Apply advanced statistical and analytical methods to solve complex problems

```
import pandas as pd
data = pd.read_csv("/content/disney_plus_titles.csv")
data.info()
RangeIndex: 1368 entries, 0 to 1367
    Data columns (total 12 columns):
    # Column
                   Non-Null Count Dtype
                   1368 non-null object
    0 show_id
     1
        type
                   1368 non-null
                                  object
        title
                    1368 non-null
        director
                    928 non-null
                    1194 non-null
        cast
                    1193 non-null
        country
                                  object
        date_added
                    1365 non-null
                                  object
        release_year 1368 non-null
                                  int64
                    1366 non-null
     8
        rating
                                  object
                    1368 non-null
        duration
                                  object
    10 listed_in
                    1368 non-null
                                  object
    11 description 1368 non-null
                                  object
    dtypes: int64(1), object(11)
    memory usage: 128.4+ KB
```

data.head()

₹		show_id	type	title	director	cast	country	date_added	release_year
	0	s1	Movie	A Spark Story	Jason Sterman, Leanne Dare	Apthon Corbin, Louis Gonzales	NaN	September 24, 2021	2021
	1	s2	Movie	Spooky Buddies	Robert Vince	Tucker Albrizzi, Diedrich Bader, Ameko Eks Mas	United States, Canada	September 24, 2021	2011
	2	s3	Movie	The Fault in Our Stars	Josh Boone	Shailene Woodley, Ansel Elgort, Laura Dern, Sa	United States	September 24, 2021	2014
	3	s4	TV Show	Dog: Impossible	NaN	Matt Beisner	United States	September 22, 2021	2019
	4	s5	TV	Spidey And His	NaN	Benjamin Valic, Lily Sanfelippo.	United	September	2021 •
Next	ste	ps: Gei	nerate co	ode with data	a •	View recomm	ended plot	s	

data.columns.values

data.isnull().sum()

-	show_id	0
_	type	0
	title	0
	director	440
	cast	174
	country	175
	date_added	3
	release_year	0
	rating	2
	duration	0

```
listed_in 0
description 0
dtype: int64
```

```
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from textblob import TextBlob
data['release_year'] = pd.to_datetime(data['release_year'], format='%Y', errors='coerce')
data= data.dropna(subset=['release_year'])
releases_per_year = data['release_year'].dt.year.value_counts().sort_index()
plt.figure(figsize=(10, 6))
releases_per_year.plot(kind='line')
plt.title('Number of Releases Per Year')
plt.xlabel('Year')
plt.ylabel('Number of Releases')
plt.grid(True)
plt.show()
```


Number of Releases Per Year


```
data['description'] = data['description'].astype(str) # Ensure 'description' is a string

def get_sentiment(text):
    blob = TextBlob(text)
    return blob.sentiment.polarity, blob.sentiment.subjectivity

data['sentiment'] = data['description'].apply(lambda x: get_sentiment(x)[0])
  data['subjectivity'] = data['description'].apply(lambda x: get_sentiment(x)[1])

sns.histplot(data['sentiment'], kde=True)
  plt.title('Sentiment Polarity Distribution')
  plt.xlabel('Sentiment Polarity')
  plt.ylabel('Frequency')
  plt.show()
```


Sentiment Polarity Distribution

```
500
  400
Frequency
  300
  200
  100
                -0.75
                                 -0.25
        -1.00
                         -0.50
                                          0.00
                                                   0.25
                                                           0.50
                                                                   0.75
                                                                            1.00
                                   Sentiment Polarity
```

```
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(data['description'])
```

```
kmeans = KMeans(n_clusters=5, random_state=42)
data['cluster'] = kmeans.fit_predict(X)
```

```
pca = PCA(n_components=2, random_state=42)
X_pca = pca.fit_transform(X.toarray())
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=data['cluster'], cmap='viridis')
plt.title('KMeans Clustering of Descriptions')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()

