Recherche opérationnelle & optimisation Chapitre 3: La résolution du programme générale

Mohamed Essaied Hamrita

Janvier 2022

- 2 La méthode du simplexe à deux phases
- 3 La méthode du grand M
- 4 Les problèmes irréguliers

- Introduction
- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers

Dans le deuxième chapitre, nous avons vu comment résoudre un programme linéaire qui est mis sous la forme standard. Dans ce chapitre, nous allons exposer les méthodes de résolution d'un programme linéaire sous la forme générale (des inégalités de types \geq , des égalités ou des valeurs du second membre négatives).

Dans le deuxième chapitre, nous avons vu comment résoudre un programme linéaire qui est mis sous la forme standard. Dans ce chapitre, nous allons exposer les méthodes de résolution d'un programme linéaire sous la forme générale (des inégalités de types \geq , des égalités ou des valeurs du second membre négatives).

Les méthodes de résolution de tels programmes:

- La méthode du simplexe à deux phases.
- La méthode du grand M (Big M).

On utilise ces méthodes, lorsque le programme n'admet pas une solution initiale admissible.

On considère le PL suivant:

$$\begin{cases} \max z = 3x_1 - x_2 \\ 2x_1 + x_2 \ge 2 \\ x_1 + 3x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases}$$

Comme il est montré dans la figure, le point d'origine (0,0) n'est pas une solution admissible pour le PL.

Donc, pour remédier de ce problème, on peut appliquer soit la méthode du simplexe à deux phases soit la méthode du grand M.

Déterminons, tout d'abord, la forme standard du PL.

$$\begin{cases} \max z = 3x_1 - x_2 \\ 2x_1 + x_2 + s_1 + a_1 = 2 \\ x_1 + 3x_2 + s_2 = 2 \\ x_1, x_2, s_1, s_2, a_1 \ge 0 \end{cases}$$

 a_1 est appelée variable artificielle. Pour chaque contrainte de type \geq ou de type =, en plus des variables d'écarts, on ajoute des variables artificielles.

- 1 Introduction
- 2 La méthode du simplexe à deux phases
- 3 La méthode du grand M
- 4 Les problèmes irréguliers

Phase 1: La première phase consiste minimiser la somme des variables artificielles introduites sous les contraintes du PL. Cette phase a pour objectif, la détermination d'une solution initiale du PL.

Phase 2: La phase 2 reprendra l' objectif original, qui était de maximiser z. Le tableau initial de la phase 2 s'obtient en modifiant le dernier tableau de la phase 1 de la façon suivante:

- On supprime les variables artificielles;
- On exprime la fonction-objectif z en fonction des variables hors base du dernier tableau de la phase 1, en excluant les variables artificielles.

$$(PL_a) \begin{cases} \min W = a_1 \\ 2x_1 + x_2 - s_1 + a_1 = 2 \\ x_1 + 3x_2 + s_2 = 2 \\ x_1, x_2, s_1, s_2, a_1 \ge 0 \\ x_1, x_2, s_1, s_2, a_1 \ge 0 \end{cases}$$

Phase 1:

La première phase consiste à déterminer une solution réalisable initiale en résolvant le PL_a . Le premier tableau simplexe du PL_a est:

	Сј	0	0	0	0	1	h.
	Base		x_2	s ₁	s ₂	a_1	b _i
1	a_1	2	1	-1	0	1	2
0	s_2	1	3	0	1	0	2
	W_j		1	-1	0	1	W=2
δ_j	$= c_j - W_j$	-2	-1	1	0	0	
0	<i>x</i> ₁	1	1/2	-1/2	0	1/2	1
0	s_2	0	5/2	1/2	1	-1/2	1
	W_{j}		0	0	0	0	W = 0
δ_j	$= c_j - W_j$	0	0	0	0	1	

Ce dernier tableau est optimal, donc une solution admissible initiale du PL est $x_1 = 1, x_2 = 0, s_1 = 0, s_2 = 1$.

Phase 2:

Dans la phase 2, on reprend le dernier tableau du PL_a en supprimant la colonne de a_1 et en reprenant les coefficients de la fonction objectif du PL original.

	Сј	3	-1	0	0	b _i
	Base		x_2	s ₁	s ₂	D,
3	<i>x</i> ₁	1	1/2	-1/2	0	1
0	s_2	0	5/2	1/2	1	1
	Zj		3/2	-3/2	0	z = 3
δ_j	$= c_j - z_j$	0	-5/2	3/2	0	

	Сј	3	-1	0	0	bi
	Base		x_2	s ₁	s ₂	D ₁
3	<i>x</i> ₁	1	3	0	1	2
0	s_1	0	5	1	2	2
	z_j	3	9	0	3	z = 6
δ_j	$= c_j - z_j$	0	-10	0	-3	

Ce dernier tableau est optimal et la solution optimale est: $X^* = (2, 0, 2, 0)$ et $Z^* = 6$.

Exercice 1

Résoudre, par la méthode du simplexe à deux phases, le PL suivant:

$$(PL) \begin{cases} \min W = 10x_1 + 6x_2 + 2x_3 \\ -x_1 + x_2 + x_3 \ge 1 \\ 3x_1 + x_2 - x_3 \ge 2 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 1 Introduction
- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers

La méthode du grand M consiste à associer une coefficient -M (très grand nombre) dans la fonction objectif pour chacune des variables artificielles introduites.

Si, on reprend l'exemple précédent, on aura $Z=3x_1-x_2-Ma_1$ et le premier tableau simplexe du PL est:

Сј		3	-1	0	0	-M	h.
Base		<i>x</i> ₁	x_2	s ₁	s ₂	a_1	D _i
-M	a_1	2	1	-1	0	1	2
0	s_2	1	3	0	1	0	2
	z _j	-2M	-M	М	0	-M	z = -2M
$\delta_j = \epsilon$	$c_j - W_j$	3+2M	M - 1	-M	0	0	

 x_1 entre dans dans la base et a_1 quitte la base.

	<i>c</i> _j 3		-1	0	0	-M	h.
	Base	<i>x</i> ₁	x_2	s ₁	s ₂	a_1	b _i
3	<i>x</i> ₁	1	1/2	-1/2	0	1	1/2
0	s_2	0	5/2	1/2	1	-1/2	1
	Zj	3	3/2	-3/2	0	3/2	z = 3
δ_j	$= c_j - z_j$	0	-5/2	3/2	0	3/2 - M	

	c_j	3	-1	0	0	h.
	Base	<i>x</i> ₁	X 2	s ₁	s ₂	b _i
3	<i>x</i> ₁	1	3	0	1	2
0	s_1	0	5	1	2	2
	 Zj	3	9	0	3	z=6
δ_j	$= c_j - z_j$	0	-10	0	-3	

- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers
 - Les problèmes impossibles Les problèmes à solutions multiples Problèmes non bornés Les problèmes à solution dégénérée

- Introduction
- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers
 Les problèmes impossibles
 Les problèmes à solutions multiples
 Problèmes non bornés
 Les problèmes à solution dégénérée

Graphiquement, on caractérise ces problèmes par un ensemble de solutions réalisables vide. Avec la méthode de simplexe, on reconnaît que le problème est impossible si une ou plusieurs variables artificielles sont présentes dans la base dans le tableau de simplexe optimal, ce qui signifie que la solution donnée par ce tableau n'est pas réellement réalisable.

Exemple 1

On considère le PL suivant:

$$\begin{cases} \max z = 4x_1 + 3x_2 \\ x_1 + x_2 \le 2 \\ 3x_1 + x_2 \ge 10 \\ x_1, x_2 \ge 0 \end{cases}$$

Après l'introduction des variables d'écarts et une variable artificielle, on obtient la forme standard suivante:

$$\begin{cases} \max z = 4x_1 + 3x_2 - Ma_1 \\ x_1 + x_2 + s_1 = 2 \\ 3x_1 + x_2 - s_2 + a_1 = 10 \\ x_1, x_2, s_1, s_2, a_1 \ge 0 \end{cases}$$

Cj		4	3	0	0	-M	h.
Ва	ase	<i>x</i> ₁	x_2	s ₁	s ₂	a 1	b _i
0	s ₁	1	1	1	0	0	2
-M	a_1	3	1	0	-1	1	10
2	z _j	-3M	-M	0	М	-M	z = -10M
$\delta_j = \epsilon$	$c_j - z_j$	4 + 3M	3 + M	0	-M	0	

Les problèmes impossible

Introduction

Cj		4	3	0	0	-M	h.
Ва	ase	<i>x</i> ₁	x ₂	s_1	s ₂	a_1	D _i
4	x_1	1	1	1	0	0	2
-M	a 1	0	-2	-3	-1	1	4
2	 Zj	4	4+2M	4 + 3M	М	-M	z = 8 - 4M
$\delta_j = \epsilon$	c _j — z _j	-1 - 2M	-4 - 3M	0	-M	0	

Ce dernier tableau simplexe est optimal avec une variable artificielle dans la base. Donc, il s'agit d'un PL **impossible** (PL sans solution admissible).

- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers Les problèmes impossibles Les problèmes à solutions multiples Problèmes non bornés Les problèmes à solution dégénérée

Graphiquement, ce problème est caractérisé par le fait que la pente de la droite représentant la fonction objectif (z=0) est égale à la pente de l'une des contraintes restrictives. Lorsqu'on utilise la méthode de simplexe, on identifie ce problème lorsqu'un des coefficient c_j-z_j d'une variable hors base est nul.

Exemple 2

$$\begin{cases} \max z = 2000x_1 + 3000x_2 \\ 6x_1 + 9x_2 \le 100 \\ 2x1 + x_2 \le 20 \\ x_1, x_2 \ge 0 \end{cases}$$

Les problèmes à solutions multiples

Introduction

C	j	2000	3000	0	0	b _i
Base		<i>x</i> ₁	x_2	s ₁	s ₂	D_{l}
0	s ₁	6	9	1	0	100
0	s ₂	2	1	0	1	20
Z	j	0	0	0	0	z = 0
$\delta_j = c$	$j-z_j$	2000	3000	0	0	
3000	x_2	2/3	1	1/9	0	100/9
0	s ₂	4/3	0	-2/9	1	80/9
z_j		2000	3000	100/9	0	z = 100000/9
$\delta_j = c$; — Zj	0	0	0	-100/9	0

Ce dernier tableau est optimal. Cependant, le coefficient δ_1 correspondant à la variable x_1 , qui est est une variable hors base, est nul. Cela indique que le programme possède plus qu'une solution optimale.

- Introduction
- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers
 - Les problèmes à solutions multi-
 - Les problèmes à solutions multiples
 - Problèmes non bornés
 - Les problèmes à solution dégénérée

Graphiquement, ce problème est caractérisé par le fait qu'on peut déplacer la droite de la fonction objectif indéfiniment de manière à accroître la valeur, en gardant toujours une intersection non vide avec l'ensemble des solutions réalisables.

Avec la méthode de simplexe, on reconnaît ce problème lorsque la variable entrante n'admet aucune limite sur sa valeur d'entrée, c'est à dire que tous les ratios bi/a_{ij} sont négatifs ou nuls.

Exemple 3

$$\begin{cases} \max z = 2x_1 + x_2 \\ x_1 - x_2 \le 10 \\ 2x_1 - x_2 \le 40 \\ x_1, x_2 \ge 0 \end{cases}$$

Problemes non borne

	c_j	2	1	0	0	b _i
	Base	<i>x</i> ₁	x_2	s ₁	s_2	D ₁
0	s_1	1	-1	1	0	10
0	s_2	2	-1	0	1	40
	Zj	0	0	0	0	z = 0
δ_j	$= c_j - z_j$	2	1	0	0	2 – 0
2	x_1	1	-1	1	0	10
0	s_2	0	1	-2	1	20
	Zj	2	-2	2	0	z = 20
δ_j	$= c_j - z_j$	0	3	-2	0	2 — 20
2	<i>x</i> ₁	1	0	-1	1	30
1	x_2	0	1	-2	1	20
	z_j		1	-4	3	z = 80
δ_j	$= c_j - z_j$	0	0	4	-3	2 - 60

