4. Geometric Objects and Transformations

Outline

- Geometry
- Representation
- Homogeneous Coordinates
- Transformations
- WebGL Transformations
- Applying Transformations
- Building Models
- The Rotating Square
- Sample Programs

Geometry

Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an ndimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{p}=(x,y,z)$
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $u=\alpha v$
 - Vector-vector addition: w=u+v
- Expressions such as

$$v=u+2w-3r$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $-1 \bullet P = P$
 - $-0 \cdot P = 0$ (zero vector)

Lines

- Consider all points of the form
 - $P(\alpha)=P_0+\alpha d$
 - Set of all points that pass through P₀ in the direction of the vector

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$
$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Rays and Line Segments

• If $\alpha >= 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d** If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 <= \alpha <= 1$ we get all the points on the *line segment* joining R and Q

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Affine Sums

Consider the "sum"

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the *affine sum* of the points $P_1,P_2,....P_n$

• If, in addition, $\alpha_i >= 0$, we have the *convex hull* of P_1, P_2, \dots, P_n

Convex Hull

- Smallest convex object containing P₁,P₂,.....P_n
- Formed by "shrink wrapping" points

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons

Planes

A plane can be defined by a point and two vectors or by

three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Triangles

for $0 <= \alpha, \beta <= 1$, we get all points in triangle

Triangle is convex so any point inside can be represented as an affine sum

$$P(\alpha_{1}, \alpha_{2}, \alpha_{3}) = \alpha_{1}P + \alpha_{2}Q + \alpha_{3}R$$
where
$$\alpha_{1} + \alpha_{2} + \alpha_{3} = 1$$

$$\alpha_{i} > = 0$$

The representation is called the **barycentric coordinate** representation of P

Barycentric Coordinates $\gamma = 1.0$ $\gamma = 0.5$ $\gamma = 0$ op b-a $0<\beta<1$ $0<\alpha<1$ $0 < \gamma < 1$ $\beta=1.0$ β =0.5 $\alpha + \beta + \gamma = 1$ $\beta=0$

$$p = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$$

For example, the point p = (2.0, 0.5), i.e., p = a + 2.0 (b- a) + 0.5 (c- a).

Rearrange the terms

$$p = \vec{a} + \beta(\vec{b} - \vec{a}) + \gamma(\vec{c} - \vec{a})$$

$$p = (1 - \beta - \gamma)\vec{a} + \beta\vec{b} + \gamma\vec{c}$$

Let
$$1-\beta-\gamma$$
 α
$$p = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

$$0<\beta<1$$

$$0<\alpha<1$$

$$0<\gamma<1$$

$$\alpha+\beta+\gamma=1$$

- Can determine points inside the triangle by computing α, β, γ
- If all three values are > 0, inside the triangle
- For all points (inside and out): $\alpha + \beta + \gamma = 1$
- Can directly interpolate values across the triangle:

$$c_p = \alpha c_a + \beta c_b + \gamma c_c$$

- If for any point x,y we can compute the barycentric coordinates
 - We can determine if they are in the triangle if what?
 - We can also use them to interpolate colors or any values over the triangle.
 - if one coord = 0 and other two are >0 and < 1
 - on an edge
 - if two coords = 0, other is >0 and <1,
 - at a vertex
- So, how do we compute these coordinates?

- Consider the edges of the triangle as implicit lines
- Implicit lines give us signed, scaled, distances!

$$kf(x, y) = 0$$

Like to choose k s.t.

$$kf(x, y) = \beta$$

At b, we know $\beta = 1$ therefore...

$$kf(x_b, y_b) = 1$$

$$k = \frac{1}{f(x_b, y_b)}$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

Where the implicit line equation is:

$$f_{ac}(x, y) = (y_a - y_c)x + (x_c - x_a)y + x_a y_c - x_c y_a$$

Repeat this idea for each coordinate

Note: You actually only need to compute 2 of the 3

The barycentric coordinates are proportional to the areas of the three subtriangles shown.

$$A = A_a + A_b + A_c$$

Show that
$$\frac{A_b}{A} = \frac{height_b}{height} = \beta$$

$$a\Delta acp = A_b$$

$$a\Delta abc = A$$

$$\Delta ab'c'\cong \Delta abc''$$

$$\therefore \frac{A_b}{A} = \frac{height_b}{height} = \frac{\ell(a,b')}{\ell(a,b)} = \beta$$

The area of the two triangles shown is base times height and are thus the same, as is any triangle with a vertex on the $\beta = 0.5$ line. The height and thus the area is proportional to β .

