הפקולטה להנדסה המחלקה להנדסת מערכות מידע

בינה מלאכותית – מטלה 2

עידו סולומון ת״ז 308111160 ליאור פרי ת״ז 203722814

מגישים:

<u>שאלה 1</u>

בהינתן המצב הבא <u>בבעיית 8 המלכות</u>, הריצו את אלגוריתם AC. רשמו האם האלגוריתם מזהה מבוי סתום וכן רשמו אילו ערכים נשארים בתחום (domain) של כל משתנה (המשתנים הינם המלכות והתחומים הינם עמודה לכל מלכה)

8	х					j.		
7								
6		х						
5								
4			х					
3								
2								
1				х				
	1	2	3	4	5	6	7	8

נגדיר 8 מלכות:

$$Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8$$

.i-המשבצת בה מוצבת המלכה $-(x_i, y_i)$ נגדיר:

נתונה השמה חלקית:

$$(x_8, y_8) = (1.8)$$

$$(x_6, y_6) = (2,6)$$

$$(x_4, y_4) = (3,4)$$

 $(x_1, y_1) = (4,1)$

$$(x_1, y_1) = (4.1)$$

מרכב מעמודות) מכיוון שעל פי חוקי הבעייה 2 מלכות לא יכולות להיות בכל שורה, (וה-domain מורכב מעמודות) ונותרו 4 שורות פנויות, נוכל לחלק את 4 השורות הנותרות בין המלכות. נקבע ללא הגבלת הכלליות

$$x_2 = 2$$

$$x_3 = 3$$

$$x_5 = 5$$

$$x_7 = 7$$

נגדיר את קבוצת האילוצים:

$$x_{1} \neq x_{2} \neq x_{3} \neq x_{4} \neq x_{5} \neq x_{6} \neq x_{7} \neq x_{8}$$

$$y_{1} \neq y_{2} \neq y_{3} \neq y_{4} \neq y_{5} \neq y_{6} \neq y_{7} \neq y_{8}$$

$$\forall i, j : i \neq j \rightarrow \frac{y_{i} - y_{j}}{x_{i} - x_{j}} \neq 1$$

$$\forall i, j : i \neq j \rightarrow \frac{y_{i} - y_{j}}{x_{i} - x_{j}} \neq -1$$

i = 2,3,5,7 נחפש השמה ל- x_i, y_i -ל

במצב ההתחלתי (המשבצות האפורות הן משבצות שנחסמות על ידי המלכות הנתונות):

$$D_{y_2} = (8)$$

$$D_{y_3} = (7,8)$$

$$D_{y_5} = (5,6,7,8)$$

$$D_{y_7} = (5,6,7,8)$$

לא יוכל לקבל y_2 אה יתר המשתנים יקבלו ערך זה, y_2 לא יוכל לקבל (1 מורכב רק מ-8, אם יתר המשתנים יקבלו ערך אותו, את y_2 שיספק את האילוצים. על כן ניתן להוציא את 8 מה-domain של כולם אותו, ולא יהיה ערך עבור y_2 שיספק את האילוצים. על כן ניתן להוציא את y_2 מה- y_2 מלבד ביניים מלבד

$$D_{y_2} = (8)$$

 $D_{y_3} = (7)$
 $D_{y_5} = (5,6,7)$
 $D_{y_7} = (5,6,7)$

(אחרת הם יישבו על אותו האלכסון) אז y_3 לא יכול לקבל את הערך 7 (אחרת הם יישבו על אותו האלכסון) (2 נשים לב שאם y_2 שיתמוך בו. לכן נוציא מה-domain של y_2 את 8, ובכך y_3 נותר ללא ערכים ב domain והגענו למבוי סתום.

<u>שאלה 2</u>

הדגימו אלגוריתם גיזום אלפא-ביטא על העץ הבא (כתבו ערכי אלפא, ביטא ו-∨: לפני ביקור בצומת, אחרי ביקור בבן שמאלי ולאחר ביקור בשני הבנים) הראו גם אילו ענפים נגזמים. בתוך הקודקודים רשמו את הערך הסופי בקודקוד (אם לא נגזם).

שאלה 3

ַנתון תת עץ המשחק הבא:

