

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 11

Trudność i zupełność problemów obliczeniowych

Redukcja problemu obliczeniowego

Język $A\subseteq \Sigma_1^*$ jest **redukowalny** do języka $B\subseteq \Sigma_2^*$ jeśli istnieje totalna i obliczalna funkcja $f:\Sigma_1^*\longrightarrow \Sigma_2^*$ taka, że

$$\forall_{x \in \Sigma_1^*} \ x \in A \iff f(x) \in B$$

Efektywna redukcja

Funkcja $f: \Sigma_1^* \to \Sigma_2^*$ jest **obliczalna w czasie wielomianowym**, jeśli istnieje maszyna Turinga M działająca **w czasie wielomianowym**, która dla dowolnego słowa $w \in \Sigma_1^*$ zatrzymuje się zwracając wartość f(w).

Język $A\subseteq \Sigma_1^*$ jest wielomianowo redukowalny do języka $B\subseteq \Sigma_2^*$, jeśli istnieje funkcja $f:\Sigma^*\to \Sigma^*$ obliczalna w czasie wielomianowym taka, że

 $\forall_{w \in \Sigma_1^*} \ w \in A \iff f(w) \in B.$

Efektywna redukcja

Funkcja $f: \Sigma_1^* \to \Sigma_2^*$ jest obliczalna **w pamięci logarytmicznej** jeśli istnieje maszyna Turinga M wykorzystująca co najwyżej **logarytmiczną** liczbę komórek taśm roboczych, która dla dowolnego słowa $w \in \Sigma_1^*$ zatrzymuje się zwracając wartość f(w).

Język $A\subseteq \Sigma_1^*$ jest redukowalny do języka $B\subseteq \Sigma_2^*$ w pamięci logarytmicznej, jeśli istnieje funkcja $f:\Sigma_1^*\to \Sigma_2^*$ obliczalna w pamięci logarytmicznej taka, że

 $\forall_{w \in \Sigma_1^*} w \in A \iff f(w) \in B.$

Efektywna redukcja

```
Maszyna używająca pamięci rozmiaru O(log n) może mieć co najwyżej
   Redukcja w pamięci logarytmicznej redukcja w czasię wielomianowym
  collogn) rożnych konfiguracji (c E N).
                    \forall_{w \in \Sigma_1^*} w \in A \iff f(w) \in B.
```

Kolorowanie grafu

Wejście: Graf G oraz liczba k > 0.

Pytanie: Czy G można "pokolorować" za pomocą k kolorów?

Kolorowanie mapy

Redukcja problemów

Redukcja problemów

Trudność i zupełność

Problem A nazywamy **C-trudnym** jeśli dla dowolnego problemu $B \in \mathbb{C}$ istnieje **efektywna** redukcja do problemu A

Problem A nazywamy C-zupełnym jeśli:

- $\mathbf{0} A \in \mathbf{C}$
- A jest C-trudny

$$\mathrm{PATH} = \Big\{ \big(G, v_1, v_2 \big) : \text{ w grafie skierowanym } G \text{ istnieje ścieżka } v_1 \leadsto v_2 \Big\}$$

Twierdzenie

Problem PATH jest NL-zupełny

 $\mathsf{PATH} \in \mathsf{NL}$

- \bigcirc PATH \in NL
- Redukcja: A → PATH

lacktriangledown Drzewo możliwych obliczeń $M_A\Longrightarrow$ graf skierowany G_A

 $^{f oxed{f eta}}$ M_A akceptuje wejście $\iff G_A$ zawiera ścieżkę $c_0 \leadsto c_{ACC}$

- \bigcirc PATH \in NL
- Redukcja: A → PATH

 $A \in NL$ – rozstrzygany przez M_A

 oxtimes Drzewo możliwych obliczeń $\mathit{M}_{A}\Longrightarrow$ graf skierowany G_{A}

 $^{f oxed{LP}}$ M_A akceptuje wejście \iff G_A zawiera ścieżkę $c_0 \leadsto c_{ACC}$

- Złożonośc redukcji
 - $^{f oxtimes C}$ Maszyna M_G generująca kolejne konfiguracje M_A
 - lacktriangleq Na wyjściu drukowane tylko poprawne pary $c_1
 ightarrow c_i$
 - Pojedyncza konfiguracja $M_A \Longrightarrow \text{rozmiar } O(\log n)$

Klasa NP

$$\operatorname{HAMPATH} \ = \ \Big\{ \big(G, v_1, v_2\big) : G \text{ zawiera ścieżkę Hamiltona } v_1 \leadsto v_2 \Big\}$$

- $lack{f arphi}$ Znalezienie rozwiązania \Longrightarrow niedeterministyczny czas wielomianowy
- lacktriangleright Znalezienie rozwiązania \Longrightarrow deterministyczny czas wykładniczy
- Weryfikacja rozwiązania ⇒ deterministyczny czas wielomianowy

$$\overline{\mathrm{HAMPATH}} = \Big\{ \big(G, v_1, v_2 \big) : G \ \mathrm{nie} \ \mathrm{zawiera} \ \mathrm{ścieżki} \ \mathrm{Hamiltona} \ v_1 \leadsto v_2 \Big\}$$

