

Introduction to Wheeled Mobile Robotics

CONTRIVA

organized by
GCT IEEE Student Branch – STB81571, Coimbatore
October 26, 2022

Mukil Saravanan

Facilitator,
Undergraduate Researcher,
Robotics Innovations Laboratory,
Indian Institute of Science, Bangalore

What are these?

Credits: <u>Universal Robots</u>, <u>Stanford Robotics Lab</u>, <u>Ohmni Labs</u>, <u>Hanson Robotics</u>, <u>Boston Dynamics</u>, <u>KUKA</u>, <u>DJI Agriculture</u>, <u>da Vinci</u>

What is a robot?

What is a Robot?

"A robot is an autonomous machine capable of sensing its environments, carrying out computations to make decisions and performing actions in the real world" [1]

- Rodney Brooks, Roomba creator

[1] What Is a Robot? - ROBOTS: Your Guide to the World of Robotics (ieee.org)

Motivation

- Acquaint with interdisciplinary aspects of robotics
- Blend your skillset towards the automated world
- Develop and build a real-time working robot

Agenda

- Introduction to Robotics
- Board Classification
- Wheeled Mobile Robots
- Co-ordinate Frames & Transformations
- Differential Drive Kinematics
- Perception Sensors
- Cognition Processors
- Actuation Actuators
- > ESP8266 Programming Basics
- Code Walk-through
- PID Control
- Advanced Concepts & Current Research

Introduction

Mechanical Aspects

Electronics Aspects

Programming Aspects

Advanced Methods

History

1921

2005

2016

The term 'Robot' is coined

First Robotic Arm -Unimate

First Household Robot – Roomba

First Self Driving Car - Stanley

First Robot Citizen -Sophia

Credits: Rossum's Universal Robots, Unimate Robot, iRobot, Sanford Racing Team, Hanson Robotics

© Mukil Saravanan - 2022

Broad Classification

Robots

Manipulators

Humanoids

Hybrid

Credits: Types of Robots (intel.com), ClearPath Robotics, Warehouse Robots, ABB Robotics, Boston Dynamics, PRODRONE

Which category a self driving car falls in?

Wheeled Mobile Robots

Robots that navigate around the ground using motorized wheels to propel themselves [2]

References: [2] Wikibooks, [3] ScienceDirect, Amazon © Mukil Saravanan - 2022

Wheeled Mobile Robots

More rigorous definition,

Dynamic systems where an appropriate torque needs to be applied to the wheels to obtain desired motion of the platform [3]

References: [2] Wikibooks, [3] ScienceDirect, Amazon © Mukil Saravanan - 2022

Types of Wheeled Mobile Robots

Credits: OmBURo, nBot, Turtlebot3, SuperDroid Robots, IPC, Turtlebot4, JEAS

We are not robots Let's have a break now

Co-ordinate Frames

Representing a point in 2 dimensional space,

Robot Motion = Translation and Rotation

Co-ordinate Frames

Representing a point in 2 dimensional space,

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

Robot Motion = Translation and Rotation

Rotation Matrix

Representing rotation of the point in 2 dimensional space,

Rotation Matrix

Representing rotation of the point in 2 dimensional space,

Homogeneous Transformation

$$T(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & p_x \\ \sin \theta & \cos \theta & p_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$T(\theta) = \begin{bmatrix} R(\theta) & \mathbf{p} \\ 0 & 0 & 1 \end{bmatrix}$$

Differential Drive Kinematics

The differential drive is a two-wheeled drive system with independent actuators for each wheel [4]

Kinematics model governs how wheel speeds map to robot

velocities [5]

Credits: [4] MIT CSAIL (mit.edu), [5] Modern Robotics - Book by Kevin Lynch

Differential Drive Kinematics

$$V_r = \omega * \left(R + \frac{l}{2}\right)$$

$$V_l = \omega * \left(R - \frac{l}{2}\right)$$

$$\omega = \frac{V_r - V_l}{l}$$

$$R = \frac{(V_r + V_l)}{(V_r - V_l)} * \frac{l}{2}$$

Credits: Computational Principles of Mobile - Book by Dudek and Jenkin

Let's visualize

How to move it forward?

When
$$V_r = V_l$$
, $\omega = 0$ $R \to \infty$

Credits: Computational Principles of Mobile - Book by Dudek and Jenkin

Let's visualize

Ok, how to rotate about its center?

When
$$V_l = -V_r$$
, $R = 0$
$$\omega = \frac{2V_r}{l}$$

Alright, what does happen when one of the wheels stopped rotating? (prove me mathematically)

Let's visualize

Alright, what does happen when one of the wheels stopped rotating?

When
$$V_l=0$$
,
$$\omega=\frac{V_r}{l}$$

$$R=\frac{l}{2}$$

Credits: Computational Principles of Mobile - Book by Dudek and Jenkin

Recap

- Definition of a robot
- 'Sense Think Act' feedback loop
- Milestones in robotics
- > A high level classification of robots
- Introduction to WMRs and it's types
- > Representing a point in 2D space
- Mathematical modeling of motion
- Differential drive kinematic robot and it's working

Agenda

- Introduction to Robotics
- Board Classification
- Wheeled Mobile Robots
- > Co-ordinate Frames & Transformations
- Differential Drive Kinematics
- Perception Sensors
- Cognition Processors
- Actuation Actuators
- > ESP8266 Programming Basics
- Code Walk-through
- PID Control
- Advanced Concepts & Current Research

Introduction

Mechanical Aspects

Electronics Aspects

Programming Aspects

Advanced Methods

Let's bring life to robots

Robot Perception

"Making sense of real-world"

Physical properties of an environment

Sensor

Data

Human

- ➤ See Vision
- Listen Auditory
- > Touch Tactile
- Heat Thermoception
- ➤ Balance Equilibrioception
- Body-Awareness Proprioception

And Much more!

