Sur la vérification de preuve et la preuve automatique d'appartenance d'un mot à une grammaire.

Ulysse Durand

Les grammaires formelles

$$G = (T, N_t, S, D)$$
 où :

- T est l'alphabet des terminaux
- $ightharpoonup N_t$ est l'alphabet des non terminaux
- ▶ $S \in N_t$ est l'axiome Notons $\Sigma := N_t \cup T$
- ▶ $D \subset (\Sigma^*)^2$, est l'ensemble des règles de dérivation.

Definitions

- $\forall x, x' \in \Sigma^*, x \stackrel{(a,b)}{\rightarrow} x' \iff \exists u, v \in \Sigma^*/x = uav \text{ et } x' = ubv$
- $ightharpoonup
 ightharpoonup := \bigcup_{d \in D} \stackrel{d}{
 ightharpoonup}$ et on note $\stackrel{*}{
 ightharpoonup}$ la cloture transitive et réflexive de ightharpoonup
- ▶ $|x|_I := |\{i \in \mathbb{N} \mid x_i = I\}|$ est le nombre d'occurences de la lettre I dans x.
- ► Alors le langage de la grammaire formelle G est le suivant :

$$\mathcal{L}(G) := \delta(S) \cap T^*$$

Vérification de preuve

```
\begin{split} D &= \{d_1, \dots, d_n\} = \{(a_1, b_1), \dots, (a_n, b_n)\} \\ S &\stackrel{d_{i_1}}{\to} m_1 \stackrel{d_{i_2}}{\to} \dots \stackrel{d_{i_p}}{\to} m_p \\ m_{k|[1,j_k-1]} a m_{k|[|a_{i_k}|+j_k,|m_k|]} \stackrel{(a_{i_k},b_{i_k})}{\to} m_{k|[1,j_k-1]} b m_{k|[|a_{i_k}|+j_k,|m_k|]} \\ \text{type 'e preuveformelle} &= \\ (\text{int*int*('e caractere list)) list} \\ [\dots, (i_k, j_k, m_k), \dots] \end{split}
```

Vérification de preuve - Exemple

```
G = (T, N_t, S, D) où :
  T = \{a, b, c\}
  ► N_t = \{S, B\}
  D = \{(S, \underline{aBSc})_1, (\underline{S}, \underline{abc})_2, (\underline{Ba}, \underline{aB})_3, (\underline{Bb}, \underline{bb})_4\}
alors aabbcc est dans \mathcal{L}(G) car
S \rightarrow_1 aBSc \rightarrow_2 aBabcc \rightarrow_3 aaBbcc \rightarrow_4 aabbcc.
En Ocaml:
let unepreuve = [(0,1,mot "aBSc");(2,3,mot
"abc");(1,3,mot "aB");(2,4,mot "bb")]
```

Preuve automatique d'appartenance d'un mot

Cherchons comment dériver <u>S</u> en un mot *m* donné.

$$G_n := \{x \in \Sigma^* \mid S(\bigcup_{0 \le k \le n} \to^k) x\}$$

$$G_{n+1} = \bigcup_{x \in G_n} S(x)$$
 où

$$S(x) := \{ y \in \Sigma^* \mid x \to y \} = \bigcup_{d \in D} \{ y \in \Sigma^* \mid x \stackrel{d}{\to} y \}$$

l'algorithme de Knuth-Morris-Pratt pour le calcul de $\mathcal{S}(x)$

On fait en réalité un parcours en largeur du graphe (Σ^*, \rightarrow) depuis S pour trouver un chemin vers m.

Preuve automatique d'appartenance d'un mot - Le parcours en largeur

On va éviter certains mots dans le parcours (ceux n'ayant aucune chance de dériver en m), et l'arrêter en arrivant sur m.

```
valide : ('e caractere list) -> bool
interdit : ('e caractere list) -> bool
On garde en mémoire le chemin parcouru.
```

Amélioration pour les grammaires croissantes

$$\forall (a,b) \in D, |a| \leq |b|$$

$$\forall x, x' \in \delta(S), x \stackrel{*}{\rightarrow} x' \implies |x| \leq |x'|$$

let interditcroiss x =
Array.length x > Array.length m

Amélioration dans le cas général : déduction sur le nombre d'occurence de chaque lettre

Cherchons une fonction interdit plus sophistiquée.

Pour tout $l \in \Sigma, x \in \Sigma^*$, cherchons un ensemble $s_x(l)$ qui majore $|\delta(x)|_l$ (= { $|y|_l | y \in \delta(x)$ }).

Ainsi,
$$x \stackrel{*}{\to} m \implies \forall I \in \Sigma, |m|_I \in s_x(I)$$

$$\exists I \in \Sigma/|m|_I \notin s_x(I) \implies \neg(x \stackrel{*}{\to} m)$$

$$\forall x \in \delta(S), \exists I \in \Sigma, |m|_I \notin s_x(I) \implies m \notin \delta(x)$$
.

Alors interdit x devra renvoyer vrai.

