Docente: Ing. José Fred Camacho A

Materia: ALGEBRA LINEAL Y TEORIA MATRICIAL Tema: Espacios vectoriales con Producto Interior

PRÁCTICA 5

1) Hallar la norma, la distancia y el ángulo en los siguientes casos:

a)
$$u = (3,4)$$
, $v = (12,5)$

b)
$$u = (2,1,2)$$
, $v = (3,2,6)$

c)
$$p = 6 + 8x^2$$
 , $q = 4 + 2x + 4x^2$

Rpta.-

a) 5; 13;
$$\sqrt{82}$$
; 30,5°

b) 3; 7;
$$3\sqrt{2}$$
; 17,7°

c) 10; 6;
$$2\sqrt{6}$$
; 21,04°

2) Sean: u=(3,4), v=(12,5) vectores en \mathbb{R}^2 , el producto interior está definido por: $\langle u,v\rangle=2u_1v_1+5u_2v_2$. Calcular la norma, la distancia y el ángulo entre vectores.

3) En el espacio vectorial $M_{m \times n}$ con elementos en R, se tiene el siguiente producto interno:

$$\langle A, B \rangle = tr(A^t B) \quad \forall A, B \in M_{m \times n}$$

Si
$$A = \begin{pmatrix} 1 & 0 & -\alpha \\ 0 & 0 & -1 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, Determinar $\alpha \in R$, tal que:

- a) La distancia entre A y B sea $\sqrt{3}$
- b) El ángulo entre A y B sea 60°

Rpta.-
$$a = \pm 1$$
 ; $\alpha = 0$

- **4)** Determinar si el vector (-1,1,0,2) es ortogonal al subespacio de \mathbb{R}^4 : (0,0,0,0) (1,-5,-1,2)(4,0,9,2) **Rpta.-** No es
- 5) ¿Para qué valores de k son ortogonales u y v?

a)
$$u = (2,1,3)$$
 $v = (1,7,k)$ b) $u = (k,k,1)$ $v = (k,5,6)$

Rpta.-
$$k = -3$$
 ; $k = -2$; $k = -3$

6) Encontrar una base para el complemento ortogonal del subespacio generado por los vectores :

a)
$$v_1 = (1, -1, 3)$$
 $v_2 = (5, -4, -4)$ $v_3 = (7, -6, 2)$

b)
$$v_1 = (2, 0, -1)$$
 $v_2 = (4, 0, -2)$

c)
$$v_1 = (1, 4, 5, 2)$$
 $v_2 = (2, 1, 3, 0)$ $v_3 = (-1, 3, 2, 2)$

Rpta.-
$$(8t; 9t; t)$$
 $(s; t; 2s)$ $(-t + 2s; -t - 4s; t; 7s)$

- 7) Demostrar que si u y v son vectores ortogonales tales que ||u|| = ||v|| = 1 entonces $||u v|| = \sqrt{2}$
- 8) Determinar cuáles de los siguientes polinomios son ortogonales entre sí.

$$P(x) = 2 + 3x - x^2$$
; $Q(x) = 4 + 2x + 2x^2$; $R(x) = 1 + 4x - 6x^2$; $S(x) = 1 - 5x + 3x^2$

Rpta.-
$$Q(x) - S(x)$$
 ; $Q(x) - R(x)$

9) Encontrar dos vectores en \mathbb{R}^2 con norma uno cuyo producto escalar con (3, -1) sea cero

Rpta.-
$$\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right) \left(-\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}}\right)$$

10) Dados los vectores (3,4,2,3); (6,6,1,5); (3,2,5,2) Hallar otro vector ortonormal a cada uno de los anteriores

Rpta.-
$$\left(\frac{2}{7}, \frac{3}{7}, 0, -\frac{6}{7}\right)$$

11) Verificar que los siguientes vectores son ortonormales entre sí:

a)
$$\left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right) \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$

Rpta.- SI, SI

12) Comprobar que los vectores $v_1=\left(-\frac{3}{5},\frac{4}{5},0\right)$; $v_2=\left(\frac{4}{5},\frac{3}{5},0\right)$; $v_3=(0,0,1)$ forman una base ortonormal para \mathbb{R}^3 . Expresar cada uno de los siguientes vectores como una combinación lineal de v_1 , v_2 , v_3

Rpta.- SI es base ortonormal ;
$$-\frac{7}{5}v_1 + \frac{1}{5}v_2 + 2v_3 - \frac{37}{5}v_1 - \frac{9}{5}v_2 + 4v_3$$

13) El plano P en \mathbb{R}^3 , es generado por la siguiente base: $\{(1,2,3), (0,-3,2)\}$ determinar la proyección del vector V = (2,-4,8) sobre el plano P.

