Matrix Algebra

Colby Community College

Matrix

A matrix is a rectangular array of elements or entries (numbers or functions) arranged in rows (horizontal) and columns (vertical).

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

The **order** of **A** is $m \times n$. If m = n, we call the matrix **square**.

Matrix

A matrix is a rectangular array of elements or entries (numbers or functions) arranged in rows (horizontal) and columns (vertical).

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

The **order** of **A** is $m \times n$. If m = n, we call the matrix **square**.

Equal Matrices

Two matrices of the same order are **equal** if their corresponding entries are equal. If matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [a_{ij}]$ are both $m \times n$, then

$$\mathbf{A} = \mathbf{B} \Leftrightarrow a_{ij} = b_{ij}, \quad 1 \leq i \leq m, \ 1 \leq j \leq n$$

Special Matrices

• The $m \times n$ zero matrix, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.

Special Matrices

- The $m \times n$ zero matrix, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.
- A diagonal matrix is:

$$\mathbf{D} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$

Special Matrices

- The $m \times n$ **zero matrix**, denoted $\mathbf{0}_{mn}$, has all its entries equal to zero.
- A diagonal matrix is:

$$\mathbf{D} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{mn} \end{bmatrix}$$

• The $n \times n$ identity matrix, denoted I_n is:

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrix Addition

Two matrices of the same order are added (or subtracted) by adding (or subtracting) corresponding entries and recording the results in a matrix of the same size. Using matrix notation, if $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $m \times n$.

$$A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

 $A - B = [a_{ij}] - [b_{ij}] = [a_{ij} - b_{ij}]$

Matrix Addition

Two matrices of the same order are added (or subtracted) by adding (or subtracting) corresponding entries and recording the results in a matrix of the same size. Using matrix notation, if $A = [a_{ij}]$ and $B = [b_{ij}]$ are both $m \times n$.

$$A + B = [a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

 $A - B = [a_{ij}] - [b_{ij}] = [a_{ij} - b_{ij}]$

Multiplication by a Scalar

To find the product of a matrix and a scalar (a complex number), multiply each entry of the matrix by that number. This is called **multiplication by** a scalar. Using matrix notation, if $\mathbf{A} = [a_{ij}]$, then

$$c \cdot \mathbf{A} = [c \cdot a_{ii}] = [a_{ii} \cdot c] = \mathbf{A} \cdot c$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

 $m{A}$ and $m{C}$ have different dimensions, so the sum cannot be performed.

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

 $m{A}$ and $m{C}$ have different dimensions, so the sum cannot be performed.

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

 $m{A}$ and $m{C}$ have different dimensions, so the sum cannot be performed.

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

What is $3\mathbf{A} - 2\mathbf{B}$?

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

$$3\begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} - 2\begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

 $m{A}$ and $m{C}$ have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 3 \cdot 3 & 3 \cdot 1 & 3 \cdot 5 \\ 3 \cdot (-2) & 3 \cdot 0 & 3 \cdot 6 \end{bmatrix} - \begin{bmatrix} 2 \cdot 4 & 2 \cdot 1 & 2 \cdot 0 \\ 2 \cdot 8 & 2 \cdot 1 & 2 \cdot (-3) \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 3 & 15 \\ -6 & 0 & 18 \end{bmatrix} - \begin{bmatrix} 8 & 2 & 0 \\ 16 & 2 & -6 \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

 $m{A}$ and $m{C}$ have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 9-8 & 3-2 & 15-0 \\ (-6)-16 & 0-2 & 18-(-6) \end{bmatrix}$$

Suppose that

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 5 \\ -2 & 0 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 1 & 0 \\ 8 & 1 & -3 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 9 & 0 \\ -3 & 6 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{B}$?

$$\begin{bmatrix} 3+4 & 1+1 & 5+0 \\ -2+8 & 0+1 & 6+-3 \end{bmatrix} = \begin{bmatrix} 7 & 2 & 5 \\ 6 & 1 & 3 \end{bmatrix}$$

What is $\mathbf{A} + \mathbf{C}$?

