กรอบทฤษฎีสำหรับการสร้างแบบจำลองความ เข้มข้นของฝุ่น PM2.5 ในสภาพแวดล้อมเมืองและ ปริมณฑล: กรณีศึกษาจังหวัดนครราชสีมา

ส่วนที่ 1: ความเข้าใจพื้นฐานเกี่ยวกับ PM2.5: แหล่งกำเนิดและการ ก่อตัว

1.1 นิยามของฝุ่นละออง PM2.5

ฝุ่นละออง PM2.5 (Particulate Matter 2.5) คืออนุภาคของแข็งหรือของเหลวขนาดเล็กที่แขวนลอยในอากาศ โดยมีขนาดเส้นผ่านศูนย์กลางเชิงอากาศพลศาสตร์ (aerodynamic diameter) ไม่เกิน 2.5 ไมครอน ¹ ด้วย ขนาดที่เล็กมาก ซึ่งเล็กกว่าเส้นผ่านศูนย์กลางของเส้นผมมนุษย์ประมาณ 20-30 เท่า ทำให้ฝุ่นละอองชนิดนี้ สามารถเล็ดลอดผ่านกลไกการป้องกันตามธรรมชาติของระบบทางเดินหายใจ เช่น ขนจมูก เข้าไปสู่ส่วนลึกสุด ของปอด และสามารถซึมผ่านเข้าสู่กระแสเลือดเพื่อกระจายไปยังอวัยวะต่างๆ ทั่วร่างกายได้ ³

ผลกระทบต่อสุขภาพจากการสัมผัส PM2.5 นั้นมีความรุนแรงและหลากหลาย องค์การอนามัยโลก (World Health Organization: WHO) ได้จัดให้ PM2.5 อยู่ในกลุ่มที่ 1 ของสารก่อมะเร็ง ⁴ การสัมผัสฝุ่นละอองชนิดนี้ ในระยะยาวมีความเชื่อมโยงกับการเพิ่มความเสี่ยงของโรคระบบทางเดินหายใจ เช่น โรคหอบหืด โรคปอดอุดกั้น เรื้อรัง รวมถึงโรคระบบหัวใจและหลอดเลือด เช่น โรคหัวใจขาดเลือด และโรคหลอดเลือดในสมอง ⁶ การทำความ เข้าใจคุณลักษณะและผลกระทบของ PM2.5 จึงเป็นรากฐานสำคัญในการสร้างแบบจำลองที่แม่นยำเพื่อการ จัดการและป้องกันปัญหา

1.2 แหล่งกำเนิดปฐมภูมิ: การปลดปล่อยอนุภาคโดยตรง

้ฝุ่น PM2.5 ปฐมภูมิ (Primary PM2.5) คือฝุ่นละอองที่ถูกปล่อยออกจากแหล่งกำเนิดสู่บรรยากาศโดยตรง

แหล่งกำเนิดเหล่านี้สามารถแบ่งได้เป็นสองประเภทหลัก คือ แหล่งกำเนิดจากธรรมชาติ เช่น การปะทุของ ภูเขาไฟ พายุฝุ่น และไฟป่าที่เกิดจากฟ้าผ่า และแหล่งกำเนิดจากกิจกรรมของมนุษย์ (Anthropogenic Sources) ซึ่งเป็นเป้าหมายหลักในการสร้างแบบจำลองนี้ ³

กิจกรรมของมนุษย์ที่ก่อให้เกิด PM2.5 ปฐมภูมิส่วนใหญ่เกี่ยวข้องกับกระบวนการเผาไหม้ที่ไม่สมบูรณ์ของ สารประกอบคาร์บอน ⁸ แหล่งกำเนิดหลักที่ระบุในกรณีศึกษาจังหวัดนครราชสีมา ได้แก่:

- **การเผาในภาคเกษตร:** การเผาไร่อ้อยและเศษวัสดุทางการเกษตรอื่นๆ เพื่อเตรียมพื้นที่เพาะปลูก เป็น แหล่งกำเนิด PM2.5 ปฐมภูมิที่สำคัญและเกิดขึ้นตามฤดูกาล ⁹
- **ภาคอุตสาหกรรม:** โรงงานอุตสาหกรรมและโรงไฟฟ้าที่ใช้เชื้อเพลิงฟอสซิล เช่น ถ่านหินและน้ำมันเตา ใน กระบวนการผลิตและการผลิตไฟฟ้า จะปล่อยอนุภาคฝุ่นขนาดเล็กออกมาโดยตรงจากปล่องระบาย 7
- **การคมนาคมขนส่ง:** การเผาไหม้ที่ไม่สมบูรณ์ของเครื่องยนต์ โดยเฉพาะเครื่องยนต์ดีเซลในรถยนต์ รถ บรรทุก และรถโดยสาร เป็นแหล่งกำเนิดเขม่าและควันดำ ซึ่งเป็นส่วนประกอบสำคัญของ PM2.5 ปฐมภูมิ ในเขตเมือง ⁶

1.3 การก่อตัวของแอโรซอลทุติยภูมิ: ปฏิกิริยาเคมีในบรรยากาศ

นอกเหนือจากฝุ่นที่ถูกปล่อยออกมาโดยตรงแล้ว ความเข้มข้นของ PM2.5 ในบรรยากาศยังประกอบด้วยฝุ่น ละอองทุติยภูมิ (Secondary PM2.5) ซึ่งเป็นองค์ประกอบที่สำคัญและมักถูกประเมินค่าต่ำเกินไป ¹¹ ฝุ่นละออง ชนิดนี้ไม่ได้ถูกปล่อยออกมาโดยตรง แต่ก่อตัวขึ้นในบรรยากาศผ่านปฏิกิริยาเคมีที่ซับซ้อนของก๊าซตั้งต้น (Precursor Gases)

ก๊าซตั้งต้นที่สำคัญซึ่งถูกปล่อยออกมาจากแหล่งกำเนิดเดียวกับฝุ่นปฐมภูมิ ได้แก่:

- **ในโตรเจนออกไซด์ ():** เกิดจากการเผาไหม้ที่อุณหภูมิสูงในเครื่องยนต์สันดาปภายในของยานพาหนะและ หม้อไอน้ำของโรงงานอุตสาหกรรม ¹
- ซัลเฟอร์ไดออกไซด์ (): เกิดจากการเผาไหม้เชื้อเพลิงที่มีกำมะถันเป็นองค์ประกอบ เช่น ถ่านหินและ น้ำมันเตา ซึ่งใช้ในโรงไฟฟ้าและโรงงานอุตสาหกรรมหนัก 1
- **สารประกอบอินทรีย์ระเหยง่าย (Volatile Organic Compounds: VOCs):** ปลดปล่อยจากไอเสีย รถยนต์ ตัวทำละลายในภาคอุตสาหกรรม โรงงานเคมีภัณฑ์ และการเผาชีวมวลที่ไม่สมบูรณ์ ¹²

กระบวนการก่อตัวของฝุ่นทุติยภูมิ หรือที่เรียกว่า "หมอกควันแบบโฟโตเคมิคัล" (Photochemical Smog) จะ เกิดขึ้นเมื่อก๊าซตั้งต้นเหล่านี้ทำปฏิกิริยาเคมีในบรรยากาศ โดยมีแสงแดด โดยเฉพาะรังสีอัลตราไวโอเลต (UV) เป็นตัวเร่งปฏิกิริยา ¹¹ ปฏิกิริยานี้นำไปสู่การเปลี่ยนสภาพของก๊าซไปเป็นอนุภาคของแข็งและของเหลวขนาดเล็ก เช่น แอมโมเนียมในเตรต () และแอมโมเนียมซัลเฟต () ซึ่งเป็นองค์ประกอบหลักของ PM2.5 ทุติยภูมิ

