Tópico 5 - Posições relativas de retas e planos

Tópico 5

Site: [Moodle PUC-SP]

Curso: 2015.1 - Geometria Analítica (GA)
Livro: Tópico 5 - Posições relativas de retas e planos

Impresso por: ANA LUIZA PORTELLO BASTOS
Data: sábado, 11 Nov 2017, 03:02

Sumário

5. Posição relativa entre retas e planos5.1 Reta e reta5.2 Reta e plano5.3 Plano e plano

Exercícios de familiarização

Avaliação 5 - posições relativas

Dúvidas

Geometria Analítica

Posições relativas de retas e planos

5. Posição relativa entre retas e planos

Neste capítulo estudaremos as possíveis posições entre duas retas, entre retas e planos e entre planos.

5.1 Reta e reta

Duas retas no espaço podem ser:

- 1. reversas, quando nenhum plano as contém ou
- 2. coplanares, quando estão contidas em um mesmo plano. Neste caso, podem ser:
 - a. paralelas distintas ou coincidentes ou
 - b. concorrentes quando têm um ponto comum.

Fixado um sistema de coordenadas ortonormal do espaço e considerando uma reta r com vetor diretor $\vec{r} = (a, b, c)$, $(\vec{r}//r)$ e uma reta s com vetor diretor $\vec{s} = (m, n, p)$, $(\vec{s}//s)$. Temos duas possibilidades para os vetores diretores ou (\vec{r}, \vec{s}) éLDou (\vec{r}, \vec{s}) éLI.

i. se (\vec{r}, \vec{s}) LD r e s são **paralelas** se, e somente se existe $\lambda \in \mathbb{R}$ tal que $\vec{r} = \lambda \vec{v}$. Para saber se as retas são coincidentes, ou não, basta escolher um ponto P de r e verificar se P pertence a s, se sim temos r = s, se não r e s são paralelas distintas, isto é $\Gamma \cap S = \emptyset$.

ii. Se (\vec{r}, \vec{s}) LI as retas podem ser **reversas** ou **concorrentes**.

r e s são **reversas** se, e somente se, $(\vec{r}, \vec{s}, \overrightarrow{AB})$ LI, ou seja, se e só se $[\vec{r}, \vec{s}, \overrightarrow{AB}] \neq 0$, para qualquer $A(x_1, y_1, z_1) \in re\ B(x_2, y_2, z_2) \in s$.

Então se m n p $\neq 0$ as retas res são reversas. $x_2 - x_1 \ y_2 - y_1 \ z_2 - z_1$

Então se
$$\begin{bmatrix} a & b & c \\ m & n & p \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{bmatrix} \neq 0$$
 as retas r e s são reversas

r e s são **concorrentes** se, e somente se,
$$[\overrightarrow{r}, \overrightarrow{s}, \overrightarrow{AB}] = 0$$
.

Então se $\begin{vmatrix} a & b & c \\ m & n & p \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \end{vmatrix} = 0$ as retas r e s são concorrentes.

A condição para que duas retas sejam **ortogonais** é que os vetores, não nulos, \vec{r} e \vec{s} paralelos a elas sejam ortogonais, isto é, $\vec{r} \circ \vec{s} = 0$. Se as duas retas são ortogonais e possuem um ponto comum denominam-se **perpendiculares**.

Exemplo 1

Verifique a relação de posição entre as retas $r: \overrightarrow{OX} = (1, 2, 3) + \lambda(0, 1, 3)$, com $\lambda \in \mathbb{R}$ e $s: \begin{cases} x+y+z=6 \\ x-y-z=-4 \end{cases}$

Observando a equação da reta r vemos que ela passa pelo ponto A(1, 2, 3) e tem direção do vetor $\vec{r} = (0, 1, 3)$. Da reta s precisamos tomar dois de seus pontos para obter a direção. Assim se fizermos z = 0 obtemos o sistema

 $\begin{cases} x+y=6 \\ x-y=-4 \end{cases}$ cuja solução é x=1 e y=5. Logo, B(1,5,0) pertence a s. Se fizermos z=1 obtemos o sistema $\begin{cases} x+y=5 \\ x-y=-3 \end{cases}$ que tem solução x=1 e y=4. Logo, C(1,4,1) pertence a s.

