

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатин	ка и системы управлен	ия
КАФЕДРА _	Системы обработк	и информации и упраг	вления
· · · <u> </u>	•		
		гчёт	
		ной работе № 6	
	«Ансамбли моделей н	машинного обучения	>>
	по курсу «Технологии	машинного обучения	· >>
Выполни	л:		
C	студент группы ИУ5-63		Волков А.С.
		(Подпись, дата)	(Фамилия И.О.)
Проверил	I:		

(Подпись, дата)

Гапанюк Ю.Е. (Фамилия И.О.)

Цель лабораторной работы:

Изучение ансамблей моделей машинного обучения.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.

Выполнение лабораторной работы:

In [18]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_e
rror, r2_score
%matplotlib inline
sns.set(style="whitegrid")
```

Загрузка и первичный анализ набора данных

Для лабораторной работы будем использовать набор данных о медицинской страховке (https://www.kaggle.com/mirichoi0218/insurance).

Задача регрессии состоит в предсказании платы за медицинское обслуживание на основании других параметров.

Колонки:

- 1. age возраст
- 2. sex пол
- 3. bmi индекс массы тела
- 4. children кол-во детей
- 5. smoker курит/не курит
- 6. region регион проживания в США
- 7. charges плата за мед. обслуживание

```
In [83]:
```

```
data = pd.read_csv('../data/insurance.csv', sep = ',')
data
```

Out[83]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520
1333	50	male	30.970	3	no	northwest	10600.54830
1334	18	female	31.920	0	no	northeast	2205.98080
1335	18	female	36.850	0	no	southeast	1629.83350
1336	21	female	25.800	0	no	southwest	2007.94500
1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

In [84]:

```
# Размер набора данных (строки, колонки)
data.shape
```

Out[84]:

(1338, 7)

In [85]:

```
# Типы данных в колонках data.dtypes
```

Out[85]:

```
age int64
sex object
bmi float64
children int64
smoker object
region object
charges float64
dtype: object
```

Проверка на наличие пропущенных значений

In [86]:

```
data.isnull().sum()
```

Out[86]:

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

Пропущенные значения не найдены.

Основные статистические показатели для каждого параметра

In [87]:

```
data.describe()
```

Out[87]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

Преобразуем категориальные признаки в числовые:

In [88]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
#non
le.fit(data.sex.drop_duplicates())
data.sex = le.transform(data.sex)
#kypeHue
le.fit(data.smoker.drop_duplicates())
data.smoker = le.transform(data.smoker)
#pezuoH
le.fit(data.region.drop_duplicates())
data.region = le.transform(data.region)
```

In [89]:

```
data.head()
```

Out[89]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

Разделение выборки на тестовую и обучающую

Подключим необходимый метод из библиотек sklearn.

In [90]:

```
from sklearn.model_selection import train_test_split
```

Разделим выборку на входные и выходные данные:

In [91]:

```
X = data.drop(['charges'], axis = 1)
Y = data.charges
print('Входные данные:\n\n', X.head(), '\n\nВыходные данные:\n\n', Y.head())
```

Входные данные:

	age	sex	bmi	children	smoker	region
0	19	0	27.900	0	1	3
1	18	1	33.770	1	0	2
2	28	1	33.000	3	0	2
3	33	1	22.705	0	0	1
4	32	1	28.880	0	0	1

Выходные данные:

```
0 16884.92400

1 1725.55230

2 4449.46200

3 21984.47061

4 3866.85520

Name: charges, dtype: float64
```

Наконец, разделим выборку на обучающую и тестовую.

