Studium relaxací NMR v roztocích a pevné fázi

Ján Pulmann

8. 11. 2013

Úlohy

- 1. Meranie spin-mriežkovej relaxačnej doby T_1 signálu NMR $^1{\rm H}$ v roztokoch s premennlivou koncentráciou CuSO₄ metódou $(\pi,\pi/2)$ pulzu $(inversion\ recovery)$
- 2. Meranie spin-spinovej relaxačnej doby T_2 signálu NMR $^1{\rm H}$ v roztokoch s premennlivou koncentráciou CuSO₄ metódou spinového echa
- 3. Meranie spin-mriežkovej relaxačnej doby T_1 signálu NMR $^1{\rm H}$ vo vzorke pryže metódou inversion recovery

Teória

Princíp spin-spinovej metódy sme opísali v predchádzajúcom protokole [1]. Amplitúda signálu závisí od vzdialenosti $\pi/2$ a π pulzu t_w vzťahom z [2]

$$A(t_w) = A_0 \exp\left(-\frac{2t_w}{T_2}\right). \tag{1}$$

Pre vodu sa však v priebehu relaxácie molekuly vody tiež hýbu Brownovým pohybom. Preto sa aj po $\pi/2$ -pulze a obrátení fáz momentov nesfázujú všetky momenty, keďže sa ich lokálne pole zmenilo. Ak aproximujeme zmenu poľa iba jeho lineárnym gradientom v danom mieste, dostaneme korekciu vyššieho rádu ku 1

$$A(t_w) = A_0 \exp\left(-\frac{2t_w}{T_2} - Ct_w^3\right). \tag{2}$$

(Hahnov výsledok [4]). Tento vzťah bol odvodený pre pole s axiálnou symetriou, konštanta C závisí na gradiente magnetického poľa. Jeho tvar ale skúsime predpokladať aj pre všeobecné nehomogénne pole.

Relaxačnú dobu spin-mriežkovej interakcie meriame tzv. metódou inversion recovery. Najprv úplne stočíme magnetizáciu pomocou π -pulzu. Po čase t stočíme zmenšené pole späť do roviny kolmej na B_0 a pozorujeme FID signál s amplitúdou

$$A(t) = A_0 \left| 1 - 2 \exp\left(-\frac{t}{T_1}\right) \right|. \tag{3}$$

Taktiež pre čas

$$t_0 = T_1 \ln 2 \tag{4}$$

nameriame nulovú intenzitu.

Z teórie v [3] vyplýva, že v izotropných kvapalinách s nízkou viskozitou je pribline $T_1 \approx T_2$. Pre kvapaliny s vysokou viskozitou a pevné látky $T_2 \ll T_1$.

Pre čistú vodu sú obe relaxačné doby v ráde sekúnd (je veľmi ťažké takéto doby namerať, lebo aj malé prímesy majú veľký vplyv). Paramagnetické ióny vytvárajú pole o tri rády silnejšie (kvôli malej hmotnosti elektrónu). Rýchlosť relaxácie (prevrátená hodnota relaxačnej doby) závisí od štvorca tohoto poľa, teda ide o rozdiel rýchlostí 6 rádov.

Pravdepodobnosť výskytu takéhoto silného lokálneho poľa v blízkosti iónu rastie priamo úmerne s koncentráciou, teda očakávame že aj rýchlosť relaxácie bude priamo úmerná koncentrácii.

Postup merania

1. Používame vzorky roztoku modrej skalice (CuSO₄) s geometricky rozdelenými koncentráciami

$$c_i = \frac{c_0}{2^i}, \ i = 0 \dots 5.$$
 (5)

Pri použití metódy inversion recovery volíme časy t tak, aby sme premerali celú závislosť, teda počiatky s vysokými hodnotami a okolie minima v t_0 . Pri príliš krátkych t (menej ako 2 ms) však navyše nameriame aj spinové echo, ktoré nám zkresluje signál. Kedže nevieme v programe v praktiku určiť rozsah, z ktorého sa robí FT, volíme väčšie časy t. Taktiež musíme dbať na to, aby sme mali opakovaciu dobu merania oveľa väčšiu ako T_1 , inak máme zase oslabený signál. Touto metódou odmeriame aj gumu a porovnáme hodnotu T_1 s nezávisle určenou hodnotou v [1]. Počet opakovaní jedného merania volíme podľa opakovacej doby T_0 .

