LeJOS basic commands reference

For printing on the LCD screen:

LCD.drawString(String str, int x, int y)	Displays the provided string on the LCD
	screen, starting at position (x, y) .
LCD.drawInt(int n, int x, int y)	Displays the integer n on the LCD screen, start-
	ing at position (x, y) .
LCD.clear()	Clears the LCD screen, removing whatever
	has been printed.

Methos for working with the buttons on the brick. Note that Button.waitForPress() is useful as the last command of a program, as otherwise the program will terminate immediately and clear anything which was displayed on the LCD.

<pre>Button.waitForPress()</pre>	Waits for any button on the brick to be pressed
	before continuing with the program. Returns
	an int which represents which button was
	pressed (ask for details).
Button.readButtons()	Returns an int which is 0 if no buttons are
	currently pressed down, and greater than 0 if
	any buttons are currently pressed down. It is
	possible to use this value to determine which
	buttons in particular are currently pressed, ask
	for details.

You can access the three motors via the constants Motor.A, Motor.B, and Motor.C, which are instances of the class NXTRegulatedMotor. You can tell a motor to do things using the following methods, so for example to tell motor A to start running forward, you would write Motor.A.forward().

forward()	Start the motor rotating forward.
backward()	Start the motor rotation backward.
stop()	Quickly stop the motor rotating.
getTachoCount()	Returns the motor angle in degrees.
setSpeed(int speed)	Sets the speed in degrees per second, up to a
	max of around 1000.
rotate(int angle)	Rotates the motor the specified angle in de-
	grees.
rotateTo(int angle)	Rotates the motor until it's tachometer count
	(as returned by getTachoCount()) equals the
	specified angle in degree.
rotate(int angle, true)	The same as the other rotate(), but returns
	immediately, i.e. the next command in the pro-
	gram runs immediately rather than waiting
	for the rotation to complete.
rotateTo(int angle, true)	The same as the other rotateTo, but returns
	immediately.
isMoving()	Returns true if the motor is currently moving.

There are some other, more obscure motor methods. These probably won't be as useful, but are listed here for reference.

resetTachoCount()	Resets the tachometer count, as returned by
	getTachoCount, to zero.
setAcceleration(int accel)	Sets the rate at which the motor changes speed,
	in degrees per second per second. Try us-
	ing a small value like 200 to have your robot
	smoothly accelerate or decelerate.
<pre>getSpeed()</pre>	Returns the speed in degrees per second, as
	set by setSpeed().
<pre>getActualSpeed()</pre>	Returns the speed that the motor is actually
	currently moving, in degrees per second.
<pre>getAcceleration()</pre>	Returns the acceleration in degrees per second
	per second, as set by setAcceleration().
<pre>getLimitAngle()</pre>	Gets the angle to which the motor is cur-
	rently rotating, after a call to rotate() or
	rotateTo().
isRotating()	Returns true if the motor is currently moving
	due to a rotate() or rotateTo() command.
	Compare to isMoving(), which returns true
	if the motor is moving for any reason.
flt()	Stop the motor gradually. Like stop(), but
	allows the motor to stop on its own rather
	than using power to stop it.