Chapitre 1

Introduction

1.1 Exercice 1 : Effet de l'échantillonnage

Soit le signal suivant : $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

1. Tracer la transformée de Fourier de x(t): X(f). La transformée de Fourier de x(t), X(f), est tracée sur la figure 1.1.

FIGURE 1.1 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz.

- 2. Est-il possible d'échantillonner x(t) sans perte d'information? Si oui à quelle condition? Il est possible d'échantillonner x(t) sans perte d'information en utilisant une fréquence d'échantillonnage $F_e > 2f_0 = 20$ kHz (respect de la condition de Shannon).
- 3. Tracer, entre 0 et F_e , la transformée de Fourier de x(t) échantillonné à $T_e=1/F_e$ quand :
 - (a) $F_e = 30 \text{ kHz}.$
 - (b) $F_e = 8 \text{ kHz}.$

La transformée de Fourier de x(t), échantillonné à $T_e = 1/F_e$, est tracée entre 0 et F_e sur la figure 1.2 quand $F_e = 30$ kHz et sur la figure 1.3 quand $F_e = 8$ kHz.

FIGURE 1.2 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz, $F_e = 30$ kHz.

4. A partir des échantillons nous souhaitons reconstruire x(t) par filtrage passe-bas à $F_e/2$. Quels seront les signaux obtenus pour chaque fréquence d'échantillonnage précédente? Par filtrage passe-bas à $F_e/2$, nous obtenons $x(t) = \cos(2\pi f_0 t)$, avec $f_0 = 10$ kHz pour $F_e = 30$ kHz, et $x(t) = \cos(2\pi f_1 t)$, avec $f_1 = 2$ kHz pour $F_e = 8$ kHz.

FIGURE 1.3 – Transformée de Fourier de $x(t) = \cos(2\pi f_0 t)$, $f_0 = 10$ kHz, $F_e = 8$ kHz.

1.2 Exercice 2: Echantillonnage d'un signal passe-bande

On considère le signal $x(t) = x^{+}(t) + x^{-}(t)$, avec $x^{+}(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{j2\pi f_0 t}$ et $x^{-}(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{-j2\pi f_0 t}$, $f_0 = 8kHz$ et B = 2kHz.

1. Déterminer la transformée de Fourier du signal x(t) et la représenter graphiquement. $X(f) = X^+(f) + X^-(f) = \prod_B(f) * \delta(f - f_0) + \prod_B(f) * \delta(f + f_0) = \prod_B(f - f_0) + \prod_B(f + f_0)$ (voir figure 1.4)

FIGURE 1.4 – Transformée de Fourier de x(t).

- 2. Comment s'écrit la condition de Shannon pour le signal x(t)? $F_e>2F_{max}$ avec $F_{max}=f_0+\frac{B}{2}=9$ kHz ici.
- 3. On échantillonne le signal x(t) à la fréquence $F_e = 6kHz$.
 - (a) Représenter graphiquement la transformée de Fourier du signal échantillonné $x_e(t)$ dans la bande [-9kHz, 9kHz]Voir sur la figure 1.5

FIGURE 1.5 – Transformée de Fourier de x(t) avec $F_e = 8$ kHz.

- (b) On désire restituer le signal x(t) à partir de $x_e(t)$ par un filtrage de réponse en fréquence H(f).
 - 1^{ier} cas : $H(f) = \Pi_F(f)$ avec F = 6kHz. Quel sera le signal restitué par ce filtre ? Voir la figure 1.6, on retrouvera $x(t) = B \frac{\sin(\pi Bt)}{\pi Bt} e^{j2\pi f_1 t} + B \frac{\sin(\pi Bt)}{\pi Bt} e^{-j2\pi f_1 t} = 2B \sin(\pi Bt) \cos(2\pi f_1 t)$, avec $f_1 = -F_e + f_0 = 2$ kHz.

FIGURE 1.6 -

— 2^{me} cas : $H(f) = \Pi_B(f + f_0) + \Pi_B(f - f_0)$ avec $f_0 = 8kHz$ et B = 2kHz. Quel sera le signal restitué par ce filtre?

Voir la figure 1.7, on retrouvera $x(t) = B \frac{\sin(\pi B t)}{\pi B t} e^{j2\pi f_0 t} + B \frac{\sin(\pi B t)}{\pi B t} e^{-j2\pi f_0 t} = 2B \sin(\pi B t) \cos(2\pi f_0 t)$, avec $f_0 = 8$ kHz.

FIGURE 1.7 -

— Conclusion?

Il est possible d'échantillonner un signal de type passe-bande sans respecter la condition de Shannon tout en assurant une reconstition parfaite (par filtrage passe-bande), à condition que les repliments se fassent dans les trous du spectre de départ.

