COMP5046 Natural Language Processing

Lecture 3: Word Classification and Machine Learning

Semester 1, 2020 School of Computer Science The University of Sydney, Australia

Lecture 3: Word Classification and Machine Learning

- 1. Previous Lecture: Word Embedding Review
- 2. Word Embedding Evaluation
- 3. Deep Neural Network for Natural Language Processing
 - 1. Perceptron and Neural Network (NN)
 - 2. Multilayer Perceptron
 - 3. Applications
- 4. Next Week Preview

See how the Deep Learning can be used for NLP

Text Classification, etc.

Word2Vec Models

Word2Vec

Sentence: "Sydney is the state capital of NSW"

Using window sliding, develop the training data

Center word	Context ("outside") word							
[1,0,0,0,0,0,0]	[0,1,0,0,0,0,0], [0,0,1,0,0,0,0]	Sydney	is	the	state	capital	of	NSW
[0,1,0,0,0,0,0]	[1,0,0,0,0,0,0], [0,0,1,0,0,0,0], [0,0,0,1,0,0,0]	Sydney	is	the	state	capital	of	NSW
[0,0,1,0,0,0,0]	[1,0,0,0,0,0,0], [0,1,0,0,0,0,0] [0,0,0,1,0,0,0], [0,0,0,0,1,0,0]	Sydney	is	the	state	capital	of	NSW
[0,0,0,1,0,0,0]	[0,1,0,0,0,0,0], [0,0,1,0,0,0,0] [0,0,0,0,1,0,0], [0,0,0,0,0,1,0]	Sydney	is	the	state	capital	of	NSW
[0,0,0,0,1,0,0]	[0,0,1,0,0,0,0], [0,0,0,1,0,0,0] [0,0,0,0,0,1,0], [0,0,0,0,0,0,1]	Sydney	is	the	state	capital	of	NSW
[0,0,0,0,0,1,0]	[0,0,0,1,0,0,0], [0,0,0,0,1,0,0] [0,0,0,0,0,0,1]	Sydney	is	the	state	capital	of	NSW
[0,0,0,0,0,0,1]	[0,0,0,0,1,0,0], [0,0,0,0,0,1,0]	Sydney	is	the	state	capital	of	NSW

Center word
Context ("outside") word

CBOW Process

Predict center word from (bag of) context words

Sentence: "Sydney is the state capital of NSW"

Lecture 3: Word Classification and Machine Learning

- 1. Previous Lecture: Word Embedding Review
- 2. Word Embedding Evaluation
- 3. Deep Neural Network for Natural Language Processing
 - 1. Perceptron and Neural Network (NN)
 - 2. Multilayer Perceptron
 - 3. Applications
- 4. Next Week Preview

See how the Deep Learning can be used for NLP

Text Classification, etc.

How to evaluate word vectors?

Туре	How to work / Benefit
	Evaluation on a specific/intermediate subtask
 Fast to compute Helps to understand that system Not clear if really helpful unless correlation to real tase established 	
	Evaluation on a real task
Extrinsic	 Can take a long time to compute accuracy Unclear if the subsystem is the problem or its interaction or other subsystems

Intrinsic word vector evaluation

Word Vector Analogies

$$a \leftrightarrow b$$
 :: $c \leftrightarrow ???$ $man \leftrightarrow women$:: $king \leftrightarrow ???$

Evaluate word vectors by how well their cosine distance after addition captures intuitive semantic and syntactic analogy questions

Intrinsic word vector evaluation

Word Vector Analogies

King – Man + Woman = ?

No	Dataset	Туре	Result
1		word2vec CBOW	President
2	TED Coninct	word2vec Skip-gram	Luther
3	TED Script	fastText CBOW	Kidding
4		fastText Skip-gram	Jarring
5	Coogle News	word2vec CBOW	queen
6	Google News	word2vec Skip-gram	queen

Intrinsic word vector evaluation

Evaluation Result Comparison

The Semantic-Syntatic word relationship tests for understanding of a wide variety of relationships as shown below. Using 640-dimensional word vectors, a skip-gram trained model achieved 55% semantic accuracy and 59% syntatic accuracy.

