Project Sigma

Algebraic Geometry

Reference & Exercise

Yunhai Xiang

June 3, 2021

Contents

1 Affine Algebraic Sets

5

CONTENTS 4

Chapter 1

Affine Algebraic Sets

Problem 1.0.1. List all points in $V = \mathcal{V}(\{Y - X^2, X - Y^2\})$.

Proof. Since $V = \{(x,y) : y = x^2, x = y^2\}$, we have $x = y^2 = (x^2)^2 = x^4$ if $(x,y) \in V$. By solving $x^4 - x = 0$ we have that $x \in \{0,1,w,w^2\}$ where $w = e^{2\pi i/3}$. If x = 0, then y = 0, if x = 1 then y = 1. We can easily verify that $y = x^2$ and $x = y^2$ in these cases. If x = w then $y = x^2 = w^2$, then we can verify $x = w = w^4 = y^2$. If $x = w^2$, then $y = x^2 = w^4 = w$, and we can verify $x = w^2 = y^2$. Therefore $V = \{(0,0), (1,1), (w,w^2), (w^2,w)\}$. □

Problem 1.0.2. Show that $W = \{(t, t^2, t^3) : t \in \mathbb{C}\}$ is an algebraic set.

Proof. Consider $V = \mathcal{V}(\{Y - X^2, Z - X^3\})$. For $(x, y, z) \in V$, we have $y - x^2 = 0$ and $z - x^3 = 0$, so $y = x^2$ and $z = x^3$, therefore $(x, y, z) = (x, x^2, x^3) \in W$. Conversely, let $(x, y, z) = (t, t^2, t^3) \in W$, then $y - x^2 = t^2 - t^2 = 0$ and $z - x^3 = t^3 - t^3 = 0$, hence $(x, y, z) \in V$. Thus V = W. □

Problem 1.0.3. Suppose that C is an affine plane curve and L is a line with $L \not\subseteq C$. Suppose that $C = \mathcal{V}(\{F\})$ where $F \in \mathbf{C}[X,Y]$ a polynomial of degree n. Show that $L \cap C$ is a finite set of no more than n points.

Proof. Suppose that $(x,y) \in L \cap C$, since L is a line, we have y = mx + c for some m,c, therefore F(x,mx+c) = 0. We note that deg $F(x,mx+c) \leq n$ since mx+c has degree 1. By the fundamental theorem of algebra, we have F(x,mx+c) = 0 has at most n solutions. Hence $L \cap C$ is a finite set of no more than n points.

Problem 1.0.4. Show that $\mathcal{V}((Y-X^2))$ is irreducible, and that $\mathcal{I}(\mathcal{V}((Y-X^2)))=(Y-X^2)$.

Proof. We will show that $(Y - X^2)$ is prime. Consider $\varphi : \mathbf{C}[X,Y] \to \mathbf{C}[X]$ given by $X \mapsto X$ and $Y \mapsto X^2$ extended to the whole ring, then φ is a homomorphism and $\mathrm{Ker}(\varphi) = (Y - X^2)$. Hence by the first isomorphism theorem, we have $\mathbf{C}[X,Y]/(Y - X^2) \cong \mathbf{C}[X]$ is an integral domain, hence $(Y - X^2)$ is prime. Since prime ideals are radical ideals, we have $\mathcal{I}(\mathcal{V}((Y - X^2))) = (Y - X^2)$. \square

Problem 1.0.6. Show that $V(F) \cong V(G)$ where $F(X,Y) = X^2 + Y^2 - 1$ and $G(X,Y) = X^2 - Y^2 - 1$.

