1 Исчисление предикатов

1.1 Исчисление предикатов

1.1.1 Язык исчисления предикатов

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - (a) Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - (b) Функциональные выражения: $f(\theta_1, \dots, \theta_n)$, метапеременные f, g, \dots
 - (c) Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные α , β , γ , . . .
 - (a) Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: A, B, C, \dots
 - (b) Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.
 - (c) Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

1.1.2 Сокращения записи, метаязык

- 1. Метапеременные:
 - (a) ψ , ϕ , π , ... формулы
 - (b) P, Q, ... предикатные символы
 - (c) θ , ... термы
 - (d) f, g, \ldots функциональные символы
 - (e) x, y, \ldots предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \to \exists b. \underbrace{D \ \& \neg E}_{\exists b...}) \ \& \ F$$

- 3. Дополнительные обозначения при необходимости:
 - (a) $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - (b) $(\theta_1 + \theta_2)$ вместо $p(\theta_1, \theta_2)$
 - (c) **0** вместо *z*
 - (d) ...

1.1.3 Оценка исчисления предикатов

Определение. Оценка — упорядоченная четвёрка $\langle D, F, P, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. P — оценка для предикатных символов; пусть T_n — n-местный предикатный символ:

$$P_{T_n}: D^n \to V \qquad V = \{ \Pi, \Pi \}$$

4. E — оценка для предметных переменных.

$$E(x) \in D$$

1.1.4 Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x))] \lor R]\!]^{x:=1, f(t):=t^2, R:=H} = M$$

1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;

2.
$$[f_n(\theta_1, \theta_2, \dots, \theta_n)] = F_{f_n}([\theta_1], [\theta_2], \dots, [\theta_n])$$

3.
$$[P_n(\theta_1, \theta_2, \dots, \theta_n)] = P_{T_n}([\theta_1], [\theta_2], \dots, [\theta_n])$$

4.

$$\llbracket \forall x. \phi \rrbracket = \left\{ \begin{array}{ll} \mathbf{H}, & \text{если } \llbracket \phi \rrbracket^{x:=t} = \mathbf{H} \text{ при всех } t \in D \\ \mathbf{\Pi}, & \text{если найдётся } t \in D, \text{ что } \llbracket \phi \rrbracket^{x:=t} = \mathbf{\Pi} \end{array} \right.$$

5.

$$\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{l} \mathbf{H}, \quad \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \mathbf{H} \\ \mathbf{\Pi}, \quad \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathbf{\Pi} \text{ при всех } t \in D \end{array} \right.$$

1.2 Общезначимость, следование, выводимость

1.2.1 Общезначимость

Определение. Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$= \phi$$

То есть истинна при любых D, F, P и E.

1.2.2 Следование, выводимость

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

11.
$$(\forall x.\varphi) \to \varphi[x := \theta]$$

12.
$$\varphi[x := \theta] \to \exists x. \varphi$$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\frac{\varphi \to \psi}{\varphi \to \forall x.\psi}$$
 Правило для \forall

$$\frac{\psi \to \varphi}{(\exists x.\psi) \to \varphi}$$
 Правило для \exists

Определение. Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

1.3 Теорема о дедукции для исчисления предикатов

1.3.1 Теорема

Теорема. Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

1.3.2 Следование

Определение. $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \dots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$

Теорема. Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

1.4 Корректность

1.4.1 Теорема

Теорема. Если θ свободен для подстановки вместо x в φ , то $\llbracket \varphi \rrbracket^{x:=\llbracket \theta \rrbracket} = \llbracket \varphi[x:=\theta] \rrbracket$

2 Непротиворечивое множество формул

2.1 Непротиворечивое множество формул

2.1.1 Определение

Определение. Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ для любого α

2.1.2 Примеры

- 1. непротиворечиво:
 - $\Gamma = \{A \to B \to A\}$
 - $\Gamma = \{P(x,y) \rightarrow \neg P(x,y), \forall x. \forall y. \neg P(x,y)\};$
- 2. противоречиво:
 - $\Gamma = \{P \to \neg P, \neg P \to P\}$ так как $P \to \neg P, \neg P \to P \vdash \neg P \& \neg \neg P$
- 3. пусть $D = \mathbb{Z}$ и $P(x) \equiv (x > 0)$, аналогом для этой модели будет $\Gamma = \{P(1), P(2), P(3), \dots\}$

2.2 Полное непротиворечивое множество формул

Определение. Γ — *полное* непротиворечивое множество замкнутых бескванторных формул, если:

- 1. Г содержит только замкнутые бескванторные формулы;
- 2. если α некоторая замкнутая бескванторная формула, то $\alpha \in \Gamma$ или $\neg \alpha \in \Gamma$.

Определение. Γ — *полное* непротиворечивое множество замкнутых формул, если:

- 1. Г содержит только замкнутые формулы;
- 2. если α некоторая замкнутая формула, то $\alpha \in \Gamma$, или $\neg \alpha \in \Gamma$.

Теорема. Пусть Γ — непротиворечивое множество замкнутых (бескванторных) формул. Тогда, какова бы ни была замкнутая (бескванторная) формула φ , хотя бы $\Gamma \cup \{\varphi\}$ или $\Gamma \cup \{\neg \varphi\}$ — непротиворечиво.

2.3 Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.

2.3.1 Модель для множества формул

Определение. Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_{\mathcal{M}} = \mathrm{M}$

Альтернативное обозначение: $\mathcal{M} \models \varphi$.

