高三数学考试参考答案(文科)

- 1. B 因为 $A = \{x \mid x \ge -3\}$, $B = \{x \mid x < 2\}$,所以 $A \cap B = \{x \mid -3 \le x < 2\}$.
- 2. C 因为 $1-i \cdot z = 1-i(2-i) = -2i$, 所以 $|1-i \cdot z| = 2$.
- 3. D 因为 $f(x) = \sin(2x + \frac{3\pi}{10})$,所以 $f(\frac{3\pi}{10}) = \sin(2 \times \frac{3\pi}{10} + \frac{3\pi}{10}) \neq \pm 1$, $f(\frac{\pi}{4}) = \sin(2 \times \frac{\pi}{4} + \frac{3\pi}{10})$ $\neq 0$,A 错误,B 错误。显然 f(x)的最小正周期为 π ,C 错误.将 f(x)图象上所有点的横坐标伸长到原来的 2 倍,纵坐标不变,可得函数 $y = \sin(x + \frac{3\pi}{10})$ 的图象,D 正确.
- 4. C 因为 DE 是 $\triangle ABC$ 的中位线,所以 $DE/\!\!/AB$, $DE = \frac{1}{2}AB = 1$, $\angle ADE = \angle BAD = \frac{\pi}{6}$.又 $AD = \sqrt{3}$,所以 $\overrightarrow{DA} \cdot \overrightarrow{DE} = \sqrt{3} \times 1 \times \cos \frac{\pi}{6} = \frac{3}{2}$.
- 5. D 因为 $f(x) = 4x^2 + (a-4)x + |x|$ 是偶函数,所以 a-4=0,解得 a=4.
- 6. A 因为 $y' = -\frac{3}{(x-3)^2}$,所以所求切线的斜率 $k = -\frac{3}{(2-3)^2} = -3$,故该切线的方程为 y = -3x + 4.
- 7. A 因为 $e_2 = \frac{3}{4}e_1$,所以 $\sqrt{1 + \frac{b^2}{8}} = \frac{3}{4} \times \sqrt{1+1}$,解得 b=1.

- 8. B 满足"直线 OM 的倾斜角不大于 $\frac{\pi}{4}$ "这个条件的点 M 构成的区域为图中 的阴影部分,根据几何概型的定义,可知所求概率为 $\frac{2}{8} = \frac{1}{4}$.
- 9. A 因为 $b\cos C c\cos B = a$,所以 $\sin B\cos C \cos B\sin C = \sin A$,整理得 $\sin B\cos C \cos B \cdot \sin C = \sin B\cos C + \cos B\sin C$,所以 $\cos B\sin C = 0$. 因为 $\sin C > 0$,所以 $\cos B = 0$. 又 $B \in (0,\pi)$,所以 $B = \frac{\pi}{2}$,从而 $A + C = \frac{\pi}{2}$.又 A = 2C,所以 $C = \frac{\pi}{6}$.
- 10. B 四棱锥体积 $V_{E-ABCD} = \frac{1}{3} S_{ABCD} \cdot d$,其中 d 为 E 到 AD 的距离,因为正方形 ABCD 的面积为定值,所以当 E 为 \widehat{AD} 的中点时,四棱锥的体积最大,连接 OE, O_1E ,此时其侧面积 $S = \frac{1}{2} AD \cdot OE + \frac{1}{2} AB \cdot AE + \frac{1}{2} AB \cdot AE$

$$\frac{1}{2}CD \cdot DE + \frac{1}{2}BC \cdot O_1E = 1 + 2\sqrt{2} + \sqrt{5}.$$

11. C 因为 $K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)} = \frac{200[(80-m)(50-m)-(20+m)(50+m)]^2}{100\times100\times130\times70}$ = $\frac{8(15-m)^2}{91} \geqslant 3.841$,所以 $(15-m)^2 \geqslant 43.7$,又 $5 \leqslant m \leqslant 15$,所以 $15-m \geqslant 7$,解得 $m \leqslant 8$,

故在被调查的 100 名女生中喜欢观看体育比赛直播的人数的最大值为 58.

