概率论作业

崔嘉祺 华东师范大学 20 级数学强基拔尖班 2023 年 10 月 14 日

摘要

这是华东师范大学数学专业研究生基础课"概率论"作业的个人解答。

目录

第二周	1
第三周	2
第四周	5
第五周	6

第二周

题目 1. 设 A 是集合 Ω 的子集族。A 既是 Boole 代数,又是单调类。证明: A 是 σ -代数。

证明. 由于 A 是 Boole 代数, 故 $\Omega \in A$, 且 A 对补封闭,只要证可列并封闭。

 $\forall \{A_n\}_{n=1}^\infty \subset \mathcal{A},\ \diamondsuit\ B_n=\bigcup_{i=1}^n A_i.$ 由 Boole 代数的有限并封闭性质, $B_n\in\mathcal{A}.$ 注意到有

$$B_1 \subset B_2 \subset B_3 \subset \cdots,$$

记 $\bigcup_{n=1}^{\infty} B_i = \bigcup_{n=1}^{\infty} A_i = A$. 即有 $B_n \nearrow A$. 因为 \mathcal{A} 是单调类,所以 $A = \bigcup_{n=1}^{\infty} A_i \in \mathcal{A}$. 即 \mathcal{A} 对可列并封闭。

第三周

题目 2. 设 A_1 与 A_2 是概率空间 Ω 上的两个独立的事件集。举例说明,如果 A_1 与 A_2 不是 π -系,则 $\sigma(A_1)$ 与 $\sigma(A_2)$ 不一定独立。

解. 令 Ω 是投掷两次骰子的结果的集合, $A_1 = \{A, B\}, A_2 = \{C\},$ 其中,A 是第一次为 1,B 是第二次为 1,C 是两次之和为偶数。由于 $\emptyset \notin A_1, A_2$,从 而 A_1 与 A_2 都不是 π -系。

$$\mathbb{P}(A) = \frac{1}{6}, \ \mathbb{P}(B) = \frac{1}{6}, \ \mathbb{P}(C) = \frac{1}{2}, \ \mathbb{P}(A \cap C) = \frac{1}{12}, \ \mathbb{P}(B \cap C) = \frac{1}{12}.$$

从而

$$\mathbb{P}(A \cap C) = \mathbb{P}(A) \cdot \mathbb{P}(C), \ \mathbb{P}(B \cap C) = \mathbb{P}(B) \cdot \mathbb{P}(C).$$

即 A_1 与 A_2 相互独立。

而 $\sigma(A_1)$ 中一定有 $A \cap B$, 即两次都是 1, $\sigma(A_2)$ 中一定有 C, 而

$$\mathbb{P}(A \cap B) = \frac{1}{36}, \ \mathbb{P}((A \cap B) \cap C) = \frac{1}{36},$$

从而

$$\mathbb{P}((A \cap B) \cap C) = \frac{1}{36} \neq \frac{1}{36} \cdot \frac{1}{2} = \mathbb{P}(A \cap B) \cdot \mathbb{P}(C).$$

即 $\sigma(A_1)$ 与 $\sigma(A_2)$ 不独立。

题目 3. 设 $A \in \lambda$ -系。证明: 若 $A, B \in A, A \cap B = \emptyset$, 则 $A \cup B \in A$.

证明. $B^c = \Omega - B \in \mathcal{A}$. 由于 $A \cap B = \emptyset$, 从而 $A \subset B^c$, 从而 $B^c - A = (A \cup B)^c = \Omega - (A \cup B) \in \mathcal{A}$, 从而 $A \cup B = \Omega - (A \cup B)^c \in \mathcal{A}$.

题目 4. 设 $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间, $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}$ 是两个 σ -代数。定义

$$d(\mathcal{F}_1, \mathcal{F}_2) = 4 \sup_{A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2} |\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)|.$$

 $d(F_1, F_2)$ 是表征 F_1 和 F_2 相依程度的一个量。证明:

- (a) $0 \le d(\mathcal{F}_1, \mathcal{F}_2) \le 1$;
- (b) 若 \mathcal{F}_1 和 \mathcal{F}_2 独立,则 $d(\mathcal{F}_1,\mathcal{F}_2)=0$;
- (c) $d(\mathcal{F}_1, \mathcal{F}_2) = 1$ 当且仅当存在 $A \in \mathcal{F}_1 \cap \mathcal{F}_2$, 满足 $\mathbb{P}(A) = \frac{1}{2}$.

证明. (a) 首先,显然有 $d(\mathcal{F}_1,\mathcal{F}_2) \geq 0$.

