EXERCICE 1.

Soit $f: \mathbb{R} \to \mathbb{R}$ une application croissante telle que $f \circ f = Id_{\mathbb{R}}$. Prouver que $f = Id_{\mathbb{R}}$.

EXERCICE 2.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto x^2$. Déterminer les ensembles suivants :

- 1. $f(\mathbb{R})$;
- **2.** f([-3,2]);
- 3. f([-3,3]);
- 4. $f^{-1}([9, 10])$;
- 5. $f^{-1}([-5, -3[);$

- 6. $f^{-1}([-4,4])$;
- 7. $f^{-1}(f([0,1]));$
- 8. $f(f^{-1}([-1,4]));$ 9. $f(f^{-1}(\mathbb{R}_{-})).$

EXERCICE 3.

Les applications suivantes sont-elles injectives? surjectives? bijectives?

- 1. $f_1: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f_1(x) = |x-2|$:
- **2.** $f_2: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f_2(x) = \frac{x}{x^2+1};$
- 3. $f_3: \mathbb{R}_+ \longrightarrow \mathbb{R}, \quad x \longmapsto f_3(x) = \frac{3x+1}{4x+1}$;
- **4.** $f_4: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^3:$
- 5. $f_5: \mathbb{C} \longrightarrow \mathbb{C}, x \longmapsto x^3$.

EXERCICE 4.

Montrer que la fonction définie par

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto f(x) = 2xe^x$

réalise une bijection de [0, 1] sur un ensemble à déterminer.

EXERCICE 5.

Soient E un ensemble, A et B deux parties fixées de E, et Ψ l'application de P(E) dans $\mathcal{P}(A) \times \mathcal{P}(B)$ définie par

$$\forall X \subset E$$
, $\Psi(X) = (X \cap A, X \cap B)$.

- 1. Etude de l'injectivité de Ψ.
 - **a.** Calculer $\Psi(\emptyset)$.
 - **b.** Calculer $\Psi(\overline{A \cup B})$.
 - c. Prouver que Ψ est injective si et seulement si $A \cup B = E$.
- **2.** Etude de la surjectivité de Ψ.
 - a. Le couple (\emptyset, B) admet-il un antécédent par Ψ ?
 - b. Déterminer une condition nécessaire et suffisante sur A, B et E pour que Ψ soit surjective.

EXERCICE 6.

Le plan \mathcal{P} est muni d'un repère orthonormé direct $\mathcal{R} = (0, \vec{u}, \vec{v})$. A est le point d'affixe 2. On définit une application

$$\mathcal{T}: \mathfrak{P} \setminus \{A\} \longrightarrow \mathfrak{P}$$

par $\mathcal{T}(\mathfrak{m}) = M$ où \mathfrak{m} est d'affixe z et M d'affixe

$$Z = 2z + 3 + \frac{6}{z - 2}$$
.

- 1. Etudier l'injectivité et la surjectivité de \mathcal{T} .
- 2. Déterminer l'ensemble des points de \mathcal{P} invariants par \mathcal{T} .
- 3. Deux points \mathfrak{m} et \mathfrak{m}' sont dits associés s'ils ont la même image par \mathcal{T} . Montrer que les points m et m', d'affixes respectives z et z', sont associés $si\ et\ seulement\ si\ z=z'$ ou

$$(z-2)(z'-2)=3.$$

- 4. On note \mathcal{E} l'axe réel privé du point A. Déterminer l'ensemble $\mathcal{T}(\mathcal{E})$.
- 5. Soient B et C les points d'affixes $7-4\sqrt{3}$ et $7+4\sqrt{3}$. Déterminer l'ensemble $\mathcal{T}^{-1}([BC]).$

EXERCICE 7.

Soit $f: \mathbb{N} \to \mathbb{N}$ définie par

$$\left\{ \begin{array}{ll} f(n) & = & n & \quad \mathrm{si} \ n \ \mathrm{est} \ \mathrm{pair}, \\ f(n) & = & \frac{n+1}{2} & \quad \mathrm{si} \ n \ \mathrm{est} \ \mathrm{impair}. \end{array} \right.$$

Etudier l'injectivité et la surjectivité de f.

EXERCICE 8.★★

Soient f et q deux applications de E dans lui-même, telles que $q \circ f \circ q = f$ et $f \circ g \circ f = g$.