Assim, a direção da reta s é dada por $\overrightarrow{BC} = \overrightarrow{s} = (0, -1, 1)$. Podemos ver que $(\overrightarrow{r}, \overrightarrow{s})$ é LI. Tomando o vetor $\overrightarrow{AB} = (0, 3, -3)$ com $A \in r$ e $B \in s$ podemos verificar se os vetores $(\overrightarrow{r}, \overrightarrow{s}, \overrightarrow{AB})$ são coplanares (LD).

 $\begin{bmatrix} 0 & 1 & 3 \\ 0 & -1 & 1 \\ 0 & 3 & -3 \end{bmatrix} = 0$ significa que a terna de vetores é LD e, consequentemente, as retas r e s são concorrentes. Como

Exemplo 2

Verifique a relação de posição entre as retas r: $\frac{x-1}{2} = y = \frac{-z}{3}$ e s: $\begin{cases} x = 2 \\ y = 1 - \lambda & \text{com } \lambda \in \mathbb{R}. \end{cases}$

Temos $\vec{r} = (2, 1, -3) e \vec{s} = (0, -1, 1)$ que não são paralelos, logo as retas não são paralelas.

Vamos verificar se as retas são concorrentes. Para isso determinamos as equações paramétricas de r e s:

$$r: \begin{cases} x = 1 + 2\mu \\ y = \mu \end{cases} \text{ e.s.} \begin{cases} x = 2 \\ y = 1 - \lambda \\ z = 2 + \lambda \end{cases}$$

$$Igualando os dois sistemas vem: \begin{cases} 1 + 2\mu = 2 \\ \mu = 1 - \lambda \\ -3\mu = 2 + 2\lambda \end{cases} \Rightarrow \begin{cases} \mu = 0,5 \\ \lambda = 0,5 \\ -1,5 = 2,5 \text{ (falso)} \end{cases}$$

Logo as retas não são concorrentes e, portanto, são reversas. Como $\vec{r} \circ \vec{s} \neq 0$ as retas não são ortogonais.

Resumindo temos:

Retas paralelas

- Se P∈5 e P∈r então as paralelas são coincidentes
- Se P ∈ 5 e P ∉ r então as paralelas são distintas.

Retas não paralelas

- Se $\vec{r} \cap \vec{s} = \{P\}$ as retas são concorrentes. Se $\vec{r} \circ \vec{s} = 0$ as retas são concorrentes perpendiculares. Se $\vec{r} \circ \vec{s} \neq 0$ as retas são concorrentes não perpendiculares.
- Se $\vec{r} \cap \vec{s} = \vec{Q}$ as retas são reversas. Se $\vec{r} \circ \vec{s} = 0$ as retas são reversas ortogonais. Se $\vec{r} \circ \vec{s} \neq 0$ as retas são reversas não ortogonais.
- *O plugin do software Cabri é um recurso externo ao Ambiente Virtual de Aprendizagem da PUC-SP, **não faz parte da plataforma Moodle**. Informações sobre instalação, manutenção e padrões de uso devem ser esclarecidas diretamente com a empresa fornecedora. Para mais detalhes sobre o software acesse: http://www.cabri.com/es e/ou http://www.cabri.com/es/descargar-cabri-3d.html.

5.2 Reta e plano

Uma reta e um plano, no espaço, podem ocupar as seguintes posições: a reta pode estar **contida** no plano, ser **paralela** ao plano ou ser **transversal** ao plano, isto é, pode interceptar o plano em um único ponto. Veja na figura 35 exemplos dessas retas.

Fixado um sistema de coordenadas ortonormal do espaço consideremos uma reta r que passa pelo ponto A e tem direção do vetor $\vec{r} \neq \vec{0}$ e o plano π que passa pelo ponto B e tem a direção dos vetores \vec{v}_1 e \vec{v}_2 com \vec{v}_1 . LI que tem vetor normal \vec{n} .

