

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

Introdução

Uma Abordagem Unificada para Métricas de Roteamento e Adaptação Automática de Taxa em Redes em Malha Sem Fio

Diego Passos

Universidade Federal Fluminense

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

Introdução

Redes em Malha Sem Fio

Características

- Auto-configuráveis.
 - Nós realizam roteamento dinâmico.
 - Qual o critério para a escolha de uma rota?
- Baixo custo de implantação.
 - Dispositivos baseados no padrão IEEE 802.11.
 - Várias taxas de transmissão disponíveis.
 - Como escolher uma taxa?

Agenda

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

Dificuldades nas Escolhas

Agenda

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

De Rotas

- Condições da rede variam muito.
- Qualidade dos enlaces depende de:
 - Interferências.
 - Obstáculos.
 - Condições climáticas.

De Taxas

- Em geral, quanto mais alta a taxa, maior a probabilidade de erros.
 - Em redes não congestionadas.

Correlação dos Dois Problemas

Agenda

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

Do Ponto de Vista da Métrica

- As características dos enlaces dependem da taxa de transmissão.
- A métrica deve ter ciência da taxa selecionada.

Do Ponto de Vista da Adaptação de Taxa

- Um enlace só tem tráfego se ele é escolhido pelo protocolo de roteamento.
- Caso não seja, o algoritmo de adaptação não tem dados para selecionar a taxa mais correta.

Proposta do Trabalho

Agenda

Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

MARA (Metric-Aware Rate Adaptation)

- Uma abordagem cross-layer.
- Abordagem unificada para dois problemas:
 - Adaptação automática de taxa.
 - Métrica de roteamento.

Objetivos

- Escolha de taxa coerente com o custo atribuído ao enlace.
- Inferência precisa das informações dos enlaces.
 - Com baixo overhead.

Outras Contribuições

Agenda

Trab. Rel. Proposta Implementação Avaliação Conclusão

Otimizações

- MARA-P.
 - Escolha de taxa dependente do tamanho do quadro.
- MARA-RP.
 - Escolha de taxa e rota dependente do tamanho do quadro.
- Até que ponto influenciam?

Artefatos de Implementação

- Protocolo SLSP (Simple Link State Protocol).
- Módulo PPRS (Per-Packet Rate Selection).

Introdução

Proposta Implementação Avaliação Conclusão

Trabalhos Relacionados

Agenda

Introdução

- Hop Count.
- ETX.
- ETT.
- ML.
- WCETT.
- AirTime
- mETX.
- ENT.
- ..

Introdução

Proposta

Em Termos de Métricas

• Hop Count. (quantidade de saltos)

- ETX.
- ETT.
- ML.
- WCETT.
- AirTime
- mETX.
- ENT.
- ..

Implementação Avaliação Conclusão

Agenda

Introdução

- Hop Count.
- ETX. (número de retransmissões em nível 2)
- ETT.
- ML.
- WCETT.
- AirTime
- mETX.
- ENT.
- .

Agenda

Introdução

- Hop Count.
- ETX.
- ETT. (atraso fim a fim)
- ML.
- WCETT.
- AirTime
- mETX.
- ENT.
- ..

Agenda

Introdução

Proposta Implementação Avaliação Conclusão

- Hop Count.
- ETX.
- ETT.
- ML. (probabilidade de perda fim a fim)
- WCETT.
- AirTime
- mETX.
- ENT.

Agenda

Introdução

Proposta Implementação Avaliação Conclusão

- Hop Count.
- ETX.
- ETT.
- ML.
- WCETT.
- AirTime
- mETX.
- ENT.
- ..

Em Comum:

 Imprecisão na obtenção de informações sobre os enlaces.

Agenda

Introdução

- ARF.
- AARF.
- SampleRate.
- SNR.
- YARAa.
- Onoe.
- SRA.
- ...

Agenda

Introdução

- ARF. (falhas ou sucessos consecutivos)
- AARF.
- SampleRate.
- SNR.
- YARAa.
- Onoe.
- SRA.
- ..

