世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 135/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 337/20, 237/22, 237/32, 2

A1

(11) 国際公開番号

WO97/29079

(43) 国際公開日

1997年8月14日(14.08.97)

(21) 国際出願番号

PCT/JP97/00291

(22) 国際出願日

1997年2月6日(06.02.97)

(30) 優先権データ

特顏平8/20083

1996年2月6日(06.02.96)

特願平8/94989

1996年4月17日(17.04.96)

(71) 出願人 (米国を除くすべての指定国について) 日本たばこ産業株式会社(JAPAN TOBACCO INC.)[JP/JP] 〒105 東京都港区虎ノ門二丁目2番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

稲葉隆之(INABA, Takashi)[JP/JP]

嘉屋徹道(KAYA, Tetsudo)[JP/JP]

岩村浩幸(IWAMURA, Hiroyuki)[JP/JP]

〒569-11 大阪府高槻市紫町1番1号

日本たばこ産業株式会社 医薬総合研究所内 Osaka, (JP)

(74) 代理人

弁理士 髙島 一(TAKASHIMA, Hajime)

〒541 大阪府大阪市中央区平野町三丁目3番9号

(湯木ビル) Osaka, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

請求の範囲の補正の期限前であり、補正審受領の際には再公 開される。

(54) Title: NOVEL COMPOUNDS AND PHARMACEUTICAL USE THEREOF

(54)発明の名称 新規化合物およびその医薬用途

(57) Abstract

Compounds represented by general formula (I) and pharmaceutically acceptable salts thereof: wherein each symbol is as defined in the specification. These compounds and salts act selectively on cannabinoid receptors, especially peripheral receptors, are reduced in the side effects against the central nervous system, and are excellent in immunomodulatory, anti-inflammatory and antiallergic activities and a nephritis curing effect, thus being useful as agonists and antagonists of cannabinoid receptors (especially peripheral cannabinoid receptors), immunomodulator, remedies for autoimmune diseases, anti-inflammatory, antiallergic, and nephritis remedy.

900

(57) 要約

式(1)

$$R^{2} \xrightarrow{A} (A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R$$

$$(1)$$

〔式中、各記号は明細書中に記載のとおりである〕

で表される化合物またはその医薬上許容される塩、およびその医薬用途。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

情報としての用途のみ PCTに基づいて公開される国際出版をパンフレット第一頁にPCT加盟国を同定するために使用されるコード AL アルバニア EE エストニア LR リベリア RU ロシア連邦 AM アルメニア ES スペイン LS レソト SD スーダン AT オーストリア FI フィンランド LT リトアニア SE スウェーデン AU オーストラリア FR フランス LU ルクセンブルグ SC シンガポーカ				
PCTに基づいて小種される周藤川鮮なパンフレット等ニ素にものでも開展された中央として、		情報として	の用金のユ	
AL アルパニア EE エストニア LR リベリア RU ロシア連邦 ES スペイン LS レソト SD スーダン AU オーストラリア FR フランス LT リトアニア SE スウェーデン LT リトアニア SE スウェーデン LT リトアニア SE スウェーデン LT ルクセンブルグ SC シンガー・	PCTE KAUTA	A POLICE A TOTAL PROPERTY AL A MILE.		
AL アルバニア EE エストニア LR リベリア RU ロシア連邦 ES スペイン LS レソト SD スーダン AT オーストリア FI フィンランド LT リトアニア SE スウェーデン SC スウェーデン LU ルクセンブルグ SC ンツガース・	1016834.62	公明 される国際田康をハンフレット形	一貝にPCT加盟国を何定するために(使用されるコード
AZ 7 マルバトス 7 ア	ALM T オオアバルルーー アナリライス アナリライス ファナルルーーゼルルドギガンジルグアゴストバドーナリ ル リー・ジャン・アナリライス ファイン・アナル・アナル・アナル・アナル・アナル・アナル・アナル・アナル・アナル・アナル	EES I RABEHNRU FF FFGGGGGRUESTPEESTPEESTPEESTPEESTPEESTPEESTPEESTP	LSTUVCE MMG MM	RSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

明細書

新規化合物およびその医薬用途

技術分野

本発明は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用する新規化合物およびその医薬用途に関する。より詳しくは、中枢系の副作用が少なく、免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する新規化合物およびその医薬用途に関する。

背景技術

従来、大麻成分としてカンナビノイドと呼ばれる一連のC、H、Oからなる化合物群が知られていた。このうちテトラヒドロカンナビノール(THC)が幻覚作用の主体とされており、また大麻草中に含有する主成分としては Δ 9-THCであることが知られている。この Δ 9-THCによる薬理作用としては、運動失調、被刺激性の増大、制吐、鎮痛、体温低下、呼吸抑制、カタレプシー惹起作用、血管拡張作用、免疫抑制作用等が観察されている。

これら薬理作用のメカニズムとしては、中枢神経系(Devane等, Mol Pharmaco I. 1988, 34, 605-613; Hollister 等, Pharmacol. Rev., 1986, 38, 1-20; Re nv等, Prog. Drug. Exp. Ther., 1991, 36, 71-114) および末梢細胞系(Nye 等, J. Pharmacol. Exp. Ther., 1985, 234, 784-791; Flynn 等, Mol Pharmacol. 1992, 42, 736-742)に大別され、中枢神経系を介した作用の一部は医療への適用が報告されている。

とりわけ、末梢細胞型レセプター、例えばマクロファージ上のレセプターの発見(Munnro等, Nature, 1993, 365, 61-65)によって、免疫反応を調節することにより、抗炎症作用、抗アレルギー作用並びに腎炎治療効果を有し、もとより免疫調節作用を併せ持つ、末梢細胞型レセプターのアゴニストの開発が期待されている。

カンナビノイドレセプターのアゴニストについては、ピラゾール誘導体 (特開 平6-73014号公報、EP656354、EP658546)、THC誘導 WO 97/29079

体 (特開平3-209377号公報)、ベンゾオキサジン誘導体 (US5112820)、インドール誘導体 (US5081122)、脂肪酸誘導体 (WO94/12466)が公知である。

また、アミド誘導体についても種々報告されている。例えば、特開昭61-5 4号公報には5-リポキシゲナーゼ阻害剤としてベンゾイルアミノ酸アミドが開 示されており、特公平6-49686号公報には中間体としてアリルーエチルベ ンズアミドが開示されており、特開昭52-85137号公報には血糖低下剤と して2-ブトキシフェニルーエチルベンズアミドが開示されており、特開昭51 - 1 3 1 8 4 6 号公報には血糖低下剤として2 - ブトキシフェニルーエチルベン ズアミド安息香酸が開示されているがこれは安息香酸誘導体であり、特開平5-213877号公報には血小板活性化因子阻害剤としてN-アセチル-3, 4-ビス (ヘプチルオキシ) - N- (2-ピリジニルメチル) ベンズアミドが開示さ れており、特公昭 4 6 - 3 1 8 5 2 号公報には局所麻酔剤として 1 - (N) -メ チルー2-(4' -ブトキシー2', 6' -ジメチルベンゾイルアミノ)-メチ ルーピペリジンが開示されており、特開昭50-137972号公報には抗結核 症剤として4-ブトキシ-N-(3-ピリジル)-ベンズアミドが開示されてお り、US4743610にはトロンボキサン合成阻害剤としてアミノーアルコキ シーピリジニルーアルキルーベンズアミドが開示されており、特開平1-859 6 3 号公報には血小板活性化因子阻害剤としてアルコキシーナフタレニルーピリ ジニルーアミドが開示されている。しかし、これら文献には、カンナビノイドレ セプターが介在する作用機序に基づく薬理作用については開示されていない。

本発明の目的は、上記問題点がなく、カンナビノイドレセプター、特に末梢型 レセプターに選択的に作用する新規化合物、およびその医薬用途を提供すること である。

より詳細には、本発明の目的は、カンナビノイドレセプター、特に末梢細胞系に選択的に作用し、中枢神経系への作用(即ち、興奮、幻覚、運動失調、被刺激性の増大、体温低下、呼吸抑制、カタレプシー惹起作用、血圧低下等の副作用)

が少なく、かつ免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を併せ持つ新規化合物、およびその医薬用途を提供することである。

発明の開示

上記目的を達成すべく本発明者らが鋭意研究した結果、本発明の新規化合物が、カンナビノイドレセプター、特に末梢細胞系レセプターに選択的な親和性を有し、従ってカンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域(免疫疾患、各種炎症、アレルギー性疾患、腎炎等)において医薬的効果を示すことを見出した。

即ち、本発明は以下のとおりである。

(1) 式(1)

$$R^{2} \xrightarrow{A} A \xrightarrow{(A1k^{1})_{P} - (Y)_{q} - (A1k^{2})_{r} - R}$$

$$(1)$$

〔式中、XはCHまたはNを示し、

R' はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールア

ルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8R^9$ (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ u S(O) u $R^{12}(R^{12}$ は水素原子、アルキル、アルケニルまたはアルキニルを、u は 0 、 1 、 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R' は水素原子を示すか、またはR' と R^2 がA環と一緒になって式(II)

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であってもよく、W'R'、R²、R³はそれぞれ前記WR'、R²、R³と同義であり、B環はベンゼン環、ピリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' は-CH=CH-、 $-CH_2$ CH_2 -または-C=C-を示し、 Yは-CONR'''-、-NR'''CO-、-COO-、 $-CH_2$ NR'''-または-NHCONH-(R''')、R'''は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリ

ールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2)、- (vは0, 1, 2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

P、 Q、 r はそれぞれ独立して O または l を示す。

なお、p=1かつq=1のとき、Alk'が-CH=CH-を示し、かつ<math>Yが-CONR'''-を示し、かつR''がR'''と一緒になって-NHCO-を示し、A環と縮合環を形成してもよく、

P=0かつQ=1のとき、Yが $-CONR^{10}$ -または $-CH_2$ NR^{10} -を示し、かつ R^3 が R^{10} と一緒になって-CH=CH-、 $-CH_2$ $CHR^{27}-$ 、 $-CH_2$ -、-S-、-CHOH-、-CO-、 $-CH_2$ CO-、 $-NHCR^{28}$ (CH_2) v-、 $-NHCR^{20}R^{30}$ -または $-N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、v' は0または1を示す)

を示し、A環と縮合環を形成してもよく、

r=0かつq=1のとき、Yが-CONR¹⁰-または-CH₂NR¹⁰-を示し、かつRとR¹⁰が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。]

で表される化合物(以下、化合物(I)ともいう)またはその医薬上許容される 塩を有効成分として含有してなるカンナビノイドレセプター作動薬または拮抗薬。 (2)式(I)

〔式中、XはCHまたはNを示し、

Wは-O-、-S(O), -、 $-CR^5$ R^6 -、 $-NR^7$ - $-NR^7$ CO-または $-CONR^7$ - (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、 R^7 はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^4 における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子、アルキル、アルケニル、

WO 97/29079

(式中、W'R'、R²、R³の置換位置はA環、B環のいずれの位置であってもよく、W'R'、R²、R³はそれぞれ前記WR'、R²、R³と同義であり、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' はーCH=CH-または-CH2 CH2 - を示し、

Yは-CONR¹⁰-、-NR¹¹CO-、-COO-、-CH²NR¹⁰-または-NHCONH-(R¹⁰、R¹¹は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2)、- (vは0, 1, 2を示す)を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)

で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが $-CONR^{10}$ -または $-CH_2$ NR^{10} -を示し、かつ R^3 が R^{10} と一緒になって-CH=CH-、 $-CH_2$ $CHR^{27}-$ 、 $-CH_2$ - 、-S-、-CHOH-、-CO-、 $-CH_2$ CO-、 $-NHCR^{28}$ (CH_2) 、-、 $-NHCR^{29}R^{30}$ -または $-N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、 R^{30} は可力を示し、 R^{31} はアルキルまたは水素原子を、 R^{30} はのまたは R^{31} を示し、 R^{31} はアルキルよとは水素原子を、 R^{31} と縮合環を形成してもよく、

r=0かつq=1のとき、Yが $-CONR^{10}-または<math>-CH_2NR^{10}-を示し、かつRとR^{10}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される化合物またはその医薬上許容される塩を有効成分として含有してなる 上記(1)記載のカンナビノイドレセプター作動薬または拮抗薬。

(3)式(la)

$$R^{2}$$
 $CH = CH - C - N - (A1k^{2}), -R$ (1a)

 R^+ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 R^+ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、フロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^8 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアシル、アシルチオ、アルコキシ、アルカプト、アルキルスルフィニル、アルキル

スルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R¹⁰* は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、 $R \ge R^{-0}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。〕

で表される化合物(以下、化合物(la)ともいう)またはその医薬上許容される塩。 (4)式(la)

$$R^{2}$$
 $CH = CH - C - N - (A1k^{2}), -R$ (1a)
$$R^{3}$$
 R^{3}

 R^+ はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該 R^+ における各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N R^8 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子またはアルキルを示す)、または- (CH_2) $_{u}$ S (O) $_{u}$ R^{12} (R^{12} はアルキルを、u は 0, 1, 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノで置換されていてもよく、

R³ は水素原子またはアルコキシを示し、

 R^{104} は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、

 Alk^2 はアルキレンを示し、当該アルキレンはアルコキシカルボニル;水酸基で置換されていてもよいアルキル: $-CONR^{13}R^{11}$ (R^{13} 、 R^{11} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアル

キルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、 $R \, \in \, R^{+0}$ が隣接する窒素原子と一緒になってモルホリノまたはイミダゾリルを形成してもよい。}

で表される上記(3)記載の化合物またはその医薬上許容される塩。

- (5) R³ が水素原子、R² が-OR¹⁵、-NR⁸ R⁹ または- (CH₂) u S
- (O) R¹²であり、ベンゼン環上の-CH=CH-CO-NR¹⁰² (Alk²), -Rの結合位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメ
- 夕位である上記(4)記載の化合物またはその医薬上許容される塩。
- (6) R^1 が炭素数 $4 \sim 6$ のアルキルである上記(5)記載の化合物またはその医薬上許容される塩。
- (7) Alk^2 がエチレンである上記(6)記載の化合物またはその医薬上許容される塩。
- (8) r=0 のとき、 $R \, \in \, \mathbb{R}^{10}$ が隣接する窒素原子と一緒になってモルホリノを形成する上記(4)記載の化合物またはその医薬上許容される塩。
- (9) (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- 3-(4-x)+3-3-ペンチルオキシフェニル)-(E)-N-[2-(4-ヒドロキシフェニル) エチル] アクリルアミド、
- 3-(3, 4-ジペンチルオキシフェニル)-(E)-N-[2-(4-ヒドロキシフェニル) エチル] アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(4-メトキシ-3-ブチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ヘキシルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ヘプチルオキシフェニル) アクリルアミド、

(E) -N-[2-(3-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、

- (E) -N-[2-(2-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-\{2-(4-ヒドロキシシクロヘキシル) エチル\} -3-(4-$ メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-[2-(4-E)^2] + (4-E)^2$ (4-メトキシー $3-(4-2)^2$) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(3-7)ペンチルオキシ-4-メトキシフェニル) アクリルアミド、
- 3-[3-(2-x+y)] + (E) (2-(4-y)) + (E) (2-(4-y)) + (2-y) + (2-y) + (3-y) +
- (E) -N-[2-(4-ヒドロキシー3-メトキシフェニル) エチル] -3 -(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、
- $3-\{3-(1,\ 1-ジメチルヘプチル)-4-メトキシフェニル<math>\}-(E)$ -N- $\{2-(4-ヒドロキシフェニル)$ エチル $\}$ アクリルアミド、
- (E) -N-[2-(3, 4-ジヒドロキシフェニル) エチル] -3-[3-(1, 1-ジメチルヘプチル) -4-メトキシフェニル] アクリルアミド、
- $3-(3-\Lambda+\nu)-4-\lambda+\nu$ $-(E)-N-[2-(4-E)+\nu]$

- 3-(4-)++>-3-ペンチルオキシフェニル)-(E)-N-[2-(4-ペンチルオキシフェニル) エチル] アクリルアミド、
 - (E) -N-[2-(4-メトキシフェニル) エチル] -3-(4-メトキシ

- 3 ペンチルオキシフェニル) アクリルアミド、
- 3-(4-メトキシ-3-ペンチルオキシフェニル)-(E)-N-(2-モルホリノエチル) アクリルアミド、
- (E) -N-[2-(3, 4-ジヒドロキシフェニル) エチル] -3-(4- メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ペンチルアミノフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(3-ペンチルアミノー4-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-3-\{3-(N'-x)\}$ $\{3-(N'-x)\}$ $\{3-(N'-x)\}$ -
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-ペンチルオキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(3-ペンチルオキシ-4-ペンチルチオフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル]-3-(3-ペンチルオキシ-4-メチルチオフェニル) アクリルアミド、
- (E) $-N-[2-(4-r \le 1/2 \le n)] = 3-(4-y+1) =$

- (E) -N-[2-(イミダゾール-4-イル) エチル] -3-(4-メトキシー3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-(2-(イミダゾールー4-イル) エチル) -3-(4-メトキシー3-ペンチルアミノフェニル) アクリルアミド、
- (E) $-N-[2-(4-E)^2] + (4-E)^2$ アミノー $(3-2)^2$ アミノー $(3-2)^2$ アミノー $(4-2)^2$ アミノー $(4-2)^$
- (E) -N-[2-(4-アミノフェニル) エチル] -3-(4-メトキシー3-ペンチルアミノフェニル) アクリルアミド、
- (E) -N-[2-(4-ニトロフェニル) エチル] -3-(4-メチルアミノー3-ペンチルオキシフェニル) アクリルアミド、
- (E) $-N-[2-(4-E)^2] + (2-2)$
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-ペンチルアミノ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-シアノフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、および
- (E) -N-[2-(4-カルバモイルフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド

から選ばれる上記(7)記載の化合物またはその医薬上許容される塩。

(10) 式 (Ib)

WO 97/29079

$$R^{2} \xrightarrow{\qquad \qquad C-N-(A1k^{2}), -R \qquad (1b)}$$

$$WR^{1} \xrightarrow{\qquad \qquad R^{3}} C^{-N-(A1k^{2}), -R}$$

R' はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ $_u$ S (O) $_u$ R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、u は0, 1, 2 を、u は0, 1, 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアシス・アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^3 は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R¹⁰⁶ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 $A1k^2$ はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2) 、- (vは0, 1, 2 を示す)を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{100}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。

で表される化合物(以下、化合物(Ib)ともいう)またはその医薬上許容される塩。 (11)式(Ib)

$$R^{2}$$
 $C-N-(A1k^{2}), -R$
 R^{3}
 R^{10b}
(1b)

〔式中、Wは-O-、-S(O), -、-CR 5 R 6 -、-NR 7 - 、-NR 7 CO-(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 8 8 9 $^{$

R' はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N R^8 R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または- (CH_2) $_{\parallel}$ S (O) $_{\parallel}$ R^{12} (R^{12} はアルキルを、 $_{\parallel}$ u は 0 、 1 、 2 を、 $_{\parallel}$ u' は 0 、 1 、 2 を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、 当該アルキルは水酸基で置換されていてもよく、

R¹⁰⁰ は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく

 Alk^2 はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}R^{14}$ (R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{10}$ が隣接する窒素原子と一緒になってモルホリノ、イミダゾリルを形成してもよい。

で表される上記(10)記載の化合物またはその医薬上許容される塩。

- (12) R³が水素原子、R²が-OR¹⁵、-NR®R®または-(CH₂) uS(O) uR¹²であり、ベンゼン環上の-CO-NR¹⁰⁰-(Alk²), -Rの結合位置に対して、R²の置換位置がパラ位、-WR¹の置換位置がメタ位である上記(11)記載の化合物またはその医薬上許容される塩。
 - (13) R¹ が炭素数 $4\sim6$ のアルキルである上記(12)記載の化合物またはその医薬上許容される塩。
 - (14) Alk² がエチレンである上記 (13) 記載の化合物またはその医薬上許容される塩。
- (15) N (2-(4-ヒドロキシフェニル) エチル) -4-メトキシ-3- ペンチルオキシベンズアミド、
- 4-xトキシ-N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-ペンチルオキシベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル) エチル) ベンズアミド、
- 4-3メチルアミノーNー[2-(4-1)ドロキシフェニル] エチル] -3-3
 - N- [2-(4-ヒドロキシフェニル) エチル] -3-ペンチルアミノ-4-

メトキシベンズアミド、

3-ブチルオキシ-N- $\{2-$ (4-ヒドロキシフェニル) エチル $\}$ -4-メトキシベンズアミド、

3-ヘキシルオキシ-N- $\{2-$ (4-ヒドロキシフェニル) エチル $\}-4-$ メトキシベンズアミド、

 $3- \land プチルオキシ-N- [2-(4-ヒドロキシフェニル) エチル] - 4- メトキシベンズアミド、$

N-[2-(3-ヒドロキシフェニル) エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

N-[2-(2-EFロキシフェニル) エチル]-4-Jトキシー3-ペンチルオキシベンズアミド、

 $N-\{2-(4-ヒドロキシシクロヘキシル)$ エチル $\}-4-メトキシ-3-$ ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-N-メチル-4-メトキシ-3-ペンチルオキシベンズアミド、

3-(2-エチルブチルオキシ)-N-(2-(4-ヒドロキシフェニル) エチル) -4-メトキシベンズアミド

 $N-\{2-(4-ヒドロキシ-3-メトキシフェニル)$ エチル $\}-4-ヒドロキシ-3-ペンチルオキシベンズアミド、$

N-[2-(4-ヒドロキシフェニル) エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-4-ヒドロキシ-N-メチル-3-ペンチルオキシベンズアミド、$

3-(1, 1-ジメチルへプタン)-N-[2-(4-ヒドロキシフェニル)エチル]-4-メトキシベンズアミド、

N-(2-(3,4-ジヒドロキシフェニル) エチル]-3-(1,1-ジメチルへプタン)-4-メトキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-(2-(4-ヒドロキシー<math>3-メトキシフェニル) エチル) -4-メトキシベンズアミド、

 $3-(1, 1-\Im x f \nu \nabla f v) -N-(2-(4-\xi r u + \xi v u + \xi u +$

 $N-\{2-(3,4-ジヒドロキシフェニル)$ エチル $\}-3-(1,1-ジメチルへプタン)$ -4-ヒドロキシベンズアミド、

3-ヘキシル-N- [2-(4-ヒドロキシフェニル) エチル]-4-メトキシベンズアミド、

N- [2-(4-アミノフェニル) エチル]-3, 4-ジペンチルオキシベンズアミド、

3, 4-ジへキシルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、

4-メトキシ-N-(2-モルホリノエチル)-3-ペンチルオキシベンズアミド、

4-メトキシ-N- [2-(4-プロペン-2-イルオキシフェニル) エチル]-3-ペンチルオキシベンズアミド、

 $N-[2-(4-E)^2]$ エチル $[2-(7)^2]$ エチル

N-[2-(3, 4-ジヒドロキシフェニル) エチル]-4-メトキシ-3-ペンチルオキシベンズアミド、

 $N-\{2-(4-Tセトキシフェニル)$ エチル $\}-4-メトキシー3-ペンチルオキシ-N-(E)$ ーフェニルチオビニルベンズアミド、

N- (2-(4-アセトキシフェニル) エチル] -N-エチル-4-メトキシ

- 3 - ペンチルオキシベンズアミド、

4-[2-[N-(4-x)++y-3-3-3-3-3] エチル] ピリジン-N-x+yド、

 $3-\{2-\{N-(4-メトキシ-3-ペンチルオキシベンゾイル) アミノ\}$ エチル) ピリジン-N-オキシド、

 $3- \mathcal{I}$ \mathcal{I} $\mathcal{I$

 $N-(2-(4-E)^{2}+2)$ エチル $(2-4)^{2}$ トキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -4-メトキシ-3-(N'-メチル-N'-ペンチルアミノ) ベンズアミド、

N-(2-(4-ヒドロキシフェニル) エチル)-3-ペンチルアミノ-4-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-4-ペンチルアミノ-3-ペンチルオキシベンズアミド、

- 3, $4-ジペンチルオキシーN-{2-(4-スルファモイルフェニル) エチル ベンズアミド、$
- 3, 4-ジペンチルオキシ-N- (2-(イミダゾール-4-4-4) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-ニトロフェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-フルオロフェニル) エチル] ベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-4-プロピルオキシー3-ペンチルオキシベンズアミド、$

3, 4-ジブチルオキシ-N- $\{2-(4-$ ヒドロキシフェニル) エチル $\}$ ベンズアミド、

3, 4-ジへプチルオキシ-N- (2-(4-ヒドロキシフェニル) エチル) ベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-4-メチルアミノ-3-ペンチルオキシベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-3$, 4-ジペンチルアミノベンズアミド、

 $N - [2 - (4 - EFD + \nu) T_{x} - N) T_{y} - 3 - (N' - \nu) T_{y} - (N' - \nu) T_{y}$

4-Tミノ-N-[2-(4-ヒドロキシフェニル) エチル) -3-ペンチル オキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -4-メトキシ-3-ペンチルチオペンズアミド、

 $N-(2-(4-E)^2+2)$ エチル]-4-ペンチルオキシ-3-ペンチルチオペンズアミド、

3, 4-ジペンチルオキシ-N-[2-(2-チェニル) エチル] ベンズアミド、

3, 4-ジペンチルオキシ-N-[2-(5-ヒドロキシインド-ル-3-イル) エチル] ベンズアミド、

3, 4-ジペンチルオキシ-N-〔2-(4-メチルアミノフェニル) エチル 〕 ベンズアミド、

4-ブチリルアミノ-N- [2-(4-ヒドロキシフェニル) ェチル]-3-ペンチルオキシベンズアミド、

N - [2 - (4 - E + V

ペンチルチオベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-4-メチルチオー3-ペンチルオキシベンズアミド、$

N-[2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシ-4-ペンチルチオベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$ エチル $\}-3-(4-ヒドロキシブチルオキシ)-4-メトキシベンズアミド、$

 $N-\{2-(4-アミノフェニル)$ エチル $\}-4-メトキシー3-ペンチルチオベンズアミド、$

4-メトキシ-N- [2-(4-ニトロフェニル) エチル] - 3-ペンチルチオベンズアミド、

N- [2- (イミダゾールー 4 - イル) エチル] - 4 - メトキシー 3 - ペンチルチオベンズアミド、

 $N-\{2-(4-アミノフェニル)$ エチル $\}-4-ペンチルオキシー3-ペンチルチオベンズアミド、$

 $N-\{2-(イミダゾールー4-イル)$ エチル $\}-4-ペンチルオキシー3-ペンチルチオベンズアミド$

から選ばれる上記(14)記載の化合物またはその医薬上許容される塩。

(16)式(Ic)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2})_{r} - R' \qquad (1c)$$

〔式中、Wは-O-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-(R 5 、R 6 は同一また

は異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

乙は一CH₂一または一CO一を示し、

Qは-CH=CH-、 $-CH_2$ CHR^2 7 -、 $-CH_2$ - 、-S-、-CHOH-、-CO-、 $-CH_2$ CO-、 $-NHCR^2$ 8 (CH_2) 、-、 $-NHCR^2$ 9 R^{30} - または $-N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、 R^{30} R^{30}

 Alk^2 はアルキレン、アルケニレン、 $-COCH_2$ -または-CONH (CH_2)、-(vd0, 1, 2を示す) を示し、当該 Alk^2 におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ R^{14} (R^{13} 、 R^{14} は同一または異なってそれぞれ水素原子またはアルキルを示すか、または R^{13} と R^{14} が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

R'はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。]

で表される化合物(以下、化合物(Ic)ともいう)またはその医薬上許容される塩。 (17)式(Ic)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2})_{r} - R' \qquad (1c)$$

〔式中、Wは-O-、-S(O), -、-CR ^{5}R 6 -、-NR 7 -または-N R ^{7}CO -(R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7 は水素原子またはアルキルを、R 7

R¹ はアルキルを示し、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子またはアルキルを示す)、

乙は一CH₂ーまたは一CO-を示し、

Qは一CH=CH-、一 CH_2 CHR^2 ⁷ー、一 CH_2 ー、一S-、一CHOH-、一CO-、一 CH_2 CO-、一 $NHCR^2$ ⁸ (CH_2) 、一、一 $NHCR^2$ ⁹ R^{30} 一または一 $N=CR^{31}-$ (R^{27} は水素原子または水酸基を、 R^{28} は酸素原子または硫黄原子を、 R^{29} 、 R^{30} は同一または異なってそれぞれアルキルを、 R^{31} はアルキルまたは水素原子を、 R^{30} R^{30

 Alk^2 はアルキレン、 $-COCH_2$ $-または-CONH(CH_2)$ 、-(vは0 , 1, 2を示す)を示し、

R' はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換されていてもよく、10または1を示す。]

で表される上記(16)記載の化合物またはその医薬上許容される塩。

- (18) Zが-CO-であり、Qが $-CH_2-$ である上記(17) 記載の化合物またはその医薬上許容される塩。
- $(19) R^2$ が $-OR^{15}$ 、Wが-O-、 $-NR^7$ -または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である上記(18)記載の化合物またはその医薬上許容される塩。
- (20) R¹ が炭素数 $4\sim6$ のアルキルである上記(19)記載の化合物またはその医薬上許容される塩。
- (21) 2 (2-(4-ヒドロキシフェニル) エチル) 5-メトキシ-4- ペンチルオキシー 2, 3-ジヒドロイソインドール-1-オン、
- 2-(2-(4-ベンジルオキシフェニル) エチル)-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- 5-メトキシー2- (2-(4-ニトロフェニル) エチル)-4-ペンチルオキシー2, 3-ジヒドロイソインドールー1-オン、

2-[2-(4-x+n)] エチル] -5-x++y-4-ペンチルオ + y-2, 3-y = Fu-1 - Fu-

- 4, 5-ジペンチルオキシー2- $\{2-$ (イミダゾールー4-イル) エチル} -2, 3-ジヒドロイソインドールー1-オン、
- 2-[2-(4-ベンジルオキシフェニル) エチル]-4, 5-ジペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
 - 4, 5-ジペンチルオキシー2-[2-(4-ニトロフェニル) エチル] <math>-2
- , 3ージヒドロイソインドールー1ーオン、
 - 2-[2-(4-アミノフェニル) エチル] -4, 5-ジペンチルオキシ-2
- , 3ージヒドロイソインドールー1ーオン、
 - 4, 5-ジペンチルオキシ-2-[2-(4-ヒドロキシフェニル) エチル]
- -2, 3-ジヒドロイソインドール-1-オン、
- 4, 5-ジペンチルオキシー2- $\{2-$ (4-メチルアミノフェニル) エチル]-2, 3-ジヒドロイソインドールー1-オン、
- 2-[2-(4-アミノフェニル) エチル]-5-メトキシー4-ペンチルオキシー2, 3-ジヒドロイソインドールー<math>1-オン、
- 2-[2-(4-ヒドロキシフェニル) エチル] -5-メトキシ-4-ペンチルアミノ-2, 3-ジヒドロイソインドール-1-オン、
- 5-メトキシー4-ペンチルオキシー2- [2-(4-ピリジン) エチル]-2, 3-ジヒドロイソインドールー1-オン、
- 2-[2-(4-ジメチルアミノフェニル) エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、および
- 5-メトキシー2- (2-(4-メチルアミノフェニル) エチル)-4-ペンチルオキシー2, 3-ジヒドロイソインドールー1-オン
- から選ばれる上記(20)記載の化合物またはその医薬上許容される塩。

- (22) Zが-CO-であり、Qが-CH=CH-である上記(17)記載の化合物またはその医薬上許容される塩。
- (23) R^2 が $-OR^{15}$ 、Wが-O-、 $-NR^7$ -または $-NR^7$ CO-であり、 R^2 の置換位置がベンゼン環上の i 位、 $-WR^1$ の置換位置がベンゼン環上の j 位である上記(22)記載の化合物またはその医薬上許容される塩。
- (24) R' が炭素数 $4\sim6$ のアルキルである上記(23)記載の化合物またはその医薬上許容される塩。
- (25) 2-[2-(4-ベンジルオキシフェニル) エチル] -6-メトキシー 5-ペンチルオキシー <math>2H-イソキノリン-1-オン、
- 2-[2-(4-ヒドロキシフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 2-[2-(4-ピリジル) エチル] -6-メトキシー5-ペンチルオキシー2 H-イソキノリン-1-オン、
- 4-[2-(6-)++>-1-) オキソー5-ペンチルオキシー1H-イソキノリン-2-イル) エチル) フェニルアセテート、
- 6-メトキシー 2- (2- (4-ニトロフェニル) エチル) 5-ペンチルオキシー 2 H-イソキノリン-1-オン、
- 2-[2-(4-)+) エチルフェニル) エチル] -6- メトキシー5- ペンチルオキシー2H- イソキノリン-1- オン、
- 6-メトキシー5-ペンチルオキシー2-(2-フェニルエチル)-2H-イソキノリン-1-オン、
- 2-[2-(4-rセチルアミノフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、
- 5, 6-ジペンチルオキシー2-[2-(4-ヒドロキシフェニル) エチル) -2H-イソキノリン-1-オン、
- 2-[2-(4-r)] エチル] -6-xトキシ-5-ペンチルオ キシ-2H-4 リン-1-オン、

2- [2-(4-アミノフェニル) エチル] - 6-メトキシ-5-ペンチルオ キシ-2H-イソキノリン-1-オン塩酸塩、

2-(2-(4-ジメチルアミノフェニル) エチル) -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

2-[2-(4-メチルアミノフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシー2- $\{2-$ (4-ピペリジノフェニル) エチル $\}-5-$ ペンチルオキシー2 H-イソキノリン-1-オン、および

6-メトキシー2- [2-(4-ピリジル) エチル] -5-ペンチルオキシー 2H-イソキノリン-1-オン塩酸塩

から選ばれる上記(24)記載の化合物またはその医薬上許容される塩。

(26) Zが-CO-であり、Qが $-CH_2$ CHR $^{27}-$ であり、R 27 が水素原子である上記(17)記載の化合物またはその医薬上許容される塩。

 $(27) R^2 が - OR^{15}$ 、 $W m - O - NR' - state - NR' CO - であり R^2 の置換位置がベンゼン環上の <math>i$ 位、-WR' の置換位置がベンゼン環上の j 位である上記(26)記載の化合物またはその医薬上許容される塩。

(28) R が炭素数 $4 \sim 6$ のアルキルである上記 (27) 記載の化合物またはその医薬上許容される塩。

(29) 6-メトキシ-2- [2-(4-オキソシクロヘキシル) エチル]-5 -ペンチルオキシ-3, 4-ジヒドロ-2 H-イソキノリン-1-オン、

2-[2-(4-ヒドロキシフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-(2-7ェニルエチル)-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

2-[2-(4-アセチルアミノフェニル) エチル] -6-メトキシ-5-ペ

ンチルオキシー3, 4-ジヒドロー2H-イソキノリン-1-オン、

6-ヒドロキシー 2- (2-(4-ヒドロキシフェニル) エチル]-5-ペンチルオキシー 3, 4-ジヒドロー 2H-イソキノリン-1-オン、

 $2 - [2 - (4 - \cancel{\forall} + \cancel{\forall} +$

2-[2-(4-r)] エチル]-6-yトキシー5-ペンチルオキシー3, 4-ジヒドロー2H-イソキノリンー<math>1-オン、

6-メトキシー5-ペンチルオキシー2- [2-(4-ピリジル) エチル]-3, 4-ジヒドロ-2H-イソキノリン-1-オン、

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1H-イソキノリンー2-カルボン酸 N- (4-アミノフェニル) アミド、

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N- $\{(4-$ アミノフェニル) メチル $\}$ アミド 、および

6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N-(4-ニトロフェニル) アミドから選ばれる上記(28)記載の化合物またはその医薬上許容される塩。

(30) Zが-CO-であり、Qが $-NHCR^2$ ⁸ (CH_2) v-であり、 R^2 ⁸が酸素原子であり、v が0である上記(17)記載の化合物またはその医薬上許容される塩。

(31) R² が-OR¹⁵、Wが-O-、-NR¹ -または-NR¹ CO-であり、R² の置換位置がベンゼン環上の i 位、-WR¹ の置換位置がベンゼン環上の j 位である上記(30)記載の化合物またはその医薬上許容される塩。

(32) R^1 が炭素数 $4 \sim 6$ のアルキルである上記(31)記載の化合物またはその医薬上許容される塩。

(33) 7-メトキシ-3-[2-(4-ニトロフェニル) エチル] <math>-8-ペン チルオキシー (1H, 3H) -キナゾリン-2, 4-ジオン、

7- メトキシー 3- [2-(4-ピリジル) エチル]-8-ペンチルオキシー $(1\,H,\ 3\,H)$ - キナゾリンー 2 , 4-ジオン、

3-(2-(4-アミノフェニル) エチル)-7-メトキシ-8-ペンチルオキシー(1 H, 3 H) -キナゾリン-2, 4-ジオン、

3-[2-(4-ヒドロキシフェニル) エチル] -7-メトキシ-8-ペンチルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、

3-[2-(4-x)] アンカン エチル] -7-x トキシー [2-(4-x)] -7-x -

3-[2-(4-ジメチルアミノフェニル) エチル] -7-メトキシ-8-ペンチルオキシ-(1H, 3H) -キナゾリン-2, 4-ジオン、

から選ばれる上記(32)記載の化合物またはその医薬上許容される塩。

(34)式(Id)

$$\begin{array}{c|c}
R^{2}, \\
B & A \\
X & R^{3},
\end{array}$$
(Alk')_P-C-N-(Alk'²),-R
(Id)
$$\begin{array}{c|c}
0 & R^{10d}
\end{array}$$

〔式中、XはCHまたはNを示し、

W' は-O-、-S (O) $_1$ $_-$ 、 $_ CR^5$ R^6 $_-$ 、 $_ NR^7$ $_ _ _ NR^7$ CO- 、 $_ CONR^7$ $_-$ 、 $_ _-$ COO- または $_-$ OCO- (R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、t は 0 、 1 、 2 を示す)を示し、

R["]はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R["]における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R 8 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または R^8 と R^8 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

 $W'(R^{"})$ 、 $R^{"}$ 、 $R^{"}$ の置換位置はA環、B環のいずれの位置であってもよく、B環はベンゼン環、ピリジン環またはフラン環を示し、

 Alk^1 は-CH=CH-、 $-CH_2$ CH_2 -または $-C\equiv C-$ を示し、

R^{10d} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

か、またはR¹³とR¹¹が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。

なお、r=0のとき、 $R \ge R^{-04}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。]

で表される化合物 (以下、化合物(Id)ともいう) またはその医薬上許容される塩。 (35)式 (Id)

$$\begin{array}{c|c}
R^{2}, \\
B & A \\
X & R^{3},
\end{array}$$
(Alk¹)_P-C-N-(Alk²),-R
(Id)
$$\begin{array}{c|c}
R^{3}, & C & R^{3}
\end{array}$$

〔式中、XはCHまたはNを示し、

W' は-O-、-S (O)、-、-CR 5 R 6 -、-NR 7 - または-NR 7 C O- (R 5 、R 6 は同一または異なってそれぞれ水素原子またはアルキルを、R 7 は水素原子またはアルキルを、t は 0 、 1 、 2 を示す)を示し、

R」はアルキルを示し、

 R^2 は水素原子、アルキルまたは $-OR^{15}$ (R^{15} は水素原子、アルキルを示す)を示し、

R³は水素原子またはハロゲン原子を示し、

W'R'、R'、R'の置換位置はA環、B環のいずれの位置であってもよく、

B環はベンゼン環またはフラン環を示し、

Alk' は-CH=CH-または-CH2 CH2 -を示し、

R¹⁰゚ は水素原子を示し、

Alk² はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリール はそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。]

で表される上記(34)記載の化合物またはその医薬上許容される塩。

- (36) XがNである上記(35)記載の化合物またはその医薬上許容される塩。
- (37) R^3 "が水素原子、 R^2 "が $-OR^{15}$ であり、Wが-O-である上記 (36) 記載の化合物またはその医薬上許容される塩。
- (38) R''が炭素数 $4 \sim 6$ のアルキルである上記 (37) 記載の化合物またはその医薬上許容される塩。
- (39) $7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N- <math>\{2-(4-ll) > ll)$ エチル $\{2-(4-ll) > ll)$ アミド、

7-メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- $\{2 \{4-$ ヒドロキシフェニル $\}$ エチル $\}$ アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(4-アミノフェニル) エチル] アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N- [2-(4-ニトロフェニル) エチル) アミド、および

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-[2-(イミダゾール-4-イル) エチル] アミド

から選ばれる上記(38)記載の化合物またはその医薬上許容される塩。

(40)式(le)

〔式中、Wは-O-、-S(O), -、 $-CR^5$ R 6 -、 $-NR^7$ -、 $-NR^7$ CO-、 $-CONR^7$ -、-COO-または-OCO-(R^5 、 R^6 は同一または異なってそれぞれ水素原子またはアルキルを、 R^7 は水素原子またはアルキルを、tは0, 1, 2を示す)を示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$ R^9 (R^8 、 R^9 は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールを示すか、または R^8 と R^9 が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$ 。S(O) 。 R^{12} (R^{12} は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2を、u は0, 1, 2を示す)を示し、当該 R^2 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R°は式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。)

で表される化合物(以下、化合物(le)ともいう)またはその医薬上許容される塩。 (41)式(le)

〔式中、Wは-O-または-S(O), -を、tは0, 1, 2を示す)を示し、R はアルキルを示し、

 R^2 は水素原子、アルキル、 $-OR^{15}$ (R^{15} は水素原子またはアルキルを示す)、または- (CH_2) $_u$ S (O) $_u$ R^{12} (R^{12} はアルキルを、u は 0 , 1 , 2 を示す)を示し、

R³ は水素原子、アルコキシ、アルキル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R°は式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される上記(40)記載の化合物またはその医薬上許容される塩。

(42) R² が-OR¹⁵または $-(CH_2)$ S(O) R¹²であり、ベンゼン環上の $-R^e$ の結合位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ位である上記(41)記載の化合物またはその医薬上許容される塩。

(43) R''が炭素数 $4 \sim 6$ のアルキルである上記(42)記載の化合物またはその医薬上許容される塩。

(44)2-(4-メトキシ-3-ペンチルオキシフェニル)-4, 4<math>-ジメチル-4, 5-ジヒドロオキサゾール、

2-(4-)++シ-3-ペンチルチオフェニル)-4, 4-ジメチル-4, 5-ジヒドロオキサゾール、

2-(3, 4-i)ペンチルオキシフェニル)-4, 4-iジメチル-4, 5-iヒドロオキサゾール、

2-(4-x+y+1) - 3-x+y+1 - 3-x+1 - 3-x+1

 $2-(3-\mathcal{C})$ $2-(3-\mathcal{C})$ 2-

 $2-(4-\mathcal{C})$ クロスキルオキシー $3-\mathcal{C}$ ンチルチオフェニル) -4 , $4-\mathcal{C}$ メチル -4 , $5-\mathcal{C}$ ヒドロオキサゾール、および

2- (4-メトキシー3-ペンチルオキシフェニル) -5- (2-ピリジル) -4, 5-ジヒドロオキサゾール

から選ばれる上記(43)記載の化合物またはその医薬上許容される塩。

(45)上記(3)~(44)のいずれかに記載の化合物またはその医薬上許容される塩を有効成分として含有してなる医薬組成物。

(46)カンナビノイドレセプターが末梢型カンナビノイドレセプターである上記(1)または(2)記載のカンナビノイドレセプター作動薬または拮抗薬。

- (47)免疫調節剤である上記(1)、(2)、(46)のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (48)自己免疫疾患治療剤である上記(1)、(2)、(46)のいずれかに 記載のカンナビノイドレセプター作動薬または拮抗薬。
- (49) 抗炎症剤である上記(1)、(2)、(46) のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (50) 抗アレルギー剤である上記(1)、(2)、(46) のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- (51) 腎炎治療剤である上記(1)、(2)、(46) のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

本明細書中で使用されている各基について以下に説明する。

アルキルとしては、直鎖状でも分枝鎖状でもよく、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s ーブチル、t ーブチル、ペンチル、イソペンチル、ネオペンチル、t ーペンチル、ヘキシル、イソヘキシル、ネオヘキシル、ヘプチル等が挙げられる。 R^2 、 R^3 、 R^3 、 R^7 、 R^8 、 R^9 、 R^{12} 、 R^{15} 、 R^{29} 、 R^{30} 、 R^{31} においては、好ましくは炭素数 1 ~

においては、好ましくは炭素数 $2\sim 4$ のものが挙げられる。 R^+ 、 R^+ においては、好ましくは炭素数 $4\sim 7$ のものが挙げられる。

アルキニルとしては、直鎖状でも分枝鎖状でもよく、具体的には、エチニル、プロピニル、ブチニル、2-ペンチニル、3-ペンチニル、2-ヘキシニル、3-ペンチェル 3-ペンチェル 3-ペン 3

Alk² におけるアルキレンとしては、好ましくは炭素数 1 ~ 4 であり、直鎖状でも分枝鎖状でもよく、具体的には、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。より好ましくは炭素数 2 のものである。

 $A1k^2$ におけるアルケニレンとしては、好ましくは炭素数 $2\sim 4$ であり、直鎖状でも分枝鎖状でもよく、具体的には、ビニレン、プロペニレン、ブテニレン等が挙げられる。

 R^3 、 R^3 におけるアルコキシとしては、好ましくは炭素数 $1\sim7$ であり、直鎖状でも分枝鎖状でもよく、具体的には、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s- ブトキシ、t- ブトキシ、ペンチルオキシ、イソペンチルオキシ、ネオペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ等が挙げられる。

 R^3 、 R^3 におけるアルコキシカルボニルとしては、好ましくは炭素数 $2\sim 5$ であり、上記アルコキシのうち炭素数 $1\sim 4$ のものにカルボニルがついたものが挙げられる。具体的には、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル等が挙げられる。

R®、R®におけるアシルとしては、好ましくは炭素数 1 ~ 5 であり、具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル等が挙げられる。

シクロアルキルとしては、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等が挙げられる。 R^+ 、 R^+ 、 R^+ 、

 R° 、 R° においては、好ましくは炭素数 $3 \sim 6$ のものが挙げられる。Rにおいては、好ましくは炭素数 $3 \sim 7$ のものが挙げられる。より好ましくは炭素数 6 のものが挙げられる。

R'、R'、R®、R®、R¹⁵におけるシクロアルキルアルキルとしては、そのシクロアルキル部は前述のうち炭素数3~6のものが挙げられ、アルキル部は前述のうち炭素数1~4のものが挙げられる。具体的には、シクロプロピルメチル、シクロブチルメチル、シクロブチルメチル、シクロプロピルプロピルプロピルエチル、シクロプロピルプロピルプロピル、シクロプロピルブチル等が挙げられる。

 R^{-1} 、 R^{-1} 、 R^{-8} 、 R^{-9} 、 R^{-1} 、 R^{-1} 0、 R^{-1} 0 、 $R^{$

R'、R'、R®、R®、R™におけるアリールアルキルとしては、そのアリール部は前述と同様のものが挙げられ、そのアルキル部は前述のうち炭素数1~4のものが挙げられる。具体的には、ベンジル、フェネチル、フェニルプロピル、フェニルブチル、ナフチルメチル、ビフェニルメチル等が挙げられ、好ましくはベンジルである。

 R^- 、 R^- 、 R^- 、 R^- 、 R^- 、 R^- 、 R^+ R^- 、 R^+ 、 R^- 、 R^+ R^+ 、 R^+ R^+ R^+ R^+ 、 R^+ R^+ R

ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好ましくはチエニル、イミダゾリル、モルホリノである。

R'におけるヘテロアリールとしては、上記ヘテロアリールで例示されたもの以外にさらにピリジルが挙げられ、好ましくはピリジル、チエニル、イミダゾリル、モルホリノである。

R®とR®が隣接する窒素原子と一緒になって形成するヘテロアリール、R'®とR'が隣接する窒素原子と一緒になって形成するヘテロアリール、RとR'®(R'®、R'®、R'®、R'®の、)が隣接する窒素原子と一緒になって形成するヘテロアリールとしては、前述のヘテロアリールのうち、1つ以上の窒素原子を有するヘテロアリールが挙げられる。具体的には、ピロリジニル、イミダゾリジニル、ピペリジノ、ピペラジニル、モルホリノ、ピラゾリル、イミダゾリル、テトラゾリル、トリアゾリル、ピロリル、ピロリニル、インドリル、ヒドロアゼピニル、ヒドロインドリル、ヒドロイソインドリル、ヒドロキノリル、ヒドロイソキノリル等が挙げられ、好ましくはモルホリノ、ピペリジノ、ピロリジニル、イミダゾリルである。

 R^+ 、 R^+ 、 R^+ 、 R^+ R^+ 、 R^+ R^+ 、 R^+ R^+

Rにおけるベンゼン縮合シクロアルキルとしては、具体的には、テトラヒドロナフタレン、インダン等が挙げられ、好ましくはテトラヒドロナフタレンである。 R^3 、 R^3 におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。

 R^{10} 、 R^{10} 、 R^{10} 、 R^{10} 、 R^{11} におけるアミノ保護基としては、具体的には、ベンジリデン、4-クロロベンジリデン、4-ニトロベンジリデン、サリチリデン、 $\alpha-$ ナフチリデン、 $\beta-$ ナフチリデン等の置換されていてもよいアラ

ルキリデン:

ベンジル、4-メトキシベンジル、3, 4-ジメトキシベンジル、2-ニトロベンジル、4-ニトロベンジル、ベンズヒドリル、ビス (4-メトキシフェニル) メチル、トリチル等の置換されていてもよいアラルキル:

ホルミル、アセチル、プロピオニル、ブチリル、ピバロイル、2-クロロアセチル、2-ブロモアセチル、2-ヨードアセチル、2, 2-ジクロロアセチル、2, 2-トリクロロアセチル、2, 2-トリフルオロアセチル、フェニルアセチル、フェノキシアセチル、ベンゾイル、<math>4-クロロベンゾイル、4-メトキシベンゾイル、4-ニトロベンゾイル、ナフチルカルボニル、アダマンチルカルボニル等の置換されていてもよいアシル:

メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、t-プトキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、シクロヘキシルオキシカルボニル、2-クロロエトキシカルボニル、2-3ードエトキシカルボニル、21ーのロロエトキシカルボニル、21ーのロローはーブトキシカルボニル、21ーのロローはーブトキシカルボニル、ベンズヒドリルオキシカルボニル、ビスー(4-メトキシフェニル)メトキシカルボニル、フェナシルオキシカルボニル、2-トリフェニルシリルエトキシカルボニル、フルオレニルー3-メトキシカルボニルルの置換されていてもよいアルコキシカルボニル;

ビニルオキシカルボニル、2-プロペニルオキシカルボニル、<math>2-クロロ-2-プロペニルオキシカルボニル、3-メトキシカルボニル-2-プロペニルオキシカルボニル、2-メチル-2-プロペニルオキシカルボニル、2-ブテニルオキシカルボニル、シンナミルオキシカルボニル等の置換されていてもよいアルケニルオキシカルボニル;

フェノキシカルボニル:

ベンジルオキシカルボニル、4 - プロモベンジルオキシカルボニル、2 - クロロ ベンジルオキシカルボニル、3 - クロロベンジルオキシカルボニル、3.5-ジ メトキシベンジルオキシカルボニル、4-メトキシベンジルオキシカルボニル、2-ニトロベンジルオキシカルボニル、4-ニトロベンジルオキシカルボニル、2-ニトロー4, 5-ジメトキシベンジルオキシカルボニル、3, 4, 5-トリメトキシベンジルオキシカルボニル、フェネチルオキシカルボニル等の置換されていてもよいアラルキルオキシカルボニル:

トリメチルシリル、 t ーブチルジメチルシリル等の置換されていてもよい低級ア ルキルシリル ;

メチルチオカルボニル、エチルチオカルボニル、ブチルチオカルボニル、 t ーブ チルチオカルボニル等の置換されていてもよいアルキルチオカルボニル;

ベンジルチオカルボニル等の置換されていてもよいアラルキルチオカルボニル; ジシクロヘキシルホスホリル、ジフェニルホスホリル、ジベンジルホスホリル、 ジー (4-ニトロベンジル) ホスホリル、フェノキシフェニルホスホリル等の置 換されていてもよいホスホリル;

ジエチルホスフィニル、ジフェニルホスフィニル等の置換されていてもよいホスフィニル等が挙げられる。また、場合によってはフタロイル等であってもよい。 好ましくはアラルキルオキシカルボニルであり、より好ましくはベンジルオキシカルボニルである。

また、置換されていてもよい各基は、1個以上の置換基で置換されていてもよい。当該置換基として使用される基について以下に説明する。

アルキルとしては、前述のうち炭素数1~4のものが挙げられる。

アルコキシとしては、前述のうち炭素数1~4のものが挙げられる。

アルコキシカルボニル、ハロゲン原子は、それぞれ前述と同様のものが挙げられる。

ヘテロアリールは、前述のR'と同様のものが挙げられる。

アルキルアミノとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルアミノ、エチルアミノ、プロピルアミノ、ブチルアミノ、ジメチルアミノ、ジエチルアミノ等が挙げられる。

アルキルチオとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルチオ、エチルチオ、プロピルチオ、ブ チルチオ等が挙げられる。

アルキルスルフィニルとしては、そのアルキル部が前述の炭素数1~4のアルキルであるものが挙げられる。具体的には、メチルスルフィニル、エチルスルフィニル、プロピルスルフィニル、ブチルスルフィニル等が挙げられる。

アルキルスルホニルとしては、そのアルキル部が前述の炭素数 1 ~ 4 のアルキルであるものが挙げられる。具体的には、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル等が挙げられる。

アルケニルオキシとしては、そのアルケニル部が前述の炭素数 2 ~ 4 のアルケニルであるものが挙げられる。具体的には、エテニルオキシ、プロペニルオキシ、ブテニルオキシ等が挙げられる。

アシルとしては、前述のうち炭素数1~4のものが挙げられる。

アシルオキシとしては、そのアシル部が前述の炭素数 1 ~ 4 のアシルであるものが挙げられる。具体的には、ホルミルオキシ、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、イソブチリルオキシ等が挙げられ、好ましくはアセチルオキシである。

アシルチオとしては、そのアシル部が前述の炭素数 1 ~ 4 のアシルであるものが挙げられる。具体的には、ホルミルチオ、アセチルチオ、プロピオニルチオ、ブチリルチオ、イソブチリルチオ等が挙げられ、好ましくはアセチルチオである。

アシルアミノとしては、そのアシル部が前述の炭素数1~4のアシルであるものが挙げられる。具体的には、ホルミルアミノ、アセチルアミノ、プロピオニルアミノ、ブチリルアミノ等が挙げられ、好ましくはアセチルアミノである。

アルコキシカルボニルとしては、そのアルコキシ部が前述の炭素数1~4のアルコキシであるものが挙げられる。具体的には、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル等が挙げられ、好ましくはエトキシカルボニルである。

アリールスルフィニルとしては、そのアリール部が前述と同様のものが挙げられる。具体的には、フェニルスルフィニル、ナフチルスルフィニル、ビフェニルスルフィニル等が挙げられる。

アラルキルオキシとしては、そのアリールアルキル部が前述と同様のものが挙 げられる。具体的には、ベンジルオキシ、フェネチルオキシ、フェニルプロピル オキシ、フェニルブチルオキシ、ナフチルメチルオキシ、ビフェニルメチルオキ シ等が挙げられる。

医薬上許容される塩としては、具体的には、ナトリウム塩、カリウム塩、セシウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、トリエタノールアミン塩、ジシクロヘキシルアミン塩、N. N' ージベンジルエチレンジアミン塩等の有機アミン塩;塩酸塩、臭化水素酸塩、硫酸塩、燐酸塩等の無機酸塩;蟻酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩等の有機酸塩;メタンスルホン酸塩、ベンゼンスルホン酸塩、 pートルエンスルホン酸塩等のスルホン酸塩;アルギニン塩、アスパラギン酸塩、グルタミン酸塩等のアミノ酸塩等が挙げられるが、これらに限定されるものではない。

なお、本発明においては、各化合物の各種異性体、プロドラッグ等も包含される。

また、本発明において、化合物(Ia)、(Ib)、(Ic)、(Id)、(Ie) は化合物(I) に包含されるものである。よって、以下、これら化合物を化合物(I)でまとめて説明する。

化合物(I)は、例えば以下のようにして製造することができるが、これらに限定されるものではない。

<u>製法1</u>:式(I) においてq=1, Y=-CONR!0-の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(12)と反応させることにより、化合物 (1-2)を得るものである。

〔式中、各記号は前記と同義である。〕

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;カルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)ハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン 等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 $0 \sim 1$ 0 0 \mathbb{C} であり、好ましくは $0 \sim 3$ 0 \mathbb{C} である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 1$ 2 時間である。

<u>製法2</u>:式(I)においてq=1, Y=-NR¹¹CO-の場合

本方法は、化合物(14)を活性化されたカルボン酸誘導体とし、化合物(13)と、 適当な溶媒中、適当な塩基の存在下、反応させることにより、化合物(1-3)を得 るものである。

〔式中、各記号は前記と同義である。〕

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度 、反応時間等の各条件は製法 I の場合と同様である。

製法3:式(I)においてq=1,Y=-COO-の場合

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、化合物(15)と反応させることにより、化合物 (1-4)を得るものである。

〔式中、各記号は前記と同義である。〕

活性化されたカルボン酸誘導体としては、例えば、カルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;カルボン酸を、Nーヒドロキシベンゾトリアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;カルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤として得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、Nーメチルモルホリン 等の有機アミンが挙げられ、好ましくはピリジンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ

ル、アセトン等の極性溶媒等が挙げられる。好ましくは上記塩基を溶媒として兼 ねる。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 1 ~ 1 2 時間である。

また、本方法の他に、化合物(11)と化合物(15)を酸触媒下、脱水縮合することによっても化合物 (1-4)を得ることができる。

酸触媒としては、例えば、塩酸、硫酸、硝酸等の鉱酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられる。

<u>製法4</u>:式(I) においてq=1, Y=-CH₂ NR¹⁰-の場合

本方法は、製法 1 で得られた化合物 (1-2)を適当な溶媒中、適当な還元剤を用いて還元することにより、化合物 (1-5)を得るものである。

〔式中、各記号は前記と同義である。〕

還元剤としては、例えば、LiA1H、、LiBH、、NaBH、、ジイソブチルアルミニウムヒドリド(DIBAL)、還元アルミニウム(Red-A1)等が挙げられ、好ましくはLiA1H、である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常-30~100℃であり、好ましくは0~50℃である。反応時間は、通常15分間~24時間であり、好ましくは1~6時間である。

