

IC RSS-210 ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

Nvidia Corporation

2701 San Tomas Expressway Santa Clara, CA 95050, USA

FCC ID: VOB-E1162 IC: 7361A-E1162

Report Type:
Original Report

Developer Kit with embedded Wi-Fi and BT

Test Engineer:
Jack Liu

Report Number:
R1003235-247BT

Report Date:
2010-11-01

Victor Zhang

Reviewed By:
RF Lead

Prepared By:
(84)
Bay Area Compliance Laboratories Corp.
1274 Anvilwood Avenue,
Sunnyvale, CA 94089, USA

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

Tel: (408) 732-9162 Fax: (408) 732 9164

TABLE OF CONTENTS

1	GEN	NERAL INFORMATION	6
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	MECHANICAL DESCRIPTION OF EUT	6
	1.3	Objective	
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	
	1.5	TEST METHODOLOGY	
	1.6	MEASUREMENT UNCERTAINTY	
	1.7	TEST FACILITY	6
2	SYS	TEM TEST CONFIGURATION	8
	2.1	JUSTIFICATION	8
	2.2	EUT Exercise Software	
	2.3	SPECIAL ACCESSORIES	
	2.4	EQUIPMENT MODIFICATIONS	
	2.5	LOCAL SUPPORT EQUIPMENT	
	2.6	POWER SUPPLY AND LINE FILTERS	8
	2.7	INTERFACE PORTS AND CABLING	8
	2.8	INTERNAL PARTS LIST AND DETAILS	9
3	SUN	MARY OF TEST RESULTS	10
4	FCC	C §15.203, IC RSS-GEN §7.1.4 – ANTENNA REQUIREMENTS	
	4.1	APPLICABLE STANDARD	
	4.2	RESULT	11
5	FCC	C §15.207 & RSS-GEN §7.2.2- AC LINE CONDUCTED EMISSIONS	12
	5.1	APPLICABLE STANDARDS	
	5.2	TEST SETUP	
	5.3	TEST EQUIPMENT LIST AND DETAILS.	
	5.4	TEST SETUP BLOCK DIAGRAM	
	5.5	TEST PROCEDURE	13
	5.6	TEST ENVIRONMENTAL CONDITIONS	13
	5.7	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	5.8	SUMMARY OF TEST RESULTS	
	5.9	CONDUCTED EMISSIONS TEST PLOTS AND DATA	15
6	FCC	C §15.205, §15.209, §15.247(D) & IC RSS-210 §2.2, §2.6, §A8.5 – SPURIOUS RADIATED	
E	MISSIC	NS	17
	6.1	APPLICABLE STANDARD	17
	6.2	TEST SETUP	18
	6.3	TEST EQUIPMENT LIST AND DETAILS.	
	6.4	TEST PROCEDURE	
	6.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	6.6	TEST ENVIRONMENTAL CONDITIONS	
	6.7	SUMMARY OF TEST RESULTS	
	6.8	RADIATED EMISSIONS TEST RESULT DATA:	21
7	FCC	C §15.247(A) & IC RSS-210 §A8.1 – HOPPING CHANNEL BANDWIDTH	23
	7.1	APPLICABLE STANDARD	
	7.2	MEASUREMENT PROCEDURE.	23
	7.3	TEST EQUIPMENT LIST AND DETAILS.	
	7.4	TEST ENVIRONMENTAL CONDITIONS	
	7.5	MEASUREMENT RESULTS	24

