Introdução à Inteligência Artificial

Prof. Roberto Ribeiro Rocha

Objetivos

- Mostrar os principais conceitos e técnicas usadas em IA.
- A aplicação de técnicas de inteligência artificial em alguns problemas do mundo real.
- As dificuldades de definição e modelagem
 - problemas e soluções.
- Incentivar os alunos e buscarem mais informações sobre conteúdos de IA.

Motivação

- Ainda existem muitos problemas que não possuem solução adequada.
- Os algoritmos exatos resolvem apenas uma parcela dos problemas.
- É bastante difícil desenvolver um algoritmo exato para problemas complexos.
- Solução:
 - usar heurísticas para resolver os problemas.

Introdução

- Existem problemas que não possuem soluções satisfatórias
- Soluções complexas exigem novas técnicas e mais capacidade de processamento
 - Normalmente envolvem um maior volume de dados
- A IA vem se apoiando em novas técnicas
 - inspiradas no modelo de inteligência biológico ou
 - simulando o comportamento já encontrado na natureza.

Introdução

- A IA usa estudos de "recursos naturais" (como, o cérebro, a evolução das espécies e outros)
- modelos computacionais para executar algoritmos que reajam de maneira similar aos modelos naturais
 - técnicas: números aleatórios, cálculos, amostras, validações e iterações
- Objetivo geral da AI: encontrar soluções aproximadas e relativamente boas e aceitáveis – nem sempre ótimas
- algoritmos exatos demoram muito tempo para chegar em uma solução ótima

Exemplos de aplicação da IA

- Aqueles cuja solução algorítmica têm altíssima complexidade;
 - Aqueles que o ser humano é capaz de resolver;
- Aqueles que os seres vivos são capazes de resolver.
 - Jogar xadrez,
 - Previsão em geral,
 - Reconhecer faces ou imagens
 - Traduzir textos, reconhecer padrões
 - Definir rotas, arranjar containers/caixas/pacotes
 - Montagem de peças por robôs
 - Montar quadro de horários e escalas, etc...

Fatores que torna a IA possível

- O aumento do poder de computação (processamento e armazenamento, etc.).
- O aumento de volume de informações disponíveis.
- A facilidade de coleta de dados (principalmente através de sensores).
- Novas técnicas de processamento de dados.

Dificuldades da Al

- Incerteza na informação que é detectada no ambiente
- O próprio conhecimento de algo
- A falta de teorias que explicam os fenômenos
- Os recursos limitados de computação.
- A dificuldade de rastreio e debug do código
- Fatores aleatórios
 - dificultam a reprodução de execuções realizadas anteriormente.

Software Convencional x IA

	Software convencional	Inteligência Artificial
Linguagem	Aritmética e lógica	Probabilística
Dados	Números	Símbolos
Código	Algoritmos exatos	Domínio e inferência
Operações	Cálculos	Raciocínio
Conhecimento	Fórmulas	Heurísticas
Controle do programa	Determinístico	Não-determinístico
Qualidade da Solução	Ótima	Aproximada/Satisfatória

Paradigmas do raciocínio da IA

Evolucionista

- Utiliza a Metáfora da Natureza
- Exemplo: algoritmos genéticos, colônia de formigas, cardume, vida artificial,...

Conexionista

- Utiliza a Metáfora Cerebral
- Exemplo: redes neurais

Paradigmas do raciocínio da IA

Simbólica

- Utiliza a Metáfora Linguística
- Exemplo: sistemas especialistas, agentes inteligentes, jogos, ...

Estatística/Probabilística

- Utiliza conceitos de possibilidades
- Exemplo: Redes Bayesianas, sistemas difusos (fuzzy)

Obrigado.

• Próximo conteúdo: Estratégias de Busca