Complex Numbers: A complex number is an ordered pair (a,b) , where $a,b\in\mathbf{R}$, but we will write this as a+bi

The set of all complex numbers is denoted by C:

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}\$$

Addition and multiplication on ${f C}$ are defined by

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

here $a,b,c,d\in\mathbf{R}$

Properties of complex arithmetic:

commutativity

$$\alpha+\beta=\beta+\alpha$$
 and $\alpha\beta=\beta\alpha$ for all $\alpha,\beta\in\mathbf{C}$

associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C}$

identities

$$\lambda + 0 = \lambda$$
 and $\lambda 1 = \lambda$ for all $\lambda \in \mathbf{C}$

additive inverse for every $\alpha\in\mathbf{C}$, there exists a unique $\beta\in\mathbf{C}$ such that $\alpha+\beta=0$ multiplicative inverse for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha \beta = 1$ distributive property

$$\lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta$$
 for all $\lambda,\alpha,\beta\in\mathbf{C}$

-lpha, subtraction, 1/lpha, division: Let lpha, $eta\in {f C}\cdot$ Let -lpha denote the additive inverse of lpha. Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0$$

Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

· For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is the unique complex

$$\alpha(1/\alpha) = 1$$

· Division on C is defined by

$$\beta/\alpha = \beta(1/\alpha)$$

list, length: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n looks like this:

$$(x_1,\ldots,x_n)$$

Two lists are equal if and only if they have the same length and the same elements in the same order. \mathbb{F}^n : \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \left\{ \left(x_1, \dots, x_n\right) : x_j \in \mathbf{F} \, \mathrm{for} \, j = 1, \dots, n
ight\}$$

For $(x_1,\ldots,x_n)\in \mathbf{F}^n$ and $j\in\{1,\ldots,n\}$, we say that x_j is the $j^{ ext{th}}$ coordinate of (x_1,\ldots,x_n) addition in ${f F}^n$: Addition in ${f F}^n$ is defined by adding corresponding coordinates:

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1 + y_1, \ldots, x_n + y_n)$$

Commutativity of addition in \mathbb{F}^n : If $x, y \in \mathbb{F}^n$, then x + y = y + x o: Let o denote the list of length n whose coordinates are all o:

$$0 = (0, \dots, 0)$$

additive inverse in \mathbb{F}^n : For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x\in \mathbf{F}^n$ such that x+(-x)=0 In other words, if $x=(x_1,\ldots,x_n)$, then $-x=(-x_1,\ldots,-x_n)$ **scalar multiplication in \mathbb{F}^n:** The product of a number λ and a vector in \mathbf{F}^n is computed by mul-

tiplying each coordinate of the vector by λ :

$$\lambda\left(x_{1},\ldots,x_{n}\right)=\left(\lambda x_{1},\ldots,\lambda x_{n}\right)$$

here $\lambda \in \mathbf{F}$ and $(x_1, \ldots, x_n) \in \mathbf{F}^n$