| (i) Ceaser Cipher V (ii) Mono alphabetic Subsi (iii) Vigenere Cipher (iii) Affine Cipher (iii) P = a - (c - b) mod n  Triverse? Extended Euclidean Alga    Dook a - n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thu, Feb, OI                            | Lecture                               | . 02                       |                    |       |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------|--------------------|-------|-------------|
| (ap+b) mod n  P = a - (c-b) mod n  Triverse? Extended Euclidean Alga  b o o k a=n a n q v v  a=x1 a n n x n=a-ng 7 26 o 1 0  b-10 v=v 26 t 7 3 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                       |                            |                    |       |             |
| (a) Mono alphabetic Subsi (b) Vigener Cipher  (c) Affine Cipher  (d) Affine Cipher  (e) C (ap+b) mod n  (f) C (ap+b) mod n  (f) C (b) mod n  (f) C (ap+b) mod n  (g) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | <b>✓</b>                              |                            |                    |       |             |
| Affine Cipher  (ap+b) mod n $P = a^{-1}(c-b) \mod n$ Towerse? Extended Euclidean Alga  book a=n a n q v v  a=17 a n n x n=a-rq 7 26 0 1 0  b=10 v=v 26 t 7 3 0 1  b=10 v=v 26 t 7 3 0 1  c=10 v=v 26 t 7 3 0 1  c=10 v=v 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Mono alphabeti                        | c Subsi                               |                            |                    |       |             |
| Affine Cipher  (ap+b) mod n $P = a^{-1}(c-b) \mod n$ Towerse? Extended Euclidean Alga  book a=n a n q v v  a=17 a n n x n=a-rq 7 26 0 1 0  b=10 v=v 26 t 7 3 0 1  b=10 v=v 26 t 7 3 0 1  c=10 v=v 26 t 7 3 0 1  c=10 v=v 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) Vigenere Ciphe                      | Υ                                     |                            |                    |       |             |
| (5) $C = (ap+b) \mod n$ $P = a^{-1}(c-b) \mod n$ Thiese? Extended Euclidean Alga $a = n$ $a =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                       |                            |                    |       |             |
| $C = (ap+b) \mod n$ $P = a^{-1}(c-b) \mod n$ $Touchse ? Extended Euclidean Alga$ $a = 1                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (S)                                     |                                       |                            |                    |       |             |
| $P = a^{-1}(c-b) \mod n$ Triverse? Extended Euclidean Alga  book a=n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                       |                            |                    |       |             |
| $P = a^{-1}(c-b) \mod n$ Triverse? Extended Euclidean Alga  book a=n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                       | (= (aptb) modn             |                    |       |             |
| Inverse? Extended Euclidean Alga $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | $\longrightarrow$                     | D = 1-1 ( c - h ) mod r    | )                  |       |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                       | 7 E +an                    | del Fiolidae No    | ~ · · |             |
| $a=17 \ a \ n \ n \ x $ $n=a-rq$ $7 \ 26$ $0 \ 1 \ 0$ $0 \ 0$ $0 \ 0$ $0 \ 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                       | Inverse Exten              | aedi Eucxidebin Fu | 7ei   |             |
| $a=17 \ a \ n \ n \ x $ $n=a-rq$ $7 \ 26$ $0 \ 1 \ 0$ $0 \ 0$ $0 \ 0$ $0 \ 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                       | 2                          |                    |       | <del></del> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 2 2 2 2 2                            |                                       |                            |                    |       |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a=\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | · · · · · · · · · · · · · · · · · · · |                            |                    | O     |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 102101                                  |                                       |                            | <u> </u>           | (     |             |
| $\frac{2^{2}}{1^{1}} \frac{1}{1^{2}} $ | Bis and 20                              |                                       |                            | 1                  | -3    |             |
| $\begin{cases} 1^{1+1} \\ 0 \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 1 1 (01)                              | 9 = a/n                               | 5 2                        | 2 -3               | 4     |             |
| 15° + 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (174)                                   |                                       | 2 1                        | Ч                  | (-íi) |             |
| 0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | () &                                    |                                       |                            |                    | + 26  |             |
| (i/b)(a/b)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.                                      | 25-                                   | $\frac{1}{2}(0(a + b) = 1$ | 26/.               |       |             |
| 2()(d a D)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | - C                                   | 2()(0 9 0)-1               | 71.                | 7     |             |

