Kronecker Matrix-Vector Complexity is Strange

Raphael Meyer, Haim Avron, William Swartworth, David P. Woodruff, Tyler Chen, Feyza Duman Keles

SIAM MDS 2024 - Minisymposium on

Randomized Matrix Computations for Large-scale Scientific and Machine Learning Problems

RandNLA: Randomized Numerical Linear Algebra

RandNLA algorithms typically fit into one of a few paradigms:

- Matrix-Vector Products: Compute Ax for a few vectors $x_1, ..., x_\ell$
- Entrywise Sampling: Compute $[A]_{i,j}$ for any i,j

Fast RandNLA methods designed by minimizing these computations

Today: Kronecker Matrix-Vector Complexity

Motivation: Modeling Quantum Physics

[Feldman et. al. '22]

Noa is a Quantum Physicist studying a grid of k quantum particles, each particle "acts" in d dimensions c_7 constant, like 2 or 8

Matrix $A \in \mathbb{R}^{d^k \times d^k}$ describes how these particles act

Want to compute Renyi Moments $tr(A^q)$ for integer q

Constraint: We can only efficiently compute Ax for <u>some</u> $x \in \mathbb{R}^{d^k}$

Can only efficiently compute Kronecker-Matrix-Vector Products!

Similar stories appear often. Linear algebraic structure of A unclear.

Kronecker Matrix-Vector Model vs. Normal Matrix-Vector

Before: $A \in \mathbb{R}^{d \times d}$. Can compute Ax for any $x \in \mathbb{R}^d$

Now: $A \in \mathbb{R}^{d^k \times d^k}$. Can compute Ax for any $x = x_1 \otimes \cdots \otimes x_k$, $x_i \in \mathbb{R}^d$

Can we still solve linear algebra problems efficiently?

Core Issue: d^k versus dk parameters

poly $(k, d, \frac{1}{\varepsilon})$? Without strong assumptions on A?

Part 1: Trace Estimation

Trace Estimation

Estimate tr(A) from few matrix-vector products with PSD A

Find \tilde{t} such that:

$$(1 - \varepsilon) \operatorname{tr}(A) \le \tilde{t} \le (1 + \varepsilon) \operatorname{tr}(A)$$
 w.h.p.

Classically, Hutchinson's Estimator uses $\ell = O(\frac{1}{\epsilon^2})$ matvecs

$$\mathbb{E}[x^T A x] = \operatorname{tr}(A) \qquad if \qquad \mathbb{E}[x x^T] = I$$

$$H_{\ell}(A) = \frac{1}{\ell} \sum_{i=1}^{\ell} x^{(i)T} A x^{(i)} \qquad for \qquad x^{(i)} \sim \mathcal{D}$$

Kronecker case: We need a distribution where $x = x_1 \otimes x_2 \otimes \cdots \otimes x_k$

Kronecker-Hutchinson Estimator

Take
$$x = x_1 \otimes \cdots \otimes x_k$$
 where $x_i \sim \mathcal{D}_{small}$

Theorem:

Let $x_i \sim \mathcal{D}_{small}$ such that $Var\big[x_i^TBx_i\big] \leq \mathcal{C}\big(tr(B)\big)^2$ for all PSD B Then

$$Var[x^T A x] \le (1 + C)^k (tr(A))^2$$

So $\ell = O\left(\frac{(1+C)^k}{\varepsilon^2}\right)$ samples suffice.

For
$$x_i \sim \mathcal{N}(0, I)$$
, $C = 2$ so $\ell = O(\frac{3^k}{c^2})$.

[Ahle et. al. '24]

Addtl. Theorem: For $x_i \sim \mathcal{D} = \mathcal{N}(0, I)$, we know the <u>exact variance</u>.

Kronecker-Hutchinson Estimator

Take
$$x = x_1 \otimes \cdots \otimes x_k$$
 where $x_i \sim \mathcal{D}_{small}$

For
$$\varepsilon = O(1)$$
,

$x_i \sim \mathcal{D}_{\text{small}}$	Worst Case	d=2	$d = \Omega(k)$
$\mathcal{N}(0,I)$	3^k	3^k	3^k

Conclusions about Kron-Hutchinson

Faster than d^k Kronecker Matrix-Vector Products is possible c^k complexity seems common

Kronecker Model sensitive to things we used to not care about*

Distribution choices: Gaussian vs Rademacher vs Unit Vecs

Real versus Complex

Questions:

Are these sensitivities an artifact of Hutchinson? Are they fundamental to the Kronecker Matvec Model?

Is $poly(d, k, \frac{1}{\varepsilon})$ possible?

Caltech

Part 2: Lower Bounds

Does Rademacher vs. Gaussian Matter?

Is there a natural linear algebra problem where using $x_i \in \{\pm 1\}^d$ is provably worse than using $x_i \in \mathbb{R}^d$?

Yes: Zero Testing (Is the matrix A = 0?)

Sampling $x = x_1 \otimes \cdots \otimes x_k$ for $x_i \sim \mathcal{N}(0, I)$ works with 1 matvec

Theorem: Any method with $x_i \in \{\pm 1\}^d$ needs $\Omega(2^k)$ matvecs

Implication: Sub-Gaussian does not matter

$x_i \sim \mathcal{D}$	Worst Case	d=2	$d = \Omega(k)$
$\{\pm 1\}^d$	$\left(3-\frac{2}{d}\right)^k$	2^k	3^k
Unit Vector	$\left(3 - \frac{6}{d+2}\right)^k$	1.5^{k}	3^k

Is $poly(k, d, \frac{1}{\varepsilon})$ possible?

Is there a natural linear algebra problem where using $poly(k, d, \frac{1}{\varepsilon})$ is impossible (with $x_i \in \mathbb{R}^d$)?

Yes: Planted Matrix Testing

Determine if A = W or $A = W + \lambda u u^T$ from matrix-vector products

Theorem: With mild assumption, any method needs $\Omega(c^k)$ matvecs

Conclusions

Faster than d^k Kronecker Matrix-Vector Products is possible c^k complexity seems common

Kronecker Model sensitive to things we used to not care about*

Subgaussianity does not matter

Open Questions:

Does Real vs Complex matter?

Is $poly(d, k, \frac{1}{\varepsilon})$ possible?

What assumptions on A can help us design fast algorithms?

