Test di Calcolo Numerico

Ingegneria Informatica 09/01/2016

COGNOME NOME		
Μ	ATRICOLA	
Risposte		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 09/01/2016

1) Si determini l'errore relativo nel calcolo della funzione

$$f(x,y) = \frac{x+y}{x-y} \, .$$

2) È data la matrice

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) .$$

Determinare i valori reali α per i quali risulta convergente la matrice $B=I+\alpha A.$

3) Dire quanti punti fissi ha la funzione

$$\phi(x) = 2e^x - x^2$$

indicando per ciascuno di essi un intervallo di separazione.

4) Data la tabella di valori

determinare i valori del parametro reale α che rendono minimo il grado del polinomio di interpolazione.

5) Per approssimare l'integrale $I(f) = \int_{-1}^{1} f(x) dx$ si utilizza la formula di quadratura

$$J_1(f) = a_0 f(-1/2) + a_1 f(2/3)$$
.

Determinare i pesi a_0 e a_1 che danno la formula con grado di precisione massimo indicando il grado di precisione raggiunto.

SOLUZIONE MODIFICARE

1) Considerando l'algoritmo

$$r_1 = x + y$$
, $r_2 = x - y$, $r_3 = \frac{r_1}{r_2}$,

si ottiene l'espressione dell'errore relativo

$$\epsilon_f = \epsilon_1 - \epsilon_2 + \epsilon_3 - \frac{2xy}{x^2 - y^2} \epsilon_x + \frac{2xy}{x^2 - y^2} \epsilon_y$$
.

- 2) Gli autovalori della matrice $I + \alpha A$ sono $\lambda_1 = 1 + 3\alpha$ e $\lambda_2 = 1 \alpha$. Non esistono valori reali del parametro α tali da rendere entrambi gli autovalori di modulo minore di 1.
- 3) La funzione $\phi(x)$ ha un solo punto fisso $\alpha \in]-2,-1[$.
- 4) Dal quadro delle differenze divise si ricava che il polinomio interpolante di grado minimo si ottiene per $\alpha = 2$ ed è $P_3(x) = x^2 + x$.
- 5) Imponendo che la formula sia esatta per f(x) = 1 e f(x) = x si ottiene il sistema

$$\begin{cases} a_0 + a_1 = 2 \\ -\frac{1}{2}a_0 + \frac{2}{3}a_1 = 0 \end{cases}$$

da cui si ricava $a_0 = \frac{8}{7}$ e $a_1 = \frac{6}{7}$. La formula ottenuta risulta esatta per $f(x) = x^2$ ma non per $f(x) = x^3$ per cui il grado di precisione è m=2.