Úkol

- 1. Změřte index lomu a střední disperzi přiložené kapaliny v závislosti na koncentraci (stačí 5 různých koncentrací).
- 2. Změřte indexy lomu tří optických skel.
- 3. Změřte index lomu řádného paprsku a index lomu mimořádného paprsku přiloženého dvojlomného materiálu v závislosti na směru šíření světla.
- 4. Z měření v bodu 3. stanovte, zda jde o kladný či záporný jednoosý krystal.
- 5. U všech naměřených hodnot indexu lomu určete chybu nepřímého měření.

Teorie

Pro úkol 1 užijeme dvouhranolový refraktometr Abbeova typu vybavený pro kompenzaci disperze bílého světla Amiciho přímohledným hranolem. Detailní popis soustavy lze nalézt v pokynech k měření [1].

Pro měření v úkolu 2 a 3 použijeme Abbeův polokulový refraktometr. Pro schéma a popis aparatury viz [1].

Snellův zákon lomu říká

$$n_i \sin \theta_i = n_t \sin \theta_t, \tag{1}$$

kde n_i a n_t jsou indexy lomu prostředí oddělených rozhraním a θ_i a θ_t úhel dopadu resp. průchodu. Úhel θ_t měříme refraktometrem. Protože na vodorovnou plochu polokoule dopadá světlo pod úhlem $\frac{\pi}{2}$, redukuje se vztah na

$$n_i = n_t \sin \theta_t. \tag{2}$$

Výsledky

Úkol 1

Pomocí refraktometru jsme změřili indexy lomu roztoků s objemovými koncentracemi 0, 20, 40, 60, 80 a 100 %. Výsledky jsou uvedeny v tabulce 1 a vyneseny v grafu 1.

koncentrace [%]	$n \ []$	σ_n
0	1,338	0,001
20	1,350	0,001
40 60	1,362 $1,375$	$0,001 \\ 0,001$
80	1,388	0,001
100	1,400	0,001

Tabulka 1: Naměřené hodnoty indexů lomu roztoků různých koncentrací

Obrázek 1: Závislost indexu lomu na koncentraci roztoku

Byla provedena lineární regrese přímkou se směrnicí

$$A = (6.24 \pm 0.05) \times 10^{-4}$$
.

 $\acute{\mathbf{U}}$ kol $\mathbf{2}$ Nejprve byl změřen index lomu polokoule bez vzorku. Výsledky jsou shrnuty v tabulce 2.

otočení [°]	$ heta_t$ [°]	$\sigma_{ heta_t}$ [°]
0	34,62	0,12
45	$34,\!53$	$0,\!12$
90	$34,\!33$	$0,\!12$
180	$34,\!37$	$0,\!12$
225	$34,\!43$	$0,\!12$
270	34,63	$0,\!12$

Tabulka 2: Naměřené úhly průchodu polokoulí refraktometru bez vzorku

Dosazením aritmetického průměru hodnot z tabulky 2 do vztahu (2) získáme pro $n_i=1$

$$n_{pk} = 1,766 \pm 0,003.$$

Následující tabulka obsahuje hodnoty úhlů průchodu tří vzorků skel. Chyba hodnot úhlů průchodu byla určena jako 0.12° .

otočení [°]	$ heta_{t,1}$ [°]	$ heta_{t,2}$ [°]	$ heta_{t,3}$ [°]
0	59,58	57,13	57,07
90	59,48	57,02	56,97
180	$59,\!55$	57,12	57,00
270	$59,\!63$	$57,\!32$	57,15

Tabulka 3: Naměřené úhly průchodu polokoulí refraktometru se třemi vzorky skla

Dosazením aritmetického průměru hodnot z tabulky 3 do vztahu (2) získáme

$$n_{i,1} = 1,523 \pm 0,001,$$

 $n_{i,2} = 1,484 \pm 0,001,$
 $n_{i,3} = 1,482 \pm 0,001.$

Úkol 3

Polokulovým refraktometrem byly naměřeny úhly průchodu pro řádný a mimořádný směr dvojlomného vzorku při různém natočení polokoule (tedy i vzorku). Výsledky zachycuje tabulka 4.

natočení [°]	$ heta_{t,o} \ [^{\circ}]$	$ heta_{t,e}$ $[^{\circ}]$
0	61,77	62,30
20	$61,\!87$	$62,\!10$
40	$61,\!87$	61,88
60	$61,\!87$	$61,\!87$
80	61,70	61,72
100	$61,\!63$	61,93
120	61,70	62,08
140	$61,\!57$	$62,\!15$
160	$61,\!63$	$62,\!20$
180	$61,\!67$	$62,\!18$
200	61,72	61,93
220	61,70	$61,\!83$
240	61,72	61,72
260	61,72	$61,\!82$
280	61,78	$62,\!05$
300	61,90	$62,\!23$
320	$61,\!85$	$62,\!42$
340	61,87	62,43

Tabulka 4: Úhly průchodu pro dvojlomný vzorek

Hodnoty oddělené otočením 180° byly zprůměrovány a dosazeny do vztahu (2). Výsledky jsou uvedené v tabulce 5 a zobrazené v grafu 2. Chyba hodnot je 0,001.

otočení [°]	n_o	n_e
0	1,5553	1,5629
20 40	1,5564 $1,5563$	1,5597 $1,5574$
60	1,5564	1,5564
80	$1,\!5552$	1,5560
100	1,5552	1,5593
120 140	1,5565 $1,5552$	1,5617 $1,5635$
160	1,5558	1,5640

Tabulka 5: Spočtené hodnoty indexů lomu pro dvojlomný vzorek

Obrázek 2: Průběh řádného a mimořádného indexu lomu dvojlomného materiálu Čárkované čáry v grafu slouží pouze jako vodítko pro oko, nevyjadřují analytickou závislost.

Úkol 4

Protože mimořádný index lomu je větší než řádný, jedná se o kladný krystal.

Diskuse

Z grafu 1 je vidět, že závislost indexu lomu na objemové koncentraci je s velkou přesností lineární.

Při měření indexu lomu skel bylo měřeno vždy několik hodnot úhlů při různém natočení vzorků. Tím se eliminoval vliv nedokonalostí tvaru skleněné polokoule refraktometru a jejího možného nedokonalého usazení. Při měření dvojlomného vzorku byly z tohoto důvodu průměrovány naměřené úhly s rozdílem otočení 180°.

Závěr

Byl změřen index lomu kapaliny v závislosti na koncentraci. Byly změřeny indexy lomu skel

$$n_{i,1} = 1,523 \pm 0,001,$$

 $n_{i,2} = 1,484 \pm 0,001,$
 $n_{i,3} = 1,482 \pm 0,001.$

Byly naměřeny hodnoty řádného a mimořádného indexu lomu vzorku pro různé směry šíření světla. Vzorek je kladný jednoosý krystal.

Reference

[1] Pokyny k měření "Měření indexu lomu refraktometry", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/pokyny/mereni_309.pdf, 25.4.2018