Contrôle d'analyse I N°1

Durée: 1 heure 45 minutes Barème sur 20 points

NOM:	
	Groupe
PRENOM ·	

1. Soient $x_0 = \frac{1}{2}$ et P(x) un trinôme dépendant d'un paramètre réel m, défini par

$$P(x) = mx^2 + 2(m-4)x + 2, \qquad m \in \mathbb{R}.$$

Déterminer m tel que les deux racines distinctes de y = P(x) soient strictement plus grandes que x_0 .

5.5 pts

2. On parcourt un chemin défini de la manière suivante: depuis un point A_0 situé sur une droite passant par O à une distance L de O, on va vers le point A_1 défini comme la projection orthogonale de A_0 sur la droite passant par O et faisant un angle α $(0 < \alpha < \frac{\pi}{2})$ avec la droite contenant A_0 . On enchaîne les étapes comme illustré par le dessin ci-dessous.

- a) Déterminer la longueur du parcours après n étapes, $n \in \mathbb{N}^*$.
- b) Déterminer la longueur totale du chemin parcouru.

3.5 pts

3. Résoudre en $x \in \mathbb{R}$, en fonction du paramètre réel m , l'équation suivante :

$$\left|x^2 + m\right| = 2x.$$

5.5 pts

4. Résoudre sur $\mathbb R$ l'inéquation suivante :

$$\sqrt{|x^2 - 1| - 3x - 3} \le \frac{3}{2}x - 6.$$

5.5 pts