Измерение абсолютной активности препарата кобальт - 60 методом гамма - гамма совпадений

Шмаков Владимир - Б04-105

Цель работы

Определить абсолютную активность радиоактивного препарата $^{60}{
m Co}.$

Теоретические сведения

Абсолютной активностью препарата называют число распадов в единицу времени. По закону радиоактивного распада:

$$N = N_0 e^{\lambda t} o rac{dN}{dt} = -\lambda N$$
 (1)

Константа λ , фигурирующая в выражении (1) называется *константой* распада.

Пусть за секунду счетчик зарегистрировал n частиц, тогда абсолютная активность источника может быть найдена при помощи выражения (2):

$$N_0 = \frac{4\pi n}{\epsilon w} \tag{2}$$

 ϵ - эффективность счетчика - вероятность регистрации частицы. ω - телесный угол в котором регистрируются частицы.

Константы ϵ и ω обычно определяются приближенно. Для достижения большей точности измерений желательно их исключить.

При использовании препарата с каскадными переходами, точность измерений N_0 значительно увеличивается. Для $^{60}\mathrm{Co}$ при использовании схемы совпадений абсолютная активность задаётся выражением (3):

$$N_0 = 1.08 \frac{N_1 N_2}{2N_{corr}} \tag{3}$$

Для нахождения скорости истинных совпадений необходимо вычесть из полного количества отсчетов число случайных совпадений:

$$N_{cosn}^{ucm} = N_{cosn} - 2\tau n_{1n} n_{2n} \tag{4}$$

Методика

Рисунок 1. Схема экспериментальной установки

Схема экспериментальной установки изображена на рисунке 1. Заметим, что схема установки похожа на схему, которая использовалась для исследования космического излучения.

Из-за того, что мы используем препарат с каскадным распадом — если γ квант попал на один счетчик, то второй γ квант попадёт на второй счетчик.

Обработка результатов эксперимента

Экспериментальные данные представлены в таблице ниже:

au	N	t
200 нс	2889	10 мин
500 нс	5972	10 мин
1000 нс	9070	10 мин

По полученным экспериментальным данным найдём абсолютные активности препарата: $N_0^{(1)}=5.27\pm0.13$ мкKu, $N_0^{(2)}=3.28\pm0.08$ мкKu, 4.58 ± 0.11 мкKu.

Рисунок 2. Сравнение результатов экспериментов

Вывод

Удалось найти абсолютную активность препарата $^{60}{
m Co}$. Результаты второго эксперимента сильно отличаются от остальных. Результаты последнего эксперимента в пределах погрешности совпали с табличными.