Agenda

Introdução

- ARF.
- AARF. (falhas ou sucessos consecutivos)
- SampleRate.
- SNR.
- YARAa.
- Onoe.
- SRA.
- ..

Agenda

Introdução

- ARF.
- AARF.
- SampleRate. (atraso médio)
- SNR.
- YARAa.
- Onoe.
- SRA.
- ..

Agenda

Introdução

- ARF.
- AARF.
- SampleRate.
- SNR. (SNR no receptor)
- YARAa.
- Onoe.
- SRA.
- ..

Agenda

Introdução

Proposta Implementação Avaliação Conclusão

- ARF.
- AARF.
- SampleRate.
- SNR.
- YARAa.
- Onoe.
- SRA.
- ...

Em Comum:

- Estatísticas baseadas em amostras não uniformes.
 - Frequência e tamanho dos quadros.

Abordagens Unificadas

Agenda

Introdução

Proposta
Implementação
Avaliação
Conclusão

Até agora, não são conhecidas outras propostas unificadas para estes dois problemas.

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Proposta

MARA (Metric-Aware Rate Adaptation)

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Idéia Básica

- Modelar o custo de cada enlace como o tempo de transmissão.
 - O tempo é uma função da taxa de transmissão.
- Encontrar a taxa λ que minimiza o atraso.
- O atraso associado à taxa λ será custo do enlace

MARA (Cont.)

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão Modelo do Atraso (ou Expressão de Custo)

$$MARA_{ab} = \min_{i} \left(\frac{ETX_{ab}^{i} \cdot ps}{\lambda_{i}} \right)$$

Parâmetros

- λ_i : *i-ésima* taxa.
- ETX_{ab}^{i} : ETX do enlace na *i-ésima* taxa.
- ps: tamanho do pacote de probe.

Estimando ETX_{ab}^i

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Primeira Parte

- Envio periódico de pacotes de probe.
- Probes enviados em 4 taxas diferentes:
 - 1, 18, 36 e 54 Mbps.
- Os probes são enviados através de um round-robin.
 - Apenas um probe enviado por período.

Segunda Parte

- As probabilidades para as demais taxas são estimadas.
- É utilizada uma função de "conversão".
 - A partir das probabilidades inferidas pelos probes, obtém-se as demais.

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Função de Conversão

- Baseada em uma tabela pré-computada [Pavon e Choi 2003] e [Trivellato 2005] que associa:
 - SNR.
 - Taxa de transmissão.
 - Tamanho do quadro.
 - Probabilidade de erro.

```
function computeProbAtRate(P_{ab}, Rate) { SNR_{ab} = \text{findSNRInTable}(P_{ab}, \text{probeRate, probeSize}); \\ NewP_{ab} = \text{findPERInTable}(SNR_{ab}, \text{Rate, probeSize}); \\ \text{return}(NewP_{ab}); \\ \}
```


Introdução Trab. Rel.

Implementação Avaliação Conclusão

Problemas da Função de Conversão

Regiões Não Inversíveis

- A função que relaciona SNR e probabilidade de perda não é inversível.
 - Por exemplo, para a probabilidade de perda igual a 1.
- O que fazer nos pontos extremos?

Limitações de Representação da Tabela

- SNR e probabilidade de perda são valores contínuos.
 - Impossível representar todas as entradas em uma tabela.
- Aumentar a resolução da tabela implica em torná-la maior.

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Inversibilidade

Solução Proposta

- Utilização de *probes* em 4 taxas diferentes.
- Com isso, todo o domínio da função é coberto por curvas inversíveis.

Representação dos Dados

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Solução Proposta

• Ajuste de curvas baseado nos dados da tabela.

$$PER = \frac{1 - erf\left(\frac{SNR - a}{b \cdot \sqrt{2}}\right)}{2}.$$

MARA-P

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Alterações em Relação à Proposta Original

- Definição de n classes de tamanho.
 - [0; 350], [351; 750], [751; 1300] e [1301; 1520].
- Para cada enlace, o custo é calculado n vezes (uma para cada classe).
- No *k-ésimo* cálculo, *ps* é substituído pelo limite superior da *k-ésima* classe.
- Apenas o custo associado à classe dos maiores quadros é utilizado para roteamento.

