Seeing with Algorithms: Introduction to Object Detection

From Pixels to Predictions, and Precision to Policy

Nipun Batra and teaching staff

IIT Gandhinagar

August 5, 2025

Table of Contents

- 1. Motivation and Applications
- 2. What is Object Detection?
- 3. Our 3-Class Detection Example
- 4. Detection Pipeline
- 5. Evaluation Metrics: The Foundation
- 6. Precision-Recall Curves and Average Precision
- 7. Mean Average Precision (mAP)
- 8. Advanced Topics

Why Object Detection Matters

Object Detection helps machines see!

Self-Driving Cars

Self-Driving Cars

Medical Imaging

Medical Imaging

Smart Retail

Smart Checkout

Satellite Analysis

Satellite Analysis

Image Classification

What is Image Classification?

Image Classification Goal

Identify what object is in the image

Image Classification Output

Single class label

Image Classification Question

"What is this?"

Object Detection

What is Object Detection?

Object Detection Goal

Find all objects and their locations

Object Detection Output

Class labels + bounding boxes

Object Detection Question

"What and where?"

Detection Components

What does detection give us?

Component 1: Bounding Box

 $(X_{min}, y_{min}, X_{max}, y_{max})$

Component 2: Class Label

Dog, Cat, Car, Person

Component 3: Confidence Score

0.0 to 1.0

Detection Example

Real detection output

Class: Dog

Class: Dog

Confidence: 0.87

Confidence: 87%

Bounding Box

(120, 80, 340, 220) pixels

3-Class Detection

3-Class Detection Problem

Class 1: Dog

Dog

Class 2: Bicycle

Bicycle

Class 3: Person

Person

Detection Pipeline

Object Detection Pipeline

Pipeline Input

Single image with unknown objects

Pipeline Processing

Computer vision algorithms

Pipeline Output

List of detected objects + locations

Step 1: Feature Extraction

Feature Extraction

Input Image

416×416×3 pixels

Backbone Network

ResNet, EfficientNet, DarkNet

Feature Maps

Rich representations

Step 2: Detection Predictions

Detection Predictions

Detection Head

YOLO, R-CNN, DETR

Raw Predictions

Bounding boxes + class scores

Step 3: Post-Processing

Post-Processing

Raw Predictions

Thousands of boxes

NMS + Filtering

Remove duplicates

Final Detections

Clean results

Understanding Detection Outcomes

Sample Detection Results

Understanding Detection Outcomes

Sample Detection Results

False Positive: When Models Hallucinate

False Positive Example

False Positive: When Models Hallucinate

False Positive Example

False Positive: When Models Hallucinate

False Positive Example

False Negative: When Models Miss Objects

False Negative Example

False Negative: When Models Miss Objects

False Negative Example

False Negative: When Models Miss Objects

False Negative Example

What is Precision?

"Of my detections, how many were correct?"

Precision Formula

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

Precision Meaning

Correct ÷ All detections

What is Recall?

"Of all real objects, how many did I find?"

Recall Formula

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

Recall Meaning

Found ÷ All real objects

What is IoU?

IoU Stands For

Intersection over Union

What Does IoU Measure?

How much boxes overlap

IoU Range

0 to 1

Example Setup

Let's work through an example step by step

Ground Truth Box

Ground Truth

Coordinates

Ground Truth: (1,1) to (4,3)

Prediction Box

Prediction

Coordinates

Prediction: (2,0.5) to (5,2.5)

Both Boxes Together

Question

Where do they overlap?

Finding Intersection - X Coordinates

Ground Truth X: 1 to 4

Prediction X: 2 to 5

Step 1

Overlap X: from max(1,2) = 2 to min(4,5) = 4

Finding Intersection - Y Coordinates

Ground Truth Y: 1 to 3

Prediction Y: 0.5 to 2.5

Step 2

Overlap Y: from max(1,0.5) = 1 to min(3,2.5) = 2.5

Intersection Rectangle

Intersection

Intersection Box

From (2,1) to (4,2.5)

Calculate Intersection Width

Width =
$$4 - 2 = 2$$

Step 3

Right edge - Left edge = Width

Calculate Intersection Height

Height =
$$2.5 - 1 = 1.5$$

Step 4

Top edge - Bottom edge = Height

Calculate Intersection Area

Area =
$$2 \times 1.5 = 3$$

Step 5

Width × Height = Area

IoU: Calculating the Union

Union = Total Covered Area

Union = Area1 + Area2 - Intersection

Now Calculate Union

Union = Area1 + Area2 - Intersection

Why Subtract?

We subtract intersection to avoid counting it twice

Ground Truth Area

Area1 =
$$3 \times 2 = 6$$

Step 6

Ground Truth: Width 3, Height 2

Prediction Area

Area2 =
$$3 \times 2 = 6$$

Step 7

Prediction: Width 3, Height 2

Calculate Union

Union =
$$6 + 6 - 3 = 9$$

Step 8

Area1 + Area2 - Intersection = Union

IoU: The Formula

$$IoU = \frac{Intersection}{Union}$$

Simple Division

Take the overlapping area and divide by the total covered area

Final IoU Calculation

$$IoU = \frac{3}{9}$$

Step 9

Intersection + Union

Do the Division

$$\frac{3}{9} = 0.33$$

Final Answer

IoU = 0.33 (33)

IoU Threshold: 0.5

Standard Rule

If IoU is 0.5 or higher, we call it a True Positive

IoU Below Threshold

IoU < 0.5

False Positive

If IoU is below 0.5, we call it a False Positive

Quiz #1

Given this detection scenario:

· Ground Truth: 5 dogs in image

Quiz #1

Given this detection scenario:

- · Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"

Quiz #1

Given this detection scenario:

- · Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"
- 4 detections have IoU ≥ 0.5 with ground truth

Quiz #1

Given this detection scenario:

- · Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"
- 4 detections have IoU ≥ 0.5 with ground truth

What are TP, FP, FN, Precision, and Recall?

A) TP=4, FP=4, FN=1, Precision=0.5, Recall=0.8

Quiz #1

Given this detection scenario:

- · Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"
- 4 detections have IoU ≥ 0.5 with ground truth

- A) TP=4, FP=4, FN=1, Precision=0.5, Recall=0.8
- B) TP=5, FP=3, FN=0, Precision=0.63, Recall=1.0

Quiz #1

Given this detection scenario:

- Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"
- 4 detections have IoU ≥ 0.5 with ground truth

- A) TP=4, FP=4, FN=1, Precision=0.5, Recall=0.8
- B) TP=5, FP=3, FN=0, Precision=0.63, Recall=1.0
- C) TP=4, FP=1, FN=4, Precision=0.8, Recall=0.5

Quiz #1

Given this detection scenario:

- Ground Truth: 5 dogs in image
- Model detections: 8 boxes predicted as "dog"
- 4 detections have IoU ≥ 0.5 with ground truth

- A) TP=4, FP=4, FN=1, Precision=0.5, Recall=0.8
- B) TP=5, FP=3, FN=0, Precision=0.63, Recall=1.0
- C) TP=4, FP=1, FN=4, Precision=0.8, Recall=0.5
- D) TP=8, FP=0, FN=0, Precision=1.0, Recall=1.0

The Answer

A)

Correct Answer

TP=4, FP=4, FN=1, Precision=0.5, Recall=0.8

Step 1: Find TP

$$TP = 4$$

Explanation

4 detections have IoU ≥ 0.5 with ground truth

Step 2: Find FP

$$FP = 8 - 4 = 4$$

Explanation

8 total detections - 4 correct = 4 false alarms

Step 3: Find FN

$$FN = 5 - 4 = 1$$

Explanation

5 ground truth dogs - 4 detected = 1 missed

Step 4: Calculate Precision

$$\frac{4}{4+4} = \frac{4}{8} = 0.5$$

Precision Formula

 $TP \div (TP + FP)$

Step 5: Calculate Recall

$$\frac{4}{4+1} = \frac{4}{5} = 0.8$$

Recall Formula

PR Curve Interpretation

 High precision at low recall:
 Easy detections first

PR Curve Interpretation

- High precision at low recall: Easy detections first
- Curve drops:
 As we include more detections, precision falls

