Functional Analysis

David Wiedemann

Table des matières

1	Inti	roduction	3
	1.1	Topological Spaces	3
	1.2	Metric spaces	3
	1.3	Norms, Banach Spaces	6
	1.4	Basis of a normed space	7
	1.5	Scalar products and Hilbert spaces	8
	1.6	Uncountable Orthonormal Systems	11
	1.7	Projections in Banach spaces	12
2	Fun	action Spaces	13
3	L^p s	spaces	16
	3.1	Measure spaces	16
	3.2	Measurable functions and integrals	17
	1	of Theorems Definition (Topological space)	3
	$\frac{1}{2}$		3 3
	3	Definition (Properties)	3
	3 4	Definition (Sequences)	3 3
	4 5	Definition (Continuity)	3 3
	6	Definition (Metric space)	3 4
	1	Lemma	4
	7	Definition	4
	2	Proposition	4
	3	Theorem	5
	8	Definition (Normed space)	6
	9	Definition	6
	10	Definition (Banach Space)	6
	4	Proposition	6

11	Definition	7
12	Definition (Schauder Basis)	7
13	Definition (Equivalence of Norms)	7
5	Lemma	7
14	Definition	8
7	Proposition	8
8	Proposition	8
15	Definition (Hilbert Space)	9
9	Lemma 9	9
10	Theorem	9
11	Lemma	0
12	Corollary	0
16	Definition (Orthonormal systemes)	0
13	Lemma	0
14	Lemma	1
15	Proposition	1
17	Definition	1
16	Theorem	2
17	Theorem	2
18	Definition	2
18	Theorem	3
19	Definition	3
19	Lemma	3
20	Lemma	4
22	Lemma	4
20	Definition	4
23	Theorem (Stone-Weierstrass)	4
24	Lemma	4
25	Lemma	4
26	Theorem	5
21	Definition	6
27	Lemma	6
22	Definition (Hoelder Continuity)	6
23	Definition	6
24	Definition (Meausre space)	7
25	Definition	7
26	Definition (Integral)	Q

1 Introduction

Lecture 1: Introduction

Wed 12 Oct

Main reference is "Functional Analysis" by H.W. Alt.

1.1 Topological Spaces

Definition 1 (Topological space)

Let X be a set, a topology is a subset $\tau \subset P(X)$ is a topology if

- $-\emptyset, X \in \tau$
- any union of opens is open
- Finite intersections of opens are open.

Definition 2 (Properties)

For $A \subset X$, \overline{A} is the smallest closed set containing A and the interior A^o is the biggest open set contained in A.

Finally, the boundary is $\partial A = \overline{A} \setminus A^o$.

X is separable if \exists a dense countable subset

Definition 3 (Sequences)

Let $x : \mathbb{N} \to X, \overline{x} \in X$, $\lim x_k = \overline{x} \iff$ any neighbourhood $U \in T$ of x eventually contains x_k

Definition 4 (Continuity)

A function $f: X \to Y$ is continuous if $\forall U \in \tau_Y, f^{-1}(U)$. This is different from sequential continuity $x_n \to \overline{x} \implies f(x_n) \to f(\overline{x})$

f is continuous at $x \in X$ if $\forall V \in S$ st $f(x) \in V \implies f^{-1}(V) \in \tau_X$

Lecture 2: More recaps

Fri 14 Oct

1.2 Metric spaces

Definition 5 (Metric space)

 $X \text{ a set, } d: X \times X \to [0, \infty) \text{ is a matrix}$

Definition 6

X a set, d_1, d_2 metrics

- 1. d_1 is topologically stronger than d_2 if τ_{d_1} is finer.
- 2. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $d_2 \leq Cd_1$
- 3. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $\frac{1}{C}d_1 \leq d_2 \leq Cd_1$

Lemma 1

THe following are equivalent

- 1. d_1 is topologically stronger than d_2
- 2. Id: $(X, \tau_{d_1}) \to (X, \tau_{d_2})$ is continuous
- 3. If $x_n \to \overline{x}$ in d_1 then $x_n \to \overline{x}$ in d_2
- 4. $\forall x \in X \forall \epsilon > 0 \exists \delta_{\epsilon,x} > 0 \text{ such that}$

$$d(x,y) \le \delta \implies d_2(x,y) < \epsilon$$

Definition 7

Let (X, d) be a metric space

- 1. $A \subset X$ is bounded if $\exists \overline{x} \in X$ such that $\sup_{y \in A} d(x,y) < \infty$ or $A = \emptyset$
- 2. x_n is Cauchy if

$$\lim_{n \to \infty} \sup_{i,j \ge n} d(x_i, x_j) = 0$$

- 3. X complete if x Cauchy $\implies x$ convergent.
- 4. (Y, e) is a matric, $fX \to Y$ is uniformly continuous if $\forall \epsilon > 0 \exists \delta > 0$ such that $d(x, y) < \delta \implies e(f(x), f(y)) < \epsilon$.

Define $X = \{x : \mathbb{N} \to \mathbb{R} \text{ such that } \exists N \text{ such that } x_i = 0 \text{ eventually } \}.$

This space, with p-norm is not complete, so we construct the completion.

Proposition 2

Let (X,d) a metric space and (Y,e) a complete metric space, $A \subset X, \phi : A \to Y$ uniformly continuous.

Then \exists unique $\psi : \overline{A} \to Y$ such that ψ is uniformly continuous and $\phi = \psi|_A$.

Proof

If $x : \mathbb{N} \to A$ is Cauchy, then $\phi \circ x$ is also cauchy.

To prove this, let $\epsilon>0$ and $\partial_{\epsilon}^{\phi}>0$ be such that $d(x,y)<\delta\implies e(\phi(x),\phi(y))<\epsilon.$

Let $N=N_{\delta}^{x}$ be such that $i,j\geq N \implies d(x_{i},x_{j})<\delta$, then $e(\phi(x_{i}),\phi(x_{j}))<\epsilon$

Now, let $a \in \overline{A}$, then $\exists x_k$ converging to a.

x is d-Cauchy and $\phi \circ x$ is e-cauchy.

 $\exists \ a \ limit \ b^* = \lim \phi(x_k) \ So \ we \ define \ \psi(a) = b^*.$

We now prove continuity/uniform continuity.

Let $a, b \in \overline{A}, x, y : \mathbb{N} \to A \text{ and } x_i \to b, y_j \to b.$

Then

$$e(\psi(a), \psi(b)) = \lim e(\phi(x_i), \phi(y_i))$$

Now, let $\epsilon > 0$, then $\exists \delta > 0$ such that $d(x, y) < \delta$.

Thus $e(\phi(x), \phi(y)) < \epsilon$

If $d(a,b) < \delta \exists N \text{ such that } d(x_i,y_i) < \delta \forall i,j > N$

$$e(\phi(x_i), \phi(y_j)) < \epsilon \implies e(\psi(a), \psi(b) \le \epsilon)$$

Theorem 3

If (X,d) is a metric space, then there exists a complete metric space (Y,e) and an isometry $\phi:X\to Y$ such that $Y=\overline{\phi(X)}$.

Both are unique up to a bijective isometry.

Proof

Define $C_X := \{x : \mathbb{N} \to X, x \; Cauchy \} \; and \; x\tilde{y} \; if \lim_{j \to \infty} d(x_i, y_j) = 0.$

Write $Y = C_X / \sim$.

For $x, y \in Y$, define $e(x, y) = \lim_{i \to \infty} d(x_i, x_i)$.

Is this well defined?

If $j, k \ge N$

$$|d(x_i, y_i) - d(x_k, y_k)| \le d(x_i, x_k) + d(y_i, y_k)$$

And if $x\tilde{x}'$, then

$$\lim d(x_i, y_i) = \lim d(x'_i, y_i)$$

because

$$|d(x_i, y_j) - d(x_j', y_j)| \le d(x_j, x_j') \to 0$$

To show that e is a metric, most properties are obvious.

We show that if e(x,y) = 0 then $\lim d(x_j, y_j) = 0 \implies x\tilde{y} \implies x = y$ Triangular equality holds because

$$e(x, y = \lim d(x_i, y_i) \le \lim \sup d(x_i, z_i) + d(z_i, y_i) = e(x, z) + e(z, y)$$

The isometry $\phi: X \to Y$ simply sends $x \mapsto [x]$.

We now show $[x] \in Y$, $\phi(x_k)$ is a sequence in Y, we want to show that

$$\phi(x_k) \to [x].$$

$$\lim_{k\to\infty}e(\phi(x_k),[x])=\lim_{k\to+\infty}\lim_{j\to\infty}d(x_k,x_j)=0$$

Which shows $Y = \overline{\phi(X)}$ Let y^k Cauchy $\forall k \exists x_k \in X$ such that $e([y^k], \phi(x_k)) < 2^{-k}$.

We claim $[y^k] \to [x]$

$$d(x^k, x^h = e(\phi(x^k, \phi(x^h)))) \le 2^{-k} + 2^{-h + e([y^k], [y^h])}$$

Thus $x \in C_X [x] \in Y$

$$e([y^k], [x]) = \lim d(y_i^k, x_j) \le \lim d(U_i^k, x_k) + d(x_k, x_j) \le 2^{-k}$$

Finally, to show uniqueness, if (Y,e) and (Y',e') are two completions. Let $\psi = \phi \circ (\phi')^{-1} : \phi'(X) \to Y$.

 ψ is an isometry so there is a unique extension $\psi: Y' \to Y$ and this is an isometry.

1.3 Norms, Banach Spaces

Throughout, $K = \mathbb{R}$ or \mathbb{C}

Definition 8 (Normed space)

 $\|\cdot\|: X \to [0,\infty)$ is a norm if

$$- \|x\| = 0 \iff x = 0$$

$$- \|\lambda x\| = |\lambda| \|X\|$$

$$- \|x + y\| \le \|x\| + \|y\|$$

Definition 9

 c_0 is the $space c_0 = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \lim x_k = 0\}$ together with $\|x\|_{c_0} = \sup |x_k|$

For
$$p \in [1,\infty)$$
, $l_p = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \sum_{k \in \mathbb{N}} |x_k|^p < \infty \}$ with $||x||_{l_p} = (\sum |x_k|^p)^{\frac{1}{p}}$

Definition 10 (Banach Space)

A Banach space is a complete normed space.

Proposition 4

Any normed space has a completion which is Banach.

Let (Y, e) be the completion as above, define

$$[x] + [y] \coloneqq [x+y] \text{ and } \lambda[x] \coloneqq [\lambda x]$$

1.4 Basis of a normed space

Definition 11

Let $A \subset X$.

A is linearly independent if $\forall N \in \mathbb{N}, \forall a_i \in A \forall \lambda_i \in K, \sum_i \lambda_i a_i = 0 \implies \lambda_i = 0.$

We define

$$span(A) = \left\{ \sum_{i} (i) \lambda_i a_i, \lambda_i \text{ as above } \right\}$$

A is a Hamel basis if A is linearly independent and X = spanA

Definition 12 (Schauder Basis)

 $e: \mathbb{N} \to X$ is a Schauder basis if $\forall x \in X$ there is a unique $\lambda: \mathbb{N} \to K$ such that $x = \sum_{i=0}^{\infty} \lambda_i e_i \iff \lim_{i \to \infty} \left\| x - \sum_{i=0}^{N} \lambda_i e_i \right\| = 0$

Lecture 3: Projections onto Hilbert spaces

Wed 19 Oct

Definition 13 (Equivalence of Norms)

Let $\left\| \cdot \right\|_1$ and $\left\| \cdot \right\|_2$ be norms on a vector space X

- 1. $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$ if the induced metrics are topologically stronger
- 2. $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ if the induced metrics are equivalent

Lemma 5

- 1. If $\|\cdot\|_1$ is stronger than $\|\cdot\|_2 \implies \exists C > 0$ such that $\|x\|_2 \le C \|x\|_1$
- 2. If $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2 \implies \exists C>0$ such that $\frac{1}{C}\,\|x\|_1 \leq \|x\|_2 \leq C\,\|x\|_1$

Proof

- $$\begin{split} \text{1. If not, } \forall k \in \mathbb{N}, \exists v_k \in X \text{ such that } \|v_k\|_2 > k \, \|v_k\|_1. \\ \text{Let } w_k &= \frac{v_k}{\|v_k\|_2} \text{ then } 1 = \|w_k\|_2 > k \, \|w_k\|_1. \\ \text{Thus } w_k \to 0 \in \|\cdot\|_1, \text{ thus } w_k \to 0 \in \|\cdot\|_2 \text{ which is a contradiction.} \end{split}$$
- 2. Follows from 1.

1.5 Scalar products and Hilbert spaces

Definition 14

Let H be a K-vector space.

A map $b: H \times H \to K$ is a scalar product if it satisfies

$$b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z)$$

$$b(\lambda x + \mu y, x) = \overline{\lambda}b(x, z) + \overline{\mu}b(y, z)$$

 $b(x,y) = \overline{b(y,x)}$ and b(x,x) > 0.

(H, b) is a pre-Hilbert space

Example

- 1. K^d with the usual scalar product
- $2. \ell^2(\mathbb{R})$

Proposition 7

- 1. $||x||_H = (x,x)^{\frac{1}{2}}$ is a norm on H
- 2. $Cauchy\text{-}Schwarz: |(x,y)| \le ||x|| \, ||y||$
- 3. $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$

Proof

To show Cauchy-Schwarz, note that $(x + ty, x + ty) \ge 0 \forall t \in K$, thus

$$(x,x) + t((x,y) + (y,x)) + t^2(y,y) \ge 0$$

The middle term is $2t \operatorname{Re}(x,y)$, if the scalar product isn't real, we may rotate y to make it real

Proposition 8

Let $(X, \|\cdot\|)$ be a normed space.

If the parallelogram identity holds, then there is a scalar product b such that $||x|| = b(x,x)^{\frac{1}{2}}$

Proof

Define
$$b(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right)$$
.

We want to check $b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z)$.

First, check $b(x, y + y') + b(x, y - y') = 2b(x, y)$

$$\frac{1}{4} \left[\|x+y+y'\|^2 - \|x-y-y'\|^2 + \|x+y-y'\|^2 - \|x-y-y'\|^2 \right] = \frac{1}{2} (\|x+y\|^2 - \|x-y\|^2)$$

From the provallal errors identity, we get that the left hand side is

From the parallelogram identity, we get that the left hand side is

$$\frac{1}{4} \left[2 \|x + y\|^2 + 2 \|y'\|^2 - 2 \|x - y\|^2 - 2 \|y'\|^2 \right]$$

and thus the equality above holds.

If $y' = y \implies b(x, 2y) = 2b(x, y)$ and thus

$$y' = ny$$
 $b(x, (n+1)y) = 2b(x, y) - b(x, y - ny)$

and we conclude by induction that b(x, ny) = nb(x, y).

Thus $b(x,qy) = qb(x,y) \forall q \in \mathbb{Q}$ and by continuity, they agree on \mathbb{R} . Pick $v, w \in X$ and $y = \frac{v+w}{2}, y' = \frac{v-w}{2}$ in the above equality, then

$$b(x,v) + b(x,w) = 2b(x, \frac{v+w}{2})$$

and we conclude from linearity.

For complex numbers, consider s(x,y) = b(x,y) - ib(x,iy)

Definition 15 (Hilbert Space)

(H,b) is a Hilbert space if it is a complete pre-Hilbert space.

Lemma 9

Every pre-Hilbert space has a completion, unique up to bijective isometry.

If $M \subset X$, then $p: X \to M$ is a projection if $p^2 = p$ and p(X) = M. M is convex if $x, y \in M, t \in [0, 1]$, then $tx + (1 - t)y \in M$

Theorem 10

Let H be a Hilbert space, $M \subset H$ non-empty, closed, convex, then \exists a unique map $p: H \to M$ such that

$$||x - px|| = d(x, M)$$

Proof

If $x \in M, px = x$.

If $x \notin M$, let d = d(x, M) > 0.

If $y, z \in M$ are minimizers, then

$$\frac{1}{2} \|x - y\|^2 + \frac{1}{2} \|x - z\|^2 = \left\|x - \frac{y + z}{2}\right\| + \left\|\frac{y - z}{2}\right\|^2$$

If $\|x-y\| = \|x-z\| = d$, then $\frac{y+z}{2} \in M \implies \|y-z\| \le 0 \implies y = z \implies uniqueness$.

To show existence, let $d = \inf_{y \in M} ||x - y||$.

There is a sequence $y: \mathbb{N} \to M$ such that $||x - y_k|| \to d$.

Thus

$$\frac{1}{2} \|x - y_h\|^2 + \frac{1}{2} \|x - y_k\|^2 = \left\|x - \frac{y_h + y_k}{2}\right\| + \frac{1}{4} \|y_h - y_k\|^2$$

The LHS goes to d^2 and $||x - \frac{y_h + y_k}{2}|| \ge d^2$.

Lemma 11

Let everything as above,, then $p: H \to M$ is an orthogonal projection $\iff \forall y \in M \forall x \in H, \operatorname{Re}(x - Px, y - px) \leq 0$

Proof

Let
$$f(t) = ||x - (ty + (1-t)px)||^2$$
, thus $f(0) = \min f([0,1])$, thus $f'(0) \ge 0$

$$f(t) = \|x - Px\|^{2} - t \left[(x - px, y - px) + (y - px, x - px) \right] + t^{2} \|y - px\|^{2}$$

Thus
$$f'(0) = -Re(x - px, y - px) \ge 0$$

Corollary 12

If $M \subset H$ is a closed linear subspace, then

$$M^{\perp} = \{x \in H : (x,m) = 0 \forall m \in M\}$$

is a closed linear subspace, $M\cap M^\perp=\{0\}$, $H=M\oplus M^\perp$ and $p:H\to M$ satisfies $x-px\in M^\perp$ and p is linear

Definition 16 (Orthonormal systemes)

Let (X,b) be a pre-Hilbert space, the family $(e_i)_{i\in I}$ of vectors in X are orthonormal if $b(e_i,e_j)=\delta_{ij}$

Lemma 13

If the e_1, \ldots, e_n are orthonormal, then $\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

and if $e_1, \ldots, are orthonormal, then <math>\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

Let $y = \sum_{i} \lambda_i e_i \in spane_i$

$$g(\lambda) \left\| x - \sum_{i} \lambda_{i} e_{i} \right\|^{2} = \left\| x \right\|^{2} - \sum_{i} (\overline{\lambda_{i}}(e_{i}, x) + \lambda_{i}(x, e_{i})) + \sum_{i} \lambda_{i}^{2}$$

Setting $\lambda_i = (e_i, x)$, we get

$$g(\lambda) = \|x\|^2 - \sum |\lambda_i|^2$$

Lecture 4: Hilbert Spaces

Fri 21 Oct

Lemma 14

Let H be a hilber space, $e : \mathbb{N} \to H$ an orthonormal basis and $\lambda : \mathbb{N} \to K$, then

1.
$$\sum_{i=0}^{\infty} \lambda_i e_i \iff \sum_i |\lambda_i|^2 < \infty$$

- 2. If $\sum_{i=0}^{\infty} \lambda_i e_i$ converges, then it does not depend on the order
- 3. $\forall x, \sum_{i \in \mathbb{N}} (e_i, x)e_i$ converges. Let $M := \overline{span(\{e_i\})}$, then the projection map $p : H \to M$ may be written $Px = \sum (e_i, x)e_i$

Proof

1. for all j, k big enough,
$$|\sum_{i=j+1}^k \lambda_i e_i|^2 \leq \sum_{i=j+1}^k |\lambda_i|^2$$

1.6 Uncountable Orthonormal Systems

If A is a set, $v: A \to H, w \in H$.

What does $\sum_{\alpha \in A} v_{\alpha} = w$ mean?

 $\sum_{\alpha \in A} v_{\alpha} = w$ if $\exists \beta : \mathbb{N} \to A$ such that $\sum_{i} v_{\beta_{i}} = w$ and v = 0 on $A \setminus \beta(\mathbb{N})$ for any ordering of the sum is one possible definition.

 $\forall \epsilon > 0 \ \exists T \subset A, \#T < \infty \text{ such that } \forall S \subset A, \#S < \infty \text{ such that } T \subset S \text{ one has } |\sum_{\alpha \in S} v_{\alpha} - w| < \epsilon$

Proposition 15

Let H be a hilbert space, $e: A \to H$ an orthonormal system.

- 1. $\forall x \in H$, the set $A_x = \{\alpha : (e_\alpha, x) \neq 0\}$ is finite or countable
- 2. $\forall x \in H$, $\sum_{\alpha \in A} (e_{\alpha}, x) e_{\alpha}$ is well defined

Definition 17

Let H be a Hilbert space and $e: A \to H$ an orthonormal system. It is a Orthonormal basis if $H = \overline{span(\{e_{\alpha}\})}$

Theorem 16

If $e:A \to H$ is an orthonormal system, the following are equivalent

- 1. e_{α} is a basis
- 2. $\forall x, x = \sum_{\alpha \in A} (e_{\alpha}, x) e_{\alpha}$
- 3. $\forall x, y, (x, y) = \sum_{\alpha \in A} (x, e_{\alpha})(e_{\alpha}, y)$
- 4. $||x||^2 = \sum |(e_{\alpha}, x)|^2$
- 5. $(x, e_{\alpha}) \forall \alpha \implies x = 0$
- 6. A is maximal: There is no B with $A \subset B, A \neq B$ and $e: B \to H$ such that the restriction to A is e.

Theorem 17

If H is an infinite dimensional Hilbert space, the following are equivalent

- 1. H is separable
- 2. H has a countable orthonormal basis
- 3. $\exists \phi : \ell^2(\mathbb{N}, K) \to H \text{ which is a linear isomorphism}$

1.7 Projections in Banach spaces

Is there a Banach space X such that $\exists x,y,z\in X,y\neq z\ |x-y|=|x-z|$ and $x-\frac{y+z}{2}|\geq |x-y|\,?$

Strict inequality is impossible, but we can get equality

$$x(t) = 0, y(t) = \begin{cases} 1, t \le \frac{1}{2} \\ \frac{3}{2} - t, t \in (\frac{1}{2}, 1] \end{cases}$$
 and $z(t) = 1$

Definition 18

Let $(X, \|\cdot\|)$ be a normed vector space.

1. X is strictly convex if

$$||x|| = ||y|| = 1, x \neq y \implies \left\| \frac{x+y}{2} \right\| < 1$$

2. X is uniformly convex if $\forall \epsilon > 0, \exists \delta_{\epsilon} > 0$ such that

$$||x|| = ||y|| = 1, \left| \left| \frac{x+y}{2} > 1 - \delta \right| \right| \implies ||x-y|| < \epsilon$$

Theorem 18

Let X be a uniformly convex Banach space, $M \subset X$ a non-empty, convex,

Then \exists a unique map $p: X \to M$ such that ||x - Px|| = dist(x, M).

Proof

If $x \in M, px = x$.

If $x \notin M, d := dist(x, M) > 0$.

For uniqueness, let $y, z \in M, |x - y| = |x - z| = d$, then $\frac{y + z}{2} \in M$.

 $\begin{array}{l} \operatorname{Let}\,v = \frac{y-x}{\|y-x\|}, w = \frac{z-x}{\|z-x\|}. \\ \operatorname{If}\,y \neq z, \; \operatorname{then}\,v \neq w \implies \left\|\frac{v+w}{2}\right\| < 1. \end{array}$

$$\frac{v+w}{2} = \frac{y-x+z-x}{2d} = \frac{\frac{y+z}{2}-x}{d} \implies \left\| \frac{y+z}{2} - x \right\| < d$$

 $a\ contradiction.$

To show existence, let $y_i \in M$ be a sequence such that $d_i = ||x - y_i|| \to d$.

$$\frac{y_i + y_k}{2} \in M \implies \left\| x - \frac{y_i + y_i}{2} \right\| \ge d\forall i, k$$

by convexity.

Now let $v = \frac{y_i - x}{d}$, $w = \frac{y_k - x}{d_2}$, then

$$\frac{v+w}{2} = \frac{y_i - x}{2d} + \frac{y_k - x}{2d_k} = \frac{y_i - x}{2d} + \frac{y_k - x}{2d} + (y_i - x)\left(\frac{1}{2d_i} - \frac{1}{2d} + (y_k - x)(\frac{1}{2d_k} - \frac{1}{2d})\right)$$

Thus $\lim_{i,k\to\infty} \left\| \frac{v_i + w_k}{2} \right\| \ge 1$.

We conclude by uniform convexity.

Lecture 5: Examples of function spaces

Wed 26 Oct

$\mathbf{2}$ Function Spaces

Definition 19

Let (X,p) be a normed space and $T \neq \emptyset$ a set, then the set

$$B(T,X) = \left\{ f: T \to X: \sup_{t \in T} \|f(t)\|_X < \infty \right\}$$

is the set of bounded functions on T.

Lemma 19

B(T,X) is a normed space, it is complete if X is complete.

Lemma 20

If (T, τ) is a topological space, then $C_b(T, X) = C^0(T, X) \cap B(T, X)$ is a closed linear subspace of B.

Remark

 $C^0(T,X)$ is a metric space but not a normed space. We can still metrize uniform convergence by letting

$$d(f,g) = \min(\|f - g\|_{\infty}, 1)$$

Lemma 22

The continuous image of a compact set is compact.

If $f \in C^0(T,X)$, $K \subset T$ compact and X is normed, then f(K) is bounded.

If $X = \mathbb{R}, K \neq \emptyset, f(K)$ has a maximum and minimum.

Now, let $K \subset T$ be compact and $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Consider $C^0(K, \mathbb{K})$

Definition 20

A set $\mathbb{A} \subset C^0(K, \mathbb{K})$ is a subalgebra of C^0 if it is a linear subspace and closed under multiplication.

It separates points if $\forall a, b \in K \exists f \in \mathbb{A} \text{ such that } f(a) \neq f(b)$.

Theorem 23 (Stone-Weierstrass)

If $\mathbb{A} \subset C^0(K,\mathbb{R})$ is a subalgebra that separates points, then either $\overline{\mathbb{A}} = C^0$ or $\exists x_0 \in K$ such that

$$\overline{\mathbb{A}} = \left\{ f \in C^0 : f(x_0) = 0 \right\}$$

Lemma 24

If $\overline{\mathbb{A}}$ is a subalgebra, then $f \in \overline{\mathbb{A}} \implies |f| \in \overline{\mathbb{A}}$, then $\min(f,g), \max(f,g) \in \overline{\mathbb{A}}$.

The proof of this is an exercise.

