Московский государственный технический университет имени Н. Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

ДОКЛАД на тему

МОДЕЛИРОВАНИЕ ДЕГРАДАЦИИ В ГЕТЕРОСТРУКТУРАХ НА ПРИМЕРЕ РТГС

Содержание

BE	ведени	e		4				
1	Teop	етическа	я часть	5				
	1.1	Полуп	роводник	5				
		1.1.1	Зонная структура	5				
		1.1.2	Зонная диаграмма	6				
		1.1.3	Плотность состояний	7				
		1.1.4	Концентрация носителей заряда	8				
		1.1.	4.1 Собственный полупроводник	9				
		1.1.	4.2 Легированный полупроводник	10				
	1.2	Размер	оное квантование	12				
		1.2.1	Трехмерное тело	13				
		1.2.2	Двухмерное тело	14				
		1.2.3	Одномерное тело	14				
	1.3	Гетеро	структура	16				
		1.3.1	Зонная диаграмма гетероперехода	16				
		1.3.2	Резонансно-туннельная гетероструктура	16				
		1.3.3	Резонансно-туннельная гетероструктура на основе					
			$Al_xGa_{1-x}As$	17				
	1.4	1.4 Деградация приборов на основе гетероструктур						
	1.5 Диффузия							
		1.5.1	Законы Фика	20				
		1.5.2	Механизмы диффузии	20				
		1.5.3	Коэффициент диффузии	20				
	1.6	Токопе	еренос через ГС	22				
		1.6.1	Уравнение Шредингера	23				
		1.6.2	Учёт распределения заряда	24				
2	Мате	ематичесь	кий аппарат для моделирования	27				
	2.1	Метод	конечных разностей	27				
	2.2	Метод	конечных разностей для решения одномерного					
	нестационарного уравнения диффузии							
		2.2.1	Коэффициент диффузии не зависит от концентрации	28				
		2.2.2	Коэффициент диффузии зависит от концентрации	29				

	2.3 Метод конечных разностей для расчета токоперенос через						
		гетеростр	руктуру	31			
	2.4	Метод ко	нечных разностей для самосогласованного реше-				
		ние систе	мы Шредингера-Пуассона	32			
3	Иссле	едование па	раметров РТГС на основе $Al_xGa_{1-x}As$	34			
	3.1	Исследов	ание параметров ямы	34			
			едование глубины ямы				
		3.1.1.1	Прозрачность РТГС	35			
		3.1.1.2	BAX PTΓC	35			
		3.1.2 Ис	сследование ширины ямы	35			
		3.1.2.1	Прозрачность РТГС	36			
		3.1.2.2	BAX PTΓC	36			
	3.2	Исследов	ание парметров барьеров	38			
		3.2.1 Ис	сследование ширины барьеров	38			
		3.2.1.1	Прозрачность РТГС	38			
		3.2.1.2	BAX PTΓC	38			
	3.3	Исследов	ание парметров спейсеров	40			
		3.3.1 Ис	сследование влияния размеров спейсера	40			
		3.3.1.1	BAX PTΓC	40			
		3.3.1.2	Прозрачность РТГС	40			
		3.3.1.3	Концентрация электронов в РТГС	40			
4	Моде	лирование ,	деградации РТГС на основе $Al_xGa_{1-x}As$	41			
	4.1	Дуффузи	юнное расплытие активной области	41			
	4 2	4.2. Лиффузия легирующей примесита					

Введение

Цель работы:

а) Изучение процессов деградации гетероструктур.

Задача работы:

а) Получить модель описывающую процессы деградации в гетероструктурах.

1 Теоретическая часть

1.1 Полупроводник

Рассматривая полупроводники, мы будем говорить о кристаллических телах. Для анализа таких тел необходимо решить уравнение Шредингера для нахождения, к примеру, энергических уровней. В целях упрощения задачи и сохранения наиболее характерных черт системы в Зонной теории вводится ряд допущений [?]:

- а) Атомные ядра являются неподвижными источниками поля, действующего на электроны;
- б) Расположения атомных ядер в пространстве является строго периодичным: они располагаются в узлах идеальной кристаллической решетки;
- в) Взаимодействие электронов друг с другом заменяется некоторым внешним полем.

1.1.1 Зонная структура

В следствии симметрии и периодичности идеального кристалла по различным направлениям и теории Блоха, для описания дисперсии электронов используют зоны Бриллюэна. Так как закон дисперсии периодичен на всем кристалле, для его описания можно использовать только первую зону Бриллюэна.

Рисунок 1.1 — Зонная структура GaAs

Рисунок 1.2— Элементарная ячейка типа Цинковой обманки

1.1.2 Зонная диаграмма

Для наглядного представления и сравнения полупроводников и других материалов удобно использовать зонную диаграмму (рис. 1.3).

Рисунок 1.3 — Характерный вид зонной диаграммы для различных материалов

где E_c — дно зоны проводимости (ЗП);

 E_v — потолок валентной зоны (ВЗ);

 E_F — уровень (квазиуровень) Ферми;

 E_g — запрещенная зона (33);

 χ — электронное сродство;

 φ — работа выхода.

Параметры зонной структуры $Al_xGa_{1-x}As$ приведены в табл. 1.1.

Таблица 1.1 — Основные параметры $Al_xGa_{1-x}As$

Параметр	$Al_xGa_{1-x}As$		
Кристаллическая структура	Типа цинковой обманки		
Постоянная решетки $a[nm]$	0.56533 + 0.00078x		
$E_g^{\Gamma}[eV], x < 0.45$	1.424 + 1.247x		
$E_g^{\Gamma}[eV], x > 0.45$	$1.656 + 0.215x + 0.143x^2$		
m_e^Γ	0.067 + 0.083x		
m_{lh}	0.082 + 0.071x		
$N_{atoms}[1/sm^{-3}]$	$(4.42 - 0.17x)10^{22}$		

1.1.3 Плотность состояний

Для вычисления числа электронов в зоне проводимости (ЗП) необходимо знать количество разрешенных состояний в ЗП. Для этого рассмотрим фазовое пространство, в котором объем $V_{\rm фаз}$ занимаемый одним электроном:

$$V_{\phi a3} = V_{xyz} V_{p_x p_y p_z}; \tag{1.1}$$

$$V_{xyz} = xyz; (1.2)$$

$$V_{p_x p_y p_z} = \frac{4}{3} \pi p^3; \tag{1.3}$$

$$p = \sqrt{2mE},\tag{1.4}$$

где V_{xyz} — объем в координатном пространстве;

 $V_{p_xp_yp_z}$ — объем в импульсном пространстве.