การที่แหล่งกำเนิดเป้าหมายทั้งสาม (การเผาไร่อ้อย, โรงงานอุตสาหกรรม, และการใช้รถยนต์) ไม่เพียงแต่ปล่อย PM2.5 ปฐมภูมิ แต่ยังเป็นแหล่งกำเนิดหลักของก๊าซตั้งต้นสำหรับ PM2.5 ทุติยภูมิด้วยนั้น สร้างผลกระทบแบบ ทวีคูณต่อคุณภาพอากาศ ดังนั้น แบบจำลองทางคณิตศาสตร์ที่มีประสิทธิภาพจะต้องไม่พิจารณาเฉพาะการ ปล่อยฝุ่นโดยตรง แต่ต้องสามารถจำลองกระบวนการแปรสภาพทางเคมีในบรรยากาศ ซึ่งหมายความว่าตัวแปร

ส่วนที่ 2: พลวัตของการกระจายตัวและการสะสมของ PM2.5

ความเข้มข้นของ PM2.5 ณ จุดใดจุดหนึ่งไม่ได้ขึ้นอยู่กับปริมาณการปล่อยจากแหล่งกำเนิดเท่านั้น แต่ยังถูก ควบคุมโดยปัจจัยทางอุตุนิยมวิทยาและลักษณะทางภูมิประเทศ ซึ่งเป็นตัวกำหนดการเคลื่อนที่ การเจือจาง และ การสะสมของมลพิษในบรรยากาศ

2.1 บทบาทของปัจจัยทางอุตุนิยมวิทยา

สภาพอากาศมีอิทธิพลโดยตรงต่อการกระจายตัวและการกำจัดมลพิษทางอากาศ ปัจจัยหลักที่ต้องพิจารณาใน การสร้างแบบจำลอง ได้แก่:

- ความเร็วและทิศทางลม: ความเร็วลมสูงช่วยให้มลพิษเจือจางและถูกพัดพาออกจากแหล่งกำเนิดได้ดี ทำให้ ความเข้มข้นในพื้นที่ลดลง ในทางกลับกัน สภาวะลมสงบจะเอื้อต่อการสะสมตัวของมลพิษ ทำให้ความ เข้มข้นเพิ่มสูงขึ้นอย่างรวดเร็ว 4 ส่วนทิศทางลมเป็นตัวกำหนดว่าพื้นที่ใดจะได้รับผลกระทบจากแหล่ง กำเนิดนั้นๆ
- เสถียรภาพบรรยากาศและความสูงของชั้นผสม (Mixing Height): เสถียรภาพบรรยากาศอธิบายถึง แนวโน้มของอากาศในการเคลื่อนที่ในแนวดิ่ง ในช่วงกลางวัน ความร้อนจากแสงอาทิตย์ทำให้อากาศใกล้พื้น ผิวร้อนและลอยตัวขึ้น เกิดเป็นบรรยากาศไม่เสถียรและมีชั้นผสมที่สูง ส่งผลให้มลพิษสามารถกระจายตัว ในแนวดิ่งได้ดี แต่ในเวลากลางคืนหรือช่วงฤดูหนาว พื้นดินจะเย็นตัวลงอย่างรวดเร็ว ทำให้อากาศที่อยู่ติด กับพื้นเย็นและหนักกว่าอากาศที่อยู่ชั้นบน เกิดเป็นสภาวะที่เรียกว่า "ชั้นผกผันของอุณหภูมิ" (Temperature Inversion) ซึ่งมีเสถียรภาพสูงและมีความสูงของชั้นผสมต่ำมาก สภาวะนี้จะทำหน้าที่ เหมือนฝาชีที่กักขังมลพิษไว้ใกล้พื้นผิวโลก ทำให้ความเข้มข้นของ PM2.5 พุ่งสูงขึ้นอย่างมีนัยสำคัญ 14
- **อุณหภูมิ:** อุณหภูมิมีความสัมพันธ์ที่ซับซ้อนกับ PM2.5 โดยอุณหภูมิที่สูงขึ้นสามารถเร่งอัตราการเกิด ปฏิกิริยาเคมีที่ก่อให้เกิดฝุ่นทุติยภูมิได้ ¹⁴ อย่างไรก็ตาม งานวิจัยบางชิ้นพบความสัมพันธ์เชิงบวกระหว่าง อุณหภูมิกับความเข้มข้นของ PM2.5 (ยกเว้นในฤดูหนาว) ซึ่งอาจเกี่ยวข้องกับปัจจัยอื่นๆ ที่เกิดขึ้นร่วมกัน
- ความชื้นสัมพัทธ์และหยาดน้ำฟ้า: ความชื้นสัมพัทธ์ที่สูงอาจส่งผลต่อขนาดและองค์ประกอบทางเคมีของ อนุภาคฝุ่น ส่วนหยาดน้ำฟ้า เช่น ฝน เป็นกลไกการกำจัดมลพิษที่มีประสิทธิภาพที่สุด โดยกระบวนการชะ ล้าง (Washout) จะนำพาฝุ่นละอองออกจากบรรยากาศ ทำให้คุณภาพอากาศดีขึ้นอย่างรวดเร็ว ดังนั้น ปริมาณน้ำฝนจึงมีความสัมพันธ์เชิงลบที่ชัดเจนกับความเข้มข้นของ PM2.5 14

ตารางที่ 1: อิทธิพลของตัวแปรทางอุตุนิยมวิทยาที่สำคัญต่อความเข้มข้นของ PM2.5

ตัวแปร	ผลกระทบทางกายภาพ	ความสัมพันธ์ที่คาด การณ์กับ PM2.5	นัยยะต่อการสร้างแบบ จำลอง
ความเร็วลม	เพิ่มการพัดพาและการ เจือจาง	ลบ	ตัวแปรหลักในเทอม การเคลื่อนที่ของแบบ จำลองการกระจายตัว
ความสูงของชั้นผสม	กำหนดปริมาตรของ บรรยากาศที่มลพิษ สามารถกระจายตัวใน แนวดิ่งได้	ลบ	สำคัญอย่างยิ่งในการ จำลองสภาวะการสะสม ตัวสูงในช่วงกลางคืน และฤดูหนาว
หยาดน้ำฟ้า (ฝน)	กำจัดอนุภาคออกจาก บรรยากาศผ่านการชะ ล้าง	ลบ	เป็นกลไกการกำจัด (Removal term) ที่ สำคัญในแบบจำลอง
ความชื้นสัมพัทธ์	ส่งผลต่อการเติบโต ของอนุภาคและการ เกิดปฏิกิริยาเคมี	ลบ (โดยทั่วไป)	อาจต้องพิจารณาใน แบบจำลองเคมี บรรยากาศขั้นสูง
รังสีดวงอาทิตย์	เป็นตัวเร่งปฏิกิริยาใน การสร้างฝุ่นทุติยภูมิ	บวก	จำเป็นสำหรับการ คำนวณการก่อตัวของ ฝุ่นทุติยภูมิ
อุณหภูมิ	ควบคุมอัตราการเกิด ปฏิกิริยาเคมีและ เสถียรภาพบรรยากาศ	ซับซ้อน (บวกโดย ทั่วไป)	มีอิทธิพลต่อทั้งการก่อ ตัวทางเคมีและการ กระจายตัวทางกายภาพ

2.2 อิทธิพลของภูมิประเทศและลักษณะเมือง

ลักษณะทางกายภาพของพื้นที่ส่งผลอย่างมากต่อรูปแบบการไหลของอากาศและการสะสมของมลพิษ ทั้งใน ระดับมหภาคและจุลภาค

ระดับมหภาค: แอ่งโคราช: จังหวัดนครราชสีมาตั้งอยู่ในพื้นที่ราบสูงโคราช ซึ่งมีลักษณะทางภูมิศาสตร์เป็น แอ่งแผ่นดินขนาดใหญ่ หรือที่เรียกว่า "แอ่งโคราช" (Korat Basin) ล้อมรอบด้วยทิวเขาสำคัญ ได้แก่ ทิว เขาเพชรบูรณ์และดงพญาเย็นทางทิศตะวันตก ทิวเขาสันกำแพงและพนมดงรักทางทิศใต้ และทิวเขาภูพาน ทางทิศตะวันออกเฉียงเหนือ 18 ลักษณะภูมิประเทศแบบแอ่งกระทะนี้จะขัดขวางการไหลเวียนของอากาศใน

