Laboratorio 6 - Inferencia Estadística Estimación puntual pt. 2 - Métodos de estimación

Laboratorista: Héctor Lira Talancón

Ago-Dic 2017

- 1. Sea $X_1, ..., X_n$ una muestra aleatoria de una distribución (geométrica) con función de densidad $f(x;\theta) = \theta(1-\theta)^x \mathbb{1}_{\{0,1,2,...\}}(x), 0 < \theta < 1, E[X] = (1-\theta)/\theta, Var[X] = (1-\theta)/\theta^2$
 - a) Estimar θ y E[X] por máxima verosimilitud.
 - b) Encontrar la CICR para estimadores insesgados de E[X].
- 2. El tiempo en minutos que tarda un sistema de cómputo en procesar una solicitud de estado financiero es una variable aleatoria Y con función de densidad $f(y) = \frac{1}{\lambda} e^{-(y-b)/\lambda}, y > b$. Las constantes $\lambda > 0$ y b > 0. Además, se sabe que $E[Y] = \lambda + b, Var[Y] = \lambda^2$.
 - a) Considere que b es conocido y que se tiene una muestra aleatoria $Y_1, ..., Y_n$ de observaciones de Y. Obtener el estimador de λ por máxima verosimilitud.
 - b) ¿El estimador encontrado en el inciso anterior es insesgado? ¿Es consistente?
 - c) Si $n=28, \sum_{i=1}^{28} Y_i=84, b=1$, evaluar el estimador de λ encontrado en el inciso a), así como el error estándar del mismo.
- 3. Marque la opción que considere correcta. Sea $X_1, ..., X_n$ una muestra aleatoria de una densidad $f_X(x;\theta)$. Sea $\hat{\theta}_n = h(X_1, ..., X_n)$ un estimador de máxima verosimilitud para θ . Entonces, si las condiciones de regularidad se cumplen,
 - a) $\hat{\theta}_n$ existe y es único.
 - b) $\hat{\theta}_n$ es un estimador consistente de θ .
 - c) $\hat{\theta}_n$ es asintóticamente eficiente.
 - d) Todas las anteriores.
- 4. Sea $X_1,...,X_n$ una muestra aleatoria de una población cuya distribución es de Poisson con parámetro $\lambda.$ $\left(p(x;\lambda)=\frac{e^{-\lambda}\lambda^x}{x!}\right)$
 - a) Obtener el estimador de máxima verosimilitud de λ .
 - b) Determine si el estimador obtenido en a) es insesgado y consistente.
 - c) Encuentre el estimador de máxima verosimilitud para $p(\lambda) = p(X = 1)$.
- 5. Sea $X_1,...,X_n$ una muestra aleatoria con densidad, $\theta>0$ y

$$f_X(x;\theta) = \begin{cases} \frac{x}{\theta} & \text{para } 0 < x < \sqrt{2\theta} \\ 0 & e.o.c. \end{cases}$$

- a) Encontrar la función de distribución $F_X(x;\theta)$ y el estimador de máxima verosimilitud $\hat{\theta}$ para θ .
- b) Sea $X_{[n]} = \max\{X_1, ..., X_n\}$ cuya función de densidad está dada por $f_{X_{[n]}}(x) = n(F_X(x))^{n-1} f_X x$. Encontrar la esperanza y la varianza de $\hat{\theta}$. ¿Es $\hat{\theta}$ insesgado?

- c) Encontrar una constante c_0 tal que $\hat{\theta}_0 = c_0 \hat{\theta}$ sea insesgado para θ y encontrar la esperanza y la varianza de $\hat{\theta}_0$ y ver que sea consistente para θ .
- 6. Sea $X_1, ..., X_n$ una muestra aleatoria de una población cuya densidad está dada por

$$f(x;k) = k(1+x)^{-k-1}; x > 0, k > 0.$$

- a) Encontrar el estimador de máxima verosimilitud \hat{k} para k.
- b) Sabemos que el estimador de máxima verosimilitud \hat{k} se distribuye asintóticamente como una normal con media k y varianza $\frac{1}{nE\left[\left(\frac{\partial}{\partial k}\log f(x;k)\right)^2\right]}$. Encuentre la varianza y, por lo

tanto, los parámetros de la normal (sugerencia: la variable aleatoria $\log(1+X) \sim Exp(\frac{1}{k})$.

