WHAT IS CLAIMED IS:

4

5

ı	1.	A memory device comprising:		
2		a plurality of pipeline stages for accessing data;		
3		a plurality of clock domains, each clock domain having circuitry controlled by a		
4	separate clock;			
5		a clock control circuit configured to selectively supply clock signals to the clock		
6	dom	ains so that the clock domains are all activated in advance of, and corresponding		
7	to, w	hen the clock domains are needed for a corresponding pipeline stage, all of the		
8	cloc	k domains being activated sufficiently in advance so that a clock domain turn-on		
9	later	ncy is transparent to a data access.		
1	2.	The memory device of claim 1 wherein the clock domains comprise:		
2		a control circuit clock domain; and		
3		a data path stage clock domain.		
1	3.	The memory device of claim 1 wherein the stages comprise:		
2		a RAS control stage connected to a first clock domain; and		
3		a CAS control stage connected to a second clock domain.		
1	4.	The memory device of claim 1,		
2		a clock source, having at least two clock speeds, for providing clock signals to		
3	the plurality of clock domains;			

1 5. The memory device of claim 4 wherein one of the at least two clock speeds is

clock source in accordance with a needed bandwidth of the interface.

a clock controller configured to dynamically select a clock speed output by the

- 2 a slow clock selected by the clock controller when needed bandwidth is determined by
- 3 the clock controller to be below a predefined threshold, and the slow clock speed is
- 4 slower than another one of the at least two clock speeds.
- 1 6. The memory device of claim 4 wherein the at least two clock speeds includes a
- 2 first clock speed and a second clock speed that is slower than the first clock speed,
- 3 the clock controller monitors bus traffic on a memory bus and selects the first clock

- 12 speed when bus traffic on the memory bus exceeds a predefined threshold, and 4 selects the second clock speed when bus traffic on the memory bus falls below the 5 predefined threshold. 6 A memory device comprising: 7. 1 a plurality of pipeline control stages for accessing data; 2 a plurality of clock domains, each clock domain being connected to one of the 3 4 stages; a clock control circuit configured to selectively supply clock signals to the clock 5 domains so that activation of one control stage automatically initiates activation of a 6 7 subsequent control stage. The memory device of claim 7 wherein a first clock domain includes a sense 8. 1 control circuit, the first clock domain automatically activating a second clock domain 2 including transfer and close control circuits. 3

- 1 9. The memory device of claim 8 wherein a first clock domain includes a transfer
- 2 write control circuit, the first clock domain automatically activating a second clock
- 3 domain including a retire write control circuit.
- 1 10. A memory device comprising:
 - a plurality of pipeline control stages for accessing data;
- a plurality of clock domains, each clock domain being connected to one of the stages;
 - a clock control circuit configured to selectively supply clock signals to the clock domains so that activation of one control stage automatically initiates deactivation of a control stage not needed for a subsequent operation.
- 1 11. The memory device of claim 10 wherein a first clock domain includes a close operation control circuit, the first clock domain automatically deactivating a second clock domain including transfer and retire write control circuits.
- 1 12. A memory system comprising:
- 2 a memory;

2

5

6

7

3 a memory interface	3	a memory	interface
----------------------	---	----------	-----------

- at least a portion of one of the memory and the memory interface having at least two clock speeds;
- a clock controller configured to dynamically select a clock speed in accordance with a needed bandwidth of the interface.
- The memory system of claim 12 wherein the clock controller comprises a
 programmed microprocessor.
- 1 14. The memory system of claim 12 wherein one of the at least two clock speeds
- 2 is a slow clock selected by the clock controller when needed bandwidth is determined
- 3 by the clock controller to be below a predefined threshold; and the slow clock speed is
- 4 slower than another one of the at least two clock speeds.
- 1 15. The memory system of claim 12 wherein the at least two clock speeds includes
- 2 a first clock speed and a second clock speed that is slower than the first clock speed,
- 3 the clock controller monitors bus traffic on a memory bus and selects the first clock
- 4 speed when bus traffic on the memory bus exceeds a predefined threshold, and
- 5 selects the second clock speed when bus traffic on the memory bus falls below the
- 6 predefined threshold.