JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 62 No. 5 JUCHE105 (2016).

초어톨류사접수체유전자 5b(tlr5b)의 배렬특성

손주성, 장성훈, 주창성

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《양어과학과 기술에 대한 연구사업을 강화하고 선진적인 물고기기르기기술을 적극 받아들여 우리 나라의 양어사업을 최신과학기술에 기초하여 발전시켜나가도록 하여야 합 니다.》(《김정일선집》 중보판 제20권 178~179페지)

포유동물에서 TLR(Toll-like receptor)족 유전자는 병원체결합분자형태(PAMPs)를 인식하고 염증성세포인자들과 I형인터페론을 발현시켜 병원성세균에 대한 유기체의 면역을 조절한다.[1, 2] 우리는 초어를 연구대상으로 하여 물고기의 선천성면역에서 중요한 역할을 하는 tlr5b의 배렬과 진화적특성을 밝혔다.

재료와 방법

실험에 리묨한 프라이머 프라이머는 Primer premier 5.0프로그람으로 설계하였다.(표)

표 1. 초어tlr5b cDNA의 증폭에 리용한 프라이머

프라이머이름	배 렬(5'→3')	증폭위치
SMART II(TM)(정방향)	AAGCAGTGGTATCAACGCAGAGTACGCGGG	첫번째 사슬 cDNA의 증폭
CDS Ⅲ (반대방향)	AAGCAGTGGTATCAACGCAGAGTAC(T)30V N	첫번째 사슬 cDNA의 증폭
gcT5b-F(정방향)	AAGGGTCTTGAGGCGAGTG	열린읽기틀
gcT5b-R(반대방향)	CAAAGCAGCAGCGGAGTG	열린읽기틀
T5bG1(반대방향)	CACTCGCCTCAAGACCCT	5'-말단
T5bNG1(반대방향)	TGTTGTCACCCAAGTAGAGC	5'-말단
T5bG2(정 방향)	AGGGTCTTGAGGCGAGTGGT	3'-말단
T5bNG2(정방향)	GGTCTTGAGGCGAGTGGTAT	3'-말단

cDNA의 전 배렬의 증폭 SMART cDNA의 합성방법[1]을 리용하여 초어의 두신으로부터 분리한 mRNA를 역전사시켜 주형cDNA를 얻는다. 다음 Vector NTI프로그람으로 다중배렬상동성을 검색하고 진화적으로 보존된 배렬을 찾아내여 축퇴프라이머를 합성하였다. 이 프라이머를 리용하여 PCR법으로 초어thrl의 보존된 배렬을 증폭한다. 다음 증폭된 토막을 pMD18-T운반체(《Promega》)에 재조합하고 배렬분석을 진행한다. 배렬분석자료에 근거하여 5'-와 3'-말단을 증폭하기 위한 프라이머를 설계한다. SMART II와 T5bG1(T5bNG1), T5bG2(T5bNG2)와 CDS III프라이머로 목적유전자의 량쪽 말단을 증폭한다. 증폭된 5'- 및 3'-말단의 PCR산물들을 pMD18-T운반체에 재조합하고 그 배렬을 분석하였다.

생명정보학적분석 핵산배렬의 분석은 Vector NTI프로그람으로 진행하였다. 단백질의 기능령역에 대한 분석은 SMART와 TMHMM프로그람으로 분석하였다.

결과 및 론의

1) 초어*tlr5b*의 핵산 및 아미노산배렬에 대한 분석

SMART cDNA합성방법을 리용하여 얻어낸 초어*tlr5b*의 증폭산물들을 pMD18-T운반체에 클론화한 다음 배렬분석을 진행하였다.

Vector NTI프로그람으로 분석하면 3 324bp의 완성된 cDNA배렬(폴리 A배렬을 포함.) 이 얻어졌다.(그림 1)

