The Functional Neural Process

Accepted in Neurips 2019

Kyeong Ryeol, Go M.S. Candidate of OSI Lab

Family of Neural Processes

- Devise a neural network based Gaussian process
- Enables fast adaptation by the prior knowledge from the portion of the data

Loss function

$$CNP : -\log p(y_T|x_T, r)$$

 $NP : -\mathbb{E}_{z \sim q(z|x_C, y_C, x_T, y_T)}[\log p(y_T|x_T, z)] + KL[q(z|x_C, y_C, x_T, y_T)||q(z|x_C, y_C)]$

continued

- Problem scenario
 - divide the dataset into context set $\{x_C, y_C\}$ and target set $\{x_T, y_T\}$
 - learn a conditional distribution $p(f(x_T)|x_T, x_C, y_C)$
- Gaussian Process : $p(f(x_T)|x_T, x_C, y_C) = \mathcal{N}(y_{mu}, y_{sigma}^2)$
 - $y_{mu} = k(x_T, x_C)(k(x_C, x_C) + \sigma^2 I)^{-1} y_C$
 - $y_{sigma}^2 = k(x_T, x_T) k(x_T, x_C)(k(x_C, x_C) + \sigma^2 I)^{-1}k(x_C, x_T)$

- Scalability: computation scales linearly in NP
- Flexibility: A wide variety of family of distribution can be defined
- **Permutation invariance**: target predictions are order invariant in the contexts

continued

"Considering the dependency of the data points are significant"

The Functional Neural Process

- Devise a neural network based Gaussian process
- Enables fast adaptation by adopting the relational structure of the dataset
- Problem scenario
 - Divide the input *X* into reference set {*R*} and remaining set {*M*}
 - learn a conditional distribution $p(f(M)|y_R, R, M)$

• Structure

- 1. Local latent variables *u* is computed from the dataset *X*
- 2. The relational structure A, G is constructed by the local latent variables u
- 3. Prediction of y_M is computed by the information from the reference set R, y_R and the relational structure A, G

Relational structure

- Graph
 - *A* : from the reference set *R* to the remaining set *M*
 - *G* : among the reference set *R*

$$A: egin{bmatrix} A_{1,1} & \cdots & A_{1,|M|} \\ \vdots & \ddots & \vdots \\ A_{|R|,1} & \cdots & A_{|R|,|M|} \end{bmatrix} \qquad G: egin{bmatrix} G_{1,1} & \cdots & G_{1,|R|} \\ \vdots & \ddots & \vdots \\ G_{|R|,1} & \cdots & G_{|R|,|R|} \end{bmatrix}$$

- Formulation
 - $p(A|u_R, u_M) = \prod_{i \in R} \prod_{j \in M} Bernoulli(A_{ij} | g(u_i, u_j))$
 - $p(G|u_R) = \prod_{i \in R} \prod_{j \in R, j \neq i} Bernoulli\left(G_{ij} \mid I[t(u_i) > t(u_j)]g(u_i, u_j)\right)$
 - $t(u_i) = \sum_k t_k(u_{ik})$ where $t_k(\cdot)$ is the log CDF of N(0,1)
 - $g(u_i, u_j) = \exp\left(-\frac{\tau}{2}||u_i u_j||^2\right)$: functional space

continued

Encoder

Loss function

- Marginal likelihood
 - $\log p(y|X) = \log \sum_{G,A} \int p_{\theta}(u,G,A,z,y|X) du dz$

$$= \log \sum_{G,A} \int p_{\theta}(u|X) p(G,A|u) p_{\theta}(z_R|par_G(R,y_R)) p_{\theta}(z_M|par_A(R,y_R)) p_{\theta}(y|z) du dz$$

