Oracle Database Architecture

Agenda

- - 1 History of Oracle Database
 - Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery

History of Oracle Database

1977: Software Development Laboratories

\$ salplus scott/tiger

SQL*Plus: Release 11.1.0.6.0 - Production on Sun Oct 21 13:08:36 2007 Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

History of Oracle Database

Version ,	/ Release /	Year	Marquee Features				
v2	2.3	1979	First commercially available SQL-based RDBMS implementing some basic SQL queries and simple joins				
v3	3.1.3	1983	Concurrency control, data distribution, and scalability				
v4	4.1.4.0	.0 1984 Multiversion read consistency. First version available for MS-DOS.					
v5	5.0.22	.22 1985 Support for client/server computing and distributed database systems. First version available for OS/2.					
v6	6.0.17	.0.17 1988 Row-level locking, scalability, online backup and recovery, PL/SQL. First version available for Novell Netware 386.					
6.2	6.2.0		Oracle Parallel Server				
		1989	한국오라클 설립				
7	7.0.12	1992	PL/SQL stored procedures, Triggers, Distributed 2-phase commit, Shared Cursors, Cost Based Optimizer				
7.1	7.1.0 1994 Parallel SQL Execution. First version available for Windows NT.						
7.2	7.2.0 1995 Shared Server, XA Transactions, Transparent Application Failover						
7.3	7.3.0						
8	8.0.3	Recovery Manager, Partitioning. First version available for Linux.					
8 <i>i</i>	8.1.5.0	1998 Native internet protocols and Java, Virtual Private Database					
9 <i>i</i>	9.0.1.0	2001	Oracle Real Application Clusters (RAC), Oracle XML DB				
9 <i>i</i> R2	9.2.0.1	2002	Advanced Queuing, Data Mining , Streams, Logical Standby				
10 <i>g</i> R1	10.1.0.2	2003	Automated Database Management, Automatic Database Diagnostic Monitor, Grid infrastructure, Oracle ASM, Flashback Database				
10 <i>g</i> R2	10.2.0.1	2005	Real Application Testing, Database Vault, Online Indexing, Advanced Compression, Data Guard Fast-Start Failover, Transparent Data Encryption				
11 <i>g</i> R1	11.1.0.6	2007	Active Data Guard, Secure Files, Exadata				
11 <i>g</i> R2	11.2.0.1	2009	Edition Based Redefinition, Data Redaction, Hybrid Columnar Compression, Cluster File System, Golden Gate Replication, Database Appliance				
12 <i>c</i> R1	12.1.0.1	2013	Multitenant architecture, In-Memory Column Store, Native JSON, SQL Pattern Matching, Database Cloud Service				
12 <i>c</i> R2	12.2.0.1	2016	Native Sharding, Zero Data Loss Recovery Appliance, Exadata Cloud Service, Cloud at Customer				
18c	18.1.0 // 12.2.0.2	2018	Polymorphic Table Functions, Active Directory Integration				
19c	19.1.0 // 12.2.0.3	2019	Active Data Guard DML Redirection, Automatic Index Creation, Real-Time Statistics Maintenance, SQL Queries on Object Stores, In-Memory for IoT Data Streams, and many more.				
	•	•	https://en.wikipedia.org/wiki/Oracle Database				

Agenda

- - 1 History of Oracle Database
 - 2 Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery
- 7 Summary

Oracle Database Server Architecture

Oracle Database Server / Instance / Database

- Oracle Database Server?
 - 정보를 개방적이고 통합적으로 관리할 수 있는 "오라클의 데이터베이스 관리 시스템" (DBMS)
 - "인스턴스"와 "데이터베이스"로구성
- Oracle Instance?
 - 데이터베이스를 액세스하는수단
 - SGA(System Global Area) 메모리와 백그라운드 프로세스 구조로구성
- Oracle Database?
 - 하나의 단위로 취급되는 데이터 모음
 - Data file, redolog file, control file로 구성 (참고) 오라클의 DBMS 제품명이기도함

Oracle Database Server

* 제품명 변경: Oracle 7 Server → Oracle Database 10g ~ Oracle Database 19c

Agenda

- - 1 History of Oracle Database
 - 2 Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery
- 7 Summary

