spectra

Generated by Doxygen 1.8.17

1 Data Type Index	1
1.1 Data Types List	1
2 File Index	3
2.1 File List	3
71	5
3.1 Input Struct Reference	5
3.1.1 Detailed Description	5
3.1.2 Field Documentation	5
	5
3.1.2.2 eigvals_file	6
3.1.2.3 eigvecs_file	6
3.1.2.4 fw_file	6
3.1.2.5 gamma_file	6
3.1.2.6 gi_files	6
3.1.2.7 lambda_file	6
3.1.2.8 mu_file	6
3.1.2.9 N	6
3.1.2.10 pop_file	6
3.1.2.11 T	6
3.1.2.12 tau	7
3.2 ode_params Struct Reference	7
3.2.1 Field Documentation	7
3.2.1.1 chiw	7
3.2.1.2 kij	7
3.2.1.3 N	7
3.2.1.4 rates	7
3.2.1.5 Tij	7
3.3 Parameters Struct Reference	8
3.3.1 Field Documentation	8
3.3.1.1 aw_file	8
3.3.1.2 cn	8
3.3.1.3 cw	8
3.3.1.4 fw_file	9
3.3.1.5 g0	9
3.3.1.6 g1	9
3.3.1.7 g2	9
3.3.1.8 gsw	9
3.3.1.9 gt_file	9
3.3.1.10 10	9
3.3.1.11 11	9
3.3.1.12 12	9
3.3.1.13 lambda_file	9

	. 10
3.3.1.15 nu	. 10
3.3.1.16 offset	. 10
3.3.1.17 offset_file	. 10
3.3.1.18 s0	. 10
3.3.1.19 s1	. 10
3.3.1.20 s2	. 10
3.3.1.21 T	. 10
3.3.1.22 ti	. 10
3.3.1.23 w1	. 10
3.3.1.24 w2	. 11
3.4 Protocol Struct Reference	. 11
3.4.1 Field Documentation	. 11
3.4.1.1 ns	. 11
3.4.1.2 T	. 11
3.5 pulse Struct Reference	. 11
3.5.1 Detailed Description	. 11
3.5.2 Field Documentation	. 12
3.5.2.1 centre	. 12
3.5.2.2 type	. 12
3.5.2.3 width	. 12
4 File Documentation	13
4 File Documentation 4.1 couplings/coupling_calc.f08 File Reference	13
4.1 couplings/coupling_calc.f08 File Reference	. 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length()	. 13 . 13 . 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13 . 13
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13 . 13 . 14
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13 . 14 . 14
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14
4.1 couplings/coupling_calc.f08 File Reference	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.2 c_n()	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 14
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.2 c_n() 4.2.2.3 cw_big()	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 14 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.3 cw_big() 4.2.2.4 cw_car()	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 15 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.2 c_n() 4.2.2.3 cw_big() 4.2.2.4 cw_car() 4.2.2.5 cw_chl()	 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 15 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.3 cw_big() 4.2.2.4 cw_car()	. 13 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 15 . 15 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.2 c_n() 4.2.2.3 cw_big() 4.2.2.4 cw_car() 4.2.2.5 cw_chl() 4.2.2.6 cw_odo()	 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 15 . 15 . 15 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc(). 4.1.1.2 get_file_length(). 4.1.1.3 j_calc(). 4.1.1.4 mu_calc(). 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At(). 4.2.2.2 c_n(). 4.2.2.3 cw_big(). 4.2.2.4 cw_car(). 4.2.2.5 cw_chl(). 4.2.2.6 cw_odo(). 4.2.2.7 Ft().	 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 14 . 15 . 15 . 15 . 15 . 15 . 15
4.1 couplings/coupling_calc.f08 File Reference 4.1.1 Function/Subroutine Documentation 4.1.1.1 coupling_calc() 4.1.1.2 get_file_length() 4.1.1.3 j_calc() 4.1.1.4 mu_calc() 4.2 lineshape/src/functions.c File Reference 4.2.1 Macro Definition Documentation 4.2.1.1 M_PI 4.2.2 Function Documentation 4.2.2.1 At() 4.2.2.2 c_n() 4.2.2.3 cw_big() 4.2.2.4 cw_car() 4.2.2.5 cw_chl() 4.2.2.6 cw_odo() 4.2.2.7 Ft() 4.2.2.8 reorg_int()	 . 13 . 13 . 13 . 13 . 14 . 14 . 14 . 15

4.3 lineshape/src/functions.h File Reference	16
4.3.1 Function Documentation	16
4.3.1.1 At()	16
4.3.1.2 c n()	16
4.3.1.3 cw big()	16
4.3.1.4 cw car()	17
4.3.1.5 cw chl()	17
4.3.1.6 cw odo()	17
4.3.1.7 Ft()	17
4.3.1.8 reorg_int()	17
4.3.1.9 trig im()	17
4.3.1.10 trig re()	17
4.4 lineshape/src/parameters.c File Reference	18
4.4.1 Function Documentation	18
4.4.1.1 get_parameters()	18
4.4.1.2 get_protocol()	18
4.5 lineshape/src/parameters.h File Reference	18
4.5.1 Macro Definition Documentation	18
4.5.1.1 CMS	19
4.5.2 Function Documentation	19
4.5.2.1 fortran wrapper()	19
4.5.2.2 get parameters()	19
4.5.2.3 get_protocol()	19
4.6 lineshape/src/specDens.c File Reference	19
4.6.1 Function Documentation	19
4.6.1.1 main()	19
4.7 spectra/src/fluorescence.c File Reference	20
4.7.1 Function Documentation	20
4.7.1.1 array_to_gsl_matrix()	20
4.7.1.2 bcs()	20
4.7.1.3 jacobian()	20
4.7.1.4 odefunc()	20
4.7.1.5 rate_calc()	21
4.7.1.6 relaxation_rates()	21
4.7.1.7 transfer_matrix()	21
4.7.1.8 trapezoid()	21
4.8 spectra/src/fluorescence.h File Reference	21
4.8.1 Function Documentation	22
4.8.1.1 array to gsl matrix()	22
4.8.1.2 bcs()	22
4.8.1.3 final_matrix()	22
4.8.1.4 jacobian()	22
4.8.1.5 odefunc()	22