A reta r será paralela ao plano π se, e somente se, os vetores \vec{r} , \vec{v}_1 e \vec{v}_2 forem coplanares, isto é, se $(\vec{r}, \vec{v}_1, \vec{v}_2)$ for LD. Considerando a equação geral do plano π , ax + by + ca + d = 0, $\vec{n} = (a, b, c)$ seu vetor normal e $\vec{r} = (m, n, p)$ a direção de r, conforme mostra a figura 36

Podemos dizer que a reta r será **paralela** ao plano π quando $\vec{n} \perp \vec{r}$, isto é, quando $\vec{n} \circ \vec{r} = 0$ o que significa que am + bn + cp = 0. Para decidir se $r \subset \pi$ ou $r / / \pi$ basta verificar se um ponto P qualquer de r pertence a π . Se sim concluímos que $r \subset \pi$, se não, temos que $r / / \pi$.

Caso $am+bn+cp\neq 0$ a reta r **interceptará** o plano π em um ponto P e para obter esse ponto basta resolver o sistema formado por suas equações. Se tivermos dois vetores $\overrightarrow{v_1}=(d,\ e,\ f)$ e $\overrightarrow{v_2}=(g,\ h,\ i)$ LI, paralelos a π e $\overrightarrow{r}=(m,\ n,\ p)$ um vetor diretor da reta r, uma condição necessária e suficiente para que r seja **transversal** a π é que $(\overrightarrow{r},\ \overrightarrow{v_1},\ \overrightarrow{v_2})$ seja LI, isto $(\overrightarrow{r},\ \overrightarrow{v_1},\ \overrightarrow{v_2})\neq 0$.

Sejam a reta r: $\overrightarrow{OX} = \overrightarrow{OA} + t\overrightarrow{r}$ e um plano π : $\overrightarrow{OX} = \overrightarrow{OB} + \lambda \overrightarrow{v_1} + \mu \overrightarrow{v_2}$ $(t, \lambda, \mu \in \mathbb{R})$. Para que a reta r

seja **perpendicular** ao plano π os pares de vetores $(\vec{r}, \vec{v_1})$ e $(\vec{r}, \vec{v_2})$ devem ser ortogonais, isto é $\vec{r} \circ \vec{v_1} = 0$ e $\vec{r} \circ \vec{v_2} = 0$. Observe que o par formado pelo produto vetorial $\vec{v_1} \times \vec{v_2}$ e o vetor \vec{r} deve ser LD, então existe um único número real $\alpha \in \mathbb{R}$ tal que $\vec{r} = \alpha (\vec{v_1} \times \vec{v_2})$.

Se, em relação a um sistema de coordenadas ortonormais, o plano π for dado por sua equação geral ax + by + cz + d = 0 sendo $\vec{n} = (a, b, c)$ um vetor normal a π , então basta verificar se \vec{r} (vetor direção de r) é paralelo a \vec{n} .

Em resumo

- Se $\vec{r} \circ \vec{n} = 0$ e $P \in r$ e $P \in \pi$ a reta está contida no plano, mas se $P \in r$ e $P \notin \pi$ a reta é paralela ao plano.
- Se $\vec{r} \circ \vec{n} \neq 0$ e \vec{r} não é paralela a \vec{n} então a reta é transversal ao plano, mas se \vec{r} for paralela a \vec{n} então a reta é perpendicular ao plano.

Exemplo 2

Verifique a posição relativa entre o plano π : $\overrightarrow{OX} = (1, 1, 3) + \lambda(1, -1, 1) + \mu(0, 1, 3), (\lambda, \mu \in \mathbb{R})$ e a reta r: $\overrightarrow{OX} = (1, 1, 1) + \alpha(3, 2, 1)$, com $\alpha \in \mathbb{R}$

A reta r tem direção $\vec{r} = (3, 2, 1)$ e o plano π tem a direção dos vetores $\vec{v}_1 = (1, -1, 1)$ e $\vec{v}_2 = (0, 1, 3)$. Verifiquemos se essa terna de vetores é LI ou LD.

