

74LCX16240A

LOW VOLTAGE CMOS 16-BIT BUS BUFFER (3-STATE INV.) WITH 5V TOLERANT INPUTS AND OUTPUTS

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:

 $t_{PD} = 4.9 \, \text{ns} \, (MAX.) \, \text{at} \, V_{CC} = 3.0 \, \text{V}$

- POWER-DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: ||OH| = ||OL| = 24 mA (MIN)
- PCI BUS LEVELS GUARANTEED AT 24mA
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2.7V to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 16240
- LATCH-UP PERFORMANCE EXCEEDS 500mA
- ESD PERFORMANCE: HBM >2000V; MM > 200V

DESCRIPTION

The LCX16240A is a low voltage CMOS 16-BIT BUS BUFFER fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

Any $n\overline{G}$ output control governs fo<u>ur</u> BUS BUFFERS. Output Enable input ($n\overline{G}$) tied together gives full 16-bit operation.

When nG is LOW, the outputs are on. When nG is HIGH, the output are in high impedance state.

This device is designed to be used with 3 state memory address drivers, etc.

It has better speed performance at 3.3V than 5V LSTTL family combined with the true CMOS low power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION

February 1999 1/8

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	1G	Output Enable Input
2, 3, 5, 6	1Y1 to 1Y4	Data Outputs
8, 9, 11, 12	2Y1 to 2Y4	Data Outputs
13, 14, 16, 17	3Y1 to 3Y4	Data Outputs
19, 20, 22, 23	4Y1 to 4Y4	Data Outputs
24	4G	Output Enable Input
25	3G	Output Enable Input
30, 29, 27, 26	4A1 to 4A4	Data Inputs
36, 35, 33, 32	3A1 to 3A4	Data Inputs
41, 40, 38, 37	2A1 to 2A4	Data Inputs
47, 46, 44, 43	1A1 to 1A4	Data Inputs
48	2G	Output Enable Input
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	Vcc	Positive Supply Voltage

TRUTH TABLE

INF	OUTPUT	
G	Υn	
L,	L	Н
L	Н	L
Н	Х	Z

X:"H" or"L"
Z: High impedance

IEC LOGIC SYMBOLS

57

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to + 7.0	V
VI	DC Input Voltage	-0.5 to + 7.0	V
Vo	DC Output Voltage (OFF state)	-0.5 to + 7.0	V
Vo	DC Output Voltage (High or Low State) (note1)	-0.5 to V _{CC} + 0.5	V
lıĸ	DC Input Diode Current	-50	mA
lok	DC Output Diode Current (note2)	±50	mA
Io	DC Output Source/Sink Current	±50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current Per Supply Pin	±100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage (OFF state)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	±24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7 to 3.0V)	±12	mA
T _{op}	Operating Temperature:	-40 to +85	ç
dt/dv	Input Transition Rise or Fall Rate (V _{CC} = 3.0V) (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.5V to 3.6V 2) V_{IN} from 0.8V to 2.0V

¹⁾ lo absolute maximum rating must be observed 2) Vo < GND, Vo > Vcc

DC SPECIFICATIONS

Symbol	Parameter	Tes	Test Conditions			lue	Unit
		Vcc			-40 to	85 °C	
		(V)			Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6			2.0		V
VIL	Low Level Input Voltage	2.7 10 3.0				0.8	V
V _{OH}	High Level Output Voltage	2.7 to 3.6		I _O =-100 μA	V _{CC} -0.2		
		2.7	V _I = V _{IH}	I _O =-12 mA	2.2		l _v
		3.0	or V _{IL}	I _O =-18 mA	2.4]
		3.0		I _O =-24 mA	2.2]
V _{OL}	Low Level Output Voltage	2.7 to 3.6		l _O =100 μA		0.2	
		2.7	$V_I = V_{IH}$	l _O =12 mA		0.4	l _v
		3.0	or Vı∟	l _O =16 mA		0.4	
		3.0		I _O =24 mA		0.55	
I _I	Input Leakage Current	2.7 to 3.6	V _I =	0 to 5.5 V		±5	μΑ
loz	3 State Output Leakage Current	2.7 to 3.6	1	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 5.5 \text{V}$		±5	μΑ
l _{off}	Power Off Leakage Current	0	V _I or V _O =	$V_1 \text{ or } V_0 = 5.5 \text{V (per pin)}$		10	μΑ
Icc	Quiescent Supply Current	2.7 to 3.6	V _I = V	′cc or GND		20	
			$V_1 \text{ or } V_0 = 3.6 \text{ to } 5.5 \text{ V}$			<u>±</u> 20	μΑ
Δlcc	ICC incr. per input	2.7 to 3.6	V _{IH} =	V _{IH} = V _{CC} -0.6V		500	μΑ

DYNAMIC SWITCHING CHARACTERISTICS

Symbol	Parameter	Tes	Value			Unit	
		Vcc	Vcc		x = 25 °	Ď.	
		(V)		Min.	Тур.	Max.	
Volp	Dynamic Low Voltage Quiet Output	3.3	$C_L = 50 pF$		0.8		
V _{OLV}	(note 1)		V _{IL} = 0 V		-0.8		V
			V _{IH} =3.3V				

¹⁾ Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

4/8

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}, R_L = 500 \Omega$, Input $t_r = t_f = 2.5 \text{ ns}$)

Symbol	Parameter	Test Condition		Va	lue	Unit
		Vcc	Waveform	-40 to	85 °C	
		(V)		Min.	Max.	
t _{PLH}	Propagation Delay Time	2.7	1	1.5	5.9	ns
t _{PHL}		3.0 to 3.6	ı	1.5	4.9	115
t _{PZL}	Output Enable Time	2.7	2	1.5	7.5	ns
t PZH		3.0 to 3.6	2	1.5	6.5	115
t _{PLZ}	Output Disable Time	2.7	2	1.5	6.5	ne
t _{PHZ}		3.0 to 3.6	2	1.5	5.5	ns
toslh toshl	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tosuh = |tplhm - tplhm|, toshL = |tphlm - tphlm|)

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		Vcc		T _A = 25 °C			
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		7		рF
C _{OUT}	Output Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		15		рF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	$f_{IN} = 10MHz$ $V_{IN} = 0 \text{ or } V_{CC}$		60		pF

¹⁾ CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. Icc(opr) = CPD • Vcc • fin + Icc/16 (per circuit)

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
t _{PZH} , t _{PHZ}	GND

C_L = 50 pF or equivalent (includes jig and probe capacitance)

²⁾ Parameter guaranteed by design

 $R_L = R_1 = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAYS (f=1MHz; 50% duty cicle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cicle)

6/8

TSSOP48 MECHANICAL DATA

DIM.		mm				
-	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.17		0.27	0.0067		0.011
С	0.09		0.20	0.0035		0.0079
D	12.4	12.5	12.6	0.408	0.492	0.496
E	7.95	8.1	8.25	0.313	0.319	0.325
E1	6.0	6.1	6.2	0.236	0.240	0.244
е		0.5 BSC			0.0197 BSC	
К	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

47/