VNU-HUS MAT3500: Toán rời rạc

Các cấu trúc cơ bản Tập hợp, Hàm, Dãy, Tổng

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Tập hợp

Một số khái niệm và tính chất cơ bản Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hệ Định nghĩa hàm và một số khái niệm Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu ích

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

0

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

long

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Khái niêm và cách mô tả tập hợp

- Một tập hợp (set) là một tổng thể không sắp thứ tự các đối tượng phân biệt (gọi là các phần tử (element) hoặc thành viên (member) của tập hợp)
 - $x \in S$: x là phần tử của S
 - $x \notin S$: x không là phần tử của S
- Ta thường sử dụng các chữ in hoa S,T,U,\ldots để ký hiệu tập hợp
- Có thể mô tả một tập hợp bằng cách liệt kê tất cả các phần tử của tập đó giữa hai dấu ngoặc nhọn "{" và "}". Trong nhiều trường hợp, có thể liệt kê thông qua "quy luật đơn giản"
 - Tập các nguyên âm trong bảng chữ cái tiếng Anh $V = \{a, e, i, o, u\}$
 - Tập các số tự nhiên $\mathbb{N} = \{0, 1, 2, 3, \dots\}$
- Có thể mô tả một tập hợp thông qua quy tắc nhận biết
 - Với vị từ P(x) bất kỳ trên miền xác định nào đó, $\{x \mid P(x)\}$ là tập hợp tất cả x sao cho P(x) đúng (có thể dùng ":" thay vì "|")
 - Tập các số tự nhiên chẵn $E = \{x \mid x = 2k \text{ với } k \in \mathbb{N}\}$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

am

uan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Khái niệm và cách mô tả tập hợp

When the control of t

- Có thể mô tả một tập hợp thông qua giản đồ Venn (Venn diagram)

 - Tập hợp cần mô tả
 - Phần tử của tập hợp

Hình tròn hoặc các hình khác

Điểm

Hình: Mô tả tập các nguyên âm trong bảng chữ cái tiếng Anh $V=\{a,e,i,o,u\}$ bằng giản đồ Venn

Các cấu trúc cơ bản Hoàng Anh Đức

Tâp hợp

Một số khái niệm và tính

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Ouen k

Định nghĩa hàm và một số khái niệm

khái niệm Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

Töng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hê

Dịnh nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

Tổn

- Tập hợp rỗng (empty set), ký hiệu ∅, là tập hợp duy nhất không chứa bất kỳ phần tử nào
- $\emptyset = \{\}$ hoặc $\emptyset = \{x \mid \mathbf{F}\}$ với \mathbf{F} là một mệnh đề luôn luôn sai (mâu thuẫn)
- Bất kể miền xác định là gì, *mênh đề* $\neg \exists x (x \in \emptyset)$ luôn đúng
- $\blacksquare \emptyset \neq \{\emptyset\}$
 - \blacksquare Tập $\{\emptyset\}$ không rỗng, vì nó chứa một phần tử—tập hợp rỗng

Tập hợp con và tập hợp bằng nhau

Cho hai tập hợp A và B. A là $t\hat{a}p$ con (subset) của B, ký hiệu $A\subseteq B$ hoặc $B\supseteq A$, khi và chi khi mỗi phần tử của tập A cũng là một phần tử của B

- $(A \subseteq B) \equiv \forall x (x \in A \to x \in B)$
- $\blacksquare \ (A \not\subseteq B) \equiv \neg (A \subseteq B) \ (A \ \textit{không} \ \text{là tập con của} \ B)$
- $(A \subset B) \equiv (A \subseteq B) \land (B \not\subseteq A)$ (A là tập con thực sự (proper subset) của B)

Bài tập 1

Cho $A=\{1,2,3\}$ và $B=\{1,3,5,7\}$. Hãy liệt kê tất cả các tập hợp

- (a) là tập con của A
- (b) là tập con thực sự của ${\cal A}$
- (c) vừa là tập con của A vừa là tập con của B
- (d) là tập con của A nhưng không là tập con của B

Hình: Giản đồ Venn mô tả $A \subset B$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

i icaiii

Quan hệ

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Tập hợp con và tập hợp bằng nhau

Ví du 1

Ta chứng minh *với mọi tập A, ta có* $\emptyset \subseteq A$

- \blacksquare Nghĩa là, ta cần chứng minh $\forall A\, \forall x\, ((x\in\emptyset)\to (x\in A))$
- Cụ thể, ta cần chỉ ra rằng với một tập A_0 và một phần tử x_0 cụ thể thuộc các miền xác định tương ứng, mệnh đề $(x_0 \in \emptyset) \to (x_0 \in A)$ đúng
- Thật vậy, theo định nghĩa của tập hợp rỗng, $(x_0 \in \emptyset) = F$. Do đó, $(x_0 \in \emptyset) \to (x_0 \in A) = T$

Bài tập 2

Chứng minh rằng với mọi tập hợp A, ta có $A \subseteq A$

Bài tập 3

Phát biểu sau đúng hay sai? "Với mọi tập hợp A, nếu tồn tại tập hợp B sao cho $B\subseteq A$, thì $A\neq\emptyset$ "

Bài tập 4

Chứng minh rằng nếu $A\subseteq B$ và $B\subseteq C$ thì $A\subseteq C$

Bài tập 5

Liệu có tồn tại các tập hợp A và B thỏa mãn $A \in B$ và $A \subseteq B$?

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

lam

Ouan hâ

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Tập hợp con và tập hợp bằng nhau

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hệ

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Cho hai tập hợp A và B. A và B là hai tập $\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$

- $\blacksquare (A = B) \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x (x \in A \leftrightarrow x \in B)$
- Tất cả các phần tử trong một tập đều *phân biệt (distinct)*; liệt kê một phần tử nhiều lần là vô nghĩa
 - Nếu a = b thì $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, c, a, c, c\}$
 - Ta nói rằng tập trên có (nhiều nhất) 2 phần tử
- Các phần tử của một tập hợp không sắp thứ tự (unordered)
 - Bất kể a,b,c là gì, $\{a,b,c\}=\{a,c,b\}=\{b,a,c\}=\{b,c,a\}=\{c,a,b\}=\{c,b,a\}$

Lực lượng của một tập hợp

- *Lực lượng (cardinality)* của một tập A, ký hiệu |A|, là số phần tử khác biệt mà A có
- Nếu $|A| \in \mathbb{N}$, thì ta gọi A là *tập hữu hạn (finite set)*. Ngược lại, A là một *tập vô hạn (infinite set)*
- Một số tập vô hạn quan trọng
 - $\mathbb{N} = \{0, 1, 2, ...\}$ Tập số tự nhiên (**n**atural numbers)
 - $\blacksquare \ \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ Tập số nguyên (integers)
 - \blacksquare $\mathbb{Z}^+ = \{1, 2, ...\}$ Tập số nguyên dương (positive integers)
 - $\mathbb{Q} = \{ p/q \mid p, q \in \mathbb{Z}, \ \mathsf{v\grave{a}} \ q \neq 0 \}$ Tập số hữu tỷ (rational numbers)
 - R Tập số thực (**r**eal numbers)
 - R⁺ Tập số thực dương (positive real numbers)
 - C Tập số phức (**c**omplex numbers)
- $\blacksquare \ \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Bài tập 6

Tìm các tập hợp A,B thỏa mãn các điều kiện

(a)
$$A = \{3, |B|\}$$

(b)
$$B = \{1, |A|, |B|\}$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

⊣àm

Quan hệ Định nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tập hợp Tập hợp lũy thừa

- **Tâp lũy thừa (power set)** của một tập A, ký hiệu $\mathcal{P}(A)$, là tập hợp gồm tất cả các tập con của A
 - $\mathcal{P}(A) = \{x \mid x \subseteq A\}$
 - $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$
 - $\mathcal{P}(\emptyset) = \{\emptyset\}$
 - $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$
- Nếu A là tập hữu hạn, $|\mathcal{P}(A)| = 2^{|A|}$. Do đó ký hiệu 2^A đôi khi cũng được sử dụng để chỉ tập lũy thừa của A

Bài tấp 7

Cho $A = \{1, 2, 3\}$. Các mệnh đề sau đúng hay sai?

