Discrete Mathematica Exercises

4 novembre 2024

Application of Boolean Algebra

Notation

$$X, Y \in \mathcal{B} = \{0, 1\}$$

$$\neg X = \bar{X} = \operatorname{NOT} X \,, \qquad X \vee Y = X + Y = X \operatorname{OR} Y \,,$$

$$X \wedge Y = X \cdot Y = X \operatorname{AND} Y \,, \qquad X \veebar Y = X \oplus Y = X \operatorname{XOR} Y \,,$$

In this notes we use the precedence/priority NOT, AND, OR/XOR. This is a convention, not all the compilers use the same rules http://www.google.it.

Thruth tables

Ŋ	K	Y	X + Y		X	Y	$X \cdot Y$	X	Y	$X \oplus Y$
()	0	0	_	0	0	0	0	0	0
()	1	1		0	1	1	0	1	1
1	Ĺ	0	1		1	0	1	1	0	1
1	L	1	1		1	1	1	1	1	0

Main Formulas

$$\bar{A} = A$$
(1)
 $A \cdot A = A$
(2)
 $A \cdot 0 = 0$
(3)
 $A \cdot 1 = A$
(4)
 $A \cdot \bar{A} = 0$
(5)
 $A + A = A$
(6)
 $A + 0 = A$
(7)
 $A + 1 = 1$
(8)
 $A + \bar{A} = 1$
(9)

Exercises

Minimize the following logic expressions

$$Y = \overline{A \cdot (A + C) + \overline{C} + B \cdot C}$$

$$Y = \overline{A + A \cdot \overline{B} + C \cdot D}$$

$$Y = \overline{A + A \cdot \overline{B} + C \cdot D}$$

$$Y = \overline{A \cdot \overline{B} \cdot \overline{C}}$$

$$Y = \overline{A \cdot \overline{B} \cdot C \cdot D}$$

$$Y = \overline{A \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{C}}$$

$$Y = A \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{C} \cdot D + A \cdot \overline{C}$$

$$Y = B \cdot C \cdot \overline{D} + C \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C$$

$$Y = \overline{A + A \cdot B \cdot C}$$

$$Y = \overline{A + A \cdot B \cdot C}$$

$$Y = (A + B) \cdot (A + \overline{B})$$

$$Y = A \cdot B \cdot \overline{C} + B \cdot C + \overline{A} \cdot \overline{B} \cdot C$$

$$Y = A \cdot B \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

$$Y = A \cdot B \cdot \overline{C} + A \cdot \overline{C}$$

$$Y = A \cdot B \cdot \overline{C} + \overline{C} = \overline{C}$$

$$Y = A \cdot B \cdot \overline{C} + \overline{C} = \overline{C} = \overline{C}$$

$$Y = A \cdot B \cdot \overline{C} + \overline{C} = \overline$$

Problems

If needed, use sum of products, i.e. minterms, to provide the correct answers

- 1) Derive the logic expression for X < Y [Answer $Z = \bar{X} \cdot Y$]
- 2) Derive the logic expression for $X \leq Y$ [Answer $Z = \bar{X} + Y$]
- 3) Derive the logic expressions for a 4-lines selector [Answer $L_0 = \bar{S}_1 \cdot \bar{S}_0$, $L_1 = \bar{S}_1 \cdot S_0$, $L_2 = S_1 \cdot \bar{S}_0$, $L_3 = S_1 \cdot S_0$]

4) Derive the logic expression for an one bit full-adder (answer Sum $S=X\oplus Y$, Carry $C=X\cdot Y$)

$$\begin{array}{c|cccc} X & Y & C & S \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ \end{array}$$

5) Derive the logic expression for a 7 segment display controller capable of displaying numbers from 0 to 9 plus character A, B, C, D, E, and F as reported in the figure below.

Hint: name the i-th segment in the display $S_i = \{0,1\}$ with i=0..6, you can arrange the segment numbering in the display as you wish. The control logic has 4 lines L_3 , L_2 , L_1 , and L_0 that encode digitally the numbers and the letters.