

Examination	Session:	
May/June		

Exam Code: ENGI4121-WE01

Title: MEng Engineering (Fan

Communication Systems Paper 1
WeChat: cstutorcs

	ssignment Project Exam Help
Additional Material provided:	nail: tutorcs@163.com
Materials Permitted:	None.
	0.749389476
Calculators Permitted:	Models Permitted: You are permitted to use only two models of calculator (Casio fx-83 GTPLUS or a
Visiting Students may use did	tos://tutorcs.com
Visiting Oldderlis May use did	uulanes. res

Instructions to Candidates:	Answer ALL questions.					
	All relevant workings must be shown.					
	· · · · · · · · · · · · · · · · · · ·					
•						
	Devision					
•	Revision:					

程序代写代做 CS编程辅导

Question 1

(a) Discuss the performance th

[40%]

- (b) Discuss the fo
 - (i) The negative for codes used in synchronous data transmission.
 [10%]
 - (ii) Land usage factor and the degree of urbanisation factor.

WeChat: cstutorcs [15%]

Binary information is transmitted using baseband signals of the form shown in Figure Q.1. Design a correlation detector and find the probability of bit error assuming that the additive white Gaussian Noise Chasta single safed power alensity equal to 1x10-3 watts/Hz.

Use can be made of the following relationships:

$$P_e = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E(1-\rho)}{2N_o}}$$

$$\rho = \frac{\int_0^T s_{mark}(t) s_{space}(t) dt}{\sqrt{\int_0^T s(t)_{mark}^2 dt} \int_0^T s(t)_{space}^2 dt}$$

[35%]

Question 2

- (a) Discuss the three basic forms of bandpass digital modulation methods: ASK, PSK, and FSK.
- (b) Discuss the synchronisation requirements for the coherent detector for FSK, showing how these requirements can be achieved.

 [10%]

continued

(c) Explain the diffraction mechanism of propagation.

程序代写代做 CS编程辅导

[15%]

(d) For the geometry of Figure Q.2.a show that the excess phase $\Delta \phi$, caused by the obstruction, λ line of sight can be written in terms of the Fresnel-Kirchhoff difficulty, which is equal to

Assume $h \ll d_1, d_2$

Email: tutorcs@163.com

Use can be made of the relationship 380 ± 176 for $\epsilon \ll 1$

[30%]

(e) For the geometry of Figure Q.2.b compute the diffraction loss coefficient v, using the Bullington method to see the compute the diffraction loss coefficient v, using the

Figure Q. 2.b

[30%]

Error function and the complementary error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} \ du$$

$$\operatorname{erf} c(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^{2}} du$$

Table of Error function and compensation function function function and compensation function function

		111	1 - 1		一种工作	
х	erf(x)	erfc(x)	х	erf(x)	erfc(x)	
0.00	0.0000000			0.9340079	0.0659921	
0.05	0.0563720			0.9522851	0.0477149	
0.10	0.1124629	Tutor CS		0.9661051	0.0338949	
D.15	0.1679960			0.9763484	0.0236516	
0.20	0.2227026	0.7772974	1.70	0.9837905	0.0162095	
0.25	0.2763264	0.7236736	Hatiso Cs	State of C	0.0109095	
0.30	0.3286268	0.6713732	1.90	0.9927904	0.0072096	
0.35	0.3793821	ASS19 0.6206179	2.00	0.9953223	0.0046777	Help
0.40	0.4283924	7,16076	: tuto	0.9970205 1	0.9029795 COM	-
0.45	0.4754817	0.5245183	2.20	0.9981372	0.0018628	
0.50	0.5204999	(.4) (5) on 7	4938	9 4 8 7 6 8	0.0011432	
0.55	0.5633234	0.4366766	2.40	0.9993115	0.0006885	
0,60	0.6038561	hettes:/	tuto	r <mark>esseo</mark> r	0.0004070	
0.65	0.6420293	0.3579707	2.60	0.9997640	0.0002360	
0.70	0.6778012	0.3221988	2.70	0.9998657	0.0001343	
0.75	0.7111556	0.2888444	2.80	0.9999250	0.0000750	
0.80	0.7421010	0.2578990	2.90	0,999589	0.0000411	
0.85	0.7706681	0.2293319	3.00	0.9999779	0.0000221	
0.90	0.7969082	0.2030918	3.10	0.9999884	0.0000116	
0.95	0.8208908	0.1791092	3.20	0.9999940	0.0000060	
1.00	0.8427008	0.1572992	3.30	0.9999969	0.0000031	
1.10	0.8802051	0.1197949	3.40	0.999985	0.0000015	
1.20	0.9103140	0.0896860	3.50	0.999993	0.0000007	