- ระดับภูมิภาค ทำให้มวลอากาศที่ปนเปื้อนมลพิษถูกกักเก็บอยู่ภายในแอ่งได้ง่าย โดยเฉพาะอย่างยิ่งในช่วง ที่สภาพอากาศปิดและลมสงบ
- ระดับจุลภาค: หุบเขาถนนในเมือง (Urban Street Canyons): ภายในเขตเมือง การมีอาคารสูงขนาบ สองข้างทางของถนนจะสร้างสภาพแวดล้อมที่เรียกว่า "หุบเขาถนน" ² โครงสร้างเหล่านี้จะกีดขวางการไหล ของลม ทำให้การระบายอากาศเป็นไปได้ยาก มลพิษที่ปล่อยออกมาจากยานพาหนะจะถูกกักเก็บและสะสม ตัวอยู่ภายในหุบเขาถนน ส่งผลให้ความเข้มข้นของมลพิษในระดับพื้นดินสูงกว่าพื้นที่เปิดโล่งอย่างมีนัย สำคัญ ² ประสิทธิภาพในการระบายอากาศของหุบเขาถนนขึ้นอยู่กับอัตราส่วนระหว่างความสูงของอาคาร ต่อความกว้างของถนน (H/W ratio) และทิศทางลมที่สัมพันธ์กับแนวถนน ²

การซ้อนทับกันของปัจจัยทางภูมิประเทศทั้งสองระดับนี้มีความสำคัญอย่างยิ่งต่อสถานการณ์ PM2.5 ใน นครราชสีมา กล่าวคือ ในช่วงฤดูเผาอ้อย มลพิษที่เกิดขึ้นเป็นบริเวณกว้างจะถูกกักเก็บไว้ในแอ่งโคราช ทำให้ ความเข้มข้นของ PM2.5 "พื้นหลัง" (background concentration) ทั่วทั้งภูมิภาคสูงขึ้น ²⁰ จากนั้น มลพิษที่ ปล่อยออกมาจากการจราจรในตัวเมืองจะถูกกักเก็บซ้ำอีกครั้งในระดับจุลภาคภายในหุบเขาถนนต่างๆ ดังนั้น ความเข้มข้นของ PM2.5 ที่ประชาชนสัมผัสบนท้องถนนจึงเป็นผลรวมของมลพิษที่สะสมตัวในระดับท้องถิ่นซ้อน ทับอยู่บนมลพิษพื้นหลังที่สะสมตัวในระดับภูมิภาค แบบจำลองที่มีความแม่นยำจึงต้องสามารถจำลองผลกระทบ หลายมาตราส่วนนี้ได้ โดยอาจต้องคำนวณความเข้มข้นพื้นหลังระดับภูมิภาคก่อน แล้วจึงบวกผลกระทบจาก แหล่งกำเนิดในท้องถิ่นเข้าไป

ส่วนที่ 3: การจำแนกลักษณะแหล่งกำเนิดสำหรับกรณีศึกษาจังหวัด นครราชสีมา

การสร้างแบบจำลองที่แม่นยำจำเป็นต้องมีข้อมูลบัญชีการระบายมลพิษ (Emissions Inventory) ที่มีคุณภาพ ซึ่งระบุว่ามลพิษถูกปล่อยออกมาจากที่ใด เมื่อใด และในปริมาณเท่าใด สำหรับกรณีศึกษาจังหวัดนครราชสีมา แหล่งกำเนิดหลักสามประเภทสามารถจำแนกลักษณะได้ดังนี้

3.1 การเผาในภาคเกษตร: การเพาะปลูกอ้อย (แหล่งกำเนิดแบบพื้นที่)

การเผาไร่อ้อยเป็นแหล่งกำเนิดแบบพื้นที่ (Area Source) ที่มีลักษณะเฉพาะคือเกิดขึ้นเป็นบริเวณกว้างและไม่ ต่อเนื่องในเชิงเวลา

- **ฤดูกาลและปัจจัยขับเคลื่อน:** การเผาอ้อยมีความเชื่อมโยงโดยตรงกับฤดูการเก็บเกี่ยว ซึ่งโดยทั่วไปจะอยู่ ในช่วงเดือนธันวาคมถึงเมษายน ²¹ ช่วงเวลานี้มักจะตรงกับฤดูแล้งที่มีสภาพอากาศนิ่งและแห้ง ซึ่งยิ่งทำให้ ผลกระทบจากฝุ่นควันรุนแรงขึ้น ¹² เกษตรกรเลือกที่จะเผาเนื่องจากเป็นวิธีที่ง่าย รวดเร็ว และประหยัด ต้นทนด้านแรงงาน ¹¹
- **การกระจายตัวเชิงพื้นที่:** การเผาไม่ได้เกิดจากจุดเดียว แต่กระจายตัวไปตามพื้นที่เพาะปลูกอ้อยทั่วทั้ง จังหวัด การสร้างแบบจำลองจำเป็นต้องใช้ข้อมูลขอบเขตพื้นที่เพาะปลูกอ้อย ร่วมกับข้อมูลจุดความร้อน

(Hotspot) จากดาวเทียม เพื่อระบุตำแหน่งและช่วงเวลาของการเผาที่เกิดขึ้นจริงในแต่ละวัน ²⁰

• การคำนวณปริมาณการปล่อยมลพิษ: ปริมาณการปล่อยมลพิษสามารถคำนวณได้จากสมการพื้นฐาน: E=A×B×EF

โดยที่:

- คือ ปริมาณการปล่อยมลพิษ (เช่น กรัม)
- คือ พื้นที่ที่ถูกเผา (เช่น ตารางเมตร)
- คือ ปริมาณชีวมวลต่อหน่วยพื้นที่ (Biomass Load) (เช่น กิโลกรัม/ตารางเมตร)
- คือ ค่าสัมประสิทธิ์การปล่อยมลพิษ (Emission Factor) (เช่น กรัม/กิโลกรัมชีวมวลแห้ง)

จากงานวิจัยในประเทศไทย พบว่าปริมาณชีวมวลของใบอ้อยแห้งอยู่ที่ประมาณ กรัมต่อตารางเมตร (หรือ ประมาณ 1 กก./ตร.ม.) ²⁶ ส่วนค่า EF ของ PM2.5 เป็นพารามิเตอร์ที่สำคัญที่สุดและมีความผันแปรสูง งาน วิจัยเกี่ยวกับการเผาชีวมวลในไทยให้ค่า EF สำหรับ PM2.5 ในช่วง กรัมต่อกิโลกรัมชีวมวลแห้ง ²⁷ และงาน วิจัยเฉพาะทางเกี่ยวกับการเผาตอซังข้าวโพดให้ค่า กรัม/กก. ²⁸ ขณะที่งานวิจัยในต่างประเทศเกี่ยวกับการ เผาอ้อยโดยตรงให้ค่า กรัม/กก. ²⁹ การเลือกใช้ค่า EF ที่เหมาะสมและจำเพาะต่อการเผาใบอ้อยในบริบท ของประเทศไทยเป็นสิ่งสำคัญอย่างยิ่งต่อความแม่นยำของแบบจำลอง

• องค์ประกอบทางเคมี: ควันที่เกิดจากการเผาชีวมวลไม่เพียงแต่มี PM2.5 เท่านั้น แต่ยังประกอบด้วยก๊าซ พิษและก๊าซตั้งต้นอื่นๆ เช่น คาร์บอนมอนอกไซด์ (CO), ไนโตรเจนออกไซด์ (), และสารประกอบอินทรีย์ ระเหยง่ายที่เป็นสารก่อมะเร็ง เช่น เบนซีน (Benzene) และสารกลุ่ม PAHs (Polycyclic Aromatic Hydrocarbons) ²⁷

ตารางที่ 2: ค่าสัมประสิทธิ์การปล่อยมลพิษ PM2.5 จากการเผาชีวมวลทางการเกษตร

ประเภทชีวมวล	ค่าสัมประสิทธิ์การ ปล่อย PM2.5 (กรัม/ กก. ชีวมวลแห้ง)	มลพิษร่วมที่สำคัญ	แหล่งอ้างอิง
ใบอ้อย	(จากการศึกษาในบ ราซิล) และอยู่ในช่วง ทั่วไปของการเผาชีว มวล	CO, , VOCs, PAHs	26
ตอซังข้าวโพด		CO,	28
ชีวมวลทั่วไป (ฟางข้าว, ใบไม้)		K+, Cl- (ตัวชี้วัดการ เผาพืช)	27

