Mechanisms and Influencing Factors of Atmospheric Nucleation

ASL751 FLASH TALK

Ayaan. S. Shaikh
2024VST9006
Department of Chemical Engineering

April 2025

Contents

- Atmospheric Nucleation
- Thermodynamic barriers of Atmospheric Nucleation
- New Particle Formation
- Conclusion and Discussions

Atmospheric Nucleation

Atmospheric nucleation is the process by which gas-phase compounds convert into new particles. It's a major source of atmospheric aerosols and plays a key role in cloud formation.

How it happens:

- •Low volatility gaseous precursors react to form stable clusters
- •The clusters increase in size, competing with coagulation for capture and removal.

Atmospheric Nucleation: What all Thermodynamic barriers are there

- Nucleation, a key component of NPF, is characterized by a reduction in both enthalpy and entropy ($\Delta H < 0$ and $\Delta S < 0$)(Brean et al., 2020; Zhang, 2010).
- While thermodynamically favorable regarding energy release, nucleation is hindered by the decrease in entropy. A free energy barrier ($\Delta G = \Delta H T\Delta S > 0$) must be overcome for spontaneous transformation.

Atmospheric nucleation in detail

- •Involves various species, including water, sulfuric acid, and ammonia.
- •Is thermodynamically favorable, but hindered by entropy.
- •Involves a free energy barrier that must be overcome before transformation to a new phase.

New particle formation (NPF) process:

Atmospheric nucleation is primarily driven by sulphuric acid

- Extremely low volatility
- Stabilization by bases and organics
- Hydrogen bonding

Substance	Vapor Pressure (atm) at 293 K
H₂SO₄	1.3 × 10 ⁻⁸
Water	0.02
Ethanol	0.05
NH ₃	0.0601
Formaldehyde	0.0103
нсі	0.03
NHO ₃	0.001

Characterizing NPF

- 1. Vapour Concentration: H₂SO₄ (most common)
- 2. Condensation sink (CS) quantifies the rate at which vapour molecules condense onto existing particles (s⁻¹).

- 1. Coagulation sink (CoagS) quantifies the rate at which particles are lost to existing particles (s⁻¹).
- 2. Growth Rate (GR): Rate at which new particles grow (nm h⁻¹).
- 3. Formation rate (J): Rate at which new particles are formed (cm⁻³ s⁻¹).

Criteria for nucleating vapor

- Low saturation vapor pressure
- Forms in the atmosphere (a vapor with such a low saturation vapor pressure would never be emitted)
- Atmospheric concentrations reasonably high
- Probably have a strong interaction with water
 - water has much higher concentration than any other condensable vapor in the atmosphere, by a factor of 10^s-10^s
 - water cannot nucleate homogeneously alone, would require
 RH > 500% condenses on existing particles before reaching
 these levels

Numerous compounds can nucleate with sulfuric acid to form particles at different rates

- Water
- 2. Amines
- 3. Alcohol Amines
- 4. Amino Acids
- Amides
- 6. Oxidized organics
- 7. "lons"
- 8. Organic acids (acetic, malonic, formic acids)
- Inorganic acids (nitric acid, trifluoric acid)

Criteria for nucleating vapor

- Low saturation vapor pressure
- Forms in the atmosphere (a vapor with such a low saturation vapor pressure would never be emitted)
- Atmospheric concentrations reasonably high
- Probably have a strong interaction with water
 - water has much higher concentration than any other condensable vapor in the atmosphere, by a factor of 10°-10°
 - water cannot nucleate homogeneously alone, would require
 RH > 500% condenses on existing particles before reaching
 these levels

Numerous compounds can nucleate with sulfuric acid to form particles at different rates

- 1. Water
- 2. Amines
- 3. Alcohol Amines
- 4. Amino Acids
- 5. Amides
- 6. Oxidized organics
- 7. "lons"
- 8. Organic acids (acetic, malonic, formic acids)
- 9. Inorganic acids (nitric acid, trifluoric acid)

Conclusion and Discussions

- CS and CoagS important factors governing Particle Number Size Distribution(PNSD).
- CS is the primary governing factor in new particle formation (NPF).
- DMA, H₂SO₄, and ammonia likely play a key role, explaining higher survival rates in polluted environments.
- Low-volatility organic vapors and semi-volatile inorganics contribute to particle growth as size increases, requiring further investigation of other condensing species.
- Measurements of aerosol size distributions (~1 nm), sulfuric acid, amines, and clusters are essential for understanding NPF in Delhi's urban environment.