Rockchip RK816 Datasheet

Revision 1.3 Nov.2017

Revision History

Date	Revision	Description
2017-11-10	1.3	Update register information
2017-5-27	1.2	RK816-3 Updated
2017-4-27	1.1	RK816-2 UPDATED RK816-3 UPDATED
2016-11-4	1.0	Initial release

Table of Content

Figure Table I	f Content	. 4
	r 1 Introduction	
1.1		
1.2	Feature	. 8
1.3	Typical Application Diagrams	. 9
Chapte 2.1	r 2 Package information Ordering information	
2.2	Top Marking	10
2.3	Dimension	11
2.4	Pin Assignment	12
2.5	Pinout Number Order	12
Chapte 3.1	r 3 Electrical Characteristics	
3.2	Recommended Operating Conditions	14
3.3	DC Characteristics	14
Chapte 4.1	r 4 Function Description Function overview	
4.2	State Machine Description	26
4.3	Device Power on Enable Conditions	26
4.4	Device Power on Disable Conditions	26
4.5	Device Sleep Enable Conditions	27
4.6	Power Sequence	27
4.7	Power Control Timing	29
Chapte 5.1	r 5 Register Description Register Summary	
5.2	Register Description	36
	r 6 Thermal Management	
6.2 F	Package Thermal Characteristics	78

Figure Index

Fig.	L-1 RK816 Typical Application Diagram	9
	2-1 QFN40 5mm X 5mm	
Fig.	2-2 Pin Assignment	12
Fig.	4-1 State Machine	26
	1-2 Power On/Off Timing, BOOT1 (RK816-1)	
Fig.	1-3 Turn on sequence when USB is plugged in (PLUP_IN_INT triggered power on e	nable)
		29 ົ
Fig.	1-4 Power Control Timing with VBAT Falling	29
	1-5 PWRON turn on/DEV OFF turn off	
Fig.	1-6 PWRON long press turn off	30
_	1-6 SLEEP/ACTIVE Transition Timing	

Table Index

Table 4-1 Power Start Up Sequence	27
Table 4-2 Boot Timing Characteristics	
Table 4-3 Timing characteristics of USB and VSYS voltages	
Table 4-3 Timing Characteristics of PWRON/DEV OFF	
Table 4-5 Timing Characteristics of SLEEP	31
Table 6-1 Thermal Resistance Characteristics	

Warranty Disclaimer

Rockchip Electronics Co., Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

Information furnished is believed to be accurate and reliable. However, Rockchip Electronics Co., Ltd assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.

Rockchip Electronics Co., Ltd's products are not designed, intended, or authorized for using as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Rockchip Electronics Co., Ltd's product could create a situation where personal injury or death may occur, should buyer purchase or use Rockchip Electronics Co., Ltd's products for any such unintended or unauthorized application, buyers shall indemnify and hold Rockchip Electronics Co., Ltd and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Rockchip Electronics Co., Ltd was negligent regarding the design or manufacture of the part.

Copyright and Patent Right

Information in this document is provided solely to enable system and software implementers to use Rockchip Electronics Co., Ltd 's products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Rockchip Electronics Co., Ltd does not convey any license under its patent rights nor the rights of others.

All copyright and patent rights referenced in this document belong to their respective owners and shall be subject to corresponding copyright and patent licensing requirements.

Trademarks

Rockchip and Rockchip TM logo and the name of Rockchip Electronics Co., Ltd's products are trademarks of Rockchip Electronics Co., Ltd. and are exclusively owned by Rockchip Electronics Co., Ltd. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.

Confidentiality

The information contained herein (including any attachments) is confidential. The recipient hereby acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

Reverse engineering or disassembly is prohibited.

ROCKCHIP ELECTRONICS CO.,LTD. RESERVES THE RIGHT TO MAKE CHANGES IN ITS PRODUCTS OR PRODUCT SPECIFICATIONS WITH THE INTENT TO IMPROVE FUNCTION OR DESIGN AT ANY TIME AND WITHOUT NOTICE AND IS NOT REQUIRED TO UNDATE THIS DOCUMENTATION TO REFLECT SUCH CHANGES.

Copyright © 2017 Rockchip Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Rockchip Electronics Co., Ltd.

Chapter 1 Introduction

1.1 Overview

The RK816 is a complex power management integrated circuit (PMIC) for multi-core system applications powered by Li-ion polymer battery cell, or by a 5V input either form an USB port or form an adapter. The RK816 can provide a complete power management solution with very few external components.

The RK816 provides four configurable synchronous step-down converters, and six LDO regulators. The device also contains a bi-directional charger, the power path management function, and a battery fuel gauge. Power up/power down controller is configurable and can support any customized power up/power down sequences (OTP based). A real time clock (RTC) is also integrated to provide a 32KHz output buffer, and real time function. The RK816 supports 32KHz clock generation based on a crystal oscillator.

The switch mode bi-directional charger, together with power path controller integrated in RK816, allows supplying power form the USB to the loads while it is charging the battery. The charger provides functions such as input current limiting, input voltage limiting, constant temperature charging, trickle current charging, constant current/constant voltage charging, charging termination, dead battery charging, charging over time protection, charging over or under temperature protection, etc. All these functions can be conveniently configured through the I2C digital interface. When the RK816 is powered only by the battery, the bi-directional charger can work on boost mode, it achieves OTG function by supplying power from the battery to the USB.

The charger input current limiting can be set to maximum 2A to accommodate a power adapter as the input supply. When the input current limiting is triggered, the power path controller will distribute the input power in a way that loads have the higher priority than the battery to take the input power. The difference between the input and output power will be used to charge the battery. In a case that the output power required by the loads exceeds the input power, the power path controller will automatically turn on the battery switch so that the battery can supply extra power to the loads together with input supply.

A battery fuel gauge is also integrated in the RK816. Using the proprietary algorithms and the sensed battery current and voltage, the gauge can accurately calculate the battery capacity based on the charging or discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the I2C interface.

The RK816 can dynamically adjust the output voltage of each DC-DC converter, as required by the processor based on the processor's operation status so as to maximize the system efficiency. The output voltages of most channels can be configured through I2C interface. The inputs of all channels have soft start function, which greatly reduces the inrush current at the start up. The frequency compensations of all the control loops are implemented internally to eliminate external compensation components. The 2MHz switching frequency allows small size inductors to be used for buck converters. Also, as all the power switches are integrated on chip, no external power switches and schottky diodes are needed, which reduces the system cost significantly.

The RK816 is available in a QFN40 5mmx5mm package, with a 0.40mm pin pitch.

1.2 Feature

- Input range: 3.8V ~ 5.5V for USB input; 2.7V~4.5V for BAT input
- Switch mode bi-directional Li-ion battery charger providing charging current up to 2.4A,
 2MHz switching frequency for charger and boost
- Power path controller with 4A current path
- Accurate battery fuel gauge
- Real time clock (RTC)
- Low standby current of less than 45uA (at 32KHz clock frequency)
- 2MHz switching frequency for buck converters
- Fast transient response due to the current mode architecture
- Internal frequency compensation and soft start
- Programmable output voltage and power up/power down sequence through I2C interface
- Proprietary circuit architecture achieving high efficiency
- Internal discharge path in off state for bucks and LDOs (configurable through I2C interface)
- Power channels:
 - CH1: Synchronous buck converter, 2A max
 - CH 2: Synchronous buck converter, 2A max
 - CH 3: Synchronous buck converter, 1A max
 - CH 4: Synchronous buck converter, 1A max
 - CH 5: Synchronous boost converter, 0.8A max
 - CH 6, CH7, CH9, CH10, CH11: low drop out voltage regulator, 300mA max
 - CH 8: low noise, high PSRR low drop out voltage regulator, 100mA max
 - CH 12: OTG switch, 0.8A max
- Fixed and programmable power up/power down sequences
- package: 5mm x 5mm QFN40

1.3 Typical Application Diagrams

Fig. 1-1 RK816 Typical Application Diagram

Chapter 2 Package information

2.1 Ordering information

Orderable Device	RoHS status	Package	Package Qty	Device special feature
			4000 and /imman have* C	For
RK816-1	RoHS pass	QFN40(5X5)	4900ea/inner box* 6 inner boxes/outer box	RK3126/RK3128
				application
DV016 2	DoUC pace	OENIAO(EVE)	4900ea/inner box* 6	For RK1108
RK816-2	RoHS pass	QFN40(5X5)	inner boxes/outer box	application
RK816-3	4900ea/inner box* 6		For PX3-SE	
RK816-3 RoHS pass QFN40	QFN40(5X5)	N40(5X5) inner boxes/outer box	application	

2.2 Top Marking

2.3 Dimension

Fig. 2-1 QFN40 5mm X 5mm

	<u> </u>	MILLIMETER			
DESCRIPTION	SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	Α	0.70		0.80	
STAND OFF	A1	0	0.035	0.05	
MATERIAL THICKNESS	A3	-	0.203 _{REF}	-	

DESCRIPTION	SYMBOL			
DESCRIPTION	STMBOL	MIN	NOM	MAX
DACKACE SIZE	D	4.924-		5.076-
PACKAGE SIZE	Е	4.924-		5.076-
EP SIZE	D1	3.300		3.500
	E1	3.300		3.500
LEAD LENGTH	L	0.324		0.476
LEAD PITCH	е	0.400TYP		
LEAD WIDTH	b	0.150		0.250
LEAD TO EXPOSED	k	0.200MIN		

Note:

- Coplanarity applies to leads, corner leads and die attach pad.
- Dimension b applies to metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measure in that radius area.
- 0.15mm of dimension b is recommended in PCB layout.

2.4 Pin Assignment

Fig. 2-2 Pin Assignment

2.5 Pinout Number Order

PIN NO	PIN NAME	PIN DESCRIPTION
1	SCL	I2C clock input
2	SDA	I2C data input and output
3	INT	Interrupt request pin.

PIN NO	PIN NAME	PIN DESCRIPTION
4	SW5	Charger switching node / boost switching node
5	MIDU	Middle point of USB power supply / boost output
6	USB	USB power supply
7	VCC3	Power supply of buck3
8	SW3	Switching node of buck3
9	VFB3	Output feedback voltage of buck3
10	XIN	32.768KHz crystal oscillator input
11	XOUT	32.768KHz crystal oscillator output
12	PWRON	Power on or power off enable pin, active low, internal 20k
		pull high to power supply
13	VCC2	Power supply of buck2
14	SW2	Switching node of buck2
15	VFB2	Output feedback voltage of buck2
16	VCC1	Power supply of buck1
17	SW1	Switching node of buck1
18	VFB1	Output feedback voltage of buck1
19	NRESPWON	Reset pin after power on, active low.
20	CLK32K	32.768KHz clock output, open drain
21	LDO3	LDO3 output
22	VCC5	Power supply of LDO1/2/3
23	LDO1	LDO1 output
24	LDO2	LDO2 output
25	REFGND	Reference ground
26	VREF	Internal reference voltage
27	LDO4	LDO4 output
28	LDO5	LDO5 output
29	VCC6	Power supply of LDO4/5/6
30	LDO6	LDO6 output
31	VCCRTC	Power supply of RTC, decouple it to GND with a 1uF cap
32	SNSN	Battery charging or discharging current sense negative
		terminal
33	SNSP	Battery charging or discharging current sense postive
		terminal
34	TS(GPIO1)	Thermistor input. Connect a thermistor from this pin to
		ground.
		The thermistor is usually inside the battery pack. (multi-
25	DAT	function for GPIO1)
35	BAT	Battery positive terminal
36	SYS	System terminal
37	SW4	Switching node of buck4
38	VFB4	Output feedback voltage of buck4
39	VCC4	Power supply of buck4
40	SLEEP	Sleep mode control input
Exposed	Exposed	Ground
pad	ground	

Chapter 3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Parameter	Min	Max	Units
Voltage range on pins USB, MIDU, SWx	-0.3	6.5	V
Voltage range on pins VCCx, FBx, LDOx, VREF, VCCRTC	-0.3	6.5	V
Voltage range on pin CLK32K, SLEEP	-0.3	6.5	V
Voltage range on pins XIN,XOUT, PWRON	-0.3	VSYS _{MAX} +0.3	
Voltage range on pins NRESPWRON, INT, SDA, SCL	-0.3	4	V
Storage temperature range, Ts	-40	150	$^{\circ}$
Operating temperature range, T ₁	-40	125	°C
Maximum Soldering Temperature, T _{SOLDER}		300	°C

Note 1. Exposure to the conditions exceeded absolute maximum ratings may cause the permanent damages and affect the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

3.2 Recommended Operating Conditions

Parameter	Min	TYP	Max	Units
Voltage range on pins USB	4	5	5.5	V
Voltage range on other pins			5.5	V
Power Dissipation			2.7	W

3.3 DC Characteristics

Test conditions: VUSB =5.0V, TA = $25^{\circ}C$ for typical values, unless otherwise noted.

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
USBIN						
USB Operating Range	V _{USB}		4	5	6	V
USB Under Voltage		Rising	3.65	3.8	3.95	V
Lockout Threshold		Falling		3.6		V
USB vs BAT Threshold		Rising		70		mV
USB VS BAT THRESHOLD		Falling		30		mV
		Min Current	60	80	100	mA
USB Input Current Limit	I _{USB}	Default (OTP)	400	450	500	mA
		Max current		2		Α
Maximum USB and BAT Power on Reset Threshold (Rising)	Vporh				2.2	V
Maximum USB and BAT Power on Reset Threshold (Falling)	V _{PORL}		1.2			V
Over Voltage Lock Out Threshold (USB Rising)	V _{TH(OVL}		5.7	6.0	6.3	V
Over Voltage Lock Out Hysteresis	V _{HYS} (OVLO)			0.2		V

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
High-Side PMOS Peak Current Limit		0.5A step, Default=3.5A	2		3.5	Α
USB Input Quiescent Current	IUSBqu iet	Charger Enable mode			10	mA
CHARGER						
				4.05		V
		VBAT>VRECH,		4.1		V
		ICHG ≤ IBF		4.15		V
	VBAT	Programmable by		4.2		V
Terminal Battery Voltage		REG A3<6:4>		4.25		V
				4.3 4.35		V
	accura cy		-0.5	4.35	0.5	%
Recharge Threshold at V _{BAT}	V _{RECH}			V _{BAT} - 0.15		V
Recharge Hysteresis				75		mV
Trickle Charge Threshold	V _{TRICKLE}		2.85	3.0	3.15	V
Trickle Charge Hysteresis				200		mV
Trickle Charge Current	ITRICKLE			10%		Icc
Dead bat Charge Threshold	V _{DEAD}		1.8	2	2.2	V
Dead bat Charge Hysteresis				200		mV
Dead bat Charge Current	IDEAD			70		mA
Termination Charger Current	${ m I}_{\sf BF}$	50mA Step, default=200mA	150		300	mA
BAT Leakage Current	I _{BATT}	VBAT=4.2V, SYS float, USB float		20	30	uA
Charge current	Icc	0.2A step, default=1.6A	1		2.4	А
Trickle Charge Time		30 minutes step, default=60 minutes	30		210	Min
Total Charge Time		2 hours step, default=6 hours	4		16	Hour
A/D CONVERTER						
Resolution				12		bits
		Battery voltage	2.5		4.84	V
Input voltage range		USB voltage	3.8		6.16	V
gat rollage range		Current channel	-64		64	mV
		TS	0	2.5	2.2	V
Supply current SYS INPUT	Active			0.6		mA
				3.6		V
SYS Regulation Voltage	Vsys	Auto setting		4.4		V
BAT to SYS Resistance		ISYS=200mA , VBAT=4.2V		80		mΩ
BAT to SYS Current Limit	IBATLI M	0.5A step, default=3.5A	2		4	А

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
		SYS short		200		mA
BAT to SYS Current Limit accuracy			-10		10	%
SYS voltage range	V _{SYSINPU}		2.7		5.45	V
SYS low alarm voltage, if 3.3V						
(2.8V~3.5V programmable, step=100mV)	V _{BLO}		3.25	3.3	3.35	V
SYS under voltage threshold(2.7V~3.4V programmable, step=100mV)	V _{BUVL}			2.7		V
SYS under voltage threshold (vin rising)	V _{BUVH}		2.8	2.9	3.0	V
SYS OK voltage threshold (3.3V~3.6V OTP programmable, step=100mV)	Vвок			3.4		V
Stand-by current, V _{DD} =3.6V, device OFF state 32KHz clock running	IQ(STNBY			45		uA
THERMAL PROTECTION						
Thermal Limit Temperature		10 °C step, default=85 °C	85		115	°C
Thermal Shutdown		20 °C step, default=140 °C	140		160	°C
OSCILLATOR						
Switching Frequency CH1,2,3,4(Tj=25°C)	f _{SW}		1.88	2.08	2.28	MHz
LOGIC INPUT					<u> </u>	
Input LOW-Level Voltage	V _{IL}				0.4	V
Input HIGH-Level Voltage	V _{IH}		1.1			V
LOGIC OUTPUT						
LOW-Level Output Voltage, 3.0 mA sink current	Vol				1.1	V
HIGH-Level Output Voltage, 3.0 mA source current	V _{OH}		0.4			V
CH1: BUCK1						
Input supply voltage range	V _{INPUT1}		2.7		5.5	V
Voltage Adjustable Range, 6bit	V _{FB1}	0.7125~1.45V(St ep=12.5mV)/1.8/ 2.0/2.2/2.3V	0.7125		2.300	V
Output voltage transition rate		BUCK1_RATE=00 BUCK1_RATE=01 BUCK1_RATE=10		3 6 12.5		mV/u
(programmable)		BUCK1_RATE=11		25		S
Output over voltage lockout (Vout rising)	V _{OV1}			117		%
Preset Voltage, Default(Tj=25°C)	V _{FB1(Def}		1.078	1.100	1.122	V

