

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a <u>baseline and monitoring methodology</u>
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the <u>project activity</u>
- Annex 2: Information regarding public funding
- Annex 3: <u>Baseline</u> information
- Annex 4: Monitoring plan

CDM - Executive Board

page 2

SECTION A. General description of project activity

A.1. Title of the project activity:

Project title: Barueri Energy CDM Project Activity.

PDD version: 06

Date (DD/MM/YYYY): 10/08/2012

A.2. **Description of the project activity:**

The Barueri Energy CDM Project Activity is owned by FOXX Soluções Ambientais LTDA., a company focused on new technologies to manage urban waste (i.e. the organic matter present in domestic and commercial waste, organic industrial waste and municipal solid waste), originally intended for landfilling. Its purpose is to treat these materials through incineration while additionally fostering the generation of electrical energy.

The project activity avoids methane emissions by diverting organic waste from disposal at a landfill, where methane emissions are caused by anaerobic processes. Further the project focuses on the displacement of thermal energy through the utilization of combustion heat generated in the incineration process. By treating the fresh waste through an alternative treatment option, such as incineration, these methane emissions are avoided from landfills. The GHGs involved in the baseline and project activity are CO₂, CH₄ and N₂O.

Therefore, the *Barueri* Energy CDM Project Activity reduces emissions of greenhouse gases considering the scenario existing prior to the start of the project activity implementation, consistent with the baseline scenario:

- 1. Methane emissions (CH₄) due to the dumping of municipal solid waste historically sent to landfill, during the period of anaerobic decay. Methane is of a global warming potential 21 times greater than that of carbon dioxide (CO₂). The project activity seeks to avoid these emissions by incinerating the residues and additionally focuses on exploiting these materials as a source of combustion in the generation of electricity.
- 2. The project activity, by supplementing electrical energy to the Interconnected National System, reduces dependence on thermal fossil fuel powered energy plants, thereby decreasing the emission of greenhouse gases that would otherwise be produced in the absence of the project (considering an Emission Factor related to the national grid published by the Ministry of Science and Technology¹).

¹ Emission Factors available at < http://www.mct.gov.br/index.php/content/view/74689.html>. Accessed on September, 24th 2011.

CDM - Executive Board

page 3

Therefore the project activity complies with 2 sectorial scopes; being number 1: energy industries (renewable - / non-renewable sources), due to electricity generation, and number 13: waste handling and disposal due to the Incineration of Municipal Solid Waste as specified in the CDM list².

The project consists of a concrete pit to store waste, allowing continuous treatment processing during periods lacking any waste supply. A waste feed system will lead the residues to the entrance of a boiler. In turn a pneumatic system pushes the waste into the boiler, based on the Rankine cycle, burning the residues over a grate.

The waste is incinerated on a multi-stage grate, ensuring an efficiency level of greater than 97%. The minimum temperature of combustion is 850°C. An auxiliary gas burner is used for the start-up of combustion prior to the waste feed, supplying heat to the combustion chamber at a minimum specified temperature. Ashes represent between 10% and 15% of the total waste mass. The exact amount considered in the project specifications is 13.5%.

The electrical generation has an installed capacity of 20 MW³ with assured energy of 17.53 MW operating 7,800 hours/year and will provide energy for the operation of the thermal power plant. Energy surpluses will be delivered to the national grid through a substation.

The objective of the Barueri Energy CDM Project Activity is to help meet Brazil's rising demand for energy due (to economic growth) improving the supply of electricity and contributing to environmental, social and economic sustainability.

Barueri Energy CDM Project Activity further targets better income distribution, from job creation and increases wages (better described in section D and E of this document). The surplus of capital generated by the project could be translated into investments in education and health, directly benefiting the local population. The savings in expenditure result from a reduced necessity to "import" electricity from other regions in the country. This money would stay in the region and be used to provide better services, improving quality of life.

The Barueri Energy CDM Project Activity is environmentally safe and sound, evidenced by the opportunity to improve the treatment of municipal solid waste, Further the project activity is located in a surrounding area with low population density, at a reasonable distance from the urban concentrations. The site possesses the appropriate topographical, geological and zoning features for the proposed project activity.

This solution provides sustainable alternatives to a significant urban dilemma, in which the volume of waste generated is high and the availability of vacant land is almost nonexistent. There is international recognition for emission control technologies adopted by the European Union; Particularly for Persistent Organic Pollutants (POPs) and for the recovery of energy from municipal solid waste.

A.3. **Project participants:**

² Available at < http://cdm.unfccc.int/DOE/scopelst.pdf>. Accessed on July, 2011.

³ As per paragraph 4a of EB59, Annex 9, the rated/installed capacity for renewable electricity generating units that involve turbine-generator systems shall be based on the installed/rated capacity of generator. Refer to section A.4.3 for more details.

page 4

Table 1: Party(ies) and private/public entities involved in the project activity.

Name of Party involved (*) ((host) indicates a Host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved whishes to be considered as project participant (Yes/No)		
	Foxx Soluções Ambientais Ltda.			
Brazil (host)	(private entity)			
	Ecopart Assessoria em Negócios Empresariais Ltda.	No		
	(private entity)			
(*) In accordance with the CDM modalities and procedures, at the time of making the CDM-PDD public at the stage of validation, a Party involved may or may not have provided its <u>approval</u> . At the time of requesting registration, the approval by the Party(ies) involved is required.				

A.4. Technical description of the <u>project activity</u>:

A.4.1.	Location	of the	project	activity:
7.T.I.	Lanama	vi uic	DIVICLE	activity.

A 4 1 1	TT (D (()
A.4.1.1.	Host Party(ies):
A.T.1.1.	most i ai tytics/.

Brazil.

A.4.1.2. Region/State/Province etc.:

State of São Paulo.

A.4.1.3. City/Town/Community etc.:

Municipality of Barueri.

A.4.1.4. Details of physical location, including information allowing the unique identification of this <u>project activity</u> (maximum one page):

Barueri Energy CDM Project Activity is located on *Pirarucu* Avenue, between the intersection of the following geographic coordinates:

Table 2: Geographic coordinates of *Barueri* Energy CDM Project Activity.

Geographic Coordinates	Barueri Energy CDM Project Activity
Longitude (West)	46°51'09.48"

page 5

Figure 1: Details of the physical location of the project activity in red boundary. *URE* - Waste-to-Energy PlantWaste-to-Energy Plant (from the Portuguese *Usina de Recuperação de Energia*).

CDM - Executive Board

page 6

A.4.2. Category(ies) of project activity:

According to Annex A of the Kyoto Protocol, this project fits:

Sectoral Scope: 1 – Energy industries (renewable - / non-renewable sources); and

Sectoral Scope 13 – Waste handling and disposal.

A.4.3. Technology to be employed by the <u>project activity</u>:

The *Barueri* Energy CDM Project Activity focuses on the treatment of organic matter present in domestic and commercial waste, organic industrial waste and municipal solid waste, through incineration. Further the project seeks to exploit heat produced by the incineration process for the generation of electricity which is in turn delivered to the grid.

Alternative measures for the treatment of fresh waste, such as incineration, are more environmentally favorable than landfill dumping due to reduction in GHG emissions.

The project consists of a concrete pit to store waste, allowing continuous treatment processing during periods lacking any waste supply. A waste feed system will lead the residues to the entrance of a boiler. In turn a pneumatic system pushes the waste into the boiler, based on the Rankine cycle, burning the residues over a grate.

The possible residues to be burnt are: solid urban waste from near municipalities (domestic and commercial waste, waste from roads, drainage systems and other public facilities and sludge generated by public wastewater and water treatment stations.

The baseline scenario (as well as the scenario prior to the project activity implementation) is identified, following the AM0025 methodology. It consists of a waste handling of disposing in a landfill and also the electricity generated by the national grid, where a mix of source energy is composed in a National Emission Factor.

Furthermore, the company will assist operator training programs, start-ups, technical assistance and consulting, including all specialized engineering services related to the System: in the form of flow charts, data sheets, specifications, reports, manuals or other services required and not included among the items above. The specification given by the Environmental Secretariat of the State of *São Paulo* through Resolution SMA – 079 of November 4th 2009 will be followed regarding the directions and conditions to operate and license activities in the thermal treatment of solid waste in Waste-to-Energy Plants. Further, specialized companies will be hired for the maintenance of equipment, ensuring optimum system performance.

The monitoring equipment of the burning system, as described in section B.7.1, is located in the control room within the unit boundary. The generated energy IS monitored in the substation, with measurement equipment projected to register and cross-check the dispatched energy from the facility. Meters are located in the control room and also in the transformer substation (Bay) that is connected to a Substation.

Table 3: Specifications of the equipments to be installed in *Barueri* Energy CDM Project Activity.

page 7

Incinerator/Boiler				
Manufacturer	Keppel Seghers			
Туре	Multi-stage Grate			
Quantity	1			
Steam generation (ton/hour)	80			
Steam Temperature (°C)	410			
Steam Pressure (bar)	54			
Flue Gas Flow (Nm ³ /h)	157,580			
Lifetime (years) ⁴	25			
Generato	r			
Manufacturer	Not defined yet			
Type	Synchronous			
Quantity	1			
Nominal Power (kVA)	25			
Capacity Factor	0.8			
Nominal Capacity (MW)	20			
Lifetime (years) ⁵	25			
Turbine				
Manufacturer	Not defined yet			
Type	Steam			
Quantity	1			
Nominal Power (MW)	20			
Pressure (kgf/cm²)	63			
Lifetime (years) ⁶	25			

Source: Information provided in the "Tratamento de Resíduos sólidos urbanos de Barueri - FOXX. Volume 2" presented to the Bidding process and also in the Final Kepperl Seghers Proposal- Solutions for a Cleaner Future for Barueri WtE Plant.

The emissions sources and the greenhouse gases involved in the project activity, as defined also by the methodology AM0025 in its twelfth version, are CH_4 , CO_2 and N_2O due to the waste handling and the electricity generation in the baseline and project scenario.

A.4.4. Estimated amount of emission reductions over the chosen crediting period:

In order to estimate the methane production and destruction, the Methodological tool "Emissions from solid waste disposal sites (version 06.0.1) is used. Methane emissions from the waste that would in the absence of the project activity be disposed at solid waste disposal sites are calculated with a first order decay model that presents a sequence of equations reaching a methane amount due to the quantity of solid

⁴ Following specifications of *Keppel Seghers* Final proposal for *Barueri* Waste-to-Energy Plant signed in December, 15th 2011 (section 1.1.1 – Concept and Design philosophy).

⁵ Following specifications of ANEEL Normative Resolution number 240, December 5th 2006 that establishes depreciation annual taxes for equipment in the electricity sector in Brazil for turbo-generator.

⁶ Following specifications of ANEEL Normative Resolution number 240, December 5th 2006 that establishes depreciation annual taxes for equipment in the electricity sector in Brazil for turbo-generator.

page 8

waste of 750 tonnes/day 7 (to 825 tonnes/day 8). Thus, the year average baseline emissions were estimated at 212,343 tCO $_2$. Further for the baseline emission calculation, the electricity generated by the project is multiplied by the National Emission Factor, yielding emissions that would be generated due to the absence of the project activity.

The Project Emissions estimative is fundamentally calculated for (based on the mentioned methodology): the on-site electricity consumption resulting from equipment used in the realization of the project activity, the fuel consumption on-site, the composting process and the waste incineration. However, the year average project emissions were estimated at 115,952 tCO₂, considering only waste incineration for this phase.

Potential sources of Leakage Emissions for this project activity are from the off-site transportation of waste materials and from the residual waste from the incinerator. Then, the year average Leakage emissions were estimated at 4,517 tCO₂. Therefore, the Emissions Reductions are 91,874 tCO₂/year.

The project activity considers a single period of 10 years. The full implementation of proposed project activity will generate the estimated annual reductions as described in Table 4:

Table 4: Emissions reductions Estimation.

Years	Annual estimation of emission reductions in tonnes of CO2e
2014*	-6,579°
2015	4,994
2016	43,441
2017	70,204
2018	89,068
2019	102,577
2020	112,439
2021	119,803
2022	125,443
2023	129,880
2024**	127,472
Total estimated reductions (tonnes of CO2e)	918,742

⁷ Following specifications of the technical proposal signed under Public-Private Partnership between *Barueri* Municipality and FOXX in January, 27th 2012.

⁸ Following specifications of *Keppel Seghers* Final proposal for *Barueri* Waste-to-Energy Plant signed in December, 15th 2011 (section 1.1 – General).

⁹ The emission reductions from the first 2 years are negative due to the annual decay rate of the considered municipal waste. In the first and second years the project activity has greater emissions due to the project operation (PEy) than the decay of the considered municipal solid waste in the absence of the project activity (BEy). In the first 2 years this MSW present a low decay, which increase exponentially during the following years.

CDM – Executive Board

page 9

Total number of crediting years	10
Annual average over the crediting period of estimated reductions (tonnes of CO2e)	91,874

^{*}Since August 1st **Until July 31st

A.4.5. Public funding of the project activity:

This project does not receive any public funding from annex I parties and it is not a diversion of ODA.

CDM - Executive Board

page 10

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the <u>project activity</u>:

AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0). The tools referenced in this methodology are:

- Tool for the demonstration and assessment of additionality (version 6.0.0)¹⁰;
- Methodological tool "Emissions from solid waste disposal sites (version 06.0.1)¹¹;
- Project emissions from flaring (version 02.0.0)¹²;
- Tool to calculate the emission factor of an electricity system (version 2.2.1)¹³.

B.2. Justification of the choice of the methodology and why it is applicable to the <u>project</u> activity:

The applicability conditions of AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0). are all fulfilled by the proposed project activity as further detailed below.

The project activity involves one or a combination of the following waste treatment options for the fresh waste that in a given year would have otherwise been disposed in a landfill:

- (a) A composting process in aerobic conditions;
- (b) Gasification to produce syngas and its use;
- (c) Anaerobic digestion with biogas collection and flaring and/or its use;
- (d) Mechanical/thermal treatment process to produce refuse-derived fuel (RDF)/stabilized biomass (SB) and its use. The thermal treatment process (dehydration) occurs under controlled conditions (up to 300 degrees Celsius). In case of thermal treatment process, the process shall generate a stabilized biomass that would be used as fuel or raw material in other industrial process. The physical and chemical properties of the produced RDF/SB shall be homogenous and constant over time;

 $^{^{10}} Available \ at < \underline{\text{http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-01-v6.0.0.pdf}} >. \ Access \ on \ July, \ 21^{st} \ 2011.$

¹¹ Available at http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-04-v6.0.1.pdf. Access on March, 13th 2012

¹² Available at < http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-06-v2.0.pdf. Access on November, 7th 2012.

¹³ Available at < http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-07-v2.2.1.pdf>. Access on July, 21st 2011.

UNFCCC

CDM - Executive Board

page 11

(e) Incineration of fresh waste for energy generation, electricity and/or heat. The thermal energy generated is either consumed on-site and/or exported to a nearby facility. Electricity generated is either consumed on-site, exported to the grid or exported to a nearby facility. The incinerator is rotating fluidized bed or circulating fluidized bed or hearth or grate type.

The proposed activity is applicable to option (e), due to its description (also contained in section A.2 and A.4.3) of operation where the waste generated by municipal collection will be directed to an incineration process. Additionally there is the intention to produce electricity and in turn to export it to the national grid. Thus, a grate type of incinerator will be used.

• In case of anaerobic digestion, gasification or RDF processing of waste, the residual waste from these processes is aerobically composted and/or delivered to a landfill;

This is not applicable to the project activity, since there is no composting to treat the waste before delivery to the landfill, but instead an incineration process generating electricity by exploiting fresh municipal urban waste.

• In case of composting, the produced compost is either used as soil conditioner or disposed of in landfills;

This is not applicable to the project activity, since there is no composting to treat the waste in order to deliver to the landfill, but instead an incineration process generating electricity by exploiting fresh municipal urban waste.

• In case of RDF/stabilized biomass processing, the produced RDF/stabilized biomass should not be stored in a manner that may result in anaerobic conditions before its use;

This is not applicable to the project activity, since there is no treatment to stabilize the biomass, but instead an incineration process generating electricity by exploiting fresh municipal urban waste.

• If RDF/SB is disposed of in a landfill, project proponent shall provide degradability analysis on an annual basis to demonstrate that the methane generation, in the life-cycle of the SB is below 1% of related emissions. It has to be demonstrated regularly that the characteristics of the produced RDF/SB should not allow for re-absorption of moisture of more than 3%. Otherwise, monitoring the fate of the produced RDF/SB is necessary to ensure that it is not subject to anaerobic conditions in its lifecycle;

This is not applicable to the project activity, since there is no treatment to stabilize the biomass in order to dispose in a landfill, but instead an incineration process generating electricity by exploiting fresh municipal urban waste.

UNFCCC

CDM - Executive Board

page 12

• In the case of incineration of the waste, the waste should not be stored longer than 10 days. The waste should not be stored in conditions that would lead to anaerobic decomposition and, hence, generation of CH_4 ;

The project activity meets this applicability condition, since it is stated that under normal operation the fresh municipal urban waste is burnt within 3 days (maximum 5 days), a condition of the technical proposal to *Barueri* Municipality. The waste will be stored below ground level reducing (waste pit) odor emissions to regions neighboring the facility. This structure will be of 6,000 m³ volume to store the waste. Therefore, this condition is met by the proposed project activity.

• The proportions and characteristics of different types of organic waste processed in the project activity can be determined, in order to apply a multiphase landfill gas generation model to estimate the quantity of landfill gas that would have been generated in the absence of the project activity;

The project activity meets this applicability condition, since it is stated that the fresh municipal urban waste will undergo sample collection before incineration and treatment, as described in section B.7.2 below. It is predicted that the project activity will receive the following average percentages of waste: 8.22% paper, 0.55% wood, 71.25% food, 1.43% textile material, 14.24% plastics and 4.3% of inert material, such as glass and metal¹⁴.

• The project activity may include electricity generation and/or thermal energy generation from the biogas, syngas captured, RDF/stabilized biomass produced, combustion heat generated in the incineration process, respectively, from the anaerobic digester, the gasifier, RDF/stabilized biomass combustor, and waste incinerator. The electricity can be exported to the grid and/or used internally at the project site. In the case of RDF produced, the emission reductions can be claimed only for the cases where the RDF used for electricity and/or thermal energy generation can be monitored;

The project activity meets this applicability condition, since the project activity focuses on the generation of electricity through the exploiting of heat produced in the incineration process which is in turn exported to the national grid. It is possible to monitor this value through national regulations and conditions of the sector by $CCEE^{15}$ and $ANEEL^{16}$ (as described in section B.7.2). Also the project activity will have internal consumption (as described in section B.6.3) and the energy surplus will be delivered to the national grid.

¹⁴ The waste gravimetric analysis of *Barueri* was published by the city of *Barueri* in Annex I - Reference Term related to the opening of the Bidding Process of Concession Process number 023/2010 from *Barueri* Municipality. Further details in section B.6.

¹⁵ Câmara de Comercialização de Energia Elétrica that is translated to Commencialization Chamber of Electric Energy.

¹⁶ Agência Nacional de Energia Elétrica that is translated to National Agency of Electric Energy.

UNFCCC

CDM - Executive Board

page 13

• Waste handling in the baseline scenario shows a continuation of current practice of disposing the waste in a landfill despite environmental regulation that mandates the treatment of the waste, if any, using any of the project activity treatment options mentioned above;

The project activity meets this applicability condition, since in the absence of the project activity, as will be discussed in section B.4 below, the municipal waste would be disposed in landfills. There is no national regulation that obligates the treatment of the waste, since the National Policy of Solid Waste¹⁷ (Brazilian Law No. 12,305, 2 August 2010) stipulates that the Federal District and Municipalities are responsible for the integrated management of solid waste generated in their territory, not defining specific measures for treatment.

• The compliance rate of the environmental regulations during (part of) the crediting period is below 50%; if monitored compliance with the MSW rules exceeds 50%, the project activity shall receive no further credit, since the assumption that the policy is not enforced is no longer tenable:

The project activity meets this applicability condition, since there is no national regulation that obligates the treatment of the waste in other ways besides landfilling in the country.

