

Test report No. : 12608632H-D-R1
Page : 1 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

RADIO TEST REPORT

Test Report No.: 12608632H-D-R1

Applicant : MITSUBISHI ELECTRIC CORPORATION

SANDA WORKS

Type of Equipment : Display Audio

Model No. : R1 LOW

FCC ID : UJHR1LOW

Test regulation : FCC Part 15 Subpart E: 2018

(DFS test only)

*Client without radar detection

Test Result : Complied (Refer to SECTION 3.2)

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. The information provided from the customer for this report is identified in SECTION 1.
- 9. This report is a revised version of 12608632H-D. 12608632H-D is replaced with this report.

Date of test: April 2, 2019

Representative test engineer:

Takumi Shimada Engineer

Consumer Technology Division

Approved by:

Tsubasa Takayama

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 2 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

REVISION HISTORY

Original Test Report No.: 12608632H-D

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12608632H-D	April 22, 2019	-	-
1	12608632H-D-R1	May 22, 2019	P 5	Correction of Radio Specification of 11ac (80 M band) in SECTION 2.2; From 5530 MHz - 5690 MHz to 5530 MHz, 5610 MHz

Test report No. : 12608632H-D-R1

Page : 3 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

<u>CONTENTS</u> PAGE

SECTION 1:	Customer information	4
	Equipment under test (E.U.T.)	
	Scope of Report	
	Test specification, procedures & results	
	Operation of E.U.T. during testing	
	Channel Move Time, Channel Closing Transmission Time	
	Non-Occupancy Period	
	: Test instruments	
	2: Photographs of test setup	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 4 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SECTION 1: Customer information

Company Name : MITSUBISHI ELECTRIC CORPORATION SANDA WORKS

Address : 2-3-33, Miwa, Sanda-city, Hyogo, 669-1513, Japan

Telephone Number : +81-79-559-3952 Facsimile Number : +81-79-559-3875 Contact Person : Hirotaka Minato

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No., FCC ID on the cover and other relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (E.U.T.)
- SECTION 4: Operation of E.U.T. during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Display Audio Model No. : R1 LOW

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 12.0 V Receipt Date of Sample : February 4, 2019

(Information from test lab.)

Country of Manufacture : Mexico, China, Thailand, Japan

Condition of EUT : Production model

Modification of EUT : No Modification by the test lab

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1

Page : 5 of 22 Issued date : May 22, 2019 FCC ID : UJHR1LOW

2.2 Product Description

Model: R1 LOW (referred to as the EUT in this report) is a Display Audio.

Wireless LAN (IEEE802.11b/g/a/n-20/n-40/11ac-20/11ac-40/11ac-80)

Type of radio	IEEE802.11b	IEEE802.11g/n (20 M band)	IEEE802.11a/n/ac (20 M band) *1)	IEEE802.11n/ac (40 M band) *1)	IEEE802.11ac (80 M band) *1)	
Frequency	2412 MHz - 2462	2412 MHz - 2462	5180 MHz - 5240 MHz	5190 MHz - 5230 MHz	5210 MHz	
of operation	MHz	MHz	5260 MHz - 5320 MHz	5270 MHz - 5310 MHz	5290 MHz	
-			5500 MHz - 5700 MHz	5510 MHz - 5670 MHz	5530 MHz, 5610 MHz	
			5745 MHz - 5825 MHz	5755 MHz - 5795 MHz	5775 MHz	
Type of modulation	DSSS	OFDM-CCK	OFDM			
	(CCK, DQPSK,	(64QAM, 16QAM,	(64QAM, 16QAM, QPSK,	BPSK, 256QAM(IEEE802.1	l lac only))	
	DBPSK)	QPSK, BPSK)				
Channel spacing	5 MHz		20 MHz	40 MHz	80 MHz	
Antenna type	Sheet metal antenna					
Antenna Gain	Antenna 0: 2.4 GHz: 1.6	1 dBi / 5 GHz: 3.54 dBi				
	Antenna 1: 2.4 GHz: 3.01 dBi / 5 GHz: 1.68 dBi					
Directional Antenna	2.4 GHz: 5.35 dBi					
Gain*2)	5 GHz: 5.67 dBi					

Bluetooth

Type of radio	Bluetooth	
Frequency	2402 MHz - 2480 MHz	
of operation		
Type of modulation	BT: FHSS (GFSK, π/4DQPSK, 8DPSK)	
	LE: GFSK	
Channel spacing	BT: 1 MHz	
	LE: 2 MHz	
Antenna type	Sheet metal antenna	
Antenna Gain	1.61 dBi	

*1) This test report applies to WLAN (5 GHz band).

*2) Directional Antenna Gain = $10\log\left(\left(10^{\frac{G_{\text{Anto}}}{20}} + 10^{\frac{G_{\text{Antı}}}{20}}\right)^2/2\right)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 6 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SECTION 3: Scope of Report

This report only covers DFS requirement, as specified by the following referenced procedures.