- (a) $2 \in A$ (c) $2 \in \mathcal{P}(A)$ (e) $\{2\} \in \mathcal{P}(A)$ (g) $\{\{2\}\} \in \mathcal{P}(A)$
- (b) $2 \subseteq A$ (d) $2 \subseteq \mathcal{P}(A)$ (f) $\{2\} \subseteq \mathcal{P}(A)$ (h) $\{\{2\}\} \subseteq \mathcal{P}(A)$

Bài tấp 8

Chứng minh rằng nếu A = B thì $\mathcal{P}(A) = \mathcal{P}(B)$ với hai tập A, Bbất kỳ. Ngược lại, nếu $\mathcal{P}(A) = \mathcal{P}(B)$ thì A có bằng B không? (Gơi ý: $A = B \equiv (A \subseteq B) \land (B \subseteq A) \equiv \forall x (x \in A \leftrightarrow x \in B)$ và nếu $A \subseteq B$ và $B \subseteq C$ thì $A \subseteq C$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê Định nghĩa hàm và một số

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Tập hợp Tích Đềcác

■ Với $n \in \mathbb{N}$, một bộ sắp thứ tư n phần tử (ordered n-tuples) (a_1, a_2, \dots, a_n) là một dãy các phần tử có phần tử thứ nhất là a_1 , phần tử thứ hai là a_2, \ldots , và phần tử thứ n là a_n

- Môt bô sắp thứ tư 2 phần tử được gọi là một cặp sắp thứ tư (order pair)
- Hai bộ (a_1, \ldots, a_n) và (b_1, \ldots, b_n) là bằng nhau nếu với moi $i \in \{1, ..., n\}, a_i = b_i$
- Chú ý: $(1,2) \neq (2,1) \neq (2,1,1)$ nhưng $\{1,2\} = \{2,1\} = \{2,1,1\}$
- **Tích Đềcác (Cartesian product)** của hai tập A, B, ký hiệu $A \times B$, là tập tất cả các cặp sắp thứ tư (a,b) trong đó $a \in A \text{ và } b \in B$
 - $A \times B = \{(a,b) \mid a \in A \land b \in B\}$
 - Chú ý rằng tích Đềcác không có tính chất giao hoán, nghĩa $la \neg \forall A, B (A \times B = B \times A)$
 - Tổng quát hóa $A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1 \wedge \cdots \wedge a_n \in A_n\}$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

наш

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm

Một số công thức tổng hữu ích

Bài tâp 9

Cho $A=\{1,\{2,3\}\}$ và $B=\{4,5,6\}$. Tìm các tập hợp $A\times A$, $B\times B$, $A\times B$, và $B\times A$

Bài tập 10

Chứng minh rằng $A \times B = \emptyset$ khi và chỉ khi $A = \emptyset$ hoặc $B = \emptyset$

Bài tập 11

Chứng minh rằng $A \times B = B \times A$ khi và chỉ khi $A = \emptyset$ hoặc $B = \emptyset$ hoặc A = B

Tập hợp Phép hợp

- $H \circ p$ (union) của hai tập hợp A, B, ký hiệu $A \cup B$, là tập chứa tất cả các phần tử hoặc thuộc A, hoặc thuộc B, hoặc thuộc cả hai

 - $A \cup B \supseteq A \text{ và } A \cup B \supseteq B$

Hình: Giản đồ Venn mô tả $A \cup B$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tập hợp Phép giao

- *Giao (intersection)* của hai tập hợp A, B, ký hiệu $A \cap B$, là tập chứa tất cả các phần tử đồng thời thuộc cả A và B

 - $A \cap B \subseteq A \text{ và } A \cap B \subseteq B$
- Hai tập A và B là *rời nhau (disjoint)* nếu $A \cap B = \emptyset$.
 - \blacksquare $\{1,3,5\} \cap \{2,4,6\} = \emptyset$

Hình: Giản đồ Venn mô tả $A \cap B$

Các cấu trúc cơ bản Hoàng Anh Đức

Tặp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

7.4

Tập hợp Phép hiệu

■ $\emph{Hiệu}$ ($\emph{difference}$) của hai tập hợp A,B, ký hiệu A-B hoặc $A\setminus B$, là tập chứa tất cả các phần tử thuộc A nhưng không thuộc B

$$\forall A, B (A - B = \{x \mid x \in A \land x \notin B\})$$

■ Khi tập vũ trụ U được xác định, *phần bù (complement)* của tập A, ký hiệu \overline{A} , là tập U - A

$$\blacksquare \ \forall A \, (\overline{A} = \{x \mid x \notin A\})$$

Hình: Giản đồ Venn mô tả A - B

Hình: Giản đồ Venn mô tả \overline{A}

Các cấu trúc cơ bản Hoàng Anh Đức

ần hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Ouan hâ

Định nghĩa hàm và một số

Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổn

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Phép hiệu đối xứng

- Hiệu đối xứng (symmetric difference) của hai tập hợp A, B, ký hiệu $A\Delta B$ hoặc $A\oplus B$, là tập chứa tất cả các phần tử hoặc thuộc A hoặc thuộc B nhưng không thuộc cả A và B

 - $A\Delta B = (A B) \cup (B A)$
 - \blacksquare $\{1,3,5\}$ \triangle $\{2,3,4\}$ = $\{1,2,4,5\}$

Hình: Giản đồ Venn mô tả $A\Delta B$

Các cấu trúc cơ bản Hoàng Anh Đức

lập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

чатт

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Tập hợp Các phép toán trên tập hợp

Bài tập 12

Tìm các tập A và B, biết rằng $A-B=\{1,5,7,8\},$ $B-A=\{2,10\},$ và $A\cap B=\{3,6,9\}$

Bài tập 13

Cho các tập hợp A,B. Chứng minh

- (a) $A \cap B \subseteq A$ và $A \cap B \subseteq B$
- (b) $A \subseteq (A \cup B)$
- (c) $A B \subseteq A$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Bảng tính thuộc (membership table) của các phép toán trên tập hợp

A	В	$A \cup B$	$A \cap B$	A - B	\overline{A}	$A\Delta B$
1	1	1	1	0	0	0
1	0	1	0	1	0	1
0	1	1	0	0	1	1
0	0	0	0	0	1	0

Bài tâp 14

Xây dựng bảng tính thuộc của

- (a) $A \cup (B \cup C)$ và $(A \cup B) \cup C$
- (b) $A\cap (B\cup C)$ và $(A\cap B)\cup (A\cap C)$
- (c) $\overline{A \cup B}$ và $\overline{A} \cap \overline{B}$

Các cấu trúc cơ bản Hoàng Anh Đức

ầp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Tập hợp Các hằng đẳng thức tập hợp

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hệ

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tên gọi	Đẳng thức	
Luật đồng nhất	$A \cap U = A$,
(Identity laws)	$A \cup \emptyset = A$	'
Luật nuốt	$A \cup U = U$	
(Domination laws)	$A \cap \emptyset = \emptyset$	
Luật lũy đẳng	$A \cup A = A$	
(Idempotent laws)	$A \cap A = A$	
Luật bù kép	$\overline{\overline{A}} = A$	
(Double complement laws)	A = A	
Luật giao hoán	$A \cup B = B \cup A$	
(Commutative laws)	$A \cap B = B \cap A$	
Luật kết hợp	$A \cup (B \cup C) = (A \cup B) \cup C$	
(Associative laws)	$A \cap (B \cap C) = (A \cap B) \cap C$	
Luật phân phối	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
(Distributive laws)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	

Các hằng đẳng thức tập hợp

Tên gọi	Đẳng thức
Luật De Morgan	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
(De Morgan's laws)	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
Luật hấp thụ	$A \cup (A \cap B) = A$
(Absorption laws)	$A \cap (A \cup B) = A$
Luật bù	$A \cup \overline{A} = U$

 $A \cap \overline{A} = \emptyset$

Với hai tập A, B bất kỳ,

Chứng minh A = B

(1) Chứng minh trực tiếp $A \subseteq B$ và $B \subseteq A$

(Complement laws)

- Chứng minh thông qua định nghĩa tập hợp và các phép biến đổi lôgic
- (3) Chứng minh bằng bảng tính thuộc

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Các hằng đẳng thức tập hợp

Các cấu trúc cơ bản Hoàng Anh Đức

Γập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hệ

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Ví dụ 2 (Dùng định nghĩa)

