Apunts d'Àlgebra Multilineal i Geometria

ALEIX TORRES I CAMPS

1 Àlgebra Multilineal

1.1 La forma de Jordan

1.1.1 Introducció i repàs

Sigui **k** un cos (normalment **R** o **C**), sigui E in **k**-e.v. de dimensió finita (dim n), sigui $f: E \to E$ un endomorfisme, sigui $\mathcal{B} = \{e_1, \dots, e_n\}$ una base i sigui $M_{\mathcal{B}}(f) = A$ matriu bàsica per \mathcal{B} .

Aleshores, $v \in E$ és vep de vap $\lambda \in \mathbf{k}$ si v compleix que $f(v) = \lambda v$.

Direm que f diagonalitza si \exists base de veps \mathscr{B} : en aquest cas, la matriu $M_{\mathscr{B}}(f)$ és diagonal.

Quan sabem si una matriu o una aplicació diagonalitza? Fem servir el polinomi característic: $P_f(t) = \det(f - tId)$ de grau n. Aleshores, λ és vap $\iff P_f(\lambda) = 0$, per tant, $\{vap\} = \{\text{arrels de } P_f(t)\}$, la qual cosa és una manera de trobar el vaps.

Hipótesi: Sempre suposarem que el polinomi descomposa en el cos, és a dir, $P_f(t) = (-1)^n (t - \lambda)^{n_1} \cdots (t - \lambda)^{n_r}$, on $n_1 + \ldots + n_t = n$. Totes les arrels de $P_f(t)$ són de **k**. En particular, pels conplexos, això sempre és cert.

Teorema 1. El primer teorema de descomposició diu que podem separar l'espai vectorial en subespais invariants i sense intersecció entre ells tals que tots ells nuclis de l'aplicació f menys vap vegades la identitat, és a dir: $E = \ker(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \ker(f - \lambda_r \operatorname{Id})^{n_r}$.

És a dir, si $\forall v \in E \implies v = v_1 + \ldots + v_r$, on $v_i \in \ker(f - \lambda_i \operatorname{Id})^{n_i}$ és a dir, $(f - \lambda_i \operatorname{Id})^{n_i}(v_i) = 0$.

Corol·lari 2. $n_1 = \cdots = n_r = 1 \implies f$ diagonalitza.

Teorema 3. Caylei-Hamilton: $P_f(A) = 0$. Considerem $m_f(t) \in \{Q(t)|Q(A) = 0\}$ que és el polinomi de grau mínim i mònic $\implies m_f(A) = 0$ i $m_f(t)|P_f(t)$ (el polinomi mínim divideix al polinomi característic). A més, $m_f(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$ té totes les arrels però de grau més petit o igual.

Proposició 4. f diagonalitza $\iff m_1 = \ldots = m_r = 1$.

Recordant el fet que $E = \ker(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \ker(f - \lambda_r \operatorname{Id})^{n_r}$, a més sabem que: $\dim \ker(f - \lambda \operatorname{Id})^{n_1} = n_1$, $\ker(f - \lambda_i \operatorname{Id})^{n_i}$ son f-invariants, $f(\ker(f - \lambda_i \operatorname{Id})^{n_i}) \in \ker(f - \lambda_i \operatorname{Id})^{n_i}$.

Aleshores, per la propia descomposició de l'espai en nuclis, sabem que la matriu de l'aplicació com a mínim queda separada pels subespais de cada nucli. Ja que son espais separats i invariants.

Conclusió: la multiplicitat més gran del polinomi mínim és la mida màxima de la caixa que ens pot apareixer quan intentem fer diagonalització.

Exemple 1. Sigui A la matriu d'una aplicació lineal de k^3 en una certa base:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Aleshores, calculem el polinomi característic $P_A(t)$.

$$P_A(t) = \begin{vmatrix} 1 - t & 0 & 0 \\ 2 & 1 - t & 0 \\ 0 & 0 & 1 - t \end{vmatrix} = (1 - t)^3$$

Per tant, té un únic vap $\lambda = 1$ que apareix 3 vegades. Automàticament, sabem que $\mathbf{k}^3 = \ker(A - 1\operatorname{Id})^3$. Tot i així, observem que:

$$(A - \mathrm{Id}) = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (A - \mathrm{Id})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

I que, per tant, veiem que $\mathbf{k}^3 = \ker(A - \operatorname{Id})^2$. Llavors el polinomi mínim no coincideix amb el polinomi característic sinó que $m_A(t) = (1 - t)^2$.

1.1.2 El teorema de Jordan

Sigui $f: E \to E$, on $E = \ker(f - \lambda \operatorname{Id})^m = \ker f_{\lambda}^m$ (abreugem la notació amb $f_{\lambda} := f - \lambda \operatorname{Id}$).

