

# 움직이는 카메라와 특징점 추출을 이용한 스테레오 비전

산업 및 에너지 분야 XXXX고등학교 3학년 이XX 서규호 지도교사 0|XX

# 탐구 동기 및 목적



- 스마트폰이 공간을 입체적으로 인 식해 더 현실적으로 AR을 구현하고 자 함
- 단일 카메라 스마트폰에서도 공간 을 인식하고자 함
- 좌우로 정확하게 평행이동해야 하 는 선행연구와 달리 회전해도 측정 이 가능하게끔 함

### 탐구 방법

#### ▶ 사진 촬영

사진을 한번 촬영한 뒤, 카메라를 옆으로 이동 및 회전 시킨 후 다시 촬영한다. 카메라가 이동한 거리와 회전한 각도를 같이 기록해둔다.

#### ▶ 특징점 추출

Visual Studio로 OpenCV 라이브러리에 있는 SIFT, SURF 알고리즘을 이용해 특징점을 추출하고 영상 기술자를 연산한다.





※영상기술자: 64개의 실수로 특징점의 정보를 저장함

#### ▶ 매칭 & 매치 필터링

FLANN 기반 매칭 알고리즘으로 서로 비슷한 영상 기술 자들을 매칭한다. 이후 매치들을 RANSAC 알고리즘을 반복해 적용하며 큰 경향성에 맞는 매치들만을 남긴다.





매치 결과

RANSAC 적용 후

※RANSAC: 경향성에 맞지 않는 것들을 제외함

#### ▶ 좌표 계산

 $D = A + \vec{a} \frac{-\left(\vec{a} \cdot \vec{b}\right)\left(\vec{b} \cdot \vec{c}\right) + \left(\vec{a} \cdot \vec{c}\right)\left(\vec{b} \cdot \vec{b}\right)}{\left(\vec{a} \cdot \vec{a}\right)\left(\vec{b} \cdot \vec{b}\right) - \left(\vec{a} \cdot \vec{b}\right)\left(\vec{a} \cdot \vec{b}\right)} \quad \text{화면에서의 점은 공간에 서의 반직선에 대응된다.}$  $E = B + \vec{b} \frac{\left(\vec{a} \cdot \vec{b}\right) \left(\vec{a} \cdot \vec{c}\right) - \left(\vec{b} \cdot \vec{c}\right) \left(\vec{a} \cdot \vec{a}\right)}{\left(\vec{a} \cdot \vec{a}\right) \left(\vec{b} \cdot \vec{b}\right) - \left(\vec{a} \cdot \vec{b}\right) \left(\vec{a} \cdot \vec{b}\right)} \quad \text{장 가까운 점을 구하는 수 학적인 방법을 이용했다.}$ 

이에 따라 두 직선에서 가

#### ▶ 공간에 표현

구한 좌표를 Unity 엔진을 이용해 컴퓨터 공간 상에 구의 형태로 표현했다.







## 탐구 결과

### 카메라를 평행이동해 측정한 결과(43cm 왼쪽으로 이동)

| 물체  | 실측치 (cm) |     | 실험치 (cm) |     | 상대오차 (%) |      |
|-----|----------|-----|----------|-----|----------|------|
| 서랍장 | 306      | 300 | 287      | 281 | 6.62     | 6.76 |
| 스피커 | 361      | 332 | 351      | 325 | 2.85     | 2.15 |
| 포스터 | 429      |     | 425      |     | 0.94     |      |

### 카메라를 평행이동과 각도조절을 해 측정한 결과 (43cm 왼쪽으로 이동, 9.34° 오른쪽으로 회전)

| 물체  | 실측치 (cm) |     | 실험치 (cm) |     | 상대오차 (%) |      |
|-----|----------|-----|----------|-----|----------|------|
| 서랍장 | 305      | 290 | 306      | 289 | 0.32     | 0.34 |
| 스피커 | 342      | 342 | 342      | 340 | 0        | 0.58 |
| 포스터 | 411      | 448 | 426      | 471 | 3.52     | 4.88 |

각각 평균 상대오차가 **3.79%**, **1.66%**로 측정됨 두 카메라가 한 점을 향할 때 거리 측정이 더 정확해지는 것을 확인함

# 결론 및 전망

- 스마트폰 내에서 모든 연산을 처리해 쉽고 빠르게 결과를 얻기 위해서 여러 센서를 사용해 카메라의 움직임을 파악하는 연구를 진행하고 있다
- 단일 카메라로도 스테레오 카메라처럼 정확하게 공간을 인식할 수 있다
- 단일 카메라에서도 주위 공간 정보를 사용하는 AR이 상용화될 수 있다