Self-study: differential geometry for manifolds

Tianpei Xie

Jun. 1st., 2015

Contents

1	Definitions								
	1.1 General and differential manifold								
2	Theorems and Properties for topological and differential manifold	3							
3	Theorems and Properties for Stiefel and Grassmann manifold	4							

1 Definitions

1.1 General and differential manifold

- A topological manifold [Munkres, 2000]
- A differential manifold [Guillemin and Pollack, 2010]
- is referred as the parameterization [Guillemin and Pollack, 2010]
- is referred as a coordinate system [Guillemin and Pollack, 2010]
- The differential of a map f, df

1.2 Stiefel and Grassmann manifold

- A Stiefel manifold $V(r,n) \subset \mathbb{R}^{n \times r}$ is space of all n-by-r matrices whose rank is r (full column rank). It is a submanifold embedded in a rn-dimensional Euclidean space of all n-by-r matrices. $\mathbf{V} \in V(r,n)$ then $\mathbf{V} = \mathbf{T}_{n \times n} \begin{bmatrix} \mathbf{V}_r \\ \mathbf{0} \end{bmatrix}$. The other representation of V(r,n) arises from quotient group. Consider two orthogonal matrices in O(n) are equivalent if their first r-columns are identical, then $U_1 = U_1 \begin{pmatrix} \mathbf{I} & 0 \\ 0 & \mathbf{Q} \end{pmatrix}$, where $\mathbf{Q} \in O(n-r)$. Then V(r,n) = O(n)/O(n-r) as we can add arbitrary n-r more orthogonal basis vectors and make them all orthogonal.
- A Grassmann manifold G(r,n) is the space of all r-dimensional linear subspace in \mathbb{R}^n and G(r,n) is the quotient space of V(r,n) by identifying the p-dim orthogonal group, i.e. G(r,n) = V(r,n)/O(p). A point in G(r,n) is an equivalence class with respect to the relationship $\mathbf{W} \sim_R \mathbf{V} \Rightarrow \mathbf{W} = \mathbf{V} \mathbf{U}$, where $\mathbf{U} \in O(p)$, and two matrices are equivalent if their column span is the same subspace.

2	Theorems and fold	Properties	for	topological	and	differential	mani-

4

Theorems and Properties for Stiefel and Grassmann manifold

References

Victor Guillemin and Alan Pollack. *Differential topology*, volume 370. American Mathematical Soc., 2010.

James R Munkres. Topology, 2nd. Prentice Hall, 2000.