

Agent-based null models for examining experimental social interaction networks

Kevin Burke | University of Limerick

My research

 Distributional regression, variable selection, random effects models, neural networks, survival analysis

 Psychology experiments, network science, opinion dynamics, agent-based modelling

https://kevinburke.ie/

Agent based null models ...

scientific reports

Explore content > About the journal > Publish with us >

nature > scientific reports > articles > article

Article Open access Published: 31 March 2023

Agent-based null models for examining experimental social interaction networks

Susan C. Fennell, James P. Gleeson, Michael Quayle, Kevin Durrheim & Kevin Burke

Experimental setup

 Participants ("players") are assigned randomly to one of two groups

 They interact with each other over 40 rounds in a "token exchange" game

They see the results of each round

VIAPPL (Virtual Interaction Application)

VIAPPL: Giving a token

VIAPPL: End of round

Social Norms

- Reciprocation
 Exchanges between pairs of players
- Ingroup favouritism
 Exchanges between
 players in the same
 group

Linear regression model

- Y_{ij} = tokens player i receives from player j
- $G_{ij} = \text{players } i \text{ and } j \text{ are in } \underline{\text{different}} \text{ groups}$
- $Y_{ij} = \alpha + \rho Y_{ji} + \gamma G_{ij} \qquad (i \neq j)$
- "Tokens received from a player"
 - $= \alpha + \rho$ "Tokens given to that player"
 - + γ "Do the groups differ?"

Experimental results

4 games each spanning 40 rounds,
 14 players per game, 20 tokens each

Term	$\hat{ heta}$	Game1	Game2	Game3	Game4
Y_{ji}	$\widehat{ ho}$	0.31	0.29	0.87	0.37
G_{ij}	$\widehat{\gamma}$	-1.95	-1.96	-0.42	-1.99

- $\hat{\rho} > 0 \Rightarrow \text{reciprocity}$
- $\hat{\gamma} < 0 \Rightarrow$ ingroup favouritism
- Games 1, 2, 4 remarkably similar

Statistical significance?

- Response/covariate: $Y_{ij} = \alpha + \rho Y_{ji} + \gamma G_{ij}$

 Constraints: each player starts with 20 tokens, exchanges 1 per round, and does this over 40 rounds

 Dependence: high connectivity between small number of players in a game, and temporal effects

Agent-based null model

- Generate synthetic Y from agent-based model with same rule set as real game
- Fit linear regression (ρ^*, γ^*)
- Repeat: null distribution (random giving)

Coefficients in each round

Network visualisation

Another VIAPPL experiment

First, see who you agree with on 4 topics

"Pencils are charming"

"The circle is a noble shape"

"Concrete blocks are problematic"

"Paper is trustworthy"

Then, give tokens in one round

Another VIAPPL experiment: results

Summary

Applied results

- Players favour their group (and "similar" players)
- Players reciprocate with each other

Modelling approach

- Linear regression + agent-based null models
- Network visualisation
- Future
 - Directly fit agent-based model
 - Multinomial regression
 - Network models (Siena, ERGM)

Reference

- Fennell, Gleeson, Quayle, Durrheim & Burke (2023).
 Agent-based null models for examining experimental social interaction networks. Scientific Reports.
- Also see: kevinburke.ie and arxiv.org/a/burke_k_1