12. D 设 P(m,n), |PA|=t,则 A(m,n+t), B(m,n-3t), C(m+2t,n), D(m-4t,n). 由题知

A,B关于x 轴对称,C,D关于y 轴对称,所以n+t+n-3t=0,m+2t+m-4t=0 即n=t m=t 所以A(t,2t) C(3t,t) 图为A C T 椭圆 F t

$$m-4t=0$$
,即 $n=t$, $m=t$,所以 $A(t,2t)$, $C(3t,t)$. 因为 A , C 在椭圆 E 上, D

所以
$$\begin{cases} \frac{t^2}{8} + \frac{4t^2}{b^2} = 1, \\ \frac{9t^2}{8} + \frac{t^2}{b^2} = 1, \end{cases}$$
 即
$$\frac{9}{8} + \frac{1}{b^2} = \frac{1}{8} + \frac{4}{b^2},$$
 解 得 $b = \sqrt{3}$.

- 13. -4 画出可行域(图略)知,当直线 z=2x-y 过点(-3,-2)时,z 取得最小值-4.
- 14.6;17 执行程序框图,

$$n=1, S=0, S=-S+2^1=2, n=2,$$
 满足 $2 \le P$:

$$S=(-1)^2S+2^2=6, n=3$$
,满足 6 $\leq P$;

$$S=(-1)^3S+2^3=2, n=4$$
,满足 2 $\leq P$;

$$S=(-1)^4S+2^4=18, n=5,$$
 满足 $18>P$.

所以 $6 \le P \le 17$, $P \in \mathbb{N}^*$, 所以正整数 P 的最小值和最大值分别为 6 和 17.

- 15. $\frac{-\sqrt{5}-1}{4}$ 设这个黄金三角形的另一个底角为 B, 顶角为 A, 因为 $\frac{BC}{AC} = \frac{\sqrt{5}-1}{2}$, 所以 $\cos C = \frac{BC}{2AC} = \frac{\sqrt{5}-1}{4}$, 则 $\cos 2C = 2\cos^2 C 1 = \frac{-\sqrt{5}-1}{4}$.
- 16. $\frac{2\sqrt{30}}{5}$ 取 BC 的中点 D ,连接 AD , C_1D (图略) ,易知 $\angle AC_1D$ 为直线 AC_1 与平面 BCC_1B_1

所成的角. 设 $\triangle ABC$ 的外接圆半径为r,边长为a,正三棱柱的高为h,则 $AD = \frac{\sqrt{3}}{2}a$, $AC_1 =$

$$\sqrt{a^2+h^2}$$
,所以 $\sin 30^\circ = \frac{\frac{\sqrt{3}}{2}a}{\sqrt{a^2+h^2}}$,即 $h^2 = 2a^2$. 又因为三棱柱 $ABC - A_1B_1C_1$ 内接于半径为

2 的球,所以(
$$\frac{\sqrt{3}a}{3}$$
)²+($\frac{h}{2}$)²=2²,所以 $\frac{a^2}{3}$ + $\frac{a^2}{2}$ =4,解得 $a=\frac{2\sqrt{30}}{5}$,即 $AB=\frac{2\sqrt{30}}{5}$.

