- **3.17.** Let (Ω, \mathcal{F}, P) be a probability space and let $X: \Omega \to \mathbf{R}$ be a random variable with $E[|X|] < \infty$. If $\mathcal{G} \subset \mathcal{F}$ is a finite σ -algebra, then by Exercise 2.7 there exists a partition $\Omega = \bigcup_{i=1}^{n} G_i$ such that \mathcal{G} consists of \emptyset and unions of some (or all) of G_1, \ldots, G_n .
 - a) Explain why $E[X|\mathcal{G}](\omega)$ is constant on each G_i . (See Exercise 2.7 c).)

2.7. a) Suppose G_1, G_2, \ldots, G_n are disjoint subsets of Ω such that

$$\Omega = \bigcup_{i=1}^{n} G_i$$

Prove that the family $\mathcal G$ consisting of \emptyset and all unions of some (or all) of G_1,\ldots,G_n constitutes a σ -algebra on Ω . b) Prove that any *finite* σ -algebra $\mathcal F$ on Ω is of the type described in

- a). c) Let \mathcal{F} be a finite σ -algebra on Ω and let $X \colon \Omega \to \mathbf{R}$ be \mathcal{F} -measurable. Prove that X assumes only finitely many possible values. More precisely, there exists a disjoint family of subsets $F_1, \ldots, F_m \in \mathcal{F}$ and real numbers c_1, \ldots, c_m such that

$$X(\omega) = \sum_{i=1}^{m} c_i \mathcal{X}_{F_i}(\omega)$$
.

By the exercise 2.7, for C.ER, 1=1,...,n,

$$\mathbb{E}[X|G](\omega) = \mathbb{E}\left[\sum_{i=1}^{n} G_{i}X_{G_{i}}(\omega)\right] = \mathbb{E}[C] = C$$

b) Assume that $P[G_i] > 0$. Show that

$$E[X|\mathcal{G}](\omega) = \frac{\int_{G_i} XdP}{P(G_i)}$$
 for $\omega \in G_i$.

Mowever,

c)	Suppose X assumes only finitely many values a_1, \ldots, a_m . Then from	om
	elementary probability theory we know that (see Exercise 2.1)	

$$E[X|G_i] = \sum_{k=1}^{m} a_k P[X = a_k|G_i]$$
.

Compare with b) and verify that

$$E[X|G_i] = E[X|\mathcal{G}](\omega)$$
 for $\omega \in G_i$.

Thus we may regard the conditional expectation as defined in Appendix B as a (substantial) generalization of the conditional expectation in elementary probability theory.

Using the previous tem,

$$F[X][G] = \underbrace{G_i[XdP]}_{P(G_i)} \underbrace{J_{G_i}[X_{G_i}]}_{P(G_i)} = \underbrace{\sum_{k=1}^{m} a_k P(G_i)}_{P(G_i)} = \underbrace{\underbrace{\sum_{k=1}^{m} a_k P(G_i)}_{P(G_$$

We have
$$\mathbb{E}\left[\sum_{i=1}^{n}c_{i}\chi_{G_{i}}(\omega)\mid G_{i}\right] = \int_{G_{i}}\chi_{d}P(\omega)$$

By the fact that

$$\mu(B) = \mu(B \cap A)$$
 $\mu(A)$