## Dyn. Systeme in der Zahlentheorie

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Dies ist eine übersetzte Zusammenfassung der ersten Kapitel des Buches "Recurrence in Ergodic Theory and Combinatorial Number Theory" von Harry Furstenberg.

**Def.** Ein **dynamisches System** ist ein Paar (X,G) bestehend aus einem kompakten metrischen Raum X und einer Gruppe oder einem Monoid G mit Wirkung  $\varphi: G \to \operatorname{Aut}/\operatorname{End}(X), \ g \mapsto T_g, \ T_g(x) := g.x.$ 

**Def.** Ein **Untersystem** eines dynamischen Systems (X,G) ist eine Teilmenge  $Z \subseteq X$  mit  $T_q(Z) \subseteq Z$  für alle  $g \in G$ .

Bem. Falls  $G = \mathbb{Z}$  oder  $M = \mathbb{N}$ , dann bezeichnen wir mit  $T := T_1$  den Erzeuger der Aktion und nennen (X, T) ein **zykl. System**.

**Def.** Sei X ein topol. Raum,  $T:X\to X$  stetig. Ein Punkt  $x\in X$  heißt **wiederkehrend**, falls für für alle Umgebungen  $V\subset X$  von x ein  $n\geq 1$  existiert mit  $T^n(x)\in V$ .

Bem. Sei X sogar ein metrischer Raum,  $x \in X$  wiederkehrend. Dann gibt es eine Folge  $(n_k)$  mit  $d(T^{n_k}(x),x) \to 0$  für  $k \to \infty.$ 

 $\mathbf{Def.}\,$  Sei Xein topol. Raum,  $T:X\to X$ stetig. Dann heißt

$$Q(x) \coloneqq \overline{\{T^nx \,|\, n \geq 1\}} \subseteq X$$

abgeschlossener Vorwärtsorbit von  $x \in X$ .

**Lemma.** •  $x \in X$  ist wiederkehrend  $\iff x \in Q(x)$ 

- $x \in Q(y) \implies T(x) \in Q(y) \iff Q(x) \subseteq Q(y)$
- Die Relation  $xRy :\iff x \in Q(y)$  ist transitiv.

**Thm.** Sei X ein kompakter topol. Raum,  $T: X \to X$  stetig. Dann gibt es einen wiederkehrenden Punkt  $x \in X$ .

**Def.** Sei K eine kompakte Gruppe,  $a \in K$  und T(x) := ax. Dann heißt (K, T) ein **Kronecker-System**.

**Thm.** In einem Kronecker-System sind alle  $x \in K$  wiederkehrend.

**Def.** Ein Homomorphismus zwischen zwei dyn. Systemen (X,G) und (X',G) (zweimal die gleiche Gruppe oder Monoid G) ist eine G-äquivariante stetige Abbildung  $\phi:X\to X'$ .

**Def.** Ein dyn. System (Y,G) ist **Faktor** eines dyn. System (X,G), wenn es einen surjektiven Homomorphismus  $(X,G) \to (Y,G)$  gibt. Man nennt (X,G) dann eine **Erweiterung** von (Y,G).

Bem. Sei  $\phi:X\to Y$  surjektiv. Dann kann man Y mit der Menge der Fasern von  $\phi$ identifizieren.

**Thm.** Sei  $\phi:(X,T)\to (Y,T)$  ein Morphismus von zyklischen Systemen. Wenn  $x\in X$  wiederkehrend ist, dann auch  $\phi(x)$ . Allgemeiner:  $x\in Q(y)\implies \phi(x)\in Q(\phi(y))$ 

 $\textbf{Def.} \ \mbox{Sei} \ (Y,T:Y\to Y)$ ein zyklisches System, Keine kompakte Gruppe und  $\psi:Y\to K$ stetig. Setze

$$X := Y \times K$$
,  $T: X \to X$ ,  $(y, k) \mapsto (Ty, \psi(y)k)$ .

Das System (X,T) wird **Gruppenerweiterung** von (Y,T) mit K oder **Schiefprodukt** von (Y,T) mit K genannt.

Bem. Die Gr. K wirkt auf  $(X,T) = (Y \times K,T)$  durch Rechtstransl.:  $R: K \to \operatorname{Aut}(X), k \mapsto R_k, R_k(y,k') := (y,k'k).$ 

Die Homö<br/>omorphismen  $R_k$  kommutieren mit T, sind also Automorphismen des dyn. System<br/>s(X,T).

**Thm.** Sei  $(X = Y \times K, T)$  eine Gruppenerw. von (Y, T) und  $y_0 \in Y$  wiederkehrend. Dann sind die Pkte  $\{(y_0, k) \mid k \in K\}$  wiederkehrend.

