Espacio Afín

ullet Sea V un espacio vectorial sobre un campo conmutativo.

- ullet Sea V un espacio vectorial sobre un campo conmutativo.
- Sea A un conjunto no vacío cuyos elementos se llaman puntos.

- ullet Sea V un espacio vectorial sobre un campo conmutativo.
- Sea A un conjunto no vacío cuyos elementos se llaman puntos.
- Sea $+: A \times V \longrightarrow A$ una aplicación (llamada adición) y denotemos $+(a,\overrightarrow{v}) = a + \overrightarrow{v}$ para cada $a \in A$ y cada $\overrightarrow{v} \in V$.

- ullet Sea V un espacio vectorial sobre un campo conmutativo.
- Sea A un conjunto no vacío cuyos elementos se llaman puntos.
- Sea $+: A \times V \longrightarrow A$ una aplicación (llamada adición) y denotemos $+(a,\overrightarrow{v}) = a + \overrightarrow{v}$ para cada $a \in A$ y cada $\overrightarrow{v} \in V$.

Decimos que $\mathcal{A}=(A,V,+)$ es un **espacio afín**, siempre que se cumplan las siguientes condiciones.

- ullet Sea V un espacio vectorial sobre un campo conmutativo.
- Sea A un conjunto no vacío cuyos elementos se llaman puntos.
- Sea $+: A \times V \longrightarrow A$ una aplicación (llamada adición) y denotemos $+(a, \overrightarrow{v}) = a + \overrightarrow{v}$ para cada $a \in A$ y cada $\overrightarrow{v} \in V$.

Decimos que $\mathcal{A}=(A,V,+)$ es un **espacio afín**, siempre que se cumplan las siguientes condiciones.

AF1. Para todo $a, b \in A$, existe un único vector $\overrightarrow{v} \in V$ tal que

$$a + \overrightarrow{v} = b$$
.

- Sea V un espacio vectorial sobre un campo conmutativo.
- Sea A un conjunto no vacío cuyos elementos se llaman puntos.
- Sea $+: A \times V \longrightarrow A$ una aplicación (llamada adición) y denotemos $+(a, \overrightarrow{v}) = a + \overrightarrow{v}$ para cada $a \in A$ y cada $\overrightarrow{v} \in V$.

Decimos que $\mathcal{A} = (A, V, +)$ es un **espacio afín**, siempre que se cumplan las siguientes condiciones.

AF1. Para todo $a, b \in A$, existe un único vector $\overrightarrow{v} \in V$ tal que

$$a + \overrightarrow{v} = b$$
.

AF2. Para todo $a \in A$ y todo $\overrightarrow{u}, \overrightarrow{v} \in V$,

$$(a + \overrightarrow{u}) + \overrightarrow{v} = a + (\overrightarrow{u} + \overrightarrow{v}).$$

Importante

En geometría afín podemos sumar un punto y un vector pero **no podemos** sumar dos puntos.

Importante

En geometría afín podemos sumar un punto y un vector pero **no podemos** sumar dos puntos.

En muchos casos la notación utilizada para puntos y vectores es similar y **parece** que sumamos puntos.

• Para todo $a \in A$ la restricción de "+" al conjunto $\{a\} \times V$ es biyectiva y se puede ver como

$$\varphi_a: V \longrightarrow A
\overrightarrow{V} \longrightarrow a + \overrightarrow{V}.$$

• Para todo $a \in A$ la restricción de "+" al conjunto $\{a\} \times V$ es biyectiva y se puede ver como

$$\varphi_a: V \longrightarrow A
\overrightarrow{V} \longrightarrow a + \overrightarrow{V}.$$

• Si $b=\varphi_a(\overrightarrow{v})$, entonces $b=a+\overrightarrow{v}$ y podemos destacar la relación entre el vector $\overrightarrow{v}\in V$ y los puntos $a,b\in A$ denotando

$$\overrightarrow{v} = \overrightarrow{ab}$$
.