Oracle Database 데이터 저장구조

Database Storage Architecture

Parameter file Password file Network files Alert and trace files

데이터베이스 공간 부족 시:

- Logical : 추가 공간이 요구되는 세그먼트가 들어있는 테이블스페이스의 공간 확보가 필요 Physical : 테이블스페이스를 구성하는 데이터 파일의 크기 resize 혹은 추가적인 데이터 파일 추가 → 추가할 공간이 없을 시는 새로운 disk 할당이 필요

Tablespace, data file, Segment

 Oracle은 데이터를 논리적으로는 테이블스페이스에 저 장하고 물리적으로는 데이터 파일에 저장

테이블스페이스

Partitioning

- Table, Index 등을 작은 단위로 나눈 단위
 - Benefits: Performance, Availability, M anageability, Cost, etc.
 - Strategies: Range, List, Hash, Interval, Composite

Agenda

- - 1 History of Oracle Database
 - Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery
- 7 Summary

Oracle Database Server Architecture

Oracle의 메모리 구조는 다음 두 가지 메모리 영역으로 구성

- SGA(System Global Area) : 인스턴스가 시작될 때 할당되며 Oracle 인스턴스의 기본적인 구성 요소
- PGA(Program Global Area): 서버 프로세스가 시작될 때 할당

주요 Background Process

- SMOM : 시스템 모니터는 오라클 인스턴스를 관리하는 프로세스. 인스턴스 fail 시 인스턴스를 복구하는 역할
- PMON : 오라클 서버에서 사용되는 각 프로세스들을 감시 하는 프로세스. 비정상 종료된 데이터베이스의 접속을 정 리
- LGWR: 데이터베이스에 발생한 모든 변경을 기록하는 역할 (Write Ahead Logging). 트랜잭션이 완료되었을 때 LG WR가 리두로그 버퍼의 내용을 온라인 리두로그 파일에 기록
- DBWR: 버퍼 캐시에 있는 수정된(Dirty) 버퍼의 내용을 데 이터 파일에 기록 (Deferred 방식)
- CKPT: 변화된 데이터 블록의 개수 또는 일정 시간 간격으로 DBWR 프로세스가 데이터베이스 버퍼(Dirty Buffer)를 데이터 파일에 저장하도록 명령

Oracle RAC Architecture

- RAC Architecture : 가용성과 확장성을 충족시키는 멀티 인스턴스 아키텍처
 - 가용성 : 한 노드 failure 시, 다른 노드를 통한 서비스 연속성 확보
 - 확장성 : 노드를 추가할수록 처리능력은 더 커짐
- Oracle 9i 부터 Vendor Cluster S/W 대신 Oracle Clusterware제공
- Oracle 10g 부터 Volume Manager 역할의 ASM 제공

Cache Fusion: A long Journey

Oracle Parallel Server (OPS)

Real Application Clusters (RAC)

Automatic Storage Management (ASM)

ASM 은 오라클 데이터베이스 파일을 위한 볼륨 매니저

- Before ASM은 일반적으로 많이 사용하는 Veritas Volume Manager 환경이라고 이해
- ASM에서는 logical volume & 파일시스템 layer가 필요 없음

Consolidation Architecture

- 한 노드에 여러 개의 ORACLE_HOME(DBMS S/W)을 가 질 수 있는 반면, GI_HOME은 한 개만 가능 Multi Version의 Multi HOME인 경우 상위 Version의 Grid
- S/W 설치 필요

Multitenant Architecture

- PDB들은 SGA, Background Processes, Undo, Redo, Control Files, spfile 등을 공유
- PDB는 각자의 SYSTEM, SYSAUX, 사용자 Tablespace가 있고 Temp를 선택적으로 소유할 수 있음
- 각각의 데이터베이스에(PDBs)에 연결된 고객 세션 (Foreground sessions)들은 연결된 데이터베이스의 데이터만 접근 가능

Active Data Guard (ADG) & Maximum Availability Architecture (MAA)

Agenda

- - 1 History of Oracle Database
 - Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery
- 7 Summary

SQL (Structured Query Language)

데이터베이스의 언어 SQL은 ?