																			CATG	60 120
TTT	TTT.	TTG	TTT	.T.T.T	TCC		AGT	TCT	CTC	AGA	M M	G G	F	АСА Т	F	TATT	T,	JATC I	CTC T.	120 9
ттт	'GGA	ттс	TGC	АТТ	'AAC	АСТ	GAA	СТТ	'GTC	:AAA		_			-	_	_	_	'GGC	180
F	G	L	C	I	N	T	E	V	V	K	C	T	S	V	С	S	V	N	G	29
TAT	'GCA	.GCC	TTC	TGC	ATA	TCT	AGA	.GGT	'CTT		'CAG	GTG		.GAG	CTI	-	ACG	TAC	CATC	240
Y	A	А	F	C	I	S	R	G	L	Н	0	V	P	E	L	Р	T	Y	I	49
AAT	'TAT	GTG	GAT	CTG	AAT	TTT	AAC	AGC	ATT	'GCT	~	CTC	AAC	GAA	ACA	TCC	CTTT	'TCT	CGT	300
N	Y	V	D	L	N	F	N	S	I	А	E	L	N	E	Т	S	F	S	R	69
CTT	'GAA	GGT	СТА	.CAA	GTC	CTT	AAA	.CTG	GAG	CAA	CAA	ACA	ACA	GGA	CTT	'GTG	SATC	AGA	AAC	360
L	E	G	L	Q	V	L	K	L	E	Q	Q.	Т	Т	G	L	V	I	R	N	89
AAC	ACA	TTT	AGA	.AGA	CTC	TCC	AAT	СТА	ATA	ATTA	CTI	'AAG	TTA	GAC	TAC	AAC	CAC	TTC	CTTG	420
N	Т	F	R	R	L	S	N	L	I	L	L	K	L	D	Y	N	Н	F	L	109
CGA	ATA	.GAG	ACA	.GGG	GCA	TTT	AAT	GGA	TTA	TTC	AAC	CTT	'GAG	ATT	CTC	ACI	CTC	ACT	CAG	480
R	I	E	Т	G	А	F	N	G	L	F	N	L	E	I	L	Т	L	Т	Q	129
TGC	AGT	TTA	GAT	GAT	'ACT	ATT	TTG	TCT	'GGT	'GAC	TTC	CTC	AAA	CCT	CTG	GTO	TCT	'CTT	'GAG	540
С	S	L	D	D	Τ	I	L	S	G	D	F	L	K	Р	L	V	S	L	E	149
ATG	CTT	GTC	TTG	CGT	'GAA	AAC	AAC	ATT	'AAA	AGA	ATC	CAG	CCA	GCA	TCG	TTC	CTTT	TTA	AAT	600
М	L	V	L	R	E	N	N	I	K	R	I	Q	P	А	S	F	F	L	N	169
ATG	AGG	AGA	TTC	CAT	'GTG	CTC	GAT	СТС	TCT	'CGC	AAC	CAAA	GTG	AAG	AGC	ATC	TGT	'GAA	GAA	660
M	R	R	F	Н	V	L	D	L	S	R	N	K	V	K	S	I	С	E	Ε	189
GAC	CTC	CTC	AGC	TTT	'CAG	GGT	AAA	CAT	TTC	ACG	CTI	CTG	AAG	CTG	TCC	TCA	GTG	ACA	CTG	720
D	L	L	S	F	Q	G	K	Η	F	T	L	L	K	L	S	S	V	T	L	209
CAA	GAC	ATG	AAT	GAG	TAC	TGG	TTA	.GGA	TGG	GAA	AAG	TGT	'GGA	AAC	CCA	TTT	'AAG	AAC	CATG	780
Q	D	M	N	E	Y	M	L	G	M	E	K	С	G	N	P	F	K	N	M	229
TCC	GTA	AGT	GTA	TTG	GAC	TTA	TCT	GGA	LAAI	'GGC	TTT	'AAT	'GTT	'AAA'	ATG	GCA	AAG	CTI	TTC	840
S	V	S	V	L	D	L	S	G	N	G	F	N	V	K	Μ	Α	K	L	F	249
TTT	'GAT	GCA	ATC	ACT	'GGT	ACC	AAA	ATC	CAA	AGT	CTC	CATI	CTC	AGT	AAC	AGI	TAC	AGC	CATG	900
F	D	Α	I	Τ	G	T	K	I	Q	S	L	I	L	S	N	S	Y	S	M	269
GGC	AGT	TCT	TTT	GGT	CAT	AAC	AAT	TTC	AAA	GAT	'CC#	GAC	AAA	TTT	ACT	TTC	SAAG	GGT	CTT	960
G	S	S	F	G	Н	N	N	F	K	D	P	D	K	F	T	L	K	G	L	289
GGG	GAT	AGT	GGT	ATT	'AAG	ATT	TTC	GAT	TTG	TCC	AAA	TCA	CAA	ATT	ТТТ	'GC'I	TTG	TCA	AAT	1020
G	D	S	G	I	K	I	F	D	L	S	K	S	Q	I	F	Α	L	S	N	309
TCA	GTA	TTT	AGT	CAT	TTT	CAA	GAT.	СТА	GAA	CAA	LTA	'ACA	TTG	GCA	GAA	LAAI	CAG	ATC	CAAC	1080
S		_	S	Н	F	0	D	L	E	0	I	Т	L	А	E	N	0	I	N	329
ΔΤΤ	V	F	S	11	T.	×	_													
7 J T T	•	-	-			×.	TGG	GGT	'ATG	ACA	LAAI	TTA	CTA	AAG	СТА	AAC	CTG	TCC	CAAA	1140
I	•	-	-			×.	TGG W	GGT G	'ATG M	GACA T	IAA. N	TTA L	CTA L	AAG K	CTA L	AAC N	CTG L	TCC S	CAAA K	1140 349
I	'ATT	GAA E	ATT I	GAT D	'GCA A	TTT F	M	G	М	Т	N	L	L	K	L	N	L	S		1140 349 1200

