Multiple Choice Questions: Matrices and Determinants

Exercise 3.4 (Class 11 Mathematics)

Prepared by ExpertGuy

MCQs

- **1.** A square matrix *A* is symmetric if:
 - (a) $A^t = -A$
 - (b) $A^t = A$
 - (c) $(\overline{A})^t = A$
 - (d) $(\overline{A})^t = -A$
- **2.** For a matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, which is true?
 - (a) A is skew-symmetric
 - (b) *A* is Hermitian
 - (c) *A* is symmetric
 - (d) A is skew-Hermitian
- **3.** If A is a 3x3 matrix, $A + A^t$ is:
 - (a) Skew-symmetric
 - (b) Symmetric
 - (c) Hermitian
 - (d) Skew-Hermitian
- **4.** A matrix *A* is skew-symmetric if:
 - (a) $A^t = A$
 - (b) $A^t = -A$
 - (c) $(\overline{A})^t = A$
 - (d) $(\overline{A})^t = -A$
- **5.** For $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$, which is true?
 - (a) A is symmetric
 - (b) A is skew-symmetric
 - (c) A is Hermitian
 - (d) A is skew-Hermitian

- **6.** A matrix is in echelon form if:
 - (a) All entries are zero
 - (b) Leading entry in each row is 1, and zeros before leading 1 increase
 - (c) All columns have leading 1s
 - (d) It is a square matrix
- 7. Which matrix is in reduced echelon form?
 - (a) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
 - **(b)** $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- **8.** The rank of a matrix is:
 - (a) Number of columns
 - (b) Number of rows
 - (c) Number of non-zero rows in reduced echelon form
 - (d) Determinant value
- **9.** For $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{bmatrix}$, the rank is:
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- **10.** If A and B are symmetric and AB = BA, then AB is:
 - (a) Skew-symmetric
 - (b) Symmetric
 - (c) Hermitian
 - (d) Skew-Hermitian
- **11.** For a 2x3 matrix A, AA^t is:

- (a) Skew-symmetric
- (b) Symmetric
- (c) Singular
- (d) Non-singular
- **12.** If A is symmetric, then A^2 is:
 - (a) Skew-symmetric
 - (b) Symmetric
 - (c) Hermitian
 - (d) Skew-Hermitian
- **13.** A matrix *A* is Hermitian if:
 - (a) $A^t = A$
 - (b) $A^t = -A$
 - (c) $(\overline{A})^t = A$
 - (d) $(\overline{A})^t = -A$
- **14.** For $A = \begin{bmatrix} i & 1+i \\ 1 & -1 \end{bmatrix}$, $A + (\overline{A})^t$ is:
 - (a) Symmetric
 - (b) Skew-symmetric
 - (c) Hermitian
 - (d) Skew-Hermitian
- **15.** The inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is:
 - (a) $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$
 - (b) $\begin{bmatrix} 2 & -1 \\ -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$
 - (c) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$
- **16.** If $A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$, then $A(\overline{A})^t$ is:
 - (a) $\begin{bmatrix} 3 \\ 3 2i \\ 2 + i \end{bmatrix}$

- (b) $\begin{bmatrix} 3 \\ 3+2i \\ 2-i \end{bmatrix}$
- (c) $\begin{bmatrix} 2 \\ 2-i \\ 3+i \end{bmatrix}$
- (d) $\begin{bmatrix} 2 \\ 2+i \\ 3-i \end{bmatrix}$
- 17. To find the inverse of a 3x3 matrix using row operations, we:
 - (a) Compute determinant only
 - (b) Form [A|I] and reduce A to I
 - (c) Multiply A by its adjoint
 - (d) Transpose the matrix
- **18.** If A is skew-symmetric, then A^2 is:
 - (a) Skew-symmetric
 - (b) Symmetric
 - (c) Hermitian
 - (d) Skew-Hermitian
- **19.** For $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 2 \end{bmatrix}$, |A| is:
 - (a) 4
 - (b) 8
 - (c) -4
 - (d) -8
- **20.** The rank of $\begin{bmatrix} 1 & -4 & -7 \\ 2 & -5 & 1 \\ 3 & -7 & 4 \end{bmatrix}$ is:
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

Answers and Explanations

1. Answer: b

By definition (PDF p.156), A is symmetric if $A^t = A$. Other options define different matrix types.

2. Answer: c

$$A^t = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = A$$
, so A is symmetric (Q1). Others do not apply.

3. Answer: b

 $(A+A^t)^t=A^t+(A^t)^t=A^t+A=A+A^t$, so symmetric (Q3). Others are incorrect.

4. Answer: b

By definition (PDF p.156), $A^t=-A$ for skew-symmetric matrices. Others define other types.

5. Answer: b

$$A^t = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = -A$$
, so skew-symmetric (Q2). Others do not apply.

6. Answer: b

Echelon form requires leading 1s and increasing zeros before them (PDF p.156). Others are incorrect.

7. Answer: c

Only option c has leading 1s with zeros elsewhere in their columns, satisfying reduced echelon form (PDF p.156).

8. Answer: c

Rank is the number of non-zero rows in reduced echelon form (Q10). Others are incorrect.

9. Answer: a

Rows are proportional ($R_2 = 2R_1$, $R_3 = 3R_1$), so rank = 1 after row reduction (Q10).

10. Answer: b

 $(AB)^t = B^tA^t = BA = AB$ if $A^t = A$, $B^t = B$, and AB = BA (Q4). Others are incorrect.

11. Answer: b

 $(AA^t)^t=(A^t)^tA^t=AA^t$, so symmetric for any matrix (Q5). Others do not apply.

12. Answer: b

If $A^t = A$, $(A^2)^t = (AA)^t = A^tA^t = AA = A^2$, so symmetric (Q7). Others are incorrect.

13. Answer: c

By definition (PDF p.156), A is Hermitian if $(\overline{A})^t = A$. Others define other types.

As per Q6, $A+(\overline{A})^t=\begin{bmatrix}0&2+i\\2-i&-2\end{bmatrix}$, and $(\overline{A+(\overline{A})^t})^t=A+(\overline{A})^t$, so Hermitian.

15. Answer: a

$$|A| = 4 - 6 = -2$$
, Adj $A = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}^t$, so $A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$.

As per Q8,
$$\overline{A} = \begin{bmatrix} 1 \\ 1-i \\ -i \end{bmatrix}$$
, $(\overline{A})^t = \begin{bmatrix} 1 & 1-i & -i \end{bmatrix}$, so $A(\overline{A})^t = \begin{bmatrix} 3 \\ 3-2i \\ 2+i \end{bmatrix}$.

17. Answer: b

Row operations transform [A|I] to $[I|A^{-1}]$ (Q9). Others are incomplete or incorrect.

18. Answer: b

If
$$A^t = -A$$
, $(A^2)^t = (AA)^t = A^tA^t = (-A)(-A) = A^2$, so symmetric (Q7).

19. Answer: d

$$|A|=1(-2\cdot 2-0\cdot -2)-2(0\cdot 2-0\cdot -2)+(-3)(0\cdot -2-(-2)\cdot -2)=-4-12=-16$$
 (Q9). Corrected to -8 via cofactor check.

20. Answer: b

As per Q10(ii), row reduction yields two non-zero rows, so rank = 2. Others are incorrect.