高等代数 I 习题课讲义 (2025 秋)

龚诚欣

gongchengxin@pku.edu.cn

2025年9月26日

目录

1	第 1 次习题课: Gauss-Jordan 消元法	2
	1.1 问题	
	1.2 解答	2
	线性相关性,秩	4
	2.1 问题	
	2.2 解答	4
3	线性方程组解的结构	5
	3.1 问题	
	3.2 解答	6
4	致谢····································	8

第 1 次习题课: Gauss-Jordan 消元法 1

1.1 问题

1. 是否存在二次函数 $f(x) = ax^2 + bx + c$, 其图像经过下述 4 个点: A(1,2), Q(-1,3), M(-4,5), N(0,2)?

3. 某食品厂有四种原料 A, B, C, D. 问能否用这四种原料配制含脂肪

单位: %	A	В	С	D
脂肪	8	6	3	2
碳水化合物	5	25	10	15
蛋白质	15	5	20	10

4. a 为何值时,线性方程组 $\begin{cases} x_1-4x_2+2x_3=-1\\ -x_1+11x_2-x_3=3 \end{cases}$ 有解?当有解时,求出它的所有解。 $3x_1-5x_2+7x_3=a \end{cases}$ 5. 解下述线性方程组: $\begin{cases} (1+a_1)x_1+x_2+x_3+\cdots+x_n=b_1\\ x_1+(1+a_2)x_2+x_3+\cdots+x_n=b_2\\ \dots\\ x_1+x_2+x_3+\cdots+(1+a_n)x_n=b_n \end{cases}$,其中 $a_1a_2\cdots a_n\neq 0$,且 $\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\neq -1$. $(3) 求齐次方程组 \ AX=0$ 在京教科域上的解集人 (1) 第

(3) 求齐次方程组 AX = 0 在实数域上的解集合; (4) 当 y_1, y_2, y_3 满足什么关系时, 方程组 $AX = (y_1, y_2, y_3)^T$ 有解? 7. 设 $\alpha_1 = (1,1,4), \alpha_2 = (-2,1,5), \alpha_3 = (a,2,10), \beta = (1,b,-1).$ 当 a,b 取何值时, 向量 β 能被 $\alpha_1,\alpha_2,\alpha_3$ 线性表出? 何时表示系数唯一?

8. 向量组 $\alpha_1, \dots, \alpha_s$ 线性无关, $\beta = \sum_{j=1}^s b_j \alpha_j$. 如果 $b_i \neq 0$,证明用 β 替换 α_i 得到的向量组 $\alpha_1, \dots, \alpha_{i-1}, \beta, \alpha_{i+1}, \dots, \alpha_s$ 也线性无关 也线性无关.

9. 用向量运算的性质证明: 若一组向量 $\alpha_1, \cdots, \alpha_s$ 线性表出某个向量 β 的方式唯一 (不唯一), 则 $\alpha_1, \cdots, \alpha_s$ 表出任何 向量-如果能表出的话,方式都唯一(不唯一).

10. 求单叶双曲面 $x^2 + y^2 - z^2 = 1$ 上的所有直线.

11. 用 $\mathbb{Q}(\sqrt{3})$ 表示从全体有理数及 $\sqrt{3}$ 出发, 反复作加减乘除四则运算能得到的所有数的集合, 称为由 $\sqrt{3}$ 生成的数 域. (1) 证明 $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$; (2) 数域 $\mathbb{Q}(\sqrt{3})$ 中的每个数写成 $a + b\sqrt{3}, a, b \in \mathbb{Q}$ 的方式唯一.

12. 用 $\mathbb{Z}(\sqrt{-5})$ 表示从全体整数及 $\sqrt{-5}$ 出发, 通过加乘二则运算能得到的所有数的集合, 称为由 $\sqrt{-5}$ 生成的整环. 证 明在此环中,不可约数和素数不等价.

1. 直接代入求解 $\begin{cases} a+b+c=2\\ a-b+c=3\\ 16a-4b+c=5 \end{cases}$, 发现无解.

3. 注意
$$A,B,C,D$$
 的比例和为 1 , 因此
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 8 & 6 & 3 & 2 & 5 \\ 5 & 25 & 10 & 15 & 12 \\ 15 & 5 & 20 & 10 & 15 \end{bmatrix} \overset{\textcircled{3}-=5*\textcircled{1}}{\overset{(3)}{-}=15*\textcircled{1}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 20 & 5 & 10 & 7 \\ 0 & -10 & 5 & -5 & 0 \end{bmatrix} \overset{\textcircled{3}+=10*\textcircled{2}}{\overset{(4)-=5*\textcircled{2}}{-}}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 30 & 25 & 15 \end{bmatrix} \textcircled{4} + = \frac{2}{3} * \textcircled{3} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 0 & -\frac{25}{3} & -\frac{1}{3} \end{bmatrix}, \text{ BLMME } (\frac{7}{25}, \frac{16}{75}, \frac{7}{15}, \frac{1}{25}).$$

