Chapter 3

Some Important Sampling Distributions

$$X_1, X_2, \dots X_n$$
 $X_1, X_2, \dots X_n$ X_n X_n

 μ : Population Mean

 \overline{X} : Sample Mean

σ: Population Standard Deviation (S.D.)

S: Sample Standard Deviation (S.E.)

n:Sample size

For
$$X \sim N(\mu, \sigma^2)$$
 \Rightarrow $Z = \frac{X - \mu}{\sigma}$

Then
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \implies \left|Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right|$$

Chapter 3 Conclusion

Distribution of Sample Mean

 $oldsymbol{\sigma}$ known

$$Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

• σ unknown and n > 30

$$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}} \sim N(0,1)$$

• σ unknown and n < 30

$$T_{(n-1)} = \frac{\overline{x} - \mu}{s / \sqrt{n}} \sim T(\nu)$$

Distribution of the difference between two Samples Means

• σ_1^2 and σ_2^2 knowns

$$Z = \frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

• σ_1^2 and σ_2^2 unknowns and $n_1, n_2 > 30$

$$Z = \frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0,1)$$

• σ_1^2 and σ_2^2 unknowns and $n_1, n_2 < 30$

$$S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$T_{(n_1+n_2-2)} = \frac{(\bar{x} - \bar{y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim T(\nu)$$

Distribution of Sample Proportion

$$Z = \frac{\widehat{P} - P}{\sqrt{\frac{Pq}{n}}} \sim N(0,1)$$

Distribution of the difference between two Samples Proportions

$$Z = \frac{\left(\widehat{P_{1}} - \widehat{P_{2}}\right) - \left(P_{1} - P_{2}\right)}{\sqrt{\frac{P_{1}q_{1}}{n_{1}} + \frac{P_{2}q_{2}}{n_{2}}}} \sim N(0,1)$$