Projeto 4: Prevendo o Risco de Calote

Passo 1: Entendimento de negócios e dados

Fornecer uma explicação das principais decisões que precisam ser feitas. (Limite de 250 palavras)

Decisões chave:

Responda estas perguntas

- 1. Que decisões precisam ser tomadas?
- R: Objetivo é identificar se os clientes que solicitaram os empréstimos merecem crédito ou não.
- 2. Que dados são necessários para informar essas decisões?
- R: Dados históricos sobre os empréstimos feitos, como por exemplo saldo da conta e valor de crédito que estão no arquivo "credit-data-training.xlsx" para treinar nosso modelo e a lista de clientes a serem processados (arquivo "customers-to-score.xlsx").
- 3. Que tipo de modelo (Contínuo, Binário, Não-Binário, Time-Series) precisamos usar para ajudar a tomar essas decisões?
- R: Usando o diagrama abaixo, podemos chegar a conclusão que utilizaremos o modelo de classificação binário pois estaremos prevendo algo com dados ricos em informações e classificar se o cliente merece ou não crédito.

Passo 2: Construindo o Conjunto de Treinamento

Construa seu conjunto de treinamento dado os dados fornecidos a você. Os dados foram limpos para você já assim você **não deve precisar converter quaisquer campos de dados para os tipos de dados apropriados.**

Aqui estão algumas diretrizes para ajudar a orientar sua limpeza de dados:

- Para campos de dados numéricos, existem campos que se correlacionam entre si? A correlação deve ser de pelo menos 0,70 para ser considerada "alta".
- Existem dados em falta para cada um dos campos de dados? Campos com muitos dados em falta devem ser removidos
- Existem apenas alguns valores em um subconjunto de seu campo de dados? O campo de dados parece muito uniforme (há apenas um valor para todo o campo?). Isso é chamado de "baixa variabilidade" e você deve remover os campos que têm baixa variabilidade. Consulte a seção "Dicas" para encontrar exemplos de campos de dados com baixa variabilidade.
- Seu conjunto de dados limpos deve ter 13 colunas onde a média de Age Years deve ser 36 (arredondado para cima)

Nota: Por uma questão de consistência no processo de limpeza de dados, impute dados usando a média de todo o campo de dados em vez de remover alguns pontos de dados. (Limite de 100 palavras)

Nota: Para alunos que usam software diferente do Alteryx, por favor, formate cada variável como:

Variable	Data Type
Credit-Application-Result	String
Account-Balance	String
Duration-of-Credit-Month	Double
Payment-Status-of-Previous-Credit	String
Purpose	String
Credit-Amount	Double
Value-Savings-Stocks	String
Length-of-current-employment	String
Instalment-per-cent	Double
Guarantors	String
Duration-in-Current-address	Double
Most-valuable-available-asset	Double
Age-years	Double
Concurrent-Credits	String
Type-of-apartment	Double
No-of-Credits-at-this-Bank	String
Occupation	Double

No-of-dependents	Double
Telephone	Double
Foreign-Worker	Double

Para alcançar resultados consistentes os revisores esperam.

Responda esta pergunta:

- Em seu processo de limpeza, quais campos você removeu ou imputou? Por favor, justifique por que você removeu ou imputou esses campos. As visualizações são incentivadas.
- R: Quando resumi todos os campos dos dados, variável "Duration-in-Current-address" tinha 69% dos dados faltantes. Sendo assim foi removido esse campo.

Embora a variável "Age-years" tenha 2% dos dados ausentes, decidi colocar o valor da mediana nesses campos pois está mais inclinado para a esquerda o gráfico nesse campo e de se tratar de um dos campos importantes para o treinamento do modelo.

Os campos "Concurrent-Credits" e "Occupation" foram removidos pois tinha somente 1 valor igual para todos os registros.

Os campos "Guarantors", "Foreign-Worker" e "No-of-dependents" foram removidos pois mostraram baixa variabilidade, onde mais de 80% dos dados se inclinam para um valor.

O campo "Telephone" foi removido devido a sua irrelevância.

Passo 3: Treinar seus Modelos de Classificação

Primeiro, crie suas amostras de Estimação e Validação, onde 70% de seu conjunto de dados deve ir para Estimativa e 30% de seu conjunto de dados inteiro deve ser reservado para Validação. Defina a Semente Aleatória como 1.

Crie todos os modelos a seguir: regressão logística, árvore de decisão (decision trees), modelo de floresta (forest model), e boosted model.

Responda a estas perguntas para cada modelo criado:

- 1. Quais variáveis preditoras são significativas ou as mais importantes? Por favor, mostre os p-values ou gráficos de importância para todas as suas variáveis de previsão.
- 2. Valide seu modelo em relação ao conjunto de Validação. Qual foi a porcentagem geral de precisão? Mostre a matriz de confusão. Existe algum viés (bais) nas previsões do modelo?

Você deve ter quatro conjuntos de perguntas respondidas. (Limite de 500 palavras)

1) Logistic Regression (Stepwise)

Utilizando o campo "Credit-Application-Result" como variável target, os campos "Account-Balance", "Purpose" e "Credit-Amount" foram os 3 campos mais significativos com o p-value menor que 0.05.

A precisão geral é de 76%, enquanto a precisão de prever se o cliente merece é 80% e 62.9% para aqueles que não merecem. Modelo tende a prever melhor os que merecem o crédito.

2) Decision Tree

Utilizando o campo "Credit-Application-Result" como variável target, os campos "Account-Balance", "Value.Savings.Stocks" e "Duration.of.Credit.Month" foram os 3 campos mais significativos.