- ☑ Znalezienie rozwiązania ⇒ deterministyczny czas wykładniczy
- ₩ Weryfikacja rozwiązania ⇒ deterministyczny czas wykładniczy

NP-zupełność

Rozwiązanie w czasie deterministycznym wielomianowym dla dowolnego problemu NP-zupełnego

Rozwiązanie w czasie deterministycznym wielomianowym dla wszystkich problemów z klasy NP

NP-zupełność

Brak rozwiązania w czasie deterministycznym wielomianowym dla dowolnego problemu NP-zupełnego

Brak rozwiązania w czasie deterministycznym wielomianowym dla wszystkich problemów NP-zupełnych

Relacje między klasami złożoności obliczeniowej

 $\mathsf{DTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n))$

 $\mathsf{NTIME}(f(n)) \subseteq \mathsf{NSPACE}(f(n))$

Liczba użytych komórek taśm roboczych nie przekroczy liczby kroków obliczeń

 $\begin{array}{c}
\mathsf{DTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n)) \\
\mathsf{NTIME}(f(n)) \subseteq \mathsf{NSPACE}(f(n))
\end{array}$

Każda ścieżka w drzewie obliczeń maszyny niedeterministycznej ma długość co najwyżej f(n). Symulacja jej działania przez maszynę deterministyczną wymaga co najwyżej $c^{f(n)}$ kroków.

- $\begin{array}{c}
 \mathsf{DTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n)) \\
 \mathsf{NTIME}(f(n)) \subseteq \mathsf{NSPACE}(f(n))
 \end{array}$

Użycie f(n) komórek taśmy, umożliwia zapisanie co najwyżej $c^{f(n)}$ różnych konfiguracji $(c \in N)$

$$\begin{array}{c}
\mathsf{DTIME}(f(n)) \subseteq \mathsf{DSPACE}(f(n)) \\
\mathsf{NTIME}(f(n)) \subseteq \mathsf{NSPACE}(f(n))
\end{array}$$

- $\bigcirc \mathsf{DSPACE}(f(n)) \subseteq \mathsf{DTIME}(c^{f(n)})$
- NSPACE $(f(n)) \subseteq DSPACE(f^2(n))$ Twierdzenie Savitcha

Problem rozstrzygalny w czasie wielomianowym jest rozstrzygalny również w czasie wykładniczym

PSPACE = NPSPACE

Twierdzenie Savitcha

- P ⊊ EXPTIME

 NP ⊊ NEXPTIME
- PSPACE = NPSPACE
- P ⊆ PSPACE

 | Liczba użytych komórek taśmy nie przekroczy liczby wykonanych kroków obliczeń |
 | NP ⊆ NPSPACE | Ponadto, NP ⊆ PSPACE (tw. Savitcha)

- P ⊊ EXPTIME

 NP ⊊ NEXPTIME
- PSPACE = NPSPACE
- $P \subseteq PSPACE$ $NP \subseteq NPSPACE$
- **PSPACE** ⊆ **EXPTIME**

Maszyna działająca w pamięci wielomianowej może mieć co najwyżej wykładniczą liczbę konfiguracji

- P ⊊ EXPTIME

 NP ⊊ NEXPTIME
- PSPACE = NPSPACE
- P ⊆ PSPACE

 NP ⊆ NPSPACE
- **PSPACE** ⊆ **EXPTIME**
- $igcap L \subseteq \mathsf{NL}$

Problem rozstrzygalny w deterministycznej pamięci logarytmicznej jest rozstrzygalny również w niedeterministycznej pamięci logarytmicznej

- P ⊊ EXPTIME

 NP ⊊ NEXPTIME
- PSPACE = NPSPACE
- P ⊆ PSPACE

 NP ⊆ NPSPACE
- **PSPACE** ⊆ **EXPTIME**
- \bigcap L \subseteq NL

Problem rozstrzygalny w deterministycznym czasie wielomianowym jest rozstrzygalny również w niedeterministycznym czasie wielomianowym

- P ⊊ EXPTIME

 NP ⊊ NEXPTIME
- PSPACE = NPSPACE
- $\begin{array}{c}
 P \subseteq PSPACE \\
 NP \subseteq NPSPACE
 \end{array}$
- **PSPACE** ⊆ **EXPTIME**
- lacksquare L \subseteq NL
- P S NP Maszyna niedeterministyczna działająca w pamięci logarytmicznej może mieć co najwyżej wielomianową liczbę konfiguracji
- \bigcap $\mathsf{NL} \subseteq \mathsf{P}$

 $P \subseteq NP \subseteq EXPTIME \subseteq NEXPTIME$

