Differential Geometry of Curves

An Elementary Introduction

Zakaria Zerrouki

University of Michigan - Ann Arbor

14/03/2022

Table of Contents

- Vector-Valued Functions
 - Parametrized Curves
 - Differentiation and Integration
 - Arc-Length
- Plane Curves
 - Curvature and Simple Closed Curves
 - The Isoperimetric Inequality
 - The Fundamental Theorem of Plane Curves
- Space Curves
 - The Frenet Frame
 - The Fundamental Theorem of Space Curves

1) Vector-Valued Functions

1) a) Parametrized Curves

DEFINITION 1 (Parametrized curve): Let n be a non-zero natural number in $\mathbb{N}_{\geq 1}$ and let a, b be a non-degenerate open interval of \mathbb{R} .

- A parametrized curve of] a,b[into \mathbb{R}^n (or parametrized curve) is a continuous function $\vec{\gamma}$ in $\mathscr{C}(|a,b|,\mathbb{R}^n)$.
- A differentiable curve of]a,b[into \mathbb{R}^n (or differentiable curve) is a differentiable parametrized curve $\bar{\gamma}$ in $\mathscr{C}(]a,b[,\mathbb{R}^n)$.

DEFINITION 2 (Regular curve): Let n be a non-zero natural number in $\mathbb{N}_{\geq 1}$, let a, b, b be a non-degenerate open interval of \mathbb{R} , let a be a real number in a, b, and let a be a differentiable curve in $\mathcal{C}(a, b)$, \mathbb{R}^n .

- The differentiable curve $\vec{\gamma}$ is **regular at** t if and only if $\vec{\gamma}'(t) \neq 0$.
- The differentiable curve $\vec{\gamma}$ is **regular** if and only if, for all u in]a, b[, $\vec{\gamma}$ is regular at u.
- The differentiable curve $\vec{\gamma}$ is **singular at** t if and only if $\vec{\gamma}'(t) = 0$.
- The differentiable curve $\vec{\gamma}$ is **singular** if and only if $\vec{\gamma}$ is not regular.

1) a) Parametrized Curves

Example 1 (Parametrized curves): Let a and b be strictly positive real numbers in $\mathbb{R}_{>0}$ and let \vec{a} , $\vec{\beta}$, $\vec{\gamma}$, $\vec{\delta}$ and $\vec{\epsilon}$ be the functions defined by:

 $\bullet \quad \vec{\alpha} : \mathbb{R} \to \mathbb{R}^3; \ t \mapsto (a\cos(t), a\sin(t), bt)$

(Circular helix of radius a and pitch $2\pi b$)

 $\vec{\beta} \colon \mathbb{R} \to \mathbb{R}^2; \ t \mapsto \left(\frac{2at^2}{1+t^2}, \frac{2at^3}{1+t^2}\right)$

(Cissoid of Diocles)

(Tractrix)

(Folium of Descartes)

 $\bullet \quad \vec{\delta} :]-1, +\infty[\to \mathbb{R}^2; \ t \mapsto \left(\frac{3at}{1+t^3}, \frac{3at^2}{1+t^3} \right)$

(Logarithmic spiral)

- $\bullet \quad \vec{\boldsymbol{\varepsilon}} : \mathbb{R} \to \mathbb{R}^2; \ t \mapsto \left(ae^{-bt} \cos(t), ae^{-bt} \sin(t) \right)$
- Then all of $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$, $\vec{\delta}$ and $\vec{\epsilon}$ are differentiable curves as they are differentiable on their domain. Moreover, only $\vec{\alpha}$ and $\vec{\epsilon}$ are regular, as their derivatives are nowhere-vanishing on their domain, whereas $\vec{\beta}$, $\vec{\gamma}$ and $\vec{\delta}$ are singular.

1) b) Differentiation and Integration

PROPOSITION 1 (Algebraic properties of derivatives and integrals of differentiable curves): Let n be a non-zero natural number in $\mathbb{N}_{\geqslant 1}$ and let]a,b[be a non-degenerate open interval of \mathbb{R} , let λ be a real number in \mathbb{R} , let f be a differentiable function in $\mathscr{C}(]a,b[,\mathbb{R})$ and let \tilde{a} , $\tilde{\beta}$ and $\tilde{\gamma}$ be differentiable curves in $\mathscr{C}(]a,b[,\mathbb{R}^n)$. Then:

$$(f \cdot \vec{\alpha})' = f \cdot \vec{\alpha}' + f' \cdot \vec{\alpha}$$

• If
$$n = 3$$
, then $(\vec{\alpha} \wedge \vec{\beta})' = \vec{\alpha}' \wedge \vec{\beta} + \vec{\alpha} \wedge \vec{\beta}'$.

