

SAM4S Xplained Pro

USER GUIDE

Preface

The Atmel[®] SAM4S Xplained Pro evaluation kit is a hardware platform to evaluate the SAM4SD32C microcontroller.

Supported by the Atmel Studio integrated development platform, the kit provides easy access to the features of the Atmel SAM4SD32C and explains how to integrate the device in a custom design.

The Xplained Pro MCU series evaluation kits include an on-board Embedded Debugger, and no external tools are necessary to program or debug the SAM4SD32C.

The Xplained Pro extension series evaluation kits offers additional peripherals to extend the features of the board and ease the development of custom designs.

Table of Contents

Pre	eface			1	
1.	Intro	duction	٦	3	
	1.1.	Feature	es	3	
	1.2.		erview		
2.	Gett	Getting Started			
	2.1.	•	ed Pro Quick Start		
	2.2.		Documentation and Relevant Links		
3.	Xpla	ined Pr	ro	6	
•	3.1.		lded Debugger		
	3.1.		are Identification System		
	3.3.		Sources		
	3.4.		ed Pro Standard Headers and Connectors		
	0.4.	3.4.1.	Xplained Pro Standard Extension Header		
		3.4.2.	Xplained Pro LCD Extension Connector		
		3.4.3.	Xplained Pro Power Header		
4	11	ا مسمددا			
4.			Jsers Guide		
	4.1.		ctors		
		4.1.1.	Xplained Pro Extension Headers		
		4.1.2.	LCD Extension Connector		
		4.1.3.	Current Measurement Header		
		4.1.4.	Other Headers		
	4.2.	•	erals		
		4.2.1.	NAND Flash		
		4.2.2.	SD Card Connector		
		4.2.3.	Crystals		
		4.2.4.	Mechanical Buttons		
		4.2.5.	LED		
	4.0	4.2.6.	Analog Reference		
	4.3.	4.3.1.	Ided Debugger Implementation		
		4.3.1. 4.3.2.	Serial Wire Debug		
		4.3.2.	Virtual COM PortAtmel Data Gateway Interface		
			•		
5.	Hard	Hardware Revision History and Known Issues			
	5.1.	5.1. Identifying Product ID and Revision			
	5.2.		on 5		
	5.3. Revision 4				
6.	Document Revision History				
7.	Evaluation Board/kit Important Notice24				

1. Introduction

1.1. Features

- Atmel ATSAM4SD32C microcontroller
- Embedded debugger (EDBG)
 - USB interface
 - Programming and debugging (target) through Serial Wire Debug (SWD)
 - Virtual COM-port interface to target via UART
 - Atmel Data Gateway Interface (DGI) to target via synchronous SPI or TWI
 - Four GPIOs connected to target for code instrumentation
- Digital I/O
 - Two mechanical buttons (user and reset button)
 - One user LED
 - Three extension headers
- · LCD display header
- USB interface for host and device function (target)
- 2Gb NAND Flash for non-volatile storage
- SD card connector
- Adjustable analog reference
- Three possible power sources
 - External power
 - Embedded debugger USB
 - Target USB
- 12MHz crystal
- 32kHz crystal

1.2. Kit Overview

The Atmel SAM4S Xplained Pro evaluation kit is a hardware platform to evaluate the Atmel ATSAM4SD32C.

The kit offers a set of features that enables the ATSAM4SD32C user to get started using the ATSAM4SD32C peripherals right away and to get an understanding of how to integrate the device in their own design.

CURRENT MEASUREMENT SW0 USER BUTTON **HEADER RESET BUTTON** TARGET USB **DEBUG USB** USER LED0 **POWER HEADER** Atmel SAM4S X PLAINED **AREF MEASUREMENT** SPARE **AREF SIGNALS ADJUSTMENT** 12MHz **EXTENSION 1 CRYSTAL HEADER** SAM4SD32C LCD CONNECTOR (EXT4) SD Card 32kHz CONNECTOR CRYSTAL (bottom side) **EXTENSION 2** NAND FLASH **HEADER** PIOD INTERFACE **EXTENSION 3 HEADER**

Figure 1-1 SAM4S Xplained Pro Evaluation Kit Overview

2. Getting Started

2.1. Xplained Pro Quick Start

Three steps to start exploring the Atmel Xplained Pro platform:

- Download Atmel Studio.
- 2. Launch Atmel Studio.
- 3. Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the DEBUG USB port on the kit.
- 4. Connect SAM4S Xplained Pro to a Xplained Pro MCU board and connect a USB cable to DEBUG USB port on the Xplained Pro MCU board.

