Validation of a new heat pump model for Carnot library

TABLE OF CONTENTS

1	Intro	oduc	tion	. 2
2	Des	script	ion of data sources	. 2
	2.1	Inst	allation "L"	. 2
	2.1.	.1	General description	. 2
	2.1.	.2	Heat pump description	. 3
	2.1.	.3	Data	. 4
	2.2	Inst	allation "S"	. 5
	2.2.	.1	General description	. 5
	2.2.	.2	Heat pump description	. 6
	2.2.	.3	Data	. 7
3	Res	sults.		. 8
	3.1	Inst	allation "L"	. 8
	3.2	Inst	allation "S"	10
	3.3	Cor	nclusion	14

Abstract

Validation of a new heat pump model for Carnot library with data from two sites :

- installation "L"
- installation "S"

Author

Gaelle Faure

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 1 / 14
lic			

1 Introduction

The heat pump model was improved by adding a dissipation scheme. The resulting block must be validated with measurement data.

Two sources of data are used:

- installation "L"
- installation "S"

2 Description of data sources

2.1 Installation "L"

2.1.1 General description

DHW and heating production with a heat pump and solar panels. Solar energy is used as primar energy for DHW production. The heat pump is used as primar energy for heating and additionnal heating for DHW.

Installation scheme

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 2 / 14
lic			

2.1.2 Heat pump description

The heat pump is a VITOCAL 300-G BW 121. It is a water-glycol mix/water heat pump with a nominal heat power of 21.2 kW.

Typ BW/BWS

BW/BWS		121
	EKO :	121
Leistungsdaten nach DIN EN 14511 (0/35 °C,	, 5 K Sprei-	
zung)		
Nenn-Wärmeleistung	kW	21,2
Kälteleistung	kW	17,0
Elektr. Leistungsaufnahme	kW	4,48
Leistungszahl ε (COP)		4,73
Leistungsdaten nach DIN EN 255 (0/35 °C, 10	0 K Sprei-	
zung)		
Nenn-Wärmeleistung	kW	21,5
Kälteleistung	kW	17,5
Elektr. Leistungsaufnahme	kW	4,33
Leistungszahl ε (COP)		4,97
Sole (Primärkreis)		
Inhalt	I	7,3
Min. Volumenstrom (Δt = 5 K)	l/h	3300
Durchflusswiderstand	mbar	90
Max. Vorlauftemperatur	°C	25
Min. Vorlauftemperatur	°C	-5
Heizwasser (Sekundärkreis)		
Inhalt	I	7,3
Min. Volumenstrom (Δt = 10 K)	I/h	1900
Durchflusswiderstand	mbar	30
Max. Vorlauftemperatur	°C	60

Technical information about the heat pump.

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 3 / 14
lic			

Figure 1 : Adjusted parameters for validation with VITOCAL300-G BW 121

2.1.3 Data

I use the data of one day: 17th october 2009.

The following data are used (original name is in brackets):

- Compressor power in W (Verdichterleistung in W)
- Heating power in kW (Leistung_Ladekreis_Puffer)
- Inlet temperature of antifreeze loop in ^oC (VL Solekreis)
- Outlet temperature of antifreeze loop in ^oC (RL Solekreis)
- Volume flow of antifreeze loop in I/h (Vol Solekreis)
- Inlet temperature of hot loop in °C (RL Ladekreis Puffer)
- Outlet temperature of hot loop in ℃ (VL Ladekreis Puffer)
- Volume flow of heating loop in I/h (Vol Ladekreis Puffer)

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 4 / 14
lic			

Command is calculated with compressor power data:

I choose to use only data about the heating loop (and not about the DHW loop) because there are few requests for DHW: only once at the beginning and once at the end, both during a short time. I make my calculus with the data between these two events.

2.2 Installation "S"

2.2.1 General description

DHW production, heating, natural cooling and air-conditioning with a heat pump and solar panels. Solar energy is used as primary energy for DHW production. The heat pump is used as primary energy for heating, natural cooling and air-conditioning and as additional heating for DHW.

Installation scheme.

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 5 / 14
lic			

2.2.2 Heat pump descriptionThe heat pump is a VITOCAL 200 BWP 108. It is a water-glycol mix/water heat pump with a nominal heat power of 7.7 kW.

Vitocal 200	Тур	BWP 106	BWP 108
Leistungsdaten Wärmepumpe*1			
Heizleistung	kW	6,1	7,7
Kälteleistung	kW	4.7	5,9
Elektr. Leistungsaufnahme	kW	1,4	1,8
Leistungszahl ɛ (COP)		4,3	4,3
bei Heizbetrieb			160
Leistungsdaten Heizwasser-Durchlauferhit-			•
zer (Zubehör)	1		
Wärmeleistung	kW		stufig 3/6/9
Heizleistung mit Heizwasser-Durchlauferhit-	kW	15,1	16,7
zer			
Sole (primär)			
Inhalt	Liter	1,6	2,1
min. Durchsatz*2	Liter/h	1200	1400
max. externer Durchflusswiderstand	mbar	400	480
max. Eintrittstemperatur	°C	25	25
min. Eintrittstemperatur	°C	-5	-5
Heizwasser (sekundär)			
Inhalt, Wärmepumpe	Liter	1,6	1,8
Inhalt, gesamt	Liter	7,0	7,2
min. Durchsatz*2	Liter/h	800	800
max. externer Durchflusswiderstand	mbar	450	450
max. Vorlauftemperatur	°C	60	60
Elektrische Werte		20000	
Nennspannung (Wärmepumpe komplett)	1	3/	N/PE 400 V~/50 Hz
Nennspannung (Steuerstromkreis)	1	12	230 V~/50 Hz
Nennstrom (Verdichter)	A	5,5	6,0
Anlaufstrom (Verdichter)	A	25,0	14,0*3
Anlaufstrom (Verdichter	Α	32,0	35,0
bei blockiertem Rotor)			
Elektr. Leistungsaufnahme			
 Umwälzpumpe Solekreis bei Stufe 1/2/3 	W	62/92/132	195/175/120
 Umwälzpumpe Heizkreis bei Stufe 1/2/3 	W	1000 20002	62/92/132
Absicherung (träge)	Α	3 × 16	3 × 16*4
Schutzart			IP 20
Absicherung (intern)			T 6,3 A H
Kältekreis			
Arbeitsmittel			R 410 A
Füllmenge	kg	1,050	1,200
Verdichter	Тур		Scroll Vollhermetik

Technical information about the heat pump.

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 6 / 14
lic			

Figure 2: Ajusted parameters for validation with VITOCAL200 BWP 108

2.2.3 Data

I use the data of three days:

- 22th April 2006;
- 5th October 2006 ;
- 7th October 2006.

These days are chosen in order to **study heating capacity of the heat pump** (there are no request for natural cooling or air-conditioning).

The following data are used (original name is in brackets):

- Compressor power in W (Reserve5 or Leistung_el in W)
- Heating power in kW (Leistung Puffer)

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 7 / 14
lic			

- DHW heating power in kW (*Leistung_Speicher*)
- Inlet temperature of antifreeze loop in ℃ (RL Primär WP)
- Outlet temperature of antifreeze loop in °C (RL Primär WP)
- Volume flow of antifreeze loop in I/h (RL_Erdsonde)
- Inlet temperature of heating loop in ℃ (RL_ Puffer_Speicher)
- Outlet temperature of the part of the hot loop used for heating in ℃ (*VL_ Puffer*)
- Outlet temperature of the part of the hot loop used for DHW heating in °C (VL_Speicher)
- Volume flow of the part of the hot loop used for heating in I/h (RL_Puffer)
- Volume flow of the part of the hot loop used for DHW heating in I/h (*RL_Speicher*)
- Command of the heatpump (0 ou 5) (*Verdichter*)

3 Results

3.1 Installation "L"

Figure 3: Electric power used by the compressor

The instantaneous errors of electric power are less than 5%, which is the commonly maximum error between theorical technical data and practical values.

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 8 / 14
lic			

Figure 3 : Heating power

Figure 4 : Outlet temperatures of the heatpump

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 9 / 14
lic			_

3.2 Installation "S"

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 10 / 14
lic			

Figure 5 : Results for 22.04.2006

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 11 / 14
lic			

Figure 6: Results for 05.10.2006

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 12 / 14
lic			

Figure 7: Results for 07.10.2006

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 13 / 14
lic			

3.3 Conclusion

Validation is completed.

Document	Project	Revision 1.0	Faure
Heatpump_validation_pub	-	07/12/2010	Page 14 / 14
lic			