• Local regulations do not constrain the establishment of RDF production plants/thermal treatment plants nor the use of RDF/stabilized biomass as fuel or raw material;

The project activity is the incineration of fresh waste for energy generation and, therefore, this applicability condition does not meet the project activity scenario.

• In case of RDF/stabilized biomass production, project proponent shall provide evidences that no GHG emissions occur, other than biogenic CO2, due to chemical reactions during the thermal treatment process (such as Chimney Gas Analysis report);

The project activity is the incineration of fresh waste for energy generation and, therefore, this applicability condition does not meet the project activity scenario.

• The project activity does not involve thermal treatment process of neither industrial nor hospital waste;

The Project activity meets this condition, since it does not encompass the reception of industrial or hospital waste.

¹⁷ Avilable at <<u>http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm</u>>. Accessed on August, 2011.

UNFOCC

CDM - Executive Board

page 14

• In case of waste incineration, if auxiliary fossil fuel is added into the incinerator, the fraction of energy generated by auxiliary fossil fuel is no more than 50% of the total energy generated in the incinerator.

The project activity meets this applicability condition, since little fossil fuel will be used to start-up the incineration process. In all likelihood it will be LPG, however to date (validation phase) this item has not yet been defined. Unquestionably auxiliary fossil fuel will not represent more than 50% of the total energy generated in the incinerator. This will be confirmed through the operating conditions of the equipment.

This methodology is not applicable to project activities that involve capture and flaring of methane from existing waste in the landfill. This should be treated as a separate project activity due to the difference in waste characteristics of existing and fresh waste, which may have an implication on the baseline scenario determination.

This is not applicable to the project activity, since there is no landfill involved in the project, but instead incineration process generating electricity by exploiting fresh municipal urban waste that would, in the absence of the project activity, be disposed in a landfill.

In summary, the methodology AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0). is applicable to the project activity where fresh waste (i.e. the organic matter present in domestic, and commercial waste/municipal solid waste), originally intended for landfilling, is treated through an incineration process. The project activity avoids methane emissions by diverting organic waste from disposal at a landfill, where methane emissions are caused by anaerobic processes and by displacing electricity energy through the combustion heat generated in the incineration process. By treating the fresh waste through alternative treatment options these methane emissions are avoided from the landfill. The GHGs involved in the baseline and project activity are CO₂, CH₄ and N₂O.

B.3. Description of the sources and gases included in the project boundary:

As defined in the AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0). "The spatial extent of the project boundary is the site of the project activity where the waste is treated. This includes the facilities for processing the waste, on-site electricity generation and/or consumption, onsite fuel use, thermal energy generation, wastewater treatment plant and the landfill site. The project boundary does not include facilities for waste collection, sorting and transport to the project site. In the case that the project provides electricity to a grid, the spatial extent of the project boundary will also include those plants connected to the energy system to which the plant is connected". On May 26th, 2008, the Brazilian Designated Authority published Resolution nr 8 defining

page 15

the Brazilian Interconnected Grid as a single system comprising the fifth regions of the country¹⁸. And the following scheme is predicted:

Figure 2: Project boundary scheme.

The greenhouse gases and emission sources included in or excluded from the project boundary are shown in the below table.

Table 5: Summary of gases and sources included in the project boundary and justification/explanation where gases and sources are not included.

	Source	Gas		Justification / Explanation
eli	Emissions from	CH_4	Included	The major source of emissions in the baseline.
l s s	decomposition of	NO	Evaludad	N ₂ O emissions are small compared to CH ₄ emissions
Ba n	waste at the	N_2O	Excluded	from landfills. Exclusion of this gas is conservative.

¹⁸ CIMGC's Resolution nr 8 from May 26th, 2008 available at: http://www.mct.gov.br/upd_blob/0024/24719.pdf>.

CDM – Executive Board

page 16

	Source	Gas		Justification / Explanation
		CO_2	Excluded	CO ₂ emissions from the decomposition of organic waste are not accounted.
	Emissions from	CO ₂	Included	Electricity will be generated onsite in the baseline scenario.
	electricity	CH ₄	Excluded	Excluded for simplification. This is conservative.
	consumption	N ₂ O	Excluded	Excluded for simplification. This is conservative.
	Emissions from	CO ₂	Excluded	There is no thermal energy generation included in the project activity.
	thermal energy generation	CH ₄	Excluded	There is no thermal energy generation included in the project activity.
	-	N ₂ O	Excluded	There is no thermal energy generation included in the project activity.
	On-site fossil fuel consumption	CO ₂	Included	It will be an important emission source. It includes auxiliary fossil fuels needed to be added into incinerator.
ty	due to the project activity other	CH ₄	Excluded	Excluded for simplification. This emission source is assumed to be very small.
Project Activity	than for electricity generation	N ₂ O	Excluded	Excluded for simplification. This emission source is assumed to be very small.
rojec	Emissions from on-site electricity use	CO ₂	Excluded	There is no electricity use in the project activity, besides internal generation.
		CH ₄	Excluded	There is no electricity use in the project activity, besides internal generation.
		N ₂ O	Excluded	There is no electricity use in the project activity, besides internal generation.
	Emissions from	CO ₂	Excluded	There is no thermal energy generation included in the project activity.
	thermal energy generation	CH ₄	Excluded	There is no thermal energy generation included in the project activity.
	generation	N ₂ O	Excluded	There is no thermal energy generation included in the project activity.
	Direct emissions from the waste treatment processes.	N ₂ O	Included	N_2O is emitted from incineration.
		CO_2	Included	CO ₂ emissions from incineration are included. CO ₂ emissions from the decomposition or combustion of organic waste are not accounted.
		CH_4	Included	CH ₄ will be emitted from stacks from incineration.
	Emissions from waste water treatment	CO ₂	Excluded	There is no generation of waste water.
		CH ₄	Excluded	There is no generation of waste water.
		N ₂ O	Excluded	There is no generation of waste water.

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

CDM – Executive Board

page 17

Following the procedures given by the methodology AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., the baseline scenario is below defined.

Step 1: Identification of alternative scenarios

Following the mentioned methodology, this step should use Step 1 of the latest version of the Tool for the demonstration and assessment of additionality (version 6.0.0), to identify all realistic and credible baseline alternatives.

Step 1: Identification of alternatives to the project activity consistent with current laws and regulations

Sub-step 1a: Define alternatives to the project activity

Following the Tool for the demonstration and assessment of additionality (version 6.0.0), the realistic and credible baseline alternatives, considering relevant policies and regulations related to the management of landfill sites, gas capture or destruction requirements because of safety issues or local environmental regulations, processing of organic waste and also local economic and technological circumstances are defined below:

- (a) The proposed project activity undertaken without being registered as a CDM project activity, where the municipal solid waste incineration and power generation reduces emissions of greenhouse gases in two ways, by avoiding (1) methane emissions in a landfill and (2) CO2e from the electricity generated by the Interconnected National System (M1, P1);
- (b) The installation of a landfill gas recovery system, where the methane, which would have otherwise been released to the atmosphere, would be flared with the possibility of generating electricity. This alternative requires reliable technology and additional investment without any benefit. The electricity generation is provided by another grid-connected power plant (M2, P6);
- (c) The continuation of the current situation where the collected waste is destined to a landfill, which presents gases venting and passive gas flaring for safety issues, and no electricity generation, is predicted. This is a regular practice in Brazil and does not face problems to be continued. The electricity generation is provided by another grid-connected power plant (M3, P6).

It is important to mention that, since the proposed project activity does not need heat to operate but electricity, it was considered the same scenarios for the Baseline and Project Scenarios, where no heat is needed and the electricity would be bought from the National Grid. The alternatives for the disposal/treatment of the fresh waste in the absence of the project activity, i.e. the relevant scenario for estimating baseline methane emissions include:

M1: The project activity (i.e. composting, gasification, anaerobic digestion, RDF processing/thermal treatment without incineration of organic waste or incineration of waste) not implemented as a CDM project;

M2: Disposal of the waste at a landfill where landfill gas captured is flared;

DM - Executive Board

page 18

M3: Disposal of the waste on a landfill without the capture of landfill gas.

All the described scenarios M1, M2 and M3 corresponding to the methane emissions are reasonable baseline scenarios, as described in items (a), (b) and (c).

The AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0). determines that, if energy is exported to a grid and/or to a nearby industry, or used onsite realistic and credible alternatives, should also be separately determined for:

- Power generation in the absence of the project activity;
- Heat generation in the absence of the project activity.

For power generation, the realistic and credible alternative(s) may include, inter alia:

P1: Power generated from by-product of one of the options of waste treatment as listed in M1 above, not undertaken as a CDM project activity;

This is an alternative to the project activity baseline scenario.

P2: Existing or Construction of a new on-site or off-site fossil fuel fired cogeneration plant;

This is not an alternative to the project proponent, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity. There is also no necessity of implementing a cogeneration system, due to the fact there is no demand for heat.

> P3: Existing or Construction of a new on-site or off-site renewable based cogeneration plant;

This is not an alternative to the project proponent, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity. There is also no necessity of implementing a cogeneration system, due to there is no heat demand to be attended.

P4: Existing or Construction of a new on-site or off-site fossil fuel fired captive power

This is not an alternative to the project proponent, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity. There is no necessity to install a captive power plant, due to the fact there is no demand for electricity in the absence of the project activity on site.

> P5: Existing or Construction of a new on-site or off-site renewable based captive power plant;

UNFCCC

CDM - Executive Board

page 19

This is not an alternative to the project proponent, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity. There is also no necessity to install a captive power plant, due to the fact there is no demand for electricity in the absence of the project activity on site.

P6: Existing and/or new grid-connected power plants.

This is an alternative to the project activity baseline scenario.

For the Power generation, the scenarios **P1 and P6** are realistic for the project activity.

For heat generation, the realistic and credible alternative(s) may include, *inter alia*:

H1: Heat generated from by-product of one of the options of waste treatment as listed in M1 above, not undertaken as a CDM project activity;

H2: Existing or Construction of a new on-site or off-site fossil fuel fired cogeneration plant; 19

H3: Existing or Construction of a new on-site or off-site renewable based cogeneration plant; 20

H4: Existing or new construction of on-site or off-site fossil fuel based boilers;

H5: Existing or new construction of on-site or off-site renewable energy based boilers;

H6: Any other source such as district heat;

H7: Other heat generation technologies (e.g. heat pumps or solar energy).

For the project activity, there is no heat baseline scenario to be included, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity to generate electricity. No heat is demanded for the project activity nor in its absence.

Outcome of Step 1a: The identified realistic and credible alternative scenarios to the project activity, as described above, are: M1 + P1; M2 + P6 and M3 + P6.

Sub-step 1b: Consistency with mandatory laws and regulations

¹⁹ Scenarios P2 and H2 are related to the same fossil fuel cogeneration plant.

²⁰ Scenarios P3 and H3 are related to the same renewable energy based cogeneration plant.

UNFCCC

CDM - Executive Board

page 20

According to the Tool for the demonstration and assessment of additionality (version 6.0.0), the alternatives shall be in compliance with all mandatory applicable legal and regulatory requirements, even if these laws and regulations have objectives other than GHG reductions, e.g. to mitigate local air pollution. (This Sub-step does not consider national and local policies that do not have legally-binding status.). According to the baseline methodology, relevant policies and regulations related to the management of landfill sites should be taken into account.

According to IBGE (2008)²¹, from a total estimated volume of garbage collected in Brazil (183,488 t/day) 27.7% of the collected garbage was dumped in sanitary landfills, 22.5% was dumped on controlled landfills and 50.8% was dumped on open dumping sites without any control. Neither Brazilian State nor County legislation requires landfill gas to be captured, burnt or used. The focus is on improving the adequacy of dumping in order to avoid environmental contamination caused by leakage from waste residues reaching water and soil as well as reducing the amount of residues in the country through principles determined by the National Policy of Solid Waste (as described in section B.2).

Besides, in Brazil, regarding safety and odor concerns, landfills follow technical requirements from NBR 8419²² in chapter about gas drainage. This indicates that an amount of landfill gas must be burnt to keep the landfill in safe operation. This item will be better described in section B.6.3, where the adjustment factor (AF) will consider the destruction efficiency of the system in the baseline.

Also in Brazil, improvements in landfill gas collection and combustion demand financial costs that challenge aims to reduce GHG emissions. There is no project activity implemented in the country with forced methane extraction and destruction, using blowers, collection system and flaring system without the CDM incentive. However, there are CDM project activities that do so, including the *Bandeirantes*, *Nova Gerar, Onyx, Marca, Sertãozinho, Salvador da Bahia, Estre Paulínia, Marca Espírito Santo, Caieiras, Lara, São João, Anaconda, Central de Resíduos do Recreio, Canabrava, Aurá, Quitaúna, Estre Itapevi, Terrestre Ambiental, Estre Pedreira, Alto Tietê, Santec, CTRS, Feira de Santana, Embralixo, CTRVV, Proactiva Tijuquinhas, Urbam,* and *João Pessoa* Landfills, among others²³.

Outcome of Step 1b: the identified realistic and credible alternative scenarios to the project activity are in compliance with mandatory legislation and regulations taking into account the enforcement in the region or country and EB decisions on national and/or sectoral policies and regulations.

Step 2: Identify the fuel for the baseline choice of energy source taking into account the national and/or sectoral policies as applicable

For the electricity generation to the grid, in the absence of the project activity, all the energy would be supplied by other power plants from the interconnected grid. Hence, the baseline scenario is identified as the continuation of the current (previous) situation of electricity. The project activity reduces emissions of

²¹ Available at <<u>http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb2008/PNSB_2008.pdf</u>>. Accessed October 3rd, 2011.

²² Available at <www.abnt.org.br>.

²³ Available at < http://cdm.unfccc.int/Projects/projsearch.html>.

CDM - Executive Board

page 21

greenhouse gas (GHG) by also avoiding electricity generation by fossil fuel sources (and CO₂ emissions), which would be generated (and emitted) in the absence of the project.

According to ANEEL (2010), 68.93 % of the Brazil's installed capacity is composed by large hydropower plants which on average present large reservoirs and 25.32 % by thermal power stations and this affect the National Emission Factor²⁴.

Step 3: Step 2 and/or Step 3 of the latest approved version of the "Tool for demonstration and assessment of additionality" shall be used to assess which of these alternatives should be excluded from further consideration (e.g. alternatives facing prohibitive barriers or those clearly economically unattractive).

In order to assess which of the realistic alternatives should be excluded from further consideration; step 3 of the Tool for the demonstration and assessment of additionality (version 6.0.0) is chosen to demonstrate the baseline scenario. As provided in section B.5 below, alternative (a) (proposed project activity without CDM) has major investment and technological barriers and therefore is not the baseline scenario.

The most plausible baseline scenario for the waste treatment component is identified as the disposal of the waste in a landfill without capture of landfill gas or the disposal of the waste in a landfill site where the landfill gas is partly captured and subsequently being flared (as per Baseline scenario 1, stated in the methodology AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0).).

The municipality of Barueri used a municipal landfill for waste disposal: Barueri landfill. However this landfill closed operations. Currently solid wastes of *Barueri* are being disposed in the private landfill of *Tecipar (Central de Tratamento de Residuos Tecipar –* Central of Waste Treatment Tecipar) in a neighbouring municipality, *Santana de Parnaíba* (20 km far from *Barueri*). This situation is foreseen until the installation of the Waste-to-Energy plant in *Barueri* (project activity). As can be seen in "Substep 1b" above, in the case of the creation of any other landfill, the assumption that this new landfill would destroy or capture LFG without CDM incentives is not plausible, since there are no laws to enforce emission reductions from this source and LFG capture and destruction is not a common practice in the host country. Therefore, there is no reason to believe that Alternative (b) would happen and thus this alternative will be excluded from further analysis.

Step 4: Where more than one credible and plausible alternative remains, project participants shall, as a conservative assumption, use the alternative baseline scenario that results in the lowest baseline emissions as the most likely baseline scenario. The least emission alternative will be identified for each component of the baseline scenario. In assessing these scenarios, any regulatory or contractual requirements should be taken into consideration.

As described in the steps above and in the investment analysis below, the alternatives (a) and (b) are not credible and plausible. Therefore, the alternative (c) is the baseline scenario to the project activity, where the continuation of the current situation where the collected waste is destined to a landfill, which presents

²⁴ Calculated and publicly available at: http://www.mct.gov.br/index.php/content/view/72764.html

CDM - Executive Board

page 22

gases venting and passive gas flaring for safety issues, and no electricity generation, is predicted. The electricity generated by the project activity is provided by another grid-connected power plant (M3, P6). Following the AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., the scenario 1 given in table 1 (Combinations of baseline options and scenarios applicable to this methodology) of the referred document is applicable to the project activity; where the disposal of the waste in a landfill site without capturing landfill gas or the disposal of the waste in a landfill gas is partly captured and subsequently being flared. The electricity is obtained from an existing/new fossil based captive power plant or from the grid and heat from an existing/new fossil fuel based boiler. This scenario comprehends the possible baseline alternatives: Waste – M2/M3; electricity – P4 or P6; and Heat – H4.

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM <u>project activity</u> (assessment and demonstration of additionality):

Considering the "Glossary of CDM terms", the start date of a CDM project activity is:

"The earliest date at which either the implementation or construction or real action of a project activity begins".

Also, considering the definition above, the 41st EB Meeting Report states that:

"The start date shall be considered to be the date on which the project participant has committed to expenditures related to the implementation or related to the construction of the project activity. This, for example, can be the date on which contracts have been signed for equipment or construction/operation services required for the project activity. Minor pre-project expenses, e.g. the contracting of services /payment of fees for feasibility studies or preliminary surveys, should not be considered in the determination of the start date as they do not necessarily indicate the commencement of implementation of the project. For those project activities which do not require construction or significant pre-project implementation (e.g. light bulb replacement) the start date is to be considered the date when real action occurs. In the context of the above definition, pre-project planning is not considered 'real action'".

Considering the definition above, Project Participants held the timeline of the project:

Table 6: Project activity timeline

Date	Event
27-11-09	Ecopart sent first Proposal for CDM Project Activity in Barueri
04-02-10	Ecopart sent revision of Proposal
08-02-10	FOXX accepted Ecopart Proposal for CDM Project Activity in Barueri
12-02-10	Ecopart sent Contract Minute to FOXX
24-02-10	FOXX hired SGW to develop the EIA for Barueri Waste-to-Energy Plant
01-03-10	Contract signed between Ecopart and FOXX
01-04-10	FOXX defines a Working Plan for the elaboration of the Environmental Impact Assessment for Barueri WtE Plant
23-11-10	CETESB sent a Reference Term for the Assessment of Environmental Impact of the

CDM - Executive Board

page 23

	WtE Plant in Barueri to the Municipality - License process is started under number 196/2010 following the Refence Term of the Technical advice # 103837/10/TA
01-01-11	Kepperl Seghers Proposal- Solutions for a Cleaner Future for Barueri WtE Plant
18-03-11	Barueri Municipality open the Bidding Process of Concession Process number 023/2010
22-09-11	Technical Proposal to Municipality of <i>Barueri - Barueri</i> Municipality open proposals of the Bidding Process of Concession Process number 023/2010
15-12-11	Final Kepperl Seghers Proposal- Solutions for a Cleaner Future for Barueri WtE Plant
24-01-12	The project participant protocols in <i>CETESB - Companhia de Tecnologia de Saneamento Ambiental</i> the Work Plan for the preparation of Environmental Impact Assessment (EIA)
27-01-12	Public-Private Partnership signed between <i>Barueri</i> Municipality and <i>FOXX</i> , that is the starting date of the project activity

As can be observed, the project activity is still in development phase. So far there is no formal contract in order to either build the plant or operate it, but there is a Proposal issued by *Kepperl Seghers* that sets out the plant definitions. The Project Proponent will take this proposal as a basis to implement the Waste-to-Energy Plant in *Barueri*, however by December 2011 the contract was not signed yet. In all likelihood *Kepperl Seghers* will be the technology supplier since they are the only supplier that provides all technical requirements of the proposed project.