Definició 5. $v \in E$ és un **vep generalitzat d'alçada l** si $v \notin \ker(f_{\lambda}^k)$ per $k \leq l-1$, però si que $v \in \ker f_{\lambda}^l$. Que és el mateix que dir que $f_{\lambda}^k(v) \neq 0$ (per al mateix rang de k), però sí que $f_{\lambda}^l(v) = 0$.

Exemple 2. Sigui A la matriu d'una aplicació lineal a k^4 en la base $\{e_1, e_2, e_3, e_4\}$:

$$A = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 1 & \lambda & 0 & 0 \\ 0 & 1 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Ara, observem que $f_{\lambda}(e_1) = f(e_1) - \lambda e_1 = e_2 \neq 0$, $f_{\lambda}^2(e_1) = f_{\lambda}(e_2) = e_3 \neq 0$, $f_{\lambda}^3(e_1) = f_{\lambda}^2(e_2) = f_{\lambda}(e_3) = 0$ i, per últim, $f_{\lambda}(e_4) = 0$. Per tant, e_1 és un vepg d'alçada 3, e_2 és un vepg d'alçada 2 i tant e_3 com e_4 són vepg d'alçada 1 i, per tant, veps ordinaris.

Proposició 6. Sigui v un vep generalitzat d'alçada l, aleshores $v, f_{\lambda}(v), f_{\lambda}^{2}(v), \ldots, f_{\lambda}^{l-1}(v)$ són linealment independents. Al subespai que generen l'anomenarem un cicle de Jordan de longitud l.

Demostraci'o. Suposem que son linealment dependents, aleshores existeix escalars els quals no son tots 0 tals que:

$$\mu_0 v + \mu_1 f_{\lambda}(v) + \ldots + \mu_{l-1} f_{\lambda}^{l-1}(v) = 0$$

Però ara apliquem f_{λ}^{l-1} i ens queda:

$$\mu_0 f_{\lambda}^{l-1}(v) + \mu_1 f_{\lambda}^l(v) + \dots + \mu_{l-1} f_{\lambda}^{l-1+l-1}(v) = 0$$

Aleshores, com que v és un vep generalitzat d'alçada l, a partir del 2n son tots 0, per tant, no queda cap altra opció que $\mu_0 = 0$. Efectuant ara, per $1 \le i \le l-2$, aquest procés de nou però amb f_{λ}^{l-i} veurem que $\mu_i = 0$. I, per tant, hem vist que totes les μ són 0, amb la qual cosa, per definició, són linealment independents. \square

Proposició 7. Els cicles de Jordan són f-invariants. (Per simplificar la notació fem servir $u_k = f_{\lambda}^{k-1}(v)$).

Demostració. Per $k \neq l$, sabem que, $f_{\lambda}(u_k) = u_{k+1}$, és a dir, $f(u_k) = \lambda u_k + u_{k+1}$. Per tant, per aquesta part, és invariant. Per últim, quan fem $f_{\lambda}(u_l) = 0$, per ser v un vep generalitzat d'alçada l.

Definició 8. Un cicle de Jordan de longitud l dona a lloc un Bloc de Jordan.

$$J_{\lambda} = \begin{pmatrix} \lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda \end{pmatrix}$$

Definició 9. Una base de Jordan de f és una vase de E formada per cicles de Jordan.

$$M_{\mathscr{J}} = \begin{pmatrix} J_{\lambda_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_r} \end{pmatrix}$$

Teorema 10. Si el polinomi característic $P_f(t)$ descompon completament, aleshores, existeixen bases de Jordan.

Demostraci'o. Anem a verue el cas en dimensi\'o 2. Sigui $f: \mathbf{k}^2 \to \mathbf{k}^2$ un endomorfisme amb un únic vap λ amb $m_f(t) = (t - \lambda)^2$ i per tant, aquest és l'únic cas que no diagonalitza.

Agafem $u \in \mathbf{k}^2$ tal que $f_{\lambda}(u) \neq 0$ (per tant, u no és vep). Aleshores, escollim v de la següent manera: $v = f(u) - \lambda(u)$. Llavors la base $\{u, v\}$ és un base de Jordan. Amb matriu:

$$\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$$

Ara, en general, per a cada bloc, busquem un vector generador d'ordre el bloc (l). És a dir, v vepg d'alçada l, és a dir, que estigui en el ker f_{λ}^l però no en el ker f_{λ}^{l-1} . Recordem que $0 \subset \ker f_{\lambda} \subset \cdots \subset f_{\lambda}^l$.

1.2 Formes quadràtiques

1.3 Tensors

3