Вычмат-2025

16 июня 2025 г.

Oci	новны	е определения
1.1	Преді	мет вычислительной математики. Метод и задачи вы-
	числи	тельной математики в терминах функционального
	анали	13a
	1.1.1	Предмет вычислительной математики
	1.1.2	Функциональный анализ
	1.1.3	Функциональные метрические пространства
	1.1.4	Функции, заданные на функциональном пространстве
	1.1.5	Методы и задачи вычислительной математики
1.2	Источ	ники и классификация погрешностей результатов
	числе	нного решения задач. Приближенные числа. Абсо-
		ая и относительная погрешности. Правила записи
	-	иженных чисел
	1.2.1	Источники и классификация погрешностей
	1.2.2	Приближенные числа. Абсолютная и относительная
		погрешности
	1.2.3	Правила записи приближенных чисел
1.0	$\frac{1.2.4}{2}$	Округления
1.3	=	ешности арифметических операций над приближен-
		числами. Погрешность функции одной и многих пе-
	•	ІНЫХ
	1.3.1	Погрешности арифметических операций над при-
	1 2 0	ближенными числами
1 1	1.3.2	Погрешность функции одной и многих переменной.
1.4		ектность вычислительной задачи. Примеры коррект-
1.5		и некорректных задач
1.0		повленность вычислительной задачи. Примеры хоро- плохо обусловленных задач
1.6		плохо обусловленных задач
1.0		вычислительных алгоритмов
	ность	вычислительных алторитмов
Per	пение	нелинейных уравнений, СЛАУ
2.1		ановка задачи решения нелинейных уравнений. Ос-
		ые этапы решения задачи
	2.1.1	Задача решения нелинейного уравнения

2.1.2 Локализация корней	
2.1.3 Итерационное уточнение корней	
2.2 Скорость сходимости итерационных методо	ов уточнения ре-
шения нелинейного уравнения	
2.3 Обусловленность задачи решения нелиней	іных уравнений.
Понятие об интервале неопределенности. І	Правило Гарвика.
2.3.1 Обусловленность задачи решения не	елинейных урав-
нений	
2.3.2 Понятие об интервале неопределен	ности. Правило
Гарвика	
2.4 Метод бисекции решения нелинейных урав:	нений. Скорость
сходимости. Критерий окончания	
2.4.1 Описание метода	
2.4.2 Скорость сходимости	
2.4.3 Критерий окончания	
2.5 Метод простой итерации. Скорость сходим	лости. Критерий
окончания. Приведение к виду, удобному д	для итераций
2.5.1 Описание метода	
2.5.2 Скорость сходимости	
2.5.3 Критерий окончания	
2.5.4 Приведение к виду, удобного для из	тераций
2.6 Метод Ньютона решения нелинейных ур-	авнений. Вывод
итерационной формулы метода Ньютона.	
2.7 Априорная погрешность метода Ньютона.	
2.8 Апостериорная оценка погрешности (кр	итерий оконча-
ния). Правило выбора начального приближ	кения на отрезке
локализации корня, гарантирующего сходи	имость метода
2.9 Модификации метода Ньютона. Упрощени	ный метод Нью-
тона. Метод хорд	
2.10 Модификации метода Ньютона. Метод сек	хущих. Скорость
сходимости метода секущих	
2.11 Решение СЛАУ. Постановка задачи	
2.12 Решение СЛАУ. Определение понятия нор	мы вектора. Аб-
солютная и относительная погрешности ве	ектора
2.13 Решение СЛАУ. Определение понятия н	ормы матрицы,
подчиненной норме вектора. Геометрическ	кая интерпрета-
ция нормы матрицы	
2.14 Обусловленность задачи решения СЛАУ д	для приближен-
но заданной правой части. Количественна	я мера обуслов-
ленности СЛАУ. Геометрическая интерпред	гация числа обу-
словленности	

	2.15	Обусловленность задачи решения СЛАУ для приближенно
		заданных матрицы и правой части
	2.16	Метод Гаусса решения СЛАУ. Схема единственного деле-
		ния. LU – разложение. Свойства метода
		2.16.1 Схема единственного деления
	2.17	Метод Гаусса решения СЛАУ. Схемы частичного и полного
		выбора ведущих элементов. Свойства методов 6
		2.17.1 Схемы частичного выбора
	2.10	2.17.2 Схема полного выбора
	2.18	Применение метода Гаусса к решению задач линейной ал-
		гебры. Вычисление решений системы уравнений с несколь-
	0.10	кими правыми частями
	2.19	Применение метода Гаусса к решению задач линейной ал-
	2 20	гебры. Вычисление обратной матрицы.
	2.20	Применение метода Гаусса к решению задач линейной ал-
		гебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы
	9 91	ние определителя матрицы
	2.21	тельно определенной матрицей. Свойства метода 6
		2.21.1 Описание метода
		2.21.2 Свойства метода
	2 22	Метод прогонки решения СЛАУ с трехдиагональными
	2.22	матрицами. Свойства метода
		marphamin esonotsa meredan (, , , , , , , , , , , , , , , ,)
3	$\mathbf{\Pi}$ н $\mathbf{\Pi}$	ерполяция 7
	3.1	Постановка задачи приближения функций. Приближение
		функций обобщенными многочленами 7
	3.2	Приближение методом интерполяции. Интерполяция обоб-
		щенными многочленами 7
	3.3	Понятия линейно-независимой системы функций на задан-
		ном множестве точек. Теорема о существовании единствен-
		ного решения задачи интерполяции
	3.4	Понятия ортогональной системы функций на заданном
		множестве точек. Утверждение о существовании един-
		ственного решения задачи интерполяции с помощью ор-
		тогональной системы функций. Решение задачи интерпо-
	2 5	ляции для этого случая
	3.5	Полиномиальная интерполяция. Интерполяционный мно-
	26	гочлен в форме Лагранжа
	3.6	Погрешность полиномиальной интерполяции 8

	3.7	интерполяционный многочлен с кратными узлами. 110-	01
	2.0	грешность интерполяции с кратными узлами	81
	3.8	Минимизация оценки погрешности интерполяции. Много-	
		члены Чебышева и их свойства. Применение для решения	റെ
	0.0	задачи минимизации погрешности	83
	3.9	Интерполяционная формула Ньютона для неравных про-	0.5
	0.10	межутков. Разделенные разности и их свойства	87
	3.10	Вывод формулы Ньютона для неравных промежутков с	0.0
	0.11	помощью разделенных разностей.	89
	3.11	Интерполяционная формула Ньютона для равных проме-	
		жутков. Конечные разности и их связь с разделенными	•
		разностями	90
	3.12	Вывод формул Ньютона для интерполирования вперед и	
		назад	92
	3.13	Проблемы глобальной полиномиальной интерполяции. Ин-	
		терполяция сплайнами. Определение сплайна. Интерполя-	
		ционный сплайн	94
		3.13.1 Глобальная полиномиальная интерполяция	94
		3.13.2 Сходимость глобальной полиномиальной интерпо-	
		ляции	95
		3.13.3 Чувствительность интерполяционного многочлена	
		к погрешностям входных данных	97
		3.13.4 Интерполяция сплайнами	98
	3.14	Интерполяция сплайнами. Построение локального кубиче-	
		ского интерполяционного сплайна	99
	3.15	Интерполяция сплайнами. Глобальные способы построе-	404
		ния кубического интерполяционного сплайна	101
4	Лиа	рференцирование и интегрирование	102
_	4.1	Простейшие формулы численного дифференцирования.	
	1,1	Вычисление первой производной. Погрешность формул	103
	4.2	Простейшие формулы численного дифференцирования.	100
	1.2	Вычисление второй производной. Погрешность формул	107
	4.3	Общий подход к выводу формул численного дифференци-	10.
	1.0	рования с помощью интерполяционного многочлена	108
	4.4	Обусловленность формул численного дифференцирования.	109
	4.5	Численное интегрирование. Простейшие квадратурные	
		формулы. Формула прямоугольников. Погрешность фор-	
		мулы	111
	4.6	Численное интегрирование. Простейшие квадратурные	**1
	1.0	формулы. Формула трапеций. Погрешность формулы	114
		T-FJ	

4.8		
4.'	Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы Апостериорные оценки погрешности квадратурных формул. Правило Рунге	

1 Основные определения

- 1.1 Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 1.1.1 Предмет вычислительной математики.

Необходимость разработки методов доведения математических исследований до числового результата привела к созданию отдельной дисциплицы - вычислительной математики.

Определение 1.1: Вычислительная математика-1

Область математики, которая призвана разрабатывать методы доведения до числового результата решений основных задач математического анализа, алгебры и геометрии и пути использования для этой цели современных вычислительных средств.

Определение 1.2: Вычислительная математика-2

Раздел математики, связанный с построением и анализом алгоритмов численного решения математических задач.

Таким образом, **вычислительная математика** помогает решать численные задачи с помощью ЭВМ.

1.1.2 Функциональный анализ.

Определение 1.3: Функциональный анализ

Область математики, изучающая свойства функциональных пространств.

Для определения **задач и методов** вычислительной математики введем важнейшие **понятия функционального анализа**.

Определение 1.4: Понятия функционального анализа

- Функциональные метрические пространства.
- Функции, определенные на функциональных пространствах.

Функциональный анализ рассматирвает элементы более общего (не евклидова) пространства.

1.1.3 Функциональные метрические пространства.

В функциональном анализе вместо евклидовых пространств рассматриваются абстрактные пространства, элементы которых могут иметь самую различную природу.

Определение 1.5: Метрическое пространство

Абстрактное множество, для любых двух элементов x и y которого **опрделено** понятие **расстояния** $\rho(x,y)$.

Лемма 1.1: Свойства расстояния

Расстояние $\rho(x,y)$ должно удовлетворять следующим **свойствам:**

- 1. $\rho(x,y) \ge 0$, причем $\rho(x,y) = 0 \leftrightarrow x$ совпадает с y.
- 2. $\rho(x, y) = \rho(y, x)$.
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y) \ \forall \ x,y,z \in \mathscr{R}$, где: \mathscr{R} метрическое пространство.

Евклидовы пространства с обычным определением расстояния удовлетворяют всем этим условиям. Но могут быть и другие метрические пространства.

Определение 1.6: Пространство непрерывных функций

Пространство C[a,b] - множество всех непрерывных функций на отрезке [a,b].

Функция f(x) непрерывная на $[a,b] \leftrightarrow f(x) \in C[a,b]$.

Пример 1.1: Неевклидово метрическое пространство

Пространства L_p , где $p \geq 1$ и $p \in \mathbb{R}$.

$$L_p = \{ f(x) | f(x) \in \mathbb{C}[a, b], \int_a^b |f(t)|^p dt < \infty \}$$

Расстояние $\rho(x,y)$ в пространстве L_p определяется следующим образом:

$$\rho(x,y) = \left[\int_{a}^{b} |x(t) - y(t)|^{p} dt \right]^{\frac{1}{p}}$$

В каждом метрическом пространстве можно говорить об окрестности данной точки.

Определение 1.7: Окрестность точки

 ε -окрестностью точки x некоторого метрического пространства $\mathscr R$ называется множество точек y таких, что:

$$\rho(x,y) \le \varepsilon$$

Пример 1.2: Окрестность точки в L_p

Окрестность точки в L_p - это совокупность всех функций y(t), принадлежащих L_p , для которых:

$$\int_{a}^{b} |x(t) - y(t)|^{p} dt < \varepsilon^{p}$$

В вычислительной математике часто приходится заменять одну функцию x(t) другой, более удобной для вычислительных целей. Обычно эту вторую функцию берут из ε -окрестности первой.

1.1.4 Функции, заданные на функциональном пространстве.

Определение 1.8: Операторы функционального пространства

Пусть нам даны два абстрактных (функциональных) пространства \mathcal{R}_1 и \mathcal{R}_2 и каждому элементу $x \in \mathcal{R}_1$ поставлен в соответствие элемент $y \in \mathcal{R}_2$. Тогда будем говорить, что нам задан **оператор**:

$$y = A(x)$$

с областью определения \mathscr{R}_1 и областью значений, принадлежащих \mathscr{R}_2 .

В частности, если \mathscr{R}_2 является областью вещественных или комплексных чисел, то оператор A(x) - функционал.

Пример 1.3: Функционал

Оператором (функционалом) в пространстве непрерывных функций на отрезке [a,b] C[a,b] - определенный интеграл:

$$I(x) = \int_{a}^{b} x(t) dt$$

1.1.5 Методы и задачи вычислительной математики.

Определение 1.9: Задачи вычислительной математики

Многие задачи в вычислительной математике могут быть записаны в виде:

$$y = A(x)$$

где x и y принадлежат заданным пространствам \mathscr{R}_1 и \mathscr{R}_2 и A(x) - некоторых заданный оператор.

Далеко не всегда с помощью средств современной математики удается точно решить эти задачи, применяя конечное число шагов. Для этого используют методы вычислительной математики:

Определение 1.10: Основной метод вычислительной математики

Замена пространств \mathcal{R}_1 и \mathcal{R}_1 и \mathcal{R}_2 и оператора A(x) другими пространствами $\overline{\mathcal{R}_1}$ $\overline{\mathcal{R}_2}$ и оператором \overline{A} , более удобными для вичислительных целей.

Замена $\overline{y} = \overline{A(\overline{x})}$ должна удовлетворять следующим неравенствам:

$$\rho(x, \overline{x}) < \varepsilon$$

$$\rho(y, \overline{y}) < \varepsilon$$

Иногда бывает достаточно произвести замену только пространств \mathscr{R}_1 и \mathscr{R}_2 или даже одного из них, или заменить только оператор.

Пример 1.4: Применение метода

 $f(x) \in C[a,b]$. Требуется решить задачу:

$$y = \int_{a}^{b} f(x) \, dx$$

причем интеграл не берется в элементарных функциях.

Тогда возможны два пути:

- 1. Замена пространств: вместо f(x) взять $P_n(x)$ алгебраический многочлен степени n.
- 2. Замена оператора: вместо интегрирования построить интегральную сумму $\sum_{i=1}^{n} f(x_i) \Delta_i$.

Определение 1.11: Вычислительный метод

Метод, используемый для преобразования задачи к виду, удобному для реализации на ЭВМ.

Определение 1.12: Основные вычислительные методы

Основные классы вычислительных методов:

- Методы эквивалентных преобразований (замена исходной задачи другой (более простой), имеющее то же решение).
- **Методы аппроксимации** (аппроксимировать исходную задачу другой, с небольшой погрешностью решения).
- Итерационные методы (через итерационные последовательности и функции).

Резюмируя, можно выделить **основные задачи** вычислительной математики:

Пример 1.5: Основные задачи

- Приближение множеств в функциональных пространствах.
- Приближение операторов, заданных на функциональных пространствах.
- Разработка рациональных алгоритмов и методов решения задач в условиях приминения современных вычислительных средств.

1.2 Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.

1.2.1 Источники и классификация погрешностей

При решении прикладной задачи с использованием ЭВМ получить точное решение задачи практически невозможно. Получаемое **решение** почти **всегда содержит погрешность**, т.е. является приближенным.

Определение 1.13: Источники погрешности решения

Пусть у - точное значение величины, а y^* - ее приближенное значение, тогда:

- 1. **Неустранимая погрешность:** $\delta_{\rm H} y^*$ математическая модель и исходные данные вносят в решение ошибку, которая не может быть устранена далее.
- 2. Ошибка метода решения: $\delta_{\scriptscriptstyle \rm M} y^*$ источник данной погрешности метод решения задачи.
- 3. **Вычислительная погрешность:** $\delta_{\text{в}}y^*$ определяется характеристикой машины ЭВМ.

Таким образом, полная погрешность результата решения задачи на ЭВМ складывается из трех составляющих:

$$\delta y^* = \delta_{\scriptscriptstyle \rm H} y^* + \delta_{\scriptscriptstyle \rm M} y^* + \delta_{\scriptscriptstyle \rm B} y^*$$

На практике исходят из того, что:

- Погрешность метода должна быть на порядок меньше неустранимой погрешности.
- Величина вычислительной ошибки была хотя бы на порядок меньше величины погрешности метода.

1.2.2 Приближенные числа. Абсолютная и относительная погрешности.

Пусть - точное (неизвестное) значение некоторой величины, a^* - приближенное (известное) значение той же величины (приближенное число).

Определение 1.14: Абсолютная погрешность

Модуль разности приближенного и точного значения некоторой величины:

$$\Delta(a^*) = |a - a^*|$$

Определение 1.15: Относительная погрешность

Для соотоншения погрешности величины и ее значения вводят понятие **относительной погрешности**:

$$\delta(a^*) = \frac{|a - a^*|}{|a|} = \frac{\Delta(a^*)}{|a|}$$

Т.к. значение a неизвестно, то непосредственное вычисление величин $\Delta(a^*)$ и $\delta(a^*)$ по предыдущим формулам невозможно. Следовательно, вводят верхние границы погрешностей.

Определение 1.16: Верхние границы погрешностей

 $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ - верхние границы абсолютной и относительной погрешностей соответственно:

$$|a - a^*| \le \overline{\Delta(a^*)}$$

$$\frac{|a - a^*|}{|a|} \le \overline{\delta(a^*)}$$

Причем, если величина $\Delta(a^*)$ известна, то:

$$\overline{\delta(a^*)} = \frac{\overline{\Delta(a^*)}}{|a|}$$

Аналогично, если известна $\overline{\delta(a^*)}$:

$$\overline{\Delta(a^*)} = |a| \cdot \overline{\delta(a^*)}$$

1.2.3 Правила записи приближенных чисел.

Пусть приближенное число a^* задано следующим образом:

$$a^* = \alpha_n \alpha_{n-1} \dots \alpha_0 \beta_1 \beta_2 \dots \beta_m$$

где $\alpha_n\alpha_{n-1}\dots\alpha_0$ - целая часть, $\beta_1\beta_2\dots\beta_m$ - дробная.

Определение 1.17: Значащие цифры

Все цифры в записи числа a^* , начиная с первой ненулевой слева.

Определение 1.18: Верная цифра

Значащую цифру называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующей этой цифре.

Пример 1.6: Значащие и верные цифры

Пусть $a^* = 0.010300$, $\Delta(a^*) = 2 \cdot 10^{-6}$:

- 1. Значащие цифры: 10300
- 2. Верные цифры: 1030

Лемма 1.2: Связь числа верных цифр с отностительной погрешностью

Если число a^* имеет ровно N верных цифр, то $\delta(a^*) \sim 10^{-N}$.

Лемма 1.3: Правило записи

Неравенство верхней границы абсолютной погрешности эквивалентно следующему:

$$a^* - \overline{\Delta a^*} \le a \le a^* + \overline{\Delta a^*}$$

Тот факт, что число a^* является приближенным значением числа a с абслоютной точностью $\varepsilon = \overline{\Delta(a^*)}$ принято записывать в виде:

$$a = a^* \pm \overline{\Delta(a^*)}$$

Аналогично, можно получить следующие неравенства:

$$a^*(a - \overline{\delta a^*}) \le a \le a^*(a + \overline{\delta a^*})$$

Тот факт, что число a^* является приближенным значением числа a с относительной точностью $\varepsilon = \overline{\delta(a^*)}$ принято записывать в виде:

$$a = a^* (1 \pm \overline{\delta(a^*)})$$

Как правило, числа a^* , $\overline{\Delta(a^*)}$ и $\overline{\delta(a^*)}$ указывают с одинаковым числом цифр после десятичной точки.

Если число a^* приводится в качестве результата **без указания величины погрешности**, то принято считать, что все его значащие цифры являются **верными**.

1.2.4 Округления.

Определение 1.19: Округление методом усечения

Отбрасываем все цифры, расположенные слева от n-ой значащей цифры.

Определение 1.20: Округление по дополнению

Если первая слева от отбрасываемых цифр меньше 5, то сохраняемые цифры остаются без изменения.

Иначе: в младший сохраняемый разряд добавляется единица.

Границы абсолютной и относительной **погрешностей** принято округлять **в сторону увеличения**.

- 1.3 Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 1.3.1 Погрешности арифметических операций над приближенными числами.

