1 Introduction

The Jacobi relaxation method and the Gauss-Seidel method were implemented to solve the discretized Poisson equation in two dimensions for point charges in a grounded box. The two methods were compared with each other in terms of time to solution and number of iterations required. Also, the time to solution was compared to a high performance library Cholesky solver.

2 Algorithm Description

For all cases, the two-dimensional Poisson equation (equation 1) on Ω is discretized using second-order central finite differences in both the x- and the y-direction (equation 2). Both axes share a common grid spacing of $\Delta x = \frac{1}{N+1}$ where N is the number of interior points per axis direction on the grid. Following the established finite difference method procedure to employ natural ordering, the left-hand side of equation 2 then can be written in form of an $N*N \times N*N$ matrix **A** while the values of ϕ on the grid get unrolled into a vector **b** of size N*N on the right-hand side (equation 3).

The resulting matrix A is both sparse and block tridiagonal.

$$\Delta \Phi = -\phi \quad \text{on } \Omega = (0, 1) \times (0, 1) \tag{1}$$

$$4x_{i,j} - x_{i-1,j} - x_{x+1,j} - x_{i,j-1} - x_{i,j+1} = -(\Delta x)^2 \cdot \rho(x_{i,j})$$
(2)

$$Ax = b (3)$$

2.1 Jacobi relaxation method

In matrix form, the Jacobi method works by decomposing the matrix \mathbf{A} into a matrix \mathbf{D} consisting only of \mathbf{A} 's main diagonal and a remainder matrix $\mathbf{R} = \mathbf{A} - \mathbf{D}$. Starting with an initial guess for $\mathbf{x} = (1, 1, \dots, 1)^{\mathrm{T}}$, we iterate $\mathbf{x}^{(t+1)} = \mathbf{D}^{-1}(\mathbf{b} - \mathbf{R}\mathbf{x}^{(t)})$ until $\|\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}\|$ becomes smaller than a chosen convergence treshold in a chosen norm.

2.2 Gauss-Seidel method

Similar to the Jacobi relaxation method, the matrix **A** is decomposed into a lower triagonal matrix **L** and a strictly upper triagonal matrix **U** such that $\mathbf{A} = \mathbf{L} + \mathbf{U}$. Completely analogous to the Jacobi relaxation method, the iteration step is $\mathbf{x}^{(t+1)} = \mathbf{L}^{-1}(\mathbf{b} - \mathbf{U}\mathbf{x}^{(t)})$.

3 Results

The program was implemented as described above and submitted with this report.

Both methods reached the set conversion treshold of $\|\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}\|_2 \leq 10^{-4}$.

The Jacobi relaxation method took t=3478 iterations but on average only $\sim 45 \text{ms}$ to do so, while the Gauss-Seidel method only took t=1922 iterations but $\sim 6400 \text{ms}$ to reach the same treshold. For comparison, Eigen's optimized library Cholesky method solver obtained the reference solution in 9ms. Both methods' solutions reached similar deviation from the reference Cholesky solution:

 $\left\|\mathbf{x}_{\text{Jacobi}}^* - \mathbf{x}_{\text{Cholesky}}^*\right\|_2 \approx \left\|\mathbf{x}_{\text{Gauss-Seidel}}^* - \mathbf{x}_{\text{Cholesky}}^*\right\|_2 \approx 0.05$. The heat maps for all three solvers are shown in figures 1, 2 and 3.

Figure 1: Cholesky solver reference solution for Poisson equation with point charges at (0.25, 0.75), (0.75, 0.25).

4 Discussion

The results are as expected. Further consideration should be given to investigating why the Gauss-Seidel solver in this implementation is an order of magnitude slower than the Jacobi relaxation solver.

Figure 2: Jacobi relaxation solver solution for Poisson equation with point charges at (0.25, 0.75), (0.75, 0.25).

Figure 3: Gauss-Seidel solver solution for Poisson equation with point charges at (0.25, 0.75), (0.75, 0.25).