

Physics-II: Particles and Processes in Geant4

Vladimir Ivantchenko

CERN, Geneva, Switzerland & Tomsk State University, Russia

Geant4 Course CERN, 26-27 March 2019

Outline

- Geant4 interface to physics
 - G4VUserPhysicsList
- Geant4 particles
- Geant4 processes
- Ions and exotic particles
- Geant4 Cuts
- Special EM topics
- How to use particles, processes, cuts

Geant4 interface to physics

- The interface of Geant4 kernel to physics is abstract
- Base physics abstract classes are following:
 - The G4ParticleDefinition objects shared between threads
 - The G4VProcess thread local objects
 - The G4ProcessManager thread local interface class
- These interfaces are stable for ~20 years allowing users to work with different Geant4 versions and providing a basis for new developments
 - Internal modification happens when multi-treaded mode was introduced
- Configuration of physics is prepared in the G4VUserPhysicsList mandatory user class
- A user may be also a developer of a custom particle or process

Physics Lists

- Physics List is an object that is responsible to:
 - specify all the particles that will be used in the simulation application
 - together with the list of physics processes assigned to each individual particles
- One out of the 3 mandatory objects that the user needs to provide to the G4RunManager in case of all Geant4 applications:
 - it provides the information when, how and what set of physics needs to be invoked
- Provides a very flexible way to set up the physics environment:
 - the user can chose and specify the particles that they want to be used
 - the user can chose the physics (processes) to assign to each particle

GEANT4 PARTICLES

Geant4 particles

- G4ParticleDefinition is the main object keeping static information about particles
 - Name, mass, charge, quantum numbers, decay table....
- "Stable" particles
 - Leptons: e^{\pm} , μ^{\pm} ,
 - Bosons: G4Gamma, G4OpticalPhoton,
 - Geantino is a particle without any interaction
 - "Stable" hadrons: π^{\pm} , K^{\pm} ,
 - Light ions: d, t, ³He, ⁴He
 - G4Genericlon is used to define physics for all other ions
- "Unstable" hadrons normally do not tracked by Geant4 but used internally by hadronic models

Split class – case of particle definition

- In Geant4, each particle type has its own dedicated object of G4ParticleDefinition class.
 - Static quantities: mass, charge, life time, decay channels, etc.,
 - To be shared by all threads.
 - Dedicated object of G4ProcessManager: list of physics processes this particular kind of particle undertakes.
 - Physics process object must be thread-local.

GEANT4 PROCESSES

From G4Track to processes

Geant4 process

- Processes are classified as:
 - Electromagnetic
 - Hadronic
 - Decay
 - Parameterized
 - Transportation
- Any process has process has type and sub-type
 - const G4String& G4VProcess::GetProcessType();
 - G4int G4VProcess::GetSubType();
 - This method is recommended to be used for MC truth
- Any process may be initialized using virtual methods:
 - G4bool IsApplicable(const G4ParticleDefinition &);
 - Used to check if a process can handle the given particle type
 - void PreparePhysicsTable(const G4ParticleDefinition&);
 - void BuildPhysicsTable(const G4ParticleDefinition&);
 - Used for initialization of internal data of the process

Geant4 Physics: Electromagnetic

- the standard EM part: provides a complete set of EM interactions (processes) of charged particles and gammas from 1 keV to ~PeV
 - Used practically in all kind of Geant4 applications
- the low energy EM part: includes special treatments for low energy e-/+, gammas and charged hadrons:
 - more sophisticated approximations valid down to lower energies e.g. more atomic shell structure details
 - some of these processes will be valid down to below keV but some can be used only up to few GeV
- optical photons: interactions special only for long wavelength photons
 - processes for reflection/refraction, absorption, wavelength shifting, (special) Rayleigh scattering
 - G4OpticalPhoton is the particle type
- Phonon physics is also implemented within Geant4

Geant4 Physics: Hadronic

- Pure hadronic interactions for 0 to 100 TeV
 - elastic, inelastic, capture, fission
- Radioactive decay:
 - both at-rest and in-flight
- Photo-nuclear interaction from ~1 MeV up to 100 TeV
- Lepto-nuclear interaction from ~100 MeV up to 100 TeV
 - e+ and e- induced nuclear reactions
 - muon induced nuclear reactions
- Very new processes of neutrino-nuclear interactions
- Processes of phonon interactions in crystals

