Нильпотентные и разрешимые алгебры Ли

Виногродский Серафим

5 апреля 2022 г.

Содержание

1	Введение		2
		Основные понятия	
	1.2	Линейные алгебры Ли	3
		Абстрактные алгебры Ли	
2	Идеалы и гомоморфизмы		5
	2.1	Идеалы	5
	2.2	Гомоморфизмы	6
3	Разрешимые и нильпотентные алгебры Ли		7
	3.1	решимые и нильпотентные алгебры Ли Разрешимость	7

1 Введение

1.1 Основные понятия

Определение 1.1. Векторное пространство L над полем F, дополненное операцией $L \times L \to L$, которая обозначается $(x,y) \mapsto [x,y]$ и называется *скобкой Ли* или *коммутатором* x и y, называется *алгеброй Ли* над полем F, если выполнен следующий ряд аксиом:

- (L1) Скобка Ли билинейна.
- $(L2) \ [x,x] = 0$ для любого $x \in L$.

(L3)
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 $(x, y, z \in L)$.

Аксиома (L3) называется *тождеством Якоби*. Из аксиом (L1) и (L2), применённых к скобке [x+y,x+y], следует антикоммутативность скобки Ли:

$$(L2') \ [x,y] = -[y,x]$$
 для любых $x,y \in L$.

Обратно, если $\operatorname{char} F \neq 2$, то из утверждение (L2') тривиально следует из аксиомы (L2) и потому для таких полей (L2) эквивалентна (L2').

Определение 1.2. Две алгебры Ли L, L' называются *изоморфными*, если существует такой изоморфизм векторных пространств $\phi: L \to L'$, что

$$\phi([x,y]) = [\phi(x), \phi(y)] \quad \forall x, y \in L.$$

Само отображение ϕ при этом называется *изоморфизмом* алгебр Ли.

Определение 1.3. Подпространство K алгебры Ли L называется *подалгеброй* алгебры L, если K замкнуто относительно скобки Ли, т.е.

$$\forall x, y \in K \quad [x, y] \in K.$$

Нетрудно показать, что само подпространство K вместе с индуцированными операциями также является алгеброй Ли.

Любая алгебра Ли L имеет как минимум две тривиальные (несобственные) подалгебры отвечающие тривиальным подпространствам: $\{0\}$ и L. Также, если $L \neq \{0\}$, то любой ненулевой элемент $v \in L$ задаёт одномерную подалгебру Fv. Умножение в такой алгебре тривиально, поскольку в силу аксиом (L1) и (L2) имеем [x,y]=0 для любых $x,y\in Fv$.

1.2 Линейные алгебры Ли

Пусть V — конечномерное векторное пространство над полем F. Обозначим через $\operatorname{End} V$ множество всех эндоморфизмов в пространстве V. Тогда $\operatorname{End} V$ — векторное пространство размерности n^2 (где $n=\dim V$) над полем F и одновременно $\operatorname{End} V$ — кольцо относительно операции умножения операторов. Определим новую операцию [x,y]=xy-yx, называемую *скобкой* или *коммутатором* элементов x и y. Вместе с ней $\operatorname{End} V$ становится алгеброй Ли над полем F: выполнение аксиом (L1) и (L2) очевидно, а аксиома (L3) напрямую следует из (L1) и (L2). Чтобы отличать полученную алгебраическую структуру от изначальной ассоциативной структуры кольца, мы будем обозначать $\operatorname{End} V$ как $\mathfrak{gl}(V)$, когда она рассматривается как алгебра Ли.

Определение 1.4. Алгебра $\mathfrak{gl}(V)$ называется полной линейной алгеброй.

Определение 1.5. Любая подалгебра $\mathfrak{gl}(V)$ называется линейной алгеброй.

