# HWRS 505: Vadose Zone Hydrology

Lecture 6

9/12/2024

### Today:

- 1. Air-water system in capillary tubes
- 2. Advanced porous medium models
- 3. Soil water characteristics

## Air-water system in capillary tubes

#### Review of Lecture 5

- Capillary rise in a capillary tube
- Capillary rise in the presence of NAPL
- ❖ Bundle of capillary tubes as a model for a porous medium

## Air-water system in capillary tubes

Bundle of triangular capillary tubes vs. bundle of cylindrical capillary tubes



Tuller, Or, Dudley (1999)

Bundle of triangular capillary tubes model have several advantages:

- 1. Can represent thin films and corner fluid
- 2. Saturation-dependent capillary pressure within a single-pore
- 3. More realistic representation of pore geometry
- 4. ...

## Air-water system in capillary tubes

An example study using the bundle of triangular capillary tubes model to examine the impact of surface roughness on fluid-fluid interfacial areas  $A_{aw} = A_{aw}(S_w)$ 



Simulating the soil-water characteristics

Representing the surface roughness and films

#### Pore network model



A network of interconnected pore bodies and pore throats



Statistical input

- The physical laws and governing equations (w/ some assumptions) can be solved <u>analytically</u> within each pore and between pores.
- Employing mass conservation in each pore leads to the governing equation for the entire network.

### Direct imaging of soil and rock pore structures and fluid distributions

Imaging of fluid distribution in soils (X-ray micro-CT)



Schnaar and Brusseau (2005)

Imaging of pore-structures of shale rock (Scanning Electron Microscopy)









Size: 7.22 μm x 5.11 μm x 6.82 μm

Voxel: 10 nm x 10 nm x 20 nm

Guo et al. (2018)

### Extracting pore-networks directly from digital images of soils and rocks



Visualization of fluid displacement in micro-channels: using micromodels to represent porous media





Kovscek, Stanford University

## Macroscopic Description of Soil Characteristics

### How do we describe the water retention capacity of soils?

=> Soil-water characteristic curves





https://en.wikipedia.org/wiki/Soil\_texture

Soil texture triangle, showing the 12 major textural classes, as defined by the USDA

Tuller & Or (2004)

## Macroscopic Description of Soil Characteristics

#### How to measure soil-water characteristics?





Pressure-plate apparatus (5 bar) A variety of methods may be used to obtain requisite  $\theta$  and  $\psi_{\rm m}$  values to estimate the SWC. Potential experimental problems include: the limited functional range of the tensiometer, which is often used for in situ measurements; inaccurate  $\theta$  measurements in some cases; the difficulty in obtaining undisturbed samples for laboratory determinations; and a slow rate of equilibrium under low matric potential (i.e., dry soils).

#### Collecting undisturbed soil samples using a stainless steel sampling ring





Field soil sampling at Davis Monthan Air Force Base (August, 2022)

## Macroscopic Description of Soil Characteristics

### Complication of the soil-water characteristics: hysteretic behaviors



## Hysteresis in SWC can be related to several phenomena:

- The "ink bottle" effect.
- Different liquid-solid contact angles for advancing and receding water menisci.
- 3. Entrapped air in a newly wetted soil.
- Swelling and shrinking of the soil under wetting and drying.

Tuller & Or (2004)

## Mathematical Description of Soil Characteristics

Brooks-Corey (1964)

$$p_c = p_d s_e^{-1/\lambda}$$

$$s_e = (s_w - s_{w,r})/(1 - s_{w,r})$$

effective  $p_d$  is entry pressure

المسلم is a parameter related to pore size distribution



**Table 1** Typical van Genuchten model parameters  $(\alpha, n)$  including residual  $(\theta_r)$  and saturated  $(\theta_s)$  water contents compiled from the UNSODA database

| Textural class     | N   | $	heta_r$ (cm $^3$ cm $^{-3}$ ) | $	heta_s$ (cm $^3$ cm $^{-3}$ ) | $\alpha$ (cm $^{-1}$ ) | n    |
|--------------------|-----|---------------------------------|---------------------------------|------------------------|------|
| Sand               | 126 | 0.058                           | 0.37                            | 0.035                  | 3.19 |
| Loamy sand         | 51  | 0.074                           | 0.39                            | 0.035                  | 2.39 |
| Sandy Ioam         | 78  | 0.067                           | 0.37                            | 0.021                  | 1.61 |
| Loam               | 61  | 0.083                           | 0.46                            | 0.025                  | 1.31 |
| <b>/</b> Silt      | 3   | 0.123                           | 0.48                            | 0.006                  | 1.53 |
| Silt loam          | 101 | 0.061                           | 0.43                            | 0.012                  | 1.39 |
| Sandy clay<br>Ioam | 37  | 0.086                           | 0.40                            | 0.033                  | 1.49 |
| Clay loam          | 23  | 0.129                           | 0.47                            | 0.030                  | 1.37 |
| Silty clay<br>Ioam | 20  | 0.098                           | 0.55                            | 0.027                  | 1.41 |
| Silty clay         | 12  | 0.163                           | 0.47                            | 0.023                  | 1.39 |
| Clay               | 25  | 0.102                           | 0.51                            | 0.021                  | 1.20 |

Mualem (1976) and Van Genuchten (1980)

$$p_c = \frac{1}{\alpha} (s_e^{-1/m} - 1)^{1/n}$$

 $\alpha$  is a parameter related to the inverse of entry pressure n is a parameter related to pore size distribution m=1-1/n based on the Mualem assumption

*N*, the number of soils or samples of a given textural class from which the mean values are compiled.

Reproduced from Leij FJ, Alves WJ, van Genuchten MT, and Williams JR (1996) *The UNSODA Unsaturated Hydraulic Database*. EPA/600/ R-96/095. Cincinnati, OH: US Environmental Protection Agency.

Tuller & Or (2004)