Surfaces - Lecture (number of the lecture)

Arthur Rabello Oliveira

30/04/2025

1. Basics

Definition 1.1: (Parametrized Surface) A *surface* is a function $\varphi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$. φ is called the parametrization of the surface, and can be seen as:

$$\varphi(u,v) = (x(u,v), y(u,v), z(u,v))$$

And if the following exist and are continuous, then φ is of class C^m :

$$\frac{\partial^m \varphi}{\partial x^m}$$
 and $\frac{\partial^m \varphi}{\partial y^m}$

Definition 1.2: (Revolution Surface) S

2. Area of a Surface

Definition 2.1: (Area of a Surface) Given $\varphi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ a C^1 class surface with parametrization φ , to find the area, divide D into infinitely man small rectangles, such that the associated portions of the surface are close enough to a paralellogram. And let $(u,u+\delta u)\times(v,v+\delta v)$ be one of these rectangles in the plane uv, so the portion of the surface associated is a paralellogram with sides approximated by the vectors $a=\varphi(u+\delta u,v)-\varphi(u,v)$ and $b=\varphi(v,\delta+v)-\varphi(u,v)$. So the area of the paralellogram is $\|a\times b\|$:

$$\left\| \frac{\varphi(u, u + \delta u) - \varphi(u, v)}{\delta u} \times \frac{\varphi(v, v + \delta v) - \varphi(u, v)}{\delta v} \right\| \delta u \delta v$$
 3

On the limit $\delta u \to 0$ and $\delta v \to 0$, these are the partial derivatives, so area of $S = \varphi(D)$ is:

$$A(S) = \iint_{D} \| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \|$$

Here are some examples:

Example 2.1.:

Example 2.2.:

Example 2.3.:

3. Scalar Surface Integrals

Definition 3.1: Given $\varphi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ a parametrized $\varphi(u,v)=(x(u,v),y(u,v),z(u,v))$ surface, with $S=\varphi(D)$ and $f:S\subset\mathbb{R}^3\to\mathbb{R}$ a continuous real function in S, we are interested on the integral of f along $S=\varphi(D)$, which is:

$$\iint_{S} f dS = \iint_{D} f(\varphi(u, v)) \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| du dv \qquad \qquad 5$$

Notice that when f = 1, the surface integral becomes the area of the surface. Here are some examples:

Example 3.1.:

Example 3.2.:

4. Tangent Plane to a Surface

Given S a C^1 class surface with parametrization φ , and $p_0 \in S$, we are interested on the *tangent plane* to S in p_0 . We could find it by finding 2 independent vectors to S leaving p_0 .

Let $p_0=arphi(u_0,v_0)$, we know that th partial derivatives point to the direction that the surface grows (when u or v are fixed), so $v_1=\frac{\partial \varphi}{\partial u}(u_0,v_0)$ and $v_2=\frac{\partial \varphi}{\partial v}(u_0,v_0)$ are 2 independent vectors and tangent to the surface in p_0 , therefore the normal vector generated by v_i generates the plane, so:

Definition 4.1: The plane tangent to a C^1 class surface S, parametrized by φ is:

$$\|v_1\times v_2\|$$

$$\text{Where }p_0=\varphi(u_0,v_0),v_1=\tfrac{\partial\varphi}{\partial u}(u_0,v_0)\text{ and }v_2=\tfrac{\partial\varphi}{\partial v}(u_0,v_0)$$

5. Vector Surface Integrals

Given S a parametrized surface, we want to calculate $\int_S F$ over the vector field $F: \mathbb{R}^3 \to \mathbb{R}^3$, we can interpretate this as:

Imagine F is the speed of a fluid, e.g a river. If we toss a *net* to this river, it will form a surface over the river (the field), so $\int_S F$ quantifies **how much of the fluid is flowing through the net**, or how much of the vector field is flowing through the surface.