

# Quản trị cơ sở dữ liệu và Tối ưu hiệu năng

Tối ưu tương tranh (concurrency tuning)

#### Danh mục

- Tối ưu tương tranh
  - Chia giao dich (Transaction Chopping)



## Phân chia giao dịch dài (Chopping Long Transactions)

- Các giao dịch ngắn hơn
  - Yêu cầu khóa ít hơn (do đó các giao dịch này ít bị chặn hơn hoặc chặn một giao dịch khác)
  - Yêu cầu các giao dịch khác đợi khóa ít hơn
  - Tốt hơn cho việc ghi file log (logging)
- Phân chia giao dịch (Transaction chopping):
  - Chia các giao dịch dài thành các giao dịch ngắn
  - Không phá vỡ tính đúng đắn



#### Thuật ngữ

- Giao dịch (Transaction): là một chuỗi các truy cập đĩa cho việc đọc/ghi
- Thành phần của giao dịch (Piece of transaction): Là chuỗi con liên tiếp của hoạt động truy cập dữ liệu.
  - Ví dụ giao dịch T: R (A), R (B), W (A)
  - R (A) và R (A), R (B) là các thành phần của T
  - R (A), W (A) không là thành phần của T (vì không liên tục)
- Phân chia (Chopping): Chia giao dịch thành các thành phần.
  - Ví dụ giao dịch T: R (A), R (B), W (A)
  - T1:R (A), R (B) and T2: W (A) là một phân chia của T



#### Chia giao dịch dài – Ví dụ 1

- · Ngân hàng với các tài khoản và các chi nhánh
  - Mỗi tài khoản được ấn định đến một chi nhánh một cách chính xác
  - Số dư chi nhánh là tổng của tất cả các tài khoản trong chi nhánh đó
  - Khách hàng có thể rút tiền mặt trong ngày
- Các giao dịch qua đêm:
  - Cập nhật giao dịch: Phản ánh việc rút tiền hàng ngày trong CSDL
  - Kiểm tra số dư tài khoản: Khách hàng yêu cầu kiểm tra số dư tài khoản (chỉ đọc)
- Giao dịch cập nhật T<sub>blob</sub>
  - Cập nhật tất cả số dư tài khoản để phản ánh việc rút tiền hàng ngày
  - Cập nhật các số dư chi nhánh tương ứng
- Vấn đề: Các hoạt động kiểm tra số dư tài khoản bị chặn bởi T<sub>blob</sub> và mất quá nhiều thời gian



### Chia các giao dịch dài – Ví dụ 1

- Chia các giao dịch cập nhật T<sub>blob</sub> thành nhiều giao dịch nhỏ
- Phương án 1: Mỗi hoạt động cập nhật tài khoản là một giao dịch:
  - Cập nhật một tài khoản
  - Cập nhật số dư chi nhánh tương ứng
- Phương án 2: Mỗi hoạt động cập nhật tài khoản bao gồm 2 giao dịch:
  - − T₁: cập nhật tài khoản
  - T<sub>2</sub>: Cập nhật số dư chi nhánh
- Lưu ý: Tính tách biệt không bao hàm cả tính nhất quán
  - Cả 2 phương án đều duy trì tính tuần tự (tách biệt)
  - Phương án 2: Tính nhất quán (Tổng các tài khoản bằng với số dư chi nhánh) được chấp nhận chỉ khi một trong T1 hoặc T2 thực hiện cam kết (commit)



#### Chia các giao dịch dài – Ví dụ 2

- Kịch bản về ngân hàng giống với ví dụ 1.
- Các giao dịch:
  - Giao dịch cập nhật: Mỗi giao dịch cập nhật một tài khoản và số dư ngân hàng tương ứng (Phương án 1 trong ví dụ 1)
  - Kiểm tra số dư tài khoản: Khách hàng yêu cầu kiểm tra số dư tài khoản (Chỉ đọc)
  - Tính nhất quán (T'): Tính tổng số dư tài khoản cho mỗi chi nhánh và so sánh với số dư chi nhánh
- Chia: T' có thể chia thành các giao dịch cho mỗi chi nhánh riêng biệt.
- Tính tuần tự được duy trì:
  - Hoạt động kiểm tra tính nhất quán trên các chi nhánh khác nhau không chia sẻ mục dữ liệu
  - Việc cập nhật giúp CSDL trong trạng thái nhất quán cho T'
- Lưu ý: Giao dịch cập nhật không thể chia nhỏ hơn được (Phương án 2)!
- Bài học kinh nghiệm:
  - Đôi lúc các giao dịch có thể được chia mà không phải hi sinh tính tuần tự
  - Thêm một giao dịch mới vào việc cài đặt có thể làm mất hiệu lực tất cả các phân chia (chopping) trước đó



# Hình thức tiếp cận phân chia (Formal Chopping Approach)

- Giả thuyết: Khi nào phân chia được áp dụng?
- Quy tắc thực hiện: Các giao dịch đã được phân chia phải thực hiện như thế nào?
- Đồ thị phân chia (Chopping graph): Các chia nào là chính xác?



