Parameters STDs

Peilun He, Karol Binkowski, Nino Kordzakhia, Pavel Shevchenko

The algorithm for obtaining the variances of the estimates of parameters is outlined below.

- 1. For a given data set y, get MLE estimates $\hat{\theta}$ for unknown parameters θ .
- 2. Let $\theta = \hat{\theta}$. Generate a new data set.
- 3. For the data \tilde{y} and parameters $\hat{\theta}$, obtain the score vector numerically. That is, given an increment h, the score is $\frac{\mathcal{G}(\theta+h)-\mathcal{G}(\theta)}{h}$.
- 4. Let $\mathcal{F}_i = \mathcal{GG}'$ be the product of the score vector and its transpose.
- 5. Repeat step 2 4 M times, we get $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_M$. Get the expectation of these \mathcal{F}_i 's. to obtain the Fisher Information Matrix \mathcal{I} .
- 6. Take the inverse of \mathcal{I} . This would be the variance-covariance matrix.

This algorithm was used in Table 1 for evaluation of the standard errors of the estimates of the parameters.

Table 1: Estimation output: NLL for negative log-likelihood; standard errors are given in parentheses

Period	κ	γ	μ_{ξ}	σ_χ	σ_{ξ}	ρ	λ_χ	λ_{ξ}	s_1	s_2	NLL
2001-2005	1.5117 (0.0097)	0.0558 (0.0023)	-0.0502 (0.0057)	0.3036 (0.0205)	0.2201 (0.0014)	0.4222 (0.0079)	-4.0223 (4.70E-04)	0.0093 (0.0014)	0.0209 (5.20E-05)	0.0037 (2.20E-05)	-48562
2005-2009	1.2087 (0.0103)	0.0027 (0.0236)	-0.9515 (0.0236)	0.2088 (0.0299)	0.2811 (0.0071)	0.3062 (0.0050)	0.6292 (4.10E-04)	-0.8723 (0.0016)	0.0181 (5.30E-05)	0.0032 (1.80E-05)	-50717
2014-2018	1.1293 (0.0081)	0.0046 (0.0140)	-3.4150 (0.0222)	0.2441 (0.0065)	0.2389 (0.0059)	0.4530 (0.0140)	-3.5956 (5.70E-05)	-3.3445 (0.0018)	0.0133 (3.20E-04)	0.0029 (1.50E-05)	-52450