In [153]:

```
import pandas as pd
import sklearn
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
import statsmodels.api as sm
matplotlib.style.use('bmh')
```

In [154]:

```
data=pd.read_csv('kc_house_data.csv')
data
```

Out[154]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076

21613 rows × 21 columns

In [155]:

```
#пропущеные значения
for col in data.columns:
    pct_missing = np.mean(data[col].isnull())
    print('{} - {}%'.format(col, round(pct_missing*100)))
id - 0.0%
date - 0.0%
price - 0.0%
bedrooms - 0.0%
bathrooms - 0.0%
sqft_living - 0.0%
sqft_lot - 0.0%
floors - 0.0%
waterfront - 0.0%
view - 0.0%
condition - 0.0%
grade - 0.0%
sqft_above - 0.0%
sqft_basement - 0.0%
yr_built - 0.0%
yr_renovated - 0.0%
zipcode - 0.0%
lat - 0.0%
long - 0.0%
sqft_living15 - 0.0%
sqft_lot15 - 0.0%
```

In [156]:

```
data.nunique()
```

Out[156]:

id	21126
	21436
date	372
price	4028
bedrooms	13
bathrooms	30
sqft_living	1038
sqft_lot	9782
floors	6
waterfront	2
view	5
condition	5
grade	12
sqft_above	946
sqft_basement	306
yr_built	116
yr_renovated	70
zipcode	70
lat	5034
long	752
sqft_living15	777
sqft_lot15	8689
dtype: int64	

In [157]:

```
#класс/цена
groups = data.groupby(['grade'])['price'].mean()
plt.figure(figsize=(10, 5))
plt.xlabel('price')
groups.plot.barh()
plt.show()
```


In [158]:

```
# спальни/цена
groups = data.groupby(['bedrooms'])['price'].mean()
plt.figure(figsize=(10, 5))
plt.xlabel('price')
groups.plot.barh()
plt.show()
```


In [159]:

```
# этажи/цена
groups = data.groupby(['floors'])['price'].mean()
plt.figure(figsize=(10, 5))
plt.xlabel('price')
groups.plot.barh()
plt.show()
```


In [160]:

```
# 20d_nocmpoŭκu/μεμα
groups = data.groupby(['yr_built'])['price'].mean()
plt.figure(figsize=(10, 20))
plt.xlabel('price')
groups.plot.barh()
plt.show()
```


In [175]:

```
#cocmoяние/цена
groups = data.groupby(['condition'])['price'].mean()
plt.figure(figsize=(10, 5))
plt.xlabel('price')
groups.plot.barh()
plt.show()
```


In [161]:

```
# кол-во ванных plt.figure(figsize=(15, 5)) sns.countplot(data.bathrooms, order = data['bathrooms'].value_counts().index) plt.show()
```


In [162]:

```
# кол-во спалень
plt.figure(figsize=(15, 5))
sns.countplot(data.bedrooms, order = data['bedrooms'].value_counts().index)
plt.show()
```


In [163]:

```
# состояние
plt.figure(figsize=(15, 5))
sns.countplot(data.condition, order = data['condition'].value_counts().index)
plt.show()
```


In [164]:

In [165]:

```
#отобранные признаки
FeaturesForRegression = data[features]
```

In [166]:

```
FeaturesForRegression.head()
```

Out[166]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	221900.0	3	1.00	1180	5650	1.0	0	0	3
1	538000.0	3	2.25	2570	7242	2.0	0	0	3
2	180000.0	2	1.00	770	10000	1.0	0	0	3
3	604000.0	4	3.00	1960	5000	1.0	0	0	5
4	510000.0	3	2.00	1680	8080	1.0	0	0	3
4									•

In [167]:

In [168]:

 X_{test}

Out[168]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade
735	4	2.25	2070	8893	2.0	0	0	4	8
2830	5	3.00	2900	6730	1.0	0	0	5	8
4106	4	2.50	3770	10893	2.0	0	2	3	11
16218	3	3.50	4560	14608	2.0	0	2	3	12
19964	3	2.50	2550	5376	2.0	0	0	3	9
13674	3	1.75	1250	7710	1.0	0	0	4	7
20377	3	2.75	2830	3496	2.0	0	0	3	8
8805	4	2.50	2434	4400	2.0	0	0	3	8
10168	4	1.75	2250	10108	1.0	0	0	4	8
2522	4	2.50	2570	11473	2.0	0	0	3	8

4323 rows × 13 columns

In [169]:

y_test

Out[169]:

```
735
          365000.0
2830
          865000.0
4106
         1038000.0
16218
         1490000.0
19964
          711000.0
13674
          338000.0
20377
          673000.0
8805
          285000.0
10168
          605000.0
2522
          356500.0
```

Name: price, Length: 4323, dtype: float64

In [170]:

```
print(model.score(X_test,y_test))
```

0.6521777051746778

In [171]:

```
prediction= model.predict([[4,2.25,2070,8893,2,0,0,4,8,2070,0,1986,0]])
print('Предикт: ',prediction)
```

Предикт: [516165.79233481]

```
In [172]:
prediction= model.predict([[5,3.00,2900,6730,1.0,0,0,5,8,1830,1070,1977,0]])
print('Предикт: ',prediction)

Предикт: [681329.40783423]

In [173]:
prediction= model.predict([[4,2.50,3770,10893,2.0,0,2,3,11,3770,0,1997,0]])
print('Предикт: ',prediction)

Предикт: [1219054.17289802]

In []:
In []:
```