ACHATAMENTO POLAR DE UM PLANETA

Wilson Lopes Faculdades "Farias Brito" - Guarulhos

Considere um planeta de massa M, girando em torno de seu eixo de rotação, com velocidade angular w. Devido ao seu movimento de rotação, o planeta apresenta um achatamento polar; de tal maneira que o raio equatorial, Re é maior que o raio polar, Re Define-se o a chatamento do planeta pela relação:

$$e = (R_e - R_p)/R_e = 1 - \frac{1}{R_e/R_p}$$
 (1)

Muitos cientistas tem tratado a respeito do achatamento da Terra e de outros planetas. Um dos primeiros a se preocupar com este fenômeno foi Isaac Newton, em 1687. O eminente cientista considerou duas colunas líquidas em equilíbrio hidrostático, estendidas, do polo até o centro da Terra e do centro da Terra até o equador. O movimento de rotação da Terra, em torno de seu eixo, faz com que a coluna líquida equatorial seja maior que a coluna polar. Com estas considerações pode concluir que o achatamento da Terra era 1/230 (1) (ver Fig. 1).

Fig. 1 - Devido ao movimento de rotação a coluna equatorial se apresenta distendida, enquanto que, a coluna polar se apresenta contraída.

Admitindo-se que a forma equipotencial da superfície terrestre, ou de qualquer outro planeta, é uma consequência da força de atração gravitacional e da força centrípeta, pode-se conseguir bons re sultados teóricos para o raio equatorial, conhecendo-se o raio polar do planeta (2)

Neste trabalho, pretende-se, igualmente, calcular o achatamento da Terra e de outros planetas, levando-se em conta que o plane ta apresenta densidade constante e, sua massa líquida, obedeça leis de equilíbrio hidrostático.

Os pontos A e C pertencem à superfície do planeta que é considerada isobárica, cuja pressão é p_{atm} (Fig. 2). A força resultante sobre a massa $dm = \mu.R$ $.d\lambda.dA$, é a força de gravitação universal, dada por

$$dF_{G} = 4\pi G. \mu. R_{p}. dm/3 =$$

$$= 4\pi G. \mu^{2}. R_{p}^{2}. d\lambda. dA/3 . \qquad (2)$$

onde μ é a densidade do planeta. A força dF é resultante entre as forças dP, que representa o peso, e dF_C, que representa a força centrípeta, cujo valor é dado por:

$$dF_{c} = w^{2}.R_{p}.\cos \lambda.dm \qquad . \tag{3}$$

Nas expressões (2) e (3), λ representa a latitude da massa $\,$ dm $\,$.

Fig. 2 - A figura mostra um planeta, exageradamente, achatado devido ao seu movimento de rotação. A coluna líquida AB tem raio R e a coluna líquida BC é retilínea e de comprimento R - R .

A força d F_c é pequena quando comparada com d F_c e dP . Como consequência para a força peso resulta uma equação aproximada:

$$dP \simeq dF_{G} \cdot (1 - dF_{C} \cdot \cos \lambda / dF_{G}) \qquad (4)$$

Substituindo-se as equações (2) e (3) em (4), teremos:

$$dP \simeq \frac{4\pi}{3} \cdot G \cdot \mu^{2} \cdot R_{p}^{2} \cdot d\lambda \cdot dA \cdot (1 - 3w^{2} \cdot \cos^{2} \lambda / 4\pi G \cdot \mu) \quad . \tag{5}$$

A equação de equilíbrio hidrostático, ao longo da coluna líquida AB, deverá ser obtida pela projeção da força peso, dP, sobre a reta t (ver Fig. 3), isto é:

$$dP_t = dP \cdot sen \beta$$
 (6)

onde β é o ângulo formado entre a força peso e a força gravitacional. Pode-se ver pela Fig. 3, que

sen
$$\beta$$
 = dF_c . sen λ/dP =
$$\approx 3 w^2 \cdot \sin \lambda \cdot \cos \lambda / \left[4\pi \cdot G \cdot \mu \cdot (1 - 3w^2 \cos^2 \lambda / 4\pi G \cdot \mu) \right] \cdot (7)$$

Fig. 3 - A Fig. 3 mostra as forças que estão agindo sobre a massa dm.

A força de gravitação, dF_G, é perpendicular à reta t, tan
gente à coluna AB, e a força peso, dP, é perpendicular
à superfície isobárica AC.

Substituindo-se as expressões (5) e (7) em (6), teremos:

$$dP_t = \mu \cdot R_p^2 \cdot w^2 \cdot \text{sen } \lambda \cdot \cos \lambda \cdot d\lambda \cdot dA$$
 (7)

A equação barométrica, ao longo da coluna líquida AB , poderá ser obtida, integrando-se a equação

$$dp = -\mu \cdot R_p^2 w^2 \operatorname{sen} \lambda \cdot \cos \lambda \cdot d\lambda$$
,

isto é,

$$\int\limits_{p=p_B}^{p_{atm}} dp = -\mu \cdot w^2 R_p^2 \int\limits_{\lambda=0}^{\pi/2} sen \lambda \cdot cos \lambda \cdot d\lambda ,$$

portanto:

$$p_B = p_{atm} + (1/2) \cdot \mu \cdot R_p^2 \cdot w^2$$
 (8)

A equação (8) representa o equilíbrio hidrostático ao longo da coluna líquida AB , de raio R $_{
m p}$, que se estende do polo até o $_{
m e}$ quador do planeta.

