Discrete Mathematics Summary

Mathematical Notes

October 19, 2025

Contents

1	\mathbf{Log}	cic and Proofs
	1.1	Propositional Logic
	1.2	Logical Connectives
	1.3	Truth Tables
	1.4	Logical Equivalences
	1.5	Predicate Logic
	1.6	Quantifiers
	1.7	Methods of Proof
2	Sets	s 5
	2.1	Basic Definitions
	2.2	Set Operations
	2.3	Set Identities
	2.4	Cardinality
	2.5	Power Set
3	Fun	actions ϵ
	3.1	Basic Definitions
	3.2	Types of Functions
	3.3	Composition and Inverse
4	Rela	ations
	4.1	Basic Definitions
	4.2	Properties of Relations
	4.3	Equivalence Relations
	4.4	Partial Orders
5	Con	nbinatorics 7
	5.1	Basic Counting Principles
	5.2	Permutations
	5.3	Combinations
	5.4	Binomial Theorem
	5.5	Pigeonhole Principle

6	Gra	ph Theory	7						
	6.1	Basic Definitions	7						
	6.2	Types of Graphs	8						
	6.3	Graph Terminology	8						
	6.4	Handshaking Theorem	8						
	6.5	Euler and Hamiltonian Paths	8						
	6.6	Planar Graphs	8						
7	Nun	Number Theory 9							
	7.1	Divisibility	9						
	7.2	Properties of Divisibility	9						
	7.3	Division Algorithm	9						
	7.4	Greatest Common Divisor	9						
	7.5	Euclidean Algorithm	9						
	7.6	Prime Numbers	9						
	7.7	Fundamental Theorem of Arithmetic	9						
	7.8	Congruence	9						
	7.9	Properties of Congruence	9						
8	Rec	urrence Relations	LO						
	8.1	Definition	10						
	8.2	Linear Homogeneous Recurrence Relations	10						
	8.3	Solving Linear Homogeneous Recurrence Relations	10						
	8.4	Common Recurrence Relations	10						
9	Gen	nerating Functions	LΟ						
	9.1		10						
	9.2		10						
10	Boo	olean Algebra	L1						
		_	11						
			11						
11	ΔΙσα	orithms and Complexity	L1						
	_	· •	11						
		Big-O Notation							
			11						
12		v	12						
			12						
		v	12						
		v	12						
			12						
	12.5	Independent Events	12						

13 Important Theorems and Results				
13.1 Inclusion-Exclusion Principle	12			
13.2 Chinese Remainder Theorem	12			
13.3 Fermat's Little Theorem	13			
13.4 Wilson's Theorem	1.3			

1 Logic and Proofs

1.1 Propositional Logic

Definition 1.1. A **proposition** is a declarative sentence that is either true or false, but not both.

1.2 Logical Connectives

• Negation: $\neg p \pmod{p}$

• Conjunction: $p \wedge q$ (p and q)

• Disjunction: $p \lor q \ (p \ {\rm or} \ q)$

• Implication: $p \to q$ (if p then q)

• **Biconditional**: $p \leftrightarrow q$ (p if and only if q)

1.3 Truth Tables

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$
T	Τ	F	Т	T	T
T	\mathbf{F}	F	F	T	F
F	${ m T}$	T	F	Т	${ m T}$
F	F	Т	F	F	Γ

1.4 Logical Equivalences

• Double Negation: $\neg(\neg p) \equiv p$

 \bullet De Morgan's Laws:

$$- \neg (p \land q) \equiv \neg p \lor \neg q$$
$$- \neg (p \lor q) \equiv \neg p \land \neg q$$

• Commutative Laws: $p \land q \equiv q \land p, \ p \lor q \equiv q \lor p$

• Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$

• Distributive Laws:

$$- p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$
$$- p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

• Implication: $p \to q \equiv \neg p \lor q$

• Contrapositive: $p \rightarrow q \equiv \neg q \rightarrow \neg p$

1.5 Predicate Logic

Definition 1.2. A **predicate** is a statement involving variables that becomes a proposition when specific values are substituted for the variables.

4

1.6 Quantifiers

- Universal Quantifier: $\forall x P(x)$ (for all x, P(x))
- Existential Quantifier: $\exists x P(x)$ (there exists an x such that P(x))

1.7 Methods of Proof

- **Direct Proof**: Assume p is true, show q is true
- Proof by Contraposition: Prove $\neg q \rightarrow \neg p$
- **Proof by Contradiction**: Assume $\neg(p \to q)$, derive a contradiction
- Proof by Cases: Consider all possible cases
- Mathematical Induction:
 - 1. Base case: Show P(1) is true
 - 2. Inductive step: Show $P(k) \to P(k+1)$ for all $k \ge 1$

2 Sets

2.1 Basic Definitions

Definition 2.1. A **set** is an unordered collection of distinct objects called elements.