2.3.2 Теорема

Теорема. Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

2.3.3 Доказательство теоремы о существовании модели

Лемма. Пусть φ — бескванторная формула, тогда $\mathcal{M} \models \varphi$ тогда и только тогда, когда $\varphi \in M$ Докозательство теоремы.

Пусть M — непротиворечивое множество замкнутых бескванторных формул.

По теореме о пополнении существует M' — полное непротиворечивое множество замкнутых бескванторных формул, что $M\subseteq M'$.

По лемме M' имеет модель, эта модель подойдёт для M.

2.4 Теорема Гёделя о полноте исчисления предикатов

2.4.1 Теорема

Теорема. Если M — замкнутое непротиворечивое множество формул, то оно имеет модель.

2.5 Полнота исчисления предикатов

2.5.1 Следствие

Следствие (из теоремы Гёделя о полноте). Исчисление предикатов полно.

3 Машина Тьюринга. Задача об останове, её неразрешимость. Неразрешимость исчисления предикатов.

3.1 Машина Тьюринга.

Определение. Машина Тьюринга:

- 1. Внешний алфавит q_1, \ldots, q_n , выделенный символ-заполнитель q_{ε}
- 2. Внутренний алфавит (состояний) s_1, \ldots, s_k ; s_s начальное, s_f допускающее, s_r отвергающее.
- 3. Таблица переходов $\langle k, s \rangle \Rightarrow \langle k', s', \leftrightarrow \rangle$

Определение. Состояние машины Тьюринга:

- 1. Бесконечная лента с символом-заполнителем q_{ε} , текст конечной длины.
- 2. Головка над определённым символом.
- 3. Символ состояния (состояние в узком смысле) символ внутреннего алфавита.

3.2 Задача об останове, её неразрешимость.

3.2.1 Разрешимость.

Определение. Язык — множество строк

Определение. Язык L разрешим, если существует машина Тьюринга, которая для любого слова w переходит в допускающее состояние, если $w \in L$, и в отвергающее, если $w \notin L$.

3.2.2 Неразрешимость задачи останова.

Определение. Рассмотрим все возможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык останавливающихся на данном входе машин Тьюринга.

Теорема. Язык всех останавливающихся машин Тьюринга неразрешим.

3.3 Неразрешимость исчисления предикатов: доказательство

Теорема. Язык всех доказуемых формул исчисления предикатов неразрешим Т.е. нет машины Тьюринга, которая бы по любой формуле α определяла, доказуема ли она.

Доказательство. Пусть существует машина Тьюринга, разрешающая любую формулу. На её основе тогда несложно построить некоторую машину Тьюринга, перестраивающую любую машину S (с допускающим состоянием s_f и входом y) в её ограничения C и разрешающую формулу ИП $C \to \exists w_l. \exists w_r. F_{S,y}(w_l, w_r, s_f)$. Эта машина разрешит задачу останова.

4 Порядок теории (0, 1, 2). Теории первого порядка. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.

- 4.1 Порядок теории (0, 1, 2).
- 4.2 Аксиоматика Пеано.
- **4.2.1** Натуральные числа: аксиоматика Пеано 1889, или \mathbb{N}_0^{18} . \mathbb{N}_0^{18} .

Определение «Мтрили» (более то мо пределение жом спедующее Если x=y', то x назовём следующим за y, а y — предшествующим x.

2. Константа $0 \in N$: нет $x \in N$, что x' = 0.

3. Индукция. Каково бы ни было свойство («предикат») $P: N \to V$, если:

- (a) P(0)
- (b) При любом $x \in N$ из P(x) следует P(x')

то при любом $x \in N$ выполнено P(x).

Как построить? Например, в стиле алгебры Линденбаума:

- 1. N язык, порождённый грамматикой $\nu := 0 \mid \nu$ «'»
- 2. $0 \operatorname{TO} (0), x' \operatorname{TO} x + (0)$

4.3 Арифметические операции.

4.3.1 Обозначения и определения

Определение. $1=0',\ 2=0'',\ 3=0''',\ 4=0'''',\ 5=0''''',\ 6=0'''''',\ 7=0'''''',\ 8=0''''''',\ 9=0'''''''''$ Определение. $a+b=\left\{\begin{array}{ll}a,&\text{если }b=0\\(a+c)',&\text{если }b=c'\end{array}\right.$

Например,

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

Определение.

$$a \cdot b = \begin{cases} 0, & \text{если } b = 0 \\ a \cdot c + a, & \text{если } b = c' \end{cases}$$

4.3.2 Коммутативность сложения.

Теорема. a + b = b + a

4.4 Формальная арифметика.

Определение. Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- 1. двухместными функциональными символами (+), (\cdot) ; одноместным функциональным символом ('), нульместным функциональным символом 0;
- 2. двухместным предикатным символом (=);
- 3. восемью нелогическими аксиомами: $(A1) \ a=b \to a=c \to b=c \qquad (A5) \ a+0=a \\ (A2) \ a=b \to a'=b' \qquad \qquad (A6) \ a+b'=(a+b)' \\ (A3) \ a'=b' \to a=b \qquad \qquad (A7) \ a\cdot 0=0 \\ (A4) \ \neg a'=0 \qquad \qquad (A8) \ a\cdot b'=a\cdot b+a$
- 4. нелогической схемой аксиом индукции $\psi[x:=0]$ & $(\forall x.\psi \to \psi[x:=x']) \to \psi$ с метапеременными x и ψ .