4.8.1.6 rate calc()	22
4.8.1.7 relaxation rates()	
4.8.1.8 transfer matrix()	
4.8.1.9 trapezoid()	
4.9 spectra/src/input.c File Reference	
4.9.1 Function Documentation	
4.9.1.1 read()	
4.9.1.2 read_eigvecs()	
4.9.1.3 read_gi()	
4.9.1.4 read_input_file()	
4.9.1.5 read_mu()	
4.10 spectra/src/input.h File Reference	
4.10.1 Macro Definition Documentation	
4.10.1.1 E0	
4.10.1.2 EC	
4.10.1.3 JPERINVCM	26
4.10.1.4 KCOUL	26
4.10.1.5 MAX_PIGMENT_NUMBER	26
4.10.1.6 TOCM1	26
4.10.1.7 TOFS	26
4.10.2 Function Documentation	26
$4.10.2.1 \text{ read}() \dots \dots$	26
4.10.2.2 read_eigvecs()	26
$4.10.2.3 \text{ read_gi}() \dots \dots$	27
4.10.2.4 read_input_file()	27
4.10.2.5 read_mu()	27
4.11 spectra/src/spectra.c File Reference	27
4.11.1 Function Documentation	28
4.11.1.1 main()	28
4.12 spectra/src/steady_state.c File Reference	28
4.12.1 Function Documentation	28
4.12.1.1 guess()	28
4.12.1.2 incident()	29
4.12.1.3 pop converge()	29
4.12.1.4 pop steady df()	29
4.12.1.5 pop_steady_f()	29
4.12.1.6 pop_steady_fdf()	29
4.13 spectra/src/steady_state.h File Reference	29
4.13.1 Typedef Documentation	30
4.13.1.1 pulse	30
4.13.1.2 pulse_type	31
4.13.1.3 ss init	31
4.13.2 Enumeration Type Documentation	31

Index		35
	4.13.3.6 pop_steady_fdf()	33
	$4.13.3.5 \text{ pop_steady_f}() \dots \dots$	32
	4.13.3.4 pop_steady_df()	32
	4.13.3.3 pop_converge()	32
	4.13.3.2 incident()	32
	4.13.3.1 guess()	32
	4.13.3 Function Documentation	32
	4.13.2.2 ss_init	31
	4.13.2.1 pulse_type	31

Chapter 1

Data Type Index

1.1 Data Types List

Here are the data types with brief descriptions:

Input
Input struct for important parameters and filenames where the exciton-basis data is to
be read in from
ode_params
Parameters
Protocol
pulse
Additional parameters for incident light term

Chapter 2

File Index

2.1 File List

Here is	s a	list	of	all	files	with	brief	descriptions
---------	-----	------	----	-----	-------	------	-------	--------------

couplings/coupling_calc.f08
lineshape/src/functions.c
lineshape/src/functions.h
lineshape/src/parameters.c
lineshape/src/parameters.h
lineshape/src/specDens.c
spectra/src/fluorescence.c
spectra/src/fluorescence.h
spectra/src/input.c
spectra/src/input.h
spectra/src/spectra.c
spectra/src/steady_state.c
spectra/src/steady state.h

4 File Index

Chapter 3

Data Type Documentation

3.1 Input Struct Reference

Input struct for important parameters and filenames where the exciton-basis data is to be read in from. #include <input.h>

Data Fields

- unsigned int N
 - Number of pigments/excitons.
- double T
 - Temperature.
- unsigned int tau
 - number of steps in g(t) arrays ($\equiv fs$)
- char eigvecs file [200]
- char eigvals_file [200]
- char mu_file [200]
- char lambda file [200]
- char gamma_file [200]
- char aw file [200]
- char fw_file [200]
- char pop_file [200]
- char * gi_files []

3.1.1 Detailed Description

Input struct for important parameters and filenames where the exciton-basis data is to be read in from.

This struct mainly holds a list of filenames which have been output by the fortran code, listing where all the data is for the eigenstates of our Hamiltonian (the exciton basis data). Also holds a few parameters that aren't specific to any particular pigment or exciton.

3.1.2 Field Documentation

3.1.2.1 aw file

char Input::aw_file[200]

3.1.2.2 eigvals_file

char Input::eigvals_file[200]

${\bf 3.1.2.3 \quad eigvecs_file}$

char Input::eigvecs_file[200]

$\mathbf{3.1.2.4}\quad \mathbf{fw_file}$

char Input::fw_file[200]

3.1.2.5 gamma_file

char Input::gamma_file[200]

3.1.2.6 gi_files

char* Input::gi_files[]

3.1.2.7 lambda_file

char Input::lambda_file[200]

3.1.2.8 mu file

char Input::mu_file[200]

3.1.2.9 N

 ${\tt unsigned\ int\ Input::N}$

Number of pigments/excitons.

3.1.2.10 pop file

char Input::pop_file[200]

3.1.2.11 T

double Input::T

Temperature.