Proof. We let $\varphi: \mathcal{V}(F) \to \mathcal{V}(G)$ be $(x,y) \mapsto (x,iy)$ which is obviously a polynomial map with an inverse $\varphi^{-1}: \mathcal{V}(G) \to \mathcal{V}(F)$ given by $(x,y) \mapsto (x,-iy)$ which is also a polynomial map. We easily verify that $\varphi(\varphi^{-1}(x,y)) = (x,y)$ and $\varphi^{-1}(\varphi(x,y)) = (x,y)$. We note that if $(x,y) \in \mathcal{V}(F)$ then $x^2 + y^2 - 1 = 0$, and we have $G(\varphi(x,y)) = x^2 - (iy)^2 - 1 = x^2 + y^2 - 1 = 0$. And if $(x,y) \in \mathcal{V}(G)$ then $x^2 - y^2 - 1 = 0$ then $F(\varphi^{-1}(x,y)) = x^2 + (-iy)^2 - 1 = x^2 - y^2 - 1 = 0$. Therefore φ, φ^{-1} are well-defined. Therefore $\mathcal{V}(F) \cong \mathcal{V}(G)$.

Problem 1.0.7. Let $V = \mathcal{V}(Y^2 - X^3)$ and let $\phi : \mathbf{A}^1 \to V$ be $\phi(t) = (t^2, t^3)$, show that ϕ is a bijective polynomial map which is not an isomorphism.

Proof. Assume $s \neq t$ and $(t^2, t^3) = (s^2, s^3)$ then we have $s^2 = t^2$ and $s^3 = t^3$. Since $s \neq t$ we have $s - t \neq 0$. Since $s^2 = t^2$ we have $s^2 - t^2 = (s + t)(s - t) = 0$. Since $s - t \neq 0$, we have s + t = 0, thus s = -t, hence $s^3 = (-t)^3 = -t^3$. Since $s^3 = t^3$ and $s^3 = -t^3$, we have $t^3 = -t^3$, so t = 0. Since t = 0 we have s = -t = 0 = t which contradicts the hypothesis that $s \neq t$. This shows that ϕ is injective. Next, for each $(x,y) \in \mathcal{V}(\{Y^2 - X^3\})$, we have $y^2 - x^3 = 0$ and thus $y^2 = x^3$. We know that x has square roots α and $-\alpha$ for some α . We show that one of them is also a cube root of y. We have $\alpha^6 = (\alpha^2)^3 = x^3 = y^2$, therefore $y = \alpha^3$ or $y = -\alpha^3$. Since $y = \alpha^3$ or $y = (-\alpha)^3$, we have one of $\pm \alpha$ is a cube root of y. Let $t = \alpha$ if α is a cube root of y and $t = -\alpha$ otherwise. We then have $\phi(t) = (t^2, t^3) = (x, y)$. Thus ϕ is surjective, hence bijective. Suppose for contradiction that there is a polynomial map inverse $\phi^{-1}: V \to \mathbf{A}^1$ which can be represented by a polynomial $f \in \mathbf{C}[X, Y]$. Then have $\phi^{-1}(\phi(t)) = t$, so $f(t^2, t^3) = t$. We note that $[t^1]f(t^2, t^3) = 0$, since for each term aX^nY^m , substituding $X = t^2$ and $Y = t^3$ gives at^{2n+3m} , and there is no n, m with 2n + 3m = 1. This is a contradiction since $[t^1]t = 1$.

Problem 1.0.8. Let $\phi: \mathbf{A}^1 \to V$ be $\phi(t) = (t^2 - 1, t(t^2 - 1))$ where $V = \mathcal{V}(\{Y^2 - X^2(X+1)\})$. Show that ϕ is one-to-one and onto except at $\phi(\pm 1) = (0,0)$.

Proof. Suppose that $s \neq t$ and $(s^2 - 1, s(s^2 - 1)) = (t^2 - 1, t(t^2 - 1))$, we then have $s^2 - 1 = t^2 - 1$ thus $s^2 - t^2 = (s - t)(s + t) = 0$. Since $s \neq t$, we have s = -t. Next, since $s(s^2 - 1) = t(t^2 - 1)$ we have $-t(t^2 - 1) = t(t^2 - 1)$. Thus t = 0 or $t^2 = 1$. If t = 0 then s = -t = 0 = t which contradicts $s \neq t$, so $t^2 = 1$. Thus $t = \pm 1$ and $t = \pm 1$. Thus $t = \pm 1$ is injective except at $t = \pm 1$. Next, let t = t in t = t in t = t in t = t. Let t = t if t = t in t = t in t = t is a square root of t = t. By t = t in t = t in