To be canceled <

- Variational Learning
 - Variational distribution : $q_{\phi}(u, G, A, z|X) = p_{\theta}(u|X)p(G, A|u)q_{\phi}(z|X)$
 - $\log p(y|X)$ $\geq E_{q_{\phi}(u,G,A,z|X)}[\log p_{\theta}(u,G,A,z,y|X) - \log q_{\phi}(u,G,A,z|X)]$ $= E_{q_{\phi}(u,G,A,z|X)}[\log p_{\theta}(z_{R}|par_{G}(R,y_{R}))p_{\theta}(z_{M}|par_{A}(R,y_{R}))p_{\theta}(y|z) - \log q_{\phi}(z|X)]$ $= E_{p_{\theta}(u_{R},G|R)}[E_{q_{\phi}(z_{R}|R)}[\log p_{\theta}(z_{R}|par_{G}(R,y_{R})p_{\theta}(y_{R}|z_{R})) - \log q_{\phi}(z_{R}|R)]]$ $+ E_{p_{\theta}(u,A|X)}[E_{q_{\phi}(z_{M}|M)}[\log p_{\theta}(z_{M}|par_{A}(R,y_{R})p_{\theta}(y_{M}|z_{M}) - \log q_{\phi}(z_{M}|M)]]$ $\coloneqq L_{R} + L_{M|R}$

Minibatch optimization

- L_R cannot be decomposed to independent sums due to DAG structure
- $L_{M|R}$ can be decomposed to |M| independent sums from its i.i.d. nature

$$Loss = L_R + L_{M|R} \approx L_R + \hat{L}_{M|R}$$

*
$$L_{M|R}$$

$$= E_{p_{\theta}(u,A|X)} \left[E_{q_{\phi}(z_{M}|M)} [\log p_{\theta}(z_{M}|par_{A}(R,y_{R})p_{\theta}(y_{M}|z_{M}) - \log q_{\phi}(z_{M}|M)] \right]$$

$$= E_{p_{\theta}(u_{R}|R)} \left[E_{p_{\theta}(u_{M}|M)p(A|u_{R},u_{M})q_{\phi}(z_{M}|M)} [\log p_{\theta}(z_{M}|par_{A}(R,y_{R})p_{\theta}(y_{M}|z_{M}) - \log q_{\phi}(z_{M}|M)] \right]$$

$$\approx E_{p_{\theta}(u_{R}|R)} \left[\frac{|M|}{|\widehat{M}|} \sum_{i=1}^{|\widehat{M}|} E_{p_{\theta}(u_{i}|x_{i})p(A_{i}|u_{R},u_{i})q_{\phi}(z_{i}|x_{i})} [\log p_{\theta}(z_{i}|par_{A_{i}}(R,y_{R})p_{\theta}(y_{i}|z_{i}) - \log q_{\phi}(z_{i}|x_{i})] \right]$$

$$\coloneqq \widehat{L}_{M|R}$$

Implementation strategy

$$L_{R}: E_{p_{\theta}(u_{R}, G|R)} \Big[E_{q_{\phi}(z_{R}|R)} \Big[\log p_{\theta}(y_{R}|z_{R}) + \log p_{\theta}(z_{R}|par_{G}(R, y_{R})) - \log q_{\phi}(z_{R}|R) \Big] \Big]$$

$$L_{M|R}: E_{p_{\theta}(u, A|X)} \Big[E_{q_{\phi}(z_{M}|M)} \Big[\log p_{\theta}(y_{M}|z_{M}) + \log p_{\theta}(z_{M}|par_{A}(R, y_{R})) - \log q_{\phi}(z_{M}|M) \Big] \Big]$$

New Decoder y_R y_M $f(x_5)$ $|f(x_3)|$ $f(x_2)$ $p_{\theta}(y|z)$ $\boldsymbol{z_3}$ Z_4 $\mathbf{Z}_{\mathbf{5}}$ $q_{\phi}(\mathbf{z}_{R}|\mathbf{R})$ $q_{\phi}(z_M|M)$ R M

Predictive distribution

• $p_{\theta}(y^*|y, X, x_*) = \sum_{A^*} \int p_{\theta}(u_R, u^*|R, x^*) p(A^*|u_R, u^*) p_{\theta}(z^*, y^*|R, y_R, A^*) du_R du^* dz^*$

1. Toy 1d regression

Dataset

1)
$$y_i = x_i + \epsilon + \sin(4(x_i + \epsilon)) + \sin(13(x_i + \epsilon))$$
 where $\epsilon \sim N(0, 0.03^2)$

2)
$$y_i = x_i^3 + \epsilon$$
 where $\epsilon \sim N(0.9)$

2. Image classification

- Dataset
 - 1) In-distribution (MNIST, CIFAR10) : average predictive entropy(↓) / test error(↓)

