Document 13: Kernels and Images

The following equivalent properties are useful to know for kernels and images. For each property consider $T: \mathbb{R}^n \to \mathbb{R}^m$, $\ker(T) = \ker(A) = \{x : A\vec{x} = 0\}, A\vec{x} = y, \operatorname{im}(T) = \operatorname{im}(A) = \operatorname{span}(\operatorname{columns space of } A).$

- 1. A is invertible
- 2. $A\vec{x} = \vec{b}$ has a unique solution: $\vec{x} = A^{-1}\vec{b}$.
- 3. $\operatorname{rref}(A) = I_n$
- 4. rank(A) = n has no redundancy
- 5. $\ker(A) = \{\vec{0}\}\$
- 6. $\operatorname{im}(A) = \mathbb{R}^n$

For a matrix A, compute the reduced row echelon form, then find the columns that have two leading ones. If these columns are A_1, A_3 for instance, we have found the image $\operatorname{im}(A) = \operatorname{span}\{A_1, A_3\}$. Solving $A\vec{x} = \vec{0}$ and placing it in closed form might look like $\vec{x} = sM_1 + tM_2$. Here, we have found the kernel $\operatorname{span}\{M_1, M_2\}$.

Now, lets introduce the concept of subspace.

Definition: Subspaces of \mathbb{R}^n . Let $w \subset \mathbb{R}^n$. W is a linear subspace of \mathbb{R}^n if:

- 1. $\vec{0} \in \mathbb{R}^n$ is in W.
- 2. W is closed under addition.
- 3. W is closed under scalar multiplication.
- 4. given $T(\vec{x}) = A\vec{x}, T : \mathbb{R}^n \to \mathbb{R}^m$, $\ker(T) = \ker(A)$ is a subspace of \mathbb{R}^n .
- 5. given $T(\vec{x}) = A\vec{x}, T : \mathbb{R}^n \to \mathbb{R}^m$, $\operatorname{im}(T) = \operatorname{im}(A)$ is a subspace of \mathbb{R}^m .

SUMMARY TABLE: Subspace

Dimention	$W \subset \mathbb{R}^2$	$W \subset \mathbb{R}^3$
3	NA	\mathbb{R}^3
2	\mathbb{R}^2	plane through $\vec{0}$
1	line through $\vec{0}$	line through $\vec{0}$
0	$\{\vec{0}\}$	$\{\vec{0}\}$

We also have the concept of redundancy and linear independence. Consider the following definition.

Definition: linear independence. Let $S = \vec{v_1}, \dots, \vec{v_n} \in \mathbb{R}^n$.

- 1. $\vec{v_i} \in S$ is redundant if $\vec{v_i}$ is a linear combination of vectors in S.
- 2. S is a linearly independent set if none of the vectors in S is redundant.

Finally, we have the concept of bases. In 2D space, we have $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which can be used to create every other vector. The set that contains them would be the basis.

Definition: Let $s = \{\vec{v_1}, \dots, \vec{v_n}\}$ such that each element v_i is linearly independent of the others and $v_i \in V \subset \mathbb{R}^n$. We say s forms a basis of V if and only if $\forall \vec{v} \in V, \exists \vec{v_1}, \dots, \vec{v_n}, \exists c_1, \dots, c_n, \vec{v} = c_1 \vec{v_1} + \dots + c_n \vec{v_n}$. In other words, if each vector in V can be written in coordinates using elements in vector s, and each element of vector s is linearly independent, then s is a basis.

A basis must be optimal, there can be no redundancies in a set for it to be considered a basis. Now, lets define a dimension.

Let $\{v_1, \dots, v_p\} \in V \subset \mathbb{R}^n$, and $\{w_1, \dots, w_q\} \in V \subset \mathbb{R}^n$. If v_i 's are linearly independent and $\mathrm{span}\{w_1, \dots, w_q\} = V$, then $p \leq q$. Given two basis sets where both sets are linearly independent and $\mathrm{span}\ V$, the number of elements in each basis are less than or equal to each other (i.e. $p \leq q \land q \leq p$), therefore they are equal in number. Thus, all bases of V must have the same number of elements.

Definition Dimension: The number of vectors in a basis of V is the dimension, (i.e. Let \mathbb{B} be the basis of V. $[[\mathbb{B}]] = \dim(V)$).