Resumo de Inferência Estatística

Sumário

- Aula 1: O que é e para que serve Inferência Estatística?
- Aula 2: Distribuição a priori e a posteriori
- Aula 3: Prioris conjugadas e função de perda
- Aula 4: Estimadores de Bayes e EMV
- Aula 5: EMV
- Aula 6: Método dos momentos e suficiência
- Aula 7: Suficiência conjunta e mínima, teorema de Rao-Blackwell
- Aula 8: Admissibilidade e viés
- Aula 9: Eficiência
- Aula 10: Distribuição de uma estatística amostral e qui-quadrado
- Aula 11: Distribuição da média e variância amostrais
- Aula 12: Distribuição t de Student e intervalos de confiança
- Aula 13: Intervalos de confiança e Quantidades Pivotais
- Aula 14: Testes de hipótese I
- Aula 15: Testes de hipótese II
- Aula 16: Testes de hipótese III
- Aula 17: Testes e conjuntos de confiança
- Aula 18: Teste t I
- Aula 19: Teste t II
- Aula 20: Teste f

Aula 1: O que é e para que serve Inferência Estatística?

Definição 1 (Modelo estatístico: informal) $Um\ modelo\ estatístico\ consiste\ na\ identificação\ de\ variáveis\ aleatórias\ de\ interesse\ (observáveis\ e\ potencialmente\ observáveis),\ na\ especificação\ de\ uma\ distribuição\ conjunta\ para\ as\ variáveis\ aleatórias\ observáveis\ e\ na\ identificação\ dos\ parâmetros\ (\theta)\ desta\ distribuição\ conjunta.$ Às vezes é conveniente assumir que os parâmetros são variáveis aleatórias\ também, mas para isso é preciso especificar uma distribuição\ conjunta\ para\ θ .

Definição 2 (Modelo estatístico: formal) Seja \mathcal{X} um espaço amostral qualquer, Θ um conjunto nãovazio arbitrário e $\mathcal{P}(\mathcal{X})$ o conjunto de todas as distribuições de probabilidade em \mathcal{X} . Um modelo estatístico paramétrico é uma função $P:\Theta\to\mathcal{P}(\mathcal{X})$ que associa a cada $\theta\in\Theta$ uma distribuição de probabilidade P_{θ} em \mathcal{X} .

Definição 3 (Afirmação probabilística) Dizemos que uma afirmação é probabilística quando ela utiliza conceitos da teoria de probabilidade para falar de um objeto.

Definição 4 (Inferência Estatística) Uma inferência estatística é uma afirmação probabilística sobre uma ou mais partes de um modelo estatístico.

Definição 5 (Estatística) Suponha que temos uma coleção de variáveis aleatórias $X_1, X_2, ..., X_n \subseteq \mathbf{R}^n$ e uma função $r: \mathbf{X} \to R^m$. Dizemos que a variável aleatória $T = r(X_1, X_2, ..., X_n)$ é uma estatística.

Definição 6 (Permutabilidade) Uma coleção finita de variáveis aleatórias $X_1, X_2, ..., X_n$ com densidade conjunta f é dita **permutável** se

$$f(x_1, x_2, \dots, x_n) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)})$$
(1)

para qualquer permutação $\pi = \{\pi(1), \pi(2), \dots, \pi(n)\}$ dos seus elementos. Uma coleção finita é permutável se qualquer subconjunto finito é permutável.

Aula 2: Distribuição a priori e a posteriori

Definição 7 (Distribuição a priori) Se tratamos o parâmetro θ como uma variável aleatória, então a distribuição a priori \acute{e} a distribuição que damos a θ antes de observarmos as outras variáveis aleatórias de interesse. Vamos denotar a função de densidade/massa de probabilidade da priori por $\xi(\theta)$.

Definição 8 (Distribuição a posteriori) Considere o problema estatístico com parâmetros θ e variáveis aleatórias observáveis X_1, X_2, \ldots, X_n . A distribuição condicional de θ dados os valores observados das variáveis aleatórias, $\mathbf{x} := \{x_1, x_2, \ldots, x_n\}$ é a distribuição a posteriori de θ , denotamos por $\xi(\theta \mid \mathbf{x})$ a f.d.p./f.m.p. condicional a $X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n$.

Teorema 1 (Distribuição a posteriori: derivação) Considere a amostra aleatória $X_1, X_2, ..., X_n$ de uma distribuição com f.d.p./f.m.p. $f(x \mid \theta)$. Se a distribuição a priori é $\xi(\theta)$, temos

$$\xi(\theta \mid x) = \frac{\xi(\theta) \prod_{i=1}^{n} f(x_i \mid \theta)}{g_n(x)}, \ \theta \in \Omega$$
 (2)

Chamamos $g_n(x)$ de distribuição marginal de X_1, X_2, \ldots, X_n .

Definição 9 (Função de verossimilhança) Quando encaramos a f.d.p./f.m.p. $f(x_1, x_2, ..., x_n \mid \theta)$ como uma função do parâmetro θ , chamamos esta função de função de verossimilhança, e podemos denotá-la como $L(\theta; x)$ ou, quando a notação não criar ambiguidade, simplesmente $L(\theta)$.

Aula 3: Prioris conjugadas e função de perda

Definição 10 (Hiper-parâmetros) Seja $\xi(\theta \mid \phi)$ a distribuição a priori para o parâmetro θ , indexada por $\phi \in \Phi$. Dizemos que ϕ é(são) o(s) **hiper-parâmetro(s)** da priori de θ .

Definição 11 (Priori conjugada) Suponha que X_1, X_2, \ldots sejam condicionalmente independentes dado θ , com f.d.p./f.m.p. $f(x \mid \theta)$. Defina

$$\Psi = \left\{ f : \Omega \to (0, \infty), \int_{\Omega} f dx = 1 \right\}$$
 (3)

onde Ω é o espaço de parâmetros. Dizemos que Ψ é uma **família de distribuições conjugadas** para $f(x \mid \theta)$ se $\forall f \in \Psi$ e toda realização \boldsymbol{x} de $X = X_1, X_2, \dots, X_n$

$$\frac{f(\boldsymbol{x}\mid\boldsymbol{\theta})f(\boldsymbol{\theta})}{\int_{\Omega}f(\boldsymbol{x}\mid\boldsymbol{\theta})f(\boldsymbol{\theta})d\boldsymbol{\theta}}\in\Psi\tag{4}$$

Teorema 2 (Distribuição a posteriori da média de uma normal) Suponha que X_1, X_2, \ldots, X_n formam uma amostra aleatória com distribuição normal e com média desconhecida θ e variância $\sigma^2 > 0$, conhecida e fixa. Suponha que $\theta \sim Normal(\mu_0, v_0^2)$ a priori. Então

$$\xi(\theta \mid x, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{(\theta - \mu_1)^2}{2v_1^2}\right),\tag{5}$$

onde

$$\mu_1 := \frac{\sigma^2 \mu_0 + n v_0^2 \overline{x}_n}{\sigma^2 + n v_0^2} e v_1^2 := \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}$$

$$(6)$$

Definição 12 (Priori imprópria) Seja $\xi: \Lambda \to (0, \infty), \Omega \subseteq \Lambda$, uma função tal que $\int_{\Omega} \xi(\theta) d\theta = \infty$. Se utilizamos ξ como uma p.d.f. para θ , dizemos que ξ é uma **priori imprópria** para θ .

Definição 13 (Estimador) Sejam X_1, X_2, \ldots, X_n variáveis aleatórias com distribuição conjunta indexada por θ . Um **estimador** de θ é qualquer função real δ : $X_1, X_2, \ldots, X_n \to \mathbb{R}^d, d \ge 1$.

Definição 14 (Estimativa) Dizemos que o valor de δ avaliado nas realizações de X_1, X_2, \ldots, X_n , $\boldsymbol{x} = \{x_1, x_2, \ldots, x_n\}$, $\delta(\boldsymbol{x})\}$ é uma **estimativa** de θ .

Definição 15 (Função de perda) Uma função de perda é uma função real em duas variáveis

$$L: \Omega \times \mathbb{R}^d \to \mathbb{R},\tag{7}$$

em que dizemos que o estatístico perde $L(\theta,a)$ se o parâmetro vale θ e a estimativa dada vale a.

Aula 4: Estimadores de Bayes e EMV

Definição 16 (Estimador de Bayes) Considere a perda esperada a posteriori:

$$E_{\theta|x}[L(\theta, a)] = E[L(\theta, a) \mid x] = \int_{\Omega} L(\theta, a) \xi(\theta \mid x) d\theta$$
 (8)

Dizemos que δ^* é um **estimador de Bayes** se, para toda realização X=x,

$$E[L(\theta, \delta^*(x)) \mid x] = \min_{a \in A} E[L(\theta, a) \mid x]. \tag{9}$$

Em outras palavras, um estimador de Bayes é uma função real dos dados que minimiza a perda esperada com respeito à posteriori dos parâmetros.

¹p.d.f. - "probability density function" ou função de densidade de probabilidade

Teorema 3 (δ^* sob perda quadrática) Seja θ um parâmetro tomando valores reais. Sob perda quadrática,

$$\delta^*(x) = E[\theta \mid X = x] = \int_{\Omega} \theta \xi(\theta \mid x) d\theta \tag{10}$$

Teorema 4 (δ^* sob perda absoluta) Suponha que a função de perda é dada por

$$L(\theta, \delta^*) = |\theta - \delta^*|. \tag{11}$$

Dizemos que a função de perda é **absoluta**. Seja θ um parâmetro tomando valores na reta. Sob perda absoluta, $\delta^*(x)$ é a **mediana** a posteriori, isto é,

$$\int_{\infty}^{\delta^*(x)} \xi(\theta \mid x) d\theta = \frac{1}{2} \tag{12}$$

Definição 17 (Estimador consistente) Seja $\delta_1, \delta_2, \dots, \delta_n$ uma sequência de estimadores de θ . Se quando $n \to \infty$ a sequência convergente para θ , dizemos que esta é uma sequência consistente de estimadores.

Definição 18 (Estimador de máxima verossimilhança) Para cada possível vetor (de observações) x, seja $\delta(x) \in \Omega$ um valor de $\theta \in \Omega$ de modo que a função de verossimilhança, $L(\theta) \propto f(x \mid \theta)^2$, atinge o máximo. Dizemos que $\hat{\theta} = \delta(\mathbf{X})$ é o estimador de máximo verossimilhança de θ (Fisher, 1922)³. Quando observamos $\mathbf{X} = x$, dizemos que $\delta(x)$ é uma estimativa de θ . Dito de outra forma:

$$\max_{\theta \in \Omega} f(\boldsymbol{X} \mid \theta) = f(\boldsymbol{X} \mid \hat{\theta}). \tag{13}$$

Famílias Conjugadas

Se X_1,\ldots,X_n são iid e seguem a distribuição da coluna "Dados" na tabela 1. **Notações**: $\bar{x}_n=\frac{1}{n}\sum_{i=1}^n x_i; \quad y=\sum_{i=1}^n x_i$

Dados	Priori	Posteriori
$Bernoulli(\theta)$	$Beta(\alpha, \beta)$	$Beta(\alpha + y, \beta + n - y)$
$Poisson(\theta)$	$Gama(\alpha, \beta)$	$Gama(\alpha + y, \beta + n)$
$Normal(\mu, \sigma^2)$	$Normal(\mu_0, v_0^2)$	Normal $\left(\frac{\sigma^2 \mu_0 + n v_0^2 \bar{x}_n}{\sigma^2 + n v_0^2}, \frac{\sigma^2 v_0^2}{\sigma^2 + n v_0^2}\right)$

Table 1: Famílias Conjugadas

 $Gama(\alpha, \beta)$

Aula 5: EMV

Teorema 5 (Invariância do EMV) Considere uma função $\phi: \Omega \to \mathbb{R}$. Se $\hat{\theta}$ é um EMV para θ , então $\phi(\hat{\theta})$ é um EMV para $\omega = \phi(\theta)$.

Teorema 6 (Consistência do EMV) Defina $l(\theta) := \log f_n(x \mid \theta)$ e assuma que $X_1, \ldots, X_n \sim f(\theta_0)$, isto é, que θ_0 é o valor verdadeiro do parâmetro. Denote $E_{\theta_0}[g] := \int_{\mathcal{X}} g(x, \theta_0) f(x \mid \theta_0) dx$. Suponha que

- $f(x_i \mid \theta)$ tem o mesmo suporte;
- θ_0 é o ponto inferior de Ω ;

 $\operatorname{Exp}(\overline{\theta})$

 $^{^2 \}propto$ - é um operador matemático binário que indica que o valor esquerdo é proporcional ao valor direito.

³Ronald Aylmer Fisher (1890-1962), biólogo e estatístico inglês.

- $I(\theta)$ é diferenciável;
- $\hat{\theta}_{EMV}$ é única solução de $I'(\theta) = 0$.

 $Ent\~ao$

$$\hat{\theta}_{EMV} \to \theta$$

Aula 6: Método dos momentos e suficiência

Definição 19 (Método dos momentos) Suponha que X_1, \ldots, X_n formam uma sequânica aleatória com distribuição conjunta $f_n(X_1, \ldots, X_n \mid \theta), \theta \in \Omega \subseteq \mathbb{R}^k$ e que o k-ésimo momento existe. Defina $\mu_j(\theta) = E[X_1^j \mid \theta]$ e suponha que $\mu: \Omega \to \mathbb{R}^k$ é biunívoca, de modo que sua inversa é

$$\theta = M(\mu_1(\theta), \dots, \mu_k(\theta)).$$

Dados os momentos amostrais $m_j := \frac{1}{n} \sum_{i=1}^n X_i^j, j = 1, \dots, k$ o **estimador de momentos** (EMM) de θ é

$$\hat{\theta}_{EMM} = M(m_1, \dots, m_k).$$

Teorema 7 (Consistência do EMM) Suponha que X_1, \ldots, X_n formam uma amostra aleatória com distribuição conjunta $f_n(X_1, \ldots, X_n \mid \theta), \theta \in \Omega \subseteq \mathbb{R}^k$ e que o k-ésimo momento existe. Suponha que a inversa M existe e é continua. Então o EMM é consistente para θ .

Definição 20 (Estatística suficiente) Seja X_1, \ldots, X_n uma amostra aleatória de uma distribuição indexada pelo parâmetro θ . Seja $T = r(X_1, \ldots, X_n)$ uma estatística. Dizemos que T é uma estatística suficiente para θ se e somente se

$$f(X_1, \dots, X_n \mid T = t, \theta) = f(X_1, \dots, X_n \mid T = t, \theta'), \forall \theta, \theta' \in \Omega, \tag{14}$$

isto é, se a distribuição condicional da amostra dado o valor da estatística não depende de θ .