- 관계형 데이터베이스에 접근(생성, 변경, 삭제, 조회)하기 위한 비절차적 표준언어

◆ SQL 언어의 특징

- ✓ 이해하기 쉬운 형태로 표현
- ✓ 대화식 질의어로 사용가능
- ✔ 데이터 정의, 데이터 조작, 제어기능 제공
- ✓ 레코드 집합단위로 처리
- ✓ 비절차적 언어

SQL문의 유형

SQL 튜닝 대상

명령어의 종류	명령어	설명
QUERY (데이터 검색,조회)	SELECT	데이터를 조회하거나 검색하기 위한 명령어
DML (데이터 조작어)	INSERT UPDATE DELETE	테이블의 데이터를 조작(새로운 데이터 입력, 수정, 삭제)하는 명령어: Data Manipulation Language
DDL (데이터 정의어)	CREATE, DROP ALTER, RENAME TRUNCATE, COMMENT	테이블과 같은 데이터의 구조를 정의(생성, 변경, 제거 등)하는데 사용되는 명령어: Data Definition Language
TCL (트랜잭션 제어어)	COMMIT, ROLLBACK SAVEPOINT	논리적인 작업의 단위를 묶어서 DML에 의해 조작된 결과를 작업 단위별로 제어하는 명령어 : Transaction Control Language
DCL (데이터 제어어)	GRANT REVOKE	Object들을 사용하도록 권한을 주고 받는 명령어 : Data Control Language

Optimizer

사용자 요청 SQL을 가장 효율적이고 빠르게 수행할 수 있는 최적(최저비용)의 처리경로를 선택해주는 DBMS의 핵심기능

- 통계정보를 기반으로 실질적인 비용을 계산하여 수행 (Cost-Based Optimizer = CBO)
- 실행계획(Execution Plan)에 영향을 미치는 요소
 - ✓ 통계 및 Parameter 정보
 - ✓ 인덱스, 테이블 구조
 - ✓ SQL의 형태 및 사용 컬럼, 연산자 형태
 - ✓ 데이터베이스 환경
- 실제 실행계획을 확인 & 검토 필요성 존재
 - ✓ 통계정보 누락 및 수집된 통계정보가 부정확
 - ✓ 버전업 될수록 알고리즘이 향상되지만 검토 필요
 - ✓ 제한된 시간내에서의 수행

		DATA_TYPE	NULLABLE	DATA_DEFAULT \$ CC
1	EMPLOYEE_ID	NUMBER(6,0)	No	(null)
2	FIRST_NAME	VARCHAR2(20 BYTE)	Yes	(null)
3	LAST_NAME	VARCHAR2(25 BYTE)	No	(null)
4	EMAIL	VARCHAR2(25 BYTE)	No	(null)
5	PHONE_NUMBER	VARCHAR2(20 BYTE)	Yes	(null)
6	HIRE_DATE	DATE	No	(null)
7	JOB_ID	VARCHAR2(10 BYTE)	No	(null)
8	SALARY	NUMBER(8,2)	Yes	(null)
9	COMMISSION_PCT	NUMBER(2,2)	Yes	(null)
10	MANAGER_ID	NUMBER(6,0)	Yes	(null)
11	DEPARTMENT_ID	NUMBER(4,0)	Yes	(null)