Согласно закону Гейзенберга:

$$\Delta p_x \Delta x \geqslant h,\tag{1.5}$$

где h- постоянная Планка.

Тогда для трехмерного движения неопределенность составит:

$$\Delta p_x \Delta x \Delta p_y \Delta y \Delta p_z \Delta z \geqslant h^3 \tag{1.6}$$

Из (1.1), (1.2), (1.3), (1.6) получим полное число электронов (N(p)) в единичном объеме:

$$N(p) = 2 * \frac{V_{\phi a3}}{V_{xyz}h^3} = \frac{8\pi p^3}{3h^3} \Rightarrow$$
 (1.7)

$$\Rightarrow N(E) = \frac{8\pi (2mE)^{3/2}}{3h^3}.$$
 (1.8)

Двойка появилась из-за того, что электрон имеет квантовое спиновое число равное $\pm 1/2$, и два электрона с разным спином могут занимать одно состояние.

Плотность разрешённых состояний (g(E)) — число электронов в единице объёма с энергией E, приходящихся на единичный интервал энергии. По определению:

$$g(E) = \frac{d}{dE} N(E) = \frac{4\pi (2m)^{3/2}}{h^2} \sqrt{E}.$$
 (1.9)

1.1.4 Концентрация носителей заряда

Так как электроны имеют полуцелый спин (фермионы) — они подчиняются статистике Ферми-Дирака:

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}},\tag{1.10}$$

где E — энергия электрона;

 E_F — уровень Ферми;

 k_{B} — постоянная Больцмана;

T — температура;

 k_BT — «опорный» потенциал.

Физический смысл статистики Ферми-Дирака: вероятность электрона иметь энергию равную E.

Рисунок 1.4 — Статистика Ферми-Дирака

Концентрацию электронов (n) зависит от плотности состояний (g(E)) в ЗП и функции распределения электронов по энергиям (f(E)):

$$n = \int_{0}^{+\infty} g(E)f(E) dE = \frac{2^{1/2}m^{3/2}}{\pi^{2}\hbar^{3}} \int_{0}^{+\infty} \frac{\sqrt{E}}{e^{\frac{E-\mu}{kT}} + 1} dE,$$
 (1.11)

где \hbar — постоянная Дирака.

1.1.4.1 Собственный полупроводник

В случаи собственного проводника, когда уровень Ферми лежит в центре 33, и полупроводник является невырожденным расчет интеграла (1.11) упрощается в приближении идеального электронного газа (Максвелла-Больцмана):

$$n = \int_{0}^{+\infty} g(E) f_{FD}(E) dE \approx \int_{0}^{+\infty} g(E) f_{MB}(E) dE =$$

$$= \frac{2^{1/2} m^{3/2}}{\pi^{2} \hbar^{3}} e^{-\frac{E_{c} - E_{F}}{k_{B}T}} \int_{0}^{+\infty} E^{1/2} e^{-E} dE = \frac{m^{3/2}}{2^{1/2} \pi^{3/2} \hbar^{3}} e^{-\frac{E_{c} - E_{F}}{k_{B}T}};$$

$$n = N_c e^{-\frac{E_c - E_F}{k_B T}}; (1.12)$$

$$N_c = 2\left(\frac{mk_B T}{2\pi\hbar^2}\right)^{3/2},\tag{1.13}$$

где N_c — эффективная плотность состояний в ЗП;

 E_c — энергия дна ЗП;

m — эффективная масса электрона в 3Π .

Проведя аналогичные рассуждения для дырок в ВЗ получим:

$$p = N_v e^{-\frac{E_F - E_v}{k_B T}}; (1.14)$$

$$N_v = 2\left(\frac{mk_BT}{2\pi\hbar^2}\right)^{3/2},\tag{1.15}$$

где N_v — эффективная плотность состояний в ВЗ;

 E_v — энергия потолка ВЗ;

m - эффективная масса дырки в ВЗ.

Так как в чистом (intrinsic) полупроводнике количество дырок равно количеству, перемножив обе части получим:

$$np = n_i^2 = N_c N_v e^{-\frac{E_F - E_v}{k_B T}} e^{-\frac{E_c - E_F}{k_B T}} = N_c N_v e^{-\frac{E_c - E_v}{k_B T}};$$
(1.16)

$$n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_B T}}, (1.17)$$

где n_i — концентрация собственных носителей заряда;

 E_q — ширина 33;

 N_v — эффективная плотность состояний в ВЗ;

 N_c — эффективная плотность состояний в ЗП.

Формула (1.16) называется «законом действующий масс».

1.1.4.2 Легированный полупроводник

При легировании полупроводника донорной или акцепторной примесью, уровень Ферми подымается к дну ЗП или опускается к потолку ВЗ соответственно.

Если разница между дном ЗП (потолком ВЗ) и уровнем Ферми превышает несколько энергий теплового колебания и уровень Ферми лежит в ЗЗ, то полупроводник невырожденный:

$$E_c - E_F > 3k_B T; (1.18)$$

$$E_F - E_v > 3k_B T. \tag{1.19}$$

Тогда приближенное значение квазиуровня Ферми для невырожденного полупроводника можно рассчитать:

$$E_F^n = E_F^i + k_B T \ln \frac{N_D}{n_i}; (1.20)$$

$$E_F^p = E_F^i - k_B T \ln \frac{N_A}{n_i}, (1.21)$$

где E_F^n — уровень Ферми невырожденного полупроводника n-типа; E_F^p — уровень Ферми невырожденного полупроводника p—типа; E_F^i — уровень Ферми невырожденного полупроводника i–типа;

Если полупроводник вырожден, положение уровня Ферми находится, как решение уравнения (1.11). Приближенное положение уровня Ферми можно найти:

$$E_F^n = \frac{(3\pi^2 N_D)^{2/3} \hbar^2}{2m};$$

$$E_F^p = \frac{(3\pi^2 N_A)^{2/3} \hbar^2}{2m},$$
(1.22)

$$E_F^p = \frac{(3\pi^2 N_A)^{2/3} \hbar^2}{2m},\tag{1.23}$$

где E_F^n — уровень Ферми вырожденного полупроводника n—типа; E_F^p — уровень Ферми вырожденного полупроводника p—типа.

