Lectures on the Soft-Collinear Effective Theory

Iain W. Stewart

EFT Course 8.851, SCET Lecture Notes Massachusetts Institute of Technology 2013

(These notes are also part of a dedicated review with Christian W. Bauer.)
(The original version of these notes were typeset by Mobolaji Williams.)

Abstract

Contents

1	Introduction	4
2	Introduction to SCET 2.1 What is SCET?	5 6
3	3.1 Collinear Spinors	14 14 16 17 18
4	4.1 SCET Quark Lagrangian 4.1.1 Step 1: Lagrangian for the larger spinor components 4.1.2 Step 2: Separate collinear and ultrasoft gauge fields 4.1.3 Step 3: The Multipole Expansion for Separating momenta 4.1.4 Final Result: Expand and put pieces together 4.2 Wilson Line Identities 4.3 Collinear Gluon and Ultrasoft Lagrangians 4.4 Feynman Rules for Collinear Quarks and Gluons	21 21 22 23 24 29 30 31 33 33
5	5.1 Spin Symmetry	37 38 38 41 44 44
6	6.1 Ultrasoft-Collinear Factorization	45 46 49 50
7	7.1 $b \to s\gamma$, SCET Loops and Divergences	52 52 58 62
8	8.1 Factorization of Amplitude	65 65 70 72

9	Dijet Production, $e^+e^- \rightarrow 2 \text{ jets}$	72
	9.1 Kinematics, Expansions, and Regions	72
	9.2 Factorization	73
	9.3 Perturbative Results	74
	9.4 Results with Resummation	74
10	SCET II	74
11	$SCET_{II}$ Applications	7 5
	11.1 $\gamma^* \gamma \to \pi^0$	76
	11.2 $B \to D\pi$	76
	11.3 Massive Gauge Boson Form Factor & Rapidity Divergences	77
	11.4 p_T Distribution for Higgs Production & Jet Broadening	77
12	More SCET _I Applications	77
	12.1 $B \to X_s \gamma$	78
	12.2 Drell-Yan: $pp \to Xl^+l^-$	
\mathbf{A}	More on the Zero-Bin	82
	A.1 0-bin subtractions with a 0-bin field Redefinition	82
	A.2 0-bin subtractions for phase space integrations	
В	Feynman Rules with a mass	82
\mathbf{C}	Feynman Rules for the Wilson line W	83
\mathbf{D}	Feynman Rules for Subleading Lagrangians	83
	D.1 Feynman rules for J_{hl}	86
\mathbf{E}	Integral Tricks	89
\mathbf{F}	QCD Summary	90

MIT OpenCourseWare http://ocw.mit.edu

8.851 Effective Field Theory Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.