Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra Instructor: Professor Sasha Polishchuk Homework - Week 7

ID: 952091294 Term: Spring 2025 Due Date: 21st May, 2025

Problem 19.3.18

If R is an integrally closed domain with quotient field \mathbb{F} , and $f,g\in\mathbb{F}[x]$ are monic with $fg\in\mathbb{R}[x]$, then $f,g\in R[x]$.

Solution:

Problem 19.4.8

Show that the conclusion of the Incomparability theorem fails for the ring extension $\mathbb{F}[x] \subseteq \mathbb{F}[x,y]$.

Solution:

Problem 19.4.13

True or false? Let $A \supseteq R$ be an integral ring extension, with A being a domain. If every non-zero prime ideal of R is a maximal ideal, then every non-zero prime ideal of A is also maximal.

Solution:

Problem 19.4.15

Consider the ring extension $\mathbb{Z} \subset \mathbb{Z}[\sqrt{5}]$.

- (1) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (5) of \mathbb{Z} .
- (2) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (3) of \mathbb{Z} .
- (3) Find all prime ideals of $\mathbb{Z}[\sqrt{5}]$ which lie over the prime ideal (2) of \mathbb{Z} .

Solution:

Problem 20.1.5

If the ring R is noetherian, then so is the ring $R[[x_1,\ldots,x_n]]$ of formal power series.

Solution: