

2장. 영상 처리

각 절에서 다루는 내용

1. 영상 처리의 세 가지 기본 연산

2.4 영상 처리의 세 가지 기본 연산

2.4.1 점 연산

■ 오직 자신의 명암값에 따라 새로운 값을 결정

2.4.2 영역 연산

■ 이웃 화소의 명암값에 따라 새로운 값 결정

2.4.3 기하 연산

■ 일정한 기하 연산으로 결정된 화소의 명암값에 따라 새로운 값 결정

2.4.1 점 연산

- 점 연산을 식으로 쓰면,
 - 대부분은 *k*=1 (즉 한 장의 영상을 변환)

$$f_{out}(j,i) = t(f_1(j,i), f_2(j,i), \cdots f_k(j,i))$$

(2.10)

- 선형 연산
 - 예)

$$f_{out}(j,i) = t(f(j,i))$$

$$= \begin{cases} \min(f(j,i) + a, L - 1), & (밝게) \\ \max(f(j,i) - a, 0), & (어둡게) \\ (L - 1) - f(j,i), & (반전) \end{cases}$$

(a) 원래 영상

(c) 어둡게(a=32)

그림 2-18 여러 가지 선형 점 연산

(b) 밝게(a=32)

네) 반전

2.4.1 점 연산

- 비선형 연산
 - 예) 감마 수정 (모니터나 프린터 색상 조절에 사용)

$$f_{out}(j,i) = (L-1) \times (\hat{f}(j,i))^{\gamma} \qquad \text{of } \hat{f}(j,i) = \frac{f(j,i)}{(L-1)}$$

2.4.1 점 연산

■ 디졸브

■ *k*=2인 경우

$$f_{out}(j,i) = \alpha f_1(j,i) + (1 - \alpha) f_2(j,i)$$
 (2.13)

그림 2-21 디졸브효과

2.4.2 영역 연산 (filtering)

- Image filters in spatial domain (영상평면에서의 연산)
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filtering: compute function of local neighborhood at each position
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

■ 상관

- 원시적인 매칭 연산 (물체를 윈도우 형태로 표현하고 물체를 검출)
- 아래 예에서는 최대값 29를 갖는 위치 6에서 물체가 검출됨

그림 2-22 상관과 컨볼루션의 원리

■ 컨볼루션

- 윈도우를 뒤집은 후 상관 적용
- 임펄스 반응

■ 2차원

윈도우 u =

0

0

0

0

0

8

0

0

상관

0 0 0

0

0

컨볼루션

■ 수식으로 쓰면,

■ 이 책은 둘 구분하지 않고 컨볼루션이라는 용어를 사용

- 컨볼루션 예제
 - 박스와 가우시안은 스무딩 효과
 - 샤프닝은 명암 대비 강조 효과
 - 수평 에지와 수직 에지는 에지 검출 효과
- 컨볼루션은 선형 연산

	샤프닝	
0	-1	0
-1	5	-1
0	-1	0

4	-평에	지
1	1	1
0	0	0
-1	-1	-1

수직 에지

모션 .0304 .0501 .0501 .1771 .0519 .0519 .1771 .0519 0519 .1771 .0501 .0501

> 수평 에지

> 수직 에지

> 모션

(b) 다양한 마스크로 컨볼루션한 영상들

그림 2-24 다양한 마스크와 컨볼루션 효과

Example: box filter

$$g[\cdot,\cdot]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{l=1}^{n} g[k,l] f[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Smoothing with box filter

Original

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

\sim	•	•	1
()	111	0.11	nal
$\mathbf{\mathcal{O}}$	\mathbf{L}	211	ıaı
	•	$\overline{}$	

0	0	0
0	0	1
0	0	0

Original

Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{2}$	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Source: D. Lowe

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Key properties of linear filters

Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equal ity
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: ((($a*b_1)*b_2$) * b_3)
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0],
 a * e = a

Source: S. Lazebnik

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would d have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

1	2	1	
2	4	2	=
1	2	1	

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability

• Why is separability useful in practice?

- 비선형 연산
 - 예) 메디안 필터
 - 솔트페퍼 잡음에 효과적임
 - 메디안은 가우시 안에 비해 에지 보 존 효과 뛰어남

(a) 원래 영상

(b) 솔트페퍼 잡음

(c) 가우시안 필터

(d) 메디안 필터

그림 2-25 가우시안과 메디안 필터의 비교

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