# Giả thiết cho phân chia giao dịch (Assumptions for Transaction Chopping)

- Giao dịch: Tất cả các giao dịch thực hiện trong một khoản đã biết
- Hủy giao dịch (Rollbacks): Nó được biết nơi mà việc hủy giao dịch được gọi
- Thất bại: Trong trường hợp thất bại, nó có thể xác định các giao dịch nào đã hoàn thành và không hoàn thành
- Biến: Mã giao dịch thay đổi một biến chương trình x phải dùng lại được (reentrant), ví dụ: Nếu giao dịch bị hủy bỏ do xung đột đồng thời và việc thực hiện một cách chính xác, x được chuyển đến một trạng thái nhất quán



### Luật thực hiện (Execution Rules)

- Thứ tự thực hiện: Việc thực hiện của các thành phẩn phải tuân theo thứ tự của giao dịch
- Xung đột khóa: Nếu một thành phần bị hủy bỏ do xung đột khóa, sau đó nó sẽ đệ trình lại (resubmitted) cho đến khi thực hiện cam kết
- Hủy giao dịch: Nếu một thành phần bị hủy bỏ do việc hủy giao dịch, khi đó các thành phần khác sẽ không được thực hiện



### Bài toán phân chia giao dịch (The Transaction Chopping Problem)

- Cho: Tập A = {T<sub>1</sub>, T<sub>2</sub>, ..., T<sub>n</sub>} của (có thể) các giao dịch đồng thời
- Mục tiêu: Tìm một phân chia B của các giao dịch trong A sao cho bất kì việc thực hiện tuần tự nào của các giao dịch trong B (Theo các luật thực hiện) tương đương với một số việc thực hiện nối tiếp của giao dịch trong A.
  - Các chia như vậy được gọi là chính xác.
- Lưu ý: Việc thực hiện "tuần tự" (serializable) của B có thể đồng thời, theo một giao thức cho tính tuần tự



# Đồ thị phân chia (Chopping Graph)

- Chúng ta thể hiện một phân chia cụ thể của các giao dịch bằng một đồ thị
- Đồ thị phân chia: Là đồ thị vô hướng với 2 loại cạnh:
  - Nút: Mỗi thành phần trong phân chia là là một nút
  - Cạnh-C: Cạnh giữa 2 thành phần xung đột bất kì
  - Cạnh-S: Cạnh giữa 2 thành phần anh chị em bất kì
- Thành phần xung đột: 2 thành phần p và p' xung đột nếu:
  - p và p' là các thành phần của các giao dịch ban đầu khác nhau
  - Cả p và p' cùng truy cập vào một mục dữ liệu x và ít nhất một thành phần làm thay đổi nó
- Thành phần anh chị em: 2 thành phần p và p' là anh chị em nếu:
  - p và p' là các thành phần lân cận của cùng một giao dịch ban đầu



### Đồ thị phân chia - ví dụ

- Ghi chú: phân chia của các giao dịch đồng thời có thể.
  - Các giao dịch ban đầu được kí hiệu: T<sub>1</sub>, T<sub>2</sub>, ...
  - Phân chia T<sub>i</sub> thành các phần : T<sub>i1</sub> , T<sub>i2</sub> ,...
- Ví dụ các giao dịch: (T1: R (x), R (y), W (y) được chia thành T11, T12)
  - T11 : R(x)
  - T12 : R (y), W (y)
  - T2 : R (x), W (x)
  - T3 : R (y), W (y)
- Cạnh xung đột giữa các nút:
  - T11 và T2 (Xung đột trên x)
  - T12 và T3 (Xung đột trên y)
- Cạnh anh chị em giữa các nút:
  - T11 và T22 (cùng một giao dịch ban đầu T1)



# Chống Hủy giao dịch (Rollback Safe)

- Động cơ: Giao dịch T được chia thành T<sub>1</sub> và T<sub>2.</sub>
  - − T₁ thực hiện và cam kết
  - T<sub>2</sub> chứa một lệnh hủy giao dịch và phục hồi (roll back)
  - T<sub>1</sub> đã cam kết và sẽ không phục hồi
  - Việc hủy giao dịch trong giao dịch ban đầu T cũng có thể khôi phục lại kết quả của thành phần T<sub>1</sub>!
- Một phân chia của giao dịch T gọi là chống hủy giao dịch (rollback save) nếu:
  - T không có lệnh hủy giao dịch hoặc
  - Tất cả các lệnh hủy giao dịch nằm trong thành phần đầu tiên của giao dịch