3.1.2.12 tau

```
unsigned int Input::tau number of steps in g(t) arrays ( \equiv fs)
```

The documentation for this struct was generated from the following file:

 \bullet spectra/src/input.h

3.2 ode params Struct Reference

```
#include <fluorescence.h>
```

Data Fields

- unsigned int N
- double ** kij
- double ** Tij
- \bullet double * rates
- double * chiw

3.2.1 Field Documentation

3.2.1.1 chiw

```
double* ode_params::chiw
```

3.2.1.2 kij

```
double** ode_params::kij
```

3.2.1.3 N

```
unsigned int ode_params::N
```

3.2.1.4 rates

```
double* ode_params::rates
```

3.2.1.5 Tij

```
double** ode_params::Tij
```

The documentation for this struct was generated from the following file:

• spectra/src/fluorescence.h

3.3 Parameters Struct Reference

#include <parameters.h>

Data Fields

- double s0
- double s1
- double s2
- double g0
- double g1
- double g2
- double 10
- double l1
- double 12
- double offset
- double w1
- double w2
- double ti
- double T
- double nu
- double(* cw)(double, void *)
- double(* cn)(double, void *)
- double gsw [3][48]
- \bullet int ligand
- char aw file [200]
- \bullet char gt_file [200]
- char fw_file [200]
- \bullet char lambda_file [200]
- char offset_file [200]

3.3.1 Field Documentation

$\mathbf{3.3.1.1} \quad \mathbf{aw_file}$

char Parameters::aw_file[200]

3.3.1.2 cn

 $\verb|double(* Parameters::cn)| (double, void *)$

3.3.1.3 cw

double(* Parameters::cw) (double, void *)

3.3.1.4 fw_file char Parameters::fw_file[200]

3.3.1.5 g0

double Parameters::g0

3.3.1.6 g1

double Parameters::g1

3.3.1.7 g2

double Parameters::g2

3.3.1.8 gsw

double Parameters::gsw[3][48]

3.3.1.9 gt_file

char Parameters::gt_file[200]

3.3.1.10 l0

double Parameters::10

3.3.1.11 l1

double Parameters::11

3.3.1.12 l2

double Parameters::12

3.3.1.13 lambda file

char Parameters::lambda_file[200]

double Parameters::ti

double Parameters::w1

3.3.1.23 w1

3.3.1.14 ligand int Parameters::ligand 3.3.1.15 nu double Parameters::nu 3.3.1.16 offset double Parameters::offset 3.3.1.17 offset_file char Parameters::offset_file[200] 3.3.1.18 s0 double Parameters::s0 3.3.1.19 s1 double Parameters::s1 3.3.1.20 s2 double Parameters::s2 3.3.1.21 T double Parameters::T 3.3.1.22 ti

Generated by Doxygen

3.3.1.24 w2

double Parameters::w2

The documentation for this struct was generated from the following file:

• lineshape/src/parameters.h

3.4 Protocol Struct Reference

#include <parameters.h>

Data Fields

- long unsigned int ns
- double T

3.4.1 Field Documentation

3.4.1.1 ns

long unsigned int Protocol::ns

3.4.1.2 T

double Protocol::T

The documentation for this struct was generated from the following file:

• lineshape/src/parameters.h

3.5 pulse Struct Reference

Additional parameters for incident light term.

#include <steady_state.h>

Data Fields

- pulse_type type
- double centre
- double width

3.5.1 Detailed Description

Additional parameters for incident light term.

If the pulse is not FLAT then we need to know where its centre is: for DELTA this is enough but for LORENTZIAN or GAUSSIAN we also need the width. We do not need the peak height because I normalise the integral to 1, as will be explained in the documentation for incident().

For LORENTZIAN we have the form

$$\mathcal{L} = \frac{1}{\pi \gamma} \frac{\gamma^2}{(x - x_0)^2 + \gamma^2}$$

where centre = x_0 and width = γ .

For GAUSSIAN we have

$$\mathcal{N} = \frac{1}{\sigma\sqrt{2\pi}} \exp{-\frac{1}{2}(\frac{x-\mu}{\sigma})}^2$$

where centre = μ and width = σ .

centre and width should be given in cm^{-1} .

3.5.2 Field Documentation

3.5.2.1 centre

double pulse::centre

3.5.2.2 type

pulse_type pulse::type

3.5.2.3 width

double pulse::width

The documentation for this struct was generated from the following file:

 \bullet spectra/src/steady_state.h

Chapter 4

File Documentation

4.1 couplings/coupling_calc.f08 File Reference

Functions/Subroutines

```
\bullet program coupling calc
```

- integer function get_file_length (buffer)
- real(sp) function j calc (p1, p2, len1, len2)
- real(sp) function, dimension(3) mu_calc (p, len, D)

4.1.1 Function/Subroutine Documentation

```
4.1.1.1 coupling calc()
program coupling_calc
4.1.1.2 get file length()
integer function coupling_calc::get_file_length (
             character(len=*), intent(in) buffer )
4.1.1.3 j_calc()
real(sp) function coupling_calc::j_calc (
             real(sp), dimension(4, len1) p1,
              real(sp), dimension(4, len2) p2,
              integer, intent(in) len1,
             integer, intent(in) len2 )
4.1.1.4 mu_calc()
real(sp) function, dimension(3) coupling_calc::mu_calc (
             real(sp), dimension(4, len) p,
              integer, intent(in) len,
              real(sp), intent(in) D )
```

4.2 lineshape/src/functions.c File Reference

```
#include <math.h>
#include <complex.h>
#include "functions.h"
```

Macros

• #define M PI 3.1415926535897932384626433832795L

Functions

```
• double cw chl (double w, void *params)
```

- double cw_car (double w, void *params)
- double cw odo (double w, void *params)
- double cw big (double w, void *params)
- double c n (double w, void *params)
- double trig_re (double w, void *params)
- double trig im (double w, void *params)
- double reorg int (double w, void *params)
- double complex At (double w0, double re, double im, double t, double gamma)
- double complex Ft (double w0, double re, double im, double reorg, double t, double gamma)

4.2.1 Macro Definition Documentation

```
\mathbf{4.2.1.1} \quad \mathbf{M}_{-}\mathbf{PI}
```

#define M_PI 3.1415926535897932384626433832795L

4.2.2 Function Documentation

4.2.2.1 At()

```
4.2.2.3 cw_big()
double cw_big (
             double w,
             void * params)
4.2.2.4 cw_car()
double cw_car (
             double w,
             void * params )
4.2.2.5 cw chl()
double cw_chl (
             double w,
             void * params )
4.2.2.6 cw odo()
double cw_odo (
             double w,
             void * params )
4.2.2.7 Ft()
double complex Ft (
             double w0,
             double re,
             double im,
             double reorg,
             double t,
             double gamma )
4.2.2.8 reorg_int()
double reorg_int (
             double w,
             void * params )
4.2.2.9 trig im()
double trig_im (
             double w,
             void * params )
```

