

planetmath.org

Math for the people, by the people.

proof of properties of Hopfian and co-Hopfian groups

 ${\bf Canonical\ name} \quad {\bf ProofOfPropertiesOfHopfian And CoHopfian Groups}$

Date of creation 2013-03-22 18:31:17 Last modified on 2013-03-22 18:31:17

Owner joking (16130) Last modified by joking (16130)

Numerical id 6

Author joking (16130)

Entry type Proof Classification msc 20F99 **Proposition**. A group G is Hopfian if and only if every surjective homomorphism $G \to G$ is an automorphism.

Proof. " \Rightarrow " Assume that $\psi: G \to G$ is a surjective homomorpism such that ψ is not an automorphism, which means that $\operatorname{Ker}(\psi)$ is nontrivial. Then (due to the First Isomorphism Theorem) $G/\operatorname{Ker}(\psi)$ is isomorphic to $\operatorname{Im}(\psi) = G$. Contradiction, since G is Hopfian.

" \Leftarrow " Assume that G is not Hopfian. Then there exists nontrivial normal subgroup H of G and an isomorphism $\phi: G/H \to G$. Let $\pi: G \to G/H$ be the quotient homomorphism. Then obviously $\pi \circ \phi: G \to G$ is a surjective homomorphism, but $\operatorname{Ker}(\pi \circ \phi) = H$ is nontrivial, therefore $\pi \circ \phi$ is not an automorphism. Contradiction. \square

Proposition. A group G is co-Hopfian if and only if every injective homomorphism $G \to G$ is an automorphism.

Proof. " \Rightarrow " Assume that $\psi: G \to G$ is an injective homomorphism which is not an automorphism. Therefore $\operatorname{Im}(\psi)$ is a proper subgroup of G, therefore (since $\operatorname{Ker}(\psi) = \{e\}$ and due to the First Isomorphism Theorem) G is isomorphic to its proper subgroup, namely $\operatorname{Im}(\psi)$. Contradiction, since G is co-Hopfian.

" \Leftarrow " Assume that G is not co-Hopfian. Then there exists a proper subgroup H of G and an isomorphism $\phi: G \to H$. Let $i: H \to G$ be an inclusion homomorphism. Then $i \circ \phi: G \to G$ is an injective homomorphism which is not onto (because i is not). Contradiction. \square