Variational Autoencoders for Topic Modeling

Kelly Geyer April 29, 2020

Task

- We want to improve upon topic modeling using deep learning.
- Challenge: How to evaluate the relative performance of topic models?

Motivation: Latent Dirichlet Analysis

Latent Dirichlet Analysis (LDA) generates words and topics from a generative process:

```
for each document w do

| Draw topic distribution \theta \sim \text{Dirichlet}(\alpha);
| for each word at position n do
| Sample topic z_n \sim \text{Multinomial}(1, \theta);
| Sample word w_n \sim \text{Multinomial}(1, \beta_{z_n});
| end
| end
```

Use Bayes' Rule to estimate posteriors for:

 θ (topic-doc scores) and

 β_{z_n} (topic-doc-word scores)

Drawbacks

- Optimization formulaizations of LDA are inflexible for new model distributions
 - e.g., lack of closed form solutions)
- The distribution of p(wltheta,beta) is a mixture of multinomial distributions
 - Often results in poor quality topics that do not correspond well with human judgment

Related work: ProdLDA

LDA

for each document w do | Draw topic distribution $\theta \sim \text{Dirichlet}(\alpha)$; | for each word at position n do | Sample topic $z_n \sim \text{Multinomial}(1, \theta)$; | Sample word $w_n \sim \text{Multinomial}(1, \beta_{z_n})$; | end | end

ProdLDA

$$eta_{z_n}$$
 is unnormalized $w_n | eta_{z_n}, heta \sim ext{Multinomial}(1, \sigma(eta_{z_n} heta))$

Approach: ProdLDA Output: topic-word Input: document-word scores counts BN_logvar BN_decoder z_scope softmax FC_en1 BN_mean FC_mean * init

"Topics"

Decoder

Encoder

Srivastava, A., & Sutton, C. (2017). Autoencoding variational inference for topic models. arXiv preprint arXiv:1703.01488.

Dataset

- Dataset: 20 Newsgroups data set (English articles)
- Processing: removed stop words, characters
- **Features:** Word count vector (features) for each document (independent observation).
 - Resulting in 18,745 documents and a vocabulary of 1995 words

Dataset: Lang, Ken. Newsweeder: Learning to filter netnews. Machine Learning Proceedings. Morgan Kaufmann, 1995. 331-339, 1995.

Evaluation metrics

- **Perplexity Score** Measures the fit of the log-likelihood relative to a set of test articles. High log-likelihoods imply good fit.
 - Perplexity is inversely related log-likelihood → lower values are better

perplexity(test docs) =
$$\exp\left(\frac{-L(\text{test docs})}{\text{# of words}}\right)$$

- **Topic Coherence** Measure of how similar words are within a topic, or "intrinsic value"
 - o Ideally, we want this value to be high

coherence(test docs)
$$=\sum_{i < j} \log \left(\frac{p(w_i, w_j)}{p(w_i) \cdot p(w_i)} \right)$$

Results I: Quantitative Measures

Model	Perplexity Score
prodLDA	1153.7977
LDA VAE	1130.1957
LDA DMFVI (Traditional LDA topic model with variational inference solution)	777.7551

Measure of model fit

"Lower values are better"

Measure of intrinsic value

"Higher values are better"

Results II: ProdLDA Topic Keywords

Examples of ProdLDA model results with 50 Topics - Top 10 keywords

Topic (human inferred)	Keywords
Technology/encryption	'anonymous', 'widget', 'ripem', 'visual', 'privacy', 'ftp', 'entry', 'int', 'binary', 'char'
Sports/baseball	'braves', 'hitter', 'pitcher', 'defensive', 'season', 'team', 'pitch', 'puck', 'deserve', 'fan'
Religion/ Christianity	'god', 'jesus', 'doctrine', 'satan', 'christ', 'revelation', 'worship', 'truth', 'christian', 'holy'
Middle East	'lebanese', 'israel', 'village', 'arab', 'arabs', 'lebanon', 'israeli', 'militia', 'turks', 'muslim'

Conclusion

- Topic modeling via VAEs has more intrinsic value than traditional LDA.
- Relative performance of models consistent with results from Srivastava & Sutton (2017).

Challenges

- Results are sensitive to hyperparameters (E.g., Dirichlet hyperparameters)
- Some details for precise reproducibility are unavailable (I.e., hyperparameter values and selection process)