

Vorlesung Industrieproduktion

Lean Production – Produktion im Fluss

Prof. Dr.-Ing. habil. Matthias Schmidt

Semesterübersicht

	Tag	Zeit	Thema	Bemerkung
Mittwoch	20.10.2021	10:15 - 13:45	Keine Veranstaltung	Keine Veranstaltung
Mittwoch	27.10.2021	10:15 - 13:45	 Einführung Produktplanung und Konstruktion 	Präsentation Schmidt Hörsaal-Diskussion, Übungen
Mittwoch	03.11.2021	10:15 - 13:45	3. Arbeitsplanung4. Planung von Fertigung und Montage	Präsentation Schmidt Hörsaal-Diskussion, Übungen
Mittwoch	10.11.2021	10:15 - 13:45	4. Planung von Fertigung und Montage5. Lean - Einführung6. Lean - Produktion im Fluss	Präsentation Schmidt Hörsaal-Diskussion, Übungen
Mittwoch	17.11.2021	10:15 - 13:45	7. Lean - Just in Time8. Digitale Produktion	Präsentation Schmidt Hörsaal-Diskussion Übungen
Mittwoch	24.11.2021	10:15 - 13:45	Puffer	Ggf. Präsentation Schmidt Hörsaal-Diskussion, Übungen
Mittwoch	01.12.2021	10:15 - 13:45	Tages-Workshop Lernfabrik	Leuphana Lernfabrik
Mittwoch	08.12.2021	10:15 - 13:45	Tages-Workshop Lernfabrik	Leuphana Lernfabrik
Mittwoch	15.12.2021	10:15 - 13:45	Tages-Workshop Lernfabrik	Leuphana Lernfabrik
Mittwoch	22.12.2021	10:15 - 13:45	Keine Veranstaltung	Keine Veranstaltung
Mittwoch	12.01.2022	10:15 - 13:45	Keine Veranstaltung	Keine Veranstaltung
Mittwoch	19.01.2022	10:15 - 13:45	Zusammenfassung und Klausurfragestunde	Präsentation Schmidt Diskussion Fragen der Studierenden
Mittwoch	26.01.2022	10:15 - 13:45	Keine Veranstaltung	Keine Veranstaltung
Mittwoch	02.02.2022	10:15 - 13:45	Keine Veranstaltung	Keine Veranstaltung

Struktur industrieller Fertigungsprinzipien

Ordnungskriterium	Fertigungsprinzip	Räumliche Struktur	Beispiele
Arbeitsaufgabe	Werkstattprinzip Verrichtungsprinzip	S S S AG Schleiferei Bohrerei Dreherei	DrehereiFräsereiSchleifereiSchweißwerkstatt
Arbeitsfolge definierter Varianten	Fließprinzip Erzeugnisprinzip	AG AG AG	FertigungslinieMontagelinie
Arbeitsfolge einer Teilefamilie	Fertigungsinsel / Gruppenprinzip	S AG	FertigungsinselMontageinsel
Produkt	Baustellenprinzip	Stationen Arbeitsgegenstand (Baustelle) Abfall	GroßmaschinenbauSchiffswerft
Mensch	Werkbankprinzip	AG Mensch AG	HandwerklicheArbeitsplätzeWerkzeugmacherei
		AG Arbeitsgegenstand S Station	1

Organisationsformen der Montage

gungs- öße	stationäre Montageobjekte		
Bewegungs	stationäre	bewegte	
größe	Arbeitsplätze	Arbeitsplätze	
ewegungs- parameter		aperiodischer periodischer	Bewe- gungs- ablauf
Bewegungs		gerichtete	Bewe-
parameter		ungerichtete	gung

bewegte Montageobjekte	
stationäre Arbeitsplätze	

aperiodischer Bewegungsablauf	periodischer kontinuierl.*	Bewe- gungs- ablauf
gerichtete	Bewegung	

bewegte	
Montageobjekte	
bewegte Arbeitsplätze	

	periodischer kontinuierl.*	Bewe- gungs- ablauf
--	-------------------------------	---------------------------

gerichtete Bewegung

Montageobjekt

Arbeitsplätze

Objektbewegung

--- Arbeitsplatzbewegung

^{*} nicht relevant für Einzelund Serienfertigung

Beispiel elastische Verkettung – Modern Times Factory

Lucy and Ethel haben eine Lösung!

