Resolución de Integrales

1. $\int x^3 \sin(x) dx$

Método: Integración por partes (aplicada dos veces)

Sea $u = x^3$, $dv = \sin(x)dx$ Entonces $du = 3x^2dx$, $v = -\cos(x)$

$$\int x^3 \sin(x) dx = -x^3 \cos(x) + 3 \int x^2 \cos(x) dx$$

Para $\int x^2 \cos(x) dx$, usamos integración por partes nuevamente: Sea $u = x^2$, $dv = \cos(x) dx$ Entonces du = 2x dx, $v = \sin(x)$

$$\int x^2 \cos(x) dx = x^2 \sin(x) - 2 \int x \sin(x) dx$$

Para $\int x \sin(x) dx$: Sea u = x, $dv = \sin(x) dx$ Entonces du = dx, $v = -\cos(x)$

$$\int x \sin(x) dx = -x \cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x)$$

Sustituyendo hacia atrás: $\int x^2 \cos(x) dx = x^2 \sin(x) - 2(-x \cos(x) + \sin(x)) = x^2 \sin(x) + 2x \cos(x) - 2\sin(x)$

Resultado final:

$$\int x^3 \sin(x) dx = -x^3 \cos(x) + 3x^2 \sin(x) + 6x \cos(x) - 6\sin(x) + C$$

2. $\int e^x \cos(3x) dx$

Método: Integración por partes (aplicada dos veces)

Sea $u = e^x$, $dv = \cos(3x)dx$ Entonces $du = e^x dx$, $v = \frac{1}{3}\sin(3x)$

$$\int e^{x} \cos(3x) dx = \frac{1}{3} e^{x} \sin(3x) - \frac{1}{3} \int e^{x} \sin(3x) dx$$

Para $\int e^x \sin(3x) dx$: Sea $u = e^x$, $dv = \sin(3x) dx$ Entonces $du = e^x dx$, $v = -\frac{1}{3}\cos(3x)$

$$\int e^x \sin(3x) dx = -\frac{1}{3} e^x \cos(3x) + \frac{1}{3} \int e^x \cos(3x) dx$$

Sustituyendo: $\int e^x \cos(3x) dx = \frac{1}{3} e^x \sin(3x) - \frac{1}{3} (-\frac{1}{3} e^x \cos(3x) + \frac{1}{3} \int e^x \cos(3x) dx)$

$$\int e^x \cos(3x) dx = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x) - \frac{1}{9} \int e^x \cos(3x) dx$$

Resolviendo para la integral: $\int e^x \cos(3x) dx + \frac{1}{9} \int e^x \cos(3x) dx = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x) dx$

$$\frac{10}{9} \int e^x \cos(3x) dx = \frac{1}{3} e^x \sin(3x) + \frac{1}{9} e^x \cos(3x)$$

Resultado final:

$$\int e^x \cos(3x) dx = \frac{e^x}{10} (3\sin(3x) + \cos(3x)) + C$$

3. $\int \cos^3(4x)dx$

$$\cos^3(4x) = \cos^2(4x)\cos(4x) = (1 - \sin^2(4x))\cos(4x)$$

$$\int \cos^3(4x)dx = \int (1 - \sin^2(4x))\cos(4x)dx$$

Sea $u = \sin(4x)$, entonces $du = 4\cos(4x)dx$, por lo que $\cos(4x)dx = \frac{1}{4}du$

$$\int \cos^3(4x)dx = \int (1 - u^2) \frac{1}{4} du = \frac{1}{4} \int (1 - u^2) du$$

$$= \frac{1}{4}(u - \frac{u^3}{3}) = \frac{1}{4}(\sin(4x) - \frac{\sin^3(4x)}{3})$$

Resultado final:

$$\int \cos^3(4x)dx = \frac{1}{4}\sin(4x) - \frac{1}{12}\sin^3(4x) + C$$

4. $\int \tan^3(2\theta) \sec^4(2\theta) d\theta$

 $\tan^{3}(2\theta)\sec^{4}(2\theta) = \tan^{3}(2\theta)\sec^{2}(2\theta)\sec^{2}(2\theta) = \tan^{3}(2\theta)(1 + \tan^{2}(2\theta))\sec^{2}(2\theta)$

