```
In [1]: import pandas as pd
```

In [2]: #importing the datasets

In [3]: population = pd.read_csv("C:\\Users\\Dipen\\Downloads\\country_population.csv")
 fertility_rate = pd.read_csv("C:\\Users\\Dipen\\Downloads\\fertility_rate.csv")
 life_expectancy = pd.read_csv("C:\\Users\\Dipen\\Downloads\\life_expectancy.csv")
 country = pd.read_csv("C:\\Users\\Dipen\\Downloads\\Metadata_Country.csv")

In [4]: country

Out[4]:

•		Country Code	Region	IncomeGroup	SpecialNotes	TableName	Unnamed: 5
	0	ABW	Latin America & Caribbean	High income	SNA data for 2000-2011 are updated from offici	Aruba	NaN
	1	AFG	South Asia	Low income	Fiscal year end: March 20; reporting period fo	Afghanistan	NaN
	2	AGO	Sub-Saharan Africa	Lower middle income	NaN	Angola	NaN
	3	ALB	Europe & Central Asia	Upper middle income	NaN	Albania	NaN
	4	AND	Europe & Central Asia	High income	WB-3 code changed from ADO to AND to align wit	Andorra	NaN
	•••						
2	258	XKX	Europe & Central Asia	Lower middle income	WB-3 code changed from KSV to XKX to align wit	Kosovo	NaN
2	259	YEM	Middle East & North Africa	Lower middle income	Based on official government statistics and In	Yemen, Rep.	NaN
2	260	ZAF	Sub-Saharan Africa	Upper middle income	Fiscal year end: March 31; reporting period fo	South Africa	NaN
2	261	ZMB	Sub-Saharan Africa	Lower middle income	The base year is 2010. National accounts data	Zambia	NaN
i	262	ZWE	Sub-Saharan Africa	Low income	Fiscal year end: June 30; reporting period for	Zimbabwe	NaN

263 rows × 6 columns

```
In [5]: country1 = country[['Country Code', 'Region']]# gives the dataset with 2 column(Country
```

In [6]: country1

Out[6]:

	Country Code	Region
0	ABW	Latin America & Caribbean
1	AFG	South Asia
2	AGO	Sub-Saharan Africa
3	ALB	Europe & Central Asia
4	AND	Europe & Central Asia

•••		
258	XKX	Europe & Central Asia
259	YEM	Middle East & North Africa
260	ZAF	Sub-Saharan Africa
261	ZMB	Sub-Saharan Africa
262	ZWE	Sub-Saharan Africa

263 rows × 2 columns

In [7]: #checking for null values
 country1.isna().sum()

Out[7]: Country Code 0
Region 46

dtype: int64

In [8]: population

Out[8]:

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	
0	Aruba	ABW	Population, total	SP.POP.TOTL	54211.0	55438.0	56225.0	56695.0	57032.0	
1	Afghanistan	AFG	Population, total	SP.POP.TOTL	8996351.0	9166764.0	9345868.0	9533954.0	9731361.0	
2	Angola	AGO	Population, total	SP.POP.TOTL	5643182.0	5753024.0	5866061.0	5980417.0	6093321.0	
3	Albania	ALB	Population, total	SP.POP.TOTL	1608800.0	1659800.0	1711319.0	1762621.0	1814135.0	
4	Andorra	AND	Population, total	SP.POP.TOTL	13411.0	14375.0	15370.0	16412.0	17469.0	
•••										
259	Kosovo	XKX	Population, total	SP.POP.TOTL	947000.0	966000.0	994000.0	1022000.0	1050000.0	
260	Yemen, Rep.	YEM	Population, total	SP.POP.TOTL	5172135.0	5260501.0	5351799.0	5446063.0	5543339.0	
261	South Africa	ZAF	Population, total	SP.POP.TOTL	17456855.0	17920673.0	18401608.0	18899275.0	19412975.0	1
262	Zambia	ZMB	Population, total	SP.POP.TOTL	3044846.0	3140264.0	3240587.0	3345145.0	3452942.0	
263	Zimbabwe	ZWE	Population, total	SP.POP.TOTL	3747369.0	3870756.0	3999419.0	4132756.0	4269863.0	

264 rows × 61 columns

In [9]: #updating the population dataset(removing unnecessary columns)
 population.drop(['Country Name','Indicator Name','Indicator Code'],axis =1,inplace=True)
 population.head()

Out[9]: Country Code 1960 1961 1962 1963 1964 1965 1966 1967 1968

0	ABW	54211.0	55438.0	56225.0	56695.0	57032.0	57360.0	57715.0	58055.0	58386.0
1	AFG	8996351.0	9166764.0	9345868.0	9533954.0	9731361.0	9938414.0	10152331.0	10372630.0	10604346.0
2	AGO	5643182.0	5753024.0	5866061.0	5980417.0	6093321.0	6203299.0	6309770.0	6414995.0	6523791.0
3	ALB	1608800.0	1659800.0	1711319.0	1762621.0	1814135.0	1864791.0	1914573.0	1965598.0	2022272.0
4	AND	13411.0	14375.0	15370.0	16412.0	17469.0	18549.0	19647.0	20758.0	21890.0

