Hazem Shehata

Outline

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

CSE 411: Artificial Intelligence (Elective Course #6)

400 Level, Mechatronics Engineering 2nd Term 2016/2017, Lecture #9

Hazem Shehata

Dept. of Computer & Systems Engineering Zagazig University

May 8th, 2017

Credits to Dr. Mohamed El Abd for the slides

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirement & Reading Material

Adminstrivia

Notes

- Midterm:
 - Done marking!
 - Solution was posted!

Course Info:

- Website: http://hshehata.github.io/courses/zu/cse411/
- Office hours: Sunday 11:30am 12:30pm

> Hazem Shehata

Outline

Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Outline

- Logical Agents (Continued)
 - Introduction
 - Propositional logic (Continued)
 - Weather Forecasting Example

Requirements & Reading Material

May 8th, 2017

3

> Hazem Shehata

Outline

Logical Agents (Continue)

(Continued)

Propositional logic (Continued) Weather

Weather Forecasting Example

Requirement & Reading Material

Outline

- Logical Agents (Continued)
 - Introduction
 - Propositional logic (Continued)
 - Weather Forecasting Example

Requirements & Reading Material

> Hazem Shehata

Outline

Agents

Introduction

Propositional logic

(Continued)

Forecasting Example

Requirement & Reading Material

Introduction

Knowledge-based agents

- Knowledge-based agents are agents that can:
 - store knowledge → knowledge base (KB).
 - deduce new facts → inferencing.

May 8th, 2017

5

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic

(Continued) Weather

Weather Forecasting Example

Requirement & Reading Material

Introduction

Knowledge-based agents

- Knowledge-based agents are agents that can:
 - store knowledge → knowledge base (KB).
 - deduce new facts → inferencing.
- KB includes set of assertions about environment:
 - facts.
 - rules.

> Hazem Shehata

Outline

Logical Agents (Continued

Introduction
Propositional logic

Weather Forecasting Example

Requirement & Reading Material

Introduction

Knowledge-based agents

- Knowledge-based agents are agents that can:
 - store knowledge → knowledge base (KB).
 - deduce new facts → inferencing.
- KB includes set of assertions about environment:
 - facts.
 - rules.
- These assertions are sentences represented in a given logic.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Propositional Logic

Syntax

• Propositional logic is a very simple yet powerful logic.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional Logic

Sentence ⇒ Sentence Sentence ⇔ Sentence

Syntax

- Propositional logic is a very simple yet powerful logic.
- PL syntax:

Sentence ::= Atomic-Sentence | Complex-Sentence | TRUE | FALSE | P | Q | R | ... |

Complex-Sentence ::= (Sentence) | ¬Sentence | Sentence | Se

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requirement & Reading Material

Propositional Logic

Syntax

- Propositional logic is a very simple yet powerful logic.
- PL syntax:

```
Sentence ::= Atomic-Sentence | Complex-Sentence | TRUE | FALSE | P | Q | R | ... |
Complex-Sentence ::= (Sentence) | ¬Sentence | Sentence ∨ Sentence | Sentence ∨ Sentence | Sentence ⇒ Sentence | Sentence ⇒ Sentence | Sentence ⇒ Sentence | Sentence ⇒ Sentence
```

- Ex.:
 - " $(A \land B) \Rightarrow \neg C$ " is a well-formed PL formula.
 - " $A \land \Rightarrow B$ " is not a well-formed PL formula!

> Hazem Shehata

Outlin

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Propositional Logic

Semantics

PL semantics:

P	Q	TRUE	FALSE	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
F	F	T	F	Т	F	F	Т	Т
F	Т	T	F	Т	F	T	Т	F
T	F	T	F	F	F	Т	F	F
Т	Т	Т	F	F	Т	Т	Т	Т

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting

Forecasting Example

Requirement & Reading Material

Propositional Logic

Semantics

PL semantics:

P	Q	TRUE	FALSE	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
F	F	T	F	Т	F	F	Т	Т
F	T	T	F	Т	F	T	Т	F
T	F	T	F	F	F	Т	F	F
T	T	T	F	F	Т	Т	Т	Т

• Logical entailment: α entails β (i.e., $\alpha \models \beta$) if and only if every model that satisfies α also satisfies β .

> Hazem Shehata

Outlin

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requiremen & Reading

Propositional Logic

Semantics

PL semantics:

I	P	Q	TRUE	FALSE	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
П	FI	F	T	F	Т	F	F	Т	Т
	F	Т	T	F	Т	F	T	Т	F
-	Т	F	T	F	F	F	Т	F	F
-	Т	Т	T	F	F	T	T	Т	Т

- Logical entailment: α entails β (i.e., $\alpha \models \beta$) if and only if every model that satisfies α also satisfies β .
- Inference techniques to prove entailment in PL include:
 - Truth tables.
 - Rules.
 - Resolution.
 - Forward chaining.
 - Backward chaining (Canceled!).

May 8th, 2017 7

> Hazem Shehata

Agents

Introduction

Propositional logic (Continued)

Weather

Example

& Reading Material

Propositional Logic

Ex.: Wumpus world

 Suppose KB consists of five facts/rules:

 R_1 : $\neg P_{11}$.

 $R_2: B_{11} \Leftrightarrow (P_{12} \vee P_{21}).$

 R_3 : $B_{21} \Leftrightarrow$

 $(P_{11} \vee P_{22} \vee P_{31}).$

 R_4 : $\neg B_{11}$.

 R_5 : B_{21} .

> Hazem Shehata

Outlin

Logical Agents

(Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requireme

Requirement & Reading Material

Propositional Logic

Ex.: Wumpus world

Suppose KB consists of five facts/rules:

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow$

 $(P_{11} \vee P_{22} \vee P_{31}).$

 R_4 : ¬ B_{11} .

 R_5 : B_{21} .

In other words, KB :=

$$R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$$

> Hazem Shehata

Outlin

Logical Agents (Continued)

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional Logic

Ex.: Wumpus world

Suppose KB consists of five facts/rules:

 R_1 : ¬ P_{11} .

$$R_2$$
: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow$

$$(P_{11} \vee P_{22} \vee P_{31}).$$

 R_4 : $\neg B_{11}$.

 R_5 : B_{21} .