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
Preset Voltage, Default(- $10^{\circ} \le T_{j} \le +85^{\circ}$)	V _{FB1(Def}		1.067	1.100	1.133	V
Load Regulation, I _{OUT1} = 200mA to 2A				0.1		%/A
Line Regulation, VCC1 = 3 to 5.5V, IOUT1 = 2A				0.1		%/V
Rated output current	I _{MAX1}	Reg2EH<7:6>=< 11>		2		А
Switch Current Limit	I _{CL1}	0.5A step, default=3A	2.5		4	Α
Operating Quiescent Current, No load, V _{DD} =3.8V (Low Power mode)	I_{Q1}			40		uA
Minimum Switch Current Limit	I _{CLMIN1}	50mA step, default=250mA	150		460	mA
Minimum ON Time	T _{on1(min}			45		ns
Soft-start Time	t _{SS1}	Step=400us, default=400us		400		us
Couт Discharge Switch ON Resistance	R _{DIS1}			250		ohm
CH2: BUCK2						
Input supply voltage range	V_{INPUT2}		2.7		5.5	V
Voltage Adjustable Range, 6bit	V _{FB2}	0.7125~1.45V(St ep=12.5mV)/1.8/ 2.0/2.2/2.3V	0.7125		2.300	V
		BUCK2_RATE=00		3		
Output voltage transition		BUCK2_RATE=01		6		.,,
rate		BUCK2_RATE=10		12.5		mV/u
Outrant average to the co	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BUCK2_RATE=11		25		S
Output over voltage lockout (Vout rising)	V _{OV2}		1.070	117	1 100	%
Preset Voltage, Default(Tj=25°C)	VFB2(Def ault)		1.078	1.100	1.122	V
Preset Voltage, Default(- $10^{\circ} \le T_j \le +85^{\circ}$)	VFB2(Def ault)		1.067	1.100	1.133	V
Load Regulation, I _{OUT2} = 200 mA to 2A				0.1		%/A
Line Regulation, VCC2 = 3 to 5.5V, I_{OUT2} = 2A				0.1		%/V
Rated output current	Імах2	Reg32H<7:6>=< 11>		2		A
Switch Current Limit	I _{CL2}	0.5A step, default=3A	2.5		4	A
Operating Quiescent Current, No load, V _{DD} =3.8V (Low Power mode)	$ m I_{Q2}$			40		uA
Minimum Switch Current Limit	I _{CLMIN2}	50mA step, default=250mA	150		460	mA
Minimum ON Time	T _{on2(min}			45		ns

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
)					
Soft-start Time	t _{SS2}	Step=400us, default=400us		400		us
Couт Discharge Switch ON Resistance	R _{DIS2}			250		ohm
CH3: BUCK3						
Input supply voltage range	V _{INPUT3}		2.7		5.5	V
Feedback Voltage, Default(Tj=25°C)	VFB3(Def ault)		0.784	0.80	0.816	V
Feedback Voltage, Default($-10^{\circ} \le T_{i} \le +85^{\circ}$)	V _{FB3(Def}		0.776	0.80	0.824	V
Output over voltage lockout (Vout rising)	V _{OV3}			117		%
Load Regulation, IOUT3 = 100mA to 1.0A				0.1		%/A
Line Regulation, VCC3 = 3 to 5.5V, IOUT3 = 1A				0.1		%/V
Rated output current	Імахз	Reg36H<4:3>=< 11>		1.0		А
Switch Current Limit	I _{CL3}	0.5A step, default=2A	1.5		3.0	А
Operating Quiescent Current, No load, V _{DD} =3.8V (Low Power mode)	IQ3	adiaait 270		40		uA
Minimum Switch Current Limit	I _{CLMIN3}	50mA step, default=150mA	50		400	mA
Minimum ON Time	Ton3(min			45		ns
Soft-start Time	tss3	Step=400us, default=400us		400		us
Couт Discharge Switch ON Resistance	R _{DIS3}			250		ohm
CH4: BUCK4				L	L	
Input supply voltage range	V _{INPUT4}		2.7		5.5	V
Voltage Adjustable Range, 4bit	V _{FB4}	Step=100mV	0.8		3.5	V
Feedback Voltage, Default(Tj=25℃)	VFB4(Def		3.234	3.30	3.366	V
Feedback Voltage, Default($-10\% \le T_j \le +85\%$)	VFB4(Def		3.201	3.30	3.399	V
Output over voltage lockout (Vout rising)	V _{OV4}			117		%
Load Regulation, I _{OUT4} = 100mA to 1A				0.1		%/A
Line Regulation, VCC4 = 3 to 5.5V, $I_{OUT4} = 1A$				0.1		%/V
Rated output current	Імах4	Reg37H<4:3>=< 11>		1		А
Switch Current Limit	I _{CL4}	0.5A step, default=2A	1.5		3	Α
Operating Quiescent Current, No load,	I _{Q4}			40		uA

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
V _{DD} =3.8V (Low Power mode)						
Minimum Switch Current Limit	I _{CLMIN4}	50mA step, default=150mA	50		400	mA
Minimum ON Time	T _{on4(min}			45		ns
Soft-start Time	tss4	Step=400us, default=400us		400		us
C _{OUT} Discharge Switch ON Resistance	R _{DIS4}			250		Ohm
CH5: BOOST						
Input supply voltage range	V _{INPUT5}		2.7		4.4	V
Output Voltage	V _{FB5}	Step=0.1V,defaul t=5V	4.7		5.4	V
Voltage, Default(Tj=25℃)	VFB5(Def ault)		4.90	5.0	5.10	V
Voltage, Default($-10^{\circ}C \le T_j$ $\le +85^{\circ}C$)	VFB5(Def ault)		4.75	5.0	5.25	V
Load Regulation, I _{OUT5} = 100mA to 2A	,			0.2		%/A
Line Regulation, Vin = 3 to 4.2V, IOUT5 = 1A				0.1		%/V
Rated output current	Імах5	Reg2B<4:3>=10		0.8		Α
Switch Current Limit	I _{CL5}	default=3A	3			Α
Minimum ON Time	T _{on5(min}			70		ns
Soft-start Time	t _{SS5}			400		us
Operating Quiescent Current, No load, V _{DD} =3.8V	I _{Q5}			250		uA
Auto switch load current between PWM and PFM	I _{PWM/PFM} 5			50		mA
CH6: LDO1						
Input supply voltage range	VINPUT6		2.7		5.5	V
Vout Output Voltage Adjustable Range, 5bit(step=100mV)	V оит6		0.8		3.4	V
Vou⊤ Output Voltage, Default(Tj=25°C)	VOUT6(D efault)		0.98	1.00	1.02	V
V _{OUT} Output Voltage, Default(Tj= -10~85℃)	VOUT6(D efault)		0.97	1.00	1.03	V
Vout Load Regulation, Iout = 1mA to 300mA				0.005		%/m A
Vout Line Regulation, V_{IN6} = 3 to 5V, I_{OUT6} = 0.3A				0.03		%/V
Power Supply Reject Ratio (f = 10kHz, Vout6=1V)	PSRR6			50		dB
Output noise (10Hz to 100kHz, V _{OUT6} =1V)	OUT _{NOI} SE6			300		uVrm s
Dropout voltage @ 300mA (Voute=3.4V)	V _{DROP6}			200		mV
Rated output current	Імах6			300		mA

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
Operating Quiescent Current, No load, V _{CC5} =3.8V (Low Power mode)	I _{Q6}			10		uA
Current Limit, VOUT6 = VOUT6 x 0.95	I _{CL6}		350	500		mA
Soft-start Time	tss6			400		us
C _{OUT} Discharge Switch ON Resistance	R _{DIS6}			400		ohm
CH7: LDO2						
Input supply voltage range	V _{INPUT7}		2.7		5.5	V
Vout Output Voltage Adjustable Range, 5bit(step=100mV)	V оит7		0.8		3.4	V
V _{OUT} Output Voltage, Default(Tj=25℃)	V _{OUT7(D} efault)		1.764	1.800	1.836	V
Vout Output Voltage, Default(Tj=-10~85°C)	VOUT7(D efault)		1.746	1.800	1.854	V
Vouт Load Regulation, Iouт = 1mA to 300mA				0.005		%/m A
Vout Line Regulation, VIN7= 3 to 5V, IOUT7 = 0.3A				0.03		%/V
Power Supply Reject Ratio (f = 10kHz, Vout7=1.8V)	PSRR7			50		dB
Output noise (10Hz to 100kHz, Vout7=1.8V)	OUT _{NOI}			300		uVrm s
Dropout voltage @ 300mA (Voutz=3.4V)	V _{DROP7}			200		mV
Operating Quiescent Current, No load, Vccs=3.8V (Low Power mode)	I _{Q7}			10		uA
Rated output current	Імах7			300		mA
Current Limit, VOUT7 = $V_{OUT7} \times 0.95$	I _{CL7}		350	500		mA
Soft-start Time	tss7			400		us
Couт Discharge Switch ON Resistance	R _{DIS7}			400		Ohm
CH8: LDO3						
Input supply voltage range	VINPUT7		2.7		5.5	V
Vout Output Voltage Adjustable Range, 5bit(step=100mV)	V оит8		0.8		3.4	V
V _{OUT} Output Voltage, Default(Tj=25°C)	V _{OUT8(D} efault)		1.078	1.100	1.122	V
Vout Output Voltage, Default(Tj=-10~85°C)	VOUT8 (Default)		1.067	1.100	1.133	V
Vout Load Regulation, Iout = 1mA to 100mA				0.006		%/m A
V_{OUT} Line Regulation, V_{IN8} = 3 to 5V, I_{OUT8} = 0.1A				0.015		%/V
Power Supply Reject Ratio (f = 10kHz, Vouts=1.1V)	PSRR8			70		dB

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
Output noise (10Hz to	OUT _{NOI}			30		uVrm
100kHz, V _{OUT8} =1.1V)	SE8			200		S
Dropout voltage @ 100mA (V _{OUT8} =3.4V)	V _{DROP8}			200		mV
Rated output current	Імах8			100		mA
Operating Quiescent	I_{Q8}			30		uA
Current, No load,						
V _{CC5} =3.8V (Low Power						
mode)	-		150	200		1
Current Limit, VOUT8 =	I_{CL8}		150	200		mA
V _{OUT8} x 0.95	_			400		
Soft-start Time	tss8			400		us
Cout Discharge Switch ON Resistance	R _{DIS8}			400		Ohm
CH9: LDO4						
	W		2.7		ГГ	\ \/
Input supply voltage range Vout Output Voltage	VINPUT9 VOUT9		2.7 0.8		5.5 3.4	V
Adjustable Range,	V 0019		0.6		3.4	\ \ \ \
5bit(step=100mV)						
V _{OUT} Output Voltage,	V _{OUT9(D}		0.98	1.00	1.02	V
Default(Tj=25℃)	efault)		0.50	2.00	1.02	
V _{OUT} Output Voltage,	Vout9(D		0.97	1.00	1.03	V
Default(Tj=-10~85℃)	efault)					
Vout Load Regulation, Iout	,			0.005		%/m
= 1mA to 300mA				0.00		Α
V_{OUT} Line Regulation, V_{IN9} = 3 to 5V, I_{OUT9} = 0.3A				0.03		%/V
Power Supply Reject Ratio	PSRR9			50		dB
$(f = 10kHz, V_{OUT9}=1V)$	FUND			30		ub
Output noise (10Hz to	OUT _{NOI}			300		uVrm
100kHz, V _{оит9} =1V)	SE9					S
Dropout voltage @ 300mA (Voute=3.4V)	V _{DROP9}			200		mV
Operating Quiescent	I_{Q9}			10		uA
Current, No load,						
V_{CC6} =3.8V (Low Power						
mode)						
Rated output current	Імах9			300		mA
Current Limit, VOUT9 = Voutex 0.95	I _{CL9}		350	500		mA
Soft-start Time	t _{SS9}			400		us
C _{OUT} Discharge Switch ON						
Resistance	R _{DIS9}			400		Ohm
CH10: LDO5	<u> </u>		<u> </u>	•		<u>.</u>
Input supply voltage range	VINPUT10		2.7		5.5	V
V _{OUT} Output Voltage	V _{OUT10}		0.8		3.4	V
Adjustable Range,						
5bit(step=100mv)						
Vоит Output Voltage,	Vout10(2.94	3.00	3.06	V
Default(Tj=25℃)	Default)					
V _{O∪T} Output Voltage,	V _{OUT10(}		3.91	3.00	3.09	V
Default(Tj=- $10\sim85^{\circ}$)	Default)					

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
= 1mA to 300mA						Α
Vout Line Regulation, VIN10 = 3 to 5V, IOUT10 = 0.3A				0.01		%/V
Power Supply Reject Ratio	PSRR1 0			50		dB
$(f = 10kHz, V_{OUT10}=3.0V)$ Output noise (10Hz to	OUT _{NOI}			300		uVrm
100kHz, V _{OUT10} =3.0V)	SE10					S
Dropout voltage @ 300mA (Vout10=3.4V)	V _{DROP10}			200		mV
Operating Quiescent Current, No load, V _{CC6} =3.8V (Low Power mode)	$ m I_{Q10}$			10		uA
Rated output current	I _{MAX10}			300		mA
Current Limit, VOUT10 = VOUT10x 0.95	I _{CL10}		350	500		mA
Soft-start Time	tss10			400		us
Соит Discharge Switch ON	R _{DIS10}			400		Ohm
Resistance	KDIS10			400		Offili
CH11: LD06						
Input supply voltage range	V _{INPUT11}		2.7		5.5	V
Vout Output Voltage Adjustable Range, 5bit(step=100mv)	V _{OUT11}		0.8		3.4	V
V _{OUT} Output Voltage, Default(Tj=25°C)	VOUT11(Default)		2.94	3.00	3.06	V
Vout Output Voltage, Default(Tj=-10~85℃)	VOUT11(3.91	3.00	3.09	V
V _{OUT} Load Regulation, I _{OUT} = 1mA to 300mA	Berduity			0.005		%/m A
V_{OUT} Line Regulation, V_{IN11} = 3 to 5V, I_{OUT11} = 0.3A				0.015		%/V
Power Supply Reject Ratio (f = 10kHz, Vout11=3.0V)	PSRR1 1			50		dB
Output noise (10Hz to	OUT _{NOI}			300		uVrm
100kHz, V _{OUT11} =3.0V)	SE11					S
Dropout voltage @ 300mA (VouT11=3.4V)	V _{DROP11}			200		mV
Operating Quiescent Current, No load, V _{CC6} =3.8V (Low Power mode)	I_{Q11}			10		uA
Rated output current	I _{MAX11}			300		mA
Current Limit, VOUT11 = VOUT11x 0.95	I _{CL11}		350	500		mA
Soft-start Time	t _{SS11}			400		us
C _{OUT} Discharge Switch ON	R _{DIS11}			400		Ohm
Resistance						
CH12: OTG Switch			4 7	<u> </u>	F 4	
Input supply voltage range	VINPUT12	dofault-0.0754	4.7		5.4 2	V
output current limit RTC	I_{CL12}	default=0.875A	0.875			Α
	\ /		2 F		ГГ	\/
RTC Operating Voltage	VIN		2.5		5.5	V

PARAMETERS	SYMB OL	CONDITION	MIN	TYP	MAX	UNIT
Range						
RTC Supply Current	\mathbf{I}_{Q}			5	10	uA
CLK32K jitter (open drain)				100		ns
(always on)						
CLK32K duty cycle			40		60	%
Crystal Recommended						
Nominal frequency	fxtal			32.768		KHz
Load Capacitance	C1,C2		18	22	28	pF
Crystal Output	Ср			8.0	3	pF
Capacitance						
Equivalent Series	Rs			65	75	kΩ
Resistance						
Crystal Max Drive Level	DL				1	uW
Spec						
I2C INTERFACE (7 bits sl	ave addre	ess is: 0011010)				
SCL clock frequency	f_{SCL}				1	MHz

Chapter 4 Function Description

4.1 Function overview

4.1.1 POWER UP/POWER DOWN

The RK816 can be powered by either a battery, or an external power supply through the USB port. When the PMIC is powered by battery only, pressing the PWRON key powers up the PMIC. All the power channels start up at the default output voltages with a press power up sequence, which has 2mS intervals between the channels. When the power up process is done, the NRESPWRON turns to high logic level to inform the processor that all the power rails are up and stable. And now the processor can communicate with the PMIC to reconfigure the output voltage of each power channel if needed.

