Digital Image Processing

Image Enhancement

Ming-Sui (Amy) Lee Lecture 02

Image Enhancement

Goal of Image Enhancement

- make images more appealing
- no theory, ad-hoc rules, derived with insights

Two Approaches

- Contrast Manipulation
- Histogram Modification

Transfer Function

- Linear
- Nonlinear
- Piecewise

Continuous Image

Quantized Image

Linear scaling and clipping

$$G(j,k) = T[F(j,k)]$$
 $0 \le F(j,k) \le 1$

Jet original

(a) Original

(b) Original histogram

(c) Transfer function

(d) Contrast stretched

Power-Law

$$G(j,k) = [F(j,k)]^p \qquad 0 \le F(j,k) \le 1$$

(a) Square function

(b) Square output

(c) Cube function

(d) Cube output

Power-Law

$$G(j,k) = [F(j,k)]^p \quad 0 \le F(j,k) \le 1$$

square root function

(a) Square root function

(b) Square root output

(c) Cube root function

(d) Cube root output

- Rubber Band Transfer Function
 - Piecewise linear transformation
 - Inflection point (control point)

Logarithmic Point Transformation

$$G(j,k) = \frac{\log_e \{1 + aF(j,k)\}}{\log_e \{2.0\}} \qquad 0 \le F(j,k) \le 1$$

Fourier Spectrum

Useful for scaling image arrays with a very wide dynamic range

Reverse Function

$$G(j,k) = 1 - F(j,k)$$
 $0 \le F(j,k) \le 1$

(a) Reverse function

(b) Reverse function output

Inverse Function

$$G(j,k) = \begin{cases} 1 & 0 \le F(j,k) \le 0.1 \\ \frac{0.1}{F(j,k)} & 0.1 \le F(j,k) \le 1 \end{cases}$$

(c) Inverse function

(a) Inverse function output

Amplitude-Level Slicing (Gray-Level Slicing)

Histogram Modification

Goal

 Rescale the original image so that the histogram of the enhanced image follows some desired form

Histogram Modification

- Histogram Equalization
 - make the output histogram to be uniformly distributed
 - Transfer function
 - Bucket filling

Histogram Equalization

Transfer Function

Histogram Equalization

- Transfer Function
 - Output histogram not really uniformly distributed
 - Still keep the shape
 - More flat than the original histogram

Histogram Equalization

Bucket Filling

arbitrary

F(j,k)	# of pixels	
0	1	
1	2	
2	5	
:	:	
255	3	

uniform

G(j,k)	# of pixels	
0	N/256	
1	N/256	
2	N/256	
÷	:	
255	N/256	

N: # of total pixels

- Not 1-1 mapping
- Accumulated probability may not end exactly at the boundary of a bin → split it out

Reference

- Gamma correction
- Tone mapping
- HDR High Dynamic Range Imaging

Noise Cleaning

Noise

- electrical sensor noise
- photographic grain noise
- channel error
- o etc.

Characteristics of the noise

- discrete
- not spatially correlated
- higher spatial frequency

Noise Cleaning

- Two types of noise
 - Uniform Noise
 - Additive uniform noise, Gaussian noise
 - Impulse Noise
 - Salt and pepper noise

- Solutions
 - Uniform Noise low-pass filtering
 - Impulse Noise → non-linear filtering

Basics of Spatial Filtering

Mask

- filter, kernel, template
- \circ mxn
 - m=2a+1, n=2b+1,where a and b are nonnegative integers
 - e.g. 3x3 mask

w(-1,-1)	w(-1,0)	w(-1,1)
w(0,-1)	W(0,0)	w(0,1)
w(1,-1)	w(1,0)	w(1,1)

Spatial Filtering/Convolution

$$G(j,k) = w(-1,-1)F(j-1,k-1) + w(-1,0)F(j-1,k) + \cdots + w(0,0)F(j,k) + \cdots + w(1,0)F(j+1,k) + w(1,1)F(j+1,k+1)$$

Basics of Spatial Filtering

Image origin

Q: Boundary pixels?

Basics of Spatial Filtering

Boundary Extension (3x3 mask)

Q: 5x5 mask?

