

Machine Learning DSECL ZG565

Dr. Monali Mavani

Pilani Campus

Contents

- Learning Model Parameters linear regression— Closed Form Solution (using vectorization)
- Linear basis function models (3.1 Bishop)
- Over fitting, Under fitting, Regularization (1.1 Bishop, Andrew Ng notes)
- Bias-Variance Decomposition (Bishop)

Learning Model Parameters – Closed Form Solution (using vectorization)

Vectorization

- Benefits of vectorization
 - More compact equations
 - Faster code (using optimized matrix libraries)
- Consider our model:

$$h(\boldsymbol{x}) = \sum_{j=0}^{n} \theta_j x_j$$

Let

Can write the model in vectorized form as $h(m{x}) = m{ heta}^\intercal m{x}$

Vectorization

Consider our model for n instances:

$$h\left(\boldsymbol{x}^{(i)}\right) = \sum_{j=0}^{d} \theta_j x_j^{(i)}$$

Let

$$oldsymbol{\mathcal{H}} oldsymbol{ heta} oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_1 \ heta_2 \ heta_d \end{bmatrix} \quad oldsymbol{X} = egin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \ heta_1 & \dots & x_d^{(i)} \ heta_1 & \dots & x_d^{(i)} \ heta_2 & \dots & \dots & \dots \ heta_d \ heta_1 & \dots & x_d^{(n)} \ heta_2 & \dots & x_d^{(n)} \ heta_3 & \dots & x_d^{(n)} \ heta_4 & \dots & x_d^{(n)} \ heta_4$$

Can write the model in vectorized form as $h_{m{ heta}}(m{x}) = m{X}m{ heta}$

Vectorization

For the linear regression cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}^{(i)} - y^{(i)} \right)^{2}$$

$$= \frac{1}{2n} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)^{\mathsf{T}} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)$$

$$\mathbb{R}^{n \times (d+1)}$$

$$= \frac{1}{2n} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)^{\mathsf{T}} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)$$

Let:

Closed Form Solution

- Instead of using GD, solve for optimal θ analytically
 - Notice that the solution is when $\frac{\partial}{\partial \boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$

$$\mathcal{J}(oldsymbol{ heta}) = rac{1}{2n} \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^{\intercal} \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^{\intercal} \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}^{\intercal} oldsymbol{X} oldsymbol{ heta} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \propto oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{y} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \propto oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{y} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \times oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{y} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \times oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^{\intercal} oldsymbol{X} oldsymbol{y} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \times oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^{\intercal} oldsymbol{X}^{\intercal} oldsymbol{y} + oldsymbol{y}^{\intercal} oldsymbol{y} \\ & \times oldsymbol{ heta}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{ heta}^{\intercal} oldsymbol{X} oldsymbol{1} oldsymbol{X} oldsymbol{y} + oldsymbol{ heta}^{\intercal} oldsymbol{x} oldsymbol{y} \\ & \times oldsymbol{ heta}^{\intercal} oldsymbol{X} oldsymbol{ heta} - oldsymbol{ heta}^{\intercal} oldsymbol{X} oldsymbol{y} + oldsymbol{ heta}^{\intercal} oldsymbol{y} oldsymbol{y} \\ & \times oldsymbol{ heta} oldsymbol{X} oldsymbol{y} + oldsymbol{ heta}^{\intercal} oldsymbol{x} oldsymbol{y} \\ & \times oldsymbol{ heta} oldsymbol{X} oldsymbol{y} + oldsymbol{ heta} oldsymbol{y} + oldsymbol{ heta} oldsymbol{y} \\ & \times o$$

Take derivative and set equal to 0, then solve for θ :

$$\frac{\partial}{\partial \boldsymbol{\theta}} \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} - 2 \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} \right) = 0$$

$$(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) \boldsymbol{\theta} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} = 0$$

$$(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

Closed Form Solution:

$$oldsymbol{ heta} = (oldsymbol{X}^\intercal oldsymbol{X})^{-1} oldsymbol{X}^\intercal oldsymbol{y}$$

46

Closed Form Solution

Can obtain θ by simply plugging X and y into

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\intercal}\boldsymbol{X})^{-1}\boldsymbol{X}^{\intercal}\boldsymbol{y}$$

$$oldsymbol{y} = \left[egin{array}{c} y^{(1)} \ y^{(2)} \ dots \ y^{(n)} \end{array}
ight]$$

- If X^TX is not invertible (i.e., singular), may need to:
 - Use pseudo-inverse instead of the inverse
 - In python, numpy.linalg.pinv(a)
 - Remove redundant (not linearly independent) features
 - Remove extra features to ensure that $d \le n$

Gradient Descent vs Closed Form

Gradient Descent

Closed Form Solution

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^TX)^{-1}$ is roughly $O(n^3)$

Extending Linear Regression to More Complex Models

- The inputs X for linear regression can be:
 - Original quantitative inputs
 - Transformation of quantitative inputs
 - e.g. log, exp, square root, square, etc.
 - Polynomial transformation
 - example: $y = \beta_0 + \beta_1 \cdot x + \beta_2 \cdot x^2 + \beta_3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs
 - Interactions between variables
 - example: $x_3 = x_1 \cdot x_2$

This allows use of linear regression techniques to fit non-linear datasets.