	NN	MC-Dropout	VI BNN	NP	FNP	FNP ⁺
MNIST	0.01 / 0.6	0.05 / 0.5	0.02 / 0.6	0.01 / 0.6	0.04 / 0.7	0.02 / 0.7
nMNIST	1.03 / 99.73	1.30 / 99.48	1.33 / 99.80	1.31 / 99.90	1.94 / 99.90	1.77 / 99.96
fMNIST	0.81 / 99.16	1.23 / 99.07	0.92 / 98.61	0.71 / 98.98	1.85 / 99.66	1.55 / 99.58
Omniglot	0.71 / 99.44	1.18 / 99.29	1.61 / 99.91	0.86 / 99.69	1.87 / 99.79	1.71 / 99.92
Gaussian	0.99 / 99.63	2.03 / 100.0	1.77 / 100.0	1.58 / 99.94	1.94 / 99.86	2.03 / 100.0
Uniform	0.85 / 99.65	0.65 / 97.58	1.41 / 99.87	1.46 / 99.96	2.11/99.98	1.88 / 99.99
Average	0.9±0.1/99.5±0.1	1.3±0.2/99.1±0.4	1.4±0.1 / 99.6±0.3	1.2±0.2/99.7±0.2	1.9±0.1/99.8±0.1	1.8±0.1 / 99.9±0.1
CIFAR10	0.05 / 6.9	0.06 / 7.0	0.06 / 6.4	0.06 / 7.5	0.18 / 7.2	0.08 / 7.2
SVHN	0.44 / 93.1	0.42 / 91.3	0.45 / 91.8	0.38 / 90.2	1.09 / 94.3	0.42 / 89.8
tImag32	0.51 / 92.7	0.59 / 93.1	0.52/91.9	0.45 / 89.8	1.20 / 94.0	0.74/93.8
iSUN	0.52 / 93.2	0.59 / 93.1	0.57 / 93.2	0.47 / 90.8	1.30 / 95.1	0.81 / 94.8
Gaussian	0.01 / 72.3	0.05 / 72.1	0.76 / 96.9	0.37 / 91.9	1.13 / 95.4	0.96 / 97.9
Uniform	0.93 / 98.4	0.08 / 77.3	0.65 / 96.1	0.17 / 87.8	0.71 / 89.7	0.99 / 98.4
Average	0.5±0.2/89.9±4.5	0.4±0.1 / 85.4±4.5	$0.6\pm0.1 / 94\pm1.1$	0.4±0.1/90.1±0.7	1.1±0.1/93.7±1.0	0.8±0.1 / 94.9±1.6

3. NP vs FNP

- FNP still provides robust uncertainty and o.o.d detection is improved
- NP's performance is hurt as o.o.d detection is decreased

	NP	FNP ⁺
MNIST	0.01 / 0.6	0.02 / 0.7
MNIST	1.31 / 99.90	1.77 / 99.96
INIST	0.71 / 98.98	1.55 / 99.58
nniglot	0.86 / 99.69	1.71 / 99.92
aussian	1.58 / 99.94	2.03 / 100.0
niform	1.46 / 99.96	1.88 / 99.99
FAR10	0.06 / 7.5	0.08 / 7.2
IN	0.38 / 90.2	0.42 / 89.8
nag32	0.45 / 89.8	0.74 / 93.8
UN	0.47 / 90.8	0.81 / 94.8
aussian	0.37 / 91.9	0.96 / 97.9
niform	0.17 / 87.8	0.99 / 98.4

4. Graph justification

Semantic structure is captured both in A and G

 $p(A|u_R,u_M)$

 $p(G|u_R)$

Conclusion

- Main idea
 - Build a graph of dependencies among local latent variables

- Strength
 - No information loss due to global latent variable
 - Behave similar to Gaussian Process with RBF kernel
 - Satisfy exchangeability and consistency as a stochastic process

Weakness

- Not easily transferable comparing to the conventional neural processes
 - Boost the learning if nice representation can be learned
 - Helps exploration strategy in reinforcement learning task

Maze exploration

Application on DQN

Weakness

- Not scalable when large reference set is required
 - Time complexity : $O(n+m) \rightarrow O(nm)$
 - What about ANP? O(n(n+m))

Weakness

- No reasonable or theoretical rule for choosing reference set
 - Greedy selection, Variational learning of pseudo input Ex. Bayesian GP-LVM, Deep gaussian process, Set-transformer

Thank you for the attention