• Si $\mathcal{A} = (A, V, +)$ es un espacio afín, entonces para todo $a \in A$ podemos ver A como a + V. En este sentido

$$A = \{a + \overrightarrow{v} : \overrightarrow{v} \in V\} = a + V.$$

Por lo tanto,

$$\varphi_a^{-1}(A) = V.$$

• Si $\mathcal{A} = (A, V, +)$ es un espacio afín, entonces para todo $a \in A$ podemos ver A como a + V. En este sentido

$$A = \{a + \overrightarrow{v} : \overrightarrow{v} \in V\} = a + V.$$

Por lo tanto,

$$\varphi_a^{-1}(A) = V.$$

• En este caso se dice que V es la dirección de \mathcal{A} . También es usual decir que V es el espacio vectorial subyacente al espacio afín \mathcal{A} .

• Si $\mathcal{A}=(A,V,+)$ es un espacio afín, entonces para todo $a\in A$ podemos ver A como a+V. En este sentido

$$A = \{a + \overrightarrow{v} : \overrightarrow{v} \in V\} = a + V.$$

Por lo tanto,

$$\varphi_a^{-1}(A) = V.$$

- En este caso se dice que V es la dirección de \mathcal{A} . También es usual decir que V es el espacio vectorial subyacente al espacio afín \mathcal{A} .
- Se define la dimensión de \mathcal{A} como la dimensión de V.

• En general $\mathcal{A}=(A,V,+)$ será denotado por $\mathcal{A}=(A,V)$, omitiendo la mención explicita de la aplicación +.

- En general $\mathcal{A}=(A,V,+)$ será denotado por $\mathcal{A}=(A,V)$, omitiendo la mención explicita de la aplicación +.
- ullet Si el espacio vectorial V es claro en el contexto, entonces diremos que A es un espacio afín, omitiendo la mención explicita del espacio V y de la aplicación +.

- En general $\mathcal{A}=(A,V,+)$ será denotado por $\mathcal{A}=(A,V)$, omitiendo la mención explicita de la aplicación +.
- Si el espacio vectorial V es claro en el contexto, entonces diremos que A es un espacio afín, omitiendo la mención explicita del espacio V y de la aplicación +.
- Si el espacio vectorial está definido sobre un cuerpo \mathbb{K} , entonces diremos que el espacio afín está definido sobre \mathbb{K} .

- En general $\mathcal{A}=(A,V,+)$ será denotado por $\mathcal{A}=(A,V)$, omitiendo la mención explicita de la aplicación +.
- Si el espacio vectorial V es claro en el contexto, entonces diremos que A es un espacio afín, omitiendo la mención explicita del espacio V y de la aplicación +.
- Si el espacio vectorial está definido sobre un cuerpo \mathbb{K} , entonces diremos que el espacio afín está definido sobre \mathbb{K} .
- Este curso, K siempre será conmutativo.

- En general $\mathcal{A}=(A,V,+)$ será denotado por $\mathcal{A}=(A,V)$, omitiendo la mención explicita de la aplicación +.
- Si el espacio vectorial V es claro en el contexto, entonces diremos que A es un espacio afín, omitiendo la mención explicita del espacio V y de la aplicación +.
- Si el espacio vectorial está definido sobre un cuerpo \mathbb{K} , entonces diremos que el espacio afín está definido sobre \mathbb{K} .
- Este curso, K siempre será conmutativo.
- Si $\mathbb{K} = \mathbb{R}$, entonces diremos que \mathcal{A} es un espacio afín real, de manera similar haremos en el caso complejo.

Todo espacio vectorial V es un espacio afín.

Todo espacio vectorial V es un espacio afín. Esto es, (V,V,+) es un espacio afín.

Todo espacio vectorial V es un espacio afín.

Esto es, (V, V, +) es un espacio afín.

En este caso la aplicación + que define el espacio afín es la misma que se usa para sumar vectores.

Sea $A = \mathbb{R}^3$ y $V = \mathbb{P}_2[\mathbb{R}]$ es el espacio vectorial de todos los polinomios reales de grado a lo sumo 2. Prueba que $\mathcal{A} = (A, V, +) = (\mathbb{R}^3, \mathbb{P}_2[\mathbb{R}], +)$ es un espacio afín con la aplicación + definida por $(x, y, z) + (at^2 + bt + c) = (x + a, y + c, z + b)$.

Sea $A=\mathbb{R}^3$ y $V=\mathbb{P}_2[\mathbb{R}]$ es el espacio vectorial de todos los polinomios reales de grado a lo sumo 2. Prueba que $\mathcal{A}=(A,V,+)=(\mathbb{R}^3,\mathbb{P}_2[\mathbb{R}],+)$ es un espacio afín con la aplicación + definida por $(x,y,z)+(at^2+bt+c)=(x+a,y+c,z+b)$.