Bem. Durch Erweiterung mit der zykl. Gr.  $\mathbb{Z}_m$ kann man zeigen:

**Prop.** Ist  $x \in X$  in (X,T) wiederkehrend, dann auch in  $(X,T^m)$ .

**Bsp.** Sei  $T := \mathbb{R}/\mathbb{Z}$  und  $\alpha \in \mathbb{R}$ . Dann ist das System

$$(T^2, (\theta, \phi) \mapsto (\theta + \alpha, \phi + 2\theta + \alpha))$$

eine Gruppenerweiterung des Kronecker-Systems  $(T, \theta \mapsto \theta + \alpha)$ . Somit sind alle Punkte des Torus  $T^2$  wiederkehrend. Aus der Wiederkehr des Punktes (0,0) erhält man:

**Prop.** Für jedes  $\alpha \in \mathbb{R}$  und  $\epsilon > 0$  gibt es eine ganzzahlige Lsg der diophantinischen Ungleichung  $|\alpha n^2 - m| < \epsilon$ .

Bem. Durch Verallgemeinerung auf den d-dim Torus zeigt man:

**Prop.** Sei  $p(X) \in \mathbb{R}[X]$  mit p(0) = 0. Dann gibt es für alle  $\epsilon > 0$  eine Lsg der diophantinischen Ungleichung  $|p(n) - m| < \epsilon, n > 0$ .

**Def.** Sei M ein topol. Raum und  $K \subseteq \text{Iso}(M)$  kompakt. Sei (Y,T) ein zykl. System und  $\psi:Y\to K$  stetig. Setze

$$X := Y \times M, \quad T : X \to X, \quad (y, u) \mapsto (Ty, \psi(y)u).$$

Das System (X,T) heißt isometrische Erweiterung von (Y,T).

**Prop.** Sei (X,T) eine isom. Erweiterung von (Y,T). Dann ist  $X=\cup X_{\alpha}$ , wobei  $X_{\alpha}$  abgeschlossene T-invariante Teilmengen von X sind, sodass das System  $(X_{\alpha},T|_{X_{\alpha}})$  Faktor einer Gruppenerweiterung von (Y,T) ist.

**Prop.** Sei (X,T) eine isom. Erweiterung von (Y,T) und  $y_0 \in Y$  wiederkehrend. Dann sind die Pkte  $\{(y,m) \mid m \in M\}$  wiederkehrend.

**Def.** Sei G eine abz. Gruppe/Monoid und  $\Lambda$  ein kompakter metr. Raum. Sei  $\Omega := \Lambda^G \cong \prod \Lambda$  der kompakte metrisierbare Raum der Funktionen von G nach  $\Lambda$ . Die **reguläre Wirkung** von G auf  $\Omega$  ist

$$G \mapsto \operatorname{Aut}/\operatorname{End}(\Omega), \ g \mapsto T_g, \ T_g(\omega)(g') \coloneqq \omega(g'g).$$

Ein **Bebutov-System** ist ein Untersystem von  $(\Omega, G)$ .

Bem. Sei  $\{g_1, g_2, \ldots\} = G$  eine Abzählung von G. Dann ist eine Metrik auf  $\Omega$  definiert durch

$$d(\omega, \omega') := \sum 2^{-n} d(\omega(g_n), \omega'(g_n)).$$

**Def.** Für  $\omega_0 \in \Omega$  ist der Abschluss des Orbits von  $\omega_0$ ,

$$X_{\omega_0} := \overline{\{T_g(\omega_0) \mid g \in G\}},$$

G-invariant. Das dynamische System  $(X_{\omega_0},G)$  wird das von  $\omega_0$  erzeugte Bebutov-System genannt.

**Def.** Ein symbolischer Fluss ist ein Bebutov-System mit endlichem  $\Lambda$  und  $G \in \{\mathbb{N}, \mathbb{Z}\}$ . Die Elemente von  $\Omega$  sind dann unendliche/doppelt-unendliche Folgen von Elementen von  $\Lambda$ . Man bezeichnet  $\Lambda$  dann als **Alphabet**.

**Def.** Ein Wort über  $\Lambda$  ist eine endl. Sequenz von Elementen aus  $\Lambda$ . Die Länge |w| eines Wortes ist die Länge der Sequenz.

**Prop.** Für eine Sequenz  $\omega \in \Lambda^{\mathbb{N}}$  sind äquivalent:

- $\omega$  ist wiederkehrend.
- Jedes Wort in  $\omega$  kommt ein 2. Mal an einer anderen Pos. in  $\omega$  vor.
- Jedes Wort aus  $\omega$  kommt an unendlich oft in  $\omega$  vor.

