Certified AI Practitioner Week 04 Call 01 - Deploying Open Models the Right Way (From (S) to SageMaker)

Learning Objectives

- Understand what Hugging Face is and its role in modern GenAl workflows
- Decide when to use Hugging Face models vs Amazon Bedrock
- Deploy a Hugging Face model on SageMaker using the HuggingFaceModel class
- Invoke a real-time text classification endpoint and interpret the results
- Explain how SageMaker manages Hugging Face models using containers, IAM, and S3

What is Hugging Face?

Hugging Face is one of the most important open-source communities in machine learning today.

It provides:

- **The Hub** A massive library of pre-trained models for tasks like sentiment analysis, translation, summarization, Q&A, image classification, audio transcription, and more.
- **Transformers library** A Python library for using and fine-tuning state-of-the-art deep learning models from across research and industry.
- Datasets and Tokenizers Tools to make preprocessing, tokenization, and evaluation easier across domains.
- **Community Contributions** Most models on Hugging Face are shared by researchers, developers, and companies around the world.

You can use Hugging Face models:

- Locally (with Python)
- Through APIs (hosted by Hugging Face)
- Or in the cloud (via SageMaker, Vertex AI, etc.)

In this notebook, we'll use Hugging Face models **on SageMaker** using a managed container, without needing to build a custom Docker image.

Why Hugging Face?

Hugging Face is an open-source platform and community centered around modern machine learning — especially natural language processing (NLP).

It provides:

- A massive hub of pre-trained models covering text, vision, and audio tasks
- Tools like transformers, datasets, and tokenizers for building with ML
- A friendly ecosystem for researchers, engineers, and enterprises

With Hugging Face:

- You can browse and deploy thousands of open models
- Fine-tune models for your data
- Run locally or in cloud platforms like SageMaker

Popular Tasks:

Text Classification · Summarization · Question Answering · Translation · Embeddings · Image Recognition · Speech-to-Text

When to Use Hugging Face vs Bedrock

Use Case	Bedrock	Hugging Face
Managed security	✓ Yes	X You manage IAM + roles
Plug-and-play UX	✓ Playground, no code	✗ Requires code and SDK
Bring your own model	X Not yet supported	✓ Upload or fine-tune your own
Community models / open	X Limited to AWS partners	✓ Full access to public models

Infrastructure Setup with CloudFormation

To train models in SageMaker Studio, we first need to provision the necessary infrastructure.

In this step, we'll use an automated **CloudFormation template** to create:

- A SageMaker Studio domain for running cloud-based notebooks
- An **IAM execution role** with S3 and SageMaker permissions
- A dedicated **S3 bucket** to store training data and model artifacts

Instead of clicking through the AWS Console, we'll deploy this setup programmatically using boto3. The stack will output everything you need - including the bucket name and role ARN - to use in the next steps of this notebook.

```
In [7]:
        import boto3
        import json
        def stack_exists(name):
            try:
                cf.describe_stacks(StackName=name)
                return True
            except cf.exceptions.ClientError as e:
                if "does not exist" in str(e):
                    return False
                raise # re-raise any unexpected error
        def deploy_stack(stack_name, template_body, parameters):
            if stack_exists(stack_name):
                print(f" Updating stack: {stack_name}")
                try:
                    response = cf.update_stack(
                        StackName=stack_name,
                        TemplateBody=template_body,
                        Parameters=parameters,
                        Capabilities=["CAPABILITY_NAMED_IAM"]
```

```
waiter = cf.get_waiter("stack_update_complete")
        except cf.exceptions.ClientError as e:
            if "No updates are to be performed" in str(e):
                print("✓ No changes detected.")
                # Print outputs
                outputs = cf.describe_stacks(StackName=stack_name)["Stacks"][0]["Outputs"]
                print("  Stack Outputs:")
                print(json.dumps({o["OutputKey"]: o["OutputValue"] for o in outputs}, indent=2))
                return outputs
            else:
                raise
    else:
        print(f" Creating stack: {stack_name}")
        response = cf.create stack(
            StackName=stack name,
            TemplateBody=template_body,
            Parameters=parameters,
            Capabilities=["CAPABILITY NAMED IAM"]
       waiter = cf.get_waiter("stack_create_complete")
   print(f" \overline{N} Waiting for {stack name} to complete...")
   waiter.wait(StackName=stack name)
   print(" Stack operation completed.")
    # Print outputs
   outputs = cf.describe_stacks(StackName=stack_name)["Stacks"][0]["Outputs"]
   print("  Stack Outputs:")
   print(json.dumps({o["OutputKey"]: o["OutputValue"] for o in outputs}, indent=2))
    return outputs
ec2 = boto3.client("ec2")
cf = boto3.client("cloudformation")
# Get the default VPC ID
vpc_id = ec2.describe_vpcs(Filters=[{"Name": "isDefault", "Values": ["true"]}])["Vpcs"][0]["VpcId"]
# Get a public subnet ID in that VPC
subnets = ec2.describe_subnets(Filters=[{"Name": "vpc-id", "Values": [vpc_id]}])
subnet_id = subnets["Subnets"][0]["SubnetId"]
```

```
# Load your template
 with open("cf_templates/sagemaker_infra.yaml") as f:
     template_body = f.read()
 bucketNameSuffix = "zali"
 stack name = "caip04-cloud-ml-stack"
 parameters = [
     {"ParameterKey": "BucketNameSuffix", "ParameterValue": bucketNameSuffix},
     {"ParameterKey": "VpcId", "ParameterValue": vpc_id},
     {"ParameterKey": "SubnetId", "ParameterValue": subnet_id}
 outputs = deploy_stack(stack_name, template_body, parameters)
Updating stack: caip04-cloud-ml-stack

    Waiting for caip04-cloud-ml-stack to complete...

✓ Stack operation completed.
Stack Outputs:
 "StudioUserName": "caip04-user",
 "BucketName": "caip04-ml-bucket-zali",
 "DomainId": "d-p7phnt0viq28",
 "RoleArn": "arn:aws:iam::458806987020:role/caip04-execution-role-zali"
```

