MAT1830

Lecture 6: Rules of inference

Last time we saw how to recognise tautologies and logically equivalent sentences by computing their truth tables. Another way is to *in*fer new sentences from old by rules of inference.

6.1 Replacement

Any sentence may be replaced by a logically equivalent sentence. Any series of such replacements therefore leads to a sentence equivalent to the one we started with

Using replacement is like the usual method of proving identities in algebra – make a series of replacements until the left hand side is found equal to the right hand side.

Why can we say that $(\frac{2x}{2})^2 = x^2$?

And there's a rule of replacement.

Because $\frac{2x}{2} = x$.

It's the same in logic except with \equiv instead of =.

It's the same in logic except with \equiv instead of =.

So we can say that $p \land \neg (q \lor r) \equiv p \land (\neg q \land \neg r)$ because $\neg (q \lor r) \equiv \neg q \land \neg r$.

Example. Prove that $x \to y \equiv (\neg y) \to (\neg x)$.

Example. Frove that
$$x \to y = (\neg y) \to (\neg y)$$

$$r \rightarrow u = (-r) \setminus u$$

$$x \to y \equiv (\neg x) \lor y$$

$$x \to y \equiv (\neg x) \lor y$$

$$x \to y \equiv (\neg x) \lor y$$

$$= u \lor (\neg x)$$

$$\equiv y \lor (\neg x)$$

$$\equiv y \lor (\neg x)$$

by implication law

- - $\equiv \quad (\neg \neg y) \vee (\neg x)$
 - - by law of double negation
 - $\equiv (\neg y) \rightarrow (\neg x)$

6.2 Contrapositives

$$x \to y \equiv (\neg y) \to (\neg x)$$

$$(\neg y) \to (\neg x) \text{ is the } contrapositive \text{ of } x \to y.$$

Example. The contrapositive of

 $MCG flooded \rightarrow cricket is off$

is

Cricket is on \rightarrow MCG not flooded.

An implication and its contrapositive are equivalent: they mean the same thing!

Question 6.1 What does "no pain, no gain" mean as an implication? "no pain" \rightarrow "no gain"

Question 6.2 What is its contrapositive?

```
\neg "no gain" \rightarrow \neg "no pain" OR "gain" \rightarrow "pain"
```

Flux Exercise (AVT95F)

What is the contrapositive of "If $x \equiv 0 \pmod{6}$, then $2x \equiv 0 \pmod{6}$ "?

A. "If $2x \not\equiv 0 \pmod{6}$, then $x \not\equiv 0 \pmod{6}$."

B. "If $2x \equiv 0 \pmod{6}$, then $x \equiv 0 \pmod{6}$."

C. "If $2x \not\equiv 0 \pmod{3}$, then $x \equiv 0 \pmod{6}$."

D. "If $x \equiv 0 \pmod{6}$ and $2x \not\equiv 0 \pmod{6}$."

Contrapositives are not negations!

Don't confuse contrapositives with negations.

We've seen that the contrapositive of $p \to q$ is $\neg q \to \neg p$ and that it is logically equivalent to the original statement.

The negation of $p \to q$ is $\neg(p \to q)$. It is not logically equivalent to the original statement.

$$\neg(p \to q) \equiv \neg(\neg p \lor q)
\equiv \neg \neg p \land \neg q
\equiv p \land \neg q$$

"If he was famous then he'd fly first class."

Contrapositive: "If he doesn't fly first class then he isn't famous." Logically equivalent to original statement!

Negation: "He's famous and he doesn't fly first class." True exactly when the original statement is false!

THEN I TOOK A STATISTICS CLASS. NOW I DON'T.

Question 6.3 Write down the following sentences as implications and then write their contrapositives.

Sentence: "You can't make an omelette without breaking eggs." Implication: "you made an omelette" \rightarrow "you broke eggs" Contrapositive: "you didn't break eggs" \rightarrow "you didn't make an omelette"

Sentence: "If n is even, so is n^2 ." Implication: "n is even" \rightarrow " n^2 is even" Contrapositive: " n^2 is odd" \rightarrow "n is odd"

Sentence: "Haste makes waste." Implication: "haste" \rightarrow "waste" Contrapositive: "no waste" \rightarrow "no haste" Flux Exercise (AVT95F)

Suppose "If x is mimsy, then x is not frumious" is true. What can we say about whether the following statements are true?

- (1) "If x is not frumious, then x is mimsy."
- (2) "x is mimsy and x is frumious."(3) "If x is frumious, then x is not mimsy."
 - A. (1) true, (2) false, (3) true
 - B. (1) false, (2) false, (3) true
 - C. (1) maybe, (2) false, (3) false
 - D. (1) maybe, (2) false, (3) true

6.3 Using logic laws

Example. Prove that $p \to (q \to p)$ is a tautology.

$$p \to (q \to p)$$

$$\equiv (\neg p) \lor (q \to p)$$
by implication law
$$\equiv (\neg p) \lor ((\neg q) \lor p)$$
by implication law
$$\equiv (\neg p) \lor (p \lor (\neg q))$$
by commutative law
$$\equiv ((\neg p) \lor p) \lor (\neg q)$$
by associative law
$$\equiv (p \lor (\neg p)) \lor (\neg q)$$
by commutative law
$$\equiv (p \lor (\neg p)) \lor (\neg q)$$
by commutative law
$$\equiv T \lor (\neg q)$$
by inverse law

