CS 3313 Foundations of Computing:

Lab 4: Regular Expessions
Review and the Pumping Lemma

Outline

- Regular Expressions
 - NFA to Regular Expressions Conversion
 - NFA/DFA Pumping Lemma

Languages Associated with Regular Expressions

- A regular expression (RE) r denotes a language L(r)
- Basis: Assuming that r₁ and r₂ are regular expressions:
 - 1. The regular expression Ø denotes the empty set
 - 2. The regular expression ϵ denotes the set $\{\epsilon\}$
 - 3. For any a in the alphabet, the regular expression **a** denotes the set { a }
 - Inductive step: if r_1 and r_2 are regular expressions, denoting languages $L(r_1)$ and $L(r_2)$ respectively, then
 - 1. $r_1 \cup r_2$ is a RE denoting the language $L(r_1) \cup L(r_2)$
 - 2. r_1r_2 is a RE denoting the language $L(r_1) \circ L(r_2)$
 - 3. (r_1) is a RE denoting the language $L(r_1)$
 - 4. $(r_1)^*$ is a RE denoting the language $(L(r_1))^*$

Deriving Regular Expressions

- "map" property in the language to a Reg.Expr. Pattern
- Break down the properties into union, concatenation, star
- Start with smallest reg expression (simplest property)

- Ex: all strings in alphabet $\{a,b\} = (a \cup b)^*$
- Two consecutive a's = aa
- Ends with a pattern aba: $(a \cup b)^*aba$

=

Regular Expressions - Examples

- 1. L_1 = { all strings over alphabet {a,b,c} that contain no more than three a's }
- 2. L₂ = { all binary strings ending in 01 }

Regular expressions Examples

- L₁= { all strings over alphabet {a,b,c} that contain no more than three a's }
 - Can contain zero a's or 1 a or 2 a's or 3 a's; and can have any number of b,c before and after
 - = $(b \cup c)^* \cup ((b \cup c)^* a (b \cup c)^*) \cup ((b \cup c)^* a (b \cup c)^*)$
 - 2. $L_2 = \{$ all binary strings ending in 01 $\}$
 - Any string w in $\{0,1\}^*$ followed by $01 = (0 \cup 1)^*01$

Exercise: Regular Expressions – Work in groups

L₃ = { all binary strings that do not end in 01 }

- Hint: you can have strings of length 0 or length 1 what are they?
- If string has length two or more, then what substrings can it end in (i.e., what can the rightmost two symbols be ?)
 - It cannot end in 01

Outline

- Regular Expressions
- NFA to Regular Expressions Conversion
 - NFA/DFA Pumping Lemma

DFA/NFA to Regular Expression

- We outlined a procedure in the lecture based on state elimination
 - You will need to do this on the homework

- Alternate approach: by examining the automaton and figuring out the expressions for paths to a final state
 - This works well for simple DFA/NFA, but may be hard for more complicated examples

DFA/NFA to Regular Expression

- language accepted by a DFA/NFA = { w | there is a path labelled w from start state to a final state}
- To find regular expression for the language accepted by a DFA/NFA, find the labels (and reg. expr.) of the paths from start state to each final state
 - Concatenate labels on the path the label is the regular expression
 - -Concatenate labels on the subpaths
 - •If we have two choices of paths with labels w_1 and w_2 then "or" the paths to get w_1+w_2
 - If there is a cycle, with path labelled w, then w*

NFA to Reg.Expression – Example 1

- Find expression for paths from q_0 to q_3 :
 - Paths from q_0 to q_1 followed by q_1 to q_2 followed by q_2 to q_3
- b* a followed by b*a followed by b*a
- Reg expr= b*a b*a b*a

Example 1 by Node Elimination

Original DFA

1. Add start state to avoid incoming edges

2. Remove q₀

Example 1 by Node Elimination

3. Remove q₁

4. Remove q₂

5. Read off answer

L=b*ab*ab*a

Exercise: NFA to Reg. Exp. – Work in groups

Outline

- Regular Expressions
- NFA to Regular Expressions Conversion
- NFA/DFA Pumping Lemma

How to prove a language is not regular... The Pumping Lemma for Regular Languages

For every regular language L

There is an integer p, such that (note; you cannot fix p)

For every string w in L of length $\geq p$ (you can choose w)

We can write w = xyz such that:

- 1. $|xy| \le p$ (this lets you focus on pumping within first p symbols)
- 2. |y| > 0 (y cannot be empty)
- 3. For all $i \ge 0$, xy^iz is in L. (to get contradiction find one value of i where pumped string is not in L)

Pumping Lemma as an Adversarial Game

- 1. Player 1 (me) picks language L to be proved nonregular
 - ❖ Prove $L = \{ww^R \mid w \in \{a, b\}^*\}$ is not regular.
- 2. Player 2 picks p, but doesn't tell me what p is, player 1 must win for all values of p
- 3. Player 1 picks a string s, which may depend on p, and must be of <u>length at least p</u>
 - Assume *L* is regular. Let $s = a^p b^1 b^1 a^p \in L$, i.e., $s = a^p b^1$; as well as $|s| \ge p$.

Note: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

- 4. Player 2 divides s into xyz s.t. |y|>0 and |xy|<=p
 - He does not tell player 1 this division, player 1's strategy must work for all choices
 - Then by the Pumping Lemma, w can be divided into three parts s=xyz, such that $x=a^{\alpha}$, $y=a^{\beta}$, $z=a^{p-\alpha-\beta}b^1b^1a^p$, where $\beta \geq 1$, $(\alpha+\beta) \leq p$.
- 5. Player 1 "wins" by picking an integer $0 \le k$, which may be a function of p,x,y, and z, such that $xy^kz \notin L$
 - Now, consider k=0. Then the string after the pumping becomes $s'=xy^0z=xz=a^{p-\beta}b^1b^1a^p$. Note that since $\beta\geq 1$, there's no way for s' to be in the form of a string followed by its reverse; hence $s'\notin L$. Contradiction. $\Rightarrow L$ not regular.

Pumping Lemma Remarks

- How do we know what string we need to choose?
 - Trial and Error and some eureka
 - $L = \{ww^R \mid w \in \{a,b\}^*\}$, if we'd chosen $s = a^n a^n$, then for $s' = a^{n-\beta}a^n$, then adversary can just choose $\beta \ge 1$ to be of even length, such that $s' = w'w'^R$. So, choosing such an s has no use for us.
 - $L = \{a^nb^m \mid m \neq n, n, m \geq 1\}$, by choose $s = a^pb^{p+1}$ or $s = a^pb^{2p}$, can we find some integer k such for $s' = xy^kz$, number of a's equals to number of b's.

[We saw this in class]

Pumping Lemma: Exercise

Exercise: Prove that $L = \{a^m b^n \mid m < n\}$ is not regular.

- 1. What string s should we choose?
- 2. What does the pumping lemma tell us?
- 3. How to complete the proof?