Correction MI – TD 1

Cinématique du point

I - Détermination d'une trajectoire

- 1. On écrit $t=\frac{x}{2}$. On en déduit |y(x)=x(x-2)|. Le mouvement est parabolique.
- 2. Par définition $\overrightarrow{v} = \frac{d\overrightarrow{OM}}{dt}$, soit $\overrightarrow{v} = 2\overrightarrow{u_x} + (8t 4)\overrightarrow{u_y}$.
- 3. Par définition $\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt}$, soit $\overrightarrow{a} = 8\overrightarrow{u_y} = \overrightarrow{cste}$.
- 4. Le mouvement est accéléré si $\overrightarrow{a}\cdot\overrightarrow{v}>0$ et retardé si $\overrightarrow{a}\cdot\overrightarrow{v}<0$

Caractérisation d'un mouvement

Remarque préliminaire : dans cet exercice, où le mouvement est rectiligne, on note v et a les valeurs algébriques de la vitesse et de l'accélération, c'est-à-dire les composantes des vecteurs \overrightarrow{v} et \overrightarrow{a} selon $\overrightarrow{u_x}$. Ce ne sont donc pas, comme définis dans le cours, les normes des vecteurs et on peut avoir v < 0 ou a < 0. On a donc $\overrightarrow{v} = v\overrightarrow{u_x}$ et $\overrightarrow{a} = a\overrightarrow{u_x}$

Les 5 phases du mouvements sont définies par :

- i) $0 \le t \le 30 \,\mathrm{s}$
- ii) $30 \,\mathrm{s} \le t \le 50 \,\mathrm{s}$
- iii) $50 \,\mathrm{s} \le t \le 60 \,\mathrm{s}$
- iv) $60 \,\mathrm{s} \le t \le 80 \,\mathrm{s}$
- v) $90 s \le t \le 100 s$
- 1. La valeur algébrique de l'accélération est donnée par $a = \frac{\mathrm{d}v}{\mathrm{d}t} = a_{moy} = \frac{\Delta v}{\Delta t}$ car a est constante sur chaque phase du mouvement.
- 2. Comme a est constante, l'expression de v(t) est $v(t) = at + v_0$
- 3. Le mouvement est rectiligne. Il est accéléré si $a \cdot v > 0$, retardé si $a \cdot v < 0$ et uniforme si a = 0

Phase	$a \ ({\rm ms}^{-2})$	$v \pmod{ms^{-1}, t \text{ en s}}$	Mouvement
i)	1	t	rectiligne (uniformément) accéléré
ii)	0	30	rectiligne uniforme
iii)	-3	30 - 3t	rectiligne (uniformément) décéléré
iv)	0	0	Pas de mouvement
v)	-1,5	-1,5t	rectiligne (uniformément) <u>accéléré</u>

Un porte-avion III -

Le mouvement est rectiligne, on choisit comme repère d'étude le repère (Oxyz) où l'axe (Ox) est l'axe du mouvement, orienté selon celui-ci et comme point O la position intiale de l'avion. On a alors trivialement $O\dot{M} = x\,\overrightarrow{u_x}$, $\overrightarrow{v} = v \overrightarrow{u_x}$ et $\overrightarrow{d} = a \overrightarrow{u_x}$. Tout se passe le long de l'axe (Ox), on pourra à partir de maintenant manipuler exclusivement des équations scalaires. On prend comme origine des temps le début du mouvement, on a alors

On sait a= cste et $a=\frac{\mathrm{d}v}{\mathrm{d}t}$, on en déduit v(t)=at+v(0) soit v(t)=at. Pareillement, on a $v=\frac{\mathrm{d}x}{\mathrm{d}t}$, ce qui donne $x(t)=\frac{1}{2}at^2+x(0)$ soit $x(t)=\frac{1}{2}at^2$.

