Eigen decomposition

K. Sajuran
Consultant/Lecturer

Eigen decomposition

Eigen decomposition is the process of decomposing a matrix into its eigenvectors and eigenvalues. We can also transform a matrix into an Eigen basis

Eigen values

If A is a square matrix of order n , then a non-zero vector X in \mathbb{R}^n is called eigenvector of A if $AX = \lambda X$ for some scalar . The scalar λ is called an eigenvalue of A, and X is said to be an eigenvector of A corresponding to λ .

Remark: Eigen values are also called proper values or characteristic values.

• If A is a square matrix of order n and is a real number, then λ is an eigenvalue of A if and only if $|A - \lambda I| = 0$.

Proof:

If λ is an eigenvalue of A, the there exist a non-zero X a vector in Rⁿ such that $AX = \lambda X$.

$$AX = \lambda X$$

 $AX = \lambda IX$ where I is an identity matrix of order n.

$$(A - \lambda I)X = 0$$

- The equation has trivial solution when if and only if |A| = 0. The equation has non-zero solution if and only if $|A \lambda I| = 0$.
- Conversely , if $|A \lambda I| = 0$ then by the result there will be a non-zero solution for the equation,

Exercise 1:

Find the eigen values of the matrixes

i.
$$A = \begin{pmatrix} 2 & 7 \\ 1 & -2 \end{pmatrix}$$

ii. $B = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{pmatrix}$

- If A is an $n \times n$ matrix and λ is a real number, then the following are equivalent
- *i.* λ is an eigenvalue of A
- ii. The system of equations $(A \lambda I)X = 0$ has non-trivial solutions.
- iii. There is a non-zero vector X in \mathbb{R}^n such that c

Eigen vector:

Let A be an $n \times n$ matrix and λ be the eigen value of A. The set of all vectors X in Rⁿ which satisfy the identity $AX = \lambda X$ is called the eigen space of a corresponding to λ . This is denoted by $E(\lambda)$.

To find the Eigenvector of a matrix, the following steps are emplyed:

- 1.The eigenvalues for matrix A are found by using the formula, det $(A \lambda I) = 0$. Here, 'I' is defined as the equivalent of the order of the matrix identity 'A'. Further, eigenvalues can be denoted as λ_1 , λ_2 , and λ_3 .
- 2.AX = $\lambda_1 X$ is the formula used to substitute the above values.
- 3. The value of eigenvector X is calculated.
- 4. The above steps are repeated to obtain the remaining eigenvectors by using other eigen values.

Find the eigen vectors for the following matrix?

i.
$$A = \begin{pmatrix} -5 & 2 \\ -7 & 4 \end{pmatrix}$$

ii.
$$B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$