Teoria da Computação

Decidibilidade

Guilherme Meira

Agenda

1. Algoritmos

2. Indecidibilidade

O que é um algoritmo?

O que é um algoritmo?

- Informalmente: é uma coleção de instruções simples para realizar alguma tarefa
 - Exemplo: uma receita
- Até o século XX não havia uma definição precisa do que é um algoritmo

Problemas de Hilbert

• Em 1900, o matemático David Hilbert apresentou 23 problemas matemáticos que seriam desafios para o novo século

Problemas de Hilbert

Polinômios:

- Um polinômio é uma soma de termos, onde cada termo é o produto de algumas variáveis e uma constante chamada de coeficiente
- Exemplo:

$$6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$$

é um termo com coeficiente 6 e

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

é um polinômio de 4 termos nas variáveis x, y e z

- Vamos considerar apenas coeficientes inteiros

Problemas de Hilbert

Polinômios:

- A raiz de um polinômio é um conjunto de valores de suas variáveis que faz com que o valor do polinômio seja zero
- Exemplo: uma raiz de

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

$$é x = 5, y = 3 e z = 0$$

- Essa raiz é inteira porque todas as variáveis recebem valores inteiros
- Alguns polinômios possuem raízes inteiras e outros não

Problemas de Hilbert

- O décimo problema de Hilbert envolvia descrever um algoritmo que determinasse se um polinômio tem ou não uma raiz inteira
 - Na época, ele não usou o termo "algoritmo", mas "um processo de acordo com o qual possa ser determinado por um número finito de operações"
- Hilbert aparentemente assumiu que o algoritmo deveria existir e que só precisava ser descoberto
- Hoje sabemos que n\u00e3o existe um algoritmo que resolva esse problema
- Chegar a essa conclusão exigiu a criação de uma definição precisa de um algoritmo

A Tese de Church-Turing

- Em 1936 foram publicados os artigos de Alonzo Church e Alan Turing, com suas definições de algoritmo
- Chuch propôs um sistema chamado Cálculo Lambda e Turing propôs as Máquinas de Turing
- Posteriormente, foi provado que as duas definições eram equivalentes
- A Tese de Church-Turing conecta a noção informal de algoritmos e a definição precisa por meio de Máquinas de Turing

A Tese de Church-Turing

 Vamos descrever o décimo problema de Hilbert na nossa terminologia. Seja:

$$D = \{p \mid p \text{ \'e um polinômio com raízes inteiras}\}$$

- O décimo problema de Hilbert que saber se D é decidível (não é)
- D é Turing-reconhecível?

A Tese de Church-Turing

 Vamos considerar uma variante mais simples do problema: polinômios com somente uma variável. como $4x^3 - 2x^2 + x - 7$

$$D_1 = \{p \mid p \text{ \'e um polinômio em } x \text{ com uma raiz real}\}$$

- A Máquina de Turing M₁ que reconhece D₁ é: M_1 = "Para uma entrada $\langle p \rangle$ onde p é um polinômio em X:
 - 1. Calcule o valor de p para os valores 0, 1, -1, 2, -2, 3, -3, \cdots . Se
 - em algum ponto, o valor do polinômio for zero, aceite"

A Tese de Church-Turing

- Se p tem uma raiz inteira, M₁ eventualmente a encontrará e aceitará
- Se p não tem uma raiz inteira, M₁ executará para sempre
- Para o caso de múltiplas variáveis, podemos utilizar uma máquina semelhante, que testa todas as combinações de variáveis
- Ambas as máquinas reconhecem, mas não decidem D
- No caso de D₁, podemos converter M₁ em um decisor porque é
 possível calcular os limites máximos até onde a raiz pode estar.
 Para o caso de múltiplas variáveis, é impossível

- De agora para frente, vamos nos afastar das definições de baixo nível da Máquina de Turing e focarmos apenas nos algoritmos
- Descreveremos algoritmos em alto nivel, não nos preocupando com a fita ou a cabeça da Máquina de Turing

Descrição de algoritmos

Considere a linguagem a seguir:

 $A = \{ \langle G \rangle \mid G \text{ \'e um grafo conectado n\~ao-direcionado} \}$

Descrição de algoritmos

Considere a linguagem a seguir:

$$A = \{ (G) \mid G \text{ \'e um grafo conectado não-direcionado} \}$$

- Utilizaremos esse símbolo para indicar uma codificação de G, isto é, uma forma de representar G em uma string
- Exemplo: $\langle G \rangle = (1, 2, 3, 4)((1, 2), (2, 3), (3, 1), (1, 4))$

Descrição de algoritmos

Considere a linguagem a seguir:

$$A = \{ \langle G \rangle \mid G \text{ \'e um grafo c}$$
onectado não-direcionado $\}$

