CNN

하정욱 교수

Office: CY관 502호

Email: jwha6169@sogang.ac.kr

CNN(Convolutional Neural Network)

- 1989년 안 르쿤 (Yann Lecun) 교수 발표
 - LeNet-5:
 - "Gradient- Based Learning Applied to document Recognition"
- CNN도 사람의 시각 피질을 참고하여 만들었음: 뇌의 시각 피질은 서로 계층적으로 연결되어 있음
- 시각적 이미지 분석에 일반적으로 사용
 이미지로 부터 특징을 추출하여 이미지 클래쓰 분류

- 이미지 및 비디오 인식, 추천 시스템, 이미지 분류, 의료 이미지 분석 및 자연어 처리에 응용 - 이미지 초해상, 이미지 합성, 이미지 컬러화, 사물 탐지 등으로 확대 중
- 일반 신경망의 경우 이미지 자체를 하나의 데이터로 입력하기 때문에 이미지의 특징을 찾지 못하고 이미지의 위치가 약간 변경되거나 왜곡된 경우 성능 저하 : 공간적 정보(Topology)가 손실, Spatial Structure 정보 유실, Overfitting 발생

CNN(Convolutional Neural Network)

- CNN은 이미지에서 객체, 얼굴, 장면을 인식하기위해 <u>패턴을 찾는데</u> 유용한 알고리즘
 - 기존 방식은 데이터에서 지식을 추출해 학습을 이루었지만, CNN은 데이터의 특징을 추출하여 특징의 패턴을 파악하는 구조
 - 낮은 층에서는 단순한 패턴을 높은층으로 올라갈수록 복잡한 패턴 인식
 - 이미지를 하나의 데이터가 아닌 여러 개로 분할하여 처리-> Locality
 - 이미지가 왜곡되더라도 이미지의 부분적 특성을 추출할 수 있어 성능을 낼 수 있음
- 활성화 함수: ReLU, Softmax, cross-entropy loss
- Dropout
 - 은닉층의 일부 Node를 없애면서 성능 저하는 최소화하고 Overfitting 방지
 - Co-adaptation 보완, 앙상블 처리도 가능

CNN – Convolution Layer

- 합성곱층(Convolution Layer)
 - 입력데이터에 필터를 통한 <u>Convolution 연산</u>을 하여 총합을 구함
 : 필터수 만큼 <u>특성맵(Feature map, Activation map, Response map)) 도출</u>
 - Filter는 입력 데이터와 상관없이 일정한 학습 파라미터 개수를 가지고 있어 과적합 방지
 - 3차원 이미지 데이터에 대해 필터도 이미지와 같은 채널수를 갖고 있어야 함
 - 공간 정보 유지하면서 인접 이미지와 특징을 효과적으로 인식

• 합성곱 연산 후 데이터 사이즈 (n- f+1) * (n- f+1) 단, n: 입력 데이터의 크기, f: 필터(커널의 크기)

Basic Convolution Neural Network

Filter를 통한 합성곱 연산

CNN- Convolution 연산

- 입력데이터가 들어오면 필터의 윈도우가 일정 간격으로 이동해가며 합성곱(내적) 연산
- CNN은 학습이 거듭되며 Filter의 가중치와 편향을 매번 갱신되는 것
- Filter의 개수 만큼 특성맵이 나옴

1	0	1
0	1	0
0	1	1

1	1
2	1

G(Green 추출)

Convolu	ution Fe	ature =	Green
1	0	1	
0	0	1	
0	1	1	

_		
	2	1
	1	3

CNN알고리즘- Convolution

예) 컬러색이므로 RGB(Red, Green, Blue)로 나누어서 계산 후 처리

- Convolution feature가 다른 이유는 가중치가 다르기 때문-> 학습하며 자동으로 추출
 - Red, Green, Blue에서 얻은 Feature Map 을 더함
 - 새로운 이미지의 마지막 차원수는 필터의 수와 동일
- 합성곱 연산의 결과가 활성화 함수 ReLU를 지남: Convolution Layer

Fe	eature N	lap(Re	d) F	eature N	lap(Gre	een)	Feat	ure Ma	ap(Blue	∌)		
	4	3	_	2	1			1	1		7	5
	4	4	+	1	3	+		2	1		7	8
_												

