CW complexes

Cloudifold

February 19, 2022

0 Basic Definitions and Lemmas

Definition 0.1. A CW-complex is a space constructed by successively attaching cells: For $n \in \mathbb{N}, n \geq 1$, there are maps $\{\varphi_i : S^{n-1} \to X^{n-1}\}_{i \in I_n}$ (called characteristic maps). The way to construct X^n (called n-skeleton of X) is : (starting from $X^0 = \prod_{I_0} *$)

$$\prod_{i \in I_n} S^{n-1} \xrightarrow{\prod_{i \in I_n} \varphi_i} X^{n-1}
\downarrow \qquad \qquad \downarrow \qquad \qquad (pushout)
\prod_{i \in I_n} D^n \xrightarrow{\qquad \qquad} X^n$$

and the resulting CW-complex X is $\operatorname{Colim}\{X^0 \to \cdots \to X^n \to X^{n+1} \to \cdots\}$. The images of $D_i^{\circ n}$ in X is called open cell e_i^n of X.

Definition 0.2. A is a subcomplex of CW-complex X iff for any open cell e_i^n of X, A satisfy: $A \cap e_i^n \neq \emptyset \implies \bar{e_i^n} \subseteq A$.

Pair of X and subcomplex A:(X,A) is called a CW-pair.

Definition 0.3. The Infinite Symmetric Product of a pointed space (X, x_0) is colimit of its n-th Symmetric Products ($SP^n X := (\prod_{\{0,1,\ldots,n-1\}} X)/S_n$):

$$\operatorname{Colim} \{ \cdots \hookrightarrow \operatorname{SP}^n X \hookrightarrow \operatorname{SP}^{n+1} X \hookrightarrow \cdots \}$$
$$\{x_1, \dots, x_n\} \mapsto \{x_0, x_1, \dots, x_n\}$$

Definition 0.4. For $n \ge 1$, a map between pairs $f: (X,A) \to (Y,B)$ is an *n*-equivalence if:

- $f_*^{-1}(\operatorname{Im}(\pi_0 B \to \pi_0 Y)) = \operatorname{Im}(\pi_0 A \to \pi_0 X)$
- For all choices of basepoint a in A,

$$f_*: \pi_q(X, A, a) \to \pi_q(Y, B, f(a))$$

is isomorphism for $1 \le q \le n-1$ and epimorphism for q=n.

Definition 0.5. A pair (X, A) of topological spaces is n-connected if $\pi_0(A) \to \pi_0(X)$ is surjection and $\pi_q(X, A) = 0$ for $1 \le q \le n$.

Definition 0.6. For topological spaces $A \hookrightarrow X$, A is a **strong deformation retract** of a neighborhood V in X if:

 $\exists h: V \times I \to X \text{ such that}$

 $\forall x \in V, \ h(x,0) = x$

 $h(V,1) \subseteq A$

 $\forall (a,t) \in A \times I, \ h(a,t) = a$

Definition 0.7. For topological spaces $i: A \hookrightarrow X$, A is a **deformation retract** of X if:

 $\exists h: X \times I \to X \text{ such that}$

 $\forall x \in X, \ h(x,0) = x$

h(X,1) = A

 $\forall (a,t) \in A \times I, \ h(a,t) = a$

(That is, there are retraction $r: X \to A$ and homotopy $h: \mathrm{id}_X \simeq i \circ r \mathrm{rel} A$)

And r := h(-,1) is called a **deformation retraction**.

Definition 0.8. For topological spaces $A \hookrightarrow X$, a neighborhood V of A is **deformable** to A if:

 $\exists h: X \times I \to X \text{ such that}$

 $\forall x \in X, \ h(x,0) = x$

 $h(A \times I) \subseteq A, h(V \times I) \subseteq V.$

 $h(V,1) \subseteq A$

A criterion of weak homotopy equivalence:

Lemma 0.1. The following on a map $e: Y \to Z$ and any fixed $n \in \mathbb{N}$ are equivalent:

- 1. For any $y \in Y$, $e_* : \pi_q(Y,y) \to \pi_q(Z,e(y))$ is monomorphism for q=n and is epimorphism for q=n+1.
- 2. (HELP of (D^{n+1}, S^n)) Given maps $f: D^{n+1} \to Z$, $g: S^n \to Y$ and homotopy $h: f \circ i \simeq e \circ g$:

$$S^{n} \xrightarrow{i} D^{n+1}$$

$$g \downarrow \qquad \qquad \downarrow f$$

$$Y \xrightarrow{e} Z$$

then we have extension $g^+: D^{n+1} \to Y$ of g and $h^+: f \simeq e \circ g^+$:

3. Conclusion above holds when the given h is $id_{f \circ i}$.

Proof. Trivially 2. implies 3.

Our first goal: 3. implies 1.

Fix $n \in \mathbb{N}$. $\pi_n(e)$ is monomorphism:

For n = 0, 3. says if we have path $e(y) \simeq e(y')$ then we have path $y \simeq y'$. That is to say e can not map two path-connected component to one.

For n > 0, 3. says if $e \circ g$ is nullhomotopic, then $g : S^n \to Y$ could be extend to $g^+ : D^{n+1} \to Y$, which can be used to construct nullhomotopy of g.

Fix $n \in \mathbb{N}$. $\pi_{n+1}(e)$ is epimorphism:

For $[f] \in \pi_{n+1}(Z, e(y)) \cong [D^{n+1}, S^n; Z, e(y)]$, let $g := s \mapsto y$, the extension g^+ satisfy $e_*([g^+]) = [f]$, that proves e_* is epimorphism.

Second goal: 1. implies 2.

Fix g, f, h in the condition of 2. first. And observe that $\pi_n(Y, y) = [S^n, *; Y, y], \pi_{n+1}(Y, y) = [D^{n+1}, S^n; Y, y].$

There is a map $f':(D^{n+1},S^n)\to Z$ homotopic to f defined by $f'=f\circ b(-,1)$ where

$$b: CS^n \times I \to CS^n$$

$$(\overline{(x,t)},s) \mapsto \begin{cases} \overline{(x,1-2t)} & t \leq \frac{s}{2} \\ \overline{(x,\frac{t-s/2}{1-s/2})} & t \geq \frac{s}{2} \end{cases}$$

(recall that $D^{n+1} \simeq CS^n$) Therefore we can replace f with f'. Using the epimorphism leads to $h': e \circ g^{+'} \simeq f'$, using the monomorphism leads to $r: g^{+'} \circ i \simeq g$. Construct $g^+:=a(-,1)$ using

$$n: CS^{n} \times I \to Z$$

$$(\overline{(x,t)}, s) \mapsto \begin{cases} r(x, s - 2t) & t \le \frac{s}{2} \\ g^{+\prime}(x, \frac{t - s/2}{1 - s/2}) & t \ge \frac{s}{2} \end{cases}$$

And that is the end of the proof:

1 Properties and Examples

Theorem 1.1. Homotopy Extension and Lifting property:

A: a topological space

X: result of successively attaching cells on A of dimensions $0,1,\ldots,k$ $(k \leq n)$

 $e: Y \rightarrow Z: n$ -equivalence

 $g:A\to Y,\ f:X\to Z$

 $h: f|_A \simeq e \circ g$

Then there exists $g^+: X \to Y$ extends g $(g^+|_A = g)$ and $h^+: X \times I \to Z$ extends h, $h^+: f \simeq e \circ g^+$

Proof. It suffices to prove the case $A=S^{k-1}, X=D^k$, e is inclusion. (replace Z by M_e) Apply HEP of (D^k, S^{k-1}) :

 $f':=\hat{h}(-,1)$, replace f with f' the diagram would be strictly commute. Therefore, f' is map of pairs $(D^k,S^{k-1})\to (Z,Y),\ k\le n$ implies f' is nullhomotopic, suppose $h^+:D^k\times I\to Z$ is the nullhomotopy, then $g^+:=h^+(-,1)$ satisfy $g^+(D^k)\subseteq Y$.