Geant4 Physics: Decay, Parameterized and Transportation

decay processes includes:

- weak decay (leptonic, semi-leptonic decay, radioactive decay of nuclei)
- electromagnetic decay (π^0 , Σ^0 , etc.)
- strong decay not included by default
 - they are part of hadronic models
 - may be assigned by a user to a particle

parameterized process:

- assigned to G4LogicalVolume
- instead of step-by-step simulation provides hits in the logical volume and list of particles living the volume
- for example, EM shower generation in a calorimeter based on parameters obtained from averaged events

transportation process:

- responsible for propagating a particle through the geometry in electromagnetic or gravitational field
- needs to be assigned to each "stable" particle

WHAT HAPPENS AT A STEP

G4Track is the object "pushed" step by step by the tracking:

- Moving by one step is the responsibility of the "stepping"
 - Which is the core engine of the "tracking" machinery
- These moves/steps are defined by physics or by geometry
 - Step length limit is a result of competition of processes
 - Any process may change the G4Track, let's see how.

- Abstract class defining the common interface of all processes in Geant4:
 - Used by all processes
 - including transportation, etc...
 - Defined in source/processes/management
- Three kinds of actions:
 - AtRest actions:

- Decay, e⁺ annihilation ...
- AlongStep actions:
 - To describe continuous (inter)actions, occurring along the path of the particle, like ionisation;
- PostStep actions:
 - For describing point-like (inter)actions, like decay in flight

G4VProcess: actions summary

- The virtual «action» methods are following:
 - AtRestGetPhysicalInteractionLength(),
 AtRestDoIt();
 - AlongStepGetPhysicalInteractionLength(),
 AlongStepDoIt();
 - PostStepGetPhysicalInteractionLength(),
 PostStepDoIt();
- Optional run time virtual methods:
 - StartTracking(G4Track*);
 - Allowing the process preparation for a new G4Track
 - EndTracking();
 - End of given G4Track

- A process can implement any combination of the three AtRest, AlongStep and PostStep actions:
 - decay = AtRest + PostStep
- If you plan to implement your own process:
 - A set on intermediate classes exist implementing various combinations of actions:
 - For example:
 - G4VDiscreteProcess: only PostStep actions
 - G4VContinuousDiscreteProcess:AlongStep +
 PostStep actions

G4ProcessManager

- It is a Geant4 kernel class
 - A user should not change it
- G4ProcessManager maintains three vectors of actions:
 - One for the AtRest methods of the particle;
 - One for the AlongStep ones;
 - And one for the PostStep actions.
- Note, that the ordering of processes provided by/to the G4ProcessManager vectors is relevant and used by the stepping
 - There are few critical points you should be aware of
 - Multiple scattering can shift end point of a step
 - Scintillation, Cerenkov and some other processes assuming that step and energy deposition at the step are defined

IONS AND EXOTIC PARTICLES

Geant4 Approach for Ions

- Light ions are individual Geant4 particles:
 - G4Deuteron
 - G4Triton
 - G4He3
 - G4Alpha
- Generic ion serves all other ions:
 - G4Genericlon only one particle
 - Not a real particle (charge +1, mass = Mp)
 - Serving for any kind of ion with Z>2
 - All concrete ions peak up processes and cross sections of the G4Genericlon
- lon names
 - "C12" means that the carbon ion is in the ground state
 - "Co60[58.590]" is the first excitation state of Co60
 - Extra information about atomic shell may be filled

Ion energy loss model

- Restricted stopping powers are calculated using 3 approaches
 - T < T_{Low}: Free electron gas model
 - $-T_{Low} \le T \le T_{High}$: parameterization (ICRU'73) approach
 - T > T_{High}: Bethe-Bloch formula (using an effective charge and higher order corrections
- ICRU'73 parameterization Nucl. Instrum. Meth. B 268 (2010) 2343-2354
 - Large range of ion-materials combination
 - Incident ions: projectile Z>2, targets all Z>0
 - Targets: all elemental materials, 31 compounds
 - Stopping powers based on the binary theory, effective charge approach
 - Special case: water
 - Revised ICRU'73 tables by P. Sigmund
 - Mean ionization potential is 78 eV
 - Energy limits
 - T_{High} = 1 GeV/nucleon
 - $T_{Low} = 0.025 \text{ MeV/nucleon (lower boundary of ICRU'73 tables)}$

