Lab 2 ATMS 748

Jack Tarricone

2/21/2022

Directions

- Acquire data with your program on data card
- Copy data table to your PC in CSV format (Loggernet:)
- Copy your CSV data to UNR Box
- Copy other lab teams' CSV data files from Box
- Write a program to read the data and make time series plots
- Turn in plot of timeseries of your HMP-155 temperature measurements and ensemble-averaged temperature measurements with standard deviation (error bars or patch)
- Turn in plot of timeseries of your HMP-155 relative humidity measurements and ensemble-averaged relative humidity measurements with standard deviation (error bars or patch)
- \bullet Turn in windrose plot of your wind measurements (wind speed and direction) \bullet Turn in electronic copy of program

Read in CSV files

This doesn't include our group's data because it was collected the week after.

```
# read in csv and make room for colnames
g1 <-read.csv("/Users/jacktarricone/atms_748/data-code/lab2_data/csvs/lab2_g1.csv")
g2 <-read.csv("/Users/jacktarricone/atms_748/data-code/lab2_data/csvs/lab2_g2.csv")
g4 <-read.csv("/Users/jacktarricone/atms_748/data-code/lab2_data/csvs/lab2_g4.csv")
g5 <-read.csv("/Users/jacktarricone/atms_748/data-code/lab2_data/csvs/lab2_g5.csv")</pre>
```

Transform dates back into R dates

```
# read in csv and make room for colnames
g1$date_time <-ymd_hms(g1$date_time)
g2$date_time <-ymd_hms(g2$date_time)
g4$date_time <-ymd_hms(g4$date_time)
g5$date_time <-ymd_hms(g5$date_time)

# trim each df down so it has the same date_time range
g1_filt <-filter(g1, date_time >= ymd_hms("2022-01-25 17:45:00") & date_time <= ymd_hms("2022-02-01 15:
g2_filt <-filter(g2, date_time >= ymd_hms("2022-01-25 17:45:00") & date_time <= ymd_hms("2022-02-01 15:
g4_filt <-filter(g4, date_time >= ymd_hms("2022-01-25 17:45:00") & date_time <=ymd_hms("2022-02-01 15:4
g5_filt <-filter(g5, date_time >= ymd_hms("2022-01-25 17:45:00") & date_time <=ymd_hms("2022-02-01 15:4
g5_filt <-filter(g5, date_time >= ymd_hms("2022-01-25 17:45:00") & date_time <=ymd_hms("2022-02-01 15:4</pre>
```

RH

```
# create new df with RH for all 4 groups
rh_df <-cbind(g1_filt$RH, g2_filt$RH, g4_filt$RH, g5_filt$RH)
rh_df <-as.data.frame(rh_df)
date_time <-ymd_hms(g1_filt$date_time)
rh <-cbind(date_time, rh_df)
colnames(rh) <-c("date_time","g1_RH", "g2_RH","g4_RH","g5_RH")
# create mean col
rh$mean <-(rh$g1_RH+rh$g2_RH+rh$g4_RH+rh$g5_RH)/4
# create sd col
rh$sd <-sd(rh$mean)</pre>
```

Didn't include our data becasue it was from the week after.

```
#theme_set(theme_classic(12)) # set theme for plotting
ggplot(rh) +
  \#geom\_line(aes(x = date\_time, y = g1\_RH, col = "red")) +
  \#geom\_line(aes(x = date\_time, y = g2\_RH, col = "green")) +
  \#geom\_line(aes(x = date\_time, y = q4\_RH, col = "blue")) +
  \#geom\_line(aes(x = date\_time, y = g5\_RH, col = "goldenrod")) +
  geom_line(aes(x = date_time, y = mean), col = "black") +
  geom_ribbon(aes(x = date_time, ymin = mean-sd, ymax = mean+sd, fill = "+/- One Standard Deviation"),
  scale_fill_manual("",values="grey12") +
  labs(title = "HMP RH Ensemble Average Jan 25th - Feb 2nd 2022") +
  ylab("RH (%)") +
  xlab("Date") +
    theme(axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.border = element_blank(),
        panel.background = element_blank(),
        legend.position = c(.85,.9),
        legend.text = element_text(size = 8),
        legend.title = element_text(size = 9, face = "bold"),
        legend.margin = margin(t=0, unit='cm'),
        legend.key = element_rect(size = .2))
```


Air Temperature

Again, did not include our data because of the time difference.

```
# create new df with air temp for all 4 groups
at_df <-cbind(g1_filt$AirTC_Avg, g2_filt$AirTC_Avg, g4_filt$AirTC_Avg, g5_filt$AirTC_Avg)
at_df <-as.data.frame(at_df)
date_time <-ymd_hms(g1_filt$date_time)
at <-cbind(date_time, at_df)
colnames(at) <-c("date_time","g1_at", "g2_at","g4_at","g5_at")

# create mean col
at$mean <-(at$g1_at+at$g2_at+at$g4_at+at$g5_at)/4

# create sd col
at$sd <-sd(at$mean)

ggplot(at) +
    geom_line(aes(x = date_time, y = mean), col = "red") +
    # geom_line(aes(x = g1_filt$date_time, y = g1_filt$AirTC_Avg, col = "red")) +
    # geom_line(aes(x = g2_filt$date_time, y = g2_filt$AirTC_Avg, col = "green")) +
    # geom_line(aes(x = g4_filt$date_time, y = g4_filt$AirTC_Avg, col = "blue")) +
    # geom_line(aes(x = g4_filt$date_time, y = g4_filt$AirTC_Avg, col = "blue")) +</pre>
```

```
\# geom\_line(aes(x = g5\_filt\$date\_time, y = g5\_filt\$AirTC\_Avg, col = "goldenrod")) +
geom_ribbon(aes(x = date_time, ymin = mean-sd, ymax = mean+sd, fill = "+/- One Standard Deviation"),
scale_fill_manual("",values="grey12") +
labs(title = "HMP Air Temperature Ensemble Average Jan 25th - Feb 2nd 2022") +
ylab("Temperature (C)") +
xlab("Date") +
  theme(axis.line = element_line(colour = "black"),
     panel.grid.major = element_blank(),
     panel.grid.minor = element_blank(),
     panel.border = element_blank(),
     panel.background = element_blank(),
     legend.position = c(.8,.1),
      legend.text = element_text(size = 8),
      legend.title = element_text(size = 9, face = "bold"),
      legend.margin = margin(t=0, unit='cm'),
      legend.key = element_rect(size = .2))
```

HMP Air Temperature Ensemble Average Jan 25th - Feb 2nd 2022

Wind Rose

```
# read in our csv and make room for colnames
g3 <-read.csv("/Users/jacktarricone/atms_748/data-code/lab2_data/csvs/jack_eric.csv")
# format date
g3$date <-ymd_hms(g3$date_time)</pre>
```

```
# correct for magnetic north
g3$windDirection <-g3$windDirection -2
6%
      5%
                                         Ė
                                    mean = 0.55538
                                      calm = 0%
```

(m/s) Frequency of counts by wind direction (%)

0.6 to 0.9

0.9 to 3.88

0.3 to 0.6

0 to 0.3