Electronique Numérique Correction de la série n°3

- 1. Simplifiez au moyen d'un diagramme de Karnaugh les fonctions suivantes :
 - (a) $f(A, B, C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$

(b)
$$f(A, B, C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + ABC + A\overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C$$

(c)
$$f(A, B, C, D) = AB\overline{C} + BCD + B\overline{D}$$

(d)
$$f(A, B, C) = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

(e)
$$f(A, B, C, D) = (A + B + C)(\overline{A} + B + D)$$

Solution:

(a)
$$f(A, B, C) = \overline{A}B\overline{C} + AB\overline{C} + \overline{A}BC + ABC$$

On a f=1 si un des produits qui compose l'équation est égal à 1.

Il suffit donc de passer en revue tous les cas où f=1 et de compléter le tableau.

$$\begin{cases} \overline{A}B\overline{C} &= 1 \text{ si } A = 0 \text{ et } B = 1 \text{ et } C = 0; & (010) = m_2 \\ AB\overline{C} &= 1 \text{ si } A = 1 \text{ et } B = 1 \text{ et } C = 0; & (110) = m_6 \\ \overline{A}BC &= 1 \text{ si } A = 0 \text{ et } B = 1 \text{ et } C = 1; & (011) = m_3 \\ ABC &= 1 \text{ si } A = 1 \text{ et } B = 1 \text{ et } C = 1; & (111) = m_7 \end{cases}$$

En utilisant les mintermes l'équation f peut s'écrire

$$f(A, B, C) = \sum m(2, 6, 3, 7)$$

			AB				
	f		$\overline{A.B}$	$\overline{A}.B$	AB	$A.\overline{B}$	
			00	01	11	10	
C	\overline{C}	0	0	1	1	0	
	C	1	0	1	1	0	

On obtient finalement:

$$f(A, B, C) = B$$

(b)
$$f(A, B, C) = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.C + ABC + A\overline{B}.\overline{C} + A.\overline{B}.C$$

$$f(A, B, C) = \sum_{i} m(0, 3, 7, 4, 5)$$

			AB					
	f		$\overline{A}.\overline{B}$	$\overline{A.B}$	AB	$A.\overline{B}$		
			00	01	11	10		
C	\overline{C}	0	1	0	0	1		
C	C	1	0	1	1	1		

On obtient finalement:

$$f = BC + A.\overline{B} + \overline{B}.\overline{C}$$

(c)
$$f(A, B, C, D) = AB\overline{C} + BCD + B\overline{D}$$

$$f(A, B, C, D) = AB\overline{C} + BCD + B\overline{D}$$

$$= AB\overline{C}(D + \overline{D}) + BCD(A + \overline{A}) + B\overline{D}(A + \overline{A})(C + \overline{C})$$

$$= AB\overline{C}D + AB\overline{C}.\overline{D} + ABCD + \overline{A}BCD + (AB\overline{D} + \overline{A}B\overline{D})(C + \overline{C})$$

$$= AB\overline{C}D + AB\overline{C}.\overline{D} + ABCD + \overline{A}BCD + ABC\overline{D} + ABC\overline{D} + \overline{A}BC\overline{D} + \overline{A}BC\overline{D} + \overline{A}BC\overline{D} + \overline{A}BC\overline{D} + \overline{A}BC\overline{D} + \overline{A}BC\overline{D}$$

En utilisant les mintermes l'équation f peut s'écrire :

$$f(A, B, C, D) = \sum m (13, 12, 15, 7, 14, 6, 4)$$

f		AB				
,		00	01	11	10	
	00	0	1	1	0	
CD	01	0	0	1	0	
CD	11	0	1	1	0	
	10	0	1	1	0	

On obtient finalement:

$$f = BC + AB + B.\overline{D}$$

(d)
$$f(A, B, C) = (A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

On a f=0 si une des sommes qui compose l'équation est égal à 0. Il suffit de passer en revue tous les cas où f=0 et de compléter le tableau.

$$\begin{cases} A + \overline{B} + \overline{C} = 0 \text{ si } A = 0 \text{ et } B = 1 \text{ et } C = 1; \quad (011) = M_3 \\ A + \overline{B} + C = \text{ si } A = 0 \text{ et } B = 1 \text{ et } C = 0; \quad (010) = M_2 \end{cases}$$

