

Cálculo para Engenharia – Exame de Recurso
Nome completo: PROPOSTA DE RESOLUÇÃO Número:
Assinale a prova que realiza: Parte 1 Parte 2 Exame Os estudantes que realizam o Exame devem responder às questões assinaladas com E.
Parte 1
Grupo I (12 valores): Responda às questões deste grupo na folha de resposta. <u>Justifique</u> convenientemente todas as suas respostas.
1.(5 valores) Considere a função, real de variável real, $f:\mathcal{D}\subset[-2,7]\longrightarrow\mathcal{E}$ cujo gráfico aqui se representa.
(a) Indique o domínio \mathcal{D} de f . $\mathcal{D} = \begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix}$ (b) Complete: $f(2) = \cdot 4$ e $f(\cdot 1) = 2$. Asima gents de \mathcal{D} e $f(\cdot 1) = 2$.
(b) Complete: $f(2) = 4$ e $f(1) = 2$. Asima gent de 2 e 4 e de 1 e 2.
(c) Calcule, se existirem, $\lim_{x\to 5} f(x)$ e
(c) Calcule, se existirem, $\lim_{x\to 5} f(x)$ e $\lim_{x\to 6} f(x) = 1 \text{ for a constraint an animal existe}, f \text{ for a second an animal existe}, f \text{ for a second an animal existe}, f \text{ for a second and a continuidade de } f. A funcas fe des continua para x = 1 x = 4 x = 6. (e) Esboce, se existir, uma reta tangente a f, no ponto de abcissa f(x) and f($
$f(x) \neq \lim_{x \to y+} f(x)$; is to $f(x) = \lim_{x \to y} f(x) =$
E 2.(4 valores) Considere a função, real de variável real, definida por $f(x) = \begin{cases} 2x, & x \text{ \'e racional} \\ 2, & x \text{ \'e irracional} \end{cases}$
(a) Calcule, se existir, $\lim_{x\to 1} f(x) = 2$ by $\lim_{x\to 1} f(x) = \lim_{x\to 1} f(x) = 2$. Ou serger $\lim_{x\to 1} f(x) = 2$. Ou serger $\lim_{x\to 1} f(x) = 2$.
(a) Calcule, se existir, $\lim_{x\to 1} f(x) = 2$ by $\lim_{x\to 1} f(x) = 2$. On Seja (b) Estude a continuidade de f . (b) Estude a continuidade de f . (c) Determine a existência da função inversa de f . (c) Determine a existência da função inversa de f . (d) $f(x) = \lim_{x\to 1} f(x) = \lim_$
3.(3 valores) Considere a função g , real de variável real, definida por $g(x) = \frac{e^x - 1}{x}$ e defina, se existir,
t: $y-y_0 = w(x-x_0)$; com $x_0 = 1$, $y_0 = q(1) = e-1$ e $m=q'(1)$
$g'(x) = \left(\frac{e^{x}-1}{x}\right)' = \frac{x(e^{x})'-(e^{x}-1)x'}{x^{2}} = \frac{xe^{x}-e^{x}+1}{x^{2}}; g'(t)=1$ $t: y(e-1)=1(x-1) \iff y-e+1=x-1 \iff y=x+(e-2).$

Grupo II (4 valores): Em cada uma das questões seguintes, assinale <u>neste enunciado</u> se a afirmação é verdadeira (V) ou falsa (F).

Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.

1. A função, real de variável real, definida por $f(x)$ =	sen (x^2) é periódica de período $(2\pi)^2$.	0
2. Se a função f , real de variável real, é par, então função (real de variável real) g .	a função $f\circ g$ também é par, para qual	lquer 🔾 🌘
$3. \cosh(2x) = \cosh^2 x - \sinh^2 x.$		0
4. Se f e g , duas funções reais de variável real, admit $(fg)'' = fg'' + f'g' + f''g.$	tem segundas derivadas, então	0
Cada resposta certa vale 1 valor e cada r	rdadeira. qualquer justificação. resposta errada desconta 0,25 valores.	
E) 1. O contradomínio da função, real de variável real, de	finida por $f(x) = \frac{1}{\sqrt{2-x}} + 5$ é	
$\bigcirc \mathbb{R}.$ $\bigcirc]-\infty,2[.$	\bigcirc]5, $+\infty$ [. \bigcirc Nenhuma teriores.	a das an-
2. O gráfico da função f , real de variável real, definida no ponto de abcissa	por $f(x) = \ln(x-1)$ intersecta o eixo das	abcissas,
$\bigcirc x = 0. \qquad \bigcirc x = 1.$	x = 2. Nenhuma teriores.	dos an-
3. Se $\lim_{h o 0} f(h) = L$, então $f(10^{-4})$		
\bigcirc está mais próximo de L do que $f(10^{-1})$.	\bigcirc está mais afastado de L do que $f($	(10^{-1}) .
\bigcirc e $f(10^{-1})$ estão equidistantes de L .	Nenhuma das anteriores.	
4. Seja f uma função real de variável real.		
igorplus Se f é diferenciável, então f é contínua.	$\bigcirc \ f$ é contínua se e só se f é diferen	ciável.
\bigcirc Se f é contínua, então f é diferenciável.	 Nenhuma das anteriores. 	

V

Grupo I (12 valores): Responda às questões deste grupo na folha de resposta. Justifique convenientemente todas as suas respostas.

1.(4 valores) Considere a função, real de variável real, $f: \mathcal{D} \subset [-2,7] \longrightarrow \mathcal{E}$ cujo gráfico aqui se representa.

- (a) Indique, se existir, um intervalo onde f é tal que f'(x) > 0 e f''(x) < 0.
- - $\mathsf{com}\ f\ \mathsf{como}\ \mathsf{funç\~ao}\ \mathsf{integranda}.$
- tal que f'(x) > 0 e f''(x) < 0.