1.2 Размерное квантование

Квантоворазмерный эффект (квантовый размерный эффект) — изменение термодинамических и кинетических свойств кристалла, когда хотя бы один из его геометрических размеров становится соизмеримым с длиной волны де Бройля электронов. Этот эффект связан с квантованием энергии носителей заряда, движение которых ограничено в одном, двух или трёх направлениях.

Волны де Бройля — волны вероятности, определяющие плотность вероятности обнаружения объекта в заданной точке конфигурационного пространства. В соответствии с принятой терминологией говорят, что волны де Бройля связаны с любыми частицами и отражают их волновую природу.

$$\lambda = \frac{h}{p} = \frac{h}{\hbar k} = \frac{h}{mv};\tag{1.24}$$

$$\psi(x,t) = A * e^{\frac{i}{\hbar}(px - Et)} = A * e^{i(kx - \omega t)}.$$
 (1.25)

В зависимости от размерности пространства электронный газ имеет различный закон дисперсии, плотность состояний и эффективную плотность состояний, см табл. 1.2.

Таблица $1.2-\Pi$ лотность состояний и эффективная плотность состояний для низкоразмерных систем

Размерность	Закон дисперсии	g(E)	G(E)
3D, bulk	$\frac{\hbar^2}{2m}(k_x^2 + k_y^2 + k_z^2)$	$\frac{2^{\frac{1}{2}}m^{\frac{3}{2}}}{\pi^2\hbar^3}E^{\frac{1}{2}}$	$rac{(2m)^{rac{3}{2}}}{3\pi^2\hbar^3}E^{rac{3}{2}}$
2D, well	$\frac{\hbar^2}{2m}(k_x^2 + k_y^2) + \frac{\pi^2\hbar^2n^2}{2mL^2}$	$rac{m}{\pi\hbar^2}$	$rac{m}{\pi\hbar^2}E$
1D, wire	$\left(\frac{\hbar^2}{2m} (k_x^2) + \frac{\pi^2 \hbar^2}{2m} \left(\frac{n_1^2}{L_1^2} + \frac{n_2^2}{L_2^2} \right) \right)$	$\frac{\sqrt{m}}{\sqrt{2}\pi\hbar}E^{-\frac{1}{2}}$	$rac{\sqrt{2m}}{\pi\hbar}E^{rac{1}{2}}$
0D, dot	$rac{\pi^2\hbar^2}{2m} \left(rac{n_1^2}{L_1^2} + rac{n_2^2}{L_2^2} + rac{n_3^2}{L_3^2} ight)$	$2\delta E$	2

Рисунок 1.5 — Плотность состояний в 3D, 2D, 1D, 0D, где $g(E) = \rho_{energy}$

1.2.1 Трехмерное тело

Рассмотрим 3D кристалл (bulk) на рис. 1.6:

Рисунок 1.6 - k-пространство (шар)

Число состояний частицы G(E) и плотность состояний g(E), энергия которых не превышает некоторого фиксированного значения E, нахо-

дятся из формул:

$$G(E) = \frac{V_{sphere}}{V_{single-state}} = J_z \frac{\frac{1}{8} \frac{4}{3} \pi k^3}{\frac{\pi^3}{V}} = \frac{k^3 V}{3\pi^2} = \frac{(2m)^{\frac{3}{2}} V}{3\pi^2 \hbar^3} E^{\frac{3}{2}};$$

$$k = \frac{\sqrt{2mE}}{\hbar};$$

$$g(E) = \frac{dG(E)}{dE} = \frac{(2E)^{\frac{1}{2}} m^{\frac{3}{2}}}{\pi^2 \hbar^3} V.$$

1.2.2 Двухмерное тело

Рассмотрим 2D кристалл (well) на рис. 1.7:

Рисунок 1.7 — k-пространство (круг)

$$G(E) = \frac{V_{circul}}{V_{single-state}} = J_z \frac{\frac{1}{4}\pi k^2}{\frac{\pi^2}{S}} = \frac{k^2}{2\pi} = \frac{mS}{\pi\hbar^2} E;$$
$$g(E) = \frac{dG(E)}{dE} = \frac{m}{\pi\hbar^2} S.$$

1.2.3 Одномерное тело

Рассмотрим 1D кристалл (wire) на рис. 1.8:

Рисунок 1.8 — k-пространство (линия)

$$G(E) = \frac{V_{line}}{V_{single-state}} = J_z \frac{k}{\frac{\pi}{L}} = \frac{kL}{pi} = \frac{\sqrt{2m}L}{\pi\hbar} E^{\frac{1}{2}};$$
$$g(E) = \frac{dG(E)}{dE} = \frac{\sqrt{m}L}{\sqrt{2}\pi\hbar} E^{-\frac{1}{2}}.$$

 J_z — определяет число состояний не связанных с перемещением частицы в пространстве (например, число возможных проекций спина). В нашем случае, для электрона $J_z=2$.

1.3 Гетероструктура

Гетероструктура — полупроводниковая структура с несколькими гетеропереходами ($\Gamma\Pi$).

Гетеропереход — контакт двух различных по химическому составу монокристаллических или аморфных полупроводников.

Необходимое условие образование ГП — совпадающие постоянные кристаллических решетки, образующими монолитный, однородный в контакте, кристалл. Наиболее распространенные полупроводники для составления ГС:

- a) GaAs-AlAs;
- 6) GaN-AlN:
- в) GaSb-AlSb-InAs;
- Γ) GaAs-Ge.

1.3.1 Зонная диаграмма гетероперехода

1.3.2 Резонансно-туннельная гетероструктура

Резонансно-туннельная гетероструктура (РТГС) — это ГС, токоперенос в которой осуществляется благодаря резонансному туннелированию.

РТГС является ярким примером размерного квантования. Барьеры и ямы на рис. 1.9 образуют потенциальную яму, в которой электронный газ имеет дискретные уровни энергии по одной координате и становится 2D электронным газом.

Структурные части РГТС (рис. 1.9):

- а) Омический контакт;
- б) Приконтактная область;
- в) Барьер;
- г) Яма;
- д) Резервуар.

