Manuscrito Aceito

Método de previsão de séries temporesas difusas com base em conjuntos confusos hesitantes

Kamlesh Bisht

PII: S0957-4174(16)30391-8 DOI: 10.1016/j.eswa.2016.07.044

Referência:ESWA 10790

Para aparecer em: Sistemas especializados com

aplicações

Data recebida: 25 de março de 2016 Data revisada: 29 de julho de 2016 Data aceita: 30 de julho de 2016

Por favor, cite este artigo como: Kamlesh Bisht , Sanjay Kumar , Fuzzy time series forecasting method based on hesitant fuzzy sets, *Expert Systems With Applications* (2016), doi: 10.1016/j.eswa.2016.07.044

Este é um arquivo PDF de um manuscrito não publicado que foi aceito para publicação. Como um serviço para nossos clientes estamos fornecendo esta versão inicial do manuscrito. O manuscrito passará por cópia, digitação e revisão da prova resultante antes de ser publicado em sua forma final. Observe que durante o processo de produção podem ser descobertos erros que podem afetar o conteúdo e todas as isenções legais que se aplicam ao diário.

Destaques

- Propomos um método de previsão de séries temporesas difusas usando conjuntos confusos hesitantes.
- Um operador de agregação também é proposto para agregar elementos embaçados hesitantes.
- A hesitação é introduzida usando vários métodos de fuzzificação.
- Estão previstas matrículas na Universidade do Alabama e preços das ações da SBI.

□ O

desempenho do método é medido em termos de MSE e AFER.

Método de previsão da série temporal fuzzy com base em conjuntos confusos hesitantes

Kamlesh Bisht

Departamento de Matemática, Estatística e Ciência da Computação G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, Índia, 263145 E-mail: kamlesh45848@gmail.com

Sanjay Kumar

Departamento de Matemática, Estatística e Ciência da Computação G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, Índia, 263145 E-mail: skruhela@hotmail.com

Abstrair: Este estudo propõe um método de previsão de séries temporviais difusas baseado em hesitante conjuntos confusos para previsão no ambiente de informações hesitantes. O método proposto aborda o problema de estabelecer uma nota de associação comum para a situação quando vários métodos de fuzzificação estão disponíveis para fuzzificar dados de séries temporais. Um aO operador de agregação para agregar informações hesitantes também é proposto no estudo. O método proposto é implementado para prever a matrícula na Universidade do Alabama e o preço da participação do Banco estatal da Índia (SBI) na Bolsa de Valores de Bombaim (BSE), Índia. Eun Ambos os dados da série temporal são fuzzificados com conjuntos fuzzy triangulares construídos usando intervalos de comprimento igual e desigual. O desempenho do método proposto na previsão das matrículas dos alunos e do preço das ações do SBI é medido em termos de quadrado médio raiz e erros médios de previsão. Também é realizada validação estatística e análise de desempenho para validação do método de previsão proposto.

Palavras-chave: Séries temporais difusas; Hesitante conjunto fuzzy; Operador de agregação; Relação lógica difusa; Tempo invariant; Previsão.

1. Introdução

A previsão da série temporal investiga as relações sobre o conjunto sequencial de dados passados para prever o valor futuro. A maioria das ferramentas estatísticas, por exemplo, análise de regressão, média móvel, média móvel exponencial e média móvel auto regressiva frequentemente usada em séries temporentais tradicionais não conseguem lidar com incertezas ocultas que surgem devido à imprecisão e imprecisão nos dados da série temporal. Song e Chissom (1993a) usaram a teoria dos conjuntos confusos (Zadeh, 1965) em previsões de séries temporais e desenvolveram

poucos modelos de previsão de séries temporais. Desde o início dos modelos de séries temporândias desenvolvidas por Song e Chissom (1993a, 1993b), os esforços foram feitos pelos vários pesquisadores (Chen, 1996; Hwang et al., 1998; Chen & Hwang, 2000; Lee & Chou, 2004; Huarng & Yu, 2006; Teoh et al., 2008; Cheng et al., 2016) para aumentar a precisão na previsão. Chen (2002) introduziu o método de série temporal fuzzy de alta ordem e estendido por Own e Yu (2005), Hsu et al. (2010) e Lee et al. (2006, 2007). Recentemente Chen & Chen (2015), Efendi et. al. (2015) e Askari et al. (2015) propuseram modelo de previsão de séries temporais difusas baseadas em computação granular, combinações lineares de variáveis independentes em ambiente agrupado e abordagem linguística da amostra.

Hurang (2001) investigou a importância do comprimento do intervalo para aumentar a precisão na previsão de séries temporizadas difusas e propôs abordagens heurísticas baseadas em distribuição e média para determinar o comprimento do intervalo. Comprimentos de intervalo em fuzzy previsão de séries temporidade foram determinadas usando razão, média e distribuição baseada abordagens (Hurang & Yu, 2006; Su et al., 2010; Egrioglu et al., 2011,). Muitas computação evolutiva, natureza baseada técnicas de otimização da otimização de enxames de partículas, a otimização da colônia de formigas também foi proposta por vários pesquisadores (Chen & Chung, 2006; Lee et al., 2007; Kuo et al., 2009, 2010; Park et al., 2010; Hsu et al., 2010; Egrioglu et al., 2011; Cai et al., 2015, Salmeron & Froelich, 2016) para otimizar o comprimento de intervalos para melhor previsão. Atanassov (1986, 1999) introduziu o conjunto fuzzy intuitivo (IFS) para lidar com o nãodeterminismo que ocorre por fatores não estocásticos, ou seja, na situação em que não é possível expressar grau de não-membros como o complemento a 1 como conjuntos felpudos. Os IFSs incluem funções separadas para as notas de adesão e não-membros e foram provados como uma ferramenta eficiente para lidar com o não determinismo que ocorre devido à hesitação no sistema. Joshi & Kumar (2012), Gangwar & Kumar (2014), Kumar & Gangwar (2015) desenvolveram

Em algum momento, em muitos problemas práticos, é difícil definir o grade de adesão de um elemento por causa de um conjunto de possíveis valores de adesão. Essa situação é muito comum em problemas de tomada de decisão quando os tomadores de decisão discordam sobre a mesma taxa de adesão para um elemento. Essa situação também pode ocorrer em séries temporais difusas prevendo quando é possível fuzzificar os dados da série temporal usando diferentes métodos de fuzzificação. Neste caso, a dificuldade de estabelecer uma nota de adesão comum não é por causa da margem de erro (como acontece no IFS) ou de alguns valores de distribuição possíveis (como acontece em conjuntos fuzzy tipo 2), mas por vários valores possíveis de adesão. Para lidar com esses casos, o hesitante conjunto fuzzy (HFS) foi introduzido por Tora & Narukawa (2009) e Tora

poucos métodos de previsão usando IFSs para resolver os problemas do não determinismo na

previsão de séries temporais difusas.

(2010) como uma nova generalização de conjuntos difusos. Qian et. al. (2013) deu a noção de conjuntos confusos hesitantes generalizados e sua aplicação no sistema de apoio à decisão. A fuzzificação dos dados da série temporal é um passo importante de qualquer método de previsão de séries temporais difusas e é realizada escolhendo o método fuzzification mais adequado. Em todos os modelos de séries temporitais difusos desenvolvidos por pesquisadores no passado, a questão do não determinismo que ocorre devido à possibilidade de múltiplos valores de adesão da série temporal datum não foi abordada, pois eles usaram um método único de fuzzificação.

Motivado pelas aplicações de HFSs em problemas de tomada de decisão (Xia & Xu, 2011), o presente estudo propõe um novo método de previsão de séries temporais usando informações confusas hesitantes para resolver o problema de estabelecer um membe comumrship grade para a situação quando vários métodos de fuzzificação válidos estão disponíveis para fuzzificar dados de séries temporais. Vantagem do método de previsão de séries temporidas hesitantes é sua capacidade de usar mais de um método de fuzzificação com diferemo intervalo de ent para resolver o problema do não determinismo de escolher mais de uma nota de membro. No presente estudo, os HFSs são construídos utilizando funções de adesão triangular com intervalos iguais e desiguais. Comprimento de intervalos desiguais no o estudo é determinado por meio da abordagem cumulativa de distribuição de probabilidades (CPDA). Para agregar os HFEs do HFS, também propomos um operador de agregação para conjuntos confusos hesitantes que se baseia em notas de adesão ponderadas em conjuntos difusos com iguais e desiguais comprimento do intervalo. A fim de verificar o desempenho do método de previsão de séries temporenciais hesitantes, foi implementado para prever a inscrição da Universidade do Alabama e os preços de mercado das ações do Banco do Estado da Índia (SBI) na Bombay bolsa de valores (BSE) Índia.

2. Preliminares

Definições básicas de conjunto fuzzy (Zadeh, 1965), HFS (Tora & Narukawa, 2009) hesitante elemento fuzzy (Tora & Narukawa, 2009) e fuzzy time series (Song & Chissom, 1993a) são apresentados nesta seção.

Definição 1: Deixe $X \square \{x1, x2, x3, \dots, xn\}$ ser o universo discreto e finito do discurso ou conjunto de referência, em seguida, um conjunto difuso A em X é definido da seguinte forma:

$$O \square \square_A(x1) \square \square_A(x2) \square \square_A(x3) \square \dots \square \square \square_A(xn)$$

$$(1) x1x2x3xn$$

onde \square_A é função de associação do conjunto fuzzy A e \square_{Ai} : $X \square \square 0,1 \square$. Função de associação \square_{Um}
conjunto difuso Um mapeia cada elemento de X para intervalo de unidade $[0,1]$ e $\square_A(xi)$ representa
o grau de adesão de xi no conjunto fuzzy A .
Definição 2: Um HFS, A em X é definido em termos de uma função $_{hA}$: $X \square P[0,1]$ que retorna um
subconjunto de [0,1] quando é aplicado a X. Matematicamente, é representado pela seguinte
expressão:
$Um \square \{ \square \ x, hA(x) \square x \square X \}$ (2)
aqui $P[0,1]$ é a coleção de subconjuntos de $[0,1]$.
A partir daqui fica claro que quando h aplicado a X ele retorna um subconjunto de $[0, 1]$ ou
seja, uma coleção de diplomas de adesão. Para qualquer $x \square X$, esta coleção é denotada por $_{hA}(x)$ e
por uma questão de simplicidade é chamada de HFE (Xia & Xu, 2011).
Exemplo: Se $X \square \{x_1, x_2, x_3\}$ é o conjunto de referência, $eh_{Um}(x_1) \square \{0.3, 0.5, 0.7\}, h_{Um}(x_2)$
\square {0.2,0.4,0.6}, $h_{Um}(x_3)$ \square {0.5,0.6} are o grau de adesão possível de $x_{eu}(eu$ \square 1,2,3) a um conjunto
Arespectivamente. Então A pode ser considerado como HFS e é representado como $Um \ \Box \ \{\Box$
$x_1,\{0.3,0.5,0.7\} \square, \square x_2,\{0.2,0.4,0.6\} \square, \square x_3,\{0.5,0.6\} \square\}.$
Para três HFEs h1,h2 e h3 Torra (2010) definidos seguindo algumas operações:
(1) $_{\mathrm{hlc}} \square \{1 \square \square \square \square hI\}$
$(2) _{h1} \square_{h2} \square \{ \square_1 \square \square_2 \square_1 \square h1. \square_2 \square h2 \}$
$(3) _{h1} \square_{h2} \square \{\square_{1} \square_{2} \square_{1} \square h1.\square_{2} \square h2\}$
Aqui, □e Ø são operadores min e max.
Definição 3: Deixe Y (t) um subconjunto de R (conjunto de números reais) e seja o universo do discurso.
Suponha que os conjuntos difusos fi (t) são definidos em Y (t). Se F (t) é a coleção de fi (t) então, é
conhecida como série temporal difusa em $Y(t)$. Se $F(t)$ for causado por $F(t-1)$, representado por $F(t-1) \rightarrow F(t)$,
então a relação de séries temporentas fuzzy pode ser expressa como: $F(t) = F(t-1)*R(t, t-1)$, onde * representa
o operador Max-Min e $R(t, t-1)$ é a relação difusa entre $F(t)$ e $F(t-1)$. Aqui, R é a união das relações difusas e
\acute{e} chamado de modelo de primeira ordem de $F(t)$.

Definição 4: Deixe F(t) ser a série temporal difusa e R(t, t-1) ser um modelo de primeira ordem de

F(t). Se R(t, t1) = R (t-1, t-2) por qualquer momento t então, F(t) é designado como série temporal

invariante. Mas se R(t, t-1) for diferente de R(t-1, t-2) por qualquer momento, F(t) é nomeado como série temporal difusa de variante do tempo.

3. Proposta de método de previsão embaçada hesitante

O método de previsão de séries temporizantes difusas proposto usa conjuntos difusos obtidos pela agregação dos HFEs de um HFS. As relações lógicas difusas (FLRs) e FLRs (grupos) são estabelecidas usando HFEs agregadas e, em seguida, simples operações de composição max-min são implementadas. O método proposto inclui as seguintes etapas:

Passo 1: Definir universo do discurso $No = [D_{Min} = D_{Max} = D_{Min}]$. Aqui $D_{Min}D_{Max}$ e D_{Max} e $D_{Min}D_{Max}$ e $D_{Min}D_{Max$

Passo 2: Calcular pesos *we*, *wu* para as funções de associação triangular utilizadas para intervalos iguais e desiguais construídos na etapa 1 usando a seguinte expressão:

$$\stackrel{de}{\Box}$$
,wu \Box du (3) nós $\stackrel{\Box}{\Box}$ de \Box du de

Aqui de e du são comprimentos dos intervalos iguais e desiguais , respectivamente.

Passo 3: HFEs agregados e construir o conjunto difuso no qual as notas de membros dos elementos são calculadas usando o operador de agregação proposto para HFEs e é definido da seguinte forma:

Que H seja um HFS cujos elementos HFEs são determinados por uma função $hH: X \to P([0,1])$, em seguida $H_A \square \{ \square \ x, O(hH(x)) \square \} \square x \square X$ é um fuzz y set e as notas de associação são calculadas usando o seguinte mapeamento:

$$O: P[0,1] \square [0,1] \text{tal } queO (\{x1,x2,....,xn\}) \square 1 \square \square (1 \square xi)^{wi}$$

$$(4)$$

Aqui n é o número de elementos no subconjunto de [0, 1] e wi é o peso de xi onde i=1,

2,,n. S.T. \square wi \square 1, o operador de agregação proposto satisfaz a seguinte propriedade:

$$\min(\{x1,x2,...,xn\}) (\{x1,x2,...,xn\}) (\max(\{x1,x2,...,xn\}) \Box x1,x2,...,xn \Box [0,1].$$

O exemplo a seguir ilustra o processo de agregação de HFEs de um HFS.

Exemplo: Deixar $X = \{x_1, x_2, x_3\}$ é um conjunto de referência e $H = \{< x_1 \{ 0.2, 0.3, 0.4 \}>, < x_2 \{ 0.25, 0.47, 0.68 \}>, < x_3, \{0.1, 0.6, 0.7 \}>\}$ ser um HFS em X. Levar $w_1 = 1/3$, $w_2 = 1/3$ e $w_3 = 1/3$ e aplicando acima do método de agregação, temos um conjunto difuso da seguinte forma:

 $h(x1) = 1 - ((1-0,2)^{(1/3)} * (1-0,3)^{(1/3)} * (1-0,4)^{(1/3)})$

= 0,30479. Aqui 0.2 (min ({0.2, 0.3, 0.4})) < 0,30479 < 0.4(máx ({0.2, 0.3, 0.4})). $h_{(x2)} \Box 1$ -((1-0,25)^(1/3)*(1-0,47)^(1/3)*(1-0,68)^(1/3))

 $= 0,49708. \ Aqui \ 0,25(min \ (\{0.25, 0.47, 0.68\})) < 0,49708 < 0,68 \ (máx \ (\{0,25, 0,47, 0,68\})).$

 $h(x3) \square 1 - ((1-0.1)^{(1/3)}(1-0.6)^{(1/3)}(1-0.7)^{(1/3)})$

= 0.52378. Aqui 0.1 (min ({0.1, 0.6, 0.7})) < 0.52378 < 0.7 (máx ({0.1, 0.6, 0.7})).

Portanto, correspondendo a HFS acima, H seguindo conjuntos fuzzy HA é construído:

 $H_A \square \{ \square \ x1,0,30479 \ \square.\square \ x2,0,49708 \ \square.\square \ x3,0,52378 \ \square \}$

Passo 4: Fuzzify dados de séries tempor parciais usando conjuntos fuzzy com HFEs agregados como grau de associação usando o seguinte algoritmo:

 $para i = 1 \ a \ m \ (dados \ finais \ da \ série$

temporal) para j = 1 a n (Fim dos

intervalos)

escolher

 $\square_{ki} = max(\square_{Ii}, \square_{2i}, \dots, \square_{ji}), 1.k.n$

Se hak é conjunto confuso correspondente a \square_{ki} , em seguida, atribuir conjunto fuzzy HAk para xi.

fim se fim

para fim

para

Relação lógica difusa (FLR) estabelecida pela seguinte regra:

Se HAi é a produção difusa do mês n e $_{HAj}$ é a produção difusa do mês n+1, então o FLR é denotado como $HAi \rightarrow HAj$. Aqui, hai é chamado de estado atual e HAj é o próximo estado.

Passo 5: Aplique as operações de composição max-min no FLR para obter saídas difusas e desfuzziá-las para previsão numérica usando as seguintes fórmulas:

Previsão numérica =
$$\frac{\prod_{1}^{1} f_{1}}{\prod_{1}^{1} f_{1}}$$
 (5)

Aqui f_1 é a saída difusa e l_1 é o ponto médio combinado de adesão triangular funções para intervalos iguais e desiguais definidos c**Sergue** :

Ponto médio combinado
$$\frac{M_e e_e \square M_N e_N}{e_e \square e_N}$$
 (6)

HTam M_e ; e_e e M_N ; e_N são po médints e pesos das funções de adesão com intervalos iguais e desiguais respectivamente.

3.1 Estatístico Validação Análise de teste e erro

Além das medidas de erro (RMSE e AFE) vários parâmetros estatísticos como avaliação parâmetro (Chakraverty & Gupta, 2008), coeficiente de correlação (R^2), parâmetro de desempenho (Chase et. Al. 2006; Wang & Wang, 2010) e sinais de rastreamento (TS) também são utilizados para avaliar o desempenho do modelo de previsão pressões para RMSE, AFE e todos os parâmetros estatísticos utilizados para verificar o desempenho dade estatística de previsão proposta método são mostrado Tirapa 1.