3.2 แหล่งกำเนิดจากภาคอุตสาหกรรม (แหล่งกำเนิดแบบจุด)

โรงงานอุตสาหกรรมเป็นแหล่งกำเนิดแบบจุด (Point Source) ที่มีการปล่อยมลพิษอย่างต่อเนื่องจากตำแหน่ง ที่แน่นอน

- **ประเภทโรงงานที่ปล่อยมลพิษสูง:** โรงงานอุตสาหกรรมที่สำคัญในฐานะแหล่งกำเนิด PM2.5 และก๊าซ ตั้งต้น ได้แก่ โรงไฟฟ้า (โดยเฉพาะที่ใช้ถ่านหินและน้ำมันเตา), โรงงานน้ำตาล (ซึ่งมักมีโรงไฟฟ้าชีวมวลใช้ ซานอ้อยเป็นเชื้อเพลิง), โรงงานปูนซีเมนต์, โรงโม่หิน, และโรงงานเคมีภัณฑ์ ⁷
- บัญชีรายชื่อโรงงานในจังหวัดนครราชสีมา: จากข้อมูลที่มี สามารถรวบรวมรายชื่อโรงงานอุตสาหกรรม ขนาดใหญ่ที่อาจเป็นแหล่งกำเนิดสำคัญได้ เช่น โรงงานน้ำตาลและโรงไฟฟ้าชีวมวลที่เกี่ยวข้อง ซึ่งกระจาย ตัวอยู่ในหลายอำเภอ เช่น พิมาย ครบุรี สีคิ้ว และแก้งสนามนาง ³² การจัดทำบัญชีการระบายมลพิษที่ สมบูรณ์จำเป็นต้องเข้าถึงฐานข้อมูลของกรมโรงงานอุตสาหกรรม ³⁷
- พารามิเตอร์สำหรับแบบจำลอง: การจำลองการกระจายตัวของมลพิษจากแหล่งกำเนิดแบบจุดต้องการ ข้อมูลจำเพาะของแต่ละปล่อง ได้แก่ พิกัดตำแหน่ง, อัตราการระบายมลพิษ (กรัม/วินาที), ความสูงของ ปล่อง, เส้นผ่านศูนย์กลางของปล่อง, ความเร็วของก๊าซที่ออกจากปล่อง และอุณหภูมิของก๊าซ ซึ่งข้อมูล เหล่านี้มักจะปรากฏอยู่ในรายงานการประเมินผลกระทบสิ่งแวดล้อม (EIA) ของแต่ละโรงงาน 38

ตารางที่ 3: บัญชีรายชื่อเบื้องต้นของแหล่งกำเนิด PM2.5 จากภาคอุตสาหกรรมในจังหวัดนครราชสีมา

ชื่อสถาน ประกอบการ	ประเภท	ที่ตั้ง (อำเภอ)	เชื้อเพลิงหลัก (ที่คาดการณ์)	มลพิษร่วมที่ อาจเกิดขึ้น	แหล่งอ้างอิง
บริษัท อุตสาหกรรม โคราช จำกัด	โรงงาน น้ำตาล/โรง ไฟฟ้าชีวมวล	พิมาย	ชานอ้อย, ใบ อ้อย	,,CO	32
บริษัท น้ำตาล ครบุรี จำกัด (มหาชน)	โรงงาน น้ำตาล/โรง ไฟฟ้าชีวมวล	ครบุรี, สีคิ้ว	ชานอ้อย, ใบ อ้อย	,,CO	33
บริษัท น้ำตาล ราชสีมา จำกัด	โรงงาน น้ำตาล/โรง ไฟฟ้าชีวมวล	แก้งสนามนาง	ชานอ้อย	,,co	34
บริษัท อุตสาหกรรม อ่างเวียน จำกัด	โรงงาน น้ำตาล	แก้งสนามนาง	ชานอ้อย	,,CO	39
โรงไฟฟ้าลำ ตะคองชลภา วัฒนา	โรงไฟฟ้าพลัง น้ำ	สีคอก (ลำตะ คอง)	พลังน้ำ	-	35

3.3 แหล่งกำเนิดจากการคมนาคม (แหล่งกำเนิดแบบเส้น)

การจราจรบนถนนสายหลักถูกจำลองเป็นแหล่งกำเนิดแบบเส้น (Line Source) ซึ่งมีการปล่อยมลพิษตลอด แนวถนน

- **การระบุแหล่งกำเนิด:** สำหรับจังหวัดนครราชสีมา ถนนมิตรภาพ (ทางหลวงหมายเลข 2) เป็นเส้นเลือด หลักที่มีปริมาณการจราจรหนาแน่น และถือเป็นแหล่งกำเนิดแบบเส้นที่สำคัญที่สุด ⁴¹
- ปริมาณการจราจร (Activity Rate): อัตราการปล่อยมลพิษจากถนนขึ้นอยู่กับจำนวนยานพาหนะที่วิ่ง ผ่านในแต่ละช่วงเวลา ข้อมูลปริมาณจราจรเฉลี่ยรายวันตลอดปี (Average Annual Daily Traffic: AADT) สามารถขอรับได้จากกรมทางหลวง ⁴³ นอกจากนี้ รูปแบบการจราจรยังมีความผันผวนในรอบวัน โดยมีช่วง เวลาเร่งด่วนในตอนเช้าและตอนเย็น ซึ่งแบบจำลองที่มีความละเอียดสูงควรพิจารณาถึงความผันผวนนี้ด้วย
- องค์ประกอบของยานพาหนะ (Fleet Composition): การแยกประเภทของยานพาหนะมีความสำคัญ อย่างยิ่ง โดยเฉพาะการแยกระหว่างเครื่องยนต์เบนซินและดีเซล เนื่องจากเครื่องยนต์ดีเซลเป็นแหล่ง กำเนิด PM2.5 ปฐมภูมิที่สูงกว่าอย่างมีนัยสำคัญ 5 สัดส่วนของยานพาหนะแต่ละประเภทสามารถประเมิน ได้จากข้อมูลการจดทะเบียนรถยนต์ของจังหวัดนครราชสีมา 46
- ค่าสัมประสิทธิ์การปล่อยมลพิษ (Emission Factors): ค่า EF สำหรับยานพาหนะ (หน่วยเป็น กรัม/ กิโลเมตร/คัน) ขึ้นอยู่กับประเภทของรถยนต์ เทคโนโลยีเครื่องยนต์ และที่สำคัญที่สุดคือ มาตรฐานการ ปล่อยไอเสีย (Euro Standard) ที่รถคันนั้นผ่านมาตรฐาน ประเทศไทยได้มีการบังคับใช้มาตรฐานที่ เข้มงวดขึ้นตามลำดับ จาก Euro 4 ไปสู่ Euro 5 และ Euro 6 48 แบบจำลองที่ดีควรใช้ค่า EF เฉลี่ยที่ถ่วง น้ำหนักตามสัดส่วนของรถยนต์มาตรฐานต่างๆ ที่ใช้งานจริงบนท้องถนน

ตารางที่ 4: มาตรฐานการปล่อยมลพิษ (Euro) สำหรับฝุ่นละออง (PM) จากเครื่องยนต์ดีเซล (รถยนต์นั่งและ รถเพื่อการพาณิชย์ขนาดเล็ก)

มาตรฐาน	ค่าจำกัด PM (กรัม/กม.)	วันที่บังคับใช้โดยประมาณใน ไทย
Euro 3	0.05	2549 (2006) ⁴⁸
Euro 4	0.025	2555 (2012) ⁴⁸
Euro 5	0.005	2567 (2024) ⁴⁸
Euro 6	0.0045	2568 (2025) เป็นต้นไป ⁵⁰
หมายเหตุ: ค่าจำกัด PM เป็นค่า มาตรฐานสากล การบังคับใช้ใน		