1	0	0	0		
1	1	1	1	7	5
0	1	1	0	7	8
1	1	0	1		

CNN - Filter

- Filter VS. Kernel
 - 주어진 데이터에 특정한 특징이 있는지 없는지 검출해주는 함수
 - CNN에서 학습의 대상
 - 학습된 필터들은 경계선을 찾거나 블러리한 면을 찾는 등 다양한 주파수필터의 기능 수행
 - 출력에 가까운 레이어일수록 추상화 수준이 높아 해석이 어렵다
 - 복수의 필터로 이미지 특징 추출 학습
 - 입력 데이터의 채널수와 필터의 수는 같다
 - : 각각의 필터는 각각 다른 가중치를 가짐
- Filter 종류
 - Sobel Filter
 - : Sovel- X (vertical), Sovel-Y(holizontal)

CNN - Filter

- CNN Filter 특징
 - 이미지 색상 인식
 - : Gray Color 은 Filter의 색상과 맞지 않아 인지할 수 없다-> Color 대신 Color 숫자 사용
 - 인간의 눈과 같이 수직, 수평, 대각선의 색상을 인지하여 Pixel의 Locality를 인지할 수 있어 숫자인식이 가능
 - kernel의 matrix of Weights는 Training 중에 Optimized 된다.

CNN – Filter

- 기존 MLP의 문제점
 - Train Data로 Flattening후 훈련은 숫자 1 로 정확하게 할 수 있지만 Test Data는 정확도가 떨어지는 Overfitting 문제 발생
- CNN
 - 인간의 눈과 같이 수직의 녹색선과 수평의 노랑색 선과 파랑색의 대각선을 인지하여 Pixel의 Locality를 인지할 수 있어 숫자인식이 가능하다

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

0	1			4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

CNN – Pooling Layer

- Activation map에 존재하는 정보 중 일부 정보를 추출(down sampling의 효과)
- Sub Sampling을 통해 추출된 Feature map을 인위적으로 줄이는 작업
 - 이미지의 사이즈를 계속 유지한채로 FC layer로 가게 되면 연산량이 급속히 증가한다
 - Overfitting을 방지하며 모델의 파라메터 개수를 줄여 연산속도를 빠르게 함
- 특정 Feature, 데이터를 강조
 - : 물체의 중요한 특징을 학습할 수 있도록 해주며 CNN의 이동 불변성을 가지게 해줌
- 종류
 - Max Pooling, Average Pooling, Min Pooling
 - : 주로 Max Pooling 사용 -> 노이즈가 감소하고 속도가 빨라지며 영상 분별력이 향상됨
 - 주로 Pooling의 윈도우 크기와 Stride(스트라이드)의 값은 같게 설정
 - : 모든 원소가 한번씩 처리될 수 있도록 함
 - 예) Pooling 윈도우: 2*2, Stride: 2
 - Pooling 계층을 통과해도 채널수에는 변경이 없음
 - 상황따라 생략도 가능
 - : 각 Layer의 연산 시간과 /양을 비교적 일정하게 유지하면서 시스템의 균형을 맞춤

Pooling원리 – Max Pooling, Average Pooling

Max Pooling

- 특성이 높은 부분만 추출하여 연산의 효율을 높임 (이미지 Pixel : 0~255)
- Resizing시 해당 값 중 가장 큰값 선택

• Average Pooling

- 해당값들의 평균값 사용

- -			·	. — . — . —	-i						
	1	0	3	4	Av	erage	Pooling	1	0		
1	6	5	7	6		3	5	6	5		3
	3	L. <u>1</u>	1.4	0		4	2	3	4 6		5
	4	8	3	4				,	O	ŕ	

Pooling원리 – 예

- Max Pooling
 - 주로 Max Pooling 사용
 - Filter 크기가 크면 많이 뭉개짐
 - 0->255 갈수록 밝아짐

CNN-Stride

- Convolution Filter의 Sliding Window가 이동하는 간격, 필터를 적용하는 위치의 간격
 - Stride가 커지면 출력의 크기가 작아짐, 정보손실 가능성 (Hyper parameter)
 - Stride를 키우면 불필요한 특성을 제거하고 연산속도를 향상시킬 수 있음 : 연산시 데이터를 중첩시키지 않고 효율성을 높이기 위해 사용
 - 중요 Feature의 손실을 반드시 의미하지는 않음 참조) stride=2, kernel_size =2를 통해 <u>특징맵의 사이즈를 줄이는 역할</u>
 - stride 후에 남는 열은 버리게 된다. -> Padding 사용