Table 3: Comparison of architectures using models trained on the same data, with 640-dimensional word vectors. The accuracies are reported on our Semantic-Syntactic Word Relationship test set, and on the syntactic relationship test set of [20]

Model	Semantic-Syntactic Word Relationship test set		MSR Word Relatedness
Architecture	Semantic Accuracy [%]	Syntactic Accuracy [%]	Test Set [20]
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

CBOW Process

Predict center word from (bag of) context words

Sentence: "Sydney is the state capital of NSW"

Lecture 3: Word Classification and Machine Learning

- 1. Previous Lecture: Word Embedding Review
- 2. Word Embedding Evaluation
- 3. Deep Neural Network for Natural Language Processing
 - 1. Perceptron and Neural Network (NN)
 - 2. Multilayer Perceptron
 - 3. Applications
- 4. Next Week Preview

See how the Deep Learning can be used for NLP

Text Classification, etc.

Deep Learning with Neural Network

Neuron and Perceptron

Deep Learning with Neural Network

Inputs and Outputs (Labels) for Natural Language Processing

Xi	Inputs	Features words (indices or vectors!), context windows, sentences, documents, etc.
y i	Outputs (labels)	 What we try to predict/classify E.g. word meaning, sentiment, name entity

Deep Learning with Neural Network

Deep Learning with Neural Network - Model

Deep Learning with Neural Network - Model

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Deep Learning with Neural Network - Parameter

Deep Learning with Neural Network - Parameter

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

/	Data		
	X	y	
	1	0	
	5	16	
	6	20	

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

What if W is **3**?

$$3 = 3x1$$

$$15 = 3 \times 5$$

$$20 = 3 \times 6$$

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

What if W is **3.2**?

$$3.2 = 3.2 \times 1$$

$$16 = 3.2 \times 5$$

$$19.2 = 3.2 \times 6$$

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Weight is not enough...

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

How can we find the parameters, **w** and **b**?

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Deep Learning with Neural Network - Parameter

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Deep Learning with Neural Network - Cost

5

6

weight

bias

X	у
1	0
5	16
6	20

	Model	Ex#1
--	-------	------

weight

bias

ŷ y v 1 0	predicted	actual	
1 0	ŷ	y ≽	
	1	0	

•)
6	20

16

Model Ex#2

weight

bias

	predicted	actual
X	ŷ	<u>)</u> >
1	4	0
5	12	16
6	14	20

Which one is closer?

Deep Learning with Neural Network - Cost

X	У
1	0
5	16
6	20

	Model Ex#1					
	weight					
7	=	1	X	+	0	

	predicted	actual	cost
X	ŷ	y	(y-ŷ) ²
1	1	0	
5	5	16	
6	6	20	

	Model Ex#2						
	١		bias				
)	=	2	X	+	2		

	predicted	actual	cost
X	ŷ	>	(y-ŷ) ²
1	4	0	
5	12	16	
6	14	20	

Let's calculate the cost(loss)!

Mean Squared Error
$$C(w,b) = \sum (y_n - \hat{y}_n)$$

 (MSE)
 $n \in \{0,1,2\}$

WAIT! Loss Function? Cost Calculation?

WAIT! Loss Function? Cost Calculation?

1) Mean Squared Error (MSE): measures the average of the squares of the errors

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

2) Cross Entropy: calculating the difference between two probability distributions softmax

$$L_{\text{cross-entropy}}(\mathbf{\hat{y}}, \mathbf{y}) = -\sum_{i} y_i \log(\hat{y}_i)$$

WAIT! Softmax!!

WAIT! Softmax!!

- 1. Define N Class
- 5. Score given classes
- 2. Construct Network
- 4. Classification

3. Input

WAIT! Softmax!!

WAIT! Softmax!!