SECTION 4: Test specification, procedures & results

4.1 Test Specification

Test Specification : FCC Part 15 Subpart E

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart E

Unlicensed National Information Infrastructure Devices

Section 15.407 General technical requirements

Test Specification : KDB905462 D02 UNII DFS Compliance Procedures New Rules v02

Title : COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-

NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN

THE 5250-5350MHz AND 5470-5725MHz BANDS INCORPORATING

DYNAMIC FREQUENCY SELECTION

Test Specification : KDB905462 D03 Client Without DFS New Rules v01r02

Title : U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY

Supplied Voltage Information

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

Antenna Information

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1

Page : 7 of 22 Issued date : May 22, 2019 FCC ID : UJHR1LOW

4.2 Procedures and results

Table 1: Applicability of DFS Requirements

Requirement	Operating Mode Client without Radar Detection	Test Procedures & Limits	Deviation	Results
U-NII Detection Bandwidth	Not required	KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A
Initial Channel	Not required	FCC15.407 (h)	N/A	N/A
Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
		RSS-247 6.3		
Radar Burst at the	Not required	FCC15.407 (h)	N/A	N/A
Beginning of the Channel Availability Check Time		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
Check Time		RSS-247 6.3	1	
Radar Burst at the	Not required	FCC15.407 (h)	N/A	N/A
End of the Channel Availability Check		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
Time		RSS-247 6.3		
In-Service Monitoring	Yes	FCC15.407 (h)	N/A	Complied
for Channel Move Time, Channel Closing Transmission		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
Time		RSS-247 6.3		
In-Service Monitoring	Yes *	FCC15.407 (h)	N/A	Complied
for Non-Occupancy period		KDB905462 D02 UNII DFS Compliance Procedures New Rules v02		
		RSS-247 6.3	1	
Statistical Performance Check Note: UL Japan, Inc.'s	Not required	FCC15.407 (h) KDB905462 D02 UNII DFS Compliance Procedures New Rules v02	N/A	N/A

^{*}Although this test was not required in FCC, KDB 905462 D02, it was performed as additional test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1

Page : 8 of 22 Issued date : May 22, 2019 FCC ID : UJHR1LOW

Table 2 DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1,2, and 3)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt and power spectral density <	-62 dBm
10dBm/MHz	
< 200 milliwatt that do not meet the power spectral	-64 dBm
density requirement	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

Table 3 DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2
U-NII Detection Bandwidth	Minimum 100 % of the U-NII 99 % transmission
	power bandwidth
	See Note 3

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 9 of 22
Issued date : May 22, 2019

Issued date : May 22, 2019 FCC ID : UJHR1LOW

Table 4 Short Pulse Radar Test Waveform

Radar Type	Pulse Width	PRI	Number of	Minimum	Minimum
	(µsec)	(µsec)	Pulses	Percentage of	Number of
				Successful	Traials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique	Roundup{(1/36	60 %	30
		PRI values randomly	0)*		
		selected from the list	(19*10 ⁶ /PRI		
		of 23 PRI values in	usec)}		
		Table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		μsec, with a			
		minimum increment			
		of 1 µsec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60 %	30
3	6-10	200-500	16-18	60 %	30
4	11-20	200-500	12-16	60 %	30
Aggregate (Rader	Types 1-4)			80 %	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Table 5 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chip Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Burst	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5 - 20	1000-2000	1-3	8-20	80 %	30

Table 6 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulse per Hop (kHz)	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70 %	30

4.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 10 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

4.4 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site		Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

4.5 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2. Time Measurement uncertainty for this test was: (\pm) 0.012%

4.6 Test instruments of DFS and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 11 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SECTION 5: Operation of E.U.T. during testing

5.1 Operating Modes

The EUT, which is a Client Device without Radar detection capability, operates over the W53 and W56 Band.

The channel-loading of approximately 17% or greater was used for testing, and its test data was transferred from the Master Device to the Client Device for all test configurations.

The EUT utilizes the 802.11a/n/ac architecture, with a 20MHz, 40MHz and 80MHz channel bandwidth.

The FCC ID for the Master Device used with EUT for DFS testing is LDK102087.

The rated output power of the Master unit is >200mW(23dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 0 = -63.0 dBm (threshold level + additional 1dB + antenna gain).

It is impossible for users to change DFS control, because the DFS function is written on the firmware and users cannot access it.

The EUT was set by the software as follows:

Software name & version: WLAN.RM.4.5.1-00093-QCARMSWCZ-1*

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 12 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

5.2 Configuration and peripherals

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item	Model number Serial number		Manufacturer	Remarks
Α	Display Audio	R1 LOW	6		EUT
В	Laptop PC	CF-N8HWCDPS	0BKSA08704	Panasonic	-
С	AC Adapter	CF-AA6372B	6372BM409907232 B	Panasonic	-
D	WLAN access point	AIR-CAP3702E- A-K9	FTX182276QC	Cisco Systems	-
Е	AC Adapter	AA25480L	ALD030406GR	Cisco Systems	-
F	Laptop PC	T61	L3-K0730	Lenovo	-
G	AC Adapter	92P1160	11S92P1160Z1ZDX N85M5PY	Lenovo	-

List of cables used

No.	Name	Length (m)	Shie	Remarks	
			Cable	Connector	
1	DC Cable	0.9	Unshielded	Unshielded	-
2	USB Cable	0.9	Shielded	Shielded	-
3	DC Cable	0.9	Unshielded	Unshielded	-
4	AC Cable	1.1	Unshielded	Unshielded	-
5	DC Cable	1.9	Unshielded	Unshielded	-
6	AC Cable	2.1	Unshielded	Unshielded	-
7	LAN Cable	3.0	Unshielded	Unshielded	-
8	DC Cable	1.8	Unshielded	Unshielded	-
9	AC Cable	0.9	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 13 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

5.3 Test and Measurement System

SYSTEM OVERVIEW

The measurement system is based on a conducted test method.