According to the definition of the 41st EB Meeting Report, the first date of the project is when the project sponsor committed expenditures for the project implementation. Thus, it is predicted that, by the end of 2011, the Public-Private Partnership contract will be signed between *Barueri* Municipality and *Foxx Soluções Ambientais Ltda*. It represents a real commitment to implement the project under specific conditions (following the presented technical proposal) as established by Federal Law No. 11,079/04, consisting of an innovative tool whose aim is to ensure the best use of public resources in the implementation and provision of public services. This contract represent an expenditure for the Project Proponent since the Guarantee Insurance Policy related to the 27th clause of the PPP contract "Guarantee for the performance of the contract" equivalents to 2% of the total value of the contract (BRL 3,645,942.04).

During the validation period, relevant contracts will be available for the Validation Team in order to identify this specific date.

Evidence related to the dates presented in the table above will be presented to DOE at the time of validation and are available with the Project Participants.

According to Guidelines on the demonstration and assessment of prior consideration for the CDM (version 3, EB 51), proposed project activities with a start date on or after August 2nd, 2008, the project participant must inform a Host Party DNA and the UNFCCC secretariat in writing of the commencement of the project activity and of their intention to seek CDM status. Such notification must be made within six months of the project activity start date.

It is important to mention that CDM was seriously considered in the development of this project activity and also represents a "first of its kind" project (as discussed later following the Guidelines on

CDM - Executive Board

page 24

Additionality of first-of-its-kind project activities, version 01.0). In the presentation of the Technical Proposal to *Barueri* Municipality, CDM was stressed in order to alleviate barriers, reducing costs for the Municipality. This was an important issue in the acceptance of the Public-Private Partnership. Additionally, the project activity involves technology that is not a common practice in the treatment of the waste representing "state of the art" technology in the host country, and with several associated risks.

Step 2. Investment analysis

The Guidelines on the assessment of investment analysis (version 05) should be used together with the Tool for the demonstration and assessment of additionality (version 6.0.0). However, since the project activity represents a "first-of-its-kind" (FOIK) project activity, this step is not applied.

As given in the Guidelines on Additionality of first-of-its-kind project activities, version 01.0, in paragraph 6 where the additionality of the FOIK project activity is determined, "a proposed project activity that was identified as the First-of-its-kind project activity is additional." And, therefore, it is not necessary this step, but "Barrier Analysis" (step 3) analyzing the FOIK Guidelines.

Step 3. Barrier analysis

In order to identify projects that are similar to the proposed project activity, the definitions presented in the Guidelines on Additionality of first-of-its-kind project activities, version 01.0, EB63, were used:

1. Applicable geographical area: covers the entire host country as a default; if the technology applied in the project is not country specific, then the applicable geographical area should be extended to other countries. Project participants may provide justification that the applicable geographical area is smaller than the host country for technologies that vary considerably from location to location depending on local conditions.

Since the technology used in the project activity is not country specific, then the PP extended the analysis following procedures described in the *Guidelines on Additionality of the first-of-its-kind project activities*, version 01.0. Information related to *Mercosul* region was included, since the project activity is located in this economic and political agreement and it is reasonable to compare them since the regulatory and policy framework are similar.

Mercosul (Portuguese: *Mercado Comum do Sul*, English: Common Southern Market) is an economic and political agreement among Argentina, Brazil, Paraguay, Uruguay and Venezuela. Bolivia, Chile, Colombia, Ecuador and Peru currently have associate member status. Its purpose is to promote free trade and the fluid movement of goods, people and currency.

- **2.** *Measure:* is a broad class of greenhouse gas emission reduction activities possessing common features. Four types of measure are currently cover in the framework:
 - (a) Fuel and feedstock switch;
 - (b) Switch of technology with or without change of energy source (including energy efficiency improvement);

CDM - Executive Board

page 25

- (c) Methane destruction;
- (d) Methane formation avoidance.

Considering the measures presented above, Barueri *Energy CDM Project Activity* can be classified as a "**fuel and feedstock switch**" due to the displacement of electricity generation from grid-connected power plants operated with fossil fuel, which is reflected in the combined margin emission factor and also "**methane formation avoidance**" due to the use of municipal solid waste as fuel to generate electricity instead of being disposed in a landfill where it would decay and end up on methane generation.

3. Output: is goods or services with comparable quality, properties, and application areas (e.g. clinker, lighting, residential cooking).

Therefore, in the case of Barueri *Energy CDM Project Activity*, the output considered is the incineration of municipal solid waste to generate electrical energy by waste-to-energy plants.

- 4. **Different technologies:** are technologies that deliver the same output and differ by at least one of the following (as appropriate in the context of the measure applied in the proposed CDM project and applicable geographical area):
 - (i) Energy source/fuel

Barueri Energy CDM Project Activity generates energy to the national grid based on the burn of municipal solid waste. Fuel fired generation commonly burns a homogeneous source of energy to generate heat. e.g. fossil fuel, biomass residues, biomass and biogas. However, urban residues are different fuel used in the project activity as definitions below:

- Fossil fuel²⁵ Fossil energy resources remain abundant but contain significant amounts of carbon that are normally released during combustion.
- **Biomass residues** identified in ACM6 methodology as the biomass that is a by-product, residue or waste stream from agriculture, forestry and related industries. This shall not include municipal waste or other wastes that contain fossilized and/or non-biodegradable material (however, small fractions of inert inorganic material like soil or sands may be included).
- **Biomass** identified in ACM6 methodology as non-fossilized and biodegradable organic material originating from plants, animals and microorganisms. This shall include products, by-products, residues and waste from agriculture, forestry and related industries as well as the non-fossilized and biodegradable organic fractions of industrial and municipal wastes. Biomass also includes

²⁵ Definition available at: http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch4s4-3-1.html. Accessed on April, 2012.

UNFCCC

CDM - Executive Board

page 26

gases and liquids recovered from the decomposition of non-fossilized and biodegradable organic material).

- **Biogas** is a mixture of biogenic gases composed mainly of methane and carbon dioxide produced from the decomposition of waste organic matter under anaerobic conditions.
- **Municipal solid waste** (MSW) a <u>heterogeneous</u> mix of different solid waste types, usually collected by municipalities or other local authorities. MSW includes household waste, garden/park waste and commercial/institutional waste.
 - (ii) Feed stock

Not applicable.

- (iii) Size of installation (power capacity)
 - Micro (as defined in paragraph 24 of Decision 2/CMP.5 and paragraph 39 of Decision 3/CMP.6);
 - Small (as defined in paragraph 28 of Decision 1/CMP.2);
 - Large.

Barueri Energy CDM Project Activity has an installed capacity of 20 MW, therefore, large scale plants are considered (more than 15 MW).

Additionally, there is substantial difference between incineration and Stationary combustion technology. First, incineration (which has specific chapter in IPCC, 2006 – vol. 5 - Chapter 5) is defined as the combustion of solid and liquid waste in controlled incineration facilities. Modern refuse combustors have tall stacks and specially designed combustion chambers, which provide high combustion temperatures, long residence times, and efficient waste agitation while introducing air for *more complete combustion*. Types of waste incinerated include municipal solid waste (MSW), industrial waste, hazardous waste, clinical waste and sewage sludge. The practice of MSW incineration is currently more common in developed countries, while it is common for both developed and developing countries to incinerate clinical waste. In spite of stationary combustion technology uses homogenous fuel source to generate electricity in furnaces/ turbines (which has specific chapter in IPCC, 2006 – vol. 2 – Chapter 2).

Following the Guidelines on Additionality of first-of-its-kind project activities, version 01.0, EB63, the analysis to identify a First-of-its-kind project activity in the applicable geographical area²⁶ is presented:

A) The project is the first in the applicable geographical area that applies a technology that is different from any other technologies able to deliver the same output and that have started commercial operation in the applicable geographical area before the start date of the project; and

In Brazil, as can be evidenced by the report developed by *Abrelpe* – Brazilian Association of Public Cleaning Companies and Special Residues - for the Scenario of the Solid Waste in Brazil in 2010²⁷, incineration treatment using urban waste to generate electricity is not common.

_

²⁶ The applicable geographical area is, as a default, the entire host country.

CDM - Executive Board

page 27

The incineration in Brazil has representative potential to treat hospital waste not municipal solid waste, as it is presented in the mentioned document of *Abrelpe*, 2010. Further, the incineration process applied to treat hospital waste involves different technologies and does not generate electricity and therefore is not comparable to the project activity due to its different *output* and *energy source*, as described above.

Considering information above, only the plants located in Brazil using the same technology and fuel (burn urban solid waste to generate electricity through a grate-type incinerator) would be considered.

However, in Brazil similar technologies to use urban solid waste to generate electricity is not common (WTERT, 2011²⁸).

Considering the waste-to-energy sector, during the 2001-2007 period, the WTE capacity increased by about four million metric tons per annum. Japan and China built several plants that were based on direct smelting or on fluidized bed combustion of solid waste. In China there are about 50 WTE plants. Japan is the largest user in thermal treatment of MSW in the world with 40 million tons. It generates 25 kwatts of electricity and 25 kwatts of heat from waste water. Waste to energy technology includes fermentation, which can take biomass and create ethanol, using waste cellulosic or organic material. In the fermentation process, the sugar in the waste is changed to carbon dioxide and alcohol, in the same general process that is used to make wine. Normally fermentation occurs with no air present. Esterification can also be done using waste to energy technologies, and the result of this process is biodiesel. Gasification and pyrolysis by now can reach thermal conversion efficiencies from of up to 75%, however a complete combustion is superior in terms of fuel conversion efficiency. Some pyrolysis processes need an outside heat source which may be supplied by the gasification process, making the combined process self sustaining.

As presented, there are several categories of technology for WTE plants. Further, the PP accessed the Industcards.com/ppworld.htm and http://www.wtert.com.br/home2010/ in order to check similar WTE technology to the project activity in *Mercosul*. However, no WTE plants were observed in the mentioned countries.

In *Industcards*, it was identified 238 WTE plants in the world, located in Austria, China, Germany, Italy, Netherlands, Norway, Sweden, Taiwan, USA, Belgium, Denmark, France, Japan, Portugal, Spain, Switzerland and UK. These countries are not comparable to the project activity host country, as explained above when delimitating the applicable geographic area, and shouldn't be considered. Additionally, there in the Waste-to-Energy Research and Technology Council website²⁹, there are partners in many countries in the world (such as USA, Germany, Greece, China, Italy, India, Canada, Japan, UK, France and Mexico), but in *Mercosul* (excluding Brazil)³⁰.

²⁷ ABRELPE, Scenario of the Solid Waste in Brazil in 2010 (*Panorama dos residues sólidos no Brasil – 2010*). Available at < http://www.abrelpe.org.br/noticias_detalhe.cfm?NoticiasID=905>. Accessed on November, 2011.

²⁸ WTERT – Waste-to-Energy Research and Technology Council. Which aims to encourage the advancement of technologies to recover energy and materials from MSW remaining after recycling and inform the public and policymakers about the benefits of power generation from MSW - WtE - and on all other means of sustainable waste management.

²⁹ http://www.seas.columbia.edu/earth/wtert/partner.html

³⁰ Accessed in May, 2012: http://www.seas.columbia.edu/earth/wtert/partner.html

page 28

Additionally, the electricity sector in Brazil is as described in the picture below and notably the electricity matrix is mainly composed of hydropower plants with large reservoirs and by thermal energy produced from fossil fuels.

Figure 3: Brazil's generation capacity per type of energy source. (Source ANEEL, 2011)³¹

Notably, 26.28% of installed capacity in Brazil is from thermal plants. From this percentage, the included fuels are: cane bagasse, black liquor, wood, biogas and rice husk. Thus, no MSW are considered in the electricity system in the country. Below it is presented a summary of the used fuel in Brazil:

Type of fuel	Number of plants (UTE)
Sugarcane bagasse	349
Biogas	19
Elephant Grass	2
Mineral coal	10
Charcoal	3
Rice Husk	8
Effluent Gas	2
Sulfur	5
Blast Furnace Gas	15
Process Gas	9
Refinery Gas	8
Natural Gas	106
Steel Gas	1
Black Liquor	14

³¹ ANEEL (2011) Banco de Informações de Geração – BIG. Matriz de Energia Elétrica. Available at: http://www.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.asp

page 29

Fuel Oil	33
Palmiste Oil	2
Diesel Oil	918
Ultraviscous Oil	1
Wood residuos	38
Others	3
TOTAL	1546

Figure 4: Brazil's generation capacity per type of energy source. (Source ANEEL, 2012)³²

Therefore, there are no Waste-to-Energy plants in Brazil and Mercosul, i.e., thermal plants that use this specific fuel: Municipal Solid Waste (MSW) such as the project activity.

Additionally, it is necessary for knowledgeable academics in Brazil to take the lead to inform the public by forming a web-based organization to link academic, industry and government agencies in Brazil who are concerned with advancing sustainable waste management³³. The objectives of WTERT-Brazil are:

- a) To link all research and development groups working on various aspects of waste management, in Brazil, and through the WTERT sister organizations, to share information on Sustainable Waste Management throughout the world.
- b) Identify the most suitable technologies for the treatment of various waste materials in Brazil, encourage additional academic research as required, and disseminate this information within the nation in Portuguese; and also provide an English language window for the outside world to learn about problems and opportunities for advancing waste management in Brazil.

The same council is formed in many other countries, but *Mercosul*, such as USA, Germany, Greece, China, Italy, India, Canada, Japan, UK, France and Mexico. Which emphasize that the technology is a First-of-its-kind type in the applicable geographic area.

B) Project participants selected a crediting period for the project activity that is a maximum of 10 years with no option of renewal.

The mentioned period of 10 years with no option of renewal is applied³⁴.

Outcome: The proposed project activity is a first-of-its-kind project activity in the applicable geographical area, since in *MERCOSUL* there are no waste-to-energy plants, which means that applies a

³² ANEEL (2012) Banco de Informações de Geração – BIG. Matriz de Energia Elétrica. Available at: http://www.aneel.gov.br/aplicacoes/capacidadebrasil/GeracaoTipoFase.asp?tipo=2&fase=3>

³³ Information available on WTERT – Waste-to-energy research & Technology Council. http://www.wtert.com.br/home2010/arquivo/home/wtert_brazil_organization_and_objectives.pdf. Accessed on April, 2012.

³⁴ The project participants and developer are not in accordance with this definition from EB and a consultation will be held in order to ask for further clarification using the FORM FOR SUBMISSION OF "LETTER TO THE BOARD" version 01.1.During the validation process this will be discussed with the DOE.

CDM - Executive Board

page 30

technology that is different from any other technologies able to deliver the same output and that have started commercial operation in the applicable geographical area before the start date of the project.

Step 4: Common practice analysis

Not applicable. As given in the Guidelines on Additionality of first-of-its-kind project activities, version 01.0, in paragraph 6 where the additionality of the FOIK project activity is determined, "a proposed project activity that was identified as the First-of-its-kind project activity is additional." And, therefore, it is not necessary this step, but "Barrier Analysis" (step 3) analyzing the FOIK Guidelines.

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

Following the AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., the calculation for the emission reductions is presented.

Emission Reductions (ER_v)

To calculate the emission reductions the project participant shall apply the following equation:

 $ER_y = BE_y - PE_y - L_y$ (Equation 1)

Where:

 ER_v = Is the emissions reductions in year y (t CO_2e)

 BE_y = Is the emissions in the baseline scenario in year y (tCO₂e) PE_y = Is the emissions in the project scenario in year y (tCO₂e)

 L_y = Is the leakage in year y (tCO₂e)

Baseline Emissions (BE_v)

To calculate the baseline emissions, project participants shall use the following equation:

 $BE_v = (MB_v - MD_{reg,v}) + BE_{EN,v}$ (Equation 2)

Where:

 BE_v = Is the baseline emissions in year y (tCO₂e)

 MB_v = Is the methane produced in the landfill in the absence of the project activity in year y

 (tCO_2e)

UNFCCC

CDM – Executive Board

page 31

 $MD_{reg,y}$ Is methane that would be destroyed in the absence of the project activity in year y

Baseline emissions from generation of energy displaced by the project activity in $BE_{EN.v}$ year y (tCO₂e)

Methane generation from the landfill in the absence of the project activity (MB_v)

The amount of methane that is generated each year (MB_v) is calculated as per the Methodological tool "Emissions from solid waste disposal sites (version 06.0.1) considering the following additional equation:

$$MB_y = BE_{CH4,SWDS,y}$$
 (Equation 3)

Where:

BE_{CH4,SWDS,v}

Is the methane generation from the landfill in the absence of the project activity at year y that is methane emissions avoided during the year y from preventing waste disposal at the solid waste disposal site during the period from the start of the project activity to the end of the year y (tCO₂e) as calculated using Application B in the Methodological tool "Emissions from solid waste disposal sites (version 06.0.1). The tool estimates methane generation adjusted for, using adjustment factor (f_v) , any landfill gas in the baseline that would have been captured and destroyed to comply with relevant regulations or contractual requirements, or to address safety and odor concerns.

The BE_{CH4,SWDS,y}, as previously described, represents the quantity of methane that would be released to the atmosphere in the absence of the project activity by a solid waste disposal site. In order to estimate it, a First Order Decay model (FOD model) is used, which differentiates the sorts of waste j relating them to their own decay rates k_i and fractions of degradable organic carbon (DOC_i). The model takes first the sum of waste per year $(W_{i,x})$ and relates those different types of solid waste to their particular factors. Also, Application B of the mentioned tool is applied to the project activity (The CDM project activity avoids or involves the disposal of waste at a SWDS). So, the baseline amount of methane produced in the year y is given by the equation below:

$$\begin{aligned} & \text{BE}_{\text{CH4,SWDS,y}} \\ & \text{PE}_{\text{CH4,SWDS,y}} \\ & \text{LE}_{\text{CH4,SWDS,y}} \end{aligned} = \varphi_y \cdot \left(1 - f_y \right) \cdot \text{GWP}_{\text{CH4}} \cdot \left(1 - \text{OX} \right) \cdot \frac{16}{12} \cdot \text{F} \cdot \text{DOC}_{f,y} \cdot \text{MCF}_y \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot \text{DOC}_j \cdot e^{-k_j \cdot (y-x)} \cdot \left(1 - e^{-k_j} \right) \cdot \left(1 - e^{-k_j}$$

(Equation 4)

Where:

 $BE_{CH4,SWDS,y}$ is the baseline methane emissions occurring in year y generated from waste disposal at a SWDS during a time period ending in year y (tCO₂e/year);

is the model correction factor to account for model uncertainties for year y; ϕ_y

is the fraction of methane captured at the SWDS and flared, combusted or used in another f_v

manner that prevents the emissions of methane to the atmosphere in year y;

page 32

GWP_{CH4} is the Global Warming Potential of methane;

OX is the oxidation factor (reflecting the amount of methane from SWDS that is oxidised in

the soil or other material covering the waste);

F is the fraction of methane in the SWDS gas (volume fraction);

 $\mathrm{DOC}_{\mathrm{f,y}}$ is the fraction of degradable organic carbon (DOC) that decomposes under the specific

conditions occurring in the SWDS for year y (weight fraction);

MCF_v is the methane correction factor for year y;

 $W_{i,x}$ is the amount of solid waste type j disposed or prevented from disposal in the SWDS in

the year x (tons);

DOC_i is the fraction of degradable organic carbon in the waste type *j* (weight fraction);

 k_j is the decay rate for the waste type j (1/year);

j is the type of residual waste or types of waste in the MSW;

x Years in the time period in which waste is disposed at the SWDS, extending from the

first year in the time period (x = 1) to year y (x = y).;

y Year of the crediting period for which methane emissions are calculated (y is a consecutive period of 12 months).

For this formula, there are several defaults, even to differentiate the types of wastes, such as:

Table 7 – Default values for data and parameters not monitored³⁵.