Tabela 1:

Medidas de erro e parâmetros de verificação de validação estatística

Sr. Termo Expressão Matemática Aceitável

No. Range 1 **RMSE** 2 Forecasting $\frac{\left|F_i - O_i\right|}{O_i} \times 100$ Error (in %) 3 AFE (in %) sum of forecasting error n $\delta_r < 1$ 4 δ_r 5 R $-1 \le R \le 1$ Coefficient of R^2 $0 \le R^2 \le 1$ 6 determination 7 PP*RMSE* PP > 08

Na tabela acima, F_i e Oi são previstos e dados reais da série temporal, n é o número de dados da série temporal e \Box is desvio padrão do conjunto de dados. O valor positivo e negativo de R indica correlação linear positiva e negativa, respectivamente, entre dados previstos e reais da série temporal. O R2 mostra a força da associação linear entre dados previstos e reais. O valor positivo

 $\Box 4 \ \Box TS \ \Box 4$

 $\sum_{i=1}^{n} (F_i - O_i)$

 $\frac{R_{sfe}}{M_{Du}}$

9

10

TS

e negativo do $_{\text{Mad}}$ indica a tendência de previsão de previsão do modelo de previsão. $TS \square 4$ indica sub-previsão com viés, enquanto $TS \square 4$ indica super-previsão com viés.

4. Implementação do método proposto

Nesta seção, o método de previsão de séries temporáticas hesitantes é implemented para prever matrículas na Universidade do Alabama e preço da participação da SBI na BSE, Índia.

4.1. Previsão de matrículas na Universidade do Alabama com modelo proposto

Passo 1: Observando D_{Min} e D_{Max} da Tabela 2 e usando o universo de desvio padrão do discurso é definido como U = [11280, 21112].de usando desvio padrão das matrículas da Universidade do Alabama, Agora, aplicando a abordagem cpda o universo do discurso é dividido em quatorze intervalos linguísticos desiguais. Tanto os limites inferiores quanto superiores de probabilidade, ponto médio e intervalo de intervalos são calculados e são dados na Tabela 3.

Tabela 2:

Matrículas actual de matrículas do Ano de

Matrícula da Universidade do Alabama

)			
1971	13055	1982	15433			
1972	13563	1983	15497			
1973	13867	1984	15145			
1974	14696	1985	15163			
1975	15460	1986	15984			
1976	15311	1987	16859			
1977	15603	1988	18150			
1978	15861	1989	18970			
1979	16807	1990	19328			
1980	16919	1991	19337 1981	16388	1992	18876

Universo do discurso é dividido em intervalos seguintes de quatorze com comprimento igual eI= [11280, 11982,29], e2 = [11982,29, 12684,57], e3 = [12684,57, 13386,86], e4 = [13386,86, 14089,14], e5 = [14089,14, 14791,43], e6 = [14791,43, 15493,71], e7 = [15493,71, 16196], e8 =

[16196, 16898,29], e9 = [16898.29, 17600,57], $e_{10} = [17600,57, 18302,86]$, $e_{11} = [18302,86, 19005.14]$, $e_{12} = [19005.14, 19707.43]$, $e_{13} = [19707,43, 20409,71]$, $e_{14} = [20409.71, 21112]$.

Como os dados da série temporal das matrículas universitárias seguem a distribuição normal, o CPDA é aplicado à divisão do universo do discurso em quatorze intervalos com comprimento desigual.

Tabela 3:Limite inferior e superior de probabilidade para matrículas na Universidade do Alabama.

	Uni	verso Cum	ulativo do d	liscurso U	J probabi	ilidade	;	
Intervalos			<u>Com</u> r	orimento _	superio	or	inferior do p	onto médio de
	PLB	PUB	bound	interv	alo ue1	0	0,071429	11280
12436.72	1359	3.44	2313.44					
$UE_2 0.0357$	714 0.142	857 12994	1.36 13646.	83 14299	9.29 130	4.931	eu ₃ 0.107143	0.214286
13989.92 1	4389.49 1	4789.07 7	99.155 eu ₄ (0.178571	0.285714	4 1455	59.77 14874.72	15189.67
							5 eu ₆ 0.321429	
							1.64 15952.94	
							478.6371 eu ₉	
							14286 16676.82	
							99.39 582.0773	
							28571 17828.69	18311.86
18795.02 9	66.3292 eı	ı ₁₄ 0.89285	7 1 18398.5	64 19755.	27 21112	2 2713	.456	
De acordo com =1, 2,, 14), co , Aue3,, Aue14 re universo do dis	onstruímos espectivam	s 14 conjur ente. Qua	ntos de intervatorze conju	valos igua	ais e desig	guais A	Ae1 , Ae2 , Ae3 ,, Ae1	4 e Auel, Aue2
$A_{e^1} \square \square 11280,1$			$A_{e^2} \square \square 1198$	32.29,126	84.57,133	886.86	\square , $A_{e^{3}}$	
\square 12684.57,1	3386.86,14	1089.14□,						
A_{e} \square \square 13386.8	6,14089.14	1,14791.43	\square , A_{e} 5 \square \square 1	4089.14,1	14791.43,	15493	$.71\Box$, A_{e} $_{6}$	
□ □ 14791.43,1	5493.71,16	5196□,						
$A_{e7} \square \square 15493.7$	1.16196,16	5898.29□,	$A_{e^8} \square \square 1619$	6,16898.2	29,17600	.57□,	$A_{e 9}$	
□ □ 16898.29,1	7600.57,18	3302.86□,						
$A_{e^{10}} \square \square 17600.5$	7,18302.8	5,19005.14	\square , $A_{e^{11}}$ \square \square 1	8302.86,	19005.14	,19707	′.43 □ ,	
$A_{e^{12}} \square \square 19005.1$	4,19707.4	3,20409.71	\square , $A_{e^{13}}$ \square \square 1	9707.43,	20409.71	,21112	$2\Box$, $A_{e^{14}}$	
\square 20409.71,2	1112,2111	$2\square$.						

E catorze conjuntos confusos para intervalo desigual são definidos no universo do discurso U são dados da seguinte forma: $A_{Aue1} \square \square 11280,12436,72,13593,44 \square, A_{ue2} \square \square 12994.36,13646.83,14299,29$ \square 13989,92,14389,49,14789,07 \square , $_{Aue4} \square \square 14559,77,14874.72.15189,67 \square$, $_{Aue5} \square \square 14997.01.15270.7,15544.39 \square$ \Box 15371.15,15622.93,15874,71 \Box , $_{Aue7}$ \square \square 15711.64,15952.94,16194,23 \square , $_{Aue8}$ \square \square 16035.11.16274.43,16513,75 \square , $_{Aue9}$ \Box 16353,35,16598,71.16844,07 \Box , $_{Aue10} \square \square 16676.82,16937.8,17198,79 \square$, $_{Aue11} \square \square 17017.31.17308.35.15599,39 \square$, \square 17391.45,17740.31,18089.17 \square , \square 17828.69,18311.86,18795.02 \square , $A_{UE_{13}}$ $A_{\mathit{UE}_{12}}$ $A_{UE_{14}}$ □ □ 18398.54,19755.27,21112 □ . **Passo 2:** Pesos que devem ser usados em operadores de agregação propostos para HFEs e também em desfuzzificação são calculados utilizando-se os comprimentos de intervalos iguais e desiguais (Tabela 4). Tabela 4: Pesos dos intervalos linguísticos. Pesos Para intervalos desiguais Para intervalos iguais 0.622225 0,377775 0,481613 0.518387 0,362638 0,637362 0.309614 0.690386 0.280427 0.719573 0.263902 0.736098 0,255722 0,744278 0.254160 0.745840

Passo 3: São construídos quatorze HFSs Hi (i=1 a 14) pelo cálculo das notas de adesão de cada inscrição em funções de adesão triangular com intervalos iguais e desiguais. O operador de agregação ponderada proposto (Eq. 4) é implementado para agregar elementos embaçados hesitantes e ter quatorze FSs $_{\rm HAi}$ ($i=1,2,\ldots,14$) sobre o universo do discurso U (Tabela 6).

0.258917

0.270937

0.292995

0.331885

0,407579

0,658921

0.741083

0.729063

0,707005

0.668115

0,592421

0.341079

Passo 4: As matrículas da Universidade do Alabama são embaçadas usando o algoritmo para fuzzificação fornecido na seção anterior e mostrado na Tabela 5. FIR são estabelecidos e FLR (grupo) são criados (Tabelas 7).

Passo 5: Aplicando o operador de composição max-min ao the FLR e método de desfuzzificação (Eq. 5 & 6) para prever as matrículas da Universidade do Alabama. Um cálculo amostral para o ano de 1972 é o seguinte:

Para a matrícula do ano de 1982, o conjunto de fuzzy hesitante é: $H5 = \Box 15433 \Box 0,0864,0,407 \Box \Box$ e $H6 = \Box 15433, \Box 0.9136,0.2457 \Box \Box$. Aqui 0,0864,0,407,0,9136,0,2457 são as notas de adesão para a matrícula 15433 em A_{e5} , A_{UE5} , A_{e6} e A_{UE6} conjuntos confusos, respectivamente. 0,719573 e 0,280427 são os pesos (Tabela 3) do A_{e5} e A_{UE5} . Em seguida, a adesão agregada de A_{e5} e A_{UE5} de matrícula do ano de 1982 é computado da seguinte forma:

 $1 \square \square (1 \square 0,0864)^{(.719573)} * (1 \square 0,407)^{(.280427)} \square = 0,190681.$

O conjunto difuso correspondente para matrícula do ano de 1982 é = $\Box 15433,0,190681$. A adesão agregada de matrícula do ano de 1982 em Ae 6 e $_{Aue5}$ é a seguinte:

 $1 \square \square (1 \square 0,9136)^{(.736098)}*(1 \square 0,2457)^{(.263902)} \square = 0.846943.$

O conjunto difuso correspondente para matrícula do ano de 1982 é = \Box 15433,0,846943 \Box .

