

Duration: 1 h

Entrance Exam 2006-2007

CHEMISTRY

First Exercise Identification and Synthesis of an Ester

The hydrolysis of an ester (E) gives an acid (A) of formula R – COOH and an alcohol (B) of formula R´ - OH.

Given:

- R and R´ are two alkyl groups.
- Molar mass in g.mol⁻¹: $M_{(H)} = 1$; $M_{(C)} = 12$; $M_{(O)} = 16$; $M_{(R'-OH)} = 60$.

I- Determination of the formula of (E)

- 1- Write the formula of (E) in terms of R and R'.
- 2- Show that the formula of (E) is C_xH_{2x}O₂.
- 3- Determine the molecular formula of (E) knowing that the percentage by mass of oxygen, in this compound, is equal to 31.37 %.
- 4- Determine the molecular formula of (B), write the condensed structural formula and give the name of (B), knowing that it is a primary alcohol.
- 5- Deduce the molecular formula of (A).
- 6- Write the condensed structural formula of (E) and give its name.

II- A Synthesis Reaction of (E)

A mixture of 1 mol of (A) and 2 mol of (B) is carried out. A homogenous equilibrium is established when this mixture is maintained at a constant temperature of 100 °C,

- 1- Write, using the condensed structural formulas, the equation of the esterification reaction.
- 2- Give two characteristics of this reaction.
- 3- Determine the composition, in moles, of the mixture at equilibrium knowing that the equilibrium constant is $K_c = 4$.

Second Exercise Evolution of The pH during a Titration

Using a buret, a volume V_B of sodium hydroxide solution (Na⁺+HO⁻) of concentration $C_B = 1x10^{-2}$ mol.L⁻¹ is progressively added into a volume $V_A = 20$ mL of ethanoic acid solution, CH₃COOH, of concentration $C_A = 1.2x10^{-2}$ mol.L⁻¹.

<u>Given</u>: $pK_A(CH_3COOH/CH_3COO^-) = 4.80$; $pK_A(H_2O/HO^-) = 14.0$

I- Study of the Equivalence

- 1- Write the equation of the titration reaction.
- Determine the needed volume of sodium hydroxide solution to reach the equivalence point.
- 3- Specify the acid-base nature at the equivalence.

II- Evolution of pH during titration

1- Show that the pH, before the equivalence point, is given by the relation:

pH = 4.8 +
$$\log \frac{V_B}{V_{BE} - V_B}$$
 and after the equivalence it is given by the relation:

$$\label{eq:phase_phase_phase} \mathrm{pH} = \mathrm{14} + \log \frac{C_{\scriptscriptstyle B}(V_{\scriptscriptstyle B} - V_{\scriptscriptstyle BE})}{V_{\scriptscriptstyle A} + V_{\scriptscriptstyle B}} \,.$$

2- The experimental results permit to plot the following curve:

By using the graph:

- a) Determine the concentration of ethanoic acid solution and compare the obtained value with that indicated in the beginning of the exercise.
- b) Verify the value of pK_A(CH₃COOH/CH₃COO⁻).

Duration: 1 h

Entrance Exam 2006-2007

Solution of Chemistry

First Exercise Identification and Synthesis of an Ester

I- Determination of the formula of (E)

1- R - COOH acid; R'- OH alcohol

R – COOR′ This is the formula of the resulting ester (E)

2- R et R' are two alkyl groups

Formula of $R: C_nH_{2n+1}$ Formula of $R': C_n'H_{2n'+1}$

The formula of (E) is $C_nH_{2n+1} COOC_n H_{2n'+1}$

x = n + n' + 1 and 2x = 2n + 1 + 2n' + 1 = 2(n + n' + 1) then the formula is : $C_x H_{2x} O_2$

3- M_E (12x+2x+32) g.mol⁻¹

According to the law of defined proportions we can write;

$$\frac{12x}{m_C} = \frac{2x}{m_H} = \frac{2 \times 16}{31,37} = \frac{12x + 2x + 32}{100}, \quad x = 5 \text{ the molecular formula of (E) is } C_5 H_{10} O_2$$

4- $M(B) = 60 \text{ g.mol}^{-1}$

 $M'=14 n'+18=60 \Rightarrow n'=3$. The molecular formula of (B) is C₃H₇OH

- CH₂OH characterizes any primary alcohol:

The formula CH₃ – CH₂ – CH₂OH : 1-propan ol

5- Ester (E) C₅H₁₀O₂

$$C_nH_{2n+1}-C-O-C_nH_{2n'+1} \Rightarrow \text{from alcohol (B)}$$

$$\qquad \qquad CH_3-CH_2-CH_2OH$$
O

from acid (A)

 $C_xH_{2x} O_2 : x = 5 = n + n' + 1$, according to the formula of alcohol (B)

n'=3

x = 5 = n+3 + 1 give n = 1

The molecular formula of (A) is CH₃COOH

6- n = 1 and n'= 3, the condensed structural formula of (E) in 5 by replacing n by 1 and n' by 3

(E):
$$CH_3-C-O-CH_2-CH_2-CH_3$$
 is name: propyl ethanoate \bigcirc

II- A Synthesis Reaction of (E)

- 1- * Partial
 - * Athermic

2- Let x be the number of mole of (A) that has reacted.

