

Lowest Common Ancestor (LCA)

NOIP 2017 (Senior) Preparation Lecture 1

Daniel Yeh

Definition

Ancestor:

In a rooted tree, if u is an ancestor of v, u is on the unique path from node v to the root

Lowest Common Ancestor (LCA):

The deepest node that is the ancestor of both u and v

Examples

Nodes	LCA	
2, 4	1	
5, 6	2	
6, 7	1	
3, 7	3	
8, 9	6	
5, 9	2	
2, 9	2	
8, 10	6	
9, 10	9	

The LCA Problem

- Given a rooted tree, preprocess it so that the retrieval of LCA of any two given nodes can be done in constant time
- In this lecture, we will discuss on various methods to solve the LCA problem.

Naïve Solution

- Put N = Number of nodes
- par[u] = Direct parent of u
- For every pair of u and v:
 - pathu = path from u to root
 - pathv = path from v to root
- Paths can be found by using "par" array
- For every element of pathu in order, scan once for all elements in pathy for matches
- The first match is the LCA of 2 nodes

Examples

- Put u = 5, v = 9:
- pathu = $\{5, 2, 1\}$
- path $v = \{9, 6, 2, 1\}$
- After iterating each element in pathu, you may find that the first match is 2
- Thus, LCA of 5 and 9 = 2

Complexity

- Preprocess: O(N)
- Per query: O(N)
- Time complexity: <O(N), O(N)>
- Memory complexity = O(N)

- If no. of queries = Q, Overall time complexity = O(NQ)
- Can it be any faster?

Brief view on possible methods

- Better methods are available at O(log N) for every query
- It is worth noted that we primarily focus on online solutions
- Two major methods to achieve O(log N):
 - Sparse Table (Prerequisites: DFS)
 - Range Minimum Query (Prerequisites: DFS, Segment Tree)

- Sparse Table is an efficient data structure for fast range queries
- It can be reformed to be used in LCA problem.
- We use an array "st[n][log2(n)]":
 - st[i][j] = the 2^j-th parent of i
- To find the m-th parent of node u, we use binary representation together with the sparse table

Examples (eg1)

ST	0	1	2
1	1	1	1
2	1	1	1
234	1	1	1
	1	1	1
5	2	1	1
6	2	1	1
7	3	1	1
8	6	2	1
9	6	2	1
10	9	6	1

Steps of finding the m-th ancestor of u:

- 1. Change m into binary representation
- 2. For every bit (i) of m that is equal to 1, we carry out the following operation: u = st[u][i]
- 3. In the end, u will store the value of the m-th ancestor of the initial u

- Rationale:
- For every 1-bit you carry out the operation, what is implied?
- It can be observed that if you carry out u = st[u][i], it can be interpreted as walking 2ⁱ steps towards the root
- As every integer can be represented in binary notation, by taking correct values of i, the m-th ancestor can be obtained

Implementation Examples

- Q: Find 3-th parent of 10:
- 3 (decimal) = 11 (binary)
- Put u = 10
- 0th-bit = 1:
- u = st[u][0] = st[10][0] = 9
- 1th-bit = 1:
- u = st[u][1] = st[9][1] = 2
- Third parent of 10 = 2

(ST)

- We can now find the m-th ancestor of any node in a rooted tree in O(log N)
- How to extend the algorithm for finding the lowest common ancestor of two nodes?
- First, for every node, we assign the depth of each node by running a DFS once.

Examples

- The root has depth = 1
- All nodes in a rooted tree (except the root) has a depth = depth of parent +
- Depths of nodes are marked in red in the tree on the left

Given a pair of nodes u and v, we follow the below steps to find their LCA

- Compare the depths between u and v
 If dep[u] < dep[v]: swap(u, v)
- Put d = dep[u] dep[v]
- Evaluate u1 = d-th ancestor of u
- What's the aim of this step?
- It makes dep[u1] = dep[v]

- After making dep[u1] = dep[v]:
- First, we check if u1 = v holds
 If u1 = v, then u1 or v is the LCA
- Otherwise, we do sth. similar to binary search using the constructed sparse table

- For every value of i from log2(N) to 0, we check if st[u1][i] = st[v][i]
- If the expression holds, then we continue to loop and check the next i
- Otherwise, we evaluate 2 expressions:

```
u1 = st[u1][i]; \quad v = st[v][i];
```

• Why?