• If
$$n = 3$$
, then $\left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}\right]' = \left[\vec{\alpha}', \vec{\beta}, \vec{\gamma}\right] + \left[\vec{\alpha}, \vec{\beta}', \vec{\gamma}\right] + \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma}'\right]$.

If $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are Riemann-integrable on] a, b[, then one has:

$$\bullet \int_{]a,b[} (\lambda \cdot \vec{\alpha}) = \lambda \int_{]a,b[} \vec{\alpha}$$

1) c) Arc-Length

DEFINITION 3: Let n be a non-zero natural number in $\mathbb{N}_{\geq 1}$, let]a,b[be a non-degenerate open interval of \mathbb{R} , let t_0 be a real number in [a,b] and let $\vec{\mathbf{y}}$ be a Riemann-integrable differentiable curve in $\mathscr{C}([a,b],\mathbb{R}^n)$

- The **speed** of $\vec{\gamma}$ is the function $\|\vec{\gamma}'\|$.
- The differentiable curve $\vec{\gamma}$ is **unit-speed** if and only if, for all t in a, b, one has $\|\vec{\gamma}'(t)\| = 1$.
- The **length** of $\vec{\gamma}$ is the real number denoted by $\ell(\vec{\gamma})$ and defined by:

$$\ell\left(\vec{\boldsymbol{\gamma}}\right) = \int_{]a,b[} \|\vec{\boldsymbol{\gamma}}'\|$$

• The arc-length of \vec{r} measured from t_0 (or curvilinear abscissa of \vec{r} with origin t_0), is the function denoted by s_{t_0} (or s) and defined by:

$$s_{t_0}: \left| \begin{array}{ccc} |a,b| & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \int_{t_0}^t \|\tilde{\gamma}'(t)\| \, \mathrm{d}t \end{array} \right|$$

2) Plane Curves

2) a) Curvature and Simple Closed Curves

DEFINITION 4 (Curvature of a plane curve): Let n be a non-zero natural number in $\mathbb{N}_{\geq 1}$, let a, b, let a non-degenerate interval of \mathbb{R} and let $\vec{\mathbf{y}}$ be a twice differentiable curve in $\mathcal{C}(a,b)$.

• If $\vec{\gamma}$ is unit-speed, the **curvature** of $\vec{\gamma}$ is the function denoted by κ and defined by:

$$\kappa = \|\vec{\pmb{\gamma}}''\|$$

• If $\vec{\gamma}$ is not unit-speed, the **curvature** of $\vec{\gamma}$ is the curvature of its arc-length parametrization.

DEFINITION 5 (Simple and closed plane curves): Let]a,b[be a non-degenerate interval of \mathbb{R} and let $\vec{\gamma}$ parametrized curve in $\mathscr{C}(]a,b[,\mathbb{R}^2)$.

- The parametrized curve $\vec{\gamma}$ is **simple** if and only if $\vec{\gamma}$ is injective.
- ullet The parametrized curve $ec{\gamma}$ is **closed** if and only if the following condition is satisfied:

$$\lim_{\substack{t \to a \\ a < t}} (\vec{\gamma}(t)) = \lim_{\substack{t \to b \\ t < b}} (\vec{\gamma}(t)) \in \mathbb{R}^2$$

2) b) The Isoperimetric Inequality

THEOREM 1 (The isoperimetric inequality): Let |a,b| be a non-degenerate interval of $\mathbb R$ and let $\vec{\pmb{\gamma}}$ be a simple closed differentiable curve in $\mathscr C(|a,b|,\mathbb R^2)$ and let $\mathscr A(\vec{\pmb{\gamma}})$ be the area of $\operatorname{int}(\vec{\pmb{\gamma}})$. Then one has:

$$\mathcal{A}(\vec{\boldsymbol{\gamma}}) \leqslant \frac{\ell(\vec{\boldsymbol{\gamma}})^2}{4\pi}$$

with equality if and only if $\vec{\gamma}(a,b)$ is a circle in \mathbb{R}^2 .

