

신경망 네트워크와 수학적 기반

Least squares Least squares problem

- suppose $m \times n$ matrix A is tall, so Ax = b is over-determined
- for most choices of b, there is no x that satisfies Ax = b
- ightharpoonup residual is <math>r = Ax b
- least squares problem : choose x to minimize $||Ax b||^2$
- $||Ax b||^2$ is the objective function
- \bullet \hat{x} is a solution of least squares problem for any n-vector x if

$$||A\hat{x} - b||^2 \le ||Ax - b||^2$$

lacktriangle idea: \hat{x} makes residual as small as possible

Least squares Least squares problem

- \hat{x} called least squares approximate solution of Ax = b
- \hat{x} need not (and usually does not) satisfy $A\hat{x} = b$
- but if \hat{x} does satisfy $A\hat{x} = b$, then it solves least squares problem

Least squares

CAU

Column interpretation

• suppose $a_1, ..., a_n$ are columns of A, then

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

- lack so least squares problem is to find a linear combination of columns of A that is closest to b
- if \hat{x} is a solution of least squares problem, the *m*-vector is closest to *b* among all linear combinations of columns of *A*

$$A\hat{x} = \hat{x}_1 a_1 + \dots + \hat{x}_n a_n$$

Least squares Row interpretation

- suppose $\tilde{\mathbf{a}}_1^T$, ..., $\tilde{\mathbf{a}}_m^T$ are rows of A
- residual components are $r_i = \tilde{\mathbf{a}}_1^T x b_i$
- **♦** least squares objective is the sum of squares of the residuals

$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

- so least squares minimizes sum of squares of residuals
 - solving Ax = b is making all residuals zero
 - least squares attempts to make them all small

Least squares **Example**

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \xi^1 \quad 0$$

- Ax = b has no solution
- **♦** least squares problem is to choose *x* to minimize

$$||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$$

- least squares approximate solution is $\hat{x} = (1/3, -1/3)$ (say, via calculus)
- $||A\hat{x} b||^2 = 2/3$ is smallest possible value of $||Ax b||^2$
- $A\hat{x} = (2/3, -2/3, -2/3)$ is linear combination of columns of A closest to b

Least squares Solution of least squares problem

- lacktriangle we make one assumption: A has linearly independent columns
- this implies that Gram matrix A^TA is invertible
- unique solution of least squares problem is

$$\hat{x} = (A^T A)^{-1} A^T b = A^{\dagger} b$$

• $x = A^{-1}b$ is a solution of square invertible system Ax = b

Least squares

Derivation via calculus

define

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2$$

• Solution \hat{x} satisfies

$$\frac{\partial f}{\partial x_k}(\hat{x}) = \nabla f(\hat{x})_k = 0, \quad k = 1, \dots, n$$

- taking partial derivatives we get $\nabla f(x)_k = (2A^T (Ax b))_k$
- in matrix-vector notation: $\nabla f(\hat{x}) = 2A^T(A\hat{x} b) = 0$
- so \hat{x} satisfies normal equations $(A^TA) \hat{x} = A^T b$
- and therefore $\hat{x} = (A^T A)^{-1} A^T b$

Least squares Direct verification

- let $\hat{x} = (A^T A)^{-1} A^T b$, so $A^T (A \hat{x} b) = 0$
- for any n-vector x we have

$$||Ax - b||^{2} = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^{2}$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(A(x - \hat{x}))^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2} + 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

$$= ||A(x - \hat{x})||^{2} + ||A\hat{x} - b||^{2}$$

- $\bullet \text{ so for any } x, ||Ax b||^2 \ge ||A\widehat{x} b||^2$
- if equality holds, $A(x \hat{x}) = 0$, which implies $x = \hat{x}$ since columns of A are linearly independent

Least squares

Computing least squares approximate solutions

- compute QR factorization of A: A = QR
- lacktriangle QR factorization exists since columns of A are linearly independent
- to compute $\hat{x} = A^{\dagger}b = R^{-1}Q^{T}b$
- identical to algorithm for solving Ax = b for square invertible A
- lacktriangle but when A is tall, gives least squares approximate solution