

第五课(第13-15课时) 探索变量之间的关系

- 图形分析
- 相关分析
- 方差分析

前情回顾

> 如何检验一个变量的一组取值是否符合某种分布

- 图形分析
- 使用样本数字特征
- 使用

>	什么	是假	设林	念念	?
_	=			7 Jii	•

- 统计分析的经典框架
- p-值
- 从样本分布构建检验
- K-S检验
- 以及其他分布检验

		判断		
		拒绝H0 接受H0		
真实	H0为真	I型错误	正确	
	H0为假	正确	II型错误	

by郭鹏程 (绿树@小象)

任务描述

- > 理解变量之间的关系
- > 了解根据变量类型,选择适合的分析方式
- > 掌握使用图形分析,相关分析,方差分析

- ➤ 数据:链接: http://pan.baidu.com/s/1bpKAd8V 密码: dw8g
 - tips.csv

载入数据:tips.csv

> 载入常用库

- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt

> 载入模块

- from pandas import Series, DataFrame
- from scipy import stats

> 读入数据(假设文件在工作目录路径下)

- tips=pd.read_csv('tips.csv')

从单变量到多变量

> 对单变量的分析:

- 数字特征
- 分布
 - "模式" ?
 - "异常" ?

> 对两个或更多变量的分析:

- 找到变量之间的关系.....
- case "没关系" :
 - Nothing more to do
- case "有关系" :
 - 多大关系?
 - 什么样的关系?

设随机事件A,B满足 P(AB) = P(A)P(B)则称事件A与B相互独立,简称A与B独立.

设A, B为两个事件,P(A)P(B) > 0,则 A与B独立的充分必要条件是 P(A|B) = P(A)或P(B|A) = P(B) .

事件A与B相互独立,是指其中任一事件发生的概率都不受另外一事件发生的影响.

度量变量之间的关系

> 使用可视化

- 探索变量之间的关系
- 点图
- 箱线图

> 独立性检验

- 变量之间是否相互独立

> 相关性检验

- 独立性检验被拒绝时,考察相关性
- 相关系数

- fig=plt.figure(figsize=(8,6))
- ax=fig.add_subplot(1,1,1)
- from numpy import random
- ax.plot(random.rand(50).cumsum(),'.')
- fig

- fig,ax=plt.subplots(1,1,figsize=(6,6))
- ax.clear()
- ax.plot(tips[tips['sex']=='Male']['tip'],'o',label='Male')
- ax.plot(tips[tips['sex']=='Female']['tip'],'o',label='Female')
- ax.legend(loc='best')
- fig

> 使用散点图,分组

- ax.plot(tips[tips['sex']=='Male']['total_bill'],tips[tips['sex']=='
 Male']['tip'],'o',label='Male')
- ax.plot(tips[tips['sex']=='Female']['total_bill'],tips[tips['sex']=
 ='Female']['tip'],'o',label='Female')

- fig

中国大数据在线教育领导者

- > 可视化的优势
 - 更容易发现"模式"

使用散点图

> 分组

- ax.scatter(tips[tips['sex']=='Male']['total_bill'],tips[tips['sex']=
 ='Male']['tip'],label='Male')
- ax.scatter(tips[tips['sex']=='Female']['total_bill'],tips[tips['sex']=='Female']['tip'],c='g',label='Female')
- ax.legend(loc='best')
- fig

数据分析和数据挖掘

中国大数据在线教育领导者

by郭鹏程(绿树@小象)

可视化分析-使用点图-继续探索

> 直方图

- tips['tip_pct']=tips['tip']/tips['total_bill']
- tips['tip_pct'].hist(by=tips['sex'],bins=50,range=[0,0.8])

可视化分析-使用箱线图

戸 箱线图(盒须图)

- 中位数
- 四分位数全距 $IQR = Q_3 Q_1$
- 箱线图的上、下限制线分别在比 Q_1 低1.5(IQR)和比 Q_3 高1.5(IQR) 的位置上
- 异常值

可视化分析-使用箱线图

boxplot()

- rvs1=tips[tips['sex']=='Male']['tip_pct']
- rvs2=tips[tips['sex']=='Female']['tip_pct']
- plt.boxplot([rvs1,rvs2],labels=['Female','Male'])

