实验4 数码管控制器设计 仿真波形分析

led_display_ctrl

仿真波形

波形分析

功能简述

led_display_ctrl实验是实现对数码管的控制:

- 当按一次button启动控制器之后,8位数码管显示数值,按下rst后重置,数码管均不亮
- 其中,数值的显示规则为:最左边两位为从10开始的循环倒计时器,计时周期为11s,之后的数值为200428

信号定义

- **clk**为时钟信号,在启动后每经过5个时钟周期,scan_pos的值+1(从0-7循环计数),每经过15个时钟周期,cnt_down的值-1(0xA-0x0循环计数)
- **rst**为复位信号,在任意时刻复位之后,scan_pos清零,cnt_down的值复位为起始计数数值(本例中为10,即 0xA)
- cnt_down为计数器数值控制信号,最左两位数码管显示的数值由该信号决定
- scan_pos为数码管扫描位控制信号,用来决定点亮的数码管编号
- button为启动信号,从复位状态按下button后,控制器开始工作
- on_button为工作状态标记信号,在按下button后的下一个时钟上沿到来时,将置为1,标记控制器处于工作状态
- led_en为数码管片选控制信号,信号高电平位置的8位数码管不工作,低电平位置的数码管工作,任意时刻最多只有一个数码管处于工作状态,减小能耗。
- **led_r**为数码管段选控制信号,在代码中对led_dp~led_ca按从高到低排列后进行赋值,便于控制点亮的数码管段。
- scnd_cnt和scan_cnt为时钟计数器,分别获得1s(仿真中15时钟周期)和2ms(仿真中5时钟周期)的时间

时序分析

clk(ns)	rst	button	on_button	led_en(hex)	led_r(hex)	cnt_down(hex)	scan_pos
0-20	1	0	0	ff	ff	a	0
35-45	0	0=>1	0	ff	ff	a	0
45-55	0	1=>0	0=>1	ff	ff	a	0
55-105	0	0	1	fe	80	a	0=>1
105-155	0	0	1	fd	a4	a	1=>2
155-205	0	0	1	fb	99	a=>9	2=>3
205-255	0	0	1	f7	c0	9	3=>4
255-305	0	0	1	ef	c0	9	4=>5
305-355	0	0	1	df	a4	9=>8	5=>6
355-405	0	0	1	bf	80	8	6=>7
405-455	0	0	1	7f	c0	8	7=>0
455-505	0	0	1	fe	80	8=>7	0=>1
505-555	0	0	1	fd	a4	7	1=>2
555-605	0	0	1	fb	99	7	2=>3
605-655	0	0	1	f7	c0	7=>6	3=>4
655-705	0	0	1	ef	c0	6	4=>5
705-755	0	0	1	df	a4	6	5=>6
755-805	0	0	1	bf	82	6=>5	6=>7
805-855	0	0	1	7f	c0	5	7=>8

由上表可以见得,对于不同扫描周期,数码管位置和点亮的数值对应如下:

clk(ns)	7	6	5	4	3	2	1	0
55-455	c0	80	a4	c0	c0	99	a4	80
	0	8	2	0	0	4	2	8
455-855	c0	82	a4	c0	c0	99	a4	80
	0	6	2	0	0	4	2	8

由已知条件

- cnt_down开始为8以及scan_pos扫描到6时的时钟均为345ns,在下一个时钟上沿到来时即355ns时,led_r显示数值为0x80,查表知为数值8
- 在下一次scan_pos扫描到6的时钟为745ns,在755ns时led_r显示数值为0x82,查表知为数值6

两次时间间隔为745ns-345ns=400ns=40*10ns,由计数规则

- 每经过15个时钟周期, cnt_down-1
- 每经过5个时钟周期, scan_pos+1

cnt_down理论的变化量为40/15=2.667,即经过完整的两个变化,保持第三次数值尚未更新,则cnt_down所处的数值应当是8-2=6,与实际符合,说明计数器工作正常,对于高位1到0变化同理,不再赘述。

scan_pos的理论变化量为40/5=8.0,即经过8次完整的变化,则scan_pos所处的数值应当是(6+8)%8=6,与实际相符,说明数码管扫描控制器工作正常。

综上所述,该模块完成了数码管控制器应有的功能,同时仿真波形正确,仿真测试通过,上板验证通过,说明该实验目标完成良好。

附录

数码管段选控制表

char	dp	g	f	е	d	С	b	a	bin	hex
0	1	1	0	0	0	0	0	0	11000000	c0
1	1	1	1	1	1	0	0	1	11111001	f9
2	1	0	1	0	0	1	0	0	10100100	a4
3	1	0	1	1	0	0	0	0	10110000	b0
4	1	0	0	1	1	0	0	1	10011001	99
5	1	0	0	1	0	0	1	0	10010010	92
6	1	0	0	0	0	0	1	0	10000010	82
7	1	1	1	1	1	0	0	0	11111000	f8
8	1	0	0	0	0	0	0	0	10000000	80
9	1	0	0	1	1	0	0	0	10011000	98