Database Systems: The Complete Book

Chapter	· January 2002		
CITATIONS 674	<u> </u>	READS 56,429	
6 autho	rs, including:		
	Hector Hector Fundación Universitaria Tecnológico Comfenalco 23 PUBLICATIONS 1,350 CITATIONS SEE PROFILE		

Database Systems: The Complete Book

Hector Garcia-Molina Jeffrey D. Ullman Jennifer Widom

Department of Computer Science Stanford University

Prentice Hall Upper Saddle River, New Jersey 07458

About the Authors

JEFFREY D. ULLMAN is the Stanford W. Ascherman Professor of Computer Science at Stanford University. He is the author or co-author of 16 books, including *Elements of ML Programming* (Prentice Hall 1998). His research interests include data mining, information integration, and electronic education. He is a member of the National Academy of Engineering, and recipient of a Guggenheim Fellowship, the Karl V. Karlstrom Outstanding Educator Award, the SIGMOD Contributions Award, and the Knuth Prize.

JENNIFER WIDOM is Associate Professor of Computer Science and Electrical Engineering at Stanford University. Her research interests include query processing on data streams, data caching and replication, semistructured data and XML, and data warehousing. She is a former Guggenheim Fellow and has served on numerous program committees, advisory boards, and editorial boards.

HECTOR GARCIA-MOLINA is the L. Bosack and S. Lerner Professor of Computer Science and Electrical Engineering, and Chair of the Department of Computer Science at Stanford University. His research interests include digital libraries, information integration, and database application on the Internet. He was a recipient of the SIGMOD Innovations Award and is a member of PITAC (President's Information-Technology Advisory Council).

Table of Contents

1	The		ds of Database Systems	:
	1.1	The E	volution of Database Systems	. :
		1.1.1	Early Database Management Systems	. :
		1.1.2	Relational Database Systems	. 4
		1.1.3	Smaller and Smaller Systems	. ;
		1.1.4	Bigger and Bigger Systems	. (
		1.1.5	Client-Server and Multi-Tier Architectures	
		1.1.6	Multimedia Data	. 8
		1.1.7	Information Integration	. 8
	1.2	Overvi	iew of a Database Management System	. (
		1.2.1	Data-Definition Language Commands	
		1.2.2	Overview of Query Processing	
		1.2.3	Storage and Buffer Management	
		1.2.4	Transaction Processing	
		1.2.5	The Query Processor	
	1.3	Outlin	e of Database-System Studies	
		1.3.1	Database Design	
		1.3.2	Database Programming	
		1.3.3	Database System Implementation	
		1.3.4	Information Integration Overview	
	1.4	Summ	ary of Chapter 1	
	1.5		nces for Chapter 1	
2	The	Entity	y-Relationship Data Model	23
	2.1	Elemen	nts of the E/R Model	24
		2.1.1	Entity Sets	
		2.1.2	Attributes	25
		2.1.3	Relationships	
		2.1.4	Entity-Relationship Diagrams	25
		2.1.5	Instances of an E/R Diagram	
		2.1.6	Multiplicity of Binary E/R Relationships	27
		2.1.7	Multiway Relationships	
		010	Dalas in Dalationshing	20

		2.1.9	Attributes on Relationships						31
		2.1.10	Converting Multiway Relationships to Binary .						32
		2.1.11	Subclasses in the E/R, Model						33
		2.1.12	Exercises for Section 2.1						36
	2.2	Design	Principles						39
		2.2.1	Faithfulness	Ī	•	•		•	39
		2.2.2	Avoiding Redundancy	٠	٠	•			39
		2.2.3	Simplicity Counts	•	•	•	•	•	40
		2.2.4	Choosing the Right Relationships	•	•	•		•	40
		2.2.5	Picking the Right Kind of Element	•	•	•	•	•	42
		2.2.6	Exercises for Section 2.2	•	•	•	• •	•	44
	2.3	The M	odeling of Constraints	•	•	•	• •	•	47
		2.3.1	Classification of Constraints	•	•	•	٠.	•	47
		2.3.2	Keys in the E/R Model	•	•	•	٠.	•	48
		2.3.3	Representing Keys in the E/R Model	•	•	•	٠.	•	50
		2.3.4	Single-Value Constraints	•	٠	•	٠.	•	51
		2.3.5	Referential Integrity	•	•	•	٠.	•	51
		2.3.6	Referential Integrity in E/R Diagrams	•	•	•	٠.	•	52
		2.3.7	Other Kinds of Constraints	•	•	•		•	53
		2.3.8	Exercises for Section 2.3	•	•	•		•	53
	2.4		Entity Sets	٠	٠	•		•	54
	2.1	2.4.1	Causes of Weak Entity Sets	•	•	•		•	
		2.4.2	Requirements for Weak Entity Sets	•	٠	•	٠.	•	54
		2.4.3	Weak Entity Set Notation	•	•	•		•	56
		2.4.4	Exercises for Section 2.4	٠	•	•		•	57
	2.5		ary of Chapter 2	•	•	•	٠.	•	58
	2.6	Referen	nces for Chapter 2	•	•	•	• •	•	59
	2.0	iciciei	ices for Chapter 2	•	•	•	٠.	•	60
3	The	Relati	onal Data Model						61
	3.1	Basics	of the Relational Model						61
		3.1.1	Attributes						62
		3.1.2	Schemas						62
		3.1.3	Tuples						62
		3.1.4	Domains					Ť	63
		3.1.5	Equivalent Representations of a Relation					•	63
		3.1.6	Relation Instances						64
		3.1.7	Exercises for Section 3.1	•	•	•	• •	•	64
	3.2	From E	E/R Diagrams to Relational Designs				• •	·	65
		3.2.1	From Entity Sets to Relations	•	•	•		•	66
		3.2.2	From E/R Relationships to Relations	•				•	67
		3.2.3	Combining Relations					•	70
		3.2.4	Handling Weak Entity Sets					•	71
		3.2.5	Exercises for Section 3.2	•				•	75
	3.3	Conver	ting Subclass Structures to Relations					•	76
		3.3.1	E/R-Style Conversion	•				•	77
				•	٠.	٠,		•	

		3.3.2	An Object-Oriented Approach
		3.3.3	Using Null Values to Combine Relations 79
		3.3.4	Comparison of Approaches
		3.3.5	Exercises for Section 3.3
	3.4	Functi	onal Dependencies
		3.4.1	Definition of Functional Dependency 83
	-	3.4.2	Keys of Relations
		3.4.3	Superkeys
		3.4.4	Discovering Keys for Relations 87
		3.4.5	Exercises for Section 3.4
	3.5		About Functional Dependencies 90
	0.0	3.5.1	The Splitting/Combining Rule 90
		3.5.2	Trivial Functional Dependencies 92
		3.5.3	Computing the Closure of Attributes
		3.5.4	Why the Closure Algorithm Works 95
		3.5.5	The Transitive Rule
		3.5.6	Closing Sets of Functional Dependencies 98
		3.5.7	Projecting Functional Dependencies
		3.5.8	Exercises for Section 3.5
	3.6	Dociar	of Relational Database Schemas
	5.0	3.6.1	Anomalies
		3.6.2	Decomposing Relations
		3.6.3	Boyce-Codd Normal Form
		3.6.4	Decomposition into BCNF
		3.6.5	Recovering Information from a Decomposition 112
		3.6.6	Third Normal Form
		3.6.7	Exercises for Section 3.6
	3.7		valued Dependencies
	3.1	3.7.1	Attribute Independence and Its Consequent Redundancy 118
		3.7.2	Definition of Multivalued Dependencies
		3.7.3	Reasoning About Multivalued Dependencies
		3.7.4	Fourth Normal Form
		3.7.4 $3.7.5$	Decomposition into Fourth Normal Form
		3.7.6	Relationships Among Normal Forms
		3.7.7	Exercises for Section 3.7
	20		eary of Chapter 3
	3.8	Dafana	ences for Chapter 3
	3.9	Reiere	ences for Chapter 3
4	Oth	er Dat	ta Models 131
•	4.1	Revie	w of Object-Oriented Concepts
	***	4.1.1	The Type System
		4.1.2	Classes and Objects
		4.1.3	Object Identity
		4.1.4	Methods
		4.1.5	Class Hierarchies