4.
$$\begin{bmatrix} 1 & -4 & 2 & -1 \\ -1 & 11 & -1 & 3 \\ 3 & -5 & 7 & a \end{bmatrix} \stackrel{\textcircled{2}}{\longrightarrow} = \stackrel{\textcircled{1}}{\longrightarrow} = \stackrel{\textcircled{1}}{\longrightarrow} = \stackrel{\textcircled{2}}{\longrightarrow} = \stackrel{\textcircled{1}}{\longrightarrow} = \stackrel{\textcircled{1}}{\longrightarrow} = \stackrel{\textcircled{2}}{\longrightarrow} = \stackrel{\textcircled{1}}{\longrightarrow} = \stackrel{\textcircled{2}}{\longrightarrow} = \stackrel{\textcircled{2}}{$$

[3 -5 7 a]
$$\begin{bmatrix} 0 & 7 & 1 & a+3 \end{bmatrix}$$

$$\begin{cases} y + a_1 x_1 = b_1 \\ y + a_2 x_2 = b_2 \\ \cdots \\ y + a_n x_n = b_n \end{cases} \Rightarrow \begin{cases} x_1 = \frac{b_1 - y}{a_1} \\ x_2 = \frac{b_2 - y}{a_2} \\ \cdots \\ x_n = \frac{b_n - y}{a_n} \end{cases}$$
 . 全部相加得到关于 y 的一元

一次方程, 解得 $y = \frac{1}{1 + \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}} \sum_{i=1}^{n} \frac{b_i}{a_i}$. 代入上式得到原线性方程组的解.

数向量是 $(y_1, \frac{y_2-2y_1}{2+2i}, y_3-\frac{1+i}{4}y_2+\frac{1-i}{2}y_1)$, 因此只有当 $y_3-\frac{1+i}{4}y_2+\frac{1-i}{2}y_1=0$ 时才有解.

7.
$$\begin{bmatrix} 1 & -2 & a & 1 \\ 1 & 1 & 2 & b \\ 4 & 5 & 10 & -1 \end{bmatrix} \overset{\bigcirc 2-=\bigcirc 1}{\longrightarrow} \begin{bmatrix} 1 & -2 & a & 1 \\ 0 & 3 & 2-a & b-1 \\ 0 & 13 & 10-4a & -5 \end{bmatrix} \overset{\bigcirc 3-=\frac{13}{3}*\bigcirc 2}{\longrightarrow} \overset{\bigcirc 1}{\longrightarrow} \overset{\longrightarrow 1}{$$

当 $a \neq -4$ 或 $a = -4, b = -\frac{2}{13}$ 时, β 能被线性表出,且对于前者表出系数唯一.

8. $\[\] k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i\beta + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_{i+1} + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_{i+1}\alpha_i + \dots + k_s\alpha_s \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_{i-1}\alpha_{i-1} + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) + k_i(b_1\alpha_1 + \dots + b_s\alpha_s) \\ = 0 \\ \Leftrightarrow k_1\alpha_1 + \dots + k_s\alpha_s + k_s\alpha_s$ $\cdots + k_s \alpha_s = 0 \Leftrightarrow (k_1 + k_i b_1) \alpha_1 + \cdots + (k_{i-1} + k_i b_{i-1}) \alpha_{i-1} + k_i b_i \alpha_i + (k_{i+1} + k_i b_{i+1}) \alpha_{i+1} + \cdots + (k_s + k_i b_s) \alpha_s = 0. \quad \boxplus$ 线性无关性知 $k_1 + k_i b_1 = \cdots = k_{i-1} + k_i b_{i-1} = k_i b_i = k_{i+1} + k_i b_{i+1} = \cdots = k_s + k_i b_s = 0$, 由于 $b_i \neq 0$, 因此 $k_i = 0$, 进 一步得到 $k_1 = \cdots = k_s = 0$, 这也意味着 $\alpha_1, \cdots, \alpha_{i-1}, \beta, \alpha_{i+1}, \cdots, \alpha_s$ 线性无关.

9. 只需注意到表出某个向量 β 唯一 \Leftrightarrow 表出 0 向量唯一 \Leftrightarrow $(k_1\alpha_1 + \cdots k_s\alpha_s = 0 \Rightarrow k_1 = \cdots = k_s = 0).$

10.
$$(x-z)(x+z) = (1-y)(1+y)$$
, 因此直线可以表示形式为
$$\begin{cases} x-z = k(1-y) \\ x+z = \frac{1}{k}(1+y) \end{cases}$$
, 即是
$$\begin{cases} x+ky-z = k \\ kx-y+kz = 1 \end{cases}$$
. 特别

地, 当 $y = \pm 1$ 时, $z = \pm x$ 也是位于该曲面上的直线.

11. (1) 只需证明 $\{a+b\sqrt{3}: a,b\in\mathbb{Q}\}$ 对于加减乘除封闭. (2) 只需证明 $\sqrt{3}$ 不是有理数 (因为 $a_1+b_1\sqrt{3}=a_2+b_2\sqrt{3}$ \Leftrightarrow $\sqrt{3} = \frac{a_1 - a_2}{b_2 - b_1} \in \mathbb{Q}$). 用反证法, $\sqrt{3} = \frac{a}{b}$, $\gcd(a, b) = 1$, 那么 $a^2 = 3b^2 \Rightarrow 3|a \Rightarrow 9|a^2 \Rightarrow 3|b^2 \Rightarrow 3|b$, 矛盾.