Зафиксировав базис в пространстве V, можно отождествить $\mathfrak{gl}(V)$ с множеством всех матриц размера $n \times n$ над полем F, обозначаемым $\mathfrak{gl}(n,F)$, что удобно при выполнении вычислений в явном виде. Для дальнейших ссылок приведём здесь таблицу коммутирования для $\mathfrak{gl}(n,F)$ в стандартном базисе, состоящем из матриц e_{ij} (у которых в позиции (i,j) стоит 1, а в остальных 0). Поскольку $e_{ij}e_{kl}=\delta_{jk}e_{il}$ (где $\delta_{jk}\in\{0,1\}$), мы получаем, что

$$[e_{ij}, e_{kl}] = \delta_{jk}e_{il} - \delta_{li}e_{kj}.$$

Рассмотрим теперь некоторые примеры линейных алгебр, играющих основную роль в этой работе наряду с $\mathfrak{gl}(V)$. Они разделяются на четыре семейства: $\mathbf{A}_l, \mathbf{B}_l, \mathbf{C}_l, \mathbf{D}_l$ (где $l \geqslant 1$) — и называются классическими алгебрами. В примерах $\mathbf{B}_l - \mathbf{D}_l$ будем считать, что $\mathrm{char}\, \mathbf{F} \neq 2$.

 \mathbf{A}_l : Пусть $\dim V = l+1$. Обозначим через $\mathfrak{sl}(V)$ или $\mathfrak{sl}(l+1, F)$ множество всех эндоморфизмов в пространстве V, имеющих нулевой след. Поскольку

$$Tr(xy) = Tr(yx),$$

 $Tr(x+y) = Tr(x) + Tr(y),$

множество $\mathfrak{sl}(V)$ замкнуто относительно коммутирования и потому является подалгеброй $\mathfrak{gl}(V)$, называемой специальной линейной алгеброй.

Найдём теперь размерность $\mathfrak{sl}(V)$. С одной стороны $\mathfrak{sl}(V)$ — собственная подалгебра $\mathfrak{gl}(V)$, так что её размерность не может быть больше $(l+1)^2-1$. С другой стороны нетрудно явно предоставить такое количество линейно независимых матриц с нулевым следом:

$${e_{ij} \mid i \neq j} \cup {e_{ii} - e_{i+1,i+1} \mid 1 \leqslant i \leqslant l}.$$

Этот базис будем считать стандартным в пространстве $\mathfrak{sl}(l+1, F)$.

 \mathbf{C}_l : ...

 \mathbf{B}_l : ...

 \mathbf{D}_l : ...

Отметим также несколько примеров, играющих далее вспомогательную роль. Пусть $\mathfrak{t}(n,\mathrm{F})$ — множество всех верхнетреугольных матриц, $\mathfrak{n}(n,\mathrm{F})$ — множество строго верхнетреугольных матриц и $\mathfrak{d}(n,\mathrm{F})$ — множество всех диагональных матриц. Тривиально проверяется, что каждое из этих множеств замкнуто относительно коммутирования.

1.3 Абстрактные алгебры Ли

Мы рассмотрели определённое количество естественных примеров линейных алгебр Ли. Иногда, однако, бывает полезно рассматривать и абстрактные алгебры Ли. Например, любое векторное пространство L над полем F можно превратить в алгебру Ли с тривиальным умножением, задав [x,y]=0 для любых $x,y\in L$. Такая алгебра называется абелевой (поскольку в линейном случае равенство [x,y]=0 означает, что x и y коммутируют.)

Из билинейности скобки Ли следует, что если L — алгебра Ли с базисом x_1, \ldots, x_n , то всю её таблицу умножения можно восстановить по структурным константам a_{ij}^k , которые входят в выражения

$$[x_i, x_j] = \sum_{k=1}^{n} a_{ij}^k x_k.$$

Более того, константы a_{ij}^k , для которых $i\geqslant j$, восстанавливаются по остальным в силу свойств (L2) и (L2'). Обратно, можно с нуля определить абстрактную алгебру Ли, задав семейство структурных констант $\left\{a_{ij}^k\right\}$. Естественно, подойдёт не всякое такое семейство. Чтобы заданная таким образом операция коммутирования удовлетворяла аксиомам (L2) и (L3), должны выполняться следующие соотношения:

$$a_{ii}^{k} = a_{ij}^{k} + a_{ji}^{k} = 0;$$

$$\sum_{k=1}^{n} \left(a_{ij}^{k} a_{kl}^{m} + a_{jl}^{k} a_{ki}^{m} + a_{li}^{k} a_{kj}^{m} \right) = 0.$$

