BitNet: Scaling 1-bit Transformers for Large Language Models

2023

HongyuWang*†*, Shuming Ma*†, Li Dong†, Shaohan Huang†, Huaijie Wang§, Lingxiao Ma†, Fan Yang†, Ruiping Wang‡, Yi Wu§, Furu Wei†◊

- † Microsoft Research § Tsinghua University
- **‡ University of Chinese Academy of Sciences**

Part 1. Background

Large Language Model(LLM)

- Significant improvements in various tasks
 - Large language models (LMs) elicit strong reasoning capabilities
 - High inference costs and energy consumption
- Model quantization
 - Reduce the memory footprint and computational cost of large-scale models while maintaining competitive performance
 - Applicable to deploying these models on distributed systems or multi-device platforms, the inter-device communication

Part 1. Background

Existing quantization approaches

- Post-training
 - Simple and easy to apply since it does not require any changes to the training pipeline
 - Result in a more significant loss of accuracy especially when the precision goes lower
- Quantization-aware training
 - Model is trained to account for the reduced precision from the beginning
 - Typically results in better accuracy
 - Model becomes more difficult to converge as the precision goes lower
 - It is unknown whether quantization-aware training follows the scaling law of neural language models

Part 2. Introduction

BitNet

- 1-bit Transformer architecture for large language model
 - Low-precision binary weights and quantized activations
 - Maintain high precision for the optimizer states and gradients during training
- Implementation of the BitNet architecture
 - Quite simple, requiring only the replacement of linear projections in the Transformer
 - it complements other acceleration methods, such as FlashAttention [DFE+22, Dao23]

Tri Dao et al. FlashAttention: fast and memory-efficient exact attention with io-awareness. NeurIPS. 2022. Tri Dao. FlashAttention-2: faster attention with better parallelism and work partitioning. CoRR, abs/2307.08691. 2023.

BitNet Architecture

- Leave the other components high-precision without BitLinear (e.g., 8-bit)
 - Residual connections & layer normalization contribute negligible computation costs to large language models
 - Computation cost of QKV transformation is much smaller than the parametric projection
 - Preserve the precision for input/output embedding with using high-precision probabilities to perform sampling

BitLinear

- Weight Quantization
 - Centralize the weights to be zero-mean before binarization
 - To increase the capacity within a limited numerical range

$$W \in \mathcal{R}^{n \times m}$$

$$\widetilde{W} = \operatorname{Sign}(W - \alpha)$$
 $\operatorname{Sign}(W_{ij}) = \begin{cases} +1, & \text{if } W_{ij} > 0 \\ -1, & \text{if } W_{ij} \leq 0 \end{cases}$ $\alpha = \frac{1}{nm} \sum_{ij} W_{ij}$

BitLinear

- Activation Quantization (Absmax Quantization)
 - Scales activations into the range $[-Q_b,Q_b]$ $(Q_b=2^{b-1})$ by multiplying with Q_b and dividing by the absolute maximum of the input matrix

$$\widetilde{x} = \operatorname{Quant}(x) = \operatorname{Clip}(x \times \frac{Q_b}{\gamma}, -Q_b + \epsilon, Q_b - \epsilon) \quad \operatorname{Clip}(x, a, b) = \max(a, \min(b, x)) \quad \gamma = ||x||_{\infty}$$

- Activation Quantization (Absmax Quantization)
 - Before the non-linear functions (e.g., ReLU)
 - Scale them into the range by subtracting the minimum of the inputs so that all values are non-negative
 - Quantize the activation to 8-bit and leave lower precision

$$\widetilde{x} = \operatorname{Quant}(x) = \operatorname{Clip}((x - \eta) \times \frac{Q_b}{\gamma}, \epsilon, Q_b - \epsilon) \quad \eta = \min_{ij} x_{ij}$$

