MLSP Course HW3

Problem 1

• Image Visualization:

- Discussion:
 - As we can see, when we preserve less dimensions(like dim=2), we are actually use features that are "shared" by all images, so it look less like original image
 - On the other side, the more dimension we preserve, the more alike it is comparing to original images

Problem 2

- Implementation:
 - To approach NMF, one common solution is to adapt Lee and Seung's multiplicative update rule[https://papers.nips.cc/paper/2000/file
 /f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
 (https://papers.nips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
 as demestrated below:
 - 1. Initialize H and W

2. Update H by:
$$\mathbf{H}^{n+1}_{[i,j]} \leftarrow \mathbf{H}^n_{[i,j]} rac{((\mathbf{W}^n)^T\mathbf{V})_{[i,j]}}{((\mathbf{W}^n)^T\mathbf{W}^n\mathbf{H}^n)_{[i,j]}}$$

3. Update W by:

$$\mathbf{W}^{n+1}_{[i,j]} \leftarrow \mathbf{W}^n_{[i,j]} rac{(\mathbf{V}(\mathbf{H}^{n+1})^T)_{[i,j]}}{(\mathbf{W}^n\mathbf{H}^{n+1}(\mathbf{H}^{n+1})^T)_{[i,j]}}$$

4. Repeat until converge

• Result:

• Discussion:

1 of 2 5/3/21, 7:07 PM

- \circ As the dataset is composed of 4 hand-writing images, we set W 's column number and H 's row number into 4
- \circ As the result shown, the numbers are successfully and clearly factorized, eventhough V-WH still not globally optimal

2 of 2 5/3/21, 7:07 PM