Introduction to Actuators

Enabling Motion in Robotics and Automation

Robotics and AI Faculty

What is an Actuator?

- An actuator is a device that converts energy into mechanical motion.
- Acts as the "muscle" of a robot, enabling it to move or interact with its environment.
- Receives control signals and responds by moving parts of the system.

Types of energy used:

- Electrical
- Hydraulic (fluid-based)
- Pneumatic (air-based)

Importance of Actuators in Robotics

- Enable robots to perform real-world tasks.
- Responsible for movement, grip, rotation, lift, etc.
- Support automation and precision in industrial, medical, and domestic applications.

Classification of Actuators

- Based on Motion:
 - Linear Actuators (straight-line motion)
 - Rotary Actuators (circular motion)
- Based on Power Source:
 - Electric
 - Hydraulic
 - Pneumatic
 - Thermal / Magnetic / Piezoelectric

Linear Actuators

- Convert energy into **straight-line motion**.
- Common in robotics arms, CNC machines, medical beds.
- Types of Linear Actuators:
- Electric Linear Actuators
- Hydraulic Pistons
- Pneumatic Cylinders

Rotary Actuators

- Produce rotational motion.
- Used in robotic joints, motors, conveyor systems.
- Types:
- Servo Motors High-precision angular positioning
- Stepper Motors Controlled incremental steps
- Rotary Pneumatic/Hydraulic Actuators

Electric Actuators

- Operate using **electrical energy**.
- Most commonly used in robotics.
- Advantages:
- Clean, easy to control
- High precision
- Integration with digital systems
- Examples:
- Servo motors
- DC/AC motors
- Linear drives

Hydraulic Actuators

- Use **pressurized fluid** to generate force.
- Suitable for heavy-load operations (e.g., excavators, lifting arms).
- Pros:
- High power output
- Smooth movement
- Cons:
- Leakage risk
- Maintenance-intensive

Pneumatic Actuators

- Operate using compressed air.
- Common in factory automation, pick-and-place systems.
- Pros:
- Fast response
- Cost-effective
- Safe in explosive environments
- Cons:
- Limited force compared to hydraulic
- Less precise

Working Principle of Actuators

- Working Principle of Actuators
- Input Signal (electrical, pneumatic, etc.)
- Control Unit processes signal
- Actuator moves based on input
- Feedback Sensor checks result
- Controller adjusts for precision

Applications of Actuators

- Industrial Robots: Grippers, welders, robotic arms
- Autonomous Vehicles: Steering, braking systems
- Medical Robotics: Surgical tools, prosthetic limbs
- Consumer Products: Smart locks, camera focus mechanisms
- **Aerospace**: Satellite positioning, drone flaps

Comparison Table

Type	Power Source	Use Case	Pros	Cons
Electric	Electricity	Robotics, home devices	Clean, precise	Limited force
Hydraulic	Fluid	Heavy machinery	High force	Leakage, bulky
Pneumatic	Air	Industrial automation	Fast, simple	Less accurate
Smart Act.	Varies	Advanced robotics	Responsive, compact	Expensive

Summary

- Actuators are essential components in all robotic systems.
- They translate **commands into actions**.
- Choosing the right actuator depends on **power**, **precision**, and **application**.
- Emerging trends include miniaturization and intelligent actuators.

Dr. Saptarshi Jana
Sr. Robotics Instructor
saptarshi.jana@techvein.com
mesaptarshi.jana@gmail.com