Теорема 1.1: Абсолютная погрешность сложения/вычитания

Абсолютная погрешность алгебраической суммы или разности не превосходит суммы абсолютных погрешностей слагаемых, т.е:

$$\Delta(a^* \pm b^*) \le \Delta(a^*) + \Delta(b^*)$$

Доказательство.

$$\Delta(a^* \pm b^*) = |(a \pm b) - (a^* \pm b^*)| = |(a - a^*) \pm (b - b^*)| \le \Delta(a^*) + \Delta(b^*)$$

П

Следстиве 1.1: Абсолютная погрешность сложения/вычитания

В силу того, что $\Delta(a^*) \leq \overline{\Delta(a^*)}$, получаем: $\overline{\Delta(a^* \pm b^*)} = \overline{\Delta(a^*)} + \overline{\Delta(b^*)}$.

Теорема 1.2: Относительная погрешность сложения/вычитания

Пусть a и b: ab > 0. Тогда справедливы неравенства:

$$\delta(a^* + b^*) \le \delta_{\max}, \ \delta(a^* - b^*) \le \nu \delta_{\max}$$

где:
$$\delta_{\max} = \max\{\delta(a^*), \, \delta(b^*)\}, \, \nu = \frac{|a+b|}{|a-b|}$$

Доказательство.

$$|a+b|\delta(a^*+b^*) = \Delta(a^*+b^*) \le \Delta(a^*) + \Delta(b^*)$$
$$|a|\delta(a^*) + |b|\delta(b^*) \le |a|\delta_{\max} + |b|\delta_{\max}$$
$$(|a|+|b|)\delta_{\max} = |a+b|\delta_{\max}$$

T.e.
$$\delta(a^* + b^*) \leq \delta_{\max}$$

$$|a - b|\delta(a^* - b^*) = \Delta(a^* - b^*) \le \Delta(a^*) + \Delta(b^*) \le |a + b|\delta_{\max}$$

T.e. $\delta(a^* - b^*) \le \frac{|a + b|}{|a - b|}\delta_{\max} = \nu\delta_{\max}$

Итог: при вычислении разности близких числе точность теряется примерно в $\nu=\frac{|a+b|}{|a-b|}$ раз.

Теорема 1.3: Относительная погрешность умножения/деления

Для относительных погрешностей произведения и частного приближенных чисел верны оценки:

$$\delta(a^*b^*) \le \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$
$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^*) + \delta(b^*)}{1 - \delta(b^*)}$$

Доказательство.

$$|ab|\delta(a^*b^*) = \Delta(a^*b^*) = |ab - a^*b^*|$$

$$|(a-a^*)b+(b-b^*)a-(a-a^*)(b-b^*)| \le |a-a^*|\cdot|b|+|b-b^*|\cdot|a|+|a-a^*|\cdot|b-b^*|$$

$$\Delta(a^*)|b|+\Delta(b^*)|a|+\Delta(a^*)\Delta(b^*)=c$$

Разделим c на |ab|:

$$\delta(a^*b^*) = \delta(a^*) + \delta(b^*) + \delta(a^*)\delta(b^*)$$

$$\begin{split} |\frac{a}{b}|\delta(\frac{a^*}{b^*}) &= \Delta(\frac{a^*}{b^*}) = |\frac{a}{b} - \frac{a^*}{b^*}| = |\frac{ab^* - a^*b}{bb^*}| = c \\ |b^*| &= |b - (b - b^*)| = |b| \cdot |1 - \frac{b - b^*}{b}| \ge |b| \cdot (1 - \delta(b^*)) \\ c &\leq \frac{|ab^* - a^*b|}{|b|^2(1 - \delta(b^*))} \end{split}$$

Разделим c на $\left|\frac{a}{b}\right|$:

$$\delta(\frac{a^*}{b^*}) \le \frac{\delta(a^* + b^*)}{1 - \delta(b^*)}$$

Следстиве 1.2: Относительная погрешность умножения/деления

Если $\delta(a^*) << 1$ и $\delta(b^*) << 1$, то:

$$\overline{\delta(a^*b^*)} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

$$\overline{\delta(\frac{a^*}{b^*})} \approx \overline{\delta(a^*)} + \overline{\delta(b^*)}$$

Общий итог:

- Выполнение арифметических операций над приближенными числами сопровождается потерей точности.
- Наибольшая потеря точности может произойти при вычитании близких чисел одного знака.
- Единственная операция, при которой потеря не происходит, это сложение чисел одного знака.

1.3.2 Погрешность функции одной и многих переменной.

Теорема 1.4: Погрешность функции одной переменной

Пусть функция f(x) - дифференцируема в окрестности точки x^* . Тогда формулы для границ погрешностей:

$$\overline{\Delta(y^*)} \approx |f'(x^*)| \overline{\Delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu^* \overline{\delta(x^*)}$$

$$\overline{\delta(y^*)} \approx \nu \overline{\delta(x^*)}$$

где
$$\nu^* = |x^*| \frac{f'(x^*)}{f(x^*)}, \ \nu = |x| \frac{f'(x)}{f(x)}$$

Доказательство. Частный случай формулы погрешности функции многих переменных.

$$\frac{\overline{\Delta(y^*)}}{|f(x)|} \approx \frac{|f'(x^*)|}{|f(x)|} \overline{\Delta x^*}$$

$$\overline{\delta(y^*)} \approx \frac{|f'(x^*)| \cdot |x|}{|f(x)|} \overline{\frac{\Delta x^*}{|x|}} \to \overline{\delta(y^*)} \approx \frac{|f'(x^*)| \cdot |x|}{|f(x)|} \overline{\delta(x^*)}$$

Теорема 1.5: Погрешность функции многих переменных

Пусть $f(\vec{x}) = f(x_1, x_2, \dots, x_m)$ - дифференцируемая в области G функция m переменных, вычисление которой производится при приближенно заданных аргументах $x_1^*, x_2^*, \dots, x_m^*$. Тогда:

$$\Delta(y^*) \le \sum_{j=1}^{m} \max_{[x,x^*]} \{|f_{x_j}^{'}|\} \Delta(x_j^*)$$

Доказательство.

$$f(x) - f(x^*) = \sum_{j=1}^{m} f'_{x_j}(\overline{x})(x_j - x_j^*), \, \overline{x} \in [x, x^*]$$
$$|f(x) - f(x^*)| = |\sum_{j=1}^{m} f'_{x_j}(\overline{x})(x_j - x_j^*)|$$
$$|f(x) - f(x^*)| \le |\sum_{j=1}^{m} \max_{[x, x^*]} \{f'_{x_j}\}(x_j - x_j^*)|$$
$$\Delta(y^*) \le \sum_{j=1}^{m} \max_{[x, x^*]} \{|f'_{x_j}|\} \Delta(x^*)$$

Следстиве 1.3: Погрешность функции многих переменных

Если $x^* \approx x$, то можно положить:

$$\overline{\Delta(y^*)} pprox \sum_{j=1}^m |f_{x_j}^{'}(x)| \overline{\Delta(x_j^*)}$$
 и $\overline{\Delta(y^*)} pprox \sum_{j=1}^m |f_{x_j}^{'}(x^*)| \overline{\Delta(x_j^*)}$

Тогда:

$$\overline{\delta(y^*)} \approx \sum_{j=1}^m \nu_j \overline{\delta(x_j^*)} \text{ и } \overline{\delta(y^*)} \approx \sum_{j=1}^m \nu_j^* \overline{\delta(x_j^*)}$$

где:

$$\nu_j = \frac{|x_j| \cdot |f'_{x_j}(x)|}{|f(x)|}, \ \nu_j^* = \frac{|x_j^*| \cdot |f'_{x_j}(x^*)|}{|f(x^*)|}$$

1.4 Корректность вычислительной задачи. Примеры корректных и некорректных задач.

Определение 1.21: Вычислительная задача

Постановка вычислительной задачи включает в себя:

- 1. Задание множества допустимых входных данных X.
- 2. Задание множества возможных решений Y.

Цель вычислительной задачи состоит в нахождении решения $y \in Y$ по заданному входному $x \in X$.

Определение 1.22: Корректность вычислительной задачи

Вычислительная задача называется корректной, если выполнены следующие все требования:

- 1. Решение $y \in Y$ **существует** при любых входных данных $x \in X$.
- 2. Решение единственно.
- 3. Решение **устойчиво** по отношению к малым возмущениям входных данных (решение зависит от входных данных непрерывным образом: $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 \; \forall x^* \colon \Delta x^* < \delta \to y^* \colon \Delta(y^*) < \varepsilon$).

Пример 1.7: Корректная вычислительная задача

Решение квадратного уравнения: $x^2 + bx + c = 0$ (a = 1).

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

- Наличие решения: в области $\mathbb R$ должно выполняться неравенство: $b^2-4ac \geq 0$.
- Единственность решения: два корня можно представить в виде вектора $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- Устойчивость решения: корни являются непрерывными функциями коэффициентов b и c.

Вычисление определенного интеграла: $I = \int_a^b f(x) \, dx \ (f(x) \in C[a,b]).$

$$\Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$
 и $I^* = \int_a^b f^*(x) \, dx$
$$\Delta(I^*) = |I - I^*|$$

$$\left| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} f^{*}(x) \, dx \right| \leq \int_{a}^{b} \left| f(x) - f^{*}(x) \right| \, dx \leq (b - a) \cdot \Delta(f^{*}(x))$$

Значит, $\forall \varepsilon > 0$ неравенство $\Delta(I^*) < \varepsilon$ будет выполено, если потребовать выполнения условия $\Delta(f^*(x)) < \delta = \frac{\varepsilon}{b-a}$.

Пример 1.8: Некорректная вычислительная задача

Нахождение ранга матрицы в общем случае: $A \in M_n(R)$

Пусть
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $A_{\varepsilon} = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix}$. Тогда:

$$rk(A) = 1, rk(A_{\varepsilon}) = 2$$

Т.е. задача неустойчива.

Вычисление производной u(x) = f'(x) приближенно заданной функции.

Пусть $f \in C^1[a,b], f^*(x)$ - приближенная функция, $u^*(x) = (f^*)'(x)$. Тогда:

$$\Delta(f^*(x)) = \max_{x \in [a,b]} |f(x) - f^*(x)|$$

$$\Delta(u^*(x)) = \max_{x \in [a,b]} |u(x) - u^*(x)|$$

Если взять $f^*(x) = f(x) + \alpha \sin(\frac{x}{\alpha^2})$, где 0 < alpha << 1. Тогда:

$$u^*(x) = u(x) + \alpha^{-1}\cos(\frac{x}{\alpha^2})$$

Следовательно:

$$\Delta(u^*) = \alpha^{-1}, \ \Delta(f^*) = \alpha$$

Значит, сколь угодно малой погрешности задания функции f(x) может отвечать сколь угодно большая погрешность производной f'(x).

1.5 Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.

На пракстике погрешность исходных данных не всегда сколь угодно малая, точность их ограничена.

Определение 1.23: Обусловленность вычислительной задачи

Чувствительность решения задачи к малым погрешностям исходных данных.

Задачу называют:

- хорошо обусловленной, если малым погрешностям исходных данных отвечают малые погрешности решения.
- плохо обусловленной, если возможны сильные изменения решения при малых погрешностях исходных данных.

Определение 1.24: Число обусловленности

Коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных.

Обычно под числом обусловленности понимают одну из величин $(\nu_{\Delta}, \nu_{\delta})$:

- Абсолютное число обусловленности: $\Delta(y^*) \le \nu_{\Delta} \Delta(x^*)$.
- Относительное число обусловленности: $\delta(y^*) \leq \nu_\delta \delta(x^*)$.

Для плохо обусловленной задачи u >> 1.

Если $\nu_{\delta} \approx 10^N$, то порядок N показывает число верных цифр, которое может быть утеряно в результате по сравнению с числом верных цифр входных данных.

Определение 1.25: Обусловленность задачи вычисления функции одной переменной

Для задачи, состоящей в вычислении по заданному x значения y=f(x) дифференцируемой функции f(x), числа обусловленности примут вид:

$$\nu_{\Delta} \approx |f'(x)|$$

$$\nu_{\delta} \approx \frac{|x| \cdot |f'(x)|}{|f(x)|}$$

Пример 1.9: Обусловленность вычислительных задач

Задача вычисления значения функции: $y = \exp(x)$.

$$\nu_{\delta} = |x|$$

При реальных вычислениях эта величина не может быть очень большой (в противном случае переполнение).

Задача вычисления значения функции: $y = \sin(x)$.

$$\nu_{\Delta} = |\cos(x)| \le 1, \ \nu_{\delta} = |\cot(x)| \cdot |x|$$

При $x \to \pi k, \ \nu_\delta \to \infty$. Следовательно, задача плохо обусловлена.

Задача вычисления определенного интеграла: $I = \int_a^b f(x) \, dx$.

$$\Delta(I^*) = |I - I^*| = |\int_a^b f(x) - f^*(x) \, dx| \le \int_a^b |f(x) - f^*(x)| \, dx$$

$$\delta(I^*) \le \frac{\int_a^b |f(x) - f^*(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b \left| \frac{f(x) - f^*(x)}{f(x)} \right| \cdot |f(x)| \, dx}{|\int_a^b f(x) \, dx|}$$

$$\frac{\int_a^b \delta(f^*(x))|f(x)| \, dx}{|\int_a^b f(x) \, dx|} \le \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$$

Таким образом, $\delta(I^*) \leq \frac{\int_a^b |f(x)| \, dx}{|\int_a^b f(x) \, dx|} \cdot \overline{\delta(x)}$.

Значит, при знакопостоянной функции f(x), $\nu_{\delta} \approx 1$. Иначе: $\nu_{\delta} > 1$ (если f(x) сильно осцилированная).

1.6 Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.

Определение 1.26: Вычислительный алгоритм

Вычислительный метод, доведенный до степени детализации (точное предписание действий), позволяющей реализовать его на ЭВМ.

Определение 1.27: Корректность вычислительных алгоритмов

Вычислительный алгоритм - корректный, если выполнены условия:

- Алгоритм за конечное число элементарных для ЭВМ операций (сложение, вычитание, умножение, деление) приводит к достижению результата.
- Алгоритм устойчив по отношению к малым погрешностям исходных данных.
- Алгоритм **вычислительно устойчив**, т.е: погрешность решения стремится к нулю, если машинный эпсилон стремится к нулю.

Определение 1.28: Обусловленность вычислительных алгоритмов

Отражает чувствительность результата работы алгоритма к малым, но неизбежным ошибкам округления.

Алгоритм называют:

- хорошо обусловленным, если малые относительные погрешности округления (характеризуемые машинной точностью ε_{M}) приводят к малой относительной вычислительной погрешности $\delta(y^*)$ результата y^* .
- плохо обусловленным, если вычислительная погрешность может быть недопустимо большой.

Определение 1.29: Число обусловленности вычислительного алгоритма

Если $\delta(y^*)$ и ε_{M} связаны неравенством $\delta(y^*) \leq \nu_{\mathrm{A}} \varepsilon_{\mathrm{M}}$, то число ν_{A} называют **числом обусловленности** вычислительного алгоритма.

Для плохо обусловленных алгоритмов $u_{
m A}>>1$.

2 Решение нелинейных уравнений, СЛАУ

- 2.1 Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 2.1.1 Задача решения нелинейного уравнения.

Определение 2.1: Задача решения нелинейного уравнения

Нахождение корня - \overline{x} такого, что: $f(\overline{x}) = 0$.

Определение 2.2: Простой/кратный корень

Корень \overline{x} уравнения f(x) называется:

- Простым: если $f'(\overline{x}) \neq 0$.
- **Кратным степени m**: если $f^{(k)}(\overline{x})=0$ для $k\in \overline{[1,\ldots,m-1]}$ и $f^{(m)}(\overline{x})\neq 0.$

Геометрически корень \overline{x} соответствует точке пересечения графика функции y = f(x) с осью Ох.

Корень \overline{x} является простым, если график пересекает ось Ох под ненулевым углом, и кратным, если пересечение происходит под нулевым углом.

Рис. 2.1

Виды корней:

- $a) x_1^* кратный корень;$
- б) x_{2}^{*} простой корень;
- $(s) x_3^* вырожденный корень.$

Рис. 1: Пример корней уравнения

Определение 2.3: Основные этапы решения нелинейного уравнения

Решение задачи вычисления корней нелинейного уравнения, как правило, осуществляется в два этапа:

- Локализация корней.
- Итерационное уточнение корней.

2.1.2 Локализация корней.

Определение 2.4: Отрезок локализации

Отрезок [a,b], содержащий только один корень \overline{x} , называют **отрезком локализации**.

Цель этапа локализации: для каждого из корней указать отрезок локализации (длину отрезка стараются по возможности сделать минимальной).

Для локализации корней широко применяют построение таблиц значений функции f(x) вида $y_i = f(x_i), i = 1, 2, \ldots, n$. При этом способе локализации, о наличии на отрезке $[x_{i-1}, x_i]$ корня судят по перемене знака функции на концах отрезка.

Теорема 2.1: Больцано-Коши

Пусть функция f(x) непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, т.е. $f(a) \cdot f(b) < 0$.

Тогда отрезок [a,b] содержит по крайне мере один корень уравнения f(x)=0.

2.1.3Итерационное уточнение корней.

Основная идея: использовать итерационный метод, что позволит построить последовательность $x^{(0)}, x^{(1)}, \ldots, x^{(n)}, \ldots$ приближений к корню \overline{x} .

Определение 2.5: Виды итерационных методов

Итерационный метод может быть:

- одношаговым: для вычисления очередного приближения $x^{(n+1)}$ используется только одно предыдущее значение $x^{(n)}$.
- k-шаговым: для вычисления $x^{(n+1)}$ используется k предыдущих приближений $x^{(n-k+1)}, x^{(n-k+2)}, \ldots, x^{(n)}$.

Определение 2.6: Итерационная функция

Итерационную последовательность $x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots$ строится через итерационную функцию:

$$\phi(x^{(0)}) = x^{(1)}$$

$$\phi(x^{(1)}) = x^{(2)}$$

$$\phi(x^{(n-1)}) = x^{(n)}$$

2.2 Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.

Определение 2.7: Скорость сходимости

Говорят, что метод сходится со скоростью **геометрической прогрес- сии**, знаменатель которой q < 1, если для всех n справедливо:

$$|x^{(n)} - \overline{x}| \le c_0 q^n$$

Пусть существует σ -окрестность корня \overline{x} такая, что если приближение $x^{(n)}$ принадлежит этой окрестности, то справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^p$$

где C>0 и $p\geq 1$ - постоянные. Тогда:

- Если p=1 и C<1, то метод обладает **линейной** скоростью сходимости в указанной σ -окрестности корня.
- Если p > 1, то метод обладает **сверхлинейной** скоростью сходимости: при p = 2 **квадратичной**, при p = 3 **кубической**.

Лемма 2.1: Связь линейной и геометрической сходимости

Пусть одношаговый итерационный метод обладает линейной скоростью сходимости в некоторой σ -окрестности корня \overline{x} . Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$:

- Итерационная последовательность $x^{(n)}$ не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии со знаменателем q=C.

А также имеет место следующая оценка:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|, \ n \ge 0$$

Доказательство. $q < 1 \to x^{(n)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$. Тогда $x^{(n)}$ сходися к \overline{x} . Справедливость оценки установим через индукцию:

При n=0:

$$|x^{(0)} - \overline{x}| \le |x^{(0)} - \overline{x}|$$

При переходе от n=m-1 к n=m:

$$|x^{(m)} - \overline{x}| \le q|x^{(m-1)} - \overline{x}| \le q^m|x^{(0)} - \overline{x}|$$

- 2.3 Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 2.3.1 Обусловленность задачи решения нелинейных уравнений.

Пусть \overline{x} - корень уравнения, f(x) - входные данные для задачи вычисления корня \overline{x} , $f^*(x)$ - приближенные значения функции.