ไทยอาจมีระยะเวลาเปลี่ยนผ่าน	

ส่วนที่ 4: พื้นฐานทางทฤษฎีสำหรับการสร้างแบบจำลองทาง คณิตศาสตร์

การพยากรณ์ความเข้มข้นของ PM2.5 สามารถทำได้โดยใช้แบบจำลองทางคณิตศาสตร์หลายประเภท ซึ่งแต่ละ ประเภทมีหลักการทำงาน จุดแข็ง และข้อจำกัดที่แตกต่างกัน

4.1 แบบจำลองเชิงกำหนด (Deterministic/Physical Models)

แบบจำลองประเภทนี้ทำงานโดยการแก้สมการทางคณิตศาสตร์ที่อธิบายกระบวนการทางกายภาพและเคมีของ การเคลื่อนย้าย (Transport), การแพร่กระจาย (Dispersion), และการแปรสภาพ (Transformation) ของ มลพิษในบรรยากาศ

- แบบจำลองเกาส์เซียนพลูม (Gaussian Plume Model): เป็นแบบจำลองพื้นฐานที่สันนิษฐานว่าการ กระจายตัวของความเข้มข้นมลพิษจากแหล่งกำเนิดจะมีลักษณะเป็นรูประมังคว่ำ (Gaussian distribution) ทั้งในแนวดิ่งและแนวราบตามทิศทางขวางลม เหมาะสำหรับการจำลองแหล่งกำเนิดแบบจุด ที่ไม่ซับซ้อน ในสภาพอากาศและภูมิประเทศที่ไม่เปลี่ยนแปลงมากนัก 16
- แบบจำลองขั้นสูง (เช่น AERMOD): เป็นแบบจำลองการกระจายตัวที่ได้รับการยอมรับจากหน่วยงาน กำกับดูแลสากล เช่น U.S. EPA แบบจำลอง AERMOD มีการจำลองฟิสิกส์ของบรรยากาศที่ซับซ้อนกว่า แบบจำลองเกาส์เซียนพื้นฐาน รวมถึงการพิจารณาผลกระทบของเสถียรภาพบรรยากาศ ความปั่นป่วน และ ลักษณะภูมิประเทศที่ซับซ้อน สามารถใช้จำลองแหล่งกำเนิดได้หลายประเภทพร้อมกัน (จุด, เส้น, พื้นที่) และมักถูกใช้ในรายงาน EIA 52

4.2 แบบจำลองเชิงสถิติและการเรียนรู้ของเครื่อง (Statistical and Machine Learning Models)

แบบจำลองประเภทนี้ไม่ได้จำลองกระบวนการทางกายภาพโดยตรง แต่ใช้วิธีการทางสถิติหรืออัลกอริทึมการ เรียนรู้ของเครื่องเพื่อ "เรียนรู้" ความสัมพันธ์ที่ซับซ้อนและไม่เป็นเชิงเส้นระหว่างชุดข้อมูลนำเข้า (Input) กับ ความเข้มข้นของ PM2.5 ที่เป็นผลลัพธ์ (Output) จากข้อมูลในอดีตจำนวนมาก 54

• **แบบจำลองการถดถอยเชิงเส้นพหุคูณ (Multiple Linear Regression - MLR):** เป็นแบบจำลองทาง

- สถิติพื้นฐานที่พยายามหาความสัมพันธ์เชิงเส้นระหว่างตัวแปรอิสระ (เช่น ความเร็วลม, อุณหภูมิ) กับ ตัวแปรตาม (ความเข้มข้น PM2.5) ¹⁷
- **แบบจำลองอนุกรมเวลา (Time-Series Models):** เช่น SARIMAX ใช้ค่าในอดีตของ PM2.5 และ ตัวแปรอื่นๆ เพื่อพยากรณ์ค่าในอนาคต โดยสามารถพิจารณาถึงรูปแบบตามฤดูกาลได้ ⁵⁷
- โครงข่ายประสาทเทียม (Neural Networks): โดยเฉพาะแบบจำลอง Long Short-Term Memory (LSTM) ซึ่งเป็นรูปแบบหนึ่งของ Deep Learning มีความสามารถสูงในการเรียนรู้รูปแบบที่ซับซ้อนจาก ข้อมูลอนุกรมเวลา งานวิจัยหลายชิ้นแสดงให้เห็นว่าแบบจำลอง LSTM สามารถให้ผลการพยากรณ์ PM2.5 ที่แม่นยำกว่าแบบจำลองทางสถิติแบบดั้งเดิม 57

ตารางที่ 5: การเปรียบเทียบแนวทางการสร้างแบบจำลองคุณภาพอากาศสำหรับสภาพแวดล้อมเมือง

ประเภทแบบ จำลอง	หลักการ	ข้อมูลนำเข้าหลัก	จุดแข็ง	จุดอ่อนสำหรับ กรณีศึกษา นครราชสีมา
Gaussian Plume	การกระจายตัว แบบเกาส์เซียน	อัตราการปล่อย, พารามิเตอร์ ปล่อง, สภาพ อุตุนิยมวิทยาคงที่	ง่ายต่อการใช้งาน, ใช้ทรัพยากร คำนวณน้อย	ไม่เหมาะกับ ภูมิประเทศ ซับซ้อน (แอ่ง โคราช), สภาพ อากาศที่ เปลี่ยนแปลง, และแหล่งกำเนิด หลายประเภท
AERMOD	การกระจายตัว ของพลูมเชิง สภาวะคงตัว (Steady-state)	บัญชีการระบาย มลพิษ (จุด, เส้น, พื้นที่), ข้อมูล อุตุนิยมวิทยาราย ชั่วโมง, ข้อมูล ภูมิประเทศ	ได้รับการยอมรับ ในระดับสากล, สามารถจำลอง แหล่งกำเนิด หลายประเภท และภูมิประเทศ ซับซ้อนได้	ใช้ทรัพยากร คำนวณสูง, ความ แม่นยำขึ้นอยู่กับ คุณภาพของบัญชี การระบายมลพิษ, ไม่ได้จำลองเคมี บรรยากาศโดย ตรง
Multiple Linear Regression	ความสัมพันธ์เชิง เส้นทางสถิติ	ข้อมูล อุตุนิยมวิทยา, ข้อมูลมลพิษย้อน หลัง	ง่ายต่อการ ตีความ, คำนวณ รวดเร็ว	ไม่สามารถ จับความสัมพันธ์ ที่ไม่เป็นเชิงเส้น ได้ ซึ่งเป็น ลักษณะสำคัญ ของปัญหามลพิษ ทางอากาศ

LSTM Neural Network	การเรียนรู้รูปแบบ ที่ซับซ้อนจาก ข้อมูลอนุกรม เวลา	ข้อมูล อุตุนิยมวิทยา, ข้อมูลมลพิษ, ข้อมูลการจราจร, ข้อมูลจุดความ ร้อน (ย้อนหลัง)	มีความแม่นยำสูง ในการพยากรณ์, สามารถจับความ สัมพันธ์ที่ซับซ้อน และไม่เป็นเชิง เส้นได้ดี	เป็นแบบจำลอง "กล่องดำ" (Black Box) ทำให้ตีความยาก, ต้องการข้อมูล ย้อนหลังจำนวน มากในการ
------------------------	--	---	---	---

4.3 แนวทางแบบจำลองแบบผสมผสาน (Hybrid Modeling Approaches)

แนวทางนี้เป็นการผสมผสานจุดแข็งของแบบจำลองเชิงกำหนดและแบบจำลองเชิงสถิติเข้าด้วยกัน เพื่อให้ได้ แบบจำลองที่มีความแม่นยำและยืดหยุ่นมากขึ้น ⁵⁴ ตัวอย่างเช่น การใช้แบบจำลอง AERMOD เพื่อคำนวณการ กระจายตัวของมลพิษจากแหล่งกำเนิดที่สามารถระบุพารามิเตอร์ได้ชัดเจน (โรงงาน, การจราจร) จากนั้นนำ ผลลัพธ์ที่ได้ไปเป็นหนึ่งในตัวแปรนำเข้าสำหรับแบบจำลองการเรียนรู้ของเครื่อง ซึ่งจะทำการเรียนรู้และปรับแก้ ผลลัพธ์โดยพิจารณาปัจจัยอื่นๆ ที่จำลองได้ยาก เช่น การเผาในที่โล่งแบบสุ่ม หรือปฏิกิริยาเคมีที่ซับซ้อน

