

Projekt: MSS60 Modul: LFR

Seite 1 von 27

Projekt: MSS54

Modul: Leerlaufregelung

in Momentenstruktur

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Seite 2 von 27

Änderungen:

Version	Datum	Kommentar
r300	1.6.04	Übernahme von MSS54 Projekt
r360	23.1.05	Dokument überarbeitet
r360	21.08.05	rm: P-Anteil des LL-Reglers auf 4-Quadrantenbetrieb umgestellt

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Inhaltsverzeichnis

1	ÜBERSICHT LEERLAUFREGELUNG	4
2	SOLLDREHZAHL BERECHNUNG	6
3	LEERLAUFREGLER	8
3.1	PD-ANTEIL DES LEERLAUFREGLERS	8
3.2	2 I-ANTEIL DES LEERLAUFREGLERS	11
3.3	ZÜNDWINKELSTABILISIERUNG DES LEERLAUFREGLERS	15
4	ADAPTION VERLUSTMOMENT	18
4.1	1 Adaptionsbedingungen	18
4.2	2 Zustände der Bedarfsadaption	19
4.3	Berechnungsschritte der Bedarfsadaption	24
4.4	Daten der Bedarfsadaption	26
4.5	Nichtflüchtiges Abspeichern	27

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 4 von 27

FUNKTIONSUMFANG

In dem hier beschriebenen Modul werden alle Funktionen, die im Zusammenhang mit der Leerlaufregelung über Momentenmanager stehen, beschrieben.

1 ÜBERSICHT LEERLAUFREGELUNG

Die gesamte Leerlaufregelung ist schematisch im Bild 1 - Übersicht Leerlaufregelung - dargestellt.

Sie besteht aus den Untermodulen

- Solldrehzahlberechnung
- Leerlaufregler
- Adaption Verlustmoment
- ZWD-Ansteuerung

Die Leerlaufregelung ist, soweit dies nicht explizit in der Beschreibung der Untermodule angegeben ist, in allen Betriebszuständen der MSS54 aktiv. Die Interpolation der Kennlinien/Kennfelder mit sich langsam ändernden Eingangsgrößen erfolgt im Hintergrund. Ansonsten wird die Leerlaufregelung zeitsynchron im 20ms-Raster gerechnet.

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Bild 1: Übersicht Leerlaufregelung

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 6 von 27

2 SOLLDREHZAHL BERECHNUNG

Die Solldrehzahl ist die Führungsgröße für den PID-Regler der Leerlaufregelung. Bild 2 gibt einen Überblick über die Solldrehzahlberechnung.

Bild 2: Berechnung der Solldrehzahl

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 7 von 27

Die Solldrehzahl ist das Maximum aus der stationären Solldrehzahl "lfr_nstat" und der nachgeführten Solldrehzahl "lfr_nnachf".

Die stationäre Solldrehzahl wiederum wird wie folgt berechnet:

Im Betriebszustand "Motor_steht" oder "Start"

Ifr_nstat = KL_LFR_NSOLL_START ; Solldrehzahl während Start = f(tmot)

In allen anderen Betriebszuständen
Ifr nstat = Maximum aus

KL_LFR_NSOLL_GRUND ; Grundkennlinie Solldrehzahl = f(tmot) K_LFR_NSOLL_AC ; Solldrehzahl bei Klimabereitschaft

Die nachgeführte Solldrehzahl entspricht der mit dem Faktor K_LFR_NNACHF_FAKTOR gewichteten aktuellen Motordrehzahl, wobei der Faktor zwischen 0 und 0,997 liegen kann. Die nachgeführte Solldrehzahl ist auf den Wert K_LFR_NNACHF_MAX begrenzt.

Ist die stationäre Drehzahl größer der nachgeführten, wird diese über ein pt1-Filter mit der Filterzeitkonstante Ifr_znsoll, welche aus der Kennlinie KL_LFR_TAU_NSOLL berechnet wird, gefiltert. Wird als Solldrehzahl die nachgeführte Drehzahl verwendet, ist dieser Filter überbrückt.

Katheizen

Aus der Kenlinie KL_LFR_N_OFFSET über die Motortemperatur bei Start, wird der Leerlaufdrehzahloffset nach dem Start ermittelt. Der Offset bleibt für K_T_SEIT_START konstant, nach dieser Zeit wird er rampenförmig auf Null abgeregelt.

Daten der Solldrehzahlberechnung

Beschreibung der Variablen:

Name	Beschreibung	Тур	Auflösung
lfr_n.n_stat	stationäre Solldrehzahl	uw	1 Upm
Ilr_ios_nsoll	Solldrehzahl über DS2	uw	1 Upm
lfr_n.n_soll	resultierende, gefilterte Solldrehzahl	uw	1 Upm
lfr_n.tau_nsoll	Zeitkonstante für Solldrehzahlfilter	ub	1 Upm

Beschreibung der Applikationsdaten:

Name	Тур	Dim.	x-Achse	y-Achse
KL_LFR_NSOLL_START	KL	3 x 1	tmot - Kühlwassertemp.	
KL_LFR_NSOLL_GRUND	KL	4 x 1	tmot - Kühlwassertemp.	
K_LFR_NSOLL_AC	K	1		
K_LFR_NSOLL_VANOS	K	1		
K_LFR_NNACHF_FAKTOR	K	1		
K_LFR_NNACHF_MAX	K	1		
KL_LFR_TAU_NSOLL	KL	4 x 1	tmot - Kühlwassertemp.	

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 8 von 27

3 LEERLAUFREGLER

Die Leerlaufregelung erfolgt über Drehmomenteingriffe, d.h. der Ausgang des Reglers ist eine Drehmomentanforderung und nicht mehr eine Füllungsanforderung.

Der Leerlaufregler ist ein PID-Regler (proportional, integral, differential Regler), wobei der PD-Anteil im neuen 4-Quadranten Kennfeld KF_LFR_PD enthalten ist.

Der I-Regler bleibt von der Struktur her wie MSS50, hinzu kommt bei fallender Drehzahl und n < lfr_nsoll+K_LFR_DN_EINGEREGELT ein I-Anteil-Vorhalt, der einmalig den I-Anteil des Reglers um lfr_i_auf = f(dn) erhöhen kann. Die Eingangsgröße des Reglers ist die Abweichung der Ist-Drehzahl von der Soll-Drehzahl.

Drehzahldifferenz = Solldrehzahl - Istdrehzahl

 $lfr_dn = lfr_nsoll - n$

Eine positive Drehzahldifferenz bedeutet dabei, daß die Motordrehzahl in Bezug auf die Soll-Drehzahl zu niedrig ist. Bei einer negativen Drehzahldifferenz ist die Motordrehzahl zu hoch.

Zur Unterstützung der Regelung der Leerlaufdrehzahl über die Luftzufuhr greift der LFR auch mittels des PD-Anteils in den Zündwinkelpfad ein. Zusätzlich kann eine Zündwinkelstabilisierung aus der Leerlaufregelung berücksichtigt werden.

3.1 PD-ANTEIL DES LEERLAUFREGLERS

Der PD-Anteil berechnet sich aus dem Kennfeld KF_LFR_PD und ist abhängig von der Drehzahldifferenz zwischen Soll- und Ist-Drehzahl sowie des Drehzahlgradienten "d_n" (1.Ableitung). Er wird zeitsynchron im 20 ms Raster berechnet.

Der bisherige D-Regler sowie die dazugehörige Kennlinie KL_LFR_I_AUF und der alte P-Anteil über die Kennlinie KL_LFR_DQP_POS entfallen!

Über die applizierbare Konstante K_LFR_CONTROL können die verschiedenen Regler Anteile aktiviert oder deaktiviert werden :

symbolische Konstanten: PID-aktiv

PD-aktiv PID+Adapt.a

PID+Adapt.aktiv PID+Adapt.+TZ I-aktiv

I+Adapt.aktiv I+Adapt.+TZ aktiv

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Seite 9 von 27

Applikationshinweis P(D)-Regler:

Der Bedatung des P-Anteil wird nach der Bedatung des I-Anteils durchgeführt. Bei Drehzahlen kleiner der Leerlauf-Solldrehzahl (Ifr.dn>0) wird das Drehmoment erhöht (ist LFR_MDPD>0), bei Drehzahlen größer der Leerlauf-Solldrehzahl wird das Drehmoment abgesenkt.

Bild 3: Übersicht Leerlaufregler

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

I-Regler

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 11 von 27

3.2 I-ANTEIL DES LEERLAUFREGLERS

Bei der Berechnung des I-Anteils muß zwischen verschiedenen Betriebszuständen des I-Reglers unterschieden werden. Dies sind im Einzelnen die Zustände:

I-Regler-Stop: B_LFR_STOP

Der I-Anteil wird zu Null gesetzt.

Leerlaufregelung: B_LFR

Der I-Regler ist aktiv

 $lfr_mdi_t = lfr_mdi_{t-1} + dmdi_t$

zusätzlich wird lfr_i_afr = lfr_i_afr-KL_DABR_AFR

auf Null abgeregelt

- Anfahrregelung: B_AFR

Der Anteil aus der Anfahrregelung:

lfr_i_afr = lfr_i_afr + KL_LFR_DI_AFR (d_nlfr)

Der I-Regler Anteil wird für n<lfr_nsoll eingefroren sonst abgeregelt lfr_mdi = lfr_mdi - f(dn)

Integrator absteuern Bereich1: B_IA1

Der I-Anteil wird über ein pt1-Filter mit der Zeitkonstanten K_LFR_TAU_IA1 auf den

Wert Null geführt.

Der Anteil aus der Anfahrregelung wird

abgeregelt:

lfr_i_afr = lfr_i_afr - K_LFR_DIAFR_ABR

Integrator absteuern Bereich2: B IA2

Der I-Anteil wird über ein pt1-Filter mit der Zeitkonstanten K_LFR_TAU_IA2 auf das Maximum aus Ifr_uew und Null geführt. Die Variable Ifr_reg.uew ist der I-Anteil zum Zeitpunkt des Zustandsüberganges von

Leerlaufregelung in Anfahrregelung.

Die Zeitkonstante ist abhängig von S_KS:

bei S_KS gesetzt (Kraftschluß)

 $K_LFR_TAU_IA2 = K_LFR_TAU_IA2_KS$

bei S_KS nicht gesetzt (kein Kraftschluß)
K_LFR_TAU_IA2 = K_LFR_TAU_IA2_KKS

Der Anteil aus der Anfahrregelung wird

abgeregelt:

lfr_i_afr = lfr_i_afr - K_LFR_DIAFR_ABR

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Seite 12 von 27

Innerhalb des Zustandes B_LFR existieren noch Sonderfälle:

- wird die Leerlaufdrehzahl um den Wert K_LFR_NDIFF_RESET unterschritten und ist zu diesem Zeitpunkt der I-Anteil negativ, wird dieser sofort auf Null gesetzt (B_LFR_RESET).
- unterschreitet die Füllung rf die minimale Füllungsschwelle lfr_reg.rf_min, berechnet aus KL_LFR_RF_MIN = f(tmot), so wird eine weitere Verringerung des I-Anteils gesperrt (B_LFR_NEGSTOP).
- um das Durchtauchen der Drehzahl nach dem Motorstart zu verhindern,
 B_MD_NACHSTART gesetzt, wird ebenfalls eine Verringerung des I-Anteils gesperrt.

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 13 von 27

Bild 4 zeigt das Zustandsdiagramm und die Übergangsbedingungen für den Leerlaufregler.

Bild 4: Zustandsdiagramm Leerlaufregler

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 14 von 27

Zustandsübergänge des Leerlaufreglers:

Übergang Leerlaufregelung → Anfahrregelung

$$B_LFR_AFR = \begin{pmatrix} B_TL \\ oder B_VL \end{pmatrix}$$

Übergang Anfahrregelung → Leerlaufregelung

$$B_AFR_LFR = B_LL$$

Übergang Anfahrregelung → Integrator absteuern Bereich 1

$$B_AFR_IA1 = !B_ML$$

und
$$n > Ifr.n_soll + K_LFR_DN_HYS$$

Übergang Anfahrregelung → Integrator absteuern Bereich 2

$$B_AFR_IA2 = !B_ML$$

und
$$n > Ifr.n_soll + K_LFR_DN_HYS$$

Übergang Integrator absteuern Bereich 1→ Anfahrregelung

$$B IA1 AFR = B ML$$

und
$$n < Ifr.n_soll + K_LFR_DN_HYS$$

Übergang Integrator absteuern Bereich 2→ Anfahrregelung

$$B_IA2_AFR = B_ML$$

und
$$n < Ifr.n_soll + K_LFR_DN_HYS$$

Übergang Integrator absteuern Bereich 2 → Bereich 1

$$B_IA2_IA1 = B_ML$$

Übergang Integrator absteuern Bereich 2 → Leerlaufregelung

$$B_IA2_LFR = B_LL$$

Übergang Integrator absteuern Bereich 1 → Leerlaufregelung

 $B_IA1_LFR = B_LL$

und !S_GANG

und !B_SA

Übergang Leerlaufregelung → Integrator absteuern Bereich 1

 $B_LFR_IA1 = B_SA$

Über das BIT_I_REGLER_ON (Bit 1) in der Konstanten K_LFR_CONTROL kann der I-Anteil für Test- bzw. Applikationszwecke zu Null gesetzt werden.

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Seite 15 von 27

3.3 ZÜNDWINKELSTABILISIERUNG DES LEERLAUFREGLERS

Der TZ-Anteil berechnet sich aus der Kennlinie KL_LFR_TZ_POS/NEG und ist abhängig von dem Betrag der Drehzahldifferenz zwischen Soll- und Ist-Drehzahl. Er wird zeitsynchron im 20 ms berechnet. Er liefert eine Drehmomentkorrektur lfr.md_tz. proportional zum erfaßten Drehzahlgradient.

Der TZ-Anteil des Leerlaufreglers ist unter folgenden Bedingungen aktiv:

$$\label{eq:bilinear} \begin{array}{ll} BIT_TZ_REGLER_ON~(~BIT~4)~in~K_LFR_CONTROL~gesetzt\\ \\ und & Betriebszustand = Motor_läuft~(B_ML)\\ \\ und & (& S_GANG = kein~Kraftschluß\\ \\ oder & S_GANG = Kraftschluß~und~v <= K_LFR_V_MAX~)\\ \end{array}$$

Bei der Berechnung des TZ-Anteils sind zwei Fälle zu unterscheiden:

- Drehzahl zu niedrig (lfr_dn > 0)

- Drehzahl zu hoch (lfr_dn < 0)

Motorzustand Leerlauf:

$$Ifr.md_tz = f(KL_LFR_TZ_NEG)$$

sonst $lfr.md_tz = 0$

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Daten des Leerlaufreglers

Beschreibung der Variablen:

Name	Beschreibung	Тур	Auflösung
lfr_dn	Drehzahldifferenz	SW	1 Upm
lfr_mdp	P-Anteil	sw	[1/10*8] Nm
lfr_mdi	I-Anteil	sw	[1/10*16] Nm
lfr_i_afr	Anteil aus der AFR-Regelung	SW	[1/10*16] Nm
lfr_i_auf	I-Anteil-Vorhalt bei schnell fallender n	SW	[1/10*16] Nm
md_lfri	I-Anteil d. LL-Reglers für Momentenm.	SW	[1/10] Nm
md_lfrp	PD-Anteil d. LL-Reglers für Momentenm.	SW	[1/10] Nm
md_lfr_tz	ZWAnteild.LL-Reglers für Momentenm.	SW	[1/10] Nm
lfr_zustand	Zustandsinformation LFR Bit 0: B_LFR_STOP 1: B_LFR 2: B_ALFR 3: B_IA1 4: B_IA2	uc	
lfr_flags	interne Flags der LFR Bit 0: Flag für Startluftmasse (Qvs) 1: Zeitüberwachung B_KO aktiv 2: B_KO war zuletzt aktiv 4: B_LFR_NEGSTOP 5: B_LFR_HALT	uc	
Ifr_uew	I-Anteil am Ende der Leerlaufregelung	sw	1/256 kg/h
lfr_tlmin	Minimallast für Negativstop	uw	1 μs/Umdr.

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: LFR

Beschreibung der Applikationsdaten:

Name	Тур	Dim.	x-Achse	y-Achse
KL_LFR_DMDP_POS	KL	16 x 1	lfr.dn - Drehzahlabweich.	
KL_LFR_DI_AFR	KL	16 x 1	Ifr.dn - Drehzahlabweich.	
KL_LFR_TZ_POS	KL	16 x 1	lfr.dn - Drehzahlabweich.	
KL_LFR_DABR_AFR	KL	16 x 1	Ifr.dn - Drehzahlabweich.	
KF_LFR_PD	KF	15 x 8	PD-Anteil	
KL_LFR_TZ_NEG	KL	16 x 1	lfr.dn - Drehzahlabweich.	
KF_LFR_DMDI	KF	15 x 8	lfr.dn - Drehzahlabweich.	d_n40
				Drehzahlgradient
K_LFR_MDREG_MIN	K	1	Min.Begr. LFR-I Anteil	
K_LFR_MDREG_MAX	K	1	Max.Begr. LFR-I Anteil	
K_LFR_MD_REG_MIN	K	1	Min.Begr. LFR-I +AFR-Anteil	
K_LFR_MD_REG_MAX	K	1	Max.Begr. LFR-I +AFR-Anteil	
K_LFR_MDAFR_MAX	K	1	Max.Begr. AFR-Anteil	
KL_LFR_RF_MIN	KL	4 x 1	tmot - Kühlwassertemp.	
K_LFR_NDIFF_RESET	K	1		
K_LFR_DIAFR_ABR	K	1		
K_LFR_DN_EINGEREGELT	K	1		
K_LFR_UEW_MIN	K	1		
K_LFR_TAU_IA1	K	1		
K_LFR_TAU_IA2_KS	K	1		
K_LFR_TAU_IA2_KKS	K	1		
K_LFR_V_MAX	K	1		
KL_LFR_TZ_NEG	KL	16x1	lfr.dn - Drehzahlabweichung	
KL_LFR_TZ_POS	KL	16x1	Ifr.dn - Drehzahlabweichung	

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Seite 18 von 27

4 Adaption Verlustmoment

Die Bedarfsadaption lernt den unterschiedlichen Reibungsverlust des Systems Motor+ Nebenaggregate. Zu den Nebenaggregate zählen für die Adaption nur der Kompressor der Klimaanlage. Da der Motor teilweise ohne eingeschalteten Klimakompressor betrieben wird, muß die Adaption die unterschiedlichen Lastzustände berücksichtigen.

Im Leerlauf ohne Klimakompressor wird eine Adaption durchgeführt, die alleine die Änderung des Lastmomentes des Motors lernt (Grundlaständerung des Motors entspricht einer Änderung der inneren Reibung des Motors durch z. B. Verschleiß oder unterschiedliche Ölviskosität).

Wird der Klimakompressor zugeschaltet bleibt die Grundlaständerung erhalten, neue Laständerungen werden hauptsächlich durch den Klimakopressor verursacht. Daher wird nun additiv zur Grundlaständerung ein weiterer Faktor adaptiert.

Diese Adaption wird in der Regel deutlcih schneller sein als die Grundlastadaption, da die Kompressorlast bei geregelten Kompressoren (je nach Güte der Lastrückmeldung des Kompressors) doch scheller sich ändert als die Motorgrundlast (gegeben durch mechanische Reibung und Ölviskosität).

4.1 Adaptionsbedingungen

Für die Aktivierung der Bedarfsadaption müssen folgende Bedingungen erfüllt sein:

B_LFRA = B_LFR ; Zustand Leerlaufregelung aktiv (siehe Zustandsautomat der LFR)

und tmot > K_LFR_TMOT_ADAPT ; Motortemperatur größer Schweller und !B_TMOT_FEHLER ; fehlerfreie tmot-Erfassung und !B_LFR_IBEGR ; Integrator befindet sich nicht in einer Begrenzung

In den nachfolgenden Dokumentationen sind diese Bedingungen zu der Bedingung B_LFRA (LFR-Bedarfsadaption) zusammengefaßt.

Während der Entwicklungs- und Testphase kann die komplette Bedarfsadaption (B_LFRA_ENABLED) über das Bit 2 im Kontrollbyte K_LFR_CONTROL abgeschaltet werden. Alle Adaptionswerte sind dann gleich Null.

B_LFRA_ENABLE = 1 Bedarfsadaption freigegeben B_LFRA_ENABLE = 0 Bedarfsadaption abgeschaltet

	Abteilung	Datum	Name	Filename
Bearbeiter	ZS-M-57	16.04.20135		LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 19 von 27

4.2 Zustände der Bedarfsadaption

Die Steuerung der Bedarfsadaption läßt sich als Zustandsautomat mit sieben Zuständen beschreiben.

Bild 5: Zustandsautomat der Bedarfsadaption

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 20 von 27

Adaption inaktiv

Bedingung: B_LFRA nicht erfüllt

Kennzeichen: lla_flags = 0 (inaktiv)

Ila_kflags = 0 (inaktiv)

Adaptionswerte: lla mdadapt (t) = lla mdadapt (t - 20 ms)

lla kmdadapt (t) = lla kmdadapt (t - 20 ms)

Sperrzeitüberwachung für LFRA ohne K0 aktiv

Bedingung: B_LFRA erfüllt

und !B_KO und lla timer !=0

(Sperrzeit noch nicht abgelaufen

Kennzeichen: lla flags = 1 (Sperrzeit)

lla_ko_flags = 0 (inaktiv)

Adaptionswerte: Ifra_mdadapt (t) = lla_mdadapt (t - 20 ms)

lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

Adaption läuft (ohne K0)

Bedingung: B_LFRA

und !B_K0

und lla_timer == 0 (Sperrzeit abgelaufen)

 $und \qquad | \ lla_mdadapt - lla_mdstart \ | \le K_LFR_DMDADAPT_MAX$

(Adaptionsweg nicht begrenzt)

Kennzeichen: Ila_flags = 3 (adaptiert)

lla_kflags = 0 (inaktiv)

Adpationswerte: lla_mdadapt (t) = lla_mdadapt (t - 20 ms) + (lfr_mdi(t - 20 ms) +

K_LFR_MDADAPT_OFFSET) * K_LFR_TAU_ADAPT

(ohne Berücksichtigung einer Begrenzung) lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 21 von 27

Adaptionswert (ohne K0) begrenzt

Bedingung: B_LFRA

und !B_KO

und lla_timer == 0

und | Ila_mdadapt - Ila_mdstart | > K_LFR_DMDADAPT_MAX

(Adaptionsweg begrenzt)

Kennzeichen: Ila_flags = 7 (begrenzt)

lla_kflags = 0 (inaktiv)

Adaptionswerte: $lla_mdadapt(t) = lla_mdstart \pm K_LFR_DMDADAPT_MAX$

lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

Anmerkung: Wird die Differenz zwischen berechnetem Adaptionswert und dem Startwert zu Beginn der

Adaptionsphase wieder kleiner dem maximalen Adaptionsweg, wechselt man wieder in den

Zustand "Adaption läuft".

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 22 von 27

Sperrzeitüberwachung für LFRA mit K0 aktiv

Bedingung: B_LFRA erfüllt

und !B_KO und lla timer !=0

(Sperrzeit noch nicht abgelaufen

Kennzeichen: Ila_flags = 1 (Sperrzeit)

lla_kflags = 0 (inaktiv)

Adaptionswerte: Ila_mdadapt (t) = Ila_mdadapt (t - 20 ms)

Ila_kmdadapt (t) = Ila_kmdadapt (t - 20 ms)

Adaption läuft (mit K0)

Bedingung: B_LFRA

und !B_K0

und lla_timer == 0 (Sperrzeit abgelaufen)

und | Ila_mdadapt - Ila_mdstart | ≤ K_LFR_DMDADAPT_MAX

(Adaptionsweg nicht begrenzt)

Kennzeichen: lla_flags = 3 (adaptiert)

lla_kflags = 0 (inaktiv)

Adpationswerte: Ila_ko_mdadapt (t) = Ila_kmdadapt (t - 20 ms) +

K_LFR_MDADAPT_OFFSET) * K_LFR_TAU_ADAPT

(ohne Berücksichtigung einer Begrenzung)

 $lla_mdadapt (t) = lla_mdadapt (t - 20 ms) + (lfr.mdi(t - 20 ms))$

Adaptionswert (mit K0) begrenzt

Bedingung: B_LFRA

und !B_KO

und Ila_timer == 0

und | lla_mdadapt - lla_mdstart | > K_LFR_DMDADAPT_MAX

(Adaptionsweg begrenzt)

Kennzeichen: lla_flags = 7 (begrenzt)

lla_kflags = 0 (inaktiv)

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 23 von 27

Adaptionswerte: Ila_kmdadapt (t) = Ila_kmdadapt (t - 20 ms)

lla_mdadapt (t) = lla_mdstart ± K_LFR_DMDADAPT_MAX

Für alle Zustände gilt

Ausgangswert der Bedarfsadaption:

Ifr_mdadaption (t) = Ifra_mdadapt (t) , wenn !B_KO

= lla_mdadapt (t)

+ Ila_kmdadapt (t) , wenn B_KO

Korrektur des Integratoranteils Ifr.mdi der Leerlaufregelung

wenn Kompressoraufschaltung inaktiv

 $lfr_mdi(t) = lfr_mdi(t)$

- (lla_mdadapt (t) - lla_mdadapt (t - 20 ms))

wenn Kompressoraufschaltung aktiv lfr_mdi (t) = lfr_mdi (t)

- (lla_kmdadapt (t) - lla_kmdadapt (t - 20 ms))

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60

Modul: Leerlaufregelung

4.3 Berechnungsschritte der Bedarfsadaption

Bild 6: Blockschaltbild der LFR-Adaption

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 25 von 27

Integrator

Ist die Aktivbedingung für den Adaptionsintegrator erfüllt (B_LFRA erfüllt und Sperrzeit abgelaufen) wird zeitsynchron alle 20 ms ein neuer Integrationsschnitt für den aktuellen Adaptionsmode (B_K0 oder !B_K0) berechnet:

Begrenzung des Adaptionsweges

Pro Adaptionsphase ist ein maximaler Adaptionsweg von ± K_LFR_DMDADAPT_MAX möglich. Eine Adaptionsphase beginnt dabei mit dem Erkennen der Bedingung B_LFRA = erfüllt und endet, sobald diese Bedingung nicht mehr erfüllt ist. Ein Wechsel der Bedingung B_K0 bzw. ein Retriggern der Sperrzeit führt dagegen zu keiner neuen Adaptionsphase.

Zu Beginn der Adaptionsphase werden die beiden Adaptionswerte lfra_mdadapt und lla_kmdadapt in die Variablen lla_mdstart und lla_kmdstart umgespeichert. Während der Adaptionsphase wird dann der aktuelle Adaptionswert auf den Wert ..._mdstart \pm K_LFR_DMDADAPT_MAX begrenzt.

Begrenzung der Adaptionswerte

Der resultierende Adaptionswert für inaktive Kompressoraufschaltung wird auf - K_LFR_DMDADAPT_MAX, K_LFR_DMDADAPT_MIN der für aktive Kompressorschaltung auf die Werte K_LFR_MDADAPT_K0_MAX und K_LFR_MDADAPT_K0_MIN begrenzt.

Ausgangswert der Bedarfsadaption

Der Ausgangswert der Adaption Ifr_mdadaption, welcher zu dem Vorsteuerwert der Leerlaufregelung addiert wird, wird stets berechnet - unabhängig von der Bedingung B_LFRA und setzt sich wie folgt zusammen:

Korrektur des Integrationsanteiles des Leerlaufreglers

Die LFR-Bedarfsadaption darf die Luftvorgabe der Leerlaufregelung lfr_mdsoll nicht verändern, sondern nur einen Korrekturoffset von dem I-Anteil des Leerlaufreglers lfr_mdi auf den Adaptionswert lfr_mdadaption übertragen. D. h., daß mit jeder Änderung des Adaptionswertes der I-Anteil lfr_mdi um diesen Betrag korrigiert werden muß.

	Abteilung	Datum	Name	Filename
Bearbeiter	FF-26	16 04 2013	Frank	LER DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 26 von 27

4.4 Daten der Bedarfsadaption

Beschreibung der Variablen:

Name	Beschreibung	Тур	Auflösung
lla_timer	verbleibende Adaptionssperrzeit	uw	0,02 sec.
lla.mdadapt	Wert des Adaptionsintegrators ohne Kompressoraufschaltung	sw	1/256 kg/h
lla.mdstart	Wert des Adaptionsintegrators zu Beginn einer neuen Adaptionsphase (ohne K0)	sw	1/256 kg/h
lla.flags	Flags für Adaption ohne Kompressoraufschaltung Wert 0: Adaption inaktiv Wert 1: Sperrzeit läuft Wert 3: adaptiert Wert 7: Adaptionsweg begrenzt	uc	
lla_kmdadapt	Wert des Adaptionsintegrators mit Kompressoraufschaltung	sw	1/256 kg/h
lla_kmdstart	Wert des Adaptionsintegrators zu Beginn einer neuen Adaptionsphase (mit K0)	sw	1/256 kg/h
lla_kflags	Flags für Adaption mit Kompressoraufschaltung Wert 0: Adaption inaktiv Wert 1: Sperrzeit läuft Wert 3: adaptiert Wert 7: Adaptionsweg begrenzt	uc	

Beschreibung der Applikationsdaten:

Name	Тур	Bedeutung
K_LFR_MDADAPT_OFFSET	FW	Adaptionsoffset für Integratoranteil
K_LFR_TAU_ADAPT	FW	Zeitkonstante für Bedarfsadaption
K_LFR_DMDADAPT_MAX	FW	max. Adaptionsweg pro Adaptionsphase
K_LFR_T_ADAPT	FW	Adaptionssperrzeit
K_LFR_MDADAPT_MIN	FW	untere Adaptionswertbegrenzung (ohne K0)
K_LFR_MDADAPT_MAX	FW	obere Adaptionswertbegrenzung (ohne K0)
K_LFR_MDADAPT_KO_MIN	FW	untere Adaptionswertbegrenzung (mit K0)
K_LFR_MDADAPT_KO_MAX	FW	obere Adaptionswertbegrenzung (mit K0)
K_LFR_TMOT_ADAPT	FW	Temperaturschwelle für die Bedarfsadaption

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	.Frank	LFR.DOC

Projekt: MSS60 Modul: Leerlaufregelung

Seite 27 von 27

4.5 Nichtflüchtiges Abspeichern

In der Nachlaufphase des Steuergerätes werden die aktuellen Werte

lla_mdadapt und lla_kmdadapt

der Bedarfsadaption nichtflüchtig im E²PROM des Steuergerätes abgespeichert

In der Initialisierungsphase werden die aktuellen Adaptionswerte mit den abgespeicherten Werten vorbelegt. Bei einem Datenverlust des E²PROM werden die Adaptionswerte mit dem Wert Null vorbelegt.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-26	16.04.2013	.Frank	LFR.DOC