Омический контакт выполняет роль связи РТГС с электрической схемой. Величина сопротивления искажает форму ВАХ РТГС, чем оно меньше, тем лучше.

Рисунок 1.9 — Структурная схема устройства с РТГС

Приконтактная область снабжает РТГС основными носителями заряда. Область сильно легируется основными носителями заряда до вырожденного состояния. Размеры приконтактных областей побираются так, чтобы концентрация основных носителей заряда приходила к равновесной на их концах.

Спейсеры изготавливаются из чистого полупроводника и предохраняют барьер и яму от проникновения туда легирующей примеси, так же спейсер препятствует накоплению заряда вблизи и внутри ямы.

Барьеры и яма формируют 2D ЭГ. Величина барьера и ямы влияют на положение резонансного уровня, прозрачность РТГС и т.д.

1.3.3 Резонансно-туннельная гетероструктура на основе $Al_xGa_{1-x}As$

. РГТС на основе $Al_xGa_{1-x}As$ показана на рис.1.10

Зонная структура такой РТГС представлена на рис.1.11. Меняя процентное содержание Al в $Al_xGa_{1-x}As$, мы можем получать необходимую высоту барьеров.

Рисунок 1.10 — Структурная схема устройства с РТГС на основе $Al_x Ga_{1-x} As$

Рисунок 1.11 — Зонная структура РТГС на основе $Al_xGa_{1-x}As$

1.4 Деградация приборов на основе гетероструктур

Деградация — процесс ухудшения характеристик какого-либо объекта с течением времени.

Изучая деградацию ГС рассматривают следующие параметры:

- Вольт-амперная характеристика (ВАХ);
- Высота потенциального барьера (ПБ);
- Ширина потенциального барьера;
- Ширина потенциальной ямы (ПЯ);
- Т.д...

ГС используют для построения резонансно-туннельный диод (РТД), квантовых точек (КТ), транзисторов с высокой подвижностью электронов (НЕМТ) и так далее.

Химический состав ГС определяет ее зонную структуру, из чего вытекают особенности работы тех или иных устройств на ГС.

Одна из причин деградации ΓC — диффузионное размытие $\Gamma \Pi$, вызванное:

- Градиентом температуры;
- Градиентом концентрации;
- Градиентом давления;
- и т.д...

Диффузионное размытие под действием градиента концентрации описывается с помощью законов Фика.

1.5 Диффузия

Диффузия — это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры.

Диффундировать могут как собственные атомы решетки, так и атомы растворенных в полупроводнике элементов, а также точечные дефекты структуры кристалла — междоузельные атомы и вакансии.

1.5.1 Законы Фика

Первый закон Фика говорит, что плотность потока вещества пропорциональна коэффициенту диффузии (D) и градиенту концентрации (C). Является стационарным уравнением.

$$\overline{J} = -D\nabla C; \tag{1.26}$$

$$\overline{J}_x = -\overline{e}_x D_x \frac{\delta}{\delta x} C_x. \tag{1.27}$$

(1.28)

Второй закон Фика связывает пространственное и временное изменения концентрации.

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \tag{1.29}$$

$$\frac{\delta}{\delta t}C = -\nabla(D\nabla C); \qquad (1.29)$$

$$\frac{\delta}{\delta t}C_x = -\frac{\delta}{\delta x}D_x \frac{\delta}{\delta x}C_x. \qquad (1.30)$$

1.5.2 Механизмы диффузии

Вакансионный механизм диффузии — заключается в миграции атомов по кристаллической решётке при помощи вакансий.

Межузельный механизм диффузии — заключается в переносе вещества межузельными атомами.

Прямой обмен атомов местами — заключается в том, что два соседних атома одним прыжком обмениваются местами в решетке кристалла.

1.5.3 Коэффициент диффузии

Коэффициент диффузии (D) — макроскопическая величина, которая определяется экспериментально. Коэффициент диффузии зависит от температуры(Т) по закону Аррениуса:

$$D = D_0 \exp\left[-\frac{E_a}{k_B T}\right],\tag{1.31}$$

где D_0 — предэкспоненциальный множитель.

Коэффициент (D_0) и энергия активации (E_a) не зависят от температуры.

Основным механизмом диффузии Al и Si в GaAs является диффузия по вакансиям галлия (V_{Ga}) . Это связано с тем, что атомы Al и Si имеют сходные массы и размеры.

С учетом эффекта уровня Ферми коэффициент диффузии Al и Si в GaAs получен в работах \cite{Gi} , \cite{Gi} , \cite{Gi} , \cite{Gi} .

$$D_{Al,Si} = D_{i-GaAs} \left(\frac{N_D}{n_i}\right)^3 = D_0 \exp\left[-\frac{3.5}{k_B T}\right] \left(\frac{n}{n_i}\right)^3,$$
 (1.32)

где n — концентрация донорной примеси (Si);

 n_i — концентрация собственных носителей заряда.

Концентрация собственных носителей заряда [?]:

$$n_i = \sqrt{N_c N_v} \exp\left[-\frac{E_g}{2k_B T}\right]; \tag{1.33}$$

$$N_c = 2 \left[\frac{2\pi m_e^* k_B T}{h^2} \right]^{\frac{3}{2}}; \tag{1.34}$$

$$N_v = 2 \left[\frac{2\pi m_h^* k_B T}{h^2} \right]^{\frac{3}{2}},\tag{1.35}$$

где E_g — ширина запрещенной зоны (33) п/п.

1.6 Токоперенос через ГС

Один из способов расчета плотности тока через гетероструктуру — это формула Цу-Есаки:

$$J(V) = \frac{2mek_BT}{(2\pi)^2\hbar^3} \int_0^\infty T(E)D(E)dE, \qquad (1.36)$$

где J(V) — плотность тока при приложенном напряжении V;

T(E) — прозрачность гетероструктуры;

D(E) — функция снабжения электронами;

m — эффективная масса электрона;

e — заряд электрона;

T — температура;

 \hbar — постоянная Дирака;

 k_B — постоянная Больцмана.

$$D(E) = \ln \frac{1 + \exp \frac{E_F - E}{k_B T}}{1 + \exp \frac{E_F - E - eV}{k_B T}},$$
(1.37)

где E_F — уровень Ферми;

V — приложенное напряжение.