Bem. Ein wiederkehrendes Wort  $\omega \in \Lambda^{\mathbb{N}}$  hat die allgemeine Form  $\omega = [(aw^{(1)}a)w^{(2)}(aw^{(1)}a)]w^{(3)}[(aw^{(1)}a)w^{(2)}(aw^{(1)}a)]\dots$ 

mit  $a \in \Lambda$  und Wörtern  $w^{(1)}, w^{(2)}, \ldots$  Damit kann man zeigen:

**Lemma** (Hilbert). Sei  $\mathbb{N} = B_1 \cup B_2 \cup \ldots \cup B_q$  eine Partition von  $\mathbb{N}$  und  $l \in \mathbb{N}_{>0}$  beliebig. Schreibe

$$P(x_1, \dots, x_l) := \{x_{i_1} + \dots + x_{i_k} \mid 0 \le k \le l, \ 1 \le i_1 < \dots i_k \le l\}.$$

Dann gibt es  $m_1 \leq m_2 \leq \ldots \leq m_l$ , sodass unendlich viele Translationen von  $P(m_1, \ldots, m_l)$  in demselben  $B_j$  enthalten sind.

Bem. Sei (X,T) ein zykl. System und  $f:X\to \Lambda$  stetig. Dann ist  $(X,T)\to (\Lambda^{\mathbb{N}},T), \quad x\mapsto (f(x),f(Tx),f(T^2x),\ldots)$ 

ein Homomorphismus zyklischer Systeme.

**Thm.** Seien  $\Lambda_1$ ,  $\Lambda_2$  komp. Räume und  $\phi: \Lambda_1 \to \Lambda_2$  eine Abbildung. Für  $\omega \in \Lambda_1^{\mathbb{N}}$  definiere  $\omega' \in \Lambda_2^{\mathbb{N}}$  durch  $\omega'(n) \coloneqq f(\omega(n))$ . Falls  $\omega$  wiederkehrend ist und zusätzlich f in allen Punkten  $\omega(n)$  stetig ist, dann ist auch  $\omega'$  wiederkehrend.

**Prop.** Sei K eine komp. Gruppe und  $\xi \in K^{\mathbb{N}}$  wiederkehrend. Dann ist  $\eta \in K^{\mathbb{N}}$  definiert durch  $\eta(n) := \xi(n)\xi(n-1)\cdots\xi(1)$  wiederkehrend

**Def.** Eine Teilmenge S einer abelschen topologischen Gruppe / eines Monoids heißt G "syndetic", wenn eine kompakte Menge  $K \subset G$  existiert, sodass  $\forall g \in G: \exists k \in K: gk \in S$ .

Bem. Eine Teilmenge  $\{s_1 < s_2 < \ldots\} = S \subset \mathbb{N}$  ist genau dann "syndetic", wenn die Größe  $s_i - s_{i-1}$  der "Lücken" zw. Elementen aus S beschränkt ist. Solche Mengen heißen auch **relativ dicht**.

**Def.** Sei (X,G) ein dyn. System. Ein Punkt  $x \in X$  heißt **gleichmäßig wiederkehrend**, falls für alle Umgebungen  $V \subset X$  von x die Menge  $\{g \in G \mid g.x \in V\}$  syndetisch ist.

**Def.** Ein dyn. System (X,G) heißt **minimal**, wenn es keine echte abgeschl. Teilmenge von X gibt, die inv. unter der G-Wirkung ist.

**Lemma.** Sei (X, G) ein dyn System. Es sind äquivalent:

- (X,G) ist minimal  $\forall x \in X$ : der Orbit Gx ist dicht in X
- $\forall \emptyset \neq V \subset X$  offen :  $\exists$  endlich viele Elemente  $g_1, \dots, g_n \in G$  :  $g_1^{-1}V \cup \dots \cup g_n^{-1}V = X$ .

**Thm.** Sei (X,G) ein minimales dynamisches System. Dann sind alle  $x \in X$  gleichmäßig wiederkehrend.

Bem. Aus Zorns Lemma folgt: Jedes dyn. System besitzt ein minimales Untersystem. Es folgt:

**Thm.** Jedes dyn. System hat einen gleichm. wiederkehrenden Pkt.

**Thm.** Sei (X,G) ein dyn. System,  $x \in X$ . Dann sind äquivalent: • x ist glm. wiederkehrend. • Das Untersystem  $\overline{Gx}$  ist minimal.

Thm. In einem Kronecker-System ist jeder Pkt glm. wiederkehrend.

**Thm.** Sei (X,T) eine Gruppenerw. oder isometrische Erweiterung von (Y,T) mit Projektion  $\pi:(X,T)\to (Y,T)$  und  $y_0\in Y$  glm. wiederkehrend. Dann sind die Pkte  $\pi^{-1}(y_0)$  glm. wiederkehrend.

Bem. Es folgt durch Betr. eines dyn. Systems auf dem k-dim Torus:

**Thm.** Seien  $p_1(X), \ldots, p_k(X) \in \mathbb{R}[X]$  Polynome. Für alle  $\epsilon > 0$  ist die Teilmenge der nat. Zahlen, die

$$|e^{2\pi i p_1(n) - e^{2\pi i p_1(0)}}| < \epsilon, \dots, |e^{2\pi i p_k(n) - e^{2\pi i p_k(0)}}| < \epsilon$$

gleichzeitig erfüllen, syndetic.