 $\forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$,有 $A_1 \cap A_2 \in \mathcal{F}$. 考虑 $|\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)|$:

1 若 $\mathbb{P}(A_1A_2)-\mathbb{P}(A_1)\mathbb{P}(A_2)\geq 0$. 由单调性, $\mathbb{P}(A_1),\mathbb{P}(A_2)\geq \mathbb{P}(A_1A_2)$,从而

$$\begin{split} |\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1) \mathbb{P}(A_2)| &= \mathbb{P}(A_1 A_2) - \mathbb{P}(A_1) \mathbb{P}(A_2) \\ &\leq \mathbb{P}(A_1 A_2) - \mathbb{P}(A_1 A_2)^2 \\ &= \mathbb{P}(A_1 A_2) \left(1 - \mathbb{P}(A_1 A_2)\right) \\ &\leq \frac{1}{4} \left(\mathbb{P}(A_1 A_2) + \left(1 - \mathbb{P}(A_1 A_2)\right)\right)^2 \\ &= \frac{1}{4}. \end{split}$$

2 若 $\mathbb{P}(A_1A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2) \leq 0$. 考虑 A_1^c : 有 $A_1^c \in \mathcal{F}_1$, 从而 $A_1^c \cap A_2 \in \mathcal{F}$.

$$\begin{split} \mathbb{P}(A_{1}^{c}A_{2}) - \mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2}) &= \mathbb{P}(A_{1}^{c} \mid A_{2})\mathbb{P}(A_{2}) - \mathbb{P}(A_{1}^{c})\mathbb{P}(A_{2}) \\ &= (\mathbb{P}(A_{1}^{c} \mid A_{2}) - \mathbb{P}(A_{1}^{c}))\,\mathbb{P}(A_{2}) \\ &= ((1 - \mathbb{P}(A_{1} \mid A_{2})) - (1 - \mathbb{P}(A_{1})))\,\mathbb{P}(A_{2}) \\ &= -\mathbb{P}(A_{1} \mid A_{2})\mathbb{P}(A_{2}) + \mathbb{P}(A_{1})\mathbb{P}(A_{2}) \\ &= -(\mathbb{P}(A_{1}A_{2}) - \mathbb{P}(A_{1})\mathbb{P}(A_{2})) \\ &\geq 0. \end{split}$$

从而同理有

$$\begin{split} |\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1) \mathbb{P}(A_2)| &= - (\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1) \mathbb{P}(A_2)) \\ &= \mathbb{P}(A_1^c A_2) - \mathbb{P}(A_1^c) \mathbb{P}(A_2) \\ &\leq \mathbb{P}(A_1^c A_2) - \mathbb{P}(A_1^c A_2)^2 \\ &\leq \frac{1}{4}. \end{split}$$

综上,无论如何都有 $|\mathbb{P}(A_1A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)| \leq \frac{1}{4}$. 从而

$$d(\mathcal{F}_1, \mathcal{F}_2) = 4 \sup_{A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2} |\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)| \le 4 \cdot \frac{1}{4} = 1.$$

(b) 若 \mathcal{F}_1 和 \mathcal{F}_2 独立,则 $\forall A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$,

$$\mathbb{P}(A_1 A_2) = \mathbb{P}(A_1) \mathbb{P}(A_2).$$

从而

$$d(\mathcal{F}_1, \mathcal{F}_2) = 4 \sup_{A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2} |\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)| = 0.$$

(c) 充分性: 此时, 取 $A \in \mathcal{F}_1 \cap \mathcal{F}_2$, 使得 $\mathbb{P}(A) = \frac{1}{2}$.

$$\left| \mathbb{P}(A) - (\mathbb{P}(A))^2 \right| = \frac{1}{4},$$

则 $d(\mathcal{F}_1, \mathcal{F}_2)$ 能取到上界 $4 \cdot \frac{1}{4} = 1$, 必有

$$d(\mathcal{F}_1, \mathcal{F}_2) = 1.$$

<u>必要性</u>: 要让 $d(\mathcal{F}_1, \mathcal{F}_2) = 1$, 则 (a) 的证明中的不等式要同时取等号,即 $\exists A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$, 使得 $A_1 \cap A_2 \in \mathcal{F}_1 \cap \mathcal{F}_2 \neq \varnothing$, 并且均值不等式

$$\mathbb{P}(A_1 A_2) - \mathbb{P}(A_1 A_2)^2 \le \frac{1}{4}$$

取等,当且仅当 $\mathbb{P}(A_1A_2) = \frac{1}{2}$.

综上,存在 $A = A_1 \cap A_2 \in \mathcal{F}_1 \cap \mathcal{F}_2$, 满足 $\mathbb{P}(A) = \frac{1}{2}$.

