Wirtschaftsinformatik II – Stuckenschmidt/Meilicke

Inferenz Aussagenlogik

Direkter und indirekter Beweis mittels Tableauverfahren

AUSSAGENLOGIK INFERENZ

Interpretationen und Modell

- Jede Zeile in einer Wahrheitstabelle entspricht einer Interpretation
- Eine Interpretation I ist ein Modell für eine Formel α , genau dann wenn $I(\alpha)=1.$
 - Modelle für $\alpha = (b \lor c) \rightarrow (a \land \neg c)$ entsprechen den roten Zeilen

а	b	С	$(b \lor c) \rightarrow (a \land \neg c)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Erfüllbarkeit

- Eine Formel ist erfüllbar, wenn es ein Modell für diese Formel gibt, d.h.,
 wenn eine Interpretation die Formel auf 1 abbildet
- Eine Formel ist unerfüllbar, wenn es kein Modell für die Formel gibt
 - Man nennt so eine Formel dann auch Kontradiktion
- Einfaches Verfahren, um Erfüllbarkeit zu überprüfen:
 - Stelle Wahrheitstabelle auf, wenn 1er-Zeile existiert, dann erfüllbar
 - Problem: Wahrheitstabelle hat 2^n Zeilen, wenn die Formel n verschiedene
 Propositionen verwendet
 - Ergibt bei einer Formel mit 20 verschiedenen Variablen bereits knapp über eine Million Zeilen
 - Ergibt bei einer Formel mit 100 verschiedenen Variablen über 10^{30} Zeilen

Tableauverfahren

- Das Tableauverfahren ist ein effizienteres Verfahren, bei dem systematisch versucht wird, ein Modell zu konstruieren
 - Wir betrachten das Tableauverfahren beispielhaft als einen Algorithmus um Erfüllbarkeit zu überprüfen
- Tableauverfahren benötigt Negationsnormalform (NNF)
 - Negation ist nur vor aussagenlogischen Variablen erlaubt
 - Es sind nur die Junktoren ∧ ("und") und ∨ ("oder") erlaubt und die Negation
 - Beispiel: $(a \land \neg b) \lor \neg c$
 - Gegenbeispiel (aus zwei Gründen): c → $\neg(a \lor b)$
- Es gibt Regeln, deren Anwendung den Übergang von einer Formel zu einer anderen äquivalenten Formel zur Folge haben
 - Anwendung der Regeln nennt Äquivalenzumformungen
 - Anwendbar um NNF zu bekommen

Äquivalenzumformungen

NNF kann mittels (wiederholter) Anwendung der folgenden Regeln erreicht werden:

(1)
$$\neg(\alpha \land \beta) \Leftrightarrow \neg\alpha \lor \neg\beta$$
 (de Morgan)

(2)
$$\neg(\alpha \lor \beta) \Leftrightarrow \neg\alpha \land \neg\beta$$
 (de Morgan)

(3)
$$\alpha \rightarrow \beta \Leftrightarrow \neg \alpha \lor \beta$$

(4)
$$\alpha \leftrightarrow \beta \Leftrightarrow (\alpha \to \beta) \land (\beta \to \alpha)$$

(5)
$$\neg \neg \alpha \Leftrightarrow \alpha$$

Das Symbol ⇔ besagt, dass die rechte und linke Seite äquivalent sind

Beispiel (Umformung)

Zeige mit dem Tableauverfahren, ob die Formel $\neg(a \leftrightarrow b) \land c$ erfüllbar ist. Gib hierzu zunächst eine äquivalente NNF an!

1.
$$\neg (a \leftrightarrow b) \land c$$

2.
$$\neg((a \to b) \land (b \to a)) \land c$$
 (wegen 4)

3.
$$\neg((\neg a \lor b) \land (\neg b \lor a)) \land c$$
 (wegen 3)

4.
$$(\neg(\neg a \lor b) \lor \neg(\neg b \lor a)) \land c$$
 (wegen 1)

5.
$$((\neg \neg a \land \neg b) \lor (\neg \neg b \land \neg a)) \land c$$
 (wegen 2)

6.
$$((a \land \neg b) \lor (b \land \neg a)) \land c$$
 (wegen 5)

Damit haben wir eine äquivalente NNF und können das Tableauverfahren anwenden!

$$(1) \neg (\alpha \land \beta) \Leftrightarrow \neg \alpha \lor \neg \beta$$

$$(2) \neg (\alpha \lor \beta) \Leftrightarrow \neg \alpha \land \neg \beta$$

(3)
$$\alpha \rightarrow \beta \Leftrightarrow \neg \alpha \lor \beta$$

(4)
$$\alpha \leftrightarrow \beta \Leftrightarrow (\alpha \to \beta) \land (\beta \to \alpha)$$

$$(5) \neg \neg \alpha \Leftrightarrow \alpha$$

Regeln des Tableauverfahrens I

- Das Verfahren baut einen Baum auf, an dessen Knoten Formelmengen stehen
- Schreibe die Ausgangsformel(menge) als NNF an die Wurzel
- Fall 1: Eine der Formeln an einem noch nicht expandierten Knoten hat die Form $\alpha \land \beta$
 - Füge einen neuen Kind-Knoten hinzu und schreibe dort statt α Λ
 β sowohl α als auch β sowie alle anderen Formeln
- Fall 2: Eine der Formeln an einem noch nicht expandierten Knoten hat die Form $\alpha \vee \beta$
 - Füge zwei neue Kind-Knoten hinzu und schreibe an den ersten Kind-Knoten statt $\alpha \vee \beta$ die Formel α sowie alle anderen Formeln. Analog für β im zweiten Kind-Knoten