5

2.2 Set Operations

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Complement: $\overline{A} = \{x : x \notin A\}$
- Difference: $A B = \{x : x \in A \text{ and } x \notin B\}$
- Symmetric Difference: $A \triangle B = (A B) \cup (B A)$

2.3 Set Identities

- Commutative Laws: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- Associative Laws: $(A \cup B) \cup C = A \cup (B \cup C)$
- Distributive Laws:

$$-\ A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$$

$$-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• De Morgan's Laws:

$$- \overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$- \overline{A \cap B} = \overline{A} \cup \overline{B}$$

2.4 Cardinality

Definition 2.2. The **cardinality** of a set A, denoted |A|, is the number of elements in A.

2.5 Power Set

Definition 2.3. The **power set** of a set S, denoted $\mathcal{P}(S)$, is the set of all subsets of S.

Theorem 2.1. If |S| = n, then $|\mathcal{P}(S)| = 2^n$.

3 Functions

3.1 Basic Definitions

Definition 3.1. A function f from set A to set B is a relation that assigns to each element $a \in A$ exactly one element $b \in B$. We write $f : A \to B$.

3.2 Types of Functions

- One-to-one (Injective): $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$
- Onto (Surjective): For every $b \in B$, there exists $a \in A$ such that f(a) = b
- Bijective: Both one-to-one and onto

3.3 Composition and Inverse

- Composition: $(g \circ f)(x) = g(f(x))$
- Inverse: $f^{-1}(y) = x$ if and only if f(x) = y

4 Relations

4.1 Basic Definitions

Definition 4.1. A relation R from set A to set B is a subset of $A \times B$.

4.2 Properties of Relations

For a relation R on set A:

- Reflexive: $(a, a) \in R$ for all $a \in A$
- Symmetric: $(a,b) \in R \Rightarrow (b,a) \in R$
- Antisymmetric: $(a,b) \in R \land (b,a) \in R \Rightarrow a = b$
- Transitive: $(a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$

4.3 Equivalence Relations

Definition 4.2. An equivalence relation is a relation that is reflexive, symmetric, and transitive.

4.4 Partial Orders

Definition 4.3. A partial order is a relation that is reflexive, antisymmetric, and transitive.

5 Combinatorics

5.1 Basic Counting Principles

- Sum Rule: If task can be done in m ways and another in n ways, then one or the other can be done in m + n ways
- **Product Rule**: If task can be done in m ways and another in n ways, then both can be done in $m \times n$ ways

5.2 Permutations

Definition 5.1. A **permutation** is an ordered arrangement of objects.

- Permutations of n objects: P(n,n) = n!
- Permutations of r objects from n: $P(n,r) = \frac{n!}{(n-r)!}$

5.3 Combinations

Definition 5.2. A **combination** is an unordered selection of objects.

• Combinations of r objects from n: $C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

5.4 Binomial Theorem

Theorem 5.1.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

5.5 Pigeonhole Principle

Theorem 5.2. If n objects are placed into m boxes where n > m, then at least one box contains more than one object.

6 Graph Theory

6.1 Basic Definitions

Definition 6.1. A graph G = (V, E) consists of a set V of vertices and a set E of edges.

6.2 Types of Graphs

• Simple Graph: No loops or multiple edges

• Multigraph: May have multiple edges

• Pseudograph: May have loops and multiple edges

• Directed Graph: Edges have direction

• Complete Graph: Every pair of vertices is connected

• Bipartite Graph: Vertices can be partitioned into two sets with no edges within each set

6.3 Graph Terminology

• Degree: Number of edges incident to a vertex

• Path: Sequence of vertices connected by edges

• Circuit: Path that starts and ends at the same vertex

• Connected: Path exists between any two vertices

• Tree: Connected graph with no circuits

6.4 Handshaking Theorem

Theorem 6.1. The sum of the degrees of all vertices in a graph equals twice the number of edges.

$$\sum_{v \in V} \deg(v) = 2|E|$$

6.5 Euler and Hamiltonian Paths

• Euler Path: Uses every edge exactly once

• Euler Circuit: Euler path that starts and ends at the same vertex

• Hamiltonian Path: Visits every vertex exactly once

• Hamiltonian Circuit: Hamiltonian path that starts and ends at the same vertex

6.6 Planar Graphs

Definition 6.2. A graph is **planar** if it can be drawn in the plane without edge crossings.

Theorem 6.2 (Euler's Formula). For a connected planar graph with V vertices, E edges, and F faces:

$$V - E + F = 2$$

7 Number Theory

7.1 Divisibility

Definition 7.1. An integer a divides an integer b (written a|b) if there exists an integer c such that b = ac.

7.2 Properties of Divisibility

- If a|b and b|c, then a|c
- If a|b and a|c, then a|(b+c)
- If a|b, then a|bc for any integer c

7.3 Division Algorithm

Theorem 7.1. For integers a and b with b > 0, there exist unique integers q and r such that:

$$a = bq + r$$
 where $0 \le r < b$

7.4 Greatest Common Divisor

Definition 7.2. The **greatest common divisor** of integers a and b, denoted gcd(a, b), is the largest integer that divides both a and b.