1.3 Exercice 3: Echantillonneur moyenneur

L'échantillonneur moyenneur est une méthode pratique d'échantillonnage qui consiste à calculer, toutes les T_e secondes (période d'échantillonnage), la valeur moyenne du signal pendant un intervalle de temps θ ($\theta << T$) et à affecter cette valeur moyenne à l'échantillon discrétisé :

$$y(kT_e) = \frac{1}{\theta} \int_{kT_e-\theta}^{kT_e} x(u) du$$
$$x_{ech}(t) = \sum_{k} y(kT_e) \delta(t - kT_e)$$

1. Démontrer que le signal échantillonné $x_{ech}(t)$ peut se mettre sous la forme :

$$x_{ech}(t) = \frac{1}{\theta} \left[\Pi_{\theta}(t) * x \left(t - \frac{\theta}{2} \right) \right] \cdot \mathbf{III}_{T_e}(t)$$

où $\Pi_{\theta}(t)$ et $\coprod_{T_e}(t)$ représentent respectivement la fenêtre rectangulaire de largeur θ et le peigne de Dirac de période T_e .

$$\begin{aligned} x_{ech}(t) &= \sum_k y\left(kT_e\right)\delta\left(t-kT_e\right) = y(t)\sum_k \delta\left(t-kT_e\right) = y(t). \text{ III}_{T_e}\left(t\right). \text{ Reste à montrer} \\ \text{que } y(t) &= \frac{1}{\theta}\left[\Pi_{\theta}\left(t\right)*x\left(t-\frac{\theta}{2}\right)\right]: \\ y(t) &= \frac{1}{\theta}\int_{t-\theta}^t x(u)du = \frac{1}{\theta}\int_{-\infty}^{+\infty} x(u)\times\Pi_{\theta}\left(u-\left(t-\frac{\theta}{2}\right)\right)du = \frac{1}{\theta}\int_{-\infty}^{+\infty} x(u)\times\Pi_{\theta}\left(\left(t-\frac{\theta}{2}\right)-u\right)du = \frac{1}{\theta}\left(x*\Pi_{\theta}\right)\left(t-\frac{\theta}{2}\right) \end{aligned}$$

2. En déduire la transformée de Fourier correspondante $X_{ech}(f)$. $X_{ech}(f) = Y(f) * \frac{1}{T_e} \coprod$

$$\coprod_{1/T_e} (f) = \frac{1}{T_e} \sum_k Y\left(f - \frac{k}{T_e}\right)$$
, avec $Y(f) = sinc(\pi f \theta) X(f) e^{-j\pi f \theta}$

3. En considérant un signal à support spectral borné $2\Delta f$ et en prenant en compte que la fonction $sinc(\pi\theta f)$ peut être supposé constante sur l'intervalle $\left[-\frac{1}{3\theta},\frac{1}{3\theta}\right]$

$$sinc(\pi\theta f) = \frac{\sin(\pi\theta f)}{\pi\theta f} \approx 1$$
pour $f \in \left[-\frac{1}{3\theta}, \frac{1}{3\theta} \right]$

(a) quelle(s) condition(s) doit vérifier θ pour que le signal x(t) puisse être restitué par filtrage de $x_{ech}(t)$?

Il faut que $\Delta f \leq \frac{1}{3\theta} \Leftrightarrow \theta \leq \frac{1}{3\Delta f}$

(b) Dans ces conditions peut-on échantillonner à la fréquence de Shannon? Après filtrage antialiasing on pourra prendre F_e tel que $\Delta f < \frac{F_e}{2} = \frac{1}{2T_e} \Leftrightarrow T_e < \frac{1}{2\Delta f}$

1.4 Exercice 4 : Echantillonneur bloqueur

L'échantillonneur bloqueur est un échantillonneur réalisable en pratique qui consiste à acquérir un échantillon du signal, x(t), toutes les T_e secondes (période d'échantillonnage) et à le bloquer pendant τ secondes ($\tau << T_e$).