4.3 lineshape/src/functions.h File Reference

```
#include <complex.h>
#include <stdio.h>
#include "parameters.h"
```

Functions

4.3.1.1 At()

double cw_big (

```
\bullet double cw_chl (double w, void *params)
```

- double cw car (double w, void *params)
- double cw odo (double w, void *params)
- double cw big (double w, void *params)
- double c n (double w, void *params)
- double trig re (double w, void *params)
- double trig im (double w, void *params)
- double reorg int (double w, void *params)
- double complex At (double w0, double re, double im, double t, double gamma)
- double complex Ft (double w0, double re, double im, double reorg, double t, double gamma)

4.3.1 Function Documentation

```
double complex At (
double w0,
double re,
double im,
double t,
double gamma)

4.3.1.2 c_n()

double c_n (
double w,
void * params)

4.3.1.3 cw_big()
```

double w,
void * params)

```
4.3.1.4 cw_car()
double cw_car (
             double w,
              void * params)
4.3.1.5 cw_chl()
double cw_chl (
              double w,
              void * params )
4.3.1.6 cw_odo()
double cw_odo (
              double w,
              void * params )
4.3.1.7 Ft()
double complex Ft (
              double w0,
              double re,
              double im,
              double reorg,
              \  \, {\rm double}\ t\,,
              double gamma )
4.3.1.8 reorg_int()
double reorg_int (
             double w,
              void * params )
4.3.1.9 trig_im()
double trig_im (
              double w,
              void * params)
4.3.1.10 trig_re()
double trig_re (
              \verb"double" w,
              void * params )
```

4.4 lineshape/src/parameters.c File Reference

```
#include "parameters.h"
```

Functions

- Protocol get_protocol (char *filename)
- Parameters get parameters (char *filename)

4.4.1 Function Documentation

4.5 lineshape/src/parameters.h File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <math.h>
```

Data Structures

- struct Protocol
- struct Parameters

Macros

 \bullet #define CMS 299792458 /* speed of light C in M etres per S econd */

Functions

- Parameters get parameters (char *filename)
- Protocol get protocol (char *filename)
- Parameters * fortran_wrapper (int ligand)

4.5.1 Macro Definition Documentation

4.5.1.1 CMS

```
#define CMS 299792458 /\ast speed of light _C_ in _M_etres per _S_econd \ast/
```

4.5.2 Function Documentation

4.6 lineshape/src/specDens.c File Reference

```
#include <time.h>
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <fftw3.h>
#include "functions.h"
#include "parameters.h"
```

Functions

• int main (int argc, char **argv)

4.6.1 Function Documentation

4.7 spectra/src/fluorescence.c File Reference

```
#include "fluorescence.h"
```

Functions

```
• gsl matrix * array to gsl matrix (unsigned int n1, unsigned int n2, double **mat)
```

- double ** rate calc (unsigned int N, double **eig, double **wij, Parameters *p)
- double * relaxation rates (unsigned int N, double *gamma)
- double ** transfer matrix (unsigned int N, double *relax, double **kij)
- int jacobian (double t, const double y[], double *dfdy, double dfdt[], void *params)
- \bullet int ode func (double x, const double *y, double *f, void *params)
- double * bcs (unsigned const int N, const double *eigvals, const double T)
- double trapezoid (double *f, unsigned int n)

4.7.1 Function Documentation

```
4.7.1.1 array_to_gsl_matrix()
gsl_matrix* array_to_gsl_matrix (
              unsigned int n1,
              unsigned int n2,
              double ** mat )
4.7.1.2 bcs()
double* bcs (
              unsigned const int N,
              const double * eigvals,
              const double T )
4.7.1.3 jacobian()
int jacobian (
              double t,
              const double y[],
              double * dfdy,
              double dfdt[],
              void * params)
4.7.1.4 odefunc()
int odefunc (
              double x.
              const double * y,
              double *f,
              void * params )
```

```
4.7.1.5 rate calc()
double** rate_calc (
             unsigned int N,
             double ** eig,
             double ** wij,
             Parameters * p)
4.7.1.6 relaxation rates()
double* relaxation_rates (
             unsigned int N,
             double * gamma )
4.7.1.7 transfer matrix()
double** transfer_matrix (
             unsigned int N,
             double * relax,
              double ** kij )
4.7.1.8 trapezoid()
double trapezoid (
             double *f,
             unsigned int n)
```

4.8 spectra/src/fluorescence.h File Reference

```
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
#include "input.h"
#include "../../lineshape/src/parameters.h"
```

Data Structures

• struct ode_params

Functions

- gsl_matrix * array_to_gsl_matrix (unsigned int n1, unsigned int n2, double **mat)
- double ** rate_calc (unsigned int N, double **eig, double **wij, Parameters *p)
- double * relaxation rates (unsigned int N, double *gamma)
- double ** transfer_matrix (unsigned int N, double *relax, double **kij)
- double ** final matrix (unsigned int N, double *relax, double **Tij)
- int odefunc (double x, const double *y, double *f, void *params)
- int jacobian (double t, const double y[], double *dfdy, double dfdt[], void *params)

- double * bcs (unsigned const int N, const double *eigvals, const double T)
- double trapezoid (double *f, unsigned int n)

4.8.1 Function Documentation

