

Algorithms for Data Science

Unsupervised Learning: Mathematical Foundations

Mathematics of Unsupervised Learning

Mathematics provides the foundation for algorithms to process and analyze data.

Linear Algebra

- Vectors
- Matrices
- Eigenvalues & Eigenvectors

Probability & Statistics

- Covariance
- Variance
- Distributions

Geometry

- Distance Metrics
 - Euclidean Distance
 - Manhattan Distance

Covariance and Variance

- Covariance
 - Measures how two variables vary together:

$$Cov(X,Y) = \frac{1}{N-1} \sum_{i=1}^{N} X_i - \overline{X} \left(Y_i - \overline{Y} \right)$$

- Variance
 - Special case of covariance for a single variable:

$$Var(X) = Cov(X, X)$$

Used in Principal Component Analysis (PCA) and Clustering

Distance Metrics

Distance metrics define the similarity between data points in clustering.

- Euclidean Distance
 - Straight-line distance between two points:

$$d = \sqrt{\sum_{i=1}^n \left(x_i - y_i
ight)^2}$$

- Manhattan Distance
 - Distance Measured along axes at rights angles:

$$d = \sum_{i=1}^n |x_i - y_i|$$

Distance Metrics

Distance metrics define the similarity between data points in clustering.

- Cosine Similarity
 - Measures angle between vectors, ignoring magnitude:

$$\operatorname{CosSim} = rac{ec{A} \cdot ec{B}}{\|ec{A}\| \|ec{B}\|}$$

Distance Metrics

Distance metrics define the similarity between data points in clustering.

Eigenvalues and Eigenvectors

- Eigenvalues are scalars representing the variance captured by eigenvectors.
- Eigenvectors are the directions of maximum variance in the data.

$$Av = \lambda v$$

Where:

A is a matrix

 $oldsymbol{v}$ represents an eigenvector

 λ represents an eigenvalue