PR Curve Interpretation

- High precision at low recall:
 Easy detections first
- Curve drops:
 As we include more detections, precision falls
- Area Under Curve: Average Precision (AP)

Computing AP: Step-by-Step Example

Dog Detection Results (Sorted by Confidence)

Detection Confidence IoU TP/FP Precision

			· -		1
1	0.95	0.8	TP	1/1 = 1.00	1/3 =
2	0.89	0.3	FP	1/2 = 0.50	1/3 =
3	0.76	0.7	TP	2/3 = 0.67	2/3 =
4	0.65	0.6	TP	3/4 = 0.75	3/3 =
5	0.43	0.2	FP	3/5 = 0.60	3/3 =

Key Points

Ground Truth: 3 dogs in image

AP Calculation (using trapezoidal rule):

$$\mathsf{AP} = \frac{1}{2}[(1.00 + 0.67) \times 0.34 + (0.67 + 0.75) \times 0.33 + (0.75 + 0.60)]$$

84/118

Rec

From AP to mAP: Multi-Class Evaluation

3-Class Example: Computing Individual APs

Class	Ground Truth Count	Average Precision	າ (AP)
Dog	12 objects	AP = 0.73	
Bicycle	8 objects	AP = 0.65	
Person	15 objects	AP = 0.81	
Person		AP = 0.81	

Mean Average Precision (mAP)

$$\mathsf{mAP} = \frac{1}{C} \sum_{c=1}^{C} \mathsf{AP}_{c}$$

For our example:

$$\mathsf{mAP} = \frac{1}{3}(0.73 + 0.65 + 0.81) = \frac{2.19}{3} = 0.73$$

From AP to mAP: Multi-Class Evaluation

3-Class Example: Computing Individual APs

Class	Ground Truth Count	Average Precision	າ (AP)
Dog	12 objects	AP = 0.73	
Bicycle	8 objects	AP = 0.65	
Person	15 objects	AP = 0.81	
Person		AP = 0.81	

Mean Average Precision (mAP)

$$\mathsf{mAP} = \frac{1}{C} \sum_{c=1}^{C} \mathsf{AP}_{c}$$

For our example:

$$\mathsf{mAP} = \frac{1}{3}(0.73 + 0.65 + 0.81) = \frac{2.19}{3} = 0.73$$

From AP to mAP: Multi-Class Evaluation

3-Class Example: Computing Individual APs

Class	Ground Truth Count	Average Precision	າ (AP)
Dog	12 objects	AP = 0.73	
Bicycle	8 objects	AP = 0.65	
Person	15 objects	AP = 0.81	
Person		AP = 0.81	

Mean Average Precision (mAP)

$$\mathsf{mAP} = \frac{1}{C} \sum_{c=1}^{C} \mathsf{AP}_{c}$$

For our example:

$$\mathsf{mAP} = \frac{1}{3}(0.73 + 0.65 + 0.81) = \frac{2.19}{3} = 0.73$$

mAP Variants: @50, @75, @[.5:.95]

mAP@50

mAP@75

loU threshold = 0.5

IoU threshold = 0.75

mAP@[.5:.95]

Average over IoU 0.5 to 0.95

Example Results Comparison

Metric	Value	Interpretation
mAP@50	0.73	Good localization (loose)
mAP@75	0.52	Moderate localization (strict)
mAP@[.5:.95]	0.61	COCO-style evaluation

Class-Agnostic mAP

What is Class-Agnostic Detection?

Instead of predicting specific classes, we just ask: "Is there any object here?"

Regular Detection

Class-Agnostic Detection

Use Cases for Class-Agnostic mAP

Class-Agnostic mAP

What is Class-Agnostic Detection?

Instead of predicting specific classes, we just ask: "Is there any object here?"

Regular Detection

Class-Agnostic Detection

Use Cases for Class-Agnostic mAP

Class-Agnostic mAP

What is Class-Agnostic Detection?

Instead of predicting specific classes, we just ask: "Is there any object here?"

Regular Detection

Class-Agnostic Detection

Use Cases for Class-Agnostic mAP

Negative Set Evaluation

Challenge: What about images with NO objects?

