关系及其运算

离散数学一集合论

南京大学计算机科学与技术系

关系及其运算

- 关系的定义
- 关系的运算
- 关系的性质
- 0-1矩阵运算

有序对(Ordered pair)

- (a,b)是集合{{a}, {a,b}}的简写
- 次序的体现
 - (x,y)=(u,v) iff x=u 且 y=v 若 $\{\{x\},\{x,y\}\}=\{\{u\},\{u,v\}\}$,则 $\{x\}=\{u\}$ 或 $\{x\}=\{u,v\}$,因此x=u。

假设y≠v

- (1) 若x=y, 左边={{x}}, 而 $v\neq x$,:.右边 \neq {{x}};
- (2) 若 $x\neq y$,则必有 $\{x,y\}=\{u,v\}$,但y既非u,又非v,矛盾。

笛卡尔乘积(Cartesian Product)

- 对任意集合A, B
 笛卡尔积 A×B = {(a, b)|a∈A, b∈B}
- 例: $\{1,2,3\} \times \{a,b\} = \{(1,a), (2,a), (3,a), (1,b), (2,b), (3,b)\}$
- 若A和B都是有限集合, |A×B|= |A|×|B|

(二元) 关系的定义

- 若A, B 是集合,从A 到B 的一个关系是 $A \times B$ 的一个子集.
 - 子集可以是空集
 - 集合的元素是有序对
- 关系意味着什么?
 - 两类对象之间建立起来的联系!

从A到B的二元关系

- 笛卡尔乘积的子集
 - "从A到B的关系"R; R⊆A×B
 - 若A=B: 称为"集合A上的(二元)关系"
- 例子
 - 常用的数学关系:不大于、整除、集合包含等
 - 网页链接、文章引用、相互认识

特殊的二元关系

- 集合A上的空关系Ø: 空关系即空集
- 全域关系 E_A : $E_A = \{(x, y) | x, y \in A\}$
- 恒等关系 $I_A:I_A=\{(x,x)\mid x\in A\}$

函数是一种特殊的关系

- 函数 f:A→B
- $R=\{(x,f(x)) | x \in A \}$ 是一个从A到B的一个关系
- 何种关系可以看做一个函数?

关系的表示

假设A={a,b,c,d}, B={ α,β,γ } // 假设为有限集合

• 集合表示: R_1 ={(a, β), (b, α), (c, α),(c, γ)}

0-1矩阵

$\begin{array}{c|cccc} & \alpha & \beta & \gamma \\ a & 0 & 1 & 0 \\ b & 1 & 0 & 0 \\ c & 1 & 0 & 1 \\ d & 0 & 0 & 0 \end{array}$

有向图

关系的基本符号

- 定义域和值域等有关记法
 - $\operatorname{dom} R = \{x \mid \exists y \ (x,y) \in R\}$
 - $\operatorname{ran} R = \{ y \mid \exists x \ (x,y) \in R \}$
 - $FldR = dom R \cup ran R$
 - $R \uparrow A = \{(x,y) \mid x \in A \land xRy\} \subseteq R$
 - $R[A] = \{y \mid \exists x \ (x \in A \land (x,y) \in R)\} = \operatorname{ran}(R \uparrow A) \subseteq \operatorname{ran}R$
- 例: A={1,2,3,4,5}, B={1,3,5}, A上关系R: R={(1,2), (1,4),(2,3),(3,5),(5,2)},

关系的逆

• 关系R的逆

- $\mathbf{R}^{-1} = \{ (x, y) \mid (y, x) \in \mathbf{R} \}$
 - 注意:如果R是从A到B的关系,则R-1是从B到A的。
- $(\mathbf{R}^{-1})^{-1} = \mathbf{R}$
- 例子: $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$
 - $(x, y) \in (R_1 \cup R_2)^{-1} \Leftrightarrow (y, x) \in (R_1 \cup R_2)$
 - \Leftrightarrow $(y, x) \in R_1 \implies (y, x) \in R_2$
 - \Leftrightarrow $(x,y) \in R_1^{-1} \not \equiv (x,y) \in R_2^{-1}$

关系的运算

- 关系是集合, 所有的集合运算对关系均适用
 - 例子:
 - 自然数集合上: "<"∪"=" 等同于 "≤"
 - 自然数集合上: "≤" ∩ "≥"等同于"="
 - 自然数集合上: "<" ∩ ">"等同于Ø

关系的复合(合成)

• 关系的复合(合成)

设 $R_1\subseteq A\times B$, $R_2\subseteq B\times C$,

 R_1 与 R_2 的复合(合成),记为 $R_2 \circ R_1$,定义如下:

 $R_2 \circ R_1 = \{(a, c) \in A \times C \mid \exists b \in B \ ((a, b) \in R_1 \land (b, c) \in R_2) \}$