Ao longo do plano equatorial, a força considerada para o equilíbrio hidrostático da coluna líquida BC, é a força de gravitação. Integrando-se a equação, dp $\alpha = \frac{4\pi}{3} \mu^2$. G.r.dr, teremos a equação de equilíbrio hidrostático, ao longo da coluna líquida BC, isto é:

$$p_{atm} - p_B \approx -2\pi \mu^2 G (R_e^2 - R_p^2)/3$$
 (9)

Substituindo-se (8) em (9), teremos:

$$R_e/R_p = (1+3.w^2/2\pi.G.\mu)^{1/2}$$
 (10)

A expressão (10) mostra que a razão entre o raio polar e o raio equatorial de um planeta, depende de sua velocidade angular e de sua densidade. Tendo em vista a equação (1), poderemos definir o achatamento de um planeta pela equação:

$$e = 1 - 1/(1 + 3 \cdot w^2/2\pi \cdot G \cdot \mu)^{1/2}$$
 (11)

A Tabela 1, mostra os valores do achatamento calculados com auxílio da equação (11) e os respectivos valores observados. Podese verificar uma coincidência nesses valores para a Terra; enquanto que, para os demais planetas observamos alguns valores discrepantes. Acredito que a explicação deste fato, reside nas observações óticas do raio polar e equatorial de cada planeta. As medidas de Re Robservadas na Tabela 1, devem incluir, exceto para a Terra, uma capa espessa de atmosfera, principalmente, para o planeta Júpiter onde a discrepância é bem acentuada; e isto entra em desacordo com uma das hipóteses fundamentais deste trabalho, de que o planeta está no esta do líquido. Talvez fosse possível que um suposto habitante de Júpiter, usasse a expressão (11) e chegasse num valor aceitável para o a chatamento de seu planeta, porém, com a mesma equação, cometesse algum erro para o planeta Terra.

Planeta	R _e (10 ⁴ m)	R _p (10 ⁴ m)	w(10 ⁻⁵ rad/s)	ս(10 ³ kg/m ³)	e(observ <u>a</u> do)	e(calcul <u>a</u> do)
Terra	637.8	635,6	7,293	5,5	0,0034	0,0034
Marte	341.7	340	7,089	4,0	0,0050	0,0045
Júpiter	7135	6693	17.6	1,3	0,062	0,076
Saturno	6040	5460	17,1	0.7	0,096	0,12
Urano	2380	2237	16,2	1,6	0,060	0,054
Netuno	2220	2176	11,0	1,7	0,020	0,025

TABELA 1 - Esta tabela apresenta valores calculados e observados para o achatamento de seis planetas⁽²⁾. Para os valores ca<u>l</u> culados do achatamento foi usada a equação (11).

A expressão (7) apresenta um valor máximo para $\cos (2\lambda) = -K/(1-K)$, onde $K=3\cdot w^2/4\pi\cdot G\cdot \mu$. Com o auxílio da mesma expressão representamos, graficamente, as variações que apresenta o $\frac{3n}{2}$ gulo entre as forças $dF_G=dP$, para a Terra e Saturno, desde o quador até o polo. As maiores variações do sen β foram verificadas para o planeta Saturno (ver Fig. 4 e Fig. 5), cujo valor máximo ocor

Figs. 4 e 5 - As Fig. 4 e Fig. 5 indicam as variações do ângulo entre as forças dF_G e dP, para a Terra e Saturno,re<u>s</u> pectivamente.

re para $\lambda_0 = 50^\circ$. A Terra e Marte apresentam o máximo da variação do sen β em, aproximadamente, 45° (ver Tabela 2).

Planeta	K(10 ⁻²)	λ _o	sen β _{max} (10 ⁻³)	
Terra	0,35	45	1,7	
Marte	0,45	45	2,3	
Jűpiter	8,5	47	44	
Saturno	15	49	79	
Urano	5,9	47	31	
Netuno	2,5	46	12	

TABELA 2 - Esta tabela apresenta valores calculados para λ_{0} e sen β_{max} para vários planetas. Pode-se verificar que o maior valor de λ_{0} ocorre para Saturno devido a sua velocidade angular, relativamente alta, e sua pequena densidade.

REFERÊNCIAS

- G.H.A. Cole, The Structure of Planets (The Wykeham Science Series), ver capítulo 3, pág. 31, 1978.
- (2) Jay S. Bolemon, Shape of the Rotating Planets and the Sun: A calculation for elementary mechanics, American Journal of Physics, vol. 44/11, novembro de 1976, pág. 1125. A Tabela 2 foi obtida através deste artigo.
- (3) David Halliday and Robert Resnick, Physics, for Students of Science and Engineering, pág. 357 (1960, J. Wiley & Sons).