In [92]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 0)
```

In [93]:

```
print('Входные параметры обучающей выборки:\n\n',X_train.head(), \
    '\n\nВходные параметры тестовой выборки:\n\n', X_test.head(), \
    '\n\nВыходные параметры обучающей выборки:\n\n', Y_train.head(), \
    '\n\nВыходные параметры тестовой выборки:\n\n', Y_test.head())
```

Входные параметры обучающей выборки:

	age	sex	bmi	children	smoker	region
1075	32	0	29.59	1	0	2
131	61	0	22.04	0	0	0
15	19	1	24.60	1	0	3
1223	20	0	24.42	0	1	2
1137	26	0	22.23	0	0	1

Входные параметры тестовой выборки:

	age	sex	bmi	children	smoker	region
578	52	1	30.200	1	0	3
610	47	0	29.370	1	0	2
569	48	1	40.565	2	1	1
1034	61	1	38.380	0	0	1
198	51	0	18.050	0	0	1

Выходные параметры обучающей выборки:

```
1075 4562.84210

131 13616.35860

15 1837.23700

1223 26125.67477

1137 3176.28770
```

Name: charges, dtype: float64

Выходные параметры тестовой выборки:

```
578 9724.53000
610 8547.69130
569 45702.02235
1034 12950.07120
198 9644.25250
```

Name: charges, dtype: float64

Проверим правильность разделения выборки на тестовую и обучающую. Посмотрим на размеры матриц.

In [94]:

```
print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

(1003, 6)
(335, 6)
(1003,)
(335,)
```

Случайный лес

Построим случайный лес из 5 деревьев.

In [95]:

```
from sklearn.ensemble import RandomForestRegressor

tree1 = RandomForestRegressor(n_estimators=5, oob_score=True, random_state=10)
tree1.fit(X, Y)
```

C:\Users\volko\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:737:
UserWarning: Some inputs do not have OOB scores. This probably means too f
ew trees were used to compute any reliable oob estimates.
 warn("Some inputs do not have OOB scores."

Out[95]:

In [96]:

```
Y_predict = tree1.predict(X_test)
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_predict))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_predict))
print('Median absolute error:',median_absolute_error(Y_test, Y_predict))
print('Коэффициент детерминации:',r2_score(Y_test, Y_predict))
```

Средняя абсолютная ошибка: 1095.6634543490547 Средняя квадратичная ошибка: 5374005.303428832 Median absolute error: 166.6194799999938 Коэффициент детерминации: 0.9658651384110751

Коэффициент детерминации оцень хороший. Оценки ошибок все же оставляют желать лучшего.

In [97]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_predict, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Сравним показатели с полиномиальным регрессором в методе опорных векторов из пятой лабораторной работы.

In [98]:

```
from sklearn.svm import SVR

X1 = data.drop(['charges'], axis = 1)
Y1 = data.charges
X_train, X_test, Y_train, Y_test = train_test_split(X1, Y1, random_state=0)

polySVR = SVR(kernel='poly', degree=2, gamma=0.2, C=1.0)
polySVR.fit(X_train, Y_train)
svr_y_pred = polySVR.predict(X_test)

plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, svr_y_pred, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


In [99]:

```
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, svr_y_pred))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, svr_y_pred))
print('Median absolute error:',median_absolute_error(Y_test, svr_y_pred))
print('Коэффициент детерминации:',r2_score(Y_test, svr_y_pred))
```

Средняя абсолютная ошибка: 3149.0234805327673 Средняя квадратичная ошибка: 46508573.89319307 Median absolute error: 152.70253406748088 Коэффициент детерминации: 0.7045846360572994 Видно, что метод случайного леса работает **значительно** лучше. Помимо улучшения показателей оценок ошибок и коэффициента детерминации это еще заметно и на графике. В методе случайного леса предсказанные данные больше совпадают с тестовой выборкой, учитывается "кучный разброс" данных.

Попробуем найти лучший случайный лес

In [100]:

Out[100]:

```
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=RandomForestRegressor(bootstrap=True, criterion='ms
e',
                                              max_depth=None,
                                              max_features='auto',
                                              max_leaf_nodes=None,
                                              min_impurity_decrease=0.0,
                                              min_impurity_split=None,
                                              min_samples_leaf=1,
                                              min_samples_split=2,
                                              min_weight_fraction_leaf=0.0,
                                              n_estimators='warn', n_jobs=N
one,
                                              oob_score=True, random_state=
10,
                                              verbose=0, warm_start=False),
             iid='warn', n_jobs=-1,
             param grid={'max features': [0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 1.
0],
                         'min samples leaf': [0.01, 0.04, 0.06, 0.08, 0.
1],
                          'n estimators': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1
5, 20,
                                           25, 50, 75, 100]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=Fals
e,
             scoring='neg_mean_squared_error', verbose=0)
```