8	FC	C §15.247(A) & IC RSS-210 §A8.1 – HOPPING CHANNEL SEPARATION	26
	8.1	APPLICABLE STANDARD	26
	8.2	MEASUREMENT PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS.	
	8.4	TEST ENVIRONMENTAL CONDITIONS	
	8.5	MEASUREMENT RESULTS	27
9	FC	C §15.247(A) & IC RSS-210 §A8.1- NUMBER OF HOPPING CHANNELS	
	9.1	APPLICABLE STANDARD	
	9.2	MEASUREMENT PROCEDURE	
	9.3	TEST EQUIPMENT LIST AND DETAILS	
	9.4	TEST ENVIRONMENTAL CONDITIONS	
	9.5	MEASUREMENT RESULTS	
10		C §15.247(A) & IC RSS-210 §A8.1 - DWELL TIME	
	10.1	APPLICABLE STANDARD	
	10.2	MEASUREMENT PROCEDURE	
	10.3	TEST EQUIPMENT LIST AND DETAILS	
	10.4	TEST ENVIRONMENTAL CONDITIONS	
	10.5	MEASUREMENT RESULTS	
11	1 FC	C §15.247(B) & IC RSS-210 §A8.4 – MAXIMUM PEAK OUTPUT POWER	
	11.1	APPLICABLE STANDARD	
	11.2	MEASUREMENT PROCEDURE	
	11.3	TEST EQUIPMENT LIST AND DETAILS	
	11.4	TEST ENVIRONMENTAL CONDITIONS	
	11.5	MEASUREMENT RESULTS	
12	2 FC	C §15.247(D) & IC RSS-210 §A 8.5 - BAND EDGES EMISSIONS	39
	12.1	APPLICABLE STANDARD	39
	12.2	MEASUREMENT PROCEDURE	
	12.3	TEST EQUIPMENT LIST AND DETAILS	
	12.4	TEST ENVIRONMENTAL CONDITIONS	
	12.5	MEASUREMENT RESULTS	
13		C §15.247(D) & IC RSS-210 §A8.5 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	13.1	APPLICABLE STANDARD	
	13.2	MEASUREMENT PROCEDURE	
	13.3	TEST EQUIPMENT LIST AND DETAILS	
	13.4 13.5	TEST ENVIRONMENTAL CONDITIONS	
14		C §15.109 & IC RSS-GEN §6 - RECEIVER RADIATED SPURIOUS EMISSIONS	
	14.1	APPLICABLE STANDARDS	
	14.2	EUT SETUP	
	14.3 14.4	CORRECTED AMPLITUDE & MARGIN CALCULATION	
	14.4	TEST EQUIPMENT LISTS AND DETAILS.	
	14.6	TEST EQUI MENT LISTS AND DETAILS TEST ENVIRONMENTAL CONDITIONS	
	14.7	SUMMARY OF TEST RESULTS.	
	14.8	MEASUREMENT RESULTS	
15	5 FC	C §15.247(I), § 2.1091 & IC RSS-102 - RF EXPOSURE INFORMATION	50
	15.1	APPLICABLE STANDARDS	
	15.2	MPE Prediction	
	15.3	MPE RESULTS	
10	6 EX	HIBIT A - FCC & IC EQUIPMENT LABELING REQUIREMENTS	52
	16.1	FCC ID Label Requirements.	

IC LABEL REQUIREMENTS	52
SUGGESTED FCC ID & IC LABEL	53
SUGGESTED FCC ID & IC LABEL LOCATION	53
KHIBIT B - TEST SETUP PHOTOGRAPHS	54
RADIATED EMISSION BELOW 1 GHZ FRONT VIEW	54
RADIATED EMISSION BELOW 1 GHZ REAR VIEW	54
RADIATED EMISSION ABOVE 1 GHz Front View	55
RADIATED EMISSION ABOVE 1 GHZ REAR VIEW	
AC LINE CONDUCTED EMISSION FRONT VIEW	56
AC LINE CONDUCTED EMISSION SIDE VIEW	56
KHIBIT C - EUT PHOTOGRAPHS	57
EUT SYSTEM VIEW	57
EUT –AC/DC ADAPTER VIEW	
EUT – BOARD 1 TOP VIEW	59
EUT- BOARD 1 REAR VIEW	59
EUT- BOARD 2TOP VIEW	60
EUT –Board 2 Rear View	60
	HIBIT B - TEST SETUP PHOTOGRAPHS RADIATED EMISSION BELOW 1 GHZ FRONT VIEW RADIATED EMISSION BELOW 1 GHZ REAR VIEW RADIATED EMISSION ABOVE 1 GHZ FRONT VIEW RADIATED EMISSION ABOVE 1 GHZ REAR VIEW AC LINE CONDUCTED EMISSION FRONT VIEW AC LINE CONDUCTED EMISSION SIDE VIEW HIBIT C - EUT PHOTOGRAPHS EUT SYSTEM VIEW EUT – ANTENNA VIEW

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1003235-247BT	Original Report	2010-11-10

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Nvidia Corporaton* and their product, *model: E1162*, *FCC ID: VOB-E1162*, *IC: 7361A-E1162* or the "EUT" as referred to this report. The EUT is designed to support system integration and software development for the Tegra mobile web processor. The wireless supports Bluetooth and 802.11b/g Wi-Fi. Bluetooth supports EDR up to 3 Mbps; W-iFi 802.11b/g at 54Mbps. Full QoS for 802.11e and security support 802.11i. Operates at 2400 to 2483.5 MHz.