Definição 21 (Aleatorização auxiliar) Suponha que T é suficiente para θ . O processo de simular X'_1, \ldots, X'_n dado que $T = r(X_1, \ldots, X_n)$ de modo que

$$f(X_1, \dots, X_n \mid \theta) = f(X_1', \dots, X_n' \mid \theta), \forall \theta \in \Omega, \tag{15}$$

é chamado de aleatorização auxiliar (em inglês, auxiliary randomisation).

Teorema 8 (Teorema de fatorização) Suponha que X_1, \ldots, X_n perfazem uma amostra aleatória com f.d.p./f.m.p. $f(x \mid \theta), \theta \in \Omega$. Uma estatística $T = r(X_1, \ldots, X_n)$ é suficiente para θ se, e somente se, para todo $x \in \mathcal{X}$ e $\theta \in \Omega$ existem u e v não negativos tal que

$$f_n(x \mid \theta) = u(x)v[r(x), \theta]. \tag{16}$$

Definição 22 (Suficiência conjunta) Dizemos que um conjunto de estatísticas $T = \{T_1, \ldots, T_n\}$ é suficiente (conjuntamente) se que a distribuição condicional conjunta de X_1, \ldots, X_n dado $T_1 = t_1, \ldots, T_n = t_n$ não dependentes de θ .

Aula 7: Suficiência conjunta e mínima, teorema de Rao-Blackwell

Definição 23 (Estatísticas de ordem) Seja $X = X_1, \dots, X_n$ uma amostra aleatória. Dizemos que Y_1, \dots, Y_n são estatísticas de ordem se Y_1 é o menor valor de X, Y_2 é o segundo menor valor e assim sucessivamente.

Teorema 9 (Estatísticas de ordem são suficientes conjuntas) $Seja X_1, \ldots, X_n$ uma amostra aleatória com f.d.p./f.m.p. $f(x \mid \theta)$. As estatísticas de ordem Y_1, \ldots, Y_n são suficientes conjuntas para θ .

Definição 24 (Suficiência mínima) Uma estatística T é dita mínima suficiente se T é suficiente e é função de qualquer outra estatística suficiente. Um vetor $T = \{T_1, \ldots, T_n\}$ é dito minimamente suficiente conjunto se é função de qualquer outro valor de estatísticas suficientes conjuntas.

Teorema 10 (EMV e Bayes são suficientes) Se a função de verossimilhança admite fatorização pelo Teorema 8, os estimadores de Bayes e de máxima verossimilhança são estatísticas minimamente suficientes.

Definição 25 (Notação conveniente) É conveniente definir que para $g: \mathcal{X}^n \to \mathbb{R}$, escrevemos

$$E_{\theta}[g] = \int_{\mathcal{X}} \cdots \int_{\mathcal{X}} g(\boldsymbol{x}) f_n(\boldsymbol{x} \mid \theta) dx_1 \cdots dx_n = \int_{\mathcal{X}} g(\boldsymbol{x}) f_n(\boldsymbol{x} \mid \theta) d\boldsymbol{x}$$
(17)

Definição 26 (Erro quadrático médio)

$$R(\theta, \delta) := E_{\theta} \left[\left\{ \delta(\mathbf{X}) - \theta \right\}^{2} \right]. \tag{18}$$

Definição 27 (Estimador condicionado)

$$\delta_0(\mathbf{T}) := E_\theta \left[\delta(\mathbf{X}) \mid \mathbf{T} \right]. \tag{19}$$

Teorema 11 (Teorema de Rao-Blackwell) Seja $\delta(X)$ um estimador, T uma estatística suficiente para θ e seja $\delta_0(T)$ como na Definição 27. Então vale que

$$R(\theta, \delta_0) < R(\theta, \delta)$$

Além disso, se $R(\theta, \delta) < \infty$ e $\delta(\mathbf{X})$ não é função de \mathbf{T} , vale a desiqualdade estrita:

$$R(\theta, \delta_0) < R(\theta, \delta)$$

Aula 8: Admissibilidade e viés

Definição 28 (Admissibilidade) Um estimador δ é dito inadmissível se existe outro estimador δ_0 tal que $R(\theta, \delta_0) \leq R(\theta, \delta), \forall \theta \in \Omega$ e existe $\theta' \in \Omega$ tal que $R(\theta', \delta_0) < R(\theta', \delta)$. Nesse caso, dizemos que δ_0 domina δ . O estimador δ_0 é admissível se (e somente se) não há nenhum estimador que o domine.

Definição 29 (Estimador não-viesado) Um estimador $\delta(\mathbf{X})$ de uma função $g(\theta)$ é dito não-viesado se $E_{\theta}[\delta(\mathbf{X})] = g(\theta)$, $\forall \theta \in \Omega$. Um estimador que não atende a essa condição é dito viesado. E o víes de δ é definido como $B_{\delta}(\theta) := E_{\theta}[\delta(\mathbf{X})] - g(\theta)$.

Teorema 12 (Estimador não-viesado da variância) Seja $X = \{X_1, \dots, X_n\}$ uma amostra aleatória, com $E[X_1] = m$ e $Var(X_1) = v < \infty$. Então

$$\delta_1(\mathbf{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

é um estimador não-viesado de v.

