

8	Equivalence	of Sets	of Fun	ctional	Denen	dencies:
	200000		0		7	

Cover: A set of 7D's F is said to cover another

set of 7D's E if every FD in E is also in F; ie

if every dependency in E can be infired from F

by we can say "E" is covered by F" F 2E,

Equivalence: Two sets of 7D's & and I are equivalent if Et = It.

5 Equivalence means that every FD in E

ent to F if both the conditions -E covers F and F covers & - hold.

E covers f and f covers E - he
E 27 J = E

Example: Let F and G be two sets of FD's on a relation R (A,C,D,E,H)

 $fds f: \{A \rightarrow C \qquad fds g: \{A \rightarrow CD \\ AC \rightarrow D \qquad E \rightarrow AH\}$

E -> AD

E > H3

show that the Fand & are equivalent.

we need to show that FZG& GZJ

729 3 927 F

	R (A.C, D, E, H)		
	J: A→C	G: A→CD	
	AC -> D	E>AH	
	$E \rightarrow AD$		
Step 1:	E>H		
V	A		
	A [†] :	A+ ;	
	Act:	E*;	
	Eto		
Jep 2:	71 A >C	G: A → CD	
	: AC>D	E > AH.	
	E>AD		
	E>H	Step3	
(:0.0	pute closure of ; using g	compute closure of using 7	
Cerv	gate create 42	Compute closure of maing 7	
	At: A ČD	At: ACD	
	Act; ACD	E+; EADCH	
	E+: EADCH	V	
	This means that 729	This means that y 27	
	O		
Step4:	Since 72 G and	g = 7 both F = gt	
<i>y</i> / ·			

Try this yourself:

Example: Given R(PQRS) and 9d's $X = \{P \rightarrow Q, Q \rightarrow R, R \rightarrow 5\}$ $Y = \{P \rightarrow QR, R \rightarrow 5\}$ which $Y \neq R$ following holds true:

a) X = Yb) Y = Xc) $X \neq Y \neq Y \neq Y$

Example: State (Inve or False) quien R(ABC) and $g = \{A \rightarrow B, B \Rightarrow C, C \Rightarrow A\}$ and $g = \{A \rightarrow BC, B \Rightarrow A, C \Rightarrow A\}$ are equivalent.

Example: Given R(vuxyz) and function dependencies $\mathcal{F} = \{w \to x, wx \to y, z \to wy, z \to v\}$ & $y = \{w \to xy, z \to wx\}$ prove / disprove $y = \mathcal{F}$.

* E Carnonical form of functional dependencies:

Ly aka. minimal sets of FD's. / Irreducible sets of FD's.

Objecture: to reduce a set of FD's "F" to its minimal set "E".

note: we define a set of functional dependencies as minimal if it patisfies, the following conditions:

- a) Every dependency in "F" has a single attribute for its right hand side (RHS)
- b) We carret replace any dependency X >A in I with a dependency Y > A, where Y is a proper set subset of X, and still have a set of dependencies that is equivalent to \$I
- c) We cannot remove any dependency from F And still have a set of dependencies that is equivalent to F.

Example: Given R(WXYZ) with fd's $f=\{x\to w, wz\to xy, y\to wxz\}$, can we derive the minimal set of fd's. Algorithm: Finding a a Minimal set (cover) F. for a set of FD's E.

Input: A set of FD's E.

Output: A minimal set of FD's F.

Steps: Set F := E

Step 2: Replace leach FD X -> EA, Az, ..., And in F

by the form X > As, AX > A2, ... X > An

(rusing decomposition rule)

Step 3: a) For each FD X > A in F determine Xt

b) - Determine closure without the FD X > A.

1) if there is a change thenthe FD X >A

is essential, else cliscard X > A from F.

Sobn: R(WXYZ)

fd E: Ex→W

WZ -> XY

Y -> WX Z }

Step1: F!=E

Step 2: Apply decomposition rule to every Din F

F; {OX >W

2)WZ >X

3)WZ >Y

4) Y > W

5) Y -> X

6) Y > Z {

	Step 3 a: determine desure of each PS
F={	ı) x→ ω
X -> W	$X^{\dagger} = XW - (a)$
2)WZ > X	Step 36: determine closure without AD.
3WZ >Y	$x^{\dagger} = x$ —(b)
(4) Y → W	since (a) \neq (b) the FD is essential.
x (x	
B)4>2	2) WZ→X
3	$\omega z^{\dagger} = \omega z \times y - (a)$
-5	$WZ^{\dagger} = WZYX - (b)$
	since (a) =(b) this FD is discarded from F
	aute (a) (b) mes 10 w awarded from 1
	$z)$ $wz \rightarrow y$
-	$wz^{+} = wzyx - (a)$
	$wz^{4} = wz - (b)$
	since (a) \neq (b) this FD is essential.
	serve (ce) p(b) that is a secondary
	4) Y -> W
	$Y^{\dagger} = YWXZ - (a)$
	$y^{\dagger} = y \times Z W - (b)$
	suice (a) = (b) this FD is descarded.
	5) Y→X
	$Y^{+} = Y \times ZW - (a)$
	$y^{\dagger} = yz - (b)$ essential
	6) Y -> Z
	$y^+ = yzx - (a)$
	$Y^{+} = YX - (b)$ essential

Output: $F = \{ x \rightarrow w, Wz \rightarrow y, Y \rightarrow XZ \}$ as the minimal cover of R (wxyz)

Example: R(ABCD) & fd's J= \{A \rightarrow B, C \rightarrow B, D \rightarrow ABC,
AC \rightarrow D\}

Olitermine the minimal cover.

& Finding Candidati keys using edge diagrams:

Guin R(ABCDEFGH) & $fd: \{AB \rightarrow C$ $A \rightarrow DE$ $B \rightarrow F$ $F \rightarrow GH$

convert the FD's into the edge diagram:

Find those attributes that do not have incomming edges.

.: AB sere potential attributes of potential candidate keys.

AB+ = ABCDEFGH : AB is a cardidate key.

Example: R(ABCDEFGH)

fol's = { AB -> C AD >G A > HE

is ABD a candidate key.

.: ABD are attributes of a candidate key.

ABD = ABCDEFGH : is a cardidate key

Example: R (ABCDE)

fd's = {BC -> ADE, D-B3 Find the super keys.

Example: $R(\omega X Y Z)$ $fd's = \{Z \rightarrow W, Y \rightarrow XZ, WX \rightarrow Y\}$ State Frue/ False that Y is the primary key.