Classification par Régression Logistique

Reconnaissance des Formes (Semaine VII)

Université de Lille, France

6 mars 2013

Rappel

Classification

- L'ensemble des données est partagé en quelques classes différentes,
- On a quelques exemplaires pour qui on sait les classes correctes.
- On veut classifier correctement les données pour qui les classes correctes sont inconnus.

Exemple : Classification des caractères manuscrits

Données d'entrainement

Ça corresponds à quel chiffre?

Le problème de classification

le cas le plus simple

- Les données à classifier sont représenter en une dimension i.e. $x \in \mathbb{R}$
- Nous avons deux classes seulement, i.e. $y \in \{0, 1\}$.

Le Problème de classification

On cherche une fonction $h:\mathbb{R} \to \{0,1\}$ telle que pour chaque x on a

- h(x) = 0 si x est dans classe 0 et
- h(x) = 1 si x est dans classe 1

Le Problème de classification

On cherche une fonction $h:\mathbb{R} \to \{0,1\}$ telle que pour chaque x on a

- h(x) = 0 si x est dans classe 0 et
- h(x) = 1 si x est dans classe 1

Si cette fonction existe, le problème de classification est déjà résolu. Nous allons utiliser les données d'entrainement pour trouver h.

Une Fonction Linéaire?

- On défini un séparateur linéaire $\theta_0 + \theta_1 x$
- On utilise les exemplaires disponible pour chercher les valeurs convenables pour θ_0 et θ_1 . On prédit la classe y de la manière suivante

$$y = 1 \text{ si } \theta_0 + \theta_1 x \ge 0.5$$

 $y = 0 \text{ si } \theta_0 + \theta_1 x < 0.5$

Question

Est-ce que cette approche va marcher?

La fonction Sigmoid où Logistique

$$g(z) := \frac{1}{1 + e^{-z}}$$

Remarque

- $0 \le g(z) \le 1$
- $g(z) \ge 0.5 \text{ si } z \ge 0$
- g(z) < 0.5 si z < 0

La fonction Sigmoid où Logistique

$$g(z) := \frac{1}{1 + e^{-z}}$$

Remarque

- $0 \le g(z) \le 1$
- $g(z) \ge 0.5 \text{ si } z \ge 0$
- g(z) < 0.5 si z < 0

Le Modèle

$$h_{\theta}(x) := \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$$

$$y = 1 \text{ si } h_{\theta}(x) \ge 0.5$$

 $y = 0 \text{ si } h_{\theta}(x) < 0.5$

$$h_{ heta}(x) := rac{1}{1 + e^{-(heta_0 + heta_1 x)}}$$

Prédiction

$$y = 1 \text{ si } h_{\theta}(x) \ge 0.5$$

 $y = 0 \text{ si } h_{\theta}(x) < 0.5$

L'intuition

 $h_{\theta}(x)$ est l'estimation de la probabilité de y=1 sachant x, i.e. P(y=1|x). Comme on a y=0 où y=1, on peut dériver P(y=0|x) i.e.

$$P(y = 0|x) = 1 - P(y = 1|x) = 1 - h_{\theta}(x).$$

En général les données n'ont pas qu'une seule dimension ! Chaque point x est un vecteur de dimension k i.e.

$$\mathbf{x} := (x_1, x_2, \dots, x_k) \in \mathbb{R}^k.$$

Exemple

Pour k=2 on a $\mathbf{x}:=(x_1,x_2)$ où $x_1\in\mathbb{R}$ est $x_2\in\mathbb{R}$, donc $\mathbf{x}\in\mathbb{R}^2$.

Chaque point $(x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ est un vecteur de dimension k,.

$$h_{\theta}(\mathsf{x}) := \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k)}} = \frac{1}{1 + e^{-\sum_{i=0}^k \theta_i x_i}}$$

Chaque point $(x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ est un vecteur de dimension k,.

$$h_{\theta}(\mathsf{x}) := \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k)}} = \frac{1}{1 + e^{-\sum_{i=0}^k \theta_i x_i}}$$

$$= \frac{1}{1 + e^{-(\boldsymbol{\theta}^T \mathbf{x})}} \text{ où }$$

$$oldsymbol{ heta} := egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_k \end{bmatrix} ext{ et } \mathbf{x} := egin{bmatrix} 1 \ x_1 \ dots \ heta_k \end{bmatrix} ext{ donc } oldsymbol{ heta}^T \mathbf{x} = \sum_{i=0}^k heta_i x_i.$$

$$y=1$$
 si $h_{ heta}(\mathbf{x}) \geq 0.5$
 $y=0$ si $h_{ heta}(\mathbf{x}) < 0.5$ où

$$h_{\theta}(\mathbf{x}) := \frac{1}{1 + e^{-(\theta^T \mathbf{x})}}$$

$$y=1$$
 si $h_{ heta}(\mathbf{x}) \geq 0.5$
 $y=0$ si $h_{ heta}(\mathbf{x}) < 0.5$ où

$$h_{\theta}(\mathsf{x}) := \frac{1}{1 + e^{-(\theta^T \mathsf{x})}}$$

$$g(z):=rac{1}{1+e^{-z}}$$
 $g(z)\geq 0.5$ si $z\geq 0$ et $g(z)<0.5$ si $z<0$

$$y = 1$$
 si $h_{\theta}(\mathbf{x}) \ge 0.5$ i.e. si $\theta^T \mathbf{x} \ge 0$
 $y = 0$ si $h_{\theta}(\mathbf{x}) < 0.5$ i.e. si $\theta^T \mathbf{x}$

$$h_{ heta}(\mathbf{x}) := rac{1}{1 + e^{-(oldsymbol{ heta}^T \mathbf{x})}}$$

$$g(z) := rac{1}{1 + e^{-z}}$$

 $g(z) \ge 0.5 ext{ si } z \ge 0 ext{ et } g(z) < 0.5 ext{ si } z < 0$

Exemple

Remarquez que θ_0 , θ_1 et θ_2 sont inconnus. On doit les chercher!

Exemple

Supposons que
$$oldsymbol{ heta} := egin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$
 est donné donc,

$$\theta_0 = -3, \ \theta_1 = 1, \ \theta_2 = 1$$

$$X = (x1, x2)$$

Prédiction

$$y = 1 \text{ si } x_1 + x_2 \ge 3$$

$$y = 0$$
 si $x_1 + x_2 < 3$

 $x_1 + x_2 = 3$ est le frontière de décision.

Comment trouver θ ?

Coût d'une prédiction

$$\mathbf{coût}(h_{ heta}(\mathbf{x}), y) := \left\{ egin{array}{ll} -\log(h_{ heta}(\mathbf{x})) & ext{si } y = 1 \ -\log(1-h_{ heta}(\mathbf{x})) & ext{si } y = 0 \end{array}
ight.$$

L'intuition

Imaginons que y = 1

Si
$$h_{ heta}(\mathbf{x}) = 1$$
 on a coût $= 0$ mais

$$\operatorname{coût} \to \infty \text{ lorsque } h_{\theta}(\mathbf{x}) \to 0$$

Ç'est une façon de pénaliser l'algorithme pour la mauvaise prédiction!

Il faut chercher les θ qui donnent le coût le plus petit possible.

Régression Logistique : Comment trouver θ ?

Coût d'une prédiction

$$\begin{aligned} \mathbf{coût}(h_{\theta}(\mathbf{x}), y) &:= \left\{ \begin{array}{ll} -\log(h_{\theta}(\mathbf{x})) & \text{si } y = 1 \\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{si } y = 0 \end{array} \right. \\ &= -y \log(h_{\theta}(\mathbf{x})) - (1 - y) \log(1 - h_{\theta}(\mathbf{x})) \text{ pourquoi?} \end{aligned}$$

Régression Logistique : Comment trouver θ ?

Coût d'une prédiction

$$\begin{aligned} \mathbf{coût}(h_{\theta}(\mathbf{x}), y) &:= \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{si } y = 1 \\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{si } y = 0 \end{cases} \\ &= -y \log(h_{\theta}(\mathbf{x})) - (1 - y) \log(1 - h_{\theta}(\mathbf{x})) \text{ pourquoi ?} \end{aligned}$$

La fonction de coût $J(\theta)$

On a m exemplaires d'entrainement $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$. Soit $y^{(i)}$ la classe de $\mathbf{x}^{(i)}$, i = 1..m.