The Hugging Face Ecosystem: Models, Datasets, and Spaces

When you visit huggingface.co, you'll see three main categories at the top:

Models

This is the **model hub** — where you'll find thousands of pre-trained and fine-tuned machine learning models.

You can filter by:

- Task (e.g., sentiment analysis, summarization, translation)
- Framework (e.g., PyTorch, TensorFlow)

• Language or modality (text, image, audio)

In this notebook, we'll use one of these models:

distilbert-base-uncased-finetuned-sst-2-english

Datasets

The **Datasets** tab contains hundreds of benchmark and real-world datasets used for training, testing, and evaluation.

You'll find:

- Benchmark datasets like SST-2, SQuAD, IMDB
- Real-world data for tasks like classification, translation, QA, etc.
- Tools for loading and preprocessing directly with datasets library

Spaces

Spaces are **interactive AI web apps** — powered by models from the hub.

- Built using Gradio or Streamlit
- Visual interface for testing models without code
- Used by companies and individuals to showcase ML apps
- Spaces make models **interactive**
- ✓ Datasets make models trainable
- ✓ Models make ML reusable

What Is the Transformers Library?

The transformers library by Hugging Face is the most widely used Python package for working with **pretrained deep learning** models — especially transformer-based architectures like BERT, GPT, T5, RoBERTa, DistilBERT, and more.

It provides:

- Simple APIs for loading models, tokenizers, and pipelines
- Access to thousands of models on the Hugging Face Hub
- Compatibility with PyTorch, TensorFlow, and JAX
- **W** Built-in support for tasks like:
 - Text classification
 - Summarization
 - Question answering
 - Translation
 - Text generation
 - Zero-shot classification
 - Token classification (NER)
 - Image and audio tasks (via multi-modal models)

Example: Sentiment Analysis in One Line

Why It Matters

- You don't need to train or fine-tune anything to get started.
- Pretrained models + pipelines = instant value from research-grade ML.
- The same models used in academic papers, production systems, and Hugging Face Spaces are accessible in just a few lines of code.

For this lesson, we'll let SageMaker host one of these models for us, using the transformers library under the hood.

Example Model: distilbert-base-uncased-finetuned-sst-2-english

This is a lightweight, pre-trained **DistilBERT** model fine-tuned on the SST-2 dataset for **binary sentiment analysis**.

- Task: text-classification
- Classes: POSITIVE or NEGATIVE
- Input: A string of text (e.g., a product review or tweet)
- Output: A label with a confidence score

We'll deploy this model using the **Hugging Face prebuilt container** for SageMaker, which supports transformers -based models with no need to build custom Docker images.

About the Model Page on Hugging Face Hub

You can view this model live on the Hugging Face website:

distilbert-base-uncased-finetuned-sst-2-english

This page gives you everything you need to use the model:

What You'll Find on the Page

Model card:

Includes an overview of what the model does, the dataset it was trained on (SST-2), and the intended use.

