Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_1^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	3
$\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\partial_\chi \partial^\alpha$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{etalpha}+2\partial_{\delta}\partial_{\chi}\partial^{eta}\sigma^{lpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta\delta\epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{lpha \chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{eta \delta}_{$	
$\tau_{2+}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{X}_{X}$	
Total constraints/gauge generators:	uge generators:	25

Quadratic (free) action $S = \int_{13}^{13} \partial_{\alpha} \omega^{\alpha \beta \chi} - 3r_{3} \partial_{\beta} \omega^{\beta}_{i} \partial_{\alpha} \omega^{\alpha \beta}_{\alpha} - 3r_{3} \partial_{i} \omega^{\beta}_{\alpha} \partial_{i} \omega^{\alpha \beta}_{\alpha} - 3r_{3} \partial_{i} \omega^{\beta}_{\alpha} \partial_{i} \omega^{\beta}_{\alpha} - 3r_{3} \partial_{i} \omega^{\beta}_{\alpha} \partial_{i} \omega^{\beta}_{\alpha} - 3r_{3} \partial_{i} \omega^{\beta}_{\alpha} \partial_{i} \partial$	
---	--

$ au_1^{\#1}$	0	0	0	0	0	0	0			•						
$\sigma_{1}^{\#2}{}_{\alpha}$ τ	0	0	0	0	0	0	0	$f_{1}^{#2}$	0	0	0	0	0	0	0	
				75)				$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	$\omega_0^{\#1}$
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0	$\omega_{1}^{\#2}{}_{lpha}$.	0	0	0	0	0	0	0	$f_{0}^{#1}$ $f_{0}^{#2}$ $\omega_{0}^{#1}$
$\tau_1^{\#1}_+ \alpha\beta$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$i(3k^2(2r_3+r_5)+2t_2)$ $k(1+k^2)^2(2r_3+r_5)t_2$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_{1^{\text{-}}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0	
	4	$\frac{i(3)}{k(1-$						αeta	$\sqrt{2} kt_2$	21	2					$\sigma_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$
χβ	2 r3 +r5)	$\frac{5)+2t_2}{3+r_5)t_2}$	$\frac{r_5}{r_3+r_5}$					$f_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{3}$ i $\sqrt{2}$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0	$\omega_{1}^{\#2}_{+}$	$\frac{\sqrt{2} t_2}{3}$	1.52 3	$-\frac{1}{3}ikt_2$	0	0	0	0	$\sigma_0^{\#1}$
$\sigma_{1}^{\#1}_{+}$	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)} -$	0	0	0	0	$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2}t_2}{3}$	$-rac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0	$\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{3}^{\#1}$ $\sigma_{3}^{\#1}$
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + ^{lphaeta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} \dagger^{lpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$		$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#_1} \dotplus^\alpha$	$\omega_1^{\#2} +^{\alpha}$	$f_1^{\#1} + \alpha$	$f_1^{\#2} +^{\alpha}$	

0 0 0 0

0 0

0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$