Modelling with binary variables II

Lorenzo Castelli, Università degli Studi di Trieste

Mathematical optimisation 2021

Use of binary variables (I)

1 | 28

Packing constraint

$$\sum_{i} x_{i} \leq 1$$

At most one of a set of events is allowed to occur.

Cover constraint

$$\sum_{i} x_{j} \geq 1$$

At least one of a set of events is allowed to occur.

Partitioning constraint

$$\sum_{i} x_{j} = 1$$

Exactly one of a set of events is allowed to occur.

Use of binary variables (II)

2 | 28

- Neither or both events 1 and 2 must occur

$$x_2 - x_1 = 0$$
, i.e., $x_2 = x_1$,

- Event 2 can occur only if event 1 occurs

$$x_2 - x_1 \le 0$$
, i.e., $x_2 \le x_1$,

where

$$x_i = \begin{cases} 1 & \text{if event } i \text{ occurs} \\ 0 & \text{if event } i \text{ does not occur} \end{cases}$$

for
$$i = 1, 2$$
.

Use of binary variables (III)

3 | 28

- Consider an activity that can be operated at any level y from 0 to u, i.e., $0 \le y \le u$.
- The activity can be undertaken only if some event represented by the binary variable \boldsymbol{x} occurs.

$$y - ux \le 0$$
, i.e., $y \le ux$,

where $x \in \{0,1\}$ and $y \ge 0$.

x = 0 implies y = 0

x = 1 provides the original constraint $0 \le y \le u$.

The Facility Location Problem (FLP) $4 \mid 2$

- We are given a set $N = \{1, ..., n\}$ of potential facility locations and a set of clients $I = \{1, ..., m\}$.
- A facility placed at j costs c_j for $j \in N$.
- Each client has a demand for a certain good.
- Cost of satisfying the demand of client i from a facility at j is h_{ij} .

The optimisation problem is to choose a subset of the locations at which to place facilities and then assign the clients to these facilities as to minimise the total cost.

Uncapacitated FLP

5 | 28

There is no restriction on the number of clients that a facility can serve.

Decision variables

$$x_j = \begin{cases} 1 & \text{if a facility is placed at } j \\ 0 & \text{otherwise} \end{cases}$$

 $y_{ij} \in \mathbb{R}_{+}^{mn}$ is the fraction of the demand of client i that is satisfied from a facility at j.

Uncapacitated FLP

6 | 28

Constraints

- Each client's demand must be satisfied

$$\sum_{j\in N}y_{ij}=1 \text{ for } i\in I.$$

- Client $m{i}$ cannot be served from $m{j}$ unless a facility is placed at $m{j}$

$$y_{ij} - x_j \leq 0$$
 for $i \in I$ and $j \in N$.

Objective function

$$\min \sum_{j \in N} c_j x_j + \sum_{i \in I} \sum_{j \in N} h_{ij} y_{ij}$$

Capacitated FLP

7 | 28

It may be unrealistic to assume that a facility can serve any number of clients.

- Let u_j be the capacity of the facility located at j.
- Let b_i be the demand of the ith client.
- Let y_{ii} be the quantity of goods sent from facility j to client i
- Let h_{ii} be the shipping cost per unit

$$\min \sum_{j \in N} c_j x_j + \sum_{i \in I} \sum_{j \in N} h_{ij} y_{ij}$$

$$\sum_{j \in N} y_{ij} = b_i \qquad \text{for } i \in I$$

$$\sum_{i \in I} y_{ij} - u_j x_j \le 0 \qquad \text{for } j \in N$$

$$x_i \in \{0, 1\}, y_{ii} > 0 \qquad \text{for } i \in I \text{ and } j \in N$$

Capacitated FLP - Exercise

8 | 28

Consider a company with three potential sites for installing its facilities/warehouses and five demand points. Each site j has a yearly activation cost f_j , i.e., an annual leasing expense that is incurred for using it, independently of the volume it services. This volume is limited to a given maximum amount that may be handled yearly, M_j . Additionally, there is a transportation cost c_{ij} per unit serviced from facility j to the demand point i.

Customer i Annual demand d_i	1 80	2 270	3 250	4 160	5 180		
Facility j			c _{ij}			f_j	M_{j}
1	4	5	6	8	10	1000	500
2	6	4	3	5	8	1000	500
3	9	7	4	3	4	1000	500

Capacitated FLP - Exercise

FLP - example

(b) 750 clients

The Network Flow Problem (NFP)

11 | 28

- A network is composed of a set on nodes \boldsymbol{V} (e.g., facilities) and a set of arcs $\boldsymbol{\mathcal{A}}$.
- An arc e = (i, j) that points from node i to node j means that there is a direct shipping route (i.e., a flow) from node i to node j.
- Associated with each node i, there is a demand b_i .

 $b_i > 0$ supply node

 $b_i < 0$ demand node

 $b_i = 0$ transit node

We assume the net demand is zero, i.e., $\sum_{i \in V} b_i = 0$.

- Each arc (i,j) has

A flow capacity u_{ij} A unit flow cost c_{ii}

The Network Flow Problem (NFP)

13 | 28

If y_{ij} is the flow on arc (i, j), the NFP is formulated as

$$\min \sum_{(i,j)\in\mathcal{A}} c_{ij} y_{ij} \tag{1}$$

$$y_{ij} \le u_{ij}$$
 for $(i,j) \in \mathcal{A}$ (2)

$$\sum_{j \in V} y_{ij} - \sum_{j \in V} y_{ji} = b_i \qquad \text{for } i \in V \qquad (3)$$

$$\mathbf{y} \in \mathbb{R}_{+}^{|\mathcal{A}|} \tag{4}$$

Constraints (2) are the capacity constraints.