• Widget:

You can test the model directly in your browser by entering text and getting a sentiment result (POSITIVE or NEGATIVE).

• Usage code:

Shows how to load and run the model using transformers in Python.

Example:

```
from transformers import pipeline
classifier = pipeline("sentiment-analysis", model="distilbert/distilbert-base-uncased-finetuned-sst-
2-english")
classifier("This is awesome!")
```

Tags:

Tells you this model supports tasks like text-classification, and that it runs on pytorch.

Model files:

Shows the underlying files (config, tokenizer, weights) that SageMaker will automatically pull when deploying.

Why This Page Matters

- Hugging Face model pages are the **source of truth** for model metadata.
- You'll reference these pages often when building GenAl pipelines in production.
- SageMaker's Hugging Face container can deploy any model from the hub using just this model ID.

Deploy the Hugging Face Model to SageMaker

Now that we've chosen our model (distilbert-base-uncased-finetuned-sst-2-english), we'll deploy it using the **SageMaker HuggingFaceModel class**, which makes it easy to host models from the Hub without custom Docker images.

We specify:

- The model ID from Hugging Face
- The task (e.g., text-classification)
- The runtime environment (Transformers, PyTorch, Python)
- The IAM role to grant SageMaker permissions

Then we deploy the model to a managed SageMaker endpoint.

What Happens Behind the Scenes?

- SageMaker pulls a prebuilt container image for Hugging Face Transformers.
- It spins up a new endpoint (ml.t2.medium) for real-time inference.

Notes

- This model performs binary sentiment analysis (POSITIVE or NEGATIVE).
- The endpoint will incur cost while it is running delete it when you're done.

```
In [9]:
        import boto3
        import sagemaker
        from sagemaker.huggingface import HuggingFaceModel
        roleArn = {o["OutputKey"]: o["OutputValue"] for o in outputs if o["OutputKey"] == "RoleArn"}["RoleArn"]
        # Define model configuration
        hub = {
            'HF_MODEL_ID': 'distilbert-base-uncased-finetuned-sst-2-english',
            'HF_TASK':'text-classification'
        # Create HuggingFaceModel object
        huggingface_model = HuggingFaceModel(
            transformers_version='4.26',
            pytorch_version='1.13',
            py_version='py39',
            env=hub,
            role=roleArn
        # Deploy the model to an endpoint
        predictor = huggingface_model.deploy(
            initial_instance_count=1,
            instance_type='ml.t2.medium',
            endpoint_name='huggingface-text-endpoint'
```

-----!

Trigger the Deployed Endpoint via Boto3

Once your model is deployed to a SageMaker real-time endpoint, you can send it input using the boto3 SageMaker Runtime client.

Function Overview

We define a reusable function: trigger_huggingface_text_endpoint()

- It takes in a **text prompt**
- Sends the prompt to the deployed endpoint using invoke_endpoint()
- Parses and returns the JSON prediction result

Input Format

The input must be structured as:

```
{ "inputs": "Your text here" }
```

```
import boto3
import json

endpoint_name = "huggingface-text-endpoint"

# Create the runtime client
runtime = boto3.client("sagemaker-runtime", region_name="us-east-1")

def trigger_huggingface_text_endpoint(runtime, prompt):

# Prepare the input
payload = {
    "inputs": prompt
}
```

```
# Call the endpoint
response = runtime.invoke_endpoint(
    EndpointName=endpoint_name,
    ContentType="application/json",
    Body=json.dumps(payload)
)

# Parse and print the result
result = json.loads(response['Body'].read())
return result
```

Inference Examples: Sentiment in Action

After deploying the Hugging Face model and invoking it using our function, we tested several real-world phrases to observe how the model classifies sentiment.

Example 1: Positive Sentiment

Example 2: Negative Sentiment

```
In [17]: result = trigger_huggingface_text_endpoint(runtime, "This class is horrible!")
result
Out[17]: [{'label': 'NEGATIVE', 'score': 0.9997609257698059}]
```

Correctly detects the strong negative tone with high confidence.

Example 3: Informal/Slang Language

```
result = trigger_huggingface_text_endpoint(runtime, "This class is the bomb!")
In [18]:
         result
Out[18]: [{'label': 'NEGATIVE', 'score': 0.9928885102272034}]
```


Although the phrase is slang for something very good, the model misclassifies it due to lack of context or training on informal expressions.

