Data Acquisition Prototype: Project & System Requirements

Phoenix Ambulatory Blood Pressure Monitoring System

3 February 2009

© 2009 Christopher J. Adams
Copying and distribution of this document is permitted in any medium, provided this notice is preserved

1

Agenda

- Purpose and Scope of this Document
- Project Vision
- System Vision & Scope (Business Requirements)
- User Requirements
 - Use Cases
 - Algorithms (Business Rules)
- System Requirements
 - Functional Requirements
 - Major Nonfunctional Requirements
- Requirements Work Outstanding
- Design Direction Details

3 February 2009 2

Purpose and Scope of this Document

- Specify system requirements for a prototype of a data acquisition device
 - Incorporate system requirements of eventual Phoenix ABPM, but...
 - Do not specify the Phoenix ABPM
 - Supplement Phoenix requirements with prototypespecific requirements
- Incorporate results of sensor prototypes to-date

3 February 2009

3

Project Vision

- Acquire community knowledge about
 - Data acquisition devices
 - Hardware and software co-design
 - Partitioning systems into subsystems
 - Allocating system requirements to subsystems
 - Embedded software architecture options (round robin, round robin w/ interrupts, ..., RTOS)
 - Hardware options (gates, clocks, memory, MP, buses, DMA, interrupts, ports, ...)
 - Designing low-power devices
 - Acquiring hardware components
 - Testing embedded software
- Document results so they can be reproduced

3 February 2009

Project Vision

- Architecture basic technology
 - Hardware architecture
 - Hardware component selection
 - Embedded software architecture
 - Software language selection
 - Cross-platform development tools
- Prototype
 - Must build a device to evaluate interdependent design options
 - Learning is primary
 - Expect subsequent evolution
 - Willing to abandon device based on lessons learned
- Computing device is primary
 - Sensing is secondary
 - Acquired data may be simulated

3 February 2009

5

System Vision

- Data acquisition device (next slides)
- Embedded analytics (next slides)
- Embedded data storage (next slides)
- Device allows ambulation during use
 - At least carriable
- Electrically self-contained
 - Does not rely on external power source
- Power-sensitive design
 - Design for either:
 - Low power, or
 - · Power measurement

3 February 2009 6

System Vision

- Data acquisition device
 - Collects continuous analog signals from two sensors
 - At least one is piezoelectric film sensor
 - Measurement Specialties SDT1-028K
 - Collects from piezoelectric film sensor
 - Up to 40 samples per cardiac cycle
 - @ 200 beats per minute (maximum)

133 samples per second

7

- Converts analog signals to digital signals
- Collects discrete signals from wearer-pressable push-button
 - Button down
 - · Button up
- Turns on and off a human-perceivable device-mounted light

3 February 2009

System Vision

- Embedded analytics
 - Identifies / marks peak of each continuous waveform
 - Voltage
 - Identifies / marks trough of each continuous waveform
 - Voltage
 - Calculates biometrics
 - Heart rate
 - Beats per minute
 - Systolic blood pressure
 - mmHg
 - · Diastolic blood pressure
 - mmHg
 - Performs calculations over 5 cardiac cycles every 30 minutes
 - Translates different combinations of button-down and button-up signals into events

3 February 2009 8

System Vision

- Embedded data storage
 - Timestamps each acquired & calculated value
 - Preserves three days of acquired & calculated data
 - Preserves all acquired values
 - See "Data acquisition device"
 - Preserves all calculated values
 - See "Embedded analytics"

3 February 2009 9

System Vision Major Out-of-Scope Capabilities

- Capacity for 7 days of data
- Patient alerts
- Localization outside of U.S.
 - Production
 - Use
- Analog signal processing
 - As alternative to digital signal processing
 - Separate research topic
- HMI beyond simple light bulb
 - Will not display calculated values
 - Continued exclusion depends on analysis of power management

