Post-compiler Software Optimization for Reducing Energy

GOA Genetic Optimization Algorithm

Results: Energy Reduction

Mutation Operations

Functionality on Withheld Tests

Program	AMD	Intel
blackscholes	100%	100%
bodytrack	92%	100%
ferret	100%	100%
fluidanimate	6%	31%
freqmine	100%	100%
swaptions	100%	100%
vips	100%	100%
×264	27%	100%

Energy Model

$$power = C_{const} + C_{ins} \frac{ins}{cycle} + C_{flops} \frac{flops}{cycle} + C_{tca} \frac{tca}{cycle} + C_{mem} \frac{mem}{cycle}$$

$$\frac{Coefficient\ Description}{C_{const}\ C_{const}\ constant\ power\ draw} \frac{31.530\ 394.74}{31.530\ 394.74}$$

$$\frac{C_{ins}\ instructions}{C_{flops}\ floating\ point\ ops} \frac{20.490\ -83.68}{9.838\ 60.23}$$

$$\frac{C_{tca}\ cache\ accesses}{C_{mem}\ cache\ misses} \frac{-4.102\ -16.38}{2962.678\ -4209.09}$$

Resources: Genetic Optimization Algorithm

GOA tooling

https://github.com/eschulte/goa

reproduce results

https://github.com/eschulte/goa/tree/asplos2014