- BitLinear $y = \widetilde{W}\widetilde{x}$
 - \circ Elements in $W \& \mathcal{X}$ are mutually independent and share the same distribution, and W and x are independent of each other
 - Variance of the output Var(y)
 - With the standard initialization methods (e.g., Kaiming initialization or Xavier initialization)
 - Great benefit to the training stability

$$Var(y) = nVar(\widetilde{w}\widetilde{x}) = nE[\widetilde{w}^2]E[\widetilde{x}^2] = n\beta^2 E[\widetilde{x}^2] \approx E[\widetilde{x}^2]$$

- Layernorm function before the activation quantization
 - To preserve the variance after quantization $Var(y) \approx E[LN(\widetilde{x})^2] = 1$
 - Exact implementation as SubLN [WMH+22]

$$y = \widetilde{W}\widetilde{x} = \widetilde{W} \operatorname{Quant}(\operatorname{LN}(x)) \times \frac{\beta\gamma}{Q_b} \quad \operatorname{LN}(x) = \frac{x - E(x)}{\sqrt{\operatorname{Var}(x) + \epsilon}} \quad \beta = \frac{1}{nm}||W||_1$$

8

Model parallelism with Group Quantization & Normalization

- Technique to scale up large language models
- Partitions the matrix multiplication on multiple devices
- Prerequisite for the existing model parallelism approaches
 - Tensors are independent along the partition dimension
 - However, all of the parameters $\alpha, \beta, \gamma, \eta$ are calculated from the whole tensors, breaking the independent prerequisite
 - Existing solution: all-reduce operation
- The problem also exists in SubLN
 - The amount of synchronization is growing as the model becomes deeper
 - It significantly slows the forward pass

Model parallelism with Group Quantization & Normalization

- Group Quantization
 - Divide weights & activations into groups
 - Then independently estimate each group's parameters
 - Parameters can be calculated locally without requiring additional communication
- Group Quantization Process
 - Divde weight matrix $W \in \mathcal{R}^{n \times m}$ into G groups along the partition dimension

$$\gamma_g = ||x^{(g)}||_{\infty} \qquad \eta_g = \min_{ij} x_{ij}^{(g)}$$

- Each group has a size of $\frac{n}{G} imes m$
- Estimate the parameters for each group independently (e.g., Group normalization [WH20])

$$\alpha_g = \frac{G}{nm} \sum_{ij} W_{ij}^{(g)} \quad \beta_g = \frac{G}{nm} ||W^{(g)}||_1 \quad \text{LN}(x^{(g)}) = \frac{x^{(g)} - E(x^{(g)})}{\sqrt{\text{Var}(x^{(g)}) + \epsilon}}$$

Yuxin Wu and Kaiming He. Group normalization. Int. J. Comput. Vis., 128(3):742-755, 2020.

Model Training

- Straight-through estimator (STE) [BLC13]
 - Approximate the gradient during backpropagation for non-differentiable functions
 - Make it possible to train our quantized model.

Mixed precision training

- Maintain a latent weight in a high-precision format for the learnable parameters to accumulate the parameter updates
- Latent weights are binarized on the fly during the forward pass and never used for the inference process

Large learning rate

- Small update on the latent weights often makes no difference in the 1-bit weights
- This problem is even worse at the beginning of the training, where the models are supposed to converge as fast as possible
- Increasing the learning rate is the simplest and best way to accelerate the optimization

Computational Efficiency: Arithmetic operations energy

ADD[Hor14], MUL[ZZL22] energy consumption at 45nm and 7nm process nodes

Bits	ADD Energy \hat{E}_{add} (pJ) 45nm 7nm		MUL Energy \hat{E}_{mul} (pJ) 45nm 7nm		
FP32	0.9	0.38	3.7	1.31	
FP16	0.4	0.16	1.1	0.34	
INT8	0.03	0.007	0.2	0.07	

Vanilla Transformers

• Energy consumption can be calculated for matrix multiplication (m imes n , n imes p)

$$E_{add} = m \times (n-1) \times p \times \hat{E}_{add}$$
 $E_{mul} = m \times n \times p \times \hat{E}_{mul}$