Note. In HELP, at condition Y = Z and e = id, HELP says (X, A) have HEP

Corollary. If

A: a topological space

X: result of successively attaching cells on A of any dimensions

Then, (X, A) have HEP.

Theorem 1.2. If X is an CW-complex, $e: Y \to Z$ is an n-equivalence, Then $e_*: [X,Y] \to [X,Z]$ is a bijection if dim X < n, and a surjection if dim X = n. (Also valid for pointed case)

Proof. Surjectivity:

Apply HELP of (X,\emptyset) $((X,x_0)$ for pointed case) to obtain $e_*[g^+] \simeq [f]$:

$$\emptyset \longrightarrow X$$

$$\downarrow g^+ \qquad \downarrow f$$

$$Y \xrightarrow{e} Z$$

Injectivity $(\dim X < n)$:

Suppose $[g_0], [g_1] \in [X, Y], e_*[g_0] = e_*[g_1].$

Let $f: e \circ g_0 \simeq e \circ g_1$ Apply HELP to $(X \times I, X \times \partial I)$:

Corollary. If X is a CW-complex, $e: Y \to Z$ is weak homotopy equivalence, then $e_*: [X,Y] \to [X,Z]$ is bijection.

1.1 CW-approximation

Definition 1.1. A **CW-approximation** of $(X, A) \in \mathbf{Top}(2)$ is a CW-pair $(\widetilde{X}, \widetilde{A})$ and a weak homotopy equivalence of pairs $\varphi : (\widetilde{X}, \widetilde{A}) \to (X, A)$.

Lemma 1.3. φ, ψ are CW-approximations of $X, Y, f: X \to Y$, then

$$\widetilde{X} \xrightarrow{\varphi} X
\exists \widetilde{f} \mid \qquad \qquad \downarrow f
\widetilde{Y} \xrightarrow{gh} Y$$

commutes up to homotopy, and \tilde{f} is unique up to homotopy.

Proof. Directly from $\psi_*: [\widetilde{X}, \widetilde{Y}] \to [\widetilde{X}, Y]$ is bijection.

Theorem 1.4. φ, ψ are CW-approximations of $(X, A), (Y, B), f: (X, A) \to (Y, B),$ then

$$\begin{array}{ccc} (\widetilde{X},\widetilde{A}) & \stackrel{\varphi}{\longrightarrow} (X,A) \\ & & \downarrow^f \\ (\widetilde{Y},\widetilde{B}) & \stackrel{\psi}{\longrightarrow} (Y,B) \end{array}$$

commutes up to homotopy, and \tilde{f} is unique up to homotopy.

Proof. Apply Lemma 1.3 to obtain map $\widetilde{f}_A:\widetilde{A}\to\widetilde{B}$ and homotopy $h:\psi|_{\widetilde{B}}\circ\widetilde{f}_A\simeq f\circ\varphi|_{\widetilde{A}}$ Use

HELP of $(\widetilde{X}, \widetilde{A})$ to extend it:

 ψ_* is bijection implies the uniqueness up to homotopy of \widetilde{f} .

Theorem 1.5. (Whitehead's Theorem)

Every n-equivalence between CW-complexes whose dimension is lower than n, is homotopy equivalence. Every weak homotopy equivalence between CW-complexes is homotopy equivalence.

Proof. $e: Y \to Z$ induce bijections $[Y,Y] \to [Y,Z]$ and $[Z,Y] \to [Z,Z]$, $[f] = e_*^{-1}[\mathrm{id}_Z]$ implies $[e \circ f] = [\mathrm{id}_Z]$ and $[e \circ f \circ e] = [e]$ ($[f \circ e] = e_*^{-1}[e] = [\mathrm{id}_Y]$).

Corollary. CW-approximation is unique up to homotopy.

Example 1.1. Polish circle (Warsaw circle): closed topologist's sine curve. It is n-connected for all n but not contractible.

Definition 1.2. A cellular map between CW-pairs is $g:(X,A)\to (Y,B)$ such that $g(A\cup X^n)\subseteq B\cup Y^n$.

Theorem 1.6. For any map between CW-pairs $f:(X,A)\to (Y,B)$ there exists a cellular map g such that $g\simeq f\operatorname{rel} A$

Proof. Construct g inductively:

Start from $A \cup X^0$:

take paths $\gamma_i : f(x_i) \simeq y_i$, where y_i is any point in Y^0 and $x_i \in X^0 - A$.

Construct $h_0: (X^0 \cup A) \times I \to Y: h_0|_A(a,t) := f(a), h_0|_{X^0 - A}(x_i, t) := \gamma_i(t)$. This is a homotopy from f to $g_0 := h_0(-, 1): A \cup X^0 \to B \cup Y^0$

Inductive step:

Assume $g_n:A\cup X^n\to B\cup Y^n$ and homotopy $h_n:f|_{A\cup X^n}\simeq g_n$ is given, try to construct g_{n+1} : For each characteristic map $\varphi_i:S^n\to X^n$, take the resulting cell map $\varphi_i^+:D^{n+1}\to X^{n+1}$ and use HELP of (D^{n+1},S^n) :

Glue all $g_{n+1,i}$ and $h_{n+1,i}$ to produce g_{n+1} and $h_{n+1}: f|_{A\cup X^{n+1}}\simeq g_{n+1}$. Final stage:

Maps g_n determine a cellular map $g:X\to Y$ since X has the final topology determined by skeletons.

1.2 Operation of CW-complexes

Product of CW-complexes:

Example 1.2. Product topology of two CW-complexes does not coincide with the final topology (union topology):

X (star of countably many edges) : $X = X^1 = \bigvee_{n \in \omega} I_n$

Y (star of ω^{ω} many edges): $Y = Y^1 = \bigvee_{f \in \omega^{\omega}} I_f ((I_n, 0)) \cong (I_f, 0) \cong (I, 0)$)

Consider subset H of $X \times Y$: $H := \{(\frac{1}{f(n)+1}, \frac{1}{f(n)+1}) \in I_n \times I_f \mid n \in \omega, f \in \omega^{\omega}\}.$ H is closed under the final topology since every cell of $X \times Y$ contains at most one point of H. But closure of H contains (0,0) at product topology:

Let $U \times V$ be an open neighborhood (at product topology) of (0,0), let $g: \omega \to \omega - 0$ be an increasing function such that for all $n \in \omega, [0, \frac{1}{g(n)}) \subseteq U \cap I_n$, let $k \in omega$ be sufficiently large that $\frac{1}{g(k)+1} \subseteq V \cap I_g$, then $(\frac{1}{g(k)+1}, \frac{1}{g(k)+1}) \in U \times V \cap H$.

Note. Another way to realize $X \times Y$ as CW-complex is to change its topology to the compactly generated topology $k(X \times Y)$.

Proposition 1.7. X and Y are CW-complexes, $X \times Y$ is CW-complex if

X or Y is locally compact

or

both X and Y have countably many cells.

Quotient of CW-pair:

Proposition 1.8. For CW-complex X and subcomplex A, the Quotient space X/A have a CWcomplex structure induced by X and A.

