1. Espaces vectoriels normés

Dans tout ce qui suit, ${\bf K}$ désigne soit ${\bf R}$ soit ${\bf C}$.

Exercice 1.1 On admet que tout K-espace vectoriel admet une base. Soit E un K-espace vectoriel. Montrer qu'il existe des normes sur E.

Exercice 1.2 Soient a_1, \ldots, a_n des réels et $N \colon \mathbf{K}^n \to \mathbf{R}$ l'application définie par

$$N(x_1,...,x_n) = a_1 |x_1| + \cdots + a_n |x_n|$$

À quelle condition sur les a_1, \ldots, a_n , l'application N définit-elle une norme sur \mathbf{K}^n ?

Exercice 1.3 Montrer que $E = \{a + b\sqrt{2} ; (a,b) \in \mathbf{Q}^2\}$ est un \mathbf{Q} espace vectoriel de dimension 2. On définit N_1 sur E par $N_1(a + b\sqrt{2}) = |a| + |b|$ et N_2 par $N_2(a + b\sqrt{2}) = |a + b\sqrt{2}|$.

- (1) Montrer que N_1 et N_2 sont des normes sur E.
- (2) N_1 et N_2 sont-elles équivalentes? Expliquez.

Exercice 1.4 On définit une application sur $M_n(\mathbf{R})$ en posant

$$N(A) = n \max_{i,j} |a_{i,j}| \text{ si } A = (a_{i,j}).$$

Vérifier que l'on définit bien une norme sur $M_n(\mathbf{R})$, puis qu'il s'agit d'une norme d'algèbre, c'est-à-dire que $N(AB) \leq N(A)N(B)$ pour toutes matrices $A, B \in M_n(\mathbf{R})$.

2. Applications linéaires

Exercice 2.5 Soit $E = \mathscr{C}^{\infty}([0,1], \mathbf{R})$. On considère l'opérateur de dérivation $D: E \to E, f \mapsto f'$. Montrer que, quelle que soit la norme N dont on munit E, D n'est jamais une application linéaire continue de (E, N) dans (E, N).

Exercice 2.6

- (1) Existe-t-il une norme sur $E = \mathbf{R}[X]$ telle que l'application $P \mapsto XP$ soit continue?
- (2) Existe-t-il une norme sur E telle que $P \mapsto P'$ soit continue?
- (3) Existe-t-il une norme sur E telle que $P \mapsto XP'$ soit continue?
- (4) Soit a un réel Pour $P \in E$, on note

$$N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt.$$

Montrer que l'on définit ainsi une norme et que si a et b sont compris entre 0 et 1, N_a et N_b sont équivalentes. Que dire si $a \in [0,1]$ et b > 1?

Exercice 2.7 Soit (E, || ||) un **K**-espace vectoriel et $(e_i)_{i \in I}$ une base de E. On suppose I infini. Soit $J = \{i_k\}_{k \in \mathbb{N}} \subset I$ une partie infinie dénombrable de I. Construire, en utilisant $\{e_{i_k}; k \in \mathbb{N}\}$ une forme linéaire discontinue sur E.

Si $(F, || ||_F)$ est un espace normé, déduire de ce qui précède l'existence d'applications linéaires discontinues de E dans F.

Exercice 2.8 Soit $E = \mathcal{C}([0,1], \mathbf{R})$. Pour $f \in E$, on pose

$$||f||_1 = \int_0^1 |f(t)|dt,$$

dont on admettra qu'il s'agit d'une norme sur E. Soit ϕ l'endomorphisme de E défini par

$$\phi(f)(x) = \int_0^x f(t)dt.$$

- (1) Justifier la terminologie : " ϕ est un endomorphisme de E."
- (2) Démontrer que ϕ est continue.

- (3) Pour $n \geq 0$, on considère f_n l'élément de E défini par $f_n(x) = ne^{-nx}$, $x \in [0,1]$. Calculer $||f_n||_1$ et $||\phi(f_n)||_1$.
- (4) On pose $\|\phi\| = \sup_{f \neq 0_E} \frac{\|\phi(f)\|_1}{\|f\|_1}$. Déterminer $\|\phi\|$.

3. Différentiabilité

Exercice 3.9 Montrer que l'application

$$P \mapsto \int_0^1 P(t)^2 dt$$

définie sur $E = \mathbf{R}_n[X]$ est différentiable et calculer sa différentielle.

Exercice 3.10 Soient E un espace euclidien et u un endomorphisme symétrique de E.

- (1) Montrer que l'application $f: x \in E \mapsto (u(x) \mid x)$ est différentiable sur E et calculer sa différentielle en tout point.
- (2) Montrer que l'application

$$F \colon x \in E \setminus \{0_E\} \mapsto \frac{(u(x) \mid x)}{(x \mid x)}$$

est différentiable sur $E \setminus \{0_E\}$ et que sa différentielle vérifie

$$DF(x) = 0 \iff x$$
 est vecteur propre de u

Exercice 3.11

- (1) Expliquer pourquoi l'application det : $\mathcal{M}_n(\mathbf{R}) \to \mathbf{R}$ est différentiable.
- (2) Calculer la différentielle de det en I_n puis en toute matrice M inversible.
- (3) En introduisant la comatrice de M, exprimer la différentielle de det en tout $M \in \mathcal{M}_n(\mathbf{R})$.
- (4) Étudier le rang de cette différentielle en fonction du rang de A.

4. Inversion locale

Exercice 4.12 Soient Ω un ouvert de \mathbb{R}^n et $f:\Omega\to\mathbb{R}^n$ une application de classe \mathscr{C}^1 . Montrer que si pour tout $a\in\Omega$ la différentielle df_a de f en a est inversible, alors f est une application ouverte.

Exercice 4.13 Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application C^1 . On suppose qu'il existe $\alpha > 0$ tel que pour tout $h, x \in \mathbb{R}^n$,

$$\langle Df(x)(h), h \rangle \ge \alpha \langle h, h \rangle.$$

(1) En considérant la fonction $t \to \varphi(t) = \langle f(a+t(b-a)), b-a \rangle$, montrez que

$$\langle f(b) - f(a), b - a \rangle \ge \alpha \langle b - a, b - a \rangle$$
 pour tout $a, b \in \mathbb{R}^n$.

En déduire que f est une application fermée.

- (2) Démontrer que, pour tout $x \in E, Df(x)$ est un isomorphisme de \mathbb{R}^n . En déduire que f est une application ouverte.
- (3) Conclure que f est un difféomorphisme de classe C^1 de \mathbb{R}^n sur lui même.

Exercice 4.14

- (1) Soit f une application de \mathbb{R} dans \mathbb{R} , dérivable en tout point de \mathbb{R} et telle que, pour tout x de \mathbb{R} , $f'(x) \neq 0$. Montrer que f est un homéomorphisme de \mathbb{R} sur $f(\mathbb{R})$ et que f^{-1} est différentiable en tout point de $f(\mathbb{R})$.
- (2) Soit f définie par $f(x) = x + x^2 \sin \frac{\pi}{x}$ si $x \neq 0$ et f(0) = 0. Montrer que f'(0) existe et est $\neq 0$, mais que f n'est inversible sur aucun voisinage de 0. Expliquer.

Exercice 4.15

- (1) Montrer qu'il existe un voisinage U de Id dans $\mathbf{M}_n(\mathbf{R})$, un voisinage V de 0 dans $\mathbf{M}_n(\mathbf{R})$ et une application φ de classe \mathscr{C}^1 de U dans V telle que pout tout $A \in U$, $\varphi(A) \in V$ et $\exp(\varphi(A)) = A$.
- (2) $\mathbf{M}_n(\mathbf{R})$ étant muni d'une norme d'algèbre, on considère la série

$$\log(M) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{(M - \mathrm{Id})^k}{k}.$$

Étudier la convergence de cette série et montrer que log : $B(\mathrm{Id},1) \to B(0,\ln(2))$ est de classe \mathscr{C}^1 .

(3) Montrer que log : $B(\mathrm{Id},1) \to B(0,\ln(2))$ et exp : $B(0,\ln(2)) \to B(\mathrm{Id},1)$ sont définissent des difféomorphismes réciproques.

5. Fonctions implicites

Exercice 5.16

- (1) Montrer que l'équation : $x^3 + y^3 3xy = 1$ définit au voisinage de 0 une fonction implicite : $y = \varphi(x)$ telle que $\varphi(0) = 1$.
- (2) Donner le DL de φ en 0 à l'ordre 3.

Exercice 5.17 On considère $E = M_n(\mathbf{R})$, $F = GL(n, \mathbf{R})$ et l'application Ψ de $F \times E$ dans E définie par $\Psi(A, B) = AB - I$. Montrer à l'aide du théorème des fonctions implicites que $\varphi : A \in F \to A^{-1}$ est différentiable en tout point de F et retrouver sa différentielle.

Exercice 5.18 Soient $n \in \mathbf{N}^*$ et $A_0 \in \mathbf{M}_n(\mathbf{R})$. On suppose que A possède n valeurs propres distinctes. Montrer qu'il existe un voisinage V de $A_0 \in \mathbf{M}_n(\mathbf{R})$ tel que toute matrice dans V admette n valeurs propres distinctes et que ces valeurs propres sont fonctions différentiables des coefficients.

Exercice 5.19 Soit $F: \mathbf{M}_n(\mathbf{R}) \to \mathbf{M}_n(\mathbf{R})$ l'application définie par $F(M) = M^2$.

