(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 January 2002 (24.01.2002)

PCT

(10) International Publication Number WO 02/05746 A3

(51) International Patent Classification7: C07C 69/88

(21) International Application Number: PCT/IB01/01252

(22) International Filing Date: 13 July 2001 (13.07.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 662/MUM/2000

14 July 2000 (14.07.2000) II

(71) Applicant (for all designated States except US): CADILA PHARMACEUTICALS LIMITED [IN/IN]: IRM House, Off. CG Road, Navrangpura, Ahmedabad 380 008, Gujarat (IN).

(71) Applicant and

(72) Inventor: KHAMAR, Bakulesh, Mafatlal [IN/IN]; 201. Ashadha. Vasundhara colony, Gulbai Tekra, Ellisbridge, Ahmedabad 380 009, Gujarat (IN).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SRINIVASAN, Chidambaram, Venkateswaran [IN/IN]; Cadila Pharmaceuticals Limited, IRM House, Off. CG Road, Navrangpura. Ahmedabad 380 009, Gujarat (IN). MITRA, Jayati [IN/IN]: Cadila Pharmaceuticals Limited. IRM House, Off. CG Road, Navrangpura, Ahmedabad 380 009, Gujarat (IN).

- (74) Common Representative: KHAMAR, Bakulesh, Mafatlal: 201. Ashadha. Vasundhara colony. Gulbai Tekra, Ellisbridge, Ahmedabad 380 009. Gujarat (IN).
- (81) Designated States (national): CA, MX, US.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 2 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THE PROCESS OF MANUFACTURING PHARMACEUTICAL GRADE TANNATES

(57) Abstract: Antihistamines are available in the form of free bases as well as salts i.e. hydrochloride, maleate, tannate etc. Frequently, it is necessary to utilise antihistamines in the form of tannate salt because such salts are generally quite stable and may be administered in such from without untoward side effects. Tannic acid, also known as tannin, is a well known naturally occurring substance. Tannic acid, which is available commercially, usually contain about 5 % of water, has a molecular weight of about 1700 and is typically produced from Turkish or Chinese nutgall. Antihistamine tannates, presently manufactured commercially, are relatively impure. Such tannates are prepared by the reaction of antihistamine free base with tannic acid and using a volatile solvent, isopropanol (IPA). The yield is only fair (around 70 %) and decomposition products e.g. 2-5 % along with significant amount of volatile solvent, isopropanol (6-10 %) remains with the product, which cannot be removed. According to present invention, for specific types of tannates, isopropanol (IPA) is removed by adding water while stirring and dispersing the wet cake of tannate. It is then filtered and the tannate residue is dried to obtain pharmaceutical grade tannate. Tannates like chlorpheniramine tannate and pyrilamine tannates have been prepared by this method.

VO 02/05746 A3

- 1. THE PROCESS OF MANUFACTURING PHARMACEUTICAL GRADE TANNATES
- 2. Cadila Pharmaceuticals Limited, IRM House, Off C.G. Road, Navrangpura, Ahmedabad- 380009, Gujarat, India, an Indian company.
- 3. The following specification particularly describes and ascertains the nature of this invention and the manner in which it has to be performed.

FIELD OF THE INVENTION

The objective of the present invention is to manufacture pharmaceutical grade tannates.

The further objective of the present invention is to manufacture pharmaceutical grade tannates using water as a solvent for removing isopropanol, thereby reducing the content of isopropanol.

The further objective of present invention is to improve the yield of pharmaceutical grade tannates.

BACKGROUND OF THE INVENTION

Antihistamines are available in the form of free bases as well as salts i.e hydrochloride, maleate, tannate etc. Frequently, it is necessary to utilise antihistamines in the form of tannate salt because such salts are generally quite stable and may be administered in such from without untoward side effects. Tannic acid, also known as tannin, is a well known naturally occurring substance. Tannic acid, which is available commercially, usually contain about 5% of water, has a molecular weight of about 1700 and is typically produced from Turkish or Chinese nutgall.

Antihistamine tannates, presently manufactured commercially, are relatively impure. Such tannates are prepared by the reaction of antihistamine free base with tannic acid and using a volatile solvent, isopropanol (IPA). The yield is only fair (around 70%) and decomposition products e.g 2-5% along with significant amount of volatile solvent, isopropanol (6-10%) remains with the product, which cannot be removed. As per guidelines for pharmaceutical agents, the residual solvents should be less than 0.5% or 5000 ppm.

Many antihistamine tannates are heat sensitive e.g. phenyleherine tannates and therefore undergo decomposition quite readily upon prolonged exposures to temperatures as low as 50°C. Accordingly, even if the solvent utilized in its preparation has relatively high vapour pressure e.g. as in isopropanol, it is impossible to reduce the solvent content below 6% based on the weight of antihistamine tannate even at reduced pressures and very mild elevated temperatures. Morever from environment point of view, it would be desirable if

antihistamine tannates would be manufactured such that use of volatile solvents like

US patent 5663415 describes a method by treating the antihistamine tannate in isopropanol with tannic acid in isopropanol at 60-80°C for 1-2 hours. The resulting antihistamine tannate has isopropanol 8-10% and cannot be removed on prolonged heating under vacuum.