Problem 1.0.9. Let $V = \mathcal{V}(\{X^2 - Y^3, Y^2 - Z^3\})$, and let $\overline{\alpha} : \Gamma(V) \to \mathbf{C}[T]$ be given by $\overline{\alpha}(X) = T^9$, $\overline{\alpha}(Y) = T^6$ and $\overline{\alpha}(Z) = T^6$. Then

- (a) What is the polynomial map $f : \mathbf{A}^1 \to V$ with $f^* = \overline{\alpha}$
- (b) Show that f is bijective but not an isomorphism *Proof.*
 - (a) Define the polynomial map $f: \mathbf{A}^1 \to V$ by $f(t) = (t^9, t^6, t^4)$ as in the proof of Theorem 1.6. We can verify that this is well-defined since $X^2 Y^3 = t^{18} t^{18} = 0$ and $Y^2 Z^3 = t^{12} t^{12} = 0$. We verify that the pullback $f^*(X) = [(x, y, z) \mapsto x] \circ f = T^9$, $f^*(Y) = [(x, y, z) \mapsto y] \circ f = T^6$, and $f^*(Z) = [(x, y, z) \mapsto z] \circ f = T^4$. Thus $f^* = \overline{\alpha}$.
 - (b) We note that f(t) = (0,0,0) iff t = 0, so we can assume $t \neq s$ are nonzero and $(t^9, t^6, t^4) =$ (s^9, s^6, s^4) . Since $t^4 = s^4$, we have $t \in \{s\zeta_4, s\zeta_4^2, s\zeta_4^3\}$. Since $t^6 = s^6$, we have $t \in \{s\zeta_6, \dots, s\zeta_6^5\}$. Since $t^9 = s^9$, we have $t \in \{s\zeta_9, \dots, s\zeta_9^8\}$. Since $\gcd(9,6,4) = 1$, this is a contradiction. To explain in simpler language, $t^4 = s^4$ implies that the angle between t, s is 90° , 180° or 270° ; $t^6 = s^6$ implies that the angle between t, s is $60^\circ, 120^\circ, 180^\circ, 240^\circ$ or 300° ; $t^9 = s^9$ implies that the angle between t, s is 40° , 80° , 120° , 160° , 200° , 240° , 280° or 320° . There is no angle between t,s that satisfies our requirement. Thus f is injective. Next, let $(x,y,z) \in V$, we then have $x^2 - y^3 = 0$ and $y^2 - z^3 = 0$, thus $x^2 = y^3$ and $y^2 = z^3$. The 6-th roots of y are $\{\alpha, \alpha\omega, \dots, \alpha\omega^5\}$ for some α where $\omega = e^{\frac{2\pi i}{6}}$. Let s be a 6-th roots of y. Thus $s^{18} =$ $(s^6)^3 = y^3 = x^2$, so $x = \pm s^9$, so $x \in \{s^9, s^9\omega^3\}$. Similarly, $s^{12} = (s^6)^2 = y^2 = z^3$, therefore $\{z, z\omega^2, z\omega^4\} = \{s^4, s^4\omega^2, s^4\omega^4\}$, hence $z \in \{s^4, s^4\omega^2, s^4\omega^4\}$. Suppose that $x = s^9\omega^{3n}$ for $n \in \{0,1\}$ and $z = s^4 \omega^{2m}$ for $m \in \{0,1,2\}$. Let $t = s\omega^k$ then t is also a 6-th root of unity, so $y=t^6$. Also, $x=t^9\omega^{3n-9k}$ and $z=t^4\omega^{2m-4k}$. I claim that we can always choose k such that $3n \equiv 9k \pmod{6}$ and $2m \equiv 4k \pmod{6}$. Note that $3n \equiv 9k \pmod{6}$ iff $k \equiv n \pmod{2}$, and note that $2m \equiv 4k \pmod{6}$ iff $k \equiv 2m \pmod{3}$. By the Chinese remainder theorem, such kcan always be chosen. Hence we have $x = t^9$, $y = t^6$ and $z = t^4$. Thus f(t) = (x, y, z). Thus *f* is surjective, so *f* is bijective.