Negative Image (No Objects)

Key Points

Negative Set Metrics:

Falsa Decitive Date: ED detections nor negative

88 / 118

Negative Set Evaluation

Challenge: What about images with NO objects?

Negative Image (No Objects)

Key Points

Negative Set Metrics:

Feles Desitive Detay ED detections nor negative

88 / 118

Negative Set Evaluation

Challenge: What about images with NO objects?

Negative Image (No Objects)

Key Points

Negative Set Metrics:

Feles Desitive Detay ED detections nor negative

88 / 118

Localization vs Classification Errors

Ground Truth Classification Error Cat (IoU=0.8) Localization Error Dog (IoU=0.3) Dog 09og 0.7

Error Types

 Localization Error: Right class, wrong location (IoU < threshold)

Localization vs Classification Errors

Ground Truth Classification Error Cat (IoU=0.8) Localization Error Dog (IoU=0.3) Dog 0Dog 0.7

Error Types

- Localization Error: Right class, wrong location (IoU < threshold)
- Classification Error: Right location, wrong class

Localization vs Classification Errors

Dog (IoU=0.3)

Ground Truth Classification Error Cat (IoU=0.8) Localization Error Duplicate Detection

Dog 019 og 0.7

Error Types

- Localization Error: Right class, wrong location (IoU < threshold)
- Classification Error: Right location, wrong class
- Dunlicate Detection: Multiple hoves for same

Quiz #2

You have a dataset with:

• 100 images total

Your model detects:

Quiz #2

You have a dataset with:

- 100 images total
- 50 images with dogs (300 dog instances total)

Your model detects:

Quiz #2

You have a dataset with:

- · 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

Quiz #2

You have a dataset with:

- 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

250 dogs correctly (IoU ≥ 0.5)

Quiz #2

You have a dataset with:

- 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

- 250 dogs correctly (IoU ≥ 0.5)
- 30 false positive dogs in positive images

Quiz #2

You have a dataset with:

- · 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

- 250 dogs correctly (IoU ≥ 0.5)
- 30 false positive dogs in positive images
- 20 false positive dogs in negative images

Quiz #2

You have a dataset with:

- · 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

- 250 dogs correctly (IoU ≥ 0.5)
- 30 false positive dogs in positive images
- 20 false positive dogs in negative images

What is the Precision and Recall for the Dog class?

A) Precision=0.83, Recall=0.83

Quiz #2

You have a dataset with:

- · 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

- 250 dogs correctly (IoU ≥ 0.5)
- 30 false positive dogs in positive images
- · 20 false positive dogs in negative images

- A) Precision=0.83, Recall=0.83
- B) Precision=0.89 Recall=0.75

Quiz #2

You have a dataset with:

- · 100 images total
- 50 images with dogs (300 dog instances total)
- 50 negative images (no objects)

Your model detects:

- 250 dogs correctly (IoU ≥ 0.5)
- 30 false positive dogs in positive images
- · 20 false positive dogs in negative images

- A) Precision=0.83, Recall=0.83
- B) Precision=0.89 Recall=0.75

Pop Quiz #2 - Answer

Answer: A) Precision=0.83, Recall=0.83

Step-by-Step Calculation

Given:

TP = 250 (correctly detected dogs)

Calculations:

Precision =
$$\frac{\text{TP}}{\text{TP + FP}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$$
 (3
Recall = $\frac{\text{TP}}{\text{TP + FN}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$ (4

Pop Quiz #2 - Answer

Answer: A) Precision=0.83, Recall=0.83

Step-by-Step Calculation

Given:

- TP = 250 (correctly detected dogs)
- FP = 30 + 20 = 50 (false positives in positive + negative images)

Calculations:

Precision =
$$\frac{\text{TP}}{\text{TP + FP}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$$
 (3)
Recall = $\frac{\text{TP}}{\text{TP + FN}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$ (4)

Pop Quiz #2 - Answer

Answer: A) Precision=0.83, Recall=0.83

Step-by-Step Calculation

Given:

- TP = 250 (correctly detected dogs)
- FP = 30 + 20 = 50 (false positives in positive + negative images)
- FN = 300 250 = 50 (ground truth dogs detected dogs)

Calculations:

Precision =
$$\frac{\text{TP}}{\text{TP + FP}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$$
 (3)
Recall = $\frac{\text{TP}}{\text{TP + FN}} = \frac{250}{250 + 50} = \frac{250}{300} = 0.83$ (4)

What is AP?

