2-7 Softmax Regression

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

1. Model

2. Forward propogation

3. Backpropogation

4. Example

Introduction

- 1. Binary classification models
 - $y \in \{0, 1\}$
 - Model is built for $P(y = 1 \mid \boldsymbol{x})$
- 2. In practice, we may have K classes: $y \in \{0, 1, ..., K-1\}$
 - Consider one-hot representation
 - $y = (0, ..., 1, ..., 0)^{\mathrm{T}}$
 - If y = k, only the (k+1)th element of \boldsymbol{y} is 1

Model

- 1. For a feature \boldsymbol{x}
 - We consider a neural network with K outputs
 - Each output is a score for the corresponding class
 - The scores may not sum up to 1
- 2. That is, the only difference is the number of neurons in the last layer
 - For binary classification problems, we only have one neuron for the output layer
 - For general classification problems, we have $d^{[L]} = K$ neurons for the output layer

Wang, Z. (WISE & SOE, XMU)

2-7 Softmax Regression

Model

1. Recall that

- \bullet L: number of layers in the neural network
- $d^{[l]}$: number of neurons in the lth layer (l = 0, ..., L)
- $a^{[l]} = (a_1^{[l]}, \dots, a_{d^{[l]}}^{[l]})^{\mathrm{T}} \in \mathbb{R}^{d^{[l]} \times 1}$
- $^{\bullet} ~~ \boldsymbol{W}^{[l]} = (\boldsymbol{w}_1^{[l]}, \ldots, \boldsymbol{w}_{d^{[l]}}^{[l]})^{\mathrm{T}} \in \mathbb{R}^{d^{[l]} \times d^{[l-1]}}$
- $\boldsymbol{b}^{[l]} = (b_1^{[l]}, \dots, b_{d^{[l]}}^{[l]})^{\mathrm{T}} \in \mathbb{R}^{d^{[l]} \times 1}$
- 2. For binary classification problems, we have $d^{[L]} = 1$
- 3. For general softmax regression problems, we have $d^{[L]} = K$

Model

Input layer

$$(d^{[0]} = d)$$

1st hidden layer

$$(d^{[1]} = 6)$$

2nd hidden layer

$$(d^{[2]} = 4)$$

Output layer

$$(d^{[3]}=3)$$

Forward propogation

- 1. Let $A^{[0]} = X$
- 2. For l = 1, ..., L,

$$oldsymbol{Z}^{[l]} = \left(oldsymbol{b}^{[l]}
ight)^{\mathrm{T}} + oldsymbol{A}^{[l-1]} \left(oldsymbol{W}^{[l]}
ight)^{\mathrm{T}} \ oldsymbol{A}^{[l]} = \sigma^{[l]} \left(oldsymbol{Z}^{[l]}
ight)$$

- $\sigma^{[l]}(z)$: activation function for the lth layer
- Broadcasting is used for activation functions
- 3. For the last layer,

$$oldsymbol{W}^{[L]} \in \mathbb{R}^{oldsymbol{K} imes d_{L-1}}, \quad oldsymbol{b} \in \mathbb{R}^{oldsymbol{K} imes 1}$$

Forward propogation

1. The cost function for softmax regression is

$$\mathcal{J}(\boldsymbol{\theta}) = -n^{-1} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log a_{ik}^{[L]}$$

- θ : model parameters
- $\mathbf{y}_i = (y_{i1}, \dots, y_{iK})^{\mathrm{T}}$: one-hot representation for the *i*th example
- $a_{ik}^{[L]}$: estimated probability for the kth class of the ith example
- 2. The dimension of the $A^{[L]}$, containing estimated probabilities in the last layer
 - $A^{[L]} \in \mathbb{R}^{n \times 1}$ for binary classification problems
 - $A^{[L]} \in \mathbb{R}^{n \times K}$ for softmax regression problems

Backpropogation

- 1. $dA^{[L]}$ can be obtained from the cost function
- 2. Assume $d\mathbf{A}^{[l]}$ is available $(l = L, \dots, 2)$ $d\mathbf{Z}^{[l]} = d\mathbf{A}^{[l]} \circ \sigma^{[l]'} \left(\mathbf{Z}^{[l]}\right)$ $d\mathbf{W}^{[l]} = \left(d\mathbf{Z}^{[l]}\right)^{\mathrm{T}} d\mathbf{A}^{[l-1]}$ $d\mathbf{b}^{[l]} = \left(d\mathbf{Z}^{[l]}\right)^{\mathrm{T}} \mathbf{1}$ $d\mathbf{A}^{[l-1]} = d\mathbf{Z}^{[l]} \mathbf{W}^{[l]}$
- 3. It remains to obtain $dA^{[L]}$ for softmax regression

Backpropogation

1. The cost function is

$$\mathcal{J}(\boldsymbol{\theta}) = -n^{-1} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log a_{ik}^{[L]}$$

2. Thus, the *ik*th component of $d\mathbf{A}^{[L]}is$

$$\frac{\partial \mathcal{J}}{\partial a_{ik}^{[L]}} = -\frac{y_{ik}}{a_{ik}^{[L]}}$$

3. Done!

Example

Test image

Model (FNN with 2 hidden layers)

Estimated result

Input layer $d^{[0]} = 784$

00

1st hidden layer $d^{[1]} = 128$

2nd hidden layer $d^{[2]}=64 \label{eq:def}$

Output layer $d^{[3]} = 10$