We see that f is not an isomorphism, since if so there is a polynomial map $g:V\to \mathbf{A}^1$ which can be viewed as a polynomial $g\in \mathbf{C}[X,Y,Z]$ which is the inverse of f, then by $g\circ f=\mathrm{id}$, we have $g(t^9,t^6,t^4)=t$. We note that $[t^1]g(t^9,t^6,t^4)=0$ since if $aX^pY^qZ^r$ is a term in g(X,Y,Z), then substituding $X=t^9,Y=t^6,Z=t^4$ gives $at^{9p+6q+4r}$, and there is no p,q,r such that 9p+6q+4r=1. This contradicts the fact that $[t^1]t=1$.

Problem 1.0.10. If $\phi: V \subseteq \mathbf{A}^n \to W \subseteq \mathbf{A}^m$ is an onto polynomial map, show that if X is an algebraic subset of W then $\phi^{-1}[X]$ is an algebraic subset of V, and that X is irreducible if $\phi^{-1}[X]$ is irreducible.

Proof. Suppose that $X = \mathcal{V}(I)$ for some $I \subseteq \mathbf{C}[X_1, \dots, X_m]$, then for $x \in V$, we have

$$x \in \phi^{-1}[X] \Longleftrightarrow \phi(x) \in X \Longleftrightarrow f(\phi(x)) = 0, \forall f \in I \Longleftrightarrow x \in \mathcal{V}(\{f \circ \phi : f \in I\})$$

Therefore $\phi^{-1}[X] = \mathcal{V}(\{f \circ \phi : f \in I\})$ is algebraic. If $X = U \cup V$ where algebraic sets $U, V \subset X$ properly, then $\phi^{-1}[X] = \phi^{-1}[U] \cup \phi^{-1}[V]$. Choose $p \in X \setminus U$, and let x be such that $\phi(x) = p$, then $x \in \phi^{-1}[X] \setminus \phi^{-1}[U]$, so $\phi^{-1}[U] \subset \phi^{-1}[X]$ properly, and similarly $\phi^{-1}[V] \subset \phi^{-1}[X]$ properly. Since $\phi^{-1}[U]$, $\phi^{-1}[V]$ are algebraic as U, V are algebraic, we have $\phi^{-1}[X]$ is reducible. \Box

Problem 1.0.11. Let $V \subseteq \mathbf{A}^n$ be a variety, show that TFAE

- (i) *V* is a point
- (ii) $\Gamma(V) = \mathbf{C}$
- (iii) $\dim_{\mathbb{C}} \Gamma(V)$ is finite

Proof. Assume (i), then let $V = \{(x_1, ..., x_n)\}$. We claim that $\mathcal{I}(V) = (X_1 - x_1, ..., X_n - x_n)$. Note that $\mathcal{V}((X_1 - x_1, ..., X_n - x_n)) = V$ which is straightforward. Next, since $x_1, ..., x_n \in \mathbb{C}$, we have

$$\mathbf{C}[X_1,\ldots,X_n]/(X_1-x_1,\ldots,X_n-x_n)\cong \mathbf{C}[x_1,\ldots,x_n]\cong \mathbf{C}$$

which is an integral domain, so (X_1-x_1,\ldots,X_n-x_n) is prime, so it's also a radical ideal. Therefore we have $\mathcal{I}(V)=\mathcal{I}(\mathcal{V}((X_1-x_1,\ldots,X_n-x_n)))=(X_1-x_1,\ldots,X_n-x_n)$ by Nullstellensatz. Thus, we indeed have $\Gamma(V)=\mathbf{C}[X_1,\ldots,X_n]/\mathcal{I}(V)=\mathbf{C}$. Next, assume (ii), then $\dim_{\mathbf{C}}\Gamma(V)=\dim_{\mathbf{C}}\mathbf{C}=1<\infty$ straightforwardly. Assume (iii), then $\Gamma(V)=\mathbf{C}[X_1,\ldots,X_n]/\mathcal{I}(V)$ has finite dimension over \mathbf{C} . Let $i\in\{1,\ldots,n\}$. We note that if $\{1,X_i,X_i^2,X_i^3,\ldots\}$ is linearly independent then we cannot have $\dim_{\mathbf{C}}\Gamma(V)<\infty$, thus they are linearly dependent. This means that there exists some polynomial $f_i\in\mathbf{C}[X_i]\subseteq\mathbf{C}[X_1,\ldots,X_n]$ with coefficients not all zero for which $f_i(X_i)\equiv 0\pmod{\mathcal{I}(V)}$. Hence $f_i\in\mathcal{I}(V)$ for each i. By Hilbert's Nullstellensatz, we have $\mathcal{V}(\mathcal{I}(V))=V$ as V is an algebraic set. Thus for each $p\in V$, we have $p\in\mathcal{V}(\mathcal{I}(V))$, so $f_i(p)=0$ for each i. The fact that each f_i is a single-variable polynomial over \mathbf{C} means that it has finitely many roots. Therefore we only have finitely many choices for each coordinate of p. Thus V is a finite set. Since V is a variety, it is irreducible, therefore it must be a single point.

