ЛАБОРАТОРНАЯ РАБОТА № 1 «АНАЛИЗ СТОХАСТИЧЕСКОЙ УСТОЙЧИВОСТИ»

1.1 Цель работы

Изучить методы получения последовательностей случайных событий программным путем на основе системы Matlab; научиться разрабатывать m-функции для статистических исследований, в частности, для подсчета текущей частоты случайных событий; рассчитать текущую частоту случайных событий, реализованных в проводимом эксперименте; убедиться, что случайные события, произошедшие в данном случайном эксперименте, обладают свойством стохастической устойчивости и оценить вероятность этих событий.

1.2 Теоретический раздел

На практике приходится часто сталкиваться с опытами (испытаниями, наблюдениями, процессами), дающими различные результаты в зависимости от обстоятельств, которых мы не знаем или не умеем учесть. Например, нельзя предсказать заранее, сколько выпускников средней школы подадут заявления в СевГУ, сколько дождливых дней будет в следующем году и т.д. Применение математики к изучению явлений такого рода опирается на то, что во многих случаях при многократном повторении одного и того же опыта в одних и тех же условиях частота появления рассматриваемого результата остается все время примерно одинаковой, близкой к некоторому постоянному числу Р.

Рассмотрим эксперимент с пространством событий $Z = \{z_1, z_2, ... z_m\}$, который можно повторять многократно в одних и тех же условиях. Допустим, что проведено N испытаний, при которых интересующее нас событие $z_i \in Z$ произошло N_i раз. Относительное число случаев, при которых данное событие имело место, т.е. величина:

$$q_i = q(z_i) = \frac{N_i}{N} , \qquad (1.1)$$

называется частотой события Z_i .

При небольшом числе экспериментов частота оказывается в значительной мере случайной. Однако, практика показывает, что при увеличении числа экспериментов частота отдельных событий теряет свой случайный характер и имеет тенденцию приближаться с незначительными колебаниями к некоторому среднему неслучайному значению, которое и может рассматриваться как вероятность $P(z_i)$ данного события z_i . Именно эта тенденция и является признаком стохастически устойчивые явления могут изучаться с помощью теории вероятностей. Вообще при увеличении числа опытов частота приближается к вероятности в том смысле, что вероятность сколько-нибудь значительных отклонений частоты от вероятности становится пренебрежимо малой. Такая сходимость называется сходимостью по вероятностии.

1.3 Ход работы

- 1. Создать матрицу $A(a_{ij})$, элементами a_{ij} которой являются случайные равномерно распределенные числа, лежащие в диапазоне от 0 до 1. Число строк матрицы m=5, число столбцов n=1000 (рекомендуется функция rand).
- 2. Проверить наличие элементов в матрице А, выведя на экран ее первые 10 столбцов.
- 3. Будем считать событием z_{kj} попадание числа a_{kj} в промежуток $a_{k\min} \leq a_{kj} < a_{k\max}$. Границы этих промежутков для разных вариантов приведены в таблице3.1.

Tuomiqui III Zupiumii Sugamii										
вариант	$a_{ m lmin}$	$a_{1 max}$	$a_{2\min}$	$a_{2 \text{max}}$	$a_{3\min}$	$a_{3 \text{max}}$	$a_{4 \mathrm{min}}$	$a_{4\mathrm{max}}$	a _{5 min}	$a_{5\mathrm{max}}$
1	0.0	0.45	0.0	0.45	0.0	0.45	0.02	0.20	0.00	0.93
2	0.25	0.63	0.25	0.63	0.25	0.63	0.12	0.15	0.02	0.92
3	0.3	0.72	0.3	0.72	0.3	0.72	0.10	0.20	0.04	0.94
4	0.5	0.87	0.5	0.87	0.5	0.87	0.18	0.25	0.06	0.96
5	0.45	0.95	0.45	0.95	0.45	0.95	0.22	0.30	0.08	0.98
6	0.35	1.0	0.35	1.0	0.35	1.0	0.33	0.35	0.10	1.00
7	0.25	0.53	0.25	0.53	0.25	0.53	0.34	0.40	0.01	0.91
8	0.45	0.66	0.45	0.66	0.45	0.66	0.49	0.50	0.03	0.93
9	0.15	0.67	0.15	0.67	0.15	0.67	0.53	0.60	0.05	0.95
10	0.25	0.88	0.25	0.88	0.25	0.88	0.68	0.70	0.07	0.97
11	0.4	0.97	0.4	0.97	0.4	0.97	0.72	0.80	0.09	0.99
12	0.42	0.99	0.42	0.99	0.42	0.99	0.93	1.00	0.02	0.93

Таблица 1.1 – Варианты заданий

Создать m-функцию $y = \log zn \ (am, aM, x)$, которая возвращает единицу, если выполняется условие $am \le x < aM$, и возвращает 0, если это условие не выполнено. Сохранить эту функцию в m-файле.

- 4. С помощью функции logzn из матрицы $A(a_{ij})$ получить матрицу $B(b_{ij})$, элементы которой равны 1, если событие z_{kj} произошло, и равны 0, если не произошло. Для этого написать и сохранить соответствующую m-функцию.
- 5. Написать М-функцию y = fregp(v, m), определяемую формулой (1.1), где v вектор размера m, состоящий из нулей и единиц. Сохранить ее в m-файле.
- 6. Рассчитать зависимости $q_k(N)$ частот событий от числа испытаний для $1 \le N \le 1000\,$ и всех пяти k и изобразить их графически в линейном и полулогарифмическом (по оси х) масштабах. Найти аналитически вероятности событий P_k , учтя тип распределения получаемого с помощью функции rand.
 - 7. Сделать выводы. Оформить отчет.

1.4 Содержание отчёта

Цель работы; краткое теоретическое введение; аналитический расчёт вероятности случайных событий; практический расчёт оценки вероятности (частоты) случайных событий; программа на языке MATLAB для расчёта частоты случайных событий; выводы по работе.

1.5 Контрольные вопросы

- 1. Что такое случайное событие?
- 2. Что такое случайный исход эксперимента?
- 3. Что такое стохастическая устойчивость?
- 4. Как в системе MATLAB создать матрицу со случайными равномерно распределенными числами?
 - 5. Что такое m-сценарий? Что такое m-функция?
 - 7. Что такое частота случайного события?
 - 8. Какова связь между частотой случайного события и его вероятностью?
 - 9. Какова зависимость частоты случайного события от числа испытаний?
 - 10. Как построить график функции с помощью системы Matlab?
- 11. Какой тип распределения даёт функция rand, нарисовать график этой функции.