1.2 Mechanical Description of EUT

The EUT measures approximately 170 mm (**L**) x 210 mm (**W**) x 40 mm (**H**) and weighs approximately 521.5 g.

The data gathered are from a typical production sample provided by the manufacturer with serial number R1003235-1 assigned by BACL.

1.3 Objective

This report is prepared on behalf of *Nvidia Corporation*. in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commissions rules and IC RSS-210 Issue 7, June 2007.

1.4 Related Submittal(s)/Grant(s)

802.11b/g Wi-Fi submission with the same FCC ID, report number: R1003235-247WiFi.

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

1.7 Test Facility

The semi-anechoic chambers used by BACL to collect radiated and conducted emissions measurement data is located in the building at it's facility in Sunnyvale, California, USA.

BACL's test sites have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

2 System Test Configuration

2.1 Justification

The system was configured for testing in accordance with ANSI C63.4-2003.

The EUT was tested in the testing mode to represent *worst*-case results during the final qualification test.

2.2 EUT Exercise Software

The software is provided by customer. The EUT exercise program used during radiated testing was designed to exercise the system components.

Radio		Frequency (MHz)	
Mode	Low Channel	Middle Channel	High Channel
Bluetooth	2402	2441	2480

2.3 Special Accessories

N/A.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
IBM	Laptop	T41	00416

2.6 Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number
TMC	I.T.E Power Supply	HK-H1-A15	N/A

2.7 Interface Ports and Cabling

Cable Description	Length (m)	From	То
USB	< 3 m	EUT	Laptop

2.8 Internal Parts List and Details

Manufacturers	Descriptions	Models	Serial Numbers
NVIDIA	VIDIA Processor Tegra T30		N/A
Murata	WiFi-BT module	LBEE19QMBC-256	N/A
TI	LVDS Transmitter	SN75LVDS83BDGGR	N/A
Hynix	DDR2 SDRAM Memory	H5PS1G83EFR-Y5C	N/A
SMSC	USB Transceiver	USB3315C-CP-TR	N/A
SMSC	USB Hub w/ Integrated Ethernet Controller	LAN9514-JZX	N/A
TI	SLVS	TPS658621AZGUR	N/A

3 Summary of Test Results

FCC & IC Rules	Description of Test	Result
FCC §15.247 (i), §2.1091 IC RSS-102	RF Exposure	Compliant
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirements	Compliant
FCC §15.207 (a) IC RSS-Gen §7.2.2	AC Line Conducted Emissions	Compliant
FCC §15.247(d) IC RSS-210 §A8.5	Spurious Emissions at Antenna Port	Compliant
FCC §15.205, §15.209, §15.247(d) IC RSS-210 §2.2, §2.6, RSS-210 §A8.5	Restricted Bands, Spurious Radiated Emissions	Compliant
FCC §15.247 (a)(1) IC RSS-210 §A8.1	20 dB Channel Bandwidth	Compliant
FCC §15.247 (a)(1) IC RSS-210 §A8.1(b)	Hopping Channel Separation	Compliant
FCC §15.247 (a)(1) IC RSS-210 §A8.1(d)	Dwell Time	Compliant
FCC §15.247(a)(1) IC RSS-210 §A8.1	Number of Hopping Channels	Compliant
FCC §15.247(a) IC RSS-210 §A8.1	Maximum Peak Output Power	Compliant
FCC §15.247(d) IC RSS-210 §A8.5	Band Edge	Compliant
FCC Part 15.109 IC RSS-Gen §6	Receiver Spurious Emission	Compliant

4 FCC §15.203, IC RSS-Gen §7.1.4 – Antenna Requirements

4.1 Applicable Standard

For intentional device, according to FCC Part §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Per IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter maybe certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in IC RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to IC RSS-210 Annex 8 or RSS-210 Annex 9, the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to IC RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

4.2 Result

The EUT has maximum gain of 2dBi antenna, which in accordance to sections FCC Part 15.203 and IC RSS-Gen §7.1.4, is considered sufficient to comply with the provisions of these sections. Please refer to the EUT photos.

