	σ,	Ξ.	4	24.700	9 0	3.978	-	3	. 36	œ	43.985	ლ 1	၁ ့	9 (5	4	က	. 70	'n	2.35	10.906	.62		7	
AX. STRESS RATIO	90.	. O	90	0	93	Ξ.	Ξ		9	0.	. 4	, c	8		6	9	0.	9.	.05		3 5	0.026	Ξ			•	0.002	•						. 18	. 13	õ	05	Τ.	90.	•
AXIAL FORCE	36.279	20.09 A R	29	8.96	6.09	8.50	8.12	6	4.77	9.63	82.523	. ה ה	0.36	1.64		-10.114		┯ (12.130	-85.344	- (17.980	-61.840	ത	co.	n	-1.270	וכי	45.710	າແຕ	~	0	~	96 . 790	-	O)	വ	. 12	3.15	Ċ
BAR ID	62379	220	238	238	238	239	239	239	239	239	מ מ	9 6	239	240	240	240	240	24	240	5 4	5	240	241	241	24	241	241	7 4 7	63301	(n)	330	330	330	ဓ္က	330	33	Ë	331	332	c

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: 応込し LAR LANDING LOADS

MARGIN OF SAFETY	-	7.23	_	HIGH	HIGH	7.79	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H51H	H 15	5 6			E 15	5.82		HIGH	HIGH	HIGH	HIGH	5.48	1.97	HIGH	HIGH	8.24	HIGH.	· .	69.0	0.63	5.57	5 30	7.02	HIGH	HIGH	5. 18	. C	I I I
BEND. STRESS RATIO	14	15	Ξ.	0.0		. 12	ō	9		9	03	0.039	03	80						0.082																							0.150
BENDING	2.07	ത	3.6	. 55	. 88	_•	. 59	73	Τ.	4	o,	6.134	2		,	. .	- 0	•		12.832				10.992					17.547		22.098	. c	9 6	, ,		0.64	43	4.55	20.772	1.84	88	4	23.483
AX. STRESS RATIO	0	.08	.03		0	0	9	9	.03	0.		8	5	0 0	•	0.043	•	•		.05	.02			0.042	•	•	12		0.032				3 5	•	, T	60	0	08	0	0.0	08	C	0.014
AXIAL FORCE	4.4	43.306	19.404	3.7		5.5	31.		₩.	ġ		-2.999		, i	, ,		9			29.		21.	22.		20.	23.	66.	76.		28.	4 0		2 2 3					39	2.1	43	45.55	37	-7
BAR ID	38	33	339	339	ന	က	ന	63397	က	63338	n	8 5	ກ (63403	ָל ל ל	7 7	י רי	63410	63411	4	4	341	4	4	4	4	42	42	C 1	42	3 4	* 4	3 4 6	345	345	345	345	346	346	346	34	347	347

ISDGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: $\mathcal{C}_{\mathcal{CG},\mathcal{O}}$ LAR LANDING LOADS

	RATIO	BENDING	BEND. SIKESS	MARGIN OF
. 202	0.025	43.359	27	3Arc 1 6 66
.367	0	35.967	0.230	9.62
.430	~	رى	4	6
. 482		6		7.
. 143		о О		ŏ.
. 216		ю		9
.038	•	÷.		HIGH
. 198	0.017	6	0.124	HIGH
. 788	•	ď		HIGH
. 497		œ		HIGH
.862		ď.		HIGH
. 484		Б.		HIGH
.097	•	4.		HIGH
.046	•	4.		6.20
•		о О	8	HIGH
•	•	œ	05	HIGH
9.170	0.017	18.498	0.118	HIGH
	•	œ.	Ξ	HIGH
		ω.	7	HIGH
•		ნ	18	8.02
•	•	·		HIGH
			0	HIGH
	•	15.888		HIGH
	•	•		HIGH
		•		HIGH
				HIGH
23.634		•		HIGH
		•		HIGH
		•		HIGH
•		•		HIGH
•				HIGH
		6.735	0.043	HIGH
٠.		٠		HIGH
4		•		HIGH
9			5	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY

WITHOUT SRM	MARGIN OF Safety	HIGH	HIGH	HIGH	HIGH	HIGH	H1GH	_	_	HIGH	101	E I	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H 16H	<u> </u>	E E	HIGH	HIGH	HIGH	HIGH	H I	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	7.06	_	8.79	H 10	1511	HIGH
OF SAFELY STER LOADS	BEND. SIRESS RATIO	000.0		٠					•	0.00				•			•									•			0.036			•			•			•	0.240	0.022	•	0.000
AND MAKGINS N TITLED:	BENDING MOMENT	0.055	90	0.055	9			٠		0.108				٠.			2.508	0.426	•	•	•	0.032		0.040				•	5.715		•	•	0	ب ا	_ '	4 . 5	œ٠	- (0 t	اق	3.511 2.618	. 4	- IŪ
E NASTRAN RU	AX. STRESS RATIO	0.001		0.005		0.004	•			000.00			•									5 6					0.010	•	600.0 0			0.001	•	•	0.015	•	0.014	•	•	0.012	•	0.001
FROM AF	AXIAL FORCE	-0.748	ص	-2.391	Ö	- '	-2.542			-0.135 -2.105				0.589	2.395	4 I	ا	-3.139		-3.494				2.953		20.172	س	ς, .	-4.730	4.3	•	•	2.107	•	x 0	יות. נית	٠,		4 (-4.703	77	9
	BAR ID	12201	12202	12204	12205	12206	12207	12208	5777	12216	10	12224	12225	12226	12227	12228	12229	12230	12231	12232	1223	10035	12236	12237	12238	C	24	12241	12243	12244	12245	12246	12247	12248	12249	12250	12231	12252	12233	12255	25	12257

STER LOADS WITHOUT SRM 9 MARGIN SAFETY BEND. STRESS RATIO SAFETY ISOGRID BAR FORCES AND MARGINS OF FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 27.373 12.040 0 0 248 15.040 14.040 14.040 15.040 16.095 17.040 1 STRESS RATIO 0.0023 AX. AXIAL Force 12317 12323 12323 12323 12323 12323 12333 BAR

STER LOADS WITHOUT SRM 9 MARGIN SAFETY BEND. STRESS RATIO SAFETY 9 ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 864 0028 0028 0028 0029 0012 0014 0014 0014 0018 0018 0018 0018 0020 0030 0030 0030 0030 0030 0030 STRESS × -17.707 -3.344 4.845 -1.165 -1.165 -2.876 -1.30 -0.339 -1.130 -0.525 -0.525 -0.525 -1.564 -0.525 -1.564 AXIAL -0.183 -0.255 -1.356 -1.1529 -1.1529 -0.091 -0.060 -0.072 -0.072 -0.072 -0.072 -0.074 -1.628 -1.628 -0.296 -0.206 0000000 10 12466 12466 12466 13301 13302 13303 13303 13303 13331 13332 13332 13332 13333 BAR

	ISOGRID FROM AFE	BAR FORCES NASTRAN RU	AND MARGINS N TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
13398	.20	0.000		0.000	HIGH
13399		•	•	•	HIGH
13400	-0.812 -0.812	0.005	0.004	000.0	E E
13402	. 0	000.0	500.0 00.0		. I
13403	.63				E I
13406	Ξ.			•	HIGH
13407	÷ +		•	•	HIGH
13408	-1.143	0.001	0.017	000.0	#3 F3
13410	. 3				HSI H
-	-		•		HIGH
- -		•	<u>٠</u>	•	HIGH
13413	0.056	000	•	•	HIGH
			0.034	0000	E E
•					HOIT
					HIGH
13419					HIGH
13421	-2.858	0.003	800.0 0.00	000	HIGH
13424					E 19
13425					HIGH
13426	82				HIGH
13427	'nς	0.00	0.012	•	HIGH
13429	, m		0.00	000	
13430			•		HIGH
13432	ت				HIGH
14444	- ,		0.0		HIGH
13435	-2.329	0.00 0.00 8.00 8.00	0.019	000.00	HIGH
13436					HIGH
13437	-3.499		٠	•	HIGH
13438	ຕຸ.	•	•	•	нІвн
13440		0.00.0	0.039	•	HSIH I
7	, (•	H16H
4 4	, 64 08 08	0.003	0.00	0000	HIGH
ಶ	<u></u>		0.024		E 15
44	Ξ				H
4	0	•	•		HIGH
4	7		.07	000.0	HIGH
ព្រ	-2.617	0.005	•	000.0	HIGH
13452	-2.619		900.0	000.0	HIGH

OF SAFETY	STER LOADS WITHOUT SRM
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
13509	•	0.001		000.0	HIGH
13510	-0.029		0.013	000.0	HIGH
က	•	000.0	0.012	000.0	HIGH
13512		0.00	•	000.0	HIGH
13513	-0.327	0.001	0.029	000.0	HIGH
13514		0.002	•	0.000	HIGH
13515				0.00	HIGH
13518	0.335	•	0.055	000.0	HIGH
13519			٠.	000.0	HIGH
13520	0.590		•	0.00	HIGH
13521	0.567			•	HIGH
13522	0.302	•			HIGH
13523	-0.264		0.049	٠	HIGH
13524	-0.875				HIGH
13526	ດ :		090.0	000.0	HIGH
13327					HIGH
13528	1.11				HIGH
13529					HIGH
13530	1.064				HIGH
13531	0.775				HIGH
13532	0.308	0.001			HIGH
13534	1.822		0.014		HIGH
13535	1.723	0.003			HIGH
ה ה	1.572				HIGH
13537	1.544				HIGH
13538	1.696	0.003	0.032		HIGH
13539	1.746	0.003	٠.		HIGH
13540	1.534	•			HIGH
13544	2.600	0.005			HIGH
13545	2.431	•	0.029		HIGH
13546	2.022	0.004			HIGH
1354/	٠	•	0.033		HIGH
13348	ກ ·	٠	0.015		HIGH
13349	2.125	0.004			HIGH
13330	7 . 197	•	إق		HICH
2000	•				HIGH
13004	•	•			HIGH
13555	٠	•	9		HIGH
13556	<u> </u>	•	0.029		HIGH
13557	1.921		ō		HIGH
13558	ص (0.004	0.024	000.0	HIGH
13559	86	•	₽.		HIGH
13561	9		.02	•	HIGH
13562		900.0		•	HIGH
13563	2.836	0.005	0.024	000.0	HIGH

	ISOGRID FROM AFE	BAR FORCES AND MARGE NASTRAN RUN TITLED	IND MARGINS I TITLED:	OF SAFETY STER LOADS	WITHOUT SRM	
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY	
22227	0.941		.34		нІдн	
22228	4 (0.778		HIGH	
67777			. 59		HIGH	
22231	2.512		1.922	0.012	HIGH	
22232			9 6		HIGH	
22233				0.097	HIGH	
22234	-0.858		.56		нви	
22235	•	•	0.155		HIGH	
22236	1.468		•		HIGH HIGH	
22238		0.002	•	0.005 0.006	HIGH	
22239			1.849		H ₁ GH	
22240	•		2.038	0.013	HIGH	
22241	1.965		2.696	•	H1GH	
22242	2.945	•		0.184	HIGH	
22243	9.305	0.001	0.230		HIGH	
22244	3. 186 -0. 28.t	•	vi c	9 6	8.18	
22246	-1.563		0.095	0.00	HELE	
22247	. 92		•		HIGH	
22248	•				HIGH	
22249	0.877		0.563	0.004	HIGH	
22251	•	5000	1.333		H16H	
22252	1.799		2.060	0.013	E II	
22253	•			0.040	HIGH	
22254	•			0.117	HIGH	
22255	-5.230	•			HIGH	
22257	-3.797	0.00	3.436	0.022	HIGH	
22258					H	
22259	•				HIGH	
22260					HIGH	
22261	•		55		HI SH	
7977	-0.022	000.00	7	0.005	H51H	
22264					H 151	
22265				900.0	HIGH	
22266	.05			•	HIGH	
2	ω 1		8.700		HIGH	
22268 22268	-1.755 -2 885	0.003		0.036	HJ E	
227			0 0	•		
22271	2.072	0.004	10	0.001	HOIH	

	SR	
	WITHOUT	
SAFETY	STER LOADS WITHOUT	
9	•	
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:	

OF																																													
MARGIN D SAFETY	HIGH	HIGH	HIGH	9.42	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI GH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH
BEND. STRESS RATIO	•	0.209	•			0.085	•				0.036	0.105	0.033	060.0	0.019				0.098	000.0	0.100	0.040		0.034					0.014	0.036	0.037	0.071	0.010					0.003	0.004		0.008	0.015	0.001	•	0.003
BENDING MOMENT	•	32.708	0.021	34.207	9.061	13.347	2.702	•		•	5.662			14.123	2.996	•	11.231		15.288		15.688	•		5.387	•	6.784	•	•	2.166	9	5.846	11.130	•	1.450	2.844	•	0	•	0.565	•	•	2.288	۲.	0.152	4
AX. STRESS RATIO		0.020	0.003	•	0.011	0.010	0.023	0.005		0.001	0.002			0.003	•	0.002		0.005	•			900.0	•	600.0	0.011	0.011		•	٠	0.012	0.	•	ō	٠.	_	6	6	-	0	•	0.014	٠.	0.015	0.014	0.
AXIAL FORCE	. 29	10.679	1.617	13.896	5.626	5.496		2.853	4.180		-0.970		•	-1.489	-2.188	-0.965	0.967	-2.809	-6.741	-0.884	-3.120	•	-3, 195	•	•	-5.992		-5.400	•		-7.351	-6.343	-7.094	•	٠		r.	. 69	-7.327	Τ.	9.	-7.537	. 92	r.	-7.146
BAR ID	22334	22335	22336	22337	22338	22339	22340	22341	22342	22343	22346	22347	22348	22349	35	23	235	22354	23	22356	23	22358	22361	22362	C	236	22365	22368	22369	22370	22371	22372	237	22376	237	237	237	238	238	238	238		3	23	

WITHOUT SRM	MARGIN OF SAFETY	Н16Н	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H1GH	HIGH	HIGH	1911	HOIH	HIGH	HIGH	HIGH	HI GH	HIGH	1511	HBIH	HIGH	HBIH	E I	HIGH	E 101	E I	HIGH	HIGH	HIGH.	1511	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH.	HIGH	HIGH	H 10	H16H
OF SAFETY STER LOADS	BEND, STRESS RATIO	0.002						0.001		•	0.001											•	•	0.00		000.0	•	•	000.0			0.001						•		900	0.000
AND MARGINS IN TITLED:	BENDING MOMENT	0.277	200	0.069			0.056		0.327		0.080															0.028			9 6	0.03				03	0	0	0 6	.02	ღ (5
BAR FORCES E NASTRAN RU	AX. STRESS RATIO	000.0	0.003				8				0.005				•	0.002	•	0.003		0.002			•	000.0	•		•		•	00.00							8		88		3
ISOGRID F FROM AFE	AXIAL FORCE		4.0	-3.801	4.23	9	1.441	9		34	-2.419	-3.528		82		0.969	-0.784	929.1.	-2.821	-	0.112	1.169	•	0.264	•			-2.114		1.646		0.431	. 44	. 24	35	უ.	6.6	97.	n (4 0 40	5
	BAR ID	33	00	יי ייי יייי	23341	23342	23343	23344	23345	23350	23351	23353	23354	23355	23356	23357	23363	23364	23366	23367	23368	23369	233/0	73376	23377	23378	23379	23380	23382	23384	23385	23386	23390	23391	23392	23393	23394	23395	73337	ה ה ה ה	5

