# Protective effect of vitamin D<sub>3</sub> analogues on endotoxin shock in mice

H. Horiuchi, I. Nagata and K. Komoriya\*

Pharmacological Research Department, Teijin Institute for Bio-Medical Research II, Hino, Tokyo 191, Japan

#### **Abstract**

The effect of vitamin  $D_3$  analogues on endotoxin shock in mice was investigated. Male ICR mice were orally administered vitamin  $D_3$  analogues or vehicle, accompanied by an intraperitoneal injection of endotoxin (*E. Coli* lipopolysaccharide, LPS, 20 mg/kg). Endotoxin caused a decrease in survival rate in a time-dependent manner. Increases in plasma immunoreactive (i) eicosanoid and hepatic malondialdehyde (MDA) levels were also observed. Administration of  $1\alpha$ -hydroxyvitamin  $D_3$  ( $1\alpha$ -OH- $D_3$ ) improved the survival rate 24 to 48 h after endotoxin treatment. The effects were markedly observed at a dose of 20 ng/kg. In addition,  $1\alpha$ -OH- $D_3$  restored the plasma iTXB<sub>2</sub> and hepatic MDA levels 8 h after endotoxin injection. However, it did not affect plasma iPGE<sub>2</sub>, i6-keto-PGF<sub>1 $\alpha$ </sub> and blood iLTB<sub>4</sub> levels. At a dose of 20 ng/kg, both 1,25-dihydroxyvitamin  $D_3$  (1,25-(OH)<sub>2</sub> $D_3$ ) and 1,24(R)-dihydroxyvitamin  $D_3$  (1,24(R)-(OH)<sub>2</sub> $D_3$ ) restored the survival rate, the plasma iTXB<sub>2</sub> and hepatic MDA levels. These results suggest that vitamin  $D_3$  analogues may inhibit endotoxemia through regulation of the formation of TXA<sub>2</sub> and free radicals.

#### Introduction

Endotoxin (lipopolysaccharide, LPS), a major component of the outer cell wall of gram-negative bacteria, is considered a primary factor of septic shock, disseminated intravascular coagulation and adult respiratory distress syndrome. Further, it is associated with the last stage of the sepsis, causing multiple organ failure [1]. These effects are mediated partly through increases of eicosanoid metabolism. Namely, in the leukocytes, endotoxin stimulates release of arachidonic acid [2], which is metabolized by either cyclooxygenase or lipoxyge-

nase pathways to prostaglandins, thromboxane, leukotrienes, 5-HETE and 12-HETE [3-7].

Endotoxin is metabolized in the reticuloendothelial system in the liver. It is suggested that oxygen radicals are released from liver macrophages (Kupffer cells) by endotoxin, causing lipid peroxidation and injury the liver [8, 9].

It has been reported that 1,25-dihydroxyvitamin D<sub>3</sub> (1,25-(OH)<sub>2</sub>D<sub>3</sub>) possesses immunoregulatory properties. Differentiation of mouse [10] and human [11-14] myeloid leukemia cells into macrophages is augmented by 1,25-(OH)<sub>2</sub>D<sub>3</sub>. It also activates [15, 16] or suppresses [17, 18] the function of maturated monocyte/macrophages. So, It is possible that 1,25-(OH)<sub>2</sub>D<sub>3</sub> regulates the functions of monocyte/macrophages activated by endotoxin. We investigated the effect of vitamin

<sup>\*</sup> Correspondence to: Keiji Komoriya, Pharmacological Research Department, Teijin Institute for Bio-Medical Research II, Asahigaoka 4-3-2, Hino, Tokyo 191, Japan.

D<sub>3</sub> analogues on endotoxin shock and found that it protected mice from endotoxin shock.

### Materials and methods

# Laboratory animals

Male ICR mice aged 7-8 weeks old were purchased from Charles River Japan, Inc. (Kanagawa, Japan). Animals were kept in an air-conditioned room and given standard chow and water ad libitum for the duration of the study.

## Endotoxin shock

Endotoxin (E. coli 055:B5, Difco Laboratories, Detroit, MI) was suspended in saline and was intraperitoneally injected into mice at a dose of 20 mg/kg.

Survival rate of mice was recorded up to 48 h after endotoxin treatment.

