

Tutorial 2: Tutorial on Visual Positioning

AAE4203 – Guidance and Navigation

Dr Weisong Wen
Research Assistant Professor

Department of Aeronautical and Aviation Engineering
The Hong Kong Polytechnic University

Week 9, 16 March 2022

Preview on: Case Study Presentation

AAE4203 – Guidance and Navigation

Dr Weisong Wen
Research Assistant Professor

Department of Aeronautical and Aviation Engineering
The Hong Kong Polytechnic University

Week 12, 16 March 2022

Requirements

- >2 or 3 students in a group
- >25 minutes for presentation and 5 minutes for Q&A
- >Present your topic with PPT
- > All the member in a group should present
- >The presentation is suggested to including background, motivation, methodology (if have) and conclusion.

Suggested Topics

Zhang, Ji, and Sanjiv Singh. "Low-drift and real-time lidar odometry and mapping." Autonomous Robots 41, no. 2 (2017): 401-416.	Qin, Tong, Peiliang Li, and Shaojie Shen. "Vins-mono: A robust and versatile monocular visual-inertial state estimator." IEEE Transactions on Robotics 34.4 (2018): 1004-1020.
Wen, Weisong, Tim Pfeifer, Xiwei Bai, and Li-Ta Hsu. "Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter." NAVIGATION, Journal of the Institute of Navigation 68, no. 2 (2021): 315-331.	Campos, Carlos, Richard Elvira, Juan J. Gómez Rodríguez, José MM Montiel, and Juan D. Tardós. "Orb-slam3: An accurate open-source library for visual, visual—inertial, and multimap slam." IEEE Transactions on Robotics 37, no. 6 (2021): 1874-1890.
Wen, W. and Hsu, L.T., 2021, May. Towards robust GNSS positioning and Real-time kinematic using factor graph optimization. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5884-5890). IEEE.	Engel, Jakob, Vladlen Koltun, and Daniel Cremers. "Direct sparse odometry." IEEE transactions on pattern analysis and machine intelligence 40, no. 3 (2017): 611-625.
Navigation Technique of Tesla's Autonomous Driving	Navigation Technique of Google's (now Waymo) Autonomous Driving
GNSS Real-time Kinematic Positioning for Autonomous Driving	Ding, W., Hou, S., Gao, H., Wan, G. and Song, S., 2020, May. Lidar inertial odometry aided robust lidar localization system in changing city scenes. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4322-4328). IEEE.

Outline

- 1. Objective 1: Image calibration
 - 1. Zhang Zhengyou Calibration
 - 2. Try different number of images on chess board (8, 16, 24)
- 2. Objective 2: Estimate the visual odometry based on multiple consecutive images
 - 1. Structure from Motion
 - 2. Visual Odometry

Arrangement for the tutorial on 16rd March

- > Remote access to MATLAB 2020a of QT004.
- >Lecturer and Teaching Assistant will assist the tutorial online.
- >using the "Win10 (Reserved)" pool of computers

Different degree of distortion

Distortion Reasons

Why distortion occur?

- Optical distortion
- Assembly of the camera

Due to **lens shape**, called **radial distortion**

Barrel distortion
Severe distortion in the middle

No distortion

Different degree of distortion

Distortion Reasons

Why distortion occur?

- Optical distortion
- Assembly of the camera

Due to the assembly error, the lens and the imaging plane cannot strictly parallel, called tangential distortion

Zero Tangential Distortion

Tangential Distortion

How to formulate these distortion?

- Optical distortion: radial distortion
- Assembly of the camera: tangential distortion

Corrected coordinates

$$x_c = x(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1xy + p_2(r^2 + 2x^2)$$

$$y_c = y(1 + k_1r^2 + k_2r^4 + k_3r^6) + p_1(r^2 + 2y^2) + 2p_2xy$$

k1, k2, and k3 — Radial distortion coefficients of the lens p1 and p2 — Tangential distortion coefficients of the lens r^2 : $x^2 + y^2$

Illustration

Calibration correction

$$x_c = x(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1xy + p_2(r^2 + 2x^2)$$

$$y_c = y(1 + k_1r^2 + k_2r^4 + k_3r^6) + p_1(r^2 + 2y^2) + 2p_2xy$$

The calibration is to get the coefficients of distortion

k1, k2, and k3 — Radial distortion coefficients of the lens
p1 and p2 — Tangential distortion coefficients of the lens