4.2		uction to ODL
	4.2.1	Object-Oriented Design
	4.2.2	Class Declarations
	4.2.3	Attributes in ODL
	4.2.4	Relationships in ODL
	4.2.5	Inverse Relationships
	4.2.6	Multiplicity of Relationships
	4.2.7	Methods in ODL
	4.2.8	Types in ODL
	4.2.9	Exercises for Section 4.2
4.3	Additi	onal ODL Concepts
	4.3.1	Multiway Relationships in ODL
	4.3.2	Subclasses in ODL
	4.3.3	Multiple Inheritance in ODL
	4.3.4	Extents
	4.3.5	Declaring Keys in ODL
	4.3.6	Exercises for Section 4.3
4.4	From	ODL Designs to Relational Designs
	4.4.1	From ODL Attributes to Relational Attributes 156
	4.4.2	Nonatomic Attributes in Classes
	4.4.3	Representing Set-Valued Attributes
	4.4.4	Representing Other Type Constructors 160
	4.4.5	Representing ODL Relationships
	4.4.6	What If There Is No Key?
	4.4.7	Exercises for Section 4.4
4.5		bject-Relational Model
	4.5.1	From Relations to Object-Relations 166
	4.5.2	Nested Relations
	4.5.3	References
	4.5.4	Object-Oriented Versus Object-Relational 170
	4.5.5	From ODL Designs to Object-Relational Designs 172
	4.5.6	Exercises for Section 4.5
4.6		cructured Data
	4.6.1	Motivation for the Semistructured-Data Model 173
	4.6.2	Semistructured Data Representation
	4.6.3	Information Integration Via Semistructured Data 175
. ~	4.6.4	Exercises for Section 4.6
4.7		and Its Data Model
	4.7.1	Semantic Tags
	4.7.2	Well-Formed XML
	4.7.3	Document Type Definitions
	4.7.4	Using a DTD
	4.7.5	Attribute Lists
4.8	4.7.6	Exercises for Section 4.7
4.8	Summ	ary of Chapter 4

	4.9	Refere	nces for Chapter 4
5	Rela	ational	Algebra 189
	5.1		ample Database Schema
	5.2		gebra of Relational Operations
		5.2.1	Basics of Relational Algebra
		5.2.2	Set Operations on Relations
		5.2.3	Projection
		5.2.4	Selection
		5.2.5	Cartesian Product
		5.2.6	Natural Joins
		5.2.7	Theta-Joins
./%	***	5.2.8	Combining Operations to Form Queries 201
		5.2.9	Renaming
		5.2.10	
		5.2.11	A Linear Notation for Algebraic Expressions 206
		5.2.12	Exercises for Section 5.2
	5.3	Relatio	onal Operations on Bags
		5.3.1	Why Bags?
		5.3.2	Union, Intersection, and Difference of Bags 215
		5.3.3	Projection of Bags
		5.3.4	Selection on Bags
		5.3.5	Product of Bags
		5.3.6	Joins of Bags
		5.3.7	Exercises for Section 5.3
	5.4	Extend	ded Operators of Relational Algebra
		5.4.1	Duplicate Elimination
		5.4.2	Aggregation Operators
		5.4.3	Grouping
		5.4.4	The Grouping Operator
		5.4.5	Extending the Projection Operator
		5.4.6	The Sorting Operator
		5.4.7	Outerjoins
		5.4.8	Exercises for Section 5.4
	5.5	Const	raints on Relations
		5.5.1	Relational Algebra as a Constraint Language 231
		5.5.2	Referential Integrity Constraints
		5.5.3	Additional Constraint Examples 233
		5.5.4	Exercises for Section 5.5
	5.6	Summ	ary of Chapter 5
	5.7	Refere	ences for Chapter 5

		6.6.5	Indexes
		6.6.6	Introduction to Selection of Indexes
		6.6.7	Exercises for Section 6.6
	6.7	View I	Definitions
		6.7.1	Declaring Views
		6.7.2	Querying Views
		6.7.3	Renaming Attributes
		6.7.4	Modifying Views
		6.7.5	Interpreting Queries Involving Views
		6.7.6	Exercises for Section 6.7
	6.8	Summa	ary of Chapter 6
	6.9	Refere	nces for Chapter 6
7	Cor	straint	ts and Triggers 31
•	7.1	Kevs a	and Foreign Keys
		7.1.1	Declaring Primary Keys
		7.1.2	Keys Declared With UNIQUE
		7.1.3	Enforcing Key Constraints
		7.1.4	Declaring Foreign-Key Constraints
		7.1.5	Maintaining Referential Integrity
			Deferring the Checking of Constraints
		7.1.7	Exercises for Section 7.1
	7.2		raints on Attributes and Tuples
		7.2.1	Not-Null Constraints
		7.2.2	Attribute-Based CHECK Constraints
		7.2.3	Tuple-Based CHECK Constraints
		7.2.4	Exercises for Section 7.2
	7.3		cation of Constraints
		7.3.1	Giving Names to Constraints
		7.3.2	Altering Constraints on Tables
		7.3.3	Exercises for Section 7.3
	7.4		a-Level Constraints and Triggers
		7.4.1	Assertions
		7.4.2	Event-Condition-Action Rules
		7.4.3	Triggers in SQL
		7.4.4	Instead-Of Triggers
		7.4.5	Exercises for Section 7.4
	7.5		ary of Chapter 7
	7.6		nces for Chapter 7
8	Sve	tem A	spects of SQL 34
3	8.1	SOL	n a Programming Environment
	0.1	8.1.1	The Impedance Mismatch Problem
		8.1.2	The SQL/Host Language Interface
			The DECLARE Section 35

xiii

TABLE OF CONTENTS

6	The	Datab	base Language SQL	239
	6.1	Simple	e Queries in SQL	. 240
		6.1.1	Projection in SQL	. 242
		6.1.2	Selection in SQL	. 243
		6.1.3	Comparison of Strings	
		6.1.4	Dates and Times	. 247
		6.1.5	Null Values and Comparisons Involving NULL	. 248
		6.1.6	The Truth-Value UNKNOWN	. 249
		6.1.7	Ordering the Output	. 251
		6.1.8	Exercises for Section 6.1	. 252
	6.2	Querie	es Involving More Than One Relation	. 254
		6.2.1	Products and Joins in SQL	. 254
		6.2.2	Disambiguating Attributes	. 255
		6.2.3	Tuple Variables	
		6.2.4	Interpreting Multirelation Queries	. 258
		6.2.5	Union, Intersection, and Difference of Queries	. 260
		6.2.6	Exercises for Section 6.2	. 262
	6.3	Subqu	eries	. 264
		6.3.1	Subqueries that Produce Scalar Values	. 264
		6.3.2	Conditions Involving Relations	. 266
		6.3.3	Conditions Involving Tuples	. 266
		6.3.4	Correlated Subqueries	. 268
		6.3.5	Subqueries in FROM Clauses	. 270
		6.3.6	SQL Join Expressions	. 270
		6.3.7	Natural Joins	. 272
		6.3.8	Outerjoins	. 272
		6.3.9	Exercises for Section 6.3	. 274
	6.4	Full-R	elation Operations	. 277
		6.4.1	Eliminating Duplicates	. 277
		6.4.2	Duplicates in Unions, Intersections, and Differences	. 278
		6.4.3	Grouping and Aggregation in SQL	. 279
		6.4.4	Aggregation Operators	. 279
		6.4.5	Grouping	. 280
		6.4.6	HAVING Clauses	
		6.4.7	Exercises for Section 6.4	. 284
	6.5		ase Modifications	. 286
		6.5.1	Insertion	. 286
		6.5.2	Deletion	. 288
		6.5.3	Updates	. 289
		6.5.4	Exercises for Section 6.5	
	6.6	Defini	ng a Relation Schema in SQL	
		6.6.1	Data Types	
		6.6.2	Simple Table Declarations	
		6.6.3	Modifying Relation Schemas	
		6.6.4	Default Values	. 295