- 1. On suppose que f est injective. Démontrer que f et q sont bijectives.
- 2. On suppose que q est surjective. Démontrer que f et q sont bijectives.

EXERCICE 9.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x}{x^2+1}$.

- 1. f est-elle injective? surjective?
- 2. Montrer que la restriction de f à $[1, +\infty]$ est une bijection sur un intervalle de \mathbb{R} à préciser.

EXERCICE 10.

Soit f l'application de \mathbb{C}^* dans \mathbb{C} définie par $f(z) = \frac{1}{z}$.

- 1. f est-elle injective? surjective?
- 2. On considère les ensembles $E = \{z \in \mathbb{C} \mid |z-1| = 1\}$ et F = $\left\{z\in\mathbb{C}\mid \operatorname{Re}z=rac{1}{2}
 ight\}.$
 - a. Si on identifie C au plan, donner la nature géométrique de E et F, et donner leurs équations cartésiennes.
 - **b.** Vérifier que $f(E \setminus \{0\}) \subset F$.
 - **c.** Montrer que f induit une bijection de $E \setminus \{0\}$ sur F.

Exercice 11.

Dans chacun des cas suivants, déterminer l'image de l'ensemble I par la fonction

1.
$$I = [-5, 1[\text{ et } f(x)] = \frac{5x - 2}{1 - x}.$$

4.
$$I =]1, +\infty[$$
 et $f(x) = \frac{1}{(1-x)^3}$

2.
$$I = \left[\frac{1}{2}, 1\right[\text{ et } f(x) = \frac{5x^2 - 1}{1 - x}.$$

1.
$$I = [-5, 1[\text{ et } f(x) = \frac{5x - 2}{1 - x}]$$
2. $I = \left[\frac{1}{2}, 1[\text{ et } f(x) = \frac{5x^2 - 1}{1 - x}]\right]$
3. $I = [-5, 1[\text{ et } f(x) = \frac{5x^2 - 1}{1 - x}]$
4. $I = [1, +\infty[\text{ et } f(x) = \frac{1}{(1 - x)^3}]$
5. $I = [-\pi, \pi[\setminus \left\{-\frac{\pi}{2}; \frac{\pi}{2}\right\}] \text{ et } f(x) = \frac{1}{(1 - x)^3}$

3.
$$I =] - 1, 1[$$
 et $f(x) = \frac{1}{(x-1)(x+1)}$.

EXERCICE 12.

On considère la fonction réelle définie par $f(x) = \frac{\ln x}{x^2}$ et \mathcal{C} sa courbe représentative. Montrer que le point (1,0) est le seul point de la courbe où la tangente est parallèle à la droite d'équation y = x.

EXERCICE 13.

Soit E un ensemble non vide et A et B deux parties de E.

1. Montrer que si $A \cap B = \emptyset$, alors pour toute partie X de E

$$(X \cup A) \cap (X \cup B) = X$$

- **2.** Soit l'application $f: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E)^2 \\ X & \longmapsto & (X \cup A, X \cup B) \end{array} \right.$
 - a. Montrer que f n'est pas surjective
 - **b.** Montrer que f est injective si et seulement si $A \cap B = \emptyset$.

EXERCICE 14.

Déterminer les applications $f: \mathbb{N} \to \mathbb{N}$ telles que : $\forall n \in \mathbb{N}, f(n) + f(f(n)) +$ f(f(f(n))) = 3n.

EXERCICE 15.

Soit $f: E \to F$.

- 1. Montrer que f est injective si et seulement si pour toute partie A de E, $f^{-1}(f(A))) = A.$
- 2. Montrer que f est surjective si et seulement si pour toute partie B de F, $f(f^{-1}(B)) = B.$

EXERCICE 16.

Soit $f: \mathbb{N} \to \mathbb{N}$ une application injective, telle que $\forall n \in \mathbb{N}$, $f(n) \leq n$. Montrer que $\forall n \in \mathbb{N}$, f(n) = n.

EXERCICE 17.

Soit $\alpha \in \mathbb{C} \setminus \mathbb{U}$. Pour $z \in \mathbb{C}$ tel que $\overline{\alpha}z + 1 \neq 0$, on pose $f(z) = \frac{z + \alpha}{\overline{\alpha}z + 1}$.

