Linear Algebra

Final Exam Practice MATH 2318 (Fall 2022)

1. Show that the set of polynomials in $\mathbb{P}_n(\mathbb{R})$ that satisfy p(0) = 0 is a subspace of $\mathbb{P}_n(\mathbb{R})$. Solution.

Denote by H the set of polynomials that satisfy p(0) = 0. We show that H satisfies the three properties that define a subspace.

- 1. First, note that the zero polynomial satisfies that p(0) = 0. Therefore, the zero polynomial is in H.
- 2. Let p(x), q(x) be elements of H. Then, they satisfy that p(0) = 0 and q(0) = 0. Note that their sum satisfies that (p+q)(0) = p(0) + q(0) = 0. Therefore, $(p+q)(x) \in H$.
- 3. Finally, let p(x) be an element of H and c be a real scalar. Then, p(0) = 0. Moreover, (cp)(0) = cp(0) = 0. Therefore, $(cp)(x) \in H$.

Since H satisfies the three properties of a subspace, H is a subspace of $\mathbb{P}_n(\mathbb{R})$.

2. Show that the set $H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2} : c = b \right\}$ is a subspace of $M_{2\times 2}$.

Solution. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in H$. Then, c = b, thus,

$$A = \begin{bmatrix} a & b \\ b & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore, $H = \operatorname{Span}\left\{\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}\right\}$, which implies that H is a subspace of $M_{2\times 2}$.

Alternatively, we can use the properties of a subspace:

- 1. The zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is an element of H because it satisfies that 0 = 0.
- 2. Let $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$, $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in H$. Then they satisfy $c_1 = b_1$ and $c_2 = b_2$. We have

$$A + B = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix},$$

which satisfies that $c_1 + c_2 = b_1 + b_2$. Therefore, $A + B \in H$.

3. Let $k \in \mathbb{R}$, and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in H$, which satisfies c = b. We have

$$kA = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix},$$

which satisfies that kc = kb. Therefore, $kA \in H$.

Since H satisfies all three properties, it is a subspace of $M_{2\times 2}$.

3. Find a basis for Col(A), Null(A) and Row(A). What is rank A?

$$A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ -1 & -2 & 1 & 3 \\ 2 & 3 & 1 & 4 \end{bmatrix}$$

Solution.

Let us row reduce A to REF:

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ -1 & -2 & 1 & 3 \\ 2 & 3 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & -2 \\ R_2 + R_1 \\ R_3 - 2R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 3 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 3 & 8 \end{bmatrix} R_1 - R_2 \sim \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 3 & 8 \end{bmatrix} R_3 - R_2$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} R_1 + R_3 \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

A basis for
$$\operatorname{Col}(A)$$
 is $\left\{ \begin{bmatrix} 1\\-1\\2\\ \end{bmatrix}, \begin{bmatrix} 1\\-2\\3\\ \end{bmatrix}, \begin{bmatrix} -1\\1\\1\\ \end{bmatrix} \right\}$, and a basis for $\operatorname{Row}(A)$ is $\left\{ \begin{bmatrix} 1\\0\\0\\2\\ \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1\\ \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\3\\ \end{bmatrix} \right\}$.

To find a basis for Null(A) we solve the homogeneous system:

$$x_1 = -2x_4$$

$$x_2 = x_4$$

$$x_3 = -3x_4$$

$$x_4 \text{ is free}$$

In vector parametric form:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} -2 \\ 1 \\ -3 \\ 1 \end{bmatrix}.$$

Therefore, a basis for Null(A) is $\left\{ \begin{bmatrix} -2\\1\\-3\\1 \end{bmatrix} \right\}$. Since the basis we found for Col(A) has

three vectors, rank A = 3.

4. Show that $B = \{1+x^2, x+x^2, 1+2x+x^2\}$ is a basis for \mathbb{P}_2 . Hint: Recall that $\dim(\mathbb{P}_2) = 3$ and note that B has three vectors.

Solution.

