Devoir 1: Suites réelles

On fixe un réel $\alpha \in [0, 1]$. On définit alors deux suites de réels (u_n) et (v_n) par :

$$\forall n \in \mathbb{N}, \ u_n = \frac{E(2^n \alpha)}{2^n} \quad \text{et} \quad v_n = u_n + \frac{1}{2^n}.$$

- 1. (a) Montrer que : $\forall n \in \mathbb{N}, u_n < \alpha < v_n$.
 - (b) En déduire que : $\forall n \in \mathbb{N}, |\alpha u_n| < v_n u_n$ et $|\alpha v_n| < v_n u_n$.
 - (c) La suite de terme général $(v_n u_n)$ est-elle convergente ? Conclure en ce qui concerne la convergence éventuelle de (u_n) et (v_n) .
- 2. (a) Soit $n \in \mathbb{N}$. Justifier que :

$$2E(2^n\alpha) \le 2^{n+1}\alpha < 2E(2^n\alpha) + 2.$$

(b) En déduire que si $n \in \mathbb{N}$:

soit
$$u_{n+1} = u_n$$
 et $v_{n+1} = v_n - \frac{1}{2^{n+1}}$,

soit
$$u_{n+1} = u_n + \frac{1}{2^{n+1}}$$
 et $v_{n+1} = v_n$.

3. On définit alors pour chaque $n \in \mathbb{N}$:

$$a_{n+1} = 2^{n+1}(u_{n+1} - u_n).$$

Justifier que cette suite est à valeurs dans $\{0,1\}$ et que si on pose $a_0=u_0$:

$$\forall n \in \mathbb{N}, \ \alpha = a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{2^n}.$$

La suite $(a_n)_{n\in\mathbb{N}}$ s'appelle le développement dyadique de α .

- 4. Dites si les suites (a_n) suivantes sont les développements dyadiques d'un $\alpha \in [0, 1]$ et si oui, à quoi est égal α .
 - (a) On suppose que tous les termes de (a_n) sont nuls sauf : $a_1 = a_3 = a_4 = 1$.
 - (b) On suppose que tous les autres termes de (a_n) sont tous égaux à 1.