Teaching Point

Pretrained models work best with standard, literal phrasing. If your audience uses informal or domain-specific language, you may need to:

- Fine-tune the model
- Add post-processing logic
- Use few-shot prompting (if using a foundation model instead)

This is a great opportunity to talk about **limitations of out-of-the-box models** and the value of customization.

Where is it running?

- Model image is pulled from ECR
- Weights are downloaded from Hugging Face Hub
- Inference runs inside a SageMaker-managed container

Cleanup: Delete the Endpoint and Configuration

After testing your SageMaker-hosted model, it's important to delete the endpoint and its configuration to avoid ongoing charges.

SageMaker real-time endpoints are **always-on** and billed by the hour, even if you're not sending traffic.

What to Delete

- 1. **The Endpoint** This is the live model you invoked.
- 2. **The Endpoint Configuration** This defines the settings (instance type, model, etc.).

Both usually share the same name unless explicitly renamed.

Cleanup: Delete the CloudFormation Stack

If you created infrastructure (like IAM roles or S3 buckets) using a CloudFormation template, you should also clean it up once you're done.

The script below deletes your entire CloudFormation stack and waits for the deletion to complete.

What This Deletes

- IAM roles
- S3 buckets
- SageMaker-related permissions
- Any other resources created in the stack

Be careful — this will **permanently delete** all resources provisioned by the stack.

```
In []: import boto3

cf = boto3.client("cloudformation")
    stack_name = "caip04-cloud-ml-stack"

def delete_stack_and_wait(stack_name):
    print(f" Deleting stack: {stack_name}")

# Initiate deletion
    cf.delete_stack(StackName=stack_name)

# Wait until stack deletion is complete
    waiter = cf.get_waiter("stack_delete_complete")
    print(" Waiting for stack to be fully deleted...")
    waiter.wait(StackName=stack_name)

print(f" Stack '{stack_name}' successfully deleted.")

# Call it
    delete_stack_and_wait(stack_name)
```

Wrap-Up & Takeaways

In This Notebook

In this notebook, you deployed an open-source Hugging Face model to Amazon SageMaker for real-time inference. You:

- Explored the Hugging Face model hub and selected a text classification model
- Used SageMaker's HuggingFaceModel class to deploy the model without Docker

- Sent test inputs using boto3 directly
- Reviewed inference results and observed model behavior on varied input
- Cleaned up your endpoint and CloudFormation stack to avoid charges

This Workflow Reflects What Real ML Teams Do in Production

- Deploy pre-trained models to scalable inference endpoints
- Send payloads via APIs and automate feedback pipelines
- Monitor results and validate predictions against real user input
- Perform cost-aware infrastructure teardown when workloads are complete
- Use model hubs like Hugging Face to accelerate experimentation and delivery

What This Looks Like in Industry: MLOps + DevOps

While this notebook walks through deploying a single Hugging Face model manually, production-grade systems automate and extend this process through **MLOps** and **DevOps** practices.

MLOps Practices

• Model Versioning:

Every model (and dataset) is versioned and stored — often using S3, Git, or tools like MLflow or SageMaker Model Registry.

• Continuous Training Pipelines:

Training is automated via pipelines (e.g., SageMaker Pipelines, Airflow, or Kubeflow) triggered by data drift, retraining schedules, or performance degradation.

• Endpoint Monitoring:

Production endpoints are monitored using tools like CloudWatch, Datadog, or Prometheus to detect latency spikes, input anomalies, or accuracy drops.

• Shadow Testing + A/B Testing:

New models are deployed alongside existing ones to evaluate performance in live environments before being fully promoted.

DevOps Practices

• Infrastructure as Code (IaC):

Everything — IAM roles, S3 buckets, models, endpoints — is created via templates (e.g., CloudFormation, Terraform, or CDK).

• CI/CD for Models:

GitHub Actions, CodePipeline, or Jenkins are used to deploy models automatically when code or config changes are pushed.

• Environment Management:

Teams manage dev, staging, and prod environments separately using tags, branch-based workflows, or isolated accounts.

• Cost and Resource Controls:

Autoscaling, scheduled shutdowns, and tagging help reduce cost and improve visibility across environments.

Final Thought

In this notebook, you walked through the **manual, educational path** of deploying and testing a Hugging Face model. In industry, these same steps are wrapped in automation, monitoring, and governance — enabling teams to scale GenAl reliably and securely.