A and **C** have different dimensions, so the sum cannot be performed.

What is 3*C*?

$$\begin{bmatrix} 3 \cdot 9 & 3 \cdot 0 \\ 3 \cdot (-3) & 3 \cdot 6 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ -9 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 15 \\ -22 & -2 & 24 \end{bmatrix}$$

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

(Commutativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

(Commutativity)

(Associativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$

 $({\sf Commutativity})$

(Associativity)

(Associativity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$

•
$$A + 0 = A$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

(Inverse Element)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

(Commutativity)

(Associativity)

(Associativity)

(Zero Element)

(Inverse Element)

(Distributivity)

Suppose A, B, and C are $m \times n$ matrices and c and k are scalars. Then the following properties hold:

•
$$A + B = B + A$$

•
$$A + (B + C) = (A + B) + C$$

•
$$c(k\mathbf{A}) = (ck)\mathbf{A}$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

•
$$c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$

$$\bullet (c+k)\mathbf{A} = c\mathbf{A} + k\mathbf{A}$$

Vectors

A vector $\vec{\mathbf{v}} = \langle v_1, \dots, v_n \rangle$ can be represented by either by a $1 \times n$ row matrix, or a $n \times 1$ column matrix.

Vectors

A vector $\vec{\mathbf{v}} = \langle v_1, \dots, v_n \rangle$ can be represented by either by a $1 \times n$ row matrix, or a $n \times 1$ column matrix.

Vector addition and Scalar Multiplication

Let

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$

be vectors in \mathbb{R}^n and c be any scalar. Then, we have:

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix} \quad \text{and} \quad c \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c \cdot x_1 \\ \vdots \\ c \cdot x_n \end{bmatrix}$$

Properties of Vector Addition and Multiplication

For vectors $\vec{\boldsymbol{u}}$, $\vec{\boldsymbol{v}}$, and $\vec{\boldsymbol{w}}$ in \mathbb{R}^n and scalars c and k.

$$\bullet \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

•
$$\vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}}$$

•
$$c(k\vec{\mathbf{v}}) = (ck)\vec{\mathbf{v}}$$

$$\vec{u} + \vec{0} = \vec{u}$$

$$\vec{u} + (-\vec{u}) = \vec{0}$$

•
$$c(\vec{\boldsymbol{u}} + \vec{\boldsymbol{v}}) = c\vec{\boldsymbol{u}} + c\vec{\boldsymbol{v}}$$

$$\bullet (c+k)\vec{\boldsymbol{u}} = c\vec{\boldsymbol{u}} + k\vec{\boldsymbol{u}}$$

(Commutativity)

(Associativity) (Associativity)

(Zero Element)

(Inverse Element)

(Distributivity)

(Distributivity)

Dot Product

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Dot Product

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Example 2

Consider

$$\vec{r} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

What is $\vec{r} \cdot \vec{c}$?

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Example 2

Consider

$$\vec{r} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

$$\begin{bmatrix} 3 & -5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$$

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Example 2

Consider

$$\vec{r} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

$$\begin{bmatrix} 3 & -5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix} = 3 \cdot 3 + (-5) \cdot 4 + 2 \cdot (-5)$$

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Example 2

Consider

$$\vec{r} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

$$\begin{bmatrix} 3 & -5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix} = 3 \cdot 3 + (-5) \cdot 4 + 2 \cdot (-5) = 9 - 20 - 10$$

The **dot product** of a row vector \vec{x} and a column vector \vec{y} of equal length n is the result of adding the products of the corresponding entries as follows:

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$= x_1 \cdot y_1 + x_2 \cdot y_2 + \cdots + x_n \cdot y_n$$

Example 2

Consider

$$\vec{r} = \begin{bmatrix} 3 & -5 & 2 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 3 \\ 4 \\ -5 \end{bmatrix}$

Matrix Product

The **matrix product** of a $m \times r$ matrix **A** and a $r \times n$ matrix **B** is denoted

$$C = A \cdot B = AB$$

where the ijth entry of \boldsymbol{C} is the dot product of the ith row vector of \boldsymbol{A} and the jth column vector of \boldsymbol{B} :

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{2j} & \cdots & a_{ir} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} \\ \vdots \\ b_{rj} \end{bmatrix}$$

The matrix \boldsymbol{C} has order $m \times n$.

