Tae Ha (Jeff) Park

Ph.D. Candidate, Department of Aeronautics & Astronautics, Stanford University

💌 tpark94@stanford.edu | 🧥 taehajeffpark.com | 🖸 tpark94 | 🛅 taehajeffpark | 🕿 Tae Ha Park

Education

Stanford University Stanford, CA

Ph.D. in Aeronautics & Astronautics | Advisor: Dr. Simone D'Amico

04/2018 - 06/2024 (Expected)

- Title: Robust Machine Learning for Vision-Based Navigation about Non-Cooperative Resident Space Objects
- Teaching Assistant for AA279A: Space Mechanics (2019, 2021, 2022).

Stanford University Stanford, CA

M.S. IN AERONAUTICS & ASTRONAUTICS

09/2017 - 04/2020

Conducted research on deep learning, computer vision, spacecraft swarm navigation and optimization

Harvey Mudd College (HMC)

Claremont, CA

Graduated with High Distinction (GPA: 3.81/4.0)

- **B.S. IN ENGINEERING** 08/2013 - 05/2017
- · Member of the Tau Beta Pi Engineering Honors Society • De Pietro fellow in Civil Engineering

Infinite Orbits SAS Toulouse, France

COMPUTER VISION AND GUIDANCE, NAVIGATON AND CONTROL INTERN

06/2022 - 08/2022

 Constructed a satellite rendezvous simulator and scene renderer based on Unreal Engine 5 and C++ to train and validate convolutional neural networks for monocular pose estimation and tracking of known noncooperative spacecraft

Space Rendezvous Laboratory (SLAB), Stanford University

Stanford, CA

RESEARCH ASSISTANT | ADVISOR: DR. SIMONE D'AMICO

01/2019 - Current

- Developed and calibrated the Testbed for Rendezvous and Optical Navigation (TRON) facility at SLAB that can simulate various RPO scenarios using a mockup satellite model under high-fidelity spaceborne illumination settings [C3]
- Developed advanced open-source benchmark datasets (e.g., SPEED+, SHIRT, SPE3R) using synthetic renders—OpenGL/Unreal Engine—and TRON to train and validate spaceborne vision-based Deep Learning (DL) and navigation algorithms with emphasis on robustness across domain gap between synthetic and spaceborne data [C1, C4, C6, C8, C9, D2–D5, J2, J3, J6]
- Developed robust DL models and navigation algorithms for vision-based Rendezvous and Proximity Operations (RPO) in space to support various missions (e.g., on-orbit servicing, debris removal) for sustainable space development [C5-C7, C10, J4-J6]
- Developed a DL model for 3D reconstruction and pose estimation of an unknown spacecraft from single 2D images [C8]

Dynamics Laboratory, HMC

Claremont, CA

DE PIETRO FELLOW | ADVISOR: DR. ZIYAD DURON

05/2016 - 05/2017

- Developed a method to assess the functionality of steel anchors embedded within a concrete dam based on the Performance-Based Testing using spectral analysis, spectrogram, and model verification
- Analyzed the earthquake response of Monticello dam by constructing a lumped element model of dam, reservoir and a spillway

HMC Claremont, CA

STUDENT RESEARCHER | ADVISOR: DR. PHILIP D. CHA

05/2016 - 05/2017

· Developed a method to accelerate the modal convergence of eigen-characteristics of (non-)uniform rods carrying various lumped attachments [J1]

Publications

🗹 Link to arXiv/official paper/project webpage 🛛 GitHub repository 🚨 Link to paper PDF 🕟 Youtube video

Peer-Reviewed Journal Articles

[J6] Adaptive Neural-Network-Based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft T. H. Park, S. D'Amico