Parameter	Value	Explanation	
f_{y}	0	The value is null, since there is no percentage of methane that will be flared, combusted or used in another manner in the SWDS.	
GWP _{CH4}	21	Given by the IPCC for the first commitment period.	
OX	0.1	As the managed solid waste disposal site of the project activity is covered with oxidizing material, such as soil and compost.	
F	0.5	This factor reflects that some degradable organic carbon does not degrade, or degrades very slowly, under anaerobic conditions in the SWDS. A default value of 0.5 is recommended by IPCC 2006 Guidelines for National Greenhouse Gas Inventories.	
$\mathrm{DOC}_{\mathrm{f,y}}$	0.5	Given by the IPCC 2006 Guidelines for National Greenhouse Gas Inventories.	
MCF _y	1	The Methodological tool "Emissions from solid waste disposal sites (version 06.0.1) suggests MCF to be selected as default if the project does not comprehend a water table above the bottom of the SWDS. It is used 1 for anaerobic managed solid waste disposal sites. These must have controlled placement of waste (i.e., waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and will include at	

³⁵ More information about these values can be found in section B.6.2.

CDM – Executive Board

page 33

		least one of the following: (i) cover material; (ii) mechanical compacting; or (iii) leveling of the waste. As the Project Activity presents the 3 options, the value must be 1.0.	
DOC _j (food)	0.15	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Tables 2.4 and 2.5) specific for food, food waste, beverages and tobacco (other than sludge) in wet waste, between a list of wood and wood products; pulp, paper and cardboard (other than sludge); food, food waste, beverages and tobacco (other than sludge); textiles; garden, yard and park waste; and glass, plastic, metal, other inert waste.	
DOC _j (wood)	0.43	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Tables 2.4 and 2.5) specific for wood and wood products; pulp, paper and cardboard (other than sludge) in wet waste, between a list of food, food waste, beverages and tobacco (other than sludge); food, food waste, beverages and tobacco (other than sludge); textiles; garden, yard and park waste; and glass, plastic, metal, other inert waste.	
DOC _j (textile)	0.24	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Tables 2.4 and 2.5) specific for textiles in wet waste, between a list of (wood and wood products; pulp, paper and cardboard (other than sludge); food, food waste, beverages and tobacco (other than sludge); food, food waste, beverages and tobacco (other than sludge); garden, yard and park waste; and glass, plastic, metal, other inert waste.	
DOC _j (paper)	0.4	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Tables 2.4 and 2.5) specific for pulp, paper and cardboard (other than sludge) in wet waste, between a list of (wood and wood products; pulp, paper and cardboard (other than sludge); food, food waste, beverages and tobacco (other than sludge); textiles; garden, yard and park waste; and glass, plastic, metal, other inert waste.	
k _j (food)	0.4	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Table 3.3) specific for Rapidly degrading of food, food waste, sewage sludge, beverages and Tobacco, under a Wet clime (MAP>1000mm).	
k _j (wood)	0.035	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Table 3.3) specific for slowly degrading of Wood, wood products and straw, under a Wet clime (MAP>1000mm).	
k _j (textile)	0.07	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Table 3.3) specific for slowly degrading of textiles, under a Wet clime (MAP>1000mm).	
k _j (paper)	0.07	Given by IPCC 2006 Guidelines for National Greenhouse Gas Inventories (adapted from Volume 5, Table 3.3) specific for slow degrading of Pulp, paper, cardboard (other than sludge) under a Wet clime (MAP>1000mm).	

page 34

For the determination of the model correction factor (φy), *Option 2: Determine \varphi y based on specific situation of the project activity* was used. For that, uncertainty analysis for the specific situation of the proposed project activity was considered to be applied in the following equation in order to determine the overall uncertainty of the determination of methane generation in year $y(v_y)$.

$$\mathbf{v_y} = \sqrt{(a^2 + b^2 + c^2 + d^2 + e^2 + g^2)}$$
 (Equation 5)

Table 8 – Selection of values for the factors a, b, c, d, e and g.

Parameter	Meaning	Value	Explanation
$_{-}$ $\phi_{ ext{v}}$	-	0.99	Calculated as per Equation 6
$\frac{vy}{a^2}$	-	0.01	Calculated as per Equation 5
	W	0.04%	The lower value, 2%, was used. Due to the solid waste will be weighed using accurate weighbridges, not measured from the depth and surface area of an existing SWDS.
$\frac{1}{2}$			The higher value, 10%, was used.
	DOCj	1%	DOCj is not measured, therefore the higher value is applicable.
$-\frac{c^2}{c^2}$	DOCf	0.25%	The lower value, 5%, was used. Since more than 50% of the waste is rapidly degradable organic material and also the SWDS is located in a tropical climate. Organic percentage for the project is 81.46% (wood, paper, food waste, textiles and garden).
d^2	F	0.00%	The lower value, 0%, was used. Since more than 50% of the waste is rapidly degradable organic material.
e^2	MCFy	0.00%	The lower value, 0%, was used. Since the SWDS is managed.
g^2	(e^(-kj*(y-x))*(1-e^(-kj))	0.25%	The lower value, 5%, was used. The project activity is under the following case: (i) Application B: where the residual waste is disposed at the SWDS and if the value of k is larger than 0.2 y^-1). The average of k is 0.144 (food = 0.4; paper = 0.07; textile = 0.07; wood = 0.035); which is larger than 0.2*2014^-1 (= 0.0000099304).

$$\phi_y = 1/(1 + v_y)$$
 (Equation 6)

CDM – Executive Board

UNFCCC

page 35

And the value for $W_{j,x}$ (named as $A_{j,x}$ by the referred methodology) is given as the following equation, as it is under application B of the referred tool. This parameter represents the amount of organic waste type j prevented from disposal in the landfill in the year x (tonnes/year), this is the value to be used for variable $W_{i,x}$ in the Methodological tool "Emissions from solid waste disposal sites (version 06.0.1).

$$W_{j,x} = W_x * p_{j,x}$$
 (Equation 7)

Where:

 $W_{j,x}$ is the amount of solid waste type j disposed or prevented from disposal in the SWDS in

the year x (tons);

 W_x is the total amount of solid waste disposed or prevented from disposal in the SWDS in the year x (tons);

 $p_{j,x}$ is the average fraction of the waste type j in the waste in year x (weight fraction);

j is the types of solid waste;

x are the years in the time period for which waste is disposed at the SWDS, extending from the first year in the time period (x = 1) to year y (x = y)

The fraction of the waste type j in the waste for the year x are calculated as follows:

$$p_{j,x} = \frac{\sum_{n=1}^{z_x} p_{n,j,x}}{z_x}$$
(Equation 8)

Where:

 $p_{j,x}$ is the average fraction of the waste type j in the waste in year x (weight fraction);

 $p_{n,j,x}$ is the fraction of the waste type j in the sample n collected during the year x (weight

fraction);

 z_x is the number of samples collected during the year x;

n is the samples collected in year x;

j is the types of solid waste;

x is the years in the time period for which waste is disposed at the SWDS, extending from

the first year in the time period (x = 1) to year y (x = y).

Adjustment Factor (AF)

In cases where regulatory or contractual requirements do not specify MD_{reg,y}, an Adjustment Factor (AF) shall be used and justified, taking into account the project context. In doing so, the project participant should take into account that some of the methane generated by the landfill may be captured and

UNFCCC

CDM - Executive Board

page 36

destroyed to comply with other relevant regulations or contractual requirements, or to address safety and odour concerns. This value in Brazil is 0.54%, following technical expertise in the country³⁶.

$$MD_{reg,y} = MB_y * AF$$
 (Equation 9)

Where:

AF = Is Adjustment Factor for $MB_v(\%)$

The 'Adjustment Factor' shall be revised at the start of each new crediting period taking into account the amount of GHG flaring that occurs as part of regulation at that point in the future.

Rate of compliance

Such as in Brazil there are no regulations that mandate the use of the project activity treatment option and is not being enforced, the baseline scenario is not identified as a gradual improvement of waste management practices to the acceptable technical options expected over a period of time to comply with the MSW Management Rules.

Baseline emissions from generation of energy

For Scenario 1 (identified in section B.4), the BE_{EN,y} is determined as follow:

$$BE_{EN,y} = BE_{elec,y} + BE_{thermal,y}$$
 (Equation 10)

Where:

BE_{elec},y

Is the baseline emissions from electricity generated utilizing the biogas/syngas collected/RDF/stabilized biomass/combustion heat from incineration/stabilized biomass co-fired with fossil fuel in the project activity and exported to the grid or displacing onsite/offsite fossil fuel captive power plant (tCO₂e)

 $BE_{\text{thermal},y}$

Is the baseline emissions from thermal energy produced utilizing the biogas/syngas collected/RDF/stabilized biomass/combustion heat from incineration/stabilized biomass co-fired with fossil fuel in the project activity displacing thermal energy from onsite/offsite fossil fuel fueled boiler (tCO₂e)

$$BE_{elec,y} = EG_{d,y} * CEF_d$$
 (Equation 11)

http://homologa.ambiente.sp.gov.br/biogas/docs/artigos_dissertacoes/magalhaes_alves_santofilho_costa_kelson_pt.pdf> Access on November, 2011.

³⁶ Reducing uncertainties about methane recovered (R) in inventories of emissions of greenhouse gases by waste treatment, and on the parameter Adjustment Factor (AF) in projects for the collection and destruction of methane in landfills under the Clean Development Mechanism (CDM). (from the free translation of the Portuguese *Redução das incertezas sobre o Metano recuperado (R) em inventários de emissões de gases de efeito estufa por tratamento de resíduos, e sobre o parâmetro Adjustment Factor (AF) em projetos de coleta e destruição de metano em aterros no âmbito do Mecanismo de Desenvolvimento Limpo (MDL)*. MAGALHÃES, G. H. C., ALVES, J. W. S., SANTO FILHO, F., COSTA, R. M. and KELSON, M.. São Paulo, Brazil, 2010. Available at <

CDM - Executive Board

page 37

Where:

electricity generated $EG_{d,y}$ Is the amount of utilizing biogas/syngas

collected/RDF/stabilized biomass/combustion heat from incineration/stabilized biomass co-fired with fossil fuel in the project activity and exported to the grid or

displacing onsite/offsite fossil fuel captive power plant during the year y (MWh)

Is the carbon emissions factor for the displaced electricity source in the project CEF_d

scenario (tCO₂/MWh)

The parameter EG_{d,y} is determined based on the total electricity generation by the equipments minus the internal consumption. Which describes in the the Mass Balance of the "Tratamento de Residuos sólidos urbanos de Barueri - FOXX. Volume 2" presented to the Bidding process the values of 17.526 MW * 7,800 hours/year - 0.826 MW * 7,800 hours/year.

Determination of CEF_d

In case the generated electricity from the combustion heat from incineration displaces electricity that would have been generated by other power plants in the grid in the baseline, CEF_d should be calculated according to the Tool to calculate the emission factor of an electricity system (version 2.2.1).

Explanations as to how the quantity of net electricity generation supplied by the project plant/unit to the grid (EG_{d,y}) was estimated is presented below in section B.6.3. The calculation of the combined margin CO₂ emission factor for grid connected power generation (EF_{grid,CM,y}) follows, as recommended by AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., the procedures established in the methodological Tool to calculate the emission factor of an electricity system (version 2.2.1).

According to this tool Project Participants shall apply six steps in order to calculate the baseline emission factor as further detailed below.

STEP 1 - Identify the relevant electric power system

According to the tool, "If the DNA of the host country has published a delineation of the project electricity system and connected electricity systems, these delineations should be used. If such delineations are not available, project participants should define the project electricity system and any connected electricity system and justify and document their assumptions in the CDM-PDD".

Brazilian DNA published Resolution #8, issued on 26th May, 2008, defines the Brazilian Interconnected Grid as a single system that covers all the five macro-geographical regions of the country (North, Northeast, South, Southeast and Midwest). Hence this figure will be used to calculate the baseline emission factor of the grid.

STEP 2 – Choose whether to include off-grid power plants in the project electricity system (optional).

Option I of the tool is chosen, which is to include in the calculation only grid power plants.

STEP 3 - Select a method to determine the operating margin (OM).

The calculation of the operating margin emission factor (EF_{grid,OM,y}) is based on one of the following methods:

(a) Simple OM, or

DM - Executive Board

page 38

- (b) Simple adjusted OM, or
- (c) Dispatch data analysis OM, or
- (d) Average OM.

Dispatch data analysis in not an available option for the calculation of the operating margin since it is only applicable for the ex-post vintage. The simple operating margin can only be used where lowcost/must-run resources³⁷ constitute less than 50% of total grid generation in: 1) average of 5 most recent years, or 2) based on long-term normal for hydroelectricity production. The table below shows the share of hydroelectricity in the total electricity production for the Brazilian interconnected system. However, the results show the non-applicability of the simple operating margin to the proposed CDM Project Activity.

Table 9 – Share of hydroelectricity generation in the Brazilian interconnected system, 2006 to 2010

Year	Share of hydroelectricity (%)
2006	91.81%
2007	92.79%
2008	88.62%
2009	93.27%
2010	88.77%

Source: ONS / Operador Nacional do Sistema: Histórico de Geração, 2011. Available at http://www.ons.org.br/historico/geracao energia.aspx>

The fourth alternative, an average operating margin, is an oversimplification and does not reflect the impact of the project activity in the operating margin at all. Therefore, the simple adjusted operating margin will be used in the project.

STEP 4 - Calculate the operating margin emission factor according to the selected method

According to the tool "the simple adjusted OM emission factor ($EF_{grid,OM-adj,y}$) is a variation of the simple OM, where the power plants / units (including imports) are separated in low-cost/must-run power sources (k) and other power sources (m)."

The simple adjusted OM was calculated based on the net electricity generation and a CO₂ emission factor for each power unit – i.e. similarly to **Option A** of the simple OM method – as follows:

³⁷ Low operating cost and must run resources typically include hydro, geothermal, wind, low-cost biomass, nuclear and solar generation.

UNFCCC

CDM - Executive Board

page 39

$$EF_{grid,OM-adj,y} = \left(1 - \lambda_y\right) \cdot \frac{\sum_{m} EG_{m,y} \times EF_{EL,m,y}}{\sum_{m} EG_{m,y}} + \lambda_y \cdot \frac{\sum_{k} EG_{k,y} \times EF_{EL,k,y}}{\sum_{k} EG_{k,y}}$$
(Equation 12)

Where,

 $EF_{grid,OM-adj,y}$ = Simple adjusted operating margin CO₂ emission factor in year y (tCO₂/MWh)

 λ_y = Factor expressing the percentage of time when low-cost/must-run power units are on the margin in year y

 $EG_{m,y}$ = Net quantity of electricity generated and delivered to the grid by power unit m in year y

 $EG_{k,y}$ = Net quantity of electricity generated and delivered to the grid by power unit k in year y

 $EF_{EL,m,y}$ = CO2 emission factor of power unit m in year y (tCO2/MWh)

 $EF_{EL,k,y}$ = CO2 emission factor of power unit k in year y (tCO2/MWh)

m = All grid power units serving the grid in year y except low-cost/must-run power units

k = All low-cost/must run grid power units serving the grid in year y

y = The relevant year as per the data vintage chosen in Step 3

Determination of $EF_{EL,m,v}$

Considering that only data on electricity generation and the fuel types used in each of the power units was available, the emission factor was be determined based on the CO2 emission factor of the fuel type used and the efficiency of the power unit, as per **Option A2** of the tool. The following formula was used:

$$EF_{EL,m,y} = \frac{EF_{CO2,m,i,y} \cdot 3.6}{\eta_{m,y}}$$
 (Equation 13)

Where,

 $EF_{EL,mv}$ = CO2 emission factor of power unit m in year v (tCO2/MWh)

 $EF_{CO2,m,i,y}$ = Average CO2 emission factor of fuel type *i* used in power unit *m* in year *y* (tCO2/GJ)

 $\eta_{m,y}$ = Average net energy conversion efficiency of power unit m in year y (ratio)

m = All power units serving the grid in year y except low-cost/must-run power units

y = The relevant year as per the data vintage chosen in Step 3

CDM - Executive Board

page 40

<u>Determination of $EG_{m,v}$ </u>

Information used to determine this parameter was supplied by the Electric System National Operator (from the Portuguese *Operador Nacional do Sistema – ONS*), which is an official source, as recommended by the tool. ONS is an entity of private right, non-profitable, created on 26 August 1998, responsible for coordinating and controlling the operation of generation and transmission facilities in the National Interconnected Power System (NIPS) under supervision and regulation of the Electric Energy National Agency (ANEEL)³⁸.

STEP 5 - Calculate the build margin (BM) emission factor

Option 2 (ex-post) was chosen, where for the first crediting period, the build margin emission factor shall be updated annually including those units built up to the year of registration of the project activity or, if information up to the year of registration is not yet available, including those units built up to the latest year for which information is available. For the second crediting period, the build margin emissions factor shall be calculated ex ante, as described in Option 1 (ex-ante). For the third crediting period, the build margin emission factor calculated for the second crediting period should be used. The sample group of power units m used to calculate the build margin consists of either:

- (a) The set of five power units that have been built most recently, or
- (b) The set of power capacity additions in the electricity system that comprise 20% of the system generation (in MWh) and that have been built most recently.

The build margin will also be calculated by the DNA. The number is published on the website and for estimation purposes the average for the most recent years is used.

The build margin emission factor is the weighted average emission factor (tCO₂/MWh) of all power units m during the most recent year y for which electricity generation data is available, calculated as follows:

$$EF_{grid,BM,y} = \frac{\sum_{m} EG_{m,y} \times EF_{EL,m,y}}{\sum_{m} EG_{m,y}}$$
 (Equation 14)

Where:

 $EF_{grid,BM,y}$ = Build margin CO₂ emission factor in year y (tCO₂/MWh);

 $EG_{m,v}$ = Net quantity of electricity generated and delivered to the grid by power unit m in year y (MWh);

 $EF_{EL,m,v} = CO_2$ emission factor of power unit m in year y (tCO₂/MWh);

m = Power units included in the build margin;

y = Most recent historical year for which electricity generation data is available.

³⁸ http://www.ons.org.br/institucional/modelo_setorial.aspx?lang=en

UNFCCC

CDM - Executive Board

page 41

The CO₂ emission factor of power unit m in year y ($EF_{EL,m,y}$) parameter is calculated as determined as per the guidance in step 3 (a) for the simple OM, option B1, using for y the most recent historical year for which electricity generation data is available, and using for m the power units included in the build margin.

$$EF_{EL,m,y} = \frac{\sum_{i} FC_{i,m,y} \cdot NCV_{i,y} \cdot EF_{CO\ 2,i,y}}{EG_{m,y}}$$
 (Equation 15)

Where:

 $EF_{EL,m,y} = CO_2$ emission factor of power unit m in year y (tCO₂/MWh);

 $FC_{i,m,y}$ = Amount of fossil fuel type i consumed by power unit m in year y (Mass or volume unit);

 $NCV_{i,y}$ = Net calorific value (energy content) of fossil fuel type i in year y (GJ / mass or volume unit);

 $EF_{CO2,i,y} = CO_2$ emission factor of fossil fuel type *i* in year *y* (tCO₂/GJ);

 $EG_{m,y}$ = Net quantity of electricity generated and delivered to the grid by power unit m in year y (MWh);

m = All power units serving the grid in year y except low-cost / must-run power units;

i = All fossil fuel types combusted in power unit m in year y;

 $y = \text{Either the three most recent years for which data is available at the time of submission of the CDM-PDD to the DOE for validation (ex ante option) or the applicable year during monitoring (ex post option), following the guidance on data vintage in step 2.$

The Brazilian DNA made available the operating margin emission factor calculated following the "Tool to calculate the emission factor for an electricity system", approved by the CDM Executive Board. This parameter will be annually up-dated applying the numbers provided by the Brazilian DNA. The number is published on the website and for estimation purposes the average of the most recent years is used.

STEP 6 – Calculate the combined margin (CM) emissions factor (EFy).

The combined margin calculation is based on method a) provided by the tool, as follows:

$$EF_{grid,CM,y} = EF_{grid,OM,y} \cdot w_{OM} + EF_{grid,BM,y} \cdot w_{BM}$$
 (Equation 16)

Where,

 $EF_{grid,BM,y}$ = Build margin CO_2 emission factor in year y (tCO_2/MWh);

 $EF_{grid,OM,y}$ = Operating margin CO_2 emission factor in year y (tCO_2/MWh);

 w_{OM} = Weighting of operating margin emissions factor (%);

CDM – Executive Board

page 42

 w_{BM} = Weighting of build margin emissions factor (%).