# Radioimmunoassay of $iTXB_2$ , $iPGE_2$ , i6-keto- $PGF_{1\alpha}$ and $iLTB_4$

Eight h after endotoxin injection, blood samples were collected by cardiac puncture under ether anaesthesia. For radioimmunoassay of iTXB<sub>2</sub>, iPGE<sub>2</sub> and i6-keto-PGF<sub>1 $\alpha$ </sub>, blood was collected into a 1 ml plastic syringe with a 26G needle, filled with 1/10 volume of solution containing 3.8% EDTA-2Na and 10<sup>-4</sup> M indomethacin. For iLTB<sub>4</sub> measurement, heparinized blood was collected, treated with 10 times volume of ethanol and mixed gently. Sample preparations were clarified by centrifugation and stored at -20 °C until assayed. Plasma iTXB<sub>2</sub> (a stable metabolite of TXA<sub>2</sub>), iPGE<sub>2</sub>, i6-keto-PGF<sub>1 $\alpha$ </sub> (a stable metabolite of PGI<sub>2</sub>) and blood iLTB<sub>4</sub> levels were measured using RIA kits (Du Pont, Boston, MA).

# Hepatic malondialdehyde (MDA) level

Hepatic MDA level was assayed according to the method of Ohkawa et al. [19], with a slight modification. The liver was excised and perfused with cold saline via the portal vein to remove the blood 8 h after endotoxin injection. Then, 10% tissue homogenates were prepared with saline and the hepatic MDA level was measured as thiobarbituric acid (TBA) reactant. Protein content was analyzed with an automatic analyzer (Flexigem).

$$R_1$$
 $25$ 
 $R_2$ 
 $R_2$ 

 $R_1=H$ ,  $R_2=H$  :  $1\alpha-OH-D_3$   $R_1=H$ ,  $R_2=OH$  :  $1,25-(OH)_2D_3$  $R_1=OH$ ,  $R_2=H$  :  $1,24(R)-(OH)_2D_3$ 

Figure 1 Structures of vitamin D<sub>3</sub> analogues.

# Treatment

All vitamin  $D_3$  analogues shown in Fig. 1 were dissolved in ethanol, and subsequent dilution was made in saline containing 0.2% Triton X. The final ethanol concentration used was 1%. The drugs were administered orally, simultaneously with endotoxin treatment. Control mice were received only the dosing vehicle at a constant volume of 10 ml/kg.

#### Statistical analyses

The data are presented as means ± SEM, and the results have been statistically evaluated by Dunnett's *t*-test.

# Results

# Effects of $1\alpha$ -OH-D<sub>3</sub> on endotoxin shock

Survival rate. The deaths occurred from 20 h after endotoxin injection, and a time-dependent decrease in survival rate was observed. Orally administered  $1\alpha$ -OH-D<sub>3</sub> decreased endotoxin lethality.



Effect of  $1\alpha$ -OH-D<sub>3</sub> on plasma iTXB<sub>2</sub> level in endotoxin-treated mice. Simultaneously with endotoxin injection,  $1\alpha$ -OH-D<sub>3</sub> was administered orally at a dose of 20 ng/kg. Eight h after endotoxin injection, blood was collected and plasma iTXB<sub>2</sub> level was measured using a RIA kit. Results are represented as the means  $\pm$  SEM of 5 mice. \*p<0.05 and \*\*\*p<0.01: statistically different from control (Dunnett's t-test).

Table 1 Effect of 1α-OH-D<sub>3</sub> on survival rate of endotoxin-treated mice.

| Exp.<br>No. | Treatment            | Dose<br>(ng/kg) | No. of survivals (%) |              |             |  |
|-------------|----------------------|-----------------|----------------------|--------------|-------------|--|
|             |                      |                 | 24 h                 | 30 h         | 48 h        |  |
| 1           | Control              |                 | 7/20 (35.0)          | NT           | 1/20 (5.0)  |  |
|             | 1α-OH-D <sub>3</sub> | 4               | 13/20 (65.0)         | NT           | 2/20 (10.0) |  |
|             | 3                    | 20              | 16/20 (80.0)         | NT           | 4/20 (20.0) |  |
|             |                      | 100             | 11/20 (55.0)         |              | 2/20 (10.0) |  |
| 2           | Control              |                 | 13/19 (68.4)         | 6/19 (31.6)  | 2/19 (10.5) |  |
|             | 1α-OH-D <sub>3</sub> | 4               | 14/18 (77.8)         | 9/18 (50.0)  | 4/18 (22.2) |  |
|             | 3                    | 20              | 14/18 (77.8)         | 10/18 (55.6) | 4/18 (22.2) |  |
|             |                      | 100             | 12/18 (66.7)         |              | 3/18 (16.7) |  |
|             |                      |                 |                      |              |             |  |