- 2. Spin-spinovú interakciu meriame rovnako ako v [1], tentokrát už len pre roztoky modrej skalice (úplne rovnaké meranie pre gumu sme už robili v [1])
- 3. Relaxačné časy T_1 a T_2 získame prekladaním nameraných závislostí amplitúdy. Pre príslušné relaxačné rýchlosti potom overíme lineárnu závislosť rýchlosti na koncentrácii.

Pomôcky

Roztoky modrej skalice a pryž, magnet, generátory pulzov a merače, počítač s AD prevodníkom a program na spracovanie.

Výsledky merania

Ako neistotu určenia amplitúdy opäť berieme jednu cifru, ktorá sa pri opakovaní merania hýbala, teda 0.0001 arb.unit. Niekedy ju pre prehľadnosť nepíšeme.

Určenie T_1

Do tabuľky 1 sme vpísali namerané závislosti amplitúdy maxima FT na vzdialenosti pulzov t. Tieto závislosti sme potom pre 6 vzoriek roztokov modrej skalice vykreslili do grafu 1 a prekladali sme závislosťami tvaru 3. Graf má na vodorovnej osi logaritmickú škálu, kvôli prehľadnosti - väčšina hodnôt bola blízko počiatku. Výsledné parametre fitu sme aj s ich štatistickými neistotami vniesli do tabuľky 2. V grafe 2 sme závislosť relaxačnej doby spin-mriežkovej interakcie prekladali lineárnou závislosťou, podľa teórie. Pri prekladaní využijeme rozdielne presnosti nameraných hodnôt a vážime ich prevrátenou hodnotou ich disperzie.

Rovnako sme určili hodnotu T_1 pre gumu, pre ktorú sme ju určovali v [1] inou metódou. namerané hodnoty intenzít sú v tabuľke 3 a v grafe 3.

Určenie T_2

Podobne ako v predchádzajúcom meraní, v tabuľke 4 sú namerané hodnoty pre všetky roztoky. V grafe 4 sú tieto hodnoty preložené závislosťou 2, teda až na prvé dve merania. C tu totiž bolo prakticky nulové. Pretože to bol parameter navyše, výrazne to zvyšovalo štatistickú odchýľku ostatných konštánt. Merania pre vzorky 0 a 1 sme teda fitovali s fixným C=0. Výsledné parametre fitu sú v tabuľke 5. V tomto grafe je prirodzene využitá zvislá logaritmická os, bez korekcie do tretieho rádu v 2 by mali namerané hodnoty ležať na priamkách. Opäť sme závislosť $T_2(c_i)$ prekladali lineárne - tieto hodnoty a fit sú v grafe 5. I tu sme jednotlivé hodnoty vážili ich neistotou.

Diskusia

V [1] sme určili pre gumu hodnotu

$$T_1 = (55.2 \pm 0.6) \,\mathrm{ms}$$
.

Relatívna zmena približne 10% môže byť spôsobená zmenou podmienok merania (teplota) alebo výmenou kúsku gumy.