EUT Antenna

5 FCC §15.207 & RSS-Gen §7.2.2- AC Line Conducted Emissions

5.1 Applicable Standards

As per FCC §15.207 & IC RSS-Gen §7.2.2 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted I	Limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

5.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC Part15.207 and IC RSS-Gen limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120~V / 60~Hz AC power.

5.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100044	2010-04-19
Solar Electronics	LISN	9252-R-24-BNC	511205	2009-06-09
TTE	Filter, High Pass	H9962-150K-50- 21378	K7133	2009-06-01

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.4 Test Setup Block Diagram

5.5 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

5.6 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

5.7 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

5.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC/IC standard's</u> conducted emissions limits, with the margin reading of:

Connection: AC/DC adapter connected to 120 V/60 Hz, AC				
Margin (dB)Frequency (MHz)Conductor Mode (Line/Neutral)Range (MHz)				
-19.25	0.38506	Line	0.15 to 30	
-19.91	0.156728	Neutral	0.15 to 30	

5.9 Conducted Emissions Test Plots and Data

120V/60 Hz Line:

Quasi-Peak Measurement

Frequency (MHz)	Corrected Amplitude (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.154944	46.11	Quasi-Peak	L	65.73	-19.62
0.38506	37.55	Quasi-Peak	L	58.17	-20.62
0.167535	43.92	Quasi-Peak	L	65.08	-21.16
0.181835	42.91	Quasi-Peak	L	64.4	-21.49
0.21707	38.65	Quasi-Peak	L	62.93	-24.28
0.225545	37.71	Quasi-Peak	L	62.61	-24.9

Average Measurement

Frequency (MHz)	Corrected Amplitude (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.38506	28.92	Average	L	48.17	-19.25
0.154944	30.92	Average	L	55.73	-24.81
0.181835	26.27	Average	L	54.4	-28.13
0.21707	20.82	Average	L	52.93	-32.11
0.225545	15.64	Average	L	52.61	-36.97
0.167535	18.03	Average	L	55.08	-37.05

120V/60 Hz Neutral:

Quasi-Peak Measurement

Frequency (MHz)	Corrected Amplitude (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.156728	45.73	Quasi-Peak	N	65.64	-19.91
0.380427	36.47	Quasi-Peak	N	58.27	-21.8
0.183251	42.48	Quasi-Peak	N	64.34	-21.85
0.203573	39.82	Quasi-Peak	N	63.46	-23.64
0.210675	39.17	Quasi-Peak	N	63.18	-24.01
0.255897	34.52	Quasi-Peak	N	61.56	-27.04

Average Measurement

Frequency (MHz)	Corrected Amplitude (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.380427	28.22	Average	N	48.27	-20.05
0.156728	25.58	Average	N	55.64	-30.06
0.183251	22.37	Average	N	54.34	-31.97
0.210675	18.13	Average	N	53.18	-35.05
0.255897	13.34	Average	N	51.56	-38.23
0.203573	14.05	Average	N	53.46	-39.41

6 FCC §15.205, §15.209, §15.247(d) & IC RSS-210 §2.2, §2.6, §A8.5 – Spurious Radiated Emissions

6.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a) and RSS-210: Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	960 – 1240	4.5 - 5.15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5. 35 - 5. 46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 - 1646.5	8.025 - 8.5
4.17725 – 4.17775	73 – 74.6	1660 - 1710	9.0 - 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 - 6.218	108 – 121.94	2200 – 2300	10.6 - 12.7
6.26775 - 6.26825	123 – 138	2310 - 2390	13.25 - 13.4
6.31175 - 6.31225	149.9 – 150.05	2483.5 - 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 - 16.2
8.362 – 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 -167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 – 173.2	3 3458 - 3 358	23.6 - 24.0
12.29 - 12.293	240 – 285	3.600 - 4.400	31.2 - 31.8
12.51975 – 12.52025	322 – 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 - 13.41	608 - 614		