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix}
3 & 1 \\
2 & -4 \\
-1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 3 \\
0 & 4 & 2
\end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix} \begin{bmatrix} -2 & 5 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix}
3 & 1 \\
2 & -4 \\
-1 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 3 \\ \hline 0 & 4 & 2 \end{bmatrix} \begin{vmatrix} -2 & 5 \\ \hline 6 & 5 \end{vmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 4 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 3 & 1 \\ 2 & -4 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 3 \\
\hline
0 & 4 & 2
\end{bmatrix}
\begin{bmatrix}
-2 & 5 \\
6 & -16
\end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{array}{ccccc}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{array} \right]$$

$$\left[\begin{array}{ccc} 2 & 4 & -1 \\ 5 & 8 & 0 \end{array}\right] \left[\begin{array}{ccc} \end{array}\right]$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix} \right]$$

$$\begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix} \begin{bmatrix} 23 \\ \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{array}{cccc}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{array}\right]$$

$$\begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix} \begin{bmatrix} 23 & 41 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{array}{ccccc}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{array} \right]$$

$$\begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix} \begin{bmatrix} 23 & 41 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\begin{bmatrix}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix} \begin{bmatrix} 23 & 41 & 4 & 33 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\begin{bmatrix}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 4 & -1 \\
5 & 8 & 0
\end{bmatrix}
\begin{bmatrix}
23 & 41 & 4 & 33 \\
42
\end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{array}{cccc}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{array} \right]$$

$$\begin{bmatrix}
2 & 4 & -1 \\
5 & 8 & 0
\end{bmatrix}
\begin{bmatrix}
23 & 41 & 4 & 33 \\
42 & 89
\end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left[\begin{array}{cccc}
2 & 5 & 1 & 4 \\
4 & 8 & 0 & 6 \\
-3 & 1 & -2 & -1
\end{array} \right]$$

$$\begin{bmatrix}
2 & 4 & -1 \\
5 & 8 & 0
\end{bmatrix}
\begin{bmatrix}
23 & 41 & 4 & 33 \\
42 & 89 & 5
\end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix}$

$$\left| \begin{bmatrix} 2 & 5 & 1 & 4 \\ 4 & 8 & 0 & 6 \\ -3 & 1 & -2 & -1 \end{bmatrix} \right|$$

$$\begin{bmatrix}
2 & 4 & -1 \\
5 & 8 & 0
\end{bmatrix}
\begin{bmatrix}
23 & 41 & 4 & 33 \\
42 & 89 & 5 & 68
\end{bmatrix}$$

Properties of Matrix Multiplication

•
$$(AB)C = A(BC)$$

(Associativity)

$$\bullet \ A(B+C)=AB+AC$$

$$\bullet (B+C)A = BA + CA$$

(Distributivity)

Properties of Matrix Multiplication

•
$$(AB)C = A(BC)$$
 (Associativity)

•
$$A(B+C) = AB + AC$$
 (Distributivity)
• $(B+C)A = BA + CA$ (Distributivity)

•
$$AB \neq BA$$
 (Generally Noncommutative)

Properties of Matrix Multiplication

$$\bullet (AB)C = A(BC)$$

(Associativity)

$$\bullet \ A(B+C)=AB+AC$$

(Distributivity)

$$\bullet (B+C)A = BA + CA$$

(Distributivity)

(Generally Noncommutative)

Properties of Identity Matrices

For a $m \times n$ matrix **A**:

•
$$\mathbf{A} \cdot I_n = \mathbf{A}$$
 and $I_m \cdot \mathbf{A} = \mathbf{A}$

•
$$\mathbf{A} \cdot \mathbf{0}_n = \mathbf{0}_{mn}$$
 and $\mathbf{0}_m \cdot \mathbf{A} = \mathbf{0}_{mn}$

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{A}\boldsymbol{A}^{-1}=\boldsymbol{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

Vocabulary

- A square matrix that is not invertible is called singular.
- A square matrix that is invertible is called nonsingular.

