AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

1.(currently amended) A method for scheduling the transmission of a data stream in a wireless communications network having at least one access point (QAP) (103) and at least one

station (WSTA) (110, 112, 114), the method comprising the steps of:

receiving a request to send at least one data stream for transmission from at least one WSTA (110, 112, 114) by said QAP (103);

granting, by said QAP (103), said request to send said at least one data stream;

transmitting, by said at least one WSTA (110, 112, 114), a medium access control

(MAC) frame comprised of a set of parameters defining the characteristics of said at least one

data stream; and;

calculating, by said QAP (103), service and transmission times according to a

schedule algorithm for servicing said at least one WSTA (110, 112, 114) utilizing said parameters.

2. (original) The method of Claim 1, wherein said schedule algorithm is operative to schedule

the transmission of said at least one data stream at said calculated service and transmission times.

3. (currently amended) The method of Claim 1, further comprising the step of generating:

at said QAP (103), polling frames or downlink frames at said calculated service and transmission

times allocated to said at least one WSTA(110, 112, 114) for transmission of said at least one data

stream.

- 2 -

4. (original) The method of Claim 1, wherein said at least one data stream is parameterized traffic stream.

5. (currently amended) The method of Claim 1, wherein the parameters of said MAC frame includes: include Mean Data Rate (ρ_i), Nominal MSDU Size (L_i), and Maximum Service Interval or Delay Bound (D_i).

6. (currently amended) The method of Claim 1, wherein the step of calculating said service and transmission times <u>further</u> comprises the steps of determining a Service Interval (SI) and determining a TXOP duration for said SI.

7. (currently amended) The method of Claim 6, wherein the step of determining said SI further comprises the steps of:

selecting calculating a number that is lower than saidminimum interval of all Maximum Service Intervals for each of said at least one streams, and

selecting acalculating the SI by choosing a number that is lower than said calculated SI minimum interval and is a submultiple of a beacon interval.

- 8. (currently amended) The method of Claim 6, wherein the step of determining said TXOP uses additional parameters: Transmission Rate (R_i), Size of Maximum MSDU (M_i), and Overheads in Time units (O_i).
- 9. (currently amended) The method of Claim 6, wherein the step of determining said TXOP duration further comprises the step of:

calculating the number of MSDUs (N_i) that arrived at said Mean Data Rate (ρ_i) , during said SI, where (L) is the nominal MSDU Size according to the following equation:

$$N_i = \left[\frac{SI \times \rho_i}{L_i} \right]$$

calculating said TXOP_i duration as a maximum of (i) time to transmit number of MSDUs (N_i) frames at said-Transmission Rate (R_i) , (ii) time to transmit one maximum size MSDU (M) at said R_i , and (iii) Overhead in time units (O) according to the following equation:

$$TXOP_i = \max\left(\frac{N_i \times L_i}{R_i} + O, \frac{M}{R_i} + O\right)$$

10. (currently amended) The method of Claim 5, wherein the step of calculating said service and transmission times are performed if an admission control condition is satisfied, as follows:

$$TXOP_{i+1}/D_{i+1} + \sum_{i=1}^{k} TXOP_{i}/D_{i} \leq 1, \underline{where}$$

$$TXOP_{i} \ = \ N_{i} \ L_{i} \ / R_{i} \quad + \ O \ and \ N_{i} = D_{i} \ \rho_{i} \ / \ L_{i.}$$

where R_i represents a transmission Rate, N_i represents number of frames arriving during D_i , and O represents overheads in time units, and i+1 stands for the newly arriving stream and the summation index counts for the streams already admitted by the QAP.

11.(currently amended) A method for scheduling the transmission of a data stream in a wireless communications network having at least one access point (QAP)-(103) and at least one

station (WSTA) (110, 112, 114), the method comprising the steps of:

determining, at said QAP-(103), whether at least one data stream is originated from said at least one WSTA(110, 112, 114) based on a MAC frame comprised of a set of parameters defining the characteristics of said at least one upstream sidestream or downstream traffic data

stream;

computing service and transmission times, at said QAP (103), for servicing said at least

one WSTA(440, 442, 444) in accordance with a schedule algorithm utilizing said parameters; and,

transmitting, by said at least one WSTA(110, 112, 114), said at least one data stream at

said computed service and transmission times.

12. (original) The method of Claim 11, wherein said at least one data stream is parameterized

traffic stream.

13. (currently amended) The method of Claim 11, wherein the parameters of said MAC

frame includes: include Mean Data Rate (p_i), Nominal MSDU Size (L_i), and Maximum Service

Interval or Delay Bound (D_i).

14.(currently amended) The method of Claim 11, wherein the step-of-calculating said

service and transmission times <u>further</u> comprises the steps of determining a Service Interval (SI)

and determining a TXOP duration for said SI.

- 5 -

15. (currently amended) The method of Claim 14, wherein the step-of-determining said SI further comprises the steps of:

selecting calculating a number that is lower than said minimum interval of all Maximum Service Intervals, and

calculating the SI by choosing aselecting—a number that is lower than said minimum interval calculated SI and is a submultiple of a beacon interval.