 Um grafo é uma estrutura composta de um conjunto de nós conectados por um conjunto de arestas

Descrição de algoritmos

Considere a linguagem a seguir:

$$A = \{ \langle G \rangle \mid G \text{ \'e um grafo conectado não-direcionado} \}$$

 O grafo é não-direcionado quando as arestas podem ser percorridas nos dois sentidos

Descrição de algoritmos

Considere a linguagem a seguir:

$$A = \{ \langle G \rangle \mid G \text{ \'e um grafo conectado n\~a} \text{o-direcionado} \}$$

 O grafo é conectado se é possível chegar a qualquer nó a partir de qualquer outro nó

Descrição de algoritmos

M = "Para uma entrada $\langle G \rangle$, que é a codificação de um grafo G:

- 1. Selecione o primeiro nó de G e marque-o
- 2. Repita até que nenhum novo nó seja marcado:
 - Para cada nó de G, marque-o se existe uma aresta entre ele e um nó já marcado
- Percorra todos os nós de G para determinar se eles estão todos marcados. Se sim, aceite, caso contrário, rejeite"

Agenda

1. Algoritmos

2. Indecidibilidade

- Computadores são tão poderosos que parecem ser capazes de resolver qualquer problema
- Existem alguns problemas que não podem ser resolvidos

Considere a linguagem:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita } w \}$$

Considere a linguagem:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita } w \}$$

Teorema

A_{TM} é indecidível.

Primeiramente, A_{TM} é Turing-reconhecível?

Primeiramente, A_{TM} é Turing-reconhecível?

U = "Para uma entrada $\langle M, w \rangle$, onde M é uma Máquina de Turing e w é uma string:

- 1. Simule M com uma entrada w
- 2. Se M aceitar, aceite. Se M rejeitar, rejeite"

Se M entrar em loop, U também entra em loop (não é um decisor).

- Para provar a indecidibilidade de A_{TM}, utilizamos uma técnica chamada diagonalização
- Esse método foi descoberto por Georg Cantor, em 1873

- Considere dois conjuntos, $A = \{1, 3, 5, 7, 9\}$ e $B = \{2, 3, 4\}$
- Qual dos dois é maior?

- Considere dois conjuntos, A = {1, 3, 5, 7, 9} e B = {2, 3, 4}
- Qual dos dois é maior?
- A tem 5 elementos, enquanto B tem apenas 3. A é maior

- Considere dois conjuntos, $A = \{1, 3, 5, 7, 9\}$ e $B = \{2, 3, 4\}$
- Qual dos dois é maior?
- A tem 5 elementos, enquanto B tem apenas 3. A é maior
- E se A e B forem infinitos?

- No caso de conjuntos infinitos, não podemos utilizar contagem
- Cantor considera que dois conjuntos tem o mesmo tamanho se pudermos emparelhar todos os elementos de um conjunto nos elementos do outro

O método da diagonalização

Seja \mathcal{N} o conjunto dos números naturais $\{1, 2, 3, \dots\}$ e \mathscr{E} o conjunto dos números naturais pares $\{2, 4, 6, \dots\}$. Qual conjunto é maior?

O método da diagonalização

Seja \mathcal{N} o conjunto dos números naturais $\{1, 2, 3, \dots\}$ e \mathscr{E} o conjunto dos números naturais pares $\{2, 4, 6, \dots\}$. Qual conjunto é maior?

A correspondência f que mapeia \mathcal{N} para \mathcal{E} é f(n) = 2n.

n	f(n)
1	2
2	4
3	6
:	÷

O método da diagonalização

Definição

Um conjunto A é contável se ele for finito ou se tiver o mesmo tamanho que \mathcal{N} .

O método da diagonalização

Considere o conjunto dos números racionais positivos:

$$\mathcal{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathcal{N} \right\}$$

2 é maior que \mathcal{N} ?

1/1	<u>1</u> 2	<u>1</u> 3	1/4	<u>1</u> 5	
<u>2</u>	<u>2</u> 2	<u>2</u> 3	<u>2</u>	<u>2</u> 5	
1 2 1 3 1 4 1 5 1 ::	1 2 2 2 3 2 4 2 5 2 ::	1 3 2 3 3 3 4 3 5 3	1 4 2 4 3 4 4 5 4 	1 5 2 5 3 5 4 5 5 5	
$\frac{4}{1}$	<u>4</u> 2	<u>4</u> 3	$\frac{4}{4}$	<u>4</u> 5	
<u>5</u>	<u>5</u> 2	<u>5</u> 3	<u>5</u>	<u>5</u> 5	
:	÷	÷	÷	÷	

O método da diagonalização

Considere, agora, o conjunto ${\mathcal R}$ dos números reais. São números reais:

- $\pi = 3.1415926...$
- $\sqrt{2} = 1.4142135...$

O conjunto dos reais é contável?