 (b) Identifique um ponto crítico de f. z = 2 perque f'(2) naveriste f'(2) f'(2[6 f(x) dx, perque fé'ilimitada' para-1x=5.
 - **2.(2 valores)** Sendo f a função, real de variável real, definida por $f(x) = 2^x$, calcule, se existir,
- Regra de L'Hôpital:

 liu $(2 \times h 2 \times h) = 2 \times \lim_{h \to 0} (2^h 1) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h} = \lim_{h \to 0} \frac{2^{x+h} 2^{x}}{h} = 2^{x} \cdot \lim_{h \to 0} \frac{2^h \cdot \ln 2}{h} = 2^x \cdot \ln 2$
 - **E** 3.(3 valores) Considere as funções $f \in g$, reais de variável real, definidas por $f(x) = \sqrt{2-x}$ e $g(x) = -\frac{\sqrt{2}}{2}x + \sqrt{2}. \quad \int_{x=0}^{2} \sqrt{2-x} \, dx = -\int_{x=0}^{2} -(2-x)^{\frac{1}{2}} dx = -\frac{(2-x)^{\frac{1}{2}}}{3}$ (a) Prove que $\int_{0}^{2} f(x) dx = \frac{4\sqrt{2}}{3}$. $= -\frac{2}{3} \left(0 - \sqrt{2}^{3}\right) = \frac{4\sqrt{2}}{3}$
- (b) Calcule a área da região (fechada) delimitada pelas funções $f \ {\rm e} \ g.$ $A_{\infty} = \int_{x=0}^{2} \left[f(x) - g(x) \right] dx = \int_{x=0}^{2} f(x) dx - \int_{x=0}^{2} \left(-\frac{\sqrt{2}}{a}x + \sqrt{2} \right) dx = \frac{4\sqrt{2}}{3} + \frac{\sqrt{2}}{4}x^{2} - \frac{\sqrt{2}}{a},$
 - 4.(3 valores) Considere a série numérica cujos primeiros termos são
 - $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \frac{1}{16} + \cdots$
 - (a) Reescreva a série, completando $\sum_{i=1}^{n} \left(-\frac{1}{2} \right)^{i}$

- By = (-1/2)=1
- (b) Encontre os quatro primeiros termos da sucessão das somas parciais desta série. $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
- (c) Estude a natureza da série. $Q_n = \left(\frac{1}{2}\right)^n \stackrel{?}{\approx} Q_n = \left(\frac{1}{2}\right)^n \stackrel{?}$ So Hie e' geométrica de va 3 aot: - 1/2. Sé hie e quia ra ra ra ra re e' - 1/2 = 1/2.

Grupo II (4 valores): Em cada uma das questões seguintes, assinale <u>neste enunciado</u> se a afirmação é verdadeira (V) ou falsa (F).

Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.

		V	F
E)	1. Se a função f , real de variável real, é tal que $f'(x) \leq 1$ e $f(0) = 0$, então $f(x) \leq x$.		0

2.
$$\int f(x) dx = \frac{1}{x} \int (x f(x)) dx.$$

3. Se
$$f$$
 é uma função, real de variável real, derivável em $[0,10]$, então o comprimento da curva definida por f no intervalo $[0,1]$ é menor do que o comprimento da curva definida por f no intervalo $[1,10]$.

E 4.
$$\sum_{i=1}^{n} \left(\frac{1}{i}\right)$$
 é uma série harmónica.
Grupo III (4 valores): Em cada uma das questões seguintes, assinale neste enunciado

a única afirmação verdadeira.

Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

1. Se
$$f$$
 é a função, real de variável real, definida em $[-1,0]$ por $f(x)=x^3$, então

$$\bigcirc f'$$
 é crescente. $\bigcirc \int f(x) \, dx$ é crescente. \bigcirc Nenhuma das anteriores.

2. Sejam
$$f$$
 uma função, real de variável real, definida em $I=[2,6]$ e $\mathcal P$ uma partição de I em 10 subintervalos com a mesma amplitude, então $\forall \widetilde{x_i} \in [x_i, x_{i+1}]$ (com $i=0,\cdots,9$),

$$\bigcirc \int_{2}^{6} f(x) dx \simeq \sum_{i=0}^{9} f(\widetilde{x}_{i}) \frac{1}{10}.$$

$$\bigcirc \int_{2}^{6} f(x) dx \simeq \sum_{i=0}^{9} f(\widetilde{x}_{i}) \frac{4}{10}.$$

$$\bigcirc \int_{2}^{6} f(x) dx \simeq \sum_{i=0}^{9} f(\widetilde{x}_{i}) \frac{2}{10}.$$

$$\bigcirc \text{Nenhuma das anteriores.}$$

3. Se
$$\int_0^2 f(x) dx = 3$$
, então
$$\bigcirc \int_0^4 f(x) dx = 6.$$

$$\bigcirc \int_0^2 f(2x) dx = 6.$$

$$\bigcirc \int_0^2 2f(x) dx = 6.$$

$$\bigcirc \text{Nenhuma dos anteriores.}$$

(E) 4. Sejam
$$a_n$$
 e b_n os termos gerais de duas sucessões.

○ Se
$$0 \le a_n \le b_n$$
 e $\sum_{i \ge 1} a_n$ converge, então $\sum_{i \ge 1} b_n$ converge.
○ Se $b_n \le a_n \le 0$ e $\sum_{i \ge 1} a_n$ converge, então $\sum_{i \ge 1} b_n$ converge.
② Se $0 \le a_n \le b_n$ e $\sum_{i \ge 1} b_n$ converge, então $\sum_{i \ge 1} a_n$ converge.

Nenhuma das anteriores.