Namerané závislosti z metódy spinového echa nám podobne ako v predchádzajúcom protokole dobre sedia s teoretickými hodnotami (graf 4.), hlavne pre veľké koncentrácie. Pre silnejšie odchýľky od závislosti 2 už ale ani korekcia nedáva presné predpovede (hodnoty c_4 , c_5). Letmým pokusom sa môžeme presvedčiť, že korekcia iba do rádu t_w^2 (tzn iba nahradenie $Ct_w^3 \to C't_w^2$ v 2) dáva lepšiu

Rc	oztok 0	Ro	ztok 1	Ro	ztok 2	Ro	ztok 3	Ro	ztok 4	Ro	ztok 5
$\frac{t}{\mathrm{ms}}$	$\frac{A}{\text{arb.unit}}$	$\frac{t}{\text{ms}}$	$\frac{A}{\text{arb.unit}}$								
2	0.0296	2	0.0503	2	0.0718	2	0.0641	2	0.0752	2	0.0984
2.5	0.0188	2.5	0.0461	2.5	0.0708	2.5	0.0660	5	0.0726	5	0.0905
3	0.0109	3	0.0413	3.5	0.0659	4	0.0624	10	0.0647	10	0.0861
3.3	0.0072	4	0.0323	4.5	0.0609	6	0.0577	20	0.0513	20	0.0781
3.6	0.0036	5	0.0245	5.5	0.0559	9	0.0506	30	0.0391	30	0.0688
3.8	0.0016	6	0.0167	7	0.0483	14	0.0397	50	0.0166	40	0.0635
4	0.0009	7	0.0092	9	0.0384	20	0.0275	60	0.0073	50	0.0569
4.2	0.0029	8.5	0.0012	12	0.0257	30	0.0102	80	0.0101	70	0.0457
4.5	0.0056	10	0.0096	15	0.0146	40	0.0044	100	0.0221	90	0.0344
5	0.0103	12	0.0203	19	0.0015	50	0.0159	130	0.0394	120	0.0180
6	0.0194	15	0.0333	25	0.0157	60	0.0261	160	0.0525	150	0.0012
7	0.0264	18	0.0435	30	0.0278	70	0.0339	200	0.0644	200	0.0166
8	0.0333	25	0.0598	40	0.0452	80	0.0404	250	0.0752	250	0.0339
10	0.0427	30	0.0672	50	0.0577	90	0.0447	350	0.0848	300	0.0478
12	0.0497	40	0.0751	70	0.0734	100	0.0485			400	0.0697
15	0.0568	50	0.0786	100	0.0827	120	0.0546			500	0.0843
20	0.0636			150	0.0867	150	0.0612			600	0.0940
30	0.0671					200	0.0660			700	0.1007
50	0.0680					300	0.0700				
						400	0.0717				

 ${\bf Tab.~1}$ Namerané hodnoty intenzity pri metóde inversion recovery v roztoku ${\rm CuSO_4}$

i	T_1/ms	$1/T_1/s^{-1}$	A_0 / arb.unit
0	5.74 ± 0.04	174 ± 1	0.0671 ± 0.0005
1	11.8 ± 0.1	84.6 ± 0.9	0.0782 ± 0.0008
2	27.8 ± 0.2	36.0 ± 0.2	0.0865 ± 0.0004
3	53.6 ± 0.5	18.7 ± 0.2	0.0713 ± 0.0004
4	96 ± 2	10.4 ± 0.2	0.084 ± 0.001
5	215 ± 5	4.6 ± 0.1	0.100 ± 0.002

 ${\bf Tab.~2}$ Parametre fitu - určenie T_1 roztoku ${\rm CuSO}_4$

t/ms	A / arb.unit				
2	0.0366 ± 0.0001				
5	0.0325 ± 0.0001				
10	0.0250 ± 0.0001				
20	0.0130 ± 0.0001				
30	0.0034 ± 0.0001				
35	0.0011 ± 0.0001				
45	0.0072 ± 0.0001				
60	0.0163 ± 0.0001				
80	0.0245 ± 0.0001				
100	0.0304 ± 0.0001				
150	0.0388 ± 0.0001				
200	0.0415 ± 0.0001				
300	0.0438 ± 0.0001				
400	0.0442 ± 0.0001				

 ${\bf Tab.~3}$ Meranie metódou inversion recovery pre gumu

 ${\bf Graf~1}$ Namerané metódy a fity v metóde inversion recovery - závislosť A(t)

Graf 2 Prekladanie závislosti relaxačného času na koncentrácii

Graf 3 Meranie inversion recovery pre gumu, fit 3

zhodu s našimi nameranými hodnotami (viz graf 6 a tabuľku 6). Taktiež určené hodnoty T_2 sú bližšie hodnotám T_1 . Teoretické zdôvodnenie ale ku korekcii takéhoto rádu nemáme.