Since B has three vectors and $\dim(\mathbb{P}_2) = 3$, we just have to show that B is a linearly independent set. Let $c_1, c_2, c_3 \in \mathbb{R}$ and consider

$$c_1(1+x^2) + c_2(x+x^2) + c_3(1+2x+x^2) = 0 + 0x + 0x^2$$
$$(c_1+c_3) + (c_2+2c_3)x + (c_1+c_2+c_3)x^2 = 0 + 0x + 0x^2$$

Thus,

$$c_1$$
 + c_3 = 0
 c_2 + $2c_3$ = 0
 c_1 + c_2 + c_3 = 0

Now we solve this linear system by writing it as a matrix equation $A\vec{c} = \vec{0}$ and row reducing A:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

This is an echelon form. We see that every column has a pivot, so all the variables are basic. This implies that the only solution is the trivial one, so B is linearly independent. By the basis theorem, B is a basis for \mathbb{P}_2 .

5. Let \vec{v} be an eigenvector of $A \in M_{n \times n}$ with associated eigenvalue λ . Show that $k\vec{v}$, with k a nonzero scalar, is an eigenvector of A with associated eigenvalue λ .

Solution.

Since \vec{v} is an eigenvector of A with associated eigenvalue λ , we know that $A\vec{v} = \lambda \vec{v}$. Multiplying this equation by k gives $k(A\vec{v}) = k(\lambda \vec{v})$. Using the arithmetic properties of matrix-vector multiplication gives $A(k\vec{v}) = \lambda(k\vec{v})$, which implies that $k\vec{v}$ is an eigenvector of A with associated eigenvalue λ .

6. Let \vec{v} be an eigenvector of $A \in M_{n \times n}$ with associated eigenvalue λ . Show that \vec{v} is also an eigenvector of A^2 and find the associated eigenvalue. *Hint*: Consider $A\vec{v} = \lambda \vec{v}$ and multiply by A.

Solution.

Since \vec{v} is an eigenvector of A with associated eigenvalue λ , we know that $A\vec{v}=\lambda\vec{v}$. Multiplying this equation by A gives $A(A\vec{v})=A(\lambda\vec{v})$. Using the arithmetic properties of matrix-vector multiplication gives $A^2\vec{v}=\lambda(A\vec{v})$. Substituting $A\vec{v}=\lambda\vec{v}$ gives $A^2\vec{v}=\lambda^2\vec{v}$. Therefore, \vec{v} is an eigenvector of A with associated eigenvalue λ^2 .

7. Let
$$A = \begin{bmatrix} 6 & -3 & -3 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$
.

- a) Find the eigenvalues of A.
- b) Find a basis for each eigenspace of A.
- c) Is A diagonalizable? Explain. If it is, diagonalize it and find a formula for A^k .

Solution.

a) We compute $det(A - \lambda I)$ and set it equal to 0:

$$\det(A - \lambda I) = \begin{vmatrix} 6 - \lambda & -3 & -3 \\ 0 & 3 - \lambda & -1 \\ 0 & -1 & 3 - \lambda \end{vmatrix} = (6 - \lambda)(-1)^{1+1} \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} = (6 - \lambda)((3 - \lambda)^2 - 1)$$
$$= (6 - \lambda)(\lambda^2 - 6\lambda + 8) = (6 - \lambda)(\lambda - 2)(\lambda - 4) = 0$$

Therefore, the eigenvalues of A are $\lambda_1 = 6$, $\lambda_2 = 2$ and $\lambda_3 = 4$.