Já o máximo (0,190681, 0,846943) = 0,846943, portanto, h A6 é atribuído a 15433 ou seja, a matrícula para o ano de 1982.

A relação lógica difusa (FLR) para o ano de 1982 é $H_{A7} \square H_{A6}$ e depois de aplicar a operação max-min, após a obtenção do vetor de linha.

0 0,529589 0.757242 0.118278 0.757242 0.041527 0.50976 0 0 0 0

Uma vez que os pontos médios do conjunto difuso com intervalo igual Ae_1 e intervalo desigual Aue1 são 11982.29 e 12436,72, respectivamente, e os pesos correspondentes (Tabela 4) são 0,377775 e

0,622225, respectivamente, portanto, the ponto médio combinado 11 é

0.

□12265.05

377775 *11982.29 \(\pi\)0.622225 *12436.72

$0.377775 \sqcap 0.622225$

Da mesma forma, outros pontos médios combinados 12,13,....,114 são calculados e são dados da seguinte forma:

11	12265.05	<i>l</i> 8 1673	9.73	
12	13148.01	<i>l</i> 9 1734	1.17	
13	13750.45	110 17933.01	<i>l4</i>	
143	32.37	111 18507.99	15	
	14925.83	112 19054.57	16	
	15527.81	113 1955	54.67 ₁₇	, , , , , , , , , , , , , , , , , , ,
	16133.84	114 20218.02		\mathcal{L}

A previsão numérica para o ano de 1982 é calculada utilizando-se de Eq. 5 e é a seguinte:

 $0,529589 \square 0,757242 \square 0,118278 \square 0,757242 \square 0,041527 \square 0,50976$

Outras matrículas da Úniversidade do Alabama também são computadas de forma semelhante e são mostradas na Tabela 8. A Tabela 8 também inclui as matrículas previstas usando o método proposto por Song e Chissom (1993a), Chen (1996), Huarng (2001), Lee & Chou (2004), S.C. timevariant (1994), Cheng et al. (2006, 2006 (TFA), 2008), Yolcu et al. (2009), Qiu et al. (2011), Joshi & Kumar (2012) e Kumar & Gangwar (2015) para comparar o desempenho da proposta de previsão da série de tempog métodos sobre esses métodos em termos de parâmetro estatístico (Tabela 1) são mostrados na Tabela 9.

Table 5: HFSs for the enrollment of University of Alabama

Enrollment	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14
13055	{.4655,0}	{.0929,.4725}	{0,.5275}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
13563	{.0263,0}	{.8715,0}	{0,.7492}	{0,.2508}	$\{0, 0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
13868	$\{0,0\}$	{.661,0}	{0,.3149}	{0,.6851}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
14696	$\{0,0\}$	{0,0}	{.2329,0}	{.4325,.1359}	{0,.8641}	$\{0,0\}$	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
15460	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$	{0,0}	{.3083,.048}	{.3529,.952}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$
15311	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{.8528,.2602}	{0,.7398}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$
15603	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{0,0}	$\{.9208, .8444\}$	{0,.1556}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$
15861	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{0,0}	{.0545,.477}	{.619,.523}	{0,0}	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$
16807	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$	{0,0}	{0,0}	$\{0,0\}$	{0,.13}	{0,.87}	{.1511,0}	{.4988,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
16919	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,.9705}	$\{0,.0295\}$	{.928,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
16388	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,.7266}	{.5254,.2734}	{.1412,0}	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
15433	{0,0}	{0,0}	{0,0}	{0,0}	{.407,.0864}	{.2457,.9136}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
15497	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{.1732,0}	{.4998,.9953}	{0,.0047}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	$\{0,0\}$
15145	$\{0,0\}$	{0,0}	{0,0}	{.1418,0}	{.5407,.4965}	{0,.5035}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	{0,0}	$\{0,0\}$	{0,0}
15163	$\{0,0\}$	{0,0}	{0,0}	{.0847,0}	{.6065,.4709}	{0,.5291}	{0,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}	{0,0}	$\{0,0\}$	{0,0}
15984	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,.3019}	{.8713,.6981}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
16859	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.0559}	{0,.9441}	$\{0,0\}$	{.6981,0}	{0,0}	$\{0,0\}$	$\{0,0\}$	{0,0}
18150	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.2177}	{0,.7823}	{0,0}	$\{0,0\}$	{.665,0}	{0,0}
18970	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.05}	{0,.95}	$\{0,0\}$	$\{0,0\}$	{.4212,0}
19328	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	$\{0,.0\}$	{0,.5403}	{0,.4597}	$\{0,0\}$	{.6851,0}
19337	$\{0,0\}$	{0,0}	$\{0,0\}$	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	{0,.5275}	{0,.4725}	$\{0,0\}$	{.6917,0}
18876	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.1839}	{0,.8161}	{0,0}	$\{0,0\}$	{.3519,0}

Table 6: Fuzzy sets with aggregated HFEs and fuzzified enrollments of University of Alabama

											17				Aggregated
Enrollment	H_{A1}	H_{A2}	H _{A3}	H_{A4}	H_{A5}	H _{A6}	H _{A7}	H_{A8}	H_{A9}	H _{A10}	H _{A11}	H _{A12}	H _{A13}	H _{A14}	hesitant Fuzzified
13055	0.32279	0.3151	0.37988	0	0	0	0	0	0	0	0	0	0	0	H_{A3}
13563	0.0164	0.62277	0.585853	0.180736	0	0	0	0	0	0	0	0	0	0	H_{A2}
13868	0	0.406066	0.214193	0.549655	0	0	0	0	0	0	0	0	0	0	H_{A4}
14696	0	0	0.091671	0.241372	0.762158	0	0	0	0	0	0	0	0	0	H_{A5}
15460	0	0	0	0	0.129565	0.904637	0	0	0	0	0	0	0	0	H_{A6}
15311	0	0	0	0	0.529589	0.628799	0	0	0	0	0	0	0	0	H_{A6}
15603	0	0	0	0	0	0.8698	0.118278	0	0	0	0	0	0	0	H_{A6}
15861	0	0	0	0	0	0.388542	0.549638	0	0	0	0	0	0	0	H_{A7}
16807	0	0	0	0	0	0	0.098459	0.781655	0.041527	0.17068	0	0	0	0	H_{A8}
16919	0	0	0	0	0	0	0	0.927768	0.021946	0.50976	0	0	0	0	H_{A8}
16388	0	0	0	0	0	0	0.619091	0.347945	0.038646	0	0	0	0	0	H_{A7}
15433	0	0	0	0	0.190681	0.846943	0	0	0	0	0	0	0	0	H_{A6}
15497	0	0	0	0	0.051938	0.983892	0.0035	0	0	0	0	0	0	0	H_{A6}
15145	0	0	0	0.046242	0.509307	0.402735	0	0	0	0	0	0	0	0	H_{A5}
15163	0	0	0	0.02703	0.513058	0.425562	0	0	0	0	0	0	0	0	H_{A5}
15984	0	0	0	0	0	0.232448	0.757242	0	0	0	0	0	0	0	H_{A7}
16859	0	0	0	0	0	0	0.04191	0.883649	0	0.277104	0	0	0	0	H_{A8}
18150	0	0	0	0	0	0	0	0	0.166356	0.670954	0	0	0.359649	0	H_{A10}
18970	0	0	0	0	0	0	0	0	0	0.036705	0.879728	0	0	0.302531	H_{A11}
19328	0	0	0	0	0	0	0	0	0	0	0.422745	0.33722	0	0.53298	H_{A14}
19337	0	0	0	0	0	0	0	0	0	0	0.411427	0.347752	0	0.539453	H_{A14}
18876	0	0	0	0	0	0	0	0	0	0.137706	0.697966	0	0	0.248573	H_{A11}

Tabela 7:

FLR e FLR (Grupo) para Matrículas da Universidade do Alabama

			FLRs		
$H_{A3} \rightarrow H_{A2}$	$H_{A2} \rightarrow H_{A4}$	$H_{A4} \rightarrow H_{A5}$	$H_{A5} \rightarrow H_{A6}$	$H_{A6} \rightarrow H_{A6}$	$H_{A6} \rightarrow H_{A6}$
$H_{A6} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A8}$	$H_{A8} \rightarrow H_{A8}$	$H_{A8} \rightarrow H_{A6}$ $H_{A8} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A6}$ $H_{A7} \rightarrow H_{A6}$	$H_{A6} \rightarrow H_{A6}$ $H_{A6} \rightarrow H_{A6}$
$H_{A6} \rightarrow H_{A5}$	$H_{A5} \rightarrow H_{A5}$	$H_{A5} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A8}$	$H_{A8} \rightarrow H_{A10}$	$H_{A10} \rightarrow H_{A11}$
$H_{A11} \rightarrow H_{A14}$	$H_{A14} \rightarrow H_{A14}$	$H_{A14} \rightarrow H_{A11}$	11 _A / / 11 _{A8}	11A8 7 11A10	IIAI0 / IIAII
II _{All} 7 II _{Al4}	11 _{A14} / 11 _{A14}		LR groups		
	$_{A2} \rightarrow H_{A4}$		Lix groups		
		и	·п		
	$_{A3} \rightarrow H_{A2}$	H_{A2}	$\rightarrow \Pi_{A3}$		
	$A_{A5} \rightarrow H_{A5}$ $A_{A5} \rightarrow H_{A5}$	H_{A5}	, II	H_{A5}	H
	$A_5 \rightarrow H_{A_5}$ $A_6 \rightarrow H_{A_5}$	H_{A6} —		H_{A6}	, П
	$A_{A_{0}} \rightarrow H_{A_{0}}$ $H_{A_{0}} \rightarrow H_{A_{0}}$	H_{A7}		11A6	7 11A7
	$A_{A_{0}} \rightarrow H_{A_{0}}$ $A_{A_{0}} \rightarrow H_{A_{0}}$	$H_{A8}-$		Ш	• H _{A10}
	$_{10} \rightarrow H_{A11}$	11 _{A8} —	7 11 _{A8}	11 _{A8}	1,410
	$_{11} \rightarrow H_{A11}$ $_{11} \rightarrow H_{A14}$				
	$H_{A11} \rightarrow H_{A11}$	H_{A14}	ъ Н		
	14	11 _{A14} —	7 11 _{A14}		
			1		
				7	
				/	
			7		
		λ			
		\wedge γ			
)			
		Y			
)				
	7				
*					

Table 8:

Forecasted	annal	lmonta
FOIECasted	emoi	mnems.