Определение 2.8: Обусловленность задачи решения нелинейных уравнений

Нельзя ожидать, что в окрестности корня относительная погрешность $\delta(f^*(x))$ окажется малой, например:

$$y = \sin(x)$$

в окрестности корней $x = \pi \cdot k, k \in \mathbb{Z}, \delta(f^*(x)) = |x| \cdot \cot(x) \to \infty.$

Реально рассчитывать можно лишь на то, что малой окажется абсолютная погрешность вычисления значений функции:

$$\Delta(f^*(x)) \approx |f'(x)| = |\cos(x)|$$

2.3.2 Понятие об интервале неопределенности. Правило Гарвика.

Определение 2.9: Интервал неопределенности

Окрестность корня $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$, в котором невозможно точно определить знак функции f(x): знак вычисленного значения $f^*(x)$ может не совпадать со знаком f(x) для $x \in (\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon})$.

Лемма 2.2: Оценка $\bar{\varepsilon}$ для интервала неопределенности

Пусть корень \overline{x} - простой. Тогда для близких к \overline{x} значений x справедливо приближенное равенство:

$$f(x) \approx f(\overline{x}) + f'(\overline{x})(x - \overline{x}) = f'(\overline{x})(x - \overline{x})$$

В интервале $(\overline{x} - \overline{\varepsilon}, \overline{x} + \overline{\varepsilon}), |f(x)| < \overline{\Delta(f^*(x))}$. Следовательно:

$$|f'(\overline{x})(x-\overline{x})| < \overline{\Delta(f^*(x))}$$

$$\text{Mtor: } \overline{x} - \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} < x < \overline{x} + \frac{\overline{\Delta(f^*(x))}}{|f'(x)|} \to \overline{\varepsilon} = \frac{1}{|f'(x)|} \cdot \overline{\Delta(f^*(x))}.$$

Определение 2.10: Число обусловленности задачи нахождения корня

 $u_{\Delta} = \frac{1}{|f'(\overline{x})|}$ - число обусловленности задачи нахождения корня.

Определение 2.11: Правило Гарвика

$$q^{(n)} = \frac{|x^{(n)} - x^{(n-1)}|}{|x^{(n-1)} - x^{(n-2)}|}$$

В интервале неопределенности $q^{(n)} > 1$, т.е. начинается разболтка - хаотическое поведение итерационной последовательности.

В этой ситуации вычисления следует прекратить и принять правильное решение. Лучшее из последовательностей приближений к решению становится $x^{(n-1)}$.

Метод бисекции решения нелинейных уравне-2.4 ний. Скорость сходимости. Критерий окончания.

2.4.1Описание метода.

По сравнению с другими методами метод бисекции сходится довольно медленно. Однако он очень прост и непритязателен; для его применения достаточно, чтобы:

- Выполнялось неравенство: $f(a)f(b) \le 0$.
- Функция f(x) была непрерывна.
- Верно определялся знак функции.

Метод гарантирует точность приближения, примерно равную радиусу интервала неопределенности $\overline{\varepsilon}$.

Определение 2.12: Описание метода

Пусть требуется найти с заданной точностью ε корень \overline{x} , а также задан отрезок локализации $[a^{(0)},b^{(0)}]$ такой, что: $f(a^{(0)})\cdot f(b^{(0)})<0$, тогда:

$$x^{(0)} = \frac{a^{(0)} + b^{(0)}}{2}$$

- начальное приближенное значение корня. Погрешность данного приближения: $\frac{b^{(0)}-a^{(0)}}{2}$

В качестве $[a^{(1)},b^{(1)}]$ берут тот из отрезков $[a^{(0)},x^{(0)}]$ и $[x^{(0)},b^{(0)}]$, на концах которого выполняется условие: $f(a^{(1)})f(b^{(1)}) < 0$. Середина полученного отрезка:

$$x^{(1)} = \frac{a^{(1)} + b^{(1)}}{2}$$

- следующее приближение к корню, с погрешностью: $\frac{b^{(1)}-a^{(1)}}{2}=\frac{b^{(0)}-a^{(0)}}{2^2}$

На очередной (n+1) итерации происходит следующее:

- Вычисляется $f(x^{(n)})$.
- Если $f(a^{(n)})f(x^{(n)}) \leq 0$, то в качестве отрезка локализации $[a^{(n+1)},b^{(n+1)}]$ принимается отрезок $[a^{(n)},x^{(n)}]$, иначе $[x^{(n)},b^{(n)}]$.
 Вычисляется $x^{(n+1)}=\frac{a^{(n+1)}+b^{(n+1)}}{2}$.

Если $\frac{b-a}{2^{n+1}} < \varepsilon$, то останавливаемся: $\overline{x} \approx \frac{a^{(n-1)} + b^{(n-1)}}{2}$.

2.4.2 Скорость сходимости.

Лемма 2.3: Скорость сходимости

Середина n-го отрезка - точка $x^{(n)} = \frac{a^{(n)} + b^{(n)}}{2}$ дает приближение к корню \overline{x} , имеющее оценку погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{b^{(n)} - a^{(n)}}{2} = \frac{b - a}{2^{n+1}}$$

Получаем: метод бисекции сходится со скоростью геометрической прогрессии со знаменателем $q=\frac{1}{2}.$

2.4.3 Критерий окончания.

Лемма 2.4: Критерий окончания

Итерации следовательно вести до тех пор, пока не будет выполнено неравенство:

$$(b^{(n)} - a^{(n)}) < 2\varepsilon$$

При его выполнении можно принять $x^{(n)}$ за приближение к корню с точностью ε .

2.5 Метод простой итерации. Скорость сходимости. Критерий окончания. Приведение к виду, удобному для итераций.

2.5.1 Описание метода.

Геометрически, метод можно представить следующим образом:

Рис. 2: Геометрическое представление метода простых итераций

Определение 2.13: Описание метода

Основная идея метода - привести нелинейное уравнение к виду, удобному для итерации:

$$x = \phi(x)$$

где функция $\phi(x)$ - итерационная функция.

В методе простых итераций $\phi(x)=x-\alpha f(x)$, где α - какая-то константа, f(x) - исходная функция.

Убедимся, что корень $\phi(x)$ - корень f(x):

$$\phi(\overline{x}) = \overline{x} - \alpha f(\overline{x}) = \overline{x}$$

Пусть $x^{(0)} \in [a,b]$ - начальное приближение корня, тогда:

$$x^{(1)} = \phi(x^{(0)})$$

$$x^{(2)} = \phi(x^{(1)})$$

. . .

$$x^{(n+1)} = \phi(x^{(n)}), n \ge 0$$

. . .

2.5.2 Скорость сходимости.

Рис. 3: Сходимость метода простых итераций

Как видно на рисунках, в случаях (а), (б) - метод сходится, а в (в) и (г) - расходится. Это связано с тем, что в (а) и (б) $|\phi'(x)| < 1$, а в (в) и (г) наоборот, $|\phi'(x)| > 1$.

Теорема 2.2: Об априорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \le q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ итерационная последовательность:

- Не выходит за пределы этой окрестности.
- Метод сходится со скоростью геометрической прогрессии.

А также справедлива следующая оценка погрешности:

$$|x^{(n)} - \overline{x}| \le q^n |x^{(0)} - \overline{x}|$$

Доказательство. По определению:

$$x^{(n+1)} = \phi(x^{(n)})$$

$$\overline{x} = \phi(\overline{x})$$

Тогда:

$$x^{(n+1)} - \overline{x} = \phi(x^{(n)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n)} - \overline{x})$$

Причем:

$$\xi^{(n)} \in [x^{(n)}, \overline{x}]$$

Значит:

$$|x^{(n+1)} - \overline{x}| = |\phi'(\xi^{(n)})| \cdot |x^{(n)} - \overline{x}| \le q \cdot |x^{(n)} - \overline{x}|$$

Следовательно: интерполяционная последовательность $x^{(0)}, x^{(1)}, \dots, x^{(k)}, \dots$ сходится линейно к \overline{x} (отсюда получаем, что последовательность сходится со скоростью геометрической последовательности со знаменателем q).

Априорные оценки погрешности позволяют еще до вычислений дать некоторое заключение о качестве метода.

2.5.3 Критерий окончания.

Теорема 2.3: Об апостериорной погрешности

Пусть в некоторой σ -окрестности корня \overline{x} функция $\phi(x)$ дифференцируема и удовлетворяет неравенству:

$$|\phi'(x)| \le q$$

где $0 \leq q < 1$ - постоянная.

Тогда $\forall x^{(0)} \in [\overline{x} - \sigma, \overline{x} + \sigma]$ верна следующая апостериорная оценка погрешности:

$$|x^{(n)} - \overline{x}| \le \frac{q}{1-q} |x^{(n)} - x^{(n-1)}|, \ n \ge 1$$

Доказательство.

$$x^{(n)} - \overline{x} = \phi(x^{(n-1)}) - \phi(\overline{x}) = \phi'(\xi^{(n)})(x^{(n-1)} - \overline{x})$$

Пусть:

$$\phi'(\xi^{(n)}) = \alpha^{(n+1)}$$

Тогда:
$$x^{(n)} - \overline{x} = \alpha^{(n+1)}(x^{(n+1)} - \overline{x})$$

$$\alpha^{(n+1)}(x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}) = \alpha^{(n+1)}(x^{(n-1)} - x^{(n)}) + \alpha^{(n+1)}(x^{(n)} - \overline{x})$$
 Значит:
$$|x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}| + |\alpha^{(n+1)}| \cdot |x^{(n)} - \overline{x}|$$

$$(1 - |\alpha^{(n+1)}|) \cdot |x^{(n)} - \overline{x}| \leq |\alpha^{(n+1)}| \cdot |x^{(n-1)} - x^{(n)}|$$

$$|x^{(n)} - \overline{x}| \leq \frac{|\alpha^{(n+1)}|}{1 - |\alpha^{(n+1)}|} \cdot |x^{(n-1)} - x^{(n)}|$$
 Т.к.
$$\begin{cases} |\alpha^{(n+1)}| \leq q \\ 1 - |\alpha^{(n+1)}| \geq 1 - q \end{cases}$$
 то:
$$|x^{(n)} - \overline{x}| \leq \frac{q}{1 - q} \cdot |x^{(n-1)} - x^{(n)}|$$

Если величина q известна, то неравенство выше дает эффективный метод контроля погрешности и можно сформулировать следующий критерий окончания итерационного процесса.

Следстиве 2.1: Критерий остановки

Вычисления следует вести до выполнения неравенства:

$$\frac{q}{1-q}|x^{(n)} - x^{(n-1)}| < \varepsilon$$

или равносильному ему неравенства:

$$|x^{(n)} - x^{(n-1)}| < \frac{1-q}{q}\varepsilon$$

Использование данного критерия окончания требует знание величины q. Чтобы избавиться от нее, оценим q.

Лемма 2.5: Оценка величины q

$$|x^{(n)} - x^{(n-1)}| < \frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}} \varepsilon$$

 \mathcal{A} оказательство. Заметим, что в малой окрестности корня величина производной $\phi'(x)$ практически постоянна:

$$\phi'(x) \approx \phi'(\overline{x})$$

Тогда величину $\alpha^{(n)} = \phi'(\xi^{(n-1)})$ можно приближенно заменить на $\phi'(\overline{x})$.

Следовательно:

$$x^{(n)} - x^{(n-1)} = \phi(x^{(n-1)}) - \phi(x^{(n-2)}) = \phi'(\overline{\xi^{(n)}})(x^{(n-1)} - x^{(n-2)})$$

где: $\overline{\xi^{(n)}} \in [x^{(n-1)}, x^{(n-2)}].$

Тогда:

$$\overline{\alpha^{(n)}} = \frac{x^{(n)} - x^{(n-1)}}{x^{(n-1)} - x^{(n-2)}} = \phi'(\overline{\xi^{(n)}}) \approx \phi'(\overline{x})$$

Таким образом: можно положить $\alpha^{(n)} \approx \overline{\alpha^{(n)}}$.

$$|x^{(n)} - x^{(n-1)}| < |\frac{1 - \overline{\alpha^{(n)}}}{\overline{\alpha^{(n)}}}|\varepsilon$$

2.5.4 Приведение к виду, удобного для итераций.

Теорема 2.4: Приведение к виду, удобного для итераций

Пусть $f(x) \in C^1[a, b]$, причем $f'(x) \ge 0$.

Тогда $\exists m, M \in \mathbb{R}$: $0 < m \le f'(x) \le M$, $x \in [a, b]$.

Тогда при:

$$\alpha_{\rm opt} = \frac{2}{m+M}$$

 $|\phi'(x)| \leq q < 1$, причем значение q - минимально.

Доказательство. Т.к. $m \leq \phi'(x) \leq M$, то:

$$1 - \alpha M \le \phi'(x) \le 1 - \alpha m$$

В соотношении:

$$|\phi'(x) \le q|$$

Величина q должна быть минимальна.

Следовательно:

$$|\phi'(x)| \le \max_{\alpha} \{|1 - \alpha M|, |1 - \alpha m|\}$$

Получаем:

$$1 - \alpha m = -1 + \alpha M$$

Отсюда:

$$\alpha_{\text{opt}} = \frac{2}{m+M}$$

2.6 Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.

Расчетную формулу метода можно получить, используя различные подходы.

Определение 2.14: Метод касательных

Шаги алгоритма:

- Пусть $x^{(0)} \in [a, b]$ начальное приближение к корню \overline{x} .
- Выбираем точку $M(x^{(0)}, f(x^{(0)}))$.
- Строим через M касательную к графику f(x).
- Пересечение с осью Ox следующее приближение $x^{(1)}$.

Продолжая этот процесс далее, получим последовательность $x^{(0)}, x^{(1)}, \dots, x^{(n)}, \dots$ приближений к корню \overline{x} .

Уравнение касательной, проведенной к графику функции y=f(x) в точке $(x^{(n)},f(x^{(n)}))$, имеет вид:

$$y = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)})$$

Полагая в равенстве y = 0 и $f'(x^{(n)}) \neq 0$, получаем:

$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

Расчетная формула:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, n \ge 0$$

Рис. 4: Метод касательных

С более общих позиций **метод Ньютона** можно рассматривать как **итерационный метод**, использующий специальную линеаризацию задачи.

Определение 2.15: Метод линеаризации

Пусть приближение $x^{(n)}$ уже получено. Представим функцию в окрестности точки $x^{(n)}$ по формуле Тейлора:

$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^2$$

где: $\xi \in [x, x^{(n)}]$

Заменяя в уравнении f(x) = 0 функцию f(x), а также учитывая линеаризацию, получаем:

$$f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) = 0$$

Принимая решение уравнения за новое приближение $x^{(n+1)}$, приходим к формуле:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

2.7 Априорная погрешность метода Ньютона.

Теорема 2.5: Об априорной погрешности

Пусть $f(x) \in C^2[a,b]$ - отрезок локализации и \overline{x} - простой корень. Тогда сущствует некоторая σ -окрестность: $(\overline{x} - \sigma, \overline{x} + \sigma)$: $\forall x^{(0)} \in (\overline{x} - \sigma, \overline{x} + \sigma)$, итерационная последовательность не выходит из этой окрестности и справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le C|x^{(n)} - \overline{x}|^2, \ n \ge 0$$

где: $C = \sigma^{-1}$.

Доказательство. Т.к. $f \in C^2[a,b]$, то:

$$\exists \alpha, \beta > 0: \begin{cases} 0 < \alpha \le |f'(x)| \\ |f''(x)| < \beta \end{cases}$$

Тогда:

1.
$$0 = f(x^{(n)}) + f'(x^{(n)})(x^{(n+1)} - x^{(n)})$$

2.
$$f(x) = f(x^{(n)}) + f'(x^{(n)})(x - x^{(n)}) + \frac{f''(\xi)}{2}(x - x^{(n)})^2$$

Подставим во второе уравнение $x = \overline{x}$: $f(\overline{x}) = 0$

$$0 = f(x^{(n)}) + f'(x^{(n)})(\overline{x} - x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})$$

Вычтем из перовго уравнения второе:

$$0 = f'(x^{(n)})(\overline{x} - x^{(n)} - x^{(n+1)} + x^{(n)}) + \frac{f''(\xi)}{2}(\overline{x} - x^{(n)})^{2}$$
$$f'(x^{(n)})(x^{(n+1)} - \overline{x}) = \frac{f''(\xi)}{2}(x^{(n)} - \overline{x})^{2}$$
$$\alpha |x^{(n+1)} - \overline{x}| \le \frac{\beta}{2}|x^{(n)} - \overline{x}|^{2}$$
$$|x^{(n+1)} - \overline{x}| \le \frac{\beta}{2\alpha}|x^{(n)} - \overline{x}|^{2}$$

Возьмем за $\sigma = \frac{2\alpha}{\beta}$:

$$|x^{(n+1)} - \overline{x}| < \sigma^{-1}|x^{(n)} - \overline{x}|^2$$

Следстиве 2.2: Об априорной погрешности

Априорная оценка погрешности для метода Ньютона:

$$|x^{(n)} - \overline{x}| \le \sigma q^{2^n}, \ n \ge 0$$

где:
$$q = \sigma^{-1}|x^{(0)} - \overline{x}|$$
.

Доказательство. По индукции.

2.8 Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.

Теорема 2.6: Об апостериорной погрешности

Пусть $x^{(n)} \in (\overline{x} - \frac{\sigma}{2}, \overline{x} + \frac{\sigma}{2})$, тогда: в условиях теоремы об априорной погрешности:

$$|x^{(n)} - \overline{x}| \le |x^{(n)} - x^{(n-1)}|$$

Доказательство.

$$2|x^{(n)} - \overline{x}| \le 2\sigma^{-1}|x^{(n-1)} - \overline{x}|^2$$

$$2 \cdot \sigma^{-1}|x^{(n-1)} - \overline{x}| \cdot |x^{(n-1)} - \overline{x}| \le |x^{(n-1)} - \overline{x}| \text{ (t.k. } |x^{(n-1)} - \overline{x}| \le \frac{\sigma}{2})$$

$$|x^{(n-1)} - x^{(n)} + x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}| + |x^{(n)} - \overline{x}|$$

$$|x^{(n)} - \overline{x}| \le |x^{(n-1)} - x^{(n)}|$$

Следстиве 2.3: Критерий остановки

$$|x^{(n)} - x^{(n-1)}| < \varepsilon$$

где: ε - заданная точность.

В качестве начального приближения можно выбрать **не любую** точку из [a,b]. Иначе: касательная может пересечь Ox вне интервала.

Теорема 2.7: Критерий выбора начального приближения

Пусть $f(x) \in C^2[a,b]$ и $f^{'}(x)$ и $f^{''}(x)$ - знакопостоянны.

Тогда итерационная последовательность метода Ньютона сходится, если в качестве $x^{(0)}$ выбрать точку такую, что:

$$f(x^{(0)})f''(x^{(0)}) > 0$$

Таким образом, метод Ньютона **обладает** в общем случае только **ло- кальной сходимостью**.

2.9 Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.

Определение 2.16: Упрощенный метод Ньютона

Исходная формула Ньютона:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}, n \ge 0$$

Формула упрощенного Ньютона: $f'(x^{(n)}) \approx f'(x^{(0)})$

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(0)})}, n \ge 0$$

T.e:

- В точке $(x^{(0)}, f(x^{(0)}))$ к графику функции y = f(x) проводится касательная l_0 .
- За приближение $x^{(1)}$ принимается абцисса точки пересечения l_0 с осью Ox.
- Каждое следующее приближение $x^{(n+1)}$ получается как абцисса точки пересечения с осью Ox прямой, проходящей через точку $M^{(n)}(x^{(n)},f(x^{(n)}))$ и параллельной касательной l_0 .

Данный метод можно рассматривать как **метод простой итерации** с формулой:

$$\phi(x) = x - \frac{f(x)}{f'(x^{(0)})}$$

Скорость сходимоти данного метода - линейная.