Outra solução

Determinando o vetor normal ao plano, fazendo o produto vetorial dos dois vetores diretores do plano, obtemos $\vec{n}=(-4,\ -3,\ 1)$. Calculando $\vec{r}\circ\vec{n}=-12-6+1=-17\neq 0$ significa que a reta é transversal ao plano, mas como o vetor diretor da reta não é paralelo ao vetor normal ao plano concluimos que ela não é perpendicular.

*O plugin do software Cabri é um recurso externo ao Ambiente Virtual de Aprendizagem da PUC-SP, **não faz parte da plataforma Moodle**. Informações sobre instalação, manutenção e padrões de uso devem ser esclarecidas diretamente com a empresa fornecedora. Para mais detalhes sobre o software acesse: http://www.cabri.com/es e/ou http://www.cabri.com/es/descargar-cabri-3d.html.

5.3 Plano e plano

Dois planos no espaço podem ser paralelos, coincidentes ou distintos, ou ainda, serem transversais com a intersecção

Fixado um sistema de coordenadas ortonormal do espaço, sejam π_1 : $a_1x + b_1y + c_1z + d_1 = 0$ e π_2 : $a_2x + b_2y + c_2z + d_2 = 0$.

a. uma condição necessária e suficiente para que os planos π_1 e π_2 sejam **paralelos distintos** é que $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}.$ Isto significa que os planos devem possuir mesma direção normal, ou seja, $(\stackrel{\rightarrow}{n_1}, \stackrel{\rightarrow}{n_2})$ é LD (ver figura 37) e, para decirdir se são coincidentes, basta verificar se um ponto pertence aos dois planos ou ainda

se a razão $\frac{d_1}{d_2}$ é igual às outras razões.

b. se $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ podemos concluir que os planos se interceptam e sua intersecção é uma reta. Neste caso

 $\begin{bmatrix} \overrightarrow{n_1}, \ \overrightarrow{n_2} \end{bmatrix}$ é LI, como mostra a figura 38. Para encontrar a reta r de intersecção de π_1 e π_2 devemos resolver o seguinte sistema linear, com duas equações e três incógnitas: $\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$

Se o sistema for impossível os planos **não** têm ponto comum, logo são paralelos distintos. Se o sistema for possível e indeterminado, tendo uma variável "livre" os planos são concorrentes e a solução do sistema será a equação da reta comum aos dois planos. Tendo duas variáveis "livres" os planos serão coincidentes e a solução do sistema será a equação desses planos.

Observação

Esse sistema nunca será determinado porque a intersecção de dois planos nunca pode ser um único ponto.

Sejam dois planos, π_1 e π_2 e n_1 o vetor normal ao plano π_1 e n_2 o vetor normal ao plano π_2 . Os planos π_1 e π_2 são **perpendiculares** se, e somente se, os seus vetores normais forem ortogonais, isto é $n_1 \circ n_2 = 0$. Dessa forma se dois planos são perpendiculares então $n_1 \perp n_2, n_1 / / \pi_2$ e $n_2 / / \pi_1$.

Em resumo

- Se $\overrightarrow{n_1}//\overrightarrow{n_2}$, $P \in \pi_1$ e $P \in \pi_2$ então os planos são **paralelos coincidentes**, mas se $P \in \pi_1$ e $P \notin \pi_2$ os planos são **paralelos distintos**.
- \rightarrow Se n_1 não é paralelo a n_2 e n_1 o n_2 = 0 então os planos são perpendiculares, mas se n_1 o $n_2 \neq 0$ então os planos são **transversais**.

Exemplo 3

Verifique a relação de posição entre os planos π_1 : $\overrightarrow{OX} = (1, 0, 1) + \lambda(1, 1, 1) + \mu(0, 1, 0)$ $(\lambda, \mu \in \mathbb{R}) \in \pi_2$: $\overrightarrow{OX} = (0, 0, 0) + \alpha(1, 0, 1) + \beta(-1, 0, 3)(\alpha, \beta \in \mathbb{R})$.