A precisão geral é de 74.67%, enquanto a precisão de prever se o cliente merece é 79.13% e 60% para aqueles que não merecem. Modelo tende a prever melhor os que merecem o crédito.

3) Forest Model

Utilizando o campo "Credit-Application-Result" como variável target, os campos "Credit-Amount", "Age-years" e "Duration-of-Credit-Month" foram os 3 campos mais significativos.

A precisão geral é de 80.67%, enquanto a precisão de prever se o cliente merece é 79.69% e 86.36% para aqueles que não merecem. Modelo tende a prever melhor os que não merecem o crédito.

4) Boosted Model

Utilizando o campo "Credit-Application-Result" como variável target, os campos "Account-Balance" e "Credit-Amount" foram os campos mais significativos.

A precisão geral é de 78.67%, enquanto a precisão de prever se o cliente merece é 78.29% e 80.95% para aqueles que não merecem. Modelo tende a prever melhor os que não merecem o crédito.

Step 4: Escrita

Decidir sobre o melhor modelo e pontuação de seus novos clientes. Para revisar a consistência, se Score_Creditworthy for maior que Score_NonCreditworthy, a pessoa deve ser rotulada como "Creditworthy"

Escreva um breve relatório sobre como você criou o seu modelo de classificação e anote quantos dos novos clientes se qualificariam para um empréstimo. (Limite de 250 palavras)

Responda estas perguntas:

 Qual modelo você escolheu usar? Por favor, justifique sua decisão usando apenas as seguintes técnicas:

R: Foi escolhido o modelo "Forest Model", pois ofereceu uma precisão geral maior que 80% no conjunto de dados de validação.

O modelo "Forest Model" atinge uma taxa positiva, pois a diferença de precisão entre aqueles que merecem e não merecem são mais ou menos iguais. O que torna menos tendencioso em comparação com os demais modelos. Evitando assim a não emprestar o dinheiro a clientes com alta probabilidade de inadimplência, garantido oportunidade para aqueles clientes que mereçam os empréstimos. O mais importante é evitar falso positivo por ter maior risco a empresa, pois estaríamos aprovando crédito a um não pagador.

Entre os modelos o "Decision Tree" é o que apresenta maior risco para o negócio, pois tem a menor precisão de prever os que não merecem aprovação no crédito e sem contar também na taxa de precisão para prever um bom pagador.

Model Comparison Report							
Fit and error measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy		
DT_Results	0.7467	0.8273	0.7054	0.7913	0.6000		
FM_Results	0.8067	0.8755	0.7423	0.7969	0.8636		
Bosted_Results	0.7867	0.8632	0.7524	0.7829	0.8095		
Stepwise_Results	0.7600	0.8364	0.7306	0.8000	0.6286		
Accuracy_[class name]: accuracy	nly available for two-class classifica	amples that are		e Class [class name] divided by number of samples predite	d to be Class (dass name)		
	antani Banulta						
Confusion matrix of Bo	ostea_Results			Actual_Creditworthy	Actual_Non-Creditworthy		
Confusion matrix of Be	Predicted_Credity			Actual_Creditworthy			
Confusion matrix of B	_						
Confusion matrix of Bo	Predicted_Credity Predicted_Non-Credity						
	Predicted_Credity Predicted_Non-Credity				28 17		
	Predicted_Credity Predicted_Non-Credity T_Results	vorthy		101 4	28 17		
	Predicted_Credity Predicted_Non-Credity	vorthy		101 4 Actual_Creditworthy	28 17 Actual_Non-Creditworthy		
	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity	vorthy		101 4 Actual_Creditworthy 91	28 17 Actual_Non-Creditworthy 24		
Confusion matrix of D	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity	vorthy		101 4 Actual_Creditworthy 91 14	28 17 Actual_Non-Creditworthy 24 21		
Confusion matrix of D	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity M_Results	vorthy vorthy vorthy		Actual_Creditworthy 91 14 Actual_Creditworthy	28 17 Actual_Non-Creditworthy 24 21 Actual_Non-Creditworthy		
Confusion matrix of D	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity	vorthy vorthy vorthy		101 4 Actual_Creditworthy 91 14	28 17 Actual_Non-Creditworthy 24 21		
Confusion matrix of D Confusion matrix of FI	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity M_Results Predicted_Credity Predicted_Credity	vorthy vorthy vorthy		Actual_Creditworthy 91 14 Actual_Creditworthy 102	28 17 Actual_Non-Creditworthy 24 21 Actual_Non-Creditworthy 26		
Confusion matrix of D	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity M_Results Predicted_Credity Predicted_Credity	vorthy vorthy vorthy		Actual_Creditworthy 91 14 Actual_Creditworthy 102	28 17 Actual_Non-Creditworthy 24 21 Actual_Non-Creditworthy 26		
Confusion matrix of D	Predicted_Credity Predicted_Non-Credity T_Results Predicted_Credity Predicted_Non-Credity M_Results Predicted_Credity Predicted_Credity	vorthy vorthy vorthy vorthy vorthy		Actual_Creditworthy 91 14 Actual_Creditworthy 102 3	Actual_Non-Creditworthy 24 21 Actual_Non-Creditworthy 26 19		

Verificando o gráfico de curva ROC, podemos ver trade-off entre a taxa "verdadeiro positivo" e "falso positivo" entre os modelos e na qual mostra o modelo "Forest Model" como segundo melhor com AUC de 74.23%.

Quantos indivíduos são bons pagadores?R: Há 410 clientes utilizando o modelo "Forest Model"