

Architecture & Design of Embedded Real-Time Systems (TI-AREM)

SW Architecture Styles and Two-Part Architecture Model

Version: 2-2-2015

Agenda

State of the Art for SW architecture

- Architectural Styles
 - Pipes and Filters
 - Two-part architecture model

State of the Art for SW Architecture

High level

Architectural Styles

- Styles dominates a given architecture
- Examples: Pipes and Filters, Layered Architectural Structure, Two-part architecture model

Architectural Patterns

- Address "System-wide" design problems
- Are not dominating and are often combined with other design patterns
- Examples: concurrency, persistency and memory p.

Design Patterns (GoF) – Mechanistic Design

- Design patterns have often a more local effect
- Examples: Strategy pattern, State Pattern

Idioms

- Language near patterns and mechanism
- Examples: Counted pointer for C++

Architectural Styles (Shaw&Garlan)(1)

- Five categories of Architectural Styles:
 - Dataflow systems
 - Batch sequential, Pipes and filters
 - Call-and-return systems
 - OO systems, Main program and subroutine, Hierarchical layers
 - Independent components
 - Event systems, Communicating processes
 - Virtual machines
 - Interpreters, Rule-based systems
 - Data-centered systems (repositories)
 - Databases, Hypertext systems, Blackboards

Architectural Styles (Shaw&Garlan)(2)

- Examples of Architectural Styles:
 - Pipes and filters
 - Data abstraction and Object-Oriented organization
 - Event-based, implicit invocation
 - Layered systems
 - Examples:
 - OSI model
 - Business oriented systems: presentation, business logic and model layer
 - Repositories
 - Interpreters
 - Process control

Buschmann's three Pattern Categories

Architecture patterns:

- Layers
- Pipes & Filters) Shaw&
- Blackboard
- Broker
- Model-View-Controller
- Presentation-Abstraction-Control (PAC)
- Microkernel
- Reflection

Design Patterns:

- Observer (GoF)
- Publisher-subscriber
- Strategy (GoF)
- Composite (GoF)
- Abstract Factory (GoF)
- Bridge (GoF)
- Proxy (GoF)
- Command Processor
- View Handler
- Master-slave

Idioms:

- Singleton (GoF)
- Factory Method (GoF)
- Counted pointer, Handle-Body
- Envelope-Letter

Pipes & Filters Architecture Style

Pipes and Filters Structure (CRC)

CRC= Class, Responsibility and Collaboration

Class Filter	Collaborators
Responsibility	Pipe
Get input	
Perform function	
Set output	

Class Pipe	Collaborators
Responsibility Transfer data Buffer data and synchronize filters	Data Source Data Sink Filter

Class Data Source	Collaborators
Responsibility Deliver input to	Pipe
Deliver input to processing	
pipeline	

Class Data Sink	Collaborators
Responsibility	Pipe
Consumes output	

Pipes and Filters: Mocha Compiler Example

Two-Part Architecture Model Style

- Combines the following two Shaw&Garlan Architectural Styles:
 - Event-based
 - Process Control (plus pipes & filters internal)
- This combination can be used for many embedded systems
- Examples:
 - control and regulation e.g. a frequency converter for controlling a motor
 - measuring instruments e.g. an oscilloscope or a noisemeter
 - audio/video: e.g. a CD player

Ref: [COT] Center for Object Technology project (Case 2)

Two Part Architectural Model Example

Danfoss frequency converter (called a VLT)

Used Design Patterns in the OO-VLT

Ventilator Control as Process Control Style

Danfoss frequency converter (VLT)

Example of "closed-loop feedback" control Shaw & Garlan: Process Control Style

Frequency Converter Example

Block Diagrams with two different operating modes

Speed Open loop controller:

Process Closed Loop controller:

Object Diagram for SpeedOpenLoopController

Two types of VLT Use Cases

Architectural Style: Two-Part Architecture Model

Development towards a Framework

- The first version of the frequency converter software was developed for one specific type of frequency converters, where motor signals where generated by an ASIC (Application Specific Integrated Circuit)
- The SW architecture was defined by an OO model and implemented in C++
- A lot of existing C-code (i.e. ~80%) was wrapped in OO Wrapper classes
- The second version was modified for another frequency converter type, where the motor signals where generated by a DSP (Digital Signal Processor)
- Part of the architecture was modified, but the main architecture ideas, based on the two-part architecture model, was kept as the basic architecture
- The software has been developed towards a framework for motor controlling software, to be used for a hole family of frequency converters

Summary

- Architecture Styles and examples
 - Pipes and Filtes
 - Two-part architecture model for embedded systems

References

- [Shaw&Garlan96]
 Software Architecture, Perspectives on an Emerging Discipline
 by Mary Shaw, David Garlan, Prentice-Hall, 1996
- [COT1997-2000] Center for Object Technology (COT),
 - a Danish research project financed by Center for IT Research. The COT project has a number of reports on SW architecture,
 - http://www.cit.dk/COT/ see under Report Series
- [Jeppesen&Hansen2001]

Designing Event-Controlled Continuous Processing Systems by Hans Peter Jepsen and Finn Overgaard Hansen, Proceedings Embedded Systems Conference, San Francisco April 2001.