En $t = t_0$, on a $v(t_0) = v_0$ et $x(t_0) = d$, on peut donc écrire $v_0 = at_0$ et $\frac{1}{2}at_0^2 = d$. On remplace at_0 par v_0 dans

la deuxième égalité, on obtient
$$a = \frac{2d}{v_0}$$
 et donc $a = \frac{v_0}{t_0} = \frac{v_0^2}{2d}$. Application numérique : $t_0 = \frac{2 \times 25}{250/3,6} = 0.72 \,\mathrm{s}$ et $a = \frac{250/3,6}{0.72} = 96.5 \,\mathrm{ms}^{-2} \approx 10 \,g$

IV - Système bielle-manivelle

- 1. Le point A se déplace sur un cercle de centre O et de rayon b le vecteur \overrightarrow{OA} fait un angle $\theta = \omega t$ avec l'axe (Ox), on a donc $|\overrightarrow{OA}(t) = b \left[\cos(\omega t)\overrightarrow{u_x} + \sin(\omega t)\overrightarrow{u_y}\right]|$.
 - Si on appelle H la projection du point A sur l'axe (Ox), on a $\overrightarrow{OB} = 2\overrightarrow{OH}$ et $\overrightarrow{OH} = b\cos(\theta)\overrightarrow{u_x}$. On en déduit $\overrightarrow{OB}(t) = 2b\cos(\omega t)\overrightarrow{u_x}$.
 - Le point M est le milieu du segment [AB]. On a donc $\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$ ce qui donne

$$\overrightarrow{OM}(t) = \frac{3}{2}b\cos(\omega t)\overrightarrow{u_x} + \frac{1}{2}b\sin(\omega t)\overrightarrow{u_y}$$

2. Par définition $\overrightarrow{a}_M = \frac{d\overrightarrow{v}_M}{dt} = \frac{d^2\overrightarrow{OM}}{dt^2}$, soit $\overrightarrow{a}_M = -\frac{b\omega^2}{2} \left(3\cos(\omega t)\overrightarrow{u}_x + \sin(\omega t)\overrightarrow{u}_y\right)$

V - Big Ben

- 1. On peut considérer que le mouvement est <u>circulaire uniforme</u>. On se place donc en coordonnées polaires pour la suite de l'exercice.
- 2. L'aiguille des minutes fait un tour complet $(2\pi \text{ radians})$ en une heure, sa vitesse angulaire est donc $\omega = \frac{d\theta}{dt} = \omega_{moy} = \frac{2\pi}{3600 \text{ s}}$ soit $\omega = 1.75 \cdot 10^{-3} \text{ rad s}^{-1}$.
- 3. Le mouvement étant circulaire sur un cercle de rayon L, on a $\overrightarrow{v}_M = l\omega \overrightarrow{e_\theta}$ soit $v_M = L\omega = 6.98 \, \mathrm{mm \, s^{-1}}$.
- 4. Le mouvement est circulaire uniforme, on a donc $\overrightarrow{a}_M = -L\omega^2\overrightarrow{e_r} = -\frac{v_M^2}{L}\overrightarrow{e_r}$ soit $a_M = L\omega^2 = \frac{v_M^2}{L} = 1.22 \cdot 10^{-5} \, \text{ms}^{-2}$.

VI - Le TGV

On peut se placer dans le repère de Fresnet lié au TGV. On a alors $\overrightarrow{a} = \overrightarrow{a_T} + \overrightarrow{a_N}$ où $\overrightarrow{a_T}$ est l'accélération tangentielle et $\overrightarrow{a_N}$ l'accélération normale.

Comme le mouvement est uniforme, $\overrightarrow{a_T} = \frac{\mathrm{d}v}{\mathrm{d}t}\overrightarrow{e_T} = \overrightarrow{0}$, il reste $\overrightarrow{a} = \overrightarrow{a_N} = \frac{v^2}{R}\overrightarrow{e_N}$ où R est le rayon de courbure local de la trajectoire. On a donc $a = a_N = \frac{v^2}{R}$.

Si on veut a < 0,05 g, cela implique $\frac{v^2}{R} < \frac{g}{20}$ soit $R > \frac{20v^2}{g}$. On a bien un rayon minimal $R_{min} = \frac{20v^2}{g}$.

 $\underline{\text{A.N.}}: R_{min} = \frac{20 \times (300/3.6)^2}{9.81} = 14.2 \,\text{km}.$

VII - Collision?