- (1) Montrer que F est de classe \mathscr{C}^1 et calculer dF(A) en tout point $A \in \mathbf{M}_n(\mathbf{R})$.
- (2) Montrer qu'il existe un voisinage V de Id dans $\mathbf{M}_n(\mathbf{R})$ et une application différentiable G de V dans $\mathbf{M}_n(\mathbf{R})$ telle que pour tout $X \in V$ on ait $G(X) = X^2$.
- (3) On suppose que n = 2. Soit

$$A = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right) \qquad J = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right).$$

Calculer dF(A)J.

6. Formules de Taylor

Exercice 6.20 Autour d'un lemme de Hadamard. Soit f une application de classe \mathscr{C}^{∞} de \mathbf{R} dans \mathbf{R} . Montrer que les propriétés suivantes sont équivalentes :

- (1) Pour tout $k \in \{0, \dots, n\}$, $f^{(k)}(0) = 0$.
- (2) Il existe une fonction g de classe \mathscr{C}^{∞} telle que $f(x) = x^n g(x)$.

Si f est de classe \mathscr{C}^n , il existe une fonction g continue telle que

$$f(x) = f(0) + xf'(0) + \dots + x^n g(x).$$

Soit $f:[-1,1]\to \mathbf{R}$ une application de classe \mathscr{C}^2 . On cherche à déterminer le comportement de

$$I_n = \int_{-1}^{1} f(x)e^{-nx^2} \, dx$$

quand n tend vers $+\infty$.

(1) Étudier I_n lorsque f = 1 (poser $t = x\sqrt{n}$)

- (2) On suppose que f(x) = xg(x) avec g de classe \mathscr{C}^1 . Montrer que $I_n = O(\frac{1}{n})$.
- (3) En écrivant $f(x) = f(0) + xf'(0) + x^2h(x)$, montrer que

$$I_n = f(0)\sqrt{\frac{\sqrt{\pi}}{n}} + O\left(\frac{1}{n}\right).$$

Mêmes questions pour

$$J_n = \int_{-1}^{1} f(x)e^{-inx^2} dx.$$

Soit U un ouvert convexe de \mathbf{R}^n contenant 0 et $f \in \mathscr{C}^{\infty}(U, \mathbf{R})$. Montrer que si f(0) = 0 et $Df_0 = 0$, alors il existe des fonctions $g_{i,j}$ de classe \mathscr{C}^{∞} telles que

$$f(x) = \sum_{1}^{n} x_i x_j g_{i,j}(x).$$

Exercice 6.21 Éudier les extrema éventuels de

$$(x,y) \mapsto x^2 + (x+y-1)^2 + y^2.$$

Exercice 6.22 Éudier les extrema éventuels de

$$x^3 + y^3 - 9xy + 27.$$

Exercice 6.23

- (1) Soit f une fonction réelle d'une variable réelle de classe \mathscr{C}^2 dans un voisinage de $0 \in \mathbf{R}$ telle que f(0) = 0 et $f'(0) \neq 0$. Montrer que la fonction réelle F des deux variables x et y définie dans un voisinage de (0,0) par F(x,y) = f(x)f(y) n'a pas d'extremum relatif en (0,0). Est-ce que le point (0,0) est quand même critique? Si oui caractériser sa nature.
- (2) Déterminer les points critiques, puis les minima et les maxima locaux de

$$f(x,y) = \sin(2\pi x)\sin(2\pi y).$$

Remarque : en utilisant la périodicité de la fonction, on peut limiter le nombre de cas à étudier.

Exercice 6.24 Soit $E = \mathbb{R}^n$ muni du produit scalaire canonique et soit $a \in E$. On définit f par

$$f(x) = \langle a, x \rangle e^{-\|x\|^2}.$$

- (1) Déterminer la différentielle de f.
- (2) Déterminer les points critiques de f.
- (3) Montrer que f admet un maximum global sur E.
- (4) Calculer d^2f et déterminer la nature des points critiques de f.

Exercice 6.25 [Lemme de Morse en dimension 2] Soit f une application de classe \mathscr{C}^{∞} de \mathbf{R} dans \mathbf{R} . Montrer que les propriétés suivantes sont équivalentes :

- (1) Pour tout $k \in \{0, \dots, n\}$, $f^{(k)}(0) = 0$.
- (2) Il existe une fonction g de classe \mathscr{C}^{∞} telle que $f(x) = x^n g(x)$. Si f est de classe \mathscr{C}^n , il existe donc une fonction g continue telle que

$$f(x) = f(0) + xf'(0) + \dots + x^n g(x).$$

(3) Soit f une fonction de classe \mathscr{C}^3 de \mathbf{R}^2 dans \mathbf{R} telle que f(0) = 0 et df(0) = 0. Montrer qu'il existe des fonctions α, β et γ telles que

$$f(x,y) = \alpha(x,y)x^2 + 2\beta(x,y)xy + \gamma(x,y)y^2$$

avec

$$\alpha(x,y) = \int_0^1 (1-t) \frac{\partial^2 f}{\partial x^2}(tx,ty) \, dt, \quad \beta(x,y) = \int_0^1 (1-t) \frac{\partial^2 f}{\partial x \partial y}(tx,ty) \, dt \quad \text{et } \gamma(x,y) = \int_0^1 (1-t) \frac{\partial^2 f}{\partial y^2}(tx,ty) \, dt.$$

