Корнеев Николай Б04-005, Лабораторная работа №. 4.4.1, Изучение амплитудной дифракционной решетки

Цель работы:

- 1. Ознакомиться с устройством, работой и настройкой гониометра Г5
- 2. Отъюстировать гониометр
- 3. Исследовать спектр ртутной лампы
- 4. Определить период и спектральные характеристики решетки

Оборудование:

- 1. гониометр
- 2. дифракционная решетка
- 3. ртутная лампа

Теоретическая справка: Оптические приборы, в которых осуществляется физическое разложение электромагнитного излучения на монохроматические составляющие, называются спектральными. По характеру распределения интенсивности в спектральном разложении спектры могут быть разделены на линейчатые, непрерывные или сплошные. В нашем лабораторном практикуме исследуются линейчатые спектры.

Можно рассмотреть 3 наиболее важные характеристики, на которые мы обращаем внимание, говоря о данном типе оптических приборов:

- 1. Разрешающая способность $R=\frac{\lambda}{\delta\lambda}$ возможность различать 2 близкие спектральные линии
- 2. Угловая дисперсия $D=\frac{d\phi}{d\lambda}$ производная зависимости угла отклонения волны диспергирующим элементом по длине волны. По данной величине можно определить угловое расстояние между двумя близкими спектральными линиями $\delta\phi=D\delta\lambda$
- 3. Дисперсионная область предельная ширина спектрального интервала прибора, для которой дифракционные максимумы соседних порядков не перекрываются.

Также, говоря о дифракционной решетке, есть основное соотношение приближенной теории дифракционной решетки: $d \sin \phi_m = m\lambda$, откуда можно получить выражение для угловой дисперсии: $D = \frac{d\phi}{d\lambda} = ($ для дифракционной решетки $) = \frac{m}{d \cdot cos\phi} = \frac{m}{\sqrt{d^2 - (m\lambda)^2}} (1)$

Разрешающую способность, в силу критерия Релея, можно записать как: R=Nm (2)

Описание установки: Говоря об устройстве гониометра, опишем лишь некоторые обозначенные на рисунке гониометра элементы:

- 23 массивное основание. На нем крепятся:
- 3 коллиматор
- 7 столик, на котором размещаются исследуемые объекты (дифракционная решетка, призма)
- 17 алиада
- 12 зрительная труда

Коллиматор закреплен неподвижно, а столик, алиада, труба - могут вращаться вокруг вертикальной оси

Рис. 1: Гониометр

Спектр ртутной лампы: Ниже приведены некоторые интегральные характеристики спектральных линий для лампы ДРШ-250:

Характеристики спектра ртутной лампы ДРШ-250

Nº	1	2	3	4	5	6
λ HM.	579,1	577,0	546,1	491,6	435,8	404,7
Цвет	желт.	желт.	зелен.	голуб.	синий	фиолет.
Яркость	10	8	10	4	4	3

Ход работы:

- 1. Зададим начало отсчета: $180^{o}11"00'$. Далее значения указываются за вычетом нулевой координаты
- 2. Измерим угловые координаты спектральных линий ртути. Вычислим синусы от угловых координат. Результаты занесем в таблицу

Цвет	Синий	Голубой	Зеленый	Желтый	Желтый	Красный
ϕ	$12^{0}54'46$ "	14 ⁰ 42′10"	$15^{0}58'36$ "	$16^{0}53'41"$	$16^{0}57'27$ "	17 ⁰ 57′27"
$\sin \phi$	0.2234	0.2538	0.2752	0.2906	0.2917	0.3083
λ , HM	435.8	491.6	546.1	577	579.1	623.4

3. Построим график зависимости длины волны от синуса угловой координаты, взяв за погрешность измерения угловой координаты 1 секунду:

$$sin(1") = 8.7 \cdot 10^{-8}$$

График будем строить основываясь на методе наименьших квадратов:

$$b = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \ a = \langle y \rangle - b \cdot \langle x \rangle$$

4. Рассчитаем угловую дисперсию, зная, что период решетки равен угловому коэффициенту графика $d=2200~\text{hm}=2.200\pm0.074~\text{мкм}$ по формуле (1)

m	1	2	3
$D_{teor}, 1/A \cdot 10^3$	0.47	0.98	1.91
$D_{exp}, 1/A \cdot 10^3$	0.56	1.11	-

5. Видим, что несмотря на малое число точек, у нас прослеживается линейная зависимость угловой дисперсии от порядка m

Выводы:

- 1. Мы ознакомились с устройством,
работой и настройкой гониометра $\Gamma 5$
- 2. Исследовали спектр ртутной лампы.
- 3. Нашли период решетки, равный $d=2.200\pm0.075$ мкм
- 4. Установили линейную зависимость угловой дисперсии от порядка