

Fig. 1A (Prior Art)

1/8

Fig. 2 (Prior Art)

Fig. 1B (Prior Art)

Fig. 3

Fig. 4

Step

Party i

Party j

(1)

Party i's cryptography device generates erroneous signature \hat{E} for known message m (i.e., message m is generated without padding or with non-random padding) and transmits \hat{E} to party j's cryptography device.

Party j's cryptography device receives \hat{E} .

(2)

Party j's cryptography device determines $\gcd(M - \hat{E}^{e_i}, N) = q$.

(3)

Having determined q , party j's cryptography device determines N .

09516940-030400

Step

Fig. 5

Party i

Party j

(1)

Party i's cryptography device selects a random r , generates $r^2 \bmod N$, and transmits this value to party j's cryptography device.

(2)

Party j's cryptography device observes the value $r^2 \bmod N$.

(3)

While waiting to receive S from party j's device, a value in party i's device is inverted. After receiving S from party j's device, party i's device generates $\hat{y} = (r+E) \prod_{i \in S} s_i$. Party i's device transmits \hat{y} to party j's device.

Party j's cryptography device generates a random subset $S \subseteq \{1, \dots, t\}$ and transmits S to party i's cryptography device.

(4)

Party j's device receives \hat{y} .

Party j's device determines E by finding an E satisfying

$$(r+E)^2 = \frac{\hat{y}^2}{\prod_{i \in S} v_i} \pmod{N}$$

(5)

This is possible because $E = 2^k$ for some $1 \leq k \leq n$

Party j's device may determine r using:

6/8

Fig. 5 Con't

$$(x+E)^2 - x^2 = \\ 2Ex + E^2 \pmod{N}$$

Party j may use r to determine $\prod_{i \in s} s_i$ using:

$$\prod_{i \in s} s_i = \frac{2E\hat{y}}{\frac{\hat{y}^2}{\prod_{i \in s} v_i} - x^2 + E^2} \pmod{N}$$

(6)

Party j's cryptography device determines $\prod_{i \in s} s_i$ for various sets U_i constructed as either (1) singleton sets or (2) selected at random such that resulting characteristic vectors are linearly independent.

7
(8)

Using the sets constructed above, party j's device performs the Fiat-Shamir authentication scheme, providing the sets to party i's device.

8
(9)

Using the response to the sets sent to party i's device, party j determines the secret values s_1, \dots, s_t .

(9)

P

09546940 - 030200

Fig. 6A (Prior Art)

Fig. 6B (Prior Art)

8/8

Fig. 7