```
4.8.1.1 array_to_gsl_matrix()
gsl_matrix* array_to_gsl_matrix (
              unsigned int n1,
              unsigned int n2,
              double ** mat )
4.8.1.2 bcs()
double* bcs (
              unsigned const int N,
              const double * eigvals,
              const double {\it T} )
4.8.1.3 final matrix()
double** final_matrix (
              unsigned int N,
              double * relax,
              double ** Tij)
4.8.1.4 jacobian()
int jacobian (
              {\tt double}\ t,
              const double y[],
              double * dfdy,
              double dfdt[],
              void * params)
4.8.1.5 odefunc()
int odefunc (
              double x,
              const double * y,
              double *f,
              void * params )
4.8.1.6 rate_calc()
```

double** rate_calc (

unsigned int N,

```
double ** eig,
              double ** wij,
              Parameters * p)
4.8.1.7 relaxation rates()
double* relaxation_rates (
             unsigned int N,
              double * gamma )
4.8.1.8 transfer_matrix()
double** transfer_matrix (
              unsigned int N,
              double * relax,
              double ** kij )
4.8.1.9
         trapezoid()
double trapezoid (
              double *f,
```

4.9 spectra/src/input.c File Reference

```
#include <string.h>
#include "input.h"
```

Functions

• Input * read_input_file (char *filename)

unsigned int n)

Reads in the output from the fortran code, returns Input struct.

• double * read (char *input_file, unsigned int N)

Reads a file with one double per line and returns it as an array.

• double ** read_mu (char *input_file, unsigned int N)

Reads transition dipole moments from file and returns array.

• double ** read eigvecs (char *input file, unsigned int N)

Reads in N x N eigenvector matrix and returns as an array.

• double complex ** read_gi (char *input_files[], unsigned int N, unsigned int tau)

Read in the set of line-broadening functions, return as 2d array.

4.9.1 Function Documentation

4.9.1.1 read()

```
double* read ( \label{eq:char} \mbox{char} \ * \ \mbox{\it input\_file,} \\ \mbox{unsigned int } \mbox{\it N} \mbox{\rm )}
```

Reads a file with one double per line and returns it as an array.

Note that this and every other function in here returns a pointer to a malloc'd object, so they all need to be freed somewhere!

4.9.1.2 read eigvecs()

Reads in N x N eigenvector matrix and returns as an array.

It occurs to me as I write these docs that I could do away with separate functions just by taking two ints n and m and reading in an n x m array from those. Would only require a check that both are greater than 1.

Other than that same deal, reads N x N floats, outputs N x N array.

4.9.1.3 read gi()

Read in the set of line-broadening functions, return as 2d array.

The g_i(t) functions are the mixed line-broadening functions output by the fortran code, consisting of tau complex elements each.

Honestly it's been a while since I wrote these functions and I can't remember now why this one uses fscanf instead of the fgets etc. from the other functions - maybe I could edit the others to use fscanf instead and save myself some duplication of effort. Either way, it generates gi[i][j], where $i \in 0 \to N-1$, $j \in 0 \to \tau-1$.

4.9.1.4 read_input_file()

Reads in the output from the fortran code, returns Input struct.

This is not very portable and to some extent is duplicating effort made in the lineshape code (lineshape/src/parameters.c) - there's probably a way of fixing that / a library I could use instead but whatever.

Note that the number of gi_files isn't known till runtime because neither is N, the number of pigments; luckily C99 allows us to leave the last member of a struct with variable size and then malloc it later, which is what I do here.

fgets() reads in the newline at the end of the line as well; to stop that newline from being passed to fopen() later I use the line[strcspn()] = 0 trick to set the newline to a null char.

strndup is the last remaining gnu99 extension I use in the whole repo; I will eventually get around to fixing that but I'm lazy :)

NB: check how to free those malloc'd struct members, I can't remember if there's some fancy stuff you have to do or not.

4.9.1.5 read mu()

```
double** read_mu ( \label{char} {\rm char} \ * \ input\_file, unsigned int N )
```

Reads transition dipole moments from file and returns array.

This one (and the others below) are extremely hacky - the numbers are hardcoded (19, 20, 22) based on the output format of the fortran code. It disgusts me a little bit every time I remember writing it. Not much going on other than that - reads 3 doubles a line, N lines, returns a pointer to the resulting array.

4.10 spectra/src/input.h File Reference

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include "../../lineshape/src/parameters.h"
#include "../../lineshape/src/functions.h"
```

Data Structures

• struct Input

Input struct for important parameters and filenames where the exciton-basis data is to be read in from.

Macros

- #define MAX_PIGMENT_NUMBER 200
- $\bullet~\# define~EC~1.6022E\text{-}19$
- #define E0 8.854E-12
- #define JPERINVCM 1.986E-23
- #define KCOUL (1. / (4. * M PI * E0 * 0.5))
- #define TOFS (2. * M PI * CMS * 100. * 1E-15)
- #define TOCM1 ((1.295E3 * 8.988E9 * 0.5))

Functions

• Input * read input file (char *filename)

Reads in the output from the fortran code, returns Input struct.

• double * read (char *input_file, unsigned int N)

Reads a file with one double per line and returns it as an array.

• double ** read mu (char *input file, unsigned int N)

Reads transition dipole moments from file and returns array.

• double ** read_eigvecs (char *input_file, unsigned int N)

Reads in N x N eigenvector matrix and returns as an array.

• double complex ** read gi (char *input files[], unsigned int N, unsigned int tau)

Read in the set of line-broadening functions, return as 2d array.

4.10.1 Macro Definition Documentation

4.10.1.1 E0

#define E0 8.854E-12

4.10.1.2 EC

#define EC 1.6022E-19

4.10.1.3 JPERINVCM

#define JPERINVCM 1.986E-23

4.10.1.4 KCOUL

```
#define KCOUL (1. / (4. * M_PI * E0 * 0.5))
```

4.10.1.5 MAX_PIGMENT_NUMBER

#define MAX_PIGMENT_NUMBER 200

$4.10.1.6 \quad TOCM1$

```
#define TOCM1 ((1.295E3 * 8.988E9 * 0.5))
```

4.10.1.7 TOFS

```
#define TOFS (2. * M_PI * CMS * 100. * 1E-15)
```

4.10.2 Function Documentation

4.10.2.1 read()

```
double* read ( \label{eq:char} \operatorname{char} * \mathit{input\_file}, unsigned int N )
```

Reads a file with one double per line and returns it as an array.

