Introduction to Herbrand-Ribet theorem

唐一萌

2022/4/29

Let p be an odd prime number, and A the ideal class group of $\mathbb{Q}(\mu_p)$. C denotes the \mathbb{F}_p vector space A/A^p , we know that dimension of C equals the p-rank of A.

Write Δ for $Gal(\mathbb{Q}(\mu_p)/\mathbb{Q})$. Denoted the cyclotomic character by χ : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to \Delta \to \mathbb{F}_p^*$. χ can be seen as the generator of the dual of Δ .

 Δ acts on C naturally. Because Δ is cyclic, $\mathbb{F}_{\rho}[\Delta] \cong \mathbb{F}_{\rho}[x]/(x^{\rho-1}-1)$ is semi simple, each simple module over $\mathbb{F}_{\rho}[\Delta]$ is 1-diemensional, and we have the following decomposition:

$$C = \bigoplus_i C(\chi^i)$$

where $C(\chi^i)$ is the maximal submodule of C, that Δ acts on it through χ^i .

The k-th Bernoulli number B_k is given by the expansion:

$$\frac{t}{e^t - 1} + \frac{t}{2} - 1 = \sum_{n \ge 2} \frac{B_n}{n!} t^n$$

The main result of this article is the following theorem:

Theorem 1 (Ribet)

Let k be even, $2 \le k \le p-3$. Then $p \mid B_k \iff C(\chi^{1-k}) \ne 0$

Corollory 1 (Kummer)

An odd prime number p is irregular \iff there exists some even integer k with $2 \le k \le p-3$, such that p divides (the numerator of) the k-th Bernoulli number B_k .

Scketch of the proof

- Note that B_k arises naturally in the constant term of q-expansion of Eisenstein series.
 - Using the condition $p \mid B_k$, Ribet constructs a new form of weight 2 and level p, congruent to Eisenstein series.
- The Galois representation (reduction with suitable lattice) associated with this new form, cut out some unramified abelian extension of $\mathbb{Q}(\mu_p)$.
- ▶ By class field theory, this ensures the part of *C* we want is nontrivial.

Theorem 2

Suppose $p \mid B_k$. Then there exists a Galois extension E/\mathbb{Q} containing $\mathbb{Q}\left(\mu_p\right)$ with the following properties:

i: The extension $E/\mathbb{Q}(\mu_p)$ is unramified.

ii: The group H is a non-zero abelian group of type (p, \ldots, p) , i.e., killed by p.

iii: If $\sigma \in G$ and $\tau \in H$, then $\sigma \tau \sigma^{-1} = \chi(\sigma)^{1-k} \cdot \tau$.

From class field to ideal class group: Theorem $2 \rightarrow$ theorem 1

Proof

By i, E is contained in the Hilbert class field of $\mathbb{Q}(\mu_p)$. Combined with ii and iii, its Artin map ϕ can be formulated like:

idele class group
$$\to A \to A/A^p \to Gal(E/\mathbb{Q}(\mu_p)) = H$$

By "functoriality" of class field theory, given an idele α of $\mathbb{Q}(\mu_p)$ and $\sigma \in \Delta = \operatorname{Gal}(\mathbb{Q}(\mu_p)/\mathbb{Q}), \ \phi(\sigma\alpha) = \tilde{\sigma}\phi(\alpha)\tilde{\sigma}^{-1}$ for any lift $\tilde{\sigma} \in G$ of σ .

In abstract language, if we define an action of Δ acts on H like: given $h\in H, \sigma\in \Delta,$ then $\sigma h=\tilde{\sigma}h\tilde{\sigma^{-1}}$ for any lift $\tilde{\sigma}\in G$. Then the last paragraph is saying that, Artin map is a homomorphism of Δ -modules. Then using Schur lemma, we now know Artin map factor through $\mathcal{C}(\chi^{1-k})$ like:

$$A \to A/A^p \to C(\chi^{1-k}) \to Gal(E/\mathbb{Q}(\mu_p)) = H$$

Since E is not a trivial extension, $C(\chi^{1-k})$ is not trivial $\chi_{1-k} = \chi_{1-k} =$

Theorem 3

Suppose $p \mid B_k$. Then there exists a finite field $\mathbb{F} \supseteq \mathbb{F}_p$ and a continuous representation

$$\bar{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbf{GL}(2, \mathbb{F})$$

with the properties:

- i $\bar{\rho}$ is unramified at all primes $l \neq p$.
- ii The representation $\bar{\rho}$ is reducible (over \mathbb{F}) in such a way that $\bar{\rho}$ is isomorphic to a representation of the form

$$\left(\begin{array}{cc} 1 & * \\ 0 & \chi^{k-1} \end{array}\right)$$

That is, $\bar{\rho}$ is an extension of the 1-dimensional representation with character χ^{k-1} by the trivial 1-dimensional representation.

