Quiz3

(. Let X_1, X_2, X_3 be a random sample from a $N(\theta, 1)$. Suppose that the realized values of X_1, X_2, X_3 are $X_1 = 3$, $X_2 = 1$, $X_3 = 5$.

If θ is restricted by $\theta \le 2$. What is the MLE of θ ?

$$\Rightarrow L(\theta) = \left(\frac{1}{\sqrt{2\pi}}\right)^{3} e^{2\pi i} \left[-\frac{1}{2}\left\{(3-\theta)^{2} + (1-\theta)^{2} + (5-\theta)^{2}\right\}\right]$$

$$L(\theta) = \log_{10} L(\theta) = -\frac{3}{2}\log_{10}(2\pi) - \frac{1}{2}\left\{(3-\theta)^{2} + (1-\theta)^{2} + (5-\theta)^{2}\right\}$$

We have to find the value that maximizes L(0).

Since
$$l'(\theta) = \frac{d \log l(\theta)}{d \theta} = -\frac{1}{2} \left\{ -2(3-\theta) - 2(1-\theta) - 2(5-\theta) \right\} = 9-30$$

and $\Omega''(\theta) < 0$, $\Omega(\theta)$ is maximized when $\widehat{\theta} = 2$ if $\theta \le 2$.

Hence, the MUE is $\hat{\Theta}^{MUE} = 2$.

#2. Let X and Y be a random sample from $f(x:0) = \theta x^{\theta-1}$, $0 < 0 < \infty$.

If the observed value of X and Y are $X = e^{-3}$ and $Y = e^{-2}$.

What is the MUE of θ ?

$$\therefore \hat{\theta}^{MLE} = \frac{2}{5}$$