Cyber Physical Systems - Discrete Models Exercise Sheet 6 Solution

Alper Ari aa508@uni-freiburg.edu

Onur Sahin os141@uni-freiburg.de

November 25, 2023

Exercise 1: Linear Time Properties

Part A 2.5/2.5

- $T_1: \{A_0A_1A_2... \mid \forall i \in N_{>0} : a \notin A_i\}$
- $\bullet \ T_2: \left\{A_0A_1A_2... \mid \forall i \in N \ . \ a \in A_i \to b \in A_{i+1}\right\} \ \checkmark$
- $T_3: \{A_0A_1A_2... \mid \forall i \in N : a \in A_i \to b \notin A_i\}$
- $\bullet \ T_4: \left\{A_0A_1A_2... \mid \overset{\infty}{\exists} i \in N \ . \ a \in A_i\right\} \quad \checkmark$
- $\bullet \ T_5: \left\{ A_0 A_1 A_2 ... \mid \overset{\infty}{\exists} i \in N \ . \ a \notin A_i \right\} \quad \checkmark$

Part B 2.5/2.5

- $T_1: \{A_0 \overrightarrow{A_1 A_2 \dots} \mid \forall i \in N : a \in A_i\} \checkmark$
- $T_2: \{A_0A_1A_2... \mid \forall i \in N : a \in A_i \to a \in A_{i+1}\}$
- \bullet $T_3: \{A_0A_1A_2... \ | \ \forall i \in N \ . \ a \in A_i \wedge b \in A_i \}$ \checkmark
- $\bullet \ T_4: \left\{A_0A_1A_2... \mid \overset{\infty}{\exists} i \in N \ . \ b \in A_i\right\} \quad \checkmark$
- $T_5: \{A_0A_1A_2... \mid \forall i \in N : a \notin A_i\}$

Exercise 2: Starvation Freedom

Part A

We can prove that LIVE' \subseteq LIVE if we can show that all words in LIVE' is also in LIVE.

Let $w \in LIVE'$, we have the following cases:

Case 1: w doesn't have infinitely many wait₁s

In this case $w \in \text{LIVE}$ since w doesn't satisfy the predicate

 $\stackrel{\infty}{\exists} \in N$. wait $_1 \in A_i$, therefore doesn't need to satisfy $\stackrel{\infty}{\exists} \in N$. crit $_1 \in A_i$.

Case 2: w has infinitely many wait₁s

In this case, it follows that w also has infinitely many $\operatorname{crit}_1 s$ as well, because for all $\operatorname{wait}_1 \in A_i$ there must be a $\operatorname{crit}_1 \in A_j$ such that j comes after i. There can't be a "last" j that comes after all $\operatorname{wait}_1 s$, since there are infinitely many $\operatorname{wait}_1 s$. Which would mean that $\operatorname{crit}_1 s$ can be finitely many in this case. Since this is not possible, we can conclude that $w \in \operatorname{LIVE}$.

Same reasoning can be trivially applied to wait $_2$ and crit_2 as well.

Part B

Let $\pi = \{ \text{wait}_1 \} \emptyset^\omega$. $p \in \text{LIVE}$ because there is no infinite wait_1 which would require that there must be infinitely many crit_1 s. However, $p \notin \text{LIVE}'$ because there is no crit_1 after the initial wait_1.

No, because that system only enters crit, after a wait, is received. Therefore, ordering is always as described in LIVE'.

Part D

No, because we proved that LIVE' \subseteq LIVE in Part A, this is not a possible trace for any transition system.

Evenies 2. Trees In also

 $au_{P_{3a} \parallel P_{3b}}$

• $(\tau_{P_1}, \tau_{P_2}) = \text{true and } (\tau_{P_2}, \tau_{P_1}) \not\dashv \text{true}$

Their transition systems are identical from Part A. Therefore, their traces are equivalent as well. Therefore, they are subset of each other in both directions.

$$\bullet \ \left(\tau_{P_1},\tau_{P_{3a} \ \| \ P_{3b}}\right) = \text{false and} \ \left(\tau_{P_2},\tau_{P_{3a} \ \| \ P_{3b}}\right) = \text{false}$$

Both τ_{P_1} and τ_{P_2} has the trace $\{x=0\}^\omega$ but $\tau_{P_{3a} \parallel P_{3b}}$ doesn't.

-
$$\left(au_{P_1}, au_4 \right) = \mathrm{false}$$
 and $\left(au_{P_2}, au_4 \right) = \mathrm{false}$

Both τ_{P_1} and τ_{P_2} has the trace $\{x=0\}^\omega$ but τ_4 doesn't.

•
$$\left(au_{P_{3a} \ \parallel \ P_{3b}}, au_4 \right) = {
m true} \ {
m and} \ \left(au_4, au_{P_{3a} \ \parallel \ P_{3b}} \right) = {
m true}$$

Both has the same set of traces:

•
$$\{x > 0\}^{\omega}$$

•
$$\{x > 0\}^n \{x = 0\}^{\omega}$$
 where $n \in N_{>0}$

Therefore, they are subset of each other. \checkmark

$$\begin{array}{c} \bullet \ \left(\tau_{P_{3a} \parallel P_{3b}}, \tau_{P_{1}}\right) \neq \text{true and } \left(\tau_{P_{3a} \parallel P_{3b}}, \tau_{P_{2}}\right) \neq \text{true} \\ & \left\{ \times > 0 \right\}^{\otimes} \in \text{Troces} \left(\mathcal{T}_{P_{3a} \parallel P_{3b}}\right), \text{ but } \notin \text{Troces} \left(\mathcal{T}_{P_{2}}\right) \\ & \text{and } \notin \text{Traces} \left(\mathcal{T}_{P_{1}}\right) \end{array}$$

Both au_{P_1} and au_{P_2} has all the traces $au_{P_{3a} \parallel P_{3b}}$ have so it satisfies the subset relation.

- $\{x > 0\}^{\omega}$
- $\{x > 0\}^n \{x = 0\}^\omega$
- $\begin{array}{c} \bullet \ \, \left(\tau_4,\tau_{P_1}\right) \not \Longrightarrow \text{true and } \left(\tau_4,\tau_{P_2}\right) \not \Longrightarrow \text{true} \\ \text{Both } \tau_{P_1} \text{ and } \tau_{P_2} \text{ has all the traces } \tau_4 \text{ have so it satisfies the subset relation.} \end{array}$

- $\{x > 0\}^{\omega}$
- $\{x > 0\}^n \{x = 0\}^\omega$

Part C 0/2

This is not possible, because $au_{P_{3a} \parallel P_{3b}}$ and au_4 are subsets of au_{P_1} and au_{P_2} . So each E that satisfies the latter must necesarily satisfy the former ones due to transitivity.