Computing Barycentric Coordinates (3D Triangles)

$$p = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

n = (b - a) x (c - a)

area =
$$\frac{1}{2} \| (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) \|$$

$$\alpha = \frac{\mathbf{n} \cdot \mathbf{n}_a}{\|\mathbf{n}\|^2}$$

$$\beta = \frac{\mathbf{n} \cdot \mathbf{n}_b}{\|\mathbf{n}\|^2}$$

$$\gamma = \frac{\mathbf{n} \cdot \mathbf{n}_c}{\|\mathbf{n}\|^2}$$

$$\mathbf{n}_a = (\mathbf{c} - \mathbf{b}) \times (\mathbf{p} - \mathbf{b})$$

$$\mathbf{n}_b = (\mathbf{a} - \mathbf{c}) \times (\mathbf{p} - \mathbf{c})$$

$$\mathbf{n}_c = (\mathbf{b} - \mathbf{a}) \times (\mathbf{p} - \mathbf{a})$$

Normals

- In three dimensional spaces, every plane has a vector n perpendicular or orthogonal to it called the normal vector
- From the two-point vector form $P(\alpha,\beta)=P+\alpha u+\beta v$, we know we can use the cross product to find $n=u\times v$ and the equivalent form n

P

 $(P(\alpha, \beta)-P) \cdot n=0$

Representation

Objectives

- Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces
- Discuss change of frames and bases

Linear Independence

- A set of vectors $v_1, v_2, ..., v_n$ is *linearly independent* if $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = ... = 0$
- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space
- Given a basis v_1, v_2, \dots, v_n , any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1, \alpha_2, \alpha_n\}$ is the *representation* of ν with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ . \\ \alpha_n \end{bmatrix}$$

Example

- $v = 2v_1 + 3v_2 4v_3$
- $\mathbf{a} = [2\ 3\ -4]^{\mathrm{T}}$
- Note that this representation is with respect to a particular basis
- For example, in WebGL we will start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Coordinate Systems

• Which is correct?

Both are because vectors have no fixed location

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

Homogeneous Coordinates

Objectives

- Introduce homogeneous coordinates
- Introduce change of representation for both vectors and points

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional *homogeneous coordinate* representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^T$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^T$$

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point [x y z] is given as

$$\mathbf{p} = [\mathbf{x'}, \mathbf{y'}, \mathbf{z'}, \mathbf{w}]^T = [\mathbf{wx}, \mathbf{wy}, \mathbf{wz}, \mathbf{w}]^T$$

We return to a three dimensional point (for $w\neq 0$) by

$$X \leftarrow X'/W$$

$$z\leftarrow z'/w$$

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w\!\!=\!\!0$ for vectors and $w\!\!=\!\!1$ for points
 - For perspective we need a perspective division

Change of Coordinate Systems

 Consider two representations of a the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

$$= \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^T$$

Change of Coordinate Systems

A Flight Simulator

World coordinate system: xyz

Local coordinate system: uvw

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$$

$$u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$$

$$u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$$

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

$$a=M^Tb$$

see text for numerical examples

Change of Frames

 We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

$$(P_0, v_1, v_2, v_3)$$

 (Q_0, u_1, u_2, u_3)

- Any point or vector can be represented in either frame
- We can represent Q_0 , u_1 , u_2 , u_3 in terms of P_0 , v_1 , v_2 , v_3

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \\ Q_0 &= \gamma_{41} v_1 + \gamma_{42} v_2 + \gamma_{43} v_3 + \gamma_{44} P_0 \end{aligned}$$

defining a 4 x 4 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

Working with Representations

Within the two frames any point or vector has a representation of the same form

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]$$
 in the first frame $\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]$ in the second frame

where $\alpha_4 = \beta_4 = 1$ for points and $\alpha_4 = \beta_4 = 0$ for vectors and

$$\mathbf{a} = \mathbf{M}^{\mathrm{T}} \mathbf{b}$$

The matrix M is 4 x 4 and specifies an affine transformation in homogeneous coordinates

Affine Transformations

- Every linear transformation is equivalent to a change in frames
- Every affine transformation preserves lines
- However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations

The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (M=I)

Moving the Camera

If objects are on both sides of z=0, we must move camera frame

Transformations

Objectives

- Introduce standard transformations
 - Rotation
 - Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
 - Rigid body transformations: rotation, translation
 - Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Pipeline Implementation

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

P,Q, R: points in an affine space

u, v, w: vectors in an affine space

 α , β , γ : scalars

p, q, r: representations of points

-array of 4 scalars in homogeneous coordinates

u, v, w: representations of points

-array of 4 scalars in homogeneous coordinates

Translation

Move (translate, displace) a point to a new location

- Displacement determined by a vector d
 - Three degrees of freedom
 - P'=P+d

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

object

translation: every point displaced by same vector

Translation Using Representations

Using the homogeneous coordinate representation in some frame

$$\mathbf{p} = [x y z 1]^{T}$$

 $\mathbf{p}' = [x' y' z' 1]^{T}$
 $\mathbf{d} = [dx dy dz 0]^{T}$

Hence $\mathbf{p'} = \mathbf{p} + \mathbf{d}$ or

$$x'=x+d_x$$
 $y'=y+d_y$
 $z'=z+d_z$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix **T** in homogeneous coordinates **p'=Tp** where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