To power down the PMIC, the processor needs to issue a "power down" signal through the I2C interface. Upon receiving the power down signal, the PMIC first saves all the information on the existing states, and then switches the NRESPWRON to low logic level. At this point, the power channels start to be turned off one after another with the power done sequence. If for any reason the processor fails to issue the power down signal, the PMIC can be powered off by "pressing and holding" the PWRON key.

In a case where a battery is the sole power supply and the PMIC is in off state, when an external power supply is plugged into the USB, the PMIC will first check to see if this is a valid power supply. If the power supply from USB is valid, then the power channels are turned on and the battery is charged.

4.1.2 BI-DIRECTIONAL CHARGER

The RK816 has integrated a switch mode bi-directional charger, which provides the functions such as input current limiting, input voltage limiting, constant temperature charging, trickle current charging, constant current/constant voltage charging, charging termination, dead battery charging, charging over time protection, charging over or under temperature protection, etc. All these functions can be conveniently configured through the I2C digital interface.

The input average current limit function allows as large as possible a charging current to be used without having to worry about the input current exceeding the maximum current allowed by the USB port. The input current limits can be configured through I2C interface. For example, when an USB port is used as the input, the input current limit can be configured to either 450mA, or 820mA, to meet the requirements of USB2.0 and USB3.0 respectively.

The charger also has a timer function which sets the maximum charging time for trickle, constant current and constant voltage charging, respectively. If the charging does not complete when a preset maximum charging time is reached, the charging is terminated.

The battery temperature can be monitored through the TS pin. A battery typically has a thermistor inside. The RK816 sources a constant current into the thermistor and senses the voltage across the thermistor through an internal ADC. A safe charging temperature range is preset in the PMIC. The charging can proceed normally if the battery temperature falls within the preset range. If, however, the battery temperature goes either above the upper limit or below the lower limit of the preset range, the charging will pause until the battery temperature goes back in the preset range. If the value of the available thermistor is either too large or too small, a normal resistor can be connected in series or in parallel with the thermistor so that the sensed voltage fits the ADC's input range.

During Charging, Vsys will be set to 3.6V when the battery voltage is below 3.6V. This design is to guarantee that when an external power supply is plugged into the USB port to charge the battery while the battery voltage is low, the Vsys is already at 3.6V, which allows the PMIC to start up quickly without having to wait for the Vsys ramping up.

4.1.3 BOOST AND OTG

When the RK816 is powered only by the battery, the bi-directional charger can work on boost mode, it achieve OTG function by supplying power from the battery to the USB. The synchronous boost converter has 0.8A current capability and is used to power the OTG. The OTG has a built-in current limiting switch, which can effectively protect the boost converter from being damaged if a short circuit occurs at the OTG port.

As the USB input port and the OTG output port share a same pin, when the USB port is being used as a power supply and charging the battery, the OTG switch is forbidden to be turned on. Only when there is no external power supply plugged into the USB port, can the OTG be turned on and serve as a power supply.

The key parameters such as output voltage, and output current limit can be configured through the I2C interface.

4.1.4 POWER PATH MANAGEMENT

A power path management function is integrated in the RK816, which together with the accurate input current limit function, can provide intelligent power path control. In a power path control process, the PMIC gives the outputs, or the system loads, the highest priority of using the input power. The battery is getting charged only if the input power is greater than the output power required by the system loads. The intelligent power path control function automatically reduces the charging current when the output power required by the loads increases. In an extreme case where the required output power is greater than the input power, the charging current will be cut off and the battery will join the input power supply to provide power to the load. This is how the intelligent power path control works: As the system power loading increases, the PMIC will draw more input current from the power supply to meet the output power requirement while keep the charging current unchanged. If the system power loading continues to increase to the point where the input current limit is reached, then the PMIC will lower the charging current so that enough power still goes to the load. If the system power loading further increases and due to the input current limit, the input power can't meet the output power requirement, then the battery will start to discharge to supply power to the load together with the USB power supply. If for some reason the USB is unplugged, the battery will automatically switched in to take over the USB power supply and provide full power to the load. The wide power path loop bandwidth allows all the above mentioned power path switching transient to be quick and seamless and therefore no overshoot and notch occur at the system and output voltages.

To minimize the loss from the voltage drop along the current path when the battery is charged or discharged, an $80m\Omega$ MOSFET is integrated in the RK816 to serve as a control switch as well as the power switch of the switching mode battery charger.

4.1.5 BATTERY FUEL GAUGE

The RK818 provides an accurate battery fuel gauge. A 12-bit ADC is integrated in the RK816 to collect the information on the battery, such as battery voltage, USB voltage, charging/discharging status, battery temperature, etc. Using the proprietary algorithms and the information collected by the ADC, the battery fuel gauge can accurately calculate the battery capacity based on the charging/discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the I2C interface.

4.1.6 BUCK CONVERTERS

The RK816 provides four high current synchronous buck converters, which deliver up to 2A, 2A, 1A and 1A, respectively. An enhanced current mode architecture is used, which improves the transient response significantly. All output voltages can be adjusted dynamically during operation through DVS (Dynamic Voltage Scaling), which guarantees a linear and gradual voltage ramping up and down. A complete set of protection functions, such as short circuit protection, is implemented in the buck converters too.

The inputs of all channels have soft start function, which greatly reduces the inrush current at the start up. The frequency compensations of all the control loops are implemented internally to eliminate external compensation components. The 2MHz switching frequency

allows small size inductors to be used for buck converters. Also, as all the power switches are integrated on chip, no external power switches and schottky diodes are needed, which reduces the system cost significantly.

4.1.7 LOW DROPOUT REGULATORS

The RK816 also integrates six LDOs, with five LDOs (LDO1, LDO2, LDO4, LDO5 and LDO6) capable of providing up to 300mA and one LDOs (LDO3) providing maximum 100mA. The LDO3 is a low noise, high PSRR LDO which delivers up to 100mA current. The parameters such as output voltage in the different operating modes can be adjusted through the I2C interface.

4.1.8 REAL TIME CLOCK

The RK816 integrates a crystal oscillator buffer and a real time clock (RTC). The buffer works with an external 32.768kHz crystal oscillator. With the RTC function, the PMIC provides second/minute/hour/day/month/year information, alarm wake up as well as time calibration. The RK816 provides one channel of 32.768kHz clock with open drain outputs, which is enabled through I2C interface.

4.2 State Machine Description

Fig. 4-1 State Machine

4.3 Device Power on Enable Conditions

If none of the device power-on disable conditions is met, the following conditions are available to turn on and/or maintain the ON state of the device:

- PWRON signal is low for a period of time
- USB is plugged in. (PLUG IN INT goes to high level)
- RTC set time power on

4.4 Device Power on Disable Conditions

The PMIC will be powered off, or can not be powered on under the following conditions:

- PWRON signal keeps at low lever longer than the long-press delay TDPWRONLP and PWRON_LP_ACT is set to "0" (If it is set to "1", the PMIC will restart automatically after the it is shut down) The interrupt corresponding to this condition is PWRON LP INT in the INT STS REG register.
- The die temperature reaches the TSD threshold, in which case the TSD_STS bit in the register THERMAL REG is set to "1".
- Vsys is lower than UVLO threshold, in which case the VB_UV_STS bit in the register

- VB_MON_REG is set to "1".
- Vsys is lower than the low voltage warning threshold which can be set with the VB_LO_SEL bit in the register VB_MON_REG, and the VB_LO_ACT bit is set to "0".
- Vsys is higher than the over voltage protection threshold.
- The DEV_OFF control bit is set to "1". (DEV_OFF is reset when the system is powered off).

4.5 Device Sleep Enable Conditions

- SLEEP signal high level and Reg50<1>=1.
- SLEEP signal low level and Reg50<1>=0.
- Reg4b<1>=1.

4.6 Power Sequence

	AP		RK3126	5/RK3128	RK1108		PX3-SE	
	BOOT(OTP)		1 (RK	816-1)	0 (RK	816-2)	0 (RK	816-3)
	Output voltage range	Rate Current	Default voltage	Power up sequence	Default voltage	Power up sequence	Default voltage	Power up sequence
BUCK1	0.7125V-2.3V (0.7125~1.45V, step 12.5mV)	2A	1.1V	2	1.0V	3	1.1V	2
BUCK2	0.7125V-2.3V (0.7125~1.45V, step 12.5mV)	2A	1.1V	1	2.2V	1	1.1V	1
BUCK3	setting by external resistors	1A	х	3	х	4	X	3
BUCK4	0.8V-3.5V(step 0.1V)	1A	3.3V	1	3.3V	6	3.3V	1
BOOST	4.7-5.4V(step 0.1V)	2A	5V	OFF	5V	OFF	5V	OFF
LDO1	0.8V-3.4V(step 0.1V)	300mA	1.0V	OFF	1.0V	2	1.8V	OFF
LDO2	0.8V-3.4V(step 0.1V)	300mA	1.8V	1	1.8V	5	1.8V	1
LDO3	0.8V-3.4V(step 0.1V)	100mA	1.1V	1	1.0V	2	1.1V	1
LDO4	0.8V-3.4V(step 0.1V)	300mA	1.0V	OFF	3.3V	6	3.3V	OFF
LDO5	0.8V-3.4V(step 0.1V)	300mA	3.0V	4	1.8V	OFF	3.3V	4
LDO6	0.8V-3.4V(step 0.1V)	300mA	3.0V	4	2.8V	OFF	3.3V	4

Table 4-1 Power Start Up Sequence

X: The buck3 voltage is decided by external resistors.

4.5.1 RK816-1

Fig. 4-2 Power On/Off Timing, BOOT1 (RK816-1)

4.5.2 RK816-2/3

In this mode, 10 power channels are powered up, among which, the power up sequence and the default voltage of the BUCK1-4, LDO1-6 can be configured through OTP. Again, The default output voltage of the BUCK3 can also be set by the external resistors.

4.5.3 Boot Timing Characteristic

PARAMETERS	DESCRIPTION	MIN	TYP	MAX	UNIT
Ton1	Power on en to 1st channel enable delay		2		ms
Ton2	1st channel enable delay to 2nd channel enable delay		2		ms
Ton3	2nd channel enable to 3rd channel enable delay		2		ms
Ton4	3rd channel enable to 4th channel enable delay		2		ms
Ton0	1st channel enable delay to NRESPWRON rising edge delay		80		ms
toff1	power disable to NRESPWRON falling delay		1×t _{CK32K}		us
Toff2	NRESPWRON falling delay to supplies disable delay		2		ms

Table 4-2 Boot Timing Characteristics

4.7 Power Control Timing

4.6.1 Device Turn On With USB Plug_in

Fig. 4-3 Turn on sequence when USB is plugged in (PLUP_IN_INT triggered power on enable)

4.6.2 Power Control Timing When Powered By BAT

Fig. 4-4 Power Control Timing with VBAT Falling

4.6.3 Timing Characteristics (USB or VBAT Rising, Falling and Plug in)

Parameter	Description	Min	Тур	Max	Unit
T _{dbVB_LOF}	VB_LO falling-edge de-bouncing delay		2		ms
T _{dbVB_LOR}	VB_LO rising-edge de-bouncing delay		2		ms
T _{dbVB_UVF}	VB_UV falling-edge de-bouncing delay		2		ms
T _{dbPLUG_IN}	USB plug-in de-bouncing delay		100		ms

Parameter	Description	Min	Тур	Max	Unit
T _{dbPLUG_OUT}	USB plug-out de-bouncing delay		100		ms

Table 4-3 Timing characteristics of USB and VSYS voltages

4.6.4 Device State Control Through PWRON Signal

Fig. 4-5 PWRON turn on/DEV_OFF turn off

Fig. 4-6 PWRON long press turn off

4.6.5 Timing Characteristics (PWRON, DEV_OFF)

Parameter	Description	Min	Тур	Max	Unit
$T_{dbPWRONF}$	PWRON falling-edge de-bouncing delay		500		ms
TdPWRONLP	PWRON long press delay to interrupt (PWRON falling edge to PWRON_LP_INT=1)		1		S
T _{dPWRONLPTO}	PWRON long press delay to turn off (PWRON falling edge to NRESPWRON falling edge)		6		S

Table 4-4 Timing Characteristics of PWRON/DEV_OFF

4.6.6 SLEEP State Control

Fig. 4-7 SLEEP/ACTIVE Transition Timing

4.6.7 Timing Characteristics (SLEEP)

Parameter	Description	Min	Тур	Max	Unit
T _{dbACT2SLP}	SLEEP falling-edge de-bouncing delay		3×t _{ck32k}		us
T _{dbSLP2ACT}	SLEEP rising-edge de-bouncing delay		3×t _{ck32k}		us
T _{dSLPON}	Delay to turn on enable after SLEEP rising-edge de-bouncing		1×t _{ck32k}		us

Table 4-5 Timing Characteristics of SLEEP

Chapter 5 Register Description

5.1 Register Summary

HEX ADDRESS	FUNCTION DESCRIPTION	R/W	DEFAULT
RTC REGIS	ΓER	•	
00	SECONDS_REG	RW	0x00
01	MINUTES_REG	RW	0x50
02	HOURS_REG	RW	0x08
03	DAYS_REG	RW	0x21
04	MONTHS_REG	RW	0x01
05	YEARS_REG	RW	0x15
06	WEEKS_REG	RW	0x03
08	ALARM_SECONDS_REG	RW	0x00
09	ALARM_MINUTES REG	RW	0x00
0A	ALARM_HOURS REG	RW	0x00
0B	ALARM_DAYS_REG	RW	0x01
0C	ALARM_MONTHS_REG	RW	0x01
0D	ALARM_YEARS_REG	RW	0x00
10	RTC_CTRL_REG	RW	0x00
11	RTC_STATUS_REG	RW	0x82
12	RTC_INT_REG	RW	0x00
13	RTC_COMP_LSB_REG	RW	0x00
14	RTC_COMP_MSB_REG	RW	0x00
20	CLK32KOUT_REG	RW	0x01
VERSION R	EGISTER		
17	CHIP_NAME_REG	RO	0x81
18	CHIP_VER_REG	RO	0x61
19	OTP_VER_REG	RO	0000/otp<3:0>
POWER ON	OFF REGISTER		
21	VB_MON_REG	RW	0x14
22	VB_UV_REG/THERMAL_REG	RW	0x00
47	PWRON_LP_INT_TIME_REG	RW	0x20
48	PWRON_DB_REG	RW	0x40
4B	DEV_CTRL_REG	RW	0x00
AE	ON_SOURCE_REG	RO	0x00
AF	OFF_SOURCE_REG	RO	0x00
POWER CH	ANNELS ENABLE REGISTER		
23	DCDC_EN_REG1	RW	Boot0:0x0F Boot1:0000/otp<3:0>
24	DCDC_EN_REG2	RW	Boot0:0x00 Boot1:00000/otp<1:0> /0
25	SLP_DCDC_EN_REG	RW	Boot0:0x0F Boot1:0/otp<6:0>
26	SLP_LDO_EN_REG	RW	Boot0:0x36 Boot1:00/otp<5:0>

HEX ADDRESS	FUNCTION DESCRIPTION	R/W	DEFAULT
27	LDO_EN_REG1	RW	Boot0:0x06 Boot1:0000/otp<3:0>
28	LDO_EN_REG2	RW	Boot0:0x03 Boot1:0000/otp<3:0>
BUCK AND	LDO CONFIG REGISTER		
2E	BUCK1_CONFIG_REG	RW	0x7A
2F	BUCK1_ON_VSEL_REG	RW	Boot0:0x1F Boot1:00/otp<5:0>
30	BUCK1_SLP_VSEL_REG	RW	Boot0:0x1F Boot1:00/otp<5:0>
32	BUCK2_CONFIG_REG	RW	0x7A
33	BUCK2_ON_VSEL_REG	RW	Boot0:0x1F Boot1:00/otp<5:0>
34	BUCK2_SLP_VSEL_REG	RW	Boot0:0x1F Boot1:00/otp<5:0>
36	BUCK3_CONFIG_REG	RW	0x2A
37	BUCK4_CONFIG_REG	RW	0x2A
38	BUCK4_ON_VSEL_REG	RW	Boot0:0x19 Boot1:000/otp<4:0>
39	BUCK4_SLP_VSEL_REG	RW	Boot0:0x19 Boot1:000/otp<4:0>
3B	LDO1_ON_VSEL_REG	RW	Boot0:0x22 Boot1:001/otp<4:0>
3C	LDO1_SLP_VSEL_REG	RW	Boot0:0x02 Boot1:000/otp<4:0>
3D	LDO2_ON_VSEL_REG	RW	Boot0:0x2A Boot1:001/otp<4:0>
3E	LDO2_SLP_VSEL_REG	RW	Boot0:0x0A Boot1:000/otp<4:0>
3F	LDO3_ON_VSEL_REG	RW	Boot0:0x23 Boot1:001/otp<4:0>
40	LDO3_SLP_VSEL_REG	RW	Boot0:0x03 Boot1:000/otp<4:0>
41	LDO4_ON_VSEL_REG	RW	Boot0:0x22 Boot1:001/otp<4:0>
42	LDO4_SLP_VSEL_REG	RW	Boot0:0x02 Boot1:000/otp<4:0>
43	LDO5_ON_VSEL_REG	RW	Boot0:0x36 Boot1:001/otp<4:0>
44	LDO5_SLP_VSEL_REG	RW	Boot0:0x16 Boot1:000/otp<4:0>
45	LDO6_ON_VSEL_REG	RW	Boot0:0x36 Boot1:001/otp<4:0>
46	LDO6_SLP_VSEL_REG	RW	Boot0:0x16 Boot1:000/otp<4:0>
INTERRUPT	REGISTER		
49	INT_STS_REG1	RW	0x00
4A	INT_STS_MSK_REG1	RW	0x00
4C	INT_STS_REG2	RW	0x00
4D	INT_STS_MSK_REG2	RW	0x00
4E	INT_STS_REG3	RW	0x00

