Calculons la différence de temps de parcours entre Paris et Rouen :

7. Cela ne vaut pas le coup d'augmenter sa vitesse pour ne gagner au final qu'une poignée de minutes sachant que la distance d'arrêt en cas de choc est beaucoup augmentée.

Exercice 20 p 128

1. Calculons la distance parcourue par le satellite en 24h

$$2 \times \pi \times R = 2 \times \pi \times 42400 = 266407 \text{ km}$$

2. Calculons la vitesse du satellite sur son orbite

$$v = \frac{d}{t} = \frac{266 \, 407}{24} = 11 \, 100 \, \text{km/h}$$

- 3. Ce satellite est immobile par rapport au sol européen car il effectue un tour autour de la Terre en 24h pendant que la Terre effectue elle aussi un tour sur elle-même en 24h.
- 4. C'est un satellite géostationnaire qui est toujours au-dessus de la même zone géographique

Exercice 20 p 184

- 1. L'énergie potentielle de pesanteur dépend de la masse m de l'objet, de son altitude h et de l'intensité de la pesanteur g.
- 2. a. Calculons l'énergie potentielle d'un corps de 1kg à 1m d'altitude.

$$Ep = m \times g \times h$$

$$Ep = 1 \times 9.8 \times 1$$

$$Ep = 9.8 J$$

b. Calculons l'énergie potentielle d'un corps de 1kg à 10m d'altitude.

$$Ep = m \times g \times h$$

$$Ep = 1 \times 9.8 \times 10$$

$$Ep = 98 J$$

c. Calculons l'énergie potentielle d'un corps de 20kg à 1m d'altitude.

$$Ep = m \times q \times h$$

$$Ep = 20 \times 9.8 \times 1$$

$$Ep = 196 J$$

d. Calculons l'énergie potentielle d'un corps de 20kg à 10m d'altitude.

$$Ep = m \times q \times h$$

$$Ep = 20 \times 9.8 \times 10$$

$$Ep = 1960 J$$

Exercice 17 p 183

- 1. En bas de la descente, l'énergie mécanique est surtout de nature cinétique car le train possède beaucoup de vitesse.
- 2. A la fin de son ascension, le train possède de l'énergie potentielle (ou de position).

3. Ec =
$$\frac{1}{2}$$
 x m x v² avec m en kg, et v en m/s et E en J