Aufgabe 1.

- a) Die Bahn von 1 ist $\{1, 2, 3\}$, der Stabilisator ist $\{id, (45)\}$.
- b) Die Bahn von 1 ist $\{1, 2, 3, 4, 5\}$, der Stabilisator ist $\{id\}$.
- c) Die Bahn von 1 ist $\{1\}$, der Stabilisator ist $\langle (2 \ 4)(3 \ 5) \rangle$.

Aufgabe 2.

a) Zu zeigen sind $\forall x \in X : e * x = x$ und $\forall g, h \in G \ \forall x \in X : (g \circ h) * z = g * (h * z)$. Es muss also einerseits gelten, dass

$$e \circ x \circ e^{-1} = x$$
.

Alle Elemente einer Untergruppe (also auch das Neutralelement) haben ein Inverses. Das Inverse $x^{-1} \in X$ eines Elements $x \in X$ ist definiert durch $x \circ x^{-1} = x^{-1} \circ x = e$. Es gilt also auch $e \circ e^{-1} = e^{-1} \circ e = e$. Für alle $x \in X$ gilt, dass $x \circ e = e \circ x = x$. Es gilt also auch $e^{-1} \circ e = e \circ e^{-1} = e^{-1}$. Daraus folgt $e = e^{-1}$ und weiters $e \circ x \circ e^{-1} = e \circ x \circ e = x$, was zu zeigen war.

Ebenso muss gelten, dass

$$(g \circ h) \circ z \circ (g \circ h)^{-1} = g \circ (h \circ z \circ h^{-1}) \circ g^{-1}.$$

Nachdem (X, \circ) eine Gruppe ist, muss \circ assoziativ sein. Demzufolge muss auch gelten, dass $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$. Somit gilt

$$g \circ h \circ z \circ h^{-1} \circ g^{-1} = g \circ h \circ z \circ h^{-1} \circ g^{-1},$$

was zu zeigen war.

b) Die Bahn von x ist $\{(1\ 2), (1\ 3), (2\ 3)\}$, der Stabilisator ist $\langle (4\ 5\ 6)\rangle$.

Aufgabe 3. Es gilt $x \in \mathbb{R}$ und $y \in \mathbb{R} \setminus \{0\}$. Zu zeigen ist, dass

$$x - y \cdot \left\lfloor \frac{x}{y} \right\rfloor = x - |y| \cdot \operatorname{sgn}(x) \cdot \left\lfloor \frac{|x|}{|y|} \right\rfloor$$

für sgn(x) = sgn(y) gilt, andernfalls aber nicht gelten muss.

Man betrachte den Fall $\operatorname{sgn}(x) = 1$ und $\operatorname{sgn}(y) = 1$. In diesem Fall kann die rechte Seite zur linken vereinfacht werden, nachdem hier |y| = y und |x| = x gilt. Man betrachte weiters den Fall $\operatorname{sgn}(x) = -1$ und $\operatorname{sgn}(y) = -1$. Auch hier kann die rechte Seite wieder zur linken vereinfacht werden, nachdem in diesem Fall $|y| \cdot \operatorname{sgn}(x) = y$ und $\frac{|x|}{|y|} = \frac{x}{y}$ gilt.

Bei gleichen Vorzeichen von x und y gilt die Aussage also wie zu zeigen war.

Man wähle x = -2 und y = 4, es gilt also $\operatorname{sgn}(x) \neq \operatorname{sgn}(y)$. In diesem Fall gilt

$$-2 - 4 \cdot -1 \neq -2 - 4 \cdot -1 \cdot 0$$

 $2 \neq -2$,

was zu zeigen war.