- (4) Déterminer les valeurs de α, β et γ en (0,0).
- (5) Montrer que ces fonctions sont de classe \mathscr{C}^1 .
- (6) On suppose $d^2 f(0,0)$ définie positive. Montrer qu'il existe une boule de centre (0,0) de rayon r > 0 sur laquelle α et $\alpha \gamma \beta^2$ sont strictement positives. Montrer ensuite que sur cette boule,

$$f(x,y) = \alpha(x,y) \left(x + \frac{\beta(x,y)}{\alpha(x,y)} y \right)^2 + \frac{\alpha(x,y)\gamma(x,y) - \beta(x,y)^2}{\alpha(x,y)} y^2.$$

(7) Montrer que

$$X = \sqrt{\alpha(x,y)} \left(x + \frac{\beta(x,y)}{\alpha(x,y)} y \right), \quad \text{ et } \quad Y = \sqrt{\frac{\alpha(x,y)\gamma(x,y) - \beta(x,y)^2}{\alpha(x,y)}} \ y$$

sont des fonctions de classe \mathscr{C}^1 sur B(0,r).

(8) Montrer que $\Psi:(x,y)\mapsto (X,Y)$ définit un \mathscr{C}^1 difféomorphisme d'un voisinage U de (0,0) sur un voisinage V de (0,0) et que

$$f \circ (\Psi_U)^{-1} = X^2 + Y^2.$$

En déduire que dans un voisinage convenable de (0,0) les courbes de niveau de f sont les images d'un cercle par difféomorphisme.

(9) Montrer de même que si la signature de $d^2f(0,0)$ est (1,1). il existe un difféomorphisme local Ψ en (0,0) Ψ : $(x,y)\mapsto (X,Y)$ tel que

$$f \circ (\Psi_U)^{-1} = X^2 - Y^2.$$

Exercice 6.26 Soient U un ouvert de \mathbf{R}^n , $g:U\to\mathbf{R}$ une fonction de classe \mathscr{C}^{∞} . On dit que $a\in U$ est un point critique de f non dégénéré si df(a)=0.

(1) On suppose a=0 et g(a)=0. En appliquant une formule de Taylor à la fonction $\varphi t \mapsto g(tx)$ définie dans un voisinage de 0 de \mathbf{R} , montrer que

$$g(x) = \int_0^1 (1-t)D^2 g_{tx}(x,x)dt.$$

(2) L'application $x \mapsto Q_x = \int_0^1 (1-t) D^2 g_{tx} dt$ est une application de classe \mathscr{C}^{∞} d'un voisinage de 0 à valeurs dans l'espace des formes quadratiques sur $\mathbf{R}^n = E$ et $g(x) = Q_x(x)$ avec $Q_0 = \frac{1}{2} D^2 g_{(0,0)}$. Soit $\mathscr{S}(E)$ l'espace des endomorphismes symétriques de E et $\mathbf{Q}(E)$ l'espace des formes quadratiques sur E. Si $u \in \mathscr{S}(E)$ on note <, > la forme polaire de Q_0 et $Q_0 \circ u$ la forme quadratique $x \mapsto Q_0(u(x), u(x))$. Soit $\psi: (x, u) \in B(0, r) \times \mathscr{S}(E) \mapsto Q_0 \circ u - Q_x$.

Calculer $\psi(0, \mathrm{Id})$ et calculer la dérivée partielle $\partial_2 \psi$ en (0, Id).

- (3) En déduire l'existence d'un voisinage V de 0 dans E, d'un voisinage W de q_0 dans $\mathscr{S}(E)$ et d'une application φ de classe \mathscr{C}^{∞} de V dans W tels que $Q_0 \circ \alpha Q_x = 0$ équivaut à $\alpha = \varphi(x)$.
- (4) L'application $x \mapsto \varphi(x)(x)$ est de classe \mathscr{C}^{∞} de E dans E et sa différentielle. Calculer sa différentielle en 0.
- (5) Déduire de ce qui précède qu'il existe un voisinage V de 0 dans \mathbf{R}^n et un difféomorphisme $\beta:V\to W$ tel que
 - $-\beta(0) = 0$ et $D\beta_0 = Id$
 - pour tout $x \in V$, on a

$$g(a+x) = g(a) + \frac{1}{2}D^2g_0(\beta(x), \beta(x)).$$