In [101]:

```
print('Лучший показатель средней квадратичной ошибки:',-grid_1.best_score_)
print('Параметры для данного показателя:\n',grid_1.best_params_)
```

```
Лучший показатель средней квадратичной ошибки: 20658459.544196565
Параметры для данного показателя:
{'max_features': 0.9, 'min_samples_leaf': 0.01, 'n_estimators': 75}
```

In [102]:

```
tree2 = RandomForestRegressor(n_estimators=75, max_features = 0.9, min_samples_leaf =
0.01, oob_score=True, random_state=10)
tree2.fit(X, Y)
```

Out[102]:

In [103]:

```
Y_predict2 = tree2.predict(X_test)
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_predict2))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_predict2))
print('Median absolute error:',median_absolute_error(Y_test, Y_predict2))
print('Коэффициент детерминации:',r2_score(Y_test, Y_predict2))
```

Средняя абсолютная ошибка: 2146.9373915955116 Средняя квадратичная ошибка: 12385385.504762802 Median absolute error: 1410.684748085012 Коэффициент детерминации: 0.9213299213417582

In [104]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_predict2, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Судя по оценкам, точность этого леса действительно улучшилась, но на графике видно, что предсказанные данные больше не совпадают с тестовой выборкой, чем на графике первого леса. То есть нельзя сказать, что данное дерево действительно лучше.

Попробуем убрать из набора параметров мин. кол-во данных в листе min_samples_leaf и заново провести кросс-валидацию.

```
In [105]:
```

Лучший показатель средней квадратичной ошибки: 23068300.96479446 Параметры для данного показателя: {'max_features': 0.6, 'n_estimators': 100}

In [106]:

```
tree3 = RandomForestRegressor(n_estimators=100, max_features = 0.6, oob_score=True, ran
dom_state=10)
tree3.fit(X, Y)
```

Out[106]:

In [107]:

```
Y_predict3 = tree3.predict(X_test)
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_predict3))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_predict3))
print('Median absolute error:',median_absolute_error(Y_test, Y_predict3))
print('Коэффициент детерминации:',r2_score(Y_test, Y_predict3))
```

Средняя абсолютная ошибка: 887.9995235699863 Средняя квадратичная ошибка: 2434563.3416265496 Median absolute error: 437.80759429999944 Коэффициент детерминации: 0.9845360251797911

In [108]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_predict3, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Показатели точности еще лучше, и на графике видно хорошее совпадение тестовой выборки и предсказанных данных, хотя при возрасте от 50 до 60 заметно значительно расхождение в данных.

Градиентный бустинг

Построим ансамбль из 5 моделей

In [109]:

```
from sklearn.ensemble import GradientBoostingRegressor

grad = GradientBoostingRegressor(n_estimators=5, random_state = 10)
grad.fit(X_train, Y_train)
```

Out[109]:

```
GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1, loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=5, n_iter_no_change=None, presort='auto', random_state=10, subsample=1.0, tol=0.0001, validation_fraction=0.1, verbose=0, warm_start=F alse)
```

In [110]:

```
Y_grad_pred = grad.predict(X_test)
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_grad_pred))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_grad_pred))
print('Median absolute error:',median_absolute_error(Y_test, Y_grad_pred))
print('Коэффициент детерминации:',r2_score(Y_test, Y_grad_pred))
```

Средняя абсолютная ошибка: 6237.423903812472 Средняя квадратичная ошибка: 65283061.76832604 Median absolute error: 5067.817331876842 Коэффициент детерминации: 0.5853319541495026

In [111]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_grad_pred, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Без подбора гиперпараметров ансамбль работает намного хуже, чем случайный лес.

