MEE5114 Advanced Control for Robotics

Lecture 9: Dynamics of Open Chains

Prof. Wei Zhang

CLEAR Lab

Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

Rotation version
$$S - RA = WA \times RA$$
, $[RW] = R[W]R^T$
Twist version $S - VA = VAX^0XA = [VAX]^0XA$, $[XX] = X[VX]X^T$

Introduction

- Spatial forme Chrench)

BF =
$$\begin{bmatrix} Nob \\ Bf \end{bmatrix}$$
, $AF = A \times BF$
 $A \times B = \begin{bmatrix} A \times BF \\ B \times A \end{bmatrix}$

- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Spatial Momentum:

$$C I = \begin{bmatrix} c \overline{I} & 0 \\ 0 & mI^{3x3} \end{bmatrix}$$

From Single Rigid Body to Open Chains

Recall Newton-Euler Equation for a single rigid body:

$$\mathcal{F} = \underbrace{\frac{d}{dt}h}_{\text{Coordinate free}} + \underbrace{\mathcal{V} \times^* \mathcal{I} \mathcal{V}}_{\text{Coordinate free}}$$

Open chains consist of multiple rigid links connected through joints

Dynamics of adjacent links are coupled.

This lecture: model multi-body dynamics subject to joint constraints.

Preview of Open-Chain Dynamics

Equations of Motion are a set of 2nd-order differential equations:

$$\begin{split} \tau &= M(\theta) \ddot{\theta} + \underbrace{\tilde{c}(\theta,\dot{\theta})}_{} \\ &+ \mathit{ClO}(\dot{\theta}) + \mathit{GlO}() + \gamma^{\mathsf{T}} \mathbf{fext} + \cdots \end{split}$$

- $\theta \in \mathbb{R}^n$: vector of joint variables; $\tau \in \mathbb{R}^n$: vector of joint forces/torques
- $M(\theta) \in \mathbb{R}^{n \times n}$: mass matrix
- $\tilde{c}(\theta,\dot{\theta}) \in \mathbb{R}^n$: forces that lump together centripetal, Coriolis, gravity, friction terms, and torques induced by external forces. These terms depend on θ and/or θ
- | Forward dynamics: | Determine acceleration $\ddot{\theta}$ given the state $(\theta, \dot{\theta})$ and the joint forces/torques: $\ddot{\theta} \leftarrow \mathsf{FD}(\tau, \theta, \dot{\theta}, \mathcal{F}_{ext})$
- Inverse dynamics: Finding torques/forces given state $(\theta,\dot{\theta})$ and desired Given desired motion $(\theta, \dot{\theta}, \dot{\theta})$ $(\theta, \dot{\theta}, \dot{\theta$ acceleration $\hat{\theta}$

Lagrangian vs. Newton-Euler Methods

• There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method and Newton-Euler method

$\sqrt{\mathsf{Lagrangian}}$ Formulation

- Energy-based method
- Dynamic equations in closed form
- Often used for study of dynamic properties and analysis of control methods

• We focus on Newton-Euler Formulation

\cup Newton-Euler Formulation \mathcal{M}

- Balance of forces/torques
- Dynamic equations in numeric/recursive form
- Often used for numerical solution of forward/inverse dynamics

Featherstoners book Mensmy's book

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

RNEA: Notations

- Number bodies: 1 to N

 - Parent: p(i) eg. p(3)=2, p(0)=2- Children: c(i) eg. $c(1)=\{3,4\}$, c(1)=2
- Joint i connects p(i) to i

- Frame {i} attached to body i at the joint frame {4} mores with the body {4}
- S_i : Spatial velocity (screw axis) of joint i e.g. $\psi_{SV} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$ constant
- \mathcal{V}_i and \mathcal{A}_i : spatial velocity and acceleration of body i
- \mathcal{F}_i : force (wrench) onto body i from body p(i)
- Note: By default, all vectors (S_i, V_i, F_i) are expressed in local frame $\{i\}$

RNEA: Velocity and Accel. Propagation (Forward Pass)