ΑP

Average Precision

One Class

AP measures performance for one single class

What is mAP?

mAP

Mean Average Precision

All Classes

mAP is the average of AP across all classes

mAP Example Setup

Let's calculate mAP for 3 classes

AP for Dogs

$$AP_dogs = 0.8$$

Given

Dog class achieved 80

AP for Cats

$$AP_cats = 0.6$$

Given

Cat class achieved 60

AP for Cars

$$AP_{cars} = 0.9$$

Given

Car class achieved 90

Add Them Up

$$0.8 + 0.6 + 0.9 = 2.3$$

Step 1

Sum all the AP values

Divide by Number of Classes

$$\frac{2.3}{3} = 0.77$$

Final Answer

mAP = 0.77 (77)

mAP@50

mAP@50

Standard Evaluation

Uses IoU threshold of 0.5

Specialized mAP Variants

Class-Agnostic mAP

Ignores class labels
Just asks: "Is there an object?"
Useful for weakly supervised learning

Size-Specific mAP

Separate evaluation for small, medium, large objects COCO provides mAP_S, mAP_M, mAP_L

Summary

That's It!

Key Point

Object detection uses mAP to measure performance

Detection Fundamentals: Key Takeaways

Object Detection = Classification + Loc

mAP is the gold standard for model comparison

loU thresholds matter - stricter = lower scores

Negative images crucial for real deployment

Context matters - choose metrics for your use case

Remember

Perfect metrics don't guarantee perfect real-world

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

Speed vs
 Accuracy: YOLOv8
 vs R-CNN

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

Speed vs
 Accuracy: YOLOv8
 vs R-CNN

 Memory constraints: Mobile deployment

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

- Speed vs
 Accuracy: YOLOV8
 vs R-CNN
- Memory constraints: Mobile deployment
- Class imbalance:
 Rare vs common

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

- Speed vs Accuracy: YOLOv8 vs R-CNN
- Memory constraints: Mobile deployment
- Class imbalance:
 Rare vs common

Deployment Issues

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

- Speed vs
 Accuracy: YOLOv8
 vs R-CNN
- Memory constraints: Mobile deployment
- Class imbalance:
 Rare vs common

Deployment Issues

 Domain shift: Training vs real data

Real-World Considerations

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

- Speed vs Accuracy: YOLOv8 vs R-CNN
- Memory constraints: Mobile deployment
- Class imbalance:
 Rare vs common

Deployment Issues

- Domain shift: Training vs real data
- Edge cases: Unusual lighting, angles

Real-World Considerations

Beyond the Metrics

Perfect mAP doesn't guarantee perfect real-world performance!

Model Selection

- Speed vs
 Accuracy: YOLOv8
 vs R-CNN
- Memory constraints: Mobile deployment
- Class imbalance:
 Rare vs common

Deployment Issues

- Domain shift: Training vs real data
- Edge cases:
 Unusual lighting,
 angles
- Ethical considerations:

Try These Demos!

YOLOv8 Demo:

https://docs.ultralytics.com/

Try These Demos!

YOLOv8 Demo:

https://docs.ultralytics.com/

Roboflow Playground: Interactive object detection

Try These Demos!

YOLOv8 Demo:

https://docs.ultralytics.com/

- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

Try These Demos!

YOLOv8 Demo:

https://docs.ultralytics.com/

- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

Essential Papers

YOLO series: You Only Look Once (Redmon et al.)

Try These Demos!

- YOLOv8 Demo:
 - https://docs.ultralytics.com/
- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

- YOLO series: You Only Look Once (Redmon et al.)
- Faster R-CNN: Two-stage detection (Ren et al.)

Try These Demos!