Journal of Guidance, Control, and Dynamics (2023). DOI: 10.2514/1.G007387

[J5]	Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap T. H. Park , S. D'Amico Advances in Space Research (2023). DOI: 10.1016/j.asr.2023.03.036		
[J4]	Leveraging Neural Network Uncertainty in Adaptive Unscented Kalman Filter for Spacecraft Pose Estimation L. Pasqualetto Cassinis, T. H. Park , N. Stacey et al. <i>Advances in Space Research</i> (2023). DOI: 10.1016/j.asr.2023.02.021		
[J3]	Satellite Pose Estimation Competition 2021: Results and Analyses T. H. Park, M. Märtens, M. Jawaid et al. Acta Astronautica (2023). DOI: 10.1016/j.actaastro.2023.01.002		
[J2]	Satellite Pose Estimation Challenge: Dataset, Competition Design and Results M. Kisantal, S. Sharma, T. H. Park et al. IEEE Transactions on Aerospace and Electronic Systems (2020). DOI: 10.1109/TAES.2020.2989063		
[J1]	Improved Modal Convergence Using the Assumed Modes Method for Rods Carrying Various Lumped Elements P. D. Cha, T. H. Park International Journal of Mechanical Engineering Education (2018). DOI: 10.1177/0306419017720424		
Conf	ference Proceedings & Presentations		
[C10]	Online Supervised Training of Spaceborne Vision during Proximity Operations using Adaptive Kalman Filtering T. H. Park , S. D'Amico 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan (2024). [ACCEPTED]		
[C9]	SPEED-UE-Cube: A Machine Learning Dataset for Autonomous, Vision-Based Spacecraft Navigation Z. Ahmed, T. H. Park , A. Bhattacharjee et al. 46th AAS Guidance, Navigation and Control Conference, Breckenridge, Colorado, February 2-7 (2024).		
[C8]	Rapid Abstraction of Spacecraft 3D Structure from Single 2D Image T. H. Park, S. D'Amico 2024 AIAA SciTech Forum (2024). DOI: 10.2514/6.2024-2768		
[C7]	Adaptive End-to-End Architecture for Autonomous Spacecraft Navigation and Control During Rendezvous and Proximity Operations J. Kruger, T. Guffanti, T. H. Park et al. 2024 AIAA SciTech Forum (2024). DOI: 10.2514/6.2024-0430		
[C6]	Adaptive Neural Network-based Unscented Kalman Filter for Spacecraft Pose Tracking at Rendezvous T. H. Park , S. D'Amico 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, August 7-11 (2022).		
[C5]	Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap T. H. Park , S. D'Amico 11th International Workshop on Satellite Constellations & Formation Flying, Milano, Italy, June 7-10 (2022).		
[C4]	SPEED+: Next-Generation Dataset for Spacecraft Pose Estimation across Domain Gap T. H. Park, M. Märtens, G. Lecuyer et al. 2022 IEEE Aerospace Conference (2022). DOI: 10.1109/AERO53065.2022.9843439		
[C3]	Robotic Testbed for Rendezvous and Optical Navigation: Multi-Source Calibration and Machine Learning Use Cases T. H. Park , J. Bosse, S. D'Amico 2021 AAS/AIAA Astrodynamics Specialist Conference, Virtual, August 8 - 12 (2021).		
[C2]	Generative Model for Spacecraft Image Synthesis using Limited Dataset T. H. Park, S. D'Amico 2020 AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, California, August 9 - 13 (2020).		
[C1]	Towards Robust Learning-Based Pose Estimation of Noncooperative Spacecraft T. H. Park, S. Sharma, S. D'Amico 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, Maine, August 11 - 15 (2019). ABEST PAPER AWARD>		

FEBRUARY 15, 2024

Open-Source Datasets

[D5] Spacecraft Pose Estimation Dataset of a 3U CubeSat using Unreal Engine (SPEED-UE-Cube)

T. H. Park, Z. Ahmed, A. Bhattacharjee et al.

Stanford Digital Repository (2024). 🗹

[D4] SPE3R: Synthetic Dataset for Satellite Pose Estimation and 3D Reconstruction

T. H. Park, S. D'Amico

Stanford Digital Repository (2024). DOI: 10.25740/pk719hm4806

[D3] SHIRT: Satellite Hardware-In-the-loop Rendezvous Trajectories Dataset

T. H. Park, S. D'Amico

Stanford Digital Repository (2022). DOI: 10.25740/zg716br5462

[D2] Next Generation Spacecraft Pose Estimation Dataset (SPEED+)

T. H. Park, M. Märtens, G. Lecuyer et al.

Stanford Digital Repository (2021). DOI: 10.25740/wv398fc4383

[D1] Spacecraft Pose Estimation Dataset (SPEED)

S. Sharma, T. H. Park, S. D'Amico

Stanford Digital Repository (2019). DOI: 10.25740/dz692fn7184

Activities_

Co-organizer Kelvins Satellite Pose Estimation Competition (2021)

Al4Space (CVPR workshop) (2024)

Reviewer Advances in Space Research (3 papers)

Astrodynamics (1)

IEEE Transactions on Aerospace and Electronic Systems (2)

Journal of Aerospace Information Systems (3) Journal of Guidance, Control, Dynamics (1) Journal of Spacecraft and Rockets (1)

Skills___

Programming MATLAB/Simulink, Python, C/C++, CUDA, ŁTĘX

Deep Learning PyTorch (Python & C++), ONNXRuntime, TensorRT, MATLAB Deep Learning Toolbox™

Libraries OpenCV, PyTorch3D, OpenMP, CVX/CVXPY

Rendering OpenGL, Unreal Engine

Languages Korean (native), English (fluent), Japanese (proficient), French (conversational)

Honors & Awards

2019	Best Paper Award, 2019 AAS/AIAA Astrodynamics Specialist Conference	Portland, ME
2015	Tau Beta Pi Engineering Honors Society, HMC	Claremont, CA

De Pietro Fellowship in Civil Engineering, HMC
 Harvey S. Mudd Merits, HMC
 Claremont, CA
 Claremont, CA

2013-17 **Dean's List**, HMC Claremont, CA