I	=				1					
	1	2	3	0	1	2	3			
	0	1	2	3	0	1	2			
	3	0	1	2	3	0	1	2 0	1	15
'	2	3	0	1	2	3	0	→ 0 1	2 \Longrightarrow	
	1	2	3	0	1	2	3	1 0	2	
	0	1	2	3	0	1	2		,	
	3	0	1	2	3	0	1			
스트라이드 : 2		Ž								
	1	2	3	0	1	2	3			
	0	1	2	3	0	1	2			
	3	0	1	2	3	0	1	2 0	1	15 17
	2	3	0	1	2	3	0			15 17
	1	2	3	0	1	2	3		2 =====================================	
	0	2	3	0 3	0	2	3		2	
	<u> </u>			_	<u> </u>					

CNN- Padding

- 필터 사이즈와 함께 입력 이미지와 <u>출력 이미지의 사이즈를 결정</u>하기 위해 사용
 - Feature map의 출력 데이터 크기는 Convolution Layer을 지날 때마다 사이즈가 축소
 - : 합성곱 연산 후 데이터 사이즈가 (n- f+1) * (n- f+1) Pixel Size로 축소됨
 - Stride 후에 가장 자리의 정보가 사라지는 문제 방지
- 출력 크기 조정으로 입력 데이터와 출력 데이터의 크기를 맞춤
 - 입력 데이터의 주변을 특정 값으로 채우는 기법
 - Zero padding :주로 0을 사용
 - Padding을 한 후 대칭을 이루기 위해 Filter의 사이즈를 주로 홀수로 정함
 - 가장자리의 연산 횟수를 증가시켜 Edge Feature들의 특징을 강화
- Padding valid
 - 패딩을 주지 않음
 - Padding =0 (0으로 채워진 테두리가 아니라 패딩을 주지 않는다는 의미)
- Padding same
 - 패딩을 주어 입력 이미지의 크기와 연산후의 이미지 크기를 같게 함
- 만약, 필터의 크기가 k이면
 - 패딩의 크기는 $p = \frac{k-1}{2}$ (단, Stride =1)

	_	_	_		
0	1	2	3	0	0
0	0	1	2	3	0
0	3	0	1	2	0
0	2	3	0	1	0
0	0	0	0	0	0

(3*3)

(4*4) 출력데이터

입력 데이터 (제로패딩:1)->(6*6)

필터

CNN- 출력의 크기

• 출력데이터의 크기

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1$$

- 입력 크기 : (H,W) , 출력크기: (OH,OW)
- 필터크기 : (FH,FW)
- 패딩, 스트라이드 : P, S

CNN- 완전 연결층(Fully Connected Layer)

- 완전 연결계층(Fully Connected Layer)
 - 추출된 특징값을 기존 Neural network에 넣어 결과를 도출
- Flattening
 - : Fully Connected Layer은 3차원에서 1차원 데이터로 평탄화된 행렬로 이미지 분류
 - Drop Out 기법으로 성능향상과 Overfitting 방지
 - 활성화 함수: ReLU, 이미지 분류: Softmax 등 사용
- Convolution Layer와 완전 연결 계층(Fully-Connected Layer)과의 차이
 - 완전연결계층은 이미지와 같은 데이터의 형상(3차원)을 무시됨 :모든 입력 데이터를 동등하게 취급 -> 데이터의 특징을 잃어버리게 됨
 - Convolution Layer는 이미지 픽셀 사이의 관계를 고려 <u>공간정보를 유지</u>
 :이미지가 왜곡되더라도 <u>이미지의 부분적 특성을 추출할 수 있어 올바른 성능 도출</u>

CNN - Overview

- 1. 6개의 필터로 컨볼루션 수행
 - 6개의 feature map 도출
- 2. Max Pooling으로 사이즈 축소
- 3. 다음층에서 17개 필터로 convolution과 pooling 수행
 - :상위계층으로 올라갈 수로 인간은 인지 어려움
- 4. Flattening 수행으로 완전 연결층 입력 데이터 구성
 - : 3 차원 -> 1차원
- 5. ReLU 활성화 함수
- 6. 완전 연결층에서 NN수행후 Classification 진행
 - Softmax: 다중 분류 수행

CNN – Flow