Proof. Suppose the characteristic maps of X are indexed by $\{I_n\}_{n\in\mathbb{N}}$ and of A are indexed by $\{I'_n\}_{n\in\mathbb{N}}\ (I'_n\subseteq I_n)$. Then the characteristic maps of X/A are indexed by $\{K_n\}_{n\in\mathbb{N}}$, which defined

 $K_0 := (I_0 - I_0') \cup \{i_0\}$ where i_0 is an arbitrary element in I_0'

 $K_n := I_n - I'_n \text{ for } n > 0.$

Verify the maps determine the CW-complex structure:

Smash product of CW-complexes:

Proposition 1.9. If (X, x_0) , (Y, y_0) are pointed CW-complexes with both countably many cell, and $X^{r-1} = \{x_0\}, Y^{s-1} = \{y_0\}, \text{ then } X \wedge Y := X \times Y/X \vee Y \text{ is an } (r+s-1)\text{-connected } CW\text{-complex}.$

Proof. $X \times Y$ is CW-complex with cells of the form $e_{i,X}^n \times \{y_0\}$, $\{x_0\} \times e_{j,Y}^m$ or $e_{i,X}^n \times e_{j,Y}^m$ for $n \geq r, m \geq s$. Cells of the first two forms are continued in $X \vee Y$, therefore $(X \wedge Y)^{r+s-1} = *$. \square

Corollary. If X is a pointed CW-complex, then $\Sigma^n X$ is an (n-1)-connected CW-complex.

Properties of Infinite Symmetric Product

Functoriality:

Pointed map $f: X \to Y$ induces

$$f_n : \operatorname{SP}^n X \to \operatorname{SP}^n Y$$

$$\{x_1, \dots, x_n\} \mapsto \{f(x_1), \dots, f(x_n)\}$$

$$\longrightarrow \operatorname{SP}^n X \longrightarrow \operatorname{SP}^{n+1} X \longrightarrow$$

$$\downarrow^{f_n} \qquad \qquad \downarrow^{f_{n+1}}$$

$$\longrightarrow \operatorname{SP}^n Y \longrightarrow \operatorname{SP}^{n+1} Y \longrightarrow$$

Which induces map $SP f : SP X \to SP Y$. And Functorial properties are directly from the constructions above.

Commute with directed colimit:

Suppose P is a directed poset (that is $\forall x, y \in P, \exists z \in P, x \leq z, y \leq z$) and X_i are pointed spaces indexed by P satisfying $i \leq j \implies X_i \subseteq X_j$.

Then $SP^n(Colim_i X_i) \approx Colim_i(SP^n X_i)$

(Proof is obtained by showing that $SP^n f$ is continuous iff f is, which implies final topology on $Colim_i(SP^n X_i)$ agree on $SP^n(Colim_i X_i)$)

Suppose $i:A\hookrightarrow X$ is an pointed inclusion, then $\mathrm{SP}\,i:\mathrm{SP}\,A\hookrightarrow\mathrm{SP}\,X$ is also inclusion. Furthermore, if A is open (or closed) in X, then $\mathrm{SP}\,A$ is open (or closed) in $\mathrm{SP}\,X$.

Pointed homotopy $h: X \times I \to Y$ induces

$$h_n: \operatorname{SP}^n X \times I \to \operatorname{SP}^n Y$$

 $(\{x_1, \dots, x_n\}, t) \mapsto \{h(x_1, t), \dots, h(x_n, t)\}$

which induces $SP h : SP X \times I \to SP Y$.

Then we observe:

 $f \simeq g$ implies SP $f \simeq$ SP g,

 $e: X \to Y$ is homotopy equivalence implies $SP e: SP X \to SP Y$ is,

X is contractible implies $SP^n X$ and SP X is.

Theorem 1.10. (Dold-Thom Theorem)

If X is T_2 space and A is closed path-connected subspace of X, and there is neighborhood V deformable to A in X.

Then the quotient map $q: X \to X/A$ induces quasi-fibration $SPq: SPX \to SP(X/A)$, which satisfy $\forall x \in SP(X/A)$, $(SPq)^{-1}\{x\} \simeq SPA$.

Corollary. If X , Y are T_2 spaces and Y is connected, $f: X \to Y$. Then consider $X \to Y \to C_f \to \Sigma X$, the map $p: C_f \to \Sigma X$ induces quasi-fibration $SP p: SP C_f \to SP(\Sigma X)$ with fiber SP Y.

Corollary. If X is T_2 and path-connected, then for any $q \ge 0$, there is $\pi_{q+1}(SP(\Sigma X)) \cong \pi_q(SP(X))$.

Proof. CX is contractible implies SP CX is contractible, use the exat homotopy sequence of quasi-fibration to see:

$$\longrightarrow \pi_{q+1}(\operatorname{SP} CX) \longrightarrow \pi_{q+1}(\operatorname{SP} \Sigma X) \stackrel{\cong}{\longrightarrow} \pi_q(\operatorname{SP} X) \longrightarrow \pi_q(\operatorname{SP} CX) \longrightarrow$$

Note. The inverse of the isomorphism ∂ above is given by

$$[S^q, \operatorname{SP} X] \ni [g] \mapsto [\Sigma g] \in [S^{q+1}, \Sigma \operatorname{SP} X]$$

 $(\Sigma \operatorname{SP} X \cong \operatorname{SP} \Sigma X)$. Because ∂ is given by:

$$[p \circ Cg] = [\Sigma g] \longleftarrow [Cg] \longleftarrow [g]$$

Corollary If Y is T. engage and A is noth connected subspace of Y, then the committed m

Corollary. If X is T_2 space and A is path-connected subspace of X, then the canonical map $SP(X \cup (A \times I)) \to SP(X \cup CA)$ is a quasi-fibration with fiber SP(A).

Theorem 1.11. If X is T_2 space and A is path-connected subspace of X, and $A \hookrightarrow X$ is a cofibration.

Then the quotient map $q: X \to X/A$ induces quasi-fibration $\operatorname{SP} q: \operatorname{SP} X \to \operatorname{SP}(X/A)$, which satisfy $\forall x \in \operatorname{SP}(X/A)$, $(\operatorname{SP} q)^{-1}\{x\} \simeq \operatorname{SP} A$.

Proof. If $A \hookrightarrow X$ is cofibration, then $X \cup CA \simeq X/A$ and $X \cup (A \times I) \simeq X$.

Proposition 1.12. The inclusion $S^1 \to SP S^1$ is homotopy equivalence, therefore $\pi_q(S^1) \cong \pi_q(SP S^1)$.

Proof. $S^1 \simeq S^2 - \{0, \infty\}$ $SP^n S^2 = \{\{a_1, \dots, a_n\} \mid a_i \in \mathbb{C} \cup \{\infty\}\} = \{\prod_{\{a_1, \dots, a_n\}} (z - a_i) \mid a_i \in \mathbb{C} \cup \{\infty\}\} \text{ where } (z - \infty) := 1$ $SP^n S^2 = \{f \in \mathbb{C}[z] - \{0\} \mid \deg(f) \leq n\} = \mathbb{CP}^n$

 $SP^n(S^2 - \{0, \infty\}) = \{ f \in \mathbb{C}[z] - \{0\} \mid \deg(f) \le n, f_n \ne 0, f_0 \ne 0 \} = \mathbb{C}^n - \mathbb{C}^{n-1} \times 0 = \mathbb{C}^{n-1} \times (\mathbb{C} - 0)$ it have the same homotopy type of S^1

Corollary. $\pi_q(\operatorname{SP} S^n) = \mathbb{Z}$ if q = n, otherwise $\pi_q(\operatorname{SP} S^n) = 0$. (use corollary of 1.10 to see $\pi_{q+1}(\operatorname{SP} \Sigma X) \cong \pi_q(\operatorname{SP} X)$)

2 Homology Groups

2.1 Reduced Homology Groups

Definition 2.1. For a path-connected pointed CW-complex X, define its n-th reduced homology group for $n \ge 0$:

$$\tilde{H}_n(X) := \pi_n(\operatorname{SP} X)$$

Note. All reduced homology groups are abelian since $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(\Sigma X)$. Thus, we can extend the definition above to those X which does not necessarily be path-connected.