<u>製法5</u>:式(I)においてq=1, Y=-NHCONH-の場合

本方法は、化合物(11)を、酸アジドを経てクルティウス転移させ、生じたイソシアネートに化合物(25)を反応させることにより、化合物 (1-6)を得るものである。

〔式中、各記号は前記と同義である。〕

なお、クルティウス転移は、アシルアジドの熱転移によりイソシアネートへ変 換させる反応である。

アシルアジドの合成としては、①カルボン酸に塩基の存在下、ジフェニルリン酸アジドを作用させる方法、②カルボン酸をエステル経由でヒドラジドに導き、これに亜硝酸またはそのアルキルエステルを反応させる方法、③カルボン酸を酸塩化物に導き、これにアジ化ナトリウムを作用させる方法、④混合酸無水物にアジ化ナトリウムを作用させる方法等がある。

塩基としては、例えば、トリエチルアミン、ピリジン、水素化カリウム、水素化ナトリウム、N-メチルモルホリン等が挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム、ジオキサン等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒、より好ましくはジオキサンである。

反応温度は、通常 0 ~ 1 5 0 ℃であり、好ましくは 0 ~ 8 0 ℃である。反応時間は、通常 1 5 分間~ 6 時間であり、好ましくは 1 ~ 3 時間である。

<u>製法 6</u>:式(I)においてp=q=r=0、Rが式(i)で表される基(I 個以上の置換基で置換されていてもよい)の場合

〔式中、各記号は前記と同義である。〕

(1) 本方法においては、まず、化合物(21)とチオニルハライドを反応させて酸ハライドとした後、これを 2-r ミノー 2- メチルプロパノールと反応させることにより、化合物(22)を得る。

チオニルハライドとしては、チオニルクロリド、チオニルブロミド等が挙げら

れる。

また、本工程は、酸ハライド等に導く以外に、適当な縮合剤を用いることによっても実施可能である。

縮合剤としては、例えば、DCC、WSCハイドロクロライド、ピバロイルクロリド、エトキシカルボニルクロリド等が挙げられる。また、反応助剤として、ヒドロキシベンゾトリアゾール(HOBT)、Nーヒドロキシスクシンイミド(NBS)、ピリジン、トリエチルアミン等を適宜選択して用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはハロゲン系溶媒であり、より好ましくはジクロロメタンである。

反応温度は、通常 $0 \sim 1$ 0 0 $\mathbb C$ であり、好ましくは $0 \sim 4$ 0 $\mathbb C$ である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 6$ 時間である。

(2) 次に、(1) で得られた化合物(22)を適当な脱水剤と反応させることにより、化合物 (I-7)を得る。

脱水剤としては、例えば、塩化チオニル、POC1。、五塩化リン、五酸化二リン、無水酢酸、塩化亜鉛、四塩化チタン等が挙げられ、好ましくは塩化チオニルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられるが、好ましくは無溶媒である。

反応温度は、通常 $0 \sim 1$ 0 0 \mathbb{C} であり、好ましくは 1 $0 \sim 5$ 0 \mathbb{C} である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは $1 \sim 6$ 時間である。

(3) さらに、(2) で得られた化合物 (1-7)を適当な塩基で処理した後、エチレンオキシドと反応させることにより、化合物 (1-8)を得る。

塩基としては、例えば、リチウムジイソプロピルアミド(LDA)、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムへキサメチルジシラザン(Li HMDS)、ナトリウムへキサメチルジシラザン(Na HMDS)、カリウムへキサメチルジシラザン(KHMDS)、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr) $_2NMgBr$ 等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常 $-100\sim100$ ℃であり、好ましくは $-100\sim0$ ℃である。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。 (4) また、(2) で得られた化合物 (1-7)を適当な塩基で処理した後、適当な 炭酸エステルと反応させることにより、化合物 (1-9)を得る。

塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDS、水素化ナトリウム、水素化カリウム、EtMgBr、(i-Pr) 2NMgBr 等が挙げられ、好ましくはn-ブチルリチウムである。

炭酸エステルとしては、クロロ炭酸エチル、炭酸ジエチル等が挙げられ、好ま しくはクロロ炭酸エチルである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくは1,2-ジメトキシエタンである。

反応温度は、通常 $-100\sim100$ ℃であり、好ましくは $-78\sim30$ ℃である。反応時間は、通常 $15分間\sim24$ 時間であり、好ましくは $1\sim6$ 時間である。(5)さらに、(4)で得られた化合物(I-9)を適当な還元剤と反応させることにより、化合物(I-10)を得る。

還元剤としては、例えば、LiAlH、、LiBH、、NaBH、、DIBAL、Red-Al等が挙げられ、好ましくはLiAlH、である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1.2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1.2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ ℃であり、好ましくは $0\sim50$ ℃である。反応時間は、通常15分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

<u>製法 7</u>:式 (I) においてp=0, q=1かつ $Y=-CONR^{10}-$ または $-CH_2$ NR $^{10}-$ で、 R^3 と R^{10} が一緒になってA環と縮合環を形成する場合

ここでは、さらに以下の製法7-1~7-6に分けて説明する。

製法7-1:式(I)において、p=0、q=1かつ $Y=-CONR^{10}-$ かつ R^3 と R^{10} が一緒になって $-CH_2$ CH_2 -、 $-CH_2$ -、-CH=CH-、-CH OH-または $-CH_2$ CHOH-を形成する場合

[式中、nは1または2を示し、他の各記号は前記と同義である。]

(1)本方法においては、まず、化合物(23)のカルボキシル基と結合した炭素に 隣接した炭素をアルキル化し、化合物(24)に導く。

また、カルボン酸をオキサゾリン(1-7) とした後に、適当な塩基で処理し、エチレンオキシドでアルキル化することにより、化合物(1-8) とし、これを常法により加水分解することによっても化合物(24) (n=2) を得ることができる。

さらに、化合物(I-7) を、塩基にひきつづき、クロロ炭酸エチルでアルキル化して化合物(I-9) とし、これを適当な還元剤で処理した場合には、化合物(I-10)を得ることができる。化合物(I-10)は、常法により加水分解することにより、化合物(24) (n=1) に誘導される。

なお、反応条件は製法 6 の (3) 、 (4) および (5) と同じである。

(2)次に、化合物(24)を活性化されたカルボン酸誘導体とし、所望の化合物(25')と縮合させ、化合物(I-11)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;所望のカルボン酸を、N-ヒドロキシベンゾトリアゾール、N-ヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてN-ヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、Nーメチルモルホリン等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ

グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 1 ~ 1 2 時間である。

(3) さらに、化合物(I-11)は、脱水することによって化合物(I-12)に導くことができる。

脱水は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくはpートルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは 6 0 ~ 1 2 0 ℃である。反応時間は、通常 3 ~ 4 8 時間であり、好ましくは 6 ~ 1 2 時間である。

(3') なお、上記の酸触媒での脱水反応が円滑に進行しない場合には、化合物 (I-11)における 2 位のアルキル基の水酸基を酸化し、アミナール(I-11') (n=1 のとき) またはアミナール(I-11'') (n=2 のとき) を経て、これを適当な還元剤で還元することによっても、化合物(I-12)を得ることができる。

酸化反応のための親電子剤としては、例えば、無水酢酸、トリフルオロ無水酢

酸、三酸化硫黄ーピリジン複合体 $(SO_3 - Py)$ 、五酸化二リン、 (COC1) 2 等が挙げられ、好ましくは $SO_3 - Py$ である。

また、反応補助剤として、ジメチルスルホキシド、トリエチルアミン等を用いることができる。また、ピリジニウムクロロクロメート(PCC)、ピリジニウムジクロメート(PDC)等のクロム酸化剤を用いることもできる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルスルホキシドである。

反応温度は、通常-78~30°であり、好ましくは10~20°である。反応時間は、通常15分間 ~24 時間であり、好ましくは1~3時間である。

還元剤としては、水素化ホウ素ナトリウム、水素化シアノホウ素ナトリウム、 リチウムホウ素ナトリウム、トリエチルシラン、トリメチルシラン、ジフェニル シラン、フェニルシラン、トリクロロシラン、トリメチルシラン等が挙げられ、 好ましくは、トリエチルシランである。

なお、還元反応は、適当な酸の存在下、進行する。酸としては、トリフルオロ 酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、p-トルエンスルホン酸等で あり、好ましくはトリフルオロ酢酸である。

反応温度は、通常-10~100℃であり、好ましくは0~30℃である。反応時間は、通常15分間~48時間であり、好ましくは30分間~3時間である。

この還元反応は、接触水素添加による還元反応を用いることによっても行うことができる。

(3") なお、上記n=2の場合、アミナール(I-11") を溶媒中、酸で処理し、 脱水することにより目的化合物の一つである化合物(I-11") を得ることができ

る。引き続き化合物(I-11")を適当な溶媒中、還元することにより、n=2 である化合物(I-12)を得ることができる。

上記脱水反応で用いる酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常 $0 \sim 2$ 0 0 $\mathbb C$ であり、好ましくは 6 $0 \sim 1$ 2 0 $\mathbb C$ である。反応時間は、通常 $3 \sim 4$ 8 時間であり、好ましくは $6 \sim 1$ 2 時間である。

上記還元反応で用いる還元触媒としては、例えば、パラジウムー炭素、水酸化パラジウムー炭素、ラネーニーケル等が挙げられ、好ましくはパラジウムー炭素である。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチ ル等のエステル系溶媒;ジメチルホルムアミド、アセトニトリル、アセトン等の 極性溶媒;メタノール、エタノール等のアルコール系溶媒;塩酸、酢酸等の酸等 が挙げられ、好ましくは酢酸である。

反応は水素気流中、高圧条件下で行い、通常 $1\sim 4~kgf/cm^2$ 、好ましくは $3~kg~f/cm^2$ である。

反応温度は、通常 $0\sim 1$ 0 0 ∞ であり、好ましくは 5 $0\sim 6$ 0 ∞ である。反応時間は、通常 $1\sim 4$ 8 時間であり、好ましくは $1\sim 2$ 0 時間である。 製法 $1\sim 2$ 1 において、 $1\sim 2$ 1 において、 $1\sim 2$ 1 において、 $1\sim 2$ 1 において、 $1\sim 2$ $1\sim 2$ $1\sim 3$ と $1\sim 3$ $1\sim 4$ $1\sim 4$

$$\mathbb{R}^2$$
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2
 \mathbb{Q}^2

$$R^2 \xrightarrow{X} 0$$

$$WR^1 \qquad 0$$
(27)

$$H_2N-(A1k^2),-R' \qquad (25')$$

$$R^{2} \xrightarrow{\qquad \qquad \qquad N - (A1k^{2}), -R'}$$

$$WR^{1} \qquad 0 \qquad (1-13)$$

〔式中、各記号は前記と同義である。〕

(1)まず、製法7-1と同様にして、化合物(23)のカルボキシル基と結合した 炭素に隣接した炭素をアシル化し、化合物(26)に導く。

アシル化剤としては、例えば、クロロ炭酸エチル、二酸化炭素等が挙げられ、 好ましくはクロロ炭酸エチルである。

なお、化合物(23)において、カルボン酸等価体として、オキサゾリンを用いた場合には、アシル化反応終了後、一般的な手法によってカルボン酸を復活させることができる。(2)(1)で得られた化合物(26)を、一般的な手法により化合物(27)に導くことができる。

(3) (2) で得られた化合物(27)を化合物(25') と加熱脱水縮合反応させることにより、化合物(I-13)を得る。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは 1 0 0 ~ 1 3 0 ℃である。 反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 1 ~ 6 時間である。 製法 7 - 3 : 式 (I) において、p = 0, q = 1 かつ Y = - C O N R ¹⁰ - かつ R ³ と R ¹⁰ が一緒になって - S - を示し A 環と縮合環を形成する場合

〔式中、各記号は前記と同義である。〕

(1)本方法においては、まず、所望の化合物(23)のカルボキシル基に隣接した 炭素をメチルチオ化し、化合物(50)に導く。

この際、例えばカルボン酸をオキサゾリン(I-7) とした後に、適当な塩基で処理し、ジアルキルスルフィドと反応させた場合には、化合物(50)が得られる。なお、カルボン酸等価体として、オキサゾリンを用いた場合には、メチルチオ化反応終了後、一般的な手法によってカルボン酸を復活させることができる。

用いられる塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、Li HMDS、Na HMDS、KHMDS、水素化ナトリウム、水素化カリウム、Et Mg Br、(i-Pr) $_2$ NMg Br 等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水 素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジ グリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒で あり、より好ましくは1,2-ジメトキシエタンである。

(2) 次に、化合物(50)を活性化されたカルボン酸誘導体とし、所望の化合物(25))と縮合させ、化合物(I-15)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;所望のカルボン酸を、Nーヒドロキシベンソトリアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてNーヒドロキシベンソトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。

塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン・等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等の

エステル系溶媒:ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 1~ 1 2 時間である。

(3) さらに、化合物(I-15)は、N-クロロスクシンイミドの存在下に環化する ことによって、化合物(I-16)に導くことができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはジクロロメタンである。

反応温度は、通常 $0 \sim 2 \ 0 \ 0$ \mathbb{C} であり、好ましくは $0 \sim 3 \ 0$ \mathbb{C} である。反応時間は、通常 $3 \sim 4 \ 8$ 時間であり、好ましくは $6 \sim 1 \ 2$ 時間である。

<u>製法7-4</u>:式(I)において、p=0, q=1かつ $Y=-CONR^{\circ}-$ かつ R° と R° が一緒になって $-NHCR^{\circ}$ -、 $-NHCR^{\circ}$ R $^{\circ}$ -または $-N=CR^{\circ}$ -を示しA環と縮合環を形成する場合

〔式中、各記号は前記と同義である。〕

(1)活性化されたカルボン酸誘導体(51)を、化合物(25')と縮合させ、化合物(I-17)に導く。

活性化されたカルボン酸誘導体としては、例えば、所望のカルボン酸を、塩化チオニル、オキシ塩化リン、五塩化リン、オキザリルクロリド等と処理することにより得られる酸ハロゲン化物;所望のカルボン酸を、N-ヒドロキシベンゾト

リアゾール、Nーヒドロキシスクシンイミド等と、DCC、WSCハイドロクロライド等の縮合剤で縮合することにより得られる活性エステル;所望のカルボン酸を、クロロ炭酸エチル、ピバロイルクロリド、クロロ炭酸イソブチル等と反応させることにより得られる混合酸無水物等が挙げられる。好ましくはWSCハイドロクロライドを縮合剤としてNーヒドロキシベンゾトリアゾールとから得られる活性エステルが用いられる。

また、上記反応においては、必要に応じて塩基を共存させることができる。 塩基としては、例えば、トリエチルアミン、ピリジン、N-メチルモルホリン 等の有機アミンが挙げられ、好ましくはトリエチルアミンである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 3 0 ℃である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 1 ~ 1 2 時間である。

(2)次に、化合物(I-17)は、酸の存在下、炭素ユニット化合物を縮合することによって化合物(I-18)、(I-19)、(I-20)にそれぞれ導くことができる。

炭素ユニット化合物としては、例えば、化合物(I-18)における R^{28} が酸素原子の場合はトリホスゲンであり、 R^{28} がイオウ原子の場合は、二硫化炭素である。化合物(I-19)における R^{29} 、 R^{30} が共にメチル基の場合はアセトンである。化合物(I-20)における R^{31} が水素原子の場合は、ジメチルホルムアミドジメチルアセタールであり、 R^{31} がメチル基の場合はアセチルアセトンである。

酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩

酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくは塩酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはクロロホルムである。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは室温~ 1 0 0 ℃である。反応時間は、通常 3 ~ 4 8 時間であり、好ましくは 6 ~ 1 2 時間である。

<u>製法7-5</u>:式(I)において、p=0, q=1かつ $Y=-CONR^{10}-$ かつ R^{3} と R^{10} が一緒になって $-CH_2$ CO-または-CH=CH-を示しA環と縮合環を形成する場合

〔式中、Halはハロゲン原子を、R³²、R³³は同一または異なってそれぞれ炭素数1~6のアルキルまたはベンジルを示し、他の各記号は前記と同義である。〕

(1) 化合物(52)を、適当な溶媒中、金属触媒の存在下、活性化されたエステル化合物と反応させることにより、化合物(53)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒等が挙げられ、好ましくはトルエンである。

金属触媒としては、例えばハロゲン化銅等が挙げられ、好ましくは臭化銅である。

活性化されたエステル化合物とは、アルキルマロン酸エステル等を適当な塩基 と混合することによって形成することができる。

この場合の適当な塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 n ーブチルリチウム、 s ーブチルリチウム、 t ーブチルリチウム、 リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

反応温度は、通常 $-10\sim200$ ℃であり、好ましくは $0\sim100$ ℃である。 反応時間は、通常15分間 ~48 時間であり、好ましくは30分間 ~3 時間であ

(2) 化合物(53)を適当な溶媒中、塩の存在下、脱炭酸反応することにより化合物(54)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルス ルホキシド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好まし くは極性溶媒であり、より好ましくは水とジメチルスルホキシドの混合溶媒であ る。

塩としては、塩化ナトリウム、シアン化ナトリウム、フッ化リチウム、塩化リチウム、ヨウ化リチウム、炭酸リチウム、臭化カリウム、塩化カリウム、ヨウ化カリウム、シアン化カリウム、塩化マグネシウム等である。

反応温度は、通常 0 ~ 3 0 0 ℃であり、好ましくは 1 0 0 ~ 2 0 0 ℃である。 反応時間は、通常 1 5 分間~ 2 4 時間であり、好ましくは 3 0 分間~ 3 時間である。

- (3) 化合物(54)と化合物(25') を用いて、製法 7-1の(2) と同様にしてアミド縮合することにより、化合物(55)を得ることができる。
- (4) 化合物(55)を適当な溶媒中、塩基の存在下で環化し、化合物(1-21)を得ることができる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素 、1,2-ジクロロエタン等のハロゲン系溶媒;メタノール、エタノール、イソプロ ピルアルコール、 t ープタノール等のアルコール系溶媒等が挙げられ、好ましく はアルコール系溶媒であり、より好ましくはエタノールである。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カリウム、水酸化リチウム、ナトリウムメトキシド、ナトリウムエトキシド、カリウム t ープトキシド等が挙げられ、好ましくはナトリウムエトキシドである。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは 0 ~ 1 5 0 ℃である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(5) なお、化合物(I-21)を還元後、脱水することにより、化合物(I-11"')を得ることができる。

還元剤としては、例えば、LiAlH.、LiBH.、NaBH.、DIBA L、Red-Al等が挙げられ、好ましくはLiAlH.である。 溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ ℃であり、好ましくは $0\sim50$ ℃である。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。 <u>製法7-6</u>:式(I)において、p=0, q=1かつY=-CONR 10 -かつR 3 とR 10 が一緒になって $-NHCOCH_{2}$ -を形成する場合

〔式中、各記号は前記と同義である。〕

- (1) 化合物(56)および化合物(25') を用いて、製法 7-1の(2) と同様にしてアミド縮合することにより、化合物(57)を得ることができる。
- (2) 化合物(57)を塩基の存在下、プロモ酢酸エチル等のハロ酢酸エチルでアミド基をアルキル化することにより、化合物(58)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、 リチウムジイソプロピルアミド等が挙げられ、好ましくは水素化ナトリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはテトラヒドロフランである。

反応温度は、通常 $-10\sim200$ $\mathbb C$ であり、好ましくは $0\sim100$ $\mathbb C$ である。 反応時間は、通常15 分間 ~48 時間であり、好ましくは $1\sim8$ 時間である。

(3) 化合物(58)を用い、常法によるニトロ基の還元反応の後、環化反応を行うことにより化合物(I-22)を得ることができる。

環化は、酸の存在下で行い、酸としては、例えば、塩化アルミニウム、塩化スズ、塩化亜鉛、塩化銅、臭化銅、塩化鉄、三フッ化ホウ素ジエチルエーテル、四塩化チタン等のルイス酸;塩酸、硫酸、硝酸等の鉱酸;トリフルオロ酢酸、トリクロロ酢酸、酢酸、メタンスルホン酸、pートルエンスルホン酸等の有機酸等が挙げられ、好ましくはpートルエンスルホン酸である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒等が挙げられ、好ましくはトルエンである。

反応温度は、通常0~200℃であり、好ましくは60~120℃である。反

応時間は、通常3~48時間であり、好ましくは6~12時間である。

<u>製法8</u>:式(I) においてr=0, q=1かつ $Y=-CONR^{10}$ -または-CH $_2$ NR^{10} -で、Rと R^{10} が隣接する窒素原子と一緒になってヘテロアリールを形成する場合

ここでは、式(I)において、r=0, q=1かつY=-CONR 10 $^{-}$ かつR 2 とR 10 が隣接する窒素原子と一緒になってモルホリノを形成する場合について例示する。

本方法は、化合物(11)を活性化されたカルボン酸誘導体とし、適当な溶媒中、 適当な塩基の存在下、モルホリンと反応させることにより、化合物(I-14)を得る ものである。

$$R^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - C00H + HN 0$$

$$R^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{4}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} (A1k^{1})_{P} - C - N 0$$

〔式中、各記号は前記と同義である。〕

本方法における活性化されたカルボン酸誘導体、塩基、溶媒、および反応温度 、反応時間等の各条件は製法1の場合と同様である。

なお、RとR'が隣接する窒素原子と一緒になって他のヘテロアリールを形成する場合の化合物は、原料化合物としてのモルホリンの代わりに、所望のヘテロアリール環を用いる以外は、上記と同様にして合成することができる。

また、 $Y = -CH_2NR^{10} - o$ 場合の化合物は、 $Y = -CONR^{10} - o$ 場合の

化合物を、製法4に準じて還元することにより合成することができる。

以上、製法 $1 \sim 8$ について説明したが、上記製法において、 R^2 と R^4 が A 環 と一緒になって式(II)で表される縮合環を形成する場合の化合物は、原料化合 物として縮合環を有するものを用いる以外は、上記製法と同様にして合成するこ ができる。

ここで、製法1において原料として用いられる化合物(11)は、例えば以下の製 法1-A~1-Fのようにして得ることができる。 <u>製法1-A</u>

(H0)_m

$$\begin{array}{c}
 & (R^{2} - T) \\
 & (R^{2} - T)
\end{array}$$
(H0)_m

$$\begin{array}{c}
 & (R^{2} - T) \\
 & (R^{2} - T)
\end{array}$$
(32)
$$\begin{array}{c}
 & (R^{2} - T) \\
 & (R^{2} - T)
\end{array}$$
(33)
$$\begin{array}{c}
 & (R^{2} - T) \\
 & (R^{2} - T)
\end{array}$$
(34)

$$(R^{2})_{m-y}$$
 COOH (35)

〔式中、 R^{21} 、 R^{22} はそれぞれ R^{1} で示したものと同様の基を示し、Tはハロゲン原子を示し、m、yはそれぞれ1、2 または3を示し、 $m-y \ge 0$ である。〕 (1)まず、化合物(31)を原料とし、塩基の存在下、化合物(29)で水酸基をエーテル化することにより、化合物(32)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、nーブチルリチウム、sーブチルリチウム、tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(2) 次に、(1) で得られた化合物(32)を酸化反応させることにより、化合物(33)を得る。

用いる酸化剤としては、例えば、 $NaClO_2$ 、 CrO_3 、 K_2 Cr_2 O_7 、 $KMnO_4$ 等が挙げられる。

また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、 t ーブタノール等のアルコール系溶媒等が挙げられ、好ましくは t ーブタノールである。

(3) さらに、(2) で得られた化合物(33)を、塩基の存在下、化合物(30)でエーテル化することにより、化合物(34)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、ローブチルリチウム、ローブチルリチウム、ナーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反 応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(4) さらに、(3) で得られた化合物(34)を塩基の存在下、加水分解することにより、化合物(35)を得る。

製法1-B

$$(H0)_{m-y} \xrightarrow{\chi} (OR^{21})_{y} (32)$$

$$(H0)_{m-y} \xrightarrow{\chi} (OR^{21})_{y} (36)$$

$$(R^{22}0)_{m-y} \xrightarrow{\chi} (OR^{21})_{y} (37)$$

$$(R^{22}0)_{m-y} \xrightarrow{\chi} (OR^{21})_{y} (38)$$

〔式中、 R^{25} は炭素数 $1\sim 6$ のアルキルを示し、他の各記号は前記と同義である。〕 (1)まず、製法 1-A (1)で得られた化合物(32)をウィッティッヒ反応させることにより、化合物(36)を得る。

ウィッティッヒ試薬としては、例えば、メチル (トリフェニルホスホラニリデン) アセテート、エチル (トリフェニルホスホラニリデン) アセテート等が挙げられ、好ましくはメチル (トリフェニルホスホラニリデン) アセテートである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 0 ~ 1 0 0 ℃であり、好ましくは 0 ~ 7 0 ℃である。反応時間は、通常 1 5 分間 ~ 1 2 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(2) 次に、(1) で得られた化合物(36)を塩基の存在下、加水分解することにより、化合物(37)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、ローブチルリチウム、 sープチルリチウム、 tープチルリチウム、 リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸リチウムである。

(3)さらに、(2)で得られた化合物(37)を製法1-A(3)、(4)と同様にして反応させ、化合物(38)を得る。

<u>製法1-C</u>

〔式中、 R^{23} 、 R^{24} はそれぞれ R^{+} で示したものと同様の基を示し、他の各記号は前記と同義である。〕

まず、化合物(39)を化合物(46)と反応させ、化合物(40)を得る。次に、化合物(40)を常法により還元し、化合物(41)を得る。さらに、化合物(41)を化合物(47)と反応させ、化合物(42)および化合物(43)を得る。次いで、化合物(42)および化合物(43)を加水分解し、化合物(44)および化合物(45)を得る。

上記反応で用いる試薬、条件等は、製法 1 - A で用いたものと同様のものが挙 げられる。

<u>製法1-D</u>

〔式中、R³¹、R³⁵はそれぞれR¹で示したものと同様の基を示し、他の各記号は前記と同義である。〕

(1) 化合物(59)を原料とし、塩基の存在下、化合物(60)で水酸基をエーテル化することにより化合物(61)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 t で チャン・カーブ・カー で ましく は c で で まっと で ある。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(2) 化合物(61)を濃硫酸の存在下、発煙硝酸を反応させることにより化合物(62)を得ることができる。

溶媒としては、例えば、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒;酢酸、無水酢酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常 $-50\sim200$ ℃であり、好ましくは $-10\sim60$ ℃である。 反応時間は、通常15 分間 ~48 時間であり、好ましくは $1\sim8$ 時間である。

(3) 化合物(62)を塩基の存在下、化合物(63)で水酸基をエーテル化することにより化合物(64)を得ることができる。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tープタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミドである。

反応温度は、通常-10~200℃であり、好ましくは0~60℃である。反応時間は、通常15分間~48時間であり、好ましくは1~8時間である。

(4) 化合物(64)を酸化することにより化合物(56') を得ることができる。

用いる酸化剤としては、例えば、NaClO2、CrO3、K2Cr2O7、KMnO4等が挙げられる。

また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-

ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等の エステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリ ル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピル アルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはイ ソプロピルアルコールまたは t -ブタノールである。

反応温度は、通常0~100℃であり、好ましくは0~30℃である。反応時 間は、通常10分間~6時間であり、好ましくは15分間~3時間である。

(5) 化合物(56') から化合物(51') への還元は、常法により行われる。

製法1-E

〔式中、各記号は前記と同義である。〕

(1) 製法1-A~1-Dの方法により得られた化合物(65)を適当な溶媒中、ま たは混合溶媒中、ハロゲン化剤と反応させることにより化合物(66)を得ることが できる。

適当な溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の 炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラ ン、ジグリム、ジオキサン等のエーテル系溶媒;ジクロロメタン、クロロホルム 、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチ ル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキ シド、アセトニトリル、アセトン、水等の極性溶媒等が挙げられ、好ましくはハ ロゲン系溶媒、またはジオキサンと水との混合溶媒である。

ハロゲン化剤としては、N-ブロモスクシンイミド、臭素等が挙げられる。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは 0 ~ 6 0 ℃である。反応時間は、通常 1 5 分間 ~ 2 4 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

(2) 化合物(66)を適当な溶媒中、通常行われる酸化反応を行うことにより化合物(52)を得ることができる。

用いる酸化剤としては、例えば、NaClO₂、CrO₃、K₂Cr₂O₇、KMnO₄等が挙げられる。

また、反応助剤として、例えば、NaHPO、、KHPO、、アミレン等を適 宜選択して用いることができる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、酢酸、水等の極性溶媒;メタノール、エタノール、イソプロピルアルコール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはtーブタノールである。

反応温度は、通常 $-30\sim100$ $\mathbb C$ であり、好ましくは $0\sim30$ $\mathbb C$ である。反応時間は、通常10分間 ~12 時間であり、好ましくは30分間 ~3 時間である。製法1-F

$$R^{36}$$
 (67)

 R^{36} (68)

 R^{37} (69)

 R^{36} (70)

 R^{38} (71)

 R^{36} (71)

 R^{36} (72)

〔式中、 R^{36} は水酸基または水素原子であり、 R^{37} は R^{1} と同じであり、 R^{38} は R^{2} と同じである。〕

本方法において、カルボニル化合物(67)の置換基〇Hに隣接した炭素をアルキ

ルチオ化し、化合物(71)または化合物(72)に導くことができる。

この際、置換基OHと結合した炭素に隣接した炭素の反応性を向上させるためにハロゲン化された化合物(68)とし、これを適当な塩基と適当な硫黄化剤を用いることによりチオール体(71)を得ることができる。

なお、アルキルチオ化の際に、化合物(67)のカルボキシル基あるいはカルボニル基は、それぞれオキサゾリジン、イミダゾリジン等で常法により保護される場合もある。これら保護基は反応後、常法によりカルボキシル基あるいはカルボニル基にもどすことが可能である。

(1) 化合物(67)を、適当な溶媒中、ハロゲン化剤と反応させることにより、化合物(68)を得ることができる。

ハロゲン化剤としては、例えば、臭素、N-ブロモスクシンイミド、臭化水素、臭化水素酸、臭化銅等が挙げられる。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、水等の極性溶媒;酢酸、塩酸、硫酸等の酸溶媒等が挙げられ、好ましくは酢酸である。

反応温度は、通常 0 ~ 2 0 0 ℃であり、好ましくは 0 ~ 6 0 ℃である。反応時間は、通常 1 0 分間 ~ 1 8 時間であり、好ましくは 3 0 分間 ~ 3 時間である。

- (2) 化合物(68)と化合物(69)を用いて、製法1-Aの(1) と同様にして化合物(70)を得ることができる。
- (3) 化合物(70)を適当な溶媒中、塩基の存在下、硫黄化剤を用いてアルキルチオ化合物(71)を得ることができる。

用いられる塩基としては、例えば、LDA、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、LiHMDS、NaHMDS、KHMDS、水

素化ナトリウム、水素化カリウム、E t M g B r、 $(i-Pr)_2 N M g B r$ 等が挙げられ、好ましくはn-ブチルリチウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

硫黄化剤としては、例えば、n-アルキルジスルフィド等が挙げられる。これを用いて、所望の<math>n-アルキル(炭素数1~7)チオ化を行うことができる。

反応温度は、通常-100~50℃であり、好ましくは-78~30℃である。 反応時間は、通常15分間~24時間であり、好ましくは1~6時間である。

(4) 化合物(71)がアルデヒド誘導体 (R³6が水素原子) の場合は、製法 1 – B と同様にして化合物(72)を得ることができる。

このように上記製法 $1-A\sim 1-F$ に準じて、任意の置換基を有する化合物(11)を得ることができる。

<u>製法1-G</u>

製法1において原料として用いられる化合物(12)は、例えば以下のようにして 得ることができる。

〔式中、 Alk^2^4 は Alk^2 より炭素数が1つ少ないものを示し、他の各記号は前記と同義である。〕

(1)まず、化合物(48)を適当な還元剤を用いて還元し、化合物(25)を得る。

還元剤としては、例えば、BH3、BH3・SMe2、LiBH4、NaBH4、KBH4、NaBH3OH、LiAlH4等が挙げられ、好ましくはLiAlH4である。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒等が挙げられ、好ましくはエーテル系溶媒であり、より好ましくはテトラヒドロフランである。

反応温度は、通常 $-30\sim100$ °Cであり、好ましくは $0\sim80$ °Cである。反応時間は、通常15 分間 ~24 時間であり、好ましくは $1\sim6$ 時間である。

(2) さらに、(1) で得られた化合物(25)と、化合物(49)を塩基の存在下、反応させることにより、化合物(12)を得る。

塩基としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水素化ナトリウム、 nーブチルリチウム、 sーブチルリチウム、 tーブチルリチウム、リチウムジイソプロピルアミド等が挙げられ、好ましくは炭酸カリウムである。

溶媒としては、例えば、ベンゼン、トルエン、ヘキサン、キシレン等の炭化水素系溶媒;ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、ジグリム等のエーテル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等のハロゲン系溶媒;酢酸エチル、酢酸メチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の極性溶媒;メタノール、エタノール、イソプロパノール、tーブタノール等のアルコール系溶媒等が挙げられ、好ましくはジメチルホルムアミ

ドである。

反応温度は、通常 0 ~ 1 5 0 ℃であり、好ましくは 2 0 ~ 1 0 0 ℃である。反応時間は、通常 1 ~ 4 8 時間であり、好ましくは 3 ~ 2 4 時間である。

上記のようにして製造された化合物(I)は、例えば、濃縮、減圧濃縮、溶媒抽出、晶析、再結晶、クロマトグラフィー等の公知の手段により、分離精製することができる。

また、化合物(I)の医薬上許容される塩、および化合物(I)の各種異性体は、従来公知の方法により製造することができる。

化合物(I) およびその医薬上許容される塩は、哺乳動物に対し、カンナビノイドレセプターが関与することが知られている医用領域、特に末梢細胞系組織が関与する医用領域(免疫疾患、各種炎症、アレルギー性疾患、腎炎等)において医薬的効果を示す。

つまり、化合物(I) およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用、腎炎治療効果を有する。よって、化合物(I) およびその医薬上許容される塩は、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤、腎炎治療剤として有用である。

化合物(I)またはその医薬上許容される塩を医薬製剤として用いる場合には、通常、それ自体公知の薬理学的に許容される担体、賦形剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤、その他の添加剤、具体的には水、植物油、エタノールまたはベンジルアルコールのようなアルコール、ポリエチレングリコール、グリセロールトリアセテート、ゼラチン、ラクトース、デンプン等のような炭水化物、ステアリン酸マグネシウム、タルク、ラノリン、ワセリン等と混合して、常法により錠剤、丸剤、散剤、顆粒剤、坐剤、注射剤、点眼剤、液剤、カプセル剤、トロ

ーチ剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロップ剤等の形態とな すことにより、経口または非経口的に投与することができる。

投与量は、疾患の種類および程度、投与する化合物並びに投与経路、患者の年齢、性別、体重等により変わり得る。経口投与の場合、通常、成人1日当たり化合物(I)0.1~1000mg、好ましくは1~300mgを、1~数回にわけて投与する。

以下、実施例により本発明を具体的に述べるが、本発明はこれらによって限定 されるものではない。

参考例1

4-メトキシトルエン $(100 \, \mathrm{m} \, 1 \, , \, 0.793 \, \mathrm{mo} \, 1)$ と塩化メチレン $(300 \, \mathrm{m} \, 1)$ を混合し、この溶液を $0\, ^{\circ}$ で冷却した後に塩化アルミニウム $(190.3 \, \mathrm{g} \, 1.44 \, \mathrm{mo} \, 1)$ を加えた。この溶液にヘプタノイルクロリド $(123 \, \mathrm{m} \, 1 \, , \, 0.8 \, \mathrm{mo} \, 1)$ を2時間かけて滴下した後に反応溶液を室温まで昇温、そのまま 2 時間攪拌した。この反応溶液を氷($400 \, \mathrm{g}$)に向かって注いで反応を停止し、水層をクロロホルム($300 \, \mathrm{m} \, 1$)で抽出した。有機層を合わせて水、飽和炭酸水素ナトリウム水溶液、飽和食塩水($400 \, \mathrm{m} \, 1$)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を蒸留($120 \, \mathrm{pa} \, 125 \, \mathrm{max} \, 140 \, \mathrm{max}$)して精製することにより $1-(2-\mathrm{E} \, \mathrm{max} \, 125 \, \mathrm{max} \, 140 \, \mathrm{max} \, 1$

 $^{1}H-NMR$ (CDC 1 ₃) δ : 12.2(1H, s), 7.53(1H, s),

7. 26(1H, d, J=8.47Hz), 6. 88(1H, d, J=8.47Hz), 2. 96(2H, t, J=7.31Hz),

1.79-1.67(2H, m), 1.47-1.25(6H, m), 0.90(3H, t, J=6.90Hz).

FABMS (m/z) : 235[M⁺ H ⁺] (10), 221(100), 202(40).

IR (Neat, cm⁻¹): 3500-3100, 1642.

参考例 2

1- (2-ヒドロキシ-5-メチルフェニル) ヘプタン-1-オン (127g、

0.61mo1)、2.5N水酸化ナトリウム水溶液(250ml)およびエタノール(250ml)を混合し、この溶液を0℃まで冷却した後にジメチル硫酸(60ml)を加えて2時間加熱還流した。さらに、ジメチル硫酸(40ml)および2.5N水酸化ナトリウム水溶液(170ml)を加えて2時間加熱還流した後に反応溶液を減圧濃縮した。得られた残渣をエーテル(200ml)で2回抽出した後、有機層を合わせて2.5N水酸化ナトリウム水溶液、飽和食塩水(各100ml)で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=95/5)を用いて精製することにより1-(2-メトキシ-5-メチルフェニル)へプタン-1-オン(82g、57%)を無色油状物質として得た。

「H-NMR (CDC1₃) δ: 7.42(1H, s), 7.22(1H, d, J=8.42Hz), 6.83(1H, d, J=8.42Hz), 3.84(3H, s), 2.93(2H, t, J=7.56Hz), 2.28(3H, s), 1.70-1.59(2H, m), 1.45-1.20(6H, m), 0.87(3H, t, J=6.2Hz). 参考例 3

1-(2-xトキシー5-xチルフェニル)へプタンー1-xン(81.6g、0.348mol)、クロロ酢酸エチル(64g、0.522mol)およびベンゼン(100ml)を混合し、この溶液を0 \mathbb{C} まで冷却した後にカリウムーセーブトキシド(58.6g、0.522mol)を加えて室温で0.5時間攪拌した。再びこの溶液を0 \mathbb{C} まで冷却した後にクロロ酢酸エチル(32g、0.261mol)およびカリウムーセーブトキシド(29.3g、0.261mol)およびカリウムーセーブトキシド(29.3g、0.261mol)を加えて室温で0.5時間攪拌した後に反応溶液を氷(200g)に向かって注ぐことにより反応を停止した。水層をトルエン(120ml)で3回抽出した後、有機層を水、酢酸水溶液(x/酢酸=50/1)および水(x100ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にエタノール(x20ml)および、あらかじめナトリウム(x30ml)とエタノール(x40ml)から調製したナトリウ

ムエトキシドを加えて室温で1.5時間攪拌した。この反応溶液に水(17ml)を加えて0.5時間攪拌した後、エタノールを減圧留去し、水(350ml) および濃塩酸(63m1)を加えて1.5時間加熱還流した。水層をエーテル(200ml)で3回抽出した後、有機層を合わせて水、飽和炭酸水素ナトリウム 水溶液および飽和食塩水(各100ml)で洗浄し、無水硫酸マグネシウムで乾 燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を減圧蒸留 (450 p a 、 1 5 5 ~ 1 6 0 °C) することにより 2 - (2 - メトキシー 5 - メチルフェニル) オクタナール (6 4. 5 g、 7 4. 6 %) を無色油状物質として得た。 $^{1}H - NMR$ (CDCl₃) δ : 9.65(1H, s), 7.06(1H, d, J=8.32Hz),

6.88(1H, s), 6.80(1H, d, J=8.32Hz), 3.79(3H, s), 3.74(2H, t, J=8.46Hz),

2. 29(3H, s), 2. 17-2. 00(1H, m), 1. 75-1. 60(1H, m), 1. 45-1. 20(8H, m),

0. 87(3H, t, J=6.78Hz)

 $FABMS (m/z) : 249[M^+H^+] (80), 219(60).$

参考例4

257mol)、ヨウ化メチル(160ml、2.57mol)およびベンゼン (300m1)を混合し、この溶液を-5℃まで冷却した後にカリウム-t-ブ トキシド (31.3g、0.279mo1) を反応溶液が0℃を越えないように 加えて-2℃で0. 5時間攪拌した。この反応溶液を氷水 (200m1) に向か って注ぐことにより反応を停止し、水層をエーテル(150ml)で2回抽出し た後、有機層を飽和食塩水(100ml)で洗浄し、無水硫酸マグネシウムで乾 燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にメタノール(400m 1) 、セミカルバジド塩酸塩(28.6g、0.257mo1) の水溶液(11 0 m l) およびピリジン(20.4 m l、0.257 m o l) を加えて室温で0 . 75時間攪拌した。析出した結晶を濾過し、ヘキサンで洗浄し、この結晶を乾 燥することにより2-(2-メトキシ-5-メチルフェニル) オクタナールセミ カルバジド(64.7g、79%)を無色結晶として得た。

¹H-NMR (CDCl₃) δ: 7.97(1H, s), 7.32(1H, s), 7.00(1H, s), 6.96(1H, d, J=8.22Hz), 6.73(1H, d, J=8.22Hz), 5.10(2H, bs), 3.71(3H, s), 2.26(3H, s), 2.08-1.93(1H, m), 1.84-1.72(1H, m), 1.42(3H, s), 1.28-0.9(8H, m), 0.82(3H, t, J=6.66Hz). 参考例 5

 $2-(2-\mathsf{x}+\mathsf{x})-5-\mathsf{x}+\mathsf{x}$ ルフェニル)オクタナールセミカルバジド(64.7g、0.203mo1)、カリウムー $t-\mathsf{x}+\mathsf{x}$)ド(47.8g、0.43mo1)およびキシレン(600m1)を混合し、この溶液を2.5時間加熱還流した。この反応溶液を氷水(200m1)に向かって注ぐことにより反応を停止し、水層をトルエン(120m1)で3回抽出した後、有機層を飽和食塩水(100m1)で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(クロロホルム)を用いて精製することにより2-(1,1-ジメチルヘプチル)-1- x トキシー4- x チルベンゼンをキシレンとの混合物として得た(51g、overweight)。これをこのまま次の反応に用いた

「H-NMR (CDC1₃) る: 6.99(1H, s), 6.97(1H, d, J=8.03Hz), 6.75(1H, d, J=8.03Hz), 3.78(3H, s), 2.28(3H, s), 1.82-1.73(2H, m), 1.31(6H, s), 1.25-1.13(6H, m), 1.05-0.91(2H, m), 0.84(3H, t, J=5.68Hz). 参考例 6

2-(1, 1-ジメチルヘプチル) -1-メトキシー4-メチルベンゼン(キシレンとの混合物:51g、0.203molとして計算)、N-ブロモスクシンイミド(38.4g、0.215mol)、ベンゾイルペルオキシド(0.97g、4mmol)および四塩化炭素(500ml)を混合し、この溶液を3.5時間加熱還流した。さらにN-ブロモスクシンイミド(2.1g、12mmol)を加えて0.5時間加熱還流した後、N-ブロモスクシンイミド(36g、0.2mol)を加えてこの反応溶液を2時間加熱還流した。結晶を濾過して得られた母液を飽和食塩水(100ml)で2回洗浄し、無水硫酸マグネシウムで

乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1)を用いて精製することにより3-(1,1-3)000 (1,1-3)

 $^{1}H - NMR$ (CDC1₃) δ : 9.87(1H, s), 7.77(1H, s),

7.74(1H, d, J=8.32Hz), 6.96(1H, d, J=8.32Hz), 3.91(3H, s).

1.83-1.70(2H, m), 1.37(6H, s), 1.35-1.06(6H, m), 1.04-0.85(2H, m),

0.83(3H, t, J=6.74Hz).

FABMS (m/z) : $263[M^+ H^+]$ (100), 247(95), 163(50).

参考例7

3-(1,1-i)メチルヘプチル)-4-yトキシベンズアルデヒド(13g、49.5 mmo 1)、t-iクノール(65m1)および2-yチルー2-iブテン(35.2m1、332mmo 1)を混合し、この溶液に亜塩素酸ナトリウム(7.37g、64.4mmo 1)、リン酸二水素ナトリウム(7.73g、64.4mmo 1)および水(50m1)を混合して調製した溶液を滴下し、室温で 12 時間攪拌した。1N水酸化ナトリウム溶液(100m1)を加えて t-i0 10m10 で3回抽出した。有機層を合わせて飽和食塩水(100m10 で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(1mi0 1mi0 1

 $^{1}H - NMR (CDC1_{3}) \delta : 7.98(1H, d, J=2.15Hz),$

7. 97(1H, dd, J=9.12, 2. 15Hz), 6. 89(1H, d, J=9.12Hz), 3. 89(3H, s),

1.83-1.74(2H, m), 1.36(6H, s), 1.24-1.10(6H, m), 1.00-0.94(2H, m),

0.83(3H, t, J=6.49Hz).

FABMS (m/z): 279[M⁺ H ⁺] (65), 261(70), 193(100).

参考例8

3-(1,1-i)メチルヘプチル)-4-yトキシベンズアルデヒド(1.5g、5.39mmol)、メタノール(25ml)、メチル(トリフェニルホスホラニリデン)アセタート(3.24g、9.7mmol)を混合し、この溶液を7時間加熱環流した。飽和食塩水を加えて反応を停止、水層を酢酸エチル(10ml)で3回抽出した。有機層を合わせて、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をカラムクロマトグラフィー(10mー(10mー)を用いて精製することにより3ー(10mー(10mー(10mー(10mー)を用いて精製することにより3ー(10mー(10mー(10mー)を無りままれて

 $^{1}H-NMR$ (CDC1₃) δ : 7.65(1H, d, J=16Hz), 7.39(1H, s),

7. 37(1H, d, J=9.0Hz), 6. 85(1H, d, J=9.0Hz), 6. 30(1H, d, J=16Hz),

3.85(3H, s), 3.79(3H, s), 1.84-1.73(2H, m), 1.34(6H, s),

1. 28-1. 12(6H, m), 1. 01-0. 85(2H, m), 0. 83(3H, t, J=6. 45Hz).

FABMS (m/z): 319[M+H+] (55), 287(65), 233(100). 参考例 9

3-[3-(1,1-i)+1] 桂皮酸メチルエステル(3 3 4.5 mg、1.05 mmo1)、メタノール(4 m1)、1 N水酸化ナトリウム水溶液(1.2 m1、1.2 mmo1)を混合し、この溶液を1時間加熱還流した。メタノールを減圧留去した後、濃塩酸 0.3 m1 および飽和食塩水(5 m1)を加え、水層を酢酸エチル(5 m1)で4回抽出した。有機層を合わせて飽和食塩水(5 m1)で2回洗浄した後、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後減圧濃縮して、得られた結晶をヘキサンで洗浄することにより3-[3-(1,1-i)+1]・1000 で 1 を無色結晶として得た。

 1 H - NMR (CDC1 $_{3}$) δ : 7.75(1H, d, J=15.9Hz), 7.44-7.38(2H, m), 6.86(1H, d, J=6.45Hz), 6.32(1H, d, J=15.9Hz), 3.86(3H, s),

1.82-1.73(2H, m), 1.34(6H, s), 1.27-1.10(6H, m), 1.00-0.87(2H, m), 0.84(3H, t, J=6.45Hz).

参考例10

「H-NMR (CDCl₃) δ: 8.00(1H, s), 7.86(1H, d, J=8.4Hz), 6.72(1H, d, J=8.4Hz), 5.85-5.28(1H, bs), 1.87-1.77(2H, m), 1.40(6H, s), 1.30-1.14(6H, m), 1.07-0.93(2H, m), 0.83(3H, t, J=6.8Hz). FABMS (m/z): 265[M+H+] (100), 247(40), 179(60). 参考例 1.1

クロム酸 (105.4 mg、1.05 mmol、1.2 eq)を酢酸 (2 ml) に溶解し、氷冷下、3-(1,1-ジメチルヘプチル) ベンズアルデヒド (205 mg、0.878 mmol) の酢酸 (2 ml) 溶液を加えて2分間攪拌した。更に室温で30分間攪拌させた後に濃硫酸を2滴加え、3時間攪拌した。この反応溶液に水(10 ml)を加え、酢酸エチル(10 ml)で2回抽出した。有

機層をあわせて飽和食塩水(20m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル=2/1)を用いて精製することにより、3-(1,1-i)メチルヘプチル)安息香酸(205mg、99.0%)を得た。 「<math>H-NMR (DMSO-d。) $\delta:8.08$ (IH,s),7.92(IH,d,J=7.7Hz),7.58(IH,d,J=7.7Hz),7.39(IH,t,J=7.7Hz),1.7-1.5(2H,m),1.33(3H,s),1.4-1.1(6H,m),1.1-1.0(2H,m),7.58(3H,t,J=6.7Hz). FABMS (m/z) : 249[M^+ H^+] (100),163(80). IR (100),1000,1001,100

参考例12

アルゴン置換した反応容器に2-メチルー〔1, 4〕-ナフトキノン(5 g、 29 mmol)、エーテル (200 ml) を混合し、この溶液を-10℃まで冷 却した。この溶液に水素化リチウムアルミニウム (LAH) (1.0g、26. 3 mm o 1) とエーテルの懸濁液 (4 0 m 1) を 4 0 分かけて滴下し、室温で 0 . 5時間攪拌した。この反応溶液に1N塩酸(100ml)を滴下することによ り反応停止、水層を酢酸エチル(100ml)で2回抽出し、有機層を合わせて 飽和食塩水 (50 ml) で2回、飽和炭酸水素ナトリウム水溶液 (30 ml) で 3回、飽和食塩水 (50ml) で2回洗浄した。無水硫酸マグネシウムで乾燥し 、乾燥剤を濾別後、減圧濃縮して得られた残渣に水(10ml)および濃塩酸(10ml)を加えて2時間加熱還流した。この反応溶液に水(50ml)を加え た後、水層をエーテル(50m1)で2回抽出、有機層を水(30m1)、飽和 炭酸水素ナトリウム水溶液 (30ml) で2回、飽和食塩水 (30ml) で2回 洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得ら れた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=30/1~10 /1)を用いて精製することにより3-メチルナフタレン-1-オールを構造未 確認の化合物を含む混合物として得た。このものをこれ以上精製することなく次 の反応に用いた。

参考例13

アルゴン置換した反応容器に3-メチルナフタレン-1-オールの粗生成物、ジメチルホルムアミド (DMF) (20m1)、炭酸カリウム (3g、21.7mmo1) およびペンチルブロミド (4.0m1、32.3mmo1) を混合し、この溶液を90で3時間攪拌した。DMFを減圧留去した後、水 (20m1) を加えて水層を酢酸エチル (20m1) で3回抽出、有機層を飽和食塩水 (20m1) で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー (ヘキサン/酢酸エチル= $100/0\sim50/1$) を用いて精製することにより3-メチル-1-ペンチルオキシナフタレン (827mg、3 steps 12%) を無色油状物質として得た。

 $^{1}H - NMR$ (CDCl₃) δ : 8.23(1H, d, J=8.07Hz),

- 7. 69(1H, d, J=8.07Hz), 7. 48-7. 36(2H, m), 7. 19(1H, s), 6. 65(1H, s),
- 4.13(2H, t, J=6.42Hz), 2.49(3H, s), 1.98-1.87(2H, m), 1.53-1.37(4H, m),
- 0.98(3H, t, J=7.19Hz).

参考例14

3-メチルー1-ペンチルオキシナフタレンの粗生成物、四塩化炭素($15\,\mathrm{m}$ 1)およびN-プロモスクシンイミド($2.11\,\mathrm{g}$ 、 $11.9\,\mathrm{mmo}$ 1)を混合し、ベンゾイルペルオキシド($72.7\,\mathrm{mg}$ 、 $0.3\,\mathrm{mmo}$ 1)の四塩化炭素溶液($3\,\mathrm{m}$ 1)を加えた後、この溶液を $100\,\mathrm{C}$ で4時間攪拌した。結晶を濾別後、母液を飽和食塩水($20\,\mathrm{m}$ 1)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=25/1)を用いて精製することにより1-プロモー2-ジプロモメチルー4-ペンチルオキシナフタレン($1.16\,\mathrm{g}$ 、69%)を無色結晶として得た。

 1 H - NMR (CDC1 $_{3}$) δ : 8.35-8.25(2H, m), 7.73-7.57(2H, m), 7.55(1H, s), 7.42(1H, s), 4.31(2H, t, J=6.41Hz), 2.10-1.97(2H, m), 1.82-1.45(4H, m), 1.04(3H, t, J=7.19Hz).

FABMS (m/z): 466[M+H+] (20), 385(100), 315(40). 参考例 1 5

1- 7 = 1 - 2 - 3 = 1 - 2 =

'H-NMR (CDC I₃) δ: 10.64(1H, s), 8.50-8.42(1H, m), 8.38-8.30(1H, m), 7.75-7.62(2H, m), 7.27(1H, s), 4.20(2H, t, J=6.5Hz), 2.00-1.88(2H, m), 1.60-1.36(4H, m), 0.97(3H, t, J=7.2Hz). FABMS (m/z): 322[M+H+] (100), 251(65), 144(40). 参考例 1 6

1ープロモー4ーペンチルオキシナフタレンー2ーカルボアルデヒド(0.77g、2.4mmol)、tーブタノール(4.8ml)、2ーメチルー2ーブテン(1.71ml、16.1mmol)を混合し、この溶液に亜塩素酸ナトリウム(360mg、3.12mmol)、リン酸二水素ナトリウム(374mg、3.12mmol)および水(2.4ml)を混合して調製した溶液を滴下し、室温で16.5時間攪拌した。1N水酸化ナトリウム水溶液(5ml)を加えてtーブタノールを減圧留去した後に、濃塩酸を加えて酸性にし、飽和食塩水(5ml)を加えた後に水層を酢酸エチル(10ml)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルから再結晶することにより1ープロモー4ーペンチルオキシナフタ

レンー 2 ーカルボン酸(6 1 9 m g、7 6%)を淡黄色結晶として得た。 「<math>H-NMR(CDC1。) δ : 8.47(1H, d, J=8.4Hz),

- 8.33(1H, d, J=8.4Hz), 7.72-7.58(2H, m), 7.24(1H, s).
- 4. 18(2H, t, J=6.48Hz), 1. 62-1. 37(6H, m), 0. 97(3H, t, J=7.2Hz).

 $FABMS (m/z) : 338[M^+H^+] (90), 339(70), 268(50).$

参考例17

アルゴン置換した反応容器に1-7ロモー4-ペンチルオキシナフタレンー2-カルボン酸(400 mg、1.19 mm o 1)とテトラヒドロフラン(THF)(3 m 1)を混合し、この溶液を-78 $\mathbb C$ に冷却した後、n-ブチルリチウムのヘキサン溶液(1.6 M)を1.63 m 1(2.61 mm o 1)加え1時間攪拌した。水(0.5 m 1)および飽和食塩水(2 m 1)を加えた後に水層を酢酸エチル(5 m 1)で4 回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル= $3/1\sim1/2$)を用いて精製することにより、4-ペンチルオキシナフタレン-2-カルボン酸(149.6 mg、49%)を無色結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 8.32(1H, d, J=7.47Hz), 8.31(1H, s),

- 7. 93(1H, d, J=7.47Hz), 7. 68-7. 52(2H, m), 7. 42(1H, s),
- 4. 23(2H, t, J=6.48Hz), 2. 04-1. 90(2H, m), 1. 65-1. 39(4H, m),
- 0.98(3H, t, J=7.2Hz).

FABMS (m/z): 259[M⁺ H ⁺] (50), 258(100), 188(70).

参考例18

1-プロモー4-ペンチルオキシナフタレンー2-カルボアルデヒド (0.64 4 g、2.0 mmo 1)、THF (5 m 1) およびメチル (トリフェニルホスホラニリデン) アセタート (1.0 g、3.0 mmo 1) を混合し、この溶液を4時間加熱還流した。THFを減圧留去して得られた残渣をカラムクロマトグラフィー (0

1 - ブロモー 4 - ペンチルオキシナフタレン- 2 - イル) 桂皮酸メチルエステル(592mg、78%)を淡黄色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 8.38(1H, d, J=15.9Hz),

- 8.34(1H, d, J=8.0Hz), 8.27(1H, d, J=8.0Hz), 7.67-7.52(2H, m),
- 6. 94(1H, s), 6. 45(1H, d, J=15. 9Hz), 4. 15(2H, t, J=6. 44Hz), 3. 86(3H, s),
- 2.03-1.90(2H, m), 1.64-1.30(4H, m), 0.97(3H, t, J=7.17Hz).

FABMS (m/z): 378[M+H+] (100), 379(60), 226(60). 参考例 1 9

3-(1-7)ロモー4-ペンチルオキシナフタレンー2-イル)桂皮酸メチルエステル(588 m g、1.56 mm o 1)、エタノール(4 m 1)および1 N 水酸化ナトリウム水溶液(4 m 1)を混合し、この溶液を1 時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にした。THF(5 m 1)および酢酸エチル(2 0 m 1)を加えて析出した結晶を溶解させて有機層を分離した後、水層を酢酸エチル(2 0 m 1)で2 回抽出、有機層を合わせて飽和食塩水(2 0 m 1)で3 回洗浄した。無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣をヘキサンで洗浄して精製することにより3-(1-7)ロモー4-ペンチルオキシナフタレンー2-イル)桂皮酸(54 0 m g、95%)を淡黄色結晶として得た。

 1 H - NMR (DMSO - d₆) δ : 12.6(1H, b₈), 8.26(1H, d, J=7.76Hz), 8.22(1H, d, J=7.76Hz), 7.03(2H, d, J=8.4Hz), 8.15(1H, d, J=15.8Hz),

7. 75-7. 60(2H, m), 7. 34(1H, s), 6. 84(1H, d, J=15.8Hz),

4.27(2H, t, J=6.41Hz), 1.93-1.80(2H, m), 1.59-1.33(4H, m),

0.93(3H, t, J=7.15Hz).

