2次元直交格子を用いた Shock-Fitting 法の基礎的研究

Fundamental Study on the Shock-Fitting Method Using 2D Cartesian grid

○ 西尾朋人,東大, 東京都文京区本郷 7-3-1, E-mail: nishio-tomohito048@g.ecc.u-tokyo.ac.jp 今村太郎,東大, 東京都文京区本郷 7-3-1, E-mail: imamura@g.ecc.u-tokyo.ac.jp Tomohito NISHIO, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan Taro IMAMURA, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Abstract must be 100 - 150 words using 9pt Times font. This is a simple example of how to prepare the paper for CFD39. The headings should appear as above. The instruction is written in the main body. Abstract must be 100 - 150 words using 9pt Times font. This is a simple example of how to prepare the paper for CFD39. The headings should appear as above. The instruction is written in the main body.

1. 序論

超音速流れの数値流体計算 (Computational Fluid Dynamics, CFD) において, 衝撃波の取扱いは計算精度・収束性・安定性に大きな影響を及ぼす. 従来広く用いられてきた shock-capturing 法 (SC法) は,全ての流体 cell を同一のアルゴリズムで扱うため, 構造が単純で汎用性が高い. その一方で,衝撃波の不連続性が人工粘性によって平滑化されるため,数値振動の発生や衝撃波後流での計算精度の低下,さらには衝撃波位置の不明確さが課題となる

Shock-fitting 法 (SF 法) は、背景格子形状に依らず衝撃 波形状を明示的に追跡し、その運動および上下流の状態を Rankine-Hugoniot 条件に基づいて求める. この方法では衝撃波をゼロ厚さの面として扱うため、SC 法に内在する数値拡散を完全に除去でき、比較的粗い格子でも高精度な結果を得ることができる. しかしながら、衝撃波形状の動的追跡や、差分計算が不連続をまたがないようにスキームを修正する必要があるため、実装は非常に複雑である.

近年では、非構造格子の SF 法である eDIT 法 (1) (extrapolated Discontinuity Tracking 法) や、それを構造格子系に拡張した Structured Extrapolated Shock-Fitting 法 (2) (SESF 法) が開発されている。これらの手法は、衝撃波面周りでリメッシングを行わないため、多種の既存の CFD ソルバへの適用が容易になり、実用的な SF 法の実装が進展している。

本研究では、この SF 法の効果の実証と手法の改良を目的として、多様な形状への適用と実装の比較的容易な直交格子上に手法を実装し、基礎的なベンチマーク問題を解析する。3.1節では1次元非定常衝撃波を扱い、SF 法の基本的な挙動と精度、非定常問題への追従性を確認する。3.2節では2次元定常斜め衝撃波を扱い、SC 法結果、解析解との比較により数値振動への耐性を評価する。3.3節では、流れ場の基本変数分布に非一様性があり、衝撃波面が曲率を持つ2次元定常角柱離脱衝撃波を解析する。3.4節では、埋め込み境界法(4)(Immersed Boundary Method、IB 法)を用いて円柱離脱衝撃波を解き、直交格子ソルバーとの組み合わせの有効性を確認する。また、SC 法の結果から不連続領域を自動抽出し、衝撃波面を配置して SF 法へ接続する処理の自動化を行うことで、SC 法と SF 法を統合した一連の計算手順を構築する。

2. 手法

はじめに、SC 法により CFD を実行する [2.1 節]. 次に、計算結果から圧縮性の顕著な cell を抽出し、初期衝撃波面位置を推定して、衝撃波位置を表す shock-points を配置する [2.2 節]. ここで、直交格子の cell は 1 つの cell に 1 つの基本変数を持つのに対し、shock-points は衝撃波前後の

2つの値を持つ. Shock-fitting 法 (SF 法) では、はじめに不連続領域を除く衝撃波上流と下流で独立して SC 法を行い [2.3.4 節],タイムステップを Δt 進める. 次に、その情報を shock-points に外挿し [2.3.5 節],Rankine-Hugoniot条件(R-H条件)を課すことで、shock-points での上流・下流の 2 つの基本変数と shock-points の速度が決定される [2.3.7 節]. これにより,不連続領域でもタイムステップを Δt 進めることができる [2.3.8 節,2.3.9 節]. このプロセスの繰り返しにより,直交格子の cell と shock-pointsでの基本変数、shock-pointsの位置がタイムステップ Δt ごとに時間発展する.

以下にアルゴリズムの詳細を示す.

2.1 Shock-Capturing 法 Euler 方程式ソルバー

圧縮性 Euler 方程式を直交格子有限体積法(FVM)で解く.以下、密度 ρ , x 軸方向速度u, y 軸方向速度v, 圧力p を基本変数、rho, ρu , ρv , ρe (e は全エネルギー)を保存変数と呼ぶ。基本変数の勾配計算は Weighted Least Square Quadrature(Gauss)(WLSQ(G)、重み付き最小二乗法)をにより行い、cell 内基本変数の再構築には三次精度 Monotone Upstream-centered Schemes for Conservation Laws(MUSCL 法)を用いる。また。制限関数として Van Albada リミッターを採用する。近似 Riemann ソルバーとして AUSM(Advection Upstream Splitting Method)族 SLAU(Simple Low-dissipation AUSM) スキームを使用する。時間積分は陽解法の3次精度のTVD Runge-Kutta 法で行う。CFL 条件は各 cell の幅 Δx , Δy , 流体速度 $u_{i,j}$, $v_{i,j}$, 音速 $a_{i,j}$ を用いて、式 (1) で定める。

$$\Delta t = \frac{\text{Courantnumber}}{\max\left(\frac{|u_{i,j}|}{\Delta x} + \frac{|v_{i,j}|}{\Delta y} + a_{i,j}\sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}}\right)}$$
(1)

直交格子に沿わない物体境界での境界条件には, 埋め込み境界法 ⁽⁴⁾(Immersed Boundary Method, IB 法) を用いる.

2.2 不連続領域の判定・抽出

2.2.1 圧縮性の顕著な cell の特定

cell ごとの圧縮性の定量的な評価法として, 速度場の発散を用いる ⁽⁵⁾. SC 法の計算結果から, 各 cell で速度発散を計算し, その 2 乗平均平方根 (RMS) を算出する. 速度発散がこの RMS より大きい cell を, 圧縮性が顕著な cell とし, 不連続領域と特定する. Figure.1(a) は斜め衝撃波の SC 法結果から, 圧縮性の顕著な cell(白 cell) を特定した例である.

2.2.2 Connected Component Labeling

2.2.1 節で評価した圧縮性の顕著な cell は,数値的な速度発散に基づく定義であるため,物理的に意味のない領域(ノイズや離小島)を含む場合がある.これらの不要な領域を自動的に除去し,物理的に意味のある高圧縮性領域のみを抽出するために,Connected Component Labeling (CCL) によるクラスタリング処理を適用する.2.2.1 節で評価された圧縮性の顕著な cell について,同様の cell を縦横斜め 8 近傍に持つ場合に,それらを同一グループとしてクラスタリングしていく.得られた各クラスターごとにそのサイズ(属する cell 数)を計算し,計算領域に対して面積が一定割合未満の小さいクラスターをノイズとして除去対象とする.こうして,対象となる比較的大きなクラスターのみが残り,物理的に意味のある領域が選別可能となる.Figure.1(a) の楕円内にあるノイズが除去され,Fig.1(b) のように圧縮性の顕著な cell が整理される.この処理には Python の数値処理ライブラリ NumPyおよび SciPy の ndimage.label 関数を用いる.

2.2.3 不連続領域の Skeleton 化

2.2.2 節で得たクラスターの主要骨格を、Skelton 化 (skeletonization) と呼ばれる処理により抽出する. Skelton 化は、離散的に表現された領域からその幾何的中心線 を抽出する画像処理手法である. 領域の形状やトポロジーを保持しつつ細線化を行うことで, 構造を簡潔に記述で きる. もともとは医学画像処理や形状解析などの分野で, 複雑な領域の構造を簡潔に表現するために広く用いられてきた.アルゴリズムとしては、モルフォロジー演算(収 縮操作)に基づき、領域の外縁から内側へと細線化を繰り 返して骨格を得るものである $^{(6)}$. 本研究では, Python の skimage.morphology.skeletonize 関数を用い、2.2.2 節で得たクラスターの主要骨格を 1cell (1 ピクセル) 幅 で抽出した. この結果を Python の networkx を用いて グラフ構造として処理する. 本研究では干渉のない1本 の衝撃波を対象とするため、主要骨格 cell の中から最長 経路を特定した. Figure.1(c) の赤線は、不連続領域から 抽出された最長主要骨格を示している。なお、networkx は分岐や経路探索に強いため、今後、衝撃波干渉や分岐 (7) などの複雑な形態を扱う際にも応用可能であると考え られる.

