Shadows

CS 385 - Class 26 28 April 2022 Anatomy of a Shadow

Shadow Parts

 The dark part of a shadow is called the umbra

Shadow Parts

- The dark part of a shadow is called the umbra
- The less dark part is called the penumbra

What Nature Thinks ...

- The dark part of a shadow is called the umbra
- The less dark part is called the penumbra
- Point lights and directional lights will only generate an umbra
- Area lights, or multiple point lights will also generate a penumbra

Planar Shadows

Find \overrightarrow{p} , given we know $\overrightarrow{\ell}$, \overrightarrow{v} , and the plane Γ

 \overrightarrow{p} lies on the line between $\overrightarrow{\ell}$ and \overrightarrow{v}

But we also know the equation of the plane Γ , that \overrightarrow{p} lives on

Substitute, and solve for *t*

$$\hat{n} \cdot \overrightarrow{p}(t) + D = 0$$

$$\hat{n} \cdot \left[\overrightarrow{\mathcal{C}} + t \hat{d} \right] + D = 0$$

$$\hat{n} \cdot \overrightarrow{\ell} + \hat{n} \cdot t\hat{d} + D = 0$$

$$t = \frac{-\left(\hat{n} \cdot \overrightarrow{\mathcal{C}} + D\right)}{\left(\hat{n} \cdot \hat{d}\right)}$$

$$t = -\left(\hat{n} \cdot \overrightarrow{\mathcal{E}} + D\right)$$

$$\overrightarrow{p}(t) = \overrightarrow{\ell} + t\widehat{d}$$

(do this in the vertex shader)

Shadow Maps

Shadow Rendering

- Multi-pass algorithm
 - one pass to generate the shadow map (depth texture)
 - one pass to shade the scene

Depth Textures

- Single-channel texture map
- Distance from light to geometry at each pixel
- Just like rendering color, except:
 - use the light's position instead of the eye's position
 - record the depth, as compared to the fragment's color
 - this can be automatically done using a depth attachment to an FBO
- Often called a shadow map

Shadow Rendering

- Render the scene as normal
- Modify the fragment shader to:
 - compute the distance to the object from the light
 - retrieve the shadow distance from the shadow map
- Compare the distances
 - if the shadow map value is less than the object distance, it's in shadow
 - otherwise, it's in the light, and illuminate accordingly

Demo!

Projected Textures

Demo!

