ゼミノート #6

Basic of Stacks

七条彰紀

2018年12月12日

目次

1		Definition : Stack / Prestack	1
2		Example : Stack	2
3		Proposition : Stack	4
	以下,	特に改めて指定がなければ \mathbf{C} :: site, π : $\mathcal{F} \to \mathbf{C}$:: fibered category を考える.	

1 Definition: Stack / Prestack

定義 1.1 (Prestack, Stack)

関手 $\epsilon_{\mathcal{U}}$: $\mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ を用いて以下のように定義する.

- (i) 任意の $U \in \mathbf{C}, \mathcal{U} \in \mathrm{Cov}(U)$ について $\epsilon_{\mathcal{U}}$:: fully faithfull である時, fibered category $\mathcal{F} \to \mathbf{C}$ は prestack である, という.
- (ii) 任意の $U \in \mathbf{C}, \mathcal{U} \in \mathrm{Cov}(U)$ について $\epsilon_{\mathcal{U}}$:: equivalence である時, fibered category $\mathcal{F} \to \mathbf{C}$ は stack である, という.

(pre)stacks の間の射は、fibered category としての射である.

注意 1.2

prestack の定義は以下のように言い換えられる: 任意の $U \in \mathbf{C}, \mathcal{U} = \{\phi_i \colon U_i \to U\} \in \mathrm{Cov}(U)$ をとる. さらに $\xi, \eta \in \mathcal{F}(U)$ をとり、 ϵ_U による像

$$(\{\xi_i\}, \{\sigma_{ij}\}), (\{\eta_i\}, \{\tau_{ij}\}) \in \mathcal{F}(\mathcal{U})$$

を考える. $\{\alpha_i\}$: $\epsilon_{\mathcal{U}}(\xi) \to \epsilon_{\mathcal{U}}(\xi)$ について, $\mathcal{F}(U)$ の射 α : $\xi \to \eta$ が一意に存在し, $\alpha_i = (\phi_i)^*\alpha$ ($\iff \{\alpha_i\} = \epsilon_{\mathcal{U}}(\alpha)$)となる.

標語的に言えば、prestack は「貼り合わせられる射を持つ psuedo-functor」となる。同型射の貼り合わせは同型射であるから、prestack は「貼り合わせが(存在すれば)一意な対象を持つ psuedo-functor」である。

注意 1.3

このノートでは、fiber が条件を満たす fibered category として (pre)stack は定義されている (fiber を用いずに (pre)stack を定義することも出来るが、今回は採用しなかった). なので形式上、(pre)stack は fibered category を経由せず、特別な psuedo-functor として定義できる. しかし実際にそのように定義されることは少ない.

では psuedo-functor として定義しない積極的な理由はと言うと、実用上、元の fibered category にも言及 する場合が多いからであると思われる. fiber だけでなく元の fibered category に言及する理由については、このセミナーのノート session 4.5 $^{\dagger 1}$, 注意 2.8 を参考にして欲しい.

定義 1.4 (Sub(pre)stack)

stack :: π : $\mathcal{F} \to \mathbf{C}$ の sub(pre)stack とは, \mathcal{F} の部分圏 \mathcal{G} であって, π と包含関手の合成 $\mathcal{G} \hookrightarrow \mathcal{F} \xrightarrow{\pi} \mathbf{C}$ が fibration であり,さらにその fiber が (pre)stack であるもの.

2 Example : Stack

命題 **2.1** ([1] Prop4.9)

- (i) separated presheaf of sets is a prestack.
- (ii) sheaf of sets is a stack.

(証明). \mathbf{C} :: site, \mathcal{F} : $\mathbf{C}^{op} \to \mathbf{Sets}$:: presheaf とする. $U \in \mathbf{C}, \mathcal{U} = \{U_i \to U\} \in \mathrm{Cov}(U)$ を任意に取る.

今,圏 $\mathcal{F}(U)$ 、 $\mathcal{F}(\mathcal{U})$ は集合(離散圏)である.なので関手 $\epsilon_{\mathcal{U}}$: $\mathcal{F}(U)$ → $\mathcal{F}(\mathcal{U})$ は<u>写像</u>である.さらに射 σ_{ij} も恒等射しかないから, $\mathcal{F}(\mathcal{U})$ の対象は,任意の i,j について $\xi_i|_{U_{ij}}=\xi_j|_{U_{ij}}$ を満たす $\xi_i\in\mathcal{F}(U_i)$ の族 $\{\xi_i\}_i$ であると考えて良い.このセミナーノートの session3 の記号を用いれば, $\mathcal{F}(\mathcal{U})=H^0(\mathcal{U},\mathcal{F})$ ということに成る.