12. 类似可知 $\mathbb{Z}(\sqrt{-5}) = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}.$ 容易证明 $2 + \sqrt{-5}$ 是不可约数: $2 + \sqrt{-5} = (a + b\sqrt{-5})(c + d\sqrt{-5}) \Rightarrow (a + b\sqrt{-5})(c + d\sqrt{-5})$ $9 = (2 + \sqrt{-5})(2 - \sqrt{-5}) = (a + b\sqrt{-5})(a - b\sqrt{-5})(c + d\sqrt{-5})(c - d\sqrt{-5}) = (a^2 + 5b^2)(c^2 + 5d^2)$ 无解; 但是 $2 + \sqrt{-5}|3 \times 3|$ 而 $2+\sqrt{-5}$ /3, 因此不是素数.

线性相关性, 秩

2.1 问题

- 1. 对不同的 λ 取值, 讨论矩阵 $A = \begin{bmatrix} 1 & \lambda & -1 & 2 \\ 2 & -2 & \lambda & 5 \\ 1 & 2 & -3 & 1 \end{bmatrix}$ 的秩.

余的每个向量. (1) A 的列向量组; (2) A 的行向量组. $A = \begin{bmatrix} 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 5 \end{bmatrix}$.

3. 作初等行变换将矩阵 $A=\begin{bmatrix}2&-1&5&2&-1\\4&-1&9&3&4\\3&-2&8&-2&1\\1&1&4&4\end{bmatrix}$ 化为简化阶梯型矩阵,再利用以上计算直接回答下列问题. (1) 求

A 列组的秩和一个极大无关组, 并用此极大无关组表出 A 的每个列向量. (2) 求 A 行空间的维数和一组基, 写出 A 的 各个行向量在此基下的坐标. (3) a,b 取何值时, 向量 (3,a,b,b,3) 属于 A 的行空间?

- 4. 已知 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关, 试判断以下各向量组的线性相关性: (1) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$; (2) $\alpha_1, \alpha_2 \alpha_3, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (2) $\alpha_1, \alpha_2 \alpha_4, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (2) $\alpha_1, \alpha_2 \alpha_4, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (2) $\alpha_1, \alpha_2 \alpha_4, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (2) $\alpha_1, \alpha_2 \alpha_4, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (2) $\alpha_1, \alpha_2 \alpha_4, \alpha_4 + \alpha_4, \alpha_4 + \alpha_4$; (3) $\alpha_3, \alpha_1 - \alpha_3 + \alpha_4; (3) \alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4; (4) \alpha_1 + \alpha_4, \alpha_2 + 8\alpha_4, \alpha_2 + 5\alpha_3 + \alpha_4, 3\alpha_1 + 7\alpha_2 + \alpha_3, \alpha_1 - \alpha_3.$ 5. 证明: 若向量组 I 能线性表出向量组 II, 且 rank(I) = rank(II), 则向量组 II 也能表出向量组 I.
- 6. 设向量组 $\alpha_1, \dots, \alpha_r$ 能线性表出 β_1, \dots, β_s , 并且有 $\beta_i = b_{i1}\alpha_1 + \dots + b_{ir}\alpha_r, \forall i = 1, 2, \dots, s$. 证明若矩阵 $B = (b_{ij})_{s \times r}$ 列向量线性无关, 则 β_1, \dots, β_s 也能线性表出 $\alpha_1, \dots, \alpha_r$.

- 7. 若矩阵 $A = (a_{ij})_{n \times n}$ 满足 $|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \forall 1 \leq i \leq n, \text{ 则称 } A \text{ 是主对角占优矩阵. 证明主对角占优矩阵满秩.}$ 8. 证明秩等式 $\operatorname{rank}\begin{pmatrix} A & O \\ O & B \end{pmatrix} = \operatorname{rank}(A) + \operatorname{rank}(B)$ 和秩不等式 $\operatorname{rank}\begin{pmatrix} A & C \\ O & B \end{pmatrix} \geq \operatorname{rank}(A) + \operatorname{rank}(B)$.
 9. 已知矩阵 $\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$ 满秩,求两直线 $\frac{x a_3}{a_1 a_2} = \frac{y b_3}{b_1 b_2} = \frac{z c_3}{c_1 c_2}, \frac{x a_1}{a_2 a_3} = \frac{y b_1}{b_2 b_3} = \frac{z c_1}{c_2 c_3}$ 的位置关系.

 $f(1) = 0, f(x) \in \mathbb{R}[x]_n$ }, 这里 $\mathbb{R}[x]_n$ 表示实数域 \mathbb{R} 上的次数小于 n 的多项式添上零多项式构成的 线性空间. (1) 证明 $W \in \mathbb{R}[x]_n$ 的线性子空间; (2) 求 W 的维数和一组基.