- iii The image of $\bar{\rho}$ has order divisible by p. In other words, $\bar{\rho}$ is not diagonalizable.
- iv Let D be a decomposition group for p in $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Then $\bar{\rho}(D)$ has order prime to p, i.e., $\bar{\rho} \mid D$ is diagonalizable.

Proof

Denoted by L_k the subfield of $\mathbb{Q}(\mu_p)$ corresponding to the kernel in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of χ^{1-k} .

We first prove theorem 2 with $\mathbb{Q}(\mu_p)$ replaced by L_k , E replaced by E_k , then verify that the extension $\mathbb{Q}(\mu_p)E_k/\mathbb{Q}(\mu_p)$ satisfies properties in theorem 2.

Denoted by E_k the field cut out by $\bar{\rho}$. First note the map: $im(\bar{\rho}) \to \mathbb{F}^*$, $\begin{pmatrix} 1 & * \\ 0 & \chi^{k-1} \end{pmatrix} \mapsto \chi^{k-1}$ is a group homomorphism, with ker matrices like $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$. By Galois correspondence, E_k contains L_k and $Gal(E_k/L_k)$ is matrices like $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ in $im(\bar{\rho})$, which is a group of (p,\cdots,p) type. And we

can verify iii of theorem 2 by the formula: $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}^{-1} = \begin{pmatrix} 1 & ad^{-1}x \\ 0 & 1 \end{pmatrix}.$

It remains to show E_k/L_k unramifies in place p (the only place of L_k over p). But every elements of $Gal(E_k/L_k)$ is of order p, thus by iv of theorem 3, the decomposition group over p (in $Gal(E_k/L_k)$) is trivial.

Now we passage to $\mathbb{Q}(\mu_{\mathit{p}}) E_{\mathit{k}}/\mathbb{Q}(\mu_{\mathit{p}})$

 $\mathbb{Q}(\mu_p)/L_k$ is unramified at any places over $l\neq p$, then so do $\mathbb{Q}(\mu_p)E_k/\mathbb{Q}(\mu_p)$. A decomposition group over place p of $Gal(\overline{\mathbb{Q}}/\mathbb{Q}(\mu_p))$ can be seen as subgroup of the decomposition group over p in $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. Thus the previous analysis on the order of decomposition group remains valid.

ii of theorem 2 is obtained by observation on degree of field extension.

iii of theorem 2 follows from $E_k \cap \mathbb{Q}(\mu_p) = L_k$.

Theorem 4 (Ribet)

Suppose that $p \mid B_k$. There exist a normalised cuspidal eigenform $f \in S_2(p,\varepsilon), f = \sum_{n>0} a_n q^n$. ε is not trivial. And there is a prime $\mathfrak{p} \mid p$ of the number field K_f generated by all a_n , such that for every prime $l \neq p$, the number a_l is \mathfrak{p} -integral and

$$a_l \equiv 1 + l^{k-1} \equiv 1 + \varepsilon(l) l(\bmod \mathfrak{p})$$

Note that K_f is a number field and that ε may be thought of as taking values in K_f^{\times} , for K_f contains $\mathbb{Q}(\varepsilon)$, the number field generated by the values of ε .

Laterly we will show there is a Galois representation associated to this form, having the properties (i) - (iv) of Theorem 3.

We have the following Eisenstein series of weight k and level 1:

$$G_k = -rac{B_k}{2k} + \sum_{n\geq 1} \sum_{d|n} d^{k-1} q^n$$
 for $k \geq 4$

By the q-expansion principle, reduction of $G_k \mod p$ is a eigenform form in $S_k(1,\mathbb{F}_p)$. Now using the following lifting lemma, we find a cusp form of level 1 congruent to $G_k \mod p$.