二つのデータ $\{\xi_i\}$, $\{\eta_i\}$ の間の射もやはり恒等射しかないから,「関手 $\epsilon_{\mathcal{U}}$ が fully faithful である」という仮定は「写像 $\epsilon_{\mathcal{U}}$ が単射である」と言い換えられる.これはすなわち, \mathcal{F} が separated presheaf であるということである.

「関手 ϵ_U が essentially surjective である」という仮定は「写像 ϵ_U が全射である」と言い換えられるから。 ϵ_U が equivalence であることは $F(U) = H^0(U, F)$ と F(U) の間に全単射が存在するということである.これはすなわち,F(U) が sheaf であるということである.

注意 2.2

この命題で分かるとおり、prestack は presheaf の抽象化ではなく、separated presheaf の抽象化である。そうすると、我々は psuedo-functor $\mathbf{B}^{op} \to \mathbf{Cat}$ を prestack と呼び、今 prestack と呼んでいるものは separated prestack と呼ぶべきなのかも知れない。我々がそうしないのは、後に定義される "separated stack"との混乱を避けるためである。

以下の二つの例は後にセミナーでも証明を扱う.

例 2.3

[†]¹ URL: https://github.com/ShitijyouA/MathNotes/blob/master/AlgebraicStacks/session4_5_FiberedCategorie sContinued.pdf

 $X \in \mathbb{C}$ に対し、圏 Shv/X を以下のように定める.

Objects.

X への射を持つような \mathbb{C} の対象 :: U と, U 上の sheaf :: \mathcal{U} の組.

Arrows.

射 $(U, \mathcal{U}) \to (V, \mathcal{V})$ は、 \mathbf{C} の射 $f: U \to V$ と、morphism of sheaves on $V:: f^{\#}: \mathcal{V} \to f_*\mathcal{U}$ の組.

この時, fibered category :: $\mathbf{Shv}/X \to \mathbf{C}/X$; $(U,\mathcal{U}) \mapsto U$ は stack である. この例で考える sheaf を quasi-coherent sheaf に制限してて得られる fibered category :: $\mathbf{QCoh}/X \to \mathbf{C}/X$ も stack である. この二 つの例については、このセミナーでも後に証明を扱う.

例 2.4

 $X \in \mathbf{Sch}$ に対し、圏 \mathbf{QCoh}/X を以下のように定める.

Objects.

 $\operatorname{Fpqc}(X)$ †2の対象 :: U と,U 上の sheaf (on fpqc topology):: \mathcal{U} の組.

Arrows.

射 $(U, \mathcal{U}) \to (V, \mathcal{V})$ は、 \mathbf{C} の射 $f: U \to V$ と、morphism of sheaves on $V:: f^{\#}: \mathcal{V} \to f_*\mathcal{U}$ の組.

この時, fibered category :: $\mathbf{QCoh}/X \to \mathbf{C}/X$; $(U, \mathcal{U}) \mapsto U$ は stack である.

例 2.5 ([2] 4.4.1)

以下で定まる fibered category は stack である.

$$\begin{cases} \text{pair of scheme over } S :: Y \\ \text{and closed imm. } W \hookrightarrow Y \end{cases} \rightarrow \text{Fppf}(S)$$

$$(Y, W \hookrightarrow Y) \qquad \mapsto \qquad Y$$

例 2.6 ([2] 4.4.4)

以下で定まる fibered category は stack である.

$$\begin{cases} \text{pair of scheme over } S :: Y \\ \text{and open imm. } W \hookrightarrow Y \end{cases} \rightarrow \text{Fppf}(S)$$

$$(Y, W \hookrightarrow Y) \qquad \mapsto \qquad Y$$

以下の二つの例は後に一般化される.