https://www.youtube.com/watch?v=WmAwcMNxGqM

Flussprinzip – Räumliche Strukturierungsmöglichkeiten der Montage

Montagestation

Durchlaufzeitpotentiale durch "One-Piece-Flow"

Prinzip der klassischen Produktionsweise vs. Einzelstückfließfertigung

€ 5.000

€ 5.000

€ 5.000

€ 5.000

90 fertige (60 Puffer) Produkte zum Kunden Lieferung: 3 x pro Woche

= € 45.000 Bestand

30 Stck.	3 Stck.	3
2,4 Std.	0,24 Std.	0,
€ 1.500	€ 150	4

3 Stck. 0,24 Std. € 150 3 Stck. 0,24 Std. € 150 3 Stck. 0,24 Std. € 150

30 Stck.

€ 5.000

€ 5.000

€ 5.000

€ 1.500

= 72 Teile im Prozess

= 4,26 Std. DLZ

= € 3.600 Bestand

€ 5.000

€ 5.000

Kundentakt = -	Verfügbare Arbeitszeit p	ro Schicht	
Nullucillant – -	Vom Kunden benötigte Produktionsmenge pro Schicht		
Rojenjol:	27.600 Sek.	— = 65 Sekunden/Stück	
Beispiel:	425 Stück	- 65 Sekunden/Stuck	

Das heißt, der Kunde kauft die Produkte mit einer Rate von 1 Stück alle 65 Sekunden.

Verfügbare Arbeitszeit = Zeit von Schichtbeginn – Schichtende

- abzüglich geplanter Stillstandszeiten
 - Pausen
 - Besprechungen
 - geplante Instandhaltung
- aber inklusive
 - unbeabsichtigter Maschinenausfälle
 - Rüstzeiten

- Durch die Leistungsabstimmung der Prozesse werden die Kapazitätsbedarfe synchronisiert und die Auslastung optimiert
- Jeder Prozess hat genau einen Engpass (Schrittmacher), dieser steuert den Gesamtprozess: Upstream als Pull und Downstream als FIFO-Push

Ohne Taktausgleich

Mit Taktausgleich

- Unausgeglichene Belastung der Stationen
- Potentielle Bestände vor dem Engpass
- Geringe Auslastung nach dem Engpass
- Taktzeit der Produktion = Taktzeit des Engpasses

- Ausgeglichene Belastung der Stationen
- Geringe Gefahr von Beständen
- Verringerte Taktzeit der Produktion

Gestaltung U-förmiger Montagesysteme

Vorteile

- Kommissionierung im Kommissionierlager
- variable Kapazität durch flexiblen Mitarbeitereinsatz
- standardisierte
 Schnittstellen
- kontinuierliche
 Verbesserung
 durch den Werker
 möglich

Schritte zur ständigen Optimierung von Einzelstückfließlinien

Montage von Elektrowerkzeugen im offenen U - Praxisbeispiel

Materialversorgung von außen nach dem Kanbansystem

LEUPHANA UNIVERSITÄT LÜNEBURG

Steigerung der Systemeffizienz durch flexible Verkettung

Bei dem Chaku-Chaku-Prinzip (jap. = laden, laden) handelt es sich um eine Variante der Fließ- bzw. Reihenproduktion, bei der alle an der Produktion eines Erzeugnisses beteiligten Arbeitsplätze (dem Objektprinzip folgend) sehr nahe beieinander (U-förmig) aufgestellt sind und der Werker den Transport von Station zu Station übernimmt.

Vorlesung Industrieproduktion – Lean Production – Produktion im Fluss

Wesentliche Lernziele des Teil 5: Lean Production – Produktion im Fluss sind...

Produktion im Fluss

- · Verstehen, wie ein Taktzeitausgleich funktioniert,
- · Verstehen, wie One-Piece-Flow funktioniert,
- · Anwendungsgebiete von U-Linien kennenlernen und

Kontakt

Prof. Dr.-Ing. habil. Matthias Schmidt

Professur Produktionsmanagement

Leuphana Universität Lüneburg
Institut für Produkt- und Prozessinnovation (PPI)

Universitätsallee 1 21335 Lüneburg Mail: matthias.schmidt@leuphana.de

www.leuphana.de/ppi

Bei Fragen wenden Sie sich gerne an Frau Kramer unter: kathrinkramer@leuphana.de