Empirical distribution function and fundamental theorem of statistics

Olga Klopp

Consider the sampling on \mathbb{R} : we observe

$$X_1, \ldots, X_n$$

i.i.d. random variables following the law \mathbb{P}_X .

<u>Rem.</u>: As the law of observations (X_1, \ldots, X_n) is $\mathbb{P}_X^{\otimes n}$, to give a model here (for the sampling model) is equivalent to give a model for \mathbb{P}_X .

For example: $\mathbb{P}_X \in \{ \mathcal{N}(\theta, 1) : \theta \in \mathbb{R} \}$

Fundamental Question: If we consider the "total" model $= \mathbb{P}_X \in \{$ all the laws on $\mathbb{R} \}$, is it possible to know **exactly** \mathbb{P}_X when n, the number of observations, goes to ∞ ?

1 Empirical distribution function

Recall: To know the law of a random variable X it is enough to know its distribution function F and the distribution function is easier to study in a statistical context. So, we observe

$$X_1, \ldots, X_n \sim_{i.i.d.} F$$

F any, unknown distribution function.

Question: Is it possible to find exactly F when n goes to ∞ ?

Idea: We will try to estimate F. Let $x \in \mathbb{R}$, then $F(x) = \mathbb{P}[X \le x]$ is the probability that X will take a value less than or equal to x. We will then count the numbers of X_i which are smaller than x and divide it by n:

$$\frac{1}{n}\sum_{i=1}^{n}I(X_{i}\leq x).$$

Definition 1. Empirical distribution function associated with n-sample (X_1, \ldots, X_n) :

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x), \ x \in \mathbb{R}.$$

This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any point x is the fraction of observations of the measured variable that are less than or equal to x.

It's a random variable!

2 Fundamental theorem of statistics

2.1 Asymptotic properties of \widehat{F}_n

For any fixed $x \in \mathbb{R}$, the empirical distribution function $\widehat{F}_n(x)$ converges almost surly to the true distribution function F(x):

$$\widehat{F}_n(x) \xrightarrow{a.s.} F(x) \text{ when } n \to \infty$$

This is a consequence of the **strong law of large numbers** applied to the sequence of i.i.d. r.v. $(I(X_i \le x))_i$. We say that $\widehat{F}_n(x)$ is **strongly consistent** estimator of F(x).

Theorem 1 (Glivenko-Cantelli).

$$\|\widehat{F}_n - F\|_{\infty} \xrightarrow{a.s.} 0 \text{ when } n \to \infty$$

Also called the Fundamental Theorem of Statistics.

Interpretation: With an infinite number of data, one can reconstruct exactly the distribution function F and therefore exactly determine the law of observations.

R Example Glivenko-Cantelli

Let $x \in \mathbb{R}$. We know that if $n \to \infty$ then

$$\widehat{F}_n(x) \xrightarrow{a.s.} F(x)$$

Question: What is the rate of convergence of $F_n(x)$ to F(x)?

<u>Tool</u>: Central-limit theorem applied to the sequence of i.i.d. r.v. $(I(X_i \le x))_i$:

$$\sqrt{n}(\widehat{F}_n(x) - F(x)) \xrightarrow{d} \mathcal{N}(0, F(x)(1 - F(x)))$$

We say that $\widehat{F}_n(x)$ is asymptotically normal with asymptotic variance F(x)(1 - F(x)). CLT implies that

$$\mathbb{P}\left[\left|\widehat{F}_n(x) - F(x)\right| \ge c_\alpha \frac{\sigma(F)}{\sqrt{n}}\right] \to \int_{|x| > c_\alpha} \exp(-x^2/2) \frac{dx}{\sqrt{2\pi}} = \alpha$$

for any $0 < \alpha < 1$, when $n \to \infty$. Here $\sigma(F) = F(x)(1 - F(x))$ and $c_{\alpha} = \Phi^{-1}(1 - \alpha/2)$.

- Attention! this does not provide a confidence interval: $\sigma(F) = F(x)^{1/2} (1 F(x))^{1/2}$ is unknown!
- <u>Solution</u>: replace $\sigma(F)$ by $\sigma(\widehat{F}_n) = \widehat{F}_n(x)^{1/2} (1 \widehat{F}_n(x))^{1/2}$ (that we observe), thanks to <u>Slutsky's</u> theorem.

Proposition 1. For any $\alpha \in (0,1)$,

$$\mathcal{I}_{n,\alpha}^{\mathrm{asymp}} = \left[\widehat{F}_n(x) \pm \frac{\widehat{F}_n(x)^{1/2} \big(1 - \widehat{F}_n(x)\big)^{1/2}}{\sqrt{n}} \Phi^{-1}(1 - \alpha/2)\right]$$

is an asymptotic confidence interval for F(x) at the confidence level $1-\alpha$:

$$\mathbb{P}\left[F(x) \in \mathcal{I}_{n,\alpha}^{\mathrm{asymp}}\right] \to 1-\alpha.$$

R Example Confidence interval F(x).

