Санкт-Петербургский Политехнический университет Петра Великого Институт прикладной математики и механики

Кафедра «Прикладная математика»

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине
"Математическая статистика"

Выполнил студент гр. 33631/1 Лансков.Н.В.

Содержание

1	Список таблиц	2
2	Постановка задачи	3
3	Теория	3
4	Реализация	3
5	Результаты	4
6	Обсуждение	6
7	Выводы	6
8	Приложения	6
9	Список литературы	7

1 Список таблиц

1	normal	4
2	cauchy	4
3	laplace	Ę
4	uniform	Ę
5	poisson	Ę

2 Постановка задачи

Любыми средствами сгенерировать выборки размеров 20, 60, 100 элементов для 5ти распределений. Для каждой выборки вычислить \overline{x} , $med\ x$, Z_R , Z_Q , Z_{tr} , при $r=\frac{n}{4}$.

Распределения:

- 1. Стандартное нормальное распределение
- 2. Стандартное распределение Коши
- 3. Распределение Лапласа с коэффициентом масштаба $\sqrt{2}$ и нулевым коэффициентом сдвига.
- 4. Равномерное распределение на отрезке $\left[-\sqrt{3}, \sqrt{3} \right]$
- 5. Распределение Пуассона со значением матожидания равным двум.

3 Теория

1. Выборочное среднее [1]

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

2. Выборочная медиана [2]

$$med \ x = \begin{cases} x_{k+1}, & n = 2k+1\\ \frac{1}{2}(x_k + x_{k+1}), & n = 2k \end{cases}$$
 (2)

3. Полусумма экстремальных значений [3]

$$Z_R = \frac{1}{2} (x_1 + x_n) \tag{3}$$

4. Полусумма квартилей [4]

$$Z_Q = \frac{1}{2} \left(Z_{\frac{1}{4}} + Z_{\frac{3}{4}} \right) \tag{4}$$

5. Усечённое среднее [5]

$$Z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i \tag{5}$$

4 Реализация

Выполнено средствами python с применением библиотеки numpy[6]

5 Результаты

Таблица 1: normal

n = 20	average	med	Zr	Zq	Z tr r = n/4
E =	0.003889	-0.001204	0.004247	-0.002884	0.014986
D =	0.050065	0.069428	0.135281	0.056127	0.060241
n = 60	average	med	Zr	Zq	Ztr r = n/4
E =	0.005639	-0.001905	0.006317	0.003647	-0.005183
D =	0.017071	0.024751	0.109666	0.020065	0.019645
n = 100	average	med	Zr	Zq	Z tr r = n/4
E =	-0.000990	-0.008915	-0.003211	-0.007140	0.000411
D =	0.010270	0.015038	0.091469	0.012224	0.011148

Таблица 2: cauchy

n = 20	average	med	Zr	Zq	Z tr r = n/4
E =	0.574031	-0.009207	4.314604	0.009490	0.024569
D =	380.673006	0.127344	24864.038520	0.290641	0.156087
n = 60	average	med	Zr	Zq	Ztr r = n/4
E =	16.889466	0.007131	-14.877379	-0.006227	-0.007330
D =	218415.033090	0.039049	268917.253813	0.087454	0.042852
n = 100	average	med	Zr	Zq	Ztr r = n/4
E =	-1.147046	-0.000622	-23.949387	-0.002369	-0.008024
D =	604.646590	0.024850	1995730.222185	0.051894	0.023969

Таблица 3: laplace

n = 20	average	med	Zr	Zq	$\operatorname{Ztr} r=n/4$
E =	-0.001627	-0.000952	0.032669	0.003535	0.005730
D =	0.045803	0.031761	0.402496	0.046401	0.033325
n = 60	average	med	Zr	Zq	Z tr r = n/4
E =	-0.006856	-0.002807	0.050344	-0.000216	-0.000712
D =	0.016743	0.009838	0.431677	0.017332	0.009962
n = 100	average	med	Zr	Zq	Ztr r = n/4
E =	-0.000800	0.001184	-0.024119	-0.002611	-0.000909
D =	0.009861	0.005529	0.409545	0.009740	0.006101

Таблица 4: uniform

n = 20	average	med	Zr	Zq	Ztr r = n/4
E =	-0.004788	0.011925	-0.000665	-0.003460	-0.002870
D =	0.049107	0.134658	0.013457	0.071206	0.097207
n = 60	average	med	Zr	Zq	Ztr r = n/4
E =	0.001583	-0.004005	-0.001657	-0.005769	-0.003667
D =	0.016670	0.045087	0.001706	0.024632	0.033966
n = 100	average	med	Zr	Zq	Ztr r = n/4
E =	0.000676	0.004193	-0.000025	-0.005675	0.004133
D =	0.010255	0.028780	0.000621	0.015457	0.019007

Таблица 5: poisson

n = 20	average	med	Zr	Zq	Z tr r = n/4
E =	2.016900	1.868000	2.531500	1.899250	1.865800
D =	0.099684	0.179576	0.290758	0.133599	0.115410
n = 60	average	med	Zr	Zq	Ztr r = n/4
E =	2.005733	1.932500	2.945000	1.936875	1.843400
D =	0.033034	0.054194	0.233475	0.034812	0.041836
n = 100	average	med	Zr	Zq	Ztr r = n/4
E =	1.997070	1.961500	3.128000	1.963625	1.844780
D =	0.020288	0.033268	0.217616	0.017067	0.027989

6 Обсуждение

При вычислении средних значений пришлось отбрасывать некоторое число знаков после запятой, так как дисперсия может гарантировать порядок точности среднего значения только до первого значащего знака после запятой в дисперсии включительно. Единственное исключение - стандартное распределение Коши, так как оно имеет бесконечную дисперсию, а значит не может гарантировать никакой точности.

7 Выводы

В процессе работы вычислены значения характеристик положения для определённых распределений на выборках фиксированной мощности и получено следующее ранжирование характеристик положения:

1. Стандартное нормальное распределение

$$\overline{x} < Z_{tr} < Z_Q < med \ x < Z_R$$

2. Стандартное распределение Коши

$$med \ x < Z_Q < Z_{tr} < \overline{x} < Z_R$$

3. Распределение Лапласа (коэффициент масштаба $\sqrt{2}$ коэффициент сдвига равен нулю)

$$med \; x < Z_{tr} < \overline{x} < Z_Q < Z_R$$

4. Равномерное распределение на отрезке $\left[-\sqrt{3}, \sqrt{3} \right]$

$$Z_R < \overline{x} < Z_{tr} < Z_Q < med \ x$$

5. Распределение Пуассона (значение мат ожидания равно 3)

$$\overline{x} < Z_{tr} < Z_Q < med \ x < Z_R$$

8 Приложения

Исходники: https://github.com/LanskovNV/math_statistics/tree/master/lab_2

9 Список литературы

- [1] Выборочное среднее https://en.wikipedia.org/wiki/Sample_mean_and_covariance
- [2] Выборочная медиана http://femto.com.ua/articles/part_1/2194.html
- [3] Полусумма экстремальных значений https://studopedia.info/8-56888.html
- [4] Квартили https://studfiles.net/preview/2438125/page:13/
- [5] Усечённое среднее https://ole-olesko.livejournal.com/15773.html
- [6] Модуль numpy https://physics.susu.ru/vorontsov/language/numpy.html