

Hyperparameter tuning

Tuning process

Hyperparameters

Try random values: Don't use a grid

Coarse to fine

Hyperparameter 2

Hyperparameter tuning

Using an appropriate scale to pick hyperparameters

Picking hyperparameters at random

Appropriate scale for hyperparameters

Hyperparameters for exponentially weighted averages

deeplearning.ai

Hyperparameters tuning

Hyperparameters tuning in practice: Pandas vs. Caviar

Re-test hyperparameters occasionally

- NLP, Vision, Speech, Ads, logistics,

- Intuitions do get stale. Re-evaluate occasionally.

Babysitting one model

Panda <

Training many models in parallel

Caviar <

Andrew Ng

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Implementing Batch Norm

Batch Normalization

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Working with mini-batches

Implementing gradient descent

Batch Normalization

Why does Batch Norm work?

Learning on shifting input distribution

Why this is a problem with neural networks?

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.

Batch Normalization

Batch Norm at test time

Batch Norm at test time

$$\mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

Multi-class classification

Trying a softmax classifier

Understanding softmax

Loss function

Summary of softmax classifier

Multi-class classification

Softmax regression

Recognizing cats, dogs, and baby chicks

Softmax layer

Softmax examples