 $\alpha \wedge \beta$

 α

Regeln des Tableauverfahrens II

- Expandiere den Baum bis keine der Regeln mehr angewendet werden kann
 - Dann stehen an dem Baum nur noch aussagenlogische Variablen oder negierte aussagelogischen Variablen
 - Diese einfachen Formeln nennt man auch Literale
- Betrachte die Blattknoten des Baums:
 - An <u>jedem</u> der Blattknoten sind zwei Formeln α und $\neg \alpha$ notiert. Dies bedeutet, dass es kein Modell für die Ausgangsformel gibt, die Formel ist unerfüllbar
 - An <u>einem (oder mehreren)</u> der Blattknoten gibt es solch einen Widerspruch nicht. Es läßt sich ein Modell konstruieren, die Formel ist erfüllbar
 - Das Modell kann direkt an einem solchen Knoten abgelesen werden!

Beispiel (Tableau)

Logische Folgerung: Erinnerung

- Eine Formel β folgt aus einer Formel α , genau dann wenn jedes Modell für α auch ein Modell für β ist
- "Wenn α wahr ist, muss auch β wahr sein"
- Man schreibt dann $\alpha \models \beta$ ("aus α folgt β ")

			α	β
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	0

Beweis durch Widerspruch

- Folgerung $\alpha \models \beta$ kann man direkt zeigen:
 - Zeige, dass alle Modelle für α auch Modelle für β sind
 - Direkter Beweis (z.B. mittels Wahrheitstabelle, sehr aufwändig)
- Indirekter Beweis (Beweis durch Widerspruch)
 - Zeige, dass α und $\neg \beta$ unerfüllbar ist (z.B. mit Tableauverfahren)
 - Hierzu muss man zeigen, dass es keine Interpretation gibt, die zugleich ein Modell für α und für $-\beta$ ist

Beispiel

Folgt aus $(a \land b) \lor (\neg b \land c)$ die Formel $a \lor c$?

Indirekter Beweis: Überprüfe ob $((a \land b) \lor (\neg b \land c)) \land \neg (a \lor c)$ erfüllbar ist:

- Wenn nein, dann gilt die Folgerungsbeziehung
- Wenn ja, dann gilt die Folgerungsbeziehung nicht

Forme $((a \land b) \lor (\neg b \land c)) \land \neg (a \lor c)$ zu einer NNF um! Nach einem (bzw zwei) Umformungsschritt(en) erhalten wir:

$$((a \land b) \lor (\neg b \land c)) \land (\neg a \land \neg c)$$

Nun wende das Tableauverfahren an!

Beispiel

Nochmal eine Erläuterung

- Mit dem Tableauverfahren versucht man ein Model zu konstruieren
 - Bei jeder Verzweigung gilt: Wenn es ein Modell gibt, dann muss es so wie im linken oder so wie im rechten Zweig aussehen
 - Wenn ein Blatt eine Proposition und deren Negation enthält, dann kann es in diesem Zweig kein Modell geben
- Benutzt man das Tableauverfahren um Folgerung zu zeigen, dann versucht man ein Modell zu erzeugen was in $\neg \beta$ und in α liegt

 $\neg \beta$

 Scheitert dies, dann gilt die Folgerungsbeziehung

β-Modelle

Modelle

Reasoning Verfahren

- Verfahren zur Überprüfung von Erfüllbarkeit
 - Tableauverfahren Wie vorgestellt
 - Wichtig: Es existiert ein analoges Verfahren für Beschreibungslogik
 - Resolution Wiederholte Anwendung einer Regel
 - WalkSat Lokales Suchverfahren
 - DPLL Backtrackingbasiertes Verfahren mit speziellen Zusatzregeln
 - **—** ...
- Eingabeformat meist KNF (konjunktive Normalform)
- Reasoning Verfahren sind nicht zentral für die Vorlesung, da Modellierung im Vordergrund steht!
 - Aber man sollte verstehen was ein solches Verfahren macht
 - Und wozu man es benutzen kann

Zusammenfassung

- Syntax und Semantik einer einfachen Logik
 - Wichtig: Wie definiert man eine formale Sprache
- Zentrale Begriffe:
 - Grundbegriffe: Interpretation und Modell
 - Abgeleitet: Tautologie, Erfüllbarkeit, Äquivalenz, Folgerung
- Achtung: Diese Begriffe sind wichtig (nicht nur für Aussagenlogik!) und man sollte diese sehr sicher beherschen
 - Nicht auswendig lernen, sondern aus dem Verständis heraus definieren
 - Die Begriff sind auch für die folgenden Vorlesung relevant
- Direkter und Indirekter Beweis (mittels Tableauverfahren)

Ausblick

- Prädikatenlogik
 - Syntax und Semantik von Prädikatenlogik
 - Genauere/erneute Einführung der zentralen Begriffe
 - Zusammenhang zu natürlicher Sprache / Übersetzung
 - Modellierungsbeispiele
 - Was hat Prädikatenlogik mit UML-Diagrammen zu tun?
- Beschreibungslogik und Ontologien