Sea $u = \tan(2\theta)$, entonces $du = 2\sec^2(2\theta)d\theta$, por lo que $\sec^2(2\theta)d\theta = \frac{1}{2}du$

 $\int \tan^{3}(2\theta) \sec^{4}(2\theta) d\theta = \int u^{3}(1+u^{2}) \frac{1}{2} du = \frac{1}{2} \int (u^{3}+u^{5}) du$

$$= \frac{1}{2} \left(\frac{u^4}{4} + \frac{u^6}{6} \right) = \frac{u^4}{8} + \frac{u^6}{12}$$

Resultado final: $\int \tan^3(2\theta) \sec^4(2\theta) d\theta = \frac{\tan^4(2\theta)}{8} + \frac{\tan^6(2\theta)}{12} + C$

 $5. \int \frac{dx}{x\sqrt{\ln^2(x)+4}}$

Sea $u = \ln(x)$, entonces $du = \frac{1}{x}dx$

$$\int \frac{dx}{x\sqrt{\ln^2(x)+4}} = \int \frac{du}{\sqrt{u^2+4}}$$

Esta es una integral estándar de la forma $\int \frac{du}{\sqrt{u^2+a^2}} = \ln |u+\sqrt{u^2+a^2}| + C$

Con a=2:

Resultado final:

$$\int \frac{dx}{x\sqrt{\ln^2(x) + 4}} = \ln|\ln(x) + \sqrt{\ln^2(x) + 4}| + C$$

6. $\int \frac{dx}{x^{\frac{1}{3}}(x^{\frac{2}{3}}+4)}$

Sea $u=x^{\frac{1}{3}}$, entonces $x=u^3$ y $dx=3u^2du$

También $x^{\frac{1}{3}} = u \ y \ x^{\frac{2}{3}} = u^2$

$$\int \frac{dx}{x^{\frac{1}{3}}(x^{\frac{2}{3}}+4)} = \int \frac{3u^2du}{u(u^2+4)} = 3 \int \frac{udu}{u^2+4}$$

Para $\int \frac{udu}{u^2+4}$, sea $v=u^2+4$, entonces dv=2udu, por lo que $udu=\frac{1}{2}dv$

$$3\int \frac{udu}{u^2+4} = 3 \cdot \frac{1}{2} \int \frac{dv}{v} = \frac{3}{2} \ln|v| = \frac{3}{2} \ln|u^2+4|$$

Resultado final:

$$\int \frac{dx}{x^{\frac{1}{3}}(x^{\frac{2}{3}}+4)} = \frac{3}{2} \ln|x^{\frac{2}{3}}+4| + C$$

7. $\int (e^{7x}+1)^3 e^{7x} dx$

Método: Sustitución

Sea $u=e^{7x}+1,$ entonces $du=7e^{7x}dx,$ por lo que $e^{7x}dx=\frac{1}{7}du$

$$\int (e^{7x} + 1)^3 e^{7x} dx = \int u^3 \frac{1}{7} du = \frac{1}{7} \int u^3 du = \frac{1}{7} \cdot \frac{u^4}{4} = \frac{u^4}{28}$$

Resultado final:

$$\int (e^{7x} + 1)^3 e^{7x} dx = \frac{(e^{7x} + 1)^4}{28} + C$$

8. $\int \tan^5(2x) \sec^2(2x) dx$

Método: Sustitución trigonométrica

Sea $u=\tan(2x),$ entonces $du=2\sec^2(2x)dx,$ por lo que $\sec^2(2x)dx=\frac{1}{2}du$

$$\int \tan^5(2x) \sec^2(2x) dx = \int u^5 \frac{1}{2} du = \frac{1}{2} \int u^5 du = \frac{1}{2} \cdot \frac{u^6}{6} = \frac{u^6}{12}$$

Resultado final:

$$\int \tan^5(2x)\sec^2(2x)dx = \frac{\tan^6(2x)}{12} + C$$