สำหรับกรณีศึกษาจังหวัดนครราชสีมา แนวทางแบบผสมผสานนี้มีความเหมาะสมอย่างยิ่ง เนื่องจากแหล่งกำเนิด มีลักษณะที่แตกต่างกันอย่างชัดเจน แบบจำลองเชิงกำหนด เช่น AERMOD สามารถจัดการกับแหล่งกำเนิด แบบจุด (โรงงาน) และแบบเส้น (การจราจร) ได้อย่างมีประสิทธิภาพ ในขณะที่แบบจำลองการเรียนรู้ของเครื่อง สามารถเรียนรู้รูปแบบของมลพิษพื้นหลังจากแหล่งกำเนิดแบบพื้นที่ (การเผาไร่อ้อย) โดยใช้ข้อมูลจากดาวเทียม และข้อมูลอุตุนิยมวิทยา การรวมผลลัพธ์จากทั้งสองส่วนจะทำให้ได้การพยากรณ์ที่ครอบคลุมและแม่นยำกว่า การใช้แบบจำลองประเภทใดประเภทหนึ่งเพียงอย่างเดียว

ส่วนที่ 5: การสังเคราะห์และข้อเสนอแนะสำหรับการพัฒนาแบบ จำลองในจังหวัดนครราชสีมา

5.1 การบูรณาการการปล่อยมลพิษจากหลายแหล่งกำเนิดในกรอบการทำงานเดียว

ขั้นตอนแรกที่สำคัญที่สุดคือการสร้างบัญชีการระบายมลพิษ (Emissions Inventory) ที่ครอบคลุมและมีความ ละเอียดสูง โดยมีขั้นตอนดังนี้:

- **แหล่งกำเนิดแบบจุด:** ระบุพิกัดทางภูมิศาสตร์ของโรงงานอุตสาหกรรมที่สำคัญ ³² รวบรวมพารามิเตอร์ ของปล่อง (ความสูง, เส้นผ่านศูนย์กลาง) และอัตราการปล่อยมลพิษจากรายงาน EIA หรือประเมินจาก ประเภทและขนาดของโรงงาน
- แหล่งกำเนิดแบบเส้น: สร้างแบบจำลองโครงข่ายถนนมิตรภาพและถนนสายหลักอื่นๆ ในรูปแบบดิจิทัล กำหนดข้อมูลปริมาณการจราจรและสัดส่วนประเภทรถยนต์ (ดีเซล/เบนซิน) ให้กับแต่ละส่วนของถนน 43
- **แหล่งกำเนิดแบบพื้นที่:** สร้างกริด (Grid) ครอบคลุมพื้นที่ทั้งจังหวัด ในแต่ละเซลล์ของกริด คำนวณพื้นที่ เพาะปลูกอ้อยและชีวมวลอื่นๆ จากนั้นใช้ข้อมูลจุดความร้อนจากดาวเทียมรายวันเพื่อกำหนด "อัตรา กิจกรรม" หรือสัดส่วนของพื้นที่ที่ถูกเผาในแต่ละวัน

5.2 ข้อเสนอแนะในการเลือกแบบจำลองและการกำหนดพารามิเตอร์

จากการวิเคราะห์ข้างต้น ขอเสนอแนะให้ใช้ **แนวทางแบบจำลองแบบผสมผสาน (Hybrid Model)** ซึ่งเป็นการ รวมแบบจำลองเชิงกำหนด (AERMOD) เข้ากับแบบจำลองการเรียนรู้ของเครื่อง (LSTM) เพื่อให้สามารถจำลอง แหล่งกำเนิดทั้งสามประเภทได้อย่างมีประสิทธิภาพสูงสุด

รายการข้อมูลที่จำเป็นสำหรับการพัฒนาแบบจำลอง:

- ข้อมูลอุตุนิยมวิทยา: ข้อมูลรายชั่วโมงของความเร็วลม, ทิศทางลม, อุณหภูมิ, ความชื้นสัมพัทธ์, รังสีดวง อาทิตย์, และปริมาณน้ำฝน จากสถานีตรวจวัดในพื้นที่ (เช่น จากกรมอุตุนิยมวิทยา)
- ข้อมูลการปล่อยมลพิษ: บัญชีการระบายมลพิษที่จัดทำเสร็จสมบูรณ์สำหรับแหล่งกำเนิดแบบจุด, เส้น, และพื้นที่ รวมถึงค่า EF ทั้งหมดที่กล่าวถึงในส่วนที่ 3
- ข้อมูลภูมิประเทศ: แบบจำลองความสูงเชิงเลข (Digital Elevation Model DEM) ของพื้นที่แอ่งโคราช เพื่อใช้ในแบบจำลองการกระจายตัวขั้นสูง
- ข้อมูลสำหรับการตรวจสอบความถูกต้อง: ข้อมูลความเข้มข้นของ PM2.5 รายชั่วโมงจากสถานีตรวจวัด คุณภาพอากาศของกรมควบคุมมลพิษในจังหวัดนครราชสีมา (เช่น ผ่านแอปพลิเคชัน Air4Thai) 20

5.3 การจัดการกับความไม่แน่นอนและการตรวจสอบความถูกต้องของแบบจำลอง

สิ่งสำคัญคือต้องตระหนักว่าแบบจำลองทุกประเภทมีความไม่แน่นอนแฝงอยู่ ซึ่งเกิดจากความผันแปรของค่า EF, ความไม่แน่นอนในการประเมินปริมาณชีวมวลและปริมาณการจราจร, และความคลาดเคลื่อนของการ พยากรณ์อากาศ ⁵⁴

- กระบวนการตรวจสอบความถูกต้อง (Validation): ผลการพยากรณ์จากแบบจำลองจะต้องถูกนำไป เปรียบเทียบกับข้อมูลการตรวจวัดจริงจากสถานีตรวจวัดคุณภาพอากาศ เพื่อประเมินความแม่นยำของ แบบจำลอง โดยใช้ตัวชี้วัดทางสถิติ เช่น ค่ารากที่สองของความคลาดเคลื่อนเฉลี่ย (Root Mean Square Error RMSE) และค่าความคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean Absolute Error MAE) 57
- **การวิเคราะห์ความไว (Sensitivity Analysis):** ควรมีการวิเคราะห์ความไวของแบบจำลองเพื่อทำความ

เข้าใจว่าพารามิเตอร์นำเข้าตัวใด (เช่น ค่า EF ของการเผาอ้อย, สัดส่วนรถยนต์ดีเซล) มีผลกระทบต่อ ผลลัพธ์ของแบบจำลองมากที่สุด ซึ่งจะช่วยชี้เป้าในการรวบรวมข้อมูลเพิ่มเติมในอนาคตเพื่อลดความไม่ แน่นอนของแบบจำลองได้อย่างมีประสิทธิภาพ

