TC205 Wie groß ist der kapazitive Widerstand eines 10-pF-Kondensators bei 100 MHz ?

Lösung: 159Ω .

Formel:
$$Xc = \frac{1}{2 \cdot \pi \cdot f \cdot C}$$

Xc = Wechselstromwiderstand (Ohm)
f = Frequenz (Hertz)
C = Kapazität (Farad)

Links = Elektrolyt-Kondensator, rechts zwei keramische Scheibenkondensatoren.

$$100 \text{ MHz} = 1^{8}; 10 \text{ pF} = 1^{-11}$$

Taschenrechner:	> Eingabe	= Ausgabe
2 • Pi	> π • 2	= 6,283185
f • C	> 1^{8} MHz × 1^{-11} Farad	= 0,001
2 • Pi • f • C	> 6,283185 • 0,001	= 0,006283185
1/ 2 • Pi • f • C	> 0,006283185 • [1/x]	= 159,1549 Ohm