Solución:

• AF1 se cumple ya que para cada par de puntos p = (x, y, z) y p' = (x', y', z') existe un único vector $\overrightarrow{v} = at^2 + bt + c$, definido por a = x' - x, b = z' - z y c = y' - y, tal que $p + \overrightarrow{v} = p'$.

Sea $A=\mathbb{R}^3$ y $V=\mathbb{P}_2[\mathbb{R}]$ es el espacio vectorial de todos los polinomios reales de grado a lo sumo 2. Prueba que $\mathcal{A}=(A,V,+)=(\mathbb{R}^3,\mathbb{P}_2[\mathbb{R}],+)$ es un espacio afín con la aplicación + definida por $(x,y,z)+(at^2+bt+c)=(x+a,y+c,z+b)$.

Solución:

- AF1 se cumple ya que para cada par de puntos p = (x, y, z) y p' = (x', y', z') existe un único vector $\overrightarrow{v} = at^2 + bt + c$, definido por a = x' x, b = z' z y c = y' y, tal que $p + \overrightarrow{v} = p'$.
- Veamos que AF2 se cumple. Sean p = (x, y, z), $\overrightarrow{v} = at^2 + bt + c$ y $\overrightarrow{w} = a't^2 + b't + c'$. Entonces

Sea $A=\mathbb{R}^3$ y $V=\mathbb{P}_2[\mathbb{R}]$ es el espacio vectorial de todos los polinomios reales de grado a lo sumo 2. Prueba que $\mathcal{A}=(A,V,+)=(\mathbb{R}^3,\mathbb{P}_2[\mathbb{R}],+)$ es un espacio afín con la aplicación + definida por $(x,y,z)+(at^2+bt+c)=(x+a,y+c,z+b)$.

Solución:

- AF1 se cumple ya que para cada par de puntos p=(x,y,z) y p'=(x',y',z') existe un único vector $\overrightarrow{v}=at^2+bt+c$, definido por a=x'-x, b=z'-z y c=y'-y, tal que $p+\overrightarrow{v}=p'$.
- Veamos que AF2 se cumple. Sean p = (x, y, z), $\overrightarrow{v} = at^2 + bt + c$ y $\overrightarrow{w} = a't^2 + b't + c'$. Entonces

$$\begin{split} (p + \overrightarrow{v}) + \overrightarrow{w} &= (x + a, y + c, z + b) + (a't^2 + b't + c') \\ &= (x + a + a', y + c + c', z + b + b') \\ &= (x, y, z) + ((a + a')t^2 + (b + b')t + (c + c')) \\ &= p + (\overrightarrow{v} + \overrightarrow{w}). \end{split}$$

Sean f y g dos funciones reales de variable real definidas por $f(x) = e^x - 5$ and g(x) = 0. En este caso $\mathcal{A} = (\{f\}, \{g\}, +)$ es un espacio afín dimension 0.

Si $A = \{(x, x+3) : x \in \mathbb{R}\}$ y V es el subespacio vectorial de \mathbb{R}^2 generado por el vector $\overrightarrow{V} = (1, 1)$, entonces (A, V) es un espacio afín de dimension 1.

Si $A=\{(x,x+3): x\in\mathbb{R}\}$ y V es el subespacio vectorial de \mathbb{R}^2 generado por el vector $\overrightarrow{v}=(1,1)$, entonces (A,V) es un espacio afín de dimension 1. Por brevedad, se suele decir que $A=\{(x,y)\in\mathbb{R}^2: x+3-y=0\}$ es un espacio afín.

Si $A=\{(x,x+3): x\in\mathbb{R}\}$ y V es el subespacio vectorial de \mathbb{R}^2 generado por el vector $\overrightarrow{v}=(1,1)$, entonces (A,V) es un espacio afín de dimension 1. Por brevedad, se suele decir que $A=\{(x,y)\in\mathbb{R}^2: x+3-y=0\}$ es un espacio afín.

Si $A = \{(x, x+3) : x \in \mathbb{R}\}$ y V es el subespacio vectorial de \mathbb{R}^2 generado por el vector $\overrightarrow{V} = (1, 1)$, entonces (A, V) es un espacio afín de dimension 1.

