Practice 6 Orthogonality and orthogonal projection

Contents

1	Scal	lar product, norm and distance	1
2	Ortl	Orthogonal projection	
	2.1	Definition	4
	2.2	Easy case: orthogonal projection over a line	5
	2.3	General case	6

1 Scalar product, norm and distance

We shall recall first some preliminary concepts. Let $\vec{u} = (u_1, \dots, u_n)$ and $\vec{v} = (v_1, \dots, v_n)$ two vectors of \mathbb{R}^n .

ullet The scalar product (or dot product) of $ec{u}$ and $ec{v}$ is the real number

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Example 1. If $\vec{u} = (1, -2, 3)$ and $\vec{v} = (-3, 4, 7)$, we can compute $\vec{u} \cdot \vec{v}$ with Scilab in the following way:

```
-->u=[1; -2; 3]; v=[-3; 4; 7];

-->u'*v

ans =
```

- If $\vec{u} \cdot \vec{v} = 0$ we say that \vec{u} and \vec{v} are orthogonal.
- A system of vectors $\{\vec{u}_1,\ldots,\vec{u}_r\}$ is orthogonal if $\vec{u}_i\cdot\vec{u}_j=0$ whenever $i\neq j$.

• If W is a linear subspace of \mathbb{R}^n , the orthogonal complement of W is the subspace

$$W^{\perp} = \{ z \in \mathbb{R}^n \mid z \cdot w = 0 \text{ for all } w \in W \}.$$

If W is spanned by a set of vectors $S = \{\vec{u}_1, \dots, \vec{u}_r\}$ then W^{\perp} is the set of solutions of the homogeneous linear system $\mathsf{M}(S)^t \vec{x} = \vec{0}$, where $\mathsf{M}(S)$ is the matrix whose columns are the vectors of S. In other words:

$$W^{\perp} = \ker(\mathsf{M}(S)^t).$$

- The *column subspace* of an $m \times n$ matrix A, denoted by Col(A), is the subspace of \mathbb{R}^m spanned by the column vectors of A.
- The row subspace of an $m \times n$ matrix A, denoted by Row(A), is the subspace of \mathbb{R}^n spanned by the transposed row vectors of A.

Example 2. We shall compute, with the help of Scilab, the orthogonal subspace of W = span((1,2,1,1),(2,-3,0,0)). First we shall compute the matrix M(S), where $S = \{(1,2,1,1),(2,-3,0,0)\}$:

```
-->u1=[1; 2; 1; 1]; u2=[2; -3; 0; 0];

-->MS=[u1 u2]

MS =

1. 2.

2. - 3.

1. 0.

1. 0.
```

Next we compute the kernel of the matrix $M(S)^t$:

This means that

$$W^{\perp} = \operatorname{span}((0.3464102, 0.2309401, -0.90414, 0.0958548),$$

$$(0.3464102, 0.2309401, 0.0958548, -0.9041452))$$

ullet The *norm* of $ec{v}$ is

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

Example 3. To compute the norm of a vector with Scilab we can use the command **norm**:

```
-->u=[1; 3; 8];
-->norm(u)
ans =
8.6023253
```

- A vector is *unitary* if its norm is 1.
- \bullet If \vec{v} is whichever non-zero vector, the vector $\frac{\vec{v}}{\|\vec{v}\|}$ is unitary.

Example 4. We want to transform $\vec{v} = (4, -6, 9)$ into a unitary vector with the help of Scilab:

```
-->v=[4; -6; 9];

-->w=v/norm(v)

w =

0.3468440

- 0.5202660

0.7803990

-->norm(w)

ans =
```

• The distance between \vec{u} and \vec{v} is $\|\vec{u} - \vec{v}\|$.

Example 5. We compute the distance between $\vec{u} = (1, 4, -3, 1)$ and $\vec{v} = (7, -3, 2, 1)$ with Scilab:

• Observe that, given a real matrix A, the *kernel* of A is equal to the *orthogonal complement* of the row subspace, that is:

$$Row(A)^{\perp} = \ker(A).$$

Since the column subspace of A is equal to the row subspace of A^t , one has that $Col(A)^{\perp} = Row(A^t)^{\perp} = \ker(A^t)$. Therefore the orthogonal complement of the column subspace is equal to the kernel of A^t :

$$Col(A)^{\perp} = \ker(A^t).$$

Example 6. Let A =
$$\begin{bmatrix} 5 & -4 & 3 \\ -4 & 1 & 3 \\ 0 & -3 & 5 \\ 3 & 8 & -1 \end{bmatrix}$$
. We shall compute, with Scilab, the subspaces

