OS – Chapitre E

Modèles de quelques dispositifs optiques

I - Œil humain

I.1 - Présentation physiologique

L'œil est l'organe de la vision, qui permet de capter la lumière puis, par l'intermédiaire du nerf optique, de la transmettre au cerveau qui va l'analyser. Un schéma anatomique de l'œil humain est représenté figure 1.1. Les parties qui interviennent dans le processus de formation des images sont :

- la pupille qui joue le rôle d'un diaphragme et limite la quantité de lumière entrant dans
- le cristallin qui est un petit disque fibreux, transparent et flexible, qui joue le rôle d'une lentille convergente et permet de focaliser l'image sur
- la rétine qui rassemble de cellules photosensibles et joue le rôle d'un écran. Elle est constituée de bâtonnets (environ 120 M, qui assurent la vision en faible luminosité mais ne sont pas sensibles à la couleur) et de cônes (environ 7 M, qui permettent de distinguer les couleurs et assurent la vision précise des détails. Ces derniers sont principalement positionnés sur la partie centrale de la rétine (fovéa ou tâche jaune).

FIGURE 1.1 – Schéma anatomique d'un œil humain.

Rhcastilhos derivative work : - lyhana8 (Talk), Jmarchn / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

1.2 - Modélisation et caractéristiques optiques

Modèle optique : d'un point de vue optique, l'œil peut être vu comme l'association d'un diaphragme (iris), d'une lentille convergente (cristallin) et d'un écran (rétine) comme indiqué figure 1.2

Caractéristiques optiques

- champ visuel : décrit la portion d'espace visible par l'œil. Il est défini par l'angle entre les rayons extrêmes arrivant sur la rétine. Pour un œil humain, il vaut environ 120° pour la vision périphérique mais seulement 10° pour la vision des détails.
- **résolution angulaire**: décrit sa capacité à distinguer deux points très proches (appelée également acuité visuelle ou pouvoir séparateur). Elle est définie comme l'angle minimum que doivent former deux rayons pour pouvoir être perçus comme provenant de deux points différents. Pour un œil humain, il vaut environ $1' \approx 3 \times 10^{-4}$ rad

FIGURE 1.2 – Modélisation optique simplifiée de l'œil humain.

— accommodation: pour pouvoir voir net un objet à une distance donné, l'œil doit accommoder pour que l'image se forme sur le plan de la rétine. Des muscles vont se contracter pour augmenter la courbure du cristallin et ainsi diminuer sa focale. La distance cristallin-rétine reste fixe (de l'ordre de 18 mm. Au repos, lorsque l'œil n'accommode pas et pour un œil emmétrope (i.e. sans défaut), le plan focal image se trouve au niveau de la rétine. (voir figure 1.3)

On appelle **punctum remotum (PR)** le point le plus éloigné de l'œil qui est visible nettement. On appelle **punctum proximum (PP)** le point le plus proche de l'œil qui est visible nettement.

FIGURE 1.3 - Fomation des images vues au punctum remotum à gauche et au punctum proximum à droite.

Pour un œil emmétrope le PR se situe à l'infini et le PP environ 25 cm devant la cornée.

Défauts de l'œil : parmi les défauts classiques de l'œil, on peut citer :

— la myopie caractérisée, pour la plupart des cas, par un bulbe trop long et parfois par un cristallin trop convergent; l'œil ne voit pas de loin (c'est-à-dire à l'infini) mais voit de plus près. Son PR est maintenant à distance finie. Pour une image située au PR, l'œil n'accommode pas, l'image est nette sur la rétine (voir figure 1.4). Pour la myopie, les lunettes correctrices sont donc divergentes.

FIGURE 1.4 – Comparaison des punctum remutum et punctum proximum pour un œil emmétrope et un œil myope

- L'hypermétropie caractérisée pour la plupart des cas par un bulbe trop court et parfois par un cristallin pas assez convergent. L'œil doit accommoder même pour voir à l'infini, le PP est plus éloigné que l'œil normal. La lentille correctrice est convergente.
- **L'astigmatisme** est lié à un défaut de symétrie de révolution de l'œil, il y a des aberrations géométriques. La lentille correctrice n'est pas sphérique.
- La presbytie est liée au vieillissement de l'œil qui perd sa faculté d'accommodation. L'œil ne voit bien que de loin c'est-à-dire vers son PR. Il voit mal les objets proches. Cela nécessite l'utilisation de plusieurs lentilles correctrices suivant la distance objet-œil. On utilise des verres à deux ou trois foyers (ou verres à foyers progressifs).

II - Lunette astronomique

Une lunette astronomique est constituée de deux lentilles convergentes :

l'objectif en entrée de l'instrument qui capte la lumière d'un objet à l'infini et en fait l'image sur son plan focal image ,

l'occulaire en sortie de l'instrument qui renvoie l'image de l'objet à l'infini afin d'en faciliter l'observation à l'œil.

Dans une lunette astronomique, le foyer principal image F'_1 de l'objectif (lentille L_1) est confondu avec le foyer principal objet F_2 de l'occulaire (lentille L_2). L'image d'un objet à l'infini se retrouve donc également à l'infini. On dit que le système est **afocal**. On place souvent un réticule sur le plan focal commun aux deux lentilles : il s'agit d'une lame de verre sur laquelle est gravée une croix et qui est solidaire de la lunette. Le réticule sert d'objet pour régler la lunette et permet de viser précisément une direction donnée (voir figure 1.5).

FIGURE 1.5 – Schéma de principe d'une lunette astronomique.

Le grossissement de la lunette est défini par $G = \frac{\alpha'}{\alpha}$.

On montre aisément que $G = -\frac{f_1'}{f_2'}$. Le signe - traduit que l'image est inversée.

III - Appareil photographique

voir document pdf du diaporama.