Aula 9: Eficiência

Definição 30 (Informação de Fisher) Seja X uma variável aleatória com f.d.p./f.m.p. $f(x \mid \theta)$, $\theta \in \Omega \subseteq \mathbb{R}$. Suponha que $f(x \mid \theta)$ é duas vezes diferenciável com respeito a θ . Defina $\lambda(x \mid \theta) = \log f(x \mid \theta)$ e

$$\lambda'(x \mid \theta) = \frac{\partial \lambda(x \mid \theta)}{\partial \theta} \quad e \quad \lambda''(x \mid \theta) = \frac{\partial^2 \lambda(x \mid \theta)}{\partial \theta^2}$$
 (20)

Definimos a informação de Fisher como

$$I(\theta) = E_{\theta} \left[\left\{ \lambda'(x \mid \theta) \right\}^{2} \right] \stackrel{(1)}{=} -E_{\theta} \left[\lambda''(x \mid \theta) \right] = Var_{\theta} \left(\lambda'(x \mid \theta) \right). \tag{21}$$

Teorema 13 (Informação de Fisher em uma amostra aleatória) $Seja~X = \{X_1, \dots, X_n\}$ uma amostra aleatória e seja $I_n = E_{\theta}[-\lambda_n''(X \mid \theta)]$ a informação de Fisher da amostra. Então

$$I_n(\theta) = nI(\theta)$$

Teorema 14 (Teorema de Cramér-Rao) Seja $X = \{X_1, \ldots, X_n\}$ uma amostra aleatória, onde f.d.p./f.m.p. tem as mesmas premissas da Definição 30. Supondo que T = r(X) é uma estatística com variância finita. Seja $m(\theta) = E_{\theta}(T)$ uma função diferenciável de θ . Então,

$$Var_{\theta}(T) \ge \frac{[m'(\theta)]^2}{nI(\theta)},$$
 (22)

com igualdade apenas se existem u e v tal que

$$T = u(\theta)\lambda'_n(\boldsymbol{X} \mid \theta) + v(\theta).$$

Definição 31 (Estimador eficiente) Um estimador $\delta(X)$ é dito eficiente de (sua esperança) $m(\theta)$ se

$$Var_{\theta}(\delta) = \frac{[m'(\theta)]^2}{nI(\theta)}.$$

Aula 10: Distribuição de uma estatística amostral e qui-quadrado

Definição 32 (Distribuição qui-quadrado) Dizemos que uma variável aleatória Y tem distribuição qui-quadrado com m graus de liberdade quando

$$f_Y(y) = \frac{1}{2^{m/2}\Gamma(m/2)} y^{m/2-1} e^{-y/2}, y > 0$$
(23)

Vemos que Y tem função geradora de momentos:

$$\psi(t) = \left(\frac{1}{1 - 2t}\right)^{m/2}, t < 1/2.$$

Teorema 15 (Soma de variáveis aleatórias qui-quadrado) $Se X_1, \ldots, X_n$ são variáveis aleatórias independentes com graus de liberdade m_i , então $W = \sum_{i=1}^n X_i$ tem distribuição qui-quadrado com graus de liberdade $m = \sum_{i=1}^n m_i$.

Teorema 16 (Distribuição do quadrado de uma variável aleatória Normal padrão) Se

$$X \sim Normal(0,1), Y = X^2$$

então, tem distribuição qui-quadrado com m=1.

Aula 11: Distribuição da média e variância amostrais

Teorema 17 (Independência da média e variância amostrais na Normal) $Seja X_1, \ldots, X_n$ uma amostra aleatória de uma distribuição Normal com parâmetros μ e σ^2 , \overline{X}_n e a variância amostral \overline{S}_n^2 , são independentes. Ademais, $\overline{X}_n \sim Normal (\mu, \sigma^2)$ e $\overline{S}_n^2 \sim Gama(\frac{n-1}{2}, \frac{n}{2n^2})$

Aula 12: Distribuição t de Student e intervalos de confiança

Definição 33 (A distribuição t de Student) $Tome, Y \sim Qui - quadrado(m) \ e \ Z \sim Normal(0,1) \ e \ defina a variável aleatória$

$$X = \frac{Z}{\sqrt{\frac{Y}{m}}}.$$

Dizemos que X tem distribuição t de Student com m graus de liberdade. E sabemos que

$$f_X = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{m\pi}\Gamma(\frac{m}{2})} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}, \quad x \in (-\infty, +\infty).$$

Teorema 18 (Distribuição amostral do estimador não-viesado da variância) Considere o estimador

$$\hat{\sigma}' = \sqrt{\frac{\Delta^2}{n-1}},$$

onde $\Delta^2 = \sum_{i=1}^n (X_i - \overline{X}_n)^2$. Então, vale que

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\hat{\sigma}'} \sim \text{Student}(n-1)$$

Teorema 19 (Intervalo de confiança) Seja $\mathbf{X} = \{X_1, \dots, X_n\}$ uma amostra aleatória, onde cada uma tem p.d.f. $f(x \mid \theta)$, e considere uma função real $g(\theta)$. Sejam $A(\mathbf{X})$ e $B(\mathbf{X})$ duas estatísticas de modo de valha

$$P(A(\mathbf{X}) < q(\theta) < B(\mathbf{X})) > \gamma. \tag{24}$$

Dizemos que $I(\mathbf{X}) = (A(\mathbf{X}, B(\mathbf{X}))$ é um intervalo de confiança de $100\gamma\%$ para $g(\theta)$. Se a designaldade for uma igualdade para todo $\theta \in \Omega$, dizemos que o intervalo é **exato**.

