Demonstrating functional mediation

John J. Dziak

2020-09-01

Introduction

The funmediation package provides software for exploring functional mediation in a sample of intensive longitudinal data from multiple individuals. It assumes a dichotomous non-time-varying randomized treatment or exposure X, a distal outcome Y observed at one time point, and a time-varying mediator M(t). The mediator is assumed to be measured as intensive longitudinal data. The research question is whether it can be shown that the effect of X on Y is mediated by the process M(t). This situation was first studied by Lindquist (2012, JASA). M(t) can be numerical or binary, and Y can also be either numerical or binary; X is assumed to be binary.

Notation

The mediation model is fit in stages. First, the effect of X on M is fit behind the scenes as a time-varying effects (varying coefficients) model using the tvem package in R. The assumed mean model is $E(M_i(t)) = \alpha_0(t) + \alpha_X(t)X_i$ for numerical M(t), or $\log it^{-1}(E(M_i(t))) = \alpha_0(t) + \alpha_X(t)X_i$ for binary M(t). This is fit as a marginal model: that is, without random effects but with a sandwich covariance estimate to handle within-subject correlation, as in working-independence generalized estimating equations.

Next, the effect of X and M on Y is modeled as a scalar-on-function functional regression using the pfr function in the refund R package. The assumed mean model is $E(Y_i) = \beta_0 + \beta_X X_i + \int \beta_M(t) M_i(t) dt$ for numerical Y, or logit⁻¹ $(E(Y_i)) = \beta_0 + \beta_X X_i + \int \beta_M(t) M_i(t) dt$ for binary Y.

The indirect effect is calculated as the integral $\int \alpha_X(t)\beta_M(t)$. Because these functions are actually only estimated on a grid of points, the integral is actually approximated as a weighted average of the cross-products of the estimates. We do not have a standard error formula for this indirect effect, so we obtain a bootstrap confidence interval using the boot package in R.

Including Covariates

Covariates can be included in predicting M(t) and Y. For convenience of notation, we assume a single subject-level covariate S which predicts M(t) and Y and a single time-varying covariate Z(t) which also predicts M(t).

Example

Getting ready to run the example

First we load the required packages.

```
library(tvem)
#> Loading required package: mgcv
#> Loading required package: nlme
```

```
#> This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
library(refund)
library(boot)
#>
#> Attaching package: 'boot'
#> The following object is masked from 'package:refund':
#> cd4
library(funmediation)
```

We then simulate data. The info1 object will contain not only the simulated dataset, but the true values of the simulated parameters, including the indirect effect.

```
set.seed(123);
info1 <- simulate_funmediation_example();
the_data <- info1$dataset;</pre>
```

We can use the head and summary function in R, in order to look at the first few lines of the data

We can also look at univariate descriptive statistics:

```
summary(the_data);
#>
      subject\_id
                                          Χ
                                           :0.0000
#>
  Min.
         : 1.0
                           :0.010
                                                     Min. : -7.7347
                    Min.
                                    Min.
#> 1st Qu.: 62.5
                    1st Qu.:0.250
                                    1st Qu.:0.0000
                                                     1st Qu.:-0.9597
#> Median :125.0
                   Median : 0.500
                                    Median :0.0000
                                                     Median : 0.4164
#> Mean
         :125.1
                   Mean
                          :0.502
                                           :0.4888
                                                     Mean : 0.4251
                                    Mean
#>
  3rd Qu.:187.0
                    3rd Qu.:0.750
                                    3rd Qu.:1.0000
                                                     3rd Qu.: 1.7823
          :250.0
                          :1.000
                                           :1.0000
                                                          : 8.8885
   {\it Max}.
                   Max.
                                    Max.
                                                     Max.
          Y
#>
\#> Min.
          :-2.2391
#> 1st Qu.:-0.3291
#> Median : 0.2254
#> Mean
          : 0.2667
#> 3rd Qu.: 0.8695
#> Max. : 2.5118
```

It would be reasonable to do other descriptive analyses also, but in order to demonstrate the function we proceed directly to the main analysis.

Running a Functional Mediation Model

Now call the functional mediation function. Only 20 bootstrap samples are used below for the illustration. At least a few hundred bootstraps is recommended in practice in order to increase precision and power.

The print function gives an initial overview of the results.

```
print(model1);
#> Functional Regression Mediation Function Output
#> -----
#> Indirect effect bootstrap estimate:
#> -0.1047045
#> Indirect effect bootstrap confidence interval:
#> ... by normal method:
#> -0.193 , -0.0164
#> ... by percentile method:
#> -0.1379 , 0.0142
#> Computation time:
#> Time difference of 36.19227 secs
#> TVEM Model for Predicting Mediator from Treatment:
#> Response variable: mediator
#> Time interval: 0.01 to 1
#> Number of subjects: 250
#> Effects specified as time-varying: (Intercept), treatment
#> You can use the plot function to view their plots.
#> Back-end model fitted in mgcv::bam function:
#> Method fREML
#> Formula:
\#> mediator ~ treatment + s(time, bs = \#ps\#, by = NA, pc = 0, k = 7,
     fx = FALSE) + s(time, bs = "ps", by = treatment, pc = 0,
     m = c(2, 1), k = 7, fx = FALSE
#> Pseudolikelihood AIC: 42181.28
#> Pseudolikelihood BIC: 42213.8
#> Functional Mediation Model for Predicting Mediator from Treatment:
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
\# wide_outcome ~ s(x = wide_mediator.tmat, by = L.wide_mediator) +
#>
     wide\_treatment
```

```
#> Estimated degrees of freedom:
#> 2 total = 4
#> REML score: 332.6466
#> -----
#> Scalar terms:
#> (Intercept) wide_treatment
    0.15405471 0.08210633
#> Parametric model for Predicting Outcome from Treatment and Mediator:
#> Call:
#> glm(formula = glm_formula)
#>
#> Deviance Residuals:
                Median 3Q
#> Min 1Q
                                   Max
#> -2.50315 -0.59245 -0.04527 0.60490 2.24758
#> Coefficients:
#>
             Estimate Std. Error t value Pr(>|t|)
#> wide_treatment 0.0001341 0.1148120 0.001 0.99907
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> (Dispersion parameter for gaussian family taken to be 0.8233878)
#>
    Null deviance: 204.2 on 249 degrees of freedom
#> Residual deviance: 204.2 on 248 degrees of freedom
#> AIC: 664.88
#> Number of Fisher Scoring iterations: 2
```