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

6.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15C and IC RSS-210 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

6.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date
A.H Systems	Antenna, Horn	SAS-200/571	261	2009-09-23
Hewlett Packard	Pre amplifier	8447D	2944A06639	2009-06-05
Sunol Science Corp	Combination Antenna	JB3	A0020106-2	2009-08-20
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2009-10-27
Agilent	PSA Series Spectrum Analyzer	E4440A	US45303156	2009-07-23
HP	Pre Amplifier	8449B	3147A00400	2010-02-01

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

6.4 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to

find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.6 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

6.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15C and IC RSS-210</u> standard's radiated emissions limits, and had the worst margin of:

30-1000 MHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-4.76	49.44632	Vertical	Mid, 30 MHz– 1 GHz

Above 1 GHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range
-	-	-	Low, 1GHz – 25GHz
-	-	-	Mid, 1GHz – 25GHz
-	-	-	High, 1GHz – 25GHz

⁻ Note: All Frequencies are 20 dB below the limit or are on the noise floor level

Please refer to the following table and plots for specific test result details

6.8 Radiated Emissions Test Result Data:

1) 30 MHz – 1 GHz, Radiated Spurious Emissions Measured at 3 meters

Worst Case: Middle channel (2441 MHz)

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
49.44632	35.24	98	V	306	40	-4.76
300.0156	41.17	92	Н	249	46	-5.33
360.011	38.87	111	Н	359	46	-7.63
230.2536	37.55	114	Н	113	46	-8.95
504.0914	37.15	178	Н	358	46	-9.35
456.0287	36.61	236	Н	359	46	-9.89

2) 1 – 25 GHz, Radiated Spurious Emissions Measured at 3 meters

	S.A. Turn		Turntable Test Antenna		na	Cable Pre-	Cord.	FCC & IC			
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	ss Amp.	Reading (dBµV/m)	Limit (dBµV/m)	Margin	Comments
	Low Channel (2402 MHz)										
-	-	-	-	-	-	-	-	-	-	-	-
	Middle Channel (2441 MHz)										
-	-	-	-	-	-	-	-	-	-	-	-
	High Channel (2480 MHz)										
-	-	-	-	-	-	-	-	-	-	-	-

⁻ Note: All Frequencies are 20 dB below the limit or are on the noise floor level

3) Spurious Emissions in Restricted Band

E	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	& IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)		Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
				(Near B	and Edge) Lowes	t Channe	el			
2390	28.3	121	131	V	28.2	5.3	36.75	25.05	54	-28.95	Ave
2390	28.6	194	150	Н	28.2	5.3	36.75	25.35	54	-28.65	Ave
2390	42.13	121	131	V	28.2	5.3	36.75	38.88	74	-35.12	Peak
2390	42.28	194	150	Н	28.2	5.3	36.75	39.03	74	-34.97	Peak
				(Near Ba	and Edge)	: Highes	t Chann	el			
2483.5	27.35	122	130	V	28.6	5.4	36.84	24.51	54	-29.49	Ave
2483.5	27.64	0	100	Н	28.6	5.4	36.84	24.8	54	-29.2	Ave
2483.5	43.11	122	130	V	28.6	5.4	36.84	40.27	74	-33.73	Peak
2483.5	43.23	0	100	Н	28.6	5.4	36.84	40.39	74	-33.61	Peak

7 FCC §15.247(a) & IC RSS-210 §A8.1 – Hopping Channel Bandwidth

7.1 Applicable Standard

According to FCC§15.247(a) (l) & RSS-210 §A8.1 (a), the maximum 20 dB bandwidth of the hopping channel shall be presented.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

7.5 Measurement Results

Channel	Frequency (MHz)	20 dB Channel Bandwidth (kHz)
Low	2402	74.279
Mid	2441	73.224
High	2480	72.861

Please refer to the following plots.

