COMPUTER SECURITY (CSE 4105)

Number Theory and Finite Fields

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers.
- That is, b divides a if there is no remainder on division.
- The notation is commonly used bato mean baivides a.
- Also, if ba, we say that b is a divisor of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. 13|182; -5|30; 17|289; -3|33; 17|0

Divisibility

- Subsequently, we will need some simple properties of divisibility for integers, which are as follows:
 - If a|1, then $a = \pm 1$.
 - If a|b and b|a, then $a = \pm b$.
 - Any $b \neq 0$ divides 0.
 - If a|b and b|c, then a|c:

$$11|66$$
 and $66|198 = 11|198$

• If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship:

[x] is the largest integer less than or equal to

Euclidean Algorithm

- Euclidean algorithm is a simple procedure for determining the greatest common divisor of two positive integers.
- Relatively Prime: Two integers are relatively prime if their only common positive integer factor is 1.
- Greatest Common Divisor: The greatest common divisor of a and b is the largest integer that divides both a and b.
 - We will use the notation gcd(a,b) to mean the greatest common divisor of a and b.
 - We also define gcd(0, 0) = 0.

Euclidean Algorithm

- More formally, the positive integer c is said to be the greatest common divisor of a and b if
 - c is a divisor of both a and b
 - Any divisor of a and b is a divisor of c
- An equivalent definition is the following:

```
gcd(a, b) = max[k, such that k|a and k|b]
```

- Because we require that the greatest common divisor be positive, gcd(a,-b)=gcd(-a,b)=gcd(-a,-b)
- $rac{1}{2}$ In general, gcd(a, b) = gcd(|a|,|b|).

$$gcd(60, 24) = gcd(60, -24) = 12$$

Thus, a and b are relatively prime if gcd(a, b) = 1

Euclid's Algorithm for gcd

- FUCLID(a,b)
 - 1. Compute $r = a \mod b$
 - 2. While $r \neq 0$

```
a = b
b = r
r = a mod b
```

3. Return b

Euclid's Algorithm for gcd

Table 4.1 Euclidean Algorithm Example

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$
b = 316258250	$r_1 = 211943434$	$q_2 = 1$	$r_2 = 104314826$
$r_1 = 211943424$	$r_2 = 104314826$	$q_3 = 2$	$r_3 = 3313772$
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	$r_4 = 1587894$
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	$r_5 = 137984$
$r_4 = 1587894$	$r_5 = 137984$	$q_6 = 11$	$r_6 = 70070$
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	$r_7 = 67914$
$r_6 = 70070$	$r_7 = 67914$	$q_8 = 1$	$r_8 = 2156$
$r_7 = 67914$	$r_8 = 2156$	$q_9 = 31$	$r_9 = 1078$
$r_8 = 2156$	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$

Modular Arithmetic

- If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n.
- The integer n is called the modulus. Thus,

$$a = qn + r \qquad 0 \le r < n; \ q = \lfloor a/n \rfloor$$

$$a = \lfloor a/n \rfloor \times n + (a \bmod n)$$

$$11 \bmod 7 = 4; \qquad -11 \bmod 7 = 3$$

- Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n).
- This is written as $a \equiv b \mod n$ or $b \equiv a \mod n$.

$$73 \equiv 4 \pmod{23}$$
; $21 \equiv -9 \pmod{10}$

Properties of Modulo operator

- \Rightarrow a = b mod n if n l (a-b)
 - If n I (a-b) then a-b = kn for some k.
 - So we can write a = b + kn
 - Now, a mod n = (b + kn) mod n
 = b mod n
 - \bullet a \equiv b mod n
- \Rightarrow a \equiv b mod n implies b \equiv a mod n
- \Rightarrow a \equiv b mod n and b \equiv c mod n implies a \equiv c mod n

$$23 \equiv 8 \pmod{5}$$
 because $23 - 8 = 15 = 5 \times 3$
 $-11 \equiv 5 \pmod{8}$ because $-11 - 5 = -16 = 8 \times (-2)$
 $81 \equiv 0 \pmod{27}$ because $81 - 0 = 81 = 27 \times 3$

Properties of Modular Arithmetic

```
= [(a mod n) + (b mod n)] mod n = (a + b) mod n
   Let a \mod n = r_a
      and b mod n = r_b
   Now, a = r_a + jn for some integer j
         b = r_b + kn for some integer k
   (a + b) \mod n = (r_a + jn + r_b + kn) \mod n
                   = [(r_0 + r_h) + n(j+k)] \mod n
                   = (r_a + r_b) \mod n
                   = [(a \mod n) + (b \mod n)] \mod n
```


Properties of Modular Arithmetic

- [(a mod n) (b mod n)] mod n = (a b) mod n
- = [(a mod n) X (b mod n)] mod n = (a X b) mod n

```
11 \mod 8 = 3; 15 \mod 8 = 7

[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2

(11 + 15) \mod 8 = 26 \mod 8 = 2

[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4

(11 - 15) \mod 8 = -4 \mod 8 = 4

[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5

(11 \times 15) \mod 8 = 165 \mod 8 = 5
```


Monoid

- Set with an operation i.e. (M,*) is a monoid if it follows the following rules:
 - Closure: if a and b belong to M then a*b is also in M
 - Associative: a*b*c = a*(b*c) = (a*b)*c
 - Identity element: there is an identity element e in M such that a*e = e*a = a for all a in M

Group and Abelian group

- When monoid follows the rule of inverse element, it is called group.
 - Inverse element: for each a in M there is an element a⁻¹ in M such that

$$a^*a^{-1} = a^{-1}a^* = e$$

- A group is said to be Abelian if it satisfy the following condition:
 - Communicative: a*b = b*a

Ring and Field

- (R, +, x) is a Ring if R is an Abelian group under + and R is a monoid under x and R follows distributive law.
 - Distributive: ax(b+c) = axb + axc(a+b)xc = axc + bxc
- (F, +, x) is a **Field** if F is a communicative ring and for all non-zero elements, it holds $axa^{-1} = e$