Коэффициент прозрачности гетероструктуры определяется как отношение потока вероятности прошедших через структуру электронов в правом резервуаре к падающим на неё электронам в левом резервуаре. Поток вероятности находится из формулы:

$$\overline{j} = \frac{i\hbar}{2m} (\psi \nabla \psi^* - \psi^* \nabla \psi), \tag{1.38}$$

где ψ — волновая функция электрона.

Будем рассматривать электроны, приходящие из левого контакта. Левому контакту соответствуют волновые функции ψ_L , а в правому — ψ_R .

$$\psi_L = \exp[ik_L z]; \tag{1.39}$$

$$\psi_R = T_L \psi_L = T_L \exp[ik_L z], \tag{1.40}$$

где T_L — Амплитуда прошедшей волновой функции;

 k_L — волновой вектор в левом резервуаре.

Тогда коэффициент туннельной прозрачности:

$$T(E) = |T_L|^2 \frac{|k_R|m_L}{|k_L|m_R},\tag{1.41}$$

где k_R — волновой вектор в правом резервуаре;

 m_R — эффективная масса электрона в правом резервуаре;

 m_L — эффективная масса электрона в левом резервуаре.

Уравнение Шредингера

Для нахождения волновых функций необходимо решить уравнение Шредингера. Для твердого тела уравнение Шредингера имеет вид:

$$-\frac{\hbar}{2} \left[\left(\frac{1}{m} \sum_{i} \Delta_{i} + \sum_{i} \frac{\Delta_{i}}{M_{i}} \right) + \frac{1}{2} \sum_{i,j \neq i} \frac{e^{2}}{k_{k} |\overline{r_{i}} - \overline{r_{j}}|} + \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} Z_{j} e^{2}}{k_{k} |\overline{R_{i}} - \overline{R_{j}}|} - \frac{1}{2} \sum_{i,j \neq i} \frac{Z_{i} e^{2}}{k_{k} |\overline{R_{i}} - \overline{r_{j}}|} \right] \psi = E \psi$$

где M_i — масса атомного остова;

 k_k — постоянная Кулона;

— атомное число;

 $\frac{\Delta_i}{m}$ — кинетическая энор. $\frac{\Delta_i}{M_i}$ — кинетическая энергия i-ого атомного остова, $\frac{e^2}{k_k |\overline{r_i} - \overline{r_j}|}$ — потенциальное взаимодействие i и j электрона; $\frac{Z_i Z_j e^2}{k_k |\overline{R_i} - \overline{R_j}|}$ — потенциальное взаимодействие остовов; $\frac{Z_i e^2}{m_i}$ — потенциальное взаимодействие остова и электр $\frac{Z_i e^2}{k_k |\overline{R_i} - \overline{r_j}|}$ — потенциальное взаимодействие остова и электрона.

Ряд приближений упрощает полное уравнение Шредингера для твердого тела:

- а) Атомные остовы находятся в состоянии покоя;
- б) Электрон движется, не взаимодействуя с другими электронами, в некотором эффективном поле, создаваемым остальными электронами;

в) Движение электрона в периодическом потенциале заменяется на эффективную массу.

Упрощенное уравнение Шредингера:

$$-\frac{\hbar^2}{2m}\Delta\psi + U\psi = E\psi, \qquad (1.42)$$

где U — потенциальный профиль.

Одномерное ур. Шредингера:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dz^2}\psi(z) + U(z)\psi(z) = E\psi(z). \tag{1.43}$$

Для решения уравнения на границе гетероперехода рассматриваются условия непрерывности волновой функции и непрерывности потока плотности вероятности — эти условия так же называются условием Бастарда:

$$\begin{cases} \psi_I = \psi_{II}; \\ \frac{1}{m_I} \frac{d}{dz} \psi_I = \frac{1}{m_{II}} \frac{d}{dz} \psi_{II}, \end{cases}$$
 (1.44)

где m_I — эффективная масса в I структуре;

 m_{II} — эффективная масса во II структуре;

 ψ_I — волновая функция в I структуре;

 ψ_{II} — волновая функция во II структуре.

Учтем эффективную массу в ур. 1.43:

$$-\frac{\hbar^2}{2}\frac{d}{dz}\frac{1}{m(z)}\frac{d}{dz}\psi(z) + U(z)\psi(z) = E\psi(z).$$
 (1.45)

В случае произвольного потенциального рельефа для решения уравнения Шредингера применяются численные методы.

1.6.2 Учёт распределения заряда

Приближение Хартри сводит многоэлектронное уравнение Шредингера к одноэлектронному, в котором электрон движется в некотором эффективном поле, создаваемом другими электронами. Это поле называется

самосогласованным. Распределение заряда в структуре определяется с помощью уравнения Пуассона:

$$\frac{d}{dz}\varepsilon(z)\frac{d}{z}V_s = \frac{e}{\varepsilon_0}[n(z) - N_D(z)],\tag{1.46}$$

где ε — относительная электрическая проницаемость;

 ε_0 — диэлектрическая постоянная;

 V_s — самосогласованный потенциал;

e — заряд электрона;

n — концентрация электронов;

 N_D — концентрация донорной примеси.

В приконтактных областях концентрация электронов (n_L, n_R) находится с помощью (1.11). Приконтактные области высоколегированны и уровень Ферми лежит выше дна ЗП. Положение уровня Ферми можно найти с помощью (1.22) или как корень уравнения (1.11).

Нахождение концентрации электронов в активной области производится с учетом плотности вероятности волновых функций [?]:

$$n = \iiint_{-\infty}^{+\infty} |\psi(\overline{k})|^2 N(\overline{k}) d\overline{k} = \iiint_{-\infty}^{+\infty} |\psi(\overline{k})|^2 g_{3D}(\overline{k}) f(\overline{k}) d\overline{k}, \qquad (1.47)$$

где $N(\overline{k})$ — количество разрешенных состояний;

 g_{3D} — плотность состояний в 3D;

 $f(\overline{k}) - .$

Энергия электронов:

$$E(\overline{k}) = E_x + E_y + E_z = \frac{\hbar k_x^2}{2m} + \frac{\hbar k_y^2}{2m} + \frac{\hbar k_z^2}{2m} - eV;$$
 (1.48)

где k_i — волновой вектор в направлении i;

V — приложенное напряжение.