*Depends on the dataset

Problem type	Last-layer activation	Loss (Cost) function	Example
Binary classification	sigmoid	Binary Cross Entropy	Sentiment analysis (Positive/Negative)
Multi-class, single-label classification	softmax	Categorical Cross Entropy	Part-of-Speech tagging Named Entity Recognition
Multi-class, multi-label classification	sigmoid	Binary Cross Entropy	Multi-topic classification, one can have multiple topics
Regression to arbitrary values	None	MSE (Mean Squared Error)	Predict house price
Regression to values between 0 and 1	sigmoid	MSE or Binary Cross Entropy	Engine health assessment where 0 is broken, 1 is new

Deep Learning with Neural Network - Cost

X	у
1	0
5	16
6	20

	Model Ex#1					
	weight					
7	=	1	X	+	0	

	predicted	actual	cost
X	ŷ	y	(y-ŷ) ²
1	1	0	
5	5	16	
6	6	20	

	Model Ex#2						
	١		bias				
)	=	2	X	+	2		

	predicted	actual	cost
X	ŷ	>	(y-ŷ) ²
1	4	0	
5	12	16	
6	14	20	

Let's calculate the cost(loss)!

Mean Squared Error
$$C(w,b) = \sum (y_n - \hat{y}_n)$$

 (MSE)
 $n \in \{0,1,2\}$

Deep Learning with Neural Network - Cost

Actual Data

X	У
1	0
5	16
6	20

Model Ex#1

prodicted actual

	preaictea	actuai	cost
X	ŷ	<u>)</u>	$(y-\hat{y})^2$
1	1	0	1
5	5	16	121
6	6	20	196

$$C(1,0) = 318$$

Model Ex#2

weight			bias	
_	2	V	4	2

	predicted	actual	cost
X	ŷ	<u>)</u>	(y-ŷ) ²
1	4	0	16
5	12	16	16
6	14	20	36

$$C(2,2) = 68$$

Mean Squared Error
$$C(w,b) = \sum (y_n - \hat{y}_n)$$

(MSE) $n \in \{0,1,2\}$

Deep Learning with Neural Network - Cost

Actual Data

X	У
1	0
5	16
6	20

	Model Ex#1				
	weight				bias
ŷ	=	1	X	+	0

	preaictea	actuai	
X	ŷ)	$(y-\hat{y})^2$
1	1	0	1
5	5	16	121
6	6	20	196

$$C(1,0) = 318$$

ŷ	=	2	X	+	2
	ι	veight	•		bias
	IVIO	aei E	X#Z		

	preaictea	actuai	
X	ŷ)	$(y-\hat{y})^2$
1	4	0	16
5	12	16	16
6	14	20	36

$$C(2,2) =$$

Let's calculate the costs and get the lowest one!

arg min C(w,b)

w,b∈[-∞,∞]

Deep Learning with Neural Network - Optimizer

X	У
1	0
5	16
6	20

Let's calculate the costs and get the lowest one!

arg min C(w,b)

w,b∈[-∞,∞]

Deep Learning with Neural Network - Optimizer

X	у
1	0
5	16
6	20

Backpropagation (weight update)

arg min C(w,b) w,b∈[-∞,∞]

Deep Learning with Neural Network - Optimizer

X	У
1	0
5	16
6	20

Expensive to compute (hours or days)

arg min C(w,b)

w,b∈[-∞,∞]

Finding the Optimal weight and bias – Gradient Descent

There are different types of Gradient descent optimization algorithms: Batch Gradient Descent, Stochastic Gradient Descent, Momentum, Adam, etc.

Finding the Optimal weight and bias – Gradient Descent

There are different types of Gradient descent optimization algorithms:

Batch Gradient Descent, Stochastic Gradient Descent, Momentum, Adam, etc.

Finding the Optimal weight and bias – Gradient Descent

There are different types of Gradient descent optimization algorithms:

Batch Gradient Descent, Stochastic Gradient Descent, Momentum, Adam, etc.

Choose the optimal Learning Rate!