FABMS (m/z): 364[M+H+] (20), 169(100).

参考例20

アルゴン置換した反応容器に3-(1-プロモー4-ペンチルオキシナフタレン-2-イル) 桂皮酸 (100 mg, 0.275 mmol) とTHF(2 ml)

を混合し、この溶液を-7.8 $^{\circ}$ に冷却した後、n-7 $^{\circ}$ $^{\circ$

'H-NMR (DMSO-ds) δ: 12.4(1H, bs), 8.16-8.10(1H, m), 7.91-7.86(1H, m), 7.71(1H, s), 7.69(1H, d, J=15.9Hz), 7.59-7.50(2H, m), 7.28(1H, s), 6.70(1H, d, J=15.9Hz), 4.23(2H, t, J=6.42Hz), 1.94-1.8(2H, m), 1.60-1.35(4H, m), 0.93(3H, t, J=7.16Hz). FABMS (m/z): 285[M+H+] (10), 284(300), 169(100). 参考例 2 1

2ーヒドロキシー3ーメトキシ安息香酸(15.66g、93mmol)、DMF(200ml)、炭酸カリウム(51.4g、372mmol)およびペンチルブロミド(29ml、233mmol)を混合し、この溶液を90℃で1時間攪拌した。DMFを減圧留去した後、水(100ml)を加えて水層を酢酸エチル(150ml)で3回抽出、有機層を合わせて飽和食塩水(70ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣に1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて1時間加熱還流した。さらに1N水酸化ナトリウム水溶液(70ml)およびエタノール(70ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル(100ml)で3回抽出、有機層を合わせて飽和食塩水(100ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1~1/1)を

用いて精製することにより3-メトキシ-2-ペンチルオキシ安息香酸(20.5g、97%)を淡黄色油状物質として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 7.22(1H, d, J=7.35Hz), 7.20-7.09(2H, m), 4.26(2H, t, J=6.96Hz), 3.91(3H, s), 1.90-1.79(2H, m), 1.50-1.30(4H, m), 0.92(3H, t, J=7.0Hz).

参考例22

3ーメトキシー2ーペンチルオキシ安息香酸(1.5g、6.3 mmol)、メタノール(10 ml)および濃硫酸1滴を混合し、この溶液を7時間加熱還流した。メタノールを減圧留去した後、飽和炭酸水素ナトリウム水溶液(3 ml)を加えて水層を酢酸エチル(20 ml)で2回抽出、有機層を合わせて飽和炭酸水素ナトリウム水溶液(5 ml)で2回、飽和食塩水(5 ml)で洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して、得られた残渣にアルゴン気流下THF(15 ml)を加えて0℃に冷却し、この溶液にLAH(0.49g、13 mmol)を加えて1時間攪拌した。この反応溶液に水(0.4 ml)、1 N水酸化ナトリウム水溶液(0.4 ml)および水(1.2 ml)を順次滴下し、エーテル(60 ml)を加えて1時間激しく攪拌した後、無機塩を濾別後減圧濃縮することにより(3ーメトキシー2ーペンチルオキシフェニル)メタノールの粗生成物を得た。このものを精製することなく次の反応に用いた。参考例23

(ヘキサン/酢酸エチル= $15/1\sim10/1$) を用いて精製することにより3-メトキシ-2-ペンチルオキシベンズアルデヒド(1. 16g、3 steps 83%) を無色油状物質として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 7.42(1H, d, J=6.69H₂).

7.20-7.09(3H, m, involving a singlet at 7.13), 4.12(2H, t, J=6.73Hz).

3.89(3H, s), 1.90-1.75(2H, m), 1.52-1.32(4H, m), 0.93(3H, t, J=7.08Hz). FABMS (m/z) : 223[M+H+] (60), 164(20).

参考例 2 4

 $^{1}H-NMR$ (CDCl₃) δ : 7.35(1H, d, J=2.0Hz),

- 7. 15(1H, dd, J=8.3, 2. 0Hz), 7. 03(2H, d, J=8.4Hz),
- 6. 80(2H, d, J=8.4Hz), 6. 80(1H, d, J=8.3Hz), 6. 62(1H, bs),
- 6. 19(1H, t, J=12.9Hz), 3. 98(2H, t, J=6.9Hz), 3. 86(3H, s).
- 3. 64(2H, q, J=6.9Hz), 2. 82(2H, t, J=6.9Hz), 1. 9-1.7(2H, m),
- 1.5-1.3(4H, m), 0.90(3H, t, J=7.0Hz).

 $FABMS (m/z) : 358[M^+H^+] (100), 221(80), 154(60).$

参考例25

3-(3-)トキシー2-ペンチルオキシフェニル)桂皮酸メチルエステル(1.47g、5.28mmol)、エタノール(10ml)および1N水酸化ナトリウム水溶液(10ml)を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後に濃塩酸を加えて酸性(<math>pH=1)にすることにより

析出した結晶を酢酸エチル(20ml)で3回抽出、有機層を合わせて飽和食塩水(20ml)で3回洗浄した後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をエタノールから再結晶して精製することにより3-(3-メトキシー2-ペンチルオキシフェニル)桂皮酸(1.09g、78%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC 1 $_{3}$) δ : 8.16(1H, d, J=16.2Hz),

7. 19(1H, d, J=7.99Hz), 7. 06(1H, d, J=7.99Hz), 6. 95(1H, d, J=7.99Hz),

6. 48(1H, d, J=16.2Hz), 3. 99(2H, t, J=6.88Hz), 3. 87(3H, s).

1.89-1.75(2H, m), 1.57-1.35(4H, m), 0.94(3H, t, J=7.14Hz).

FABMS (m/z): 265[M+H+] (40), 264(70), 177(100). 参考例 2 6

アルゴン置換した反応容器に2-ヒドロキシ-3-メトキシ安息香酸(7.15g、30mmol)、トルエン(60ml)、トリエチルアミン(4.6ml、33mmol)およびアジ化ジフェニルホスホリル(7.11ml、33mmol)を混合し、この溶液を室温で1時間攪拌した後に、45Cから100Cまで昇温しながら2.5時間攪拌した。ベンジルアルコール(3.41ml、33mmol)を加えて2時間加熱還流した後、この反応溶液に氷水(60ml)を加えて反応停止、水層を酢酸エチル(50ml)で3回抽出、有機層を合わせて飽和食塩水(50ml)で2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=9/1)を用いて精製することにより、(3-メトキシー2-ペンチルオキシフェニル)カルバミン酸ベンジルエステル(8.41g、82%)を淡黄色油状物質として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 7.73(1H, d, J=8.1Hz), 7.42-7.31(6H, m),

7.01(1H, t, J=8.4Hz), 7.01(1H, d, J=8.4Hz), 5.21(2H, s),

3. 99(2H, t, J=6.8Hz), 3. 84(3H, s), 1. 80-1. 67(2H, m), 1. 5-1. 3(4H, m),

0.90(3H, t, J=7.1Hz).

FABMS (m/z): 344[M⁺ H ⁺] (45), 343(100), 300(65). 参考例 2 7

(3-メトキシー2-ペンチルオキシフェニル)カルバミン酸ベンジルエステル(2g、5.82mmol)、エタノール(50ml)および10%パラジウムー炭素触媒(160mg)を混合し、この溶液を水素気流下室温で4.5時間 攪拌した。パラジウムー炭素触媒を遮別した後エタノールを減圧留去し、得られた残渣にエタノール(10ml)およびエトキシメチレンマロン酸ジエチル(1.29ml、6.4mmol)を加えてこの溶液を2時間加熱還流した。エタノールを減圧留去した後、得られた残渣に流動パラフィン(10ml)を加え、250で1時間攪拌し、室温まで冷却した後に褐色油状物質を流動パラフィンと分離し、この褐色油状物質に酢酸エチル(3ml)およびヘキサン(10ml)を加えて攪拌することにより得られる結晶をヘキサン、エーテルで洗浄して精製することにより、7-メトキシー4-オキソー8-ペンチルオキシー1,4-ジヒドロキノリンー3-カルボン酸エチルエステル(589mg、3steps30%)を淡茶色結晶として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 9.15(1H, bs), 8.55(1H, s),

8. 12(1H, d. J=9.1Hz), 7. 03(1H, d. J=9.1Hz), 4. 36(2H, q. J=7.1Hz),

4.17(2H, t, J=6.9Hz), 3.96(3H, s), 1.85-1.69(2H, m), 1.50-1.32(7H, m),

0.91(3H, t, J=7.0Hz).

FABMS (m/z): 334[M⁺ H ⁺] (100), 288(30), 218(20).

参考例28

7-メトキシー4-オキソー8-ペンチルオキシー1,4-ジヒドロキノリンー3-カルボン酸エチルエステル(580mg、1.74mmol)とオキシ塩化リン(3ml)を混合し、この溶液を1時間加熱還流した。この反応溶液を氷(30g)に向かって注いで反応を停止し、30%水酸化ナトリウム水溶液(20ml)を氷冷下ゆっくりと滴下した。水層をエーテル(20ml)で4回抽出し、有機層を合わせて飽和食塩水(10ml)で2回洗浄した後、この溶液を無

水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、4-クロロ-7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸エチルエステル(561 m g、92%)を淡黄色結晶として得た。

'H-NMR (CDC13) δ: 9.21(1H, s), 8.16(1H, d, J=9.0Hz), 7.47(1H, d, J=9.0Hz), 4.48(2H, q, J=7.2Hz), 4.26(2H, t, J=7.1Hz), 4.05(3H, s), 1.94-1.74(2H, m), 1.51-1.30(7H, m), 0.92(3H, t, J=7.1Hz). FABMS (m/z): 352[M+H+] (100), 294(60). 参考例 2 9

4-クロロー7-メトキシー8-ペンチルオキシキノリンー3-カルバミン酸エチルエステル(311mg、0.84mmol)、エタノール(3ml)および1N水酸化ナトリウム水溶液(3ml)を混合し、この溶液を0.5時間加熱還流した。エタノールを減圧留去した後、濃塩酸を加えて反応溶液を酸性にし、THF(10ml)と酢酸エチル(10ml)を加えて析出した結晶を溶解させて有機層を分離した後、有機層を飽和食塩水(10ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して、得られた残渣をエタノールから再結晶して4-クロロー7-メトキシー8-ペンチルオキシキノリンー3-カルバミン酸(229mg、80%)を淡黄色結晶として得た。

'H-NMR (DMSO-d₆) δ: 13.8(1H, bs), 9.07(1H, s), 8.10(1H, d, J=9.6Hz), 7.75(1H, d, J=9.6Hz), 4.13(2H, t, J=6.5Hz), 3.99(3H, s), 1.78-1.67(2H, m), 1.50-1.28(4H, m), 0.88(3H, t, J=7.4Hz). FABMS (m/z): $324[M^+H^+]$ (85), 307(25), 266(25).

参考例30

4- クロロー 7- メトキシー 8- ペンチルオキシキノリンー 3- カルバミン酸 (101 mg、0.312 mmol) とメタノール (10 ml) を混合し、この 溶液に 10 %パラジウムー炭素触媒(30 mg)を加えて水素気流下室温で 5 時

間攪拌した。パラジウムー炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル= $10/1\sim6/4$)を用いて精製することにより、7-メトキシ-8-ペンチルオキシキノリン-3-カルバミン酸(74.6mg、83%)を黄色結晶として得た。

 1 H - NMR (DMSO-d₆) δ : 9.32(1H, s), 8.70(1H, s), 7.80(1H, d, J=4.52Hz), 7.54(1H, d, J=4.52Hz), 4.16(2H, t, J=6.53Hz), 3.95(3H, s), 1.83 $^{-1}$.68(2H, m), 1.57 $^{-1}$.30(4H, m), 0.90(3H, t, J=7.18Hz). FABMS (m/z): 290[M $^{+}$ H $^{+}$] (100), 258(35), 220(60).

参考例31

3ープロモー4ーメトキシベンズアルデヒド(15g、70mmol)、tープタノール(140ml)、2ーメチルー2ープテン(50ml、469mmol)を混合し、この溶液に亜塩素酸ナトリウム(10.42g、91mmol)、リン酸二水素ナトリウム二水和物(14.2g、91mmol)および水(70ml)を混合して調製した溶液を滴下し、室温で16時間攪拌した。1N水酸化ナトリウム水溶液(50ml)を加えてtープタノールを減圧留去した後に、濃塩酸を加えて酸性にし、析出した結晶を濾取しヘキサンで洗浄した。得られた結晶を酢酸エチル(200ml)に溶かし、この溶液を、無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮することにより3ープロモー4ーメトキシ安息香酸(10.5g、65%)を無色結晶として得た。

¹H-NMR (CDCl₃) δ: 12.9(1H, bs), 8.06(1H, s), 7.94(1H, d, J=8.5Hz), 7.20(1H, d, J=8.5Hz), 3.93(3H, s). FABMS (m/z): 232[M⁺ H⁺] (800), 233(90), 231(100). 参考例 3 2

3 - プロモー4 - メトキシ安息香酸(8.75g、37.9 mmo1)、トルエン(80 ml)、酢酸エチル(20 ml)、塩化メチレン(20 ml)および DMF1滴を混合し、この溶液に塩化チオニル(6.5 ml、90 mmol)を 加えて70℃で0.5時間攪拌した。反応溶液を減圧濃縮した後にトルエンを加

え、さらに減圧濃縮して得られた残渣に塩化メチレン(160ml)を加えてこの溶液を0℃に冷却した。2-アミノー2-メチルー1-プロパノール(7.64ml、80mmol)を滴下し、室温で14時間攪拌した後、析出した結晶を遮別後、減圧濃縮して得られた残渣を酢酸エチル(200ml)を加えて希釈し、この溶液を1N塩酸(50ml)で洗净した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して得られた残渣と塩化メチレン(150ml)を混合し、氷冷下塩化チオニル(10.9ml、150mmol)を加えて室温で2時間攪拌した。この反応溶液に、水(13ml)および50%水酸化ナトリウム水溶液(40ml)を氷冷下順次加え水層を酢酸エチル(100ml)で3回抽出した。有機層を合わせて飽和食塩水(100ml)で2回洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1~1/2)を用いて精製することにより、2-(3-ブロモー4-メトキシフェニル)-4、4-ジメチルー4、5-ジヒドロオキサゾール(7.10g、66%)を無色油状物質として得た。

「H-NMR (CDCl₃) δ: 8.15(1H, s), 7.85(1H, d, J=8.5Hz), 6.90(1H, d, J=8.5Hz), 4.09(2H, s), 3.93(3H, s), 1.37(6H, s). FABMS (m/z): 285[M+H+] (200), 286(90), 284(100). 参考例 3 3

2-(3-70+4-4-4) トキシフェニル)-4 、4-94+10-4 、5-96+10-4 とドロオキサゾール(2. 1g、7. 4mmo1)とTHF(15m1)を混合し、この溶液を-78 $^{\circ}$ に冷却した後、n-7+10+10-10 のヘキサン溶液(1.6m1)を4. 75m1(7. 6mmo1)加え 2 時間攪拌した。 1.6m1 の 1.16m1 の 1.16m1 の 1.16m1 を加えて 1.16m1 の 1.16m1 の 1.16m1 で 1.16m1 の 1.16m1 で 1.16m1

ン/酢酸エチル= $3/1\sim1/3$)を用いて精製することにより、5-(4,4) ージメチルー4,5-ジヒドロオキサゾールー2-イル)-2-メトキシベンズアルデヒド(0.71g、41%)を無色透明結晶として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 8.36(1H, d, J=2.3H₂),

- 8. 15(1H, dd, J=8.8, 2. 3Hz), 7. 01(1H, d, J=8.8Hz), 4. 09(2H, s),
- 3.97(3H, s), 1.37(6H, s).

参考例34

ペンチルトリフェニルホスホニウムブロミド(1.17g、2.83mmol)とエーテル(5 ml)を混合し、この溶液にn-ブチルリチウムのヘキサン溶液(1.6 M)を1.77ml(2.83mmol)加え室温で2時間攪拌した。この溶液に5-(4,4-ジメチルー4,5-ジヒドロオキサゾールー2ーイル)-2-メトキシベンズアルデヒド(600.8mg、2.58mmol)の THF溶液(3 ml)を加えて1.5時間攪拌した後、水(5 ml)を加えて反応停止、水層を酢酸エチル(5 ml)で3回抽出、有機層を合わせて飽和食塩水(20 ml)で2回洗浄した。この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、2-(3-(1-ヘキセニル)-4-メトキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール(583.3mg、79%)を幾何異性体比1:1の混合物(無色油状物質)として得た。

'H-NMR (CDC1₃)

E-isomer

- δ : 7.99(1H, s), 7.75(1H, d, J=8.4Hz), 6.87(1H, d, J=8.4Hz),
- 6. 66(1H, d, J=15.9Hz), 6. 32(1H, dt, J=15.9, 6.9Hz),
- 4.08(2H, s), 3.87(3H, s), 2.28-2.18(2H, m),
- 1.51-1.26(10H, m, involving a singlet at 1.37), 0.87(3H, t, J=7.2Hz).
- Z isomer

δ: 7.83(1H, d, J=8.4Hz), 7.77(1H, s), 6.84(1H, d, J=8.4Hz), 6.44(1H, d, J=11.7Hz), 5.75(1H, dt, J=11.7, 7.26Hz), 4.08(2H, s), 3.86(3H, s), 2.30-2.21(2H, m), 1.51-1.30(4H, m), 0.92(3H, t, J=7.5Hz). 参考例 3 5

 $2-[3-(1-\Lambda+セニル)-4-メトキシフェニル]-4,4-ジメチル-4,5-ジヒドロオキサゾール(583mg、2.03mmol)に6N塩酸(20ml)を加え4時間加熱還流した。この溶液に飽和食塩水(30ml)を加えて水層を酢酸エチル(50ml)で3回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(<math>\Lambda++$ ン/酢酸エチル=2/1)を用いて精製することにより、 $3-(1-\Lambda+セニル)-4-$ メトキシ安息香酸(164.3mg、35%)を幾何異性体比1:1の混合物(無色結晶)として得た。

 $^{1}H-NMR$ (CDC1₃)

E-isomer

- δ : 8.17(1H, d, J=2.13Hz), 7.95(1H, dd, J=8.31, 2.13Hz),
- 6. 92(1H, d, J=8.31Hz), 6. 67(1H, d, J=16.0Hz),
- 6.32(1H, dt, J=16.0, 6.95Hz), 3.92(3H, s), 2.30-2.21(2H, m),
- 1.51-1.30(4H, m), 0.89(3H, t, J=7.18Hz).

Z - isomer

- δ : 8.02(1H, dd, J=8.66, 2.18Hz), 8.00(1H, d, J=2.13Hz),
- 6. 89(1H, d, J=8.66Hz), 6. 47(1H, d, J=11.6Hz),
- 5. 79(1H, dt, J=11.6, 7. 36Hz), 3. 91(3H, s), 2. 30-2. 21(2H, m),
- 1.51-1.30(4H, m), 0.93(3H, t, J=7.28Hz).

参考例36

3- (1-ヘキセニル) - 4-メトキシ安息香酸(160mg、0.683mmol)とエタノール(7ml)を混合し、この溶液に10%パラジウム-炭素触媒(30mg)を加えて水素気流下室温で3時間攪拌した。パラジウム-炭素

触媒を適別後、減圧濃縮して得られた残渣をヘキサンで洗浄して精製することにより、3-ヘキシルー4-メトキシ安息香酸(1 1 6 m g、7 2 %)を無色結晶として得た。

¹H-NMR (CDCl₃) δ: 7.97(1H, d, J=8.63Hz), 7.88(1H, s), 6.88(1H, d, J=8.63Hz), 3.89(3H, s), 2.63(2H, t, J=7.72Hz), 1.67-1.50(2H, m), 1.42-1.21(6H, m), 0.89(3H, t, J=6.88Hz). FABMS (m/z): 237[M⁺ H ⁺] (100), 236(90), 219(80). 参考例 3 7

 $^{1}H-NMR$ (CDC1₃) δ : 7.88(1H, dd, J=8.55, 2.20Hz),

- 7. 82(1H, d, J=2.20Hz), 6. 84(1H, d, J=8.55Hz), 3. 90(3H, s), 3. 87(3H, s),
- 2.61(2H, t, J=7.74Hz), 1.65-1.50(2H, m), 1.42-1.24(4H, m),
- 0.88(3H, t, J=6.89Hz).

FABMS (m/z): $251[M^+H^+]$ (100), 219(45), 179(45).

参考例38

アルゴン気流下3-ヘキシル-4-メトキシ安息香酸メチルエステル (93.2 mg、0.372 mmo1) とTHF (2 m1) を混合し、この溶液に氷冷下 LAH (19 mg、0.5 mmo1) を加えて1時間攪拌した。この反応溶液に水 (0.019 m1)、1N水酸化ナトリウム水溶液 (0.019 m1) および水 (0.06 m1) を順次滴下し、エーテル (20 m1) を加えて1時間激しく

攪拌した後、無機塩を適別後減圧濃縮することにより (3-ヘキシルー4-メト キシフェニル)メタノールの粗生成物を得た。このものを精製することなく次の 反応に用いた。

参考例39

アルゴン気流下 (3-ヘキシル-4-メトキシフェニル) メタノールの粗生成 物とDMSO(1.5ml)およびトリエチルアミン(0.46ml、3.3m mol)を混合し、この溶液に氷冷下、三酸化硫黄-ピリジン複合体(159m g、1mmol)を加えた後室温で1時間攪拌した。この反応溶液を水(20m 1) に注いで反応を停止し、水層を酢酸エチル(20ml)で3回抽出した。有 機層を2N塩酸(20m1)、水(20m1)および飽和食塩水(30m1)で 順次洗浄し、この溶液を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧 濃縮することにより得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸 エチル=10/1)を用いて精製することにより、3-ヘキシルー4-メトキシ ベンズアルデヒド (75.4 mg、2 steps 92%) を無色油状物質として得た。 $^{1}H-NMR$ (CDC1₃) δ : 9.87(1H, s), 7.72(1H, d, J=8.1Hz), 7. 69(1H, s), 6. 94(1H, d, J=8.1Hz), 3. 91(3H, s), 2. 64(2H, t, J=7.7Hz), 1.70-1.46(2H, m), 1.42-1.23(6H, m), 0.89(3H, t, J=6.9Hz). FABMS (m/z) : 221[M⁺ H ⁺] (100), 149(30).

参考例40

3-ヘキシル-4-メトキシベンズアルデヒド(70mg、0.318mmo 1)、THF(1.5m1)およびメチル(トリフェニルホスホラニリデン)ア セタート (201mg、0.6mmol) を混合し、この溶液を5時間加熱還流 した。 THFを減圧留去して得られた残渣をカラムクロマトグラフィー (ヘキサ ン/酢酸エチル=10/1)を用いて精製することにより3-(3-ヘキシル-4-メトキシフェニル) 桂皮酸メチルエステル (84mg、96%) を無色結晶 として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 7.64(1H, d, J=15.6Hz),

7. 34(1H, d, J=8.4Hz), 7. 32(1H, s), 6. 93(1H, d, J=8.4Hz), 6. 30(1H, d, J=15.6Hz), 3. 85(3H, s), 3. 79(3H, s), 2. 59(2H, t, J=7.7Hz), 1. 64-1.50(2H, m), 1. 42-1.21(6H, m), 0. 97-0.83(3H, m).

FABMS (m/z) : 277[M⁺ H ⁺] (60), 276(100), 245(60).

参考例 4 1

 $^{1}H-NMR$ (CDC1₃) δ : 7.73(1H, d, J=15.9Hz).

- 7. 37(1H, d, J=8.1Hz), 7. 35(1H, s), 6. 84(1H, d, J=8.1Hz),
- 6.56(1H, d, J=15.9Hz), 2.60(2H, t, J=8.0Hz), 1.73-1.50(2H, m),
- 1. 43-1.22(6H, m), 0. 89(3H, t, J=6.6Hz).

 $FABMS (m/z) : 263[M^+H^+] (60), 262(100), 191(40).$

参考例 4 2

ブロモアセチルブロミド (7. 73g、0.0383mol、1.0eq)を 二硫化炭素 (35ml) に溶解し、氷塩で冷却した後に無水塩化アルミニウム (10.2g、0.077mol、2.0eq)、2-ペンチルオキシフェノール (6.9g、0.0383mol、1.0eq)を順次加え、1時間攪拌した。 更に室温で4時間攪拌した後に氷冷下、水 (10ml)、希塩酸 (10ml)を 注意深く加えた。この反応溶液をエーテル (10ml)で2回抽出した後、有機 層をあわせて飽和食塩水 (30ml)で洗浄し、無水硫酸ナトリウムで乾燥した。 乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー($n-\Lambda+$ サン/酢酸エチル=5/1)を用いて精製することにより、1-(4-1) ヒドロキシー3- ペンチルオキシフェニル)-2- プロモエタノン(6.58g、57.0%)を得た。

¹ H - NMR (CDCl₃) δ: 7.55(1H, d, J=8.1Hz), 7.54(1H, s), 6.97(2H, d, J=8.1Hz), 6.19(1H, s), 4.40(2H, s), 4.12(2H, t, J=6.6Hz), 1.9-1.8(2H, m), 1.5-1.4(4H, m), 0.94(3H, t, J=7.0Hz). FABMS (m/z): 302[M+H+] (80), 301(85). 参考例 4 3

'H-NMR (CDCl₃) δ: 8.0-6.8(3H, m), 6.3(1H, bs), 4.2-4.0(2H, m), 2.0-1.8(2H, m), 1.6-1.4(4H, m), 0.9(3H, t, J=7.5Hz). FABMS (m/z): 225[M+H+] (80), 207(50). 参考例 4.4

3-ヒドロキシー4-メトキシ安息香酸(9.6g、0.057mol)をDMF(90ml)に溶解し、この溶液に1-ブロモペンタン(25.9g、0.17mol、3.0eq)と無水炭酸カリウム(47.4g、0.34mol、

 $^{1}H - NMR$ (CDC1₃) δ : 7.7(1H, dd, J=9, 3H₂),

7. 6(1H, d, J=3Hz), 6. 9(1H, d, J=9Hz), 4. 3(2H, t, J=9Hz),

4.1(2H, t, J=8Hz), 3.9(3H, s), 2.0-1.7(4H, m), 1.5-1.3(8H, m),

0.9(6H, t, J=8.0Hz)

FABMS (m/z): $309[M^+H^+]$ (80), 308(100), 239(42).

IR (Neat, cm⁻¹): 2956, 1712.

元素分析:ClaHaaOa

理論値 C 70.10, H 9.15

分析值 C 70.19, H 9.25

参考例 4 5

ペンチル 4-メトキシー3-ペンチルオキシベンゾエート(17.4g、0.056mol)をメタノール(85ml)に溶解し、1N水酸化ナトリウム水溶液(85ml、0.085mol、1.5eq)を加え、1.5時間加熱還流した。この反応溶液を室温まで冷却した後n-ヘキサン(100ml)で洗浄し、水層に氷冷下10%塩酸水溶液(約120ml)を加え酸性にした。これを酢酸エチル(220ml)で2回抽出し、有機層をあわせて飽和食塩水(400ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシー3-ペンチルオキシ安息香酸(10.7g、79.6%)を無色結晶として得た。

融点:124.6~125.0℃

 $^{1}H - NMR$ (CDC1₃) δ : 7.76(1H, d, J=2.1Hz),

7. 60(1H, dd, J=8.6, 2.1Hz), 6.92(1H, d, J=8.6Hz), 4.08(2H, t, J=7.0Hz),

4.05(3H, s), 2.1-1.8(2H, m), 1.6-1.3(4H, m), 0.94(3H, t, J=7.2Hz).

FABMS (m/z): 239[M⁺ H ⁺] (80), 238(100), 168(57).

IR (KBr, cm^{-1}): 3432, 2951, 1678.

元素分析: C13H18O4

理論値 C 65.53, H 7.61

分析值 C 65.65, H 7.74

参考例46

3-ヒドロキシー4-メトキシ桂皮酸(9.7g、0.050mol、1.0eq) をDMF(90ml)に溶解し、この溶液に1-ブロモペンタン(22.7g、0.150mol、3.0eq)と無水炭酸カリウム(41.5g、0.30mol、6.0eq)を順次加えた後、90でで3時間加熱攪拌した。この反応溶液を室温まで冷却し、無水炭酸カリウムを遮別した後、遮液に水(200ml)を加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(300ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(n-ヘキサン/酢酸エチル= $15/1\sim10/1$)を用いて精製することにより、ペンチル4-メトキシー3-ペンチルオキシシンナメート(18.2g、100%)を無色油状物質として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 7.62(1H, d, J=15.0Hz),

- 7. 08(1H, dd, J=10.3, 1. 9Hz), 7. 06(1H, d, J=1.9Hz),
- 6. 86(1H, d, J=10.3Hz), 6. 30(1H, d, J=15.0Hz), 4. 19(2H, t, J=9.0Hz),
- 4. 03(2H, t, J=6.0Hz), 3. 89(3H, s), 1. 9-1. 6(4H, m), 1. 5-1. 3(8H, m),
- 1.0-0.9(6H, m).

FABMS (m/z) : 335[M⁺ H ⁺] (55), 334(100), 247(62).

IR (Neat, cm^{-1}): 2954, 1710.

元素分析: C20H30O4

理論値 C 71.82, H 9.04

分析値 C 71.99, H 9.28

参考例 4 7

ペンチル 4-メトキシ-3-ペンチルオキシシンナメート(18.0g、0.050mol)をメタノール(75ml)に溶解し、1N水酸化ナトリウム水溶液(75ml、0.075mol、1.5eq)を加え、1時間加熱還流した。この反応溶液を室温まで冷却した後、氷冷下、10%塩酸水溶液(約100ml)を加え酸性にした。これを酢酸エチル(150ml)で2回抽出し、有機層をあわせて飽和食塩水(300ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を酢酸エチルより再結晶することにより精製し、4-メトキシ-3-ペンチルオキシ桂皮酸(12.2g、93%)を無色結晶として得た。

融点:150.0~150.3℃

 $^{1}H - NMR$ (CDC1₃) δ : 7.73(1H, d, J=16.0Hz),

7.13(1H, dd, J=8.1, 1.9Hz), 7.09(1H, d, J=1.9Hz), 6.88(1H, d, J=8.1Hz),

6.31(1H, d, J=16.0Hz), 4.04(2H, t, J=6.8Hz), 3.91(3H, s),

2.1-1.8(2H, m), 1.5-1.3(4H, m), 0.94(3H, t, J=7.0Hz).

FABMS (m/z): $265[M^+H^+]$ (62), 264(100), 247(40).

IR (KBr, cm^{-1}): 2934, 1679.

元素分析: C15H20O4

理論値 C 68.16, H 7.63

分析值 C 68.20, H 7.78

参考例 4 8

3, 4-ジヒドロキシ安息香酸(462mg、3mmol)をDMF(10m1)に溶解し、この溶液に炭酸カリウム(3, 73g、27mmol、9eq)

と1-ブロモペンタン (1.70ml、13.5mmol、4.5eq) を順次 室温下で加え、110℃で24時間攪拌した。この反応混合物を濾過し残渣の炭 酸カリウムを酢酸エチル(50ml)で洗浄した。濾液を水(15ml×3)お よび飽和食塩水(15m1)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した 。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5)を用いて精製することにより、3,4-ジ ペンチルオキシ安息香酸ペンチル(912mg、83%)を得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.66(1H, d, J=8.4, 1.9Hz), 7. 57(1H, d, J=1.9Hz), 6. 89(1H, d, J=8.4Hz), 4. 31(2H, t, J=6.7Hz), 4.07(4H, 2t, J=6.6Hz), 1.90-1.76(6H, m), 1.52-1.38(12H, m),

0.98-0.94(9H, m).

FABMS(+) (m/z) : 465[M+1] (61),364[M](100), 295(45), 276(42).

参考例49

3, 4 - ジペンチルオキシ安息香酸ペンチル(9 1 1 mg、2. 5 0 mm o 1)をメタノール(I 5 . 0 m l)に溶解し、この溶液に 1 N水酸化カリウム水溶 液(7. 5m1、7. 5mmol、3eg)を加え、5時間還流攪拌した。この 反応混合物に3N塩酸水溶液を加え酸性(pH<2)とした後、クロロホルム (20m1×3)で抽出し、有機層を飽和食塩水(20m1)で洗浄した。有機層 を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して無色固体を得 た。このものを酢酸エチルーヘキサンから再結晶し3,4-ジペンチルオキシ安 息香酸(512mg、70%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.71(1H, dd, J=8.4, 2.0Hz), 7. 58(1H, d, J=2.0Hz), 6. 88(1H, d, J=8.4Hz), 4. 06(2H, t, J=6.6Hz),

4.04(2H, t, J=6.6Hz), 1.87-1.79(4H, m), 1.49-1.35(8H, m),

0.95-0.90(6H, m).

FABMS (+) (m/z) : 295[M+1] (52),

294[M](80), 277(29), 224(32).

参考例 5 0

3ーヒドロキシー4ーニトロ安息香酸(5g、27.4 mmol)、DMF(40ml)、炭酸カリウム(13.8g、100mmol)およびペンチルブロミド(8.7ml、70mmol)を混合し、この溶液を100℃で1.5時間攪拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去した。得られた残渣に酢酸エチル(100ml)を加えて飽和食塩水(30ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣にエタノール(150ml)および10%パラジウムー炭素触媒(0.5g)を加えて水素気流下室温で5.5時間攪拌した。パラジウムー炭素触媒を濾別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)を用いて精製することにより4ーアミノー3ーペンチルオキシ安息香酸ペンチルエステル(5.72g、2 steps70%)を淡黄色油状物質として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 7.53(1H, dd, J=8.2, 1.7Hz),

7. 44(1H, d, J=1.7Hz), 6. 66(1H, d, J=8.2Hz), 4. 26(2H, t, J=6.7Hz),

4. 20(2H, bs), 4. 05(2H, t, J=6.5Hz), 1. 86-1. 65(4H, m), 1. 50-1. 30(8H, m), 1. 0-0. 85(6H, m)

FABMS (m/z): 294[M+H+] (80), 224(50), 206(50). 参考例 5 1

4-アミノー3-ペンチルオキシ安息香酸ペンチルエステル(1g、3.41 mmol)、アセトン(5ml)、炭酸カリウム(0.83g、6mmol)およびヨウ化メチル(4ml)を混合し、この溶液を9時間加熱還流した。反応溶液を濾過して無機塩を濾別し、アセトンを減圧留去して得られた残渣にエタノール(10ml)および1N水酸化ナトリウム水溶液(10ml)を加えて2.5時間加熱還流した後エタノールを減圧留去した。濃塩酸を加えてこの溶液を酸性にした後、水層を酢酸エチル(20ml)で3回抽出、有機層を合わせて飽和食

塩水(20m1)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾 別後、減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸 エチル=1/1)を用いて精製することにより4-ジメチルアミノ-3-ペンチ ルオキシ安息香酸(146mg、2 steps17%)を淡黄色油状物質として得た。 $^{1}H-NMR$ (CDC1₃) δ : 7.68(1H, dd, J=8.1, 1.5Hz), 7.53(1H, d, J=1.8Hz), 6.85(1H, d, J=8.1Hz), 4.06(2H, t, J=6.8Hz),

2. 93(6H, s), 1. 93-1. 80(2H, m), 1. 50-1. 30(4H, m), 0. 94(3H, t, J=7.2Hz). FABMS (m/z): 252[M+H+] (100), 181(30).

参考例 5 2

4 - メトキシー 3 - 二トロ安息香酸(5 g、 2 5. 4 mm o 1)、DMF (3 0 m l) 、炭酸カリウム(5.53g、40 m m o l) およびペンチルブロミド (4 m l 、32.3 m m o l)を混合し、この溶液を100℃で1.5時間攪拌 した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去した。得られた残 渣に酢酸エチル(100ml)を加えて飽和食塩水(30ml)で3回洗浄した 。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた残渣 にエタノール (150ml) および10%パラジウムー炭素触媒 (0.5g)を 加えて水素気流下室温で5.5時間攪拌した。パラジウムー炭素触媒を濾別後、 減圧濃縮して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル = 3 / 1)を用いて精製することにより3-アミノー4-メトキシ安息香酸(5 . 98g、2 steps 99%) を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.48(1H, dd, J=8.3, 1.9Hz),

- 7. 38(1H, d, J=2.1Hz), 6. 79(1H, d, J=8.3Hz), 4. 26(2H, t, J=6.7Hz),
- 4.09(3H, s), 3.86(2H, bs), 1.78-1.66(2H, m), 1.47-1.29(4H, m),
- 0.93(3H, t, J=7.1Hz)

FABMS (m/z) : 238[M⁺ H ⁺] (60), 237(100).

参考例53

3 - アミノー 4 - メトキシ安息香酸(1. 5 3 g 、 6. 4 5 m m o 1) 、 D M

F($1.5\,m1$)、炭酸カリウム($2.07\,g$ 、 $1.5\,mmo1$)およびペンチルブロミド($1.86\,m1$ 、 $1.5\,mmo1$)を混合し、この溶液を $1.00\,C$ で $1.0.5\,mmo1$)を混合し、この溶液を $1.00\,C$ で $1.0.5\,mmo1$)を間損拌した。反応溶液を濾過して無機塩を濾別し、DMFを減圧留去して得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=1.0/1)を用いて精製することにより4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル($1.32\,g$ 、67%)および3-ジメチルアミノー4-メトキシ安息香酸ペンチルエステル($334\,mg$ 、14%)をそれぞれ無色油状物質として得た。

4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル

 $^{1}H-NMR$ (CDCl₃) δ : 7.41(1H, dd, J=8.1, 2.1H₂),

7. 24(1H, d, J=2. 1Hz), 6. 75(1H, d, J=8. 1Hz), 4. 27(2H, t, J=6. 6Hz).

4. 20(1H, bs), 3. 90(3H, s), 3. 17(2H, t, J=7.2Hz), 1. 82-1. 62(4H, m),

1.5-1.3(8H, m), 0.93(3H, t, J=7.2Hz).

 $FABMS(m/z): 308[M^+H^+] (50), 307(100), 250(50)$

3-ジメチルアミノー4-メトキシ安息香酸ペンチルエステル

 $^{1}H - NMR$ (CDC1₃) δ : 7.67(1H, dd, J=8.5, 2.1Hz).

7. 66(1H, d, J=2.0Hz), 6. 84(1H, d, J=8.5Hz), 4. 28(2H, t, J=6.7Hz),

3. 89(3H, s), 3. 08(4H, t, J=7.7Hz), 1. 80-1. 70(2H, m), 1. 5-1. 18(16H, m),

0.93(3H, t, J=7.1Hz), 0.86(3H, t, J=7.0Hz).

FABMS (m/z): 378[M⁺ H ⁺] (100), 320(100), 264(40).

参考例54

4-メトキシー3-ペンチルアミノ安息香酸ペンチルエステル(500mg、1.63mmol)にエタノール(3ml)および1N水酸化ナトリウム水溶液(3ml)を加えて2時間加熱還流した後エタノールを減圧留去、濃塩酸を加えてこの溶液を中和した後、水層を酢酸エチル(5ml)で3回抽出、有機層を合わせて飽和食塩水(5ml)で3回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、減圧濃縮して得られた粗結晶をヘキサンで洗浄して精製するこ

とにより4-メトキシー3-ペンチルアミノ安息香酸(356mg、71%)を 無色結晶として得た。

 $^{1}H-NMR$ (CDCl₃) δ : 7.51(1H, dd, J=8.1, 2.1Hz),

7. 29(1H, d, J=2.1Hz), 6. 78(1H, d, J=8.1Hz), 3. 92(3H, s),

3. 18(2H, t, J=7. 2Hz), 1. 75-1. 6(2H, m), 1. 5-1. 3(4H, m),

0.93(3H, t, J=6.5Hz).

FABMS (m/z) : 238[M⁺ H ⁺] (80), 180(70).

参考例55

融点:67.9~68.2℃

 $^{1}H-NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.23(2H, d, J=8.7Hz),

6.97(2H, d, J=8.7Hz), 5.06(2H, s), 3.67(2H, s).

FABMS (m/z) : 223[M⁺ H ⁺] (40).

IR (KBr, cm^{-1}): 3438, 2247, 1615, 1514, 1247, 1014.

元素分析: CisHiaNO,

理論値 C 80.69, H 5.87, N 6.27

分析值 C 80.48, H 5.83, N 6.33

参考例56

LAH (2. 82g、0. 15mol、1. 5eq) をTHF (50ml) に

溶解し、この溶液に氷冷下で、4-ベンジルオキシフェニルアセトニトリル(11.1g、0.05mol、1.0eq)のTHF溶液(50ml)を滴下した。滴下終了後、1.5時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液(約40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1)を用いて精製することにより、2-(4-ベンジルオキシフェニル)エチルアミン(2.02g、17.9%)を無色針状晶として得た。融点:58.7~59.6°C

 $^{1}H-NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.11(2H, d, J=8.6Hz),

6.92(2H, d, J=8.6Hz), 5.04(2H, s), 2.93(2H, t, J=6.8Hz),

2.69(2H, t, J=6.8Hz), 1.57(2H, bs).

 $FABMS (m/z) : 228[M^+H^+] (40).$

IR (KBr, cm⁻¹): 3360, 2864, 1611, 1513, 1248.

参考例57

3-ヒドロキシフェニルアセトニトリル(834mg、6.26mmol)をDMF(10ml)に溶解し、この溶液にベンジルブロミド(0.82ml、6.89mmol、1.1eq)と無水炭酸カリウム(1.30g、9.40mmol、1.5eq)を順次加えた後、90で1.5時間加熱攪拌した。この反応溶液を室温まで冷却し、水(20ml)を加え、酢酸エチル(40ml)で2回抽出した。有機層をあわせて飽和食塩水(80ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、カラムクロマトグラフィー(ヘキサン/酢酸エチル=1/1)を用いて精製することにより、(3-ベンジルオキシフェニル)アセトニトリル(1.21g、86.8%)を得た。

 $^{1}H - NMR$ (CDCl₃) δ : 7.5-7.3(6H, m), 7.0-6.9(3H, m), 5.09(2H, s), 3.72(2H, s).

参考例 5 8

LAH (0.615g、0.0162mol、3.0eq)をTHF (20ml)に溶解し、この溶液に氷冷下で、(3-ベンジルオキシフェニル)アセトニトリル (1.2g、0.0054mol、1.0eq)のTHF溶液 (20ml)を滴下した。滴下終了後、3時間加熱還流させた。反応溶液を室温まで冷却した後、氷冷下、飽和硫酸ナトリウム水溶液 (約30~40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー (クロロホルム/メタノール=10/1)を用いて精製することにより、2-(3ーベンジルオキシフェニル)エチルアミン (0.434g、35.3%)を淡黄色アモルファスとして得た。

「H-NMR (CDC1₃) δ:/7.5-7.2(6H, m), 6.8-6.7(3H, m), 5.09(2H, s), 2.95(2H, t, J=7.0Hz), 2.70(2H, t, J=7.0Hz), 2.01(2H, bs). FABMS (m/z): 228[M+H+] (90). 参考例 5.9

2-(3-ベンジルオキシフェニル) エチルアミン (434mg、1.91mmol、1.0eq) のTHF (10ml) 溶液に10%パラジウムー炭素触媒 (水分含量50%) (86mg) を加えた後、水素気流下、3時間室温攪拌した。 反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(3-ヒドロキシフェニル) エチルアミン (250mg、95.5%) を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 8.26(1H, bs), 7.1-6.9(1H, m),

6.7-6.6(1H, m), 6.6-6.4(2H, m), 2.7-2.6(2H, m), 2.6-2.5(2H, m), 3.5(2H, bs).

FABMS (m/z): 138[M+H+] (30).

参考例60

(2-ヒドロキシフェニル) アセトニトリル (1.01g、0.0076mo 1)をDMF (10ml) に溶解し、この溶液にベンジルブロミド (0.90m 1、0.0076mol、1.0eq)と無水炭酸カリウム (2.1g、0.0 15mol、3.0eq)を順次加えた後、90℃で1.5時間加熱攪拌した。

この反応溶液を室温まで冷却し、水(10ml)を加え、酢酸エチル(30ml)で2回抽出した。有機層をあわせて飽和食塩水(60ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、(2-ベンジルオキシフェニル)アセトニトリル(2.04g、100%)を無色固体として得た。参考例61

LAH (1.04g、0.0273mol、3.0eq)をTHF (25ml)に溶解し、この溶液に氷冷下で、(2-ベンジルオキシフェニル)アセトニトリル (2.04g、0.0091mol、1.0eq)のTHF溶液 (25ml)を滴下した。滴下終了後、室温で15分攪拌後、2時間加熱還流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=5/1)を用いて精製することにより、2-(2-ベンジルオキシフェニル)エチルアミン (0.415g、20.0%)を淡黄色アモルファスとして得た。

 $FABMS (m/z) : 228[M^+H^+] (100).$

参考例62

2-(2-ベンジルオキシフェニル) エチルアミン (415 mg、1.826 mmol、1.0eq)のTHF (10 ml)溶液に10%パラジウム-炭素触媒(水分含量50%)(42 mg)を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、2-(2-ヒドロキシフェニル)エチルアミン (230 mg、91.8%)を得た。

参考例63

3-(4-ヒドロキシフェニル) プロピオニトリル (1. 47g、0.01m o 1)をDMF (24m1) に溶解し、この溶液にベンジルブロミド (1.31m1、0.011mo1、1.1eq) と無水炭酸カリウム (4.15g、0.030mo1、3.0eq) を順次加えた後、90℃で3時間加熱攪拌した。この反応溶液を室温まで冷却し、水(100m1)を加え、酢酸エチル (100m

1) で2回抽出した。有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-(4-ベンジルオキシフェニル)プロピオニトリル(2.39g、100%)を無色固体として得た。

参考例 6 4

LAH (570 mg、0.015 mol、1.5 eq)をTHF (30 ml)に溶解し、この溶液に氷冷下で、3-(4-ベンジルオキシフェニル)プロピオニトリル (2.37g、0.01 mol、1.0 eq)のTHF溶液(50 ml)を滴下した。滴下終了後、室温で2時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40 ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=10/1~5/1)を用いて精製することにより、3-(4-ベンジルオキシフェニル)プロピルアミン(1.2g、49.7%)を淡黄色アモルファスとして得た。

'H-NMR (CDC1₃) δ : 7.4-7.3(5H, m), 7.10(2H, d, J=8.6Hz), 6.90(2H, d, J=8.6Hz), 5.04(2H, s), 3.48(2H, s), 2.72(2H, d, J=7.1Hz), 2.60(2H, t, J=7.7Hz), 1.8-1.7(2H, m).

FABMS (m/z) : 242[M⁺ H ⁺] (100).

参考例65

3-(4-ベンジルオキシフェニル) プロピルアミン(620mg、2.57 mmol、1.0eq)のTHF(10ml)溶液に10%パラジウム-炭素触媒(水分含量50%)(120mg)を加えた後、水素気流下、2時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、3-(4-ヒドロキシフェニル)プロピルアミン(354mg、91.1%)を得た。

 1 H - NMR (CDCl $_{3}$) δ : 7.0(2H, d, J=9Hz), 6.7(2H, d, J=9Hz), 3.0(3H, bs), 2.7(2H, t, J=7.5Hz), 2.6(2H, t, J=7.5Hz), 1.8-1.7(2H, m). FABMS (m/z): 152[M+H+] (100).

参考例66

LAH (570 mg、0.015 mol、1.5 eq)をTHF (30 ml)に溶解し、この溶液に氷冷下で、4-ベンジルオキシベンゾニトリル (2.09 g、0.01 mol、1.0 eq)のTHF溶液 (30 ml)を滴下した。滴下終了後、室温まで昇温させた後、3時間加熱環流させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約30~40 ml)を加え、セライト濾過の後、濾液を減圧濃縮して4-ベンジルオキシベンジルアミン (2.03 g、95.1%)を淡黄色アモルファスとして得た。

 1 H - N M R (C D C $_{13}$) δ : 7.4-7.3(5H, m), 7.22(2H, d, J=8.6Hz), 6.94(2H, d, J=8.6Hz), 5.05(2H, s), 3.80(2H, s), 1.50(2H, s). F A B M S (m/z): 214[M+ H+] (60), 197(100).

参考例67

4-ベンジルオキシベンジルアミン(530 mg、2.485 mmol、1.0 eq)のTHF(10 ml)溶液に10 %パラジウムー炭素触媒(水分含量50%)(50 mg)を加えた後、水素気流下、3 時間室温攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1)を用いて精製することにより、4-ヒドロキシベンジルアミン(260 mg、85.0%)を得た。

 1 H - NMR (CDC1 $_{3}$) δ : 7.1(2H, d, J=9Hz), 6.77(2H, d, J=9Hz), 3.8(2H, s), 2.9(3H, bs).

FABMS (m/z) : $124[M^+H^+]$ (80).

参考例68

2-(4-E)ドロキシフェニル)エチルアミン(1.37g、10.0mmo 1、1.0eq)を酢酸(10m1)に溶解し、二酸化白金触媒(137mg)を加えた後、水素気流下、3kgf/cm²、70℃で5時間攪拌した。反応溶液をセライト濾過し、触媒をトルエンで洗浄した後、濾液を減圧濃縮して、2-(4-E) によシシクロヘキシル)エチルアミン(1.8g)を得た。

'H-NMR (CDC13) δ: 8.76(1H, bs), 3.9(0.5H, bs), 3.6-3.5(0.5H, m), 3.0-2.8(4H, m), 2.2-0.8(9H, m). FABMS (m/z): 144[M+H+] (20), 128(100). 参考例 6 9

LAH (1.90g、50mmol)をジエチルエーテル(150ml)に懸濁し、室温下3ーピリジルアセトニトリル(5.91g、50mmol、1.0eq)のジエチルエーテル(150ml)溶液を加えた。室温で14時間攪拌後、この反応溶液に水(1.9ml)、15%水酸化ナトリウム水溶液(1.9ml)および水(5.7ml)を順次加えた。生じた沈殿をセライト濾過しジエチルエーテルで洗浄した後濾液を減圧濃縮した。得られた残渣を、カラムクロマトグラフィー(クロロホルム/メタノール=30/1~クロロホルム/メタノール/トリエチルアミン=8/2/0.1)に付し、2-(3-ピリジル)エチルアミン(2.39g、39%)を無色油状物質として得た。

'H-NMR (CDC13, 300MHz) δ:

- 8.48-8.46(2H, m), 7.55-7.52(1H, m), 7.25-7.16(1H, m),
- 2. 99(2H, t, J=7.5Hz), 2. 76(2H, t, J=7.5Hz).

FABMS (+) (m/z) : 123[M+1] (100).

参考例70

4-ビニルピリジン(5.26m1、50mmo1)と塩化アンモニウム(5.35g、100mmo1、2.0eq)をメタノール(2.5m1)および水(15m1)に溶解し、23時間還流攪拌した。この反応溶液を氷水にあけ、15%水酸化ナトリウム水溶液で強塩基とした後クロロホルム(50m1)で3回抽出した。有機層をあわせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、減圧蒸留することにより、2-(4-ピリジル)エチルアミン(①)(1.80g、30%; 87%/6mmHg)を無色油状物質として得た。また、蒸留残渣をカラムクロマト(クロロホルム/メタノール= $30/1\sim9/1$)に付し、ビス〔2-(4-ピリジル)

エチル〕アミン(②) (1.11g、20%)を淡黄色油状物質として得た。

- ①: ${}^{1}H-NMR$ (CDC1, 300MHz) δ :
- 8.53-8.51(2H, m), 7.15-7.13(2H, m), 3.04-2.98(2H, m),
- 2.75(2H, t, J=8.4Hz).

FABMS (+) (m/z) : 123[M+1] (100)

- ②: ${}^{1}H-NMR$ (CDC1₃, 300MHz) δ :
- 8.47-8.42(4H, m), 7.11-7.09(4H, m), 2.95-2.90(4H, m).
- 2.77(4H, t, J=7.1Hz).

FABMS (+) (m/z) : 228[M+1] (100).

参考例71

2-ビニルピリジン(5.26g、50mmo1)と塩化アンモニウム(13.4g、250mmo1、5.0eq)をメタノール(2.5m1)および水(15m1)に溶解し、7時間還流攪拌した。この反応溶液を氷水にあけ、15% 水酸化ナトリウム水溶液で強塩基とした後クロロホルム(50m1)で3回抽出した。有機層をあわせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、減圧蒸留することにより、2-(2-ピリジン)エチルアミン(①)(2.55g、42%; $77\sim78\%$ /6mmHg)を無色油状物質として得た。また、蒸留残渣をカラムクロマト(2-02-1)に付し、ビス 2-10 2-1)に付し、ビス 2-10 2-2 2-2 2-3 2-4 2-4 2-4 2-4 2-4 2-5 2-6 2-6 2-7 2-7 2-8 2-9 2-

- ①: ${}^{1}H-NMR$ (CDCl₃, 300MH₂) δ :
- 8.56-8.52(4H, m), 7.60(1H, td, J=7.60, 1.80Hz), 7.17(1H, d, J=7.6Hz).
- 7. 16-7. 09(1H, m), 3. 12(2H, t, J=6.7Hz), 2. 93(2H, t, J=6.7Hz).

FABMS (+) (m/z) : 123[M+1] (100), 106(45).

- ②: ${}^{\dagger}H-NMR$ (CDC1₃, 300MHz) δ :
- 8. 48(2H, d, J=4.8Hz), 7. 57(2H, td, J=7.6, 1.7Hz), 7. 14(2H, d, J=7.6Hz), 7. 12-7. 08(2H, m), 3. 10-2. 96(8H, m), 2. 41(1H, brs).

FABMS (+) (m/z): 228[M + 1] (100), 135(80). 参考例72

2- (4-ヒドロキシフェニル) エチルアミン (5.0g、0.0364mo 1、leq)をぎ酸(77ml、2.04mol、56eq)に溶解し、この溶 液に無水酢酸(25.4ml、0.27mol、7.4eq)を5~15℃で加 えた。室温で3時間攪拌後、この反応溶液に氷冷水(30m1)を加え減圧濃縮 した。残渣に水 (50ml) を加え、酢酸エチル (50ml) で2回抽出した。 有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾 燥した。乾燥剤を濾別後、減圧濃縮して2-(4-ヒドロキシフェニル) エチル - N - ホルムアミド (6.6g、100%) を油状性物質として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 8.69(1H, s), 8.09(1H, s),

7. 41(2H, d, J=8.7Hz), 6. 60(2H, d, J=8.7Hz), 3. 83(2H, t, J=4.9Hz),

3.51(2H, t, J=4.9Hz).

FABMS (m/z) : 166(100).

参考例73

LAH (2. 14g、0. 056mol、3eq)をTHF (30ml) に溶 解し、この溶液に氷冷下で、2-(4-ヒドロキシフェニル)エチルーN-ホル ムアミド (3. 1g、0. 0188mol、1eq)のTHF溶液 (30ml) を滴下した。滴下終了後、室温まで昇温させた後、5時間加熱還流させた。この 反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約10~20m 1)を加え、セライト濾過の後、濾液を減圧濃縮して2-(4-ヒドロキシフェ ニル) エチルーN-メチルアミン (2.81g、99.0%) を得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.1-6.9(2H, m), 6.7-6.6(2H, m),

4.0(1H, bs), 2.9-2.7(2H, m), 2.7-2.6(2H, m), 2.31(3H, m).

FABMS (m/z) : 152(60), 121(80).

参考例74

(1) 4-メトキシベンズアルデヒド (2g、14.7mmo1) にベンゼン (

 $20\,\mathrm{m\,I}$)および N, N' -ジメチルエチレンジアミン(1.56 m l、14.7 m m o 1)を加えて、水を除きながら 5 時間加熱還流した後に、ベンゼンを減圧留去することにより 2-(4-メトキシフェニル)-1, 3-ジメチルイミダゾリジンの粗生成物を得た。

(2) 上記租生成物 (0.5g、2.42mmol)、THF (6ml) および テトラメチルエチレンジアミン (0.73ml、4.84mmol) を混合し、この溶液を-78 \mathbb{C} に冷却した後に、n-ブチルリチウム (1.6 Mへキサン溶液、3ml、4.84mmol)を加え、0 \mathbb{C} で2時間攪拌した。この溶液を-78 \mathbb{C} に冷却した後、ジーn-アミルジスルフィド (1.07ml、4.84mmol)を加え、室温で11.5時間攪拌した。水 (5ml)を加え、水層を酢酸エチル (5ml)で3回抽出した。有機層を合わせて飽和食塩水 (5ml)で洗浄した。減圧濃縮して、得られた残渣に10%硫酸水溶液を加えて、2日間攪拌した。水層を酢酸エチル (10ml)で4回抽出し、有機層を合わせて飽和食塩水 (5ml)で2回洗浄した。減圧濃縮して、得られた残渣をカラムクロマトグラフィー (ヘキサン/酢酸エチル=20/1~10/1)を用いて精製することにより4-メトキシー3-ペンチルチオベンズアルデヒド (437mg、76%)を淡黄色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 9.87(1H, s),

7. 74(1H, d, J=2.1Hz), 7. 66(1H, dd, J=8.1, 1. 8Hz), 6. 95(1H, d, J=8.1Hz),

3.98(3H, s), 2.95(2H, t, J=7.4Hz), 1.62-1.80(2H, m), 1.20-1.55(4H, m), 0.91(3H, t, J=7.2Hz).