Expressão de Custo para a k-ésima Classe

$$MARA_{ab} = \min_{i} \left(\frac{ETX_{ab}^{i} \cdot sup[k]}{\lambda_{i}} \right)$$

MARA-RP

Agenda

Introdução Trab. Rel.

Implementação Avaliação Conclusão

Alterações em Relação à Proposta Original

- Extensão da ideia anterior.
- Os custos associados a todas as classes são armazenados.
- O algoritmo de caminho mínimo é executado em n instâncias.
- O resultado é uma tabela de roteamento com mais uma dimensão.

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Implementação

Implementações Realizadas

Agenda

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Simulações

- Simulador ns-2.
- Módulo DEI802.11-MR.
 - Utilização de múltiplas taxas.
 - Modelo de perda mais real.
- Protocolo OLSR.

Implementação Real

- Roteadores Linksys WRT-54G.
- OpenWRT (distribuição Linux).
- Protocolo SLSP módulo PPRS.
- Iptables e Iproute2.

Protocolo SLSP

Agenda

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Descrição

- Protocolo baseado em estado de enlaces.
- Bastante simples.
- Projetado para ser extensível, em relação a implementação de novas métricas.
- Simplificou o processo de implementação do MARA e suas variações.

Módulo PPRS

Agenda

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Descrição

- Módulo para o kernel do Linux.
- Permite a seleção de taxas de transmissão com base em:
 - Próximo salto.
 - Classe de tamanho do quadro.
 - Modo de transmissão.
- Independente do driver da interface.

Funcionamento em Conjunto

Agenda

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Introdução Trab. Rel. Proposta

Avaliação Conclusão

Implementação do MARA-RP

Como Adicionar uma Dimensão à Tabela de Roteamento?

- O *Linux* utiliza múltiplas tabelas de roteamento.
 - Iproute2.
- Existem regras associando pacotes a cada tabela.
 - Baseadas em destino, origem, TOS...

Nesta Implementação...

- O protocolo constrói tabelas diferentes.
- O Iptables coloca marcações nos pacotes.
- As regras redirecionam o pacote à tabela correta.

Introdução Trab. Rel. Proposta Implementação

Conclusão

Avaliação

Simulações

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Cenários

- Cinco topologias.
- Um fluxo TCP de 300 segundos de duração.
 - MARA e outras propostas.
- Três fluxos UDP também de 300 segundos (voz, vídeo e background).
 - MARA, MARA-P e MARA-RP.

Propostas Comparadas

- Métricas Hop Count, ETX, ML e ETT.
- Algoritmos ARF, SampleRate e SNR.

Experimentos Reais

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Cenários

- Uma topologia.
- Um fluxo TCP de 300 segundos de duração.
 - Um fluxo ICMP concorrente.
- Dois fluxos UDP também de 300 segundos (voz e vídeo).
- Ferramentas: Iperf e ping.

Propostas Comparadas

- Métricas Hop Count, ETX e ML.
- Algoritmo ARF (simplificado).

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Topologia do Projeto Remesh (apenas simulações)

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Topologia do Projeto ReMoTE (simulações e experimentos reais)

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Topologia em Grade (apenas simulações)

Introdução Trab. Rel. Proposta Implementação

Conclusão

Topologias

Topologia Aleatória (apenas simulações)

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Extrapolação da Topologia do Projeto ReMoTE (apenas simulações)

Vazão TCP na Topologia Remesh

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Vazão entre os nós 0 e 1.

16 de Junho 2009

Vazão entre os nós 0 e 6.

Vazão TCP na Topologia ReMoTE

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Vazão entre os nós 0 e 9.

