Example 2

Prove that the segment joining the midpoints of two sides of a triangle is parallel to the third side and is half as long as the third side.

Proof:

Let OPQ be any triangle. Choose convenient axes and coordinates as shown. By the midpoint formula, M has coordinates $\left(\frac{a}{2}, \frac{b}{2}\right)$ and N has coordinates $\left(\frac{a+c}{2}, \frac{b}{2}\right)$.

Slope of $\overline{MN} = 0$ and slope of $\overline{OQ} = 0$. (Why?) Since \overline{MN} and \overline{OQ} have equal slopes, $\overline{MN} \parallel \overline{OQ}$.

Since
$$MN = \frac{a+c}{2} - \frac{a}{2} = \frac{c}{2}$$
 and $QQ = c - 0 = c$, $MN = \frac{1}{2}QQ$.

Classroom Exercises

In Exercises 1-4 use the diagram at the right.

- 1. What kind of figure is quad. OQRS? Why?
- 2. Show that $\overline{OR} \cong \overline{QS}$.
- 3. Show that $\overline{OR} \perp \overline{QS}$.
- **4.** Show that \overline{OR} bisects \overline{OS} .

5. The purpose of this exercise is to prove that the lines that contain the altitudes of a triangle intersect in a point (called the *orthocenter*).

Given $\triangle ROM$, with lines j, k, and l containing the altitudes, we choose axes and coordinates as shown.

- **a.** The equation of line k is $\frac{?}{}$.
- **b.** Since the slope of \overline{MR} is $\frac{c}{b-a}$, the slope of line l is $\frac{?}{}$.
- c. Show that an equation of line l is $y = \left(\frac{a-b}{c}\right)x$.
- **d.** Show that lines k and l intersect where x = b and $y = \frac{ab b^2}{c}$.

- e. Since the slope of $\overline{OM} = \frac{?}{}$, the slope of line j is $\frac{?}{}$.
- **f.** Show that an equation of line j is $y = -\frac{b}{c}(x a)$.
- **g.** Show that lines k and j intersect where x = b and $y = \frac{ab b^2}{c}$.
- h. From parts (d) and (g) we see that the three altitude lines intersect in a point. Name the coordinates of that point.