7.5 Euclidean Algorithm

To find gcd(a, b):

- 1. If b = 0, then gcd(a, b) = a
- 2. Otherwise, $gcd(a, b) = gcd(b, a \mod b)$

7.6 Prime Numbers

Definition 7.3. A **prime number** is an integer greater than 1 whose only positive divisors are 1 and itself.

7.7 Fundamental Theorem of Arithmetic

Theorem 7.2. Every integer greater than 1 can be expressed uniquely as a product of primes.

7.8 Congruence

Definition 7.4. Integers a and b are congruent modulo m (written $a \equiv b \pmod{m}$) if $m \mid (a-b)$.

7.9 Properties of Congruence

- $a \equiv a \pmod{m}$ (reflexive)
- $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$ (symmetric)
- $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$ (transitive)

8 Recurrence Relations

8.1 Definition

Definition 8.1. A **recurrence relation** is an equation that defines a sequence recursively.

8.2 Linear Homogeneous Recurrence Relations

A recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are constants.

8.3 Solving Linear Homogeneous Recurrence Relations

- 1. Find the characteristic equation: $r^k c_1 r^{k-1} c_2 r^{k-2} \cdots c_k = 0$
- 2. Find the roots r_1, r_2, \ldots, r_k
- 3. If all roots are distinct: $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n$
- 4. If root r has multiplicity m: include terms $\alpha_1 r^n, \alpha_2 n r^n, \dots, \alpha_m n^{m-1} r^n$

8.4 Common Recurrence Relations

- **Fibonacci**: $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0, F_1 = 1$
- **Geometric**: $a_n = ra_{n-1}$ with solution $a_n = a_0 r^n$
- Arithmetic: $a_n = a_{n-1} + d$ with solution $a_n = a_0 + nd$

9 Generating Functions

9.1 Definition

Definition 9.1. The **generating function** for sequence $\{a_n\}$ is:

$$G(x) = \sum_{n=0}^{\infty} a_n x^n$$

9.2 Common Generating Functions

- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ for } |x| < 1$
- $\frac{1}{1-ax} = \sum_{n=0}^{\infty} a^n x^n$ for |ax| < 1
- $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ (binomial theorem)
- $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

10 Boolean Algebra

10.1 Definition

Definition 10.1. A **Boolean algebra** is a set B with operations \land (AND), \lor (OR), and \neg (NOT) satisfying certain axioms.

10.2 Boolean Identities

- Identity Laws: $x \wedge 1 = x$, $x \vee 0 = x$
- Domination Laws: $x \wedge 0 = 0, x \vee 1 = 1$
- Idempotent Laws: $x \wedge x = x, x \vee x = x$
- Double Complement: $\neg(\neg x) = x$
- Commutative Laws: $x \wedge y = y \wedge x$, $x \vee y = y \vee x$
- Associative Laws: $(x \wedge y) \wedge z = x \wedge (y \wedge z)$
- Distributive Laws: $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- De Morgan's Laws: $\neg(x \land y) = \neg x \lor \neg y, \neg(x \lor y) = \neg x \land \neg y$

11 Algorithms and Complexity

11.1 Algorithm Analysis

- Time Complexity: How running time grows with input size
- Space Complexity: How memory usage grows with input size

11.2 Big-O Notation

Definition 11.1. f(n) = O(g(n)) if there exist constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

11.3 Common Complexity Classes

- Constant: O(1)
- Logarithmic: $O(\log n)$
- Linear: O(n)
- Linearithmic: $O(n \log n)$
- Quadratic: $O(n^2)$
- Exponential: $O(2^n)$
- Factorial: O(n!)

12 Probability

12.1 Basic Definitions

Definition 12.1. The sample space S is the set of all possible outcomes of an experiment.

Definition 12.2. An **event** is a subset of the sample space.

12.2 Probability Axioms

For any event E:

- $0 \le P(E) \le 1$
- P(S) = 1
- For mutually exclusive events: $P(E_1 \cup E_2 \cup \cdots) = P(E_1) + P(E_2) + \cdots$

12.3 Conditional Probability

Definition 12.3.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 where $P(B) > 0$

12.4 Bayes' Theorem

Theorem 12.1.

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

12.5 Independent Events

Definition 12.4. Events A and B are **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

13 Important Theorems and Results

13.1 Inclusion-Exclusion Principle

Theorem 13.1. For finite sets A_1, A_2, \ldots, A_n :

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i \le j \le n} |A_i \cap A_j| + \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

13.2 Chinese Remainder Theorem

Theorem 13.2. If m_1, m_2, \ldots, m_k are pairwise relatively prime integers, then the system of congruences:

$$x \equiv a_1 \pmod{m_1} \tag{1}$$

$$x \equiv a_2 \pmod{m_2} \tag{2}$$

$$\vdots$$
 (3)

$$x \equiv a_k \pmod{m_k} \tag{4}$$

has a unique solution modulo $m_1m_2\cdots m_k$.

13.3 Fermat's Little Theorem

Theorem 13.3. If p is prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$.

13.4 Wilson's Theorem

Theorem 13.4. A positive integer n > 1 is prime if and only if $(n-1)! \equiv -1 \pmod{n}$.