08/285782 PCT/JP33/03286 08.03.93

日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出頭年月日 Date of Application:

1992年 3月17日

REC'D 1 5 APR 1993

出 願 番 号 Application Number:

平成 4年特許願第092070号

出 願 人 Applicant (s):

藤沢薬品工業株式会社

PRIORITY DOCUMENT

1993年 4月 2日

特許庁長官 Commissioner. Patent Office 麻生

【書類名】

特許願

【整理番号】

P920317

【提出日】

平成 4年 3月17日

【あて先】

特許庁長官殿

【国際特許分類】

CO7D

【発明の名称】

デプシペプチド誘導体

【請求項の数】

【発明者】

【住所又は居所】

寝屋川市葛原新町13番1-317

【氏名】

西山 均

【発明者】

【住所又は居所】

池田市緑丘2-2-10

【氏名】

大垣 勝

【発明者】

【住所又は居所】

池田市緑丘2-2-10

【氏名】

山西 了

【発明者】

【住所又は居所】

稲敷郡美穂村大字宮地565-19

【氏名】

原 俊彦

【特許出願人】

【識別番号】

000005245

【氏名又は名称】 藤沢薬品工業株式会社

【代表者】

藤澤 友吉郎

【代理人】

【識別番号】

100091683

【弁理士】

【氏名又は名称】

吉川 俊雄

【手数料の表示】

【納付方法】

予納

【書類名】 明細書

【発明の名称】 デプシペプチド誘導体

【特許請求の範囲】

【請求項1】 一般式:

【化1】

(式中、Aは低級アルコキシ、ハロゲンまたは低級アルキルで置換されたベンジル基または置換基を有していてもよいフェニル基、B、CおよびDは水素;低級アルキル基;置換基を有していてもよいフェニル基;または置換基を有していてもよいベンジル基を意味する)で示される化合物またはその塩。

【請求項2】 請求項1記載の化合物またはその塩を有効成分とする駆虫剤。 【発明の詳細な説明】

[0001]

【産業上の利用分野】

この発明は駆虫活性を有する新規デプシペプチド誘導体に関するものである。

[0002]

【従来の技術】

デプシペプチド誘導体の製造法として微生物を用いる方法が特開平3-357 96号公報に記載されている。

[0003]

【課題を解決するための手段】

この発明の目的化合物であるデプシペプチド誘導体(I)は次の一般式で表す ことができる。

[0004]

【予納台帳番号】 021360

【納付金額】

14,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9107609

* * *

【代理人】

【手数料の納付】

【化2】

(式中、Aは低級アルコキシ、ハロゲンまたは低級アルキルで置換されたベンジル基または置換基を有していてもよいフェニル基、B、CおよびDは水素;低級アルキル基;置換基を有していてもよいフェニル基;または置換基を有していてもよいベンジル基を意味する)。

この発明によれば、目的化合物であるデプシペプチド誘導体(I)は下記の方法で製造できる。

下記製造法においては以下の点を指摘しておく。

すなわち、D体、L体およびDL体のいずれの場合もこの発明の範囲内に含まれる。しかし、下記の製造法の説明においては便宜上、特定のD体、L体の場合について説明する。

製造法

【化3】

またはアミノ基もしくはカルボキシ基における 反応性誘導体またはその塩

またはその塩

(式中、A、B、CおよびDはそれぞれ前と同じ意味であり、Rは水素またはアミノ保護基である)。

[0005]

この明細書を通じてアミノ酸、ペプチド、保護基、縮合剤等は、この技術分野においては普通に使用されるIUPAC-IUB (生化学命名法委員会)による略号によって示すことにする。

[0006]

さらにまた特に指示がなければ、アミノ酸およびそれらの残基がそのような略 号によって示される場合には、L型配置の化合物および残基を意味し、D型配置 の化合物および残基はD-なる記載によって示される。

[0007]

 $D-\alpha-$ ヒドロキシプロピオン酸(D-乳酸)はD-Lacと略号で示し、 $D-\alpha-$ ヒドロキシー $\beta-$ pーメトキシフェニルプロピオン酸($D-\beta-$ pーメトキシフェニル乳酸)はD-p-MeOPhLacと略号で示し、 $D-\alpha-$ ハイドロキシフェニル酢酸(D-マンデル酸)はD-Manと略号で示すことになる。

[0008]

化合物(I)の好適な塩類は、慣用の無毒性の塩すなわち各種塩基との塩ならびに酸付加塩を挙げることができる。より具体的には、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩、セシウム塩等)、アルカリ土類金属塩(例えば、カルシウム塩、マグネシウム塩等)、アンモニウム塩のような無機塩基との塩、有機アミン塩(例えば、トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、トリエタノールアミン塩、ジシクロヘキシルアミン塩、N,N'ージベンジルエチレンジアミン塩等)のような有機塩基との塩、無機酸付加塩(例えば塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩等)、有機カルボン酸付加塩または有機スルホン酸付加塩(例えば、ギ酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、アートルエンスルホン酸塩等)、塩基性アミノ酸または酸性アミノ酸との塩(例えば、アルギニン、アスパラギン酸、グルタミン酸等)等が挙げられる。