Aula 13: Intervalos de confiança e Quantidades Pivotais

Definição 34 (Intervalo de confiança unilateral) Seja $X = \{X_1, \dots, X_n\}$ uma amostra aleatória, onde cada uma tem p.d.f. $f(x \mid \theta)$, e considere uma função real $g(\theta)$. Seja A(X) uma estatística que

$$P(A(\mathbf{X}) < g(\theta)) \ge \gamma, \quad \forall \theta \in \Omega$$

dizemos que o intervalo aleatório $(A(\mathbf{X}), \infty)$ é chamado de intervalo de confiança **unilateral** de $100\gamma\%$ para $g(\theta)$ (ou ainda, de intervalo de confiança **inferior** de $100\gamma\%$ para $g(\theta)$). O intervalo $(-\infty, B(\mathbf{X}))$, com

$$P(g(\theta) < B(\mathbf{X})) \ge \gamma, \quad \forall \theta \in \Omega$$

é definido de forma análoga, e é chamado de intervalo de confiança **superior** de $100\gamma\%$ para $g(\theta)$. Se a desigualdade é uma igualdade para todo $\theta \in \Omega$, os intervalos são chamados **exatos**.

Definição 35 (Quantidade pivotal) Seja $X = \{X_1, \ldots, X_n\}$ uma amostra aleatória com p.d.f. $f(x \mid \theta)$. Seja $V(X, \theta)$ uma variável aleatória cuja distribuição é a mesma para todo $\theta \in \Omega$. Dizemos que $V(X, \theta)$ é uma quantidade pivotal.

Teorema 20 (Intervalo de confiança unilateral) Seja $\mathbf{X} = \{X_1, \dots, X_n\}$ uma amostra aleatória com p.d.f. $f(x \mid \theta)$. Suponha que existe uma quantidade pivotal V, com c.d.f. continua G. Assuma que existe $r(v, \mathbf{x})$ estritamente crescente em v para todo \mathbf{x} . Finalmente, tome $0 < \gamma < 1$ e $\gamma_1 < \gamma_2$ de modo que $\gamma_2 - \gamma_1 = \gamma$. Então as estatísticas

$$A(\mathbf{X}) = r(G^{-1}(\gamma_1), \mathbf{X}),$$

$$B(\mathbf{X}) = r(G^{-1}(\gamma_2), \mathbf{X}),$$

são os limites de um intervalo de confiança de $100\gamma\%$ para $g(\theta)$.

Aula 14: Testes de hipótese I

Definição 36 (Hipótese nula e hipótese alternativa) Considere o espaço de parâmetros Ω e defina $\Omega_0, \Omega_1 \subset \Omega$ de modo que $\Omega_0 \cup \Omega_1 = \Omega$ e $\Omega_0 \cap \Omega_1 = \emptyset$. Definimos

$$H_0 := \theta \in \Omega_0$$
,

$$H_1 := \theta \in \Omega_1$$
,

E dizemos que H_0 é a **hipótese nula** e H_1 é a **hipótese alternativa**. Se $\theta \in \Omega_1$, então dizemos que rejeitamos a hipótese nula. Por outro lado, se $\theta \in \Omega_0$, então dizemos que não rejeitamos ou falhamos em rejeitar H_0 .

Definição 37 (Hipótese simples e hipótese composta) Dizemos que uma hipótese H_i , é simples, se $\Omega_i = \{\theta_i\}$, isto é, se a partição correspondente é um único ponto. Uma hipótese é dita composta se não é simples.

Definição 38 (Hipótese unilateral e hipótese bilateral) Uma hipótese da forma $H_0: \theta \leq \theta_0$ ou $H_0: \theta \geq \theta_0$ é dita unilateral ("one-sided"), enquanto hipóteses da forma $H_0: \theta \neq \theta_0$ são ditas bilaterais ("two-sided").

Aula 15: Testes de hipótese II

Definição 39 (Região crítica) O conjunto

$$S_1 := \{ \boldsymbol{x} : |\overline{X}_n - \mu_0| \ge c \}$$

é chamado de região crítica do teste.

Definição 40 (Região de rejeição) Se $R \subseteq \mathbb{R}$ é tal que "rejeitamos H_0 se $T \in R$ ", então R é chamada uma região de rejeição para a estatística T e o teste associado.