According to the tool, for this type of project activities, weights are $w_{OM} = 0.5$ and $w_{BM} = 0.5$.

For the project activity, there is no heat baseline scenario to be included, since the main objective of the proposed project activity is the use of waste that would be disposed in a landfill in the absence of the project activity to generate electricity. There is no heat demand to be attended in the project scenario as well as in the absence of the project activity and, therefore, no calculation of baseline emissions from thermal energy produced utilizing the combustion heat from incineration in the project activity displacing thermal energy from onsite/offsite fossil fuel fuelled boiler (tCO2e) is not required.

Project Emissions (PE_v)

The project emissions in year y are:

 $PE_{y} = PE_{elec,y} + PE_{fuel, on-site,y} + PE_{c,y} + PE_{a,y} + PE_{g,y} + PE_{r,y} + PE_{i,y} + PE_{w,y} + PE_{co-firing,y}$ (Equation 17)

Where:

 PE_v = Is the project emissions during the year y (tCO₂e)

 $PE_{elec,y}$ = Is the emissions from electricity consumption on-site due to the project activity in

year y (tCO₂e)

 $PE_{fuel, on-site, y}$ = Is the emissions on-site due to fuel consumption on-site in year y (tCO₂e)

 $PE_{c,y}$ = Is the emissions from composting in year y (tCO₂e)

 $PE_{a.v}$ = Is the emissions from the anaerobic digestion process in year y (tCO₂e)

 $PE_{g,y}$ = Is the emissions from the gasification process in year y (tCO₂e)

 $PE_{r,v}$ = Is the emissions from the combustion of RDF/stabilized biomass in year y (tCO₂e)

 $PE_{i,y}$ = Is the emissions from waste incineration in year y (tCO₂e) $PE_{w,v}$ = Is the emissions from wastewater treatment in year y (tCO₂e)

PE_{co-firing,y} = Is the emissions from thermal energy generation/electricity generation from on-site

fossil fuel consumption during co-firing in year y (tCO₂e)

Emissions from electricity use on site ($PE_{elec,y}$)

Where the project activity involves electricity consumption from an on-site fossil fuel fired power plant or consumed from the grid as a result of the project activity, CO_2 emissions are calculated using a carbon emission factor for electricity generation in the country. However, the project activity does not foresee any electricity consumption, since its objective is also supply the internal electricity demand before dispatching to the national grid. (Note: Project emissions from electricity consumption do not need to be calculated in case this electricity is generated by the project activity. In case of electricity generation from incineration, project emissions are estimated as per equations 12 (PE_{g/t/i,f,y}) and 13 (Ai) or 14 (PE_{g/t/i,f,y}) given by the methodology AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0).).

As auxiliary fossil fuels are added into incinerator in order to guarantee a better burn, emissions from its use are estimated by using equation below.

CDM - Executive Board

page 43

Emissions from fuel use on-site ($PE_{fuel, on-site,y}$)

Project participants shall account for CO_2 emissions from any on-site fuel combustion (other than electricity generation, e.g. vehicles used on-site, heat generation, for starting the gasifier, auxiliary fossil fuels need to be added into incinerator, heat generation for mechanical/thermal treatment process, etc.). Emissions are calculated from the quantity of fuel used and the specific CO_2 -emission factor of the fuel, as follows:

 $PE_{fuel, on-site,y} = F_{cons,y} * NCV_{fuel} * EF_{fuel}$ (Equation 18)

Where:

 $PE_{fuel, on-site, y}$ = Is the CO_2 emissions due to on-site fuel combustion in year y (tCO_2)

 $F_{cons,y}$ = Is the fuel consumption on site in year y (kg) NCV_{fuel} = Is the net caloric value of the fuel (MJ/kg) EF_{fuel} = Is the CO_2 emissions factor of the fuel (tCO_2/MJ)

Local values should be preferred as default values for the net calorific values and CO₂ emission factors. If local values are not available, project participants may use IPCC default values for the net calorific values and CO₂ emission factors.

Emissions from composting (PE_{c,v})

Since the Project Activity does not comprehends composting process, this source is not considered.

Emissions from anaerobic digestion ($PE_{a,v}$)

The project activity does not present any anaerobic digestion, thus this source is not considered.

Emissions from gasification ($PE_{g,y}$) or combustion of RDF/Stabilized Biomass ($PE_{r,y}$) or waste incineration($PE_{i,y}$)

The project activity presents incineration process and, therefore, PE_{i,v} is calculated as follows:

 $PE_{i,y} = PE_{i,f,y} + PE_{i,s,y}$ (Equation 19)

Where:

 $PE_{i,f,y}$ = Is the fossil-based waste CO_2 emissions from waste incineration biomass combustion

in year v (tCO₂e)

 $PE_{i,s,v}$ = Is the N_2O and CH_4 emissions from the final stacks from waste incineration biomass

combustion in year y (tCO₂e)

Emissions from fossil-based waste $(PE_{i,f,v})$

The CO₂ emissions are calculated based on the monitored amount of fossil-based waste fed into the waste incineration plant, the fossil-derived carbon content, and combustion efficiency. The calculation of CO₂ derived from incineration of waste of fossil origin including waste of fossil origin, is estimated using either of the following options:

Option 1 requires the amount of waste type i fed into the waste incineration plant and the fraction of carbon content in waste type I and also demand a continuous monitoring of the amount of each waste type fed into the waste incineration plant. And then, **Option 2** is used.

CDM - Executive Board

page 44

Option 2

$$PE_{i,f,y} = A_{MSW,y} \times FCF_{MSW} \times EF \times \frac{44}{12}$$
 (Equation 20)

Where:

 $PE_{i,f,y}$ Is the fossil-based waste CO_2 emissions from waste incineration in year y (t CO_2 e)

Is the amount of MSW fed into the waste incineration plant(t/yr) $A_{MSW.v}$

 FCF_{MSW} = Is the fraction of fossil carbon in MSW (fraction) EF= Is the combustion efficiency for waste (fraction)

44/12 = Is the conversion factor (tCO_2/tC)

The FCF_{MSW} is based on IPCC default value (2006 IPCC Guidelines for National Greenhouse Gas Inventories) given by its 5th volume, Chapter 2: Waste Generation, Composition and Management Data, table 2.4 (Default dry matter content, DOC content, total carbon content and fossil carbon fraction of different MSW components)³⁹.

The EF is based on IPCC default value (2006 IPCC Guidelines for National Greenhouse Gas Inventories) given by its 5th volume, section 5.4.1.3 Oxidation Factor, where for waste incinerators it is assumed that the combustion efficiencies are close to 100%, while the combustion efficiency of open burning is substantially lower. If oxidation factors of waste incineration below 100% are applied, these need to be documented in detail with the data source provided. Table 5.2 presents default oxidation factors by management practices and waste types. The Oxidation factor in % of carbon input for MSW is 100% for incineration).

Emissions from waste incineration ($PE_{i,s,v}$)

For the project activity, **Option 2** was chosen due to the available data:

Option 2:

$$PE_{g/r/i,s,y} = Q_{biomass,y} \cdot (EF_{N2O} \cdot GWP_{N2O} + EF_{CH4} \cdot GWP_{CH4}) \cdot 10^{-3}$$
 (Equation 21)

Where:

Is the amount of waste incinerated in year y (tonnes/yr) Q_{biomass,y}

 EF_{N2O} Is the aggregate N₂O emission factor for waste combustion (tonN₂O/tonne of waste) Is the aggregate CH₄ emission factor for waste combustion (tonCH₄/tonne of waste) EF_{CH4}

Tables 5.4 and 5.3, chapter 5, volume 5 of IPCC 2006 guidelines should be used to estimate EF_{N2O} and EF_{CH4} , respectively.

If IPCC default emission factor is used, a conservativeness factor should be applied to account for the high uncertainty of the IPCC default values. The level of the conservativeness factor depends on the uncertainty range of the estimate for the IPCC default N₂O and CH₄ emission factor. Project participants shall select the appropriate conservativeness factor from Table 3 below and shall multiply the estimate for the N₂O/CH₄ emission factor with the conservativeness factor.

³⁹ Available at < http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5 Volume5/V5 2 Ch2 Waste Data.pdf >. Accessed on November, 2011.

page 45

Table 10 – Conservativeness factors

Estimated uncertainty range (%)	Assigned uncertainty band (%)	Conservativeness factor where higher values are more conservative
Less than or equal to 10	7	1.02
Greater than 10 and less than or equal to 30	20	1.06
Greater than 30 and less than or equal to 50	40	1.12
Greater than 50 and less than or equal to 100	75	1.21
Greater than 100	150	1.37

As per section 5.7.1 of chapter 5, volume 5 of IPCC 2006 guidelines, it is stated "Direct measurement or monitoring of emissions of N₂O and CH₄ has less uncertainty. For continuous and periodic emission monitoring, uncertainty depends on the accuracy of measurement instruments and methods used. These are likely to be in order of \pm 10 percent. For periodic measurement, uncertainty will also depend on the sampling strategy and frequency, and the uncertainties will be much higher. If default values for N₂O and CH_4 emission factors are used, uncertainty ranges have been estimated to be \pm 100 percent or more". Therefore, the value 1.37 is used.

Emissions from wastewater treatment ($PE_{w,v}$)

The project activity does not include wastewater release.

Emissions from thermal energy generation/electricity generation (from on-site fossil fuel consumption during co-firing) (PE_{co-firing,v})

Project participants do not present any other CO₂ emissions associated to on-site fossil fuel combustion during co-firing with waste (other than electricity use as mentioned above (PE_{elec.v}) and from fuel use onsite (PE_{fuel. on-site.v})).

Leakage Calculation (LE_v)

The sources of leakage considered in the methodology are CO₂ emissions from off-site transportation of waste materials in addition to CH₄ and N₂O emissions from the residual waste from the anaerobic digestion, gasification processes and processing/combustion of RDF. In case of waste incineration, leakage emissions from residual waste of MSW incinerator should be accounted for. Positive leakage that may occur through the replacement of fossil-fuel based fertilizers with organic composts are not accounted for. If the project activity is exclusively composting, then $L_v = L_{COMP,v}$. Otherwise, leakage emissions should be estimated from the following equation:

$$L_v = L_{t,v} + L_{r,v} + L_{i,v} + L_{s,v} + L_{COMP,v}$$
 (Equation 22)

Where:

Is the leakage emissions from increased transport in year y (tCO₂e) $L_{t,y}$

Is the leakage emissions from the residual waste from the anaerobic digester, the $L_{r,y}$ gasifier, the processing/combustion of RDF/stabilized biomass, in case it is disposed of in landfills in year y (tCO₂e)

CDM – Executive Board

page 46

 $L_{i,y}$ = Is the leakage emissions from the residual waste from MSW incinerator in year y (tCO₂e)

 $L_{s,y}$ = Is the leakage emissions from end use of stabilized biomass

 $L_{COMP,y}$ = Leakage emissions associated with composting in year y (t CO₂e / yr)

CDM – Executive Board

page 47

Emissions from transportation (L_{t,v})

The project activity does not result in a change in transport emissions. This occurs since the waste is transported from waste collecting points, in the collection area, to the treatment facility instead of to existing landfills, thus there is no significant increase.

The location of treatment described in this project is closer than the landfill and, therefore, is not considered. Refer to the following figure and table.

Table 11: Distances from *Barueri*, project and landfill.

	Project Activity Location (Estr. Dr. Cicero Borges de Moraes – Barueri – SP) (C)	Landfill Location (<i>Estr.</i> dos Romeiros – Santana do Parnaíba - SP) (B)
Barueri (A)	6 km	17.3 km
Landfill Location (Estr. dos Romeiros – Santana do Parnaíba - SP) (B)	11.4 km	0 km

CDM - Executive Board

page 48

Figure 5: Project, landfill and Barueri Location

Above, project participants documented an overview of collection points from where the waste will be collected, their approximate distance (in km) to the treatment facility, existing landfills and their approximate distance (in km) to the nearest end-user. And, therefore, no increase in transportation is predicted.

Emissions from residual waste from anaerobic digester, gasifier, and processing/combustion of RDF/stabilized biomass or compost in case it is disposed of in landfills $(L_{r,v})$

For incineration, there is no residual waste from anaerobic digester to be considered.

Leakage Emissions from the residual waste from MSW incineration $(L_{i,v})$

In case of waste incineration, leakage emissions from the residual waste of MSW incinerator should be accounted for using the following equations:

If the residual waste from the incinerator contains up to 5% residual carbon then:

$$L_{i,y} = A_{residual}.FC_{residual}.\frac{44}{12}$$
 (Equation 23)

CDM - Executive Board

page 49

Off-site Emissions from end use of the stabilized biomass (L_{s,y})

The project activity does not comprehend emission associated to non-combustion end-use of stabilized biomass (SB). Therefore this LE is not accounted.

Leakage emissions from composting (LE_{COMP,y})

The project activity does not comprehend any composting. Therefore this LE source is not accounted.

B.6.2. Data and parameters that are available at validation:

This section shall include a compilation of information on the data and parameters that are not monitored throughout the crediting period but that are determined only once and thus remain fixed throughout the crediting period and that are available when validation is undertaken.

Data / Parameter:	OX
Data unit:	-
Description:	Oxidation factor (reflecting the amount of methane from solid waste disposal
	site (SWDS) that is oxidized in the soil or other material covering the waste.
Source of data used:	Based on an extensive review of published literature on this subject, including
	the IPCC 2006 Guidelines for National Greenhouse Gas Inventories
Value applied:	0.1
Justification of the	When methane passes through the top-layer, part of it is oxidized by
choice of data or	methanotrophic bacteria to produce CO2. The oxidation factor represents the
description of	proportion of methane that is oxidized to CO2. This should be distinguished
measurement	from the methane correction factor (MCF) which is to account for the situation
methods and	that ambient air might intrude into the SWDS and prevent methane from being
procedures actually	formed in the upper layer of SWDS
applied:	
Any comment:	

Data / Parameter:	F	
Data unit:	-	
Description:	Fraction of methane in the SWDS gas (volume fraction)	
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories	
Value applied:	0.5	
Justification of the	Upon biodegradation, organic material is converted to a mixture of methane	
choice of data or	and carbon dioxide.	
description of		
measurement		
methods and		
procedures actually		
applied:		
Any comment:		

CDM – Executive Board

Data / Parameter:	$\mathrm{DOC}_{\mathrm{f,default}}$
Data unit:	Weight fraction
Description:	Default value for the fraction of degradable organic carbon (DOC) in MSW
	that decomposes in the SWDS
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
Value applied:	0.5
Justification of the	This factor reflects the fact that some degradable organic carbon does not
choice of data or	degrade, or degrades very slowly, in the SWDS. This default value can only be
description of	used for
measurement	i) Application A; or
methods and	ii) Application B if the tool is applied to MSW.
procedures actually	
applied:	
Any comment:	The project activity is under Application B

Data / Parameter:	MCF _{default}
Data unit:	-
Description:	Methane correction factor
Source of data used:	IPCC 2006 Guidelines for National Greenhouse Gas Inventories
Value applied:	1.0
Justification of the	Barueri Landfill is an anaerobic managed SWDS, presenting a controlled
choice of data or	placement of waste presenting the tree following characteristics specifying the
description of	deposition areas, a degree of control of scavenging and a degree of control of
measurement	fires. And the project includes the presence of the cover material, mechanical
methods and	compacting and leveling of the waste.
procedures actually	
applied:	
Any comment:	The MCF accounts for the fact that unmanaged SWDS produce less methane
	from a given amount of waste than managed SWDS, because a larger fraction
	of waste decomposes aerobically in the top layers of unmanaged SWDS.

Data / Parameter:	DOCi		
Data unit:	-		
Description:	Fraction of degradable organic carbon	n in the wa	ste type j (weight fraction)
Source of data used:	IPCC 2006 Guidelines for National G Volume 5, Tables 2.4 and 2.5)	reenhouse	Gas Inventories (adapted from
Value applied:	DOCj organic (food, food waste, beverages and tobacco (other than sludge)) DOCj Pulp, paper and cardboard (other than sludge)	15%	

CDM – Executive Board

page 51

	DOCj wood and wood products	43%	
	DOCj Other (nonfood) organic		
	putrescible garden and park waste	20%	
Justification of the	These values were considered since r	epresent fra	actions of degradable organic
choice of data or	carbon in wet wastes, as it is applied	for the proj	ect location. The procedure
description of	for the ignition loss test is described:	in BS EN 1	5169:2007 Characterization of
measurement	waste. Determination of loss on ignit	ion in wast	e, sludge and sediments.
methods and	The percentages listed in are based or	n wet waste	e bases which are
procedures actually	concentrations in the waste as it is de	livered to the	he SWDS. The IPCC
applied:	Guidelines also specify DOC values	on a dry wa	aste basis, which are the
	concentrations after complete remova	al of all mo	ist from the waste, which is
	not believed practical for this situation	n	
Any comment:			

Data / Parameter:	k _i		
Data unit:	1/year		
Description:	Decay rate for the waste type <i>j</i>		
Source of data used:	IPCC 2006 Guidelines for National Gr	eenhouse Gas Inventories (adapted from	
	Volume 5, Table 3.3) - (Methodologica	al tool "Emissions from solid waste	
	disposal sites (version 06.0.1)		
Value applied:	Waste Type	Kj (Tropical and Wet)	
	Pulp, paper and cardboard	0.07	
	Food, food waste, sewage sludge,	0.40	
	beverages and tobacco		
	Textiles	0.07	
	Wood, wood products and straw	0.035	
	Other (nonfood) organic putrescible	0.17	
	garden and park waste		
	MAT ⁴⁰	21.3 °C	
	MAP	1,516.5 mm	
	PET	Not applicable	
Justification of the	Landfills in Brazil are an anaerobic and	d managed SWDS located in tropical	
choice of data or	regions (Mean Annual Temperature > 20°C) and wet (Mean Annual		
description of	Precipitation > 1,000 mm).		
measurement			
methods and			
procedures actually			
applied:			
Any comment:			

Data / Parameter:	GWP_{N2O}

⁴⁰ CIIAGRO - Centro integrado de informações agrometeorológicas (Integrated Center of Agricultural meteorological information). http://www.ciiagro.sp.gov.br/ciiagroonline/Listagens/Resenha/LResenhaLocal.asp (search for Jundiaí and São Paulo that are the closest cities of Barueri)

CDM – Executive Board

Data unit:	tCO ₂ e/tN ₂ O
Description:	Global Warming Potential (GWP) of N2O, valid for the relevant commitment
	period
Source of data used:	IPCC
Value applied:	310
Justification of the	This value is applied for the first period of commitment period. Shall be updated
choice of data or	according to any future COP/MOP decisions, if any.
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	

Data / Parameter:	GWP _{CH4}
Data unit:	tCO ₂ e/tCH ₄
Description:	Global Warming Potential of methane
Source of data used:	IPCC
Value applied:	21
Justification of the	This value is applied for the first period of commitment period. Shall be updated
choice of data or	according to any future COP/MOP decisions.
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	

Data / Parameter:	AF	
Data unit:	%	
Description:	Methane destroyed due to regulatory or other requirements	
Source of data used:	Reducing uncertainties about methane recovered (R) in inventories of emissions of greenhouse gases by waste treatment, and on the parameter Adjustment Factor (AF) in projects for the collection and destruction of methane in landfills under the Clean Development Mechanism (CDM). MAGALHÃES, G. H. C., ALVES, J. W. S., SANTO FILHO, F., COSTA, R. M. and KELSON, M São Paulo, Brasil, 2010 (Available at http://homologa.ambiente.sp.gov.br/biogas/docs/artigos_dissertacoes/magalh aes alves santofilho costa kelson.pdf>. Accessed on November, 2011).	
Value applied:	0.54%	
Justification of the choice of data or description of measurement methods and procedures actually applied:	Following expert's study that states the understanding of methane emissions from passive systems in landfills in Brazil.	
Any comment:	The Adjustment Factor shall be revised at the start of each new crediting	

CDM – Executive Board

period taking into account the amount of GHG flaring that occurs as part of common industry practice and/or regulation at that point in the future. Since
this project activity will last 10 fixed years, this parameter will not be renewed.

