Algebraic Topology - Exercise Sheet 3

Tor Gjone (2503108) & Michele Lorenzi (3461634)

November 6, 2021

Exercise 1

(a) We have

$$|X| := (\bigsqcup_{n \ge 0} X_n \times \nabla^n) / \sim,$$

where \sim is generated by, for all $\alpha: [n] \to [m], x \in X_m, t \in \nabla^n$

$$(x, \alpha_*(t)) \sim (\alpha^*(x), t).$$

So what we need to show is that the map defined on the union factors through the quotient. We have

$$f_n(\alpha^*(x))(t) = \alpha^*(f_m)(t),$$
 since f is a morphism in **sSet**,
= $f_m(x)(\alpha_*)(t),$ by definition of α^* .

So $\widehat{f}: |X| \to T$ defined by $(x,t) \mapsto f_n(x)(t)$, is well-defined.

(b) Let

$$\Phi: \operatorname{Hom}_{\mathbf{sSet}}(X, \mathcal{S}(T)) \to \operatorname{Hom}_{\mathbf{Top}}(|X|, T); \quad f \mapsto \widehat{f}.$$

To show that Φ is a bijection, we construct an inverse.

Let $g: |X| \to T$ and $\tilde{g} = g \circ q: \bigsqcup_{n \geq 0} X_n \times \nabla^n \to T$, where q is the quotient map defined by the equivalence relation \sim above. Define $\bar{g}: X \to \mathcal{S}(T)$, by

$$\bar{g}_n(x)(t) := \tilde{g}(x,t),$$

for all $x \in X_n$ and $t \in T$. We need to show that this construction satisfy the naturally conditions of a morphism in **sSet**.

Let $\alpha:[n]\to[m]$, then for $x\in X_m$ and $t\in\nabla^n$

$$(\bar{g}_n \circ \alpha^*)(x)(t) = \tilde{g}(\alpha^*(x), t)$$

$$= \tilde{g}(x, \alpha_*(t)), \qquad \text{since } \tilde{g} \text{ passes through } |X|$$

$$= \bar{g}_m(x)(\alpha_*(t))$$

$$= (\alpha \circ \bar{g}_m)(x)(t)$$

Clearly the maps Φ and $(g \mapsto \bar{g})$ are mutual inverses and thus Φ most be a bijection.

(c) We'll start by showing naturally in the first variable. Let $X, Y \in \mathbf{sSet}$ and $\phi : X \to Y$ be a morphism in \mathbf{sSet} . Then we want to show that the following diagram (in which, we're suppressing the subscripts on Hom) commutes

$$\begin{array}{ccc} f \circ \phi & \operatorname{Hom}(X,\mathcal{S}(T)) & \stackrel{\Phi}{\longrightarrow} \operatorname{Hom}(|X|,T) \\ \uparrow & \operatorname{Hom}(\phi,\mathcal{S}(T)) \uparrow & \uparrow \operatorname{Hom}(|\phi|,\mathcal{S}(T)) \\ f & \operatorname{Hom}(Y,\mathcal{S}(T)) & \stackrel{\Phi}{\longrightarrow} \operatorname{Hom}(|Y|,T) \end{array}$$

Or equivalently: for all $f \in \operatorname{Hom}_{\mathbf{sSet}}(Y \to \mathcal{S}(T))$,

$$\widehat{f \circ \phi} = \widehat{f} \circ |\phi| : |X| \to T,$$

where $|\phi|:|X|\to |Y|$ is defined by $|\phi|(x,t):=(\phi_n(x),t)$, for $x\in X_n,\,t\in \nabla^n$. Let $f:Y\to \mathcal{S}(T),\,x\in X_n$ and $t\in \nabla^n$, then

$$\widehat{f \circ \phi}(x,t) = (f \circ \phi)_n(x)(t), \qquad \text{by def. of } \widehat{\cdot}$$

$$= (f_n \circ \phi_n)(x)(t)$$

$$= (f_n(\phi_n(x)))(t)$$

$$= \widehat{f}(\phi_n(x),t), \qquad \text{by def. of } \widehat{f}$$

$$= (\widehat{f} \circ |\phi|)(x,t) \qquad \text{by def. of } |\phi|.$$

Naturally in the second argument is similar. Let $\psi: T \to S$ be a cnt. map. Then we want to show that the following diagram commutes

$$\begin{array}{ccc} f & \operatorname{Hom}(X,\mathcal{S}(T)) \stackrel{\Phi}{\longrightarrow} \operatorname{Hom}(|X|,T) \\ \downarrow & \operatorname{Hom}(X,\mathcal{S}(\psi)) \downarrow & \downarrow \operatorname{Hom}(|X|,\mathcal{S}(\psi)) \\ \mathcal{S}(\psi) \circ f & \operatorname{Hom}(X,\mathcal{S}(S)) \stackrel{\Phi}{\longrightarrow} \operatorname{Hom}(|X|,S) \end{array}$$