- If st[u1][i] = st[v][i], it implies that the node is a common ancestor of u1 and v, but it does not guarantee that the node is the lowest common ancestor
- Otherwise, st[u1][i] != st[v][i], which implies that if both u1 and v goes up 2ⁱ steps, it has not passed through any ancestors of both u1 and v yet
- After carrying out the loop, LCA = st[u1][0] or st[v][0]
- (As after carrying out the lifting with sparse table, both u1 and v are still different, and only 1 step away from their LCA)

- Hard to understand?
- Let's view an example!

- Let's find the LCA of node 5 and 10
- Put u = 5, v = 10
- 2 As dep[u] < dep[v]: swap(u, v)</p>
 - Thus, u = 10, v = 5
 - Evaluate d = dep[u] dep[v] = 2
 - 2(decimal) = 10(binary)

- As the 1-th bit = 1:
- u1 = st[u][1] = 6
- 2 Now u1 = 6, v = 5
 - We loop i from log2(N) = 2 to 0:
 - When i = 2:
 - st[u1][i] = st[v][i] = 1: Consider next case
 - When i = 1:
 - st[u1][i] = st[v][i] = 1: Consider next case

- When i = 0:
 - st[u1][i] = st[v][i] = 2: Consider next case
- LCA of 5 and 10 = st[u1][0] = 2
 - Can you feel the beauty of Sparse Table?

- One more example?
- Find the LCA of 7 and 8:
- 2 Put u = 7, v = 8
 - As dep[u] < dep[v]: swap(u, v)
 - u = 8, v = 7
 - d = dep[u] dep[v] = 1
 - 1(decimal) = 1(binary)
 - u1 = st[u][0] = 6

- u1 = 6, v = 7
- Iterate i from log2(N) = 2 to 0:
- 2 When i = 2:
 - st[u1][i] = st[v][i] = 1: continue to next case
 - When i = 1:
 - st[u1][i] = st[v][i] = 1: continue to next
 case

- When i = 0:
 - st[u1][i] != st[v][i]:
 - u1 = st[u1][0] = 2
 - v = st[v][0] = 3
- LCA of 7 and 8 = st[u1][0] = 1
- Understand now?
- Let's take a look at the implementation part!

Construct the Sparse Table

Through DFS once, we can assign dep[u] and st[u][0] at the same time for every node in the rooted tree (remember dep[root] = 1, st[root][0] = root)

```
/* dep[root] = 1
   st[root][0] = 1*/
void dfs (int u, int p) {
  for (auto v : edges[u]) {
    if (v == p) continue;
    dep[v] = dep[u] + 1;
    st[v][0] = u;
    dfs(v, u);
  return;
```

Construct the Sparse Table

- Constructing the sparse table after DFS is easier than you think
- Only a five-liner code is needed
- It bases on this formula: st[u][i + 1] = st[st[u][i]][i]
- Why?
- Going upwards 2^(j)
 steps = Go upwards
 2^(j 1) steps, then go
 2^(j 1) steps again

```
void cST (int n) {
  for (int j = 1; j <= log2(n); j++) {
    for (int i = 1; i <= n; i++) {
        st[i][j] = st[st[i][j - 1]][j - 1];
    }
  }
  return;
}</pre>
```

Finding the LCA

- The implementation is identical to the description
- Note that d >> i means removing the i bits on the right of the binary notation of d

```
e.g. (1010 >> 1) = 101
```

```
int lca (int n, int u, int v) {
 if (dep[u] < dep[v]) swap(u, v);</pre>
 int d = dep[u] - dep[v];
 for (int i = log2(n); i >= 0; i--) {
   if ((d >> i) & 1) u = st[u][i];
 if (u == v) return u;
 for (int i = log2(n); i >= 0; i--) {
   if (st[u][i] != st[v][i]) {
      u = st[u][i]; v = st[v][i];
 return st[u][0];
```

Complexity

- What is the complexity?
- Preprocess: O(N log N)
- Per query: O(log N)
- Time complexity: <O(N log N), O(log N)>
- Memory complexity: O(N log N)
- Overall time complexity: O(N log N + Q log N) = O((N+Q) log N)

Are there any other methods?