Так как волновую функцию $\psi(x,y,z)$ можно представить в виде:

$$\psi(x, y, z) = \psi(x)\psi(y)\psi(z), \tag{1.49}$$

а концентрацию электронов в активной области n разделить на попадающие из левого и правого резервуаров:

$$n = n_L + n_R;$$

$$n_{L(R)} = \frac{2^{1/2} m^{3/2} k_B T}{(2\pi)^2 \hbar^3} \int_{U_{l(r)}}^{\infty} \frac{|\psi_{L(R)}|^2}{\sqrt{E - U_{L(R)}}} \ln\left(1 + \exp\left[-\frac{E - E_F - U_{la(ra)}}{k_B T}\right]\right),$$

$$(1.51)$$

где $U_{l(r)}$ — потенциал на границе приконтактной и активной области; $U_{la(ra)}$ — потенциал на границе активной области.

Формулу (1.51) можно интерпретировать, как произведение локальной плотности состояний в активной области $g_{L(R)}^*(E)$ на распределение электронов по энергии $(f_{L(R)}(E))$:

$$g_{L(R)}^{*}(E) = \frac{2^{1/2} m^{3/2} k_B T}{(2\pi)^2 \hbar^3} |\psi_{L(R)}|^2;$$
(1.52)

$$f_{L(R)}(E) = \frac{1}{\sqrt{E - U_{la(ra)}}} \ln\left(1 + \exp\left[-\frac{E - E_F - U_{L(R)}}{k_B T}\right]\right).$$
 (1.53)

Таким образом, чтобы найти распределение электронов в активной области— необходимо решить систему Шредингера-Пуассона.

$$\begin{cases}
\frac{d}{dz}\varepsilon(z)\frac{d}{z}V_s = \frac{e}{\varepsilon_0}[n(z) - N_D(z)]; \\
-\frac{\hbar^2}{2}\frac{d}{dz}\frac{1}{m(z)}\frac{d}{dz}\psi(z) + U(z)\psi(z) = E\psi(z);
\end{cases} (1.54)$$

2 Математический аппарат для моделирования

2.1 Метод конечных разностей

Суть метода конечных разностей заключается в аппроксимации дифференциальных операторов отношением конечных разностей. Так например производную некоторой функции y(x) в точке x_0 $(\dot{y}(x_0))$ можно представить:

$$\dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0) = \frac{y(x_0 + \Delta x) - y(x_0)}{\Delta x};$$
(2.1)

$$\dot{y}_{-}(x_0) = \frac{dx}{dx}y(x_0) = \frac{y(x_0) - y(x_0 - \Delta x)}{\Delta x};$$
(2.2)

$$\dot{y}_{-}(x_0) = \dot{y}_{+}(x_0) = \frac{d}{dx}y(x_0), \tag{2.3}$$

где \dot{y}_{-} — производная слева;

 \dot{y}_{+} — производная справа;

 Δx — приращение аргумента (шаг сетки).

 Δx — это шаг нашей конечно-разностной схемы (аппроксимации). Если шаг сетки постоянен, то говорят о регулярной сетке, иначе о нерегулярной. Мы будем рассматривать только регулярные сетки. Далее вместо Δx будет использовать Δ .

Из выше сказанного можно найти трехточечную аппроксимацию второй производной y(x):

$$\frac{d^2}{dx^2}y(x_0) = \frac{\dot{y}_+ - \dot{y}_-}{\Delta} = \frac{y(x_0 + \Delta) - 2y(x_0) + y(x_0 - \Delta)}{\Delta^2}.$$
 (2.4)

2.2 Метод конечных разностей для решения одномерного нестационарного уравнения диффузии

2.2.1 Коэффициент диффузии не зависит от концентрации

Одномерное нестационарное уравнение диффузии, соответствующее второму закону Фика имеет вид:

$$\frac{\delta}{\delta t}C = D\frac{\delta^2}{\delta x^2}C; \tag{2.5}$$

Аппроксимация первой производной по времени в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$\frac{\delta}{\delta t}C_j^i = \frac{C_j^{i+1} - C_j^i}{\Delta t};\tag{2.6}$$

Аппроксимация первой производной по координате в момент времени t_i концентрации $C_j(t_i) = C_j^i$ в точке j:

$$J_{j}^{i} = \frac{\delta}{\delta x} C_{j}^{i} = \frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x}; \tag{2.7}$$

Аппроксимация второй производной по координате в момент времени t_i концентрации $C_j(t_i)=C_j^i$ в точке j:

$$\frac{\delta^{2}}{\delta x^{2}} C_{j}^{i} = \frac{\delta}{\delta x} \left[\frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x} \right] = \frac{\frac{C_{j+1}^{i} - C_{j}^{i}}{\Delta x} - \frac{C_{j}^{i} - C_{j-1}^{i}}{\Delta x}}{\Delta x} = \frac{C_{j+1}^{i} - 2C_{j}^{i} + C_{j-1}^{i}}{\Delta x^{2}};$$
(2.8)

Подставляя в (2.5) аппроксимацию производных (2.6), (2.8), получим связь C_j^{i+1} с $C_j^i,$ т.е. изменение концентрации через Δt :

$$C_j^{i+1} = \lambda C_{j-1}^i + (1 - 2\lambda)C_j^i + \lambda C_{j+1}^i, \tag{2.9}$$

где $\lambda = \frac{D\Delta t}{\Delta x^2}$ — связь коэффициента диффузии и шагов по сетке времени и координаты.

Уравнение (2.9) справедливо для всех не крайних точек конечно разностной схемы, при коэффициенте диффузии не зависящем от концентрации.