	ISOGRID E FROM AFE	BAR FORCES NASTRAN RI	AND MARGINS JN TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
23482	. 7			0.000	HIGH
23483	3.118				
23484	•	•		•	HIGH
23485	•	0.003	.30	•	HIGH
73486	•				HIGH
2348/	2.201	0.00.0	0.041	000.0	H16H
23489				-	1511
23490	1.445				1911
23491	1.647				HIGH
23492	•				HIGH
23493	0.955	•		000.0	HIGH
23434	9 247	000.0			HIGH
23500		0.002			i i
23501	0.001		0.028		E 12
23502					HIGH
23503					HIGH
23504	-0.170				HIGH
23505	0.028				HIGH
23509		000			HIGH
23510	· -		0.039	98	HIGH
23511	- +-				E ISI
23512	-1.286				HIGH
23513	-0.875				HIGH
23514	0 (HIGH
23515	-0.160 -4.33E	•		000.0	HIGH
235.18	1 0	0.00	0.03	50.0	HIGH
23520	N 64	0.005	0.053	000	HIGH
23521	ď		0.052		HIGH
23522	_			•	HIGH
23523	4.			•	HIGH
23524	0.95			0.001	HIGH
23530		0.00	0.105	0.00	H 2
23532	; –				151
23539	8			0.00	E 15
23540	1.7				HSIH
23550	œ.		0.745		HIGH
23553	9		•	000.0	HIGH
23554	ē.		. 24	0.002	HIGH
23559	Ŏ, (45	•	HIGH
23561	-6.018	0.011	0.070	000.0	HI GH

S AND MARGINS OF SAFETY	STER LOADS WITHOUT
MARGINS	TITLED:
FORCES AND	NASTRAN RUN T
ISOGRID BAR	FROM AFE NAS

SRM	OF .																																								
WITHOUT SE	MARGIN (HIGH	HIGH	HIGH	HIGH	HIGH	515		1511	HEIH	HIGH	HIGH	H1GH	HIGH	HIGH		. I	HEIH	HIGH	HIGH	HIGH	H10H	HIGH:	H 10 1	H 161	HIGH	HIGH	HIGH	HIGH	H 101	H	HIGH	5 7 7	HIGH							
STER LOADS	BEND. STRESS RATIO	000.0		•	0.006		200.0		000.0			•		•	0.003				0.000	•	000.0	000.0	•	•	500.00 00.00		•	•	•	000.0			•		0.00	•	•	•	0.001	50.0	0.002
N TITLED:	BENDING MOMENT	0.022		•	0.928	0.027	•	•	•				0.137				0.070					0.045			0.392					0.057			•	0.033	•	•	•	•	0.218		0.377
NASTRAN RU	AX. STRESS RATIO	0.001				80.00		•				•	•	•	0.004	•				•				0.00						5						•	0.003		0.002	•	0.004
FROM AFE	AXIAL FORCE	0.752	2.2	-10.770	` •	, c	1 -	, α - C	y G	. 7	0	?	ö.	<u> </u>	-2.003	, 0	-	-1.132	-0.803		•	0.114	•	•	- c				•	-0.682		•		0.191			٠	•	0.906	ה	2.339
	BAR ID	32232	32233	32234	32233	32238	32238	32239	32240	32241	32242	32243	32244	32245	32247	32248	32249	32250	32251	32252	32253	32254	32255	32250	32258	32259	32260	32261	20226	32264	32265	32266	32267	32268	32269	32270	32271	32272	32273	32275	32278

	FROM AFE N	BAR FURCES AND MAKG NASTRAN RUN TITLED	JD MARGINS TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL AX FORCE	. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
32339	1.120	0.002	0.058		нтен
32340	60.				нісн
32341	י פ	0.00	0.109	•	HIGH
32343	0.736		0.101	00.00	HIGH
32346	. 17				HIGH
32347	. 24	•			HIGH
		0.001	•		HIGH
			• •		HIGH
	69	0.001			HIGH
	-0.659	0.00	0.008		HIGH
				000.0	E I
					HIGH
					HIGH
			•		HIGH
	•	0.002	•		HIGH
		•		•	HIGH
	-0.285	50.00	0.032	•	HIGH
32364			•	0000	HIGH HIGH
		0.002	0.082		HIGH
			0.015	•	HIGH
	•		•	•	HIGH
	. 5				HIGH
	-0.779	0.001	0.116	0.00	E 2
				•	H ₀ H
		0.001			HIGH
					HIGH
		•		•	HIGH
	-0.815	•	•	•	HOIH
32384		00.00	0.036	200	H 18H
					HIGH
	. 38				HIGH
32387		0.003		•	HIGH
32390	0.803		•	•	HIGH
	-0.329 -1.884	5.5	0.022	900	H16H
	. 8.				H ₂ H
	-		_		HIGH
23	σ.	٠	0.063		HIGH
2397		0.004	0.016	000.0	HIGH
	. 57	0.007	0.036	0.000	ндн

OF SAFETY	STER LOADS WITHOUT SRM
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
33328	0.176	000		0000	HIGH
33329	9.	0.001	0.070	000	HIGH.
33330	Τ.			0.002	HIGH
33331	٠.		.09	0.001	H]GH
33332		900.0		000.0	HSH
33333	3.088	•	•	0.001	HIGH
33334	9	0.003		0.002	HIGH
33338	ლ 1	•	0.271	•	HIGH
33333	•	•		0.001	н16н
33340	•	0.005	•		HIGH
33341	•	•	0.200	•	HIGH
33342		•	0.114		HIGH
33343	2.344	0.004	0.044		HIGH.
33344	•		0.149		HIGH
33345		0.004	0.334	•	HIGH
33350	•	•		0.002	HIGH
33331	1.060		0.142	0.001	HIGH
33352	1.220	٠	0.108	0.001	HJGH
33353	•	0.003	0.090	0.001	HIGH
33354	•		0.107		HIGH
33355	•		0.057		нІбн
33356	•	•			HIGH
33357	0.854	0.002			HIGH
33363	•			0.002	HIGH
33364	0.979			•	HIGH
ന	•	0.003		0.00	HIGH
က	•	•		•	HIGH
33367		•		•	HIGH
33368				•	HIGH
m (•	0.001	0.054	•	HIGH
~ (•	•	0.164	0.001	H1GH
66667		0.001	0.187	•	HIGH
33376	0.157	•	0.129		HIGH
7.7000	•		0.116	•	HIGH
7 0	•	0.005	0.026	•	HIGH
י כי	•	•	•	•	HIGH
י פ	•		•	•	HIGH
8 6		•			HIGH
מ מ מ מ	٠	0.000	0.028		HIGH
200	•	•			HIGH
3 3 3	•	000.0		000.0	HIGH
333		•	-	0.001	HIGH
200		٠		•	HIGH
9	-0.430	0.001	0.129	0.001	HIGH
33391	-0.411	0.001		000.0	HIGH

	SRM	
	WITHOUT	
OF SAFETY	STER LOADS WITHOUT	
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:	

BAR ID	AXIA	AX STRESS	BENDING	DEAL CTORES	100
	FORCE	. α	MOMENT	. 🗀	SAFETY
33475	0.278	0.001	0.067	000.0	HIGH
က		0.000	0.109		HIGH
33477				0.001	HIGH
347	•		. 12		HIGH
33479	•			0.002	HIGH
33480	0.661		3		HIGH
8	•				HIGH
33482	0.028	000.0	0.113		HIGH
33483	•		٠.		HIGH
33484 33495	-0.551	0.00			H16H
33486	0.700		0.169	0.00	HIGH
33487	-0.209			00.00	1161
33488					HUL
33489	1.041				HIGH
33490	•				HIGH
33491	-0.330			•	HIGH
33492	•			0.001	HIGH
33499					HIGH
33500	0.280				HIGH
33501	-0.233		•		H1GH
33502	-0.490			0.00	HIGH
33503	٠. ا				HIGH
33504	. ,			•	HIGH
33505	-3.448		0.225		HIGH
33509					HIGH
33510					HIGH
33511					HIGH
33512	•				HIGH
33513	ຫຸ (HIGH
33314	-1.643				HIGH
3351.0	11 727	50.0	0.039	0.001	HIGH
33519	- 0 ROS				
352	-0.340		0.052		1911
က	-0.267				HIGH
33522					HIGH
33523	•			000.0	HIGH
35	Ξ				HIGH
35	0.044		Τ.		HIGH
353	Τ.		0.129	•	HIGH
353	on .		٠	•	HIGH
323	ø		.		HIGH
(n)	0.569	-		0.002	HIGH
33550	1.609	0.003	0.602	0.004	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS WITHOUT SRM

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
22	69		0 075	0.000	HIGH
222	6		0.201		HIGH
22	.46		ď	8	HIGH
222	œ ۱	•	•	•	HIGH
22	6.7	•	φ.	•	HIGH
223	4 (HIGH
2 6	N (ຫ <u>ຼ</u> (.02	HIGH
N 0		0.001	σ (0.025	H I
2 6 6 6	· •	•	> •		HIGH
200	0.819	0.003	0.1/8	000	HIGH
42236			ີ ເ		
223			. 6		E E
223	5.254				HIGH
42239	•		2		HIGH
224	٠		∞.		HIGH
224			9.		HI GH
224			4		HIGH
42243			2.479		HIGH
224		•	Τ.	0.026	HIGH
224			ď		HIGH
224			Θ.	0.004	HIGH
3	•	0.002		•	HIGH
224	3.598	•	0.039	0.00	HIGH
224	<u>,</u>				HIGH
225	က်	0.025	- .	0.012	HIGH
225	ດ		•		6.73
22	- :			0.001	HIGH
22	- 1			•	7.65
22	<u>,</u> 1	0.013	2.949	•	HIGH
N ('n,				HIGH
42256	-4.539	0.00	2.818	0.018	HIGH
10	•		0.049	•	
2					5 E
226					HIGH
9	3.164		0.236	0.005	HIGH
26	•	0.010		0.026	HIGH
22	ю О				HIGH
226	•			•	HIGH
226	ß.		9.86		HIGH
226	•			0.044	HIGH
22	က်		9	6	HIGH
42268	•	900.0		0.010	HIGH
22	ä	0.005	1.198	0.008	HIGH

	ISOGRID FROM AFE	BAR	FORCES AN	S AND MARGINS RUN TITLED:	OF SAFETY STER LOADS	S WITHOUT SRM
BAR 1D	AXIAL FORCE	AX.	STRESS ATIO	BEND ING MOMENT	BEND. STRES RATIO	S MARGIN OF SAFETY
33	ω.	Ö	.007	.36		HIGH
	-2.556	Ö	.005	. 69	.02	HIGH
233	•	o (002	.86		HIGH
42335 42336	0.060	o c	000		0	HIGH
233	-	Ó	500	4	3 8	
233		Ö	005			HSIH
233	0.200	o.	000	.07		HIGH
234		0	001	• -	9	HIGH
43.4	•	0 0	002	ت		HIGH
42342 42343	0.415	o c	8 8	. 17		H16H
234		o c	900	ה ה	90.0	
234		Ö	8			H9IH
234	1.264	0	200			HIGH
CA (•	Ö	002			HIGH
(,, (•	o o	001			HIGH
42351	•	o c	501			HIGH
42354	1.527	o o	900	3.540	0.064	HIGH
CA		Ö	004			HIGH
(1)			004			HIGH
α	0.231		000			HIGH
CA C	•		00			нІсн
. 7	5.443	o (010			HDIH
42362	4.151 9.83	o c	008			#3 IF
1 N	ာ င	o c	3 6			HIGH
(N	-1.307	ó	005			H21H
a	_	o	021			HIGH
$^{\circ}$	9		015	4		HIGH
42370 42371	7.822		015	-	0.083	HIGH
10	ים מי		002	י כ	0.1	E 1011
$^{\circ}$	Э. Э.	Ö	025	_	0.011	H3 H
237	Φ,		600	•		HIGH
	. 17		010	•		HIGH
237	0.87	Ö	005	•		HIGH
2 12		o o	\circ	•		HIGH
7 7 9	5.5	O	019	0.839		HIGH
42384 42386	185	o c	015	4		H16H
238	2 . 40	o c	000	6 565 765	0.008	HIGH
238	2.0	0	004	. 45	0.4	HOIH
	. 98	Ö	017	0.232	0.001	HIGH

	ISOGRID B FROM AFE	AR FORCES NASTRAN RI	AND MARGINS	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL A FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
33			7	0.001	нісн
33	7		2		HIGH
33	2.03	٠	Τ.	•	HIGH
43333	69.	0.003	.24		HIGH
	-0.869	0.005			HIGH
999	25.		0 217	0.01	HIGH HIGH
334			!		HIGH HIGH
က	ö				HIGH
33			0.202		HIGH
8 8	oi o			•	HIGH
43344	-2.063	0.00		0.00	HIGH
33	; -				10.1
33					H
43350		0.001			HIGH
43351	•			•	HIGH
335	-0.105			•	HIGH
43353	o c	•			HIGH
43334 4335	-3.48/	60.00			HIGH
335	-2.001		0.183	50.00	H H
33	-1.761				HEH
35	-1.260				HIGH
43359	-1.281	•		•	HIGH
43360 43364	-0.070	00.00		0.002	HIGH
43362					בים בים בים בים
43363			0.256		E E
က					HIGH
6	•			•	HIGH
ი (┵.		•	0.001	HIGH
43367 43368	-3.997	0.008	0.122	8 8 8 8	HIGH
43369	1.90		0 093	20.0	15 I
37	1.34			٠.	H H H
43371		0.002			HIGH
337					HIGH
337	. 32			•	HIGH
433/4 43375	0.424	0.00		0.002	E E
200				•	
33	•	000.0	•	0.007	H16H
(6)	72		2	•	15 I
43379	Ξ.		9	0.001	HIGH
	,				

06	SOGRID BAR		FORCES AND MARGINS STRAN RUN TITLED:	OF SAFETY STER LOADS	S WITHOUT SRM
	XIAL AX. ORCE	STRESS RATIO	BENDING MOMENT	BEND. STRES RATIO	S MARGIN OF
			0	0.013	HIGH
		0.007	2.453	0.016	HIGH
			. 69	0.004	HIGH
					HIGH
			•		HIGH
	726		0.585		HIGH
					HIGH
			0,481		HIGH
			•-		HIGH
	738		20		HIGH
		0.003	•	0.003	HEIH
			0.878 0.878		HIGH
					E
					H ₀ H
			•		HIGH
					HIGH
			0.459		HIGH
			0.790		HIGH
			0.583		HIGH
			0.488		HIGH
		0.003	0.469	0.003	H 5
	-1.535	0.003	0.374	0.003	E E
			•		HIGH
					HIGH
					HIGH
				0.002	HIGH
		500.0		600	1511
			0.316		H ISI
					HIGH
					H1GH
	.893				HIGH
				0.005	HIGH
			0.216		HIGH
					HIGH
					HIGH
			0.172		HIGH
-				0.004	HIGH
יכי				0.001	HIGH
			60	0.001	HIGH
			0 0		
	- 6	700.0	0.381	0.007	515
	٧		-		בים בים בים

MARGIN OF SAFETY : SAFETY STER LOADS WITHOUT SRM BEND, STRESS 0.003 0. RATIO OF. ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.514 0.556 0.348 0.348 0.348 0.348 0.366 0.367 0.377 0. STRESS RATIO 00.008 00.009 . • **X** 4.057 4.057 3.987 3.987 3.1008 2.1088 3.1009 2.1088 3.157 3.157 3.157 3.157 3.157 3.157 4.173 4.173 4.1753 4.1753 4.1753 4.1753 4.1753 6.666 6.0966 6.0 AXIAL FORCE BAR ID 43561 43562 43562 43566 43566 43566 43566 43566 43567 43570 43570 43570 43570 43570 43570 43570 43570 43570 43580 43570 43580 43570 43580 43570 43580 43580 43580 43580 43580 43580 43581 43580 43581

	S
	STER LOADS WITHOUT
EΤΥ	LOADS
F SAF	STER
0	
ISOGRID BAR FORCES AND MARGINS OF SAFETY	(TLED:
AND	E N
FORCES	ROM AFE NASTRAN RUN TITLED:
BAR	NA
RID	AFE
ISOGI	FROM