Data / Parameter:	NCV_{fuel}
Data unit:	MJ/kg
Description:	Net calorific value of fuel (natural gas)
Source of data used:	Country specific data given by <i>COMGÁS</i> – Gas Company of São Paulo State
	from free translation of Portuguese Companhia de Gás de São Paulo (available
	at: < <u>http://www.comgas.com.br/quero_industria/gasnatural/beneficios.asp</u> >.
	Accessed on November, 2011) as per guidance from the Board.
Value applied:	51.34
Justification of the	Country specific data available on official site.
choice of data or	
description of	
measurement	
methods and	
procedures actually	
applied:	
Any comment:	Ex ante

Data / Parameter:	EF _{fuel}
Data unit:	tCO ₂ /MJ
Description:	Emission factor of the fuel
Source of data used:	2006 IPCC Guidelines for National GHG Inventories - Volume 2: Energy -
	Table 2.2
Value applied:	0.0000561
Justification of the	IPCC default values were used since country or project specific data is not
choice of data or	available or difficult to obtain.
description of	
measurement	
methods and	
procedures actually	
applied:	
Any comment:	Not applicable

Data / Parameter:	EF_{N2O}	
Data unit:	kgN ₂ O/tonne waste (dry)	
Description:	Aggregate N ₂ O emission factor for waste incineration	
Source of data used:	Table 5.6 of 2006 IPCC Guidelines for National GHG Inventories	
Value applied:	0.05	

CDM - Executive Board

page 54

Justification of the	IPCC default values were used since country or project specific data is not
choice of data or	available or difficult to obtain.
description of	
measurement	
methods and	
procedures actually	
applied:	
Any comment:	

Data / Parameter:	EF_{CH4}	
Data unit:	KgCH ₄ /tonne waste (dry)	
Description:	Aggregate CH ₄ emission factor for waste incineration	
Source of data used:	As per guidance from the Board, IPCC default values should be used only when	
	country or project specific data are not available or difficult to obtain	
Value applied:	0.0002	
Justification of the	IPCC default values were used since country or project specific data is not	
choice of data or	available or difficult to obtain.	
description of		
measurement		
methods and		
procedures actually		
applied:		
Any comment:		

B.6.3. Ex-ante calculation of emission reductions:

Following the AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., the calculation for the emission reductions is presented.

Baseline Emissions (BE_v)

To calculate the baseline emissions, project participants shall use Equation 2 explained in section B.6.1. The results are presented:

Table 12 - Results for the Baseline Emissions calculation

	BE y	MBy	MDreg,y	BEen,y
	tCO2	tCO2	tCO2	tCO2
2014	43,616	26,937	145	16,824
2015	125,463	85,546	462	40,378
2016	163,910	124,202	671	40,378
2017	190,672	151,110	816	40,378
2018	209,537	170,077	918	40,378
2019	223,046	183,659	992	40,378
2020	232,908	193,575	1,045	40,378
2021	240,271	200,978	1,085	40,378
2022	245,911	206,649	1,116	40,378

CDM - Executive Board

page 55

2023	250,348	211,110	1,140	40,378
2024	197,745	175,137	946	23,554

With the intention of estimating the $MD_{reg,y}$ from equation 6, a conservative ex-ante estimation of the amount of methane that is destroyed/combusted during the year, in tonnes of CO2e, will be done following specifications of AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0)., that proposes the use of the amount of methane that would be generated in the landfill converted to carbon dioxide ($BE_{CH4,SWDS,y}$) from premise in Equation 3 ($MB_y = BE_{CH4,SWDS,y}$) and also the emission related to the methane flared in the baseline (landfill), using an Adjustment Factor of 0.54% (source: Reducing uncertainties about methane recovered (R) in inventories of emissions of greenhouse gases by waste treatment, and on the parameter Adjustment Factor (AF) in projects for the collection and destruction of methane in landfills under the Clean Development Mechanism (CDM). MAGALHÃES, G. H. C., ALVES, J. W. S., SANTO FILHO, F., COSTA, R. M. and KELSON, M.. São Paulo, Brasil, 2010), as presented below:

Table 13 – Results for the methane that would be destroyed in the absence of the project activity in year y (MDreg,y)

	MDreg,y	MBy	AF
	tCO2	tCO2	%
2014	145	26,937	0.54%
2015	462	85,546	0.54%
2016	671	124,202	0.54%
2017	816	151,110	0.54%
2018	918	170,077	0.54%
2019	992	183,659	0.54%
2020	1,045	193,575	0.54%
2021	1,085	200,978	0.54%
2022	1,116	206,649	0.54%
2023	1,140	211,110	0.54%
2024	946	175,137	0.54%

In order to calculate MB_y is calculated as per the *Methodological tool "Emissions from solid waste disposal sites (version 06.0.1)*. In order to value the parameter $BE_{CH4,SWDS,y}$ the latest version of the mentioned tool must be used. The amount of methane that would, in the absence of the project activity, be generated from disposal of waste at the solid waste disposal site $(BE_{CH4,SWDS,y})$ is calculated based on a first order decay (FOD) model, which differentiates the types of waste (named by \mathbf{j}) with respectively respective constant decay rates, k_i , and fractions of degradable organic carbon (DOC_i). The FOD model calculates the methane generated occurring in year y (a period of 12 consecutive months) or month m based on the waste streams of waste types \mathbf{j} ($W_{j,x}$) disposed in the SWDS over a specified time period (years or months). The other parameters to be included in Equation 4 were described in section B.6.1 and B.6.2:

CDM - Executive Board

page 56

Table 14 - Results for BE_{CH4,SWDS,y}

	BE
	CH4,swds,y
	tCO2
2014	26,937
2015	85,546
2016	124,202
2017	151,110
2018	170,077
2019	183,659
2020	193,575
2021	200,978
2022	206,649
2023	211,110
2024	175,137

As it was shown in section B.6.1, the unique value that is not a default given by the methodology is $W_{j,x}$, that represents the amount of waste disposed in the SWDS in that year. The Equation 5 also differentiates the types of waste between a list given for DOC (degradable organic carbon) and k (decay rate), that reference to:

Table 15 -List of type of waste, following DOC and k specifications

DOC	k
Wood and wood products	Pulp, paper, cardboard (other than sludge), textiles
Pulp, paper and cardboard (other than sludge)	Wood, Wood products and straw
Food, food waste, beverages and tobacco	Other (non-food) organic putrescible garden
(other than sludge)	and park waste
Textiles	Food, food waste, sewage sludge, beverages
	and tobacco
Garden, yard and park waste	-
Glass, plastic, metal, other inert waste	-

Then, it is necessary to find the sort of waste following these lists in order to apply the correct factor for each type of waste (named as $A_{j,x}$ by the referred methodology). Therefore, for the Project Activity, the composition of waste was identified and also their percentages in the total amount, as they are presented in the table below:

Table 16 - Proportion of each type of waste to be delivered to the Project Activity

Waste Type					
Waste	Unit	Proportion			
Wood, wood products	%	0.55			
Pulp, paper and cardboard (other than	%	8.22			

page 57

sludge)		
Food, food waste, sewage sludge,		71 25
beverages and tobacco	%	/1.23
Textiles	%	1.43
Glass, metal, Plastic, Styrofoam, pet, other		18.54
inert waste	%	10.34

Source: data provided by the project participant. Details are given in section B.7.2.

And, then, for the calculation of Equation 5, the amount (in tonnes per year) of wastes is:

Table 17 – Amount of waste applying Equation 5

Year	Food	Paper	Textile	Wood
2014	81,274	9,379	1,637	628
2015	195,057	22,510	3,928	1,506
2016	195,057	22,510	3,928	1,506
2017	195,057	22,510	3,928	1,506
2018	195,057	22,510	3,928	1,506
2019	195,057	22,510	3,928	1,506
2020	195,057	22,510	3,928	1,506
2021	195,057	22,510	3,928	1,506
2022	195,057	22,510	3,928	1,506
2023	195,057	22,510	3,928	1,506
2024	113,784	13,131	2,291	879

Baseline emissions from generation of energy

For Scenario 1 (identified in section B.4), the $BE_{EN,y}$ is determined considering only the baseline emissions from electricity generated utilizing the combustion heat from incineration in the project activity and exported to the grid, where the quantity of net electricity generation supplied by the project plant to the grid in year y (EG_{d,y}, in MWh/y, by Equation 8) was determined, for the purpose of *ex-ante* estimative as being equal to the average assured power (17.526 MW) multiplied by the number of hours of operation in the year (7,800 h). These figures result in an electricity generation by the plant considered in this CDM Project Activity equal to 136,702.8 MWh/year.

The CO₂ Emission Factor of the electric power generation verified in the National Interconnected System (SIN – Sistema Interligado Nacional) of Brazil is calculated from the generation registers of the dispatched plants consolidated by the National Operator of the Electric System (ONS) and, especially, for the thermoelectric plants (fossil fuel based). The calculation procedure of the CO₂ emission factor was developed jointly between the Ministry of Science and Technology (MCT – Ministério de Ciência e Tecnologia) and the Ministry of Mines and Energy (MME – Minintério de Minas e Energia), following as base the Tool to calculate the emission factor of an electricity system (version 2.2.1). This procedure is in accordance with the operative practices of SIN, regulated by the National Agency of Electrical Energy (ANEEL).

Following that systematic, the CO₂ Emission Factor started to be calculated by *ONS* for the Interconnected National System and it is available to be consulted online by the interested public and investors. Moreover, the *MCT* supplies, besides the emission factor, a descriptive manual of the formulas

CDM - Executive Board

page 58

used in the factor calculations. Therefore, the resulting emission factor for 2010 ($EF_{grid,CM,y}$) is 0.3100 tCO₂e/MWh for 2010, since the Operation Margin valued in 0.4796 tCO₂e/MWh and the Build Margin in 0.1404 tCO₂e/MWh. Applying an arithmetic average, it achieve the 0.3100 tCO₂e/MWh for the emission factor of Brazilian Electrical Grid, where was available data for the project activity.

The operating margin for the project boundary is calculated *ex-post* using the full generation-weighted average for the baseline year. The amount of fuel consumption for thermal generation for the project boundary is available for Brazilian DNA. The average $EF_{grid,OM,y}$ for the project activity is 0.4796 (kg CO_2e/kWh) in 2010. At the tables 13 below the values are given.

Table 18 -Values of EF_{grid,OM,y} in 2010

	Emission Factor of Brazilian National Grid 2010											
	Month Average Factor (tCO2/MWh)											
	Month											
Jan	Jan Febr March April May June July Aug Sept Oct Nov Dec Average											
0.2111	0.2798	0.2428	0.2379	0.3405	0.4809	0.4347	0.6848	0.7306	0.7320	0.7341	0.6348	0.4796

The build margin approach aims to make a "best guess" on the type of power generation facility that would have otherwise been built, in the absence of the GHG mitigation project. For the project activity the data based on year 2010 are provided through the *ONS*. The values for energy generation are defined through the wholesale electricity market operator (*CCEE*).

The build margin is estimated *ex-post*, based on the most recent built plants, which comprise the larger annual generation compared to the recently built 20%, thus they represent the capacity additions to the system. The $EF_{grid,BM,v}$ for the selected plants is 0.1404 in 2010.

Finally, the baseline emission factor $EF_{grid,CM,y}$ is calculated as the weighted average of the Operating Margin emission factor $(EF_{grid,OM,y})$ and the Build Margin emission factor $(EF_{grid,BM,y})$:

$$EF_{grid,CM,y} = (\omega_{BM} * EF_{grid,BM,y}) + (\omega_{OM} * EF_{grid,OM,y})$$
 Equation 11

Where:

 $\omega_{BM} = 0.5$

 $\omega_{OM} = 0.5$

Both ω_{BM} and ω_{OM} have a value of 0.5 because the project activity is not a wind and solar power generation project activity.

Table 19 - Values of baseline electricity emission

	$\mathrm{BE}_{\mathrm{EN,y}}$	BEelec,y
	tCO2	tCO2
2014	16,824	16,824
2015	40,378	40,378
2016	40,378	40,378
2017	40,378	40,378
2018	40,378	40,378

CDM – Executive Board

page 59

2019	40,378	40,378
2020	40,378	40,378
2021	40,378	40,378
2022	40,378	40,378
2023	40,378	40,378
2024	23,554	23,554

Project Emissions (PE_v)

The applicable sources for project emissions are, from Equation 12, emissions on-site due to fuel consumption on-site in year y ($PE_{fuel, on-site,y}$) and emissions from waste incineration in year y ($PE_{i,y}$). The considered fossil fuel in the first parameter is the natural gas used as auxiliary fossil fuels needed to be added into incinerator. The used NCV_{fuel} is valued in 51.34 MJ/kg (where information provided by Comgas is used, as explained in section B.6.1 and B.6.2). Also, the EF_{fuel} that represents the CO_2 emissions factor of the fuel was valued in 0.0000561 tCO₂/MJ (based on IPCC, 2006 as described in previous sections). The $F_{cons,y}$, the fuel consumption on site in year y, is considered to be an average of 497,900 kg per year (650,000 Nm3/year * 0.766 kg/m3⁴¹ as technical expert declaration⁴²). And the yearly value achieved by this type of Project Emission is 1,434 tCO2e.

The project emissions due to the incineration process, PE_{i,v}, is calculated based on fossil-based waste CO₂ emissions from waste incineration biomass combustion in year y and N₂O and CH₄ emissions from the final stacks from waste incineration biomass combustion in year y in Equations 14, 15 and 16.

For the first estimative ($PE_{i,f,v}$), option 2 of the possibilities given by the mentioned methodology is used. A daily amount of 750 tonnes of waste is considered ($A_{msw,y}$) and the proportion given in table 16 above influences the FCF_{msw} identification, which considers the plastic, textile⁴³ and paper to present Fossil Carbon Fraction. In order to calculate the FCF for each type of waste, the fossil carbon fraction of total carbon is multiplied by the total carbon content of dry weight and sequentially multiplied by the dry matter content in % of wet weight.

The amount of 750 tonnes/day is an estimative provided in the section 4.2.2 of the Technical Proposal from Foxx Soluções Ambientais Ltda. to the Competitive Bidding Process 023/2010 of the Municipality of Barueri. From this total amount, it is predicted, based on provided information in 2010 (at the Biding process period), that 490.4 tonnes/day are from Barueri Municipality and 259.6 tonnes from other clients (Carapicuíba and Santana de Parnaíba). This is an average for the entire period of the project (for 30 years of the signed contract).

The result is given below:

Table $20 - FCF_{msw}$ calculation

⁴¹ Given by local natural gas supplier. Available at

http://www.comgas.com.br/quero_industria/gasnatural/beneficios.asp. Accessed on April, 2012.

⁴² Following Paragraph 84 of the version 01.2 of the VVM "The DOE shall cross check the information provided in the PDD with other verifiable and credible sources, such as local expert opinion, if available." This information was provided by Keppel Seghers by email on March, 6th 2012. This information was available to the Validation Team.

⁴³ 40 percent of *textiles are* assumed to be synthetic (default). Expert judgement by the authors. IPCC, 2006

CDM - Executive Board

page 60

	Fossil carbon fraction in % of total carbon	Total carbon content in % of dry weight	Dry matter content in % of wet weight	FCF msw
Plastic	100%	75%	100%	75.00%
Textile	20%	50%	80%	8.00%
Paper	1%	46%	90%	0.41%

In addition, the last parameter given in Equation 15 is the combustion efficiency for the incinerator, which is assumed to be close to 100% (IPCC, 2006). And, then, the $PE_{i,f,y}$ is given below:

Table 21 - Fossil-based waste CO2 emissions from waste incineration in year y

	PEi,f,y	A msw,y	FCF msw	EF
	tCO2	ton/y	fraction	fraction
2014	45,293	114,063	0.1083	1
2015	108,703	273,750	0.1083	1
2016	108,703	273,750	0.1083	1
2017	108,703	273,750	0.1083	1
2018	108,703	273,750	0.1083	1
2019	108,703	273,750	0.1083	1
2020	108,703	273,750	0.1083	1
2021	108,703	273,750	0.1083	1
2022	108,703	273,750	0.1083	1
2023	108,703	273,750	0.1083	1
2024	63,410	159,688	0.1083	1

For Equation 16, the following parameters are applied in order to estimate the Emissions from waste incineration through option 2 of the referred methodology.

Table 22 – Parameters used for the project emissions calculation due to the waste incineration

EF N2O	GWP N2O	EF CH4	GWP CH4	Conservativeness Factor
tonN2O/tonnes of waste	tonCO2/tonN2O	tonCH4/tonne of waste	tonCO2/tonCH4	-
0.0500	310	0.0002	21	1.37

Using these parameters in formula 16, a yearly tCO2e of 5,815 is achieved, being influenced by the amount of waste combusted in year y ($Q_{biomass,y}$).

Table 23 - Project emissions estimative due to the incineration process

	PEi,y	PEi,f,y	PEi,s,y
	tCO2	tCO2	tCO2
2014	47,716	45,293	2,423
2015	114,517	108,703	5,815

CDM - Executive Board

page 61

2016	114,517	108,703	5,815
2017	114,517	108,703	5,815
2018	114,517	108,703	5,815
2019	114,517	108,703	5,815
2020	114,517	108,703	5,815
2021	114,517	108,703	5,815
2022	114,517	108,703	5,815
2023	114,517	108,703	5,815
2024	66,802	63,410	3,392

Leakage Calculation (LE_v)

The source of leakage considered to the proposed project activity is the leakage emissions from the residual waste from MSW incinerator in year $y(L_{i,y})$. Equation 18 applies the following parameters:

Table 24 – Parameters for $L_{i,y}$ calculation

Residual waste from incineration	15%	%
FC residual	3%	%

Since the project activity presents a residual waste from the incinerator containing up to 5% residual carbon, following supplier specifications⁴⁴, equation 18 is assumed, therefore:

Table $25 - L_{i,y}$ calculation

	L i,y	A residual	FC residual
	tCO2	t/y	%
2014	1,882	17,109	3%
2015	4,517	41,063	3%
2016	4,517	41,063	3%
2017	4,517	41,063	3%
2018	4,517	41,063	3%
2019	4,517	41,063	3%
2020	4,517	41,063	3%
2021	4,517	41,063	3%
2022	4,517	41,063	3%
2023	4,517	41,063	3%
2024	2,635	23,953	3%

Emission Reductions (ER_y)

⁴⁴ Based on *Kepel Seghers* guarantee – section 4.1. Document dated of December, 2011 Named "Proposal for: Barueri Waste-to-energy plant Guarantees" states that "the maximum total organic carbon (TOC) in the bottom ash will be less than 3%".

CDM – Executive Board

page 62

The emission reductions figure the following:

	Year	Project Emissions (tCO2)	Baseline Emissions (tCO2)	Leakage (tCO2)	Emissions Reductions (tCO2)
1	2014*	48,313	43,616	1,882	(6,579)
2	2015	115,952	125,463	4,517	4,994
3	2016	115,952	163,910	4,517	43,441
4	2017	115,952	190,672	4,517	70,204
5	2018	115,952	209,537	4,517	89,068
6	2019	115,952	223,046	4,517	102,577
7	2020	115,952	232,908	4,517	112,439
8	2021	115,952	240,271	4,517	119,803
9	2022	115,952	245,911	4,517	125,443
$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	2023	115,952	250,348	4,517	129,880
1 1	_2024*_	67,638	197,745	2,635	127,472
	Total	1,159,516	2,123,426	45,169	918,742

^{*} Since August, 1st 2014 to July, 31st 2024.