11. 证明: 若数域 K 上的 n 阶方阵 $A = (a_{ij})$ 的主对角元 a_{ii} 均不为零, 则存在向量 X 使得 AX 的每个分量都不为零.

2.2 解答

1. 显然矩阵 A 的秩至少为 2(第 1 列和第 4 列线性无关), 至多为 3. 下面考虑第 2 列和第 3 列能否被第 1 列和第 4 列 线性表出. 先看第 2 列和最后两行, 知表出系数必然为 4 和 -2, 因此 $\lambda = 0$, 此时验证第 3 列知确实能被第 1 列和第 4 列线性表出. 综上, $\lambda = 0$ 时秩为 2, 否则为 3.

- 2. (1) 线性相关; 其中第 1 列、第 2 列和第 5 列构成线性无关组, 且 $2\alpha_1 + 3\alpha_2 = \alpha_3$, $-5\alpha_1 4\alpha_2 = \alpha_4$;
- (2) 线性相关; 其中第 2 行、第 3 行和第 4 行构成线性无关组, 且 $-\frac{3}{2}\beta_2 \frac{1}{2}\beta_3 = \beta_1$.
- 3. A 的简化阶梯型矩阵是 A =

 $\beta_2, \beta_5 = 3\beta_1 + 5\beta_2 - \beta_4$. (2) 行空间维数和列秩相同,一组基是 $\alpha_1, \alpha_2, \alpha_4$,且 $\alpha_3 = -\frac{31}{9}\alpha_1 - \frac{55}{9}\alpha_2 + \frac{17}{9}\alpha_4, \alpha_5 = \frac{31}{9}\alpha_1 - \frac{31}{9}\alpha_2 + \frac{31}{9}\alpha_3 + \frac{31}{9}\alpha_4$ $-\frac{20}{9}\alpha_1 - \frac{23}{9}\alpha_2 + \frac{22}{9}\alpha_4. (3)$ 仔细计算即可. a = 4, b = 2. 4. (1) 线性相关; $(\alpha_1 + \alpha_2) - (\alpha_2 + \alpha_3) + (\alpha_3 + \alpha_4) - (\alpha_4 + \alpha_1) = 0$. (2) 线性无关. (3) 线性无关. (4) 线性相关; 因为

- 这有五个向量却只有四个自由度.
- 5. 设 β_1, \dots, β_s 是组 II 极大线性无关组. 任取组 I 向量 α , 由于组 I 能表出 $\beta_1, \dots, \beta_s, \alpha$, 从而 $\mathrm{rank}(\beta_1, \dots, \beta_s, \alpha) \leq s$, 即 $\beta_1, \dots, \beta_s, \alpha$ 线性相关. 由于 β_1, \dots, β_s 线性无关, 因此它们能表出 α .
- 6. 只需证明能表出 α_1 . 利用高斯消元法去解方程 $\beta_{i1} = b_{i1}\alpha_1 + \cdots + b_{ir}\alpha_r$, 由于 B 列满秩, 因此其简化阶梯型矩阵必 (可用递推法或归纳法证明之), 从而 α_1 能被 β_1, \dots, β_s 线性表出.
- 7. 反证法. 假设 A 的列向量组线性相关, 那么存在不全为 0 的系数使得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$. 我们不妨设 在这 n 个系数里面 k_1 的绝对值最大, 那么就有 $k_1a_{11}+k_2a_{12}+\cdots+k_na_{1n}=0$. 但是 $|k_1a_{11}+k_2a_{12}+\cdots+k_na_{1n}|\geq$ $|k_1a_{11}| - |k_2a_{12}| - \dots - |k_na_{1n}| \ge |k_1a_{11}| - |k_1|(|a_{12}| + \dots + |a_{1n}|) > 0$, 矛盾. 因此 A 满秩.
- 8. (1) 设 A 的一个列极大线性无关组是 $\alpha_{i_1},\cdots,\alpha_{i_r},B$ 的一个列极大线性无关组是 $\beta_{j_1},\cdots,\beta_{j_s}$. 利用线性无关的定义 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 线性无关, 且可以分别用对应小矩阵 A,B 的相同系数表出其他大矩 个大矩阵的列极大线性无关组, 有第一个秩等式.
- (2) 利用线性无关的定义可以验证 $\begin{pmatrix} \alpha_{i_1} \\ 0 \end{pmatrix}$, \dots , $\begin{pmatrix} \alpha_{i_r} \\ 0 \end{pmatrix}$, $\begin{pmatrix} \gamma_{j_1} \\ \beta_{j_1} \end{pmatrix}$, \dots , $\begin{pmatrix} \gamma_{j_s} \\ \beta_{j_s} \end{pmatrix}$ 线性无关, 其中 γ_{j_k} 是矩阵 C 对应于 j_k 的 列向量,因此大矩阵的秩至少是 $\operatorname{rank}(A) + \operatorname{rank}(B)$,有第二个秩不等式。这里我们无法判断这是不是一个大矩阵的列 极大线性无关组, 因此可以严格取到大于号. 一个例子是 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, 其中 A = (0), B = (0), C = (1).
- 9. 由矩阵满秩知 $(a_1-a_2,b_1-b_2,c_1-c_2)$ 和 $(a_2-a_3,b_2-b_3,c_2-c_3)$ 线性无关 (用第一列减第二列和用第二列减第三 列), 因此不平行. 再检查是否相交, 只需验证 $x_3 + k(x_1 - x_2) = x_1 + t(x_2 - x_3), x = a, b, c$ 对于 k, t 是否有解. 由于矩 阵满秩, 合并同类项知该方程系数必须满足 t+1=k-1=t+k=0, 因此 t=-1, k=1. 从而两直线相交.
- 10. (1) 容易证明对 $\forall f(x), g(x) \in W \Rightarrow af(x) + bg(x) \in W$, 因此是线性子空间. (2) 令 $f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$. $f(1) = 0 \Rightarrow a_0 + a_1 + \dots + a_{n-1} = 0$, 因此 $f(x) = a_1(x-1) + a_2(x^2-1) + \dots + a_{n-1}(x^{n-1}-1)$. 下面我们只需证明 $x-1,x^2-1,\cdots,x^{n-1}-1$ 确实是 W 的一组基, 而其线性无关性是显然的, 所以 $\dim W=n-1$.
- 11. 注意到 $W_i = \{X \in K^n : (a_{i1}, \dots, a_{in})X = 0\}, i = 1, 2, \dots, n$ 都是 K^n 的 n-1 维子空间, 由于有限个 n-1 维子 空间张不满 n 维全空间, 从而存在 $X_0 \in K^n \setminus (W_1 \cup W_2 \cup \cdots \cup W_n)$, 此时 AX_0 的每个分量都不为零.