BitNet

• Multiplication operations are only applied to scale the output with the scalars eta and $rac{\gamma}{Q_b}$

$$E_{mul} = (m \times p + m \times n) \times \hat{E}_{mul}$$

12

Computational Efficiency: Arithmetic operations energy

- Energy savings of W1A8 BitNet compared to a full-precision (32-32) and half-precision (16-16) Transformer
 - Provides significant energy savings, especially for the multiplication operations
 - Use the major component of the matrix multiplication energy consumption

Models	Size	WBits	7nm En	ergy (J)	45nm Eı	45nm Energy (J)	
Models	Size	WDIIS	MUL	ADD	MUL	ADD	
Transformer		32	4.41	1.28	12.46	3.03	
Transformer	6.7B	16	1.14	0.54	3.70	1.35	
BitNet		1	0.02	0.04	0.08	0.13	
Transformer		32	8.58	2.49	24.23	5.89	
Transformer	13B	16	2.23	1.05	7.20	2.62	
BitNet		1	0.04	0.06	0.12	0.24	
Transformer		32	20.09	5.83	56.73	13.80	
11 ansionne	30B	16	5.21	2.45	16.87	6.13	
BitNet		1	0.06	0.14	0.20	0.53	

Setup

- Comparison with FP16 Transformers
 - Model: BitNet of various scales, ranging from 125M to 30B
 - Dataset: Pile dataset, Common Crawl snapshots, RealNews, CC-Stories datas
 - Tokenizer: Sentencpiece, vocabulary 16K
- Comparison with Post-training Quantization
 - Model: BitNet, Absmax, SmoothQuant, GPTQ, and QuIP
 - The same Dataset and Tokenizer

Model configuration for BitNet

Hyperparameters for BitNet and the FP16 Transformers

Params	# Hidden	# Layers	# Heads	Learning Rate
125M	768	12	12	2.4e-3
350M	1024	24	16	1.2e-3
760M	1536	24	16	1e-3
1.3B	2048	24	32	8e-4
2.7B	2560	32	32	6.4e-4
6.7B	4096	32	32	4.8e-4
13B	5120	40	40	4e-4
30B	7168	48	56	4e-4

Hyperparameters	Value
Training updates Tokens per sample Adam β Learning rate schedule Warmup updates	40K 256K (0.9, 0.98) Polynomial decay 750
Gradient clipping Dropout Attention dropout Weight decay	X X X 0.01

Inference-Optimal Scaling Law (with FP16 Transformers)

- Scale predictably [KMH+20] to determine optimal allocation of a computation budget
- Predict the loss against the energy consumption
- Given a fixed computation budget, BitNet achieves a significantly better loss
- Inference cost is much smaller to get the same performance as the FP16 models

Scaling Law

$$L(N) = aN^b + c$$

15

Results on Downstream Tasks

- 0-shot and 4-shot performance of BitNet and FP16 Transformer on four downstream tasks, including Hellaswag, Winogrande, Winograd, Storycloze
- Performance on the downstream tasks can scale as the computation budget grows
- Scaling efficiency of capabilities is much higher than the FP16 Transformer baseline

Stability Test

- (a) BitNet can converge with a large learning rate while FP16 Transformer can not
- (a) Better training stability of BitNet in optimization enables the training with larger learning rates
- (b) The more large learning rate is, The better BitNet training convergence is

Comparison with FP16 Transformers

- Setup
 - Model: BitNet of various scales, ranging from 125M to 30B
 - Dataset: Pile dataset, Common Crawl snapshots, RealNews, CC-Stories datas
 - Tokenizer: Sentencpiece, vocabulary 16K

