SGD implementation issues

Linear Regression

Director of TEAMLAB Sungchul Choi

SGD를 구현할 때 생각해봐야 할 일 들

Mini-Batch SGD

[1.06667469]])

```
gd lr = linear model.LinearRegressionGD(eta0=0.001, epochs=10000, batch_size=1, shuffle=False)
bgd lr = linear model.LinearRegressionGD(eta0=0.001, epochs=10000, batch size=len(X), shuffle=False)
sqd lr = linear model.LinearRegressionGD(eta0=0.001, epochs=10000, batch size=1, shuffle=True)
msqd lr = linear model.LinearRegressionGD(eta0=0.001, epochs=10000, batch size=100, shuffle=True)
for epoch in range(epoches):
    X copy = np.copy(X)
    if is SGD:
         np.random.shuffle(X_copy)
    batch = len(X copy) // BATCH SIZE
    for batch count in range(batch):
         X batch = np.copy(
                  X copy[batch count*BATCH SIZE : (batch count+1)*BATCH SIZE])
         # Do weight Update
    print("Number of epoch : %d" % epoch)
```


Time-consuming

```
Gradient descent
%timeit gd lr.fit(X,y)
1.37 s ± 18.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
                            Full-batch Gradient descent
%timeit bgd lr.fit(X,y)
3.74 ms \pm 121 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
                            Stochstic Gradient descent
%timeit sgd lr.fit(X,y)
1.47 s ± 14.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
                                  Minibatch-SGD
%timeit msgd lr.fit(X,y)
122 ms ± 1.07 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
```

Multivariate

	TV	radio	newspaper	sales
1	230.1	37.8	69.2	22.1
2	44.5	39.3	45.1	10.4
3	17.2	45.9	69.3	9.3
4	151.5	41.3	58.5	18.5
5	180.8	10.8	58.4	12.9

Multivariate

Learning rate는 일정해야 하는가?

contour graph

Learning-rate decay

- 일정한 주기로 Learning rate을 감소시키는 방법
- 특정 epoch 마다 Learning rate를 감소

```
self._eta0 = self._eta0 * self._learning_rate_decay
```

- Hyper-parameter 설정의 어려움
- 지수감소 $\alpha = \alpha_0 e^{-kt}$, 1/t 감소 $\alpha = \frac{\alpha_0}{(1+kt)}$

종료조건 설정

- SGD과정에서 특정 값이하로 cost function이 줄어들지 않을 경우 GD를 멈추는 방법
- 성능이 좋아지지 않는/필요없는 연산을 방지함
- 종료조건을 설정 tol > loss previous_loss
- tol은 hyperparameter로 사람 설정함

Human knowledge belongs to the world.