Torccasi	cu cinoin	ments.										
Actual enrollment	Song and Chissom (1993a)	Chen (1996)	Huarng, (2001) (heuristic)	Lee and Chou (2004)	SC_time Variant (1994)	Cheng et al .(2006)	Cheng et al. (2008)	Yolcu et al. (2009)	Qiu et al. (2011)	Joshi and Kumar (2012)	Kumar & Gangwar (2015)	Proposed model
13055				(MEPA)								
13055	-	-	-	-	-	-	-	-		-)		-
13563	14000	14000	-	14025	-	14230	14242.0	14031.35	14195	14250	-	13595.67
13867	14000	14000	-	14568	-	14230	14242.0	14795.36	14424	14246	13693	13814.75
14696	14000	14000	14,000	14568		14230	14242.0	14795.36	14593	14246	13693	14929.79
15460	15500	15500	15,500	15654	14,700	15541	15474.3	14795.36	15589	15491	14867	15541.27
15311	16000	16000	15,500	15654	14,800	15541	15474.3	16406.57	15645	15491	15287	15540.62
15603	16000	16000	16,000	15654	15,400	15541	15474.3	16406.57	15634	15491	15376	15540.62
15861	16000	16000	16,000	15654	15,500	16196	15474.3	16406.57	16100	16345	15376	15540.62
16807	16000	16000	16,000	16197	15,500	16196	16146.5	16406.57	16188	16345	15376	16254.50
16919	16813	16833	17,500	17283	16,800	16196	16988.3	17315.29	17077	15850	16523	17040.41
16388	16813	16833	16,000	17283	16,200	17507	16988.3	17315.29	17105	15850	16606	17040.41
15433	16789	16833	16,000	16197	16,400	16196	16146.5	17315.29	16369	15850	17519	16254.50
15497	16000	16000	16,000	15654	16,800	15541	15474.3	16406.57	15643	15450	16606	15540.62
15145	16000	16000	15,500	15654	16,400	15541	15474.3	16406.57	15648	15450	15376	15540.62
15163	16000	16000	16,000	15654	15,500	15541	15474.3	16406.57	15622	15491	15376	15541.27
15984	16000	16000	16,000	15654	15,500	15541	15474.3	16406.57	15623	15491	15287	15541.27
16859	16000	16000	16,000	16197	15,500	16196	16146.5	16406.57	16231	16345	15287	16254.50

18150	16813	16833	17,500	17283	16,800	17507	16988.3	17315.29	17090	17950	16523	17040.41
18970	19000	19000	19,000	18369	19,300	18872	19144.0	19132.79	18325	18961	17519	18902.30
19328	19000	19000	19,000	19454	17,800	18872	19144.0	19132.79	19000	18961	19500	19357.30
19337	19000	19000	19,500	19454	19,300	18872	19144.0	19132.79	19000	18961	19000	19168.56
18876	-	19000	19,000	-	19,600	18872	19144.0	19132.79	19000	18961	19500	19168.56

Tabela 9:

Análise de erro e desempenho estatístico do método proposto na previsão de matrículas na Universidade do Alabama

Modelo RMSE	AFE <i>R2</i>		r	PP Mad	TS
Song &	c Chissom	650.4 3	3.22	0.9173 0.841	4 0.74 0.6419 516.35 2.6861
(1993)					
Song &	t Chissom	880.73 3.	.75	0.8317 0.691	7 0.84 0.5151 729.05 -4514
(1994)					
Chen (1996)	638.36 3.	.11	0.9262 0.857	9 0.77 0.6485 498.80 3.2377

476.97 2.36	0.9467 0.8962 0.47 0.7374 383.45 0.5554
501.28 2.67	0.9542 0.9105 0.49 0.7240 428.95 4.1240
511.04 2.66	0.9548 0.9117 0.62 0.7186 429.04 -0.601
478.45 2.39	0.9587 0.9192 0.64 0.7366 386.22 -1.854
805.17 4.29	0.9121 0.83 0.27 0.5567 643.41 13.44
511.33 2.65	0.9599 0.9219 0.58 0.7185 430.76 2.0521
433.76 2.24	0.9688 0.9387 0.59 0.7612 358.71 -4.853
3.56 2.33 0.95	594 0.9254 0.24 0.7235 368.68 1.554 (2015)
428.63 1.94	0.9667 0.9346 0.61 0.7640 318.69 -0.214
	501.28 2.67 511.04 2.66 478.45 2.39 805.17 4.29 511.33 2.65 433.76 2.24 3.56 2.33 0.95

4.2. Preço de previsão da ação SBI na BSE, Índia

A hesitação é a característica muito comum e fundamental dos dados da série de tempo financeiro. Para ver o desempenho e a adequação do método de previsão de séries temporáticas hesitantes, ele é implementado para prever o preço da ação SBI na BSE India from abril de 2008 a março de 2010. Universo do discurso U = [741, 2892] para dados de séries temporências de ação SBI é definido observando o preço máximo e mínimo do preço real da ação SBI (Tabela 10) e seu desvio padrão.

Tabela: 10Preços reais das ações da SBI

Meses	SBI Preços	meses	SBI Preços
Abril-08	1819.95	Abril-09	1355.00
Maio-08	1840.00	Maio-09	1891.00
junho-08	1496,70	junho-09	1935,00
Julho-08	1567,50	julho-09	1840,00
agosto-08	1638.90	agosto-09	1886,90
Setembro-08	1618.00	Setembro-09	2235.00
Outubro-08	1569,90	Outubro-09	2500,00
Novembro-08	1375.00	Novembro-09	2394.00
dezembro-08	1325.00	Dezembro-09	2374.75
Janeiro-09	1376.40	Janeiro-10	2315.25
Fevereiro-09	1205.90	Fevereiro-10	2059.95
março-09	1132.25	março-10	2120.05

Os dados da série time de compartilhamento SBI são fuzzificados usando quatorze funções de associação triangular com igual (e_i) e intervalos desiguais (UE_i) . O comprimento do intervalo desigual é novamente determinado pelo CPDA. Limites de probabilidade inferior e superior com probabil cumulativoas informações são dadas na Tabela 11. A seguir, são quatorze intervalos com igual comprimento de intervalo.

 $e_1 = [741, 894.6429], e_2 = [894.6429, 1048.286], e_3 = [1048.286, 1201.929], e_4 = [1201.929, 1355.571], e_5 = [1355.571, 1509.214], e_6 = [1509.214, 1662.857], e_7 = [1662.857, 1816,5], e_8 = [1816,5, 1970.143], e_9 = [1970.143, 2123.786], e_{10} = [2123.786, 2277.429], e_{11} = [2277.429, 2431.071], e_{12} = [2431.071, 2584.714], e_{13} = [2584.714, 2738.357], e_{14} = [2738.357, 2892].$

Os pesos utilizados para funções de adesão com intervalos iguais e desiguais são calculados e são mostrados na Tabela 12.

Hesitante fuzzy define *Hi* com dois valores de adesão para cada datum em séries temporescadas os dados das ações da SBI são construídos (Tabela 13) e são ainda mais agregados usando o operador de agregação de elementos embaçados propostos. A Tabela 14 mostra os conjuntos difusos e o preço das ações da SBI embaçados. As operações de composição max-min são implementadas em FLRs e FLR(grupo) dadas na Tabela 15 para calcular o preço previsto da ação SBI na BSE, Índia. A Tabela 16 apresenta o preço previsto das ações da SBI usando o método proposto e também são comparados com outros preços previstos usando os métodos propostos Chen (1996), Pathak e Singh (2011), Joshi & Kumar (2012) e Kumar & Gangwar (2015). A comparação dos métodos de existing do preço das ações do SBI em termos de parâmetro estatístico (Tabela 1) é mostrada na Tabela 17.

Tabela: 11 Limite inferior e superior de probabilidade para o preço das ações da SBI

do discurso U

Cumulativo

Intervalo Universo

	probabilida	de			
		Comprim	nento Metade	superior inferior	de
		intervalo vii	nculado		
	PLB P	UB			
$UE_1 \ 0.000000$	0.071429	741.0000	977.2218	1213.444	472.4436
UE ₂ 0.035714	0.142857	1081.477	1225.204	1368.930	287.4525
eu ₃ 0.107143	0.214286	1300.780	1388.800	1476.819	176.0392
UE ₄ 0.178571	0.285714	1426.308	1495.686	1565.064	138,7558
UE ₅ 0.250000	0.357143	1522.625	1582.913	1643.202	120.5779
eu ₆ 0.321429	0.428571	1605.040	1660.503	1715.965	110,9249

UE_7	0.392857	0.5	00000	1680.045	1733.197	1786.350	106.3051
eu ₈	0.464286	0.5	71429	1751.300	1804.017	1856.735	105.4350
eu9	0.535714	0.6	42857	1821.400	1875.449	1929.498	108.0974
eu_{10}	0.607143	0.7	14286	1892.655	1950.146	2007.636	114.9809
UE_{11}	0.0	678571	0.78571	4 1967	.660 203	31.770 20	95.881
	128.2210	UE ₁₂ 0.7	50000	0.857143	2050.075	2126.923	2203.770
	153.6946						
eu13	0.	821429	0.928571	2146.392	2252.824	2359.256	212.8646
eu14	0.	892857	1.000000	2271.920	2581.960	2892.000	620.0801

Tabela 12: Pesos para intervalos iguais e desiguais para o preço das ações da SBI.

