Практическая работа №1

Исследование однослойных нейронных сетей на примере моделирования булевых выражений

Цель работы — исследовать функционирование простейшей нейронной сети (HC) на базе нейрона с нелинейной функцией активации и обучить её по правилу Видроу — Хоффа.

Постановка задачи. Получить модель булевой функции (БФ) на основе однослойной НС (единичный нейрон) с двоичными входами $x_1, x_2, x_3, x_4 \in \{0,1\}$, единичным входом смещения $x_0 = 1$, синаптическими весами w_0, w_1, w_2, w_3, w_4 , двоичным выходом $y \in \{0,1\}$ и заданной нелинейной функцией активации (ФА) $f: R \to (0,1)$ (рис. 1.1).

Для заданной БФ (варианты см. в табл. 1.4) реализовать обучение НС с использованием:

- 1) всех комбинаций переменных x_1, x_2, x_3, x_4 ;
- 2) части возможных комбинаций переменных x_1, x_2, x_3, x_4 ; остальные комбинации являются тестовыми.

Получим нейросетевую модель БФ (табл. 1.1):

$$F_{(x_1, x_2, x_3, x_4)} = x_3 x_4 + \overline{x_1} + \overline{x_2}$$

Таблица 1.1

Таблица истинности БФ

χ_1	x_2	x_3	x_4	F=
0	0	0	0	(X3*X4)+!X1+!X2 1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1

1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Функции активации:

Пороговая
$$\Phi A$$
: $f(\text{net}) = \begin{cases} 1, \text{net} \ge 0, \\ 0, \text{net} < 0; \end{cases}$

Сигмоидальная ΦA : $f(net) = \frac{1}{2}(tanh(net) + 1)$.

Этап 1: Использование пороговой функции активации, обучение ИНС ведется с использованием всех комбинаций переменных x_1 , x_2 , x_3 , x_4

Но-			Сум-
мер	Вектор весов w	Выходной вектор у	марная
эпохи	Dektop beech w	BENEZHON BERTOP y	ошиб-
k			ка Е
0	(0, 0, 0, 0, 0)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)	8
1	(1.1102230246251565e^-	(1 1 1 1 1 1 1 1 1 1 1 1 0 0 0)	8
l	16, 0.0, 0.0, 0.3, 0.3)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)	8
•••			•••
	(3.59999999999999, -		
28	2.999999999999996, -	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)	0
	2.4, 1.8, 1.5)		

Рис. 1. График суммарной ошибки НС по эпохам обучения (пороговая Φ A). Этап 2: Использование логистической функции активации, обучение ИНС ведется с использованием всех комбинаций переменных x_1 , x_2 , x_3 , x_4

Но-			Сум-
мер	Вектор весов w	Выходной вектор у	марная
эпохи	Berrop Beeob W	Bunodiion bektop y	ошиб-
k			ка Е
0	(0, 0, 0, 0, 0)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)	8
1	(-0.307849583310995, -		
	0.07696239582774878, -		
	0.07696239582774878,	(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)	12
	0.07303760417225122,		
	0.07303760417225122)		
•••			•••
41	(1.7518525860569518, -		
	1.6131808311090758, -		
	1.2427707136984534,	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1)	0
	1.0230748343844145,		
	0.8233767291844423)		

Рис. 2. График суммарной ошибки HC по эпохам обучения (сигмоидальная ФА).

Этап 3:

Обучение НС с использованием части комбинации переменных x_1 , x_2 , x_3 , x_4 используя пороговую ФА. Последовательно увеличивая выборку количества векторов, найдем наименьшее количество необходимых для обучения векторов.

Минимальный набор обучающих векторов:

$$x^{(1)} = (0, 0, 0, 1); \ x^{(2)} = (0, 1, 1, 0); \ x^{(3)} = (1, 0, 1, 0); \ x^{(4)} = (1, 1, 1, 0)$$

Вектор синаптических коэффициентов:

$$W = [2.4, -1.5, -1.2, 0.3, 0.3]$$

Для обучения ИНС понадобилось 11 эпох.

Но-			Сум-
мер	Вектор весов w	Выходной вектор у	марная
эпохи	Dekrop becob w	Выходной вектор у	ошиб-
k			ка Е
0	(0, 0, 0, 0, 0)	(1, 1, 1, 1)	4
1	(-1.2, -0.3, -0.3, -0.3, 0)	(0, 0, 1, 1)	12
			•••

Рис. 3. График суммарной ошибки HC по эпохам обучения с минимальным количеством наборов (пороговая ФА).

Этап 4:

11

Обучение НС с использованием части комбинации переменных x_1 , x_2 , x_3 , x_4 используя сигмоидальную ФА. Последовательно увеличивая выборку количества векторов, найдем наименьшее количество необходимых для обучения векторов.

Минимальный набор обучающих векторов:

$$x^{(1)} = (0,0,0,0); x^{(2)} = (0,0,1,1); x^{(3)} = (1,1,0,0); x^{(4)} = (1,1,0,0)$$

Вектор синаптических коэффициентов:

$$W = [0.39667643530238905, -0.2982212040765382, -0.2982212040765382, \\0.14559606755675975, 0.14559606755675975]$$

Для обучения ИНС понадобилось 3 эпохи.

Но-			Сум-
мер	Вектор весов w	Выходной вектор у	марная
эпохи	1		ошиб-
\boldsymbol{k}			ка Е
0	(0, 0, 0, 0, 0)	(1, 1, 1)	4
1	(-0.6, -0.15, -0.15, 0.0, 0.0)	(0, 0, 1)	12
3	(0.39667643530238905, - 0.2982212040765382, - 0.2982212040765382, 0.14559606755675975, 0.14559606755675975)	(1, 1, 0)	0

Рис. 4. График суммарной ошибки HC по эпохам обучения с минимальным количеством наборов (логистическая ФА).

Выводы:

В процессе лабораторной работы было исследовано функционирование простейшей нейронной сети на базе нейрона с нелинейной функцией активации и обучение ее по правилу Видроу — Хоффа. Были обучены НС с использованием пороговой и логистической ФА. А также произведено обучение с использованием части комбинаций переменных. В результате, НС

с использованием пороговой ФА была быстрее обучена на минимальном количестве наборов, чем на полных наборах. А НС с использованием логистической ФА была, наоборот, обучена за меньшее количество эпох на полных наборах.