[0009]

この明細書の以上の記載および以下の記載において、この発明の範囲内に包含される種々の定義の適切な例と説明とを以下詳細に説明する。

[0010]

「低級」とは特に指示がなければ炭素原子1~6個、好ましくは1~4個の範囲を意味する。

[0011]

好適な「低級アルコキシで置換されたベンジル基」としては、例えば4-メトキシベンジル、3,4-ジメトキシベンジル、3,4,5-トリメトキシベンジル、2,3,4-トリメトキシベンジル、2-エトキシベンジル、4-ヘキシルオキシベンジル等の低級アルコキシ置換ベンジル基が挙げられる。

好適な「ハロゲンで置換されたベンジル基」としては、例えば2-クロロベンジル、4-クロロベンジル、2, 4-ジクロロベンジル、3, 4-ジクロロベンジル、2, 6-ジクロロベンジル、2-ブロモベンジル2-ブロモー4-クロロベンジル等のハロゲン置換ベンジル基が挙げられる。

好適な「低級アルキルで置換されたベンジル基」としては、例えば4-メチルベンジル、4-エチルベンジル、4-プロピルベンジル、4-イソプロピルベン

[0012]

好適な「低級アルキル基」としてはメチル、エチル、プロピル、イソプロピル 、ブチル、イソブチル、第三級ブチル、ペンチル、ヘキシル等のような炭素原子 1個ないし6個を有する直鎖または分枝鎖アルキル基が挙げられる。

[0013]

「置換基を有していてもよいフェニル基」および「置換基を有していてもよい ベンジル基」における好適な置換基としては、ヒドロキシ基、低級アルコキシ基 、低級アルキル基、ハロゲン等が挙げられる。

[0014]

そのような置換基を有するフェニル基の好適な例としては、例えば4-メトキシフェニル、3,4-ジメトキシフェニル、3,4,5-トリメトキシフェニル、2,3,4-トリメトキシフェニル、2-エトキシフェニル、4-ヘキシルオキシフェニル等の低級アルコキシ置換フェニル基、例えば2-クロロフェニル、4-クロロフェニル、2,4-ジクロロフェニル、3,4-ジクロロフェニル、2,6-ジクロロフェニル、2-ブロモフェニル2-ブロモー4-クロロフェニル、4-フルオロフェニル、2,4-ジフルオロフェニル等のハロゲン化フェニル基、2-ヒドロキシフェニル、3-ヒドロキシフェニル、4-ヒドロキシフェニル等のヒドロキシ置換フェニル基、2-(ヒドロキシメトキシ)フェニル等の低級アルコキシおよびヒドロキシ基置換フェニル基が挙げられる。

[0015]

そのような置換基を有するベンジル基の好適な例としては、例えば4-メトキシベンジル、3, 4-ジメトキシベンジル、3, 4, 5-トリメトキシベンジル、2, 3, 4-トリメトキシベンジル、2-エトキシベンジル、4-ヘキシルオキシベンジル等の低級アルコキシ置換ベンジル基、例えば2-クロロベンジル、4-クロロベンジル、2, 4-ジクロロベンジル、3, 4-ジクロロベンジル、

2, 6-ジクロロベンジル、2-ブロモベンジル2-ブロモ-4-クロロベンジル等のハロゲン化ベンジル基、2-ヒドロキシベンジル、3-ヒドロキシベンジル、4-ヒドロキシベンジル等のヒドロキシ置換ベンジル基、2-(ヒドロキシメトキシ)ベンジル等の低級アルコキシおよびヒドロキシ基置換ベンジル基が挙げられる。

[0016]

好適な「アミノ保護基」としては、例えばホルミル、アセチル、プロピオニル 、ピパロイル、ヘキサノイル等の低級アルカノイル基、例えばクロオアセチル、 ブロモアセチル、ジクロロアセチル、トリフルオロアセチル等のモノ (もしくは ジもしくはトリ)ハロ(低級)アルカノイル基、例えばメトキシカルボニル、エ トキシカルボニル、プロポキシカルボニル、第三級ブトキシカルボニル、第三級 ペンチルオキシカルボニル、ヘキシルオキシカルボニル等の低級アルコキシカル ボニル基、カルバモイル基、例えばベンゾイル、トルオイル、ナフトイル等のア ロイル基、例えばフェニルアセチル、フェニルプロピオニル等のアル(低級)ア ルカノイル基、例えばフェノキシカルボニル、ナフチルオキシカルボニル等のア リールオキシカルボニル基、例えばフェノキシアセチル、フェノキシプロピオニ ル等のアリールオキシ(低級)アルカノイル基、例えばフェニルグリオキシロイ ル、ナフチルグリオキシロイル等のアリールグリオキシロイル基、例えばベンジ ルオキシカルボニル、フェネチルオキシカルボニル、p-ニトロベンジルオキシ カルボニル等の、適当な置換基を有してもよいアル(低級)アルコキシカルボニ ル基、等のアシル基、例えばベンジリデン、ヒドロキシベンジリデン等の置換さ れたまたは非置換アル(低級)アルキリデン基、例えばベンジル、フェネチル、 ベンズヒドリル、トリチル等のモノ(またはジまたはトリ)フェニル(低級)ア ルキル基のようなアル(低級)アルキル基等が挙げられる。