B.6.4 Summary of the ex-ante estimation of emission reductions:

Year	Estimation of project activity emissions (tonnes of CO ₂ e)	Estimation of baseline emissions (tonnes of CO ₂ e)	Estimation of leakage (tonnes of CO ₂ e)	Estimation of overall emission reductions (tonnes of CO ₂ e)
2014*	48,313	43,616	1,882	-6,579
2015	115,952	125,463	4,517	4,994
2016	115,952	163,910	4,517	43,441
2017	115,952	190,672	4,517	70,204
2018	115,952	209,537	4,517	89,068
2019	115,952	223,046	4,517	102,577
2020	115,952	232,908	4,517	112,439
2021	115,952	240,271	4,517	119,803
2022	115,952	245,911	4,517	125,443
2023	115,952	250,348	4,517	129,880
2024**	67,638	197,745	2,635	127,472
Total (tonnes of CO ₂ e)	1,159,516	2,123,426	45,169	918,742

^{*}Since August 1st
** Until July 31st

CDM - Executive Board

page 63

B.7. Application of the monitoring methodology and description of the monitoring plan:

Data monitored and required for verification and issuance will be kept for two years after the end of the crediting period or the last issuance of CERs for this project activity, whichever occurs later. The parameters chosen for the calculation of the emissions factor were ex-ante (see Section B.6.2).

B.7.1 Data and parameters monitored:

Data / Parameter:	$arphi_{ m default}$
Data unit:	-
Description:	Default value for the model correction factor to account for model uncertainties
Source of data to be	Methodological tool "Emissions from solid waste disposal sites (version 06.0.1) -
used:	default value for humid/wet condition under Application B.
Value of data	
applied for the	
purpose of	
calculating	
expected emission	
reductions in	
section B.5	0.99
Description of	This value (tool) is required in the methodology AM0025 - "Avoided emissions
measurement	from organic waste through alternative waste treatment processes" (Version
methods and	13.0.0).
procedures to be	
applied::	
QA/QC procedures	Calculated annually
to be applied:	
Any comment:	

Data / Parameter:	$F_{cons,v}$
Data unit:	Kg
Description:	Fuel consumption on-site during year <i>y</i> of the crediting period
Source of data to be	Paid fuel invoices
used:	
Value of data applied	497,900 (estimative number from technical expert information. Details in
for the purpose of	section B.6.3)
calculating expected	
emission reductions	
in section B.5	
Description of	Not applicable
measurement	
methods and	
procedures to be	
applied::	
QA/QC procedures	The amount of fuel will be derived from the paid fuel invoices (administrative

CDM - Executive Board

to be applied:	obligation) and monitored annually.
	This parameter includes the auxiliary fossil fuels that need to be added in the incinerator or used for mechanical or thermal treatment process. For the ex-ante estimation, the value was used following technical expert declaration 45
	estimation, the value was used following technical expert declaration ⁴⁵ .

Data / Parameter:	$A_{MSW,y}$
Data unit:	tonnes/yr
Description:	Amount of MSW fed into the waste incineration plant
Source of data to be	Project participants
used:	
Value of data	273,750
applied for the	
purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	By accessing the complex, the trucks be weighed with the waste (charged) in the
measurement	"ENTRANCE" scale, then turn out the waste and will be weighed again in the
methods and	"EXIT" scale.
procedures to be	A magnetic card reader and a card unique to each transport vehicle will be used
applied:	to correlate the number of vehicle registration to the weight of the vehicle at the
	entrance and exit, and the tare, the amount of waste and the time of delivery.
	All transactions will be recorded in the computer storage of weighing data. For
	vehicles that do not have a registered magnetic card, it will be necessary to
OA/OC massadamas	incorporate details of the transaction manually. These data will be stored and correlated in a similar manner to that described
QA/QC procedures:	above. Alternatively, connect an intercom weighing the control room, so the
	transaction details will be incorporated into computer data storage by the
	operator. A ticket will be printed in the output of weighing all the details of the
	transaction. The accuracy of the weighing system is 99%, and the scales will be
	calibrated regularly according to current standards, as described in the Technical
	Proposal from Foxx Soluções Ambientais Ltda. to Osasco City Hall, Ecoosasco
	Ambiental S.A.
Any comment:	Continuously, aggregated at least annually

Data / Parameter:	Z
Data unit:	-
Description:	Number of samples collected during the year x
Source of data to be	Project participants
used:	
Value of data applied	1 (for ex-ante estimation)
for the purpose of	
calculating expected	
emission reductions	

_

 $^{^{45}}$ Following Paragraph 84 of the version 01.2 of the VVM "The DOE shall cross check the information provided in the PDD with other verifiable and credible sources, such as local expert opinion, if available."

UNFCCC

CDM – Executive Board

in section B.5	
Description of	Yearly. The contents of the recipients for the gravimetric analysis may
measurement	be poured on the sorting table, consisting of two sieves in series with meshes.
methods and	Each group may be weighed separately and groups of Thick and Medium should
procedures to be	be forwarded for screening. Screening of the material and parcel of the
applied:	sample, separated according to the following ratings for the group of Thick and
	Medium. Classification should be made in: Organic Waste, Paper / Cardboard,
	glasses, metals, composites, plastics, textiles, sanitary textiles, various fuels,
	various non-combustible and special wastes. Each material should be
	weighed separately to obtain the fraction of its gravimetric
	percentage composition of sample of the waste.
QA/QC procedures	This parameter only needs to be monitored if the waste prevented from disposal
to be applied:	includes several waste categories j, as categorized in the tables for DOC _i and k _i .
	Since the project activity is under this case, the PP will monitor this parameter
	four times per year.
Any comment:	

Data / Parameter:	a, b, c, d, e, g
Data unit:	%
Description:	Effect of the uncertainty of different parameters
Source of data to be used:	Project participants
Value of data applied	Used the instructions in the Methodological tool "Emissions from solid waste
for the purpose of	disposal sites (version 06.0.1).
calculating expected	Applied values:
emission reductions	a 2%
in section B.5	b 10%
	c 5%
	d 0%
	e 0%
	g 5%
Description of	Annually if the conditions described in the Instructions for selecting the factor in
measurement	Table 3 of the Methodological tool "Emissions from solid waste disposal sites
methods and	(version 06.0.1) have changed (e.g. a change in how the weight of the waste is
procedures to be	measured). Once for the crediting period, if these conditions do not change.
applied:	
QA/QC procedures	-
to be applied:	
Any comment:	For details, refer to section B.6.1. Used in Option 2 for determining the model
	correction factor.

Data / Parameter:	FCF_{MSW}
Data unit:	Fraction
Description:	Fraction of fossil carbon in MSW
Source of data to be	Sample measurements by project participants
used:	

CDM – Executive Board

Value of data applied for the purpose of calculating expected emission reductions	0.1083
in section B.5	
Description of	The following standards should be used:
measurement	 ASTM D6866-08: "Standard Test Methods for Determining the
methods and	Biobased Content of Solid, Liquid, and Gaseous Samples Using
procedures to be	Radiocarbon Analysis";
applied:	ASTM D7459-08: "Standard Practice for Collection of Integrated
	Samples for the Speciation of Biomass (Biogenic) and Fossil-Derived
	Carbon Dioxide Emitted from Stationary Emissions Sources"
QA/QC procedures	The size and frequency of sampling should be statistically significant with a
to be applied:	maximum uncertainty range of 20% at a 95% confidence level. As a minimum,
	sampling should be undertaken four times per year. Samples need to be
	representative of all categories of waste. DOEs should check the consistency
	between the sample composition sent to labs for determining fossil carbon in
	waste and the actual waste received on site. Project proponents are required to
	keep records of the composition of the waste sample sent for testing. Lab results
	reports for fossil carbon should also include the composition of the waste sample that was tested
Any comment:	that was tested
Any comment:	

Data / Parameter:	EF
Data unit:	Fraction
Description:	Combustion efficiency for waste
Source of data to be used:	The source of data should be the following, in order of preference: project specific data, country specific data or IPCC default values. As per guidance from the Board, IPCC default values should be used only when country or
XX 1 0 1 1 1 1	project specific data are not available or difficult to obtain
Value of data applied	
for the purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	-
measurement	
methods and	
procedures to be	
applied:	
QA/QC procedures:	
Any comment:	Annually

Data / Parameter:	MB_y
Data unit:	tCH ₄
Description:	Methane produced in the landfill in the absence of the project activity in year y
Source of data to be	Calculated as per the Methodological tool "Emissions from solid waste disposal

CDM – Executive Board

used:	sites (version	06.0.1)
Value of data applied	Year	MBy (tCO ₂)
for the purpose of	2014	26,937
calculating expected	2015	85,546
emission reductions	2016	124,202
in section B.5	2017	151,110
	2018	170,077
	2019	183,659
	2020	193,575
	2021	200,978
	2022	206,649
	2023	211,110
	2024	175,137
Description of	As per the Me	thodological to
measurement	(version 06.0.	1)
methods and		
procedures to be		
applied:		
QA/QC procedures	•	thodological to
to be applied:	(version 06.0.	1)
Any comment:	-	

Data / Parameter:	$\mathrm{EG}_{d,y}$
Data unit:	MWh
Description:	Amount of electricity generated utilizing the combustion heat from incineration
	in the project activity displacing electricity in the baseline during the year y
Source of data to be	Electricity meter
used:	
Value of data applied	130,260
for the purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	Electricity meter will be subject to regular (in accordance with stipulation of the
measurement	meter supplier) maintenance and testing to ensure accuracy. The readings will be
methods and	double checked by the electricity distribution company.
procedures to be	
applied:	
QA/QC procedures	-
to be applied:	
Any comment:	

Data / Parameter:	CEF _d
Data unit:	tCO ₂ /MWh
Description:	Emission factor of displaced electricity by the project activity
Source of data to be	Captive power plant: estimated as per equation 23.

CDM – Executive Board

used:	Grid: Calculated based on data published by Brazilian/DNA, using the procedures in the latest approved version of the "Tool to calculate the emission factor of an electricity system (version 2.2.1). This procedure of calculation was made by Brazilian DNA for the National Interconnected System as described in section B.6.3.
Value of data applied	0.3100 (base year: 2010 for ex-ante estimative)
for the purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	Follow procedures as described in the Tool to calculate the emission factor of an
measurement	electricity system (version 2.2.1).
methods and	
procedures to be	
applied:	
QA/QC procedures:	In order to present the national emission factor, the National Operator of the
	System provides to MCT the original data to do the calculation procedure.
Any comment:	The monitoring frequency of the parameter is annually.

Data / Parameter:	$Q_{biomass,y}$
Data unit:	tonne/yr
Description:	Amount of waste incinerated in year y
Source of data to be	
used:	
Value of data applied	273,750
for the purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	All produced stabilized biomass will be trucked off from site. All trucks leaving
measurement	site will be weighed.
methods and	
procedures to be	
applied:	
QA/QC procedures	
to be applied:	
Any comment:	This parameter will be not measured to be included in the emission reductions
	calculation, thus this value will be considered the same amount as $A_{MSW,y}$.

Data / Parameter:	A _{residual}
Data unit:	tonnes/yr
Description:	The amount of the residual waste from the incinerator
Source of data to be	Project participants
used:	
Value of data applied	36,956
for the purpose of	

CDM – Executive Board

calculating expected emission reductions in section B.5	
Description of	Scale
measurement	
methods and	
procedures to be	
applied:	
QA/QC procedures	Scale will be subject to periodic calibration (in accordance with stipulation of the
to be applied:	weighbridge supplier)
Any comment:	

Data / Parameter:	FC _{residual}
Data unit:	%
Description:	Fraction of residual carbon in the residual waste of MSW incinerator
Source of data to be	Sample measurements by project participants
used:	
Value of data applied	5%
for the purpose of	
calculating expected	
emission reductions	
in section B.5	
Description of	
measurement	
methods and	
procedures to be	
applied:	
QA/QC procedures	
to be applied:	
Any comment:	The size and frequency of sampling should be statistically significant with a
	maximum uncertainty range of 20% at a 95% confidence level. As a minimum,
	sampling should be undertaken four times per year.

Data / Parameter:	$\mathbf{W}_{\mathbf{X}}$					
Data unit:	tons					
Description:	Total amount of organic waste prevented from disposal in year <i>x</i> (tons)					
Source of data to be	Measu	Measurements made by the project participant.				
used:						
Value of data applied for	1					
the purpose of		Food	Paper	Textile	Wood	
calculating expected		195,057	22,510	3,928	1,506	
emission reductions in	•					
section B.5:						
Description of	Contin	Continuously, aggregated at least annually. It is measured by the weighing scale				
measurement methods		in the entrance of the landfill. Trucks are weighted in the landfill entrance and				
and procedures to be	exit. T	exit. The difference of weights gives the amount of waste.				
applied:						

UNFCCC

CDM – Executive Board

page 70

QA/QC procedures to be	This value will be measured by a weighing scale installed in the entrance of the
applied:	landfill. They will be calibrated by an entity accredited by INMETRO (Brazilian
	institute for metrology and calibration). This calibration will follow the
	standards and procedures described in <i>Portaria INMETRO MICT 236/94</i> ⁴⁶ .
Any comment:	

Data / Parameter:	$p_{n,i,x}$
Data unit:	-
Description:	Weight fraction of the waste type j in the sample n collected during the year x
Source of data to be	Sample measurements made by the project participant.
used:	
Value of data applied for	
the purpose of	Organic 0.7125
calculating expected	Paper 0.0822
emission reductions in	Textile 0.0143
section B.5:	Wood 0.0055
	Refer to tables in the section B.6.3 and the CER spreadsheet.
Description of	Sample the waste prevented from disposal, using the waste categories <i>j</i> , as
measurement methods	provided in the table for <i>DOCj</i> and <i>kj</i> , and weigh each waste fraction. The size
and procedures to be	and frequency of sampling should be statistically significant with a maximum
applied:	uncertainty range of 20% at a 95% confidence level. As a minimum, sampling
	should be undertaken four times per year.
QA/QC procedures to be	
applied:	waste sample for each type of material found in the sample according to
	the quartering method. The scale will be calibrated as specifications.
Any comment:	This parameter only needs to be monitored if the waste prevented from disposal
	include several waste categories j, as categorized in the tables for DOCj and kj.

Data / Parameter:	$\mathbf{EF}_{\mathrm{grid,CM,y}}$
Data unit:	tCO ₂ /MWh
Description:	Combined margin emission factor for the grid in year y
Source of data to be used:	Calculated based on data published by Brazilian/DNA, using the procedures in
	the latest approved version of the "Tool to calculate the emission factor of an
	electricity system (version 2.2.1). This procedure of calculation was made by
	Brazilian DNA for the National Interconnected System as described in section
	B.6.3.
Value of data applied for	0.3100 (base year: 2010 for ex-ante estimative)
the purpose of calculating	
expected emission	
reductions in section B.5:	
Description of	Follow procedures as described in the Tool to calculate the emission factor of
measurement methods	an electricity system (version 2.2.1).
and procedures to be	
applied:	

_

 $^{^{46}\} This\ procedure\ is\ available\ at:\ http://www.smfbalancas.com.br/calibracao/legislacao.htm.\ Accessed\ in\ November,\ 2011.$

CDM - Executive Board

page 71

QA/QC procedures to be	In order to present the national emission factor, the National Operator of the
applied:	System provides to <i>MCT</i> the original data to do the calculation procedure.
Any comment:	

Data / Parameter:	$\mathrm{EF}_{\mathrm{grid,OMy}}$
Data unit:	tCO ₂ equ/MWh
Description:	CO ₂ Operating Margin emission factor for the national grid
Source of data to be	DNA published data calculated according to Tool to calculate the emission
used:	factor of an electricity system (version 2.2.1)
Value of data applied	0.4796 (base year 2010)
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Follow procedures as described in the Tool to calculate the emission factor of
measurement methods	an electricity system (version 2.2.1).
and procedures to be	
applied:	
QA/QC procedures to	In order to present the national emission factor, the National Operator of the
be applied:	System provides to <i>MCT</i> the original data to do the calculation procedure.
Any comment:	

Data / Parameter:	$\mathrm{EF}_{\mathrm{grid},\mathrm{BMy}}$
Data unit:	tCO ₂ equ/MWh
Description:	CO ₂ Build Margin emission factor for the Brazilian electrical System
Source of data to be	Data obtained from ONS (National Operator System) and calculated according
used:	to Tool to calculate the emission factor of an electricity system (version 2.2.1).
Value of data applied	0.1404 (base year: 2010)
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Follow procedures as described in the Tool to calculate the emission factor of
measurement methods	an electricity system (version 2.2.1).
and procedures to be	
applied:	
QA/QC procedures to	In order to present the national emission factor, the National Operator of the
be applied:	System provides to <i>MCT</i> the original data to do the calculation procedure.
Any comment:	

B.7.2. Description of the monitoring plan:

The monitoring plan details the actions necessary to record all the variables and factors required by methodology AM0025 as detailed in section B.7.1 above. All data will be archived electronically, and backed up regularly. Moreover, it will be kept for the full crediting period, plus two years after the end of the crediting period or the last issuance of CERs for this project activity (whichever occurs later).

CDM - Executive Board

page 72

The monitoring equipment will be chosen carefully to be able to perform good measurements with great quality and lowest possible level of uncertainty. It will be calibrated and maintained according to the manufacturer requirements.

Foxx Soluções Ambientais Ltda. will be responsible for the monitoring process and will train the Project staff in order to satisfactorily fulfill their monitoring obligations with AM0025 - "Avoided emissions from organic waste through alternative waste treatment processes" (Version 13.0.0).. Detailed procedures for calibration of monitoring equipment, maintenance of monitoring equipment and installations, and for records handling are previously described in section B.7.1. All data to be monitored will be collected and cross checked by the Project Developer. The contracted company, under the guidance of the Project Proponent, will provide specialized engineers for electrical design, instrumentation and automation. The instrument engineers have accumulated experience with respect to instruments installed in furnaces, their specification, selection, erection, calibration and start-up. For the automation, standard programs are developed that already have proven their good operation in similar plants. The high degree of automation and the use of the specific grate control system enable the most efficient waste to energy management.

Electricity monitoring, counts on the use of meter equipment projected to register and verify bidirectionally the energy generated by the facility, *i.e.*, by the project owner and the National Chamber of Electric Energy Commercialization (from the Portuguese *Câmara de Comercialização de Energia Elétrica - CCEE*). This energy measurement is fundamental to verify and monitor the GHG emission reductions from this project activity. The Monitoring Plan permits the calculation of GHG emissions generated by the project activity in a straightforward manner, applying the baseline emission factor.

The project will proceed with the necessary measures for the power control and monitoring. Hence, it will be possible to monitor the power generation of the project. Additionally, information regarding power generation and energy supplied to the grid are controlled by the Chamber of Electrical Energy Commercialization *CCEE* (from the Portuguese *Câmara de Comercialização de Energia Elétrica*). *CCEE* makes feasible and regulates electrical energy commercialization.

The total energy generated by the plant to be considered when calculating the emission reduction is obtained by two meters (principal and backup) installed at the local substation, these meters will measure the dispatched energy to the grid. Both energy meters make a continuous and simultaneous reading of the electricity dispatched to the grid, *CCEE* demands that these meters are calibrated by an entity with Brazilian Calibration Net – RBC (from Portuguese *Rede Brasileira de Calibração*) credential.

There will be energy meters, all of them of the models specified by *CCEE*, located at the power plants' substation and also meters located in *Eletropaulo* Substation⁴⁷, where the project calculates electricity dispatched to the national grid, measuring net energy delivered to the grid. Following Module 12 of the grid Procedures from Brazilian National Power System Operator, that states in its submodule 12.2 (http://www.ons.org.br/download/procedimentos/modulos/Modulo_12/Submodulo%2012.2_Rev_1.0.pdf) - Installation of a measurement system for billing— that the data must be integrated to *CCEE* system within intervals of 5 to 60 minutes (depending on the program of the company's billing system).

The entire national grid (electric system) comprises of assets pertaining to measurement (power plants, generating units and loads), as well as the use of main and backup meters at defined measurement points.

⁴⁷ Eletropaulo is a transmission and distribution company in São Paulo State.

CDM - Executive Board

page 73

UNFCCO

The entire national grid is modelled in order to represent a single-threaded system regarding the physical electric power consumers/producers network.

Thus, it is possible to check these values minute by minute, hourly, monthly and so on, since this data is directly connected to *CCEE*. The energy generated by the plants will be cross-checked by *CCEE*, which will generate an official report with the checked information. The compiled data will be used to certify the energy generation reported produced by the Project Participants (PP). Electricity supplied by the project activity to the grid will be checked by internal control and *Câmara Comercializadora de Energia Elétrica – CCEE* registries.