Por brevedad, se suele decir que $A=\{(x,y)\in\mathbb{R}^2:x+3-y=0\}$ es un espacio afín.

En este caso, para a = (0,3) tenemos A = a + V.

Sea $A=\{(x,y,z)\in\mathbb{R}^3: x+y=z-5\}$ y V el subespacio vectorial de \mathbb{R}^3 generado por los vectores (1,0,1) y (0,1,1). Nótese que (A,V) es un espacio afín de dimension 2.

Sea $A=\{(x,y,z)\in\mathbb{R}^3:x+y=z-5\}$ y V el subespacio vectorial de \mathbb{R}^3 generado por los vectores (1,0,1) y (0,1,1). Nótese que (A,V) es un espacio afín de dimension 2.

Por brevedad, se suele decir que $A = \{(x, y, z) \in \mathbb{R}^3 : x + y = z - 5\}$ es un espacio afín.

Sea $V = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{0}\}$ un espacio vectorial sobre el cuerpo $GF(2) = \mathbb{Z}/2\mathbb{Z}$, donde $\overrightarrow{u_i} + \overrightarrow{u_j} = \overrightarrow{u_k}$ siempre que $i, j, k \in \{1, 2, 3\}$ son diferente, mientras $\overrightarrow{u_i} + \overrightarrow{u_i} = \overrightarrow{0}$ para todo $i \in \{1, 2, 3\}$.

Sea $A = \{a,b,c,d\}$. No es difícil ver que (A,V,+) es un espacio afín, donde la aplicación suma $+: A \times V \longrightarrow A$ se define por el siguiente esquema.

Sea $V = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{0}\}$ un espacio vectorial sobre el cuerpo $GF(2) = \mathbb{Z}/2\mathbb{Z}$, donde $\overrightarrow{u_i} + \overrightarrow{u_j} = \overrightarrow{u_k}$ siempre que $i,j,k \in \{1,2,3\}$ son diferente, mientras $\overrightarrow{u_i} + \overrightarrow{u_i} = \overrightarrow{0}$ para todo $i \in \{1,2,3\}$.

Sea $A = \{a,b,c,d\}$. No es difícil ver que (A,V,+) es un espacio afín, donde la aplicación suma $+: A \times V \longrightarrow A$ se define por el siguiente esquema.

Este espacio se conoce como el espacio afín de 4 puntos. Nótese que este espacio es $(\mathbb{K}^2, \mathbb{K}^2, +)$, donde $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$.

Determina el espacio afín asociado a un espacio vectorial de dimensión 3 sobre el cuerpo $GF(2)=\mathbb{Z}/2\mathbb{Z}$.

Determina el espacio afín asociado a un espacio vectorial de dimensión 3 sobre el cuerpo $GF(2) = \mathbb{Z}/2\mathbb{Z}$.

Solución

Los únicos escalares son 0 y 1, de ahí que si una base de V es $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$, solo hay 8 vectores,

$$\overrightarrow{0},\overrightarrow{u},\overrightarrow{v},\overrightarrow{w},\overrightarrow{u}+\overrightarrow{v},\overrightarrow{u}+\overrightarrow{w},\overrightarrow{v}+\overrightarrow{w},\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}.$$

Determina el espacio afín asociado a un espacio vectorial de dimensión 3 sobre el cuerpo $GF(2)=\mathbb{Z}/2\mathbb{Z}$.

Solución

Los únicos escalares son 0 y 1, de ahí que si una base de V es $(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$, solo hay 8 vectores,

$$\overrightarrow{0},\overrightarrow{u},\overrightarrow{v},\overrightarrow{w},\overrightarrow{u}+\overrightarrow{v},\overrightarrow{u}+\overrightarrow{w},\overrightarrow{v}+\overrightarrow{w},\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}.$$

En este caso, podemos tomar $\overrightarrow{u}=100, \overrightarrow{v}=010, \overrightarrow{w}=001$ y los puntos del espacio afín se pueden ver como los vértices de un hexaedro.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y \overrightarrow{u} , \overrightarrow{v} , $\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b$, $b+\overrightarrow{v}=c$ y $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a, b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ y $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (a)

Si
$$a + \overrightarrow{u} = b$$
, $b + \overrightarrow{v} = c$ y $a + \overrightarrow{w} = c$, entonces por AF2

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ y $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b\in A$ y $\overrightarrow{v}\in V$. Si $a+\overrightarrow{v}=b$, entonces $b+(-\overrightarrow{v})=a$.

