Tutorato di Automi e Linguaggi Formali

Homework 2: Espressioni regolari, Equivalenze con automi, Conversioni

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 2 - 17-03-2025

1 Espressioni Regolari e Operazioni

Esercizio 1. Per ciascuno dei seguenti linguaggi sull'alfabeto $\Sigma = \{a, b\}$, costruire un'espressione regolare che lo rappresenti:

- a) $L_1 = \{w \in \{a,b\}^* \mid w$ contiene un numero pari di a e un numero di b multiplo di a
- b) $L_2 = \{w \in \{a,b\}^* \mid w \text{ contiene almeno una sottostringa } aba\}$
- c) $L_3 = \{w \in \{a,b\}^* \mid w \text{ ha lunghezza almeno 2 e i primi due simboli sono uguali}\}$

Esercizio 2. Scrivere un'espressione regolare per ciascuno dei seguenti linguaggi sull'alfabeto $\Sigma = \{0, 1\}$:

- a) $L_1 = \{w \in \{0,1\}^* \mid w \text{ termina con } 01 \text{ e ha lunghezza almeno } 3\}$
- b) $L_2 = \{w \in \{0,1\}^* \mid w \text{ contiene esattamente tre occorrenze del simbolo } 1\}$
- c) $L_3 = \{w \in \{0,1\}^* \mid w \text{ non contiene due 1 consecutivi}\}$

Esercizio 3. Date le seguenti espressioni regolari sull'alfabeto $\Sigma = \{a, b, c\}$, descrivere in linguaggio naturale il linguaggio che rappresentano:

- a) $(a+b)^*c(a+b+c)^*$
- b) $a^*b(a+b)^*b^*$
- c) $(ab + bc + ac)^*(a + b + c + \varepsilon)$

2 Conversione da Espressioni Regolari a NFA

Esercizio 4. Convertire le seguenti espressioni regolari in NFA utilizzando le costruzioni viste a lezione:

a)
$$(ab)^* + (ba)^*$$

b)
$$a(a + b)^*b$$

c)
$$(a+\varepsilon)(b+c)^*$$

Per ogni NFA ottenuto, fornire:

- i) Il diagramma degli stati
- ii) La tabella di transizione completa

Esercizio 5. Considerare l'espressione regolare (0+1)*0(0+1) sull'alfabeto $\Sigma = \{0,1\}$.

- a) Costruire un ε -NFA che riconosce il linguaggio generato da questa espressione.
- b) Convertire l' ε -NFA ottenuto in un NFA senza ε -transizioni.
- c) Convertire il NFA in un DFA utilizzando la costruzione per sottoinsiemi.

3 Conversione da NFA/DFA a Espressioni Regolari

Esercizio 6. Convertire il seguente NFA in un'espressione regolare equivalente utilizzando l'algoritmo di eliminazione degli stati:

Mostrare tutti i passaggi dell'algoritmo di eliminazione degli stati e l'espressione regolare finale.