ЛЕКЦИЯ 3

Некоторые замечательные пределы

Теорема 1 (первый замечательный предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{1}$$

Рис. 1

▲ Пусть сначала $x \in (0, \frac{\pi}{2})$. Как видно из рис. 1, площадь треугольника OMA меньше площади сектора OMA, а последняя площадь меньше площади треугольника OCA. Площадь сектора с углом х находится по формуле $S = \frac{S \text{круга}}{2\pi} x = \frac{\pi}{2} \frac{r^2}{2\pi} x = \frac{1}{2} r^2 x$, значит, $\frac{1}{2} |OA| |MB| < \frac{1}{2} |OA|^2 x < \frac{1}{2} |OA| |CA|$. Здесь |OA| = 1, $|MB| = \sin x$, $|CA| = \text{tg } x \Rightarrow \frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \text{ tg } x$, или $\sin x < x < \text{tg } x$.

Разделим все части последнего неравенства на $\sin x > 0$ (x находится в первой четверти):

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \implies \cos x < \frac{\sin x}{x} < 1.$$

Все функции в последней формуле четные, значит, она справедлива и для $x \in (-\frac{\pi}{2}, 0)$.

Теперь перейдем к пределу при х $\to 0$, применяя теорему 3: $\lim_{x\to 0} 1=1$, значит, $\lim_{x\to 0} \frac{\sin x}{x}$ будет равен 1, если мы сумеем доказать, что $\lim_{x\to 0} \cos x = 1$ или, согласно определению предела функции, $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta \ (\varepsilon)$: $\forall x, |x| < \delta \ |\cos x - 1| < \varepsilon \Leftrightarrow 2\sin^2 \frac{x}{2} < \varepsilon$.

В этом определении x достаточно мало. Далее имеем в виду, что для $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ $\sin^2 \frac{x}{2}$ <1. Так как при y < 1 $y^2 < |y|$, то $2\sin^2 \frac{x}{2} < 2|\sin \frac{x}{2}| = 2|\sin \frac{|x|}{2}|$. Так как в первой четверти $\sin x < x$, то $2|\sin \frac{|x|}{2}| < 2\frac{|x|}{2} = |x|$. Теперь вместо выполнения неравенства $2\sin^2 \frac{x}{2} < \epsilon$ нам достаточно потребовать, чтобы $|x| < \epsilon$ (тогда $2\sin^2 \frac{x}{2} < |x| < \epsilon$), значит, в качестве δ годится любое число: $\delta \le \epsilon$ (тогда $|x| < \delta \le \epsilon \Rightarrow |x| < \epsilon$). \blacksquare

Примеры. Найти пределы функций.

1)
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$
 (2)

2)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos x)} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x} = \frac{1}{2}$$
(3)

Результаты (2) - (3) можно использовать для вычисления других пределов.

Теорема 2 (второй замечательный предел для последовательностей).

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \tag{4}$$

А Пусть $\{a_n\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$. Согласно известной формуле бинома Ньютона

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots = a^{n} + \sum_{k=1}^{n} \frac{n(n-1)(n-2)\dots(n-k+1)}{k!}a^{n-k}b^{k},$$

поделив каждую скобку на n, представим a_n в виде суммы n+1 слагаемых:

$$a_n = 1 + \sum_{k=1}^n \frac{n(n-1)...(n-k+1)}{k!} \frac{1}{n^k} = 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) ... \left(1 - \frac{k-1}{n}\right).$$

При переходе от a_n к a_{n+1} , т.е. при замене n на n+1, знаменатели дробей возрастают, значит, разность $1-\frac{i}{n}$ становится больше, т.е. в нашей сумме увеличивается каждое слагаемое, и, кроме того, добавляется еще одно (n+2)ое неотрицательное слагаемое, значит, для $\forall n \in \mathbb{N}$ $a_{n+1} > a_n \Longrightarrow \{a_n\}$ возрастает (отсюда, кстати, $a_n > a_1 = 2$).