ผลงานที่อ้างอิง

- 1. เรียน รู้ อยู่ กับ ฝุ่น PM2.5 จุฬาลงกรณ์มหาวิทยาลัย, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.chula.ac.th/wp-content/uploads/2019/10/Chula-PM25.pdf
- ผลกระทบของความเร็วลม และ การสะสม PM2.5 ในพื้นที่ Journal of ..., เข้าถึงเมื่อ ตุลาคม 10, 2025
 https://bee.kku.ac.th/wp-content/uploads/2025/02/BEE-Vol7_No2update5feb2025-15-36.pdf
- ฝุ่นพิษ PM2.5 ทำไมใครก็ว่าร้าย? Greenpeace Thailand, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.greenpeace.org/thailand/story/2162/pm25-invisible-villians/
- 4. 'มลพิษอากาศ'ภัยปลายจมูก ! คนเมืองยังไม่รู้ตัว | CCDC : Climate Change Data Center, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.cmuccdc.org/newsdetail/2
- 5. PM2.5 รหัสอันตราย รถดีเซลเป็นผู้ร้ายจริงหรือ !?! Autoinfo, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.autoinfo.co.th/fvOKR
- 6. ปัจจัยกระตุ้นฝุ่น PM 2.5 หนาแน่น แพทย์แนะวิธีดูค่าฝุ่น และดูแลสุขภาพ : PPTVHD36, เข้าถึง เมื่อ ตุลาคม 10, 2025 https://www.pptvhd36.com/health/care/6387
- ฝุ่น PM 2.5 เกิดจากอะไร? เจาะลึกสาเหตุ และผลกระทบต่อสุขภาพ WEDO AIR Thailand, เข้าถึงเมื่อ ตุลาคม 10, 2025
 https://wedo-air.com/th/blog/where-does-pm25-come-from/
- เรียน รู้ อยู่ กับ ฝุ่น PM2.5 จุฬาลงกรณ์มหาวิทยาลัย, เข้าถึงเมื่อ ตุลาคม 10, 2025
 https://www.chula.ac.th/wp-content/uploads/2019/10/chula-pm25-booklet-1.pdf
- 9. pm 2.5 คืออะไร เกิดจากอะไร ทำความเข้าใจและป้องกันฝุ่นไปพร้อมกัน, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://samitivejchinatown.com/th/article/health/what-is-pm-2.5
- 10. Air quality in Thailand Stockholm Environment Institute, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.sei.org/wp-content/uploads/2021/02/210212c-killeen-archer-air-quality-in-thailand-wp-2101e-final.pdf
- 11. ฝุ่น PM 2.5 โจทย์ใหญ่ที่รัฐต้องแก้ เพราะแค่ 'สร้างจิตสำนึก' อาจไม่เพียงพออีกต่อไป, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.tei.or.th/th/article_detail.php?bid=146
- - %B8%B2%E0%B8%84%E0%B8%B8%E0%B8%93%E0%B8%A0%E0%B8%B2%E0 %B8%9E%E0%B8%AD%E0%B8%B2%E0%B8%81%E0%B8%B2%E0%B8%A8%E0 %B8%88%E0%B8%B2%E0%B8%81-pm2-5-%E0%B9%83%E0%B8%99-2/
- 13. ภาคอุตสาหกรรม อีกต้นต่อสำคัญสร้างฝุ่น PM2.5 Policy Watch Thai PBS, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://policywatch.thaipbs.or.th/article/environment-5
- 14. ฝุ่นละออง PM 2.5 กับ พารามิเตอร์ทางอุตุนิยมวิทยา กรมควบคุมมลพิษ, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.pcd.go.th/wp-content/uploads/2025/08/pcdnew-2025-08-19_07-03-47_684545.pdf
- 15. การศึกษาความสัมพันธ์ระหว่างค่าดัชนีเสถียรภาพอากาศ ที่สถานี กรมอุตุนิยมวิทยา, เข้าถึงเมื่อ

- ตุลาคม 10, 2025
- http://www.rnd.tmd.go.th/doc/public/%E0%B8%A3%E0%B8%B2%E0%B8%A2%E0%B8%87%E0%B8%B2%E0%B8%99_UPA_PM25.pdf
- 16. ฟิสิกส์ของฝุ่นจิ๋ว สมาคมฟิสิกส์ไทย, เข้าถึงเมื่อ ตุลาคม 10, 2025 http://www.thaiphysoc.org/article/103/
- 17. ความสัมพันธ์ของปัจจัยด้านอุตุนิยมวิทยากับความเข้มข้นฝุ่นละออง ... ThaiJo, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://so06.tci-thaijo.org/index.php/vrurdistjournal/article/download/268882/1844 11/1141079
- 19. ภูมิศาสตร์กายภาพและวัฒนธรรม ศูนย์ศิลปวัฒนธรรม มหาวิทยาลัยขอนแก่น, เข้าถึงเมื่อ ตุลาคม 10, 2025 <a href="https://cac.kku.ac.th/%E0%B8%A0%E0%B8%B9%E0%B8%A1%E0%B8%B4%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C%E0%B8%81%E0%B8%B2%E0%B8%A2%E0%B8%A0%E0%B8%B2%E0%B8%9E%E0%B8%95%E0%B8%B1%E0%B8%9E%E0%B8%92/
- 20. โคราชฟ้าเปิด ค่าฝุ่น PM 2.5 ลดลง พบต้นเหตุมาจากไฟป่าจากอุทยานฯ มาก ..., เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.thairath.co.th/news/local/northeast/2627065
- 21. เผาอ้อย ตัวการสร้างมลพิษ PM2.5 เปิดวิธีเก็บเกี่ยวอ้อยแบบไม่ต้องเผา ..., เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.pptvhd36.com/news/%E0%B8%AA%E0%B8%B1%E0%B8%87%E0%B8%84%E0%B8%A1/241072
- 22. ชาวไร่อ้อยโคราช ทยอยตัดอ้อยสดแทนการเผา ชี้ได้วัสดุมาคลุมดินแถมลดฝุ่น PM 2.5 ไทยรัฐ, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.thairath.co.th/agriculture/agricultural-products/2748323
- 23. ไขปริศนา "เกษตรกรไทย" ทำไมต้องเผา? สร้างมลพิษทางอากาศ มูลนิธิชีวิตไท, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://landactionthai.org/2012-05-18-03-24-45/article/item/2223-2019-02-07-14 -29-14.html
- 24. การจัด การและลดการเผาในพื้นที่เกษตร ของประเทศไทย, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20in%20 https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20in%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20in%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20in%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20in%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20In%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20In%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20In%20">https://www.tei.or.th/file/files/Agricultural%20Burning%20Management%20Burning%20Management%20Burning%20Management%20Burning%20Management%20Burning%20Man
- 25. อ้อยไฟไหม้ : วิกฤติฝุ่น PM 2.5 ใครต้องรับผิดชอบ? | Thailand Clean Air Network, เข้าถึง เมื่อ ตุลาคม 10, 2025 https://thailandcan.net/th/blog/aoy-fai-mai-wikrit-fun-pm-2-5-krai-tong-rap-pid-chop
- 26. Estimation of Emission from Open Burning of ... ThaiScience, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.thaiscience.info/journals/Article/GMSA/10984142.pdf
- 27. โครงการ "การติดตามตรวจสอบการเผาในที่โล่งในภาคเหนือของประเทศไทย, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://elibrary.tsri.or.th/fullP/RDG58A0017/RDG58A0017_full.pdf
- 28. การศึกษาปริมาณฝุ่นละอองขนาดไม่เกิน 2.5 ไมครอน จากการเผาตอซังต้นข้าวโพด, เข้าถึงเมื่อ ตุลาคม 10, 2025

