NLP-Powered Surveillance Against Online Hate

Ashwini Narayana Shetty Rohan Ranjit Kamath Venkatesh Murugesh Shivani Anil Neharkar Tejaswini Shinde

INTRODUCTION

- **The Problem:** Hate speech is widespread on social media, appearing in both explicit and implicit forms, leading to discrimination and violence.
- Our Goal: Develop a machine learning model to detect and classify hate speech, offensive language, and neutral content with consistent accuracy across various social media platforms.
- Our Approach: To employ advanced NLP techniques to analyse social media content, implementing a multi-model strategy with Deep Neural Networks with BERT and TF-IDF embeddings to improve accuracy.

ABOUT THE DATASET

train.csv - contains 31000+ tweets test.csv - contains 17000+ tweets

Fig 1: Training Test Distribution

Attributes of the dataset

Text

The text of the tweet

denotes whether a tweet considered "hateful" or not (1/0)

ABOUT THE DATASET

Top 20 Words

ABOUT THE DATASET

METHODOLOGY

A) DATA PREPROCESSING

B) TEXT TO VECTOR CONVERSION

- Distilled BERT
- TF-IDF vectorization

C) CLASSIFICATION MODELS

 Traditional ML Algorithms (more on the next slides)

EMBEDDINGS USED

Sr. No.	Embeddings
01	Distilled BERT
02	TFIDF
03	BERT + TFIDF

ML MODELS USED

Sr. No.	ML Model
01	Deep Neural Networks
02	Logistic Regression
03	Random Forest

^{*}We are going to mix and match the embeddings and ML models

MODEL1: DEEP NEURAL NETWORKS

Model: "sequential"					
Layer (type) 	Output Shape	Param #			
dense (Dense)	(None, 128)	4214272			
dropout (Dropout)	(None, 128)	0			
dense_1 (Dense)	(None, 128)	16512			
dropout_1 (Dropout)	(None, 128)	0			
dense_2 (Dense)	(None, 128)	16512			
dropout_2 (Dropout)	(None, 128)	0			
dense_3 (Dense)	(None, 1)	129			
Total params: 4247425 (16.20 MB) Trainable params: 4247425 (16.20 MB) Non-trainable params: 0 (0.00 Byte)					

NN Layers:

- 1 input layer
- 2 hidden layers
- 1 output layer (1 node, sigmoid function for classification)

MODEL 2: LOGISTIC REGRESSION

MODEL 3: RANDOM FOREST

*Results in the upcoming slides.

DNN OBSERVATIONS

Improvement of Accuracy on Training Data

Training and Validation Loss

RESULTS

Embeddings	Model	F1-Score
	DNN	65%
Distilled BERT	LG	61%
	RF	40%
	DNN	65%
TF-IDF	LG	42%
	RF	64%
	DNN	74%
BERT + TF-IDF	LG	62%
	RF	39%

MODEL OUTPUT

classify_text()

Enter a text to classify as hate speech or not: white neighborhoods just aren't what they used to be because of the black pe ople moving in. It's just a fact that Black people are less intelligent than whites

Prediction: Hate Speech

classify_text()

Enter a text to classify as hate speech or not: It's just a fact that Black people are less intelligent than whites.

Prediction: Hate Speech

classify_text()

Enter a text to classify as hate speech or not: I hate muslims being deported for no reason

1/1 [=======] - 0s 47ms/step

Prediction: Not Hate Speech

DEMO

THANK YOU!