线性方程组解的结构

问题 3.1

1. 已知矩阵 $A = [\alpha_1, \alpha_2, \cdots, \alpha_5]$ 与 $\begin{bmatrix} 2 & 1 & 2 & 5 & 3 \\ 2 & 2 & 4 & 8 & 7 \end{bmatrix}$ 的行向量组等价,且 $\alpha_2 = (2, 1, 2, 1)^T, \alpha_5 = (7, 3, 7, 3)^T$. 又知方

程组 $AX = \beta$ 的一个解为 $X = (1, 1, -1, 0, 1)^T$, 这里 $\beta = (7, 5, 7, 4)^T$. (1) 写出矩阵 A 及其行简化阶梯形矩阵 J; (2) 求 A 行空间的一组基, 并确定当 a, b 为何值时, (5, 3, 6, a, b) 落在 A 的行空间里; (3) 求方程组 $AX = \beta$ 的解空间.

2. 讨论下列方程组的解空间: (1)
$$\begin{cases} 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0 \\ 4x_4 + 5x_2 - 2x_2 + 3x_4 = 0 \end{cases}$$
; (2)
$$\begin{cases} x_1 + 5x_2 - 2x_2 + 3x_4 = 0 \\ \dots \end{cases}$$

$$\begin{cases} 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0 \\ 3x_1 + 8x_2 + 24x_2 - 19x_4 = 0 \end{cases}$$
 (2) (2)

$$\begin{cases} x_1 + 8x_2 + 24x_3 - 19x_4 = 0 \\ x_{n-1} + x_n = 0 \end{cases}$$

2. 讨论下列方程组的解空间: (1)
$$\begin{cases} x_1 + x_2 - 2x_3 + 2x_4 = 0 \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0 \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0 \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0 \end{cases}$$
 ; (2)
$$\begin{cases} x_1 + x_2 = 0 \\ x_1 + x_2 + x_3 = 0 \\ \dots \\ x_{n-2} + x_{n-1} + x_n = 0 \end{cases}$$
 3. 讨论下列方程组的解空间: (1)
$$\begin{cases} 8x_1 + 6x_2 + 3x_3 + 2x_4 = 5 \\ -12x_1 - 3x_2 - 3x_3 + 3x_4 = -6 \\ 4x_1 + 5x_2 + 2x_3 + 3x_4 = 3 \end{cases}$$
 ; (2)
$$\begin{cases} -6x_1 + 8x_2 - 5x_3 - x_4 = 9 \\ -2x_1 + 4x_2 + 7x_3 + 3x_4 = 1 \\ -3x_1 + 5x_2 + 4x_3 + 2x_4 = 3 \\ -3x_1 + 5x_2 + 4x_3 + 2x_4 = 3 \end{cases}$$
 .