Noise Cleaning

Uniform noise

Perform low-pass filtering

$$H = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad H = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

General form

$$H = \frac{1}{(b+2)^2} \begin{bmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{bmatrix}$$

$$H = \frac{1}{(b+2)^2} \begin{bmatrix} 1 & b & 1 \\ b & b^2 & b \\ 1 & b & 1 \end{bmatrix} \qquad F = \begin{bmatrix} 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \\ 0 & 0 & 180 & 180 \end{bmatrix}$$

High Frequency Noise Removal

- Low-pass filtering
 - Normalized to unit weighting
 - Averaging
 - Smaller/Larger filter size ?

3x3 7x7

Noise Cleaning

- Impulse noise
 - o black: pixel value =0 → dead sensor
 - o white: pixel value=255 → saturated sensor

- Solutions
 - Outlier detection
 - Median filtering
 - Pseudo-median filtering (PMED)

Outlier detection

if
$$\left| x - \frac{1}{8} \sum_{i=1}^{8} O_i \right| > \varepsilon$$
 then $x = \frac{1}{8} \sum_{i=1}^{8} O_i$

How to choose *€* ? Larger window?

Median filtering

$$a_1, ..., a_N$$
 where N is odd

- sort those values in order
- pick the middle one in the sorted list
- e.g. 3x3 mask:

$$I = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 8 & 7 \\ 1 & 5 & 6 \end{bmatrix}$$

→ Median is 3

- Median filtering
 - Preserve sharp edges
 - Effective in removing impulse noise
 - 1D/2D (directional)
 - e.g. 2D

e.g. 1D (window size = 5)

- Median filtering
 - Fast computation
 - Approximation of median

```
    e.g. 5-element filter
    a, b, c, d, e
    → MED(a, b, c, d, e)
    =max( min(a,b,c) , min(a,b,d), ... )
    =min( max(a,b,c) , max(a,b,d), ... )
    → there are 10 possible choices
    → could be narrowed down
```

Pseudomedian filtering (PMED)

```
e.g. 5-element filter
a, b, c, d, e → spatially ordered
MAXMIN = A (under estimated)
= max( min(a,b,c) , min(b,c,d) , min(c,d,e) )
MINMAX = B (over estimated)
= min( max(a,b,c) , max(b,c,d) , max(c,d,e) )
→ PMED(a, b, c, d, e)
= 0.5 * (A + B) = 0.5 * (MAXMIN + MINMAX)
~ MED(a, b, c, d, e)
```

Pseudomedian filtering (PMED)

2D case

2D case

$$PMED = \frac{1}{2} \left(PMED_x + PMED_y \right)$$

$$PMED = \frac{1}{2} \max(MAXMIN(x_c), MAXMIN(y_R))$$
$$+ \frac{1}{2} \min(MINMAX(x_c), MINMAX(y_R))$$

- Pseudomedian filtering (PMED)
 - MAXMIN
 - Remove salt noise
 - O MINMAX
 - Remove pepper noise
 - May cascade two operations
 - Remove salt and pepper noise

Original noisy image

MAXMIN

MINMAX

MINMAX of MAXMIN

MAXMIN of MINMAX

Q: same results?

Quality Measurement

- Peak signal-to-noise ratio (PSNR)
 - Mean squared error (MSE)

$$MSE = \frac{1}{w * h} \sum_{j} \sum_{k} [F(j,k) - F'(j,k)]^{2}$$

The PSNR is defined as

$$PSNR = 10 \times \log_{10} \left(\frac{255^2}{MSE} \right)$$

Example

Original image

Gaussian noise (σ=10) PSNR : 28.18dB

Gaussian noise (σ =30) PSNR: 18.81dB

Q: Does PSNR represent perceived visual quality?

Reference

EPLL

 Zoran, D., and Weiss, Y., "From learning models of natural image patches to whole image restoration," in IEEE International Conference on Computer Vision (ICCV), pp. 479-486, 2011.

BM3D

 Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K., "Image denoising by sparse 3-D transform-domain collaborative filtering," in IEEE Transactions on image processing (TIP), Vol. 16, No. 8, pp. 2080-2095, 2007.