As SP, \tilde{H}_n also satisfy functoriality. Furthermore, \tilde{H}_n maps homotopic maps $f \simeq g$ to identical maps $f_* = g_*$. (SP maps homotopic maps to homotopic maps)

Exact Property:

Proposition 2.1. For any pointed map between CW-complexes $f: X \to Y$, we have an exact sequence:

$$\tilde{H}_n(X) \xrightarrow{f_*} \tilde{H}_n(Y) \xrightarrow{i_*} \tilde{H}_n(C_f)$$

where C_f is the mapping cone of f, $i: Y \hookrightarrow C_f$.

Proof. $Z_f := Y \cup_f (X \times I)/\{x_0\} \times I$ is the **reduced mapping cylinder** of f. $q: Z_f \to C_f$ is defined by

$$\frac{y \mapsto y}{(x,t)^{Z_f} \mapsto \overline{(x,t)}^{C_f}}$$

By Dold-Thom theorem, the induced map SP q is quasi-fibration SP $Z_f \to \text{SP } C_f$ with fiber SP X. By definition of quasi-fibration, we have

$$\pi_n(\operatorname{SP} X) \cong \tilde{H}_n(X) \xrightarrow{f_*} \pi_n(\operatorname{SP} Z_f) \cong \tilde{H}_n(Y) \xrightarrow{i_*} \pi_n(\operatorname{SP} C_f) = \tilde{H}_n(C_f)$$

Proposition 2.2. There does not exist retraction $r: \mathbb{D}^n \to S^{n-1}$.

Proof. $id = r \circ i : \mathbb{S}^{n-1} \to \mathbb{D}^n \to \mathbb{S}^{n-1}$ induces

$$id_* = r_* \circ i_* : \mathbb{Z} \cong \tilde{H}_{n-1} \mathbb{S}^{n-1} \to \tilde{H}_{n-1} \mathbb{D}^n \cong 0 \to \tilde{H}_{n-1} \mathbb{S}^{n-1} \cong \mathbb{Z}$$

which lead to contradiction.

Theorem 2.3. Fix-point theorem:

If $f: \mathbb{D}^n \to \mathbb{D}^n$ is continuous, then exist $x_0 \in \mathbb{D}^n$ such that $x_0 = f(x_0)$.

Proof. (non-constructive) No such x_0 implies $\forall x \in \mathbb{D}^n, f(x) \neq x$ therefore, we can construct continuous retraction $r : \mathbb{D}^n \to \mathbb{S}^{n-1}$ by r(x) := the intersection of "ray starting from f(x) to x" and \mathbb{S}^{n-1} . Contradict to 2.2.

Definition 2.2. Let (X, A) be an CW-pair, define the n-th homology group for $n \in \mathbb{N}$ of (X, A) be:

$$H_n(X,A) := \tilde{H}_n(X \cup CA)$$

And for single space:

$$H_n(X) := H_n(X, \emptyset) = \tilde{H}(X+1)$$

where $X + 1 := X \sqcup *$.

Note. Map between CW-pair $f:(X,A)\to (Y,B)$, induces map $\bar{f}:X\cup CA\to Y\cup CB$ defined by $(x,t)\mapsto (f(x),t)$, which induces $f_*:\tilde{H}_n(X\cup CA)\to \tilde{H}_n(Y\cup CB)$ for any $n\in\mathbb{N}$.

2.2 Axioms for Homology

Definition 2.3. A (Ordinary) Homology Theory (on **TOP** with coefficient $G \in \mathbf{Ab}$) is functors $\{H_n(-,-;G): \mathbf{TOP(2)} \to \mathbf{Ab}\}_{n \in \mathbb{N}}$, with natural transformations $\partial_{n,(X,A)}: H_n(X,A;G) \to H_n(A,\emptyset;G)$ (called connecting homomorphism) satisfying following axioms:

• Dimension:

$$H_0(*,\emptyset;G) = G$$
, for any $n > 0$, $H_n(*,\emptyset;G) = 0$.

• Weak Equivalence:

Weak equivalence $f:(X,A)\to (Y,B)$ induces isomorphism

$$f_*: H_*(X, A; G) \to H_*(Y, B; G)$$

• Long Exact Sequence:

For any $(X, A) \in \mathbf{TOP(2)}$, maps $A \hookrightarrow X$ and $(X, \emptyset) \to (X, A)$ induce a long exact sequence together with ∂ :

$$\cdots \to H_{q+1}(A;G) \to H_{q+1}(X;G) \to H_{q+1}(X,A;G) \to H_q(A;G) \to \cdots$$

where $H_n(X;G) := H_n(X,\emptyset;G)$.

• Additivity:

If $(X, A) = \coprod_{\lambda} (X_{\lambda}, A_{\lambda})$ in **TOP(2)**, then inclusions $i_{\lambda} : (X_{\lambda}, A_{\lambda}) \to (X, A)$ induces isomorphism

$$(\bigoplus i_{*,\lambda}): \bigoplus_{\lambda} H_*(X_{\lambda}, A_{\lambda}; G) \cong H_*(X, A; G)$$

• Excision:

If (X; A, B) is an **excisive triad** (that is, $X = \overset{\circ}{A} \cup \overset{\circ}{B}$), then inclusion $(A, A \cap B) \hookrightarrow (X, B)$ induces isomorphism

$$H_*(A, A \cap B; G) \cong H_*(X, B; G)$$

Note. An equivalent form of Excision Axiom:

If $(X, A) \in \mathbf{TOP}(2)$, U is subspace of A and $\overline{U} \subseteq \overset{\circ}{A}$, then inclusion $i : (X - U, A - U) \hookrightarrow (X, A)$ induces isomorphism

$$i_*: H_*(X - U, A - U; G) \to H_*(X, A; G)$$

There is a critical criterion about weak homotopy equivalence between excisive triads, we prove lemmas first:

Lemma 2.4. For

$$Z \xrightarrow{f} Y$$

$$\downarrow i \qquad \qquad \downarrow i_*$$

$$X \xrightarrow{f_*} X \cup_Z Y$$

if D is deformation retract of X and $Z \subseteq D \subseteq X$, then $D \cup_Z Y$ is deformation retract of $X \cup_Z Y$.

Proof. Let $h: \mathrm{id}_X \simeq r \circ i$ where r is the deformation retraction $X \to D$. Define $h_*: \mathrm{id}_{X \cup_Z Y} \simeq (i \cup_Z \mathrm{id}_Y) \circ (r \cup_Z \mathrm{id}_Y)$

$$h_*: (X \cup_Z Y) \times I \to X \cup_Z Y$$
$$(x,t) \mapsto f_*(h(x,t))$$
$$(y,t) \mapsto i_*(y)$$

Observe that $(X \cup_Z Y) \times I = (X \times I) \cup_{Z \times I} (Y \times I)$, check that h^* is continuous:

Lemma 2.5. For maps $i: C \to A$, $j: C \to B$ define the double mapping cylinder $M(i,j) := A \cup_{C \times \{0\}} C \times I \cup_{C \times \{1\}} B$. If i is cofibration, then the quotient map

$$q: M(i,j) \to A \cup_C B$$
$$a \mapsto a$$
$$b \mapsto b$$
$$(c,t) \mapsto c$$

is a homotopy equivalence.