Рис. 5: Упрощенный метод Ньютона

Определение 2.17: Метод хорд

По определению производной:

$$f'(x^{(n)}) = \frac{f(z^{(n)}) - f(x^{(n)})}{z^{(n)} - x^{(n)}}$$
, при: $z^{(n)} \to x^{(n)}$

Тогда вместо:

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

Фиксируем: $f'(x^{(n)}) = \frac{f(c) - f'(x^{(n)})}{c - x^{(n)}}$

Итоговая формула:

$$x^{(n+1)} = x^{(n)} - \frac{c - x^{(n)}}{f(c) - f(x^{(n)})} \cdot f(x^{(n)}), \ n \ge 0$$

где c - фиксированная точка, расположенная в окрестности простого корня \overline{x} .

Очередное приближение $x^{(n+1)}$ получается здесь как абцисса точки пересечения с осью Ox прямой, проходящей через расположенные на графике функции y=f(x) точки M(c,f(c)) и $M^{(n)}(x^{(n)},f(x^{(n)}))$

Метод можно рассматривать как итерационный, с формулой:

$$\phi(x) = x - \frac{c - x}{f(c) - f(x)} f(x)$$

Скорость сходимости данного метода - линейная.

Рис. 6: Метод хорд

2.10 Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.

Определение 2.18: Метод секущих

Замена $f'(x^{(n)})$ на $\frac{f(x^{(n+1)})-f(x^{(n)})}{x^{(n-1)}-x^{(n)}}$ приводит к расчетной формуле:

$$x^{(n+1)} = x^{(n)} - \frac{x^{(n-1)} - x^{(n)}}{f(x^{(n-1)}) - f(x^{(n)})} f(x^{(n)}), n \ge 1$$

Данный метод является двухшаговым.

Очередное приближение $x^{(n+1)}$ получается как абцисса точки пересечения с осью Ox секущей, соединяющей точки $M^{(n-1)}(x^{(n-1)}, f(x^{(n-1)}))$ и $M^{(n)}(x^{(n)}, f(x^{(n)}))$, графика функции f(x).

Рис. 7: Метод секущих

Лемма 2.6: Скорость сходимости метода секущих

Метод секущих сходится с порядком $p=\frac{1+\sqrt{5}}{2}\approx 1.618,$ т.е. для $n\geq 1$ справедлива оценка:

$$|x^{(n+1)} - \overline{x}| \le c|x^{(n)} - \overline{x}|^p, \ p = \frac{1 + \sqrt{5}}{2}$$

- Одная итерация метода секущих требует только одного нового вычисления f(x).
- Метод Ньютона требует двух вычислений: f(x) и f'(x).
- Трудоемкость двух итераций метода секущих \sim трудоемкость одной итерации метода Ньютона.
- Две итерации метода секущих дают порядок $p^2 \approx 2.618 > 2 \rightarrow$ его можно расценивать как **более быстрый**.

Метод обладает только локальной сходимостью: он требует выбора двух близких к корню начальных приближений $x^{(0)}$ и $x^{(1)}$.

2.11 Решение СЛАУ. Постановка задачи.

Определение 2.19: Система линеных алгебраических уравнений

Системы вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2m}x_m = b_2 \\ a_{31}x_1 + a_{32}x_2 + \ldots + a_{3m}x_m = b_3 \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mm}x_m = b_m \end{cases}$$

с вещественным набором коэффициентов $a_{11}, a_{12}, \ldots, a_{mm}$ называют системой линейных алгебраических уравнений.

В матричной форме система записывается в виде:

где:
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ a_{31} & a_{32} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_2 \\ \dots \\ x_m \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_m \end{pmatrix}$$

Определение 2.20: Корректность задачи решения СЛАУ

Пусть заданы входной вектор b и невырожденная матрица A. Тогда известно, что **решение** системы:

- Существует.
- Единственно.
- Устойчиво по входным данным.

Т.е. задача решения СЛАУ корректна.

Определение 2.21: Задача решения СЛАУ

Задача решения СЛАУ - нахождение такого приближенного решения $x^* = (x_1^*, x_2^*, \dots, x_m^*)^T$, для которого погрешность $e = x - x^*$ мала.

Иногда вместо погрешности e, удовлетворительным является критерий **малости невязки** $r=b-Ax^*.$

Заметим, что погрешность и невязка системы связаны:

$$r = b - Ax^* = Ax - Ax^* = A(x - x^*)$$

 $e = x - x^* = A^{-1}r$

Решение СЛАУ. Определение понятия нормы 2.12вектора. Абсолютная и относительная погрешности вектора.

Определение 2.22: Норма вектора

Говорят, что в пространстве R^m задана норма, если: $\forall x \in R^m$ сопоставлено вещественное число ||x||, называемое **нормой вектора** и обладающее следующими свойствами:

- $||x|| \ge 0$, причем $||x|| = 0 \leftrightarrow x = 0$.
- $\|\alpha x\| = |\alpha| \|x\| : \forall x \in \mathbb{R}^m, \forall \alpha \in \mathbb{R}.$
- $||x + y|| \le ||x|| + ||y|| : \forall x, y \in \mathbb{R}^m$.

Определение 2.23: Виды векторных норм

Существуют различные способы введения векторной нормы:

- $||x||_1 = \sum_{i=1}^m |x_i|$. $||x||_2 = (\sum_{i=1}^m |x_i|^2)^{\frac{1}{2}}$ (евклидова норма). $||x||_{\infty} = \max_{1 \le i \le m} |x_i|$.

Первые две являются частными случаями более общей нормы:

$$||x_p|| = (\sum_{i=1}^m |x_i|^p)^{\frac{1}{p}}, \ p \ge 1$$

Также справедливы неравенства:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le m||x||_{\infty}$$

Т.е. все три введенные нормы эквивалентны: каждая из них оценивается любой из двух других с точностью до множителя, зависящего ot m.

Определение 2.24: Абсолютная и относительная погрешности вектора

Пусть в пространстве R^m введена и фиксирована норма, тогда:

- Абсолютная погрешность вектора: $\Delta(x^*) = \|x x^*\|$.
 Отностительная погрешность вектора: $\delta(x^*) = \frac{\Delta(x^*)}{\|x\|} =$ $||x-x^*||$

Определение 2.25: Сходимость по норме

Пусть $\{x^{(n)}\}_{n=1}^{\infty}$ - последовательность векторов $x^{(n)}=(x_1^{(n)},x_2^{(n)},\ldots,x_m^{(n)}).$

Говорят, что последовательность векторов $\{x^{(n)}\}_{n=1}^{\infty}$ сходится к вектору x, если:

$$\Delta(x^{(n)}) = \|x - x^{(n)}\| \to 0$$
, при $n \to \infty$

2.13 Решение СЛАУ. Определение понятия нормы матрицы, подчиненной норме вектора. Геометрическая интерпретация нормы матрицы.

Определение 2.26: Норма матрицы

Величина:

$$||A|| = \max_{x \neq 0} \{ \frac{||Ax||}{||x||} \}$$

является нормой матрицы A, подчиненной норме векторов, введенной в R^m .

Норма матрицы обладает следующими свойствами:

- $||A|| \ge 0$, причем $||A|| = 0 \leftrightarrow A = 0$.
- $\|\alpha A\| = |\alpha| \|A\| : \forall A \in M_m(\mathbb{R}), \forall \alpha \in \mathbb{R}.$
- $||A + B|| \le ||A|| + ||B|| : \forall A, B \in M_m(\mathbb{R}).$
- $||A \cdot B|| \le ||A|| \cdot ||B|| : \forall A, B \in M_m(\mathbb{R}).$
- $||A \cdot x|| \le ||A|| \cdot ||x||$: $\forall A \in M_m(\mathbb{R}), \forall x \in \mathbb{R}^m$.

Определение 2.27: Виды матричных норм

Существуют различные способы введения матричной нормы: векторным нормам $||x||_1$, $||x||_2$, $||x||_\infty$ подчинены следующие матричные нормы:

- $\|A\|_1 = \max_{1 \leq j \leq m} \sum_{i=1}^m |a_{ij}|$ ("максимальная вектор"). $\|A\|_2 = \max_{1 \leq j \leq m} \sqrt{\lambda_j(A^TA)}$ (где $\lambda_j(A^TA)$ собственные числа матрицы A^TA).
- $||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{ij}|$ ("максимальный строка").

Для нормы $||A||_2$ используют оценку:

$$||A||_2 \le ||A||_{\mathcal{E}}$$

где $\|A\|_{\mathrm{E}} = \sqrt{\sum_{i,j=1}^m |a_{ij}|^2}$ - евклидова норма матрицы A.

Лемма 2.7: Геометрическая интерпретация нормы матрицы

Операция умножения матрицы A на вектор x - преобразование, которое переводит вектор x в другой y: y = Ax.

Тогда:

- $\|x\|$ длина вектора x. $\frac{\|Ax\|}{\|x\|}$ коэффициент растяжения (сжатия при $\|A\| < 1$) вектора x под действием матрицы A.

Следовательно:

$$k_{\max} = ||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

есть максимальный коэффициент растяжения вектора x под действием матрицы A.

Для невырожденной матрицы A минимальный коэффициент растяжения k_{\min} - норма обратной матрицы:

$$k_{\min} = ||A^{-1}||^{-1} = \min_{x \neq 0} \frac{||Ax||}{||x||}$$

2.14 Обусловленность задачи решения СЛАУ для приближенно заданной правой части. Количественная мера обусловленности СЛАУ. Геометрическая интерпретация числа обусловленности.

Решения различных СЛАУ обладают разной чувствительностью к погрешностям входных данных.

Теорема 2.8: Обусловленность задачи решения СЛАУ-1

Пусть элементы матрицы A заданы точно.

Пусть x^* - точное решение системы $Ax^* = b^*$, в которой правая часть b^* - приближение к b.

Тогда справедливы оценки:

$$\Delta(x^*) \le \nu_{\Delta} \Delta(b^*)$$

$$\delta(x^*) \le \nu_\delta \delta(b^*)$$

где
$$\nu_{\Delta} = \|A^{-1}\|$$
 и $\nu_{\delta} = \|A^{-1}\| \frac{\|b\|}{\|x\|}$.

Доказательство. Пусть x - точное решение системы Ax=b, тогда:

$$Ax - Ax^* = b - b^*$$

$$x - x^* = A^{-1}(b - b^*)$$

$$||x - x^*|| \le ||A^{-1}|| \cdot ||b - b^*||$$

$$\Delta(x^*) \le ||A^{-1}|| \cdot \Delta(b^*)$$

Т.е: $\nu_{\Delta} = \|A^{-1}\|$ - абслоютное число обусловленности.

$$\delta(x^*) = \frac{\Delta(x^*)}{\|x\|} \le \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \cdot \delta(b^*)$$

Т.е: $\nu_{\delta} = \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|}$ - относительное (естественное) число обусловленности.

Теорема 2.9: Стандартное число обусловленности

Максимальное значение естественного числа обусловленности (т.е. оно не зависит от x).

$$\max_{x \neq 0} \{ \nu_{\delta}(x) \} = \max_{x \neq 0} \{ \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \} = \max_{x \neq 0} \{ \frac{\|A^{-1}\| \cdot \|Ax\|}{\|x\|} \} = \|A^{-1}\| \cdot \|A\|$$

Полученное число принято называть **стандартным числом обу- словленности** (или просто числом обусловленности) матрицы A:

$$\nu(A) = \text{cond}(A) = ||A^{-1}|| \cdot ||A||$$

Следстиве 2.4: Стандартное число обусловленности

Из предыдущей теоремы и свойства относительного числа обусловленности, получаем:

$$\delta(x^*) \le \operatorname{cond}(A)\delta(b^*)$$

Лемма 2.8: Свойства стандартного числа обусловленности

У стандартного числа обусловленности следующие свойства:

- 1. cond(E) = 1.
- 2. $\operatorname{cond}(A) \geq 1$: $\forall A \in M_m(\mathbb{R})$.
- 3. $\operatorname{cond}(\alpha A) = \operatorname{cond}(A) : \forall A \in M_m(\mathbb{R}), \forall \alpha \in \mathbb{R}.$

Лемма 2.9: Геометрическая интерпретация числа обусловленности

Число обусловленности можно интерпретировать как отношение максимального коэффициента растяжения (k_{max}) векторов под действием матрицы A к минимальному коэффициенту (k_{min}) :

$$cond(A) = \frac{k_{\text{max}}}{k_{\text{min}}}$$

2.15 Обусловленность задачи решения СЛАУ для приближенно заданных матрицы и правой части.

Теорема 2.10: Обусловленность задачи решения СЛАУ-2

Пусть x^* - точное решение системы $A^*x^*=b^*$, с приближенно заданной матрицей A^* и вектором b^* . Тогда верная следующая оценка:

$$\delta(x^*) \le \operatorname{cond}(A)(\delta(A^*) + \delta(b^*))$$

где:
$$\delta(x^*) = \frac{\|x - x^*\|}{\|x^*\|}$$
, $\delta(A^*) = \frac{\|A - A^*\|}{\|A\|}$, $\delta(b^*) = \frac{\|b - b^*\|}{\|b\|}$

Доказательство. Без доказательства.

2.16 Метод Гаусса решения СЛАУ. Схема единственного деления. LU – разложение. Свойства метода.

Вычисления с помощью метода Гаусса состоят из двух этапов:

- Прямого хода: преобразование исходной системы к верхнетреугольному виду.
- Обратного хода: вычисление неизвестных констант в обратном порядке: начиная x_m , заканчивая x_1 .

2.16.1 Схема единственного деления.

Теорема 2.11: Прямой ход

Состоит из m-1 шагов исключения неизвестных из системы.

Первый шаг состоит из исключения неизвестного x_1 из уравнений с номерами $i=2,3,\ldots,m$:

Предположим, что $a_{11} \neq 0$, тогда:

- 1. a_{11} главный (ведущий) элемент первого шага.
- 2. Найдем величины: $\mu_{i1} = \frac{a_{i1}}{a_{11}} i = (2, 3, \dots, m)$ (множители первого шага).
- 3. Последовательно вычтем из второго, третьего, ..., m-го уравнения системы первое уравнение, умноженное соответственно на $\mu_{21}, \mu_{31}, \ldots, \mu_{m1}$.

Тогда исходная система придет к виду:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ 0 + a_{22}^{(1)}x_2 + \dots + a_{2m}x_m = b_2^{(1)} \\ 0 + a_{32}^{(1)}x_2 + \dots + a_{3m}x_m = b_3^{(1)} \\ \dots \\ 0 + a_{m2}^{(1)}x_2 + \dots + a_{mm}x_m = b_m^{(1)} \end{cases}$$

в которой:

$$a_{ij}^{(1)} = a_{ij} - \mu_{i1}a_{1j}, \ b_i^{(1)} = b_i - \mu_{i1}b_1$$

В матричном виде:

$$A^{(1)} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22}^{(1)} & \dots & a_{2m}^{(1)} \\ \dots & \dots & \dots & \dots \\ 0 & a_{m2}^{(1)} & \dots & a_{mm}^{(1)} \end{pmatrix}, b^{(1)} = \begin{pmatrix} b_1 \\ b_2^{(1)} \\ \dots \\ b_m^{(1)} \end{pmatrix}$$

$$M_1 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -\mu_{21} & 1 & 0 & \dots & 0 \\ -\mu_{31} & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -\mu_{m1} & 0 & 0 & \dots & m \end{pmatrix}$$

Аналогично, обощим для k-го шага:

Предположим, что $a_{kk} \neq 0$, тогда:

- 1. a_{kk} главный (ведущий) элемент k-го шага. 2. Найдем величины: $\mu_{ik} = \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} i = (k+1,k+2,\ldots,m)$ (множители k-го шага).
- 3. Последовательно вычтем из $k+1, k+2, \dots m$ -го уравнения системы k-ое уравнение, умноженное соответственно на $\mu_{2k}, \mu_{3k}, \ldots, \mu_{mk}$.

Тогда в исходной системы элементы примут вид:

$$A_{ij}^{(k)} = a_{ij}^{(k-1)} - \mu_{ik} a_{kj}^{(k-1)}, \ b_i^{(k)} = b_i^{(k-1)} - \mu_{ik} b_k^{(k-1)}$$

$$M_k = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & -\mu_{k+1k} & \dots & 0 \\ 0 & 0 & 0 & \dots & -\mu_{k+2k} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -\mu_{mk} & \dots & 1 \end{pmatrix}$$

После m-1 шага получим матрицу $A^{(m-1)}=U$ - верхнетреугольная.

$$A^{(m-1)} = U = M_{m-1}M_{m-2}\dots M_1A$$

$$b^{(m-1)} = M_{m-1}M_{m-2}\dots M_1b$$

Тогда:

$$A = M_1^{-1} M_2^{-1} \dots M_{m-1}^{-1} A^{(m-1)}$$

где:

$$M_k^{-1} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & \mu_{k+1k} & \dots & 0 \\ 0 & 0 & 0 & \dots & \mu_{k+2k} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \mu_{mk} & \dots & 1 \end{pmatrix}$$

$$M_1^{-1}M_2^{-1}\dots M_{m-1}^{-1} = L = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0\\ \mu_{21} & 1 & 0 & \dots & 0 & 0\\ \mu_{31} & \mu_{32} & 1 & \dots & 0 & 0\\ \dots & \dots & \dots & \dots & \dots\\ \mu_{m1} & \mu_{m2} & \mu_{m3} & \dots & \mu_{mm-1} & 1 \end{pmatrix}$$

Итог прямого хода:

$$A = LU$$

Теорема 2.12: Обратный ход

На момент обратного хода имеем систему:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ 0 + a_{22}^{(1)}x_2 + \dots + a_{2m}^{(1)}x_m = b_2^{(1)} \\ 0 + 0 + \dots + a_{3m}^{(2)}x_m = b_3^{(2)} \\ \dots \\ 0 + 0 + \dots + a_{mm}^{(m-1)}x_m = b_m^{(m-1)} \end{cases}$$

Из последнего уравнения системы находим x_m :

$$x_m = \frac{b_m^{(m-1)}}{a_{mm}^{(m-1)}}$$

Подставляем значение x_m в предпоследнее уравнение:

$$a_{m-1m-1}^{(m-2)}x_{m-1} + a_{m-1m}^{(m-2)}\left(\frac{b_m^{(m-1)}}{a_{mm}^{(m-1)}}\right) = b_{m-1}^{(m-2)}$$

Выражаем x_{m-1} , и т.д.

Лемма 2.10: Свойства метода

- Трудоемкость метода $\sim \frac{2}{3}m^3$. Недостаток метода: если ведущий элемент $a_{kk} << 1$, то соответствующий множитель $\mu_{ik} >> 1 o$ вычислительные схемы становится неустойчивыми.

2.17 Метод Гаусса решения СЛАУ. Схемы частичного и полного выбора ведущих элементов. Свойства методов.

2.17.1Схемы частичного выбора.

Отличия от схемы единственного деления:

- На k-ом шаге прямого хода, в качестве ведущего элемента выбирают максимальный по модулю коэффициент $a_{i_{k}k}^{(k-1)}$ при неизвестной x_k в уравнениях с номерами $i = k, k + 1, \ldots, m$.
- Уравнение системы с номером i_k меняют местами с k-м.

После этой перестановки исключение неизвестного x_k производят как в схеме единственного деления.

Лемма 2.11: Свойства метода

- Трудоемкость метода $\sim \frac{2}{3}m^3+m^2\approx \frac{2}{3}m^3$ Гарантированно $|\mu_i|\leq 1 \to |a_{ij}^{(k)}|\leq |a_{ij}^{(k-1)}|+|a_{kj}^{(k-1)}|$. Следовательно, элементы $a_{ij}^{(k)}$ возрастают на каждом шаге не более чем в 2 раза ightarrow за m-1 шаг не более чем в 2^{m-1} раз.

2.17.2Схема полного выбора.

Отличие от метода частичного выбора: ведущий элемент - максимальный по модулю в матрице:

$$a_{ij} = a_{i_k j_k} = \max_{1 \le i, j \le m} \{|a_{ij}|\}$$

Строки i_k и i меняются местами.

Лемма 2.12: Свойства метода

- Трудоемкость метода $\sim m^3$.
- ullet Коэффициент роста элементов матрицы менее чем в m раз.

2.18 Применение метода Гаусса к решению задач линейной алгебры. Вычисление решений системы уравнений с несколькими правыми частями.