- In other words, KB := $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$
- Prove or disprove the following entailments:
 - KB $\vDash \neg P_{12}$.
 - KB $\vDash \neg P_{22}$.

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Propositional Logic

Ex.: Wumpus world - inferencing with truth tables

B_{11}	B_{21}	P_{11}	P_{12}	P_{21}	P_{22}	P_{31}	R_1	R_2	R_3	R_4	R_5	KB	$\neg P_{12}$	$\neg P_{22}$
F	F	F	F	F	F	F	Т	Т	Т	Т	F	F	Т	Т
∥ F	F	F	F	F	F	T	T	Т	F	Т	F	F	T	T
:	:	:	÷	:	:	:	:	:	:	:	:	:	1	:
F	Т	F	F	F	F	F	T	Т	F	Т	T	F	T	T
F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
∥F	Т	F	F	F	Т	F	T	Т	Т	Т	T	T	Т	F
∥ F	Т	F	F	F	Т	T	T	Т	Т	Т	T	T	T	F
F	Т	F	F	Т	F	F	Т	F	F	Т	Т	F	Т	Т
	:	:	:	:	:	:	:	:	÷	:	:	:	:	
T	Т	Т	Т	Т	Т	Τ	F	Т	Т	F	T	F	F	F

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

Propositional Logic

Ex.: Wumpus world - inferencing with truth tables

	B_{11}	B_{21}	P_{11}	P_{12}	P_{21}	P_{22}	P_{31}	R_1	R_2	R_3	R_4	R_5	KB	$\neg P_{12}$	$\neg P_{22}$
	F	F	F	F	F	F	F	Т	Т	Т	Т	F	F	Т	Т
	F	F	F	F	F	F	T	T	Т	F	Т	F	F	T	T
	÷	:	:	:	:	:	:	:	:	:	:	:	:	1	:
	F	Т	F	F	F	F	F	T	Т	F	Т	T	F	T	T
Ī	F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
	F	Т	F	F	F	Т	F	T	Т	Т	Т	Т	T	Т	F
	F	Т	F	F	F	Т	Т	Т	Т	Т	Т	Т	T	T	F
Ī	F	Т	F	F	Т	F	F	Т	F	F	Т	Т	F	Т	Т
	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	
	Т	Т	Т	Т	Т	Т	Τ	F	Т	Т	F	Т	F	F	F

This means that:

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecastin Example

Requirement & Reading Material

Propositional Logic

Ex.: Wumpus world - inferencing with truth tables

	B_{11}	B_{21}	P_{11}	P_{12}	P_{21}	P_{22}	P_{31}	R_1	R_2	R_3	R_4	R_5	KB	$\neg P_{12}$	$\neg P_{22}$
	F	F	F	F	F	F	F	Т	Т	Т	Т	F	F	Т	Т
	F	F	F	F	F	F	T	T	Т	F	Т	F	F	T	T
	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:
	F	Т	F	F	F	F	F	Т	Т	F	Т	T	F	T	T
Ī	F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
	F	Т	F	F	F	Т	F	T	Т	Т	Т	Т	T	Т	F
	F	Т	F	F	F	Т	Т	Т	Т	Т	Т	Т	T	T	F
	F	Т	F	F	Т	F	F	T	F	F	Т	Т	F	Т	Т
	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:
	Т	Т	Т	Т	Т	Т	Т	F	Т	Т	F	Т	F	F	F

- This means that:
 - KB $\vDash \neg P_{12}$.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic

(Continued) Weather

Forecasting Example

Requirement & Reading Material

Propositional Logic

Ex.: Wumpus world - inferencing with truth tables

B_{11}	B_{21}	P_{11}	P_{12}	P_{21}	P_{22}	P_{31}	R_1	R_2	R_3	R_4	R_5	KB	$\neg P_{12}$	$\neg P_{22}$
F	F	F	F	F	F	F	Т	Т	Т	Т	F	F	Т	Т
∥ F	F	F	F	F	F	T	T	Т	F	Т	F	F	T	T
:	:	:	:	:	:	:	:	:	:	:	:	:	1	:
F	Т	F	F	F	F	F	T	Т	F	Т	T	F	T	T
F	Т	F	F	F	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
∥F	Т	F	F	F	Т	F	T	Т	Т	Т	T	T	Т	F
∥ F	Т	F	F	F	Т	T	T	Т	Т	Т	T	T	T	F
F	Т	F	F	Т	F	F	Т	F	F	Т	Т	F	Т	Т
	:	:	:	:	:	:	:	:	:	:	:	:	:	:
T	Т	Т	Т	Т	Т	Т	F	Т	Т	F	Т	F	F	F

- This means that:
 - KB $\vDash \neg P_{12}$.
 - KB $\not\models \neg P_{22}$.

> Hazem Shehata

Outline

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement
& Reading
Material

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.
- **Satisfiability:** a sentence α is satisfiable if it's TRUE in some models.
 - Ex.: KB, which equals R₁ ∧ R₂ ∧ R₃ ∧ R₄ ∧ R₅, is satisfiable because it's TRUE in three models.

May 8th, 2017 10

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.
- *Satisfiability:* a sentence α is satisfiable if it's TRUE in some models.
 - Ex.: KB, which equals $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$, is satisfiable because it's TRUE in three models.
- Relationship between validity and satisfiability:

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement
& Reading
Material

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.
- *Satisfiability:* a sentence α is satisfiable if it's TRUE in some models.
 - Ex.: KB, which equals $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$, is satisfiable because it's TRUE in three models.
- Relationship between validity and satisfiability:
 - \bullet is valid iff $\neg \alpha$ is unsatisfiable.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.
- *Satisfiability:* a sentence α is satisfiable if it's TRUE in some models.
 - Ex.: KB, which equals $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$, is satisfiable because it's TRUE in three models.
- Relationship between validity and satisfiability:
 - \bullet is valid iff $\neg \alpha$ is unsatisfiable.
 - **2** α is satisfiable iff $\neg \alpha$ is not valid.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement
& Reading