2 Идеалы и гомоморфизмы

2.1 Идеалы

Определение 2.1. Подпространство I алгебры Ли L называется идеалом в L, если для любых $x \in L, \ y \in I$ имеем $[x,y] \in I$. (Поскольку [x,y] = -[y,x], это условие можно записать и как $[y,x] \in I$.)

Очевидно, что любая алгебра Ли L имеет два тривиальных (собственных) идеала: $\{0\}$ и L. Менее тривиальный пример — так называемый центр

$$Z(L) \stackrel{\text{def}}{=} \{ z \in L \mid [x, z] = 0 \quad \forall x \in L \}.$$

Определение 2.2. Подалгебра всех линейных комбинаций коммутаторов произвольных элементов алгебры Ли L обозначается [L,L] и называется npoussod-ной алгеброй алгебры L.

Очевидно, что [L,L] является идеалом алгебры L. Так же ясно, что алгебра L является абелевой тогда и только тогда, когда $[L,L]=\{0\}$.

Если I,J — идеалы в L, то и I+J — тоже идеал в L. Аналогично идеалом является и [I,J], где

$$[I,J] \stackrel{\text{def}}{=} \left\{ \sum_{i} [x_i, y_i] : \{x_i\} \subset I, \{y_i\} \subset J \right\}.$$

Производная алгебра [L,L] — частный случай этой конструкции.

Определение 2.3. Если в алгебре Ли L нет идеалов, кроме самой L и $\{0\}$, и при этом $[L,L] \neq \{0\}$ (т.е. L не является абелевой), то алгебра L называется *простой*.

Условие $[L,L] \neq \{0\}$ накладывается для того, что бы не придавать излишнего значения одномерным алгебрам. Нетрудно показать, что для любой простой алгебры L всегда имеем $Z(L)=\{0\}$ и [L,L]=L.

Пример. Пусть $L = \mathfrak{sl}(2, \mathbb{R})$. Выберем тогда стандартный базис в L, состоящий из трёх матриц (см. параграф (1.2)):

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Тогда таблица коммутирования в алгебре L полностью определяется следующими соотношениями:

$$[x, y] = h, \quad [h, x] = 2x, \quad [h, y] = -2y.$$

Пусть I — ненулевой идеал в алгебре L и ax+by+ch — некоторый ненулевой элемент в I. Дважды применяя к нему оператор $\operatorname{ad} x$, получаем $-2bx \in I$, а дважды применяя оператор $\operatorname{ad} y$, получаем $-2ay \in I$. Поэтому, если a или b отлично от нуля, то I содержит y или x, но тогда из определения идеала следует, что $x,y,h \in I$, а значит I=L. С другой стороны, если a=b=0, то $0 \neq ch \in I$, что аналогичным образом влечёт I=L. Получаем, что L — простая алгебра.

Определение 2.4. Пусть L — алгебра Ли, I — собственный идеал в L. Тогда факторпространство L/I с определённой на нём скобкой Ли:

$$[x+I,y+I] \stackrel{\mathrm{def}}{=} [x,y] + I,$$

называется ϕ акторалгеброй L по идеалу I и так же обозначается L/I.

Определение скобки Ли в пространстве L/I корректно и не зависит от выбора представлений x и y для классов эквивалентности. Действительно, если $x'=x+I,\ y'=y+I,$ то имеем $x'=x+u,\ y'=y+v$ (где $u,v\in I$), откуда по линейности скобки Ли

$$[x',y'] = [x,y] + \underbrace{([u,y] + [x,v] + [u,v])}_{\text{элемент из }I},$$

а значит [x', y'] + I = [x, y] + I.

