

11-basic substituted dibenz-b f-1 4-oxazepines**Patent Assignee:** WANDER AG DR A**Patent Family**

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
CH 436297	A					196800	B

Priority Applications (Number Kind Date): CH 646762 A (19640527)**Abstract:**

CH 436297 A

Process for preparing new 11-basic substd.-dibenz-(b,f)-(1,4)-oxazepines of general formula I and their acid addn. salts.

(I) where R = H, alkyl up to C3, HO-alkyl or AlkO-alkyl. The HO-alkyl may be acylated and the benzene rings may contain substituents viz. Hal, CF₃, alkyl, alkoxy, alkylmercapto.

Neuroleptics, neuroleptics, analgesics; treatment of psychotic states.

By reaction of compds. of general formula II which may be substd. in the benzene rings, with reactive esters of alcohols HO.R (III) and separating the product as the free base or an acid salt.

2-Cl-11-(4'-Me-1'-piperazinyl)-dibenz-(b,f)- (1,4)-oxazepine. (Ia, R = Me).

Derwent World Patents Index

© 2005 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 529374

SCHWEIZERISCHE EIDGENOSSSENSCHAFT
EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

Klassierung: 12 p, 3

Int. Cl.: C 07 d 87/54

Gesuchsnummer: 6762/63

Anmeldungsdatum: 27. Mai 1964, 24 Uhr

Patent erteilt: 31. Mai 1967

Patentschrift veröffentlicht: 15. November 1967

S

HAUPTPATENT

Dr. A. Wander AG, Bern

Verfahren zur Herstellung 11-basisch substituierter Dibenz[b, f]-[1,4]oxazepine

Dr. Jean Schmutz, Muri b. Bern, Dr. Fritz Hunziker und Franz Martin Künzle, Bern, sind als Erfinder genannt worden

¹
Die Erfindung betrifft ein Verfahren von gegebenenfalls in den Benzolkernen durch Halogenatome, Trifluormethylgruppen oder 1 bis 3 C-Atome enthaltende

²
Alkyl-, Alkoxy- oder Alkylmercaptogruppen ein- oder mehrfach substituierten 11basisch substituierten Dibenz-[b,f][1,4]oxazepinen der Formel:

worin R₁ ein Wasserstoffatom oder eine 1 bis 3 C-Atome enthaltende Alkyl-, Alkoxyalkyl- oder Hydroxyalkylgruppe, welch letztere auch acyliert sein kann, darstellt, sowie von Säure-Additionssalzen davon.

²⁰ Die gewünschten Produkte (I) werden erfindungsgemäß erhalten, wenn man in den Benzolkernen gegebenenfalls entsprechend substituierte Verbindungen der Formel:

mit reaktionsfähigen Estern von Alkoholen der Formel R₁-OH, worin R₁ die genannte Bedeutung hat, umsetzt,

wobei die Reaktionsprodukte in Form der freien Basen oder von Säureadditionssalzen gewonnen werden. Als

reaktionsfähige Ester von Alkoholen der Formel R_1-OH kommen insbesondere Halogenwasserstoffsäureester in Betracht. Die Umsetzung erfolgt vorzugsweise in einem inerten Lösungsmittel, z. B. Benzol, durch Erwärmen auf Rückflußtemperatur.

Die in der beschriebenen Weise erhaltenen Basen sind in den meisten Fällen kristallisierbar, sonst im Hochvakuum unzersetzt destillierbar, und bilden mit anorganischen und organischen Säuren, beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Essigsäure Oxalsäure, Weinsäure, Toluolsulfosäure und dergleichen, in Wasser beständige Additionssalze, in welcher Form die Produkte ebenfalls verwendet werden können.

Die in der beschriebenen Weise erhaltenen Basen und ihre Säure-Additionssalze sind neue Verbindungen,

die als Wirkstoffe in Arzneimitteln oder als Zwischenprodukte zur Herstellung von solchen Verwendung finden. Insbesondere fallen die Produkte als Neuroleptika, Neuroleptika und Analgetika in Betracht. Einzelne davon eignen sich zur Behandlung psychotischer Zustände. Diese Wirksamkeit äußert sich pharmakologisch in starker Motilitätsdämpfung bei Mäusen, die mit kateleptischer Wirkung einhergehen kann. Die Motilitätsdämpfung wird durch Messung der Laufaktivität nach der Methode von Caviezel und Baillod [Pharm. Acta Helv. 33, 469 (1958)] erfaßt. Die Laufaktivitätswerte einiger erfindungsgemäßer Produkte sowie deren Toxizität werden in der folgenden Tabelle I mit den entsprechenden Zahlen für Chlorpromazin verglichen.