GATTTGTCTTATAACCATATAAGGGTGCTTGGCGATAAATCGTTTCAGGGACTCCCAAGT 1260 D L S Y N H I R V L G D K S F O G 389 TTACTCAACTTAAATTTAACAGGAAATGCTCTTGAGTCAGTTCATGAATTTGCAACCCTA 1320 409 T G N Α L Ε S V Η CCTAACCTGAAGATAATCTACTTGGGTGAGAACAGAATTTCATCTTTGTCTAGTTTACCC 1380 I P N L K IIYLGEN S S L S S 429 R AACATTGCTAAAAATCTCACAACCCTTGACCTGGAAATGAACAAATTACAGGCCTTGTCA 1440 K N L T Τ L D L E M N K L Q A L S 449 1500 Ι L R E F P Q I Ε K Ι F Q. G N 469 Τ. AGTTTTTCGAGTTGTTATAATCAAAGACAAATAGTGGCTTCAGACCAACTACAACTTCTT 1560 C Y N 0 R Q I V Α S D O L 0 489 CATCTCGGACGTTCATCTATGCAGCTGATCTGGTCAGAAGGAAAATGTTTTAAATGTGTTT 1620 G R S S M Q L IWSEGKCL N 509 AACAATCTTCACCAGTTAGAACAGCTTTCTCTGACTGCCAATGGGCTACAGTCTCTTCCC 1680 529 EQLSLT Α Ν G L O 0 Τ. AAAGACATTTTTAAAGACCTTACCTCTTTGTTCTTTTTTGGATTTGTCCTTCAACTCTTTG 1740 Т F F L D S 549 Т F K \Box Τ. S I Τ. F N AAGTACCTTCCAAACGGTATATTCCCTGAAAGTCTTCAAATTCTTAATCTTGAATATAAT 1800 K Y L P N G I F P E S L O I L N L E Y N 569 TCTATTTATTCAGTAGATCCAAATCTCTTTAGCACCCTCAGCTACCTCAGCCTGATAAAA 1860 S V D P N L F S T L S Y L S L 589 I K AACGATTTCCGTTGTGATTGCAACCTAAGGGATTTCAAAACATGGCTAAACCAAACCAAT 1920 609 DFRCDC Ν L R D F K Τ W L Ν Q. GTAATCATTTCTCACTCCATTGAGGATGTGATATGTGCCAGTCCTGAGGATCAGTACATG 1980 S H S I E D V I C A S Ρ Ε 629 GTTCCGGTTGTGAGATCCAGCATACAATGTGAGGATGAAGAGGACGAGAAAATGTTGAA 2040 V P V V R S S I Q C E D E E D E N V E 649 R AAACTGAGGCTTGTGCTTTTTTTTTTCTGTACCGCACTTATCACGTTACTCACTGCTAGC 2100 LVLFIFCTALITL 669 GCCATCATTTATGTCCGTCGACGTGGCTACATCTTCAAGCTTTACAAAAAACTCATTGGC 2160 Y V R R R G Y I F K L Υ K 689 ACACTTGTGGATGGAAAGCGAGAGGAGCCTGATCCTGACCAATTCTTATATGACGTGTAT 2220 G K R Ε Ε Ρ D Ρ D 0 F 709 CTCTGCTTTAGTTCCAATGATATTAAGTGGGTAGAAAGAGCACTGCTGAACAGGCTAGAC 2280 K V Ε 729 TCTCAGTTCTCAGAGCAGAACACACTCCGCTGCTGCTTTGAGGAGCGAGACTTCATACCC 2340 S Q Т \mathbf{L} R С С F Ε Ε R D F Ι Ρ 749 Ν GGGGAGGACCATCTTACCAACATGCGAAATGCTATCCAGAATAGTCATAAAACCCTTTGT 2400 С G R S 769 Ν Μ Ν Α 0 Ν GTGGTGTCTGAACATTTCCTGAAGGATGGCTGGTTACTAGAGGCCTTCATTCTGGCACAA 2460 789 S Ε Η F L Κ D G W \mathbf{L} L Ε Α F Ι \mathbf{L} Α 0 ${\sf AGAAGGATGCAAGTGGAGCTTGAGGACATTCTGGTGGTGGTTGTAGGGAACATACCG}$ 2520 VV V VVM O Ε L Ε D Ι L L G Ι Ρ 809 2580 CAGTACAGGCTACTGAAGTTCAAACAAGTGAGATCCTACATTGAGAACAGAAGATACCTT L K F K V Y Ι Ε R Υ 829 R L Q R S Ν R L CTGTGGCCCGATGACAGCCAGGACTTGGATTGGTTTTATGACCAACTTCTGCATAAAATA 2640 D D S 0 D L D W F Υ D 0 L Ι 849 2700 K 869 0 Τ Ν 0 P T K O Т Ρ \mathbf{E}

