0.1 Sfäriska koordinater och trippelintegraler (15.8)

Kom ihåg att en punkt (x,y) i planet kan beskrivas i polära koordinater med ett avstånd $r = \sqrt{x^2 + y^2}$ från origo och en vinkel θ från positiva x-axeln.

Definition 1 (Sfäriska koordinater). En punkt (x,y,z) i rummet kan beskrivas med ett avstånd ρ till origo och två vinklar, vanligtvis θ till positiva x-axeln i xy-planet och ϕ , vinkeln till positiva z-axeln. (ρ, θ, ϕ) kallas $sf\ddot{a}$ -

riska koordinater och ges av $\begin{cases} x = \rho \sin(\phi) \cos(\theta) \\ y = \rho \sin(\phi) \sin(\theta) \\ z = \rho \cos(\phi) \end{cases}$

Man brukar kräva att $\rho \geq 0,~0 \leq \phi \leq \pi$ och oftast antingen $0 \leq \theta \leq 2\pi$ eller $-\pi \leq \theta \leq \pi.$

Härledning.

- 1. Vi börjar med punkten $P_0 = (0,0,\rho)$ som ligger rakt upp från origo. Den har ρ rätt, $\phi = 0$ och θ odefinierat.
- 2. Om vi roterar punkten i xz-planet får vi $P_1 = (\rho \sin(\phi), 0, \rho \cos(\phi))$. Den har ρ rätt, ϕ rätt och $\theta = 0$ eftersom den ligger rakt över x-axeln.
- 3. Om vi roterar i xy-planet får vi $(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi))$

Sats 1 (Formel för integration i sfäriska koordinater). Om E är en "sfärisk låda", d.v.s. att $a \le \rho \le b, \ \alpha \le \theta \le \beta$ och $c \le \phi \le d$ är

$$\iiint_E f(x,y,z) dV = \int_{\alpha}^{\beta} \int_a^b \int_c^d f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \rho^2 \sin(\phi) d\phi d\rho d\theta.$$

Det brukar sammanfattas som

$$dV = \rho^2 \sin(\phi) d\phi d\rho d\theta.$$

Bevis. Kort idé till varför finns i avsnitt 15.8 i boken.

Exempel 1. Beräkna $\iiint_E (x^2 + y^2 + z^2)^2 dV$ där E är området som ligger ovanför konen $z = \sqrt{x^2 + y^2}$ och innanför sfären $x^2 + y^2 + z^2 = 4$.

Figur 1

Vinkeln ϕ mot positiva z-axeln är $\frac{\pi}{4}$ eftersom om man bara kollar i xz-planet beskrivs linjen som z=x vilken har vinkeln $\frac{\pi}{4}$ mot z-axeln. Området ovanför konen ges då av att $0 \leq \phi \leq \frac{\pi}{4}$. Sfären $x^2+y^2+z^2=4$ ges av $\rho=2$, då är området innanför sfären $0 \leq \rho \leq 2$. Vi har inga villkor på θ ,

alltså är $0 \le \theta \le 2\pi$. Alltså ges E i sfäriska koordinater av att $0 \le \rho \le 2$, $0 \le \phi \le \frac{\pi}{4}$ och $0 \le \theta \le 2\pi$.

Integralen är då

$$\iiint_{E} (x^{2} + y^{2} + z^{2})^{2} dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{\frac{\pi}{4}} \rho^{2^{2}} \rho^{2} \sin(\phi) d\phi d\rho d\theta
= \int_{0}^{2\pi} \int_{0}^{2} \rho^{6} \left[-\cos(\phi) \right]_{0}^{\frac{\pi}{4}} d\rho d\theta
= \int_{0}^{2\pi} \int_{0}^{2} \rho^{6} (-\cos(\frac{\pi}{4}) - \cos(0)) d\rho d\theta
= (-\cos(\frac{\pi}{4}) - \cos(0)) \int_{0}^{2\pi} \left[\frac{\rho^{7}}{7} \right]_{0}^{2} d\theta
= (1 - \frac{1}{\sqrt{2}}) \int_{0}^{2\pi} \frac{2^{7}}{7} d\theta
= (1 - \frac{1}{\sqrt{2}}) \frac{2^{7}}{7} \int_{0}^{2\pi} 1 d\theta
= (1 - \frac{1}{\sqrt{2}}) \frac{2^{7}}{7} \cdot 2\pi
= (1 - \frac{1}{\sqrt{2}}) \frac{2^{8}\pi}{7}$$

0.2 Vektorfält (16.1)

Hittils har vi studerat funktioner

- 1. $\mathbb{R}^n \to \mathbb{R}$
- 2. $\mathbb{R} \to \mathbb{R}^n$

Det är naturligt att också studera funktioner $\mathbb{R}^n \to \mathbb{R}^m$.

Definition 2 (Vektorfält). Ett *vektorfält* på $D \subseteq \mathbb{R}^n$ där $n \in \mathbb{Z}$ är en funktion $\vec{F}: D \to \mathbb{R}^n$, d.v.s. att för varje $(x,y) \in D$ ger det en vektor $\vec{F}(x,y) \in \mathbb{R}^n$.

Vektorfält dyker ofta upp i fysikaliska tillämpningar, t.ex.

- 1. Ett hastighetsfält \vec{v} är ett vektorfält där $\vec{v}(x,y)$ representerar hastigheten i punkten (x,y) av något som rör sig med varierande hastighet, t.ex. en gas eller en vätska.
- 2. Ett kraftfält \vec{F} är ett vektorfält där $\vec{F}(x,y)$ representerar kraften på en partikel i punkten (x,y), t.ex. ett gravitationsfält eller ett elektriskt fält.

Ett viktigt matematiskt exempel är följande:

Definition 3 (Gradientfält). Om vi har en funktion $f: D \to \mathbb{R}, D\mathbb{R}^2$ så är dess gradientfält

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle.$$

Motsvarande funkar även i \mathbb{R}^3 .