2.2.4 衝撃波面の Spline 近似

2.2.3 節で得た不連続領域の最長骨格に対し、SciPy.interpolate の splprep, splev 関数を用いて spline 補完を行う. ここで、ユーザー任意のサンプリング点数の shock-points を任意の滑らかさで用意できる. Figure.1(d) の緑線は、Fig.1(c) の最長主要骨格 (赤線) を spline 近似して配置した shock-points を示す.

(a) SC 法の結果から速度発散を計(b) CCL でノイズを除去[2.2.2 算し圧縮性の顕著な cell(白 cell)を 節]. (a) の楕円内のノイズが除か特定[2.2.1 節].

(c) Skeleton 化で主要骨格 (赤線)(d) Spline 近似で滑らかな衝撃波を抽出 [2.2.3 節].面 (緑線) を得る [2.2.4 節].

Fig. 1: SC 法の結果から不連続領域を抽出し初期衝撃波面を推定する手順 [2.2 節].

2.3 Shock-Fitting 法

2.3.1 Blanked cells, Adjoining Boundary cells, Surrogate Boundary cells のラベリング

背景の直交格子の cell で, shock-points を繋いだ shockedge(衝撃波面に相当) に横切られる cell を, Blanked cells と呼ぶ. Blanked cells に少なくとも一辺を接している cell を Adjoining Boundary cells と定義する. さらに, Adjoining Boundary cells と少なくとも一辺または一つ の頂点を共有する cell を Surrogate Boundary cells と定義する.

ただし、以下の条件を満たすように微修正を行う.

- ・全ての Adjoining Boundary cells は、少なくとも一 辺を Surrogate Boundary cells と共有する。そうで ないものは、Blanked cells にする。
- 全ての Surrogate Boundary cells は、上下または左 右から Adjoining Boundary cells や計算境界に挟ま れない. 挟まれる場合, Adjoining Boundary cells に する.

Figure.2 は斜め衝撃波の衝撃波面の周囲で, 実際にラベリングを行った例である.

Fig. 2: Shock-fitting 法における cell のグルーピングの例. 衝撃波面に横切られる cell を Blanked cells, その 1 層外側が Adjoining Boundary, さらに 1 層外側が Surrogate Boundary. さらに 2.3.1 節の諸条件を満たすよう修正する.

2.3.2 上流 cell・下流 cell の識別

Adjoing Boundary cells と Surrogate Boundary cells が、それぞれ衝撃波の上流か下流どちらにあるかを判別する。最初のタイムステップでは、shock-point での衝撃波法線と最近傍 shock-point からの相対位置ベクトルの内積を取り、内積値の符号の正負によって 2 グループに分ける。Figure.3 では、左上の cell は内積が正、右下の cell は負であるので、この 2 つの cell は一方が衝撃波上流側、もう一方が下流側と判別できる。その 2 グループの cell における圧力値を衝撃波面を跨いで比較し、圧力が高い方を衝撃波下流側と判定する。

次回以降のステップでは, 2.3.6 節で衝撃波法線方向を 衝撃波上流方向に限定しているため, 内積値の符号のみ で上流・下流の識別が可能である.

Fig. 3: 上流・下流判定対象 cell に対し、最近傍 shockpoint からの相対位置ベクトル (黒) と衝撃波法線 (緑) の内積を取る. 左上の cell は内積が正, 右下の cell は負である. 一方が衝撃波上流側, もう一方が下流側と判別できるので, 圧力値を比較し高いほうが下流側である.

2.3.3 外挿に不要な shock-points の除去

Shock-points の持つ上流値,下流値は 2.3.9 節で Adjoinind Boundary に値を外挿する際に用いられる. そのため, どの Adjoing Boundary cells からも近くなく,外挿時に参照されない shock-points は全く不要であるので,あらかじめ取り除く. この操作は最初のタイムステップのみ行う.

2.3.4 SC 法ソルバーによる計算領域での CFD の実行

衝撃波上流領域と下流領域で SC 法を独立に実行する. SC 法で課した境界条件に加え, 衝撃波上流側 Adjoining Boundary と下流側 Adjoining Boundary に境界条件を 課す.