- 3	EMPLOYEE ID	FIRST_NAME	⊕ LAST_NAME	⊕ EMAIL	⊕ PHONE_NUMBER	⊕ HIRE_DATE	⊕ JOB_ID	SALARY
90			y	JDILLY	650.505.2876	¥	SH_CLERK	3600
91	190 Ti	mothy	Gates	TGATES	650.505.3876	06/07/11	SH_CLERK	2900
92	191 Ra	ndall	Perkins	RPERKINS	650.505.4876	07/12/19	SH_CLERK	2500
93	192 Sa	rah 1	Bell	SBELL	650.501.1876	04/02/04	SH_CLERK	4000
94	193 Br	itney 1	Everett	BEVERETT	650.501.2876	05/03/03	SH_CLERK	3900
95	194 Sa:	muel l	McCain	SMCCAIN	650.501.3876	06/07/01	SH_CLERK	3200
96	195 Va	ince	Jones	VJONES	650.501.4876	07/03/17	SH_CLERK	2800
97	196 A1	ana I	Walsh	AWALSH	650.507.9811	06/04/24	SH_CLERK	3100
98	197 Ke	vin	Feeney	KFEENEY	650.507.9822	06/05/23	SH_CLERK	3000
99	198 Do	nald	OConnell	DOCONNEL	650.507.9833	07/06/21	SH_CLERK	2600
100	199 Do	uglas	Grant	DGRANT	650.507.9844	08/01/13	SH_CLERK	2600
101	200 Je	nnifer (Whalen	JWHALEN	515.123.4444	03/09/17	AD_ASST	4400
102	201 Mi	chael I	Hartstein	MHARTSTE	515.123.5555	04/02/17	MK_MAN	13000
103	202 Pa	it I	Fay	PFAY	603.123.6666	05/08/17	MK_REP	6000
104	203 Su	ısan l	Mavris	SMAVRIS	515.123.7777	02/06/07	HR_REP	6500
105	204 He	rmann	Baer	HBAER	515.123.8888	02/06/07	PR_REP	10000
106	205 Sh	nelley	Higgins	SHIGGINS	515.123.8080	02/06/07	AC_MGR	12008
107	206 Wi	lliam (Gietz	WGIETZ	515.123.8181	02/06/07	AC_ACCOUNT	8300

```
> ALTER SESSION SET STATISTICS_LEVEL=ALL;

> SELECT * FROM HR.EMPLOYEES WHERE EMPLOYEE_ID LIKE '2%';

> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null,null,'ALLSTATS LAST'));
```

user has no select privilege on v\$sql_plan 또는 user has no select privilege on v\$session 에러가 나올 때

```
SYS로 접속 후
> GRANT SELECT ON v_$session TO 유저명;
> GRANT SELECT ON v_$sql_plan_statistics_all TO 유저명;
> GRANT SELECT ON v_$sql_plan TO 유저명;
> GRANT SELECT ON v_$sql_plan TO 유저명;
> GRANT SELECT ON v_$sql TO 유저명;
```

> ALTER SESSION SET STATISTICS_LEVEL=ALL;

- > SELECT * FROM HR.EMPLOYEES WHERE EMPLOYEE_ID LIKE '2%';
- > SECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null,null,'ALLSTATS LAST'));

1 201 Michael Hartstein MHARTSTE 515.123.5555 04/02/17 MK_MAN 13000 (null) 2 202 Pat Fay PFAY 603.123.6666 05/08/17 MK_REP 6000 (null) 3 203 Susan Mavris SMAVRIS 515.123.7777 02/06/07 HR_REP 6500 (null) 4 204 Hermann Baer HBAER 515.123.8888 02/06/07 PR_REP 10000 (null)	_ID DEPARTMENT_ID	MANAGER_ID	ARY ∯ COMMISSION_PCT		DATE 🕸 JOB_IC	∯ HIRE_DA	♦ PHONE_NUMBER	⊕ EMAIL	⊕ LAST_NAME	∯ FIRST_NAME	
3 203 Susan Mavris SMAVRIS 515.123.7777 02/06/07 HR_REP 6500 (null)	100 20	100	000 (null)	13000	7 MK_MAN	04/02/17	515.123.5555	MHARTSTE	Hartstein	l Michael	1 201
	201 20	201	000 (null)	6000	7 MK_REP	05/08/17	603.123.6666	PFAY	Fay	2 Pat	2 202
4 204 Hermann Baer HBAER 515.123.8888 02/06/07 PR_REP 10000 (null)	101 40	101	500 (null)	6500	7 HR_REP	02/06/07	515.123.7777	SMAVRIS	Mavris	Susan	3 203
	101 70	101	000 (null)	10000	7 PR_REP	02/06/07	515.123.8888	HBAER	Baer	Hermann	4 204
5 205 Shelley Higgins SHIGGINS 515.123.8080 02/06/07 AC_MGR 12008 (null)	101 110	101	008 (null)	12008	7 AC_MGR	02/06/07	515.123.8080	SHIGGINS	Higgins	Shelley	5 205
6 206 William Gietz WGIETZ 515.123.8181 02/06/07 AC_ACCOUNT 8300 (null)	205 110	205	300 (null)	NT 8300	7 AC_ACCO	02/06/07	515.123.8181	WGIETZ	Gietz	5 William	6 206

> SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null,null,'ALLSTATS LAST'));

Index를 다른 데이터 형태로 변경하면 안됨

		⊕ UNIQUENESS	∯ STATUS			₱ PARTITIONED			COLUMNS
1 HR	EMP_JOB_IX	NONUNIQUE	VALID	NORMAL	N	NO	(null)	NO	JOB_ID
2 HR	EMP_NAME_IX	NONUNIQUE	VALID	NORMAL	N	NO	(null)	NO	LAST_NAME, FIRST_NAME
3 HR	EMP_EMAIL_UK	UNIQUE	VALID	NORMAL	N	NO	(null)	NO	EMAIL
4 HR	EMP_EMP_ID_PK	UNIQUE	VALID	NORMAL	N	NO	(null)	NO	EMPLOYEE_ID
5 HR	EMP_MANAGER_IX	NONUNIQUE	VALID	NORMAL	N	NO	(null)	NO	MANAGER_ID
6 HR	EMP_DEPARTMENT_IX	NONUNIQUE	VALID	NORMAL	N	NO	(null)	NO	DEPARTMENT_ID

Starts

오퍼레이션을 수행한 횟수를 의미한다. <u>Starts * E-Rows 의 값이 A-Rows 값과 비슷하다면, 통계정보의 예측 Row 수와 실제 실행 결과에 따른 실제 Row 수가 유사함을 알 수 있다. 만약 값에 큰 차이가 있다면 통계정보가 실제의 정보를 제대로 반영하지 못했다고 생각할 수 있다.</u>이로 인해 오라클의 Optimizer가 잘못된 실행 계획을 수립할 수도 있음을 염두에 둬야 한다.

E-Rows (Estimated Rows)

통계정보에 근거한 예측 Row 수를 의미한다. 통계정보를 갱신할수록 값이 매번 다를 수 있으며, 대부분의 DB 운영에서는 통계정보를 수시로 갱신하지 않으므로 해당 값에 큰 의미를 둘 필요는 없다. 하지만 E-Rows 값과 A-Rows 값이 현격하게 차이가 있다면 오라클이 잘못된 실행 계획을 세울 수도 있음을 인지해야 하며 통계정보 생성을 검토해 보아야 한다.

A-Rows (Actual Rows)

쿼리 실행 결과에 따른 실제 Row 수를 의미한다.

A-Time (Actual Elapsed Time)

쿼리 실행 결과에 따른 실제 수행 시간을 의미한다. 하지만 실행 시점의 여러 상황이 늘 가변적이고 또한 메모리에 올라온 Block의 수에 따라서 수행 시간이 달라지므로 해당 값에 큰 의미를 둘 필요는 없다.

Buffers (Logical Reads)

논리적인 Get Block 수를 의미한다. 해당 값은 오라클 옵티마이저가 일한 총량을 의미하므로, 튜닝을 진행할 때 가장 중요하게 생각하는 요소 중 하나다.

- > ALTER SESSION SET STATISTICS_LEVEL=ALL;
- > SELECT * FROM HR.employees WHERE EMPLOYEE_ID > 200;
- > SECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(null,null,'ALLSTATS LAST'));

2	201 Michael 202 Pat	Hartstein Fay		515.123.5555 603.123.6666	04/02/17 05/08/17	MK_MAN MK REP	13000	(null)	100	20
2		_	PFAY	603.123.6666	05/08/17	MW DED	6000			
2	000 0					rik_ker	6000	(null)	201	20
, 3	203 Susan	Mavris	SMAVRIS	515.123.7777	02/06/07	HR_REP	6500	(null)	101	40
4	204 Hermann	Baer	HBAER	515.123.8888	02/06/07	PR_REP	10000	(null)	101	70
5	205 Shelley	Higgins	SHIGGINS	515.123.8080	02/06/07	AC_MGR	12008	(null)	101	110
6	206 William	Gietz	WGIETZ	515.123.8181	02/06/07	AC_ACCOUNT	8300	(null)	205	110

