CIRCUIT SIMPLIFICATION

BY BOOLEAN ALGEBRA

Variation in Boolean Expressions

Boolean expression (textbook style):

$$\overline{\mathbf{A}} \ \overline{\mathbf{B}} = \mathbf{Y}$$

Boolean expression (keyboard style):

DeMorgan's Theorems

$$\overline{A + B} = \overline{A} \overline{B}$$

Both used to eliminate long overbars and

tnéorem:

$$\overline{A} \overline{B} = \overline{A} + \overline{B}$$

DeMorgan's Theorems

First theorem:

$$\overline{A + B} = \overline{A} \overline{B}$$

$$A \longrightarrow Q \longrightarrow Y = A \longrightarrow Q \longrightarrow Y$$

Second theorem:

$$\overline{A} B = \overline{A} + \overline{B}$$

$$A - O - Y = A - O - Y$$

$$B - O - Y = B - O - Y$$

Basic Identities

1. X + 0 = X	$2. X \cdot 1 = X$
3. X + 1 = 1	4. $X \cdot 0 = 0$
5. X + X = X	6. X • X = X
7. $X + X = 1$	$8. X \bullet \overline{X} = 0$
 :	
9. $\overline{X} = X$ *two dashes means NOT, NOT	
10. X + Y = Y + X	11. XY = YX
12. $X + (Y + Z) = (X + Y) + Z$	13. X(YZ) = (XY)Z
$14. \ \underline{X(Y+Z)} = XY + XZ$	15. $X + YZ = (X + Y)(X + Z)$
$16. \overline{X+Y} = \overline{X} \cdot \overline{Y}$	17. $X \cdot Y = X + Y$