例 2.7 ([1] §4.3.1)

arrow category :: $\mathbf{Sch}^{\rightarrow}$ の対象を affine morphism に制限したものを圏 \mathbf{Aff} とする. 以下で定まる fibered category は stack である.

$$\begin{array}{ccc} \mathbf{Aff} & \to & \mathrm{Fppf}(\mathrm{Spec}\,\mathbb{Z}) \\ [X \to Y] & \mapsto & Y \end{array}$$

 $^{^{\}dagger 2}$ 圏 **Sch**/X に fpqc topology を備えたもの.

例 2.8 ([2] 4.4.15)

quasi-compact open imbedding の後に affine morphism を合成した射のことを quasi-affine morphism という. arrow category :: $\mathbf{Sch}^{\rightarrow}$ の対象を quasi-affine morphism に制限したものを \mathbf{QAff} とする. 以下で定まる fibered category は stack である.

$$\mathbf{QAff} \quad \to \quad \mathrm{Fppf}(\mathrm{Spec}\,\mathbb{Z})$$
$$[X \to Y] \quad \mapsto \qquad Y$$

3 Proposition : Stack

命題 **3.1** ([2] Prop4.12)

二つの equivalent な fibered category があり、かつ一方が stack ならば、もう一方も stack である.

(証明). \mathcal{F}, \mathcal{G} :: fibered categories over \mathbf{C} とし, $F: \mathcal{F} \to \mathcal{G}$:: morphism of fibered categories とする. この時 cover of $U \in \mathbf{C}$:: $\mathcal{U} = \{U_i \to U\}$ について $F_{\mathcal{U}}$ を定義する.

$$F_{\mathcal{U}}$$
: $\mathcal{F}(\mathcal{U}) \rightarrow \mathcal{G}(\mathcal{U})$
Objects: $(\{\xi_i\}, \{\sigma_{ij}\}) \mapsto (\{F\xi_i\}, \{F\sigma_{ij}\})$
Arrows: $\{\alpha_i\} \mapsto \{F\alpha_i\}$

更に二つの射 $F,G: \mathcal{F} \to \mathcal{G}$ とその間の base-preserving natural transformation :: $\rho: F \to G$ に対し, $\rho_{\mathcal{U}}: F_{\mathcal{U}} \to G_{\mathcal{U}}$ を次のように定義する.

$$(\rho_{\mathcal{U}})_{(\{\xi_i\},\{\sigma_{i,i}\})} = \{\rho_{\xi_i}\}.$$

以上から, F が equivalence ならば $F_{\mathcal{U}}$ も quivalence である. したがって以下の commutative diagram of weak 2-category $^{\dagger 3}$ が得られる.

$$\begin{array}{ccc} \mathcal{F}(U) \stackrel{\epsilon_{\mathcal{U}}}{\longrightarrow} \mathcal{F}(\mathcal{U}) \\ \downarrow^{F} & & \downarrow^{F_{\mathcal{U}}} \\ \mathcal{G}(U) \stackrel{\epsilon_{\mathcal{U}}}{\longrightarrow} \mathcal{F}(\mathcal{U}) \end{array}$$

この可換図式から, 主張が得られる.

命題 **3.2** ([2] Exc 4.I)

 \mathcal{F},\mathcal{F}' :: stack on $\mathbf{C},f\colon\mathcal{F}\to\mathcal{F}'$:: morphism of stacks とする. f :: isomorphism は以下の 2 条件が成立することと同値.

- (a) 任意の $X \in \mathbb{C}$ について、fiber の間の射 $f_X : \mathcal{F}(X) \to \mathcal{F}'(X)$ は fully-faithful.
- (b) 任意の $X \in \mathbb{C}$ と $x \in \mathcal{F}'(X)$ について, covering of $X :: \{\phi_i : X_i \to X\} \in \text{Cov}(X)$ が存在し、全ての x の pullback $:: \phi_i^* x \in \mathcal{F}'(X_i)$ が $\mathcal{F}(X_i)$ の essential image に属す.

^{†3} 射の合成の間に natural isomorphism が存在するという意味で可換.

補題 3.3

site :: \mathbf{C} を、空集合の cover として空集合を持つ ($\emptyset \in \mathrm{Cov}(\emptyset)$) ものとする. $\pi \colon \mathcal{F} \to \mathbf{C}$:: stack について、以下の圏同値が成立する.

$$\mathcal{F}(\emptyset) \simeq \mathbf{1}$$
.

