TD 17: Espace vectoriel

Entrainement

Sous-espaces vectoriels

Exercice 1. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ?

1.
$$A = \{(x, y) \in \mathbb{R}^2, 2x - y = 0\}$$

2.
$$B = \{(x, y) \in \mathbb{R}^2, \quad x - 3y + 1 = 0\}$$

3.
$$C = \{(x+2y,y), (x,y) \in \mathbb{R}^2\}$$

4.
$$D = \{(x, y) \in \mathbb{R}^2, \quad x^2 + y^2 \le 1\}$$

Exercice 2. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?

1.
$$A = \{(x, y, z) \in \mathbb{R}^3, 2x - 3y + z = 0\}$$

2.
$$B = \{(x, y, z) \in \mathbb{R}^3, 2x - 3y + z = 1\}$$

3.
$$C = \{(x, y, z) \in \mathbb{R}^3, 2x - 5y = 2y + z = 0\}$$

4.
$$D = \{(x, y, z) \in \mathbb{R}^3, y = x^3\}$$

5.
$$E = \{(2z, -z, z), z \in \mathbb{R}\}$$

Sous-espaces vectoriels engendrés. Familles génératrices

Exercice 3. Trouver une famille génératrice des espaces vectoriels suivants :

1.
$$F = \{(x, y, z, t) \in \mathbb{R}^4, \quad x - y + z = 0 \text{ et } y - 2t = 0\}$$

2.
$$F = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$$

3.
$$F = \{(x, y, z) \in \mathbb{R}^3, ax + by + z = 0\}$$

Exercice 4. Donner l'écriture cartésienne des espaces vectoriels suivants.

1.
$$E = Vect(u, v)$$
 avec $u = (1, 2, 2)$ et $v = (2, 1, 3)$.

2.
$$E = Vect(u, v)$$
 avec $u = (1, 4, 1, 1)$ et $v = (-1, 2, 2, 1)$.

3.
$$E = \{(2a - 3b + c, a + 2b - c, -b + c, a), (a, b, c) \in \mathbb{R}^3\}$$

Exercice 5. Soit $E = \{(x, y, z) \in \mathbb{R}^3, x - 3y + 2z = 0\}$ et u = (1, 3, 4) et v = (3, -1, -3). Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 et que (u, v) est une famille génératrice de E.

Exercice 6. Dans \mathbb{K}^3 , on considère u=(2,-4,7) et v=(-1,2,-3). Peut-on déterminer a de sorte que $w\in \mathrm{Vect}(u,v)$ dans chacun des 3 cas suivants :

1.
$$w = (-1, a, 3)$$

2.
$$w = (-1, 2, a)$$

3.
$$w = (-1, -1, a)$$

Exercice 7. Soit $E = \mathbb{R}^3$. Déterminer l'ensemble des valeurs de $m \in \mathbb{R}$ telles que u = (m, 1, m) appartient à Vect(v, w) avec v = (1, 1, 1) et w = (1, m, -1).

Exercice 8. Dans chacun des cas suivants, dire si la famille (u_i) engendre E:

1.
$$E = \mathbb{R}^3$$
 et $u_1 = (1, -1, -2)$, $u_2 = (7, 10, 3)$ et $u_3 = (3, -4, -7)$

2.
$$E = \mathbb{R}^4$$
 et $u_1 = (0,0,0,1), \ u_2 = (0,0,1,1)$ et $u_3 = (0,1,1,1), \ u_4 = (1,1,1,1), \ u_5 = (1,1,1,0)$

Familles libres

Exercice 9. Les familles suivantes de \mathbb{R}^3 sont-elles libres ou liées? Si elle est liée, exprimer un vecteur comme combinaison linéaire des autres.

- 1. u = (1, -1, 0), v = (2, 1, -1) et w = (1, 5, -1)
- 2. u = (1, 1, 2), v = (2, 1, 0) et $w = (3, 1, \lambda) \lambda$ paramètre réel.
- 3. u = (1, 0, -2), v = (2, 3, 1) et w = (4, -2, 1)
- 4. u = (1, 1, -1), v = (1, -1, 1), w = (-1, 1, 1) et t = (1, 1, 1)

Exercice 10. Pour quelles valeurs du réel m la famille (u_1, u_2, u_3, u_4) est une famille libre dans \mathbb{R}^4 ?

$$u_1 = (1, 1, 0, 0)$$
 $u_2 = (1, m, 1, 0)$ $u_3 = (1, 0, m, 1)$ $u_4 = (1, 0, 0, m)$

Base, Dimension

Exercice 11. Montrer que F est un sous-espace vectoriel de E. Donner une base de F et sa dimension.

