

CALDAS Louis

MULTI-AGENT SYSTEMS

Individual project

Epidemic analysis

TABLE OF CONTENTS

- I. Project objective
- II. Multi-agent model
- III. Simulation & demonstration
- IV. Conclusion

PROJECT OBJECTIVE

Model the spread of an epidemic by including parameters to fight against its propagation.

PROJECT OBJECTIVE

Model the spread of an epidemic by including parameters to fight against its propagation.

Measures to consider

- Social Distancing/Barrier gestures
- Restrictions of movements

- Face Covers
- Lockdown

PROJECT OBJECTIVE

Model the spread of an epidemic by including parameters to fight against its propagation.

Inspired by

MULTI-AGENT SYSTEM

Agent = Individual

sick [bool]

sick duration [int]

immune [bool]

barrier gesture [bool]

initial patch [patch]

- Each agent moves randomly
- If an agent is sick he can infect his close neighbors (with the probability of infectiousness variable)
 - if agents respect barrier gestures : infectiousness decreases of 50%
 - if agents wear mask : infectiousness decreases of 70%

MULTI-AGENT SYSTEM

<u>System properties = Virus properties</u>

360°

90°

MULTI-AGENT SYSTEM

<u>User interface : Plot</u>

Number of sick/immune/safe people

Number of die

SIMULATIONS

EXAMPLE OF DIFFERENT VIRUS "TYPE" (WITHOUT PROTECTIVE MEASURES) Initial condition: 1000 individuals - 50 sicks - 0 Immune

Ebola virus

- Low recovery percentage
- High infectiousness
- Very short lifespan
- Low range of infectiousness

HIV virus

- Extremely low recovery rate
- Extremely low infectiousness
- Very long lifespan
- Low range of infectiousness

Covid19 virus

- Extremely high recovery rate
- Extremely high infectiousness
- Medium lifespan
- High range of infectiousness

SIMULATIONS

EXAMPLE OF SPREAD OF COVID 19 WITH THE IMPACT OF PROTECTIVE MEASURES Initial condition: 50 individuals - 5 sick - 0 Immune - High radius of infection

Without measures

- Nightclub
- Family gathering

With barrier gestures & mask

- School
- Shop

With barrier gestures, mask & lockdown

- Lockdown
- Curfew

We smooth the curve!

DEMONSTRATION

CONCLUSIONS

RESULTS

- Lockdown: the most effective measure
- Importance of measures even more indoor

A virus is something complicated to model, there are still a lot of parameters that we do not deal with.

- Taking into account the time of exposure to the virus
- Take into account the age of individuals and adapt the effects of the virus according to their age.

CONCLUSIONS

RESULTS

- Lockdown: the most effective measure
- Importance of measures even more indoor

A virus is something complicated to model, there are still a lot of parameters that we do not deal with.

- Taking into account the time of exposure to the virus
- Take into account the age of individuals and adapt the effects of the virus according to their age.

Questions?

