Home Assignment 1

- 1. Let $\Omega = \mathbb{R}$. Explicitely find the sigma-algebras $\mathcal{F}_1 = \sigma(A)$, $\mathcal{F}_2 = \sigma(B)$, $\mathcal{F}_3 = \sigma(A,B)$ where A = [-10;5] and B = (0;10).
- 2. I throw a die once. Let X be the result of the toss. Count the number of events in sigma-algebras $\mathcal{F}_1 = \sigma(X)$, $\mathcal{F}_2 = \sigma(\{X > 3\})$, $\mathcal{F}_3 = \sigma(\{X > 3\})$, $\{X < 5\}$).
- 3. Let $\Omega = \mathbb{R}$. The sigma-algebra \mathcal{F} is generated by all the sets of the form $(-\infty, t]$,

$$\mathcal{F} = \sigma\left(\left\{\left(-\infty; t\right) \mid t \in \mathbb{R}\right\}\right)$$

Check whether $A_1 = (0; 10) \in \mathcal{F}$, $A_2 = \{5\} \in \mathcal{F}$, $A_3 = \mathbb{N} \in \mathcal{F}$.

- 4. Prove the following statements or provide a counter-example:
 - (a) If \mathcal{F}_1 and \mathcal{F}_2 are sigma-algebras then $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is sigma-algebra.
 - (b) If X and Y are independent random variables then $\operatorname{card} \sigma(X,Y) = \operatorname{card} \sigma(X) + \operatorname{card} \sigma(Y)$.
- 5. I throw a die infinite number of times. Let X_n be the result of the n-th toss. Consider a pack of sigma-algebras: $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and $\mathcal{H}_n = \sigma(X_n, X_{n+1}, X_{n+2} \dots)$.

Provide and example of an event such that

- (a) $A_1 \in \mathcal{F}_{2020}$;
- (b) $A_2 \in \mathcal{H}_{2020}$;
- (c) $A_3 \in \mathcal{F}_{2020}$ and $A_3 \in \mathcal{H}_{2020}$;
- (d) $A_4 \in \mathcal{F}_n$ for all $n, A_4 \in \mathcal{H}_n$ for all $n, A_4 \neq \emptyset, A_4 \neq \Omega$.

2020-2021

Home Assignment 2

1.

2020-2021 2/2