 \equiv T by annihilation law

Question 6.4 Show that $p \to (q \to (r \to p))$ is a tautology.

$$\begin{array}{lll} p \to (q \to (r \to p)) & \equiv & \neg p \lor (q \to (r \to p)) & \text{(implication law)} \\ & \equiv & \neg p \lor (\neg q \lor (r \to p)) & \text{(implication law)} \\ & \equiv & \neg p \lor (\neg q \lor (\neg r \lor p)) & \text{(implication law)} \\ & \equiv & \neg p \lor \neg q \lor \neg r \lor p & \text{(associative law)} \\ & \equiv & (\neg p \lor p) \lor \neg q \lor \neg r & \text{(commutative law)} \\ & \equiv & T \lor \neg q \lor \neg r & \text{(inverse law)} \\ & \equiv & T & \text{(annihilation law)} \end{array}$$

So the statement is logically equivalent to T and so is a tautology.

Question 6.5 Find a tautology form with n variables which is $p \to (q \to p)$ for n = 2 and $p \to (q \to (r \to p))$ for n = 3.

$$0 \rightarrow (q \rightarrow p)$$
 for $n=2$ and $p \rightarrow (q \rightarrow (r \rightarrow p))$ for $n=3$.

 $p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow (p_4 \rightarrow \cdots (p_{n-1} \rightarrow (p_n \rightarrow p_1)) \cdots)))$

THE BOAT ONLY HOUDS TWO, BUT YOU CAN'T LEAVE THE COAT WITH THE CABBAGE OR THE WOLF WITH THE COAT. Val. (Southon: (Southon: Green and Southon: Green and
1. TAKE THE COAT ACROSS. 2. RETURN ALONE.
3. TAKE THE CABBAGE ACROSS.
4. LEPAVE THE WOLF? WHY DID YOU HAVE A WOLF?

Example. Prove that $((p \to q) \land p) \to q$ is a tautology.

$$((p \to q) \land p) \to q$$

$$\equiv \neg((p \to q) \land p) \lor q$$
by implication law
$$\equiv (\neg(p \to q) \lor (\neg p)) \lor q$$
by de Morgan's law
$$\equiv \neg(p \to q) \lor ((\neg p) \lor q)$$
by associative law
$$\equiv \neg(p \to q) \lor (p \to q)$$
by implication law
$$\equiv (p \to q) \lor \neg(p \to q)$$
by commutative law

This tautology says that "if p implies q and p is true then q is true".

6.4 Logical consequence

A sentence ψ is a logical consequence of a sentence ϕ , if $\psi = \mathsf{T}$ whenever $\phi = \mathsf{T}$. We write this as $\phi \Rightarrow \psi$.

It is the same to say that $\phi \to \psi$ is a tautology, but $\phi \Rightarrow \psi$ makes it clearer that we are discussing a relation between the sentences ϕ and ψ .

Any sentence ψ logically equivalent to ϕ is a logical consequence of ϕ , but not all consequences of ψ are equivalent to it.

It might help to think that:

$$\Rightarrow$$
 corresponds to \rightarrow in the same way \equiv corresponds to \leftrightarrow .

We saw last lecture that, for sentences ϕ and ψ , $\phi \equiv \psi$ exactly when $\phi \leftrightarrow \psi$ is a tautology.

In the same way, $\phi \Rightarrow \psi$ exactly when $\phi \rightarrow \psi$ is a tautology.

Example. $p \land q \Rightarrow p$

p is a logical consequence of $p \wedge q$, because $p = \mathsf{T}$ whenever $p \wedge q = \mathsf{T}$. However, we can have $p \wedge q = \mathsf{F}$ when $p = \mathsf{T}$ (namely, when $q = \mathsf{F}$). Hence $p \wedge q$ and p are not equivalent.

This example shows that \Rightarrow is not symmetric:

$$(p \land q) \Rightarrow p$$
 but $p \Rightarrow (p \land q)$

This is where \Rightarrow differs from \equiv , because if $\phi \equiv \psi$ then $\psi \equiv \phi$.

In fact, we build the relation \equiv from \Rightarrow the same way \leftrightarrow is built from \rightarrow :

$$\phi \equiv \psi$$
 means $(\phi \Rightarrow \psi)$ and $(\psi \Rightarrow \phi)$.

Example Show that $p \land (q \lor r) \Rightarrow (p \land q) \lor r$ using a truth table.

							_
p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$(p \wedge q) \vee r$	
Т	Т	Т	Т	Т	Т	Т	(!
T	Т	F	T	Т	Т	Т	(!
T	F	T	Т	Т	F	Т	(!
T	F	F	F	F	F	F	,
F	Т	T	T	F	F	Т	
F	Т	F	T	F	F	F	
F	F	Т	Т	F	F	Т	
F	F	F	F	F	F	F	
			1	1			J