7. Si $X_1,...,X_n$ constituyen una muestra aleatoria de tamaño n de una población tal que para $\alpha>0$ y $\beta>0$

$$f_X(x; \alpha, \beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} & \text{para } 0 \le x \le \beta \\ 0 & e.o.c. \end{cases}$$

- a) Para $\beta = 2$, determine el estimador máximo verosímil de α .
- b) Para $\alpha = 2$, determine el estimador máximo verosímil de β .
- c) Para $\alpha = 3$, si se propone $\hat{\beta} = 2\bar{X}$. Determine el error cuadrático medio de $\hat{\beta}$.
- 8. Sea $Y_1, ..., Y_n$ una muestra aleatoria de una población cuya distribución de frecuencias sigue la densidad

$$f_Y(y|\theta) = \begin{cases} \theta(1+y)^{-(\theta+1)} & \text{para } 0 < y; 0 < \theta \\ 0 & e.o.c. \end{cases}$$

- a) Encuentra $\hat{\theta}$ el estimador de máxima verosimilitud de θ .
- b) Obtén la aproximación normal de $P(\hat{\theta} < 8)$ si $\theta = 9$ y n = 100.
- 9. Considera $Y_1,...,Y_n$ una muestra aleatoria de una densidad $f(y|\lambda) = \frac{\lambda^{-3}}{2} y^2 exp(-y/\lambda) \mathbbm{1}_{(0,\infty)}(y)$, con $\lambda > 0$. Encuentra el estimador de máxima verosimilitud de λ . Evalúalo si n=3 y $Y_1=1.3,Y_2=3.5,Y_3=2.7$.
- 10. Considera $X_1, ..., X_n$ una muestra aleatoria de una densidad $f(x|\theta) = \frac{x}{\theta} exp(-x^2/2\theta) \mathbbm{1}_{(0,\infty)}(x)$, con $\theta > 0$. Encuentra el estimador de máxima verosimilitud de θ y su distribución asintótica. Se sabe que $E[X^2] = 2\theta$.
- 11. Sea $X_1,...,X_n$ una muestra aleatoria de una densidad $f(x|\lambda) = \frac{\lambda}{(1+x)^{\lambda+1}} \mathbbm{1}_{(0,\infty)}(x)$, con $\lambda > 0$
 - a) Encuentra el estimador de máxima verosimilitud de λ .
 - b) Indica y emplea la aproximación asintótica del formulario que consideres aplica al estimador en este caso.
- 12. Sea $X_1, ..., X_n$ una muestra aleatoria de una densidad $Exp(\beta)$.
 - a) Demuestra que el estimador de máxima verosimilitud de β es $\hat{\beta} = \bar{X}$.
 - b) Demuestra que el error cuadrático medio de $\hat{\beta}$ converge a cero cuando $n \to \infty$.

- 13. Se desea estimar la probabilidad (p) de que un encendedor funcione. Para esto se toma una muestra aleatoria de tamaño n de un lote de encendedores. Para el i-èsimo encendedor en la muestra se observa X_i , el número de ensayos hasta que falla por primera vez. Se supone el siguiente modelo $f(x|p) = (1-p)p^{x-1}\mathbb{I}_{\{1,2,\ldots\}}(x)$ para 0 .
 - a) Indica cuál es el soporte de f(x|p). ¿Depende de p?
 - b) Encuentra el estimador de máxima verosimilitud (EMV) de p y calcula su valor si n=70 y $\sum_{i=1}^n X_i=120$.
 - c) Encuentra y justifica el límite de probabilidad del EMV en términos de E[X] y deduce cuál debe ser la fórmula de E[X] en función de p.
- 14. Considera una variable X con distribución Pareto, cuya función de densidad de probabilidad es $f_X(x) = \alpha x^{-\alpha-1}$ para x > 1.
 - a) Encuentra el estimador de α por máxima verosimilitud.
 - b) Estima el valor medio E[X] por máxima verosimilitud.
 - c) Obtén la distribución asintótica de cada uno de los estimadores encontrados en los incisos anteriores. Se te sugiere usar un resultado del Formulario Abreviado anexo.
- 15. Sea $X_1,...,X_n$ una muestra aleatoria de una población cuya densidad es una Bernoulli (θ) . Verifique que el estimador de máxima verosimilitud para el parámetro θ , es $\hat{\theta} = \sum_{i=1}^{n} X_i/n$.
- 16. Suponga que $X_1, ..., X_n$ es una mueatra aleatoria con $F_{X_i}(x_i|\theta) = \theta x_i^{\theta-1} \mathbb{1}_{(0,1)}(X_i), \theta > 0$. Encuentra el estimador de máxima verosimilitud de θ y su distribución asintótica.
- 17. Suponga que $X_1,...,X_n$ es una mueatra aleatoria de una población con densidad

$$f_{X_i}(x_i|\beta) = \frac{1}{\sqrt{2\pi}\beta} exp(\frac{-x_i^2}{2\beta^2}) \mathbb{1}_{(-\infty,\infty)}(x_i), \beta > 0$$

- a) Encuentra el estimador de máxima verosimilitud de β , llamémosle $\hat{\beta}$
- b) Encuentra la distribución asintótica de $\hat{\beta}$.
- c) ¿A qué converge la distribución $\frac{\sqrt{n}(\hat{\beta}_n-\beta)}{\hat{\beta}_n}?$ Justifica tu respuesta.