 $FABMS (m/z) : 289[M^+H^+](100), 237(70).$

参考例76

イソバニリン(200g、1.314mol)、酢酸(700ml)および濃硫酸(0.2ml)の懸濁液を0℃まで冷却した後に、発煙硝酸(57.2ml、1.38mol)の酢酸溶液(200ml)を30分かけて滴下した。40分間攪拌後、水(400ml)を加え、結晶を遮取することにより3-ヒドロキシ

3ーヒドロキシー4ーメトキシー2ーニトロベンズアルデヒドと3ーヒドロキシー4ーメトキシー6ーニトロベンズアルデヒドの混合物、およびDMF (700m1)を混合し、この溶液に炭酸カリウム (136.7g、989mmo1) およびブロモペンタン (122.7m1、989mmo1)を順次加えた。100℃で4時間攪拌した後、反応溶液を濾過し、濾液に水(600m1)およびヘキサン一酢酸エチル(1:1、600m1)を加えて分液した。水層をヘキサン一酢酸エチル(1:1、600m1)で抽出した後に、有機層を合わせて無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を遮取することにより4ーメトキシー6ーニトロー3ーペンチルオキシベンズアルデヒド(②)(90.1g、44%)を黄色結晶として得た。また、上記結晶を遮取した後の濾液をさらに濃縮することにより4ーメトキシー2ーニトロー3ーペンチルオキシベンズアルデヒド(①)(117g、58%)を赤色油状物質として得た。

- ①: ${}^{1}H-NMR$ (CDC13, 300MHz) δ : 9.80(1H, s), 7.64(1H, d, J=8.6Hz), 7.09(1H, d, J=8.6Hz), 4.11(2H, t, J=6.6Hz), 3.99(3H, s), 1.60-1.80(2H, m), 1.28-1.47(4H, m), 0.92(3H, t, J=7.1Hz). FABMS (m/z): 268[M+H+](80), 198(100).
- ②: ${}^{1}H-NMR$ (CDC1₃, 300MHz) δ : 10.4(1H, s), 7.61(1H, s), 7.39(1H, s), 4.16(2H, t, J=6.8Hz), 1.82-1.95(2H, m), 1.30-1.50(4H, m), 0.94(3H, t, J=7.2Hz).

参考例78

4ーメトキシー2ーニトロー3ーペンチルオキシベンズアルデヒド(70g、

261.9mmol)、アミド硫酸(76.3g、785.7mmol)およびイソプロパノール(210ml)を混合し、この溶液を水浴で冷却しながら亜塩素酸ナトリウム(38.5g、340.5mmol)水溶液(350ml)を滴下した。20分間攪拌後、酢酸エチル(300ml)を加えて、有機層を分離した。水層を酢酸エチル(200ml)で抽出した。有機層を合わせて飽和食塩水(150ml)で洗浄した。この溶液を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮し、生成した結晶を濾取することにより4-メトキシー2-トロー3-ペンチルオキシ安息香酸(59.02g、80%)を淡黄色結晶として得た。

 1 H - NMR (CDC1₃, 300MHz) δ : 7.85(1H, d, J=8.8Hz), 7.02(1H, d, J=8.8Hz), 4.08(2H, t, J=6.7Hz), 3.98(3H, s),

1.95-1.80(2H, m), 1.30-1.45(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (m/z): 284[M⁺ H ⁺](30), 266(30), 196(100).

参考例79

4-メトキシー2-ニトロー3-ペンチルオキシ安息香酸(26.8g、94.6mmol)とエタノール(350ml)を混合し、この溶液に10%パラジウムー炭素触媒(2.6g)を加えた。水素気流下($3kgf/cm^2$)、室温で7.5時間攪拌した後に、反応溶液を濾過し、濾液を減圧濃縮した。析出した結晶を遮取することにより<math>2-アミノー4-メトキシー3-ペンチルオキシ安息香酸(22.7g、95%)を灰色結晶として得た。

'H-NMR (CDCl₃, 300MHz) δ: 7.87(1H, d, J=9.0Hz), 6.31(1H, d, J=9.0Hz), 3.94(2H, t, J=6.8Hz), 3.89(3H, s), 1.70-1.88(2H, m), 1.30-1.54(4H, m), 0.94(3H, t, J=7.1Hz). 参考例 80

3-rミノー4-メトキシ安息香酸ペンチルエステル (0.744g, 4.45mmol)、塩化メチレン (15ml) およびジメチルスルフィド (0.33ml, 4.50mmol) を混合し、この溶液を-30 でまで冷却した後に、N

ークロロスクシンイミド (601mg、4.5mmol) を加えた。1時間攪拌 後、トリエチルアミン (0.627ml、4.5mmol) を加えて、0.5時 間加熱還流した。飽和食塩水(0.5m1)を加えて反応を停止した後、反応液 を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エ チル=4/1)を用いて精製することにより3-アミノー4-メトキシー2-メ チルチオメチル安息香酸ペンチルエステル(0.83g、82%)を褐色油状物 質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.40(1H, d, J=8.6Hz), 6.74(1H, d, J=8.6Hz), 4.40(2H, bs), 4.26(2H, t, J=6.7Hz), 4.22(2H, s),

3.90(3H, s), 2.05(3H, s), 1.65-1.80(2H, m), 1.30-1.50(4H, m),

0.93(3H, t, J=7.1Hz).

FABMS (m/z): 298[M⁺ H ⁺](10), 297(50), 250(50). 参考例 8 1

3-アミノー4-メトキシー2-メチルチオメチル安息香酸ペンチルエステル (830mg、2.79mmol)とDMF (4.0ml)を混合し、この溶液 にカリウム t ープトキシド (470 mg、4.19 mmo1) およびブロモペン タン (0. 62 m l 、5. 0 m m o l) を順次加えた。100℃で1時間攪拌し た後、濾過、濾液を減圧濃縮した。得られた残渣をカラムクロマトグラフィー(ヘキサン/酢酸エチル=15/1)を用いて精製することにより4-メトキシー 2-メチルチオメチル-3-ペンチルアミノ安息香酸ペンチルエステル(178 mg、17%)を淡黄色油状物質として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.54(1H, d, J=8.7Hz),

6.75(1H, d, J=8.7Hz), 4.27(2H, t, J=6.7Hz), 4.23(2H, s), 3.88(3H, s),

3.73(1H, bs), 3.05(2H, t. J=7.1Hz), 2.02(3H, s), 1.70-1.85(2H, m),

1.30-1.50(10H, m), 0.83-0.97(6H, m).

参考例82

4 ーメトキシー 2 ーメチルチオメチルー 3 ーペンチルアミノ安息香酸ペンチル

エステル($173 \,\mathrm{mg}$ 、 $0.47 \,\mathrm{mmol}$)を用い、参考例 $45 \,\mathrm{col}$ 様にしてエステル加水分解を行うことにより $4- \mathrm{J}$ トキシー $2- \mathrm{J}$ チルチオメチルー $3- \mathrm{J}$ ンチルアミノ安息香酸($93 \,\mathrm{mg}$ 、66%)を無色結晶として得た。

¹H-NMR (CDCl₃, 300MHz) δ: 7.74(1H, d, J=8.6Hz), 6.80(1H, d, J=8.6Hz), 4.31(2H, s), 3.92(3H, s), 3.09(2H, t, J=7.1Hz), 2.08(3H, s), 1.50-1.65(2H, m), 1.30-1.45(4H, m), 0.94(3H, t, 7.0Hz). FABMS (m/z): 298[M⁺H⁺](50), 250(50), 185(85). 参考例 8 3

'H-NMR (CDC1₃, 300MHz) δ: 8.10(1H, d, J=8.9Hz), 6.99(1H, d, J=8.9Hz), 4.02(2H, t, J=6.6Hz), 3.93(3H, s), 2.50(3H, s), 1.75-1.90(2H, m), 1.30-1.58(4H, m), 0.95(3H, t, 7.1Hz). FABMS (m/z) : 285[M+H+](40), 267(100). 参考例 8 4

4-アミノー3-ペンチルオキシ安息香酸(200mg、0.90mmol)、塩化メチレン(5ml)およびピリジン(0.081ml、1.0mmol)を混合し、この溶液に塩化バレリル(0.11ml、0.90mmol)を加えて、室温で0.5時間攪拌した。反応溶液に水を加えて、水層を酢酸エチル(5ml)で3回抽出した。有機層を合わせて飽和食塩水(10ml)で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶をヘキサンで洗浄することにより4-ペンタノイルアミノー3-ペンチルオキシ安息香酸(109.5mg、40%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 8.50(1H, d, J=8.4Hz),

- 7. 98(1H, s), 7. 73(1H, d, J=8. 4Hz), 7. 55(1H, s), 4. 11(2H, t, J=6. 6Hz),
- 2. 43(2H, t, J=7.5Hz), 1.80-1.95(2H, m), 1.35-1.55(6H, m),
- 0.96(6H, t, 7.2Hz).

FABMS (m/z): 308[M⁺ H ⁺](40), 206(100).

参考例 8 5

- (1) 2-ヒドロキシー3-メトキシベンズアルデヒド(3.00g、19.7 mmo1) とDMF(25m1)を混合し、この溶液に炭酸カリウム(3.00g、22.0mmo1)およびブロモペンタン(2.73m1、22.0mmo1)を順次加えた。100℃で2時間攪拌した後、反応溶液を濾過し、水(20m1)および酢酸エチル(50m1)を加えて分液した。水層を酢酸エチル(25m1)で2回抽出した。有機層を合わせて飽和食塩水(20m1)で2回洗浄した後、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより3-メトキシー2-ペンチルオキシベンズアルデヒドの粗生成物を得た。(2)上記粗生成物にTHF(30m1)およびメチル(トリフェニルホスホラーリニ、スト・・バスの2000
- ニリデン) アセタート (7.36g、22.0 mmol) を加えて、5.5時間 加熱選流した。THFを減圧留去して、得られた残渣にヘキサン (100ml) を加え、析出した結晶を濾別した。濾液を減圧濃縮して、得られた残渣にエタノール (40ml) および1N水酸化ナトリウム水溶液 (40ml) を加えて1時

間加熱還流した。エタノールを減圧留去した後、水層を濃塩酸で酸性にした。水層を酢酸エチル(70m1)で2回抽出した。有機層を合わせて飽和食塩水(40m1)で3回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた粗結晶を酢酸エチルから再結晶することにより3-(3-3m)1、場合のでは、は、3-3m2、は、3-3m3、を無色針状結晶として得た。

 $^{1}H - NMR$ (CDC1₃, 300MHz) δ : 8.17(1H, d, J=16.2Hz),

- 7.18(1H, d, J=7.8Hz), 7.06(1H, t, J=7.8Hz), 6.95(1H, d, J=7.8Hz),
- 6. 48(1H, d, J=16.2Hz), 3. 99(2H, t, J=6.7Hz), 3. 86(3H, s),
- 1.75-1.85(2H, m), 1.37-1.49(4H, m), 0.94(3H, t, 7.2H₂).

 $FABMS (m/z) : 265[M^+ H^+](20), 177(100).$

参考例 8 6

- 3-(3-)トキシー2-ペンチルオキシフェニル)桂皮酸(3.80g、14.4mmol)をエタノール(100ml)に溶解し、この溶液に10%パラジウムー炭素触媒(0.38g)を加えた。水素気流下、1時間攪拌した後、反応液を濾過し、濾液を減圧濃縮することにより3-(3-)トキシー2-ペンチルオキシフェニル)プロピオン酸(3.42g、89%)を灰色結晶として得た。 1 H-NMR(CDCl $_3$, 300MHz) $\delta:6.96(1H, t, J=7.9Hz),$
- 6. 98(2H, d, J=7.9Hz), 3. 95(2H, t, J=6.7Hz), 3. 83(3H, s),
- 2. 95(2H, t, J=7.9Hz), 2. 66(2H, t, J=7.9Hz), 1. 70-1. 85(2H, m),
- 1.35-1.50(4H, m), 0.92(3H, t, 7.0Hz).

 $FABMS (m/z) : 267[M^+H^+](20), 179(100).$

参考例87

3-(3-メトキシー2-ペンチルオキシフェニル)プロピオン酸(1.00g、3.75mmol)、塩化チオニル(0.72ml、10mmol)および DMFl 滴を混合し、室温で15分間攪拌した。トルエン(10ml)を加えて、濾液を減圧濃縮した。得られた残渣にアセトン(5ml)およびアジ化ナトリ

ウム (0.33g, 5.0 mmol) の水 (0.5 ml) 溶液を加え、室温で20分間攪拌した。水 (5 ml) を加え、水層をトルエン (20 ml) で2回抽出した。有機層を合わせて飽和食塩水 (10 ml) で2回洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣にトルエン (10 ml) を加えて 2.5 時間加熱還流した。 トルエンを減圧留去して、得られた残渣にポリリン酸 (3 ml) を加えて 40 分間攪拌した 水 (20 ml) および酢酸エチル (50 ml) を加えて、有機層を分離した。有機層を水 (10 ml) 、飽和食塩水 (10 ml) で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮した。得られた残渣にヘキサン (10 ml) を加えて、析出した結晶を濾取することにより 6-×トキシー5-ペンチルオキシー3、4-ジヒドロー2 Hーイソキノリンー1-オン (829 mg, 84%) を無色針状結晶として得た。

 1 H-NMR (CDC1₃, 300MHz) δ : 7.84(1H, d, J=8.4Hz), 6.88(1H, d, J=8.4Hz), 6.04(1H, bs), 3.93(2H, t, J=6.9Hz), 3.90(3H, s), 3.49-3.55(2H, m), 3.02(2H, t, J=6.6Hz), 1.70-1.81(2H, m), 1.30-1.50(4H, m), 0.94(3H, t, 7.2Hz).

FABMS (m/z) : 264[M⁺ H ⁺](100).

参考例88

3-ヒドロキシー4-メトキシベンズアルデヒド(200g、1.31mol)、ジオキサン(1000ml)および水(400ml)を混合し、この溶液に N-プロモスクシンイミド(245.7g、1.38mol)を10分かけて加えた。60分後および70分後に<math>N-プロモスクシンイミドをそれぞれ16.4g(92.1mmol)および7.02g(39.4mmol)加えて、さらに30分間攪拌した。水(<math>1600ml)を加えて、生成した結晶を濾取した。この結晶を水(1000ml)で洗浄することにより2-プロモー3-ヒドロキシー4-メトキシベンズアルデヒド(227.1g、74.8%)を淡赤色結晶として得た。

'H-NMR (DMSO-d₆, 300MHz) δ: 10.1(1H, s), 9.59(1H, s), 7.40(1H, d, J=8.4Hz), 7.14(1H, d, J=8.4Hz), 3.92(3H, s). FABMS (m/z): 232[M+H+](20), 185(100). 参考例89

- (2) 上記粗生成物、イソプロパノール(440ml)およびアミド硫酸(283.9g、2.92mol)を混合し、この反応液に氷冷下、亜塩素酸ナトリウム(純度80%、143.3g、1.27mol)の水溶液(1320ml)を滴下した。内温40℃で30分間攪拌した後、水(1000ml)を加えた。生成した結晶を濾取し、水(2000ml)で洗浄することにより2ープロモー4ーメトキシー3ーペンチルオキシ安息香酸(238.98g、77%)を無色結晶として得た。

 1 H-NMR (CDC13, 300MHz) δ : 7.83(1H, d, J=8.7Hz), 6.90(1H, d, J=8.7Hz), 3.98(2H, t, J=6.7Hz), 3.92(3H, s), 1.82-1.90(2H, m), 1.30-1.53(4H, m), 0.94(3H, t, 7.2Hz). FABMS (m/z): 318[M+H+](10), 185(100).

参考例90

(1) 2-ブロモー4-メトキシー3-ペンチルオキシ安息香酸(80.1g、

253mmol)、トルエン(480ml)、臭化銅(I)(3.62g、25.3mmol)およびマロン酸ジエチル(153.4ml、1.01mol)を混合し、この懸濁液に水素化ナトリウム(60%ディスパージョン、30.3g、758mmol)を加え、内温78℃~83℃で1時間攪拌した。同様の操作で2一プロモー4ーメトキシー3ーペンチルオキシ安息香酸(49.43g、156mmol)を反応させた反応液を上記反応液と合わせ、この反応液を水(1000ml、500ml)で抽出した。水層をヘキサン(500ml)で洗浄した後、濃塩酸を加えて酸性にした。酢酸エチル(1000ml、500ml)で抽出し、有機層を合わせて無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、滤液を減圧濃縮することにより2ー(6ーカルボキシー3ーメトキシー2ーペンチルオキシフェニル)マロン酸ジエチルエステルの粗生成物を得た。

(2) 上記粗生成物、塩化リチウム(51.93g、1.23mol)、水(7.35ml、408mmol)およびDMSO(405ml)を混合し、140℃で1時間攪拌した。反応液に水(600ml)および酢酸エチル(800ml)を加えて、有機層を分離した。有機層を水(300ml)で2回洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、濾液を減圧濃縮して、得られた残渣にヘキサン(250ml)を加えた。生成した結晶を濾取し、ヘキサン(150ml)で洗浄することにより2-エトキシカルボニルメチルー4-メトキシー3-ペンチルオキシ安息香酸(99.93g、2 steps75.3%)を淡茶色結晶として得た。

 $^{1}H-NMR$ (CDC1₃, 300MHz) δ : 7.93(1H, d, J=8.7Hz),

6.88(1H, d, J=8.7Hz), 4.12-4.22(4H, m), 3.93(2H, t, J=6.6Hz),

3.93(3H, s), 1.70-1.88(2H, m), 1.35-1.55(4H, m), 1.26(3H, t, 7.2Hz),

0.93(3H, t, 6.9Hz).

FABMS (m/z): 323[M⁺ H ⁺](70), 277(90).

参考例91~131

上記参考例1~90と同様にして、参考例91~131に示す化合物を得た。

当該化合物の物性を表1~14に示す。

実施例1-1

4 ーメトキシー3 ーペンチルオキシ桂皮酸(5.29g、0.02mol、1.0eq)と1ーヒドロキシベンゾトリアゾール水和物(2.7g、0.024mol、1.0eq)をDMF(50ml)に溶解し、この溶液に2ー(4ーヒドロキシフェニル)エチルアミン(4.1g、0.03mol、1.5eq)と1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド(WSC)塩酸塩(4.6g、0.024mol、1.2eq)を順次氷冷下で加えた。室温で12時間攪拌後、この反応溶液に氷水(50ml)、飽和炭酸水素ナトリウム水溶液(50ml)を順次加え、酢酸エチル(200ml)で2回抽出した。有機層をあわせて飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-n+tン/酢酸エチル=5/1~2/1)を用いて精製することにより、(E)-N-(2-(4-t)-t)2ー(4ーメトキシー3ーペンチルオキシフェニル)アクリルアミド(8.61g、100%)を無色固体として得た。このものを酢酸エチルから再結晶することにより再精製し、無色結晶(6.28g、81.9%)とした。

当該化合物の物性を表15に示す。

実施例1-2~1-33

上記実施例1-1と同様にして、表15~25に示す化合物を得た。

実施例1-34

参考例103で得られた3-(4-メトキシ-3-ペンチルチオフェニル) 桂皮酸(100 mg、0.357 mmo1)を用い、実施例1-1と同様にしてN-(2-(4-ヒドロキシフェニル) エチル1-3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド(118 mg、83%)を無色結晶として得た。

実施例1-35

参考例 9.7 で得られた 3-(4-)++>-3-ペンチルアミノフェニル) 桂皮酸(1.00 mg、0.380 mm o.1)を用い、実施例 1-1 と同様にしてN-(2-(4-)++>-3-ペンチル)エチル)-3-(4-)++>-3-ペンチルアミノフェニル)アクリルアミド(3.1.1 mg、2.1%)を淡黄色結晶として得た。

上記実施例1-34、35で得られた化合物の物性を表26に示す。 実施例1-36~1-92

上記実施例1-1~1-35と同様にして、実施例1-36~1-92に示す 化合物を得た。当該化合物の物性を表26~45に示す。 実施例2-1

4ーメトキシー3ーペンチルオキシ安息香酸(4.77g、0.02mol、1eq)と1ーヒドロキシベンゾトリアゾール水和物(2.7g、0.024mol、1.0eq)をDMF(50ml)に溶解し、この溶液に2ー(4ーヒドロキシフェニル)エチルアミン(4.1g、0.03mol、1.5eq)とWSC塩酸塩(4.6g、0.024mol、1.2eq)を順次氷冷下で加え、実施例1-1と同様にして、N-[2-(4-ヒドロキシフェニル)エチル)ー(4ーメトキシー3ーペンチルオキシ)ベンズアミド(5.6g、79%)を無色結晶として得た。

当該化合物の物性を表46に示す。

実施例2-2~2-43

上記実施例2-1と同様にして、表46~60に示す化合物を得た。 実施例2-44

3, 4-i0ペンチルオキシー $(2-(4-i)2\pi i)$ エチル) ベンズアミド $(110\,\mathrm{mg}\,\mathrm{s}\,0.25\,\mathrm{mmol}\,\mathrm{s}\,1.0\,\mathrm{eq})$ をメタノール $(11\,\mathrm{ml})$ に溶解し、 $10\,\mathrm{8}$ パラジウムー炭素触媒 $(10\,\mathrm{mg}\,\mathrm{s}\,\mathrm{k}\,\mathrm{k})$ を加えた後、水素気流下、2時間攪拌した。反応溶液を室温まで冷却した後、セライト濾過し、濾液を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィ

3, 4-ジヘキシルオキシ安息香酸(161 mg、0. 5 mmol)と1-ヒドロキシベンゾトリアゾール水和物(45. 9 mg、0. 3 mmol、0. 6 eq)をDMF(5 ml)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(82 mg、0. 6 mmol、1. 2 eq)とWSC塩酸塩(11 4 mg、0. 6 mmol、1. 2 eq)を順次室温下で加えた。室温で15 時間 攪拌後、この反応溶液を酢酸エチル(75 ml)にあけ、水(5 ml × 3)および飽和食塩水(15 ml)で洗浄し、有機層を無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=50 / 1)を用いて精製することにより、3, 4-ジヘキシルオキシーNー(2-(4-ヒドロキシフェニル)エチル)ベンズアミド(230 mg)を得た。得られた固体を酢酸エチルーヘキサンから再結晶することにより、無色結晶の3, 4-ジヘキシルオキシーNー(2-(4-ヒドロキシフェニル)エチル)ベンズアミド(194 mg、10 mg、10 mg。10 mg)を得た。実施例10 mg、10 mg。10 mg 10 mg。10 mg。10 mg 10 mg。10 mg 10 mg

参考例 79 で得られた 2-r ミノー 4-x トキシー $3-\alpha$ ンチルオキシ安息香酸(45.0 g、177.6 mm o 1)を用い、実施例 2-1 と同様にして 2-r ミノー 4-x トキシー N-(2-(4-r) ロフェニル)エチル $1-3-\alpha$ ンチルオキシベンズアミド(67.85 g、95%)を淡黄色結晶として得た。実施例 2-47

参考例 78 で得られた 4-メトキシ-2-ニトロ-3-ペンチルオキシ安息香酸(500 mg、1.76 mm o1)を用い、実施例 2-1 と同様にして 4-メトキシ-2-ニトロ-N-[2-(4-ニトロフェニル)エチル)-3-ペンチルオキシベンズアミド(738 mg、97%)を無色結晶として得た。

実施例2-48

実施例 2-47で得られた 4-3トキシー 2-1トローNー [2-(4-1) ロフェニル)エチル] -3ーペンチルオキシベンズアミド(200 mg、0. 464 mm o 1)、T HF(1 m 1)および水素化ナトリウム(13. 3 mg、0. 556 mm o 1)を混合し、5 分間攪拌した。ブロモ酢酸エチル(0. 061 1 m 1、0. 1 m 1

実施例2-49

参考例 82 で得られた 4-メトキシ-2-メチルチオメチル-3-ペンチルアミノ安息香酸(90 m g、0.30 m m o 1)を用い、実施例 2-1 と同様にしてN-(2-(4-ヒドロキシフェニル)エチル)-4-メトキシ-2-メチルチオメチル-3-ペンチルアミノベンズアミド(113 m g、90%)を無色結晶として得た。

実施例2-50

参考例 8 3 で得られた 4 ーメトキシー 2 ーメチルチオー 3 ーペンチルオキシ安息香酸を用い、実施例 2 ー 1 と同様にしてN ー [2 ー (4 ーヒドロキシフェニル) エチル] ー 4 ーメトキシー 2 ーメチルチオー 3 ーペンチルオキシベンズアミドを無色結晶として得た。

実施例2-51

参考例90で得られた2-xトキシカルボニルメチルー4-yトキシー3-ペンチルオキシ安息香酸(45.01g、138.8mmol)を用い、実施例2-1と同様にして〔3-yトキシー2-ペンチルオキシー<math>6-(2-l)リジンー $4-\ell$ ルエチルカルバモイル)フェニル〕酢酸エチルエステルの粗生成物を得た。このものをそのまま次の反応に用いた。

実施例2-52

上記実施例 2 - 4 4 ~ 2 - 5 2 で得られた化合物の物性を表 6 0 ~ 6 3 に示す。 実施例 2 - 5 3 ~ 2 - 1 6 1

上記実施例 $2-1\sim2-5$ 2 と同様にして、実施例 2-5 3 $\sim2-1$ 6 1 に示す化合物を得た。当該化合物の物性を表 6 3 ~9 9 に示す。

実施例3-1

4-メトキシー3-ペンチルオキシ桂皮酸(529 mg、2.0 mmo1、1 eq)をピリジン(10 m l)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアルコール(484 mg、3.5 mmo1、1.5 eq)とWSC塩酸塩(460 mg、2.4 mmo1、1.2 eq)を順次氷冷下で加え、実施例1-1と同様にして、2-(4-ヒドロキシフェニル)エチルー3-(4-メトキシー3-ペンチルオキシ)シンナメート(61 mg、7.9%)を無色結晶として得た。

当該化合物の物性を表100に示す。

実施例 3 - 2 ~ 3 - 3

上記実施例3-1と同様にして、実施例3-2及び3-3に示す化合物を得た 。当該化合物の物性を表100に示す。

実施例 4 - 1

3-(1-ブロモー4-ペンチルオキシナフタレン-2-イル) 桂皮酸(51)

. 2 mg、0. 141 mmo1) と1-ヒドロキシベンゾトリアゾール水和物(19. 1 mg、0. 141 mmo1) をDMF(1 m1)に溶解し、この溶液に2-(4-ヒドロキシフェニル)エチルアミン(23. 2 mg、0. 169 mm o1)とWSC塩酸塩(32. 4 mg、0. 169 mmo1)を順次氷冷下で加え、実施例1-1と同様にして、(E)-3-(1-ブロモー4ーペンチルオキシナフタレン-2-イル)-N-〔2-(4-ヒドロキシフェニル)エチル〕アクリルアミド(52. 3 mg、77%)を無色結晶として得た。

当該化合物の物性を表101に示す。

実施例 4-2~4-4

上記実施例4-1と同様にして、表101~102に示す化合物を得た。 実施例5-1

7ーメトキシー8ーペンチルオキシキノリンー3ーカルバミン酸(24mg、0.083mmol)とクロロホルム(1.0ml)およびDMF(0.3ml)を混合し、この溶液に2ー(4ーピリジニル)エチルアミン(12.2mg、0.1mmol)のDMF溶液(0.1ml)とWSC塩酸塩(19.2mg、0.1mmol)およびジメチルアミノピリジン(1mg、0.0082mmol)を順次加え、実施例1ー1と同様にして、7ーメトキシー8ーペンチルオキシキノリンー3ーカルバミン酸(2ーピリジンー4ーイルエチル)アミド(11.4mg、35%)を無色結晶として得た。

当該化合物の物性を表103に示す。

実施例 5-2~5-9

上記実施例5-1と同様にして、実施例5-2~5-9に示す化合物を得た。 当該化合物の物性を表103~105に示す。

実施例 6-1

(1) 塩化チオニル (7. 3 m l、0. 100 m o l、4 e q) に 4 - メトキシー3 - ペンチルオキシ安息香酸 (5. 9 6 g、0. 0 2 5 m o l、1 e q) を溶解し、室温で2 4 時間攪拌した。反応溶液を減圧下、過剰の塩化チオニルを留去

した。残渣に、ジクロロメタン(10m1)を加え、氷冷下2-7ミノー2-メチルプロパノール(5.01m1、0.053mo1、2.1eq)を加え、室温で2時間攪拌した。この反応溶液に水(200m1)を加え、酢酸エチル(200m1)で2回抽出した。有機層をあわせて飽和食塩水(400m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/21~1/21)を用いて精製することにより、N-(2-ヒドロキシー11、1-ジメチルエチル)-4-メトキシー3-ペンチルオキシベンズアミド(5.75g、74.4%)を無色油状物質として得た。

 $^{1}H - NMR$ (CDC1₃) δ : 7.38(1H, d, J=2.1Hz),

- 7. 20(1H, dd, J=8.3, 2. 1Hz), 6. 84(1H, d, J=8.3Hz), 6. 13(1H, bs),
- 4. 79(1H, t, J=6.1Hz), 4. 06(2H, t, J=6.9Hz), 3. 90(3H, s),
- 3.69(2H, d, J=6.1Hz), 2.0-1.8(2H, m), 1.5-1.3(4H, m), 1.41(3H, s),
- 1.41(3H, s), 0.93(3H, t, J=7.1Hz).

FABMS (m/z): 310[M⁺ H ⁺] (100), 221(100), 238(50).

IR (Neat, cm⁻¹): 3385, 2955, 1638, 1505.

(2) N-(2-ヒドロキシー1, 1-ジメチルエチル) -4-メトキシー3ーペンチルオキシベンズアミド(5.498g、0.0178mol、1eq)を塩化チオニル(4.29ml、0.0214mol、3.3eq)に溶解し、室温で1時間攪拌した。反応溶液をジエチルエーテル(40ml)に移し、得られた塩酸塩を濾取し、過剰の塩化チオニルを除去した。この塩酸塩に氷冷下1N水酸化ナトリウム水溶液(約20ml)を加え、pH10のアルカリ溶液にした後にジエチルエーテル(30ml)で2回抽出した。有機層をあわせて飽和食塩水(60ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、2-(4-メトキシー3-ペンチルオキシフェニル)-4, 4-ジメチルー4,5-ジヒドロオキサゾール(4.46g、86%)を無色結晶として得た。

実施例6-2

実施例 6-3

2-(4-)++>-3-ペンチルオキシフェニル)-4, 4-ジメチル-4, 5-ジヒドロオキサゾール (0.74g, 2.54mmol, 1eq) をジメトキシエタン (7m1) に溶解し、-60 $^{\circ}$ に冷却し、n-ブチルリチウム (1.6M) へキサン溶液) (3.5m1, 5.59mmol, 2.2eq) を滴下した。この温度で1.5 時間攪拌した後、クロロ炭酸エチルを滴下し、1.0 時間攪拌した。更に室温まで昇温し、2 時間攪拌した。反応溶液に水 (50m1) を加え、酢酸エチル (50m1) で2 回抽出した。有機層をあわせて飽和食塩水 (100m1) で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー (n-)+ ン/酢酸エチル=3/1)を用いて精製することにより、エチル 6-(4,4-)ジメチルー4, 5-ジヒドロオキサゾールー2-イル)-3-メトキシー2-ペンチルオキシベンゾエート (814mg,88.2%) を油状物質として得た。

実施例6-4

LAH (255 mg、6.72 mol、3.0 eq)をTHF (30 ml)に溶解し、この溶液に氷冷下で、エチル 6-(4,4-i)メチルー4.5-i)とドロオキサゾールー2ーイル)-3-メトキシー2ーペンチルオキシベンゾェート(814 mg、2.24 mmol、1.0 eq)のTHF溶液(50 ml)を滴下した。滴下終了後、室温で1.5時間攪拌させた。この反応溶液を氷冷水を用いて冷却し、飽和硫酸ナトリウム水溶液(約20 ml)を加え、セライト濾過の後、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1)を用いて精製することにより、(6-(4,4-i)メチルー4、5-i2とドロオキサゾールー2ーイル)-3-メトキシー2ーペンチルオキシフェニル)メタノール (677 mg、94.1%)を得た。

実施例6-5

 $2-\{2-(4-)++2-3-(2-)+1+2-3-(2-1)+1+2-1+2-1+2-3-(2-1)+1+2-3-(2-1)+1+2-1+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+2-3-(2-1)+$

②: ${}^{1}H-NMR$ (CDC1₃, 300MHz) δ :

8. 64-8. 59(1H, m), 7. 73(1H, td, J=7.7, 1. 8Hz), 7. 45-7. 40(2H, m),

7. 30-7. 23(2H, m), 6. 96(1H, t), 6. 87(1H, d, J=8.5Hz),

6.03(1H, t, J=5.7Hz), 4.16-4.02(4H, m), 3.90(3H, s), 2.15(3H, s),

1. 91-1. 82(2H, m), 1. 50-1. 36(4H, m), 0. 93(3H, t, J=7.0Hz).

FABMS (+) (m/z): 402[M+1] (26), 401(93), 341(67), 221(100).

③: 'H-NMR (CDC13, 300MHz) δ:

8. 40-8. 32(1H, m), 7. 43-7. 40(2H, m), 7. 27-7. 22(2H, m),

6.85(1H, d, J=8.4Hz), 4.06(2H, t, J=7.8Hz), 3.89(3H, s),

3.84(2H, q, J=5.9Hz), 3.10(2H, t, J=6.3Hz), 2.34(3H, s),

1.91-1.80(2H, m), 1.49-1.33(4H, m), 0.93(3H, t, J=7.0Hz).

FABMS (+) (m/z): 401[M+1] (82), 221(73), 154(100). 実施例 6-6

実施例 6-1 と同様にして得られた 2-(3-7) ロモー 4-3 トキシフェニル)-4, 4-3 メチルー 4, 5-3 ヒドロオキサゾール $(400 \, \text{mg} \, \text{s} \, 1.41 \, \text{mmol})$ と THF $(4 \, \text{ml})$ を混合し、この溶液を-60 $^{\circ}$ に冷却した後に、n-7 チルリチウム $(1.6 \, \text{M} \, \text{N}$ キサン溶液、 $1.94 \, \text{ml}$ 、 $3.1 \, \text{mmol})$ を加え、 $1.5 \, \text{時間 }$ 提押した。この溶液に $3.1 \, \text{mmol}$ を加え、 $3.1 \, \text{mmol}$ を加え、

上記実施例 $6-1\sim6-6$ で得られた化合物の物性を表 $106\sim107$ に示す。 実施例 $6-7\sim6-13$

上記実施例 $6-1\sim6-6$ と同様にして、実施例 $6-7\sim6-1$ 3 に示す化合物を得た。当該化合物の物性を表 1 0 8 \sim 1 1 0 に示す。

実施例7-1

3-ニトロ無水フタル酸(1.93g、0.01mo1、1eq)と2-(4-ヒドロキシフェニル)エチルアミン(2.06g、0.015mo1、1.5eq)をトルエン(20m1)中 3時間加熱還流した。反応溶液を室温まで冷却し、この反応溶液に酢酸エチル(100m1)を加えた後、希塩酸水溶液(30m1)で2回有機層を洗浄し、更に飽和食塩水(100m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1)を用いて精製することにより、N-[2-(4-ヒドロキシフェニル)エチル]-3ーニトロフタルイミド(2.92g、92.8%)を無色固体として得た。このものをメタノールから再結晶することにより再精製し、無色結晶(1.9g、60.8%)とした。

実施例7-2

 $N-(2-(4-E)^2+2)$ エチル $(2-E)^2+2$ エチル カラムクロマトグラフィー(クロロホルム/メタノール=50/1)を用いて精製することにより、 $(2-E)^2+2$ エチル $(2-E)^2+2$ フタルイミド $(3-E)^2+2$ エチル $(2-E)^2+2$ フタルイミド $(3-E)^2+2$ エチル $(3-E)^2+2$ フタルイミド $(3-E)^2+2$ エチル

実施例7-3

3-アミノーN-〔2-(4-ヒドロキシフェニル) エチル〕フタルイミド(110mg、0.390mol、leq)をアセトン(30ml)に溶解し、この溶液に1-クロロ-1-ペンタノン(70.5mg、0.585mmol、1.5eq)とトリエチルアミン(0.081ml、0.585mol、1.5eq)を順次加えた後、30分間加熱還流した。この反応溶液を室温まで冷却し、

氷水(10m1)、0エン酸(10m1)を加え、酢酸エチル(20m1)で20回抽出した。有機層をあわせて飽和食塩水(30m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー($n-\Lambda$ キサン/酢酸エチル=5/1)を用いて精製することにより、4-[2-(1,3-3)]オキソー4-300月 フェニルペンタノイルアミノー(3-31月 フェニルペンタノエート(3-31月 フェニルペンタフィエート(3-31月 フェニルペンタノエート(3-31月 フェニルペンタフィエート(3-31月 フェニルペンタフィエート(3-31月 フェニルペンタフィエート(3-31月 フェニルペンタフィエート(3-31月 フェニルペンタフィエー(3-31月 フェニル(3-31月 フェニル(

実施例7-4

- (1) エチル 6-(4, 4-ジメチル-4, 5-ジヒドロオキサゾール-2イル) -3-メトキシ-2-ペンチルオキシベンゾエート(200mg、0.55mmol、1eq)を3N塩酸水溶液(20ml)に溶解し、11時間加熱還流した。反応終了後室温まで冷却し、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(40ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を纏別後、減圧濃縮して、得られた残渣を、1N水酸化カリウム水溶液(10ml)に溶解し、1.5時間室温で攪拌した。反応溶液に氷水と3N塩酸水溶液(30ml)を加えて酸性にし、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(40ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-メトキシ-3-ペンチルオキシフタル酸(178mg、100%)を得た。
- (2) 2- 2- 2- 2- 2- 3- 2-

キシー4-ペンチルオキシイソインドールー1, 3-ジオン(67 m g、31. 8%)を得た。

実施例7-5

[6-(4, 4-ジメチル-4, 5-ジヒドロオキサゾール-2-イル) - 3-メトキシー2 -ペンチルオキシフェニル] メタノール (3 4 4 m g、1. 0 7 mmol、1.0eq)をDMSO(4ml)に溶解し、この溶液にトリエチル アミン(1. 4 m l、9. 6 3 m m o l、9. 0 e q)を加え、冷水で冷却した 。これに三酸化硫黄-ピリジン複合体 (511mg、3.21mmol、3.0 e q) を加え、室温で1.5時間攪拌させた。この反応溶液に水(5ml)を加 え、酢酸エチル(20ml)で2回抽出した。有機層をあわせて飽和食塩水(2 00m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃 縮した。得られた残渣を、メタノール(16m1)に溶解し、2-(4-ヒドロ キシフェニル) エチルアミン (146.8 mg、1.07 mmol、1.0 eq)、シアノボロヒドリド(67.3mg、1.07mmol、1.0eq)を加 えて室温で10時間攪拌した。反応液を減圧濃縮した後にシリカゲルカラムクロ マトグラフィー (n-ヘキサン/酢酸エチル=5/1) を用いて精製することに より、2-[2-(4-ヒドロキシフェニル) エチル] -5-メトキシー4-ペ 7%)を得た。

実施例7-6

3-ヒドロキシ無水フタル酸(1.0g、6.6 mmol)をメタノール(20ml)に溶解し、この溶液に触媒量のp-トルエンスルホン酸を加えた。加熱 還流温度で5時間攪拌後、減圧にて濃縮し、3-ヒドロキシフタル酸ジメチルの粗生成物を得た。3-ヒドロキシフタル酸ジメチルの粗生成物をDMF(20ml)に溶解し、この溶液に炭酸カリウム(6g、43mmol)とn-アミルブロミド(3ml、24mmol)を加えた。90℃で1.5時間攪拌後、セライト濾過にて固形物を除去し、減圧にて濃縮し、3-ペンチルオキシフタル酸ジメ

チルの粗生成物を得た。3-ペンチルオキシフタル酸ジメチルの粗生成物をメタノール(10ml)に溶解し、この溶液に<math>1N水酸化ナトリウム水溶液(20ml)を加えた。90 ℃で2 時間攪拌後、この反応溶液に3 N塩酸水溶液(15ml)を加えた。酢酸エチル($30ml \times 3$)にて抽出後、飽和食塩水(20ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、3-ペンチルオキシフタル酸の粗生成物を得た。<math>3-ペンチルオキシフタル酸の粗生成物を背た。<math>3-ペンチルオキシフタル酸の粗生成物を酢酸(<math>20ml)に溶解し、これにチラミン塩酸塩(1.0g、7.3mmol)を加えた。90 ℃にて2 時間攪拌後、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(0 十十ン/酢酸エチル=0 4 1 1)を用いて精製することにより、0 8 1 2 1 3 1 3 1 3 1 3 1 4 1 3 1 4 1 3 1 3 1 4 1 3 1 4 1 3 1 3 1 4 1 4 1 3 1 5 1 6 1 6 1 6 1 6 1 7 1 7 1 8 1 8 1 8 1 8 1 9 1 8 1 9 1

実施例7-7

N-2-(4-E)ド (4-E) (4-E)

実施例7-8

N-2-(4-ヒドロキシフェニル) エチルー3-ペンチルオキシフタルイミド(351mg、0.99mmol)をTHF(1ml)に溶解した溶液をLA

H(74mg、2mmol)のTHF(1ml)懸濁液に0℃にて加えた。室温で5時間攪拌後、この反応溶液を3N塩酸水溶液(20ml)にあけ、酢酸エチル(20ml×3)にて抽出後、飽和炭酸水素ナトリウム水溶液(20ml)と飽和食塩水(30ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=2/l)を用いて精製することにより、N-2-(4-ヒドロキシフェニル)エチル-3-ペンチルオキシイソインドリン(130mg、40%)を無色結晶として得た。

実施例7-9

(1) 4-ヒドロキシフタル酸ジメチル(10.0g、 $47\,\text{mmo}\,1$)をDMF(100 m l)に溶解し、この溶液に炭酸カリウム(30g、 $217\,\text{mmo}\,1$)とn-アミルブロミド(10 m l、 $80\,\text{mmo}\,1$)を加えた。 $90\,\text{C}$ で2時間攪拌後、セライト濾過にて固形物を除去し、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)を用いて精製することにより、4-ペンチルオキシフタル酸ジメチル(12.7g、45.4 mmo l、97%)を無色油状物として得た。

 $^{1}H-NMR$ (CDCl₁, 300MHz) δ : 7.80(1H, d, J=8.40Hz),

7. 05(1H, d, J=2.70Hz), 6. 97(1H, dd, J=8.40, 2. 70Hz),

4.00(2H, t, J=6.90Hz), 3.91(3H, s), 3.87(3H, s),

1.80(2H, quint, J=6.98Hz), 1.47-1.34(4H, m), 0.93(3H, t, J=7.20Hz).

FABMS(+) (m/z) : 281[M+1] (42), 249(100), 179(78).

(2) 4-ペンチルオキシフタル酸ジメチル(3.0g、10.7mmol)をメタノール(20ml)に溶解し、この溶液に1N水酸化ナトリウム水溶液(25ml)を加えた。室温で6.5時間攪拌後、この反応溶液に3N塩酸水溶液(20ml)を加えた。酢酸エチル(40ml×3)にて抽出後、飽和食塩水(30ml)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、4-ペンチルオキシフタル酸の粗生成物を得た。この粗生成物

は精製することなく次の反応に用いた。

4-ペンチルオキシフタル酸の粗生成物を酢酸(20ml)に溶解し、これに チラミン塩酸塩 (2.74g、20mmol) を加えた、96℃にて4時間攪拌 後、減圧にて濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル= 6 \diagup 1) を用いて精製することにより、N-2-(4ーヒドロキシフェニル) エチルー4-ペンチルオキシフタルイミド (2.6g、 9. 4 m m o 1 、88%) を無色結晶として得た。 実施例7-10

N-2-(4-ヒドロキシフェニル) エチルー4-ペンチルオキシフタルイミド (3 3 0 mg、0. 9 3 mm o 1) をTHF (1 m l) に溶解し、この溶液に BH₃・THFの1.0M THF溶液(1.5ml、1.5mmol)を加え た。加熱還流下1.5時間攪拌後、この反応溶液に3N塩酸水溶液(2ml)を 加え、更に0.5時間同じ温度にて攪拌後、水を20ml加えた。酢酸エチル(20ml×3) にて抽出後、飽和炭酸水素ナトリウム水溶液(20ml) と飽和 食塩水(30m1)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥 剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフ ィー(ヘキサン/酢酸エチル=2/1)を用いて精製することにより、N-2-(4-ヒドロキシフェニル) エチルー4-ペンチルオキシイソインドールー1-オン (①) (139mg、0.41mmol、44%、無色結晶) とN-2-(4-ヒドロキシフェニル) エチルー5-ペンチルオキシイソインドールー1-オ ン(②) (111mg、0.33mmo1、35%、無色結晶)を得た。 実施例7-11

N-2-(4-ヒドロキシフェニル) エチルー4-ペンチルオキシフタルイミド (208mg、0.59mmol)をTHF (1ml)に溶解した溶液をLA H (40mg、1.1mmo1)のTHF (1m1)懸濁液に0℃にで加えた。 室温で3.5時間攪拌後、この反応溶液を3N塩酸水溶液(20ml)にあけ、 酢酸エチル (20ml×3) にて抽出後、飽和炭酸水素ナトリウム水溶液 (20

m1)と飽和食塩水(30m1)で洗浄し、有機層を無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)を用いて精製することにより、N-2-(4-E)により、N-2

実施例 7-12

 $^{1}H-NMR$ (CDCI₃) δ : 7.61(1H, d, J=8.3Hz),

7.07(1H, d, J=8.3Hz), 5.28(2H, s), 4.09(2H, t, J=6.6Hz), 3.95(3H, s),

1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.93(3H, t, J=6.9Hz).

 $FABMS (m/z) : 251[M^+H^+] (100).$

(2) 2-(4-ベンジルオキシフェニル) エチルアミン (377mg、1.66mmol、2eq) をジクロロメタン (3ml) に溶解し、トリメチルアルミニウム (15%ヘキサン溶液、0.88ml、1.825mmol、2.2eq) を加えて30分間攪拌した。これに5-メトキシー4-ペンチルオキシー3Hーイソベンゾフランー1ーオン (207.6mg、0.83mmol、1eq) のジクロロメタン溶液 (3ml) を滴下し、24時間攪拌した。この溶液に、3N塩酸 (20ml) を加えてクロロホルム (10ml) で3回抽出した。有機層をあわせて飽和食塩水 (50ml) で洗浄し、無水硫酸ナトリウムで乾燥した。

乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル= 2 / 1 \sim 1 / 1) を用いて精製することにより、2- (2-ヒドロキシメチル)-4 -メトキシ-3 -ペンチルオキシ-N-[2-(4 -ベンジルオキシフェニル)エチル)ベンズアミド(204 mg、51、5%)を無色結晶として得た。

 $^{1}H-NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.15(2H, d, J=8.5H₂),

7.11(1H, d, J=8.5Hz), 6.93(2H, d, J=8.5Hz), 6.79(1H, d, J=8.5Hz),

6. 20(1H, t, J=6. 7Hz), 5. 05(2H, s), 4. 65(2H, d, J=6. 7Hz),

4. 20(1H, t, J=6.7Hz), 3. 97(2H, t, J=6.7Hz), 3. 85(3H, s),

3. 67(2H, q, J=6.8Hz), 2. 88(2H, t, J=6.8Hz), 1. 9-1. 7(2H, m),

1.5-1.3(4H, m), 0.93(3H, t, J=7.1Hz).

FABMS (m/z): 478[M+H+] (30), 460(100).

IR (KBr, cm^{-1}): 3333, 2937, 1623, 1510, 1268, 1216, 1014.

元素分析: C 29 H 35 N O 5

理論値 C 72.93, H 7.39, N 2.93

分析值 C 73.06, H 7.50, N 2.79

実施例7-13

ェニル)エチル〕-3-ヒドロキシ-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(163 mg、74.7%)を無色油状物質として得た。

実施例7-14

2-(2-(4-ペンジルオキシフェニル) エチル]-3-ヒドロキシ-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(142 mg、0.30 mmo1、1.0 eq) をジクロロメタン(3 m1)に溶解し、トリエチルシラン(0.095 m1、0.60 mmo1、2.0 eq)を加え10分間室温攪拌した。これにトリフルオロ酢酸を加え、更に4時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液(30 m1)を加え、酢酸エチル(30 m1)で2回抽出した。有機層をあわせて飽和食塩水(60 m1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、2-(2-(4-ペンジルオキシフェニル) エチル]-5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(136 mg、99.8%)を無色油状物質として得た。

実施例7-15

2-(2-(4-ベンジルオキシフェニル) エチル)-5-メトキシー4-ベンチルオキシー2, 3-ジヒドロイソインドールー1-オン (125.9 mg、0.274 mm o 1、1.0 eq)を酢酸エチル (10 m1) に溶解し、10%パラジウムー炭素触媒(80mg、水分含量50%)を加えた後、水素気流下、3時間攪拌した。反応終了後セライト濾過し、濾液を減圧濃縮し、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、2-(2-(4-ヒドロキシフェニル)エチル)-5-メトキシー4-ペンチルオキシー2, 3-ジヒドロイソインドールー1-オン (75mg、74.1%) を無色結晶として得た。

なお、当該化合物は実施例7-5と同じ化合物であり、その物性等も実施例7-5と同じである。

実施例 7-16

 $^{1}H - NMR (CDC1_{3}) \delta : 7.86(1H, d, J=8.6H_{2}).$

- 6. 92(1H, d, J=8.6Hz), 4. 48(2H, t, J=6.0Hz), 3. 95(2H, t, J=6.8Hz),
- 3.92(3H, s), 3.06(2H, t, J=6.0Hz), 1.8-1.7(2H, m), 1.5-1.3(4H, m),
- 0.93(3H, t, J=7.1Hz).

 $FABMS (m/z) : 265[M^+H^+] (100).$

(2) 2-(4-ベンジルオキシフェニル) エチルアミン(1.15g、5.1 mmol、1eq) のジクロロメタン溶液(2ml)をジクロロメタン(30ml) に溶解し、トリメチルアルミニウム(15%ヘキサン溶液、4.9ml、10.2mmol、2eq)を滴下し、室温で30分間攪拌した。この溶液に、6-メトキシー5-ペンチルオキシー3,4-ジヒドロイソクマリン(1.36g、5.1mol、1eq)のジクロロメタン溶液(30ml)を滴下し、室温で12時間攪拌した。この溶液に3N塩酸(20ml)を加えてジクロロメタン(20ml)で2回抽出した。有機層をあわせて飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1

/1~酢酸エチル)を用いて精製することにより、 $2-(2-EFロキシエチル)-4-Xトキシ-3-ペンチルオキシ-N-[2-(4-ベンジルオキシフェニル)エチル)ベンズアミド(1.35g、53.7%)を無色結晶として得た。 融点:<math>93.4\sim93.7$ ℃

 $^{1}H-NMR$ (CDC1₃) δ : 7.5-7.3(5H, m), 7.15(2H, d, J=8.6H₂),

- 7.05(1H, d, J=8.5Hz), 6.93(2H, d, J=8.6Hz), 6.75(1H, d, J=8.5Hz),
- 6.40(1H, bs), 5.05(2H, s), 3.96(1H, bs), 3.94(2H, t, J=6.7Hz),
- 3.86(2H, q, J=5.7Hz), 3.84(3H, s), 3.65(2H, q, J=6.8Hz),
- 2. 94(2H, t, J=5.7Hz), 2. 86(2H, t, J=6.8Hz), 1. 8-1. 7(2H, m),
- 1.5-1.3(4H, m), 0.92(3H, t, J=7.1Hz).

FABMS (m/z): 492[M⁺ H ⁺] (100), 210(60).

IR (KBr, cm^{-1}): 3291, 2932, 1614, 1512, 1243.

元素分析: C30 H37 NO5

理論値 C 73.29, H 7.59, N 2.85

分析值 C 73.51, H 7.72, N 2.80

実施例 7-17

2-(2-ヒドロキシエチル) - 4-メトキシー3-ペンチルオキシーN-(2-(4-ベンジルオキシフェニル) エチル) ベンズアミド(1.33g、2.7mmol、1.0eq)をDMSO(26ml)に溶解し、水冷下、トリエチルアミン(3.49ml、24.3mmol、9eq)、三酸化硫黄ーピリジン複合体(1.29g、8.1mmol、3eq)を順次加えた。室温で2時間攪拌後、この反応溶液に3N塩酸(35ml)を加え、室温で30分攪拌した後、酢酸エチル(40ml)で2回抽出した。有機層をあわせて飽和炭酸ナトリウム水溶液(40ml)、飽和食塩水(100ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/1)を用いて精製することにより、2-[2-(4-ベンジルオキシフェニル)エチル]-6-メトキシー

5-ペンチルオキシー 2H-イソキノリン-1-オン(1.275g、100%)を無色結晶として得た。

実施例7-18

2 - [2 - (4 - ベンジルオキシフェニル) エチル] - 6 - メトキシー <math>5 - ペンチルオキシー $2 \, \mathrm{H}$ - イソキノリンー1 - オン(1 . $1 \, 8 \, \mathrm{g}$ 、2 . $5 \, \mathrm{mmol}$ 、 1. 0 e q) を酢酸 (20 m l) に10%水酸化パラジウムー炭素触媒 (300 mg、水分含量50%)を加えた後、水素気流下、60~70℃、3kgf/c m²の条件下で4時間加熱攪拌した。反応溶液を室温まで冷却した後セライト濾 過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフ ィー(酢酸エチル/ヘキサン=4/1)を用いて精製することにより、6-メト キシー2- [2-(4-オキソシクロヘキシル) エチル] -5-ペンチルオキシ -3, 4-ジヒドロ-2H-イソキノリン-1-オン(800mg、82.6%)を淡黄色油状物質として得た。

実施例7-19

2-(2-ヒドロキシエチル)-4-メトキシー3-ペンチルオキシーN-(2- (4-ヒドロキシフェニル) エチル) ベンズアミド (121.9 mg、0. 304mmol、1.0eq)をDMSO(6m1)に溶解し、水冷下、トリエ チルアミン (0.39ml、2.7mmol、9eq)、三酸化硫黄ーピリジン 複合体(145mg、0.91mmo1、3eq)を順次加えた。室温で2時間 攪拌後、この反応溶液に水(20m1)、飽和炭酸水素ナトリウム水溶液(10 m 1) を順次加え、酢酸エチル(20 m 1) で2回抽出した。有機層をあわせて 飽和塩化アンモニウム水溶液(40ml)、飽和食塩水(40ml)で順次洗浄 し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた 残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=3/1) を用いて精製することにより、2- [2-(4-ヒドロキシフェニル) エチル 〕 - 6 - メトキシ- 5 - ペンチルオキシ- 2 H - イソキノリン- 1 - オン (①) (59mg、20.3%)を無色結晶として、3-ヒドロキシ-2-[2-(4

ーヒドロキシフェニル)エチル] -6 - メトキシー 5 - ペンチルオキシー 3, 4 - ジヒドロー 2 H - イソキノリンー 1 - オン (②) (1 0 3. 1 m g、 8 2. 5%) を無色油状物質として得た。

- ②: ${}^{1}H NMR$ (CDC1₃) δ : 7.85(1H, d, J=8.7H₂),
- 7.09(2H, d, J=8.5Hz), 6.89(1H, d, J=8.7Hz), 6.77(2H, d, J=8.5Hz),
- 5.50(1H, bs), 4.82(1H, m), 4.1-4.0(1H, m), 4.0-3.9(2H, m), 3.88(3H, s),
- 3.7-3.5(1H, m), 3.3-3.2(1H, m), 3.0-2.8(3H, m), 2.3-2.2(1H, bs),
- 1.8-1.7(2H, m), 1.5-1.3(4H, m), 0.92(3H, t, J=7.1Hz).

 $FABMS (m/z) : 400[M^+H^+] (80), 382(60).$

IR (Neat, cm⁻¹): 3304, 2934, 1631, 1597, 1468, 1281.