Low Channel

Middle Channel

High Channel

8 FCC §15.247(a) & IC RSS-210 §A8.1 – Hopping Channel Separation

8.1 Applicable Standard

According to FCC §15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to IC RSS-210 §A8.1(b)(1)Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

8.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

8.5 Measurement Results

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit > 2/3 20 dB BW >(kHz)
Low	2402	1000	49.653
Mid	2441	1000	48.816
High	2480	1020	48.574

Please refer to the following plots.

Low Channel

Middle Channel

High Channel

9 FCC §15.247(a) & IC RSS-210 §A8.1- Number of Hopping Channels

9.1 Applicable Standard

According to FCC §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

According to IC RSS-210 §A8.1 (d), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

^{*}The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

9.5 Measurement Results

Hopping Channel Number

38 Channels between 2400 to 2440 MHz

41 Channels between 2440 to 2483.5 MHz

10 FCC §15.247(a) & IC RSS-210 §A8.1 - Dwell Time

10.1 Applicable Standard

According to FCC §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

According to IC RSS-210 §A8.1 (d) ,Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that a minimum of 15 hopping channels are used.

10.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

10.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2010-08-09

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	17-23 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.3-102.2kPa

The testing was performed by Jack Liu from 2010-10-20 to 2010-10-22.

10.5 Measurement Results

DH1: Packet Size = 27 byte

Channel	Pulse Width (ms)	Dwell time (sec)	Limit (sec)	Results
Low	0.43	0.14	0.4	Pass
Mid	0.43	0.14	0.4	Pass
High	0.43	0.14	0.4	Pass

Note: Dwell time = Pulse time*(1600/2/79)*31.6S

Please refer to following plots:

Plot 1: Pulse Width at Low Channel (DH1)

Plot 2: Pulse Width at Middle Channel (DH1)

DH3: Packet Size = 183 bytes

Channel	Pulse Width (ms)	Dwell time (sec)	Limit (sec)	Results
Low	1.69	0.27	0.4	Pass
Mid l	1.69	0.27	0.4	Pass
High	1.68	0.27	0.4	Pass

Note: Dwell time = Pulse time*(1600/4/79)*31.6S

Please refer to following plots:

Plot 4: Pulse Width at Low Channel (DH3)

Plot 5: Pulse Width at Middle Channel (DH3)

DH5: Packet Size = 339 bytes

Channel	Pulse Width (ms)	Dwell time (sec)	Limit (sec)	Results
Low	2.95	0.31	0.4	Pass
Mid	2.95	0.31	0.4	Pass
High	2.93	0.31	0.4	Pass

Note: Dwell time = Pulse time*(1600/6/79)*31.6S

Please refer to following plots:

Plot 7: Pulse Width at Low Channel (DH5)

Plot 8: Pulse Width at Middle Channel (DH5)

11 FCC §15.247(b) & IC RSS-210 §A8.4 – Maximum Peak Output Power

11.1 Applicable Standard

According to FCC §15.247(b) (1), for frequency hopping systems in the 2400-2483.5MHz band employing at least 75 hopping channels, and all direct sequence systems, the maximum peak output power of the transmitter shall not exceed 1 Watt. For all other frequency hopping system in the 2400 – 2483.5 MHz band, the maximum peak output power of the transmitter shall not exceed 0.125 Watt.

According to IC RSS-210 §8.4(2), For frequency hopping systems operating in the band 2400-2483.5 MHz employing at least 75 hopping channels, the maximum peak conducted output power shall not exceed 1 W; for all other frequency hopping systems in the band, the maximum peak conducted output power shall not exceed 0.125 W.

11.2 Measurement Procedure

- 1. Place the EUT on the turntable and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

11.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

11.4 Test Environmental Conditions

Temperature:	18~25 °C
Relative Humidity:	30~50 %
ATM Pressure:	101.1-102.8kPa

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

11.5 Measurement Results

Channel	Frequency	Max Peak Ou	tput Power	Limit	Result
Chamiei	(MHz)	(dBm)	(mw)	(mw)	Kesuit
Low	2402	2.94	1.968	125	Pass
Mid	2441	4.64	2.911	125	Pass
High	2480	2.84	1.923	125	Pass

12 FCC §15.247(d) & IC RSS-210 §A 8.5 - Band Edges Emissions

12.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

According to IC RSS-210 §A 8.5.In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

12.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

12.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

12.4 Test Environmental Conditions

Temperature:	18~25 °C		
Relative Humidity:	30~50 %		
ATM Pressure:	101.1-102.8kPa		

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

12.5 Measurement Results

Please refer to the following plots.