Chứng minh $\overline{A \cap B} = \overline{A} \cup \overline{B}$

- $\blacksquare \ \overline{A \cap B} \subset \overline{A} \cup \overline{B}$
 - Giả sử $x \in \overline{A \cap B}$. Theo định nghĩa, $x \notin A \cap B$. Do đó, mệnh đề $\neg (x \in A \land x \in B)$ đúng. Áp dụng luật De Morgan, $\neg (x \in A) \lor \neg (x \in B)$ đúng. Theo định nghĩa, ta có $x \notin A$ hoặc $x \notin B$. Do đó, $x \in \overline{A}$ hoặc $x \in \overline{B}$, suy ra $x \in \overline{A} \cup \overline{B}$
- $\blacksquare \ \overline{A \cap B} \supset \overline{A} \cup \overline{B}$
 - Giả sử $x \in \overline{A} \cup \overline{B}$. Theo định nghĩa, $x \in \overline{A}$ hoặc $x \in \overline{B}$. Do đó, $x \notin A$ hoặc $x \notin B$. Như vậy, mệnh đề $(x \notin A) \lor (x \notin B)$ đúng. Theo định nghĩa, $\neg (x \in A) \lor \neg (x \in B)$ cũng đúng. Áp dụng luật De Morgan, mệnh đề $\neg (x \in A \land x \in B)$ đúng. Do đó, $\neg (x \in A \cap B)$ đúng, suy ra $x \in \overline{A \cap B}$

Các hằng đẳng thức tập hợp

Ví dụ 3 (Dùng đẳng thức lôgic đã biết) Chứng minh $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in A \cap B)\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

định nghĩa phần bù định nghĩa ∉ định nghĩa ∩ luật De Morgan định nghĩa ∉ định nghĩa phần bù định nghĩa ∪ mô tả tập hợp

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Ham

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dã

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tập hợp Các hằng đẳng thức tập hợp

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm

Một số công thức tổng hữu ích

Ví dụ 4 (Dùng bảng tính thuộc) Chứng minh $\overline{A \cap B} = \overline{A} \cup \overline{B}$

A	B	\overline{A}	\overline{B}	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Các hằng đẳng thức tập hợp

Bài tập 15

Chứng minh các hằng đẳng thức tập hợp đã đề cập (sử dụng các phương pháp đã trình bày)

Bài tập 16

Với các tập A, B bất kỳ, chứng minh

(a)
$$A \cap B = A - (A - B)$$

(d)
$$A\Delta A = \emptyset$$

$$\textbf{(b)} \ A \cup (B - A) = A \cup B$$

(e)
$$A\Delta\emptyset = A$$

$$(c) A \cap (B - A) = \emptyset$$

(f)
$$A\Delta B = B\Delta A$$

Bài tập 17

Với các tập A,B,C, có thể kết luận rằng A=B nếu

(a)
$$A \cup C = B \cup C$$
?

(b)
$$A \cap C = B \cap C$$
?

(c)
$$A \cup C = B \cup C$$
 và $A \cap C = B \cap C$?

Bài tập 18

Có thể nói gì về các tập A, B nếu $A\Delta B = A$?

Các cấu trúc cơ bản Hoàng Anh Đức

âp hơp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Ouan hô

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Các hằng đẳng thức tập hợp

Bài tấp 19

Với A là tập con của một tập vũ trụ U, chứng minh rằng

- (a) $A\Delta U = \overline{A}$
- (b) $A\Delta \overline{A} = U$

Bài tấp 20

Với hai tập A, B bất kỳ, chứng minh

- (a) $A\Delta B = (A \cup B) (A \cap B)$
- (b) $A\Delta B = B\Delta A$
- (c) $(A\Delta B)\Delta B = A$

Bài tấp 21

Chứng minh hoặc tìm phản ví du cho các đẳng thức sau

- (a) $A \times (B \cup C) = (A \times C) \cup (B \times C)$
- (b) $A \times (B \cap C) = (A \times C) \cap (B \times C)$

trong đó A, B, C là các tập bất kỳ

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Tổng quát hóa phép hợp và phép giao

- Do các phép hợp và giao thỏa mãn luật giao hoán và luật kết hợp, ta có thể mở rộng các khái niệm này cho dãy n tập A₁,..., A_n hoặc thậm chí dãy vô hạn các tập.
 - Cách nhóm và thứ tự thực hiện không quan trong
 - $\blacksquare \ A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C) = B \cup (A \cup C) = \dots$
 - $\blacksquare \ A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C) = B \cap (A \cap C) = \dots$

Hình: Giản đồ Venn cho $A \cup B \cup C$ Hình: Giản đồ Venn cho $A \cap B \cap C$

Các cấu trúc cơ bản Hoàng Anh Đức

Γập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dã

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tổng quát hóa phép hợp và phép giao

Hợp (union) của một bộ (hữu hạn hoặc vô hạn) các tập hợp là một tập chứa tất cả các phần tử là thành viên của ít nhất một tập trong bộ

$$\bigcup_{i=1}^{n} A_i = \{x \mid \exists i \in \{1, \dots, n\} (x \in A_i)\} = A_1 \cup A_2 \cup \dots \cup A_n$$

 \blacksquare Tương tự với tập chỉ số I bất kỳ $\bigcup_{i\in I}A_i$ hay với vô hạn các

tập hợp
$$\bigcup_{i=1}^{\infty} A_i$$

Với
$$i=1,2,\ldots$$
 nếu $A_i=\{i,i+1,i+2,\ldots\}$ thì $\bigcup_{i=1}^n A_i=\bigcup_{i=1}^n \{i,i+1,i+2,\ldots\}=\{1,2,3,\ldots\}=\mathbb{Z}^+$

Các cấu trúc cơ bản Hoàng Anh Đức

ầp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

ilaiii

Quan hệ Định nghĩa hàm và một số

Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tổng quát hóa phép hợp và phép giao

Giao (intersection) của một bộ (hữu hạn hoặc vô hạn) các tập hợp là một tập chứa tất cả các phần tử là thành viên của tất cả các tập trong bộ

$$\bigcap_{i=1}^{n} A_i = \{x \mid \forall i \in \{1, \dots, n\} \, (x \in A_i)\} = A_1 \cap A_2 \cap \dots \cap A_n$$

 \blacksquare Tương tự với tập chỉ số I bất kỳ $\bigcap_{i\in I}A_i$ hay với vô hạn các

tập hợp
$$\bigcap_{i=1}^{\infty} A_i$$

Với
$$i=1,2,\ldots$$
 nếu $A_i=\{i,i+1,i+2,\ldots\}$ thì
$$\bigcap_{i=1}^n A_i=\bigcap_{i=1}^n \{i,i+1,i+2,\ldots\}=\{n,n+1,n+2,\ldots\}=A_n$$

Các cấu trúc cơ bản Hoàng Anh Đức

Γập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

naiii

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tổng quát hóa phép hợp và phép giao

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Bài tập 22

Với các tập hợp $A=\{1,2,3,4,5\},$ $B=\{1,4,6,8\},$ và $C=\{5,7,9,10\},$ tìm $A\cap B\cap C$ và $A\cup B\cup C$

Bài tập 23

Với các tập hợp A,B,C bất kỳ, chứng minh

(a)
$$\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$$

(b)
$$\overline{A \cup B \cap C} = \overline{A} \cap \overline{B} \cap \overline{C}$$

Biểu diễn tập hợp bằng chuỗi nhi phân

■ Với
$$U = \{1, 2, ..., 10\}$$
 $(u_1 = 1, ..., u_{10} = 10)$ và $A = \{2, 3, 5, 7\}$ thì $\mathcal{B}(A) = 0110101000$

11 (2,0,0,1) till 2(11)					0110101000					
U	1	2	3	4	5	6	7	8	9	10
$\mathcal{B}(A)$	0	1	1	0	1	0	1	0	0	0
					\ \ \alpha		<u> </u>			,

■ Các toán tử tập hợp "∪", "∩", và "¯" lần lượt tương ứng với các toán tử lôgic "∨", "∧", và "¬" thực hiện theo từng bit.