Note that this and every other function in here returns a pointer to a malloc'd object, so they all need to be freed somewhere!

4.10.2.2 read_eigvecs()

Reads in N x N eigenvector matrix and returns as an array.

It occurs to me as I write these docs that I could do away with separate functions just by taking two ints n and m and reading in an n x m array from those. Would only require a check that both are greater than 1.

Other than that same deal, reads N x N floats, outputs N x N array.

4.10.2.3 read gi()

Read in the set of line-broadening functions, return as 2d array.

The g_i(t) functions are the mixed line-broadening functions output by the fortran code, consisting of tau complex elements each.

Honestly it's been a while since I wrote these functions and I can't remember now why this one uses fscanf instead of the fgets etc. from the other functions - maybe I could edit the others to use fscanf instead and save myself some duplication of effort. Either way, it generates gi[i][j], where $i \in 0 \to N-1$, $j \in 0 \to \tau-1$.

4.10.2.4 read input file()

Reads in the output from the fortran code, returns Input struct.

This is not very portable and to some extent is duplicating effort made in the lineshape code (lineshape/src/parameters.c) - there's probably a way of fixing that / a library I could use instead but whatever.

Note that the number of gi_files isn't known till runtime because neither is N, the number of pigments; luckily C99 allows us to leave the last member of a struct with variable size and then malloc it later, which is what I do here.

fgets() reads in the newline at the end of the line as well; to stop that newline from being passed to fopen() later I use the line[strcspn()] = 0 trick to set the newline to a null char.

strndup is the last remaining gnu99 extension I use in the whole repo; I will eventually get around to fixing that but I'm lazy :)

NB: check how to free those malloc'd struct members, I can't remember if there's some fancy stuff you have to do or not.

$4.10.2.5 \quad \text{read_mu}()$

```
double** read_mu (  {\rm char} \ * \ input\_file, \\ {\rm unsigned \ int} \ \textit{N} \ )
```

Reads transition dipole moments from file and returns array.

This one (and the others below) are extremely hacky - the numbers are hardcoded (19, 20, 22) based on the output format of the fortran code. It disgusts me a little bit every time I remember writing it. Not much going on other than that - reads 3 doubles a line, N lines, returns a pointer to the resulting array.

4.11 spectra/src/spectra.c File Reference

```
#include "input.h"
```

```
#include "steady_state.h"
#include <fftw3.h>
#include <stdio.h>
#include <gsl/gsl_eigen.h>
```

Functions

• int main (int argc, char **argv)

4.11.1 Function Documentation

4.12 spectra/src/steady state.c File Reference

```
#include "steady_state.h"
```

Functions

- unsigned short int pop converge (double *y, double *yprev, unsigned int N, double thresh)
- gsl_vector * guess (const ss_init p, const double *boltz, const double *musq, unsigned const int max, unsigned const int N)
- double * incident (pulse p, unsigned int tau)
- int pop_steady_f (const gsl_vector *x, void *params, gsl_vector *f)
- int pop steady df (const gsl vector *x, void *params, gsl matrix *J)
- int pop_steady_fdf (const gsl_vector *x, void *params, gsl_vector *f, gsl_matrix *J)

4.12.1 Function Documentation

4.12.1.1 guess()

4.12.1.2 incident()

```
double* incident (
             pulse p,
             unsigned int tau )
4.12.1.3 pop_converge()
unsigned short int pop_converge (
             double * y,
             double * yprev,
             unsigned int N,
             double thresh )
4.12.1.4 pop_steady_df()
int pop_steady_df (
             const gsl_vector * x,
```

4.12.1.5 pop steady f()

void * params, $gsl_matrix * J$)

```
int pop_steady_f (
              const gsl_vector * x,
              void * params,
              gsl\_vector * f)
```

4.12.1.6 pop_steady_fdf()

```
int pop_steady_fdf (
              const gsl\_vector * x,
              void * params,
              gsl\_vector * f,
              gsl_matrix * J)
```

spectra/src/steady state.h File Reference 4.13

```
#include "fluorescence.h"
#include <gsl/gsl_multiroots.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_math.h>
```

Data Structures

struct pulse

Additional parameters for incident light term.

Typedefs

• typedef enum pulse_type pulse_type

Defines the shape of the incident light pulse.

• typedef struct pulse pulse

Additional parameters for incident light term.

• typedef enum ss init ss init

Determines initial conditions for steady-state solver.

Enumerations

- enum pulse_type { FLAT = 0, LORENTZIAN = 1, GAUSSIAN = 2, DELTA = 3 } Defines the shape of the incident light pulse.
- enum ss_init { BOLTZ = 0, BOLTZ_MUSQ = 1, CONST = 2, MAX = 3 } Determines initial conditions for steady-state solver.

Functions

- unsigned short int pop converge (double *y, double *yprev, unsigned int N, double thresh)
- double * incident (pulse p, unsigned int tau)
- gsl_vector * guess (const ss_init p, const double *boltz, const double *musq, unsigned const int max, unsigned const int N)
- int pop steady f (const gsl vector *x, void *params, gsl vector *f)
- \bullet int pop_steady_df (const gsl_vector *x, void *params, gsl_matrix *J)
- int pop_steady_fdf (const gsl_vector *x, void *params, gsl_vector *f, gsl_matrix *J)

4.13.1 Typedef Documentation

4.13.1.1 pulse

typedef struct pulse pulse

Additional parameters for incident light term.

If the pulse is not FLAT then we need to know where its centre is: for DELTA this is enough but for LORENTZIAN or GAUSSIAN we also need the width. We do not need the peak height because I normalise the integral to 1, as will be explained in the documentation for incident().

