ФГАОУ ВО «Волгоградский государственный университет» Институт математики и информационных технологий Кафедра информационных систем и компьютерного моделирования

Бут Александр Андреевич «Использование классификаторов в машинном обучении»

Направление подготовки: 09.03.04 «Программная инженерия»

Группа: ПРИб-201

Ответственный за

организацию практики: Корнаухова М.А., к.ф.-м.н., доцент

каф. ИСКМ

Волгоград - 2022

Цель и задачи

Цель:

Сравнительный анализ результатов работы нескольких классификаторов для решения задач анализа данных.

Основные задачи:

- 1. Сбор и изучение литературы по теме исследования.
- 2. Рассмотрение линейных моделей для классификации данных.
- 3. Программно реализовать каждую модель классификации.
- 4. Провести сравнительный анализ результатов работы нескольких классификаторов для решения задач анализа данных.

Основные алгоритмы машинного обучения

Шаги машинного обучения

Предобработка входных данных

1. ФИО	_2. Ваше ⊦3.	Сумм 4.	Час 5.	Ча 6.	Нраві 7.	Нрави 8.	Hp 9.	Ум 10	. Hp 11.	Hpt 12.	H 1	3. ł	flag
Устархан	MOC	213	10	3	6	5	5	10	1	7	1	8	1
Зенченко	MOC	168	8	5	6	5	5	3	4	8	1	8	1
Васильев	: ПМФ	164	8	5	6	5	8	4	1	6	2	9	0
Гувалов Р	NCT	190	3	2	5	6	8	1	3	5	5	9	1
Устиновс	к ПРИ	264	10	10	10	6	1	2	2	7	1	5	1
Горбачен	⊦ MOC	181	7	6	10	6	9	3	1	10	4	7	1
Панафиді	иИСТ	219	5	2	8	7	9	7	8	10	4	7	1
Омельче	нПРИ	225	6	8	6	7	7	8	2	7	4	10	1
Олейник	MOC	204	8	1	5	7	6	9	3	10	1	1	1
Зверяев І	EMOC	246	8	5	5	7	7	3	2	7	1	6	1
Пономаре	e MOC	240	10	7	9	7	6	2	7	10	4	4	1
Савельев	MOC	196	8	5	6	7	9	2	1	9	3	8	1
Мыльнико	о ПМФ	211	8	4	8	7	7	3	10	7	5	9	0
Лиджиев	ENCT	220	9	4	7	8	10	9	6	9	6	7	1
Фролова	РИСТ	265	10	6	8	8	5	3	4	9	7	7	1
Агапченко	ИСТ	199	10	3	10	8	5	2	8	8	4	7	1
Резанов I	КПРИ	238	10	4	9	8	5	1	6	10	6	6	1
Астахов Д	1 ПРИ	210	10	1	9	8	5	6	8	10	5	8	1
Ракчеев Н	НПРИ	246	8	6	4	8	6	3	4	4	3	7	1
Чернышо	E MOC	222	7	5	7	8	4	1	4	8	2	7	1
Крайнев Н	HMOC	224	10	7	8	8	5	1	4	8	3	6	1
Макарова	MOC	222	3	10	5	8	5	3	1	2	1	5	1

Статистическая обработка данных

Построение диаграмм размаха

0 – физическое направление.

1 – математическое направление

А: «Нравится ли вам разбираться в принципе работы электронных устройств?»

Б: «Нравится ли вам решать математические задачи?»

В: «Нравится ли вам паять схемы?»

Г: Нравится ли вам решать головоломки?»

Матрица корреляций и формулы для расчёта статистических показателей

		Actual				
		Positive	Negative			
cted	Positive	True Positive	False Positive			
Predicted	Negative	False Negative	True Negative			

General number of each criteria

Sensitivity =
$$\frac{\text{True positive}}{\text{True positive + false negative}}$$

Specificity =
$$\frac{\text{True negative}}{\text{True negative + false positive}}$$

/

Сравнительный анализ результатов для базы с исключенными элементами

	KNN	DT	RF	NB	LOGREG	SV
чувствительность	0,2646	0,4723	0,3262	0,5176	0,5314	0,4003
специфичность	0,7984	0,6298	0,7798	0,6761	0,7672	0,7780
эффективность	0,4136	0,5230	0,4739	0,5770	0,6257	0,4977

Наилучшая чувствительность = 0,5314;

Наилучшая специфичность = 0,7672;

Наилучшая эффективность = 0,6252;

Для метода LOGREG (логистическая регрессия)

Сравнительный анализ результатов для полной базы

	KNN	DT	RF	NB	LOGREG	SV
чувствительность	0,2998	0,6268	0,3185	0,7142	0,5428	0,5664
специфичность	0,7107	0,8737	0,7808	0,7272	0,7763	0,7146
эффективность	0,4269	0,7322	0,4647	0,7207	0,6295	0,6210

Наилучшая чувствительность = 0,6268;

Наилучшая специфичность = 0,8737;

Наилучшая эффективность = 0,7322;

Для метода DT (Деревья решений)

Заключение

В ходе работы были решены следующие задачи:

- 1. Была собрана и изучена литература по теме исследования.
- 2. Было рассмотрено несколько линейных моделей для классификации данных.
- 3. Каждая модель была программно реализована.
- 4. Был проведен сравнительный анализ результатов работы нескольких классификаторов для решения задач анализа данных.

Для метода деревьев решений была достигнута эффективность 73%, для алгоритма наивного байеса 72%.