2.2 Гомоморфизмы

Определение 2.5. Пусть L, L'- две линейные алгебры над полем F. Линейное отображение $\phi: L \to L'$ называется *гомоморфизмом* алгебр Ли, если

$$\phi([x,y]) = [\phi(x),\phi(y)] \quad \forall x,y \in L.$$

Определение 2.6. Гомоморфизм алгебр Ли $\phi:L \to L'$ называется

- мономорфизмом, если $\ker \phi = \{0\};$
- эпиморфизмом, если im $\phi = L'$.

Очевидно, что ϕ является изоморфизмом тогда и только тогда, когда ϕ одновременно и моно- и эпиморфизм. Легко так же проверяется, что $\ker \phi$ — идеал в L, а $\operatorname{im} \phi$ — подалгебра алгебры L.

Как и в других алгебраических теориях, для алгебр Ли существует естественное взаимно однозначное соответствие между гомоморфизмами и идеалами: гомоморфизму ϕ ставится в соответствие идеал $\ker \phi$, а идеалу $I-\kappa$ каноническое отображение $\pi:L\to L/I$, заданное правилом $x\mapsto x+I$.

Для изоморфизмомов алгебр Ли выполняются и классические теоремы об изоморфизме:

Утверждение 2.1. Если $\phi: L \to L$ — гомоморфизм алгебр Ли, то $L/\ker \phi \simeq \operatorname{im} \phi$.

Доказательство. Легко показать, что отображение $(x + \ker \phi) \mapsto \phi(x)$ есть изоморфизм алгебр $L/\ker \phi$ и $\operatorname{im} \phi$.

Утверждение 2.2. Если I и J — два идеала в алгебре L и $I \subset J$, то J/I — идеал в L/I, а алгебра (L/I)/(J/I) изоморфна L/J.

Доказательство. Пусть $x+I\in J/I$ и $y+I\in L/I$. Тогда имеем

$$[x + I, y + I] = [x, y] + I \in J/I,$$

а значит J/I — идеал в L/I. Рассмотрим теперь гомоморфизм $\phi: x+I \mapsto x+J$, действующий из L/I в L/J. Отображение ϕ задано корректно, поскольку если x'+I=x+I, то x'=x+i (где $i\in I\subset J$), а значит

$$\phi(x'+I) = (x+i) + J = x + J.$$

Очевидно, что $\ker \phi = J/I$, $\operatorname{im} \phi = L/I$, но тогда по утверждению (2.1) имеем $(L/I)/(J/I) \simeq L/J$.

Утверждение 2.3. Если I и J- два идеала в алгебре L, то $(I+J)/J \simeq I/(I\cap J)$.

Доказательство. Рассмотрим гомоморфизм $\phi: i \mapsto i+J$, действующий из I в (I+J)/J. Очевидно, что $\ker \phi = I \cap J$, $\operatorname{im} \phi = (I+J)/J$, но тогда по утверждению (2.1) имеем $I/(I\cap J) \simeq (I+J)/J$.

3 Разрешимые и нильпотентные алгебры Ли

3.1 Разрешимость

Определим прежде всего следующую последовательность идеалов алгебры Ли L (производный ряд):

$$L^{(0)} = L, \quad L^{(k)} = [L^{(k-1)}, L^{(k-1)}] \quad (k > 0).$$

Определение 3.1. Алгебра Ли L называется *разрешимой*, если $L^{(n)}=\{0\}$ при некотором n. В противном случае алгебра L называется *неразрешимой*.

В частности, абелевы алгебры всегда разрешимы, а простые алгебры заведомо неразрешимы.

