

Computador Hipotético Ramsés

Disciplina: Introdução à Arquitetura de Computadores

Luciano Moraes Da Luz Brum

Universidade Federal do Pampa – Unipampa – Campus Bagé

Email: <u>lucianobrum18@gmail.com</u>

Dados representados em complemento de dois;

Dados representados em complemento de dois;

≥ 2 registradores de uso geral de 8 bits (A e B);

Dados representados em complemento de dois;

≥ 2 registradores de uso geral de 8 bits (A e B);

➤ 1 registrador de índice (X) de 8 bits;

Dados representados em complemento de dois;

Códigos de Condição

≥ 2 registradores de uso geral de 8 bits (A e B);

➤ 1 registrador de índice (X) de 8 bits;

➤ 1 contador de programa de 8 bits (PC);

Dados representados em complemento de dois;

≥ 2 registradores de uso geral de 8 bits (A e B);

➤ 1 registrador de índice (X) de 8 bits;

➤ 1 contador de programa de 8 bits (PC);

> 1 registrador de estado com 3 códigos de condição: negativo (N), zero (Z) e carry (C);

Incorpora características do Neander e, adicionalmente, outros recursos:

- Quatro modos de endereçamento;
- Dois registradores de uso geral;
- Um registrador índice;
- ➤ Indicadores de carry, negativo e zero;
- Instruções adicionais (subrotina, negação, deslocamento de bits, etc);

Modos de endereçamento: Direto.

Figura 1: Endereçamento Direto. Fonte: Adaptado de Weber, 2001.

Des: em instruções de desvio, o endereço contido na instrução é a posição de memória onde está a instrução a ser executada.

➤ Modos de endereçamento: Indireto.

Figura 2: Endereçamento Indireto. Fonte: Adaptado de Weber, 2001.

Modos de endereçamento: Imediato.

Figura 3: Endereçamento Imediato. Fonte: Adaptado de Weber, 2001.

Modos de endereçamento: Indexado.

Figura 4: Endereçamento Indexado. Fonte: Adaptado de Weber, 2001.

Em instruções de desvio, faz sentido o modo de endereçamento imediato?

Portanto, modo imediato é ilegal para instruções de desvio!!

> 00: Registrador A (RA)

> 01: Registrador B (RB)

➤ 10: Registrador de índice (RX)

➤ 11: indefinido.

unipampa

ISA (Instruction Set Architecture)

Tabela 1: ISA Ramsés. Fonte: Weber, 2001.

Instrução	Operação	N	Z	C	Descrição
NOP	Nenhuma operação				Nenhuma operação
STR r end	$MEM(end) \leftarrow r$				Armazena registrador na memória (store)
LDR r end	$r \leftarrow MEM(end)$	1	1		Carrega registrador da memória (load)
ADD r end	$r \leftarrow r + MEM(end)$	1	1	1	Adição (soma memória ao registrador)
OR r end	$r \leftarrow r \lor MEM(end)$	‡	1		"ou" lógico
AND r end	$r \leftarrow r \land MEM(end)$	‡	‡		"and" lógico
NOT r	$r \leftarrow \neg r$	‡	‡		Inverte (complementa os bits do registrador)
SUB r end	$r \leftarrow r - MEM(end)$	‡	‡	\$ ⁽¹⁾	Subtração (subtrai memória do registrador)
JMP end	$PC \leftarrow \text{end}^2$				Desvio incondicional (jump)
JN end	if N=1 then PC \leftarrow end ²				Desvio condicional se < 0 (jump on negative)
JZ end	if $Z=1$ then $PC \leftarrow \text{end}^2$				Desvio condicional se =0 (jump on zero)
JC end	if C=1 then PC \leftarrow end ²				Desvio condicional se carry=1 (jump on carry)
JSR end	$MEM(end) \leftarrow PC$				Desvio para subrotina (jump subroutine)
	$PC \leftarrow \text{end} + 1^{(2)}$				
NEG r	$r \leftarrow 0 - r$	‡	‡	‡	Troca de sinal (negate)
SHR r	0 → C	‡	‡	‡	Deslocamento para direita (shift right)
HLT	parada				Parada (halt)

➤ Na instrução SHR:

➤ O bit menos significativo é deslocado para o bit de carry (C).

➤ Na instrução SUB:

- ➤ O carry gerado é o inverso do borrow (empresta-um no último bit):
 - ightharpoonup C = 1 indica que não houve borrow;
 - ightharpoonup C = 0 indica que houve borrow;

➤ Utilizado pelas instruções: JN, JZ e JC;

➤ Utilizado pelas instruções: JN, JZ e JC;

- ➤ C (carry) de operações aritméticas.
 - ➤ 1- carry-out é igual a um
 - > 0- carry-out é igual a zero

➤ Utilizado pelas instruções: JN, JZ e JC;

- ➤ C (carry) de operações aritméticas.
 - ➤ 1- carry-out é igual a um
 - > 0- carry-out é igual a zero

Figura 5: Formato das Instruções no Neander. Fonte: Adaptado de Weber, 2001.

Figura 5: Formato das Instruções no Neander. Fonte: Adaptado de Weber, 2001.

Nas instruções de 1 byte, os 4 bits mais significativos contém o código da instrução;

Nas instruções de 1 byte, os 4 bits mais significativos contém o código da instrução;

Nas instruções de 2 bytes, os 4 bits mais significativos do 1° byte contém o código da instrução e o 2° byte contém um endereço;

- Nas instruções de 1 byte, os 4 bits mais significativos contém o código da instrução;
- ➤ Nas instruções de 2 bytes, os 4 bits mais significativos do 1° byte contém o código da instrução e o 2° byte contém um endereço;
- ➤ Instruções de 2 bytes são as que fazem referência a memória;

➤ A memória no Neander tem 256 posições;

▶ Por convenção, utiliza-se da posição 0-127 para instruções e da posição
128- 255 para dados;

Simbólico	Decimal	Comentários	
LDR 128	32 128	Acumulador AC recebe conteúdo da posição 128;	
ADD 129	48 129	Conteúdo do AC é somado ao conteúdo da posição 129;	
ADD 130	48 130	Conteúdo do AC é somado ao conteúdo da posição 130;	
STR 131	16 131	Conteúdo do AC é armazenado na posição 131 da memória;	
HLT	240	Processador para, fim do programa;	

Tabela 3: Exemplo de programação no Neander. Fonte: Adaptado de Weber, 2001.

Dúvidas ?