Basics of programming 3

Multithreading in Java

Thread basics

- Motivation
 - □ in most cases sequential (single threaded)
 applications are not adequate
 - □ it's easier to decompose tasks into separate instruction sequences
 - □ e.g.: keyboard handling and graphical update

single threaded

multithreaded

Java thread basics

- Implicit thread handling
 - □ class *Thread*, interface *Runnable*
 - □ threads share all memory
 - can have static thread-specific data
 - □ threads execute methods
 - □ each thread executing (mostly) independently
 - synchronization by object access (monitors)
 - non-strict priority scheduling

Java thread basics

- Entry point: *run*
 - every thread must have a void run() method
 - □ in this method all Java features can be used
- Starting point
 - □ every thread has a start method
 - □ it has to be called to start the thread
 - □ starts a new execution thread and calls *run*
- Creating a thread
 - □ inheritance (*Thread*) or delegation (*Runnable*)

Creating and starting a thread

Inheritance: extending class Thread

```
public class MyThread extends Thread {
  int a;
  int b;
  public MyThread(int i) { b=i; }
  public void run() {
    for (a = 0; a < b; a++) { System.out.println(a); }
  }
}</pre>
```

```
MyThread mt = new MyThread(1000);
mt.start();
...
```


Creating thread: inheritance

Extending class Thread

Creating and starting a thread

■ Delegation: implementing if. Runnable

```
public class MyThread implements Runnable {
  int a;
  int b;
  public MyThread(int i) { b=i; }
  public void run() {
    for (a = 0; a < b; a++) { System.out.println(a); }
  }
}</pre>
```

```
MyThread mt = new MyThread(1000);
Thread t = new Thread(mt); // kell egy szál, ami futtat
t.start();
...
```


Creating threads: delegation

■ Implementing interface *Runnable*

- run()
 - □ entry point of the thread (like *main* for an application)
- start()
 - □ starts the thread, calls *run()*
- sleep(long millis [, int nanos])
 - □ thread waits for the given time
- join([long millis [,int nanos]])
 - □ waits for the given thread (for a given time)

- yield()
 - □ gives CPU usage to next thread
- interrupt()
 - □ interrupts the thread when it's waiting
 - □ eg. for wait, sleep, etc. InterruptedException
- setDaemon(boolean on)
- boolean isDaemon()
 - □ sets daemon flag
 - □ when JVM stops, it stops all daemon threads
 - non-daemon threads are waited for

- int getState()
 - □ returns state (runnable, waiting, etc, see later)
- int getId()
 - □ returns thread id
- set/getName()
 - □ thread's name
- set/getPriority()
 - □ thread's priority
 - □ is it daemon?

- boolean isAlive()
 - □ does is still run?
- static Thread currentThread()
 - □ reference to the running thread object
 - □ for accessing the thread executing current code
- ThreadGroup getThreadGroup()
 - □ returns threadgroup
- static int activeCount()
 - number of active threads in the threadgroup

- Stopping a thread
 - ☐ *Thread.stop()* method is deprecated

```
private volatile boolean stopSignal;
MyThread() { stopSignal = false; }
public void stop() { stopSignal = true; }
public void run() {
    while (!stopSignal) {
        do a step or two...
    }
}
```


Theads vs. Objects

- Objects have
 - □ state (attributes, associations)
 - □ behaviour (methods)
- Threads do
 - execute statements described in methods
 - □ have *Thread* objects referring to them
 - c.f. Thread.getCurrentThread()
 - OO API for thread handling

Mutual exclusion

- Motivation
 - some resources should be accessed by just a single thread at a time
- Every object has its own monitor
 - □ only one thread allowed inside the monitor
 - □ other threads must wait in the monitor queue
 - □ recursive entry is allowed
- static boolean holdsLock(Object obj)
 - □ checks if actual thread is inside monitor of obj

Mutual exclusion: monitor

Objects' monitors explained

Blocked queue

Mutual exclusion

Entering the monitor with synchronized

```
Hashtable<String, Integer> ht = ...;
public void increment(String s) {
    ...
    synchronized (ht) {
        int i = ht.get(s);
        i++;
        ht.put(s,i);
    }
    ...
}
```


Mutual exclusion

- synchronized
 - □ before a block
 - needs an object reference parameter
 - □ before a method
 - monitor is that of the object whose method is called
 - equivalent to a method wide synchronized block

```
synchronized void foo() {
    ...
}
```


Thread signalling

- Object.wait([long millis [,int nanos]])
 - ☐ if called, the thread will wait for signals for the specified time
 - □ thread must be inside the monitor of the object
 - □ during wait it leaves the monitor temporarily

```
synchronized (obj) {
    ...
    try {
        obj.wait(); // temporarily leaving monitor
    } catch (InterruptedException ie) {...}
    ...
}
```


Thread signalling

- Object.notify()
 - □ notifies a thread that waits on the objects
 - □ thread must be inside the monitor of the object
 - □ notified thread enters the monitor queue of the object
- Object.notifyAll()
 - □ same as above, but notifies all waiting threads

```
synchronized (obj) {
    obj.notify(); // wakes a waiting thread
}
```


Monitors and wait-notify

States of the threads

- NEW
 - newly created, not yet started
- RUNNABLE (+running)
 - □ runs or is able to run (already started)
- BLOCKED
 - □ waits for a monitor
- WAITING, TIMED WAITING
 - □ waiting thread (Object.wait, Thread.sleep)
- **TERMINATED**
 - □ stopped, can not be restarted

Thread state diagram

Thread-safe collections

- Wrapper classes
 - ☐ Fabricated by class Collections
 - public static <T> Collection<T>
 synchronizedCollection(Collection<T> c)
 - also for List, Set, SortedSet, Map, SortedMap
 - □ Backed by original collection
 - Stands between client (caller) and collection
 - Underlying collection is modified, accessed, etc
 - Makes calls synchronized

Thread-safe collections

- Genuine thread-safe collection
 - ☐ In package *java.util.concurrent*
 - □ ConcurrentHashMap
 - Thread-safe *Map* implementation
 - □ CopyOnWriteArrayList/Set
 - Modification creates new array
 - → modification are costly
 - Iterators are independent, but can not modify

Volatile

- Thread data is cached
 - ☐ Cache might be out-of-date
 - Update e.g. before/after synch block
 - → attributes might differ in different caches
 - □ Keyword *volatile*
 - makes attributes's access atomic, synchronized
 - Useful for 2-word types as well (eg. double, long)
 - Makes data fetch atomic

Further thread features

- Interruption
 - □ *InterruptedException*, etc
- Per-thread data
 - □ ThreadLocal<T>
- Threadpools
 - □ Callable and ExecutorService
- Timed starts
 - □ TimerTask