第四周

题目 5. 设 A, B 是概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 中两个独立的事件簇,均为 π -系。证明: $\sigma(A)$ 与 $\sigma(B)$ 独立。

证明. $\forall A \in \mathcal{A}$, $A 与 \mathcal{B}$ 独立,由于 \mathcal{B} 是 π -系,从而 $A 与 \sigma(\mathcal{B})$ 独立。由 A 的任意性, \mathcal{A} 与 $\sigma(\mathcal{B})$ 独立。

 $\forall B \in \sigma(\mathcal{B}), B 与 A 独立, 由于 A 是 \pi-系, 从而 B 与 <math>\sigma(A)$ 独立。由 B 的任意性, $\sigma(A)$ 与 $\sigma(\mathcal{B})$ 独立。

第五周

题目 6. 设 (Ω, \mathcal{F}) 是可测空间, $f: \Omega \to \mathbb{R}$. 若 |f| 是可测函数,则 f 是否一定是可测函数?

解. 不一定。设 E 是一个不可测集, 定义函数

$$f(x) = \begin{cases} 1, & x \notin E; \\ -1, & x \in E. \end{cases}$$

从而 |f|=1,是常值函数,可测。但是,

- <math><math> $a \le -1, f^{-1}((-\infty, a)) = \varnothing.$
- <math><math><math> $-1 < a \le 1, f^{-1}((-\infty, a)) = E.$

从而 f 不可测。

题目 7. 设 ξ, η 是概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的两个随机变量, $A \in \mathcal{F}$. 证明: 函数

$$\zeta(\omega) = \xi(\omega)\chi_A + \eta(\omega)\chi_{\overline{A}}$$

也是随机变量。

证明. ξ , η , χ_A , $\chi_{\overline{A}}$ 都是随机变量,即 (Ω, \mathcal{F}) 上的可测函数。可测函数的四则运算仍然是可测函数。从而 $\zeta = \xi \cdot \chi_A + \eta \cdot \chi_{\overline{A}}$ 是可测函数,是随机变量。

题目 8. 设 ξ, η 是同一概率空间上的取值为 $1, 2, \dots, N$ 的两个随机变量,且 $\sigma(\xi) = \sigma(\eta)$. 证明: 存在 $1, 2, \dots, N$ 的排列 i_1, i_2, \dots, i_N ,使得对每个 $j = 1, 2, \dots, N$,有

$$\{\omega \mid \xi = j\} = \{\omega \mid \eta = i_i\}.$$

证明. 记 $A_i = \xi^{-1}(i), B_i = \eta^{-1}(i) \in \mathcal{F}.$ $\Omega = \bigsqcup_{i=1}^N A_i = \bigsqcup_{i=1}^N B_i.$

$$\sigma(\xi) = \xi^{-1}(\{0\}, \{1\}, \dots, \{N\}, \{1, 2\}, \dots, \{N - 1, N\}, \dots, \{1, 2, \dots, N\})$$
$$= \{\emptyset, A_1, \dots, A_N, A_1 \cup A_2, \dots, A_{N-1} \cup A_N, \dots, A_1 \cup \dots \cup A_N\}.$$

$$\sigma(\eta) = \eta^{-1}(\{0\}, \{1\}, \dots, \{N\}, \{1, 2\}, \dots, \{N - 1, N\}, \dots, \{1, 2, \dots, N\})$$
$$= \{\emptyset, B_1, \dots, B_N, B_1 \cup B_2, \dots, B_{N-1} \cup B_N, \dots, B_1 \cup \dots \cup B_N\}.$$

从而必须有 $\{A_1, \dots, A_N\} = \{B_1, \dots, B_N\}$. 从而存在 $1, 2, \dots, N$ 的排列 i_1, i_2, \dots, i_N , 使得 $A_j = B_{i_j}, \forall j = 1, 2, \dots, N$. 此时,

$$\{\omega \mid \xi = j\} = A_j = B_{i_j} = \{\omega \mid \eta = i_j\}.$$

题目 9. 证明: 随机变量 X 连续, 当且仅当 $\forall x$, 有 $\mathbb{P}(X=x)=0$.

证明. 必要性: X 连续, Φ_X 连续。 $\forall \varepsilon > 0, \forall x$,

$$\Phi_X(x+\varepsilon) - \Phi_X(x) = \mathbb{P}(X \le x + \varepsilon) - \mathbb{P}(X \le x) = \mathbb{P}(x < X \le x + \varepsilon).$$

令 $\varepsilon \to 0$, 由 Φ_X 与概率的连续性即得

$$0 = \mathbb{P}(X = x).$$

充分性: $\forall \varepsilon > 0, \forall x,$

$$\Phi_X(x+\varepsilon) - \Phi_X(x) = \mathbb{P}(X \le x + \varepsilon) - \mathbb{P}(X \le x) = \mathbb{P}(x < X \le x + \varepsilon).$$

$$\lim_{\varepsilon \to 0} \left(\Phi_X(x + \varepsilon) - \Phi_X(x) \right) = \lim_{\varepsilon \to 0} \left(\mathbb{P}(x < X \le x + \varepsilon) \right) = \mathbb{P}(X = x) = 0.$$

即 Φ_X 在 x 处连续。由 x 的任意性, Φ_X 连续。