Proof.

$$\begin{array}{ccc}
C & \longrightarrow & B \\
\downarrow i & & \downarrow \\
A & \xrightarrow{i_A} & A \cup_C E
\end{array}$$

The canonical quotient $r: M_{i_A} \to A \cup_C B$ is a deformation retraction with homotopy:

$$h: (B \cup_{C \times 0} (A \times I)) \times I \to B \cup_{C \times 0} (A \times I) = M_{i_A}$$
$$(a, t, s) \mapsto (a, (1 - s)t)$$
$$(b, s) \mapsto b$$

Observe that $C \times I \cup_C A \times \{1\}$ is a deformation retract of $A \times I$, since $i : C \to A$ is cofibration. Then we have $M(i,j) = B \cup_{C \times \{0\}} (C \times I \cup_{C \times \{1\}} A \times \{1\})$ is a deformation retract of $B \cup_{C \times \{0\}} A \times I = M_{i_A}$. (use lemma 2.4)

Finally, an easy check shows that $M(i,j) \to M_{i_A} \xrightarrow{r} A \cup_C B$ is identical to q.

Theorem 2.6. For excisive triads $(X; X_1, X_2)$, $(X'; X'_1, X'_2)$ and map $e: X \to X'$, if

$$e|_{X_1}: X_1 \to X_1'$$

 $e|_{X_2}: X_2 \to X_2'$
 $e|_{X_3}: X_3 \to X_3'$

are weak equivalences, (where $X_3 := X_1 \cap X_2$, $X_3' := X_1' \cap X_2'$) then e is.

Proof. Use an important criterion of weak homotopy equivalence, it suffices to show for all $n \in \mathbb{N}$, any commutative diagram below:

$$S^{n} \stackrel{i}{\longleftarrow} D^{n+1}$$

$$\downarrow g \qquad \qquad \downarrow f$$

$$X \stackrel{g}{\longrightarrow} X'$$

can be filled like:

$$S^{n} \xrightarrow{i} D^{n+1}$$

$$\downarrow g \qquad \qquad \downarrow f$$

$$X \xrightarrow{e} X'$$

whose upper triangle commutes.

Let

$$A_1 := g^{-1}(X - \overset{\circ}{X_1}) \cup f^{-1}(X' - \overset{\circ}{X_1'})$$
$$A_2 := g^{-1}(X - \overset{\circ}{X_2}) \cup f^{-1}(X' - \overset{\circ}{X_2'})$$

which are disjoint closed subsets of D^{n+1} . Choose CW-complex structure on D^{n+1} such that for each n-cell σ_i , $\overline{\sigma_i} \cap (A_1 \cup A_2) = \overline{\sigma_i} \cap A_1$ or $\overline{\sigma_i} \cap A_2$. Now define

$$K_1 := \bigcup \{ \overline{\sigma_i} \mid g(\overline{\sigma_i} \cap S^n) \subseteq \overset{\circ}{X_1} \text{ and } f(\overline{\sigma_i}) \subseteq \overset{\circ}{X_1'} \} = \bigcup \{ \overline{\sigma_i} \mid \overline{\sigma_i} \cap A_1 = \emptyset \}$$

$$K_2 := \bigcup \{ \overline{\sigma_i} \mid g(\overline{\sigma_i} \cap S^n) \subseteq \overset{\circ}{X_2} \text{ and } f(\overline{\sigma_i}) \subseteq \overset{\circ}{X_2'} \} = \bigcup \{ \overline{\sigma_i} \mid \overline{\sigma_i} \cap A_2 = \emptyset \}$$

which are subcomplexes of D^{n+1} and satisfy $K_1 \cup K_2 = D^{n+1}$. By HELP, we have:

$$S^{n} \cap K_{1} \cap K_{2} \xrightarrow{i} K_{1} \cap K_{2}$$

$$g|_{K_{1} \cap K_{2}} \downarrow g_{0} \downarrow f|_{K_{1} \cap K_{2}}$$

$$X_{1} \cap X_{2} \xrightarrow{e|_{X_{1} \cap X_{2}}} X'_{1} \cap X'_{2}$$

such that h_0 is $f|_{K_1\cap K_2}\simeq e\circ g_0\operatorname{rel}(S^n\cap K_1\cap K_2)$. Apply HELP to:

$$(S^{n} \cup K_{1}) \cap K_{2} \xrightarrow{i_{2}} K_{2} \qquad (S^{n} \cup K_{2}) \cap K_{1} \xrightarrow{i_{1}} K_{1}$$

$$\downarrow f|_{K_{2}} \qquad \downarrow f|_{K_{2}} \qquad \downarrow f|_{K_{1}} \qquad \downarrow f|_{K_{1}} \qquad \downarrow f|_{K_{1}} \qquad \downarrow f|_{K_{1}}$$

$$X_{2} \xrightarrow{K_{2}} X'_{2} \qquad X_{1} \xrightarrow{K_{1}} X'_{1}$$

where

 g_{K_i} are defined by $g_{K_i}|_{S^n\cap K_i}:=g|_{S^n\cap K_i}$ and $g_{K_i}|_{K_1\cap K_2}:=g_0$, h_{K_2} are defined by $(h_{K_1}$ is similar):

$$h_{K_2}: ((S^n \cup K_1) \cap K_2) \times I \to X_2'$$

$$(x,t) \mapsto \begin{cases} e(g(x)) & x \in S^n \cap K_2 \\ h_0(x,t) & x \in K_1 \cap K_2 \end{cases}$$

We get:

$$(S^{n} \cup K_{1}) \cap K_{2} \longrightarrow K_{2} \qquad (S^{n} \cup K_{2}) \cap K_{1} \longrightarrow K_{1}$$

$$\downarrow g_{K_{2}} \qquad \downarrow f|_{K_{2}} \qquad \downarrow g_{1} \qquad \downarrow g_{1}$$

Define g^+ and $h: f \simeq g \operatorname{rel} S^n$ by $g^+|_{K_i} := g_i$ and $h|_{K_i \times I} := h_i$. $h|_{S^n \times I} = (e \circ g) \times \operatorname{id}_I (h \text{ is } \operatorname{rel} S^n) \text{ since } h_i(-,t)|_{S^n \cap K_i} = h_{K_i}(-,t)|_{S^n \cap K_i} = e \circ g|_{S^n \cap K_i}.$

Note. The proof above can be easily modified to case each weak equivalence appear in the statement is an n-equivalence.

Following theorem allow us to use CW-triads to approximate excisive triads:

Theorem 2.7. For any excisive triad (X; A, B), there is a CW-triad $(\widetilde{X}; \widetilde{A}, \widetilde{B})$ (A CW-triad (X; A, B) is X and its subcomplex A, B such that $A \cup B = X$) and a map $r : \widetilde{X} \to X$ such that

$$\begin{split} r|_{\widetilde{A}} : \widetilde{A} &\to A \\ r|_{\widetilde{B}} : \widetilde{B} &\to B \\ r|_{\widetilde{C}} : \widetilde{C} &\to C \\ r : \widetilde{X} &\to X \end{split}$$

are all weak homotopy equivalences (where $\widetilde{C} := \widetilde{A} \cap \widetilde{B}$, $C := A \cap B$). Furthermore, such r is natural up to homotopy.