Применим кросс-валидацию.

```
In [112]:
params = {
    'n_estimators': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 75, 100],
    'max_features': [0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 1.0],
    'min_samples_leaf': [0.01, 0.04, 0.06, 0.08, 0.1]
}
grid_gr = GridSearchCV(estimator=GradientBoostingRegressor(random_state=10),
                    param_grid=params, scoring='neg_mean_squared_error', cv=3, n_jobs=-
1)
grid_gr.fit(X, Y)
Out[112]:
GridSearchCV(cv=3, error_score='raise-deprecating',
             estimator=GradientBoostingRegressor(alpha=0.9,
                                                  criterion='friedman_mse',
                                                  init=None, learning_rate=
0.1,
                                                  loss='ls', max_depth=3,
                                                  max features=None,
                                                  max_leaf_nodes=None,
                                                  min_impurity_decrease=0.
0,
                                                  min_impurity_split=None,
```

param grid={'max features': [0.2, 0.3, 0.4, 0.6, 0.8, 0.9, 1.

pre_dispatch='2*n_jobs', refit=True, return_train_score=Fals

scoring='neg_mean_squared_error', verbose=0)

print('Параметры для данного показателя:\n',grid_gr.best_params_)

Лучший показатель средней квадратичной ошибки: 20349467.277887657

{'max_features': 1.0, 'min_samples_leaf': 0.04, 'n_estimators': 50}

print('Лучший показатель средней квадратичной ошибки:',-grid_gr.best_score_)

'min samples leaf': [0.01, 0.04, 0.06, 0.08, 0.

'n_estimators': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1

25, 50, 75, 100]},

0.0,

e=1.0,

se),

0],

1],

е,

5, 20,

In [113]:

Параметры для данного показателя:

iid='warn', n_jobs=-1,

min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=

n_estimators=100,

random_state=10, subsampl

validation_fraction=0.1,
verbose=0, warm_start=Fal

n_iter...

tol=0.0001,

Построим ансамбль по найденным лучшим параметрам:

In [114]:

```
grad1 = GradientBoostingRegressor(n_estimators=50, max_features = 1.0, min_samples_leaf = 0.04, random_state = 10) grad1.fit(X_train, Y_train) Y_grad_pred1 = grad1.predict(X_test) print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_grad_pred1)) print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_grad_pred1)) print('Median absolute error:',median_absolute_error(Y_test, Y_grad_pred1)) print('Коэффициент детерминации:',r2_score(Y_test, Y_grad_pred1))
```

Средняя абсолютная ошибка: 2489.7851352978873 Средняя квадратичная ошибка: 15250659.2631103 Median absolute error: 1833.2754693185348 Коэффициент детерминации: 0.9031301396829707

In [115]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_grad_pred1, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Показатели действительно значительно улучшились. Однако заметно расхождение между предсказанными данными и тестовой выборкой.

Попробуем провести кросс-валидацию без учета min_samples_leaf.

In [116]:

Лучший показатель средней квадратичной ошибки: 20517355.12930149 Параметры для данного показателя: {'max_features': 0.9, 'n_estimators': 50}

In [117]:

```
grad2 = GradientBoostingRegressor(n_estimators=50, max_features = 0.9, random_state = 10)
grad2.fit(X_train, Y_train)
Y_grad_pred2 = grad2.predict(X_test)
print('Средняя абсолютная ошибка:',mean_absolute_error(Y_test, Y_grad_pred2))
print('Средняя квадратичная ошибка:',mean_squared_error(Y_test, Y_grad_pred2))
print('Меdian absolute error:',median_absolute_error(Y_test, Y_grad_pred2))
print('Коэффициент детерминации:',r2_score(Y_test, Y_grad_pred2))
```

Средняя абсолютная ошибка: 2470.7720837116653 Средняя квадратичная ошибка: 15459011.127629893 Median absolute error: 1750.6903244693658 Коэффициент детерминации: 0.9018067204350156

In [118]:

```
plt.scatter(X_test.age, Y_test, marker = 'o', label = 'Тестовая выборка')
plt.scatter(X_test.age, Y_grad_pred2, marker = '.', label = 'Предсказанные данные')
plt.legend(loc = 'lower right')
plt.xlabel('Возраст')
plt.ylabel('Целевой признак')
plt.show()
```


Новый ансамбль ведет себя практически так же.

Выводы

Лучше себя показал метод случайного леса. Показатель детерминации достигнул 0.98. Оценки ошибок все равно оставались не очень хорошими, но на графике было видно хорошее качество обучения.