EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 82045, PSD-TX-1094, N68, and HAP9

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)(5)	lb/hr	TPY**
U-1	Utility Boiler A (6)	NO _x CO VOC SO ₂ PM ₁₀ Ammonia	2.54 8.88 0.63 0.15 1.27 0.76	
U-2	Utility Boiler B (6)	NO _x CO VOC SO ₂ PM ₁₀ Ammonia	2.54 8.88 0.63 0.15 1.27 0.76	
U-3	Utility Boiler C (6)	NO_x CO VOC SO_2 PM_{10}	2.40 8.38 0.60 0.14 1.20	
U-4	Utility Boiler D (6)	NO_x CO VOC SO_2 PM_{10}	1.61 5.64 0.40 0.10 0.81	
U-7	Utility Boiler E (6)	NO _x CO VOC SO ₂	1.61 5.64 0.40 0.10	

		PM ₁₀	0.81	
U-CAP	Utility Boilers A, B, C, D, and E (6)	NO_x CO VOC SO_2 PM_{10} Ammonia		21.60 75.63 5.40 1.30 10.80 3.31
M-1	Cracking Furnace A	NO_x CO VOC SO_2 PM_{10} Ammonia	0.79 2.76 0.49 0.05 0.68 0.22	3.46 12.09 2.15 0.22 2.98 0.97
M-2	Cracking Furnace B	NO_x CO VOC SO_2 PM_{10} Ammonia	0.79 2.76 0.49 0.05 0.68 0.22	3.46 12.09 2.15 0.22 2.98 0.97
M-3	Cracking Furnace C	NO _x CO VOC SO ₂ PM ₁₀ Ammonia	0.79 2.76 0.49 0.05 0.68 0.22	3.46 12.09 2.15 0.22 2.98 0.97
M-4	Cracking Furnace D	NO_x CO VOC SO_2 PM_{10} Ammonia	0.79 2.76 0.49 0.05 0.68 0.22	3.46 12.09 2.15 0.22 2.98 0.97
MSS-D	Cracking Furnace Decoke	NO _x CO	0.92 9.25	0.09 0.89

H-1	HCI Production Furnace	VOC SO ₂ PM ₁₀ NO _x CO VOC SO ₂ PM ₁₀ Ammonia Chlorine HCl Dioxins/Furans	0.10 0.01 1.62 0.57 3.44 0.72 0.01 1.38 0.42 0.14 0.41 (7)	0.01 0.01 0.16 2.47 15.06 3.14 0.01 6.03 1.83 0.60 1.81
M-5	Gas Thermal Oxidizer A	NO _x CO VOC SO ₂ PM ₁₀ Ammonia Chlorine HCI	0.89 2.72 1.09 0.02 0.46 0.33 1.38 1.42	
M-6	Gas Thermal Oxidizer B	NO _x CO VOC SO ₂ PM ₁₀ Ammonia Chlorine HCI	0.89 2.72 1.09 0.02 0.46 0.33 1.38 1.42	
M-CAP	Gas Thermal Oxidizers A and B	NO _x CO VOC SO ₂ PM ₁₀ Ammonia Chlorine		3.90 11.91 4.77 0.09 2.01 1.44 6.04

M-7	VCM Cooling Tower	HCI VOC PM ₁₀ Chlorine	1.59 0.38 0.32	6.21 6.96 1.70 1.39
U-6	Biological Treatment	VOC	0.30	1.31
M-12	VCM Unit Fugitives	VOC Chlorine HCl Ammonia	1.13 0.04 0.10 0.03	4.95 0.17 0.46 0.13
T-1A	Diesel Fire Pump	NO_x CO VOC SO_2 PM_{10}	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01
T-1B	Diesel Fire Pump	NO_x CO VOC SO_2 PM_{10}	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01
T-1C	Diesel Fire Pump	NO _x CO VOC SO ₂ PM ₁₀	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01
T-2A	Diesel Fire Pump	NO_x CO VOC SO_2 PM_{10}	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01
T-2B	Diesel Fire Pump	NO_x CO VOC SO_2 PM_{10}	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01

