Algorithms Exercises Answers and Notes

exceedhl@gmail.com

May 7, 2012

1 Chapter 1

1.1 Basic facts about rem

Theorem 1 Rem operation has the following features: $(a, b \in \mathbb{Z})$

$$ab \ rem \ N = a(b \ rem \ N) \ rem \ N \tag{1}$$

$$= (a \ rem \ N)b \ rem \ N \tag{2}$$

$$= (a \ rem \ N)(b \ rem \ N) \ rem \ N \tag{3}$$

$$a^b \ rem \ N = (a \ rem \ N)^b \tag{4}$$

$$(a \pm b) rem N = ((a rem N) \pm (b rem N)) rem N$$
 (5)

These features are important for solving $a^b \ rem \ N$ problems.

Theorem 2 Suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then

- 1. $a + c \equiv b + d \mod n$
- 2. $ac \equiv bd \mod n$
- 3. $f(a) \equiv f(b) \mod n$ for any polynomial f(x) with integer coefficients.

Theorem 3 About mod operation:

$$a \equiv b \mod N, b \equiv c \mod N \tag{6}$$

$$\Rightarrow a \equiv b \equiv c \mod N \tag{7}$$

If p is a prime, a is not a multiplicative of p, then

$$a^{p-1} \equiv 1 \mod p \tag{8}$$

$$\Rightarrow a^n \ rem \ p = a^n \ rem \ (p-1) \ rem \ p \tag{9}$$

$$a^m \equiv 1 \mod p \tag{10}$$

$$\Rightarrow a^n \ rem \ p = a^n \ rem \ m \ rem \ p \tag{11}$$

(9) is the key to solve a^{b^c} rem p problems.

Theorem 4 If a has a multiplicative inverse modulo N, then this inverse is unique (modulo N).

Theorem 5 If a has an inverse modulo b, then b has an inverse modulo a.

1.2 Theorems

Theorem 6 If p, q are primes, and a is not a multiplier of either of them then we have:

$$a^{(p-1)(q-1)} \equiv 1 \mod pq \tag{12}$$

This is useful in the proof of RSA algorithm.

Theorem 7 If p is a prime, a is an integer, then $GCD(a, p^n) \neq 1$ (n > 0) is a integer) if and only if a = kp (k is an integer).

Theorem 8 If p is a prime and a < p, then there exists b < p, so that $ab \equiv 1 \mod p$.

Proof. According to Fermat's theorem: there exists a a^{-1} so that $aa^{-1} \equiv 1 \mod p$.

Because aa^{-1} rem $p = a(a^{-1}$ rem p) rem p so ethat there exists a b < p so that $ab \equiv 1 \mod p$.

This theorem can be used to prove Wilson's theorem:

$$(p-1)! \equiv -1 \mod p \tag{13}$$

Theorem 9 For any two adjacent Fibonacci numbers F_n and F_{n+1} , $GCD(F_n, F_{n+1}) = 1$.

1.3 RSA algorithm

p, q are primes, N = pq, N' = (p-1)(q-1), e is relatively prime to N'. x is the plain text and $x \in \{0, 1, \dots, N-1\}$.

N and e are public, the encrypted text is:

$$x' = x^e \ rem \ N, \quad x' \in [0, 1, \dots, N-1]$$
 (14)

Let

$$de \equiv 1 \bmod N', \tag{15}$$

d can be calculated using extended Euclid algorithm.

Then

$$de - 1 = kN' \tag{16}$$

$$de = kN' + 1 \tag{17}$$

$$x'^{d} - x = x^{ed} - x = x^{1+k(p-1)(q-1)} - x$$
(18)

Because $p,\ q$ are primes and x < N, so according to Fermat's little theorem:

$$x^{p-1} \equiv 1 \bmod p \tag{19}$$

$$\Rightarrow x^{(p-1)k(q-1)} \equiv 1 \mod p \tag{20}$$

$$x^{q-1} \equiv 1 \bmod q \tag{21}$$

$$\Rightarrow x^{(q-1)k(p-1)} \equiv 1 \bmod q \tag{22}$$

$$\Rightarrow x^{(q-1)k(p-1)} - 1 \ rem \ pq = 0$$
 (23)

$$\Rightarrow x^{(q-1)k(p-1)} \equiv 1 \mod pq \tag{24}$$

$$\Rightarrow x'^{d} - x = x^{ed} - x = x^{1+k(p-1)(q-1)} - x \ rem \ pq = 0$$
 (25)

$$\Rightarrow x'^d \equiv 1 \bmod N \tag{26}$$

Because $x^{ed} \equiv x \mod N$ and x < N, we can get x by calculating $x'^d \ rem \ N$.

