

信号与系统分析基础

——自主探究性作业简介

清华大学电机系 2018年春季学期

第一次大作业布置:

◆作业目的:

通过学习、调研各种信号分析与综合技术的应用,熟悉相关的授课内容,了解解决实际问题的方法和思路,掌握文献资料的调研方法,学习学术报告或论文的撰写技巧。

◆作业内容:

- 1. 结合《信号与系统》课内容,通过文献调研,每位同学**独立**完成一篇关于信号分析与应用的**调研报告**。
- 2. 报告内容所涉及的领域、范围不限,如:
 - i. 专业相关的:如电力系统谐波检测、故障测距、低频振荡检测、发电机参数辨识、风场风速预测等;
 - ii. 声音信号处理;
 - iii. 图像信号处理;
 - iv. 通信技术相关;
 - v. 生物电信号处理;
 - vi. 地质勘探信号处理等......

历年选题简介:

图像处理 (宽泛)
声音信号频谱分析
电力系统低频振荡和抑制 (相关度不高)
股市信息分析
FM无线调频技术(硬件实现)
虚拟声音信号合成和人声分析
地质勘探信号处理
声音信号处理
风速预测(可能偏重优化算法)
心音信号提取和分析
语音识别
声音信息处理技术(宽泛)
信号识别与处理
幅值调制解调
声纹识别技术
图像处理技术
语音信号的分析
变声器的实现
音频降噪与加密技术研究
变声器设计
QR二维码信息保护
电力谐波检测和抑制
图像处理技术
语音加密

音效增强实现					
哼唱旋律检测					
电力系统谐波分析					
图形处理和优化软件					
图像压缩算法					
电力系统谐波分析					
声音信号处理					
数字水印					
数字图像去噪					
声音处理和应用(不具体)					
声音处理(分析,加速,变调)					
孤立词的语音识别					
图像增强处理					
声音处理(宽泛)					
声音信号处理					
数字语音处理					
声音信号处理(宽泛)					
电力谐波检测					
声音采集与识别					
语音信号采集与分析					
电力系统谐波分析					

人声美化和修饰
实现箔条噪声的消除
图像信号处理(初步实现)
SPWM谐波分析和抑制
同步相量算法设计
短期负荷预测
电子音乐合成实现
图像边缘检测
图像边缘检测和降噪
音乐识别

第一次大作业布置:

◆作业要求:

由于第二次大作业将是结合各种应用的MATLAB实现,所以如果能在第一次大作业中提前考虑其可实现性,将两次大作业综合会省时省力。

✓ 调研报告应包含以下内容:

- a) 题目、摘要:中、英文
- b) 问题与背景说明:说明所解决的问题由来及其背景、意义等
- c) 基本原理和方法:解决问题所需的主要方法及其基本原理
- **d) 算法或实现技术、手段**:上述方法的实现技术,例如算法流程、实现架构和工具等
- e) **计算分析或应用结果**:上述解决方法应用于问题后,通过数值计算、仿真或实际应用得到结果、效果,对方法正确性的验证或改进
- f) **与本课程的关联性讨论**:上述内容与本课程内容的关联点及拓展内容说明
- g) 结论
- h) 参考文献:不少于5篇, 至少有1篇英文文献

第一次大作业布置:

✓ 文献资料调研、搜集途径:

- i. 图书馆专业数据库:如中国知网全文数据库、IEEE/IET(IEL)全文数据库、EV平台(EI检索数据库)、Web of Knowledge平台(SCI检索数据库)等
- ii. 图书馆纸版或电子图书
- iii. 百度百科、百度文库、wikipedia等
- iv. Google scholar/Scholar glgoo

◆作业提交:

- A. 作业提交截止时间: 2018年5月4日24:00 网络学堂
- B. 作业文档命名方式与格式:学号-班级-姓名-题目.docx或.pdf

历年选题简介:

◆ 声音信号处理

基于DTW/MFCC特征参数等技术的**语音/声纹识别**(声控装置实现、语音计算器)

声音处理(降噪、变调、加密等)、合成(混响)与识别(双音频信号检测、声音对比)

◆ 图像信号处理

图像处理方法(图像雾化、水印、降噪、压缩、加/解密、图像艺术化、全景图拼接等)

图像识别技术(人脸检测、手势/表情识别、图片识别、车牌号识别、文字识别等)

◆ 其他信号处理

医学信号处理 (肌电信号、心音信号、嗓音信号、脉搏信号等)

电力系统信号处理(风速预测、负荷预测、故障行波分析、谐波监测分析、 低频振荡分析等)

• (1) 语音识别——汉语数字语音识别

原理

语音识别系统原理

•经典语音识别系统包括: 预 处理、特征提取、特征建模、 模式匹配

总体算法架构

总体算法架构

- •基础语音处理模块:
- ●训练模块setTemplates
- •识别模块Recognition

MECC

MFCC特征参数提取方法

- •预处理
- •FFT
- ●设置Me1滤波器组
- •DCT倒谱分析

• (1) 语音识别——电话拨号音识别

· DTFM信号解码技术

随着DTFM信号的产生,DTFM信号解码技术也随之发展,目前最常用的是Goertzel算法。DTFM信号的识别不仅在通讯系统中有较广的应用,并且在案件的侦破、日常生活中的应用也饶有趣味,如通过电视上的明人手机按键音来推测明人的手机号码等。【2】本实验结合信号与系统的课程内容,设计了一组线性系统对DTMF信号进行滤波,从而达到简单便捷地识别电话号码的目的,是对DTFM信号识别的一个初步尝试。

DTMF keypad frequencies (with sound clips)

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	Α
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

• (1) 语音识别——语音计算器

● (2) 声音处理——基于音调和音高的评分系统

实际使用效果

图 6 实际使用效果展示图

• (2) 声音处理——人工混响

● (1)图像处理——基于计算机非真实感绘制技术(NPR)的图像艺术处理

Photoshop

美图秀秀

光影魔术手

基于变换域的图像变换原理

- 二维离散傅里叶变换 (DFT)
- 二维快速傅里叶变换 (FFT)

图像空域频域滤波原理

线性均值滤波器 锐化滤波器 低通滤波器

颜色模型与图像类型转化

RGB、Lab颜色模型及其转换 图像类型转换 膨胀与腐蚀组合运算

• (1) 图像处理——基于计算机非真实感绘制技术(NPR)的图像艺术处理

基于线性滤波的油画效果

基于锐化和滤波的素描效果

基于腐蚀与膨胀的水彩画效果

基于像素选取的油画效果

• (1) 图像处理——图像处理小软件

基于暗原色通道理论的图像去雾

基于mixing gradient的图像融合

• (1) 图像处理——图像处理小软件

• (2) 图像识别——基于人眼定位的自动红眼消除

• (2) 图像识别——人脸表情识别

基于开源项目 Emotime (https://github.com/luca-m/emotime) 的框架结构

(2) 图像识别—— 图片文字识别

图片文字统计

图片文字提取和编辑

(2) 图像识别—— 车牌号识别

常见的两种车牌及其 RGB 值如表 (1) 所示。

		R	G	В
1	蓝底	0	0	255
	白字	255	255	255
2	黄底	255	255	0
	黒字	0	0	0

(2) 图像识别—— 身份证识别

分类简介——3.其他信号处理

● 医学信号处理—— 心音信号分析

病人心音

1200 1400 1600 1800 2000 2200 2400

希望大家可以享受发现和创造的乐趣~

谢谢!