Constraints (3) are the flow conservation constraints.

Mathematical optimisation 2021

The Fixed-Charged NFP

14 | 28

A fixed cost h_{ij} is imposed if there is a positive flow on arc (i, j). A binary variable x_{ij} indicates whether arc (i, j) is used.

$$\min \sum_{(i,j)\in\mathcal{A}} (\mathbf{h}_{ij} \mathbf{x}_{ij} + c_{ij} \mathbf{y}_{ij}) \tag{5}$$

$$y_{ij} - u_{ij} \mathbf{x}_{ij} \leq \mathbf{0}$$
 for $(i, j) \in \mathcal{A}$ (6)

$$\sum_{j \in V} y_{ij} - \sum_{j \in V} y_{ji} = b_i \qquad \text{for } i \in V \qquad (7)$$

$$\mathbf{x} \in \{0,1\}^{|\mathcal{A}|}, \mathbf{y} \in \mathbb{R}_+^{|\mathcal{A}|} \tag{8}$$

The Travelling Salesman Problem

15 | 28

- We are given a set on nodes $V = \{1, \dots, n\}$ (e.g., cities) and a set of arcs \mathcal{A} .
- Arcs represent ordered pairs of cities between which direct travel is possible.
- For $(i,j) \in \mathcal{A}, c_{ij}$ is the direct travel time from city i to city j.
- The TSP aims at finding a tour, starting at city 1, that
 - a) visits each other city exactly once and then returns to city 1
 - b) takes the least total travel time

The Travelling Salesman Problem (TSP)

A tour that visits all nodes exactly once is called Hamiltonian tour. The TSP identifies the Hamiltonian tour of minimum cost.

TSP - seems easy

16 | 28

Three tours: A-B-D-C-A: 11; A-D-B-C-A: 23; A-D-C-B-A: 18.

TSP - maybe not too easy

TSP - it's difficult!!

TSP - Formulation

19 | 28

Decision Variables

$$x_{ij} = \begin{cases} 1 & \text{if } j \text{ immediately follows } i \text{ on the tour} \\ 0 & \text{otherwise} \end{cases}$$

Hence $x \in \{0,1\}^{|\mathcal{A}|}$

Objective function

$$\min \sum_{(i,j)\in\mathcal{A}} c_{ij} x_{ij}$$

TSP - Constraint formulation

20 | 28

Each city is entered and left exactly once

$$\sum_{i:(i,j)\in\mathcal{A}} x_{ij} = 1 \text{ for } j \in V$$
 (9)

$$\sum_{j:(i,j)\in\mathcal{A}} x_{ij} = 1 \text{ for } i \in V$$
 (10)

However, constraints (9) and (10) are not sufficient to define tours since they are also satisfied by subtours.

TSP - Subtours

TSP - Subtour elimination (i)

22 | 28

In any tour there must be an arc that goes from $\{1,2,3\}$ to $\{4,5,6\}$ and an arc that goes from $\{4,5,6\}$ to $\{1,2,3\}$. In general, for any $U \subset V$ with $2 \le |U| \le |V| - 2$, constraints

$$\sum_{\{(i,j)\in\mathcal{A}:i\in U,j\in V\setminus U\}} x_{ij} \ge 1 \tag{11}$$

are satisfied by all tours, but every subtour violates at least one of them.

TSP - Subtour elimination

TSP - Too many ways to choose U 26

TSP - Subtour elimination (ii)

27 | 28

An alternative way to eliminate subtours is to introduce constraints

$$\sum_{\{(i,j)\in\mathcal{A}:i\in\mathcal{U},j\in\mathcal{U}\}} x_{ij} \leq |\mathcal{U}| - 1 \,\,\forall \mathcal{U}\subset\mathcal{V}: 2\leq |\mathcal{U}|\leq |\mathcal{V}| - 2$$
(12)

But again we need a constraint for each $U \subset V$ such that $2 \le |U| \le |V| - 2$.

In both (11) and (12) the number of constraints is nearly $2^{|V|}$!!!

$$\frac{1}{2}\left[\left(\begin{array}{c}|V|\\2\end{array}\right)+\left(\begin{array}{c}|V|\\3\end{array}\right)+\cdots+\left(\begin{array}{c}|V|\\|V|-2\end{array}\right)\right]$$

$$\begin{aligned} & \min \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} \\ & \sum_{i:(i,j) \in \mathcal{A}} x_{ij} = 1 \text{ for } j \in V \\ & \sum_{j:(i,j) \in \mathcal{A}} x_{ij} = 1 \text{ for } i \in V \\ & \sum_{j:(i,j) \in \mathcal{A}} x_{ij} = 1 \text{ for } i \in V \\ & \sum_{\{(i,j) \in \mathcal{A}: i \in \mathcal{U}, j \in \mathcal{V} \setminus \mathcal{U}\}} x_{ij} \geq 1 & \forall \mathcal{U} \subset \mathcal{V}: 2 \leq |\mathcal{U}| \leq |\mathcal{V}| - 2 \\ & OR \\ & \sum_{\{(i,j) \in \mathcal{A}: i \in \mathcal{U}, j \in \mathcal{U}\}} x_{ij} \leq |\mathcal{U}| - 1 & \forall \mathcal{U} \subset \mathcal{V}: 2 \leq |\mathcal{U}| \leq |\mathcal{V}| - 2 \\ & x \in \{0,1\}^{|\mathcal{A}|} \end{aligned}$$