1

ASSIGNMENT 9

EE24BTECH11011 - PRANAY

40) Let X_1, X_2, \ldots, X_{10} be a random sample size 10 from a population having $N\left(0, \theta^2\right)$ distribution where $\theta > 0$ is and unknowm parameter.Let $T = \frac{1}{10} \sum_{i=1}^{10} X_i^2$. If the mean square error of cT(c > 0), as an estimator of θ^2 , is minimized at $c = c_0$, then the value of c_0 equals

a)
$$\frac{5}{6}$$
 b) $\frac{2}{3}$ c) $\frac{3}{5}$

41) Suppose that $X_1, X_2, ..., X_{10}$ are independent and identically istributed random vectors each having $N_2(\mu, \Sigma)$ distribution, where Σ is non-singular. If

$$U = \frac{1}{1 + \left(\overline{X} - \mu\right)^{\top} \sum^{-1} \left(\overline{X} - \mu\right)} \tag{1}$$

where $\overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$ then the value of $\log_e P(U \leq \frac{1}{2})$ equals

a)
$$-5$$
 b) -10 c) -2 d) -1

42) Suppose that (X, Y) has joint probability mass function

$$P(X = 0, Y = 0) = P(X = 1, Y = 1) = \theta,$$
(2)

$$P(X = 1, Y = 0) = P(X = 0, Y = 1) = \frac{1}{2} - \theta,$$
(3)

where $0 \le \theta \le \frac{1}{2}$ is an unknown parameter. Consider testing $H_0: \theta = \frac{1}{4}$ against $H_1: \theta = \frac{1}{3}$ based on a random sample $\{(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)\}$ from the above probability mass function. Let M be the cardinality of the set $\{i: X_i = Y_i, 1 \le i \le n\}$. If m is the observed value of M, then which one of the following statements is true?

- a) The likelihood ratio test rejects H_0 if m > c for some c
- b) The likelihood ratio test rejects H_0 if m < c for some c
- c) The likelihood ratio test rejects H_0 if $c_1 < m < c_2$ for some c_1 and c_2
- d) The likelihood ratio test rejects H_0 if $m < c_1$ or $m > c_2$ for some c_1 and c_2
- 43) Let g(x) = f(x) + f(2 x) for all $x \in (0, 2)$, where $f: (0, 2) \to \mathbb{R}$ is continuous on (0, 2) and twice differentiable on (0, 2). If g' denotes the derivative of g and f'' denotes the second derivative of f, then which one of the following statements is NOT true?
 - a) There exists $c \in (0, 2)$ such that g'(c) = 0
 - b) If f'' > 0 on (0, 2), then g is strictly decreasing on (0, 1)
 - c) If f'' < 0 on (0, 2), then g is strictly increasing on (1, 2)
 - d) If f'' = 0 on (0, 2), then g is a constant function
- 44) For any subset U of \mathbb{R}^n , let L(U) denote the span of U. For any two subsets T and S of \mathbb{R}^n , which one of the following statements is NOT true?
 - a) If T is a proper subset of S, then L(T) is a proper subset of L(S)
 - b) L(L(S)) = L(S)

- c) $L(T \cup S) = \{u + v : u \in L(T), v \in L(S)\}\$
- d) If α, β , and γ are three vectors in \mathbb{R}^n such that $\alpha + 2\beta + 3\gamma = 0$, then $L(\{\alpha, \beta\}) = L(\{\beta, \gamma\})$
- 45) Let f be a continuous function from [0,1] to the set of all real numbers. Then which one of the following statements is NOT true?

 - a) For any sequence $\{x_n\}_{n\geq 1}$ in [0,1], $\sum_{n=1}^{\infty} \frac{f(x_n)}{n^2}$ is absolutely convergent. b) If |f(x)| = 1 for all $x \in [0,1]$, then $\left| \int_0^1 f(x) dx \right| = 1$. c) If $\{x_n\}_{n\geq 1}$ is a sequence in [0,1] such that $\{f(x_n)\}_{n\geq 1}$ is convergent, then $\{x_n\}_{n\geq 1}$ is convergent.
 - d) If f is also monotonically increasing, then the image of f is given by [f(0), f(1)].
- 46) Let X be a random variable with cumulative distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{4}(x+1) & \text{if } -1 \le x < 0\\ \frac{1}{4}(x+3) & \text{if } 0 \le x < 1\\ 1 & \text{if } x \ge 1. \end{cases}$$
 (4)

Which one of the following statements is true?