- https://conference.thaince.org/index.php/ncce26/article/download/1055/515/10946
- 29. Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA ScholarWorks @ UTRGV, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://scholarworks.utrgv.edu/context/eems_fac/article/1265/viewcontent/pdf.pdf
- 30. thaienvi.com, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://thaienvi.com/storage/ckeditor/file/file-336-Thai-666850626.pdf
- 31. สรุป สถานการณ์มลพิษ ของประเทศไทย ปี2561, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.pcd.go.th/wp-content/uploads/2020/05/pcdnew-2020-09-28_02-34 -33 204096.pdf
- 32. ติดต่อเรา KI Sugar Group, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.kisugargroup.com/contact-us.html
- 33. ติดต่อเรา | Khonburi Sugar Public Company Limited (KBS), เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.kbs.co.th/th/contact-us
- 34. ข้อมูลทั่วไปโรงไฟฟ้า บริษัท น้ำตาลราชสีมา จำกัด, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www2.eppo.go.th/cdf/Province/NorthEast/NakhonRatchasima/Ratchasima/x03RC info.html
- 35. ข้อมูลโรงไฟฟ้า แบ่งตามภูมิภาค > ภาคตะวันออกเฉียงเหนือ, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www2.eppo.go.th/cdf/data_regional_northeast.html
- 36. รายชื่อผู้ได้รับใบอนุญาตผลิตไฟฟ้าในจังหวัด, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://nakhonratchasima.energy.go.th/th/https-nakhonratchasima-energy-go-th-energy-information/download?did=8181&filename=%E0%B8%82%E0%B9%89%E0%B8%AD%E0%B8%A1%E0%B8%B9%E0%B8%A5%E0%B8%94%E0%B9%89%E0%B8%B2%E0%B8%99%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%87%E0%B8%87%E0%B8%B2%E0%B8%99%E0%B8%88%E0%B8%B1%E0%B8%87%E0%B8%AB%E0%B8%A7%E0%B8%B1%E0%B8%B1%E0%B8%B1%E0%B8%B1%E0%B8%B5%E0%B8%A3%E0%B8%A3%E0%B8%B2%E0%B8%B2%E0%B8%B4%E0%B8%AA%E0%B8%B5%E0%B8%A1%E0%B8%B2.pdf&mid=13199&mkey=m_document&lang=th&url=%2Fweb-upload%2F18x07c414a112ee32e5d918ac21217012b6%2F202203%2Fm_document%2F13199%2F3796%2Ffile_download%2F558e56fb636fd8ce9bb443e3bf366543.pdf
- 37. ข้อมูลโรงงาน กรมโรงงานอุตสาหกรรม | Department of Industrial Works, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.diw.go.th/webdiw/s-data-fac/
- 38. แนวทางการจัดทำรายงานการประเมินผลกระทบสิ่งแวดล้อม, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.onep.go.th/ebook/eia/eia-pub-06581425670614.pdf
- 39. บริษัท อุตสาหกรรมอ่างเวียน จำกัด ไทยแลนด์ เยลโล่เพจเจส, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.yellowpages.co.th/profile/%E0%B8%9A%E0%B8%A3%E0%B8%B4%E0%B8%A9%E0%B8%B1%E0%B8%97-%E0%B8%AD%E0%B8%B8%E0%B8%95%E0%B8%AA%E0%B8%B2%E0%B8%AB%E0%B8%81%E0%B8%A3%E0%B8%A3%E0%B8%A3%E0%B8%A3%E0%B8%A3%E0%B8%A3%E0%B8%A3%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%B3%E0%B8%A7%E0%B8%B5%E0%B8%A2%E0%B8%99-%E0%B8%88%E0%B8%B3%E0%B8%B1%E0%B8%B1%E0%B8%94-8XN4ZPeWj
- 40. กำลังผลิตโรงไฟฟ้าเอกชน Electricity Generating Authority of Thailand EGAT, เข้าถึง เมื่อ ตุลาคม 10, 2025 https://www.egat.co.th/home/en/statistics-all-3rdparty/

- 41. DEPARTMENT OF HIGHWAYS กรมทางหลวง, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.doh.go.th/content/page/news/355352
- 42. ถนนมิตรภาพ วิกิพีเดีย, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://th.wikipedia.org/wiki/%E0%B8%96%E0%B8%99%E0%B8%99%E0%B8%A1 %E0%B8%B4%E0%B8%95%E0%B8%A3%E0%B8%A0%E0%B8%B2%E0%B8%9E
- 43. ปริมาณการจราจรบนทางหลวง ชุดข้อมูล MOT Data Catalog., เข้าถึงเมื่อ ตุลาคม 10, 2025 https://datagov.mot.go.th/dataset/traf62
- 44. ปริมาณการจราจรบนทางหลวง ปี 2566 Government Data Catalog, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://gdcatalog.go.th/dataset/gdpublish-traf62/resource/fb712678-8f34-41f3-a4f6-ce91a9442f5c?inner_span=True
- 45. รถ "เบนซิน" กับ "ดีเซล" แบบใหนปล่อยมลพิษมากกว่ากัน? Sanook.com, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.sanook.com/auto/83392/
- 46. จำนวนรถจดท^{*}ะเบียนใหม่ จำแนกตามชนิดเชื้อเพลิง ปี พ.ศ. 2565 GD Directory, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://directory.gdcatalog.go.th/Dataset/Content/01373c15-0872-42df-9a0e-d5-d9e741a4fc
- 47. จังหวัดที่มีรถจดทะเบียนใหม่สูงสุด Microsoft Power BI, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://app.powerbi.com/view?r=eyJrljoiZDBmMDhlMzktYmQxOC00YTk3LTkwOT QtNGNhMjU1NTMzYWE4liwidCl6ImY2NGQzMTgzLTc2OTEtNGZjYi1hNWVmLTM5 <a href="https://zww.zwy.nc.nc/zwy.nc/
- 48. Emission Standards: Thailand: On-Road Vehicles and Engines, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://dieselnet.com/standards/th/
- 49. Preparation for the TISI Product Licensing Application and The Plant Assessment for Product Quality Contral System According to EURO 5 and 6 สถาบันยานยนต์, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.thaiauto.or.th/2020/news/news-detail.asp?news_id=4889
- 50. Industry Min in talks with Toyota over new Euro emission standard Nation Thailand, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.nationthailand.com/business/automobile/40028274
- 51. แบบจำาลองระยะทางในการฟุ้งกระจายและความเข้มข้นของฝุ่นละอองขนาดเล็กไม่เกิน 2.5 ไมครอน ที่เกิดจากการเผาชีวมวล A computational model for diffusion and concentration of PM - SCJMSU JOURNAL, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://scjmsu.msu.ac.th/pdfsplit.php?p=MTY1NTI2MTcyMi5wZGZ8MzltNDA=
- 52. การประยุกต์ใช้แบบจำลองการแพร่กระจายฝุ่นละอองขนาดไม่เกิน 2.5 ไมครอน (PM2.5) จาก ภาคการจราจรบริเวณจุฬาลงกรณ์มหาวิทยาลัย Chula Digital Collections, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://digital.car.chula.ac.th/chulaetd/6589/
- 53. Application of a PM2.5 dispersion model in the Bangkok central business district for air quality management Frontiers, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1237366/full
- 54. Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand Aerosol and Air Quality Research, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://aagr.org/articles/aagr-21-05-oa-0105.pdf
- 55. Development and Evaluation of Statistical Models Based on Machine Learning

- Techniques for Estimating Particulate Matter (PM2.5 and PM10) Concentrations -PubMed, เข้าถึงเมื่อ ตุลาคม 10, 2025 <u>https://pubmed.ncbi.nlm.nih.gov/35805388/</u>
- 56. Statistical PM 2.5 Prediction in an Urban Area Using Vertical Meteorological Factors MDPI, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://www.mdpi.com/2073-4433/14/3/589
- 57. ผลกระทบของสภาพอากาศต่อความเข้มข้นฝุ่นละออง, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://doi.nrct.go.th/admin/doc/doc_629733.pdf
- 58. การพยากรณ์คืออะไร คำอธิบายเกี่ยวกับโมเดลการคาดการณ์ AWS, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://aws.amazon.com/th/what-is/forecast/
- 59. "แบบจำลองการทำนายค่าฝุ่น PM2.5" ของนักเรียน วมว. คว้ารางวัลเหรียญทองเวทีนานาชาติ สาขาสิ่งแวดล้อม pr kmutt, เข้าถึงเมื่อ ตุลาคม 10, 2025 <a href="https://pr.kmutt.ac.th/pr2/award-news/%E0%B9%81%E0%B8%9A%E0%B8%9A%E0%B8%B3%E0%B8%A5%E0%B8%AD%E0%B8%87%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%97%E0%B8%B3%E0%B8%99%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%B2%E0%B8%B8/D%E0%B8/D%E0%B8/
- 60. แบบจำลองกำรพยำกรณ์ค่ำ PM2.5 โดยใช้โครงข่ำยประสำทเทียมแบบ LSTM ในพื้นที่ กรุงเทพมหำนคร - ThaiJo, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://ph01.tci-thaijo.org/index.php/TNIJournal/article/download/246987/168721/8 92399
- 61. SatPM2.5 (Satellite-derived PM2.5) | Atmospheric Composition Analysis Group | Washington University in St. Louis, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://sites.wustl.edu/acag/surface-pm2-5/
- 62. Nakhon-ratchasima Air Pollution: Real-time PM2.5 Air Quality Index (AQI), เข้าถึง เมื่อ ตุลาคม 10, 2025 https://agicn.org/city/nakhon-ratchasima/th/
- 63. การจำลอง Monte Carlo คืออะไร AWS, เข้าถึงเมื่อ ตุลาคม 10, 2025 https://aws.amazon.com/th/what-is/monte-carlo-simulation/