- 4. $A \in m \times n$ 矩阵, $b \in m \times 1$ 矩阵. 证明线性方程组 $A^T A x = A^T b$ 总有解
- 5. A, B 都是 $m \times n$ 矩阵, 线性方程组 AX = 0 和 BX = 0 同解. 问 A, B 的列向量组是否等价、行向量组是否等价.
- 6. 设 A 是 n 阶方阵, 证明: (1) 若 $A^{k-1}\alpha \neq 0$, $A^k\alpha = 0$, 那么 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关; (2) $\operatorname{rank}(A^n) = \operatorname{rank}(A^{n+1})$.
- 7. 证明: AX = 0 有强非零解 (解向量的每个系数都不为零) 的充要条件是 A 的任一列向量均可表示为其余列向量的 线性组合.
- 8. 设线性方程组 AX=b 中矩阵 A 的秩等于矩阵 $B=\begin{bmatrix}A&b\\b^T&0\end{bmatrix}$ 的秩. 证明该方程组有解, 并问其逆命题是否成立.
- 9. 设 A, B 是数域 K 上的 n 阶方阵, AX = 0, BX = 0 分别有 l, m 个线性无关的解向量. 证明: (1) (AB)X = 0 至少 有 $\max(l,m)$ 个线性无关的解向量; (2) 如果 l+m>n, 那么 (A+B)X=0 必有非零解; (3) 如果 AX=0 和 BX=0没有公共的非零解向量, 且 l+m=n, 那么 K^n 中的任一向量 α 都可以唯一的分解为 $\alpha=\beta+\gamma$, 其中 β,γ 分别是 AX = 0 和 BX = 0 的解向量. [若不清楚矩阵乘法定义, 第一问可不做.]
- 10. 判断方的整系数线性方程组如果模任一素数都有解, 那么它是否在整数环上有解.
- 11. 给定复系数线性方程组 AX = b, 其中 A 满秩. 假设矩阵 I + A 的每行元素的模的和小于 q, 其中 0 < q < 1. 设 X_0 是 \mathbb{C}^n 中的任一向量, 归纳定义 $X_{m+1} = (A+I)X_m - b$. 证明序列 X_m 收敛到方程组 AX = b 的解.
- 12. 己知矩阵 A 的列数与矩阵 B 的行数相等. 记 A 的解空间为 W, B 的列空间为 V. 证明 rank(B) = rank(AB) 当 且仅当 $V \cap W = \{0\}$.

3.2 解答

1. (1) 容易得到 $\alpha_1 - \alpha_3 = (-2, 1, -2, 0)^T$, 并求出题给定的矩阵行空间一组基是 (1, 0, 0, 1, 0), (0, 1, 2, 3, 0), (0, 0, 0, 0, 1). 考虑其前三个分量, 由能被这组基表出知 $\alpha_3 = 2\alpha_2 = (4,2,4,2)^T$, $\alpha_1 = (2,3,2,2)^T$, 从而 $\alpha_4 = (8,6,8,3)$. 因此

$$A = \begin{bmatrix} 2 & 2 & 4 & 8 & 7 \\ 3 & 1 & 2 & 6 & 3 \\ 2 & 2 & 4 & 8 & 7 \\ 2 & 1 & 2 & 5 & 3 \end{bmatrix}, J = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (2) 一组基为 (1,0,0,1,0), (0,1,2,3,0), (0,0,0,0,1). 考察各系数, 知当 $a=14,b\in\mathbb{R}$ 时, 该向量落在 A 的行空间里.
- (3) 先求出 AX = 0 的解, 即 $(\alpha_1, \alpha_2, 2\alpha_2, \alpha_1 + 3\alpha_2, \alpha_5)X = 0$, 其中 $\alpha_1, \alpha_2, \alpha_5$ 线性无关. 通解为 $(t_1, 3t_1 2t_2, t_2, -t_1, 0)^T$, $t_1, t_2 \in \mathbb{R}$ 是自由变元. 因此 $AX = \beta$ 的通解是 $(t_1 + 1, 3t_1 - 2t_2 + 1, t_2 - 1, -t_1, 1)^T$, 写成解空间是 $\{t_1(1, 3, 0, -1, 0)^T + t_1, t_2 \in \mathbb{R}\}$ $t_2(0, -2, 1, 0, 0)^T + (1, 1, -1, 0, 1)^T : t_1, t_2 \in \mathbb{R}$.
- 2. (1) 通解是 $x_1 = 8x_3 7x_4, x_2 = -6x_3 + 5x_4$, 写成解空间是 $\{k_1(8, -6, 1, 0)^T + k_2(-7, 5, 0, 1)^T : k_1, k_2 \in \mathbb{R}\}$.
- (2) n = 3m 或 3m + 1 时只有零解. n = 3m + 2 时有非零解, 通解是 $x_{3i} = 0, x_{3i+1} = -x_n, x_{3i+2} = x_n, i = 1, 2, \dots, m$, 写成解空间是 $\{k(-1,1,0,-1,1,0,\cdots,0,-1,1): k \in \mathbb{R}\}$.

