作

弊

北京科技大学 2018-2019 学年 第 一 学期 微积分 AI 试卷(模拟卷解析)

防	定(系)	班级	. 姓名		8号		
	- (• • •)			·			
				選起去			
				V/L/1+/4			

	试卷卷面成绩					课程考 核成绩	平时成 绩占%	课程考核成绩
题号		二	三	四	小计	占%	纵白 70	1次成绩
得分								

得分

一、填空题 (共 8 小题,每小题 2 分,共 16 分)

- 1. 已知二阶行列式 $\begin{vmatrix} 1 & 2 \\ -3 & x \end{vmatrix} = 0$,则 $x = \underline{-6}$ 。
- 2. 五阶行列式的一共有 120 项。
- 3. 向量组 $\alpha_1 = (1,1,0), \alpha_2 = (0,1,1), \alpha_3 = (1,0,1),$ 则将向量 $\beta = (4,5,3)$ 表示为 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合为 $\beta=\ _3\alpha_1+2\alpha_2+\alpha_3$ 。
- 4. 己知 P(A) = 0.3, P(B|A) = 0.4, $P(B|\bar{A}) = 0.5$, 则 P(B) = 0.47 。
- 5. 已知连续型 ξ 的密度函数为 $\varphi(x) = \begin{cases} k\cos x, & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0, & \text{其它} \end{cases}$, 则 $k = \frac{1}{2}$ 。
- 6. 已知随机变量 ξ 的期望和方差各为 $E\xi = 3$, $D\xi = 2$, 则 $E\xi^2 = 11$ 。
- 7. 电子管寿命 & 满足平均寿命为 1000 小时的指数分布,则它的寿命小于 2000 小 时概率为 $1-e^{-2}$ 。
- 8. 已知 ξ 和 η 相互独立且 $\xi \sim N(1,4), \eta \sim N(2,5)$,则 $\xi 2\eta \sim N(-3,24)$ 。

得分

二、单选题 (共 8 小题,每小题 2 分,共 16 分)

- 1. 下列各排列哪个是偶排列

(D)

3. 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 其中两个特征值为 $\lambda_1 = 1$ 和 $\lambda_2 = 2$,则 $x = (B)$ (A) 2 (B) 1 (C) 0 (D) -1 4. 二次型 $f = 4x_1^2 - 2x_1x_2 + 6x_2^2$ 对应的矩阵等于 (C) (A) $\begin{pmatrix} 4 & -2 \\ -2 & 6 \end{pmatrix}$ (B) $\begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 4 & -1 \\ -1 & 6 \end{pmatrix}$ (D) $\begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$ 5. 对任何一个本校男学生,以 A 表示他是大一学生, B 表示他是大二学生,则事件 A 和 B 是 (B) 互斥事件 (C) 既是对立事件又是互斥事件 (D) 不是对立事件也不是互斥事件 (D) 不是对立事件也不是互斥事件 (D) 不是对立事件也不是互斥事件 (E) 大数定律说明了大量相互独立且同分布的随机变量的均值的稳定性 (E) 大数定律说明大量相互独立且同分布的随机变量的均值近似于正态分布 (C) 中心极限定理说明了大量相互独立且同分布的随机变量的和的稳定性 (D) 中心极限定理说明大量相互独立且同分布的随机变量的和近似于正态分布 7. 在数理统计中,对总体 X 和样本 (X_1, \cdots, X_n) 的说法哪个是不正确的 (D) (A) 总体是随机变量 (B) 样本是 n 元随机变量 (C) X_1, \cdots, X_n 相互独立 (D) $X_1 = X_2 = \cdots = X_n$ 8. 样本平均数 \bar{X} 未必是总体期望值 μ 的 (A) 最大似然估计 (B) 有效估计 (C) 一致估计 (D) 无偏估计

得分

三、计算题 (共 6 小题, 每小题 8 分, 共 48 分)

$$\mathbf{R} \quad A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{bmatrix} = 1 \cdot (-1)^{2+1} \begin{bmatrix} 1 & 2 & 3 \\ -1 & -6 & 1 \\ -6 & -8 & 2 \end{bmatrix} \dots 4$$

作 弊

$$= - \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & 4 \\ 0 & 4 & 20 \end{vmatrix} = - \begin{vmatrix} -4 & 4 \\ 4 & 20 \end{vmatrix} = -(-4 \cdot 20 - 4 \cdot 4) = 96 \dots 8$$

2. 用配方法将二次型 $f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$ 化为标准形 $f = d_1 y_1^2 + d_2 y_2^2 + d_3 y_3^2$.

解
$$f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$$

 $= x_1^2 + 2x_1(x_2 - 3x_3) + (x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3$
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3 \dots 3$ 分
 $= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 2x_2 \cdot 3x_3 + (3x_3)^2 - 9x_3^2$
 $= (x_1 + x_2 - 3x_3)^2 + (x_2 - 3x_3)^2 - 9x_3^2 \dots 6$ 分

 $\Leftrightarrow y_1 = x_1 + x_2 - 3x_3, y_2 = x_2 - 3x_3, y_3 = x_3,$

3. 设二元随机变量 (ξ, η) 的联合分布表为

$\xi \backslash \eta$	-1	0	1		
0	0	1/3	0	0	
1	1/3	0	1/3		

- (1) 求关于 ξ 和 η 的边缘分布。
- (2) 判断 ξ 和 η 的独立性。
- (3) 判断 ξ 和 η 的相关性。

$$m{R}$$
 (1) 边缘分布为 $m{\xi}$ 0 1 P 1/3 2/3 P 1/3 1/3 1/3 P 1/3 2/3 P 1/3 1/3 P 1/3 P

(2) 由
$$P(\xi = 0, \eta = 0) = \frac{1}{3} \neq \frac{1}{9} = P(\xi = 0)P(\eta = 0)$$
, 知 ξ 和 η 不独立. 4 分

因此有 $cov(\xi, \eta) = E(\xi \eta) - E\xi E\eta = 0 - \frac{2}{3} \cdot 0 = 0$, 因此 ξ 和 η 不相关. 8 分 4. 设随机变量 $\xi \sim N(1,4)$,求 $P(-1 < \xi < 5)$ 。

- 5. 设每发炮弹命中飞机的概率是 0.2 且相互独立, 现在发射 100 发炮弹。
- (1) 用切贝谢夫不等式估计命中数目 ξ 在 10 发到 30 发之间的概率。
- (2) 用中心极限定理估计命中数目 ξ 在 10 发到 30 发之间的概率。

(1) $P(10 < \xi < 30) = P(\xi - E\xi < 10) \ge 1 - \frac{D\xi}{10^2} = 1 - \frac{16}{100} = 0.84. \dots 4 $
(2) $P(10 < \xi < 30) \approx \Phi_0 \left(\frac{30 - 20}{\sqrt{16}}\right) - \Phi_0 \left(\frac{10 - 20}{\sqrt{16}}\right) \dots 6 $
$=2\Phi_0(2.5)-1=2\cdot 0.9938-1=0.9876$
6. 从正态总体 $N(\mu, \sigma^2)$ 中抽出样本容量为 16 的样本,算得其平均数为 3160,标
准差为 100。试检验假设 $H_0: \mu = 3140$ 是否成立 $(\alpha = 0.01)$ 。
解 (1) 待检假设 $H_0: \mu = 3140$
(2) 选取统计量 $T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$
(3) 査表得到 $t_{\alpha} = t_{\alpha}(n-1) = t_{0.01}(15) = 2.947$
(4) 计算统计值 $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{3160 - 3140}{100/4} = 0.8.$
s/\sqrt{n} 100/4 (5) 由于 $ t < t_{\alpha}$, 故接受 H_0 , 即假设成立
得分 四、证明题 (共 2 小题,每小题 10 分,共 20 分)
1. 不使用矩阵可相似对角化的判别定理,直接用矩阵的运算和性质证明下面的
矩阵 $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ 不能相似对角化,即不存在可逆矩阵 P 和对角阵 Λ 使得
$A = \begin{pmatrix} 0 & 1 \end{pmatrix}$ 不能相似的角化,即不存在可逻矩阵 P 和的角件 A 使待
$P^{-1}AP = \Lambda .$
证明 假设有 $P=\left(egin{array}{cc} a & b \\ c & d \end{array} \right)$ 使得 $P^{-1}AP=\Lambda$,即 $AP=P\Lambda$ 。
$\begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} a\lambda_1 & b\lambda_2 \\ c\lambda_1 & d\lambda_2 \end{pmatrix}$
因此有 $\begin{cases} a+c &= a\lambda_1 (1) \\ b+d &= b\lambda_2 (2) \\ c &= c\lambda_1 (3) \\ d &= d\lambda_2 (4) \end{cases}$
$d = d\lambda_2$ (4)
由第 1 个和第 3 个方程消去 λ_1 ,可以得到 $c^2 = 0$ 即 $c = 0$;由第 2 个和第 4 个方
程消去 λ_2 , 可以得到 $d^2=0$ 即 $d=0$ 。因此矩阵 P 不可逆,矛盾。 10 分
2. 设事件 A 和 B 相互独立,证明 A 和 \bar{B} 相互独立。
证明 $P(A \cdot \bar{B}) = P(A - B) = P(A - AB)$
= P(A) - P(AB) = P(A) - P(A)P(B)
$= P(A)(1 - P(B)) = P(A)P(\bar{B})$
所以 A 和 \bar{B} 相互独立。