- a) $\lim_{n\to\infty} P\left(-\frac{1}{2} + \frac{1}{n} < X < -\frac{1}{n}\right) = \frac{5}{8}$ b) $\lim_{n\to\infty} P\left(-\frac{1}{2} \frac{1}{n} < X < \frac{1}{n}\right) = \frac{5}{8}$ c) $\lim_{n\to\infty} P\left(X = \frac{1}{n}\right) = \frac{1}{2}$ d) $P(X = 0) = \frac{1}{3}$

- 47) Let (X, Y) have joint probability mass function

$$p(x,y) = \begin{cases} \frac{c}{2^{x+y+2}} & \text{if } x = 0, 1, 2, ...; \ y = 0, 1, 2, ...; \ x \neq y \\ 0 & \text{otherwise.} \end{cases}$$
 (5)

Then which one of the following statements is true?

- a) $c = \frac{1}{2}$ b) $c = \frac{1}{4}$
- c) c > 1
- d) X and Y are independent
- 48) Let $X_1, X_2, ..., X_{10}$ be a random sample of size 10 from a $N_3(\mu, \Sigma)$ distribution, where μ and nonsingular Σ are unknown parameters. If

$$\overline{X}_1 = \frac{1}{5} \sum_{i=1}^5 X_i, \quad \overline{X}_2 = \frac{1}{5} \sum_{i=6}^{10} X_i,$$
 (6)

$$S_{1} = \frac{1}{4} \sum_{i=1}^{5} \left(X_{i} - \overline{X}_{1} \right) \left(X_{i} - \overline{X}_{1} \right)', \quad S_{2} = \frac{1}{4} \sum_{i=6}^{10} \left(X_{i} - \overline{X}_{2} \right) \left(X_{i} - \overline{X}_{2} \right)', \tag{7}$$

then which one of the following statements is NOT true?

- a) $\frac{5}{6} (\overline{X}_1 \mu)' S_1^{-1} (\overline{X}_1 \mu)$ follows an F-distribution with 3 and 2 degrees of freedom.
- b) $\frac{6}{(\overline{X}_1-\mu)'S_1^{-1}(\overline{X}_1-\mu)}$ follows an F-distribution with 2 and 3 degrees of freedom.
- c) $4(S_1 + S_2)$ follows a Wishart distribution of order 3 with 8 degrees of freedom.
- d) $5(S_1 + S_2)$ follows a Wishart distribution of order 3 with 10 degrees of freedom.

- 49) Which of the following sets is/are countable?
 - a) The set of all functions from $\{1, 2, 3, ..., 10\}$ to the set of all rational numbers
 - b) The set of all functions from the set of all natural numbers to {0, 1}
 - c) The set of all integer valued sequences with only finitely many non-zero terms
 - d) The set of all integer valued sequences converging to 1
- 50) For a given real number a, let $a^+ = \max\{a, 0\}$ and $a^- = \max\{-a, 0\}$. If $\{x_n\}_{n \ge 1}$ is a sequence of real numbers, then which of the following statements is/are true?

 - a) If $\{x_n\}_{n\geq 1}$ converges, then both $\{x_n^+\}_{n\geq 1}$ and $\{x_n^-\}_{n\geq 1}$ converge b) If $\{x_n\}_{n\geq 1}$ converges to 0, then both $\{x_n^+\}_{n\geq 1}$ and $\{x_n^-\}_{n\geq 1}$ converge to 0
 - c) If both $\{x_n^+\}_{n\geq 1}$ and $\{x_n^-\}_{n\geq 1}$ converge, then $\{x_n\}_{n\geq 1}$ converges
 - d) If $\{x_n^2\}_{n\geq 1}$ converges, then both $\{x_n^+\}_{n\geq 1}$ and $\{x_n^-\}_{n\geq 1}$ converge
- 51) Let A be a 3×3 real matrix such that $A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$, $A \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$, $A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$ Then which of the following statements is/are true?

a)
$$A \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$$

b)
$$A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

$$c) A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

d)
$$A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 0 \end{pmatrix}$$

- 52) Let X be a positive valued continuous random variable with finite mean. If Y = [X], the largest integer less than or equal to X, then which of the following statements is/are true?
 - a) $P(Y \le u) \le P(X \le u)$ for all $u \ge 0$
 - b) $P(Y \ge u) \le P(X \ge u)$ for all $u \ge 0$
 - c) E(X) < E(Y)
 - d) E(X) > E(Y)