Theorem 2 (Kolmogorov-Smirnov's Theorem). Let X be a random variable with cdf F that we suppose continuous and $(X_n)_n$ sequence of i.i.d. r.v. all having the same law as X. Then,

$$\sqrt{n} \left\| \widehat{F}_n - F \right\|_{\infty} \stackrel{d}{\longrightarrow} K$$

where K is a random variable such that for any $x \in \mathbb{R}$

$$\mathbb{P}[K \le x] = 1 - 2\sum_{k=1}^{\infty} (-1)^{k+1} \exp(-2k^2 x^2).$$

- \bullet Useful for Kolmogorov-Smirnov test
- non-asymptotic version of this result: when F is continuous, the law of $\|\widehat{F}_n F\|_{\infty}$ is independent of

In general, statistical results can be classified into two categories:

- 1. A result when n goes to infinity is an asymptotic result
- 2. A result when n is fixed is a non-asymptotic result

2.2 Non-asymptotic estimation of F(x) by $\widehat{F}_n(x)$

Given a (small) $0 < \alpha < 1$ we want to find ε , as small as possible, so that

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \varepsilon\right] \le \alpha.$$

Using Chebyshev we get

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \varepsilon\right] \le \frac{1}{\varepsilon^2} \operatorname{Var}\left[\widehat{F}_n(x)\right]$$

$$= \frac{F(x)\left(1 - F(x)\right)}{n\varepsilon^2}$$

$$\le \frac{1}{4n\varepsilon^2}$$

$$\le \alpha$$

Leads to

$$\varepsilon = \frac{1}{2\sqrt{n\alpha}}$$

Conclusion: for any $\alpha > 0$,

$$\mathbb{P}\left[|\widehat{F}_n(x) - F(x)| \ge \frac{1}{2\sqrt{n\alpha}}\right] \le \alpha.$$

Terminology 1. The interval

$$\boxed{\mathcal{I}_{n,\alpha} = \left[\widehat{F}_n(x) \pm \frac{1}{2\sqrt{n\alpha}}\right]}$$

is a $1 - \alpha$ confidence interval for F(x).

Proposition 2 (Hoeffding's inequality). Y_1, \ldots, Y_n i.i.d. r.v. such that $a \leq Y_1 \leq b$ a.s.. Then,

$$\mathbb{P}\left[\left|\frac{1}{n}\sum_{i=1}^{n}Y_{i} - \mathbb{E}Y_{1}\right| \ge t\right] \le 2\exp\left(-\frac{2nt^{2}}{(a-b)^{2}}\right)$$

Application: set $Y_i = I(x_i \leq x)$. From Hoeffding inequality We can deduce

$$\mathbb{P}\left[\left|\widehat{F}_n(x) - F(x)\right| \ge \varepsilon\right] \le 2\exp(-2n\varepsilon^2).$$

We solve in ε :

$$2\exp(-2n\varepsilon^2) = \alpha,$$

that is

$$\varepsilon = \sqrt{\frac{1}{2n} \log \frac{2}{\alpha}}.$$

2.2.1 Chebyshev vs Hoeffding comparison

New confidence interval

$$\boxed{\mathcal{I}_{n,\alpha}^{\texttt{hoeffding}} = \left[\widehat{F}_n(x_0) \pm \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}\right]},$$

to compare with

$$\mathcal{I}_{n,\alpha}^{\text{chebyshev}} = \left[\widehat{F}_n(x_0) \pm \frac{1}{2\sqrt{n\alpha}}\right].$$

- Same order of magnitude with respect to n: $1/\sqrt{n}$
- Significant gain in the limit $\alpha \to 0$: from $1/\alpha$ to $\log(1/\alpha)$. The "risk taking" becomes marginal compared to the number of observations.
- Optimality of this approach?

Comparison of the lengths of the 3 confidence intervals:

- Chebyshev (non-asymptotic) $\frac{2}{\sqrt{n}} \frac{1}{2} \frac{1}{\sqrt{\alpha}}$
- Hoeffding (non-asymptotic) $\frac{2}{\sqrt{n}}\sqrt{\frac{1}{2}\log\frac{2}{\alpha}}$
- CLT (asymptotic) $\frac{2}{\sqrt{n}} \widehat{F}_n(x_0)^{1/2} (1 \widehat{F}_n(x_0))^{1/2} \Phi^{-1} (1 \alpha/2)$.
- The smallest length is provided by the CLT. But the length of the confidence interval provided by the Hoeffding's inequality comparable to CLT in n and α (in the limit $\alpha \to 0$)

2.2.2 Non-asymptotic version of Kolmogorov-Smirnov

Let X be a random variable with cdf F that we suppose **continuous** and $(X_n)_n$ sequence of i.i.d. r.v. all having the same law as X. Let \widehat{F}_n be the corresponding empiric distribution function

Proposition 3 (Dvoretsky-Kiefer-Wolfowitz inequality). For any $\varepsilon > 0$.

$$\mathbb{P}\left[\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x) - F(x)\right| \ge \varepsilon\right] \le 2\exp\left(-2n\varepsilon^2\right).$$

- Difficult result (theory of empirical processes).
- We can construct confidence regions with results similar to those obtained for a fixed value of x:

$$\mathbb{P}\left[\forall \mathbf{x} \in \mathbb{R}, F(x) \in \left[\widehat{F}_n(x) \pm \sqrt{\frac{1}{2n}\log\frac{2}{\alpha}}\right]\right] \ge 1 - \alpha$$

Remark: Kolmogorov-Smirnov Test it is used for testing if a sample comes from a distribution with a given cdf or to test if two samples come from the same distribution.