

Computer Networks

计算机网络 (42034403)

2023-2024学年第一学期(2023 Fall)

软件学院王洁

wangjie_tongji@tongji.edu.cn

Office hour: 17:00 – 18:00 in A310 or by appointment

09 Review Session

Tips for Review

- For each chapter
 - Concepts:
 - Definitions/Functions
 - Comparisons
 - Mechanisms: a diagram or pseudo code
- Key Architecture: reference models
 - OSI Model

The Hybrid Model we used

TCP/IP Model

Prentice Hall, 1985

9.1 Introduction

Classification of Computer Networks

- By scale/range:
 - The Internet planet wise 'the one, the only' (previously ARPANET)
 - Wide Area Network (WAN) country to continent wise Co-ax, fiber, satellite...
 - Metropolitan Area Network (MAN) city wise
 - Local Area Network (LAN) ranges from several Km to 10 m
 Ethernet, WiFi
 - Personal Area Network (PAN) <10 m
 Bluetooth, Zigbee

Composition of the Internet

Access Network - edge

- ADSL: asymmetric digital subscriber line
 - downlink higher speed
 - uplink lower speed
- FTTH: fiber-to-the-home
- Wireless: WiFi, cellular(4G,5G)

Core Network

- IP: connectionless
- Frame Relay and ATM (asynchronous transfer mode) seldomly used.

router

Consider the technologies we learned, where do they belong?

Packet Switching v.s. Circuit Switching

- Packet Switching: store-and-forward, each packet handled individually.
- Circuit Switching: connection-oriented, need to setup.

	Circuit Switching	Packet Switching	
Delay	Constant	Variable	
Order	Data arrive in order	Packets may arrive out of order	
BW Efficiency	Inefficient (dedicated)	Efficient (on-demand)	
Routing	Simple	Complex	
QoS	'All or nothing'	'Graceful degradation'	
Control	Low complexity	High complexity	
Scenario	Voice communication	Data communication	

Modem (MOD/DEMOD)

• **Modem:** converts between digital and analog signal.

采样率、波特率、比特率

- Baud rate, or symbol rate
- Bit rate, or data rate
 - = Baud rate * X bit/symbol
- Modulation
 - AM, FM, PM
 - carrier: electro-magnetic waves

Reference Models: OSI v.s. TCP/IP

• OSI: functions of each layer

• TCP/IP: protocols on each layer

Application

Presentation

Session

Transport

Network

Data Link

Physical

功能的抽象,每一层有解耦的定 义

Application

Transport

internet

Link

现有协议的组合,每一层有各 自的协议

Performances of a Network

- Traditional:
 - Delay
 - Throughput/data rate
 - Jitter
 - Packet Loss

Definition (how to calculate)

- Many others:
 - BER of links
 - Channel capacity
 - Channel efficiency/utilization
 - Fairness

9.2 PHY

Modulation

Modulation: switching (also called keying) the amplitude(幅 度), frequency(频率), or phase(相位) of the carrier (载波) in accordance with the information (binary digits, Os and 1s)

Transmission Medium

- Guided media: signal propagates along a direction, usually solid media,
 - e.g. copper (wire), fiber, co-ax cable
 - data rate
 - performance against interference

• **Unguided media:** signal propagates freely, e.g. air, vacuum

光纤抗干扰

Multi-Access, Multiplexing

四种复用,WDMA是FDMA 一种特殊形式

FDMA

• WDMA

• TDMA

• CDMA

9.3
Link-DLC

Functions of DLC

Framing

Error control

Regulating data flow

Error Control Coding

Even Parity

• CRC

两种算法,哪种快用哪种

• Hamming Code

- Codeword
- Hamming distance
- Detection v.s. Correction
- How does each one work?

重点:编码的海明距离和纠错能力之间的关系 第一次作业里有

ARQ Mechanisms

Stop-And-Wait (SAW)

这些机制不止在链路层使用,在 传输层也有使用

- transmit -> wait for the ACK -> carry on
- "half-duplex" because of ACK
- Go-Back-N (GBN)
 - sometimes called the "sliding window" 滑动窗口

效率比停等高,但实现也复杂一些

- increases utilization (compared to SAW)
- Selective Repeat Protocol (SRP)
 - (further) increases efficiency

TCP也会使用这些算法

9.4 Link-MAC

Medium Access Control (MAC)

- Multiple Access: Allocation of a single broadcast channel
- Random Access MAC protocols
 - Collision: When 2 or more nodes are transmitting
 - Key questions/ what random access protocols specify:
 - 1. How to detect collisions?
 - 2. How to recover from collisions?
 - **Contention System**: multiple users share a common channel in a way that leads to conflicts.
 - contention/collision zone/domain

CSMA

• CSMA

填空题会有CSMACDA的解释,还有工作原理

• CSMA/CD

- What does each name mean?
- How does each one work?
- Main differences?
- Application scenarios?