Learning Rate: a hyperparameter that controls how much to change the model in response to the estimated error each time the model weights are updated.

new_weight = existing_weight — learning_rate * gradient
new_weight = existing_weight — learning_rate * (current_output – desired output)
*gradient(current output) * existing_input

Deep Learning with Neural Network

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Deep Learning with Neural Network

$$y = W_1X_1 + W_2X_2 + W_3X_3 + W_4X_4 + ... + W_nX_n + b$$

Millions of **Parameters**Millions of **Samples**

Deep Learning with Neural Network

Vector1 Vector2
$$y = W_1X_1 + W_2X_2 + W_3X_3 + W_4X_4 + ... + W_nX_n + b$$

Millions of **Parameters**Millions of **Samples**

Deep Learning with Neural Network

Deep Learning with Neural Network

Nonlinear Neural Network

X	У
1	0
5	16
6	20

Deep Learning with Neural Network

Nonlinear Neural Network

X	У
1	0
5	16
6	20
9	20
11	20

Deep Learning with Neural Network

Nonlinear Neural Network

X	<u>)</u> >
1	0
5	16
6	20
9	20
11	20

Deep Learning with Neural Network

Nonlinear Neural Network

X	у
1	0
5	16
6	20
9	20
11	20

Deep Learning with Neural Network

Nonlinear Neural Network

X	у
1	0
5	16
6	20
9	20
11	20

Deep Learning with Neural Network

Single Neuron VS Multilayer

Application

Previous Word Embedding Models

Neural Net Language Model (NNLM)

- The first word embedding model!
- N how many previous words will be checked
- Only care about the previous words
- · Long Computation time! Really slow

Recurrent Neural Net Language Model (RNNLM)

- No need to setup the No of previous words
- No projection layer
- · Only care about the previous word
- A bit faster than NNLM

Application

Word2Vec with CBOW

Application

Negative Sampling

new_weight = existing_weight — learning_rate * gradient

W_output	(old)		Learning R.		grad_W_output			W_output (new)				
-0.560	0.340	0.160	_	0.05	×	0.064	0.071	-0.014	=	-0.563	0.336	0.161
-0.910	-0.440	1.560				0.098	0.015	0.063		-0.915	-0.441	1.557
-1.210	-0.130	-1.320				0.069	0.089	0.045		-1.213	-0.134	-1.322
1.670	-0.150	-1.030				0.014	0.085	0.079		1.669	-0.154	-1.034
1.720	-1.460	0.730				-0.021	0.067	0.071		1.721	-1.463	0.726
0.000	1.390	-0.120SZ				-0.098	-0.088	0.091		ub. 0.005	1.394	-0.125
-0.060	1.520	-0.790				-0.072	-0.078	-0.089		-0.056	1.524	-0.786
0.800	1.850	-1.670				0.046	-0.079	-0.053		0.798	1.854	-1.667
-1.370	1.320	-0.480				-0.049	-0.087	0.025		-1.368	1.324	-0.481
0.670	1.990	-1.850				-0.060	0.092	0.042		0.673	1.985	-1.852
-1.520	-1.740	-1.860				0.074	0.050	0.070		-1.524	-1.743	-1.864
(11X3)						(11X3)				(11X3)		
W_output	(old)			Learning R.		grad_W_out	put			W_output (r	iew)	
W_output -0.560	(old) 0.340	0.160	l _	Learning R.		grad_W_out	put		=	W_output (r -0.560	new) 0.340	0.160
	. ,	0.160 1.560	–		×	grad_W_out	put		=			0.160 1.560
-0.560	0.340		–					adl	=	-0.560	0.340	
-0.560 -0.910	0.340 -0.440	1.560	_				put compute	ed!	=	-0.560 -0.910	0.340 -0.440	1.560
-0.560 -0.910 -1.210	0.340 -0.440 -0.130	1.560 -1.320	_					ed!	=	-0.560 -0.910 -1.210	0.340 -0.440 -0.130	1.560 -1.320
-0.560 -0.910 -1.210 1.670	0.340 -0.440 -0.130 -0.150	1.560 -1.320 -1.030						e d! aegis4(=	-0.560 -0.910 -1.210 1.670	0.340 -0.440 -0.130 -0.150	1.560 -1.320 -1.030
-0.560 -0.910 -1.210 1.670 1.720	0.340 -0.440 -0.130 -0.150 -1.460	1.560 -1.320 -1.030 0.730							=	-0.560 -0.910 -1.210 1.670 1.720	0.340 -0.440 -0.130 -0.150 -1.460	1.560 -1.320 -1.030 0.730
-0.560 -0.910 -1.210 1.670 1.720 0.000	0.340 -0.440 -0.130 -0.150 -1.460 1.390	1.560 -1.320 -1.030 0.730 -0.120s	<u> </u>		×				=	-0.560 -0.910 -1.210 1.670 1.720	0.340 -0.440 -0.130 -0.150 -1.460 1.390	1.560 -1.320 -1.030 0.730 -0.120
-0.560 -0.910 -1.210 1.670 1.720 0.000 -0.060	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520	1.560 -1.320 -1.030 0.730 -0.120	_ 	0.05	X ple, w_o	Not (compute	aegis4	=	-0.560 -0.910 -1.210 1.670 1.720 -0.000 -0.060	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520	1.560 -1.320 -1.030 0.730 -0.120 -0.790
-0.560 -0.910 -1.210 1.670 1.720 0.000 -0.060 0.800	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520 1.850	1.560 -1.320 -1.030 0.730 -0.120 -0.790 -1.670	_	0.05	ple, w_o	Not (compute 0.030	aegis4	=	-0.560 -0.910 -1.210 1.670 1.720 -0.000 -0.060 0.798	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520	1.560 -1.320 -1.030 0.730 -0.120 -0.790 -1.672
-0.560 -0.910 -1.210 1.670 1.720 0.000 -0.060 0.800 -1.370	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520 1.850 1.320	1.560 -1.320 -1.030 0.730 -0.1205 -0.790 -1.670 -0.480	_	0.05 Positive sam Negative sam	ple, w_o pple, k=1 pple, k=2	Not (0.030 0.031	0.041 -0.065	=	-0.560 -0.910 -1.210 1.670 1.720 -0.060 -0.060 0.798 -1.366	0.340 -0.440 -0.130 -0.150 -1.460 1.390 1.520 1.849	1.560 -1.320 -1.030 0.730 -0.120 -0.790 -1.672 -0.477

