		Note	e
		I	II
Name Vorname	1		
	-		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN	-		
Fakultät für Mathematik	$\begin{bmatrix} 6 \end{bmatrix}$		
Probeklausur	7		
Mathematik 3 für Physik			
(Analysis 2)	8		
Prof. Dr. S. Warzel			
15. Juni 2009, 12:20 – 13:50 Uhr	\sum		
Hörsaal: Platz:	I	 Erstkorrek	 tur
Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	IIZweitkorrektur		
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.			
Nur von der Aufsicht auszufüllen: Hörsaal verlassen von bis	J		

Vorzeitig abgegeben um

 $Be sondere\ Bemerkungen:$

2. Krümmung einer Klothoide

(6 Punkte)

Zeigen Sie, dass die Krümmung $\kappa(t)$ der Kurve

$$\vec{r}(t) = \begin{pmatrix} \int_0^t \cos(u^2/2) \, \mathrm{d}u \\ \int_0^t \sin(u^2/2) \, \mathrm{d}u \end{pmatrix}$$

an der Stelle t>0 gleich ihrer Länge L(t) ist.

HINWEIS: Die Krümmungsformel lautet $\kappa = |(\dot{x}\ddot{y} - \ddot{x}\dot{y})/(\dot{x}^2 + \dot{y}^2)^{3/2}|$, wobei $\vec{r} = {x \choose y}$.

Masse $m=1$, welches $F(x(t))=m\ddot{x}(t)$ im Z $x(t_0)$ die Geschwindigk	s sich unter dem Ei Zeitintervall $[t_0, t_1]$ veit $ \dot{x}(t_0) = 0$ und b	nfluss der Kraft F gemä on $x(t_0) = (0,0,0)$ nach	(4 Punkte) t), die Bahn eines Teilchens der iss des 2. Newtonschen Gesetzes $x(t_1) = (1,1,1)$ bewege und bei keit $ \dot{x}(t_1) = 1$ besitze. Wie groß begrierte Kraft?
	\Box -1 \Box $\frac{1}{2}$	$\Box \frac{3}{2} \qquad \Box \frac{1}{4}$	\Box $-\frac{1}{2}$
4 Sanariarbana Diffana	ntiolgloidhun gon		(8 Dunleta)
4. Separierbare Different(a) Finden Sie auf gan		ngen von $yy' = x(1 - y^2)$	(8 Punkte)
Für $y_0 > 0$: $y(x) =$		(2) Für $y_0 < 0$: $y(x) =$	(2)

(b) Wieviele konstante Lösungen gibt es?

 $\Box 0$

 \square 0

(c) Wieviele auf ganz $\mathbb R$ definierte Lösungen mit y(0)=0 gibt es?

 \Box 1

 \Box 1

 \square 2

 \square 2

 \square 3

 \square 3

 \Box 4

 \Box 4

(2)

(2)

5. Lineare Differentialgleichungen Gegeben ist die Differentialgleichung $y''' + 7y'' + 15y' + 9y = 0$ (*).	(8 Punkte)
(a) Welche Dimension hat der Lösungsraum von (*)?	(2)
$\square \ 0 \qquad \square \ 1 \qquad \square \ 2 \qquad \square \ 3 \qquad \square \ 4$	
(b) Welche der folgenden Funktionen von x sind Lösungen von $(*)$?	(2)
$\Box - \ln x$ $\Box 0$ $\Box 1$ $\Box 2e^{-x}$ $\Box 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$	
(c) Geben Sie ein Fundamentalsystem von (*) an:	(2)
(d) Geben Sie die Menge aller reellen Lösungen der Differentialgleichung $y'''+7y''$ an:	+15y' + 9y = 3 (2)

6. Differenzierbarkeit

(8 Punkte)

Sei die Funktion $f:\mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

(a) Für den Punkt a=(0,0) und den Vektor $v=(v_1,v_2)\in\mathbb{R}^2$ mit |v|=1 berechne man [2]

$$\lim_{t\to 0}\frac{f(a+tv)-f(a)}{t}=$$

und

[2]

[4]

$$\partial_x f(a) =$$

$$\partial_y f(a) =$$

(b) Zeigen Sie, dass f im Ursprung nicht total differenzierbar ist.

7. Extrema Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,	8 Punkte)
$f(u,v) := u^3 + v^3 + u^2 + v^2,$	
und die folgenden Punkte in \mathbb{R}^2 ,	
$x_1 = (0,0), x_2 = (0,2/3), x_3 = (-2/3,0), x_4 = (-1,0), x_5 = (-2/3,-2/3)$	3).
Welche Aussagen sind richtig?	
(a) f besitzt einen kritischen Punkt in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(b) f besitzt eine lokales Maximum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(c) f besitzt eine lokales Minimum in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
(d) f besitzt einen Sattelpunkt in $\Box x_1 \Box x_2 \Box x_3 \Box x_4 \Box x_5$	[2]
 (a) Sei U ⊂ Rⁿ offen, f : U → R, a, x ∈ U. Welches sind die Voraussetzungen für d der Taylorformel 1. Ordnung für f(x) im Entwicklungspunkt a, in der das Restgli Hesse-Matrix in einem Punkt ausgedrückt wird? (b) Wie lautet die Taylor-Formel in diesem Fall? 	