Propositional logic

Definitions

- *Validity:* a sentence α is valid if it's TRUE in all models.
 - Ex.: $P \vee \neg P$ is a valid sentence.
 - Valid sentences are also known as tautologies.
- *Satisfiability:* a sentence α is satisfiable if it's TRUE in some models.
 - Ex.: KB, which equals $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$, is satisfiable because it's TRUE in three models.
- Relationship between validity and satisfiability:
 - \bullet α is valid iff $\neg \alpha$ is unsatisfiable.
 - α is satisfiable iff $\neg \alpha$ is not valid.
 - \bullet $\alpha \models \beta$ iff $(\alpha \land \neg \beta)$ is unsatisfiable.
 - → "proof by refutation (or contradiction)" technique.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Definitions

Logical equivalency: Two sentences α and β are logically equivalent iff they are TRUE in the same set of models.

$$\alpha \equiv \beta$$
 iff $\alpha \vDash \beta$ and $\beta \vDash \alpha$

> Hazem Shehata

Outlin

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requirements & Reading Material

Propositional logic

Definitions

Logical equivalency: Two sentences α and β are logically equivalent iff they are TRUE in the same set of models.

$$\alpha \equiv \beta$$
 iff $\alpha \models \beta$ and $\beta \models \alpha$

Standard logical equivalences

```
\begin{array}{c} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing with rules

Another approach for inferencing is *Inferencing with Rules*.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing with rules

- Another approach for inferencing is *Inferencing with Rules*.
- The idea is to use *inferencing rules* that allow us to deduce new sentences (conclusions) that are TRUE when old sentences (premises) are TRUE.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requiremen & Reading Material

Propositional logic

Inferencing with rules

- Another approach for inferencing is *Inferencing with Rules*.
- The idea is to use *inferencing rules* that allow us to deduce new sentences (conclusions) that are TRUE when old sentences (premises) are TRUE.
- This method is sound (given that inference rules are sound) but might not be complete (depending on available inference rules).

May 8th, 2017 12

> Hazem Shehata

Outline

Logical Agents (Continued) Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requiremen & Reading Material

Propositional logic

Inferencing with rules

- Another approach for inferencing is *Inferencing with Rules*.
- The idea is to use *inferencing rules* that allow us to deduce new sentences (conclusions) that are TRUE when old sentences (premises) are TRUE.
- This method is sound (given that inference rules are sound) but might not be complete (depending on available inference rules).
- Inferencing-with-truth-tables is sound and complete.

May 8th, 2017 12

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing with rules

Inference Rules

Premises	Derived Conclusion
$A, A \Rightarrow B$	В
A,B	$A \wedge B$
$A \wedge B$	A
$A \lor B, \neg B$	A
$A \lor B, \neg B \lor C$	$A \lor C$
	$A, A \Rightarrow B$ A, B $A \land B$ $A \lor B, \neg B$

Additional rules based on logical equivalences

Biconditional Elimination	$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$
Biconditional Introduction	$(A \Rightarrow B) \land (B \Rightarrow A)$	$A \Leftrightarrow B$
Implication Elimination	$A \Rightarrow B$	$\neg A \lor B$
Implication Introduction	$\neg A \lor B$	$A \Rightarrow B$
:	<u>:</u>	:

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

> Hazem Shehata

Outline

Logical Agents

(Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting

Forecasting Example

Requirement & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

• Apply biconditional elimination to R_2 .

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting

Example

Requirements & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : ¬ B_{11} .

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge ((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 Apply biconditional elimination to R₂.

> Hazem Shehata

Agents

Introduction

Propositional logic (Continued)

Weather Example

Material

& Reading

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 $R_2: B_{11} \Leftrightarrow (P_{12} \vee P_{21}).$

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

$$R_6$$
: $(B_{11} \Rightarrow (P_{12} \lor P_{21})) \land ((P_{12} \lor P_{21}) \Rightarrow B_{11}).$

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents

(Continued) Introduction

Propositional logic (Continued)

Weather Forecasting Example

Material

Requirements & Reading

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \lor P_{21})) \land ((P_{12} \lor P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R₆.

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents

(Continued) Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge ((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .
- Apply contraposition to R_7 .

> Hazem Shehata

Outline

Logical Agents

(Continued)
Introduction

Propositional logic (Continued)

Weather Forecasting Example

Material

Requirement & Reading

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \lor P_{21})) \land ((P_{12} \lor P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 R_8 : $\neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21})$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .
- Apply contraposition to R_7 .

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic

(Continued) Weather Forecasting

Weather Forecasting Example

Requirement & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 $R_1: \neg P_{11}.$

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge ((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 R_8 : $\neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21})$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .
- Apply contraposition to R_7 .
- Apply Modes Ponens to R_4 and R_8 .

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic

(Continued)
Weather
Forecasting
Example

Requirements & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge ((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 $R_8: \neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21}).$

 R_9 : $\neg (P_{12} \vee P_{21})$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .
- Apply contraposition to R_7 .
- Apply Modes Ponens to R₄ and R₈.

> Hazem Shehata

Introduction Propositional logic

(Continued) Weather Example

& Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 $R_2: B_{11} \Leftrightarrow (P_{12} \vee P_{21}).$

 $R_3: B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31}).$

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 $R_6: (B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge$ $((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 $R_8: \neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21}).$

 R_9 : $\neg (P_{12} \vee P_{21})$.

- Apply biconditional elimination to R_2 .
- Apply And-elimination to R_6 .
- Apply contraposition to R_7 .
- Apply Modes Ponens to R₄ and R_8 .
- Apply De Morgan's rule to R_{9} .

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Sheha

Show that $KB = \neg P_{12}$.

 $R_1: \neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \lor P_{21})) \land ((P_{12} \lor P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 $R_8: \neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21}).$

 R_9 : $\neg (P_{12} \vee P_{21})$.

 R_{10} : $\neg P_{12} \wedge \neg P_{21}$.

Wumpus world

Ex.: Wumpus world - inferencing with rules

• Apply biconditional elimination to R_2 .

• Apply And-elimination to R_6 .

• Apply contraposition to R_7 .

• Apply Modes Ponens to R_4 and R_8 .

 Apply De Morgan's rule to R₉.

> Hazem Shehata

Introduction Propositional logic (Continued)

Weather Example

& Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 $R_2: B_{11} \Leftrightarrow (P_{12} \vee P_{21}).$

 $R_3: B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31}).$

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 $R_6: (B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge$ $((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 $R_8: \neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21}).$

 R_9 : $\neg (P_{12} \vee P_{21})$.

 $R_{10}: \neg P_{12} \wedge \neg P_{21}$

 Apply biconditional elimination to R_2 .

 Apply And-elimination to R_6 .

• Apply contraposition to R_7 .

Apply Modes Ponens to R₄ and R_8 .

 Apply De Morgan's rule to R_{9} .

 Apply And-elimination to R_{10} .

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Wumpus world

Ex.: Wumpus world - inferencing with rules

Show that $KB = \neg P_{12}$.

 R_1 : $\neg P_{11}$.

 R_2 : $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

 R_3 : $B_{21} \Leftrightarrow (P_{11} \vee P_{22} \vee P_{31})$.

 R_4 : $\neg B_{11}$.

 R_5 : $\neg B_{21}$.

 R_6 : $(B_{11} \Rightarrow (P_{12} \vee P_{21})) \wedge ((P_{12} \vee P_{21}) \Rightarrow B_{11}).$

 R_7 : $(P_{12} \vee P_{21}) \Rightarrow B_{11}$.

 $R_8: \neg B_{11} \Rightarrow \neg (P_{12} \vee P_{21}).$

 R_9 : $\neg (P_{12} \vee P_{21})$.

 R_{10} : $\neg P_{12} \wedge \neg P_{21}$.

 R_{11} : $\neg P_{12}$.

- Apply biconditional elimination to R₂.
- Apply And-elimination to R₆.
- Apply contraposition to R_7 .
- Apply Modes Ponens to R₄ and R₈.
- Apply De Morgan's rule to R₉.
- Apply And-elimination to R_{10} .

> Hazem Shehata

Outlin

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecastin Example

Requirement & Reading Material

Propositional logic

15

Inferencing with rules

 The application of a sequence of inference rules is called a *proof*.

> Hazem Shehata

Outlin

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing with rules

- The application of a sequence of inference rules is called a *proof*.
- The previous proof did not reference irrelevant knowledge (R1, R3 and R5):
 - P₁₂ appeared only in R2.
 - Other propositions in R2 appeared only in R2 and R4.

> Hazem Shehata

Introduction

Propositional logic (Continued)

& Reading Material

Propositional logic

15

Inferencing with rules

- The application of a sequence of inference rules is called a *proof*.
- The previous proof did not reference irrelevant knowledge (R1, R3 and R5):
 - P₁₂ appeared only in R2.
 - Other propositions in R2 appeared only in R2 and R4.
- Could be done using a tree search algorithm, how?

> Hazem Shehata

Outline

Logical Agents (Continued

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading

Propositional logic

Inferencing with rules

- The application of a sequence of inference rules is called a *proof*.
- The previous proof did not reference irrelevant knowledge (R1, R3 and R5):
 - P₁₂ appeared only in R2.
 - Other propositions in R2 appeared only in R2 and R4.
- Could be done using a tree search algorithm, how?
- Searching for a proof can be more efficient than enumerating models (*i.e.*, inferencing with truth tables).
 - Reason: irrelevant propositions are ignored.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecastin Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

 We can develop a sound and complete algorithm using only the *resolution rule*.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- We can develop a sound and complete algorithm using only the resolution rule.
- We need to convert KB and query to Conjunctive Normal Form (CNF), i.e., conjunction of disjuncts:

> Hazem Shehata

Outline

Logical Agents (Continued) Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

- We can develop a sound and complete algorithm using only the *resolution rule*.
- We need to convert KB and query to Conjunctive Normal Form (CNF), i.e., conjunction of disjuncts:
 - Eliminate biconditional through equivalence:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A).$$

> Hazem Shehata

Outlin

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

- We can develop a sound and complete algorithm using only the *resolution rule*.
- We need to convert KB and query to Conjunctive Normal Form (CNF), i.e., conjunction of disjuncts:
 - **1** Eliminate biconditional through equivalence: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$.
 - **2** Eliminate implication through equivalence: $A \Rightarrow B \equiv (\neg A) \lor B$

> Hazem Shehata

Outline

Logical Agents (Continued) Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

- We can develop a sound and complete algorithm using only the resolution rule.
- We need to convert KB and query to Conjunctive Normal Form (CNF), i.e., conjunction of disjuncts:
 - **1** Eliminate biconditional through equivalence: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$.
 - **2** Eliminate implication through equivalence: $A \Rightarrow B \equiv (\neg A) \lor B$
 - **3** Move negation inwards through equivalences: $\neg(\neg A) \equiv A$.

$$\neg(A \lor B) \equiv \neg A \land \neg B.$$

$$\neg (A \land B) \equiv \neg A \lor \neg B.$$

Propositional logic

- We can develop a sound and complete algorithm using only the resolution rule.
- We need to convert KB and query to Conjunctive Normal Form (CNF), i.e., conjunction of disjuncts:
 - **1** Eliminate biconditional through equivalence: $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$.
 - **2** Eliminate implication through equivalence: $A \Rightarrow B \equiv (\neg A) \lor B$
 - 3 Move negation inwards through equivalences: $\neg(\neg A) \equiv A$. $\neg(A \lor B) \equiv \neg A \land \neg B$. $\neg(A \land B) \equiv \neg A \lor \neg B$.
 - 4 Distribute ∨ over ∧ wherever possible.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic

(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

So how do we conclude something is entailed by KB?

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a *proof by contradiction*:

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a proof by contradiction:
 - Assume conclusion is false, and look for a contradiction.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a proof by contradiction:
 - Assume conclusion is false, and look for a contradiction.
 - If found, the opposite of our assumption must be TRUE.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a proof by contradiction:
 - Assume conclusion is false, and look for a contradiction.
 - If found, the opposite of our assumption must be TRUE.
- In other words, we want to show that $KB \models \alpha$:

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic

(Continued) Weather Forecasting

Forecasting Example

Requirement & Reading Material

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a *proof by contradiction*:
 - Assume conclusion is false, and look for a contradiction.
 - If found, the opposite of our assumption must be TRUE.
- In other words, we want to show that $KB \models \alpha$:
 - We know that $KB \models \alpha \equiv KB \Rightarrow \alpha \equiv \neg KB \lor \alpha$.

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requirement & Reading

Propositional logic

Inferencing using resolution

- So how do we conclude something is entailed by KB?
- We look for a proof by contradiction:
 - Assume conclusion is false, and look for a contradiction.
 - If found, the opposite of our assumption must be TRUE.
- In other words, we want to show that $KB \models \alpha$:
 - We know that $KB \models \alpha \equiv KB \Rightarrow \alpha \equiv \neg KB \lor \alpha$.
 - So we could show that $KB \land \neg \alpha$ is unsatisfiable.

May 8th, 2017

> Hazem Shehata

Outlin

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecastin

Requiremen & Reading Material

Propositional logic

Inferencing using resolution

Resolution algorithm: returns true iff $KB \land \neg \alpha$ is unsatisfiable.

```
 \begin{array}{l} \textbf{function} \ \text{PL-RESOLUTION}(KB,\alpha) \ \textbf{returns} \ true \ \text{or} \ false \\ \textbf{inputs}: \ KB, \ \text{the knowledge base, a sentence in propositional logic} \\ \alpha, \ \text{the query, a sentence in propositional logic} \\ clauses \leftarrow \text{the set of clauses in the CNF representation of} \ KB \land \neg \alpha \\ new \leftarrow \{ \} \\ \textbf{loop do} \\ \textbf{for each pair of clauses} \ C_i, \ C_j \ \textbf{in} \ clauses \ \textbf{do} \\ resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j) \\ \textbf{if} \ resolvents \ \text{contains the empty clause} \ \textbf{then return} \ true \\ new \leftarrow new \cup resolvents \\ \textbf{if} \ new \subseteq clauses \ \textbf{then return} \ false \\ clauses \leftarrow clauses \cup new \\ \end{array}
```

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecastin Example

Requirement & Reading Material

Propositional logic

Ex.: Wumpus world - inferencing using resolution

So, consider the shown case, the KB consists of:

$$R_2$$
: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$.

$$R_4$$
: ¬ B_{11} .

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: Wumpus world - inferencing using resolution

So, consider the shown case, the KB consists of:

$$R_2$$
: $B_{11} \Leftrightarrow (P_{12} \vee P_{21})$. R_4 : $\neg B_{11}$.

• We want to prove α which is $\neg P_{12}$.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requiremen & Reading Material

Propositional logic

Ex.: Wumpus world - inferencing using resolution

• When we convert $KB \land \neg \alpha$ to CNF, we obtain the clauses on the top.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requiremen & Reading Material

Propositional logic

Ex.: Wumpus world - inferencing using resolution

- When we convert $KB \land \neg \alpha$ to CNF, we obtain the clauses on the top.
- The second row shows all the clauses obtained by resolving the pairs on the first row.

> Hazem Shehata

Outline

Logical Agents (Continued)

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: Wumpus world - inferencing using resolution

- When we convert $KB \land \neg \alpha$ to CNF, we obtain the clauses on the top.
- The second row shows all the clauses obtained by resolving the pairs on the first row.
- When we resolve P_{12} and $\neg P_{12}$ we get the empty clause.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Propositional logic

21

Definite and Horn clauses

Real-world KBs often contain clauses of restricted kind

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic

(Continued) Weather

Forecastin Example

Requirement & Reading Material

Propositional logic

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - Definite clause (DC): a disjunction of literals of which exactly one is positive.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - Definite clause (DC): a disjunction of literals of which exactly one is positive.
 - Horn clause (HC): a disjunction of literals of which at most one is positive.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - **Definite clause (DC)**: a disjunction of literals of which *exactly one* is positive.
 - Horn clause (HC): a disjunction of literals of which at most one is positive.
- KBs with only DCs are interesting for 3 reasons:

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

21

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - **Definite clause (DC)**: a disjunction of literals of which *exactly one* is positive.
 - Horn clause (HC): a disjunction of literals of which at most one is positive.
- KBs with only DCs are interesting for 3 reasons:
 - Every DC could be written as an implication:

$$\neg l_1 \lor \neg l_2 \lor ... \neg l_k \lor l_m \equiv \neg (l_1 \land l_2 \land ... l_k) \lor l_m$$
$$\equiv (l_1 \land l_2 \land ... \land l_k) \Rightarrow l_m$$

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement
& Reading
Material

Propositional logic

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - **Definite clause (DC)**: a disjunction of literals of which *exactly one* is positive.
 - Horn clause (HC): a disjunction of literals of which at most one is positive.
- KBs with only DCs are interesting for 3 reasons:
 - Every DC could be written as an implication:

$$\neg l_1 \lor \neg l_2 \lor ... \neg l_k \lor l_m \equiv \neg (l_1 \land l_2 \land ... l_k) \lor l_m$$
$$\equiv (l_1 \land l_2 \land ... \land l_k) \Rightarrow l_m$$

Inference with HCs could be done through Forward chaining or Backward chaining algorithms that are easy to follow by humans.

May 8th, 2017 21

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requirement & Reading Material

Propositional logic

Definite and Horn clauses

- Real-world KBs often contain clauses of restricted kind
 - **Definite clause (DC)**: a disjunction of literals of which *exactly one* is positive.
 - Horn clause (HC): a disjunction of literals of which at most one is positive.
- KBs with only DCs are interesting for 3 reasons:
 - Every DC could be written as an implication:

$$\neg l_1 \lor \neg l_2 \lor ... \neg l_k \lor l_m \equiv \neg (l_1 \land l_2 \land ... l_k) \lor l_m$$
$$\equiv (l_1 \land l_2 \land ... \land l_k) \Rightarrow l_m$$

- 2 Inference with HCs could be done through *Forward* chaining or *Backward chaining* algorithms that are easy to follow by humans.
- Oeciding entailment could be done in linear time.

May 8th, 2017 21

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecastin Example

Requirement & Reading Material

Propositional logic

22

Forward chaining

 It's a data driven inferencing approach, starts from what we know until it reaches the goal.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

22

Forward chaining

- It's a data driven inferencing approach, starts from what we know until it reaches the goal.
- How it works:

> Hazem Shehata

Outlin

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Forward chaining

- It's a data driven inferencing approach, starts from what we know until it reaches the goal.
- How it works:
 - Take unit literals/symbols that are TRUE in the KB and add to queue (a.k.a., agenda).

> Hazem Shehata

Outlin

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Forward chaining

- It's a data driven inferencing approach, starts from what we know until it reaches the goal.
- How it works:
 - Take unit literals/symbols that are TRUE in the KB and add to queue (a.k.a., agenda).
 - Use them to evaluate the premises of implications.

> Hazem Shehata

Outline

Logical Agents (Continued

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Forward chaining

- It's a data driven inferencing approach, starts from what we know until it reaches the goal.
- How it works:
 - Take unit literals/symbols that are TRUE in the KB and add to queue (a.k.a., agenda).
 - Use them to evaluate the premises of implications.
 - When an implication becomes TRUE, its conclusion (a literal/symbol) is TRUE, and it is added to the queue.

May 8th, 2017 22

> Hazem Shehata

Outlin

Logical Agents (Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Forward chaining

- It's a data driven inferencing approach, starts from what we know until it reaches the goal.
- How it works:
 - Take unit literals/symbols that are TRUE in the KB and add to queue (a.k.a., agenda).
 - Use them to evaluate the premises of implications.
 - When an implication becomes TRUE, its conclusion (a literal/symbol) is TRUE, and it is added to the queue.
 - Repeat until question answered, or nothing else to do.

May 8th, 2017 22

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting

Requirement & Reading Material

Propositional logic

Forward chaining

Forward-chaining algorithm: returns true iff KB = q

function PL-FC-ENTAILS? (KB, q) returns true or false

inputs: KB, the knowledge base, a set of propositional definite clauses q, the query, a proposition symbol
 count ← a table, where count[c] is the number of symbols in c's premise inferred ← a table, where inferred[s] is initially false for all symbols agenda ← a queue of symbols, initially symbols known to be true in KB
 while agenda is not empty do
 p ← POP(agenda)
 if p = q then return true
 if inferred[p] = false then
 inferred[p] ← true
 for each clause c in KB where p is in c.PREMISE do
 decrement count[c]
 if count[c] = 0 then add c.CONCLUSION to agenda
 return false

> Hazem Shehata

Outline

Agents
(Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that $KB \models Q$, given KB contains: A, B, $A \land B \Rightarrow L$, $A \land P \Rightarrow L$, $B \land L \Rightarrow M$, $C \land M \Rightarrow P$, $C \Rightarrow Q$.

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [A, B]

> Hazem Shehata

Outlin

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [B]

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

24

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $A \wedge M \Rightarrow P$, $A \Rightarrow Q$.

agenda = [L]

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [M]

> Hazem Shehata

Outlin

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

24

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [P]

> Hazem Shehata

Outlin

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

24

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [Q]

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

24

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = [Q]

> Hazem Shehata

Outline

Logical Agents (Continued)

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Propositional logic

24

Ex.: forward chaining

- Forward chaining is visualized using AND-OR graphs.
- Ex.: show that KB = Q, given KB contains: A, B, $A \wedge B \Rightarrow L$, $A \wedge P \Rightarrow L$, $B \wedge L \Rightarrow M$, $L \wedge M \Rightarrow P$, $P \Rightarrow Q$.

agenda = []

> Hazem Shehata

Outline

Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - problem statement

- Let's say you have three propositional symbols:
 - **P:** It's hot.
 - Q: It's humid.
 - R: It's raining.

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - problem statement

- Let's say you have three propositional symbols:
 - **P:** It's hot.
 - Q: It's humid.
 - R: It's raining.
- And you have the following rules:
 - If it is hot and humid, then it is raining.
 - If it is humid, then it is hot.

> Hazem Shehata

Outline

Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - problem statement

- Let's say you have three propositional symbols:
 - **P:** It's hot.
 - Q: It's humid.
 - R: It's raining.
- And you have the following rules:
 - If it is hot and humid, then it is raining.
 - If it is humid, then it is hot.
- You have a sensor that says that the weather is humid.

May 8th, 2017 25

> Hazem Shehata

Outline

Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - problem statement

- Let's say you have three propositional symbols:
 - **P:** It's hot.
 - Q: It's humid.
 - R: It's raining.
- And you have the following rules:
 - If it is hot and humid, then it is raining.
 - If it is humid, then it is hot.
- You have a sensor that says that the weather is humid.
- Is it raining?

May 8th, 2017 25

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

26

Ex.: weather forecasting - the KB

KB consists of:

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

May 8th, 2017 26

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 R_1 : $P \wedge Q \Rightarrow R$.

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

26

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 $R_1: P \wedge Q \Rightarrow R.$

• Rule: If it is humid, then it is hot:

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 $R_1: P \wedge Q \Rightarrow R.$

• Rule: If it is humid, then it is hot:

 $R_2: Q \Rightarrow P.$

> Hazem Shehata

Outlin

Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

KB consists of:

• Rule: If it is hot and humid, then it is raining:

 $R_1: P \wedge Q \Rightarrow R.$

• Rule: If it is humid, then it is hot:

 R_2 : $Q \Rightarrow P$.

• Fact: It is humid:

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 R_1 : $P \wedge Q \Rightarrow R$.

• Rule: If it is humid, then it is hot:

 $R_2: Q \Rightarrow P.$

• Fact: It is humid:

 R_3 : Q.

> Hazem Shehata

Outlin

Agents

Introduction
Propositional logic

Weather Forecasting

Example
Requireme