Tabelle I

Wirkstoff	Toxizität Maus LD ₅₀ mg/kg p.o.	Laufaktivität Maus ED ₅₀ mg/kg p.o.
Chlorpromazin	135	3,5
11-(4-Methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	230	2,7
2-Chlor-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	47	0,05
2-Brom-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	95	0,05
2-Fluor-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	120	0,13
4-Chlor-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	800	5,4
8-Chlor-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]-oxazepin	410	10,5

Beispiel 1

Zu einer auf 60°C erwärmten Lösung von 6,26 g 2-Chlor-11-(1-piperazinyl)-dibenz[b,f][1,4]oxazepin in 50 ml Benzol wird eine Lösung von 1,42 g Methyliodid in 30 ml Benzol getropft. Das Gemisch wird während 30 Minuten unter Rückfluß erwärmt. Nach dem Abkühlen nutsche man das Hydroiodid des Ausgangsmaterials ab und dampft das Filtrat im Vakuum zur Trockne ein. Der Rückstand wird aus Aceton/Petroläther kristallisiert,

siert, wobei man 2,7 g 2-Chlor-11-(4-methyl-1-piperazinyl)-dibenz[b,f][1,4]oxazepin vom Schmelzpunkt 109–110°C erhält.

In analoger Weise wie im vorerwähnten Beispiel erhält man aus entsprechenden Ausgangsstoffen die in der nachfolgenden Tabelle II genannten Produkte. In der rechten Kolonne bedeutet Ac Aceton, Ae Äther, Ch Chloroform und Pe Petroläther.

Tabelle II

Beispiel	R ₁	Substituenten in den Benzolkernen	Physikalische Konstanten
2	-CH ₃	H	Smp. der Base: 97–98°C (aus Pe)
3	-CH ₃	7-Cl	Smp. der Base: 147–148°C (aus Pe)
4	-CH ₃	2,8-Dichlor	Smp. der Base: 130–131°C (aus Ac/Pe)
5	-CH ₃	4,8-Dichlor	Smp. der Base: 134–135°C (aus Ae/Pe)
6	-CH ₃	4-CH ₃	Smp. der Base: 179–182°C (aus Ac/Pe)
7	-CH ₃	2-CH ₃	Smp. der Base: 130–131°C (aus Ae/Pe)
8	-CH ₃	4-Cl	Smp. der Base: 173–174°C (aus Ac/Pe)
9	-CH ₃	6-Cl	Smp. der Base: 83–87°C (aus Pe)
10	-CH ₃	3-CH ₃	Smp. der Base: 103–105°C (aus Ae/Pe)
11	-CH ₃	2-Br	Smp. der Base: 95–99°C (aus Pe)

Beispiel	R ₁	Substituenten in den Benzol- kernen	Physikalische Konstanten
12	-CH ₃	3,4-Dimethyl	Smp. der Base: 167–168°C (aus Ac/Pe)
13	-CH ₃	2-F	Smp. der Base: 81–86°C (aus Pe)
14	-CH ₃	1,4-Dimethyl	Smp. der Base: 143–144°C (aus Ae/Pe)
15	-CH ₃	3-Cl	Smp. der Base: 122–124°C (aus Ae/Pe)
16	-(CH ₃) ₂ -OH	2-Cl	Smp. des Dihydrochlorids: 197–237°C (aus Me/Ae)
17	-CH ₃	4-CH ₃ ; 8-Cl	Smp. der Base: 151–152°C (aus Ae/Pe)
18	-CH ₃	2-OCH ₃	Smp. der Base: 107–108°C (aus Ae/Pe)
19	-CH ₃	4-C ₂ H ₅	Smp. der Base: 128–130°C (aus Ae/Pe)
20	-CH ₃	2,4-Dichlor	Smp. der Base: 135–138°C (aus Ac/Pe)
21	-CH ₃	4-CH ₃ ; 7-Cl	Smp. der Base: 167–168°C (aus Ac/Ae)
22		2-Cl	Smp. des Dihydrochlorids: 155–160°C (aus Essigester/Me/Ae)

PATENTANSPRUCH

Verfahren zur Herstellung von gegebenenfalls in den Benzolkernen durch Halogenatome, Trifluormethylgruppen oder 1 bis 3 C-Atome enthaltende Alkyl-, Alkoxy- oder Alkylmercaptoprotopurinen ein- oder mehrfach substituierten 11basisch substituierten Dibenz[b,f]-[1,4]oxazepinen der Formel:

worin R₁ eine 1 bis 3 C-Atome enthaltende Alkyl-, Alkoxyalkyl- oder Hydroxyalkylgruppe, welch letztere

auch acyliert sein kann, darstellt, sowie von Säure-Additionssalzen davon, dadurch gekennzeichnet, daß man in den Benzolkernen gegebenenfalls entsprechend substituierte Verbindungen der Formel:

mit reaktionsfähigen Estern von Alkoholen der Formel R₁-OH, worin R₁ die genannte Bedeutung hat, umsetzt, wobei die Reaktionsprodukte in Form der freien Basen oder von Säure-Additionssalzen gewonnen werden.

Dr. A. Wander AG

Anmerkung des Eidg. Amtes für geistiges Eigentum:

Sollten Teile der Beschreibung mit der im Patentanspruch gegebenen Definition der Erfindung nicht in Einklang stehen, so sei daran erinnert, daß gemäß Art. 51 des Patentgesetzes der Patentanspruch für den sachlichen Geltungsbereich des Patentes maßgebend ist.