Proof. Choose a CW-approximation $r_C: \widetilde{C} \to C$ and extend it to $r_A: \widetilde{A} \to A, r_B: \widetilde{B} \to B$. $\widetilde{X}:=\widetilde{A} \cup_{\widetilde{C}} \widetilde{B}. \ i: \widetilde{C} \to \widetilde{A}$ and $j: \widetilde{C} \to \widetilde{B}$ are cofibrations, by lemma 2.5 we have homotopy

equivalence $q: M(i,j) \to \widetilde{X}$, which induces homotopy equivalence of triads:

$$\begin{split} q: M(i,j) \to \widetilde{X} \\ q|: \widetilde{A} \cup (\widetilde{C} \times [0,\frac{2}{3})) \to \widetilde{A} \\ q|: \widetilde{B} \cup (\widetilde{C} \times (\frac{1}{3},1]) \to \widetilde{B} \end{split}$$

then we can deduce that $r \circ q$ is a weak homotopy equivalence by theorem 2.6. Consequently, r is weak homotopy equivalence. r is natural up to homotopy since each CW-approximation r_C, r_A, r_B is

Then we have:

Definition 2.4. A (Ordinary) Homology Theory on CW-complexes with coefficient $G \in \mathbf{Ab}$ is functors $\{H_n(-,-;G): \mathbf{CW\text{-}pairs} \to \mathbf{Ab}\}_{n \in \mathbb{N}}$, with natural transformations $\partial_{n,(X,A)}: H_n(X,A;G) \to H_n(A,\emptyset;G)$ (called connecting homomorphism)

satisfying axioms with the excision axiom changed to:
• Excision:

If (X;A,B) is an **CW-triad** (that is $X=A\cup B$ for subcomplexes A and B) then the inclusion $(A,A\cap B)\hookrightarrow (X,B)$ induces isomorphism

$$H_*(A, A \cap B; G) \cong H_*(X, B; G)$$

Proposition 2.8. The homology groups defined in definition 2.2 is a ordinary homology theory on CW-complexes with coefficient \mathbb{Z} .

Proof.

- Dimension: by a corollary, $H_q(*,\emptyset) = \pi_q(\operatorname{SP} S^0) = \begin{cases} \mathbb{Z} & q=0\\ 0 & q \geq 1 \end{cases}$
- Weak Equivalence: SP preserves weak equivalence.
- Long Exact Sequence: use a corollary of Dold-Thom theorem.
- Additivity: For index set Λ , $P := \{S \mid S \subseteq \Lambda\}$. Then define $Y_S := \bigvee_{\lambda \in S} X_\lambda \cup CA_\lambda = (\coprod_{\lambda \in S} X_\lambda) \cup C(\coprod_{\lambda \in S} A_\lambda)$, and use fact that SP commutes with directed colimit, we have $\bigvee_{\lambda \in \Lambda} \operatorname{SP}(X_\lambda \cup CA_\lambda) = \operatorname{Colim}_{S \in P} \operatorname{SP} Y_S \approx \operatorname{SP}(\operatorname{Colim}_{S \in P} Y_S) = \operatorname{SP}((\coprod_{\lambda \in \Lambda} X_\lambda) \cup C(\coprod_{\lambda \in \Lambda} A_\lambda)) = \operatorname{SP}(X \cup CA)$. Which induces $\bigoplus_{\lambda \in \Lambda} \tilde{H}_n(X_\lambda \cup CA_\lambda) \cong \pi_n(\bigvee_{\lambda \in \Lambda} \operatorname{SP}(X_\lambda \cup CA_\lambda)) \cong \pi_n(\operatorname{SP}(X \cup CA)) = \tilde{H}_n(X \cup CA)$.
- Excision: For CW-triad (X; A, B), $A/(A \cap B) \approx X/B$. Apply theorem 1.11 to $(Y \cup CZ, CZ)$ to show that $H_n(Y, Z) \cong \tilde{H}_n(Y/Z)$.

3 Homotopy and Eilenberg-Mac Lane Spaces

Theorem 3.1. (Blakers–Massey) Homotopy Excision Theorem: For pointed CW-triad (X; A, B) such that $C := A \cap B \neq \emptyset$, if (A, C) is (m-1)-connected and (B, C) is (n-1)-connected where $m \geq 2$, $n \geq 1$. Then $i : (A, C) \rightarrow (X, B)$ is an (m+n-2)-equivalence for pairs.

Note. We can replace the "CW-triad" with "excisive triad" in condition by theorem 2.7.

Proof. Define (pointed) the triad homotopy group for $q \geq 2$:

$$\pi_q(X; A, B) := \pi_{q-1}(P_{i_{B,X}}, P_{i_{C,A}})$$

where $i_{B,X}: B \hookrightarrow X$, $i_{C,A}: C \hookrightarrow A$ and P_f is the homotopy fiber

$$\{(y,\gamma) \in Y \times M(I,Z)_* \mid \gamma(1) = f(y)\}$$

of pointed map $f: Y \to Z$. Use long exact sequence of pairs:

$$\cdots \to \pi_{q}(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_{q-1}(P_{i_{C,A}}) \to \pi_{q-1}(P_{i_{B,X}}) \to \pi_{q-1}(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_{q-2}(P_{i_{C,A}}) \to \cdots \\ \cdots \to \pi_{1}(P_{i_{B,X}}, P_{i_{C,A}}) \to \pi_{0}(P_{i_{C,A}}) \to \pi_{0}(P_{i_{B,X}})$$

and observe that $\pi_q(P_{i_{X,B}}) \cong \pi_{q+1}(X,B)$ since for any $f: S^q \to P_{i_{X,B}}$ we have:

use the fact $f' \in M(S^q, M(I, X)_*)_* \cong M(S^q \wedge I, X)_* \ni f''$ and $S^q \wedge I \approx D^{q+1}$ with

$$S^q \hookrightarrow S^q \wedge I \approx D^{q+1}$$

 $s \mapsto (s,1)$

the condition f'(s)(1) = g(s) is equivalent to f''((s,1)) = g(s), that is have a map f is equivalent to have a map $f'': (D^{q+1}, S^q) \to (X, B)$. With the analogue statement also valid for homotopies $S^q \times I \to P_{i_{X,B}}$, we have $\pi_q(P_{i_{B,X}}) = [S^q, *; P_{i_{B,X}}, *] \cong [D^{q+1}, S^q; X, B] = \pi_{q+1}(X, B)$. Rewrites the long exact sequence of pairs above to:

$$\cdots \to \pi_{q+1}(X; A, B) \to \pi_q(A, C) \to \pi_q(X; B) \to \pi_q(X; A, B) \to \pi_{q-1}(A, C) \to \cdots$$
$$\cdots \to \pi_2(X; A, B) \to \pi_1(A, C) \to \pi_1(X; B)$$

Conditions $m \geq 1$, $n \geq 1$ guarantees $\pi_0(C) \to \pi_0(A)$ and $\pi_0(C) \to \pi_0(B)$ are surjections. $m \geq 2$ is equivalent to $\pi_1(A,C) = 0$, which implies $\pi_0(C) \to \pi_0(A)$ is bijection. For $x \in \pi_0(A \cap_C B)$, we can always find $b \in \pi_0(B)$, $i_{B,X}$ $_*(b) = x$ or $a \in \pi_0(A)$, $i_{A,X}$ $_*(a) = x$ which becomes $b \in \pi_0(B)$, $i_{B,X}$ $_*(b) = x$ or $c \in \pi_0(C)$, $i_{C,X}$ $_*(c) = x$ when $\pi_0(C) \to \pi_0(A)$ is bijection. That is equivalent to $\pi_0(B) \to \pi_0(X)$ is bijection, which means $\pi_1(X,B) = 0$.

