FACULTY OF TECHNOLOGY & ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS345: CRYPTOGRAPHY & NETWORK SECURITY

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	4	2	-	6	5
Marks	100	50	-	150	

Outline of the Course:

Sr	Title of the unit	Minimum number of hours
No.		
1.	Classical Cryptography	04
2.	Shannon's Theory	03
3.	Block Ciphers And The Advanced Encryption Standard	05
4.	Cryptographic Hash Functions	05
5.	The RSA Cryptosystem And Factoring Integers	05
6.	Public-Key Cryptography And Discrete Logarithms	05
7.	Signature Schemes	05
8.	Pseudo-Random Number Generation	03
9.	Key Distribution & Key Agreement Schemes	05
10.	Public-Key Infrastructure & Multicast Security	05

Total hours (Theory): 60 Total hours (Lab): 30 Total hours: 90

© CHARUSAT 2021 Page **21** of **51**

Detailed Syllabus:

1.	Classical Cryptography	04 hours	09 %
1.1 1.2	Introduction: Some Simple Cryptosystems Cryptanalysis		
2.	Shannon's Theory	03 hours	07 %
2.1	Introduction		
2.2	Elementary Probability Theory		
2.3	Perfect Secrecy		
2.4	Entropy		
2.5	Product Cryptosystems		
3.	Block Ciphers and The Advanced Encryption Standard	05 hours	11%
3.1	Introduction		
3.2	Substitution-Permutation Networks		
3.3	The Data Encryption Standard		
3.4	The Advanced Encryption Standard		
3.5	Modes of Operation		
4.	Cryptographic Hash Functions	05 hours	11%
4.1	Hash Functions and Data Integrity		
4.2	Security of Hash Functions		
4.3	Iterated Hash Functions		
4.4	Message Authentication Codes		
5.	The RSA Cryptosystem and Factoring Integers	05 hours	11%
5.1	Introduction to Public-key Cryptography		
5.2	The RSA Cryptosystem		
5.3	Primality Testing		
5.4	Factoring Algorithms		
5.5	Other Attacks on RSA		
6.	Public-Key Cryptography and Discrete Logarithms	05 hours	11%
6.1	The ElGamal Cryptosystem		
6.2	Algorithms for the Discrete Logarithm Problem		
6.3	Lower Bounds on the Complexity of Generic Algorithms		
6.4	Finite Fields		
6.5	Elliptic Curves		

© CHARUSAT 2021 Page **22** of **51**

7.	Signature Schemes	05 hours	11%
7.1	Introduction		
7.2	Security Requirements for Signature Schemes		
7.3	The ElGamal Signature Scheme		
7.4	Variants of the ElGamal Signature Scheme		
8.	Pseudo-Random Number Generation	03 hours	07%
8.1	Introduction and Examples		
8.2	The Blum-Blum-Shub Generator		
8.3	Probabilistic Encryption		
9.	Key Distribution & Key Agreement Schemes	05 hours	11%
9.1	Introduction		
9.2	Diffie-Hellman Key Predistribution		
9.3	Key Distribution Patterns		
9.4	Session Key Distribution Schemes		
9.5	Diffie-Hellman Key Agreement		
9.6	Key Agreement Using Self-Certifying Keys		
9.7	Encrypted Key Exchange		
10.	Public-Key Infrastructure&Multicast Security	05 hours	11%
10.1	Introduction: What is a PKI?		
10.2	Certificates		
10.3	The Future of PKI?		
10.4	Identity-Based Cryptography		
10.5	Introduction to Multicast Security		
10.6	Broadcast Encryption		
10.7	Multicast Re-Keying		

Course Outcome:

After completion of the course students will be able to

CO1	Define various security goal and understand the security policies such as the CIA triad
	of Confidentiality, Integrity and Availability.
CO2	Classify various forms of security attacks, where they arise, and appropriate tools or
	mechanism to quantify them.
CO3	Illustrate a basic understanding of cryptography, how it has evolved, and evaluate
	symmetric key encryption techniques used today.
CO4	Distinguish modern symmetric encryption standard, key distribution scenario and
	analyze effectiveness in todays' environment.
CO5	Evaluate Asymmetric key encryption techniques, key distribution scenario and
	calculate public and private components of asymmetric key encryption techniques.
CO6	Develop message integrity and message authentication of message digest.

Course Articulation Matrix:

© CHARUSAT 2021 Page **23** of **51**

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	-	-	3	1	-	2	1	-	-	-	-	-
CO2	2	3	3	2	3	1	-		-	-	-	-	1	-
CO3	2	2	3	2	3	2	-	-	2	1	-	-	2	-
CO4	2	2	3	2	3	-	2	-	2	1	-	-	3	1
CO5	3	2	3	2	1	-	2	1	1	-	-	-	3	1
CO6	2	2	3	1	-	-	2	2	1	-	2	-	2	2

Recommended Study Material:

***** Text Books:

1. Douglas R. Stinson, Cryptography: Theory and Practice, Chapman & Hall/CRC

***** Reference Books:

- 1. William Stallings, Cryptography And Network Principles And Practice, Prentice Hall, Pearson Education Asia
- 2. AtulKahate, Cryptography & Network Security, The McGraw-Hill Companies
- 3. Behrouz A. Forouzan, Cryptography and Network Security, McGraw-Hill Companies

Reference Links/ e-content:

- 1. http://people.csail.mit.edu/rivest/crypto-security.html
- 2. http://www.cryptix.org/
- 3. http://www.cryptocd.org/
- 4. http://www.cryptopp.com/

© CHARUSAT 2021 Page **24** of **51**