Проверим, что эта последовательность ограничена сверху: заменим в последней сумме каждую скобку на большую величину 1, тогда

$$a_n < 1 + \sum_{k=1}^n \frac{1}{k!} = 2 + \sum_{k=2}^n \frac{1}{2 \cdot 3 \cdot 4 \cdot \dots \cdot k} < 2 + \sum_{k=2}^n \frac{1}{2 \cdot 2 \cdot 2 \cdot \dots \cdot 2} = 2 + \sum_{k=2}^n \frac{1}{2^{k-1}}.$$

Это есть сумма геометрической прогрессии с n-1 членами, в которой $q=\frac{1}{2}, b_1=\frac{1}{2} \Rightarrow$

$$a_n < 2 + \frac{b_1(1-q^{n-1})}{1-q} = 2 + \frac{1/2(1-(1/2)^{n-1})}{1-1/2} = 2 + (1-(1/2)^{n-1}) < 3 \Longrightarrow \{a_n\}$$
 ограничена сверху.

Возрастающая, ограниченная сверху последовательность $\{a_n\}$ по теореме 1 имеет конечный предел. Обозначая этот предел буквой e, получим нужное нам равенство.

Так как $2 \le a_n \le 3$, то $2 \le e \le 3$ (см. задачу выше). Можно показать, что e – иррациональное число и $e \approx 2,71828$.

Теорема 3 (второй замечательный предел для функций.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{5}$$

▲ Пусть сначала $x \to +\infty$. Для $\forall x > 1$ возьмем такое $n = n(x) \in N$, что $n \le x < n+1$ (это целая часть числа x), тогда $1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n} \Rightarrow \left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{n}\right)^{n+1}$. Теперь пусть $x \to +\infty \Rightarrow n \to \infty$. Согласно теореме 2,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e \cdot 1 = e ;$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1} : \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right) = \frac{e}{1} = e .$$

Тогда, по теореме 10 предыдущей лекции, существует $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$.

Пусть теперь $x \to -\infty$. В соответствии с теоремой 11 предыдущей лекции, заменим y = -x:

$$\lim_{x\to-\infty}\left(1+\frac{1}{x}\right)^x=\lim_{y\to+\infty}\left(1-\frac{1}{y}\right)^{-y}=\lim_{y\to+\infty}\left(\frac{y}{y-1}\right)^y=\lim_{y\to+\infty}\left(\frac{y-1+1}{y-1}\right)^y=\lim_{y\to+\infty}\left(1+\frac{1}{y-1}\right)^{y-1}\left(1+\frac{1}{y-1}\right)^y,$$

что по уже доказанному, равно $e \cdot 1 = e \Rightarrow \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$.

Примеры. Найти следующие пределы:

1)
$$\alpha(\mathbf{x}) - 6.\mathbf{M}$$
, $x \to a \Rightarrow \lim_{x \to a} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} = e, \alpha(\mathbf{x}) - 6.\mathbf{M}$, $x \to a$ (6)

Решение: Сделав замену $\alpha(x) = \frac{1}{y}$, имеем: $\lim_{x \to a} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} = \lim_{y \to \infty} (1 + \frac{1}{y})^y = e$.

B частности,
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{7}$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \tag{8}$$

Решение: используя непрерывность функции $y = \ln x$ (ниже будет показано, что именно для непрерывных функций символы предела и функции можно менять местами), имеем:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\lim_{x \to 0} (1+x)^{\frac{1}{x}} \stackrel{(7)}{=} \ln e = 1.$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \tag{9}$$

Решение: сделав замену $y=e^x-1$, $x=\ln{(1+y)}$, и, используя непрерывность функции $y=e^x$, имеем: $\lim_{x\to 0}\frac{e^x-1}{x}=\lim_{y\to 0}\frac{y}{\ln(1+y)}=\lim_{y\to 0}1:\frac{\ln(1+y)}{y}=1.$

Результаты (6) – (9) можно использовать для вычисления других пределов.

Сравнение бесконечно малых

Определение 1. Пусть $\alpha = \alpha(x)$ и $\beta = \beta(x)$ — две б.м. функции, $x \to a$. Эти б.м. называются б.м. *одного порядка* при $x \to a$, если $\exists \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = b, b \neq 0, b \neq \infty$. Если b = 1, то б.м. называются эквивалентными при $x \to a$ (обозначение: $\alpha \sim \beta, x \to a$). Если b = 0, то α называется б.м. *более высокого порядка*, чем β при $x \to a$ (обозначение: $\alpha = o(\beta), x \to a$).

Для нахождения ряда пределов бесконечно малые удобно заменять на их эквивалентные.

Теорема 4 (о пределе отношения бесконечно малых).