PLAN_TABLE_OUTPUT							
1 SQL_ID 3dqpynkuh45uy, child number 0							
2							
3 SELECT * FROM HR.employees WHERE EMPLOYEE_ID	> 200						
4							
5 Plan hash value: 1781021061							
6							
7							
8 Id Operation	Name	Starts	E-Rows	B A-Rows	B A-Time	Buffer	s
9							
10 0 SELECT STATEMENT	I	1	I	1 6	100:00:00.01	. 1	2
11 1 TABLE ACCESS BY INDEX ROWID BATCHED	EMPLOYEES	1	1 6	5 6	100:00:00.01	. 1	2
12 * 2 INDEX RANGE SCAN	EMP_EMP_ID_PK	1	1 6	5 6	100:00:00.01	. 1	1
13							
14							
15 Predicate Information (identified by operati	on id):						
16							
17							
18 2 - access("EMPLOYEE_ID">200)							
19							

1	200
2	201
3	202
4	203
5	204
6	205
7	206

7																
8	Id (Operatio	n	Name		5	Starts	E	E-Rows	I	A-Rows	I	A-Time	-	Buffer	s
9																
10	0 1 3	SELECT S	TATEMENT	I		I	1	I		I	7	10	0:00:00.01	.		1
11	* 1	INDEX F	TULL SCAN	EMP_EMP	_ID_PK	I	1	I	5	I	7	10	0:00:00.01	.		1
12																
13																
14	Predicate	e Inform	nation (id	entified N	oy oper	ati	ion id)	:								
15								-								
16																
17	1 - f:	ilter(TO	_CHAR("EM	PLOYEE_ID	") LIKE	12	2%')									

실행계획 읽는 법

- 1. 위에서 아래로 읽어 내려가면서 제일 먼저 읽을 스텝 찾기
- 2. 내려가는 과정에서 <mark>같은 들여쓰기</mark>가 존재하면, <mark>무조건 위에서 아래</mark> 순으로 읽기
- 3. 읽고자 하는 스텝보다 들여쓰기가 된 하위 스텝이 존재한다면, 가장 안쪽으로 들여쓰기 된 스텝을 시작으로 하여한 단계씩 상위 스텝으로 읽어 나오기

ID	PID	OPERATION	
0		SELECT STATEMENT	
1	0	TABLE ACCESS BY INDEX ROWID	APIPLIST
2	1		
3	2		
4	3	VIEW	
5	4	SORT GROUP BY	
6	5 INDEX RANGE SCAN		SQ2DHIST_PK
7	7 3 TABLE ACCESS BY INDEX ROWID		APPATBAT
8	7	INDEX UNIQUE SCAN	APPATBAT_PK
9	2	INDEX RANGE SCAN	APIPLIST_PK

실행순서: $6 \rightarrow 5 \rightarrow 4 \rightarrow 8 \rightarrow 7 \rightarrow 3 \rightarrow 9 \rightarrow 2 \rightarrow 1$

(퀴즈) 실행계획 순서는?

ID	PID	OPERATION	
0		SELECT STATEMENT	
1	0	SORT GROUP BY	
2	1	HASH JOIN	
3	2	TABLE ACCESS BY INDEX ROWID	
4	3	NESTED LOOPS	
5	4	NESTED LOOPS	
6	5	TABLE ACCESS BY INDEX ROWID	
7	6	INDEX RANGE SCAN	
8	TABLE ACCESS BY INDEX ROWID		
9	8 INDEX RANGE SCAN		
10	4	INDEX RANGE SCAN	
11	2	VIEW	
12	11	UNION-ALL	
13	12	TABLE ACCESS BY INDEX ROWID	
14	13	INDEX RANGE SCAN	
15	12	TABLE ACCESS BY INDEX ROWID	
16	15	INDEX RANGE SCAN	