Vazão TCP na Topologia em Grade

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Vazão TCP na Topologia Aleatória

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Vazão TCP na Topologia Extrapolada

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Comparativo: ETT/SNR e MARA

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Topologia Remesh.

Introdução Trab. Rel. Proposta Implementação

Conclusão

Atraso e Perda de Segmentos

Atraso na topologia do Projeto ReMoTE.

16 de Junho 2009

Perda na topologia do Projeto ReMoTE.

Seleção de Rotas na Topologia em Grade

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

MARA (51%)

ML e SNR (22, 5%)

 $\mathsf{ETX} \; \mathsf{e} \; \mathsf{SNR} \; (20, 5\%)$

Hop Count e SNR (12, 8%)

ETT e SNR (66, 6%)

Atraso e Perda UDP (Topologia Aleatória)

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Perda (fluxo de áudio)

Atraso (fluxo de áudio)

Atraso UDP (Ao Longo do Tempo)

Agenda

Introdução Trab. Rel. Proposta Implementação

Conclusão

Atraso do fluxo de áudio entre os nós 0 e 3 na topologia ReMoTE.

Introdução Trab. Rel. Proposta Implementação

Conclusão

Resultados dos Experimentos Reais (TCP e ICMP)

Introdução Trab. Rel. Proposta Implementação

Conclusão

Resultados dos Experimentos Reais (UDP)

Vazão (fluxo de áudio)

RTT

Introdução Trab. Rel. Proposta Implementação Avaliação

Conclusão

Problemas Abordados

Agenda

Introdução
Trab. Rel.
Proposta
Implementação
Avaliação

- Adaptação Automática de Taxa.
 - Falta uniformidade ao processo de amostragem.
- Métrica de Roteamento.
 - Falta confiabilidade às informações coletadas.
- Os dois problemas são fortemente correlacionados.
 - As características dos enlaces dependem da taxa de transmissão.

Contribuições

Agenda

Introdução
Trab. Rel.
Proposta
Implementação
Avaliação
Conclusão

MARA.

- Abordagem conjunta para a solução dos dois problemas
- Garante a coerência das decisões.
- MARA-P e MARA-RP
 - Otimizações relacionadas ao tamanho dos pacotes.
- PPRS.
 - Módulo de seleção de taxa baseado em diversos atributos.

Introdução
Trab. Rel.
Proposta
Implementação
Avaliação

Resultados Obtidos

MARA

- Foram considerados 5 cenários distintos.
- Se mostrou consideravalmente superior às demais propostas.
 - Especialmente quando a distância entre os nós aumenta.
- Sempre obteve bons resultados de atraso.
- Apresentou estabilidade nas suas escolhas.

MARA-P e MARA-RP

- Nas simulações, se mostraram equivalentes.
 - Não apresentaram melhoras (consideráveis) em relação ao MARA.
- Na prática, MARA-RP mostrou alto overhead.
 - O MARA-P apresentou um desempenho melhor.

Trabalhos Futuros

Agenda

Introdução Trab. Rel. Proposta Implementação Avaliação

Tabela

- Repetir os experimentos.
 - Unificar as metodologias.

Alterações no Modelo

- Incorporar outros fenômenos de propagação.
- Considerar ambientes congestionados.

Avaliação das Otimizações

- Verificar analiticamente a diferença entre MARA-P e MARA-RP.
- Entender o pouco efeito observado.

Referências

Agenda

Introdução
Trab. Rel.
Proposta
Implementação
Avaliação

Pavon, J. P. e Choi, S. (2003).

Link Adaptation Strategy for IEEE 802.11 wlan

Via Received Signal Strength Measurement.

Em ICC '03, volume 2, páginas 1108–1113.

Trivellato, M. (2005).

Windowed/Shaped OFDM and OFDM-OQAM: Alternative Multicarrier Modulations for Wireless Applications.

Dissertação de Mestrado, Universidade de Pádova, Itália.

Introdução
Trab. Rel.
Proposta
Implementação
Avaliação

Perguntas?