特に、 $\mathcal{F}(\emptyset)$ の対象は全て同型であり、射は同型射しかない。

(証明). category of descent data :: $\mathcal{F}(\mathcal{U})$ の対象を考える. これは \mathcal{U} で添字付けられた対象の族の二つ組である. なので $\mathcal{U}=\emptyset$ について, $\mathcal{F}(\emptyset)$ の対象は (\emptyset,\emptyset) しかない. 射も \mathcal{U} で添字付けられた族であるから,非自明な射は存在しない.

この補題の仮定は奇妙に見えるかも知れないが、以下の通り、このように仮定しても問題はないし、我々が扱う殆どの site はこの仮定を満たす.

主張 3.4

圏 \mathbf{C} の任意の対象 $U \in \mathbf{C}$ について、命題「 $\emptyset \in \mathrm{Cov}(U)$ 」は Grothendieck topology の公理(定義)と独立である。 すなわち、 $\emptyset \in \mathrm{Cov}(U)$ としてもしなくても矛盾は生じない。

(証明). 命題「 $\emptyset \in \text{Cov}(U)$ 」を P と書く. Grothendieck topology の定義を見直そう. cover of \emptyset :: $U \in \text{Cov}(U)$ が満たすべき条件を記号で書き下す.

- (a) $\forall [V \to U] \in \mathbf{C}/U$, $[\forall [U' \to U] \in \mathcal{U}, \exists U' \times_U V] \implies \{U' \times_U V \to V \mid [U' \to U] \in \mathcal{U}\} \in \mathrm{Cov}(V)$.
- (b) $\forall \mathcal{V} := \{\mathcal{U}'_{U'} \mid \mathcal{U}'_{U'} \in \operatorname{Cov}(U')\}_{U' \in \mathcal{U}}, \quad \{U'' \to U' \to U \mid [U' \to U] \in \mathcal{U}, [U'' \to U'] \in \mathcal{U}'_{U'}\} \in \operatorname{Cov}(U).$

クラス X と述語 F について " $\forall x \in X$, F(x)"という文は " $\forall x$, $[x \in X \implies F(x)]$ の省略形である。したがって, $X = \emptyset$ であるとき," $\forall x \in X$, F(x)"という文は任意の F について真。また, $\{f(x) \mid x \in \emptyset\} = \emptyset$. なので,以上の文を $U = \emptyset$ の場合に考えると(すなわち P を仮定すると),いずれも P と同値に成る。よって $P \implies P$ ということになる。一方,否定 "P を仮定しても矛盾が生じないことは明らか.

例 3.5

圏 \mathbf{C} を \mathbf{Sch} の部分圏や \mathbf{Sch}/S (S :: scheme) とする. morphism of schemes のクラス $\mathcal{P} \subset \mathrm{Arr}(\mathbf{C})$ をとり、以下のように \mathbf{C} 上の Cov を定めたとする:

$$\begin{aligned} \operatorname{Cov}(U) = & \{ \mathcal{U} \mid \mathcal{U} \text{ :: jointly surjective family and }^{\forall} \phi \in \mathcal{U}, \quad \phi \in \mathcal{P} \} \\ = & \left\{ \mathcal{U} \mid \bigsqcup_{U' \in \mathcal{U}} U' \to U \text{ :: surjective and }^{\forall} \phi, \quad [\phi \in \mathcal{U} \implies \phi \in \mathcal{P}] \right\}. \end{aligned}$$

この時, $\bigsqcup_{U' \in \emptyset} U' = \emptyset$ なので $\emptyset \in \text{Cov}(\emptyset)$.

このセミナーで定義した Zariski site, etale site, ... などは全てこの主張のように定義されている.

補題 3.6

圏 \mathbf{C} を \mathbf{Sch} の部分圏や \mathbf{Sch}/S (S:: scheme) とする. $U \in \mathbf{C}, \{U_i \to U\} \in \mathrm{Cov}(U)$ をとり、 $V = \bigsqcup_i U_i$ と置く.

 $\{U_i \to V\} \in \text{Cov}(V)$ と仮定する^{†4}と $\pi: \mathcal{F} \to \mathbf{C}$:: stack について, 圏同値 (TODO: strict 2-equivalence?