Consider rotation about the origin by θ degrees

- radius stays the same, angle increases by θ

Rotation About a Fixed Point

Three-dimensional Rotation

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x'=x \cos \theta - y \sin \theta$$

 $y'=x \sin \theta + y \cos \theta$
 $z'=z$

- or in homogeneous coordinates

$$\mathbf{p}' = \mathbf{R}_{\mathbf{Z}}(\theta)\mathbf{p}$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation of a cube about the z-axis

Rotation about x and y axes

- Same argument as for rotation about z axis
 - For rotation about *x* axis, *x* is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation of a cube about the x-axis

Rotation of a cube about the y-axis

Scaling

Expand or contract along each axis (fixed point of origin)

$$\mathbf{x}' = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y}' = \mathbf{s}_{y} \mathbf{y}$$

$$\mathbf{z}' = \mathbf{s}_{z} \mathbf{z}$$

$$\mathbf{p}' = \mathbf{S} \mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Non-rigid-body Transformation

Reflection

corresponds to negative scale factors

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $\mathbf{T}^{-1}(d_x, d_y, d_z) = \mathbf{T}(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$

$$\mathbf{R}^{-1}(\theta) = \mathbf{R}^{\mathrm{T}}(\theta)$$

- Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix $\mathbf{M} = \mathbf{ABCD}$ is not significant compared to the cost of computing \mathbf{Mp} for many vertices \mathbf{p}
- The difficult part is how to form a desired transformation from the specifications in the application

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$\mathbf{p'} = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$$

 Note many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

Application of transformation one at a time

Pipeline transformation

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{y}(\theta_{y}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x\,\theta_y\,\theta_z$ are called the Euler angles

Note that rotations do not commute We can use rotations in another order but with different angles

Rotation of a cube about its center

Rotation of a cube about its center

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathbf{f}}) \; \mathbf{R}(\mathbf{\theta}) \; \mathbf{T}(-\mathbf{p}_{\mathbf{f}})$$

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{f}) \mathbf{R}(\theta) \mathbf{T}(-\mathbf{p}_{f})$$

Instancing

 In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

We apply an instance transformation to its vertices to

Scale

Orient

Locate

Scene of simple objects

Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along *x* axis

$$x' = x + y \cot \theta$$

 $y' = y$
 $z' = z$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

WebGL Transformations

Objectives

- Learn how to carry out transformations in WebGL
 - Rotation
 - Translation
 - Scaling
- Introduce MV.js transformations
 - Model-view
 - Projection

Pre 3.1 OpenGL Matrices

- In Pre 3.1 OpenGL matrices were part of the state
- Multiple types
 - Model-View (GL MODELVIEW)
 - Projection (GL PROJECTION)
 - Texture (GL TEXTURE)
 - Color(GL COLOR)
- Single set of functions for manipulation
- Select which to manipulated by

```
-glMatrixMode(GL_MODELVIEW);
-glMatrixMode(GL_PROJECTION);
```

Why Deprecation

- Functions were based on carrying out the operations on the CPU as part of the fixed function pipeline
- Current model-view and projection matrices were automatically applied to all vertices using CPU
- We will use the notion of a current transformation matrix with the understanding that it may be applied in the shaders

Current Transformation Matrix (CTM)

- Conceptually there is a 4 x 4 homogeneous coordinate matrix, the *current transformation matrix* (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
- The CTM is defined in the user program and loaded into a transformation unit

CTM operations

 The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$

Load an arbitrary matrix: $C \leftarrow M$

Load a translation matrix: $C \leftarrow T$

Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$

Load a scaling matrix: $C \leftarrow S$

Postmultiply by an arbitrary matrix: $C \leftarrow CM$

Postmultiply by a translation matrix: $C \leftarrow CT$

Postmultiply by a rotation matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{R}$

Postmultiply by a scaling matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{S}$

Rotation about a Fixed Point

Start with identity matrix: $C \leftarrow I$

Move fixed point to origin: $C \leftarrow CT$

Rotate: $C \leftarrow CR$

Move fixed point back: $\mathbf{C} \leftarrow \mathbf{C}\mathbf{T}^{-1}$

Result: $C = TR T^{-1}$ which is **backwards**.

This result is a consequence of doing postmultiplications. Let's try again.

Reversing the Order

We want $C = T^{-1} R T$ so we must do the operations in the following order

$$\begin{aligned} & \mathbf{C} \leftarrow \mathbf{I} \\ & \mathbf{C} \leftarrow \mathbf{C} \mathbf{T}^{-1} \\ & \mathbf{C} \leftarrow \mathbf{C} \mathbf{R} \\ & \mathbf{C} \leftarrow \mathbf{C} \mathbf{T} \end{aligned}$$

Each operation corresponds to one function call in the program.

