Law And Economics

Contract Law II

Francisco Poggi University of Mannheim - Fall 2021

Efficient Breach

When is efficient to breach an enforceable contract?

- Unforeseen changes can render the contract inefficient.
- Ideal contract law should generate incentives for parties to breach contracts only when it is efficient to do so.

Reasons for Efficient Breach

- · Reasons for efficient breach:
 - ${}^{\raisebox{3.5pt}{\text{\circle*{1.5}}}}$ Realized high cost of promise keeping (Hold-up model from before)
 - · Realized low value.
 - · Third party that values more.
 - Third party that can produce cheaper.

Efficient Breach Model

The Efficient Breach Model

- In this model, we focus on uncertainty about costs.
 - Value for Buyer V (deterministic).
 - * Cost for Seller C (random variable).

- · Timing:
 - Parties contract: decide a price P.
 - * Reliance: Buyer makes investment R that is not salvageable.
 - C is realized and publicly observable.
 - Seller decides if goes ahead with production (a = 1) or not (a = 0).

Goal

• Let ψ be the damages that the seller must pay in the event of breach.

Seller:
$$a(P-C)-(1-a)\psi$$

Buyer:
$$a(V-P) + (1-a)\psi - R$$

Society:
$$a(V-C)-R$$

- Goal: determine the value of ψ that induces the seller to breach efficiently.
 - Only efficient to breach when C > V.
- What can ψ depend on? C, P.

Seller's Decision

• The seller will choose to breach (a = 0) when:

Trivial Implementation

• The seller is "killed" if she breaches inefficiently.

$$\psi = \left\{ \begin{array}{cc} \infty & C < V \\ 0 & C \ge V. \end{array} \right.$$

- · Efficiency is achieved!
- ${}^{\centerdot}$ Issue: Depends on C.
 - Might be unobservable.
 - ${}^{\raisebox{3.5pt}{\text{\circle*{1.5}}}}$ Seller might inflate costs.

Damages in Practice

• Expectation damages: ψ leaves the promisee as well of as if the contract had been performed.

$$\underbrace{V - P - R}_{\text{contract performed}} = \underbrace{\psi - R}_{\text{breach}} \Rightarrow \psi^{ED} = V - P$$

• Reliance damages: ψ that leaves the promise as well of as if contract was never made.

$$\underbrace{\psi - R}_{breach} = \underbrace{0}_{nocontract} \qquad \Rightarrow \qquad \psi^R = R$$

No Damages

$$\psi^{ND} = 0.$$

• Seller chooses breach (a = 0) iff

$$C > P + \psi^{ND}$$
 \Rightarrow $C > P$

- Efficiency is, in general, not achieved.
 - $P \leq V$. Why?
 - Whenever breach is efficient, the seller will breach.
 - ${}^{\centerdot}$ Seller does breach in efficiently often.

Expectation Damages

$$\psi^{ED} = V - P.$$

• Seller chooses breach (a = 0) iff

$$C > P + \psi^{ED} \qquad \Rightarrow \qquad C > P + V - P = V$$

- · Efficiency is achieved!
- $^{\bullet}$ Rule does not depend on C.

Reliance Damages

$$\psi^R = R.$$

• Seller chooses breach (a = 0) iff

$$C > P + \psi^R \qquad \Rightarrow \qquad C > P + R$$

- · Efficiency is, in general, not achieved.
- $P + R \leq V$. Why?
- · Whenever breach is efficient, the seller will breach.
- ${}^{\textstyle \bullet}$ The Seller does breach inefficiently often (although less than with no damages).
- * Rule does not depend on C or V.

Incentives for Efficient Reliance

- · Value V depends on the level of Reliance.
 - Value for Buyer V(R) (deterministic concave function).
 - Cost for Seller C (random variable cdf F).

- Timing:
 - Parties contract: decide a price P.
 - * Reliance: Buyer makes investment R that is not salvageable.
 - C is realized and publicly observable.
 - Seller decides if goes ahead with production (a = 1) or not (a = 0).

Buyer's Decision

• If performance was certain:

$$\max_{R} \quad V(R) - P - R$$

- V'(R) = 1.
- ullet When perfomance is uncertain (Probability p), the Buyer's investment is lower.

$$\max_{\hat{R}} \quad p[V(R) - P] - R$$

•
$$V'(R) = 1/p$$
.

Efficient Reliance

• Efficient decisions:

$$a^* = 1_{\{C \le V\}}$$
 $R^* = \frac{1}{F(V)}$

· Would Expectation Damages achieve efficiency in this case?

(Unlimited) Expectation Damages

$$\psi^{ED} = V(R) - P$$

• Assume efficient breach, so p = F(V). Buyer's decision:

$$\max_{R} \quad F(V)[V(R) - P] + (1 - F(V))[\underbrace{\psi^{ED}}_{V(R) - P}] - R$$

- Solution: \hat{R} .
- · There is over-investment in reliance.

Limited Expectation Damages

$$\psi^{LED} = V(R^*) - P$$

• Again, we assume efficient breach, so p = F(V). Buyer's decision:

$$\max_{R} F(V)[V(R) - P] + (1 - F(V))[\underbrace{\psi^{LED}}_{V(R^*) - P}] - R$$

- · It achieves efficiency!
 - It does not depend on R.
 - It does depend on R^* , so implementation requires knowing something about distribution of costs F(V).

