```
5)
(a) T(n) = 2T(n/2) + nlog(logn)
let n=2<sup>k</sup>
let S(k)=T(2^k)
S(0) = T(1) = d
S(k) = 2S(k-1) + 2^{k}log(log2^{k})
      = 2S(k-1) + 2^{k}log(k)
      = 2{2S(k-2) + 2^{k-1}log(k-1)} + 2^{k}logk
      = 4S(k-2) + 2^{k}log(k-1) + 2^{k}logk
      =8S(k-3) + 2^{k}log(k-2) + 2^{k}log(k-1) + 2^{k}log(k
let T(1) = c, Therefore S(0) = d; //some constant
 S(k) = 2^k S(0) + 2^k \{ log (k*(k-1)*(k-2)*(k-3)*...*1) \}
 S(k) = d2^k + 2^k \log(k!)
       log(k!) = log 1 + log 2 + log 3 + ... + log k <= log k + log k + log k + ... k times
       therefore, log(k!)<=klogk
S(k) = dn + nlognlog(logn) \in O(nlogn(log(logn)))
(b)T(n) = 5T(n/4) + nlogn
Work done at i^{th} level = 5^{i} (n/4^{i}) (logn-2i)
Let T(1)=d;
Let k = log_4 n
Therefore work at kth level = 5^k d = 5^{\log_4 n} = n^{\log_4 5}
Total work done = \sum_{i=0}^{k-1} (5/4)^{i} (n \log_2 n - 2n i) + n \log_4^{\log_4 5}
                    = ((5/4)^k-1)/((5/4)-1) nlog<sub>2</sub>n -2n \sum_{i=0}^{k-1} (5/4)^i i + n^{\log_4 5} // substituting for k = \log_4 n
                    <=(n^{\log_4 5}/n)n\log_2 n + n^{\log_4 5}
                                                         //Removing all terms that were negative to get the
                                                           upper bound
                   (c)T(n) = 2T(n/2) + n\log^2 n
 let n=2k
 let T(1)=c //constant
let S(k)=T(2^k)
S(0) = T(1) = c
S(k) = 2S(k-1) + 2^{k}log^{2}(2^{k})
    = 2S(k-1) + 2^{k}(k)^{2}
    = 2[2S(k-2)+2^{k-1}\log^2(2^{k-1})]
    =4S(k-2)+2^{k}(k^{2}+(k-1)^{2})
    = 8S(k-3) + 2^{k}(k^{2} + (k-1)^{2} + (k-2)^{2})
    = 2^{k}S(0) + 2^{k}(\sum_{i=1}^{k} i^{2})
```

= nc + n(k)(k+1)(2k+1)/6
= nc + n(2k³ + k² + 2k + 1)/6
= nc + n(2log³n + log²n + 2logn + 1)/6 € Θ(nlog³n)
(d) T(n) = 2T(n/2)+n²/log²n
let n=2^k
let T(1)=c //constant
let S(k)=T(2^k)
S(0) = T(1) = c
S(k) = 2S(k-1) + 2^{2k}/k²
S(k) = 2(2S(k-2)+2^{2k}/4(k-1)²) + 2^{2k}/k²
= 2²S(k-2) + 2^{2k}/4(k-1)² + 2^{2k}/k²
= 2³S(k-3) + 2^{2k}/2³(k-2)² + 2^{2k}/2²(k-1)² + 2^{2k}/k²
= 2^kS(0) + 2^{2k} ∑_{i=1}^k (1/(2^(2(k-i))(i^2)))
But
$$\sum_{i=1}^{k} (1/(2^{k}(2(k-i))(i^2))) < \sum_{i=1}^{\infty} (1/i^2) = \pi^2/6$$
 -- a constant S(k) <= 2^kc + 2^{2k}(π²/6) <= nc+ n²(π²/6) € O(n²)

(e) $T(n) = 4T(n/2) + n^2/log^2n$

let n=2^k
let T(1)=c //constant
let S(k)=T(2^k) S(0) = T(1) = c $S(k) = 4S(k-1) + 2^{2k}/k^2$ $= 4(4S(k-2)+2^{2k}/4(k-1)^2) + 2^{2k}/k^2$ $= 4^2S(k-2) + 2^{2k}/(k-1)^2 + 2^{2k}/k^2$ $= 4^kS(0) + 2^{2k}(\sum_{i=1}^k (1/i^2))$ But $\sum_{i=1}^k (1/i^2) <= \sum_{i=1}^\infty (1/i^2) = \pi^2/6$ Therefore S(k) = 4^kc + 4^k($\pi^2/6$) $S(k) = n^2c + n^2(\pi^2/6) \in \Theta(n^2)$

f. $T(n) = 27 T(n/3) + n^3$

This is of the form T(n) = a T(n/b) + f(n). In the above case, a = 27, b = 3, $f(n) = n^3$. So, $n^{\log_b a} = n^{\log_3 27} = n^4 = f(n)$.

Since, $f(n) \in \Theta(n^{\log_b a})$, using Master Theorem, we can say $T(n) \in \Theta(n^{\log_b a} \log n)$. Hence, in our case, $T(n) \in \Theta(n^4 \log n)$.

g. $T(n) = 6 T(n/2) + n^3$

This is of the form T(n) = a T(n/b) + f(n). In the above case, a = 6, b = 2, $f(n) = n^3$. So, $n^{logba} = n^{log26} = n^{2.58}$.

Since, $f(n) = n^3$ and $n^{\log}_b{}^a = n^{2.58}$ we can conclude that $f(n) \in \Omega(n^{\log}_b{}^a)$. And by using Master Theorem, we can say $T(n) \in \Theta(f(n))$. Hence, in our case, $T(n) \in \Theta(n^3)$.