5 rows × 58 columns

Tω	[10].	population.isna()	ciim ()
T11	I TO I :	populacion. Isna ()	· Sum ()

Out[10]:

populaci	.OII. ISIIa	()
Country	Code	0
1960		4
1961		4
1962		4
1963		4
1964		4
1965		4
1966		4
1967		4
1968		4
1969		4
1970		4
1971		4
1972		4
1973		4
1974		4
1975		4
1976		4
1977		4
1978		4
1979		4
1980		4
1981		4
1982		4
1983		4
1984		4
1985		4
1986		4
1987		4
1988		4
1989		4
1990		2
1991		2 3 3 3
1992		3
1993		3
1994		3
1995		2
1996		2
1997		2
1998		1
1999		1
2000		1
2001		1
2002		1
2003		1
2004		1
2005		1
2006		1
2007		1
2007		1
2009		1
2007		Τ.

```
2011
                         1
         2012
                         2
                         2
         2013
         2014
                         2
                         2
         2015
         2016
                         2
         dtype: int64
         population.shape
In [11]:
         (264, 58)
Out[11]:
         #removing the null values
In [12]:
         population.dropna(axis =0,inplace=True)
         population.shape
In [13]:
         (258, 58)
Out[13]:
         #Using this we go through over each element in the range and converts each integer to a
In [14]:
         #The result is a list of strings representing the years from 1960 to 2016.
         years = [str(i) for i in range(1960, 2017)]
         print(years)
         ['1960', '1961', '1962', '1963', '1964', '1965', '1966', '1967', '1968', '1969', '1970',
         '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981',
         '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992',
         '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003',
         '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014',
         '2015', '2016']
In [15]:
         # melt
         #The melt() method reshapes the DataFrame into a long table with one row for each each c
         population1 = pd.melt(population,
                 id vars='Country Code',
                 value vars=years,
                 var name='Year',
                 value name='Population')
         population1
In [16]:
Out[16]:
               Country Code
                           Year Population
             0
                      ABW
                           1960
                                   54211.0
                           1960
                                 8996351.0
             1
                       AFG
```

2010

2

3

4

14701

14702

14703

14704

14705

AGO

ALB

ZAF

ZMB

AND 1960

XKX 2016

2016

2016

2016

ZWE 2016 16150362.0

1960

1960

5643182.0

1608800.0

13411.0

1816200.0

27584213.0

56015473.0

16591390.0

1

```
population1.shape
In [17]:
           (14706, 3)
Out[17]:
          population1.head()
In [18]:
Out[18]:
             Country Code
                           Year
                                 Population
          0
                           1960
                     ABW
                                    54211.0
                      AFG
                           1960
                                  8996351.0
          2
                      AGO
                           1960
                                  5643182.0
          3
                           1960
                                   1608800.0
                      ALB
                      AND
                          1960
                                    13411.0
          country1.head()
In [19]:
Out[19]:
             Country Code
                                           Region
          0
                           Latin America & Caribbean
                     ABW
                      AFG
                                         South Asia
          2
                      AGO
                                  Sub-Saharan Africa
          3
                      ALB
                               Europe & Central Asia
          4
                      AND
                               Europe & Central Asia
           #merging the datasets(country1 and population1)
In [20]:
          merg1 = pd.merge(country1,population1,how='left',on='Country Code')
In [21]:
          merg1.head()
In [22]:
Out[22]:
             Country Code
                                           Region
                                                   Year
                                                         Population
          0
                     ABW
                           Latin America & Caribbean
                                                   1960
                                                             54211.0
          1
                     ABW
                           Latin America & Caribbean 1961
                                                             55438.0
          2
                     ABW
                           Latin America & Caribbean 1962
                                                             56225.0
          3
                     ABW
                           Latin America & Caribbean 1963
                                                             56695.0
                           Latin America & Caribbean 1964
                                                             57032.0
                     ABW
In [23]:
          fertility rate.head()
Out[23]:
                Country Country Indicator
                                                                        1962
                                                                                                                 2009
                                            Indicator Code
                                                           1960
                                                                 1961
                                                                             1963
                                                                                    1964
                                                                                           1965 ...
                                                                                                    2007
                                                                                                           2008
                  Name
                            Code
                                     Name
          0
                  Aruba
                            ABW
                                    Fertility
                                            SP.DYN.TFRT.IN 4.820 4.655 4.471 4.271
                                                                                    4.059 3.842
                                                                                                    1.763 1.764 1.769
                                  rate, total
```