HEX ADDRESS	FUNCTION DESCRIPTION	R/W	DEFAULT
4F	INT_STS_MSK_REG3	RW	0x00
50	GPIO_IO_POL_REG	RW	0x26
CHARGER,	BOOST AND OTG REGISTER		
2A	OTG_BUCK_LDO_CONFIG_REG	RW	00000/otp<0>/00
2B	CHRG_CONFIG_REG	RW	0x3A
54	BOOST_CON_REG	RW	0x00
54	BOOST_ON_VSEL_REG	RW	0x73
55	BOOST_SLP_VSEL_REG	RW	0x60
9A	CHRG_BOOST_CONFIG_REG	RW	0xC0
A0	SUP_STS_REG	RW	0x0C
A1	USB_CTRL_REG	RW	01000/otp<2:0>
А3	CHRG_CTRL_REG1	RW	0xB3
A4	CHRG_CTRL_REG2	RW	0x52
A5	CHRG_CTRL_REG3	RW	0x82
A6	BAT_CTRL_REG	RW	0xC3
A8	BAT_HTS_TS_REG	RW	0x00
A9	BAT_LTS_TS_REG	RW	0xFF
ADC AND F	UEL GAUGE REGISTER		
AC	TS_CTRL_REG	RW	0x83
AD	ADC_CTRL_REG	RW	0x30
В0	GGCON_REG	RW	0x4A
B1	GGSTS_REG	RW	0x40
B2	ZERO_CUR_ADC_REGH	RW	0x00
В3	ZERO_CUR_ADC_REGL	RW	0x00
B4	GASCNT_CAL_REG3	RW	0x00
B5	GASCNT_CAL_REG2	RW	0x00
B6	GASCNT_CAL_REG1	RW	0x00
B7	GASCNT_CAL_REG0	RW	0x00
B8	GASCNT_REG3	RO	0x00
B9	GASCNT_REG2	RO	0x00
ВА	GASCNT_REG1	RO	0x00
ВВ	GASCNT_REG0	RO	0x00
ВС	BAT_CUR_REGH	RO	0x00
BD	BAT_CUR_REGL	RO	0x00
BE	TS_ADC_REGH	RO	0x00
BF	TS_ADC_REGL	RO	0x00
C0	USB_ADC_REGH	RO	0x00
C1	USB_ADC_REGL	RO	0x00
C2	BAT_OCV_REGH	RO	0x00

C3 BAT_OCV_REGL	RO	
		0x00
C4 BAT_VOL_REGH	RO	0x00
C5 BAT_VOL_REGL	RO	0x00
C6 RELAX_ENTRY_THRES_REGH	RW	0x00
C7 RELAX_ENTRY_THRES_REGL	RW	0x60
C8 RELAX_EXIT_THRES_REGH	RW	0x00
C9 RELAX_EXIT_THRES_REGL	RW	0x60
CA RELAX_VOL1_REGH	RO	0x00
CB RELAX_VOL1_REGL	RO	0x00
CC RELAX_VOL2_REGH	RO	0x00
CD RELAX_VOL2_REGL	RO	0x00
CE RELAX_CUR1_REGH	RO	0x00
CF RELAX_CUR1_REGL	RO	0x00
D0 RELAX_CUR2_REGH	RO	0x00
D1 RELAX_CUR2_REGL	RO	0x00
D2 CAL_OFFSET_REGH	RW	0x7F
D3 CAL_OFFSET_REGL	RW	0xFF
D4 NON_ACT_TIMER_CNT_REG	RO	0x00
D5 VCALIBO_REGH	RO	0x00
D6 VCALIBO_REGL	RO	0x00
D7 VCALIB1_REGH	RO	0x00
D8 VCALIB1_REGL	RO	0x00
D9 FCC_GASCNT_REG3	RO	0x00
DA FCC_GASCNT_REG2	RO	0x00
DB FCC_GASCNT_REG1	RO	0x00
DC FCC_GASCNT_REG0	RO	0x00
DD IOFFSET_REGH	RO	0x00
DE IOFFSET_REGL	RO	0x00
DF SLEEP_CON_SAMP_CUR_REG	RW	0x60
DATA REGISTER		
E0 DATA0_REG	RW	0x00
E1 DATA1_REG	RW	0x00
E2 DATA2_REG	RW	0x00
E3 DATA3_REG	RW	0x00
E4 DATA4_REG	RW	0x00
E5 DATA5_REG	RW	0x00
E6 DATA6_REG	RW	0x00
E7 DATA7_REG	RW	0x00
	RW	0x00
E9 DATA9_REG	RW	0x00

HEX ADDRESS	FUNCTION DESCRIPTION	R/W	DEFAULT
EA	DATA10_REG	RW	0x00
EB	DATA11_REG	RW	0x00
EC	DATA12_REG	RW	0x00
ED	DATA13_REG	RW	0x00
EE	DATA14_REG	RW	0x00
EF	DATA15_REG	RW	0x00
F0	DATA16_REG	RW	0x00
F1	DATA17_REG	RW	0x00
F2	DATA18_REG	RW	0x00

NOTE: Address 60h through 97h are for OTP registers. Customer's accessibility to those addresses is not allowed.

5.2 Register Description

5.2.1 RTC Registers

• SECONDS REG: RTC SECOND REGISTER

Address: 00H			Type: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV		SEC1			SEC	CO	
Default	0	0	0	0	0	0	0	0

Description

Bit 7 Reserved

Bit 6-4 Set the second digit of the RTC seconds (0-5) Bit 3-0 Set the first digit of the RTC seconds (0-9)

Note BCD coding from 00 - 59

• MINUTES REG (REG[01]): RTC MIMUTES REGISTER

ADDRESS: 01H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	MIN1			MINO			
DEFAULT	0	1	0	1	0	0	0	0

Description

Bit 7 RESV: Reserved

Bit 6-4 MIN1: Set the second digit of the RTC minutes (0-5) Bit 3-0 MIN0: Set the first digit of the RTC minutes (0-9)

Note BCD coding from 00 to 59

• HOURS_REG (REG[02]): RTC HOUR REGISTER

ADDRESS: 02H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	PM/AM	RESV	HOUR1		HOUR0			

	_	_	l _	_		l _	_	_
I DEFAILE	1.0	l ()	l ()	l N	1	l ()	I N	l ()
DLIAULI	U	U	U	U	T	U	U	1 0

Description

Bit 7 PM/AM: Only used in PM-AM mode, 1: PM. 0:AM

1: PM, 0:AM

Bit 6 RESV: Reserved

Bit 5-4 HOUR1: Set the second digit of the RTC hours Bit 3-0 HOUR0: Set the first digit of the RTC hours

Note HOUR1/0 BCD coding from 0 to11/23

• DAYS_REG (REG[03]): RTC DAY REGISTER

ADDRESS: 03H					TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	RESV	DAY1		DAY0					
DEFAULT	0	0	1	0	0	0	0	1		

Description

Bit 7-6 RESV: Reserved

Bit 5-4 DAY1: Set the second digit of the RTC days
Bit 3-0 DAY0: Set the first digit of the RTC days
Note BCD coding from 0 to 28/29/30/31

• MONTHS_REG (REG[04]): RTC MONTHS REGISTER

ADDRESS: 04H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	RESV	RESV	MONTH 1	MONTH0				
DEFAULT	0	0	0	0	0	0	0	1	

Description

Bit 7-5 RESV: Reserved

Bit 4 MONTH1: Set the second digit of the RTC months Bit 3-0 MONTH0: Set the first digit of the RTC months

Note BCD coding from 01 to 12

• YEARS_REG (REG[05]): RTC YEARS REGISTER

ADDRESS: 05H					TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	YEAR1				YEAR0					
DEFAULT	0	0	0	1	0	1	0	1		

Description

Bit 7-5 YEAR1: Set the second digit of the RTC years

Bit 3-0 YEARO: Set the first digit of the RTC years

Note BCD coding from 00 to 99

WEEKS_REG (REG[06]): RTC WEEKS REGISTER

ADDRESS: 06H	TYPF: RW
ADDRESS. 00N	

Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	RESV	RESV	RESV	WEEK		
DEFAULT	0	0	0	0	0	0	1	1

Description

Bit 7-3 RESV: Reserved

Bit 3-0 WEEK: Set the second digit of the RTC weeks

Note BCD coding from 1 to 7

ALARM_SECONDS_REG (REG[08]): RTC ALARM SECONDS REGISTER

ADDRESS: 08H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	ALARM_	SEC1		ALARM_	SEC0		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 RESV: Reserved

Bit 6-4 ALARM_SEC1: Set the second digit of the RTC alarm seconds Bit 3-0 ALARM_SEC0: Set the first digit of the RTC alarm seconds

Note BCD coding from 00 to 59

ALARM_MINUTES_REG (REG[09]): RTC ALARM MINUTES REGISTER

ADDRESS: 09H	ADDRESS: 09H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	ALARM_	MIN1		ALARM_	MINO				
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7 RESV: Reserved

Bit 6-4 ALARM_MIN1: Set the second digit of the RTC alarm minutes

Bit 3-0 ALARM_MINO: Set the first digit of the RTC alarm minutes

Note BCD coding from 00 to 59

ALARM_HOURS_REG (REG[0A]): RTC ALARM HOURS REGISTER

ADDRESS: 0	ADDRESS: 0AH			TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ALARM_PM_A M	RESV	ALARM_	HOUR1	OUR1 ALARM_HOUR0			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7 ALARM_PM_AM: Set PM or AM: only used in PM-AM mode, 1: PM. 0:AM

Bit 6 RESV: Reserved

Bit 5-4 ALARM_HOUR1: Set the second digit of the RTC alarm hours Bit 3-0 ALARM_HOUR0: Set the first digit of the RTC alarm hours

Note HOUR1/0 BCD coding from 0 to 11/23

• ALARM_DAYS_REG (REG[0B]): RTC ALARM DAYS REGISTER

ADDRESS: 0BH					W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	ALARM_	DAY1	ALARM_	DAY0		
DEFAULT	0	0	0	0	0	0	0	1

Description

Bit 7-6 RESV: Reserved

Bit 5-4 Set the second digit of the RTC alarm days

Bit 3-0 Set the first digit of the RTC alarm days

Note BCD coding from 0 to 28/29/30/31

• ALARM_MONTHS_REG (REG[0C]): RTC ALARM MONTHS REGISTER

ADDRESS: 0CH				TYPE: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	RESV	RESV	ALARM_ MONTH 1	ALARM_MONTH0					
DEFAULT	0	0	0	0	0	0	0	1		

Description

Bit 7-5 RESV: Reserved

Bit 4 Set the second digit of the RTC alarm months

Bit 3-0 Set the first digit of the RTC alarm months

Note BCD coding from 01 to 12

ALARM_YEARS_REG (REG[0D]): RTC ALARM YEARS REGISTER

ADDRESS: 0DH				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ALARM_	YEAR1			ALARM	_YEAR0		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 Set the second digit of the RTC alarm years

Bit 3-0 Set the first digit of the RTC alarm years

Note BCD coding from 00 to 99

• RTC_CTRL_REG (REG[10]): RTC CONTROL REGISTER

ADDRESS:	ADDRESS: 10H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RTC_REA DSEL	GET_T IME	SET_32_ COUNTE R	TEST_ MODE	AMPM _MOD E	AUTO _CO MP	ROUND_3 0S (Auto Clr)	STOP _RTC
DEFAULT	0	0	0	0	0	0	0	0

Description

- Bit 7 RTC_READ_SEL: 0: Read access directly to dynamic registers.
 - 1: Read access to static shadowed registers.
- Bit 6 GET_TIME: Rising transition of this register transfers dynamic registers into static shadowed registers..
- Bit 5 SET_32_COUNTER: 1: Set the 32Khz counter with COMP_REG value. It must only be used when the RTC is frozen.
- Bit 4 TEST_MODE: 1: Test mode (Auto compensation is enabled when the 32kHz counter reaches at its end)
- Bit 3 AMPM_MODE: 0: 24 hours mode.
 - 1: 12 hours mode (PM-AM mode)
- Bit 2 AUTO_COMP: 0: No auto compensation RW0.
 - 1: Auto compensation enabled
- Bit 1 ROUND_30S: 1: When "1" is written, the time is rounded to the closest minute in the next second, and is self-cleared after rounding.
- Bit 0 STOP_RTC: 0: RTC is running, 1: RTC is frozen. RTC_time can only be changed during RTC frozen.

• RTC_STATUS_REG (REG[11]): RTC STATUS REGISTER

ADDRESS:	ADDRESS: 11H			TYPE: RW	/					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	POWE	ALARM	EVENT_1	EVENT_1	EVENT_1	EVENT_1				
SYMBOL	R_UP		D	Н	М	S	RUN	RES		
STMBOL	(Write	(Write 1 Clr)	(Write 1	(Write 1	(Write 1	(Write 1	(RO)	V		
	1 Clr)	Cir)	Clr)	Clr)	Clr)	Clr)				
DEFAULT	1	0	0	0	0	0	1	0		

Description

- Bit 7 POWER_UP: POWER_UP is set by a reset, is cleared by writing one in this bit.
- Bit 6 ALARM: Indicates that an alarm interrupt has been generated (bit clear by writing 1) The alarm interrupt keeps its low level, until the micro-controller writes 1 in the ALARM bit of the RTC_STATUS register. The timer interrupt is a low-level pulse (15 µs duration).
- Bit 5 EVENT_1D: One day has occurred
- Bit 4 EVENT 1H: One hour has occurred
- Bit 3 EVENT_1M: One minute has occurred
- Bit 2 EVENT_1S :One second has occurred
- Bit 1 RUN: 0: RTC is frozen. 1: RTC is running. This bit shows the real state of the RTC
- Bit 0 RESV: Reserved

• RTC INT REG (REG[12]): RTC INTERRUPT REGISTER

ADDRESS:	ADDRESS: 12H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV			INT_SLEEP _MASK_EN	INT_ALAR M_EN	INT_TIM ER_EN	EVERY		
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-5 RESV: Reserved

Bit 4 INT_SLEEP_MASK_EN:

1: Mask periodic interrupt while the device is in SLEEP mode

0: Normal mode, no interrupt masked.