Závislosť C na koncentrácii je ťažko určitelná, pre malé časy sa totiž neprejavuje (c_0 a c_1 sme merali len do týchto časov). Vidíme ale klesajúci trend, čo by súhlasilo s tým, že podľa [4] je C úmerné druhej mocnine gradientu poľa - čím menej iónov, tým menšia nehomogenita.

Pri korekcii z [4] už relaxačné doby pre malé koncentrácie nezávisia lineárne od koncentrácie. Čiastočne to môže byť spôsobené nedokonalou zhodou našeho teoretického modelu (v tabuľke 6 sa hodnoty trochu viac podobajú tým z tabuľky 2), ale aj nečistotami vo vode. Tie majú väčší vplyv práve pri nižších koncetráciách a je možné, že inak vplývajú na T_1 a T_2 .

Pri meraní metódou inversion recovery tiež dosahujeme dobrej zhody teórie a experimentu. Lineárna závislosť relaxačnej rýchlosti od teploty je tu lepšia ako v prípade spin-spinovej interakcie (menšie neistoty parametrov fitu).

Keďže tu meriame do vyšších časov, museli sme pri meraní meniť opakovaciu dobu T_0 . Už pre $T_0 \approx 5t$ bol totiť rozdiel medzi takoutou a dvojnásobnou opakovacou dobou takmer dvojnásobná amplitúda peaku vo FT - pri zachovaní všetkých ostatných parametrov. Pokúsili sme sa teda voliť dostatočnú opakovaciu dobu.

V oboch prípadoch nám vyšiel absolútny člen lineárnej závislosti v rámci chyby merania nulový. Správne by mal výjsť veľmi malý (uvádza sa hodnota $1/6\,\mathrm{s}$). Naša presnosť ale nie je dostatočná na takéto extrapolovanie. Napriek nepresnostiam sa ale parametre lineárnej závislosť v grafoch 2 a 5 rovnajú v rámci chyby merania.

Presnejšie meranie by sa dalo realizovať väčším počtom meraných bodov a koncentrácií. Najviac by tu pomohlo automatizovanie nastavovania generátora pulzov - samotná sekvencia merania trvá v rádoch sekúnd, no nastavovanie vyžaduje neustálu pozornosť a často niekoľko násobne viac času. Pre viac nameraných koncentrácií by sme potom vedeli posúdiť rozdiel korekcií v druhom a treťom ráde v 1

Roztok 0		Roztok 1		Roztok 2		Roztok 3		Roztok 4		Roztok 5	
$\frac{t_w}{\mathrm{ms}}$	$\frac{A}{\text{arb.unit}}$										
0.6	0.0701	0.7	0.0889	1	0.0853	1	0.1118	1	0.1054	1	0.0728
0.8	0.0659	1	0.0830	2	0.0791	2	0.1071	2	0.1030	2	0.0695
1.5	0.0665	1.5	0.0761	3	0.0742	3	0.1037	3	0.1019	4	0.0678
2	0.0427	2	0.0696	4	0.0700	5	0.0962	4	0.1035	10	0.0580
2.5	0.0353	2.5	0.0632	5	0.0655	8	0.0785	6	0.0959	15	0.0495
3.5	0.0246	3	0.0573	7	0.0571	10	0.0706	8	0.0919	18	0.0435
5	0.0140	4	0.0482	9	0.0481	13	0.0577	10	0.0855	22	0.0367
6	0.0097	5	0.0399	10	0.0444	15	0.0534	13	0.0732	26	0.0298
7	0.0067	6	0.0336	12	0.0378	18	0.0419	15	0.0718	30	0.0240
8	0.0047	8	0.0233	15	0.0301	20	0.0360	18	0.0641	35	0.0176
9.9	0.0021	10	0.0155	18	0.0218	25	0.0260	22	0.0538	40	0.0134
		15	0.0062	20	0.0183	30	0.0176	25	0.0463	45	0.0094
		18	0.0035	25	0.0109	35	0.0122	27	0.0415	50	0.0062
				30	0.0063	40	0.0078	30	0.0345	60	0.0029
						50	0.0021	35	0.0257	70	0.0013
								40	0.0184		
								50	0.0084		
								60	0.0042		