• CSMA/CA

Addressing

- MAC Address, PHY address, Ethernet Address
- Stick to the device/NIC
- 48 bit, or 6 groups of Hex numbers
- Range of each byte: 00 to FF
- Special addresses:
 - 00:00:00:00:00:00 unknown
 - FF:FF:FF:FF:FF broadcast
 - 01:00:5E:XX:XX:XX groupcast (historically only half of these addresses(23 bit))

9.5
Network

The Network Layer

- Functions of the Network Layer: routing from the source to destination
 - **Routing**: protocols algorithms
 - Link State Routing, e.g., Dijkstra OSFP
 - Distance Vector Routing, e.g., Bellman-ford RIP
 - Hierarchical Routing, intra-AS, inter-AS BGP
 - Congestion Control and QoS
 - Queue: FIFO, PQ
 - Scheduling: Round Robin, WFQ
 - Traffic Shaping: Leaky bucket, Token bucket
 - Addressing: IP addresses, subnetting, Forwarding Table

IP Addressing

- Format: 32-bit, usually in dot-decimal form
- Function: Specifies an interface (network connection), not a host!
 - IP address may change. A (multi-homed) host may have multiple addresses.
- Hierarchical: 2-level (roughly): network id + host id

CIDR:

- collapse a block of contiguous addresses into a single logical network
- Net. Addr/mask

Network Configuration and Forwarding Table

A Simple Static Configuration Example

Configuration of H1

• *IP address:* 192.168.1.2

Subnet Mask: 255.255.255.0

Default Gateway: 192.168.1.1

Forwarding Table at R1

Destination	Mask	Next-Hop
192.168.1.0	255.255.255.0	direct
152.40.6.0	255.255.255.0	direct
0.0.0.0	0.0.0.0	152.40.6.35

Aiding Protocols for IP – ICMP, NAT

- ICMP (RFC792): Internet Control Message Protocol
 - Communicate network-level errors or information about unexpected circumstances.
 - Only report errors, no handling actions.
 - Encapsulated in IP datagrams.
- NA(P)T: Network Address (Ports) Translation
 - IPv4: exhaustion of addresses share a public address
 - *IPv6: security reasons*
 - IPv4 IPv6: NAT-PT

(a) Position of ICMP in the network layer

(b) ICMP encapsulation

Aiding Protocols for IP - ARP

• ARP (RFC 826): Address Resolution Protocol

• (Dynamically) mapping between IP and MAC addresses

For broadcast networks, e.g.
 Ethernet, Token Ring.

• RARP: MAC -> IP

• *ARP: IP -> MAC*

2024/1/3

9.6
Transport

Function of the Transport Layer

Functionality of the Transport Layer

- Reliability -> ACK and retransmission (UDP does not have this!)
- Flow Control -> rwnd (of receiver)
- Congestion Control -> cwnd (of sender)

Transmission Control Protocol (TCP)

- Endpoints: IP + port
- Connection: 3-way handshake, 4-way handshake

作业题有

- Congestion Control: phases, variables, flavors, performances
- Client-Server model

Transport Layer Protocols

• UDP

- Unreliable, unordered NO ACK
- Unicast/multicast delivery
- Connectionless
- Addressing: IP + Port
- Upper layer protocols:

可以做组播,通常用于流媒体

• TCP

- Reliable, in-order
- Unicast delivery
- Connection-oriented
- Addressing: IP + Port
- Upper layer protocols:

TCP Congestion Control

- Basic mechanism: Sliding Window $W = \min\{rwnd, cwnd\}$ + Timer
- Control variables: cwnd, ssthresh
- Two phases:
 - slow start: exponential growth

How cwnd changes?

