TP2 Réponse en fréquence

Objectifs:

- Tracer les diagrammes de Bode pour l'amplitude et la phase dans le cadre de l'amplification d'un montage à transistor.
- Calculer le choix approprié de valeurs des condensateurs de découplage/liaison.
- Mesurer la valeur de la capacité totale de collecteur à haute fréquence.

Préparation : Conseillée à l'aide de votre logiciel de simulation préféré.

Compte rendu : À remettre à la fin de la séance de TP.

Cet TP comprend 16 questions sur un total de 20 points.

1 Étude théorique

Une grande variété d'amplificateur opérationnels (AOP) est maintenant disponible dans le commerce avec des fréquences de gain unitaire allant de 1 MHz à 300 MHz. De ce fait, la plupart des amplificateurs sont conçus à partir des AOP et l'étude des amplificateurs à étages discrets est moins effectuée. On étudie ici l'amplificateur PDT stabilisé :

Avec:

- $Q_1 = 2N3904$
- $R_1 = 10 \text{ k}\Omega$
- $R_2 = 2,2 \text{ k}\Omega$
- $R_C = 3.6 \text{ k}\Omega$
- $R_{E1} = 180 \ \Omega$
- $R_{E2}=$ 820 Ω (Potentiomètre de 2 k Ω)
- $R_L = 10 \text{ k}\Omega$
- $V_{CC} = 10 \text{ V}$
- $V_{EE} = 0 \text{ V}$

1.1 Étude basse fréquence

On considère f_{min} = 100 Hz.

- 1. Étudier le régime DC (polarisation) du montage amplificateur et déterminer les courants (I_B , I_C , I_E) et les tensions (V_B , V_E , V_C).
- 2. Dessiner le schéma équivalent en régime AC (modèle en π) du montage amplificateur.
- 3. Calculer la valeur normalisée du condensateur de découplage/liaison d'émetteur C_E contribuant à 80% de f_{min} .
- 4. Calculer la valeur normalisée du condensateur de découplage/liaison d'entrée C_{in} contribuant à 10% de f_{min} .
- 5. Calculer la valeur normalisée du condensateur de découplage/liaison de sortie C_{out} contribuant à 10% de f_{min} .
- 6. Donner la valeur de la résistance d'émetteur r_e' pour $V_T=25\,$ mV. Calculer le gain en tension A_v du montage en bande non atténuée.

1.2 Étude haute fréquence

- 1. Dessiner sur le schéma AC les condensateurs représentant les couplages capacitifs parasites et les effets capacitifs haute fréquence entre les jonctions. Discuter.
- 2. Calculer la valeur approximative du condensateur de la jonction base-émetteur $C_{e'}$.
- 3. Le condensateur de la jonction base-collecteur $C_{c'}$ est une capacité de réaction. Appliquer le théorème de Miller et calculer les valeurs des condensateurs équivalents d'entrée $C_{in(M)}$ et de sortie $C_{out(M)}$.
- 4. Calculer les capacités totales de base et de collecteur.
- 5. Déterminer la valeur approximative de la fréquence de coupure f_{max} .

2 Étude expérimentale (20 points)

- 1. (1 point) Mesurer les valeurs réelles des résistances et câbler le montage avec les valeurs indiquées.
- 2. (1 point) Ajuster R_{E2} de façon à obtenir les tensions de polarisation calculées en préparation.
- 3. (5 points) Dans un premier temps, vérifier le fonctionnement du montage amplificateur en bande non atténuée. Injecter un signal AC faible amplitude (V_p =10 mV) en entrée et mesurer la tension en sortie. Calculer le gain en tension A_v de l'amplificateur et comparer aux résultats obtenus dans l'étude théorique.
- 4. (12 points) Dans un second temps, tracer les diagrammes de Bode pour l'amplitude et la phase dans la gamme de fréquence : $10^2 < f < 10^6$ Hz. Mesurer les fréquences de coupure à -3 dB. Comparer aux résultats obtenus dans l'étude théorique.
- 5. (1 point) En déduire la valeur de la capacité totale de collecteur. Commenter.