Homework 6: hand in before or with your squib

- DYNAMIC SEMANTICS PRACTICE. Give LFs and node-by-node derivations (ignoring VP-internal subjects) for the following two texts. For text (2), you should assume that negation out-scopes the object DP. In each case, say whether binding was achieved. Discuss whether your result for (2) is a good one.
 - (1) John likes Mary₁, and she₁ is French.
 - (2) John doesn't like Mary₁, and she₁ is French.

Use the following meanings (π abbreviates $\langle a, \langle a, t \rangle \rangle$, the type of relations on assignment functions, and \mathbb{Q} abbreviates $\langle \langle e, \pi \rangle, \pi \rangle$, the type of scope-taking DPs). In some cases these meanings differ from those provided in class (this is to help keep your calculations as simple as possible).

Node	Meaning	Туре
John	j	e
like	$\lambda Q.\lambda y.Q \left(\lambda x.\lambda g. \begin{cases} \{g\} \text{ if } like'(x)(y) \\ \text{else } \emptyset \end{cases} \right)$	$\langle \mathbb{Q}, \langle e, \pi \rangle \rangle$
$Mary_1$	$\lambda P.\lambda g.P(m)(g^{[m/1]})$	$\langle\langle e,\pi\rangle,\pi\rangle$
is French	$\lambda x.\lambda g.$ $\begin{cases} \{g\} \text{ if } french'(x) \\ \text{else } \emptyset \end{cases}$	$\langle e,\pi \rangle$
she_1	$\lambda P.\lambda g.P(g(1))(g)$	\mathbb{Q}
and	$\lambda r.\lambda l.\lambda g.\{h:k\in l(g), \text{ and } h\in r(k)\}$	$\langle \pi, \langle \pi, \pi \rangle \rangle$
doesn't	$\lambda P.\lambda x.\lambda g.$ $\begin{cases} \{g\} \text{ if } P(x)(g) = \emptyset \\ \text{else } \emptyset \end{cases}$	$\langle\langle e,\pi\rangle,\langle e,\pi\rangle\rangle$

Bonus: redo one of the above derivations with an indefinite like *a linguist* in place of *Mary*.

- Binding reconstruction. Though you may not have noticed, moving assignments into the model theory (i.e. allowing them to live in the domains and ranges of functions) has a startling consequence: whereas before, we could not give an account of binding reconstruction, now we can!
 - (3) $[Himself_i]_i$, $John_i$ likes t_i .

Show how our dynamic theory of anaphora can be used to derive the indicated reading of (3) (without relying on accidental coreference). Give an LF and a detailed derivation. As ever, you shouldn't attempt to QR *John* over *himself* (the grammar will be angry). In addition to the meaning for *likes* given in the previous problem, you'll need the following pieces:

Node	Meaning	Туре
$himself_n, t_n$	$\lambda P.\lambda g.P(g(n))(g)$	Q
\mathcal{T}_n	$\lambda P.\lambda g.g(n)(P)(g)$	\mathbb{Q}
n	$\lambda \mathcal{R}.\lambda \nu.\lambda g.\mathcal{R}(g^{[\nu/n]})$	$\langle \pi, \langle \sigma, \pi \rangle \rangle$, for any σ

A plan of attack:

- Think about our old approach to semantic reconstruction. Notice in this respect that the meaning given for the abstraction index n allows its second argument ν to be of any type σ.
 In other words, this is a (less notationally cumbersome) version of the generalized notion of PA from earlier in the class.
- \triangleright We also have a new type of trace, \mathcal{T}_n , which reverses the functor-argument relationship between P and g(n).
- \triangleright Work from the following tree (notice that I do not specify the types of the discourse referents; that is, for any n and g, g(n) might be type e or type \mathbb{Q}):