- 1. La voiture A n'a pas encore freiné, elle est donc animé d'un mouvement rectiligne uniforme. La distance parcourue est donc $d_A=v_0\Delta t=80\,\mathrm{m}.$
 - Le véhicule B freine pendant les 2s, son accélération est constante, opposée à la vitesse. L'expression de la vitesse est donc, en prenant pour le moment l'origine des temps à l'instant où il commence à freiner, $v(t) = v_0 at$ et la distance parcourue est alors $x_B(t) = v_0 t \frac{1}{2}at^2$ soit $d_B = x_B(t = 2s) = 30 \,\text{m}$. Sa vitesse, lorsque A commencera à freiner sera alors $40 5 \times 2 = 30 \,\text{m} \,\text{s}^{-1}$.
- 2. L'origine des temps est l'instant où le véhicule A commence à freiner et l'origine de l'axe (Ox), axe du mouvement, est sa position intiale, on a donc :
 - véhicule $A: x_A(t=0) = 0$ et $v_A(t=0) = v_{0A} = 40 \,\mathrm{m \, s^{-1}}$.
 - véhicule $B: x_B(t=0) = d_0 = d + d_B d_A = 30 \,\mathrm{m}$ et $v_B(t=0) = v_{0B} = 30 \,\mathrm{m}\,\mathrm{s}^{-1}$
- 3. Pour les deux véhicules, l'accélération est supposée constante, de sens opposée à la vitesse, on en déduit rapidement
 - $-v_A(t) = v_{0A} at \text{ et } x_A(t) = -\frac{1}{2}at^2 + v_{0A}t;$

-
$$v_B(t) = v_{0B} - at$$
 et $x_B(t) = -\frac{1}{2}at^2 + v_{0B}t + d_0$;

4. Il y a choc si les deux véhicules occupent la même position au même instant, c'est-à-dire s'il existe un instant t_c tel que $x_A(t_c) = x_B(t_c)$, ce qui conduit à $(v_{0A} - v_{0B})t_c = d_0$ soit $t_c = \frac{d_0}{v_{0A} - v_{0B}}$.

Cependant, les équations du mouvement ne sont valables que tant que les véhicules ne sont pas arrêtés. Si on appelle respectivement t_A et t_B les temps d'arrêt des 2 véhicules, il reste à vérifier $t_c < t_A$ et $t_c < t_B$. On voit rapidement que le véhicule B s'arrête avant le A (il a la même accélération de freinage que A mais va initialement moins vite), il suffit alors de vérifier $t_c < t_B$. t_B est donné par $v_B(t_B) = 0$ soit $t_B = \frac{v_{0B}}{a}$. A.N.: $t_C = \frac{30}{40-30} = 3$ s et $t_B = \frac{30}{5} = 6$ s. On a bien $t_c < t_B$, t_B aura bien collision en $t_C = 3$ s.

