CPE301 - SPRING 2018

Design Assignment 3

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

FTDI R232 LM34 Temperature sensor

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
#define F_CPU 1000000UL
 #define UBRR_1200 51
 #define UBRR 2400 25 // for 1Mhz
 // #define UBRR_2400 207 // for 8Mhz with .2% error
 // \#define UBRR\_9600 51 // for \$Mhz with .2% error
 // #define UBRR_19200 25 // for 8Mhz with .2% error
 #include <avr/io.h>
 #include <util/delay.h>
 #include <stdio.h>
 void read_adc(void); // Function Declarations
 void adc_init(void);
 void USART_init( unsigned int ubrr );
 void USART_tx_string( char *data );
 volatile unsigned int adc_temp;
 char outs[20];
∃int main(void) {
     adc_init(); // Initialize the ADC (Analog / Digital Converter)
USART_init(UBRR_2400); // Initialize the USART (RS232 interface)
     USART_tx_string("Connected!\r\n"); // we're alive!
     _delay_ms(125); // wait a bit
     while(1)
         read_adc();
         snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp);// print it
         USART_tx_string(outs);
         _delay_ms(125); // wait a bit
     }
}
void adc_init(void)
     /** Setup and enable ADC **/
    ADMUX = (0<<REFS1) | // Reference Selection Bits
     (1<<REFS0)| // AVcc - external cap at AREF
     (0<<ADLAR) // ADC Left Adjust Result
     (0<<MUX2) // ANalog Channel Selection Bits
     (1<<MUX1) | // ADC2 (PC2 PIN25)
     (0<<MUX0);
    ADCSRA = (1 << ADEN) | // ADC ENable
     (0<<ADSC) // ADC Start Conversion
     (0<<ADATE) // ADC Auto Trigger Enable
     (0<<ADIF)| // ADC Interrupt Flag
     (0<<ADIE) // ADC Interrupt Enable
     (1<<ADPS2) // ADC Prescaler Select Bits
     (0<<ADPS1)
     (1<<ADPS0);
    // Timer/Counter1 Interrupt Mask Register
    TIMSK1 |= (1<<TOIE1); // enable overflow interrupt
     TCCR1B |= (1<<CS11)|
     (1<<CS10); // native clock
}
```

```
/* READ ADC PINS */
□void read_adc(void) {
     unsigned char i =4;
     adc_temp = 0;
     while (i--) {
         ADCSRA |= (1<<ADSC);
         while(ADCSRA & (1<<ADSC));</pre>
         adc_temp+= ADC;
         _delay_ms(50);
     adc_temp = adc_temp / 4; // Average a few samples
}
 /* INIT USART (RS-232) */
□void USART_init( unsigned int ubrr ) {
     UBRR0H = (unsigned char)(ubrr>>8);
     UBRROL = (unsigned char)ubrr;
     UCSR0B = (1 << TXEN0); // Enable receiver, transmitter & RX interrupt</pre>
     UCSR0C = (3 << UCSZ00); //asynchronous 8 N 1</pre>
}
 /* SEND A STRING TO THE RS-232 */

    void USART_tx_string( char *data ) {
     while ((*data != '\0')) {
         while (!(UCSR0A & (1 <<UDRE0)));
         UDR0 = *data;
          data++;
     }
}
```

3. COMPLETE/MODIFIED CODE

```
#define F_CPU 8000000UL
 #define UBRR 9600 51 // for 8Mhz with .2% error
 #include <avr/io.h>
 #include <util/delay.h>
 #include <stdio.h>
 #include <avr/interrupt.h>
 #include <stdint.h>
  // Function Declarations
 void read adc(void);
 void adc_init(void);
 void USART_init( unsigned int ubrr );
 void USART_tx_string( char *data );
 volatile unsigned int adc_temp;
 char outs[20];
∃int main(void)
                                        //Initialize the ADC (Analog / Digital Converter)
     adc init();
     USART_init(UBRR_9600);
                                        //Initialize the USART (RS232 interface)
     USART_tx_string("Connected!\r\n"); //Display connected
                                        //wait a bit
     _delay_ms(125);
     TIMSK1 = (1 << TOIE1);
                                        //enable timer overflow interrupt
     TCNT1 = 57723;
                                        //set counter value
     TCCR1A = 0;
                                        //normal mode
                                        //pre-scaler of 1024
     TCCR1B = (1<<CS12) | (1<<CS10);
     sei();
                                        //enable interrupts
     while(1)
     {
         // wait for interrupt
 }
□ISR (TIMER1 OVF vect)
     TCCR1B = 0;
                                                           //turn timer off
     read adc();
                                                           //read the adc values
     snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp);
                                                           //print it
     USART_tx_string(outs);
     delay ms(125);
                                                           // wait a bit
     TCNT1 = 57723;
                                                           //reset timer value
     TCCR1B = (1 << CS12) \mid (1 << CS10);
                                                           //restart the clock
}
□void adc_init(void)
     /** Setup and enable ADC **/
                           //select ADC0 Pin as input
     ADMUX = 0;
     ADMUX = (0 << REFS1)
                             //Reference Selection Bits
                             //AVcc - external cap at AREF
     (1<<REFS0)
     (1<<ADLAR);
                            //ADC left Adjust Result
     ADCSRA = (1 << ADEN) | //ADC ENable
                             //ADC Start Conversion
      (1<<ADSC)
                             //ADC Auto Trigger Enable
//ADC Interrupt Flag
      (1<<ADATE)
      (0<<ADIF)
     (0<<ADIE)
                            //ADC Interrupt Enable
     (1<<ADPS2)
                            //ADC Pre-scaler of 64
      (1<<ADPS1)
      (0<<ADPS0);
}
```

```
/* READ ADC PINS*/
□void read_adc(void)
 {
     unsigned char i = 4;
adc_temp = 0;
while (i--)
                                       //set for 4 ADC reads
                                        //initialize temp to 0
       _delay_ms(50);
                                        //wait a bit
     adc_temp = adc_temp / 4;
                                      // Average a few samples
 /* INIT USART (RS-232) */
□void USART_init( unsigned int ubrr )
     UBRR0H = (unsigned char)(ubrr>>8);
                                            //set baud rate
     UBRROL = (unsigned char)ubrr;

UCSROB = (1 << TXENO) | (1 <<RXENO);

UCSROC = (1 << UCSZOO) | (1 << UCSZO1);
                                           // Enable receiver, transmitter
                                          //asynchronous 8-bit data 1 stop bit
 /* SEND A STRING TO THE RS-232*/
□void USART_tx_string( char *data )
     while ((*data != '\0'))
        //put the data into the empty buffer, which sends the data
        _delay_ms(125);
                                        // wait a bit
        data++;
```

4. SCHEMATICS

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Before Interrupt

```
USART init(UBRR 9600);
                                            //Initialize the USAR
                                                                   Processor Status
     USART tx string("Connected!\r\n"); //Display connected
                                                                        Name
                                                                                          Value
      delay_ms(125);
                                            //wait a bit
                                                                    Program Counter 0x000000DD
      TIMSK1 = (1 << TOIE1);
                                            //enable timer overfl
     TCNT1 = 57723;
                                            //set counter value
                                                                    Stack Pointer
                                                                                     0x08FD
     TCCR1A = 0;
                                            //normal mode
                                                                                     0x010D
                                                                    X Register
                                            //pre-scaler of 1024
     TCCR1B = (1<<CS12) | (1<<CS10);
                                            //enable interrupts
                                                                    Y Register
                                                                                     0x08FF
     sei();
     while(1)
                                                                    Z Register
                                                                                     0x00C0
                                                                    Status Register
                                                                                     ITHSVNZC
          // wait for interrupt
                                                                    Cycle Counter
                                                                                     13000555
 }
                                                                    Frequency
                                                                                     8.000 MHz
                                                                                     0.00 us
                                                                    Stop Watch
□ISR (TIMER1 OVF vect)
                                                                    ■ Registers
     TCCR1B = 0;
                                                                     R00
                                                                                     0x00
     read_adc();
                                                             //rea
                                                                     R01
                                                                                     0x00
     snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp);
                                                             //pri
     USART_tx_string(outs);
                                                                     R02
                                                                                     0x00
      delay ms(125);
     TCNT1 = 57723;
                                                             //reset timer value
```

After interrupt of 1 second

```
USART init(UBRR 9600);
                                            //Initialize the USAF
                                                                    Processor Status
      USART_tx_string("Connected!\r\n"); //Display connected
                                                                         Name
                                                                                           Value
      _delay_ms(125);
                                            //wait a bit
                                                                     Program Counter 0x000000F2
      TIMSK1 = (1 << TOIE1);
                                            //enable timer overfl
      TCNT1 = 57723;
                                            //set counter value
                                                                     Stack Pointer
                                                                                     0x08EA
      TCCR1A = 0;
                                            //normal mode
                                                                     X Register
                                                                                     0x010D
      TCCR1B = (1<<CS12) | (1<<CS10);
                                            //pre-scaler of 1024
                                                                                     0x08FF
                                             //enable interrupts
                                                                     Y Register
     sei();
      while(1)
                                                                                     0x00C0
                                                                     Z Register
                                                                     Status Register
                                                                                     ITHSVNZC
          // wait for interrupt
                                                                     Cycle Counter
                                                                                     21001110
 }
                                                                     Frequency
                                                                                     8.000 MHz
                                                                     Stop Watch
                                                                                     1,000,069.38 µs
☐ISR (TIMER1_OVF_vect)
                                                                    ■ Registers
      TCCR1B = 0;
                                                              //tur
                                                                      R00
                                                                                      0x02
      read_adc();
                                                              //rea
                                                                                      0x00
                                                                      R01
      snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp);
                                                              //pri
      USART_tx_string(outs);
                                                                      R02
                                                                                      0x00
      delay ms(125);
```

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

7. VIDEO LINKS OF EACH DEMO

https://www.youtube.com/watch?v=hYyGTyl2VTc

8. GITHUB LINK OF THIS DA

https://github.com/nhanuscin/submit/tree/master/DA3

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Nathan Hanuscin