Teorema

 \mathcal{R} é incontável.

O método da diagonalização

Vamos tentar mapear todos os reais para os naturais:

n	f(n)
1	3.14159
2	55.55555
3	0.12345
4	0.50000
÷	:

Todos os números reais estão listados aqui?

O método da diagonalização

n	f(n)
1	3. 1 4159
2	55.5 <mark>5</mark> 555
3	0.12 <mark>3</mark> 45
4	0.500 <mark>0</mark> 0
:	:

O número x = 0.4641... não está na tabela.

O método da diagonalização

O conjunto de Máquinas de Turing é contável?

O método da diagonalização

O conjunto de Máquinas de Turing é contável?

- Toda Máquina de Turing pode ser representada por uma string (M)
- Se representamos cada Máquina de Turing com uma string de um alfabeto Σ , podemos listar todas as strings utilizando esse alfabeto
- Começamos pelas strings de comprimento 0, depois 1, depois 2 e assim sucessivamente

O método da diagonalização

Exemplo: suponha que $\Sigma = \{0, 1\}$.

n	f(n)
1	ϵ
2	0
3	1
4	00
5	01
6	10
7	11
8	100
:	÷

O método da diagonalização

Portanto, o conjunto das Máquinas de Turing é **contável**. E o conjunto das linguagens?

O método da diagonalização

Vamos começar olhado o conjunto ${\mathcal B}$ de todas as sequências binárias infinitas. ${\mathcal B}$ é contável ou incontável?

O método da diagonalização

Vamos começar olhado o conjunto \mathscr{B} de todas as sequências binárias infinitas. \mathscr{B} é contável ou incontável?

n	f(n)
1	1 00101010
2	0 1 0110101
3	01 <mark>0</mark> 110001
4	100 1 01110
:	:

x = 0010... não está na tabela. \mathcal{B} é incontável.

- Considere um alfabeto Σ . O conjunto de todas as palavras formadas por esse alfabeto é $\Sigma^* = \{s_1, s_2, s_3, \dots\}$.
- ullet Considere o conjunto ${\mathscr L}$ de todas as linguagens no alfabeto ${f \Sigma}$
- Cada linguagem A ∈ L tem uma sequência equivalente em B:
 o i-ésimo bit da sequência é 1 se s; ∈ A e 0 se s; ∉ A

O método da diagonalização

Exemplo: $\Sigma = \{0, 1\}$ e A é a linguagem de todas as palavras que começam com zero

$$\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \cdots \}$$

$$A = \{ 0, 00, 01, 000, 001, \cdots \}$$

$$\chi_A = 010110011 \cdots$$

O método da diagonalização

Exemplo: $\Sigma = \{0, 1\}$ e A é a linguagem de todas as palavras que começam com zero

$$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots\}$$

$$A = \{0, 00, 01, 000, 001, \dots\}$$

$$\chi_A = 010110011 \dots$$

Podemos mapear cada elemento de $\mathcal L$ em um elemento de $\mathcal B$. Vimos que $\mathcal B$ e incontável, logo, $\mathcal L$ também é **incontável**.

O método da diagonalização

O que sabemos até agora:

- O conjunto de todas as Máquinas de Turing é contável
- Uma Máquina de Turing reconhece uma única linguagem, logo, o conjunto das linguagens reconhecíveis é contável
- O conjunto de todas as linguagens é incontável

Logo...

O método da diagonalização

O que sabemos até agora:

- O conjunto de todas as Máquinas de Turing é contável
- Uma Máquina de Turing reconhece uma única linguagem, logo, o conjunto das linguagens reconhecíveis é contável
- O conjunto de todas as linguagens é incontável

Logo...

Corolário

Algumas linguagens não são Turing-reconhecíveis.

Uma linguagem indecidível

Agora, podemos provar que a linguagem A_{TM} é indecidível:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ é uma Máquina de Turing e } M \text{ aceita } w \}$

Uma linguagem indecidível

Vamos utilizar uma **prova por contradição**. Supomos que algo existe, e mostramos que isso gera contradição.