2) c) The Fundamental Theorem of Plane Curves

THEOREM 2 (The fundamental theorem of plane curves): Let]a,b[be a non-degenerate open interval of \mathbb{R} and let κ be a nowhere-vanishing differentiable function in $\mathscr{C}(]a,b[,\mathbb{R}_{>0})$. Then:

- **1** There exists a regular differentiable curve $\vec{\gamma}$ in $\mathcal{C}(|a,b|,\mathbb{R}^2)$ such that κ is the curvature of $\vec{\gamma}$.
- **②** If $\vec{\gamma}$ and $\vec{\rho}$ are regular differentiable curves in $\mathscr{C}(|a,b|,\mathbb{R}^2)$ such that κ is the curvature of both $\vec{\gamma}$ and $\vec{\rho}$, then there exists a 2-square matrix \mathbf{R} in $\mathrm{SO}_2(\mathbb{R})$ and a vector $\vec{\mathbf{t}}$ in \mathbb{R}^2 such that:

$$\vec{\rho} = \mathbf{R} \times \vec{\gamma} + \vec{\mathbf{t}}$$

3) Space Curves

DEFINITION 6 (Tangent, normal and binormal vectors of a unit-speed curve): Let |a,b| be a non-degenerate open interval of \mathbb{R} and let $\vec{\gamma}$ be a thrice differentiable unit speed curve in $\mathscr{C}(|a,b|,\mathbb{R}^3)$.

 $\bullet~$ The tangent~vector~ of $\vec{\gamma}$ is the function denoted by \hat{T} and defined by:

$$\hat{\mathbf{T}} = \vec{\boldsymbol{\gamma}}'$$

• The **normal vector** of $\vec{\gamma}$ is the function denoted by \hat{N} and defined by:

$$\hat{\mathbf{N}} = \frac{\vec{\mathbf{\gamma}}''}{\kappa}$$

wherever κ is non-vanishing.

• The **binormal vector** of $\vec{\gamma}$ is the function denoted by $\hat{\mathbf{B}}$ and defined by:

$$\hat{B} = \hat{T} \wedge \hat{N}$$

• The **torsion** of $\vec{\gamma}$ is the function denoted by τ and defined by:

$$\tau = -\hat{\mathbf{B}}' \bullet \hat{\mathbf{N}}$$

PROPOSITION 2 (Orthonormality of the tangent, normal and binormal vectors of a unit speed curve): Let]a,b[be a non-degenerate open interval of $\mathbb R$ and let $\tilde{\gamma}$ be a thrice differentiable unit speed curve in $\mathscr{C}(a,b[,\mathbb R^3)$. Then, for every real number t in]a,b[such that $\kappa(t) \neq 0$, the set $\{\hat{\mathbf{T}},\hat{\mathbf{N}},\hat{\mathbf{B}}\}$ is an orthonormal basis of \mathbb{R}^3 .

DEFINITION 7 (Tangent, normal and binormal vectors of a regular curve): Let]a,b[be a non-degenerate open interval of \mathbb{R} and let $\vec{\gamma}$ be a thrice differentiable regular curve in $\mathscr{C}([a,b],\mathbb{R}^3)$ such that κ is nowhere vanishing on [a,b[.

- The tangent vector, normal vector, binormal vector and torsion of \vec{r} are the tangent vector, normal vector, binormal vector and torsion of its arc-length parametrization.
- The Frenet frame of $\vec{\gamma}$ is the ordered quadruple $(\vec{\gamma}, \hat{\mathbf{T}}, \hat{\mathbf{N}}, \hat{\mathbf{B}})$
- The **osculating plane** of $\vec{\gamma}$ is the function denoted by \mathscr{P}_{Γ} and defined by:

$$\mathscr{P}_{\Gamma} = \vec{\gamma} + \operatorname{span}_{\mathbb{R}} \left(\{ \hat{\mathbf{T}}, \hat{\mathbf{N}} \} \right)$$

• The **normal plane** of $\vec{\gamma}$ is the function denoted by \mathscr{P}_{Σ} and defined by:

$$\mathscr{P}_{\Sigma} = \vec{\gamma} + \operatorname{span}_{\mathbb{R}} \left(\{ \hat{\mathbf{N}}, \hat{\mathbf{B}} \} \right)$$

• The **rectifying plane** of $\vec{\gamma}$ is the function denoted by \mathscr{P}_{Λ} and defined by:

$$\mathscr{P}_{\Lambda} = \vec{\gamma} + \operatorname{span}_{\mathbb{R}} \left(\{ \hat{\mathbf{T}}, \hat{\mathbf{B}} \} \right)$$