- b) For each eigenvalue, we find a basis for $E_{\lambda}(A) = \text{Null}(A \lambda I)$.
 - $E_{\lambda_1}(A) = \text{Null}(A 6I)$:

$$A - 6I = \begin{bmatrix} 0 & -3 & -3 \\ 0 & -3 & -1 \\ 0 & -1 & -3 \end{bmatrix} \quad \begin{array}{c} -\frac{1}{3}R_1 \\ \sim \\ 0 & -3 & -1 \\ 0 & -1 & -3 \end{bmatrix} \quad \begin{array}{c} \sim \\ R_2 + 3R_1 \\ R_3 + R_1 \end{array} \quad \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{bmatrix} \quad \begin{array}{c} \sim \\ \frac{1}{2}R_2 \end{array}$$

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{bmatrix} \quad \begin{matrix} R_1 - R_2 \\ \sim \\ R_3 + 2R_2 \end{matrix} \quad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution is

$$x_1$$
 is free $x_2 = 0$ $x_3 = 0$

In vector parametric form:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Therefore, a basis for $E_{\lambda_1}(A)$ is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$.

• $E_{\lambda_2}(A) = \text{Null}(A - 2I)$:

$$A - 2I = \begin{bmatrix} 4 & -3 & -3 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{array}{c} R_1 + 3R_2 \\ \sim \\ R_3 + R_2 \end{array} \begin{bmatrix} 4 & 0 & -6 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{array}{c} \frac{1}{4}R_1 \\ \sim \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution is

$$x_1 = \frac{3}{2}x_3$$
$$x_2 = x_3$$
$$x_3 \text{ is free}$$

In vector parametric form:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} \frac{3}{2} \\ 1 \\ 1 \end{bmatrix}.$$

Therefore, a basis for $E_{\lambda_2}(A)$ is $\left\{ \begin{bmatrix} \frac{3}{2} \\ 1 \\ 1 \end{bmatrix} \right\}$.

• $E_{\lambda_3}(A) = \text{Null}(A - 4I)$:

$$A - 3I = \begin{bmatrix} 2 & -3 & -3 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \quad \begin{matrix} R_1 - 3R_2 \\ \sim \\ R_3 - R_2 \end{matrix} \quad \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \frac{1}{2}R_1 \\ -R_2 \\ \sim \\ \sim \end{matrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution is

$$x_1 = 0$$

$$x_2 = -x_3$$

$$x_3 \text{ is free}$$

In vector parametric form:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}.$$

Therefore, a basis for $E_{\lambda_3}(A)$ is $\left\{ \begin{bmatrix} 0\\-1\\1 \end{bmatrix} \right\}$.

c) A is diagonalizable because it has three distinct eigenvalues. We can write $A = PDP^{-1}$, with

$$P = \begin{bmatrix} 1 & \frac{3}{2} & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

To find a formula for A^k , we first calculate P^{-1} :

$$\begin{bmatrix} 1 & \frac{3}{2} & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 3/2R_2} \begin{bmatrix} 1 & 0 & \frac{3}{2} & 1 & -\frac{3}{2} & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & -1 & 1 \end{bmatrix} \sim \\ R_3 - R_2 \begin{bmatrix} 1 & 0 & \frac{3}{2} & 1 & -\frac{3}{2} & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & -1 & 1 \end{bmatrix} \xrightarrow{1/2R_3}$$

$$\begin{bmatrix} 1 & 0 & \frac{3}{2} & 1 & -\frac{3}{2} & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad R_1 - \frac{3}{2}R_3 \quad \begin{bmatrix} 1 & 0 & 0 & 1 & -\frac{3}{4} & -\frac{3}{4} \\ 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Thus, $P^{-1} = \begin{bmatrix} 1 & -\frac{3}{4} & -\frac{3}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Now, we calculate A^k :

$$\begin{split} A^k &= PD^k P^{-1} = \begin{bmatrix} 1 & \frac{3}{2} & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6^k & 0 & 0 \\ 0 & 2^k & 0 \\ 0 & 0 & 4^k \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{4} & -\frac{3}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ &= \begin{bmatrix} 6^k & \frac{3}{2} \times 2^k & 0 \\ 0 & 2^k & -4^k \\ 0 & 2^k & 4^k \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{4} & -\frac{3}{4} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ &= \begin{bmatrix} 6^k & \frac{3}{4} \times 2^k - \frac{3}{4} \times 6^k & \frac{3}{4} \times 2^k - \frac{3}{4} \times 6^k \\ 0 & \frac{1}{2} \times 2^k + \frac{1}{2} \times 4^k & \frac{1}{2} \times 2^k - \frac{1}{2} \times 4^k \\ 0 & \frac{1}{2} \times 2^k - \frac{1}{2} \times 4^k & \frac{1}{2} \times 2^k + \frac{1}{2} \times 4^k \end{bmatrix}. \end{split}$$