Oral administration of  $1\alpha$ -OH-D<sub>3</sub> was simultaneous with endotoxin (*E. coli*; 20 mg/kg, i.p) injection. Survival rate was recorded up to 48 h after endotoxin injection. NT: not tested.

This effect was markedly observed at a dose of 20 ng/kg (Table 1).

Eicosanoid levels. The plasma iTXB<sub>2</sub>, iPGE<sub>2</sub>, i6-keto-PGF<sub>1α</sub> and blood iLTB<sub>4</sub> levels were significantly increased 8 h after endotoxin treatment, but returned to normal levels by 16 h except for blood iLTB<sub>4</sub> level (data not shown). As shown in Fig. 2,  $1\alpha$ -OH-D<sub>3</sub> significantly attenuated the iTXB<sub>2</sub> level 8 h after endotoxin treatment at a dose of 20 ng/kg. However, the elevation in iPGE<sub>2</sub>, i6-keto-PGF<sub>1α</sub> and blood iLTB<sub>4</sub> levels was not altered by  $1\alpha$ -OH-D<sub>3</sub> (Table 2).

Hepatic MDA levels. Endotoxin induces the release of free radicals directly or indirectly and causes tissue injury via lipid peroxidation. So, we next investigated the effect of vitamin  $D_3$  on the hepatic MDA level of endotoxin-treated mice. As illustrated in Fig. 3, the hepatic MDA level was considerably increased in comparison with that of normal mice 8 h after endotoxin injection. The increase in hepatic MDA level was inhibited 39.9% by 1α-OH-D<sub>3</sub> at a dose of 20 ng/kg (Fig. 3).

Effects of 1,25- $(OH)_2D_3$  and 1,24(R)- $(OH)_2D_3$  on endotoxin shock

To ascertain whether other vitamin  $D_3$  analogues were also capable of preventing endotoxemia, we next examined the effects of other vitamin  $D_3$  analogues, 1,25-(OH)<sub>2</sub>D<sub>3</sub> and 1,24(R)-(OH)<sub>2</sub>D<sub>3</sub>, observing the parameters which were improved by  $1\alpha$ -OH-D<sub>3</sub> treatment.

At a dose of 20 ng/kg, both  $1,25-(OH)_2D_3$  and  $1,24(R)-(OH)_2D_3$  increased the survival rate of endotoxin-injected mice (Table 3). Furthermore, these vitamin  $D_3$  analogues normalized the in-

Effects of  $1\alpha$ -OH-D<sub>3</sub> on immunoreactive eicosanoid levels in the plasma or blood of endotoxin-treated mice.

| Exp. No. | Treatment                                         | Dose<br>(ng/kg)   | iPGE <sub>2</sub><br>(pg/ml)            | i6-keto-PG $F_{1\alpha}$ (pg/ml)         | iLTB <sub>4</sub><br>(ng/ml)                     |
|----------|---------------------------------------------------|-------------------|-----------------------------------------|------------------------------------------|--------------------------------------------------|
| 1        | Normal<br>Control<br>1α-OH-D <sub>3</sub>         | _<br>_<br>_<br>20 | 52.2± 5.0**<br>162.7±30.5<br>118.9±20.6 | NT<br>NT<br>NT                           | $2.04 \pm 0.10*$ $2.98 \pm 0.33$ $2.98 \pm 0.39$ |
| 2        | Normal<br>Control<br>$1\alpha$ -OH-D <sub>3</sub> | -<br>-<br>20      | 57.6± 4.4**<br>116.6± 8.7<br>150.8±29.8 | 261.7±34.9**<br>760.5±52.8<br>731.3±93.4 | NT<br>NT<br>NT                                   |

Experimental conditions are as described in the legend of Table 1. Eight h after endotoxin injection, blood was collected and plasma iPGE<sub>2</sub>, i6-keto-PGF<sub>1 $\alpha$ </sub> and blood iITB<sub>4</sub> levels were measured using RIA kits. Results are represented as the means ± SEM of 5 to 8 mice. NT: not tested. \* p < 0.05 and \*\* p < 0.01: statistically different from control (Dunnett's t-test).