- 1. $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3, x y + 3z = 0 \text{ et } 2x y + z = 0\}$
- 2. $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3, x y + 4z = 0\}$
- 3. $E = \mathbb{R}^3$ et $F = \{(x+2y-2z, -x+3y-z, x+7y-5z), (x,y,z) \in \mathbb{R}^3\}$
- 4. $E = \mathbb{R}^4$ et $F = \{(x, y, z, t) \in \mathbb{R}^4, \quad 2xy + z t = 0 \text{ et } x y + z + t = 0 \text{ et } x + 2y at = 0\}$ avec a un paramètre réel.

Exercice 12. Les familles suivantes sont-elles libres? Si oui, on les complètera en une base de \mathbb{R}^3 et si non, on donnera la relation de liaison. Sont-elle génératrices de \mathbb{R}^3 ? Si oui, on en extraira une base de \mathbb{R}^3 , si non, on donnera un vecteur de \mathbb{R}^3 qui ne s'exprime pas en fonction des vecteurs de la famille.

1. $\mathcal{F}_1 = ((2,4,3),(1,5,7))$

- 3. $\mathcal{F}_3 = ((9,3,-7),(1,8,8),(5,-5,1))$
- 2. $\mathcal{F}_2 = ((1,2,3),(2,3,4),(3,4,5),(4,5,6))$
- 4. $\mathcal{F}_4 = ((0,1,2),(1,2,0),(2,0,1))$

Exercice 13. Soit la famille (v_1, v_2, v_3) avec $v_1 = (1, 7, 2)$, $v_2 = (3, 5, 9)$ et $v_3 = (2, 4, 6)$. Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 . Quelle est la matrice des coordonnées de u = (0, -2, -1) dans cette base?

Exercice 14. Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par (u,v) avec u=(1,-1,2) et v=(2,1,3).

- 1. Montrer que (u, v) est une base de E
- 2. Vérifier que le vecteur (3,3,4) appartient bien à E et déterminer ses coordonnées dans la base (u,v).

Exercice 15. On désigne par E l'espace vectoriel \mathbb{C}^3 . On considère les parties suivantes de E:

$$F = \{(x, y, z) \in \mathbb{C}^3, \quad x + iy - z = 0\} \qquad G = \{(a + ib, a - ib, a + b), \ (a, b) \in \mathbb{C}^2\}.$$

- 1. Montrer que F et G sont des sev de E. Donner une base pour chacun de ces sev.
- 2. Donner une équation cartésienne de G.
- 3. Donner un système d'équations cartésiennes et une base pour $H = F \cap G$.
- 4. Donner une base de E composé d'un vecteur de F, d'un vecteur de G et d'un vecteur quelconque.

Exercice 16. Donner la dimension de $F = \text{Vect}(v_1, v_2, v_3, v_4)$ avec $v_1 = (1, 0, 1, 0, 1), v_2 = (-1, -2, 0, 1, 1), v_3 = (0, 1, 0, 0, -2)$ et $v_4 = (-1, -5, 1, 2, 5)$.

Rang d'une famille de vecteurs, d'une matrice, d'un système linéaire

Exercice 17. Pour chaque famille de vecteurs, donner le rang et une base du sev engendré :

- 1. $E = \mathbb{R}^4$ et u = (1, 1, 0, 0), v = (3, -1, 3, -1), w = (0, 1, 0, 1), x = (-1, 5, -1, 5)
- 2. $E = \mathbb{C}^2$ et u = (1, i), v = (i, -1)
- 3. $E = \mathbb{R}^4$ et $u = (1, 0, 0, -1), \ v = (2, 1, 0, 1), \ w = (1, -1, 1, -1), \ x = (7, 2, 0, 1), \ y = (-2, -3, 1, 0).$

Exercice 18. Déterminer le rang de la famille (u_1, u_2, u_3, u_4) avec $u_1 = (\lambda, 1, 1, 1), u_2 = (1, \lambda, 1, 1), u_3 = (1, 1, \lambda, 1)$ et $u_4 = (1, 1, 1, \lambda)$. Discuter selon les valeurs de $\lambda \in \mathbb{R}$.