Theorem 5 (Deligne, Serre)

Let M be a free module of finite rank over a discrete valuation ring R with residue field k, fraction field K and maximal ideal m. Let S be a (possibly infinite) set of commuting R-endomorphisms of M. Let $0 \neq f \in M$ be an eigenvector modulo mM for all operators in S, i.e.,

 $Tf = a_T f \mod \mathfrak{m} \forall T \in S \ (a_T \in R)$. Then there exists a DVR R' containing R with maximal ideal \mathfrak{m}' containing \mathfrak{m} , whose field of fractions K' is a finite extension of K and a non-zero vector $f' \in R' \otimes_R M$ such that $Tf' = a'_T f'$ for all $T \in S$ with eigenvalues a'_T satisfying $a'_T \equiv a_T \mod \mathfrak{m}'$.

$$\begin{cases} \text{normalized eigenforms in} \\ S_2(\Gamma, \bar{K}) \text{ modulo } G_K\text{-conjugacy} \end{cases} \rightarrow \begin{cases} \text{normalized eigenforms in} \\ S_2(\Gamma, \bar{k}) \text{ modulo } G_k\text{-conjugacy} \end{cases}$$

$$\{ \text{maximal ideals of } \mathbb{T}_K \} \qquad \qquad \{ \text{maximal ideals of } \mathbb{T}_k \}$$

$$\{ \text{minimal primes of } \mathbb{T}_{\mathcal{O}} \} \qquad \rightarrow \qquad \{ \text{maximal primes of } \mathbb{T}_{\mathcal{O}} \}$$

Example

Consider the case of level 1 and weight 12. In this case

$$\mathcal{M}_{12}(1) = \mathcal{E}_{12}(1) \oplus \mathcal{S}_{12}(1),$$

where $\mathcal{G}_{12}(1)$ is one-dimensional, spanned by

$$G_{12} = \frac{691}{32760} + \sum_{n=1}^{\infty} \left(\sum_{d|n} d^{11} \right) q^n = \frac{691}{32760} + q + 2049q^2 + 177148q^3 + \cdots,$$

and $\mathcal{S}_{12}(1)$ is also one-dimensional, spanned by Ramanujan's famous cusp form

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n = q - 24q^2 + 252q^3 + \cdots.$$

Then these two forms are congruent mod 691, and not congruent mod any other prime number.

Remark

- ► Congruence of modular forms and Eisenstein series can be rephrased in language of Eisenstein ideals.
- ► Hida and Mazur considered congruence of modular forms under the more general framework of p-adic modualr forms, which leads to the deformation theory of Galois representation.

Defination 1

A λ -adic Galois representation is a continuous homomorphism $G_{\mathbb{Q}} \to \mathbf{GL}(d, K_{\lambda})$, unramified at all but finitely many primes, where K_{λ} is a finite extension of \mathbb{Q}_p .

Denoted by \mathscr{O} the rings of intergers of K_{λ} , and λ the maximal ideal of \mathscr{O} , residue field k.

Because the image of a λ -adic representation is compact, it's not hard to show that each matrix lying in the image is with det beloinging to \mathscr{O}^* . This implies we can do reduction to these representation.

Following previous notations. If $\rho: G_{\mathbb{Q}} \to \mathbf{GL}(d,K)$ is an λ -adic representation, then the image of ρ is compact, and there is at least one $G_{\mathbb{Q}}$ -stable \mathscr{O} -lattice, i.e. ρ can be conjugated to a homomorphism $G_{\mathbb{Q}} \to GL_d(\mathcal{O})$.

Here by a \mathscr{O} -lattice we mean a sub free \mathscr{O} -module generated by some K-basis of K^n . If $\Lambda \subset V$ is any \mathscr{O} -lattice, the subgroup $H = \rho^{-1}(\operatorname{GL}(\Lambda))$ is open in $G_{\mathbb{Q}}$, hence the index $(G_{\mathbb{Q}}:H)$ is finite, and the \mathscr{O} -lattice $\sum_{\sigma \in G/H} \sigma(\Lambda)$ is $G_{\mathbb{Q}}$ -stable.

Reducing modulo the maximal ideal λ gives a residual representation $\bar{\rho}: G_{\mathbb{Q}} \to \mathbf{GL}(d,k)$. This representation may depend on the particularly chosen $G_{\mathbb{Q}}$ -stable lattice of ρ , but its semisimplification $\bar{\rho}^{\mathrm{ss}}$ (i.e. the unique semi-simple representation with the same Jordan-Hölder factors) is uniquely determined by ρ by Brauer-Nesbitt theorem.

