

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

COPY

31

SEQUENCE LISTING

<110> Halazonetis, Thanos
Hartwig, Wolfgang

<120> Peptides and peptidomimetics with
structural similarity to human p53 that activate p53
function

<130> 2973.19998

<140> 08/894,327
<141> 1997-12-04

<150> pctus96/01535
<151> 1996-02-16

<150> 08/392,542
<151> 1995-02-16

<160> 35

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 1317
<212> DNA
<213> Homo sapiens

<400> 1

gtcttagagcc accgtccagg gagcaggtag ctgctggcgt ccggggacac tttgcgttcg	60
ggctgggagc gtgtttcca cgacggtgac acgcttccct ggattggcag ccagactgcc	120
ttccgggtca ctggcatgga ggagcccgag tcagatccta gcgtcgagcc ccctctgagt	180
caggaaacat ttccagacact atggaaacta ctcctgaaa acaacgttct gtcccccttg	240
ccgtcccaag caatggatga tttgatgtg tccccggacg atattgaaca atggttcaact	300
gaagaccacag gtcagatga agctcccaga atgcccagagg ctgctccccc cgtggcccct	360
gcaccagcag ctcc tacacc ggcggccct gcaccagccc ctcctggcc cctgtcatct	420
tctgtccctt cccagaaaaac ctaccaggc agctacgggt tccgctctggg cttcttgcat	480
tctggacacag ccaagtctgt gacttgcacg tactccctg ccctcaacaa gatgtttgc	540
caactggcca agacctgccc tgtgcagctg tgggttgatt ccacaccccc gcccggcacc	600
cgcgtcccgcc ccatggccat ctacaagcag tcacagcaca tgacggaggt tgtgaggcgc	660
tgcccccacc atgagcgctg ctcagatagc gatggctctgg cccctcctca gcatcttatac	720
cgagtggaaag gaaatttgcg tgtggagtat ttggatgaca gaaacacttt tcgacatagt	780
gtgggttgtc cctatgagcc gcctgagggt ggctctgact gtaccacca ccaactacaac	840
tacatgtgtacatgttgcg catggccgc atgaaccggaa ggcccatcct caccatcatc	900
acactggaaag actccagtgg taatctactg ggacggaaaca gctttgagggt gcgtgtttgt	960
gcctgtcctg ggagagaccg ggcacacagag gaagagaatc tccgcaagaa aggggagct	1020
caccacgagc tgcccccagg gagcactaag cgacactgc ccaacaacac cagctcctt	1080
ccccagccaa agaagaaacc actggatgga gaatattca cccttcagat cctgtggcgt	1140
gagcgcttcg agatgttccg agagctgaat gaggccttgg aactcaagga tgcccaggt	1200
ggaaaggagc cagggccac tccagcccaa tgaagtccaa aaagggtcag	1260

