Giới hạn của hàm số

Hai định nghĩa tương đương:

Định nghĩa 4

Giả sử rằng hàm số f(x) được xác định tại mọi điểm $x \in (a,b) \setminus \{x_0\}$. Ta nói giới hạn của hàm số f(x) khi x tiến đến x_0 bằng L và viết

$$\lim_{x \to x_0} f(x) = L$$

nếu với mọi $\epsilon>0$, tồn tại số $\delta>0$ sao cho với $0<|x-x_0|<\delta$ thì $|f(x)-L|<\epsilon$. Tương tự như vậy, hãy nêu các định nghĩa $\lim_{x\to x_0^+}f(x), \lim_{x\to x_0^-}f(x), \lim_{x\to\pm\infty}f(x)$.

Định nghĩa 5

$$\lim_{x\to x_0}f(x)=L\Leftrightarrow \forall \{x_n\}, x_n\neq x_0 \text{, } \lim_{n\to +\infty}x_n=x_0 \text{ th} \text{i} \lim_{n\to +\infty}f(x_n)=L.$$

Các tính chất của giới hạn

Tính duy nhất của giới hạn

Giới hạn $\lim_{x \to x_0} f(x)$, nếu tồn tại, là duy nhất.

Các phép toán trên giới hạn

Nếu tồn tại các giới hạn $\lim_{x \to x_0} f(x), \lim_{x \to x_0} g(x)$ hữu hạn thì

a)
$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$
.

b)
$$\lim_{x \to x_0} [f(x) - g(x)] = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$
.

c)
$$\lim_{x \to x_0} [cf(x)] = c \lim_{x \to x_0} f(x)$$
.

d)
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$
.

e)
$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)} \text{ n\'eu } \lim_{x\to x_0}g(x)\neq 0.$$

Định lý 2.1 (Tiêu chuẩn kẹp)

Nếu
$$f(x) \leq g(x) \leq h(x)$$
 trong một lân cận nào đó của x_0 , và tồn tại các giới hạn $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$. Khi đó $\lim_{x \to x_0} g(x) = L$.

Ví du 2.1

Chứng minh
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1.$$

Giới han của hàm hợp

 $x \rightarrow x_0$

$$\operatorname{\acute{A}p}\, \operatorname{dụng}\, \lim_{x\to x_0} A(x)^{B(x)} = e^{\lim_{x\to x_0} B(x)\ln A(x)}.$$

Vô cùng lớn - Vô cùng bé

Vô cùng bé

Hàm số f(x) được gọi là một vô cùng bé (viết tắt là VCB) khi $x \to a$ nếu $\lim_{x \to a} f(x) = 0$. Từ định nghĩa giới hạn của hàm số, nếu $\lim_{x \to a} f(x) = A$ thì $f(x) = A + \alpha(x)$, trong đó $\alpha(x)$ là một VCB khi $x \to a$.

Ví dụ 3.1

$$f(x) = \sin x, g(x) = \tan x, h(x) = x^{2017}$$
 là các VCB khi $x \to 0$.

Các tính chất

- a) Tổng, hiệu, tích của hai VCB là một VCB.
- b) Tuy nhiên, thương của hai VCB chưa chắc đã là một VCB, vì chúng thuộc dạng vô định $\frac{0}{0}$.

So sánh các VCB

So sánh các VCB

Giả sử $\alpha(x)$ và $\beta(x)$ là các VCB khi $x \to a$.

- a) Nếu $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0$, ta nói rằng $\alpha(x)$ là VCB bậc cao hơn $\beta(x)$ và kí hiệu $\alpha(x) = o(\beta(x))$.
- b) Nếu $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, ta nói rằng $\alpha(x), \beta(x)$ là các VCB cùng bậc. Đặc biệt, nếu $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 1$ thì ta nói $\alpha(x)$ và $\beta(x)$ là các VCB tương đương và viết $\alpha(x) \sim \beta(x)$.

Ví dụ 3.2

- a) $f(x) = x^a \ (a > 0)$ là VCB bậc cao hơn $g(x) = x^b \ (b > 0) \Leftrightarrow a > b$.
- b) $\sin x \sim x$.