	ISOGRID FROM AFE	BAR NA:	FORCES AND MARGINS STRAN RUN TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
52270	2.304	0.004		0.001	HIGH
2	1.772		0.084	•	HIGH
52272	1.618	0.003	•	0.005	HIGH
v	1.168			00.00	HEIH
~	-4.331		0.282		HIGH
27	1.882				HIGH
52279	2.734				HIGH
52280	0.058	000.0	0.008		HIGH
52282	0.986			0000	HIGH HIGH
52283					HIGH
52286			•		HIGH
52287				•	HIGH
52288				•	HIGH
52289				•	HIGH:
52290		0.00s	0.093	00.00	HIGH HIGH
52294					H2H
52295			•	•	HIGH
52296			•	•	HIGH
52297		0.011	•	•	HIGH
52300		•	•	•	H31H
52302	5.917	0.03	0.053	000	E IE
52303			•	•	HIGH
52304				•	HIGH
52308	•	0.015		•	HIGH
52309	•	•	•	•	HIGH
52310	6.683	0.013	0.188	0.00	H16H
52312			0.071		HIGH
52316	7.967	0.015	0.417	•	HIGH
÷	•	•	•	•	HIGH
9	9.948	•	•	0.005	HIGH
ים פי	•		•	•	
52320	-0.368		0.749	•	HIGH
ים כי	•	•	•	•	15.1
) C		•	- 1.00 0.00 0.00	•	HOIH
52326		0.015	14.365	0.092	HIGH
23		•			HIGH
52329	7.949		0		HIGH
7	. 82	•	4.976	0	HIGH
23	. 7		14.527	60	нісн

	ISOGRID B FROM AFE	BAR FORCES A	S AND MARGINS RUN TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL A FORCE	X. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
52391	-6.471	0.		0.000	HIGH
2	8.80	<u>o</u>	0.092	•	HIGH
$^{\circ}$	9.43	0.6	•		HIGH
52394 52396	-7.953	0.015	0.139	0.00	HIGH
10	6.45	• 1	0.608	900.0	H I CH
52398	6.7	0			E I
52399	•	0	0.080		HIGH
52400		<u>.</u>	- •		HIGH
52401	ė.	ö	- •		HIGH
52402	. ن	0.		•	HIGH
52403	ف	0.012			HIGH
~ (0				HIGH
52405 52405	-3.914 -R 760	0.004		•	F15
52405	ນີ້		3.35/	•	I I
52408	ی د			9 6	515
52409	-6.839	5 0	0.291		15 I
52410	•	•			HGH
4	ις.		•		HIGH
241	کا	•	•	•	HIGH
7.47	•		•	•	HIGH
52414	4 (0.008			H51H
4 0	N C	90.0	•		HIGH
4 4	•	20.00	•	0.005	HIGH
4 (1	0		0.112	5 6	HIGH
52443					H5II
244		•			HIGH
244		•	660.0		H1GH
52446					HIGH
40	-2.729	0.003	0.888	90.00	H 16H
10	. 4	٠.		500	H 1
52465		•			HIGH
53301	•	•	0.157	•	HIGH
53302	0	•		000.0	нівн
က၊					HIGH
53304	0	•			HIGH
ຕ (s,		•	•	HIGH
ב ה ה		•	•	•	HIGH
53307	-1.851	0.003	o c		HIGH
າຕ	ى -	•	<u>ن</u> د		HIGH
		0.00.00	0.058	0.005	H] EH
				•	

	ISOGRID FROM AFE	BAR FORCES E NASTRAN RI	S AND MARGINS RUN TITLED:	OF SAFETY STER LOADS	WITHOUT SRM
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
53383	0.544	0.001	•	000.0	HIGH
53384		•	•		HIGH
53385	•	•		0.000	HIGH
53390	0.687		0.065	960	H H
53391					HIGH
53392	-0.381				HIGH
53393	-0.623			•	HIGH
53394	-0.852		• -		HIGH
53397	-1.164 3.403	0.002	0.022	0.000	E I
53398	1.810				H ₀ H
53399					HIGH
53400		•		•	HIGH
53401					HIGH
53402	081.4-	0.005			HIGH
53406	2.195		043 0.05 0.55	5000	I I
53407	2.269				HIGH
53408			•		HIGH
53409	1.313			•	HIGH
53410	1.224			•	HIGH
53411	0.765	0.00	0.030	00.00	H 181
53413	-2.680				Į.
53415	1.954				HEH
53416	2.011			•	HIGH
53417	•		•		HIGH
53418	•			•	HIGH
53479	2.249	0.00		000.0	H 101
53421		0.007	0.076		HEIH
342		•		•	HIGH
34		•		•	HIGH
342	2.855	•	o .	•	HIGH
53432	0.198	00.00	0.111	6 6	HIGH
53440		•		•	E 151
34	0				HIGH
34					HIGH
345	5.436			•	HIGH
345		0.002			HIGH
346		•	2 8		HIGH
53465	6.483	0.012	0.051	000.0	HIGH HIGH

9 STER LOADS WITHOUT SRM BEND. STRESS RATIO SAFETY P ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.038
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.078
0.088
0.088
0.088
0.088
0.088 . STRESS RATIO × -1.650 -1.123 -1 AXIAL FORCE 10 53522 53523 53524 53530 53530 53530 53530 53550 5350 BAR

OF STER LOADS WITHOUT SRN MARGIN SAFETY
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 BEND. STRESS RATIO SAFETY 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 OF ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.040 0.037 0.050 0.153 0.050 0.315 0. . STRESS RATIO 0.0001 0. ¥ -0.833 -0.504 -0.504 -0.504 0.090 0.090 0.207 2.462 1.483 3.570 0.207 2.147 2.023 3.150 2.034 2.147 3.150 AXIAL FORCE BAR

AFETY	STER LOADS WITHOUT SRM
P.	S
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

BAR 10	AXIAI	AX STDESS	DENDING	, ,	
	FORCE	RATIO	MOMENT	RATIO	SAFETY
37	-0.842	0.002		0.004	HIGH
238	9				HIGH
238	0.602	0.001		0.00	HIGH
62385	ດຸເ	•	0 (•	HIGH
000	-1.293	0.005	2 9		H2H
1 C	o –	•	0.247	0.002	HIGH
62391	- 0	0.00			
C	Ö				HEIH
62393	0				HIGH
62394		•			HIGH
62396	2.257	0.004	0.314	0.002	HIGH
62397					HIGH
62398	•		0.166	•	HIGH
62400	V C	90.0	0.129		HIGH HIGH
62401	, ,			0000	H 101
62402	1 13				101
62403					E
62404	-3.019				HIGH
62405			Τ.		HIGH
62406	•			0.011	HIGH
62407	ល		•		HIGH
62408	4	•	1.228	•	HIGH
240	-	•			HIGH
24.	-8.132		٠.	•	HIGH
241	က I			•	HIGH
\sim	2				H1GH
241	יוס ויס	•			HIGH
747	. ,		1.708		H.
62415	-2.029			0.010	HIGH
63302	2.033 -2 847	0.00	0.040	000	511
63303			0.036		E 15
ന	3.679			000.0	HIGH
ന	•	000.0			HIGH
ന	•	0.001	.03		HIGH
က	0.610	0.001	9	0.000	HIGH
330	ო.		.04		HIGH
331	•		ō		HIGH
331	- '		0	000.0	HIGH
331	33		9		HIGH
EE	۲.		0	•	HIGH
88		٠.	0.027		
63322	3.131	900.0	0	000.0	HIGH

STER LOADS WITHOUT SRM 9 MARGIN BEND. STRESS RATIO SAFETY 0F ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.137 0.053 0.063 0.057 0.057 0.025 0.035 0. STRESS ×× -1.1.191 -0.831 -0.458 -0.4084 -0.9224 -0.9381 -0.944 -AXIAL FORCE 63386 63390 63391 63393 63393 63394 63399 63400 63400 63400 63410 63410 63411 63414 63414 63414 63414 63416 63416 63420 63464 63465 BAR

WITHOUT SRM	MARGIN OF SAFETY	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI GH	HIGH	H51H	HIGH	H. CH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH
OF SAFETY STER LOADS	BEND. STRESS RATIO	0.002		0.005	0.001	0.001		0.00	0.001	0.001												0.00		0.000		0.001								000.0	000.0	0.000
FORCES AND MARGINS STRAN RUN TITLED:	BENDING MOMENT		0.279	. 74	Ξ,	0.170	1.182	0.057	•	•		0.034			•				090.0					0.042	•	•		0.026	•	٠	•	6	•	9	0	0.032
BAR	AX. STRESS RATIO	0.001	0.001	0.003	0.003	000.0	0.001														•	•		0.003		0.001									•	0.002
ISOGRID E FROM AFE	AXIAL FORCE	0.629	0.492	1.608		-0.256	•	φ.	9	-2.494		ю. П	oi o	•		oi 1		•			0	٠	•	•	•	-0.648	0 1	5,0,73	•	ומ	1.52	٠		•	0	-0.917
	BAR ID	63239	63540	63220	63553	63554	63229	ന	63562	63563	(63569	0/469	635/1	635/4	63575	63576	63577	63578	632/8	63580	63581	63582	63583	63384	63585	03300	70000	00000	י כי	63590	300	359	359	23	63595

	ISOGRID E FROM AFE	BAR FORCES E NASTRAN RU	AND MARGINS N TITLED:	OF SAFETY FAIOUSTER LOADS	- SRM ATTACHED
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF SAFETY
12201				000 0	HIGH
12202	რ.		0.068	•	HIGH
12204	•	•			HIGH
12205	0.583			•	HIGH
12207	-2.120	0.00 4.00 8.00	0.070	0.00	H 2
12208	; -			•	E 1911
12215					HIGH
12216	•	•	0.107	0.001	HIGH
22	-2.222		0.167		HIGH
12223		0.003		•	HIGH
22		•	0.134	50.0	H 101
12226			0.037		HIGH
12227		•	1.242		HIGH
12228					HIGH
12229	2		•	0.016	HIGH
12230	-3.042	•	•	•	HIGH
12231	-2.782	0.005	٠	•	HIGH
12232			•	50.0	H. 5
12234	, -		0.095	9 6	I I
12235	1.042	0.005		0.001	E
$^{\circ}$			600.0		HIGH
12237	3.180	•	•		HIGH
12238	7.115		•	•	HIGH
12239	20.335		•	0.007	HIGH
12240	n u		•	•	HIGH
12241	-5.298	0.0.0	10.254	0.065	HIGH
12243	-4.876	600.0	1.199		E 15
12244	-4.423				HIGH
12245	•	•	0.047	0.00	HIGH
12246	Φ.	•		•	HIGH
12247	•	•	0.040	•	HI GH
12248	3.324	0.006		•	HIGH
1 5	•	•	0.783	0.000	E 15
12251	-7.439		•	•	7 CF
12252	•		0		HIGH
25	īÜ.		37.596	•	8.79
25	. 39		3.505		HIGH
25	74	•	ဖ	•	HISH
12256	-3.816	0.00.0	1.410 0.058	600 00 00 00 00 00 00 00 00 00 00 00 00	H16H
		•	•	•	- 5

PRECEDING PAGE BLANK NOT FILMED

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

MARGIN OF Safety	HIGH	нІвн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H101	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	Heli	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH
BEND. STRESS RATIO		0		0.001	0.127		•	0.092		860.0	0.087	0.056	0.034	0.00	0.033	0.014												0.003							0.001		0.083				0		
BENDING MOMENT	27.320	N	C				9	- •	ö			8.729	•			2.261				•		•			•	2.607	•	0.728		0.117	•	•			0.144							15.074	•
AX. STRESS RATIO	0.003	0.013												0.003					0.001		0.003						0.005	0000											8	0	0	5	8
AXIAL FORCE		-6.889	-6.648		6.375	•	•	9	•	1.251	-	-2.915	-2.780		0.583	-1.040	-1.480	1.575	0.761	-0.136	1.343	0.898	0.857		•	1.557	•	0.089		3.221		1.519	-0.103		5.379				÷.	•	6.985	•	
BAR ID	12317	12318	12319	12320	12323	12324	12325	12326	12327	12329	12330	12331	12332	12334	12335	12336	12337	12338	12339	12340	12341	12342	12343	12346	12347	12348	12350	12351	12353	12354	12355	12356	12357	12358	12361	12362	98	12364	12365	36	96	12370	က

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

Y OF	-	_	_				_	_	_	_	_	.		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_								
MARGIN SAFETY	HIGH	FIGH	E :	H 6	15	H 2	H16H	HIGH.	HI OH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	I G	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H	HIGH	HIGH	HIGH	HIGH
BEND. STRESS RATIO	0.031	•	0.000				•	•	•	•	•	0.000	•	0.00	•	000.0	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	000.0				0.00	•	000.0		0.00	0.000	000.0	000.0				000.0	000.0	0.000
BENDING MOMENT	4.893						•	٠.		•	•	0.048		•	•		•	0.015		0.012		•	0.007	0.008	0.029			0.019	•	•	•	0.032	•	0.011			0.034	0.019			8		•	•	600.0
AX. STRESS RATIO	0.033	600.0	0.005	800.0	0.00	0.00	0.00	0.005	000.0	0.002	0.002	0.001	0.003	0.003	0.001	0.001	0.004	0.004	0.003	0.002	0.001	000.0	0.000	000.0	0.001	0.001					0.001					0.001	000.0	0.005	0.003	0.003	0.002	0.001	0.001	000.0	0.000
AXIAL FORCE	•	92	ж, ·	4.4.0 Res	•		2.00.0	-	ċ			o,	•	-1.845	-0.317	-0.542	-2.154	-2.143	-1.732	-1.273	-0.681	-0.057	0.033	0.016	-0.282	•	-2.202	-1.794	-1.647	-1.108	-0.647	-0.243	-0.094	-0.078		-0.350	-0.015	-2.422		-1.553	•	-0.637	-0.280	-0.138	0
BAR ID	12456	12463	12464	13301	0000	13302	5000	13304	13303	13306	13307	13308	5 5 5 5		13319	13320	13321	13322	13323	13324	13325	13326	13327	13328	13329	13330	13331	13332	13333	13334	13335	13336	13337	13338	13339	13340	13341	34	34	13344	13345	13346	13347	13348	4

- SRM ATTACHED PF MARGIN SAFETY \$\frac{1}{2}\$\frac STER LOADS BEND. STRESS RATIO SAFETY S. ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.023 0.003 0.004 0. STRESS RATIO × 0.124 0.153 0. AXIAL Force 13398 13399 13400 13400 13400 13400 13400 13411 13410 13411 BAR

	ISOGRID BA	BAR FORCES AN NASTRAN RUN	AND MARGINS IN TITLED:	OF SAFETY STER LOADS	- SRM ATTACHED
BAR ID	AXIAL AX FORCE	X. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
13509		0.001	0.033		нісн
13510		0.000	•		HIGH
13512	0.123		0.012	900	1511
13513					HIGH
13514					HIGH
13515	•	•	•	0.00	нісн
13518			0.060		HIGH
13519	•			•	HIGH
13520	0.555	500	0.010	000	HIGH
13522					HIGH
13523		0.001		•	HIGH
13524	-0.929	•		•	HIGH
13526	1.084	•		•	H51H
13527	1.083	•			HIGH
13528	50.0	0.005	0.024	9 6	ייינו
13530	1.060				HIGH
13531	0.766		•		HIGH
13532	0.291	•	•		HIGH
13534	1.759	•	0.015	•	HIGH
13535	1.685	•			HSIH
13536	1.549	0.003	0.032	900	HIGH
13538	1.699				HIGH
13539	1.758				HIGH
13540	1.549	•	•	•	HIGH
13544			•	000.0	HIGH
13545	2.387	•	•		HIGH
13546	1.997	0.00	0.044	000	HIGH
13548	1.920				H9 I H
13549	•				нісн
13550	•	•	•	0.001	HIGH
13553	3.004	•		•	нісн
13554	•	•	•		HIGH
13555	•	•	•	•	HIGH
13556	•	•	•	•	HOIH
1355/	1.899		•	•	HIGH
13558	1.907		•		HIGH
13559 13561	1.865 3.439	0.00 0.00 0.00 0.00	0.104		HIGH
13562	α		0.0		HEIH
13563	75	0.005	0.023	000.0	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED

	MARGIN OF Safety	H91	IGH	HIGH	HIGH	нісн	HIGH	HIGH	T101	E TOTAL	E I E	8, 17	HIGH	HIGH	HIGH	HIGH	ндн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H1GH	1011	# H	IGH IGH	HDI	HBI	H51	IGH	Н51	H91	Н51		HIGH						
	S MAI	Ϊ	Ï	I	I	I	Ξ	Ι	I	I	I	I	I:	I:		I	ï	· cc	Ī	Ι	I	I	I	Ξ	I	I	I	I	Ι	Ι:	ri	Ī	Ī	Ŧ	Ī	Ξ	Ï	Ξ	Ŧ	Ξ	Ξ		Ē
	BEND, STRES RATIO			0.010	0				0.004	0.001					0.013				8						0.012		⁻.		0.142		50.0				0.002	0.005							20.0
	BENDING MOMENT		0.777	1.590	σ:	~		•	0.557	٠.	0.091		ص (2.033	28.777	0.230	42.839	0.183	0.098	0.163	0.195	0.560	1.331	1.804	2.053	6.341	∞ (22.302	3.527	0.168	116	0.115										
•	AX. STRESS RATIO	0.002	٠.						•	0.002			0.002		00.00																00.0							0.002					0.00
	AXIAL FORCE	•	0.319	-0.205	•	2.111		ď	•	•	٠	?	0.825		1 734		0.273		•	•	2.005	1.476	0.865	Θ.	•	•	2.575	•	٠ د		0.683				Ξ.		0.933	0.912	•	9	1.84	֡	-7.364
	BAR ID	22	22	22	22	22231	22232	22233	22234	22235	22236	22237	22238	22239	22240	22242	22243	22244	22245	22246	22247	22248	22249	22250	22251	22252	22253	22254	22255	22236	22237 22258	22259	22260	22261	22262	22263	22264	22265	22266	22267	22268		60777

ISOGRID BAR FORCES AND MARGINS OF SAFETY . FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED

BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
22334	96	0 017	0	Č	חלכה
22335	11.124	٠ ر	32 546	0.00	
22336	68	8	000	3 8	15 T
22337	16	0.027	34,295		33
22338	5.853		ത	0.5	
22339		•	13.655		HUIH
22340	•		2.622		HIGH
22341	•	•	1.283	0.00	HEIH
22342		•	1.730		HIGH
22343		0.002	0.608	0.004	HIGH
22346		•	5.652		HIGH
22347	-3.440		16.562	0.106	HIGH
22348	0.534		5.186		HIGH
22349			14.030		HIGH
22350	•		3.214		HIGH
22351	-1.073	•	•		HIGH
22353	1.008			0.072	HIGH
22354	-3.118				HIGH
22355	-7.042		15.258	0.097	HIGH
22356					E
22357	•	900.0			HEIH
22358	•				HIGH
22361	٠				HIGH
22362	•	•	5.382		HIGH
22363	•	•			HIGH
22364	-6.287	0.012	6.754	0.043	HIGH
22365	•	•	•		HIGH
22368	•		3.541		HIGH
22369	•	6	•		HIGH
22370	9	9	•		HIGH
22371	۲.	0.015	5.829		HIGH
22372	9.9	0			HIGH
22375	7.6	0	•	0.010	HIGH
22376	7.1	0	1.442		HIGH
187		ō		٠	HIGH
237	8	<u>0</u>		٠	HIGH
237	<u>.</u>	9	<u>ග</u>		HIGH
238	. 22	9	īŪ.		HIGH
22384	-7.835	0	ĸ.		HIGH
238	9	9	Τ.		HIGH
22386	90.	<u>.</u>	. 24	900.0	HIGH
238	94	9	. 28		HIGH
22390	.43	٠.	Τ.		HIGH
23	-8.038	6	. 15	0.001	HIGH
22392	. 57	0.014	0.408	0.003	HIGH

SRM ATTACHED MARGIN OF SAFETY STER LOADS BEND. STRESS RATIO SAFETY P ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.294 0.023 0.031 0.047 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 STRESS RATIO A×. 0.0089 1.1.561 1.2.293 1.2.293 1.2.293 1.3.053 1.3. AXIAL FORCE 233394 233394 233394 233394 233394 233394 233395

STER LOADS - SRM ATTACH
RUN TITLED:
STRAN R
ž
FROM AFE NASTRAN

	FROM AFE	NASTRAN RU	AND MAKGINS N TITLED:	OF SAFELY STER LOADS -	- SRM ATTACHED
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
23482	2.961	900.00	0.050	0.000	HIGH
က	•	900.0	0.047	0.000	нівн
23484	-	0.007	0.039	0.00	HIGH
က	1.614	0.003		0.002	HIGH
23486	80	•			HIGH
ი (•			0.00	HIGH
23488		•			HIGH
23489	1.233	•	• 1		H10H
23490	1.616	0.003	0.047	000.0	HIGH
23492	0.928			•	HEIR
23493		0.002		00.0	1511
23494	•			•	HIGH
23499	3.631	•		000.0	HIGH
23500	0.907	•			HIGH
23501					HIGH
23502	-0.438	•			HIGH
23503	-0.395	•		0.00	HIGH
23504		00.000	0.027		HIGH
23505	-0.022				HIGH
23506	2.180	00.00	0.022	00.0	HIGH
23503	- 4 - 143 - 4 - 525	0.00		000	HIGH
23511	-1.697				E 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23512	-1.409				1911
23513	-0.976	0.002		000.0	HSIH
23514	-0.642	0.001	•		HIGH
23515	•	•			HIGH
23518		600.0		•	HIGH
23519	-2.704	0.005	0.077	000.0	F1 5
23521	-3 067				
23522			0.048		HSIH
23523	•	•	0.128		HIGH
23524	-1.060			•	HIGH
23530	•	0.008	0.112	•	HIGH
23531	•	•	0.184		HIGH
23532	•	0.003		•	HIGH
23539	9	•			HIGH
23540	•	0.004	•	•	HIGH
23550	ი.	•	•	•	HIGH
23553	-7.127	0.013	0.045	00.00	HIGH
23334	•	•	7 -	0.007	101
23561 23561	-6.574	0.001	0.073	500.00 00.00	H.GH
		٠	٠	٠	- 5

НЕО																																										
- SRM ATTACHED	MARGIN OF SAFETY	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI GH	HIGH	HIGH	HIGH	H21H	E E	HEIT	HIGH	HIGH	HIGH	HIGH	ב ב ב ב	15 1	HIGH	HIGH	HIGH	HIGH	HIGH H	HIGH	HIGH	H 16H	HIGH	15 1	HIGH	HIGH
OF SAFETY STER LOADS	BEND. STRESS RATIO	0.000			0.00	•			•	٠	000			•	0.001	•		000.0		•	00.00	986					•	0.004		000		000.0	•	00.00	•	0.004		•	•	•	•	0.003
IND MARGINS I TITLED:	BENDING MOMENT	0.008				•	0.029	0.030	٠.	0.027	0.038	0.151	0.616	C.587	0.083	0.043	0.075	0.070	0.039	0.057	0.058	0.00	0.022	0.443	0.092	0.174	0.224	0.657	0.127	0.036	0.078			0.037			0 0	Ŋ	S, C		3 5	0.409
BAR FORCES AND MARGI E NASTRAN RUN TITLED:	AX. STRESS RATIO	0.000			•	•				88	000		•				•	•			56.6							0.00									0.003		0.002	•	0.008	0.002
ISOGRID F FROM AFE	AXIAL FORCE	0.171		•		-2.751	•		-0.385	-0.182	-0.042	0.720	-1.566	-1.816	-2.537	-2.275	-1.020	-1.037	-0.689	-0.483 500	-0.289	0.038	0.221		-0.083	-0.613	-1.085	-0.616	-0.630	-0.429	-0.503	-0.207	-0.038	0.150	0.166		1.670	•	1.043	•	4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	776.7
	BAR ID	32232	32234	3	32236	32237	32238	32239	32240	3224	32243	224	32245	32246	32247	32248	32249	32250	32251	32232	32233	2225	32256	32257	32258	32259	32260	32261	32263	32264	32265	32266	32267	32268	32269	32270	3227	3777	322/3	32214	322/3	77

BAR FORCES AND MARGINS OF SAFETY NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED	S BENDING BEND, STRESS MARGIN OF MOMENT RATIO SAFETY	00.00	0.001	0.001		000.0	.028 0.000	. 126 0.001	.024 0.000	.004 0.000	0.000	o c	.041 0.000	.030 0.000	0.000	034 0.000	810.	000	083 0.001	.086 0.001	.022 0.000	0.015 0.000 HIGH	. 124 0.001	. 179 0.001	000.00	000 0 600	0.000	428	000.0	.017 0.	.015 0.000	0.000		0000	057 0.000	. 134 0.001	. 154	.071 0.000	0.019 0.000 HIGH
OF SAFE STER	BEND. S RATIO		•		o c					•	•	•		000.0	•					0.00	000.0	0000																	
S AND MARG	S BENDING MOMEN							•	•	•				•	•		•			•	•					•					0.015	0.027	0.157			•	. 15	.07	0
) BAR FORCE: FE NASTRAN I	AX. STRES: RATIO	0.002	0.005	0.00					•		0.005			•		•	50.00										0.00						0.00				0.004	8	0.005
ISOGRID (FROM AFE	AXIAL FORCE	1.321	1.295				•				-0.827			٠	•	-1.239		-0.853	-1.231	-1.386		-0.549	-0.932		-0.094		-0.792			•			-1.595 0.623			-1.863	σ,	9	-2.524
	BAR ID	32339	32340	3 6	34	32346	32347	32348	32349	32350	32351	32354	32355	32356	32357	32358	3236	32363	32364	32365	32368	32370	32371	32372	32375	32376	32377	32379	32383	32384	32385	32386	32390	32391	32392	32393	32394	239	23

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS	'FROM AFE NASTRAN RUN TITLED: STER LOA

MARGIN OF SAFETY	HIGH	H1GH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI GH	HIGH	HIGH	HIGH							
BEND. STRESS RATIO	0.001	000.0	0.002	0.001	000.0	0.001	0.002		0.001	0.001	0.001		000.0	0.001	0.002		0.001	0.001	0.001	0.001	000.0	0.001		•			000.0		000.0	0.00	0.001	0.001	0.001	0.001	000.0	000.0	000.0	000.0	000.0	00.0	000.0	0.001	0.002	0.001	000.0
BENDING MOMENT	0.092	0.075	•	0.097	0.061	0.109	0.299			Τ.	2	0.118	0.048	0.156		0.397		0.116	960.0	0.112		0.120	0.264	•	0.082	0.065	0.050	0.073	0.057	٠.			0.137	•							0.054	0.120	0.261	0.136	0.063
AX. STRESS RATIO	0.00	0.001	0.002	0.008	0.007	900.0	0.003			•		900.0	0.005	•	•	0.002				•	0.003		•	•	•	•	•	•	•	0.002	•	•	•	•	•	0.003	900.0		000.0		000.0	000.0	0.001	0.001	0.001
AXIAL FORCE	0.035		1.010	•	3.559	3.350	1.722	•		<u>ඉ</u>	1.191	3.254	2.546	2.345	2.199	1.023	0.963		•	2.461	•	•	0.942	•		•	•	•	•	•	•	•		•	•	1.527		0.527	•		0.040	•		4	-0.436
BAR ID	33328	က	33330	33331	33332	33333	33334	33338	33339	33340	33341	33342	33343	33344	33345	33350	33351	33352	33353	33354	33322	33326	33357	33363	33364	33365	33366	33367	33368	33369	33370	33371	33376	11888	33378	33379	33380	33381	338	338	33384	338	ന	33	33391

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

MARGIN OF Safety	Н51Н	HIGH	HIGH	нтан	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH			TO I	HIGH	HEH	HIGH	нівн	HIGH	нівн	HIGH	нівн	HIGH	нтан	HIGH	нтен	HIGH	HIGH	HIGH	HIGH			1011	HEIH	HIGH	HOIH	HIGH	HIGH	HIGH	нтан	HIGH	HIGH
W /S	_	_	_	_	_	_	_	_	_	Τ.	_	Τ.	. .			. 4		_	_	_	_	_	_	_	_		_	_	_		•			. 1	. т	_		_	1	1	_	_	I
BEND, STRESS RATIO	00.00	0.001	•	•	•	•	•	•	•		0.001		5.6	0.00	5000	0.001	0.001	000.0	000.0		00.0	000.0	000.0	•	•	•	000.0	000.0	000.0	0.001	0.001	88			000.0			0.001	0.001	0.001	0.001	0.002	0.004
BENDING MOMENT	0.070				0.400			0. 121	0.097	0.406		0.152		0.30				0.078	0.027	0.041	0.031	0.010	0.028	0.235	0.020		0.012	0.003	0.035	060.0	0.107	0.03	0.042	0.040	0.047	0.080	0.092	•	0.134	0.154	•	0.255	•
AX. STRESS RATIO	0.001	000.0	000.0							0.001		50.0		0.00		0.001	•	0.002	0.001		0.001		0.004	0.001	0.001	00.0	0.001		0.002	0.003	0.00	90.0	0.00	0.001	0.001	0.002	0.002	000.0	000.0	0.001	0.001	0.001	0.003
AXIAL FORCE	0.368	0.254	•	-0.025	•	•		0.155		-0.472	0.841	0.621	יים מי	180	1.081	-0.273	3.691	0.979	0.280		-0.572	-0.908	-1.889	-3.729	0.265	-0.184	-0.464	-0.624	-1.077	-1.816	-1.960		-0.343	-0.412	-0.542	-1.009	-1.255	-0.132			•	0.520	1.660
BAR ID	33475	33476	33477	33478	33479	33480	33481	33482	33483	33484	33483	33486	33488	33489	33490	33491	33492	33499	33200	33501	33502	33503	33504	33505	33509	33510	33511	33512	33513	43314	32513	335 19	33520	33521	33522	33523	33524	33230	33531	33532	33539	33540	33550

ISDGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED

MARGIN OF SAFETY	нівн	HIGH	нісн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	нісн	6.72	HIGH	7.64	HIGH	HIGH	HIGH		HU IH	HIGH	HIGH	HIGH	нісн	HIGH	HIGH	нісн	HIGH	HIGH	нісн
BEND. STRESS RATIO	00.00	0.002	0.003		0.017							0.002																				0.018								0.127	٠.	9		8
BENDING MOMENT		0.283	•	2.390	•	œ.	4			0.197		0.241		0.528	2	'n			•	•				0.025	•	•			40.547	•	•	2.818	0.03			0.248	•		Э.			1.662	1.642	6
AX. STRESS RATIO											0.005	0.003			•			•					0.002			•	0.018		0.022			600.0				900.0								
AXIAL Force		0.917	4	_	œ	4.	რ	-3.888	4		œ	1.698	•		9.0	. و		د	ما		•		Ň	•	7.5	3.34	9.71	-1.489	ri.		4 (-4.689	080			3.186	4	.05	. 57	-	œ	0	-3.478	Ō.
BAR ID	42225	5	52	22	5	22	22	22	2	55	52	42236	77	20	7 6	77	224	42242	224	224	42245	42246	42247	42248	42249	42250	42251	42252	42253	42254	42255	42230	4225A	42259	42260	42261	42262	42263	42264	42265	56	226	42268	N

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHE

SRM ATTACHED	MARGIN OF Safety	HIGH	нісн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	E E	HIGH	H	HIGH	HIGH	нісн	HIGH	HIGH	HIGH	H I I	HIGH	HIGH	HIGH	HIGH	HIGH	HEIH	HIGH	HIGH	нідн	нісн	HIGH	нісн	HIGH	HIGH								
STER LOADS -	BEND. STRESS RATIO	0.021	•	0.082	•		•	0.029			800								•	0.023		0.023	0.024	0.047	0.037	0.087	0.058	0.032	0:030	0.083	0.150	- 1	0.011	70	0.001		0.005		•			0.001
TITLED:	BENDING MOMENT	3.365	9	∞.	5.749	4.929	4.450	4.614	3.081	1 157	1.180	•	4.052	2.526	2.549	2.195	1.386	1.474	9.67	3.338 7.478	7.560	3.551		7.345		•	9.010						1.737		0.129	18.634	0.821		•	6.588	•	0.231
E NASTRAN RUN	AX. STRESS RATIO			•				0.005	٠							•			90.0					•			0.00	•				•	0.024								Ō.	0.016
FROM AFE	AXIAL FORCE		'n		0.348	<u> </u>	989.1-		9.4.0		0.547	0.418		0.351	1.195	0 (93.99	2.933	2 006	1.780	0.114	-0.406	5.125	3.893	3.578	-0.749	10.601	7	7.600	0	-3.819	N 4		ಂ	•			6.3	φ.	-2.265	r.
	BAR ID	42332	ကျ	ית כי	T) (42336	42337	42338	14000	42340	42342	42343	42346	42347	42348	42349	42350	42351	42333	42355	42356	42357	42358	42361	42362	42363	42364 42368	42368	42369	42370	42371	423/2	42375	42377	42378	42379	42383	42384	42385	42386	42387	42390