Bit 3 INT_ALARM_EN: Enable one interrupt when the alarm value is reached

1: Enable

0: Disable

Bit 2 INT_TIMER_EN: Enable periodic interrupt

Bit 1-0 EVERY: 00: every second 01: every minute 10: every hour 11: every

day

• RTC_COMP_LSB_REG (REG[13]): RTC COMPENSATION REGISTER LSB

ADDRESS: 13H	TYPE: R	W						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RTC_COM	RTC_COMP_LSB						
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit7-0 This register contains the number of 32-kHz periods to be added into the 32KHz counter every hour [LSB]

RTC_COMP_MSB_REG (REG[14]): RTC COMPENSATION REGISTER MSB

ADDRESS: 14H	TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RTC_COM	RTC_COMP_MSB						
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit7-0 This register contains the number of 32-kHz periods to be added into the 32KHz counter every hour [MSB]

CLK32KOUT REG (REG[20]): 32KHz CLOCK OUTPUT REGISTER

ADDRESS: 20H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV							CLK32KOUT_ EN	
DEFAULT	0	0	0	0	0	0	0	1	

Description

Bit 7-1 Reserved

Bit 0 CLK32KOUT EN:

1: CLK32K is enabled, 0: CLK32K is disabled

5.2.2 Version Registers

• CHIP_NAME_REG (REG[17]): CHIP NAME REGISTER

ADDRESS: 17H					RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHIP_N	AME<11	L:4>					

	_	_	_	l _	_	l _	_	
J	1 7	1 ()	1 ()	1 ()	()	1 ()	1 ()	1 7
DLIAULI	<u>+</u>	U	U		U		U	_

Description

Bit 7-0 CHIP NAME<11:4>: Chip name high bits

• CHIP_VER_REG (REG[18]): CHIP VERSION REGISTER

ADDRESS: 18H		/		TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHIP_N		CHIP_\	VER<3:	0>			
DEFAULT	0	1	1	0	0	0	0	1

Description

Bit 7-4 CHIP_NAME<3:0>: Chip name low bits

Bit 3-0 CHIP_VER<3:0>: Chip version bits

• OTP_VER_REG (REG[19]): OTP VERSION REGISTER

		4 /						
ADDRESS: 19H				TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				OTP_V	ER<3:0	>	
DEFAULT	0	0	0	0	OTP			

Description

Bit 7-4 RESV: Reserved

Bit 3-0 OTP VER<3:0>: OTP version bits

5.2.3 Power On/Off Registers

VB_MON_REG (REG[21]): SYSTEM VOLTAGE REGISTER

ADDRESS:	21H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	PWRON_	PLUG_I	VB_UV_	VP IO	VB_LO_			
SYMBOL	STS	N_STS	STS	VB_LO_	STS	VB_LO_	SEL	
	(RO)	(RO)	(RO)	ACT	(RO)			
DEFAULT	0	0	0	1	0	1	0	0

Description

Bit 7 PWRON_STS: PWRON key event occurs

0: No PWRON key pressed, 1: PWRON key pressed

Bit 6 PLUG_IN_STS: charger plug-in event occurs(DC PIN voltage >3.8V)

0: no charger plug in

1: charger plugged in

Bit 5 VB_UV_STS: System under voltage lockout status(shut down system if the

bit=1)

Bit 4 VB_LO_ACT: System low voltage action

0: shut down system, 1: insert interrupt

Bit 3 VB LO STS: System low voltage status

0: VBAT>VB_LO_SEL, 1: VBAT<VB_LO_SEL

Bit 2-0 VB_LO_SEL: System low voltage threshold

000~111: 2.8V~ 3.5V, step=100mV

• VB_UV_REG/THERMAL_REG (REG[22]): SYSTEM UNDER VOLTAGE REGISTER/ THERMAL REGISTER

ADDRESS:	22H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	VB_UV_	SEL		TSD_TE MP	HOTDIE_TEMP		HOTDIE_ST S (RO)	TSD_STS (RO)
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-5 VB_UV_SEL: System under voltage status

000~111: 2.7V~3.4V, step=100mV

Bit 4 TSD_TEMP: Thermal shutdown temperature threshold

0: 140℃, 1: 160℃

Bit 3-2 HOTDIE_TEMP: Hot-die temperature threshold

00: 85℃, **01**: 95℃, **10**: 105℃, **11**: 115℃

Bit 1 HOTDIE STS: Hot-die warning

0: No hot-die warning happen, 1: Hot-die warning happen

Bit 0 TSD_STS: Thermal shut down(shut down system if the bit=1)

0: No thermal shut down happen, 1: Thermal shut down happen

• PWRON_LP_TIME_REG (REG[47]): LONG PRESS INTERRUPT TIME REGISTER

ADDRESS: 47H			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	PWRON_ SEL	_LP_TM_	RESV				
DEFAULT	0	0	1	0	0	0	0	0

Description

Bit 7 RESV: Reserved

Bit 6-5 PWRON_LP_TM_SEL: long press PWRON key interrupt time set bits

00: 0.5S, 01: 1S, 10: 1.5S, 11: 2S

Bit 4-0 RESV: Reserved

• PWRON_DB_REG (REG[48]): KEY DEBOUNCE TIME REGISTER

ADDRESS: 48H				TYPE: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV	PWRON_	_DB_SEL	RESV						
DEFAULT	0	1	0	0	0	0	0	0		

Description

Bit 7 RESV: Reserved

Bit 6-5 PWRON_DB_SEL: PWRON key de-bounce time set bits

00: 32uS, 01: 10mS, 10: 20mS, 11: 40mS

Bit 4-0 RESV: Reserved

• DEV CTRL REG (REG[4B]): DEVICE CONTROL REGISTER

ADDRESS: 4BH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	INT_F C_EN	PWRO N_LP_ ACT	PWRON_LP_OFF_ TIME		DEV_OFF _RST	RESV	DEV_SL P	DEV_O FF	
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7 INT_FC_EN: interrupt watch dog function enable bit

1: enable (if AP hadn't clear the interrupt, INT pin output waveform effective time is 2S, and then ineffective time is 10mS)

0: disable

Bit 6 Long press action

0: shut down the system, 1: shut down and restart the system

Bit 5-4 PWRON_LP_OFF_TIME: PWRON long press turn off time:

00: 6S, 01: 8S, 10: 10S, 11: 12S

Bit 3 DEV_OFF_RST: Write 1 will activate reset of the digital core.

Bit 2 RESV: Reserved

Bit 2-0

Bit 1 DEV_SLP: Write 1 allows SLEEP device state (if DEV_OFF = 0 and DEV OFF RST = 0).

Write '0' will start a SLEEP to ACTIVE device state transition (wake-up event) (if DEV_OFF = 0 and DEV_OFF_RST = 0). This bit is cleared in OFF state.

Bit 0 DEV_OFF: Write 1 will start an ACTIVE to OFF or SLEEP to OFF device state transition (switch-off event). This bit is cleared in OFF state.

• ON_SOURCE_REG (REG[AE]): ON SOURCE REGISTER

<u> </u>	OIXCE_IX	-5 (112-5)	<u> </u>	OIT SOURCE	LICUIDILIC			
ADDRESS: AEH TYPE: RO								
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ON_P	ON_PL	ON_	RESTART	RESTART_P	RESV		
STMBUL	WRON	UG_IN	RTC	_RESETB	WRON_LP			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7	ON_PWRON: PMIC power up by pressing PWRON
Bit 6	ON_PLUG_IN: PMIC power up by USB plugging in
Bit 5	ON_RTC: PMIC power up by RTC timer
Bit 4	RESTART_RESETB: PMIC restart by pulling down NRESPWRON pin
Bit 3	RESTART_PWRON_LP: PMIC restart by long pressing PWRON

• OFF_SOURCE_REG (REG[AF]): OFF SOURCE REGISTER

ADDRESS: AFH				TYPE: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	RESV	OFF_S	OFF_T	OFF_S	OFF_DE	OFF_P	OFF_U	OFF_S	
SYMBOL		YS_OV	SD	YS_UV	V_OFF	WRON	SB_OV	YS_LO	
						_LP	_UV		

RESV: Reserved

DEFAULT	0	0	0	0	0	0	0	0

Description

	2 000: iption
Bit 7	RESV: Reserved
Bit 6	OFF_SYS_OV: PMIC power off by Vsys over voltage protection
Bit 5	OFF_TSD: PMIC power off due to over temperature protection
Bit 4	OFF_SYS_UV: PMIC power off due to Vsys under voltage protection
Bit 3	OFF_DEV_OFF: PMIC power off due to DEV_OFF bit written
Bit 2	OFF_PWRON_LP: PMIC power off due to long pressing PWRON
Bit 1	OFF_USB_OV_UV: When PMIC is powered by USB only, PMIC power off due
	to USB over voltage or under voltage.
Bit 0	OFF_SYS_LO: PMIC power off due to Vsys low voltage set by software (If
	Reg21<4> vb_lo_act=0)

5.2.4 Power Channels Enable Registers

DCDC_EN_REG1 (REG[23]): DC-DC ENABLE REGISTER 1

ADDRESS: 23H	TYPE: RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK4 _EN_M ASK	BUCK3 _EN_M ASK	BUCK2 _EN_M ASK	BUCK1 _EN_M ASK	BUCK4 _EN	BUCK3 _EN	BUCK2 _EN	BUCK1 _EN
DEFAULT	0	0	0	0	Boot0:1	111; Boo	ot1:OTP	

Description

Bit 7-4 BUCK(n)_EN_MASK: BUCKn enable bit written mask

1: BUCK(n)_EN bit can be written

0: BUCK(n)_EN bit can't be written

BUCK(n)_EN: BUCKn enable bit Bit 3-0

1: enable, 0: disable

DCDC_EN_REG2 (REG[24]): DC-DC ENABLE REGISTER 2

ADDRESS: 24H		TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	OTG_E N_MA SK	BOOS T_EN_ MASK	RESV	RESV	OTG_EN	BOOST _EN	RESV
DEFAULT	0	0	0	0	0	Boot0:00	;	0
						Boot1:OT	Р	

Description

Bit 7	RESV: Reserved
Bit 6	OTG_EN_MASK: OTG enable bit written mask
	1: OTG_EN bit can be written, 0: OTG_EN bit can't be written

Bit 5 BOOST EN MASK: BOOST enable bit written mask

1: BOOST_EN bit can be written, 0: BOOST_EN bit can't be written

Bit 4-3 **RESV: Reserved**

Bit 2 OTG_EN: OTG enable bit 1: enable, 0: disable

Bit 1 BOOST_EN: BOOST enable bit

1: enable, 0: disable

Bit 0 RESV: Reserved

• SLP_DCDC_EN_REG (REG[25]): DC-DC SLEEP MODE ENABLE REGISTER

ADDRESS: 25H				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	OTG_EN _SLP	BOOST _EN_SL P	RESV	BUCK4_ EN_SLP	BUCK3_ EN_SLP	BUCK2_ EN_SLP	BUCK1 _EN_S LP
DEFAULT	0	Boot0:00	;	0	Boot0:11	11; Boot1	:OTP	
		Boot1:OT	P					

Description

Bit 7 RESV: Reserved

Bit 6 OTG_EN_SLP: OTG enable bit when SLEEP mode

1: enable when SLEEP mode, 0: disable when SLEEP mode

Bit 5 BOOST EN SLP: BOOST enable bit when SLEEP mode

1: enable when SLEEP mode, 0: disable when SLEEP mode

Bit 4 RESV: Reserved

Bit 3-0 BUCK(n)_EN_SLP: BUCK(n) enable bit when SLEEP mode

1: enable when SLEEP mode, 0: disable when SLEEP mode

• SLP_LDO_EN_REG (REG[26]): LDO SLEEP MODE ENABLE REGISTER

ADDRESS: 26H	ADDRESS: 26H							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			LD06_	LD05_	LD04_	LD03_	LD02_	LD01_
SYMBOL	RESV		EN_SL	EN_SL	EN_SL	EN_SL	EN_SL	EN_SL
			P P P P					Р
DEFAULT	0	0	Boot0:110110; Boot1:OTP					

Description

Bit 7-6 RESV: Reserved

Bit 5-0 LDO(n)_EN_SLP: LDO(n) enable bit when SLEEP mode

1: enable when SLEEP mode, 0: disable when SLEEP mode

• LDO_EN_REG1 (REG[27]): LDO ENABLE REGISTER 1

ADDRESS:	27H			TYPE: RO	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	LDO4_EN _MASK	LDO3_EN _MASK	LDO2_EN _MASK	LDO1_EN _MASK	LDO4 _EN	LDO3 _EN	LDO2 _EN	LDO1_ EN
DEFAULT	0	0	0	0	Boot0:0110; Boot1:OTP			TP

Description

Bit 7-4 LDO(n)_EN_MASK: LDO(n) enable bit written mask

1: LDO(n)_EN bit can be written

0: LD0(n)_EN bit can't be written

Bit 3-0 LDO(n)_EN: LDO(n) enable bit

1: enable, 0: disable

• LDO_EN_REG2 (REG[28]): LDO ENABLE REGISTER 2

ADDRESS	ADDRESS: 28H				/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	RESV	LDO6_EN _MASK	LDO5_EN _MASK	RESV	RESV	LDO6_E N	LDO5_E N
DEFAUL	0	0	0	0	0	0	Boot0:11	;
Т							Boot1:OT	·P

Description

Bit 7-6 RESV: Reserved

Bit 5-4 LDO(n)_EN_MASK: LDO(n) enable bit written mask

1: LDO(n)_EN bit can be written

0: LD0(n)_EN bit can't be written

Bit 3-2 RESV: Reserved

Bit 1-0 LDO(n)_EN: LDO(n) enable bit

1: enable, 0: disable

5.2.5 BUCK And LDO Config Registers

BUCK1_CONFIG_REG (REG[2E]): BUCK1 CONFIG REGISTER

ADDRESS:	ADDRESS: 2EH			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK1	_ILMAX	BUCK1_DIS CHRG_EN	BUCK1_RATE		BUCK1_I	LMIN	
DEFAULT	0	1	1	1	1	0	1	0

Description

Bit 7-6 BUCK1_ILMAX: BUCK1 maximum inductor's peak current limit

00: 2.5A, 01: 3A, 10: 3.5A, 11: 4A

Bit 5 BUCK1_DISCHRG_EN: BUCK1 discharge resistor enable bit when shut

down

0: disable discharge resistor when shut down

1: enable discharge resistor when shut down

Bit 4-3 BUCK1_RATE: BUCK1 voltage change rate when DVS

00: 3mV/uS, 01: 6mV/uS, 10: 12.5mV/uS, 11: 25mV/uS

Bit 2-0 BUCK1_ILMIN: BUCK1 minimum inductor's peak current

000: 150mA, 001: 200mA, 010: 250mA, 011: 300mA

100: 340mA, 101: 380mA, 110: 420mA, 111: 460mA

• BUCK1_ON_VSEL_REG (REG[2F]): BUCK1 ON REGISTER

ADDRESS:	ADDRESS: 2FH			TYPE: R	W				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	BUCK1_	BUCK1							
SYMBOL	ON_FPW	_PHAS	BUCK1_ON_VSEL						
	М	Е							
DEFAULT	0	0	Boot0:011111; Boot1:OTP						

Description

Bit 7 BUCK1_ON_FPWM:

1: force PWM mode in active mode

0: PWM/PFM auto change mode(default)

Bit 6 BUCK1 PHASE:

0: normal, 1: inverted

Bit 5-0 BUCK1_ON_VSEL: BUCK1 active mode voltage, 0.7125V~1.45V,

step=12.5mV 000 000: 0.7125V

000 001: 0.725V

.....

111 011: 1.45V

111 100: 1.8V 111 101: 2.0V 111 110: 2.2V 111 111: 2.3V

• BUCK1_SLP_VSEL_REG (REG[30]): BUCK1 SLEEP REGISTER

	<u> </u>	_::== /::						
ADDRESS:	ADDRESS: 30H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK1_S LP_FPWM	RESV	BUCK1_SLP_VSEL					
DEFAULT	0	0	Boot0:011111; Boot1:OTP					

Description

Bit 7 BUCK1_SLP_FPWM:

1: force PWM mode in sleep mode

0: PWM/PFM auto change mode(default)

Bit 6 RESV: Reserved

Bit 5-0 BUCK1_SLP_VSEL: BUCK1 sleep mode voltage , 0.7125V~1.45V,

step=12.5mV 000 000: 0.7125V 000 001: 0.725V

.....

111 011: 1.45V

111 100: 1.8V 111 101: 2.0V 111 110: 2.2V 111 111: 2.3V

• BUCK2_CONFIG_REG (REG[32]): BUCK2 CONFIG REGISTER

ADDRESS:	ADDRESS: 32H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK2	_ILMAX	BUCK2_DIS CHRG_EN	BUCK2_RATE		BUCK2_I	LMIN	
DEFAULT	0	1	1	1	1	0	1	0

Description

Bit 7-6 BUCK2_ILMAX: BUCK2 maximum inductor's peak current limit

00: 2.5A, 01: 3A, 10: 3.5A, 11: 4A

Bit 5 BUCK2_DISCHRG_EN: BUCK2 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

BUCK2_RATE: BUCK2 voltage change rate when DVS

00: 3mV/uS, 01: 6mV/uS, 10: 12.5mV/uS, 11: 25mV/uS

Bit 2-0 BUCK2_ILMIN: BUCK2 minimum inductor's peak current

000: 150mA, 001: 200mA, 010: 250mA, 011: 300mA 100: 340mA, 101: 380mA, 110: 420mA, 111: 460mA

BUCK2_ON_VSEL_REG (REG[33]): BUCK2 ON REGISTER

ADDRESS:	ADDRESS: 33H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK2_O N_FPWM	BUCK2_P HASE	BUCK2_ON_VSEL					
DEFAULT	0	0	Boot0:011111; Boot1:OTP					

Description

Bit 7 BUCK2_ON_FPWM:

1: force PWM mode in active mode

0: PWM/PFM auto change mode(default)

Bit 6 BUCK2 PHASE:

Bit 4-3

0: normal, 1: inverted

Bit 5-0 BUCK2_ON_VSEL: BUCK2 active mode voltage, 0.7125V~1.45V,

step=12.5mV

000 000: 0.7125V 000 001: 0.725V

.