実施例7-20

2-(2-EFD+2xfn)-4-xF+2-3-ペンチルオキシ-N-(2-EJ) ジンー4-イルエチル)ベンズアミド(<math>90mg、233mmo1、1.0eq)をDMSO(2mI)に溶解し、水冷下、トリエチルアミン(0.3mI、2.10mmo1、9eq)、三酸化硫黄ーピリジン複合体(111.2mg、0.70mmo1、3eq)を順次加えた。室温で4時間攪拌後、この反応溶液に3N塩酸(<math>15mI)を加え、室温で1時間攪拌した後、水酸化ナトリウムを加えてアルカリ性の溶液にした後に、酢酸エチル(20mI)で2回抽出した。有機層をあわせて飽和食塩水(40mI)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル)を用いて精製し、酢酸エチルより再結晶することにより、2-(2-(4-EJ)) を用いて精製し、酢酸エチルより再結晶することにより、2-(2-(4-EJ)) ンチルオキシー2H-4 ンキノリン-1-4 ン(12mg 、12mg 、12mg を無色結晶として得た。

実施例7-21

2-[2-(4-ベンジルオキシフェニル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン(1.21g、2.6 mmol、

1. 0 e q) を酢酸エチル(1 2 m 1)に溶解し、1 0 %パラジウムー炭素触媒(3 0 0 m g、水分含量5 0 %)を加えた後、水素気流下、4 時間攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1~酢酸エチル)を用いて精製することにより、 $2 - \{2 - (4 - E F D + E) T x - L x +$

なお、当該化合物は実施例 7-19 ①と同じ化合物であり、その物性等も実施例 7-19 ①と同じである。

実施例7-22

実施例7-23

4-〔2-(6-メトキシ-1-オキソ-5-ペンチルオキシ-1H-イソキノリン-2-イル) エチル〕フェニルアセテート(5. 65g、13. 0mmo 1、1. 0eq)を酢酸(60ml)に溶解し、10%パラジウムー炭素触媒(

5. 6 g、水分含量 5 0 %)を加えた後、水素気流下、8 時間、6 0 ~ 7 0 $^{\circ}$ C、3 k g f / c m² の圧力下で加熱攪拌した。反応溶液を室温まで冷却した後セライト濾過し、濾液を減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン= 1 / 1)を用いて精製することにより、4 - [2 - (6 - メトキシー1 - オキソー5 - ペンチルオキシー3, 4 - ジヒドロー1 H - イソキノリンー2 - イル)エチル)フェニルアセテート(4. 0 6 7 g、73. 5%)を無色結晶として得た。

実施例7-24

 $4-\left(2-\left(6-x\right)++ v-1-x+y-5-ペンチルオキシ-3$, 4-vヒドロー1 Hーイソキノリン-2-イル) エチル] フェニルアセテート(720 mg、1. 69 mmo 1、1eq)をメタノール(10 m 1)に溶解し、アンモニア水(10 m 1)を加えた後、2時間室温攪拌した。反応溶液を減圧濃縮して、残渣に水(20 m 1)を加え、酢酸エチル(30 m 1)で2回抽出した。有機層をあわせて1 N塩酸水溶液(10 m 1)、飽和食塩水(50 m 1)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)を用いて精製することにより、 $2-\left(2-\left(4-ヒドロキシフェニル\right)$ エチル】-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2 H-イソキノリン-1-オン(396 mg、61. 0%)を無色結晶として得た。

実施例7-25

ノリン-1-オン (15 m g、66. 5%) を無色針状晶として得た。 実施例 7-26

実施例7-27

 $4-\{2-[(2-rセトキシ-2-ベンゼンスルファニルエチル)-(4-メトキシ-3-ペンチルオキシベンゾイルアミノ)]$ エチル $\}$ フェニルアセテート(565mg、1.02mmo1)をトルエン(12m1)に溶解し、パラトルエンスルフォン酸 1 水和物(390mg、2.05mo1、2eq)を加え、1 時間加熱還流した。この反応溶液に氷冷下、1 N水酸化カリウム水溶液(20m1)を加え、室温で30分間攪拌させ、実施例7-26と同様にして、2-(2-(4-l))とかフェニル)エチル1-(6-l)とから、1-(4-l)とがフェニル)エチル1-(6-l)とがいるには、1-(4-l)とがいるに

実施例7-28

4-{2-{(2-アセトキシ-2-ベンゼンスルファニルエチル)-(3-メトキシ-4-ペンチルオキシベンゾイルアミノ)}エチル}フェニルアセテートを用い、実施例7-27と同様にして、2-{2-(4-ヒドロキシフェニル

) エチル] -(7-メトキシ-6-ペンチルオキシ) -2H-イソキノリン-1 -オン(31mg、7.9%) を無色結晶として得た。

実施例7-29

実施例7-30

4, 5-i3ペンチルオキシー3-i2ドロキシー2-i2ー(4-i2トロフェニル)エチル)-2, 3-i2ドロイソインドールー1-i3 (1. 0.4.8 (2. 2.2.9 mm o 1、1. 0.6.9 をジクロロメタン(2.0.9 ml)に溶解し、トリエチルシラン(0.7.9 ml、4. 4.4.9 mm o 1、2. 0.0.9 を加え、1.0.9 間室温で攪拌した。これにトリフルオロ酢酸(2.2.9 ml)を加え、さらに4.9 時間攪拌した。この反応溶液に飽和炭酸水素ナトリウム水溶液(4.0.9 ml)を加え、酢酸エチル(3.0.9 ml)で3回抽出した。有機層をあわせて飽和食塩水(1.0.9 ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、4.5-i3ペンチルオキシー2-i2ー(4.94ーニトロフェニル)エチル)-2.3.94・ジーン・ルオキシー 2-i3のが、2.95 を淡黄色結晶として得た。

実施例7-31

実施例 2-4 9 で得られたN-[2-(4-ヒドロキシフェニル) エチル]-4-メトキシー2-メチルチオメチルー3-ペンチルアミノベンズアミド (9 3 mg、 0.223 mm o 1) 、塩化メチレン (1 m 1) およびモレキュラーシー

ブ4A(100mg)を混合し、0℃まで冷却した。Nークロロスクシンイミド(44.7mg、0.33mmo1)を加えて、室温で24時間攪拌した。飽和食塩水(0.5ml)を加えて、水層を酢酸エチル(5ml)で5回抽出した。有機層を合わせて無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィーで2回(クロロホルム/メタノール=50/1~10/1、ヘキサン/酢酸エチル=1/2)精製することにより2ー〔2ー(4ーヒドロキシフェニル)エチル〕-5ーメトキシー4ーペンチルアミノー2、3ージヒドロイソインドールー1ーオン(12.4mg、15%)を無色結晶として得た。

実施例7-32

実施例2-50で得られたN-〔2-〔4-ヒドロキシフェニル〕エチル〕-4-メトキシー2-メチルチオー3-ペンチルオキシベンズアミド(85mg、 0. 2 1 mm o 1) 、モレキュラーシーブ 4 A (2 0 0 mg) および塩化メチレ ン(1 m l)を混合し、この溶液を 0 ℃に冷却した。N - クロロスクシンイミド (29.4 mg、0.22 mmol)を加えて、室温で5時間攪拌した。反応溶 液を濾過し、濾液に酢酸エチル(20ml)を加えて、飽和食塩水(5ml)で 2回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を遮別後、減圧濃縮して 、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル =1/1)を用いて精製することにより淡黄色油状物質を得た。残った原料を反 応させるため、さらにこの油状物質にモレキュラーシーブ4A(200mg)お よび塩化メチレン(1m1)を混合し、この溶液を0℃に冷却した後、N-クロ ロスクシンイミド (17.4 mg、0.13 mmol) を加えて室温で2時間攪 拌した。反応溶液を濾過し、濾液に酢酸エチル(20m1)を加えて、飽和食塩 水(5 m l)で1回洗浄した。無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後 、減圧濃縮して、得られた残渣を薄層クロマトグラフィー(クロロホルム/メタ ノール=20/1)を用いて精製することにより2-〔2-(4-ヒドロキシフ ェニル) エチル] -6-メトキシ-7-ペンチルオキシベンゾ [d] イソチアゾ

ールー3ーオン(34mg、42%)を無色結晶として得た。 実施例7-33・

実施例2-120で得られた2-(2-ヒドロキシメチル)-3,4-ビスペンチルオキシーN-[2-(4-ニトロフェニル)エチル]ベンズアミド(19.83g、42.0mmo1、1.0eq)をDMSO(200m1)に溶解し、冷水で冷やしながら、三酸化硫黄ーピリジン複合体(20.1g、12.6mmo1、3eq)、トリエチルアミン(52.7mg、37.8mmo1、9eq)を順次加えた。反応溶液を室温まで昇温した後、この温度で2時間攪拌した。この反応液に飽和炭酸水素ナトリウム水溶液(300m1)を加え、酢酸エチル(400m1)で抽出した。有機層を飽和食塩水(300m1)で順次洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、減圧濃縮することにより3-ヒドロキシー2-[2-(4-ニトロフェニル)エチル]-4,5-ビスペンチルオキシー2,3-ジヒドロイソインドールー1-オン(32.2g、overweight)を黄色油状物質として得た。

実施例7-34

実施例7-30で得られた4, 5-ジペンチルオキシ-2-(2-(4-c) ロフェニル) エチル] <math>-2, 3-ジヒドロイソインドールー1-オン(19.69 g、 <math>43.3 mmo1、1.0eq)をエタノール(200m1)に溶解し、5%パラジウムー炭素触媒(3.8g、水分含量<math>50%)を加えた後、水素気流下、2.5時間、 $3kgf/cm^2$ の圧力下で室温で攪拌した。反応溶液をセライト濾過し、濾液を減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/クロロホルム=1/2)を用いて精製することにより2-(2-(4-r)) エチル] -4, 5-ビスペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン(17.19g、<math>93.5%)を淡黄色結晶として得た。

実施例7-35

実施例 7 - 3 4で得られた 2 - 〔2 - (4 -アミノフェニル)エチル〕- 4.

5-ビスペンチルオキシー2, 3-ジヒドロイソインドールー1-オン (22.37g、52.7mmol、1.0eq)をメタノール (100ml)に溶解し、この溶液に10% HCl-メタノール溶液 (86.0g、236mmol、4.4eq)を加え、30分間室温で攪拌した。溶媒を減圧濃縮した後、得られた残渣をヘキサンで洗浄し、エタノールに加熱溶解した。1時間室温冷却の後、水冷下攪拌し、晶析した結晶を濾取し、冷エタノールで洗浄した。一昼夜40℃で真空乾燥することにより2- (2-(4-Tミノフェニル) エチル(3-4,5) 一ビスペンチルオキシー2, (3-3) と無色針状晶として得た。

実施例7-36

実施例 7-3 3 と同様にして得られた 3-ヒドロキシ-5-メトキシ-2- $\{2-(4-$ ニトロフェニル)エチル $\}-4-$ ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オンを用いて、実施例 7-3 0 と同様にして 5-メトキシ-2- $\{2-(4-$ ニトロフェニル)エチル $\}-4-$ ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オンを淡黄色固体として得た。

実施例7-37

実施例 7-36 で得られた 5-メトキシ-2- [2-(4-ニトロフェニル) エチル] -4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オンを用いて、実施例 7-34 と同様にして 2- [2-(4-アミノフェニル) エチル] -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オンを無色結晶として得た。

実施例7-38

実施例 7-23 と同様にして得られた 2-(2-(4-7セトアニリニル) エチル) -7-メトキシ-8-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン(239.4 mg、3.88 mmol、1.0eq)をエタノール(20ml)に溶解し、この溶液に <math>3 N塩酸(2 0 ml)を加えて、加熱還流した。反応溶液を減圧濃縮した後、得られた残渣を、エタノールーエチルエー

テルで再結晶精製することにより2-[2-(4-r)]フェニル) エチル] ー 7- メトキシー8-ペンチルオキシー3, 4-ジヒドロー2H-イソキノリンー1-オン 塩酸塩(165mg、70.0%)を無色結晶として得た。 実施例7-39

実施例 2-46で得られた $2-r \ge J-4-y$ トキシ $-N-\{2-(4-z)$ ロフェニル)エチル $\}-3-ペンチルオキシベンズアミド(15.0g、37.4 mmo1)、トリエチルアミン(5.30 m1、38.0 mmo1)およびクロロホルム(200 m1)を混合し、この溶液にトリホスゲン(4.75 g、16.0 mmo1)のクロロホルム溶液(10 m1)を滴下した。<math>50$ で11.5時間攪拌した後、エタノール(20 m1)を加えて反応を停止し、飽和炭酸水素ナトリウム水溶液(100 m1、50 m1)および水(100 m1、50 m1)で有機層を洗浄した。この溶液を無水硫酸マグネシウムで乾燥、乾燥剤を適別後、減圧濃縮し、生成した結晶にヘキサンークロロホルム溶液(10:1、110 m1)を加えて攪拌洗浄することにより7-yトキシー $3-\{2-(4-z)$ ロフェニル)エチル $\}-8-ペンチルオキシ-1$ Hーキナゾリン-2、4-ジオン(12.56 g、79%)を淡黄色結晶として得た。

実施例 7-39で得られた $7-メトキシ-3-\{2-(4-ニトロフェニル)$ エチル $\}-8-ペンチルオキシ-1$ H-キナゾリン-2, 4-ジオン (45.0 g、105 mm o 1)、 エタノール (1300 m 1) およびジオキサン (700 m 1) を混合し、この溶液に 10 %パラジウムー炭素触媒 (4.5g) を加えた。水素気流下室温で 16.5 時間攪拌した後に反応溶液を濾過し、濾液に活性炭(2.6g)を加え、50 $\mathbb C$ で 1 時間攪拌した。この反応溶液を濾過して、溶媒を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/酢酸エチル= 3/1)に付し、析出した粗結晶をエタノールーへキサンから再結晶することにより $3-\{2-(4-r)\}/2 + 2-(33.82g)$ 、キシー8-ペンチルオキシ-1 H-キナゾリン-2, 4-ジオン (33.82g)、

実施例7-40

81%)を淡黄色結晶として得た。

実施例7-41

実施例 7-40 で得られた $3-\left(2-\left(4-r\right)\right)$ フェニル)エチル)-7-4 メトキシ-8-4 ンチルオキシ-1 H-4 ナゾリン-2 、4-3 オン (28.0 g、70.4 mm o 1) とエタノール(500 m 1) を混合し、結晶が完全に溶解するまで加熱還流した。この溶液に濃塩酸(5.93 m 1、70.4 mm o 1) を滴下し、さらにエタノール(200 m 1)を加えて室温まで冷却した。生成した結晶を濾過することにより $3-\left(2-\left(4-r\right)\right)$ エチル)-7-4 トキシ-8-4 ンチルオキシ-1 H-4 ナゾリン-2 、4-3 オン 塩酸塩(28.24 g、92%)を無色結晶として得た。

実施例7-42

実施例7-43

実施例2-46で得られた2-アミノ-4-メトキシ-N-〔2-(4-ニト

実施例7-44

実施例 2 - 4 6 で得られた 2 - アミノー 4 - メトキシーN - 〔2 - 〔4 - ニトロフェニル〕エチル〕 - 3 - ペンチルオキシベンズアミド(2 0 0 m g、 0. 4 9 8 m m o 1)、エタノール(3 m 1)およびアセチルアセトン〔0. 1 3 m 1、1. 2 5 m m o 1)を混合し、この溶液に濃塩酸 1 滴を加えて 2. 5 時間加熱環流した。酢酸エチル〔3 0 m 1)と飽和食塩水〔3 0 m 1)を加えて、有機層を分離し、この有機層を飽和重曹水〔2 0 m 1)および飽和食塩水〔2 0 m 1)で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を濾別し、減圧濃縮することにより 7 - メトキシー 2 - メチルー 3 - 〔2 - 〔4 - ニトロフェニル〕エチル〕 - 8 - ペンチルオキシー 3 H - キナゾリンー 4 - オンの粗生成物を得た。

実施例7-45

実施例 2-6 1 で得られた 2-r ミノー 4-y トキシー 3-d ンチルオキシー N-(2-ll) ジンー 4-d ルエチル)ベンズアミド(1 0 0 mg、 0. 2 8 0 mm o 1)を用い、実施例 7-3 9 と同様の方法により 7-y トキシー 8-d ンチルオキシー 3-(2-ll) ジンー 4-d ルエチル) -1 Hーキナゾリンー 2 、4-i ジオン(1 0 3 mg、1 9 6%)を無色結晶として得た。

実施例 7 - 4 6

実施例2-61で得られた2-アミノー4-メトキシー3-ペンチルオキシー

N- (2-ピリジン-4-イルエチル) ベンズアミド (200mg、0.560 mmol)、二硫化炭素(0.6ml)、1,8-ジアザビシクロ〔5.4.0) - 7 - ウンデセン (0. 0837m1、0. 56mmol) およびDMF (1 . 0 m l) を混合し、この溶液を 4 時間加熱還流した。この反応溶液に酢酸エチ ル(4 m l)および水(5 m l)を加え、有機層を飽和重曹水(5 m l)、飽和 食塩水 (5 m l) で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後 、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホ ルム/メタノール=10/1)に付し、酢酸エチルから再結晶することにより、 7-メトキシー8-ペンチルオキシー3-(2-ピリジン-4-イルエチル)-2-チオキソー2, 3-ジヒドロー1H-キナゾリン-4-オン(24mg、1 1%)を無色結晶として得た。

実施例7-47

実施例2-61で得られた2-アミノ-4-メトキシー3-ペンチルオキシー N-(2-ピリジン-4-イルエチル) ベンズアミド (100 mg、 0.280mmo1)、ジメチルホルムアミドジメチルアセタール(0.19ml、1.4 mmo1) およびDMF(0.5ml)を混合し、この溶液にp-トルエンスル ホン酸一水和物 (2 mg、0.011 mmo1) を加えて、130℃で5時間攪 拌した。酢酸エチル(15m1)と飽和重曹水(15m1)を加えて、有機層を 分離した後、有機層を飽和食塩水(15ml)で洗浄し、無水硫酸マグネシウム で乾燥した。乾燥剤を濾別後、減圧濃縮して、得られた残渣をシリカゲルカラム クロマトグラフィー(クロロホルム/メタノール=25/1)を用いて精製する ことにより7-メトキシー8-ペンチルオキシー3-(2-ピリジン-4-イル エチル) - 3 H - キナゾリン- 4 - オン (5 7 m g 、 5 5 %) を淡黄色油状物質 として得た。

実施例7-48

実施例2-51で得られた〔3-メトキシ-2-ペンチルオキシ-6-(2-ピリジン-4-イルエチルカルバモイル)フェニル] 酢酸エチルエステルの粗生

成物、エタノール(400m1) およびナトリウムエトキシド(1.98g、2 9. 1 mm o 1) を混合し、90℃で30分間攪拌した。溶媒を減圧濃縮した後 、1N塩酸(100ml)、水(100ml)およびヘキサンー酢酸エチル溶液 (2:1溶液、150ml)を加えて、水層を分離した。有機層を水(100m 1)と1N塩酸(100m1)の溶液で抽出した後、水層を合わせてヘキサン-酢酸エチル溶液(2:1溶液、150ml)で洗浄した。氷冷下水層に炭酸ナト リウムを加えて溶液を塩基性にした後、水層を酢酸エチル(300ml)で2回 抽出し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾別後、溶媒を減圧濃縮し て、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチ ル=1 / 4)を用いて精製することにより 6 - メトキシー 5 - ペンチルオキシー 6-(2-ピリジンー4-イルエチル)-4H-イソキノリン-1, 3-ジオン(31.51g、2steps 67.5%)を淡黄色結晶として得た。 実施例7-49

実施例 7 - 4 8 で得られた 6 - メトキシー 5 - ペンチルオキシー 2 - (2 - ピ リジンー4-イルエチル)-4H-イソキノリン-1,3-ジオン(30.97 g、80.98mmol)、塩化メチレン(150ml) およびメタノール(1 50ml)を混合し、この溶液に氷冷下水素化ホウ素ナトリウム (6.127g 、162mmo1)をゆっくりと加えた。室温で2時間攪拌した後、氷冷下濃塩 酸をpH=1になるまで加え、室温で30分間攪拌した。飽和炭酸水素ナトリウ ム水溶液を加えて溶液を塩基性にし、水層をクロロホルム (500ml) で抽出 した。無水硫酸マグネシウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮して、得 られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)を用いて精製 した。このものに 4 N塩酸 - ジオキサン溶液 (40 m1) を加え、さらに酢酸エ チル(200ml)およびヘキサン(100ml)を加え生成した結晶を濾取し た。この結晶を酢酸エチルで2回加熱洗浄することにより6-メトキシ-5-ペ ンチルオキシー2-(2-ピリジン-4-イルエチル)-2H-イソキノリン-1-オン塩酸塩 (22.412g、68.7%) を無色結晶として得た。

実施例7-50

6-メトキシー5-ペンチルオキシー1、2、3、4-テトラヒドロイソキノリン(116mg、0.465mmol)、(4-ニトロフェニル)酢酸(101.1mg、0.558mmol)および1-ヒドロキシベンゾトリアゾール水和物(81.7mg、0.605mmol)をDMF(2ml)に溶解し、この溶液にWSC塩酸塩(125mg、0.651mmol)を氷冷下で加えた。室温で3時間攪拌後、この反応溶液に酢酸エチル(3ml)と飽和炭酸水素ナトリウム水溶液(3ml)を加えて、有機層を分離した。有機層を無水硫酸ナトリウムで乾燥、乾燥剤を濾別後、溶媒を減圧濃縮することにより1-(6-メトキシー5-ペンチルオキシー3、4-ジヒドロー1H-イソキノリン-2-イル)-2-(4-ニトロフェニル)エタノンの粗生成物を得た。このものをそのまま次の反応に用いた。

実施例7-51

実施例 7-50 で得られた 1-(6-) トキシー5-ペンチルオキシー3, 4-ジヒドロー1 Hーイソキノリンー2-イル) -2-(4-) につってエール) エタノンの粗生成物をエタノール (4m1) に溶解し、この溶液に 10%パラジウムー炭素触媒 (38mg) を加えた。水素気流下 3 時間攪拌した後、反応液を濾過、溶媒を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー (へキサン/酢酸エチル=1/2)を用いて精製することにより 2-(4-) ミノフェニル)-1-(6-) トキシー5-ペンチルオキシー3, 4-ジヒドロー1 Hーイソキノリンー2-イル) エタノン (159mg) (2steps) (39%) を無色油状物質として得た。

上記実施例7-1~7-51で得られた化合物の物性を表111~127に示す。

実施例7-52~7-102

上記実施例 7-1~7-51と同様にして、実施例 7-52~7-102に示す化合物を得た。当該化合物の物性を表127~144に示す。

実施例8-1

実施例 8-2

(E) $-(3-(6-E)^2-4-3+2)$ $-(3-E)^2-4-3+2$ $-(3-E)^2-4-3+2$ $-(3-E)^2-4-4$ $-(3-E)^2-4$ $-(3-E)^2-4$ -(3-E

実施例 8 - 3

4-メトキシ-3-ペンチルオキシ桂皮酸(500 mg、2.62 mmol、1 eq)と1-ヒドロキシベンゾトリアゾール水和物(371 mg、2.75 m mol、1.05 eq)をDMF(5 ml)に溶解し、この溶液にモルホリン(

窒素気流下、4-メトキシ-3-ペンチルオキシ安息香酸(250mg、1.05mmol、leq)を塩化チオニル(1.05ml)に溶解し、70 $\mathbb C$ で5時間攪拌した。これを室温まで冷却した後減圧下、過剰の塩化チオニルを留去した。残渣を、氷冷下モルホリン(274mg、3.15mol、3.0eq)の DMF(3ml)溶液に加えた。氷冷下で30分間攪拌した後、更に室温で1.5m間攪拌した。この反応溶液に水(30ml)を加え、酢酸エチル(50ml)で2回抽出した。有機層をあわせて飽和食塩水(50ml)で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤を遮別後、減圧濃縮して、得られた残渣を、シリカゲルカラムクロマトグラフィー(n- n- n-

上記実施例8-1~8-4と同様にして、実施例8-5~8-7に示す化合物を得た。当該化合物の物性を表146~147に示す。

表 1

参考例	相 構造式	1H NMR (δ) ppm	MS
91	MeO COOH 無色結晶	CDC13,300MHz 10.72(1H, bs), 8.14(1H, d, J = 8.8 Hz), 6.64(1H,dd,J=8.8,2.3Hz), 6.51(1H, d, J = 2.3 Hz), 4.21(2H, t, J = 6.6 Hz), 3.87(3H, s), 1.83-1.95(2H, m), 1.33-1.50(4H, m), 0.95(3H, t, J = 7.0 Hz).	FAB+ 239[M+H+] (70), 221(30).
92	MeO NHPen 無色結晶	CDC13,300MHz 7.51(1H,dd,J=8.1,2.1Hz), 7.29(1H, d, J =2.1 Hz), 6.78(1H, d, J =8.1 Hz), 3.92(3H, s), 3.18(2H, t, J =7.2 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.93(3H, t, J =6.5 Hz).	
93	PenO COOH PenO OPen	1.7-1.9(OH, m),	FAB+ 381[M+H+] (100), 310 (60).

表 2

参考例	構造式	IH NMR (δ) ppm	MS
· 94	MeO NPen ₂ 無色結晶	CDC13,300MHz 8.65(1H, bs), 8.22(1H, d, J =9.0 Hz), 7.14(1H, d, J =9.0 Hz), 4.06(3H, s), 3.54(4H, bt), 1.8-2.1(1H, m), 1.0-1.4(11H, m), 0.81(6H, bt).	FAB+ 308[M+H+] (100), 250(30).
95	PenO CO ₂ H PenO OPen 無色結晶	CDC13,300MHz 7.67(1H, d, J = 16 Hz), 7.75(2H, s), 6.31(1H, d, J = 16 Hz), 3.9-4.1(6H, m), 1.7-1.9(6H, m), 1.30-1.55(12H, m), 0.87-1.0(9H, m).	FAB+ 407[M+H+] (90), 336(60).
96	PenO NHPen 無色結晶	CDCI3,300MHz 7.47(1H,dd,J=8.4,2.1Hz), 7.28(1H, d, J =2.0 Hz), 6.76(1H, d, J =8.4 Hz), 4.06(2H, t, J =6.6 Hz), 3.18(2H, t, J =7.1 Hz), 1.78-1.92(2H, m), 1.62-1.74(2H, m), 1.30-1.53(8H, m), 0.94(3H, t, J =7.0 Hz), 0.93(3H, t, J =7.0 Hz).	FAB+ 294[M+H+] (50), 277(60), 185(100).

表 3

参考例	構造式	1H NMR (δ) ppm	MS
97	MeO NHPen 黄色結晶	CDC13,300MHz 7.71(1H, d, J = 16 Hz), 6.86(1H,dd,J=8.2,2.0Hz), 6.77(1H, s), 6.74(1H, d, J = 8.2 Hz), 6.29(1H, d, J = 16 Hz), 3.88(3H, s), 3.14(2H, t, J = 7.1 Hz), 1.6-1.75(2H, m), 1.3-1.5(4H, m), 0.94(3H, t, J = 7.0 Hz).	FAB+ 264[M+H+] (50), 237(100), 206(40).
98	MeO NPen ₂	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 7.18(1H,dd,J=8.4,2.0Hz), 7.12(1H, d, J = 2.0 Hz), 6.85(1H, d, J = 8.4 Hz), 6.30(1H, d, J = 16 Hz), 3.88(3H, s), 3.08(4H, t, J = 7.7 Hz), 1.37-1.54(4H, m), 0.25-1.36(8H, m), 0.87(6H, t, J = 6.9 Hz).	FAB+ 334[M+H+] (100), 276(30).
99	MeO CO ₂ H MeO NPen 淡黄色油状	CDC13,300MHz 7.77(1H,dd,J=8.5,2.1Hz), 7.66(1H, d, J =2.0 Hz), 6.88(1H, d, J =8.5 Hz), 3.94(3H, s), 3.04(2H, t, J =7.8 Hz), 2.82(3H, s), 1.45-1.60(2H, m), 1.2-1.4(4H, m), 0.89(3H, t, J =6.9 Hz).	FAB+ 252[M+H+] (100), 194(50).

表 4

43.44.4			
参考例	構造式	1H NMR (δ) ppm	MS
100	PenO NHPen 無色結晶	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 6.84(1H,dd,J=8.1,1.8Hz), 6.77(1H, d, J = 2.4 Hz), 6.72(1H, d, J = 8.1 Hz), 6.30(1H, d, J = 16 Hz), 4.03(2H, L, J = 6.3 Hz), 3.15(2H, L, J = 7.1 Hz), 1.75-1.90(2H, m), 1.60-1.73(2H, m), 1.30-1.50(8H, m), 0.94(6H, L, J = 6.9 Hz).	FAB+ 320[M+H+] (70), 262(20).
101	PenHN OPen 無色結晶	CDC13,300MHz 7.69(1H,dd,J=8.1,1.5Hz), 7.41(1H, d, J=1.8 Hz), 6.54(1H, d, J=8.1 Hz), 4.05(2H, t, J=6.5 Hz), 3.20(2H, t, J=7.1 Hz), 1.75-1.90(2H, m), 1.60-1.75(2H, m), 1.30-1.50(8H, m), 0.85-1.2(6H, m).	FAB+ 294[M+H+] (50), 293(100), 236(20).
102	MeO NPen 淡黄色結晶	7.17(1H, bs), 6.88(1H, bs),	FAB+ 278[M+H+] (100), 220(30).

表 5

参考例	構造式	1H NMR (δ) ppm	MS
103	MeO S 無色結晶	CDC13,300MHz 7.72(1H, d, J = 16 Hz), 7.42(1H, d, J = 2.1 Hz), 7.36(1H,dd,J=8.5,2.1Hz), 6.85(1H, d, J = 8.5 Hz), 6.33(1H, d, J = 16 Hz), 3.93(3H, s), 2.91(2H, t, J = 7.4 Hz), 1.60-1.75(2H, m), 1.30-1.50(4H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 281[M+H+] (60), 280(100).
104	CO ₂ H N O 無色結晶	CDCl3,300MHz 7.73(1H, d, J =8.4 Hz), 7.43(1H, s), 6.54(1H, d, J =8.4 Hz), 4.05(2H, t, J =6.3 Hz), 2.94(3H, s), 1.73-1.90(2H, m), 1.30-1.55(4H, m), 0.94(3H, t, J =6.9 Hz).	FAB+ 238[M+H+] (80), 220(60), 169(100).
105	PenHN + CO ₂ H HN + ME 結晶	0.01(1H, d, J = 8.4 HZ),	293[M+H+] (40), 292(100).

表 6

106		参考	例	構造式		
TOO ₂ H PenO R CO ₂ H PenO R R R R R R R R R R R R R R R R R R R			_	WAZ SY		m MS
PenO CHO PenO CHO PenO CHO PenO CHO PenO CHO PenO CHO PenO CHO PenO CHO Signature Cho PenO CHO P		106		PenO	7.71(1H,dd,J=8.4,2.1Hz) 7.62(1H, d, J =2.1 Hz), 6.86(1H, d, J =8.4 Hz), 4.06(2H, t, J =6.6 Hz), 3.05(2H, t, J =7.7 Hz), 2.83(3H, s), 1.80-1.95(2H, m), 1.20-1.65(10H, m), 0.94(6H, t, J =7.0 Hz)	308[M+H+] (20),
PenO 8.29(1H, d, J = 2.1 Hz), 8.02(1H,dd,J=9.0,2.4Hz), 6.91(1H, d, J = 9.0 Hz), 4.10(2H, t, J = 6.5 Hz), 1.80-1.95(2H, m), 1.30-1.60(4H, m), 0.95(3H, t, J = 7.2 Hz).		107		PenOS	9.85(1H, s), 7.72(1H, d, J = 2.1 Hz), 7.63(1H,dd,J=8.4,1.8Hz), 6.91(1H, d, J = 8.4 Hz), 2.94(2H, t, J = 7.4 Hz), 1.80-1.93(2H, m), 1.6-1.78(2H, m), 1.20-1.60(8H, m), 0.94(3H, t, J = 7.2 Hz),	295[M+H+] (80), 294(100).
無色結晶	1	108	F	PenO Br	8.29(1H, d, J = 2.1 Hz), 8.02(1H,dd,J=9.0,2.4Hz), 6.91(1H, d, J = 9.0 Hz), 4.10(2H, t, J = 6.5 Hz), 1.80-1.95(2H, m), 1.30-1.60(4H, m),	288[M+H+] (30),

表 7

参考例	構造式	IH NMR (δ) ppm	MS
109	PenO S 無色結晶	CDCl3,300MHz 7.71(1H, d, J = 16 Hz), 7.41(1H, d, J = 2.4 Hz), 7.33(1H,dd,J=8.7,1.8Hz), 6.83(1H, d, J = 8.7 Hz), 6.31(1H, d, J = 16 Hz), 4.06(2H, t, J = 6.5 Hz), 2.90(2H, t, J = 7.4 Hz), 1.80-1.95(2H, m), 1.30-1.56(8H, m), 0.94(3H, t, J = 8.0 Hz), 0.91(3H, t, J = 8.0 Hz).	FAB+ 337[M+H+] (50), 266(50).
111	MeO S 無色結晶	CDC13,300MHz 7.95(1H, s), 7.93(1H, d, J =8.4 Hz), 6.88(1H, d, J =8.4 Hz), 3.97(3H, s), 2.95(2H, t, J =7.4 Hz), 1.65-1.80(2H, m), 1.30-1.55(4H, m), 0.91(3H, t, J =7.2 Hz).	FAB+ 255[M+H+] (30), 254(40).
112	PeO S 無色結晶	CDC13,300MHz 7.94(1H, d, J = 2.0 Hz), 7.89(1H,dd,J=8.5,2.0Hz), 6.85(1H, d, J = 2.0 Hz), 4.10(2H, t, J = 6.6 Hz), 2.94(2H, t, J = 7.4 Hz), 1.77-1.95(2H, m), 1.60-1.75(2H, m), 1.3-1.5(8H, m), 0.91(3H, t, J = 7.1 Hz).	FAB+ 311[M+H+] (50), 310(100), 240(40).
	無巴枯晶 		

表 8

参考值	列構造式		
113	MeO THOUSE COOH	IH NMR (δ) ppm	MS
114	無色結晶 COOH NO2 無色結晶		
115	MeO (OH N) H		

表 9

(, 4, 5		T	·
参考的	構造式	ih NMR (δ) ppm	MS
116	MeO OH N OH 茶色結晶	DMSO-d6,300MHz 7.39(1H,d,J=8.8Hz) 6.48(1H,d,J=8.8Hz) 3.80(3H,s) 3.32(2H,t,J=6.9Hz) 1.35-1.50(2H,m) 1.20-1.33(4H,m) 0.85(3H,t,J=7.0Hz)	
117	MeO NH ₂ COOH	CDC13,300MHz 7.87(1H,d,J=15.6Hz) 7.17(1H,d,J=8.7Hz) 6.39(1H,d,J=8.7Hz) 6.27(1H,d,J=15.6Hz) 3.96(2H,t,J=6.8Hz) 3.86(3H,s) 1.70-1.85(2H,m) 1.30-1.50(4H,m) 0.94(3H,t,J=7.1Hz)	
118	MeO OH OH 灰色結晶	CDCI3,300MHz 7.37(1H,s) 6.13(1H,s) 3.94(2H,tJ=6.8Hz) 3.86(3H,s) 1.75-1.85(2H,m) 1.35-1.50(4H,m) 0.93(3H,tJ=7.2Hz)	

表 10

参考	例	構造式	1H NMR (δ) ppn	
119	,	MeO OH SMe O 無色結晶	CDC13,300MHz 7.86(1H,d,J=8.8Hz) 6.84(1H,d,J=8.8Hz) 4.26(2H,s) 3.97(2H,t,J=6.7Hz) 3.91(3H,s) 2.09(3H,s) 1.75-1.90(2H,m) 1.30-1.50(4H,m) 0.95(3H,t,J=7.1Hz)	FAB+ 299[M+H+] (50) 289(60)
120		Br OPen 無色結晶	CDC13,300MHz 8.29(1H, d, J = 2.1 Hz) 8.02(1H, dd, J = 9.0, 2.4 Hz) 6.91(1H, d, J = 9.0 Hz) 4.10(2H, t, J = 6.5 Hz) 1.80-1.95(2H, m) 1.30-1.60(4H, m) 0.95(3H, t, J = 7.2 Hz)	288[M+H+] (30) 218(30)
121		COOH S O 無色結晶	7.47(1H,s) 7.19(1H,d,J=9.0Hz) 4.09(2H,t,J=6.6Hz)	FAB+ 511[M+H+] 50) 10(100) 40(40)

表 11

参考例	構造式	IH NMR (δ) ppm	MS
122	MeS COOH 無色結晶	CDCI3,300MHz 7.71(1H,d,J=8.2Hz) 7.48(1H,s) 7.14(1H,d,J=8.2Hz) 4.11(2H,t,J=6.5Hz) 2.47(3H,s) 1.80-1.90(2H,m) 1.30-1.55(4H,m) 0.95(3H,t,J=7.2Hz)	FAB+ 255[M+H+] (30) 254(50)
123	CO₂H S Me結晶	CDCl3,300MHz 7.71(1H,d,J=16.2Hz) 7.08-7.19(2H,m) 6.97(1H,s) 6.38(1H,d,J=16.2Hz) 4.06(2H,t,J=6.5Hz) 2.912(2H,t,J=7.5Hz) 1.30-1.95(12H,m) 0.87-0.98(6H,m)	FAB+ 337[M+H+] (40) 336(100)
124	MeS CO ₂ H 無色結晶	CDC13,300MHz 7.72(1H,d,J=15.9Hz) 7.08-7.15(2H,m) 6.96(1H,s) 6.39(1H,d,J=15.9Hz) 4.06(2H,t,J=6.5Hz) 2.45(3H,s) 1.80-1.90(2H,m) 1.35-1.60(4H,m) 0.95(3H,t,J=7.4Hz)	FAB+ 281[M+H+] (20) 280(40)

表 12

参考例	構造式	IH NMR (δ) ppm	MS
125	COOH N 無色結晶	CDC13,300MHz 7.72(1H,d,J=15.9Hz) 7.11(1H,d,J=8.2Hz) 7.10(1H,s) 6.82(1H,d,J=8.2Hz) 6.30(1H,d,J=15.9Hz) 4.05(2H,t,J=6.6Hz) 3.05(2H,t,J=6.6Hz) 2.81(3H,s) 1.80-1.95(2H,m) 1.20-1.65(10H,m) 0.94(3H,t,J=7.1Hz) 0.89(3H,t,J=7.1Hz)	
126	CO₂H HN O 無色結晶	CDCI3,300MHz 9.04(1H,bs) 7.82(1H,d,J=8.7Hz) 7.72(1H,bs) 6.90(1H,d,J=8.7Hz) 4.11(2H,t,J=6.6Hz) 2.42(2H,t,J=7.5Hz) 1.63-1.94(4H,m) 1.33-1.53(6H,m) 0.96(6H,t,J=7.4Hz)	
127	CO₂H N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		FAB+ 321[M+H+] (60) 219(100)

表 13

参考例	構造式	1H NMR (δ) ppm	MS
128	MeO → CO₂H → C	CDC13,300MHz 9.05(1H,bs) 7.83(1H,d,J=8.7Hz) 6.91(1H,d,J=8.7Hz) 3.95(3H,s) 2.41(2H,t,J=7.5Hz) 1.65-1.80(2H,m) 1.35-1.48(2H,m) 0.95(3H,t,J=7.3Hz)	FAB+ 252[M+H+] (70) 185(100)
129	H N CO₂H CO₂H CO₂H M A M A M A M A M A M A M A M A M A M	DMSO-d6,300MHz 12.8(1H,s) 9.71(1H,s) 8.40(1H,s) 8.32(1H,d,J=8.4Hz) 7.52(1H,d,J=8.4Hz) 7.59(1H,s) 4.07(2H,t,J=6.6Hz) 1.75-1.83(2H,m) 1.30-1.50(4H,m) 0.90(3H,t,J=7.1Hz)	FAB+ 252[M+H+] (100) 182(100)
130	O ₂ N COOH O ₂ N 次黄色結晶		

表 14

参考例	構造式	IH NMR (δ) ppm	Mc
131	H ₂ N CO ₂ H W W W W W W W W W W W W W	DMSO-d6,300MHz 7.26(1H,d,J=15.7Hz) 7.03(1H,s) 6.89(1H,d,J=8.2Hz) 6.59(1H,d,J=8.2Hz) 6.19(1H,d,J=15.7Hz) 5.08(2H,bs) 3.98(2H,t,J=6.5Hz) 1.68-1.80(2H,m) 1.27-1.50(4H,m) 0.90(3H,t,J=7.1Hz)	MS FAB+ 250[M+H+] (60) 249(100)

突結的	構造力	10 92				
		(1) (1) (1) (1) (1) (1) (1) (1)	CDC1 2001 111	IRcm ⁻¹	MS	元素分析
			3.3 Hz)	KBr	FAB+	C ₁₀ H ₁₁ N ₁₃
	₹		(.03(2H, d) J=8.4 Hz) 1.7-1.9(2H, m)	3231 1646	384 [M'H'1(50)	:
		106.5∼ 107.3℃		1516	136(100)	理論值 C: 72.04%
11.			6.81(2H, d, J=8.4 Hz)			H; 7.62%
	< < <		6.18(1H, d, J=15.5 Hz)			N; 5.05%
	/ } }		0.09(1H, bs)			4.予値で 22.078
			4.00(2H, t, 1=6.8 Hz)			H; 7.81%
			3.87(3H, s)			N; 3.64%
			(DMSO-46, 300MHz)		. 472	
			9.14(1H, s) 0.89(3H, t, J=7.2 Hz)		rA8+	
					398	
	- -	126~	7.31(th, d, J≈15.8 Hz) 6.93-7.12(5H, m)		[M*H*] (52) 276(23)	
•		7/7	6.67(2H, d, J=8.4 Hz)		261(100)	
7-1	EQ Y		0.40(1H, d, Jm15,8 Hz)		162(85)	
			3.97(2H, I. J=6.9 Hz)		(00)701	
			3.26-3.37(2H, m)			
	1		2.63(2H, t, J=6.5 Hz)			
	無色和晶		1.66-1.77(2H, m) 1.26-1.46(7H, m)			
			(DMSO-d6, 300MHz)	1		
			9.15(1H, s)		FAB+	
			7.97(1H, t)		440	
	- E	126~	7.32(1H, d, J=15.7 Hz)	_	[M.H.] (50)	
		127C	6.94-7.13(5H, m)		318(14)	
))		6.00(211, 0, J=0.4 FLZ)		332(33)	
<u> </u>			3.95-4.00(4H, m)		162(100)	
	<u>\</u>		3.25-3.38(2H, m)			
			2.65(2H, t, J=7.5 Hz)	_		
	無色括晶		1.04-1.78 (4H, m) 1.27-1.47(8H, m)			
			0.81-0.94(6H.m)			
				_		_

ļ	_							
	14 AB 47.	张	N HI	1H NMR (8) ppm	1Drm-1	Me	14 で 種川	ſ
			300MHz)		ğ	1 4	九条分析	T
			9.13(1H, s)	3.33(2H, m)	<u> </u>	1901		
			7.98(1H, t, J=5.5 Hz]	2.64(2H, 1, J=7.5)	3484	370		
	₹ °	133~	7.33(1H, d, J=15.7 Hz)	1.71(2H, m)	3305	[M'H'](100)	_	
		1257	7.13(1H, d, J=2.0 Hz)	1.44(2H. m)	- 46 4	248(31)		
)	7.09(1H, dd, 8.4, 2.0 Hz)	0.94(3H, I, J=7.4 Hz)	1589	233(58)		
1-4			7.01(2H, d, J=8.4 Hz)		1549	176(76)		
			6.97(1H, d, J=8.3 Hz)		1516			_
	\ \ \ \		6.68(2H, d, J=8.4 Hz)		1260			
	-		6.48(1H, d, J=15.8 Hz)		1241			
			3.98(2H, d, J=6.5 Hz)		1140			
	無色結晶		3.78(3H, s)		1018		-	
			(DMSO-46, 300MHz)		1			
			9.14(1H, s)	2.64(2H, t, J=7.5 H2)	ğ	FAB+		Γ
•			7.97(1H, t, J=5.6 Hz)	1.72(2H, m)	3456	398	_	
	₹ •	117~	7.32(1H, d, J=15.7 Hz)	1.41(2H, m)	2922	[M'H'] (33)	_	
	\ \ -\ \ \	118℃	7.12(1H, d, J=2.0 Hz)	1.37-1.25(4H, m)	1652	397[M] (32)		_
v	\ \ \ \		7.09(1H, dd, 8.3, 2.0 Hz)	0.88(3H, t, J=6.9 Hz)	1614	276(25)		
	Neo Oew		7.01(2H, d, J=8.4 Hz)		1594	261(36)		_
	\ \ \ -°		6.90(1H, d, J=8.3 Hz)		1548	176(69)		
)		6.00(211, U, J=0.3 ffZ)		1514	(001)551		
			2 02/21: d, J=15.8 HZ)		1342			
	無色抹品		3.78(2H, 1, J=0.0 HZ)		1259			_
			3.33(2H, m)		1243			
			(DMSO-46, 300MHz)		Š			7
			9.14(1H, s)	2.64(2H, t, J=7.5 Hz)	2	rAB+	:	
	-		7.97(1H, t, J=5.6 Hz)	1.70(2H, m)	3280	412	Carmoo,	
	₹ •	23.7	7.32(1H, d, J=15.9 Hz)	1.40(2H, m)	2933	(M'H') (66)		
	· · · · · · · · · · · · · · · · · · ·	124TC	7.12(1H, d, J=2.0 Hz)	1.37-1.22(6H. m)	1650	290(22)	理論値	_
		·	7.08(1H, dd, 8.3, 2.0 Hz)	0.84(3H, t, J=6.9 Hz)	1614	275(28)	C; 72.96%	
9-1	Meo	* .	7.00(2H, d, J=8.4 Hz)		1598	176(52)	H; 8.08%	
	· · · · · · · · · · · · · · · · · · ·		6.95(1H, d, J=8.3 Hz)		1538	168(100)	N; 3.40%	
	\ \ \ \ \		6.68(2H, d, J=8.3 Hz)		1516		分析值	
			0.47(1H, d, J=15.8 Hz)		1259		C; 72.96%	
	無色結果		3.90(2H, t, J=6.6 Hz)		1237		H: 8.23%	
			2.78(5H, S)		8611		N; 3.37%	
1			J.55 (4n, m)					

类瓶彻	が一般を	红色	117	(4)			
			NN 11	IN NMK (0) ppm	IRcm.	MS	元素分析
			9.8(1H, s)	1 2.1 S(dU m)	ğ	FAB+	
			9.2(1H, s)	0.9(3H, r. 1= 7 < H2)	3280	356	C ₂₁ H ₂₅ NO ₄
	H _O	,	7.5(2H, d, J=9 Hz)		2934	[M'H'] (20)	
))	176.6∼ 177.2°F	7.4(1H, d, J=18 Hz)		1654	169(100)	理論值
	Z	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.2(1H, s)		1619		C: 70.96%
1-7	I Com		7.1(1H, d, J=6 Hz)		1511		8 8 70 ° 2
)—		7.0(1H, d. J=6 Hz)				0 100
	\{\}.		6.7(2H, d, J=9 Hz)				分析值
			6.6(1H, d, J=18 Hz)				C; 70.66%
			4.0(2H, t, J=7.5 Hz)				H; 7.23%
			3.8(3H, s)		-		N; 4.08 %
			(CDCI, 300MHz)		!		
			7.6(1H, d, J=15 Hz)	1.3-1.5(4H, m)	Ž	FAB+	ON H.
			7.1(2H, d, J=9 Hz)	0.9(3H, t, J = 7.5 Hz)	3221	370	O siddration
	O:		7.0(1H, d, J=9 Hz)		1513	[M'H'] (40)	
	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7.0(1H, s)		1264		加麗高
	/ >== > > -		6.8(2H, d, J=9 Hz)				C; 71.52%
æ-	Meo / Own		6.6(1H, bs)			-	2, 2, 2, %
	\ \ \ -0		6.3(1H, d, J=15 Hz)				
	/ >		o.U(1H, bs)				分析值
			4.5(2H, d, J=3 Hz)				C; 71.64%
			4.0(2H, t, J=7.5 Hz)				H; 7.48%
			3.9(3H, s)				N; 3.82 %
			CDCI, 300MH ₂				
		•	7.51(1H, d, J=15.5 Hz)	2.59(2H, t. la7 4 Hz)	Neai	FAB+	
			7.04(1H, dd, J=8.4, 2.4 Hz)	1.7-1.9(2H, m)	3300	398	
	o		7.00(1H, d, J=2.4 Hz)	1.3-1.5 (4H, m)		(M*H*) (95)	
			7.00(2H, d, J=8.3 Hz)	0.92(3H, I, J=7.0 Hz)		247(50)	
,	> > > > > > > > > > > > > > > > > > >		6.82(1H, d, J=8.4 Hz)		1594	177(100)	
6-1	HO OWN	•	6.78(2H, d, J=8.3 Hz)		1514		
	\ \ \ \		0.31(1H, DS)		7500		
			5.73(1H. bs)				
			4.00(2H, t, J=6.8 Hz)			· - · · ·	
,			3.86(3H, s)				
			3.38(2H, q, J=6.7 Hz)				

CDCJ,,JOMH2	
7.6 H2) 3.61(2H, q, 1=6.8 Hz) 3280 [Nr'H'] (40) 1=8.3, 1.8 Hz) 2.79(2H, l, 1=6.8 Hz) 2933 HRFAB(m/z) 1=8.3, 1.8 Hz) 1.7-1.9(2H, m) 1586 C ₂ H ₂₀ NO, 1=8.3 Hz) 1.3-1.9(4H, m) 1586 C ₂ H ₂₀ NO, 1=8.3 Hz) 1.3-1.9(4H, m) 1573 384.3006 1=7.6 Hz) 1.5-1.9(4H, m) 1573 384.2106 1=15.3 Hz) 3.22(2H, q, 1=7.0 Hz) 384.2106 4-15.5 Hz) 3.22(2H, q, 1=7.0 Hz) 3280 384 4-15.5 Hz) 3.22(2H, q, 1=7.0 Hz) 1255 [Mr'H'] (100) 4-15.5 Hz) 1.2-1.5(4H, m) 1256 7.9 Hz) 1.2-1.5(4H, m) 1260 7.9 Hz) 1.8-1.9(4H, m) 1260 7.9 Hz) 1.8-1.9(4H, m) 3288 [Mr'H'] (40) 15.5 Hz) 1.8-1.9(4H, m) 3288 [Mr'H'] (40) 15.5 Hz) 1.0-1.1(2H, m) 2927 247(35) 15.5 Hz) 1.0-1.1(2H, m) 1260 15.5 Hz) 1260 1260 18 Hz) 1260 1260 15.5 Hz) 1260 127(35) 15.5 Hz) 1260 127(35) 15.5 Hz) 1260 1260 15.5 Hz) 1260 1260 15.5 Hz) 1260 1260 15.5 Hz	
1=8.3, 1.8 Hz) 1.7-1.9(2H, m) 1586 =1.8 Hz) 1.3-1.9(4H, m) 1586 =1.8 Hz) 1.3-1.9(4H, m) 1573 =7.6 Hz) 1.3-1.9(4H, m) 1573 =1.5.6 Hz) 1.3-1.9(4H, m) 1573 =1.5.5 Hz) 1.3-1.9(3H, t, J=7.0 Hz) 1584 =1.5.5 Hz) 1.3-1.9(2H, m) 1534 =1.5.5 Hz) 1.3-1.9(4H, m) 15.5 Hz) 1.3-1.9(4H, m) 13.9(4H,	7.7
## 3 ## 5	7.0
-7.6 Hz) -15.5 Hz) -15.5 Hz) -6.8 Hz) Hz -15.5 Hz) Hz -15.5 Hz) Hz -15.5 Hz) Hz -15.5 Hz) -6.8 Hz) -7.9 Hz) -7.9 H	6.80
6.8 Hz) 6.8 Hz) 6.8 Hz) 6.8 Hz) 6.8 Hz) 6.8 Hz) 1.2.1.5 Hz) 1.2.9 (3.4, t, J=7.0 Hz) 1.2.1.5 (44, m) 1.2.1.6 (44, m) 1.2.1.7 (14, m) 1.2.1.7 (124, m) 1.2.1.8 (124, m) 1.2.1.8 (124, m) 1.2.1.8 (124, m) 1.2.1.9 Hz) 1.2.1.1 (124, m) 1.2.2.1 (124, m) 1.2.3	6.7
6.8 Hz) Hz 3.88(3H, s) 15.5 Hz) 3.28(2H, s) 15.2 Hz) 3.2 (2H, q, J=7.0 Hz) 3.2 (2Hz) 3.3 (2Hz) 3.4 (2Hz) 3.5 (2Hz) 3.5 (2Hz) 3.5 (2Hz) 3.5 (2Hz) 3.6 Hz) 3.7 (2Hz) 3.8 Hz) 4. Hz) 5. Hz) 5. Hz) 6. Hz) 8. Hz) 8. Hz) 8. Hz) 8. Hz) 9.	6.7
6.58 Hz) Hz 3.88(3H, s) 1.5.5 Hz) 3.52(2H, q, J=7.0 Hz) 1.5.2 Hz) 2.93(2H, t, J=7.0 Hz) 1.2.1.5(4H, m) 1.2.1.5(1H, m)	87.6
3.88(3H, s) 1.5.5 Hz) 3.52(2H, q, J=7.0 Hz) 1.2.93(2H, t, J=7.0 Hz) 1.2.93(2H, t, J=7.0 Hz) 1.2.1.5(4H, m) 1.2.1.5(4H, m) 1.2.1.5(4H, m) 1.2.1.5(4H, m) 1.2.1.5(4H, m) 1.2.1.6(1H, m	3 8
# 15.5 Hz)	7.82
8.5 Hz) 1.93(2H, I, 1=7.0 Hz) 1053 18.5 Hz) 1.2-1.5(4H, m) 1513 7.9 Hz) 0.94(3H, I, 1=7.0 Hz) 11260 7.9 Hz) 0.94(3H, I, 1=7.0 Hz) 1260 7.9 Hz) 1.2-1.5(4H, m) 1255 Hz) 1.2-1.8(10H, m) 12927 8.3 Hz) 0.94(3H, I, 1=7.1 Hz) 1260 Hz 8.3 Hz) 0.94(3H, I, 1=7.1 Hz) 1260 Hz 15.5 Hz) 1.0-1.1(2H, m) 1260 Hz 8.3 Hz) 0.94(3H, I, 1=7.1 Hz) 1260 Hz 8.3 Hz) 1.0-1.1(2H, m) 1260 Hz	7.60(
7.9 Hz) 1.3-1.9(2H, m) 11313 7.9 Hz) 0.94(3H, t, J=7.0 Hz) 1260 7.9 Hz) 0.94(3H, t, J=7.0 Hz) 1260 7.9 Hz) 1.2-1.5(4H, m) 12.828 15.5 Hz) 1.8-1.9(4H, m) 12.927 8.3 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 0.94(3H, t, J=7.1 Hz) 1513 16.9 Hz) 1.0-1.1(2H, m) 1513 16.9 Hz) 1.0-1.1(2H, m) 1513 17.00	7.06(1
7.9 Hz) (0.94(3H, t, 1=7.0 Hz) (1260 (1.5 Hz) (1.6 Hz) (1.6 Hz) (1.6 Hz) (1.6 Hz) (1.6 Hz) (1.7 Hz) (1.7 Hz) (1.7 Hz) (1.7 Hz) (1.8 Hz) (1	7.06(11
7.9 Hz) 8.5 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 15.7 Hz) 18.1.9 (4H, m) 1.2-1.8(10H, m) 1.9 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m)	7.01(11
8.5. Hz) 15.5 Hz) 6.8 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 15.5 Hz) 16.1.2-1.8(10H, m) 17.9 Hz) 17.0-1.1(2H, m) 17.1 Hz) 17.1 Hz) 17.0	6.92(1H
15.5 Hz) Lz Lz 18.5 Hz) 18.1.9 (H, m) 19. Hz) 1.0-1.1(2H, m)	6.81(1H
5.8 Hz) 15.5 Hz) 18.1.9(4H, m) 19.5 Hz) 1.2-1.8(10H, m) 1.9 Hz) 1.0-1.1(2H, m) 1.5 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m)	6.24(1)
15.5 Hz) 15.5 Hz) 18-1.9(4H, m) 8.3.1.9 Hz) 1.2-1.8(10H, m) 1.9 Hz) 1.0-1.1(2H, m) 1.9 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m) 1.55 Hz) 1.0-1.1(2H, m) 1.50 1.50 1.50 1.50	6.17(1
15.5 Hz) 1.8-1.9(4H, m) 32.88 =8.3.1.9 Hz) 1.2-1.8(10H, m) 2927 1.9 Hz) 1.0-1.1(2H, m) 2927 8.3 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 1260 6.9 Hz) 1260	4.0I(Z
8.3 I.9 Hz) 1.2-1.8(10H, m) 3.288 1.9 Hz) 1.0-1.1(2H, m) 2927 1.0-1.1(2H, m) 2927 1.0-1.1(2H, m) 1.0-1.1(2H, m) 1.0-1.1(2H, m) 1.0-1.1(2H, m) 3.288 1.0-1.1(2H, m) 3.288 1.0-1.8(10H, m) 3.2-1.8(10H, m) 3.2-1	7.54(1
1.9 Hz) 1.0-1.1(2H, m) 2927 8.3 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 0.94(3H, t, J=7.1 Hz) 1260 6.9 Hz) 1260	7.07(1
15.5 Hz) 0.94(3H, t, J=7.1 Hz) 1513 15.5 Hz) 1260 6.9 Hz) 0.94(3H, t, J=7.1 Hz) 1260 100 Hz) 1260 101 Hz 101 Hz) 1260 101 Hz 101	7.02(1)
6.9 Hz)	6.23(1H
6.9 Hz) n)	5.52(1H
(u	4.02 (2)
û û	3.88(3)
	3.5-3.7
	3.3-3.5(
(2H, m)	1.9-2.1 (2H, m)

表 19

	有	10000000000000000000000000000000000000					
		Line Line	MN HI	1H NMR (&) ppm	- 6	γ	中華公社
1-13 N	MeO	125~ 126°C	2 Hz)	1.80-1.90(2H, m) 1.32-1.51(4H, m) 0.93(3H, t, 1=6.9 Hz)	Neat 3301 2949 1615 1263	FAB+ 369 [M*H*] (100)	C ₂ H ₂ N ₁ O ₃ 理論值 C; 71.71% H; 7.66 % N; 7.60 % 分析值 C; 71.63% H; 7.82% N; 7.59 %
1-14 M	MeO Meo Meb Meo	937 7	8.53-8.60(1H, m) 7.63(1H, td, J=7.7, 1.8 Hz) 7.53(1H, d, J=15.6 Hz) 7.03-7.22(4H, m) 6.84 (1H, d, J=8.3 Hz) 6.63(1H, br s) 6.25(1H, d, J= 15.6 Hz) 4.03(2H, J=6.9 Hz) 3.88(3H, s) 3.81(2H, q, J=6.2 Hz) 3.07(2H, t, J=6.2 Hz) 1.81-1.89(2H, m)	1.36-1.49(4H, m) 0.94(3H, t, J=7.0 Hz)	Neat 3249 2951 1654 1592 1513 1258 1134	FAB+ 369 [M*H*] (100) 289(23) 247(59) 177(72)	C ₂₂ H ₂₃ N ₃ O ₃ 開警 C; 71,71% H; 7.66 % N; 7.60 % 分析值 C; 71,76% H; 7.85% N; 7.56 %
1-15 Ma	MeO Ne		CDCi,300MHz 8.43-8.59(2H, m) 7.50-7.64(2H, m) 7.50(1H, d, J=15.3 Hz) 7.02-7.16(5H, m) 7.01(1H, d, J= 1.9 Hz) 6.84(1H, d, J= 13.3 Hz) 6.61(1H, d, J= 15.3 Hz) 6.61(1H, d, J= 15.3 Hz) 3.89(3H, t, J=6.8 Hz) 3.89(3H, s) 3.73-3.86(4H, m) 1.77-1.95(2H, m)	1.31-1.53(4H, m) 0.93(3H, t, J=7.1 Hz)	Neat 1645 1592 1434 1261 1139	FAB+ 474 [MrH+] (100) 247(81) 177(99)	

r		A L U	• • • •
1	C ₃ H ₃₅ N ₃ O ₃ 理警值 C; 73.54% H; 7.45 % N; 8.87% 分析值 C; 73.65% N; 8.88 %	·	
35.	FAB+ 474 [M*H*] (36) 369(23) 247(50) 177(73) 106(100)	FAB+ 398 [M*H*] (70) 247(100) 177(80)	FAB+ 384 [M*H*] (70) 247(44) 176(100)
7	Neat 2953 1642 1596 1596 1260	Neat 3220 2931 1643 1584 1514	
IH NMR (3) nam	10 10 10 10 10 10 10 10 10 10	7.44(1H, d, J=15.4 Hz) 0.93(3H, t, J =7.1 Hz) 7.00(2H, d, J=8.3 Hz) 0.93(3H, t, J =7.1 Hz) 7.00(2H, d, J=8.3 Hz) 6.7-(14H, m) 6.77(2H, d, J=8.3 Hz) 6.31(1H, d, J=15.4 Hz) 4.02(2H, t, J=6.7 Hz) 3.87(3H, s) 3.6-3.7(2H, m) 2.99(3H, s) 4.22.8-2.9(2H, j) 1.8-1.9(2H, m) 1.3-1.5(4H, m)	DMSO-d6,300Mhz 9.14(1H, s) 7.98(1H, t) 7.32(1H, d, 15.8 Hz) 6.94-7.15(5H, m) 6.67(2H, d, 1=8.4 Hz) 6.67(2H, d, 1=8.4 Hz) 6.67(1H, d, 1=15.8 Hz) 7.39(2H, t, 1=6.7 Hz) 7.39(2H, t, 1=6.7 Hz) 7.39-3.36(2H, m) 7.10-1.85(1H, m) 7.10-1.85(1H, m) 7.10-1.85(1H, m) 7.10-1.85(1H, m) 7.10-1.85(1H, m) 7.10-1.85(1H, m)
融点	114~ 116°C		91.∼ 92.⊄
4 構造式	Med	MeO O O O O O O O O O O O O O O O O O O	Meo o
実施例	1-16	1-17	1-18

