Theory of Computing Regular Languages

2ND YEAR - ENSIA

PRE-TUTORIAL EXERCISES

Prove that under $\Sigma = \{0,1\}$, the language of string containing an odd number of 1s, is a regular language.

EXERCISES

Exercise C1 (Regular Languages):

Prove the following are regular:

- 1. For any string $w=w_1\ w_2\ \cdot\ \cdot\ \cdot\ w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n\ \cdot\ \cdot\ \cdot\ w_2\ w_1$. For any language A, let $A^R=\{w^R\mid w\in A\}$. Show that if A is regular, so is A^R .
- 2. Let $\Sigma = \{0,1\}$ and let $D = \{w \mid w \text{ contains an equal number of occurrences of the substrings 01 and 10}. Thus <math>101 \in D$ because 101 contains a single 01 and a single 10, but 1010 **not in** D because 1010 contains two 10s and one 01. Show that D is a regular language.

Exercise C2 (Pumping Lemma):

Use the pumping lemma to show that the following languages are not regular.

- 1. $A_1 = \{0^n \ 1^n \ 2^n \mid n \ge 0\}$
- 2. $A_2 = \{www | w \in \{a, b\} * \}$
- 3. $A_3 = \{w \mid w \in \{0,1\} * \text{ is not a palindrome} \}$ is not a regular
- 4. $A_4 = \{a^{2^n} \mid n \ge 0\}$ (Here, a^{2^n} means a string of 2^n a's.) { Good one, will not solved together in class **but** Students need to do it on their own, even after class.}

Exercise C3:

Show that:

- 1. Let $B_n = \{a^k \mid k \text{ is a multiple of n}\}$. Show that for each $n \ge 1$, the language B_n is regular.
- 2. For languages A and B, let the perfect shuffle of A and B be the language $\{w \mid w = a_1 \ b_1 \cdot \cdot \cdot a_k \ b_k$, where $a_1 \cdot \cdot \cdot a_k \in A$ and $b_1 \cdot \cdot \cdot b_k \in B$, each a_i , $b_i \in \Sigma\}$. Show that the class of regular languages is closed under a perfect shuffle. Example: $abc \in A$, $123 \in B$, by perfectly shuffling $\rightarrow a1b2c3$ (Good one, requires students understanding a lot of abstraction when it comes to machines).

Exercise P1:

- Prove that $L_{odd-sq2}=\{0^{(2n+1)^2}\mid n\geq 0\}$ is non-regular, from first principles, using Myhill-Nerode Theorem
- Use the above result to prove that Ls = $\{0^{n^2+n} \mid n \ge 0\}$ is non-regular by closure properties.

Exercise P2 (Optional):

Prove or disprove each of the following claims:

- 1. For any languages L and M , if L \subseteq M and L is not regular then M is not regular.
- 2. For any languages A and B, if $A \subseteq B$ and B is not regular then A is not regular.
- 3. For any language C, if C is not regular then C U $\{\varrho\}$ is not regular.
- 4. Let $C_n = \{x \mid x \text{ is a binary number that is a multiple of } n\}$. Show that for each $n \ge 1$, the language C_n is regular.

Exercise P3 (Optional):

- 1. For each of the following languages $L \subseteq \{a, b\}*$, show that the elements of the infinite set $\{a^n \mid n \ge 0\}$ are pairwise L-distinguishable.
 - a. L = $\{a^n \ b \ a^{2n} \ | \ n \ge 0\}$
 - b. L = { $a^{i} b^{j} a^{k} | k > i + j }$
 - c. L = $\{a^i b^j | j = i \text{ or } j = 2i\}$
 - d. L = $\{a^i b^j \mid j \text{ is a multiple of } i\}$
 - e. $L = \{x \in \{a, b\} * \mid na(x) < 2nb(x)\}$
 - f. L = $\{x \in \{a, b\} * \mid no prefix of x has more b's than a's}$
 - g. L = $\{a^{n^3} \mid n \ge 1\}$
 - h. L = $\{ww \mid w \in \{a, b\} * \}$
- 2. For each of the languages above, use the pumping lemma to show that it cannot be accepted by an FA.

Exercise P4 (Optional) :

Let $\Sigma = \{0, 1, +, =\}$ and ADD = $\{x = y + z \mid x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}$ Show that ADD is not regular.

Exercise P5 (Optional: Difficult but all optional exercises can be an exam question):

For any language A over Σ , consider the language of strings obtained by deleting a single character from any string in A: Delete(A) = $\{xz \mid x, z \in \Sigma^* \text{ and } xyz \in A \text{ for some } y \in \Sigma\}$

Show that if A is regular, then Delete(A) is regular

Exercise P6 (Optional):

Each case below defines a language over {a, b}. In each case, decide whether the language can be represented by an FA, and **prove** that your answer is correct.

- 1. The set of all strings x beginning with a nonnull string of the form ww.
- 2. The set of all strings x containing some nonnull substring of the form ww.
- 3. The set of all strings x having some nonnull substring of the form www. (You may assume the following fact: there are arbitrarily long strings in {a, b}* that do not contain any nonnull substring of the form www.)
- 4. The set of odd-length strings with middle symbol a.
- 5. The set of even-length strings of length at least 2 with the two middle symbols equal.
- 6. The set of strings of the form xyx for some x with $|x| \ge 1$.
- 7. The set of non-palindromes.
- 8. The set of strings in which the number of a's is a perfect square.
- 9. The set of strings having the property that in every prefix, the number of a's and the number of b's differ by no more than 2.
- 10. The set of strings having the property that in some prefix, the number of a's is 3 more than the number of b's.
- 11. The set of strings in which the number of a's and the number of b's are both divisible by 5.
- 12. The set of strings x for which there is an integer k > 1 (possibly depending on x) such that the number of a's in x and the number of b's in x are both divisible by k.
- 13.(Assuming that L can be accepted by an FA), Max (L) = $\{x \in L \mid \text{there is no nonnull string y so that } xy \in L\}$.
- 14.(Assuming that L can be accepted by an FA), $Min(L) = \{x \in L \mid \text{no prefix of } x \text{ other than } x \text{ itself is in } L\}$.

Exercise P7 (Optional):

Prove that the language $L = \{0^k \mid k \text{ is a prime number }\}$ is not regular.