Пусть
$$f(x) \sim \alpha(x)$$
, $x \to a$, $g(x) \sim \beta(x)$, $x \to a$ и $\exists \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = b \Rightarrow \exists \lim_{x \to a} \frac{f(x)}{g(x)} = b$, т.е. при

вычислении пределов отношения бесконечно малые можно заменять на им эквивалентные.

$$\blacktriangle \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{\alpha(x)} \frac{\alpha(x)}{\beta(x)} \frac{\beta(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{\alpha(x)} \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} \lim_{x \to a} \frac{\beta(x)}{g(x)} = 1 \cdot b \cdot 1 = b. \blacksquare$$

Пример. $\lim_{x\to 0} \frac{\ln(1+3x^2)}{e^{2x^2}-1}$.Согласно предыдущим примерам 2) и 3), $\ln(1+3x^2) \sim 3x^2$

и
$$e^{2x^2} - 1 \sim 2x^2 \Rightarrow \lim_{x \to 0} \frac{\ln(1 + 3x^2)}{e^{2x^2} - 1} = \lim_{x \to 0} \frac{3x^2}{2x^2} = \frac{3}{2}.$$

НЕПРЕРЫВНОСТЬ ФУНКЦИИ

Непрерывность функции в точке

Определение 2. Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Эта функция называется *непрерывной* в точке x_0 , если предел функции в точке x_0 равен значению функции в этой точке, или если

$$\exists \lim_{x \to x_0} f(x) = f(x_0) \tag{10}$$

По определению предела функции, это равенство равносильно тому, что

$$\forall \varepsilon > 0 \ \exists \ \delta = \delta \ (\varepsilon): \ \forall x \in U \ (x_0, \delta) \ f(x) \in U(f(x_0), \varepsilon)$$

$$\Leftrightarrow \forall \varepsilon > 0 \ \exists \ \delta = \delta \ (\varepsilon): \ \forall x, \ |x - x_0| < \delta \quad |f(x) - f(x_0)| < \varepsilon$$

По сравнению с определением предела функции здесь опущено условие $x \neq x_0$, так как при $x = x_0$ последнее неравенство заведомо верно.

Определение 2 равносильно условию $\lim_{x\to x_0} [f(x)-f(x_0)] = 0$. Обозначим $x-x_0 = \Delta x$ —приращение аргумента, $f(x)-f(x_0) = \Delta y$ — приращение функции, соответствующее данному приращению аргумента, тогда определение непрерывности 1 можно записать в другом виде.

Определение 3 (равносильное определению 2). Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Эта функция называется *непрерывной* в точке x_0 , если $\exists \lim_{\Delta x \to 0} \Delta y = 0$, или, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Приведем основные свойства функций, непрерывных в точке:

Теорема 5 (ограниченность). Пусть y = f(x) непрерывна в точке x_0 , тогда она ограничена при $x \rightarrow x_0$.

▲ Это есть частный случай теоремы 2 лекции 1 (функция, имеющая конечный предел в точке, ограничена в окрестности этой точки). ■

Теорема 6 (сохранение знака). Пусть y = f(x) непрерывна в точке x_0 и $f(x_0) > 0$ (<0) $\Rightarrow f(x) > 0$ (<0) и в некоторой окрестности точки x_0 (см. рис.2).

Рис.2

▲ Возьмем в определении непрерывности функции $\varepsilon = \frac{\mid f(x_0) \mid}{2} \Rightarrow \exists \ \delta : \ \forall x \in U(x_0, \delta)$ $|f(x)-f(x_0)| < \frac{\mid f(x_0) \mid}{2} \Leftrightarrow -\frac{\mid f(x_0) \mid}{2} < f(x)-f(x_0) < \frac{\mid f(x_0) \mid}{2} \ .$ Перенесем $f(x_0)$ в левую и правую части неравенства: $f(x_0) - \frac{\mid f(x_0) \mid}{2} < f(x) < f(x_0) + \frac{\mid f(x_0) \mid}{2} \ .$ Отсюда имеем: если $f(x_0) > 0$, то $\ \forall x \in U(x_0, \delta) \ f(x) > f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} > 0$; если $f(x_0) < 0$, то $\ \forall x \in U(x_0, \delta) \ f(x) < f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2} < 0$. ■

Теорема 7 (арифметические операции над непрерывными функциями). Пусть функции y = f(x) и y = g(x) непрерывны в точке x_0 . Тогда в этой точке непрерывны функции $y = f(x) \pm g(x)$, y = f(x)g(x) и (при $g(x_0) \neq 0$) $\frac{f(x)}{g(x)}$.

