Optical

Lecture 4

- Ethernet physical
 - Copper... 10Base5,2,T, 100/1000/10G
 - Optical
- Optical transmission
- Frequency response
- WDM

Ethernet Physical

- 10Base5 Vampire taps
- 10Base2 "Thinwire" BNC
- 10BaseT Twisted pair (500m)

All above Manchester encoding..

- 100BaseT see TX, T4, T2 (100m), 4b5b
- 1000BaseT use 2 pairs, "PAM5" encoding

10GBase-T

• "PAM16" - DSQ128

Ethernet Optical

- 10BaseFL
 - 850nm 2km
- 100Base...
 - FX 1300nm 2km
 - SX 850nm cheaper
 - LX 1300nm 10/20/40km "si...
- 1000Base
 - even more variants
- 10G
 - and even more...

Why??

Optical Fiber

- Signal modulated onto light
- Transmission over various distances....
- Received by photdetector
 - Very long distances (>1000 km)
 - Very high speeds (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services

Optical Fiber

e.g. Mach-Zender uses interference to modulate signal

- Light sources (lasers, LEDs) pass to...
- Modulator
- Injected into fibre and..
- Received by photodetector

Transmission in Optical Fiber

Total Internal Reflection in optical fiber

- Glass core surrounded by layer of cladding
- Core has higher index of refraction than cladding
- Light rays undergo "total internal reflection"
 - That's the simple form of the explanation....

Multimode & Single-mode Fiber

Multimode fiber: multiple rays follow different paths

Single-mode fiber: only direct path propagates in fiber

- Multimode: 50μm in 125μm
 - Rays on different paths interfere causing dispersion
 - LEDs and Lasers as source
- Single mode: 8μm in a cladding of 125μm
 - Lasers

Optical Fiber Properties

Advantages

- Very low attenuation
- Noise immunity
- Extremely high bandwidth
- No corrosion
- More compact & lighter than copper wire
- Long distances (>1000 km)
- High speeds (>40 Gbps/wavelength)
- Nearly error-free (BER of 10⁻¹⁵)

Disadvantages

- New types of optical signal impairments & dispersion
 - Polarization dependence
 - Wavelength dependence
- Limited bend radius
 - If physical arc of cable too high, light lost or won't reflect
 - Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

Very Low Attenuation

Global Undersea Fiber systems

Wavelength-Division Multiplexing

- Different wavelengths carry separate signals
- Multiplex into shared optical fiber
- A single fiber can carry 160 wavelengths, 10 Gbps per wavelength: 1.6 Tbps

Regenerators & Optical Amplifiers

- The maximum span of an optical signal is determined by the available power & the attenuation:
 - Ex. If 30 dB power available,
 - then at 1550 nm, optical signal attenuates at 0.25 dB/km,
 - so max span = 30 dB/0.25 km/dB = 120 km
- Optical amplifiers amplify optical signal (no equalization, no regeneration)
- Impairments in optical amplification limit maximum number of optical amplifiers in a path
- Optical signal must be regenerated when this limit is reached
 - Requires optical-to-electrical (O-to-E) signal conversion, equalization, detection and retransmission (E-to-O)
 - Expensive
- Severe problem with WDM systems

Optical Fiber Attenuation and Fiber Amplifier Gain

