Домашнее задание 11.

- 1. Имеются окрашенные прямоугольные таблички трёх типов: черный квадрат размера 2×2 , белый квадрат того же размера и серый прямоугольник 2×1 (последний можно поворачивать на 90°). Нужно подсчитать число способов F_n замостить полосу размера $2\times n$. Найдите явную аналитическую формулу для F_n и вычислите F_{30000} по модулю 31.
- 2. Выполните задачи 1, Д-1 из приложенного файла (все по 1 баллу).
- 3. а) Верно ли, что существует такая функция $f:\mathbb{N}\to\mathbb{N}$, для любых констант $\forall\, c,d>0$ выполнено

$$f(n) = \omega(n^c), \ f(n) = o(2^{nd}),$$

- т. е. функция f(n) растет быстрее любого заданного полинома, но медленнее любой заданной экспоненты?
- б) Некто анонсировал теорему (т. е. утверждение может быть и неверно), что любой МТ требуется $\Omega(n\log_2^{\log_2 n} n)$ тактов для того, чтобы проверять тавтологичность формул, заданных в формате 4-ДНФ, т. е. дизъюнктивных нормальных форм, в каждый конъюнкт которых входит не более четырех переменных (здесь n- длина входа). Считаем, что теорема верна. Верно ли, что из этого вытекает, что $\mathcal P$ не совпадает с со $-\mathcal N\mathcal P$?
- 4 (по 0,5 балла). а) Делится ли $4^{1356} 9^{4824}$ на 35? Делится ли $5^{30000} 6^{123456}$ на 31?
- б) Найдите обратные 20 (mod 79), 3 (mod 62).
- в) Найдите все решения уравнения $35x = 10 \pmod{50}$.
- г) Имеет ли решение сравнение $\chi^2 = 1597$
- д) Найдите наименьшее натуральное число, имеющее остатки 2, 3, 1 от деления на 5, 13 и 7 соответственно.
- 5. Предложите полиномиальный алгоритм нахождения количества натуральных решений диофантова уравнения ax + by = c.

По какому параметру он полиномиальный?...