22. РАНГ МАТРИЦЫ

<u>Базисный минор</u> — минор M_k матрицы A, если он отличен от нуля, а все миноры матрицы A более высокого порядка равны нулю.

<u>Ранг матрицы А</u> – порядок ее базисного минора.

Ранг матрицы A равен <u>кол-ву ненулевых строк</u> матрицы после приведения её после элементарных преобразований к ступенчатому виду.

[r(A) или rang (A)]

Методы нахождения ранга матрицы:

I. Метод окаймляющих миноров

Пусть M_S – минор порядка S. <u>Окаймляющий минор для минора M_S </u> –любой минор порядка S+1, содержащий минор M_S

TEOPEMA 1. Если в матрице A есть минор M_k , отличный от нуля, а все окаймляющие его миноры = 0, то ранг равен k.

Найти ранг матрицы можно по след схеме:

- 1) Находим в матрице минор M_k , отличный от нуля, где $k \geq 1$
- 2) Ищем его окаймляющий минор M_{s+1} , отличный от нуля. Если такого минора не существует, то ранг матрицы равен k.

II. Метод эл преобразований

Элементарные преобразования:

- 1)умножение любой строки(столбца) на α≠0
- 2)прибавление к и-той строке(столбцу) к-той строки (столбца), умноженной на α≠0
- 3)перестановка и-той и к-той строки(столбца)
- 4)вычеркивание одной из двух пропорц. или равных строк (столбцов)
- 5)вычёркивание нулевых строк

Матрица В называется эквивалентной матрице A, если она мб получена из матрицы A путем эл. преобр. $[A \backsim B]$

TEOPEMA 2. Эквивалентные матрицы имеют равные ранги

TEOPEMA 3. Любая матрица А эквивалентна некоторой треуг. или трапециевид. Матрице, не содержащей нулевых или пропорц. Строк. Причем эта треуг или трап. Матрица мб получена из А эл преобр только строк.

Схема на нахождения ранга:

- 1) С помощью эл преобр строк получаем для матрицы A эквивалентную или трап. матрицу B
- 2) Находим в матрице В базисный минор и определяем ранг матрицы В и А

TEOPEMA 1. Произвольную невырожденную матрицу n-порядка с помощью эл преобр можно привести к E матрице

TEOPEMA 2. Если к Е матрице применить те же эл преобр, только строками, с помощью которых матрица А была приведена к Е матрице, то в результате получим матрицу, которая является обратной к матрице А.

<u>Определитель Вандермонда</u> – определитель n-го порядка из вида: