Math 236 Fall 2008 Dr. Seelinger

Solutions for $\S\S5.2$ and 5.3

Section 5.2

Problem 7. Consider $R = \mathbb{Q}[x]/(x^2-3)$. Each element of R can be written in the form [ax+b]. (Why?) Determine the rules for addition and multiplication of congruence classes.

First, note that by Corollary 5.5 that every congruence class in $R = \mathbb{Q}[x]/(x^2-3)$ has a unique representative of degree 1 or less (including the zero polynomial). Therefore every element of $R = \mathbb{Q}[x]/(x^2-3)$ can be written in the form [ax+b] where $a,b \in \mathbb{Q}$. Let $[ax+b], [cx+d] \in R$. Then, by Theorem 5.6,

$$[ax + b] + [cx + d] = [(a + c)x + (b + d)]$$

and

$$[ax + b][cx + d] = [acx^{2} + (ad + bc)x + bd] = [ac(3) + (ad + bc)x + bd] = [(ad + bc)x + (3ac + bd)].$$

Problem 14: In each part explain why [f(x)] is a unit in F[x]/(p(x)) and find its inverse. (a) $[f(x)] = [2x - 3] \in \mathbb{Q}[x]/(x^2 - 2)$.

When we divide $x^2 - 2$ by 2x - 3 we get a quotient of $\frac{x}{2} + \frac{3}{4}$ and a remainder of $\frac{1}{4}$. Therefore, we get

$$(x^{2}-2) = \left(\frac{x}{2} + \frac{3}{4}\right)(2x-3) + \frac{1}{4} \Rightarrow 4(x^{2}-2) + (-2x-3)(2x-3) = 1.$$

If we reduce this equation modulo $x^2 - 2$, we get [2x - 3][-2x - 3] = [1], hence [2x - 3] is a unit in $\mathbb{Q}[x]/(x^2 - 2)$ and $[2x - 3]^{-1} = [-2x - 3]$.

(b)
$$[f(x)] = [x^2 + x + 1] \in \mathbb{Z}_3[x]/(x^2 + 1).$$

We use the Euclidean Algorithm to get the gcd of f(x) and $p(x) = x^2 + 1$. So, when we divide p(x) by f(x) we get $q_1(x) = 1$ and $r_1(x) = 2x$. Now we divide f(x) by $r_1(x)$ and get $q_2(x) = 2x + 2$ and $r_2(x) = 1$. Hence $\gcd(f(x), p(x)) = 1$, so by Theorem 5.9, [f(x)] is a unit in $\mathbb{Z}_2[x]/(x^2+1)$. Furthermore,

$$f(x) = (2x+2)(2x) + 1 \Rightarrow 1 = f(x) + (x+1)(2x) = f(x) + (x+1)(p(x) - f(x)).$$

Hence, when we reduce the above equation modulo p(x) we get [1] = [f(x)][2x] so $[f(x)]^{-1} = [2x]$.

(c)
$$[f(x)] = [x^2 + x + 1] \in \mathbb{Z}_2[x]/(x^3 + x + 1).$$

We again use the Euclidean Algorithm to find the gcd of f(x) and $p(x) = x^3 + x + 1$. So we divide $p(x) = x^3 + x + 1$ by f(x) and get $q_1(x) = x + 1$ and $r_1(x) = x$. Next, we divide f(x) by $r_1(x)$ and get $q_2(x) = x + 1$ and $r_2(x) = 1$. Therefore, gcd(f(x), p(x)) = 1 so by Theorem 5.9, [f(x)] is a unit in $\mathbb{Z}_2[x]/(x^3 + x + 1)$. Also, we have

$$1 + (x+1)(x) = f(x) \Rightarrow 1 = f(x) + (x+1)(x) = f(x) + (x+1)(p(x) + (x+1)f(x))$$

$$\Rightarrow 1 = (x+1)p(x) + x^2 f(x).$$

When we reduce this modulo p(x) we get $[1] = [f(x)][x^2]$, so $[f(x)]^{-1} = [x^2]$.

Section 5.3

Problem 5(a). Verify that $\mathbb{Q}(\sqrt{3}) = \{r + s\sqrt{3} : r, s \in \mathbb{Q}\}$ is a subfield of \mathbb{R} . **(b).** Show that $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/(x^2-3)$.

(a) First we check that $\mathbb{Q}(\sqrt{3})$ is a subring of \mathbb{R} . Note that $0 = 0 + 0\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. Also, if $a + b\sqrt{3}$, $c + d\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ we have $(a + b\sqrt{3}) + (c + d\sqrt{3}) = (a + c) + (b + d)\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ and $(a + b\sqrt{3})(c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. Finally, $-(a + b\sqrt{3}) = -a + (-b)\sqrt{3} \in \mathbb{Q}(\sqrt{3})$, so by Theorem 3.2, $\mathbb{Q}(\sqrt{3})$ is a subring of \mathbb{R} . Since \mathbb{R} is commutative, so is $\mathbb{Q}(\sqrt{3})$. Also $1 = 1 + 0\sqrt{3} \in \mathbb{Q}(\sqrt{3})$, so it is a commutative ring with identity. Finally, for any $a + b\sqrt{3} \neq 0$ we have

$$(a+b\sqrt{3})^{-1} = \left(\frac{a}{a^2-3b^2}\right) + \left(\frac{-b}{a^2-3b^2}\right)\sqrt{3} \in \mathbb{Q}(\sqrt{3}).$$

Since every non-zero element of $\mathbb{Q}(\sqrt{3})$ has a multiplicative inverse since $a^2 - 3b^2 \neq 0$ for any rational numbers a and b.

(b) Let us define a function $\phi: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}[x]/(x^2-3)$ by letting $\phi(a+b\sqrt{3}) = [a+bx]$ for any $a,b \in \mathbb{Q}$. We need to show that ϕ is an isomorphism. We first show properties (H1) and (H2). Let $a+b\sqrt{3}, c+d\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. Then

$$\phi((a+b\sqrt{3}) + (c+d\sqrt{3})) = \phi((a+c) + (b+d)\sqrt{3}) = [(a+c) + (b+d)x]$$
$$= [a+bx] + [c+dx] = \phi(a+b\sqrt{3}) + \phi(c+d\sqrt{3})$$

So (H1) holds. Also,

$$\phi((a+b\sqrt{3})(c+d\sqrt{3})) = \phi((ac+3bd) + (ad+bc)\sqrt{3}) = [(ac+3bd) + (ad+bc)x]$$

while

$$phi(a + b\sqrt{3})\phi(c + d\sqrt{3}) = [a + bx][c + dx] = [ac + (ad + bc)x + bdx^2] = [(ac + 3bd) + (ad + bc)x]$$

since $[x^2] = [3]$ in $\mathbb{Q}[x]/(x^2 - 3)$. Therefore, (H2) also holds.

Next, assume $\phi(a+b\sqrt{3})=\phi(c+d\sqrt{3})\Rightarrow [a+bx]=[c+dx]$. By Corollary 5.5, there is a unique polynomial of degree 1 or less (including the zero polynomial) for each congruence class modelu p(x). Therefore, $a+bx=c+dx\Rightarrow a=c$ and b=d. Hence $a+b\sqrt{3}=c+d\sqrt{3}$ so ϕ is injective.

Now let y be a congruence class in $\mathbb{Q}[x]/(x^2-3)$. By Corollary 5.5, y=[r+sx] for some $r,s\in\mathbb{Q}$. So $\phi(r+s\sqrt{3})=[r+sx]=y$, hence ϕ is surjective. Therefore, ϕ is an isomorphism and hence $\mathbb{Q}(\sqrt{3})$ is isomorphic to $\mathbb{Q}[x]/(x^2-3)$.

Problem 6: Let p(x) be irreducible in F[x]. If $[f(x)] \neq [0_F]$ in F[x]/(p(x)) and $h(x) \in F[x]$, prove that there exists $g(x) \in F[x]$ such that [f(x)][g(x)] = [h(x)] in F[x]/(p(x)).

Proof. Since p(x) is irreducible in F[x], by Theorem 5.10 we have F[x]/(p(x)) is a field. Therefore, since $[f(x)] \neq [0_F]$, there exists an element $[f_0(x)] = [f(x)]^{-1} \in F[x]/(p(x))$. So let $[g(x)] = [f(x)]^{-1}[h(x)]$. Then

$$[f(x)][g(x)] = [f(x)]([f(x)]^{-1}[h(x)]) = ([f(x)][f(x)]^{-1})[h(x)] = [h(x)].$$

Hence $g(x) = f_0(x)h(x) \in F[x]$ works.

Q.E.D.

Problem 9(a): Show that $\mathbb{Z}_2[x]/(x^3+x+1)$ is a field.

- (b): Show that the field $\mathbb{Z}_2[x]/(x^3+x+1)$ contains all three roots of x^3+x+1 .
- (a) By Theorem 5.10 it is sufficient to show that $x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. But $x^3 + x + 1$ has no roots in \mathbb{Z}_2 , hence by Corollary 4.18 $x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. Therefore, by Theorem 5.10, $K = \mathbb{Z}_2[x]/(x^3 + x + 1)$ is a field.
- (b) Let $u = [x] \in K = \mathbb{Z}_2[x]/(x^3 + x + 1)$. Then by Theorem 5.11 we know $u \in K$ is a root of $p(x) = x^3 + x + 1 \in \mathbb{Z}_2[x] \subseteq K[x]$. Therefore, by the Factor Theorem, (x u) is a factor of $x^3 + x + 1$ in K[x]. By doing long division, we find that $x^3 + x + 1 = (x u)(x^2 + ux + (1 + u^2))$. Let $g(x) = x^2 + ux + (1 + u^2)$. In order to finish the problem, we need to show that g(x) has two roots in K. Note that $g(u^2) = 0$ and $g(u^2 + u) = 0$. Therefore, $x^3 + x + 1$ has three roots, $u, u^2, u^2 + u$ in K. By Corollary 4.16 these are all the roots of $x^3 + x + 1$. Q.E.D.