Теорема 2.13: Решение нескольких СЛАУ

Если необходимо решить несколько СЛАУ с различной правой частью, то:

Задача принимает вид:

$$\begin{cases}
Ax = d_{(1)} \\
Ax = d_{(2)} \\
Ax = d_{(3)} \\
\dots \\
Ax = d_{(p)}
\end{cases}$$

Применяя метод Гаусса к каждой из систем независимо от других, можно найти соответствующие решения $x_{(1)}, x_{(2)}, \ldots, x_{(p)}$, затратив примерно $\frac{2}{3}pm^3$ арифметических операций.

Если решать системы одновремено, т.е: при преобразовании матрицы A к верхнетреугольному виду преобразовать все $d_{(i)}$ по однотипным формулам, то на прямой ход будет затрачено примерно $\frac{2}{3}m^3 + pm^2$ операций.

С учетом обратного хода, **общие вычислительные затраты** составят $\frac{2}{3}m^3 + 2pm^2$ операций.

2.19 Применение метода Гаусса к решению задач линейной алгебры. Вычисление обратной матрицы.

Теорема 2.14: Вычисление обратной матрицы

Пусть $A^{-1} = V$, тогда:

$$AV = E_m$$

где E_m - единичная матрица.

Заменим уравнение $AV=E_m$ на несколько систем:

$$\begin{cases} Av_1 = e_1 \\ Av_2 = e_2 \\ Av_3 = e_3 \\ \dots \\ Av_m = e_m \end{cases}$$

где v_i - i-ый столбец матрицы V, e_i - i-ый столбец единичной матрицы.

Применяя метод Гаусса для решения систем уравнений с различной правой частью, получаем: общее число операций $\sim \frac{2}{3}m^3 + 2m^3 = \frac{8}{3}m^3$.

Из-за специального вида правых частей потребуется $\sim 2m^3$ операций.

2.20 Применение метода Гаусса к решению задач линейной алгебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы.

Теорема 2.15: Вычисления выражений вида $w = A^{-1}BC^{-1}v$

При непосредственном вычислении A^{-1}, C^{-1} потребуется: $4m^3 + 2m^2$ операций.

Пусть $C^{-1}v = x$, тогда:

- 1. Решение системы Cx = v потребует $\sim \frac{2}{3}m^3$ операций.
- 2. Решение $y = Bx \sim m^2$ операций (просто умножить матрицу на вектор).
- 3. Решение $w = A^{-1}y \to Aw = y \sim \frac{2}{3}m^3$ операций.

Общий итог: потребуется $\sim \frac{4}{3} m^3$ операций.

Теорема 2.16: Вычисление определителя матрицы

Методом Гаусса приводим матрицу A к верхнетреугольному виду. Тогда:

$$\det(A) = \det(A^{(m-1)})(-1)^{s}$$

где s - число перестановок строк в схеме частичного выбора.

$$\det(A^{(m-1)}) = a_{11}a_{22}^{(1)} \dots a_{mm}^{(m-1)}$$

2.21 Метод Холецкого решения СЛАУ с симметричной положительно определенной матрицей. Свойства метода.

2.21.1 Описание метода.

Если матрица A - **симметричная положительно определенная**, то можно применить метод Холецкого:

Основа метода - построение такого LU-разложения матрицы A, что:

$$A = LL^T$$

где:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & \dots & l_{mm} \end{pmatrix}$$

Причем требуется, чтобы диагональные элементы были положительными.

Если разложение получено, то решение исходной системы сводится к решению:

$$Ly = b, L^T x = y$$

для **решения** которых требуется **выполнение** $\sim 2m^2$ арифметических операций.

Лемма 2.13: Вычисление элементов матрицы L

Пусть задана невырожденная матрица A, тогда:

$$l_{kk} = \sqrt{a_{kk} - l_{k1}^2 - l_{k2}^2 - \dots - l_{kk-1}^2}$$

$$l_{ik} = \frac{a_{ik} - l_{i1}l_{k1} - l_{i2}l_{k2} - \dots - l_{ik-1}l_{kk-1}}{l_{kk}}, i = k+1, \dots, m$$

 \mathcal{A} оказательство. Матрицы L и L^T принимают следующий вид:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & \dots & l_{mm} \end{pmatrix}$$

$$L^{T} = \begin{pmatrix} l_{11} & l_{21} & \dots & l_{m1} \\ 0 & l_{22} & \dots & l_{m2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & l_{mm} \end{pmatrix}$$

Из равенства $LL^T = A$, получаем:

$$\begin{cases} l_{11}^{2} = a_{11} \\ l_{i1}l_{11} = a_{i1}, & i = 2, 3, \dots, m \\ l_{21}^{2} + l_{22}^{2} = a_{i2}, & i = 3, 4, \dots, m \\ \dots \\ l_{k1}^{2} + l_{k2}^{2} + \dots + l_{kk}^{2} = a_{kk} \\ l_{i1}l_{k1} + l_{i2}l_{k2} + \dots + l_{ik}l_{kk} = a_{ik}, & i = k+1, k+2, \dots, m \\ \dots \\ l_{m1}^{2} + l_{m2}^{2} + \dots + l_{mm}^{2} = a_{mm} \end{cases}$$

Решив систему, получаем:

$$\begin{cases} l_{11} = \sqrt{a_{11}} \\ l_{i1} = \frac{a_{i1}}{l_{11}}, & i = 2, 3, \dots, m \\ l_{22} = \sqrt{a_{22} - l_{21}^2} \\ l_{i2} = \frac{a_{i2} - l_{i1} l_{21}}{l_{22}}, & i = 3, 4, \dots, m \\ \\ \vdots \\ l_{kk} = \sqrt{a_{kk} - l_{k1}^2 - l_{k2}^2 - \dots - l_{kk-1}^2} \\ l_{ik} = \frac{a_{ik} - l_{i1} l_{k1} - l_{i2} l_{k2} - \dots - l_{ik-1} l_{kk-1}}{l_{kk}}, & i = k+1, \dots, m \dots \\ \\ l_{mm} = \sqrt{a_{mm} - l_{m1}^2 - l_{m1}^2 - \dots - l_{mm-1}^2} \end{cases}$$

2.21.2 Свойства метода.

Лемма 2.14: Свойства метода

Число операций, выполняемых в ходе вычисления разложения $LL^T=A$ по формулам $\sim \frac{m}{3}$.

Учитывая, что для решения систем Ly=b и $L^Tx=y$ требуется $\sim 2m^2$ операций, получаем:

Метод Холецкого при больших значений m требует **вдвое меньше** вычислительных затрат по сравнению с **методом Гаусса**.

Также, метод Холецкого гарантированно устойчив.

2.22 Метод прогонки решения СЛАУ с трехдиагональными матрицами. Свойства метода.

Метод прогонки подходит для решения СЛАУ с **трехдиагональными** матрицами.

Т.е. систем вида:

$$\begin{cases} b_1 x_1 + c_1 x_2 = d_1 \\ a_2 x_1 + b_2 x_2 + c_2 x_3 = d_2 \\ \dots \\ a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i \\ \dots \\ a_{m-1} x_{m-2} + b_{m-1} x_{m-1} + c_{m-1} x_m = d_{m-1} \\ a_m x_{m-1} + b_m x_m = d_m \end{cases}$$

Теорема 2.17: Вывод расчетных формул

$$x_1 = \alpha_1 + \beta_1$$

$$x_i = \alpha_i x_{i+1} + \beta_i$$

$$x_m = \frac{d_m - a_m \beta_{m-1}}{b_m + a_m \alpha_{m-1}}$$

где:

$$\alpha_{1} = -\frac{c_{1}}{b_{1}}, \ \beta_{1} = \frac{d_{1}}{b_{1}}$$

$$\alpha_{i} = -\frac{c_{i}}{b_{i} + a_{i}\alpha_{i-1}}, \ \beta_{i} = \frac{d_{i} - a_{i}\beta_{i-1}}{b_{i} + a_{i}\alpha_{i-1}}$$

Доказательство. Преобразуем первое уравнение к виду:

$$x_1 = \alpha_1 x_2 + \beta_1$$

где
$$\alpha_1 = -\frac{c_1}{b_1}$$
 и $\beta_1 = \frac{d_1}{b_1}$.

Подставим полученное для x_1 значение во второе уравнение системы:

$$a_2(\alpha_1 x_2 + \beta_1) + b_2 x_2 + c_2 x_3 = d_2$$

Преобразуем это уравнение к виду:

$$x_2 = \alpha_2 x_3 + \beta_2$$

где
$$\alpha_2 = -\frac{c_2}{b_2 + a_2 \alpha_1}$$
 и $\beta_2 = \frac{d_2 - a_2 \beta_1}{b_2 + a_2 \alpha_1}$

где $\alpha_2=-\frac{c_2}{b_2+a_2\alpha_1}$ и $\beta_2=\frac{d_2-a_2\beta_1}{b_2+a_2\alpha_1}$ Выражение для x_2 подставляем в третье уравнение, и т.д.

На *i*-ом шаге, получаем:

$$x_i = \alpha_i x_{i+1} + \beta_i$$

где
$$\alpha_i=-rac{c_i}{b_i+a_ilpha_{i-1}}$$
 и $eta_i=rac{d_i-a_ieta_{i-1}}{b_i+a_ilpha_{i-1}}$

На подстановка на m-м шаге:

$$\alpha_m(\alpha_{m-1}x_m + \beta_{m-1}) + b_m x_m = d_m$$

отсюда получаем значение для x_m :

$$x_m = \frac{d_m - a_m \beta_{m-1}}{b_m + a_m \alpha_{m-1}}$$

Теорема 2.18: Алгоритм прогонки

Алгоритм состоит в следующем:

- Через прямой ход получить значения для α_i и β_i :
 - При i=1: $\alpha_1=-\frac{c_1}{\gamma_1},\ \beta_1=\frac{d_1}{\gamma_1},\ \gamma_1=b_1.$
 - При $i=2,3,\ldots,m-1$: $\alpha_i=-\frac{x_i}{\gamma_i},\;\beta_i=\frac{d_i-a_i\beta_{i-1}}{\gamma_i},\;\gamma_i=b_i+$
 - При i = m: $\beta_m = \frac{d_m \alpha_m \beta_{m-1}}{\gamma_m}$, $\gamma_m = b_m + a_m \alpha_{m-1}$.
- Через обратный ход найти значения неизвестных:

 - $-x_i = \alpha_i x_{i+1} + \beta_i$, при $i = m-1, m-2, \dots, 1$.

Лемма 2.15: Свойства метода прогонки

Для метода прогонки требуется всего 8m арифметических операций в отличие от Гаусса $\sim \frac{2}{3}m^3$.

Если коэффициенты трехдиагональной системы удовлетворяют следующим условиям диагонального преобладания, то вычисления по формулам прямой прогонки могут быть доведены до конца (ни один из знаменателей γ_i не обратится в нуль).

$$|b_k| \ge |a_k| + |c_k|, |b_k| > |a_k|,$$
 при: $1 \le k \le m$

3 Интерполяция

3.1 Постановка задачи приближения функций. Приближение функций обобщенными многочленами.

Определение 3.1: Приближение функции

Если функция f(x):

- Задана таблицей своих значений: $f(x_i) = y_i \ i = 0, 1, \dots, n$.
- Сложна в вычислениях (значительные затраты машинного времени).
- Ограниченное число значений f(x) из эксперимента: нахождение значения функции из эксперимента в реальном масштабе времени невозможно.

то функцию f(x) приближенно заменяют другой функцией g(x), вычисляемые значения которой принимают за приближенное значение функции f(x).

Такая замена оправдана, если:

- Значения g(x) вычисляются быстро и надежно.
- Погрешность приближения f(x) g(x) достаточно мала.

Определение 3.2: Обобщенный многочлен

Обобщенный многочлен - многочлен вида:

$$\Phi_m(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \ldots + a_m \phi_m(x)$$

т.е. линейная оболочка фиксированного набора базисных функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$.

Число m - степень обобщенного многочлена.

Пример 3.1: Обобщенный многочлен

Для гладкой функции f(x) базис:

$$\{1, x, x^2, \dots, x^m\}$$

т.е. степенные функции.

Тогда обобщенный многочлен будет вида:

$$\Phi_m(x) = a_0 + a_1 x + \ldots + a_m x^m$$

Для периодической функции f(x):

$$\{1, \cos(2\pi x), \sin(2\pi x), \cos(4\pi x), \sin(4\pi x), \ldots\}$$

$$\Phi_m(x) = a_0 + \sum_{k=-\frac{m}{2}}^{\frac{m}{2}} a_k(\cos(2\pi kx) + \sin(2\pi kx))$$

Лемма 3.1: Требования для приближения. Приближение обобщенными многочленами

Приближение обобщенными многочленами состоит из:

- 1. Определения информации о f(x): таблица значений f(x), множество значений f(x) на отрезке [a,b].
- 2. Определения вида функции f(x): гладкость, период, монотонность, четность, врехние оценки производных ...
- 3. **Выбора класса** аппроксимирующих функций: $g(x) = \Phi_m(x) = a_0\phi_0(x) + a_1\phi_1(x) + \ldots + a_m\phi_m(x)$
- 4. Определения критерия близости g(x) к функции f(x):
 - (a) Совпадение в конкретных узлах (интерполяция: $f(x_i) = g(x_i)$).
 - (b) Минимизация среднеквадратичного отклонения $(\min\{[f(x)-g(x)]^2\}).$
- 5. Определения точности приближения.

3.2 Приближение методом интерполяции. Интерполяция обобщенными многочленами.

Определение 3.3: Постановка задачи

Пусть в точках x_0, x_1, \ldots, x_n , разложенных на отрезке [a, b] и попарно различных, задана таблица значений функции f(x).

Тогда **задача интерполяции** - построение функции q(x):

$$g(x_i) = y_i, i = 0, 1, \dots, n$$

Т.е. график g(x) должен проходить через заданные точки $(x_i, f(x_i))$.

Указанный способ назвают **интерполяцией**, а точки x_i - **узлами интерполяции**.

Выбор функции g(x) неоднозначен: по заданной таблице можно построить бесконечно много интерполирующих функций. Тогда функцию g(x) выбирают из достаточно узкого класса G функций, в котором единственность выбора гарантируется.

Теорема 3.1: Задача интерполяции обобщенными многочленами

Обобщенный многочлен $\Phi_m(x_i)$ - **интерполяционный**, если:

$$\Phi_m(x_i) = y_i, i = 0, 1, \dots, n$$

В виде системы запись преобразуется:

$$\begin{cases} \phi_0(x_0)a_0 + \phi_1(x_0)a_1 + \dots + \phi_m(x_0)a_m = y_0 \\ \phi_0(x_1)a_0 + \phi_1(x_1)a_1 + \dots + \phi_m(x_1)a_m = y_1 \\ \dots \\ \phi_0(x_n)a_0 + \phi_1(x_n)a_1 + \dots + \phi_m(x_n)a_m = y_n \end{cases}$$

В матричном виде система записывается в виде:

где:
$$P = \begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_m(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_m(x_n) \end{pmatrix}, a = \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_m \end{pmatrix}, y = \begin{pmatrix} y_0 \\ y_1 \\ \dots \\ y_n \end{pmatrix}$$

3.3 Понятия линейно-независимой системы функций на заданном множестве точек. Теорема о существовании единственного решения задачи интерполяции.

Определение 3.4: Линейно зависимая (независимая) система функций

Пусть:

$$\phi_0 = \begin{pmatrix} \phi_0(x_0) \\ \phi_0(x_1) \\ \vdots \\ \phi_0(x_n) \end{pmatrix}, \ \phi_1 = \begin{pmatrix} \phi_1(x_0) \\ \phi_1(x_1) \\ \vdots \\ \phi_1(x_n) \end{pmatrix}, \dots, \phi_m = \begin{pmatrix} \phi_m(x_0) \\ \phi_m(x_1) \\ \vdots \\ \phi_m(x_n) \end{pmatrix}$$

где $\phi_0(x), \phi_1(x), \ldots, \phi_m(x)$ - базисные функции.

Говорят, что система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ линейно зависимая в точке x_0, x_1, \dots, x_n , если $\exists j$:

$$\phi_j = \sum_{k=0, k \neq j}^m \alpha_k \phi_k$$

В противном случае, говорят, что система функций **линейно независимая**.

Следстиве 3.1: Линейно независимая система-1

Система функций $\{1, x, x^2, \dots, x^m\}$ - линейно независима в точке x_0, x_1, \dots, x_n при $m \leq n$.

Доказательство. От противного: пусть $\exists j$:

$$x_i^j = \sum_{k=0, k \neq j}^m \alpha_k x_i^k$$

Перенесем x_i^j в левую часть, т.е полагая $\alpha_j = -1$:

$$P_m(x) = \sum_{k=0}^{m} \alpha_k x^k$$

многочлен стпени m, который обращаетя в ноль в точках n+1 точке (x_0, x_1, \ldots, x_n) .

$$n+1>m o$$
 противоречие основной теореме алгебры.

Определение 3.5: Матрица Грамма

Матрица вида:

$$\Gamma = PP^* = \begin{pmatrix} (\phi_0, \phi_0) & (\phi_1, \phi_0) & \dots & (\phi_m, \phi_0) \\ (\phi_0, \phi_1) & (\phi_1, \phi_1) & \dots & (\phi_m, \phi_1) \\ \dots & \dots & \dots & \dots \\ (\phi_0, \phi_m) & (\phi_1, \phi_m) & \dots & (\phi_m, \phi_m) \end{pmatrix}$$

где:
$$P = \begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_m(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_m(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_m(x_n) \end{pmatrix}$$
, $P^* = \overline{P}^T$ - сопряженная

Элементы матрицы Грамма вычисляются по формуле:

$$\gamma_{jk} = (\phi_k, \phi_j) = \sum_{i=0}^n \phi_k(x_i) \overline{\phi_j(x_i)}$$

Следстиве 3.2: Линейно независимая система-2

Система функций $\phi_0(x),\phi_1(x),\dots,\phi_m(x)$ - **линейно независима**

$$\det(\Gamma) \neq 0$$

Теорема 3.2: О существовании единственного решения задачи интерполяции

Задача интерполяции обобщенным многочленом имеет единственное решение при m=n

$$\updownarrow$$

$$\phi_0(x), \phi_1(x), \dots, \phi_m(x)$$

линейно независимая система в точках x_0, x_1, \ldots, x_n .

3.4 Понятия ортогональной системы функций на заданном множестве точек. Утверждение о существовании единственного решения задачи интерполяции с помощью ортогональной системы функций. Решение задачи интерполяции для этого случая.

Определение 3.6: Ортогональная система функций

Система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ - **ортогональная** на множестве x_0, x_1, \dots, x_n , если:

$$\begin{cases} (\phi_k, \phi_j) = 0, \text{ при } k \neq j \\ (\phi_k, \phi_j) \neq 0, \text{ при } k = j \end{cases}$$

$$\forall k = 0, 1, \dots, m; j = 0, 1, \dots, m$$

Следстиве 3.3: Ортогональная система функций

При ортогональной системе функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ матрица Грамма примет вид:

$$\Gamma = \begin{pmatrix} (\phi_0, \phi_0) & 0 & 0 & \dots & 0 \\ 0 & (\phi_1, \phi_1) & 0 & \dots & 0 \\ 0 & 0 & (\phi_2, \phi_2) & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (\phi_m, \phi_m) \end{pmatrix}$$

Определитель матрицы Грамма будет считатьтся по формуле:

$$\det(\Gamma) = \prod_{i=0}^{m} (\phi_i, \phi_i)$$

Пример 3.2: Ортогональная система функций

Система функций $\phi_0(x), \phi_1(x), \dots, \phi_{N-1}(x)$, где:

$$\phi_k(x) = \exp(2\pi i k x), \ k = 0, 1, \dots, N - 1$$

ортогональная на множестве точек:

$$x_l = \frac{l}{N}, \ l = 0, 1, \dots, N - 1$$

 \mathcal{A} оказательство. Пусть $\omega = \exp(\frac{2\pi i}{N})$, тогда:

$$\phi_k(x_l) = \exp(\frac{2\pi i k l}{N}) = \omega^{kl}$$

$$(\phi_k, \phi_j) = \sum_{l=0}^{N-1} \omega^{kl} \cdot \omega^{-jl} = \sum_{l=0}^{N-1} \omega^{(k-j)l}$$

Если k = j:

$$(\phi_k,\phi_j)=N$$
 (сумма единиц)

Иначе:

$$(\phi_k,\phi_j) = \sum_{l=0}^{N-1} \omega^{(k-j)l} = \frac{1-\omega^{(k-j)N}}{1-\omega^{k-j}} = 0$$
 (т.к. $\omega^{(k-j)N} = 1$)

Teopema 3.3: Решение задачи интерполяции для ортогональной системы

Пусть система функций $\phi_0(x), \phi_1(x), \dots, \phi_m(x)$ - ортогональна на множестве x_0, x_1, \dots, x_n .