Problem 1.0.12. Decompose $V(Y^4 - X^2, Y^4 - X^2Y^2 + XY^2 - X^3)$ into irreducible components.

Proof. We note that $Y^4 - X^2 = (Y^2 - X)(Y^2 + X)$ and $Y^4 - X^2Y^2 + XY^2 - X^3 = (X + Y)(Y - X)(X + Y^2)$. We note that $X + Y^2$ and $Y^2 - X$ are irreducible. Let $V = \mathcal{V}(Y^4 - X^2, Y^4 - X^2Y^2 + XY^2 - X^3)$ then

$$\begin{split} V &= \mathcal{V}(Y^4 - X^2) \cap \mathcal{V}(Y^4 - X^2Y^2 + XY^2 - X^3) \\ &= (\mathcal{V}(Y^2 - X) \cup \mathcal{V}(Y^2 + X)) \cap (\mathcal{V}(X + Y) \cup \mathcal{V}(Y - X) \cup \mathcal{V}(X + Y^2)) \\ &= (\mathcal{V}(Y^2 - X) \cap (\mathcal{V}(X + Y) \cup \mathcal{V}(Y - X) \cup \mathcal{V}(X + Y^2))) \cup \mathcal{V}(Y^2 + X) \end{split}$$

We note that if $(x,y) \in \mathcal{V}(Y^2 - X) \cap \mathcal{V}(X + Y)$ then x + y = 0 and $y^2 - x = 0$ so $y^2 + y = 0$, which implies that $(x,y) \in \{(0,0),(1,-1)\}$. If $(x,y) \in \mathcal{V}(Y^2 - X) \cap \mathcal{V}(Y - X)$ then y - x = 0 and $y^2 - x = 0$, which implies $x^2 - x = 0$ so $(x,y) \in \{(1,1),(0,0)\}$. If $(x,y) \in \mathcal{V}(Y^2 - X) \cap \mathcal{V}(X + Y^2)$ then $y^2 - x = 0$ and $x + y^2 = 0$ so $2y^2 = 0$ so (x,y) = (0,0). Therefore

$$V = \{(0,0), (1,-1)\} \cup \{(1,1), (0,0)\} \cup \{(0,0)\} \cup \mathcal{V}(Y^2 + X)$$

= $\mathcal{V}(X,Y) \cup \mathcal{V}(X-1,Y+1) \cup \mathcal{V}(X-1,Y-1) \cup \mathcal{V}(Y^2 + X)$

The first three components are irreducible since they are single points. The last component $\mathcal{V}(Y^2 + X)$ is irreducible since $(Y^2 + X)$ is prime, and hence also radical, so $\mathcal{I}(\mathcal{V}(Y^2 + X)) = (Y^2 + X)$ which is prime. We note that $(Y^2 + X)$ is prime since $Y^2 + X$ is prime, and $Y^2 + X$ is prime since $Y^2 + X$ is irreducible and $\mathbb{C}[X, Y]$ is a ufd.

Problem 1.0.13. Find all irreducible components of $V(2X^3 - X^2Y - 2XY + Y^2)$.

