AMENDMENTS TO THE SPECIFICATION:

Please replace the Table on page 17 with the following:

	Volume of conjugate dispensed			Volume of water added		
	E	Y	Q	S	Н	
E	260ul					1.3ml
Y	200	400ul				2.0ml
Q			310ul			1.55ml
S				360ul		1.8ml
H					400	2.0ml
E ₂ Y	200ul	200ul				2.0ml
E ₃ Q	200ul		200ul			2.0ml
E,S	200ul			200ul		2.0ml
E,H	200ul				200ul	2.0ml
Y,Q		200ul	200ul			2.0ml
Y ₂ S		200ul		200ul		2.0ml
Y,H		200ul		•	200ul	2.0ml
$\mathbf{Q}_{\mathbf{z}}\mathbf{S}$			200ul	200ul		2.0ml
Q ₂ H			200ul		200ul	2.0ml
S ₂ H				200ul	200ul	2.0ml
Q ₂ S ₂ H			133ul	133ul	133ul	2.0ml
Y,S,H		133ul		133ul	133ul	2.0ml
Y_2Q_2H		133ul	133ul		133ul	2.0ml
Y_2Q_2S		133ul	133ul	133ul		2.0ml
E,S,H	133ul			133ul	133ul	2.0ml
E,Q,H	133ul		133ul		133ul	2.0ml
E,Y,H	133ul	133ul			133ul	2.0ml
E ₂ Y ₂ S	133ul	133ul		133ul		2.0ml
$\mathbf{E}_{2}\mathbf{Y}_{2}\mathbf{Q}$	133ul	133ul	133ul	100 1		2.0ml
E,Q,S	133ul		133ul	133ul		2.0ml
$E_{2}Y_{2}Q_{2}S$	50ul	50ul	50ul	50ul	60-1	1.0ml
E,Y,Q,H	50ul	50ul	50ul	50.1	50ul	1.0ml
E,Y,S,H	50ul	50ul	50.1	50ul	50ul	1.0ml
E,Q,S,H	50ul		50ul	50ul	50ul	1.0ml
Y,Q,S,H		50ul	50ul	50ul	50ul	1.0ml
E,Y,Q,S,H	40ul	40ul	40ul	40ul	40ul	1.0ml

Please replace the Table on page 18 with the following:

	OD ₄₅₀ in J774 supernates		
	100ug	10ug	0ug
	0.628	0.098	0.013
E	0.313	0.053	0.015
Y	0.083	0.033	
Q		0.143	
S	0.348	0.206	
H	0.632	0.200	
E ₂ Y	0.198		
E ₂ Q	0.113	0.022	
E ₂ S	0.211	0.225	
E,H	0.167	0.037	
Y_2Q	0.245	0.034	
Y ₂ S	0.786	0.363	
$\mathbf{H}_{\mathbf{z}}\mathbf{H}$	0.541	0.133	
Q ₂ S	0.212	0.025	
$\mathbf{Q}_{1}\mathbf{H}$	0.135	0.027	
S ₂ H	0.515	0.177	
Q ₂ S ₂ H	0.253	0.032	
Y ₂ S ₂ H	0.712	0.229	
Y,Q,H	0.290	0.020	
$Y_{1}Q_{2}S$	0.519	0.119	
E ₂ S ₂ H	0.380	0.246	
E,Q,H	0.107	0.026	
E,Y,H	0.254	0.042	
E,Y,S	1.289	0.355	
$\mathbf{E}_{\mathbf{x}}\mathbf{Y}_{\mathbf{x}}\mathbf{Q}$	0.191	0.064	
E ₂ Q ₂ S	0.209	0.027	
E,Y,Q,S	0.777	0.206	
E,Y,Q,H	0.224	0.067	
E,Y,S,H	0.262	0.146	
E,Q,S,H	0.149	0.185	
Y,Q,S,H	0.319	0.045	
E,Y,Q,S,H	0.375	0.073	
-1-1/101	3.2.2		

Please replace the Table at the bottom of page 21 with the following:

	L	S	${f E}$	Q
L	80ul	-	-	-
S	-	80ul	-	-
E	-	-	80ul	-
Q	-	-	-	80ul
L ₂ S	40ul	40ul	-	-
L ₂ E	40ul	-	40ul	-
L ₂ Q	40ul	-	-	40ul
S,E	-	40ul	40ul	-
$\dot{S_2Q}$	-	40ul	-	40ul
E ₂ Q	-	-	40ul	40ul
L,S,E	27ul	27ul	27ul	-
L,S,Q	27ul	27ul	-	27ul
L,E,Q	27ul	-	27ul	27ul
S,E,Q	-	27ul	27ul	27ul
L ₂ S ₂ E ₂ Q	20ul	20ul	20ul	20ul

Please replace the table on page 23 with the following:

	% uptake in bloodstream		
	45 mins	90mins	180mins
L	0.90	1.39	0.61
S	1.12	1.14	0.81
E	0.85	1.55	0.79
Q	1.40	3.00	0.81
L ₂ S	2.87	2.38	0.66
L ₂ E	2.59	2.22	0.49
L.O	5.05	2.15	0.45
L ₁ Q S ₂ E	4.21	1.66	0.70
S ₂ Q	4.67	1.45	0.67
E,Q	3.72	2.65	0.59
L,S,E	1.91	1.20	0.97
L ₃ S ₃ Q	6.23	1.90	0.80
L,E,Q	2.77	1.73	0.98
S,E,Q	3.06	1.52	0.63
L,S,E,Q	2.45	1.74	0.81