3 February 2009 10

Use Cases

- Wearer signals the device to log an event
 - Assures data-acquisition logic despite sensor failure
- Technician or wearer confirms device functions
- Technician connects device to wearer
- System collects data
- Wearer restarts data collection
- Technician off-loads data from device

3 February 2009 12

Use Cases

Wearer Signals Device to Log Event

- 1. Wearer pushes button (and holds until step 6)
- 2. System activates status light
- 3. System logs button-down
- 4. Wearer observes status light
- 5. Wearer may pause
- 6. Wearer releases button
- 7. System logs button-up
- 8. System de-activates status light
- 9. Wearer observes status light
- 10. Wearer may pause
- 11. Wearer repeats sequence according to predefined code

3 February 2009 13

Use Cases

Technician or Wearer Confirms Device Functions

- 1. User signals device-start event
- 2. System runs diagnostics
- 3. System toggles the status light in a pattern indicating successful start-up
- 4. Technician observes status light

3 February 2009 14

Use Cases

Technician Connects Device to Wearer

- 1. Technician starts device
 - Signals device-start event
 - Use case "Wearer Signals Device to Log Event"
- 2. Technician confirms device functions
 - Signals run-diagnostics event
 - Use case "Wearer Signals Device to Log Event"
- 3. Technician places and fastens device on wearer
- 4. Wearer confirms device is comfortable
- 5. Technician starts data acquisition
 - Signals acquisition-start event
 - Use case "Wearer Signals Device to Log Event"

3 February 2009 15

<u>Use Cases</u> System Collects Data

- 1. System waits for configured duration
- 2. System activates status light
- 3. Systems periodically reads data from each sensor
 - Periodicity configured sensor-by-sensor
- 4. System timestamps and stores each reading
- 5. System continues reading data for configured duration
- 6. System calculates embedded analytics
- 7. System timestamps and stores each calculated value
- 8. System deactivates status light
- 9. Above sequence repeats

3 February 2009 16

<u>Use Cases</u> Wearer Confirms Device is Working

- 1. Wearer signals device-check event
 - Use case "Wearer Signals Device to Log Event"
- 2. Wearer observes status light to confirm device function

3 February 2009 17

<u>Use Cases</u> Wearer Restarts Data Collection

- 1. Wearer places and fastens device on self
- 2. Wearer signals acquisition-start event
 - Use case "Wearer Signals Device to Log Event"

3 February 2009 18

<u>Use Cases</u> Technician Off-Loads Data from Device

- 1. Technician connects device to storage system
- 2. Technician signals download-initiation event
 - Use case "Wearer Signals Device to Log Event"
- 3. System transforms data into transmission format and transfers transformed data to file, while manipulating status light to signal transfer progressing
- 4. System signals completion of transfer with status light Post-condition:
 - Off-loaded data is in a state in which it can be used by external systems

3 February 2009 19

Algorithms

- Calculation of pressure wave
- Waveform peak
- Waveform trough
- Heart rate
- Systolic blood pressure
- Diastolic blood pressure

3 February 2009 20

Functional Requirements

- Downloaded Data
 - ::=
 - Head
 - Device ID
 - (Absolute base time)
 - Timestamp of download initiation
 - Body
 - { Acquired/calculated Item }*
 - » Sensor ID/Data Source ID
 - » Timestamp of acquisition/calculation
 - » Information type
 - » Value
 - Tail
 - Timestamp of download completion
 - End of data marker
 - If timestamps are relative
- $_3^{\bullet}$ February 2009 then download must include absolute base time

21

Functional Requirements

- Acquired/calculated information type
 - Acquisition control event
 - · Start device
 - Stop device
 - · Start acquisition
 - · Stop acquisition
 - · Run diagnostics
 - · Test acquisition
 - Wearer event
 - Acquired continuous value
 - mV
 - Acquired discrete value
- 3 February 2009On/off, down/up, yes/no