[0017]

上記アミノ保護基にはアミノ酸やペプチド化学の分野でよく使用されるアミノ 基を一時的に保護する作用をもつ保護基が含まれる。

[0018]

目的化合物(I)の製造法を以下詳細に説明する。

目的化合物(I)またはその塩は、化合物(II)またはアミノ基もしくはカルボキシ基におけるその反応性誘導体、またはその塩を閉環反応に付することにより製造することができる。

化合物 (II) のアミノ基の反応性誘導体としては、化合物のアミノ基とアルデヒド、ケトン等のようなカルボニル化合物との反応によって精製するシッフの塩基型イミノまたはそのエナミン型互変異性体:化合物のアミノ基とピス(トリメチルシリル)アセトアミド、モノ(トリメチルシリル)アセトアミド、ピス(トリメチルシリル)尿素等のようなシリル化合物との反応によって生成するシリル誘導体:化合物のアミノ基と三塩化燐またはホスゲンとの反応によって生成する誘導体が挙げられる。

[0019]

化合物 (II) のカルボキシ基における反応性誘導体としては、酸ハロゲン化物、酸無水物、活性化アミド、活性化エステル等が挙げられる。好ましくは、酸塩化物:酸アジ化物:脂肪族カルボン酸(例、酢酸、プロピオン酸、酪酸、トリクロロ酢酸等)または芳香族カルボン酸(例、安息香酸等)との混合酸無水物:対称酸無水物等が挙げられる。これらの反応性誘導体は使用すべき化合物の種類により、上記のものから選択することができる。この反応は、通常の閉環反応に用いられる方法、例えば加熱または縮合剤の存在下で行われる。化合物(II)のR基がアミノ保護基である場合は、閉環反応に先立ってアミノ保護基の脱離が行なわれる。

[0020]

好ましい縮合剤としては、カルボジイミドまたはその塩 [例えば、N-N'-1 ジシクロヘキシルカルボジイミド、N-1 シクロヘキシルーN' モルホリノエチルカルボジイミド、N-1 シャンカロヘキシルーN'-1 (4 ー ジェチルアミノシクロヘキシル) カルボジイミド、N-1 カーエチルーN'-1 (3 ー ジメチルアミノプロピル) カルボジイミドまたはその塩酸塩、ジフェニルリン酸アジド、ジェチルリン酸シアニド、塩化ピス(2-1 オーナー・カルボジイミダゾール、1 カルボニルピス (2-1 オーナー・カルボジイミダゾール、1 カルボニルピス (2-1 オールイミダゾール);ケテンイミン化合物(例えばペンタメチレンケテン 1 アーシクロヘキシルイ

ミン、ジフェニルケテンーNーシクロヘキシルイミン等);エトキシアセチレン;1-アルコキシー1ークロロエチレン;エチル ポリホスフェート;イソプロピル ポリホスフェート;オキシ塩化リン;三塩化リン;チオニルクロリド;オキサリクロリド;トリフェニルホスフィンと四塩化炭素もしくはシアゼンカーボキシレートとの組合わせ;2-エチルー7-ヒドロキシベンズイソキサゾリウム塩;2-エチルー5ー(m-スルホフェニル)イソキサゾリウムヒドロキシド分子内塩;1-(p-クロロベンゼンスルホニルオキシ)ー6ークロロー1Hーベンソトリアゾール;1-ヒドロキシベンゾトリアゾール;N,Nージメチルホルムアミドとチオニルクロリド、ホスゲン、オキシ塩化リン等との反応によって調整したいわゆるピルスマイヤー試薬等が挙げられる。

[0021]

この縮合剤の存在下の反応は、反応に悪影響を与えないような通常の有機溶媒 (例えばジクロロメタン、メタノール、エタノール、プロパノール、アセトニト リル、ピリジン、N, Nージエチルホルムアミド、4ーメチルー2ーペンタノン 、テトラヒドロフラン、ベンゼン、トルエン、キシレン等またはそれらの混合溶 (媒)中で行われる。また、反応温度は特に限定されないが、通常冷却下ないし 加温下に行われる。さらに、加熱下における閉環反応は、上記のような有機溶媒 中で、使用した溶媒の沸点以下に加熱して行なうことができる。

[0022]

出発化合物(II)、その反応性誘導体またはその塩は、後述の製造例に記載の方法またはそれと同様の方法により製造することができる。

[0023]

本発明の化合物またはその塩は、動物および人間の駆虫剤として優れた殺寄生 虫活性を有している。特に豚、羊、山羊、牛、馬、犬、猫、および鶏のような家 畜、家禽およびペットに感染する次の線虫に有効である。