- SRM ATTACHED	MARGIN OF Safety	HIGH	HIGH		E E	HI GH	HIGH H I	H.G.	E I	HIGH	HIGH	HIGH	HIGH	HIGH:	H 15		H H H	HIGH	HIGH	HIGH	HIGH	17.0	HEH	HIGH HIGH	E 1511	HBIH														
OF SAFETY STER LOADS	BEND. STRESS RATIO			5 6			0.001	0.001	0.002	5000	0.001	•	•	•	00.00	00.0	0.001	0.001	0.001	0.001	0.002	0.00			0.005		•	0.001			0.001						•	0.003		
AND MARGINS IN TITLED:	BENDING MOMENT	0.234	0.254	0.229	2.252	2.251	0.229	0.201	0:236	0.232	0.150	0.807	0.965	0.977	64.0	0.232	0.221	0.196	0.196	0.151	0.294	0.187	0.60	0.891	0.790	0.272	0.167	0.175	0.73	0.133	0.097	0.076			•		•	0.274	60.0	2 2
AR FORCES NASTRAN RU	AX. STRESS RATIO		0.005			000.0	0.001	0.001		0.004	0.004	0.004	0.002	0.00				0.007		0.004	0.003	0.00	200.0	0.002	0.001	0.001	000.0	0.00	00.00		0.004	•	•	•	0.001	•	•	00.00		
ISOGRID B FROM AFE	AXIAL FORCE	-	-2.410 -1.906	-1.612	-0.886		-0.354	-0.723	-2.645	-1.989	-1.959	-1.981	1.125	-0.727	-0.064	-0.221		-3.471	-2.281	-1.934	-1.684	-1 225	-0.073	1.320	0.296			0.447 4.45		-2.677			•			0.399		0.188		
	BAR ID	43330	43331 43332	43333	43334	43338	43339	43340	43341	43343	334	43345	43346	43349 43350	43351	43352	43353	43354	43355	43356	4335/	43359	43360	43361	43362	43363	43364	43365	43367	43368	43369	43370	43371	43372	43373	433/4	ກເ	43377	က	43379

	ISOGRID BAR FROM AFE NA	FORCES STRAN RI	AND MARGINS JN TITLED:	OF SAFETY STER LOADS	- SRM ATTACHED
BAR ID	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
43435	-2.257	0.004		0.013	HIGH
43438	ლ (2.602	•	HIGH
4344C	-2.328	0.004	0.729	•	HIGH
43441	i c	0.00		0.005	HIGH
344	. m			•	E514
344	-				HIGH
43450	-2.323			0.003	H9IH
345	ď				HIGH
43452	-3.497			•	HIGH
43453	ά,		0.492	0.003	HIGH
43455	•		•	•	HIGH
43456	. ,		•	•	HIGH
43457	•		1.202	٠	HIGH
43459			0.477		HIGH
43460			0.465	•	HIGH
43461	-2.35/		0.453	٠	HIGH
346	· .	0.005	0.487	0.003	HIGH
43464	· -		0.838		ביים ביים ביים ביים ביים ביים ביים ביים
346			0.519		1711
43467			0.493	0.003	H51H
43468	-1.545	0.003	0.472		HIGH
43469	-1.311		0.396	•	HIGH
43470	-1.275		0.563		HIGH
43471	-0.953		0.547	•	HIGH
43472	•		0.244		HIGH
43413			0.343		HIGH
43475	-0.31	56.0	0.782	•	HIGH
43476	-0.782		0.336		בסות הופת
43477	-0.749		0.337	0.003	HEIN
43478			0.282	0.002	HIGH
43479			0.358		HIGH
43480	0.268		0.784		нісн
43481			0.222		нісн
43482			0.211	0.001	HIGH
44483			0.211	•	HIGH
10404 10404			0.184	•	HIGH
10400	0.653		0.580	•	HIGH
43485		9.6	0.162	0.00	HIGH
43488				5 6	
43489			0.081	50.0	בין בין בין בין
13490	0.537	0.001	0.129		HSIH

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

																				·																										
MARGIN OF SAFETY		HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H51H	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HISH	HIGH	HIGH	HIGH	HIGH							
BEND. STRESS RATIO		0.003		0.005	0.003	0.002	0.002	0.002		0.002	0.003	0.004	0.003	•	0.003	0.002	•	0.002	0.002	•	•	0.001	0.001	•	0.001	•			•		•	000.0	•		•		•	000.0	0.001		•	0.019	0.005		0.006	0.025
BENDING MOMENT		0.546		•			•	•		٠.	0.544	•	•	•			•	•		•	•		•	•		•	090.0	0.085		0.336	•	0.061		•	٠	0.498	0.111	•		•	•	2.957	0.741	0.167	0.969	3.990
AX. STRESS RATIO		0.007	•	900.0		0.005	0.005	0.004				900.0		0.004	•	0.005				0.004		0.005		0.005		0.002		0.004	•	0.005		0.002		0.004	٠	•	٠	0.004	0.005	0.011	600.0	0.001	000.0	0.013	0.015	000.0
AXIAL FORCE	(9	. 59	თ.	. 93	۲.	. 48	თ.	•	•	2.902	•	4	•	თ.	•	•	•	2.572	•	•	•	2.727	•	•	•	٠	2.278	•			0.890		-2.036	•	•	٠	•	•	•	. 58	0.623	-0.229	6.771	8.064	-0.189
BAR ID		יכי	ro	က	356	56	43566	43567	က	43569	ß	43571	357	43573	ന	43575	က	43577	43578	43579	43580	43581	43582	43583	43584	43585	43586	43587	43588	43589	43590	43591	43592	43594	52201	52202	52204	52205	52206	52207	220	221	52216	222		52224

	SRM ATTACHE
	SRM
OF SAFETY	STER LOADS -
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

	FROM AFE	NASTRAN RUN	TITLED:	STER LOADS -	- SRM ATTACHED
BAR 1D	AXIAL FORCE	AX. STRESS RATIO	BENDING MOMENT	BEND. STRESS RATIO	MARGIN OF Safety
52270	2.460		0.166	0.001	HIGH
227	1.905	•	0.084	0.001	HIGH
227	1.765	•	•		HIGH
227	1.822	•	0.187	٠	HIGH
52274	•			0.001	нын
52275	-4.672		•	•	HIGH
52278	•	0.004		000.0	HIGH
522/9	•				HIGH
52280 52281	0.062 3.062	0.000	0.008	000.0	HJIH
52282					151H
52283	٠.		٠.	٠.	H51H
52286					HIGH
52287	•				HIGH
52288	2.771	•	•		HIGH
52289	٠	•	•	0.00	HIGH
52290	٠	•	•	•	HIGH
\sim	2.948	900.0	•	0.002	нісн
2	•	•	•	•	HIGH
52295	┯. ۱	000.0	Õ.	٠	HIGH
2	•	•	•	•	HIGH
52297	6.477	0.012	•	•	HIGH
52300	5.102	•	0.401	•	HIGH
52301	5.272	0.00		•	HIGH
52302	•			0.00	
52304		0		•	17.11
52308					HIGH
52309	6.751	0.013		0.001	HIGH
52310	•	0.013	0.190		HIGH
52311	•	•	0.184	0.001	HIGH
52312	•	•	•	•	HIGH
52316	•	0.015	٠	•	H16H
52317	8.884	•	•	0.003	HOIH
52318	10.31g	0.019	_'	•	HIGH
52320	•	•	1.341	0.00g	
52323	a	•		•	
52324		0.00	1 533	•	E E E
52325			•	•	E 1 H
52326	7.800	0.015	· с	0.092	HIGH
52327	.68	•	r.		HIGH
232	<u>თ</u>	•	_	0.	нісн
52330		-	٠	0.032	HIGH
CV	8.711	0.016	14.499	60.	HIGH

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED

5																																												
- SKM ALIACHED	MARGIN OF Safety	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH.	HIGH	HIGH	HIGH	HIGH	HIGH	15 E	57.	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 15 15 15 15 15 15 15 15 15 15 15 15 1	E 5	H TE	E 6	H 15	H 2	1571		5 5	HI GH	HIGH	HIGH	HIGH	HJ CH	H 10			H21H	HIGH						
SIEK LUAUS	BEND. STRESS RATIO	000.0	0.001	000.0	0.001		000.0	000.0	0.001	0.001	0.012	900.0	0.001	000.0	0.007	0.021	90.0	200	0.007	50.0	0.007	0.007	0.00	50.0	0.003	0.00	8.6	5 6	000	0.001	0.001	900.0	0.001		0.00	000	000.0	0.001	•	•	000.0	•	0.002	0.000
	BENDING MOMENT		0.092					0.045			1.807		0.079	0.049	1.123	90.00	0.962								0.299		- 6	0.00	0.077	0.102	0.208	606.0		0.444				0.082				0.039	0.274	0.
E MASIRAIN RUIN	AX. STRESS RATIO	9	0.017	_	0	ö	<u>.</u>	<u>0</u>	<u>.</u>	6	-	<u></u>	0	•	•	0.012			•						9.00	•	20.0	•	٠.			•	0.013	0.00	•			900.0	•	0.008		0.008	0.003	0.004
E O	AXIAL FORCE	-6.699	-9.144	-9.546	•	-7.809	•				-6.787		-7.045	•	-4.052		6.236							14.01/	787	70.0	0.220							4.683	· c	-3.228		3.247			₽.	4.346	٠	2.046
	BAR ID	52391	52392	52393	52394	52396	52397	52398	52399	52400	52401	52402	52403	52404	52405	52406	5240B	52409	52440	52410	50410	50412	52413	777	52415	52426	52427	52443	52444	52445	52446	52447	52463	52464 52465	53301	53302	53303	53304	53305	53306	53307	9	53313	

SRM ATTACHED 9 MARGIN SAFETY į STER LOADS BEND, STRESS RATIO OF SAFETY ISOGRID BAR FORCES AND MARGINS FROM AFE NASTRAN RUN TITLED: BENDING MOMENT 0.018 0.024 0.0024 0.0020 0.0021 0.0025 0.00 . STRESS RATIO 00.00 00 Ä. 0 . 541 0 . 859 0 . 859 0 . 723 0 . 723 0 . 723 1 . 1 . 205 1 . 205 1 . 205 1 . 205 1 . 205 2 . 413 2 . 413 1 . 438 1 . 438 1 . 438 1 . 438 1 . 438 1 . 438 1 . 584 AXIAL Force 10 553383 553384 553384 553386 553391 553393 553393 553400 553400 553400 553400 553400 553410 55 BAR

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

MARGIN OF Safety	HIGH	HIGH	HIGH	HIGH	E 5	E E	; ;	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HI GH	HIGH	HIGH	HI GH	HIGH	HIGH	HIGH	HIGH	H GH	HO H	H :	H. 15	H :	HIGH	нісн													
BEND. STRESS RATIO	000.0	•	•	•	5.0	•							٠		-			•		0.002	0.001	0.001	0.001	000.0					0.001		0.001	0.001	0.001	0.001	0.001	•		000.0	0.004	0.001		0.001	000.0	0.001
BENDING MOMENT	0.039		0.079	٠	3 :		0.212		0.039	0.224		•	o. 100					0.162	0.134	0.384	0.109	0.110	0.109	0.058	0.147	0.354	0.067		0.091	•	•	•	•		•	•	•	•	0.691	0.181	0.107	0.146	90	
AX. STRESS RATIO	0.003	•		•	00.00	0.00			0.012			٠	•		•	•	•				•		•	•	•		•	•		•	•	0.004	•	0.006	•	0.002	٠		0.014	•	0.007	600.0	0.001	0.003
AXIAL FORCE	-1.769	<u>.</u> ,		-3.781			-1.545											-4.982			_						-2.798	-3.142	-3.408	53585 -3.093 53586 -1.723 53587 -2.322 53588 -2.996 53590 -1.258 53590 -1.258 53594 -2.426 53594 -2.426 62201 -7.258 62202 4.492 62203 3.797 62204 -4.679 62205 -0.415														
BAR ID	53522	53523	53524	53530	5353	53539	53540	53550	53553	53554	53559	53561	53562	53563	53568	53569	53570	53571	53574	53575	53576	53577	53578	53579	53580	53581	53582	53583	53584	53585	33386	7338/		ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	0000	1939	53592	53594	62201	62202	62203	62204	62205	62206

F SAFETY	STER LOADS - SRM ATTACH!
ISOGRID BAR FORCES AND MARGINS OF SAFETY	FROM AFE NASTRAN RUN TITLED:

- SRM ATTACHED	MARGIN OF Safety	нідн	HIGH	H. 15.1	E 5				E I	H ₂ H	HIGH	HIGH.	HIGH	HIGH	HIGH	H 15	E E	HIGH	HIGH	HIGH	HIGH	H GH	E E	515	HIGH.	HIGH	HIGH	HIGH	HIGH:	H. 15.	H H H	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HJ CH	HIGH	HIGH	HIGH.	HIGH
UF SAFETY STER LOADS	BEND. STRESS RATIO	0.000	0.000	0.000	5 6	500	88	90.0	0.00	0.005	0.001	0.003	0.003	600.0	0.017	0.005	0.00	0.001	900.0	0.004	0.001	0.001	0.001	0.007	0.00	000.0	000.0	0.001	0.001	000.00	000	0.001	0.001	0.00	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
AND MARGINS I TITLED:	BENDING MOMENT	0.040	0.041	0.053	0.128	0.161	•	•			•			1.403	2.608	0.329	0.270	0.155	1.011	0.674	0.180	0.170	0.117	0.234	0.061		•	•	•	•	0.066			-		0.102		٠			. 48	0.289
ISUGRIU BAR FURCES AND MARGINS FROM AFE NASTRAN RUN TITLED:	AX. STRESS RATIO		•		000.0			96.0			,	•	•	•	•	9.00				•	•		0.001							50.00 0.00 0.00	0.003				•			•	0.005	•	•	
FROM AF	AXIAL FORCE	-0.834	-0.529	-0.651	-0.262	20.0	0.130	0.863	0.092	2.514	1.450	3.501	4.974	1.861	5 / C	2.036	-0.086	0.449	2.882	1.955	3.136	1.981	-0.760 2.05E	3 . C33	2.870	1.569	-0.411	3.414	3.158	2.754	0.840	2.614					9	∞. (4 (7	9
	BAR ID	62263	62264	62265	62269	62268	62269	62220	62271	62272	62273	62274	62275	62278	67778	62280	62282	62283	62286	62287	62288	62289	62290	62233	62295	62296	62297	62300	62301	20229	62304	62308	62309	62310	62311	62312	62316	62317	62318	62319	62320	62323

ISOGRID BAR FORCES AND MARGINS OF SAFETY FROM AFE NASTRAN RUN TITLED: STER LOADS - SRM ATTACHED

3																																												
	MARGIN OF SAFETY	нісн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	I 5	E E	H	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H 181	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	нівн							
	BEND. STRESS RATIO	0.004	0.000	0.000	0.000	0.000		0.001	0.00	0.000	٠	•	0.002	•	00.0	•								•		•			•	0.011	0.011	000.0		0.00	000.0	•	0.000	•		0.00	•		0.00	0.000
	BENDING MOMENT	0.703		0.014		0				•	٦.		0.322	٠.	0.172				0.524	0.471	₹.			1.289		•	•			1.798	1.656				0.033		0.047	0.050	0.020	•	0.048	o.	0.032	0
	AX. STRESS RATIO	0.002	0.004	000.0	•	0.003	0.004	•	•	•	0.003		•	•	90.0	•			0.008	900.0	•	•	•		•	•				•	0.004				•				•	•	0.00	•	0.007	900.0
	AXIAL FORCE	-1.270	2.021	•	0	۲.	•	2.573	•			•	1.870	•	- 1 . 656		3	•	•	•		÷	∞.		-1.822	-8.161		•	ص ۱	. .	•	-3.146		•	-0.612		.43	Ö	0	39	6	÷ (83	3.430
	BAR ID	62379	α	238	N	2	a	62390	62391	62392	62393	62394	\sim	9539	62399	62400	62401	62402	62403	62404	62405	62406	62407	62408	62409	62410	62411	62412	62413	62414	63301	63302	63303	63304	63305	90669	63307	63308	63313	331	331	33	332	63322