- Acquired/calculated information type
 - Calculated values
 - Pulse (heart rate)
 - Units: beats per minute
 - Range: 30-200 bpm
 - Accuracy: ±5%
 - Systolic blood pressure
 - Units: mmHg
 - Range: 60-280 mmHg
 - Accuracy: ±3 mmHg
 - · Diastolic blood pressure
 - Units: mmHg
 - Range: 40-160 mmHg
 - Accuracy: ±3 mmHg

22

Major Nonfunctional Requirements

- Interfaces
 - Outgoing
 - · Downloaded data
 - Free and open format
 - Formal and concise format
 - Human legible
 - Presentable & workable as plain text file (e.g., editable with text editor)
 - Widely used format (e.g., industry standard)
 - Primary options: XML, HL7
 - » However, must understand impact of tagging the data
 - Physical Connectors
 - · Device downloads data via a standard connector
 - Primary options: Secure Digital, USB
 - Excluded option: RS232

23

Physical Constraints

- Wearer wears or carries device during operation

3 February 2009

Major Nonfunctional Requirements

- Legal Requirements
 - Licenses of created works are attributable to the authors
 - Free and open source
 - Rationale see http://www.phoenix.tc-ieee.org/000_Background/Phoenix_OpenSource.htm
 - Software
 - · All software created by the project is free and open
 - As defined by the Open Source Initiative
 - http://www.opensource.org/docs/definition.php (version 1.9, 2006-07-24)

- · All software incorporated from third parties into the product
 - Is free
 - May be freely redistributed
 - May be bundled with free and open source software without impinging on rights of distribution under the open source definition

3 February 2009 24

Major Nonfunctional Requirements

- Legal Requirements
 - Hardware
 - All hardware designs shall be free Free Hardware Design
 - Design can be freely copied, distributed, modified, and manufactured
 - Does not imply:
 - » that the design cannot also be sold, or
 - » that any hardware implementation of the design will be free of cost
 - Ref: Open Collector
 - » http://www.opencollector.org/Whyfree/definitions.html
 - All hardware designs shall be open Open Source Hardware
 - The interface to the hardware must be explicitly made public
 - » so the hardware can be used freely
 - The design of the hardware must be made public
 - » so that others can implement it and learn from it
 - The tools used to create the design should be free
 - » so that others can develop and improve the design
 - Ref: Open Collector
 - » http://www.opencollector.org/Whyfree/open_hardware.html

25

3 February 2009

Major Nonfunctional Requirements

- Safety Requirements
 - Electro-Magnetic Interference
 - Device cannot electrically interfere with other electronic devices
 - Ref: FCC Part 68
 - For prototype, EMI resistance need be sufficient only to assure accurate readings

3 February 2009 26

Requirements Work Outstanding

- [Bob S] What are the frequency and resolution requirements for:
 - -HR?
 - DBP?
 - SBP?
- [Dick S] Background about power management circuits
- [?] Interpretation of FCC Part 68 (EMI)

3 February 2009 27

Design Direction Details

- Analyze software architecture options
 - Round-robin
 - Round-robin with interrupts
 - Function queue scheduling
 - Real-time operating system
- Analyze algorithms
 - Calculation of pressure wave (e.g., Chen method)
 - Waveform peak
 - Waveform trough
 - Heart rate
 - Systolic blood pressure
 - Diastolic blood pressure

3 February 2009 28

Design Direction Details

- Analyze software interface standards
 - XML vs HL7 vs other
- Analyze hardware connector standards
 - USB vs Secure Digital
- Define diagnostics
 - Based on design
- Select licenses (may affirm current direction)

3 February 2009 29

Design Direction Details

- Chen et. al, US Patent No. 6,599,251
 - Arterial pulse delay proportional to blood pressure
 - $P = a + b \ln(T)$
 - T = Time delay(milliseconds)
 - a,b = constants depending on
 - » nature of the subject
 - » signal detecting device

3 February 2009