ヘモンクス属 (Haemonchus) 、

トリコストロンギルス属 (Trichostrongylus)、

オステルターギヤ属 (Ostertagia)、

ネマトディルス属 (Nematodirus)、

クーペリア属 (Cooperia)、

アスカリス属 (Ascaris)、

プノストムーム属 (Bunostomum)、

エスファゴストムーム属 (Oesophagostomum)、

チャベルチア属 (Chabertia)、

トリキュリス属 (Trichuris)、

ストロンギルス属 (Strongylus)、

トリコネマ属 (Trichonema)、

デイクチオカウルス属(Dictyocaulus)、

キャピラリア属 (Capillaria)、

ヘテラキス属 (Heterakis)、

トキソカラ属 (Toxocara)、

アスカリディア属 (Ascaridia)、

オキシウリス属 (Oxyuris)、

アンキロストーマ属 (Ancylostoma)、

ウンシナリア属 (Uncinaria)、

トキサスカリス属(Toxascaris)、

パラスカリス属 (Parascaris) 及び

ニポストロンギルス属 (Nippostrongylus)

ネマトディルス属、クーペリア属及びエソファゴストムーム属のある種のものは 勝管を攻撃し、一方へモンクス属及びオステルターギア属のみのは胃に寄生し、 ディクチオカウルス属の寄生虫は肺に見いだされるが、これらにも活性を示す。

[0024]

また、フィラリア科 (Filariidae) やセタリヤ科 (Setariidae) の寄生虫は心臓及び血管、皮下及びリンパ管組織のような他の組織及び器官に見いだされ、これらにも活性を示す。

また、人間に感染する寄生虫に対しても有用であり、人間の消化管の最も普通の寄生虫は、

アンキロストーマ属 (Ancylostoma)、

ネカトール属 (Necator)、

アスカリス属 (Ascaris)、

ストロンギィロイデス属 (Strongyloides)、

トリヒネラ属 (Trichinella)、

キャピラリア属 (Capillaria)、

トリキュリス属 (Trichuris)及び

エンテロビウス属 (Enterobius) である。

[0025]

消化管の外の、血液または他の組織及び器官に見出される他の医学的に重要な寄生虫であるフィラリア科のブツヘレリア属 (Wuchereria)、ブルージア属 (Brugia)、オンコセルカ属 (Onchocerca) 及びロア糸状虫属 (Loa)並びに蛇状線虫科 (Dracunculidae)のドラクンクルス属 (Dracunlus)の寄生虫、腸管内寄生虫の特別な腸管外寄生状態におけるストロンギロイデス属及びトリヒネラ属にも活性を示す。

[0026]

目的化合物(I)の薬理学的有用性を示すために、その薬理学的試験を以下に 説明する。

[0027]

(1) 試験化合物

MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-

[0028]

(2) 試験 ラット寄生線虫ニポストロンギルス ブラジリエンシス (Nippostrongylus

brasiliensis) を感染させたラットでの駆虫効果を調べた。

供試ラットはWister系ラット(体重120g-130g, 6週令 雌)を用いて1匹あたり約3000隻の感染子虫を皮下接種して感染させた。

試験化合物は50 m g をジメチルスルホキシド0.25 m 1 で溶解し、0.5 %メチルセルロース水溶液を加えて、100, 10, 5, 2.5, 1.25 m g

/kgの投薬量になるように液量を調整して使用した。感染後7,8,9日目に 試験化合物を上記の濃度で経口投与し、11日目に試験ラットを解剖し、小腸内 の虫体数を測定した。

得られた測定値をもとに無投薬のラット (コントロール) の虫体数との100 分率から、駆虫率を算出した。

[0029]

(3) 試験結果

100%の駆虫率を示す最小投薬量は、前記公開公報に記載のPF1022物質では10mg/kgであるのに対し、試験化合物では2.5mg/kgであった。

本発明化合物を動物及び人における駆虫剤として使用する場合は、液体飲料として経口的に投与することができる。飲料は、普通、ベントナイトのような懸濁剤および湿潤剤またはその他の賦形剤と共に適当な非毒性の溶剤または水での溶液、懸濁液または分散液である。一般に飲料または消泡剤を含有する。飲料処方は一般に活性化合物を約0.01~0.5 重量%、好適には0.01~0.1 重量%を含有する。乾燥した固体の単位使用形態で経口投与することが望ましい場合は、普通、所望量の活性化合物を含有するカプセル、丸薬または錠剤を使用する。これらの使用形態は、活性成分を適当な細かく粉砕された希釈剤、充填剤、崩壊剤及び/または結合剤、例えばデンプン、乳糖、タルク、ステアリン酸マグネシウム、植物性ゴムなどと均質に混和することによって製造される。

このような単位使用処方は、治療される宿主動物の種類および寄生虫の種類および宿主の体重によって駆虫剤の重量および含量に関して広く変化させることができる。

動物飼料によって投与する場合は、それを飼料に均質に分散させるか、トップドレッシングとして使用されるかまたはペレットの形態として使用される。普通、望ましい抗寄生虫効果を達成するためには、最終飼料中に活性化合物を0.0001~2 %含有している。