OF SAFETY	STER LOADS - SRM ATTACHED
ISOGRID BAR FORCES AND MARGINS OF SAFETY	V TITLED:
AR FORCES /	FROM AFE NASTRAN RUN TITLED:
ISOGRID E	FROM AFE

MARGIN OF SAFETY	HIGH	HIGH	HI GH	HIGH	E E	E H	H1GH	H ₀ H	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	H31H	HIGH.	HIGH	H16H	HIGH	H5IH	HIGH	HIGH	HIGH	HI GH	HIGH	HIGH	HIGH	HIGH	HIGH
BEND. STRESS RATIO	0.001	0.001					000				000.0		000.0	0.001	000.0	000.0	0.000	000.0	0.00	000.0	0.000	0.001	0.00	000.0	0.00		0.00			•													0.002	0.001	0.001
BENDING MOMENT	0.144	0.163	0.067	0.029	0.015	0.037	0.024	0.020	0.021	0.014	0.027	0.029	0.027	660.0	0.047	0.034	0.031	0.043	0.052	0.052	990.0	0.191	0.073	0.070	0.053	0.060	0.065	0.064	0.076	0.117	0.094	0.112	0.221	0.203	0.447	0.488	0.199	0.075	0.100	0.101	0.097	•	ო.	0.136	0.126
AX. STRESS RATIO	0.002	0.002											0.001	0.002				0.003		0.004				•		•		0.004		•		•						•						0.001	0.002
AXIAL FORCE	-1.234	-0.913		-0.579		0.084	0.945	0.938	1.041	•	1.209	0.963	0.599	-0.803	0.728	1.013	1.279	1.634	1.897	2.028	•	1.859	0.863	1.236	1.713	2.374	2.393	2.145	•	•	•	2.723			•	•	•	2.303	٠	. •	1.389	0	4	0.750	0.801
BAR ID	63386	63390	63391	63392	63393	63394	96889	63397	63398	63338	63400	63401	63402	63403	63406	63407	63408	63409	63410	63411	63412	63413	63415	63416	63417	63418	63419	63420	63421	63424	63425	63426	63432	60466	63440	00400	03400	63456	63457	63463	346	346	63467	63470	63471

SRM ATTACHED	MARGIN OF Safety		HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	нісн	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	нісн	HIGH	нІдн	HIGH	HIGH	нІсн	HIGH	HIGH	HIGH
OF SAFETY STER LOADS -	BEND. STRESS RATIO		0.007	0.002	0.005	0.001		0.008		0.001			0.000	0.001	0.001		0.000		000.0	00.0	0.00	0.002	0.000	000.0	00.0	00.0	0.001		0.00		0.001	0.000	0.000	00.00	00.00	0.000	000.0
FORCES AND MARGINS TRAN RUN TITLED:	BENDING MOMENT	1	•	0.297	0.802	0.082	0.188	1.234		0.093		0.039				0.343	•		0.064	990.0	0.054	0.267	0.048	0.041	0.046			0.046	0.029	0.032		0.050	0.013	0.055	•	.03	0.032
3AR NAS	AX. STRESS RATIO		0.00	0.001	0.003	0.004	0.001	0.001	0.008	900.0	900.0	900.0	0.007	900.0	•	0.002	0.005	0.005	0.005	0.004	0.001	0.00	0.004	0.004			0.001			٠	0.002	0.003	0.003	0.002	0.002		0.002
ISOGRID E FROM AFE	AXIAL FORCE			0.318	1.567	-2.202	-0.522	0.527			-2.945		-3.527								•	0.236	-2.369	-2.231	-1.869		•	-2.020	-1.749	-1.475	-1.107	-1.658	-1.398	-1.123	-1.318	-1.102	-0.937
	BAR ID	Ĺ	5555	63540	63220	63553	63554	63229	63561	63562	63563	63568	63269	63570	63571	63574	63575	63576	63577	63578	6322	63580	63581	63582	63583	63584	63585	63586	63587	63588	63289	63290	63591	63592	35	C	63595

Prepared by: TO 110000	Date 6/30/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

5:6 CENTER CYLINDER RING ANALYSIS

- STRUCTURAL DESCRIPTION

ORIGINAL PAGE IS OF POOR QUALITY

4 UMSC 362 B 3

Prepared by:	Date	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
	RRAY 7/2/88		5.6.2
Checked by:	Date	AFE CARRIER VEHICLE	AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

5.6 CYLINDER RING ANALYSIS (CONT'D)

	CRITICAL	SECTION	I MOHENTS	(ir-16)
TOP RING				
LOAD CASE	BAY	PLANE 1	PLANE 2	REF. #
LIFTOFF LANDING ABORT REGULAR LANDING	4/5 5/6 1/6	1020	0 -40 80	2
FOTTOM RING				
LOAD CASE	BAY	PLANE 1	PLANE 2	REF #
LIFT OFF LANDING ABORT REGULAR LANDING	, 5	-750 500 -1080	-150 -50 -1550	4 5 6

MARGINS OF SAFETY 60	MMARY TABLE	
COMBINED BENDING MOHENTS	M.5	
. TOP RING		
LIFTOFF	1.1	
LANDING ABORT	0.88	
REGULAR LANDING	0.48	
· BOTTOM RING		
LIFTOFF	1.4	
LANDING ABORT	HIGH	
REGULAR LANDING	0.15	

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by:	Date 6/30/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

SECTION PROPERTIES cont. Ix cg = E Ixo + 5(Ay²) - E A(ȳ)² = 0.0233+0.2727 - 0.6969(0.5093) = 0.1152

 $I_{y} c_{g} = Z I_{yo} + Z (Ax^{2}) - Z A(x)^{2}$ = 0.0418+ 0.1257 - 0.6969(0.3824)^{2} = 0.0656

 $I_{xy} = \mathcal{E}(A_{xy}) - \mathcal{E}A(\bar{x})(\bar{y})$ = 0.1063 - 0.6969(.3824)(.5093) = -0.0304

SECTION W/ CG LOCATION

Ixeg = 0.1152 in" Iyeg = 0.0656 in" Ixy = -0.0304 in"

> ORIGINAL PAGE IS OF POOR QUALITY

Prepared by:	Date 7/7/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	7/7/88 Date	AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

S.6 CYLINDER RING ANALYSIS (CONTID)

$$f_b = \frac{M_{C}}{I_{\gamma}} = \frac{1120 \text{ in-16} (0.87 \text{ in})}{0.065^{-6} \text{ in}^{-1}} = 14.9 \text{ ks};$$

$$MS = \frac{63}{2.0(14.9)} - 1 = \frac{1.11}{2.0(14.9)}$$

FEF #2 N TOP RING, LANDING ABORT

$$M_y = 1020 \text{ in-lb}$$
 $M_x = -40 \text{ in-lb}$
 $Critical$ point = 2 tension stress

 $X = -0.87$
 $Y = -0.24$ because 0^{-1} sign convention

 $f_b = \frac{M_X I_{xy} - M_y I_x}{I_x I_y - I_{xy}} (x) + \frac{M_y I_{xy} - M_x I_y}{I_x I_y - I_{xy}} (y)$
 $= \frac{(40)(-.0304) - (1020)(-1152)}{(.1152)(.0656) - (.0304)^2} (-.24)$
 $= \frac{(1020)(-.0304) - (40)(.0656)}{(.1152)(.0656) - (.0304)^2}$
 $= \frac{(5.57 + 1.52 = 16.79 \text{ ks})}{16.79 \text{ ks}}$

$$MS = \frac{63}{2.0(16.8)} - 1 = \frac{0.88}{1}$$

ORIGINAL PAGE IS OF POOR QUALITY

PIN LINSC 363 B.1

Prepared by:	Date 7/7/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

5.6 CYLINDER RING ANALYSIS (CONTID)

REF # 3 ~ TOP RING , REGULAR LANDING

$$M_{x} = 1280$$
 $M_{x} = 80$ $M_{x} = 80$ $M_{x} = 16$ $M_{x} = 16$

$$f_0 = \frac{M_{\chi} T_{\chi \chi} - M_{\chi} T_{\chi}}{T_{\chi} T_{\chi} - (T_{\chi \chi})^2} \left(\chi\right) + \frac{M_{\chi} T_{\chi \chi} - M_{\chi} T_{\chi}}{T_{\chi} T_{\chi} - (T_{\chi \chi})^2} \left(\chi\right)$$

$$= \frac{80(-.0304) - (1280)(.1152)}{(.1152)(.0656) - (.0304)^{2}} (.87)$$

$$+ \frac{1280(-.0304) - (80)(.0656)}{(.1152)(.0656) - (.0304)^{2}}$$

$$MS = \frac{63}{2.0(21.3)} - 1^{\frac{3}{2}} = \frac{0.48}{2.0(21.3)}$$

ORIGINAL PAGE IS OF POOR QUALITY

MINSC 363 B.3

Prepared by: T-O. Murray	Date 7/7/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model AFE -CV
Approved by:	Date	STRESS ANALYSIS	Report No.

S. CYLINDER RING ANALYSIS (CONT'D)

REF # 4 ~ BOTTOM RING , LIETOFE CONDITION

$$M_y = -750 \text{ in-16}$$

$$M_x = -150 \text{ in-16}$$

$$\text{critical point} = 2 \qquad M_y = 5 \times M_x$$

fo = Mx Ix - My Ix (x) + My Ixy - Mx Iy (y)
$$I \times I y - I \times y^{2}$$

$$I \times I y - I \times y^{2}$$

$$f_{b} = \frac{(150)(-.0304) - (750)(.1152)}{(.1152)(.0656) - (.0304)^{2}} (-.87)$$

= 11.03 + 1.18 = 13.1 kg.

$$MS = \frac{63}{2.0(13.1)} - 1 =$$

1.40

REF #5 ~ BOTTOM RING , LANDING ABORT

MS > 1.40 by comparison of KEFTY

ORIGINAL PAGE IS OF POOP QUALITY

RM I MSC 362 B 3

Proposed by	7/11/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	AFE CARRIER VEHICLE	Model AFF-CI
Approved by:	Date	STRESS ANALYSIS	Report No.

S.C CYLINDER RING ANALYSIS (CONT'D)

KEF #6 ~ BOTTOM RING, REGULAR LANDING

$$M_y = -410$$
 and $M_y = -1080$
 $M_x = -1800$ $M_x = -1550$
critical pt = 2

 $X = -0.87 \pi$ Y = -0.24 in

$$f_{b} = \frac{M_{x} I_{xy} - M_{y} I_{x}}{I_{x} I_{y} - I_{xy}^{2}} (x) + \frac{M_{y} I_{xy} - M_{x} I_{y}}{I_{x} I_{y} - I_{xy}^{2}} (y)$$

$$\frac{1550(-0.0304)-(1080)(.1152)}{(.1152)(.0656)-(.0304)^{2}}(-.87)$$

$$\frac{+ (080(-.0304) - (1550)(.0656)}{(.052)(.0656) - (.0304)^{2}} (-.24)$$

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by:	ie ling	Date 7/6, 58	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. 5.6.10
Checked by:		Date	THE AFE CARRIER VEHICLE	Model AFE - C
Approved by:		Date	STRESS ANALYSIS	Report No.
(HORZ) EFNISING MOMENT (in-16)		LIFTOF, TOP R ORIGINAL OF POOR	PAGE IS	0)
100 - 200 -			BAY	
40. - 20.			BAY 2	

Prepared by: DE. Kiefling	7/6/48	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page temp Perm.
Checked by:	Date	THE AFE CARRIER VEHICLE	AFE -CV
Approved by:	Date	STRESS ANALYSIS	Report No.

ORIGINAL PAGE IS OF POOR QUALITY

RM LMSC 362 B-3

Prepared by: D.E. KIEFLIN	16 7/6/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perr
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY, INC. Muray 6/30/88 5.4.14 Checked by: Date Model AFE CARRIER VEHICLE AFE-CV Approved by: Date Report No. STRESS ANALYSIS 5.6 CYLINDER RING (CONTID) ANAL YSIS LANDING ABORT LOADS BENDING HOHELT (11-16) RING TOP 800 : 00 (HOFE.) 0 M-200 PLANE PLAVE -600 BAY 1 -800 200 700 100 0 -100 -:00 BAY -300 2 ORIGINAL PAGE IS OF POOR QUALITY

Prepared by: T.O. MUR	Date 6/30/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date 7/6/98	AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date		Report No.
	1	STRESS ANALYSIS	

5.6 CYLINDER RING ANALYSIS (CONTID)
LANDING ABORT LOADS
TOP RING

ORIGINAL PAGE IS OF POOR QUALITY

Checked by:	Murray	Date 7/6/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Po
Approved by:		Date	AFE CARRIER VEHICLE	AFE-CV Report No.
		Date	STRESS ANALYSIS	Heport No.
5.6			G ANALYSIS (CONTID)	
			ert loaps	
	rop	K/N/G	-	
800 600 700				
7-700		ВАУ	5	
300				
-300	•	8 A Y	6 ORIGINAL PAG OF POOR QUA	ee is Lity

Prepared by: D. E. Kie	Fling 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Dáte '	Title AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

CYLINDER RING ANALYSIS (CONTID) REGULAR LANDING LOADS TOP RING

CMSC 362 8-3

Prepared by: J.E. KIEFLING	Date 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model ARA
Approved by:	Date	STRESS ANALYSIS	Report No.

REGULAR LANDING LOADS TOP RING

Prepared by: D.E.KIEFLING	Date 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	AFE CARRIER VEHICLE	Model AFG-CV
Approved by	Date	STRESS ANALYSIS	Report No

F.G CYLINDER RING ANALYSIS (CONTID) REGULAR LANDING LOADS TOP RING

Prepared by:	Date	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm
D. E. KIEFLING	7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.6.20
Checked by:	Date	Title .	Model
		AFE- CARRIER VEHICLE	AFE-CV
Approved by:	Date		Report No.
		STRESS ANALYSIS	

CYLINDER RING ANALYSIS (CONTID) REGULAR LANDING LOADS TOP RING

Prepared by: D. E. KIEFLING	Date 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	Title AFE CARRIER VEHICLE	Model AFE - CV
Approved by:	Date	STRESS ANALYSIS	Report No.

TOP RING ANALYSIS (CONT'D) CYLINDER RING ANALYSIS (CONT'D) TOP RING

BAY 5

Prepared by: D.E. KIEFLING	Date	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE - CV
Approved by:	Date	STRESS ANALYSIS	Report No.

7.6 CYLINDER RING ANALYSIS REGULAR LANDING LOADS TOP RING

KITI/No. Page 5.6.23 Date Title CARRIER VEHICLE Approved by: Date Report No. STRESS ANALYSIS CYLINDER RING ANALYSIS (CONTID) LIFTOFF LCAPS BOTTOM RING 5.6 BENDING MEMIERT 6, -16 --- PLANT D (VIET FINNE 1 BAY

> ORIGINAL r OF POOR

ORM LMSC 362 B.3

Prepared by: Page KIEFLING 5.6.26 Title Model FE CARRIER VIHICLE Approved by: Date Report No. STRES ALALYSIS CYLINDER RING ANALYSIS (CONTIO) BOTTOM RING 400 20 200 46 BAY

> ORIGINAL PAGE IS OF POOR QUALITY

ORM LMSC 362 B-3

ORIGINAL PAGE IS OF POOR QUALITY

ORM LMSC 362 8.3

	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Date	AFE CAPOLED SELLOS	Model
Date	The second section of the section of the second section of the section of	AFE - CV Report No.
	Date	Date Title AFF CARRIER VEHICLE

FORM LMSC 362 B-3

	Date 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	THIE AFE CARRIER VEHICLE	Model AFE-CV
Approved by.	Date	STRESS ANALYSIS	Report No.