- Suponha que H é um decisor para A_{TM}
- Para uma entrada (M, w), onde M é uma Máquina de Turing e w é uma string, H para e aceita se M aceita w. Além disso, H para e rejeita se M não aceitar w (M rejeita ou entra em loop). Em outras palavras:

$$H(\langle M, w \rangle) = \begin{cases} aceita \text{ se } M \text{ aceita} \\ rejeita \text{ se } M \text{ não aceita} \end{cases}$$

Uma linguagem indecidível

- Agora, construa uma Máquina de Turing D que utilize H como uma subrotina
- D chama H para determinar o que M faz quando recebe como entrada sua própria descrição (M). Quando D recebe uma resposta de H, ela faz o oposto, isto é, se H aceita, D rejeita e vice-versa

D = "Para uma entrada $\langle M \rangle$, onde M é uma Máquina de Turing:

- 1. Rode H na entrada $\langle M, \langle M \rangle \rangle$
- 2. Se H aceita, rejeite. Se H rejeita, aceite"

Uma linguagem indecidível

Em outras palavras:

$$D(\langle M \rangle) = \begin{cases} aceita \text{ se } M \text{ não aceita } \langle M \rangle \\ rejeita \text{ se } M \text{ aceita } \langle M \rangle \end{cases}$$

O que acontece quando passamos a descrição (D) como entrada para D?

Uma linguagem indecidível

Uma linguagem indecidível

Contradição! Portanto, H e D não podem existir.

Uma linguagem indecidível

Contradição! Portanto, *H* e *D* não podem existir. https://www.youtube.com/watch?v=92WHN-pAFCs

Uma linguagem indecidível

Onde entra a diagonalização nessa prova?

Uma linguagem indecidível

Onde entra a diagonalização nessa prova?

Vamos listar todas as Máquinas de Turing e todas as descrições dessas máquinas. Na tabela abaixo, vemos o resultado de passar a descrição de uma máquina como parâmetro para outra:

			$\langle M_3 \rangle$		•••
M_1	aceita		aceita aceita		
M_2	aceita	aceita	aceita	aceita	
M_3	aceita				
M_4	aceita	aceita			
:	•	•	:	:	

Uma linguagem indecidível

O resultado de rodar *H* com as entradas da tabela anterior são representados abaixo:

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •
M_1	aceita	rejeita	aceita	rejeita	
	aceita aceita				
M_3	rejeita	rejeita	rejeita	rejeita	
M_4	aceita	aceita	rejeita	rejeita	
÷	÷	÷	÷	÷	

Uma linguagem indecidível

Como D é uma Máquina de Turing, ela deve aparecer nessa tabela

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	(D)	•••
M ₁	<u>aceita</u>	rejeita	aceita	rejeita	• • •	aceita	
M_2	aceita	<u>aceita</u>	aceita	aceita	• • •	aceita	
		rejeita					
M_4	aceita	aceita	rejeita	<u>rejeita</u>	•••	aceita	
:	:	:	•	:			
D	rejeita	rejeita	aceita	aceita	• • •	?	

A contradição ocorre no "?", onde a saída da máquina deve ser o oposto dela mesma.

Uma linguagem irreconhecível

Até agora, vimos que existem linguagens que não podem ser decididas (como A_{TM}). Existem linguagens que sequer podem ser reconhecidas. Antes de vermos uma dessas linguagens, precisamos conhecer alguns conceitos novos:

- O complemento de uma linguagem é a linguagem formada por todas as palavras que não pertencem a uma linguagem
- Uma linguagem é co-Turing-reconhecível se o seu complemento é Turing-reconhecível

Uma linguagem irreconhecível

Até agora, vimos que existem linguagens que não podem ser decididas (como A_{TM}). Existem linguagens que sequer podem ser reconhecidas. Antes de vermos uma dessas linguagens, precisamos conhecer alguns conceitos novos:

- O complemento de uma linguagem é a linguagem formada por todas as palavras que não pertencem a uma linguagem
- Uma linguagem é co-Turing-reconhecível se o seu complemento é Turing-reconhecível

<u>Te</u>orema

Uma linguagem é decidível se, e somente se ela é Turing-reconhecível e co-Turing-reconhecível.

Uma linguagem irreconhecível

Precisamos provar duas direções desse teorema.

• 1) Se A é decidível, então A e \overline{A} são Turing-reconhecíveis

Toda linguagem decidível é Turing-reconhecível, e o complemento de uma linguagem decidível também é decidível.

Uma linguagem irreconhecível

• 2) Se A e A são Turing-reconhecíveis, então A é decidível

Seja M_1 um reconhecedor de A e M_2 um reconhecedor de \overline{A} . A Máquina de Turing a seguir é um decisor de A: M = "Para uma entrada w:

- 1. Execute as máquinas M1 e M_2 em paralelo com a entrada w
- 2. Se M₁ aceitar, aceite. Se M₂ aceitar, rejeite"

Uma linguagem irreconhecível

Corolário

A_{TM} não é Turing-reconhecível.

Sabemos que A_{TM} é Turing-reconhecível. Se $\overline{A_{TM}}$ também fosse Turing-reconhecível, A_{TM} seria decidível. Sabemos que A_{TM} não é decidível, portanto, $\overline{A_{TM}}$ não pode ser Turing-reconhecível.