- congestion avoidance: AIMD
- Two loss events: timeout, (3) dupACKs
- Two flavors/versions: Tahoe v.s. Reno

9.7 Application

Application Layer Protocols

- Application Layer Protocols: too many
 - Key Questions:
 - What do they do?
 - 2. (On a very basic level) How do they do it?
 - 3. Which transport layer protocol do they run on? And why?
- Check for yourself if you know
 - Addressing: DNS, DHCP
 - Web: URL, HTTP
 - Streaming: RTP, RTSP
 - File transfer: FTP

- Routing: BGP, OSPF, RIP
- Network Management: SNMP
- Email: SMTP, IMAP, POP
- Conferencing: H.323, SIP

9.8 Network Security

Network Security

- Cryptography -> Confidentiality
 - symmetric key: same key, shared
 - public key: encrypt w/ which key, decrypt w/ which key
- Authentication: to prevent playback attacks, man-in-the-middle attack
 - KDC
 - *CA*
- Message Integrity: Digital signature (public key crypto.)
- Access/Availability: Firewall

Comparisons of Related Concepts

Simplex, Half-Duplex, Duplex

- Simplex: can only receive, or can only send
 - E.g. Loud-speaker, light-house, one-way road (obeying traffic rules)
- Half-Duplex: can receive/send, but can not do it the same time
 - E.g. Walkie-talkie, narrow road, fax, (most) wireless devices
- (Full-)Duplex: can receive/send at the same time
 - E.g. Highway, wired connections, (roughly) Telephone

Most widely used LAN Technologies

- Ethernet IEEE 802.3
 - wired Ethernet cables

types, data rates, range limits

- 10BaseT, 100BaseT... "twisted pairs"
- 10Base2 "Thinnet"
- 10Base5 "Thicknet"
- CSMA/CD

- WiFi IEEE 802.11 family
 - wireless problems
 - attenuation, noise/interference
 - Hidden terminal problem
 - Exposed terminal problem
 - Modes
 - Infrastructure (infra) mode: AP + STAs
 - Ad hoc mode: STAs
 - CSMA/CA

Addresses

MAC Address

- Layer 2
- 48 bits 6 Octets
- usually written in hex format
- Tied to NIC
- Special addresses
 - Unkown: 00:00:00:00:00:00
 - *Groupcast: 01:00:5E:XX:XX:XX*
 - Broadcast: FF:FF:FF:FF:FF

IP Address

- Layer 3
- 24 bits 4 Octets
- usually in dot-decimal format
- Changeable
- Special addresses
 - (Subnet) network address: end with Os.
 - Groupcast: 224.0.0.0 239.255.255.255 (Class D addresses, start with 1110...)
 - Broadcast: end with 1s.

how many?

determined

by net size

Routing Protocols (on Application Layer)

- OSPF
 - intra-domain
 - static, global
 - link state
 - directly on IP
 - Dijkstra

- RIP
 - intra-domain
 - dynamic, local
 - distance vector
 - on UDP
 - Bellman-Ford

- BGP
 - inter-domain
 - admin over performance
 - path vector
 - on TCP

Try it: **show ip route (on routers)** in your experiment class

Network Devices

Modem

- PHY
- Analog <-> Digital

• Hub/Repeater

- PHY
- Broadcast to all other ports
 what it receives from one port
- One contention zone
- Broadcast storm

• Switch/Bridge

- Link layer -> use MAC address
- Connect different network segments
 -> multiple contention zones
- Filter: local frames stay local
- Bridge may have broadcast storm;
 Switch does not (Spanning tree).

Router

- Network layer -> use IP address
- Connect different subnetworks

Application Layer Protocols

Application Layer protocols Functionality

DNS

HTTP

SMTP

SIP

OSPF

RIP

BGP

H.323 (protocol stack)

FTP

Corresponding Transport Layer protocols

UDP + TCP

TCP

TCP

TCP/UDP

No transport (in IP)

UDP

TCP

TCP/UDP

TCP

4 Modes of NIC

- Broadcast: accept broadcast frames (address FF:FF:FF:FF:FF:FF)
- Multicast: accept all groupcast frames (even if it is not a member of the group)
- **Direct:** accept frames only destinated to itself (unicast address)
- **Promiscuous** 混杂: accept all frames that's how Wireshark works
 - NIC of a switch/bridge works in this mode.

Note

default mode of a NIC: Broadcast + Direct