- ・衝撃波上流側 Adjoining Boundary:対象 Adjoining Boundary cell の縦横斜め8近傍でSurrogate Boundary cells を探索する。その cell での速度方向が最も対象 Adjoining Boundary cell に向いている Surrogate Boundary cell の値を,対象 Adjoining Boundary cell に複製する。流出・流入境界条件 (0 次外挿) に相当する。
- ・衝撃波下流側 Adjoining Boundary: もともと cell の 持っている値を保持する. この値は各タイムステッ プの 2.3.9 節のプロセスで更新される.

2.3.5 Surrogate Boundary cells から shock-points への値の外挿

時間更新された Surrogate Boundary cells で基本変数の 勾配を Green-Gauss 法により計算する ⁽³⁾. この結果を用いて,各 shock-point に対し,近傍の Surrogate Boundary cell から基本変数の値を 1 次外挿する ⁽³⁾. 各 shock-point は上流値と下流値の二つの値を持つが,上流側の Surrogate Boundary は超音速流出境界で上流方向に特性曲線が伝播しないため,すべての基本変数を外挿する.

一方で、下流値については遅い音響波(slow acoustic wave)に対応するリーマン変数のみを外挿する. 衝撃波下流領域から特性曲線に乗って衝撃波面に伝わる情報は、このひとつのみだからである. 下流側から外挿するリーマン変数は次式で与えられる.

$$R_d^{t+\Delta t} = \tilde{a}_d^{t+\Delta t} + \frac{\gamma - 1}{2} \tilde{\mathbf{u}}_d^{t+\Delta t} \cdot \mathbf{n}$$
 (2)

ここで, $\tilde{a}_d^{t+\Delta t}$ および $\tilde{\mathbf{u}}_d^{t+\Delta t}$ は下流側 Surrogate Boundary から外挿された仮の音速および速度ベクトルであり, \mathbf{n} は衝撃波法線ベクトルである.CFD 計算における風上差分の性質により,式 (2) の左辺に相当するリーマン変数 $R_d^{t+\Delta t}$ は正しく時間発展している一方で,右辺の外挿量(チルダ付き)は近似値に過ぎない.これらの量は 2.3.7 節で \mathbf{R} -H 条件を課すことにより修正される.

2.3.6 衝撃波法線ベクトルの計算

各 shock-point において, 衝撃波法線ベクトルを計算する. このとき, 周辺の shock-points が"影響範囲"に含まれるかを判断し, CFD の風上的性質に基づいて計算する必要がある $^{(8)}$. Shock-point i に対して, 隣接する shock-point i+1 が i に影響を及ぼす(すなわち"影響範囲"に含まれる)かどうかは, 以下の不等式により判定される.

$$\mathbf{u}_{d,i+1}^t \cdot \mathbf{s}_{i+1/2} - a_{d,i+1}^t < 0$$
 (3)

- ・ $m{u}_{d,i+1}^t$:時刻 t における shock-point i+1 の下流側 速度ベクトル
- ・ $a_{d,i+1}^t$:同じ点の音速
- ・ $\mathbf{s}_{i+1/2}$:shock-edge $l_{i+\frac{1}{2}}$ の単位接線ベクトル (i から i+1 方向)

shock-point i-1 に対しても同様に条件をチェックする. 風下の shock-point が"影響範囲"外の場合, 風上 2 点分の shock-points の座標を用いて, 衝撃波法線ベクトルを求める. そうでない場合, 風上風下各 1 点分の座標を用いて中心差分的に計算する (3). 衝撃波法線ベクトルは衝撃波上流方向を向くものを採用する.

Fig. 4: 隣接する shock-point が"影響範囲"に含まれるかの判定. 各 shock-point において, 衝撃波接線方向速度 (赤点線) と局所音速 (青) を Eq.(3) で比較, 判定する. この図の場合, shock-point i+1 は shock-point i の"影響範囲"に含まれる.