COPY

32

tctacacctccc gccataaaaa actcatgttc aagacagaag ggcctgactc agactga 1317

<210> 2

<211> 393

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Glu Pro Gln Ser Asp Pro Ser Val Glu Pro Pro Leu Ser Gln
1 5 10 15
Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn Asn Val Leu
20 25 30
Ser Pro Leu Pro Ser Gln Ala Met Asp Asp Leu Met Leu Ser Pro Asp
35 40 45
Asp Ile Glu Gln Trp Phe Thr Glu Asp Pro Gly Pro Asp Glu Ala Pro
50 55 60
Arg Met Pro Glu Ala Ala Pro Pro Val Ala Pro Ala Pro Ala Pro
65 70 75 80
Thr Pro Ala Ala Pro Ala Pro Ser Trp Pro Leu Ser Ser Ser
85 90 95
Val Pro Ser Gln Lys Thr Tyr Gln Gly Ser Tyr Gly Phe Arg Leu Gly
100 105 110
Phe Leu His Ser Gly Thr Ala Lys Ser Val Thr Cys Thr Tyr Ser Pro
115 120 125
Ala Leu Asn Lys Met Phe Cys Gln Leu Ala Lys Thr Cys Pro Val Gln
130 135 140
Leu Trp Val Asp Ser Thr Pro Pro Pro Gly Thr Arg Val Arg Ala Met
145 150 155 160
Ala Ile Tyr Lys Gln Ser Gln His Met Thr Glu Val Val Arg Arg Cys
165 170 175
Pro His His Glu Arg Cys Ser Asp Ser Asp Gly Leu Ala Pro Pro Gln
180 185 190
His Leu Ile Arg Val Glu Gly Asn Leu Arg Val Glu Tyr Leu Asp Asp
195 200 205
Arg Asn Thr Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu
210 215 220
Val Gly Ser Asp Cys Thr Thr Ile His Tyr Asn Tyr Met Cys Asn Ser
225 230 235 240
Ser Cys Met Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr
245 250 255
Leu Glu Asp Ser Ser Gly Asn Leu Leu Gly Arg Asn Ser Phe Glu Val
260 265 270
Arg Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn
275 280 285
Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly Ser Thr
290 295 300
Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Pro Gln Pro Lys Lys
305 310 315 320
Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly Arg Glu
325 330 335
Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp
340 345 350

COPY

33

Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His S r Ser His
355 360 365
Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu Met
370 375 380
Phe Lys Thr Glu Gly Pro Asp Ser Asp
385 390

<210> 3
<211> 390
<212> PRT
<213> Mus spretus

<400> 3
Met Thr Ala Met Glu Glu Ser Gln Ser Asp Ile Ser Leu Glu Leu Pro
1 5 10 15
Leu Ser Gln Glu Thr Phe Ser Gly Leu Trp Lys Leu Leu Pro Pro Glu
20 25 30
Asp Ile Leu Pro Ser Pro His Cys Met Asp Asp Leu Leu Leu Pro Gln
35 40 45
Asp Val Glu Glu Phe Phe Gly Pro Ser Glu Ala Leu Arg Val Ser
50 55 60
Gly Ala Pro Ala Ala Gln Asp Pro Val Thr Glu Thr Pro Gly Pro Val
65 70 75 80
Ala Pro Ala Pro Ala Thr Pro Trp Pro Leu Ser Ser Phe Val Pro Ser
85 90 95
Gln Lys Thr Tyr Gln Gly Asn Tyr Gly Phe His Leu Gly Phe Leu Gln
100 105 110
Ser Gly Thr Ala Lys Ser Val Met Cys Thr Tyr Ser Pro Pro Leu Asn
115 120 125
Lys Leu Phe Cys Gln Leu Val Lys Thr Cys Pro Val Gln Leu Trp Val
130 135 140
Ser Ala Thr Pro Pro Ala Gly Ser Arg Val Arg Ala Met Ala Ile Tyr
145 150 155 160
Lys Lys Ser Gln His Met Thr Glu Val Val Arg Arg Cys Pro His His
165 170 175
Glu Arg Cys Ser Asp Gly Asp Gly Leu Ala Pro Pro Gln His Leu Ile
180 185 190
Arg Val Glu Gly Asn Leu Tyr Pro Glu Tyr Leu Glu Asp Arg Gln Thr
195 200 205
Phe Arg His Ser Val Val Val Pro Tyr Glu Pro Pro Glu Ala Gly Ser
210 215 220
Glu Tyr Thr Thr Ile His Tyr Lys Tyr Met Cys Asn Ser Ser Cys Met
225 230 235 240
Gly Gly Met Asn Arg Arg Pro Ile Leu Thr Ile Ile Thr Leu Glu Asp
245 250 255
Ser Ser Gly Asn Leu Leu Gly Arg Asp Ser Phe Glu Val Arg Val Cys
260 265 270
Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu Glu Asn Phe Arg Lys
275 280 285
Lys Glu Val Leu Cys Pro Glu Leu Pro Pro Gly Ser Ala Lys Arg Ala
290 295 300
Leu Pro Thr Cys Thr Ser Ala Ser Pro Pro Gln Lys Lys Lys Pro Leu

