→ 8TH_SEPT_ASSIGNMENT

```
NAME:- K S H V SAI HARI KRISHNA

REG NO:- 21BCE8069

Assignment 8 th september
1.Take car crashes dataset from seaborn library
2.load the dataset
3.data visualiation
4.Inference is must for each and every graph
5.Submit it by wednesday in html format

Feedback - https://forms.gle/7vFfvANDVfvDxxW28
```

→ Steps:

1.import the necessary libraries 2.import the dataset 3.Handling null values 4.Seperate Dependent and independent variables 5.Encoding 6.splitting into training and testing set 7.Feature scaling

▼ 1.import the necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

2.import the dataset

```
print(sns.get_dataset_names())

['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', '{{\gamma}}

df=sns.load_dataset('car_crashes')

df
```

ılı

	total	speeding	alcohol n	ot_distracted	no_previous	ins_premium	ins_losses	abbrev
-	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	I 18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	3 22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	СО
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	7 16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
1	0 15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
1	1 17.5	9.450	7.175	14.350	15.225	861.18	120.92	н
1	2 15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
1	3 12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
1	4 14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
1	5 15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
1	6 17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
1	7 21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
1	8 20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
1	9 15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
2	0 12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
2	1 8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
2	2 14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
2	3 9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
2	4 17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
2	5 16.1	6.923	5.474	14.812	13.524	790.32	144.45	MO
2	6 21,4	8,346	9,416	17.976	18,190	816,21	85.15	MT
2	7 14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
2	8 14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
2	9 11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
3	0 11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
3	1 18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
3	2 12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
3	3 16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
3	4 23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
3	5 14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
3	6 19.9	6.368	5.771	18.308	18.706	881.51	178.86	ОК
snsversion								
'0	.12.2'							
J	3 11.1	J.117	7.410	10.414	0.100	1170.00	140.00	IM
dataset	.info()							
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 51 entries, 0 to 50 Data columns (total 8 columns): # Column Non-Null Count Dtype</class></pre>								
0		ing	51 non-nul					

float64

speeding

51 non-null

```
alcohol
                     51 non-null
                                     float64
                                     float64
     not_distracted 51 non-null
                     51 non-null
                                     float64
    no_previous
                                     float64
     ins_premium
                     51 non-null
                                     float64
     ins_losses
                     51 non-null
    abbrev
                     51 non-null
                                     object
dtypes: float64(7), object(1)
memory usage: 3.3+ KB
      17.4
               7.3U0
                                       14.094
                                                    บฮฮ.ธา
```

df.head()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev	
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL	11.
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK	
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ	
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR	
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA	

df.shape

(51, 8)

sns.scatterplot(x="total",y="speeding",data=df)

print("as speed increases total also increases")

as speed increases total also increases

sns.scatterplot(x="speeding",y="alcohol",data=df)

print("as alcohol increases speeding also increases")

as alcohol increases speeding also increases

sns.scatterplot(x="alcohol",y="not_distracted",data=df)

print("as alcohol increases not_distracted also increases")

as alcohol increases not_distracted also increases

sns.lineplot(x="total",y="speeding",data=df,ci=None)
print("here we can see fulcutations but still its they are related")

<ipython-input-107-7884c730efd4>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

 $\verb|sns.lineplot(x="total",y="speeding",data=df,ci=None)|\\$ here we can see fulcutations but still its they are related

sns.lineplot(x="alcohol",y="not_distracted",data=df,ci=None)
print("here we can see fulcutations but still its they are related")

<ipython-input-109-ee6c7a76b6a6>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

 $sns.lineplot(x="alcohol",y="not_distracted",data=df,ci=None)\\ here we can see fulcutations but still its they are related$

 $sns.lineplot(x="no_previous",y="ins_premium",data=df,ci=None)\\ print("here we can see fulcutations but still its they are related")$

<ipython-input-110-0c2ff91edc84>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

 $\verb|sns.lineplot(x="no_previous",y="ins_premium",data=df,ci=None)| \\ | here we can see fulcutations but still its they are related| \\$

 $sns.distplot(df["total"]) \\ print("data distribution of a total against the density distribution")$

<ipython-input-115-1eedb4648a09>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(df["total"]) data distribution of a total against the density distribution

sns.distplot(df["alcohol"])
print("data distribution of alcohol against the density distribution")

<ipython-input-117-6f9e972c38d5>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

 $\verb|sns.distplot(df["alcohol"])| \\ \texttt{data distribution of alcohol against the density distribution}$

sns.distplot(df["no_previous"])
print("data distribution of a no_previous against the density distribution")

<ipython-input-118-84f63674cc34>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

 ${\tt sns.distplot(df["no_previous"])} \\ {\tt data\ distribution\ of\ a\ no_previous\ against\ the\ density\ distribution} \\$

sns.relplot(x="total",y="speeding",data=df,hue="alcohol")
print("using hue we differentiated different categories with colors")

using hue we differentiated different categories with colors

sns.relplot(x="not_distracted",y="no_previous",data=df,hue="ins_premium")
print("using hue we differentiated different categories with colors")

using hue we differentiated different categories with colors

 $sns.relplot(x="total",y="speeding",data=df,hue="abbrev")\\print("using hue we differentiated different categories with colors")$

using hue we differentiated different categories with colors


```
print("here we get count of all categories. has everything repeated ")
```

here we get count of all categories. has everything repeated

```
df["speeding"].value_counts()
```

```
4.968
    7.332
             1
    9.100
             1
    5.439
             1
    4.060
    1.792
             1
    3.496
             1
    3.936
             1
    6.552
             1
    5.497
             1
    3.948
    6.368
             1
    4.224
             1
    3.774
    8.346
             1
    9.082
             1
    6.014
             1
    4.095
    7.760
             1
    4.859
             1
    4.080
             1
    2.413
             1
    4.452
             1
    8.092
             1
    1.937
             1
    6.923
             1
    7.421
             1
    2.640
    6.510
             1
    4.032
             1
    4.200
             1
    5.032
             1
    6.156
             1
    2.006
             1
    3.759
             1
    2.964
             1
    9.450
             1
    5.508
             1
    4.608
             1
    3.625
             1
    2.669
             1
    4.806
    4.066
             1
    7.175
             1
    5.738
    4.250
             1
    1.886
             1
    3.384
             1
    2.208
             1
    7.308
    Name: speeding, dtype: int64
df["not_distracted"].value_counts()
    14.094
              2
    18.048
              1
    17.472
    13.965
    10.092
              1
    9.632
              1
    12.328
    10.824
    15.792
              1
    23.661
    13.959
    18.308
              1
    8.576
    10.212
    17.976
              1
    22.944
              1
    19.012
    15.990
    17.654
    9.944
    13.056
              1
    11.049
    8.692
              1
```

23.086 13.857 14.812 16.290

```
1.760
    15.624
              1
    21.056
              1
    10.920
              1
    10.744
              1
    9.396
              1
    5.900
              1
    16.468
    14.820
    14.350
              1
    13.005
              1
    12.032
    13.775
              1
    15.229
              1
    13.706
    16.692
    14.965
              1
    13.137
              1
    8.875
              1
    7.134
    13.395
              1
    8.448
              1
    5.382
    Name: not_distracted, dtype: int64
df["no_previous"].value_counts()
    12.920
              2
    15.040
              1
    16.016
              1
    14.553
              1
    9.628
              1
    8.736
    18.032
              1
    9.840
              1
    13.608
              1
    20.554
              1
    11.562
              1
    18.706
    11.520
              1
    8.769
              1
    18.190
    19.359
              1
    16.684
              1
    15.795
    16.878
    10.848
              1
    11.176
              1
    9.116
              1
    20.706
    11.592
              1
    13.410
              1
    13.524
              1
    17.014
              1
    17.600
              1
    17.856
    21.280
              1
    10.680
              1
    8.856
    16.038
    5.900
              1
    16.826
    14.508
    15.225
              1
    14.994
              1
    12.288
              1
    13.775
    13.659
              1
    15.130
              1
    16.264
    20.090
              1
    12.684
              1
    12.375
    6.560
              1
    10.857
              1
    8.448
    15.660
    Name: no_previous, dtype: int64
print("Bargraph :total vs sppeding")
print("Bargraph : alcohol vs not_distracted ")
print("Bargraph :no_previous vs ins_premium ")
```

Bargraph :total vs sppeding Bargraph : alcohol vs not_distracted Bargraph :no_previous vs ins_premium

 $\verb|sns.barplot(data=df,x="total",y="speeding",ci=None)|\\$

<ipython-input-84-45580ba4c45b>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(data=df,x="total",y="speeding",ci=None)
<Axes: xlabel='total', ylabel='speeding'>

sns.barplot(data=df,x="alcohol",y="not_distracted",ci=None)

<ipython-input-85-c836539ef2b1>:1: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(data=df,x="alcohol",y="not_distracted",ci=None)
<Axes: xlabel='alcohol', ylabel='not_distracted'>

sns.barplot(data=df,x="no_previous",y="ins_premium",ci=None)

<ipython-input-86-560e315f829c>:1: FutureWarning:

The $\mbox{`ci`}$ parameter is deprecated. Use $\mbox{`errorbar=None'}$ for the same effect.

sns.barplot(data=df,x="no_previous",y="ins_premium",ci=None)
<Axes: xlabel='no_previous', ylabel='ins_premium'>

sns.barplot(data=df,x="alcohol",y="not_distracted",hue="no_previous")

<Axes: xlabel='alcohol', ylabel='not_distracted'>

sns.barplot(data=df,x="alcohol",y="not_distracted",hue="ins_premium")

print("countplot for : total ") print("countplot for : alcohol ") print("countplot for : not_distracted ")

 ${\tt countplot}\ {\tt for}\ :\ {\tt total}$ countplot for : alcohol $\verb|countplot| for : \verb|not_distracted| \\$

sns.countplot(x="total",data=df)

sns.countplot(x="alcohol",data=df)

sns.countplot(x="not_distracted",data=df)

```
cand continued by the state of the stat
```

sns.jointplot(x="total",y="speeding",data=df)

<seaborn.axisgrid.JointGrid at 0x7d15d2a4d5d0>

sns.jointplot(x="alcohol",y="no_previous",data=df)

<seaborn.axisgrid.JointGrid at 0x7d15befca4a0>

sns.jointplot(x="not_distracted",y="no_previous",data=df)

<seaborn.axisgrid.JointGrid at 0x7d15bef095a0>

sns.boxplot(x="total",y="speeding",data=df)

<Axes: xlabel='total', ylabel='speeding'>

sns.boxplot(x="not_distracted",y="total",data=df)

<Axes: xlabel='not_distracted', ylabel='total'>

sns.boxplot(x="not_distracted",y="ins_premium",data=df)

corr=df.corr()
corr

<ipython-input-98-7d5195e2bf4d>:1: FutureWarning: The default value of numeric_only in C
corr=df.corr()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	i
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	
4						•	

sns.heatmap(corr,annot=True,cmap="YlGnBu")

<Axes: >

x=df["alcohol"]
y = df["speeding"]
plt.bar(x,y)

<BarContainer object of 51 artists>

plt.barh(x,y)

<BarContainer object of 51 artists>

plt.barh(x,y,color = 'black')

<BarContainer object of 51 artists>

plt.bar(x,y,width = 0.25)

<BarContainer object of 51 artists>

plt.hist(x)