TTT4275 Lecture 2 Spring 2018

Faglærer: Magne Hallstein Johnsen,

Institutt for elektronikk og telekommunikasjon, NTNU

Lecture content

- Designing and training parametric BDR classifiers
 - Different design and training issues
 - The likelihood concept and Maximum likelihood (ML) training
 - Maximum A Posteriori (MAP) training
 - A short intro to Expectation-Maximation (E-M) algorithm applied to training of Gaussian mixture models (GMM)

Different design and training issues for BDR classifiers

- Assuming continuous input x
 - Is x a (static) vector or a vector sequence (temporal information)
 - If x is vector how is x distributed (GMM?)
 - If x is a sequence we also have to model (by HMM?) the temporal dependency.
 - In this course we assume x is a vector
- Training issues
 - We need a training set $X = \{x_k \mid k = 1, N\}$)
 - Parameters ⊖ must be estimated
 - Usually supervised training (training set \boldsymbol{X} is class labeled) is applied
 - Training set size and representativeness are important to fullfil!

The likelihood concept and ML training: part 1

- Defining log likelihood for an unknown parameter set ⊖
 - Given/measured a labeled training set X):

$$- LL(\Theta) = \log[p(X/\Theta)] = \log[\prod_{k=1}^{N} p(x_k/\Theta)] = \sum_{k=1}^{N} \log[p(x_k/\Theta)]$$

- Assumes independent training observations
- Same principle as curve (i.e. model) fitting!
- ML training:
 - Find Θ which maximizes $LL(\Theta)$ given X
 - In some cases this is an intrinsic optimization problem (iterative two-step algorithms, like the E-M, are needed)

The likelihood concept and ML training: part 2

- The classical Gaussian vector case $p(x/\omega_i) = N(\mu_i, \Sigma_i)$ i = 1, C
- Parameters for each class $\omega_i \Rightarrow \Theta_i = \{\mu_i, \Sigma_i\}$ is found separately !
- Omitting class index for briefity and assume $X \in \omega$
- $LL(\Theta) = Konst 0.5Nlog(|\Sigma|) 0.5\sum_{k=1}^{N} (x_k \mu)^T \Sigma^{-1}(x_k \mu)$
- ML $\Rightarrow \nabla_{\Theta} LL(\Theta) = 0$
 - $ML \Rightarrow \nabla_{\mu} LL(\Theta) = \sum_{k=1}^{N} \Sigma^{-1}(x_k \mu) = 0 \Rightarrow$
 - $-\mu_{ML} = (1/N) \sum_{k=1}^{N} x_k$ (sample mean)
 - A similar procedure gives :
 - $-\Sigma_{ML} = (1/N)\sum_{k=1}^{N} (x_k \mu)(x_k \mu)^T$ (sample covariance)

Maximum A Posteriori - MAP training: part 1

- ML assumes ⊖ is unknown, deterministic
- How to include some knowledge about Θ ? A popular strategy is to use a statistical approach $\Rightarrow p(\Theta)$ (prior density must be chosen)
- MAP $\Rightarrow \max_{\Theta} log[P(\Theta/X)] \equiv \max_{\Theta} log(p(X/\Theta)p(\Theta))$
- $\Rightarrow log[P(\Theta/X)] = log[p(\Theta)] + \sum_{k=1}^{N} log[p(x_k/\Theta)]$
- Explicit solutions are dependent of choosing a "manageable" (in a mathematical sense) prior distribution.
- In the Gaussian vector case $p(x/\omega) = N(\mu, \Sigma)$ this restriction leads to the following choices
 - $-p(\mu) = N(\mu_0, \Sigma_0)$ (see next slide)
 - while the Wishart distribution has to be chosen for $p(\Sigma)$
- Several methods have been developed with respect to choosing good prior (hyper)parameters

Maximum A Posteriori - MAP training : part 2

- Assuming the Gaussian vector case and that only μ must be estimated.
- This means that the prior $\{\mu_0, \Sigma_0\}$ is chosen and the sample covariance estimate $\Sigma = \Sigma_{ML}$ is good enough
- $\nabla_{\mu}log[p(\Theta/X)] = 0 \Rightarrow \mu_{MAP} = (N\Sigma^{-1} + \Sigma_0^{-1})^{-1}(N\Sigma^{-1}\mu_{ML} + \Sigma_0^{-1}\mu_0)$
- Here μ_{ML} is the sample mean.
- Note: a) $N \to \infty \Rightarrow \mu_{MAP} \to \mu_{ML}$ b) $N \to 0 \Rightarrow \mu_{MAP} \to \mu_0$
- ullet For the special case when x is a scalar we get :

$$\mu = \frac{\sigma^2 \mu_0 + N \sigma_0^2 \mu_{ML}}{\sigma^2 + N \sigma_0^2} \tag{1}$$

Gaussian mixture modeling and the EM algorithm

- In most cases the true (but unknown) class distribution deviates from a single Gaussian
- However, a weighted sum of L Gaussians can approximate any continuous distribution
- GMM : $p(x/\Theta) = p(x/\Theta, P_{all}) = \sum_{j=1}^{L} p(x/\Theta, j) P_j = \sum_{j=1}^{L} P_j N(\mu_j, \Sigma_j)$ where $\Theta = [\mu_j, \Sigma_j]$ and $P_{all} = [P_j \ j = 1, L]$
- We assume x is drawn with probability P_j from Gaussian number j. Note $P_j = c_j$, the weight for mixture j.
- If j_k was known for every x_k k = 1, N in the training set, we could find the parameters for each Gaussian separately (by ML or MAP)
- However, the j_k 's are unknown; i.e. we say that the data set $y_k \triangleq \{x_k, j_k\}$ are incomplete (an insintric problem).
- Note: This GMM problem is an example of so called clustering (lectured later in this course). This also includes how to decide upon the optimal number of gaussians/clusters.