PMSO-d6,200Mcte	吳施例	構造式	(基)	N H	IH NMR (A) num		37.	11. 五	,
13(14, 4)	1				inde (a) with	E E	MS	兀罴が町	_
738(IH, I)				9.15(1H. s)	7-11 1 E-1 1 E-500 O		FAB+		
Maco	_			7 08(1H 1)	0.50(0H, I, J=/.4 HZ)		308		
Maco				7.25(111, t)			0.44 441 (24)		
COSTOCING COST		Č		(201 0:21 m; m; 111):0 112)			1 (m 11 (m)		
131-39(2H a) 131-39(2H m) 131				6.94*1,13(3ff, ff)			176(100)		
354(114, a) = 13.8 Hz) 3.77.3.79(2H, a) = 13.8 Hz) 3.77.3.79(2H, a) = 13.77.3.79(2H, m) 3.77.3.79(2H, m) 1.37.1.68(1H, m) 1.38(1H, d, l=13.8, 5.68 Hz) 1.38(1H, d, l=13.8, 1.96 Hz) 1.38(1H, bs) 1.38(1H,) } }		0.08(211, 0, 7=0.4 172)			(200		
3.86(2H, d, =5.8 Hz) 3.84(2H, d, =5.8 Hz) 3.27-3.39(2H, m) 2.64(2H, L, =7.2 Hz) 1.37-1.53(4H, m) 1.37-1.53(_	- Neo-		6.47(1H, d, J=15.8 Hz)					
3.78(34, m) 2.64(24, L) = 7.2 Hz) 1.57 Ls(14, m) 1.55 Ls(14, m)				3.86(2H, d, J=5.8 Hz)					
2.2473.39(2H, m) 2.24714.1, 1= 71 Hz) 1.571.68(H, m) 1.371.68(H, m) 1.372.68(H,	_	>		3.78(3H, s)					
137-156(H, L) = 72 Hz) 157-156(H, m) 137-156(H, m) 137-156(H, m) 137-156(H, m) 137-156(H, m) 137-156(H, m) 135-156(H, m) 137-156(H, m) 13				3.27-3.39(2H, m)					_
1.57-1.68(1H, m) 1.57-1.68(2.64(2H, t, J = 7.2 Hz)					
MeO 133-1.33(4H, m) 13400ARE 13400ARE 13400ARE 1340(H, m) 135-1.33(4H, m) 136-1.33(4H,		谈黄色油状		1.57-1.68(1H, m)					
Mago O O O O O O O O O O O O O	T			1.33-1.53(4H, m)					
135				DMSO-d6,300MHz			FAB+		T
135				9.14(1H, s)	0.28-0.32(2H, m)				
135				7.97(1H, t, J=5.7 Hz)			368		
(6.50(2H, d.) 136℃ (6.50(2H, d.) 136 Hz) (176(100) (176(100) (176(100) (176(100) (176(100) (176(100) (176(100) (176(100) (176(100) (176(100) (176(10) ((135~	7.30(1H, d, J=15.6 Hz)			[M*H*] (37)		
(Agility d.) 1-8.8 4 Hz) (Agility d.) 1-8.6		\ \ \ \	1360	6.94-7.09(5H, m)			231(36)		
## 日本			!	6.67(2H, d, J= 8.4 Hz)			1/6(100)		
3.81(2H, d, J=6.9 Hz) 3.78(3H, s) 3.29-3.35(2H, m) 2.63(2H, t, J=7.5 Hz) 1.14-1.29(1H, m) 0.53-0.60(2H, m) CDCI,300MHz 7.56(1H, d, J=18.51 Hz) 7.17(2H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, d) 6.85(1H, d, J=8.27 Hz) 7.03(1H, m) 6.79(2H, d, J=8.21 Hz) 6.25(1H, d, J=1.56 Hz) 5.68(1H, bs) 5.28(1H, bs) 4.70-4.80(2H, m) 4.03(2H, t, J=6.89 Hz) 3.81(2H, d, J=6.99 Hz) 3.89(1H, s) 3.89(1H	_	Carrie		6.46(1H, d, J=15.6 Hz)					
2.63(2H, t, 1=7.5 Hz) 3.29-3.35(2H, m) CDC1,300MHz 7.56(1H, d, 1=15.6 Hz) 7.17(2H, d, 1=8.51Hz) 7.17(2H, d, 1=8.51Hz) 7.07(1H, d, 1=8.27 Hz) 7.07(1H, d, 1=8.27 Hz) 7.07(1H, d, 1=8.27 Hz) 7.03(1H, s) 6.85(1H, d, 1=8.27 Hz) 6.85(1H, d, 1=8.27 Hz) 6.95(3H, t, 1=7.08 Hz) 6.25(1H, d, 1=7.58 Hz) 6.25(1H, d, 1=7.58 Hz) 6.26(1H, bs) 6.26(1H, bs) 6.32(1H, bs)				3.81(2H, d, J=6.9 Hz)			_	·	
2.63(2H, t, J=7.5 Hz) 2.63(2H, m) 2.63(2H, t, J=7.5 Hz) 1.14-1.29(1H, m) 0.53-0.60(2H, m) CDC1,300MHz 7.56(1H, d, J=15.6 Hz) 7.17(2H, d, J=8.51Hz) 7.17(2H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.07(2H, d, J=8.27 Hz) 7.07(2H, d, J=8.27 Hz) 7.07(2H, d, J=8.27 Hz) 6.75(2H, d, J=8.51 Hz) 6.75(2H, d, J=15.6 Hz) 6.75(2H, d, J=15.6 Hz) 6.75(2H, d, J=15.6 Hz) 6.75(1H, bs) 7.06(2H, bs) 7.07(2H, bs) 7.07(_			3.78(3H, s)					
2.63(2H, t, J=7.5 Hz) 1.14-1.29(1H, m) 0.53-0.60(2H, m) 0.53-0.60(2H, m) CDCI,,300MHz 7.56(1H, d, J=15.6 Hz) 7.07(1H, d, J=8.51Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, d) 6.85(1H, d, J=8.27 Hz) 6.85(1H, d, J=8.27 Hz) 7.03(1H, d) 6.79(2H, d, J=8.51 Hz) 6.79(2H, d, J=8.51 Hz) 6.79(2H, d, J=15.6 Hz) 6.79(2H, d, J=15.6 Hz) 6.79(2H, d, J=15.6 Hz) 6.79(2H, d, J=15.6 Hz) 6.79(2H, bs) 7.04(1H, bs) 7.04(2H, bs) 7.05(1H, bs)				3.29-3.35(2H, m)					
CDCI,300MHz 7.56(1H, d, J=15.6 Hz) CDCI,300MHz 7.56(1H, d, J=8.51Hz) 7.07(1H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, d) 6.85(1H, d, J=8.27 Hz) 7.03(1H, d) 6.79(2H, d, J=8.51 Hz) 6.25(1H, d, J=15.6 Hz) 7.03(1H, d) 6.79(2H, d, J=15.6 Hz) 6.25(1H, d, J=15.6 Hz) 6.25(1H, d, J=15.6 Hz) 6.25(1H, d, J=15.6 Hz) 6.25(1H, bs) 7.03(2H, bs) 7.03(2H, bs) 7.03(2H, bs) 7.03(2H, bs) 7.04(2H, bs) 7.05(2H, bs)				2.63(2H, t, J=7.5 Hz)					
CDC1,300MHz 7.56(1H, d, J=15.6 Hz) 3.89(1H, s) 7.17(2H, d, J=8.51Hz) 3.15(1H, dd, J=13.8, 5.68 Hz) 7.07(1H, d, J=8.27 Hz) 3.03(1H, dd, J=13.8, 7.96 Hz) 6.85(1H, d, J=8.27 Hz) 1.36-1.4(2H, m) 6.85(1H, d, J=8.27 Hz) 1.34-1.53 (4H, m) 6.79(2H, d, J=8.51 Hz) 0.95(3H, t, J=7.08 Hz) 6.25(1H, d, J=7.58 Hz) 6.25(1H, d, J=7.58 Hz) 6.25(1H, bs) 7.06(1H, bs) 7.07(2H, d, J=7.58 Hz) 7.06(2H, bs) 7.06(2H, bs) 7.06(2H, bs) 7.06(2H, bs) 7.07(2H, d, J=6.89 Hz) 7.07(2H, t, J=6.89 Hz)		無色結晶		1.14-1.29(1H, m)					
CDCI,300MHz 7.56(1H, d, J=15.6 Hz) 7.7(2H, d, J=8.51Hz) 7.7(2H, d, J=8.51Hz) 7.07(1H, d, J=8.27 Hz) 7.07(1H, d, J=8.27 Hz) 7.03(1H, d, J=8.27 Hz) 7.03(1H, d, J=8.27 Hz) 7.03(1H, d, J=8.27 Hz) 6.85(1H, d, J=8.27 Hz) 6.85(1H, d, J=8.51 Hz) 6.79(2H, d, J=8.51 Hz) 6.79(2H, d, J=8.51 Hz) 6.25(1H, d, J=7.58 Hz) 7.03(1H, d, J=7.58 Hz) 8.68(1H, bs) 8.58(1H, bs) 8.28(1H, bs)	7			0.53-0.60(2H, m)					
CONH ₂ QUINH ₃ QUINH ₄				CDCI,300MHz		ĔĞ	FAB+		
CONH2 CO		•		7 17/2H 4 1-0 4111-5	3.89(1H, s)	3600	,	C _M H _M N ₃ O ₃	
CONH2 OH 7.07(1H, G, J=8.27 Hz) 3.03(1H, dd, J=13.8, 7.96 Hz) 3000 [M*H*] (20) (1.03(1H, s) 1.80-1.4(2H, m) 1.80-1.4(2H, m) 1.80-1.4(2H, m) 1.80-1.4(2H, m) 1.80-1.4(2H, m) 1.34-1.53 (4H, m) 1.612 1.36(70) 6.79(2H, d, J=8.51 Hz) 0.95(3H, t, J=7.08 Hz) 6.25(1H, d, J=15.6 Hz) 6.17(1H, d, J=7.58 Hz) 5.68(1H, bs) 5.28(1H, bs) 4.70-4.80(2H, m) 4.03(2H, t, J=6.89 Hz)	_	1		7.1.1(4.11, u, J=0.31f1Z)	3.13(1H, dd, J=13.8, 5.68 Hz)	3 8	174		_
6.85(1H, 6) 6.85(1H, d, J=8.27 Hz) 6.79(2H, d, J=8.21 Hz) 6.79(2H, d, J=8.51 Hz) 6.79(2H, d, J=8.51 Hz) 6.25(1H, d, J=15.6 Hz) 6.17(1H, d, J=7.58 Hz) 6.17(1H, d, J=7.58 Hz) 6.28(1H, bs) 6.28(1H, bs) 6.328(1H, bs) 6.328(1H, bs) 6.328(1H, bs) 6.328(1H, bs) 6.328(1H, bs) 6.33(2H, t, J=6.89 Hz)		CONH2		7.07(1H, d, J=8.27 Hz)	3.03(1H, dd, J=13.8, 7.96 Hz)	3	(M.H.) (20)	田松体	
6.85(1H, d, J=8.27 Hz) 1.34-1.53 (4H, m) 1612 136(70) 6.79(2H, d, J=8.51 Hz) 0.95(3H, t, J=7.08 Hz) 6.25(1H, d, J=15.6 Hz) 6.25(1H, d, J=7.58 Hz) 5.68(1H, bs) 5.28(1H, bs) 4.70-4.80(2H, m) 4.03(2H, t, J=6.89 Hz)	_			7.03(1H, s)	1.80-1.4(2H, m)	1652	247(50)	C. 67 404	
6.79(2H, d, J=8.51 Hz) 0.95(3H, t, J=7.08 Hz) 6.25(1H, d, J=15.6 Hz) 6.17(1H, d, J=7.58 Hz) 5.68(1H, bs) 5.28(1H, bs) 4.70-4.80(2H, m) 4.03(2H, t, J=6.89 Hz)	-			6.85(1H, d, J=8.27 Hz)	1.34-1.53 (4H, m)	1612	136(70)	H. 7.00%	_
				6.79(2H, d, J=8.51 Hz)	0.95(3H, t, J=7.08 Hz)			N: 6.57%	
	_	- Oaw		6.25(1H, d, J=15.6 Hz)				2	_
		\ \ \ \ \ \		6.17(1H, d, J=7.58 Hz)				分析值	
				5.68(1H, bs)				C; 67.30%	
				5.28(1H, bs)				H; 7.17%	
4.03(2H, t, J=6.89 Hz)				4.70-4.80(2H, m)				N; 0.35 %	
	ᅥ			4.03(2H, t, J=6.89 Hz)			_		

Г			
元素分析		C ₂₃ H ₂₉ NO ₄ 理辭庫 C; 72.04% H; 7.62% N; 3.65% 分析值 C; 71.64% H; 7.74% N; 3.54 %	
MS	FAB+ 370 [M*H*] (40) 163(40)	FAB+ 384 [M*H*] (30)	FAB+ 384[M+H+] (100) 177(90)
IRcm.i	KBr 3377 2954 1655 1586	Neat 3330 2933 2360 2341 1590	·
мк (б) ррт	1.2-1.4(4H, m) 0.88(3H, t, J =7.0 Hz)	2.8-3.6(3H, m) 2.6-2.8(2H, m) 1.6-1.8(2H, m) 1.2-1.5(4H, m) 0.89(3H, t, J=7.5 Hz)	1.30-1.50(4H, m) 0.91(3H, t, J∈6.9 Hz)
		DMSO-d6,300MHz 9.5(1H, 8) 9.2(1H, 8) 7.3(1H, d, J=15 Hz) 7.0(1H, d, J=9 Hz) 6.6(1H, d, J=9 Hz) 6.2-6.9(3H, 8) 6.0(1H, d, J=15 Hz) 3.9(3H, t, J=7.5 Hz) 3.9(3H, m) 3.6-3.7(1H, m) 3.2-3.4(1H, m)	CDCJ,300MHz 7.89(1H, d, J=16 Hz) 6.97-7.10(4H, m) 6.89(1H, dd, J=8.1, 1.8 Hz) 6.80(2H, dd, J=6.6, 1.8 Hz) 6.39(1H, d, J=16 Hz) 5.39(1H, s) 5.33(1H, s) 3.94(2H, t, J=6.8 Hz) 3.85(3H, s) 3.61(2H, q, J=6.6 Hz) 7.81(2H, q, J=6.9 Hz) 1.70-1.85(2H, m)
	(分類) 92.5₹ 95.3℃		
	£	₹ ~~¥ ~~	OM OM
	HQ HQ	1-26	<u>27</u>
	Price (2007) I'M NMK (0) ppm IRam'l MS	HO DMSO-d6,300MHz IH NMK (0) ppm IRgm ⁻¹ MS HAB+ 9.54(IH, s) 1.2-1.4(4H, m) AS (BB + AB+ 9.36(IH, s) 0.88(3H, t, J = 7.0 Hz) 3377 370 23.23(IH, d, J = 15.8 Hz) 1.25.2 (IM + IV) (40) 1655 (57(2H, d, J = 8.4 Hz) 6.50(2H, d, J = 15.8 Hz) 6.50(2H, s) 6.50(2H, s) 3.8-4.0(2H, m) 3.2-3.3(4H, m) 2.5-2.7(2H, m)	Main

·· · · · · · · · · · · · · · · · · · ·	The state of the s	and the second of the second o	160
1	元素分析 C ₂₁ H ₂₁ NO ₄ 理論値 C;71.52% H; 7.37% N; 3.79% 分析値 C; 71.06% H; 7.50% N; 3.74%	CnHnNO, 理警值 C; 76.36% H; 8.80% N; 3.31% 分析值 C; 76.80% H; 9.18% N; 3.48 %	
	MS FAB+ 370 [M*H*] (40) 233(35)	FAB+ 424 (M*H*] (100) 287(57) 161(53)	FAB+ 409 [M*H*] (30) 106(100)
2	1646 1583 1583	KBr 3389 3162 1654 1611	Neat 3270 1655 1618 1600
H NAR (&) and	CDCl,,300MHz 9.12(1H, s) 8.99(1H, s) 2.66(1H, d, J=5.5 Hz) 8.90(1H, t, J=4.1 Hz) 7.25(1H, d, J=1.8 Hz) 7.01(2H, d, J=6.2 Hz) 6.97(1H, d, J=6.2 Hz) 6.91(1H, d, J=4.9 Hz) 3.3-3.4(2H, m)	7.37(1H, d, J=15.3 Hz) 1.11-1.25(6H, m) 7.34(1H, s) 0.84-0.99(2H, m) 7.32(1H, dd, J=8.2 Hz) 0.83(3H, t, J=6.7 Hz) 7.06(2H, d, J=8.2 Hz) 0.83(3H, t, J=6.7 Hz) 6.82(3H, d, J=8.2 Hz) 6.19(1H, bs) 6.19(1H, bs) 6.19(1H, d, J=15.3 Hz) 3.81(2H, t, J=6.9 Hz) 3.81(2H, t, J=6.9 Hz) 2.80(2H, t, J=7.0 Hz) 1.32(6H, s)	CDC1,300MHz 8.50(1H, d, J=8.35 Hz) 7.59(1H, d, J=15.6 Hz) 7.36(1H, d, J=5.85 Hz) 7.32(1H, d, J=5.85 Hz) 7.32(1H, d, J=5.85 Hz) 7.32(1H, d, J=5.85 Hz) 6.83(1H, d, J=5.85 Hz) 6.83(1H, d, J=5.85 Hz) 6.83(1H, d, J=5.85 Hz) 6.33(1H, d, J=5.85 Hz) 6.23(1H, d, J=5.85 Hz) 7.36(2H, d, J=6.56 Hz) 7.36(2H, d, J=6.56 Hz) 7.36(2H, t, J=7.02 Hz) 7.32(1H, t, J=7.02 Hz) 7.32(1H, t, J=7.02 Hz) 7.32(1H, t, J=7.02 Hz) 7.32(1H, t, J=7.02 Hz) 7.33(2H, m)
繁点			
的 構造式	HO NO	He Common of the	New O
实施例	1-28	1-29	1-30

N N N N	情遊式	融点	IH N	1H NMR (&) npm	É	95.	
1-31	F P P P P P P P P P P P P P P P P P P P		5.5 H (2.5 H (2.	0.83-0.99 (2H, m) 0.82(3H, t, J=6.7 Hz)	1KBr 3650- 3650- 1651 1598	MS FAB+ 440 [M*H*] (90) 287(100) 161(77)	九寨分析
1-32	HO Neo		CDCI3,300MHz 7.55(1H, d, J=16 Hz) 7.28(1H, d, J=9.6 Hz) 7.27(1H, s) 7.07(2H, d, J=8.4 Hz) 6.81(2H, d, J=9.6 Hz) 6.81(2H, d, J=9.6 Hz) 6.80(1H, d, J= 16 Hz) 6.18(1H, d, J= 16 Hz) 5.50-5.60(2H, m,involving 8 singlet at 5.55) 3.83(3H, s) 3.61(2H, q, J=6.6 Hz) 2.81(2H, t, J=6.8 Hz)	2.58(2H, t, J=7.7 Hz) 1.48-1.64(2H, m) 1.20-1.40(6H, m) 0.88(3H, t, J=6.9Hz)		FAB+ 382 [M*H*] (80) 260(20) 245(50)	
1-33	Ne _O Nr		CDCI,,300MHz 8.54(2H, d, J=6.0 Hz) 7.57(1H, d, J=15 Hz) 7.29(1H, d, J=8.7 Hz) 7.28(1H, s) 7.16(2H, d, J=6.0 Hz) 6.81(1H, d, J=15 Hz) 6.19(1H, d, J=15 Hz) 5.53-5.61(1H, m) 3.84(3H, s) 2.91(2H, t, J=6.5 Hz) 2.91(2H, t, J=7.7 Hz) 2.58(2H, t, J=7.7 Hz)	1.47-1.70(2H, m) 1.23-1.40(6H, m) 0.89(3H, t, J=6.9 Hz)	7.24	FAB+ 367 [M*H*] (90) 245(20)	

	٦	Commence of the second	表 26	
	元素分析	C23H29NO3S		
	. MS	FAB+ 400[M+H+] (100)	FAB+ 382 [M*H*] (50) 246(20)	FAB+ 424[M+H+] (100)
	IRcm ⁻¹			Neat 3298 2932 1651 1606 1543 1513
	CDCI3,300MHz	7.55(114,d,1=15.41z) 7.36(114,d,1=15.41z) 7.29(114,d,1=1.841z) 7.29(114,d,1=8.44tz) 7.08(114,d,1=8.44tz) 6.78-6.84(314,m) 6.19(114,d,1=5.44z) 3.91(314,s) 3.92(214,d,1=6.34z) 2.89(214,d,1=7.21z) 2.89(214,d,1=7.21z) 2.81(214,d,1=6.81z) 1.58-1.73(214m) 1.25-1.50(41,m)	CDCl,300MHz 7.52(1H, d, J=15 Hz) 7.02(2H, d, J=81 Hz) 6.79(1H, d, J=8.1 Hz) 6.77(1H, d, J=8.1 Hz) 6.70(1H, s) 6.70	DMSO-46,300MHz 8.0 (1H, bt) 7.5 (2H, d, J=9 Hz) 7.5 (2H, d, J=9 Hz) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 6.9 (2H, d, J=9 Hz) 6.9 (2H, d, J=9 Hz) 6.4 (1H, d, J=15 Hz) 6.4 (1H, d, J=15 Hz) 7.0 (2H, t, J=4 Hz) 7.1 (2H, t, J=4 Hz) 7.2 (2H, t, J=4 Hz) 7.3 (2H, t, J=4 Hz) 7.4 (4H, m)
石器	十	107.3~ 108.5°C 7 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	144.9 ℃ 6.6.1 144.9 ℃ 6.6.1 14.9 ℃ 6.6.1 14.9 № 8.8.8 13.6	8.0 7.3 7.3 7.3 7.3 6.8 6.4 6.4 6.4 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
[例] 標遊式		Meo S C H	Meo HN A NH2	N N N N N N N N N N N N N N N N N N N
沒結包		1-34	1-35	1-36

		T	
元素分析		C22H27NO3 理路值 C: 74.46% H; 7.70% N; 3.96% 分析值 C: 74.68% H; 7.88% N; 3.98%	C ₂₄ H ₃₆ NO ₄ 趙騎庙 C; 74,14% H; 8,67% N; 3,09% A)-竹庙 C; 74,29% H; 8,84% N; 3,16%
MS	FAB 454[(100	FAB+ 354[M+H+] (100)	FAB+ 454 [M+H+] (50)
IRcm.1	Neat 3303 2955 2870 1652 1619 1515 1258	Neat 3300 2933 2359 1652 1602 1513	NaCl 3305 2933 1652 1619 1514 1257
1H NMR (&) ppm	Hz 1.6-1.8 (4H, m) 1.5 Hz) 1.3-1.5 (8H, m) 0.8-1.0 (6H, m) 9 Hz) 9 Hz) 9 Hz) 9 Hz) 15 Hz) n) n) n)	1.3-1.4 (4H, m) 1.3-1.4 (4H, m) 1.3-1.4 (4H, m) 1.3-1.4 (4H, m) 0.9 (3H, t, J = 4 Hz) 1.3-1.5 Hz) 1.3-1.4 Hz) 1.3-1.5 Hz) 1.3-1.4 Hz) 1.3-1.5 Hz) 1.3-	L3-1.5 (8H, m) L3-1.5 (8H, m) L3-1.5 (8H, m) L4z) L5 Hz) L7 Hz) L7 Hz) L8 Hz) L9 Hz)
融点	BMSO-46,300MHz 8.0 (1H, bt) 7.3 (1H, d, J=15 Hz) 7.1 (1H,s) 7.1 (2H, d, J=9 Hz) 7.1 (1H, d, J=9 Hz) 6.9 (1H, d, J=9 Hz) 6.8 (2H, d, J=9 Hz) 6.8 (2H, d, J=15 Hz) 6.8 (2H, d, J=15 Hz) 3.8-4.0 (4H, m) 3.8-3.0 (3H, m) 3.2-3.3 (2H, m) 2.7 (2H, t, J=4 Hz)	DMSO-d6,300MHz 9.2 (1H, s) 8.0 (1H, bt) 7.5 (2H, d, J = 9 Hz) 7.3 (1H, d, J = 15 Hz) 7.0 (2H, d, J = 9 Hz) 6.9 (2H, d, J = 9 Hz) 6.7 (2H, d, J = 9 Hz) 6.7 (2H, d, J = 9 Hz) 6.8 (1H, d, J = 15 Hz) 7.0 (2H, t, J = 4 Hz)	DMSO-46,300MHz 8.0 (1H, bt) 7.3 (1H, d, J=15 Hz) 7.1 (2H, d, J=9 Hz) 7.0 (1H, d, J=6 Hz) 6.8 (2H, d, J=9 Hz) 6.8 (2H, d, J=9 Hz) 6.5 (1H, d, J=15 Hz) 6.5 (1H, d, J=15 Hz) 3.8 4.0 (4H, m) 3.8 (3H, s) 3.3-3.5 (2H, m) 2.7 (2H, t, J=4 Hz) 1.6-1.8 (4H, m)
構造式	Meo O O O O O O O O O O O O O O O O O O O	₹ ~ ~	
米福包	1-37	1-38	1-39

Ī	and we are a second second of	2 2 8	
	元素分析 C23H29NO4 理論值 C; 72.04% H; 7.62% N; 3.65% 分析值 C; 72.16% H; 7.80% N; 3.65%	C23H31NO4 理路值 C; 71.66% H; 8.11% N; 3.63% 分析值 C; 71.64% H; 8.28%	C24H31NO4 理驗值 C; 72.52% H; 7.86% N; 3.52% 分析值 C; 72.07% H; 7.99% N; 3.56%
	MS FAB+ 384 [M+H+] (30)	FAB+ 386 [M+H+] (95) 137(100)	FAB+ C 398 C 398 C 362(60) E 177(100) E 177(100) C C C C C C C C C C C C C C C C C C
Rem.	Neal Neal 3462 3312 2938 1648 1600 1540 1512 1263 1138	Neat 3354 2933 1644 1515	KBr 13293 3 3293 4 [[1630 2 2 1614 1 1 1511]
構造式 MSO-de 3000405.	~ HEETE-2	CDC3,300MHz 6.92 (2H, d, J=8.5 Hz) 2.65 (2H, t, J=6.9 Hz) 6.77 (1H, d, J=8.1 Hz) 2.40 (2H, t, J=7.5 Hz) 6.76 (2H, d, J=8.5 Hz) 1.7-1.8 (2H, m) 6.71 (1H, d, J=1.9 Hz) 1.7-1.8 (2H, m) 6.68 (2H, dd, J=8.0, 0.91 (3H, t, J=7.1 Hz) 6.50 (1H, s) 7.4.17 (1H, bs) 3.95 (2H, t, J=6.9 Hz) 3.43 (2H, t, J=6.9 Hz) 2.86 (2H, t, J=7.5 tz)	1.8-2.0 (2H, m) 1.2-1.5 (4H, m) 3 2) 0.93 (3H, t, J = 7 Hz) 11 11 11 11 11 11 11
8		Me O	MeO O
英相包	1-40	1-41	1.42
		0 1 -	

表 29

_			
上班令花	CC 型 に に に に に に に に に に に に に		
SMS	FAB+ 384 [M+H+] (60) 177(100)		
1Rem.1	Neal 3278 2933 1649 1602 1602 1514		
IH NMR (8) ppm	CDCI3,300MHz 7.8 (1H, d, J=15 Hz) 3.6 (2H, q, 6 Hz) 7.4 (1H, d, J=6 Hz) 2.8 (2H, t, 6 Hz) 7.4 (1H, d, J=6 Hz) 1.8-1.9 (2H, m) 7.1 (1H, d, J=8 Hz) 1.2-1.5 (4H, m) 6.8 (1H, d, J=8 Hz) 0.9 (3H, t, 8 Hz) 6.5 (1H, d, J=6 Hz) 6.4 (1H, s) 6.4 (1H, s) 5.5 (1H, bs) 7.6 (1H, bs) 7.7 (1H, bs) 7.8 (2H, bs) 7.9 (2H, t, 6 Hz)		
数点			
構造式	₩ NI OPEN	Meo H	9 H
実施例	1-43	44-1	1-45

外插列	4. 据式	融 点	1H NMR (&) nm				
1-46	Meo A N Neo	170.1∼ 171.2℃	CDCI3,300MHz 8.3 (1H, bt) 7.5 (1H, d, J=18 Hz) 7.0 (2H, d, J=9 Hz) 7.0 (1H, s) 6.8 (1H, d, J=9 Hz) 6.4 (1H, d, J=9 Hz) 6.4 (1H, d, J=18 Hz) 7.0 (2H, t, J=7.5 Hz) 3.9-4.0 (2H, m) 3.9-4.0 (2H, m) 3.5-3.8 (2H, m) 3.3-3-4.0 (2H, m) 3.3-3-4.0 (2H, m) 3.3-3-4.0 (2H, m)	Rem-1 KBr 3276 2956 1666 1627 1514	MS FAB+ 377 [M+H+] (100)	元素分析 C21H32N2O4 理論值 C, 66.99% H; 8.57% N; 7.44% 分析值 C; 66.94% H; 8.80% N; 7.43%	
	Meo A Neo Owe				·		~ 00
	MeO	150~153 CC 153	BMSO-46,300MH2 8.73 (1H, s) 8.62 (1H, s) 8.62 (1H, s) 7.97 (1H, t, 1=5.9 Hz) 7.33 (1H, d, 1=16.5 Hz) 7.33 (1H, d, 1=2.0 Hz) 7.09 (1H, dd, 1=9.0, 2.0 Hz) 6.97 (1H, dd, 1=9.0, 2.0 Hz) 6.97 (1H, dd, 1=9.0 Hz) 6.66 (1H, dd, 1=9.0 Hz) 6.66 (1H, dd, 1=9.0 Hz) 6.68 (1H, dd, 1=9.0 Hz) 6.69 (1H, dd, 1=9.0 Hz) 6.69 (1H, dd, 1=9.0 Hz) 6.60 (1H, dd, 1=9.0 Hz) 6.60 (1H, dd, 1=9.0 Hz)	3340 4 4 1515 [1] 1259 340 1740 2.1140 1740 1740 1740 1740 1740 1740 1740	FAB+ 400 [M+H+] (92) 307(14) 247(71) 177(80) 154(100)		

Γ			
111111111111111111111111111111111111111	P		
Me		384[M+H+] (100) 247(89) 177(75)	FAB+ 369[M+H+] (100) 311(21) 247(14) 177(29)
T. Well	3250 2933 2528 1261 1136 1023	1512	3245 1596 1263 1140
1H NMR (3) ppm	1.27-1.45 (4H, m) 0.90 (3H, t, J=7.3 Hz)	1.33-1.52 (4H, m) 0.94 (3H, t, J=7.0 Hz)	1.33-1.52 (4H, m) 0.93 (3H, t, J=6.9 Hz)
IH NM	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		CDCI3,300MHz 8.47-8.54 (2H, m) 7.51-7.62 (2H, m) 7.24-7.28 (1H, m) 6.59-7.09 (1H, m) 6.85 (1H, d, J=8.5 Hz) 6.19 (1H, d, J=18.2 Hz) 5.51-5.70 (1H, m) 7.24-7.28 (1H, m) 6.19 (1H, d, J=18.2 Hz) 7.91 (1H, d, J=6.9 Hz) 7.92 (2H, t, J=6.9 Hz) 7.91 (2H, t, J=6.9 Hz) 7.92 (2H, m)
融点		108 × 110	130~132 C
構造式	Maco	Meo A B B A B A B A B A B A B A B A B A B	MeO O
実施例	1-49	1-50	1-51

Γ		2. 0.0	
	九条分析		
	C C		FAB+ 383 [M*H*] (50) 246(60)
1	THE		- 0.50
1H NMR (&) nnm			2.81(2H, t, J=6.8 Hz) 1.6-1.75(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)
		·	CDCI, 300MHz 7.53(1H, d, J=15 Hz) 7.31(2H, d, J=8.7 Hz) 6.75-6.85(3H, m) 6.71(1H, d, J=8.1 Hz) 6.70(1H, s) 6.70(1H, s) 6.70(1H, s) 6.71(1H, d, J=15 Hz) 5.58(1H, bs) 5.58(1H, bs) 3.58(1H, bs) 3.61(2H, bs) 3.61(2H, bs) 3.12(2H, t, J=7.2 Hz)
融点			162.7∼ 163.5℃
構造式	Meo HCI	NOH.	Meo HN A B
実施例	1-52	1-53	1-54

į							
N MB VB	标道式	養点	IH NMR (\$)	- man			
1-55	Meo N		6 Hz) n) (4 Hz) (5 Hz) (6 Hz) (6 Hz) (7 Hz) (8 Hz) (9)	0.86(6H, t, J=7.1 Hz)	E	MS FAB+ 453 [M*H*] (100) 395(80)	元素分析
1-56	無色結晶	144.9∼ 145.5℃	CDCl ₃ 300MHz 7.50(1H, d, J=15 Hz) 7.08(2H, d, J=8.4 Hz) 6.80(2H, d, J=8.4 Hz) 6.67(2H, s) 6.19(1H, d, J=15 Hz) 5.58(1H, bt) 5.58(1H, bt) 3.49(1H, s) 3.67(6H, t, J=6.5 Hz) 3.67(2H, q, J=6.5 Hz) 2.81(2H, t, J=6.8 Hz) 1.7-1.85(6H, m) 1.3-1.5(12H, m)	0.86-0.97(9Н, m)		FAB+ 526 [M*H*] (30) 389(40)	
1-57	AN A	119.9∼ 121.3℃	CDCl, 300MHz 7.54(1H, d. J=16 Hz) 7.07(2H, d. J=16 Hz) 7.07(2H, d. J=8.4 Hz) 6.80(2H, d. J=8.4 Hz) 6.7(1H, dd. J=8.7, 2.1 Hz) 6.7(1H, dd. J=8.7, 2.1 Hz) 6.70(1H, s) 6.70(1H, s) 6.69(1H, d. J=8.7 Hz) 6.17(1H, dd. J=16 Hz) 7.8(1H, bs) 7.8(1H, bs) 7.8(1H, bs) 7.8(1H, bs) 7.8(1H, bt) 7	2.80(2H, t, J=6.8 Hz) 1.75-1.85(2H, m) 1.6-1.7(2H, m) 1.3-1.5(8H, m) 3.9-0.97(6H, m)	- 45K	FAB+ 439 (M*H*) (50) 302(100)	
							_

表 34

東施伊	構造式	五流	IH NWB (\$)				. · · æl
			CDCI, 300MH-	IRcm ⁻¹	MS	元素分析	i Ac.
			(142)		FAB+		4 . 4
			7.02-7.12(4H. m)				w?.
	₽¢ \$;	6.77-6.85(3H, m)		397 (Mrt.) 2100		.: D
)=	104.8	6.17(1H, d, 1=16 Hz)		20/80)		95, 1
		106.4 C	5.58(11, bt)		23(60)		
1-58			3.88(3H, s)				Çî Gire
			3.61(2H, q, J=6.5 Hz)				- ¢B
	We'N		3.02(2H, t, J=8.0 Hz)				************************
			2.81(2H, t, J=6.9 Hz)				g
			2.78(3H, s)				
	無色結晶		1.5-1.65(2H, m)	-			
			1.22-1.48(4H, m)				
					FART		_
			<u></u>	-		C24H27NO4	
			7.30 (1H d 1=15 Hz) 1.84-1.93 (2H, m)	5567	394		
			7.09 (2H m)	1606	[M+H+] (73)	理論値	_
			(-11, 111) 0.34 (3H, t, J=7.2 Hz)	7131	(001)/01	C: 73.26%	<i>-</i>
1-59	:I		6.81-6.84 (7H m.)	1330		H; 6.92%	_
	5		6.73 (1H d 1=2 2 Hz)	6551		N; 3.56%	·
	\{\}_\{\}_\{\}_\(\)		6.27 (1H d 1=15 d Hz)	200		O.H.C.	5 4
			5.95 (1H. s)			77-07-11E	4
			5.67 (1H. hd.)			U; 73.23% H: 6.06@	
	無色結晶		4.17 (2H, t, J=6.6 Hz)	-		N; 3.56%	
			3.63 (2H, q, J=6.6 Hz)				٠,
			CDCl3,300MHz	 	24.0		
			7.02.7.08 (411)	-			
	3		6.79-6.88 (3H, m)	4 :	404		
		161-162	6.10 (JH A T-15.4)		[M+H+] (32)		
		ပ	5.49-5.60 (7H m)		134(100)		
1-60		_	5.14 (2H, s)		****		
			3.90(3H, s)				
- , -			3.60 (2H, q, J=6.6 Hz)				
			2.80 (2H, t, J=0.8 Hz)				
	無色格晶					-	
							•

PAGE 11 NAR (6) ppm Reminder (6) ppm Reminder (7) ppm Rem	计数分析			
PAGE 11 NAR (6) ppm Reminder (6) ppm Reminder (7) ppm Rem	MS			⁷ AB+ 10[M+H+] 100) 88(25) 73(55)
OH CDCI3300MHz T.53 (1H, d, J=15.5 Hz) 6.99-7.06 (4H, m) 6.99-7.06 (4H, m) 6.99-7.06 (4H, m) 6.31 (1H, s) 6.31 (1H, bt) 5.25-5.44 (2H, m) 7.00 (2H, ht) 7.0	IRcm.			H 4022
				CDCI3.300MHz 7.53 (1H, d, J=15.5 Hz) 6.99-7.06 (4H, m) 6.79-6.84 (3H, m) 6.31 (1H, s) 6.31 (1H, s) 6.38 (1H, d, J=15.5 Hz) 5.99-6.11 (1H, m) 5.68 (1H, brt) 5.25-5.44 (2H, m) 4.59 (2H, t, J=6.7 Hz) 3.60 (2H, q, J=6.7 Hz) 2.79 (2H, t, J=6.7 Hz) 2.79 (2H, t, J=6.7 Hz)
1-62 Meo September 19-1		NA COMM	Meo O	無色結晶

	and the same of th		
	九業分析	C27H37NO3S	C22H28N2O4 ·HCI 理論值 C; 62.77% H; 6.70% N; 6.65% 分析值 C; 57.75% H; 6.75% N; 6.05%
		FAB+ 456[M+H+] (100) 319(50)	FAB+ 385[M+H+] (80), 154(100), 136(80).
	וגפש		KBr 3215 1653 1617 1516
H NMR (4) nam	(z) 1.79-1.86 (2H, m) 1.38-1.48 (4H, m) 0.93 (3H, t, J=7.0 Hz) (2)	2.81(2H,1,J=6.9Hz) 1.80-1.90(2H,m) 1.60-1.70(2H,m) 1.25-1.55(8H,m) 0.93(3H,1,J=7.1Hz) 0.90(3H,1,J=7.1Hz)	3.31 (2H, q, J= 6.6 Hz) 2.9-3.1 (2H, m) 2.63 (2H, t, J= 7.5 Hz) 2.55 (3H, t, J= 6.0 Hz) 2.0-2.2 (2H, m)
H	CDCI3.300MHz 7.52 (1H, d, J=1; 7.02-7.09 (4H, m 6.79-6.86 (3H, m 6.15 (1H, d, J=1; 6.01-6.12 (1H, m) 5.55 (1H, bt) 5.55 (1H, s) 5.26-5.45 (2H, m 4.02 (2H, t, J=6; 3.61 (2H, q, J=6; 2.81 (1H, t, J=6,7 CDCI3.300MHz	7.53(1H,d,J=15.5Hz) 7.36(1H,d,J=2.1Hz) 7.26(1H,dd,J=2.1,8.4Hz) 7.08(2H,d,J=8.5Hz) 6.80(2H,d,J=8.5Hz) 6.7(1H,d,J=8.5Hz) 6.17(1H,d,J=15.5Hz) 5.54(1H,b) 5.14(1H,s) 4.03(2H,t,J=6.6Hz) 2.88(2H,t,J=6.6Hz) 2.88(2H,t,J=6.6Hz)	BMSO-d6,300MHz 8.97 (2H, bs) 8.63 (1H, bs) 8.05 (1H, t, J = 5.7 Hz) 7.13 (1H, d, J = 15.6 Hz) 7.15 (1H, dd, J = 8.4, 1.8 Hz) 6.99 (2H, d, J = 8.4 Hz) 6.99 (1H, d, J = 8.4 Hz) 6.99 (1H, d, J = 8.4 Hz) 6.71 (2H, d, J = 8.4 Hz) 6.72 (1H, d, J = 15.6 Hz) 6.72 (1H, d, J = 15.6 Hz) 6.73 (1H, d, J = 15.6 Hz) 6.73 (1H, d, J = 15.6 Hz) 7.18 (2H, s)
製点	119~120	109.5∼ 110.4℃	221~222 E
標准式	A H H H H H H H H H H H H H H H H H H H	第色結晶	数色格晶
実施例	7	1-65	1-66

実施例	構造式	融点	IH NMR	1H NMR (&) ppm	IRcm.1	MS	元素分析
1-68	Meo Meb相晶	139.7~ 142.3°C	CDCI,300MHz 7.53(IH, d, J=16 Hz) 7.05(IH, d, J=8.4 Hz) 7.02(2H, d, J=8.4 Hz) 7.00(IH, s) 6.84(IH, d, J=8.4 Hz) 6.66(2H, d, J=8.4 Hz) 6.16(IH, d, J=16 Hz) 6.16(IH, d, J=16 Hz) 7.00(IH, b) 7.00(IH, b) 7.00(IH, b) 7.00(2H, s) 7.00(2H, s) 7.00(2H, s) 7.00(2H, s) 7.00(2H, s)	2.77(2H, t, 1=6.8 Hz) 1.8-1.93(2H, m) 1.3-1.55(4H, m) 0.94(3H, t, 1=7.2 Hz)		FAB+ 383 [M*H*] (40) 247(80)	
1-69	Meo s metals	115.2~ 116.3℃	CDCl,,300MHz 7.53(1H, d, J=16 Hz) 7.37(1H, d, J=2.1 Hz) 7.27(1H, d, J=8.5 Hz) 7.01(2H, d, J=8.3 Hz) 6.81(1H, d, J=8.5 Hz) 6.66(2H, d, J=8.3 Hz), 6.17(1H, d, J=16 Hz) 5.53(1H, b1) 3.91(3H, s) 3.61(2H, b3) 3.61(2H, b4) 3.62(2H, d, J=7.4 Hz)	2.77(2H, t, J=6.8 Hz) 1.6-1.73(2H, m) 1.3-1.5(4H, m) 0.90(3H, t, J=7.2 Hz)		FAB+ 399 [M*H*] (50) 263(40)	

			表 38	erena er
		元素分析		
		FAB+ 429 [M*H*] (20) 307(20)	FAB+ 374 [M'H'] (100) 263(30)	FAB+ 412 [M*H*] (30) 246(30)
	-	P.C.m.		
	1H NMR (&) nam	0MHz 1, J=8.7 Hz 1, J=16 Hz) 1, J=2.4 Hz) 1, J=2.4 Hz) 1, J=16 Hz) 1, J=2.4 Hz) 1, J=0.1, 8 1, J=16 Hz) 1, J=17 Hz)	7.50(1H, s) 7.54(1H, d, J=16 Hz) 7.54(1H, d, J=2.1 Hz) 7.38(1H, d, J=2.1 Hz) 7.30(1H, dd, J=2.1, 8.5 Hz) 6.85(1H, s) 6.82(1H, d, J=8.5 Hz) 6.56(1H, d, J=16 Hz) 6.67(2H, d, J=16 Hz) 6.67(2H, d, J=16 Hz) 6.67(2H, m) 6.67(300Mu.	=8.6 Hz) 3.02(2H, t, J=6.9 Hz) =15 Hz) 1.6-1.73(2H, m) =8.6 Hz) 1.3-1.5(4H, m) =8.2 Hz) 0.93(3H, t, J=7.1 Hz) =8.2 Hz) 0.93(3H, t, J=7.1 Hz) =6.7 Hz) 5.7 Hz)
		CDCJ,300MHz 8.20(2H, d, J=8 7.58(1H, d, J=16 7.41(2H, d, J=2.4 7.39(1H, d, J=2.4 7.31(1H, dd, J=2.6 6.84(1H, d, J=16 5.64(1H, bt) 3.93(3H, s) 3.93(2H, t) 1=6,9 3.04(2H, t, J=7.4 1.58-1.75(2H, m) CDCJ,300MHz	7.30(114, s) 7.54(114, d, J=16 Hz) 7.38(114, d, J=2.1 Hz) 7.30(114, dd, J=2.1, 8, 6.85(114, s) 6.82(114, d, J=8.5 Hz) 6.26(114, b) 6.26(114, s) 3.91(314, s) 3.69(214, d, J=6.9 Hz) 2.83-2.92(414, m) 1.6-1.73(214, m) CDCI. 300Mut-	8.18(2H, d, J=8,6 Hz) 7.54(IH, d, J=15 Hz) 7.39(2H, d, J=8,6 Hz) 6.80(IH, d, J=8,2 Hz) 6.71(IH, d, J=8,2 Hz) 6.70(IH, s) 6.70(IH, s) 7.35(IH, d) 7.35(IH, b) 7.35(IH, b) 7.35(IH, b) 7.35(IH, b) 7.36(2H, q, J=6,7 Hz) 7.12(2H, q, J=5,7 Hz)
	E EEE	114.1 114.1 114.6	119.2~ 120.4°C	122.17 122.77 6. 6. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
実施例 構造式		1-70 Meo	MeO N NH MeO NH ME MEA MEA MEA MEA MEA MEA MEA MEA MEA	MeO HN HN HN HIS HEE HEE HEE HEE HEE HEE HEE HEE HEE HE
₩.		12	1-71	1-72

		1000	TH NMR (8) PRIM	§) nnm	101	374	日本なた	Г
ı			CDCI, 300MH7		IIS.	S E	ル** ガ が	7
				1.55-1.70/2H m)		FAB+		
			J=15 Hz)	1.3-1.43(4H. m)		357		
	N N		•	0.88(3H, t, J=7.1 Hz)		[M'H'] (50)		
•	₹	150.7∼ 151.6℃				246(30)		
) }		6.66(1H, d, J=8.0 Hz)		<u>.</u>			
	•		0.54(1H, 5) 6.19(1H, d. I=15 Hz)					
,			4.12(1H, bs)					
			3.81(3H, s)					
			3.63(2H, q, J=6.1 Hz) 3.08(2H, bt)					
•			2.83(2H, t, J=6.3 Hz)					
						FAB+		_
			7.18 (1H, dd /= 10.0 HZ)	3.11 (2H, t, J= 6.4 Hz)		174[M±H±)	C21H27NO3S	
	[1		1.8-1.5 (zn, m) 1.3-1.5 (4H. m)		(100)		
	~ <	100.67		0.93 (3H, t, J= 7.0 Hz)	_		理論値である。	
,	> > >	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					C; 07.53%	
			6.86 (1H, dd, J= 3.5, 1.5 Hz)				N. 1.15%	
			6.84 (1H, d, J = 8.3 Hz)					
	-;		6.20 (1H, d, J = 16.0 Hz)				分析值	
			5.70 (1H, bt)				C; 67.51%	
			(4.01 (2H, t, J = 6.9 Hz)				N: 7.47%	
			3.67 (2H, q, J = 6.4 Hz)					
1					ğ	FAB+		_
			7.56 (1H d I = 15 6 Hz) 1.8-7	1.8-2.0 (2H, m)	3280			
	ર (1.3-1.3 (4H, m)	2036	393[M+H+]		
	<u>}</u>	~8.69	£	0.73 (3ft, l, J = 6.9 Hz)	2856	(2011)		
	\ \{\}	70.2TC	7.00 (1H, d, J=2.1 Hz)		2229	_		
			6.84 (1H, d, J = 8.1 Hz)		1651			
			6.19 (1H, d, J = 15.6 Hz)		1609			
	-		5.64 (1H, bt)		1518			
			3.88 (3H, s)		1	-		
ź	淡黄色蝉ぺん状晶	-	3.65 (2H, q, J = 6.9 Hz)					
			2.96 (2H, t, J = 6.9 Hz)					

-4-		
=	4	0
衣	4	v

1.6-1.8 (24, m) 1.8.1 Hz) 1.3-1.5 (44, m) 1.3-	実施例 構造式 動点	整 点		DMSD-46 300MJ-	IH NMR (&) ppm	IRcm.t	ž	11	ſ
# 8.1 Hz)	0.00	9.0.6	9.0	9.0 (1H, bs)	1.6-1.8 (2H. m)	ğ	FAB+	元素分析	
15.7 Hz 1610 15.18 15.18 15.18 15.18 15.19 15.10 15.10 15.10 15.10 15.10 15.10 15.20 15.20 15.7 Hz 15.7 Hz 15.7 Hz 15.6 Hz 15.0 L. 40(4 H.m.) 12.0 L. 38(4 H.m.) 12.0 L. 38(3 H.L.) L. 12.1 Hz 12.0 L. 38(3 H.L.) L. 38(4 H.m.) 12.0 L. 38	6.04 174.2~ 7.87		8.04 (7.87 (8.04 (1H, bi) $7.87 (2H, d, J = 8.1 Hz)$	0.90 (3H, t, J= 7.1 Hz)	3422 2938	412[M+H+]		
1.7 Hz) 1262 = 8.3.1.7 Hz) 15.7 Hz) 6.6 Hz) 6.9 Hz) 6.9 Hz) 6.9 Hz) 6.9 Hz) 6.9 Hz) 6.9 Hz) 7.2 Hz) 1.20-1.40(4 H,m) 1.3 Hz) 1.2 Hz) 1.3 Hz) 1.3 Hz) 1.5 Hz) 1	- (- (- (- (7.30	$^{1.30}_{1.30}$ (1H, d, $J = 8.1$ Hz)	•	1518	•		
15.7 Hz) 6.6 Hz) 6.9 Hz) 6.9 Hz) 1.20-1.40(4 H,m) Hz) 1.21-1.40(4 H,m) 1.22-1.38(4 H,m) 2) 2) 2) 2) 3) 4) 4) 5) 6.9 Hz) 6.88(3 H, L, J=7.1 Hz) 2) 2) 2) 3) 4) 6.88(3 H, L, J=7.1 Hz) 6.88(3 H, L, J=7.1 Hz) 6.88(3 H, L, J=7.1 Hz) 7) 8)	\ \ \ \ \ \ \	7.08	7.13 7.08	7.13 (1H, d, J = 1.7 Hz) 7.08 (1H, dd, J = 8.3, 1.7 Hz)	(2	1262			
6.9 Hz) 6.9 Hz) 6.9 Hz) 1.20-1,40(4H,m) Hz) 1.20-1,40(4H,m) 1.20-1,38(4H,m) (2) (3) (4) (5) (6) (6) (7) (7) (8) (7) (8) (7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	6.46	3.97	8 6	(1H, d, J = 15.7 Hz) (2H, t, J = 6.6 Hz)					-
6.9 Hz) 6.9 Hz) 1.20-1.40(4H,m) 1.20-1.40(4H,m) (C22H25N3O2 (.7.2Hz) (.7.2Hz) (.7.2Hz) (.7.2Hz) (.7.2Hz) (.7.2Hz) (.7.2Hz) (.88(3H,1,1=7.1Hz) (.7.2Hz) (.7.2	無色結局	3.78	.78	3.78 (3H, s)					
Hz) 1.20-1.40(4H,m) C22H29N3O2 (1.7.2Hz) 0.88(3H,t,1=7.1Hz) C22H29N3O2 (2) Hz) (2) (2) (2) (2) (38(4H,m) (2) (2) (3) (3) (4,1)=7.1Hz) (3) (4) (6) (88(3H,t,1)=7.1Hz) (2) (2) (6) (8) (3,1,1)=7.1Hz)		3.44 2.85	4 %	3.44 (2H, q, J= 6.9 Hz) 2.85 (2H, t, J= 6.9 Hz)					
(7.2Hz) 0.88(3H,1,1=7.1Hz) C22H29N3O2 (3.7.2Hz) 0.88(3H,1,1=7.1Hz) C22H29N3O2 (2.7.2Hz) C23H31N3O2 (2.7.2Hz) (3.7.2Hz) C23H31N3O2 (2.7.2Hz) (3.7.2Hz) C23H31N3O2 (2.7.2Hz) (3.7.2Hz) (3.7.2Hz) C23H31N3O2 (3.7.2Hz) (3.7.2Hz) (3.7.2Hz)	CDC: 7.89(1	7.89(1		CDCl3,300MHz 7.89(1H,d,J=15,3Hz)					1
b) Hz) Hz) (b) (c) (c) (d) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	7.13(2	7.13(2	13(2)	7.13(2H,d,J=8,4Hz)	0.88(3H,1,J=7.1Hz)			C22H29N3O2	- 1
b2) (2) (2) (2) (3) (4) (4) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	NH2 H 6.75-6	6.75-6	75.6	6.75-6.85(2H,m)					
(z)		6.66(2F	66(2F 28(1F	6.66(2H,d,J=8.4Hz) 6.28(1H,d,J=15,3H=)					
(2) (2) (4) (4) (4) (5) (6) (8) (3) (1,1)	5.71(1H,bt)	5.71(1H	71(1H	(bd)					
(z) 1.20-1.38(4H,m) (0.88(3H,t,J=7.1Hz) (c) (d)	3.84(3H.s)	3.84(3H	34(3H)	.s) (S)					
(2) 1.20-1.38(4H,m) 0.88(3H,t,1=7.1Hz) (2)	3.65(1H,bs)	3.65(1H	55(1H	(sq:	-			-	
(z) 1.20-1.38(4H,m) 0.88(3H,t,1=7.1Hz) (z)		3.08(2) 1.45-1.	8(2) 5-1	3.08(2H,t,J=6,9Hz) 1.45-1.60(2H,m)		-	····		
(2) 1.20-1.38(4H,m) 0.88(3H,t,1=7.1Hz) (2)	CDCI3	CDCI3	8	CDCI3,300MHz					-
C.88(3H,t,J=7.1Hz) (2)	7.84(11	7.84(11)	₹	7.84(1H,d,J=15.3Hz) 6.97-7.04(3H.m)	1.20-1.38(4H,m)			2303181369	
=8.4Hz) =15.3Hz) =6.6Hz) 7.1Hz) 6.8Hz)	6.75-6.8	6.75-6.8	5-6.8	6.75-6.85(2H,m)	0.88(3H,t,J=7.1Hz)			205N1502	
6.6Hz) 6.8Hz) 1.1Hz) 6.8Hz) 1.m)	6.66(2H)	6.66(2H	6(2H)	6.66(2H,d,J=8.4Hz) 6.22(1H,d,I=15,2Hz)		_	-		
6.6Hz) 7.1Hz) 6.8Hz) Im)		5.56(1H,	Œ	6t)					
6.6Hz) 7.1Hz) 6.8Hz) Im)	3.84(3H,s)	3.84(3H)	(HC)	3		·			
7.1Hz) 6.8Hz) Im)	3.60(2H,	3.60(2H,	(2H,	3.60(2H,q,J=6.6Hz)					
Lm)	3.07(2H) 無色油状 無色油状 2.77/2H	3.07(2H	CH C	3.07(2H,t,J=7.1Hz)			 -		
	1.45-1.60	1.45-1.60	.0	.45-1.60(2H.m)					
								_	

表 41

# TEC. CO.							
NAME PO	保度式	数点		1H NMR (8) nnm	6		
1-79	無色結晶	125.5~ 126.2℃	CDCI3,300MHz 8.04 (1H, bt) 7.91 (1H, d, J= 15.9 Hz) 7.75 (2H, d, J= 8.4 Hz) 7.34 (1H, s) 7.28 (2H, d, J= 8.4 Hz) 7.06 (1H, d, J= 8.4 Hz) 6.95 (1H, d, J= 8.4 Hz) 6.95 (1H, d, J= 15.9 Hz) 6.06 (2H, bs) 3.96 (2H, t, J= 6.9 Hz) 3.98 (3H, s) 3.4-3.5 (2H, m)	2.81 (2H, bt) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.89 (3H, 1, J= 6.9 Hz)	KBr 3440 1684 1214 1138	MS FAB+ 411[M+H+] (100)	元素分析
1-80	MeO NH2 H	130.0~ 131.6℃	7.69(1H,d,J=15.3Hz) 7.06(1H,d,J=8.8Hz) 7.01(2H,d,J=8.4Hz) 6.66(2H,d,J=8.4Hz) 6.35(1H,d,J=8.8Hz) 6.13(1H,d,J=15.3Hz) 5.49(1H,b) 3.94(2H,t,J=6.8Hz) 3.84(3H,s) 3.61(2H,bs) 3.51(2H,bs) 3.51(2H,bs) 3.51(2H,bs) 3.51(2H,bs)	2.77(2H,t,J=6.8Hz) 1.70-1.90(2H,m) 1.30-1.50(4H,m) 0.93(3H,t,J=7.1Hz)	KBr 3292 2931 1649 1611 1516 1293 1235	FAB+ 398 [M+H+] (35) 262(40)	C23H31N3O3
1-81	MeO NH ₂ IN NH ₂	105.8∼ 106.9℃	CDCI3,300MHz 8,53(2H,d,J=6.0Hz) 7,70(1H,d,J=15,3Hz) 7,16(2H,d,J=6.0Hz) 7,07(1H,d,J=8.8Hz) 6,35(1H,d,J=15,3Hz) 6,16(1H,d,J=15,3Hz) 6,16(1H,d,J=15,3Hz) 6,20(2H,bs) 3,94(2H,t,J=6.8Hz) 3,94(3H,s) 3,84(3H,s) 2,90(2H,t,J=6.9Hz)	1.70-1.85(2H,m) 1.30-1.50(4H,m) 0.93(3H,t,J=7.0Hz)	KBr 3337 2952 1657 1608 1519 1458 1096	FAB+ 384[M+H+] (100)	C22H29N3O3