Выделим два граничных приближения для концентрации:

- а) «Закрытая система» концентрация на границе не изменяется $(J_0^i=0,\ J_{N+1}^i=0);$
- б) «Открытая система» поток частиц подходящий к границе равен потоку уходящих частиц $(J_0^i=J_1^i,\,J_N^i=J_{N+1}^i).$

Для «закрытой системы» должно выполняться условие $J_0^i=0,$ $J_{N+1}^i=0.$ Рассмотрим $(2.7),\ (2.9)$ для точки j=1:

$$J_0^i = \frac{C_1^i - C_0^i}{\Delta x} = 0 \Rightarrow C_0^i = C_1^i;$$

$$C_1^{i+1} = \lambda C_0^i + (1 - 2\lambda)C_1^i + \lambda C_2^i = \lambda C_1^i + (1 - 2\lambda)C_1^i + \lambda C_2^i =$$

$$= (1 - \lambda)C_1^i + \lambda C_2^i = C_1^{i+1};$$

Рассматривая точки $N-1,\ N,\ N+1$ аналогичным образом получим:

матривал точки
$$N-1, N, N+1$$
 аналогичным образом получим.
$$\begin{cases} C_1^{i+1} = (1-\lambda)C_1^i + \lambda C_2^i; \\ C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\ C_N^{i+1} = (1-\lambda)C_N^i + \lambda C_{N-1}^i; \\ \lambda = D\frac{\Delta t}{\Delta x^2}. \end{cases}$$
 (2.10)

Для «открытой» системы должно выполняться условие $J_0^i=J_1^i,$ $J_N^i=J_{N+1}^i.$ Рассмотрим $(2.7),\,(2.8),\,(2.9)$ для точки j=1:

$$\begin{split} J_0^i &= J_1^i \\ \frac{C_1^{i+1} - C_1^i}{\Delta t} &= \frac{J_1^i - J_0^i}{\Delta x} = \frac{0}{\Delta x} = 0 \Rightarrow \\ &\Rightarrow C_1^{i+1} = C_1^i; \end{split}$$

Рассматривая точки $N-1,\,N,\,N+1$ аналогичным образом получим:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda C_{j-1}^i + (1-2\lambda)C_j^i + \lambda C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda = D\frac{\Delta t}{\Delta x^2}.
\end{cases} (2.11)$$

2.2.2 Коэффициент диффузии зависит от концентрации

Если коэффициенте диффузии (D) зависит от концентрации, тогда уравнение диффузии принимает вид:

$$\frac{\delta}{\delta t}C = \frac{\delta}{\delta x}D\frac{\delta}{\delta x}C; \tag{2.12}$$

Тогда уравнение конечно-разностной схемы будет [?]:

$$\frac{C_j^{i+1} - C_j^i}{\Delta t} = \frac{D_{j+1/2}^i \frac{C_{j+1}^i - C_j^i}{\Delta x} - D_{j-1/2}^i \frac{C_j^i - C_{j-1}^i}{\Delta x}}{\Delta x};$$
(2.13)

$$D_{j\pm 1/2}^{i} = \frac{D_{j}^{i} + D_{j\pm 1}^{i}}{2} = D_{j\pm}^{i}.$$
 (2.14)

Проводя рассуждения аналогичные предыдущему параграфу получит конечно-разностную схему для открытой схемы:

$$\begin{cases}
C_1^{i+1} = C_1^i; \\
C_j^{i+1} = \lambda_-^i C_{j-1}^i + (1 - \lambda_+^i - \lambda_-^i) C_j^i + \lambda_+^i C_{j+1}^i, j \in [2, \dots, N-1]; \\
C_N^{i+1} = C_N^i; \\
\lambda_+^i = D_{j+\frac{\Delta t}{\Delta x^2}}^i; \\
\lambda_-^i = D_{j-\frac{\Delta t}{\Delta x^2}}^i.
\end{cases}$$
(2.15)

2.3 Метод конечных разностей для расчета токоперенос через гетероструктуру

Конечно-разностная схема для уравнения Шредингера (1.45) [?]:

$$\psi_{i-1} \frac{m_{i+1}^*}{m_{i-1}^*} + \psi_i \left(\frac{2\Delta^2 m_{i+1}^*}{\hbar^2} (E - U_i) - \frac{m_{i+1}^*}{m_{i-1}^*} - 1 \right) + \psi_{i+1} = 0, \tag{2.16}$$

где m_i^* — эффективная масса в точке i;

 ψ_i — волновая функция в точке i;

E — энергия электрона;

 U_i — потенциальная энергия в точке i;

 Δ — шаг сетки.

Данное схема подходит для любой внутренней точки гетероструктуры, но не подходит для граничных точек. Граничные условия, для «левых» и «правых» электронов:

$$\begin{cases} (ik_L - 1)\psi_1 + \psi_2 = 2ik_L \Delta; \\ \psi_{N-1} + (ik_R \Delta - 1)\psi_N = 0; \end{cases}$$
 (2.17)

$$\begin{cases} (ik_L - 1)\psi_1 + \psi_2 = 2ik_L \Delta; \\ \psi_{N-1} + (ik_R \Delta - 1)\psi_N = 0; \end{cases}$$
 (2.18)

где $k_{L(R)}$ — волновые функции в левом (правом) резервуаре.

2.4 Метод конечных разностей для самосогласованного решение системы Шредингера-Пуассона

Для решения системы Шредингера-Пуассона (1.54) применяют метод Гумеля. Метод Гумеля заключается в учете характера зависимости концентрации электронов от самосогласованного потенциала (V_S) :

$$n(z) = \frac{2^{1/2} m^{3/2} k_B T}{(2\pi)^2 \hbar^3} \exp \frac{E_F - E_c + eV_s(z)}{k_B T} = n_0 \exp \frac{V_S(z)}{V_{ref}};$$
(2.19)

$$n_0 = \frac{2^{1/2} m^{3/2} k_B T}{(2\pi)^2 \hbar^3} \exp \frac{E_F - E_c}{k_B T}; \tag{2.20}$$

$$V_{ref} = \frac{k_B T}{e},\tag{2.21}$$

где V_s — самосогласованный потенциал;

 V_{ref} — опорный потенциал;

m — эффективная масса электрона.

