DIT UNIVERSITY DEHRADUN			
B.Tech. (All) END TERM EXAMINATION, EVEN SEM 2020-21 (SEMESTER			STER I)
		Subject Name: Engg. Mathematics I (MAF101)	
ime: 1:00			Total Marks: 50
ote: All qu	uestions ar	re compulsory.	
Q.1)		n Taylor's series expansion of the maximum order for the function $y = x^2 + 3y^2 - 9x - 9y + 31$ about the point $(2, 1)$ and hence	
			[1 x 10= 10]
Q.2)	If log y	$y = \tan^{-1} x$ then show that $(1 + x^2)y_{n+2} - (2nx + 2x - 1)x$ y	$y_{n+1} + n(n+1)y_n = 0.$
			[1 x 10= 10]
Q.3)	If (x, y) $x^2 \frac{\partial^2 u}{\partial x^2}$	$y(y) = \sin^{-1}\left\{\frac{x+y}{\sqrt{x}+\sqrt{y}}\right\}$. Examine whether $u(x,y)$ is homogeneous of $\frac{u}{2} + 2xy\frac{\partial^2 u}{\partial x \partial y} + y^2\frac{\partial^2 u}{\partial y^2} = \frac{\sin u \cos 2u}{4\cos^3 u}$.	r not. Further, show that
	0%	0.0 0 y 1000 u	[1 x 10= 10]
Q.4)	Evalua	ate the integral $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$.	
			[1 x 10= 10]
Q.5)		ate curl and divergence of the vector $\hat{v} = e^{xy}(x\hat{\imath} + yj) + 2e^{z}\hat{k}$ oidal and/or irrotational.	and check whether it is
			[1 x 10= 10]
		END OF PAPER	