

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Materia:	Ingeniería de Control I		Semestre:	Noveno
Ciclo:	Profesional Ingeniería			
	Electromecánica			
Código de la materia:	228			
Horas Semanales:	Teóricas:	3	1	
	Prácticas:	2		
	Laboratorio:	-		
Horas Semestrales:	Teóricas:	51	1	
	Prácticas:	34		
	Laboratorio:	-		
Pre-Requisitos:	Electrónica Industrial			

I- OBJETIVOS GENERALES

- Conocer las bases teóricas mínimas para la "Modelización, Análisis y Diseño de Sistemas Realimentados de Control".
- Proveer conocimientos de los elementos mínimos para el alumno que desee continuar su especialización en el área de Control como asimismo un núcleo cerrado de los conceptos y técnicas fundamentales del Control.
- Aplicar correctamente el desarrollo de técnicas y herramientas asociadas al así llamado Control Clásico y algunos elementos básicos del Control Moderna.
- Reconocer la diversidad de herramientas y evolución de teorías nuevas de control aplicados a ingeniería.

I- OBJETIVOS ESPECIFICOS

Aplicar los conocimientos adquiridos en la resolución de problemas y ejercicios de sistemas de control.

III- CONTENIDOS PROGRAMÁTICOS

UNIDAD 1: Introducción al análisis de Sistemas de Control

Introducción a los sistema de Control, Sistema realimentado de Control. Concepto de realimentación, identificación de elementos del sistema realimentado de control. Etapas de un proyecto de Control, enfoque Clásico y Moderno. Diagramas de bloque y de flujo de señal. Concepto de Transferencia, Matrices, Álgebra de Bloques.

Concepto de Estado, variables de estado, planteo de una ecuación de estado.

Utilidad de software como: Vissim, SCILAB, MatLab y Mathematica

Unidad 2: Modelos Matemáticos de sistemas físicos

Aprobado por:	Actualización No.: Resolución No.: Fecha:	Sello y Firma	Página 1 de 3
			1

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

Modelos Matemáticos, Concepto de modelo, hipótesis sobre aproximación, Técnicas de modelado, Sistemas lineales y no lineales. Sistemas Eléctricos, Mecánicos, Hidráulicos y Neumáticos.

Unidad 3: Sensores y actuadores

Modelado de elementos de Sensores, Conversión y Accionamiento: Sensores de Temperatura, Nivel, Presión y Caudal, Motores, Actuadores, Válvulas. Técnicas de Simulación, obtención de diagramas de simulación, descripción de programas de simulación: Vissim y Matlab.

Unidad 4: Modelado de Controladores

Acciones básicas de control. Controladores lineales y no lineales. Controladores de acción Proporcional, Integral y Derivativa. Efectos particulares de cada uno. Aplicaciones. Modelado numérico con Mathematica y MatLab

Unidad 5: Análisis de Sistemas de Control

Análisis de respuesta transitoria y de error en estado estable. Sistemas de primer y segundo orden. Sistemas de orden superior. Especificación de Sistemas de Control, Dominio del Tiempo, Dominio de la Frecuencia. Ecuación Característica. Concepto de Estabilidad, Estabilidad Relativa y Error estacionario. Test de Estabilidad de Routh. Análisis de la Respuesta Estacionaria, análisis cualitativo, análisis cuantitativo, tipificación de Sistemas de Control, Coeficientes estáticos y Dinámicos de Error. Ejemplos y ejercicios a resolver utilizando software.

Unidad 6: Técnicas de Análisis en control

Análisis de la respuesta en frecuencia, Dominio jw, Transformada de Fourier, Diagramas de Bode. Lugar de raíces: conceptos y aplicaciones. Técnica de trazado. Diagramas polares, trazado. Criterio de estabilidad de Nyquist, Margen de fase y margen de ganancia, herramientas informáticas: Matlab.

Unidad 7: Técnicas de análisis basadas en el tiempo.

Análisis de sistemas utilizado variables discretas. Transformada Z. Aplicaciones en control. Ejemplos y ejercicios utilizando software.

IV- METODOLOGÍA

Exposición oral del profesor, y resolución de ejercicios prácticos.

V- EVALUACIÓN

Conforme al Reglamento Académico y Reglamento de Cátedra vigentes.

UNIVERSIDAD NACIONAL DE ITAPUA - U.N.I.

Creada por Ley Nº:1.009/96 del 03/12/96

Facultad de Ingeniería

Programa de Estudios

VI. BIBLIOGRAFÍA:

- Katsuhiko. Ogata: Ingeniería de Control Moderna, 4º Edición. Editorial Prentice Hall.
- G.F. Franklin, J.D. Powell, A. Emami-Naeini: Control de Sistemas Dinámicos con Retroalimentación
- K. Ogata, "Sistemas de Control de Tiempo Discreto" Editorial Prentice Hall.
- Practical SCADA for Industry David Bailey BEng, Bailey and Associates, Perth, Australia y MIPENZ, BSc(Hons), BSc(Elec Eng), IDC Technologies, Perth, Australia. Editorial ELSEVIER ISBN 07506 58053
- Sistemas SCADA Segunda Edición. A. Rodríguez Penin. Editorial Marcombo España. ISBN 978-84-267-1450-3

Complementaria:

• J. Van de Vegte: Feedback Control Systems

• O. Elgerd: Control Systems Theory

• B. Kuo: Linear Networks & Systems

• R. Dorf: Modern Control Systems

Aprobado por:Fecha:	Actualización No.:		74.
	Resolución No.: Fecha:	Sello y Firma	Página 3 de 3