Exercise 5.1.3:

We want to determine whether O_n is isomorphic to the product group $SO_n \times \{\pm I\}$.

Recall Proposition 2.11.4d states that let H and K be subgroups of G and $f: H \times K \to G$ be the multiplication map, f is an isomorphism if and only if $H \cap K = \{1\}$, HK = G, and H and K are normal subgroups of G.

Name: James Wang

Since $[O_n:SO_n]=2$ and $\{\pm I\}=Z(O_n)$, we know SO_n and $\{\pm I\}$ are normal subgroups in O_n . Moreover, given $A\in O_n$, if $\det(A)=1$, we can associate it with $(A,I)\in SO_n\times\{\pm I\}$, and if $\det(A)=-1$, we can associate it with $(-A,-I)\in SO_n\times\{\pm I\}$, so $SO_n\{\pm I\}=O_n$. It remains to see whether $SO_n\cap\{\pm I\}=\{I\}$, and we claim this answer depends on whether n is odd or even. When n is odd, $\det(-I)=-1$, so $SO_n\cap\{\pm I\}=\{I\}$, yet when n is even, $\det(-I)=1$, so $SO_n\cap\{\pm I\}=\{\pm I\}$ which is nontrivial.

Hence O_n is isomorphic to $SO_n \times \{\pm I\}$ only when n is odd.

Exercise 9.3.4:

We want to determine the centralizer of j in SU_2 .

Recall
$$j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, and let $\begin{bmatrix} x_0 + x_1 i & x_2 + x_3 i \\ -x_2 + x_3 i & x_0 - x_1 i \end{bmatrix}$ be an arbitrary element of SU_2 .

Note that $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 1$, and consider the following matrix multiplication:

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_0 + x_1 i & x_2 + x_3 i \\ -x_2 + x_3 i & x_0 - x_1 i \end{bmatrix} = \begin{bmatrix} x_0 + x_1 i & x_2 + x_3 i \\ -x_2 + x_3 i & x_0 - x_1 i \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -x_2 + x_3 i & x_0 - x_1 i \\ -x_0 - x_1 i & -x_2 - x_3 i \end{bmatrix} = \begin{bmatrix} -x_2 - x_3 i & x_0 + x_1 i \\ -x_0 + x_1 i & -x_2 + x_3 i \end{bmatrix}$$

For the above equality to be true, it must be that $x_1 = 0, x_3 = 0$. Hence $x_0^2 + x_2^2 = 1$, and

$$Z(j) = \left\{ \begin{bmatrix} x_0 & x_2 \\ -x_2 & x_0 \end{bmatrix} : x_0^2 + x_2^2 = 1 \right\} \in SL_2(\mathbb{R}).$$

Note that $x_0^2 + x_2^2 = 1$ means the determinant of every matrix in Z(j) must be 1.

Let $P \in Z(j)$, note further that

$$PP^{T} = \begin{bmatrix} x_{0} & x_{2} \\ -x_{2} & x_{0} \end{bmatrix} \begin{bmatrix} x_{0} & -x_{2} \\ x_{2} & x_{0} \end{bmatrix} = \begin{bmatrix} x_{0}^{2} + x_{2}^{2} & -x_{2}x_{0} + x_{2}x_{0} \\ -x_{2}x_{0} + x_{0}x_{2} & x_{2}^{2} + x_{0}^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

which means every matrix in Z(j) must also be orthogonal.

Hence $Z(j) = SO_2$.

QED

Exercise 5.1.2:

Given a matrix A that represents a rotation of \mathbb{R}^3 through the angle θ about a pole u, we want to find its complex eigenvalues. By the Fundamental Theorem of Algebra, we know that A has 3 complex eigenvalues.

By Euler's Theorem, the 3×3 rotation matrices are elements of SO_3 , so det(A) = 1.

Moreover, by Lemma 5.1.29, det(A) = 1 means A has an eigenvalue equal to 1.

Finally, by Corollary 5.1.28, since $A \in SO_3$ and it represents the rotation $\rho_{(u,\theta)}$ with spin (u,θ) , we know $tr(A) = 1 + 2\cos(\theta)$.

Let λ_1, λ_2 be the two complex eigenvalues that are not 1, and putting the above information together, we have

$$\lambda_1 \cdot \lambda_2 = 1$$
 and $1 + \lambda_1 + \lambda_2 = 1 + 2\cos(\theta)$.

Substituting $\lambda_2 = \frac{1}{\lambda_1}$ into the second equation, we get

$$\lambda_1 + \frac{1}{\lambda_1} = 2\cos\theta,$$

$$\lambda_1^2 + 1 = 2\lambda_1\cos\theta,$$

$$\lambda_1^2 - 2\lambda_1\cos\theta + 1 = 0.$$

Using the quadratic formula, we obtain

$$\lambda_1 = \cos \theta + \sqrt{\cos^2 \theta - 1} = \cos \theta + \sqrt{-\sin^2 \theta},$$
$$\lambda_2 = \cos \theta - \sqrt{\cos^2 \theta - 1} = \cos \theta - \sqrt{-\sin^2 \theta}.$$

Hence the complex eigenvalues of A are 1 and $\cos \theta \pm \sqrt{-\sin^2 \theta}$.

QED