THEOREM 3 (Explicit expression of the Frenet frame, the curvature and torsion of a regular differentiable curve): Let]a,b[be a non-degenerate open interval of $\mathbb R$ and let $\vec{\mathbf y}$ be a thrice differentiable regular curve in $\mathscr C(]a,b[,\mathbb R^3)$ such that $\vec{\mathbf y}' \wedge \vec{\mathbf y}''$ is nowhere vanishing on]a,b[. Then one has:

$$\kappa = \frac{\|\vec{\gamma}' \wedge \vec{\gamma}''\|}{\|\vec{\gamma}'\|^3}$$

$$\tau = \frac{\left[\vec{\boldsymbol{\gamma}}', \vec{\boldsymbol{\gamma}}'', \vec{\boldsymbol{\gamma}}'''\right]}{\left\|\vec{\boldsymbol{\gamma}}' \wedge \vec{\boldsymbol{\gamma}}''\right\|^2}$$

$$\hat{\mathbf{T}} = \frac{\vec{\boldsymbol{\gamma}}'}{\|\vec{\boldsymbol{\gamma}}'\|}$$

$$\hat{N} = \frac{\vec{\gamma}' \wedge \left(\vec{\gamma}'' \wedge \vec{\gamma}'\right)}{\|\vec{\gamma}'\| \|\vec{\gamma}'' \wedge \vec{\gamma}'\|}$$

$$\hat{\mathbf{B}} = \frac{\vec{\boldsymbol{\gamma}}' \wedge \vec{\boldsymbol{\gamma}}''}{\|\vec{\boldsymbol{\gamma}}' \wedge \vec{\boldsymbol{\gamma}}''\|}$$

THEOREM 4 (The Frenet-Serret equations): Let]a,b[be a non-degenerate open interval of $\mathbb R$ and let $\vec{\gamma}$ be a thrice differentiable regular curve in $\mathscr C(]a,b[,\mathbb R^3)$ such that $\vec{\gamma}' \wedge \vec{\gamma}''$ is nowhere vanishing on]a,b[. Then one has:

$$\begin{bmatrix} \hat{\mathbf{T}}' \\ \hat{\mathbf{N}}' \\ \hat{\mathbf{B}}' \end{bmatrix} = \| \vec{\boldsymbol{\gamma}}' \| \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \hat{\mathbf{T}} \\ \hat{\mathbf{N}} \\ \hat{\mathbf{B}} \end{bmatrix}$$

3) b) The Fundamental Theorem of Space Curves

THEOREM 5 (**The fundamental theorem of space curves**): Let]a,b[be a non-degenerate open interval of \mathbb{R} , let κ be a nowhere-vanishing differentiable function in $\mathscr{C}(]a,b[,\mathbb{R}_{>0})$ and let τ be a nowhere-vanishing differentiable function in $\mathscr{C}(]a,b[,\mathbb{R}_{\neq 0})$ Then:

- **①** There exists a regular differentiable curve \vec{r} in $\mathcal{C}(]a,b[,\mathbb{R}^3)$ such that κ is the curvature of \vec{r} and τ is the torsion of \vec{r} .
- ② If \vec{r} and $\vec{\rho}$ are regular differentiable curves in $\mathscr{C}(|a,b|,\mathbb{R}^3)$ such that κ is the curvature of both \vec{r} and $\vec{\rho}$ and τ is the torsion of both \vec{r} and $\vec{\rho}$, then there exists a 3-square matrix \mathbf{R} in $\mathrm{SO}_3(\mathbb{R})$ and a vector $\vec{\mathbf{t}}$ in \mathbb{R}^3 such that:

$$\vec{\rho} = \mathbf{R} \times \vec{\gamma} + \vec{\mathbf{t}}$$

Bibliography

- [1] Manfredo P. Do Carmo. *Differential Geometry of Curves and Surfaces*. 2nd edition. Dover Publications, 2016, page 528. ISBN: 978-0-486-80699-0. URL: https://store.doverpublications.com/0486806995.html.
- [2] Wikipedia contributors. Frenet-Serret formulas Wikipedia, The Free Encyclopedia. [Online; accessed 26-February-2023]. 2023. URL: https://en.wikipedia.org/w/index.php?title=Frenet%E2%80%93Serret_formulas&oldid=1133612897.