PCA

April 8, 2023

PCA or principle component analysis is used for dimensionality reduction. We will look into some live code examples of the same here.

```
[28]: # importing libraries
      import matplotlib.pyplot as plt
      import numpy as np
      import pandas as pd
      %matplotlib inline
[29]: from sklearn.datasets import load_breast_cancer
[30]: cancer=load_breast_cancer()
      cancer.keys()
[30]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names',
      'filename', 'data_module'])
[31]: print(cancer['DESCR'])
     .. _breast_cancer_dataset:
     Breast cancer wisconsin (diagnostic) dataset
     **Data Set Characteristics:**
         :Number of Instances: 569
         :Number of Attributes: 30 numeric, predictive attributes and the class
         :Attribute Information:
             - radius (mean of distances from center to points on the perimeter)
             - texture (standard deviation of gray-scale values)
             - perimeter
             - area
             - smoothness (local variation in radius lengths)
             - compactness (perimeter^2 / area - 1.0)
             - concavity (severity of concave portions of the contour)
             - concave points (number of concave portions of the contour)
```

- symmetry
- fractal dimension ("coastline approximation" 1)

The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.

- class:

- WDBC-Malignant
- WDBC-Benign

:Summary Statistics:

	=====	=====
	Min	Max
	=====	=====
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
<pre>smoothness (mean):</pre>	0.053	0.163
compactness (mean):	0.019	0.345
<pre>concavity (mean):</pre>	0.0	0.427
<pre>concave points (mean):</pre>	0.0	0.201
<pre>symmetry (mean):</pre>	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
smoothness (standard error):	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
symmetry (standard error):	0.008	0.079
fractal dimension (standard error):	0.001	0.03
radius (worst):	7.93	36.04
texture (worst):	12.02	49.54
perimeter (worst):	50.41	251.2
area (worst):	185.2	4254.0
<pre>smoothness (worst):</pre>	0.071	0.223
compactness (worst):	0.027	1.058
concavity (worst):	0.0	1.252
<pre>concave points (worst):</pre>	0.0	0.291
<pre>symmetry (worst):</pre>	0.156	0.664
fractal dimension (worst):	0.055	0.208
		=====

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street

:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

- .. topic:: References
 - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577,

July-August 1995.

- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques

to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994)

163-171.

So we can see that the number of dimensions present here is 3. With the help of PCA we can reduce it to 2 as below

[32]:		=pd.DataFrame .head(5)	(cancer[' <mark>da</mark>	ta'],col	umns=cance	er['feature_n	ames'])		
[32]:		mean radius	mean textu	re mean	perimeter	r mean area	mean smooth	ness \	
	0	17.99	10.	38	122.80	1001.0	0.1	1840	
	1	20.57	17.	77	132.90	1326.0	0.0	8474	
	2	19.69	21.	25	130.00	1203.0	0.1	0960	
	3	11.42	20.			0.1	4250		
	4	20.29	14.	34	135.10	1297.0	0.1	0030	
		mean compact	ness mean	concavit	y mean co	oncave points	mean symme	try \	
	0	0.2	7760	0.300	1	0.14710		419	
	1	0.0	0.07864 0.0869 0.07017 0.181			812			
	2	0.1	5990	0.197	1974 0.12790 0.2069			069	
	3	0.28	8390	0.241	4	0.10520	0.2	597	
	4	0.13	3280	0.198	0	0.10430	0.1	809	
		mean fractal					_		
	0		0.07871		25.38	17.3		184.60	
	1		0.05667	•••	24.99	23.4			
	2		0.05999	•••	23.57	25.5			
	3		0.09744	•••	14.91	26.5			
	4		0.05883	•••	22.54	16.6	7	152.20	
			worst smoot		orst compa	actness wors	•	\	
	0	2019.0		.1622		0.6656	0.7119		
	1	1956.0		.1238		0.1866	0.2416		
	2	1709.0		.1444		0.4245	0.4504		
	3	567.7		.2098		0.8663	0.6869		
	4	1575.0	0	.1374		0.2050	0.4000		
		worst concave	-	•	•	st fractal d			
	0		0.2654		.4601		0.11890		
	1		0.1860		.2750	0.08902			
	2		0.2430		.3613	0.08758			
	3		0.2575		.6638	0.17300			
	4		0.1625	0	. 2364		0.07678		

[5 rows x 30 columns]

```
[33]: from sklearn.preprocessing import StandardScaler
      scaler=StandardScaler()
      scaler.fit(df)
[33]: StandardScaler()
[34]: scaled_data=scaler.transform(df)
      scaled_data
[34]: array([[ 1.09706398, -2.07333501,
                                         1.26993369, ...,
                                                         2.29607613,
               2.75062224, 1.93701461],
             [ 1.82982061, -0.35363241,
                                         1.68595471, ..., 1.0870843,
              -0.24388967, 0.28118999],
             [ 1.57988811, 0.45618695, 1.56650313, ..., 1.95500035,
               1.152255 , 0.20139121],
             [ 0.70228425, 2.0455738 , 0.67267578, ..., 0.41406869,
              -1.10454895, -0.31840916],
             [ 1.83834103, 2.33645719, 1.98252415, ..., 2.28998549,
               1.91908301, 2.21963528],
             [-1.80840125, 1.22179204, -1.81438851, ..., -1.74506282,
              -0.04813821, -0.75120669]])
[35]: from sklearn.decomposition import PCA
[36]: pca=PCA(n_components=2)
      pca.fit(scaled_data)
      x_pca=pca.transform(scaled_data)
[37]: scaled_data.shape
[37]: (569, 30)
[38]: x_pca.shape
[38]: (569, 2)
[39]: plt.figure(figsize=(8,6))
      plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'])
      plt.xlabel('First principle component')
      plt.ylabel('Second principle component')
[39]: Text(0, 0.5, 'Second principle component')
```


[]:	
[]:	
[]:	