- ➤ Bird Magnetoception
- ➤ Bat Echolocation

Robot Perception

Infra-Red (IR) sensor

Credits: Circuit Digest, Electronics Hub

Robot Actuation

Physical properties of an environment

Actuator

Data

Electrical actuator Pneumatic actuator

Shape Memory Alloy

Credits: Wiki Media, Robot Platform, Science Friday

Robot Actuation

DC Motor

Speed - Pulse Width Modulation (PWM)

Direction - H bridge

Credits: Circuit Digest, lastminuteengineers.com

Robot Actuation

L293D Motor Driver

> H Bridge: L293D

> No of channels: 2 DC Motors

> Output Current Capacity (per channel): 600 mA

> Supply Voltage Range: 4.5 V to 36 V

PINS	Functionality
ENx	Speed Control
INy	Direction Control

where $x \in \{1,2\}, y \in \{1,2,3,4\}$

Credits: Motor Driver L293D © Mukil Saravanan - 2022

Robot Cognition

Credits: <u>Arduino UNO</u>, <u>Raspberry Pi 4</u>, <u>Jetson Nano</u>

Robot Cognition

ESP8266 NodeMCU

➤ Microcontroller: ESP8266 32-bit

> Clock Speed: 80 MHz

> Operating Voltage: 3.3 VDC

➤ Input Voltage: 4.5 V − 10 V

Digital IO Pins: 11

> Analog Input Pin: 1

> PWM Outputs: 4

> Serial Protocols: I2C, SPI, UART

Credits: lastminuteengineers.com

ESP8266 - Motor Driver

D0---->IN4

D1---->IN2

D2--->EN1

D5---->IN1

DG---->EN2

D7---->IN3

Motor A+ and A+ ----> Motor 1

Motor B+ and b- ----> Motor 2 ESP8266 - IR sensor

D3---->IR out 1
D4---->IR out 2

powering connection

3V3 to -VCC GND to GND

Connect your batteries and point it to Motor Driver Vin and GND (power your board with that port only

Recap

- How robot perceives the environment?
- > Adding "super human" capabilities
- Making physical changes to the environment
- Controlling a DC motor
- > Intelligence to robot
- ESP8266 NodeMCU pinouts

Agenda

- Introduction to Robotics
- Board Classification
- Wheeled Mobile Robots
- > Co-ordinate Frames & Transformations
- Differential Drive Kinematics
- Perception Sensors
- Cognition Processors
- Actuation Actuators
- **ESP8266 Programming Basics**
- Code Walk-through
- PID Control
- > Advanced Concepts & Current Research

Introduction

Mechanical Aspects

Electronics Aspects

Programming Aspects

Advanced Methods

ESP8266 Programming Basics

Basic skeleton

```
void setup() {
   // put your setup code here, to run once:
}

void loop() {
   // put your main code here, to run repeatedly:
}

// put your main code here, to run repeatedly:
}
```

Credits: <u>Arduino Reference</u> © *Mukil Saravanan - 2022*

ESP8266 Programming Basics

Basic GPIO Operations

Syntax	Description	
pinMode(pin,mode)	Configures the specified pin to behave either as an input or an output	
digitalWrite(pin,value)	Write a HIGH or a LOW value to a digital pin	
digitalRead(pin)	Reads the value from a specified digital pin, either HIGH or LOW	
analogRead(pin)	Reads the value from the specified analog pin	
analogWrite(pin, value)	Writes a PWM value to a pin	
delay(ms)	Pauses the program for the amount of time (in milliseconds)	

Credits: <u>Arduino Reference</u>

© Mukil Saravanan - 2022

People that say that Al will take over the world:

My own Al:

PID Control

Error = Desired value – Actual value

PID Control

PID Tuning

Parameters	Rise Time	Overshoot	Steady-State Error
Кр	Decrease	Increase	Decrease
Ki	Decrease	Increase	Decrease Significantly
Kd	Minor Decrease	Minor Decrease	No Effect

Credits: thorlabs.com © Mukil Saravanan - 2022

Advanced Concepts

Odometry Motion Model $p(x_t|x_{t-1},u_t)$

LiDAR Observation Model $p(z_k|x,m)$

Credits: Probabilistic Robotics - Book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard

Advanced Concepts

Simultaneous Localization and Mapping (SLAM)

$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1})$$

Credits: Probabilistic Robotics - Book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard

Trajectory Planning

Credits: Probabilistic Robotics - Book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard, Nav2

Current Research

Credits: Deep Reinforcement learning for real autonomous mobile robot navigation

Current Research

Experimental Setup

Fig. 5

The testbed was subjected to minor structural changes.

8

Credits: Deep Learning based Audio-Aware Robot Navigation in Industry 4.0

ICRA 2022

Current Research

Credits: Nature inspired Human-Robot Cooperative Package Delivery

Recap

- ESP8266 Programming 101
- Code walkthrough
- Enhancing intelligence with PID Control
- > Tuning PID constants
- Probabilistic models motion model, observation model
- > SLAM
- Current Research

GitHub Repository

https://github.com/MukilSaravanan/Wheeled_Mobile_Robotics_101_ Workshop.git

Thank You

Let's get connected!

Reach out to me

Email: mukil_saravanan@ieee.org

LinkedIn: Mukil Saravanan