Kopuły w analizie wielowymiarowych danych finansowych.

Piotr Mikler

O czym dzisiaj?

- 1 Kopuły- po co?.
- 2 Kopuły co to?.
- 3 Bivariate Copulas.
- Struktury R-Vine.
- Możliwe kierunki badań.
- **6** Q&A.

Motywacja

Historical Correlation¹: January 2011–December 2020

	Positive	Negative	Investment Grade Bonds	Cash	Commodities	Currencles	Equity Market Neutral	Event Driven	Global	Hedge Funds	International Equity
High	0.7-1.0	(0.7)-(1.0)									
Moderate	0.4-0.7	(0.4)-(0.7)									
Low	0.0-0.4	(0.0)-(0.4)									
Investment Grade Bonds			1.00								
Cash			0.12	1.00							
Commodities			(0.17)	(0.12)	1.00						
Currencies			(0.04)	(0.03)	(0.47)	1.00					
Equity Market Neutral			0.05	(0.15)	0.35	(0.58)	1.00				
Event Driven			(0.05)	(0.25)	0.65	(0.33)	0.39	1.00			
Global			(0.03)	(0.16)	0.60	(0.49)	0.42	0.83	1.00		
Hedge Funds			0.10	(0.22)	0.60	(0.36)	0.50	0.91	0.84	1.00	
International Equity			(0.02)	(0.15)	0.60	(0.57)	0.45	0.80	0.96	0.81	1.00

Źródło: Guggenheim Investments.

Kryzys finansowy 2007-2009r.

FELIX SALMON

BUSINESS 02.23.2009 12:00 PM

Recipe for Disaster: The Formula That Killed Wall Street

In the mid-'80s, Wall Street turned to the quants—brainy financial engineers—to invent new ways to boost profits. Their methods for minting money worked brilliantly... until one of them devastated the global economy.

Definicja (Kopuła)

d- wymiarowa kopuła C to dystrybuanta wielowymiarowego rozkładu o jednostajnych rozkładach brzegowych, określonego na d-wymiarowym hipersześcianie $[0,1]^d$.

Twierdzenie (Gęstość kopuły)

Gęstość kopuły c (dla kopuł absolutnie ciągłych) otrzymujemy poprzez pochodne cząstkowe, tzn.

$$c(u_1,\ldots,u_d)=\frac{\partial^d}{\partial u_1,\ldots,\partial u_d}C(u_1,\ldots,u_d).$$

Przykład

Definicja (Kopuła Claytona)

Kopułą Claytona o parametrze $\theta \in [0; \infty)$ nazywamy:

$$C(u_1, u_2; \theta) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-\frac{1}{\theta}}.$$

Jej gęstość zadana jest więc przez:

$$c(u_1, u_2; \theta) = (1 + \theta)(u_1^{-\theta} + u_2^{-\theta} - 1)^{-\frac{1+2\theta}{\theta}}(u_1u_2)^{-(\theta+1)},$$

gdzie w obu funkcjach $(u_1, u_2) \in [0, 1]^2$.

Przykład

Figure: Kopuła Claytona, $\theta=0.75$

Gęstości kopuł

Figure: Gęstości wybranych kopuł.

Źródło: https://bochang.me/blog/posts/copula/

Definicja (Kopuła)

d- wymiarowa kopuła C to dystrybuanta wielowymiarowego rozkładu o **jednostajnych rozkładach brzegowych**, określonego na d-wymiarowym hipersześcianie $[0,1]^d$.

Twierdzenie (Probability integral transform)

Jeśli X jest ciągłą zmienną losową o dystrybuancie F(x), to U := F(X) ma rozkład jednostajny.

Probability integral transform

Figure: Transformacja zmiennej normalnej.

Figure: Kopuła Gumbela, $Rotacja: 180^{\circ}, \theta = 1.61$

Struktury R-vine

Co w przypadku rozkładów wielowymiarowych (d>2) ?

Definicja (Pair-Copula Contruction (PCC))

Pair copula construction to dekompozycja wielowymiarowego rozkładu na komponenty jednowymiarowe, połączone już tylko dwuwymiarowymi kopułami.

Definicja (PCC typu D-vine)

Każda gęstość łączna $f_{1,\dots,d}$ może być zdekomponowana jako:

$$f_{1,\dots,d}(x_1,\dots,x_d) = \left[\prod_{j=1}^{d-1}\prod_{i=1}^{d-j}c_{i,(i+j);(i+1)\dots(i+j-1)}\right] \cdot \left[\prod_{k=1}^{d}f_k(x_k)\right]$$

PCC (przykład)

Rozważmy rozkład 6-wymiarowy $[X_1, \ldots, X_6]$ o gęstości $f_{123456}(x_1, \ldots, x_6)$. Dekompozycji (jednej z ok. 23 tyś. możliwych!) można dokonać następująco:

$$f_{123456}(x_1, \dots, x_6) = c_{26;1345} \cdot c_{25;134} \cdot c_{46;135} \cdot c_{25;134} \cdot c_{46;135} \cdot c_{45;13} \cdot c_{24;13} \cdot c_{36;15} \cdot c_{35;1} \cdot c_{14;3} \cdot c_{23;1} \cdot c_{16;5} \cdot c_{15} \cdot c_{34} \cdot c_{13} \cdot c_{12} \cdot c_{56} \cdot c_{6} \cdot f_{6} \cdot f_{5} \cdot f_{4} \cdot f_{3} \cdot f_{2} \cdot f_{1}.$$

Przez $c_{ij;klm}$ oznaczamy gęstość (dwuwymiarowej!) kopuły łączącej rozkłady warunkowe $X_i|X_k,X_l,X_m$ oraz $X_j|X_k,X_l,X_m$.

Struktury R-vine

Źródło: C.Czado, Analyzing Dependent Data with Vine Copulas

Dalsze rozwinięcia konstrukcji kopułowych

- Rozkłady brzegowe zadane pewną strukturą (np. ARIMA, GARCH, itp.)
- Markov-switching copulas/ kopuła zmieniająca się w czasie
- Copula process

Copula process - idea

Myśląc o procesie Wienera jako kolekcji zmiennych losowych o rozkładach normalnych, można próbować odzyskać strukturę zależności między nimi przy pomocy kopuły.

Definicja (Kopuła Browna)

Kopuła Browna to struktura zależności generowana przez proces Wienera. Możemy opisać ją za pomocą gęstości:

$$c_{s,t}^B(u,v) = \sqrt{\frac{t}{t-s}} \frac{\varphi((\sqrt{t}\Phi^{-1}(v) - \sqrt{s}\Phi^{-1}(u))/\sqrt{t-s})}{\varphi(\Phi^{-1}(v))},$$

gdzie s, t to indeksy czasowe, a Φ, φ to dystrybuanta i gęstość standardowego rozkładu normalnego.

Kopuła Browna - idea

Źródło: V. Schmitz, Copulas and Stochastic Processes (2003).

Pora na pytania

Dziękuję bardzo za uwagę!