Goal: Given joint velocity $\dot{\theta}$ and acceleration $\ddot{\theta}$, compute the body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i

$$\begin{cases} \text{Velocity Propagation:} & {}^{i}\mathcal{V}_{i} = \left({}^{i}X_{p(i)}\right)^{p(i)}\mathcal{V}_{p(i)} + {}^{i}\mathcal{S}_{i}\,\dot{\theta}_{i} \\ \text{Accel Propagation:} & {}^{i}\mathcal{A}_{i} = \left({}^{i}X_{p(i)}\right)^{p(i)}\mathcal{A}_{p(i)} + \underbrace{{}^{i}\mathcal{V}_{i}} \times \underline{{}^{i}\mathcal{S}_{i}\dot{\theta}_{i}} + \underline{{}^{i}\mathcal{S}_{i}\ddot{\theta}_{i}} \\ \mathcal{I} = \text{ID}(9,\dot{\theta},\dot{\theta},\dot{\theta},\mathcal{F}\text{ext}) & \text{Velocity:} \quad \mathcal{V}_{i} = \mathcal{S}_{i}\dot{\theta}_{i}, \quad \mathcal{V}_{2} = \mathcal{V}_{i}\dot{\theta}_{i} + \mathcal{V}_{2}\dot{\theta}_{i} \\ \text{wolk with local Coordinates} & \mathcal{V}_{i} = \mathcal{S}_{i}\dot{\theta}_{i} + \mathcal{S}_{2}\dot{\theta}_{i} \\ \mathcal{V}_{1} = \mathcal{V}_{2}\dot{\theta}_{i} + \mathcal{V}_{2}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{1} = \mathcal{V}_{2}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{4}\dot{\theta}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{4}\dot{\theta}_{5}\dot{\theta}_{i} + \mathcal{V}_{3}\dot{\theta}_{i} \\ \mathcal{V}_{5}\dot{\theta}_{5}\dot{\theta}_{i} + \mathcal{V}_{5}\dot{\theta}_{i} \\ \mathcal{V}_{6}\dot{\theta}_{5}\dot{\theta}_{5}\dot{\theta}_{i} + \mathcal{V}_{6}\dot{\theta}_{i} \\ \mathcal{V}_{7}\dot{\theta}_{5}\dot{\theta}_{5}\dot{\theta}_{i} \\ \mathcal{V}_{7}\dot{\theta}_{5}\dot{\theta}_{$$

Acceleration:
$$A_2 = \hat{V}_2 = \hat{V}_1 + \hat{V}_{2/1} = A_1 + A_{2/1} = In coordinate ^2A_2 = ^2X_1 A_1 + ^2 [at (sr\hat{o})]$$

Coordinate $A_2 = \hat{V}_2 = \hat{V}_1 + \hat{V}_2 = \hat{V}_1 + \hat{V}_2 = \hat{V}_1 + \hat{V}_2 = \hat{V}$

RNEA: Velocity and Accel. Propagation (Forward Pass)

Goal: Given joint velocity $\dot{\theta}$ and acceleration $\ddot{\theta}$, compute the body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i

$$\begin{cases} \text{Velocity Propagation:} & {}^{i}\mathcal{V}_{i} = \left({}^{i}X_{p(i)}\right) {}^{p(i)}\mathcal{V}_{p(i)} + {}^{i}\mathcal{S}_{i}\,\dot{\theta}_{i} \\ \text{Accel Propagation:} & {}^{i}\mathcal{A}_{i} = \left({}^{i}X_{p(i)}\right) {}^{p(i)}\mathcal{A}_{p(i)} + {}^{i}\mathcal{V}_{i} \times {}^{i}\mathcal{S}_{i}\dot{\theta}_{i} + {}^{i}\mathcal{S}_{i}\ddot{\theta}_{i} \end{cases}$$

RNEA: Force Propagation (Backward Pass)