111 011: 1.45V

111 100: 1.8V 111 101: 2.0V

111 110: 2.2V

111 111: 2.3V

• BUCK2 SLP VSEL REG (REG[341): BUCK2 SLEEP REGISTER

ADDRESS:	ADDRESS: 34H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK2_S LP_FPWM	RESV	BUCK2_	SLP_VSEL				
DEFAULT	0	0	Boot0:011111; Boot1:OTP					

Description

Bit 7 BUCK2_SLP_FPWM:

1: force PWM mode in sleep mode

0: PWM/PFM auto change mode(default)

Bit 6 RESV: Reserved

Bit 5-0 BUCK2_SLP_VSEL: BUCK2 sleep mode voltage, 0.7125V~1.45V,

step=12.5mV 000 000: 0.7125V 000 001: 0.725V

.

111 011: 1.45V

111 100: 1.8V 111 101: 2.0V 111 110: 2.2V 111 111: 2.3V

BUCK3_CONFIG_REG (REG[36]): BUCK3 CONFIG REGISTER

			7					
ADDRESS:	36H			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK3_O N_FPWM	BUCK3_P HASE	BUCK3_DI SCHRG_E N	BUCK3_	ILMAX	BUCK	(3_ILMIN	
DEFAULT	0	0	1	0	1	0	1	0

Description

Bit 7 BUCK3_ON_FPWM:

1: force PWM mode

0: PWM/PFM auto change mode(default)

Bit 6 BUCK3_PHASE:

0: normal, 1: inverted

Bit 5 BUCK3_DISCHRG_EN: BUCK3 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down

1: enable discharge resistor when shut down

Bit 4-3 BUCK3_ILMAX: BUCK3 maximum inductor's peak current limit

00: 1.5A, 01: 2A, 10: 2.5A, 11: 3A

Bit 2-0 BUCK3_ILMIN: BUCK3 minimum inductor's peak current

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA 100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

• BUCK4_CONFIG_REG (REG[37]): BUCK4 CONFIG REGISTER

ADDRESS:	ADDRESS: 37H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 B				
SYMBOL	RESV	BUCK4_ PHASE	BUCK4_ DISCHR G_EN	BUCK4_I	LMAX	BUCK4_I	LMIN	
DEFAULT	0	0	1	0	1	0	1	0

Description

Bit 7 RESV: Reserved

Bit 6 BUCK4_PHASE:

0: normal, 1: inverted

Bit 5 BUCK4_DISCHRG_EN: BUCK4 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down

1: enable discharge resistor when shut down

Bit 4-3 BUCK4_ILMAX: BUCK4 maximum inductor's peak current limit

00: 2A, 01: 2.5A, 10: 3A, 11: 3.5A

Bit 2-0 BUCK4_ILMIN: BUCK4 minimum inductor's peak current

000: 50mA, 001: 100mA, 010: 150mA, 011: 200mA

100: 250mA, 101: 300mA, 110: 350mA, 111: 400mA

BUCK4_ON_VSEL_REG (REG[38]): BUCK4 ON REGISTER

ADDRESS:	ADDRESS: 38H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BUCK4_O N_FPWM	RESV		BUCK4_ON_VSEL				
DEFAULT	0	0	0	Boot0:11001; Boot1:OTP				

Description

Bit 7 BUCK4_ON_FPWM:

1: force PWM mode in active mode

0: PWM/PFM auto change mode(default)

Bit 6-5 RESV: Reserved

Bit 4-0 BUCK4_ON_VSEL: BUCK4 active mode voltage, 0.8V~3.5V, step=100mV

00000: 0.8V 00001: 0.9V

.....

11001: 3.3V 11010: 3.4V 11011: 3.5V 111xx: 3.5V

BUCK4_SLP_VSEL (REG[39]): BUCK4 SLEEP REGISTER

ADDRESS: 39H			TYPE: R	W						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BUCK4_S LP_FPWM	RESV		BUCK4_SLP_VSEL						
DEFAULT	0	0	0	Boot0:11001; Boot1:OTP						

Description

Bit 7 BUCK4_SLP_FPWM:

1: force PWM mode in sleep mode

0: PWM/PFM auto change mode(default)

Bit 6-5 RESV: Reserved

Bit 4-0 BUCK4_SLP_VSEL:BUCK4 sleep mode voltage, 0.8V~3.5V, step=100mV

00000: 0.8V 00001: 0.9V

.

11001: 3.3V

11010: 3.4V 11011: 3.5V 111xx: 3.5V

• LDO1_ON_VSEL_REG (REG[3B]): LDO1 ON REGISTER

ADDRESS:	ADDRESS: 3BH			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	LDO1_IM AX	LDO1_DIS CHRG_EN	LDO1_ON_VSEL				
DEFAULT	0	0	1	Boot0:00010; Boot1:OTP				

Description

Bit 7 RESV: Reserved

Bit 6 LDO1_IMAX: LDO1 current limit

0: normal, 1: 130%*normal

Bit 5 LDO1_DISCHRG_EN: LDO1 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

Bit 4-0 LDO1_ON_VSEL: LDO1 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

• LDO1_SLP_VSEL_REG (REG[3C]): LDO1 SLEEP REGISTER

ADDRESS: 3CH				TYPE: R	.W				
Bit	Bit7	Bit6	Bit5	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0					
SYMBOL	RESV			LDO1_SL	.P_VSEL				
DEFAULT	0 0 Boot0:00010; Boot1:OTP								

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO1_SLP_VSEL: LDO1 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

• LDO2_ON_VSEL_REG (REG[3D]): LDO2 ON REGISTER

ADDRESS:	ADDRESS: 3DH			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	LDO2_IM AX	LDO2_DIS CHRG_EN	LDO2_ON_VSEL				
DEFAULT	0	0	1	Boot0:01010; Boot1:OTP				

Description

Bit 7 RESV: Reserved

Bit 6 LDO2_IMAX: LDO2 current limit

0: normal, 1: 130%*normal

Bit 5 LDO2_DISCHRG_EN: LDO2 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

Bit 4-0 LDO2_ON_VSEL: LDO2 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

. . . **.**

11001: 3.3V 11010: 3.4V

• LDO2_SLP_VSEL_REG (REG[3E]): LDO2 SLEEP REGISTER

ADDRESS: 3EH				TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 Bit				
SYMBOL	RESV			LDO2_SLP_VSEL				
DEFAULT	0	0	0	Boot0:01010; Boot1:OTP				

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO2_SLP_VSEL: LDO2 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

• LDO3_ON_VSEL_REG (REG[3F]): LDO3 ON REGISTER

ADDRESS:	ADDRESS: 3FH			TYPE:	: RW			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	LDO3_IM AX	LDO3_DIS CHRG_EN	LDO3_ON_VSEL				
DEFAULT	0	0	1	Boot0:00011; Boot1:OTP				

Description

Bit 7 RESV: Reserved

Bit 6 LDO3 IMAX: LDO3 current limit

0: normal, 1: 130%*normal

Bit 5 LDO3_DISCHRG_EN: LDO3 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down

1: enable discharge resistor when shut down

Bit 4-0 LDO3_ON_VSEL: LDO3 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

LD03_SLP_VSEL_REG (REG[40]): LD03 SLEEP REGISTER

ADDRESS: 40H			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV			LDO3_S	SLP_VSEL				
DEFAULT	0 0 Boot0:00011; Boot1:OTP								

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO3_SLP_VSEL: LDO3 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

. . . **.**

11001: 3.3V 11010: 3.4V

LDO4_ON_VSEL_REG (REG[41]): LDO4 ON REGISTER

ADDRESS:	ADDRESS: 41H			TYPE	: RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SYMBOL	RESV	LDO4_IM AX	LDO4_DIS CHRG_EN	LDO4	_ON_VSE	L					
DEFAULT	0	0	1	Boot0:00010; Boot1:OTP							

Description

Bit 7 RESV: Reserved

Bit 6 LDO4_IMAX: LDO4 current limit

0: normal, 1: 130%*normal

Bit 5 LDO4_DISCHRG_EN: LDO4 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

Bit 4-0 LDO4_ON_VSEL: LDO4 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

● LDO4_SLP_VSEL_REG (REG[42]): LDO4 SLEEP REGISTER

ADDRESS: 42H				TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV			LDO4_S	SLP_VSEL			
DEFAULT	0	0	0	Boot0:0	0010; Boo	ot1:OTP		

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO4_SLP_VSEL: LDO4 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

LDO5_ON_VSEL_REG (REG[43]): LDO5 ON REGISTER

ADDRESS	ADDRESS: 43H				: RW			
Bit	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV	LDO5_IM AX	LDO5_DIS CHRG_EN	LDO5_ON_VSEL				
DEFAULT	0	0	1	Boot0:10110; Boot1:OTP				

Description

Bit 7 RESV: Reserved

Bit 6 LDO5_IMAX: LDO4 current limit

0: normal, 1: 130%*normal

Bit 5 LDO5_DISCHRG_EN: LDO5 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

Bit 4-0 LDO5_ON_VSEL: LDO5 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

....

11001: 3.3V 11010: 3.4V

LD05_SLP_VSEL_REG (REG[44]): LD05 SLEEP REGISTER

ADDRESS:	TYPE:	RW							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV			LDO5_S	LP_VSEL				
DEFAULT	0	0	0	Boot0:1	0110; Bo	oot1:OTP			

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO5_SLP_VSEL: LDO5 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

••••

11001: 3.3V 11010: 3.4V

• LDO6_ON_VSEL_REG (REG[45]): LDO6 ON REGISTER

ADDRESS	ADDRESS: 45H			TYPE:	: RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV	LDO6_IM AX	LDO6_DIS CHRG_EN	LDO6_ON_VSEL				
DEFAULT	0	0	1	Boot0:10110; Boot1:OTP				

Description

Bit 7 RESV: Reserved

Bit 6 LDO6_IMAX: LDO6 current limit

0: normal, 1: 130%*normal

Bit 5 LDO6_DISCHRG_EN: LDO6 discharge resistor enable bit when shut down

0: disable discharge resistor when shut down1: enable discharge resistor when shut down

Bit 4-0 LDO6_ON_VSEL: LDO6 active mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

. . . **.**

11001: 3.3V 11010: 3.4V

LD06_SLP_VSEL_REG (REG[46]): LD06 SLEEP REGISTER

ADDRESS: 46H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV			LDO6_SLP_VSEL					
DEFAULT	0	0	0	Boot0:10110; Boot1:OTP					

Description

Bit 7-5 RESV: Reserved

Bit 4-0 LDO6_SLP_VSEL: LDO6 sleep mode voltage, 0.8V~3.4V, step=0.1V

00000: 0.8V 00001: 0.9V

· · · •

11001: 3.3V 11010: 3.4V

5.2.6 Interrupt Registers

• INT_STS_REG1 (REG[49]): INTERRUPT STATUS REGISTER 1

ADDRESS	ADDRESS: 49H				TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	CHRG _IN_C LAMP	PWRON_R ISE_INT (Write 1 clr)	PWRON_FAL L _INT (Write 1 clr)	CCCV	_T_CNT	-			
DEFAUL T	0	0	0	0	0	0	0	0	

Description

Bit 7	CHRG_IN_CLAMP: USB input current limit or input voltage limit or constant
	temperature occur.

Bit 6 PWRON_RISE_INT: PWRON rising event interrupt

Bit 5 PWRON_FALL _INT: PWRON falling event interrupt

Bit 4-0 CCCV_T_CNT: Charger CCCV timer counter, the unit is hour.

Note: 1: interrupt occurs, write "1" clear. 0: No interrupt occurs

• INT_MSK_REG1 (REG[4A]): INTERRUPT MASK REGISTER 1

ADDRESS: 4AH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	PWRON_ RISE_IM	PWRON_ FALL_IM	RESV					
DEFAUL T	0	0	0	0	0	0	0	0	

Description

Bit 7 RESV: Reserved

Bit 6 PWRON_RISE_IM: PWRON rising event interrupt mask

Bit 5 PWRON_FALL_IM: PWRON falling event interrupt mask

Bit 4-0 RESV: Reserved

• INT_STS_REG2 (REG[4C]): INTERRUPT STATUS REGISTER 2

ADDRE	ADDRESS: 4CH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMB OL	USB_OV _INT(Wri te 1 clr or RegA3<7 >=0 clr	RTC_PER IOD_INT (Write 1 clr)	RTC_ALA RM_INT (Write 1 clr)	HOTDI E_INT (Write 1 clr)	PWRON _LP_IN T (Write 1 clr)	PWRO N_INT (Write 1 clr)	VB_LO _INT (Write 1 clr)	RESV		
DEFA	0	0	0	0	0	0	0	0		
ULT										

Description

Bit 7	USB_OV_INT: USB over voltage event interrupt.
-------	---

Bit 6 RTC_PERIOD_INT: RTC period event interrupt

Bit 5 RTC_ALARM_INT: RTC alarm event interrupt

Bit 4 HOTDIE_INT: Hot die event interrupt

Bit 3 PWRON_LP_INT: PWRON PIN long press event interrupt

Bit 2 PWRON_INT: PWRON event interrupt

Bit 1 VB_LO_INT: System low voltage alarm event interrupt

Bit 0 RESV: Reserved

Note: 1: interrupt occurs, write "1" clear. 0: No interrupt occurs

• INT_MSK_REG2 (REG[4D]): INTERRUPT MASK REGISTER 2

ADDRESS	ADDRESS: 4DH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	USB_O V _IM	RTC_PE RIOD_I M	RTC_AL ARM_IM	HOTDI E_IM	PWRON _LP_IM	PWRON _IM	VB_LO_ IM	RESV		
DEFAUL T	0	0	0	0	0	0	0	0		

Description

BIT /	USB_UV_IM: USB over voltage event interrupt mask
BIT /	USB_UV_IM: USB over voltage event interrupt masi

Bit 6 RTC_PERIOD_IM: RTC period event interrupt mask

Bit 5 RTC_ALARM_IM: RTC alarm event interrupt mask

- Bit 4 HOTDIE_INT: Hot die event interrupt mask
- Bit 3 PWRON LP IM: PWRON PIN long press event interrupt mask.
- Bit 2 PWRON IM: PWRON event interrupt mask
- Bit 1 VB_LO_IM: System low voltage alarm event interrupt status mask

Bit 0 RESV: Reserved

• INT_STS_REG3 (REG[4E]): INTERRUPT STATUS REGISTER 3

ADDR	RESS: 4E	Н		TYPE: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYM BOL	DISCH G_ILIM _INT (Write 1 clr)	CHG_CVT LIM_INT (Write 1 clr or RegA3<7 >=0 clr)	RES V	CHGTS_INT (Write 1 clr or RegA3<7> =0 clr)	CHGTE_ INT (Write 1 clr or RegA3< 7>=0 clr)	CHGOK _INT (Write 1 clr or RegA3< 7>=0 clr)	PLUG_O UT_INT (Write 1 clr)	PLUG_ IN_IN T (Write 1 clr)
DEF AUL T	0	0	0	0	0	0	0	0

Description

- Bit 7 DISCHG_ILIM_INT: Discharging triggering current limit event interrupt.
- Bit 6 CHG_CVTLIM_INT: Charging triggering input voltage limit, or current limit, or temperature protection event interrupt.
- Bit 5 RESV: Reserved
- Bit 4 CHGTS_INT: TS value exceeding upper or lower limits event interrupt.
- Bit 3 CHGTE_INT: Charging overtime event interrupt.
- Bit 2 CHGOK_INT: Charging termination event interrupt
- Bit 1 PLUG_OUT_INT: charger plug out event interrupt(PLUG_IN_STS falling edge interrupt)
- Bit 0 PLUG_IN_INT: charger plug in event interrupt(PLUG_IN_STS rising edge interrupt)

Note: 1: interrupt occurs, write "1" clear. 0: No interrupt occurs

• INT_STS_MSK_REG2 (REG[4F]): INTERRUPT MASK REGISTER 3

ADDRESS	ADDRESS: 4FH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	DISCHG _ILIM_I M	CHG_CVT LIM_IM	RESV	CHGTS _IM	CHGTE _IM	CHGO K _IM	PLUG_O UT_IM	PLUG_I N_IM		
DEFAUL	0	0	0	0	0	0	0	0		
T										

Description

- Bit 7 DISCHG_ILIM_IM: Discharging triggering current limit event interrupt mask
- Bit 6 CHG_CVTLIM_IM: Charging triggering input voltage limit, or current limit, or temperature protection event interrupt mask.
- Bit 5 RESV: Reserved
- Bit 4 CHGTS_IM: TS value exceeding upper or lower limits event interrupt mask

Bit 3 CHGTE_IM: Charging overtime event interrupt mask
Bit 2 CHGOK_IM: Charging termination event interrupt mask
Bit 1 PLUG_OUT_IM: Charger plug out event interrupt mask

Bit 0 PLUG IN IM: Charger plug in event interrupt mask

Note: 1: interrupt occurs, write "1" clear. 0: No interrupt occurs

GPIO_IO_POL_REG (REG[50]): GPIO CONTROL /IO POLARITY REGISTER

ADDRESS	S: 50H			TYPE:	TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV			TS_GP IO_IO	TS_GP IO_DA TA	TS_GPI O_FUN	SLP_POL	INT_POL		
DEFAUL T	0	0	1	0	0	1	1	0		