Rpta.-
$$\left(\frac{117}{91}, -\frac{354}{91}, \frac{743}{91}\right)$$

14) Determinar la proyección ortogonal de u sobre el sub espacio $W=\{v_1,v_2\}$

a)
$$u = (2,1,3)$$
 $v_1 = (-1,2,1)$ $v_2 = (2,2,4)$

b)
$$u = (0, 1, -1)$$
 $v_1 = (-1, 2, 1)$ $v_2 = (-2, 4, 2)$

Rpta.- (2,1,3)
$$\left(-\frac{1}{6},\frac{1}{3},\frac{1}{6}\right)$$

15) Encontrar la proyección ortogonal de u sobre el espacio vectorial generado por a

a)
$$u = (-1, -2)$$
 $a = (-2, 3)$

b)
$$u = (1,0,0)$$
 $a = (4,3,8)$

Rpta.-
$$\left(\frac{8}{13}, -\frac{12}{13}\right) \left(\frac{16}{89}, \frac{12}{89}, \frac{32}{89}\right)$$

Docente: Ing. José Fred Camacho A
Materia: ALGEBRA LINEAL Y TEORIA MATRICIAL
Tema: Espacios vectoriales con Producto Interior

16) Hallar la proyección ortogonal del vector u = (5, 6, 7, 2) sobre el espacio solución del sistema

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 2x_2 + x_3 + x_4 = 0 \end{cases}$$

Rpta.- (0,0,0,1)

17) Determinar una base ortogonal del complemento ortogonal del subespacio S.

$$S = \{(a, b, c)/a - b - c = 0 \land b - c = 0\}$$

Rpta.- $\{(1, -2, 0), (-2, -1, 5)\}$ es base ortogonal de S^{\perp}

18) Encontrar una base ortonormal del siguiente espacio vectorial V:

$$V = \{(x, y, z, u)\mathbb{R}^4 / x - y + u = 0 ; x + 2z = 0\}$$

Rpta.-
$$\left(-\frac{2}{3}; -\frac{2}{3}; \frac{1}{3}; 0\right) \left(-\frac{4}{3\sqrt{14}}, \frac{5}{3\sqrt{14}}, \frac{2}{3\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$$

19) Encontrar una base ortonormal del siguiente espacio vectorial V:

$$V = \{(x, y, z)\mathbb{R}^3 / 2x + y - z = 0\}$$

Rpta.-
$$\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0\right) \left(\frac{2}{\sqrt{30}}; \frac{1}{\sqrt{30}}; \frac{5}{\sqrt{30}}\right)$$

- **20)** Sea W el subespacio de \mathbb{R}^3 de ecuación 5x 3y + z = 0
 - a) Encontrar una base para *W*
 - b) Encontrar la distancia entre el punto P(1, -2, 4) y el subespacio W

Rpta.-
$$(3t - s, 5t, 5s)$$
; $\sqrt{\frac{45}{7}}$

- **21)** Usando el proceso de Gram-Schmidt, transformar la base $\{u_1$, $u_2\}$ en una base ortonormal
 - a) $u_1 = (1, -3), u_2 = (2, 2)$
 - b) $u_1 = (1, 0), u_2 = (3, -5)$
- **22)** Usando el proceso de Gram-Schmidt, transformar la base $\{u_1, u_2, u_3\}$ en una base ortonormal
 - a) $u_1 = (1, 1, 1)$, $u_2 = (-1, 1, 0)$, $u_3 = (1, 2, 1)$
 - b) $u_1 = (1, 0, 0), u_2 = (3, 7, 2), u_3 = (0, 4, 1)$
- **23)** Sean los vectores: $u_1 = (1, -1, -1)$, $u_2 = (0, 3, 3)$, $u_3 = (3, 2, 4)$ que forman una base en \mathbb{R}^3 . Aplique el proceso de Gram-Schmidt para obtener una base ortonormal.
- **24)** Sea la base para el espacio vectorial P_2 : $(1 + x + x^2, 1 + x, 1)$ Aplique el proceso de Gram-Schmidt para obtener una base ortonormal

Rpta.-
$$q_1 = \frac{1}{\sqrt{3}} + \frac{x}{\sqrt{3}} + \frac{x^2}{\sqrt{3}}$$
 , $q_2 = \frac{1}{\sqrt{6}} + \frac{x}{\sqrt{6}} - \frac{2x^2}{\sqrt{6}}$, $q_3 = \frac{1}{\sqrt{2}} - \frac{x}{\sqrt{2}}$