COPY

34

305	310	315	320
Asp Gly Glu Tyr Phe Thr Leu Lys Ile Arg	Gly Arg Lys Arg Phe Glu		
325	330	335	
Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu Lys Asp Ala His Ala			
340	345	350	
Thr Glu Glu Ser Gly Asp Ser Arg Ala His Ser Ser Tyr Leu Lys Thr			
355	360	365	
Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Thr Met Val Lys Lys			
370	375	380	
Val Gly Pro Asp Ser Asp			
385	390		

<210> 4
<211> 11
<212> PRT
<213> Homo sapiens

<400> 4
Arg Ala His Ser Ser His Leu Lys Ser Lys Lys
1 5 10

<210> 5
<211> 13
<212> PRT
<213> Homo sapiens

<400> 5
His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His
1 5 10

<210> 6
<211> 11
<212> PRT
<213> Homo sapiens

<400> 6
Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu
1 5 10

<210> 7
<211> 13
<212> PRT
<213> Homo sapiens

<400> 7
Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys Leu
1 5 10

<210> 8
<211> 20
<212> PRT
<213> Homo sapiens

COPY

35

<400> 8
Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser
1 5 10 15
Arg His Lys Lys
20

<210> 9
<211> 20
<212> PRT
<213> Homo sapiens

<400> 9
Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys
1 5 10 15
Leu Met Phe Lys
20

<210> 10
<211> 24
<212> PRT
<213> Homo sapiens

<400> 10
Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser
1 5 10 15
Arg His Lys Lys Leu Met Phe Lys
20

<210> 11
<211> 25
<212> PRT
<213> Homo sapiens

<400> 11
Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr
1 5 10 15
Ser Arg His Lys Lys Leu Met Phe Lys
20 25

<210> 12
<211> 27
<212> PRT
<213> Homo sapiens

<400> 12
Gly Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln
1 5 10 15
Ser Thr Ser Arg His Lys Lys Leu Met Phe Lys
20 25

<210> 13
<211> 11

COPY

36

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic, modified from Homo sapiens p53

<400> 13
Lys Lys Ser Lys Leu His Ser Ser His Ala Arg
1 5 10

<210> 14
<211> 8
<212> PRT
<213> Homo sapiens

<400> 14
Arg Ala His Ser Ser His Leu Lys
1 5

<210> 15
<211> 6
<212> PRT
<213> Homo sapiens

<400> 15
His Leu Lys Ser Lys Lys
1 5

<210> 16
<211> 5
<212> PRT
<213> Homo sapiens

<400> 16
His Leu Lys Ser Lys
1 5

<210> 17
<211> 5
<212> PRT
<213> Homo sapiens

<400> 17
Leu Lys Ser Lys Lys
1 5

<210> 18
<211> 6
<212> PRT
<213> Homo sapiens

<400> 18

COPY

37

Lys Ser Lys Lys Gly Gln
1 5

<210> 19
<211> 5
<212> PRT
<213> Homo sapiens

Lys Ser Lys Lys Gly
1 5

<210> 20
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

Arg Ala His Ser His Leu Lys
1 5

<210> 21
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

His Lys Ser Lys Lys
1 5

<210> 22
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 22
Cys Gly Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly
1 5 10 15
Gln Ser Thr Ser Arg His Lys Lys Leu Met Phe Lys
20 25

<210> 23
<211> 27

<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 23
Cys Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln
1 5 10 15
Ser Thr Ser Arg His Lys Lys Leu Met Phe Lys
20 25

<210> 24
<211> 27
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 24
Cys Gly Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly
1 5 10 15
Gln Ser Thr Ser Arg His Lys Lys Leu Met Lys
20 25

<210> 25
<211> 26
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 25
Cys Gly Ser Arg Ala His Ser Ser His Leu Lys Ser Lys Lys Gly Gln
1 5 10 15
Ser Thr Ser Arg His Lys Lys Leu Met Lys
20 25