TTG	AAT	GTC	CAT	GCA.	AAC	ACAT	CAC	TA!	'AA	TATT	GAT	ATA	TCT	GTT:	TATI	'ATA	TAT	TTT	G	2760
L	N	V	Н	Α	N	Т	S	V	*											879
TAA	AAG	TTT.	ACC	TAA	TTA	CCTI	[AG	TT	ГТС	AGAT	TGT	TAC	AAT	GCA:	raa1	'GC <i>P</i>	AGAT	CTT	G	2820
GTT	AGG	TAT.	AAT	TAT	GCA!	rar:	СТС	CATO	GTT'	TCCT.	ATG	TTT	GTA	AAA	ATGI	TTC	STCT	GTA	Α	2880
ACC	TGC	TGA	TAA	TTA	TAG	TAA?	ATA	CTC	SAA	ATGC	TAA	TTC	TAG	CAG	AATG	GCGI	GTC	CCG	С	2940
TGC	CAG	TGG.	ATA.	AAG.	ACT	CTGC	CTAZ	TAA	ľTG	CAAA	ATC	TTA	ACA'	TCT	CAA	ACCF	ACCT	GTG	Т	3000
GAT	TTT	GAC.	AAT	TGC.	AAA'	rct1	T A	\TA	1 AA'	TGTG	AAT	TAC	AAA	TGA	AGAA	LTA	'AAG	CAA	Α	3060
TTA	CAT	TTA	ACT.	ATG.	A at !	TTA	CAAC	CCTA	AAA	AATG	TTA	ACT	GGA'	TAA	AAA	SACA	ACTC	AGT	G	3120
TAC	TCT	GAC	CTT.	ATC	TTA	ГСТС	GAAC	'AC	AGG(CAAA	ATG	GCA	AAC'	TAG	GAAG	GCCF	ACTA	GTC	A	3180
AAA	CAC	TGA	CAC.	AAT	CTG	GCC1	CAT	GC:	rtt'	TGGG	TAA	TCA	CAG'	TTT	GTAC	CATI	GTT	AAT	G	3240
AAA	TCT	GTA.	AAG.	AAA	CCT	CAGI	CTAT	GAC	CAA	ATTC	TGT	CAT	GGC	CTG:	rgta	CTI	TGA	ACA	.G	3300
TTT	GGA	AAT	GTA	GCA.	ATA	GGG	CTGA	AAA	AAA	AAAA										3424

그림 1. 초어tlr5b의 핵산과 아미노산배렬

데두리를 친 부분은 보존된 TIR구조배렬, 1개의 밑선을 그은것은 로이신풍부반복모티프배렬(LRR), 2개의 밑선을 그은것은 로이신풍부반복모티프(LRR)의 C-말단배렬, 회색으로 표시한 부분은 세포막투파배렬, 사선강조체로 표시한것은 가능한 폴리아데닐산신호배렬, 강조체에 굵은 밑선으로 표시한것은 전사배렬의 불안정성을 보여주는 모티프배렬, 번역개시코돈(ATG)과 중지코돈(TAA)은 강조체로 표시

초어*tlr5b*에서 5'- 및 3'-비번역배렬의 길이는 각각 93, 594bp이고 열린읽기틀의 길이는 2 637bp이며 3'-비번역배렬에 배렬의 불안정성을 보여주는 2개의 모티프(ATTTA)들이 있다. 이 배렬에 의하여 암호화되는 단백질의 크기는 878aa이다.