On défini la fonction de coût par

$$J(\theta) := -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)}))$$

Comment trouver θ ?

On cherche les paramètres qui donnent le coût le plus petit possible

$$egin{aligned} eta^* &:= \min_{m{ heta}} J(m{ heta}) \ \mathrm{où} \ J(m{ heta}) &:= -rac{1}{m} \sum_{i=1}^m y^{(i)} \log(h_{m{ heta}}(\mathbf{x}^{(i)})) - (1-y^{(i)}) \log(1-h_{m{ heta}}(\mathbf{x}^{(i)})) \end{aligned}$$

ightarrow minimiser la fonction de coût $J(\theta)$ et utiliser le θ qui correspond à $J(\theta)$ minimum

La minimisation de $J(\theta)$ est possible pas les méthodes de la théorie d'optimisation, mais cela dépasse le cadre de ce cours

→ Nous allons utiliser les fonctions d'optimisations existantes en scilab.

Comment trouver θ ?

On cherche les paramètres qui donnent le coût le plus petit possible

$$egin{aligned} oldsymbol{ heta}^* &:= \min_{oldsymbol{ heta}} J(oldsymbol{ heta}) ext{ où} \ J(oldsymbol{ heta}) &:= -rac{1}{m} \sum_{i=1}^m y^{(i)} \log(h_{oldsymbol{ heta}}(\mathbf{x}^{(i)})) - (1-y^{(i)}) \log(1-h_{oldsymbol{ heta}}(\mathbf{x}^{(i)})) \end{aligned}$$

ightarrow minimiser la fonction de coût $J(\theta)$ et utiliser le θ qui correspond à $J(\theta)$ de minimum

L'algorithme

Entrainement

Utiliser les données d'entrainement, i.e. les exemplaires $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}\}$ et leur lables $\{y^{(1)}, y^{(2)}, \dots, y^{(m)}\}$ pour trouver le vecteur $\boldsymbol{\theta}$. Donc.

$$oldsymbol{ heta}^* := \min_{oldsymbol{ heta}} J(oldsymbol{ heta})$$
 où

une image

$$J(m{ heta}) := -rac{1}{m} \sum_{i=1}^m y^{(i)} \log(h_ heta(\mathbf{x}^{(i)})) - (1-y^{(i)}) \log(1-h_ heta(\mathbf{x}^{(i)}))$$

m = nb d'entrainement

Prédiction de la classe d'un nouvel exemple

Pour chaque nouveau x $h_{ heta}({ t x}) := rac{1}{1+e^{ heta T_{ t x}}}$ classifier le de la manière suivante,

$$y = 1 \text{ si } h_{\theta}(\mathbf{x}) \ge 0.5$$

 $y = 0 \text{ si } h_{\theta}(\mathbf{x}) < 0.5$

L'algorithme Multi-Classes

Pour l'instant cette approche marche que pour le cas de deux classe $y \in \{0,1\}$ seulement.

Question

Comment peut on le généraliser pour le cas de plusieurs classes?

L'algorithme Multi-Classes

Supposons que l'on a l > 2 classes, i.e. $y \in \{1, 2, ..., l\}$. On peut créer un classifier de la manière suivante.

1 Entrainer un classifier de régression logistique $h_{\theta}^{(i)}(\mathbf{x})$ pour chaque classe i = 1, 2, ..., I.

Rappel: $h_{\theta}^{(i)}(\mathbf{x})$ estime $P(y=i|\mathbf{x}), i=1,2,\ldots,I$

② Pour prédire la classe d'un nouveau x, choisir $y \in \{1, 2, ..., l\}$ tel que

$$y = \max_{i=1..l} h_{\theta}^{(i)}(\mathbf{x})$$

Ça veut dire que l'on suit la décision du classifier plus confiants.

L'algorithme Multi-Classes : Exemple

