Chapter 18

Hypothesis space I

Recall from Chapter 17 we have assumed that the hypothesis space \mathscr{H} is compact subset of $\mathbb{C}(X)$. In this chapter we show that this assumption is valid when the hypothesis space is taken as a bounded subset of the reproducing kernel Hilbert space of Mercer kernel.

18.1 Reproducing kernel Hilbert spaces (RKHS)

In this book we are interested in hypothesis space associated with RKHS. Assume X is a metric space and let $\mathbf{K}: X \times X \to \mathbb{R}$ be *symmetric positive semidefinite* in the sense $\mathbf{K}(\mathbf{x},\mathbf{x}') = \mathbf{K}(\mathbf{x}',\mathbf{x})$ and any $n \times n$ *Gramian* matrix whose ij-element is $\mathbf{K}(\mathbf{x}_i,\mathbf{x}_j)$ is semipositive definite for all n and $(\mathbf{x}_1,\ldots,\mathbf{x}_n)$. We say \mathbf{K} is a *Mercer* kernel if it is continuous, symmetric, and positive semidefinite. Clearly the positive semidefiniteness implies $\mathbf{K}(\mathbf{x},\mathbf{x}) \geq 0$ for any $\mathbf{x} \in X$, and this allows us to define

$$C_{\mathsf{K}} := \sup_{\mathbf{x} \in X} \sqrt{\mathsf{K}(\mathbf{x}, \mathbf{x})}.$$

Exercise 18.1. Show that

$$C_{\mathsf{K}} = \sup_{\mathbf{x}, \mathbf{x}' \in X} \sqrt{\left| \mathsf{K}\left(\mathbf{x}, \mathbf{x}'\right) \right|}$$

For any $\mathbf{x} \in X$, by $\mathbf{K}_{\mathbf{x}}$ we denote the function $\mathbf{K}_{\mathbf{x}}: X \ni \mathbf{x}' \mapsto \mathbf{K}_{\mathbf{x}}\left(\mathbf{x}'\right) := \mathbf{K}\left(\mathbf{x}, \mathbf{x}'\right) \in \mathbb{R}$. We form the space $\mathring{\mathscr{H}}_{\mathbf{K}}$ as

$$\mathring{\mathscr{H}}_{\mathbf{K}} := \operatorname{span}\left\{\mathbf{K}_{\mathbf{x}} : \mathbf{x} \in X\right\},\,$$

and equip it with the following inner product: for $f = \sum_{i=1}^{I} f_i \mathbf{K}_{\mathbf{x}^i} \in \mathring{\mathcal{H}}_{\mathbf{K}}$ and $g = \int_{0}^{\infty} f(\mathbf{x}^i) d\mathbf{x}^i$

$$\sum_{i=1}^{J} g_j \mathbf{K}_{\mathbf{t}^j} \in \mathring{\mathcal{H}}_{\mathbf{K}},$$

$$(f,g)_{\mathcal{H}_{\mathbf{K}}} = \sum_{i,j}^{I,J} f_i g_j \mathbf{K}_{\mathbf{x}^i} \mathbf{K}_{\mathbf{t}^j}.$$
 (18.1)

Theorem 18.1 (Reproducing Kernel Hilbert Space). Let \mathcal{H}_K be a Hilbert space with with the following properties:

- 1. $\mathbf{K}_{\mathbf{x}} \in \mathcal{H}_{\mathbf{K}}$ for any $\mathbf{x} \in X$.
- 2. $\mathcal{H}_{\mathbf{K}}$ is dense in $\mathcal{H}_{\mathbf{K}}$.
- 3. **Reproducing property:** for any $f \in \mathcal{H}_{\mathbf{K}}$ and $\mathbf{x} \in X$, we have $f(\mathbf{x}) = (\mathbf{K}_{\mathbf{x}}, f)_{\mathcal{H}_{\mathbf{K}}}$. Then $\mathcal{H}_{\mathbf{K}}$ is unique. Moreover, $\mathcal{H}_{\mathbf{K}} \subset \mathbb{C}(X)$ and the inclusion $i_{\mathbf{K}} : \mathcal{H}_{\mathbf{K}} \hookrightarrow \mathbb{C}(X)$ is bounded.

Proof. Note sure we need this result, so let's not type the proof for now. \Box

18.2 Hypothesis space associated with RKHS

Proposition 18.1. Suppose K be a Mercer kernel on a compact metric space X, and \mathcal{H}_{K} is the associated RKHS. For any R > 0, the ball $B(R) := \{ f \in \mathcal{H}_{K} : \|f\|_{\mathcal{H}_{K}} \leq R \}$ is a closed subset of $\mathbb{C}(X)$.

