sockets RMI

#### Tema 1

#### **Contenido**

introducción

# Fundamentos de computación distribuida

## My www.dtic.ua.es/grupoM

## Sistemas distribuidos

## introducción

contexto

## Contenido introducción

## Programación SD

| programación                              | Т   |
|-------------------------------------------|-----|
| 1. Fundamentos de computación distribuida | 1   |
| 2. Diseño de arquitecturas distribuidas   | 2   |
| 3. Tecnologías web y middleware           | 2   |
| 4. Seguridad                              | 4   |
| 5. Coordinación y control de tiempo en SD | 2.5 |
| 6. Sistemas de archivos distribuidos      | 2.5 |
|                                           |     |

## distribuldos

### introducción

resultados de aprendizaje

#### Contenido

introducción

Comprender los conceptos de heterogeneidad, extensibilidad, escalabilidad, seguridad, concurrencia, tolerancia a fallos y transparencia en el contexto de los sistemas distribuidos.

### introducción

contenido

#### Contenido introducción

#### Fundamentos de computación distribuida

- Introducción a la computación distribuida
  - Evolución de los modelos de computación distribuida
  - Definiciones y propiedades
- Enfoques de sistemas distribuidos
  - SOR, SOD y Middleware

## Sistemas Histribuldos

## introducción

bibliografía

## Contenido introducción

- Sistemas Distribuidos. Conceptos y Diseño G. Coulouris et al Addison Wesley, 2001, 2012 Temas 4 y 5
- Sistemas Distribuidos. Principios y paradigmas A.S. Tanenbaum Prentice Hall, 2008 Temas 1 y 2
- © Computación Distribuida. Fundamentos y Aplicaciones

M.L. Liu Person Education, 2004 Temas 2,3,4,5,7 y 12

Service-Oriented Architecture: Concepts, technology and Design

T. Erl Prentice Hall, 2005 Temas 3,4,5 y 8

## STEMES DUIDOS

## paradigmas de computación definiciones

Contenido introducción computación

- ② Sistema Distribuido → Elementos de computación independientes, interconectados, que comunican y coordinan sus acciones a través de una red de comunicaciones
- © Ejemplos de SD: Internet, intranets privadas, computación ubicua
- © Computación Distribuida → La que se desarrolla en un SD: servicios y aplicaciones de red

distribuidos

#### Contenido

introducción computación

## introducción

#### elementos de un sistema distribuido



C Prupon www.dtic.ua.es/grupom

## distribuidos

### introducción

características básicas

## introducción computación

## Meterogeneidad

 Capacidad de los SD para estar compuestos por una variedad (de diferentes tipos) de componentes

| <ul><li>Estandarización</li></ul>                                                            |                         |                           |
|----------------------------------------------------------------------------------------------|-------------------------|---------------------------|
| Representación de dat                                                                        | Lengu                   | ación<br>ajes intermedios |
| <ul> <li>Representación de cóc</li> <li>Representación de obj</li> <li>Protocolos</li> </ul> |                         | Windows                   |
| Hardware                                                                                     | ■ Repres                | sentación datos           |
| Red                                                                                          | ■ Ethernet, 802.11, ATM |                           |

## distribulcos

## introducción

características básicas

#### Contenido introducción computación

• Heterogeneidad

- Extensibilidad
  - Capacidad de un SD de poder ser extendido pudiendo incorporar nuevos componentes:
    - Hardware
      - Redes
      - Computadores
    - Software
      - Aplicaciones
      - Servicios
      - Módulos

## Sistemas Iistribuidos

## introducción

características básicas

#### Contenido introducción computación

- Meterogeneidad
- © Extensibilidad
- Escalabilidad
  - Un SD es escalable si puede trabajar de forma correcta aunque se incrementen el número de:
    - Usuarios que lo utilizan
    - Recursos que se usan
    - Peticiones que se realizan a un servicio
    - Requerimientos de las aplicaciones
    - ...
  - ¿Cómo se consigue?
    - Incorporación de forma dinámica de nuevos recursos HW/SW

## Sistemas Iistribuldos

## introducción

características básicas

#### Contenido introducción computación

- Heterogeneidad
- Extensibilidad
- Escalabilidad
- Seguridad
  - Entornos proclives a ataques externos
  - Confidencialidad
  - Integridad
  - Disponibilidad
  - Firewalls, SSL, HTTPS, Radius, Kerberos

## distribuidos

## introducción

características básicas

#### Contenido introducción computación

- Heterogeneidad
- Extensibilidad
- Escalabilidad
- Seguridad

## © Concurrencia y sincronización

- Posibilidad de que dos elementos del SD accedan de forma simultánea a un mismo recurso compartido
- Hay que garantizar el acceso concurrente para evitar inconsistencias
  - Acceso de forma controlada / exclusiva
  - Prioridad en los accesos a recursos
  - Secuenciación de las operaciones concurrentes

## Sistemas istribuidos

### introducción

características básicas

#### Contenido introducción computación

- Meterogeneidad
- Extensibilidad
- Escalabilidad
- Seguridad
- Redundancia de componentes
- Sistemas de respaldo
- © Concurrencia y sincronización
- Tolerancia a fallos
  - Es necesario garantizar que el SD sea capaz de funcionar cuando uno de sus elemento falla – QoS (24x7)

## Sistemas Iistribuldos

## introducción

características básicas

#### Contenido introducción computación

- Heterogeneidad
- © Extensibilidad
- De acceso: a recursos remotos como si fueran locales
- De ubicación/localización: a recursos remotos sin conocer su ubicación
- De movilidad: recurso cambia de ubicación sin que el usuario sea consciente
- De escalabilidad: el sistema crece en recursos sin que el usuario sea consciente
- Frente a fallos: el usuario no es consciente de fallos en HW/SW
  - Concurrencia y sincronización
  - Tolerancia a fallos
  - Transparencia

## distribuidos

## paradigmas de computación evolución

#### Contenido



## paradigmas de computación evolución

#### **Contenido**



## paradigmas de computación evolución

#### Contenido



## Sistemas distribuidos

## paradigmas de computación evolución

## Contenido



## paradigmas de computación evolución

#### Contenido



## Sistemas Iistribuldos

## paradigmas de computación evolución

#### Contenido



## Sistemas distribuidos

## paradigmas de computación evolución

#### Contenido



## Sistemas distribuidos

## paradigmas de computación evolución

#### Contenido



## Sistemas stribuldos

## paradigmas de computación evolución

**Contenido** 

introducción computación arquitecturas comunicación conclusiones



#### sistemas operativos en red

- Ubicación en el SO
- •Heterogéneo → Específico del SO
- •Ejemplos:
  - Linux, Windows, Novell NetWare
- Ventajas
  - Flexibilidad
  - SO → técnicas maduras

#### Desventajas

- Falta de transparencia
- Mayor esfuerzo de integración





#### sistemas operativos distribuidos

- Ubicación en el SO
- Homogéneo → SO global
- •Ejemplos:
  - Mach, Amoeba
- Ventajas
  - Transparencia
  - Escalabilidad
  - Facilidad de integración
- Desventajas
  - Técnicas complejas
  - Comunicaciones de alta velocidad
  - Competencia de mercado





#### Enfoque mixto

- Modelo conceptual → SOD
- Infraestructuras → SOR
- Capa por encima del SO
- Homogéneo
- •Ejemplos:
  - CORBA,
  - **J2EE**
  - Net Framework
- Ventajas
  - Flexibilidad
  - Transparencia
  - Integración
  - Madurez
  - Escalabilidad
- Desventajas
  - Plataformas heterogéneas
  - Necesidad de estandarización





sockets RMI