(births

			per woman)											
1	Afghanistan	AFG	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	7.450	7.450	7.450	7.450	7.450	7.450		6.460	6.254	6.038
2	Angola	AGO	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	7.478	7.524	7.563	7.592	7.611	7.619		6.368	6.307	6.238
3	Albania	ALB	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	6.489	6.401	6.282	6.133	5.960	5.773		1.668	1.650	1.646
4	Andorra	AND	Fertility rate, total (births per woman)	SP.DYN.TFRT.IN	NaN	NaN	NaN	NaN	NaN	NaN		1.180	1.250	1.190
5	5 rows × 61 columns													

In [25]: fertility_rate1.head()

Out[25]:		Country Code	Year	Fertility_rate
	0	ABW	1960	4.820
	1	AFG	1960	7.450
	2	AGO	1960	7.478
	3	ALB	1960	6.489
	4	AND	1960	NaN

Out[26]:

In [26]: life_expectancy.head()

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	1963	1964	1965	•••	2007	20
0	Aruba	ABW	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	65.662	66.074	66.444	66.787	67.113	67.435		74.576	74.7
1	Afghanistan	AFG	Life expectancy at birth,	SP.DYN.LE00.IN	32.292	32.742	33.185	33.624	34.060	34.495		59.694	60.2

```
total
                              (years)
                                Life
                          expectancy
2
       Angola
                   AGO
                             at birth,
                                      SP.DYN.LE00.IN 33.251 33.573 33.914 34.272 34.645 35.031 ... 55.096 56.1
                                total
                              (years)
                                 Life
                          expectancy
       Albania
                                      SP.DYN.LE00.IN 62.279 63.298 64.187 64.911 65.461 65.848 ... 75.656 75.5
                    ALB
                             at birth,
                                total
                              (years)
                                Life
                          expectancy
      Andorra
                   AND
                             at birth,
                                      SP.DYN.LE00.IN
                                                        NaN
                                                                NaN
                                                                        NaN
                                                                                NaN
                                                                                        NaN
                                                                                                NaN ...
                                                                                                           NaN
                                                                                                                   Ν
                               total
                              (years)
```

5 rows × 61 columns

In [28]: Life_expectancy1.head()

Out[28]: Country Code Year Life_expectancy 0 ABW 1960 65.662 1 1960 32.292 AFG 2 AGO 1960 33.251 3 62.279 1960 ALB 4 AND 1960 NaN

```
In [29]: # Merge the data into one dataframe
    merg1 = pd.merge(country1, population1, how='left', on='Country Code')
    merg2 = pd.merge(merg1, Life_expectancy1, how='left', on=['Country Code', 'Year'])
    merg3 = pd.merge(merg2, fertility_rate1, how='left', on=['Country Code', 'Year'])

# Remove remaining lines with missing values
# They will appear if a country is in one dataset but not in another one
    merg3.dropna(axis=0, inplace=True)
```

In [30]: merg3.head()

Out[30]:	Country Code		Region	Year	Population	Life_expectancy	Fertility_rate
	0	ABW	Latin America & Caribbean	1960	54211.0	65.662	4.820
	1	ABW	Latin America & Caribbean	1961	55438.0	66.074	4.655
	2	ABW	Latin America & Caribbean	1962	56225.0	66.444	4.471
	3	ABW	Latin America & Caribbean	1963	56695.0	66.787	4.271

67.113

```
In [31]: #importing the plot for clear visualization
import plotly.express as px
```



```
log_x=True,
size_max=55,
range_x=[1,10],
range y=[10,100])
```



```
0.5B

O

Latin South Sub-Saharan Africa

Year=1960

Vear=1960

Region

Region

Region

1960

1968

1976

1984

1992

2000

2008

2016
```



```
In [ ]:
```

In [37]: # Distribution of Life Expectency

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style="whitegrid")
plt.figure(figsize=(10, 6))

# Plot the distribution of life expectancy
sns.histplot(Life_expectancy1, bins=10, kde=True, color='skyblue')

# Set plot labels and title
plt.xlabel('Life Expectancy')
plt.ylabel('Frequency')
plt.title('Distribution of Life Expectancy')

# Show the plot
plt.show()
```



```
In [38]: # distribution of Fertility Rate
    sns.set(style="whitegrid")
    plt.figure(figsize=(10, 6))

# Plot the distribution of fertility Rate
    sns.histplot(fertility_rate1, bins=10, kde=True, color='skyblue')

# Set plot labels and title
    plt.xlabel('Fertility rate')
    plt.ylabel('Frequency')
    plt.title('Distribution of Fertility Rate')

# Show the plot
    plt.show()
```



```
In [39]: correlation_matrix = merg3.corr()
```

```
In [40]: # correlation analysis
    plt.figure(figsize=(8,5))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.1,li
    plt.title('Correlation Matrix Heatmap')
    plt.show()
```



```
In []:
```