Тогда при $m=n, \det(\Gamma) \neq 0 \to$ задача интерполяции обобщенным многочленом имеет единственное решение.

$$Pa=y\to P^*Pa=P^*y\to \Gamma a=b$$

где:

$$\begin{cases} b_j = (y, \phi_j) = \sum_{i=0}^n y_i \overline{\phi_j(x_i)} \\ a_j = \frac{(y, \phi_j)}{(\phi_j, \phi_j)}, & j = 0, 1, \dots, n \end{cases}$$

3.5 Полиномиальная интерполяция. Интерполяционный многочлен в форме Лагранжа.

Определение 3.7: Интерполяционный многочлен

Для заданной таблице значений функции f(x) интерполяционным многочленом называется многочлен $P_n(x) = \sum_{k=0}^n a_k x^k$ степени n, если:

$$P_n(x_i) = y_i, i = 0, 1, \dots, n$$

Запись условия в виде системы:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_0 \\ \dots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_0 \end{cases}$$

Данная система однозначно разрешима: система функций $\{1,x,x^2,\ldots,x^n\}$ - линейно независима в точках x_0,x_1,\ldots,x_n .

Teopema 3.4: О единственности интерполяционного многочлена

Существует единственный интерполяционный многочлен степени n, удовлетворяющий условию:

$$P_n(x_i) = y_i, i = 0, 1, \dots, n$$

Определение 3.8: Интерполяционный многочлен в форме Лагранжа

Многочлен вида:

$$L_n(x) = \sum_{j=0}^n y_j L_{n_j}(x)$$

где:

$$l_{n_j}(x) = \prod_{k=0, k \neq j}^n \frac{x - x_k}{x_j - x_k} = \frac{(x - x_0)...(x - x_{j-1})(x - x_{j+1})...(x - x_n)}{(x_j - x_0)...(x_j - x_{j-1})(x_j - x_{j+1})...(x_j - x_n)}$$

Из определения, получаем:

$$l_{n_j}(x_i) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Пример 3.3: Интерполяционный многочлен Лагранжа

Пусть x_0, x_1 - узлы, тогда:

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}$$

3.6 Погрешность полиномиальной интерполяции.

Теорема 3.5: Погрешность полиномиальной интерполяции

Пусть $f(x) \in C^{(n+1)}[a,b]$, тогда:

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

где $\xi \in [a,b]$ и:

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

Следстиве 3.4: Погрешность полиномиальной интерполяции

Т.к. величина $\xi \in [a,b]$ - неизвестная величина, то формулу из предыдущей теоремы можно заменить на:

1.
$$|f(x) - P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$
, где $M_{n+1} = \max_{x \in [a,b]} \{f^{(n+1)}(x)\}$.

2.
$$\max_{x \in [a,b]} \{ |f(x) - P_n(x)| \} \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

3.
$$\overline{\Delta(P_n(x))} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

3.7 Интерполяционный многочлен с кратными узлами. Погрешность интерполяции с кратными узлами.

Определение 3.9: Кратный узел

Если в узлах $x_i, i=0,1,\ldots,m$ заданы еще и значения производных:

$$\begin{cases} y'_i = f'(x_i) \\ y''_i = f''(x_i) \\ \dots \\ y_i^{(k_i-1)} = f^{(k_i-1)}(x_i) \end{cases}$$

то узел x_i - кратный узел кратности k_i .

Определение 3.10: Интерполяционный многочлен с кратными узлами

Пусть $n=k_0+k_1+\ldots+k_m-1$, тогда существует единственный многочлен $P_n(x)$, удовлетворяющий условиям:

$$\begin{cases} P_n(x_i) = y_i \\ P'_n(x_i) = y'_i \\ \dots \\ P_n^{(k_i-1)}(x_i) = y_i^{(k_i-1)} \end{cases}$$

для $i=0,1,\dots,m$ - интерполяционный многочлен с кратными узла-

Пример 3.4: Интерполяционный многочлен с кратными узлами

Пусть узлы: x_0, x_1 и соответствующие им значения y_0, y_0', y_1, y_1' , тогда: $P_3(x) = y_0 \frac{(x_1-x)^2(2(x-x_0)+h)}{h^2} + y_0' \frac{(x_1-x)^2(x-x_0)}{h^2} + y_1 \frac{(x-x_0)^2(2(x_1-x)+h)}{h^3} + y_1' \frac{(x_1-x_0)^2(2(x_1-x)+h)}{h^3}$

 $g_1 h^2$ где $h = x_1 - x_0$, x - некоторая точка внутри промежутка $[x_0, x_1]$.

Многочлен $P_3(x)$ - кубический интерполяционный многочлен Эрмита.

Теорема 3.6: Погрешность интерполяционного многочлена с кратными узлами

Пусть $f(x) \in C^{(n+1)}[a,b]$, тогда для интерполяции с кратными узлами в точке $x \in [a,b]$ справделивы:

1.
$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
, где $\xi \in [a,b]$.

2.
$$|f(x)-P_n(x)| \leq \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$$
, где $M_{n+1} = \max_{x \in [a,b]} \{f^{(n+1)}(x)\}$.

3.
$$\max_{x \in [a,b]} \{ |f(x) - P_n(x)| \} \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

4.
$$\overline{\Delta(P_n(x))} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}.$$

где
$$\omega_{n+1}(x) = (x-x_0)^{k_0}(x-x_1)^{k_1}\dots(x-x_m)^{k_m}$$
.

Для кубического многочлена Эрмита справедлива следующая оценка:

$$\max_{x \in [x_0, x_1]} \{ |f(x) - P_3(x)| \} \le \frac{M_4}{384} \cdot h^4$$

где $\max_{x \in [x_0, x_1]} \{ \omega_4(x) = (x - x_0)^2 (x - x_1)^2 \} = \frac{h^4}{16}$

3.8 Минимизация оценки погрешности интерполяции. Многочлены Чебышева и их свойства. Применение для решения задачи минимизации погрешности.

Рассмотрим неравенство:

$$\overline{\Delta}(P_n) \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{\omega_{n+1}(x)\}$$

где
$$\omega_{n+1}(x) = (x-x_0)(x-x_1)\dots(x-x_n).$$

При замене f(x) на интерполяционный многочлен $P_n(x)$, желательно, чтобы погрешность интерполяции стала бы минимальной, т.е. величину $\overline{\Delta(P_n)}$ должна быть минимальной.

Т.к. в интерполяции возможно управлять только выбором узлов x_0, x_1, \ldots, x_n , то выберем такие, при которых величина $\overline{\Delta(P_n)}$ была бы минимальной.

Для этой цели используют многочлены Чебышева.

Определение 3.11: Многочлены Чебышева

Многочлены вида:

$$\begin{cases} T_0(x) = 1 \\ T_1(x) = x \\ T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x) \end{cases}$$

Лемма 3.2: Свойства многочленов Чебышева

- 1. При четном n многочлен $T_n(x)$ содержит только четные степени x и является четной функцией. При нечетном n наоборот.
- 2. При $n \ge 1$ страший коэффициент многочлена $T_n(x)$ равен 2^{n-1} .
- 3. Для $x \in [-1, 1]$ справедлива формула:

$$T_n(x) = \cos(n \cdot \arccos(x))$$

4. При $T_n(x) = cos(n \cdot arccos(x))$ число вещественных корней $T_n(x)$ - n, и они имеют вид:

$$x_k = \cos(\frac{2k+1}{2n}\pi), \ k = 0, 1, \dots, n-1$$

П

5. Максимальные значения $|T_n(x)| = 1$ достигаются в точках вида:

$$x_m = \cos(\frac{m}{n}\pi), \ m = 0, 1, \dots, n$$

6. Среди всех многочленов фиксированной степени n со старшим коэффициентом a_n , равным 1, наименьшее отклонение от нуля (равное 2^{1-n}) имеет многочлен:

$$\overline{T_n(x)} = 2^{1-n}T_n(x)$$

T.e:

$$2^{1-n} = \max_{[-1,1]} \{ |\overline{T_n(x)}| \} \le \max_{[-1,1]} |P_n(x)|$$

Доказательство. Свойство (3):

При
$$n = 0$$
: $T_0(x) = cos(0) = 1$.

При
$$n = 1$$
: $T_1(x) = \cos(\arccos(x)) = x$.

При $n \ge 2$:

$$\cos(n \cdot \arccos(x)) = 2x(\cos((n-1)\arccos(x)) - \cos((n-2)\arccos(x)))$$

$$\cos(n\arccos(x)) + \cos((n-2)\arccos(x)) =$$

$$2\cos((n-1)\arccos(x))\cos(\arccos(x)) = 2x\cos((n-1)\arccos(x))$$

Свойство (4):

$$\cos(n\arccos(x)) = 0$$

$$n\arccos(x) = \frac{\pi}{2} + \pi k, \ k = 0, 1, \dots, n - 1$$

$$x_k = \cos(\frac{2k+1}{2n}\pi), \ k = 0, 1, \dots, n - 1$$

Свойство (5):

Аналогично предыдущему, только приравниваем к ±1.

Теорема 3.7: Минимизация оценки погрешности

• Если отрезок [a,b] совпадает с [-1,1]:

$$\min_{[a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n}$$

• Для произвольного отрезка [a,b]:

$$\min_{[a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n} (\frac{b-a}{2})^{n+1}$$

Доказательство. В общем виде:

$$\overline{\Delta(P_n)} = \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}$$

и величина $\overline{\Delta(P_n)}$ будет минимальна, если минимальна величина $\max_{x\in[a,b]}\{|\omega_{n+1}(x)|\}.$

Если отрезок [a, b] **совпадает** с отрезком [-1, 1], то минимальное значение для $\max_{x \in [a,b]} \{ |\omega_{n+1}(x)| \}$ есть минимальное отклонение от нуля многочлена:

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

В силу свойств многочлена Чебышева, решение задачи дает набор узлов:

$$x_k = \cos(\frac{2k+1}{2n+2}\pi), k = 0, 1, \dots, n$$

являющихся нулями для $T_{n+1}(x)$ (т.к. в этом случае $\omega_{n+1}=\overline{T_{n+1}}$).

Следовательно, минимальное отклонение от 0 будет $2^{1-(n+1)} = \frac{1}{2^n}$. Тогда:

$$\min_{x \in [a,b]} \{ \Delta(P_n) \} = \frac{M_{n+1}}{(n+1)!2^n}$$

Если отрезок [a,b] не совпадает с отрезком [-1,1], то заменяем:

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$
, где $t \in [-1,1]$

Тогда:

$$\omega_{n+1}(x) = \left(\frac{b-a}{2}\right)^{n+1} \overline{\omega_{n+1}(t)}$$

где:

$$\begin{cases} \overline{\omega_{n+1}(t)} = (t - t_0)(t - t_1)\dots(t - t_n) \\ x_k = \frac{a+b}{2} + \frac{b-a}{2}t_k, \end{cases} \qquad k = 0, 1, \dots, n$$

Следовательно:

$$\overline{\Delta(P_n)} = \frac{M_{n+1}}{(n+1)!} (\frac{b-a}{2})^{n+1} \max_{t \in [-1,1]} \{ |\overline{\omega_{n+1}(t)}| \}$$

Аналогично, получаем:

$$\min_{x \in [a,b]} \{ \overline{\Delta(P_n)} \} = \frac{M_{n+1}}{(n+1)!2^n} (\frac{b-a}{2})^{n+1}$$

3.9 Интерполяционная формула Ньютона для неравных промежутков. Разделенные разности и их свойства.

Определение 3.12: Разделенные разности

Пусть есть система узлов x_0, x_1, \ldots, x_n : $x_i \neq x_j$ при $i \neq j$. Тогда отношения вида:

$$\begin{cases} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_0; x_1) \\ \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f(x_1; x_2) \\ \dots \\ \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = f(x_{n-1}; x_n) \end{cases}$$

разделенные разности первого порядка.

Через разделенные разности первого порядка, можно получить **разделенные разности второго порядка**:

$$\begin{cases} \frac{f(x_1; x_2) - f(x_0; x_1)}{x_2 - x_0} = f(x_0; x_1; x_2) \\ \frac{f(x_2; x_3) - f(x_1; x_2)}{x_3 - x_1} = f(x_1; x_2; x_3) \\ \dots \\ \frac{f(x_n; x_{n-1}) - f(x_{n-1}; x_{n-2})}{x_n - x_{n-2}} = f(x_{n-1}; x_n; x_{n-2}) \end{cases}$$

В общем случае: **разделенная разность** k-го порядка, при имеющейся разделенной разности порядка k-1:

$$\frac{f(x_i; x_{i+1}; \dots; x_{i+k}) - f(x_{i-1}; x_i; \dots; x_{i-k+1})}{x_{i+k} - x_{i-1}} = f(x_{i-1}; x_i; \dots; x_{i+k})$$

Лемма 3.3: Свойство разделенных разностей

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = \frac{f(x_i)}{\prod_{l=1}^k (x_i - x_{i+l})} + \frac{f(x_{i+1})}{\prod_{l=0; l \neq 1}^k (x_{i+1} - x_{i+l})} + \dots$$
$$\dots + \frac{f(x_{i+k})}{\prod_{l=0}^{k-1} (x_{i+k} - x_{i+l})}$$

Доказательство. По индукции:

База: k = 1 (порядок разности)

$$f(x_i; x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f(x_i)}{x_i - x_{i+1}} + \frac{f(x_{i+1})}{x_{i+1} - x_i}$$

Переход: $l-1 \rightarrow l$

$$f(x_i; x_{i+1}; \dots; x_{i+l}) = \frac{f(x_{i+1}; \dots; x_{i+l}) - f(x_i; \dots; x_{i+l-1})}{x_{i+l} - x_i}$$

Далее аккуратно применяем свойство для симметричной разности l-го порядка для обеих множителей последнего равенства (учитываем разность!!) (слишком много расписывать).

Следстиве 3.5: Свойство разделенных разностей

Разделенная разность k-го порядка симметрична относительно своих аргументов:

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = f(x_{i+1}; x_{i+2}; \dots; x_{i+k}; x_i) =$$

$$= f(x_{i+2}; x_{i+3}; \dots; x_{i+k}; x_i; x_{i+1}) = \dots$$

Теорема 3.8: Интерполяционная формула Ньютона для неравных промежутков

Интерполяционный многочлен принимает вид:

$$L_n(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \dots$$
$$\dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})f(x_0; x_1; \dots; x_n)$$

Более удобная форма (чем по Лагранжу): добавление одного или нескольких узлов не приводит к повторению всей проделанной работы заново.

3.10 Вывод формулы Ньютона для неравных промежутков с помощью разделенных разностей.

Теорема 3.9: Формула Ньютона для неравных промежутков

Формула Ньютона:

$$L_n(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_2) + \dots$$
$$\dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})f(x_0; x_1; \dots; x_n)$$

Доказательство. Представим многочлен Лагранжа в следующем виде:

$$L_n(x) = L_0(x) + [L_1(x) - L_0(x)] + [L_2(x) - L_1(x)] + \dots + [L_n(x) - L_{n-1}(x)]$$

Рассмотрим $L_k(x) - L_{k-1}(x)$:

Это многочлен степени k: $x_0, x_1, \ldots, x_{k-1}$ - его корни: $L_k(x_i) - L_{k-1}(x_i) = f(x_i) - f(x_i) = 0$ $i = 0, 1, \ldots, k-1$.

Значит, его можно представить в следующем виде:

$$L_k(x) - L_{k-1}(x) = A_k(x - x_0)(x - x_1) \dots (x - x_{k-1}), A_k$$
 - константа

Найдем A_k :

$$L_k(x_k)-L_{k-1}(x_k)=f(x_k)-L_{k-1}(x_k)=A_k(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})$$
 Следовательно:

$$A_k = \frac{f(x_k)}{(x_k - x_0)(x_k - x_1)\dots(x_k - x_{k-1})} - \frac{\sum_{j=0}^{k-1} f(x_j) \frac{(x_k - x_0)\dots(x_k - x_{j-1})(x_k - x_{j+1})\dots(x_k - x_{k-1})}{(x_j - x_0)\dots(x_j - x_{j-1})(x_j - x_{j+1})\dots(x_j - x_{k-1})}}{(x_k - x_0)(x_k - x_1)\dots(x_k - x_{k-1})} =$$

$$= \sum_{j=0}^{k} \frac{f(x_j)}{(x_j - x_0) \dots (x_j - x_{j-1})(x_j - x_{j+1}) \dots (x_j - x_k)} = f(x_0; x_1; \dots; x_k)$$

Отсюда получаем итоговую формулу.

3.11 Интерполяционная формула Ньютона для равных промежутков. Конечные разности и их связь с разделенными разностями.

Определение 3.13: Конечные разности

Пусть даны узлы $x_0, x_0+h, x_0+2h, \ldots, x_0+nh$, где h - шаг таблицы. Пусть известны значения f_0, f_1, \ldots, f_n , тогда разности вида:

$$\begin{cases} f_1 - f_0 \\ f_2 - f_1 \\ \dots \\ f_n - f_{n-1} \end{cases}$$

конечные разности первого порядка.

Обозначение для конечных разностей первого порядка: $f_{i+1} - f_i = f_{i+\frac{1}{2}}^1$.

Из конченых разностей первого порядка можно получить **конечные разности второго порядка**:

$$\begin{cases} f_1^2 = f_{\frac{3}{2}}^1 - f_{\frac{1}{2}}^1 \\ f_2^2 = f_{\frac{5}{2}}^1 - f_{\frac{3}{2}}^1 \\ \dots \\ f_i^2 = f_{\frac{2i+1}{2}}^1 - f_{\frac{2i-1}{2}}^1 \\ \dots \end{cases}$$

Лемма 3.4: Связь между разделенной и конечной разностями

$$f(x_i; x_{i+1}) = \frac{f_{i+1} - f_i}{x_{i+1} - x_i} = \frac{f_{i+\frac{1}{2}}^1}{h}$$

$$f(x_i; x_{i+1}; x_{i+2}) = \frac{f(x_{i+1}; x_{i+2}) - f(x_i; x_{i+1})}{x_{i+2} - x_i} = \frac{f_{i+\frac{3}{2}}^1 - f_{i+\frac{1}{2}}^1}{2h^2} = \frac{f_{i+1}^2}{2h^2}$$

В общем виде:

$$f(x_i; x_{i+1}; \dots; x_{i+k}) = \frac{f_{i+\frac{k}{2}}^k}{k!h^k}$$

Доказательство. По индукции

Теорема 3.10: Интерполяционная формула Ньютона для равных промежутков

Формула Ньютона для интерполирования вперед имеет вид:

$$L_n(x_0+ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \ldots + \frac{t(t-1)\ldots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Формула Ньютона для интерполирования назад имеет вид:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \ldots + \frac{t(t+1)\ldots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

3.12 Вывод формул Ньютона для интерполирования вперед и назад.

