Inner products and Norms

Inner product of 2 vectors (Read sec. 2.2)

 \blacktriangleright Inner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x, y) or y^Tx

For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

An important property: Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \quad orall \; x \; \in \; \mathbb{C}^n, orall y \; \in \; \mathbb{C}^m$$

Show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$

Csci 5304 – September 8, 2013

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

ightharpoonup A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

$$1. ||x|| \ge 0, \quad \forall \ x \in \mathbb{X}, \quad \text{and} \quad ||x|| = 0 \text{ iff } x = 0.$$

$$||\alpha x|| = |\alpha|||x||, \quad \forall \ x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$$

3.
$$||x + y|| \le ||x|| + ||y||$$
, $\forall x, y \in X$.

> 3. is called the triangle inequality.

Important example: Euclidean norm on $X = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (bbl search) how to show that these are indeed norms for any p > 1 (Not easy for 3rd requirement!)

A few properties:

 \blacktriangleright The limit of $||x||_p$ when p tends to infinity exists:

$$\lim_{p o \infty} \|x\|_p = \max_{i=1}^n |x_i|$$

- ightharpoonup Defines a norm denoted by $\|.\|_{\infty}$.
- The cases p=1, p=2, and $p=\infty$ lead to the most important norms in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2}, \ \|x\|_\infty = \max_{i=1,...,n} |x_i|.$$

➤ The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

ightharpoonup The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q \;, ext{ with } frac{1}{p} + frac{1}{q} = 1$$

Equivalence of norms:

In finite dimensional spaces (\mathbb{R}^n , \mathbb{C}^n , ..) all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there is a constant α such that,

$$\phi_1(x) \leq \alpha \,\, \phi_2(x)$$

- How can you prove this result?
- **▶** We can bound one norm in terms of the other:

$$\beta \phi_2(x) \le \phi_1(x) \le \alpha \phi_2(x)$$

- Show that for any x: $\frac{1}{\sqrt{n}} \|x\|_1 \leq \|x\|_2 \leq \|x\|_1$
- What are the "unit balls" $B_p=\{x\mid \|x\|_p\leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm $\|.\|$ if, by definition,

$$\lim_{k o \infty} \|x^{(k)} - x\| = 0$$

- ▶ Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- ➤ Notation:

$$\lim_{k o\infty}x^{(k)}=x$$

Example: The sequence

$$x^{(k)} = \left(egin{array}{c} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{array}
ight)$$

converges to

$$x = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresoponding component x_i of x.

Matrix norms

- ➤ See Sec. 2.3 of text
- ➤ Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,
 - 1. $||A|| \ge 0$, $\forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 0
 - 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \ \forall \ \alpha \in \mathbb{C}$
 - 3. $||A + B|| \le ||A|| + ||B||$, $\forall A, B \in \mathbb{C}^{m \times n}$.
- ➤ However, these will lack (in general) the right properties for composition of operators (product of matrices).
- \blacktriangleright The case of $||.||_2$ yields the Frobenius norm of matrices.

➤ Given a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- ➤ These norms satisfy the usual properties of vector norms (see previous page).
- The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.
- ➤ Again, important cases are for $p = 1, 2, \infty$.

Consistency / sub-mutiplicativity of matrix norms

▶ A fundamental property of matrix norms is consistency

$$||AB||_p \le ||A||_p ||B||_p$$
.

[Also termed "sub-multiplicativity"]

- **Consequence:** $||A^k||_p \le ||A||_p^k$
- $ightharpoonup A^k$ converges to zero if any of its p-norms is < 1

[Note: sufficient but not necessary condition]

Frobenius norms of matrices

➤ The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}$$
 .

- ▶ Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

Compute the Frobenius norms of the matrices

$$egin{pmatrix} 1 & 1 \ 1 & 0 \ 3 & 2 \end{pmatrix} \qquad egin{pmatrix} 1 & 2 & -1 \ -1 & \sqrt{5} & 0 \ -1 & 1 & \sqrt{2} \end{pmatrix}$$

- Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]
- Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm? [Hint: Result is true Use Cauchy-Schwarz to prove it.]

Expressions of standard matrix norms

ightharpoonup Recall the notation: (for square $n \times n$ matrices)

$$ho(A)=\max|\lambda_i(A)|; \quad Tr(A)=\sum_{i=1}^n a_{ii}=\sum_{i=1}^n \lambda_i(A)$$
 where $\lambda_i(A)$, $i=1,2,\ldots,n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|, \ \|A\|_\infty = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|, \ \|A\|_2 = \left[
ho(A^HA)
ight]^{1/2} = \left[
ho(AA^H)
ight]^{1/2}, \ \|A\|_F = \left[Tr(A^HA)
ight]^{1/2} = \left[Tr(AA^H)
ight]^{1/2}.$$

- ➤ Eigenvalues of A^HA are real ≥ 0 . Their square roots are singular values of A. To be covered later.
- ▶ $||A||_2 ==$ the largest singular value of A and $||A||_F =$ the 2-norm of the vector of all singular values of A.
- **C**ompute the p-norm for $p=1,2,\infty,F$ for the matrix

$$A = \left(egin{array}{cc} 0 & 2 \ 0 & 1 \end{array}
ight)$$

Show that $\rho(A) \leq ||A||$ for any matrix norm.

 \triangle Is $\rho(A)$ a norm?

- 1. $\rho(A) = ||A||_2$ when A is Hermitian $(A^H = A)$. \triangleright True for this particular case...
- 2. ... However, not true in general. For

$$oldsymbol{A} = \left(egin{matrix} 0 & 1 \ 0 & 0 \end{matrix}
ight),$$

we have ho(A)=0 while $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B=A^T$. Indeed, ho(A+B)=1 while ho(A)+
ho(B)=0.