Tab. 4 Namerané hodnoty intenzity pri metóde spinového echa v roztoku CuSO₄

i	T_2 / ms	$1/T_2/s^{-1}$	A_0 / arb.unit	$C/10^{-6} \cdot \text{ms}^{-3}$
0	5.6 ± 0.6	170 ± 20	0.091 ± 0.006	0 ± 0
1	10.84 ± 0.06	92.3 ± 0.5	0.1005 ± 0.0003	0 ± 0
2	29.1 ± 0.6	34.4 ± 0.7	0.0916 ± 0.0006	28 ± 4
3	38 ± 1	26.5 ± 0.9	0.120 ± 0.001	12 ± 3
4	74 ± 4	13.5 ± 0.8	0.111 ± 0.001	12 ± 2
5	74 ± 3	13.6 ± 0.6	0.0750 ± 0.0008	10 ± 1

Tab. 5 Parametre fitu - určenie T_2 roztoku CuSO_4

Záver

Použili sme metódu inversion recovery na meranie T_1 , relaxačnej doby spin-mriežkovej interakcie (grafy 1, 2 a tabuľky 1, 2 pre modrú skalicu, graf a tabuľka 3 pre gumu).

Porovnali sme dva spôsoby určenia T_1 pre gumu s relatívnou odchýľkou asi 10%

Namerali sme aj relaxačnú dobu spin-spinovej interakcie, tiež v závislosti na koncentrácii modrej skalice v roztoku (grafy a tabuľky 4, 5).

Nakoniec sme otestovali prekladanie alternatívou vzťahu 2 s korekciou iba do druhého rádu, grafy a tabuľka 6.

Ku protokolu je priložený ukážkový priebeh signálu pri metóde inversion recovery.

Literatúra

- [1] Protokol ku úlohe A10. Ján Pulmann, odovzdané 8. 11. 2013
- [2] Študijný text ku úlohe A10 http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_410.pdf 5.11.2013
- [3] Študijný text ku úlohe A10 B http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_410b.pdf 8.11.2013
- [4] Rozširujúci text v praktiku, časť "Diffusion in an Inhomogenous Magnetic Field"

 ${\bf Graf}$ 4. Namerané metódy a fity v metóde spinového echa - závislosť $A(t_w)$

i	T_2 / ms	A_0 / arb.unit	$C' / 10^{-3} \cdot \text{ms}^{-2}$
0	5.6 ± 0.6	0.091 ± 0.006	0 ± 0
1	10.84 ± 0.06	0.1005 ± 0.0003	0 ± 0
2	33.2 ± 0.9	0.0902 ± 0.0005	0.97 ± 0.09
3	44 ± 2	0.119 ± 0.001	0.6 ± 0.1
4	110 ± 10	0.109 ± 0.001	0.67 ± 0.06
5	115 ± 6	0.0733 ± 0.0004	0.64 ± 0.03

 ${\bf Tab.~6}$ Parametre fitu - určenie T_2 s korekciou v druhom ráde

 ${\bf Graf}$ 5. Závislosť relaxačnej doby T_2 na koncentrácii, fit

Graf 6 Prekladanie závislosti relaxačného času na koncentrácii s korekciou druhého rádu