- Yes, absolutely!
- The next one to be introduced is by Range Minimum Query (RMQ)
- The time and memory complexities would have slight differences
- Special prerequisites: Segment Tree and Point Update

LCA by RMQ

- LCA by RMQ uses a segment tree to consider depth of nodes to get the answer.
- To make use of RMQ to find the LCA, we must understand what the Euler tour for a tree is
- The Euler tour is the way of representing trees. It is similar to a DFS transversal of a tree, but it leaves records every time when a node is visited.
- The next slide will show a more intuitive example.

Euler Tour examples

- The DFS transversal is shown by arrows, where numbers on arrows show the time when the edge is visited
- The Euler tour is as follows:

LCA by RMQ

- Why we need the Euler tour?
- Observation: The LCA of two nodes, u and v, is the shallowest node (the node with smallest depth) on the path between the visits from u to v (or from v to u) during a DFS.

Remarks:

- Size of Euler tour = 2n 1
- To assure the concreteness when evaluating the LCA, we shall only consider the first occurrences for every node
- LCA = shallowest node on the path from u to v

LCA by RMQ examples

LCA by RMQ

- The idea is simple enough, right?
- Now let's take a look at the implementation part
- It requires a efficiently-implemented and simplepractised segment tree to ensure the runtime.
- The length of code is quite similar to that of Sparse Table.

Construct Euler's tour

- We first DFS the tree once to assign depths and build the Euler's tour
- Please remember to put u again in the Euler's tour when you leave u _____

```
int it = 262143;
/* dep[root] = 1 */
void dfs (int u, int p) {
  for (auto v : edges[u]) {
    if (v == p) continue;
    dep[v] = dep[u] + 1;
    eul[++it] = u;
    dfs(v, u);
  eul[++it] = u;
  return;
```

Construct Segment Tree

- Next, we build the segment tree for Range Minimum Query as usual.
- Note that we consider the depth of nodes instead of the node ids!

```
void buildSegTree () {
  for (int i = 262143; i >= 1; i--) {
    eul[i] = (dep[eul[i * 2]] < dep[eul[i * 2 + 1]]) ? eul[i * 2] : eul[i * 2 + 1];
  }
  return;
}</pre>
```

Record First Occurrence

 Recall that during queries, we only consider the first occurrence of every node in the RMQ

occ[u] stores the index of first occurrence of u in the eul

array

```
void buildOcc () {
   SET(occ, -1);
   for (int i = 262144; i <= it; i++) {
      if (occ[eul[i]] == -1) {
         occ[eul[i]] = i - 262143;
      }
   }
   return;
}</pre>
```

Segment Tree Query

Now we have come to the query part

```
int gl, gr;
int query (int l, int r, int i) {
  if (r < gl || l > gr) return 0;
  if (gl <= l && r <= gr) return eul[i];
  int m = (l + r) / 2;
  int n1 = query(l, m, i * 2), n2 = query(m + 1, r, i * 2 + 1);
  return (dep[n1] < dep[n2]) ? n1 : n2;
}</pre>
```

Complexity

- Preprocess: O(N)
- Query: **O(log N)**
- Time complexity: <O(N), O(log N)>
- Memory complexity: O(N) (actually 2N)
- Overall time complexity: O(N + Q log N)

Comparison between the 2 methods

	Sparse Table	RMQ
Preprocess	O(N log N)	O(N)
Query	O(log N)	O(log N)
Memory complexity	O(N log N)	O(N)
Overall time complexity	O((N + Q) log N)	O(N + Q log N)
Code length	31 lines	34 lines

- It is rather obvious that RMQ has a slightly better performance than Sparse Table
- For better performance, we prefer using RMQ instead of Sparse Table