### Phân chia chính xác (Correct Chopping)

#### Định lý (phân chia chính xác):

Một phân chia là chính xác nếu nó là chống hủy giao dịch (rollback save) và đồ thị của phân chia đó không chứa chu kỳ-SC (SC-cycles)

- Phân chia của các ví dụ trước là chính xác (không có chu kì-SC và hủy giao dịch)
- Nếu một phân chia là không chính xác, khi đó bất kì phân chia khác của bất kì giao dịch nào sẽ không trả về một phân chia chính xác.
- Nếu 2 thành phần của giao dịch T ở trong một chu kì-SC như một kết quả của phân chia T, khi đó chúng sẽ ở trong một chu kì ngay cả khi không có những giao dịch khác (khác T) bị chia.



### Phân chia riêng (Private Chopping)

- Phân chia riêng (Private chopping): Cho các giao dịch: T<sub>1</sub> , T<sub>2</sub> ,...,T<sub>n</sub> . T<sub>i1</sub> , T<sub>i2</sub> , ...,T<sub>ik</sub> là một phân chia riêng của T<sub>i</sub> nếu :
  - Không có chu kì-SC trong đồ thị với các nốt sau:  $\{T_1,..., T_{i1},..., T_{ik},..., T_n\}$
  - T<sub>i</sub> là chống hủy giao dịch
- Luật phân chia riêng: Phân chia bao gồm private(T<sub>1</sub>), private(T<sub>2</sub>),..., private(T<sub>n</sub>) là chính xác
- Hệ quả:
  - Mỗi giao dịch T<sub>i</sub> có thể được chia một cách tách bạch, dẫn đến private(T<sub>i</sub>)
  - Toàn bộ phân chia là sự kết hợp của các phân chia riêng



### Thuật toán phân chia (Chopping Algorithm)

- Vẽ một cạnh-S giữa các thao tác R/W của một giao dịch duy nhất.
- Với mỗi mục dữ liệu x cung cấp một danh sách ghi, ví dụ: một danh sách của các giao dịch để ghi mục dữ liệu đó.
- Với mỗi R(x) hoặc W(x) trong tất cả các giao dịch:
  - Tìm các giao dịch xung đột trong danh sách ghi của x
  - Vẽ một cạnh-C đến các thao tác xung đột tương ứng
- Loại bỏ tất cả các cạnh-S liên quan đến một chu kì-SC.



#### Thuật toán phân chia – Ví dụ

```
Các giao dịch: (Rx = R(x), Wx = W(x))
  T1: Rx , Wx, Ry , Wy
  - T2: Rx, Wx
  T3: Ry, Rz, Wy

   Các danh sách ghi: x:T<sub>1</sub>,T<sub>2</sub>; y:T<sub>1</sub>, T<sub>3</sub>; z: Ø

 Các canh-C:
  T1: Rx - T2.Wx, Wx - T2.Wx, Ry - T3.Wy , Wy - T3.Wy

   T2: Rx - T1.Wx (Wx - T1.Wx: đã có trong T1)

   T3: Ry - T1.Wy (Wy - T1.Wy : đã có trong T1)

Loại bỏ các cạnh-S: T1: Rx - Wx, Ry - Wy ; T2: Rx - Wx; T3: Ry - Rz ,
  Rz – Wy
Phân chia cuối cùng:
  — T11 : Rx , Wx; T12 : Ry , Wy
  - T2: Rx, Wx
  - T3: Ry, Rz, Wy
```



# Sắp xếp lại giao dịch (Reordering Transactions)

- Thao tác giao hoán:
  - Thay đổi thứ tự không thay đổi ngữ nghĩa của chương trình
  - Ví dụ: R (y ), R (z ), W (y ← y + z ) và R (z ), R (y ), W (y ← y + z ) thực hiện giống nhau
- Phân chia giao dịch:
  - Thay dổi thứ tự của các thao tác giao hoán có thể đem lại phân chia tốt hơn
  - Tránh nhiệm của lập trình viên là kiểm tra các thao tác đó có giao hoán hay không.
- Ví dụ: Xét  $T_3$ :  $R_v$ ,  $R_z$ ,  $W_v$  của ví dụ trước:
  - Giả sử T<sub>3</sub> tính y+z và lưu trữ tổng trong y
  - Khi đó R<sub>v</sub> và R<sub>z</sub> là giao hoán và có thể được hoán đổi
  - $-T_3$ :  $R_z$ ,  $R_y$ ,  $W_y$  có thể được chia:  $T'_{31}$ :  $R_z$ ,  $T'_{32}$ :  $R_y$ ,  $W_y$