We'd like to rephrase the reduction of λ -adic representation in a more direct way. That is to find a matrix $\alpha \in \mathbf{GL}(d, K)$, such that $\alpha \rho \alpha^{-1}$ has image in $\mathbf{GL}(d, \mathscr{O})$. Then we can reduce those image matrixes in the natural way.

A useful lemma for reduction of λ -adic Galois representation

Lemma 1 (Ribet)

Suppose that the degree-2 λ -adic representation ρ of $G_{\mathbb{Q}}$ is simple but $\bar{\rho}$ is not simple. Then, for any ordering φ_1, φ_2 of the two characters of which $\bar{\rho}^{\text{ss}}$ is the direct sum, there is a $G_{\mathbb{Q}}$ -stable \mathscr{O} -lattice $\Lambda \subset V$ such that

$$ho_{\Lambda} \sim \left(egin{array}{cc} arphi_1 & * \\ 0 & arphi_2 \end{array}
ight)$$
, as opposed to $\left(egin{array}{cc} arphi_1 & 0 \\ * & arphi_2 \end{array}
ight)$, and such that ho_{Λ} is not semisimple, i.e., $ho_{\Lambda} \ncong arphi_1 \oplus arphi_2$.

Proof

From
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} d & c \\ 0 & a \end{pmatrix}$$
, we can interchange the ordering of two characters. By the formula
$$\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \begin{pmatrix} a & \pi b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix}^{-1} = \begin{pmatrix} a & b \\ \pi c & d \end{pmatrix}$$
, we can assume reduction matixes are upper triangular instead of lower, i.e. images of ρ lie in
$$\begin{pmatrix} \mathscr{O}^* & \mathscr{O} \\ p\mathscr{O} & \mathscr{O}^* \end{pmatrix} \text{ and } 1\text{-}2 \text{ elements of them is not always zero. Now we can do}$$
 conjugation by
$$\begin{pmatrix} 1 & 0 \\ 0 & \pi \end{pmatrix} \text{ enough many times , keeps images of representation}$$
 still in
$$\begin{pmatrix} \mathscr{O}^* & \mathscr{O} \\ p\mathscr{O} & \mathscr{O}^* \end{pmatrix}, \text{ but there are some matrix in this image with } 1\text{-}2$$
 elements in \mathscr{O}^* .

Let $N, k \geq 1$, and f be a weight k new form of $\Gamma_0(N)$. Let (c_p, ε) be its associated system of eigenvalues and Nebentypus. Let K_f be the subfield of C generated by the c_p and the values of ε , one can show K_f is a number field. Let K be any subfield of $\mathbb C$ containing K_f and is finite over $\mathbb Q$.

Let ℓ be a prime.

Theorem 6 (Deligne-Serre-Shimura)

There exists a (continuous) representation

$$\rho_{\ell}: \mathsf{G}_{\mathbb{Q}} \to \mathsf{GL}(2, \mathsf{K}_{\mathsf{f}} \otimes \mathbb{Q}_{\ell})$$

with the following properties: If $p \nmid N\ell$ is a prime number, then ρ is unramified at p, and the image under ρ_{ℓ} of any Frobenius element for p is a matrix with trace c_p and determinant $\varepsilon(p)p^{k-1}$.

Note that
$$K_f \otimes \mathbb{Q}_\ell = \prod_{\lambda \mid \ell} K_{f,\lambda}$$
. Thus $\rho_\ell = \bigoplus_{\lambda \mid \ell} \rho_\lambda$

Irreducibility of modular representation

Theorem 7 (Ribet)

Representations constructed in last theorem are absolutely irreducible.

Proof

Following notations from last theorem.

Recall that in theorem 4, from assumption $p \mid B_k$, Ribet construct a new form f of weight 2, level p, and character ε . And there exists a prime $\mathfrak{p} \mid p$ of field K_f such that for every prime number $\ell \neq p$, the number a_ℓ is \mathfrak{p} -integral and

$$a_{\ell} \equiv 1 + \ell^{k-1} \equiv 1 + \varepsilon(\ell)\ell(\bmod \mathfrak{p})$$

Now we considered the p-adic representation associated to this form.

Theorem 8

Their is some reduction of this Galois representation satisfys properties required in theorem 3.

Proof

By congruent property on q-coefficients of this form, under (any) reduction representation, Frobenius of ℓ acts with trace $\ell^{k-1}+1$ and det ℓ^k-1 . By Cebotarev density theorem, we know semi-simplification of any reduction representation is isomorphic to $\begin{pmatrix} 1 & 0 \\ 0 & \chi^{k-1} \end{pmatrix}$. Combined with Ribet's lemma, we only need to verify (iv) of theorem 3. Before that, we give 2 useful facts.