Note that the last operation specified is the first executed in the program

CTM in WebGL

- OpenGL had a model-view and a projection matrix in the pipeline which were concatenated together to form the CTM
- We will emulate this process

Using the ModelView Matrix

- In WebGL, the model-view matrix is used to
 - Position the camera
 - Can be done by rotations and translations but is often easier to use the lookAt function in MV.js
 - Build models of objects
- The projection matrix is used to define the view volume and to select a camera lens
- Although these matrices are no longer part of the OpenGL state, it is usually a good strategy to create them in our own applications

q = P*MV*p where MV: model-view matrix; P: projection matrix

Rotation, Translation, Scaling

Create an identity matrix:

```
var m = mat4();
Multiply on right by rotation matrix of theta in degrees
where (vx, vy, vz) define axis of rotation
   var r = rotate(theta, vx, vy, vz)
   m = mult(m, r);
 Also have rotateX, rotateY, rotateZ
 Do same with translation and scaling:
   var s = scale(sx, sy, sz);
   var t = translate(dx, dy, dz);
   m = mult(s, t);
```

Example

 Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)

```
var m = mult(translate(1.0, 2.0, 3.0),
    rotate(30.0, 0.0, 0.0, 1.0));
m = mult(m, translate(-1.0, -2.0, -3.0));
```

Move fixed point to origin Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathbf{f}}) \; \mathbf{R}(\mathbf{\theta}) \; \mathbf{T}(-\mathbf{p}_{\mathbf{f}})$$

 Remember that last matrix specified in the program is the first applied

Arbitrary Matrices

- Can load and multiply by matrices defined in the application program
- Matrices are stored as one dimensional array of 16 elements by MV.js but can be treated as 4 x 4 matrices in row major order
- OpenGL wants column major data
- gl.unifromMatrix4f has a parameter for automatic transpose by it must be set to false.
- flatten function converts to column major order which is required by WebGL functions

Matrix Stacks

- In many situations we want to save transformation matrices for use later
 - Traversing hierarchical data structures (Chapter 9)
- Pre 3.1 OpenGL maintained stacks for each type of matrix
- Easy to create the same functionality in JS
 - push and pop are part of Array object

```
var stack = []
stack.push(modelViewMatrix);
modelViewMatrix = stack.pop();
```

Applying Transformations

Using Transformations

- Example: Begin with a cube rotating
- Use mouse or button listener to change direction of rotation
- Start with a program that draws a cube in a standard way
 - Centered at origin
 - Sides aligned with axes
 - Will discuss modeling in next lecture

Where do we apply transformation?

- Same issue as with rotating square
 - in application to vertices
 - in vertex shader: send MV matrix
 - in vertex shader: send angles
- Choice between second and third unclear
- Do we do trigonometry once in CPU or for every vertex in shader
 - GPUs have trig functions hardwired in silicon

Rotation Event Listeners

```
document.getElementById( "xButton" ).onclick = function () { axis = xAxis; };
document.getElementById( "yButton" ).onclick = function () { axis = yAxis; };
document.getElementById( "zButton" ).onclick = function () { axis = zAxis; };
function render(){
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
  theta[axis] += 2.0;
  gl.uniform3fv(thetaLoc, theta);
  gl.drawArrays(gl.TRIANGLES, 0, NumVertices);
  requestAnimFrame( render );
```

Rotation Shader

```
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform vec3 theta;
void main() {
  vec3 angles = radians( theta );
  vec3 c = cos(angles);
  vec3 s = sin( angles );
  // Remember: these matrices are column-major
  mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                   0.0, c.x, s.x, 0.0,
                   0.0, -s.x, c.x, 0.0,
                   0.0, 0.0, 0.0, 1.0);
```

$$\mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

114

Rotation Shader (cont)

```
\mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
                               0.0, 1.0, 0.0, 0.0,
                               s.y, 0.0, c.y, 0.0,
                               0.0, 0.0, 0.0, 1.0);
                                                                                               \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
 mat4 rz = mat4(c.z, s.z, 0.0, 0.0,
                               -s.z, c.z, 0.0, 0.0,
                                0.0, 0.0, 1.0, 0.0,
                                0.0, 0.0, 0.0, 1.0);
 fColor = vColor;
 gl_Position = rz * ry * rx * vPosition;
```

Smooth Rotation

- From a practical standpoint, we often want to use transformations to move and reorient an object smoothly
 - Problem: find a sequence of model-view matrices $\mathbf{M_0}$, $\mathbf{M_1}$,...., $\mathbf{M_n}$ so that when they are applied successively to one or more objects we see a smooth transition
- For orientating an object, we can use the fact that every rotation corresponds to part of a great circle on a sphere
 - Find the axis of rotation and angle
 - Virtual trackball (see text)