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

Vocabulary

- A square matrix that is not invertible is called singular.
- A square matrix that is invertible is called nonsingular.

Invertible Matrix Properties

• If ${m A}$ is invertible, then so is ${m A}^{-1}$ and ${m (}{m A}^{^{-1}}{m)}^{^{-1}}={m A}$

If there exists, for an $n \times n$ matrix \boldsymbol{A} , another matrix \boldsymbol{A}^{-1} of the same order such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}_n$$

then A^{-1} is called the **inverse** of matrix A, and A is called **invertible**.

Vocabulary

- A square matrix that is not invertible is called singular.
- A square matrix that is invertible is called nonsingular.

Invertible Matrix Properties

- If \boldsymbol{A} is invertible, then so is \boldsymbol{A}^{-1} and $\left(\boldsymbol{A}^{-1}\right)^{-1}=\boldsymbol{A}$
- If **A** and **B** are invertible matrices of the same order, then their product **AB** is invertible. In fact, $(AB)^{-1} = B^{-1}A^{-1}$

For an $n \times n$ matrix \boldsymbol{A} , the following process will calculate \boldsymbol{A}^{-1} , or show that \boldsymbol{A} is not invertible.

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

- Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.
- Step 2: Transform *M* into Reduced Row Echelon Form.

For an $n \times n$ matrix \mathbf{A} , the following process will calculate \mathbf{A}^{-1} , or show that \mathbf{A} is not invertible.

- Step 1: Form the $n \times 2n$ augmented matrix $\mathbf{M} = [\mathbf{A}|\mathbf{I}_n]$.
- Step 2: Transform **M** into Reduced Row Echelon Form.
- Step 3: If the left hand side of **M** is the identity matrix, then the right hand side is **A**⁻¹.
 - Otherwise, **A** is a non-invertible matrix.

Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Find **A**⁻¹

Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Find A⁻¹

Start by building the augmented matrix

$$M_{\mathbf{A}} =
 \begin{bmatrix}
 1 & 1 & 1 & 1 & 0 & 0 \\
 0 & 2 & 1 & 0 & 1 & 0 \\
 1 & 0 & 1 & 0 & 0 & 1
 \end{bmatrix}$$

Then transform M_A into Reduced Row Echelon Form.

$$\left[egin{array}{ccc|cccc} 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 1 \ \end{array}
ight]$$

$$\left[egin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 1 \end{array}
ight] R_3 = r_3 - r_1$$

$$egin{bmatrix} egin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} R_3 = r_3 - r_1 \ \Rightarrow egin{bmatrix} 1 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 0 & 1 & 0 \ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\left[egin{array}{ccc|ccc|c} 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 2 & 1 & 0 & 1 & 0 \ 0 & -1 & 0 & -1 & 0 & 1 \ \end{array}
ight]$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix} R_2 = -r_3$$

$$R_3 = r_2$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 \end{bmatrix} R_2 = -r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\left[egin{array}{ccc|cccc} 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & -1 \ 0 & 2 & 1 & 0 & 1 & 0 \end{array}
ight.$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}_{R_3 = r_3 - 2r_2}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix} R_3 = r_3 - 2r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

$$\left[egin{array}{ccc|cccc} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}
ight.$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_3$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

$$\left[egin{array}{ccc|cccc} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{array}
ight.$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_2$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 & -1 & -2 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix} R_1 = r_1 - r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 & -1 & -1 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -2 & 1 & 2 \end{bmatrix}$$

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -2 & 1 & 2
\end{array}\right]$$

Since the left hand side is I_3 , we know the right hand side is the inverse:

$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

Consider the matrix:

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Find \boldsymbol{B}^{-1}

Consider the matrix:

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 3 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Find **B**⁻¹

Start by building the augmented matrix

$$\mathbf{\textit{M}}_{\mathbf{\textit{B}}} = \begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