Bài tập 24

Với $U=\{1,2,\ldots,10\}$ ($u_i=i$), $A_1=\{2,3,5,7\}$, $A_2=\{1,3,9\}$, hãy so sánh

- (1) $\mathcal{B}(A_1 \cup A_2)$ và $\mathcal{B}(A_1) \vee \mathcal{B}(A_2)$
- (2) $\mathcal{B}(A_1 \cap A_2)$ và $\mathcal{B}(A_1) \wedge \mathcal{B}(A_2)$
- (3) $\mathcal{B}(\overline{A_1})$ và $\neg \mathcal{B}(A_1)$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Ouan hô

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

ổng

■ Cho hai tập hợp A và B. Một $\operatorname{quan} h$ ệ $\operatorname{(relation)} \mathcal{R}$ giữa A và B là một tập con của tích Đềcác $A \times B$. Ta viết $a\mathcal{R}b$ nếu $(a,b) \in \mathcal{R}$. Trong trường hợp A=B thì \mathcal{R} được gọi là một quan hệ trong A

■ A là tập các giảng viên. B là tập các lớp. $\mathcal{R} \subseteq A \times B$ là quan hê "phân công giảng viên day lớp học"

 $\mathbb{R} = \emptyset$: không có giảng viên nào dạy bất kỳ lớp nào

 $\mathbb{R} = A \times B$: mỗi giảng viên day tất cả các lớp

■ Biểu diễn một quan hệ bằng hình vẽ

(a)

Các cấu trúc cơ bản Hoàng Anh Đức

ap hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

■ Một quan hệ \mathcal{R} trong A được gọi là quan hệ tương đương (equivalence relation) nếu nó thỏa mãn các điều kiện sau Tính phản xạ (reflexive) Với mọi a thuộc A, ta có $a\mathcal{R}a$ Tính đối xứng (symmetric) Với mọi a,b thuộc A, nếu ta có $a\mathcal{R}b$ thì ta cũng có $b\mathcal{R}a$

Tính bắc cầu (transitive) Với mọi a,b,c thuộc A, nếu ta có $a\mathcal{R}b$ và $b\mathcal{R}c$ thì ta cũng có $a\mathcal{R}c$

Bài tập 25

Trong mỗi trường hợp sau, \mathcal{R} có phải là quan hệ tương đương hay không?

- (1) $\mathcal{R} = \{(p,q) \mid p \equiv q\}$ với p,q là các mệnh đề lôgic
- (2) $\mathcal{R} = \{(A,B) \mid A \subseteq B\}$ với A,B là các tập hợp
- (3) $\mathcal{R} = \{(A,B) \mid A=B\}$ với A,B là các tập hợp
- (4) $\mathcal{R} = \{(a,b) \mid b \text{ chia h\'et cho } a\}$ với a,b là các số nguyên dương

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

паш

Quan hệ

Định nghĩa hàm và một số

khái niệm Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

Hàm Đinh nghĩa hàm và một số khái niệm

Washing County

- Với hai tập khác rỗng A, B, một hàm (function) f từ A đến B, ký hiệu $f: A \rightarrow B$, là một quan hệ giữa A và B gán chính xác một phần tử của B cho mỗi phần tử của A
 - (1) Với mọi $a\in A$, tồn tại $b\in B$ sao cho $(a,b)\in f$
 - (2) Với b_1 và b_2 thuộc B sao cho $(a,b_1)\in f$ và $(a,b_2)\in f$, ta có $b_1=b_2$

Nếu b là phần tử duy nhất thuộc B được gán cho phần tử a thuộc A bởi f, ta viết f(a)=b

Hình: Hàm

Hình: Không phải hàm

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hê

Dịnh nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãv

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Hàm

Đinh nghĩa hàm và một số khái niệm

Giả sử f là một hàm từ A đến B

- A được gọi là *miền xác định (domain)* của f
- B được gọi là miền giá trị (codomain) của f
- Nếu f(a) = b, ta gọi b là <u>anh (image)</u> của a và a là một nghịch ảnh (preimage) của b
- Ta cũng nói rằng f ánh xạ A đến B

Ví du 7

Với hàm f cho bởi hình bên

- **Tập xác định** $A = \{1, 2, 3, 4, 5\}$
- **Tập** giá trị $B = \{2, 4, 6, 8, 10\}$
- \blacksquare $4 \in B$ là ảnh của cả $1 \in A$ và $5 \in A$

Hình: $f:A\to B$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niệm Môt số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Hàm

Định nghĩa hàm và một số khái niêm

Giả sử f là hàm từ A đến B

- Tập hợp tất cả các ảnh của các phần tử thuộc A được gọi là ảnh của A qua hàm f, ký hiệu f(A)
 - $f(A) \subseteq B$
- Với tập con $S \subseteq A$, ảnh của S qua hàm f, ký hiệu f(S), là tập tất cả các ảnh của các phần tử thuộc S
 - $f(S) = \{t \mid \exists s \in S \ (t = f(s))\} = \{f(s) \mid s \in S\}$
 - **Chú ý:** f(s) là một phần tử của B và f(S) là một tập con của B

Ví dụ 8

Với hàm f cho bởi hình bên

$$f(A) = \{2, 4, 6, 8\}$$

■ Với
$$S = \{1, 2, 5\}$$
, ta có $f(S) = \{4, 6\}$

Hình: $f: A \rightarrow B$

Các cấu trúc cơ bản Hoàng Anh Đức

'ập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hệ

34) Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tőr

Hàm

Hàm tổng và hàm tích của hai hàm thực

Cho f_1 và f_2 là các hàm từ A đến \mathbb{R} . Ta định nghĩa f_1+f_2 và f_1f_2 là các hàm từ A đến \mathbb{R} , gọi là các hàm thực (real-valued function), như sau. Với mọi $x \in A$,

ký hiệu hàm
$$(f_1+f_2)(x)=f_1(x)+f_2(x)$$
 phép toán $(f_1f_2)(x)=f_1(x)f_2(x)$ trong $\mathbb R$

Bài tập 26

Hãy kiểm tra lại rằng f_1+f_2 và f_1f_2 thực sự là các hàm

Bài tập 27

Gọi F là tập hợp tất cả các hàm $f:\mathbb{R}\to\mathbb{R}$ với tập xác định và tập giá trị là tập các số thực. Các mệnh đề sau là đúng hay sai? Hãy giải thích đáp án của bạn

(a)
$$\forall c \in \mathbb{R} \left[\exists f \in F \ (f(0) = c) \right]$$

(b)
$$\exists f \in F \ [\forall c \in \mathbb{R} \ (f(0) = c)]$$

(c)
$$\exists f \in F \ [\forall c \in \mathbb{R} \ (f(c) = 0)]$$

Các cấu trúc cơ bản Hoàng Anh Đức

"ập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

mam

Quan hê

Định nghĩa hàm và một số khái niêm

5) Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

■ Với các hàm $g:A\to B$ và $f:B\to C$, ta có thể định nghĩa hợp (composition) của f và g, ký hiệu $f\circ g:A\to C$, như sau

$$(f \circ g)(x) = f(g(x))$$

với moi $x \in A$

- Chú ý: $f \circ g$ chỉ được định nghĩa khi *tập giá trị của* g *là tập con của tập xác định của* f
- Chú ý: Toán tử "∘" không giao hoán, nghĩa là, trong hầu hết mọi trường hợp, f ∘ g ≠ g ∘ f

Các cấu trúc cơ bản Hoàng Anh Đức

"ập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

ıam

Quan hệ

Định nghĩa hàm và một số khái niêm

36 Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

**

Ví du 9

Bài tập 28

Cho $g:\{a,b,c\} \rightarrow \{a,b,c\}$ với g(a)=b, g(b)=c, và g(c)=a. Cho $f:\{a,b,c\} \rightarrow \{1,2,3\}$ với f(a)=3, f(b)=2, và f(c)=1. Hãy tìm $f\circ q$ và $g\circ f$

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

наш

Quan hệ

Định nghĩa hàm và một số khái niêm

37) Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Hàm Đơn ánh

■ Hàm $f:A \to B$ được gọi là một đơn ánh (injection) hay một hàm một-một (one-to-one function) khi và chỉ khi f(a) = f(b) kéo theo a = b với mọi a và b thuộc tập xác đình A của f

Ví du 10

Hình: Đơn ánh

Hình: Không phải đơn ánh

Các cấu trúc cơ bản Hoàng Anh Đức

ân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

àm

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãi

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổna

Bài tập 29

Hàm $f: \mathbb{Z} \to \mathbb{Z}$ trong mỗi trường hợp sau đây có phải là đơn ánh không?