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 $R_1: P \wedge Q \Rightarrow R.$

• Rule: If it is humid, then it is hot:

 R_2 : $Q \Rightarrow P$.

Fact: It is humid:

 R_3 : Q.

• The KB can be represented as the conjunction of all the sentences: $R_1 \wedge R_2 \wedge R_3$.

> Hazem Shehata

Outlin

Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - the KB

- KB consists of:
 - Rule: If it is hot and humid, then it is raining:

 $R_1: P \wedge Q \Rightarrow R.$

• Rule: If it is humid, then it is hot:

 R_2 : $Q \Rightarrow P$.

Fact: It is humid:

 R_3 : Q.

- The KB can be represented as the conjunction of all the sentences: $R_1 \wedge R_2 \wedge R_3$.
- Goal: to show whether $KB \models R$.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with TTs

• We check whether $KB \models R$ by checking whether R is true in every model in which KB is true.

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading

Weather Forecasting

Ex.: weather forecasting - inferencing with TTs

- We check whether $KB \models R$ by checking whether R is true in every model in which KB is true.
- This is the same as checking whether $KB \Rightarrow R$ is valid.

Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with TTs

- We check whether $KB \models R$ by checking whether R is true in every model in which KB is true.
- This is the same as checking whether $KB \Rightarrow R$ is valid.

P,Q,R	$P \wedge Q \Rightarrow R$	$Q \Rightarrow P$	Q	KB	R	$KB \Rightarrow R$
T, T, T	T	T	T	T	T	T
T, T, F	F	T	T	F	F	T
T, F, T	T	T	F	F	T	T
T, F, F	T	T	F	F	F	T
F,T,T	T	F	T	F	T	T
F, T, F	T	F	T	F	F	T
F, F, T	T	T	F	F	T	T
F, F, F	T	T	F	F	F	T

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading

Weather Forecasting

Ex.: weather forecasting - inferencing with TTs

- We check whether $KB \models R$ by checking whether R is true in every model in which KB is true.
- This is the same as checking whether $KB \Rightarrow R$ is valid.

P,Q,R	$P \wedge Q \Rightarrow R$	$Q \Rightarrow P$	Q	KB	R	$KB \Rightarrow R$
T, T, T	T	T	T	\overline{T}	T	T
T, T, F	F	T	T	F	F	T
T, F, T	T	T	F	F	T	T
T, F, F	T	T	F	F	F	T
F,T,T	T	F	T	F	T	T
F, T, F	T	F	T	F	F	T
F, F, T	T	T	F	F	T	T
F, F, F	T	T	F	F	F	T

> Hazem Shehata

Outlin

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading

Weather Forecasting

Ex.: weather forecasting - inferencing with TTs

- We check whether $KB \models R$ by checking whether R is true in every model in which KB is true.
- This is the same as checking whether $KB \Rightarrow R$ is valid.

P,Q,R	$P \wedge Q \Rightarrow R$	$Q \Rightarrow P$	Q	KB	R	$KB \Rightarrow R$
T, T, T	T	T	T	\overline{T}		T
T, T, F	F	T	T	F	F	T
T, F, T	T	T	F	F	T	T
T, F, F	T	T	F	F	F	T
F,T,T	T	F	T	F	T	T
F, T, F	T	F	T	F	F	T
F, F, T	T	T	F	F	T	T
F, F, F	T	T	F	F	F	T

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 R_2 : $Q \Rightarrow P$.

 R_3 : Q.

> Hazem Shehata

Outline

Logical Agents

(Continued

Introduction
Propositional logic

(Continued) Weather

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 R_2 : $Q \Rightarrow P$.

 R_3 : Q.

• Apply Modes Ponens to R_2 and R_3 .

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 $R_2: Q \Rightarrow P.$

 R_3 : Q.

 R_4 : P.

 Apply Modes Ponens to R₂ and R₃.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 $R_2: Q \Rightarrow P.$

 R_3 : Q.

 R_4 : P.

- Apply Modes Ponens to R₂ and R₃.
- Apply And-introduction to R₃ and R₄.

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 R_2 : $Q \Rightarrow P$.

 R_3 : Q.

 R_4 : P.

 R_5 : $P \wedge Q$.

- Apply Modes Ponens to R₂ and R₃.
- Apply And-introduction to R₃ and R₄.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

$$R_1$$
: $P \wedge Q \Rightarrow R$.

$$R_2: Q \Rightarrow P.$$

$$R_3$$
: Q .

$$R_4$$
: P .

$$R_5$$
: $P \wedge Q$.

- Apply Modes Ponens to R₂ and R₃.
- Apply And-introduction to R₃ and R₄.
- Apply Modes Ponens R_1 and R_5 .

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

(Continued)

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing with rules

Showing KB = R using the inference-rules method:

 $R_1: P \wedge Q \Rightarrow R.$

 $R_2: Q \Rightarrow P.$

 R_3 : Q.

 R_4 : P.

 R_5 : $P \wedge Q$.

 R_6 : R.

- Apply Modes Ponens to R₂ and R₃.
- Apply And-introduction to R₃ and R₄.
- Apply Modes Ponens R₁ and R₅.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

29

Ex.: weather forecasting - inferencing by resolution

Showing $KB \models R$ using the resolution method:

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing $KB \models R$ using the resolution method:

• Put KB in CNF:

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

• Put KB in CNF:

$$R_1: P \wedge Q \Rightarrow R$$

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requiremen & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1: P \wedge Q \Rightarrow R$$

$$\equiv \neg (Q \wedge P) \vee R$$

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1: P \wedge Q \Rightarrow R$$

 $\equiv \neg (Q \wedge P) \vee R$
 $\equiv \neg Q \vee \neg P \vee R.$

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic

(Continued)
Weather

Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1: P \wedge Q \Rightarrow R$$

 $\equiv \neg (Q \wedge P) \vee R$
 $\equiv \neg Q \vee \neg P \vee R.$

$$R_2$$
: $Q \Rightarrow P$
 $\equiv \neg Q \lor P$.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1: P \wedge Q \Rightarrow R$$

 $\equiv \neg (Q \wedge P) \vee R$
 $\equiv \neg Q \vee \neg P \vee R$.

$$R_2$$
: $Q \Rightarrow P$
 $\equiv \neg Q \lor P$.

$$= \neg Q \lor I$$
 R_3 : Q .

> Hazem Shehata

Introduction Propositional logic

Weather Forecasting Example

& Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

Put KB in CNF:

$$R_1: P \wedge Q \Rightarrow R$$

 $\equiv \neg (Q \wedge P) \vee R$
 $\equiv \neg Q \vee \neg P \vee R$.

$$R_2: Q \Rightarrow P$$

 $\equiv \neg Q \lor P.$

$$R_3$$
: Q .

• Add the negation of what we want to prove:

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

• Put KB in CNF:

$$R_1: P \wedge Q \Rightarrow R$$

 $\equiv \neg (Q \wedge P) \vee R$
 $\equiv \neg Q \vee \neg P \vee R$.

$$R_2$$
: $Q \Rightarrow P$
 $\equiv \neg Q \lor P$.

$$R_3$$
: Q .

• Add the negation of what we want to prove:

$$R_4$$
