7. Diseñar un algoritmo eficiente que, dado un digrafo G con pesos no negativos, dos vértices s y t y una cota c, determine una arista de peso máximo de entre aquellas que se encuentran en algún recorrido de s a t cuyo peso (del recorrido, no de la arista) sea a lo sumo c. **Demostrar** que el algoritmo propuesto es correcto.

Algoritmo

```
Algoritmo(G,c,s,t)

ds <- Dijkstra(G,s)

G' <- G con las aristas invertidas
dt <- Dijkstra(G,t)

res = (-1,-1) //asumiendo que -1 no es un nodo
peso = -1

Para cada v en G:
   Para cada w en G[v]:
    Si ds[v] + costo(v->w) + dt[w] ≤ c:
    si costo(v->w) > peso:
        peso <- costo(v->w)
        res <- (v,w)

return res</pre>
```

Correctitud

ds Por Dijkstra tenemos que es un vector de caminos mínimos de s
 a $v \, \forall v \in V(G)$

dt análogo al anterior pero de t a cada nodo incidente.

Bucle

Para cada v en G: Para cada w en G[v]: vemos cada arista $v \to w \in G$ tal que

Invariante: en la k-esima iteración, peso es el costo de la arista válida con peso máximo $v \to w$ tal que ds[v] + costo(v->w) + dt[w] \leq c

Probemos que vale por inducción.

Caso base k=0

res = (-1,-1), peso = -1, asumimos que -1 no es un nodo, y que (-1,-1) representa que no hay solución. Como no hay pesos negativos, cualquier número negativo es menor que uno positivo.

Como todavía no encontramos una arista válida, el invariante vale.

Paso inductivo

peso y res son el peso máximo y la arista válida de ese peso hasta la k-ésima iteración. $v \to w$ es la arista k+1-ésima

Si $v \to w$ cumple $ds[v] + costo(v->w) + dt[w] \le c$ entonces existe camino P = s...vw...t tal que el peso de P es menor o igual a c tal que:

• si costo(v->w) > peso entonces $v \to w$ es la arista de peso máximo, por lo que actualizamos peso = costo(v->w) res = v->w, luego finaliza la iteración se mantiene el invariante.

Caso contrario, no se actualizan peso ni res, se mantiene el invariante.