Practice Problems S5 (Diagonalization)

- 1. Let A be an $n \times n$ matrix and $0 \neq k \in \mathbb{R}$. Prove that a number λ is an eigenvalue of A iff $k\lambda$ is an eigenvalue of kA.
- 2. Prove that if λ is an eigenvalue of a square matrix A, then λ^5 is an eigenvalue of A^5 .
- 3. By inspection, find the eigenvalues of

(a)
$$A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & -2 & 2 \\ 0 & 0 & 5 \end{bmatrix}$$
; (b) $B = \begin{bmatrix} -2 & 0 & 0 \\ 1 & 2 & 5 \\ 4 & 0 & 4 \end{bmatrix}$

- 4. Compute $P^{-1}AP$ and then A^n if $A = \begin{bmatrix} 6 & -5 \\ 2 & -1 \end{bmatrix}$ and $P = \begin{bmatrix} 5 & 1 \\ 2 & 1 \end{bmatrix}$
- 5. (Diagonalization) Find the characteristic polynomial, eigenvalues and an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix if $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$.
- 6. Determine whether the following matrices are diagonalizable or not:

(a)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
; (b) $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$; (c) $C = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$.

Solutions

- 1. It follows from $\det(k\lambda I_3 kA) = \det(k(\lambda I_3 A)) = k^n \det(\lambda I_3 A)$.
- 2. Assume that λ is an eigenvalue of A, i.e., $AX = \lambda X$ for some nonzero vector X. It follows $A^5X = A^4(AX) = A^4(\lambda X) = \lambda A^4X = \cdots = \lambda^5X$. Therefore, λ^5 is an eigenvalue of A^5 .
- 3. (a) The main diagonal entries of any triangular matrix are the eigenvalues.
 - (b) A main diagonal entry in row or column with only zeros except possibly the main diagonal entry itself, is an eigenvalue.
- 4. $P^{-1} = \begin{bmatrix} 5 & 1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ -2 & 5 \end{bmatrix}$. So, $P^{-1}AP = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} = \text{diag}(4,1)$. It follows that $A = P \text{diag}(4,1)P^{-1}$. Therefore,

$$A^{n} = P \operatorname{diag}(4^{n}, 1)P^{-1}$$

$$= \frac{1}{3} \begin{bmatrix} 5 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4^{n} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 5/3 4^{n} - 2/3 & -5/3 4^{n} + 5/3 \\ 2/3 4^{n} - 2/3 & -2/3 4^{n} + 5/3 \end{bmatrix}.$$

5. The characteristic polynomial of A is

$$\det(xI_3 - A) = \begin{vmatrix} x - 3 & -1 & -1 \\ 4 & x + 2 & 5 \\ -2 & -2 & x - 5 \end{vmatrix} = (x - 1)(x - 2)(x - 3).$$

To simplify the computation of this determinant, subtract column 2 from column 1 and factor x-2 out of column 1 from the new determinant, then add row 1 to row 2; finally subtract column 3 from column 2. Thus A has three eigenvalues $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = 3$. Eigenvectors: The homogeneous systems $(I_3 - A)X = 0$, $(2I_3 - A)X = 0$ and $(3I_3 - A)X = 0$ have basic solutions $X_1 = [1 - 3 \ 1]^T$, $X_2 = [1 - 1 \ 0]^T$ and $X_3 = [0 - 1 \ 1]^T$, respectively. There are basic eigenvectors correponding to the respective eigenvalues. The matrix $P = [X_1 \ X_2 \ X_3] = [1 - 1 \ 0]^T$

$$\begin{bmatrix} 1 & 1 & 0 \\ -3 & -1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$
 diagonalizes A with $P^{-1}AP = \text{diag}(1, 2, 3)$.

- 6. (a) Since the 2×2 matrix A has two distinct (or simple, i.e., with multiplicity 1) eigenvalues $\lambda_1 = -5$ and $\lambda_2 = 2$, A is diagonalizable.
 - (b) The matrix B has eigenvalue $\lambda = -1$ with **multiplicity** 2. The matrix B is diagonalizable if there are two basic eigenvectors corresponding $\lambda = -1$. There are basic solutions to the homogeneous system $(-I_3-B)X = 0$. So, $X_1 = [-1 \ 1, 0]$ and $X_2 = [-1, 0, 1]$ are **two basic eigenvectors** corresponding to $\lambda = -1$. The matrix B is diagolizable.
 - (c) The matrix C has an eigenvalue $\lambda = 1$ of multiplicity 2. For C to be diagonalizable, there must be two basic eigenvectors corresponding to $\lambda = 1$. But the homogeneous system $(I_3 C)X = 0$ has only one basic solution $X = [0 \ 1 \ 0]^T$. Therefore, C is not diagonalizable.