(a)
$$f(n) = n - 1$$

(c)
$$f(n) = n^3$$

(b)
$$f(n) = n^2 + 1$$

(d)
$$f(n) = \lceil n/2 \rceil$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Môt số khái niêm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Cho $f:A\to B$ là một hàm trong đó A,B là các tập con của $\mathbb R$

- f được gọi là tăng (increasing) khi và chỉ khi với mọi x,y thuộc A thỏa mãn x < y, ta luôn có $f(x) \le f(y)$
- f được gọi là thực sự tặng (strictly increasing) khi và chỉ khi với mọi x,y thuộc A thỏa mãn x< y, ta luôn có f(x)< f(y)
- f được gọi là $\frac{giảm}{giam}$ ($\frac{decreasing}{decreasing}$) khi và chỉ khi với mọi x,y thuộc A thỏa mãn x < y, ta luôn có $f(x) \ge f(y)$
- f được gọi là thực sự giảm (strictly decreasing) khi và chỉ khi với mọi x,y thuộc A thỏa mãn x < y, ta luôn có f(x) > f(y)

Các cấu trúc cơ bản Hoàng Anh Đức

âp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

нат

Quan hê

Định nghĩa hàm và một số khái niệm

40) Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tống

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Bài tập 30

- (a) Cho ví du về một hàm f là hàm thực sự giảm
- (b) Cho ví dụ về một hàm f là hàm giảm nhưng không là thực sư giảm
- (c) Chứng minh nếu f là hàm thực sư tặng hoặc thực sư giảm thì f là đơn ánh

Hàm Toàn ánh

Hàm $f:A\to B$ được gọi là một *toàn ánh (surjection)* khi và chỉ khi với mọi phần tử b thuộc B tồn tại một phần tử a thuộc A sao cho f(a)=b

- lacksquare f(A) = B (ảnh của A qua f bằng với tập giá trị B)

Ví du 11

Hình: Toàn ánh

Hình: Không phải toàn ánh

Các cấu trúc cơ bản Hoàng Anh Đức

ân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãv

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổna

Ký hiệu tổng và một số khái niệm Một số công thức tổng hữu

74

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số

khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái Một số công thức tổng hữu

Bài tấp 31

Hàm $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ trong mỗi trường hợp sau đây có phải là toàn ánh không?

(a)
$$f(m,n) = 2m - n$$

(c)
$$f(m,n) = m + n + 1$$

(b)
$$f(m,n) = m^2 - n^2$$

(d)
$$f(m,n) = m^2 - 4$$

Bài tấp 32

Chứng minh rằng $f: A \to B$ là toàn ánh khi và chỉ khi f(A) = B

Hàm $f:A\to B$ được gọi là một song ánh (bijection) khi và chỉ khi nó đồng thời là đơn ánh và toàn ánh Ví du 12

Hình: Song ánh

Hình: Đơn ánh, không toàn ánh

Hình: Toàn ánh, không đơn ánh

Hình: Không đơn ánh, không toàn ánh

Các cấu trúc cơ bản Hoàng Anh Đức

ma i i i i i

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Quan hệ Định nghĩa hàm và một số

khái niệm Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Chú ý

Với các tập hợp hữu hạn A,B, ta có |A|=|B| khi và chỉ khi tồn tại một song ánh $f:A\to B$

Bài tập 33

Hàm $f:\mathbb{R}\to\mathbb{R}$ trong mỗi trường hợp sau đây có phải là song ánh không?

(a)
$$f(x) = -3x + 4$$

(e)
$$f(x) = 2x + 1$$

(b)
$$f(x) = -3x^2 + 7$$

(f)
$$f(x) = x^2 + 1$$

(c)
$$f(x) = (x+1)/(x+2)$$

(g)
$$f(x) = x^3$$

(d)
$$f(x) = x^5 + 1$$

(h)
$$f(x) = (x^2 + 1)/(x^2) + 2$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hê

Định nghĩa hàm và một số khái niệm

45 Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

- Cho $f:A \to B$ là một song ánh. Hàm ngược (inverse function) của f là một hàm gán cho mỗi phần từ $b \in B$ một phần tử duy nhất $a \in A$ sao cho f(a) = b. Hàm ngược của f được ký hiệu là $f^{-1}:B \to A$
- Một song ánh còn được gọi là một hàm khả nghịch (invertible function)

Các cấu trúc cơ bản Hoàng Anh Đức

ầp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Haiii

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổn

Bài tập 34

Chứng minh rằng f^{-1} là một song ánh

Bài tập 35

Hàm ngược của các hàm sau có tồn tại hay không? Tại sao?

- (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 1$
- (b) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$
- (c) $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x$
- (d) $f: \mathbb{N} \to \mathbb{N}, f(x) = 2x$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Hàm Hàm đồng nhất

- Cho A là một tập hợp. Hàm đồng nhất (identity function) trên A là hàm id $_A:A\to A$ trong đó id $_A(x)=x$ với mọi $x\in A$
- lacksquare id $_A$ là song ánh với mọi tập A
- Với song ánh $f:A\to B$ và hàm ngược của nó $f^{-1}:B\to A$

$$f^{-1} \circ f = id_A$$

Hình: Hàm đồng nhất trên A

"ập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổn

Hàm

Bài tâp 36

Hãy tìm ví dụ một hàm $f:\mathbb{N}\to\mathbb{N}$ thỏa mãn

- (a) f là đơn ánh nhưng không là toàn ánh
- (b) f là toàn ánh nhưng không là đơn ánh
- (c) f là song ánh và f khác hàm đồng nhất trên $\mathbb N$
- (d) f vừa không là đơn ánh vừa không là toàn ánh

Bài tập 37

Cho các hàm $g:A\to B$ và $f:B\to C.$ Chứng minh rằng

- (a) Nếu cả g và f đều là đơn ánh thì $f\circ g$ cũng là đơn ánh.
- (b) Nếu cả g và f đều là toàn ánh thì $f\circ g$ cũng là toàn ánh.
- (c) Nếu $f\circ g$ là toàn ánh thì f cũng là toàn ánh
- (d) Nếu $f \circ g$ là đơn ánh thì g cũng là đơn ánh
- (e) Nếu $f\circ g$ là song ánh thì g là toàn ánh khi và chỉ khi f là đơn ánh

Các cấu trúc cơ bản Hoàng Anh Đức

lân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Hàm

Ouen hê

Định nghĩa hàm và một số

Môt số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm Môt số công thức tổng hữu

74

Hàm

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

niêm Một số công thức tổng hữu

Bài tấp 38

Tìm ví du các hàm f và q thỏa mãn $f \circ q$ là song ánh, nhưng q không phải toàn ánh và f không phải đơn ánh.

Bài tập 39

Gọi $f: A \rightarrow B$ là một hàm với A, B là các tập hữu hạn thỏa mãn |A| = |B|. Chứng minh rằng f là đơn ánh khi và chỉ khi nó là toàn ánh.

Trong toán rời rạc, ta thường dùng hai hàm sau

- $H\grave{a}m$ $s\grave{a}n$ (floor function) gán cho số thực x số nguyên lớn nhất có giá trị nhỏ hơn hoặc bằng x. Giá trị của hàm sàn được ký hiệu là $\lfloor x \rfloor$
- Hàm trần (ceiling function) gán cho số thực x số nguyên nhỏ nhất có giá trị lớn hơn hoặc bằng x. Giá trị của hàm trần được ký hiệu là $\lceil x \rceil$
- Nếu $x \notin \mathbb{Z}$ thì $\lfloor -x \rfloor \neq -\lfloor x \rfloor$ và $\lceil -x \rceil \neq -\lceil x \rceil$
- Nếu $x \in \mathbb{Z}$ thì $|x| = \lceil x \rceil = x$

Ví dụ 13

$$\blacksquare$$
 $\lfloor 1.5 \rfloor = 1$, $\lceil 1.5 \rceil = 2$

$$\blacksquare$$
 $\lfloor -3 \rfloor = -3, \lceil -3 \rceil = -3$

Các cấu trúc cơ bản Hoàng Anh Đức

âp hơp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hê

Định nghĩa hàm và một số khái niệm

51 Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãv đặc biệt

Tổng

Hàm

Hàm sàn và hàm trần

Bài tập 40

Chứng minh các tính chất sau của hàm trần và hàm sàn, trong đó $x\in\mathbb{R}$ và $n\in\mathbb{Z}$