▲ Все эти утверждения доказываются одинаково. Докажем только последнее из них. Согласно теореме 7 лекции 2 и определению 2,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)} \implies \text{функция} \quad \frac{f(x)}{g(x)} \text{ непрерывна в точке } x_0. \blacksquare$$

Теорема 8 (непрерывность сложной функции). Пусть $z = f(\varphi(x)) - c$ ложная функция. Пусть функция $y = \varphi(x)$ непрерывна в точке x_0 , а функция z = f(y) непрерывна в точке $y = \varphi(x_0)$. Тогда сложная функция $z = f(\varphi(x))$ непрерывна в точке x_0 (проще говоря, если сложная функция составлена из двух непрерывных, то она сама непрерывна).

▲ $\lim_{x \to x_0} \varphi(x) = \varphi(x_0) = y_0$; $\lim_{y \to y_0} f(y) = f(y_0)$. По теореме 11 лекции 2 (здесь $\varphi(x) = \varphi(x_0)$ допустимо) $\lim_{x \to x_0} f(\varphi(x)) = \lim_{y \to y_0} f(y) = f(\varphi(x_0))$, что и означает непрерывность сложной функции $z = f(\varphi(x))$ в точке x_0 . ■ Замечание. Полученное при доказательстве равенство $\lim_{x \to x_0} f(\varphi(x)) = f(\lim_{x \to x_0} \varphi(x))$ (оба этих предела равны $f(\varphi(x_0))$ было использовано в примерах предыдущей лекции.

Теорема 9 (непрерывность элементарных функций). Любая элементарная функция непрерывна во всех точках, где она определена

▲ Так как все элементарные функции получаются из основных элементарных функций путем арифметических операций и суперпозиций, а эти действия, по теоремам 7 и 8, сохраняют непрерывность, то нужно проверить непрерывность основных элементарных функций в точках их определения. Для некоторых из них по определению 3 имеем:

1)
$$y = c$$
: $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} 0 = 0$;

2)
$$y = x$$
: $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \Delta x = 0$;

3)
$$y = \sin x$$
: $|\Delta y| = |\sin x - \sin x_0| = 2 \left|\sin \frac{x - x_0}{2}\right| \left|\cos \frac{x + x_0}{2}\right| \le 2 \left|\sin \frac{\Delta x}{2}\right| = 2 \left|\sin \frac{|\Delta x|}{2}\right|$;

 $\forall x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ последнее *выражение* не превосходит $2\frac{|\Delta x|}{2} = |\Delta x| \Rightarrow 0 \le |\Delta y| \le |\Delta x|$. По теореме «о двух милиционерах»: $\lim_{\Delta x \to 0} 0 = 0$, $\lim_{\Delta x \to 0} |\Delta x| = 0 \Rightarrow \lim_{\Delta x \to 0} |\Delta y| = 0 \Rightarrow \lim_{\Delta x \to 0} |\Delta y| = 0$;

4)
$$y = \cos x$$
: $|\Delta y| = |\cos x - \cos x_0| = 2 \left| \sin \frac{x + x_0}{2} \right| \left| \sin \frac{x - x_0}{2} \right|$ и далее аналогично примеру 3).

Определение 4. Пусть функция y = f(x) определена в точке x_0 и в некотором интервале $(x_0 - \delta, x_0)$ (или $(x_0, x_0 + \delta)$). Эта функция называется непрерывной слева (справа) в точке x_0 , если $\exists \lim_{x \to x_0 - o} f(x) = f(x_0)$ ($\lim_{x \to x_0 + o} f(x) = f(x_0)$).

Классификация точек разрыва

С учетом введенного выше понятия односторонних пределов, непрерывность функции y = f(x) в точке x_0 равносильна выполнению условия

$$f(x_0 - 0) = f(x_0) = f(x_0 + 0) \tag{11}$$

Определение 5. Пусть функция y = f(x) определена в некоторой окрестности точки x_0 , кроме, может быть, самой этой точки. Точка x_0 называется *точкой разрыва* функции y = f(x), если эта функция не является непрерывной в точке x_0 .

В точках разрыва функции y = f(x) условие (11) не выполняется.

Определение 6. Точка разрыва x_0 функции y = f(x) называется точкой разрыва *1-ого рода*, если в этой точке существуют конечные односторонние пределы $f(x_0 - 0)$ и $f(x_0 + 0)$.

Определение 7. Точка разрыва 1-ого рода x_0 функции y = f(x) называется *устранимой* точкой разрыва, если $f(x_0 - 0) = f(x_0 + 0)$.