	8.1.4	Using Shared Variables	. 353
	8.1.5	Single-Row Select Statements	. 354
	8.1.6	Cursors	. 355
	8.1.7	Modifications by Cursor	. 358
	8.1.8	Protecting Against Concurrent Updates	. 360
	8.1.9	Scrolling Cursors	. 361
	8.1.10	Dynamic SQL	. 361
	8.1.11	Exercises for Section 8.1	. 363
8.2	Procee	dures Stored in the Schema	. 365
	8.2.1	Creating PSM Functions and Procedures	. 365
	8.2.2	Some Simple Statement Forms in PSM	. 366
	8.2.3	Branching Statements	
	8.2.4	Queries in PSM	369
	8.2.5	Loops in PSM	370
	8.2.6	For-Loops	379
	8.2.7	Exceptions in PSM	374
	8.2.8	Using PSM Functions and Procedures	276
	8.2.9	Exercises for Section 8.2	377
8.3		QL Environment	
0.0	8.3.1	Environments	370
	8.3.2	Schemas	
	8.3.3	Catalogs	
	8.3.4	Clients and Servers in the SQL Environment	. 901
	8.3.5	Connections	
	8.3.6	Sessions	384
	8.3.7	Modules	124
8.4		a Call-Level Interface	185
	8.4.1	Introduction to SQL/CLI	
	8.4.2	Processing Statements	. 909
	8.4.3	Fetching Data From a Query Result	380
	8.4.4	Passing Parameters to Queries	302
	8.4.5	Exercises for Section 8.4	303
8.5	Java D	Database Connectivity	303
	8.5.1	Introduction to JDBC	303
	8.5.2	Creating Statements in JDBC	304
	8.5.3	Cursor Operations in JDBC	306
	8.5.4	Parameter Passing	306
	8.5.5	Exercises for Section 8.5	307
8.6	Transa	actions in SQL	307
	8.6.1	Serializability	
	8.6.2	Atomicity	
	8.6.3	Transactions	401
	8.6.4	Read-Only Transactions	
	8.6.5	Dirty Reads	405
	8.6.6	Other Isolation Levels	

		8.6.7	Exercises for Section 8.6	
	8.7	Securit	ty and User Authorization in SQL 4	110
		8.7.1	Privileges	110
		8.7.2	Creating Privileges	
		8.7.3	The Privilege-Checking Process	113
		8.7.4	Granting Privileges	114
		8.7.5	Grant Diagrams	116
		8.7.6	Revoking Privileges	117
		8.7.7	Exercises for Section 8.7	121
	8.8	Summ	ary of Chapter 8	122
	8.9	Refere	ences for Chapter 8	124
9	Obj	ect-Or	Telleation in Sucry Bunganges	25
	9.1	Introd	luction to OQL	425
		9.1.1	An Object-Oriented Movie Example	426
		9.1.2	Path Expressions	426
		9.1.3	Select-From-Where Expressions in OQL	428
		9.1.4	Modifying the Type of the Result	429
		9.1.5	Complex Output Types	431
		9.1.6	Subqueries	431
		9.1.7	Exercises for Section 9.1	433
	9.2	Addit	ional Forms of OQL Expressions	436
		9.2.1	Quantifier Expressions	437
		9.2.2	Aggregation Expressions	437
		9.2.3	Group-By Expressions	438
		9.2.4	HAVING Clauses	441
		9.2.5	Union, Intersection, and Difference	442
		9.2.6	Exercises for Section 9.2	442
	9.3	Objec	et Assignment and Creation in OQL	443
		9.3.1	Assigning Values to Host-Language Variables	444
		9.3.2	Extracting Elements of Collections	444
		9.3.3	Obtaining Each Member of a Collection	445
		9.3.4	Constants in OQL	446
		9.3.5	Creating New Objects	447
		9.3.6	Exercises for Section 9.3	448
	, 9.4	User-	Defined Types in SQL	449
		9.4.1	Defining Types in SQL	449
		9.4.2	Methods in User-Defined Types	451
		9.4.3	Declaring Relations with a UDT	452
		9.4.4	References	452
		9.4.5	Exercises for Section 9.4	454
	9.5	Opera	ations on Object-Relational Data	455
		9.5.1	Following References	455
		9.5.2	Accessing Attributes of Tuples with a UDT	456
		9.5.3	Generator and Mutator Functions	457

<i>FABLE</i>	OF CO	ONTENTS	xvii
	11.2.3	Virtual Memory	509
	11.2.4	Secondary Storage	510
		Tertiary Storage	
	11.2.6	Volatile and Nonvolatile Storage	513
	11.2.7	Exercises for Section 11.2	514
11.3			
	11.3.1	Mechanics of Disks	515
		The Disk Controller	
		Disk Storage Characteristics	
		Disk Access Characteristics	
		Writing Blocks	
		Modifying Blocks	
		Exercises for Section 11.3	
11.4		Secondary Storage Effectively	
		The I/O Model of Computation	
		Sorting Data in Secondary Storage	
		Merge-Sort	
		Two-Phase, Multiway Merge-Sort	
		Multiway Merging of Larger Relations	
		Exercises for Section 11.4	
11.5		rating Access to Secondary Storage	
		Organizing Data by Cylinders	
		Using Multiple Disks	
		Mirroring Disks	
		Disk Scheduling and the Elevator Algorithm	
		Prefetching and Large-Scale Buffering	
		Summary of Strategies and Tradeoffs	
		Exercises for Section 11.5	
11.6		ailures	
		Intermittent Failures	
		Checksums	
	11.6.3	Stable Storage	548
		Error-Handling Capabilities of Stable Storage	
		Exercises for Section 11.6	
11.7		ery from Disk Crashes	
		The Failure Model for Disks	
	11.7.2	Mirroring as a Redundancy Technique	552
	11.7.3	Parity Blocks	550
		An Improvement: RAID 5	
		Coping With Multiple Disk Crashes	
	11.7.6	Exercises for Section 11.7	561

 11.8 Summary of Chapter 11
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <

			Ordering Relationships on UDT's					
			Exercises for Section 9.5					
	9.6		ary of Chapter 9					
	9.7	Referen	nces for Chapter 9					. 462
10			ery Languages					463
	10.1		c for Relations					
			Predicates and Atoms					
			Arithmetic Atoms					
			Datalog Rules and Queries					
			Meaning of Datalog Rules					
			Extensional and Intensional Predicates					
		10.1.6	Datalog Rules Applied to Bags					. 469
		10.1.7	Exercises for Section 10.1					. 471
	10.2	From I	Relational Algebra to Datalog					. 471
			Intersection					
			Union					
			Difference					
			Projection					
			Selection					
			Product					
			Joins					
	•		Simulating Multiple Operations with Datalog					
			Exercises for Section 10.2					
	10.3		ive Programming in Datalog					
			Recursive Rules					
			Evaluating Recursive Datalog Rules					
			Negation in Recursive Rules					
			Exercises for Section 10.3					
	10.4		ion in SQL					
	20.2		Defining IDB Relations in SQL					
			Stratified Negation					
			Problematic Expressions in Recursive SQL .					
			Exercises for Section 10.4					
	10.5		ary of Chapter 10					
			nces for Chapter 10					
	10.0	Terere	ices for Chapter IV	• •	•		•	. 001
11	Dat	a Stora	age					503
			Megatron 2002" Database System					. 503
	-		Megatron 2002 Implementation Details					
			How Megatron 2002 Executes Queries					
			What's Wrong With Megatron 2002?					
	11.2		emory Hierarchy					
			Cache					
			Main Memory					
					-	•	•	

