# Fachkurs - FBA

#### Ana Oliver



Seminar 01.06.2023 TBP



# Outline

- 1. Introduction to FBA
- 2. Hands-on: linear optimisation
- 3. Hands-on: FBA with COBRA library

# Toy reaction-system





## Toy reaction-system





$$\frac{dA}{dt} = \nu_1 - \nu_2 - \nu_3 = \nu_1 - k_2 A - k_3 A$$

$$\frac{dB}{dt} = \nu_2 - \nu_4 = k_2 A - k_4 B$$

$$\frac{dC}{dt} = \nu_3 - \nu_5 = k_3 A - k_5 C$$

# System in steady state





$$\frac{dA}{dt} = \nu_1 - \nu_2 - \nu_3 = 0$$

$$\frac{dB}{dt} = \nu_2 - \nu_4 = 0$$

$$\frac{dC}{dt} = \nu_3 - \nu_5 = 0$$

# System in steady state





$$\frac{dA}{dt} = \nu_1 - \nu_2 - \nu_3 = 0 \rightarrow \nu_1 = \nu_2 + \nu_3$$

$$\frac{dB}{dt} = \nu_2 - \nu_4 = 0 \rightarrow \nu_2 = \nu_4 \qquad \nu_1 \stackrel{\Delta}{=} X \rightarrow$$

$$\frac{dC}{dt} = \nu_3 - \nu_5 = 0 \rightarrow \nu_3 = \nu_5$$



### **Stoichiometry matrix**





$$R_1: \rightarrow 1A$$
 $R_2: 1A \rightarrow 1B$ 
 $R_3: 1A \rightarrow 1C$ 
 $R_4: 1B \rightarrow$ 
 $R_5: 1C \rightarrow$ 

$$\frac{dA}{dt} = 1\nu_1 - 1\nu_2 - 1\nu_3 = 0$$

$$\frac{dB}{dt} = 1\nu_2 - 1\nu_4 = 0$$

$$\frac{dC}{dt} = 1\nu_3 - 1\nu_5 = 0$$

#### Gaussian elimination



$$\nu_1 = X$$
 $\nu_4 = \nu_2$ 
 $\nu_5 = \nu_3$ 
 $\nu_2 = \nu_1 - \nu_3 = X - \nu_3$ 





### Solution space







#### **Underdetermined!**

$$\nu_1 = X$$
 $\nu_4 = \nu_2$ 
 $\nu_5 = \nu_3$ 
 $\nu_2 = \nu_1 - \nu_3 = X - \nu_3$ 



#### Solution space with inequalities



$$R_{1}: \rightarrow 1A$$

$$R_{2}:1A \rightarrow 1B$$

$$R_{3}:1A \rightarrow 1C$$

$$R_{4}:1B \rightarrow$$

$$R_{5}:1C \rightarrow$$



$$\frac{dA}{dt} = 1\nu_1 - 1\nu_2 - 1\nu_3 = 0$$

$$\frac{dB}{dt} = 1\nu_2 - 1\nu_4 = 0$$

$$\frac{dC}{dt} = 1\nu_3 - 1\nu_5 = 0$$



#### Limits to reaction-rates









## **Selecting solutions**

 $ub_3$ 







Assigning "value" to different system outputs

System objective is defined by assigned values

Objective function: weighted sum of system variables

$$c: \alpha_4 \nu_4 + \alpha_5 \nu_5 = \alpha_2 \nu_2 + \alpha_3 \nu_3$$

#### Uniqueness of optima







#### Might be determined now

If 
$$\alpha_2 \neq \alpha_3$$
:
$$\nu_3 = \frac{(Z_{obj} - \alpha_2 X)}{(\alpha_3 - \alpha_2)}$$

# Genome-scale metabolism









#### **Biomass-function as objective**





 $\nu_{BM}$ 

 $-\alpha_2$ 

 $-\alpha_3$ 

0

0

= 0

= 0

 $\leq X$ 

 $\geq 0$ 

 $\geq 0$ 

 $\leq ub_2$ 

 $\leq ub_3$ 

 $=Z_{obj}$ 





 $R_{BM}$ :  $\alpha_1 Energy + \alpha_2 AA + \alpha_3 Lipid + \alpha_4 Nucleotide \rightarrow$ 

|                  | $\nu_1$ | $\nu_2$    | $\nu_3$    |             |   |                  | $\nu_1$ |   |
|------------------|---------|------------|------------|-------------|---|------------------|---------|---|
| $\boldsymbol{A}$ | 1       | <b>-</b> 1 | <b>-</b> 1 | =0          |   | $\boldsymbol{A}$ | 1       | - |
| $\boldsymbol{B}$ | 0       | 1          | 0          | =0          |   | $\boldsymbol{B}$ | 0       |   |
| $\boldsymbol{C}$ | 0       | 0          | 1          | =0          |   | C                | 0       |   |
| • • •            | 1       | 0          | 0          | $\leq X$    |   |                  | 1       |   |
| • • •            | 0       | 1          | 0          | $\geq 0$    |   |                  | 0       |   |
| • • •            | 0       | 0          | 1          | $\geq 0$    |   |                  | 0       |   |
|                  | 0       | 1          | 0          | $\leq ub_2$ | • |                  | 0       |   |
|                  | 0       | 0          | 1          | $\leq ub_3$ |   |                  | 0       |   |
|                  | 0       | $lpha_2$   | $\alpha_3$ | $=Z_{obi}$  |   |                  | 0       |   |