Problèmes non bornés

Introduction

Ce dernier tableau n'est pas optimal. La variable s_1 est une variable candidate à entrer dans la base, mais les coefficients de la colonne de s_1 sont tous négatifs. Aucune variable candidate à quitter la base. Cela indique que le programme est **non borné**.

- 2 La méthode du simplexe à deux phase
- 3 La méthode du grand M
- 4 Les problèmes irréguliers
 - Les problèmes impossibles Les problèmes à solutions multiples Problèmes non bornés
 - Les problèmes à solution dégénérée

Graphiquement, on appelle solution **dégénérée** le point où plusieurs contraintes concourent (un nombre supérieur ou égale à trois contraintes). Un programme linéaire est dit dégénérée si une ou plusieurs variables dans la base optimale sont **nulles**.

Exemple 4

$$\begin{cases} \max z = 5x_1 + 3x_2 \\ x_1 + x_2 \le 2 \\ 5x_1 + 2x_2 \le 10 \\ 3x_1 + 8x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

En introduisant des variables d'écarts, on obtient le premier tableau simplexe

	Сј	5	3	0	0	0	h.
	Base		<i>x</i> ₂	s ₁	s ₂	s 3	b _i
0	s_1	1	1	1	0	0	2
0	s_2	5	2	0	1	0	10
0	s ₃	3	8	0	0	1	12
	Zj	0	0	0	0	0	z = 0
δ_j	$= c_j - z_j$	5	3	0	0	0	2 – 0

 x_1 est une variable candidate à entrer dans la base. Cependant, deux variables candidates à quitter la base; s_1 et s_2 . Cela est un signe que la solution optimale sera dégénérée. Le choix de la variable sortante de la base peut s'effectuer d'une manière arbitraire. Toutefois, le nombre d'itérations nécessaires pour arriver à la solution optimale peut être minimisé en adoptant les règles suivantes:

- Divisez les coefficients des variables d'écart dans le tableau simplexe où la dégénérescence est vue par les nombres positifs correspondants de la colonne clé de la ligne, en commençant de gauche à droite;
- Comparez les ratios à l'étape (i) de gauche à droite par colonne, sélectionnez la ligne qui contient le plus petit ratio.

Dans notre exemple, on a s_1 et s_2 deux variables pouvant quitter la base. La colonne de la variable entrante est (1,5,3). Divisons les coefficients de la ligne de s_1 correspondants aux s_1 et s_2 : 1/1 et 0/1.

De même pour la ligne de s_2 , 0/5 et 1/5.

La première colonne, de gauche à droite, des ratios est 1/1, 0/5. leur min est 0/5. Donc, on choisit s_2 comme variable sortante de la base.

Les problèmes à solution dégénérée

Introduction

	Сј	5	3	0	0	0	b _i
	Base	x ₁	<i>x</i> ₂	s_1	s ₂	s 3	D_{l}
0	s_1	0	3/5	1	-1/5	0	0
5	<i>x</i> ₁	1	2/5	0	1/5	0	2
0	s ₃	0	34/5	0	-3/5	1	6
	z_j	5	2	0	1	0	z = 10
δ_j	$= c_j - z_j$	0	1	0	-1	0	2 – 10
3	<i>x</i> ₂	0	1	5/3	-1/3	0	0
5	<i>x</i> ₁	1	0	-2/3	1/3	0	2
0	s ₃	0	0	-34/5	5/3	1	6
	z _j	5	3	5/3	2/3	0	z = 10
δ_j	$= c_j - z_j$	0	2	-5/3	-2/3	0	2 - 10

Ce dernier tableau simplexe est optimal. On remarque bien que x_2 est une variable de base et est nulle.