Quy tắc thay tương đương

Quy tắc thay tương đương

Nếu ta có các VCB tương đương $\alpha_1(x) \sim \alpha_2(x), \beta_1(x) \sim \beta_2(x)$ khi $x \to a$ thì

$$\lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to a} \frac{\alpha_2(x)}{\beta_2(x)}.$$

Các VCB tương đương hay dùng khi $x \to 0$

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x - 1 \sim \frac{a^x - 1}{\ln a} \sim \ln(1 + x), \ (1 + x)^a - 1 \sim ax.$

Ví du 3.3

a)
$$\lim_{x\to 0^+} \frac{e^{x^2}-1}{x^2+x^3}$$
.

c)
$$\lim_{x \to 0} \frac{\sqrt[n]{1 + \alpha x} - \sqrt[n]{1 + \beta x}}{x}$$

b)
$$\lim_{x\to 0^+} \frac{e^{\sqrt{x}}-1}{\sqrt{x+x^2}}$$
.

d)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+\alpha x} \cdot \sqrt[n]{1+\beta x} - 1}{x}$$
.

Quy tắc ngắt bỏ VCB bậc cao

Quy tắc ngắt bỏ VCB bậc cao

Cho $\alpha(x), f(x), \beta(x), g(x)$ là các VCB khi $x \to a$. Nếu $\alpha(x) = o(f(x)), \beta(x) = o(g(x))$ thì

$$\lim_{x \to a} \frac{f(x) + \alpha(x)}{g(x) + \beta(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}.$$

Ví dụ 3.4

a)
$$\lim_{x\to 0} \frac{\sin 2x + \arcsin^2 x - \arctan^2 x}{3x}.$$

b)
$$\lim_{x\to 0} \frac{1-\cos x+2\sin x-\sin^3 x-x^2+3x^4}{\tan^3 x-6\sin^2 x+x-5x^3}$$
.

Vô cùng bé

Ví dụ 3.5 (Giữa kì, K61)

So sánh cặp vô cùng bé sau đây khi $x \to 0$

a)
$$\alpha(x) = \sqrt[3]{x^2 + x^3}$$
, $\beta(x) = e^{\sin x} - 1$.

b)
$$\alpha(x) = \sqrt[5]{x^4 - x^5}$$
, $\beta(x) = \ln(1 + \tan x)$.

c)
$$\alpha(x) = e^{\sqrt{x}} - 1$$
, $\beta(x) = \sqrt{x + x^2}$.

d)
$$\alpha(x) = e^{x^2} - 1$$
, $\beta(x) = x^2 + x^3$.

e)
$$\alpha(x) = \sqrt{x + \sqrt{x}}, \quad \beta(x) = e^{\sin x} - \cos x.$$

Chú ý 3.1

KHÔNG thay tương đương với hiệu hai VCB, $\alpha(x) = \sin x - \tan x + x^3$.

a) Thay tương đương $\alpha(x) \sim x^3, (SAI)$,

b) Thực tế, $\alpha(x) \sim \frac{x^3}{2}$ (ĐÚNG).

Vô cùng lớn

Vô cùng lớn

- a) Hàm số f(x) được gọi là một vô cùng lớn (viết tắt là VCL) khi $x \to a$ nếu $\lim_{x \to a} |f(x)| = +\infty$.
- b) f(x) là một VCL khi $x \to a \Leftrightarrow \frac{1}{f(x)}$ là một VCB khi $x \to a$.

So sánh các VCL

Giả sử $\alpha(x)$ và $\beta(x)$ là các VCL khi $x \to a$.

- a) Nếu $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \infty$, ta nói rằng $\alpha(x)$ là VCB bậc cao hơn $\beta(x)$.
- b) Nếu $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, ta nói rằng $\alpha(x), \beta(x)$ là các VCL cùng bậc. Đặc biệt, nếu $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 1$ thì ta nói $\alpha(x)$ và $\beta(x)$ là các VCL tương đương và viết $\alpha(x) \sim \beta(x)$.

Vô cùng lớn

Quy tắc thay tương đương và ngắt bỏ VCL bậc thấp

- a) Nếu $\alpha_1(x) \sim \alpha_2(x), \beta_1(x) \sim \beta_2(x)$ là các VCL khi $x \to a$ thì $\lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to a} \frac{\alpha_2(x)}{\beta_2(x)}$.
- b) Cho $\alpha(x), f(x), \beta(x), g(x)$ là các VCL khi $x \to a$. Nếu $\alpha(x)$ là VCL bậc thấp hơn f(x), $\beta(x)$ là VCL bậc thấp hơn g(x) thì

$$\lim_{x \to a} \frac{f(x) + \alpha(x)}{g(x) + \beta(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}.$$

Ví du 3.6

Tính

$$\lim_{x \to +\infty} \frac{x + \sqrt{x}}{\sqrt{x + \sqrt{x}}}; \quad \lim_{x \to +\infty} \frac{x + 2^x}{x + 3^x}.$$