Description

Bit 7-5 RESV: Reserved

Bit 4 TS_GPIO_IO: TS/GPIO1 pin IO definition bit

1: output, 0: input

Bit 3 TS_GPIO_DATA: TS/GPIO1 pin data bit

Bit 2 TS_GPIO_FUN: TS/GPIO1 function selection bit

1: GPIO function, 0: TS function

Bit 1 SLP_POL: SLEEP pin polarity

1: Active high, 0: Active low

Bit 0 INT_POL: INT pin polarity

1: Active high, 0: Active low

5.2.7 Charger, Boost And OTG Config Registers

• OTG_BUCK_LDO_CONFIG_REG (REG[2A]): OTG, BUCK AND LDO CONFIG REGISTER

ADDRESS: 2AH				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	BUCK12 _PAR_A LWAYSO N_EN	OTG_IL	IM	OTG_DI SCHRG _EN	RESV	BUCK1 2_PAR _EN	BUCK_S LP_LP_ EN	LDO_S LP_LP _EN	
DEFAULT	0	0	0	0	0	OTP	0	0	

Description

Bit 7 BUCK12_PAR_ALWAYSON_EN:

1: BUCK1 and BUCK2 work together during light load when in parallel

0: Only BUCK1 work during light load when in parallel

Bit 6-5 OTG_ILIM: OTG current limit set

00: 0.85A (must be 00)

Bit 4 OTG_DISCHRG_EN: OTG discharge resistor enable bit when shut down

1: enable the OTG discharge resistor when shut down, 0: disable

Bit 3 RESV: Reserved

Bit 2 BUCK12_PAR_EN:

1: enable BUCK1 and BUCK2 work in parallel, 0: disable

Bit 1 BUCK_SLP_LP_EN:

1: enable BUCK work in low power mode in sleep mode, 0: disable

Bit 0 LDO SLP LP EN:

1: enable LDO work in low power mode in sleep mode, 0: disable

• CHRG_CONFIG_REG (REG[2B]): CHARGER CONFIG REGISTER

ADDRESS:	2BH			TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RESV	CHRG_P HASE	RESV	CHRG_ILMAX /BOOST_IMAX		CHRG_I	LMIN		
DEFAULT	0	0	1	0	1	0	1	0	

Description

Bit 7 RESV: Reserved

Bit 6 CHRG_PHASE:

0: normal, 1: reverse

Bit 5 RESV: Reserved

Bit 3-2 CHRG_ILMAX: charger maximum inductor's peak current limit

00: 2A, 01:2.5A, 10: 3A, 11: 3.5A

BOOST_IMAX: BOOST maximum peak current limit

00:2.5A, 01:3A, 10:4A, 11:5A

Bit 1-0 CHRG_ILMIN: charger minimum inductor's peak current

000: 200mA, 001:300mA, 010: 400mA, 011: 500mA 100: 650mA, 101:750mA, 110: 850mA, 111: 950mA

BOOST_CON_REG(REG[52]): BOOST CONTROL REGISTER

ADDRESS:	ADDRESS: 52H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV		CHG_ ILMI N_EN B	BST_CL AMPLO_ EN	RESV			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-6 RESV: Reserved

Bit 5 CHG_ILMIN_ENB: Charger ILMIN Enable

0: Disable ILMIN; 1: Disable ILMIN (It must be disable)

Bit 4 BST_CLAMPLO_EN: BOOST Clamp Enable

1: Enable clamp (it must be enable); 0:Disable clamp

Bit 3-0 RESV: Reserved

BOOST ON VSEL REG (REG[54]): BOOST ON REGISTER

				1 /				
ADDRESS:	ADDRESS: 54H			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	YMBOL BOOST_ON_VSEL			RESV			BST_IR_L OOP_EN	BST_BU RST_EN
DEFAULT	0	1	1	1	0	0	1	1

Description

Bit 7-5 BOOST_ON_VSEL: BOOST active mode voltage, $4.7V\sim5.4V$, step=0.1V

000: 4.7V, 001: 4.8V, 010: 4.9V, 011:5.0V 100: 5.1V, 101: 5.2V, 110: 5.3V, 111:5.4V

Bit 4-2 RESV: Reserved

Bit 1 BOOST_IR_LOOP_EN: BOOST zero current optimization function enable bit

1: enable, 0:disable

Bit 0 BOOST BURST EN: BOOST burst mode enable bit

1: enable, 0:disable

• BOOST_SLP_VSEL_REG (REG[55]): BOOST SLEEP REGISTER

ADDRESS:	ADDRESS: 55H				TYPE: RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BOOST_SLP_VSEL			RESV						
DEFAULT	0	1	1	0	0	0	0	0		

Description

Bit 7-5 BOOST_SLP_VSEL: BOOST sleep mode voltage, 4.7V~5.4V, step=0.1V

000: 4.7V, 001: 4.8V, 010: 4.9V, 011:5.0V 100: 5.1V, 101: 5.2V, 110: 5.3V, 111:5.4V

Bit 4-0 RESV: Reserved

CHRG_BOOST_CONFIG_REG (REG[9A]): CHARGER AND BOOST CONFIG REGISTER

ADDRESS:	ADDRESS: 9AH				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_IN CC_ILIM _EN	CHRG_ASY N_EN	BAT_S'	YS_CMP_	RESV			
DEFAULT	1	1	0	0	0	0	0	0

Description

Bit 7 CHRG_INCC_ILIM_EN: charger input peak current limit enable bit

1: enable, 0: disable

Bit 6 CHRG_ASYN_EN:

1: enable charger works on asynchronous mode during light load, 0: disable

Bit 5-4 BAT_SYS_CMP_DLY: bat voltage and system voltage comparator delay time

00: 20uS, 10: 10uS, 01: 40uS, 11: 20uS

Bit 3-0 **RESV: Reserved (Do not change the default value)**

SUP_STS_REG (REG[A0]): SUPPLY STATUS REGISTER

ADDRESS	: A0H		TYPE	: RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_EXS (RO)	CHG_ (RO)	_STS		USB_V LIM_E N	USB_I LIM_E N	USB_EXS (RO)	USB_EFF (RO)
DEFAULT	0	0	0	0	1	1	0	0

Description

Bit 7 BAT_EXS: Battery existence monitor

0: No battery, 1: With battery

Bit 6-4 CHG_STS: Charging status

000: No Charging 001: Wakeup current charging 010: Trickle current

charging

011: Constant current or constant voltage charging 100: Charging

termination

101: USB over voltage 110: Battery temperature fault 111: Charging time

fault

Bit 3 USB_VLIM_EN: USB input voltage limit enable control

0: Disable 1: Enable

Bit 2 USB_ILIM_EN: USB input current limit enable control

0: Disable 1: Enable

Bit 1 USB_EXS: USB plug-in monitor

0: No USB plugged in 1: USB plugged in

Bit 0 USB_EFF: USB fault monitor

0: USB fault 1: USB okay

● USB_CTRL_REG (REG[A1]): USB CONTROL REGISTER

ADDRESS:	ADDRESS: A1H				RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_ CT_EN	USB_V	USB_VLIM_VSEL			USB_ILIM_S	SEL	
DEFAULT	0	1	0	0	0	OTP		

Description

Bit 7 CHRG_CT_EN: Charger Thermal fold-back enable

0: Disable 1: Enable

Bit 6-4 USB_VLIM_VSEL: the USB input constant voltage selection

000: 4.0V, 001: 4.1V, 010: 4.2V, 011: 4.3V

100: 4.4V, 101: 4.5V, 110: 4.6V, 111: 4.7V

Bit 3 RESV: Reserved

Bit 2-0 USB ILIM SEL: USB input current selection

000: 0.45A, 001: 0.08A, 010: 0.85A, 011: 1A

100: 1.25A, 101: 1.50A, 110: 1.75A, 111: 2A

Note DEFAULT value is set by BOOT

CHRG CTRL REG1 (REG[A31): CHARGER CONTROL REGISTER 1

ADDRESS:	ADDRESS: A3H			TYPE:	RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_ EN	CHRG_V	/OL_SEI	-	RESV	CHRG_CUF	R_SEL	
DEFAULT	1	0	1	1	0	0	1	1

Description

- Bit 7 CHRG_EN: Charger enable
 - 0: Disable 1: Enable
- Bit 6-4 CHRG_VOL_SEL: Charging termination voltage selection
 - 000: 4.05V, 001: 4.1V, 010: 4.15V, 011: 4.2V
 - 100: 4.25V, 101: 4.3V, 110,111: 4.35V
- Bit 3 RESV: Reserved
- Bit 2-0 CHRG_CUR_SEL: Charging current selection

000: 1A, 001: 1.2A, 010: 1.4A, 011: 1.6A

100: 1.8A, 101: 2A, 110: 2.2A, 111: 2.4A

• CHRG_CTRL_REG2 (REG[A4]): CHARGER CONTROL REGISTER 2

ADDRESS:	ADDRESS: A4H				W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CHRG_T L	ERM_SE	CHRG_	_TIMER_TF	RIKL	CHRG_TI	MER_CCC\	J
DEFAULT	0	1	0	1	0	0	1	0

Description

- Bit 7-6 CHRG_TERM_SEL: Charging termination current selection
 - 00:150mA, 01:200mA, 10:300mA, 11:400mA
- Bit 5-3 CHRG_TIMER_TRIKL: Trickle current charging time selection
 - 000: 30min, 001: 45min, 010: 60min, 011: 90min
 - 100:120min, 101:150min, 110:180min, 111:210min
- Bit 2-0 CHRG_TIMER_CCCV: Constant current/voltage charging timeout threshold selection

000: 4h, 001: 5h, 010: 6h, 011: 8h

100:10h, 101:12h, 110:14h, 111:16h

• CHRG_CTRL_REG3 (REG[A5]): CHARGER CONTROL REGISTER 3

ADDRESS:	ADDRESS: A5H				RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SYS_C	RESV	CHRG_TE	RESV	CHRG_TIM	CHRG_TIM	RESV	
SYMBOL	AN_SD		RM_ANA_		ER_TRIKL	ER_CCCV_		
			DIG		_EN	EN		
DEFAULT	1	0	0	0	0	0	1	0

Description

- Bit 7 SYS_CAN_SD: Vsys shutdown control with battery as sole power supply
 - 0: Disable, 1: Enable
- Bit 6 RESV: Reserved
- Bit 5 CHRG_TERM_ANA_DIG: Charging termination flag bit source selection
- 0: analog, 1: digital
- Bit 4 RESV: Reserved
- Bit 3 CHRG_TIMER_TRIKL_EN: Trickle current charging timer control
 - 0: Disable, 1: Enable
- Bit 2 CHRG_TIMER_CCCV_EN: Constant current/constant voltage timer control
 - 0: Disable, 1: Enable

Bit 1-0 **RESV: Reserved (Do not change the default value)**

• BAT_CTRL_REG (REG[A6]): BATTERY CONTROL REGISTER

ADDRESS	S: A6H		TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	BAT_DIS_ILIM _EN	USB_SYS_ EN	RESV			BAT_DIS	SCHRG_I	LIM
DEFAUL T	1	1	0	0	0	0	1	1

Description

Bit 7 BAT DIS ILIM EN: Discharging current limit function control

0: Disable, 1: Enable

Bit 6 USB_SYS_EN: USB to system enable control

0: Disable 1: Enable

Bit 5-3 RESV: Reserved

Bit 2-0 BAT_DISCHRG_ILIM: Discharging current limit selection

000: 2A, 001: 2.5A, 010: 3A, 011: 3.5A, 1xx:4A

• BAT_HTS_TS_REG (REG[A8]): BATTERY OVER TEMPERATURE THRESHOLD REGISTER

ADDRESS: A8H			TYPE:	RW						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_HT	BAT_HTS_TS								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 BAT HTS TS: Battery over temperature protection threshold sensed at TS

• BAT_LTS_TS_REG (REG[A9]): BATTERY UNDER TEMPERATURE THRESHOLD REGISTER

ADDRESS:	A9H			TYPE:	RW			Bit0		
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_LTS	BAT_LTS_TS								
DEFAULT	1	1	1	1	1	1	1	1		

Description

Bit 7-0 BAT LTS TS: Battery low temperature protection threshold sensed at TS

5.2.8 ADC And Fuel Gauge Registers

• TS_CTRL_REG (REG[AC]): TS CONTROL REGISTER

ADDRESS:	ACH			TYPE: R	W			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	GG_EN	RESV		TS_FUN	RESV		TS_CU	R
DEFAULT	1	0	0	0	0	0	1	1

Description

Bit 7 GG_EN: Battery fuel gauge enable control

0: Disable, 1: Enable

Bit 6-5 RESV: Reserved

Bit 4 TS FUN: TS pin function selection

0: External temperature monitoring (NTC thermistor connected externally)

1:ADC input

Bit 3-2 RESV: Reserved

Bit 1-0 TS_CUR: TS pin output current selection in the temperature monitoring

mode

00: 20uA, 01: 40uA, 10: 60uA, 11: 80uA

ADC_CTRL_REG (REG[AD]): ADC CONTROL REGISTER

ADDRESS:	ADH			TYPE: R	W		Bit2 Bit1 Bit0			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	ADC_V	ADC_CU	ADC_TS_	ADC_U	ADC_PH	ADC_CLK_SEL				
STMBUL	OL_EN	R_EN	EN	SB_EN	ASE					
DEFAULT	0	0	1	1	0	0	0	0		

Description

Bit 7 ADC_VOL_EN: If GG_EN=0: Battery voltage ADC enable control

0: Disable, 1: Enable

Bit 6 ADC_CUR_EN: If GG_EN=0: Battery current ADC enable control

0: Disable, 1: Enable

Bit 5 ADC_TS_EN: TS ADC enable control

0: Disable, 1: Enable

Bit 4 ADC USB EN: USB voltage ADC enable control

0: Disable, 1: Enable

Bit 3 ADC PHASE:

0: normal, 1: reverse

Bit 2-0 ADC CLK SEL: ADC maximum sample time selection

000: 4mS, 001: 8mS, 010: 16mS, 011: 32mS, 100: 64mS

101: 128mS, 110: 256mS, 111: 512mS

GGCON REG (REGIBO1): FUEL GAUGE CONTROL REGISTER

	_:		<i>)</i>			_ ::		
ADDRESS:	DDRESS: B0H				/			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	CUR_SA CON_TI	_	ADC_C)FF_CAL_ V	OCV_ INTE	_SAMPL_ RV	ADC_CUR _VOL_MO DE	CUR_O UT_MO DE
DEFAULT	0	1	0	0	1	0	1	0

Description

Bit 7-6 CUR_SAMPL_CON_TIMES: The number of continuous sampling on the battery current ADC

00: 8, 01: 16, 10: 32, 11: 64

Bit 5-4 ADC_OFF_CAL_INTERV<1:0>: ADC's error calibration interval time

- 00: 8min, 01: 16min, 10: 32min, 11: 48min
- Bit 3-2 OCV_SAMPL_INTERV<1:0>: OCV sampling interval time, multiplexing relax voltage sampling interval time.
 - 00: 8min, 01: 16min, 10: 32min, 11: 48min
- Bit 1 ADC_CUR_VOL_MODE: Fuel gauge operation mode selection 0:voltage mode, 1:current mode
- Bit 0 CUR_OUT_MODE: bat current register data information

0:Average current, 1: Instant current

• GGSTS_REG (REG[B1]): FUEL GAUGE STATUS REGISTER

ADDRESS:	ADDRESS: B1H				RW			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	FRAME_ TERV	SMP_IN	FCC_U PD	BAT_ CON	RELAX_ VOL1_U PD	RELAX_ VOL2_U PD	RELAX_ STS(RO)	VOL_OUT _MODE
DEFAULT	0	1	0	0	0	0	0	0

Description

- Bit 7-6 FRAME_SMP_INTERV: The interval of DATA frame acquisition in the SLEEP mode
 - 00: 0S, 01: 1S, 10: 2S, 11: 3S
- Bit 5 FCC_UPD: Flag bit for FCC update
 - 0:NOT, 1:YES (When it is cleared to '0' by users, FCC_GASCNT_REG would be cleared to '0', too.)
- Bit 4 BAT_CON: The rising edge detection when the battery is first connected 0:NOT, 1:YES
- Bit 3 RELAX_VOL1_UPD: Flag bit for battery voltage1 update in the relaxation state
 - 0:NOT, 1:YES (When it is cleared to '0' by users, RELAX_VOL1_REG and RELAX_CUR1_REG would be cleared to '0', too.)
- Bit 2 RELAX_VOL2_UPD: Flag bit for battery voltage2 update in the relaxation state
 - 0:NOT, 1:YES (When it is cleared to '0' by users, RELAX_VOL2_REG and RELAX_CUR2_REG would be cleared to '0', too.)
- Bit 1 RELAX_STS: Flag bit for battery turning to relaxation state 0:NOT in relaxation, 1: in relaxation
- Bit 0 VOL_OUT_MODE: bat voltage register data information 0: Average voltage, 1: Instant voltage
- ZERO CUR ADC REGH (REG[B2]): ZERO CURRENT SENSE HIGH BITS REGISTER

<u> </u>	<u> </u>	<u> </u>	(<u>– o</u> [<u>D –]</u>)			525		-010 : 1:0
ADDRESS:	DDRESS: B2H)			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				ZERO_C	UR_ADC	<11:8>	
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 RESV: Reserved

Bit 3-0 ZERO_CUR_ADC<11:8>: Zero current sense value bits<11:8>

• ZERO_CUR_ADC_REGL (REG[B3]): ZERO CURRENT SENSE LOW BITS REGISTER

ADDRESS:	: B3H			TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	ZERO_C	ERO_CUR_ADC <7:0>						
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 ZERO_CUR_ADC<7:0>: Zero current sense value bits<7:0>

GASCNT_CAL_REG3 (REG[B4]): BAT CAPACITY CALIBRATION REGISTER 3

ADDRESS:	B4H		-		RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<31:24>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<31:24>: Calibrated battery capacity value bits <31:24> Note High bits register must be written first.