Effect of  $1\alpha$ -OH-D<sub>3</sub> on hepatic MDA level in endotoxin-treated mice. Experimental conditions are described in the legend of Fig. 2. Eight h after endotoxin injection, the liver was excised and 10% tissue homogenate was prepared with saline. The hepatic MDA level was measured as TBA reactant. Results are represented as the means  $\pm$  SEM of 3 to 6 mice. \* p < 0.05: statistically different from control (Dunnett's t-test).

Table 3 Effects of vitamin  $D_3$  analogues on survival rate in endotoxintreated mice.

| Treatment                                                                                    | Dose (na/lra) | No. of survivals (%)                        |      |             |  |
|----------------------------------------------------------------------------------------------|---------------|---------------------------------------------|------|-------------|--|
|                                                                                              | (ng/kg)       | 24 h                                        | 30 h | 48 h        |  |
| Control<br>1,25-(OH) <sub>2</sub> D <sub>3</sub><br>1,24(R)-(OH) <sub>2</sub> D <sub>3</sub> | -<br>20<br>20 | 9/15 (60.0)<br>12/12 (80.0)<br>11/13 (84.6) |      | 2/15 (13.3) |  |

Vitamin  $D_3$  analogues were administered orally at a dose of 20 ng/kg, simultaneously with endotoxin (*E. coli*; 20 mg/kg, i.p.) injection. Survival rate was recorded up to 48 h after endotoxin injection.

creased plasma  $iTXB_2$  and hepatic MDA levels (Table 4).

#### Discussion

Although the effects of vitamin  $D_3$  analogues on lymphocyte functions have been well investigated, those on macrophages remain unclear. It has been reported that vitamin  $D_3$  analogues induced monocyte/macrophage differentiation [10–14] and activated their function to produce interleukin-1 (IL-1) [15] and hydrogen peroxide [16]. Conflicting experimental results have been reported about monokine production. Iho et al. [17] and Tsoukas et al. [18] reported that vitamin  $D_3$  analogues suppressed the IL-1 production by monocytes. To estimate the effect of vitamin  $D_3$  on macrophages, we investigated endotoxemia and observed that vitamin  $D_3$  analogues prevented endotoxin lethality.

Endotoxin itself facilitates the release of oxygen radicals from macrophages [20]. Endotoxin is metabolized by the reticulo-endothelial system of liver, liver macrophages (Kupffer cells). In this process, oxygen radicals are released from Kupffer cells. It is postulated that oxygen radicals cause lipid peroxidation and injure the liver [9]. Moreover, endotoxin activates the leukocytes to release eicosanoids [2], which are thought to participate in the experimental endotoxemia [3-7]. It is well known that experimental endotoxemia is prevented by biosynthesis inhibitors or antagonists of eicosanoids and antioxidants such as thromboxane synthetase inhibitors [5], thomboxane A<sub>2</sub> antagonists [4], 5-lipoxygenase inhibitors [7], leukotriene antagonists [5, 21], superoxide dismutase,

Table 4 Effects of vitamin  $D_3$  analogues on plasma iTXB<sub>2</sub> and iTXB<sub>2</sub> and hepatic MDA levels in endotoxin-treated mice.

| Treatment                             | Dose<br>(ng/kg) | iTXB <sub>2</sub><br>(pg/ml) | Inhibition % | Hepatic MDA<br>(nmol/mg protein) | Inhibition % |
|---------------------------------------|-----------------|------------------------------|--------------|----------------------------------|--------------|
| Normal                                | _               | 201.4+19.8**                 | _            | 1.57+0.19**                      | _            |
| Control                               | _               | 638.6 + 55.5                 | _            | $4.59 \pm 0.42$                  | _            |
| 1α-OH-D <sub>3</sub>                  | 20              | 549.2 + 60.8                 | 14.0         | $3.03\pm0.72$                    | 34.0         |
| 1,25-(OH) <sub>2</sub> D <sub>3</sub> | 20              | 501.1 + 31.3                 | 21.5         | $3.45 \pm 0.65$                  | 24.8         |
| $1,24(R)-(OH)_2D_3$                   | 20              | 455.4±34.0*                  | 28.7         | $2.97 \pm 0.36$                  | 35.3         |

