Spring 2023

Unit #1 Jan. 13, 2023

PROBLEMS

Due Fri. Jan. 20, 2023 @ 4pm

- 1. A soccer team in the A league wants to recruit a player from the B league, which is at a lower level.
 - (a) For this supervised learning problem, identify a possible target variable. (There are many "correct" answers.) Explain why they have access to data on this variable.
 - (b) What scalar feature would work well to predict this target variable? Explain why they have access to data on this variable.
 - (c) For the above target and feature, would a linear model be reasonable? Assuming a linear model was used, would you expect the slope to be positive or negative?
- 2. Suppose that we are given data samples (x_i, y_i) :

x_i	0	1	2	3	4
y_i	0	0.5	1	0.5	3

- (a) What are the sample means, \bar{x} and \bar{y} ?
- (b) What are the sample variances and co-variance, s_x^2 , s_y^2 and s_{xy} ?
- (c) What are the least-squares parameters β_0, β_1 of the linear model

$$y \approx \beta_0 + \beta_1 x$$
.

- (d) Plot the scatterplot and the regression line for the LS linear model.
- (e) What is the value of R^2 for the LS linear model?
- (f) Is linear regression effective on this dataset?
- 3. In seismology, the Gutenberg-Richter law expresses the relationship between the magnitude M and the total number of earthquakes N with that magnitude:

$$N = 10^{\gamma - \alpha M} \tag{1}$$

where γ and α are constants. To estimate the parameters γ and α , a researcher collects a large number of pairs $\{(N_i, M_i)\}_{i=1}^n$ for a given region. Unfortunately, the model (1) is nonlinear, so she can't directly apply the linear regression formula.

P. Schniter, 2023

(a) Show that we can transform (1) into a linear model of the form

$$y = \beta_0 + \beta_1 x,\tag{2}$$

where the target y is some function of N, the feature x is some function of M, and β_0 and β_1 are some functions of γ and α , respectively. Note that we are asking for a transformation, not an approximation; if (1) holds with equality then (2) should hold with equality.

- (b) Using the result of part (a), describe all the steps in computing the least-squares estimates of the linear-model parameters $\{\beta_0, \beta_1\}$ from the given data.
- (c) Now describe how the parameter estimates from part (b) can be transformed to get estimates of the original parameters γ and α .
- 4. Consider a linear model of the form,

$$y \approx \beta x$$
,

which is a linear model, but with the intercept forced to zero. This occurs in applications where we want to force the predicted value $\hat{y} = 0$ when x = 0. For example, if we are modeling y = output power of a motor vs. x = the input power, we would expect $x = 0 \Rightarrow y = 0$.

- (a) Given data (x_i, y_i) , write a cost function representing the residual sum of squares (RSS) between y_i and the predicted value \hat{y}_i as a function of β .
- (b) Taking the derivative with respect to β , find the β that minimizes the RSS.

P. Schniter, 2023