表 42

1-82 MeO	フィー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		10 22						
7.75((H.d15.84)						Rem.			I
2 Mode A To A To A State A To				7.75(1H,d,J=15.5Hz)	2.76(2H.1.1=6.8Hz.)	ğ	FAB	兀紫分析	Т
2 (Mochaille 2014) 1.35-1.65(004mm) 2392 (Mochaille 2014) 1.45-1.65(004mm) 2392 (Mochaille 2014) 1.45-1.65(004mm) 2392 (Mochaille 2014) 1.45-1.65(004mm) 1.45-1.65(004mm) 1.45-1.45(004mm) 1.45(004mm) 1.45		(7.09(1H,d,J=8.8Hz)	1.70-1.85(2H,m)	3290	468	C28H41N3O3	
645(H4db=88H) 058(3H,J=70H) 1053 532(20) 537(14b) 525(60) 537(14b) 1053 537(20) 645(H4db=8155t) 058(3H,J=70H) 1053 537(20) 637(14ba) 1053 537(20) 637(14ba) 1053 537(20) 637(21ba) 1053 537(21ba) 1053 537(21ba) 1053 537(21ba) 1054 637(21ba) 1054	<			6.66(2H,d,J=8.3Hz)	1.25-1.65(10H,m)	2992	[M+H+] (20)	·	
551(11kb) 551(11kb) 1515 15) >		6.45(1H,d,J=8.8Hz)	0.88(3H.1.1m7.1Hz)	£ 5	332(20)		
392(2H, Ji-6/Hz) 1231		\ }		0.14(1H,dJ=15.5Hz) 5.51(1H,bs)		1515			
3.55(2Ha.b.s.) 3.	<u>}</u>	<u> </u>		3.92(2H,1,J=6.7Hz)		1292			
3.59(2H4,1=5,1Hz)	1 4 4 *			3.62(2H.bs)					
(2DCG3300MHz (2A) (170-1.85(2H m)) (AB FAB+ (2A) (14-1.85(2H m)) (AB FAB	の東色ノナルン	77.3	i	3.59(2H,q,J=6.5Hz) 3.08(2H,1,J=7,1Hz)					
### ### ### ### ### ### ### ### ### ##				CDC13,300MHz					
Ast				8.53(2H,d,J=5.7Hz)	1.70-1.85(2H,m)	Ą	FAB+		_
69.6℃ 7000(H.d.)=8.7Hz 1648 1000) 1550		2	7 8 4 ×	7.16(2H,d,J=5.7Hz)	1.20-1.60(10H,m)	3294	454[M+H+]	C27H39N3O3	
1664 1664 1664 1666 1664 1666 1667 1664 1550 1550 1550 1560	\ <u></u>	7	29.69	7.09(1H,d,J=8.7Hz) 6.46(1H,d,J=0.7112)	(1110)0.1.0.0	1648	(001)		
3.00(11h,bd) 3.04(2H,bd) 3.04(2H,bd) 3.04(2H,bd) 3.06(2H,d-6.7hz) 3.06(2H,d-6.7hz) 3.08(2H,d-f.7hz) 2.90(2H,d-f.1hz) 2.90(2H,d-f.1hz) 2.90(2H,d-f.hz) 3.02(2H,d-f.hz) 3.02(2H,d-f.hz) 2.90(2H,d-f.hz) 3.02(2H,d-f.hz) 2.90(2H,d-f.hz) 3.02(2H,d-f.hz) 3.02(2H,d-f.hz) 3.02(2H,d-f.hz)	MeO	x		6.16(1H,d,J=15.9Hz)		1604			表
3.84(3H ₈) 3.66(2H _q J=6.7Hz) 3.08(2H _q J=6.7Hz) 2.90(2H _q J=7.1Hz) 2.90(2H _q J=7.1Hz) 2.90(2H _q J=7.1Hz) 2.90(2H _q J=7.1Hz) 7.54(1H, d _q J=8.1 Hz) 7.54(1H, d _q J=8.1 Hz) 7.08(2H, d _q J=8.1 Hz) 109.5 C 6.80(2H, d _q J=8.1 Hz) 6.80(2H, d _q J=6.1 Hz) 6.90(3H, t _q J=7.1 Hz) 6.90(3H, t _q J=7.1 Hz) 6.90(2H, t _q J=6.1 Hz) 7.90(3H, t _q J=6.1 Hz) 7.9	0	<u></u>		3.92(2H,t,J=6.8Hz)		1292			
3.66(2Hq,J=6.7Hz) 3.08(2H,J=7.1Hz) 2.90(2H,J=7.1Hz) 2.90(2H,J=7.1Hz) 2.90(2H,J=7.1Hz) 2.81(2H, t, J=6.9 Hz) 7.54(1H, d, J=8.1 Hz) 7.54(1H, d, J=8.1 Hz) 7.03(1H, d, J=8.1 Hz) 1.09.5				3.84(3H,s)		1106			4
CDCl, 300Mhz 7.54(1H, d. Je 15 Hz) CDCl, 300Mhz 7.54(1H, d. Je 18 Hz) 7.14(1H, d. Je 18 Hz) 7.14(1H, d. Je 18 Hz) 7.08(2H, d. Je 8.3 Hz) 109.5 C 6.90(1H, s) 6.90(3H, t. Je 7.1 Hz) 6.50(1H, b) 5.00(1H, bs) 4.02(2H, t. Je 6.6 Hz) 7.89(2H, t. Je 7.4 Hz)	淡黄色	右扇		3.66(2H,q,J=6.7Hz)		3			2
CDCI,300MHz 7.54(1H, d. J=15 Hz) 7.14(1H, d. J=8.1 Hz) 7.08(2H, d. J=8.1 Hz) 7.08(2H, d. J=8.1 Hz) 7.08(2H, d. J=8.1 Hz) 1.09.5			1	2.90(2H,t,J=7.1Hz)					
7.14(1H, d, J=15 Hz) 2.81(2H, t, J=6.9 Hz) 7.14(1H, d, J=8.1 Hz) 1.78-1.90(2H, m) 1.78-1.90(2H, m) 1.09.5°C 6.90(1H, s) 6.90(2H, d, J=8.1 Hz) 6.90(3H, t, J=7.1 Hz) 6.24(1H, d, J=15 Hz) 6.90(3H, t, J=7.2 Hz) 5.55(1H, b) 5.00(1H, bs) 7.09(3H, t, J=6.6 Hz) 3.62(2H, q, J=6.1 Hz) 7.89(2H, t, J=7.4 Hz) 7.89(2H, t, J=7.4 Hz)				CDC1,300MHz		1			
7.08(2H, d, J=8.3 Hz) 1.78-1.90(2H, m) 1.09-5°C 7.03(1H, d, J=8.1 Hz) 1.6-1.74(2H, m) 1.09-5°C 6.90(1H, s) 6.80(2H, d, J=8.3 Hz) 6.90(3H, t, J=7.1 Hz) 6.24(1H, d, J=15 Hz) 6.90(3H, t, J=7.2 Hz) 5.55(1H, b) 5.00(1H, bs) 4.02(2H, t, J=6.6 Hz) 7.89(2H, t, J=7.4 Hz) 7.89(2H, t, J=7.4 Hz)				7.54(1H, d, Jm15 Hz)	2.81(2H, t, J=6.9 Hz)		'AB+		
7.03(1H, d, J=8.1 Hz) 1.05-1. /4(2H, m) 109.5 °C 6.90(1H, s) 6.90(1H, s) 6.90(3H, t, J=7.2 Hz) 6.24(1H, d, J=15 Hz) 6.90(3H, t, J=7.2 Hz) 6.24(1H, d, J=15 Hz) 6.90(3H, t, J=7.2 Hz) 6.24(1H, bs) 6.00(1H, bs) 6.00(1	\	₹		7.08(2H, d, J=8.3 Hz)	1.78-1.90(2H, m)	4	26		
6.90(1H, s) 6.80(2H, d, J=8.3 Hz) 6.24(1H, d, J=15 Hz) 6.24(1H, d, J=15 Hz) 6.24(1H, b) 6.00(1H, bs) 6.02(2H, t, J=6.6 Hz) 6.289(2H, t, J=7.4 Hz) 6.90(1H, s) 6.90(1H, bs) 6.90(2H, t, J=7.4 Hz) 6.90(3H, t, J=7.4 Hz)				7.03(1H, d, J=8.1 Hz)	1.0-1.74(2H, m)	=	VF.H*](100)		
6.24(1H, d, J=8.3 Hz) 6.24(1H, d, J=15 Hz) 5.55(1H, b) 5.00(1H, bs) 4.02(2H, t, J=6.6 Hz) 3.62(2H, q, J=6.1 Hz) 2.89(2H, t, J=7.4 Hz)		>		5.90(1H, s)	0.94(3H, I, J=7.1 Hz)	<u> </u>	(09)61		
) } };			80(2H, d, J=8.3 Hz) 24(1H, d, J=15 Hz)	0.90(3H, t, J=7.2 Hz)				
	>		* 1 *	.55(1H, bt)					
	無色結	Œ.	9 4 4	.02(2H, t, J=6,6 Hz)					
) 		<u> </u>	.62(2H, q, J=6.1 Hz)					
				(ZH 4:/-2 11 112)					

	10.0	603	
	16. ** 37.47	C28H40N2O3	·
	FAB+ 400 [M*H*] (40) 307(100)	FAB+ 453[M+H+] (100) 395(90) 316(50)	FAB+ 369 [M+H+] (80) 368(80)
1			
1H NMR (8) com	1.35-1.57(4H, m) 0.94(3H, t, J=7.1 Hz)	2.81(2H,t,J=6.8Hz) 2.79(3H,s) 1.8-1.91(2H,m) 1.2-1.6(10H,m) 0.94(3H,t,J=7.1Hz) 0.89(3H,t,J=7.1Hz)	2.62(2H,t,J=7,4Hz) 1.60-1.80(2H,m) 1.15-1.50(4H,m) 0.90(3H,t,J=6.9Hz)
=	CDCl,,300MHz 7.55(1H, d, J=16 Hz) 7.06-7.13(4H, m) 6.90(1H, s) 6.80(2H, d, J=8.5 Hz 6.24(1H, d, J=16 Hz) 5.54(1H, bt) 4.97(1H, bs) 4.97(1H, bs) 4.03(2H, t, J=6.5 Hz) 3.62(2H, q, J=6.1 Hz) 2.81(2H, t, J=6.9 Hz) 2.43(3H, s) 1.8-1.9(2H, m) CDCI3.300MHz	7.54(1H.d.)=15.5Hz) 7.08(2H.d.)=8.5Hz) 7.07(1H.d.)=8.45Hz) 7.03(1H.s.) 6.80(2H.d.)=8.5Hz) 6.70(1H.d.)=8.4Hz) 6.17(1H.d.)=15.5H) 5.37(1H.s.) 7.03(1H.s.) 3.04(2H.l.)=6.6Hz) 3.04(2H.l.)=7.8Hz)	9.14(1H,s) 7.84(1H,L,=5.7Hz) 7.84(1H,L,=5.7Hz) 6.99(1H,d,l=8.4Hz) 6.94(1H,s) 6.66(2H,d,l=8.1Hz) 6.66(2H,d,l=8.1Hz) 6.60(1H,d,l=8.1Hz) 6.19(1H,d,l=1.1Hz) 6.11(2H,bs) 3.95(2H,L,l=6.6Hz) 7.54,3.44(4.Hz)
融点	140.3∼ 140.9℃	OH 113.9*11	
养 道式	MeS A	無の話品	HAN OH ME
米高艺	1-85	1-86	1-87

丰	4	4
衣	4	4

	7487	T	***	() 47 17				.4
_			CDC13 300MH2	in war (o) ppm	IRcm.t	MS	元素分析	F
			7.52(1H, d, J=15 Hz)	2.89(3H. bs)		FAB+		T
			7.09(2H, d, J=8.5 Hz)	2.81(2H, t, J=6.9 Hz)		357	CZ3H30N2O3	
	Ö	213.7~	7.03(1H, d, J=8.1 Hz)	1.76-1.9(2H, m)		[M+H+] (50)		
		214.7C	6.87(1H, s)	1.33-1.5(4H, m)		246(30)		h 3.
1-88	· · · · · · · · · · · · · · · · · · ·		6.79(2H, G, J=8.5 Hz)	0.94(3H, t, J=7.1 Hz)				·-
3	≻		6.08(1H, d, J=15 Hz)					
			5.47(1H, bt)					5-3
			4.98(1H, s)					
	淡苗色結晶		3 00/74 + 1-6 e 11.					5 :
	HHILL		3.61(2H, q, J=6.2 Hz)					<u> </u>
			CDC13,300MHz					-
			7.51(1H,d,J=15.4Hz)	3.15(2H,bs)		FAB+		_
			7.08(2H,d,J=8.4Hz)	2.80(2H,t,J=6.9Hz)		438	C2/H28N2O3	b .
	8		7.01(1H,d,J=8.2Hz)	1.75-1.90(2H,m)		[M+H+] (30)		
		_	C.67(111,5)	1.3-1.72(10H,m)		302(30)		Ż
1-80			0./9(2H,d,J=8.4Hz)	0.85-1.0(6H,m)				₹ —
- 20-1	\		6.51(1ft,d,J=8,2HZ)					<u>. </u>
	\ \ \ \		0.00(17,0,1=13,4HZ) 5.45(17,15)					4
		•	7.4.7(10,01) 7.00(11,01)					4
		•	4.9%(IH,s)					
- ,	無色結晶		3.99(2H.t.f=6 5H2)		•			. 10-
1			3.60(2H,q,J=6.5Hz)					
			CDCI3,300MHz					
			7.52(1H,d,J=15.5Hz)					_
			7.02(2H,d,J=8.3Hz)					
	O		6.63-6.81(5H,m)					
			6.16(1H,d,J=15.5Hz)					
			5.53(1H,bt)	·		-		
1-90	£.V.£		3.66-3.75(2H.m)	· · · · · ·				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.59(2H,q,J=6.5Hz)					
	· · · · · · · · · · · · · · · · · · ·		3.13(2H,b3)			-		
· · · · ·			2.77(2H,f,J=6.8Hz) 1.60-1.75(2H,m)					
	谈黄色結晶		1.30-1.50(4H,m)			-		
1			0.93(3H,t,J=7.1Hz)					

安排使	七块文	1						
		爾馬		1H NMR (&) ppm	1.11/2	Me	がいまり	Γ
		!	CDC13,300MHz			CIM	ル系が が	7
			8 17/2H d T=8 7 U=1	***************************************		FAB+		
			777 / 10 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2.89(3H, Q, J=3.0 HZ)			C23H29N3O4	-
			7.52(1H, d, J=15 Hz)	1.75-1.87(2H. m)		412		
	- CX		7.38(2H. d. Ja.8.7 Hz)	13-1 5/41		[M+H+] (20)		_
			7 03(1H d I-9 3 Uz)	(III) (III) (III)		246/40)		
		137.00	(ZLI 2.0, J)	0.93(3H, I, J=7.1 Hz)		Z*0(50)		
	> > > -		0.80(1H, 8)					
<u>1-9</u>	7		6.50(1H, d, J=8.2 Hz)					
	~ =		6.07(1H, d, J=15 Hz)					
	\ \ \ -		5.47(1H, bt)					_
			4.55(1H, bs)					_
			3.98(2H, t, J=6.5 Hz)					_
	谈禮色結晶		3.66(2H, q, J=.6.6 Hz)					_
			3.00(2H, t, J=6.9 Hz)					
			CDC13,300MHz					7
			7.10 (2H, d, J = 8.5 Hz)	1.7-1.8 (2H. m)		FAB+		
			7.00 (2H, d, J = 8.5 Hz)	1,4-1,5 (4H, m)		414[M+H+]		
			6.93 (2H, t, J = 7.9 Hz)	0.92 (3H + 1 = 70 Hz)		(80)		-
	\ \ \		6.77 (1H, d, J = 7.9 Hz)	(7)				
_			6.63 (1H, d, J = 7.9 Hz)					
1-92	·		5.80 (1H, bs)			-		
	\{ }		3.91 (2H, t, J = 6.7 Hz)					
			3.84 (3H, s)					
			3.47 (2H, s)					
	44.4.4.4		3.45 (2H, q, J = 6.2 Hz)				•	
	文型设置		2./8 (2H, t, J = 6.2 Hz) 2 20 (3H s)					
			z.z> (Jn, 8)					
								_

丰	4	6
衣	4	О

東語角	(海) 株油以	10 to					
		E C	CDC1 ³ ,300MH ²	IRcm-1	WS	7 5 # 11	ſ
	0		7.35(1H, d. 1=2.0 Hz) 7.15(1H, dd, 1=8.3, 2.0 Hz) 0.90(3H, t, 1=7.0 Hz) 7.03(2H, d. 1=8.4 Hz)	XBr 3322	FAB+ 358	元素分析 C ₂₁ H ₂₂ NO ₄	demokratika demokratika, besita
2-1		115.6°C	6.80(2H, d, J=8.4 Hz) 6.80(1H, d, J=8.3 Hz) 6.62(1H, bs)	1033	[M*H*](100) 221(100)	理論值 C; 70.56%	an Constant
	0		6.19(1H, bt) 3.98(2H, t, J=6.9 Hz)			H; 7.61% N; 3.92%	and the s
			3.86(3H, s) 3.64(2H, q, 1=6.9 Hz) 2.82(2H, t, 1=6.9 Hz) 1.7-1 9/2H m)			分析值 C; 70.58% H; 7.79% N; 3.89 %	*
			DMSO-d6,300MHz 9.14(1H. s)	1			
	НО	,	8.33(1H, t) 7.39-7.41(2H, m)		748+ 372		
2-2	ZI	1170	6.96-7.02(3H, m) 6.66(2H, d, J=8.4 Hz)		[M*H*] (55) 235(100)		· 表
!	Eio o		4.05 (2H, q, J=6.9 Hz) 3.97(2H, t, J=6.6 Hz) 3.32-3-47(2H,	1	200(24) 164(23)		₹ 4
	無色結晶		2.69(2H, t, Jar.5 Hz) 1.66-1.78(2H, m) 1.28-1.47(7H, m)	-		· · · · · · · · · · · · · · · · · · ·	6
		+	0.89(3H, t, 1=7.2 Hz) DMSO-46.300MH-	·			,
	₹ •	5, 66	9.14(1H, s) 8.33(1H, t, 1=5.4 Hz)	À	FAB+		
		134~ 7 136° 6	7.40-7.42 (2H, m) 6.97-7.03(3H, m)	414 [M"	414 [M*H*] (100) 277750)		
2-3	* }		3.96-4.01(4H, m)	120	207(59) 170(75)		
	\ \ \ \ \	2. 1.	2.70(2H, t, J=7.4 Hz) 1.64-1.78(4H, m)	130	136(85)		
	無色格島	~ 0	1.26-1.49(8H, m) 0.83-0.94(6H, m)	· ·	-		
		1					
•					$\left \frac{1}{1} \right $		

Г			
	九紫分析		
	MS FAB+ 500 [M*H*] (70) 293(65)	FAB+ 371 [M*H*] (100) 234(50)	FAB+ 357 [M*H*] (100) 220(80).
THE (4) ANN HI	CDCl ₃ 300МHz 7.09(2H, d, J=8.4 Hz) 6.86(2H, s) 6.79(2H, dd, J=8.4, 2.1 Hz) 6.79(2H, dd, J=8.4, 2.1 Hz) 6.79(2H, dd, J=6.6 Hz) 3.92-4.03(6H, m) 3.64(2H, q, J=6.6 Hz) 2.84(2H, t, J=7.1 Hz) 1.7-1.88(6H, m) 1.3-1.5(12H, m) 0.88-1.0 (12H, m)	CDCI,300MHz 7.33(1H, s) 7.09(2H, d, J=8.4 Hz) 7.09(2H, d, J=8.1 Hz) 7.08(1H, d, J=8.1 Hz) 6.8(1H, d, J=8.1 Hz) 6.7(2H, d, J=8.1 Hz) 6.7(2H, d, J=8.4 Hz) 6.79(2H, d, J=8.4 Hz) 7.33(1H,bs) 7.34(1H,bs)	CDCI,300MHz 7.09(2H, d, J=8.4 Hz) 6.98(1H, d, J=1.8 Hz) 6.91(1H, dd, J=7.8, 2.1 Hz) 6.79(2H, d, J=7.8, 2.1 Hz) 6.79(2H, d, J=7.8 Hz) 6.70(1H, d, J=7.8 Hz) 6.04(1H, bs) 6.04(1H, bs) 6.30(1H, bs) 6.30(1H, bs) 6.31(1H, bs) 6.31(1
製魚	93.6~ 94.2°C	95.3∼ 96.4℃	145.9~ 146.5 C
1 構造式	#6柱晶	Me ₂ N N Me ₂ N	MeO HN HN HIE 格晶
実施例	2-4	2-5	2-6

表 48

茶			
计数分析		C ₂₂ H ₂₉ NO ₄ 理論值 C; 71.13% H; 7.87% N; 3.77% 分析值 C: 71.02% H; 7.99% N; 3.74%	C ₂₃ H ₃₁ NO ₄ 理路值 C; 71.66% H; 8.11% N; 3.63% 分析值 C; 71.57% H; 8.24% N; 3.53 %
MS	FAB+ 344 [MrH*] (100) 237(27) 223(35) 207(61) 168(60) 153(86)	FAB+ 372 [M'H'] (100) 251(30) 235(61)	FAB+ 386 [M*H*] (100) 265(15) 249(73) 170(32) 151(40)
TRcm.1	KBr 3310 1613 1549 1514 1272 1238 1135	KBr 3445 3256 2940 1641 1556 1509 1323 1267 1188	KBr 3452 3263 2921 1642 1615 1510 1442 1318
IH NMR (&) ppm	1.45(2H, m) 0.94(3H, t, J=7.4 Hz)	1.41(2H, m) 1.23-1.35(4H, m) 0.87(3H, t, 1=7.4 Hz)	1.23-1.42(8H, m) 0.85(3H, t, J=7.4 Hz)
	DMSO-d6,300MHz 9.14(1H, s) 8.34(1H, t, J=5.5 Hz) 7.43(1H, dd, J=8.4, 1.8 Hz) 7.40(1H, d, J=1.8 Hz) 7.02(2H, d, J=8.3 Hz) 7.02(2H, d, J=8.2 Hz) 6.67(2H, d, J=8.3 Hz) 3.98(2H, t, J=6.5 Hz) 3.98(2H, t, J=6.5 Hz) 3.27(2H, m) 2.70(2H, t, J=7.5 Hz) DMSO-d6,300MHz	9.14(1H, s) 8.34(1H, t, J=5.5 Hz) 7.41(1H, br d, J=8.4 Hz) 7.39(1H, br s) 7.00(2H, d, J=8.3 Hz) 6.98(1H, d, J=8.3 Hz) 6.66(2H, d, J=8.3 Hz) 3.96(2H, t, J=6.5 Hz) 3.36(2H, m) 2.69(2H, t, J=7.5 Hz) 1.71(2H, m)	DMSO-46,300MHz 9.13(1H, s) 8.33(1H, t, J=5.5 Hz) 7.40(1H, dd, J=8.4, 1.9 Hz) 7.37(1H, d, J=1.9 Hz) 7.69(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.3 Hz) 6.57(2H, d, J=8.3 Hz) 3.97(2H, t, J=6.5 Hz) 3.97(2H, t, J=6.5 Hz) 3.78(3H, s) 3.36(2H, m) 2.68(2H, t, J=7.5 Hz) 1.70(2H, m)
養魚	116~ 117°C	134~ 135°C	125∼ 126℃
株 遊沈	MeO OH H H H H H H H H H H H H H H H H H	MaO	Mao O H Mao O O Mac
東橋包	2-7	2-8	2-9

表 49

i	Г	T									1										_								
	元素分析	C ₁₉ H ₃₃ NO,			C; 69.28%	N; 4.25%	4 4 4 4 4	C; 68.84%	H; 7.24%	N; 4.25 %		CwH23NO		理論值	C; 69.95% H: 7 34%	N; 4.08%	华萨猛	C; 70.05%	H; 7.42%	N; 4.14 %									
	MS	FAB+	330	221(70)	154(75)						FAR+		M.H.1(100)	238(45)	221(70)						FAB+	372	[M'H'](42)	221(35)	•				
	IRcm.	KBr	1642	1514							ğ	1320	2955	1510							Ř	3319	2933	1513	/971				
/ 4 / 45 414 410	IN NMK (6) ppm	((cD,h,nCDO,300MHz) 9.80(1H, s)	7.57(1H, dd J=8.4 1.8 H2)	7.51(1H, d, J=1.8 Hz)	7.48(2H, d, J=8.8 Hz)	7.05(1H, d, J=8.4 Hz) 6.73(2H, d, J=8 8 Hz)	4 02/2H 1=6 < H2)	3.83(3H, s)	(.7-1.8(2H, m)	1.3-1.5(4H, m) 0.91(3H, t, <i>J=7.9</i> Hz),		7.26(1H, d, J=2.1 Hz) 0.92(3H, t, J=7.1 Hz)	7.20(2H, d, J=8.5 Hz)	6.84(1H, d, J=8.3 Hz)	6.81(1H, d, J=8.5 Hz)	0.32(1H, bi)	7.00(111, 05) 4.55(2H, d, J=5.6 Hz)	4.04(2H, t, J=6.9 Hz)	3.89(3H, s)	1.7-1.9(2H, m) 1.3-1.5(4H, m)	(A)	7.12(1H, dd, J=8.4, 2.0 Hz) 1.3-1.5(4H, m)			0.77(2fb, d, J=8,4 Hz) 6.02(1H, h)	5.60(1H, bs)	4.04(2H, t, J=6.9 Hz)	3.47(2H, q, J=6.2 Hz)	2.65(2H, t, J=6.2 Hz) 1.8-1.9(2H, m)
10 SE				162.7~	1										· · · · ·														
構造式			HO		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O ₀ W	-(0	,	/ · · · · · · · · · · · · · · · · · · ·	HO O O O O O O O O O O O O O O O O O O	\ \ \	•					O=	Z	± .	HO	\ \ \ \		
実施例						2-10									;	7-11-7			-						2.12	-			

麦	5	0

	表 50	·
元素分析	C ₃₁ H ₃ NO ₄ 理論值 C; 70.56% H; 7.61% N; 3.92% 分析值 C; 70.59% H; 7.77% N; 3.87 %	
FAB+ 358 [M*H*] (40) 221(50) HRFAB(m/z) 理論值 C ₂₁ H ₂₈ NO ₄ 358.4622 分析值 358.2008	FAB+ 358 [M*H*] (90) 221(100)	FAB+ 364 [M'H'] (50) 221(100) HRFAB(m/z) 理論值 C ₂₁ H ₃₄ NO ₄ 364.5102 分析值 364.2481
IRcm. ¹ KBr 3319 2954 1581 1505 1268	Neat 3347 2951 1620 1578 1514	Neat 3316 2927 1633 1504 1267 1
CDCl,,300MHz 7.34(1H, d, J=2.0 Hz) 7.34(1H, d, J=2.0 Hz) 7.17(1H, dd, J=8.3, 2.0 Hz) 7.17(1H, dd, J=8.3, 2.0 Hz) 7.10(1H, bs) 6.80(1H, d, J=8.3 Hz) 6.76.8(3H, m) 6.22(1H, bs) 3.99(2H, t, J=6.9 Hz) 3.86(3H, s) 3.46(3H, s)	CDC(1,300MHz 7.96(1H, bs) 7.41(1H, d, J=1.9 Hz) 7.26(1H, dd, J=8.0 Hz) 7.06(2H, d, J=8.0 Hz) 6.92(1H, d, J=8.0 Hz) 6.7-6.9(3H, m) 4.00(2H, t, J=6.8 Hz) 3.59(2H, q, J=7.0 Hz) 2.96(2H, t, J=7.0 Hz) 1.8-1.9(2H, m)	7.39(1H, d, J=1.9 Hz) 7.39(1H, d, J=8.3, 1.9 Hz) 7.21(1H, dd, J=8.3, 1.9 Hz) 6.83(1H, d, J=8.3, 1.9 Hz) 6.03(1H, bs) 4.04 (2H, t, J=6.9 Hz) 3.9-4.0(2H, m) 3.88(3H, s) 3.2-3.6(4H, m) 1.0-2.1(15H, m) 0.91(3H, t, J=7.1 Hz)
2-13 MeO	2-14 MeO OH OH	2-15 Mao O H

て 世 年	U S	WW (A) WWW HI			
		ODG SOUTH	IKCM .	MS	兀索扩机
		0 63 0 64/211	Neat	FAB+	;
		0.93(3H, t, J=7.2 Hz)	2200	,	C ₂₀ H ₂₆ N ₂ O ₃
*		7.38(1H, d, J=2.0 Hz)	2000	343	
Z//	;	7.16-7.18(2H, m)	2947	[M*H*](100)	1867.74
	~96	7.1501H dd 1-8 4 2 1 H2)	1634	285(27)	馬馬門
	28 2 2	K 2471 H 1-9 & U.	1513	221(48)	C; 70.15%
		713 (10 = 1 10) 177	1360		H; 7.65%
		0.12(1H, 5r t)	1503		N; 8.18%
MeO —		4.05(2H, t, J=7.0 Hz)			1
		3.89(3H, s)			イヤー
		372/7H 0 1=10 H2)			C; 70.14%
					H: 7.81%
1		2.93(£ff, 1, J#7,0 HZ)			2.0.2
無色結晶		1.81-1.90(2H, m)			2 4::5
		1.35-1.47(4H, m)			
		CDC1,,300MHz	Nosi	EAD.	
		8.55-8.57(1H.m) 003/7H + 1=7 0 Hz)	18 18 18 18 18 18 18 18 18 18 18 18 18 1	rab+	
		18.12	3242	743	C201281203
(1 40(111, 14, 1-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1630	2000	
0=	5	7.42(1H, d, J=2.0 Hz)	001	[M.H.] (100)	田路仙
	<u>د</u> د د	7.27(1H, dd, J=8.3, 2.0 Hz)	1 208	221(52)	1 C - C
	3	7.15-7.22(2H, m)	1272	154(74)	5, 75, 13, 8 13, 7, 6, 8
I		6.85(1H, d. 1=8.3 Hz)			11, 7.03%
Man Comment		(TI CO - 1 T CO N - 1			N; 8.18%
))		4.07(271, 1, 3#0,9 172)			4444
· · · · · · · · · · · · · · · · · · ·		3.50(3H, 8)			1.7.4.TE
/ } }		3.84(2H, q, J=6.0 Hz)			C; 70.22%
		3.10/2H. t. Jaco H2)			H; 7.86%
440		1 80-1 00/20 1			N; 8.15 %
		1 20 1 60/11 111)			
		1.30-1.30(4rt, m)			
		CDCI,,300MHz	Near	FABA	
		8.38-8.58(2H, m)			0 2 2
		7 40.7 64(2H m)	2953	448	271-151-103
		1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1628	(14.11.102)	
Z"		(p,u1)/3//	227	(co) (u w)	理路信
		7.02-7.19(3H, m)	1433	354(29)	C. 72 460
		6.70-6.32(3H, m)	1261	434(33)	U. 7.436
		3.95(2H. t, J=6.9 Hz)		221(100)	7, 7,43%
Meo.		3.86/3H. s)			N; 9.54%
		3 45,3 00/4 = 3			4 存存
		2 21 2 22/411)			C: 71 57%
		(m, th, tc. 10.7)			H. 7668
: : : :		1./8-1.91(ZH, m)			N. 0.10 %
谈黄色油状		1.30-1.50(4H, m)			9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		003/3U 1-7 0 U.S			

一米配名	作 · · · · · · · · · · · · · · · · · · ·	1					
		T T	1H NMR (S) ppm	1			1
			7	Nea	MS FAB+	元素分析	,.43
	0=		7.03(4H, br.s) 6.81(1H, d. l= 9.0 Hz)	2933	848		
			6.66-6.70(2H,m)	1628	[M+H+] (55) 390(14)		r (1997)
2-19	Meo		3.94(2H, t, J=6.5 Hz) 3.88(3H, s)	1261	343(29)		tongs
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	3.44-3.73(4H, m) 2.70-3.00(4H, m)				was true
			1.79-1.90(2H, m)				5.4.
	黄色油状		1.31-1.50(4H, m) 0.93(3H, t, 1=7.3 Hz)				1
			CDC1,,300MHz				•
			7.1(1H, bs)	ΚB	FAB+		
	₽, (6.8-7.0(6H, m)	3300	372	C ₂₂ H ₂₉ NO,	
		83.4~	3.9(2H, d, J=7.5 Hz)	2932	[M*H*] (35)	田黔海	
2-20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7	3.9(3H, s)	1606	(04)177	C; 71.13%	
}	MeO		3.0-3.8(2H, m) 2.6-3.0(2H, m)	1516		H; 7.87% N: 3.77%	<u> </u>
	\{\}_\{\}_\{\}_\(\)		2.8(3H, bs)			4. 元 元 元 元	
			1.7-1.9(2H, m)			ングロ画 C: 71 41%	2
			1.3-1.5(4H, m) 0.9(3H + 1=7 4 Hz)			H; 8.07%	
			(71) (7) (7)		_	N; 3.88 %	•
			DMSO-46,300MHz	1			
			8.14(IH, S)		FAB+		
	0=		7.41-7.43(2H, m)		358		
		128∼ 129℃	6.97-7.02(3H, m)		[M*H*] (65)		
2-21	H O9W	•	6.67(2H, d, J=8,4 Hz)		150(100)		
	· · · · · · · · · · · · · · · · · · ·		3.79(3H €)				
	> -		3.333.43(2H, m)				
	-		2.70(2H, t, J=7.5 Hz)			-	
	無色統具		1.72-1.86(1H, m)				
			1.02(4n, q, J=0.8 H2) 0.93(6H, d, I=6.4 u.,				
			12 (214 (1) 217)				

1)(55)	1(100)
FAB+ 372 [M*H*] (55) 235(71) 150(100)	FAB+ 342 [M*H*] (100) 205(42) 185(38) 150(50)
9.14(1H, s) 8.34(1H, t) 7.41-7.44(2H, m) 6.98-7.03(2H, m) 6.67(2H, d, J=8.4 Hz) 3.86(2H, d, J=5.8 Hz) 3.80(3H, s) 3.27-3.94(2H, m) 2.70(2H, t, J=7.3 Hz) 1.38-1.54(4H, m) 0.90(6H, t, J=7.4 Hz)	DMSO-d6,300MHz 9.14(1H, s) 8.33(1H, t, J=5.4 Hz) 7.37-7.45(2H, m) 6.97-7.02(3H, m) 6.97-7.02(3H, m) 6.67(2H, d, J=8.3 Hz) 3.80-3.82(5H, m) 3.24-3.44(2H, m) 2.70(2H, t, J=7.4 Hz) 1.13-1.30(1H, m) 0.26-0.37(2H, m) DMSO-d6,300MHz
97~ 98°C	168 169 ℃
MeO Neo	MeO Neb Meb Meb Meb Meb Meb Meb Meb Meb Meb M
2-22 Me	2-23 Me

	下事公托	14.C.	C ₁₁ H ₃₈ NO ₅ 個數 個數 C; 69.15% H; 7.32% N; 3.51% O; 68.97% H; 7.39% N; 3.43 %	in O ₃ NO ₃ 100
	MS	FAB+ 416, [M*H*] (30) 237(30) 221(100)	FAB+ 400 [M*H*] (83) 理論值 238(66) C; 69.1 H; 7.32 N; 3.51 N; 3.43 N; 3.43	FAB+ C ₂₂ H ₃₉ NO ₃ 388 [M*H*](72) 理論值 221(100) C; 68.20% H; 7.54% N; 3.61% 分析值 C; 78.23% H; 7.69% N; 3.60% N;
	IRcm.1	Neat 3331 1743 1506	Neat 3456 4 1503 [1270 22	Neat FAB 3280 388 1508 [M ⁺] 1274 221(
	1H NMR (&) ppm	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.9(3H, t, 1=4 Hz)	1.30-2.12(10H, m) 0.92(3H, t, J=7.0 Hz)	0.93(3H, t, J=7.0 Hz)
	CDC1,300MHz	7.4(1H, d, 1=3 Hz) 7.2(1H, dd, 1=9 Hz) 7.0(2H, d, 1=9 Hz) 6.8(1H, d, 1=9 Hz) 6.7(2H, d, 1=9 Hz) 6.5(1H, m) 5.9(1H, bs) 5.0(1H, m) 4.0(2H, t, 1=9 Hz) 3.9(3H, s) 3.2(2H, m) 3.2(2H, m)	CDC1,300MHz 7.39(1H, d, J=2.0 Hz) 7.21(1H, dd, J=8.1, 2.0 Hz) 6.84(1H, d, J=8.1, 2.0 Hz) 6.62(1H, s) 6.57 (1H, s) 6.17(1H, d, J=7.7 Hz) 4.29-4.2 (1H, m) 4.04(2H, t, J=7.2 Hz) 3.89(3H, s) 3.95(1H, dd, J=16.1, 5.2 Hz) 2.75(2H, t, J=6.9 Hz) 2.60(1H, dd, J=16.1, 8.5 Hz)	7.36(1H, d, J=2.0 Hz) 7.35(1H, d, J=2.0 Hz) 6.50-5.91(4H, m) 5.99-6.08(1H, m) 5.52(1H, s) 4.04(2H, t, J=6.9 Hz) 3.89(3H, s) 3.85(3H, s) 3.85(3H, t, J=6.9 Hz) 2.86(2H, t, J=6.9 Hz) 1.80-1.91(2H, m)
1 2			160~ 161T	1527 1540 1540
標準式		HO COOMe OH	HO NO	MeO Nee Meb Meb Meb Meb Meb Meb Meb Meb Meb M
英糖刨		2-25	2-26	2-27 N

	元素分析		
	FAB+ 358 [M'H'] (100) 221(40) 150.9(70)		FAB+
	Kan	KBr 3242 2931 1637 1515 1496	
IH NMR (&) num	4	LE Hz) 1.3-1.5(4H, m) 0.88(3H, t, J= 7.2 Hz) 0.88(3H, t, J= 7.2 Hz) Hz) Hz) Hz) Hz) Hz) Hz)	2
なが	CDCl _{1,3} 00MHz 8.16-8.26(1H, m) 7.70(1H, d, J=8.0 Hz) 7.04-7.16(3H, m) 7.3.5° 6.79(2H, d, J=8.0 Hz) 6.00(1H, s) 3.85(3H, s) 3.85(3H, s) 3.85(3H, s) 3.85(3H, s) 3.85(3H, s) 3.69(2H, q, J=6.8 Hz) 2.85(2H, t, J=7.2 Hz) 1.50-1.65(2H, m)	DMSO-d6,300MHz 9.76(1H, d, 1=4.4 Hz) 9.13(1H, s) 8.39(1H, d, bs) 77.0	DMSO-46,300MHz 9.48(1H, bs) 9.20(1H, s)
構造式	HO NH O WO	HO OH OH	₹
英施例	2-28	2-29	

中報今花			
MS	FAB+ 316 [M+H+] (25)	FAB+ 398 [M+H+] (90) 261(100) 121(42)	FAB+ 383 [M*H*] (70) 261(60)
IRcm.1	Neat 3383 2955 1646 1602 1513	Neat 3500- 2970 1634	Neat 3300 1633
1H NMR (8) ppm	1H2 8.1.2 8.1.2 1.8 Hz 1.1 Hz 6 Hz, 6 Hz, 2	CDCl ₃ 300MHz 7.58(1H, s) 7.58(1H, s) 7.49(1H, d, Ja-8.44 Hz) 7.09(2H, d, Ja-8.36 Hz) 6.81(1H, d, Ja-8.36 Hz) 6.78(2H, d, Ja-6.53 Hz) 6.78(2H, m) 7.38(3H, s) 7.65(2H, m) 7.73-1.78(2H, m) 7.32(6H, s)	CDCJ,300MHz 8.52(2H, d, 1=5.99 Hz) 7.60(1H, s) 7.60(1H, s) 7.49(1H, d, 1=8.49 Hz) 7.17(2H, d, 1=8.49 Hz) 7.17(2H, d, 1=8.49 Hz) 6.84(1H, d, 1=8.49 Hz) 6.0-6.10(1H, m) 3.85(3H, s) 3.71(2H, q, 1=6.66 Hz) 2.95(2H, t, 1=6.96 Hz) 1.73-1.83(2H, m) 1.33(6H, s) 1.10-1.27(6H, m)
融点	77.5~ 77.8°C		
構造式	HO OH OH	MeO HO HO	M _O N N O M
実施例	2-31	2-32	2-33

表 57

_	T		
元素分析		C ₂₅ H ₃₃ NO ₄ 阻警 C; 72.01% H; 8.53% N; 3.39% 分析商 C; 72.12% H; 8.92% N; 3.42 %	C ₂₆ H,,NO, 理論值 C; 73.04% H; 8.72% N; 3.28% 分析值 C; 73.06% H; 8.82% N; 3.27 %
MS	FAB+ 383 [M*H*] (100) 261(70)	FAB+ 414 [M*H*] (60) 278(25) 261(100)	FAB+ 428 [M'H'] (50) 261(100) 150(43)
Rcm.1	Neat 3316 1634	Neat 3600- 3000 1602	KBr 3600- 3050 1625 1602
1H NMR (&) ppm	CDCl ₃ ,300MHz 8.56(1H, d, J=4,90 Hz) 7.58-7.68(3H, m) 7.38-7.46(1H, m) 7.14-7.24(2H, m) 6.85(1H, d, J=8.44 Hz) 3.79-3.80(5H, m, involving a singlet at 3.85 3.10(2H, t, J=6.21 Hz) 1.74-1.82(2H, m) 1.35(6H, s) 1.11-1.24(6H, s)	CDCI _{3,300MHz} 7.49(1H, bs) 7.58(1H, d, J=2.25 Hz) 7.58(1H, d, J=2.25 Hz) 7.50(1H, dd, J=8.0, 2.25 Hz) 6.82(2H, d, J=8.18 Hz) 6.76(1H, dd, J=1.88 Hz) 6.76(1H, dd, J=5.56 Hz) 6.76(1H, dd, J=5.56 Hz) 6.16(1H, dd, J=5.56 Hz) 7.95(1H, bs) 7.95	CDCJ,300MHz 7.60(1H, s) 7.47-7.59(1H, m) 6.80-6.89(2H, m) 6.71-6.74(2H, m) 6.00-6.10(1H, m) 5.56(1H, bs) 3.72(2H, q, J=7.15 Hz) 2.86(2H, t, J=6.7 Hz) 1.73-1.80(2H, m) 1.32(6H, s)
酸点			
精道式	MeO	HO Neo	MeO H N OMB
災腦例	2-34	2-35	2-36

245		e 18 19 1	
はなな事中	C 型に出込 存に出込 が 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C ₃ H ₃ NO ₃ 與論值 C; 75.16% H; 8.67% N; 3.65% 分坏值 C; 74.91% H; 8.85% N; 3.62 %	C ₂ H ₃ NO ₄ 理路值 C; 72.15% H; 8.33% N; 3.66%
Mα	FAB+ 440 [M*H*] (100) 278(60) 261(90)	FAB+ 384 [M*H*] (100) 264(30) 247(60)	FAB+ 400 [M*H*] (55) 264(35) 247(100)
1.m.1	KBr 3282 2416 1599 1531	XBr 3450- 3000 1698 1622 1574	KBr 3700- 3050 1629 1602
1H NMR (8) ppm	1.32(6H, s) 1.08-1.23(6H, m) 0.82-0.96(2H, m) 0.81(3H, t, J=6.67 Hz)	1.31(6H, s) 1.06-1.23(6H, m) 0.83-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)	2.56-2.68(2H, m) 1.74-1.86(2H, m) 1.31(6H, s) 1.10-1.27(6H, m) 0.85-1.00(2H, m) 0.81(3H, t, J=6.6 Hz)
HI	DMSO-46,300MHz 8.53(2H, bs) 8.15(1H, d, J=7.63 H 7.74(1H, d, J=8.61 H 7.66(1H, s) 7.00(1H, d, J=8.61 H 6.65(1H, s) 6.43(1H, s) 3.95-4.12(1H, m) 3.84(3H, s) 2.59-2.85(4H, m) 1.90-2.03(1H, m) 1.60-1.83(3H, m)		DMSO-46,300MHz 8.77(1H, s) 8.71(1H, s) 8.60(1H, s) 8.460(1H, s) 7.58(1H, s) 7.48(1H, s)
製点	188.9~ 189.5 C	149.7~ 150.2°C	70.091 160.0℃
構造式	HO NGO NGO NGO NGO NGO NGO NGO NGO NGO NG	HO NO	HO NI OH
奥施例	2-37	2-38	2-39

	· · · · · · · · · · · · · · · · · · ·	.	
元素分析	C ₃ ,H ₃ N ₃ O ₂ 理論值 C; 74.96% H; 8.75% N; 7.60% 分析值 C: 74.46% H; 8.90% N; 7.69 %		·
MS	FAB+ 369 [M*H*] (100) 247(20) 169(40)	FAB+ 368 [M*H*] (160) 231(80)	FAB+ 356.1 [M*H*] (100) 236(30) 219(80)
IRem.1	KBr 3450 2950 1632 1602 1575		
1H NMR (&) ppm	CDCI,,300MHz 9.78(1H, s) 8.45(2H, d, J=5.68 Hz) 8.23-8.29(1H, m) 7.56(1H, s) 7.25(2H, d, J=5.68 Hz) 6.75(1H, d, J=8.3 Hz) 3.30(3H, s) 1.30(3H, s) 1.30(3H, s) 1.30(3H, s) 1.30(6H, s) 1.30(6H, s) 1.30(6H, s)	CDCI,,300MHz 7.72(1H, s) 7.72(1H, s) 7.45(1H, d, J=7.6 Hz) 7.42(2H, d, J=7.6 Hz) 7.42(2H, d, J=7.6 Hz) 7.31(1H, t, J=7.6 Hz) 7.06(2H, d, J=8.2 Hz) 7.06(2H, d, J=8.2 Hz) 7.07(1H, s) 7.01(2H, d, J=8.2 Hz) 8.77(1H, t, J=5.5 Hz) 8.77(1H, t, J=5.5 Hz) 9.6.77(1H, t, J=6.9 Hz) 1.54(2H, d, J=6.9 Hz) 1.54(3H, s)	CDCI,300MHz 7.52(1H, d, J=10.3 Hz) 7.49(1H, s) 7.49(1H, s) 7.49(2H, d, J=8.46 Hz) 6.81(1H, d, J=10.3 Hz) 6.80(2H, d, J=8.46 Hz) 6.80(2H, d, J=8.46 Hz) 6.80(2H, d, J=8.46 Hz) 6.80(2H, g, J=6.56 Hz) 7.32(1H, s)
最点	179.9∼ 180.5℃	·	101.8 - 102.4 C
構造式	HO THO	N N	MeO N N OH
実施例	2-40	2-41	2-42

表 6	0
-----	---

AND ANDERSON AND		
元素分析	C ₂₃ H ₂₆ N ₂ O ₃ 母警值 C; 72,78% H; 8.80% N; 6.79 % 分析值 C; 72,91% H; 9.05% N; 6.74%	
FAB+ 341 [M*H*] (100) 219(40) 105.9(87)	FAB+ 413 [M*H*] (40) 277(80) 137(100)	FAB+ 442[M+H+] (100)
IRcm.	KBr 3327 2934 1626 1513 1270	
製製 88.6 7.7 7.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	1.25-1.004,2H, m) 1.25-1.4044H, m) CDCl _{3,300MHz} 7.34(1H, d, J=2.1 Hz) 7.12(1H, dd, J=8.4, 2.1 Hz) 7.02(2H, d, J=8.3 Hz) 116.6	CDC13,300MHz 7.34 (1H, d, J=2.0 Hz) 7.08-7.26 (3H, m) 6.78-6.83 (3H, m) 6.78-6.83 (3H, m) 5.21 (1H, s) 5.21 (1H, s) 3.99-4.04 (4H, m) 3.65 (2H, q, J=7.0 Hz) 2.85 (2H, t, J=7.0 Hz) 1.77-1.86 (4H, m) 1.31-1.57 (12H, m) 0.88-0.92 (6H, m)
A MeO	2-4 	ZI O
LI	, i	2-45

		元素分析		
		MS FAB+ 429 [M'H'] (50) 293(100)		FAB+ 407 [M*H*] (20) 271(20)
141		JRcm.		
	1H NMR (&) nmm	1.62-1.73(2H, m) 1.28-1.54(8H, m) 0.94(3H, t, J=7.1 Hz) 0.90(3H, t, J=7.1 Hz)	0.92(3H,I,J≈7.1Hz)	1.33-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)
	N HI	1,8.4 1,8.4 4 Hz 4 Hz 5 Hz) 5 Hz) 3 Hz)	7.04(2H,d.)=8.4Hz) 6.92(1H,d.)=8.4Hz) 6.78(2H,d.)=8.4Hz) 6.20(1H,d.)=8.7Hz) 6.04(1H,b.) 5.71(2H,bs) 3.92(2H,t.)=6.8Hz) 3.82(3H,s) 3.82(3H,s) 3.82(2H,t.)=6.9Hz) 1.70-1.85(2H,m)	7.53(1H, d, Je.8.1 Hz) 7.34(1H, d, Je.8.1 Hz) 7.34(1H, d, Je.8.5 Hz) 6.96(1H, dd, Je.1.9, 8.1 Hz) 6.70(2H, d, Je.8.5 Hz) 6.08(1H, bt) 5.00(1H, bs) 4.06(2H, t, Je.5, Hz) 3.13(2H, t, Je.6, Hz) 3.13(2H, t, Je.6, Hz) 2.85(2H, t, Je.6, Hz) 1.6-1.75(2H, m)
	羅河	101.1∼ 102.6℃		139.8 140.3 C
	作成式	NHZ NHZ S	MBO NH ₂ OH 淡黄色枯晶	Br O H M M M M M M M M M M M M M M M M M M
日本	X X	2-52	2-53	2-54

表	6	4

N MEN		4 48					
		Œ.	CDC! 300A213	IRem.1	MS	平海公佐	Γ
			7.27(1H, d, J=1.5 Hz) 7.04-7.13(4H, m)			たがなが	T
	De North Control of the Control of	148.2~ 149.3℃	6.80(2H, d, J=8.4 Hz) 6.06(1H, bt) 4.95(1H, c)		374 [M*H*] (30) 307(20)		
2-55	H H		4.07(2H, t, J=6.5 Hz) 3.67(2H, q, J=6.5 Hz)				
	\{ \}		2.86(2H, 1, J=7.7 Hz) 2.43(3H, s)				
	無色結晶	•	1.78-1.2(2), m) 1.37-1.6(4H, m) 0.94(3H, t, 1=7.1 Hz)				
					FAB+		
	H.		7.35(1H, bt) 0.93(3H, t, J=7.1 Hz)		403		
		80.8∼ 82.7℃			[M*H*] (50) 267(100)		
2-56) Neo		0.03(2H, d, J=8.3 Hz) 3.95(2H, t, J=6.7 Hz) 3.82(311)				a x
	\{ \- \-		2.02(5H, q, J=5.7 Hz)				0 4
	谈黄色枯晶		5.57(ZH, DS) 2.83(ZH, t, J=6.9 Hz) 2.31(3H, s)				
1			1.75-1.88(2H, m)				
			CDCl, 300MHz 7.62(1H, bt) 0.94(3H, t, J=7.1 Hz) 7.56(1H, s)	1	FAB+		
	H N N N N N N N N N N N N N N N N N N N	28.6 ~	7.48(1H, d, J=8.7 Hz) 6.87(1H, d, J=8.7 Hz)	e = -	378 [M*H*] (100)		
2-57	> >= >= >=<		6.87(IH, s)	Ň.	267(50)		
	MeO SMe		3.86(3H, s)				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.78(2H, q, Ja6,3 Hz) 2.97(2H, t, Jack & U.)				
	無色結晶	- 7	2.36(3H, s) 1.75-1.88(2H, m)				
1		_	(3-1.55(4H, m)				

(東京) (東京) (東京) (東京) (東京) (東京) (東京) (東京)	13. 13. 13. 13. 13. 13. 13. 13. 13. 13.
7.20(1H, d, J=.5 Hz) 7.12(2H, d, J=.6.1z) 7.12(2H, d, J=.6.1z) 6.79(1H, d, J=.8.6 Hz) 6.79(1H, d, J=.8.6 Hz) 6.70(1H, b) 5.06(1H, b) 3.91(2H, s) 3.91(2H, s) 3.87(2H, q, J=6.6 Hz) 2.88(2H, t, J=7.0 Hz) 1.75-1.87(2H, m)	5
CDCI,300MHz 8.18(2H, d, J=8.7 Hz) 7.63(1H, bl) 7.65(1H, d, J=8.6 Hz) 100.1℃ 6.90(1H, d, J=8.6 Hz) 3.95(2H, t, J=6.7 Hz) 3.95(2H, t, J=6.7 Hz) 3.09(2H, t, J=6.6 Hz) 3.09(2H, t, J=7.0 Hz) 1.75-1.9(2H, m)	NO ₂ 99.3~
MBO NH ₂ 97.4~ 6.9(1H,d.J=8.7Hz) 6.9(1H,d.J=8.7Hz) 6.9(2H,d.J=8.7Hz) 98.3 ℃ 6.19(1H,d.J=8.7Hz) 98.3 ℃ 6.19(1H,d.J=8.7Hz) 98.3 ℃ 6.19(1H,d.J=8.7Hz) 98.3 ℃ 6.19(1H,d.J=8.7Hz) 3.92(2H,J=6.8Hz) 3.92(2H,J=6.8Hz) 3.92(2H,J=6.8Hz) 3.6(2H,d.J=6.9Hz) 17.1.93(2H,m) 17.1.93(2H,m)	NH ₂ 97.4~

-4-	_	_
麦	6	6

多姓氏								
		器点	IH NMR (&) ppm					
2-61	MeO NH ₂ NH ₂	86.5~ 87.6°C	2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hz)	Rem. ¹ KBr 3345 1626 1530 1282	MS FAB+ 358 [M+H+] (60) 236(70)	元素分析 C20H27N3O3	
2-62	MeO H H H H H H H H H H H H H H H H H H H	116.8~ 117.67	CDC13,300MHz 8.77(1H,b1) 8.52(2H,d,J=6.1Hz) 7.50(1H,d,J=8.8Hz) 7.23(2H,d,J=6.1Hz) 6.64(1H,d,J=8.8Hz) 3.91(3H,s) 3.91(3H,s) 2.96(2H,t,J-7,1Hz) 2.87(2H,t,J=7,2Hz) 1.40-1.58(2H,m) 0.88(3H,t,J=6.8Hz)	·	KBr 3330 2955 1630 1529 1289	FAB+ 358 [M+H+] (50) 307(20)	C20H27N3O3	数 6 6
2-63	MeO O ME	128.7 ~ 129.4 °C	CDC(13,300MHz 8.53(2H,d.)=6.0Hz) 7.18(2H,d.)=6.0Hz) 6.73(1H,s) 6.73(1H,s) 6.18(1H,s) 5.95(1H,bt) 5.95(2H,bt) 3.85(2H,t.)=6.6Hz) 3.85(2H,t.)=6.6Hz) 3.87(2H,q.)=6.7Hz) 2.93(2H,t.)=7.1Hz) 1.70-1.80(2H,m)	642233	KBr F 3332 3, 2930 (h 1632 23) 1598 1542 1559 1214	FAB+ 358 (M+H+) (40) 236(100)	C20H27N3O3	
					-	_		

		777				
		CDC13 2000 AEL	iii mar (o) ppiii	Rem.	MS	元素分析
		7 49(1H s)		ğ	FAB+	
		7.03(2H.d.)=8.4H2)	0.94(3H,I,J=/.1HZ)	3258	402	C21H29N3O3
NH,		6.77(1H.s)		2934	(M+H+) (20)	
	125.7~	6.63(2H,d,J=8.4Hz)		1650	266(20)	
Z:	7 7 7 7 1	5.64(1H.bt)		1514		
		4.05(2H,tJ=6.8Hz)		1336		
	•	3.93(3H,s)		1272		
\ \		3.68(2H,q,J=6.5Hz)		1220		
		3.00(2H,08)		··		
橙色結晶		1.80-1.90(2H.m)				
		1.30-1.45(4H,m)				
		CDC13,300MHz		N. S.S.	FAB+	
	-	7.39(1H,s)	0.94(3H,t,J=7.1Hz)	1240		C21H27N3O5
NH.		6.77(1H.s)		2934	402 [M+H+1 (20)	
V > 0 70 N		6.63(2H,d,J=8,4Hz)		1650	266(20)	
		5.64(1H,bt)		1514		
		4.05(2H,I,J=6.8Hz)		1336		
<u> </u>		3.93(3H,s)		1272		
<u> </u>		3.68(2H,q,J=6.5Hz)		1221		
		3.60(2H,bs)				
: :		2.85(2H,t,J=6.8Hz)				
其 的笛状		1.80-1.90(2H,m)				
	Ť	(m,n,+)(+1,-)(-1,-)(-1,-)				
		8.50(4H, br s)		Neat	FAB+	
		7.03(4H, br s)		2933	448	
Z (6.81(1H, d, J= 9.0 Hz)		1628	[M+H+] (55)	-
~ \ \ \ \	•	6.66-6.70(2H, m)		1601	390(14)	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	3.94(2H, t, J=6.5 Hz)		1261	343(29)	
		3.88(3H, s)			221(100)	
		3.44-3.73(4H, m)				
z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2.70-3.00(4H, m)				
)		1.79-1.90(2H, m)			_	
一		1.31-1.50(4H, m)				
		0.25(544, t, 2=1.3 ftg)				

<u>a de la compaño de la comp</u>	表 68	e de la companya de
	FAB+ 378 [M+H+](30), 360(100).	FAB+ 386 [M+H+] (30) 368(100)
	, m) , m) J=6.9 Hz)	m) =6.9 Hz)

