

机器学习

Machine Learning

(1) 主讲人:张敏 清华大学长聘副教授

机器学习算法总结

*图片均来自网络或已发表刊物

总览

- 基础概念
- 机器学习方法
- •一些深入话题
- 实验相关
- 学习理论分析
- 总结

1. 基本概念

C1. 什么是机器学习?

- 学习
 - = 在某种任务上基于经验不断进步
- T (Task)
- P (Performance)
- E (Experience)

C2. 归纳学习假设

• 归纳学习假设:

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over unobserved examples.

(任一假设若在足够大的训练样例集中很好地逼近目标函数, 它也能在未见实例中很好地逼近目标函数)

Ⅲ. 机器学习方法

	有监督	无监督
训练样例	(X, Y) 对, 通常包 含人为的努力	仅 X , 通常不涉 及人力

	有监督	无监督
训练样例	(X, Y) 对, 通常包含人 为的努力	仅 X , 通常不涉及 人力
学习目标	学习 X 和 Y 的关系	学习 X 的 <mark>结构</mark>

	有监督	无监督
训练样例	(X, Y) 对, 通常包含人 为的努力	<mark>仅 X, 通常不涉及</mark> 人力
学习目标	学习 X 和 Y 的关系	学习 X 的 <mark>结构</mark>
效果衡量	损失函数	无

	有监督	无监督
训练样例	(X, Y) 对, 通常包含人为 的努力	仅 X , 通常不涉及 人力
学习目标	学习 X 和 Y 的关系	学习 X 的 <mark>结构</mark>
效果衡量	损失函数	无
应用	预测: X= 输入, Y= 输出	分析 : X =输入

II. 机器学习方法 (part I) ——监督学习

A1. 决策树

• 通过各个属性的分割决策, 对数据进行有效模型化

- 决策树: 用 概念/规则 表示假设
- 直观上来看, 所学到的假设很容易得到对应的解释
- 但如果我们无法从观测到的数据中得到显式的规则 怎么办?

A2. 回归

• 线性假设:目标变量可以被各个属性线性表出

线性回归

- 基于误差平方和的最小二乘法拟合
- 求解简单容易计算,可以直接得到预测用的公式
- 对于离群点较为敏感

• 如果属性和目标之间不满足线性假设怎么办?

机器学习

算法总结

A3. 贝叶斯学习

- 条件 **→** 结果
 - e.g. 肺炎 > 肺癌?
 - 很难直接判断
- 反过来想

(结果 → 诱因)

• e.g. 有多少肺癌患者同时患有肺炎?

集成学习

贝叶斯学习

- 贝叶斯定理
 - 用先验概率来推断后验概率
- Max A Posterior, MAP, h_{MAP}, 极大后验假设
 - 通常来说我们希望得到给定训练数据下最有可能的假设
- Maximum Likelihood, ML, h_{MI}, 极大似然假设
 - 如果知道 p(h), 最聪明的人总是能最大限度地从经验中学习
 - ML vs. LSE (Least Square Error)
- Naïve Bayes, NB, 朴素贝叶斯
 - 独立性假设
 - NB vs. MAP
- Minimum description length, MDL,最小描述长度
 - Tradeoff: 假设复杂度 vs. h 的误差
 - MDL vs. MAP

A4. 核方法以及非线性 SVM

最大化间隔

• 定义:线性分类器的间隔指从分界面向两边扩展直到第一次遇到

数据点所形成的最大宽度

• 最大化间隔

Separable case
$$\min_{w,b} \frac{1}{2} < w, w >$$

$$s.t.y_i (< w, x_i > +b) \ge 1$$

不可分的情况

• 最小化训练误差

Non-separable Case

$$\min_{w,b} \frac{1}{2} < w, w > +C \sum_{i} \varepsilon_{i}$$

$$s.t. (< w, x_{i} > +b) y_{i} \ge 1 - \varepsilon_{i}$$

$$\varepsilon_{i} \ge 0$$

非线性 SVM

• 输入空间 → 特征空间

$$\Phi(x): \mathbb{R}^n \mapsto F$$

- 低维下的非线性 > 高维的线性超平面
- 常见的核函数

• Polynomials of degree d
$$K(x,y) = (\langle x,y \rangle)^d$$

• Polynomials of degree up to d $K(x,y) = (\langle x,y \rangle +1)^d$

• Gauss Kernel
$$K(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$$

- Sigmod Kernel $K(x,y) = \tanh (\eta < x, y > +v)$
- 软件
 - LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm
 - SVMlight http://svmlight.joachims.org

- 之前的学习方法
 - 估计问题特性 (e.g. 分布)
 - 做一个模型假设
 - 找到最优的参数

但有时我们在学习之前什么也不知道

是否有一种学习方法不遵循

"模型假设+参数估计"?

机器学习

算法总结

A5. k-Nearest Neighbor (KNN)

集成学习

- 思考即回忆、进行类比
- One takes the behavior of one's company "近朱者赤,近墨者黑"

深度学习基础

KNN

- 主要的假设
 - 存在一种有效的距离度量
- 非参数化
- 概念简单,但可以建模任何函数
- 内存开销大
- CPU 开销大
- 特征选择问题
 - 不相关的特征 对距离度量有消极的影响

集成学习

对如何表示数据很敏感

效率问题 – KD-Tree (构建)

每个节点维护一个额外的信息:**这个节点包含数据点的 (紧)边界**

集成学习 | 深度学习基础 | 墨

效率问题 – KD-Tree (查询)

每次发现一个新的最近的点, 就更新距离上界

效率问题 - KD-Tree (查询)

利用这个最近距离以及每个树节点下数据的边界信息,我们可以对一部分**不可能**包含最近邻居的分支进行剪枝

机器学习

算法总结

基于记忆的学习器:4个要素

1. 一种距离度量

Euclidian / Scaled Euclidian /

- 2.使用多少个邻居?
 - 1, k 或全部
- 3.一个加权函数(加权)

$$w_i = \exp(-D(x_i, query)^2 / K_w^2)$$

4.如何使用已知的邻居节点?

```
最近的邻居. 或
```

K 个邻居投票, 或

输出的加权平均

predict =
$$\sum w_i y_i / \sum w_i$$

II. 机器学习方法(part II) ——无监督学习

无监督学习

集成学习

- 构建一个模型并找到输入的有用表示,使得这个表示可以用来做决策、预测未来的输入、高效输入其他学习器等
- 找到数据中独立于非结构化噪音之外的模式(发现结构)

什么是好的聚类?