Incremental Rotation

- Consider the two approaches
 - For a sequence of rotation matrices R_0, R_1, \ldots, R_n , find the Euler angles for each and use $R_i = R_{iz} \, R_{iy} \, R_{ix}$
 - Not very efficient
 - Use the final positions to determine the axis and angle of rotation,
 then increment only the angle
- Quaternions can be more efficient than either

Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components i, j, k

$$q=q_0+q_1\mathbf{i}+q_2\mathbf{j}+q_3\mathbf{k}$$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - Model-view matrix → quaternion
 - Carry out operations with quaternions
 - Quaternion → Model-view matrix

Interfaces

- One of the major problems in interactive computer graphics is how to use a two-dimensional device such as a mouse to interface with three dimensional objects
- Example: how to form an instance matrix?
- Some alternatives
 - Virtual trackball
 - 3D input devices such as the spaceball
 - Use areas of the screen
 - Distance from center controls angle, position, scale depending on mouse button depressed

Building Models

Objectives

- Introduce simple data structures for building polygonal models
 - Vertex lists
 - Edge lists

Representing a Mesh

Consider a mesh

- There are 8 nodes and 12 edges
 - 5 interior polygons
 - 6 interior (shared) edges
- Each vertex has a location $v_i = (x_i y_i z_i)$

Simple Representation

- Define each polygon by the geometric locations of its vertices
- Leads to WebGL code such as

```
vertex.push(vec3(x1, y1, z1));
vertex.push(vec3(x6, y6, z6));
vertex.push(vec3(x7, y7, z7));
```

- Inefficient and unstructured
 - Consider moving a vertex to a new location
 - Must search for all occurrences

Inward and Outward Facing Polygons

- The order $\{v_1,v_6,v_7\}$ and $\{v_6,v_7,v_1\}$ are equivalent in that the same polygon will be rendered by OpenGL but the order $\{v_1,v_7,v_6\}$ is different
- The first two describe outwardly facing polygons
- Use the *right-hand rule* = counter-clockwise encirclement of outward-pointing normal
- OpenGL can treat inward and outward facing polygons differently

Geometry vs Topology

- Generally it is a good idea to look for data structures that separate the geometry from the topology
 - Geometry: locations of the vertices
 - Topology: organization of the vertices and edges
 - Example: a polygon is an ordered list of vertices with an edge connecting successive pairs of vertices and the last to the first
 - Topology holds even if geometry changes

Vertex Lists

- Put the geometry in an array
- Use pointers from the vertices into this array

Shared Edges

 Vertex lists will draw filled polygons correctly but if we draw the polygon by its edges, shared edges are drawn twice

Can store mesh by edge list

Edge List

 V_5

 e_3

 e_4

 v_3

Draw cube from faces

```
var colorCube( )
                                           6
    quad(0,3,2,1);
    quad(2,3,7,6);
    quad(0,4,7,3);
    quad(1,2,6,5);
    quad(4,5,6,7);
    quad(0,1,5,4);
```

Note that vertices are ordered so that we obtain correct outward facing normals

Data Structures for Cube Representation

Color Interpolation Using Barycentric Coordinates

$$C_{01}(\alpha) = (1-\alpha)C_0 + \alpha C_1 \iff C_3$$

$$C_{32}(\beta) = (1 - \beta)C_3 + \beta C_2 \iff C_4$$

The Rotating Square

Objectives

- Put everything together to display rotating cube
- Two methods of display
 - by arrays
 - by elements

Modeling a Cube

Define global array for vertices

```
var vertices = [
    vec3( -0.5, -0.5, 0.5 ),
    vec3( -0.5, 0.5, 0.5 ),
    vec3( 0.5, 0.5, 0.5 ),
    vec3( 0.5, -0.5, 0.5 ),
    vec3( -0.5, -0.5, -0.5 ),
    vec3( -0.5, 0.5, -0.5 ),
    vec3( 0.5, 0.5, -0.5 ),
    vec3( 0.5, 0.5, -0.5 ),
    vec3( 0.5, -0.5, -0.5 )
}
```


Colors

Define global array for colors

Draw cube from faces

```
function colorCube()
{
    quad(0,3,2,1);
    quad(2,3,7,6);
    quad(0,4,7,3);
    quad(1,2,6,5);
    quad(4,5,6,7);
    quad(0,1,5,4);
}
```

Note that vertices are ordered so that we obtain correct outward facing normals Each quad generates two triangles