VIII - Une sortie d'autoroute

- 1. Bretelle de sortie Pour cette partie, on peut se placer dans le repère de Fresnet.
 - (a) $\overrightarrow{v} = v\overrightarrow{T}$ et $\overrightarrow{a} = \overrightarrow{a_T} + \overrightarrow{a_N} = \dot{v}\overrightarrow{e_T} + \frac{v^2}{R}\overrightarrow{e_N}$.
 - (b) \overrightarrow{v} est tangent à la trajectoire, \overrightarrow{a} est orienté vers l'intérieur de la courbure avec $\overrightarrow{a} \cdot \overrightarrow{v} > 0$ si le mouvement est accéléré, $\overrightarrow{a} \cdot \overrightarrow{v} < 0$ si le mouvement est retardé et $\overrightarrow{a} \perp \overrightarrow{v}$ si le mouvement est uniforme.
 - (c) La valeur de l'accélération est donnée par $a = ||\overrightarrow{a}|| = \sqrt{\dot{v}^2 + \left(\frac{v^2}{R}\right)^2} \ge \frac{v^2}{R}$. Donc si $v = v_0$, $a \ge \frac{v_0^2}{R} = \frac{(130/3,6)^2}{50} = 26,1\,\mathrm{ms}^{-2}$. Cette valeur est largement supérieure à $\mu g = 26,1\,\mathrm{ms}^{-2}$, ce qui n'assure pas des conditions d'adhérence satisfaisantes (les calculs sur route mouillée donneraient des résultats similaires).
 - (d) Si on est à la limite de l'adhérence, donc $v \approx v_0$, le fait de freiner va faire varier la vitesse et donc faire apparaître un terme $\frac{\mathrm{d}v}{\mathrm{d}t} < 0$ dans l'expression de a. a va donc temporaîrement augmenter et risque alors de dépasser la limite μg , ce qui entraînera une perte d'adhérence.
 - (e) Si on ne freine pas dans le virage, on a $a=\frac{v^2}{R}$. La condition $a<\mu g$ amène à $v< v_b$ avec $v_b=\sqrt{u_b}$ $\frac{A.N.}{sqrt0}$: route sèche : $v_{bs}=sqrt1\times 10\times 50=22,4\,\mathrm{m\,s^{-1}}=80,5\,\mathrm{km\,h^{-1}}$; route mouillée : $v_{bm}=sqrt0,3\times 10\times 50=12,2\,\mathrm{m\,s^{-1}}=44,1\,\mathrm{km\,h^{-1}}$
- 2. Voie de décélération Dans cette partie, le mouvement est rectiligne retardé, on choisit un repère cartésient out (Ox) est l'axe du mouvement et O la position initiale de la voiture.
 - (a) On suppose qu'on freine avec une accélération constante $a < \mu g$, on a donc $\overrightarrow{d} = -a\overrightarrow{u_x}$. On en déduit v(t) = K at. Comme $v(t=0) = v_0$ on a $K = v_0$ et donc $v(t) = v_0 at$.
 - (b) On intègre une nouvelle fois pour obtenir la position : $x(t) = -\frac{1}{2}at^2 + v_0t$ (car x(0) = 0). On sait que, au bout de la voie décélération donc pour x = l, il faut $v \le v_b$. On va alors chercher une relation entre v et x. Pour cela on peut écrire $at = v_0 v$ et donc $ax = -\frac{(v_0 v)^2}{2} + v_0(v_0 v) = \frac{v_0^2 v^2}{2}$. Donc pour x = l, $l = \frac{v_0^2 v^2}{2a}$. Comme $a < \mu g$ et $v < v_b$, il faut $l > l_{min}$ avec $l_{min} = \frac{v_0^2 v_b^2}{2\mu g}$. A.N. : route sèche : $l_{min,s} = \frac{(130/3.6)^2 22.4^2}{2 \times 10} = 40.1 \,\mathrm{m}$; route mouillée : $l_{min,m} = \frac{(110/3.6)^2 12.2^2}{2.3 \times 10} = 10.1 \,\mathrm{m}$

IX - Mouvement décéléré

- 1. Par définition $\overrightarrow{d} = \frac{d\overrightarrow{v}}{dt}$ soit, en projetant sur l'axe (Ox) et en notant $v = v_x$ (vrai tant que $v_x \ge 0$) $\boxed{\frac{dv}{dt} = -kv^2}.$
- 2. L'équation précédente ¹ peut se réécrire $-\frac{1}{v^2}\frac{\mathrm{d}v}{\mathrm{d}t}=k$ soit $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{v}\right)=k$. Ce qui donne $\frac{1}{v}=kt+A$. Or en t=0, $v(0)=v_0$, on en déduit $A=\frac{1}{v_0}$ soit $v(t)=\frac{v_0}{1+kv_0t}$.

On sait également $\frac{dx}{dt} = v$, on peut alors intégrer pour aboutir à $x(t) = \frac{1}{k} \ln(1 + kv_0 t) + B$. La condition intiale x(0) = 0 donne B = 0 et donc $x(t) = \frac{1}{k} \ln(1 + kv_0 t)$.

^{1.} On reconnait une équation similaire à l'équation régissant une loi de cinétique chimique d'ordre 2.

3. L'équation précédente donne $1+kv_0t=e^{kx}$. En reportant dans l'expression de v(t), on trouve l'expression demandée : $v(x)=v_0\,e^{-kx}$.