Para resolver buscamos as equações gerais de cada um deles:

Equação geral de
$$\pi_1$$
:
$$\begin{vmatrix} x-1 & y & z-1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (x-1)(-1) + (z-1) = 0 \text{ que nos dá } x-z=0 \text{ e,, portanto,}$$
 um vetor normal desse plano é $\pi_1 = \begin{bmatrix} 1, & 0, & -1 \end{bmatrix}$.

Equação geral de π_2 : $\begin{vmatrix} x & y & z \\ 1 & 0 & 1 \\ -1 & 0 & 3 \end{vmatrix} = -4y = 0$ que nos dá y = 0 (plano xz) e, portanto, um vetor normal desse plano é $n_2 = (0, 1, 0)$. Como (n_1, n_2) é LI e $n_1 \circ n_2 = 0$ temos que π_1 e π_2 são **perpendiculares**. A reta intersecção desses planos é obtida com a solução do sistema $\begin{cases} x-z=0 \\ y=0 \end{cases}$. Temos então: $\begin{cases} x=z \\ y=0 \end{cases}$ que é indeterminado (tem infinitas soluções, que são os pontos da reta procurada). Considerando z=0, temos que z=0, temos qu

*O plugin do software Cabri é um recurso externo ao Ambiente Virtual de Aprendizagem da PUC-SP, **não faz parte da plataforma Moodle**. Informações sobre instalação, manutenção e padrões de uso devem ser esclarecidas diretamente com a empresa fornecedora. Para mais detalhes sobre o software acesse: http://www.cabri.com/es e/ou http://www.cabri.com/es/descargar-cabri-3d.html.

Exercícios de familiarização

Exercício 1

A reta r que passa pelos pontos A(-3, 4, 2) e B(5, -2, 4) e a reta s que passa pelos pontos C(-1, 2, -3) e D(-5, 5, -4) são paralelas?

Exercício 2

Estude a posição relativa das retas nos seguintes casos:

a. r:
$$\begin{cases} y = 2x - 3 \\ z = -x \end{cases}$$
 e s:
$$\begin{cases} x = 1 - 3t \\ y = 4 - 6t \\ z = 3t \end{cases}$$

b.
$$r: \frac{x}{2} = \frac{y-1}{-1} = z e s: \begin{cases} x = 2-4t \\ y = 2t \\ z = -2t+1 \end{cases}$$

c. r:
$$\frac{x-2}{2} = \frac{y}{3} = \frac{z-5}{4} es$$
:
$$\begin{cases} x = 5 + t \\ y = 2 - t \\ z = 7 - 2t \end{cases}$$

d.
$$r$$
:
$$\begin{cases} y=3 \\ z=2x \end{cases}$$
 es: $x=y=z$

e.
$$r: \overrightarrow{OX} = (1, 2, 3) + \alpha(0, 1, 3) \ (\alpha \in \mathbb{R}) \ es: \overrightarrow{OX} = (0, 1, 0) + \beta(1, 1, 1) \ (\beta \in \mathbb{R})$$

f. r:
$$\overrightarrow{OX} = (1, 2, 3) + a(0, 1, 3)$$
 $(a \in \mathbb{R})$ es: $\overrightarrow{OX} = (1, 3, 6) + b(0, 2, 6)$ $(b \in \mathbb{R})$

Exercício 3

Verifique, em cada caso, se as retas são ortogonais e, em particular, se são perpendiculares.