8. Find the shortest distance from $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 7 \end{bmatrix}$ to the line spanned by $\vec{v} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$.

Solution.

First, we calculate $\operatorname{proj}_{\vec{v}}\vec{x}$:

$$\operatorname{proj}_{\vec{v}}\vec{x} = \frac{\vec{x} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}\vec{v} = \frac{1(1) + 0(-1) + 7(3)}{1^2 + (-1)^2 + 3^3} \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} = \frac{22}{11} \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ -2\\ 6 \end{bmatrix}. \tag{1}$$

The shortest distance from \vec{x} to the line spanned by \vec{v} is given by

$$\|\vec{x} - \operatorname{proj}_{\vec{v}}\vec{x}\| = \begin{bmatrix} -1\\2\\1 \end{bmatrix} = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{6}.$$

9. Let
$$\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$.

- a) Show that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 .
- b) Write $\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ as a linear combination of \vec{u}_1 , \vec{u}_2 , \vec{u}_3 .

Solution.

- a) Note that
 - $\vec{u}_1 \cdot \vec{u}_2 = 1(1) + 0(2) + 1(-1) = 1 1 = 0$,
 - $\vec{u}_1 \cdot \vec{u}_3 = 1(1) + 0(-1) + 1(-1) = 1 1 = 0$, and
 - $\vec{u}_2 \cdot \vec{u}_3 = 1(1) + 2(-1) + (-1)(-1) = 1 2 + 1 = 0$.

Therefore, $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal set of nonzero vectors, which implies that $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is a linearly independent set. Since there are three vectors in this set and dim(\mathbb{R}^3) = 3, then $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 .

b) Since $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 , we know that we can write

$$\vec{v} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3,$$

where $c_i = \frac{\vec{v} \cdot \vec{u}_i}{\vec{v}_i \cdot \vec{v}_i}$. Thus,

•
$$c_1 = \frac{\vec{v} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{3(1)+1(0)+2(1)}{1^2+0^2+1^2} = \frac{5}{2},$$

•
$$c_1 = \frac{\vec{v} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} = \frac{3(1)+1(0)+2(1)}{1^2+0^2+1^2} = \frac{5}{2},$$

• $c_2 = \frac{\vec{v} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} = \frac{3(1)+1(2)+2(-1)}{1^2+2^2+(-1)^2} = \frac{3}{6} = \frac{1}{2}, \text{ and}$
• $c_3 = \frac{\vec{v} \cdot \vec{u}_3}{\vec{u}_3 \cdot \vec{u}_3} = \frac{3(1)+1(-1)+2(-1)}{1^2+(-1)^2+(-1)^2} = 0.$

•
$$c_3 = \frac{\vec{v} \cdot \vec{u}_3}{\vec{u}_3 \cdot \vec{u}_3} = \frac{3(1)+1(-1)+2(-1)}{1^2+(-1)^2+(-1)^2} = 0.$$

Thus,

$$\vec{v} = \frac{5}{2}\vec{u}_1 + \frac{1}{2}\vec{u}_2.$$

10. Find the closest point to
$$\vec{v} = \begin{bmatrix} -1\\2\\3\\1 \end{bmatrix}$$
 in $H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix} \right\}$. What is the shortest distance

from \vec{v} to H?

Solution.

