cs224d Notations

mxn

1

1

1

Contents

	1.1 Common Network Variable and Dimension Notations
2	Useful Math Relationships
3	NumPy 3.0.1 numpy revision
1	Basic Notations
	• Vector: $\mathbf{v} \in \mathbb{R}^n$ or $\mathbf{v} \in \mathbb{R}^{n \times 1}$ — n rows and 1 column.
	• Matrix: $\mathbf{M} \in \mathbb{R}^{n \times m}$ — n rows and m columns.
1.1	Common Network Variable and Dimension Notations
	• n: Dimension of embeddings space
	• V : Vocabulary with $ V $ words
	• w_i : Word i from vocabulary V
	• x: Input vectors (usually one-hot vectors)
	$ullet$ $m{y}$: Output vectors (usually one-hot vectors, or vectors of probabilities (after softmax))
	• 1 layer network:
	- Input dimension: D_x $(\boldsymbol{x} \in [N, D_x])$ - Hidden units: H $(\mathbf{W}_1 \in [D_x, H], \ \boldsymbol{b}_1 \in [H])$ - Ouput dimension: D_y $(\mathbf{W}_2 \in [H, D_y], \ b_2 \in [D_y])$
	• Continuous Bag of Words (CBOW):
	$- \mathbf{V} \in \mathbb{R}^{n \times V }: \text{ Input word matrix}$ $- \mathbf{U} \in \mathbb{R}^{ V \times n}: \text{ Output word matrix}$ $- \mathbf{v}_i \in \mathbb{R}^{n \times 1}: \text{ i-th column of } \mathbf{V}, \text{ the input vector representing word } w_i$ $- \mathbf{u}_i \in \mathbb{R}^{n \times 1}: \text{ i-th row of } \mathbf{U}, \text{ the output vector representing word } w_i$
2	Useful Math Relationships
3	NumPy
	• Vector $v \in \mathbb{R}^n$ or $v \in \mathbb{R}^{n \times 1}$ with n rows and 1 column: v.shape == (n,) or (n,1)
	• Matrix $\mathbf{M} \in \mathbb{R}^{n \times m}$ with n rows and m columns: M.shape == (n, m)

• row vectors (1 row, m columns): $v = np.r_{[:n]}$

• column vectors (n rows, 1 column): v = np.c_[:n]; v = np.c_(x)

3.0.1 numpy revision