 $Row(A)^{\perp}$ and $Col(A)^{\perp}$

$$-->A=[5 -4 3; -4 1 3; 0 -3 5; 3 8 -1];$$

- 0.4958960
- 0.5689754
- 0.6524947
- 0.0678594

This means that $Row(A)^{\perp} = \{\vec{0}\}$ and

$$Col(\mathsf{A})^{\perp} = \mathrm{span}((0.4958960, 0.5689754, -0.6524947, -0.0678594)).$$

2 Orthogonal projection

2.1 Definition

Let W be a linear subspace of \mathbb{R}^n . For each vector $\vec{x} \in \mathbb{R}^n$ there exists one unique vector $\vec{w} \in W$ and a unique vector of the orthogonal complement $\vec{x}_{ort} \in W^{\perp}$ such that $\vec{x} = \vec{w} + \vec{x}_{ort}$. The vector \vec{w} is called *orthogonal projection* of \vec{x} over the subspace W, and it will be denoted by $Proj_W(\vec{x})$. Though abstract, this definition of "orthogonal projection" formalizes and generalizes the graphical idea of "perpendicular projection":

The vector \vec{x} can be decomposed, in a unique way, as a sum of two orthogonal *components*: one of them $(Proj_W(\vec{x}))$ over W and the other (\vec{x}_{ort}) orthogonal to all vectors in W (that is, belonging to W^{\perp}). When we talk about *orthogonal projection* of \vec{x} over W we are talking about the component $Proj_W(\vec{x})$ over W in that decomposition.

2.2 Easy case: orthogonal projection over a line

Let us consider the case in which W is a line in \mathbb{R}^n , that is, it is generated by a unique non-zero vector. We can divide this generator by its norm and transform it into a unitary vector. Therefore we can take $S = \{\vec{q}\}$, where \vec{q} is unitary.

Take a vector $\vec{x} \in \mathbb{R}^n$. We want to compute the orthogonal projection $Proj_W(\vec{x})$ of \vec{x} over W (see the above picture). Since $Proj_W(\vec{x})$ belongs to the line W, there exists a scalar λ such that $Proj_W(\vec{x}) = \lambda \vec{q}$. But the vector $\vec{x} - \lambda \vec{q} = \vec{x}_{ort}$ is orthogonal to W and, therefore, $(\vec{x} - \lambda \vec{q}) \cdot \vec{q} = 0$. Now $\vec{x} \cdot \vec{q} - \lambda \vec{q} \cdot \vec{q} = 0$ and, since \vec{q} is unitary, one has $\lambda = \vec{q} \cdot \vec{x}$ or, using the notation of product of a row vector by a column vector instead of the scalar product notation, $\lambda = \vec{q}^t \vec{x}$. We conclude, then, the following assertion:

The projection of a vector \vec{x} over a line W is the vector

$$Proj_W(\vec{x}) = (\vec{q}^t \vec{x}) \vec{q}$$

where \vec{q} is a unitary generator of the line.

Example 7. Let us consider the line $W = \operatorname{span}(1, -2, 5) \subseteq \mathbb{R}^3$ and we shall compute the projection of the vector $\vec{x} = (0, 1, 1)$ over W. First we compute a unitary generator of the line dividing by the norm:

```
-->u=[1; -2; 5];

-->q=u/norm(u)

q =

0.1825742

- 0.3651484

0.9128709
```

Now we compute the projection using the above formula:

Then, the orthogonal projection is (0.1, -0.2, 0.5).

2.3 General case

Now we are going to describe how to compute the orthogonal projection of a vector over a subspace W. Assume that we know a <u>system of generators</u> $S = \{\vec{u}_1, \dots, \vec{u}_r\}$ of W. Then W can be seen as the column subspace of the matrix M(S) (the matrix whose columns are the vectors \vec{u}_i). Therefore

$$W^{\perp} = \ker(\mathsf{M}(S)^t).$$

Since $\vec{x} = Proj_W(\vec{x}) + \vec{x}_{ort}$ one has that $\vec{x} - Proj_W(\vec{x}) = \vec{x}_{ort}$ and, therefore,

