Ковальков Антон 577гр

Задача 1.

- 1. $\{a,\ aa\}\cdot\{b,\ bb\}=\{ab,\ abb,\ aab,\ aabb\}$ так как $X\cdot Y=\{x\cdot y,x\in X,y\in Y\}$
- 2. $\{a, aa\} + \{b, bb\} = \{a, aa, b, bb\}$ так как $X + Y = \{x, x \in X | x \in Y\}$
- 3. $\{a, aa\} \times \{b, bb\} = \{(a,b), (a,bb), (aa,b), (aa,bb)\}$ так как $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$
- 4. $((aa|b)^*(a|bb)^*)^* = (b^*a^*)^* = (a|b)^*$
- 5. $\{a^{3n}|n>0\}\cap\{a^{5n+1}|n\geqslant0\}^*=\{a^{3n}|n>0\}$ так как $a^1\in\{a^{5n+1}|n\geqslant0\}$, а значит $\{a^{5n+1}|n\geqslant0\}^*=\{a|b\}^*$
- 6. $\emptyset \cap \{\varepsilon\} = \emptyset$ так как в пустом множестве нет элементов

Задача 2.

Пусть А интересующий нас язык. Пусть $\omega \in A$. Представим ω в виде $\omega_1 ab\omega_2$, где ω_1 и ω_2 не содержат ab. Тогда ω_1 представляется в виде $b \dots ba \dots a$, а ω_2 в виде $a \dots ab \dots b$.

Ответ: $b^*a^*(ab)b^*a^*$

Задача 3.

 $L = \Sigma^* \setminus \{(a|b)^*bb(a|b)^*\}$ $T = \{(a|(ba))^*(b|\varepsilon)\}$

1) Докажем, что $T \subseteq L$:

Язык L включает все слова без bb. Представим слово языка T в виде $\omega_1 \cdot \omega_2$, где $\omega_1 = (a|(ba))^*$, а $\omega_2 = (b|\varepsilon)$. Если b встретится в ω_1 , то после обязательно следует a. Так же ω_1 либо пустое либо заканчивается на a. ω_2 либо пустое либо b. Это значит, что словах языка нету $bb \Rightarrow T \subseteq L$.

Задача 4.

```
1. Автомат \mathcal{A}: (Q, \Sigma, \delta, q_0, F), где
     Q = \{q_0, q_1, q_2\};
     \Sigma = \{a, b\};
     \delta:
         \delta(q_0, b) = \{q_0\},\
         \delta(q_0, a) = \{q_1\},\
         \delta(q_1, a) = \{q_0\},\
         \delta(q_1, b) = \{q_2\},\
         \delta(q_2, a) = \{q_2\},\
         \delta(q_2, b) = \{q_1\},\
     F = \{q_1\};
Автомат \mathcal{B}: (Q, \Sigma, \delta, q_0, F), где
      Q = \{q_0, q_1, q_2\};
      \Sigma = \{a, b\};
      \delta:
          \delta(q_0, b) = \{q_0\},\
          \delta(q_0, a) = \{q_1\},\
          \delta(q_1, b) = \{q_0, q_2\},\
          \delta(q_2, a) = \{q_2\},\
         \delta(q_2, b) = \{q_1\},\
      F = \{q_1\};
```

2. Автомат \mathcal{A} детерминированный, так как функция перехода из каждой вершины определена однозначно.

Автомат \mathcal{B} недетерминированный, так как функция перехода от (q_1, b) определена неоднозначно.

- 3. $(q_0, aababab) \vdash (q_1, ababab) \vdash (q_0, babab) \vdash (q_0, abab) \vdash (q_1, bab) \vdash (q_2, ab) \vdash (q_2, b) \vdash (q_1, \varepsilon)$
- $aababab \in L(\mathcal{A})$ так как автомат \mathcal{A} на входе aababab закончил работу в принимающем состоянии. $(q_1 \in F)$
- 4. Автомат \mathcal{B} принимает слово abbba, так как $(q_0, abbba) \vdash (q_1, bbba) \vdash (q_0, bba) \vdash (q_0, ba) \vdash (q_0, a) \vdash (q_1, \varepsilon)$ и $(q_1 \in F)$
- 5. $a \in L(\mathcal{A}); abb \in L(\mathcal{B}); b \notin L(\mathcal{A}); bb \notin L(\mathcal{B})$

Задача 5.

1. 1) Докажем по индукции, что $\forall \omega \in L : |\omega| = n \hookrightarrow \omega \in T$.

База индукции: для слов длины меньшей трёх из L выполнено.

Шаг индукции: Пусть утверждение доказано для слов длины $n-1,\,n-2$ и n-3. Тогда дописывая к ним a,ba,bba мы получим слова в которых так же нет трёх букв b подряд.

Значит $w \in T$, где |w| = n.

2) Докажем по индукции, что $\forall \omega \in T: |\omega| = n \hookrightarrow \omega \in L$ База индукции: $\{\varepsilon, a, b, ab, aa, bb\} \subset L$.

Шаг индукции: Пусть утверждение доказано для слов длины n-1. Тогда если $\omega = a\omega_1$, где $|\omega_1| = n-1$, то так как $\omega_1 \in L \Rightarrow a \cdot \omega_1 \in L \Rightarrow \omega \in L$. Если же $\omega = b\omega_1$, то:

если ω_1 начинается с a, то $\omega=ba\omega_2,\ \omega_2\in L\Rightarrow ba\cdot\omega_2\in L\Rightarrow\omega\in L.$ если ω_1 начинается с b, то $\omega=bba\omega_2$, так как $\omega\in T.\ \omega_2\in L\Rightarrow bba\cdot\omega_2\in L\Rightarrow\omega\in L.$

2.

Докажем по индукции, что этот автомат распознаёт слово длины n языка T.

- 1) База индукции: n=0, если на вход автомату дать $\varepsilon,$ то он остановится в принимающем состоянии $q_0.$
- 2) Пусть Автомат принял слово ω_1 длины n-1 из языка T, докажем, что он примет слово ω длины n из языка T.

Если ω получилось дописыванием буквы a к ω_1 , то автомат закончит в принимающем состоянии q_0 . Так как из любого состояния определен переход по a в состояние q_0 .

Если же это слово получилось дописыванием буквы b к слову длины n-1, то возможны следующие случаи:

 $a)\omega_1$ заканчивается на a

Тогда автомат закончит работу в принимающем состоянии q_1 . Так

как на ω_1 автомат закончил в состоянии $q_0.$

б) ω_1 заканчивается на одну букву b

Тогда автомат закончит работу в принимающем состоянии q_2 . Так как на ω_1 автомат закончил в состоянии q_1 .

в) ω_1 заканчивается на bb

Тогда автомат на ω_1 закончил в состоянии q_2 , а по букве b из q_2 переход не определен. Значит слово, в котором 3 буквы b подряд не распознается автоматом.