Recalibration of the meter's is scheduled to occur every two years, the recalibration procedures will be executed by a specialized metrology company that will be hired for this specific purpose.

Foxx Soluções Ambientais Ltda. will ensure that the calibration of the meters occurs every 2 years. In addition to this, the company will be responsible for the maintenance of the monitoring equipment; for dealing with possible monitoring data adjustments and uncertainties; for reviewing reported results/data; for internal audits of GHG project compliance with operational requirements and for corrective actions; organising and training, as appropriate, the staff in the appropriate monitoring, measurement and reporting techniques.

The technical team for operation of *Barueri* Energy CDM Project Activity is responsible for project management, as well as for organizing and training of the staff in the appropriate monitoring, measurement and reporting techniques. The information requested for CER calculation, as described in section B.7.1 will be archived in electronic format. Also, Foxx Soluções Ambientais Ltda. is preparing operation, maintenance and emergency manuals, based on the common practice and procedures recommended by their equipment suppliers. The personal training programs will be implemented at the SHPP, capacitating operators in the operational, safety and emergency procedures.

B.8. Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies):

Date of completing the final draft of this baseline section and the monitoring methodology (DD/MM/YYYY) 10/08/2012.

Ecopart Assessoria em Negócios Empresariais Ltda.

Rua Padre João Manoel 222 01411-000 São Paulo – SP Brazil

Adriana Berti

adriana.berti@eqao.com.br Phone: +55 +11 3063-9068 Fax: +55 +11 3063-9069

Ecopart is the Project Advisor and also a Project Participant.

UNFCCC

CDM - Executive Board

page 74

SECTION C. Duration of the project activity / crediting period

C.1. Duration of the <u>project activity</u>:

C.1.1. Starting date of the project activity:

27/01/2012 (DD/MM/YYYY)

According to the CDM Glossary of Terms the starting date of a CDM project activity is "the earliest date at which either the implementation or construction or real action of a project activity begins". Furthermore the guidance also clarifies that "the start date shall be considered to be the date on which the project participant has committed to expenditures related to the implementation or related to the construction of the project activity (...), for example, the date on which contracts have been signed for equipment or construction/operation services required for the project activity".

Considering the above information, the starting date of the project activity will be when the project proponent signs the Public-Private Partnership with *Barueri* Municipality and committed to expenditures to build the project under a Warranty Insurance Policyholder valued of BRL 3,645,942.04 valid until January, 22nd 2013. For details, check section B.5.

C.1.2. Expected operational lifetime of the project activity:

 $28 \text{ y} - 0 \text{ m.}^{48}$

C.2. Choice of the <u>crediting period</u> and related information:

The project activity will use a fixed crediting period.

C.2.1. Renewable crediting period:

C.2.1.1. Starting date of the first <u>crediting period</u>:

Not applicable.

C.2.1.2. Length of the first crediting period:

Not applicable.

_

⁴⁸ Based on the Commercial Proposal (depreciation of the plant) of May, 16th 2011 applied for the Bidding Proposal for *Barueri* Municipality of Concetion Process number 023/2010. Available to the Validation Team.

CDM – Executive Board

page 75

C.2.2. Fixed crediting period:					
	C.2.2.1.	Starting date:			
01/08/2014 (DD/MM/YYYY).			
	C.2.2.2.	Lenoth:			

10 y - 0 m.

CDM - Executive Board

page 76

SECTION D. Environmental impacts

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

In Brazil, the sponsor of any project that involves construction, installation, expansion or operation of any polluting or potentially polluting activity or any other capable to cause environmental degradation is obliged to secure a series of permits from the relevant environmental agency (federal and/or local, depending on the project).

The environmental licensing process and the environmental impact assessment of polluting and potentially polluting activities were implemented by the Federal Law nr. 6,938 dated August, 31st 1981 - the National Environmental Policy (from the Portuguese *Politica Nacional do Meio Ambiente – PNMA*⁴⁹).

The National Environmental Council Resolution (from the Portuguese *Conselho Nacional do Meio Ambiente - CONAMA*) was also implemented by the *PNMA* and is a consultative and deliberative organ which aims advise, study and propose to the Government guidelines of policies for the environment and the natural resources and deliberate on norms and standards that are in light with an ecologically balanced environment and essential to a healthy quality of life.

In addition to the *PNMA*, other norms and laws were issued by *CONAMA* in order to regulate the permitting process and the environmental impact assessment according to the activity characteristics.

CONAMA Resolution n. 001⁵⁰ states in its 2nd Article, item II that power plants with installed capacity greater than 10 MW of installed capacity must apply the permitting process, do the Environmental Impact Assessment (from the Portuguese Estudo de Impacto Ambiental) and submit it to the respective environmental state agency in order to obtain the necessary permits for the project.

Barueri Energy CDM Project Activity consists of the construction of a Waste-to-Energy Plant (in a free translation from the Portuguese *Usina de Recuperação de Energia*) which use solid urban waste in order to generate electricity and avoid that the urban waste would be sent landfills.

Also *CONAMA* Resolution n. 237⁵¹, issued on December, 19th 1997, requires the following permits as part of the permitting process:

- Preliminary License (Licença Prévia or LP);
- Construction License (*Licença de Instalação* or LI); and
- Operation License (*Licenca de Operação* or LO).

⁴⁹ Available at: http://www.planalto.gov.br/ccivil_03/leis/L6938.htm

⁵⁰ Available at: http://www.mma.gov.br/port/conama/res/res86/res0186.html

⁵¹ Available at: http://www.mma.gov.br/port/conama/res/res97/res23797.html

CDM - Executive Board

page 77

The process starts with a previous consultation to the local environmental department, which in the case of the project activity is the Technology Company of Environmental Sanitation, linked to the Secretariat of Environment of the State Government (CETESB - Companhia de Tecnologia de Saneamento Ambiental). The project participant protocols in CETESB the Work Plan for the preparation of Environmental Impact Assessment (EIA) accompanied by the development and characterization of a simplified diagnosis of its area of influence, as well as the methodology and content of studies needed to assess the relevant environmental impacts. The Work Plan of Barueri Energy CDM Project Activity has been filed in 24/Jan/2012 by SGW – company hired to develop the EIA for Barueri Waste-to-Energy Plant.

Docketed the Work Plan with the necessary documentation, the developer shall submit, within fifteen (15) days, the vouchers relating to the publication in the Official Diary of the State, in a newspaper of general circulation and in a local newspaper, the opening of the term forty-five (45) days for consultation on the project to be forwarded to CETESB. Based on the analysis of the Work Plan and other information in the process, CETESB defines the Reference Terms setting a deadline of 180 days to prepare the Environmental Impact Assessment to publish that decision, which is condition for which the developer may require a preliminary license (LP), which presents the following information in summary:

- Project sponsor identification;
- Project characterization:
 - o Reasons for the project implementation;
 - o Project location;
 - o Description of project implementation and operation.
- Description of legal and institutional aspects;
- Environmental diagnosis:
 - o Description of physical, biota and socioeconomic aspects.
- Identification and assessment of environmental impact;
- Proposition of mitigating measures;
- Development of Environmental Programs.

It is required license concerning:

- Incineration Plant and Associated Units;
- Incinerator;
- Substation;
- Transmission line;
- Lines of Steam and Hot Water;
- Other support units.

After the first evaluation of the documents and the EIA, *CETESB* issues a Technical Conclusive Opinion, which may:

UNFCCC

CDM - Executive Board

page 78

- a) Refuse the license application, whereas the EIA showed no environmental feasibility of the project and publish in the Official Diary of the State to dismiss.
- b) Indicate the environmental viability of the project, the conditions for the Installation License and Operating License.

Approved the study in above case (b), CETESB issues the Preliminary License (LP) indicating its validity.

This analysis of the project and its EIA are made by the Plenary of State Council on the Environment (CONSEMA - Conselho Estadual do Meio Ambiente) when requested by the Secretary of the Environment or by decision of a Plenary, at the request of one fourth of its members.

After the Plenary of State Council on the Environment's evaluation, a resolution approving the project issued by this entity is forwarded to *CETESB* issuing the Preliminary License, establishing its validity, and publishes in the Official Diary of the State.

The result of those assessments is the Preliminary Permit (LP), which reflects the local environmental agency positive understanding regarding the environmental project concepts.

Barueri Energy CDM project activity is a Recovery Energy Plant or *URE* located at Barueri municipality, state of São Paulo. Considering the particular characteristic presented by *UREs* the Environmental State Agency of São Paulo (CETESB – Companhia de Tecnologia de Saneamento Ambiental), issued on November, 04th 2009, the SMA-079⁵², that states about guidelines and conditions concerning to the operation and the permitting process of the thermal treatment of solid waste on *UREs*. Further, CONAMA 316⁵³, issued on October, 29th 2002, regulates procedures and criteria for the operation of waste thermal treatment systems, in which Recovery Energy Plants (from the Portuguese *Usinas de Recueperação de Energia – UREs*) can be included.

The Resolution SMA-079 defines a *URE* as "A unit that perform a thermal treatment of solid waste, recovering the thermal energy generated through the combustion."

The main points raised by this Resolution considering the *UREs* are described below.

Article 4: "The location, construction, installation, extension, alteration and operation of a URE depends on a previous permitting process of the Environmental Agency, observing the specifications of CONAMA 316, not excluding other required permits."

Article 6: "The URE installation shall be projected, equipped, constructed and operated in a way that the emissions levels do not surpass the limits (Annex I) established by this Resolution."

Article 10: "The first verification concerning the emission limits fulfillment shall occur at least at full load capacity and before the Operation Permit issuance."

⁵² Available at: http://www.ambiente.sp.gov.br/legislacao/estadual/resolucoes/2009 res est sma 79.pdf

⁵³ Available at: http://www.mma.gov.br/port/conama/res/res02/res31602.html

CDM - Executive Board

page 79

Article 12: "The installation and operation of the air pollutant continuously monitoring system shall be previously assessed by the Environmental Agency."

Considering the mentioned Laws and Resolutions above, it is clear that this kind of project will have to perform the Licensing process in order to implement and start operation.

Considering that *Barueri* Energy CDM Project Activity consists of the implantation of a *URE*, the following legal and institutional aspects will be considered in order to perform the Environment Assessment and obtainment of the project licenses mentioned below:

- CONAMA Resolution refer to the Environmental Licensing;
- CONAMA Resolution nr. 316 dated October, 29th 2002 establishes procedures and criteria concerning waste thermal treatment systems;
- SMA 079 Resolution, dated November, 4th 2009 which refer to the environmental licensing of solid waste thermal treatment in Energy Recovery Facility (from the Portuguese *Usina de Recuperação de Energia URE*);
- Law of the state of São Paulo 12,300 dated March, 16th 2006, which established the State Policy of Solid Waste;
- Atmospheric polutant emission and noise level limits;
- Natural Resources Protection Law (air, water, soil, fauna and flora);
- Brazilian Forest Code (from the Portuguese *Código Florestal Brasileiro*) and the protection of special areas (from the Protuguese *Área de Preservação Permanente APP*);
- Compensation Measures in Conservation Units Law.

In addition, the following programs are proposed during the project implementation and operation:

- Social Communication Program;
- Civil works mobilization and demobilization Program;
- Environmental Control Program of Civil Work;
- Environmental Management Program;
- Monitoring Programs;
- Environmental Compensation Program.

Besides, the deficit of areas around the main metropolis for the licensing and implementation of new landfills and the depletion of the operational landfills, some technologies as the Energy Recovery Facility are being developed as a solution for the urban waste disposal. This kind of technology which uses solid waste as fuel in order to produce electricity reduces considerably the solid waste which would be sent to landfills.

CDM – Executive Board

page 80

Regarding the impacts that the proposed project activity will present, the below list is presented:

- Air quality: a comparative study points out that emissions from Waste-to-energy plants will stop immediately after its closure, while in landfills, emissions continue even after the dozens of years of closure, due to the difficulties of capturing the biogas and manure. Further, the project activity will provide the installation of a control system of atmospheric emissions (reactor and fabric filter), the realization of Fire Test and implementation of a Monitoring plan of Air Quality;
- Noise levels: the operational activity will be audible in the west area of the project. The mitigation proposal recommends that it is measured actual levels of noise and proceed to the acoustic modeling, considering each equipment, topography and existing and to be constructed buildings, estimating with greater certainty the noise level to determine the required noise attenuation and the implementation of a monitoring program noise;
- Biota: considering the strong anthropic existing Area Directly affected, and therefore the absence of natural vegetation cover, it was not detected impacts on the biota.

Moreover, there are a large number of positive impacts. Some examples are:

- Increase of work opportunity during construction and operation period;
- Improvement in community perception towards waste management, which would have a significant impact to other regions;
- Decrease of large areas to treat and dispose municipal waste.

Further, with the presentation of the mentioned EIA to CETESB on August, 7th 2012, the Preliminary License was required by the Project Participant. The next step is to hold a public audience within next 45 days right after the above date to continue the License Process. The project was considered feasible at environmental point of view, as per the presented EIA.

D.2. If environmental impacts are considered significant by the project participants or the <u>host Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the host Party:

As mentioned above, *Barueri* Energy CDM Project Activity is under Preliminary License stage, elaborating the EIA. Therefore, there are no studies or conclusions about the new project concerning the environmental aspects. When the studies and Licenses are issued, theses aspects will be evaluated. However the Project Participants inform that all the described licensing procedure will be accomplished. Otherwise, the project will not start operation, as guaranteed by the local environmental agency of São Paulo State – *CETESB* and national regulations.

UNFCCC

CDM - Executive Board

page 81

Through an appropriate management, the incineration will be made removing the risk of toxic effects on the local community and environment, including odour nuisances, air quality and pollutants, thermal treatment of the municipal waste, noise levels and so on. Besides, there will be an improvement of air quality, since the odors related to CH4 production will be reduced. Thus, the installation of a set of wells designated for incineration will lead into a daily monitoring and proper operation and no significant adverse impacts are expected due to the project activity implementation.

According to the federal and local states legislation, the environmental licensing process requests public hearings with the local community. Also, the same legislation requests the announcement of the issuance of the licenses (LP, LI and LO) in the Official Diary of the State (*Diário Oficial do Estado*) and in the regional newspapers. The announcements for the project are available for consultation under request.

CDM - Executive Board

UNFCCC

page 82

SECTION E. Stakeholders' comments

E.1. Brief description how comments by local stakeholders have been invited and compiled:

The Brazilian Designated National Authority, "Comissão Interministerial de Mudança Global do Clima", requests comments from local stakeholders and the validation report issued by an authorized DOE according to the Resolution nr. 1 issued on September 11th, 2003 and rectified by Resolution n. 7 issued on March 5th, 2008, in order to provide the letter of approval.

Resolution n. 7 determines that copies of the invitations for comments must be sent by the project proponents at least to the following agents involved in and affected by the project activities and at least 15 days before the Global Stakeholder Process (GSP):

- Federal Attorney for the Public Interest;
- State Attorney for the Public Interest;
- Brazilian Forum of NGOs and Social Movements for Environment and Development;
- State Environmental Agency;
- City Hall;
- City Council;
- Municipal Environmental Agency;
- Community Associations;

Invitation letters were sent to the following agents (copies of the letters and post office confirmation of receipt communication are available upon request):

- Federal Attorney for the Public Interest;
- State Attorney for the Public Interest of São Paulo;
- Brazilian Forum of NGOs and Social Movements for Environment and Development;
- State Environmental Agency of São Paulo (Companhia de Tecnologia de Saneamento Ambiental CETESB);
- City Hall of *Barueri*;
- City Council of *Barueri*;
- Environmental Agency of Barueri (Secretaria de Recursos Naturais e Meio Ambiente de Barueri);
- Community Association of Barueri (Sindicato dos Servidores Municipais de Barueri).

Copies of the letters and post office confirmation of receipt are available upon request and will be submitted to the DOE during the validation of the Project Activity.

UNFCCC

CDM - Executive Board

page 83

E.2. Summary of the comments received:

During the GSP, the project activity received a comment from Mariel Vilella on behalf of Global Alliance for Incinerator Alternatives (GAIA) has sent letter requiring information about the environmental integrity in a major way of the project and raised questions on the subject of the additionality.

E.3. Report on how due account was taken of any comments received:

Considering the comments received, Project Participants responded the correspondence letter explaining the points raised by Mariel Vilella and GAIA - Global Alliance for Incinerator Alternatives.

- Threat of waste pickers and recyclers jobs: GAIA claims that, by burning recyclable materials, waste pickers will lose their jobs. PPs explain that the incinerated waste is the residue of the municipal recycling cooperative. Therefore, no recyclable waste is burnt. Also, social programs will be implemented as establish in the contract signed by the project proponent.
- Lack of Environmental Impact Assessment: PPs clarify that the Environmental Impact
 Assessment will be developed to obtain the licenses required by the Brazilian
 regulation.
- Increased levels of pollution: PPs ensure the respect to the Brazilian environmental regulation.
- Stakeholder's inappropriate consultation: As mentioned above, the stakeholder consultation was carried out according to the Resolution nr. 7 issued by the Brazilian DNA. Additionally, a public meeting was held with the participation of the waste pickers' cooperative and local population.
- Impact on recycling rates: PPs reinforce that the waste destined to the incineration passed thought a screening to separate recycled material.
- Lack of alternate scenarios: PPs clarify that different alternatives and technologies were analyzed during the project conception and validation.

CDM – Executive Board

page 84

Annex 1

CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY

Organization:	Foxx Soluções Ambientais Ltda.
Street/P.O.Box:	Rua Samuel Morse, 134 – 3° andar Brooklin
Building:	
City:	São Paulo
State/Region:	São Paulo
Postcode/ZIP:	04576-060
Country:	Brazil
Telephone:	+ 55 (11) 5103-5300
FAX:	+ 55 (11) 5103-5301
E-Mail:	<u>alexandre.citvaras@foxxpart.com.br</u>
URL:	
Represented by:	Alexandre Dell'Aquila Citvaras
Title:	
Salutation:	Mr.
Last name:	Citvaras
Middle name:	Dell'Aquila
First name:	Alexandre
Department:	Development of new business
Mobile:	
Direct FAX:	+ 55 (11) 5103-5301
Direct tel:	+ 55 (11) 5103-5300
Personal e-mail:	<u>alexandre.citvaras@foxxpart.com.br</u>

Organization:	Ecopart Assessoria em Negócios Empresariais Ltda.
Street/P.O.Box:	Rua Padre João Manuel, 222
Building:	Trad Tudio Vodo Mando, 222
City:	São Paulo
State/Region:	São Paulo
Postcode/ZIP:	01411-000
Country:	Brazil
Telephone:	+ 55 (11) 3063-9068
FAX:	+ 55 (11) 3063-9069
E-Mail:	focalpoint@eqao.com.br
URL:	www.eqao.com.br
Represented by:	Melissa Hirschheimer
Title:	
Salutation:	Ms.
Last name:	Hirschheimer
Middle name:	
First name:	Melissa

CDM – Executive Board

page 85

Department:	
Mobile:	
Direct FAX:	+ 55 (11) 3063-9069
Direct tel:	+ 55 (11) 3063-9068
Personal e-mail:	focalpoint@egao.com.br

CDM – Executive Board

page 86

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

No public funding is involved in the present project.

This project is not a diverted ODA from an Annex 1 country.

UNFCCC

CDM - Executive Board

page 87

Annex 3

BASELINE INFORMATION

The Brazilian electricity system, for the purpose of CDM activities, was delineated as a single interconnected system comprehending the five geographical regions of the country (North, Northeast, South, Southeast and Midwest). This was determined by the Brazilian DNA through its Resolution nr. 8 dated 26th May, 2008.

More information on how the Interconnected System is delineated and the emission factor values is available at the Brazilian DNA's website http://www.mct.gov.br/index.php/content/view/74689.html>.

The following figures are the information provided by *Keppel Seghers* that composed the table designed in section B.5 related to the Common Practice Analysis.

CDM – Executive Board

page 88

Annex 4

MONITORING INFORMATION