2.3.7 Shock-points での Rankine-Hugoniot 条件 の適用

各 shock-points において R-H 条件を適用する. 求解対象となる変数は, 衝撃波下流側の密度 ρ_d , 衝撃波法線方向速度 u_n^d , 接線方向速度 u_τ^d , 圧力 p_d , および shock-point速度 w_s の計 5 変数である. これらに対して, 以下の 5 つの式が構成される.

$$\rho_d(u_n^d - w_s) = \rho_u(u_n^u - w_s)$$

$$\rho_d(u_n^d - w_s)^2 + p_d = \rho_u(u_n^u - w_s)^2 + p_u$$

$$\frac{\gamma}{\gamma - 1} \frac{p_d}{\rho_d} + \frac{1}{2} (u_n^d - w_s)^2 = \frac{\gamma}{\gamma - 1} \frac{p_u}{\rho_u} + \frac{1}{2} (u_n^u - w_s)^2$$

$$u_\tau^d = u_\tau^u$$

$$a_d + \frac{\gamma - 1}{2} u_n^d = R_d$$
(4)

上付き添字 u と d はそれぞれ衝撃波の上流および下流側を意味し、 a_d は下流側音速、 R_d は下流側のリーマン変数である. なお、全ての基本変数について上付添字 $t+\Delta t$ を省略している.

2.3.8 時間積分による Shock Nodes の進行

2.3.7 節で得た shock-point 速度 w_s を使用し、shock-points の位置を更新する. 非定常問題への対応や高次精度の要求を満たすため、高次の陽的多段法である Adams-Bashforth 法を用いる.

2.3.9 Shock-points から下流 Adjoining Boundary, Blanked cells への値の外挿

各 shock-point で、基本変数の勾配を計算する. 近傍の shock-point、下流 Surrogate Boundary cell の基本変数値 とその相対位置から、基本変数場を shock-point 周りに線形近似する ⁽³⁾. この際、使用する shock-point は 2.3.6 節で考えた"影響範囲"をもとに選択する. 求めた基本変数場から、Blanked cells、下流 Adjoing Bondary cells の位置での各基本変数値が得られる. Blanked cells は、shock-points の移動により CFD 対象 cell に変化する可能性があるため、毎時間ステップごとに値を更新する.

以上のプロセスにより、全ての cell の基本変数値、shockpoints の持つ上流・下流値とその位置が時間更新される.

3. 結果

3.1 1次元非定常垂直衝擊波

最も単純な 1 次元非定常垂直衝撃波を扱い、SF 法の基本的な挙動と精度、非定常問題への追従性を確認する. Figure.5 に計算領域・設定の概略を示す. 衝撃波は最初にx=0.5 に存在し、速度w=-0.2 で移動する. 上流・下流の基本変数はこの条件を成立させるよう、あらかじめ R-H 条件を解いて与える. SC 法の計算では、x 軸方向に 50cells の直交格子を用いる. 1 タイムステップの時間幅は、CFL 条件を満たす固定値として設定し、 $\Delta t=0.001$ とする.

Fig. 5: 1 次元非定常垂直衝撃波の計算領域・設定の概略. 衝撃波は最初に x=0.5 に存在し, 速度 w=-0.2 で移動する.

Figure.6(a) は、SC 法の結果 (青) と SF 法の結果 (赤)を密度について比較している (1500step, t=1.5). SC 法では、衝撃波が人工粘性により平滑化され、衝撃波位置が不明確である。また、SC 法の結果は衝撃波上流側では理論解と完全に一致するが、衝撃波下流域では数値振動が発生し理論解と差を生じる。Figure.6(b) は、衝撃波下流域の密度分布について、SC 法の結果と理論解との差を示している。衝撃波前後の密度変化の 0.1%程度の振幅の数値的減衰振動が確認できる.

(a) 1 次元非定常垂直衝撃波の SC 法の結果 (青) と SF 法の結果 (赤) を密度について比較 (1500step, t=1.5).

(b) 衝撃波下流域密度分布の, SC 法の結果と理論解との差.

Fig. 6: 1 次元非定常垂直衝撃波の SC 法, SF 法の計算結果の比較.

3.2 2次元定常斜め衝撃波

2 次元定常斜め衝撃波を扱い,衝撃波面が背景格子に沿わない 2 次元流れでの SF 法の挙動と精度を確認する. Figure.7 に計算領域・設定の概略を示す.計算領域左端から,マッハ数 $M_\infty=2.5$,角度 $\theta=15^\circ$ の均一流を流入する.下端は滑り壁条件である.SC 法で 1000step 計算した後,2.2 節のプロセスで衝撃波面を抽出し,SC 法,SF法でそれぞれ保存量の残差が 10^{-14} を下回るまで計算を継続する.

