Introduction et notations

Ce texte d'analyse fonctionnelle a pour objet l'étude de quelques propriétés des séries trigonométriques; il se conclut par une application à la résolution d'un problème de DIRICHLET par une approche variationnelle, (partie III).

Dans tout ce qui suit on note:

- $-\mathcal{C}([0,\pi],\mathsf{R})$ le R-espace vectoriel des applications continues du segment $[0,\pi]$ dans R;
- E le R-espace vectoriel des applications f de $[0, \pi]$ dans R, continues, de classe \mathcal{C}^1 par morceaux et vérifiant $f(0) = f(\pi) = 0$;

Pour f appartenant à E on convient de désigner par f' la fonction définie sur $[0,\pi]$ par

- si en x de $[0,\pi]$ f est dérivable, alors f'(x) est le nombre dérivé de f en ce point;
- si en x de $[0,\pi]$ f n'est pas dérivable, alors f'(x)=0;
- $-\ell_{\mathsf{R}}^2$ le R-espace vectoriel des suites $(\alpha_n)_{n\geqslant 1}$ de nombres réels telles que la série $\sum_{n=1}^{\infty} \alpha_n^2$ converge;

On rappelle que, si $\alpha = (\alpha_n)_{n \geqslant 1}$ et $\beta = (\beta_n)_{n \geqslant 1}$ sont deux éléments de ℓ_R^2 , la série de terme général $(\alpha_n \beta_n)_{n \geqslant 1}$ est absolument convergente. De plus l'application $(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle =$

 $\sum_{n=1}^{\infty} \alpha_n \beta_n \text{ est un produit scalaire sur } \ell_{\mathsf{R}}^2 \text{ et } \ell_{\mathsf{R}}^2 \text{ est complet pour la norme associée à ce produit scalaire :}$

- pour tout entier $n \ge 1$, par e_n l'élément de E défini par $e_n(x) = \sin nx$.

Partie I: Questions préliminaires. Exemples

A. Un lemme de Cantor

Soient $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ deux suites de nombres réels. Pour tout x de \mathbb{R} et pour tout entier $n\geqslant 1$ on pose

 $f_n(x) = a_n \cos nx + b_n \sin nx$, et on suppose que pour tout x réel la suite $(f_n(x))$ converge vers 0. On se propose de montrer que les suites (a_n) et (b_n) ont pour limite 0 en $+\infty$.

- 1. Montrer que $a_n \xrightarrow[n \to \infty]{} 0$. En déduire que, pour tout x de R, $b_n \sin nx \xrightarrow[n \to \infty]{} 0$.
- 2. Dans cette question, on propose deux méthodes pour montrer que la suite (b_n) a pour limite 0 en $+\infty$
 - (a) Raisonnement par l'absurde

On suppose que la suite (b_n) ne converge pas vers 0.

- i. Montrer qu'il existe un réel strictement positif ε et une sous suite (b_{n_k}) de la suite (b_n) tels que $n_1 > 0$ et que l'on ait, pour tout entier k, $|b_{n_k}| \ge \varepsilon$ et $n_{k+1} \ge 3n_k$.
- ii. Construire pour tout entier k un intervalle $[a_k, b_k]$ de la forme $a_k = \frac{\pi}{6} + p_k \pi$, $b_k = \frac{5\pi}{6} + p_k \pi$, avec $p_k \in \mathsf{Z}$, tel que si $J_k = \frac{1}{n_k} [a_k, b_k]$ l'on ait, pour tout entier $k, J_{k+1} \subset J_k$. Vérifier que $|\sin n_k x| \geqslant \frac{1}{2}$ pour tout x de J_k .
- iii. Établir que l'intersection $\bigcap_{k\geq 1} J_k$ n'est pas vide, et conclure à une contradiction.

- (b) Intervention du calcul intégral
 - i. Calculer $\int_0^{2\pi} (b_n \sin nx)^2 dx$.
 - ii. Conclure dans le cas où la suite (b_n) est bornée.
 - iii. Dans le cas général, on pose $b_n'=\inf(1,|b_n|)$. Vérifier que, pour tout x de R, $b_n'\sin nx \underset{n\to\infty}{\longrightarrow} 0$. Conclure.

B. L'espace H

- 1. (a) Soient $\alpha = (\alpha_n)_{n \geqslant 1}$ un élément de ℓ_R^2 et x un élément de $[0, \pi]$. Montrer que la série de terme général $\frac{\alpha_n}{n} e_n(x)$ converge absolument (on pourra utiliser l'inégalité $ab \leqslant \frac{1}{2}(a^2 + b^2)$ pour deux nombres réels a et b).
 - (b) On pose $\theta(\alpha)(x) = \sum_{n=1}^{\infty} \frac{\alpha_n}{n} e_n(x)$. Montrer que l'on définit ainsi une application θ de ℓ_{R}^2 dans $\mathcal{C}([0,\pi],\mathsf{R})$.
 - (c) Établir que θ est linéaire et injective. Dans toute la suite on notera H l'image de θ , et $\|\cdot\|_H$ la norme définie sur H, pour $f=\theta(\alpha)$, par $\|f\|_H=\sqrt{\sum_{n=1}^\infty \alpha_n^2}$. Vérifier que H est complet pour cette norme.
- 2. Établir l'inclusion $E \subset H$. (On pourra montrer que tout élément f de E est la restriction à $[0, \pi]$ d'une unique fonction \widetilde{f} 2π -périodique et impaire, de classe \mathcal{C}^1 par morceaux, et développer \widetilde{f} en série de FOURIER).
- 3. Montrer que l'application qui à un couple (f,g) d'éléments de E associe le nombre

$$(f|g) = \frac{2}{\pi} \int_0^{\pi} f'(t)g'(t) dt$$

est un produit scalaire sur E. Vérifier que la norme associée à ce produit scalaire coïncide avec la restriction à E de $\|\cdot\|_H$.

