Emmanuel Pedernal MSDS

ANCOVA: Analyze the attached data set. Test the hypothesis that the students' performance (score) is affected by the income (low, medium, high) while accounting for the hours spent in studying.

Assumption check

Independence of observation (PASSED)

Unique observations in dataset

Normality of Residuals (FAILED) none linear residuals

Linearity between Covariate and Dependent Variable (Passed)

No pattern just linear

Homogeneity of Variance (Homoscedasticity) (PASSED) p val > 0.05

Homogeneity of Regression Slopes (PASSED) same linear plots for each class

Insights

							95% CI for η ²	
Cases	Sum of Squares	df	Mean Square	F	р	η²	Lower	Upper
Family_Income	891.146	2	445.573	37.122	< .001	0.009	0.005	0.014
Hours_Studied	19837.291	1	19837.291	1652.718	< .001	0.198	0.182	0.215
Residuals	79254.684	6603	12.003					

RESULTS

Stat	Family_Income	Hours_studied
Sum of Square	891.146 score difference	With a high (19,837.291)
	(variation) because of income	sum of sqrs, Hours_studied
	class	variable has the high
		influence in scores
df	3 income classes	1 single predictor (linear
		effect)

Mean Square	mean square error of 445.573	Amount of variance on
	or ~21(root), is how much the	exam scores per study hour
	avg exam changes due to	
	income class	
F	37.122, huge f statistic, shows	(1652.718) Based from the
	clear difference between	data, student who study
	income classes	more has higher score
p-value	Income is statistically	Also, a significant feature
	significant in affecting scores	
Eta^2	.9% (small) of score score	Hours_studied variable
	variability is due to income	explains ~20% of score
		variability
C.I.	Small confidence on income	95% confident that portion
	effect on scores	of score variance by the
		data lies between 0.182 -
		0.215

Residuals showed large sum of squares indicating that the model can explain the variance, a huge amount of variation in exam scores are unexplained mainly due to other factors not included in the model

Descriptives ▼							
Descriptives - Exam_Score							
Family_Income	N	Mean	SD	SE	Coefficient of variation		
High	1269	67.842	4.155	0.117	0.061		
Low	2672	66.848	3.801	0.074	0.057		
Medium	2666	67.335	3.806	0.074	0.057		

N is the amount of data for each class

Mean – average exam scores, a bit of upward trend. Raw scores (small) increase as income increase.

Standard Deviation – Scores have low SD, exam scores are somewhat consistent for this dataset

Stadard Error – small errors (more accurate estimate) for bigger N than small N

CoV – Income classes are consistent (similar) exam score

On average High vs low scores has a 1.002 difference assuming same hours of studying. High vs med has 0.55 points difference and low vs med has -0.452 score difference all differences are statistically significant.

95% C.I. states that for High vs Low the true score difference are between 0.720 and 1.285, 0.267 – 0.8333 for High to med, Low vs Medium of -0.679 to -0.225 high difference among classes.

Df – same number of independent information

High vs low has the highest observed difference with 8.5 standard errors from 0

Bonferroni p val – all comparisons are significant, all evidence points that exam_scores are different for each income class

Marginal Means						
Marginal Means - Family_Income						
		95% CI for Mean Difference				
Family_Income	Marginal Mean	Lower	Upper	SE		
High	67.863	67.672	68.054	0.097		
Low	66.861	66.729	66.992	0.067		
Medium	67.313	67.181	67.444	0.067		
Medium	67.313	67.181	67.444	0.067		

Marginal means shows adjusted mean, but has same results that high income families tend to do better (even with small difference of 1.002 vs low and 0.550 vs medium)

ANSWER: Family income has statistically significant effect on exam scores but those scores does not have huge difference among income classes, while time spent on studying has greater impact on exam scores.

PLOTS

The scatter graph shows exam score based on hours studied separated by income classes, based on the graph hours studied affect the exam score and income as little effect on it.

Bar plots showed little difference with exam scores with family income as confirmed by our Ancova analysis.

Raincloud plot shows the data distribution for each class where we have a lot of outliers, most scores are within 60 to 75, and scores are mostly the same with small difference for each class