Proof. We note that if $(x,y) \in \mathcal{V}(2X^3 - X^2Y - 2XY + Y^2)$, then $2x^3 - (x^2 + 2x)y + y^2 = 0$, so $y = \frac{x^2 + 2x \pm \sqrt{(x^2 + 2x)^2 - 8x^3}}{2} = \frac{x(x + 2) \pm x(x - 2)}{2}$. Therefore $y = x^2$ or y = 2x. Conversely, if y = 2x, then $2x^3 - x^2y - 2xy + y^2 = 2x^3 - 2x^3 - 4x^2 + 4x^2 = 0$. If $y = x^2$ then $2x^3 - x^2y - 2xy + y^2 = 2x^3 - x^4 - 2x^3 + x^4 = 0$. Therefore we have $\mathcal{V}(2X^3 - X^2Y - 2XY + Y^2) = \mathcal{V}(Y - 2X) \cup \mathcal{V}(Y - X^2)$. We note that $\mathcal{V}(Y - X^2)$ is irreducible by a previous assignment. Also $\mathcal{V}(Y - 2X)$ is irreducible since (Y - 2X) is prime and hence also radical so by Nullstellensatz we have $\mathcal{I}(\mathcal{V}(Y - 2X)) = (Y - 2X)$ which is prime. We note that (Y - 2X) is prime since Y - 2X is prime, and Y - 2X is prime since Y - 2X is irreducible and $\mathbf{C}[X, Y]$ is a ufd.

Problem 1.0.14. Let $V = \mathcal{V}(Y^2 - X^2(X+1))$ and $z = Y/X \in K(V)$, find the pole sets of z and z^2 .

Proof. First, we note that z = Y/X = X(X+1)/Y since $Y^2 \equiv X^2(X+1) \pmod{\mathcal{I}(V)}$. Thus if $x \neq 0$ then the expression z = Y/X is defined, and if $y \neq 0$ then the expression z = X(X+1)/Y is defined. Thus z is defined for all $(x,y) \neq (0,0)$. For (x,y) = (0,0), suppose that z is defined then exists expression r(X,Y)/s(X,Y) = X/Y with $s(0,0) \neq 0$. Since $s(0,0) \neq 0$, we know that s(X,Y) has a nonzero constant term. Next, $Yr(X,Y) \equiv Xs(X,Y) \pmod{\mathcal{I}(V)}$ so $Yr(X,Y) - Xs(X,Y) = h(X,Y)(Y^2 - X^2(X+1))$. Consider the coefficient of $X = X^1Y^0$ on both sides. For the LHS, since s(X,Y) has a nonzero constant term, the coefficient of $X = X^1Y^0$ in -Xs(X,Y) is 0. Next, for the RHS. Since $Y^2h(X,Y)$ has Y as a factor, the coefficient of $X = X^1Y^0$ in $Y^2h(X,Y)$ is 0. Next, for the RHS. Since $Y^2h(X,Y)$ has Y as a factor, coefficient of $X = X^1Y^0$ in $Y^2h(X,Y)$ is 0. Since $-X^2(X+1)h(X,Y) = -X^3h(X,Y) - X^2h(X,Y)$, we have the coefficient of $X = X^1Y^0$ in $-X^2(X+1)h(X,Y)$ is 0. Thus the coefficient of $X = X^1Y^0$ in the LHS is −1 but it is 0 in the RHS, contradiction. Next, we note that $z^2 = Y^2/X^2 = (X+1)$ since $Y^2 \equiv X^2(X+1) \pmod{\mathcal{I}(V)}$. The denominator of $X = X^1$ is 1, so z^2 is defined on all points in Y. Hence z has pole at (0,0) only and z^2 has no pole. □

Problem 1.0.15. Let $F(X,Y) = Y^2 - X^3 + X$, W = V(F) and P = (0,0).

- (a) Show that aX + bY is an element of the maximal ideal $\mathcal{M}_P(W)$ of the local ring $\mathcal{O}_P(W)$,
- (b) Show that aX + bY is an element of $\mathcal{M}_P(W)^2$ iff aX + bY is tangent to W at P.

Proof.

