CIRCUITOS DIGITAIS – AULA 15/07/2020

1 – Demultiplexadores:

• Circuito lógico que recebe uma única entrada e distribui para várias saídas.

Equivalência dos Demultiplexadores com Decodificadores:

	Decodificadores	Demultiplexadores
En - D	Habilitação	Dado a ser roteado
$B_1B_0 - \underline{S_1S_0}$	Dado a ser decodificado (código binário)	Seleção
O ₃ O ₀	Dado decodificado de saída	Saída roteada

Demultiplexador como gerador de Minterms:

- Assim como os decodificadores, os demultiplexadores são capazes de gerar todos os *minterms* das variáveis de seleção, desde que D = 1.
- Pode-se utilizar um demultiplexador, em conjunto com portas OR para realizar qualquer função lógica combinacional.

2 – Associação de Demultiplexadores

Associação em Cascata:

3 - Deslocadores

• São componentes que realizam a operação de deslocamento (a direita ou esquerda) sobre um número de *N bits*, gerando uma saída de *N bits*;

Deslocador à Esquerda:

Deslocador à Direita:

Deslocador à Direita/Esquerda Controlado:

Deslocadores Barrel:

4 – Unidade Lógico-Aritmética

- Componente que pode executar qualquer uma das várias operações aritméticas (somar, subtrair, incremento, etc) e lógicas (AND, OR, etc);
- As operações são realizadas com base nas entradas de controle do componente.
- A operação a ser realizada é selecionada por *bits* externos.

Exercícios

1 – Implemente as seguintes funções lógicas utilizando um Demultiplexador 1x8 e portas lógicas adicionais, se for necessário.

$$F(x,y,z) = \sum (0,2,4,6,7)$$

$$G(x,y,z) = \sum (1,2,3)$$

41 α2 α, α0 0
42 α, αο 0 0

2 – Implemente um deslocador de 4-bits à esquerda. O deslocador possui um sinal de controle, denominado de sh, que quando sh=1, realiza-se o deslocamento à esquerda de duas unidades. Quando sh=0, o dado de entrada não é deslocado.

Entrada	a ₃	92	α	ao
Sh = 0	α_3	Q2,	a_{\prime}	a _{o/}
5h=1	ay	00/	0/	0/
Saída	b ₃	b2/	6,/	00/
4 3	0/2	al	0	<i>ao</i> 0
Sh 0 1	0	0		0 1
b ₃	02	bi		bo

3 – Projete um circuito combinacional que realize a seguinte operação aritmética:

$$X = 5Y + 2$$

Em que X e Y são dados de 16-bits. Implemente a operação de multiplicação utilizando deslocadores e somadores.

$$X = 5Y + 2 = (4Y + Y) + 2$$

4 – Implemente uma Unidade Lógico-Aritmética que possui a seguinte tabela de operação:

Opcode	Operação
000	S = A and B
001	S = A or B
010	$S = \mathbf{not} A$
011	$S = A \mathbf{xor} B$
100	S = A + B
101	S = A - B
110	S = 2*A
111	S = A

3 bits de Controle

Os dados A e B possuem 8-bits de largura.

5 - Projete um circuito digital que seja capaz de realizar a média de quatro valores, denominados de A, B, C e D de 8-bits. A saída é um valor Y, que corresponde à média dos valores A, B, C e D. Utilize, em seu projeto, apenas somadores e deslocadores.

$$Y = A + B + C + D$$

6 - Projete um circuito digital que seja capaz de calcular o valor do módulo do discriminante de uma equação de segundo grau na forma $y = ax^2 + bx + c$, em que a, b e c são valores de 8-bits. A saída do sistema é o valor md, de 16-bits, que informa o módulo do discriminante. Implemente a operação de multiplicação por quatro utilizando deslocadores à esquerda. Assuma que os valores a, b e c são apenas positivos.