Solución (a)

Si
$$a + \overrightarrow{u} = b$$
, $b + \overrightarrow{v} = c$ y $a + \overrightarrow{w} = c$, entonces por AF2

$$a + \overrightarrow{w} = c = b + \overrightarrow{v} = (a + \overrightarrow{u}) + \overrightarrow{v} = a + (\overrightarrow{u} + \overrightarrow{v}).$$

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ y $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (a)

Si
$$a + \overrightarrow{u} = b$$
, $b + \overrightarrow{v} = c$ y $a + \overrightarrow{w} = c$, entonces por AF2

$$a+\overrightarrow{w}=c=b+\overrightarrow{v}=(a+\overrightarrow{u})+\overrightarrow{v}=a+(\overrightarrow{u}+\overrightarrow{v}).$$

Por lo tanto, AF1 implica que $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ and $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (b)

Sea $\overrightarrow{v} \in V$ tal que $a + \overrightarrow{v} = a$. En este caso, por AF2

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ and $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (b)

Sea $\overrightarrow{v} \in V$ tal que $a + \overrightarrow{v} = a$. En este caso, por AF2

$$a + (\overrightarrow{v} + \overrightarrow{v}) = (a + \overrightarrow{v}) + \overrightarrow{v} = a + \overrightarrow{v}.$$

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ and $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b\in A$ y $\overrightarrow{v}\in V$. Si $a+\overrightarrow{v}=b$, entonces $b+(-\overrightarrow{v})=a$.

Solución (b)

Sea $\overrightarrow{v} \in V$ tal que $a + \overrightarrow{v} = a$. En este caso, por AF2

$$a + (\overrightarrow{v} + \overrightarrow{v}) = (a + \overrightarrow{v}) + \overrightarrow{v} = a + \overrightarrow{v}.$$

Y por AF1, $\overrightarrow{v} + \overrightarrow{v} = \overrightarrow{v}$.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b,\ b+\overrightarrow{v}=c$ and $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (b)

Sea $\overrightarrow{v} \in V$ tal que $a + \overrightarrow{v} = a$. En este caso, por AF2

$$a + (\overrightarrow{v} + \overrightarrow{v}) = (a + \overrightarrow{v}) + \overrightarrow{v} = a + \overrightarrow{v}.$$

Y por AF1, $\overrightarrow{v} + \overrightarrow{v} = \overrightarrow{v}$. Por lo tanto, $\overrightarrow{v} = \overrightarrow{0}$ y así $a + \overrightarrow{0} = a$.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Demuestra las siguientes afirmaciones.

- (a) (Relación de Chasles o propiedad aditiva) Sean $a,b,c\in A$ y $\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\in V$. Si $a+\overrightarrow{u}=b$, $b+\overrightarrow{v}=c$ and $a+\overrightarrow{w}=c$, entonces $\overrightarrow{w}=\overrightarrow{u}+\overrightarrow{v}$.
- (b) Para todo $a \in A$, $a + \overrightarrow{0} = a$.
- (c) Sea $a,b \in A$ y $\overrightarrow{v} \in V$. Si $a + \overrightarrow{v} = b$, entonces $b + (-\overrightarrow{v}) = a$.

Solución (c)

Si $a + \overrightarrow{v} = b$, entonces por AF2 y (b) obtenemos

$$b + (-\overrightarrow{v}) = (a + \overrightarrow{v}) + (-\overrightarrow{v}) = a + (\overrightarrow{v} + (-\overrightarrow{v})) = a + \overrightarrow{0} = a.$$

Expresa el enunciado anterior en términos de vectores usando la equivalencia, $a+\overrightarrow{v}=b$ si y solo si $\overrightarrow{v}=\overrightarrow{ab}$.

Expresa el enunciado anterior en términos de vectores usando la equivalencia, $a+\overrightarrow{v}=b$ si y solo si $\overrightarrow{v}=\overrightarrow{ab}$.

Solución

Para todo espacio afín $\mathcal{A} = (A, V)$ se cumple:

(a) (Relación de Chasles o propiedad aditiva)

Expresa el enunciado anterior en términos de vectores usando la equivalencia, $a+\overrightarrow{v}=b$ si y solo si $\overrightarrow{v}=\overrightarrow{ab}$.