Exercice 19. Déterminer une base de chacun des sous-espaces vectoriels suivants définis par

- 1. E = Vect((1, 1, -2), (2, 1, -3), (0, 1, -1))
- 2. F = Vect((4, -5, 3), (2, 3, -2), (4, -16, 10), (8, 1, -1))

Type DS

Exercice 20. On considère les ensembles suivants :

$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid -x_1 + x_2 + x_3 = 0 \text{ et } 2x_1 - 2x_2 + x_4 = 0\}$$
$$F = \text{Vect} (u_1 = (1, 3, 0, 2), u_2 = (2, 7, -3, 6), u_3 = (1, 1, 6, -2))$$

- 1. (a) Justifier que E est un sous-espace vectoriel de \mathbb{R}^4 .
 - (b) Déterminer une base \mathcal{B}_E de E. Quelle est la dimension de E?
- 2. Déterminer une base \mathcal{B}_F de F. Quelle est la dimension de F?
- 3. Déterminer une représentation cartésienne de F
- 4. Montrer que $E \cap F = \{0_{\mathbb{R}^4}\}.$
- 5. (a) On considère la famille de vecteurs \mathcal{F} formée des vecteurs de \mathcal{B}_E et de \mathcal{B}_F . Montrer que la famille \mathcal{F} est libre. (En étant astucieux et en utilisant la question 4, c'est assez rapide)
 - (b) Justifier que \mathcal{F} est une base et en déduire que $\mathbb{R}^4 = \operatorname{Vect}(\mathcal{F})$
- 6. On considère le vecteur u = (2, 3, 1, 2). Donner les coordonnées de u dans la base \mathcal{F} .
- 7. Soit $u \in \mathbb{R}^4$. Déduire des résultats précédents qu'il existe un unique vecteur $e \in \mathcal{E}$ et un unique vecteur $f \in \mathcal{F}$ tels que u = e + f. Pour tout vecteur $u \in \mathbb{R}^4$, cet unique vecteur $e \in \mathcal{E}$ est appelé le projeté de u sur \mathcal{E} parallèlement à \mathcal{F} . On le note p(u) pour les questions suivantes.
- 8. Soit $u=(x,y,z,t)\in\mathbb{R}^4$. Calculer les composantes de p(u) en fonction de x,y,z et t.
- 9. Vérifier que :
 - (a) $\forall u \in \mathcal{E}, p(u) = u$,
 - (b) $\forall u \in \mathcal{F}, p(u) = 0.$

Bonus pour l'année prochaine

Exercice 21. On admet que l'ensemble E des suites réelles est un espace vectoriel. Montrer que l'ensemble des suites bornées est un sev de E.

Exercice 22. On admet que $\mathcal{M}_3(\mathbb{R})$ est un espace vectoriel.

- 1. Montrer que l'ensemble des matrices symétriques $S_3(\mathbb{R})$ est un sev de $\mathcal{M}_3(\mathbb{R})$.
- 2. Soit $E_{i,j}$ la matrice n'ayant que des 0 sauf le coefficient (i,j) qui vaut 1. Montrer que la famille $(E_{1,1}, E_{2,2}, E_{3,3}, E_{1,2} + E_{2,1}, E_{1,3} + E_{3,1}, E_{2,3} + E_{3,2})$ forme une base de $S_3(\mathbb{R})$. et en déduire sa dimension.
- 3. Montrer que l'ensemble des matrices anti-symétriques $A_3(\mathbb{R})$ est un sev de $\mathcal{M}_3(\mathbb{R})$.
- 4. Trouver une base de $A_3(\mathbb{R})$ et en déduire sa dimension.
- 5. Que pouvez-vous conjecturer pour la dimension de $S_n(\mathbb{R})$ et de $A_n(\mathbb{R})$?