- YOLOv8 Demo:
 - https://docs.ultralytics.com/
- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

- YOLO series: You Only Look Once (Redmon et al.)
- Faster R-CNN: Two-stage detection (Ren et al.)
- COCO Dataset: Common Objects in Context (Lin et al.)

Try These Demos!

- YOLOv8 Demo:
 - https://docs.ultralytics.com/
- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

- YOLO series: You Only Look Once (Redmon et al.)
- Faster R-CNN: Two-stage detection (Ren et al.)
- COCO Dataset: Common Objects in Context (Lin et al.)

Try These Demos!

- YOLOv8 Demo:
 - https://docs.ultralytics.com/
- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

- YOLO series: You Only Look Once (Redmon et al.)
- Faster R-CNN: Two-stage detection (Ren et al.)
- COCO Dataset: Common Objects in Context (Lin et al.)

Try These Demos!

- YOLOv8 Demo:
 - https://docs.ultralytics.com/
- Roboflow Playground: Interactive object detection
- HuggingFace Spaces: Search "Object Detection"

- YOLO series: You Only Look Once (Redmon et al.)
- Faster R-CNN: Two-stage detection (Ren et al.)
- COCO Dataset: Common Objects in Context (Lin et al.)

Complete IoU Calculation Example

Multiple IoU Examples with Different Overlaps

Key Points

Key Insights:

IoU ≥ 0.5: Generally considered good localization

Multiple IoU Examples with Different Overlaps

Key Points

Key Insights:

- IoU ≥ 0.5: Generally considered good localization
- IoU ≥ 0.7: High-quality detection

Multiple IoU Examples with Different Overlaps

Key Points

Key Insights:

IoU ≥ 0.5: Generally considered good localization

1011 10. Danfast sliggers and /ways in supertical

IoU ≥ 0.7: High-quality detection

107 / 118

Comprehensive Precision-Recall Example

Scenario: Dog Detection in 5 Images

Ground Truth: 8 dogs total across all images

Model Predictions: 12 detections sorted by confi-

dence

Det	Gonf	You	TP/FP	Cum TP	Cum FP	Precision	Re
212 000 01 12 12 12 12 12 12 12 12 12 12 12 12 12	80000000000000000000000000000000000000	132224022 132224022 152224022 152224022 152224022 152224022 152224022 152224022 152224022 152224022 152224022 152224022 152224 15222402 1522240	<u>ההודה הדדה</u> מסטטטטטטטטטט	SONDINE SON	D	100 0.52 0.671 0.670 0.677	- 0000000

Cumulative Calculations

108 / 118

Multi-Class mAP Calculation Detailed Example

3-Class Detection Results

Dataset: 100 images with Dogs, Cats, and Cars

mAP Calculation:

$$\begin{aligned} \text{mAP} &= \frac{1}{3}(\text{AP}_{\text{Dogs}} + \text{AP}_{\text{Cats}} + \text{AP}_{\text{Cars}}) \\ \text{mAP} &= \frac{1}{3}(0.82 + 0.76 + 0.89) = \frac{2.47}{3} = 0.823 \end{aligned}$$

Class-wise Performance Analysis: • Cars (AP=0.89): Best performing class - likely larger, more d

• Cars (AP=0.89): Best performing class - likely larger, more d
• Dogs (AP=0.82): Good performance - varied poses buildisting

mAP@[.5:.95] Calculation

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

· Ground truth: 20 cats

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- · Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

Dog Class Results:

Ground truth: 30 dogs

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

- Ground truth: 30 dogs
- Detections: 25 correct (IoU ≥ 0.5), 5 false positives

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

- Ground truth: 30 dogs
- Detections: 25 correct (IoU ≥ 0.5), 5 false positives
- AP@0.5 = 0.83

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

- Ground truth: 30 dogs
- Detections: 25 correct (IoU ≥ 0.5), 5 false positives
- AP@0.5 = 0.83

Pop Quiz #3: Advanced mAP Calculation

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

Dog Class Results:

- Ground truth: 30 dogs
- Detections: 25 correct (IoU ≥ 0.5), 5 false positives
- AP@0.5 = 0.83

Pop Quiz #3: Advanced mAP Calculation

Quiz #3

You're evaluating a 2-class detector (Cat, Dog) on a dataset:

Cat Class Results:

- Ground truth: 20 cats
- Detections: 15 correct (IoU ≥ 0.5), 8 false positives
- AP@0.5 = 0.75

Dog Class Results:

- Ground truth: 30 dogs
- Detections: 25 correct (IoU ≥ 0.5), 5 false positives
- AP@0.5 = 0.83

Pop Quiz #3 - Answer

Answer: A) mAP = 0.79, Dog has better precision (0.83) > 0.65)

Step-by-Step Solution

1. Calculate mAP:

$$\mathsf{mAP} = \frac{\mathsf{AP}_{\mathsf{Cat}} + \mathsf{AP}_{\mathsf{Dog}}}{2} = \frac{0.75 + 0.83}{2} = 0.79$$

- 2. Calculate Precision for each class:
- Cat Precision: $\frac{15}{15+8} = \frac{15}{23} = 0.65$
- 3. Compare: Dog class has higher precision (0.83 > 0.65)

113 / 118

Pop Quiz #3 - Answer

Answer: A) mAP = 0.79, Dog has better precision (0.83 > 0.65)

Step-by-Step Solution

1. Calculate mAP:

$$\mathsf{mAP} = \frac{\mathsf{AP}_{\mathsf{Cat}} + \mathsf{AP}_{\mathsf{Dog}}}{2} = \frac{0.75 + 0.83}{2} = 0.79$$

2. Calculate Precision for each class:

- Cat Precision: $\frac{15}{15+8} = \frac{15}{23} = 0.65$
- **Dog Precision**: $\frac{25}{25+5} = \frac{25}{30} = 0.83$
- **3. Compare:** Dog class has higher precision (0.83 > 0.65)

Key Points

YOLO Key Features

Single Shot: One forward pass for detection

YOLO Key Features

- Single Shot: One forward pass for detection
- Multi-Scale: 3 detection heads for different object sizes

YOLO Key Features

- Single Shot: One forward pass for detection
- Multi-Scale: 3 detection heads for different object sizes
- Anchor-based: Predefined anchor boxes for each grid cell

YOLO Key Features

- · Single Shot: One forward pass for detection
- Multi-Scale: 3 detection heads for different object sizes
- Anchor-based: Predefined anchor boxes for each grid cell
- 255 channels: $(4+1+80) \times 3 = 255$ (bbox + conf

114 / 118

YOLO Prediction Format Explained

Anchor 1: $[t_x, t_y, t_w, t_h, conf, p_1, p_2, ..., p_{80}]$

Where: t_x, t_y : Box center offsets

 t_w, t_h : Box width/height conf: Objectness confidence

p_i: Class probabilities

Decoding YOLO Predictions

$$b_{x} = \sigma(t_{x}) + c_{x}$$

 $b_{y} = \sigma(t_{y}) + c_{y}$

Non-Maximum Suppression (NMS) Detailed

Step 1: Sort by confidence Red (0.9) > Blue (0.7) > Green (0.6) > Orange (0.4)

Before Shows 2: Kielky Shagging at homon fidence (Red)

NMS Parameters

IoU Threshold: Typically 0.5 (higher = more suppression)

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good local-

ization)

Issue: False positive

rate too high

Medical C

Considera-

117 / 118

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive

rate too high

Medical Considerations

 High Recall crucial (can't miss tumors)

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive rate too high

- High Recall crucial (can't miss tumors)
- False positives create unnecessary

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive rate too high

- High Recall crucial (can't miss tumors)
- False positives create unnecessary

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive rate too high

- High Recall crucial (can't miss tumors)
- False positives create unnecessary

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive rate too high

- High Recall crucial (can't miss tumors)
- False positives create unnecessary

CT Scan

Results Analysis

Challenge: High precision needed

IoU: 0.65 (good localization)

Issue: False positive rate too high

- High Recall crucial (can't miss tumors)
- False positives create unnecessary

Case Study 2: Autonomous Driving - Multi-Object Scene

Case Study 2: Autonomous Driving - Multi-Object Scene

Case Study 2: Autonomous Driving - Multi-Object Scene