Figural Regular Landing Loads 30TTOM RING

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by: D. E. K/EFL	/N 6 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm 5.6.32
Chenked by:	Date	Title	Model
Approved by	 Date	ALC CARRIER VEHICLE	AFE-CV Report No.
		1 STRESS ANALYSIS	l

F.6 CYLINDER RING ANALYSIS (CONT'D) REGULAR LANDING LOADS 'TTOM RING

ORIGINAL PAGE IS OF POOR QUALITY

RM LMSC 362 B:3

Prepared by: D.E. KIEFLING	Date 7/12/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm.
Checked by:	Date	AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

REGULAR LANDING LOADS BOTTOM RING

Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY, INC. D.E. KIE FLING 7/12/88 5.6.34 Checked by: Title Model AFE-CV Report No. AFE CARRIER VEHICLE Approved by: Date STRESS ANALYSIS 5.6 CYLINDER RING ANALYSIS (con (11)) **REGULAR LANDING LOADS** 1200 **BOTTOM RING** 1000 ORIGINAL PAGE IS OF POOR QUALITY 800 PLANE 1 (HORZ.) BENDING MOMENT (IN - 1b) 600 400 200 0 PLANE 2 (VERT.) -200 -400 -600 -800 -1000 -1200 -1400 -1600 BAY 5 -1800

Prepared by: D.E. KIEFLING	Date >//2/88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	TITLE AFE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

F.4 CYLINDER RING ANALYSIS (CONTID) REGULAR LANDING LOADS BOTTOM RING

Prepared by:	Date	LOCKHEED MISSILES & COLOR COLOR	Page Temp	Perm.
INGRAM			5.7.1	
Checked by:	Date	Title	Model	
Approved by:	Date	AFE CAPRIER VEHICLE STRESS ANALYSIS	AFE Report No.	CV

5.7 PANEL SPLICE ANALYSIS

TYPICAL PANEL SPLICE:

DETAIL "A" :

AT EACH NODE :

 $P_{\theta} = P_{i} \cos \psi_{i} - V_{i} \sin \psi_{i} + P_{j} \cos \psi_{j} + V_{j} \sin \psi_{j}$

Pr = Pi sinti+Vicosti -Pj suntj+Vj costj

ORIGINAL PAGE IS OF POOR QUALITY

Prepared by:	Date 6-27-83	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp Perm
Checked by:	Date	Title APE CARRIER VEHICLE	Model AFE-CV
Approved by:	Date	STRESS ANALYSIS	Report No.

5.7 PANEL SPLICE ANALYSIS (CONTID)

- NASTRAN MODEL DETAILS AT TYPICAL LOWER PANEL SPLICE

X, Y = LOWER PANEL
BAY NOS.

RM LMSC 362 B-3

Prepared by:	Date	(OCKUEED MICHIEL CO. C.	Page Temp. Perm.	
INGRAM	6-27-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.7.3	
Checked by:	Date	Title	Model	
		AFE CARRIER VEHICLE	APE -CY	
Approved by:	Date	STOCKS A MANAGE	Report No.	
<u></u>		STRESS WALYSIS	1	

5.7 PANEL SPLICE ANALYSIS (CONT'D) - NASTRAN MODEL DISTAILS AT TYPICAL UPPER PANEL SPLICE

X,Y = UPPER PANEL MAY NOS.

PM LMSC 362 B.1

Prepared by:		Date	LOCKHEED MICEUSE & PRACE COMPANY INC	Page Temp. Perm.
	INGRAM	6-27-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	5.7.4
Checked by:		Date	Title	Model
			AFE CARRIER VEHICLE	AFE CV
Approved by:		Date	STRESS ANALYSIS	Report No.

5.7 PANEL SPLICE ANALYSIS (CONT'D)

- MASTRAN BAR FORCE SIGN CONVENTION
- POSITIVE BAR FORCES SHOWN FOR PANEL ISOGISID BARS

ALL ISOGRID BAR ELEMENTS IN THE AFE CV NASTRAN MODEL ARE SPECIFIED AS SHOWN ABOVE, WHERE ENDS a and b refer to the order of the gridpoints specifying the connectivity of the BAR. The order (a, b) and a vector, v determine the direction of Positive BAR forces. (see Fig 1, Pg. 1.3-15 of COSMIC NASTRAN USERS MANUAL)

MSC 362 B-3

Prepared by:		Date		Dage Temp. Perm.
	INGRAM	6-28-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	rage
Checked by:		Date	Title	5-7-5 Model
Approved by:		I Date	AFE CARRIER YEHICLE	AFE CV
Approved by.		Date	STRESS ANALYSIS	Report No.

5.7 PANEL SPLICE ANALYSIS (CONTID) - FASTENER ALLOWAGES

FASTIR BEARING, SHEAR & TENSION ALLOWABLES:

PIN DIA (ui)	* e/D	Fbru (KSI)	P bru (K)	Psu .	Ptu (k)
. 188	1.86	118	2,773	2,637	2500
. 250	1.40	92	2.875	4.663	4300
. 312	1.12	74	2.886	7.263	4300

* REF MIL-HOBK-Se, TABLE 3.2. C. O(6):

** ASSUME 95 KSI SHEAR BOLT

ORIGINAL PAGE IS OF POOR QUALITY

			OOK QUALITY	
Prepared by:		Date	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
	INGRAM	6-29-88		5.7.6
Checked by:		Date	Title	Model
			AFE CARRIER VEHICLE	AFE CV
Approved by:		Date		Report No.
			STRESS ANALYSIS	}

7	1
0	
-	
Ō	
Ž	١
Q	I
V	I
u	I
Ĭ	į
P	I
Ī	I
_	١

UPPER PANEL SPLICE FASTENER MARGINS OF SAFETY

(CONTID)

ANALY SIS

SPLICE

PANEL 8AY '

5.7

4

BAY

4

GRO PONT BARNAGER ANGETST SIZE BAY 18DE: 13401 10 120 13500 30 120 1350 30 120 1350 10 120 1350 30 130 1350 10 130 1350 10 130 1350 10 130 1350 10 130 1350 10 130 1350 10 130 1350 10 130 1350 10 130 1350 10	905 BF6AR VERT BF6AR VT - (LB) VT -	75 ANAL FORCE. 70 - 60.200 71 - 75.200 72 - 60.200 73 - 62.000 73 - 62.000 74 - 62.000 75 - 62.000 75 - 62.000		-28.358 -44.812 -4.788	127.403 75.134	19:9LE FORCE 9.149 98.423	S-EARPATIO, Pa	TEMBON PATIO, R.	
20 13491 16 16 16 16 16 16 16 16 16 16 16 16 16			-40.31g -43.67g	-6.788	127.403	9.149 9.8423			
19 1350 10 10 10 10 10 10 10 10 10 10 10 10 10			187.224	-41.812	127.403 75.134	98.423 98.423			
20 13264 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20			187.224	-6.788	127.403	0.807 0.807 0.887			
13464 10 13464 10 13464 10 13464 10 13464 10 13360 10 13360 10 14466 10 14466 10 14466 10 14466 10 14466 10			187.224	-60.646	76.134	98.423		0.000	318.84
22 13466 10 22 1346 10 22 1346 10 22 1346 10 23 13520 31 13520 10 23560 10 23560 10			187.224	-6.740	127.403	98.423			
13464 10 21 13464 10 22 13340 10 23 13320 31 13320 10 18477 10 18477 10 18477 10 18477 10 18477 10 18507 22 10 23500 10			127.22	99.69	75.134	88.423			
13404 10 21 1324 86 19476 10 22 13320 31 1320 10 12 13320 10 2350 10			127.224	-6.786	78.134	98.423	0.026	0.000	243.28
22 13324 36 16 2356 16			-43.679	-6.760	78.134	96.429			
1944 96 1947 16 1932 31 1932 31 1936 16 1836 16			43.679	60.99	16.134	0.007			
1997 1990 1990 1990 1990 1990 1990 1990			-43.078	63.996	76.134	0.987		0.041	22.22
1999 1999 1999 1999 1999 1999 1999 199			-43.879	-60.989	75.134	0.007			
13500 13500 13500 13500 10 10 13500 10 10 13500 10 13500 10 13500			.40.883	-63.888	67.707		0.032	0000	171.60
13320 13300 13300 10 10 10 10 10 10 10 10 10 10 10 10 1			.40.663	.63.986	67,797				
1332 <u>0</u> 1330 <u>8</u> 1330 <u>8</u> 10 1330 <u>8</u> 10 1330 <u>8</u> 10 1330 <u>8</u>			.40.663	.63.986	67,797				
13320 13304 13304 10 23550 10 23550 2350 23					-	0.647	0.029	0.000	200.68
23590 23590 23590 23590					+				
23590									
23590			20.488	-45.645	62.947	1.095	0.023	0.001	288.02
23554									
23564									
23364									
2356	0.038 0.21	10 .127.000							
2354		Ц	-20.134	-109.002	110.046	-0.062	0.049	0.000	95.46
	0.033	78 128.000							
	0.042 06.600	000-175.000							
23342	0 00 0 700	71 000	110.785	900	142.003	-96.004	0.0	0.045	20.231
		Ц							
23581 10	0.070	10 -201.000							
203011 3.0	0.006	100.000	200			0.380	20.0	0.00	94.963
122 23578	0.000	31 -211.000	.97 70.	177 044			200	.00	
23321 30	0.045 -0.629	20 204.000	Н					0.00	
215.0	2000	200							
			-71.372	134.464	152.232	0.620	0 0	000	48.09
23313 31	0.039 0.11	150.000							
23302 16	0.023 0.184	178.000							
130			319.488	-10.263	319.663	0.090	0.137	0.000	10.694

FORM LMSC 362 B-3

ORIGINAL PAGE IS

See and but		OF POOR QUALITY	
Prepared by:	PAM 6-29-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
Checked by:	Date	Title	Model
Approved by:	Date	AFE CARRIER VEHICLE	AFE CV
		STRESS ANALYSIS	Report No.

2
0
F
2
Q
기
4
띴
21
ù.
1
- ,

SPLICE FASTENER MARGINS OF SAFETY

(CONTID)

ANALYSIS

SPLICE

PANEL

UPPER PANEL

BAY

10

7

844

			200.062		39.016		27.686		63.316		42 627	7		136.877					196.424		119.836			71.498		483.670			32.931			18,194
I OTABION BATTO B	A PART IN IN IN		0.000		0.024		0.033		0.001		0000			0.000					0.000		0.000			0.001		0.000			0.002			0 003
K SHEARTO P			0.020		0.039		0.084		0.070		0.09			0.037					0.028		0.041	1		0.067		0.010		-	0.086			0.197
TEMBLEFORCE	1		0.806		61.161		999.00		2,770		3.630			0.986					-0.418		-0.074			1.988		-0.020			-3.500			1
HES. SHEAR	П		66.290		90.516		179.070		162.201		224.009			87.200					(A)		95.295			133.886		37.276			222.666		365 266	-
H PADIAL FORCE			-9.132		-15.169		-22.663		39.061		-39.505			24.002				ļ			.30.043			.61.421		36.097			-78.683		-105.933	-
G THETA FORCE		Ц	65.658		69.237		123,886		168.098		220.498			03.032				67 000			90.436			123.628		9.299			208.301		349.588	
AWA TORCE		3.96E+01	3.41E+01		LL.	0.02E+01	7.10E+01	€.03E+01	1.00E+02	1.005.02		1.30 E + 0.2	8.72E+01				4476.04	2.3/5+01	4.17E+01	3.06E+01	0.03E+01		3.94E+01	1.06E+02	4.39E+01	.4 07E.01		6.44E+01	1.02E+02	A 21 E. 01	7.7.7	3.22E+02
VERT, B. EAR	<u> </u>	0.99E-01	-9.46E-02	1.415+00			10:3807	1.37E+00	1.40E+00	1.435.00	9 106.00	4. I VE + VU	8.44E-01				A DOE.	****	1.906.01	·1.00E+00	8.59E-02		-1.09E+00	-3.99E-01	-1.00E+00	1.84E+00		1.30E+00	-2,12E+00	1.05E+00		-6.83E+00
SADE SHEAR	$\perp \perp$	-7.14E.03	3.83E-03	-7.47E-01	4.04E-03	-0.88E-03	4.66E-03	-1,14E-02	6.74E-03	-1.62E-02	A BKE.O.		-3.41E-02				9.68F.03		·1.62E-03	1.31E-02	1.23E-03	9000	4.04E-02	5.30E-03	2.03E-02	6.71E-02		3.74E-02	2.56E-02	4.56E-02		9.25E-03
ANOLE PRE		-	36	110	3.0	10	3.5	10	36		3.6		7	8			-		36	=	30	•		2	2	3.0	:		ñ	10		22
BARNABER		23491	23366	2348	23353	23484	2003	23478	23330	86498	23320		2330	23307			33590		33364	33590	33342	9366		33331	33676	33321	9 9 9 9	9300	33313	33302		LUCES
A GRID POINT	MY28DE:	1			2	\prod					123		130		BAY 3 SIDE:			9		365			121			221		123			130	
	吐	<u>'</u>	世	世	出		1				:	23	2.5	12	28	2:		2		3			=	17	1		;	:	::	3	3	1

FORM LMSC 302 B-3

ORIGINAL PAGE IS OF POOR QUALITY

- 7		1782 665			460.263			34.998		261 640			242 477				112.695					163.730			90.201			47.005		40 773			96 024	30.06		46.97	
TENSON PATOL R		0000			0.001			0.028		0 00 0			100 0	***			0.00					0.000			100.0			0.001		0000			000			0.001	
REARING IN T		900.0			0.016			0.029		0.024			0.025				7.73					0.033			0.053			0.07		0 100			0 000			0.077	
IBER FORCE		0.712			2.654		27. 03			3.330			2.712			2 2 2 2			1			0.607			1.400		2 6 7 4			0.030			0.288			1.633	
REA SHEAR		13,696			36.386		A7 KAN	200		56, 195			67.817			2			†			77.480			124.219		174 272			232.396			213.740			180.580	
RADIAL PORC		-4.303			-31.431		.19 681			55.082			36.550			30.00						.76.763			.122.823		178 498			-231.734			-202.230			-180.660	
G THETA FORCE		13.100			16.202		-54.140			-3.618			43.090			-00.048						10.648		1	9.00		16.485			17.625			-69.200			1.696	_
AXAL FORCE P - (L.B.)	Ш	Ш	6.84E-01	-2.01E+01	4.40E+01	A OKE .O.		4.96E+00	\$.30E+01		10+364.0	7.966+01		-4.07E+01	2.40E+00		-1.01E+02				-7.09E+01	9.74E+01		-1.17E+02	1.64E+02	.1 645.03	-	2.20E+02	-2.25E+02		2.00E+02	-2.88E+02		2.40E+02	-2.71E+02		2.03E+02
VETT. B-EAR VR · (LB)		Ш	20-342-4-	2.17E+00	3.64E-01	.2.78E+00		1.366.00	1.56E+00		1.775-90	1.736-01		1.045.00	-4.87E-01		2.84E+00				10-318-6	2.20E-01		1.43E+00	2.44E-02	.1 94F.00		-0.91E-01	-1.38E+00		1.41E+00	5.46E-01		· 0.14E-01	1.23E+00		4.035-01
8DE B-EAR VI - 6.0)		Ш	60-240-4-	-2.74E-02	-2.39E-03	-6.97E-04		6.27E-03	9.26E-03		1.605-02	-4.58E+90		9.715-03	3.705-02		\$ 25E-0Z				Z. FUE - UZ	1.78E-02		8,03E+00	3.06E-02	8.88E.02		4.39E-02	1.116-01		9.405-02	1.42E-01		7.05E-02	9.05E-02		7. VE-02
C ANGLE PRF 0.017453			2	=	96	=		96	=	1		3	7		3.0		2					30	!		36			36	1			=		2	10	1	9
BARIALMER	19766			99466	33363	33484		33341	33470	2000	2000	35473	00000	23360	3330		T DE LE					43364	20367	20076	43342	43501		13331	43678		7566	4360		43313	43302	13801	1888
GRID FORM	PAY 3 SIDE:	118		120			121									130		BAY 4 SIDE:			•			120			121			122			£21			B.	
	+	+	-	•		12	=	: :	=:	1	1	2	ŧ	23	2.4	2		2.8	2.0	:	:			3.0	7:		•	#		:	:	3		#3	4	1	l

PM LMSC 362 B-3

SPLICE FASTENER MARGINS OF SAFETY

CONDITION

LIFTOFE

(CONTIO)