Lemma 25

Assum $\forall x \in K \exists g \in \mathbb{A} \text{ such that } g(x) \neq 0.$

 $\forall a, b \in K, \forall \lambda, \mu \in \mathbb{K}, \exists g \in \mathbb{A} \text{ such that } g(a) = \lambda, g(b) = \mu.$

Let $h \in \mathbb{A}$ be such that h(a) = h(b).

Let $g(x) = \alpha h(x) + \beta h^2(x)$, solving for $g(\alpha) = \lambda$ and $g(\beta) = \mu$, we get a linear system with determinant $h(a)h^2(b) - h^2(b)h(a) = h(a)h(b)(h(b) - h(a))$ Suppose h(a) = 0, consider $g_a \in \mathbb{A}$ such that $g_a(a) \neq 0$ and let $G(x) = \alpha g_{\alpha}(x) + \beta h(a)$, again solving $G(a) = \lambda$, $G(b) = \mu$, we get a linear system with non-zero determinant.

We can now prove the Stone-Weierstrass theorem.

Proof

Fix $f \in C^0$.

Pick $a \in K$ such that $\exists g \in \mathbb{A}, g(a) \neq 0$, then $g(x) \frac{f(a)}{g(a)} \in \mathbb{A}$ and is equal to f(a)

Assume $\forall a \in \mathbb{K} \exists g_a \in \mathbb{A} \text{ such that } g_a(a) \neq 0.$

Fix $F \in C^0(K)$ and $\epsilon > 0$.

We need to show that $\exists f \in \overline{\mathbb{A}} \text{ such that } ||F - f||_{\infty} < \epsilon$.

- 1. $\forall a \in K \exists f_a \in \overline{\mathbb{A}} \text{ such that } F(a) = f_a(a) \text{ and } F(y) < f_a(y) + \epsilon.$ We prove this later on.
- 2. Given 1, notice that $\forall a \in K$, let $V_a = \{y \in K, f_a(y) < F(y) + \epsilon\}$. Then for everry $\alpha \in V_a$, V_a is open and $K = \bigcup V_a$ and we can refine this to a finite cover.

Let
$$g = \min \{f_{a_1}, \dots, f_{a_n}\}.$$

Then $g \ge F - \epsilon; g \le f_a \le F + \epsilon$ on $V_{a_i} \implies |F - g| \le \epsilon$

Now, we prove step 1.

 $\mathit{Fix}\ a \in K.$

 $\forall b \neq a \exists f_{ab} \in \overline{\mathbb{A}} \text{ such that } f_{ab}(a) = F(a), f_{ab}(b) = F(b).$

Let $V_{ab} = \{ y \in K : F(y) < f_{ab}(y) + \epsilon \}.$

Let $b_1, \ldots b_M$ be such that $K = \bigcup_{i=1}^M V_{ab_i}$.

Let $f_a = \max\{f_{ab_1}, \dots, f_{ab_M}\} \in \overline{\mathbb{A}}$.

Then $f_a > F - \epsilon$ on K.

Assume now $\exists x_0 \text{ such that } f \in \mathbb{A} \implies f(x_0) = 0.$

Let $\tilde{\mathbb{A}} = \mathbb{A} + \mathbb{R}$, then $\tilde{\mathbb{A}} = C^0$.

Let $F \in C^0$, $F(x_0) = 0$, then $\exists f_{\epsilon} \in \mathbb{A}, \lambda_{\epsilon} \in \mathbb{R}$ such that $|f_{\epsilon} + \lambda_{\epsilon} - F|_{\infty} < \epsilon$.

But
$$F(x_0) = f_{\epsilon}(x_0) = 0 \implies |\lambda_{\epsilon}| < \epsilon \implies |f_{\epsilon} - F|_{\infty} < 2\epsilon$$

Theorem 26

If $\mathbb{A} \subset C^0(K,\mathbb{C})$ is a subalgebra, separates points and $f \in \mathbb{A} \implies \overline{f} \in \mathbb{A}$.