- 类内的距离小
- 类间的距离大

基于群体智慧的机器学习数据集构建

机器学习 算法总结

A6. K-Means

把每分配到近的一次。

更新类中心、

↑重新分配

重新分配↓

更新类中心

循环

K=2

直到没有变化

作为类中心

随机选择 K 个对象

A7. K-Medoids

随机选择 k 个对象作为 初始中心

K=2

循环

直到没有变化

交换O和O_{random}

如果质量提升

将每个对象 分配给最近 的中心

随机选择一个非 中心点 O_{random}

基于群体智慧的机

器学习数据集构建

代价= 26 不交换

A8. 层次聚类 (凝聚式)

III. 一些深入话题 ——集成学习

"Two heads are better than one." "三个臭皮匠,顶一个诸葛亮"

A9. 加权多数算法

基于群体智慧的机

器学习数据集构建

A10. Bagging (boostrap aggregating)

A11.Boosting (从错误中学习)

怎样是一个好的弱学习器?

弱学习器的准则(特征)应当包括:

- 不稳定: 训练数据的小变化, 能够造成模型的大改变
- 简单: 在非平凡的加权训练误差下能够高效地进行拟合, 根据观测样本对预测的计算应该很快

集成学习

• 模型小: 避免过拟合

重加权 vs. 重采样

III. 一些深入话题 ——深度学习

A12. 深度学习:什么时候有用?

- 有充足的计算资源
- 有充足的数据
 - 通常有较复杂的网络结构
- 当不知道怎么挑选好的特征时
- Deep = Deep nets (网络有很多层)
- 当前在 DL 方法的学习过程中很少用到深入的理论知识

我们大概介绍了什么

- Multi-layer perceptron (MLP)
- Convolutional neural nets (CNN)
- Sequential neural nets
 - Recurrent neural networks (RNN)
 - Long short-term memory (LSTM)
 - Gated recurrent unit (GRU)
- 应用

我们大概介绍了什么

- 讨论
 - 令人欣喜的结果,网络变得越来越深
 - 在大规模数据上十分有用,但模型也越来越大
 - 并行计算
 - 需要更多的理论基础
 - 缺少可解释性
 - 对于恶意的攻击不鲁棒
 - 无监督学习还有很大研究空间
- 充分利用在线资源

IV. 实验相关 ——过拟合问题

E1. 过拟合问题

- 假设空间 H
 - 考虑的假设集合

过拟合问题

- 一致的假设
 - 成功拟合了所有数据

```
h ∈ H overfits training data if there's an alternative h'
∈ H such that:
err<sub>train</sub>(h) < err<sub>train</sub>(h')
```

AND

 $err_{\text{test}}(h) \ge err_{\text{test}}(h')$

两点 tips:

- 泛化性能
- 在同一个数据集比较两个算法!
 (如果使用不同的数据集: 不同数据 → 不同表现)

在有限数据上学习(1): E2. 交叉验证

- 当数据十分有限时
 - 如何更好地用这些数据去同时学习一个假设以及验证它的准确性?
- k- fold cross validation 交叉验证
 - 用平均误差去顾及整体误差

在有限数据上学习 (2): E3. Boostrap 采样

- <u>Bootstrap 采样</u>
 - 给定一个包含 m 个训练样例的集合 D
 - 有放回地从 D 中均匀随机采样 m 个样例组成 D;

IV. 实验相关 ——用GWAP收集数据

E4. 三种游戏结构 (1)

- 输出一致游戏(Output-agreement games)
 - ESP 游戏

集成学习

E4. 三种游戏结构 (2)

- 反演问题游戏(Inversion-problem games)
 - Peekaboom
 - Phetch

E4. 三种游戏结构 (3)

- 输入一致游戏(Input-agreement games)
 - Tag a tune

IV. 实验相关 ——准则

ML 实验准则

• 不要在训练集上进行测试

• 重复实验

• 对比分析

• 统计显著性检验

V. 学习理论分析

T1. Bayesian statistics

集成学习

机器学习

算法总结

T2. 最小描述长度 (MDL)

$$h_{\mathsf{MDL}} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \{ L_{C_1}(h) + L_{C_2}(D|h) \}$$

- Tradeoff: 假设复杂性 vs. 假设犯的错误
 - 偏向于一个更简单的、犯比较少错误的假设
 - 而不是更复杂、能完美地分类训练数据的假设

解决过拟合问题

```
h_{MAP} = \underset{h \in \mathcal{H}}{argmax} P(D|h)P(h)
            = argmax\{log_2 P(D|h) + log_2 P(h)\}
            = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \{ (-\log_2 P(D|h)) (-\log_2 P(h)) \}
                                      L_{C2}(D|h)
                                                               L_{Cl}(h)
             = h_{MDL}
```

VI. 总结

概念: 2

算法:12 (深度学习部分记为1个)

实验方法: 4

理论: 2