Solución

Para todo espacio afín $\mathcal{A} = (A, V)$ se cumple:

(a) (Relación de Chasles o propiedad aditiva) $\overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{ac}$ para todo $a, b, c \in A$.

Expresa el enunciado anterior en términos de vectores usando la equivalencia, $a+\overrightarrow{v}=b$ si y solo si $\overrightarrow{v}=\overrightarrow{ab}$.

Solución

Para todo espacio afín $\mathcal{A} = (A, V)$ se cumple:

- (a) (Relación de Chasles o propiedad aditiva) $\overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{ac}$ para todo $a, b, c \in A$.
- (b) $\overrightarrow{aa} = \overrightarrow{0}$ para todo $a \in A$.

Expresa el enunciado anterior en términos de vectores usando la equivalencia, $a+\overrightarrow{v}=b$ si y solo si $\overrightarrow{v}=\overrightarrow{ab}$.

Solución

Para todo espacio afín $\mathcal{A} = (A, V)$ se cumple:

- (a) (Relación de Chasles o propiedad aditiva) $\rightarrow \rightarrow \rightarrow \rightarrow$
 - $\overrightarrow{ab} + \overrightarrow{bc} = \overrightarrow{ac}$ para todo $a, b, c \in A$.
- (b) $\overrightarrow{aa} = \overrightarrow{0}$ para todo $a \in A$.
- (c) $\overrightarrow{ab} = -\overrightarrow{ba}$ para todo $a, b \in A$.

Regla del paralelogramo

Corolario

Sea $\mathcal{A}=(A,V)$ un espacio afín. Dados cuatro puntos $a,a',b,b'\in A$, si $\overrightarrow{aa'}=\overrightarrow{bb'}$, entonces $\overrightarrow{ab}=\overrightarrow{a'b'}$.

Regla del paralelogramo

Corolario

Sea $\mathcal{A}=(A,V)$ un espacio afín. Dados cuatro puntos $a,a',b,b'\in A$, si $\overrightarrow{aa'}=\overrightarrow{bb'}$, entonces $\overrightarrow{ab}=\overrightarrow{a'b'}$.

Demostración:

Si asumimos que $\overrightarrow{aa'} = \overrightarrow{bb'}$, entonces por la propiedad aditiva,

$$\overrightarrow{ab} = \overrightarrow{aa'} + \overrightarrow{a'b}$$

$$= \overrightarrow{bb'} + \overrightarrow{a'b}$$

$$= \overrightarrow{a'b} + \overrightarrow{bb'}$$

$$= \overrightarrow{a'b'}.$$

Expresa la regla del paralelogramo en términos de puntos más vectores.

Expresa la regla del paralelogramo en términos de puntos más vectores.

Solución

Sea $\mathcal{A}=(A,V)$ un espacio afín. Dados cuatro puntos $a,a',b,b'\in A$ y dos vectores $\overrightarrow{u},\overrightarrow{v}\in V$, si $a+\overrightarrow{u}=a'$, $b+\overrightarrow{u}=b'$ y $a+\overrightarrow{v}=b$, entonces $a'+\overrightarrow{v}=b'$.

Expresa la regla del paralelogramo en términos de puntos más vectores.

Solución

Sea $\mathcal{A}=(A,V)$ un espacio afín. Dados cuatro puntos $a,a',b,b'\in A$ y dos vectores $\overrightarrow{u},\overrightarrow{v}\in V$, si $a+\overrightarrow{u}=a'$, $b+\overrightarrow{u}=b'$ y $a+\overrightarrow{v}=b$, entonces $a'+\overrightarrow{v}=b'$.

Ejercicio

Demuestra el enunciado anterior usando esta notación.

Solución

Si
$$a + \overrightarrow{u} = a'$$
, $b + \overrightarrow{u} = b'$ y $a + \overrightarrow{v} = b$, entonces

$$a' + \overrightarrow{v} = (a + \overrightarrow{u}) + \overrightarrow{v}$$

$$= a + (\overrightarrow{u} + \overrightarrow{v})$$

$$= a + (\overrightarrow{v} + \overrightarrow{u})$$

$$= (a + \overrightarrow{v}) + \overrightarrow{u}$$

$$= b + \overrightarrow{u}$$

$$= b'.$$

¿Cómo definir subespacio afín?