組込み RTOS 向けアプリケーション開発支援ツール TLV (トレース ログ ヴィジュアライザー) フェーズ 4 リファクタリング仕様書・作業計画書

2009年6月16日

改訂履歴

版番	日付	更新内容	更新者
1.0	09/5/28	新規作成	水野洋樹
1.1	09/6/16	仕様書と作業計画書を分割・図を挿入	水野洋樹

目次

1	はじめに	3
1.1	本書の目的	3
1.2	本書の適用範囲	3
1.3	用語の定義/略語の説明	3
1.4	概要	3
第Ⅰ部	リファクタリング仕様書	3
2	概要説明	5
2.1	リファクタリングを実施する理由	5
2.2	リファクタリングを実施する対象	6
3	変更内容	7
3.1	処理の流れ	7
3.2	TLV ファイルフォーマット	7
第Ⅱ部	阝 リファクタリング作業計画	12
4	実施内容	12
5	EventShapes のシリアライズ・デシリアライズ処理	12
5.1	・ 可視化ルールを用いた可視化処理の移動	12
5.2	描画処理の修正・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
6	作業見積り	12

1 はじめに

1.1 本書の目的

本書の目的は、文部科学省先導的 IT スペシャリスト育成推進プログラム「OJL による最先端技術適応能力を持つ IT 人材育成拠点の形成」プロジェクトにおける、OJL 科目ソフトウェア工学実践研究の研究テーマである「組込み RTOS 向けアプリケーション開発支援ツールの開発」に対して、その開発するソフトウェアに対する設計を記述することである。

本書は特に、フェーズ4におけるリファクタリング作業に関する記述を行う。

1.2 本書の適用範囲

本書は、組込み MPRTOS 向けアプリケーション開発支援ツールの開発プロジェクト(以下本プロジェクト)のフェーズ 4 におけるリファクタリング作業に関する記述を行う。

1.3 用語の定義/略語の説明

表 1 用語定義

用語・略語	定義・説明
TLV	Trace Log Visualizer
MPRTOS	マルチプロセッサ対応リアルタイムオペレーティングシステム
トレースログファ	RTOS のトレースログ機能を用いて出力したトレースログや、シミュレータなどが出
イル	力するトレースログをファイルにしたもの
標準形式トレース	本ソフトウェアが扱うことの出来る形式をもつトレースログファイル。各種トレースロ
ログファイル	グファイルは、この共通形式トレースログファイルに変換することにより本ソフトウェ
	アで扱うことが出来るようになる。
変換ルール	トレースログファイルを標準形式トレースログファイルに変換する際に用いられるルー
	ル。
可視化ルール	標準形式トレースログファイルを可視化する際に用いられるルール。
TLV ファイル	本ソフトウェアが中間形式として用いるファイル。前述の標準形式トレースログファイ
	ルは、この TLV ファイルの一部である。

1.4 概要

本書では、組込み MPRTOS 向けアプリケーション開発支援ツールのソフトウェアの仕様を記述する。本書は特に、フェーズ4におけるリファクタリング作業に関する記述を行う。

第Ⅰ部

リファクタリング仕様書

2 概要説明

2.1 リファクタリングを実施する理由

フェーズ 4 では、変換・可視化ルールに外部スクリプトを利用できるように TLV を拡張する予定である。 現在の TLV ままでは TLV ファイルの可搬性 (ポータビリティ) が問題になるため、リファクタリングを実施する。

現在の TLV は、図 1 のように標準形式トレースログを可視化ルールを用いた変換は、描画処理時に行なわれる。描画処理は TLV ファイルを開くたびに実行されるため、可視化ルールに外部スクリプトを利用した場合、TLV ファイルを別の環境で開くことが難しくなる。そのため、TLV ファイルの可搬性が損なわれる。

リファクタリング後の TLV は、図 2 のように可視化ルールを用いた変換を、描画処理時でなくログファイル読み込みに行なう。ログファイル読み込みは、TLV を生成するときのみ実行されるため、TLV ファイルの可搬性が確保できる。