Band Edge: Lowest Channel

Band Edge: Highest Channel

13 FCC §15.247(d) & IC RSS-210 §A8.5 - Spurious Emissions at Antenna Terminals

13.1 Applicable Standard

As per FCC §15.247(d) and IC RSS-210 § A8.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

13.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

13.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

13.4 Test Environmental Conditions

Temperature:	18~25 °C		
Relative Humidity:	30~50 %		
ATM Pressure:	101.1-102.8kPa		

The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

13.5 Measurement Results

Please refer to the following plots.

Low Channel

Middle Channel

High Channel

14 FCC §15.109 & IC RSS-Gen §6 - Receiver Radiated Spurious Emissions

14.1 Applicable Standards

FCC §15.109 and IC RSS-Gen §6

14.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

14.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

14.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

14.5 Test Equipment Lists and Details

Manufacturer	Description	Model Number	Serial Number	Calibration Date
Hewlett Packard	Pre-amplifier	8447D	2944A06639	2009-06-05
Sunol Science Corp	Combination Antenna	JB3	JB3 A0020106-2	
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2009-10-27
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-07-23
НР	Pre Amplifier	8449B	3147A00400	2010-02-01

Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

14.6 Test Environmental Conditions

Temperature:	18~25 °C		
Relative Humidity:	30~50 %		
ATM Pressure:	101.1-102.8kPa		

^{*}The testing was performed by Jack Liu from 2010-04-06 to 2010-06-06.

14.7 Summary of Test Results

According to the test data,, the EUT <u>complied with the FCC Part 15.109 and IC RSS-Gen</u>, with the closest margins from the limit listed below:

Mode: Receiving									
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)						
-2.3	360.0107	Horizontal	30 MHz to 1000 MHz						
-	-	-	1 – 25 GHz						

⁻ Note: All Frequencies are 20 dB below the limit or are on the noise floor level

Please refer to the following table and plots for specific test result details

14.8 Measurement Results

1) 30 MHz -1 GHz, measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
49.70188	35.26	35.26 104 V 330		330	40	-4.74
299.9806	40.37	114	Н	250	46	-6.13
360.022	39.61	127	Н	116	46	-6.89
249.944	37	107	Н	105	46	-9.5
76.39968	27.88	267	V	157	40	-12.12
30	22.21	223	V	261	40	-17.79

2) 1 - 25 GHz, measured at 3 meters

Enggrange	S.A.	. Turntable Test Antenna		na	Cable	Pre-	Cord.	FCC	& IC		
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Height Polarity Factor	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments	
-	-	-	-1	-	-1	-	ì	-	-	-	-

⁻ Note: All Frequencies are 20 dB below the limit or are on the noise floor level

15 FCC §15.247(i), § 2.1091 & IC RSS-102 - RF Exposure Information

15.1 Applicable Standards

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF fields.

According to IC RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280/f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 – 300	28	0.073	2*	6
300 – 1 500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f/150	6
1 500 - 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	616000/f ¹²
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ¹²

Note: *f* is frequency in MHz

^{* =} Plane-wave equivalent power density

^{*} Power density limit is applicable at frequencies greater than 100 MHz

15.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

15.3 MPE Results

Maximum peak output power at antenna input terminal (dBm): 4.64 Maximum peak output power at antenna input terminal (mW): 2.911 Prediction distance (cm): 20 Prediction frequency (MHz): 2441 Maximum Antenna Gain, typical (dBi): 2.0 Maximum Antenna Gain (numeric): 1.585 Power density of prediction frequency at 20.0 cm (mW/cm²): 0.0009 Power density of prediction frequency at 20.0 cm (W/m^2): 0.009 MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0 MPE limit for uncontrolled exposure at prediction frequency (W/m²): 10

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is 0.0009 mW/cm² (0.009 W/m²), Limit is 1 mW/cm² (10 W/m²).