Or equivalently: for all $f \in \operatorname{Hom}_{\mathbf{sSet}}(Y, \mathcal{S}(T))$,

$$\widehat{\mathcal{S}(\psi) \circ f} = \psi \circ \widehat{f} : |X| \to S,$$

where $S(\psi): S(X) \to S(Y)$ is defined by $(S(\psi))_n(\xi) := \psi \circ \xi$, for $\xi \in S(X)_n$. Let $x \in X_n$, $t \in \nabla^n$ and $f \in \operatorname{Hom}_{\mathbf{sSet}}(X, S(T))$

$$\widehat{\mathcal{S}(\psi) \circ f}(x,t) = (\mathcal{S}(\psi) \circ f)_n(x)(t)$$

$$= (\mathcal{S}(\psi)_n \circ f_n)(x)(t)$$

$$= \mathcal{S}(\psi)_n(f_n(x))(t)$$

$$= (\psi \circ f_n(x))(t), \qquad \text{by def. of } \widehat{\mathcal{S}}(\psi)$$

$$= (\psi \circ \widehat{f})(x)(t), \qquad \text{by def. of } \widehat{f}.$$

Exercise 2 We'll write

$$\Psi = (|p_1|, |p_2|) : |\Delta[n] \times \Delta[1]| \to |\Delta[n]| \times |\Delta[1]|.$$

To show that Ψ is a homeomorphism, we will construct an inverse Φ .

Every element on the left side can be represented by

$$((\alpha, \beta), t), ((\alpha, t), (\beta, s)) \tag{1}$$

where $\alpha:[k] \to [n], \ \beta:[k] \to [1]$ and $t \in \nabla^k$. On the other hand, an arbitrary element on the right side can be represented by

$$((\alpha, t), (\beta, s)), \tag{2}$$

where $\alpha: [m] \to [n], \beta: [l] \to [1], t \in \nabla^m \text{ and } s \in \nabla^l$.

Then, on representatives, the map Ψ is defined by

$$((\alpha, \beta), t) \mapsto ((\alpha, t), (\beta, t)).$$

To construct Φ , we will consider some representative as in (2).

We claim that we may wlog. assume that $m \leq n$ and $l \leq 1$. Or equivalently for all representatives as in (??), there exists $\alpha': [m'] \to [n], \ \beta': [l'] \to [1], \ t' \in \nabla^{m'}$ and $s' \in \nabla^{l'}$ such that $m' \leq n, \ l' \leq 1$ and

$$(\alpha, t) \sim (\alpha', t')$$
 and $(\beta, s) \sim (\beta', s')$.

proof of claim.

Note that $(t,s) \in \nabla^m \times \nabla^l$. By the claim l=0,1. If l=0, then k=m and $\nabla^m \times \nabla^0$ is already a k-simplex. So we will mostly consider the case where l=1. (In the following arguments l=1, but we will still write l to keep track of it) The geometrical idea of the constructions of Φ , consists of partitioning the polyhedra $\nabla^m \times \nabla^l$ into k-simplices where k=m+l.

Observe that the vertices of $\nabla^m \times \nabla^l$ can be parametrise by $[m] \times [l]$. Define an ordering of on $[m] \times [l]$ by $(i,j) \geq (i',j')$ iff $i+j \geq i'+j$. Let $S \subset [m] \times [l]$, such that |S| = m+l+1 = k+1, then the convex hull of S defines a k-simplex $\nabla_S \subseteq \nabla^m \times \nabla^l$. In particular, if $\xi : [k] \to [m] \times [l]$ is a strictly increasing map (wrt. the order defined above) then the convex hull of $\xi([k])$ defines a k-simplex $\nabla_\xi \subseteq \nabla^m \times \nabla^l$.

We claim that $\Xi_{m,l} = \{ \nabla_{\xi} \mid \xi : [k] \to [m] \times [l] \}$ defines a partitioning of $\nabla^m \times \nabla^l$ into k-simplices. That is

$$\bigsqcup_{\nabla_{\xi} \in \Xi_{m,l}} \nabla_{\xi} = \nabla^m \times \nabla^l,$$

and if $\xi, \xi' \in \Xi_{m,l}$ are distinct then

$$\overset{\circ}{\nabla}_{\xi}\cap \overset{\circ}{\nabla}_{\xi'}=\emptyset.$$

proof of claim.

Now that we have a partition, consider a point $(t,s) \in \nabla^m \times \nabla^l$. We claim that we may with out loss of generality assume that (t,s) is contained in the interior of $\nabla^m \times \nabla^l$. That is if there $(t,s) \in (\nabla^m \times \nabla^l)$ then $(\alpha,t) \sim (\alpha',t')$ and $(\beta,s) \sim (\beta',s')$ such that $(t,s) \in (\nabla^m \times \nabla^l)^{\circ}$

Exercise 3