

Depto de Matemática.
Primer Cuatrimestre de 2022
Teoría de la Medida
Práctica 1: Cardinalidad

Ejercicio 1. Sea $f:A\longrightarrow B$ una función cualquiera. Supongamos que $\{A_i\}_{i\in I}$ y $\{B_i\}_{i\in I}$ son familias subindicadas de conjuntos, donde los A_i y B_i son subconjuntos de A y B respectivamente. Demostrar las siguientes propiedades:

1.
$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$
.

2.
$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$$
.

3.
$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f(A_i)$$
.

4. ¿Qué ocurre con
$$f\left(\bigcap_{i\in I}A_i\right)$$
?

5.
$$f^{-1}\left(\bigcup_{i\in I} B_i\right) = \bigcup_{i\in I} f^{-1}(B_i).$$

6.
$$f^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} f^{-1}(B_i).$$

Ejercicio 2. Demostrar que si $f:A\longrightarrow B$ una función, entonces

1.
$$f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$$
.

2.
$$f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$$
.

3. $f(C_1 \cap C_2) \subset f(C_1) \cap f(C_2)$. Dar un ejemplo de que la igualdad no vale en general.

4.
$$f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$$
.

Ejercicio 3. Probar que \sim es una relación de equivalencia.

Ejercicio 4. Supongamos que $A \sim B$ y $C \sim D$.

- 1. Demostrar que $\mathscr{P}(A) \sim \mathscr{P}(B)$.
- 2. Demostrar que $A \times C \sim B \times D$.
- 3. Demostrar que $A^C \sim B^D$.
- 4. Si $A \lesssim C$ entonces $B \lesssim D$.
- 5. Si $A \lesssim B$ entonces $A^C \lesssim B^C$.

Ejercicio 5. * Demostrar que un subconjunto de un conjunto finito es finito.

Ejercicio 6. Demostrar que la función $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ definida por:

$$f(j,k) := \frac{(j+k-1)(j+k)}{2} - j + 1,$$

es una biyección.

Ejercicio 7. Encontrar, de manera explícita, una cantidad numerable de subconjuntos de \mathbb{N} , mutuamente disjuntos y cada uno de ellos numerable. Usar esto para dar otra demostración de que $\mathbb{N} \times \mathbb{N}$ es numerable.

Ejercicio 8. Demostrar, exhibiendo una biyección, que $(0,1) \sim [0,1]$

Ejercicio 9. Demostrar que, para cualquier conjunto A, $\mathscr{P}(A) \sim \{0,1\}^A$.

Ejercicio 10. Demostrar que son equivalentes:

- 1. A es infinito.
- 2. A es coordinable con un subconjunto propio, es decir: Existe $B \subset A$, con $B \neq A$, tal que $A \sim B$.

Ejercicio 11.* Sea A un conjunto infinito y $B\subset A$ numerable. Supongamos que A-B es infinito. Demostrar que $A-B\sim A$.

Ejercicio 12. Sean A y B conjuntos y supongamos que existe una función f de A en B suprayectiva. Demostrar que #B < #A.

Ejercicio 13. Demostrar que el conjunto formado por todos los subconjuntos de \mathbb{N} que son finitos, es numerable. ¿Qué ocurrira con el conjunto de todos los subconjuntos infinitos?

Ejercicio 14.* Sea $\{A_i\}_{i\in I}$ una familia de intervalos de \mathbb{R} . Suponer que los conjuntos en la familia son mutuamente disjuntos, es decir: $A_i \cap A_i = \emptyset$ si $i \neq j$. Demostrar que el conjunto $\{A_i : i \in I\}$ es a lo sumo numerable.

Ejercicio 15.* Recordemos que una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ se dice nodecre-

ciente, si para todos $x,y\in\mathbb{R}$, tales que x< y, se tiene que $f(x)\leq f(y)$. Dada una función nodecreciente, demostrar que el conjunto de todos los puntos de discontinuidad es a lo sumo numerable. *Ayuda*: Demostrar en primera instancia que los límites laterales:

$$\lim_{x\to a^+} f(x) \quad \text{y} \quad \lim_{x\to a^-} f(x)$$

existen para todo $a \in \mathbb{R}$. Luego aplicar el ejercicio anterior.

Ejercicio 16. Demostrar que $\mathbb{R}^{\mathbb{N}} \sim \mathbb{R}$ $(c^{\aleph_0} = c)$.

Ejercicio 17.* Como aprendimos $\mathbb{N} \sim \mathbb{Q}$, esto significa que existe una aplicación biyectiva $f: \mathbb{N} \longrightarrow \mathbb{Q}$, que nos permite enumerar \mathbb{Q} como una suceción $r_i := f(j)$. Definimos la aplicación:

$$T: C(\mathbb{R}) \longrightarrow \mathbb{R}^{\mathbb{N}}$$

$$f \longmapsto T_f$$

donde

$$T_f(j) := f(r_i).$$

- 1. Demostrar que T es inyectiva. Por consiguiente $C(\mathbb{R}) \preceq \mathbb{R}^{\mathbb{N}}$.
- 2. Usando el inciso anterior, demostrar que $C(\mathbb{R}) \sim \mathbb{R}$, donde $C(\mathbb{R})$ es el conjunto de las funciones continuas de \mathbb{R} en si mismo.