Experimental conditions are as described in the legend of Table 1. Eight h after endotoxin injection, plasma iTXB<sub>2</sub> and liver MDA levels were measured as described in the legends of Fig. 2 and 3, respectively. Results are represented as the means  $\pm$  SEM of 4 to 6 mice. \* p < 0.05 and \*\* p < 0.01: statistically different from control (Dunnett's *t*-test).

catalase [22], coenzyme  $Q_{10}$  [9],  $\alpha$ -tocopherol, glutathione and allopurinol [8]. So, we measured hepatic MDA, plasma iTXB<sub>2</sub>, iPGE<sub>2</sub>, i6-keto-PGF<sub>1</sub>, and blood iLTB<sub>4</sub> levels 8 h after endotoxin injection when death had not occurred. Hepatic MDA and plasma iTXB<sub>2</sub> levels were reduced by vitamin D<sub>3</sub> analogues studied. However, 1α-OH-D<sub>3</sub> did not affect plasma iPGE<sub>2</sub>, i6-keto-PGF<sub>1</sub>, and blood iLTB<sub>4</sub> levels. We recently observed that 1,25-(OH)<sub>2</sub>D<sub>3</sub> significantly decreased iTXB<sub>2</sub> release from Propionibacterium acnes-elicited liver adherent cells and from oyster glycogen-elicited peritoneal macrophages both stimulated by LPS (unpublished data). Thus our results suggest that vitamin D<sub>3</sub> analogues improve the survival rate of LPS-treated mice through regulation of the function of macrophages including Kupffer cells.

Vitamin  $D_3$  analogues are reported to regulate the gene expression of metallothionein [23] or heat shock protein [24, 25]. These proteins are well known to scavenge the free radicals [25, 26] and protect some types of cells from oxidative stress. But protective effects of vitamin  $D_3$  analogues may not be due to the induction of these proteins because these proteins were induced 24-72 h post treatment of vitamin  $D_3$  analogues [23, 25]. At that time, endotoxic shock were already observed in our experiments.

It has been established that 1α-OH-D<sub>3</sub> is converted into 1,25-(OH)<sub>2</sub>D<sub>3</sub> in the liver [27, 28]. Therefore, the effects of  $1\alpha$ -OH-D<sub>3</sub> should be considered to result from 1,25-(OH)<sub>2</sub>D<sub>3</sub> converted. However, the effect of  $1\alpha$ -OH-D<sub>3</sub> itself cannot be denied. In the present study, both 1,25-(OH)<sub>2</sub>D<sub>3</sub> and  $1,24(R)-(OH)_2D_3$  showed almost the same effects as  $1\alpha$ -OH-D<sub>3</sub> did. 1,24(R)-(OH)<sub>2</sub>D<sub>3</sub>, one of systemic analogues of vitamin D<sub>3</sub>, is known to bind to 1,25-(OH)<sub>2</sub>D<sub>3</sub> receptors in some tissues with almost the same binding affinity [29, 30]. Furthermore, several pharmacological profiles of 1,24(R)-(OH), D3, such as intestinal calcium absorption [31] and immunoregulatory effects [32] are similar to those of 1,25-(OH)<sub>2</sub>D<sub>3</sub>. So, it is considered that 1,24(R)-(OH)<sub>2</sub>D<sub>3</sub> might affect on endotoxemia in the same mechanism of  $1,25-(OH)_2D_3$ .

