CO 353: Winter 2023 Table of Contents

CO 353 COURSE NOTES

COMPUTATIONAL DISCRETE OPTIMIZATION

Kanstantsin Pashkovich • Winter 2023 • University of Waterloo

Table of Contents

1	Shc	ortest Paths
	1.1	Preliminaries on Graphs
		Shortest Paths Problem

1 Shortest Paths

1.1 Preliminaries on Graphs

An (undirected) graph G is a pair (V, E), where E is a set of unordered pairs of elements in V. The elements of V are called vertices or nodes; the elements of E are called edges.

Let $u, v \in V$ and let $e = uv \in E$ be an edge.

- We say that e is **incident** to u and v.
- The vertices u and v are said to be **adjacent**.
- We call u and v the **endpoints** of e.

By default, we assume that there are no parallel edges (i.e. two edges e = uv and e' = u'v' in E with $\{u, v\} = \{u', v'\}$) and no loops (i.e. an edge $e = uv \in E$ with u = v).

For distinct $u, v \in V$, a u, v-path is a sequence of vertices w_1, \ldots, w_k such that $w_1 = u, w_k = v$, and $w_i w_{i+1} \in E$ for all $i = 1, \ldots, k-1$.

For example, consider the following graph G = (V, E) with vertices $V = \{v_1, v_2, v_3, v_4\}$ and edges $E = \{v_1v_2, v_1v_4, v_2v_3, v_2v_4, v_3v_4\}$.

The lines in red form a v_1, v_2 -path, namely v_1, v_4, v_3, v_2 . Another v_1, v_2 -path can be obtained by simply traversing the edge v_1v_2 .

A **cycle** in G is a sequence of vertices w_1, \ldots, w_{k+1} such that $w_i w_{i+1} \in E$ for all $i = 1, \ldots, k$, the vertices w_1, \ldots, w_k are all distinct, and $w_1 = w_{k+1}$.

Finally, a graph G is **connected** if for any pair of distinct vertices $u, v \in V$, there exists a u, v-path in G.

1.2 Shortest Paths Problem

Given a directed graph G = (V, E) with edge lengths $\ell_e \ge 0$ for each $e \in E$ and a distinguished start vertex $s \in V$, we wish to find shortest paths from s to every other vertex in V. Note that when we work with directed graphs, we will denote the directed edges with (v_1, v_2) as opposed to v_1v_2 in the case of undirected graphs, where the order of the vertices did not matter.

The **length** of a path P given by the sequence w_1, \ldots, w_k is given by

$$\ell(P) := \sum_{i=1}^{k-1} \ell_{(w_i, w_{i+1})} = \sum_{e \in P} \ell_e,$$

where the second sum makes sense because there are no parallel edges. Then the **shortest-path distance** from s to a vertex $u \in V$ is defined to be

$$d(u) := \min_{s, u\text{-paths } P} \ell(P).$$

For example, we can consider the following instance of an undirected graph with given edge lengths and starting vertex $s = v_1$.

In this case, we have $d(v_2) = 1$, since the only possible path from v_1 to v_2 is by taking the edge (v_1, v_2) . There are multiple paths from v_1 to v_5 ; the shortest one is v_1, v_3, v_5 giving $d(v_5) = 3$.

Note that we always set d(s) = 0. We now make some observations:

- (i) If $(u,v) \in E$, then $d(v) \le d(u) + \ell_{(u,v)}$, since such an s,v-path is always an option.
- (ii) For every $v \in V$ distinct from s, there exists $w \in V$ such that $d(v) = d(w) + \ell_{(w,v)}$ and $(w,v) \in E$. This can be seen by chopping off the last edge from a shortest path from s to v.