Hard Information Model

- · Model
 - · Players: 1 seller and multiple potential buyers.
 - Quality of the good $\theta \in \{0, 1, 2, ..., 10\}$
 - Uniform distribution. $E[\theta] = 5$
 - · Seller knows the quality of the good.
- · Timing
 - · Seller discloses information about the good.
 - Buyers observe disclosure and simoultanoeuly offer a price (Bertrand competition). Let p be the highest one.
 - · Final payoffs are:

Buyer: $\theta - p$

Seller: p

Full Disclosure Theorem

- Disclosure technology: Report $r \in \{\emptyset, \theta\}$
 - This is 'hard information'. If r=4 then the buyers know that $\theta=4$.
 - With $r = \emptyset$ not so clear.

• Equilibrium price: $p(r) = E[\theta|r]$

$$p(r) = r$$
 for $r \neq \emptyset$.

• What about $p(\emptyset)$?

 17

Full Disclosure Theorem

- Suppose that $p(\emptyset) > 0$. Then
 - All $\theta > p(\emptyset)$ disclose.
 - All $\theta < p(\emptyset)$ do not disclose.
- · But then,

$$E[\theta|\emptyset] < p(\emptyset)$$

• It cannot be an equilibrium. It must be that $p(\emptyset) = 0$.

Intuition

- Start from $\theta = 10$. He prefers to disclose (since $E[\theta|r = \emptyset] \leq 10$.
- So if a seller does not disclose, his quality must be at most 9.
- Then $E[\theta|r=\emptyset] \leq 9$.
- Consider $\theta = 9$. He prefers to disclose.
- · and so on...
- This is known as unraveling.
 - There is full disclosure of the private information.
 - $(\theta = 0)$ is indifferent between revealing or not, but he is identified independently of that.)
 - · Then there is no need for disclosure laws!
 - · Two variants:
 - ${}^{\centerdot}$ Imperfectly informed sellers.
 - Disclosure costs.

Imperfectly Informed Sellers

- Two changes:
 - $\theta \sim U_{[0,10]}$
 - With probability γ , the sellers are uninformed.
 - · This is independent of product quality.
 - * Uninformed sellers can only send the message \emptyset .

Imperfectly Informed Sellers

- Let $\bar{\theta}$ be the highest type that does not disclose information.
- $E[\theta|r=\emptyset] = \gamma \cdot 5 + (1-\gamma)\frac{\bar{\theta}}{2}$
- In equilibrium, it has to be that $p(\emptyset) = E[\theta|r = \emptyset] = \bar{\theta}$.
- · Solving,

$$\bar{\theta} = \frac{10\gamma}{1+\gamma}$$

Effect of Mandatory Disclosure

- Buyers: unaffected (in expectation).
- · Sellers:
 - Uninformed types are better off.
 - * Informed types above $\bar{\theta}$ are unaffected.
 - * Informed types below $\bar{\theta}$ are worse off.
 - Unaffected in expectation!

 ${}^{\bullet}$ Reason: the object is always sold, and this is always efficient.

Model with Inefficiencies

- Assumption: Seller values the object 2 independently of the type.
- Efficient to sell iff $\theta > 2$ and keep otherwise.
- · Two cases:

•
$$\gamma \le 1/4$$
:
$$\frac{10\gamma}{1+\gamma} \le 2 \qquad \Rightarrow \qquad \text{Voluntary disclosure is efficient.}$$
 • $\gamma > 1/4$:

*
$$\gamma > 1/4$$
:
$$\frac{10\gamma}{1+\gamma} > 2 \qquad \Rightarrow \qquad \text{Voluntary disclosure is inefficient}.$$

* Mandatory disclosure leads to a better allocation when γ is high enough.

Cost of Information

• In order to be informed, the seller needs to pay a cost c > 0.

• Efficient to acquire information when:

$$5 < \frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 6 - c$$

• $c < \frac{1}{5}$.

Mandatory Disclosure

- When seller is informed he has to disclose. $p(\theta) = \theta$.
- When seller is uninformed, $p(\emptyset) = 5$.
- The private value of information is 0.

Voluntary Disclosure: c < 1/5

Consider c < 1/5:

- · Is everyone acquiring information an equilibrium?
- If everyone acquires information, we are in the case with $\gamma = 0$. Everyone discloses.
- $p(\emptyset) \leq 2$. So, disclose and sell iff $\theta \geq 2$.
- · Private value of information:

$$\frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 6 - p(\emptyset) > \frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 6 - 5 > c$$

- · Thus, it is an equilibrium.
- Is it unique?

Voluntary Disclosure: c > 1/5

Consider c > 1/5:

- · Is no-one acquiring information an equilibrium?
- If no-one acquires information, we are in the case with $\gamma = 1$.
- $p(\emptyset) = 5$.
- · Private value of information:

$$\frac{1}{2} \cdot 5 + \frac{1}{2} \cdot 7.5 - p(\emptyset) = \frac{1}{5} \cdot 2 + \frac{4}{5} \cdot 6 - 5 = 1.25$$

* Thus, it is not an equilibrium for $c \in (1/5, 5/4)$

Conclusion

• When information is acquired casually, mandatory disclosure achieves a more efficient outcome when the probability of uninformed is high enough.

- · When information is deliberately acquired and
 - · it is efficient that information is acquired, voluntary disclosure achieves efficiency.
 - it is efficient that information is not acquired, mandatory disclosure achieves efficiency.