When the Atmel SAM4S Xplained Pro is connected to your computer for the first time, the operating system will do a driver software installation. The driver file supports both 32-bit and 64-bit versions of Microsoft® Windows® XP, Windows Vista®, Windows 7, and Windows 8.

Once the Xplained Pro MCU board is powered the green power LED will be lit and Atmel Studio will auto detect which Xplained Pro MCU- and extension board(s) are connected. Atmel Studio will present relevant information like datasheets and kit documentation. The kit landing page in Atmel Studio also has the option to launch Atmel Software Framework (ASF) example applications for the kit. The SAM4S device is programmed and debugged by the on-board Embedded Debugger and therefore no external programmer or debugger tool is needed.

2.2. Design Documentation and Relevant Links

The following list contains links to the most relevant documents and software for SAM4S Xplained Pro:

- Xplained Pro products Atmel Xplained Pro is a series of small-sized and easy-to-use evaluation kits for Atmel microcontrollers and other Atmel products. It consists of a series of low cost MCU boards for evaluation and demonstration of features and capabilities of different MCU families.
- Atmel Studio Free Atmel IDE for development of C/C++ and assembler code for Atmel microcontrollers.
- Atmel sample store Atmel sample store where you can order samples of devices.
- EDBG User Guide User guide containing more information about the on-board Embedded Debugger.
- IAR Embedded Workbench® for ARM This is a commercial C/C++ compiler that is available for ARM. There is a 30 day evaluation version as well as a code size limited kick-start version available from their website. The code size limit is 16KB for devices with M0, M0+, and M1 cores and 32KB for devices with other cores.
- Atmel Data Visualizer Atmel Data Visualizer is a program used for processing and visualizing data. Data Visualizer can receive data from various sources such as the Embedded Debugger Data Gateway Interface found on Xplained Pro boards, and COM ports.
- Design Documentation Package containing CAD source, schematics, BOM, assembly drawings,
 3D plots, layer plots etc.
- Hardware Users Guide in PDF format PDF version of this User Guide.
- SAM4S Xplained Pro in the Atmel store Atmel Store link.

3. Xplained Pro

Xplained Pro is an evaluation platform that provides the full Atmel microcontroller experience. The platform consists of a series of Microcontroller (MCU) boards and extension boards that are integrated with Atmel Studio, have Atmel Software Framework (ASF) drivers and demo code, support data streaming, and more. Xplained Pro MCU boards support a wide range of Xplained Pro extension boards that are connected through a set of standardized headers and connectors. Each extension board has an identification (ID) chip to uniquely identify which boards are connected to an Xplained Pro MCU board. This information is used to present relevant user guides, application notes, datasheets, and example code through Atmel Studio.

3.1. Embedded Debugger

The SAM4S Xplained Pro contains the Atmel Embedded Debugger (EDBG) for on-board debugging. The EDBG is a composite USB device of three interfaces; a debugger, Virtual COM Port, and a Data Gateway Interface (DGI).

Together with Atmel Studio, the EDBG debugger interface can program and debug the SAM4SD32C. On SAM4S Xplained Pro, the SWD interface is connected between the EDBG and the SAM4SD32C.

The Virtual COM Port is connected to a UART on the SAM4SD32C and provides an easy way to communicate with the target application through terminal software. It offers variable baud rate, parity, and stop bit settings. Note that the settings on the SAM4SD32C must match the settings given in the terminal software.

The DGI consists of several physical interfaces for communication with the host computer. Communication over the interfaces are bidirectional. It can be used to send events and values from the SAM4SD32C or as a generic printf-style data channel. Traffic over the interfaces can be timestamped on the EDBG for more accurate tracing of events. Note that timestamping imposes an overhead that reduces maximal throughput. Atmel Data Visualizer is used to send and receive data through DGI.

The EDBG controls two LEDs on SAM4S Xplained Pro; a power LED and a status LED. Table 3-1 EDBG LED Control on page 6 shows how the LEDs are controlled in different operation modes.

Table 3-1 EDBG LED Control

Operation Mode	Power LED	Status LED
Normal operation	Power LED is lit when power is applied to the board.	Activity indicator, LED flashes when any communication happens to the EDBG.
Bootloader mode (idle)	The power LED and the status LE	D blinks simultaneously.
Bootloader mode (firmware upgrade)	The power LED and the status LE	D blinks in an alternating pattern.

For further documentation on the EDBG, see the EDBG User Guide.

3.2. Hardware Identification System

All Xplained Pro compatible extension boards have an Atmel ATSHA204 CryptoAuthentication[™] chip mounted. This chip contains information that identifies the extension with its name and some extra data. When an Xplained Pro extension is connected to an Xplained Pro MCU board the information is read and

sent to Atmel Studio. The Atmel Kits extension, installed with Atmel Studio, will give relevant information, code examples, and links to relevant documents. Table 3-2 Xplained Pro ID Chip Content on page 7 shows the data fields stored in the ID chip with example content.

Table 3-2 Xplained Pro ID Chip Content

Data field	Data type	Example content
Manufacturer	ASCII string	Atmel'\0'
Product Name	ASCII string	Segment LCD1 Xplained Pro'\0'
Product Revision	ASCII string	02'\0'
Product Serial Number	ASCII string	177402020000010'\0'
Minimum Voltage [mV]	uint16_t	3000
Maximum Voltage [mV]	uint16_t	3600
Maximum Current [mA]	uint16_t	30

3.3. Power Sources

The SAM4S Xplained Pro kit can be powered by several power sources listed in Table 3-3 Power Sources for SAM4S Xplained Pro on page 7.

Table 3-3 Power Sources for SAM4S Xplained Pro

Power input	Voltage requirements	Current requirements	Connector marking
External power	5V ± 2% (± 100mV) for USB host operation. 4.3V to 5.5V if USB host operation is not required.	Recommended minimum is 1A to be able to provide enough current for connected USB devices and the board itself. Recommended maximum is 2A due to the input protection maximum current specification.	PWR
Embedded debugger USB	4.4V to 5.25V (according to USB spec)	500mA (according to USB spec)	DEBUG USB
Target USB	4.4V to 5.25V (according to USB spec)	500mA (according to USB spec)	TARGET USB

The kit will automatically detect which power sources are available and choose which one to use according to the following priority:

- 1. External power.
- 2. Embedded Debugger USB.
- 3. Target USB.

Info: External power is required when 500mA from a USB connector is not enough to power a connected USB device in a USB host application.

3.4. Xplained Pro Standard Headers and Connectors

3.4.1. Xplained Pro Standard Extension Header

All Xplained Pro kits have one or more dual row, 20-pin, 100mil extension header. Xplained Pro MCU boards have male headers, while Xplained Pro extensions have their female counterparts. Note that all pins are not always connected. All connected pins follow the defined pin-out description in Table 3-4 Xplained Pro Standard Extension Header on page 8.

The extension headers can be used to connect a variety of Xplained Pro extensions to Xplained Pro MCU boards or to access the pins of the target MCU on Xplained Pro MCU boards directly.

Table 3-4 Xplained Pro Standard Extension Header

Pin number	Name	Description	
1	ID	Communication line to the ID chip on an extension board.	
2	GND	Ground.	
3	ADC(+)	Analog to digital converter, alternatively positive part of differential ADC.	
4	ADC(-)	Analog to digital converter, alternatively negative part of differential ADC.	
5	GPIO1	General purpose I/O.	
6	GPIO2	General purpose I/O.	
7	PWM(+)	Pulse width modulation, alternatively positive part of differential PWM.	
8	PWM(-)	Pulse width modulation, alternatively negative part of differential PWM.	
9	IRQ/GPIO	Interrupt request line and/or general purpose I/O.	
10	SPI_SS_B/ GPIO	Slave select for SPI and/or general purpose I/O.	
11	I ² C_SDA	Data line for I ² C interface. Always implemented, bus type.	
12	I ² C_SCL	Clock line for I ² C interface. Always implemented, bus type.	
13	UART_RX	Receiver line of target device UART	
14	UART_TX	Transmitter line of target device UART	
15	SPI_SS_A	Slave select for SPI. Should preferably be unique.	
16	SPI_MOSI	Master out slave in line of serial peripheral interface. Always implemented, bus type.	

Pin number	Name	Description
17	SPI_MISO	Master in slave out line of serial peripheral interface. Always implemented, bus type.
18	SPI_SCK	Clock for serial peripheral interface. Always implemented, bus type.
19	GND	Ground.
20	VCC	Power for extension board.

3.4.2. Xplained Pro LCD Extension Connector

The LCD connector provides the ability to connect to display extensions that have a parallel interface. The connector implements signals for a MCU parallel bus interface and a LCD controller interface as well as signals for a touch controller. The connector pin-out definition is shown in Table 3-5 Xplained Pro LCD Connector on page 9. Note that usually only one display interface is implemented, either LCD controller or the MCU bus interface.

A FPC/FFC connector with 50 pins and 0.5mm pitch is used for the LCD connector. The connector XF2M-5015-1A from Omron is used on several Xplained Pro designs and can be used as a reference.

Table 3-5 Xplained Pro LCD Connector

Pin number	Name	RGB interface description	MCU interface description
1	ID	Communication line to the ID chip on an extension board	
2	GND	Ground	
3	D0	Data line	
4	D1	Data line	
5	D2	Data line	
6	D3	Data line	
7	GND	Ground	
8	D4	Data line	
9	D5	Data line	
10	D6	Data line	
11	D7	Data line	
12	GND	Ground	
13	D8	Data line	
14	D9	Data line	
15	D10	Data line	
16	D11	Data line	
17	GND	Ground	
18	D12	Data line	
19	D13	Data line	

Pin number	Name	RGB interface description	MCU interface description	
20	D14	Data line		
21	D15	Data line		
22	GND	Ground		
23	D16	Data line		
24	D17	Data line		
25	D18	Data line		
26	D19	Data line		
27	GND	Ground		
28	D20	Data line		
29	D21	Data line		
30	D22	Data line		
31	D23	Data line		
32	GND	Ground		
33	PCLK / CMD DATA SEL	Pixel clock	Display RAM select. One address line of the MCU for displays where it is possible to select either register or data interface.	
34	VSYNC / CS	Vertical Synchronization	Chip select	
35	HSYNC / WE	Horizontal Synchronization	Write enable signal	
36	DATA ENABLE / RE	Data enable signal	Read enable signal	
37	SPI SCK	Clock for serial peripheral interface)	
38	SPI MOSI	Master out slave in of serial periph	eral interface	
39	SPI MISO	Master in slave out of serial periph	eral interface	
40	SPI SS	Slave select for serial peripheral in pin.	terface. Preferably a dedicated	
41	ENABLE	Display enable		
42	I2C SDA	I2C data		
43	I2C SCL	I2C clock		
44	IRQ1	Interrupt 1		
45	IRQ2	Interrupt 2		
46	PWM	Backlight control		
47	RESET	Extension reset		
48	VCC	3.3V power supply for extension be	pard	

Pin	n number	Name	RGB interface description	MCU interface description
49		VCC	3.3V power supply for extension bo	pard
50		GND	Ground	

3.4.3. Xplained Pro Power Header

The power header can be used to connect external power to the SAM4S Xplained Pro kit. The kit will automatically detect and switch to any external power if supplied. The power header can also be used as supply for external peripherals or extension boards. Care must be taken not to exceed the total current limitation of the on-board regulator when using the 3.3V pin.

Table 3-6 Xplained Pro Power Header

Pin number	Pin name	Description	
1	VEXT_P5V0	External 5V input	
2	GND	Ground	
3	VCC_P5V0	Unregulated 5V (output, derived from one of hte input sources)	
4	VCC_P3V3	Regulated 3.3V (output, used as main power supply for the kit)	

4. Hardware Users Guide

4.1. Connectors

This chapter describes the implementation of the relevant connectors and headers on SAM4S Xplained Pro and their connection to the SAM4SD32C. The tables of connections in this chapter also describes which signals are shared between the headers and on-board functionality.

4.1.1. Xplained Pro Extension Headers

The SAM4S Xplained Pro headers EXT1, EXT2, and EXT3 offers access to the I/O of the microcontroller in order to expand the board e.g. by connecting extensions to the board. These headers all comply with the standard extension header specified in Xplained Pro Standard Extension Header on page 8. All headers have a pitch of 2.54mm.

Table 4-1 Extension Header EXT1

Pin on EXT1	SAM4S pin	Function	Shared functionality
1	-	-	Communication line to ID chip on extension board.
2	-	-	GND
3	PA17	AD[0]	
4	PA18	AD[1]	
5	PA24	GPIO	PIOD Interface Header
6	PA25	GPIO	PIOD Interface Header
7	PA23	PWMH0	PIOD Interface Header
8	PA19	PWML0	
9	PA1	WKUP1/GPIO	
10	PA6	GPIO	DGI_GPIO0 on EDBG
11	PA3	TWD0	EXT2 and EDBG
12	PA4	TWCK0	EXT2 and EDBG
13	PA21	USART1/RXD1	EXT2
14	PA22	USART1/TXD1	EXT2
15	PA11	SPI/NPCS[0]	
16	PA13	SPI/MOSI	EXT2, EXT3, LCD connector (EXT4) and EDBG
17	PA12	SPI/MISO	EXT2, EXT3, LCD connector (EXT4) and EDBG
18	PA14	SPI/SPCK	EXT2, EXT3, LCD connector (EXT4) and EDBG

Pin on EXT1	SAM4S pin	Function	Shared functionality
19	-	-	GND
20	-	-	VCC

Table 4-2 Extension Header EXT2

Pin on EXT2	SAM4S pin	Function	Shared functionality
1	-	-	Communication line to ID chip on extension board.
2	-	-	GND
3	PB0	AD[4]	
4	PB1	AD[5]	
5	PC24	GPIO	DGI_GPIO2 on EDBG
6	PC25	GPIO	DGI_GPIO3 on EDBG
7	PC19	PWMH1	
8	PA20	PWML1	
9	PC26	GPIO	
10	PC27	GPIO	
11	PA3	TWD0	EXT1 and EDBG
12	PA4	TWCK0	EXT1 and EDBG
13	PA21	USART1/RXD1	EXT1
14	PA22	USART1/TXD1	EXT1
15	PA9	SPI/NPCS[1]	LCD connector (EXT4)
16	PA13	SPI/MOSI	EXT1, EXT3, LCD connector (EXT4) and EDBG
17	PA12	SPI/MISO	EXT1, EXT3, LCD connector (EXT4) and EDBG
18	PA14	SPI/SPCK	EXT1, EXT3, LCD connector (EXT4) and EDBG
19	-	-	GND
20	-	-	VCC

Table 4-3 Extension Header EXT3

Pin on EXT3	SAM4S pin	Function	Shared functionality
1	-	-	Communication line to ID chip on extension board.
2	-	-	GND

Pin on EXT3	SAM4S pin	Function	Shared functionality
3	PC29	AD[13]	
4	PC30	AD[14]	
5	PC21	GPIO	
6	PC22	GPIO	DGI_GPIO1 on EDBG
7	PC20	PWMH2	
8	PA16	PWML2	PIOD Header
9	PA0	WKUP0/GPIO	LCD connector (EXT4)
10	PC31	GPIO	
11	PB4	TWD1	LCD connector (EXT4)
12	PB5	TWCK1	LCD connector (EXT4)
13	PB2	USART1/RXD1	CDC UART
14	PB3	USART1/TXD1	CDC UART
15	PA10	SPI/NPCS[2]	LCD connector (EXT4)
16	PA13	SPI/MOSI	EXT1, EXT2, LCD connector (EXT4) and EDBG
17	PA12	SPI/MISO	EXT1, EXT2, LCD connector (EXT4) and EDBG
18	PA14	SPI/SPCK	EXT1, EXT2, LCD connector (EXT4) and EDBG
19	-	-	GND
20	-	-	VCC

4.1.2. LCD Extension Connector

Extension connector EXT4 is a special connector for LCD displays. The physical connector is an Omron Electronics XF2M-5015-1A FPC connector.

Table 4-4 LCD Connector EXT4

Pin on EXT4	SAM4S pin	Function	Shared functionality
1	-	-	Communication line to ID chip on extension board.
2	-	-	GND
3	PC0	D0	NAND Flash
4	PC1	D1	NAND Flash
5	PC2	D2	NAND Flash
6	PC3	D3	NAND Flash
7	-	-	GND

Pin on EXT4	SAM4S pin	Function	Shared functionality
8	PC4	D4	NAND Flash
9	PC5	D5	NAND Flash
10	PC6	D6	NAND Flash
11	PC7	D7	NAND Flash
12	-	-	GND
13	-	-	
14	-	-	
15	-	-	
16	-	-	
17	-	-	GND
18	-	-	
19	-	-	
20	-	-	
21	-	-	
22	-	-	GND
23	-	-	
24	-	-	
25	-	-	
26	-	-	
27	-	-	GND
28	-	-	
29	-	-	
30	-	-	
31	-	-	
32	-	-	GND
33	PC18	A0	
34	PC15	NPCS[1]	
35	PC8	NWE	
36	PC11	NRD	
37			
38			
39			
40			

Pin on EXT4	SAM4S pin	Function	Shared functionality
41	PB14	GPIO	
42	PB4	TWD1/SDA	EXT3
43	PB5	TWCK1/SCL	EXT3
44	PA0	WKUP0	EXT3
45	-	-	
46	PA15	PWML3	PIOD Interface header
47	PC28	GPIO	
48	-	VCC_P3V3	
49	-	VCC_P3V3	EXT2
50	-	GND	

4.1.3. Current Measurement Header

An angled 1x2, 100mil pin-header marked with MCU current measurement is located at the upper edge of the SAM4S Xplained Pro. All power to the SAM4SD32C is routed through this header. To measure the power consumption of the device remove the jumper and replace it with an ammeter.

Caution: Removing the jumper from the pin-header while the kit is powered may cause the SAM4SD32C to be powered through its I/O pins. This may cause permanent damage to the device.

4.1.4. Other Headers

In addition to the Xplained Pro extension headers, SAM4S Xplained Pro has two additional headers with spare signals that offers access to the I/O of the microcontroller which are otherwise not easily available elsewhere or might be favorable to have collected together. All headers have a pitch of 2.54mm.

Table 4-5 SPARE SIGNALS Header

Pin on header	SAM4S pin	Function	Shared functionality
1	PA2	DATRG	User button, SW0
2	PA9	PWMF10	EXT2
3	PA26	TI0A2	SD Card and PIOD Interface header
4	PA27	TI0B2	SD Card and PIOD Interface header
5	PA28	TCLK1	SD Card and PIOD Interface header
6	PA29	TCLK2	SD Card and PIOD Interface header
7	PA31	PCK2	SD Card and PIOD Interface header
8	PB0	RTCOUT0	EXT2
9	PB1	RTCOUT1	EXT2
10	PB13	DAC0	

Pin on header	SAM4S pin	Function	Shared functionality
11	PB14	DAC1	
12	-	-	GND

Table 4-6 PIOD INTERFACE Header

Pin on header	SAM4S pin	Function	Shared functionality
1	PA15	PIODCEN1	LCD connector
2	PA16	PIODCEN2	EXT3
3	PA23	PIODCCLK	EXT1
4	PA24	PIODC0	EXT1
5	PA25	PIODC1	EXT1
6	PA26	PIODC2	SD Card and SPARE Signals header
7	PA27	PIODC3	SD Card and SPARE Signals header
8	PA28	PIODC4	SD Card and SPARE Signals header
9	PA29	PIODC5	SD Card and SPARE Signals header
10	PA30	PIODC6	SD Card
11	PA31	PIODC7	SD Card and SPARE Signals header
12	-	-	GND

4.2. Peripherals

4.2.1. NAND Flash

The SAM4S Xplained Pro kit has one 2Gb NAND Flash connected to the external bus interface of the SAM4S.

Table 4-7 NAND Flash Connections

SAM4S pin	Function	NAND flash function	Shared functionality
PC0	D0	100	LCD connector
PC1	D1	IO1	LCD connector
PC2	D2	IO2	LCD connector
PC3	D3	IO3	LCD connector
PC4	D4	IO4	LCD connector
PC5	D5	IO5	LCD connector
PC6	D6	106	LCD connector
PC7	D7	107	LCD connector
PC9	NANDOE	RE (active low)	

SAM4S pin	Function	NAND flash function	Shared functionality
PC10	NANDWE	WE (active low)	
PC13	GPIO	R (active high)/ B (active low)	
PC14	NCS[0]	CE (active low)	
PC16	NANDALE	ALE (active low)	
PC17	NANDCLE	CLE	

4.2.2. SD Card Connector

The SAM4S Xplained Pro kit has one SD card connector which is connected to High Speed Multimedia Card Interface (HSMCI) of the SAM4S.

Table 4-8 SD Card Connections

SAM4S pin	Function	SD card function	Shared functionality
PA26	MCDA2	DAT2	SPARE Signal and PIOD Interface headers
PA27	MCDA3	DAT3	SPARE Signal and PIOD Interface headers
PA28	MCCDA	CMD	SPARE Signal and PIOD Interface headers
PA29	MCCK	CLK	SPARE Signal and PIOD Interface headers
PA30	MCDA0	DAT0	PIOD Interface header
PA31	MCDA1	DAT1	SPARE Signal and PIOD Interface headers
PC12	GPIO	Card Detect	

4.2.3. Crystals

The SAM4S Xplained Pro kit contains two crystals that can be used as clock sources for the SAM4S device. Each crystal has a cut-strap next to it that can be used to measure the oscillator safety factor. This is done by cutting the strap and adding a resistor across the strap. More information about oscillator allowance and safety factor can be found in appnote AVR4100.

Table 4-9 External 32.768kHz Crystal

Pin on SAM4S	Function
PA49	XIN32
PA48	XOUT32

Table 4-10 External 12MHz Crystal

Pin on SAM4S	Function
PB9	XIN0
PB8	XOUT0

4.2.4. Mechanical Buttons

SAM4S Xplained Pro contains two mechanical buttons. One button is the RESET button connected to the SAM4S reset line and the other is a generic user configurable button. When a button is pressed it will drive the I/O line to GND.

Table 4-11 Mechanical Buttons

Pin on SAM4S	Silkscreen text
NRST	RESET
PC24	SW0

4.2.5. LED

There is one yellow LED available on the SAM4S Xplained Pro board that can be turned on and off. The LED can be activated by driving the connected I/O line to GND.

Table 4-12 LED Connection

Pin on SAM4S	LED
PC23	Yellow LED0

4.2.6. Analog Reference

An adjustable voltage reference is implemented on the kit to have a reference for the ADC or DAC. The reference can be adjusted with the on-board multiturn trimmer potentiometer. Next to the potentiometer, a 2-pin header is available to measure the reference voltage for the AREF pin of the SAM4S. The voltage output range for the reference is 0V - 3.36V.

4.3. Embedded Debugger Implementation

SAM4S Xplained Pro contains an Embedded Debugger (EDBG) that can be used to program and debug the ATSAM4SD32C using Serial Wire Debug (SWD). The Embedded Debugger also include a Virtual Com port interface over UART, an Atmel Data Gateway Interface over SPI and TWI and it monitors four of the SAM4S GPIOs. Atmel Studio can be used as a front end for the Embedded Debugger.

4.3.1. Serial Wire Debug

The Serial Wire Debug (SWD) use two pins to communicate with the target. For further information on how to use the programming and debugging capabilities of the EDBG, see EDBG User Guide.

Table 4-13 SWD Connections

Pin on SAM4S	Function
PB7	SWD clock
PB6	SWD data

Pin on SAM4S	Function
PB5	SWD trace output
PB12	Erase

4.3.2. Virtual COM Port

The Embedded Debugger act as a Virtual Com Port gateway by using one of the ATSAM4SD32C UARTs. For further information on how to use the Virtual COM port see Embedded Debugger on page 6.

Table 4-14 Virtual COM Port Connections

Pin on SAM4S	Function
PB3	UART TXD (SAM4S TX line)
PB2	UART RXD (SAM4S RX line)

4.3.3. Atmel Data Gateway Interface

The Embedded Debugger features an Atmel Data Gateway Interface (DGI) by using either a SPI or TWI port. The DGI can be used to send a variety of data from the SAM4S to the host PC. For further information on how to use the DGI interface see Embedded Debugger on page 6.

Table 4-15 DGI Interface Connections when using SPI

Pin on SAM4S	Function
PA5	Slave select (SAM4S is Master)
PA12	SPI MISO (Master In, Slave Out)
PA13	SPI MOSI (Master Out, Slave in)
PA14	SPI SCK (Clock Out)

Table 4-16 DGI Interface Connections when using TWI

Pin on SAM4S	Function
PA3	SDA (Data line)
PA4	SCL (Clock line)

Four GPIO lines are connected to the Embedded Debugger. The EDBG can monitor these lines and time stamp pin value changes. This makes it possible to accurately time stamp events in the SAM4S application code. For further information on how to configure and use the GPIO monitoring features see Embedded Debugger on page 6.

Table 4-17 GPIO Lines Connected to the EDBG

Pin on SAM4S	Function
PA6	GPIO0
PC22	GPIO1
PC24	GPIO2
PC25	GPIO3

5. Hardware Revision History and Known Issues

5.1. Identifying Product ID and Revision

The revision and product indentifier of Xplained Pro boards can be found in two ways; through Atmel Studio or by looking at the sticker on the bottom side of the PCB.

By connecting a Xplained Pro MCU board to a computer with Atmel Studio running, an information window will pop up. The first six digits of the serial number, which is listed under kit details, contain the product identifier and revision. Information about connected Xplained Pro extension boards will also appear in the Atmel Kits window.

The same information can be found on the sticker on the bottom side of the PCB. Most kits will print the identifier and revision in plain text as A09-nnnn\rr where nnnn is the identifiser and rr is the revision. Boards with limited space have a sticker with only a QR-code which contains ta serial number string.

The serial number string has the following format:

"nnnnrrssssssssss"

n = product identifier

r = revision

s = serial number

The product indentifier for SAM4S Xplained Pro is A09-1803.

5.2. Revision 5

On this revision, the SPI clock net is improved to reduce any issues that might be caused by reflections. The SPI has been removed from the LCD (EXT4 connector) to reduce load on the clock net. The remaining clock lines have been divided into four terminated nets for each SPI source (EXT1, EXT2, EXT3, and EDBG) and routed in a star like layout. A series terminator resistor of 43ohm is placed on each clock net, close to the SPI clock pin. This reduces any issues that might be caused by reflections coming back from unterminated/unused clock lines. It also reduces the rise/fall time of the clock edges and that will also help to reduce any reflection issues.

Known issues

 There is no LC filter on the VDDPLL supply pin on the kit. This may cause excess ripple on the supply voltage which can cause the 48MHz PLL to not lock, which means USB applications may not work. For more information see the AT03463 SAM4S Schematic Checklist.

5.3. Revision 4

Known issues

SAM4S has an on-die series termination of the SPI CLK which makes this signal not usable for a multi drop clock distribution because all devices along the line will see a fraction of VCC until the signal is reflected from the end of the transmission line. On the SAM4S Xplained Pro revision 4 this signal is routed to each extension connector with EXT1 at the end of the line. That means extensions that are connected along the transission line e.g. EXT3 header is likely to fail due to a

non-monotinic edge caused by relections and the fraction of VCC that is present for a short time until the reflection comes back from the end of the line.

Workaround:

By slowing down the clock rise time with a capacitor, and thus effectively increasing the line length at which point it becomes a transmission line, it is possible to remove the clock issue. A 56pF capacitor has been mounted on the bottom side of the board between the SPI clock and GND. This however reduces the maximum SPI clock speed and it is recommended to not run this faster than 30MHz (this also depends on how much additional capacitance is added by connected extensions and needs to be checked case by case). The capacitor was added on revision 4 on the bottom side of the EXT3 header.

6. Document Revision History

Doc. rev.	Date	Comment
42075C	05/2015	Table 4-17 GPIO Lines Connected to the EDBG on page 20 now lists the correct GPIO names, changed PA6, PA22, PA24, and PA25 to PA6, PC22, PC24, and PC25. Added errata about missing LC filter on the VDDPLL pin.
42075B	03/2013	Added information about changes done on Revision 5 on page 21 of the kit.
42075A	02/2013	Initial document release.

7. Evaluation Board/kit Important Notice

This evaluation board/kit is intended for use for **FURTHER ENGINEERING**, **DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY**. It is not a finished product and may not (yet) comply with some or any technical or legal requirements that are applicable to finished products, including, without limitation, directives regarding electromagnetic compatibility, recycling (WEEE), FCC, CE or UL (except as may be otherwise noted on the board/kit). Atmel supplied this board/kit "AS IS," without any warranties, with all faults, at the buyer's and further users' sole risk. The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies Atmel from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge and any other technical or legal concerns.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER USER NOR ATMEL SHALL BE LIABLE TO EACH OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

No license is granted under any patent right or other intellectual property right of Atmel covering or relating to any machine, process, or combination in which such Atmel products or services might be or are used.

Mailing Address: Atmel Corporation

1600 Technology Drive San Jose, CA 95110

USA

Enabling Unlimited Possibilities®

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42075C-SAM4S-Xplained-Pro User Guide-06/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, QTouch®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Microsoft®, Windows®, and Windows Vista® are registered trademarks of Microsoft Corporation in U.S. and or other countries. ARM® is a registered trademark of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.