Lesson 7: Quadratic Equations VI

Konstantin Miagkov

November 17, 2018

1 From Last Week

Problem 1.

Let $f(x) = ax^2 + bx + c$ be a quadratic function with a > 0, and set h = -b/(2a). Show that the f is decreasing from $-\infty$ to h and increasing from h to $+\infty$. In other words, show that for all x, y such that x < y < h we have f(x) > f(y), and for all x, y with h < x < y we get f(x) < f(y). What happens when a < 0? Hint: complete the square!

Problem 2.

Show that a quadratic equation f with two distinct real roots x_0, x_1 is an even function if and only if $x_0 = -x_1$.

Problem 3.

In a triangle ABC we have $\angle ACB = 135^{\circ}$. Let ABMN be a square lying to the opposite side of C with respect to AB, and let O be the intersection of its diagonals. If AM = 12, find OC.

2 New Problems

Problem 4.

Let $ax^2 + bx + c = 0$ be a quadratic equation with a > 0 and c < 0. Show that this equation has two distinct real roots.

Problem 5.

- a) Let $f(x) = ax^2 + bx + c$ be a quadratic function. Show that if f(y) = f(z) for some pair of real numbers $y \neq z$, then y + z = -b/a.
- **b)** Show the converse: if y + z = -b/a, then f(y) = f(z). If you completed both parts of the problem, congratulations you have successfully proven that a parabola (graph of a quadratic function) is symmetric with respect to the line x = -b/a.

Problem 6.

Let ABCD be an inscribed quadrilateral. The angle between the lines AB and CD is 15°, and the angle between the lines AD and BC is 45°. Find $\angle BAD$.

Problem 7.

Suppose the angle bisectors of $\triangle ABC$ intersect its circumcircle at points A_1, B_1, C_1 . Show that $AA_1 \perp B_1C_1$.