TABLE OF CONTENTS	

xix

12	2 Rej	presen	ting Data Elements	567
	12.1	Data	Elements and Fields	. 56
		12.1.1	Representing Relational Database Elements	. 568
		12.1.2	Representing Objects	. 569
		12.1.3	Representing Data Elements	. 569
	12.2	Recor	ds	. 572
		12.2.1	Building Fixed-Length Records	. 573
		12.2.2	Record Headers	. 578
		12.2.3	Packing Fixed-Length Records into Blocks	. 576
		12.2.4	Exercises for Section 12.2	. 577
	12.3	Repre	senting Block and Record Addresses	. 578
		12.3.1	Client-Server Systems	579
		12.3.2	Logical and Structured Addresses	580
		12.3.3	Pointer Swizzling	581
		12.3.4	Returning Blocks to Disk	586
		12.3.5	Pinned Records and Blocks	586
		12.3.6	Exercises for Section 12.3	587
	12.4	Varial	ble-Length Data and Records	. 500
		12.4.1	Records With Variable-Length Fields	500
		12.4.2	Records With Repeating Fields	501
		12.4.3	Variable-Format Records	503
		12.4.4	Records That Do Not Fit in a Block	504
		12.4.5	BLOBS	505
		12.4.6	Exercises for Section 12.4	506
	12.5	Recor	d Modifications	. 550
		12.5.1	Insertion	. 990
		12.5 2	Deletion	. 990
		12.5.3	Update	. J99
		12.5.4	Exercises for Section 12.5	601
	12.6	Summ	ary of Chapter 12	. 001
	12.7	Refere	ences for Chapter 12	602
		101010	noos for onapier 12	. 003
13	Inde	ex Stri	uctures	605
	13.1	Indexe	es on Sequential Files	. 606
		13.1.1	Sequential Files	. 606
		13.1.2	Dense Indexes	. 607
		13.1.3	Sparse Indexes	. 609
		13.1.4	Multiple Levels of Index	610
		13.1.5	Indexes With Duplicate Search Keys	612
		13.1.6	Managing Indexes During Data Modifications	615
		13.1.7	Exercises for Section 13.1	620
	13.2	Second	dary Indexes	. 622
		13.2.1	Design of Secondary Indexes	623
		13.2.2	Applications of Secondary Indexes	. 624
		13.2.3	Indirection in Secondary Indexes	625

		13.2.4	Document Retrieval and Inverted Indexes	626
		13.2.5	Exercises for Section 13.2	630
1	3.3	B-Tree	s	632
		13.3.1	The Structure of B-trees	633
		13.3.2	Applications of B-trees	636
		13.3.3	Lookup in B-Trees	638
		13.3.4	Range Queries	638
		13.3.5	Insertion Into B-Trees	639
		13.3.6	Deletion From B-Trees	642
		13.3.7	Efficiency of B-Trees	645
		13.3.8	Exercises for Section 13.3	646
1	3.4	Hash 7	Tables	649
		13.4.1	Secondary-Storage Hash Tables	649
		13.4.2	Insertion Into a Hash Table	650
		13.4.3	Hash-Table Deletion	651
		13.4.4	Efficiency of Hash Table Indexes	652
		13.4.5	Extensible Hash Tables	652
		13.4.6	Insertion Into Extensible Hash Tables	653
		13.4.7	Linear Hash Tables	656
		13.4.8	Insertion Into Linear Hash Tables	657
		13.4.9	Exercises for Section 13.4	660
1	13.5	Summ	ary of Chapter 13	. 662
3	13.6	Refere	nces for Chapter 13	. 663
14 I	Mul	tidime	ensional and Bitmap Indexes	665
]	14.1	Applic	eations Needing Multiple Dimensions	. 000
		14.1.1	Geographic Information Systems	. 666
		14.1.2	Data Cubes	. 666
		14.1.3	Multidimensional Queries in SQL	. 668
		14.1.4	Executing Range Queries Using Conventional Indexes .	. 670
		14.1.5	Executing Nearest-Neighbor Queries Using Conventional	071
			Indexes	. 071
		14.1.6	Other Limitations of Conventional Indexes	. 073
		14.1.7	Overview of Multidimensional Index Structures	. 673
		14.1.8	Exercises for Section 14.1	. 074
	14.2	Hash-	Like Structures for Multidimensional Data	. 675
		14.2.1	Grid Files	. 670
		14.2.2	Lookup in a Grid File	. 070
		14.2.3	Insertion Into Grid Files	. 077
		14.2.4	Performance of Grid Files	. 678
		14.2.5	Partitioned Hash Functions	. 682
		14.2.6	Comparison of Grid Files and Partitioned Hashing	. 683
		14.2.7	Exercises for Section 14.2	. 684
	14.3	Tree-I	Like Structures for Multidimensional Data	. 687
		14.3.1	Multiple-Key Indexes	. 68

TABLE OF CONTENTS	
-------------------	--

xxi

		14.3.2	Performance of Multiple-Key Indexes 688
		14.3.3	kd-Trees
		14.3.4	Operations on kd-Trees
		14.3.5	Adapting kd-Trees to Secondary Storage 693
		14.3.6	Quad Trees
		14.3.7	R-Trees
		14.3.8	Operations on R-trees
		14.3.9	Exercises for Section 14.3
	14.4	Bitma	p Indexes
		14.4.1	Motivation for Bitmap Indexes
		14.4.2	Compressed Bitmaps
		14.4.3	Operating on Run-Length-Encoded Bit-Vectors 706
		14.4.4	Managing Bitmap Indexes
		14.4.5	Exercises for Section 14.4
	14.5	Summ	ary of Chapter 14
	14.6	Refere	nces for Chapter 14
15			ecution 713
	15.1	Introd	uction to Physical-Query-Plan Operators
		15.1.1	Scanning Tables
		15.1.2	Sorting While Scanning Tables
		15.1.3	The Model of Computation for Physical Operators 717
		15.1.4	Parameters for Measuring Costs
		15.1.5	I/O Cost for Scan Operators
		15.1.6	Iterators for Implementation of Physical Operators 720
	15.2	One-P	ass Algorithms for Database Operations
		15.2.1	One-Pass Algorithms for Tuple-at-a-Time Operations 724
		15.2.2	One-Pass Algorithms for Unary, Full-Relation Operations 725
		15.2. 3	One-Pass Algorithms for Binary Operations
		15.2.4	Exercises for Section 15.2
	15.3	Nested	-Loop Joins
		15.3.1	Tuple-Based Nested-Loop Join
		15.3.2	An Iterator for Tuple-Based Nested-Loop Join 733
		15.3.3	A Block-Based Nested-Loop Join Algorithm 734
		15.3.4	Analysis of Nested-Loop Join
		15.3.5	Summary of Algorithms so Far
		15.3.6	Exercises for Section 15.3
	15.4	Two-P	ass Algorithms Based on Sorting
		15.4.1	Duplicate Elimination Using Sorting
		15.4.2	Grouping and Aggregation Using Sorting 740
		15.4.3	A Sort-Based Union Algorithm
		15.4.4	Sort-Based Intersection and Difference
		15.4.5	A Simple Sort-Based Join Algorithm
		15.4.6	Analysis of Simple Sort-Join
		15.4.7	A More Efficient Sort-Based Join

		15.4.8	Summary of Sort-Based Algorithms	. 747
		15.4.9	Exercises for Section 15.4	. 748
	15.5	Two-P	Pass Algorithms Based on Hashing	. 749
			Partitioning Relations by Hashing	
		15.5.2	A Hash-Based Algorithm for Duplicate Elimination	. 750
			Hash-Based Grouping and Aggregation	
			Hash-Based Union, Intersection, and Difference	
			The Hash-Join Algorithm	
		15.5.6	Saving Some Disk I/O's	. 753
		15.5.7	Summary of Hash-Based Algorithms	. 755
			Exercises for Section 15.5	
	15.6		Based Algorithms	
		15.6.1	Clustering and Nonclustering Indexes	. 757
			Index-Based Selection	
		15.6.3	Joining by Using an Index	. 760
			Joins Using a Sorted Index	
			Exercises for Section 15.6	
	15.7		Management	
			Buffer Management Architecture	
			Buffer Management Strategies	
			The Relationship Between Physical Operator Selection	
			and Buffer Management	. 768
		15.7.4	Exercises for Section 15.7	
	15.8		thms Using More Than Two Passes	
			Multipass Sort-Based Algorithms	
		15.8.2	Performance of Multipass, Sort-Based Algorithms	. 772
		15.8.3	Multipass Hash-Based Algorithms	. 773
		15.8.4	Performance of Multipass Hash-Based Algorithms	. 773
		15.8.5	Exercises for Section 15.8	. 774
	15.9	Paralle	el Algorithms for Relational Operations	. 775
			Models of Parallelism	
		15.9.2	Tuple-at-a-Time Operations in Parallel	. 777
		15.9.3	Parallel Algorithms for Full-Relation Operations	. 779
		15.9.4	Performance of Parallel Algorithms	. 780
		15.9.5	Exercises for Section 15.9	. 782
	15.10	Sumn	nary of Chapter 15	. 783
	15.13	l Refer	ences for Chapter 15	. 784
16	The	Quer	y Compiler	787
			g , , , , , , , , , , , , , , , , , , ,	. 788
		16.1.1	Syntax Analysis and Parse Trees	. 788
		16.1.2	A Grammar for a Simple Subset of SQL	. 789
		16.1.3	The Preprocessor	. 793
		16.1.4	Exercises for Section 16.1	. 79 4