• Basic Linear Model:

- $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=0}^{d} \theta_j x_j$
- Generalized Linear Model: $h_{m{ heta}}(m{x}) = \sum heta_j \phi_j(m{x})$
- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
 - Unless we use the kernel trick more on that when we cover support vector machines
 - Therefore, there is no point in cluttering the math with basis functions

Generally,

$$h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$$

- Typically, $\phi_0({m x})=1$ so that $\,\, heta_0\,$ acts as a bias
- In the simplest case, we use linear basis functions:

$$\phi_j(\boldsymbol{x}) = x_j$$

Polynomial basis functions:

$$\phi_j(x) = x^j$$

 These are global; a small change in x affects all basis functions

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- These are local; a small change in x only affect nearby basis functions. μ_j and s control location and scale (width).

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

- These are also local; a small change in x only affects nearby basis functions. μ_j and s control location and scale (slope).

By using nonlinear basis functions, we allow the function $y(\mathbf{x}, \mathbf{w})$ to be a nonlinear function of the input vector \mathbf{x} . They are called linear models because this function is linear in \mathbf{w} . It is this

Over fitting, Under fitting, Regularization

Linear regression

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Underfitting

High bias

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Just right

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \cdots$$

Overfitting

High variance

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x_2)$

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$

 $h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^3 x_2 + \theta_7 x_1 x_2^3 + \cdots)$

Underfitting

Overfitting

Example: Curve fitting problem

 $F(x) = \sin(2\Pi x) + \text{noise (Gaussian)}$

The green curve shows the function $sin(2\pi x)$ used to generate the data.

Curve fitting problem: Model Selection

Overfitting

 If we have too many features (i.e. complex model), the learned hypothesis may fit the training set very well

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \approx 0$$

but fail to generalize to new examples

Model Selection

- Goal is to achieve good generalization.
- Generalization performance can be evaluated using test data set.
- Values of M in the range 3 to 8 give small values for the test set error, and these also give reasonable representations of the generating function $\sin(2\pi x)$
- For M = 9, polynomial contains 10 degrees of freedom corresponding to the 10 coefficients $w0, \ldots, w9$, can be tuned exactly to the 10 data points

Coefficients for polynomials of various order

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Coefficients have become finely tuned to the data by developing large positive and negative values, matches each of the data points exactly

Size of the data set reduces the overfitting problem

Addressing overfitting

Reduce number of features

- Manually select which features to keep.
- One rough heuristic says that data points should be multiple (5 to 10) parameters.
- It seems more reasonable to take number of parameters according to the problem complexity rather that given data points.

Any Solution?

Regularization

- Adding a penalty term to the error function in order to discourage the coefficients from reaching large values. E.g a sum of squares of all of the coefficients,
- Keep all the features, but reduce magnitude/values of parameters θ_i .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.
- Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.

Regularization

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^d \theta_j^2$$
 model fit to data regularization

- $-\lambda$ is the regularization parameter ($\lambda > 0$)
- No regularization on $\theta_0!$

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

• What happens if we set λ to be huge (e.g., 10¹⁰)?

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

• What happens if we set λ to be huge (e.g., 10¹⁰)?

regularization

Regularized linear regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

• Fit by solving , Gradient update $\min_{ heta} J(heta)$

$$\frac{\partial}{\partial \theta_0} J(\theta) \qquad \theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) \qquad \theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\mathbf{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} - \lambda \theta_j$$

Can be rearranged

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

Regularized logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^3 x_2 + \theta_7 x_1 x_2^3 + \cdots)$$

• Cost function: $J(\theta) = -\frac{1}{m} \sum_{i=1}^m [y^{(i)} \, \log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) \, \log(1-h_{\theta}(x^{(i)}))]$

achieve

Regularized logistic regression

Regularized cost function

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))] + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2$$

Gradient descent with regularized cost function

Repeat {
$$\theta_0 := \theta_0 - \alpha \, \frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\left(\frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \, \theta_j \right] \qquad j \in \{1, 2...n\}$$
}

Just like with linear regression, we will want to **separately** update θ_0 and the rest of the parameters because we do not want to regularize θ_0 .

$|\theta|_1$: Lasso regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

LASSO: Least Absolute Shrinkage and Selection Operator

innovate

Terminology

Regularization function

$$\|\theta\|_{2}^{2} = \sum_{j=1}^{n} \theta_{j}^{2}$$

$$||\theta||_1 = \sum_{j=1}^n |\theta_j|$$

$$\alpha ||\theta||_{1} + (1 - \alpha) ||\theta||_{2}^{2}$$

Name

Tikhonov regularization Ridge regression

LASSO regression

Elastic net regularization

 α is the mixing parameter between ridge (α = 0) and lasso (α = 1).

Bias-Variance Decomposition

Expectation of a random variable

- Let X be the random variable
- E[X] = mean of a large number of observations of the random variable
- The expectation of any constant c: E[c]=c
- E[E[X]]=E[X] because the expectation of a random variable is a constant.
- E[X+Y]=E[X]+E[Y]
- E[cX] = E[c] E[X] = cE[X]

Bias-Variance Tradeoff

- Bias: difference between
 what you expect to learn and truth
 - Measures how well you expect to represent true solution
 - Decreases with more complex model
- Variance: difference between what you expect to learn and what you learn from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Increases with more complex model

generalisation error = Bias² +Variance +Irreducible Error

Bias – Variance decomposition of error

$$E_{D,\varepsilon} \left\{ f(x) + \varepsilon - h_D(x) \right\}$$
 dataset and noise true function noise learned from D

Fix test case *x*, then do this experiment:

- 1. Draw size *n* sample $D=(x_1,y_1),....(x_n,y_n)$
- 2. Train linear regressor h_D using D
- 3. Draw one test example $(x, f(x)+\varepsilon)$
- 4. Measure squared error of h_D on that example x
- 5. What's the expected error?

function

Notation - to simplify this

noise

$$f\equiv f(x)+\varepsilon \qquad \hat{y}=\hat{y_D}\equiv h_D(x)$$

$$E_{D,\varepsilon}\left\{\left(f(x)+\varepsilon-h_D(x)\right)^2\right\}$$
 dataset and true learned from D

noise

$$h \equiv E_D\{h_D(x)\}$$

long-term expectation of learner's prediction on this *x* averaged over many data sets *D*

Bias – Variance decomposition of error

$$h=E_{D}\{\hat{y}_{D}\}\$$

$$=E\{([f-h]+[h-\hat{y}])^{2}\} \qquad \hat{y}=\hat{y}_{D}\equiv h_{D}(x)$$

$$=E\{[f-h]^{2}+[h-\hat{y}]^{2}+2[f-h][h-\hat{y}]\} \qquad f\equiv f(x)+\varepsilon$$

$$=E\{[f-h]^{2}+[h-\hat{y}]^{2}+2[fh-f\hat{y}-h^{2}+h\hat{y}]\}$$

$$=E[(f-h)^{2}]+E[(h-\hat{y})^{2}]+2\{E[fh]-E[f\hat{y}]-E[h^{2}]+E[h\hat{y}]\}$$

achieve

Bias – Variance decomposition of error

$$E_{D,\varepsilon}\{(f-\hat{y})^{2}\}=E[(f-h)^{2}]+E[(h-\hat{y})^{2}] \qquad h \equiv E_{D}\{h_{D}(x)\}$$

$$\hat{y}=\hat{y}_{D}\equiv h_{D}(x)$$

$$f \equiv f(x) + \varepsilon$$

BIAS²

Squared difference between best possible prediction for x, f(x), and our "long-term" expectation for what the learner will do if we averaged over many datasets D, $E_D[h_D(x)]$

VARIANCE

Squared difference btwn our longterm expectation for the learners performance, $E_D[h_D(x)]$, and what we expect in a representative run on a dataset D (hat y)

Bayesian linear regression

Bayesian analysis

- Bayesian analysis will show that
 - under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a maximum likelihood hypothesis

MCLE, MLE

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

The first term in this expression is a constant independent of h, and can therefore be discarded, yielding

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \sum_{i=1}^{m} -\frac{1}{2\sigma^{2}} (d_{i} - h(x_{i}))^{2}$$

Maximizing this negative quantity is equivalent to minimizing the corresponding positive quantity.

$$h_{ML} = \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} \frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

Finally, we can again discard constants that are independent of h.

$$h_{ML} = \underset{h \in H}{\operatorname{argmin}} \sum_{i=1}^{m} (d_i - h(x_i))^2$$
 (6.6)

References

- https://www.desmos.com/calculator/bgontvxotm
- https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

Thanks