| Relative       | prime is                              | ne cessary |          |                                                | -1 <u>-</u> ( | (2)(1)      | -1-2        |
|----------------|---------------------------------------|------------|----------|------------------------------------------------|---------------|-------------|-------------|
| a o            | 5 18                                  | Q          | Υ        | O1.                                            |               | \ <u>/</u>  |             |
| 6 1            | + 19                                  | 17         | 26       | 0                                              | /             |             |             |
| ( 2            | u 20                                  | 26         | 17       |                                                | Ö             | Ĭ           |             |
| d 3            | V 21                                  | 17         | · a      | 1                                              |               | <u></u>     |             |
| e <sup>y</sup> | W 22                                  | 9          | 4        | <u></u>                                        | -1            | 2           |             |
| £ 5            | x 23                                  | 8          | <u> </u> |                                                | 2             | $(-3)_{t}$  | -26         |
| 96             | 4 24                                  |            |          |                                                |               |             |             |
| h 7            | 2 25                                  |            |          |                                                |               | 23          |             |
| ; G            |                                       | ſ,         | 23 (     | 10-10                                          | n nad         | 9 /         |             |
|                |                                       | Z          |          |                                                |               |             |             |
| 1 11<br>1 10   |                                       | 1          | 23       | (-9)                                           | $MOOI \sim$   | ! 6         |             |
| m 12           | , , , , , , , , , , , , , , , , , , , |            | ->       | .07 m                                          |               |             |             |
| n 13           | 000                                   |            |          | <u>-01                                    </u> | <u>00 2</u>   | 6           | ]           |
| 0 14<br>P 15   |                                       |            | 23(      | 23-19                                          | mod           | 26          | = 23x4mod26 |
| 9 16           |                                       |            | - 5 / -  | 7-19)                                          | mad           | 20          | = 14        |
| 1 17           |                                       |            | 231      | 1 - 1 - 1 /                                    |               | · · · · · · | 10          |
|                |                                       |            | 23       | -(2)                                           | MOD           | 26:         | - / \       |

\* Homework

Broups / Feeds / Rings in Maths.

Sat Feb, 03 Lecture 03

ZICUTWQNZRQZUTWAVZHCQYGLMQJ

Selected - Frequency Analysi's

To break a Vigenere cipher, you can use frequency analysis. Here are the steps to follow:

- 1. Determine the length of the key: The first step is to find the length of the key used in the Vigenere cipher. You can do this by looking for repeating patterns in the encrypted text. If the key length is unknown, you can try different key lengths and analyze the results.
- 2. Divide the encrypted text into groups: Once you have the key length, divide the encrypted text into groups of that length. Each group will correspond to a letter encrypted with the same key letter.

- 3. Analyze the frequency of each group: Count the frequency of each letter in each group. This will give you a frequency distribution for each group.
- 4. Compare the frequency distributions: Compare the frequency distributions of the groups with the expected frequency distribution of the English language. The most common letters in English are E, T, A, O, I, N, S, H, R, and D. Look for similarities between the frequency distributions of the groups and the expected frequency distribution
- 5. Determine the key: Once you have identified the most likely letters for each group, you can determine the key by finding the shift between the encrypted letters and the corresponding decrypted letters. This shift will give you the key letter for each group.
- 6. Decrypt the text: Finally, use the key to decrypt the entire text by shifting each letter back to its original position

Remember that frequency analysis is not foolproof and may not always work, especially if the text has been encrypted using additional techniques to counter frequency analysis.

# Auto Key Lextension of viginere Cipher)

key => book
PT => Information
(key => book informa

### Play Fair

information KOhn

| m   | e | S | an | g |
|-----|---|---|----|---|
| Ь   | 2 | d | f  | h |
| i/; | k | l | n  | 0 |
| P   | 9 | 8 | +  | υ |
| V   | W | V | y  | 2 |
|     |   |   |    |   |

Key - message

#### Hill Cipher

vey ) [ ] =

Modular Mathematic

L (Adj)

Det (Adj)

| Rail  | Fen    | ce  |        |   | ke | y = | 2. |   |  |
|-------|--------|-----|--------|---|----|-----|----|---|--|
| Infor | mation | Sea | er ity |   |    | u   |    |   |  |
| I     | า      |     | () i   |   | e  |     |    | í |  |
| η.    | Ð      | M   | ŧ      | 0 | S  | C   | б  | ŧ |  |
|       | f      | a   |        | n |    | ν   | l  | y |  |
| I     | ۲      | ie  | i      |   |    |     |    |   |  |

### Columnar Transposition Cipher

| key => |         |   |   |            |                  | secret          |  |
|--------|---------|---|---|------------|------------------|-----------------|--|
| . 0    | 5)<br>S | 2 | 0 | (U)<br>  r | ( <u>3)</u><br>e | <b>®</b><br>  + |  |
| PT >   | 1       | n | f | 0          | 8                | m               |  |
|        | a       | ŧ | i | 0          | n                | S               |  |
|        | e       | С | U | 8          | j                | +               |  |
|        | ч       | × | Х | Х          | · ×              | $\times$        |  |
|        | 0       |   |   |            |                  |                 |  |

fiunternioorlaey

Chapter 2 of Cryptography and Network Security





Tuesday, Feb 13 Lecture

LSFR Left shift feedback register

A5/1

C 0/1 0

1100





## Block Cipher DES (Mode of Encryption)

24

Confusion and diffusion are two fundamental concepts in cryptography, specifically in the context of block ciphers like DES.