How to calibrate? And how many parameters to calibrate?

k1, **k2**, **k3**: radial distortion coefficients

Tangential Distortion

p1, p2: tangential distortion coefficients

Calibration of camera

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \frac{1}{z^{C}} \begin{bmatrix} f_{u} & 0 & \Delta u \\ 0 & f_{v} & \Delta v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x^{C} \\ y^{C} \\ z^{C} \end{bmatrix}$$

- Optical distortion:
 radial distortion
- Assembly of the camera: tangential distortion

Iterms	param1	param2	param3	param4	param5
Camera Intrinsic-K	f_u	f_v	Δu	Δν	
Lens Distortion	K1	K2	K3	p1	p2

Camera Calibration

Calibration of camera

Algorithm: Zhang Zhengyou Calibration[1]

Advantages:

The equipment is simple, just a printed checkerboard;

High precision, relative error can be lower than 0.3%;

He received the IEEE Helmholtz Time Test Award for "Zhang's Calibration Method" in 2013

A very famous expert in computer vision and multimedia technology

[1] Zhang, Zhengyou. "A flexible new technique for camera calibration." *IEEE Transactions on pattern analysis* and machine intelligence 22.11 (2000): 1330-1334.

Arrangement for the tutorial on 23rd Feb

Remote Desktop Access Instructions

Arrangement for the tutorial on 23rd Feb

Remote Desktop Access Instructions

Arrangement for the tutorial on 23rd Feb

Remote Desktop Access Instructions

Download Image Data and Code

- 1. Connect to remote desktop via https://puuds.polyu.edu.hk/uds/page/login;
- 2. Download data and code at the google drive link and Extract it in the remote desktop.

https://drive.google.com/file/d/1kzwPI4icW6AZy3HvoAMiHtdBScn7AKa/view?usp=sharing

Two VO application examples

by XiaoMi 8

Camera Calibration using MATLAB

Checkerboard

Camera Calibration using MATLAB

The tutorial video: https://youtu.be/iT55UyLeNvs

Pose Estimation

Visual odometry with a camera

Detection

Find the representative features in an image!

Feature

Association

Formulate the difference between stereo and monocular visual positioning!

Find the same features in consecutive image!

Tracking

Visual Odometry (VO) Using MATLAB

Map Points Estimated Poses (a)

The two VO examples

- Structure From Motion (SFM): This example shows you how to estimate the poses of a calibrated camera from a sequence of views, and reconstruct the 3-D structure of the scene. (Dense features, timeconsuming!) Popular in photogrammetry!
- Visual SLAM/odometry: From a monocular camera to build a map of an indoor environment and estimate the trajectory of the camera. (Sparse features, efficient!) Popular in Robotics navigation!

Experiment 1: Structure From Motion

The code and dataset are in the StructureFromMotion folder

The main function is the StructureFromMotion.m Open it using MATLAB

There is a set of images captured from different views stored in Dataset1

Experiment 1: Structure From Motion Change the file path to yours, make sure the function can get the Datasets and cameraParam.mat

```
imageDir = fullfile('');
imds = imageDatastore('Dataset1');
```

```
Figure 1 ce Edit View Insert Tools Desktop Window Help
```


Experiment 1: Structure From Motion

If you want to observe the results step by step, you can set a breakpoint at line 130 of the main function, and then press

Continue

Experiment 2: Monocular Visual SLAM

The code and dataset are in the VisualSLAM folder

The main function is the MonocularSLAM.m Open it using MATLAB

The data (Dataset1) used in this example are from the <u>TUM RGB-D benchmark</u>, which is a public dataset, and we select a segment of it for demonstration.

Experiment 2: Monocular Visual SLAM

The output result:

The ORB feature detection and matching result.

Experiment 2: Monocular Visual SLAM

The feature detection

The estimated trajectory

Experiment 2: Monocular Visual Odometry/SLAM

The demo (no voice): https://youtu.be/ksMr1fiKwbY

Thank you for your attention © Q&A

Thank you very much the help from teaching assistant (Xi Zheng and Pin Hsun Lee)