<210> 26
<211> 1215
<212> DNA
<213> Homo sapiens

<400> 26

gaattcaacc	agcagccctcc	cgcgaccatg	gaggagccgc	agtcaagatcc	tagcggtcgag	60
ccccctctga	gtcaggaaac	atttcagac	ctatggaaac	tacttccctga	aaacaacgtt	-120
ctgtccccct	tgccgtcccc	agcaatggat	gatttgatgc	tgtccccgg	cgatattgaa	180
caatggttca	ctgaagacccc	aggcccagat	gaagctcccc	aatgccaga	gctgctccc	240
cccggtggccc	ctgcaccaggc	agctccttaca	ccggccgccc	ctgcaccaggc	cccctccctgg	300
ccccctgtcat	cttctgtccc	ttcccagaaa	acctaccagg	gcagctacgg	ttcccgctcg	360

COPY

39

ggcttcttc	attctggac	agccaagtct	tgacttgca	cgtactcccc	tgcctcaac	420
aagatgttt	gccaactggc	gaagacctgc	cctgtgcagc	tgtgggttga	ttccacaccc	480
ccgccccggca	cccgctccg	cgccatggcc	atctacaaggc	agtcacagca	catgacggag	540
gttgtgaggc	gctgccccca	ccatgagcgc	tgtctcagata	gcgatggct	ggcccctcct	600
cagcatctta	tccgagtgg	aggaaatttg	cgtgtggagt	atttggatga	cagaaacact	660
tttcgacata	gtgtgggtt	accctatgag	ccgcctgagg	ttggctctga	ctgtaccacc	720
atccactaca	actacatgt	taacagg	tgcatggcg	gcatgaaccg	gaggcccattc	780
ctcaccatca	tcacactgg	agactccagt	ggtqatctac	tgggacggaa	cagtttgag	840
gtgcgtgtt	gtgcctgtcc	tgggagagac	cgcgcacag	aggaagagaa	tctccgcaag	900
aaaggggagc	ctcaccacga	gctccccca	gggagcacta	agcagagcact	gcccaacaac	960
accagctcct	ctccccagcc	aaagaagaaa	ccactggatg	gagaatattt	cacccttcag	1020
atccgcgggc	gtgagcgctt	cgaaatgttc	cgagagctga	atgaggcctt	ggaactcaag	1080
gatgcccagg	ctggaaagga	gccagggggg	agcagggctc	actccagcca	cctgaagtcc	1140
aaaaagggtc	agtctacctc	ccgccataaaa	aaactcatgt	tcaagacaga	agggcctgac	1200
tcagactgag	tcgac					1215

<210> 27

<211> 27

<212> DNA

<213> Homo sapiens

<400> 27

gagagcccca gttaccataa ctactct

27

<210> 28

<211> 30

<212> DNA

<213> Homo sapiens

<400> 28

atcacgtgat atcacgtgat atcacgtgat

30

<210> 29

<211> 26

<212> DNA

<213> Homo sapiens

<400> 29

cccgAACATG TCCCAACATG TTGGGG

26

<210> 30

<211> 30

<212> DNA

<213> Homo sapiens

<400> 30

TCGAGCATGT TCGAGCATGT TCGAGCATGT

30

<210> 31

<211> 30

<212> DNA

<213> Homo sapiens

COPY

40

<400> 31
ccgggcatgt ccgggcatgt ccgggcatgt

30

<210> 32
<211> 5
<212> PRT
<213> Homo sapiens

<400> 32
Lys Ser Lys Lys Gln
1 5

<210> 33
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 33
Arg Ala His Ser Ser His Lys Lys
1 5

<210> 34
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> synthetic, modified from human p53

<400> 34
His Leu Lys Ser Arg His
1 5

<210> 35
<211> 20
<212> DNA
<213> Homo sapiens

<400> 35
tggcatgtca tggcatgtca

20