- א) נניח כי בהרצת אלגוריתם אלפא-ביטא קודקוד C לא יפותח, מה ניתן לומר על (בהתייחס C ליאריתם אלפא-ביטא קודקוד (בהתייחס ל-X ו-Y):
 - MAX(A,B) (1
 - MIN(A,B) (2
 - ב) עבור אילו ערכי E אלגוריתם אלפא-ביטא יגזום את הקודקודים F,G,H (הסבר עבור כל אחד משלושת הקודקודים בנפרד) לאחר בדיקת קודקוד E (E אכן נבדק)? יש לבטא את ערך E ביחס לערכי שאר הקודקודים באופן הכללי ביותר. יש להניח עבור סעיף זה כי ∞-X ו- ∞-9.
 - א) נסמן את הקודקודים הפנימיים בתרשים ב-1-7.
 - בהינתן שקודקוד C לא מפותח, אנו יודעים כי תת-העץ עם קודקוד C בשורשו נגזם. נגדיר את ערך קודקוד C כ-MIN(A,B).
 - לכן לא ניתן לומר כלום על MIN, הוא קודקוד (4) א ו-A קודקוד האב של (1) קודקוד האב של MAX(A,B)
- פי MIN(A,B). לפי MIN(A,B). לפי מעם ערך הקודקוד 2 שווה ל-MIN (עשית כאשר ערך הקודקוד 2 אלגוריתם אלפא-ביטא, גיזום בקודקוד MAX (קודקוד 2) ייעשה כאשר ערך הקודקוד גדול או שווה מבטא. כלומר $V(2) \geq \beta$, אזי $V(2) \geq \beta$.
- ולכן F אייגזם. E עבור כל ערך של F גוררים פיתוח של Y גוררים פיתוח של X=-∞ F (ב
 - $MIN(E,F) \ge MAX(MIN(A,B),MIN(C,D)) G$
 - $G \leq MIN(E,F) \text{ OR } MIN(E,F) \geq MAX(MIN(A,B),MIN(C,D)) H$

```
שאלה 4
```

```
:ידוע כי
```

מזגן הינו מכשיר מרעיש

לכל מי שיש טלוויזיה בבית אין רדיו

לסטודנטים אין מכשיר מרעיש

לאבי יש או מזגן או טלוויזיה

- First order logic א) בטא את הידע בעזרת
- ב) הוכח בעזרת רזולוציה (כולל כל השלבים) כי אם אבי סטודנט אז אין לו רדיו.

השתמש בפרדיקטים הבאים: x - Student(x) x - Student(x) הינו מרעיש x - Loud(x) x - Have(x,y)

ובקבועים הבאים: AVI, TV, AC, RADIO

: פתרון

א.

- 1: Loud(AC)
- 2: $\forall x \; Have(x, TV) \rightarrow \neg Have(x, Radio)$
- 3: $\forall x \forall y \ Student(x) \cap Loud(y) \rightarrow \neg Have(x, y)$
- $4: Have(AVI, TV) \cup Have(AVI, AC)$

: Clausal form-ב. נעביר ל

1: Loud(AC) (שלב 7) { Loud(AC)

2: $\forall x \; Have(x, TV) \rightarrow \neg Have(x, RADIO)$

 $\forall x \neg Have(x, TV) \cup \neg Have(x, RADIO)$ (1 שלב)

 $\neg Have(x, TV) \cup \neg Have(x, RADIO)$ (5 שלב)

 $\{ \neg Have(x, TV), \neg Have(x, RADIO) \}$ (7 שלב)

```
3: \forall x \forall y \ Student(x) \cap Loud(y) \rightarrow \neg Have(x, y)
\forall x \forall y \ (\neg (Student(x) \cap Loud(y)) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(y))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall y \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \forall x \ (\neg (Student(x) \cap Loud(x))) \cup \neg Have(x,y)) \ (u \forall x \ (\neg (Student(x) \cap Loud(x)))) \ (u \forall x \ (\neg (
\forall x \forall y \ (\neg Student(x) \cup \neg Loud(y) \cup \neg Have(x,y)) \ (2) שלב
\neg Student(x) \cup \neg Loud(y) \cup \neg Have(x, y) (5 שלב)
\{\neg Student(x), \neg Loud(y), \neg Have(x,y)\} (7) שלב
4: Have(AVI, TV) \cup Have(AVI, AC)
\{Have(AVI, TV), Have(AVI, AC)\} (שלב 7)
                                                                                                                                                           נוסיף משפט 5 ונניח אותו בשלילה:
5: \neg (Student(AVI) \rightarrow \neg Have(AVI, RADIO))
\neg(\neg Student(AVI) \cup \neg Have(AVI, RADIO)) (שלב 1)
Student(AVI) \cap Have(AVI, RADIO) (2 שלב)
{ Student(AVI)}, {Have(AVI, RADIO)}
                                                                                                                                                                                                                                                  : 8 שלב
1: { Loud( AC) }
2: { \neg Have(x, TV) , \neg Have(x, RADIO)}
3: \{\neg Student(z), \neg Loud(y), \neg Have(z, y)\}
4: {Have(AVI,TV), Have(AVI,AC)}
5.1 \{ Student(AVI) \}
5.2 {Have(AVI, RADIO) }
                                                                                                                                                                                      :נפריך באמצעות רזולוציה
6: (1+3, y = AC) \{ \neg Student(z), \neg Have(z, AC) \}
7: (4+6, Z = AVI) \{ Have(AVI, TV), \neg Student(AVI) \}
8: (2 + 7, x = AVI) \{ \neg Have(AVI, RADIO), \neg Student(AVI) \}
9: (8 + 5.1 + 5.2)
             ולכן לסתירה להנחה בשלילה, כלומר הוכחנו שאם אבי סטודנט, אז אין לו רדיו.
```

<u>שאלה 5</u>

ידוע כי:

קיים סטודנט שלומד מתמטיקה

כל מי שאוהב ממתקים, לא לומד מתמטיקה

כל מי שלא אוהב ממתקים, אוהב גלידה

- First order logic א) בטא את הידע בעזרת
- ב) הוכח בעזרת רזולוציה (כולל כל השלבים) כי קיים סטודנט שאוהב גלידה.