Proposition 1 (Deligne-Rapoport)

Suppose that ε is not trivial. Then abelian variety A_f acquires good reduction at the unique prime dividing p in the maximal totally real subfield $\mathbb{Q}(\mu_p)^+ \subset \mathbb{Q}(\mu_p)$.

Proposition 2 (Raynaud)

Suppose that the ramification index of $K \mid \mathbb{Q}_p$ is < p-1. Let G be a finite flat commutative group scheme over K, killed by a power of p. There is at most one finite flat extension of G to \mathscr{O}_K .

Remark

- Fontaine has some result on case of p=2.
- ► Tate wrote and English explanition of Raynaud's result in book <Modular forms and Fermat's last theorem>.

Proof

Denoted by \mathcal{D}_p a decomposition group of p in $G_{\mathbb{Q}}$. We denote the field $\mathbb{Q}(\mu_p)^+$ by K, and \mathfrak{p}' its unique prime over p, and decomposition group over \mathfrak{p}' by D, and its completion at place \mathfrak{p} by L. It's not hard to see that $(D_p:D)$ is prime to p, thus we only need to prove the restriction of ρ on D is semisimple.

Recall that in Shimura's construction, The Tate module $\mathcal{T}_p(A_f) \otimes \mathbb{Q}_p$ is a rank2 free $K_f \otimes \mathbb{Q}_p$ -module. Some quotient of the former is rank 2 free $K_{f,\mathfrak{p}}$ -module. After substituting A_f with an abelian variety A isogenous to it, we can assume O_f lies in the endomorphism ring of A, and the kernel of $\mathcal{T}_p(A_f) \otimes K_{f,\mathfrak{p}}$ is canonically isomorphic to $A[\mathfrak{p}]$. We can suppose the lattice we choose to do reduction is $\mathcal{T}_p(A_f) \otimes O_{f,\mathfrak{p}}$. Then reduction representation is isomorphic to $A[\mathfrak{p}](\overline{\mathbb{Q}})$ as rank 2 free $O_{f,\mathfrak{p}}/\mathfrak{p}$ -module (denoted this module by M, and the residue field by F).

Suppose \mathscr{A} is the Neron model of A over \mathscr{O}_L . We use $\mathscr{A}[\mathfrak{p}]$ to get extra information about $A[\mathfrak{p}]$ (good reduction ensures the former is finite flat). Denoted by \mathscr{M} the schematic closure of M in $\mathscr{A}[\mathfrak{p}]$. By Raynaud's result, we have 1-1 correspondence between submodules of M and sub group schemes of $\mathscr{A}[\mathfrak{p}]$.

We know that ρ , and hence $\rho|_{\mathrm{D}}$, is isomorphic to $\begin{pmatrix} 1 & * \\ 0 & \chi^{k-1} \end{pmatrix}$. Let $\mathbf{X} \subset A[p]$ be an F-line on which D acts trivially, so that D acts via χ^{k-1} on the F-line $\mathbf{Y} = \mathbf{M}/\mathbf{X}$; in particular, \mathbf{Y} is ramified.

Let $\mathcal X$ be the schematic closure of X in $\mathcal M$. As the absolute ramification index (p-1)/2 of L is < p-1, the group scheme $\mathcal X$ is constant. It follows that $\mathcal M$ cannot be connected, for it has the étale subgroup scheme $\mathcal X$ (of order >1).

Now, the group scheme $\mathcal M$ is an F-space scheme. Let $\pmb M^0$ be the sub F[D]-module of $\pmb M$ coming from the identity component of $\mathcal M$, so that M/M^0 is unramified.

We have $M^0 \neq M$, because \mathcal{M} is not connected, as we have seen. We have $\textit{M}^0 \neq 0$ because \textit{M}/\textit{M}^0 is unramified whereas M is not (for it has the quotient Y which is ramified). For the same reason, $M^0 \neq X$, because M/M^0 is unramified whereas Y = M/X is ramified. Thus X and M^0 are two distinct D-stable F-lines in M, and hence the D-module M is semisimple, which was to be shown.

- Ribet considered method to raise level and decrease weight in his invent 100.
- ▶ It seems nowadays by Faltings' work on crystalline representation, it's possible to substitute the modular form we use by higher weight ones.