Теорема 3.11: Формула Ньютона для интерполирования вперед

Пусть даны узлы $x_0, x_0 + h, \dots, x_0 + nh$, тогда:

Формула Ньютона для интерполирования вперед имеет вид:

$$L_n(x_0 + ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \dots + \frac{t(t-1)\dots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Доказательство. Формула Ньютона с заменой разделенных разностей на конечные:

$$L_n(x) = f_0 + \frac{x - x_0}{h} f_{\frac{1}{2}}^1 + \frac{(x - x_0)(x - x_1)}{2h^2} f_1^2 + \dots$$
$$\dots + \frac{(x - x_0)(x - x_1) \cdot (x - x_{n-1})}{n!h^n} f_{\frac{n}{2}}^n$$

Произведя дополнительную замену: $t=\frac{x-x_0}{h} o x=x_0+th$

$$L_n(x_0 + ht) = f_0 + tf_{\frac{1}{2}}^1 + \frac{t(t-1)}{2!}f_1^2 + \ldots + \frac{t(t-1)\ldots(t-(n-1))}{n!}f_{\frac{n}{2}}^n$$

Формула для интерполирования вперед используется, если необходимо вычислить значение в узле, что находится ближе к началу выборки.

Теорема 3.12: Формула Ньютона для интерполирования назад

Пусть даны узлы $x_0, x_0 - h, \dots, x_0 - nh$, тогда:

Формула Ньютона для интерполирования назад имеет вид:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \dots + \frac{t(t+1)\dots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

Доказательство. В силу симметрии разделенных разностей относительно своих аргументов:

$$f(x_0; x_0 - h; \dots; x_0 - ih) = f(x_0 - ih; x_0 - ih + h; \dots; x_0 - h; x_0)$$

Заменим разделенные разности конечными:

$$f(x_0 - ih; x_0 - ih + h; \dots; x_0 - h; x_0) = \frac{f_{-\frac{i}{2}}^i}{i!h^i}$$

Формула Ньютона с заменой разделенных разностей на конечные:

$$L_n(x) = f_0 + \frac{x - x_0}{h} f_{-\frac{1}{2}}^1 + \frac{(x - x_0)(x - x_0 + h)}{2!h^2} f_{-1}^2 + \dots$$
$$\dots + \frac{(x - x_0)(x - x_0 + h) \cdot (x - x_0 + (n - 1)h)}{n!h^n} f_{-\frac{n}{2}}^n$$

Заменяя $\frac{(x-x_0)}{h} = t$, получаем:

$$L_n(x_0+ht) = f_0 + tf_{-\frac{1}{2}}^1 + \frac{t(t+1)}{2!}f_{-1}^2 + \ldots + \frac{t(t+1)\ldots(t+(n-1))}{n!}f_{-\frac{n}{2}}^n$$

Формула для интерполирования назад используется, если необходимо вычислить значение в узле, что находится ближе к концу выборки.

- 3.13 Проблемы глобальной полиномиальной интерполяции. Интерполяция сплайнами. Определение сплайна. Интерполяционный сплайн.
- 3.13.1 Глобальная полиномиальная интерполяция.

Определение 3.14: Глобальная полиномиальная интерполяция

Пусть функция f(x) интерполируема на отрезке [a,b]. Метод решения этой задачи единым для всего отрезка многочленом $P_n(x)$ называют глобальной полиномиальной интерполяцией.

Теорема 3.13: Постановка задачи

Для реализации процесса интерполяции многочленами возрастающей степени n, необходимо указать стратегию выбора узлов интерполяции $x_0^{(n)}, x_1^{(n)}, \ldots, x_n^{(n)}$.

Такая стратегия задается указанием **интерполяционного массива** - треугольной таблицы, вида:

$$x_0^{(0)}$$

$$x_0^{(1)}, x_1^{(1)}$$

$$x_0^{(2)}, x_1^{(2)}, x_2^{(2)}$$

$$\dots$$

$$x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, \dots, x_n^{(n)}$$

где все $x_i^{(n)}$ различны и $x_i^{(n)} \in [a, b]$.

Т.е. при глобальной интерполяции многочленами возрастающей степени наращивается степень многочлена (постепенно выбираются оптимальные узлы).

Определение 3.15: Сходимость интерполяции

Интерполяция сходится при заданной стратегии выбора узлов, если:

$$\max_{[a,b]}\{|f(x)-P_n(x)|\} \to 0$$
, при $n\to\infty$

Существует несколько проблем, по которым глобальная полиномиальная интерполяция многочленами высокой степени не используется.

Сходимость глобальной полиномиальной интерполя-3.13.2 ции

Теорема 3.14: Равномерный выбор узлов

При равномерном распределение на отрезке [a,b] узлов интерполяции (т.е. в выборе $x_i^{(n)}=a+ih,\ i=0,1,\ldots,n,$ где $h=\frac{b-a}{n}$) существуют примеры расходящейся при увеличении узлов интерполяции:

Пример Рунге:

Если $f(x) = \frac{1}{1+25x^2}$, то при больших n интерполяция будет расходится для $0.73 < |x| \le 1$:

Рис. 8: Пример расходящейся интерполяции

Таким образом, равномерное распределение узлов интерполяции для функции Рунге оказалось неудачным.

При выборе узлов интерполяции - корни многочлена Чебышева $T_{n+1}(x)$ проблема сходимости для примера Рунге уйдет.

Теорема 3.15: Фабера

Какова бы ни была стратегия выбора узлов интерполяции, найдется непрерывная на [a,b] функция f(x), для которой $\max_{[a,b]}\{|f(x)-P_n(x)|\}\to\infty$ при $n\to\infty$.

Т.е. теорема Фабера отрицает существование единой для всех **непрерывных** функций стратегии выбора узлов интерполяции.

Однако для **гладких** функций (а именно такие функции чаще всего и интерполируются) такая стратегия существует.

Теорема 3.16: Стратегия для гладких функций

Если в качестве узлов интерполяции на отрезке [a,b] выбираются чебышевские корни:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2k+1}{2n+2}\pi), \ k = 0, 1, \dots, n$$

то для любой **непрерывно дифференцируемой функции** f(x) на отрезке [a,b] метод интерполяции сходится.

3.13.3 Чувствительность интерполяционного многочлена к погрешностям входных данных.

Помимо погрешности от замены функции f(x), возникает еще дополнительная погрешность, связанная со значениями интерполируемой функции.

Теорема 3.17: Интерполяционное число обусловленности

Пусть в заданных узлах x_i значения y_i^* содержат погрешности ε_i . Тогда многочлен $P_n^*(x) = \sum_{j=0}^n y_j^* l_{n_j}(x)$ содержит погрешность:

$$P_n(x) - P_n^*(x) = \sum_{j=0}^n \varepsilon_j l_{n_j}(x)$$

Пусть $|\varepsilon_i| \leq \overline{\Delta(y^*)}$ для всех $i = 0, 1, \dots, n$, тогда:

$$\overline{\Delta(P_n^*)} = \max_{[a,b]} \{ |P_n(x) - P_n^*(x)| \} \le \Lambda_n \overline{\Delta(y^*)}$$

где $\Lambda_n = \max_{[a,b]} \{ \sum_{j=0}^n |l_{n_j}(x)| \}$ - абсолютное число обусловленности (число Лебега).

Величина Λ_n не зависит от длины [a,b]: она определяется только относительным расположением узлов на отрезке.

При выборе узлов - корни многочлена Чебышева: $\Lambda_n \approx \frac{2}{\pi} \ln(n+1) + 1$ При выборе узлов - равномерное распределение: $\Lambda_n > \frac{2^{n-1}}{(2n-1)\sqrt{n}}$

Следствие вышесказанного - в вычислениях **не следует** использовать интерполяционные многочлены высокой степени с **равноотстоящими узлами**.

3.13.4 Интерполяция сплайнами.

Вместо построения одного многочлена высокой степени для всего отрезка [a,b], область разбивается на частичные отрезки, и на каждом из них строится свой многочлен невысокой степени (обычно кубический).

Определение 3.16: Сплайн

Сплайн степени m - функция $S_m(x)$, обладающая следующими **свой- ствами**:

- 1. $S_m(x) \in C^{(p)}[a,b]$ (т.е. непрерывно-дифференцируема до порядка производной p).
- 2. На каждом частичном отрезке $[x_{i-1}, x_i]$ функция $S_m(x)$ совпадает с некоторым алгебраическим многочленом $P_{m,i}(x)$ степени m.

Определение 3.17: Дефект сплайна

Разность m-p между степенью и наивысшим порядком непрерывной на отрезке [a,b] производной сплайна.

Пример 3.5: Сплайн

Кубические сплайны с дефектами 1 и 2: такие сплайны на каждом из частичных отрезков $[x_{i-1}, x_i]$ совпадают с кубическим многочленом:

$$S_3(x) = P_{3,i}(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

и имеют на отрезке хотя бы одну непрерывную производную $S_3'(x)$.

Определение 3.18: Интерполяционный сплайн

Пусть функция f(x) задана таблицей своих значений $y_i = f(x_i), i = 0, 1, \ldots, n$.

Сплайн $S_m(x)$ называется **интерполяционным**, если $S_m(x_i) = y_i$ для всех $i = 0, 1, \ldots, n$.

Определение 3.19: Наклон сплайна

Значение: $s_i = S_m^{(1)}(x_i)$ - **наклон** сплайна в точке x_i .

Различные методы интерполяции кубическими сплайнами отличаются один от другого способом выбора наклонов s_i .

3.14 Интерполяция сплайнами. Построение локального кубического интерполяционного сплайна.

Определение 3.20: Локальный сплайн

Если в точках x_i известны значения производной $y_i' = f'(x_i)$, то естественно в формуле положить $s_i = y_i'$ для всех $i = 0, 1, \ldots, n$.

Тогда на каждом частичном отрезке $[x_{i-1}, x_i]$ интерполяционный кубический сплайн однозначно задается заданиями значений $y_{i-1}, y_i, y'_{i-1}, y'_i$.

Данный сплайн называется **локальным**. Он совпадает с кубическим интерполяционным многочленом Эрмита для отрезка $[x_{i-1}, x_i]$.

Лемма 3.5: Особенности локального сплайна

- Независимость: каждый кусок сплайна строится независимо.
- Входные данные: требуют знания не только значений функции, но и её производных.
- Совпадение: локальный сплайн = многочлен Эрмита на каждом отрезке.
- Гарантии: непрерывность только $S_3(x)$ и $S_3'(x)$ (дефект = 2).

Теорема 3.18: Построение кубического локального сплайна

Из равенства для интерполяционного многочлена Эрмита с кратными узлами:

$$P_3(x) = y_0 \frac{(x_1 - x)^2 (2(x - x_0) + h)}{h^3} + y_0' \frac{(x_1 - x)^2 (x - x_0)}{h^2} + y_1 \frac{(x - x_0)^2 (2(x_1 - x) + h)}{h^3} + y_1' \frac{(x - x_0)^2 (x - x_1)}{h^2}$$

где $h = x_1 - x_0$, следует:

$$S_3(x) = P_{3,i}(x) = \frac{(x - x_i)^2 (2(x - x_{i-1}) + h_i)}{h_i^3} y_{i-1} + \frac{(x - x_{i-1})^2 (s(x_i - x) + h_i)}{h_i^3} y_i + \frac{(x - x_i)^2 (x - x_{i-1})}{h_i^2} s_{i-1} + \frac{(x - x_{i-1})^2 (x - x_i)}{h_i^2} s_i$$

где $h_i = x_i - x_{i-1}$.

Лемма 3.6: Оценка погрешности кубического сплайна

Оценка погрешности интерполяции локальным кубическим сплайном имеет вид:

$$\max_{[a,b]}\{|f(x) - S_3(x)|\} \le \frac{M_4}{384}h_{\max}^4$$

где $h_{\max} = \max_{1 \leq i \leq n} \{h_i\}$ - максимальаня из длин частичных отрезков.

Доказательство. Получается из оценки погрешности интерполяции многочленом Эрмита с кратными узлами:

$$\max_{[x_0, x_1]} \{ |f(x) - P_3(x)| \} \le \frac{M_4}{384} h^4$$

Для построенного через Эрмита сплайна можно гарантировать непрерывность на отрезке [a,b] только функции $S_3(x)$ и ее первой производной $S_3'(x)$, т.е. дефект данного сплайна равен 2.

3.15 Интерполяция сплайнами. Глобальные способы построения кубического интерполяционного сплайна.

Глобальные способы требуют согласования наклонов s_i .

Теорема 3.19: Глобальные способы построения кубических сплайнов

Для того, чтобы сплайн $S_3(x)$ имел непрерывную на [a,b] вторую производную $S_3''(x)$, необходимо выбирать наклоны s_i так, чтобы в точках x_i стыка многочленов $P_{3,i}$ и $P_{3,i+1}$ совпадали значения их вторых производных:

$$P''_{3,i}(x_i) = P''_{3,i+1}(x_i), i = 1, 2, \dots, n-1$$

Записав такие уравнения для всех внутренних узлов $i=1,2,\ldots,n-1,$ можно составить систему, решение которой даст значения всех наклонов, обеспечивающих глобальную гладкость сплайна с непрерывной второй производной.

Из формулы локального построения сплайна:

$$\begin{cases} P_{3,i}''(x_i) = \frac{2s_{i-1}}{h_i} + \frac{4s_i}{h_i} - 6\frac{y_i - y_{i-1}}{h_i^2} \\ P_{3,i+1}''(x_i) = -\frac{4s_i}{h_{i+1}} - \frac{2s_{i+1}}{h_{i+1}} + 6\frac{y_{i+1} - y_i}{h_{i+1}^2} \end{cases}$$

Приравняв уравнения, придем к системе уравнений относительно коэффициентов s_i :

$$h_i^{-1}s_{i-1} + 2(h_i^{-1} + h_{i+1}^{-1})s_i + h_{i+1}^{-1}s_{i+1} =$$

$$= 3[h_i^{-2}(y_i - y_{i-1}) + h_{i+1}^3(y_{i+1} - y_i)], i = 1, 2, \dots, n-1$$

Данная система недоопределена: число уравнений (n-1) меньше числа неизвестных (n+1).

Теорема 3.20: Дополнение системы наклонов

Выбор двух оставшихся уравнений связывают с дополнительными условиями, накладываемыми на сплайн в граничных точках a и b (граничными условиями):

- Если известны f'(a) и f'(b), то: $s_0 = f'(a)$, $s_n = f'(b)$ (фундаментальный кубический сплайн).
- Если известны f''(a) и f''(b), то: $S_3''(a) = P_{3,1}''(x_0) = f''(a)$, $S_3''(b) = P_{3,n}''(x_n) = f''(b)$. Это приводит к следующим уравнениям:

$$\begin{cases} -\frac{4s_0}{h_1} - \frac{2s_1}{h_1} + 6\frac{y_1 - y_0}{h_1^2} = f''(a) \\ \frac{2s_{n-1}}{h_n} + \frac{4s_n}{h_n} - 6\frac{y_n - y_{n-1}}{h_n^2} = f''(b) \end{cases}$$

Полагая в предыдущих уравнениях f''(a) = 0, f''(b) = 0, придем к системе уравнений, определяющих естественный кубический сплайн.

• Если f(x) - периодическая функция с $T_f = b - a$, то систему следует дополнить уравнениями:

$$\begin{cases} s_0 = s_n \\ h_n^{-1}(s_{n-1} + 2s_n) + h_1^{-1}(2s_0 + s_1) = 3[h_n^{-2}(y_n - y_{n-1}) + h_1^{-2}(y_1 - y_0)] \end{cases}$$

Лемма 3.7: Особенности глобальных методов

- Связанность: все куски сплайна связаны через систему уравнений.
- Входные данные: достаточно только значений функции в узлах.
- **Непрерывность**: обеспечивают непрерывность высших производных.
- **Система**: наклоны s_i определяются из глобальной системы уравнений.

4 Дифференцирование и интегрирование

4.1 Простейшие формулы численного дифференцирования. Вычисление первой производной. Погрешность формул.

Численное дифференцирование применяется, когда функцию трудно или невозможно продифференцировать аналитически (например, задана таблицей).

Теорема 4.1: Вычисление первой производной

Предположим, что функция f(x) дифференцируема достаточное число раз в окрестности точки x, тогда:

$$\begin{cases} f'(x) \approx \frac{f(x+h) - f(x)}{h} \\ f'(x) \approx \frac{f(x) - f(x-h)}{h} \end{cases}$$

приближенные формулы (правые и левые разностные производные), соответствующие выбору фиксированных значений $\Delta x = h$ и $\Delta x = -h$ (здесь h > 0 - малый параметр (шаг)).

Величина:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

есть центральная разностная производная.

Теорема 4.2: Оценка погрешностей

Оценим величины:

$$\begin{cases} r_{+}(x,h) = f'(x) - \frac{f(x+h) - f(x)}{h} \\ r_{-}(x,h) = f'(x) - \frac{f(x) - f(x-h)}{h} \\ r_{0}(x,h) = f'(x) - \frac{f(x+h) - f(x-h)}{2h} \end{cases}$$

Получаем:

$$\begin{cases} |r_{+}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x,x+h]} \{|f''(\xi)|\} \\ |r_{-}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x-h,x]} \{|f''(\xi)|\} \\ |r_{0}(x,h)| \leq \frac{1}{6}M_{3}h^{2}, \ M_{3} = \max_{[x-h,x+h]} \{f^{(3)}(\xi)\} \end{cases}$$

Т.е. правые и левые разностные производные имеют превый порядок точности по h: они аппроксимируют производную f'(x) с первым порядком точности.

Центральная разностная производная аппроксимирует производную f'(x) со вторым порядком точности относительно h.

Доказательство. Воспользуемся формулами Тейлора:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(\xi_{\pm})}{h^2}$$

где ξ_+ и ξ_- - точки, расположенные на интервалах (x,x+h) и (x,x-h) соответственно.

Подставляя значения в вырежения для $r_{\pm}(x,h)$, получаем:

$$\begin{cases} r_{+}(x,h) = -\frac{1}{2}f''(\xi_{+})h \\ r_{-}(x,h) = \frac{1}{2}f''(\xi_{-})h \end{cases}$$

Следовательно:

$$\begin{cases} |r_{+}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x,x+h]} \{f''(\xi)\} \\ |r_{-}(x,h)| \leq \frac{1}{2}M_{2}h, \ M_{2} = \max_{[x-h,x]} \{f''(\xi)\} \end{cases}$$

Разложение Тейлора, соответствующее центральной разностной производной:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''}{2}h^{2} \pm \frac{f^{(3)}}{6}h^{3}$$

Подставив в $r_0(x,h)$ соответствующие значения, получаем:

$$r_0(x,h) = -\frac{f^{(3)}(\xi_+) + f^{(3)}(\xi_-)}{12}h^2$$

Тогда:

$$|r_0(x,h)| \le \frac{1}{6}M_3h^2, M_3 = \max_{[x-h,x+h]} \{|f^{(3)}(\xi)|\}$$

Для вычисления f'(x) можно получить формулы любого порядка точности (просто в формулах возрастает число используемых значений функции): так, формула 4-го порядка точности имеет вид:

$$f'(x) \approx \frac{f(x-2h) - 8f(x-h) + 8(x+h) - f(x+2h)}{12h}$$

Лемма 4.1: Геометрическая интерпретация производной

Пусть
$$N_0(x, f(x)), N_-(x-h, f(x-h)), N_+(x+h, f(x+h)).$$

Тогда производная f'(x) - тангенс угла α наклона к оси Ox касательной, проведенной к графику функции в точке N_0 .

Соответствующие правая и левая разностная производные есть тангенсы углов α_+ и α_- наклона секущих, проведенных через точки N_0 и N_+ , N_0 и N_- соответственно.

Формула центральной разностной производной - тангенс угла наклона α_0 секущей, проведенной через точки N_- и N_+ .

Рис. 9: Геометрическая интерпретация производных

4.2 Простейшие формулы численного дифференцирования. Вычисление второй производной. Погрешность формул.

Теорема 4.3: Вычисление второй производной

Формула второй производной:

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

вторая разностная производная.

Теорема 4.4: Оценка погрешности

Пусть:

$$r(x,h) = f''(x) - \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

погрешность формулы второй разностной производной, тогда:

$$|r(x,h)| \le \frac{M_4}{12}h^2$$
, $M_4 = \max_{[x-h,x+h]} \{|f^{(4)}(\xi)|\}$

т.е. формула второй разностной производной имеет второй порядок точности.