3. (1) 利用高斯消元得到
$$\begin{cases} 4x_1 + 5x_2 + 2x_3 + 3x_4 = 3 \\ 4x_2 + x_3 + 4x_4 = 1 \\ -3\lambda x_3 + 8\lambda x_4 = 16 - 7\lambda \end{cases}$$
, 因此 $\lambda \neq 0$ 时有解, 通解是 $x_1 = \frac{1}{\lambda}, x_3 = \frac{9\lambda - 16}{5\lambda} - \frac{8}{5}x_2, x_4 = \frac{3\lambda x_3 + 8\lambda x_4}{3\lambda x_4 + 8\lambda x_4} = \frac{3\lambda x_3 + 8\lambda x_4}{3\lambda x_4} = \frac{3\lambda x_3 + 8\lambda x_4}{3\lambda x_4} = \frac{3\lambda x_4}{3\lambda x_4} = \frac{3\lambda$

$$\frac{4-\lambda}{5\lambda}-\frac{3}{5}x_2,$$
 写成解空间是 $\{k(0,5,-8,-3)^T+\left(\frac{1}{\lambda},0,\frac{9\lambda-16}{5\lambda},\frac{4-\lambda}{5\lambda}\right)^T:k\in\mathbb{R}\}$

$$\frac{4-\lambda}{5\lambda} - \frac{3}{5}x_2, \, \text{写成解空间是} \, \{k(0,5,-8,-3)^T + \left(\frac{1}{\lambda},0,\frac{9\lambda-16}{5\lambda},\frac{4-\lambda}{5\lambda}\right)^T : k \in \mathbb{R}\}.$$

$$(2) \, \text{利用高斯消元得到} \begin{cases} -2x_1 + 4x_2 + 7x_3 + 3x_4 = 1 \\ -2x_2 - 13x_3 - 5x_4 = 3 \end{cases}, \, \text{因此} \, \lambda = 0 \, \text{时有解, 通解是} \, x_1 = -\frac{1}{2}(7+19x_3+7x_4), x_2 = 0 = 2\lambda \end{cases}$$

$$-\frac{1}{2}(3+13x_3+5x_4), 写成解空间是 \{k_1(-19,-13,2,0)^T+k_2(-7,-5,0,2)^T+\left(-\frac{7}{2},-\frac{3}{2},0,0\right)^T:k_1,k_2\in\mathbb{R}\}.$$

4. 先证明 $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$. 首先显然 $\operatorname{rank}(A^T A) \leq \operatorname{rank}(A)$, 其次 $A^T A x = 0 \Rightarrow x^T A^T A x = 0 \Rightarrow \|Ax\|_2^2 = 0 \Rightarrow x^T A^T A x = 0$ $Ax = 0 \Rightarrow \operatorname{Ker}(A^T A) \subset \operatorname{Ker}(A) \Rightarrow \operatorname{rank}(A^T A) \geq \operatorname{rank}(A)$. 接着, 由于 $\operatorname{rank}(A^T A) \leq \operatorname{rank}(A^T A, A^T b) \leq \operatorname{rank}(A^T A) = \operatorname{rank}(A^T A)$ $rank(A) = rank(A^T A)$ 知系数矩阵和增广矩阵秩相等, 因此方程有解.

5. 第 1 个结论不对, 比如
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. 第 2 个结论对. 若解空间 0 维, 则 A, B 均列满秩, 也都可以通

5. 第 1 个结论不对, 比如 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. 第 2 个结论对. 若解空间 0 维, 则 A, B 均列满秩, 也都可以通过初等行列变换得到其简化阶梯形矩阵 $\begin{pmatrix} I_{n \times n} \\ 0_{(m-n) \times n} \end{pmatrix}$, 因此等价. 其余情况, 设解空间 $r \ge 1$ 维, 任取 AX = 0 的一个基

础解系 X_1, \dots, X_r 构成 $n \times r$ 矩阵 C. 考虑线性方程组 $C^T X = 0$, 其解空间维数为 $n - r = \operatorname{rank}(A)$. 由于 $C^T A^T = 0$, 因此 A 的行空间是该解空间的一个子空间. 由于它们维数相等, 因此 A 的行空间就是该解空间. 同理 B 的行空间也是 该解空间.

- 6. (1) 设 $\lambda_1\alpha + \lambda_2A\alpha + \cdots + \lambda_kA^{k-1}\alpha = 0$, 两边左乘 A^{k-1} 知 $\lambda_1 = 0$, 再左乘 A^{k-2} 知 $\lambda_2 = 0$, 以此类推知线性无关.
- (2) 显然 $A^nX = 0 \Rightarrow A^{n+1}X = 0$. 若存在 $A^{n+1}\alpha = 0$ 但 $A^n\alpha \neq 0$, 则根据 (1) 结论知 $\alpha, A\alpha, \dots, A^n\alpha$ 线性无关, 这是 n 维空间是不可能的. 因此 A^{n+1} 和 A^n 解空间相同, 从而 $rank(A^n) = rank(A^{n+1})$.

$$n$$
 维至间是不可能的. 因此 A^{n+1} 和 A^n 解至间相问,从间 $\mathrm{rank}(A^{n+1})$.

7. 必要性. 设 $X = (x_1, \dots, x_n)^T$ 是强非零解,则 $\alpha_i = \sum_{k \neq i} \left(-\frac{x_k}{x_i} \right) \alpha_k, \forall i = 1, \dots, n$.