• GASCNT_CAL_REG2 (REG[B5]): BAT CAPACITY CALIBRATION REGISTER 2

ADDRESS:	В5Н			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<23:16>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<23:16>: Calibrated battery capacity value bits <23:16>

• GASCNT_CAL_REG1 (REG[B6]): BAT CAPACITY CALIBRATION REGISTER 1

ADDRESS:	ADDRESS: B6H			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT_CAL<15:8>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT_CAL<15:8>: Calibrated battery capacity value bits <15:8>

• GASCNT_CAL_REGO (REG[B7]): BAT CAPACITY CALIBRATION REGISTER 0

ADDRESS:	ADDRESS: B7H				RW			
Bit	Bit7 Bit6 Bit5			Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	GASCNT	_CAL<	7:0>					

DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 GASCNT_CAL<7:0>: Calibrated battery capacity value bits <7:0>

• GASCNT_REG3 (REG[B8]): BAT CAPACITY REGISTER 3

ADDRESS:	B8H		- 4/	TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT <31:24>							
DEFAULT	0	0 0 0 0 0 0 0							

Description

Bit 7-0 GASCNT<31:24>: Battery capacity value bits <31:24>

Note The Battery capacity value <31:0> is signed number, bit <31> is sign bit.

• GASCNT_REG2 (REG[B9]): BAT CAPACITY REGISTER 2

ADDRESS:	В9Н			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	GASCNT	GASCNT <23:16>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 GASCNT<23:16>: Battery capacity value bits <23:16>

• GASCNT_REG1 (REG[BA]): BAT CAPACITY REGISTER 1

ADDRESS:	BAH			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT <15:8>							
DEFAULT	0 0 0 0 0 0						0		

Description

Bit 7-0 GASCNT<15:8>: Battery capacity value bits <15:8>

• GASCNT_REGO (REG[BB]): BAT CAPACITY REGISTER 0

ADDRESS: BBH			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	GASCNT	GASCNT <7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 GASCNT<7:0>: Battery capacity value bits <7:0>

• BAT_CUR_REGH (REG[BC]): BAT CURRENT HIGH BITS REGISTER

ADDRESS:	BCH			TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	RESV				BAT_CUR<11:8>			
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 BAT_CUR<11:8>: Battery current value bits<11:8>

Note The Battery current value<11:0> is signed number, bit <11> is sign bit.

 $I_{BAT} = (BAT_CUR < 11:0 > *1800)/(4095 *14 * R_{Sense})$ (unit:mA), R_{Sense} is battery

current sense resistance, the unit is $m\Omega$.

BAT_CUR_REGL (REG[BD]): BAT CURRENT LOW BITS REGISTER

ADDRESS: BDH				TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	BAT_CU	BAT_CUR<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 BAT_CUR<7:0>: Battery current value bits<7:0>

• TS_ADC_REGH (REG[BE]): BAT TEMPERATURE HIGH BITS REGISTER

ADDRESS:	BEH			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3 Bit2 Bit1 Bit0				
SYMBOL	RESV				TS_ADC	_ADC<11:8>			
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-4 Reserved

Bit 3-0 TS_ADC<11:8>: TS ADC value bits<11:8>

Note If NTC resistor ties TS pin to GND, $R_{NTC}=(TS_ADC<11:0>*2200)/(4095*I_{TS})$

(unit: $K\Omega$), I_{TS} can be programmable by REG AC<1:0>, the unit is 'uA'.

TS_ADC_REGHL (REG[BF]): BAT TEMPERATURE LOW BITS REGISTER

ADDRESS:	BFH			TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	TS_ADC	TS_ADC<7:0>						
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 TS_ADC<7:0>: TS ADC value bits<7:0>

• USB_ADC_REGH (REG[C0]): USB VOLTAGE HIGH BITS REGISTER

ADDRESS: COH			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				USB_AD	C<11:8>		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 USB_ADC<11:8>: USB voltage value bits<11:8> Note $V_{USB}=2200*2.8*USB_ADC<11:0>/4095$ (unit:mV)

• USB_ADC_REGHL (REG[C1]): USB VOLTAGE LOW BITS REGISTER

			<u> </u>						
ADDRESS:	: C1H			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	USB_AD	JSB_ADC<7:0>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 USB_ADC<7:0>: USB voltage value bits<7:0>

• BAT_OCV_REGH (REG[C2]): BAT OPEN CIRCUIT VOLTAGE HIGH BITS REGISTER

ADDRESS: C2H				TYPE:	RO						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
SYMBOL	RESV				BAT_OC	V<11:8>		1 Bitto			
DEFAULT	0	0	0	0	0	0	0	0			

Description

Bit 7-4 Reserved

Bit 3-0 BAT_OCV<11:8>: Battery OCV value bits<11:8>

Note $V_{ocv}=k*BAT_OCV<11:0>+b (unit:mV), k=(4200-3000)/(VCALIB1<11:0>-$

VCALIB0<11:0>),

b=4200 - k*VCALIB1<11:0>.

• BAT_OCV_REGL (REG[C3]): BAT OPEN CIRCUIT VOLTAGE LOW BITS REGISTER

ADDRESS:			TYPE:	RO						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_OC	BAT_OCV<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 BAT_OCV<7:0>: Battery OCV voltage value bits<7:0>.

• BAT_VOL_REGH (REG[C4]): BAT VOLTAGE HIGH BITS REGISTER

ADDRESS:			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				BAT_VO	L<11:8>		
DEFAULT	0 0 0			0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 BAT_VOL<11:8>: battery voltage value bits<11:8>.

Note $V_{BAT}=k*BAT_VOL<11:0>+b (unit:mV), k=(4200-3000)/(VCALIB1<11:0> -$

VCALIB0<11:0>), b=4200 - k*VCALIB1<11:0>.

• BAT_VOL_REGL (REG[C5]): BAT VOLTAGE LOW BITS REGISTER

ADDRESS:	C5H			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	BAT_VO	BAT_VOL<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 BAT_VOL<7:0>: battery voltage value bits<7:0>.

• RELAX_ENTRY_THRES_REGH (REG[C6]): RELAX ENTRY THRESHOLD HIGH BITS REGISTER

ADDRESS			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				RELAX_	ENTRY_THRE	S<11:8>	
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX_ENTRY_THRES<11:8>: The threshold value bits<11:8> for the battery going into relaxation state

Note High bits register must be written first.

• RELAX_ENTRY_THRES_REGL (REG[C7]): RELAX ENTRY THRESHOLD LOW BITS REGISTER

	<u> </u>									
ADDRESS	: C7H			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RELAX_	RELAX_ENTRY_THRES<7:0>								
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-0 RELAX_ENTRY_THRES<7:0>: The threshold value bits<7:0> for the battery going into relaxation state

• RELAX_EXIT_THRES_REGH (REG[C8]): RELAX EXIT THRESHOLD HIGH BITS REGISTER

ADDRESS:			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				RELAX_	EXIT_THRES	<11:8>	
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX_EXIT_THRES<11:8>: The threshold value bits<11:8> for the battery

out of relaxation state

Note High bits register must be written first.

RELAX_EXIT_THRES_REGL (REG[C9]): RELAX EXIT THRESHOLD LOW BITS REGISTER

ADDRESS:	C9H			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RELAX_	RELAX_EXIT_THRES<7:0>								
DEFAULT	0	1	1	0	0	0	0	0		

Description

Bit 7-0 RELAX_EXIT_THRES<7:0>: The threshold value bits<7:0> for the battery out of relaxation state

• RELAX_VOL1_REGH (REG[CA]): RELEX VOLTAGE 1 HIGH BITS REGISTER

ADDRESS	: CAH			TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				RELAX_	VOL1<11:8>		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX_VOL1<11:8>: Voltage1 value bits<11:8> in the relaxation state

RELAX_VOL1_REGL (REG[CB]): RELEX VOLTAGE 1 LOW BITS REGISTER

ADDRESS: CBH				TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RELAX_VOL1<7:0>								
DEFAULT	0	0	1	1	0	0	0	0	

Description

Bit 7-0 RELAX_VOL1<7:0>: Voltage1 value bits<7:0> in the relaxation state

• RELAX_VOL2_REGH (REG[CC]): RELEX VOLTAGE 2 HIGH BITS REGISTER

ADDRESS:	CCH			TYPE:	RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				RELAX_	VOL2<11:8>		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX_VOL2<11:8>: Voltage2 value bits<11:8> in the relaxation state

• RELAX_VOL2_REGL (REG[CD]): RELEX VOLTAGE 2 LOW BITS REGISTER

ADDRESS: CDH			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	RELAX_	RELAX_VOL2<7:0>								
DEFAULT	0	0 0 0 0 0 0 0								

Description

Bit 7-0 RELAX VOL2<7:0>: Voltage2 value bits<7:0> in the relaxation state

RELAX_CUR1_REGH (REG[CE]): RELEX CURRENT 1 HIGH BITS REGISTER

ADDRESS:			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				RELAX_	CUR1<11:8>		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX CUR1<11:8>: Current1 value bits<11:8> in the relaxation state

RELAX_CUR1_REGL (REG[CF]): RELEX CURRENT 1 LOW BITS REGISTER

ADDRESS: CFH				TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	RELAX_CUR1<7:0>								
DEFAULT	0 0 0 0 0 0 0							0	

Description

RELAX CUR1<7:0>: Current1 value bits<7:0> in the relaxation state Bit 7-0

RELAX_CUR2_REGH (REG[D0]): RELEX CURRENT 2 HIGH BITS REGISTER

ADDRESS:			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				BAT_VO	L_R_CALC<1	1:8>	
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 RELAX_CUR2<11:8>: Current2 value bits<11:8> in the relaxation state

RELAX_CUR2_REGL (REG[D1]): RELEX CURRENT 2 LOW BITS REGISTER

ADDRESS: D1H			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	BAT_VOL_R_CALC<7:0>								
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 RELAX CUR2<7:0>: Current2 value bits<7:0> in the relaxation state

CAL_OFFSET_REGH (REG[D2]): ZERO CURRENT CALIBRATION HIGH BITS

REGISTER

ADDRESS:			TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				CAL_OF	FSET_REG<1	.1:8>	
DEFAULT	0	1	1	1	1	1	1	1

Description

Bit 7-4 Reserved

Bit 3-0 CAL_OFFSET_REG<11:8>: Zero current calibration value bits<11:8>.

Note High bits register must be written first.

• CAL_OFFSET_REGL (REG[D3]): ZERO CURRENT CALIBRATION LOW BITS REGISTER

ADDRESS: D3H				TYPE:	RW				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	CAL_OF	CAL_OFFSET_REG<7:0>							
DEFAULT	1	1	1	1	1	1	1	1	

Description

Bit 7-0 CAL_OFFSET_REG<7:0>: Zero current calibration value bits<7:0>.

● NON_ACT_TIMER_CNT_REG (REG[D4]): SHUTDOWN TIME REGISTER

ADDRESS: D4H			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	NON_ACT_TIMER_CNT<7:0>								
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 NON_ACT_TIMER_CNT<7:0>: Timer for OFF state (Unit: minute)

• VCALIBO_REGH (REG[D5]): VOLTAGE 0 CALIBRATION HIGH BITS REGISTER

ADDRESS:			TYPE:	RO						
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV				VCALIB(0<11:8>		Bit0		
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-4 Reserved

Bit 3-0 Voltage0 calibration value bits<11:8> for calculating offset error and gain

Note error

The data of VCALIBO<11:0> is the ADC value of 3.0V.

• VCALIBO_REGL (REG[D6]): VOLTAGE 0 CALIBRATION LOW BITS REGISTER

ADDRESS:	ADDRESS: D6H				RO			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

SYMBOL	VCALIB0<7:0>								
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 Voltage0 calibration value bits<7:0> for calculating offset error and gain error.

• VCALIB1_REGH (REG[D7]): VOLTAGE 1 CALIBRATION HIGH BITS REGISTER

ADDRESS:			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	RESV				VCALIB:	1<11:8>		
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-4 Reserved

Bit 3-0 Voltage1 calibration value bits<11:8> for calculating offset error and gain Note error.

The data of VCALIB1<11:0> is the ADC value of 4.2V.

• VCALIB1_REGL (REG[D8]): VOLTAGE 1 CALIBRATION LOW BITS REGISTER

ADDRESS:	D8H		-	TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	VCALIB:	VCALIB1<7:0>							
DEFAULT	0 0 0 0 0 0 0						0		

Description

Bit 7-0 Voltage1 calibration value bits<7:0> for calculating offset error and gain error.

FCC GASCNT REG3 (REGID91): FULL CAPACITY REGISTER 3

ADDRESS:	•			RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	FCC_GASCNT<31:24>							
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 Full capacity <31:24>

• FCC_GASCNT_REG2 (REG[D9]): FULL CAPACITY REGISTER 2

	<u> </u>	<u> </u>		<i>y</i>	07 11 7 1 0 2 1		_		
ADDRESS:			TYPE:	RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	FCC_GA	FCC_GASCNT<23:16>							
DEFAULT	0	0	0	0	0	0	0	0	

Description

Bit 7-0 Full capacity <23:16>

• FCC_GASCNT_REG1 (REG[DB]): FULL CAPACITY REGISTER 1

ADDRESS:			TYPE: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	FCC_GASCNT<15:8>							
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 Full capacity <15:8>

• FCC_GASCNT_REGO (REG[DC]): FULL CAPACITY REGISTER 0

ADDRESS:			TYPE:	RO				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYMBOL	FCC_GASCNT<7:0>							
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 Full capacity <7:0>

• IOFFSET_REGH (REG[DD]): OFFSET CURRENT HIGH BITS REGISTER

				l						
ADDRESS: DDH				TYPE:	TYPE: RO					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
SYMBOL	RESV				IOFFSET<11:8>					
DEFAULT	0	0	0	0	0	0	0	0		

Description

Bit 7-4 Reserved

Bit 3-0 Calculated current offset value bits<11:8>

• IOFFSET_REGL (REG[DE]): OFFSET CURRENT LOW BITS REGISTER

ADDRESS: DEH			TYPE: RO					
Bit	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0						Bit0	
SYMBOL	IOFFSET<7:0>							
DEFAULT	0	0	0	0	0	0	0	0

Description

Bit 7-0 Calculated current offset value bits<7:0>

• SLEEP_CON_SAMP_CUR (REG[DF]): SLEEP MODE CONTINUOUS SAMPLE BAT CURRENT THRESHOLD REGISTER

ADDRESS:			TYPE:	RW					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SYMBOL	SLEEP_CON_SAMP_CUR<7:0>								
DEFAULT	0	1	1	0	0	0	0	0	

Description

Bit 7-0 SLEEP_CON_SAMP_CUR<7:0>: In SLEEP mode, if bat current is larger than

this threshold, bat current would be taken sample continuously. Or bat current would be taken sample discontinuously.

5.2.9 DATA Registers : DATA(n)_REG (REG[E0]~REG[F2])

Address from [E0] to [F2] are 8-bits data RAM register, it's convenient to be read or written by users.

Chapter 6 Thermal Management

6.1 Overview

For reliability and operability concerns, the absolute maximum junction temperature of RK816 has to be below 125°C.

Depending on the thermal mechanical design (Smartphone, Tablet, Personal Navigation Device, etc), the system thermal management software and worst case thermal applications, the junction temperature might be exposed to higher values than those specified above.

Therefore, it is recommended to perform thermal simulations at device level (Smartphone, Tablet, Personal Navigation Device, etc) with the measured power of the worst case UC of the device.

6.2 Package Thermal Characteristics

Table 6-1 provides the thermal resistance characteristics for the package used on this device.

Table 6-1 Thermal Resistance Characteristics

PACKAGE (QFN5X5-40)	POWER(W)	$ heta_{JA}(^{\circ}\mathtt{C}/W)$	$ heta_{JB}(^{\circ}\mathbb{C}/W)$	$ heta_{JC}(^{\circ}C/W)$
RK816	2	36	17	2.3

Note: The testing PCB is based on 4 layers, $114mm \times 76 mm$, 1.6mm thickness, Ambient temperature is $85^{\circ}C$.