$\alpha + 3$ $\alpha + 1$ $\alpha + 2$ $\alpha + 3$ $\alpha +$

Каждый элемент матрицы участвует в двух

Пример 1.3. Матрица A=(a_{ii})

 $\alpha + 6$

- отношениях (по строке и по столбцу):
 Следующий по строке адрес + 1
 - Следующий по строке адрес + 1
 Следующий по столбцу адрес + 3

1. Ленточные матрицы

✓ Для хранения элементов можно выделить непрерывный вектор памяти размера
$$3*n-2$$
 ✓ Адрес (a_{ij}) = $\alpha + 3*(i-1) + (j-i)$

Подход 1 Матрицы подобного вида можно представить как

матрицы общего вида и использовать для хранения двухиндексные массивы

- используется память $V_{\text{исп}} = n^2$
- необходимая память $V_{\text{необ}} = n(n+1)/2$

Подход 2 Исключение элементов ниже главной диагонали (ускорение доступа) Матрица

pRow Aдрес $(a_{ii}) = pRow[i] + (j-i), 0 \le i,j \le n-1$

Подход 2 Исключение хранения элементов ниже главной диагонали

Адрес
$$(a_{ii}) = \alpha + i*n - i*(i-1)/2 + (j-i), 0 \le i,j \le n-1$$

Подход 3 Представление матрицы в виде набора векторов

Подход 4 Матрица как вектор векторных элементов (шаблоны) Вектор Матрица