Definição 41 (Função poder) Seja δ um procedimento de aceitação/rejeição como visto anteriormente. A **função poder** é definida como

$$\pi(\theta \mid \delta) := P(\mathbf{X} \in S_1 \mid \theta) = P(T \in R \mid \theta), \ \theta \in \Omega$$
 (25)

⁴c.d.f. - cumulative distribution function

Definição 42 (Tipos de erros) Tipos de erros que podem ser cometidos

Nome	$Erro\ cometido$	
Erro tipo I	Rejeitar H_0 quando ela é verdadeira .	
Erro tipo II	Falhar em rejeitar H_0 quando ela é falsa .	

Definição 43 (Tamanho/nível de um teste) Dizemos que um teste, δ , tem tamanho ou nível de significância $\alpha(\delta)$, com

$$\alpha(\delta) := \sup_{\theta \in \Omega_0} \pi(\theta \mid \delta).$$

Aula 16: Testes de hipótese III

Definição 44 (O p-valor) Para cada t, seja δ_t o teste que rejeita H_0 se $T \geq t$. Então, quando T = t, o p-valor vale

$$p(t) := \sup_{\theta \in \Omega_0} \pi(\theta \mid \delta_t) = \sup_{\theta \in \Omega_0} P(T \ge t \mid \theta)$$
(26)

ou seja, o **p-valor** é o tamanho do teste δ_t .

Aula 17: Testes e conjuntos de confiança

Definição 45 (Intervalos de confiança e testes são equivalentes) Suponha que dispomos de dados $X = \{X_1, \ldots, X_n\}$ com f.d.p. comum $f(x \mid \theta)$, e estamos interessados em testar as hipóteses:

$$H_0: g(\theta) = g_0,$$

$$H_1: g(\theta) \neq g_0,$$

de modo que existe um teste δ_{g_0} com nível α_0 destas hipóteses. Para cada $\mathbf{X} = \mathbf{x}$, defina

$$w(\mathbf{x}) = \{g_0 : \delta_{g_0} \text{ n\~ao rejeita } H_0 \text{ dado que } \mathbf{X} = \mathbf{x}\}.$$

Fazendo o nível de confiança do intervalo $\gamma = 1 - \alpha_0$, temos

$$P(g(\theta_0) \in w(\mathbf{X}) \mid \theta = \theta_0) \ge \gamma, \ \forall \theta_0 \in \Omega.$$

Definição 46 (Conjunto de confiança) Se um conjunto aleatório w(X) satisfaz

$$P(q(\theta_0) \in w(\mathbf{X}) \mid \theta = \theta_0) > \gamma$$

para todo $\theta_0 \in \Omega$, então chamamos w(X) de um conjunto de confiança para $g(\theta)$.

Teorema 21 (Testando hipóteses a partir de conjuntos de confiança) Suponha que dispomos de dados $X = \{X_1, \ldots, X_n\}$ com f.d.p. comum $f(x \mid \theta)$ e que w(X) é um conjunto de confiança para uma função de interesse $g(\theta)$. Então para todo valor g_0 assumido por $g(\theta)$ existe um teste δ_{g_0} , de nível α_0 que rejeita $H_0: g(\theta) = g_0$ se e somente se $g(\theta_0) = g_0 \notin w(X)$.

Teorema 22 (Teste de razão de verossimilhanças) A estatística

$$\wedge(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_0 f_n(\mathbf{x}|\theta)}}{\sup_{\theta \in \Omega f_n(\mathbf{x}|\theta)}}$$

é chamada um estatística de razão de verossimilhanças. Um teste de razão de verossimilhanças, δ_k , é um teste que rejeita H_0 se $\wedge(\mathbf{x}) \leq k$ para uma constante k.

Teorema 23 (Teorema de Wilks) Suponha que temos um espaço de parâmetros com k coordenadas, $\theta = (\theta_1, \dots, \theta_n)$ e desejamos testar a hipótese (simples) da forma

$$H_0: \theta_j = \theta_0^j, \ j = 1, \dots, k,$$

$$H_1: \theta_j \neq \theta_0^j, \ j = 1, \dots, k.$$

Então, sob condições de regularidade, temos que, à medida que $n \to \infty$,

$$-2\log \wedge (\boldsymbol{x}) \stackrel{\mathrm{d}}{\to} X^2(k)$$

Aula 18: Teste t I

Definição 47 (Teste não viesado) Suponha que desejamos testar a hipótese

$$H_0: \theta \in \Omega_0,$$

$$H_1: \theta \in \Omega_1$$
,

através do teste δ . Dizemos que δ é não-viesado se (e somente se) para $\theta \in \Omega_0$ e $\theta' \in \Omega_1$, vale

$$\pi(\theta \mid \delta) \le \pi(\theta' \mid \delta),$$

ou seja, se a função poder é pelo menos tão grande no espaço onde H_0 é falsa (Ω_1) quando no espaço em que H_0 é verdadeira (Ω_0) .

Definição 48 (Teste t) Um teste δ_c que rejeita H_0 se $U \ge c$ (equiv. $U \le c$), com $c = T^{-1}(1 - \alpha_0; n - 1)$ é chamado de um **teste t** (unicaudal) de tamanho α_0 .