We only need to show that for $2 \le q \le m+n-2$, $\pi_q(X;A,B)=0$.

With
$$J^{q-1} := (\partial I^{q-1} \times I) \cup (I^{q-1} \times \{0\})$$
, we have:

$$\begin{split} \pi_q(P_{i_{B,X}}, P_{i_{C,A}}) &= [I^q, \partial I^q, J^{q-1}; P_{i_{B,X}}, P_{i_{C,A}}, *] \\ &= [I^q \wedge I; \ I^q, \ \partial I^q \wedge I, \ J^{q-1} \wedge I \to X; B, A, *] \end{split}$$

:= relative homotopy classes of pointed maps $f: I^q \wedge I \to X$ who satisfy:

$$\begin{cases} f(I^q) & \subseteq B \\ f(\partial I^q \wedge I) & \subseteq A \\ f(\partial I^q) & \subseteq C \\ f(J^{q-1} \wedge I) & = * \end{cases}$$

"relative" means the homotopy h determine the classes satisfy:

$$\begin{cases} h(I^q \times I) & \subseteq B \\ h((\partial I^q \wedge I) \times I) & \subseteq A \\ h(\partial I^q \times I) & \subseteq C \\ h((J^{q-1} \wedge I) \times I) & = * \end{cases}$$

(notice that $\partial I^q \wedge I \cap I^q = \partial I^q$, therefore $f(\partial I^q) \subseteq A \cap B = C$) (this is called (relative) homotopy class of maps of tetrads)

$$= [(I^{q} \times I)/K; \ I^{q} \times \{1\}, \ (\partial I^{q} \times I)/K, \ (J^{q-1} \times I)/K \to X; B, A, *]$$

$$(K := I^{q} \times \{0\} \cup \{i_{0}\} \times I)$$

$$= [I^{q+1}; \ (I^{q} \times \{1\}) \cup K, \ (\partial I^{q} \times I) \cup K, \ J^{q-1} \times I \cup K \to X; B, A, *]$$

$$= [I^{q+1}; \ I^{q} \times \{1\}, \ I^{q-1} \times \{1\} \times I, \ J^{q-1} \times I \cup I^{q} \times \{0\} \to X; B, A, *]$$
(notice that $\partial I^{q} = \partial I^{q-1} \times I \cup I^{q-1} \times \{0, 1\}$)

We can assume that (A, C) have no relative q < m-cells and (B, C) have no relative q < n-cells. And we can assume that X has finite many cells since I^q is compact.

For subcomplexes $C \subseteq A' \subseteq A$, where $A = e^m \cup A'$ (attaching one cell from A').

Let $X' := A' \cup_C B$, if the results hold for (X'; A', B) and (X; A, X'), then it hold for (X; A, B) since we have map between exact homotopy sequences of triples (A, A', C) and (X, X', B):

$$\pi_{q+1}(A, A') \longrightarrow \pi_{q}(A', C) \longrightarrow \pi_{q}(A, C) \longrightarrow \pi_{q}(A, A') \longrightarrow \pi_{q-1}(A', C)$$

$$\downarrow i_{1,q} \qquad \qquad \downarrow i_{1,q-1} \qquad$$

induced by inclusion $(A, A', C) \hookrightarrow (X, X', B)$. If the result hold for (X'; A', B) and (X; A, X'), maps $i_{1,q}$, $i_{2,q}$ are isomorphisms when $1 \ge q \ge m+n-3$, are epimorphisms when q=m+n-2. Notice the 5-lemma says that

if $i_{1,q}$ and $i_{2,q}$ are epimorphisms, $i_{1,q-1}$ are monomorphism, then $i_{3,q}$ is epimorphism. if $i_{1,q}$ and $i_{2,q}$ are monomorphisms, $i_{2,q+1}$ are epimorphism, then $i_{3,q}$ is monomorphism. We also have if $C \subseteq B' \subseteq B$ with $B = B' \cup e^n$, the result hold for CW-triads (X'; A, B') and (X; X', B) where $X' = A \cup_C B'$, since $(A, C) \hookrightarrow (X, B)$ factors as $(A, C) \hookrightarrow (X', B') \hookrightarrow (X, B)$.

Now we can assume that $A = C \cup D^m$ and $B = C \cup D^n$.

The current goal of proof is to prove any

$$f: (I^{q+1};\ I^q \times \{1\},\ I^{q-1} \times \{1\} \times I,\ J^{q-1} \times I \cup I^q \times \{0\}) \to (X; B, A, *)$$

is nullhomotopic for any q+1 with $2 \le q+1 \le m+n-2$.

For $a \in D^m$, $b \in D^n$ We have inclusions of based triads:

$$(A; A, A - \{a\}) \hookrightarrow (X - \{b\}; X - \{b\}, X - \{a, b\}) \hookrightarrow (X; X - \{b\}, X - \{a\}) \hookleftarrow (X; A, B)$$

The first and the third induces isomorphisms on homotopy groups of triads since B is a strong deformation retract of $X - \{a\}$ in X and A is a strong deformation retract of $X - \{b\}$ in X. $\pi_*(A; A, A - \{a\}) = 0$ since $\pi_*(A, A - \{a\}) \to \pi_*(A, A \cap \{a\})$ are isomorphisms.

Current goal: choose good a, b to show f regarded as a pointed traid map to $(X; X - \{b\}, X - \{a\})$ is homotopic to a map

$$f': (I^{q+1};\ I^{q-1} \times \{1\} \times I,\ I^q \times \{1\},\ J^{q-1} \times I \cup I^q \times \{0\}) \to (X - \{b\}; X - \{b\}, X - \{a,b\}, *)$$
 if $2 \le q+1 \le m+n-2$.

Note. We want to homotopically remove some point $f^{-1}(b)$, first we may want to construct some Uryssohn function u separating $f^{-1}(a) \cup J^{q-1} \times I \cup I^q \times \{0\}$ and $f^{-1}(b)$ and construct homotopy of cube $h^+: (r,s,t) \mapsto (r,(1-u(r,s)t)s)$ wishing that $f(h^+(r,s,1))$ would miss b. The problem in this method is that points $f^{-1}(b)$ in the cube would be homotopically replaced by other points. Since our desire homotopy does not change the first q coordinates of the cube, we want to separate $p^{-1}(p(f^{-1}(a))) \cup J^{q-1} \times I$ and $p^{-1}(p(f^{-1}(b)))$ (where $p: I^q \times I \to I^q$). Our problem is to find suitable a, b such that $p(f^{-1}(a)) \cap p(f^{-1}(b)) = \emptyset$.

We use manifold structure on D^m and D^n to achieve it, now we homotopically approximate f by a map g which smooth on $f^{-1}(D^m_{<1/2} \cup D^n_{<1/2})$.