Initialization

```
var canvas, ql;
var numVertices = 36;
var points = [];
var colors = [];
window.onload = function init() {
    canvas = document.getElementById( "gl-canvas" );
    gl = WebGLUtils.setupWebGL( canvas );
    colorCube();
   gl.viewport( 0, 0, canvas.width, canvas.height );
   gl.clearColor(1.0, 1.0, 1.0, 1.0);
   gl.enable(gl.DEPTH TEST);
// rest of initialization and html file
// same as previous examples
```

The quad Function

Put position and color data for two triangles from a list of indices into the array vertices

```
var quad(a, b, c, d)
   var indices = [ a, b, c, a, c, d ];
   for ( var i = 0; i < indices.length; ++i ) {</pre>
      points.push( vertices[indices[i]]);
      colors.push( vertexColors[indices[i]] );
// for solid colored faces use
//colors.push(vertexColors[a]);
```

Render Function

```
function render() {
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    gl.drawArrays( gl.TRIANGLES, 0, numVertices );
    requestAnimFrame( render );
}
```

Mapping indices to faces

```
var indices = [
1,0,3,
3,2,1,
2,3,7,
7,6,2,
3,0,4,
4,7,3,
6,5,1,
1,2,6,
4,5,6,
6,7,4,
5,4,0,
0,1,5
]; Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015
```

Rendering by Elements

Send indices to GPU

Render by elements

 Even more efficient if we use triangle strips or triangle fans

Adding Buttons for Rotation

```
var xAxis = 0;
var yAxis = 1;
var zAxis = 2;
var axis = 0;
var theta = [ 0, 0, 0 ];
var thetaLoc;
document.getElementById( "xButton" ).onclick =
function () { axis = xAxis; };
document.getElementById( "yButton" ).onclick =
function () { axis = yAxis; };
document.getElementById( "zButton" ).onclick =
function () { axis = zAxis; };
```

Render Function

```
function render() {
    gl.clear( gl.COLOR_BUFFER_BIT |gl.DEPTH_BUFFER_BIT);
    theta[axis] += 2.0;
    gl.uniform3fv(thetaLoc, theta);
    gl.drawArrays( gl.TRIANGLES, 0, numVertices );
    requestAnimFrame( render );
}
```

Sample Programs

144

Sample Programs: cube.html, cube.js

Displaying a rotating cube with vertex colors interpolated across faces

cube.html (1/4)

```
<html>
<script id="vertex-shader" type="x-shader/x-vertex">
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform vec3 theta;
void main()
  // Compute the sines and cosines of theta for each of
  // the three axes in one computation.
  vec3 angles = radians( theta );
  vec3 c = cos(angles);
  vec3 s = sin( angles );
```


cube.html (2/4)

</script>

```
// Remember: these matrices are column-major
mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                 0.0, c.x, s.x, 0.0,
                 0.0, -s.x, c.x, 0.0,
                  0.0, 0.0, 0.0, 1.0);
mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
                 0.0, 1.0, 0.0, 0.0,
                 s.y, 0.0, c.y, 0.0,
                 0.0, 0.0, 0.0, 1.0);
mat4 rz = mat4(c.z, s.z, 0.0, 0.0,
                -s.z, c.z, 0.0, 0.0,
                 0.0, 0.0, 1.0, 0.0,
                 0.0, 0.0, 0.0, 1.0);
fColor = vColor;
gl_Position = rz * ry * rx * vPosition;
```


cube.html (3/4)

```
<script id="fragment-shader" type="x-shader/x-fragment">
precision mediump float;
varying vec4 fColor;
void
main()
  gl_FragColor = fColor;
</script>
<script type="text/javascript" src="../Common/webgl-utils.js"></script>
<script type="text/javascript" src="../Common/initShaders.js"></script>
<script type="text/javascript" src="../Common/MV.js"></script>
<script type="text/javascript" src="cube.js"></script>
```


cube.html (4/4)

</html>

```
<body>
<canvas id="gl-canvas" width="512"" height="512">
Oops ... your browser doesn't support the HTML5 canvas element
</canvas>
<br/>
<br/>
<button id= "xButton">Rotate X</button>
<button id= "yButton">Rotate Y</button>
<button id= "zButton">Rotate Z</button>
</body>
```

cube.js (1/10)

```
var canvas;
var gl;
var NumVertices = 36;
var points = [];
var colors = [];
var xAxis = 0;
var yAxis = 1;
var zAxis = 2;
var axis = 0;
var theta = [0, 0, 0];
var thetaLoc;
```


cube.js (2/10)

```
window.onload = function init()
  canvas = document.getElementById( "gl-canvas" );
  gl = WebGLUtils.setupWebGL( canvas );
  if ( !gl ) { alert( "WebGL isn't available" ); }
  colorCube();
  gl.viewport(0,0, canvas.width, canvas.height);
  gl.clearColor( 1.0, 1.0, 1.0, 1.0);
  gl.enable(gl.DEPTH_TEST);
```


cube.js (3/10)

```
Load shaders and initialize attribute buffers
var program = initShaders( gl, "vertex-shader", "fragment-shader" );
gl.useProgram( program );
var cBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, cBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(colors), gl.STATIC_DRAW );
var vColor = gl.getAttribLocation( program, "vColor" );
gl.vertexAttribPointer( vColor, 4, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray( vColor );
```


cube.js (4/10)

```
var vBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(points), gl.STATIC_DRAW );

var vPosition = gl.getAttribLocation( program, "vPosition" );
gl.vertexAttribPointer( vPosition, 3, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vPosition );

thetaLoc = gl.getUniformLocation(program, "theta");
```


cube.js (5/10)