Then either
$$\overline{\mathbb{A}} = C^0$$
 or $\overline{\mathbb{A}} = C^0 \cap \{f(x_0) = 0\}$.

$$\mathbb{A}_{\mathbb{R}} = \mathbb{A} \cap C^0(K, \mathbb{R}), f \in \mathbb{A} \implies \operatorname{Re} f, \operatorname{Im} f \in \mathbb{A}_{\mathbb{R}}.$$

Definition 21

If
$$\Omega \subset \mathbb{R}^d$$
 is open, then $C^k(\Omega, \mathbb{K}) = \{f : \Omega \to \mathbb{C} | f \text{ k-times continuously differentiable.} \}.$
We define $C^k(\overline{\Omega}, \mathbb{K}) = \{f \in C^k(\Omega, \mathbb{K}) | f \text{ continuously extends to the boundary.} \}$

Lemma 27

$$C_b^k = \{ f \in C^k : D^{\alpha} f \in B \forall |\alpha| \le k \} \text{ is a Banach space.}$$

Definition 22 (Hoelder Continuity)

Let $f: \Omega \to \mathbb{K}$, $\alpha \in (0,1]$, then

$$[f]_{\alpha} = \sup_{x,y \in \Omega, x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

$$C^{k,\alpha} = \left\{ f \in C^k : D^{\beta} f \in C^{\alpha} \forall |\beta| \le k \right\}$$

Lecture 6: Lp spaces

Fri 28 Oct

3 L^p spaces

3.1 Measure spaces

Definition 23

 $Let \ X \ be \ a \ non\text{-}empty \ set$

- A subset $\tau \subset P(X)$ is called a σ -algebra on X if
- $-\emptyset \in \tau$
- $-A \in \tau \implies X \setminus A \in \tau$
- $\forall A_i \in \tau \implies \bigcup A_i \in \tau$

If (X, τ) is a topological space, the borel σ -algebra is the smallest σ -algebra containing τ .

Definition 24 (Meausre space)

A map $\mu: \tau \to [0,\infty]$ is called a measure μ if

- $-\mu(\emptyset) = 0$
- μ is σ additive, namely, if A_k are such that $A_k \cap A_l = \emptyset \forall k \neq l$, then

$$\mu(\bigcup A_k) = \sum_k \mu(A_k)$$

 $-(X, \tau, \mu)$ is complete if for any null set A if

$$B \subset A \implies B \in \tau$$

(in particular, B is also a null-set)

- μ is σ-finite if there is $A_k \in \tau$ such that $\mu(A_k) < \infty \forall k$ and $X = \bigcup A_k$
- A property holds almost everywhere if $\exists N$ a null set such that P holds on $X \setminus N$.
- For $E \subset A$ one defines the restricted measure

$$(\mu|_E)(A) = \mu(E \cap A)$$

— \mathcal{L}^d denotes the Lebesgue measure on \mathbb{R}^d and μ^d denotes the lebesgue measurable sets.

Remark

- $(\mathbb{R}^d, \mathcal{L}^d)$ is a complete measure space, \mathcal{L}^d is σ -finite.
- $-B(\mathbb{R}^d) \subsetneq \mu^d \subsetneq P(\mathbb{R}^d)$

In the following, (X, τ, μ) is complete and σ -finite.

3.2 Measurable functions and integrals

Definition 25

Let (X, τ, μ) be a measure space and (Y, τ') a topological space.

A function $f: X \to Y$ is called measurable if $f^{-1}(U) \in \tau \forall U \in \tau'$

Remark

- f is measurable $\iff f^{-1}(A) \in \tau \forall A \in B(Y)$
- $-f: X \to [-\infty, \infty] \text{ is measurable } \iff f^{-1}((a, \infty]) \forall t \in \mathbb{R} \iff f^{-1}([a, \infty]) \forall t \in \mathbb{R})$
- $f: X \to \mathbb{C}$ is measurable iff $\operatorname{Re} f, \operatorname{Im} f$ are measurable.
- $f: X \to \mathbb{R}^d$ is measurable iff every projection is measurable.

Definition 26 (Integral)

Let (X, τ, μ) be a measure space.

- A function $f: X \to [0,\infty]$ is simple if $\exists \lambda : \mathbb{N} \to [0,\infty]$ and $E: \mathbb{N} \to \tau$ such that $f = \sum_{n \in \mathbb{N}} \lambda_n \xi_{E_n}$
- If f is simple, define

$$\int_X f d\mu = \sum_{n \in \mathbb{N}} \lambda_n \mu(E_n) \in [0, \infty]$$

— For a measurable function $f: X \to [0, \infty]$, define

$$\int_X f d\mu = \sup_{\phi \leq f, \phi \ simple} \ \int_X \phi d\mu \in [0, \infty]$$

Remark

- The integral of a simple function is well-defined (ie. independent of the λ_i and E_i) and is monotone.
- One can show $\int_X f d\mu = \int_{(0,\infty)} \mu(f^{-1}((t,\infty])) d\mathcal{L}^1(t)$

Remark

We'll write dx or dx^d for \mathcal{L}^1 or \mathcal{L}^d respectively