Definition (Adjunction, Version 2). Let **C** and **D** be categories. An *adjunction* from **C** to **D** is given by the following data, satisfying the following conditions.

Data:

- 1. A functor $L: \mathbb{C} \to \mathbb{D}$ (the *left adjoint*);
- 2. A functor $R: \mathbf{D} \to \mathbf{C}$ (the right adjoint);
- 3. Natural transformations un : $Id_{\mathbf{C}} \Rightarrow L \ _{?} R$ and co : $R \ _{?} L \Rightarrow Id_{\mathbf{D}}$

Conditions:

1. For all objects *X* of **C**, it holds that

$$L\operatorname{un}_X \operatorname{co}_{LX} = \operatorname{Id}_{LX}$$
 and $\operatorname{un}_{RY} \operatorname{co}_Y = \operatorname{Id}_{RY}$

i.e. that the following diagrams commute:

The 2-morphisms un and co are called the *unit* and *counit* of the adjunction. An adjunction is called an *adjoint equivalence* if the unit and counit are natural isomorphisms.