

## Série d'Exercices: $N^{\circ}2$ Algèbre 1

Exercice 1 . Soit  $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ , définie par :

$$g(x) = \frac{x^3 - 1}{x - 1}.$$

- 1. g est-elle bijective?
- 2. Changer les ensembles de départ et d'arrivée afin que (la restriction de) g devienne bijective.

**Exercice 2.** On considère quatre ensembles A, B, C et D et des applications  $f: A \to B, g: B \to C, h: C \to D$ . Montrer que :

$$g \circ f$$
 injective  $\implies f$  injective,

$$g \circ f$$
 surjective  $\implies g$  surjective.

Montrer que :

 $g \circ f$  et  $h \circ g$  sont bijectives  $\iff f, g$  et h sont bijectives.

**Exercice 3.** Si z = x + iy, avec  $(x, y) \in \mathbb{R}^2$ , on pose  $e^z = e^x \times e^{iy}$ .

- 1. Déterminer le module et l'argument de  $e^z$ .
- 2. Calculer  $e^{z+z'}$ ,  $e^{\bar{z}}$ ,  $e^{-z}$ ,  $(e^z)^n$  pour  $n \in \mathbb{Z}$ .
- 3. L'application exp :  $\mathbb{C} \to \mathbb{C}, z \mapsto e^z$ , est-elle injective ? surjective ?

**Exercice 3.** On définit sur  $\mathbb{R}^2$  la relation  $\mathcal{R}$  par :

$$(x,y)\mathcal{R}(x',y') \iff x+y=x'+y'.$$

- 1. Montrer que  $\mathcal{R}$  est une relation d'équivalence.
- 2. Trouver la classe d'équivalence du couple (0,0).

**Exercice 4.** Soit  $\mathcal{R}$  la relation définie sur  $]1, +\infty[$  par :

$$x\mathcal{R}y \iff \frac{x}{1+x^2} \ge \frac{y}{1+y^2}.$$

Montrer que  $\mathcal{R}$  est une relation d'ordre total.

**Exercice 5.** Soit  $E = \mathbb{R}^{\mathbb{R}}$  l'ensemble des applications de  $\mathbb{R}$  dans  $\mathbb{R}$ . On considère la relation  $\leq$  définie sur E par : pour tout  $f, g \in E$ ,

$$f \le g \iff \forall x \in \mathbb{R}, \ f(x) \le g(x).$$

Montrer que  $\leq$  est une relation d'ordre. Est-elle partielle ?

**Exercice 6.** Montrer que la relation  $\mathcal{R}$  définie sur  $\mathbb{R}$  par :

$$x\mathcal{R}y \iff xe^x = ye^y$$

est une relation d'équivalence. Préciser, pour x fixé dans  $\mathbb{R}$ , le nombre d'éléments de la classe de x modulo  $\mathcal{R}$ .