また、液体担体賦形剤に溶解または分散させたものは、前胃内、筋肉内、気管 内または皮下に注射によって非経口的に動物に投与することができる。非経口投 与のために、活性化合物に好適には落花生油、綿実油のような適当な植物油と混合する。このような処方は、一般に活性化合物を0.05~50重量%含有する。

また、ジメチルスルホキシドまたは炭化水素溶剤のような適当な担体と混和することによって局所的に投与し得る。この製剤はスプレーまたは直接的注加によって動物の外部表面に直接適用される。

最善の結果を得るための活性化合物の最適使用量は、治療される動物の種類および寄生虫感染の型および程度によって決まるが、一般に動物体重1 kg当たり約0.01~100mg、好適には0.5~50.0mgを経口投与することによって得られる。このような使用量は一度にまたは分割した使用量で1~5日のような比較的短期間にわたって与えられる。

次にこの発明の実施例を示す。

[0030]

製造例1

Boc-Tyr (Me) -OH(5.1g)を4N-塩酸・ジオキサン(87.5ml)に溶解し、氷冷下、2時間攪拌した。ジオキサンを減圧留去した後、残渣を6N-塩酸水溶液(45ml)に溶解し、0℃で、亜硝酸ナトリウム(1.9g)を少しずつ加えた。そのまま4時間攪拌後、反応溶液をエーテル(100ml×3)で抽出した。エーテル層を飽和食塩水で洗浄後、塩化カルシウムで乾燥し、溶媒を減圧留去した。残渣にベンゼン(30ml)、ベンジルアルコール(3.4ml)及びP-トルエンスルホン酸1水和物(0.22g)を加え、ジーンスターク装置を用いて3時間加熱還流を行った。室温まで冷却後、溶媒を留去して得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチル、ヘキサンの混液(1:10,v/v)で溶出した。所望の生成物を含む溶出面分の溶媒を留去し、(S) -α-クロローβ-(P-メトキシ)フェニルプロピオン酸ベンジルエステル(1.79g)を得た。

NMR(CDCl₃, δ): 3.12(dd,1H), 3.29(dd,1H), 3.78(s,3H), 4.44(t,1H), 5.07-5.25(m,2H), 6.77-7.36(m,9H).

[0031]

製造例2

Boc-MeLeu-OH(1.37g) のメタノール(30ml)、水(10ml)の溶液に20%炭酸セシウム水溶液を加えpH7.0とした。溶媒を減圧留去した後、トルエン(10ml)で3回共沸した。残渣をジメチルホルムアミド(20ml)に溶解し、氷冷下、(S) ーαークロローβー(P-メトキシ)フェニルプロピオン酸ベンジルエステル(1.7g)を加えた後、室温で24時間攪拌した。反応液を水(150ml)に注ぎ、エーテル(100ml×3)で抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチルとヘキサンとの混液(1:8 v/v)で溶出した。所望の生成物を含む溶出面分の溶媒を留去し、Boc-MeLeu-D-p-MeOPhLac-OBzl(1.59g)を得た。NMR(CDCl₃,δ):0.90(d,6H),1.41(s)及び1.49(s)(9H),1.40-1.58(m,3H),2.62-2.67(m,3H),3.06-3.15(m,2H),3.77(s,3H),4.68-4.80(m)及び,

4.97-5.29(m)(4H), 6.78(d,2H), 7.06(d,2H), 7.26-7.36(m,5H).

[0032]

製造例3

Boc-MeLeu-D-p-MeOPhLac-OBzl(1.36g)のメタノール(15ml)溶液に1 0%パラジウム炭素(0.4g)を加え、水素ガス雰囲気中大気圧下常温で4 5 分間水素添加を行った。触媒を慮去し溶媒を留去し、Boc-MeLeu-D-p-MeOPhLac-OH(1.08g)を得た。NMR(CDCl₃,δ): 0.89-0.95(m,6H), 1.44(s,9H), 1.44-1.79(m,3H), 2.66-2.82(m,3H), 3.01-3.20(m,2H), 3.79(s,3H), 4.40-4.75(m,1H), 5.15-5.38(m,1H), 6.82(d,2H), 7.14(d,2H).

[0033]

製造例4

Boc-MeLeu-D-Lac-OBzl(1.04g) を4N-塩酸・ジオキサン(12.5ml)に溶解し、 氷冷下、3時間攪拌した。溶媒を減圧留去後、トルエン(10ml)で2回共沸をし、 H-MeLeu-D-Lac-OBzl·HCl(1g)を得た。

NMR(CDCl₃, δ): 0.94-1.00(m,6H), 1.59(d,3H), 1.78-2.13(m,3H), 2.62-2.75(m,3H), 3.78-3.85(m,1H), 5.09-5.29(m,3H), 7.25-7.43(m,5H),

9.80-10.00(m,1H), 10.30-10.55(m,1H).