For LORENTZIAN we have the form

$$\mathcal{L} = \frac{1}{\pi \gamma} \frac{\gamma^2}{(x - x_0)^2 + \gamma^2}$$

where centre = x_0 and width = γ .

For GAUSSIAN we have

$$\mathcal{N} = \frac{1}{\sigma\sqrt{2\pi}} \exp{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

where centre = μ and width = σ .

centre and width should be given in cm^{-1} .

4.13.1.2 pulse type

typedef enum pulse_type pulse_type

Defines the shape of the incident light pulse.

The population equations for steady-state fluorescence include a source term convolved with the exciton spectra, written as $\int W(\omega)\chi_i(\omega)d\omega$ where $\chi_i(\omega)$ is the absorption spectrum of the i'th exciton and $W(\omega)$ is the incident light. This enum defines the shape of the pulse - either white light (flat), Lorentzian, Gaussian, or narrow laser illumination.

4.13.1.3 ss init

typedef enum ss_init ss_init

Determines initial conditions for steady-state solver.

For steady state fluorescence we need to solve a coupled set of equations - I use GSL root finding for this. Obviously in order for this to work we need to specify initial conditions - this enum switches between them. options are BOLTZ for straight Boltzmann factors of the different exciton states, BOLTZ_MUSQ for Boltzmann factors weighted by the excitons' oscillator strength $|\mu|^2$, FLAT for all the probabilities equal, MAX for only the exciton state with the highest oscillator strength being excited.

All of these have the normalisation $\sum_{i=1}^{N} P_i(0) = 1$ as expected.

4.13.2 Enumeration Type Documentation

4.13.2.1 pulse type

enum pulse_type

Defines the shape of the incident light pulse.

The population equations for steady-state fluorescence include a source term convolved with the exciton spectra, written as $\int W(\omega)\chi_i(\omega)d\omega$ where $\chi_i(\omega)$ is the absorption spectrum of the i'th exciton and $W(\omega)$ is the incident light. This enum defines the shape of the pulse - either white light (flat), Lorentzian, Gaussian, or narrow laser illumination.

Enumerator

FLAT	
LORENTZIAN	
GAUSSIAN	
DELTA	

4.13.2.2 ss init

enum ss_init

Determines initial conditions for steady-state solver.

For steady state fluorescence we need to solve a coupled set of equations - I use GSL root finding for this. Obviously in order for this to work we need to specify initial conditions - this enum switches between them. options are BOLTZ for straight Boltzmann factors of the different exciton states, BOLTZ_MUSQ for Boltzmann factors weighted by the excitons' oscillator strength $|\mu|^2$, FLAT for all the probabilities equal, MAX for only the exciton state with the highest oscillator strength being excited.

All of these have the normalisation $\sum_{i=1}^{N} P_i(0) = 1$ as expected.

Enumerator

BOLTZ	
BOLTZ_MUSQ	
CONST	
MAX	

4.13.3 Function Documentation

```
4.13.3.1 guess()
gsl_vector* guess (
              const ss_init p,
              const double * boltz,
              const double * musq,
              unsigned const int max,
              unsigned const int \ensuremath{\textit{N}} )
4.13.3.2 incident()
double* incident (
              pulse p,
              unsigned int tau )
4.13.3.3 pop converge()
unsigned short int pop_converge (
              double * y,
              double * yprev,
              unsigned int N,
              double thresh )
4.13.3.4 pop_steady_df()
int pop_steady_df (
              const gsl\_vector * x,
              void * params,
              gsl_matrix * J)
4.13.3.5 pop_steady_f()
int pop_steady_f (
              const gsl\_vector * x,
              void * params,
```

gsl_vector * f)

$4.13.3.6 \quad pop_steady_fdf()$

Index

array_to_gsl_matrix	$\operatorname{cw_odo}$
fluorescence.c, 20	functions.c, 15
fluorescence.h, 22	functions.h, 17
At	DDLMA
functions.c, 14	DELTA
functions.h, 16	steady_state.h, 31
aw_file	E0
Input, 5	
Parameters, 8	input.h, 25 EC
bcs	input.h, 26
fluorescence.c, 20	eigvals file
	Input, 5
fluorescence.h, 22 BOLTZ	eigvecs file
	Input, 6
steady_state.h, 32	input, o
BOLTZ_MUSQ	final matrix
steady_state.h, 32	fluorescence.h, 22
c n	FLAT
functions.c, 14	steady state.h, 31
functions.h, 16	fluorescence.c
centre	array_to_gsl_matrix, 20
pulse, 12	bcs, 20
chiw	jacobian, 20
ode params, 7	odefunc, 20
CMS	rate calc, 20
parameters.h, 18	relaxation rates, 21
cn	transfer matrix, 21
Parameters, 8	trapezoid, 21
CONST	fluorescence.h
steady state.h, 32	array_to_gsl_matrix, 22
coupling calc	bcs, 22
coupling calc.f08, 13	final matrix, 22
coupling calc.f08	jacobian, 22
coupling_calc, 13	odefunc, 22
get_file_length, 13	rate_calc, 22
j_calc, 13	relaxation_rates, 23
mu_calc, 13	$transfer_matrix, 23$
couplings/coupling_calc.f08, 13	trapezoid, 23
cw	fortran_wrapper
Parameters, 8	parameters.h, 19
$\operatorname{cw_big}$	Ft
functions.c, 14	functions.c, 15
functions.h, 16	functions.h, 17
cw_car	functions.c
functions.c, 15	At, 14
functions.h, 16	c_n, 14
cw _chl	$cw_big, 14$
functions.c, 15	cw_car, 15
functions.h, 17	$cw_chl, 15$

