CHIMIE NIVEAU MOYEN ÉPREUVE 1

Jeudi 10 mai 2001 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

221-164 11 pages

Périodique	
Tableau	

2 He,00	10 Ne 20,18	18 Ar 7,95	36 Kr 83,80	54 Xe 1,30	86 Rn (222)	
1 4						
	9 F 19,0	17 CI 35,45	35 Br 79,9	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69		
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	` '	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Nombre Atomique	tomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Nombre Atomique	Masse Atomique		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

_ n	,97	103 Lr (260)
71 Lu	, ,	10 L (26
70 Yb	173,04	102 No (259)
69 Tm	168,93	101 Md (258)
68 Er	167,26	100 Fm (257)
67 Ho	164,93	99 Es
66 Dy	162,50	98 C f (251)
65 Tb	158,92	97 Bk (247)
64 Gd	157,25	96 Cm (247)
63 Eu	151,96	95 Am (243)
62 Sm	150,35	94 Pu (242)
61 Pm	146,92	93 Np (237)
09 N q	144,24	92 U 238,03
59 Pr	140,91	91 Pa 231,04
58 Ce	140,12	90 Th 232,04

- 1. Le nombre de moles dans 500 g d'eau est approximativement :
 - A. 28
 - B. 9000
 - C. 1×10^{25}
 - D. 3×10^{26}
- **2.** Quelle est la formule empirique d'un composé qui renferme 85,7 % en masse de carbone et 14,3 % en masse d'hydrogène ?
 - A. CH
 - B. CH₂
 - C. CH₄
 - D. C_2H_5
- **3.** L'une des étapes de la synthèse de l'acide nitrique est constituée par l'oxydation de l'ammoniaque, selon la réaction indiquée ci-dessous :

$$4NH_3 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} NO + \underline{\hspace{1cm}} H_2O$$

Lorsque l'équation est correctement équilibrée, quel coefficient doit figurer devant O₂ ?

- A. 3
- B. 4
- C. 5
- D. 6

4. Lors de la décomposition de KClO₃, 6,30 moles d'oxygène ont été produites :

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

- Combien de moles de KCl a-t-on obtenu?
- A. 4,20
- B. 6,30
- C. 12,6
- D. 18,9
- 5. 10,0 cm³ d'une solution de HNO₃(aq) 0,200 mol dm⁻³ sont convertis en NaNO₃(aq). Quel volume (en cm³) d'une solution de NaOH(aq) 0,100 mol dm⁻³ faut-il pour opérer cette conversion?
 - A. 5,0
 - B. 10,0
 - C. 20,0
 - D. 30,0
- **6.** Les isotopes d'un élément ont le même nombre
 - A. de protons et d'électrons.
 - B. de protons et de neutrons.
 - C. de neutrons et d'électrons.
 - D. de protons, de neutrons et d'électrons.

- 7. Quelles espèces chimiques présentent respectivement les configurations électroniques suivantes : 2, 8, 8 ; 2, 8 et 2, 8, 1 ?
 - A. Ne, F, Na
 - B. K^+, F^-, Mg^{2+}
 - C. Ca²⁺, F, Na⁺
 - D. Cl⁻, F⁻, Na
- **8.** Des éléments situés dans le même groupe du tableau périodique ont :
 - A. le même nombre de protons.
 - B. la même énergie d'ionisation.
 - C. la même réactivité.
 - D. le même nombre d'électrons périphériques.
- **9.** La tendance générale à l'augmentation de l'énergie d'ionisation observée pour les éléments de la 3^{ème} période du tableau périodique s'explique par l'augmentation du nombre
 - A. d'électrons périphériques.
 - B. de neutrons.
 - C. de protons.
 - D. de sous-niveaux électroniques occupés.
- **10.** Parmi les réactions suivantes, mettant en jeu un métal alcalin et un halogène, quelle est celle qui est la plus violente ?
 - A. Le lithium réagissant avec le brome
 - B. Le sodium réagissant avec le chlore
 - C. Le potassium réagissant avec le brome
 - D. Le potassium réagissant avec le chlore

11.	Quel	Quel est le composé dont le caractère ionique est le plus marqué ?		
	A.	MgS		
	B.	HCl		
	C.	CO_2		
	D.	CaO		
12.	Quel	Quelle est la molécule la plus polaire ?		
	A.	Le (di)fluor		
	B.	Le fluorure d'hydrogène		
	C.	Le chlorure d'hydrogène		
	D.	Le tétrafluorométhane		
13.	Quel	le est la meilleure description de la liaison métallique ?		
	A.	L'attraction entre des ions de charges opposées		
	B.	L'attraction entre des protons et des électrons		
	C.	L'attraction entre des ions positifs et des électrons délocalisés		
	D.	L'attraction entre des noyaux et des doublets électroniques		
14.	Quel est le composé le plus soluble dans l'eau ?			
	A.	Le méthane		
	B.	Le propane		
	C.	Le propan-1-ol		
	D.	Le pentan-1-ol		

15. Parmi les modifications suivantes, quelle est celle qui aura l'effet le plus marqué sur la pression d'une masse donnée d'un gaz parfait ?

	Volume	Température / K	
A.	multiplié par deux	divisée par deux	
B.	multiplié par deux	multipliée par deux	
C.	divisé par deux	divisée par deux	
D.	divisé par deux	maintenue constante	

- 16. À propos des réactions exothermiques, quelle proposition n'est pas correcte?
 - A. Elles libèrent de l'énergie
 - B. La variation d'enthalpie (ΔH) est négative
 - C. L'enthalpie des produits est supérieure à celle des réactifs
 - D. Les produits sont plus stables que les réactifs
- 17. On a réalisé une expérience afin de mesurer la quantité de chaleur qui accompagne la dissolution dans l'eau d'une petite quantité d'hydroxyde de sodium. À cet effet, x grammes d'hydroxyde de sodium ont été dissous dans y grammes d'eau, ce qui a donné lieu à une élévation de température de z °C. La chaleur massique de l'eau vaut $c \lg^{-1} K^{-1}$.

Quelle expression faut-il utiliser pour calculer la quantité de chaleur produite (en J) ?

- A. cxyz
- B. cxy
- C. cyz
- D. cxz

18. On donne les valeurs moyennes des enthalpies de liaison suivantes (exprimées en kJ mol⁻¹) :

$$H - H = 436$$
, $Cl - Cl = 242$, $H - Cl = 431$

Quelle est la variation d'enthalpie (en kJ) accompagnant la décomposition du chlorure d'hydrogène

$$2HCl \rightarrow H_2 + Cl_2$$
?

- A. -184
- B. +184
- C. +247
- D. -247
- **19.** Dans les conditions normales, la réaction entre l'azote et l'oxygène atmosphériques est extrêmement lente. Quelle proposition explique le mieux ce fait ?
 - A. La concentration de l'oxygène est beaucoup plus basse que celle de l'azote
 - B. La masse molaire moléculaire de l'azote est inférieure à celle de l'oxygène
 - C. La fréquence des collisions entre les molécules d'azote et les molécules d'oxygène est inférieure à la fréquence des collisions entre les molécules d'azote elles-mêmes
 - D. Très peu de molécules d'azote et d'oxygène possèdent une énergie suffisante pour réagir
- 20. Pour la réaction ci-dessous, quelle modification aura pour effet de déplacer l'équilibre vers la droite

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ} ?$

- A. Augmenter la température
- B. Abaisser la pression
- C. Ajouter un catalyseur
- D. Éliminer l'ammoniac du système à l'équilibre

- **21.** Quelle proposition illustre le comportement de Brønsted–Lowry des molécules d'eau dans les solutions aqueuses ?
 - A. Elles ne peuvent se comporter ni comme des acides, ni comme des bases
 - B. Elles peuvent se comporter comme des acides, mais pas comme des bases
 - C. Elles peuvent se comporter comme des acides ou comme des bases lorsqu'elles réagissent entre elles
 - D. Elles peuvent se comporter comme des acides lorsqu'elles réagissent avec des molécules HCl
- **22.** On considère des solutions aqueuses de mêmes concentrations, soit 0,100 mol dm⁻³, de chacun des composés ci-dessous. Quelle est la solution dont le pH est le plus élevé ?
 - A. HCl
 - B. CH₃COOH
 - C. NaOH
 - D. NH₃
- 23. Quelle est la proposition correcte à propos de l'ion MnO_4^- ?
 - A. Une solution acidifiée de MnO₄ oxyde les ions fluorure
 - B. Le nombre d'oxydation du manganèse dans MnO₄ vaut +5
 - C. Une solution acidifiée de MnO₄ oxyde les ions bromure
 - D. Le nombre d'oxydation de l'oxygène dans MnO₄ vaut +2
- 24. À propos de l'électrolyse d'un sel fondu, quelle proposition n'est pas correcte?
 - A. Les ions se déplacent uniquement lorsqu'un courant circule
 - B. Les ions positifs sont attirés vers l'électrode négative
 - C. Les ions positifs captent des électrons à l'électrode négative
 - D. Les ions négatifs perdent des électrons à l'électrode positive

Voir au dos

25.	Quel	Quel composé ne fait pas partie de la même série homologue ?			
	A.	$\mathrm{CH_4}$			
	B.	$\mathrm{C_2H_4}$			
	C.	$\mathrm{C_2H_6}$			
	D.	$\mathrm{C_{3}H_{8}}$			
26.	Quel	Quels sont les produits les plus probables obtenus par combustion incomplète d'un hydrocarbure ?			
	A.	Du dioxyde de carbone et de l'eau			
	B.	Du dioxyde de carbone et de l'hydrogène			
	C.	Du monoxyde de carbone et de l'eau			
	D.	Du monoxyde de carbone et de l'hydrogène			
27.	potas	On fait réagir le composé CH ₃ CH ₂ OH avec un excès d'une solution acidifiée de dichromate (VI) de otassium. Quel est le nom du groupement fonctionnel présent dans le produit organique final obtenu ors de cette réaction?			
	A.	Aldéhyde			
	B.	Cétone			
	C.	Acide carboxylique			
	D.	Alcool			
28.	Quel	est le produit formé lors de la réaction entre CH ₃ COOH et CH ₃ CH ₂ OH?			
	A.	CH ₃ COOCH ₂ CH ₃			
	B.	CH ₃ CH ₂ COOCH ₂ CH ₃			
	C.	CH ₃ CH ₂ COOCH ₃			
	D.	CH ₃ COOCH ₃			

- 29. Quel est le composé optiquement actif?
 - A. CH₃COCH(CH₃)₂
 - B. $(CH_3)_3CCHO$
 - C. CH₃CH₂COCH₂CH₃
 - D. CH₃CH₂CH(CH₃)CHO
- **30.** Parmi les paires de composés proposées ci-dessous, quelle est celle dont les deux types de composés sont susceptibles de participer à des liaisons par pont d'hydrogène ?
 - A. Les aldéhydes et les esters
 - B. Les bromoalcanes et les aldéhydes
 - C. Les alcanes et les alcènes
 - D. Les alcools et les amines