Pesos	
Para inter desiguafalso	Para intervalos iguais
0.605907	0.394093
0.483327	0.516673
0.364225	0.635775
0.311083	0.688917
0.281812	0.718188
0.265237	0.734763
0.257029	0.742971
0.255463	0.744537
0.260236	0.739764
0.272295	0.727705
0.294418	0.705582
0.333409	0.666591
0.409236	0.590764
0.668647	0.331353
	RIT

Table 13:HFSs for the SBI share price

Months	H1	H2	Н3	H4	Н5	Н6	H 7	Н8	Н9	H10	H11	H12	H13	H14
April-08	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.9775}	{.6968,.0225}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
May-08	{0,0}	{0,0}	{0,0}	{0,0}	$\{0,0\}$	{0,0}	{0,.847}	{.3174,.153}	{.3441,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
June-08	{0,0}	{0,0}	{0,0}	{.9854,.0814}	{0,.9186}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
July-08	{0,0}	{0,0}	{0,0}	{0,0}	{.7443,.6206}	{0,.3794}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
August-08	{0,0}	{0,0}	{0,0}	{0,0}	{.0714,.1559}	{.6105,.8441}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
September-08	{0,0}	{0,0}	{0,0}	{0,0}	{.418,.292}	{.2337,.708}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
October-08	{0,0}	{0,0}	{0,0}	{0,0}	{.7842,.605}	{0,.395}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
November-08	{0,0}	{0,0}	{.8432,0}	{0,.8734}	{0,.1265}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
December-08	{0,0}	{.3057,0}	{.2752,.199}	{0,.801}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
January-09	{0,0}	{0,0}	{.8591,0}	{0,.8644}	{0,.1356}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
February-09	{.0319,0}	{.8657,0}	{0,.9742}	{0,.0258}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
March-09	{.3437,0}	{.3533,.4535}	{0,.5465}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
April-09	{0,0}	{.0969,0}	{.616,.0037}	{0,.9963}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
May-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.5151}	{0,.4849}	{.7123,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
June-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.2287}	{0,.7713}	{0,0}	{.7366,0}	{0,0}	{0,0}	{0,0}	{0,0}
July-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.847}	{.3174,.153}	{.3441,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
August-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.5418}	{0,.4562}	{.7881,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}
September-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.2762}	{0,.7238}	{0,0}	{0,0}	{.8325,0}	{0,0}
October-09	{0,0}	{0,0}	{0,0}	{0;0}	(0,0)	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.5514}	$\{0,.4486\}$	$\{0,0\}$	{.7356,0}
November-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.2413}	{0,.7587}	{0,0}	{0,0}	{.3938,0}
December-09	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.3666}	{0,.6534}	{0,0}	{0,0}	{.3317,0}
January-10	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.7538}	{0,.2462}	{0,0}	{.4135,0}	{.1398,0}
February-10	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.4155}	{0,.5845}	{0,0}	{.5597,0}	{.1292,0}	{0,0}	{0,0}
March-10	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,0}	{0,.0243}	{0,.9757}	{0,0}	{0,0}	{.9112,0}	{0,0}	{0,0}

Table 14.Fuzzy sets with aggregated HFEs and fuzzified SBI share prices

SBI Prices	H_{A1}	H_{A2}	H_{A3}	H_{A4}	H_{A5}	H_{A6}	H_{A7}	H_{A8}	H_{A9}	H_{A10}	H_{A11}	H _{A12}	H_{A13}	H_{A14}	Fuzzified price
1819.95	0	0	0	0	0	0	0.94033	0.27515	0	0	0	0	0	0	H_{A7}
1840	0	0	0	0	0	0	0.752115	0.1984	0.1039	0	0	0	0	0	H_{A7}
1496.7	0	0	0	0.7467	0.8349	0	0	0	0	0	0	0	0	0	H_{A5}
1567.5	0	0	0	0	0.6605	0.2956	0	0	0	0	0	0	0	0	H_{A5}
1638.9	0	0	0	0	0.1328	0.8012	0	0	0	0	0	0	0	0	H_{A6}
1618	0	0	0	0	0.3300	0.6228	0	0	9	0	0	0	0	0	H_{A6}
1569.9	0	0	0	0	0.6668	0.3087	0	0	0	0	0	0	0	0	H_{A5}
1375	0	0	0.4907	0.7592	0.0925	0	0	0	0	0	0	0	0	0	H_{A4}
1325	0	0.1616	0.2276	0.6711	0	0	0	0	0	0	0	0	0	0	H_{A4}
1376.4	0	0	0.5102	0.7475	0.0993	0	0	0	0	0	0	0	0	0	H_{A4}
1205.9	0.0194	0.6210	0.9022	0.0178	0	0	0	0	0	0	0	0	0	0	H_{A3}
1132.25	0.2252	0.4071	0.3951	0	0	0	0	0	0	0	0	0	0	0	H_{A2}
1355	0	0.0480	0.2959	0.978	0	0	0	0	0	0	0	0	0	0	H_{A4}
1891	0	0	0	0	0	0	0.4159	0.3897	0.2769	0	0	0	0	0	H_{A7}
1935	0	0	0	0	0	0	0.1754	0.6666	0	0.3045	0	0	0	0	H_{A8}
1840	0	0	0	0	0	0	0.7521	0.1984	0.1039	0	0	0	0	0	H_{A7}
1886.9	0	0	0	0	0	0	0.4400	0.3646	0.3322	0	0	0	0	0	H_{A7}
2235	0	0	0	0	0	0	0	0	0.2126	0.6079	0	0	0.5186	0	H_{A10}
2500	0	0	0	0	0	0	0	0	0	0	0.4319	0.3275	0	0.5891	H_{A14}
2394	0	0	0	0	0	0	0	0	0	0.1820	0.6332	0	0	0.2844	H_{A11}
2374.75	0	0	0	0	0	0	0	0	0	0.2827	0.5265	0	0	0.2362	H_{A11}
2315.25	0	0	0	0	0	0	0	0	0	0.6393	0.1807	0	0.1961	0.0957	H_{A10}
2059.95	0	0	0	0	0	0	0	0.3295	0.4778	0	0.2145	0.0450	0	0	H_{A9}
2120.05	0	0	0	0	0	0	0	0.0181	0.9360	0	0	0.5539	0	0	H_{A9}

Mesa 15.

FLR and FLR(Group) for SBI share prices

FLRs					
$H_{A7} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A5}$	$H_{A5} \rightarrow H_{A5}$	$H_{A5} \rightarrow H_{A6}$	$H_{A6} \rightarrow H_{A6}$	$H_{A6} \rightarrow H_{A5}$
$H_{A5} \rightarrow H_{A4}$	$H_{A4} {\longrightarrow} H_{A4}$	$H_{A4} {\longrightarrow} H_{A4}$	$H_{A4} {\longrightarrow} H_{A3}$	$H_{A3} \rightarrow H_{A2}$	$H_{A2} \rightarrow H_{A4}$
$H_{A4} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A8}$	$H_{A8} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A7}$	$H_{A7} \rightarrow H_{A10}$	$H_{A10} \rightarrow H_{A14}$
$H_{A14} \rightarrow H_{A11}$	$H_{A11} {\longrightarrow} H_{A11}$	$H_{A11} {\longrightarrow} H_{A10}$	$H_{A10} \rightarrow H_{A9}$	$H_{A9} \rightarrow H_{A9}$	Y
FLRGs					
$H_{A2} \rightarrow H_{A4}$					
$H_{A3} \rightarrow H_{A2}$			1		
$H_{A4} \rightarrow H_{A3}$		$H_{A4} \rightarrow H_{A4}$		$H_{A4} \rightarrow H_{A7}$	
$H_{A5} \rightarrow H_{A4}$		$H_{A5} \rightarrow H_{A5}$		$H_{A5} \rightarrow H_{A6}$	
$H_{A6} \rightarrow H_{A5}$		$H_{A6} \rightarrow H_{A6}$	>		
$H_{A7} \rightarrow H_{A5}$		$H_{A7} \rightarrow H_{A7}$		$H_{A7} \rightarrow H_{A8}$	$H_{A7} \rightarrow H_{A10}$
$H_{A8} \rightarrow H_{A7}$	4	MA			
$H_{A9} \rightarrow H_{A9}$		Y			
$H_{A10} \rightarrow H_{A9}$		$H_{A10} \rightarrow H_{A14}$			
$H_{A11} \rightarrow H_{A10}$		$H_{A11} \rightarrow H_{A11}$			
$H_{A14} \rightarrow H_{A11}$					
7					

Mesa 16.

Previsão de preços das ações da SBI.