TABLE OF CONTENTS	xxiii
16.7.7 Ordering of Physical Operations	. 870
16.7.8 Exercises for Section 16.7	. 871
16.8 Summary of Chapter 16	
16.9 References for Chapter 16	
17 Coping With System Failures	875
17.1 Issues and Models for Resilient Operation	. 875
17.1.1 Failure Modes	. 876
17.1.2 More About Transactions	. 877
17.1.3 Correct Execution of Transactions	. 879
17.1.4 The Primitive Operations of Transactions	. 880
17.1.5 Exercises for Section 17.1	. 883
17.2 Undo Logging	
17.2.1 Log Records	
17.2.2 The Undo-Logging Rules	
17.2.3 Recovery Using Undo Logging	
17.2.4 Checkpointing	
17.2.5 Nonquiescent Checkpointing	
17.2.6 Exercises for Section 17.2	
17.3 Redo Logging	
17.3.1 The Redo-Logging Rule	
17.3.2 Recovery With Redo Logging	
17.3.3 Checkpointing a Redo Log	
17.3.4 Recovery With a Checkpointed Redo Log	
17.3.5 Exercises for Section 17.3	
17.4 Undo/Redo Logging	
17.4.1 The Undo/Redo Rules	
17.4.2 Recovery With Undo/Redo Logging	
17.4.3 Checkpointing an Undo/Redo Log	
17.4.4 Exercises for Section 17.4	
17.5 Protecting Against Media Failures	
17.5.1 The Archive	
17.5.2 Nonquiescent Archiving	
17.5.3 Recovery Using an Archive and Log	
17.5.4 Exercises for Section 17.5	
17.6 Summary of Chapter 17	
17.7 References for Chapter 17	
11.1 References for Onapter 11	. 510
18 Concurrency Control	917
18.1 Serial and Serializable Schedules	
18.1.1 Schedules	. 918
18.1.2 Serial Schedules	. 919
18.1.3 Serializable Schedules	. 920

16.2	Algebraic Laws for Improving Query Plans	795
	16.2.1 Commutative and Associative Laws	795
	16.2.2 Laws Involving Selection	797
	16.2.3 Pushing Selections	800
	16.2.4 Laws Involving Projection	802
	16.2.5 Laws About Joins and Products	805
	16.2.6 Laws Involving Duplicate Elimination	805
	16.2.7 Laws Involving Grouping and Aggregation	806
	16.2.8 Exercises for Section 16.2	809
16.3	From Parse Trees to Logical Query Plans	810
	16.3.1 Conversion to Relational Algebra	811
	16.3.2 Removing Subqueries From Conditions	812
	16.3.3 Improving the Logical Query Plan	817
	16.3.4 Grouping Associative/Commutative Operators	819
	16.3.5 Exercises for Section 16.3	820
16.4	Estimating the Cost of Operations	821
	16.4.1 Estimating Sizes of Intermediate Relations	822
	16.4.2 Estimating the Size of a Projection	823
	16.4.3 Estimating the Size of a Selection	823
	16.4.4 Estimating the Size of a Join	826
	16.4.5 Natural Joins With Multiple Join Attributes	829
	16.4.6 Joins of Many Relations	830
	16.4.7 Estimating Sizes for Other Operations	
	16.4.8 Exercises for Section 16.4	834
16.5	Introduction to Cost-Based Plan Selection	835
	16.5.1 Obtaining Estimates for Size Parameters	
	16.5.2 Computation of Statistics	839
	16.5.3 Heuristics for Reducing the Cost of Logical Query Plans .	840
	16.5.4 Approaches to Enumerating Physical Plans	842
	16.5.5 Exercises for Section 16.5	845
16.6	Choosing an Order for Joins	847
	16.6.1 Significance of Left and Right Join Arguments	847
	16.6.2 Join Trees	848
	16.6.3 Left-Deep Join Trees	848
	16.6.4 Dynamic Programming to Select a Join Order and Grouping	
	16.6.5 Dynamic Programming With More Detailed Cost Functions	
	16.6.6 A Greedy Algorithm for Selecting a Join Order	
	16.6.7 Exercises for Section 16.6	858
16.7	Completing the Physical-Query-Plan	859
	16.7.1 Choosing a Selection Method	
	16.7.2 Choosing a Join Method	
	16.7.3 Pipelining Versus Materialization	863
	16.7.4 Pipelining Unary Operations	864
	16.7.5 Pipelining Binary Operations	864
	16.7.6 Notation for Physical Query Plans	867

xxiv	TABLE OF CONTENTS

	18 1 4 7	The Effect of Transaction Semantics	021
		A Notation for Transactions and Schedules	
		Exercises for Section 18.1	
18.2		-Serializability	
10.2		Conflicts	
		Precedence Graphs and a Test for Conflict-Serializability	
-		Why the Precedence-Graph Test Works	
		Exercises for Section 18.2	
12.3		g Serializability by Locks	
10.0		ocks	
	10.3.1 1	The Locking Scheduler	024
		Two-Phase Locking	
		Why Two-Phase Locking Works	
10.4		Exercises for Section 18.3	
18.4	•	Systems With Several Lock Modes	
		Shared and Exclusive Locks	
		Compatibility Matrices	
		Jpgrading Locks	
		Jpdate Locks	
		ncrement Locks	
		Exercises for Section 18.4	
18.5	An Arch	itecture for a Locking Scheduler	951
		A Scheduler That Inserts Lock Actions	
		The Lock Table	
		Exercises for Section 18.5	
18.6		ng Hierarchies of Database Elements	
		Locks With Multiple Granularity	
		Varning Locks	
		Phantoms and Handling Insertions Correctly	
		Exercises for Section 18.6	
18.7		e Protocol	
		Motivation for Tree-Based Locking	
	18.7.2 F	Rules for Access to Tree-Structured Data	964
	18.7.3 V	Vhy the Tree Protocol Works	965
	18.7.4 E	Exercises for Section 18.7	968
18.8	Concurr	ency Control by Timestamps	969
	18.8.1 T	Timestamps	970
		Physically Unrealizable Behaviors	
	18.8.3 F	Problems With Dirty Data	972
•	18.8.4 T	The Rules for Timestamp-Based Scheduling	973
		Multiversion Timestamps	
	18.8.6 T	Timestamps and Locking	978
	18.8.7 E	Exercises for Section 18.8	978

TABLE OF CONTENTS

			•	
	18.9		rrency Control by Validation	
			Architecture of a Validation-Based Scheduler	
			The Validation Rules	
		18.9.3	Comparison of Three Concurrency-Control Mechanisms	. 983
		18.9.4	Exercises for Section 18.9	. 984
	18.10	Sumn	nary of Chapter 18	. 985
	18.13	Refere	ences for Chapter 18	. 987
19			ut Transaction Management	989
	19.1		zability and Recoverability	
			The Dirty-Data Problem	
		19.1.2	Cascading Rollback	. 992
			Recoverable Schedules	
			Schedules That Avoid Cascading Rollback	
			Managing Rollbacks Using Locking	
			Group Commit	
			Logical Logging	
			Recovery From Logical Logs	
		19.1.9	Exercises for Section 19.1	. 1001
	19.2	View S	Serializability	. 1003
		19.2.1	View Equivalence	. 1003
		19.2.2	Polygraphs and the Test for View-Serializability	. 1004
		19.2.3	Testing for View-Serializability	. 1007
		19.2.4	Exercises for Section 19.2	. 1008
	19.3	Resolv	ing Deadlocks	. 1009
			Deadlock Detection by Timeout	
		19.3.2	The Waits-For Graph	. 1010
		19.3.3	Deadlock Prevention by Ordering Elements	. 1012
		19.3.4	Detecting Deadlocks by Timestamps	. 1014
			Comparison of Deadlock-Management Methods	
		19.3.6	Exercises for Section 19.3	. 1017
	19.4	Distrib	outed Databases	. 1018
			Distribution of Data	
			Distributed Transactions	
			Data Replication	
			Distributed Query Optimization	
			Exercises for Section 19.4	
	19.5		outed Commit	
	-	19.5.1	Supporting Distributed Atomicity	. 1023
			Two-Phase Commit	
			Recovery of Distributed Transactions	
			Exercises for Section 19.5	

XXV

TABLE OF CONTENTS

	19.6	Distrib	outed Locking			1029
		19.6.1	Centralized Lock Systems			1030
			A Cost Model for Distributed Locking Algorithms			
		19.6.3	Locking Replicated Elements			1031
		19.6.4	Primary-Copy Locking			1032
		19.6.5	Global Locks From Local Locks			1033
		19.6.6	Exercises for Section 19.6			1034
	19.7	Long-I	Ouration Transactions			1035
		19.7.1	Problems of Long Transactions			1035
		19.7.2	Sagas			1037
		19.7.3	Compensating Transactions			1038
		19.7.4	Why Compensating Transactions Work			1040
		19.7.5	Exercises for Section 19.7			1041
	19.8	Summ	ary of Chapter 19			1041
	19.9	Refere	nces for Chapter 19			1044
~ ~	. .		w.,			
20			on Integration			047
	20.1	Modes	of Information Integration		•	1047
		20.1.1	Problems of Information Integration		٠	1048
			Federated Database Systems			
		20.1.3	Data Warehouses	: • •	٠	1051
			Mediators			
	00.0		Exercises for Section 20.1			
	20.2	wrapp	ers in Mediator-Based Systems		٠	1057
		20.2.1	Templates for Query Patterns		٠	1058
		20.2.2	Wrapper Generators		٠	1059
			Filters			
		20.2.4	Other Operations at the Wrapper		٠	1002
	20.2	20.2.3 Canab	Exercises for Section 20.2		٠	1003
	20.3	Capao	ility-Based Optimization in Mediators		٠	1004
		20.3.1	The Problem of Limited Source Capabilities		•	1005
		20.3.2	A Notation for Describing Source Capabilities Capability-Based Query-Plan Selection		•	1000
		20.3.3	Adding Cost-Based Optimization		•	1007
		20.3.4	Exercises for Section 20.3		•	1009
	20.4					
	20.4	20 4 1	ne Analytic Processing		•	1070
		20.4.1	A Multidimensional View of OLAP Data		•	1072
			Star Schemas			
			Slicing and Dicing			
		20.4.5	Exercises for Section 20.4		•	1079
	20.5		Cubes			
		20.5.1	The Cube Operator		•	1070
		20.5.2	Cube Implementation by Materialized Views		•	1089
		20.5.3	The Lattice of Views		•	1085
			,		•	

TABLE	OF CO	NTENTS											. :	xxvii
	20.5.4	Exercises for	Section	20.5					 					1087
20.6		ining												
		Data-Mining												
	20.6.2	Finding Free	quent Se	ts of 1	tei	ms			 					1092
	20.6.3	Γhe A-Prior	i Algorit	hm .										1093
		Exercises for												
20.7	Summar	y of Chapte	er 20				,•		 					1097
		ces for Chap												
Inde	ex												1	101

Chapter 1

The Worlds of Database Systems

Databases today are essential to every business. They are used to maintain internal records, to present data to customers and clients on the World-Wide-Web, and to support many other commercial processes. Databases are likewise found at the core of many scientific investigations. They represent the data gathered by astronomers, by investigators of the human genome, and by biochemists exploring the medicinal properties of proteins, along with many other scientists.

The power of databases comes from a body of knowledge and technology that has developed over several decades and is embodied in specialized software called a *database management system*, or *DBMS*, or more colloquially a "database system." A DBMS is a powerful tool for creating and managing large amounts of data efficiently and allowing it to persist over long periods of time, safely. These systems are among the most complex types of software available. The capabilities that a DBMS provides the user are:

- 1. Persistent storage. Like a file system, a DBMS supports the storage of very large amounts of data that exists independently of any processes that are using the data. However, the DBMS goes far beyond the file system in providing flexibility, such as data structures that support efficient access to very large amounts of data.
- 2. Programming interface. A DBMS allows the user or an application program to access and modify data through a powerful query language. Again, the advantage of a DBMS over a file system is the flexibility to manipulate stored data in much more complex ways than the reading and writing of files.
- 3. Transaction management. A DBMS supports concurrent access to data, i.e., simultaneous access by many distinct processes (called "transac-

tions") at once. To avoid some of the undesirable consequences of simultaneous access, the DBMS supports *isolation*, the appearance that transactions execute one-at-a-time, and *atomicity*, the requirement that transactions execute either completely or not at all. A DBMS also supports *durability*, the ability to recover from failures or errors of many types.

1.1 The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of information that exists over a long period of time, often many years. In common parlance, the term *database* refers to a collection of data that is managed by a DBMS. The DBMS is expected to:

- 1. Allow users to create new databases and specify their *schema* (logical structure of the data), using a specialized language called a *data-definition* language.
- 2. Give users the ability to query the data (a "query" is database lingo for a question about the data) and modify the data, using an appropriate language, often called a query language or data-manipulation language.
- 3. Support the storage of very large amounts of data many gigabytes or more over a long period of time, keeping it secure from accident or unauthorized use and allowing efficient access to the data for queries and database modifications.
- 4. Control access to data from many users at once, without allowing the actions of one user to affect other users and without allowing simultaneous accesses to corrupt the data accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960's. These systems evolved from file systems, which provide some of item (3) above; file systems store data over a long period of time, and they allow the storage of large amounts of data. However, file systems do not generally guarantee that data cannot be lost if it is not backed up, and they don't support efficient access to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for the data in files. Their support for (1) — a schema for the data — is limited to the creation of directory structures for files. Finally, file systems do not satisfy (4). When they allow concurrent access to files by several users or processes, a file system generally will not prevent situations such as two users modifying the same file at about the same time, so the changes made by one user fail to appear in the file.

The first important applications of DBMS's were ones where data was composed of many small items, and many queries or modifications were made. Here are some of these applications.

Airline Reservations Systems

In this type of system, the items of data include:

- Reservations by a single customer on a single flight, including such information as assigned seat or meal preference.
- 2. Information about flights the airports they fly from and to, their departure and arrival times, or the aircraft flown, for example.
- 3. Information about ticket prices, requirements, and availability.

Typical queries ask for flights leaving around a certain time from one given city to another, what seats are available, and at what prices. Typical data modifications include the booking of a flight for a customer, assigning a seat, or indicating a meal preference. Many agents will be accessing parts of the data at any given time. The DBMS must allow such concurrent accesses, prevent problems such as two agents assigning the same seat simultaneously, and protect against loss of records if the system suddenly fails.

Banking Systems

Data items include names and addresses of customers, accounts, loans, and their balances, and the connection between customers and their accounts and loans, e.g., who has signature authority over which accounts. Queries for account balances are common, but far more common are modifications representing a single payment from, or deposit to, an account.

As with the airline reservation system, we expect that many tellers and customers (through ATM machines or the Web) will be querying and modifying the bank's data at once. It is vital that simultaneous accesses to an account not cause the effect of a transaction to be lost. Failures cannot be tolerated. For example, once the money has been ejected from an ATM machine, the bank must record the debit, even if the power immediately fails. On the other hand, it is not permissible for the bank to record the debit and then not deliver the money if the power fails. The proper way to handle this operation is far from obvious and can be regarded as one of the significant achievements in DBMS architecture.