(a) We recall that

$$\mathcal{M}_P(W) = \left\{ f \in K(W) \mid f = \frac{r}{s} \text{ for } r(P) = 0, s(P) \neq 0 \right\}$$

and in this case where P=(0,0), the denominator of aX+bY is always 1 which is nonzero and when (x,y)=(0,0) the numerator is a0+b0=0. Thus $aX+bY\in \mathcal{M}_P(W)$.

(b) We note that the line aX + bY is tangent to W at P iff their intersection $\mathcal{V}(aX + bY) \cap W = \{P\}$. We also note that $\mathcal{M}_P(W) = \mathcal{I}(P)\mathcal{O}_P(W)$. Since $\mathcal{I}(P) = (X, Y)$, we have $\mathcal{I}(P)^2 = (X^2, XY, YX, Y^2) = (X^2, XY, Y^2)$. We note that $\mathcal{I}(P) = \mathcal{I}(\mathcal{V}(aX + bY)) \cup \mathcal{I}(W)$.

Problem 1.0.16. Let $W = \mathcal{V}(Y^2 - X^2(X+1))$, and P = (0,0), show that for each $a, b \in \mathbb{C}$, aX + bY not an element of $\mathcal{M}_P(W)^2$ unless a = b = 0.

Problem 1.0.17. Let $C = \mathcal{V}(Y^2 - X^3)$, show that the function field K(C) of C is isomorphic to $\mathbf{C}(T)$ but $\Gamma(C)$ is not isomorphic to $\mathbf{C}[T]$.

Proof. First, we claim that $(Y^2 - X^3)$ is a prime ideal in $\mathbb{C}[X,Y]$. We claim that $Y^2 - X^3$ is irreducible. We note that if $Y^2 - X^3 = f(X,Y)g(X,Y)$ then the degree of Y in f(X,Y), g(X,Y) are 1. If $f(X,Y) = f_0(X) + f_1(X)Y$ and $g(X,Y) = g_0(X) + g_1(X)Y$ then $f(X,Y)g(X,Y) = f_0(X)g_0(X) + (f_0(X)g_1(X) + g_0(X)f_1(X))Y + f_1(X)g_1(X)Y^2$. Thus $f_0(X)g_0(X) = -X^3$ and we have $f_0(X)g_1(X) = g_0(X)f_1(X)$ and $f_1(X)g_1(X) = 1$. By $f_1(X)g_1(X) = 1$, we have f_1, g_1 are nonzero constants, thus by $f_0(X)g_1(X) = g_0(X)f_1(X)$, we have $f_0(X) = cg_0(X)$ for a nonzero constant c. Thus $f_0(X)g_0(X) = cg_0(X)^2$ which has a even degree, but $f_0(X)g_0(X) = -X^3$ which has odd degree, contradiction. Since $Y^2 - X^3$ is irreducible, it is a prime as $\mathbb{C}[X,Y]$ is a ufd. Thus $(Y^2 - X^3)$ is a prime ideal. Hence $\Gamma(C) = \mathbb{C}[X,Y]/(Y^2 - X^3)$ by Nullstellensatz. We claim that $\Gamma(C)$ is not isomorphic to $\mathbb{C}[T]$. We note that $\mathbb{C}[T]$ is integrally closed since it is a ufd. However $\Gamma(C) \cong \mathbb{C}[\alpha^2, \alpha^3]$ a trancedental extension of $\mathbb{C}[X]$ where α is not a root of any polynomial. Therefore $\Gamma(C)$ is not integrally closed, so it is not isomorphic to $\mathbb{C}[T]$. On the other hand, the field of fraction of $\mathbb{C}[\alpha^2, \alpha^3]$, which is K(C), is isomorphic to $\mathbb{C}[T]$ as we can set $T = \alpha = \alpha^3/\alpha^2$

Problem 1.0.18. Let $V = \mathcal{V}(Y - X^2)$ and P = (1, 1), which of the three rational functions are equal in $\mathcal{O}_P(V)$?

1.
$$F_1(X,Y) = \frac{1}{X+1}$$
,

2.
$$F_2(X,Y) = \frac{X}{X+Y}$$
,

3.
$$F_3(X,Y) = \frac{X^2}{X+Y^2}$$
.

Proof.