Received 17 December 1990; accepted by B. Vargaftig, 8 January 1991

#### References

- D. C. Morrison and S. Raziuddin, Lipopolysaccharides and endotoxin. In Immunopharmacology. (Eds. P. Sirois and M. Rola-Plwszczynski) pp. 169-199, Elsevier Biomedical Press, Amsterdam 1982.
- [2] G. D. Bottoms, M. A. Johnson, C. H. Lamer, J. F. Fessler and J. J. Turek, Endotoxin-induced eicosanoid production by equine vascular endothelial cells and neutrophils. Circ. Shock 15, 155-162 (1985).
- [3] W. Hagmann, C. Denzlinger and D. Keppler, Role of peptide leukotrienes and their hepatobiliary elimination in endotoxin action. Circ. Shock 14, 223-235 (1984).
- [4] L. S. Olanoff, J. A. Cook, T. Eller, D. R. Knapp and P. V. Halushka, Protective effects of trans-13-APT, a thromboxane receptor antagonist, in endotoxemia. J. Cardiovasc. Pharmacol. 7, 114-120 (1985).
- [5] K. F. Badr, V. E. Kelley, H. G. Rennke and B. M. Brenner, Role for thromboxane A<sub>2</sub> and leukotrienes in endotoxin-induced acute renal failure. Kidney Int. 30, 474-480 (1986).
- [6] M. L. Ogretree, C. J. Begley, G. A. King and K. L. Brigham, Influence of steroidal and nonsteroidal anti-inflammatory agents on the accumulation of arachidonic acid metabolites in plasma and lung lymph after endotoxemia in awake sheep. Am. Rev. Respir. Dis. 133, 55-61 (1986).
- [7] G. Matera, J. A. Cook, R. A. Hennigar, G. E. Tempel, W. C. Wise, T. D. Oglesby and P. V. Halushka, Beneficial effects of a 5-lipoxygenase inhibitor in endotoxic shock in the rat. J. Pharmacol. Exp. Ther. 247, 363-371 (1988).
- [8] R. Ogawa, T. Morita, F. Kunimoto and T. Fujita, Changes in hepatic lipoperoxide concentration in endotoxemic rats. Circ. Shock 9, 369-374 (1982).
- [9] K. Sugino, K. Dohi, K. Yamada and T. Kawasaki, The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101, 746-752 (1987).
- [10] E. Abe, C. Miyaura, H. Sakagami, M. Takeda, K. Konno, T. Yamazaki, S. Yoshiki and T. Suda, Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D<sub>3</sub>. Proc. Natl. Acad. Sci. USA 78, 4990–4994 (1981).
- [11] C. Miyaura, E. Abe, T. Kuribayashi, H. Tanaka, K. Konno, Y. Nishii and T. Suda, 1α,25-Dihydroxyvitamin D<sub>3</sub> induces differentiation of human myeloid leukemia cells. Biochem. Biophys. Res. Commun. 102, 937-943 (1981).
- [12] I. Olsson, U. Gullberg, I. Ivhed and K. Nilsson, Induction of differentiation of the human histocytic lymphoma cell line U-937 by 1α,25-dihydroxycholecalciferol. Cancer Res. 43, 5862-5867 (1983).
- [13] H. P. Koeffler, T. Amatruda, N. Ikekawa, Y. Kobayashi and H. F. DeLuca, Induction of macrophage differentiation of human normal and leukemic myeloid stem cells by 1,25-dihydroxyvitamin D<sub>3</sub> and its fluorinated analogues. Cancer Res. 44, 5624-5628 (1984).
- [14] E. P. Amento, A. K. Bhalla, J. T. Kurnick, R. L. Kradin, T. L. Clemens, S. A. Holick, M. F. Holick and S. M. Krane, 1a,25-Dihydroxyvitamin D<sub>3</sub> induces maturation of the human monocyte cell line U937, and, in association with a factor from human T lymphocytes, augments production of the monokines, mononuclear cell factor. J. Clin. Invest. 73, 731-739 (1984).
- [15] A. K. Bhalla, E. P. Amento and S. M. Krane, Differential effects of 1,25-dihydroxyvitamin D<sub>3</sub> on human lymphocytes and monocyte/macrophages: Inhibition of interleukin-2 and augmentation of interleukin-1 production. Cell. Immunol. 98, 311-322 (1986).