[0034]

製造例5

Boc-MeLeu-D-p-MeOPhLac-OH(1g), H-MeLeu-D-Lac-OBz1·Hc1(1g),ジクロルメタン(20ml)及びトリエチルアミン(1.5ml) の混合液に氷冷下塩化ビス (2ーオキソー3ーオキサゾリジニル) ホスフィン(0.98g) を加え、そのまま 1 3 時間攪拌した。水(50ml)を加え、酢酸エチル(50ml ×3)で抽出し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチルーへキサンの混液(1:3 v/v) で溶出した。所望の生成物を含む溶出画分の溶媒を留去し、Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBz1(1.59g)を得た。

NMR(CDCl₃, δ): 0.80-0.99(m,12H), 1.42-1.80(m,18H), 2.66-3.04(m,8H), 3.78(s,3H), 4.64-5.43(m,6H), 6.81(d,2H), 7.12-7.39(m,7H).

[0035]

<u>製造例 6</u>

Boc-MeLeu-D-p-MeOPhLac-OBzl の代わりにBoc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBzl(0.75g) を用いた以外は製造例3と同様にしてBoc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OH(0.67g)を得た。

NMR(CDCl₃, δ): 0.82-0.94(m,12H), 1.46(s,9H), 1.40-1.80(m,9H), 2.67-3.29 (m,8H), 3.77(s,3H), 4.83-5.71(m,4H), 6.80(d,2H), 7.15(d,2H).

[0036]

製造例7

Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBz1(0.75g)を4N-塩酸・酢酸エチル(5.25ml)に溶解し、氷冷下3時間攪拌した。溶媒を減圧留去した後、トルエン(10ml)で2回共沸して、H-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBz1·HC1(0.74g)を

得た。

NMR(CDCl₃, δ): 0.77-1.00(m,12H), 1.21-1.98(m,9H), 2.61-3.10 (m,8H), 3.77(s,3H), 3.62-3.82(m,1H), 5.04-5.55(m,5H), 6.83(d,2H). 7.12-7.34(m,7H), 9.30-9.50(m,1H), 10.40-10.59(m,1H).

[0037]

製造例8

Boc-MeLeu-D-p-MeOPhLac-OH の代わりにBoc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OH(0.67g) を用い、H-MeLeu-D-Lac-OBz1・HC1の代わりに、H-MeLeu-D-p-MeOPhlac-MeLeu-D-Lac-OBz1・Hc1(0.74g)を用いた以外は製造例5と同様にして、Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBz1(0.94g)を得た。

 $\label{eq:NMR_code} \text{NMR}\left(\text{CDCl}_3, \delta\right) : 0.80\text{--}0.99(\texttt{m}, 24\texttt{H}), \ 1.10\text{--}1.70(\texttt{m}, 27\texttt{H}), \ 2.65\text{--}3.10(\texttt{m}, 16\texttt{H}), \\ 3.77(\texttt{s}, 6\texttt{H}), \ 4.61\text{--}5.49(\texttt{m}, 10\texttt{H}), \ 6.78\text{--}6.85(\texttt{m}, 4\texttt{H}), \ 7,12\text{--}7.40(\texttt{m}, 9\texttt{H}).$

[0038]

製造例 9

Boc-MeLeu-D-p-MeOPhLac-OBz1 の代わりにBoc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OBz1(0.92g)を用いた他は、製造例3と同様にしてBoc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-

NMR(CDCl₃, δ): 0.79-0.99(m,24H), 1.10-1.80(m,27H), 2.65-3.15 (m,16H), 3.77(s,6H), 4.60-5.65(m,8H), 6.78-6.90(m,4H), 7.13-7.25(m,4H).

[0039]

製造例10

Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OH (0.89g) 及びペンタフルオロフェノール(0.14g) のジクロルメタン(10ml)溶液に、氷冷下、1-エチル-3-(3-ジメチルアミノプロピル) カルボジイミド・

塩酸塩(0.22g) を加え、そのまま 3 時間攪拌した。反応液を減圧濃縮して得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチル・ヘキサンの混液(1:1, v/v)で溶出した。所望の生成物を含む溶出画分の溶媒を留去し、Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-P-MeOPhLac-MeLeu-D-Lac-OC $_6F_5$ (0.8g)を得た。

NMR(CDCl₃, δ): 0.80-0.99(m,24H), 1.10-1.80(m,27H), 2.65-3.18(m,16H), 3.77(s,6H), 4.60-5.55(m,8H), 6.78-6.90(m,4H), 7.10-7.22(m,4H).

[0040]

製造例11

H-D-Man-OH(1g), トリエチルアミン(0.92ml)の酢酸エチル(50ml)溶液に氷冷下臭化フェナシル(1.31g) を加えた。室温で48時間攪拌後、反応液を水に注ぎ、酢酸エチル(50ml ×3)で抽出した。無水硫酸マグネシウムで乾燥後、減圧濃縮してH-D-Man-OPac(1.7g)を得た。

NMR(CDCl₃, δ): 5.30(d,1H), 5.41(s,1H), 5.47(d,1H), 7.37-7.88(m,10H).