השתמש בפרדיקטים הבאים:

- הינו סטודנט x Student(x)
- לומד מתמטיקה x Math(x)
- אוהב ממתקים x Candy(x)
- אוהב גלידה x Icecream(x)
- FOL-א) נבטא את הידע (ואת השלילה לטענה בסעיף ב') ב

1: $\exists x \ Student(x) \cap Math(x)$

2: $\forall x \ Candy(x) \rightarrow \sim Math(x)$

 $3: \forall x \sim Candy(x) \rightarrow IceCream(x)$

 $4: \sim [\exists x \ Student(x) \cap IceCream(x)]$

ב) נבצע המרת FOL ל-Replace implications : שלב

1: $\exists x \ Student(x) \cap Math(x)$

2: $\forall x \sim Candy(x) \cup \sim Math(x)$

 $3: \forall x \sim Candy(x) \cup IceCream(x)$

 $4: \sim [\exists x \ Student(x) \cap IceCream(x)]$

Distribute negations :2 שלב

1: $\exists x \ Student(x) \cap Math(x)$

2: $\forall x \sim Candy(x) \cup \sim Math(x)$

 $3: \forall x \ Candy(x) \cup IceCream(x)$

 $4: \forall x [\sim Student(x) \cup \sim IceCream(x)]$

```
שלב 3: Standardize variables
```

1:
$$\exists x 1 \ Student(x) \cap Math(x)$$

2:
$$\forall x 2 \sim Candy(x) \cup \sim Math(x)$$

$$3: \forall x 3 \ Candy(x) \cup IceCream(x)$$

$$4: \forall x \in A[\sim Student(x) \cup \sim IceCream(x)]$$

Replace existential :4 שלב

1:
$$Student(x) \cap Math(x)$$

2:
$$\forall x 2 \sim Candy(x) \cup \sim Math(x)$$

$$3: \forall x 3 \ Candy(x) \cup IceCream(x)$$

$$4: \forall x 4 [\sim Student(x) \cup \sim IceCream(x)]$$

Remove universals :5 שלב

1:
$$Student(x) \cap Math(x)$$

$$2: \sim Candy(x) \cup \sim Math(x)$$

$$3: Candy(x) \cup IceCream(x)$$

$$4: \sim Student(x) \cup \sim IceCream(x)$$

Distribute disjunctions : שלב

1:
$$Student(x) \cap Math(x)$$

$$2: \sim Candy(x) \cup \sim Math(x)$$

$$3: Candy(x) \cup IceCream(x)$$

$$4: \sim Student(x) \cup \sim IceCream(x)$$

Replace operators : שלב

$$1.1: \{Student(x)\}$$

1.2:
$$\{Math(x)\}$$

$$2: \{ \sim Candy(x), \sim Math(x) \}$$

$$3: \{Candy(x), IceCream(x)\}$$

$$4: \{ \sim Student(x), \sim IceCream(x) \}$$

Rename variables :<u>8 שלב</u>

1.1:
$$\{Student(x11)\}$$

$$1.2: \{Math(x12)\}$$

$$2: \{\sim Candy(x2), \sim Math(x2)\}$$

$$3: \{Candy(x3), IceCream(x3)\}$$

$$4: \{ \sim Student(x4), \sim IceCream(x4) \}$$

נוכיח באמצעות רזולוציה:

$$1.1: \{Student(x11)\}$$

$$1.2: \{Math(x12)\}$$

$$2: \{\sim Candy(x2), \sim Math(x2)\}$$

$$3: \{Candy(x3), IceCream(x3)\}$$

$$4: \{ \sim Student(x4), \sim IceCream(x4) \}$$

$$5: (2+3, x2 = x3) \{ \sim Math(x3), IceCream(x3) \}$$

6:
$$(4 + 5, x4 = x3) \{ \sim Math(x3), \sim Student(x3) \}$$

7:
$$(6 + 1.1, x11 = x3) \{ \sim Math(x3) \}$$

$$8: (7 + 1.2, x12 = x3)$$
{}

ולכן לסתירה להנחה בשלילה, כלומר הוכחנו שקיים סטודנט שאוהב גלידה.