図1 リファクタリング前の TLV

図 2 リファクタリング後の TLV

2.2 リファクタリングを実施する対象

リファクタリング対象は、TLV ファイルを生成するクラスと、TLV ファイルを用いて描画処理を行なうクラスである。

TLV ファイル生成時に可視化ルールを用いた変換を行なうように、TLV ファイルを生成するクラスを変更

する。

TLV ファイル生成時に可視化ルールを用いた変換を行なうようにしたので、描画処理を行なうクラスでは可視化ルールを用いた変換を行なわないように変更する。

3 変更内容

3.1 処理の流れ

リファクタリング前の処理の流れを図 3,4 に示す。図 3 はファイル読み込み時の処理を示す。 TraceLogGenerator を用いて、トレースログファイルを標準形式トレースログに変換している。図 4 は描画 処理を示す。TimeLineEvents を用いて、標準形式トレースログを可視化ルールを用いて変換し、描画している。

リファクタリング後の処理の流れを図 5,6 に示す。図 5 はファイル読み込み時の処理を示す。TraceLogGenerator を用いてトレースログファイルを標準形式トレースログに変換し、VisualizeShapesGenerator を用いて、標準形式トレースログを可視化ルールを用いて変換している。図 6 は描画処理を示す。可視化処理済みの標準形式トレースログを描画している。

3.2 TLV ファイルフォーマット

リファクタリングに共ない、TLV ファイルに格納する情報も変更する。 現在の TLV には、ZIP 書庫形式で以下のファイルが格納されている。

- 標準ログファイル (*.log)
- リソースファイル (*.res)
- 設定ファイル (*.setting)
- 可視化ルールファイル l(*.viz)

これに加えて、可視化図形ファイルを TLV ファイルに格納する。

- 標準ログファイル (*.log)
- リソースファイル (*.res)
- 設定ファイル (*.setting)
- 可視化ルールファイル l(*.viz)
- 可視化図形ファイル(*shp)

図 3 リファクタリング前の標準ログ変換処理

図 4 リファクタリング前の可視化処理

図5 リファクタリング後の標準ログ変換処理

図 6 リファクタリング後の可視化処理

第川部

リファクタリング作業計画

4 実施内容

リファクタリングは以下の手順で行なう。

- 1. EventShapes のシリアライズ・デシリアライズ処理
- 2. 可視化ルールを用いた変換処理の移動
- 3. 描画処理の修正

5 EventShapes **のシリアライズ・デシリアライズ処理**

描画対象である EventShapes を JSON 形式で保存できるように、シリアイラズ・デシリアライズ処理を記述する。

- 1. ShapeConvertor を変更し、Shape クラスのシリアイラズ・デシリアライズ可能する。
- 2. EventShapesConvertor を作成し、EventShapes クラスのシリアイラズ・デシリアライズ可能する。
- 3. TraceLogVisualizerData のファイル保存処理を追加する

5.1 可視化ルールを用いた可視化処理の移動

TimeLineEvents 内にある可視化ルールを用いた可視化処理を独立したクラスに移動する。

- 1. TimeLineEvents の処理の大半を、VisualizeShapeGenerator に移動する。
- 2. StandardFormatConvertor に、VisualizeShapeGenerator を用いた処理を追加する。

5.2 描画処理の修正

TimeLineEvents を用いて描画処理を行なっていたクラスを修正する。修正対象は以下のクラスである。

- TimeLineVisualizer(10 箇所)
- TimeLineMacroViewer(2 箇所)
- TraceLogDisplayPanel(5 箇所)

6 作業見積り

各作業において、修正が必要な行数の見積りは次に示す通りである。

- 1. EventShapes のシリアライズ・デシリアライズ処理
 - (a) ShapeConvertor を変更し、Shape クラスのシリアイラズ・デシリアライズ可能する。(約 100 行)

表 2 作業見積り

- (b) EventShapesConvertor を作成し、EventShapes クラスのシリアイラズ・デシリアライズ可能する。(約 10 行)
- (c) TraceLogVisualizerData のファイル保存処理を追加する。(約5行)
- 2. 可視化ルールを用いた変換処理の移動
 - (a) TimeLineEvents の処理の大半を、VisualizeShapeGenerator に移動する。(約568行)
 - (b) StandardFormatConvertor に、VisualizeShapeGenerator を用いた処理を追加する。(約 20 行)
- 3. 描画処理の修正
 - (a) TimeLineVisualizer(10 箇所)
 - (b) TimeLineMacroViewer(2 箇所)
 - (c) TraceLogDisplayPanel(5 箇所)