Filtrage

#chapitre15 #electricite

$$\underline{H}(\omega) = rac{\underline{s}}{\underline{e}} \; G(\omega) = |\underline{H}(\omega)| \; arphi(\omega) = rg(\underline{H}(\omega))$$

Diagramme de Bode (cas filtre RC, sortie sur le condensateur)

$$\underline{H}(\omega) = rac{1}{1 + jrac{\omega}{\omega_0}} \; G(\omega) = rac{1}{\sqrt{1 + (rac{\omega}{\omega_0})^2}} \; arphi(\omega) = -rctan\left(rac{\omega}{\omega_0}
ight)$$

•
$$G_d B(\omega) = -10 \log(1 + (\frac{\omega}{\omega_0})^2)$$

Gain

C'est le rapport des amplitudes en tension entre sortie et entrée.

- ullet $\omega
 ightarrow 0$: $\lim_{\omega
 ightarrow 0} G_{dB}(\omega) = 0$ asymptote horizontale
- $\omega
 ightarrow +\infty$: $G_{dB}(\omega) pprox -20\log(rac{\omega}{\omega_0})$ pente de -20dB/deca
- ullet $\omega = \omega_0$: $G_{dB}(\omega_0) = -10\log(2) pprox -3dB$

Phase

C'est l'avance du signal de sortie sur celui d'entrée.

- $ullet \ \omega o 0$: $\lim_{\omega o 0} arphi(\omega) = 0$
- $\omega \to +\infty$: $\lim_{\omega \to +\infty} \varphi(\omega) = -\frac{\pi}{2}$
- $\omega = \omega_0$: $\varphi(\omega_0) = -\frac{\pi}{4}$

Diagramme de Gabarit

Bande passante

$$G_{dB} > G_{min}$$
 , $\left[f_{p1}, f_{p2}
ight]$

Bande atténue

$$G_{dB} < G_{min}$$
 , $[0,f_{p1}]$ et $[f_{p2},+\infty]$

Diagramme de Bode

Pulsation coupure

C'est la pulsation pour laquelle le gain est égal au gain maximal diminué de 3dB

- Il peut avoir plusieurs pulsations de coupure.
- $ullet \ |H(\omega_c|=rac{G_{max}}{\sqrt{2}}$
- $\omega_c = \omega_0$ pour ordre 1

Passage de fonction de transfert à équation différentielle

$$egin{aligned} \underline{H}(j\omega) &= rac{P_e(j\omega)}{P_s(j\omega)} = rac{\underline{u_s}}{\underline{u_e}} \ & ext{donc} \ u_s P_s(j\omega) = u_e P_e(j\omega) \end{aligned}$$

Stabilité d'un montage

Pour qu'une équation différentielle d'ordre un ou deux décrive un système stable (qui revienne à l'équilibre si on le perturbe momentanément), il faut que les signes des différentes termes de l'équation soient identiques.

Filtres d'ordre 1

Passe-bas

Coupe les hautes fréquences.

$$ullet \ \ \underline{H}(\omega) = rac{G_0}{1 + jrac{\omega}{\omega_0}} \ ext{pente de } -20dB/deca$$

Passe-haut

Coupe les bas fréquences.

•
$$\underline{H}(\omega)=rac{G_0}{1-jrac{\omega_0}{\omega}}$$
 pente de $20dB/deca$

Filtre dérivateur

En complexe, dériver revient à multiplier par $j\omega$

- $\underline{H}(j\omega)=j\omega$
- Possède une phase constante $arphi=rac{\pi}{2}$ et pente de +20dB/deca
- Ce filtre amplifie le bruit à haut fréquences il faut donc l'utiliser que pour un domaine spécifique de fréquences.

Filtre intégrateur

En complexe, intégrer revient à multiplier par $\frac{1}{j\omega}$

•
$$\underline{H}(j\omega) = \frac{1}{j\omega}$$

• Possède une phase constante $arphi=-rac{\pi}{2}$ et pente de -20dB/deca

 Ce filtre amplifie le bruit en basse fréquences il faut donc l'utiliser que pour un domaine spécifique de fréquences.

Déphaseur

Permet de déphaser les signaux sans les atténuer ou les amplifier.

$$ullet \ \ \underline{H}(j\omega) = H_0 rac{1 - jrac{\omega}{\omega_0}}{1 + jrac{\omega}{\omega_0}}$$

• Gain : $G = H_0$

• Déphasage : $arphi = -2\arctan\left(rac{\omega}{\omega_0}
ight)$

Filtres d'ordre 2

Passe-bas

$$\underline{H}(\omega)=rac{G_0}{1-(rac{\omega}{\omega_0})^2+jrac{1}{Q}rac{\omega}{\omega_0}}$$
 pente $-40dB/deca$

- Résonance si $Q > \frac{1}{\sqrt{2}}$.
- En basse fréquence

On est en basse fréquence pour $\omega << \omega_0$

$$ullet \ \ \underline{H} = rac{-jQrac{\omega_0}{\omega}}{1+jQ(rac{\omega}{\omega_0})}pprox 1$$

En haut fréquence

On est en haut fréquence pour $\omega >> \omega_0$

•
$$\underline{H} = -\frac{\omega_0^2}{\omega^2}$$

Détermination de la résonance

On cherche quand le dénominateur du gain est minimum.

Passe-bande

$$\underline{H}(\omega) = G_0 rac{jrac{1}{Q}rac{\omega}{\omega_0}}{1-(rac{\omega}{\omega_0})^2+jrac{1}{Q}rac{\omega}{\omega_0}} = rac{G_0}{1+jQ(rac{\omega}{\omega_0}-rac{\omega_0}{\omega})}$$

- pente $\pm 20dB/deca$
- Q traduit l'acuité de la résonance.

En basse fréquence

On est en basse fréquence pour $\omega << \omega_0$

•
$$\underline{H} = \frac{j\omega}{Q\omega_0}$$

En haut fréquence

On est en haut fréquence pour $\omega >> \omega_0$

•
$$\underline{H} = \frac{1}{Q} \frac{\omega_0}{j\omega}$$

Pulsation de coupure

Gain maximum : $1+Q^2(rac{\omega}{\omega_0}-rac{\omega_0}{\omega})=0$

$$|H(\omega_c|=rac{G_{max}}{\sqrt{2}}$$

Comportement bobine et condensateur aux limites

$$rac{Z_c}{jC\omega} = rac{1}{jC\omega} ext{ alors } egin{cases} \sin \omega o 0 ext{ alors } |Z_c| = +\infty ext{ (int ouverte)} \ \sin \omega o +\infty ext{ alors } |Z_c| = 0 ext{ (fil)} \end{cases}$$

$$egin{aligned} \underline{Z_L} = jL\omega ext{ alors } \left\{ egin{aligned} &\sin\omega o 0 ext{ alors } |\underline{Z_L}| = 0 ext{ (fil)} \ &\sin\omega o +\infty ext{ alors } |\underline{Z_L}| = +\infty ext{ (int ouverte)} \end{aligned}
ight. \end{aligned}$$