Carbon Ion Therapy

- Methods of usage of proton and carbon beam for cancer treatment have been established in recent ~20 years in Japan
- Geant4 was validated using HIBMC facility, which provides high quality beam allowing to measure of Bragg peak position in water with accuracy 0.1 mm.
 - Mixed radiation field produced by a Carbon Ion Beam with clinical energy (290 MeV/u)
 - This and other studies confirms, that nuclear fragmentation make a significant contribution to the radiation field

Exotic particles

- Not discovered particles are not part of Geant4 particle library
- To search exotics users should introduce non-existing particles in the user code
 - Such particles should be instantiated in ConstructParticle() method of one of user G4VPhysicsConstructor
 - User should take care attaching processes to exotic particles
- Geant4 offers two extended examples
 - \$G4INSTALL/examples/extended/exoticphysics/monopole
 - \$G4INSTALL/examples/extended/exoticphysics/dmparticle
 - These examples demonstrate different variants of addition of extra particles and
- In the monopole example additional classes are available for tracking of the magnetic monopole in magnetic field
 - G4MonopoleTransportation, G4MonopoleEquation

GEANT4 CUTS

How tracks are created and killed

- G4Track can be created
 - By G4VUserPrimaryGeneratorAction
 - By any G4VProcess
- All particles are tracked until it is killed by one of Geant4 processes, for example:
 - Transport out of the world volume
 - Inelastic interaction
 - Decay
 - G4NeutronKiller
 - If during tracking kinetic energy become zero and there is no processes
 AtRest the particle is killed by the stepping manager
- Geant4 introduced conception of "cut in range"
 - Physically this means required spatial accuracy of simulation
 - At initialization for each material a production threshold for kinetic energy of secondary particles is computed
 - This means different production thresholds for different materials
 - This is the main difference between Geant4 and other simulation tools, which implement only tracking cuts

Cut and production thresholds for energy loss processes

- User defines cut in range expressed in units of length
- Using this range Geant4 kernel compute production threshold T_{cut} for each material during initialization
- For a typical process (G4hlonisation, G4elonisation, ...), the production threshold T_{cut} subdivides the continuous and discrete parts of energy loss:
 - Mean rate of energy lost due to soft energy transfers
 - Total XS for discrete δ-electron production above T_{cut}

$$\frac{dE(E, \mathbf{T}_{cut})}{dx} = n_{at} \int_{0}^{\mathbf{T}_{cut}} T \frac{d\sigma(Z, E, T)}{dT} dT$$

$$\sigma(Z, E, \frac{T_{cut}}{T_{cut}}) = \int_{T_{cut}}^{T_{max}} \frac{d\sigma(Z, E, T)}{dT} dT$$

- At each step energy deposition is sampled by a fluctuation model using the computed mean energy loss
- Optionally, energy loss may be modified :
 - for the generation of extra δ -electrons under the threshold when the track is in the vicinity of a geometrical boundary (sub-cutoff)
 - for the sampling of fluorescence and Auger-electrons emission
- 4-momentum balance is provided in all cases

What particles have cut in range?

- Cuts in range are defined for
 - Gamma
 - Electron
 - Positron
 - Proton
- Cut for proton is used for all hadrons and ions by elastic scattering processes
- By default cut in range is defined globally
 - It is possible to have different cut in range for particle type
 - It is possible to define specific cut in range per G4Region

Which processes use cut in range?

