Capítulo III

MÉTODO SIMPLEX

Conceitos introdutórios

O método Simplex é um procedimento matemático usado para resolver problemas de programação linear.

É um método algébrico, no qual, em cada iteração, se resolve um sistema de equações de forma a obter uma solução a ser testada:

Considere as seguintes definições:

Um **ponto extremo** (**PE**) é um ponto que resulta do cruzamento de quaisquer duas retas das restrições.

Se pertencer à região admissível é um **PE** admissível, caso contrário é um **PE** não admissível.

Dois **PE**s admissíveis são adjacentes se estiverem ligados por uma única aresta na região admissível.

A essência do método Simplex baseia-se em conceitos geométricos, fundamentando-se em três propriedades:

- 1 a) Se houver apenas uma solução ótima, então é um PE admissível;
 - b) Se houver múltiplas soluções ótimas, então pelo menos duas são **PE**s admissíveis adjacentes;
- 2 Há um número finito de PEs admissíveis;
- 3 Se um **PE** admissível não tiver **PE**s admissíveis adjacentes que sejam melhores (em termos do valor da função objetivo), então esse **PE** admissível é **ótimo**.

O método Simplex avalia repetidamente **PE**s admissíveis (movendo-se de um **PE** admissível para outro **PE** admissível adjacente "melhor"), até que a solução atual não possua **PE**s admissíveis adjacentes "melhores", ou seja:

Assume-se que:

O modelo está na forma standard

maximizar
$$z = c'x$$

sujeito a

$$Ax \leq b$$

$$x \ge 0$$

$$\bullet$$
 $b_i \geq 0, \forall_i$

Inicialmente as desigualdades são convertidas em igualdades pela introdução de variáveis folga designadas por "slacks" (uma por cada restrição):

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$
 +"slacks"

As soluções que resultam da resolução do sistema **Ax=b** designam-se por **soluções básicas** (**SB**s).

Num problema com n variáveis e m restrições, uma solução básica é constituída por:

- m variáveis básicas (VBs) com valor diferente de zero
- n variáveis não básicas (VNBs) com valor igual a zero

Uma solução básica é admissível se todos os valores das variáveis que a constituem forem ≥ 0. Caso contrário, diz-se não admissível.

A cada solução básica corresponde um ponto extremo no gráfico:

PE admissível \leftrightarrow **SB** admissível (ou **SBA**)

PE não admissível ↔ SB não admissível (ou SBNA)

Duas SBAs são adjacentes se diferirem apenas numa VNB

Significa que passar de uma SBA para outra SBA adjacente, corresponde a trocar uma VNB com uma VB (e vice-versa)

Algoritmo do método Simplex

- a) <u>Inicialização</u>: Como selecionar o **PE** admissível inicial?
- **D)** Teste de otimalidade: Como determinar se o PE admissível atual não tem PEs admissíveis adjacentes melhores?
- **C)** <u>Iteração</u>: Como mover-se para um melhor **PE** admissível adjacente?
 - 1. Como selecionar a direção do movimento?
 - 2. Onde parar?
 - 3. Como identificar a nova solução?

a) <u>Inicialização:</u>

Qualquer **PE** admissível pode ser adotado como solução inicial:

- antes da introdução das "slacks": origem;
- após a introdução das "slacks": variáveis originais são VNBs e as "slacks" são VBs;
- valor nulo para a função objetivo.

b) Teste de otimalidade:

Em termos genéricos, o **PE** admissível corrente é ótimo se e só se não existir nenhum **PE** admissível adjacente que melhore o valor da função objetivo, ou seja, se a entrada de uma **VNB** na base não se repercutir num aumento do valor da função objetivo.

C) <u>Iteração:</u>

- 1. As candidatas a entrar na base são as VNB
 - Os vetores atividade correspondentes às **VB** são unitários e linearmente independentes;
 - Os vetores atividade correspondentes às **VNB** podem ser escritos como sua combinação linear;
 - A VNB que entra na base é a que dá mais lucro, isto é, a que tem associado maior indicador de lucratividade:
 - O indicador de lucratividade de programar uma unidade da VNB xj (torná-la básica) é dado por:

$$c_j - z_j = c_j - c'B y_j$$

- O indicador de lucratividade não diz quantas unidades da VNB x_j devem entrar na base.
- 2. A variável que sai da base é a que primeiro atinge o valor zero à medida que o valor da variável que entra na base aumenta.

Exemplo

Considere-se novamente o Exemplo 1 (pág. II-2) cujo modelo matemático é:

Determinar

 $x_1 = n^o$ de unidades de área a plantar de arroz

 $x_2 = n^o$ de unidades de área a plantar de milho

de modo a

$$maximizar z = 5 x_1 + 2 x_2$$

sujeito a

$$x_1 \le 3$$

$$x_2 \le 4$$

$$x_1 + 2 x_2 \le 9$$

$$x_1 \ge 0, x_2 \ge 0$$

Resolução pelo método gráfico

Resolução pelo método Simplex (forma tabular)

	$\mathbf{c_{j}}$	5	2	0	0	0		
ХB	c'B Xj	x ₁	x ₂	Х3	X 4	X 5	b	
Х3	0	<u>1</u> *	0	1	0	0	3	(3/1)
X4	0	0	1	0	1	0	4	
X5	0	1	2	0	0	1	9	(9/1)
$Z_{j} - C_{j}$		-5	-2	0	0	0	0	_

SBA:
$$x=(0,0,3,4,9) \rightarrow Ponto extremo A$$

com $z=0$

хв	$\begin{array}{cc} c_j \\ c'_B \end{array}$	5 x ₁	2 x ₂	0 x3	0 x4	0 x5	b	
x ₁	5	1	0	1	0	0	3	
X4	0	0	1	0	1	0	4	(4/1)
X 5	0	0	<u>2</u> *	-1	0	1	6	(6/2)
z _j . c _j		0	-2	5	0	0	15	

SBA:
$$x=(3,0,0,4,6)$$
 \rightarrow Ponto extremo **B** com $z=15$

ХB	c' _B x _j	5 x ₁	2 x ₂	0 x ₃	0 X4	0 x5	b	
x ₁	5	1	0	1	0	0	3	x1*
X 4	0	0	0	1/2	1	-1/2	1	X4 *
X 2	2	0	1	-1/2	0	1/2	3	x2*
Zj - Cj		0	0	4	0	1	21	Z*

Quadro ótimo pois não há valores negativos na linha zj-cj.

Solução ótima e valor ótimo da função objetivo:

SBA:
$$x^*=(3,3,0,1,0)$$
 Ponto Extremo C $z^*=21$

Fluxograma do método Simplex