정답

Connection & Running a SQL

- 다음을 사용하여 인스턴스에 접속(connection)
 - 사용자 프로세스
 - 서버 프로세스
- 사용하는 Oracle 서버 구성 요소는 SQL문 유형에 따라 다름
 - Query는 Parse → Execute → Fetch 3단계과정을 거쳐 결과 행을 반환
 - DML 문은 변경 사항을 기록 (No fetch)
 - Commit은 트랜잭션을 보장
 - Rollback은 변경사항 이전으로 되돌림 (예: commit 전, user connection의 비정상 종료 시)

Connection pool 이용 시 미리 생성된 DB와의 connection을 사용하게 되므로 훨씬 효율적

Agenda

- - 1 History of Oracle Database
 - 2 Oracle Database Server Architecture
 - 3 Oracle Database Storage
 - 4 Oracle Instance, RAC, Multitenant, MAA
- 5 SQL
- 6 Transaction, Instance Recovery
- 7 Summary

TRANSACTION

• DBMS에서 사용되는 쪼갤 수 없는 업무처리의 단위 (Atomicity = All or Nothing)

[100만원 계좌이체 할 경우]

트랜잭션은 DBMS에서 데이터를 다루는 논리적인 작업의 단위가 된다. 예를 들어 A계좌에서 B계좌로 돈을 이체하는 경우에 이 업무는 A에서 돈을 빼고 B에 돈을 더하는 2가지의 Update문으로 나뉘게 된다. 그리고 이것들은 개별적으로 수행되는 것이 아니라 하나의 트랜잭션으로 묶이게 되며 하나의 트랜잭션이 실행될 때 이 2개의 SQL문이 연속적으로 실행되게 된다. 그러므로 2개의 UPDATE문이 하나의 트랜잭션으로 묶여있다고 가정할 때 1개의 SQL만 실행되는 상황은 발생하지 않고 이를 All or Nothing 이라고 함

Transaction Control

실행 가능한 SQL문장이 제일 처음 실행될 때 시작

Transaction Control

COMMIT과 ROLLBACK전후

Rollback/비정상종료

Commit 전

- 모든 변경취소
- 변경행 LOCK해제
- SAVEPOINT 제거

- 데이터 변경
- 이전의 상태로 취소 가능
- 현재 사용자는 변경내용 select 가능
- 다른 사용자는 변경내용 참조 불가
- 변경된 행은 LOCK이 설정 되어서 다른 사용자가 동시에 변경할 수 없음

Rollback of Transactions

데이터 변경사항이 취소되어 데이터를 이전 상태로 되돌리는 것

Commit of Transactions

입력, 수정 및 삭제한 변경사항을 데이터베이스에 영구히 반영하는 것

데이터 동시성 및 일관성

Oracle Database Locking Mechanism의 장점

데이터 동시성 및 일관성

Oracle Multi-version Read Consistency (MVRC) / Multi-version Consistency Control (MVCC)

Select SCN 10023

Rollback Recovery Flashback

(참고) Lock Escalation

Oracle에서는 발생하지 않는 Lock Escalation이란?

- Transaction 내에서 많은 row의 변경을 처리할 때 Row 레벨에서 Block 또는 Table 레벨로 Lock이 전이되는 현상
- 오라클은 별도의 Lock 매니저 없이 해당 row가 있는 데이터 블럭에 Lock 정보를 저장하지만, Lock 정보를 메모리에서 관리하는 DBMS에서는 공통적으로 발생
- Lock Escalation이 발생할 경우 Transaction의 동시성은 급격히 감소하며 전반적인 성능 문제 유발

Commit of Transactions

Fast Commit Mechanism

Write Ahead Loggin

LGWR Physical I/O! 항상 Recovery 보장!

- 1. 로그버퍼에 committed기록
- 2. Redo entry + SCN을 파일에 즉시 기록
- 3. 2번이 commit을 구분하는 이벤트(committed)

DBWR

Deferred Write - 보다 효율적일 때 기록 (commit 트랜잭션의 성능 향상을 위해, DBWR의 빈번한 Disk I/O로 인한 성능 저하 방지)

Commit of Transactions

Instance Recovery

Instance Recovery Phases

- First phase cache recovery (rolling forward) : online redo log에 기록된 모든 변경 내용을 data file에 적용
- Second phase rolling back (transaction recovery): Undo block을 적용하여 commit 되지 않은 변경 내용을 rollback