ANALY SIS

SPLICE

PANEL

5:1

3

BAX

UPPER PANEL

Prepared by: Date Page LOCKHEED MISSILES & SPACE COMPANY, INC. INGRAM 6-29-88 5.7.9 Checked by: Date Title Model AFE CARRIER VEHICLE AFE CV Approved by: Date Report No. STRESS ANALYSIS

ORIGINAL PAGE IS OF POOR QUALITY

	Τ		П		246.10	T	Τ	70.28	Γ			127.56	7	7		3.6	7	7	Ţ	Ţ	1	ŀ		Γ	П	Ŧ	Τ		99.92	T	T	ě	П	П	T		Τ	Γ
-	N X				24							12				9							386.4			142.4			8			63.0				7.0		
1	TEMBON PATIO, PL				00.0			0.00				00.0				0.00							3			0.00			0.00			0.00				0.00		
¥	SHEAR PATIO, Re. 1				60.0			0.0				0.04				90'0			1				90.0			0.0			0.05			0.07		+		6 .0		
	TEMBLE FORCE				97.			0.43				.1.28				24.3						000				0.32			0.96			1.60		+	2 73			
	RES SHEAR							135.01				1.30			4000	100.63						43.11			90 30	00.00			107.51			163.00			142 AG			
_1	PADAL FORCE			60.03				18.89				78.4			490 18							.36.73				5			107.32			-166.42			.128.16			
9	THETAFORCE			90.87				7.5			17 4.0	12.31										22.67			21 84							-45.84			86.49			1000
į	1		& ROFLOT	L	-2.93E+01	\perp	9.625+01	. 646	L	1 196.03	1.165+06	-9.26E+01	L	1.39E+02		1.36E+02					-2.70E+01		5.03E+01	10.36.0	7.17.E.W.	1.00E+02		-1.1VE+02	1.20E+02		-2.04E+02		1.035+02	-1.07E+02		1.81E+02	2 40E.01	X 4 X E X
TOTAL PROPERTY OF	1 S	•	8.74E-01	L	6.90E-01		4.32E-02	. 0.00	300.0	.0 80E.01	7.5	-3.05E-01	Ш	-1.66E+00		-1.30E+00					2.06E-01		-4.00E-01	4 97E A1	X .	·3, 13E-01	300	1.285.V	2.20E-02		8.15E-01		10.366.7	1.64E+00		1.08E+00	9 79E.01	*
OVER GLEAD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.36E-03		2.97E-02		77-36-06	80.80.0		1 77E-02		-3.67E-02		2.09E-02		6.20E-02					8.78E-03		2,01E-02	2 375.03		3.10E-02	1 00 0	37.35	4.07E-02		4.95E-02	2 676 00	3.275-04	8.29E-02		3.00E-02	8.46F.02	
AMO E PRE		м.	33		2.0					2.0		20		26		2.0					23		20	2.0		92	96		2.0		2			20		5	20	
BARNILLER			12343		12269	12342		1226		12340		12244		12337		12233			,		22416		22257	22413		22245	22410		22234	20100	80000	19994		22401		22216	22202	
GRO POINT		BAY 1 SDE:		100			107				100				100				A7280E			108			197			106			100	9			104			102
_	~	8	H	-	•	-	-	=	1	12	1.3	3	=	-	7	=	3	•		2		•	:	-	2.8	<u> </u>		32	33		ŀ	1	=	3	=			1

SPLICE FASTENER MARGINS OF SAFETY LOWER LIFTOFE BAY

CONDITION

CONTIO

ANALY SIS

SPLICE

PANEL BAX

5.7

Prepared by: Date Page LOCKHEED MISSILES & SPACE COMPANY, INC. INGRAM 6-29-88 5-7-10 Checked by: Date Title Model AFE CARRIER VEHICLE AFE CV Approved by: Date Report No. STRESS ANALYSIS

ORIGINAL PAGE IS OF POOR QUALITY

										•	JF	•	Ŭ	Ų.	•	×	UF	•	•	•										
3 3		.0.18		366,36		448.43		200	2.00		607.45			132.82				194.99		306.91			654.58		256.25			370.31		141.00
TENSION PATIO. RI		0.00		0.00		0.00		6			0.00			0.00				00.0		0.00			0.00		0.00			0.00		0,00
K SHEARINIO, Re		1.18		0.01		6.00		100			0.01			0.04				0.02		0.03			0.01		0.02			20.0		90.0
J TBIBLE FORCE		2.70		-4.05		-4.70		96.6.			0.30			3.41				7.60		.0.42			2.10		-2.12			07.0.		3.74
REA SPEAN		2005.50		20.63		187		16.94			33.08			17.7				99.9		61.18			17.30		56.37			40.10		83.50
H PADAL PORC		1184.11		.6.02		4.07		3.30			9.00			12.30				48.83		12.92			617/1		3.96					.1.27
G THETA FORCE		-2424.95		-25.64		-0.2		15.60			32.72			14./4						-49.62			7.7		69.23		16.03	20.00		83,49
AVAL FORCE P · (LB)	-3.00E+01	-2.87E+03	-2.20E+01	-6.61E+00	·6.41E+00	8.17E+00		4.88E+00	1.25E+01	1.26E+01	2.39E+01		6.35E+01	3.30E+01			7.32E+00	-6.90€+01	1 286.01		-4.23E+01	2.10E+01	·1.81E+01	3.59E+01	20.2	4.0/E+01	2.78E+01	2.22E+01	4.50E+01	4.79E+01
VETT. SHEAR VZ - (LB)	2.84E+00	1.416-01	-2.18E+00	-2.70€+00	-1.82E+00	-2.06E+00	2000		.7.86E-01	8.42E.02	2.75E-01		.7.88E-01	-2.65E+00			6.25E+00	1.36E+00	.11F.00		2.69E+00	1.43€+00	6.70E.01	-1.14E-01	. 2 0 1E. 00	6.01E+00	-8.09E-01	3.31E.01	9.79E-01	2.78€+00
840£ 8+EAR V1 - (L8)	1.03E-02	€.00E-03	5.86E-03	-3.43E-02	-2.68E-02	-7.42E-03	9 446	FA-300'9.	-4.73€-03	1.67E-03	-1.65E-04		4.265-03	7.04E-03			·1.61E-02	-4.62E-03	. 55F.03		-6.23E-03	·1.03E-02	2.18E-02	-8.01E-03	.7 ARE.03		-0.40E-04	-6.16E-03	4.02E-03	-3.20E-03
ANGLE PSF 0.017463	33	3.6	2.0	2.0	2.0	9.6			2	20	20		7	20			33	30	26		2	20	20	20	96		20	20	20	50
BARNAGER	22343	22201	22242	22260	22340	2224.	72997		2223	22133	22223		2220	22207			32416	32267	32413		32248	32410	32234	32400	32224		32401	32216	32202	32201
GRID POINT	200 7 LWC	108		101				106			104		100		BAY 3 SIDE:		901			107		901			106		104			102
	+	+	+	- = :	- 2	*	-	-		2	22	2	2.5	2	\ ?	2.0	: :	25	::	:	:	9 6	:		:	3	•	•	:	-2

FASTENER MARGINS OF SAFETY

CONTID)

ANALYSIS 3 LOWER

SPLICE

PANEL

5.7

BAY

۲

7

BAX

LIFTOFF

Prepared by: Date Page LOCKHEED MISSILES & SPACE COMPANY, INC. INGRAM 6-29-88 5.7.11 Checked by: Date Title Model AFE CARRIER VEHICLE AFE CV Approved by: Date Report No. STRESS ANALYSIS

ORIGINAL PAGE IS

OF POOR QUALITY

		-											_			_					•									
3 d		567.90		545.01			236.04			128.72					29 62				142.7			106.02			67.00			19.70		12.07
TENSION PATIO, PL		00.00		00:00			0.00			0.00				+	0.00				200			0.00			00.0			MA'N		0.00
PEAR PATIO, RE		0.01		0.01			20'0			90.0					0.12			700				2.7		600	,					0.10
TENSILE FORCE		2.70		0.52			3.79			2.20					1.67			7 6 0.						1.46			1.20			.7.30
RES. B.EAR		25.40		34.6						90.48					273.27			04.04			103.29			155.38			309.23			419.87
PADAL FORCE		21.01		24.35		20.70				26.93	†				-100.14	1		13.32			79.74		†	-63.19		}	67.01			69.79
DETA FORCE		-13.02		-34.71		-48.50				. (0.2					-254.20			16.01			-69,13			141.95			-303.77	1		-414.29
ANAL FORCE	1.63E+01	-2.97E+01	1.406+01	-4.18E+01	90.5		1.03E+01	2 505.00		-1.04E+02				·2.36E+02	. 34E.0.		8.82E+01		-1.04E+02	4.01E+01		-1.20E+02	0.93E+00		1.51€+02	-1.03E+02		-Z.39E+0Z	-1.62E+02	-3 09E+02
VERT. BYEAR VZ · (LB)	1.81E+00	1.00E+00	1.87E-02	6.08E-01	1.485.00		2.24E+00	1.635.00		6.70E.01				-9.07E-01	-1.36E+00		-9.22E-0-1		20.360.	-6.35E-01		-6.47E-01	.7.03E-01		-8.00E-01	-0.96E-01		-B.00 E-01	-1.88E+00	-5.48E+00
SIDE BIENG VI - (LB)	-1.32E-04	9.16E-03	6.30E-03	1.626-02	1.70E-02		0.38E-03	1.42E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.18E-02			1	-9.14	-2.92E-02		-2.18E-02	A SAE AS	30.00	1.06E-02		20-344-7-	-2.36E-02	2000	20-300-9-	-5.15E-02	A 746 00	2.1.2	-7.77E-02	3.005-02
ANGLE -PSF 0.017453	33	20	20	2.0	20			36		20					20		26			20	1		2	36		92	-		30	20
PARINAMER PARINAMER	32343	3226	35342	33560	32340		3224	20.02		12233		†	73767		42267		42413	422.68		42410	49964		42400	42224		42401	42216		42202	42201
GREPONT BAY 3 SIDE:	100					100			2		BAV 4 6 10 C	3786		100		1								2						
- 2	-	• ^	-					9	1	1	_		2	=	2		:	2	3		::	2	:	:	2	3	:	-	7	

LOWER PANEL ANALYSIS LIFTOFF CONDITION **す** RAY SPLICE 40 3 BAX

FASTENER MARGINS OF SARETY

SPLICE

(CONTIO)

PANEL

Prepared by: Date LOCKHEED MISSILES & SPACE COMPANY, INC. INGRAM 7-20-88 Checked by: Date Title Model AFE CARRIER VEHICLE Approved by: Date Report No. STRESS ANALYSIS VIEW NORMAL TO PANEL - HINGE AND ATTACH BOLT LOCATIONS AVIONICS PANEL ANALYSIS 5. **8**

Prepared by:

INGRAM
7-26-88

LOCKHEED MISSILES & SPACE COMPANY, INC.

STRESS ANALYSIS

Page Temp Perm.

5.8.2

Model

Report No.

ORM LMSC 362 B

Prepared by:	INGR	AM		26-88		OCKHE	ED MISSI	LES 8	SPAC	E CON	PANY	, INC.	5.5	Temp. Perm
Checked by:			Date		Title	AFE				SHICL	Æ	•	Model Report No).
					<u>]</u>		STRES	S A	NAL	.Y SI S			Nepolt No	•
ORI	GINAL	PAG	E IS			58	•		:	•		IA.		
OF	POOR	QUA	LITY			1,2,3	(, 2, 3	8(,	۳ ج	. 2		ELEM.	•	
					g. <u>-</u>	× × ×	- KI 18	r 11134,2,3	XIII21, 2,	E'11111	1101,1,3	CELASZ ELEM I.O. NUMBER		
					30	XHIS	**************************************	Eli	x dz x	-			۵	
					7415	懂		×	X	X	x10	1,2,5	•	
	EST			{		♦		· • • · • • •		- • •	1	18	\$2	
	ATTACHMENTS	•		9	20 44131,2,3	1					re 516	 	Ð	
	4774			,		K. 12					567X		F F F F F F F F F F F F F F F F F F F	
				4	<u>κ</u>	○	<u>.</u>	· 					<u>e</u>	
	PANEL				. 19	O N					Xeste	2,3		
	Š	•			10 X4101.2.3	6			•	•	X4513	X5131	ō	
	AVIONICS			,	v -	601	PANELS		-	-	7	3	•	
	A	. !	ų V	•	M. 2.3.	1~	TENTE OTHER	•			* * * * * * * * * * * * * * * * * * *			
_	ins ins	Pal +	-	 (o — š	→	300				- 115 4 x		- o ——\i	
PANEL ANALYSIS (CONTID)	SHOW				KA I M	Page 1	- ATTACH POINTS, LOCATION OF CELAST - AVIONICS PRATEL GRIDS NOT CONNECTED		•		745 10	}	•	
3						\$ 25 25 25 25 25 25 25 25 25 25 25 25 25 2	70 TOX				X450	X509 1,2,3		
\ \ \ \	NASTRAN MOUGL	,		YSTEM.	<u> </u>	202	COCATIO GRIDS :				Ketoe	*	ó	
15/	. Z			2000	 R		N. T.S.			ø 2				
Ž	TRA			97) CO		03 03 2	CH PO			HINGE LOCATIONS	14507	}		
필				אר (פ	-26 X4631,2,3	x9403	ATTA -			HINGE	x450£	ļ •	.20 BER = 1,	
PA	REVISED			E, INCHES IN LOCAL (BAY) COORD. SYSTEM	57 - 72	05 05	•0					1,5051,2,3	-25 -20 X= BAY NUMBER = 1, 1, .	
301	REVI			NOTES	01,2,3	107			6.1	-	•	Ž.	, 180 ×	
AVIONICS	I			μ, , (Š ž	X0115	x 0114	x or ra	xonz	- xou	_	• • • • • • • • • • • • • • • • • • • •	Q	
					67 -		5'2'ISHQX	TE INDX	2'18110 X	EZIZIIOX	- 6 2 71110	N 101 'Z'2 XC	14	
r. 80					•									

Prepared by:	Date		
Checked by:	AM 7-20-88	LOCKHEED MISSILES & SPACE COMPANY, INC.	Page Temp. Perm.
mod by.	Date	Title	5.7.4
Approved by:	Date	AFE CARRIER VEHICLE	Model
	Date		1
		STRESS ANALYSIS	Report No.

5.8 AVIONICS PANEL ANALYSIS

ATTACH BOLT STIFFNESS CALCULATIONS

FASTENER FLEXIBILITY C. 1 FROM Δ : $C = \left(\frac{t_1 + t_2}{2d}\right)^a \cdot \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{n t_1 E_3} + \frac{1}{2n t_2 E_3}\right)$

a= 2 , b = 3 FOR BOLTED METALLIC JOINT (CURVE FIT PARAMS.)

N= 1 FOR SINCLE SHEAR

FOR "4" STEEL BOLT IN ALUMINUM STRUCTURE:

$$C = \left(\frac{t_{1} + .125}{2(.25)}\right) \cdot \frac{3}{1 \cdot 10} \left(\frac{1}{t_{1}(10)} + \frac{1}{.125(10)} + \frac{1}{t_{1}(20)} + \frac{1}{2(.125)(3)}\right)$$

$$C = \left(\frac{t_{1} + .125}{.50}\right)^{\frac{7}{3}} \cdot 3 \times 10 \left(\frac{1}{t_{1}} + \frac{1}{2t_{1}} + \frac{1}{.125} + \frac{1}{6(.125)}\right)$$

$$C = \left(\frac{t_{1} + .125}{.50}\right)^{\frac{7}{3}} \cdot 3 \times 10^{-7} \left(\frac{4}{3t_{1}} + 9.333\right)$$

PANEL 4 THICKNESS, ti	FLEKIBILITY,	STIFFNESS
. 25	-6	-
.40	3.632 KIO 3.926 KIO 6	2.753 x10
• 45	4.049 x10-6	2.547 ×10 5 2.470 × 10 5
EF: THE INFLUENCE	4.177×10-6	2 42 5

A REF : THE INFLUENCE OF FASTENER FLEXIBILITY ON THE PREDICTION AND FATIGUE LIFE FOR MULTI-ROW JOINTS