# Sumowanie szeregów numerycznych

#### Hubert Kowalski

#### March 2023

## 1 Wstęp

Celem projektu jest zbadanie zachowania liczb zmiennoprzecinkowych w środowisku języków programowania. W moim przypadku został użyty język Java.

## 2 Hipotezy

- H1: Sumowanie od końca daje dokładniejsze wyniki niż sumowanie od początku
- H2: Używając rozwinięcia wokół 0 (szereg MacLaurina), przy tej samej liczbie składników szeregu dokładniejsze wyniki uzyskujemy dla małych argumentów
- H3: Sumowanie elementów obliczanych na podstawie poprzedniego daje dokładniejsze wyniki niż obliczanych bezpośrednio ze wzoru

Oraz odpowiedzieć na pytanie:

Q1: Jak zależy dokładność obliczeń (błąd) od liczby składników?

### 3 Metoda

Badanie zachowania zostało wykonane w spósób sformułowania czterech sposobów obliczania przybliżenia funkcji cosinus przy pomocy sumowania 20 elementów szeregów potęgowych. Wzór na sam szereg potęgowy wygląda następująco:

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

### 3.1 Sposoby

Badanie zostało wykonane na cztery sposoby:

- V1 (t\_cos) Sumując elementy szeregu potęgowego obliczane bezpośrednio ze wzoru Taylora w kolejności od początku
- V2 (t\_cos\_rev) Sumując elementy szeregu potęgowego obliczane bezpośrednio ze wzoru Taylora w kolejności od końca
- V3 (power\_series\_cos) Sumując elementy szeregu potęgowego od początku ale obliczając kolejny wyraz szeregu na podstawie poprzedniego
- V4 (power\_series\_cos\_rev) Sumując elementy szeregu potęgowego od początku ale obliczając kolejny wyraz szeregu na podstawie końca

### 3.2 Błędy absolutne

Błędy absolutne zostały wyliczone na podstawie funkcji cos z biblioteki Math Javy. Dodatkowo obliczenia zostały wykonane dla 1 000 000 próbek.

Wykres błędów absolutnych ma się następująco:



Wykres został przeskalowany logarytmicznie, żeby uwydatnić błędy, które znajdowały się przy brzegach zakresu  $[-2\pi;2\pi]$  maksymalny błąd jaki popełniają wszystkie funkcje to ok. 1,00E-03.

Porównanie średnich błędów absolutnych ma się następująco:

|                      | means o              |                      |                      |
|----------------------|----------------------|----------------------|----------------------|
| t_cos                | t_cos_rev            | power_series_cos     | power_series_cos_rev |
| 1,31686317601169E-05 | 1,31686317601304E-05 | 1,31686317601041E-05 | 1,31686317601177E-05 |

## 3.3 Odpowiedzi na hipotezy

Dzięki tym danym jestem w stanie odpowiedzieć na podane hipotezy

#### 3.4 H1

Odpowiedź: Hipoteza ta jest fałszywa, ponieważ średnia błędu absolutnego t $\_\cos$ rev jest o 1,35356E-17 większa od t $\_\cos$ , analogicznie średnia power $\_$ series $\_$ rev jest o 1,36321E-17 większa od power series  $\cos$  rev.

#### 3.5 H2

Odpowiedź: Jest to prawda patrząc na wykres jesteśmy w stanie to stwierdzić, ponieważ wykres błędu absolutengo w okół zera daje wartości bliższe zeru niż na skrajach przedziału.

### 3.6 H3

Odpowiedź: Tak, to prawda. Średnia błędu absolutnego power\_series\_cos jest o 1,28088E-17 mniejsza od błędu t\_cos, analogicznie sumując je od końca różnica wynosi 1,27123E-17.

## 3.7 Q1



 $Por\'ownanie\ wykres\'ow\ blęd\'ow\ dla\ n=20\ i\ n=5$ 

Odpowiedź: Błąd jest tym mniejszy im więcej sumujemy składników szeregu. Wynika to z samego twierdzenia Taylora oraz sami możemy to zauważyć zwiększając ilość elementów sumy w samym skrypcie.