Calcul de s_x - Le graphe A_0 (1)

Considérons le graphe A_0 où les sommets sont dans $Q \subset (\mathcal{P}(\mathbb{N}))^{\Sigma}$ tels que :

$$\forall q, q' \in Q, \exists I \in \Sigma/q(I) \cap q'(I) = \emptyset$$
 et $\forall m \in \delta(S), \exists q \in Q/\forall I \in \Sigma, |m|_I \in q(I)$

Ainsi, $\forall x \in \delta(S), \exists ! q \in Q/\forall I \in \Sigma, |x|_I \in q(I)$, notons ce sommet cat(x)

Calcul de s_x - Le graphe A_0 (2)

Les arêtes du graphe sont les dérivation possibles d'un famille majorante $q \in Q$ à une autre $q' \in Q$.

$$(q, q') \in A_0$$

 $\iff \exists x, x' \in \Sigma^*/x \to x' \text{ et } \forall I \in \Sigma, |x|_I \in q(I) \text{ et } |x'|_I \in q(I)$
 $\iff \exists x, x' \in \Sigma^*/x \to x' \text{ et } cat(x) = q \text{ et } cat(x') = q'$

Pour A un graphe majorant A_0 :

On a
$$\forall I \in \Sigma$$
, $s_{\scriptscriptstyle X}(I) = \bigcup_{\substack{q \text{ accessible depuis } {\it cat}({\scriptscriptstyle X}) \text{ dans A}}} q(I).$

Calcul de s_x - Le graphe A_0 (3)

Ainsi, si cat(x) = q, et cat(x') = q', alors $x \stackrel{*}{\to} x' \implies q'$ est accessible depuis q dans A.

Si m n'est pas accessible depuis x dans un graphe A majorant A_0 , alors on peut interdire le parcours passant par x, interdit x renverra vrai.

Les états q sous la forme $q \in Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$

D =

 $\{(S,\underline{abc})_0,(\underline{abc},\underline{ab})_1,(\underline{b},\underline{k})_2,(\underline{c},\underline{ak})_3,(\underline{kak},\underline{aa})_4,(\underline{a},\underline{aaa})_5\}$

3		—, ·	, (—		_/ -/ -/
q	q(a)	q(b)	q(c)	q(k)	q(S)
α	N*	N*	N*	{0}	{0}
β	N*	N*	{0}	{0}	{0}
γ	N*	{0}	N*	{0}	{0}
δ	N*	Z*	{0}	Ν*	{0}
ϵ	N*	{0}	{0}	Ν*	{0}
φ	N*	{0}	{0}	{0}	{0}
ψ	N*	{0}	N*	N*	{0}
μ	N*	N*	N*	N*	{0}
σ	{0}	{0}	{0}	{0}	N*

(b) Ses sommets

(a) Le graphe A

Les états q sous la forme $q \in Q = \{\{0\}, \mathbb{N}^*\}^{\Sigma}$

Ainsi, nous pouvons tout de suite affirmer qu'il est impossible de dériver <u>aaabakab</u> en <u>akkcckaaakck</u> (en effet, ψ n'est pas accessible depuis δ)

Calcul des arrêtes A du graphe

Pour un sommet de départ fixé et une dérivation fixée.

$$A_{q,d}(\Sigma) := \{(q,b) \in A \mid \exists x, x' \in \Sigma^*/x \xrightarrow{d} x' \text{ et } cat(x) = q \text{ et } cat(x') = q'\}$$

Soit
$$I \in \Sigma$$
, $\Sigma' := \Sigma \setminus \{I\}$, $A = \bigcup_{q \in Q} \bigcup_{d \in D} A_{q,d}(\Sigma)$.

$$ightharpoonup$$
 cat(b)(I) = \mathbb{N}^*

$$A_{q,d}(\Sigma) \subset \{(q,b) \in Q^2 \mid (q_{\Sigma'},b_{\Sigma'}) \in A_{q,d}(\Sigma') \text{ et } b(I) = \mathbb{N}^*\}$$

►
$$cat(b)(l) = \{0\}$$
 et $q(l) = \{0\}$
 $A_{a,d}(\Sigma) \subset \{(q,b) \in Q^2 \mid (q_{\Sigma'},b_{\Sigma'}) \in A_{a,d}(\Sigma') \text{ et } b(l) = \{0\}\}$

$$ightharpoonup$$
 $cat(b)(I) = \{0\}$ et $q(I) = \Sigma^*$

$$A \quad (\nabla) \subset \{(a,b) \in \Omega^2 \mid (a,b) \in \Omega^2$$

$$A_{q,d}(\Sigma) \subset \{(q,b) \in Q^2 \mid (q_{\Sigma'},b_{\Sigma'}) \in A_{q,d}(\Sigma') \text{ et } b(I) = \{0\}\}$$

$$\cup \{(q,b) \in Q^2 \mid (q_{\Sigma'},b_{\Sigma'}) \in A_{q,d}(\Sigma') \text{ et } b(I) = \Sigma^*\}$$

Conclusion

En précalculant la matrice d'accessibilité de A (avec Floyd-Warshall), on a une fonction elimine x s'executant en temps constant.

On arrive alors à réduire le temps de recherche d'une preuve d'appartenance du mot m au langage de notre grammaire.

Extension probablement possible pour $Q \subset \{2\mathbb{N}, 2\mathbb{N} + 1\}^{\Sigma}$