D Term, 2021

Course Summary

I. Logic

- A. Statements and Predicates (quantifiers: \exists , \forall ; theorem, proposition, lemma, corollary)
- B. If-Then Implications
- C. Truth Tables
- D. Statement Operations (direct, negation, converse, contrapositive, contradiction)
- E. Counterexample

II. Set Theory

- A. Basics (empty set, set equality, complements, set difference A B, power set)
- B. Set Containment
- C. Induction
- D. Russell Paradox: If $S := \{x | x \notin x\}$, then $S \in S \Leftrightarrow S \notin S$
- E. Axiomatic Set Theory (existence, equality, specification, pairing, union, power set, induction, choice, substitution)

III. Number Theory

- A. Natural Numbers (Peano Axioms)
- B. Primes Are Countably Infinite
 - 1. Euclid Proof
 - 2. Goldbach Proof (Fermat numbers)
 - 3. Euler Proof
- C. When Can a Positive Integer Be Written as the Sum of Two Natural Squares? (modular arithmetic, finite fields)

IV. Analysis

- A. \mathbb{Q} is Countable, \mathbb{R} is Uncountable (cardinality, $\forall n \in \mathbb{Z}, n < \aleph_0 < \aleph_1 \leq \mathfrak{c}$)
- B. Continued Fractions, Continued Roots (completeness, greatest lower bound property)
- C. Harmonic, Geometric and Arithmetic Means
- D. Cauchy Sequences

V. Graph Theory

- A. Basics (vertices, edges, order, degree, planar, faces, cycle, tree)
- B. Tree $\implies |V| |E| = 1$
- C. Euler Formula
- D. Four Color Problem (unavoidable set, Kempe chain, reducible configurations)

VI. Probability (Birthday Paradox)