

Introdução à Ciência da Computação

Introdução aos sistemas operacionais Sistema Operacionais

Processos

Sistema de Arquivos

Usuários

Sistema Operacional

É o principal software instalado em um computador, sendo responsável pela interação entre o hardware e demais softwares.

Cuida do gerenciamento dos recursos disponíveis em um computador.

- Permissão de acesso a determinados dados da memória
- Acesso aos periféricos
- Controle de usuários
- Utilização de energia elétrica

Exemplos: MS-DOS, Windows, UNIX, Linux, MacOS, Android, iOS, etc.

Versões e Distribuições dos Principais Sistemas Operacionais

Windows (Microsoft)	
Versão	Ano
Windows 3.1	1992
Windows 95	1995
Windows 98	1998
Windows ME	2000
Windows XP	2001
Windows Vista	2006
Windows 7	2008
Windows 8	2012
Windows 8.1	2013
Windows 10	2015

MAC OS X (Apple)	
Versão	Ano
Cheetah (10.0)	2001
Puma (10.1)	2002
Jaguar (10.2)	2003
Panther (10.3)	2005
Tiger (10.4)	2007
Leopard (10.5)	2009
Snow Leopard (10.6)	2011
Lion (10.7)	2012
Montain Lion (10.8)	2013
Mavericks (10.9)	2014
Yosemite (10.10)	2015
El Capitan (10.11)	2016
Sierra	2016
High Sierra	2017
Mojavi	2018

Android (Google)		
Distribuição	Ano	
Cupcake (1.5)	2009	
Donut (1.6)	2009	
Eclair (2.0-2.1)	2009	
Froyo (2.2)	2010	
Gingerbred (2.3)	2010	
Honeycomb (3.0)	2011	
Ice Cream Sandwich (4.0)	2011	
Jelly Bean	2012	
KitKat	2013	
Lollipop	2014	
Mashmallow	2015	
Nougat	2016	
Oreo	2017	
P	2018	

Camadas de Software e Hardware: o Sistema Operacional é um software que gerencia os recursos (hardware e software) disponíveis em um computador.

Inicialização do Sistema Operacional

A **BIOS** (*Basic Input Output System*) faz a checagem do hardware e busca pelo Sistema Operacional em uma **Memória Secundária**

Na Memória Secundária (trilha 0, setor 0) são encontradas as informações iniciais do Sistema Operacional

O Sistema Operacional é carregado na Memória Principal e entra em execução, preparando o sistema para executar suas funções e interagir com o usuário

Chamadas de Sistemas

Essas chamadas de sistemas podem ser de duas categorias:

- Processos;
- Sistema de Arquivos;

Subsistema de Controle de Processos

Serviços do Sistema Operacional

- Controle de execução de processos
 - Criação
 - Finalização
 - Comunicação entre processos
- Alocação de memória principal para execução de processos
 - Carregamento de programas na memória principal
- Escalonamento de Processos
 - Gerenciamento de execução de processos na memória principal

Subsistema de Arquivos

- Alocação/recuperação de dados em memória secundária
 - Armazenamento organizados de dados em memória secundária
- Controle dos dispositivos periféricos
 - Controle de acesso aos monitores, memórias secundárias, rede, etc.

Sistemas Operacionais

Sistemas Operacionais

Sistemas Operacionais

Pseudo-paralelismo

- Sistemas operacionais multitarefa (Windows, UNIX, etc.) permitem a execução de mais de um programa "ao mesmo tempo". Na realidade, o Sistema Operacional intercala a execução entre os programas (processos), dando a sensação de paralelismo devido a alta frequência de execução das instruções presentes na memória do computador
- Cada pedaço de um processo (conjunto de instruções de um programa) executa durante determinado tempo, sendo interrompido para que o pedaço de outro processo execute

Exemplo: um computador com frequência de 4GHz executa 4.000.000.000 instruções por segundo

A não ser que o computador seja multicore (dual-core, quad-core, etc.), o paralelismo na execução de tarefas não existe de fato nos microcomputadores

Estados de um Processo

RUNNING o processo está utilizando a CPU (executando suas instruções) (executando)

BLOCKED o processo está parado aguardando um evento externo (bloqueado)

(pronto) o processo está temporariamente parado, pois outro processo está em execução