Teorema 24 (Propriedades do teste t) Suponha que δ_c rejeita H_0 se $U \geq c$. Então

- $\mu = \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) = \alpha_0$
- $\mu < \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) < \alpha_0$
- $\mu > \mu_0 \Longrightarrow \pi(\mu, \sigma^2 \mid \delta_c) > \alpha_0$
- $\lim_{\mu \to -\infty} \pi(\mu, \sigma^2 \mid \delta_c) = 0$
- $\lim_{\mu \to +\infty} \pi(\mu, \sigma^2 \mid \delta_c) = 1$
- δ_c é não-viesado e tem tamanho α_0 .

Teorema 25 (P-valor para um teste t unicaudal) Suponha que observarmos U=u e seja $T(\cdot .n-1)$ a f.d.a. de uma distribuição t de Student com n - 1 graus de liberdade. Para a hipótese

$$H_0: \mu \geq \mu_0$$
,

$$H_1: \mu < \mu_0$$

o p-valor vale T(u; n-1), enquanto para a hipótese

$$H_0: \mu \leq \mu_0,$$

$$H_1: \mu > \mu_0$$

o p-valor vale 1 - T(u; n - 1).

Aula 19: Teste t II

Teorema 26 (Teste pareado) Sejam amostras X e Y (antes e depois), tais que $X_i \sim \text{Normal}(\mu_1, \sigma^2)$ e $Y_i \sim \mathbb{N} \rtimes \mathbb{N} \gg \Im \ll (\mu_2, \sigma^2)$, a hipótese

$$H_0: \mu_1 \le \mu_2$$

$$H_1: \mu_1 > \mu_2$$

Pode ser modelada com a variável $Z_i = X_i - Y_i$ $(Z_i \sim \text{Normal}(\mu_Z = \mu_1 - \mu_2, 2\sigma^2))$, então podemos testar hipóteses sobre μ_Z a partir de \mathbf{Z}

$$H_0: \mu_Z \leq 0$$

$$H_1: \mu_Z > 0$$

Teorema 27 (Teste t para duas amostras) Considere $X = \{X_1, \ldots, X_m\}$ e $Y = \{Y_1, \ldots, Y_n\}$, queremos estudar a diferença das médias. Modelando em distribuição normal $X_i \sim \text{Normal}(\mu_1, \sigma_1^2)$, $i = 1, \ldots, m$ e $Y_j \sim \text{Normal}(\mu_2, \sigma_2^2)$, $j = 1, \ldots, n$. Sob a premissa de homogeneidade $\sigma_1^2 = \sigma_2^2 = \sigma^2$, podemos testar a hipótese

$$H_0: \mu_1 \leq \mu_2$$

$$H_1: \mu_1 > \mu_2$$

computando a estatística

$$U = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{1}{n})(S_X^2 + S_Y^2)}}$$

onde \overline{X}_m e \overline{X}_m são as médias e S_X^2 e S_X^2 são a soma das variâncias.

Teorema 28 (Relaxando a premissa de homogeneidade) Do teorema acima, podemos relaxar a premissa de igualdade das variâncias assumindo que $\sigma_2^2 = k\sigma_1^2$, então a estatística teste vale

$$U = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{k}{n})(S_X^2 + \frac{S_Y^2}{n})}}$$

Aula 20: Teste f

Definição 49 (A distribuição F) Sejam $Y \sim \text{Qui} - \text{quadrado}(m)$ e $W \sim \text{Qui} - \text{quadrado}(n)$. Então

$$X = \frac{Y/m}{W/n},$$

tem distribuição F com m e n graus de liberdade, com f.d.p.

$$f_X(x) = \frac{\Gamma(\frac{m+n}{2})m^{m/2}n^{n/2}}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} \cdot \frac{x^{m/2-1}}{(mx+n)^{(m+n)/2}}, \ x > 0,$$

Teorema 29 (Propriedades da distribuição F) 1. Se $X \sim F(m,n)$, então $\frac{1}{X} \sim F(m,n)$;

2. Se
$$Y \sim \text{Student}(n)$$
, então $Y^2 \sim F(1, n)$.

Teorema 30 (Igualdade de duas variâncias) Suponha $X_i \sim \text{Normal}(\mu_1, \sigma_1^2), i = 1, \dots, m$ e $Y_j \sim \text{Normal}(\mu_2, \sigma_2^2), j = 1, \dots, n$. Queremos testar

$$H_0: \sigma_1^2 \le \sigma_2^2$$

$$H_1: \sigma_1^2 > \sigma_2^2$$

Para isso, vamos computar a estatística de teste

$$V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$$

onde
$$S_X^2 = \sum_{i=1}^m (X_i - \overline{X}_m)^2 \ e \ S_Y^2 = \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

Definição 50 (O teste F) O teste F de homogeneidade (igualdade de variâncias) é o teste δ_c que rejeita H_0 de $V \geq c$, para uma constante positiva c.

Teorema 31 (A distribuição de V) Seja $V = \frac{S_X^2/(m-1)}{S_Y^2/(n-1)}$, então:

$$\frac{\sigma_2^2}{\sigma_1^2} V \sim F(m-1, n-1).$$

Além disso, se $\sigma_1^2 = \sigma_2^2$, $V \sim F(m-1, n-1)$.