Fig. 7: 2 次元定常斜め衝撃波の計算領域・設定の概略. 計算領域左端から、マッハ数 $M_\infty=2.5$ 、角度 $\theta=15^\circ$ の均一流を流入する. 下端は滑り壁条件.

(a) SC 法と解析解の差分. 衝撃波後流域に数値振動が発生している.

(b) SF 法と解析解の差分. 数値振動は見られない.

Fig. 8: 2 次元定常斜め衝撃波の SC 法, SF 法計算結果 (密度分布) の解析解との差分. 空白 cell は不連続領域.

SC 法、SF 法での計算結果を解析解と比較する. 衝撃波 不連続が存在する領域は、SC 法では正確に表現できな

の不連続が存在する領域は、SC 法では正確に表現できないことが明らかであるため、圧縮性が顕著な cell[2.2.1節]を除いた計算領域で比較を行う、Figure.8(a) は、SC 法の密度分布と解析解の差を示す、衝撃波後流域に数値的減衰振動が発生していることが確認できる、誤差は、衝撃波前後の密度変化の約 10%のオーダーに達している。衝撃波面から離れるに従い、誤差が減少することもわかる、一方、Fig.8(b) は、SF 法の密度分布と解析解の差を示す、誤差は衝撃波前後の密度変化の 10^{-10} のオーダーに抑えられており、数値振動は見られない。

2次元定常角柱離脱衝撃波を解析し、流れ場の基本変数分布に非一様性があり、衝撃波面が曲率を持つ場合の SF 法の挙動を確認する。 Figure.9 に計算領域・設定の概略を示す。 計算領域左端から、マッハ数 $M_\infty=4.0$ の一様流を流入する。 角柱表面は滑り壁条件を課す。

3.3 2次元定常角柱離脱衝擊波

Fig. 9: 2 次元定常角柱離脱衝撃波の計算領域・設定の概略. 計算領域左端から, マッハ数 $M_\infty=4.0$ の一様流を流入する. 角柱表面は課す.

淀み点の基本変数を用いて格子収束性を確認, 理論値, SCと比較などする予定

3.4 2次元定常円柱離脱衝撃波

未定。IB法とも併用できるよ、くらいになるかも.

4. 結論

参考文献

- (1) Ciallella, M., Ricchiuto, M., Paciorri, R. and Bonfiglioli, A., "Extrapolated Discontinuity Tracking for complex 2D shock interactions," Computers & Fluids, Vol. 391 (2022), pp. 114543.
- (2) Assonitis, A., Ciallella, M., Paciorri, R., Ricchiuto, M. and Bonfiglioli, A., "A new shock-fitting technique for 2-D structured grids," AIAA SCITECH 2022 Forum, Paper 2022-2008 (2022).
- (3) Assonitis, A., Paciorri, R., Ciallella, M., Ricchiuto, M. and Bonfiglioli, A., "Extrapolated Shock Fitting for Two-Dimensional Flows on Structured Grids," AIAA J., Vol. 60, No. 11 (2022), pp. 6301-6312.
- (4) Yoshiharu, T., Motoshi, H. and Taro, I., "Near-Wall Modification of Spalart–Allmaras Turbulence Model for Immersed Boundary Method," AIAA J., Vol. 55, No. 9 (2017), pp. 3027-3039.
- (5) De Zeeuw, D. and Powell, K. G., "Euler Calculations of Axisymmetric Under-Expanded Jets by an Adaptive-Refinement Method," 30th Aerospace Sciences Meeting & Exhibit, Paper 92-0321 (1992), pp. 1-13.
- (6) Zhang, T. Y. and Suen, C. Y., "A fast parallel algorithm for thinning digital patterns," Communications of the ACM, Vol. 27, No. 3 (1984), pp. 236-239.
- (7) Paciorri, R. and Bonfiglioli, A., "Accurate detection of shock waves and shock interactions in two-dimensional shock-capturing solutions," Journal of Computational Physics, Vol. 406 (2020), pp. 109196.
- (8) Paciorri, R. and Bonfiglioli, A., "A shock-fitting technique for 2D unstructured grids," Computers & Fluids, Vol. 38 (2009), pp. 715-726.