Goal: Given body spatial velocity V_i and spatial acceleration A_i , compute the joint wrench F_i and the corresponding torque $\tau_i = S_i^T F_i$

$$\begin{cases} \mathcal{F}_{i} &= \mathcal{I}_{i} \mathcal{A}_{i} + \mathcal{V}_{i} \times^{*} \mathcal{I}_{i} \mathcal{V}_{i} + \sum_{j \in c(i)} \mathcal{F}_{j} \\ \tau_{i} &= \mathcal{S}_{i}^{T} \mathcal{F}_{i} \end{cases}$$

$$\mathcal{B}ody \mathcal{Y} = F\mathcal{Y} + F\mathcal{Y} = \mathcal{I}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}} + \mathcal{Y}_{\mathcal{Y}} \times^{*} \mathcal{I}_{\mathcal{Y}} \mathcal{Y}$$

$$\mathcal{F}_{\mathcal{Y}} = \mathcal{I}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}} + \mathcal{Y}_{\mathcal{Y}} \times^{*} \mathcal{I}_{\mathcal{Y}} \mathcal{Y} - \mathcal{F}_{\mathcal{Y}} \mathcal{Y}$$

$$\mathcal{A}_{\mathcal{Y}} = \mathcal{A}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}} = \mathcal{A}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}} = \mathcal{A}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}} = \mathcal{A}_{\mathcal{Y}} \mathcal{A}_{\mathcal{Y}}$$

Recursive Newton-Euler Algorithm

 $au \leftarrow \mathsf{RNEA}(\theta,\dot{\theta},\ddot{\theta},\mathcal{F}_{ext};\mathsf{Model})$ Initialize $\mathcal{V}_0 = 0$, $\mathcal{A}_0 = -\mathcal{A}_0$

without gravity true

modify: D to

Fi= IiAi + Vix* IiVi

- Ti: V. &

• Forward pass:

For
$$i=1$$
 to N

$$V_i = \sum_{i=1}^{n} X_{pu} \mathcal{O}_{p(i)} + S_i \dot{\Theta}_i$$

$$A_i = \sum_{i=1}^{n} X_{pu} \mathcal{O}_{p(i)} + S_i \dot{\Theta}_i + \mathcal{O}_i \times S_i \dot{\Theta}_i$$

$$F_i = I_i A_i + J_i \times^* \mathcal{I}_i \mathcal{O}_i$$
when i the body

Backward pass:

加热的理儿的

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Structures in Dynamic Equation (1/3)

• Jacobian of each link (body): J_1, \ldots, J_4

Ji: denote the Jawham of body (Link)
$$\hat{c}$$
, i.e. $Vi = Ji \hat{\theta} = [Ji] Jiz = Ji\psi$

ey. $O_1 = J_1\hat{\theta} = [S_1, 0, 0, 0] \begin{bmatrix} \hat{\theta}_1 \\ \hat{\theta}_2 \\ \hat{\theta}_3 \end{bmatrix}$

$$\int_{z=1}^{z} i \theta = \left[S_{1} S_{2} O_{0} \right] \left[\begin{array}{c} \theta_{1} \\ \vdots \\ \theta_{1} \end{array} \right] \\
I_{n} S_{1}^{z}; \quad \partial_{z}^{z} = \left[\begin{array}{c} 2\chi_{1}S_{1}; \quad 2S_{1}; \quad 0 \\ 0 \end{array} \right] \stackrel{\partial}{\theta}$$

Structures in Dynamic Equation (2/3)

ullet Torque required to generate a "force" \mathcal{F}_4 to body 4

Structures in Dynamic Equation (3/3)

• Overall torque expression:

See the two-body example

O Forward pass
$$0_1 = S_10_1$$
, $0_2 = T_2 \times 1S_1 : S_2 = S$

O Backward pass,
$$F_{1}=I_{1}A_{1}+U_{1}X^{*}I_{1}U_{1}+F_{2}$$

$$=I_{1}A_{1}+U_{1}X^{*}I_{1}U_{1}+I_{1}X^{*}F_{2}$$

$$=I_{1}A_{1}+U_{1}X^{*}I_{1}U_{1}+I_{1}X^{*}F_{2}$$

$$=I_{1}A_{1}+U_{1}X^{*}I_{1}U_{1}+I_{2}X^{*}I_{1}U_{2}+I_{2}X^{*}I_{2}U_{2}-2X^{*}I_{2}U_{2}-2X^{*}I_{2}U_{2}$$

$$=I_{1}A_{1}+U_{1}X^{*}I_{1}U_{1}+I_{2}X^{*}I_{2}U_{2}+I_{2}X^{*}I_{2}U_{2}-2X^{*}I_{2$$

Structures in Dynamic Equation (3/3)

• Overall torque expression: () Si (I,AI+V, X*I,V,)
torque @ joint | due to motion of body I

2) torque at joint | che to motion of body 2

- ~ - external force of body 2 3 touche

 $T = \begin{bmatrix} 3 & (2) &$

$$= \begin{bmatrix} S_{1} \\ O \end{bmatrix} (J_{1}A_{1}+\cdots) + \begin{bmatrix} (X_{1}S_{1})^{T} \\ S_{2} \end{bmatrix} (J_{2}A_{1}+\cdots) + \begin{bmatrix} (X_{1}S_{1})^{T} \\ S_{2} \end{bmatrix} (J_{2}A_{1}+\cdots) + 2J_{2} \begin{bmatrix} J_{2}A_{1}+\cdots \\ J_{2} \end{bmatrix} (J_{2}A_{1}+\cdots) + 2J_{2} \begin{bmatrix} J_{2}A_{2}+\cdots \\ J_{2} \end{bmatrix} (J_{2}A_{2}+\cdots) + J_{2} \begin{bmatrix} J_{2}A_{2}+\cdots \\ J_{2}A_{2}+\cdots \\ J_{2} \end{bmatrix} (J_{2}A_{2}+\cdots) + J_{2} \begin{bmatrix} J_{2}A_{2}+\cdots \\ J_{2}+\cdots \\ J_{2}A_{2}+\cdots \\ J_{2}+\cdots \\ J_$$

Derivation of Overall Dynamics Equation

Ti=ITi

· Overmall: in serveral with N-links/Toints

li0 Gbody i Jaeobiom Vi=Jiõ

or other externer forces

Advanced Control for Robotics

Properties of Dynamics Model of Multi-body Systems

Properties of Dynamics Model of Multi-body Systems

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Forward Dynamics Problem

$$\frac{2}{\sqrt{given}} = M(\theta)\ddot{\theta} + c(\theta,\dot{\theta})\dot{\theta} + \tau_g + J^T(\theta)\mathcal{F}_{ext}$$

$$\frac{2}{\sqrt{given}} = \frac{1}{\sqrt{given}} + \frac{1}{\sqrt{given}} = \frac{1}{\sqrt{given}} =$$

- Inverse dynamics: $\tau \leftarrow \mathsf{RNEA}(\theta, \dot{\theta}, \ddot{\theta}, \mathcal{F}_{ext})$ O(N) complexity
 - RNEA can work directly with a given URDF model (kinematic tree + joint model + dynamic parameters). It does not require explicit formula for $M(\theta), \tilde{c}(\theta, \dot{\theta})$
- Forward dynamics: Given $(\theta, \dot{\theta})$, τ , \mathcal{F}_{ext} , find $\ddot{\theta}$
 - 1. Calculate $\tilde{c}(\theta,\dot{\theta}) = (\theta,\dot{\theta})\tilde{\theta} + (\theta,\dot{\theta$
 - 2. Calculate mass matrix $M(\theta)$

