

Application

- Brushed Motor drive applications
- **BLDC** Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free*
- RoHS Compliant, Halogen-Free*

HEXFET® Power MOSFET

V _{DSS}	40V	
R _{DS(on)} typ.	1.25m Ω	
max	1.6m Ω	
D (Silicon Limited)	317A①	
I _{D (Package Limited)}	195A	

G	D	S
Gate	Drain	Source

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRFB7434PbF	TO-220	Tube	50	IRFB7434PbF

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, VGS @ 10V (Silicon Limited)	317①	
I_D @ T_C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	224①	^
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	195	Α
I_{DM}	Pulsed Drain Current ②	1270	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	294	W
	Linear Derating Factor	1.96	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J Operating Junction and Storage Temperature Range		-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	490	1
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ®	1098	mJ
I _{AR}	Avalanche Current ②	Coo Fig 15 16 220 22h	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 15, 16, 23a, 23b	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.51	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{ heta JA}$	Junction-to-Ambient		62	

Static @ T₁ = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.032		V/°C	Reference to 25°C, I _D = 5mA ②
D	Static Drain-to-Source On-Resistance		1.25	1.6	m()	V _{GS} = 10V, I _D = 100A ⑤
$R_{DS(on)}$	Static Dialii-to-Source Oil-Resistance		1.8		mΩ	$V_{GS} = 6.0V, I_D = 50A $ (S)
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
1	Drain-to-Source Leakage Current			1.0		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$
I _{DSS}	Diani-to-Source Leakage Current			150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ш	$V_{GS} = -20V$
R_G	Gate Resistance		2.1		Ω	

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.

- ⑤ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- © Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- ® R_θ is measured at T_J approximately 90°C.
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L= 1mH, R_G = 50Ω, I_{AS} = 47A, V_{GS} =10V.
- Halogen -Free since April 30, 2014

Dynamic Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	211			S	V _{DS} = 10V, I _D =100A
Q_g	Total Gate Charge		216	324		I _D = 100A
Q_{gs}	Gate-to-Source Charge		51		nC	V _{DS} = 20V
Q_{gd}	Gate-to-Drain Charge		77			V _{GS} = 10V⑤
Q _{sync}	Total Gate Charge Sync. (Qg- Qgd)		139			
$t_{d(on)}$	Turn-On Delay Time		24			V _{DD} = 20V
t _r	Rise Time		68			I _D = 30A
$t_{d(off)}$	Turn-Off Delay Time		115		ns	$R_G = 2.7\Omega$
t _f	Fall Time		68			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		10820			V _{GS} = 0V
C _{oss}	Output Capacitance		1540			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		1140		pF	f = 1.0MHz, See Fig.5
C _{oss eff.(ER)}	Effective Output Capacitance (Energy Related)		1880] "	V _{GS} = 0V, VDS = 0V to 32V⑦
Coss eff.(TR)	Output Capacitance (Time Related)		2208			V _{GS} = 0V, VDS = 0V to 32V [®]

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			317①		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			1270		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage		0.9	1.3	٧	$T_J = 25^{\circ}C, I_S = 100A, V_{GS} = 0V $ §
dv/dt	Peak Diode Recovery dv/dt3		5.0		V/ns	$T_J = 175^{\circ}C, I_S = 100A, V_{DS} = 40V$
+	Reverse Recovery Time		38		ns	$T_J = 25^{\circ}C$ $V_{DD} = 34V$
t _{rr}	Reverse Recovery Time		37		115	$T_J = 125^{\circ}C$ $I_F = 100A$,
	Deverse Deservery Charge		50		20	<u>T_J = 25°C</u> di/dt = 100A/µs ⑤
Q_{rr}	Reverse Recovery Charge		50		nC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		1.9		Α	T _J = 25°C

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical Coss Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Avalanche Current vs. Pulse Width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. l_{av} = Allowable avalanche current.
- ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 14)

PD (ave) = 1/2 (1.3·BV· I_{av}) = $\Delta T/Z_{thJC}$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

E_{AS (AR)} = P_{D (ave)}·t_{av}

Fig 17. Threshold Voltage vs. Temperature

Fig 19. Typical Recovery Current vs. dif/dt

Fig 18. Typical Recovery Current vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

Fig 21. Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24a. Switching Time Test Circuit

Fig 24b. Switching Time Waveforms

Fig 25a. Gate Charge Test Circuit

Fig 25b. Gate Charge Waveform

2018-07-10

8

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- .- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- .- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
- 4.— DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- √5.

 → DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 6. CONTROLLING DIMENSION : INCHES.
- 7.- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- 8.- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- 9.- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.)
 WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS				
SYMBOL	BOL MILLIMETERS INCHES				
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1,14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
ь	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
c	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	_	.030	8
e	2.54		.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
ØΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19,2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

TO-220AB packages are not recommended for Surface Mount Application.

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †			
Moisture Sensitivity Level	TO-220 N/A			
RoHS Compliant	Yes			

Applicable version of JEDEC standard at the time of product release.

Revision History

11011010111	
Date	Comment
4/22/2014	 Updated data sheet with new IR corporate template. Updated package outline and part marking on page 9. Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
11/18/2014	 Updated E_{AS (L=1mH)} = 1098mJ on page 2 Updated note 9 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 47A, V_{GS} =10V". on page 2
07/10/2018	 Updated datasheet with corporate template. Corrected typo for Fig 10 (package limit from 10ms curve to DC curve) –on page 5

Trademarks of Infineon Technologies AG

HHVIC™, μIPM™, μPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 **Published by Infineon Technologies AG** 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact nearest Infineon Technologies (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.