The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis. A time-domain resolution of 2 msec/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 14 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

CONDUCTED METHODS SYSTEM BLOCK DIAGRM

MEASUREMENT SYSTEM FREQUENCY REFERENCE

Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the $10\,\mathrm{MHz}$ OUT on the signal generator to the EXT REF IN on the spectrum analyzer and set the spectrum analyzer Ext to On.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 15 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SYSTEM CALIBRATION

Step 1: Set the system as shown in Figure 3 of KDB905462 D02 7.2.2.

Step 2: Adjust each attenuator to fulfill the following three conditions:

- WLAN can be communicated, and
- Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and
- Master Device traffic level is not displayed on the spectrum analyzer.

Step 3: Terminate 50 ohm at B, C and D points, and connect the spectrum analyzer to the point A. (See the figure on page 14)

At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured.

Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold.

Separate signal generator amplitude settings are determined as required for each radar type.

Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3.

By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device.

See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 16 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

5.4 Plots of Noise, Rader Waveforms, and WLAN signals

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 17 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SECTION 6: Channel Move Time, Channel Closing Transmission Time

6.1 Operating environment

Test place Ise EMC Lab.No.6 Measurement Room

Date April 2, 2019
Temperature/ Humidity 23deg. C / 37% RH
Engineer Takumi Shimada
Mode 11ac-80

6.2 Test Procedure

Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 0 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds.

6.3 Test data

11ac-80

Test Item	Unit	Measurement Time	Limit	Results	
Channel Move Time *1)	[sec]	0.073	10.000	Pass	
Channel Closing					
Transmission Time *2)	[msec]	0	60	Pass	

^{*1)} Channel Move Time is calculated as follows:

(Channel Move Time) = (End of Transmission) - (End of Burst) = 1.663-1.59

*2) Channel Closing Transmission Time is calculated from (End of Burst + 200msec) to (End of Burst + 10sec) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) \times (dwell time per bin) = 0×2 [msec]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 18 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

6.4 Test result

Test result: Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 19 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

SECTION 7: Non-Occupancy Period

7.1 Operating environment

Test place Ise EMC Lab.No.6 Measurement Room

Date April 2, 2019
Temperature/ Humidity 23deg. C / 37% RH
Engineer Takumi Shimada

Mode 11ac-80

7.2 Test Procedure

The following two tests are performed:

1). Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 0 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than

30 minutes.

2). Transmit the data from the Master Device to the Client Device on the test Channel for the entire period of the test. Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12608632H-D-R1
Page : 20 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

7.3 Test data

#VBW 3 MHz_

Span 0 Hz Sweep 1.86 ks (8001 pts)

7.4 Test result

Test result: Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Center 5.290 000 GHz Res BW 3 MHz

Test report No. : 12608632H-D-R1
Page : 21 of 22
Issued date : May 22, 2019
FCC ID : UJHR1LOW

APPENDIX 1: Test instruments

Test Instruments

Test Name	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
DFS	141900	Spectrum Analyzer	AGILENT	E4440A	MY46185823	11/15/2018	11/30/2019	12
DFS	141897	Signal Generator	KEYSIGHT	N5182B	MY56200024	11/16/2018	11/30/2019	12
DFS	141821	Power Splitters/ Combiners	Mini-Circuit	ZFSC-2-10G	326	09/18/2018	09/30/2019	12
DFS	142735	Power Splitters/ Combiners	PASTERNACK ENTERPRISES	ZFRSC-123-S+	ZFRSC-123- 00231	-	-	-
DFS	142736	Power Splitters/ Combiners	PASTERNACK ENTERPRISES	ZFRSC-123-S+	ZFRSC-123- 00232	-	-	-
DFS	141590	PowerDivider DC to 26.5GHz	AGILENT	11636B	52258	03/05/2019	03/31/2020	12
DFS	142303	Attenuator(20dB)	Suhner	6820.19.A	-	-	-	_
DFS	141421	Attenuator	Weinschel Associates	WA56-10	56100308	05/29/2018	05/31/2019	12
DFS	142364	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S306	-	-	-
DFS	142365	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S307	-	-	-
DFS	142377	Microwave Cable	Junkosha	MWX-221- 02000DMSDMS	1507S109	-	-	_
DFS	141414	Microwave Cable	Junkosha	MWX221	1207S407	08/21/2018	08/31/2019	12
DFS	142379	Microwave Cable	Junkosha	MWX-221- 02000DMSDMS	1507S111	-	-	_

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item:

DFS: Dynamic Frequency Selection

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN