

2023~2024 学年秋季学期《大学物理实验》

实验报告

得分	评阅人			

题	目:	实验二 PN 结特性研究
学	院:	先进制造学院
专业班	E级:	智能制造工程 221 班
学生姓	名:	<u>朱紫华</u>
学	号:	5908122030
指导老	·师·	全祖赐老师

二〇二三年九月制

PN 结特性研究

一、实验目的

- 1.测量同一温度下,正向电压随正向电流的变化关系,绘制伏安特性曲线,掌握 PN 结正向伏安特性。
- 2.在同一恒定正向电流条件下,测绘 PN 结正向压降随温度变化的曲线,掌握 PN 结正向温度特性,并由此确定其灵敏度和被测 PN 结材料的禁带宽度。
- 3.学习指数函数的曲线回归的方法,并计算玻尔兹曼常数 k.估算反向饱和电流.。
- 4.扩展探索: 用给定的 PN 结测量未知温度。

二、实验仪器

PN 结正向特性综合实验仪、DH-SJ5 温度传感器实验装置、恒温电炉

三、实验原理

1. 相关概念:

价带:与价电子能级相对应的能带

导带: 价带以上能量最低的允带

禁带:导带与价带之间的能量区间

①本征半导体

物质的导电性能取决于原子结构,常用的半导体材料硅(Si)和锗(Ge)便均为四价元素。

具有晶体结构的纯净半导体称为本征半导体。

②杂质半导体

在本征半导体中掺入少量适合的杂质元素,通过扩散工艺,便可得到杂质半导体:如掺入五价元素(如磷)使其取代晶格中硅原子的位置,就形成了N型半导体; 多子:N型半导体中,自由电子的浓度大于空穴的浓度。

如掺入三价元素(如硼)使其取代晶格中硅原子的位置,就形成了 P 型半导体。 多子: P 型半导体中则是空穴浓度大于自由电子浓度。

2.PN 结正向伏安特性

PN 结加正向电压时,呈现低电阻,具有较大的正向扩散电流;加反向电压时,呈现高电阻,具有很小的反向漂移电流。

理想情况下,PN 结的正向电流 I_{ε} 和正向压降 V_{ε} 存在如下近似关系:

$$I_F \approx I_S e^{\frac{qV_F}{kT}}$$

Q为电子电荷;k为玻尔兹曼常数;T为绝对温度; I_s 为反向饱和电流,与PN结材料的禁带宽度以及温度有关的系数。

$$I_F \approx I_S e^{\frac{qV_F}{kT}}$$

求解玻尔兹曼常数 k, (T稳定)

方法 1: 对比法

$$k = \frac{q}{T} \ln \frac{I_{F2}}{I_{F1}} (V_{F1} - V_{F2})$$

方法 2: 利用 Excel 或 Origin 软件进行指数函数的曲线回归

$$I_F = Ae^{BV_F}$$
 $(A = I_S, B = \frac{q}{kT})$

3.PN 结正向压降随温度变化(电流一定)

PN 结温度传感器的基本方程:

$$V_{F} = V_{g(0)} - \left(\frac{k}{q} \ln \frac{C}{I_{F}}\right) T - \frac{kT}{q} \ln T^{r} = V_{1} + V_{n1}$$

其中线性项:
$$V_1 = V_{g(0)} - (\frac{k}{q} \ln \frac{C}{I_p})T$$

非线性项(忽略) $V_{n1} = -\frac{kT}{q} \ln T^r$

$$V_{1} = V_{g(0)} - (\frac{k}{q} \ln \frac{C}{I_{E}})T$$

PN 结温度传感器灵敏度及 PN 结材料的禁带宽度

①利用 Excel 或 Origin 软件对 $V_{E}-T$ 数据进行直线拟合 $V_{E}=AT+B$

斜率 A 即灵敏度 S, Bq 为材料禁带宽度 Eg(0)

②或者:
$$E_{g(0)} = qV_{g(0)}$$

四、实验内容及步骤

1.PN 结正向伏安特性

(1) 实验装置连接:

"加热电流"、"风扇电流"开关均置于"关"的位置,接上加热电源线。插好 Pt100 温度传感器和 PN 结温度传感器。PN 结引出线分别插入试验仪上的V+、V-和I+、I-,注意插头的颜色和插孔的位置。

- (2) 打开电源开关,温度传感器实验装置将显示出室温 T_{R} ,记录起始温度 T_{R} 。
- (3) 仪器通电预热 10 分钟后进行实验。

首先将试验仪上的电流量程置于 $\times 1$ 档,再调整电流调节旋钮,观察对应的 V_F 值。如果电流表显示值到达 1000,则改用大一档量程,记录电压、电流表(表 1).

2.PN 结正向温度特性

- (1) 选择合适的正向电流($I_F = 60 \mu A$)并保持不变。
- (2) 温度传感器实验装置上的"加热电流"开关置"开"位置。

根据目标温度,选择合适的加热电流,在实验时间允许的情况下,加热电流可以取得小一点,如 0.3~0.6 之间。

随着加热炉内温度升高,记录对应的 $V_{\mathfrak{p}}$ 和 T (表 2)。

五、数据记录 •

1.PN 结正向电压与正向电流的关系

序号	1	2	3	4	5	6
$V_{F}(V)$	0.350	0.360	0.370	0.380	0.390	0.400
$I_F(\mu A)$	0.015	0.026	0.042	0.065	0.099	0.149
序号	7	8	9	10	11	12
$V_{F}(V)$	0.410	0.420	0.430	0.440	0.450	0.460
$I_F(\mu A)$	0.224	0.335	0.497	0.735	1.100	1.620
序号	13	14	15	16	17	18
$V_F(V)$	0.470	0.480	0.490	0.500	0.510	0.520
$I_F(\mu A)$	2.370	3.500	5.320	7.650	11.400	16.600
序号	19	20	21	22	23	24
$V_F(V)$	0.530	0.540	0.550	0.560	0.570	0.580
$I_F(\mu A)$	24.900	37.400	54.400	80.200	119.000	178.000

2.同一 V_F 下,正向电压与温度的关系

序号	1	2	3	4	5	6
T(℃)	35	40	45	50	55	60
$V_F(V)$	0.523	0.511	0.498	0.485	0.472	0.461
序号	7	8	9	10	11	12
T (°C)	65	70	75	80	85	90
$V_F(V)$	0.448	0.434	0.421	0.408	0.395	0.383

注意:

实验过程中,正向电流 I_F 应小于 $100 \mu A$ 并保持不变;

六、实验注意事项

- ①在选择电流量程时在保证测量范围的前提下尽量 选择小档位,以提高精度。
- ②仪器的电压表测量电压量程仅为 2V, 请不要超量程使用或者测量其他未知电压。
- ③正向电流与温度的关系实验中,一般选择小于 $100\,\mu A$ ($50^{\,\mu A}$) 的正向电流,以减少热效应。
- ④加热装置温升不应超过120℃,否则将造成仪器老化或故障。
- ⑤仪器的连接线要注意使用,有插口方向的要对齐插拔,插拔时不可用力过猛,使用完毕后,一定要切断电源。

七、实验数据处理

1.PN 结正向伏安特性

根据实验数据(表 1)绘制伏安特性曲线,利用 Excel 或 Origin 软件进行指数函数的曲线回归,求出玻尔兹曼常数。

$$I_F = Ae^{BV_F} \quad (A = I_S, B = \frac{q}{kT})$$

$$\therefore k = \frac{q}{BT}$$

2.PN 结正向温度特性

①根据表二利用 Excel 或 Origin 软件对 V_x -T 数据进行直线拟合,即得

$$V_{E} = AT + B$$

斜率 A 即灵敏度 S, Bq 为材料禁带宽度 Eg(0) 。

②与公认值 Eg(0) = 1.21eV 比较,并求其相对误差。

南 南

南昌大学物理实验报告

学生姓名:	学号:				_专业班级:	班级编号:		
主验时间:	84	分	笛	唐	星期	座位号:	教师编号:	成绩:

I. PN结正向电压与正向电流的关系

序号	1	2	3	4	5	Ь
VF(V)	0.350	0.360	0.370	0.380	0.390	0.400
IF (MA)	0.015	0.026	0,042	0,065	0.099	0,149
序号	7	8	9	10	11	12
VF(V)	0.410	0.420	0.430	0,440	0,450	0.460
IF(MA)	2,224	0.335	0,497	0.735	1.100	1.620
序号	13	14	15	16	17	18
VF(V)	0.470	0.480	0.490	0,500	0.5/0	0,520
IF(NA)	2.370	3.500	5.320	7.650	11.400	16.600
序号	19	20	21	22	23	24
VF(V)	0.530	0.540	0.550	0.560	0.570	0580
IF (NA)	24.900	37.400	54,400	80.200	119.000	178.000

至祖赐

(到小天 5908122029 朱紫华 5908122030 彭锋 5908122013

22 10 8

南昌大学物理实验报告

学生	生姓名:		学号: _		专业班约	及:	班级编号:	
	俭时间 :				座位号:		i编号:	成绩:
2,	同一V	FT, I	向电压	与温度	的关系	1		4
	序号)	2	3	4	5	6	
	T(°C)	35	40	45	50	55	60	
	VF(V)	0.523	0.511	0.498	0.485	0.472	2.461	
	序号	7	8	9	10	11	12	
	T(°c)	65	70	75	80	85	90	
	VF(V)	0.448	0.434	0.421	0,408	0.395	0.383	

文部以关约08122029 朱紫华5908122030 新维 5908122015 文部路 5908122011

八、误差分析

- 1、加热电流过大,导致升温速度较快。
- 2、环境温度的变化。
- 3、时间不允许,不然可以多次实验求平均值。
- 4、仪器稳定性也是影响实验数据误差的一个方面,如电流表电压表的稳定性。

九、实验小结及思考

本次实验没有难的操作,也不需要人工进行调整,要做的只是计数,但由于为了加热均匀,减小实验误差,我们组加热电流取的并不大。通过该实验我理解了 PN 结的单向导电性,还有正向电压随温度的变化关系,正向电压与正向电流间的关系。实验数据处理也并不困难,只是简单的拟合函数。