Estados de um Processo

- 1 O processo em execução entra em estado bloqueado na espera de um recurso
- 2 O escalonador de processos interrompe a execução de um processo para que outro processo seja executado
- 3 O escalonador de processos permite que o processo continue executando
- 4 O recurso esperado está disponível e o processo se desbloqueia

> Escalonamento de Processos

Tipos de Escalonamento de Processos

- Round Robing
- Por prioridade (Priority Scheduling)
- Menor processo primeiro (Shortest Job First)
- Loteria (Lottery Scheduling)

Escalonamento de Processos

- Round Robing
 - Os processos são executados durante um intervalo de tempo (quantum)
 - Se o processo em execução não terminar antes do seu quantum chegar ao fim, o próximo processo na lista entra em execução e o que estava executando anteriormente vai para o final da lista

... após o quantum, se o processo em execução (A) não terminou, ele vai para o final da lista e o próximo processo (G) entra em execução...

Escalonamento de Processos

- Por prioridade (Priority Scheduling)
 - Cada processo possui uma prioridade associada
 - Processos com prioridades mais elevadas executam primeiro
 - Para evitar que processos com prioridades mais altas executem indefinidamente, o escalonador pode diminuir a prioridade dos processos, dando oportunidade para processos com menor prioridade executar

- Escalonamento de Processos
 - Menor processo primeiro (Shortest Job First)
 - O processo de "mais curto" (mais rápido) será executado primeiro

Processos a serem executados:

Processos escalonados (sequência de execução):

- Escalonamento de Processos
 - Loteria (Lottery Scheduling)
 - Cada processo recebe um "ticket"
 - O escalonador faz um sorteio aleatório para selecionar qual o próximo processo a ser executado

Processos a serem executados:

Escalonador sorteia o próximo processo:

[743, 800, 347, 125, 381, 534]

G

К

Processos com o "ticket" 125 é executado:

Escalonador sorteia o próximo processo:

[743, 800, 347, 381, 534]

Processos com o "ticket" 534 é executado:

Escalonador sorteia o próximo processo:

[743, 800, 347, 381]

Processos com o "ticket" 800 é executado:

.

Threads

Threads

- § Threads são "processos leves".
- § É uma maneira de um processo dividir a si mesmo em duas ou mais tarefas que podem ser executadas concorrencialmente.
- § Threads permitem que o usuário de um programa interajam com os componentes visuais de controle do programa enquanto cálculos e operações estão sendo realizadas "simultaneamente"

Diferenças entre Threads e Processos

- § Processos são independentes, enquanto Threads existem como um subconjunto de um processo.
- § Processos possuem espaços de memória independentes, enquanto Threads compartilham seus espaços de memória.
- § O mecanismo de comunicação entre os processos é gerenciado pelo Sistema Operacional, enquanto a comunicação entre Threads é realizada diretamente entre elas. Logo, a comunicação entre processos é mais lenta se comparada à comunicação entre Threads.

Threads

Estados e transição entre estados de uma Thread na Linguagem de Programação Java

Um sistema de arquivo é um conjunto de estruturas lógicas e procedimentos que permitem ao Sistema Operacional controlar o acesso aos dados armazenados em uma unidade de memória secundária.

Cada Sistema Operacional "entende" determinados sistemas de arquivos.

Com o crescimento da capacidade de armazenamento dos discos e aumento do tamanho dos arquivos, sistemas de arquivos mais complexos e robustos são necessários.

São exemplos de sistemas de arquivos:

- FAT (File Allocation Table) 12 bits [disquetes]
- FAT16 16 bits [MS-DOS; Windows 95]
- FAT32 32 bits [Windows 98; Padrão em Pendrives e Cartões de Memória]
- NTFS (New Technology File System) 64 bits [Windows NT em diante]
- EXT (Extended File System) [Linux]
- EXT2, EXT3, EXT4 [Linux]
- APFS [Apple File System]

Memória Secundária, Partições e Formatação

- A memória secundária possui muitos bits de armazenamento, mas que são inúteis até que uma tabela de alocação seja criada.
- Na tabela de alocação são especificados como os bits estão organizados (qual o sistema de arquivo utilizado).
- Pode-se dividir uma memória secundária (unidade física) em vários pedaços.
 chamados Partições (unidade lógica), também conhecidas como Volume ou Drive.
- Cada Partição pode ter um sistema de arquivos diferente.
- Formatar uma partição significa criar estruturas na memória secundária que permitam gravar os dados de maneira organizada e permitir acessá-los em outro momento.