	(A): CH ₃ COOH	(B): C ₃ H ₇ OH	(E): $C_5H_{10}O_2$	(A): H ₂ O
initial state (mol)	1	2	0	0
final state (mol)	1-x	2-x	X	X
[]	1-x / v	2-x / v	x / V	x / V

V_L mixture of volume reaction

Or,
$$K_c = \frac{[H_2O] \times [C_5 H_{10} O_2]}{[CH_3COOH] \times [C_3 H_7 OH]}$$

$$K_c = \frac{\frac{x}{V} \times \frac{x}{V}}{\frac{1-x}{V} \times \frac{2-x}{V}} = \frac{x^2}{(1-x)(2-x)} = 4$$

$$x^2 = 4(1-x) (2-x) = 4 (x^2-3x+2)$$
, or $3x^2 - 12x + 8 = 0$

$$\Delta' = 36 - 24 = 12$$
,

 $x = \frac{6 + \sqrt{2}}{3} = 3.5 > 1$ then this is to be rejected because the number of moles (A) will be

negative or
$$x = \frac{6 - \sqrt{2}}{3} = 0.85$$

The composition of he mixture at equilibrium is

(A) :
$$1 - x = 0.15 \text{ mol}$$
, (B) : $2 - x = 1.15 \text{ mol}$ and (E) : $x = 0.85 \text{ mol}$ and water $x = 0.85 \text{ mol}$

Second Exercise Evolution of The pH during a Titration

I- Study of the Equivalence

- 1- pK_A (CH₃COOH / CH₃COO⁻) = 4,8 and pK_A (H₂O / HO⁻) = 14 Due to the difference between the pK_A values, the reaction that will be produced between the strongest acid in the (CH₃COOH) and the strongest base (HO⁻) is almost complete. CH₃COOH + OH $^ \Rightarrow$ CH₃COO $^-$ + H₂O
- 2- At equivalence: we have $C_A V_A = C_B V_B$ $V_{BE} = \frac{C_A V_A}{C_B} = \frac{1,2 \times 10^{-2} \times 20.10^{-3}}{10^{-2}} = 24.10^{-3} L, \text{ then } V_{BE} = 24 \text{mL}$
- 3- At the equivalence point of (E), the reactants HO⁻ and CH₃COOH have disappeared because the reaction is almost complete. The solution contains CH₃COONa in the ionic state CH₃COO⁻ + Na⁺ CH₃COO⁻ is a weak base.

Na⁺ neutral ion, the solution at equivalence has a basic nature.

II- Evolution of pH during titration

1) pH= 4,8+log
$$\frac{V_B}{V_{BE} - V_B}$$

	C <mark>H₃COO</mark> H	OH -	CH ₃ COO ⁻	H ₂ O
The Mixture quantities	$C_A V_A$	$C_{\scriptscriptstyle B}V_{\scriptscriptstyle B}$	0	0
The remaining quantities	$C_A V_A - C_B V_B$	0	$C_{\scriptscriptstyle B}V_{\scriptscriptstyle B}$	$C_B V_B$

 V_B is the volume of soud poured $\langle V_{BE} \rangle$, The number of mole of HO introduced will be $C_B V_B$

$$pH = pK_A + \log \frac{\text{CH3COO} - \text{CH3COOH}}{\text{CH3COOH}} = pK_A + \log \frac{C_B V_B}{C_A V_A - C_B V_B}$$

$$pH = pK_A + \log \frac{C_B V_B}{C_B V_{BE} - C_B V_B} = 4.8 + \log \frac{V_B}{V_{BE} - V_B}$$

• After equivalence : pH= 14+log $\frac{C_B(C_B - C_{BE})}{V_A + V_B}$

• After equivalence, there remains only CH₃COO⁻ and as a result, the acid / base couple will be (H₂O / HO⁻) of water. The number of mole HO⁻ which remains, will be

$$C_B V_B - C_A V_A = C_B V_B - C_B V_{BE} = C_B (V_B - V_{BE})$$

The total volume is then $V_A + V_B$

[HO⁻] =
$$\frac{C_B(V_B - V_{BE})}{V_A + V_B}$$
 and [H₃O+]= $\frac{K_e}{[HO^-]}$

pH = -log [H₃O+]= -log K_e + log [HO⁻]= 14+log
$$\frac{C_B(V_B - V_{BE})}{V_A + V_B}$$

2)

a- The equivalence point is determined graphically by the parallel tangents method.

$$C_A = \frac{C_B V_{BE}}{V_A} = \frac{10^{-2} \times 24}{20} = 1.2 \ 10^{-2} \text{ mol.L}^{-1}$$

b- The value of pKA is indeed the value of pH at half-equivalence, when the volume poured is 12 mL. According to the graph $pK_A = 4.8$