关系的复合运算: 举例

• 设 $A=\{a,b,c,d\}$, R_1 , R_2 为A上的关系,其中:

$$\begin{aligned} \mathbf{R}_1 &= \{ \ (a,a), \ (a,b), \ (b,d) \} \\ \mathbf{R}_2 &= \{ (a,d), \ (b,c), \ (b,d), \ (c,b) \} \\ \boxed{\mathbb{N}}_{:} \\ \mathbf{R}_2 &\circ \mathbf{R}_1 &= \{ (a,d), \ (a,c), \ (a,d) \} \\ \mathbf{R}_1 &\circ \mathbf{R}_2 &= \{ (c,d) \} \end{aligned}$$

 $\mathbf{R}_1^2 = \{(a, a), (a, b), (a, d)\}$

复合运算的性质(1)

- 结合律
 - 给定 $R_1 \in A \times B$, $R_2 \in B \times C$, $R_3 \in C \times D$, 则: $(R_3 \circ R_2) \circ R_1 = R_3 \circ (R_2 \circ R_1)$
- 证明左右两个集合相等.

复合运算的性质(2)

- 复合关系的逆关系
 - 给定 $\mathbf{R}_1 \in \mathbf{A} \times \mathbf{B}, \mathbf{R}_2 \in \mathbf{B} \times \mathbf{C}, \mathcal{M}$: $(\mathbf{R}_2 \circ \mathbf{R}_1)^{-1} = \mathbf{R}_1^{-1} \circ \mathbf{R}_2^{-1}$
- 同样,证明左右两个集合相等
 - $(x,y) \in (\mathbf{R}_2 \circ \mathbf{R}_1)^{-1} \Leftrightarrow (y,x) \in \mathbf{R}_2 \circ \mathbf{R}_1 \Leftrightarrow$ $\exists t \in \mathbf{B} \ ((y,t) \in \mathbf{R}_1 \land (t,x) \in \mathbf{R}_2) \Leftrightarrow$ $\exists t \in \mathbf{B} \ ((t,y) \in \mathbf{R}_1^{-1} \land (x,t) \in \mathbf{R}_2^{-1}) \Leftrightarrow$ $(x,y) \in \mathbf{R}_2^{-1} \circ \mathbf{R}_1^{-1}$

复合运算的性质(3)

- 对集合并运算满足分配律
 - 给定F∈A×B, G∈B×C, H∈B×C, 则:

$$(\mathbf{G} \cup \mathbf{H}) \circ \mathbf{F} = (\mathbf{G} \circ \mathbf{F}) \cup (\mathbf{H} \circ \mathbf{F})$$

- 対集合交运算: (G ∩ H) ∘ F ⊆ (G ∘ F) ∩ (H ∘ F)
 - 注意: 等号不成立。

A={a}, B={s,t}, C={b};
F={(a,s), (a,t)}, G={(s,b)}, H={(t,b)};
G
$$\cap$$
H=Ø, (G \circ F) \cap (H \circ F)={(a,b)} \circ

关系的性质: 自反性

- 集合A上的关系R:
 - 自反: 定义为: 对所有的 $a \in A$, $(a,a) \in R$
 - 反自反: 定义为: 对所有的 $a \in A$, $(a,a) \notin R$

注意区分"非"与"反"

- 设*A*={1,2,3}, *R*⊆*A*×*A*
 - {(1,1), (1,3), (2,2), (2,1), (3,3)} 是自反的
 - {(1,2), (2,3), (3,1)} 是反自反的
 - {(1,2), (2,2), (2,3), (3,1)} 既不是自反的,也不是反自反的

理解自反性

- R 是 A 上的自反关系 $\Leftrightarrow I_A \subseteq R$, 这里 I_A 是集合A上的恒等关系,即: $I_A = \{(a,a) \mid a \in A\}$
 - 直接根据定义证明:
 - ⇒ 只需证明: 对任意(a,b), 若 $(a,b) \in I_A$,则 $(a,b) \in R$
 - ← 只需证明: 对任意的a, 若 $a \in A$, 则 $(a, a) \in R$

关系的性质:对称性

- 集合A上的关系R:
 - 对称的: 定义为: 若 $(a,b) \in R$, 则 $(b,a) \in R$
- 设*A*={1,2,3}, *R*⊆*A*×*A*
 - {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} 是对称的
 - {(1,2),(2,3),(2,2),(3,1)} 是反对称的

理解对称性

• 关系 R满足对称性:对任意a和b,若 $(a,b) \in R$,则 $(b,a) \in R$

• 注意: Ø是对称关系。

• 反对称并不是对称的否定:

$$(\diamondsuit: A=\{1,2,3\}, R\subseteq A\times A)$$

- {(1,1),(2,2)} 既是对称的,也是反对称的
- Ø是对称关系,也是反对称关系。

理解对称性

- R 是集合A上的对称关系 $\Leftrightarrow R^{-1}=R$
 - \Rightarrow 证明一个集合等式 $R^{-1}=R$
 - 若 $(a,b) \in R^{-1}$,则 $(b,a) \in R$,由R的对称性可知 $(a,b) \in R$, 因此: $R^{-1} \subseteq R$;同理可得: $R \subseteq R^{-1}$;
 - \leftarrow 只需证明: 对任意的(a,b) 若(a,b) $\in R$, 则(b,a) $\in R$

