$$\dot{\mathbf{P}}^{\mathsf{S}} \cdot \mathbf{P}^{\mathsf{S}} = \\ = (\mathbf{k}\mathbf{k} - \mathbf{E})\dot{\vartheta}\sin\vartheta \cdot \mathbf{E}\cos\vartheta + (\mathbf{k}\dot{\mathbf{k}} + \dot{\mathbf{k}}\mathbf{k})(1 - \cos\vartheta) \cdot \mathbf{E}\cos\vartheta + \\ + (\mathbf{k}\dot{\mathbf{k}} - \mathbf{E})\dot{\vartheta}\sin\vartheta \cdot \mathbf{k}\mathbf{k}(1 - \cos\vartheta) + (\mathbf{k}\dot{\mathbf{k}} + \dot{\mathbf{k}}\mathbf{k})(1 - \cos\vartheta) \cdot \mathbf{k}\mathbf{k}(1 - \cos\vartheta) = \\ = (\mathbf{k}\mathbf{k} - \mathbf{E})\dot{\vartheta}\sin\vartheta\cos\vartheta + (\mathbf{k}\dot{\mathbf{k}} + \dot{\mathbf{k}}\mathbf{k})\cos\vartheta(1 - \cos\vartheta) + (\mathbf{k}\dot{\mathbf{k}} \cdot \mathbf{k}\mathbf{k} + \dot{\mathbf{k}}\mathbf{k} \cdot \mathbf{k}\mathbf{k})(1 - \cos\vartheta)^{2} = \\ = (\mathbf{k}\mathbf{k} - \mathbf{E})\dot{\vartheta}\sin\vartheta\cos\vartheta + \mathbf{k}\dot{\mathbf{k}}\cos\vartheta(1 - \cos\vartheta) + \\ + \dot{\mathbf{k}}\dot{\mathbf{k}}\cos\vartheta - \dot{\mathbf{k}}\dot{\mathbf{k}}\cos^{2}\vartheta + \dot{\mathbf{k}}\dot{\mathbf{k}} - 2\dot{\mathbf{k}}\dot{\mathbf{k}}\cos\vartheta + \dot{\mathbf{k}}\dot{\mathbf{k}}\cos^{2}\vartheta = \\ = (\mathbf{k}\mathbf{k} - \mathbf{E})\dot{\vartheta}\sin\vartheta\cos\vartheta + \mathbf{k}\dot{\mathbf{k}}\cos\vartheta + \mathbf{k}\dot{\mathbf{k}}\cos\vartheta - \mathbf{k}\dot{\mathbf{k}}\cos^{2}\vartheta + \dot{\mathbf{k}}\dot{\mathbf{k}}(1 - \cos\vartheta),$$

$$\dot{\mathbf{P}}^{\mathsf{A}} \cdot \mathbf{P}^{\mathsf{S}} = \\
= (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{E} \,\dot{\vartheta} \cos^{2} \vartheta + (\dot{\mathbf{k}} \times \mathbf{E}) \cdot \mathbf{E} \sin \vartheta \cos \vartheta + \\
+ (\mathbf{k} \times \mathbf{E}) \cdot \mathbf{k} \dot{\mathbf{k}} \,\dot{\vartheta} \cos \vartheta \cdot (1 - \cos \vartheta) + (\dot{\mathbf{k}} \times \mathbf{E}) \cdot \mathbf{k} \dot{\mathbf{k}} \sin \vartheta \cdot (1 - \cos \vartheta) = \\
= \mathbf{k} \times \mathbf{E} \,\dot{\vartheta} \cos^{2} \vartheta + \dot{\mathbf{k}} \times \mathbf{E} \sin \vartheta \cos \vartheta + \dot{\mathbf{k}} \times \mathbf{k} \dot{\mathbf{k}} \sin \vartheta \cdot (1 - \cos \vartheta),$$

$$\begin{split} \dot{\mathbf{P}}^{\mathsf{S}} \cdot \mathbf{P}^{\mathsf{A}} &= \\ &= (\mathbf{k}\mathbf{k} - \mathbf{E}) \dot{\vartheta} \sin \vartheta \cdot (\mathbf{k} \times \mathbf{E}) \sin \vartheta + (\mathbf{k}\dot{\mathbf{k}} + \dot{\mathbf{k}}\mathbf{k}) (1 - \cos \vartheta) \cdot (\mathbf{k} \times \mathbf{E}) \sin \vartheta = \\ &= \overline{\mathbf{k}\mathbf{k} \cdot (\mathbf{k} \times \mathbf{E})} \dot{\vartheta} \sin^2 \vartheta - \mathbf{E} \cdot (\mathbf{k} \times \mathbf{E}) \dot{\vartheta} \sin^2 \vartheta + \left(\mathbf{k}\dot{\mathbf{k}} \cdot (\mathbf{k} \times \mathbf{E}) + \dot{\mathbf{k}}\dot{\mathbf{k}} \cdot (\mathbf{k} \times \mathbf{E}) \right) \sin \vartheta (1 - \cos \vartheta) = \\ &= -\mathbf{k} \times \mathbf{E} \dot{\vartheta} \sin^2 \vartheta + \mathbf{k}\dot{\mathbf{k}} \times \mathbf{k} \sin \vartheta (1 - \cos \vartheta), \end{split}$$

