Logikai törvény és tautológia Elsőrendű logika

March 2020

Quine-féle táblázat

Legyenek A formula prímkomponensei $A_1,A_2,...,A_n$. Ha a különböző prímkomponenseket gondolatban különböző ítéletváltozóknak tekintenénk az így kapott ítéletlogikai formulához megadhatnánk az igazságtáblát.

Quine-féle táblázat

Az elsőrendű formulához így megkonstruált táblázatot Quine-féle táblázatnak hívjuk.

Quine-féle táblázat

Ebben a táblázatban a sorokban szereplő igazságértékekről azonban nem tudhatjuk, hogy van-e egyáltalán olyan interpretáció és az interpretációban olyan változókiértékelés, ami mellett a prímkomponensek igazságértékei rendre ezek lennének.

Az viszont nyílvánvaló, hogy minden interpretáció és minden változókiértékelés esetén a prímkomponensek igazságértékei a Quine-táblázat valamelyik sorában a prímkomponensekhez tartozó oszlopban rendre megtalálhatók.

Quine-féle táblázat

A $\neg \exists x \neg P(x) \supset \forall x P(x)$ formula prímkomponensei $\exists x \neg P(x)$ és $\forall x P(x)$. A formula Quine-táblázata a következő:

$\exists x \neg P(x)$	$\mid \forall x P(x) \mid$	$\neg \exists x \neg P(x) \supset \forall x P(x)$
i	i	i
i	h	i
h	i	i
h	h	h

Elsőrendű logikai törvény

Logikailag igaz

Azt mondjuk, hogy egy A formula logikailag igaz (másképp logikai törvény), ha A minden lehetséges $\mathcal I$ interpretációra és $\mathcal I$ minden κ változókiértékelése melett $|A|^{\mathcal I,\kappa}=\mathrm{i}$. Jelölése: \models A.

Ha A zárt akkor egyszerűbben is fogalmazhatunk: A pontosan akkor logikai törvény, ha minden interpretációja kielégíti, azaz minden interpretáció modellje.

Elsőrendű logikai törvény

Tétel

Legyenek A és B az $\mathcal{L}[V_v]$ nyelv tetszőleges formulái. Ekkor $\models \forall xA \lor \forall xB \supset \forall x(A \lor B)$

Bizonyítás:

Legyen $\mathcal{L}[V_v]$ -nek \mathcal{I} tetszőleges interpretációja és κ az interpretációban tetszőleges változókiértékelés.

 $A \models \forall xA \lor \forall xB \supset \forall x(A \lor B)$ formula igazságértékét kell megvizsgálnunk \mathcal{I} -ben κ mellett.

Elsőrendű logikai törvény

Két eset lehetséges:

- 1. Ha $|\forall x(A \lor B)|^{\mathcal{I},\kappa} = i$, akkor a formulánk i igazságértékű.
- 2. Ha $|\forall x(A \lor B)|^{\mathcal{I},\kappa} = h$, akkor van κ -nak olyan κ^* x-variánsa, hogy $|A \lor B|^{\mathcal{I},\kappa^*} = h$, azaz $|A|^{\mathcal{I},\kappa^*} = h$ és $|B|^{\mathcal{I},\kappa^*} = h$. Ez viszont azt jelenti, hogy $|\forall xA|^{\mathcal{I},\kappa} = h$ és $|\forall xB|^{\mathcal{I},\kappa} = h$, vagyis

$$|\forall xA \vee \forall xB|^{\mathcal{I},\kappa} = \mathsf{h}.$$

Tehát a formulánk ebben az esetben is i igazságértékű.

Ezzel beláttuk, hogy a $\forall xA \lor \forall xB \supset \forall x(A \lor B)$ formula logikai törvény.

Elsőrendű tautologikusan igaz

Definíció

Az $\mathcal{L}[V_v]$ nyelv egy A formulája tautologikusan igaz, ha a formula Quine-táblázatában A oszlopában csupa i igazságérték található. Jelölése: \models_0 A.

Lemma

Legyen A az $\mathcal{L}[V_{\nu}]$ nyelv egy tetszőleges formulája. Ha A tautologikusan igaz, akkor logikailag is igaz, azaz ha \models_0 A ,akkor \models A.

Elsőrendű tautologikusan igaz

(a) A $(\exists x P(x) \supset \forall x P(x)) \supset \neg \exists x P(x) \lor \forall x P(x)$ formula prímkomponensei $\exists x P(x)$ és $\forall x P(x)$. A formula Quine-féle táblázata a következő:

$\exists x P(x)$	$\forall x P(x)$	$(\exists x P(x) \supset \forall x P(x)) \supset \neg \exists x P(x) \lor \forall x P(x)$
i	i	i
i	h	i
h	i	i
h	h	i

A formula oszlopában csupa i igazságérték található, tehát a formula tautologikusan igaz, azaz logikailag is igaz.

Elsőrendű tautologikusan igaz

(b) Előzőleg beláttuk,hogy $\neg \exists x \neg P(x) \supset \forall x P(x)$) nem tautologikusan igaz formula, pedig logikailag igaz.

Egy tetszőleges rögzített ${\mathcal I}$ interpretációban ugyanis

- 1. vagy $|\neg \exists x \neg P(x)|^{\mathcal{I}} = \mathsf{h}$, így $|\neg \exists x \neg P(x) \supset \forall x P(x))|^{\mathcal{I}} = \mathsf{i}$,
- 2. vagy $|\neg \exists x \neg P(x)|^{\mathcal{I}} = i$, ekkor viszont $|\exists x \neg P(x)|^{\mathcal{I}} = i$. Ez pedig azt jelenti, hogy minden κ változókiértékelés mellett $|\neg P(x)|^{\mathcal{I},\kappa} = h$, azaz $|P(x)|^{\mathcal{I},\kappa} = i$, tehát $|\forall x P(x)|^{\mathcal{I}} = i$.

Így viszont ebben az esetben is $|\neg\exists x\neg P(x)\supset \forall xP(x))|^{\mathcal{I}}=\mathsf{i},$

tehát a $\neg \exists x \neg P(x) \supset \forall x P(x)$) formula logikai törvény.