- It is not mandatory to use cuts
 - They are needed to achieve CPU performance of simulation
- Energy thresholds (derived from cut in range) are used
 - for gamma are used in Bremsstrahlung
 - for electrons are used in ionisation and e+e- pair production processes
 - for positrons is used in the e+e- pair production process
 - for gamma and electrons are used optionally ("ApplyCuts" options) in some discrete processes
 - Photoelectric effect, Compton, gamma conversion
- Production threshold for gamma and e⁺⁻ obtained from range cut cannot be whatever
 - The default low energy limit is 0.999 keV
 - May be changed via UI command:
 - /cuts/setLowEdge 100 keV
- Energy threshold for protons are used to define the threshold for kinetic energy of a nuclear recoil
 - EM single scattering process
 - Hadron elastic scattering

Tracking cuts

- Additionally to cut in range it is possible to use various tracking cuts
 - Unwanted particles may be killed after the step if corresponded flag is proposed
- In the default physics configurations two types of tracking cuts are applied:
 - Low-energy thresholds for charged particles by ionization 1 keV
 - Time cut for neutron transport 10000 ns
- Tracking cuts values are customizable and can be changed via UI commands
 - Energy cut may be set to zero
- User may easily setup extra tracking cut or step limiter
 - The best is to add extra G4VProcess

SPECIAL EM TOPICS

Steering of EM physics

- EM parameters of any EM physics list may be modified at initialization of Geant4 using C++ interface to the G4EmParameter class or via UI commands
- Example of interfaces of G4EmParameters:
 - SetMuHadLateralDisplacement()
 - SetMscMuHadRangeFactor()
 - SetMscMuHadStepLimitType()
- Corresponding UI commands:
 - /process/msc/MuHadLateralDisplacement
 - /process/msc/RangeFactorMuHad
 - /process/msc/StepLimitMuHad
- Some other UI commands:
 - /process/em/deexcitationIgnoreCut true
 - /process/eLoss/UseAngularGenerator true
 - /process/em/lowestElectronEnergy 50 eV
 - /process/em/lowestMuHadEnergy 100 keV
 - **–**

User Interfaces and Helper Classes

- Geant4 UI commands to define cuts and other EM parameters
- G4EmCalculator
 - easy access to cross sections and stopping powers (TestEm0)
- G4EmParameters
 - C++ interface to EM options alternative to UI commands
- G4EmSaturation
 - Birks effect (recombination effects)
- G4ElectronIonPair
 - sampling of ionisation clusters in gaseous or silicon detectors
- G4EmConfigurator
 - add models per energy range and geometry region

How to extract Physics?

- Possible to retrieve Physics quantities using a G4EmCalculator object
- Physics List should be initialized
- Example for retrieving the total cross section of a process with name procName, for particle and material matName

```
#include "G4EmCalculator.hh"
...
G4EmCalculator emCalculator;

G4Material* material =
  G4NistManager::Instance()->FindOrBuildMaterial(matName);
G4double density = material->GetDensity();
G4double massSigma = emCalculator.ComputeCrossSectionPerVolume
  (energy,particle,procName,material)/density;
G4cout << G4BestUnit(massSigma, "Surface/Mass") << G4endl;</pre>
```

 A good example: \$G4INSTALL/examples/extended/electromagnetic/TestEm0 Look in particular at the RunAction.cc class

HOW TO USE PARTICLES, PROCESSES, CUTS

Start examples/extended/electromagnetic/TestEm7

- Start VM and open a terminal window
- Copy, compile, and build the example into working area
 - cd \$G4WORKDIR
 - mkdir TaskM
 - cd TaskM
 - cp \$G4INSTALL//share/Geant4-10.5.0/examples/extended/electromagnetic/TestEm7 ./
 - cd TestEm7
 - mkdir build
 - cd build
 - cmake -DGeant4_DIR=\${G4COMP} ../
 - make
- Open interactive session
 - ./TestEm7
 - /control/execute/vis.mac
 - /run/beamOn 1

- When you application has started and when the run manager has been initialized, you can:
- Check the physics processes attached and their ordering:
 - /particle/select e-
 - /particle/processes/dump

- Check what particles exist:
 - /particle/list
- Check a particle property:
 - /particle/select e-
 - /particle/property/dump
- Please type "help" to get the full set of commands for particle category

- Using UI interface Geant4 kernel change cuts and try to count number of steps in the same run
 - /run/setCut 0.01 mm
 - /run/beamOn 100
- Define cuts only for electrons
 - /run/setCutForAGivenParticle e- 10 um
 - /run/dumpCouples
- How simulation results for proton Bragg peak depend on cuts?
 - Change cut in range value and run 100 events

