UNIVERSIDAD DEL MAGDALENA - PROGRAMA DE BIOLOGÍA TALLER No 1 - SIMULACIÓN CON RAMAS ECOLAB

DOCENTE: JAVIER RODRÍGUEZ

1.) SIMULACIONES DE CRECIMIENTO EXPONENCIAL (DETERMINISTICO Y ESTOCASTICO).

- A_ Entrar al programa RAMAS EcoLab y seleccionar el subprograma "Population Grow".
- B Seleccionar "General Information" e incluir el titulo y comentarios para el ejercicio.
- C_ Entrar los siguientes parámetros al modelo:

Replication:	0
Duration:	12

D Entrar en "Model" y hacer click "Population". Editar los siguientes valores:

Initial abundance	31
Growth rate (R):	1.148

- E_ ¿Cuál será la tasa instantánea de crecimiento exponencial? ¿Cuál será la velocidad de crecimiento?
- F_ Seleccionar "**Simulation**" y hacer click en "**Run**". Se desarrollará una simulación en 12 pasos de tiempo. Salir de la simulación.
- G_ Seleccionar "**Trajectory summary**", la cual simulará el crecimiento exponencial. ¿Cuál será el tamaño final de la población?.
- H_ Seleccionar "General Information" y editar el número de replicas de 100. y hacer click en "Demographic stochasticity".
- I Entrar en "Population". Editar los siguientes valores:

Initial abundance	31
Growth rate (R):	1.148
Survival rate (s):	0.921
Standard deviation of R:	0.075

- J_ Repetir los pasos: E y F. ¿Alguna trayectoria es similar a la trayectoria determinística? ¿Que causa estas diferencias?. Salvar el documento.
- K_ Seleccionar "Extinction/Decline" ¿Cuál es el riesgo de que desciendan 31 individuos basados en la curva?. Hacer clic en "Show numbers" y responder esta interrogante.

2.) SIMULACIONES DE CRECIMIENTO LOGISTICO CON PARAMECIUM.

A_ Repita los pasos A-C del ejercicio anterior.

Replication:	0
Duration:	25

B_ Entrar en "**Model**" y hacer click "**Population**". Editar los siguientes valores:

Initial abundance	2
Growth rate (R):	1.5

C_ En "**Density dependence**" hacer click en el modelo "**Screamble**", para K utilizar un valor de acuerdo a la Fig. 3.8.

- D Seleccionar "Simulation" y hacer click en "Run". Salir de esa ventana.
- E_Seleccionar "**Trajectory summary**", la cual simulará el crecimiento exponencial. ¿Cuál será el tamaño final de la población? ¿Por qué no se alcanzó la capacidad de carga al día 12? Si el K es alcanzado posterior al día 12 quiere decir que R es algo lento.
- F_ ¿Cuál es la velocidad de crecimiento de la población? ¿Cómo maximizar la producción de paramecios? ¿Cuál será la velocidad máxima de crecimiento de esa población?
- G_ Cambiar la abundancia inicial a 800 y correr otra simulación. Hacer descripción de la trayectoria generada. ¿Cuál es la velocidad de crecimiento de la población?

3.) ADICIONANDO ESTOCASTICIDAD AL MODELO LOGISTICO.

En el experimento desarrollado por Gause con la población *Paramecium*, se adicionará variación por estocasticidad demográfica.

A_ Adicionar 100 replicas y activar la casilla "demographic stochasticity".

Replication:	100
Duration:	25

B_ Si R=f+S (sobrevivientes + sus crías en t+1). Para la especie en estudio se asume que toda la reproducción es asexual (por fisión binaria). Entonces S=0 y R=f cercana a 2 (por fisión se producen 2 crías/parental).

Initial abundance	2
Growth rate (R):	2.000
Survival rate (s):	0.000
Standard deviation of R:	0.000

- C_ Correr la simulación y comparar con los resultados experimentales de Fig. 3.8.
- D_ En "**Density dependence**" hacer click en el modelo "**Contest**" y "**Ceiling**", con un R=10 hasta 20 y analizar diferencias.

4.) DEMOSTRANDO CAOS.

- A_ Use la curva de la fig. 3.16 y trazar la trayectoria de la población para 10 pasos de tiempo (los primeros dos pasos son presentados). ¿Qué se puede observar?
- B Utilizar RAMAS EcoLab para modelar el crecimiento de esta población. Según:
 - Haciendo el modelo determinístico.
 - El tipo denso-dependiente es representado por la forma de la curva.
 - K es representado por la intersección en la figura. No es representado por el eje X.
 - R_{max} es representada por la pendiente cercana al origen. (Llenar casilla "population").
- C_ Correr la simulación y analizar la trayectoria de la figura. Cambiar la abundancia iniciar y correr otra simulación. Analizar los resultados.