- (1a) |x| = n khi và chỉ khi $n \le x < n+1$
- (1b) $\lceil x \rceil = n$ khi và chỉ khi $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ khi và chỉ khi $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ khi và chỉ khi $x \le n < x + 1$
 - $(2) x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- $(3a) \lfloor -x \rfloor = -\lceil x \rceil$
- $(3b) \lceil -x \rceil = -\lfloor x \rfloor$
- $(4a) \ \lfloor x+n\rfloor = \lfloor x\rfloor + n$
- $(4b) \lceil x + n \rceil = \lceil x \rceil + n$

Các cấu trúc cơ bản Hoàng Anh Đức

Tâp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hệ

Định nghĩa hàm và một số khái niêm

52 Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Bài tấp 41

Chứng minh rằng nếu $n \in \mathbb{N}$ thì $\lfloor n/2 \rfloor = n/2$ nếu n chẵn và |n/2| = (n-1)/2 nếu n lẻ

Bài tấp 42

Chứng minh rằng nếu $x \in \mathbb{R}$ thì |2x| = |x| + |x + 1/2|. (Gợi ý: Khi xét các bài toán liên quan đến hàm sàn, một cách tiếp cân hữu ích là đặt $x = n + \epsilon$ trong đó $n = |x| \in \mathbb{Z}$ và ϵ là một số thực thỏa mãn $0 < \epsilon < 1$. Tương tự, với hàm trần, có thể đặt $x = n - \epsilon$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Dãy

Đinh nghĩa dãy và một số khái niệm

- Một $d\tilde{a}y$ (sequence) $\{a_n\}$ được xác định qua một hàm $f: I \to A$ trong đó $I \subseteq \mathbb{Z}$ là $t\hat{a}p$ các chỉ số (indices) và A là tâp bất kỳ
 - Thông thường, $I = \mathbb{N}$ hoặc $I = \mathbb{Z}^+ = \mathbb{N} \{0\}$
 - Ví dụ, dãy $\{a_n\}$ xác định bởi $f(n)=n^2$ với mọi số nguyên $n\geq 0$ có các phần tử $0,1,4,9,16,\ldots$
- lacksquare Với $i\in I,\,a_i$ là ảnh của i qua $f,\,$ nghĩa là $a_i=f(i)$
 - Ta gọi a_i là một $s\acute{o}$ hạng (term) của dãy $\{a_n\}$
 - \blacksquare *i* là *chỉ số (index)* của a_i
- Đôi khi, thay vì ký hiệu $\{a_n\}$, có thể viết "dãy a_1, a_2, \dots " để chắc chắn rằng tập các chỉ số I được xác định rõ ràng
- Có thể mô tả một dãy bằng cách liệt kê một vài số hạng đầu tiên hoặc cuối cùng của dãy và sử dụng "..." cho phần còn lại
 - Ví dụ, có thể mô tả dãy $\{a_n\}$ ở trên bằng cách viết $\{a_n\}=0,1,4,9,16,25,\ldots$

Các cấu trúc cơ bản Hoàng Anh Đức

'ập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

ilaiii

Quan hệ

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dã

Định nghĩa dây và một số khái niệm

Một số dãy đặc biệt

Tông

Dãy

Đinh nghĩa dãy và một số khái niệm

When he had a second of the se

Bài tập 43

Trong mỗi trường hợp sau, tìm các số hạng a_0, a_1, \dots, a_5 của dãy $\{a_n\}$ nếu

(a)
$$a_n = 2^{n-1}$$

(b)
$$a_n = 1 + (-1)^n$$

(c)
$$a_n = (n+1)^{n+1}$$

(d)
$$a_n = 7$$

(e)
$$a_n = -(-2)^n$$

(f)
$$a_n = \lfloor n/2 \rfloor$$

Các cấu trúc cơ bản Hoàng Anh Đức

Γâp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

нат

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Dịnh nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

iong

Cấp số nhân và cấp số công

■ Môt *cấp số nhân (geometric progression)* là một dãy có dang

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

trong đó số hang đầu tiên (initial term) a và công bôi (common ratio) r là các số thực

- Ví du, với n = 0, 1, 2, ...
 - $\{b_n\}$ với $b_n = (-1)^n$
 - số hang đầu tiên 1, công bôi -1• $\{c_n\}$ với $c_n = 6 \cdot (1/3)^n$ số hạng đầu tiên 6, công bội 1/3
- Môt cấp số cộng (arithmetic progression) là một dãy có dang

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

trong đó số hang đầu tiên (initial term) a và công sai (common difference) d là các số thực

- Ví du, với n = 0, 1, 2, ...

 - \blacksquare $\{e_n\}$ với $e_n = 7 3n$

số hang đầu tiên -1, công sai 4 số hạng đầu tiên 7, công sai -3

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm

Một số dãy đặc biệt

Dãy

Tìm công thức tường minh của một dãy

- Cho trước một vài phần tử của dãy
- Yêu cầu tìm
 - một công thức tường minh của các số hạng
 - hoặc một phương thức để liệt kê các phần tử của dãy

Ví dụ 14

Số tiếp theo trong dãy có thể là bao nhiêu?

- $\blacksquare 1, 2, 3, 4, \dots$
- $\blacksquare 1, 3, 5, 7, 9, \dots$
- $\blacksquare 2, 3, 5, 7, 11, \dots$

Ví dụ 15

Các số hạng tiếp theo có thể là bao nhiêu?

- \blacksquare 1, 2, 2, 3, 3, 3, 4, 4, 4, 4
- $\blacksquare \ 0,1,3,6,10,15,21,28,36,45,55$

Các cấu trúc cơ bản Hoàng Anh Đức

"âp hơp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan h

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

Tổng

Một phương pháp hữu ích để tìm công thức tổng quát cho các số hạng của một dãy là so sánh các số hạng của dãy cần tìm với các số hạng của một dãy đã biết (ví dụ như cấp số công, cấp số nhân, dãy số chính phương, v.v...)

Công thức	Mười số hạng đầu tiên
n^2	$1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \dots$
n^3	$1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, \dots$
n^4	$1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, \dots$
f_n	$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$
2^n	$2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, \dots$
3^n	$3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, \dots$
n!	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, \dots$

Bảng Tra Cứu Dãy Số Nguyên Trực Tuyến (The On-Line Encyclopedia of Integer Sequences - OEIS) https://oeis.org/

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hệ Định nghĩa hàm và một số

khái niệm Môt số hàm và toán tử

Dãv

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

Tổn

Bài tập 44

Với mỗi dãy số nguyên sau, hãy tìm một công thức đơn giản hoặc một cách để tìm các số hạng tiếp theo của dãy. Giả sử công thức bạn tìm ra là đúng, hãy tìm ba số hạng tiếp theo của dãy

- (a) $1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, \dots$
- (b) $1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, \dots$
- (c) $1, 0, 2, 0, 4, 0, 8, 0, 16, 0, \dots$
- (d) $3, 6, 12, 24, 48, 96, 192, \dots$
- (e) $15, 8, 1, -6, -13, -20, -27, \dots$
- (f) $3, 5, 8, 12, 17, 23, 30, 38, 47, \dots$
- (g) 2, 16, 54, 128, 250, 432, 686, . . .
- (h) $2, 3, 7, 25, 121, 721, 5041, 40321, \dots$

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

панн

Quan hệ

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm

Một số dãy đặc biệt

Tổng

được viết là

■ Cho $d\tilde{a}y \{a_n\}$, một số nguyên *giới hạn dưới (lower limit)* m, và một số nguyên giới hạn trên (upper limit) $n \geq m$. Tống (summation) của các số hạng $a_m, a_{m+1}, \ldots, a_n$ có thể

$$a_m + a_{m+1} + \dots + a_n$$

$$\sum_{j=m}^n a_j$$

$$\sum_{m < j < n} a_j$$

■ Ở đây, j được gọi là chỉ số lấy tổng (index of summation) và được chon hoàn toàn tùy ý

$$\sum_{j=m}^{n} a_{j} = \sum_{i=m}^{n} a_{i} = \sum_{k=m}^{n} a_{k}$$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ví du 16

