

Supplemental Information for:

Easy-to-use R functions to separate reduced-representation genomic datasets into sex-linked and autosomal loci, and conduct sex-assignment

Diana A. Robledo-Ruiz, Lana Austin, J. Nevil Amos, Jesús Castrejón-Figueroa, Michael J. L. Magrath, Paul Sunnucks, Alexandra Pavlova

Table of Contents

Methods S1	nods S1 Identifying the X chromosome in LBP genome assembly			
Figure S1	Figure S1 Plots produced by function <i>filter.sex.linked</i> on YTH data			
Figure S2	Figure S2 Plots produced by function <i>filter.sex.linked</i> on LBP data			
Figure S3	Figure S3 Measures of population genetic diversity for EYR			
Figure S4	Figure S4 Measures of population genetic diversity for YTH			
Figure S5	Measures of population genetic diversity for LBP	Page 7		
Figure S6	Figure S6 Principal Component Analyses of YTH data before and after			
	removing sex-linked loci			
Figure S7	Principal Component Analyses of LBP data before and after	Page 9		
	removing sex-linked loci			
Table S1	Proportion of sex-linked loci that function filter.sex.linked	Page 10		
	identified with variable number of known-sex individuals			
References		Page 11		

Methods S1. Identifying the X chromosome in LBP genome assembly

We searched for genes *GLA*, *HPRT1*, *PGK1* and *SLC16A2* found in the X chromosome of marsupials in order to identify the X chromosome in the Leadbeater's possum assembly (LBP; Deakin et al. 2009). We extracted the gene sequences from the common brushtail possum's chromosome-length assembly (*Trichosurus vulpecula*; mTriVul1.pri in NCBI) and aligned them to the LBP assembly with BLASTn v2.9.0. We set BLASTn to find a maximum of 500 alignments per query sequence (max_target_seqs) with minimum e-value ≥ 10 (Altschul et al. 1990). For each loci sequence, we kept only alignments with the smallest expected value, allowing for ties. All four genes aligned to "HiC_scaffold_3" (length 82.6 Mb) and therefore, we considered it the X chromosome.

Figure S1. Plots produced by function *filter.sex.linked* on YTH data (yellow-tufted honeyeater). Top panels: plots of female call rate against male call rate in which each point represents a locus, before (a) and after (b) removing 2,220 sex-linked loci with differential call rate between the sexes. Bottom panels: plots of the proportion of heterozygous females against the proportion of heterozygous males with each point representing a locus, before (c) and after (d) removing 1,135 sex-linked loci with differential heterozygosity between the sexes.

Figure S2. Plots produced by function *filter.sex.linked* on LBP data (Leadbeater's possum). Top panels: plots of female call rate against male call rate in which each point represents a locus, before (a) and after (b) removing 4 sex-linked loci with differential call rate between the sexes. Bottom panels: plots of the proportion of heterozygous females against the proportion of heterozygous males with each point representing a locus, before (c) and after (d) removing 67 sex-linked loci with differential heterozygosity between the sexes.

Figure S3. Six measures of population genetic diversity before and after removing sex-linked loci (Ho: observed heterozygosity, He: expected heterozygosity, FIS: Wright's $F_{\rm IS}$, Polymorphism, number of private alleles, and mean AR: mean allelic richness) per population of eastern yellow robin (EYR).

Figure S4. Six measures of population genetic diversity before and after removing sex-linked loci (Ho: observed heterozygosity, He: expected heterozygosity, FIS: Wright's F_{IS} , Polymorphism, number of private alleles, and mean AR: mean allelic richness) per population of yellow-tufted honeyeater (YTH). Note that the strong bias in the number of samples for *cassidix* resulted in an upward bias in genetic diversity estimates for this taxon due to ascertainment bias of this genetic dataset; *cassidix* was previously shown to have lowest genetic diversity of all subspecies (Pavlova et al. 2014).

Figure S5. Six measures of population genetic diversity before and after removing sex-linked loci (Ho: observed heterozygosity, He: expected heterozygosity, FIS: Wright's $F_{\rm IS}$, Polymorphism, number of private alleles, and mean AR: mean allelic richness) per population of Leadbeater's possum (LBP).

Figure S6. Principal Component Analyses (PCA) of the genomic dataset of yellow-tufted honeyeater (YTH) before and after removing sex-linked loci.

Figure S7. Principal Component Analyses (PCA) of the genomic dataset of Leadbeater's possum (LBP) before and after removing sex-linked loci. On (a) and (c), individuals are coloured according to their population. On (b) and (d), individuals are coloured by sex.

Table S1. Number of true sex-linked loci that function *filter.sex.linked* was able to identify with variable number of known-sex individuals for EYR, YTH and LBP datasets. The sex ratio of known sex-individuals was 1:1, except for 'All' which included the whole set of known-sex individuals (EYR: 352 females and 429 males, YTH: 289 females and 347 males, LBP: 164 females and 212 males).

n	W-linked/Y- linked	Sex-biased	Z-linked/X- linked	Gametologs	Total
	I	•	EYR	1	1
20	0	0	0	0	0
24	0	0	0	0	0
30	105	0	0	101	206 (6.5%)
40	108	7	0	156	271 (8.5%)
50	110	19	4	162	295 (7.9%)
100	110	80	235	224	649 (20.5%)
200	110	364	458	242	1174 (37%)
400	110	1728	540	245	2623 (82.8%)
All	110	2142	668	248	3168 (100%)
		I.	YTH		
20	0	0	0	0	
24	0	0	0	0	
30	46	0	0	0	46 (1.6%)
40	48	2	0	3	53 (1.9%)
50	48	5	0	3	56 (2%)
100	48	9	328	3	388 (13.6)
200	47	197	702	3	949 (33.2%)
400	48	1080	853	4	1985 (69.5%)
All	48	1899	905	4	2856 (100%)
	I		LBP		l .
20	0	0	0	0	0
24	0	0	0	0	0
30	1	0	0	0	1 (1.6%)
40	1	0	0	0	1 (1.6%)
50	1	0	0	0	1 (1.6%)
100	1	0	10	0	11 (17.2%)
200	1	1	39	0	41 (64.1%)

All 1 2 60 1 6	64 (100%)
-----------------------	-----------

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of molecular biology*, 215(3), 403-410.

Deakin, J. E., Chaumeil, J., Hore, T. A., & Marshall Graves, J. A. (2009). Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. *Chromosome Research*, *17*, 671-685.

Pavlova, A, Selwood, P, Harrisson, KA, Murray, N, Quin, B, Menkhorst, P, Smales, I, Sunnucks, P (2014) Integrating phylogeography and morphometrics to assess conservation merits and inform conservation strategies for an endangered subspecies of a common bird species. *Biological Conservation* 174, 136–146.