Devoir surveillé – L2 FaSEST– section 1 Mars 2025 – Durée 2h -

Documents et calculatrice interdits. Tous les résultats devront être justifiés. Aucun brouillon ne sera corrigé. Le sujet comporte 5 exercices.

Exercice 1 (1,5 points)

Expliciter la matrice A de $M_3(IR)$ définie de la manière suivante $\begin{cases} m_{ij} = 1 \text{ si } i+j \text{ est pair} \\ m_{ij} = 0 \text{ si } i+j \text{ est impair} \end{cases}$

Exercice 2 (6 points)

Soit A =
$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
, B = $\begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 4 \end{pmatrix}$, C = $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et D = $\begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 5 & 4 \end{pmatrix}$

- 1) Après avoir rappelé la règle de calcul, indiquer les produits possibles. Effectuer l'un de ces produits (détailler les calculs).
- 2) Déterminer les matrices M de $M_2(IR)$ telles que A.M = $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- 3) Déterminer α et β tels que $A^2 + \alpha A + \beta I_2 = 0_2$. Déduire que A est inversible et déterminer son inverse.

Exercice 3 (3,5 points)

Soit
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & 0 & 2 \end{pmatrix}$

- 1) Déterminer le rang de A et justifier que A est inversible.
- 2) Calculer le produit A.B. Déduire A^{-1} .

Exercice 4 (4 points)

Soit A =
$$\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$

- 1) Calculer A², A³.
- 2) Montrer par récurrence que, pour tout n >0, $A^n = \begin{pmatrix} 2-2^n & 2^n-1 \\ 2-2^{n+1} & 2^{n+1}-1 \end{pmatrix}$

Exercice 5 (5 points)

Soit
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

- 1) Déterminer une constante α et une matrice B \in $M_{3}(IR)$ telles que A = αI_{3} + B.
- 2) a) Calculer B^2 , B^3 . Calculer B^n pour tout n > 3.
 - b) Calculer A^n pour tout n>0 (à l'aide du binôme de Newton).