Let $U_{< r} := f^{-1}(D^m_{< r} \cup D^n_{< r})$, Use smooth deformation theorem to construct smooth map (for any $0 < \epsilon$) $g' : U_{<3/4} \to D^m_{<3/4} \cup D^n_{<3/4}$ with homotopy $h_1 : g' \simeq f|_{U_{<3/4}}$ (and bound $|g'(x) - f(x)| < \epsilon$ for any $x \in U_{<1}$) and take partition of unity $\{\rho, \rho'\}$ with subcoordinates $\{I^{q+1} - \overline{U_{<1/2}}, U_{<3/4}\}$, we have:

$$g := \rho f + \rho' g'$$

$$h_2 : g \simeq f \operatorname{rel} (I^{q+1} - U_{<3/4})$$

$$h_2 : I^{q+1} \times I \to X$$

$$(x,t) \mapsto \rho(x) f(x) + \rho'(x) h_1(x,t)$$

with scalar multiplication and addition is already defined on smooth structure on $D^m_{<3/4} \cup D^n_{<3/4}$. We could assume that $g(I^{q-1} \times \{1\} \times I) \cap D^n_{<1/2} = \emptyset$ (which implies g is a map of tetrads to $(X; X - \{b\}, X - \{a\}, *)$) and $g(I^q \times \{1\}) \cap D^m_{<1/2} = \emptyset$ since $f(I^{q-1} \times \{1\} \times I) \subseteq A$ and $f(I^q \times \{1\}) \subseteq B$ and we can always tighten the bound ϵ , (Similar argument also hold for h_2 , then we have $h_2 : g \simeq f$ as homotopy between maps of tetrads.)

Use the manifold structure to find good (a,b): $V:=g^{-1}(D^m_{<1/2})\times g^{-1}(D^n_{<1/2})$ is a sub-manifold of $I^{2(q+1)}$. Consider $W:=\{(v,v')\in V\mid p(v)=p(v')\}$, which is the zero set of smooth submersion $(v,v')\mapsto p(v)-p(v')$. W is smooth manifold with codimension q. Therefore the map $(g,g):W\to D^m_{<1/2}\times D^n_{<1/2}$ is smooth map between manifolds of dimension q+2 and m+n. The map is not surjection since q+2< m+n. Then we have $(a,b)\notin (g,g)(W)$ (that is, $p(g^{-1}(a))\cap p(g^{-1}(b))$).

Since $g(I^{q-1} \times \{1\} \times I) \cap D_{<1/2}^n = \emptyset$ and $g(J^{q-1} \times I) \cap D_{<1/2}^n = \emptyset$, we have $g(\partial I^q \times I) \cap D_{<1/2}^n = \emptyset$. By Uryssohn's lemma, we have $u: I^q \to I$ separating $p(g^{-1}(a)) \cup \partial I^q$ and $p(g^{-1}(b))$. Finally we have:

$$h': I^q \times I \times I \to I^q \times I$$
$$(r, s, t) \mapsto (r, (1 - u(r)t)s)$$

and $h := g \circ h'$, f' := h(-,1). $f'(I^{q+1}) \cap \{b\} = \emptyset$ since if $\exists (r,s) \in I^q \times I$, f'(r,s) = b, then b = g(r, (1 - u(r))s) = g(r, 0) = * leads to contradiction. Last step is to check that h is a homotopy between maps

$$(I^{q+1}; I^{q-1} \times \{1\} \times I, I^q \times \{1\}, J^{q-1} \times I \cup I^q \times \{0\}) \to (X; X - \{b\}, X - \{a\}, *)$$

Since g is, $g \circ h'$ is too.

Corollary. Suppose that $Y_0 \hookrightarrow Y$ is cofibration, (Y, Y_0) is (r-1)-connected and Y_0 is (s-1)-connected, then $(Y, Y_0) \rightarrow (Y/Y_0, *)$ is (r+s-1)-equivalence. $(r \geq 2, s \geq 1)$

Proof. $Y_0 \hookrightarrow CY_0$ is cofibration and (CY_0, Y_0) is s-connected. Use homotopy excision theorem (with $X = Y \cup CY_0$, A = Y, $B = CY_0$, $C = Y_0$) to see $(Y, Y_0) \rightarrow (Y \cup CY_0, CY_0)$ is (r + s - 1)-equivalence. And $(Y \cup CY_0, CY_0) \rightarrow (Y/Y_0, *)$ is homotopy equivalence since $Y_0 \hookrightarrow Y$ is cofibration.

Corollary. For $n \geq 2$, $f: X \to Y$ is (n-1)-equivalence between (s-1)-connected spaces, then $(M_f, X) \to (C_f^+, *)$ is (n+s-1)-equivalence. Where $C_f^+:=Y \cup_f C^+X$, $C^+X:=(X \times I)/(X \times \{1\})$ is the unreduced mapping cone and the unreduced cone.

Proof. f is (n-1)-equivalence implies (M_f, X) is (n-1)-connected. Use corollary above.

Corollary. For $n \geq 2$, if $f: X \to Y$ is pointed map between (n-1)-connected well-pointed spaces (that is, pointed space whose inclusion of the base point is cofibration). Then C_f is (n-1)-connected and $\pi_n(M_f, X) \to \pi_n(C_f, *)$ is isomorphism.

Proof. Use homotopy extension property to extend to unreduced case. f is map between (n-1)-connected space implies f is at least a (n-1)-equivalence. Therefore $(M_f, X) \to (C_f, *)$ is (2n-1)-equivalence, Since we have n < 2n-1 for any $n \ge 2$, $\pi_n(M_f, X) \to \pi_n(C_f, *)$ is isomorphism.

Theorem 3.2. (Freudenthal Suspension Theorem) If X is well-pointed and (n-1)-connected $(n \ge 1)$, then the map:

$$\sigma: \pi_q(X) \to \pi_{q+1}(\Sigma X)$$
$$f \mapsto \Sigma f$$

is isomorphism if q < 2n - 1 and epimorphism if q = 2n - 1.

Proof. If we have $f:(I^q,\partial I^q)\to (X,*)$ then $f\times\operatorname{id}_I:I^{q+1}\to X\times I$ will give a map $\overline{f\times\operatorname{id}_I}:(I^{q+1},\ \partial I^{q+1},\ \partial I^q\times I\cup\partial I\times\{1\})\to (CX,X,*)$ since $J^q=\partial I^q\times I\cup\partial I\times\{0\}$, it does not give a map in $\pi_{q+1}(CX,X)$. we should change $\overline{f\times\operatorname{id}_I}$ into $\overline{f\times\operatorname{-id}_I}$. we have commutative diagram:

Where $p:(CX,X)\to (CX/X,*)$ is the canonical quotient map and $i:[f]\to [\overline{f}\times -\mathrm{id}_I]$ makes $\pi_{q+1}(CX)\to \pi_{q+1}(CX,X)\to \pi_q(X)\to \pi_q(CX)$ split in middle (that is, i is inverse of the connecting homomorphism ∂). We verify the commutativity:

$$-\Sigma f: (I^{q+1}, \partial I^{q+1}) \to (CX/X, *)$$
$$(s,t) \mapsto f(s) \wedge (1-t)$$
$$p \circ (\overline{f \times -\mathrm{id}_I}): (I^{q+1}, \partial I^{q+1}) \to (CX/X, *)$$
$$(s,t) \mapsto f(s) \wedge (1-t)$$

Since $X \hookrightarrow CX$ is cofibration and n-equivalence between (n-1)-connected spaces, p is an 2n-equivalence. Therefore, q+1 < 2n implies $-\sigma$ is isomorphism, q+1=2n implies $-\sigma$ is epimorphism, and we have $-\sigma$ is iff σ is.

Definition 3.1. We now define the q-th stable homotopy group:

$$\pi_k^s(X) := \operatorname{Colim}_r \pi_{k+r}(\Sigma^r X) \cong \pi_{2k+2}(\Sigma^{k+2} X) \cong \pi_{k+n}(\Sigma^n X) \qquad (n-1 > k)$$

The relation right side is directly from $\Sigma^n X$ is (n-1)-connected.

Note. We'll see later that $\{\pi_n^s\}_{n\in\mathbb{N}}$ defines a generalized homology theory.