进一步探索变量之间的关系

- > 可视化给出可能的方向
- > 需建立更严格的分析方式:
 - 假设检验

- > 变量的类型
 - 类别型
 - 数值型

属性类型	表述和允许的变换	例子	操作
Nominal 标称 (分类、 定性)	与其他对象区别的名称 (=,≠) 一对一变换	邮编、ID、姓名、性别	众数, 熵, 列联相关 χ² 检验
Ordinal 序数 (分类、 定性)	确定对象信息的序。(<,>) 保序变换	矿石硬度、成绩、街 道号码	中值,百分位,秩 相关
Interval 区间 (数值、 定量)	区间属性,值之间的和差是有意 义的 (+,-) 线性变换	日期,温度	均值、标准差、 Pearson相关
Ratio 比例 (数值、 定量)	比率变量,积和比有意义 (*,/) 线性变换(乘积)	绝对零度、货币 量、计数、年龄	几何平均,调和平 均,百分比变差

度量变量之间的关系

- > 然而,实际中问题有不同的提出方式:
 - 星座会决定性格吗?
 - 变量 "星座" vs 变量 "性格"
 - 游客对不同品牌的酒店评价差别大吗?
 - 变量"评价"vs变量"酒店品牌"
 - 男女性别中给小费的费率是否不同?
 - 费率~性别
 - 小费和总花费之间是否相关?
 - 小费~总花费
 - 星期几是否会影响每组就餐的人数?
 - 星期几~每组就餐人数

- > 类别型~类别型
- > 星期几跟是否吸烟有关系吗?
 - 当然,提问题的时候先画图
 - count=pd.crosstab(tips.sex, tips.day)
 - count.T.plot(kind='bar')
 - 然后用定量方法确定答案

chi2, p, dof, ex = stats.chi2_contingency(count,

correction=False)

• p

In [27]: count
Out[27]:
day Fri Sat Sun Thur
sex
Female 9 28 18 32
Male 10 59 58 30

Contingency Table:列联表 注意:每个 cell中的数至 少为5

独立性检验:为什么是卡方检验?

> 复习知识点

- 联合分布
- 边缘分布

X	y_1	y_2	•••	y_j	•••	$P\{X=x_i\}$
x_1	p_{11}	$p_{_{12}}$	• • •	$p_{_{1j}}$	•••	$\sum_i p_{1j}$
x_2	p_{21}	$p_{_{22}}$	• • •	$egin{array}{c} p_{1j} & & & \\ p_{2j} & & & \\ \vdots & & & \\ \hline p_{ij} & & & \\ \vdots & & & \\ \hline \end{array}$	• • •	$\sum_{j}p_{1j} \ \sum_{j}p_{2j}$
:	:	:		÷		j -
x_{i}	p_{i1}	p_{i2}	• • •	p_{ij} -	• <u>•</u> • _	$-\sum_{i}p_{ij}$
:	:	:				i E
$P\{Y=y_j$	$\sum p_n$	$\sum p_{ij}$	•••	$\sum p_{ii}$	•••	
$(x-y_j)$	i 11	i 12		i		

两事件A,B独立的定义是: 若P(AB)=P(A)P(B)则称事件A,B独立.

- > 类别~类别
- > 费舍尔精确检验(如果样本较小)
 - count=pd.crosstab(tips.sex, tips.smoker)
 - oddsratio, pvalue = stats.fisher_exact(count)
 - (1.0121836925960637, 1.0)
 - count.iat[0,0]=2
 - stats.fisher_exact(count)
 - (0.037488284910965321, 3.9900059898475714e-10)

```
In [35]: count
Out[35]:
smoker No Yes
sex
Female 2 33
Male 97 60
```


- > 数值型~数值型
- > 相关度
 - Pearson: 积差相关系数,反应两变量之间线性相关性
 - Spearman:等级相关系数(Ranked data)
 - Kendall's Tau:非参数等级相关系数

- > 数值型~数值型
- > Pearson相关系数
- > stats.pearsonr
 - stats.pearsonr(tips.total_bill,tips.tip)
 - Out[25]: (0.67573410921136434, 6.6924706468640407e-34)

> Pearson相关系数

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

> 数值型~数值型

> Spearman相关系数:

- 与pearson相关系数不同,不假设变量为正态分布
- -1~+1 衡量变量之间的单调性
- np.random.seed(1234321)
- x = np.random.randn(100)
- y = np.random.randn(100)
- rho, pval = stats.spearmanr(x, y)


```
In [70]: stats.pearsonr(x,y)
```

Out[70]: (-0.095440544065648725, 0.34488119203969791)