关系的性质:传递性

- 集合A上的关系R是传递的,如果下列性质成立:
 - 若 $(a,b) \in \mathbb{R}$, $(b,c) \in \mathbb{R}$, 则 $(a,c) \in \mathbb{R}$
- 设*A*={1,2,3}, *R*⊆*A*×*A*
 - {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)} 传递的
 - {(1,2),(2,3),(3,1)} 是非传递的
 - {(1,3)}?
 - Ø?

关系R是传递关系 $\Leftrightarrow \forall (a,b,c)(((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c) \in R)$

理解传递性

- 关系的复合(乘)运算满足结合律,可以用Rⁿ表示R。R。...。R (n是正整数)
- 命题: $(a,b) \in \mathbb{R}^n$ 当且仅当: 存在 $t_1,t_2,...,t_{n-1} \in A$, 满足: $(a,t_1),(t_1,t_2),...,(t_{n-2},t_{n-1}),(t_{n-1},b) \in \mathbb{R}$ 。
 - 对n>=1用数学归纳法: 奠基n=2,直接由关系复合的定义可得; 归纳基于: $R^n=R^{n-1} \circ R$
- 集合A上的关系R是传递关系 ⇔ R²⊆R
 - 必要性: ⇒任取 $(a,b) \in \mathbb{R}^2$,根据上述命题以及R的传递性可得 $(a,b) \in \mathbb{R}$
 - 充分性: \Leftarrow 若(a,b) \in R, (b,c) \in R, 则(a,c) \in R², 由R² \subseteq R可得: (a,c) \in R, 则 R是传递关系

二元关系和有向图

关系 $R \subseteq A \times B$

有向图 (V_D, E_D)

A和B是集合 有序对集合 $(x,y) \in R$

顶点集 $V_D = A \cup B$ 有向边集 E_D 从x到y有一条边

0-1矩阵运算

•
$$C=M_1 \wedge M_2$$
: $c_{ij}=1$ iff. $a_{ij}=b_{ij}=1$

•
$$C=M_1 \lor M_2$$
: $c_{ij}=1$ iff. $a_{ij}=1$ 或 $b_{ij}=1$

• 令
$$r \times s$$
矩阵 $M_1 = [a_{ij}]$; $s \times t$ 矩阵 $M_2 = [b_{ij}]$:

• C=M₁
$$\otimes$$
M₂: c_{ij}=1 iff. $\exists k(a_{ik} = 1 \land b_{kj} = 1)$

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

关系运算的矩阵法(1)

命题

$$M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$$
 $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2}$
 $M_{R_2 \circ R_1} = M_{R_1} \otimes M_{R_2}$

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$M_{R_2 \circ R_1} = M_{R_1} \otimes M_{R_2}$$

证明:

$$\diamondsuit R_1: X \to Y; R_2: Y \to Z;$$
 $\diamondsuit A = M_{R_1}, \quad B = M_{R_2}, \quad C = M_{R_2 \circ R_1}, \quad D = M_{R_1} \otimes M_{R_2}$ 有
$$c_{ij} = 1 \Leftrightarrow \langle x_i, z_j \rangle \in R_2 \circ R_1 \Leftrightarrow \exists y_k \in Y(\langle x_i, y_k \rangle) \in R_1 \land \langle y_k, z_j \rangle \in R_2)$$
 $\Leftrightarrow a_{ik} = 1 \land b_{ki} = 1 \Leftrightarrow d_{ij} = 1$

For $n \ge 2$, and R a relation on a finite set A, we have $M_{R^n} = M_R \otimes M_R \otimes \cdots \otimes M_R$ (n factors)

自反关系的有向图和0-1矩阵

对称关系的有向图和0-1矩阵

传递关系的有向图和0-1矩阵

一些常用关系的性质

	=	<u> </u>	<		=3	Ø	E
自反	✓	√	×	√	√	×	✓
反自反	×	×	√	×	×	√	×
对称	√	×	×	×	√	√	✓
反对称	√	√	√	√	×	√	×
传递	√	√	√	✓	√	√	√

关系运算与性质的保持

	自反	反自反	对称	反对称	传递
R_1^{-1}	√	√	√	√	✓
$R_1 \cap R_2$	√	√	√	√	√
$R_1 \cup R_2$	√	√	√	×	×
$R_2^{\circ}R_1$	√	×	×	×	×

作业

- 教材[8.1]
 - P403-406: 5, 47, 55, 56
- 教材[8.3]
 - P415-417: 14, 32, 34