^{†4} 例えば、Zariski topology より細かい位相ならばこの仮定は成立する.

ここは ϵ と圏同型の合成)

$$\mathcal{F}\left(\bigsqcup_{i} U_{i}\right) \simeq \prod_{i} \mathcal{F}(U_{i})$$

が成立する.

(証明). 瑣末なことでは有るが: $\{U_i \to V\}$ の添字について, $i \neq j$ ならば $U_i \neq U_j$ である, と仮定して一般性を失わない.

仮定の状況では、injection map (coprojection) :: $U_i \to V$ についての fiber product は次のように成る.

$$U_{ij} = U_i \times_V U_j = \begin{cases} U_{ii} (\cong U_i) & (U_i = U_j) \\ \emptyset & (U_i \neq U_j). \end{cases}$$

そこで $\mathcal{U} = \{ \inf_i : U_i \to V \} (\in \operatorname{Cov}(V))$ と置くと、 $\xi \in \mathcal{F}(V)$ の $\epsilon_{\mathcal{U}} : \mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ による像は

$$\epsilon_{\mathcal{U}}(\xi) = (\{(\text{inj}_i)^* \xi\}_i, \{\text{id}_{U_{ij}}\}_{i,j})$$

となる.

 $i \neq j$ の時、 σ_{ij} は自己同型であるから id_\emptyset である。 さらに i = j の時は, $(\mathrm{pr}_i)^*(\mathrm{inj}_i)^*\xi$ と $(\mathrm{pr}_j)^*(\mathrm{inj}_j)^*\xi$ が 完全に等しいので, $\sigma_{ij} = \mathrm{id}_{(\mathrm{inj}_i)^*\xi}$. また,射 $\{\alpha_i\}$ に課された条件は,各 α_i は $(\mathrm{inj}_i)^*\xi \to (\mathrm{inj}_i)^*\xi$ の形の任意の射の組み合わせについて成立する.

以上より,以下の関手は圏同値である.

$$\prod_{i} \mathcal{F}(U_{i}) \rightarrow \operatorname{im} \epsilon_{\mathcal{U}} (\subseteq \mathcal{F}(\{U_{i} \rightarrow V\}))$$
Objects: $((\operatorname{inj}_{i})^{*}\xi)_{i} \mapsto (\{(\operatorname{inj}_{i})^{*}\xi\}_{i}, \{\operatorname{id}_{(\operatorname{inj}_{i})^{*}\xi}\}_{i \neq j} \cup \{\operatorname{id}_{U_{ii}}\}_{i})$
Arrows: $(\alpha_{i})_{i} \mapsto \{\alpha_{i}\}_{i}$

 \mathcal{F} :: stack なので主張にある圏同値が示せた.

定理 3.7 (Stackification of category fibered by groupoids.)

 ${\bf C}$:: site, ${\cal F}$:: category fibered by groupoids over ${\bf C}$ とする. この時, $\bar{{\cal F}}$:: stack in groupoids over ${\bf C}$ と θ : ${\cal F} \to \bar{{\cal F}}$:: morphism of fibered category が存在し,

$$(-) \circ \theta \colon \operatorname{HOM}_{\mathbf{C}}(\bar{\mathcal{F}}, -) \to \operatorname{HOM}_{\mathbf{C}}(\mathcal{F}, -)$$

が圏同値となる.

例 3.8

presheaf の stackification は sheafification と一致する.

例 3.9 (arXiv:math/0305243v1, Prop3.6)

S:: scheme, \mathcal{M} :: algebraic stack over \mathbf{Sch}/S , \mathcal{G} :: sheaf in groups over \mathbf{Sch}/S , acting on \mathcal{M} とする. この時, \mathcal{M} の \mathcal{G} による categorical quotient :: \mathcal{M}/\mathcal{G} は,以下の prestack (2-functor として定義する) :: \mathcal{P} の stackification として定義される.

Objects of $\mathcal{P}(U)$. $\mathcal{M}(U)$ の対象と同じ.

Arrows of $\mathcal{P}(U)$. $g \in \mathcal{G}(T)$ と $\mathcal{M}(U)$ の射 $g * x \to y$ の組.

ただし $U \in \mathbf{Sch}/S$ は任意.

参考文献

- [1] Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008).
- [2] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.