3. Solve
$$M\ddot{\theta} = \tau - \tilde{c}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \Rightarrow \dot{\theta} = M^{\dagger}(\tau - \tilde{c})$$

$$\Rightarrow \text{this is not the most efficient way to}$$

$$find \ \dot{\theta}$$

Calculations of \tilde{c} and M

Denote our inverse dynamics algorithm: $\tau = \text{RNEA}(\theta, \dot{\theta}, \dot{\theta}, \ddot{\theta}, \mathcal{F}_{ext}) = \mathcal{M}\dot{\theta} + \widehat{\mathcal{C}}$ Calculation of \tilde{c} : obviously, $\tau = \tilde{c}(\theta, \dot{\theta})$ if $\ddot{\theta} = 0$. Therefore, \tilde{c} can be computed via: $\underline{\tilde{c}(\theta, \dot{\theta})} = \text{RNEA}(\theta, \dot{\theta}, 0, \mathcal{F}_{ext}) = c(\theta, \dot{\theta})\dot{\theta} + cg + \mathcal{F}_{ext}$

 $\begin{array}{l} \textbf{Calculation of M: Note that $\tilde{c}(\theta,\dot{\theta})=c(\theta,\dot{\theta})\dot{\theta}-\underline{\tau_g}-J^T(\theta)\mathcal{F}_{ext}$.} \\ \textbf{-Set $\underline{g}=0$, $\underline{\mathcal{F}_{ext}=0}$, and $\dot{\theta}=0$, then $\tilde{c}(\theta,\dot{\theta})=0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ $\neq 0$ $\hat{\zeta}$ $\Rightarrow 0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ $\neq 0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ $\neq 0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ $\Rightarrow 0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ $\Rightarrow 0$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot{\theta}}$ \Rightarrow $\underline{\overline{\tau}=M(\theta)\ddot$

$$\underline{M_{:,j}(\theta)} = \mathsf{RNEA}(\theta,0,\ddot{\theta}^0_j,0)$$
 $\dot{\mathcal{Y}}^{\circ} = \left(\begin{array}{c} 0 \\ 0 \\ \vdots \end{array}\right)$ Ith element

where $\ddot{\theta}_{j}^{0}$ is a vector with all zeros except for a 1 at the jth entry. $\ddot{\theta}_{j}^{0} = \begin{bmatrix} \dot{\theta} \\ \dot{\theta} \end{bmatrix} \quad \ddot{\theta}_{j}^{0} = \begin{bmatrix} \dot{\theta} \\ \dot{\theta} \end{bmatrix}$

ullet A more efficient algorithm for computing M is the Composite-Rigid-Body Algorithm (CRBA). Details can be found in Featherstone's book.

Forward Dynamics Algorithm

- Now assume we have $\theta,\dot{\theta},\tau,M(\theta),\tilde{c}(\theta,\dot{\theta})$, then we can immediately compute $\ddot{\theta}$ as $\ddot{\theta} = M^{-1}(\theta) \left[\tau - \tilde{c}(\theta, \dot{\theta}) \right]$ $\ddot{\theta} = FD(7.8, \dot{\theta}, \dot{\theta}, \dot{\theta})$
- This provides a 2nd-order differential equation in \mathbb{R}^n , we can easily simulate the joint trajectory over any time period (under given ICs θ^o and $\dot{\theta}^o$)

- RNEA:
$$O(N)$$

-
$$\tilde{c} = RNEA(\theta, \dot{\theta}, 0, \mathcal{F}_{ext})$$
: $O(N)$

-
$$M(\theta)$$
: $O(N^2)$

-
$$M^{-1}(\theta)$$
: $O(N^3)$

More Discussions

•
$$T = \left(\frac{2}{2} \left(\int_{1}^{1} \mathcal{I}_{i} J_{i} \right) \right) \hat{b} + \frac{2}{2} \int_{1}^{1} \left(I_{i} J_{i} + I_{i} V_{i} \times J_{i} + V_{i} \times \mathcal{I}_{i} \right) \hat{b}$$

- MID): mass matrix MID] = MID), MID) is also positive semi-definite
- There are many equivalent ways to define C(0,0), they are lead to the same product C(0,0)

Inertial matrix symmetric / positive semiceefinite

More Discussions

· cloib) defined using Piny

• M(Q), C(Q), b), by an depend on I; linearly

$$M(aI_{i}^{(1)}+\beta I_{i}^{(2)})=2M(I_{i}^{(1)})+\beta M(I_{i}^{(2)})$$