Тогда связь «старого» и «нового» потенциала:

$$\begin{cases}
 n_{old} = n_0 \exp \frac{V_{old}}{V_{ref}}; \\
 n_{new} = n_0 \exp \frac{V_{new}}{V_{ref}};
\end{cases}$$
(2.22)

$$n_{new} = n_{old} \exp \frac{V_{new} - V_{old}}{V_{ref}}; \tag{2.23}$$

Подставляя (2.23) в (1.54):

$$\frac{d}{dz}\varepsilon(z)\frac{d}{z}V_{new} = \frac{e}{\varepsilon_0}\left[n_{old}\exp\left(\frac{V_{new} - V_{old}}{V_{ref}}\right) - N_D(z)\right]; \tag{2.24}$$

Так как $\frac{V_{new}-V_{old}}{V_{ref}}$ мало, используя разложение в ряд Маклорена $\exp(x) \approx 1 + x$, получим:

$$\frac{d}{dz}\varepsilon(z)\frac{d}{z}V_{new} - n_{old}\frac{eV_{new}}{\varepsilon_0 V_{ref}} = \frac{e}{\varepsilon_0} \left[n_{old} \left(1 - \frac{V_{old}}{V_{ref}} \right) - N_D(z) \right]; \tag{2.25}$$

Применяя метод конечных разностей, получим:

Применяя метод конечных разностей, получим:
$$\begin{cases} a^{i}V_{new}^{i-1} + b^{i}V_{new}^{i} + c^{i}V_{new}^{i+1} = \frac{e\Delta^{2}}{\varepsilon_{0}\varepsilon^{i}} \left(n_{old}^{i}\left(1 - \frac{V_{old}^{i}}{V_{ref}}\right) - N_{D}^{i}\right); \\ a^{i} = 1; \\ b^{i} = -1 - \frac{\varepsilon^{i+1}}{\varepsilon^{i}} - \frac{e\Delta^{2}n_{old}^{i}}{\varepsilon_{0}V_{ref}\varepsilon_{i}}; \\ c^{i} = \frac{\varepsilon^{i+1}}{\varepsilon^{i}}; \end{cases}$$
 (2.26)

Граничные условия:

$$V_{new}^1 = 0; V_{new}^N = V; (2.27)$$

И продолжаем рассчитывать эту систему до достижения максимальной погрешности ϵ_V , если выполняется условие:

$$\max(|V_{new}^i - V_{old}^i|) < \epsilon_V, \tag{2.28}$$

процесс итерации останавливается.

3 Исследование параметров РТГС на основе $Al_xGa_{1-x}As$

3.1 Исследование параметров ямы

Энергетический спектр в бесконечно глубокой потенциальной яме:

$$E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2}; (3.1)$$

$$\Delta E_n = E_{n+1} - E_n = \frac{\pi^2 \hbar^2}{2mL^2} (2n+1); \tag{3.2}$$

$$\Delta E_1 = \min(\Delta E_n) = \frac{3\pi^2 \hbar^2}{2mL^2},\tag{3.3}$$

где E_n — энергия n-ого связного состояния;

 \hbar — постоянная Дирака;

n — номер $(1, 2, \dots)$ связного состояния;

L — ширина ямы.

Из зависимостей 3.1, 3.3 видно, что с увеличением ширины ямы, энергия основного состояния уменьшается (n=1), так же, как и минимальное расстояние, между энергетическими уровнями. Условие размерного квантования для потенциальной ямы:

$$\Delta E_1 \gg 3k_B T. \tag{3.4}$$

В случаи ямы с конечной высотой, энергия основного и остальных состояний понижается, при этом минимальная высота барьера ограничивает состояние с максимальной энергией. В потенциальной яме конечной высоты всегда будет хотя бы одно связное состояние.

3.1.1 Исследование глубины ямы

Варьирую процентное содержание Al в $Al_xGa_{1-x}As$, можно изменять высоту барьеров и глубину ямы соответственно. Рассмотрим вольтамперную характеристику и прозрачность резонансно-туннельной структуры.

Так как в ходе деградации Γ С высота барьеров будет уменьшаться, так как атомы Al будут диффундировать в структуру из барьеров, рассмотрим Γ СС (рис. 1.9) с высотой потенциальных барьеров:

- a) 1.0eV;
- б) 0.7eV;
- в) 0.5eV;
- Γ) 0.3eV.

3.1.1.1 Прозрачность РТГС

Рисунок 3.1 — Прозрачность РТГС при различных высотах потенциального барьера

3.1.1.2 BAX PTΓC

3.1.2 Исследование ширины ямы

Уменьшая или увеличивая количество монослоев, мы варьируем ширину ямы в РТГС. Для примера рассмотрим РТГС:

- а) 10 монослоев;
- б) 7 монослоев;
- в) 5 монослоев;

Рисунок 3.2 — Плотность тока через РТГС при различных высотах потенциального барьера

- г) 3 монослоев.
 - 3.1.2.1 Прозрачность РТГС
 - 3.1.2.2 BAX PTCC

Рисунок 3.3 — Прозрачность РТГС при различных ширинах потенциальной ямы

Рисунок 3.4 — Плотность тока через РТГС при различных ширинах потенциальной ямы

3.2 Исследование парметров барьеров

3.2.1 Исследование ширины барьеров

Ширина барьеров уменьшает вероятность прохождения электрона сквозь барьер и величину тока соответсвенно. Рассмотрим РТГС с шириной барьеров:

- а) 10 монослоев;
- б) 7 монослоев;
- в) 5 монослоев;
- г) 3 монослоев.

3.2.1.1 Прозрачность РТГС

Рисунок 3.5 — Прозрачность РТГС при различных ширинах потенциальных барьеров

3.2.1.2 BAX PTCC

Рисунок 3.6 — Плотность тока через РТГС при различных ширинах потенциальных барьеров

- 3.3 Исследование парметров спейсеров
- 3.3.1 Исследование влияния размеров спейсера
- 3.3.1.1 BAX PTΓC
- 3.3.1.2 Прозрачность РТГС
- 3.3.1.3 Концентрация электронов в РТГС

4 Моделирование деградации РТГС на основе $Al_xGa_{1-x}As$

4.1 Дуффузионное расплытие активной области

Рисунок 4.1 — Расплытие потенциального рельефа чистого $Al_xGa_{1-x}As$

Рисунок 4.2 — Деградация тока через РГТС на основе чистого $Al_xGa_{1-x}As$

Рисунок 4.3 — Расплытие потенциального рельефа $Al_xGa_{1-x}As$ от диффузии легирующей примеси

Рисунок 4.4 — Деградация тока через РГТС на основе $Al_xGa_{1-x}As$ от диффузии легирующей примеси

Рисунок 4.5 — Расплытие потенциального рельефа $Al_xGa_{1-x}As$ при наличии донорной примеси

Рисунок 4.6 — Деградация тока через РГТС на основе $Al_xGa_{1-x}As$ при наличии донорной примеси

4.2 Диффузия легирующей примесита