17. 解:(1)设等差数列 $\{a_n\}$ 的公差为 d,

依题意得
$$\begin{cases} 2(a_1+4d)-(a_1+3d)=11,\\ 3(a_1+d)=9, \end{cases}$$
 3 分

$$\mathfrak{M}$$
 $= 1$, $d=2$, $d=2$, $d=3$

	$\pm \frac{99}{50} < \frac{2m}{m+1} < \frac{101}{51}$,解得 99 $< m < 101$,
	因为 $m \in \mathbb{N}^*$,所以 $m = 100$
18.	解:(1)由已知可得 $a = \frac{300}{600} \times \frac{1}{10} = 0.05$,
	则(0.005+0.05+ b + c +0.005)×10=1,即 b + c =0.04,
	又因为 a,b,c 成等差数列,所以 $2b=0.05+c$,
	解得 b=0.03,c=0.01. ····· 4 分
	(2)可知 0.005×10=0.05<0.5,(0.005+0.05)×10=0.55>0.5,
	设中位数为 x ,则 $x \in [60,70)$,由 $0.005 \times 10 + (x-60) \times 0.05 = 0.5$,解得 $x=69$,
	即中位数为 69, 6 分
	平均数为 $(55\times0.005+65\times0.05+75\times0.03+85\times0.01+95\times0.005)\times10=71.$ 8分
	(3)成绩位于区间[80,90)内的学生有 $0.01 \times 10 \times 600 = 60$ 人,成绩位于区间[90,100]内的
	学生有 0.005×10×600=30 人, ······ 9 分
	通过分层抽样抽取的 6 人中成绩位于[80,90)的人数为 $6 \times \frac{60}{90} = 4$,这 4 人分别记为 a,b,c ,
	d ,成绩位于[90,100]的人数为 $6 \times \frac{30}{90} = 2$,这 2 人分别记为 E , F
	从上述 6 人中抽取 2 人的基本事件有 ab , ac , ad , aE , aF , bc , bd , bE , bF , cd , cE , cF , dE , dF ,
	EF,共15种,
	其中恰有 1 人的得分在区间[90,100]内的基本事件有 aE , aF , bE , bF , cE , cF , dE , dF , $\#$ 8
	种,故所求概率 $P = \frac{8}{15}$
19.	(1)证明:取 PA 的中点 G ,连接 FG , GE ,
	因为 DE 为 $\triangle ABC$ 的中位线,
	所以 $DE//AB$,且 $DE=\frac{1}{2}AB$
	所以 $DE//AB$,且 $DE = \frac{1}{2}AB$.
	所以 $DE//FG$, $DE=FG$, 四边形 $DEGF$ 为平行四边形,
	所以 DF // EG 4 分 B
	因为 EG⊂平面 PAE, DF⊄平面 PAE, 所以 DF//平面 PAE. ····· 5 分
	(2)解:取 AE 的中点 O ,连接 PO ,因为 $PA=PE=AE$,所以 PO_AE .
	易知 $DE \perp EC$, $DE \perp PE$, 所以 $DE \perp$ 平面 PAE , 从而 $DE \perp PO$.
	因为 $AE \cap DE = E$,所以 $PO \perp$ 平面 $ABDE$,且 $PO = \frac{\sqrt{3}}{2}$ 7 分
	因为 $AC = \sqrt{2}AB = 2$,所以 $AB = \sqrt{2}$,

又因为 DE 为 $\triangle ABC$ 的中位线,所以 $DE = \frac{\sqrt{2}}{2}$, $AE = 1$,	9分
因为 $AC \perp AB$,所以四边形 $ABDE$ 的面积 $S = \frac{1}{2} \times (\frac{\sqrt{2}}{2} + \sqrt{2}) \times 1 = \frac{3\sqrt{2}}{4}$	1分
所以四棱锥 $P-ABDE$ 的体积 $V=\frac{1}{3}\times\frac{3\sqrt{2}}{4}\times\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{8}$	2分
20. 解:(1)由题意知 $F(0,\frac{p}{2})$,直线 l 的方程为 $y=x+\frac{p}{2}$,设 $A(x_1,y_1)$, $B(x_2,y_2)$,	1分
联立方程组 $\begin{cases} y = x + \frac{p}{2}, \\ x^2 = 2py, \end{cases}$ 消去 x 得 $y^2 - 3py + \frac{p^2}{4} = 0$,则 $y_1 + y_2 = 3p$	3分
因为 $ AB = y_1 + y_2 + p = 4p$,所以 $4p = 16$,解得 $p = 4$	5分
(2)由(1)知 $l_{:}y=x+2, y_{1}+y_{2}=12$,设线段 AB 的中点为 D ,则 $D(4,6)$,线段 AB 的中国	垂线
方程为 y=-x+10. ····································	7分
设圆心为 $P(x_0, y_0)$, 易点知 $P(x_0, y_0)$ 在直线 $y = -x + 10$ 上,	
$y_0 = -x_0 + 10$,	0 <i>/</i> \
	9 分
消去 y_0 得 $x_0^2 + 8x_0 - 48 = 0$,解得 $\begin{cases} x_0 = 4, \\ y_0 = 6 \end{cases}$ 或 $\begin{cases} x_0 = -12, \\ y_0 = 22, \end{cases}$	
所以所求圆的方程为 $(x-4)^2+(y-6)^2=64$ 或 $(x+12)^2+(y-22)^2=576$	2分
注:少写一个圆的方程扣2分.	
21. (1)解: 当 $a = e$ 时,因为 $f(x) = e^x + (1-e)x - 1$,所以 $f'(x) = e^x + 1 - e$,	
所以 $f(x)$ 在 $(-\infty, \ln(e-1))$ 上单调递减,在 $(\ln(e-1), +\infty)$ 上单调递增	4分
(2)证明:(法一)易知当 $x \in (1, +\infty)$ 时, $\ln x < x - 1$, $\ln \frac{1}{x} < \frac{1}{x} - 1$, 所以 $1 < \frac{x - 1}{\ln x} < x$.	•••
	6分
由题设知 $a > 1, f'(x) = a^x \ln a + 1 - a$.	7分
$\Leftrightarrow f'(x)=0$,得 $x_0=\frac{\ln\frac{a-1}{\ln a}}{\ln a}$,	8分
由上可知 $1 < \frac{a-1}{\ln a} < a, 0 < \ln \frac{a-1}{\ln a} < \ln a,$ 故 $0 < x_0 < 1$	0分
当 $x < x_0$ 时, $f'(x) < 0$, $f(x)$ 单调递减,当 $x > x_0$ 时, $f'(x) > 0$, $f(x)$ 单调递增 1	1分
又 $f(0) = f(1) = 0$,所以当 $0 < x < 1$ 时, $f(x) < 0$	2分
(法二)因为 $f'(x) = a^x \ln a + 1 - a$,且 $a > 1$,所以 $f'(x)$ 在(0,1)上单调递增	5分
又 $f'(0)$ = ln $a+1-a$, 设 $g(a)$ = ln $a+1-a$, 则 $g'(a)$ = $\frac{1}{a}-1$ < 0, 可知 $g(a)$ 在 $(1,+\infty)$)上
单调递减,所以 $g(a) < g(1) = 0$,即 $f'(0) < 0$,	7 分