Model configuration for BitNet

Params	# Hidden	# Layers	# Heads	Learning Rate
125M	768	12	12	2.4e-3
350M	1024	24	16	1.2e-3
760M	1536	24	16	1e-3
1.3B	2048	24	32	8e-4
2.7B	2560	32	32	6.4e-4
6.7B	4096	32	32	4.8e-4
13B	5120	40	40	4e-4
30B	7168	48	56	4e-4

Hyperparameters for BitNet and the FP16 Transformers

Hyperparameters	Value
Training updates Tokens per sample Adam β Learning rate schedule Warmup updates	40K 256K (0.9, 0.98) Polynomial decay 750
Gradient clipping Dropout Attention dropout Weight decay	X X X 0.01

Comparison with Post-training Quantization

- All models have the model sizes of 6.7B for a fair comparison
- Zero-shot scores of BitNet are comparable with the 8-bit models
- BitNet Significantly achieves better results than both the weight-and-activation quantization methods and the weight-only methods

WBits	Methods	PTQ	PPL↓	WG↑	WGe↑	HS↑	SC↑	Avg↑
16	Random Transformer	X X	- 15.19	50.0 66.7	50.0 54.3	25.0 42.9	50.0 67.4	43.8 57.8
8	Absmax SmoothQuant	√ ✓	21.43 15.67	60.4 65.3	52.0 53.1	38.3 40.9	62.7 67.6	53.4 56.7
4	GPTQ Absmax SmoothQuant	<i>\ \ \</i>	16.05 4.8e4 1.6e6	57.2 55.8 53.7	51.2 50.9 48.3	39.9 25.0 24.8	63.4 53.1 53.6	52.9 46.2 45.1
2	GPTQ QuIP	√ ✓	1032 70.43	51.6 56.1	50.1 51.2	25.8 30.3	53.4 58.4	45.2 49.0
1	Absmax SmoothQuant	√ ✓	3.5e23 3.3e21	49.8 50.5	50.0 49.5	24.8 24.6	53.6 53.1	44.6 44.4
1	BitNet	×	17.07	66.3	51.4	38.9	66.9	55.9

PTQ: Post-training quantization

WGe: Winogrande

WG: Winograd

SC: Storycloze

HS: Hellaswag dataset

Comparison with Post-training Quantization

- BitNet has consistently superior scores over all baselines
- The advantages of the quantization-aware training approaches over the post-training quantization methods
- Proves that the advantage is consistent across different scales

Ablation Studies

- absmax
 - Better performance, more stable training
 - Enables a larger learning rate for BitNet
- SubLN with the Pre-LN
 - Pre-LN is the default architecture for GPT pertaining
 - Improve the stability of binarized model

Methods	PPL ↓	HS↑	WGe↑	WG↑	SC↑	Avg↑
Zero-Shot Learning						
BitNet	20.34	33.2	52.1	60.7	63.2	52.3
Elastic + Pre-LN	24.05	29.6	52.9	56.8	61.3	50.2
Absmax + Pre-LN	22.11	31.6	50.0	61.8	61.6	51.3
Absmax + BMT	22.98	31.2	52.1	60.4	62.7	51.6
Few-Shot Learning						
BitNet	20.34	33.5	50.4	62.1	63.8	52.5
Elastic + Pre-LN	24.05	29.9	51.7	57.5	61.1	50.1
Absmax + Pre-LN	22.11	31.4	51.9	63.9	61.6	52.2
Absmax + BMT	22.98	31.3	51.5	57.5	62.6	50.7

Part 5. Conclusion

BitNet

1-bit Transformer architecture for large language models

Performance

- Achieve competitive performance in terms of both perplexity and downstream task performance
- Significantly reducing memory footprint and energy consumption compared to the baselines

Scaling Law

- BitNet follows a scaling law similar to that of full-precision Transformers
- It can be effectively scaled to even larger language models with potential benefits in terms of performance and efficiency

Further Work

- Scale up BitNet in terms of model size and training steps
- Apply BitNet in other architectures (e.g., RetNet) for training large language models