$$\dot{\mathbf{P}}^{\mathsf{A}} \cdot \mathbf{P}^{\mathsf{A}} = (\mathbf{k} \times \mathbf{E}) \dot{\vartheta} \cos \vartheta \cdot (\mathbf{k} \times \mathbf{E}) \sin \vartheta + (\dot{\mathbf{k}} \times \mathbf{E}) \cdot (\mathbf{k} \times \mathbf{E}) \sin^2 \vartheta =$$

$$= (\mathbf{k} \mathbf{k} - \mathbf{E}) \dot{\vartheta} \sin \vartheta \cos \vartheta + \mathbf{k} \dot{\mathbf{k}} \sin^2 \vartheta;$$

$$\dot{\mathbf{P}} \cdot \mathbf{P}^{\mathsf{T}} = \dot{\mathbf{P}}^{\mathsf{S}} \cdot \mathbf{P}^{\mathsf{S}} + \dot{\mathbf{P}}^{\mathsf{A}} \cdot \mathbf{P}^{\mathsf{S}} - \dot{\mathbf{P}}^{\mathsf{S}} \cdot \mathbf{P}^{\mathsf{A}} - \dot{\mathbf{P}}^{\mathsf{A}} \cdot \mathbf{P}^{\mathsf{A}} =$$

$$= (kk - E) \dot{\vartheta} \sin \vartheta \cos \vartheta + k\dot{\mathbf{k}} \cos \vartheta - k\dot{\mathbf{k}} \cos^2\vartheta + \dot{\mathbf{k}} \mathbf{k} (1 - \cos \vartheta) +$$

$$+ k \times E \dot{\vartheta} \cos^2\vartheta + \dot{\mathbf{k}} \times E \sin \vartheta \cos \vartheta + \dot{\mathbf{k}} \times kk \sin \vartheta (1 - \cos \vartheta) +$$

$$+ k \times E \dot{\vartheta} \sin^2\vartheta - k\dot{\mathbf{k}} \times k \sin \vartheta (1 - \cos \vartheta) - (kk - E) \dot{\vartheta} \sin \vartheta \cos \vartheta - k\dot{\mathbf{k}} \sin^2\vartheta =$$

$$= k \times E \dot{\vartheta} + (\dot{\mathbf{k}} \mathbf{k} - k\dot{\mathbf{k}}) (1 - \cos \vartheta) + \dot{\mathbf{k}} \times E \sin \vartheta \cos \vartheta + (\dot{\mathbf{k}} \times kk - k\dot{\mathbf{k}} \times k) \sin \vartheta (1 - \cos \vartheta) =$$

$$= k \times E \dot{\vartheta} + k \times \dot{\mathbf{k}} \times E (1 - \cos \vartheta) + \dot{\mathbf{k}} \times E \sin \vartheta \cos \vartheta + k \times (\dot{\mathbf{k}} \times k) \times E \sin \vartheta (1 - \cos \vartheta) =$$

$$= k \times E \dot{\vartheta} + \dot{\mathbf{k}} \times E \sin \vartheta \cos \vartheta + (\dot{\mathbf{k}} \mathbf{k} \cdot k - \dot{\mathbf{k}} \dot{\mathbf{k}} \cdot k) \times E \sin \vartheta (1 - \cos \vartheta) + k \times \dot{\mathbf{k}} \times E (1 - \cos \vartheta) =$$

$$= k \times E \dot{\vartheta} + \dot{\mathbf{k}} \times E \sin \vartheta \cos \vartheta + (\dot{\mathbf{k}} \mathbf{k} \cdot k - \dot{\mathbf{k}} \dot{\mathbf{k}} \cdot k) \times E \sin \vartheta (1 - \cos \vartheta) + k \times \dot{\mathbf{k}} \times E (1 - \cos \vartheta) =$$

$$= k \times E \dot{\vartheta} + \dot{\mathbf{k}} \times E \sin \vartheta + k \times \dot{\mathbf{k}} \times E (1 - \cos \vartheta).$$

$$o_{i'k} = \begin{bmatrix} o_{1'1} & o_{1'2} & o_{1'3} \\ o_{2'1} & o_{2'2} & o_{2'3} \\ o_{3'1} & o_{3'2} & o_{3'3} \end{bmatrix} = \begin{bmatrix} \cos \measuredangle(\boldsymbol{e}_1', \boldsymbol{e}_1) & \cos \measuredangle(\boldsymbol{e}_1', \boldsymbol{e}_2) & \cos \measuredangle(\boldsymbol{e}_1', \boldsymbol{e}_3) \\ \cos \measuredangle(\boldsymbol{e}_2', \boldsymbol{e}_1) & \cos \measuredangle(\boldsymbol{e}_2', \boldsymbol{e}_2) & \cos \measuredangle(\boldsymbol{e}_2', \boldsymbol{e}_3) \\ \cos \measuredangle(\boldsymbol{e}_3', \boldsymbol{e}_1) & \cos \measuredangle(\boldsymbol{e}_3', \boldsymbol{e}_2) & \cos \measuredangle(\boldsymbol{e}_3', \boldsymbol{e}_3) \end{bmatrix}$$