Cho dãy $\{a_n\}$,

■ Với tập chỉ số S bất kỳ, tổng các số hạng a_i với $i \in S$:

$$\sum_{i \in S} a_i$$

■ Tổng các số hang lớn hơn hoặc bằng a_i :

$$\sum_{i=j}^{\infty} a_i = a_j + a_{j+1} + \dots$$

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Ví du 17

Với hàm $f: X \to \mathbb{R}$,

■ Với $X = \{x_1, x_2, \dots\}$, tổng các giá trị của hàm f:

$$\sum_{x \in X} f(x) = f(x_1) + f(x_2) + \dots$$

■ Với $X = \{x \mid P(x)\}$ trong đó P(x) là vị từ cho trước, tổng các giá tri của hàm f:

$$\sum_{P(x)} f(x) = f(x_1) + f(x_2) + \dots$$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ví du 18

$$\sum_{j=1}^4 j^2 = 1^2 + 2^2 + 3^2 + 4^2$$

$$\sum_{j=1}^{100} \frac{1}{j} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100}$$

$$\sum_{j=0}^\infty 2^j = 1 + 2 + 2^2 + 2^3 + \dots$$

$$\sum_{\substack{(0 \le x \le 10) \\ \land (x \text{ chắn})}} x^2 = 0 + 2^2 + 4^2 + 6^2 + 8^2 + 10^2$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Môt số khái niêm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Tổng

Ký hiệu tổng và một số khái niệm

Wheel Union Principle

Bài tập 45

Sử dụng ký hiệu tổng để viết lại các công thức sau

(a)
$$2+4+6+8+\cdots+2n$$

(b)
$$1+5+9+13+\cdots+425$$

(c)
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{50}$$

Bài tập 46

Viết lại các tổng sau dưới dạng công thức dài hơn

(a)
$$\sum_{k=1}^{100} (3+4k)$$

(b)
$$\sum_{k=2}^{50} \frac{1}{k^2 - 1}$$

Các cấu trúc cơ bản Hoàng Anh Đức

âp hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

чат

Ouan h

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Tổng

Ký hiệu tổng và một số khái niệm

Một số công thức tổng hữu ích

lacktriangle Tổng hằng số: Với hằng số c bất kỳ,

$$\sum_{n=i}^{j} c = (j-i+1) \cdot c$$

■ *Phân phối:* Với hằng số c bất kỳ,

$$\sum_{n=i}^{j} cf(n) = c \sum_{n=i}^{j} f(n)$$

■ Giao hoán:

$$\sum_{n=i}^{j} (f(n) + g(n)) = \sum_{n=i}^{j} f(n) + \sum_{n=i}^{j} g(n)$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

lam

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổna

Ký hiệu tổng và một số khá niêm

Một số công thức tổng hữu

■ Đổi chỉ số:

$$\sum_{i=j}^{m} f(i) = \sum_{k=j+n}^{m+n} f(k-n)$$

■ Ví dụ
$$\sum_{i=1}^4 i^2 = \sum_{k=3}^6 (k-2)^2$$
 (đặt $k=i+2$)

Tách tổng: Với $j \leq m < k$

$$\sum_{i=j}^{k} f(i) = \sum_{i=j}^{m} f(i) + \sum_{i=m+1}^{k} f(i)$$

■ Đảo thứ tự:

$$\sum_{i=0}^{k} f(i) = \sum_{i=0}^{k} f(k-i)$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hê

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổna

Ký hiệu tổng và một số khá niêm

Một số công thức tổng hữu ích

■ Với $\{a_n\}$ là cấp số nhân có số hạng đầu tiên a và công bội r, tổng của n+1 số hạng đầu tiên của dãy là

$$S = \sum_{i=0}^{n} ar^{i}$$

Công thức tường minh

$$S = \sum_{i=0}^n ar^i = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{n\'eu } r \neq 1\\ (n+1)a & \text{n\'eu } r = 1 \end{cases}$$

$$S = a + ar + ar^{2} + ar^{3} + \dots + ar^{n}$$

$$rS = ar + ar^{2} + ar^{3} + \dots + ar^{n} + ar^{n+1}$$

$$rS - S = ar^{n+1} - a$$

Các cấu trúc cơ bản Hoàng Anh Đức

ân hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Ham

Quan hê

Định nghĩa hàm và một số

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khá niêm

Một số công thức tổng hữu ích

 $= \sum ar^k + (ar^{n+1} - a)$

 $= S + (ar^{n+1} - a)$

$rS = r \sum ar^i$ công thức của S $=\sum_{i=0}^{n} ar^{i+1}$ phân phối $=\sum ar^k$ đổi chỉ số, k = i + 1

 $= \sum^n ar^k + \sum^{n+1} ar^k$ tách tổng $= (\sum ar^k + ar^0) + (ar^{n+1} - ar^0) \quad \text{thêm và bốt } ar^0 = a$

tách tổng

công thức của S

Các cấu trúc cơ bản Hoàng Anh Đức

Môt số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Quan hê

Định nghĩa hàm và một số Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Ví du 19

Tìm công thức tường minh cho tổng $T = \sum_{i=1} i$

$$T = 1 + 2 + 3 + \dots + n$$

$$T = n + (n - 1) + (n - 2) + \dots + 1$$

$$2T = (n + 1) \cdot n$$

Bài tập 47

Với $\{a_n\}$ là cấp số cộng có số hạng đầu tiên a và công sai d, tổng của n+1 số hạng đầu tiên của dãy là

$$T = \sum_{i=0}^{n} (a + id)$$

Hãy tìm công thức tường minh cho T

Các cấu trúc cơ bản Hoàng Anh Đức

ần hơn

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niệm

niệm Một số công thức tổng hữu

William (1) Doors

Ví du 20

Phương pháp của Gauss để tính $\sum_{i=1}^{100} i$

Bài tâp 48

Tìm công thức tường minh cho $T=\sum_{i=1}i$ sử dụng phương pháp tương tự như ví dụ trên. Có thể áp dụng phương pháp tương tự cho Bài tâp 47 không?

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hám

Ouan hâ

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niêm

Một số công thức tổng hữu

Ví du 21

Tìm công thức tường minh của $T = \sum_{n=0}^{\infty} x^n$ với x là số thực thỏa mặc như trung minh của $T = \sum_{n=0}^{\infty} x^n$ với x là số thực thỏa

 $\begin{array}{l} \text{mãn} \ -1 < x < 1 \\ \text{Ta đã chứng minh} \end{array}$

$$\sum_{n=0}^{k} x^n = \frac{x^{k+1} - 1}{x - 1}.$$

Do -1 < x < 1, $x^{k+1} \to 0$ khi $k \to \infty$. Ta có

$$T = \sum_{n=0}^{\infty} x^n = \lim_{k \to \infty} \sum_{n=0}^{k} x^n = \lim_{k \to \infty} \frac{x^{k+1} - 1}{x - 1} = \frac{1}{1 - x}$$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

Hàm

Quan hê

Định nghĩa hàm và một số khái niệm

Môt số hàm và toán tử

Dã

Định nghĩa dãy và một số khái niệm Một số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khá niêm

Một số công thức tổng hữu

Tổng	Công thức tường minh
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1} \ (r \neq 1)$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n-1} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n-1} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k \ (-1 < x < 1)$	$\frac{1}{1-x}$
$\sum_{k=1}^{k=0} kx^{k-1} \left(-1 < x < 1 \right)$	$\frac{1}{(1-x)^2}$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Một số khái niệm và tính chất cơ bản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhị phân

am

Quan hê

Định nghĩa hàm và một số khái niệm

Một số hàm và toán tử

Dãy

Định nghĩa dây và một số khái niệm Môt số dãy đặc biệt

Tổng

Ký hiệu tổng và một số khái niêm

niệm
72 Một số công thức tổng hữu

Tổng Một số công thức tổng hữu ích

Bài tấp 49

Tính các tổng sau

(a)
$$\sum_{k=100}^{200}$$

(b) $\sum k^3$

(c)
$$\sum_{k=0}^{\infty} k^2(k-3)$$

Bài tấp 50

(a) Chứng minh rằng
$$\sum_{i=1}^n (a_i-a_{i-1})=a_n-a_0$$
, trong đó a_0,a_1,\ldots,a_n là một dãy gồm các số thực

(b) Sử dụng đẳng thức
$$\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$$
 và phần (a) để

tính
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

Bài tấp 51

Lấy tổng cả hai vế của đẳng thức $k^2 - (k-1)^2 = 2k-1$ từ k=1 đến k=n và sử dụng Bài tập 50(a) để tìm một công thức tường minh cho $\sum_{k=1}^{n} (2k-1)$ (tổng n số tự nhiên lẻ đầu tiên)

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Tổng Một số công thức tổng hữu ích

