Lab1 实验报告

李文彬, 1120173001

2020年2月27日

1 实验内容

实验报告中记录了根据实验指导进行实现的操作过程,展示实验各关键部分的截图,绘制要求图表,并在相应阶段回答问题。

1.1 实验环境

 ${\it Macbook~pro,~macOS~Catalina}$ Wireshark for Mac

2 实验流程

2.1 Step 1 : Capture a trace

- 1. 打开 Wireshark, 根据实验指导, 在 Wireshark 中 filter 栏输入 "icmp"
- 2. 打开 Terminal, 在终端中输入 ping "www.baidu.com" 进行抓包
- 3. 按 "control+c" 快捷键停止 Terminal 中的抓包

2.1.1 过程分析

实验过程中,在 Terminal 中运行 ping www.baidu.com 命令,结果如下

```
Last login: Thu Feb 27 18:20:26 on console
leslie@bogon ~ % ping www.baidu.com
PING www.a.shifen.com (61.135.169.121): 56 data bytes
64 bytes from 61.135.169.121: icmp_seq=0 ttl=55 time=70.199 ms
64 bytes from 61.135.169.121: icmp_seq=1 ttl=55 time=21.949 ms
64 bytes from 61.135.169.121: icmp_seq=2 ttl=55 time=33.178 ms
64 bytes from 61.135.169.121: icmp_seq=3 ttl=55 time=29.611 ms
64 bytes from 61.135.169.121: icmp_seq=4 ttl=55 time=27.341 ms
64 bytes from 61.135.169.121: icmp_seq=5 ttl=55 time=24.111 ms
64 bytes from 61.135.169.121: icmp_seq=6 ttl=55 time=25.854 ms
64 bytes from 61.135.169.121: icmp_seq=7 ttl=55 time=43.503 ms
64 bytes from 61.135.169.121: icmp_seq=8 ttl=55 time=23.619 ms
64 bytes from 61.135.169.121: icmp_seq=9 ttl=55 time=58.713 ms
64 bytes from 61.135.169.121: icmp_seq=10 ttl=55 time=24.229 ms
64 bytes from 61.135.169.121: icmp_seq=11 ttl=55 time=24.002 ms
^C
--- www.a.shifen.com ping statistics ---
12 packets transmitted, 12 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 21.949/33.859/70.199/14.967 ms
leslie@bogon ~ %
```

图 1

通过 wireshark 软件捕获 ping 命令后发送接收的包,结果显示如下:

● ● Capturing from Wi-Fi: en0 (icmp)								
		<u>(1</u>		🧧 🤇 🗢 🖒 🎬 吞	<u> </u>			
■ icmp ■ ■ → +								
No.		Time	Source	Destination	Protocol	Length Info		
		0.000000	192.168.0.7	61.135.169.121	ICMP		(ping) request	id=0xad13.
4	2 (0.070074	61,135,169,121	192,168,0,7	ICMP	98 Ech		id=0xad13.
	3 :	1.000166	192.168.0.7	61.135.169.121	ICMP		(ping) request	id=0xad13,
	4 :	1.021974	61.135.169.121	192.168.0.7	ICMP		(ping) reply	id=0xad13,
	5 2	2.000841	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	6 2	2.033853	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	7 :	3.006220	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	8 3	3.035573	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	9 4	4.011721	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	10 4	4.038911	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	11 !	5.012927	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	12 !	5.036902	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	13 (6.015909	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	14 (6.041584	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	15	7.018258	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	16	7.061590	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	17 8	8.021148	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	18 8	8.044625	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	19 9	9.022983	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	20 9	9.081556	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	21 :	10.0238	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
	22 :	10.0479	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,
	23 :	11.0263	192.168.0.7	61.135.169.121	ICMP	98 Ech	(ping) request	id=0xad13,
L	24	11.0502	61.135.169.121	192.168.0.7	ICMP	98 Ech	(ping) reply	id=0xad13,

图 2

2.2 Step 2: Ethernet Frame Structure

随机选取图 2 中的一帧,得到 wireshark 的自动进行解析,显示如下:

图 3

下部显示的信息共 0x62 字节,与描述 98bytes 匹配 (未计算尾部 checksum)。图 3 中选中展开 Ethernet 部分,Wireshark 自动显示其 header 占 14 字节。

2.2.1 Results

根据描述信息可知,实验中采用的是 Ethernet II 协议,由 header、data 和 checksum 组成, Ethernet II 协议的帧结构如下图:

图 4

2.3 Step 3 : Scope of Ethernet Addresses

以上图的 Ethernet frame 为例, src 与 dest 的物理地址分别为 (78:4f:43:9f:52:7b) (18:31:bf:4a:be:80), 本机 ip 为 (192.168.0.7), remote server 的 ip 为 (61.135.169.121)。因此 my computer, router 和 remote server 的相对位置如图所示:

图 6

3 Broadcast Frames

通过如下所示 filter, 只显示以太网的多播 multicast 或广播 broadcast 消息。

图 7

以下是截获到的 broadcast 和 multicast 样例。

```
Wireshark · Packet 396 · Wi-Fi: en0 (ether multicast)

▶ Frame 396: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface en0, id 0

▼ Ethernet II, Src: ZioncomE_20:47:a0 (f4:28:53:20:47:a0), Dst: Broadcast (ff:ff:ff:ff:)

▶ Destination: Broadcast (ff:ff:ff:ff:)

▶ Source: ZioncomE_20:47:a0 (f4:28:53:20:47:a0)

Type: ARP (0x0806)

▶ Address Resolution Protocol (request)
```

图 8

```
Wireshark · Packet 62 · Wi-Fi: en0 (ether multicast)

▶ Frame 62: 408 bytes on wire (3264 bits), 408 bytes captured (3264 bits) on interface en0, id 0

▼ Ethernet II, Src: WistronN_6e:b1:ae (8c:57:9b:6e:b1:ae), Dst: IPv4mcast_7f:ff:fa (01:00:5e:7f:ff:fa)

▶ Destination: IPv4mcast_7f:ff:fa (01:00:5e:7f:ff:fa)

▶ Source: WistronN_6e:b1:ae (8c:57:9b:6e:b1:ae)

Type: IPv4 (0x0800)

▶ Internet Protocol Version 4, Src: 192.168.0.4, Dst: 239.255.255.250

▶ User Datagram Protocol, Src Port: 46655, Dst Port: 1900

▶ Simple Service Discovery Protocol
```

图 9

4 Answering the following question

- i What is the broadcast Ethernet address, written in standard form as Wireshark displays it? 图 8 可见, broadcast 的目的地址为 (ff:ff:ff:ff:ff:ff), 即 48bit 全为 1。
- ii whether it is unicast or multicast/broadcast?

分析 multicast 的目的物理地址段, wireshark 软件显示 Group address 标志位为第 8 位, 如下图所示, 其地址的第一字节为 01H, 标识位为 1 表示多播。

```
Wireshark · Packet 400 · Wi-Fi: en0 (ether multicast)

▶ Frame 400: 410 bytes on wire (3280 bits), 410 bytes captured (3280 bits) on interface en0, id 0
▼ Ethernet II, Src: WistronN_6e:b1:ae (8c:57:9b:6e:b1:ae), Dst: IPv4mcast_7f:ff:fa (01:00:5e:7f:ff:fa)
▼ Destination: IPv4mcast_7f:ff:fa (01:00:5e:7f:ff:fa)
Address: IPv4mcast_7f:ff:fa (01:00:5e:7f:ff:fa)
.....0..... = LG bit: Globally unique address (factory default)
.....1 ..... = IG bit: Group address (multicast/broadcast)
```

图 10