- 1. Proposer une écriture du signal échantillonné de cette manière, $x_e(t)$, en fonction de l'expression du signal échantillonné de manière idéale : $x_{ei}(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t-kT_e)$. Le signal échantillonné par bloqueur va être constitué d'une somme de fonctions porte espacées de T_e , de largeur τ et de hauteur $x(kT_e)$ si $x(kT_e)$ représente la valeur de l'échantillon prélevé sur le signal x(t) à l'instant kT_e . On peut donc écrire le signal échantillonné, $x_e(t)$, de la manière suivante : $x_e(t) = \sum_{k \in \mathbb{Z}} x(kT_e)\Pi_{\tau} \left(t \frac{\tau}{2} kT_e\right) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * \sum_{k \in \mathbb{Z}} x(kT_e)\delta(t kT_e) = \Pi_{\tau} \left(t \frac{\tau}{2}\right) * x_{ei}(t)$.
- 2. Calculer la transformée de Fourier du signal échantillonné à l'aide de cette méthode. L'écrire en fonction de la transformée de Fourier, X(f), du signal de départ. $X_e(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * X_{ei}(f) = \tau sinc(\pi f \tau) e^{-j\pi f \tau} * F_e \sum_{k \in \mathbb{Z}} X(f kF_e), \text{ où } F_e = \frac{1}{T_e} \text{ représente la fréquence d'échantillonnage du signal.}$
- Est-il possible de dimensionner τ pour que l'échantillonnage par bloqueur se rapproche d'un échantillonnage idéal?
 Si le critère de Shannon est vérifié, on pourra récupérer X(f) à condition que ½ >> F_{max}, en appelant F_{max} la fréquence maximale du signal x(t). On aura alors, en effet, sinc (πfτ) ~ 1 sur la bande du signal.

1.5 Exercice 5 : Signal à spectre non borné - Recherche de la F_e

Soit le signal x(t) défini par :

$$x(t) = \begin{cases} e^{-at} & \text{si } t \ge 0, a > 0 \\ 0 & \text{si } t < 0. \end{cases}$$
 (1.1)

- 1. Déterminer la transformée de Fourier X(f) du signal x(t). Tracer |X(f)|. $X(f) = \int_0^{+\infty} e^{-(a+j2\pi f)t} dt = \frac{1}{a+j2\pi f}, \ |X(f)| = \frac{1}{\sqrt{a^2+4\pi^2 f^2}}.$
- 2. En théorie le signal x(t) est-il échantillonnable sans perte d'information? Expliquez votre réponse.

Non car le spectre non borné \Rightarrow forcément du repliement quand on va échantillonner \Rightarrow signal distordu.

3. En considérant la transformée de Fourier comme négligeable pour une atténuation minimale de 40 dB par rapport à sa valeur maximum, dimensionner la fréquence d'échantillonnage, F_e , à utiliser.

On a le maximum du spectre pour f = 0. On souhaite donc trouver F_{max} telle que :

$$10\log_{10}|X(F_{max})|^{2} \le 10\log_{10}|X(0)|^{2} - 10\log_{10}\left(10^{4}\right) = 10\log_{10}\frac{|X(0)|^{2}}{10^{4}}$$

D'où
$$\frac{1}{\sqrt{a^2+4\pi^2F_{max}^2}} \leq \frac{1}{10^4a^2}$$
 et donc $F_{max}^2 \geq \frac{\left(10^4-1\right)a^2}{4\pi^2}$. Soit, en négligeant 1 devant 10^4 : $F_{max} \geq \frac{100a}{2\pi}$ et donc $F_e \geq \frac{100a}{\pi}$.

4. Une fois F_e déterminée, quel traitement doit-on appliquer au signal avant de l'échantillonner?

Un filtre anti repliement afin de tronquer le spectre du signal à F_{max} .

1.6 Exercice 6 : Quantification d'un sinusoïde

Soit un signal sinusoïdal $x(t) = A_0 \sin(2\pi f_0 t + \phi)$, avec $f_0 = 50Hz$, $A_0 = 220\sqrt{2}V$ et ϕ une phase aléatoire uniformément répartie entre 0 et 2π . On suppose que la quantification de cette sinusoïde est effectuée dans de bonnes conditions : pas d'écrétage du signal, pas de quantification $q = \frac{D}{2^{nb}}$ suffisament fin (D représentant la dynamique du signal et nb le nombre de bits de quantification). Elle est donc équivalente à l'ajout d'un bruit, $n_Q(t)$, sur le signal non quantifié de départ, bruit aléatoire, centré qui suit une loi uniforme sur $\left[-\frac{q}{2}, \frac{q}{2}\right]$. Déterminer le rapport signal à bruit de quantification en fonction de nb.

 $SNR_{dB}=10\log_{10}\left(\frac{P_x}{P_n}\right)$ si P_x représente la puissance du signal x(t) et P_n la puissance du bruit de quantification, $n_Q(t)$, qui vient s'ajouter au signal de départ. $P_x=\frac{A_0^2}{2}$ (résultat classique pour la puissance d'un sinus ou d'un cosinus, calculé en TD dans le cas d'un cosinus) et $P_n=E\left[n_Q^2(t)\right]=\int_{-\frac{q}{2}}^{\frac{q}{2}}\frac{1}{q}n_Q^2(t)dn_Q=\frac{1}{q}\left[\frac{n_Q^3(t)}{3}\right]_{-\frac{q}{2}}^{\frac{q}{2}}=\frac{q^2}{12}$, d'où $SNR_{dB}=10\log_{10}\left(\frac{3}{2}2^{2nb}\right)\simeq 1.76+6nb$