// end of window.onload

```
//event listeners for buttons
document.getElementById( "xButton" ).onclick = function () {
  axis = xAxis;
document.getElementById( "yButton" ).onclick = function () {
  axis = yAxis;
document.getElementById( "zButton" ).onclick = function () {
  axis = zAxis;
};
render();
```

cube.js (6/10)

```
function colorCube()
{
    quad( 1, 0, 3, 2 );
    quad( 2, 3, 7, 6 );
    quad( 3, 0, 4, 7 );
    quad( 6, 5, 1, 2 );
    quad( 4, 5, 6, 7 );
    quad( 5, 4, 0, 1 );
}
```


cube.js (7/10)

```
function quad(a, b, c, d) { 
 var vertices = [ 
 vec3(-0.5, -0.5, 0.5), vec3(-0.5, 0.5, 0.5), vec3(0.5, 0.5, 0.5), vec3(0.5, -0.5, 0.5), vec3(-0.5, -0.5, -0.5), vec3(-0.5, 0.5, -0.5), vec3(0.5, 0.5, -0.5), vec3(0.5, -0.5, -0.5), vec3(0.5, -0.5, -0.5), vec3(0.5, -0.5, -0.5)];
```


cube.js (8/10)

```
var vertexColors = [
    [ 0.0, 0.0, 0.0, 1.0 ], // black
    [ 1.0, 0.0, 0.0, 1.0 ], // red
    [ 1.0, 1.0, 0.0, 1.0 ], // yellow
    [ 0.0, 1.0, 0.0, 1.0 ], // green
    [ 0.0, 0.0, 1.0, 1.0 ], // blue
    [ 1.0, 0.0, 1.0, 1.0 ], // magenta
    [ 1.0, 1.0, 1.0, 1.0 ], // white
    [ 0.0, 1.0, 1.0, 1.0 ] // cyan
];
```


cube.js (9/10)

```
// We need to parition the quad into two triangles in order for
// WebGL to be able to render it. In this case, we create two
// triangles from the quad indices
//vertex color assigned by the index of the vertex
var indices = [ a, b, c, a, c, d ];
for (var i = 0; i < indices.length; ++i) {
  points.push( vertices[indices[i]] );
  colors.push( vertexColors[indices[i]] );
  // for solid colored faces use
  //colors.push(vertexColors[a]);
                                                     gl.TRIANGLES
// end of quad(a, b,c,d)
```


cube.js (10/10)

```
function render()
{
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    theta[axis] += 2.0;
    gl.uniform3fv(thetaLoc, theta);
    gl.drawArrays( gl.TRIANGLES, 0, NumVertices );
    requestAnimFrame( render );
}
```


Sample Programs: cubev.html, cubev.js

Same as cube but with element arrays

cubev.html (1/4)

```
<html>
<script id="vertex-shader" type="x-shader/x-vertex">
attribute vec4 vPosition;
attribute vec4 vColor;
varying vec4 fColor;
uniform vec3 theta;
void main()
  // Compute the sines and cosines of theta for each of
  // the three axes in one computation.
  vec3 angles = radians( theta );
  vec3 c = cos(angles);
  vec3 s = sin(angles);
```


cubev.html (2/4)

```
// Remember: these matrices are column-major
mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
                    0.0, c.x, s.x, 0.0,
                    0.0, -s.x, c.x, 0.0,
                    0.0, 0.0, 0.0, 1.0);
mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
                    0.0, 1.0, 0.0, 0.0,
                                                     \mathbf{R}_{y}(\theta) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
                    s.y, 0.0, c.y, 0.0,
                    0.0, 0.0, 0.0, 1.0);
mat4 rz = mat4(c.z, s.z, 0.0, 0.0,
                   -s.z, c.z, 0.0, 0.0,
                                                                   \cos \theta - \sin \theta = 0
                    0.0, 0.0, 1.0, 0.0,
                    0.0, 0.0, 0.0, 1.0);
fColor = vColor;
gl_Position = rz * ry * rx * vPosition;
```


cubev.html (3/4)

```
<script id="fragment-shader" type="x-shader/x-fragment">
precision mediump float;
varying vec4 fColor;
void main()
  gl_FragColor = fColor;
</script>
<script type="text/javascript" src="../Common/webgl-utils.js"></script>
<script type="text/javascript" src="../Common/initShaders.js"></script>
<script type="text/javascript" src="../Common/MV.js"></script>
<script type="text/javascript" src="cubev.js"></script>
```


cubev.html (4/4)

```
<body>
<canvas id="gl-canvas" width="512"" height="512">
Oops ... your browser doesn't support the HTML5 canvas element
</canvas>
<br/>
<br/>
<button id= "xButton">Rotate X</button>
<button id= "yButton">Rotate Y</button>
<button id= "zButton">Rotate Z</button>
```

