

인공지능(AI) 개발자 양성 과정

¹⁴⁴ 인공지능 개요

nnnnen

휴먼교육센터 안홍근 강사

- 1. 수업 마일스톤(milestone)
- 2. 인공지능이란?

1 수업 시작 전 오리엔테이션

- 1. 인공지능 발전단계
- 2. 인공지능 용어 비교
- 3. 수업 마일스톤
- 4. 파이썬과 인공지능과의 관계
- 5. JAVA와 파이썬의 차이점
- 6. 수업결과물 예시영상
- 7. 수업에 들어가기 전에
- 8. 수업목표 및 이후 얻게 되는 결과물

인공지능 발전 단계

세부수업목표: 인공지능 개념과 인공지능기반 활용 사례를 설명할 수 있다.

알파고

챗GPT

휴머노이드

스카이넷?

AI의 급속한 발전은 경제와 사회 구조의 대대적인 변화를 예고

전통적인 고용형태와 산업 구조를 변화시키는 주요한 요인으로 작용

인공지능 용어 비교

세부수업목표: 인공지능 개념과 인공지능기반 활용 사례를 설명할 수 있다.

인공지능

Artificial Intelligence, Al

인간의 지능을 모방하거나 대체하는 기술 또는 시스템

머신러닝

Machine learning, ML

데이터의 특징을 분석해 자동으로 규칙 학습

딥러닝

Deep learning, DL

인간의 뇌를 모방한 인공신경망을 기반으로 정보처리

생성형 Al

Generative Al

이용자의 요구에 따라 새로운 콘텐츠를 자동으로 생성

수업 마일스톤 (1/3)

인공지능(AI) 개발자 양성과정 수업은 총 8주에 걸쳐 진행됩니다.

1주차

Al개요 및 Python 기본

AI개요 및 개발환경세팅

- 인공지능 정의, 주요사례
- AI. 머신러닝. 딥러닝 비교
- 전통 프로그래밍과의 차이
- Python 설치 및 IDE 세팅
- 필수 라이브러리 설치
- 협업도구 설치
- Python 기본 문법

교육 목표

- AI, 머신러닝, 딥러닝에 대한 구분
- Python 기반 AI 개발환경 구축
- Python 기본 문법 활용능력 - 조건문, 반복문, 함수, 패키지 등
- 데이터 분석 힘수 활용능력
- 데이터 시각화 함수 활용능력

2주차

머신러닝 기본

회귀와 분류 모델 학습

- 지도학습, 비지도학습
- 회귀와 분류
- 선형회귀 모델
- •분류 모델
- 앙상블 학습
- •모델 성능지표 분석

교육 목표

- 머신러닝 개념과 유형 이해
- 선형 회귀 모델을 활용해 간단한 예측
- 분류 알고리즘을 이해
- 데이터를 기반으로 분류작업 수행능력

딥러닝 기본

인공신경망 모델 학습

- 퍼셉트론(인공신경망) 개념
- 활성화 함수
- 합성곱 신경망: CNN
- 순환 신경망: RNN, LSTM
- 생성적 적대 신경망: GAN

교육 목표

- 인공신경망 구조를 설명
- 텐서플로우/케라스를 활용해 기초 모델 구현
- 이미지 데이터를 활용한 문제해결 능력
- •시계열 데이터 처리 능력

수업 마일스톤 (2/3)

인공지능(AI) 개발자 양성과정 수업은 총 8주에 걸쳐 진행됩니다.

LLM 기본

LLM기본 및 활용

- LLM과 Transformer 구조
- GPT 등 사전 학습된 모델 활용
- Hugging Face 라이브러리
- NLP(자연어처리)
- GPT 기반의 텍스트 생성

교육 목표

- LLM과 Transformer 구조 습득
- Hugging Face 라이브러리를 활용한 문제해결 능력
- NLP 응용 문제를 이해하고 텍스트 데이터를 활용한 요약 도출
- LLM을 활용한 실습 프로젝트를 통해 실제 서비스모델 개발과정 이해

5주차

AI 웹 애플리케이션 개발

웹을 통한 시각화

- Streamlit을 활용한 데이터 시각화
- AI모델을 Rest API 연동
- Gradio를 활용한 데이터 시각화
- 챗봇 구현을 위한 Ollama 활용
- Gradio를 활용한 챗봇 만들기
- RAG(검색증강생성) 구조
- LangChain 구조

교육 목표

- Streamlit을 활용한 머신러닝 데이터를 웹에서 시각화 능력
- FastAPI을 활용한 스프링부트 웹 애플리케이션과 연동 능력
- Gradio를 활용해 간단한 사용자 인터페이스 구현

6주차

프로젝트 준비 및 기획

프로젝트 기획

- 프로젝트 기획 방법론(디자인씽킹)
- 프로젝트 준비
- 프로젝트 주제 발표
- 데이터 수집 및 전처리
- 프로젝트 개발 준비

교육 목표

- 프로젝트 주제 선정
- •팀 단위 협업 방법을 이해
- 프로젝트 기획안 작성 구조 이해
- 프로젝트 목표 및 기능 상세화
- 팀원간 역할 및 스케쥴 상세화
- 기본 설계 초안 구현

수업 마일스톤 (3/3)

인공지능(AI) 개발자 양성과정 수업은 총 8주에 걸쳐 진행됩니다.

7주차

프로젝트 설계 및 개발

세부 설계 및 웹인터페이스 개발

- 프로젝트 세부 설계
- 데이터 구조 설계
- •모델 선정 및 학습
- Streamlit/Gradio 기반의 시각화
- 프로젝트 개발 중간 발표 및 리뷰

교육 목표

- 프로젝트 목표에 적합한 머신러닝/딥러닝 모델 선정
- 데이터 전처리를 통해 모델 성능 극대화
- •모델 결과를 시각적으로 표현하는 웹인터페이스 개발

8주차

프로젝트 마무리 및 발표

프로젝트 개발 및 테스트

- 프로젝트 개발 및 단위테스트
- 프로젝트 기능 통합 및 최종 디버깅
- 발표 자료 준비(PPT, Demo)
- 팀별 프로젝트 최종 발표
- 최종 포트폴리오 보고서 작성

교육 목표

- 발표 스킬 향상 및 내용 보완
- 프로젝트 최종 결과물 발표 및 평가
- 프로젝트 포트폴리오 보고서 작성

파이썬과 인공지능의 관계 (1/4)

<u>프로그래밍 언어 순위: https://www.tiobe.com/tiobe-index</u>

Dec 2024 Dec 2023 Change Programing Language Ratings Change 1 1 1 ♣ Python 23.84% +9.98% 2 3 ♣ ♣ Python 23.84% +9.98% 3 4 ♣ ♣ Use And	TIORE						
2 3 A A G C++ 10.82% +0.81% 3 4 A A Java 9.72% +1.73% 4 2 ✓ G C 9.10% -2.34% 5 5 5 C# 4.87% -2.43% 6 6 6 JS JavaScript 4.61% +1.72% 7 13 ★ G G G 2.17% +1.14% 8 9 A SQL 1.99% +0.37% 9 8 ✓ WB Visual Basic 1.96% +0.14% 10 12 A B Fortran 1.79% +0.72%	Dec 2024	Dec 2023	Change	Program	ming Language	Ratings	Change
3 4	1	1		e	Python	23.84%	+9.98%
4 2 ✓ C 9.10% -2.34% 5 5 C# 4.87% -2.43% 6 6 JS JavaScript 4.61% +1.72% 7 13 ♠ CO Go 2.17% +1.14% 8 9 ♠ SQL 1.99% +0.37% 9 8 ✓ VB Visual Basic 1.96% +0.14% 10 12 ♠ Fortran 1.79% +0.72%	2	3	^	G	C++	10.82%	+0.81%
5 5 C# 4.87% -2.43% 6 6 JS JavaScript 4.61% +1.72% 7 13 6 60 2.17% +1.14% 8 9 501 SQL 1.99% +0.37% 9 8 V VB Visual Basic 1.96% +0.14% 10 12 12 1.79% Fortran 1.79% +0.72%	3	4	^	(Java	9.72%	+1.73%
6 6 Js JavaScript 4.61% +1.72% 7 13	4	2	•	9	С	9.10%	-2.34%
7 13	5	5		©	C#	4.87%	-2.43%
8 9	6	6		JS	JavaScript	4.61%	+1.72%
9 8 Visual Basic 1.96% +0.14% 10 12 • Fortran 1.79% +0.72%	7	13	*	-GO	Go	2.17%	+1.14%
10 12 • Fortran 1.79% +0.72%	8	9	^	SQL	SQL	1.99%	+0.37%
	9	8	•	VB	Visual Basic	1.96%	+0.14%
11 16 Delphi/Object Pascal 1.44% +0.52%	10	12	^	F	Fortran	1.79%	+0.72%
	11	16	*	(3)	Delphi/Object Pascal	1.44%	+0.52%
12 7 ¥ PHP 1.39% -0.62%	12	7	*	php	PHP	1.39%	-0.62%

파이썬과 인공지능의 관계 (2/4)

왜 파이썬이 인공지능에 적합한가?

- 간결하고 직관적인 문법
- 초보자부터 전문가까지 쉽게 배울 수 있어 빠른 프로토타이핑 가능
- 강력한 라이브러리 생태계
 - 데이터 처리, 모델 구현, 시각화를 지원하는 풍부한 라이브러리 제공
- 활발한 커뮤니티
 - 수많은 오픈소스 프로젝트와 방대한 학습 자료
- 다목적 사용 가능
 - 데이터 전처리, 모델 설계, 배포까지 인공지능 워크플로우 전체 지원

파이썬과 인공지능의 관계 (3/4)

파이썬에서 활용되는 주요 라이브러리

• 데이터 처리 및 전처리

- Numpy: 다차원 배열 및 수학 연산
- Pandas : 데이터 프레임 구조로 대규모 데이터 분석
- Scikit-learn(sklean): 머신러닝 모델 구현 및 데이터 전처리 도구

• 딥러닝과 모델 설계

- TensorFLow/Keras: 대규모 딥러닝 모델 설계 및 학습
- PyTorch : 연구와 실무를 모두 아우르는 딥러닝 프레임워크

시각화

- Matplotlib/Seaborn: 데이터 시각화 통계 그래프 생성
- Plotly: 대화형 시각화를 통한 데이터 분석
- 자연어 처리
- NLTK/Spacy : 텍스트 분석과 자연어 처리
 - Hugging Face Transformers : 대규모 언어 모델(LLM) 구현

파이썬과 인공지능의 관계 (4/4)

파이썬을 통한 인공지능 학습의 장점

- 효율적인 데이터 처리
- 파이썬의 데이터 라이브러리를 통해 대규모 데이터 쉽게 분석
- 모델 개발 및 평가
 - 머신러닝과 딥러닝 모델 설계와 성능 평가 간소화
- 빠른 프로토타이핑
 - 코드를 간단히 작성해 아이디어를 빠르게 구현 가능
- 실제 응용과 연결
- REST API로 서비스화하거나 IoT, 클라우드와 연동 가능

파이썬 함수 종류 및 특징

구분	사용자 정의 메서드	내장 메서드 (예 : 문자열 메서드)	
정의	사용자가 직접 정의 한 클래스 내부에 작성됨	Python 표준 라이브러리에 정의되어 있으며, 기본 적으로 제공됨	
적용대상	사용자가 정의한 특정 객체에만 적용됨	특정 데이터 유형(예: 문자열, 리스트 등)에 대해 미리 정의된 동작 수행	
사용목적	사용자가 필요한 동작을 구현하기 위해 정의됨	특정 데이터 유형에 대해 일반적이고 자주 사용되는 동작을 쉽게 실행되도록 설계됨	
예시	class Example: def greet(self, name): # 사용자 정의 메서드 return f"Hello, {name}!" example = Example() # 객체 생성 # 사용자 정의 메서드 호출 print(example.greet("Jane"))	text = " hello world" print(text.uppter()) #문자열 내장 메서드 호출	

개념	Java	Python	
함수	클래스 밖에서는 함수를 정의할 수 없으며, 클래스 의 메서드로 정의됨	독립적으로 정의할 수 있으며, 클래스와 무관하게 사용할 수 잇음	
메서드	클래스 내부에 정의된 함수로, 특정 객체와 연관되 어 실행됨	클래스 내부에 정의된 함수로, 특정 객체와 연관되 어 실행됨	
객체	클래스의 인스턴스로, 속성과 메서드를 가짐	클래스이 인스턴스로, 속성과 메서드를 가짐	

개념	Java	Python
함수	클래스 밖에서는 함수를 정의할 수 없으며, 클래스의 메서드로 정의됨 public class Example{ // 클래스 메서드로 정의 public static int add(int a, int b) { return a + b; } public static void main(String[] args) { // 클래스 이름 없이 호출 가능 System.out.println(add(3, 5)); } }	독립적으로 정의할 수 있으며, 클래스와 무관하게 사용할 수 있음 def add(a, b): #독립적인 함수 정의 return a + b print(add(3, 5)) # 함수 호출

개념	Java	Python
메서드	클래스 내부에 정의된 함수로, 특정 객체와 연관되어 실행됨 public class Example { // 인스턴스 메서드 public int multiply(int a, int b) { return a * b; } public static void main(String[] args) { // 객체 생성 Example example = new Example(); // 인스턴스 메시드 호출 System.out.println(example.multiply(3,5)); } }	클래스 내부에 정의된 함수로, 특정 객체와 연관 되어 실행됨 class Example: def multiply(self, a, b): # 인스턴스 메서드 return a * b example = Example() # 객체 생성 # 인스턴스 메서드 호출 print(example.multiply(3, 5))
	16	

클래스를 통해 객체를 생성하며, 생성자를 통해 초기화 public class Example {	개념	Java	Python
int x; public Example(int x) { // 생성자 this.x = x; } public static void main(String[] args) { Example obj = new Example(10); // 객체생성 System.out.println(obj.x); // 속성 접근 } public Example(int x) { // 생성자 class Example: definit(self, x): # 생성자 self.x = x obj = Example(10) # 객체 생성 print(obj.x) # 속성 접근 }	객체	public class Example { int x; public Example(int x) { // 생성자 this.x = x; } public static void main(String[] args) { Example obj = new Example(10); // 객체생성	class Example: definit(self, x): # 생성자 self.x = x obj = Example(10) # 객체 생성

수업 결과물 예시 영상

수업에 들어가기 전에

인공지능학습을 통해 공부가 아닌 놀이로서 스스로 탐구하고 발전시켜 나가는 능력을 습득할 수 있는 계기가 되길 바랍니다.

호모루덴스(HOMO LUDENS) "놀이하는 인간 "

- 놀이를 통해 창의성을 발휘하며 새로운 문화를 만들어냄
- 인공지능 또한 놀이적 특성을 활용해 문제해결, 창작활동, 새로운지식개발 지원

- 인간은 놀이를 통해 자연스럽게 학습
- AI는 학습 알고리즘을 통해 인간처럼 놀이 기반 학습을 모방 및 강화

- 호모 루덴스의 본질은 협력적 놀이에서 드러남
- AI는 인간과 협력하여 더 창의적이고 유연한 문제 해결 가능 (ex. AI와 인간이 협력하여 작곡, 미술 작품 제작, S/W 코딩 지원)

강의 소개

- 강의 목적
- 인공지능의 기본 원리부터 실제 적용까지 체계적으로 배우고, 실습과 프로젝트를 통해 실무 능력을 키우는 것을 목표로 함
- 머신러닝, 딥러닝을 구현하기 위해 필요한 파이썬 기본 문법 이해 및 실습으로 파이썬 활용 능력 습득
- 대상
- 취업을 앞둔 예비 AI 전문가, 개발자, 데이터 분석가

학습 내용과 기대효과

인공지능 개요

- 배우는 것
- 인공지능에 대한 개념정의
- AI, 머신러닝(ML), 딥러닝(DL)의 차이점
- AI가 산업에 어떻게 활용되는 지 이해
- 얻는 것
- 인공지능의 큰 그림을 이해하여 미래 비전을 설계

학습 내용과 기대효과

머신러닝

- 배우는 것
- 데이터 기반 학습 원리
- 지도학습(회귀/분류)와 비지도학습(군집화)
- 알고리즘 예제: Linear Regression, Decision Tree
- 얻는 것
- 머신러닝 모델을 이해하고 파이썬으로 간단히 구현

학습 내용과 기대효과

딥러닝

- 배우는 것
- 인공신경망(ANN), RNN, CNN 이론 및 작동방식
- 텐서플로우(TensorFlow)를 사용해 딥러닝 모델 구성

- 얻는 것
- 복잡한 문제를 해결하는 딥러닝 모델 설계 능력

학습 내용과 기대효과

대규모 언어모델(LLM)

- 배우는 것
- ChatGPT와 같은 언어 모델의 원리
- 자연어 처리(NLP) 개념과 응용
- LLM을 활용한 실제 코딩 실습

- 얻는 것
- 실생활 문제를 해결할 수 있는 챗봇 개발 경험

팀별 프로젝트 (실습 중심 학습)

AI + Spring기반 웹서비스 연결 및 구현

• 프로젝트 목표

- AI 모델을 파이썬으로 구현하여 간단한 streamlit을 활용한 웹서비스 구현
- 파이썬으로 구현된 AI모델을 REST API를 통해 Spring기반 웹서비스와 통합
- 실제 서비스 환경과 유사한 시스템을 설계 및 배포
- 팀 협업을 통해 실무 능력과 기술 응용 능력을 강화

• 프로젝트 주제 예시

- AI 추천 시스템 + 웹서비스 : 영화, 쇼핑 추천 서비스
- 이미지 분류 딥러닝 모델 기반 서비스 : 손글씨 인식
- AI 챗봇 서비스 : 고객 지원 시스템 프로토타입 설계, 회사 취업규칙 정보제공

목표 결과물

개인목표 및 팀목표

- 개인 목표
- AI 및 ML/DL의 기본 이론과 코딩 실력을 습득
- 포트폴리오로 활용 가능한 결과물 제작

- 팀목표
- AI 기반의 실제 프로젝트 설계 및 구현
- 발표 및 협업을 통해 실무에서 필요한 의사소통 능력 강화

강의 종료 후 기대효과

기술력 + 취업 경쟁력 + Al활용 능력

- 기술력 강화
- AI 모델 설계 및 구현 가능
- 실무와 연결된 프로젝트 경험
- 취업 경쟁력 확보
 - 프로젝트 결과물을 포트폴리오로 활용
 - 팀 협업 경험을 통해 실무 적응력 향상
- Al 활용 능력 극대화
 - 문제를 분석하고 AI를 활용해 해결하는 실질적인 역량 확보

2 인공지능 이란?

- 1. 인공지능의 정의
- 2. 인공지능, 머신러닝, 딥러닝 비교
- 3. 전통적인 프로그래밍과 머신러닝 비교
- 4. 강인공지능 vs 약인공지능
- 5. 주요 인공지능 사례 소개
- 6. Python과 인공지능의 관계

1. 인공지능의 정의

인공지능은 인간의 지능을 컴퓨터가 모방하는 기술로서 마치 사람처럼 데이터를 학습하고 규칙을 찾아내는 기초 지능

인공지능 > 머신러닝 > 딥러닝 포함 관계

딥러닝 c 머신러닝 c 인공지능

인공지능 | Artificial Intelligence

사람의 지적 능력을 컴퓨터를 통해 구현하는 기술

머신러닝 | Machine Learning

사람이 정한 모델과 특징 추출 방법을 이용하여 데이터를 기반으로 학습해서 추론할 수 있게 하는 기술

딥러닝 Deep Learning

인공신경망 방법을 이용해 만든 머신러닝 기술로, 빅데이터 학습에 적합한 기술

2. 인공지능, 머신러닝, 딥러닝 비교

구분	인공지능(AI)	머신러닝(ML)	딥러닝(DL)
정의	인간의 지능을 모방하여 문제를 해결 하거나 학습하는 시스템을 개발하는 기술의 총체	데이터에서 패턴을 학습하고 예측하 도록 하는 알고리즘과 모델을 사용하 는 AI의 하위 분야	머신러닝의 하위 분야로, <mark>인공신경망을 사용</mark> 하여 대규모 데이터를 학습하고 예측하는 방법
주요특징	인간처럼 학습, 추론, 계획 등을 수행 함	주어진 데이터를 기반으로 스스로 학 습하여 결과를 예측함	다층 신경망을 통해 이미지, 음성, 텍 스트 등 비정형 데이터를 효과적으로 처리함
예시	자율주행, 음성인식, 챗봇, 의료 진단	이메일 스팸 필터링, 추천 시스템, 이 미지 분류	이미지 인식, 자연어 처리(NLP), 자 율 주행 차량의 물체 인식
관계	머신러닝과 딥러닝을 포함하는 상위 개념	인공지능의 한 분야로 딥러닝과 전통 적인 알고리즘을 포함	머신러닝의 한 부분으로, 대량의 데 이터를 통해 성능을 개선하는 심층 신경망 모델에 초점을 맞춤
필요 이론교육	기초적인 수학 및 통계학 개념 (확률, 선형대수 등)	- 지도 학습과 비지도 학습 - 회귀분석, 분류 알고리즘 - 클러스터링	- 합성곱 신경망(CNN) - 순환 신경망(RNN)과 LSTM - 활성화 함수 - 역전파 알고리즘

3. 전통적인 프로그래밍과 머신러닝 비교 (1/3)

3. 전통적인 프로그래밍과 머신러닝 비교 (2/3)

항목	전통적인 프로그래밍	머신러닝
원리	규칙과 논리를 사람이 직접 코딩	데이터를 통해 모델이 규칙을 학습
입력 및 출력	입력(데이터) + 규칙 → 출력	입력(데이터) + 출력 → 규칙(모델) 학습
사용 사례	명확한 규칙을 가진 문제 해결 (계산기, 정렬 알고리즘 등)	복잡하고 규칙이 명확하지 않은 문제를 <mark>패턴</mark> 을 가 지고 해결 (이미지 인식, 음성 분석 등)
코딩 관점	사람이 모든 논리와 조건을 작성	학습 데이터를 기반으로 <mark>모델이 규칙을 생성</mark>

3. 전통적인 프로그래밍과 머신러닝 비교 (3/3)

전통적인 프로그래밍	머신러닝
# 입력된 숫자가 짝수인지 판별 (전통적 방식) def is_even(number): if number % 2 == 0: return True else: return False # 테스트 print(is_even(4)) # 출력: True print(is_even(5)) # 출력: False	# 입력된 숫자가 짝수인지 판별 (머신러닝) from sklearn.linear_model import LogisticRegression import numpy as np # 학습 데이터 (입력: 숫자, 출력: 1=짝수, 0=홀수) X_train = np.array([[2], [4], [6], [8], [10], [1], [3], [5], [7], [9]]) y_train = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # 모델 학습 model = LogisticRegression() model.fit(X_train, y_train)
cf. is_even 함수 : 주어진 숫자가 짝수인지 판별하는 함수	# 테스트 print(model.predict([[4]])) # 출력: [1] (짝수) print(model.predict([[5]])) # 출력: [0] (홀수)

3. 전통적인 프로그래밍과 머신러닝 비교 (2/3)

항목	전통적인 프로그래밍	머신러닝
원리	규칙과 논리를 사람이 직접 코딩	데이터를 통해 모델이 규칙을 학습
입력 및 출력	입력(데이터) + 규칙 → 출력	입력(데이터) + 출력 → 규칙(모델) 학습
사용 사례	명확한 규칙을 가진 문제 해결 (계산기, 정렬 알고리즘 등)	복잡하고 규칙이 명확하지 않은 문제를 <mark>패턴</mark> 을 가 지고 해결 (이미지 인식, 음성 분석 등)
코딩 관점	사람이 모든 논리와 조건을 작성	학습 데이터를 기반으로 <mark>모델이 규칙을 생성</mark>

4. 강인공지능 vs 약인공지능

특성	약인공지능(Weak Al)	AGI(인공일반지능)	강인공지능(Strong Al)
정의	특정 작업에 특화된 AI	다양한 영역에서 인간과 유사한 지 능을 가진 Al	인간 수준의 지능을 가진 Al
능력범위	제한적이고 특화된 작업	다양한 영역에서 유연한 문제 해결	인간과 동등한 수준의 다양한 작 업
목표	특정 업무 자동화 및 작업 효율성 증가	인간 수준의 <mark>다목적 지능</mark> 과 적응력 획득	인간과 동일한 수준의 <mark>자율성과</mark> <mark>윤리적 판단</mark> 을 할 수 있는 지능 개발
현재상태	실존, 널리 사용됨	연구중, 부분적 구현	이론적 개념, 미개발
사례	자율주행자동차, 챗봇	개발되지 않음	개발되지 않음

4. 강인공지능 vs 약인공지능

5. 인공지능 적용 사례

5.1 의료 분야

질병 진단 및 예측

- 의료 영상 분석 : AI를 활용해 암(유방암, 폐암 등)을 조기에 진단
- 전자의무기록(EMR) 데이터를 분석하여 특정 질환의 발병 가능성을 예측

약물 개발

- 신약 개발 속도 개선 : AI가 후보 물질을 분석하고 최적화
- 임상시험 데이터 분석을 통해 성공 확률을 높임

의료 서비스

- AI 챗봇을 활용한 환자 상담 및 예약관리
- 원격 진료 지원 시스템

사례

❖ 사례1

IBM Watson Health : 암 진단 치료 계획 지원

❖ 사례2

AlphaFold: 단백질 구조 예측을 통한 신약 개발에 혁신 제공 (데미스 하사비스 노벨화학상 수상)

5. 인공지능 적용 사례

5.2 산업 분야

제조업

- 예지 정비(Predictive Maintenance): 설비 고장 전 경고 시스템
- 생산 공정 최적화 및 품질관리

물류 및 공급망

- 물류 경로 최적화, 실시간 재고 관리
- 로봇 자동화로 배송 효율화

스마트 팩토리

● loT와 AI 결합으로 공장 자동화 및 실시간 데이터 분석

사례

❖ 사례1

테슬라(Tesla): 제조 공정에 AI를 적용해 자율 공장 운영

❖ 사례2

Amazon Robotics: 물류센터에서 로봇을 활용한 물품 분류 및 이동

5. 인공지능 적용 사례

5.3 소비자 서비스

추천 시스템

▶ 온라인 쇼핑, 영화, 음악 스트리밍에서 개인화된 추천 제공

음성 인식 및 자연어 처리

- AI 스피커를 통한 음성 명령 처리
- ▶ 번역 서비스를 통한 실시간 언어 번역

이미지 및 영상처리

- ▶ 사진 보정, 얼굴 인식, 사진/동영상 컨텐츠 생성
- 가상현실(VR) 및 증강현실(AR) 기술 지원

사례

❖ 사례1

넷플릭스(Netflix): 시청 기록 기반 추천 알고리즘

❖ 사례2

ChatGPT: 사용자 질문에 대한 자연어 기반 답변 제공

QUIZ

세부수업목표: 인공지능 개념과 인공지능기반 활용 사례를 설명할 수 있다.

Q. 인공지능, 머신러닝, 딥러닝의 차이점에 대해 설명한 것 중 <mark>틀린것은</mark>?

- ① 인공지능은 머신러닝과 딥러닝을 포함하는 개념이다.
- ② 머신러닝은 딥러닝을 포함하는 개념이다.
- ③ 딥러닝은 이미 정해진 답을 학습해 규칙을 찾아내는 기계학습에 속한다.
- ④ 딥러닝은 인간의 뇌를 모방한 인공신경망을 통해서 학습을 한다.

수업요약

세부수업목표: 인공지능 개념과 인공지능기반 활용 사례를 설명할 수 있다.

인공지능 개념정의

- · 인공지능(AI), 머신러닝(ML), 딥러닝(DL)의 차이점
- · 인공지능 〉 머신러닝 〉 딥러닝

전통적인 프로그램과의 차이

- · 전통적인 프로그래밍은 입력 데이를 처리하는 프로그램을 직접 구현하여 출력 데이터를 구함
- · 머신러닝은 입력데이터와 출력데이터가 준비된 사태에서 컴퓨터가 스스로 프로그램 코드 생성

인공지능 활용사례

- · 의료 분야: 질병 진단 및 예측, 약물 개발, 의료서비스(상담, 예약)
- · 산업 분야: 제조업, 물류 및 공급망, 스마트 팩토리(공장자동화)
- · 소비자 서비스 : 쇼핑, 영화 개인화 추천, 음성인식, 이미지/영상 처리