In [71]: stats.spearmanr(x,y)

Out[71]: (-0.095349534953495352, 0.34534352767739207)

≻ Spearman相关系数

$$r_s =
ho_{ ext{rg}_X, ext{rg}_Y} = rac{ ext{cov}(ext{rg}_X, ext{rg}_Y)}{\sigma_{ ext{rg}_X}\sigma_{ ext{rg}_Y}}$$

≻ Spearman相关检验

- y2n = np.random.randn(100,2)
- x2n = np.random.randn(100,2)
- rho, pval = stats.spearmanr(x2n, y2n)
- rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)

独立性检验(相关性检验)

> Pearson v.s. Spearman

- > 数值型~数值型
- > Kendall's Tau相关系数
- \triangleright tau = (P Q) / sqrt((P + Q + T) * (P + Q + U))
 - p:同步数据对数,Q:异步,T:tie in x, U:tie in y
 - x=[1, 2, 3, 4, 5, 5, 4, 6,-1]
 - y=[3, 4, 3, 4, 5, 5, 3, 7, 7]
 - tau, p_value = stats.kendalltau(x,y)
 - -(0.0468686868686869, 0.4896138834011271)

```
In [12]: stats.kendalltau(x,y)
Out[12]: (0.0468686868686869, 0.4896138834011271)
In [13]: stats.spearmanr(x,y)
Out[13]: (0.063138313831383144, 0.53258279364768879)
In [14]: stats.pearsonr(x,y)
Out[14]: (0.070212986094888546, 0.48758203830224922)
```

独立性(相关性)检验

- > 数值型~类别型
- 男女性别中给小费的费率是否不同?
 - 费率~性别
- > t检验
 - rvs1=tips[tips['sex']=='Male']['tip']
 - rvs2=tips[tips['sex']=='Female']['tip']
 - stats.ttest_ind(rvs1, rvs2)

关联样本 stats.ttest_rel (同组重复抽样)

独立性(相关性)检验

- > 数值型~类别型
- 男女性别中给小费的费率是否不同?
 - 费率~性别
- > ANOVA方差分析
- > ANCOVA协方差分析
- > MANOVA多因素方差分析

分组比较:方差分析(初步)ANOVA Lina Ladoop.cn

• 因素效应的显著性分析: $y = \mu + \delta_i + \epsilon_{ij}$

$$H_0: \delta_1 = \delta_2 = ... = \delta_a = 0 \leftrightarrow H_1: \exists \delta_i \neq 0$$

$$SS_T = \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2$$

$$SS_T = SS_E + SS_A$$
 误差平方和 $SS_E = \sum_{i=1}^a \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$ 因素平方和 $SS_A = \sum_{i=1}^a n_i (\bar{y}_i - \bar{y})^2$

方差分析

- ▶ 单因素方差分析(one-way ANOVA)
 - 假设检验统计量和分布

$$F = \frac{SS_A/(a-1)}{SS_E/(n-a)} = \frac{MS_A}{MS_E}$$
$$F \sim F(a-1, n-a)$$

- p-value与显著水平α比较, p<α, 拒绝H0; 否则, 接受H0
- stats.f_oneway(rvs1,rvs2)
- -(1.173749551574689, 0.27971038496058553)
- 用 F 假设检验:结果显著-->组间不同

方差分析

> 请用方差分析星期几对小费的比例是否有影响?

方差分析

- > 方差分析检验对数据的假设
 - 1. 样本之间相互独立
 - 2. 样本均来自正态分布
 - 3. 方差齐次性: 各组方差相等
- 如何检验以上假设?
 - 方差齐次性: stats.fligner(rvs1,rvs2)

```
In [21]: stats.fligner(rvs1,rvs2)
Out[21]: (0.95213740994947371, 0.32917583412198081)
```

- 如果不满足以上任意一条
 - 怎么办?

ANOVA的非参数版本

Kruskal-Wallis H-test

- H0: 各组中值相等
- 对数据亦有假设: Chi2分布, 因此样本容量需不小于5
- stats.kruskal(rvs1,rvs2)

In [20]: stats.kruskal(rvs1,rvs2)

Out[20]: (2.2351202029645436, 0.13490613264268328)

探索变量之间的关系

由变量类型确定分析方式

- > 然而,在这之前:变量需要构造
 - 男女性别中给小费的费率是否不同?
 - 费率~性别
 - 小费和总花费之间是否相关?
 - 小费~总花费
 - 星期几是否会影响每组就餐的人数?
 - 星期几~每组就餐人数
 - 星座会决定性格吗?
 - 变量 "星座" vs 变量 "性格"
 - 游客对不同品牌的酒店评价差别大吗?
 - 变量 "评价" vs变量 "酒店品牌"

抽样分布

$1.\chi^2$ 分布的定义

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(0, 1)$ 的样本,则 $X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$.