Ngoài ký hiệu tổng, ta cũng có ký hiệu đặc biệt cho tích (product). Cho dãy $\{a_n\}$ và các chỉ số giới hạm dưới m và giới hạn trên $n \geq m$. Tích của các số hạng $a_m, a_{m+1}, \ldots, a_n$ có thể đươc viết là

$$a_m \cdot a_{m+1} \cdot \dots \cdot a_n$$

$$\prod_{j=m}^n a_j$$

$$\prod_{m < j < n} a_j$$

Bài tấp 52

Tính giá trị của các tích sau

(a)
$$\prod_{i=0}^{10} i$$

(c)
$$\prod_{i=5}^{8}$$

(d)
$$\prod_{i=1}^{10}$$

Các cấu trúc cơ bản Hoàng Anh Đức

Một số khái niệm và tính chất cơ hản

Các phép toán trên tập hợp Biểu diễn tập hợp bằng chuỗi nhi phân

Định nghĩa hàm và một số khái niêm

Một số hàm và toán tử

Đinh nghĩa dãy và một số khái niêm Một số dãy đặc biệt

Ký hiệu tổng và một số khái

Một số công thức tổng hữu

Part I

Phụ lục

Nội dung

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp Nghịch lý

Lực lượng của tập vô hạn

Định nghĩa

Tập đểm được và không đểm được

Tập hợp Nghịch lý

Lực lượng của tập vô hạn

Định nghĩa

Tập đếm được và không đếm được

Tập hợp Nghịch lý

 Chúng ta đang học một lý thyết tập hợp ngây thơ (naive set theory) Các cấu trúc cơ bản Hoàng Anh Đức

Định nghĩa bằng ngôn ngữ tự nhiên, không chặt chẽ về mặt toán học
 Mô tả các khía caph của các tên hơn toán học cuôn thuên

Tập hợp Nghịch lý

 Mô tả các khía cạnh của các tập hợp toán học quen thuộc trong toán rời rạc Lực lượng của tập vô hạn Định nghĩa

 Bản thân lý thuyết này có chứa các nghịch lý (paradox) (= một phát biểu tự phủ định chính nó mặc dù lúc đầu nhìn có vẻ đúng) Định nghĩa Tập đểm được và không đểm được

- Nghịch lý Russell (Đặt theo tên nhà triết học, nhà lôgic học, nhà toán học người Anh Bertrand Russell (1872–1970))
 - Gọi S là tập *tất cả các tập hợp không chứa chính nó như là một phần tử*, nghĩa là $S = \{A \mid A \text{ là một tập hợp và } A \notin A\}$
 - Chú ý rằng theo định nghĩa tập hợp ta đã học, tồn tại một tập hợp chứa chính nó như là một phần tử. Ví dụ xét tập T các tập hợp có chứa ít nhất một phần tử
 - Liệu S có phải là một phần tử của chính nó hay không, nói cách khác, liêu $S \in S$?

And some state of the state of

- Nhắc lại: $L\psi c$ lượng (cardinality) của một tập A, ký hiệu |A|, là số phần tử khác biệt mà A có
- Các tập A và B có cùng lực lượng, ký hiệu |A| = |B|, khi và chỉ khi tồn tại một song ánh từ A đến B
- Nếu tồn tại một *đơn ánh* từ A đến B, ta nói "lực lượng của A nhỏ hơn hoặc bằng lực lượng của B", và ký hiệu |A| < |B|
- Khi $|A| \leq |B|$ và hai tập A,B có lực lượng khác nhau, ta nói "lực lượng của A nhỏ hơn lực lượng của B", và ký hiệu |A| < |B|

Bài tập 53

Chứng minh rằng $|A| \leq |\mathcal{P}(A)|$ với mọi tập hợp A, trong đó $\mathcal{P}(A)$ là tập tất cả các tập hợp con của A

Bài tập 54

Tập $2\mathbb{Z}$ gồm các số nguyên chẵn có cùng lực lượng với tập số nguyên \mathbb{Z} hay không?

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Lực lượng của tập vô

Dịnh nghĩa
Tân đấm được và không

Tập đểm được và không đểm được

Định lý 1: Định lý Cantor

Không tồn tại một toàn ánh $f:A\to \mathcal{P}(A)$ với A là một tập hợp bất kỳ và $\mathcal{P}(A)$ là tập tất cả các tập con của A

Chứng minh.

Ta chứng minh bằng phương pháp phản chứng

- lacksquare Giả sử tồn tại toàn ánh $f:A
 ightarrow \mathcal{P}(A)$
- Ta định nghĩa tập con $G \subseteq A$ như sau

$$G := \{ x \in A \mid x \notin f(x) \}$$

- Do f là toàn ánh, tồn tai $a \in A$ sao cho G = f(a)
- Xét hai trường hợp
 - Nếu $a \in G$ thì theo định nghĩa của G, ta có $a \notin f(a) = G$. Đây là một mâu thuẫn
 - Nếu $a \notin G = f(a)$ thì $a \notin f(a)$. Do đó theo định nghĩa của G, ta có $a \in G$. Đây là một mâu thuẫn

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Lực lượng của tập vô han

Dịnh nghĩa
Tập đếm được và không

8

Tập đếm được và không đếm được

- Có thể liệt kê các phần tử của tập đếm được theo thứ tự: phần tử thứ 1, phần tử thứ 2, v.v...
- Khi một tập vô hạn S là tập đếm được, ta ký hiệu lực lượng của S là \aleph_0 ("aleph null") và viết $|S|=\aleph_0$

Ví du 22

Tập các số tự nhiên $\mathbb N$ là tập đếm được

Ví dụ 23

Tập các số nguyên dương lẻ là tập đếm được

A STATE OF THE STA

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp Nghịch lý

Lực lượng của tập vô hạn Định nghĩa

Định nghia Tập đểm được và không đểm được

Tập đếm được và không đếm được

Was a contract of the contract

Ví du 24

Tập các số nguyên $\mathbb Z$ là tập đếm được

Ví dụ 25

Tập các số hữu tỷ dương $\mathbb{Q}^+=\{rac{p}{q}\mid p,q\in\mathbb{Z}^+\}$ là tập đếm được

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Lực lượng của tập vô hạn

Định nghĩa

Tập đểm được và không
đểm được

Tập đếm được và không đếm được

Ta chứng minh *tập số thực* $\mathbb R$ *là tập không đếm được* bằng phương pháp phản chứng sử dụng *lập luận đường chéo của* Cantor (Cantor diagonalization argument)

- Giả sử ℝ là tập đếm được. Do mọi tập con của một tập đếm được cũng là một tập đếm được (tai sao?), tập các số thực nằm giữa 0 và 1 cũng là tập đếm được
- Sắp thứ tư các số thực giữa 0 và 1: r₁, r₂,...

```
r_1 = 0.d_{11}d_{12}d_{13}d_{14}\dots
r_2 = 0.d_{21}d_{22}d_{23}d_{24}\dots
r_3 = 0.d_{31}d_{32}d_{33}d_{34}\dots
r_A = 0.d_{A1}d_{A2}d_{A3}d_{A4}...
```

trong đó $d_{ij} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Các cấu trúc cơ bản Hoàng Anh Đức

Tập hợp

Lực lương của tập vô Đinh nghĩa

Tập đểm được và không

Tập đếm được và không đếm được

$$d_i = \begin{cases} 4 & \text{n\'eu } d_{ii} \neq 4 \\ 5 & \text{n\'eu } d_{ii} = 4 \end{cases}$$

- r không bằng bất cứ số nào trong các số r_1, r_2, \ldots vì nó luôn khác r_i ở vị trí thứ i sau "0."
- Do đó r là một số thực giữa 0 và 1 không nằm trong danh sách r_1, r_2, \ldots , do mỗi số thực có một biểu diễn thập phân duy nhất
- Tóm lại, không phải mọi số thực giữa 0 và 1 đều được liệt kê theo thứ tự r_1, r_2, \ldots , và do đó tập các số thực giữa 0 và 1 là tập không đếm được
- Nếu tập con của một tập là không đếm được thì tập đó cũng không đếm được (tại sao?), suy ra tập số thực ℝ là không đếm được

Các cấu trúc cơ bản Hoàng Anh Đức

ạp hợp Nghịch lý

Lực lượng của tập vô hạn Định nghĩa Tập đếm được và không

8