T-2C	Diesel Fire Pump	NO_x CO VOC SO_2 PM_{10}	5.30 2.95 1.11 0.91 0.97	0.07 0.04 0.01 0.01 0.01
T-3A	Diesel CW Pump	NO_x CO VOC SO_2 PM_{10}	1.62 1.20 0.45 0.37 0.40	0.02 0.02 0.01 0.01 0.01
T-3B	Diesel CW Pump	NO_x CO VOC SO_2 PM_{10}	1.62 1.20 0.45 0.37 0.40	0.02 0.02 0.01 0.01 0.01
T-3C	Diesel CW Pump	NO_x CO VOC SO_2 PM_{10}	1.62 1.20 0.45 0.37 0.40	0.02 0.02 0.01 0.01 0.01
T-4	Diesel Generator for C/A Pump	NO_x CO VOC SO_2 PM_{10}	20.69 10.35 1.33 0.75 1.32	0.27 0.13 0.02 0.01 0.02
T-5	Diesel Generator for VCM Pump	NO_x CO VOC SO_2 PM_{10}	16.81 8.40 1.08 0.61 1.07	0.22 0.11 0.01 0.01 0.01
T-6	Diesel Generator for VCM CCR	NO_x CO VOC SO_2	4.83 3.23 1.21 0.99	0.06 0.04 0.02 0.01

T-7	Utility Pump Generator	$\begin{array}{c} PM_{10} \\ NO_x \\ CO \\ VOC \\ SO_2 \\ PM_{10} \end{array}$	1.06 7.37 3.69 0.47 0.27 0.47	0.01 0.10 0.05 0.01 0.01 0.01
DT	Diesel Fuel Tanks for Diesel Generators	VOC	0.01	0.01
OR	Lube Oil Reservoirs	VOC	0.01	0.01
MSS-TA	Maintenance, Start-up, and Shutdown (MSS) Turnaround	VOC Chlorine HCl	14.62 0.14 0.01	0.40 0.01 0.01
MSS-R	Routine MSS and Sampling	VOC PM ₁₀ Chlorine HCl	0.03 2.75 0.10 0.25	0.01 0.07 0.01 0.02
LOAD/UNLOAD	Loading/Unloading	VOC Chlorine	0.16 0.01	0.04 0.01
U-5	35% HCI Tank Absorber	HCI	0.01	0.01
M-13	25% HCl Tank Absorber	HCI	0.01	0.04
C-1	Absorber ACL-702	Chlorine	0.24	1.05
C-2	Absorber ACL-603	Chlorine HCl	0.01 0.01	0.01 0.02
C-3	Absorber ACL-612	HCI	0.01	0.01
C-4	C/A Cooling Tower	PM ₁₀ Chlorine Freon	0.17 0.09 1.63	0.75 0.41 7.10
C-5	C/A Unit Fugitives	Chlorine HCl	0.25 0.21	1.09 0.91

M-14	Wastewater Tank	VOC	0.01	0.01
M-15	Equalization Tank	VOC	0.01	0.01
CU/FE	Copper Iron Removal System	VOC	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) VOC- volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM₁₀- particulate matter equal to or less than 10 microns in diameter
 - CO carbon monoxide
 - HCI hydrogen chloride
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) All VOC and NO_x emissions were subject to nonattainment review. All CO emissions were subject to PSD review.
- (6) The facilities were subject to a case by case MACT review.
- (7) Dioxins and Furans shall not exceed 0.3 ng-TEQ/dscm corrected to 7 percent oxygen in the exhaust from the HCl production furnace averaged over a one hour period.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:
 - Hrs/day Days/week Weeks/year or 8,760Hrs/year
- ** Compliance with annual emission limits is based on a rolling 12-month period.