$$= -\frac{1}{6} \begin{pmatrix} 1 & -2 & 3 \\ -2 & -2 & 6 \\ -3 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 \\ 4 & 2 & 6 \\ 1 & 2 & 3 \end{pmatrix} = -\frac{1}{6} \begin{pmatrix} -6 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & -18 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

con valores característicos 1, -2 y 3.

Observación. Como existe un número infinito de maneras en las cuales se puede elegir un vector característico, existe un número infinito de formas para seleccionar una matriz de diagonalización C. El único consejo es elegir los vectores característicos y la matriz C que sean los de más sencillo manejo aritmético. En términos generales, esto quiere decir que debe insertarse el mayor número de ceros y unos posible.

Diagonalización de una matriz de 3 × 3 con dos valores característicos distintos y tres vectores característicos linealmente independientes

Sea
$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
. Entonces, del ejemplo 8.1.10, se tienen tres vectores característicos linealmente

independientes:
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ y $\mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. Estableciendo $C = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & -2 \\ 2 & 0 & 1 \end{pmatrix}$ se obtiene

$$C^{-1} = AC = -\frac{1}{9} \begin{pmatrix} -2 & -1 & -2 \\ -5 & 2 & 4 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & -2 & -2 \\ 2 & 0 & 1 \end{pmatrix}$$
$$= -\frac{1}{9} \begin{pmatrix} -2 & -1 & -2 \\ -5 & 2 & 4 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} 16 & -1 & 0 \\ 8 & 2 & 2 \\ 16 & 0 & -1 \end{pmatrix} = -\frac{1}{9} \begin{pmatrix} -72 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Este ejemplo ilustra que A es diagonalizable aun cuando sus valores característicos no sean diferentes.

Sea $A = -\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$. En el ejemplo 8.1.9 se vio que A no tiene dos vectores característicos linealmente independientes. Suponga que A fuera diagonalizable (lo que contradice el teorema 8.3.2). Entonces $D = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ y existiría una matriz invertible C tal que $C^{-1}AC = D$. Multiplicando esta ecuación por la izquierda por C y por la derecha por C^{-1} , se deduce que $A = CDC^{-1} = C\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}C^{-1} = C(4I)C^{-1} = 4CC^{-1} = 4I = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = D$. Pero $A \neq D$, y por lo tanto no existe tal C.