18.06 Hour Exam II in Linear Algebra

5 November 1993: Professor Strang

Do all your work on these 7 pages. No calculators or notes. Point values (out of a total of 100) are marked on the left margin. This is a long examination!

[25] **1** (a) Find the projection of the vector $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ onto the plane spanned by the vectors

$$\mathbf{a}_1 = \begin{bmatrix} 2\\2\\-1 \end{bmatrix} \text{ and } \mathbf{a}_2 = \begin{bmatrix} 2\\-1\\2 \end{bmatrix}$$

- (b) Apply the Gram-Schmidt process to the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{b}$ to find orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$.
- (c) Express the result of Gram-Schmidt in (b) as a 3×3 matrix factorization A = QR.

What is the projection matrix P onto the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 ?

[15] 2. Which solution of the equations

$$x_1 + x_2 + x_3 = 0$$

$$2x_1 + 2x_2 + 2x_3 + 3x_4 = 0$$

is closest to the vector $\mathbf{b} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$?

[25] **3.**(a) Find the determinant $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 5 \\ 0 & 0 & 5 & 6 \\ 2 & 0 & 0 & 7 \end{bmatrix}$. (Hint: Use the cofactor formula.)

Suppose that A is a 3×2 matrix of rank 2. What is $\det(A(A^TA)^{-1}A^T)$?

(c) If A is a non-singular square matrix, what is the third component x_3 of the solution to

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}?$$

[15] **4.** Find the best least squares approximation to the data 0, 1, 3 at times -1, 0, 1, by a curve of the form $At^2 + B$.

- [20] **5.** Q is a 4×3 matrix with orthonormal columns $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$. Assume that $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$, and \mathbf{b} are linearly independent vectors in \mathbf{R}^4 .
 - (a) What is the row space of Q?
 - (b) What combination \mathbf{p} of $\mathbf{q}_1, \mathbf{q}_2$, and \mathbf{q}_3 is closest to \mathbf{b} ?
 - (c) What combination of $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$, and \mathbf{b} is in the nullspace of Q^T ?