Proof. From Theorem 18.1 it is sufficient to show that B(R) is closed in $\mathbb{C}(X)$. To that end, suppose $\{f_n\}_{n\in\mathbb{N}}\in B(R)$ converges to $f^*\in\mathbb{C}(X)$, i.e.,

$$\lim_{n} f_{n}(\mathbf{x}) = f^{*}(\mathbf{x}),$$

and we need to show that $f^* \in B(R)$. Since, by Lemma 18.1, B(R) is weakly compact, there exists a subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$ converging to $\hat{f} \in B(R)$, i.e.,

$$\lim_{k} (f_{n_k}, g)_{\mathscr{H}_{\mathbf{K}}} = (\hat{f}, g)_{\mathscr{H}_{\mathbf{K}}}, \quad \forall g \in \mathscr{H}_{\mathbf{K}}.$$

Now taking $g = \mathbf{K}_{\mathbf{x}}$ and using the reproducing property we have

$$f^{*}\left(\mathbf{x}\right)=\lim_{k}f_{n_{k}}\left(\mathbf{x}\right)=\lim_{k}\left(f_{n_{k}},\mathbf{K}_{\mathbf{x}}\right)_{\mathcal{H}_{\mathbf{K}}}=\left(\hat{f},\mathbf{K}_{\mathbf{x}}\right)_{\mathcal{H}_{\mathbf{K}}}=\hat{f}\left(\mathbf{x}\right),\quad\forall\mathbf{x}\in X.$$

Since both f^* and \hat{f} are continuous, they must be identical and this ends the proof. \Box

Theorem 18.2. Suppose K be a Mercer kernel on a compact metric space X, and \mathscr{H}_K is the associated RKHS. The inclusion $i_K : \mathscr{H}_K \hookrightarrow \mathbb{C}(X)$ is compact. In other words, the set $i_K(B(R))$ is compact for any R > 0.

18.3 Appendix 129

Proof. Theorem 18.1 and Proposition 18.1 show that $i_{K}(B(R))$ is closed and bounded. By the Arzelá-Ascoli theorem, what remains is to show the equicontinuity. We have

$$\begin{split} |f\left(\mathbf{x}\right) - f\left(\mathbf{t}\right)| &= \left| (f, \mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{t}})_{\mathscr{H}_{\mathbf{K}}} \right| \leq \|f\|_{\mathscr{H}_{\mathbf{K}}} \|\mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{t}}\|_{\mathscr{H}_{\mathbf{K}}} \\ &= R\sqrt{(\mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{t}}, \mathbf{K}_{\mathbf{x}} - \mathbf{K}_{\mathbf{t}})_{\mathscr{H}_{\mathbf{K}}}} = R\sqrt{(\mathbf{K}_{\mathbf{x}}\left(\mathbf{x}\right) - \mathbf{K}_{\mathbf{x}}\left(\mathbf{t}\right) + \mathbf{K}_{\mathbf{t}}\left(\mathbf{t}\right) - \mathbf{K}_{\mathbf{t}}\left(\mathbf{x}\right))_{\mathscr{H}_{\mathbf{K}}}} \end{split}$$

Now since **K** is continuous on the compact set $X \times X$, it is uniformly continuous on $X \times X$, i.e., for all $\mathbf{x}, \mathbf{t}, \mathbf{t}' \in X$ such that $\left\|\mathbf{t} - \mathbf{t}'\right\|_{X} \leq \delta$ (δ does not depend on $\mathbf{x}, \mathbf{t}, \mathbf{t}'$ implies

$$\left| \mathsf{K}_{x}\left(t\right) - \mathsf{K}_{x}\left(t'\right) \right| \leq \epsilon.$$

We thus have

$$|f(\mathbf{x}) - f(\mathbf{t})| \le R\sqrt{2\varepsilon}, \quad \forall \mathbf{t}, \mathbf{x} : ||\mathbf{x} - \mathbf{t}|| \le \delta, \quad \forall f \in i_{\mathbf{K}}(B(R)),$$

and this concludes the proof. \Box

In this book we generally take the hypothesis space \mathcal{H} as a compact subset of $\mathbb{C}(X)$. As shown in Theorem 18.2, this can be justified by choosing \mathcal{H} as a closed ball in the RKHS associated with the kernel under consideration.

18.3 Appendix

Lemma 18.1 (Weak compactness of closed balls in Hilbert space). If B be a closed ball in a Hilbert space \mathcal{H} , it is weakly compact. In other words, every sequence $\{f_n\}_{n\in\mathbb{N}}\subset B$ has a weakly convergence subsequence $\{f_{n_k}\}_{k\in\mathbb{N}}$. That is, there exists some $f^*\in B$ such that

$$\lim_{k \to \infty} (f_{n_k}, g)_{\mathscr{H}} = (f^*, g)_{\mathscr{H}}, \quad \forall g \in \mathscr{H}.$$

Definition 18.1 (Equicontinuity). A subset K of $\mathbb{C}(X)$ is equicontinuous at $\mathbf{x} \in X$ if for any $\varepsilon > 0$ there exists a neighborhood B of x such that $\forall \mathbf{t} \in X$ and $\forall f \in K$ we have $\|f(\mathbf{x}) - f(\mathbf{t})\|_{\infty} < \varepsilon$. K is equicontinuous if it is equicontinuous at every $\mathbf{x} \in X$.

Theorem 18.3 (Arzelá-Ascoli theorem). Let X be compact. $K \subset \mathbb{C}(X)$ is compact if and only if K is closed, bounded, and equicontinuous.