- 1. Montrer que f est définie sur U.
- **2.** Soit $z \in \mathbb{C}$ tel que $\overline{\alpha}z+1 \neq 0$. Montrer que $z \in \mathbb{U}$ si et seulement si $f(z) \in \mathbb{U}$.
- 3. Montrer que f induit une bijection de \mathbb{U} sur \mathbb{U} .

EXERCICE 18.

Soient $A, B \in \mathcal{P}(E)$. On définit la différence symétrique de A et B par :

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

1. Montrer que $\forall A, B \in \mathcal{P}(E)$,

$$\mathbb{1}_{A \wedge B} = (\mathbb{1}_A - \mathbb{1}_B)^2$$
.

2. Montrer que $\forall A, B, C \in \mathcal{P}(E)$,

$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$

3. Montrer que $\forall A, B, C \in \mathcal{P}(E)$

$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

EXERCICE 19.

Soient A, B, C trois ensembles. On pose $X = A \cup (B \cap C)$ et $Y = (A \cup B) \cap C$.

- 1. Déterminer les fonctions indicatrices de X et Y en fonction de celles de A, B et C.
- 2. En déduire à quelle condition nécessaire et suffisante (portant sur A et C) les ensembles X et Y sont égaux.

EXERCICE 20.★★

Soit $f: x \mapsto \sqrt{|x^2 - 1|}$. Etudier la fonction f, puis représenter f graphiquement. On précisera les tangentes remarquables ainsi que les asymptotes.

EXERCICE 21.

Voici un peu d'entraînement sur la méthode de la quantité conjuquée.

1. Démontrer que

$$\lim_{x\to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}=1.$$

2. Soient m, n des entiers positifs. Etudier

$$\lim_{x\to 0}\frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}.$$

3. Démontrer que

$$\lim_{x \to 0} \frac{1}{x} (\sqrt{1 + x + x^2} - 1) = \frac{1}{2}.$$

EXERCICE 22.

Calculer lorsqu'elles existent les limites suivantes

1.
$$\lim_{x\to 0} \frac{x^2 + 2|x|}{x}$$
;

$$2. \lim_{x \to -\infty} \frac{x^2 + 2|x|}{x};$$

3.
$$\lim_{x\to 2} \frac{x^2-4}{x^2-3x+2}$$
;

4.
$$\lim_{x \to \pi} \frac{\sin^2(x)}{1 + \cos(x)}$$
;

5.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$
;

6.
$$\lim_{x \to +\infty} \sqrt{x+5} - \sqrt{x-3}$$
;

7.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
;

8.
$$\lim_{x \to 1} \frac{x-1}{x^n-1}$$
.

EXERCICE 23.

- 1. Tracer la courbe représentative de la fonction $f: x \in \mathbb{R} \mapsto x^3 3x$.
- ${\bf 2.}\ {\it Sans\ calculs},$ tracer les courbes représentatives des fonctions suivantes :

$$g: x \in \mathbb{R} \mapsto f(x+2) - 1$$
 $h: x \in \mathbb{R} \mapsto 2f\left(\frac{x}{2}\right)$ $i: x \in \mathbb{R} \mapsto \frac{1}{2}f(2x-2) + 1$

EXERCICE 24.

Soit f une application dérivable de \mathbb{R} dans \mathbb{R} .

- 1. Si f est paire ou impaire, que peut-on dire de la parité de f', de f⁽ⁿ⁾ pour $n \in \mathbb{N}$?
- **2.** Si f est périodique, que peut-on dire de la périodicité de f', de $f^{(n)}$ pour $n \in \mathbb{N}$?

EXERCICE 25.

Etudier la dérivabilité et calculer les dérivées des fonctions suivantes.

1.
$$f: x \mapsto \sqrt{x^4 - x^2}$$

3.
$$h: x \mapsto \ln \left(\sqrt{x^2 - 1} - 1 \right)$$

4. $i: x \mapsto \ln \left(1 - \sqrt{\cos x} \right)$

2.
$$g: x \mapsto e^{\sqrt{x^2+x+1}}$$

4.
$$i: x \mapsto \ln (1 - \sqrt{\cos x})$$

EXERCICE 26.

Etudier les fonctions suivantes. On précisera également leurs images.

1.
$$f: x \mapsto x^x$$

$$2. f: x \mapsto \frac{\ln x}{x}$$

3.
$$f: x \mapsto \sqrt{1+x^2}$$

3.
$$f: x \mapsto \sqrt{1 + x^2}$$

4. $f: x \mapsto \sin x - \frac{1}{3} \sin 3x$

EXERCICE 27.

Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$

$$x \leqslant \frac{2}{3}\sin x + \frac{1}{3}\tan x$$

EXERCICE 28.

Montrer que pour tout $x \in \mathbb{R}_+$

$$\frac{8\sin x - \sin(2x)}{6} \leqslant x$$

EXERCICE 29.

Soient $f: x \in \mathbb{R} \mapsto \sqrt{x^2 + x + 1}$ et \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1. Donner l'ensemble de définition de f.
- 2. Calculer f(-1-x) pour tout $x \in \mathbb{R}$. En déduire sans justification une symétrie de $\mathcal{C}_{\mathbf{f}}$.
- 3. Justifier que f est dérivable sur \mathbb{R} . Calculer sa dérivée. En déduire les variations de f que l'on présentera dans un tableau de variations. On précisera les limites de f aux bornes de son ensemble de définition
- **4.** Montrer que C_f admet une asymptote oblique en $+\infty$ dont on déterminera une équation. En déduire sans calcul que C_f admet également une asymptote oblique en $-\infty$ dont on précisera une équation.
- 5. Préciser la position de C_f par rapport à ses asymptotes.
- **6.** Tracer \mathcal{C}_f . On fera figurer les asymptotes et les tangentes remarquables.

EXERCICE 30.

On considère la fonction réelle $f: x \mapsto \frac{(x+1)^2}{2x-1}$.

- 1. Etudiez f, déterminez ses éventuelles asymptotes, puis tracez la courbe \mathcal{C}_f .
- 2. Prouvez que C_f possède un centre de symétrie.

EXERCICE 31.

Les fonctions suivantes sont-elles majorées, minorées, bornées? Justifier.

1.
$$f: x \in \mathbb{R} \mapsto e^x \sin x$$

 $2 \sin x + 3 \cos x$

3.
$$h: x \in \mathbb{R} \mapsto (1 + \sin x) \ln(1 + x^2)$$

1.
$$f: x \in \mathbb{R} \mapsto e^{-x} \sin x$$

2. $g: x \in \mathbb{R} \mapsto \frac{2 \sin x + 3 \cos x^2}{1 + e^x}$
3. $h: x \in \mathbb{R} \mapsto (1 + \sin x)$
4. $i: x \in \mathbb{R} \mapsto e^{-x^2} \sin x$

4.
$$i: x \in \mathbb{R} \mapsto e^{-x^2} \sin x$$

EXERCICE 32.

Les fonctions suivantes admettent-elles un minimum ou un maximum?

$$1. f: x \in \mathbb{R} \mapsto e^{-x^2}$$

3.
$$h: x \in \mathbb{R}_+ \mapsto e^{-x} \sqrt{x}$$

2.
$$g: x \in \mathbb{R}_+^* \mapsto \frac{\ln x}{x}$$

1.
$$f: x \in \mathbb{R} \mapsto e^{-x^2}$$

2. $g: x \in \mathbb{R}_+^* \mapsto \frac{\ln x}{x}$
3. $h: x \in \mathbb{R}_+ \mapsto e^{-x} \sqrt{x}$.
4. $i: x \in \mathbb{R}_+^* \mapsto x + \frac{a}{x}$ où $a \in \mathbb{R}_+^*$

EXERCICE 33.

Montrer que pour tout $x \in \mathbb{R}$, $\cos x \ge 1 - \frac{x^2}{2}$.

EXERCICE 34.★

1. Déterminer deux réels a et b tels que $\forall x \neq \pm 1$,

$$\frac{1}{1-x^2} = \frac{a}{1+x} - \frac{b}{1-x}.$$

2. Calculer la dérivée n-ième sur $\mathbb{R} \setminus \{\pm 1\}$ de la fonction

$$f(x) = \frac{1}{1 - x^2}.$$

Exercice 35.★

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, calculer la dérivée n-ième de

$$x \mapsto e^{x \cos(\alpha)} \cos(x \sin(\alpha)).$$