그림 1에서 보면 이 유전자에는 전사시작코돈(ATG)과 중지코돈(TAA)이 있으며 3'-비번역배렬에는 전사중지를 알리는 폴리아데닐신호배렬(AATAAA)이 있다.

2) 초어TLR5b접수체단백질의 기능령역분석

SMART와 TMHMM프로그람으로 분석하면 초어TLR5b접수체유전자는 1개의 신호펩티드배렬(1~21aa)과 11개의 로이신풍부반복배렬(95~581aa), 1개의 C-말단로이신풍부반복배렬(590~640aa), 1개의 세포막투과배렬(653~675aa)과 세포질안에 위치하는 1개의 TIR 도메인(705~856aa)을 가지고있다.(표 2, 그림 2)

표 2. 소대TLRSD업무세에서 U	표 2. 소대TLK3b십구세에서 아미노산배달의 기능덩역배달									
배렬이름	부터(aa)	까지(aa)	E-값							
신호펩티드(signal peptide)	1	21	N/A							
로이신풍부반복모티프(LRR)	95	118	0.867							
로이신풍부반복모티프(LRR)	119	144	309							
로이신풍부반복모티프(LRR)	145	168	0.996							
로이신풍부반복모티프(LRR)	315	338	4.57							
로이신풍부반복모티프(LRR)	339	362	1.07							
로이신풍부반복모티프(LRR_TYP)	363	386	0.001 95							
로이신풍부반복모티프(LRR)	387	408	14.5							
로이신풍부반복모티프(LRR)	409	434	15.7							
로이신풍부반복모티프(LRR_TYP)	512	535	0.016 7							
로이신풍부반복모티프(LRR_TYP)	536	559	0.041 1							
로이신풍부반복모티프(LRR)	560	581	29.2							
C-말단로이신풍부반복모티프(LRRCT)	590	640	$3.29 \cdot 10^{-11}$							
세포막투과령역	653	675	N/A							
톨인터로이킨접수체도메인(TIR)	705	856	$9.38 \cdot 10^{-19}$							

표 2. 초어TLR5b접수체에서 아미노산배렬의 기능령역배렬

그림 2. 초어TLR5b접수체의 기능령역

포유동물의 TLR5접수체는 세포질의 바깥에 세균의 편모를 특이적으로 인식하는데 적응된 로이신풍부반복배렬들을 여러개 가지고있고 세포질의 안쪽에는 진화상 보존적이 며 신호전달에 관여하는 TIR도메인을 가지고있다.[2]

맺 는 말

- 1) 초어*tlr5b*의 cDNA전배렬의 크기는 3 324bp이다. 5'-비번역배렬의 크기는 93bp이고 열린읽기틀(ORF)의 크기는 2 637bp이며 3'-비번역배렬의 크기는 594bp이다. 열린읽기틀은 878개의 아미노산을 암호화한다.
- 2) 초어TLR5b접수체단백질은 11개의 로이신풍부반복배렬과 1개의 막투과배렬, 보존 된 TIR도메인배렬을 가지고있다.

참 고 문 헌

- [1] S. Giovanna et al.; Genomics, 64, 230, 2000.
- [2] S. I. Yoon et al.; Science, 335, 859, 2012.

주체105(2016)년 1월 5일 원고접수

Sequence Characteristics of the *tlr5b* Gene from Grass Carp, *Ctenopharyngodon idella*

Son Ju Song, Jang Song Hun and Ju Chang Song

The grass carp *tlr5b* gene has the full length cDNA consisting of 3 324 nucleotides (nt). The 5'-untranslated region (UTR) is 93nt and open reading frame is 2 637nt. The 3'-UTR is 594nt. The ORF of grass carp *tlr5b* gene encodes a protein composed of 878 amino acids (aa). It has 11 LRR motifs, two C-terminal of LRR motif, one transmembrane zone and a TIR domains.

Key words: grass carp, Ctenopharyngodon idella, tlr5b, gene sequence, LRR motif