Application

Application #1: Embedding Pretraining

Application

Application #2: Translation Rescoring

Lisa	gosta	de	comer	Macas e	bananas	source
Bart	does	to	eat	coconuts and	bananas	translation#1
Lisa	likes	to	eat	apples and	bananas	translation#2
Lisa	dislikes	to	drink	apples and	bananas	translation#3

Application

Application #2: Translation Rescoring

Lisa gosta de comer Macas e bananas source

Lisa likes to eat apples and bananas translation#2

0.2 0.1

Application

Application #2: Translation Rescoring

Lisa gosta de comer Macas e bananas source

Application

Application #2: Translation Rescoring

Lisa gosta de comer Macas e bananas source

Application

Application #2: Translation Rescoring

Lisa gosta de comer macas e bananas source

Lisa likes to eat apples and bananas translation#2

e-4

e-4

s1

macas

Application

Application #2: Translation Rescoring

Lisa	gosta	de	corner	Macas e	bananas	source
Bart	does	to	eat	coconuts and	bananas	0.00003
Lisa	likes	to	eat	apples and	bananas	0.000378
Lisa	dislikes	to	drink	apples and	bananas	0.00012

Lecture 3: Word Classification and Machine Learning

- 1. Previous Lecture: Word Embedding Review
- 2. Word Embedding Evaluation
- 3. Deep Neural Network for Natural Language Processing
 - 1. Perceptron and Neural Network (NN)
 - 2. Multilayer Perceptron
 - 3. Applications

4. Next Week Preview

See how the Deep Learning can be used for NLP

Text Classification, etc.

Next Week Preview

Reference for this lecture

- Deng, L., & Liu, Y. (Eds.). (2018). Deep Learning in Natural Language Processing. Springer.
- Rao, D., & McMahan, B. (2019). Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. "O'Reilly Media, Inc.".
- Manning, C. D., Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT press.
- Blunsom, P 2017, Deep Natural Language Processing, lecture notes, Oxford University
- Manning, C 2017, Natural Language Processing with Deep Learning, lecture notes, Stanford University