Montrer que E est dense dans H pour la topologie associée à la norme $\|\cdot\|_H$

- 4. Pour f dans H, on pose $||f||_{\infty} = \sup_{x \in [0,\pi]} |f(x)|$.
 - (a) Prouver l'existence d'une constante k telle que l'on ait l'inégalité, valable pour tout f de H:

$$(*) \qquad \forall f \in H, \quad \|f\|_{\infty} \leqslant k\|f\|_{H}.$$

- (b) Pour tout élément a de $]0,\pi[$, on désigne par h_a l'élément de E défini en tout x par $h_a(x) = \begin{cases} \frac{x}{-} & \text{si } x \leqslant a \\ \frac{\pi}{\pi} x & \text{si } x > a \end{cases}.$ En appliquant l'inégalité de CAUCHY-SCHWARZ au produit scalaire $(f|h_a)$, pour f dans E, montrer que la plus petite valeur de k telle que l'on ait (*) est $\pi/\sqrt{8}$.
- 5. On se propose de démontrer que si F est une application de classe \mathcal{C}^2 de R dans R telle que F(0) = 0, et si f est un élément de H, alors $F \circ f$ appartient à H. Soient f un élément de H et (f_n) une suite d'éléments de E convergeant vers f au sens de la norme $\|\cdot\|_H$. On pose $g_n = F \circ f_n$.

- (a) Vérifier que la suite $(\|f_n\|_{\infty})$ est bornée. On note A un réel vérifiant $\|f_n\|_{\infty} \leq A$ pour tout n, puis $M_1 = \sup_{|t| \leq A} |F'(t)|$ et $M_2 = \sup_{|t| \leq A} |F''(t)|$.
- (b) Établir que, pour tous p, q dans N, on a l'inégalité :

$$||g_p - g_q||_H \le \left(\frac{\pi}{\sqrt{8}} M_2 ||f_p||_H + M_1\right) ||f_p - f_q||_H$$

- (c) Conclure.
- (d) En déduire que H est une algèbre, *i.e.* que le produit fg de deux éléments f et g de H est un élément de H. (On pourra utiliser la relation $4fg = (f+g)^2 (f-g)^2$).

Partie II : Pseudo-dérivée seconde au sens de Schwarz

Si f est une application continue de R dans R, on dit que f admet au point x une dérivée seconde au sens de Schwarz si, et seulement si, $\lim_{h\to 0,\ h\neq 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2}$ existe; dans ce cas la limite est notée $f^{('')}(x)$.

- 1. Montrer que si f est deux fois dérivable sur R, $f^{(")}(x)$ existe en tout x de R, et en donner la valeur.
- 2. Soit f une application de R dans R possédant en tout x de R une pseudo-dérivée seconde au sens de SCHWARZ nulle.
 - (a) Soient a et b des réels tels que a < b, ε un réel strictement positif. On pose

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) - \varepsilon(x - a)(b - x)$$

Vérifier que la fonction φ est continue et que $\varphi(a) = \varphi(b) = 0$. Calculer $\varphi^{(")}$. Montrer que φ ne peut avoir de maximum strictement positif sur [a, b].

- (b) En déduire que f est affine.
- 3. Soient $(a_n)_{n\geqslant 1}$ et $(b_n)_{n\geqslant 1}$ deux suites de réels tels que la série de fonctions de terme général $(a_n\cos nx + b_n\sin nx)_{n\geqslant 1}$ converge simplement sur R vers une fonction f continue sur R. On pose alors

$$F(x) = -\sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{n^2}$$

- (a) Justifier l'existence de F sur R et prouver sa continuité.
- (b) Pour x dans R et h > 0 on pose

$$u(0) = 1$$
, $u(x) = \frac{4}{x^2} \sin^2\left(\frac{x}{2}\right)$ si $x \neq 0$ et $\Delta(x, h) = \frac{F(x+h) + F(x-h) - 2F(x)}{h^2}$.

Vérifier la relation

$$\Delta(x,h) = \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) u(nh).$$

(c) Si l'on pose $S_0(x) = 0$ et $S_n(x) = \sum_{k=1}^n a_k \cos kx + b_k \sin kx$ pour $n \ge 1$, justifier l'égalité

$$\Delta(x,h) - f(x) = \sum_{n=0}^{\infty} [S_n(x) - f(x)] [u(nh) - u((n+1)h)].$$

- (d) i. En remarquant que $u((n+1)h) u(nh) = \int_{nh}^{(n+1)h} u'(x) dx$, déduire de ce qui précède que, pour tout réel x, $F^{('')}(x)$ existe et vaut f(x).
 - ii. Montrer que l'application qui au réel x associe $\int_0^x (x-t)f(t)\,\mathrm{d}\,t$ est de classe \mathcal{C}^2 et calculer sa dérivée seconde.
 - iii. Prouver finalement l'existence de réels α et β tels que pour tout réel x l'on ait

$$F(x) = \alpha x + \beta + \int_0^x (x - t)f(t) dt.$$

(e) En utilisant ce qui précède, établir que les suites (a_n) et (b_n) sont les coefficients de FOURIER de f, *i.e.* que pour tout n:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
 et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$.

_