Aqui vem o título do trabalho

Geovanni Fernandes Garcia geovanni@usp.br

26 de fevereiro de 2024

Sumário

1	Forr	mataçao
	1.1	Posição do Texto
	1.2	Itens enumerados
	1.3	Expressões Matemáticas
	1.4	Notação de Conjuntos
	1.5	Notação de Função
	1.6	Notação de Matriz
	1.7	Notação Vetorial
	1.8	Notação de Cálculo
		1.8.1 Limites
		1.8.2 Derivadas
		1.8.3 Integrais
	1.9	Criação de Figuras
	1.10	Criação de Tabelas
${f L}$		de Figuras
T,	1 ista	Dados ajustados do experimento
	1500	
	1	Tabela Básica de Derivadas

1 Formatação

1.1 Posição do Texto

Equação polinomial do $2^{\underline{0}}$ grau

Uma equação da forma

$$ax^2 + bx + c = 0,$$

com $a \neq 0$ será chamada de equação polinomial do 2^{0} grau.

A solução dessa equação é dada por:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.2 Itens enumerados

- 1. aaaaaaaaaa
 - (a) esse é um texto
 - i. item i eu acho
 - ii. deve ser o ii
 - (b) esse é outro texto
 - (c) esse mais outro
- 2. bbbbbbb
- aaaaa
 - não sei
 - não sei também
- bbbb
- ccccc

1.3 Expressões Matemáticas

$$a + b$$

$$a - b$$

$$a \cdot b$$

$$a \times b$$

$$a \div_{a} t$$

$$a^{b+a}$$

$$a_1, a_2, a_3, \dots a_{n-1}, a_n$$

1.4 Notação de Conjuntos

- 1. Sejam os conjuntos $A = \{1, 2, 3, 4\}, A = \{1, 2, 3, 4\}, B = \{x \in \mathbb{Z} \mid -2 \le x < 4\}$ e $C = \{x \in \mathbb{N} \mid x \ge 22\}$. Responda aos itens abaixo:
 - (a) $A \cap B$
 - (b) $B \cup C$
 - (c) A-C
 - (d) $C \setminus B$
- 2. Classifique em verdadeiro ou falso:
 - (a) $\mathbb{Z} \not\subset \mathbb{N}$.
 - (b) $\mathbb{R} \not\supset \mathbb{Q}$.
 - (c) $0 \notin \mathbb{R} \setminus \mathbb{Q}$.
 - (d) $\forall x \in \mathbb{N}$, temos $x \ge 0$.
 - (e) $\exists x \in \mathbb{R}$, tal que $\sqrt{x} \notin \mathbb{R}$.
 - (f) $7 \notin \{x \in \mathbb{N} \mid x \in \text{par}\}$
 - $(g) -5 \in \mathbb{R}_{+}^{*}$
 - (h) $0 \in \emptyset$

1.5 Notação de Função

3. Seja a função $f: \mathbb{R}_+^* \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} x^2 - 1, & \text{se } x \ge 1\\ x - 3, & \text{se } -1 \le x < 1\\ 2x + 1, & \text{se } x < -1 \end{cases}$$

- (a) Esboce o gráfico da função.
- (b) Calcule o $\log_2 x$ e o $\ln x$.
- (c) Encontre os valores de $\cos x$, sen $\left(x \frac{\pi}{2}\right)$, $\operatorname{tg}\left(e^x e^{-x}\right)$ e $\operatorname{cossec}\left(\sqrt{\frac{a^2 b^2}{a^2 + b^2}}\right)$.

1.6 Notação de Matriz

4. Considere o produto matricial $A \cdot X = B$ a seguir:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$

Calcule o que for pedido abaixo:

- (a) $\det A$
- (b) A^{-1}
- (c) A^T

1.7 Notação Vetorial

- 5. Seja o seguimento \overline{AB} . A partir dele, podemos definir os seguimentos orientados \overrightarrow{AB} e \overrightarrow{BA} . Seja \overrightarrow{AB} e \overrightarrow{u} . Sejam os vetores $\overrightarrow{u}=(1,\,5,\,-2)$ e $\overrightarrow{v}=(-3,\,4,\,7)$. Calcule:
 - (a) $\vec{u} \cdot \vec{v}$
 - (b) $\langle \vec{u}, \vec{v} \rangle$
 - (c) $\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 5 & -2 \\ -3 & 4 & 7 \end{vmatrix}$
 - (d) $\nabla \vec{u}$, $\nabla \cdot \vec{u}$ e $\nabla \times \vec{u}$
 - (e) $\|\vec{u}\|$ e $\|\vec{v}\|$
 - (f) $\|\overrightarrow{AB}\|$
 - (g) $\vec{u} \perp \vec{v}$

1.8 Notação de Cálculo

1.8.1 Limites

6. Calcule os limites abaixo:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

(b)
$$\lim_{x \to \infty} \sqrt{\frac{2x^3 - 4x}{6x^2 - 1}}$$

(c)
$$\lim_{\Delta x \to 0} \frac{f(x) - f(x_0)}{x - x_0}$$

1.8.2 Derivadas

7. Seja a função definida por $f(x, y) = xy^2 - \sqrt{x}$. Calcule as derivadas abaixo.

4

- (a) $f', f'', f''', \dots, f^{(n)}$
- (b) $\frac{df}{dx}$, $\frac{d^2f}{dx^2}$,..., $\frac{d^nf}{dx^n}$
- (c) $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$,... $\frac{\partial^n f}{\partial x^n}$ e $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y^2}$,... $\frac{\partial^n f}{\partial y^n}$
- (d) $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$

1.8.3 Integrais

8. Calcule as integrais abaixo:

(a)
$$\int_1^5 x^2 \cos x \, dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2} \, dx$$

(c)
$$\sum_{n=0}^{\infty} k^n$$

1.9 Criação de Figuras

9. Observe os dados ajustados na Figura 1.

Figura 1: Dados ajustados do experimento

1.10 Criação de Tabelas

10. Segue na Tabela 1 algumas derivadas de funções:

Função	Derivada
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{\ln a}$

Tabela 1: Tabela Básica de Derivadas