The plot function plots the results. Three kinds of plots are available, represented by the options coef, tvem, and pfr.

```
plot(model1, what_plot="coef");
```

Intercept for Mediator

Treatment on Mediator

Mediator on Outcome

Mediator intercept: 0.15
Indirect effect: -0.1

plot(model1, what_plot="tvem");

TVEM coefficient: (Intercept)

TVEM coefficient: treatment

plot(model1, what_plot="pfr");

Functional effect of mediator on outcome

Interpreting the Output
Exploring Information in the Output Objects

Including Covariates

Binary Outcomes

```
set.seed(123);
info2 <- simulate_funmediation_example(simulate_binary_Y=TRUE);</pre>
the_data_binary <- info2$dataset;</pre>
head(the_data_binary)
      subject_id
#> 3
               1 0.03 0 -0.09779362 1
#> 8
               1 0.08 0 4.82621071 1
#> 9
               1 0.09 0 5.45629031 1
#> 15
               1 0.15 0 1.86080077 1
               1 0.16 0 2.63183913 1
#> 16
#> 21
               1 0.21 0 1.62314539 1
model2 <- funmediation(data=the_data_binary,</pre>
                              treatment=X,
                              mediator=M,
                              outcome=Y,
                              id=subject_id,
                              time=t,
```

```
binary_outcome=TRUE,
                         nboot=20);
#> Ran original results.
#> Working on bootstrap results:
#> 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.Done bootstrapping.
\#> Warning in norm.inter(t, (1 + c(conf, -conf))/2): extreme order statistics used
#> as endpoints
#> Warning in norm.inter(t, alpha): extreme order statistics used as endpoints
print(model2);
#> -----
#> Functional Regression Mediation Function Output
#> Indirect effect bootstrap estimate:
#> -0.1334394
#> Indirect effect bootstrap confidence interval:
#> ... by normal method:
#> -0.3367 , 0.0699
#> ... by percentile method:
#> -0.3892 , 0.0049
#> Computation time:
#> Time difference of 36.59322 secs
#> TVEM Model for Predicting Mediator from Treatment:
#> Response variable: mediator
#> Time interval: 0.01 to 1
#> Number of subjects: 250
#> Effects specified as time-varying: (Intercept), treatment
#> You can use the plot function to view their plots.
#>
#> Back-end model fitted in mqcv::bam function:
#> Method fREML
#> Formula:
\#> mediator ~ treatment + s(time, bs = \#ps\#, by = NA, pc = 0, k = 7,
     fx = FALSE) + s(time, bs = "ps", by = treatment, pc = 0,
      m = c(2, 1), k = 7, fx = FALSE
#> Pseudolikelihood AIC: 42052.91
#> Pseudolikelihood BIC: 42082.27
#>
#> Functional Mediation Model for Predicting Mediator from Treatment:
#> Family: binomial
#> Link function: logit
#>
#> Formula:
\# wide_outcome ~ s(x = wide_mediator.tmat, by = L.wide_mediator) +
      wide_treatment
#> Estimated degrees of freedom:
#> 2.77 total = 4.77
#> REML score: 171.697
```

```
#> Scalar terms:
#> (Intercept) wide_treatment
#> -0.02471272 0.26851448
#> Parametric model for Predicting Outcome from Treatment and Mediator:
#>
#> Call:
#> glm(formula = glm_formula, family = binomial)
#> Deviance Residuals:
#> Min 1Q Median 3Q
#> -1.321 -1.272 1.041 1.086 1.086
#>
#> Coefficients:
#>
             Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.2196 0.1778 1.235 0.217
#> wide_treatment 0.1112 0.2556 0.435 0.663
#> (Dispersion parameter for binomial family taken to be 1)
#> Null deviance: 341.94 on 249 degrees of freedom
#> Residual deviance: 341.75 on 248 degrees of freedom
#> AIC: 345.75
#> Number of Fisher Scoring iterations: 4
plot(model1, what_plot="coef");
```

Intercept for Mediator

Treatment on Mediator

Mediator on Outcome

Mediator intercept: 0.15
Indirect effect: -0.1

plot(model1, what_plot="tvem");

TVEM coefficient: (Intercept)

TVEM coefficient: treatment

plot(model1, what_plot="pfr");

Functional effect of mediator on outcome

Binary Mediators

Discussion

Acknowledgements

The pfr function was developed by Jonathan Gellar, Mathew W. McLean, Jeff Goldsmith, and Fabian Scheipl, and the refund package was developed and maintained by Julia Wrobel and others