Then transform M_B into Reduced Row Echelon Form.

$$\begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \begin{matrix} R_1 = r_3 \\ R_3 = r_1 \end{matrix}$$

$$\begin{vmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{vmatrix} R_1 = r_3$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix} R_2 = r_2 + r_1 \\ R_3 = r_2 - 3r_1$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 3 & 0 & 3 & 1 & 0 & 0 \end{bmatrix} R_2 = r_2 + r_1$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix}$$

$$\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 1 & 2 & 0 & 0 & 1 \\
0 & 3 & 3 & 0 & 1 & 1 \\
0 & -3 & -3 & 1 & 0 & -1
\end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$R_3 = r_3 + r_2$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 3 & 3 & 0 & 1 & 1 \\ 0 & -3 & -3 & 1 & 0 & -1 \end{bmatrix} R_2 = \frac{1}{3}r_2$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

This means that B is a non-invertible matrix.

Invertibility and Solutions

Consider the matrix equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Where **A** is an $n \times n$ matrix, and \vec{x} and \vec{b} are of length n.

• A unique solution exists if and only if **A** is invertible.

Invertibility and Solutions

Consider the matrix equation $\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Where **A** is an $n \times n$ matrix, and \vec{x} and \vec{b} are of length n.

- A unique solution exists if and only if **A** is invertible.
- Otherwise there are either:
 - No solutions.
 - Infinitely many solutions.

(Another method must be used to determine which.)

Consider the system

Consider the system

We can can write this as the matrix equation:

$$\underbrace{\begin{bmatrix}
1 & 1 & 1 \\
0 & 2 & 1 \\
1 & 0 & 1
\end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix}
2 \\
-1 \\
3
\end{bmatrix}}_{\vec{b}}$$

$$\vec{A}\vec{x} = \vec{b}$$

$$m{A} ec{m{x}} = ec{m{b}}$$
 $m{A}^{-1} m{A} ec{m{x}} = m{A}^{-1} ec{m{b}}$

$$m{A} ec{m{x}} = m{m{b}}$$
 $m{A}^{-1} m{A} ec{m{x}} = m{A}^{-1} m{m{b}}$
 $m{I}_3 ec{m{x}} = m{A}^{-1} m{m{b}}$

$$A\vec{x} = \vec{b}$$
 $A^{-1}A\vec{x} = A^{-1}\vec{b}$
 $I_3\vec{x} = A^{-1}\vec{b}$
 $\vec{x} = A^{-1}\vec{b}$

So, if ${\bf A}$ is invertible, then we can solve the matrix equation for ${\vec x}$

$$\mathbf{A}\vec{\mathbf{x}} = \vec{\mathbf{b}}$$

$$\mathbf{A}^{-1}\mathbf{A}\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$$

$$\mathbf{I}_{3}\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$$

$$\vec{\mathbf{x}} = \mathbf{A}^{-1}\vec{\mathbf{b}}$$

So, if we can compute $\mathbf{A}^{-1}\vec{\mathbf{b}}$ we will have solved the system.

$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -2 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}$$

$$\left[\begin{array}{c}2\\-1\\0\end{array}\right]$$

$$\left[\begin{array}{ccc}
2 & -1 & -1 \\
1 & 0 & -1 \\
-2 & 1 & 2
\end{array}\right]
\left[\begin{array}{c}
5 \\
2 \\
-5
\end{array}\right]$$

So, we have

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}$$

Let **A** be a $n \times n$ matrix. The following are equivalent:

• A is an invertible matrix.

Let **A** be a $n \times n$ matrix. The following are equivalent:

- A is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)

Let **A** be a $n \times n$ matrix. The following are equivalent:

- A is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)
- The equation $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.

Let **A** be a $n \times n$ matrix. The following are equivalent:

- A is an invertible matrix.
- A is row equivalent to I_n.
 (This means when you put A in RREF, you get I_n)
- The equation $\vec{A}\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
- The equation $\vec{A}\vec{x} = \vec{b}$ has a unique solution for every $\vec{b} \in \mathbb{R}^n$.