By Honglu Ma #705505} Camilo Martinez #7017573 H3.1 Stencils which violetes , which de-satifies convergence. to a steady-state D2: 0 / Averge frey lovel Inverience >> D3: 01/2 Max min Principal

Oct of D5: f)

Oct of D6: c)

Convergence es a steady state

to tultill D2: Stencil

must be equal to its inverse D3: Sum of stencil must be 1 04: the center of stencil must be positive D5; rows of sencil cannot be completely Zero H3,2 a) By Induction on K Base step, K=0, u°=f where min for f; = max f; for all fi inf induction step: suppose uninfs ≤ ui ≤ max f; Hiel,] k≥0 $U_{i}^{k+1} = \left(Q\left(u^{k}\right)\right)_{i}^{k} u^{k}$ Ui = E (gin uh), consider " in as min of uk then we have $U_i^k = U_m^k + l_i$ where Pizo U; - Um = > (Pih (Um + Ph)) - um = Sih Un + Sin Ph -Um = Um -Un + 5 Pin Ph >0 similarity let Ux be the max of uk then we have Ui = Ux + fi where ' Si 60 U; KHI Ux = ··· = Ux - Ux + \ The Pilan Sh So V similar steps as the min case

the Min part is still valid when row suns
$$\geq 1$$

By induction on k

base step: $\frac{1}{N}\sum_{i=1}^{N}u_{i}^{o}=M$ where M is the mean of f

induction step: assume that
$$\frac{1}{N}\sum_{i=1}^{N}u_{i}^{v}=M$$

we have $\frac{1}{N} \sum_{j=1}^{N} \frac{1}{y_{j}^{k+1}} = \frac{1}{N} \sum_{j=1}^{N} \left(\sum_{j=1}^{N} (q_{ij}, u_{j}^{k}) \right)$

b) the max part is, still valid when vow sums <= 1

$$= \frac{1}{N} \sum_{j=1}^{N} \left(\left(\sum_{i=1}^{N} q_{ij} \right) u_{i}^{k} \right) = \frac{1}{N} \sum_{j=1}^{N} \left(\left(\sum_{i=1}^{N} q_{ij} \right) u_{i}^{k} \right)$$

$$= \frac{1}{N} \sum_{j=1}^{N} \left(\left(\sum_{i=1}^{N} q_{ij} \right) u_{i}^{k} \right)$$

H₃₃

4) 100 bt (semidic rotisetion):

$$\frac{du_{i}}{dt} = \frac{1}{2h^{2}} \left(\frac{8i+1+9i}{1} \frac{1}{4i+9i} \frac{$$