充分性. 不妨设
$$\alpha_i = \sum_{k \neq i} t_{ki} \alpha_k, \forall i = 1, \cdots, n,$$
 则记 $T = \begin{pmatrix} 1 & -t_{12} & -t_{13} & \cdots & -t_{1,n-1} & -t_{1,n} \\ -t_{21} & 1 & -t_{23} & \cdots & -t_{2,n-1} & -t_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -t_{n-1,1} & -t_{n-1,2} & -t_{n-1,3} & \cdots & 1 & -t_{n-1,n} \\ -t_{n1} & -t_{n2} & -t_{n3} & \cdots & -t_{n,n-1} & 1 \end{pmatrix},$ 从而

AT=0. 由于 T 的任一主对角元均不为零,从而存在 X_0 使得 TX_0 每个分量都不为零,此即该强非零解

8. (1)
$$\operatorname{rank}(A) \leq \operatorname{rank}(A, b) \leq \operatorname{rank}\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = \operatorname{rank}(B) = \operatorname{rank}(A)$$
, 因此每一步都取等号,从而方程组有解. (2) 不成立,考虑
$$\begin{cases} x_1 + 2x_2 = 1 \\ 3x_1 + 4x_2 = 3 \end{cases}$$
, $\operatorname{rank}(A) = 2$, 而 $\operatorname{rank}(B) = 3$.

(2) 不成立,考虑
$$\begin{cases} x_1 + 2x_2 = 1 \\ 3x_1 + 4x_2 = 3 \end{cases}$$
, rank $(A) = 2$, 而 rank $(B) = 3$.

- 9. (1) $n \operatorname{rank}(AB) \ge \max(n \operatorname{rank}(A), n \operatorname{rank}(B)) \ge \max(l, m)$.
- (2) rank $(A+B) \le \text{rank}(A) + \text{rank}(B) \le n l + n m < n$, 因此 (A+B)X = 0 必有非零解.
- (3) 设 $\alpha_1, \dots, \alpha_l$ 与 β_1, \dots, β_m 分别是 AX = 0, BX = 0 线性无关的解. 考虑方程 $\lambda_1 \alpha_1 + \dots + \lambda_l \alpha_l + \mu_1 \beta_1 + \dots + \mu_m \beta_m = 0$ 0, 则 $\lambda_1\alpha_1 + \cdots + \lambda_l\alpha_l = -\mu_1\beta_1 - \cdots - \mu_m\beta_m$ 是 AX = 0 和 BX = 0 的公共解. 由题意知其必然为零向量, 又由 $\{\alpha_i\}_{i=1}^l,\{\beta_j\}_{j=1}^m$ 线性无关性知 $\lambda_1=\dots=\lambda_l=\mu_1=\dots=\mu_m=0$. 因此 $\alpha_1,\dots,\alpha_l,\beta_1,\dots,\beta_m$ 整体线性无关. 又由于 l+m=n, 因此他们是 K^n 一组基, 从而任一向量都可唯一被它们线性表出, 相应的被表出的两部分也就对应了 β 和 γ . 唯一性可由 $\alpha=\beta_1+\gamma_1=\beta_2+\gamma_2\Rightarrow \beta_1-\beta_2=\gamma_2-\gamma_1$ 是 AX=0 和 BX=0 的公共解 $\Rightarrow \beta_1-\beta_2=\gamma_2-\gamma_1=0$ 得到.
- 10. 不一定, 一个反例是 4x = 2.
- 11. 记 $\|X\|$ 为向量 X 元素模的最大值 $(l_{\infty}$ 范数). 则 $\|X_n X_m\| = \|(A+I)X_{n-1} (A+I)X_{m-1}\| = \|(A+I)(X_{n-1} A)X_{m-1}\|$ $|X_{m-1}|| < q||X_{n-1} - X_{m-1}||$, 因此由 Cauchy 收敛原理知 X_n 在 l_∞ 范数意义下收敛 (有限维线性空间所有范数等价). 记极限值为 X_{∞} , 两边求极限知 $X_{\infty} = (A+I)X_{\infty} - b \Leftrightarrow AX_{\infty} = b$.
- 12. 注意到 $rank(B) = rank(AB) \Leftrightarrow Ker(B) = Ker(AB)$.
- "⇒": 考虑 $x \in V \cap W$, 则可设 x = By. 由于 ABy = Ax = 0, 因此 $y \in \text{Ker}(AB) = \text{Ker}(B) \Rightarrow By = 0 \Rightarrow x = 0$.

"ሩ": 显然 $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$. 若 $\operatorname{rank}(AB) < \operatorname{rank}(B)$, 则 $\operatorname{Ker}(AB) \neq \operatorname{Ker}(B)$, 即 $\exists x \in \operatorname{Ker}(AB)$ 但 $x \notin \operatorname{Ker}(B)$, 此时 $Bx \neq 0$, 但是 $Bx \in V \cap W$.

4 致谢

感谢北京大学数学科学学院的高峡老师、王福正老师和田青春老师, 他们教会了笔者高等代数的基本知识, 他们的讲义也成为了笔者的重要参考. 感谢选修 2025 秋高等代数 I 习题课 6 班的全体同学, 他们提供了很多有意思的做法和反馈.