

ROOTED TREES

Why

We want to talk rooting a tree at a given vertex.¹

Definition

A rooted tree is an ordered pair ((V,T),r) where (V,T) is a tree and $r \in V$ is a distinguished vertex which we call the root. We visualize rooted trees with the root at the top (see the figure below).

Parents and children

Suppose w is the first vertex on the path from the root to a non-root vertex v. Since there is only one such path, w is unique and we call it the parent of v. Conversely, we call v a child of w. We denote the set of children of v by ch(v). A vertex may have no children or it may have many children. If it has no children we call it a leaf.

We define the parent function pa : $V \to V$ with the convention that the parent of the root is the root. The parent of degree k where k > 0 is $\operatorname{pa}^k(x)$ where pa^k is the composite of pa with itself k times. So, in particular, $\operatorname{pa}^{k+1}(v) = \operatorname{pa}(\operatorname{pa}^k(v))$. We define the parent of degree 0 of v to be v, and denote it by $\operatorname{pa}^0(v) = v$. For the tree visualized in the figure below, $\operatorname{pa}(i) = g$, $\operatorname{pa}^2(i) = d$, $\operatorname{pa}^3(i) = a$.

If $w = \operatorname{pa}^k(v)$ for some $k \geq 0$, then w is a ancestor of v and v is a descendent of w. We use the term proper ancestor and proper descendent if k > 0 (i.e., $w \neq v$).

The depth or level of a vertex v is its distance (see Trees) to the root. We denote the level of a vertex v by lev(v). The level of the root is 0. If lev(v) = k > 0, then $pa^k(v)$ is the root. The level function lev satisfies lev(v) = lev(pa(v)) + 1.

¹Future editions will expand this intuition.