[0041]

製造例12

Boc-MeLeu-OH(1.54g), H-D-Man-OPac(1.7g) の塩化メチレン(50ml)溶液に、氷冷下、ジメチルアミノピリジン(77mg), 1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド・塩酸塩(1.32g) を加えそのまま3時間攪拌した。塩化メチレンを減圧留去した後、酢酸エチル(200ml) を加え、水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮して得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチルとヘキサンとの混液(1:3, v/v)で溶出した。所望の生成物を含む溶出画分の溶媒を留去し、Boc-MeLeu-D-Man-OPac(3g)を得た。

NMR(CDCl $_3$, δ) : 0.91-0.97(\blacksquare ,6H), 1.39(s)及び1.43(s)(9H),

1.40-1.86(■,3H), 2.85(s)及び2.88(s)(3H), 4.80-4.88(■) 及び

5.04-5.12(m)(1H), 5.29(d,1H), 5.40(d,1H), 6.11(s) 及び6.15(s)(1H), 7.40-

7.86(m,10H).

[0042]

製造例13

Boc-MeLeu-D-Man-OPac(3g)の90%酢酸水溶液(30ml)に亜鉛粉末(3g)を加え、室温で1時間攪拌した。亜鉛残渣を濾過した後、溶媒を減圧留去して、残渣に酢酸エチル(200ml)を加え、10%クエン酸水溶液、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮して得た粗生成物をシリカゲルクロマトグラフィーにより精製し、塩化メチレン/エタノール/酢酸の混液(20:1:0.1, v/v)で溶出した。所望の生成物を含む溶出画分の溶媒を留去して、Boc-MeLeu-D-Man-OH(2.22g)を得た。

NMR(CDCl₃, δ): 0.91-0.97(m,6H), 1.28(S)及び1.44(S)(9H), 1.40-1.80(m,3H), 2.86(S,3H), 4.80-4.98(m,1H)), 5.95(S,1H), 7.39-7.50(m,5H).

[0043]

製造例14

(S)- α -クロロ- β -(p-メトキシフェニル) プロピオン酸ペンジルエステルの代わりに<math>(S)- α -クロロプロピオン酸トリクロロエチルエステル(4.8g)を用いた他は製造例 2 と同様にしてBoc-MeLeu-D-Lac-OTce(7.98g) を得た。 NMR $(CDCl_3,\delta):0.93-0.98(\blacksquare,6H),1.47(s,9H),1.59(d,3H),1.50-1.78(■,3H),2.81(s)及び<math>2.84(s)$ (3H),4.64-5.05(\blacksquare ,3H),5.19(q,1H).

[0044]

製造例15

Boc-MeLeu-D-Lac-OBz1の代わりに、Boc-MeLeu-D-Lac-OTce(2.7g)を用いた以外は製造例4と同様にして、H-MeLeu-D-Lac-OTce・HC1(2.45g) を得た。 $\text{NMR}(\text{CDC1}_3, \delta) : 0.95-1.03(\mathbf{m}, 6\text{H}), 1.68(\mathbf{d}, 3\text{H}), 1.80-2.16(\mathbf{m}, 3\text{H}), \\ 2.74-2.80(\mathbf{m}, 3\text{H}), 3.80-3.99(\mathbf{m}, 1\text{H}), 4.67(\mathbf{d}, 1\text{H}), 4.96(\mathbf{d}, 1\text{H}), 5.32(\mathbf{q}, 1\text{H}),$

9.80-10.10(m,1H), 10.30-10.60(m,1H).

[0045]

製造例16

Boc-MeLeu-D-p-MeOPhLac-OH の代わりに、Boc-MeLeu-D-Man-OH(2.22g) を用い、H-MeLeu-D-Lac-OBz1·HClの代わりに、H-MeLeu-D-Lac-OTce・HCl(2.4g)を用いた以外は、製造例 5 と同様にして、Boc-MeLeu-D-Man-MeLeu-D-Lac-OTce(3.33g) を得た。

NMR(CDC1₃, δ): 0.77-0.99(m,12H), 1.35(s,9H), 1.26-1.84(m,9H), 2.79-2.98(m,6H), 4.53-5.55(m,5H), 6.15-6.24(m,1H), 7.39-7.46(m,5H).

[0046]

製造例17

Boc-MeLeu-D-Man-OPacの代わりに、Boc-MeLeu-D-Man-MeLeu-D-Lac-OTce(1.5g)を用いた以外は、製造例13と同様にして、Boc-MeLeu-D-Man-MeLeu-D-Lac-OH (1.46g) を得た。

NMR(CDCl₃, δ): 0.79-0.99(m,12H), 1.37(s,9H), 1.20-1.83(m,9H), 2.79-2.96(m,6H), 4.53-5.40(m,3H), 6.14-6.26(m,1H), 7.39-7.44(m,5H).

[0047]

製造例18

Boc-NeLeu-D-p-NeOPhLac-NeLeu-D-Lac-OBzl の代わりに、Boc-NeLeu-D-Nan-NeLeu-D-Lac-OTce(1.5g)を用いた他は製造例7と同様にして、H-NeLeu-D-Nan-NeLeu-D-Lac-OTce・HCl(1.3g)を得た。

NMR(CDC1₃, δ): 0.78-0.98(m,12H), 1.30-2.24(m,9H), 2.78-2.97(m.6H), 3.79-3.99(m,1H), 4.52-5.56(m,4H), 6.27-6.31(m,1H), 7.40-7.52(m,5H), 9.52-9.90(m,1H), 10.10-10.42 (m,1H).