16. (currently amended) The method of Claim 14, wherein the step of determining said TXOP uses additional parameters: Transmission Rate (R_i) , Size of Maximum MSDU (M_i) , and Overheads in Time units (O_i) .

17. (currently amended) The method of Claim 14, wherein the step-of-determining said TXOP duration <u>further</u> comprises the step-of:

calculating the number of MSDUs (N_i) that arrived at said Mean Data Rate (ρ_i), during said SI, where (L) is the nominal MSDU Size according to the following equation:

$$N_i = \left[\frac{SI \times \rho_i}{L_i} \right]$$

calculating said TXOP_i duration as a maximum of (i) time to transmit number of MSDUs (N_i) frames at said Transmission Rate (R_i) , (ii) time to transmit one maximum size MSDU (M) at said R_i , and (iii) Overheads in time units (O) according to the following equation:

$$TXOP_i = \max\left(\frac{N_i \times L_i}{R_i} + O, \frac{M}{R_i} + O\right)$$

18. (currently amended) A system for seamlessly granting polls for upstream and/or sidestream traffic while simultaneously sending downstream traffic from said (AP) (103) to said at least one WSTA (110, 112, 114), the system comprising:

a memory for storing a computer-readable code; and,

a processor operatively coupled to said memory, said processor configured to:

- (1) receive a request to send at least one data stream for transmission from at least one WSTA(110, 112, 114) by said QAP-(103);
- (2) grant said request to send said at least one data stream by said WSTA(110, 112, 114) or QAP-(103);
- (3) transmit, by said at least one WSTA(110,-112,-114), a MAC frame comprised of a set of parameters defining the characteristics of said at least one data stream; and,
- (4) calculate, by said QAP—(103), service and transmission times according to a schedule algorithm for servicing said at least one WSTA(110, 112, 114) utilizing said parameters.
- 19. (currently amended) The system of claim—19. (8), wherein the parameters of said MAC frame includes: Mean Data Rate (ρ_i), Nominal MSDU Size (L_i), and Maximum Service Interval or Delay Bound (D_i).
- 20. (currently amended) A system for scheduling the transmission of a data stream in a wireless communications network having at least one access point (QAP)—(103) and at least one station (WSTA)—(110, 112, 114), the system comprising:

means for determining, at said QAP (103), whether at least one data stream is originated from said at least one WSTA(110, 112, 114) based on a MAC frame comprised of a set of parameters defining the characteristics of said at least one data stream;

means for computing calculating service and transmission times, at said QAP-(103), for servicing said at least one WSTA(110, 112, 114) in accordance with a schedule algorithm utilizing said parameters; and,

means for transmitting, by said at least one WSTA(110, 112, 114), said at least one data stream at said computed service and transmission times.

- 21. (currently amended) The system of claim 20, wherein the parameters of said MAC frame includes: include Mean Data Rate (ρ_i), Nominal MSDU Size (L_i), and Maximum Service Interval or Delay Bound (D_i).
- 22. (original) The system of Claim 20, wherein the means for calculating said service and transmission times further comprises means for determining a Service Interval (SI) and a TXOP duration for said SI.
- 23. (currently amended) The method of Claim 22, wherein the step of means for determining said SI comprises the steps of:

calculates a minimum interval of all selecting a number that is lower than said Maximum Service Intervals, and

<u>calculates the SI by choosing selecting</u> a number that is lower than said calculated <u>Siminimum interval</u> and is a submultiple of the beacon interval.

24. (currently amended) The system of Claim 22, wherein the step—of means for determining said TXOP uses additional parameters: Transmission Rate (R_i), Size of Maximum MSDU (M_i), and Overheads in Time units (O_i).

25. (currently amended) The system of Claim 24, wherein said TXOP duration is determined by:

$$N_i = \left[\frac{SI \times \rho_i}{L_i} \right]$$

calculating the number of MSDUs (N_i) that arrived at said Mean Data Rate (ρ_i), during said SI, where (L) is the nominal MSDU Size according to the following equations:

$$N_i = \left\lceil \frac{SI \times \rho_i}{L_i} \right\rceil$$

calculating said $TXOP_i$ duration as a maximum of time to transmit number of MSDUs (N_i) frames at said-Transmission Rate (R_i) , and time to transmit one maximum size $MSDU_i(M)$ at said R_i , and Overheads in time units (O) according to the following equation:

$$TXOP_i = \max\left(\frac{N_i \times L_i}{R_i} + O, \frac{M}{R_i} + O\right)$$

26.(currently amended) The system of Claim 24 20, wherein the step—of means for calculating said service and transmission times are performed is used if an admission control condition is satisfied, as follows:

$$TXOP_{i+1}/D_{i+1} + \sum_{i=1}^{k} TXOP_{i}/D_{i} \leq 1, \underline{where}$$

$$TXOP_i \ = \ N_i \ L_i \ / R_i \quad + \ O \ and \ N_i = D_i \ \rho_i \ / \ L_{i.}$$

where R_i represents a transmission Rate, N_i represents number of frames arriving during D_i , and O represents overheads in time units, and O represents overheads overhe