Chapter 15 Representation Learning

郑华滨

Content

- 1. Introduction
- 2. Unsupervised Representation Learning
- 3. Supervised Representation Learning
- 4. What is a Good Representation?

Introduction

- Al tasks can be very difficult / easy depending on how data is represented
- e.g. Roman numerals / Arabic numerals
- e.g. coffee bean / ground coffee
- Definition: a good representation is one that makes a subsequent learning task easier

- Deep neural networks overwhelm shallow models by implicitly learn a hierarchical representation
 - Layer N: linear classifier
 - Layer N 1: linear-separable representation (ideally)
 - Layer N 2: not-so linear-separable representation
 - •
 - Layer 0: raw representation

- Both labeled / unlabeled data can be used
- Labeled data: supervised representation learning
- Unlabeled data: unsupervised representation learning

- 2. Unsupervised Representation Learning (Sec. 15.1)
 - ancient approach
 - middle-ages approach
 - when and why does pre-training work?
 - modern approach

Ancient Approach

- Greedy layer-wise unsupervised pre-training
- Proposed because training DNN is difficult
- Largely abandoned today

each layer can be RBM, auto-encoder, ...

Mid-Ages Approach

- greedy layer-wise training —> end-to-end training
 - with the rise of ReLU, Batch Normalization, ...
- pre-train —> jointly-train
 - makes the unsupervised part aware of the supervised object

- Unsupervised pre-training is sometimes helpful but sometimes harmful, why?
- If we know why it works, we can guess when it will & won't work
- Focus on pre-training approach, comparing with jointly-training approach

- 1. Learn a good representation (key idea)
- 2. As a regularization
- 3. Better parameter initialization

- 1. Learn a good representation
 - Why: features useful for unsupervised object may also be useful for supervised object (e.g. low level feature of image)
 - When: raw representation is bad and not enough labeled data to learn a good representation (e.g. word vector)
 - The "why" above may not be true, that's one reason to prefer jointly-training, in which unsupervised object has more chance to learn features useful for supervised object

- 2. As a regularizer
 - Why: bias part of the model towards one that can achieve the unsupervised object, reduce the number of possible models
 - Different with weight decay (L1/L2 norm), which bias the model towards a simple one
 - When: not enough labeled data so a regularizer is needed but the model to be learn is so complicated that weight decay doesn't make sense

- 3. Better parameter initialization
 - Why: make it possible to reach the region in parameter space that is impossible to reach given only supervised object
 - Not well understood yet, can't say much about this idea

Modern Approach

- Problem: auto-encoder's reconstruction object may not be fully compatible with supervised task
- Solution: release the burden of reconstruction

Modern Approach

Semi-Supervised Learning with Ladder Networks, 2015

Modern Approach

Model	Number of incorrectly predicted test examples for a given number of labeled samples			
	20	50	100	200
DGN [21]			333 ± 14	
Virtual Adversarial [22]			212	
CatGAN [14]			191 ± 10	
Skip Deep Generative Model [23]			132 ± 7	
Ladder network [24]			106 ± 37	
Auxiliary Deep Generative Model [23]			96 ± 2	
Our model	1677 ± 452	221 ± 136	93 ± 6.5	90 ± 4.2
Ensemble of 10 of our models	1134 ± 445	142 ± 96	86 ± 5.6	81 ± 4.3

- 3. Supervised Representation Learning (Sec. 15.2)
 - transfer learning
 - multi-task learning
 - domain adaption
 - one-shot learning
 - zero-shot learning

Transfer Learning

- Assumption: learning task A helps to learn task B
- Assumption: representation learned from task A helps task B
- Practice:
 - pre-train model A on task A
 - use part of the model A's parameters to initialize model B
 - fine-tune model B on task B

Example:

- ImageNet classification —> other vision task
- why: low & middle level feature of image

Multi-task Learning

- Assumption: several tasks share some common features / representation
- **Example**: jointly train POS + NER + sentence classification, share word vectors
- Useful when labeled data is not enough in each task

Domain Adaption

- Focus on different data distribution, rather than different task
- Example: sentiment analysis of customer reviews on
 - media, books, ...
 - social networks, web forums, ...

