Analysis of Heart Disease Data

Presentation on the 07.12.2022

Eric Jacquomé, Finn Hülsbusch, Lasse Lemke, Thilo Dieing, Timo Gumpp

Why did we choose the Topic?

- Heart diseases are one of the highest causes of mortality on earth
- The healthcare sector is information rich but knowledge poor
- Applicable in the real world
- Goal: predict if patient has a heart disease or not (Classification)

Dataset DescriptionData Origin

- Published by the University of California (UCI) in 1988
- Consists of 4 unsorted subsets:
 - Switzerland
 - Hungary
 - USA Cleveland
 - USA Long Beach
- Total of 495 positive & 404 negative = 899 measurements

Dataset Description Features

- Total of 76 attributes (33 Numeric 42 Categorical 1 Constant)
 - Patient data
 - (Exercise) Electrocardiogram
 - Cardiac uoroscopy
- 21245 (31%) missing values

Data Understanding Dropped Features

- IDs
- Dates of measurements
- Names
- Constants
- Irrelevant columns according to UCI
- Unspecified columns

Data Understanding False Predictors

Data Understanding Dropped Features

- IDs
- Dates of measurements
- Names
- Constants
- Irrelevant columns according to UCI
- Unspecified columns

Data Understanding Dropped Features

- IDs
- Dates of measurements
- Names
- Constants
- Irrelevant columns according to UCI
- Unspecified columns
- Coronary arteries

Data Understanding False Predictors

Data Understanding Missing Features / Feature Subset Selection

Name	Factor
minimum_percentage_to_be_dropped	8

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
 - Cholesterin = 0
 - Blood pressure= 0

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
- Outliers
 - Values outside the specified value range of UCI
 - No consideration of medical outliers

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
- Outliers
- Check for inconsistencies
 - Maximum Heartrate < resting Heartrate
 - TimepointOfPeakHeartRateWhileExercising < ExerciseDuaration
 - isSmoking, NumberOfYearsSmoking, AvgNumberOfCigarettes

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
- Outliers
- Check for inconsistencies
- Generate delta between rest and peak measurements
 - heart rate (resting against peak)
 - ECG (resting against exercise)

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
- Outliers
- Check for inconsistencies
- Generate delta between rest and peak measurements
- OneHotEncoding applied to 5 features

- 4 Datasets -> Different encodings -> harmonised
- Validity tests
- Outliers
- Check for inconsistencies
- Generate delta between rest and peak measurements
- OneHotEncoding applied to 5 features
- Binning for age

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3

Scaler and Estimator Selection

- We had no idea. So why don't we take everything?
 - Let's go...

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7
sampler	3

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7
sampler	3
Imputer	3

Evaluation

- Low number of samples
 - Nested stratified Cross-Validation with 10 folds
 - Saving classification report for outer loop

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7
sampler	3
imputer	3
nestedCV	100

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7
sampler	3
imputer	3
nestedCV	100
hyperparameters (model)	~30

Total number of fits

Name	Factor
minimum_percentage_to_be_dropped	8
age_binning	3
estimators	10
scaler	7
sampler	3
imputer	3
nestedCV	100
hyperparameters (model)	~30
Total	~45360000

 $45360000 \cdot 0.01s = 453600s = 126h$

Results

- Baseline: Every patient has a heart disease
 - Accuracy: 495/899 = 0.55
- Best configuration:
 - Full grown DecisionTree with gini as criterion
 - Minimum percentage to be dropped: 0
 - 2 bins for age (<=52,>52)
 - No scaling and sampling
 - Accuracy: 0,77

Results KNN Confusion Matrix

Leave-One-Out Cross-Validation

	Heart disease	No heart disease		
Heart disease	431	64		
No heart disease	134	270		

Leave-One-Group-Out Cross-Validation

	Heart disease	No heart disease			
Heart disease	419	76			
No heart disease	146	258			

Visual result

Question?

Results Classification Report

Leave-One-Out Cross-Validation

Leave-One-Group-Out Cross-Validation

	Precision	Recall	F1- score	support		Precision	Recall	F1- score	support
No disease	0,81	0,67	0,73	404	No disease	0,77	0,64	0,70	404
Disease	0,76	0,87	0,81	495	Disease	0,74	0,85	0,79	495
Accuracy			0,78	899	Accuracy			0,75	899
Macro avg	0,79	0,77	0,77	899	Macro avg	0,76	0,74	0,74	899
Weighted avg	0,78	0,78	0,78	899	Weighted avg	0,76	0,75	0,75	899

Learning 1


```
df[df['column'] > 1] = 1
df.loc[df['column'] > 1, 'column'] = 1
```

Learning 2

