UNIT-I Find the values of λ for which the system of

BTL 4

BTL 4

CO₂

LAQ

equations 3x - y + 4z = 3, x + 2y - 3z = -2, 6x +

	$5y + \lambda z = -3$, will have infinite number of solution and solve them with that λ value.		
2	Solve the system of equations $4x+2y+z+3w=0$; $6x+3y+4z+7w=0$; $2x+y+w=0$.	CO2	BTL 4
3	Using Cayley-Hamilton Theorem find A^8 if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$	CO2	BTL5
4	Reduce the Quadratic form into sum of squares by an orthogonal transformation $x^2 + 2y^2 - 7z^2 - 4xy + 8xz$ and discuss the nature.	CO2	BTL5
	Test for the consistency and hance solve the	CO2	RTI 5

Test for the consistency and hence solve the following system of equations
$$x_1 + 2x_2 + x_3 = 2$$
; $3x_1 + x_2 - 2x_3 = 1$; $4x_1 - 3x_2 - x_3 = 3$; $2x_1 + 4x_2 + 2x_3 = 4$

CO2

BTL5

Reduce the matrix $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 8 & 6 & 7 \\ 3 & 5 & 2 & 1 \end{bmatrix}$ to Echelon

Reduce the matrix
$$A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 8 & 6 & 7 \\ 3 & 5 & 2 & 1 \\ -1 & 2 & 3 & 0 \end{bmatrix}$$
 to Echelon form and hence find its rank.

And hence find A^{-1} .

Reduce the matrix
$$A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 8 & 6 & 7 \\ 3 & 5 & 2 & 1 \\ -1 & 2 & 3 & 0 \end{bmatrix}$$
 to Echelon BTL

Find the characteristic equation of $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$ CO₂