$$|\vec{x} - Proj_W(\vec{x})|$$
 must be orthogonal to W ,

that is,

$$\vec{x} - Proj_W(\vec{x}) \in W^{\perp} = \ker(\mathsf{M}(S)^t).$$

Hence

$$\mathsf{M}(S)^t(\vec{x} - Proj_W(\vec{x})) = \vec{0},$$

that is,

$$\mathsf{M}(S)^t Proj_W(\vec{x}) = \mathsf{M}(S)^t \vec{x}. \tag{1}$$

On the other hand

the vector
$$Proj_W(\vec{x})$$
 belongs to W

and this implies that it can be written as a linear combination of the vectors of S (which is a system of generators of W). Denote by

$$Proj_W(\vec{x}) = y_1 \vec{u}_1 + \dots + y_r \vec{u}_r \tag{2}$$

a linear combination of this type and by

$$\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_r \end{bmatrix}$$

the vector of coefficients. Equality (2) means that

$$Proj_W(\vec{x}) = M(S)\vec{y}$$
.

Replacing this new expression of $Proj_W(\vec{x})$ in Equality (1) one has

$$M(S)^t \mathsf{M}(S) \vec{y} = \mathsf{M}(S)^t \vec{x}.$$

Notice that the matrix $M(S)^t M(S)$ is a square matrix of order r. This is the matrix expression of a system of r linear equations with r unknowns such that \vec{y} is the vector of unknowns and $M(S)^t \vec{x}$ is the vector of independent terms (remember that we know $\vec{x}!$). It can be reasoned that all the solutions (y_1,\ldots,y_r) of this system give rise to the same linear combination $y_1\vec{u}_1+\cdots+y_r\vec{u}_r$, which is the desired projection.

We have deduced the following result:

The projection of a vector \vec{x} over the linear subspace W generated by a set $S = \{\vec{u}_1, \dots, \vec{u}_r\}$ is the vector $Proj_W(\vec{x}) = y_1\vec{u}_1 + \dots + y_r\vec{u}_r$, where $\vec{y} = (y_1, \dots, y_r)$ is a solution of the system

$$M(S)^{t}\mathsf{M}(S)\vec{y} = \mathsf{M}(S)^{t}\vec{x}. \tag{3}$$

Assume now that S is linearly independent, that is, it is a basis of W.

In this case, $rank(M(S)^tM(S)) = r$ and this implies that the system (3) has a unique solution, which gives the coefficients $\vec{y_i}$ of the orthogonal projection of \vec{x} with respect to the basis S. Since the matrix $M(S)^tM(S)$ is invertible we can compute easily the solution:

$$\vec{y} = (\mathsf{M}(S)^t \mathsf{M}(S))^{-1} \mathsf{M}(S)^t \vec{x}.$$

Since the components of \vec{y} are the coefficients of the projection with respect to the basis S, the product $\mathsf{M}(S)\vec{y}$ will be equal to the desired projection $Proj_W(\vec{x})$:

$$Proj_W(\vec{x}) = \mathsf{M}(S)(\mathsf{M}(S)^t\mathsf{M}(S))^{-1}\mathsf{M}(S)^t\vec{x}.$$

So, we have obtained a very nice formula to compute orthogonal projections!

The projection of a vector \vec{x} over the linear subspace W generated by a **linearly independent** set S is

$$Proj_W(\vec{x}) = \mathsf{P}_W \vec{x},\tag{4}$$

where

$$\mathsf{P}_W = \mathsf{M}(S)(\mathsf{M}(S)^t \mathsf{M}(S))^{-1} \mathsf{M}(S)^t$$

will be called the *projection matrix* over W.

It can be seen that, if a different basis S is taken, the projection matrix does not changes. Then the notation P_W is correct, since P_W depends only on W, and not on the particular choice of the basis S.

Example 8. Let W be the linear subspace of \mathbb{R}^3 with basis $S = \{(1,2,3), (-3,5,1)\}$ and consider the vector $\vec{x} = (2,3,4) \in \mathbb{R}^3$. We shall compute, with the help of Scilab, the orthogonal projection of \vec{x} over W.

First, we define the matrix M(S):

1. - 3.

2. - 5.

3. 1.

We compute the projection matrix P_W :

0.4358974 0.7435897 0.0256410

 Multiplying this matrix by the vector \vec{x} we obtain the orthogonal projection:

- 1.6512821
- 3.2051282
- 3.9794872

Therefore $Proj_W(\vec{x}) = (1.6512821, 3.2051282, 3.9794872).$