High Level v.s. Low Level

- same data, different task: share low level representation
 - e.g. same low level feature of image, different high level semantics
- same task, different data: share high level representation
 - e.g. same high level semantics of different language, different low level word embeddings

One-shot Learning

- Proposed by Fei-Fei Li in 2006
- An extreme form of transfer learning
- Only 1-5 labeled examples for each class

Example

Zero-shot Learning

• **Example**: description text —> image

training:

"four legs and pointy ears" —> [cat]

testing:

 How can zero-shot learning be possible? 	?
---	---

• One approach: alignment in representation space

Example

 Zero-Shot Learning Through Cross-Modal Transfer, Richard Socher, 2013

Example

- Task: Word translation on two languages
- Possible approach: jointly train word embeddings in both language, as well as their alignment in embedding space
- At testing time: translate unseen words in bilingual corpus by adding an offset vector in embedding space

- 4. What is a Good Representation?
 - disentangling causes / distributed (Sec. 15.3, 15.4)
 - others (Sec. 15.5, 15.6)

Compare Two Assumptions

- Disentangling causes: good representation —>
 features within the representation correspond to the
 underlying causes of the observed data
- Distributed: good representation —> composed of elements that can be set separately from each other
- Different?
- e.g. some dimensions in word embeddings have particular semantics (*Evaluation of Word Vector Representations by Subspace Alignment*, 2015)

Compare Two Assumptions

- Low level:
 - features (e.g. pixels)
- High level:
 - causes, latent factors, variance, semantics, ...
 - just the same thing?
- If yes, then these two assumptions are equivalent

Opposite Side

- Entangled representation
 - no single independent elements / direction
 - e.g. raw pixels
- Symbolic / one-hot representation

Why Good? (1)

- Condition 1: if the representation successfully disentangle causes of the data
- Condition 2: and the label we want to predict is closely associated with one of the causes
- Result: then this representation will make predicting much easier

Why Good? (2)

- Share attributes makes generalization easier
- Symbolic
 - given: [cat, mouse, ...] can be pets
 - given: [A, B, ...] can't be pets
 - infer: [dog] ???
- Distributed
 - given: [cat, mouse, ...] {cute == True, legs = 4} can be pets
 - given: [A, B, ...] {cute == False, legs == 100 } can't be pets
 - infer: [dog] {cute == True, legs = 4}, maybe can also be pets

Why Good? (3)

- Richer similarity space
- Symbolic
 - 2 similarity: is / isn't
- N binary attributes
 - N+1 similarity: share 0, 1, ... N same attributes
- N continous attributes
 - continuous similarity

Why Good? (4)

- Exponential representation power v.s. dimension disaster
- If D dimension binary features can be learn
 separately, we need O(2D) samples to generalize
- But the same generalization power can only be achieved by O(2^D) samples

- Problem 1: not all causes / semantics / factors can be capture, the most salient ones will be capture first
- Problem 2: the auxiliary task and main task may disagree on what is salient

- Solution 1: let the main task to be learn together with the auxiliary task
- Solution 2: redefine what is salient

- Traditional definition of salient: reconstruction error
- Problematic if some objects of interest is small

- GAN is a brilliant way to redefine what is salient
- Discriminator will always capture the most salient features first to classify real and fake samples, no matter these features is "big" or "small"

Ground Truth MSE Adversarial

Others: Depth

Exponential gains

Others: Smoothness

 Notice that distributed representation can be smooth or non-smooth

Others: Manifolds

- Probability mass concentrates
- Locally connected
- Models like auto-encoders explicitly try to learn a manifold

Others: Sparsity

- Spatial sparsity: dependent, non-distributed
- Temporal sparsity: can be independent, distributed

Others: Simplicity of Factor Dependencies

- Looser requirement than disentangling / distributed
- In the simplest possible form: $P(h) = \sum_{i} P(h_i)$

Summary

