Modelagem Geométrica / Geometria computacional

BCC - Computação Gráfica

Equipe: Mauros Milach, Matheus Sychocki, Patrick Antunes e Rodrigo Zimmermann.

Modelagem Geométrica

 A modelagem geométrica consiste de um conjunto de métodos que visam descrever a forma e as características geométricas de um objeto. Ela provê uma descrição ou modelo muito mais analítico, matemático e abstrato que o real. Cria-se um modelo porque ele é mais conveniente e econômico que o objeto ou o processo real.

Modelagem Geométrica

 Modelagem geométrica abrange outra área muitas vezes chamada de geometria computacional e estende-se além dessa para o campo da modelagem de sólidos, criando uma interessante união da geometria com a computação.

Objetivos

- Criar modelos de objetos, existentes ou ainda não existentes.
- A partir de modelos obter representações.

Exemplo: Objeto Existente

Exemplo: Objeto não Existente

Áreas de aplicação

 Software complexo que necessitam de grande precisão/exatidão Matemática.

- Por exemplo: CAD/CAM;
- Indústria em Geral;

Áreas de aplicação

Precisão Visual

Por exemplo:

- Entretenimento em geral;
- Jogos;

Classificação:

Curvas: Apenas comprimento.

Classificação:

- Superfícies: Apenas área, Cascas finas, ocas.
- Abertas ou fechadas.

Classificação:

Sólidos: O interior também é relevante.

Modelagem dos sólidos

 O termo modelagem de sólidos envolve um conjunto de teorias, técnicas e sistemas que enfocam completamente a representação de sólidos, representação que permite qualquer propriedade bem definida de qualquer sólido seja calculada automaticamente.

Polígonos

 São usados em computação gráfica para compor imagens que são tridimensionais na aparência. Em geral são triangulares.

Malha de Polígonos

- Coleção de arestas, vértices e polígonos conectados.
- Maneira mais eficiente de representar malhas de polígonos é como ponteiros para listas de dados

Exemplo ►

Malha de Polígonos

Ponteiros para lista de vértices (formato

obj)

• $V = \{v1, v2, v3, v4\}$

• $P1 = \{v1, v2, v4\}$

• $P2 = \{v2, v3, v4\}$

Geometria Computacional

 O objetivo da geometria computacional é estudar problemas geométricos sob o ponto de vista da análise de complexidade de algoritmos.

Geometria Computacional

- Campo da teoria de algoritmos:
- Entradas são coleções de objetos geométricos.
- Normalmente, objetos "planos" tais como pontos, retas, polígonos e poliedros.
- Saídas são estruturas de dados geométricos.

Exemplo: Caminho mais curto

- Pode ser reduzido ao problema de encontrar o caminho mais curto em um grafo.
- Algoritmos geométricos podem dar uma solução mais eficiente.

Exemplo: Interseções

 Dado uma coleção de objetos, determinar interseções através de representação gráfica.

Algumas limitações

- Dimensionalidade:
- Normalmente, 2D e um pouco de 3D
- Problemas n-dimensionais são pouco abordados.
- Normalmente são tratados objetos geométricos "Planos".
- Aproximações de geometrias "curvas"

