Homework 07

Problem 1

With $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $\vec{n} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$, $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$, find eigenvalue and eigenstates of $\vec{\sigma} \cdot \vec{n}$

Problem 2

With $\psi(\theta,\varphi) = \frac{1}{\sqrt{3}} \left(\sqrt{2} Y_1^0(\theta,\varphi) + Y_1^1(\theta,\varphi) \right)$, without integrations, find $\langle L^2 \rangle, \langle L_z \rangle$

Problem 3

With $\phi(t=0) = \psi(\theta, \varphi)$ as above, $H = \frac{\vec{L}^2}{2mR^2}$, find $\phi(t=T)$

Problem 4

With $J_z|j,m\rangle = m\hbar|j,m\rangle$, $\vec{J}^2|j,m\rangle = \hbar j(j+1)|j,m\rangle$,

$$\langle \Delta A \rangle = \sqrt{\langle l, m | A^2 | l, m \rangle - (\langle l, m | A | l, m \rangle)^2}$$

find $\langle \Delta J_x \rangle \langle \Delta J_y \rangle$ and $\langle [J_x, J_y] \rangle$, check $\langle \Delta J_x \rangle \langle \Delta J_y \rangle \geq \frac{1}{2} |\langle [J_x, J_y] \rangle|$. When $\langle \Delta J_x \rangle \langle \Delta J_y \rangle = \frac{1}{2} |\langle [J_x, J_y] \rangle|$, what's the requirement of m?

Problem 5

Write out J_-J_+ as a matrix in the basis of J_z , with j=1, and find the eigenvalue and eigenstates of J_-J_+