a.
$$r: \overrightarrow{O} \times = (1, 1, 0) + m(1, 0, 1) \ (m \in \mathbb{R}) \ es: \overrightarrow{OX} = (1, 2, 3) + h(2, 1, 4) \ (h \in \mathbb{R})$$

b.
$$r: \overrightarrow{OX} = (1, 1, 1) + h(1, 2, -1)$$
 $(h \in \mathbb{R}) e s: \overrightarrow{OX} = (2, 3, 4) + t(1, 1, 3), (t \in \mathbb{R})$

c. r:
$$\overrightarrow{OX} = \{2, 3, 4\} + p\{1, 1, 1\}$$
 $(p \in \mathbb{R})$ es: $\overrightarrow{OX} = \{2, 0, 4\} + q\{1, -2, 1\}$ $(q \in \mathbb{R})$

Exercício 4

Em cada um dos casos abaixo verifique se a reta e o plano são concorrentes, paralelos ou se a reta está contida no plano. No caso da reta ser transversal ao plano determine o ponto comum.

a.
$$r: \overrightarrow{OX} = (3, 4, 1) + m(1, 2, 3)$$
 $(m \in \mathbb{R}) = \pi: 5x + 2y - 3z - 20 = 0$

b.
$$r: \overrightarrow{OX} = (1, 1, 2) + t(2, 5, 0) (t \in \mathbb{R}) \cdot \pi: 5x - 2y + z - 7 = 0$$

c.r:
$$\overrightarrow{OX} = \{2, 1, 0\} + h\{1, 3, 5\}$$
 $(h \in \mathbb{R}) \in \pi$: $x + y + z + 15 = 0$

Exercício 5

Determine os valores de m e n para que a reta r esteja contida no plano, sendo: r: $\begin{cases} x = 2 + t \\ y = 1 + t \\ z = -3 - 2t \end{cases}$

Exercício 6

Dados o plano e a reta r, estude a posição relativa entre eles.

a.
$$\pi: \overrightarrow{OX} = (1, 0, 1) + \lambda(1, 1, 1) + \mu(0, 0, 3) \ (\lambda, \mu \in \mathbb{R}) e$$

 $r: \overrightarrow{OX} = (2, 2, 1) + \alpha(3, 3, 0) \ (\alpha \in \mathbb{R})$

b.
$$\pi: x+y-z+2=0 \text{ e } r: \begin{cases} x=1+\lambda\\ y=1-\lambda\\ z=\lambda \end{cases}$$

Exercício 7

Verifique, em cada caso, se a reta e o plano são perpendiculares.

a.
$$\pi: 3x + 6y + 9z - 5 = 0 \text{ er}: \overrightarrow{OX} = (1, 2, 0) + t(2, 4, 6) (t \in \mathbb{R})$$

b.
$$\pi: x + y + 2z + 10 = 0 \text{ e } r: \overrightarrow{OX} = (0, 7, 1) + h(3, 1, 1) \ (h \in \mathbb{R})$$

c.
$$r: \overrightarrow{OX} = (0,1,0) + \lambda(1,1,3)$$
 $(\lambda \in \mathbb{R}) = \pi: \overrightarrow{OX} = (3,4,5) + \lambda(6,7,8) + \mu(9,10,11)$

d.
$$r: \begin{cases} 2x - y - z = 0 \\ 2x + y - z = 2 \end{cases} e \pi: x + 2z - 14 = 0$$

Exercício 8

Determine equações na forma simétrica da reta r que passa por P(-1, 3, 5) e é perpendicular ao plano $\pi: x - y + 2z - 1 = 0$

Exercício 9

Estude a posição relativa dos seguintes planos.

a.
$$\pi_1$$
: $2x - y + z - 1 = 0$ e π_2 : $x - \frac{1}{2}y + \frac{1}{2}z - 9 = 0$

b.
$$\pi_1$$
: $x + 10y - z = 4 e \pi_2$: $4x + 40y - 4z = 16$

Exercício 10

Considere os planos α : x+y+z-4=0 e β : x+2y+3z+6=0 e determine a equação geral do plano φ que passa por P[2, 1, 1] e é perpendicular aos planos dados.

Avaliação

Clique na atividade para acessá-la e resolver os exercícios propostos.

Responda sucintamente às questões propostas

Dúvidas e outras questões poderão ser esclarecidas por meio do Fórum de dúvidas.