</body>

</html>

cubev.js (1/10)

```
var canvas;
var gl;
var numVertices = 36;
var axis = 0;
var xAxis = 0;
var yAxis =1;
var zAxis = 2;
var theta = [0, 0, 0];
var thetaLoc;
```


cubev.js (2/10)

```
var vertices = [
    vec3( -0.5, -0.5, 0.5 ),
    vec3( -0.5, 0.5, 0.5 ),
    vec3( 0.5, 0.5, 0.5 ),
    vec3( 0.5, -0.5, 0.5 ),
    vec3( -0.5, -0.5, -0.5 ),
    vec3( -0.5, 0.5, -0.5 ),
    vec3( 0.5, -0.5, -0.5 ),
    vec3( 0.5, -0.5, -0.5 )
    vec3( 0.5, -0.5, -0.5 )
};
```


cubev.js (3/10)

```
var vertexColors = [
    vec4( 0.0, 0.0, 0.0, 1.0 ),  // black
    vec4( 1.0, 0.0, 0.0, 1.0 ),  // red
    vec4( 1.0, 1.0, 0.0, 1.0 ),  // yellow
    vec4( 0.0, 1.0, 0.0, 1.0 ),  // green
    vec4( 0.0, 0.0, 1.0, 1.0 ),  // blue
    vec4( 1.0, 0.0, 1.0, 1.0 ),  // magenta
    vec4( 1.0, 1.0, 1.0, 1.0 ),  // white
    vec4( 0.0, 1.0, 1.0, 1.0 )  // cyan
];
```


cubev.js (4/10)

// indices of the 12 triangles that comprise the cube

```
var indices = [
  1, 0, 3,
  3, 2, 1,
  2, 3, 7,
  7, 6, 2,
  3, 0, 4,
  4, 7, 3,
  6, 5, 1,
  1, 2, 6,
  4, 5, 6,
  6, 7, 4,
  5, 4, 0,
  0, 1, 5
];
```


cubev.js (5/10)

```
window.onload = function init()
{
    canvas = document.getElementById( "gl-canvas" );
    gl = WebGLUtils.setupWebGL( canvas );
    if ( !gl ) { alert( "WebGL isn't available" ); }
    gl.viewport( 0, 0, canvas.width, canvas.height );
    gl.clearColor( 1.0, 1.0, 1.0, 1.0 );
    gl.enable(gl.DEPTH_TEST);;
```


cubev.js (6/10)

```
//
// Load shaders and initialize attribute buffers
//
var program = initShaders( gl, "vertex-shader", "fragment-shader");
gl.useProgram( program );
// array element buffer

var iBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, iBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint8Array(indices), gl.STATIC_DRAW);
```


cubev.js (7/10)

```
// color array atrribute buffer
```

```
var cBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, cBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(vertexColors), gl.STATIC_DRAW );
var vColor = gl.getAttribLocation( program, "vColor" );
gl.vertexAttribPointer( vColor, 4, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vColor );
```


cubev.js (8/10)

```
// vertex array attribute buffer
var vBuffer = gl.createBuffer();
gl.bindBuffer( gl.ARRAY_BUFFER, vBuffer );
gl.bufferData( gl.ARRAY_BUFFER, flatten(vertices), gl.STATIC_DRAW );
var vPosition = gl.getAttribLocation( program, "vPosition" );
gl.vertexAttribPointer( vPosition, 3, gl.FLOAT, false, 0, 0 );
gl.enableVertexAttribArray( vPosition );
thetaLoc = gl.getUniformLocation(program, "theta");
```


cubev.js (9/10)

```
//event listeners for buttons

document.getElementById( "xButton" ).onclick = function () {
    axis = xAxis;
};
document.getElementById( "yButton" ).onclick = function () {
    axis = yAxis;
};
document.getElementById( "zButton" ).onclick = function () {
    axis = zAxis;
};
```

render();
// end of window.onload

cubev.js (10/10)

```
function render()
{
    gl.clear( gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
    theta[axis] += 2.0;
    gl.uniform3fv(thetaLoc, theta);

    gl.drawElements( gl.TRIANGLES, numVertices, gl.UNSIGNED_BYTE, 0 );
    requestAnimFrame( render );
}
```

