Машинное обучение

Предмет изучения

Машинное обучение занимается построением математических моделей для исследования данных.

Машинное обучение ⊂ Искусственный интеллект

Машинное обучение ∩ Анализ данных ≠ 0

Машинное обучение ≈ Распознование образов

Машинное обучение ≈ Обучение по прецедентам

Категории машинного обучения

- Обучение с учителем построение модели на основе обучающих данных и заданного целевого признака
 - Классификация предсказание значения целевого признака (дискретный случай)
 - Регрессия предсказание значения целевого признака (непрерывный случай)
- Обучение без учителя распознавание структуры немаркированных данных
 - Кластеризация разделение данных на отдельные группы
 - Преобразование данных поиск альтернативного представления данных
 - Визуализация
 - понижение размерности,
 - ...
- Частичное обучение обучение с учителем, но значение целевого признака известно не всегда

Терминология

sepal_width	petal_length	petal_width	species
3.5	1.4	0.2	setosa
3.0	1.4	0.2	setosa
3.2	1.3	0.2	setosa
3.1	1.5	0.2	setosa
3.6	1.4	0.2	setosa
3.9	1.7	0.4	
3.4	1.4	0.3	
3.4	1.5	0.2	
2.9	1.4	0.2	
3.1	1.5	0.1	
	3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9	3.5 1.4 3.0 1.4 3.2 1.3 3.1 1.5 3.6 1.4 3.9 1.7 3.4 1.4 3.4 1.5 2.9 1.4	3.0 1.4 0.2 3.2 1.3 0.2 3.1 1.5 0.2 3.6 1.4 0.2 3.9 1.7 0.4 3.4 1.4 0.3 3.4 1.5 0.2 2.9 1.4 0.2

Алгоритм построения модели

Проверка модели

Отложенные данные

Перекрестная проверка

• Мера качества (классификация)

доля правильных ответов
$$= \frac{TP + TN}{TP + FP + FN + TN}$$

точность =
$$\frac{TP}{TP + FP}$$

полнота =
$$\frac{TP}{TP + FN}$$

$$F = \frac{2 \cdot \text{точность} \cdot \text{полнота}}{\text{точность} + \text{полноста}}$$

Матрица ошибок / несоответствий

	1	-1
1	TP	FP
-1	FN	TN

Выбор модели

• Мера качества (регрессия)

$$y = w_0 + w_1 x_1 + \dots + w_m x_m$$

$$E = \frac{1}{n} \cdot \sum (y_i - \widehat{y}_i)^2$$

- Регуляризация
 - Используется для того, чтобы избежать переобучения, путем введения штрафов за дополнительные признаки
 - L1-регуляризация

$$E = \frac{1}{n} \cdot \sum (y_i - \widehat{y}_i)^2 + \alpha \sum |w|$$

• L2-регуляризация

$$E = \frac{1}{n} \cdot \sum (y_i - \widehat{y}_i)^2 + \alpha \sum w^2$$

• Метод k-ближайших соседей

• Метод опорных векторов

• Ядерное обобщение метода опорных векторов

• Дерево принятия решений

- Ансамбли деревьев решений
 - Bagging (Bootstrap aggregation)
 - Параллельное обучение + голосование
 - Градиентный бустинг
 - Последовательное обучение

• Многослойный персептрон

y = w[0]x[0] + w[1]x[1] + w[2]x[2] + w[3]x[3]

Функция активации

$$h[0] = \tanh(w[0,0]x[0] + w[1,0]x[1] + w[2,0]x[2] + w[3,0]x[3])$$

$$h[1] = \tanh(w[0,1]x[0] + w[1,1]x[1] + w[2,1]x[2] + w[3,1]x[3])$$

$$h[2] = \tanh(w[0,2]x[0] + w[1,2]x[1] + w[2,2]x[2] + w[3,2]x[3])$$

$$y = v[0]h[0] + v[1]h[1] + v[2]h[2]$$

• Многослойный персептрон

Обучение с учителем. Регрессия

• Линейная регрессия

$$y = w_0 + w_1 x_1 + w_2 x_2 + \cdots$$

Обучение с учителем. Регрессия

• Регрессия по комбинации базисных функций

Модель остается линейной, так как a никогда не умножаются и не делятся друг на друга

Обучение с учителем. Регрессия

• Метод k-ближайших соседей

Обучение без учителя

• Метод главных компонент