▶ t分布

设随机变量X服从标准正态分布N(0,1),

Y服从 $\chi^2(n)$,且X与Y相互独立,

记
$$T = \frac{X}{\sqrt{\frac{Y}{n}}}$$
,则 随机变量 T 服从自由度

为n的t分布,记作 $T \sim t(n)$.

▶ t分布

设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_1, \dots, X_n $(n \ge 2)$ 是来自X的一个样本, \bar{X} 与 S^2 分别为样本均值与样本方差,则随机变量

$$t = \frac{\bar{X} - \mu}{S / \sqrt{n}}$$

服从自由度为n-1的t分布.

▶ F分布

设 $X \sim \chi^2(m), Y \sim \chi^2(n), 且X与Y相互独立,$

$$Z = \frac{X}{m} = \frac{nX}{mY}$$

记 $Z = \frac{X}{m} = \frac{nX}{mY}$ 则 Z 的密度函数为f(x; m, n),因此 $Z \sim F(m, n)$.

由定理5.3.4不难看出,若 $X \sim F(m,n)$,则 $X^{-1} \sim F(n,m)$.

► F分布

 X_1, X_1, \dots, X_{n_1} 和 Y_1, Y_2, \dots, Y_{n_2} 是分别来 自两个相互独立的正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$ 的两个随机样本($n_1, n_2 \geq 2$),则

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

特别,当 $\sigma_1^2 = \sigma_2^2$ 时,统计量"两个样本方差之比"服从F分布,即

$$F = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$$

> 关系图

(1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(\mu, \frac{\sigma^{2}}{n});$$

$$(2) U = \frac{\overline{X} - \mu}{\sigma / n} \sim N(0, 1); \qquad (3) \quad \frac{n-1}{\sigma^{2}} S^{2} \sim \chi^{2}(n-1);$$
 $\overline{X} = S^{2}$ 相互独立.

$$(4) T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

附2:一个模拟数据的实例

> 帕累托分布

$$P(X > x) = \left(\frac{x}{x_{\min}}\right)^{-k}$$

$$p(x) = \begin{cases} 0, & \text{if } x < x_{\min}; \\ \frac{k \ x_{\min}^k}{x^{k+1}}, & \text{if } x > x_{\min}. \end{cases}$$

期望值为
$$\frac{x_{\min} k}{k-1}$$

图: 帕累托分布 (x_{min}=1)

被认为大致是帕累托分布的例子有:

- 在现代工业资本主义创造了大量中产阶级之前,财富在个人之间的分布。
- 甚至在现代工业资本主义创造了大量中产阶级之后,财富在个人之间的分布。
- 人类居住区的大小
- 对维基百科条目的访问
- 接近绝对零度时,爱因斯坦凝聚的团簇
- 在互联网流量中文件尺寸的分布
- 油田的石油储备数量
- 龙卷风带来的灾难的数量

附2:一个模拟数据的实例

- > 生成符合帕累托分布的数据 , 且具有大于1000的点
 - -x = stats.pareto.rvs(b=1.2,loc=50,size=1000)
 - x.hist(bins=50)
 - plt.hist(x,bins=50)
- 2) Pareto Distributed Traffic: We generated flows with sizes drawn from a Pareto distribution with mean 50 KB and shape 1.2. This yields flow sizes that capture realistic data center workloads [1]. In these settings, L²DCT improves over DCTCP at all loads as shown in Figure 4(c), with 99th percentile of FCT improved by up to 53%.

```
In [24]: p=1-stats.pareto.cdf(1000,b=1.2,loc=50)
In [25]: p
Out[25]: 0.00026713554171153842
In [26]: 1-stats.binom.cdf(1,2000,p)
Out[26]: 0.10074983217202338
In [27]: 1-stats.binom.cdf(1,20000,p)
Out[27]: 0.96967834903896866
```


联系我们:

- 新浪微博: ChinaHadoop

- 微信公号: ChinaHadoop

- 网站: http://chinahadoop.cn

- 问答社区: http://wenda.ChinaHadoop.cn