Comparison between the 2 methods

	Sparse Table	RMQ
Advantages	More intuitive (easier to understand)	Better performance in both runtime and memory
	Easier to be extended to other types of queries	Implementation is more standardized (as segment tree is used as the major tool)
Disadvantages	Sometimes, with strict runtime and memory constraints, Sparse Table may not pass the tests	Harder to code for those who are not familiar with the use of segment tree

Using the LCA to find Distances

- In often times, we are required to find the distance from u to v in a rooted weighted tree
- It is highly related to the LCA problem
- Why?
- The problem is based on an important observation:

"To travel from u to v in minimum distance, we must pass through their LCA"

So the following formula can be derived:

```
dist(u, v) = dist(u, lca(u, v)) + dist(lca(u, v), v)
```

Using the LCA to find Distances

- So how are we going to use the formula?
- We implements an idea similar to partial sum:
- We open one more array "pdist" to store the distance from the root to the node for every node, which can be easily done by DFS once
- Then distance from ancestor (u) to descendants (v) (or vice versa) = pdist[v] pdist[u]

Using the LCA to find Distances

- So we can derive the following extension algorithm:
- dist(u, v) = dist(u, lca(u, v)) + dist(lca(u, v), v)
 = pdist[u] pdist[lca(u, v)] + pdist[v] pdist[lca(u, v)]
 = pdist[u] + pdist[v] pdist[lca(u, v)] * 2
- Once obtain the LCA, O(1) to find the distance
- Clearer idea now?

Getting tired?

- Methods up till now are good enough for most competitive programming contests
- However, at times when your program runtime exceed a little by the limit, it can be annoying
- The slides after this are optional. Interested readers can continue

Can the above ways be optimised?

- Yes
- Runtime can be further optimised a lot
- There's a considerably easy optimisation, which requires a combination of Sparse Table and RMQ (without using Segment Tree)

Recall the idea of RMQ:

LCA of u and v = the node in Euler's tour with the smallest depth between first occurrence of u and first occurrence of v

- Instead of Segment Tree, we may use a faster method
- Let's preview the time complexity first:
 - <O(N log N), O(1)>/O(N log N + Q)
- Attractive?

- In a Sparse Table, we preprocess sub-arrays with length 2[^]j
- RMQ(i, j) = array index of the node having the min depth in the subarray starting from i, with length 2^j
- Confusing?
- Let's see an example!

- Intuition:
- Precompute a Sparse Table, storing M(i, j) for every i from 1 to N and every j from 1 to floor(log N)
- Set st[i][j] = RMQ(i, j) = array index of the node having the min depth in the subarray starting from i, with length 2[^]j
- It makes use of a DP idea:

```
If dep[ eul[ st[i][j] ] ] < dep[ eul[ st[i + 2^j][j] ] ]:
    st[i][j + 1] = st[i][j]</pre>
```

Else: $st[i][j + 1] = st[i + 2^j][j]$

Table size (Precompute time complexity): N log N

- Now we have come to the most amazing part
- An O(1) query trick will be introduced
- How are we going to find the array index storing the node with smallest depth from I to r?
- We select two blocks entirely covering from I to r (may overlap each other)

- Let k = floor(log(r I))
- Meaning: 2^k is the largest block that entirely fits into the range I to r
- So RMQ(I, r) = min(RMQ(I, k), RMQ(r $2^k + 1$, k)) = min(st[I][k], st[r - $2^k + 1$][k])
- By taking only two values, we can get the result!

Complexity

- Preprocess: O(N log N)
- Query: **O(1)**
- Time Complexity: <O(N log N), 1>
- Memory Complexity: O(N log N)
- Overall Time Complexity: O(N log N + Q)

Are there still any better methods to find the LCA?

- Sad but true
- The best solution up till now has overall time complexity of O(N), or <O(N), O(1)>
- The knowledge is rarely required in OI competitions
- This algorithm is left for interested readers with ability to dig in

Practise Problems

Easy:

- LSCCT L12D4
- SPOJ LCA
- SPOJ QTREE2
- SPOJ DISQUERY

Medium:

- LSCCT NP159
- SPOJ Lowest Common Ancestor

Hard:

- CF 832D
- LSCCT NP165