So if we make N, e public, keep d, p, q secret, then we can encrypt and decrypt messages using power and rem operations.

Finally, since x^e rem N = x', and x'^d rem N = x, it is obvious that they are bijection functions.

1.4 Exercises

1.4.1 e1.1

Consider the biggest possible value of adding three digits in base b: 3(b-1). The biggest value of two digits in base b is: $b^2 - 1$. Now we just need to prove $b^2 - 1 \ge 3(b-1)$.

$$b^2 - 1 - 3(b - 1) = b^2 - 3b + 2 (27)$$

$$= (b-1)(b-2) \tag{28}$$

$$\geq 0 \quad (\forall \ b \geq 2) \tag{29}$$

1.4.2 e1.26

According to Feramt's theorem, if p is a prime and k is not a multiplier of p, then $k^{p-1} \equiv 1 \mod p$.

If there are two primes and k is not multiplier of either one, then we can have (refer to the proof of RSA algorithm):

$$k^{(p-1)(q-1)} \equiv 1 \bmod pq \tag{30}$$

Let the least significant digit of $17^{17^{17}}$ is d:

$$17^{17^{17}} \equiv d \bmod 10 \tag{31}$$

10 = 2 * 5 so set p = 2, q = 5, we just need to find a which is not multiplier of 2 and 5, then we have $a^4 \equiv 1 \mod 10$.

Continuously use this a^4 to divide the original number to get d.

Let a = 17, so

$$17^{17^{17}} \equiv 17^{289} \tag{32}$$

$$\equiv 17 * 17^{288} \tag{33}$$

$$\equiv 17 * (17^4)^{72} \tag{34}$$

$$\equiv 17\tag{35}$$

$$\equiv d \bmod 10 \tag{36}$$

$$\Rightarrow d = 7 \tag{37}$$

1.4.3 e1.29

The problem assumes $x_1 < m$, $x_2 < m$.

- (a) is universal hashing function, the proof is same with the IP hashing function example.
- (b) is not universal. Suppose (x_1, x_2) is different with (y_1, y_2) and x_2 is different with y_2 . $h_{a_1,a_2}(x_1, x_2)$ equals with $h_{a_1,a_2}(y_1, y_2)$ means:

$$a_1x_1 + a_2x_2 \equiv a_1y_1 + a_2y_2 \mod m \tag{38}$$

$$a_1(x_1 - y_1) \equiv a_2(y_1 - y_2) \bmod m \tag{39}$$

Suppose the left side equals to c, then if $(y_1 - y_2)$ is relative prime to m, then a_2 must be $c(y_1 - y_2)^{-1}$.

Because $m = 2^k$ is not prime and the number of numbers that are relative prime to m is $\phi(m) = \phi(2^k) = 2^k - 2^{k-1}$.

The chance of $(y_1 - y_2)$ being relative prime to $m = 2^k$ is 1/2 because any odd number is relative prime to 2^k , so the chance of (39) holding is: $1/2 * 1/(2^k - 2^{k-1}) = 1/2^k$.

When $(y_1 - y_2)$ is even there exists some a_2 to make (39) hold. For example:

$$m = 2^3 = 8 (40)$$

$$y_1 - y_2 = 2 (41)$$

$$c = 2 \tag{42}$$

$$2 \equiv a_2 * 2 \bmod 8 \tag{43}$$

$$\Rightarrow a_2 = 5 \tag{44}$$

So the overall probability of making (39) hold is greater than $1/2^k = 1/m$.

(c) is not universal. Take an arbitrary f, the probability of a number p's key being conflict with another's key is 1/(m-1) > 1/m.

1.4.4 1.32 Perfect square/power check