36 INDEX

$cw_odo, 15$	lambda_file, 6
Ft, 15	mu_file, 6
M_PI, 14	N, 6
reorg_int, 15	pop_file, 6
trig im, 15	T, 6
trig re, 15	tau, 6
functions.h	input.c
At, 16	read, 23
c n, 16	read eigvecs, 24
cw big, 16	read gi, 24
cw car, 16	read input file, 24
cw chl, 17	read mu, 24
_	_
cw_odo, 17	input.h
Ft, 17	E0, 25
reorg_int, 17	EC, 26
trig_im, 17	JPERINVCM, 26
trig_re, 17	KCOUL, 26
fw_file	MAX_PIGMENT_NUMBER, 26
Input, 6	read, 26
Parameters, 8	read_eigvecs, 26
	read gi, 27
g0	read input file, 27
Parameters, 9	read mu, 27
g1	TOCM1, 26
Parameters, 9	TOFS, 26
g2	1015, 20
Parameters, 9	j calc
gamma file	coupling calc.f08, 13
Input, 6	jacobian
GAUSSIAN	~
steady state.h, 31	fluorescence.c, 20
——————————————————————————————————————	fluorescence.h, 22
get_file_length	JPERINVCM
coupling_calc.f08, 13	input.h, 26
get_parameters	1700111
parameters.c, 18	KCOUL
parameters.h, 19	input.h, 26
$\operatorname{get_protocol}$	kij
parameters.c, 18	$ode_params, 7$
parameters.h, 19	
gi_files	10
Input, 6	Parameters, 9
gsw	11
Parameters, 9	Parameters, 9
gt file	12
Parameters, 9	Parameters, 9
guess	lambda file
steady state.c, 28	Input, 6
steady state.h, 32	Parameters, 9
Steady _State.11, 52	ligand
incident	Parameters, 9
steady_state.c, 28	
	lineshape/src/functions.c, 14
steady_state.h, 32	lineshape/src/functions.h, 16
Input, 5	lineshape/src/parameters.c, 18
aw_file, 5	lineshape/src/parameters.h, 18
eigvals_file, 5	lineshape/src/specDens.c, 19
eigvecs_file, 6	LORENTZIAN
fw_file, 6	steady_state.h, 31
gamma_file, 6	
gi_files, 6	M_{PI}

INDEX 37

functions.c, 14	w2, 10
main	parameters.c
specDens.c, 19	get_parameters, 18
spectra.c, 28	get_protocol, 18
MAX	parameters.h
steady state.h, 32	CMS, 18
MAX PIGMENT NUMBER	fortran_wrapper, 19
input.h, 26	get_parameters, 19
mu_calc	get protocol, 19
coupling calc.f08, 13	pop converge
mu file	steady_state.c, 29
Input, 6	steady_state.h, 32
	pop_file
N	Input, 6
Input, 6	pop_steady_df
ode params, 7	steady_state.c, 29
ns	steady_state.h, 32
Protocol, 11	pop_steady_f
nu	
Parameters, 10	steady_state.c, 29
rarameters, 10	steady_state.h, 32
ode params, 7	pop_steady_fdf
chiw, 7	steady_state.c, 29
kij, 7	steady_state.h, 32
N, 7	Protocol, 11
	ns, 11
rates, 7 Tij, 7	T, 11
	pulse, 11
odefunc	centre, 12
fluorescence.c, 20	steady_state.h, 30
fluorescence.h, 22	type, 12
offset	width, 12
Parameters, 10	$\operatorname{pulse_type}$
offset_file	steady_state.h, 30, 31
Parameters, 10	
-	$\operatorname{rate_calc}$
Parameters, 8	fluorescence.c, 20
aw_file, 8	fluorescence.h, 22
cn, 8	rates
cw, 8	$ode_params, 7$
fw_file, 8	read
g0, 9	input.c, 23
g1, 9	input.h, 26
g2, 9	$\operatorname{read_eigvecs}$
gsw, 9	input.c, 24
gt_file, 9	input.h, 26
10, 9	read gi
11, 9	input.c, 24
12, 9	input.h, 27
lambda file, 9	read input file
$\overline{9}$	input.c, 24
nu, 10	input.h, 27
offset, 10	read mu
offset file, 10	input.c, 24
s0, 10	input.h, 27
s1, 10	relaxation rates
s2, 10	fluorescence.c, 21
T, 10	fluorescence.h, 23
ti, 10	reorg_int
w1, 10	functions.c, 15
w 1, 10	runctions.c, 10

38 INDEX

6 1 1	TOPS
functions.h, 17	TOFS input.h, 26
s0	transfer matrix
Parameters, 10	fluorescence.c, 21
s1	fluorescence.h, 23
Parameters, 10	trapezoid
s2	fluorescence.c, 21
Parameters, 10 specDens.c	fluorescence.h, 23
main, 19	trig_im
spectra.c	functions.c, 15 functions.h, 17
main, 28	trig re
spectra/src/fluorescence.c, 20	functions.c, 15
spectra/src/fluorescence.h, 21	functions.h, 17
spectra/src/input.c, 23	type
spectra/src/input.h, 25	pulse, 12
spectra/src/spectra.c, 27	
spectra/src/steady_state.c, 28	w1
spectra/src/steady_state.h, 29	Parameters, 10
ss_init	w2
steady_state.h, 31	Parameters, 10 width
steady_state.c	pulse, 12
guess, 28 incident, 28	puise, 12
pop converge, 29	
pop steady df, 29	
pop_steady_f, 29	
pop steady fdf, 29	
steady_state.h	
BOLTZ, 32	
BOLTZ_MUSQ, 32	
CONST, 32	
DELTA, 31	
FLAT, 31	
GAUSSIAN, 31	
guess, 32	
incident, 32 LORENTZIAN, 31	
MAX, 32	
pop converge, 32	
pop steady df, 32	
pop steady f, 32	
pop steady fdf, 32	
pulse, 30	
pulse_type, 30, 31	
ss_init, 31	
Th.	
T Input, 6	
Parameters, 10	
Protocol, 11	
tau	
Input, 6	
ti	
Parameters, 10	
Tij	
$ode_params, 7$	
TOCM1	
input.h, 26	