Доказательство. Разложение по формуле Тейлора:

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(x)}{2}h^2 \pm \frac{f^{(3)}(x)}{6}h^3 + \frac{f^{(4)}(\xi_{\pm})}{24}h^4$$

Подставив значения в r(x,h), получаем:

$$-\frac{f^{(4)}(\xi_+) + f^{(4)}(\xi_-)}{24}h^2$$

Следовательно:

$$|r(x,h)| \le \frac{M_4}{12}h^2$$
, $M_4 = \max_{[x-h,x+h]} \{|f^{(4)}(\xi)|\}$

4.3 Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена.

В общем виде:

Пусть в окрестности точки x функция f(x) аппроксимируется некоторой другой функцией g(x), причем: производная $g^{(k)}(x)$ в точке x легко вычисляется. Тогда:

$$f^{(k)}(x) \approx g^{(k)}(x)$$

Теорема 4.5: Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена

Пусть $P_n(x)$ - интерполяционный многочлен степени n с узлами интерполяции $x_0 < x_1 < \ldots < x_n$ и $x \in [x_0, x_n]$. Тогда:

$$f^{(k)} \approx P_n^{(k)}(x), \ 0 \le k \le n$$

При этом справедлива следующая оценка погрешности:

$$|f^{(k)}(x) - P_n^{(k)}(x)| \le C_{n,k} M_{n+1} h_{\max}^{n+1-k}, \ 0 \le k \le n$$

где $C_{n,k}$ - положительные числа, $M_{n+1} = \max_{[x_0,x_n]}\{|f^{(n+1)}(x)|\}$

Порядок точности относительно $h_{\rm max}$ равен разности между числом узлов интерполяции и порядком вычисляемой производной.

4.4 Обусловленность формул численного дифференцирования.

Теорема 4.6: Обусловленность формул численного дифференцирования

K погрешности аппроксимации формул численного дифференцирования добавляется неустранимая погрешность, вызванная погрешностями вычисления функции f.

При малых шагах формулы численного дифференцирования становятся плохо обусловленными и результат их применения может быть полностью искажен неустранимой ошибкой.

Пример 4.1: Обусловленность формул численного дифференцирования

Полная погрешность формулы правой разностной производной:

$$r^{*}(x,h) = f'(x) - \frac{f^{*}(x+h) - f^{*}(x)}{h}$$

есть сумма:

• Погрешности аппроксимации:

$$r_{+}(x,h) = f'(x) - \frac{f(x+h) - f(x)}{h}$$

• Неустранимой погрешности:

$$r_{\rm H}(x,h) = \frac{1}{h}((f(x+h) - f^*(x+h)) - (f(x) - f^*(x)))$$

Пусть $\overline{\Delta}$ - верхняя оценка абсолютной погрешности $\Delta(f^*(x)) = |f(x) - f^*(x)|$, тогда:

$$r_{\rm H} \le \frac{2\overline{\Delta}}{h}$$

т.е. чувствительность формулы правой разностной производной к погрешностям входных данных характеризуется абсолютным числом $\nu_{\Delta}=\frac{2}{b}.$

Т.к. $\nu_{\Delta} \to \infty$ при $h \to 0$, то формула при малых h становится очень плохо обусловленной.

Во всяком случае, так ведет себя верхняя граница полной погрешности:

$$\overline{r(h)} = \frac{1}{2}M_2h + \frac{\overline{\Delta}}{h}$$

Лемма 4.2: Оптимальное значение h

$$h_{
m opt} = 2\sqrt{rac{\overline{\Delta}}{M_2}}$$

Доказательство. Приравняем верхнюю оценку полной погрешности к нулю:

$$\overline{r(h)} = \frac{1}{2}M_2h + \frac{\overline{\Delta}}{h}$$

получим:

$$h_{
m opt} = 2\sqrt{rac{\overline{\Delta}}{M_2}}$$

которому отвечает:

$$\overline{r_{
m min}} = \overline{r}(h_{
m opt}) = 2\sqrt{\overline{\Delta}M_2}$$

Формулы для вычисления производных порядка k>1 обладают еще большей чувствительностью к ошибкам задания функций.

Г

4.5 Численное интегрирование. Простейшие квадратурные формулы. Формула прямоугольников. Погрешность формулы.

Теорема 4.7: Постановка задачи

При сложном вычислении первообразной F (или же при ее отсутствии) для получения значения определенного интеграла:

$$I = \int_{a}^{b} f(x) \, dx$$

используют способы численного интегрирования (в основном квадратурные формулы).

Определение 4.1: Основные определения

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{N} A_{i} f(\overline{x_{i}})$$

Тогда:

- Квадратурная формула: $\sum_{i=0}^{N} A_i f(\overline{x_i})$.
- Узел: $\overline{x_i} \in [a, b]$.
- Вес узла: A_i константа.
- Остаточный член: $R = \int_a^b f(x) dx \sum_{i=0}^N A_i f(\overline{x_i})$.

Квадратурная формула **точна** для многочленов степени m, если для любого многочлена степени не выше m эта формула дает точное значение интеграла, т.е.

$$\int_{a}^{b} P_{m}(x) dx \approx \sum_{i=0}^{N} A_{i} P_{m}(\overline{x_{i}})$$

При оценке эффективности квадратурных формул часто исходят из того, что наиболее трудоемкой операцией при вычислении по формуле является нахождение значения функции f.

Тогда среди двух формул, позволяющих вычислить интеграл с заданной точностью ε , **более эффективной** считается та, в которой используется **меньшее количество узлов**.

Если разбить отрезок [a,b] на элементарные отрезки $[x_{i-1},x_i]$: $a=x_0 < x_1 < \ldots < x_n = b$, то интеграл I разобьется на сумму элементарных интегралов $I = \sum_{i=1}^n I_i$.

Рис. 11: Геометрическая интерпретация разбиения

Теорема 4.8: Формула прямоугольников

Замена площади элементарной криволинейной трапеции площадью прямоугольников, основанием которого является орезок $[x_{i-1},x_i]$, а высота которого равна значению $f(\frac{x_{i-1}+x_i}{2})=f_{i-\frac{1}{2}}$.

Элементарная квадратурная формула прямоугольников:

$$I_i \approx h f_{i-\frac{1}{2}}$$

Произведя такую замену для всех элементарных криволинейных трапеций, получаем **составную квадратурную формулу** прямоугольников:

$$I pprox I_{\mathrm{fip}}^h = h(f_{\frac{1}{2}} + f_{\frac{3}{2}} + \ldots + f_{n - \frac{-1}{2}}) = h \sum_{i=1}^n f_{i - \frac{1}{2}}$$

Рис. 12: Геометрическая интерпретация формулы прямоугольников

Теорема 4.9: Погрешность формулы

Пусть $f(x) \in C^{(2)}[a,b]$, тогда:

$$|I - I_{\pi p}^h| \le \frac{M_2(b-a)}{24} h^2, M_2 = \max_{[a,b]} \{f''(x)\}$$

 \mathcal{A} оказательство. Пусть $R=I-I_{\mathrm{np}}^h,$ тогда:

$$R = \int_{a}^{b} f(x) dx - h \sum_{i=1}^{n} f_{i-\frac{1}{2}} = \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_i} [f(x) - f_{i-\frac{1}{2}}] dx \right)$$

Представим f(x) в виде Тейлора в окрестности $f(x_{i-\frac{1}{2}})$:

$$f(x) = f(x_{i-\frac{1}{2}}) + \frac{f'(x_{i-\frac{1}{2}})}{h}(x - x_{i-\frac{1}{2}}) + \frac{f''(\xi)}{\frac{h^2}{2}}(x - x_{i-\frac{1}{2}})^2$$

Тогда:

$$R = \sum_{i=1}^n \frac{f^{''}(\xi)}{\frac{h^2}{2}} \int_{x_{i-\frac{1}{2}}}^{x_i} [\frac{(x-x_{i-\frac{1}{2}})^2}{\frac{h^2}{2}}] \, dx$$

$$|I-I^n_{\text{inp}}| \leq n \frac{M_2}{24} h^3 = \frac{M_2(b-a)h^2}{24} \; (\text{t.k.} n \cdot h = b-a)$$

4.6 Численное интегрирование. Простейшие квадратурные формулы. Формула трапеций. Погрешность формулы.

Теорема 4.10: Формула трапеций

Заменив прямоугольники на трапеции, боковая сторона которых соединяет конце элементарных отрезков, получим элементарную формулу трапеций:

$$I_i \approx \frac{h}{2}(f_{i-1} + f_i)$$

Просуммировав их, получаем составную формулу для трапеций:

$$I \approx I_{\text{Tp}}^h = h(\frac{f_0}{2} + f_1 + f_2 + \dots + f_{n-1} + \frac{f_n}{2}) = h(\frac{f_0 + f_n}{2} + \sum_{i=1}^{n-1} f_i)$$

Рис. 13: Геометрическая интерпретация формулы трапеций

Теорема 4.11: Погрешность формулы

Пусть $f(x) \in C^{(2)}[a,b]$, тогда:

$$|I - I_{\text{TP}}^h| \le \frac{M_2(b-a)}{12}h^2$$

Доказательство.

$$R_i = \int_{x_{i-1}}^{x_i} f(x) dx - \frac{h}{2} (f_{i-1} + f_i) = \int_{x_{i-1}}^{x_i} (f(x) - P_1(x)) dx$$

Через оценку погрешности линейной интерполяции:

$$|R_i| \le \int_{x_{i-1}}^{x_i} \frac{M_2}{2} (x - x_{i-1})(x_i - x) dx = \frac{M_2}{12} h^3$$

$$|R| \le \sum_{i=1}^{n} |R_i| \le \frac{M_2 nh}{12} h^2 = \frac{M_2 (b-a)}{12} h^2$$

4.7 Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы.

Теорема 4.12: Формула Симпсона

Если площадь элементарной криволинейной трапеции заменить площадью фигуры, расположенной под параболой, проходящей через концы элементарных отрезков и их середину, то получим **элементарную** формулу Симпсона:

$$I_i \approx \int_{x_{i-1}}^{x_i} P_2(x) \, dx$$

где $P_2(x)$ - интерполяционный многочлен второй степени с узлами $x_{i-1}, x_{i-\frac{1}{2}}, x_i.$

Следовательно:

$$P_2(x) = f_{i-\frac{1}{2}} + \frac{f_i - f_{i-1}}{h} (x - x_{i-frac12}) + \frac{f_i - 2f_{i-\frac{1}{2}} + f_{i-1}}{\frac{h^2}{2}} (x - x_{i-\frac{1}{2}})^2$$

Тогда:

$$I_{i} \approx h f_{i-\frac{1}{2}} + \frac{f_{i} - f_{i-1}}{h} \int_{x_{i-1}}^{x_{i}} (x - x_{i-\frac{1}{2}}) dx + \frac{f_{i} - 2f_{i-\frac{1}{2}} + f_{i-1}}{\frac{h^{2}}{2}} \int_{x_{i-1}}^{x_{i}} (x - x_{i-\frac{1}{2}})^{2} dx$$

$$I_{i} \approx h f_{i-\frac{1}{2}} + \frac{h}{6} (f_{i} - 2f_{i-\frac{1}{2}} + f_{i-1}) = \frac{h}{6} (f_{i-1} + 4f_{i-\frac{1}{2}} + f_{i})$$

Теорема 4.13: Погрешность формулы

Пусть $f(x) \in C^{(4)}[a,b]$, тогда:

$$|I - I_{\mathcal{C}}^h| \le \frac{M_4(b-a)}{2880} h^4$$

4.8 Апостериорные оценки погрешности квадратурных формул. Правило Рунге.

Все предыдущие оценки:

$$|I - I_{\mathrm{np}}^n| \le n \frac{M_2}{24} h^3 = \frac{M_2(b-a)h^2}{24} \text{ (t.k.} n \cdot h = b-a)$$

$$|I - I_{\mathrm{rp}}^h| \le \frac{M_2(b-a)}{12} h^2$$

$$|I - I_{\mathrm{C}}^h| \le \frac{M_4(b-a)}{2880} h^4$$

являются априорными погрешностями.

Теорема 4.14: Главный член погрености

Пусть I^h - приближенное значение интеграла $I = \int_a^b f(x) \, dx$, использующее квадратурную формулу и разбиение участка [a,b] на элементарные, длиною h.

Предположим, справедливо следующее представление погрешности:

$$I - I^h = Ch^k + o(h^k)$$

где $C \neq 0$ и k > 0 - величины, не зависящие от h.

Тогда:

- \bullet Ch^k главный член погрешности квадратурной формулы.
- ullet k **порядок точности** квадратурной формулы.

Тогда справделиво:

$$I - I^h \approx Ch^k$$

Следовательно, можно получить следующие выводы:

- Уменьшение шага h в M раз приводит к уменьшению погрешности примерно в M^k раз.
- Получить оценку апостериорной погрешности по правилу Рунге.

Теорема 4.15: Правило Рунге

Верны следующие апостреиорные погрешности:

$$I - I_{\mathrm{np}}^h \approx \frac{1}{3} (I_{\mathrm{np}}^h - I_{\mathrm{np}}^{2h})$$

$$I-I_{ ext{ iny Tp}}^hpproxrac{1}{3}(I_{ ext{ iny Tp}}^h-I_{ ext{ iny Tp}}^{2h})$$

$$I - I_{\rm C}^h \approx \frac{1}{15} (I_{\rm C}^h - I_{\rm C}^{2h})$$

Доказательство. По предыдущей теореме:

$$\begin{cases} I - I^h \approx Ch^k \\ I - I^{\frac{1}{2}} \approx \frac{1}{2^k} Ch^k \approx \frac{1}{2^k} (I - I^h) \end{cases}$$

Вычитая из первого равенства второе, получаем:

$$I^{\frac{h}{2}} - I^h \approx \frac{1}{2^k} Ch^k (2^k - 1)$$

Следовательно:

$$I - I^{\frac{h}{2}} pprox rac{I^{\frac{h}{2}} - I^h}{2^k - 1}$$

Для формул прямоугольников и трапеций k=2, для Симпсона: k=4.

Правило Рунге позволяет строить процедуры вычисления интеграла I с заданной точностью ε , достигаемой последовательным дроблением шага интегрирования.

Простейшая процедура такого типа состоит в следующем:

- Вычисление значения I^{h_i} и соответствующих апостериорных погрешностей ε_i ($h_i = \frac{h_0}{2^i}$, где h_0 начальное значение шага)
- Продолжать вычисления, пока при некотором i не окажется: $|\varepsilon_i| < \varepsilon$, либо величина $|\varepsilon_i|$ не начнет возрастать (точность не может быть достигнута из-за влияния вычислительной погрешности).

5 Список вопросов

- 1. Предмет вычислительной математики. Метод и задачи вычислительной математики в терминах функционального анализа.
- 2. Источники и классификация погрешностей результатов численного решения задач. Приближенные числа. Абсолютная и относительная погрешности. Правила записи приближенных чисел.
- 3. Погрешности арифметических операций над приближенными числами. Погрешность функции одной и многих переменных.
- 4. Корректность вычислительной задачи. Примеры корректных и некорректных задач.
- 5. Обусловленность вычислительной задачи. Примеры хорошо и плохо обусловленных задач.
- 6. Вычислительные алгоритмы. Корректность и обусловленность вычислительных алгоритмов.
- 7. Постановка задачи решения нелинейных уравнений. Основные этапы решения задачи.
- 8. Скорость сходимости итерационных методов уточнения решения нелинейного уравнения.
- 9. Обусловленность задачи решения нелинейных уравнений. Понятие об интервале неопределенности. Правило Гарвика.
- 10. Метод бисекции решения нелинейных уравнений. Скорость сходимости. Критерий окончания.
- 11. Метод Ньютона решения нелинейных уравнений. Вывод итерационной формулы метода Ньютона.
- 12. Априорная оценка погрешности метода Ньютона (теорема о скорости сходимости).
- 13. Апостериорная оценка погрешности (критерий окончания). Правило выбора начального приближения на отрезке локализации корня, гарантирующего сходимость метода.
- 14. Модификации метода Ньютона. Упрощенный метод Ньютона. Метод хорд.
- 15. Модификации метода Ньютона. Метод секущих. Скорость сходимости метода секущих.
- 16. Решение систем линейных алгебраических уравнений. Постановка задачи.
- 17. Решение систем линейных алгебраических уравнений. Определение понятия нормы вектора. Абсолютная и относительная погрешности вектора.

- 18. Решение систем линейных алгебраических уравнений. Определение понятия нормы матрицы, подчиненной норме вектора. Геометрическая интерпретация нормы матрицы.
- 19. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданной правой части. Количественная мера обусловленности системы линейных алгебраических уравнений. Геометрическая интерпретация числа обусловленности.
- 20. Обусловленность задачи решения системы линейных алгебраических уравнений для приближенно заданных матрицы и правой части.
- 21. Метод Гаусса решения систем линейных алгебраических уравнений. Схема единственного деления. LU разложение. Свойства метода.
- 22. Метод Гаусса решения систем линейных алгебраических уравнений. Схемы частичного и полного выбора ведущих элементов. Свойства методов.
- 23. Применение метода Гаусса к решению задач линейной алгебры. Вычисление решений системы уравнений с несколькими правыми частями.
- 24. Применение метода Гаусса к решению задач линейной алгебры. Вычисление обратной матрицы.
- 25. Применение метода Гаусса к решению задач линейной алгебры. Вычисление выражений вида v = CWw. Вычисление определителя матрицы.
- 26. Метод Холецкого решения систем линейных алгебраических уравнений с симметричной положительно определенной матрицей. Свойства метода.
- 27. Метод прогонки решения систем линейных алгебраических уравнений с трехдиагональными матрицами. Свойства метода.
- 28. Постановка задачи приближения функций. Приближение функций обобщенными многочленами.
- 29. Приближение методом интерполяции. Интерполяция обобщенными многочленами.
- 30. Понятия линейно-независимой системы функций на заданном множестве точек. Теорема о существовании единственного решения задачи интерполяции.
- 31. Понятия ортогональной системы функций на заданном множестве точек. Утверждение о существовании единственного решения задачи интерполяции с помощью ортогональной системы функций. Решение задачи интерполяции для этого случая.

- 32. Полиномиальная интерполяция. Интерполяционный многочлен в форме Лагранжа.
- 33. Погрешность полиномиальной интерполяции.
- 34. Интерполяционный многочлен с кратными узлами. Погрешность интерполяции с кратными узлами.
- 35. Минимизация оценки погрешности интерполяции. Многочлены Чебышева и их свойства. Применение для решения задачи минимизации погрешности.
- 36. Интерполяционная формула Ньютона для неравных промежутков. Разделенные разности и их свойства.
- 37. Вывод формулы Ньютона для неравных промежутков с помощью разделенных разностей.
- 38. Интерполяционная формула Ньютона для равных промежутков. Конечные разности и их связь с разделенными разностями.
- 39. Вывод формул Ньютона для интерполирования вперед и назад.
- 40. Проблемы глобальной полиномиальной интерполяции. Интерполяция сплайнами. Определение сплайна. Интерполяционный сплайн.
- 41. Интерполяция сплайнами. Построение локального кубического интерполяционного сплайна.
- 42. Интерполяция сплайнами. Глобальные способы построения кубического интерполяционного сплайна.
- 43. Простейшие формулы численного дифференцирования. Вычисление первой производной. Погрешность формул.
- 44. Простейшие формулы численного дифференцирования. Вычисление второй производной. Погрешность формул.
- 45. Общий подход к выводу формул численного дифференцирования с помощью интерполяционного многочлена.
- 46. Обусловленность формул численного дифференцирования.
- 47. Численное интегрирование. Простейшие квадратурные формулы. Формула прямоугольников. Погрешность формулы.
- 48. Численное интегрирование. Простейшие квадратурные формулы. Формула трапеций. Погрешность формулы.
- 49. Численное интегрирование. Простейшие квадратурные формулы. Формула Симпсона. Погрешность формулы.
- 50. Апостериорные оценки погрешности квадратурных формул. Правило Рунге.