Formatação Física e Formatação Lógica

 Feita na fábrica após o processo de fabricação e montagem do disco Divide o disco em trilhas, setores, cilindros **Física** Isola as áreas defeituosas do disco (bad blocks) É realizada apenas uma vez em cada disco Formatação Necessária para que o Sistema Operacional reconheça o disco Pode ser feita e alterada quantas vezes forem necessárias Lógica A formatação irá definir o tipo de sistema de arquivo do disco (FAT32, NTFS, EXT3) O Sistema Operacional fornece ferramentas para formatação lógica de discos

Diretórios e Arquivos

Um diretório é uma estrutura utilizada para organizar arquivos e/ou outros diretórios

Um diretório é um link que faz referência a um conjunto de arquivos e/ou um conjunto de diretórios

Os diretórios utilizam a estrutura de dados árvore para se organizarem

O processo de montagem cria a árvore de diretórios.

Em Sistemas Operacionais com interface gráfica o objeto visual que representa um diretório é uma pasta.

Windows Explorer

Ubuntu File Explorer

Tipos de Arquivos

- Um arquivo é um conjunto de bits que armazena uma determinada quantidade de dados que ao ser lido/interpretado por um programa.
- A identificação de um arquivo é realizada por um nome e uma extensão.
- A extensão de um arquivo identifica o tipo deste arquivo.

Extensão	Tipo de arquivo
.bak	Arquivo de backup (cópia de segurança)
.doc	Arquivo documento no formato MS-Word
.gif	Arquivo de imagem no formato Graphics Interchange Format
.txt	Arquivo de texto geral
.pdf	Arquivo documento no formato Portable Document Format
.mpg	Arquivo de áudio ou vídeo (compactação com perdas MPEG-1 /MPEG-2)
.zip	Arquivo compactado (compactação sem perdas)
.html	Documento no formato HyperText Markup Language
.c	Arquivo com programa escrito na linguagem C
.java	Arquivo com programa escrito na linguagem Java

Usuários

Um usuário é um agente externo ao sistema que faz uso do computador e seus periféricos para realizar um determinado trabalho.

O Sistema Operacional é responsável por identificar os usuários, permitindo ou proibindo o acesso ao sistema e estabelecendo restrições e concessões de acesso aos recursos do computador.

Autenticação de Usuários

O acesso ao Sistema Operacional é realizado através do procedimento de login, que ao mesmo tempo identifica o usuário (através de um nome de identificação de usuário) e confirma a sua autenticidade (através de uma senha).

Quando o login de um usuário é realizado, cria-se uma sessão na qual ele pode realizar suas tarefas de acordo com as permissões concedidas para o usuário.

Usuários

Classes de Usuários

- Todo usuário que acessa o Sistema Operacional pertence a uma determinada classe que permite ou restringe suas ações dentro do sistema
- Cada Sistema Operacional possui suas próprias classes

Classes de Usuários do Linux

Classe	Descrição	
root	Permissão total (instalar, desinstalar e executar programas, controlar a execução de processos, criar novos usuários). É a classe de usuário destinada à administração do S.O.	
usuário do sistema	São "usuários virtuais" criados junto com os programas para que esses possam executar ações dentro do S.O.	
usuário padrão	Permissão de executar programas e salvar arquivos no seu diretório home . As permissões são concedidas pelo administrador que criou o usuário, mas geralmente são limitadas. Possuem controle somente sobre seus próprios processos.	

Usuários

Acesso aos Arquivos

 Os arquivos/diretórios pertencentes ao sistema ou criados por usuários possuem atributos que permitem ou restringem determinadas ações:

LER (r) ESCREVER (w) EXECUTAR (x)

 O usuário "proprietário" do arquivo pode modificar esses atributos a fim de permitir que outros usuários tenham acesso à esses arquivos/diretórios

Grupos de Usuários

- São formados por usuários que possuem acesso a determinados componentes do sistema de acordo com a determinação do administrador que criou o grupo
- Todo usuário deve pertencer a pelo menos um grupo, mas pode fazer parte de vários grupos

Exemplo: Quando um arquivo é criado, este pertence ao usuário que o criou, mas o usuário pode dar permissão para os usuários de um determinado grupo (a que pertence) para ler, escrever e/ou executar esse arquivo

Janela de propriedades de um arquivo do S. O. Windows. Segurança: Grupos e Permissões