Corporate Records

Many early applications concerned corporate records, such as a record of each sale, information about accounts payable and receivable, or information about employees — their names, addresses, salary, benefit options, tax status, and

Offset 572-573 Offset table 580-581, 598 OID See Object identifier OLAP 1047, 1070-1089 See also MOLAP, ROLAP OLD ROW/TABLE 341-344 Olken, F. 785 **OLTP 1070** ON 271 On-demand swizzling 585 O'Neil, E. 424 684 O'Neil, P. 424, 712 Pascal 350 One-one relationship 28–29, 140–141 One-pass algorithm 722-733, 850, Paton, N. W. 348 862 Pattern 791 On-line analytic processing Patterson, D. A. 566 See OLAP PCDATA 180 On-line transaction processing Pelagatti, G. 1044 See OLTP Pelzer, T. 314 Open 720 Percentiles Operand 192 Operator 192 Persistence 1, 301 Optical disk 512-513 Optimistic concurrency control See PSM See Timestamp, Validation Peterson, W. W. 664 Optimization Phantom 961-962 See Query optimization OQL 425-449, 570 ORDER BY 251-252, 284 Ordering relationship, for UDT 458-460 Outerjoin 222, 228-230, 272-274 Output action 881, 918 Output attribute 802 Pippenger, N. 663 Overflow block 599, 616-617, 619, 649.6561099 Overloaded method 142 Plan selection 1022 Ozsu, M. T. 1045 P

Pad character 570 Page 509 See also Disk block Palermo, F. P. 874

Papadimitriou, C. H. 987, 1044 Papakonstantinou, Y. 188, 1099 Parallel computing 6-7, 775-782, 983 Parameter 392, 396-397 Parity bit 548, 552-553 Parse tree 788-789, 810 Parser 713-715, 788-795 Partial-match query 667, 681, 684, 688-689, 692 Partition attribute 438 Partitioned hash function 666, 682-Path expression 426, 428 See Equal-height histogram Persistent stored modules Physical address 579, 582 Physical query plan 714-715, 787. 821, 842-845, 859-872 Piatetsky-Shapiro, G. 1099 Pinned block 586-587, 768. 995 Pipelining 859, 863-867 See also Iterator Pirahesh, H. 348, 502, 916, 1044. See also Algorithm selection. Capabilitybased plan selection. Costbased enumeration, Costbased plan selection. Heuristic plan selection, Physical query plan. Top-down

plan selection

Platter:515 517 PL/I 350 Pointer swizzling See Swizzling Polygraph 1004-1008 Precedence graph 926-930 Precommitted transaction 1025 Predicate 463-464 Prefetching See Double-buffering PREPARE 362, 392 Prepared statement 394-395 Preprocessor 793-794 Preservation, of FD's 115-116, 125 Preservation of value sets 827 Price, T. G. 874 Primary index 622 See also Dense index, Sparse index Primary key 48, 316-317, 319, 576, Primary-copy locking 1032-1033 PRIOR 361 Privilege 410-421 Probe relation 847, 850 Procedure 365. 376-377 Product 192-193, 197-198, 218, 254-255, 476, 730, 737, 796, 798-799, 803, 805, 832 Projection 112-113, 192-193, 195, 205, 216-217, 242, 245, 473, 724–725, 737, 802–805, 823, 832, 864 See also Extended projection, Pushing projections Projection, of FD's 98-100 Prolog 501 Pseudotransitivity 101 PSM 349, 365-378 PUBLIC 410 Pushing projections 802-804, 818

Pushing selections 797, 800-801, 818

Putzolo, F. 566, 988

INDEX

Q

Quad tree 666, 695-696 Quantifier See ALL, ANY, EXISTS Ouass, D. 187, 237, 712, 785, 1099 Ouerv 297, 466, 504-505 See also Decision-support query. Lookup, Nearest-neighbor query. Partial-match query. Range query, Where-am-I ouerv Query compiler 10, 14-15, 713-715, See also Query optimization Ouerv execution 713, 870-871 Query language 2, 10 See also Datalog, OQL, Relational algebra, SQL Ouerv optimization 15, 714-715 See also Plan selection Query plan 10, 14 See also Logical query plan, Physical query plan, Plan selection Query processing 17-18, 506 See also Execution engine, Query compiler Query processor See Query compiler, Query execution Query rewriting 714-715, 788, 810-See also Algebraic law Quicksort 527 Quotient 213

R.

RAID 551-563, 876-877 Rajaraman, A. 1099 RAM disk 514 Ramakrishnan, R. 502 Random-access memory 508 Range query 638-639, 652, 667, 673, 681, 689, 692–693

Raw-data cube 1072 sion table, Fact table, Probe See also Data cube, Fact table relation, Table, View Read action 881, 918 Relation schema 62, 66, 73, 194, 292-READ COMMITTED 407-408 Read lock Relational algebra 189-237, 259-260, See Shared lock 463, 471-480, 795-808, 811 Read set 979 Relational atom 464 Read time 970 Relational database schema 24, 62, READ UNCOMMITTED 407-408 190-191, 379-381, 383 Read-locks-one-write-locks-all 1034 Relational model 4-5, 61-130, 155-Read-only transaction 403-404, 958 164, 173 Real number 293, 569 See also Nested relation, Object-Record 567, 572-577, 598-601 relational model See also Sliding records, Spanned Relational OLAP record, Tagged field, Vari-See ROLAP able-format record, Variable-Relationship 25, 31-32, 40-44, 67length record 70, 138–141, 162–163 Record address See also Binary relationship, Isa See Database address relationship, Many-many re-Record fragment 595 lationship, Many-one rela-Record header 575-576 tionship, Multiway relation-Record structure ship, One-one relationship, See Struct Supporting relationship Recoverable schedule 992-994 Relationship set 27 Recovery 12, 875, 889-890, 898-902, RELATIVE 361 904-905, 913, 990, 1000-Renaming 193, 203-205, 304-305 1001, 1026–1028 REPEAT 373 Recovery manager 879 REPEATABLE READ 407-408 Recursion 463, 480-500 Repeating field 590-593 Redo logging 887, 897-903 Replicated data 1021, 1031-1032 Redundancy 39-40, 103, 118-119, Resilience 875 125 RETURN 367 Redundant arrays of independent disks Reuter, A. 916, 988 See RAID Revoking privileges 417-421 Redundant disk 552 Right outerjoin 228, 273 Reference 133, 167, 169-171, 452, Right-deep join tree 848 455-456 Right-recursion 484 Reference column 452-454 Rivest, R. L. 712 REFERENCES 320, 410 Robinson, J. T. 712, 988 REFERENCING 341 **ROLAP 1073** Referential integrity 47, 51-53, 232 Role 29-31 See also Foreign key Rollback 402, 404-405 Reflexivity 99 See also Abort, Cascading roll-Relation 61, 303, 463, 791, 793-794 back See also Build relation, Dimen-Roll-up 1079

INDEX Root 174, 633 Root tag 179 Rosenkrantz, D. J. 1045 Rotation, of disk 517 Rotational latency 520, 540 See also Latency Rothnie, J. B. Jr. 712, 987 Roussopoulos, N. 712 Row-level trigger 342 R-tree 666, 696-699 Rule 465-468 Run-length encoding 704-707 \mathbf{S} izable schedule 575

Safe rule 467, 482 Saga 1037-1040 Sagiv, Y. 1099 Salem, K. 566, 1044 Salton, G. 664 Schedule 918, 923-924 See also Serial schedule, Serial-Scheduler 917, 932, 934-936, 951-957, 969, 973-975, 979-980 Schema 49, 85, 167, 173, 504, 572, See also Database schema, Global schema. Relation schema, Relational database schema. Star schema Schneider, R. 711 Schwarz, P. 916, 1044 Scope, of names 269 Scrolling cursor 361 Search key 605-606, 612, 614, 623, 665 See also Hash key Second normal form 116 Secondary index 622-625 See also Inverted index Secondary storage 6. 510-513 See also Disk. Optical disk Second-chance algorithm See Clock algorithm Sector 516, 518

1115 Seeger, B. 711 Seek time 519-520, 535, 540 SELECT 240-243, 284, 410, 428, 431-432, 789-790 See also Single-row select Selection 192-193, 196, 205, 217-218, 221, 241, 243, 245-246, 473–475, 724–725, 737, 758–760, 777–779, 797–801, 805, 818, 823-826, 844, 860-862, 864, 868 See also Filter, Pushing selections, Two-argument selection Selectivity, of a join 858 Self-describing data 175 Selinger, P. G. 874 See also Griffiths, P. P. Selinger-style optimization 845, 857 Sellis, T. K. 712 Semantic analysis See Preprocessor Semijoin 213 Semistructured data 16, 131, 173-178 Sequential file 606-607 Serial schedule 919–920 Serializability 397-400, 407, 918, 921-923, 927, 989-990 See also Conflict-serializability, View-serializability

