Algoritmul lui Prim Implementare

Exemplu - curs

$$s = 1$$

Cum evităm să comparam de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu.

Exemplu:

După ce vârfurile 1 și 5 au fost adăugate în arbore, muchiile **(2,1)** și **(2,5)** sunt comparate la fiecare pas, deși w(2,1)>w(2,5), deci (2,1) nu va fi selectată niciodată

Pentru un vârf (neselectat) memorăm doar muchia minimă care îl unește cu un vârf din arbore (selectat)

Asociem fiecărui vârf următoarele informații (etichete):

d[u] = costul minim al unei muchii de la u la un vârf selectat deja în arbore

Asociem fiecărui vârf următoarele informații (etichete):

- d[u] = costul minim al unei muchii de la u la un vârf selectat deja în arbore
- tata[u] = acest vârf din arbore pentru care se realizează minimul

Avem

- o d[u] = w(u, tata[u])
- (u, tata[u]) este muchia de cost minim de la u la un vârf din arbore

Atunci algoritmul se modifică astfel:

- La un pas
- se alege **un vârf** u cu **eticheta d minimă** care nu este încă în arbore și se adaugă la arbore muchia (tata[u], u)

Atunci algoritmul se modifică astfel:

- La un pas
- se alege **un vârf** u cu **eticheta d minimă** care nu este încă în arbore și se adaugă la arbore muchia (tata[u], u)
- se actualizează etichetele vârfurilor v∉V(T) vecine cu u astfel:

dacă
$$w(u,v) < d[v]$$
 atunci $d[v] = w(u,v)$ tata $[v] = u$

Muchiile arborelui vor fi în final (u, tata[u]), u≠ s

Notăm Q=V(G) - V(T) = mulțimea vârfurilor neselectate încă în arbore

- s- vârful de start
- inițializează Q cu V
- pentru fiecare u∈V executa
 d[u] = ∞; tata[u]=0
 d[s] = 0

- s vârful de start
- inițializează Q cu V
- pentru fiecare u∈V executa
 d[u] = ∞; tata[u]=0
 d[s] = 0
- cat timp Q ≠ Ø executa⇔ pentrui = 1, n -1

- s- vârful de start
- inițializează Q cu V
- pentru fiecare u∈V executa
 d[u] = ∞; tata[u]=0
 d[s] = 0
- cat timp Q ≠ Ø executa
 extrage un vârf u∈Q cu eticheta d[u] minimă

- s- vârful de start
- inițializează Q cu V
- pentru fiecare u∈V executa
 d[u] = ∞; tata[u]=0
 d[s] = 0
- cat timp Q ≠ Ø executa
 extrage un vârf u∈Q cu eticheta d[u] minimă
 pentru fiecare uv∈E executa
 daca v∈Q si w(u,v)<d[v] atunci
 d[v] = w(u,v)
 tata[v] = u</pre>

- s- vârful de start
- inițializează Q cu V
- pentru fiecare u∈V executa
 d[u] = ∞; tata[u]=0
 d[s] = 0
- cat timp Q ≠ Ø executa
 extrage un vârf u∈Q cu eticheta d[u] minimă
 pentru fiecare uv∈E executa
 daca v∈Q si w(u,v)<d[v] atunci
 d[v] = w(u,v)
 tata[v] = u</pre>
- scrie (u, tata[u]), pentru u≠ s

Cum putem memora Q pentru a determina eficient vârful u∈Q cu eticheta minimă?

Varianta 1 - Folosim vector de vizitat

$$Q[u] = 1$$
, dacă $u \notin Q$
0, altfel

Complexitate

- Iniţializare
- n * extragere vârf minim
- actualizare etichete vecini

Complexitate

Varianta 1 – cu vector de vizitat

- ▶ Iniţializări ->
- n * extragere vârf minim ->
- actualizare etichete vecini ->

Complexitate

Varianta 1 – cu vector de vizitat

```
Iniţializări −> O(n)
```

- n * extragere vârf minim −> O(n²)
- actualizare etichete vecini -> O(m)
 O(n²)

1 d/tata= [0/0,	2 ∞/0,	$\infty/0$,	4 ∞/0,	5 ∞/0,	6 ∞/0]	

Sel. 6: 2/6, 5/6, Sel. 4: 3/4, Sel. 2:

Varianta 2 - memorarea vârfurilor din într-un min-heap Q (min-ansamblu)

- Iniţializare Q −>
- n * extragere vârf minim ->
- actualizare etichete vecini ->

```
Prim(G, w, s)
  pentru fiecare u∈V executa
       d[u] = \infty; tata[u]=0
   d[s] = 0
   inițializează Q cu V
   cat timp Q \neq \emptyset executa
         u=extrage vârf cu eticheta d minimă din Q
         pentru fiecare v adiacent cu u executa
                daca v \in Q si w(u,v) < d[v] atunci
                    d[v] = w(u,v)
                    tata[v] = u
                     //actualizeaza Q - pentru Q heap
   scrie (u, tata[u]), pentru u≠ s
```

Varianta 2 - memorarea vârfurilor din într-un min-heap Q (min-ansamblu)

- Iniţializare Q −> O(n)
- n * extragere vârf minim -> O(n log n)
- actualizare etichete vecini -> O(m log n)

O(m log n)

Observație – Dacă graful este complet (spre exemplu dacă toate punctele se pot conecta și distanța dintre puncte este distanța euclidiană) m = n(n-1)/2 este de ordin n^2

 \Rightarrow O(n²) mai eficient