- [16] M. S. Cohen, D. E. Mesler, R. G. Snipes and T. K. Gray, 1,25-Dihydroxyvitamin D<sub>3</sub> activates secretion of hydrogen peroxide by human monocytes. J. Immunol. 136, 1049-1053 (1986).
- [17] S. Iho, F. Kura, H. Sugiyama, T. Takahashi and T. Hoshino, The role of monocytes in the suppression of PHA-induced proliferation and IL 2 production of human mononuclear cells by 1,25-dihydroxyvitamin D<sub>3</sub>. Immunol. Lett. 11, 331–336 (1985).
- [18] C. D. Tsoukas, D. Watry, S. S. Escobar, D. M. Provvedini, C. A. Dinarello, F. G. Hustmyer and S. C. Manolagas, Inhibition of interleukin-1 production by 1,25-dihydroxyvitamin D<sub>3</sub>. J. Clin. Endocrinol. Metab. 69, 127-133 (1989).
- [19] H. Ohkawa, N. Ohishi and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358 (1979).
- [20] M. J. Pabst and R. B. Johnston, Jr., Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J. Exp. Med. 151, 101-114 (1980).
- [21] A. R. Etemadi, G. E. Tempel, B. A. Farah, W. C. Wise, P. V. Halushka and J. A. Cook, Beneficial effects of a leukotriene antagonist on endotoxin-induced acute hemodynamic alterations. Circ. Shock 22, 55-63 (1987).
- [22] T. Yoshikawa, M. Murakami, O. Seto, Y. Kakimi, T. Takemura, T. Tanigawa, S. Sugino and M. Kondo, Effects of superoxide dismutase and catalase on endotoxin shock in rats. J. Clin. Biochem. Nutr. 1, 165-170 (1986).
- [23] M. Karasawa, J. Hosoi, H. Hashiba, K. Nose, C. Tohyama, E. Abe, T. Suda and T. Kuroki, Regulation of metallothionein gene expression by 1α,25-dihydroxyvitamin D<sub>3</sub> in cultured cells and in mice. Proc. Natl. Acad. Sci. USA 84, 8810–8813 (1987).
- [24] B. S. Polla, A. M. Healy, E. P. Amento and S. M. Krane, 1,25-Dihydroxyvitamin D<sub>3</sub> maintains adherence of human monocytes and protects them from thermal injury. J. Clin. Invest. 77, 1332-1339 (1986).

- [25] B. S. Polla, A. M. Healy, W. C. Wojno and S. M. Krane, Hormone 1α,25-dihydroxyvitamin D<sub>3</sub> modulates heat shock response in monocytes. Am. J. Physiol. 252, C640-C649 (1987).
- [26] P. J. Thornalley and M. Vasák, Possible role of metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta 827, 36-44 (1985).
- [27] M. F. Holick, S. A. Holick, T. Tavela, B. Gallagher, K. H. Schnones and H. F. DeLuca, Synthesis of [6-3H]-1α-hydro-xyvitamin D and its metabolism in vivo to [6-3H]-1α,25-dihydroxyvitamin D. Science 190, 576-578 (1975).
- [28] M. Fukushima, Y. Suzuki, Y. Tohira, I. Matsunaga, K. Ochi, H. Nagano, Y. Nishii and T. Suda, Metabolism of tα-hydroxyvitamin D to 1α,25-dihydroxyvitamin D in perfused rat liver. Biochem. Biophys. Res. Commun. 66, 632–638 (1975).
- [29] S. Ishizuka, K. Bannai, T. Naruchi and Y. Hashimoto, Studies on the mechanism of action of 1α,24-dihydroxyvitamin D<sub>3</sub> II. Specific binding of 1α,24-dihydroxyvitamin D<sub>3</sub> to chick intestinal receptor. Steroids 37, 33-43 (1981).
- [30] K. Matsumoto, K. Hashimoto, M. Kiyoki, M. Yamamoto and K. Yoshikawa, Effect of 1,24R-dihidroxyvitamin D<sub>3</sub> on the growth of human keratinocytes. J. Dermatol. 17, 97-103 (1990).
- [31] H. Kawashima, K. Hoshina, Y. Hashimoto, T. Takeshita, S. Ishimoto, T. Noguchi, N. Ikekawa, M. Morisaki and H. Orimo, Biological activity of 1α,24-dihydroxycholecalciferol; A new synthetic analog of the hormonal form of vitamin D. FEBS Lett. 76, 177-181 (1977).
- [32] K. Komoriya, I. Nagata, M. Tsuchimoto, K. Kunisawa, T. Takeshita and T. Naruchi, 1,25-Dihydroxyvitamin D<sub>3</sub> and 1,24-dihydroxyvitamin D<sub>3</sub> suppress in vitro antibody response to T cell-dependent antigen. Biochem. Biophys. Res. Commun. 127, 753-758 (1985).