Semistructured data 16, 131, 173–
178
Sequential file 606–607
Serial schedule 919–920
Serializability 397–400, 407, 918, 921
923, 927, 989–990
See also Conflict-serializability,
View-serializability
Serializable schedule 920–921, 994
Server 7, 382
See also Client-server system
Session 384, 413
SET 289, 325, 367–368, 381, 383–
384, 404, 729, 797–798, 803
Set type 144–145, 158–160, 166–167,
217, 446
Sethi, R. 789
Set-null policy 322

Sevcik, K. 712

Shapiro, L. D. 785

Shared disk 776, 778

Shared lock 940-942, 956

Syntactic category 788-789

Shared memory 775-776, 778 Shared variable 352-354 Shared-nothing machine 776-777 Shaw, D. E. 785 Sheth, A. 1099 Signature 141–142 Silberschatz, A. 988 Silo 512 Simon, A. R. 314 Simple projection 802 Simplicity 40 Single-row select 354, 370 Single-value constraint 47, 51 See also Functional dependency. Many-one relationship Size estimation 822-834, 836-839 Size, of a relation 717, 822, 840, 842 Skeen, D. 1045 Slicing 1076-1078 Sliding records 616 Smalltalk 132 Smith, J. M. 874 Smyth, P. 1099 Snodgrass, R. T. 712 Sort join 743-747, 844, 862-863 Sort key 526, 606, 636 Sorted file See Sequential file Sorted sublist 529, 738, 770 Sorting 222, 227-228, 526-532, 737-749, 755-756, 771-773, 845 See also ORDER BY, Ordering relationship, for UDT Sort-scan 716-717, 719, 721-722, 868 Source 1047 Spanned record 594-595 Sparse index 609-612, 622, 636 Splitting law 797–798 Splitting nodes 640-642, 645, 698-699 Splitting rule 90-91 SQL 4-5, 131, 189, 239-424, 449-461, 492–500, 789–793 SQL agent 385 SQLSTATE 352-353, 356, 374

Srikant, R. 1099 Stable storage 548-550 Star schema 1073-1075 Start action 884 START TRANSACTION 402 Start-checkpoint action 893 Start-dump action 911 Starvation 1016-1017 State, of a database 879, 1039 Statement record 386-388 Statement-level trigger 342 Statistics 13, 836, 839-840 See also Histogram Stearns, R. E. 1045 Stemming 629 Stern, R. C. 210 Stonebraker, M. 21, 785, 1045 Stop word 629 Storage manager 12, 17-18 See also Buffer Stratified negation 486-490, 494-496 Strict locking 994 String 245–247, 292 See also Bit string Stripe 676 Striping 596 Strong, H. R. 663 Struct 132-133, 137-138, 144-145. 157, 166–167, 431, 446, 568 Structured address 580-581 Sturgis, H. 566, 1044 Subclass 33-36, 76-80, 149-151 Subgoal 465 Subquery 264-276, 431-432, 812-See also Correlated subquery Subrahmanian, V. S. 712 Suciu, D. 187-188, 1099 Sum 223, 279, 437 Superkey 86, 105 Support 1093 Supporting relationship 56, 72, 74-75 Swami, A. 1099 Swizzling 581-586

Syntax analysis See Parser System failure 876-877 System R 21, 314, 874 \mathbf{T} Table 293, 301, 303 See also Relation Table-scan 716, 719, 721, 861-862, 867-868 Tag 178 Tagged field 593 Tanaka, H. 785 Tape 512 Template 1058-1059 Tertiary memory 512-513 Tertiary storage 6 Thalheim, B. 60 THEN 368 Theta-join 199-201, 205, 220, 477, 731, 796-799, 802, 805, 819-820, 826-827 Theta-outerjoin 229 Third normal form See 3NF Thomas, R. H. 1045 Thomasian, A. 988 Thrashing 766 3NF 114-116, 124-125 Three-valued logic 249-251 Thuraisingham, B. 988 TIME 247-248, 293, 571-572 Timeout 1009-1010 TIMESTAMP 248, 575, 577, 969-979, 984. 1014-1017 Tombstone 581, 600 Top-down plan selection 843 **TPMMS** See Two-phase, multiway merge-Ullman, J. D. 21, 130, 474, 502, 530, sort

Track 515-517. 579

Training set 1091

Traiger, I. L. 987-988

Transaction 1-2, 12, 17-19, 397-409, 877-883, 923-924, 1020-1021 See also Incomplete transaction, Long-duration transaction Transaction component 1020 Transaction manager 878, 917 Transaction processing See Concurrency, Deadlock, Locking, Logging, Scheduling Transfer time 520, 535 Transitive rule 96-97, 121 Translation table 582-583 Tree See B-tree, Bushy tree. Decision tree, Expression tree, Join tree, kd-tree, Left-deep join tree, Parse tree, Quad tree, Right-deep join tree, R-tree Tree protocol 963-969 Trigger 315, 336, 340-345, 410-411, 876, 879 Trivial FD 92, 105 Trivial MVD 120-122, 127 Tuple 62-63, 170 See also Dangling tuple Tuple variable 256-257 Tuple-based check 327, 330-331, 339 Turing-complete language 189 Two-argument selection 812-817 Two-pass algorithm 737-757 Two-phase commit 1024-1028 Two-phase locking 936-938 Two-phase, multiway merge-sort 0, 528-532, 536-537 Type 794, 1049 Type constructor 132 Type system 132–133, 144–146, 171 U UDT 449-452

726, 789, 852, 1099-1100

UNDER 410-411

UNDO 375

Undo logging 884-896 Undo/redo logging 887, 903-909 Union 192-194, 215-217, 260-262, 278, 442, 472, 722-723, 728-729, 741, 747, 751–752, 755, 779, 796–798, 803, 833 Union rule 127 UNIQUE 316-319 UNKNOWN 249-251 Unknown value 248 Unstratified negation See Stratified negation Unswizzling 586 Updatable view 305-307 Update 289–290, 410, 601, 615–616, 709, 1052 See also Modification Update anomaly 103 Update lock 945-946 Update record 885-886, 897, 903 Upgrading locks 943-945, 957 See also Update lock USAGE 410 User-defined type See UDT Uthurusamy, R. 1099

\mathbf{V}

Valduriez, P. 1045 Valid XML 178-179 Validation 969, 979-985 Value count 719, 822, 840 VALUES 286 Van Gelder, A. 502 VARCHAR 292 Variable-format record 590, 593-594 Variable-length record 570-571, 589-594, 998-999 Vassalos, V. 1099 Vertical decomposition 1020 Vianu, V. 21 View 301-312, 345, 1053 See also Materialized view View-serializability 1003–1009 Virtual memory 509-510, 578

Vitter, J. S. 566 Volatile storage 513–514

W

Wade, B. W. 424 Wait-die 1014-1017 Waiting bit 955 Waits-for graph 1010–1012 Walker, A. 502 Warehouse 1048, 1051-1053, 1071 Warning protocol 958–961 Weak entity set 54-59, 71-75, 154 Weiner, J. L. 187 Well-formed XML 178–180 Westwood, J. N. 210 WHEN 340, 342 WHERE 240-241, 243-244, 264, 284, 288, 428-429, 789 Where-am-I query 667, 697 WHILE 373 White, S. 424 Widom, J. 187–188, 348, 1099 Wiederhold, G. 604, 1100 WITH 492-493 Wong, E. 21, 874 Wood, D. 785 Workflow 1036 World-Wide-Web consortium 187 Wound-wait 1014-1017 Wrapper 1048, 1057-1064 Wrapper generator 1059–1060 Write action 881, 918 Write failure 546, 550 See also System failure Write lock See Exclusive lock Write set 979 Write time 970 Write-ahead logging rule 897 See also Redo logging Write-through cache 508

X

XML 16, 131–132, 173, 178–186, 629

Y . D 111

Yerneni, R. 1100 Youssefi, K. 874

\mathbf{z}

INDEX

Zaniolo, C. 130, 712 Zicari, R. 712 Zig-zag join 762–763 Zip disk 513 Zipfian distribution 632, 825