В такой точке либо $f(x_0)$ не определена, либо $f(x_0-0)=f(x_0+0)\neq f(x_0)$. Если положить $f(x_0)=f(x_0-0)=f(x_0+0)$, то f(x) станет непрерывной в точке x_0 , т.е. разрыв можно устранить, изменив значение функции в одной точке.

Определение 8. Точка разрыва x_0 функции y = f(x) называется точкой разрыва 2-ого рода, если она не является точкой разрыва первого рода.

В такой точке хотя бы один из односторонних пределов $f(x_0 - 0)$ и $f(x_0 + 0)$ бесконечен или не существует.

Примеры.

а) x_0 — точка разрыва первого рода, разрыв не устранимый; б) x_0 — устранимая точка разрыва; в), г) x_0 — точка разрыва второго рода.

"Исследовать функцию на непрерывность" означает, что нужно указать все точки разрыва функции, дать их классификацию и нарисовать схему графика функции в окрестностях точек разрыва.

Пример. Исследовать функцию на непрерывность: $y = \frac{x}{\sin x}$

Точки разрыва: $\sin x = 0, x = \pi n, n \in \mathbb{Z}$ (в остальных точках функция непрерывна по теоремам 7 и 9); $f(-0) = f(+0) = \lim_{x \to 0} \frac{x}{\sin x} = 1 \implies x = 0$ – устранимая точка разрыва; $f(\pi - 0) = +\infty$, $f(\pi + 0) = -\infty \implies x = \pi$ – точка разрыва второго рода; такими же будут все точки вида $x = \pi n, \ n \in \mathbb{Z}, n \neq 0$.

Схема графика функции в окрестностях точек разрыва имеет вид (рис. 3):

Рис. 4

Непрерывность функции на множестве

Определение 9. Функция называется непрерывной на множестве, если она непрерывна в каждой точке этого множества.

Далее речь будет идти о функциях, непрерывных на отрезке. При этом под непрерывностью на левом краю отрезка будет пониматься непрерывность справа, а под непрерывностью на правом краю отрезка будет пониматься непрерывность слева.

Свойства функций, непрерывных на отрезке

Приведем (для простоты) без доказательства три основных свойства:

Теорема 10. Пусть функция y = f(x) непрерывна на [a,b]. Тогда f(x) ограничена на этом отрезке, т.е. $\exists M > 0$: $|f(x)| \le M$.

По этой теореме множество значений непрерывной на отрезке [a,b] функции f (x) ограничено, тогда по теореме 1 лекции 1 это множество имеет верхнюю и нижнюю грани $M = \sup_{x \in [a,b]} f(x)$ и $m = \inf_{x \in [a,b]} f(x)$.

Теорема 11. Пусть функция y = f(x) непрерывна на $[a,b] \Rightarrow$ она достигает на этом отрезке своих верхней и нижней граней, т.е. $\exists x_0 \in [a,b]$ и $\overline{X}_0 \in [a,b]$: $f(x_0) = M$ и $f(\overline{X}_0) = m$.

Теорема 12. y = f(x) непрерывна на $[a,b] \Rightarrow$ она принимает на этом отрезке любое промежуточное значение между m и M, т.е. если $c \in (m,M)$, то \exists хотя бы одна точка $x_0 \in [a,b]$: $f(x_0) = c$.

Следствие. Если функция y = f(x) непрерывна на [a,b] и f(a) f(b) < 0 (т.е. на концах отрезка [a,b] функция f(x) принимает значения разных знаков), то существует хотя бы одна точка $x_0 \in (a,b)$: $f(x_0) = 0$.

▲ По условию m < 0, а $M > 0 \implies$ в теореме 8 в качестве точки c можно взять c = 0. ■

Данное следствие может применяться для приближенного решения уравнений, которые точно решить невозможно.

Пример. Найти корни уравнения $f(x) = x^3 + x - 1 = 0$.

 $f(0) = -1 < 0, f(1) = 1 > 0 \implies$ уравнение имеет корень $\in [0,1]$; $f(1/2) = 1/8 + 1/2 - 1 = -3/8 < 0 \implies$ уравнение имеет корень $\in [1/2, 1]$; $f(3/4) = 27/64 + 3/4 - 1 = 11/64 > 0 \implies$ уравнение имеет корень $\in [1/2,3/4]$ и т.д. Таким способом находится корень уравнения с любой нужной точностью.