Constraint Satisfaction Problems on Bol-Moufang CI-Groupoids

David Failing

September 20, 2012

Outline

- CSPs
- 2 Bol-Moufang Groupoids
- Further Research

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph k-colorability.
- Solvability of systems of equations over a finite field.

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph k-colorability.
- Solvability of systems of equations over a finite field.

What Are Constraint Satisfaction Problems?

Informally, a Constraint Satisfaction Problem (CSP) consists of a finite set of variables, ranging over some finite domain of values, and a set of constraints which restrict the values of the variables. The CSP asks whether there is an assignment of values to the variables such that all constraints are satisfied.

- Graph k-colorability.
- Solvability of systems of equations over a finite field.

For any finite set A, and any set Γ of relations over A, $CSP(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of *constraints*, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

For any finite set A, and any set Γ of relations over A, $CSP(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of *constraints*, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

For any finite set A, and any set Γ of relations over A, $CSP(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of *constraints*, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

For any finite set A, and any set Γ of relations over A, $\mathbf{CSP}(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of *constraints*, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

For any finite set A, and any set Γ of relations over A, $\mathbf{CSP}(\Gamma)$ is the combinatorial decision problem:

INSTANCE: A triple $\mathcal{R} = (V, A, \mathcal{C})$ where:

- V a finite set of variables
- $C = \{(S_i, R_i) \mid i = 1, ..., n\}$ a set of *constraints*, with each S_i a tuple of variables, and each R_i an element of Γ which indicates the allowed simultaneous values for variables in S_i

 $\mathbf{CSP}(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is **tractable**, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $CSP(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is $\mathbf{tractable}$, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $\mathit{CSP}(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time.

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is $\mathbf{tractable}$, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $\mathit{CSP}(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time

 $CSP(\Gamma)$ is in NP.

Definition

If each instance of $\mathbf{CSP}(\Gamma)$ is answerable (yes/no) in polynomial time, we say that $\mathbf{CSP}(\Gamma)$ is $\mathbf{tractable}$, or that Γ is a tractable set of relations. Γ is NP-complete if there is some finite $\Delta \subseteq \Gamma$ for which $\mathit{CSP}(\Delta)$ is NP-complete.

- For k-colorability, if k = 2 we can use Breadth First Search to produce a coloring (or show none exists) in polynomial time.
 For k ≥ 3, the problem is known to be NP-complete.
- For systems of linear equations over a finite field, Gaussian elimination will find a solution, if it exists, in polynomial time.

CSP Dichotomy Conjecture (Feder and Vardi '98)

Every $CSP(\Gamma)$ is either tractable, or it is NP-complete.

Problem

Characterize all tractable sets of relations.

CSP Dichotomy Conjecture (Feder and Vardi '98)

Every $CSP(\Gamma)$ is either tractable, or it is NP-complete.

Problem

Characterize all tractable sets of relations.

We say that an *m*-ary operation $f: A^m \to A$ preserves an *n*-ary relation R over A (or that R is **invariant** under f) if

$$\overline{a}_1, \dots, \overline{a}_m \in R \Rightarrow f(\overline{a}_1, \dots, \overline{a}_m) \in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the **clone of polymorphisms** of Γ .

We say that an *m*-ary operation $f: A^m \to A$ preserves an *n*-ary relation R over A (or that R is **invariant** under f) if

$$\overline{a}_1, \dots, \overline{a}_m \in R \Rightarrow f(\overline{a}_1, \dots, \overline{a}_m) \in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the **clone of polymorphisms** of Γ .

We say that an *m*-ary operation $f: A^m \to A$ preserves an *n*-ary relation R over A (or that R is **invariant** under f) if

$$\overline{a}_1, \dots, \overline{a}_m \in R \Rightarrow f(\overline{a}_1, \dots, \overline{a}_m) \in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the **clone of polymorphisms** of Γ .

We say that an *m*-ary operation $f: A^m \to A$ preserves an *n*-ary relation R over A (or that R is **invariant** under f) if

$$\overline{a}_1,\ldots,\overline{a}_m\in R\Rightarrow f(\overline{a}_1,\ldots,\overline{a}_m)\in R$$

For Γ a set of relations over A and \mathcal{F} a set of operations on A:

Pol(Γ) := { $f \mid f$ preserves every $R \in \Gamma$ }, the **clone of polymorphisms** of Γ .

An **algebra** is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is **tractable** if $Inv(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be $\mathbf{NP\text{-}complete}$. We can consider only idempotent algebras. $(\forall f \in \mathcal{F}, f(x, x, \ldots, x) \approx x)$

An **algebra** is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A}=\langle A,\mathcal{F}\rangle$ is **tractable** if $\operatorname{Inv}(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be $\mathbf{NP\text{-}complete}$. We can consider only idempotent algebras. $(\forall f\in\mathcal{F},\,f(x,x,\ldots,x)\approx x)$

An **algebra** is a pair $\mathbf{A} = \langle A, \mathcal{F} \rangle$, where A is a nonempty set, and \mathcal{F} is a set of operations on A.

Observation

To every set of relations Γ over a finite set A, we can associate the algebra $\mathbf{A} = \langle A, \operatorname{Pol}(\Gamma) \rangle$. Likewise, to every finite algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$, we can associate the set of relations $\operatorname{Inv}(\mathcal{F})$.

Definition

We say an algebra $\mathbf{A}=\langle A,\mathcal{F}\rangle$ is **tractable** if $\operatorname{Inv}(\mathcal{F})$ is a tractable set of relations. Similarly, \mathbf{A} may be $\mathbf{NP\text{-}complete}$. We can consider only idempotent algebras. $(\forall f \in \mathcal{F}, f(x, x, \ldots, x) \approx x)$

An idempotent operation on a set A is a **weak near-unanimity** (WNU) operation if it satisfies

$$f(y,x,\ldots,x)=f(x,y,x,\ldots,x)=\cdots=f(x,x,\ldots,y)$$

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08

Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be a finite algebra. If $\mathsf{Clo}(\mathcal{F})$ contains no weak near-unanimity operation, then \mathbf{A} is NP-complete.

Algebraic Dichotomy Conjecture

If $Clo(\mathcal{F})$ contains a WNU, then **A** is tractable.

An idempotent operation on a set A is a **weak near-unanimity** (WNU) operation if it satisfies

$$f(y,x,\ldots,x)=f(x,y,x,\ldots,x)=\cdots=f(x,x,\ldots,y)$$

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08)

Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be a finite algebra. If $\mathsf{Clo}(\mathcal{F})$ contains no weak near-unanimity operation, then \mathbf{A} is NP-complete.

Algebraic Dichotomy Conjecture

If $Clo(\mathcal{F})$ contains a WNU, then **A** is tractable.

An idempotent operation on a set A is a **weak near-unanimity** (WNU) operation if it satisfies

$$f(y,x,\ldots,x)=f(x,y,x,\ldots,x)=\cdots=f(x,x,\ldots,y)$$

Theorem (Bulatov, Jeavons, Krokhin '05; Maroti & McKenzie '08)

Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be a finite algebra. If $\mathsf{Clo}(\mathcal{F})$ contains no weak near-unanimity operation, then \mathbf{A} is NP-complete.

Algebraic Dichotomy Conjecture

If $Clo(\mathcal{F})$ contains a WNU, then **A** is tractable.

A ternary operation q is **Maltsev** if it satisfies

$$q(x, y, y) = q(y, y, x) = x$$

Example

For
$$\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$$
 a group, $q(x, y, z) = x \cdot y^{-1} \cdot z$.

For
$$\mathbf{Q} = \langle Q, \cdot, /, \cdot \rangle$$
 a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

A ternary operation q is **Maltsev** if it satisfies

$$q(x, y, y) = q(y, y, x) = x$$

Example

For
$$\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$$
 a group, $q(x, y, z) = x \cdot y^{-1} \cdot z$.

For
$$\mathbf{Q} = \langle Q, \cdot, /, \setminus \rangle$$
 a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

A ternary operation q is **Maltsev** if it satisfies

$$q(x, y, y) = q(y, y, x) = x$$

Example

For
$$\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$$
 a group, $q(x, y, z) = x \cdot y^{-1} \cdot z$.

For
$$\mathbf{Q} = \langle Q, \cdot, /, \cdot \rangle$$
 a quasigroup, $q(x, y, z) = (x/(y \setminus y)) \cdot (y \setminus z)$.

Theorem (IMMVW '10)

If $Clo(\mathcal{F})$ contains a Maltsev term, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable.

Fact

If $\mathsf{Clo}(\mathcal{F})$ contains a Maltsev term, then it also contains a WNU.

Theorem (IMMVW '10)

If $Clo(\mathcal{F})$ contains a Maltsev term, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable.

Fact

If $\mathsf{Clo}(\mathcal{F})$ contains a Maltsev term, then it also contains a WNU.

Maroti-Janko terms are ternary r, s, t with s a WNU satisfying:

$$r(x, x, y) = r(x, y, x) = t(y, x, x) = t(x, y, x) = s(x, x, y)$$

 $r(y, x, x) = t(y, y, x)$

Theorem (Barto)

If $Clo(\mathcal{F})$ contains Maroti-Janko terms, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable.

Maroti-Janko terms are ternary r, s, t with s a WNU satisfying:

$$r(x, x, y) = r(x, y, x) = t(y, x, x) = t(x, y, x) = s(x, x, y)$$

 $r(y, x, x) = t(y, y, x)$

Theorem (Barto)

If $\mathsf{Clo}(\mathcal{F})$ contains Maroti-Janko terms, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable.

A **semilattice** operation is a binary operation which is associative, commutative, and idempotent.

Theorem (Jeavons, Cohen, Gyssens '97)

If $Clo(\mathcal{F})$ contains a semilattice operation, then $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is tractable.

Fact

Every semilattice operation \cdot gives rise to a WNU term

$$f(x, y, z) = x \cdot (y \cdot z)$$

A **semilattice** operation is a binary operation which is associative, commutative, and idempotent.

Theorem (Jeavons, Cohen, Gyssens '97)

If $Clo(\mathcal{F})$ contains a semilattice operation, then $\mathbf{A}=\langle A,\mathcal{F}\rangle$ is tractable.

Fact

Every semilattice operation \cdot gives rise to a WNU term

$$f(x, y, z) = x \cdot (y \cdot z)$$

A **semilattice** operation is a binary operation which is associative, commutative, and idempotent.

Theorem (Jeavons, Cohen, Gyssens '97)

If $Clo(\mathcal{F})$ contains a semilattice operation, then $\mathbf{A}=\langle A,\mathcal{F}\rangle$ is tractable.

Fact

Every semilattice operation \cdot gives rise to a WNU term

$$f(x, y, z) = x \cdot (y \cdot z)$$

Approaching The Dichotomy Conjecture

- A binary WNU · satisfies:
 - $\mathbf{1} \times \mathbf{1} \times$
 - $x \cdot y = y \cdot x$ (commutativity)
- Neither alone is sufficient for tractability.
- Chose to study something more general than semilattice operation, but more structured than binary WNU.

Approaching The Dichotomy Conjecture

- A binary WNU · satisfies:

 - $x \cdot y = y \cdot x$ (commutativity)
- Neither alone is sufficient for tractability.
- Chose to study something more general than semilattice operation, but more structured than binary WNU.

Approaching The Dichotomy Conjecture

- A binary WNU · satisfies:
 - $\mathbf{0} \ x \cdot x = x$ (idempotence)
 - 2 $x \cdot y = y \cdot x$ (commutativity)
- Neither alone is sufficient for tractability.
- Chose to study something more general than semilattice operation, but more structured than binary WNU.

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a *CI-groupoid* if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice (iv) the remaining two variables appear only once.

Example

The Moufang Law x(y(zy)) = ((xy)z)y is an identity of Bol-Moufang type.

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a *CI-groupoid* if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice (iv) the remaining two variables appear only once.

Example

The Moufang Law x(y(zy)) = ((xy)z)y is an identity of Bol-Moufang type.

Let $\mathbf{A} = \langle A, \cdot \rangle$ be a groupoid. We call \mathbf{A} a *CI-groupoid* if \cdot is both commutative and idempotent. Usually, we write xy for $x \cdot y$.

Definition

An identity $p \approx q$ is of Bol-Moufang type if (i) the only operation in p,q is \cdot , (ii) the same three variables appear on both sides, in the same order, (iii) one of the variables appears twice (iv) the remaining two variables appear only once.

Example

The Moufang Law x(y(zy)) = ((xy)z)y is an identity of Bol-Moufang type.

Identities of Bol-Moufang Type (Philips and Vojtěchovský)

Each such identity is representable as X_{ij} , where:

 $X \in \{A, ..., F\}$, $1 \le i < j \le 5$, the identity with variables ordered by X, whose LHS is bracketed according to i, and whose RHS is bracketed according to j.

Two identities are **equivalent** (relative to a variety) if they define the same subvariety.

\mathbb{C}	All CI-groupoids
$2\mathbb{SL}$	x(xy) = xy
X	A24: $x((xy)z) = (x(xy))z$
SL	Semilattices
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	B12: $x(y(xz)) = x((yx)z)$
\mathbb{S}_1	B13: $x(y(xz)) = (xy)(xz)$

\mathbb{C}	Dichotomy Conjecture?
2SL	Maroti-Janko Terms
X	Maroti-Janko Terms
SL	Jeavons, Cohen, Gyssens
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	Maroti-Janko Terms
\mathbb{S}_1	Maroti-Janko Terms

\mathbb{C}	Dichotomy Conjecture?
$2\mathbb{SL}$	Maroti-Janko Terms
X	Maroti-Janko Terms
SL	Jeavons, Cohen, Gyssens
\mathbb{T}_2	C15: $x(y(yz)) = ((xy)y)z$
\mathbb{T}_1	A14: $x(x(yz)) = (x(xy))z$
\mathbb{S}_2	Maroti-Janko Terms
\mathbb{S}_1	Maroti-Janko Terms

The class of CI-groupoids defined by the additional identity x(yx) = y is known as the variety of Steiner quasigroups (squags).

Theorem

 \mathbb{T}_1 contains the variety of squags.

Proof.

For squags, x(x(yz)) = yz = (x(xy))z, so A14 holds

The class of CI-groupoids defined by the additional identity x(yx) = y is known as the variety of Steiner quasigroups (squags).

Theorem

 \mathbb{T}_1 contains the variety of squags.

Proof.

For squags, x(x(yz)) = yz = (x(xy))z, so A14 holds

The class of CI-groupoids defined by the additional identity x(yx) = y is known as the variety of Steiner quasigroups (squags).

Theorem

 \mathbb{T}_1 contains the variety of squags.

Proof.

For squags, x(x(yz)) = yz = (x(xy))z, so A14 holds.

Let $\mathbf{S}=\langle S,\vee \rangle$ be a semilattice, considered as a category with morphisms $s\to t\Leftrightarrow s\le t$ in $S,\ V$ a variety of groupoids considered as a category, and $F\colon S\to V$ a functor. Then the **Płonka sum** over S of the groupoids $\{\mathbf{A}_s=F(s):s\in S\}$ is the groupoid \mathbf{A} with universe $\bigcup_{s\in S}A_s$ and multiplication given by:

$$x_1 \cdot^{\mathbf{A}} x_2 = F_{s_1 s}(x_1) \cdot^{\mathbf{A}_s} F_{s_2 s}(x_2)$$

where
$$x_i \in \mathbf{A}_{s_i}$$
, $s = s_1 \lor s_2$, and $F_{s_is} = F(s_i \to s)$

Płonka's Theorem

Let **V** be a variety of groupoids defined by identities $\Sigma \cup \{x * y = x\}$ for some set Σ of regular identities, and x * y a binary term. The following classes of algebras coincide:

- **1** The class Pt(V) of Płonka sums of groupoids from V.
- **2** The variety of groupoids defined by Σ and the identities:

$$x * x = x$$

$$(x * y) * z = x * (y * z)$$

$$x * y * z = x * z * y$$

$$(xy) * z = (x * z)(y * z)$$

$$x * (yz) = x * y * z$$

Theorem

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x * y = x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

$\mathsf{Theorem}$

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x * y = x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

$\mathsf{Theorem}$

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x*y=x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

Theorem

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x*y=x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

Theorem

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x * y = x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

$\mathsf{Theorem}$

 \mathbb{T}_1 is the class of Płonka sums of squags.

- Let $\Sigma = \{xx = x, xy = yx, x(x(yz)) = (x(xy))z\}$, and x * y := y(xy).
- For squags, x * y = x. Since \mathbb{T}_1 contains the variety of squags, it is enough to show that Σ entails each of the identities in the theorem.
- Ask Prover9 to do it for you. Verify by hand over several days.
 Celebrate.

Theorem

Every finite algebra $\mathbf{A} \in \mathbb{T}_1$ is tractable.

Next Step - The Variety \mathbb{T}_2

Examples of Subdirectly Irreducible Algebras in $\mathbb{T}_2 \setminus \mathbb{T}_1$

	0	1	2	3	4	5	6
0	0	2	1	3	5	4	6
1	2	1	0	3	5	4	6
2	1	0	2	4	3	5	6
3	3	3	4	3	5 5 3 5 4 3 6	4	6
4	5	5	3	5	4	3	6
5	4	4	5	4	3	5	6
6	6	6	6	6	6	6	6

	0	1	2	3	5 5 3 5 4 3	5
0	0	2	1	3	5	4
1	2	1	0	3	5	4
2	1	0	2	4	3	5
3	3	3	4	3	5	4
4	5	5	3	5	4	3
5	4	4	5	4	3	5

Further Research

- Investigate entropic CI-groupoids: (xy)(zw) = (xz)(yw).
- Investigate distributive CI-groupoids: x(yz) = (xy)(xz).
- Investigate some of the other varieties of Bol-Moufang CI-Groupoids. Exactly *which* subvariety of $2\mathbb{SL}$ is defined by \mathbb{X} ? Can we develop a structure theory for \mathbb{X} , \mathbb{S}_1 or \mathbb{S}_2 ?