Достаточно общим примером разрешимой алгебры Ли является алгебра $L=\mathfrak{t}(n,F)$ верхнетреугольных матриц, введённая в параграфе (1.2). Базис в L состоит из матричных единиц e_{ij} для которых $i\leqslant j$. Размерность L, как

следствие, равна $1+2+\cdots+n=n(n+1)/2$. Чтобы показать, что алгебра L разрешима, вычислим в явном виде её производный ряд, используя формулу для коммутаторов из параграфа (1.2). В первую очередь, имеем $[e_{ii},e_{il}]=e_{il}$ для i< l, откуда следует, что $\mathfrak{n}(n,\mathrm{F})\subset [L,L]$, где $\mathfrak{n}(n,\mathrm{F})$ — подалгебра строго верхнетреугольных матриц. Поскольку $\mathfrak{t}(n,\mathrm{F})=\mathfrak{d}(n,\mathrm{F})+\mathfrak{n}(n,\mathrm{F})$ и $\mathfrak{d}(n,\mathrm{F})$ абелева, можно заключить, что $L^{(1)}=[L,L]=\mathfrak{n}(n,\mathrm{F})$.

Работая далее в алгебре $\mathfrak{n}(n,\mathrm{F})$ естественно определить «уровень» матрицы e_{ij} , как число j-i. Рассмотрим теперь произвольный коммутатор $[e_{ij},e_{kl}]$ базисных элементов в $\mathfrak{n}(n,\mathrm{F})$. Имеем i< j,k< l; без ограничения общности можно так же полагать, что $i\neq l$ (поскольку в обратном случае $[e_{ij},e_{ki}]=-[e_{ki},e_{ij}]$ и, если здесь k=j, то коммутатор равен 0 и не представляет интереса). Тогда имеем

$$[e_{ij}, e_{kl}] = \begin{cases} e_{il}, & j = k, \\ 0, & j \neq k. \end{cases}$$

В частности любой элемент $e_{il} \in L^{(2)}$ есть коммутатор двух базисных матриц, уровни которых в сумме дают уровень e_{il} , а значит $L^{(2)}$ есть линейная оболочка элементов e_{ij} , уровень которых больше либо равен 2. Аналогично каждая последующая производная алгебра $L^{(m)}$ есть линейная оболочка элементов e_{ij} , уровень которых больше либо равен 2^{m-1} . Наконец, очевидно, что $L^{(m)} = \{0\}$, когда $2^{m-1} > n-1$.

Приведём теперь несколько простых свойств разрешимых алгебр Ли.

Утверждение 3.1. Если алгебра Ли L разрешима, то разрешимы все её подалгебры и гомомор ϕ ные образы.

Доказательство. Если K — подалгебра в L, то из определения (1.3) имеем $K^{(i)} \subset L^{(i)}$. Тогда если для некоторого k выполнено $L^{(k)} = \{0\}$, то и $K^{(k)} = \{0\}$. Аналогично, если $\phi: L \to M$ — эпиморфизм, то простая индукция по i показывает, что $\phi(L^{(i)}) = M^{(i)}$.

Утверждение 3.2. Если I — разрешимый идеал в алгебре Ли L и алгебра L/I разрешима, то и сама L тоже разрешима.

Доказательство. Пусть $(L/I)^{(n)}=\{0\},\,\pi:L\to L/I$ — канонический гомоморфизм. Из доказательства утверждения (3.1) имеем $\pi(L^{(n)})=\{0\}$, т.е.

$$L^{(n)} \subset I = \ker \pi$$
,

а значит $L^{(n)}$ — подалгебра в разрешимом идеале I, откуда по утверждению (3.1) имеем разрешимость $L^{(n)}$, но тогда, очевидно, разрешима и L.

Утверждение 3.3. Если I и J — разрешимые идеалы ε алгебре Π и L, то идеал I+J тоже разрешим.

Доказательство. Алгебра (I+J)/J разрешима как гомоморфный образ идеала I (см. доказательство утверждения (2.3)), а тогда по утверждению (3.2) для пары I+J,J имеем разрешимость I+J.