Conjecture 0.1

If every vertex of G has ve-degree at least $\lceil \frac{n}{2} \rceil^2$ then G is Hamiltonian, where $n \ge 4$ is the order of G.

Counter-Example. G is a non-Hamiltonian 9-ve-regular graph of order 6.

A class of Counter-Examples

Let G be obtained from a complete bipartite graph of bi-order (i,i+1) by adding $\binom{i}{2}$ edges in the part of order i. Then G is a non-Hamiltonian $(i(i+1)+\binom{i}{2})$ -ve-regular graph, where

$$(i(i+1) + {i \choose 2}) = (3n-1)(n-1)/8 \approx \frac{3n^2}{8}.$$