Meses	Dados da série temporal prevista do preço das ações da
	SBI

	Preços	Chen	Hurang	Pathak &	Joshi &	Kumar &	Método
	reais do	(1996)	(2001)	Singh(201	11) Kumar(2012) Guerra de	proposto
	SBI					gangues	
						(2015)	
Abr08	1819.95	-	-	-	-	-	
Maio-08	1840.00	1900	1855	1770.00	1777.80	1725.98	1877.657
junho-08	1496.70	1900	1855	1832.50	1865.71	1725.98	1877.657
julho-08	1567,50	1500	1575	1470.00	1531.50	1512.39	1466.360
Ago08	1638.90	1500	1505	1570.00	1531.50	1512.39	1466.360
Sep-08	1618.00	1600	1610	1670.00	1777.80	1574.35	1533.504
Out08	1569.90	1600	1610	1603.33	1531.50	1574.35	1533.504
Nov08	1375.00	1500	1505	1670.00	1531.50	1512.39	1466.360
Dez08	1325.00	1433	1482	1382.50	1504.23	1305.52	1520.652
Jan09	1376.40	1433	1365	1332.50	1504.23	1665.90	1520.652
Fev09	1205.90	1433	1482	1332.50	1504.23	1305.52	1520.652
Mar09	1132.25	1433	1155	1195.00	1258.23	1294.27	1144.718
Abr09	1355.00	1300	1365	1145.00	1258.23	1294.27	1322.446
Maio-09	1891.00	1433	1482	1357.50	1504.23	1665.90	1520.652
junho-09	1935.00	1900	1890	1882,50	1865.71	2006.51	1877.657
julho-09	1840.00	1900	1890	1970.00	1883.93	2006.51	1895.491
Ago09	1886.90	1900	1855	1470.00	1865.71	1725.98	1877.657
Sep-09	2235.00	1900	1855	1970.00	1865.71	2006.51	1877.657
Out09	2500.00	2300	2485	2245.00	2142.04	2520.00	2311.382
Nov09	2394.00	2300	2415	2470.00	2245.65	2420.00	2374.204
Dez09	2374.75	2300	2345	2395.00	2191.75	2365.99	2352.723
Jan10	2315.25	2300	2205	2395.00	2191.75	2365.99	2352.723
Fev10	2059.95	2300	2205	2295.00	2142.04	2020.00	2311.382
Mar10	2120.05	2100	2135	2070.00	1883.93	2120.00	2166.247

Tabela: 17Análise de parâmetros de erro e estatística dos modelos propostos e outros na previsão do preço das ações do SBI.

Modelo F	RMSE AFE	$E R2 \square_r$	PP Mad	TS				
Chen (1996)	187.26	8.26	0.8839	0.7813	1.14	0.5313	136.32	0.825
Hurang (2001)	164.04	6.29	0.911	0.8314	1.08	0.5894	105.30	0.698
Pathak & Singh (2011)	205.96	8.95	0.8685	0.7544	1.33	0.4845	155.10	-3.604
Joshi & Kumar (2012)	200.17	9.52	0.8820	0.7780	0.97	0.4990	164.30	-4.221
Kumar & Gangwar	131.28	6.30	0.9446	0.8924	0.72	0.6714	101.73	1.713
(2015)								
Modelo proposto	179.03	7.86	0.9001	0.8101	0.95	0.5519	131.28	0.882

5. Análise estatística de testes

Emparelhado de duas caudas *t*-teste com nível de confiança □□.05é aplicado em absoluta diferença de observações reais e previstas em ambos os experimentos de previsão de matrículas da Universidade do Alabama e preço das ações da SBI para investigar o Desempenho de previsão entre os métodos propostos com os apresentados por Song & Chissom (1993, 1994), Chen (1996), Huarng (2001), Lee & Chou (2004), Cheng et al. (2006), Cheng et al. (2008), Yolcu et. al. (2009), Qui et al. (2011), Joshi & Kumar (2012) e Kumar & Gangwar (2015). Mesa 18 shows os resultados de emparelhado de duas caudas *t*- teste que indica que, ao prever matrículas da Universidade do Alabama, o método proposto superou todos os métodos propostos por Song & Chissom (1993, 1994), Chen (1996), Lee & Chou (2004), Cheng et al. (2006, 2008) exceto Hurang (2001), Joshi & Kumar (2012) e Kumar & Gangwar (2015). Embora o teste de significância estatística sugira que o modelo proposto e os de Joshi & Kumar (2012) e Kumar & Gangwar (2015) são igualmente bons em termos de *p*- valor, mas quantidade reduzida de RMSE e maior valor de diferença confirmam o desempenho fora do método proposto sobre qualquer uma dessas duas formas em ambiente hesitante.

Tabela 18:

Teste estatístico para matrícula da University do Alabama.

Modelos	emparelhados dois t-testes de cauda
	p-valor/ diff.
Song and Chissom (1993a)	0.0046 ^{,/} -196.3525
Chen (1996)	0,00805/-180.118
Huarng (2001) (heurística)	0.277/-73.642
Lee e Chou (2004)(MEPA)	0.04227/-108.9525
SC_time Variant(1994)	0,00573
Cheng et al. (2006) 0,075	8/-110.3566 Cheng et al. (2008)
Leve passageiros. (2009)	0.00116/-355,36
Qiu et al. (2011)	0.0271/-112.070
Joshi & Kumar (2012)	0.62422/-40.0233
Kumar & Gangwar (2015)	0.24911/-67.547

0,05557/-67.537

Denota a significância em 5%.

A significância é de 1%.

Na previsão do preço das ações da SBI, os resultados dos testes t-tailed emparelhados de 2 caudas (Tabela 19) sugerem que o método proposto superou o método proposto por Hurang (2001) e Joshi & Kumar (2012) em nível de confiança de 5 % e 7%. No entanto, o método proposto é considerado tão preciso quanto os métodos propostos por Chen (1996), Pathak & Singh (2011) e Kumar & Gangwar (2015), mas a quantidade reduzida de RMSE e AFER confirmam o

desempenho fora do método proposto em séries de tempo financeiro sensíveis prevendo o preço das ações da SBI except Hurang (2001).

Tabela 19:

Teste estatístico para os preços das ações da SBI.

Modelos er	mparelhados com t-tailed de 2 caudas
	Modelo proposto (p-valor/diff.)
Chen (1996)	0,75916/-5.039
Hurang (2001)	0.0440/20019
Pathak & Singh (2011)	0.3806/-23.819
Joshi & Kumar (2012)	0.07334/-33.017
Kumar & Gangwar (20	015) 0.2286/29.55413

6. Conclusões

No presente estudo, propusemos um novo método de previsão de séries tempor médias que usa informações confusas hesitantes. Nós também propomos umn operador de agregação para agregar elementos embaçados hesitantes de conjunto confuso hesitante. O método proposto inclui hesitação na previsão de séries temporâneas que ocorre devido à existência de múltiplas classificações difusas válidas de dados de séries temporâns nas anterioresethods propostos por Joshi & Kumar (2012) e Kumar & Gangwar (2015) hesitação foi cuidado pelo IFS.

O desempenho do método de previsão de séries temporesas hesitantes é verificado implementando-o para o problema de referência de matrículas forecast da Universidade do Alabama. A quantidade reduzida de RMSE e AFE confirma que, em termos de medidas de erro, o modelo proposto é melhor do que outros métodos propostos pela Song & Chissom (1993, 1994), Chen (1996), Huarng (2001), Lee & Chou (2004), Cheng et al. (2006), Cheng et al. (2008), Yolcu et al. (2009), Qui et al. (2011), Joshi & Kumar (2012) e Kumar & Gangwar (2015). Tanto os valores *R* quanto *R2* confirmam a melhor associação entre matrículas reais e previstas. O valor numérico de *PP* e *TS* também está na faixa desejada para confirmar a previsão de matrícula correta e imparcial utilizando o método proposto.

As séries de tempo financeiro possuem características internas fornecidas pela microestrutura do mercado financeiro. Volatilidade relativamente alta e freq altaa eficiência do datum de séries temporâneais individuais que geralmente muda através do tempo tornam a previsão mais difícil do que outros dados de séries temporal. Mesmo bem estabelecido métodos de previsão de séries tempo podem não prever ou prever com alta quantidade de erro mediçãoEs. Além de ver a

adequação do método proposto em séries de tempo financeiro prevendo onde a não linearidade, características internas e hesitação dificultam a previsão, também é implementado para prever o preço das ações do SBI na BSE e forecasos preços são comparados com os métodos propostos por Chen (1996), Hurang (2001), Pathak e Singh (2011), Joshi & Kumar (2012) e Kumar & Gangwar (2015) em termos de RMSE e AFE. Mesmo que o método proposto tenha um desempenho levemente inferior em termos de emedidas de rror (Hurang, 2001; Kumar & Gangwar, 2015), satisfaz todos os critérios estatísticos para confirmar que o método também é adequado para previsão de séries de tempo financeiro. Valor sobre o valor de gama de parâmetros de avaliação (\Box_r) (Tabela 17) na previsão de SBI share preço usando os métodos (Chen, 1996;

Hurang, 2001; Pathak & Singh, 2011) também levantam a questão de sua aplicabilidade na previsão de séries de tempo financeiro.

Embora o método proposto seja uma tentativa de introduzir os conjuntos difusos hesitantes em séries temporândias que incluem a hesitação que occurs por causa da disponibilidade de mais de um método de fuzzificação para previsão de séries temporâneas, ainda há espaço para aumentar a precisão na previsão usando a metodologia proposta em ambiente agrupado e pelo préprocessamento de séries temporândias data.