Let $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$. The closest point to \vec{v} in H is given by

$$\operatorname{proj}_{\vec{u}} \vec{v} = \frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}$$

$$= \frac{-1 + 2 + 0 + 2}{1 + 1 + 0 + 4} \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix}$$

$$= \frac{3}{6} \begin{bmatrix} 1\\1\\0\\2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\0\\1 \end{bmatrix}.$$

The shortest distance is given by

$$\|\vec{v} - \text{proj}_{\vec{u}}\vec{v}\| = \begin{bmatrix} -1\\2\\3\\1 \end{bmatrix} - \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\0\\1 \end{bmatrix} \\ = \begin{bmatrix} -\frac{3}{2}\\\frac{3}{2}\\3\\0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -3\\3\\6\\0 \end{bmatrix} \\ = \frac{1}{2}\sqrt{9+9+36+0} \\ = \frac{\sqrt{54}}{2}.$$

11. Let $\{\vec{u}, \vec{v}\}$ be an orthogonal set of vectors in \mathbb{R}^n , and let $\vec{x} \in \text{Span}\{\vec{u}\}$ and $\vec{y} \in \text{Span}\{\vec{v}\}$. Prove that \vec{x} and \vec{y} are orthogonal.

Solution.

We must show that $\vec{x} \cdot \vec{y} = 0$. Since $\vec{x} \in \text{Span}\{\vec{u}\}$, there exists a scalar c_1 such that $\vec{x} = c_1 \vec{u}$. Similarly, since $\vec{y} \in \text{Span}\{\vec{v}\}$, there exists a scalar c_2 such that $\vec{y} = c_2 \vec{v}$. Therefore,

$$\vec{x} \cdot \vec{y} = (c_1 \vec{u}) \cdot (c_2 \vec{v}) = (c_1 c_2)(\vec{u} \cdot \vec{v}).$$

Since $\{\vec{u}, \vec{v}\}$ is an orthogonal set, we know that $\vec{u} \cdot \vec{v} = 0$. Therefore, $\vec{x} \cdot \vec{y} = 0$, which implies that \vec{x} and \vec{y} are orthogonal.

- 12. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) If A is singular, then A is not diagonalizable.
 - b) If A is invertible, then A is diagonalizable.
 - c) Let $A \in M_{n \times n}$. If dim(Null(A)) = 1, then A is not invertible.
 - d) Any linearly independent set is an orthogonal set.
 - e) Any orthogonal set of vectors is a linearly independent set.
 - f) Let $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ be an orthogonal set of vectors in \mathbb{R}^n , and let t_1, t_2, \dots, t_p be real numbers. The set $\{t_1\vec{v}_1, t_2\vec{v}_2, \dots, t_p\vec{v}_p\}$ is orthogonal.

Solution.

- a) FALSE. Consider $A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$. This matrix is singular since its determinant is zero. However, A has two distinct eigenvalues (0 and 2), therefore A is diagonalizable.
- b) FALSE. Consider $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. This matrix is invertible because its determinant is not zero (it is 1). The eigenvalue is $\lambda = 1$ with algebraic multiplicity $a_{\lambda} = 2$. A basis for the corresponding eigenspace is $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ (verify this), so the geometric multiplicity is $g_{\lambda} = 1 \neq a_{\lambda}$. Therefore, A is not diagonalizable.
- c) TRUE. This means that $A\vec{x} = \vec{0}$ has nontrivial solutions. Alternatively, you can also see that rankA = n 1 < n. Therefore, A is not invertible.
- d) FALSE. A counterexample is the set

$$\left\{ \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

which is linearly independent, but not orthogonal.

e) FALSE. A counterexample is the set

$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

which is orthogonal, but not linearly independent because one of the vectors is the zero vector.

f) TRUE. $(t_i\vec{v}_i) \cdot (t_j\vec{v}_j) = (t_it_j)(\vec{v}_i \cdot \vec{v}_j) = (t_it_j)(0) = 0$, for all $i \neq j$. So the set $\{t_1\vec{v}_1, t_2\vec{v}_2, \dots, t_p\vec{v}_p\}$ is orthogonal.