: $\neg R$.

• Show whether $KB \wedge \neg R$ is unsatisfiable.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

30

Ex.: Weather forecasting - inferencing by resolution

Showing $KB \models R$ using the resolution method:

> Hazem Shehata

Outline

Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing $KB \models R$ using the resolution method:

 R_1 : $\neg Q \lor \neg P \lor R$.

 R_2 : $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1$$
: $\neg Q \lor \neg P \lor R$.

 R_2 : $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

• Resolve R_2 and R_3 .

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing $KB \models R$ using the resolution method:

 R_1 : $\neg Q \lor \neg P \lor R$.

 R_2 : $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

 R_5 : P.

• Resolve R_2 and R_3 .

> Hazem Shehata

Outline

Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

 R_1 : $\neg Q \lor \neg P \lor R$.

 R_2 : $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

 R_5 : P.

• Resolve R_2 and R_3 .

• Resolve R_1 and R_3 .

> Hazem Shehata

Outline

Logical Agents

Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1$$
: $\neg Q \lor \neg P \lor R$.

$$R_2$$
: $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

 R_5 : P.

$$R_6$$
: $\neg P \lor R$.

- Resolve R_2 and R_3 .
- Resolve R_1 and R_3 .

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

(Continued) Weather

Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1$$
: $\neg Q \lor \neg P \lor R$.

$$R_2$$
: $\neg Q \lor P$.

$$R_3$$
: Q .

$$R_4$$
: $\neg R$.

$$R_5$$
: P .

$$R_6$$
: $\neg P \lor R$.

- Resolve R_2 and R_3 .
- Resolve R_1 and R_3 .
- Resolve R_5 and R_6 .

> Hazem Shehata

Introduction Propositional logic

(Continued)

Weather Example

& Reading Material

Forecasting

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1$$
: $\neg Q \lor \neg P \lor R$.

$$R_2$$
: $\neg Q \lor P$.

$$R_3$$
: Q .

$$R_4$$
: $\neg R$.

$$R_5$$
: P .

$$R_6$$
: $\neg P \lor R$.

$$R_7$$
: R .

- Resolve R_2 and R_3 .
- Resolve R₁ and R₃.
- Resolve R₅ and R₆.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

(Continued)
Weather
Forecasting

Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

$$R_1$$
: $\neg Q \lor \neg P \lor R$.

$$R_2$$
: $\neg Q \lor P$.

$$R_3$$
: Q .

$$R_4$$
: $\neg R$

$$R_5$$
: P .

$$R_6$$
: $\neg P \lor R$.

$$R_7$$
: R .

- Resolve R_2 and R_3 .
- Resolve R_1 and R_3 .
- Resolve R_5 and R_6 .
- Resolve R_4 and R_7 .

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic

(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing by resolution

Showing KB = R using the resolution method:

 R_1 : $\neg Q \lor \neg P \lor R$.

 R_2 : $\neg Q \lor P$.

 R_3 : Q.

 R_4 : $\neg R$.

 R_5 : P.

 R_6 : $\neg P \lor R$.

 R_7 : R.

 R_8 : false.

resolve returns {}

- Resolve R_2 and R_3 .
- Resolve R_1 and R_3 .
- Resolve R_5 and R_6 .
- Resolve R_4 and R_7 .

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing with FC

Showing KB = R using the forward-chaining method:

• KB contains: $R_1: P \land Q \Rightarrow R, R_2: Q \Rightarrow P, R_3: Q$.

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing with FC

Showing KB = R using the forward-chaining method:

• KB contains: $R_1: P \wedge Q \Rightarrow R, R_2: Q \Rightarrow P, R_3: Q$.

agenda = [Q]

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing with FC

Showing KB = R using the forward-chaining method:

• KB contains: $R_1: P \wedge Q \Rightarrow R, R_2: Q \Rightarrow P, R_3: Q$.

agenda = [P]

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing with FC

Showing KB = R using the forward-chaining method:

• KB contains: $R_1: P \land Q \Rightarrow R, R_2: Q \Rightarrow P, R_3: Q$.

agenda = [R]

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirement & Reading Material

Weather Forecasting

Ex.: Weather forecasting - inferencing with FC

Showing KB = R using the forward-chaining method:

• KB contains: $R_1: P \wedge Q \Rightarrow R, R_2: Q \Rightarrow P, R_3: Q$.

agenda = []

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

Outline

32

- Logical Agents (Continued)
 - Introduction
 - Propositional logic (Continued)
 - Weather Forecasting Example

Requirements & Reading Material

> Hazem Shehata

Outlin

Logical Agents

Introduction

Propositional logic (Continued) Weather

Weather Forecasting Example

Requirements & Reading Material

Requirements

33

What do I need from you

• When given a certain problem you should be able to:

> Hazem Shehata

Outline

Logical Agents

Introduction
Propositional logic
(Continued)

Weather Forecasting Example

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Express the problem in terms of propositional logic (i.e. write the KB in form of rules or CNF).

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic

Weather Forecasting Example

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Express the problem in terms of propositional logic (i.e. write the KB in form of rules or CNF).
 - Draw AND-OR graph of the KB.

> Hazem Shehata

Outline

Agents

Introduction
Propositional logic

Weather Forecasting

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Express the problem in terms of propositional logic (i.e. write the KB in form of rules or CNF).
 - Draw AND-OR graph of the KB.
 - Inference certain conclusions using:
 - Truth tables.
 - Rules.
 - Resolution.
 - Forward chaining.
 - Backward chaining.

> Hazem Shehata

Introduction Propositional logic

Requirements & Reading Material

Requirements

What do I need from you

- When given a certain problem you should be able to:
 - Express the problem in terms of propositional logic (i.e. write the KB in form of rules or CNF).
 - Draw AND-OR graph of the KB.
 - Inference certain conclusions using:
 - Truth tables.
 - Rules
 - Resolution.
 - Forward chaining.
 - Backward chaining.
- Answer descriptive questions.

May 8th, 2017

> Hazem Shehata

Outline

Logical Agents

(Continued Introduction

Propositional logic (Continued)

Weather Forecasting Example

Requirements & Reading Material

Reading Material

Which parts of the textbook are covered

- Russell-Norvig, Chapters 7:
 - Pages 249 259.