Referências

- Askari, S., Montazerin, N., & Zarandi, M. F. (2015). Um algoritmo de previsão baseado em cluster para séries temporáveis embaçadas multivariáveis usando combinações lineares de variáveis independentes. *Computação Macia Aplicada*, *35*, 151-160.
- Atanassov, K. (1986). Conjuntos intuitivos fuzzy. *Fuzzy Sets and Systems*, 20, 87-96. Atanassov, K. (1999). Conjuntos intuitivos fuzzy: *Teoria e Aplicações*. Heidelberg, Alemanha: Physica-Verlag, 1999.
- Cai, Q., Zhang, D., Zheng, W. & Leung, S.C.H. (2015). Um novo modelo de previsão de séries temporescúnidas combinado com otimização da colônia de formigas e autoregressão.
 - Sistemas baseados em conhecimento, 74, 61-68.
- Chakraverty, S. e Gupta, P. (2008). Comparação da configuração da rede neural no longotocou previsão de chuva de monções sudoeste sobre a Índia. *Computação Neural e Aplicações*, 17, 187-192.
- Chase, R.B., Aquilano, N. J. & Jacobs, F. R. (2006). Gestão de Operações para Vantagens Competitivas, McGraw-Hill.

- Chen, M.Y. e Chen, B.T. (2015). Um modelo híbrido de série temporal difusa baseado na computação granular para previsão de preços de ações. *Ciências da Informação*, 294, 227-241.
- Chen, S.M. (1996). Previsão de matrículas com base em séries tempores difusas. *Fuzzy Sets and Systems*, 81, 311-319.
- Chen, S.M. (2002). Previsão de matrículas com base em séries temporentas de alta ordem.
 - Cibernética e Sistemas, 33, 1-16.
- Chen, S.M. e Chung, N. Y., (2006). Previsão de matrículas usando séries tempores difusas de alta ordem e algoritmos genéticos. *International Journal of Intelligent Systems*, 21, 485-501.
- Chen, S.M. e Hwang, J. R. (2000). Previsão de temperatura usando séries tempores difusas. IEEE Transactions on Systems, Man, and Cybernetics - Parte B: Cybernetics 30, 263-275.
- Cheng, C. H., Cheng, G.W. and Wang, J.W. (2008). Método de série temporal difusa multiatributo baseado em agrupamento fuzzy. *Expert Systems with Applications*, *34*, 1235-1242.
- Cheng, C., Chang, J., Yeh, C. (2006). A série temporal fuzzy baseada em entropia e trapezoida se aproxima para prever o custo do projeto de TI. *Previsão Tecnológica e Mudança Social*, 73, 524-542.
- Cheng, S.H., Chen, S.M. & Jian, W. S. (2016). Previsão de séries temporizantes difusas baseadas em relações lógicas difusas e medidas de similaridade. *Ciências da Informação*, 327, 272287.
- Efendi, R., Ismail, Z., & Deris, M.M. (2015). Uma nova abordagem linguística de séries temporísticas difusas para previsão diária da demanda de carga elétrica da Malásia. *Aplicado Soft Computing*, 28, 422-430.
- Egrioglu, E., C. H. Aladag, Basaran, M. A., Uslu, V. R. & Yolcu, U. (2011). Uma nova abordagem baseada na otimização do comprimento dos intervalos em séries temporativas difusas. *Journal of Intelligent and Fuzzy Systems*, 22, 15-19.
- Gangwar, S. S. e Kumar, S. (2014). Método probabilístico e intuitivo baseado em conjunto fuzzy para previsão de séries temporáticas difusas. *Cibernética e Sistemas: Um Jornal Internacional*, 45, 349-361.

- Hsu, L. Y., Horng, S.J., Kao, T. W., Chen, Y. H., Run, R. S., Chen, R. J., Lai, J. L. & Kuo, I.
 H. (2010). Previsão de temperatura e previsão de TAIFEX com base em relações difusas e técnicas de MTPSO. Sistemas especializados com aplicação, 37, 2756-2770.
- Huarng, K. (2001). Duração efetiva dos intervalos para melhorar a previsão em timeseries difusos. *Fuzzy Sets and Systems*, 123, 387-394.
- Huarng, K. e Yu, T. H. K. (2006). Comprimentos de intervalos baseados em proporções para melhorar a previsão da série temporal embaçada. *Transactões IEEE em Sistemas, Homem e Cibernética-Parte B:*Cibernética 36, 328-340.
- Hwang, J. R., Chen, S.M. & Lee, C. H. (1998). Problema de previsão de manuseio usando séries tempores difusas. *Fuzzy Sets and Systems*, 100, 217-228.
- Joshi, B.P. e Kumar. S. (2012). Conjuntos fuzzy intuitionísticos baseados no método para previsão de séries temporândicas difusas. *Cibernética e Sistemas*, *43*, 34-47.
- Kumar, S. e Gangwar, S. (2015). Séries tempoentais intuicionísticas: Uma abordagem para lidar com o não determinismo na previsão de séries temporândicas. *IEEE Transactions on Fuzzy Systems*, DOI: 10.1109/TFUZZ.2015.2507582.
- Kuo, I. H., Horng, S.J., Kao, T. W., Lin, T. L., Lee, C. L. & Pan, Y. (2009). Um método aprimorado para prever matrículas com base em séries temporâneas difusas e otimização de enxames de partículas. *Expert Systems with Application*, *36*, 6108-6117.
- Kuo, I. H., Horng, S.J., Chen, Y. H., Run, R. S., Kao, T. W., Chen, R. J., Lai, J. L. & Lin.T.
 L. (2010). Previsão de TAIFEX com base em séries temporizentes difusas e otimização de enxame de partículas. *Expert Systems with Application*, 37, 1494-1502.
- Lee, H. S. e Chou, M. T. (2004). Previsão difusa baseada em séries tempores difusas. *International Journal of Computer Mathematics*, 81, 781-789.
- Lee, L. W., Wang, L.H., Chen, S.M., & Leu, Y. H. (2006). Lidar com problemas de previsão com base em séries temporentas de alta ordem. *Fuzzy Systems, IEEE Transactions em*, 14, 468-477.
- Lee, L.W., Wang, L.H. e Chen, S.M. (2007). Previsão de temperatura e previsão de TAIFEX com base em relações lógicas difusas e algoritmos genéticos. *Sistemas especializados com Aplicações*, *33*, 539-550.

- Own, C.M. and Yu, P. T. (2005). Previsão de séries temporísticas confusas em um modelo heurístico high-order. *Cibernética e Sistemas*, *36*, 705-717.
- Park, J.I., Lee, D.J., Song, C. K. & Chun, M. G. (2010). Previsão de TAIFEX e KOSPI 200 com base em dois fatores de alta ordem séries temporizentes difusas e otimização de enxame de partículas. *Sistemas Especializados com Aplicação*, *37*, 959-967.
- Pathak, H. K. e Singh, P. (2011). Um novo método de previsão baseada em intervalo de largura de banda para matrículas usando séries temporéticas difusas. *Matemática Aplicada*, 2. 504-507.
- Qian, G., Wang, H. & Feng, X. (2013). Conjuntos confusos hesitantes generalizados e sua aplicação no sistema de suporte a decisões. *Sistemas baseados em conhecimento*, *37*, 357-365.
- Qiu, W., Liu, X., Li, H., (2011). Um método generalizado de previsão baseado em séries temporizadas. *Expert Systems with Applications*, *38*, 10446-10453.
- Salmeron, J. L., e Froelich, W. (2016). Otimização dinâmica de mapas cognitivos difusos para forecasting de séries temporidas. *Sistemas baseados em conhecimento*, 1-9.
- Song, Q. and Chissom, B. S. (1993a). Fuzzy Time Series e seus modelos. *Fuzzy Sets and Systems*, 54, 269-277.
- Song, Q. e Chissom, B. S. (1993b). Previsão de inscrições com séries temporesas difusas-Parte I. *Fuzzy Sets and Systems*, *54*, 1-9.
- Song, Q. e Chissom, B. S. (1994). Previsão de matrículas com Fuzzy Time Series-Part II. *Fuzzy Sets and Systems*, 64, 1-8.
- Su, C.-H., Chen, T.-L., Cheng, C.-H. & Chen, Y.-C. (2010). Prever o mercado de ações com regras linguísticas geradas a partir do princípio da entropia minimizada e das abordagens cumulativas de distribuição de probabilidades. *Entropia*, 12, 2397-2417.
- Teoh, H.J., Cheng, C.H., Chu, H. H. & Chen, J. S. (2008). Modelo de série temporal difusa baseada em abordagem probabilística e indução de regras de conjunto áspero para pesquisa empírica nos mercados de ações. *Engenharia de Dados & Conhecimento*, 67, 103–117.
- Torra, V. (2010). Hesitante conjuntos confusos. *International Journal of Intelligent Systems*, 25, 529539.
- Torra, V. e Narukawa, Y. (2009). Em sets e decisões confusas hesitantes. Em Proceedings of the 18th *IEEE International Conference on Fuzzy Systems*, 1378-1382.

- Wang, J-W e Liu, J-W. (2010). Modelo ponderado de previsão de séries temporais. Na tramitação da segunda conferência internacional sobre informações inteligentes e Sistemas de Banco de Dados: Parte I, Springer-Verlag, Berlim, Heidelberg. 408-415.
- Xia, M.M. e Xu, Z. S. (2011). Hesitante agregação de informações difusas na tomada de decisões. *International Journal of Aproximação*, 52, 395-407.
- Yolcu, U., Egrioglu, E., Uslu, V. R., Basaran, M. A. & Aladag, C. H. (2009). Uma nova abordagem para determinar o comprimento dos intervalos para séries tempores difusas. *Aplicado Soft Computing*, *9*, 647-651.
- Zadeh, L.A. (1965). Conjunto confuso. *Informações e controle*, 8, 338-353.