

MTH 309T LINEAR ALGEBRA EXAM 1

Name:	chael rson N		и : :	Instru	ctions:			
5 0 0 0 1 1 2 2 3 3 4 4 6 6 6 6 7 7 8 8 9 9	7 6 0 0 1 1 2 2 3 3 4 4 6 6 6 6 7 7 7 8 8 8 9 9	① ② ③ ③ ④ ④ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥		 Textbooks, calculators and any or electronic devices are not permit You may use one sheet of notes. For full credit solve each probfully, showing all relevant work. 				

20	10	10	20	20	10	10	2	10	112	Α
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$Az \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$(A^{+})^{-1} = (A^{-1})^{T}$$

From Problem 2:
$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

$$(A^{-1})^{T} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$\left(A^{-1}\right)^{\mathsf{T}} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 1 & 2 \\ 3 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -2+4+6 & -4+5+4 & -6+4+2 \\ 3-4-6 & 6-5-4 & 9-4-2 \\ -1+4+3 & -2+5+2 & -3+9+1 \end{bmatrix}$$

$$C = \begin{bmatrix} 8 & 5 & 6 \\ -7 & -3 & 3 \\ 6 & 5 & 2 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$T(e_1) = T(\begin{bmatrix} 0 \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 1 & 16 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 & 0 \end{bmatrix}$$

$$T(e_2) = T(\begin{bmatrix} 0 \end{bmatrix}) = \begin{bmatrix} 0 - 2 \\ 0 & 11 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 & -3 \end{bmatrix} \checkmark$$

b)
$$\begin{bmatrix} 1 & -2 & 1 & 10 \\ 1 & -3 & 1 & -2 \\ 1 & -3 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 9 \\ 0 & 3 & 1 & -2 \\ 1 & 0 & 1 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -2 & 3 & 1 & -69 \\ 1 & 0 & 1 & 7 & 3 \\ 0 & 1 & 1 & 3 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 3 & 3 \\ 0 & 1 & 1 & 3 & 7 \\ 0 & 0 & 1 & 3 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \\ 7 \end{bmatrix}$$

$$U = \begin{bmatrix} 7 \\ 3 \end{bmatrix} \checkmark$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$[0 & 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$[0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0$$

MTH-309T-F19-EX1-061-P06

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

The span of (u, v) is the set of all linear combinations of u and v. If what span(u, v), that means who is a linear combination of u and v. If we subtract or multiple of u, the result of u and v. If we subtract from a combination of u and should still be obtainable from a combination of u and v. since we are essentially adding -u to a combination of u and v.

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

true

A linearly independent set means a vand wall cannot be produced from a linear combination of the other elements in the set. This means any combination of any multiples of a and w cannot produce v. If this is the case, we still cannot produce v from any multiples of just u. The same logic applies in the opposite case of v producing u.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

false

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Hue

If u is m the Span(v, w), then it can be found through a combintion of multiples of v and
$$w_1$$
 $C_1V + C_2W = U$

For linear transformations, $T(u) = T(C_1V + C_2W) = T(C_2V) + T(C_2W) = C_1T(V) + C_2T(W)$

This means that the transformation of u can be solved as a linear combination of the multiples of $T(V)$ and $T(W)$,

This means that $T(u)$ must be m the Span $(T(V), T(W))$