	又 $f'(1) = a \ln a + 1 - a$,设 $h(a) = a \ln a + 1 - a$,则 $h'(a) = \ln a > 0$,可知 $h(a)$ 在 $(1, +\infty)$ 上
	单调递增,所以 $h(a)>h(1)=0$,即 $f'(1)>0$
	所以存在唯一的 $x_0 \in (0,1)$,使得 $f'(x_0) = 0$,且 $f(x)$ 在 $(0,x_0)$ 上单调递减,在 $(x_0,1)$ 上单
	调递增
	因为 $f(0) = f(1) = 0$,所以当 $x \in (0,1)$ 时, $f(x) < 0$.
2	2. 解:(1)曲线 C_1 的参数方程为 $\begin{cases} x=1+3\cos\alpha, \\ y=-2+3\sin\alpha \end{cases}$ (α 为参数),其普通方程为 $(x-1)^2+(y+2)^2$
	$=9$,即 $x^2+y^2-2x+4y-4=0$,
	则 C_1 的极坐标方程为 $\rho^2-2\rho\cos\theta+4\rho\sin\theta-4=0$.
	直线 C_2 的方程为 $y=\sqrt{3}x$,
	所以直线 C_2 的极坐标方程为 $\theta = \frac{\pi}{3} (\rho \in \mathbf{R})$
	(2) 设 $M(\rho_1,\theta),N(\rho_2,\theta),$
	将 $\theta = \frac{\pi}{3} (\rho \in \mathbf{R})$ 代人 $\rho^2 - 2\rho \cos \theta + 4\rho \sin \theta - 4 = 0$,
	得 $\rho^2 + (2\sqrt{3} - 1)\rho - 4 = 0$,
	所以 $\rho_1 \rho_2 = -4$,
	所以 $ OM \cdot ON = \rho_1 \rho_2 = 4$.
2	3. 解:(1)化简得 x+2 -2 x-1 >-3 1分
	当 <i>x</i> ≥1 时,解得 <i>x</i> <7,所以 1≤ <i>x</i> <7; ········ 2 分
	当 $x \le -2$ 时,解得 $x > 1$,此时无解;
	当-2 <x<1 x="" 时,解得="">-1,所以-1<x<1 4="" td="" 分<=""></x<1></x<1>
	综上所述,原不等式的解集为 $(-1,7)$ 5分
	$-3,x \le -2,$
	(2)因为 $f(x) = \begin{cases} 2x+1, -2 < x < 1, \dots \\ 7 \end{cases}$
	$3,x\geqslant 1,$
	所以 $f(x)_{max} = 3$
	由题意知 $ 1-m \leq 3$,解得 $-2 \leq m \leq 4$,
	所以 m 的取值范围是[$-2,4$] 10 分