実施例	1	10					
		E	CECI 1001 (5)	5) ppm	IRcm.1	MS	Ľ
			7.1-7.5 (3H, m)	146 (OH e)		FAB+	
	1			(6,11,5)		450	
	F		6.86 (2H, d, J = 8.4 Hz)			(M+H+)(50)	
	,		6.80 (1H, bs)			York	
			5.91 (1H, bs)				
2-67			3.99 (2H, bs)				
	}- }-		3.87 (3H, s)				
	SBN, \		3.64 (2H, q, J=6.3 Hz)				
	> >		3.42 (2H, t, J = 6.6 Hz)				
			2.87 (3H, s)				
	黄色油状		2.84 (2H, I, J = 6.6 Hz)				
			2.0-2.1 (2H, m)				
			CDCI3,300MHz		1		
				.7-1.9(2H. m.)		FAB+	
	(1.3-1.5(4H, m)		378	
	O==		3 Hz)	0.93(3H. t. J=6.9 Hz)		(M+H+)(30)	
				(211 (12-01)		360(100).	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		6.81(1H, d, J=8.4 Hz)				
2-68			6.35(1H, bs)				
			4.67(2H, d, J=6.9 Hz)				
	5		4.14(1H, t, J=6.9 Hz)			-	
			3.97(2H, t, J=6.6 Hz)				
			3.86(3H, s)				
	交叉电话		3.72(2H, q, J=6.3 Hz) 3.16(2H, 1, J=6 3 Hz)				
		Ī	CDC13.300MH-				
				13-1 5(4H m)		FAB+	
	•			0.91(3H, t, J=6.9 Hz)		386	
	0=		=8.4 Hz),	(711)		[M+H+) (30)	
	•		6.20(1H, bs)		<u>- ~</u>	368(100)	
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		4.63(2H, d, J=6.9 Hz),	-		;	
2-69	. Fo.		4.20(1H, t, J=6.6 Hz),			_	
	· · · · · · · · · · · · · · · · · · ·	,	3.96(2H, t, J=6.6 Hz),				
		-	3.84(3H, s),			_	
	•		3.67(2H, q, J=6.6 Hz)				
	年各共員		2.88(2H, t, J=6.6 Hz)			-	
			2.32(3H, 8)				
			1./-1.X(4H, M)				

Г		A 0 3	
计量公托	12 A A A A A A A A A A A A A A A A A A A		
3M	FAB 431[(100 413	FAB+ 400[M+H+] (100), 382 (30).	FAB+ 386[M+H+] (100)
10,00			
1H NMR (\$) ppm	2 H H H H H H H H H H H H H H H H H H H	7.13(4H, s) 7.13(4H, s) 7.13(4H, s) 7.05(1H, d, J=8.4 Hz), 6.75(1H, d, J=8.4 Hz), 6.36(1H, bs) 4.03(1H, t, J= 4.8 Hz) 3.94(2H, t, J= 6.9 Hz) 3.87(2H, t, J= 6.9 Hz) 3.87(2H, t, J= 6.4 Hz) 2.94(2H, t, J= 6.4 Hz) 3.87(2H, t, J= 6.4 Hz) 2.93(2H, t, J= 6.4 Hz) 2.33(3H, s)	CDCI3,300MHz 7.2-7.4(5H, m) 7.04(1H, d, J=8.4 Hz), 6.75(1H, d, J=8.4 Hz), 6.46(1H, bs) 3.98(1H, t, J= 5.0 Hz) 3.98(2H, t, J= 6.6 Hz) 3.86(2H, t, J= 5.1 Hz) 3.83(3H, s)
融点			
構造式	が を を を を を を を を を を を を を	無色粧品	無色枯島
突施例	2-70	2-71	2-72

	Г		42 10	
	元素分析			
	MS	FAB+ 392[M+H+] (100), 374(25)	FAB+ 417 [M+H+](20), 399(100)	
	IRem.			
IH NMR (&) mm	CDC13.300MH7	7.16(1H, dd, J=4.7,1.0 Hz) 7.16(1H, dd, J=4.7,1.0 Hz) 7.10(1H, d, J=8.5 Hz), 6.95(1H, dd, J=4.7,3.3 Hz), 6.87(1H, dd, J=3.3, 1.0 Hz) 6.73(1H, dd, J=8.5 Hz) 6.62(1H, bs) 3.94(2H, t, J=6.6 Hz) 3.94.0(3H, m) 3.84(3H, s) 3.69(2H, q, J=6.3 Hz) 3.14(2H, t, J=5.5 Hz) 6.00(1H, t, J=5.5 Hz) 6.00(1H, t, J=5.5 Hz) 6.00(1H, t, J=5.5 Hz) 6.00(1H, t, J=5.5 Hz)	8.18(2H, d, J=8.7 Hz) 1.3-1.5(4H, m) 7.41(2H, d, J=8.7 Hz) 0.93(3H, t, J=6.9 Hz) 7.16(1H, d, J=8.4 Hz) 0.93(3H, t, J=6.9 Hz) 6.82(1H, d, J=8.4 Hz) 6.40(1H, bs) 4.65(2H, t, J=6.6 Hz), 3.97(2H, t, J=6.6 Hz), 3.97(2H, t, J=6.6 Hz), 3.86(3H, s) 3.74(2H, q, J=6.6 Hz) 3.77(2H, t, J=6.6 Hz) 3.77(2H, t, J=6.6 Hz) 3.77(2H, t, J=6.6 Hz) 1.7-1.9(2H, m)	
酸点		,		
標造式		N N N N N N Heth晶	NO ₂ NO ₂ NO ₂ NO ₂	Mac O M
無相		2-73	2-74	2-75

_	Y		
元器分析		C19H30N2O4 理論值 C; 65.12% H; 8.63% N; 7.99% 分析值 C; 65.02% H; 8.56% N; 8.30%	
MS	FAB+ 328[M+H+] (100) 191(75)	FAB+ 351[M+H+] (100) 221(80) 264(60)	
Rem.1	NaCl 3314 2932 1638 1580 1515	KBr 3286 2945 1654 1617 1515	
1H NMR (8) ppm	= 8.(= 8. = 8. = 7.(= 7.(CDCI3,300MHz 7.43 (1H, d, J=2.0 Hz) 1.3-1.5 (4H, m) 7.26 (2H, dd, J=8.4, 0.93 (3H, t, J=7.0 Hz) 2.0 Hz) 6.85 (1H, d, J=8.4Hz) 6.76 (1H, bt) 4.06 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.73 (4H, t, J=4.6 Hz) 3.55 (2H, q, J=5.7 Hz) 2.62 (2H, t, J=4.6 Hz) 1.8-1.9 (2H, m)	
翼河		113.5~	
情 遊式	D ZI O O	O NH O O O O O O O O	Meo Charles
没有包	2-76	2-77	2-78

2

ſ		表 72	e de la companya de
	7. 米 ガが ()	C22H29NO5 理論值 C; 68.20% H; 7.54% N; 3.61% 分析值 C; 67.74% H; 7.72% N; 3.62%	C22H27NO6 理論值 C; 65.82% H; 6.78% N; 3.49% A竹値 C; 63.00% H; 6.84% N; 3.26%
L	FAB+ 510 [M+H+] (65) 384(45) 221(100)	FAB+ 388 [M+H+] (45) 221(100)	FAB+ 402 [M+H+] (60) 221(100) 237(42)
2	3234 1609 1516	KBr 3324 2954 1616 1515 1264	KBr 3431 3303 1740 1641 1509
1H NMR (&) nom		CDCI3,300MHz 7.3 (1H, d, J=3 Hz) 1.7-1.9 (2H, m) 7.2 (1H, dd, J=9, 3 Hz) 1.2-1.5 (4H, m) 7.0 (2H, d, J=9 Hz) 0.91 (3H, t, J=7.5 Hz) 6.8 (1H, d, J=9 Hz) 0.91 (3H, t, J=7.5 Hz) 6.6 (1H, bs) 6.4 (1H, bt) 4.3-4.4 (1H, m) 4.0 (2H, t, J=7.5 Hz) 3.9 (3H, s) 3.4-3.8 (2H, m) 3.2 (1H, m) 2.8-2.9 (2H, m)	DMSO-46,300Mtz 12.50 (1H, bs) 9.14 (1H, s) 8.43 (1H, d, J=8.2 Hz) 7.42 (2H, bd, J=8.5 Hz) 7.35 (1H, bs) 7.10 (2H, d, J=8.3 Hz) 7.00 (1H, d, J=8.5 Hz) 7.00 (1H, m)
整点		89.12~ 90.4 C	
構造式	HO O O O O O O O O O O O O O O O O O O	MeO CH2OH OH	HOO OHW
東施例	2-79	2-80	2-81

	1		
元素分析		C21H27NO5 理警 C; 67.54% H; 7.29% N; 3.75% 分析值 C; 68.30% H; 7.49% N; 3.65%	
MS		FAB+ 374 [M+H+] (37) 307(19) 238(45) 169(57) 154(100)	FAB+ 343 [M+H+-HCI] (100)
IRcm.1		3435 3253 1561 1508 1275	2934 1638 1505 1268
1H NMR (8) ppm		B.55-8.80 (2H, m) 8.35 (1H, t) 7.38-7.47 (2H, m) 7.38-7.47 (2H, m) 7.00 (1H, d, 1=8.5 Hz) 6.64 (1H, dd, 1=8.5, 4z) 6.46 (1H, dd, 1=8.5, 4z) 7.00 (3H, t, 1=6.7 Hz) 7.00 (3H, t, 1=6.7 Hz) 7.00 (3H, t, 1=8.3 Hz) 7.01 (2H, m) 7.02 (2H, t, 1=8.3 Hz)	DMSO-46,300MHz 8.74 (2H, d, J=6.0 Hz) 8.50 (1H, brs) 7.81 (2H, d, J=6.0 Hz) 7.38-7.42 (2H, m) 6.99 (1H, d, J=8.0 Hz) 3.96 (2H, t, J=6.8 Hz) 3.60 (2H, q, J=6.5 Hz) 3.10 (2H, d, J=6.5 Hz) 1.66-1.78 (2H, m) 1.27-1.46 (4H, m) 0.90 (3H, t, J=6.5 Hz)
最近			
構造式	Meo H OMe	HO N N N N N N N N N N N N N N N N N N N	MeO HCI WRO HCI
実施例	2-82	2-83	2-84

麦	7	4
34	4	4

表 7.4	
元素分析	
FAB+ 428 [M+H+] (25) 221(100) 221(55) 151(53)	122(100)
Neat 2932 1760 1659 1600 1628 1762 1628 1762 1628 1762 1628 1762 1628 1762 1628 1762 1628 1762 1628 1762 1628 1762 1762 1762 1762 1762 1762 1762 1762	-
CDC13.300MHz 7.1-7.3 (5H, m) 7.27 (1H, d, J=8.2 Hz) 7.24 (2H, d, J=8.2 Hz) 7.04 (2H, d, J=8.5 Hz) 7.04 (2H, d, J=8.5 Hz) 6.9-7.1 (2H, m) 6.87 (1H, d, J=8.2 Hz) 5.68 (1H, d, J=13.6 Hz) 4.11 (2H, t, J=7.8 Hz) 3.90 (3H, s) 3.00 (3H, s) 3.00 (2H, t, J=6.9 Hz) 3.99 (2H, m) 3.91 (2H, m) 3.99 (3H, t, J=7.1 Hz) 3.80 (3H, t, J=7.1 Hz) 3.81 (3H, d, J=8.3 Hz) 3.81 (3H, d, J=8.3 Hz) 3.82 (3H, d, J=8.3 Hz)	0.44-6.65(1H, m) 4.05 (2H, t, J=6.9 Hz) 3.90 (3H, s) 3.69 (2H, q, J=6.7 Hz) 2.96 (2H, t, J=6.7 Hz) 1.78-1.90 (2H, m)
[4]	
Meo O S Meo O O O O O O O O O O O O O O O O O O O	MeO
2-85 2-85 2-87	9

Γ			<u> </u>
11年八七	C 型		C20H26N2O3 理論值 C; 70.15% H; 7.65% N; 8.18% 分析值 C; 70.18% H; 7.85% N; 8.12%
Me	FAB 359 [M+ 307(221(154(FAB+ 359 [M+H+] (35) 221(29) 154(100)	
1	3310 1637 1510 1269 1230		3316 1521 1272 1231
1H NMR (3) npm	CDC13,300Mbz 8.54-8.56 (1H, m 7.73(1H, td, J=7. 1.36 (1H, d, J=1. 7.25 (1H, d, J=1. 7.22-7.27 (2H, m 6.85 (1H, d, J=1. 6.59-6.69 (1H, m 5.00 (2H, m) 3.99-4.09 (3H, m) 3.90 (3H, s) 3.60-3.69 (1H, m	8.18 (1H, d, J=2.9 Hz) 1.77-1.90 (2H, m) 7.39 (1H, d, J=8.3, 1.32-1.49 (4H, m) 7.05 (1H, dd, J=8.3, 0.92 (3H, t, J=7.0 Hz) 7.17-7.25 (1H, m) 7.14 (1H, dd, J=8.2, 2.9 Hz) 7.08 (1H, d, J=8.2, 2.9 Hz) 6.85 (1H, d, J=8.3 Hz) 6.85 (1H, d, J=8.3 Hz) 3.89 (3H, s) 3.79 (2H, q, J=6.4 Hz)	CDCI3,300MHz 8.46-8.52 (2H, m) 7.54-7.60 (1H, m) 7.36 (1H, d, J=2.0 Hz) 7.22-7.28 (1H, m) 7.14 (1H, dd, J=8.3, 6.82 (1H, d, J=8.3, 6.00-6.11 (1H, m) 4.04 (2H, t, J=6.9 Hz) 3.88 (3H, s) 3.69 (2H, q, J=6.8 Hz) 2.95 (2H, t, I=6.8 Hz)
融点	ე 110~112	117~118 T	74 7
構造式	MeO HOH NeO Meekala	Meo Mehall	MeO Heb结晶
実施例	2-88	2-89	2-90

2-92 Me6	1							
### 8 # 8 # 8 # 9 # 9 # 9 # 9 # 9 # 9 #	大畑村		最近	N HI	MR (3) ppm	1		
P.85(H ₄)	2-91	新 ST 語			1.03-1.25(6H,m) 0.75-0.92(5H,m)		MS FAB- 418 [M-H+](20) 417(100) 381(90)	元素分析 C24H35N2O2Ct
NI O O O O O O O O O O O O O O O O O O O	2-92	無色 A A A A A A		9.85(1H,5) 8.7(2H,d.J=6.4Hz) 8.30(1H,bs) 7.87(2H,d.J=6.4Hz) 7.54(1H,s) 7.45(1H,d.J=8.3Hz) 6.76(1H,d.J=8.3Hz) 3.53-3.63(2H,m) 3.03-3.14(2H,m) 1.72-1.82(2H,m) 1.10-1.25(6H,m)	0.75-0.98(5H,m)		FAB. 403 [M-H+] (10) 367(100)	C23H33CIN2O2
	2-93	NI O		·				

表 77

MS 上掛舟店		H+ 1	C23H32NO5
IRem-1 M		FAB+ 3318 359[M+H+] 1631 (100) 1512 301(16) 1265 221(21)	Neat FAB+ 3300 402 2933 [M+H+] (60) 1632 221(80) 1504 1266
IH NMR (3) ppm		CDC13,300MHz 8.03-8.11 (2H, m) 7.40 (1H, d, J=2.0 Hz) 7.16-7.26 (3H, m) 6.82 (1H, d, J=8.4 Hz) 6.58-6.70 (1H, m) 4.04 (2H, t, J=6.9 Hz) 3.89 (3H, s) 3.67 (2H, q, J=6.8 Hz) 2.92 (2H, t, J=6.8 Hz) 1.71-1.90 (2H, m) 1.30-1.50 (4H, m) 0.92 (3H, t, J=7.0 Hz)	3.37 (3H, s) 2.7-3.0 (2H, m) 2. 1.8-1.9 (2H, m) 1.3-1.5 (4H, m) 0.91 (3H, t, J=7.1 Hz)
發点		104∼106	
構造式	New O O O O O O O O O O O O O O O O O O O	MeO H Neo N Neo N Neo N N N N	HO OMO O O O O O O O O O
実施例	2-94	2-95	2-96

奖施例	有商門	17 9H					
			CDC13 300MH-	IRcm-1	MS	元素分析	_
	MeO SMe OH		7.36 (1H, d, J=2.0 Hz) 2.94 (2H, dd, J= 6.9, 7.18 (1H, dd, J=8.3, 2.1 Hz) 2.0 Hz) 2.0 Hz) 2.0 Hz) 2.1 Hz) 2.0 Hz) 2.0 Hz) 2.1 (2H, d, J=5.8 Hz) 7.09 (2H, d, J=8.3 Hz) 2.15 (3H, s) 6.84 (1H, d, J=8.3 Hz) 1.8-1.9 (2H, m) 6.77 (2H, d, J=8.3 Hz) 1.3-1.5 (4H, m) 6.23 (1H, bd, J=6.9 Hz) 0.92 (3H, t, J=7.0 Hz). 6.0 (1H, bs) 4.4-4.6 (1H, m) 4.00 (2H, t, J=6.8 Hz) 3.89 (3H, s)	Neat 3500 2926 1631 1512 1267	FAB+ 418 [M+H+] (20) 221(40) 151(30)		
2-98	He Ho O O O O O O O O O O O O O O O O O O	127.5~ 128.5℃	CDCI3,300MHz 7.05 (1H, d, J=8.4 Hz) 2.84 (2H, t, J=6.9 Hz) 7.02 (2H, d, J=8.5 Hz) 1.7-1.8 (2H, m) 6.75 (2H, d, J=8.5 Hz) 1.7-1.8 (2H, m) 6.74 (1H, d, J=8.4 Hz) 0.92 (3H, t, J=7.0 Hz) 6.46 (1H, bs) 6.30 (1H, bs) 7.94 (2H, t, J=6.7 Hz) 7.95 (2H, q, J=5.6 Hz) 7.95 (2H, t, J=5.9 Hz) 7.95 (2H, t, J=5.6 Hz)	3152 1943 1623 1543 1489 1279	FAB+ 402[M+H+] (100)	C23H31NO5 理論值 C; 68.81% H; 7.78% N; 3.49% 分析值 C; 68.34% H; 7.70% N; 3.53%	表 78
	Meo O Meo O		0.92 (3H, t, J=7.1 Hz)	Neat 1 3 3 2 4 7 3 3 2 4 9 3 5 1 1 1 1 5 9 6 1 1 5 9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FAB+ 387 [M+H+] (90) 106(100)	C22H30N2O4 理論值 C; 68.37% H; 7.82% N; 7.25% 分析值 C; 68.37% H; 7.75%	

元素分析			C ₂₂ H ₂₃ NO ₄ 理論值 C; 71.52% H; 7.37% N; 3.79 % 分析值 C; 71.82% H; 7.43% N; 3.90%
MS	FAB 358 [M" 221(FAB+ 427 [M*H*] (90) 369(100)	FAB+ 370 [M*H*] (100)
IRem.			Neal 3320 1510 1266
1H NMR (&) ppm	7 Hz 4 Hz 4 Hz 8.7, 2 0 Hz 0 Hz 1 Hz 6 Hz	CDCI _{3,3} 00MHz 7,39(1H, d, J=2,4 Hz) 7,22(1H, dd, J=8,4, 2,4 Hz) 7,05(2H, d, J=8,4 Hz) 6,81(2H, d, J=8,4 Hz) 6,79(1H, d, J=8,4 Hz) 6,71(1H, b1) 3,85(3H, s) 3,85(3H, s) 3,65(2H, q, J=6,6 Hz) 3,06(4H, t, J=7,8 Hz) 2,83(2H, t, J=7,1 Hz) 1,13-1,50(12H, m) 0.84(6H, t, J=6,8 Hz)	CDCI,300MHz 7.35(1H, d, J=2.0 Hz) 7.16(1H, dd, J=8.1, 2.0 Hz) 7.16(1H, dd, J=8.1, 2.0 Hz) 7.07(2H, d, J=8.5 Hz) 6.83(2H, d, J=8.5 Hz) 6.83(2H, d, J=8.5 Hz) 6.80(1H, bt) 5.83(1H, bt) 5.84(2H, t, J=6.9 Hz) 5.84(2H, t, J=6.9 Hz)
极点	96.6~ 97.2°C		120,6~ 121.1°C
横造式	MAGO OHM HE A A B B B B B B B B B B B B B B B B B	Meo HO Neo	Meo O OH Meo OH
実施例	2-100	2-101	2-102

Γ	1	the second section of the second section of the second section of the second section s	West of the second seco
11	C ₂ H ₃ NO, 理警信 C; 71.13% H; 7.87% N; 3.77 % 分析值 C; 71.41% H; 7.93% N; 3.87%		
SVA	FAB+ 372[M°H°] (100) 235(60)	FAB+ 371 [M*H*] (100) 313(70)	FAB+ 412 [M*H*] (100) 276(40)
100 P	KBr 3380 2954 1509 1267 1228		
H NMR (&) nom	0 Hz 5 Hz 5 Hz 5 Hz 5 Hz 9 Hz 9 Hz	CDCl,,300MHz 7.36(1H, d, J=2.1Hz) 7.21(1H, dd, J=8.4, 2.1 Hz) 7.21(1H, dd, J=8.4, 2.1 Hz) 7.10(2H, d, J=8.4 Hz) 6.8(2H, dd, J=8.4, 1.5 Hz) 6.05(1H, bt) 5.48(1H, s) 3.48(3H, s) 3.66(2H, q, J=6.6 Hz) 3.03(2H, t, J=7.7 Hz) 2.85(2H, t, J=7.1 Hz) 2.85(2H, t, J=7.1 Hz) 2.85(2H, t, J=7.1 Hz) 2.79(3H, s)	CDCI,300MHz 7.09(2H, d, J=8.4 Hz) 6.98(1H, d, J=1.8 Hz) 6.98(1H, dd, J=8.1, 1.8 Hz) 6.89(1H, dd, J=8.1, 1.8 Hz) 6.89(1H, dd, J=8.1, 1.8 Hz) 6.68(1H, dd, J=8.1, 1.8 Hz) 6.68(1H, d, J=8.1, Hz) 6.06(1H, bi) 5.46(1H, bi) 5.46(1H, bi) 7.425(1H, bs) 7.425(1H,
調	131.9∼ 132.1℃	115.3∼ 116.0℃	115.5~ 116.17
構造式	Meo	Me N H H H H H H H H H H H H H H H H H H	MH HN HE
実施例	2-103	2-104	2-105

表 81

実施例	情 逸式	製造	1H NMR (3) ppm	18	- Mag	νM	上海今花
2-106	N N N X 数色结晶	102.2~ 103.5℃	CDCI,300MHz 7.25(1H, s) 7.07(2H, d, J=8.4 Hz 7.07(1H, d, J=8.4 Hz 6.78(2H, d, J=8.4 Hz 6.46(1H, d, J=8.4 Hz 5.98(1H, b) 5.31(1H, bs) 4.53(1H, bs) 4.53(1H, bs) 3.34(2H, t, J=6.6 Hz) 3.14(2H, t, J=6.6 Hz) 3.14(2H, t, J=6.6 Hz) 2.82(2H, t, J=6.8 Hz)			FAB+ 413 [M*H*] (70) 276(100)	
2-107	N N N N N N N N N N N N N N N N N N N		CDCI3,300MHz 7.64 (1H, d, J=2.2 Hz) 1.82-2.05 (2H, m) 7.42 (1H, d, J=1.5 Hz) 1.35-1.51 (4H, m) 7.26 (1H, d, J=1.5 Hz) 0.93 (3H, t, J=7.2 Hz) 7.05-7.08 (2H, m) 6.80-6.83 (2H, m) 6.80-6.83 (2H, m) 6.73-6.74 (1H, d, J=2.2 Hz) 6.52 (1H, brs) 6.29 (1H, brt) 4.16 (2H, t, J=6.8 Hz) 3.68 (2H, q, J=6.8 Hz) 2.85 (2H, t, J=6.8 Hz)		2932 1595 1514 1341 1203	FAB+ 368[M+H+] (100) 231(90)	C22H25NO4 理論值 C; 71.91% H; 6.86% N; 3.81% 分析值 C; 71.00% H; 6.92% N; 3.54%
2-108	************************************	187.0∼ 187.5℃	DMSO-d6,300MHz 8.40(1H, bt) 0.91(3H, t, J=7.0 Hz) 7.74(2H, d, J=8.3 Hz) 7.42(2H, d, J=8.3 Hz) 7.42(2H, m) 7.26(2H, s) 6.70(1H, d, J=9.0 Hz) 3.99(2H, t, J=6.2 Hz) 3.45(2H, q, J=6.6 Hz) 3.45(2H, q, J=6.6 Hz) 3.45(2H, q, J=6.6 Hz) 1.5-1.8(4H, m) 1.3-1.5(8H, m)	111123		FAB+ 477 [M*H*] (100)	C ₂ H ₃₆ N ₂ O ₅ S 理論值 C; 63.00% H; 7.61% N; 5.88 % 分析值 C; 63.28% H; 7.60% N; 5.80%

実施例	福油式							
L	L	AR.A.	1H NMR	mdd (ψ)	ا ا	-		
2-109	A 無色結晶	163.5∼ 163.7℃	CDCl _{3,3} 00MHz 7.38(1H, d, J=0.9 Hz) 7.43(1H, d, J=2.0 Hz) 7.29(1H, dd, J=8.3, 2.0 Hz) 7.30(1H, bs) 6.85(1H, d, J=8.3 Hz) 6.85(1H, d, J=0.9 Hz) 4.0-4.1(4H, m) 3.71(2H, q, J=6.3 Hz) 2.90(2H, t, J=6.3 Hz) 1.7-1.9(4H, m) 1.3-1.5(8H, m) 0.93(3H, t, J=7.0 Hz) CDCl, 300MHz	0.92(3H, t, J=7.1 Hz)	KBr 3201 2933 1632 1514 1268 1222	FAB+ 388 [M'H'] (100)	元素分析 C ₂ H,,N,O, 理論値 C; 68.20% H; 8.38% N; 10.84 % 分析値 C; 68.23% H; 8.61% N; 10.66%	the control of the second of t
2-110	・	6. 8. 1 € 4. 5 5 4.	7 Hz) 7 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz) Hz) Hz) Hz)	0.93(3H, t, J=7.1 Hz)	KBr 3497 3286 1750 1627 1522	FAB+ 443 [M*H*](100)	C ₂₄ H _x N ₂ O ₅ 理驗值 C; 67.85% H; 7.74% N; 6.33% 分析值 C; 68.05% H; 7.87% N; 6.32%	Participation of the Community of the Co
2.111	新色針状晶	105.8~ 106.4°C	1142) 7 142) 7 142) 7 142) 7 142) 7 142) 8 142) 142) 142) 143) 144)	1.8-1.9(4H, m) 1.3-1.5(8H, m) 1.44-1.6(2H, m) 0.93(3H, t, J=7.1 Hz) 0.93(3H, t, J=7.1 Hz)	KBr 3279 2931 1628 1510 1227	FAB+ 416 [M*H*] (100)	C ₂₃ H ₂₄ FNO ₃ • 1/24,O 理警值 C; 70,73% H; 8.31% N; 3.30 % 分析值 C; 70,70% H; 8.26% N; 3.26%	

Γ	1		
元素分析			
MS	FAB+ 378 [M+H+] (27) 154(100)	·	
IRcm.1			
1H NMR (3) ppm	CDC13,300MHz 7.30-7.45 (6H, m 7.18 (1H, dd, J=; 7.06-7.09 (2H, m 6.84 (1H, d, J=8, 6.78-6.81 (2H, m) 5.99 (1H, brt) 5.32 (1H, s) 5.15 (2H, s) 3.90 (3H, s) 3.63 (2H, q, J=6, 2.83 (2H, t, J=6,		
融点			
構造式	OH M eha	MeO H	HO N OBW
実施領	2-112	2-113	2-114

	and the second s	双 0 4	de la Carlo de
元素分析			
MS	FAB+ 384[M+H+] (100) 263(29) 247(62)	FAB+ 384[M+H+) (100) 263(31) 247(48)	
IRcm.1			
IH NMR (8) ppm		CDCJ3,300MHz 7.34 (1H, d, J=2.0 Hz) 1.37-1.45 (4H, m) 7.16 (1H, dd, J=8.4, 0.92 (3H, t, J=7.1 Hz) 2.0 Hz) 7.05-7.08 (2H, m) 6.79-6.84 (3H, m) 6.79-6.84 (3H, m) 5.97-6.09 (3H, m) 5.24-5.43 (2H, m) 4.57-4.60 (2H, m) 4.57-4.60 (2H, m) 3.64 (2H, q, J=6.7 Hz) 3.64 (2H, q, J=6.7 Hz) 2.83 (2H, t, J=6.7 Hz) 1.78-1.87 (2H, m)	
融点	114~116	139~139 C	
構造式	O N M M M M M M M M M M M M M M M M M M	HO H H H H H H H H H H H H H H H H H H	ZI O
英施例	2-115	2-116	2-117

Г		T	
一一一一一一		C,,H,,NO, 理論值 C; 74.27% H; 8.12% N; 2.62 % 分析值 C; 74.54% H; 8.15% N; 2.67%	C26H36N2O6 理論值 C; 66.08% H; 7.68% N; 5.93% 分析值 C; 66.38% H; 7.73% N; 5.88%
MS		FAB+ 534 [M*H*] (20) 516(100)	FAB+ 473 [M+H+](10), 455(100)
Rcm.1		KBr 3358 2953 1631 1511 1236	KBr 3281 2958 1628 1522 1348
1H NMR (&) ppm		CDCI,300MHz 7.3-7.5(5H, m) 7.16(2H, d, J=8.5 Hz) 7.06(1H, d, J=8.5 Hz) 7.09(1H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.94(2H, d, J=8.5 Hz) 6.77(1H, d, J=8.5 Hz) 6.20(1H, b) 7.05(2H, b) 7.05(CDCI3,300MHz 8.17(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz) 7.41(2H, d, J=8.7 Hz) 7.14(1H, d, J=8.5 Hz) 6.80(1H, d, J=8.5 Hz) 6.53(1H, bl) 6.53(1H, bl) 6.63(1H, bs) 7.98(2H, t, J=6.3 Hz), 7.98(2H, t, J=6.3 Hz), 7.98(2H, t, J=6.9 Hz) 7.90(2H, t, J=6.9 Hz) 7.90(4H, m)
融点		121.2~ 121.6°C	117.7- 118.7°C
構造式	HO NI	************************************	NO ₂ NO ₂ NO ₂
実施例	2-118	2-119	2-120

8	6

英施例	1 構造式	1					
		Į.	1H NMR (8) ppm	101	L		j
2-121	HO P B B B B B B B B B B B B B B B B B B	128.4∼ 128.8 ℃	CDCl,300MHz 7.60(1H, s) 7.48(1H, bs) 7.33(1H, d, 1=8.5 Hz) 7.33(1H, s) 6.90(1H, s) 6.90(1H, s) 6.88(1H, d, 1=8.5 Hz) 4.77(2H, s) 4.77(2H, s) 4.05(2H, t, 1=6.6 Hz) 3.75(2H, q, 1=6.0 Hz) 2.96(2H, t, 1=6.0 Hz) CDCI3,300MHz	KBr 13205 3205 2932 1569 1569 1276	MS FAB+ 418 [M*H*] (30) 400(100)	元素分析 C ₁₃ H ₁₃ N ₃ O ₄ 理論值 C; 66.16% H; 8.45% N; 10.06 % 分析值 C; 66.36% H; 8.52% N; 9.81%	rodina kitan ili pere ili Mandelani ili Peri ili Gori dell'ili nella della discondinazioni di ili este il le i ili ili
2-122	Me結晶	133~134 C	7.34 (1H, d, J=1.8 Hz) 0.95-1.00 (6H, m) 7.12 (1H, dd, J=8.2, 1.8 Hz) 7.07-7.10 (2H, m) 6.77-6.84 (3H, m) 6.05 (1H, m) 5.40 (1H, s) 4.02 (4H, t, J=6.6 Hz) 3.65 (2H, q, J=6.7 Hz) 2.85 (2H, t, J=6.7 Hz) 1.75-1.85 (4H, m)		FAB+ 386[M+H+] (100)	·	表 86
2-123	M		CDCI3,300MHz 7,34 (1H, d, J=2.2 Hz) 7.07-7.26 (3H, m) 6.78-6.83 (3H, m) 6.06 (1H, t, J=6.6 Hz) 5.53 (1H, s) 4.01 (4H, t, J=6.6 Hz) 3.65 (2H, q, J=6.6 Hz) 3.65 (2H, t, J=6.6 Hz) 1.74-1.88 (4H, m) 1.22-1.52 (16H, m) 0.89 (6H, t, J=7.0 Hz)		FAB+ 470[M+H+] (100)		en e
•							

_		衣 0 1	
元素分析			·
MS	FAB+ 357 [M*H*] (70) 220(100)	FAB+ 412 [M*H*] (40) 185(100)	FAB+ 427 [M*H*] (100) 369(50)
IRcm.1			
1H NMR (&) ppm	円2 4 H2 1 H2 1 H2 7 H2 6 H2 7 H2 7 H2 7 H2	CDC1,300MHz 7.14(1H, d, J=1.8 Hz) 7.08(2H, d, J=8.4 Hz) 7.06(1H, dd, J=7.8, 1.8 Hz) 6.78(2H, d, J=8.4 Hz) 6.56(1H, d, J=7.8 Hz) 6.03(1H, bi) 3.65(2H, q, J=6.6 Hz) 3.10(2H, t, J=6.8 Hz) 1.10(2H, t, J=6.8 Hz) 1.6-1.8(4H, m) 1.3-1.5(8H, m) 0.93(6H, t, J=7.1 Hz)	CDCI,300MHz 7.33(1H, d, J=2.4 Hz) 7.16(1H, dd, J=8.4 Hz) 7.09(2H, d, J=8.4 Hz) 7.09(2H, d, J=8.4 Hz) 6.75-6.82(3H, m) 6.04(1H, bi) 5.49(1H, bi) 5.49(1H, bs) 3.65(2H, q, J=6.6 Hz) 3.65(2H, q, J=6.6 Hz) 3.04(2H, t, J=7.8 Hz) 2.84(2H, t, J=6.9 Hz) 2.80(3H, s) 1.2-1.95(2H, m)
融点	215.7~ 215.7°C	85.3∼ 86.3℃	109.4~ 110.47
標遺式	Me, N O Me Me stall	HN H	Me N Me
実施例	2-124	2-125	2-126

138.5∼ 139.5℃
124.1∼ 124.9℃
CDC1,300MHz 7.62(1H, d, J=2.4 Hz 7.41(1H, dd, J=8.7, 2 7.09(2H, d, J=8.4 Hz) 7.09(2H, d, J=8.4 Hz) 6.8(2H, d, J=8.4 Hz) 6.78(1H, d, J=8.7 Hz) 6.02(1H, b) 5.16(1H, s) 7.09(2H, t, J=6.6 Hz) 3.66(2H, q, J=6.5 Hz) 2.90(2H, t, J=7.4 Hz) 2.85(2H, t, J=7.4 Hz) 1.8-1.9(2H, m)

_			
元素分析			C26H38N2O3 理論値 C; 73.20% H; 8.96% N; 6.57% 分析値 C; 73.28% H; 9.37% N; 6.55%
MS		FAB+ 453 (M+H+j(30) 159(100) 277(80)	FAB+ 427 [M+H+](50), 277(100).
IRcm.1			KBr 3370. 2956. 1624 1580 1523 1275
1H NMR (&) ppm	2 Hz 8.3, 2 5.1, 1 5.1, 3 5.1, 3 7 Hz 6 Hz 5 Hz 5 Hz	CDCl ₃ 300MHz 7.95(1H, s) 7.35(1H, d, J=2.1 Hz) 7.22(1H, d, J=8.7 Hz) 7.22(1H, dd, J=8.7 Hz) 7.24(1H, dd, J=8.3, 2.1 Hz) 7.0-7.1(2H, dd, J=8.3, 2.1 Hz) 7.0-7.1(2H, dd, J=8.7, 2.5 Hz) 6.81(1H, dd, J=8.7, 2.5 Hz) 6.81(1H, dd, J=6.8 Hz) 6.22(1H, bs) 7.95(1H, t, J=6.6 Hz) 7.95(1H, t, J=6.6 Hz) 7.95(2H, t, J=6.6 Hz) 7.95(2H, t, J=6.6 Hz) 7.95(2H, t, J=6.5 Hz)	CDC13.300MHz 7.34 (1H, d, J = 2.1 Hz) 1.7-1.9 (4H, m) 7.13 (1H, dd, J = 8.4, 2.1 Hz) 1.3-1.5 (8H, m) 7.06 (2H, d, J = 8.5 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.81 (1H, d, J = 8.4 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.82 (2H, d, J = 8.5 Hz) 0.93 (3H, t, J = 7.1 Hz) 6.06 (1H, bt) 7.06 (1H, bt) 7.07 (2H, t, J = 6.6 Hz) 7.08 (1H, bs) 7.09 (
数点			130.7~ 131.0°C
精造式	無色結晶	HO HO MH	無色結晶
夹施例	2-130	2-131	2-132

麦	9	0

ſ		2X 0 0	·
	九 <u>紫</u> 分析		
	MS FAB+ 441 [M+H+](50), 277(100).	FAB+ 427 [M*H*] (100) 290(65)	FAB+ 362 [M*H*] (60) 225(30)
4	KBr 3302 2956 1630 1511 1269 1226		
IH NMR (&) nnm	6.7 H	8.40(1H, d, J=8.4 Hz) 1.64-1.9(4H, m) 7.90(1H, s) 1.35-1.5(6H, m) 7.44(1H, d, J=1.8 Hz) 0.95(3H, t, J=7.4 Hz) 6.80(2H, d, J=8.1 Hz) 0.95(3H, t, J=6.9 Hz) 7.1(2H, d, J=8.1) 7.07(1H, d, J=8.4 Hz) 6.12(1H, bx) 6.12(1H, bx) 6.12(1H, bx) 6.12(1H, tx) 7.07(2H, t, J=6.6 Hz) 7.07(2H, t, J=6.6 Hz) 7.07(2H, t, J=7.5 Hz) 7.07(2H, t, J=7.5 Hz) 7.07(2H, t, J=7.5 Hz)	CDCl ₃ ,300MHz 7.38(1H, d, J=1.7 Hz) 7.34(1H, d, J=8.2 Hz) 7.09(2H, d, J=8.3 Hz) 7.02(1H, dd, J=2.1, 8.2 Hz) 6.78(2H, d, J=8.3 Hz) 6.78(2H, d, J=8.3 Hz) 6.78(2H, d, J=8.3 Hz) 6.78(2H, d, J=8.4 Hz) 7.02(1H, s) 7.03(1H, s) 7
融点	118.5∼ 118.7℃	135.2~ 136.2°C	130.5~
構造式	無色結晶	第色結晶	CIO M M M M M M M M M M M M M M M M M M M
実施例	2-133	2-134	2-135

Г	·	· · · · · · · · · · · · · · · · · · ·	
	7.C** 77.0T		·
	FAB+ 371 [M*H*] (30) 238(20)	FAB+ 440 [M*H*] (50) 356(70)	FAB+ 371 [M*H*] (60) 234(100)
٩			
H NMR (&) and	1.7-1.9(2H, m) 1.3-1.5(4H, m) 0.91(3H, t, J=6.9 Hz)	1.5-1.65(4H, m) 1.28-1.42(4H, m) 0.90(3H, t, J=7.4 Hz) 0.89(3H, t, J=7.4 Hz)	1.68-1.8(2H, m) 1.33-1.5(2H, m) 2) 0.96(3H, t, J=7.3 Hz)
H	CDCl ₃ ,300MHz 9.62(1H, bs) 9.15(1H, s) 8.43(1H, b) 8.37(1H, b) 8.37(1H, d, J=8.4 Hz 7.45(1H, d, J=8.4 Hz 7.45(1H, d, J=8.4 Hz 7.40(1H, d, J=8.1 Hz 6.67(2H, d, J=8.1 Hz 4.07(2H, t, J=6.6 Hz) 3.38(2H, q, J=8.1 Hz 2.70(2H, t, J=7.1 Hz) DMSO.46.300MHz	9.39(114, bs) 9.39(114, bs) 9.33(114, bs) 8.45(114, bs) 7.91(114, bs) 7.67(114, d. J=8.4 Hz) 7.57(114, d. J=8.4 Hz) 7.67(124, d. J=8.7 Hz) 6.67(214, d. J=8.7 Hz) 3.38(214, bq) 2.69(214, t. J=7.4 Hz) 2.34(414, t. J=7.4 Hz)	CDCl _{3,3} 00MHz 8.66(1H, \$) 7.77(1H, bs) 7.69(1H, dd, J=2.2, 8.5 Hz) 7.08(2H, d, J=8.4 Hz) 6.92(1H, d, J=8.5 Hz) 7.68(2H, d, J=8.4 Hz) 6.37(1H, bx) 5.55(1H, s) 3.93(3H, s) 3.93(3H, s) 2.83(2H, t, J=7.1 Hz) 2.42(2H, t, J=7.5 Hz)
爾克	177.9∼ 178.2℃	179.0∼ 179.8℃	126.9∼ 127.6℃
構造式	A M M M M M M M M M M M M M	M HN	MeO HN HOA
莱施例	2-136	2-137	2-138

夷	9	2
4X.	U	_

ſ			T
	元素分 分		C20H25NO5 理論值 C: 66.83% H: 7.01% N: 3.89% 分析值 C: 66.68% H: 7.10% N: 3.80%
	MS FAB+ 427 [M*H*](40) 195(100)	FAB+ 430 [M*H*] (100) 293(50)	FAB+ 359[M+H+] (100).
	E S		KBr 3325 1510
H NAW (A)	2.4, 9 4. Hz 0. Hz 4. Hz 6. Hz 9. Hz 9. Hz 9. Hz	CDCI _{3,300} MHz 7.26(1H, d, J=1.8 Hz) 7.05-7.15(4H, m) 6.80(2H, d, J=8.4 Hz) 6.05(1H bx) 4.06(2H, t, J=6.6 Hz) 3.66(2H, t, J=6.6 Hz) 2.89(2H, t, J=6.8 Hz) 2.89(2H, t, J=6.8 Hz) 1.63-1.5(8H, m) 1.3-1.55(8H, m) 0.94(3H, t, J=6.9 Hz)	DMSO-d6,300MHz 8.36 (1H, t, J = 5.4 Hz) 7.41 (1H, dd, J = 8.4, 2.1 Hz) 7.40 (1H, d, J = 2.1 Hz) 7.00 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 6.66 (2H, d, J = 8.4 Hz) 7.02 (2H, t, J = 6.6 Hz) 7.8 (3H, s) 7.9 (2H, t, J = 6.6 Hz) 7.9 (3H, s) 7.9 (3H, s)
10	164.1∼ 164.8 ℃	130.3∼ 131.4℃	167.9 °C
構造式	HO NH	S M M M M M M M M M M M M M M M M M M M	が赤色結晶
東施例	2-139	2-140	2-141

٠Г	1		
计算工作	C22H26N2O4 理路值 C: 67.01% H; 7.31% N; 7.81% 分析值 C: 62.45% H; 6.99% N; 7.23%		
ΣÃ	FAB+ 359[M+H+] (100).	FAB+ 373 [M*H*] (30) 237(50)	FAB+ 403 (M*H*) (30) 307(20)
10 m.1	KBr 3500 1635 1516		
1H NMR (&) pom	6.6 H	CDCI,300MHz 7.62(1H, d, J=2.2 Hz) 7.42(1H, dd, J=2.3, 8.5 Hz) 7.42(1H, dd, J=8.3, 1.25.1,48(4H, m) 7.42(1H, dd, J=8.3, 1.2) 6.79(1H, d, J=8.3, 1.2) 6.64(2H, d, J=8.4, 1.2) 6.64(2H, d, J=6.4, 1.2) 6.	CDCI,300MHz 8.19(2H, d, J=9.0 Hz) 8.65(1H, d, J=2.1 Hz) 7.44(1H, dd, J=2.1, 8.4 Hz) 7.41(2H, d, J=9.0 Hz) 6.82(1H, d, J=8.4 Hz) 6.82(1H, b) 3.93(3H, b) 3.93(3H, t) 3.74(2H, q, J=6.6 Hz) 3.07(2H, t, J=6.9 Hz) 7.252(2H, t, J=7.5 Hz) 1.5-1.5(2H, m)
融点	169.0~ 170.0°C	139.1∼ 140.1℃	106.9~ 107.9 C
構造式	(A)	MaO S 無色結晶	MeO Meb
東施例	2-142	2-143	2-144

Ï	Г	1 (8)	4X 0 4	
	元素分析			
-	MS	FAB 348 [M*] 237(FAB+ 459 [M*H*] (90) 293(40)	FAB+ 404 [M*H*] (100) 293(40)
	IRem.			
HI NAV (4)	CDC1 3001411-	CDC1 _{3,3} 00MHz 7.75(1H, d, J=2.1 Hz) 7.60(1H, s) 7.50(1H, s) 7.38(1H, bs) 6.87(1H, s) 6.87(1H, s) 3.93(3H, s) 3.73(2H, g, J=6.0 Hz) 2.86-3.0(4H, m) 1.63-1.75(2H, m) 1.3-1.5(4H, m) 0.89(3H, t, J=7.2 Hz) CDC1 _{4,3} 00MHz	8.19(2H, d, J=9.0 Hz) 1.3-1.55(8H, m) 7.64(1H, d, J=2.4 Hz) 0.94(3H, t, J=6.9 Hz) 7.42(1H, dd, J=2.7, 8.7 Hz) 0.90(3H, t, J=7.2 Hz) 7.41(2H, d, J=9.0 Hz) 6.80(1H, d, J=8.7 Hz) 6.04(1H, bt) 4.06(2H, t, J=6.5 Hz) 3.73(2H, q, J=6.6 Hz) 3.06(2H, t, J=6.9 Hz) 2.91(2H, t, J=7.4 Hz) 1.82-1.92(2H, m) 1.63-1.73(2H, m)	CDCl,,300MHz 7.72(1H, d, J=2.2 Hz) 7.59(1H, s) 7.59(1H, s) 7.55(1H, dd, J=2.2, 8.5 Hz) 7.31(1H, bs) 6.85(1H, s) 6.80(1H, d, J=8.5 Hz) 7.31(1H, bs) 6.80(1H, d, J=8.5 Hz) 7.31(1H, bs) 6.80(1H, d, J=8.5 Hz) 7.31(1H, bs) 6.80(1H, d, J=6.6 Hz) 3.71(2H, q, J=5.9 Hz) 7.92(2H, t, J=6.5 Hz) 7.92(2H, t, J=6.5 Hz) 7.92(2H, t, J=6.5 Hz) 7.92(2H, m) 7.92(2H, m) 7.92(2H, m)
1000		132.2~ 132.6 T	106.4~ 107.2°C	133.2~ 134.1°C
構造式		MeO N NHE NHE NHE NHE NHE NHE NHE NHE NHE N	Mehalla S Mehalla	A A A A A A A A A A A A A A A A A A A
実施例		2-145	2-146	2-147

			<u> </u>
元素分析			C20H25NO3 理論值 C: 73.37% H: 7.70% N: 4.28% 分析值 C: 73.22% H: 7.94% N: 4.30%
MS		FAB+ 342[M+H+] (100) 282(13)	FAB+ 328[M+H+] (100) 282(13) 258(12)
IRem.1		3287 3014 2933 2871 1633 1588 1516	3092 2935 2867 1654 1620 1597
1H NMR (3) ppm	•	CDCI3,300MHz 0.95 (3H, t, J=7.00 Hz) 6.94 (2H, d, J=8.25 Hz) 1.30 - 1.50 (4H, m) 7.22 - 7.30 (2H, m) 1.79 (2H, q, J=7.12 Hz) 2.38 (2H, t, J=7.61 Hz) 2.84 (2H, t, J=7.67 Hz) 3.24 (3H, s) 3.92 (2H, t, J=6.59 Hz) 5.66 (1H, s) 6.58 - 6.63 (2H, m) 6.72 (2H, d, J=8.34 Hz) 6.85 (1H, dd, J=2.21, 8.41Hz)	CDC13,300Mhz 0,92 (3H, t, J=7.5 Hz) 1,32 - 1.45 (4H, m) 1.76 (2H, q, J=7.5 Hz) 2.60 (2H, t, J=7.5 Hz) 2.96 (2H, t, J=7.5 Hz) 3.92 (2H, t, J=6.0 Hz) 5.42 (1H, br) 6.65 (1H, d, J=6.0 Hz) 6.75 (2H, d, J=6.0 Hz) 6.85 (1H, d, J=6.0 Hz) 7.07 (2H, d, J=6.0 Hz) 7.07 (2H, d, J=6.0 Hz) 7.13-7.26 (1H, m)
融点			83.9~ 84.2°C
構造式	N N OH	Me N O O T = 1, 1, 7, 7, 3	N O O M e M e M e M a B
実施例	2-148	2-149	2-150

表	g	6
1 000	J	v

実施例	到 # # # # # # # # # # # # # # # # # # #						
		E	1H NMR (3) ppm		-		
			CDC13,300MHz	IRcm.	n., MS	元素分析	Γ
			1.30 - 1 50 (44) 6.90 (2H, d, J=8.43 Hz)				Т
	_₽ 			_			_
		100.2∼ 100.6℃	2.35 (2H, t, J=7.61 Hz)	2933			
2-151			2.81 (2H, t, J=7.67 Hz)	1630			
)C			1593			
	\		3.92 (2H, t, J = 6.83 Hz)	f (;			
	加久 ++ 8		6.52-6.56 (2H. m)			-	
	電空日主	•	6.72 (2H, d, J=8.46 Hz)				
		T	CDC(311, U, J= 8.34 Hz)	-			
	,		0.93 (3H, t, J=7.02 Hz) 7.69 (1H A 1-15 15)		FAB÷		_
	H OH			12) 3302	326134 185	C20H23NO3	
			1./8 (2H, q, J=7.17 Hz) 3.97 (2H + 1-6 50 H=)	2954	(100)		
2 163	\ \ \ \ =		5.43 (1H. s)	1661	284(47)	理論值	
751-7	。 】		6.39 (1H, d, J=15.43Hz)	1803	180(29)	C: 73.82% H: 7.12%	表
	-0		6.68 (1H,dd, J=1.90,	-		N; 4.30%	
	\ \ \ \		7.81 Hz) 5.85 (2H, d, J= 8.61 Hz)			分析值	9 (
	無色結晶	0 1	6.96-7.04 (1H, m)			C; 73.16%	6
T		7,	7.18-7.26 (2H, m) 7.41-7.45 (3H, m)			N; 4.53%	
		Ö	CDC13,500MHz	\downarrow			
		o -	0.91 (3H, t, J=7.3 Hz)	·	FAB+		· ·
			1.79 (2H, q, J=7.0 Hz)	3168	340[M+H+]	C21H25NO3	
		121.90 3.	3.39 (3H, s)	2871	233(34)	理論值	
2-153	=0	0	26 (1H, d. J=6.5 Hz)	2 3	193(17)	C: 74.31%	
) <u> </u>	6	6.36 (1H, br)	1581	`	n; 7.17% N; 4.13%	
		o o	0.70-6.80 (4H, m) 6.89 (1H d 1-2 s 11-3)			分析值	
	無色結晶	7.21				C: 74.54% H: 7.54%	
1		7.6	.51 (111, t, 1=0.3 Hz) .61 (1H, d, 1=15 5 Hz)			N; 6.82%	

西班牙	计快要	١					
		養近	1H NMR (8) ppm	IRcm.1	MS	元素分析	
2-154	Meo	177.7~ 178.0°C	DMSO-d6,300MHz 0.89 (3H, t, J=7.5 Hz) 1.25-1.44 (4H, m) 1.72 (2H, q, J=6.0 Hz) 3.71 (3H, s) 3.90 (2H, t, J=7.5 Hz) 6.55 (1H, d, J=6.0 Hz) 6.81 (2H, d, J=6.0 Hz) 6.89 (1H, d, J=6.0 Hz) 7.16 (1H, d, J=6.0 Hz) 7.28-7.50 (4H, m) 9.88 (1H, s)	3392 2956 1654 1605 1584 1510	FAB+ 356 [M+H+] (58) 314(100) 209(69)	U 型 U H U H U H U H U H U H U H U H U H	
2-155	MeO	169.1∼ 169.4℃	CDCI3300Mhz 0.89 (3H, t, J=7.5 Hz) 1.28-1.46 (4H, m) 1.81 (2H, q, J=5.3 Hz) 3.37 (3H, s) 3.91 (3H, s) 3.97 (2H, t, J=7.5 Hz) 6.23 (1H, d, J=15.0 Hz) 6.73-6.90 (5H, m) 7.19 (2H, d, J= 9.0 Hz) 7.60 (1H, d, J=15.0 Hz) 7.74 (1H, s)	3074 2933 1642 1578 1509	FAB+ 370 [M+H+] (74) 223(46) 147(100)	C22H27NO4 理論值 C; 71.52% H; 7.37% N; 3.79% 分析值 C; 71.32% H; 7.38% N; 3.70%	
2-156	Me Me Me Me Me Me	152.7~ 152.9°C	CDC13,300MHz 0.92 (3H, t, J=7.07 Hz) 1.31-1.42 (4H, m) 1.71 (2H, q, J=6.89 Hz) 3.46, (3H, s) 3.82 (2H, t, J=6.60 Hz) 6.53-6.75 (5H, m) 7.11-7.17 (3H, m) 7.45 (1H, s)	3127 2937 1575 1518	FAB+ 314[M+H+] (100) 220(10) 193(27)	理論(值 C; 72.82% H; 7.40% N; 4.34% 分析值 C; 72.15% H; 7.40% N; 4.44%	

実施例	構造式	製造	1H NMD (A) 222				٠.
			Chair annua.	-Rcm	MS	一 元素分析	
			0.01 (2U + 1-2 £ 11-2)		FAB+		r
			0.91 (5ft, ft, J=7.5 Hz)			CHINO	
			1.27-1.44 (4H, m)	3406	358	101111111111111111111111111111111111111	
	5		1.82 (2H, q, J=7.5 Hz)	3240	[M+H+] (83)	_	_
	1	×8.62.1	2.59 (2H, d 1=7 5 Hz)	3145	357(100)	理論値	
		126.1 C	(711 C) -1 P HC) L0 C	3084	288(13)	C; 70.56%	
7 167			_ `	200	200(23)	H; 7.61%	
/61-7				0667	(2)	Z 202%	
			3.98 (2H, t, J=7.5 Hz)	2865		0/4/:-	
	\ \ \ \ \		5.28 (1H, s)	1649	_	一分析值	
	,		(6.73-6.78 (4H, m)	1613		C: 70 57%	-
			6.97 (1H. hr)	1553		H: 7.88%	
	無色結晶		7.08 (2H, d. 1=7 5 Hz)	1512		Z: 3.96%	
			7.23 (1H. hr)				_
			CDC13.500MH2				-
			10 00 (3H + 1=1 0 0°)		FAB+		r
			1.30-1.43 (4H m)	1314	707	C19H23NO4	-
	5		173 / H 2 1-6 11-7	3122	384		40.
	ı	137.7~	3 73 (2H, 6) 3=0.9 ftZ)	2067	(M+H+) (60)	母體世	<u></u>
		138.0°C	3.01 (7H + 1.4 & 11.5)	2000	(50,130)	C: 69.28%	
21.60	-		7:1 (4:1, 1, 1=0.5 ITZ)	0007	200/36)	H: 7.04%	交
9CI-7			0.04 (ZH, d, J=7.5 HZ)	3 5	(00)	N: 4.25%	
			•	200		: :	9
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7.29 (1H, d, J=9.0 Hz)	282		分析值	8
	/ >		7.44 (1ff, 0f)	0661		C; 69.03%	
	1		7.83 (2H, d, J=7.5 Hz)	1514		H; 7.14%	
	無由和自		9.80 (1H, br)			N; 5.56%	
			10.05 (1H, br)				4.
			CDCI3,500MHz		FAB+		_
			0.31 (3ft, 1, J=/.0 Hz)			C20H24NO	
	H, ⟨	-	1.34-1.40 (4H, m)	3154	344[M+H+]	-0177104	
	> =	138 7~	1.67-1.74 (2H, m)		(300)	1 1	
		138.90	3.44 (3H, s)		343(99)	世襲電	
	<u> </u>	•	3.78-3.95 (5H, m)	1589	223(35)	C; 69.95%	
2-159	= 0		6.52-6.72 (5H, m)	1571		H; 7.34%	_
	MeO		7.13-7.16 (3H, m)	1507		N; 4.08%	
	\ \ -C					分析值	
	/ > >					C; 69.09%	
	1 1 1			_		H; 7.42%	
	魔鬼印制				-	N; 5,73%	
				_		,	

表 99

爽施例	構造式	融点	1H NMR (\$) ppm	JR m.1	MS	元素分析
				Neat	FAB+	
			6.7-6.9 (7H, m)		374	
	CH2OH		3.94 (2H. t.]=6.8 Hz)		[M+H+] (30)	
	_	257.1~	3.9-4.0 (2H, m)	1515	330(100)	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	238.2 C	3.80 (3H, s)	1264		
2-160	_\ _<		3.6-3.7 (2H, m)			
			3.4-3.3 (1H, m) 1.0-3.1 (2H, hs)			
	<>>		2.6-2.9 (2H, m)	٠		
			1.7-1.8 (2H, m)			
			1.2-1.5 (4H, m)			
			0.88 (3H, t, 1=7.0 Hz)			÷
			CDC13,300MHz			
	5		0.98 (3H, t, J=6.98 Hz)			C18H21NO3
	5		1.38-1.52 (4H, m)	3299		
	ı		1.83 (2H, q, J=6.68 Hz)	2938		祖路信
		20101	4.01 (2H, t, J = 6.51 Hz)	2868		C: 72.22%
	> > > -		6.75 (1H, dd, J=2.21,	9		H: 7.07%
2-161	=0		8.09 Hz)	1542		N; 4.68%
	, }		6.93 (2H, d, J=8.61 Hz)	1.708		45
			7.12 (1H, d, J=7.70 Hz)			
•			7.28 (1H, t, J=8.04 Hz)			H: 7.15%
			7.41-7.73 (2H, m)			N: 4.67%
	無色結晶		7.76 (1H, d, J=8.54 Hz)			

•