Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{3} = \frac{7}{3}$	3p
	$\frac{7}{3}:\frac{7}{6}=\frac{7}{3}\cdot\frac{6}{7}=2$	2p
2.	$x_1 + x_2 = 5$, $x_1 x_2 = 4$	2p
	$(x_1 + x_2)^2 - 6x_1x_2 = 25 - 24 = 1$	3p
3.	3x - 5 = 4	3 p
	x = 3, care convine	2p
4.	$p-25\% \cdot p = 600$, unde p este prețul televizorului înainte de ieftinire	3 p
	p = 800 de lei	2p
5.	$OM = \sqrt{(8-0)^2 + (6-0)^2} =$	3 p
	=10	2p
6.	$\sin 135^\circ = \frac{\sqrt{2}}{2}, \ \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin^2 135^\circ + \sin^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$	3р

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 2 =$	3p
	=2-0=2	2 p
b)	$A + B = \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}$	2p
	$B - A = \begin{pmatrix} -2 & -4 \\ 2 & -2 \end{pmatrix} \Rightarrow (A + B)(B - A) = \begin{pmatrix} 0 & 0 \\ 0 & -8 - 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -12 \end{pmatrix}$	3 p
c)	$\det A \neq 0, \ A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix}$	3 p
	$X = A^{-1} \cdot B \Rightarrow X = \begin{pmatrix} -3 & -2 \\ 1 & 0 \end{pmatrix}$	2p
2.a)	1*2=1+2-3=	3 p
	=3-3=0	2p

	b)	$x^2 + x - 3 = -1 \Leftrightarrow x^2 + x - 2 = 0$	3p
-	c)	x = -2 sau x = 1 $n * n * n * n = 4n - 9$	2p 2p
		$4n-9 < 3 \Rightarrow n < 3$ şi, cum <i>n</i> este număr natural nenul, obținem $n=1$ sau $n=2$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = (x^3)' + (2x^2)' + (x)' =$	2p
		2p
	$=3x^2+4x+1=(x+1)(3x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x f'(x)} = \lim_{x \to +\infty} \frac{x^3 + 2x^2 + x}{x(x+1)(3x+1)} =$	2p
	$= \lim_{x \to +\infty} \frac{1 + \frac{2}{x} + \frac{1}{x^2}}{\left(1 + \frac{1}{x}\right)\left(3 + \frac{1}{x}\right)} = \frac{1}{3}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = -\frac{1}{3}$	1p
	$x \in \left[-1, -\frac{1}{3}\right] \Rightarrow f'(x) \le 0$, deci funcția f este descrescătoare pe $\left[-1, -\frac{1}{3}\right]$ și $x \in \left[-\frac{1}{3}, +\infty\right] \Rightarrow f'(x) \ge 0$, deci funcția f este crescătoare pe $\left[-\frac{1}{3}, +\infty\right]$	2 p
	$f(x) \ge f\left(-\frac{1}{3}\right)$ pentru orice $x \in [-1, +\infty)$ și, cum $f\left(-\frac{1}{3}\right) = -\frac{4}{27}$, obținem $f(x) \ge -\frac{4}{27}$, pentru orice $x \in [-1, +\infty)$	2 p
2.a)	pentru orice $x \in [-1, +\infty)$ $\int_{0}^{1} (f(x) - x^{2} - 1) dx = \int_{0}^{1} (x^{2} + x + 1 - x^{2} - 1) dx = \int_{0}^{1} x dx =$	2p
	$=\frac{x^2}{2}\bigg _0^1 = \frac{1}{2} - 0 = \frac{1}{2}$	3 p
b)	$F'(x) = \left(\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 2017\right)' = \frac{1}{3} \cdot 3x^2 + \frac{1}{2} \cdot 2x + 1 =$	3p
	$= x^2 + x + 1 = f(x), x \in \mathbb{R}$	2p
c)	$= x^{2} + x + 1 = f(x), x \in \mathbb{R}$ $\mathcal{A} = \int_{0}^{2} f(x) dx = \int_{0}^{2} (x^{2} + x + 1) dx = \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} + x\right) \Big _{0}^{2} = \frac{20}{3}$	3p
	Cum n este număr natural, din $n^2 - \frac{7}{3} = \frac{20}{3}$, obținem $n = 3$	2p