

planetmath.org

Math for the people, by the people.

Whitehead theorem

Canonical name WhiteheadTheorem
Date of creation 2013-03-22 13:25:48
Last modified on 2013-03-22 13:25:48
Owner antonio (1116)
Last modified by antonio (1116)

Numerical id 10

Author antonio (1116)
Entry type Theorem
Classification msc 55P10
Classification msc 55Q05

 $Related\ topic \\ Conjecture Approximation Theorem Holds For Whitney Cr MN Spaces$

Related topic WeakHomotopyEquivalence

Related topic ApproximationTheoremAppliedToWhitneyCrMNSpaces

Theorem 1 (J.H.C. Whitehead) If $f: X \to Y$ is a weak homotopy equivalence and X and Y are path-connected and of the homotopy type of CW complexes, then f is a strong homotopy equivalence.

Remark 1 It is essential to the theorem that isomorphisms between $\pi_k(X)$ and $\pi_k(Y)$ for all k are induced by a map $f: X \to Y$; if an isomorphism exists which is not induced by a map, it need not be the case that the spaces are homotopy equivalent.

For example, let $X = \mathbb{R}P^m \times S^n$ and $Y = \mathbb{R}P^n \times S^m$. Then the two spaces have isomorphic homotopy groups because they both have a universal covering space homeomorphic to $S^m \times S^n$, and it is a double covering in both cases. However, for m < n, X and Y are not homotopy equivalent, as can be seen, for example, by using homology:

$$H_m(X; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$$
, but
 $H_m(Y; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

(Here, $\mathbb{R}P^n$ is *n*-dimensional real projective space, and S^n is the *n*-sphere.)