[0048]

製造例19

Boc-MeLeu-D-p-MeOPhLac-OH の代わりに、Boc-MeLeu-D-Man-MeLeu-D-Lac-OH (1.4g)を用い、H-MeLeu-D-Lac-OBzl・HClの代わりにH-MeLeu-D-Man-MeLeu-D-Lac-OTce・HCl(1.3g)を用いた他は、製造例5と同様にして、Boc-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-OTce(1.17g)を得た。

NMR(CDCl₃, δ): 0.76-1.18(m,24H), 1.21-1.98(m,27H), 2.79-3.10(m,12H), 4.52-5.59(m,8H), 6.13-6.25(m,2H), 7.15-7.55(m,10H).

[0049]

製造例20

Boc-NeLeu-D-Man-OPacの代わりに、Boc-NeLeu-D-Man-NeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-OTce(1.17g) を用いた他は、製造例13と同様にして、Boc-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-OH(1.07g) を得た。
NMR(CDC13, る): 0.70-1.10(m,24H), 1.35(s,9H), 1.25-1.98(m,18H), 2.78-3.09(m,12H), 4.20-5.59(m,6H), 6.10-6.37(m,2H), 7.26-7.59(m,10H).

[0050]

製造例 2 1

Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-P-MeOPhLac-MeLeu-D-Lac-OHの代わりに、Boc-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-OH(1g)を用いた以外は、製造例10と同様にして、Boc-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-OC₆F₅(0.96g)を得た。

NMR(CDC1₃, δ): 0.72-1.00(m,24H), 1.10-1.95(m,27H), 2.77-3.09(m,12H), 4.40-5.68(m,6H), 6.12-6.24(m,2H), 7.22-7.58(m,10H).

[0051]

実施例1

Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-P-MeOPhLac-MeLeu-D-Lac-OC $_6F_5$ (0.4g) の塩化メチレン(4ml) 溶液に氷冷下、トリフルオロ酢酸(2ml) を加え、そのまま 2 時間攪拌した。溶媒を減圧留去して、残渣をジオキサン(30ml)に

溶解し、90℃に加温したピリジン(620ml) 中に5時間をかけて滴下した後、そのまま2.5時間攪拌した。溶媒を減圧留去し、トルエン(30ml)で共沸をしたのち、残渣に酢酸エチル(200ml) を加え、10%クエン酸水溶液、水、飽和炭酸水素ナトリウム水溶液、水で順次洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮して得られた粗生成物をシリカゲルクロマトグラフィーにより精製し、酢酸エチルとヘキサンとの混液(1.5:1, v/v)で溶出した。所望の生成物を含む溶出画分の溶媒を減圧留去し、

MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLe

(0.16g) を得た。

NMR(CDCl₃, δ): 0.79-1.00(m,24H), 1.10-1.80(m,18H), 2.73-3.09(m,16H), 3.78(s,6H), 4.40-4.54(m), 及び5.00-5.67(m)(8H), 6.82(d,4H), 7.15(d,4H).

IR(KBr); 1741, 1662cm⁻¹

FAB-MS ; 1009(M+H)⁺

[0052]

実施例2

Boc-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-MeLeu-D-p-MeOPhLac-MeLeu-D-Lac-OC $_6$ F $_5$ の代わりに、Boc-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac-OC $_6$ F $_5$ を用いた以外は実施例1と同様にして、

MeLeu-D-Man-MeLeu-D-Lac-MeLeu-D-Man-MeLeu-D-Lac

(0.11g) を得た。

NMR(CDCl₃, δ): 0.70-1.00(m,24H), 1.10-1.98(m,18H), 2.75-3.10(m,12H),4.

60-5.70(m,6H), 6.44(s,2H), 7.30-7.60(m,10H).

IR(KBr); 1750, 1677cm⁻¹,

FAB-MS; 921(M+H)+

【書類名】要約書

【要約】

【構成】一般式:

【化1.】

(式中、Aは低級アルコキシ、ハロゲンまたは低級アルキルで置換されたベンジル基または置換基を有していてもよいフェニル基、B、CおよびDは水素;低級アルキル基;置換基を有していてもよいフェニル基;または置換基を有していてもよいベンジル基を意味する)で示される化合物またはその塩。

【効果】この化合物は駆虫活性を有する。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005245

【住所又は居所】

大阪府大阪市中央区道修町3丁目4番7号

【氏名又は名称】

藤沢薬品工業株式会社

【代理人】

申請人

【識別番号】

100091683

【住所又は居所】

大阪府大阪市都島区東野田町1丁目21番14号

ニュー若杉ビル8階 吉川国際特許事務所

【氏名又は名称】

▲吉▼川 俊雄

出願人履歴情報

識別番号

[000005245]

1. 変更年月日

1990年 8月17日

[変更理由]

新規登録

住 所

大阪府大阪市中央区道修町3丁目4番7号

氏 名

藤沢薬品工業株式会社