- 1. Confusion: Confusion refers to the process of making the relationship between the plaintext and the ciphertext as complex and obscure as possible. It involves introducing confusion by using mathematical operations, such as substitution or permutation, to ensure that even a small change in the plaintext results in a significant change in the ciphertext. This makes it difficult for an attacker to deduce any information about the plaintext from the ciphertext.
- 2. Diffusion: Diffusion refers to the process of spreading the influence of each plaintext bit over a large number of ciphertext bits. It aims to distribute the statistical properties of the plaintext uniformly throughout the ciphertext. Diffusion ensures that any change in the plaintext affects multiple bits in the ciphertext,

making it harder for an attacker to identify patterns or correlations.

Both confusion and diffusion are essential in achieving strong encryption. Confusion helps to hide the relationship between the plaintext and the ciphertext, while diffusion ensures that any changes in the plaintext have a widespread effect on the ciphertext. By combining these two concepts, block ciphers can provide a high level of security and resistance against various cryptographic attacks.

PAC Confusion Diffusion but with Any change in should Vand C induce a significant change in cipher Plaintext cannot be As for keys, if a key has majority of Os and minority of Is substitution boxes would Frestal Decryption n the permutation wouldn't Just the order of change the structure keys is reversed significantly. So you must use substitution





| 1977 - 2001 DES Avalanche                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|
| birthday Paradox -> 99% chance of finding a key from 50% brute fore                                                        |
|                                                                                                                            |
| E. E. I. I. C. II. Field                                                                                                   |
| Fri. Feb 16 Czalloa Fields                                                                                                 |
|                                                                                                                            |
| ·Finite Field.                                                                                                             |
| - n - n)                                                                                                                   |
| Groups Prings Fields                                                                                                       |
| (2) Abelian Groups 2) Commutative-> Integral (3) Finite Fields                                                             |
| rings domains                                                                                                              |
| Groups Rings Fields  Lange Abelian Groups La Commutative -> Integral The Fields  Carroup Therevalize all operators domains |
| Denoted by { G, O3 Usually addition k operator ko use kya jaata hai.                                                       |
| A group should follow some properties.                                                                                     |
| A group should follow some properties.  Abelian Group defined another property                                             |
| Rings (Inherit properties of Groups) (should always)                                                                       |
| Ring specified the use of + to groups property of groups                                                                   |
| also defined multiplicative rules.                                                                                         |
| Commutative Ring defined another multiplicative                                                                            |
| Internal Domain                                                                                                            |
|                                                                                                                            |

| Fields (inherit A1-AS and M1-M6 from previous)                                             |  |
|--------------------------------------------------------------------------------------------|--|
| Defined another M7 property                                                                |  |
| Types of Fields                                                                            |  |
| 71-5-10                                                                                    |  |
| Infinite Field Finite Fields                                                               |  |
| Set of infinite field Include finite sets only                                             |  |
| For example Calloa Field GF(8)                                                             |  |
| $\bigcap_{\alpha} \mathbb{I}_{\alpha} = \mathbb{I}_{\alpha}$                               |  |
| 2 soith                                                                                    |  |
| Colorsical Cipher aren't in Finite                                                         |  |
| Calassical Cipher aren't in Finite  Fields / Different maths  Additive inverse in modulo 8 |  |
| Additive inverse in modulo 8                                                               |  |
|                                                                                            |  |
| a+6=0<br>1+7=0 Additive inverse                                                            |  |
| 1 +7 =0 AOM                                                                                |  |
|                                                                                            |  |
|                                                                                            |  |
| Polynomial Arithmetic:                                                                     |  |
| GF(P) mai co-efficients mod P ho jatay hai                                                 |  |
| al (p) mod p tak jaye gg                                                                   |  |
| GF(pn) > coff mod p tak jaye ga<br>Scoff modp [highest power mod n]                        |  |
|                                                                                            |  |



Figure 5.2 Properties of Groups, Rings, and Fields