Similarly, in US patent 5599846, phenyleherine tannate was synthesized by isopropanol route. The resulting antihistamine tannate had isopropanol 8% and 2% degradation products.

REFERENCES:

isopropanol would be avoided.

- U.S. Patent No. 5663415.
 Process for preparing antihistamine tannates.
 Chopdekar VM et al.
 Jame Fine Chemicals, Inc.
- 2. US Patent no. 5599846.
 Phenylehedrine tannates composition.
 Chopdekar VM et al.
 Jame Fine Chemicals, Inc.

WO 02/05746 PCT/IB01/01252

SUMMARY OF THE INVENTION

It has now been found that it is possible to reduce the content of isopropanol to

around 3% during the manufacture of pharmaceutical grade tannates. This is

possible by using water as a solvent.

According to the present invention, the content of isopropanol has been found to be

around 3%.

DESCRIPTION OF THE INVENTION

According to the present invention is described a method to manufacture

pharmaceutical grade tannates, using water as a solvent.

Isopropanol is charged. Tannate base is added to this isopropanol. Tannic acid

solution is prepared by dissolving in isopropanol. The above Tannic acid prepared is

added into Tannate base solution. The solution is stirred for 3 hours at 40-45°C. This

is then cooled to 20-25°C and again stirred for 1 hour at 20-25°C. The material is

centrifuged and washed with a solvent, water. The material is then unloaded. The

product is dried.

EXAMPLE 1- CHLORPHENIRAMINE TANNATE

Isopropanol:

850 ml

Chlorpheniramine base:

43.3 gms

Tannic acid:

40.7 gms in 450ml Isopropanol

Hexane:

100 ml

Water

1000 ml

5

850 ml of isopropanol is charged to which 43.3 gms base is added. Tannic acid is prepared by dissolving 40.7 gms in 450 ml isopropanol, which is then added to base solution. The solution is stirred for 3 hours, cooled, and filtered. This then washed with 100 mlhexane, then followed by 1000 ml of water and dried.

The above tannate prepared reveals the following with a yield of 45 gms:

1. Description: Yellowish, tan, fine powder

2. Water: 3.26% w/w

3. Residue on Ignition: 0.091% w/w

4. Heavy metals: Less than 5 ppm

5. Tannic acid: 54.20% w/w

6. Chlorpheniramine base: 41.65% w/w

7. Assay: 99.11% w/w

8. Residual solvents: Isopropanol: 1500 ppm

EXAMPLE 2- PYRILAMINE TANNATE

Isopropanol:

800 ml

Pyrilamine base:

45 gms

Tannic acid:

43.2 gms in 430 ml isopropanol

Hexane:

100 ml

Water:

1000 ml

800 ml of isopropanol is charged to which 45 gms base is added. Tannic acid is prepared by dissolving 43.2 gms in 430 ml isopropanol, which is then added to base solution. The solution is stirred for 3 hours, cooled and filtered. This then washed with 100 ml hexane, then followed by 1000 ml of water and dried.

The above tannate prepared reveals the following, with a yield of 55 gms:

1. Description: Yellowiish, tan, fine powder

2. Water: 1.99% w/w

3. Residue on Ignition: 0.52% w/w4. Heavy metals: Less than 5 ppm

5. Tannic acid: 53.66% w/w

6. Pyrilamine base: 42.36% w/w

7. Assay: 98.01% w/w

8. Residual solvents: Isopropanol: 776.49 ppm

We claim:

- 1. The process for manufacturing pharmaceutical grade tannates, wherein
 - a) Isopropanol is charged.
 - b) Tannate base is added to this isopropanol.
 - c) Tannic acid solution is prepared by dissolving in isopropanol.
 - d) The above Tannic acid prepared is added into Tannate base solution.
 - e) The solution as in (d) is stirred for a period of time at the said maximum temperature and cooled.
 - f) The material is centrifuged and washed with a solvent.
 - g) The material is then unloaded and dried.
- 2. The process as claimed in claim 1 wherein the material can be further washed with water before unloading and drying.
- 3. The process, as claimed in claim 1 wherein the tannate base is selected from the group consisting of phenylephrine, carbetapentane, pyrilamine, chlorpheniramine, ephedrine, pseudoephedrine, brompheniramine, bromodiphenhydramine, diphenhydramine, pheniramine, Phenyltoxamine, clemastine, tripelennamine, cyproheptadine, phenindamine and phenyltoloxamine as a single ingredient or a combination of more than one.
- 4. The process, as claimed in claim 1 and 2 wherein the tannate base is Chlorpheniramine.
- 5. The process, as claimed in claim 1 and 2, wherein the tannate base is Pyrilamine.
- 6. The process as claimed in claim 1 wherein the step (e) is carried out for 3 hours.

- 7. The process as claimed in claim 6 wherein the process is carried out at temperature of 40-45°C.
- 8. The process as claimed in claim 1 wherein the solvent used for washing in step (f) is hexane.
- 9. The process as claimed in claim 1 wherein the dried material contains isopropanol less than or equal to 0.5%.
- 10. The process as claimed in claim1 and herein described in examples 1 to 2.