La fonction f est le produit de tous ces maxtermes :

$$f(A, B, C) = \prod M(3, 2)$$

On écrit donc la table logique correspondante :

		AB					
	f	$\overline{A.B}$	$\overline{A.B}$	AB	$A.\overline{B}$		
		00	01	11	10		
C	\overline{C} 0	1	0	1	1		
C	C 1	1	0	1	1		

On obtient finalement:

$$f = A + \overline{B}$$

(e)
$$f(A, B, C, D) = (A + B + C)(\overline{A} + B + D)$$

$$f(A, B, C, D) = (A + B + C)(\overline{A} + B + D)$$

$$= (A + B + C + D.\overline{D})(\overline{A} + B + D + C\overline{C})$$

$$= (A + B + C + D)(A + B + C + \overline{D})(\overline{A} + B + D + C) \times (\overline{A} + B + D + \overline{C})$$

En utilisant les maxtermes l'équation f peut s'écrire :

$$f = \prod M(0, 1, 8, 10)$$

On écrit donc la table logique correspondante :

	f	AB				
	, /	00	01	11	10	
CD .	00	0	1	1	0	
	01	0	1	1	1	
	11	1	1	1	1	
	10	1	1	1	0	

On obtient finalement:

$$f = B + AD + \overline{A}C$$

2. Ecrire l'expression booléenne simplifiée de y pour le circuit logique ci-dessous.

Fig. 1

$$y = y_1 + y_2 + y_3$$

$$= AB + A\overline{B}C + AB$$

$$= AB + A\overline{B}C$$

$$= A(B + \overline{B}C)$$

$$= A(B + C)$$

$$= AB + AC$$

3. Dessiner un circuit simplifié réalisant l'équation $S = \overline{AB + \overline{A}.\overline{B}} + \overline{A}.B$ en n'utilisant que des portes NAND.

Solution:

$$S = \overline{AB} + \overline{A}.\overline{B} + \overline{A}.B$$

$$= \overline{AB} \cdot \overline{\overline{A}}.\overline{B} + \overline{A}.B$$

$$= (\overline{A} + \overline{B}) \cdot (A + B) + \overline{A}.B$$

$$= A\overline{A} + \overline{A}B + A\overline{B} + B\overline{B} + \overline{A}.B$$

$$= A\overline{B} + \overline{A}.B$$

Réalisation de la fonction S à l'aide des portes NAND :

On double complémente l'équation logique, puis on applique le théorème de De Morgan

$$\overline{\overline{S}} = \overline{\overline{A}\overline{B} + \overline{A}.B}$$

$$= \overline{\overline{A}\overline{B}.\overline{\overline{A}.B}}$$

4. Soit le circuit logique montré sur la figure 2. Ecrire la table de vérité entre les entrée A et B et la sortie S. Quelle est la fonction du circuit ? Compléter les chronogrammes de la figure 3

Fig. 2

Fig. 3

$\underline{\textbf{Solution}:}$

$$S = \overline{A.B} + \overline{A.B} + A.\overline{B}$$

$$= \overline{A} + \overline{B} + \overline{A.B} + A.\overline{B}$$

$$= \overline{A}(1+B) + \overline{B}(1+A)$$

$$= \overline{A} + \overline{B}$$

$$= \overline{A.B}$$

A	В	$S = \overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

TABLE 1 – Table de vérité de la fonction NAND

5. Réaliser le circuit ayant la table de verité suivante en n'utilisant que des portes NON-OU.

A	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Table 2

$\underline{\textbf{Solution:}}$

$$S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.\overline{B}.\overline{C} + A.B.C$$

$$= \overline{A}.\overline{C}(\overline{B} + B) + BC(\overline{A} + A) + A.\overline{B}.\overline{C}$$

$$= \overline{A}.\overline{C} + BC + A.\overline{B}.\overline{C}$$

$$= BC + \overline{C}(\overline{A} + A.\overline{B})$$

$$= BC + \overline{C}(\overline{A} + \overline{B})$$

$$= BC + \overline{A}.\overline{C} + \overline{B}.\overline{C}$$

Réalisation de la fonction S à l'aide des portes NOR :

On double complémente les monômes de l'équation logique, puis on applique le théorème de De Morgan.

$$S = \overline{\overline{BC}} + \overline{\overline{\overline{A.C}}} + \overline{\overline{\overline{B.C}}}$$
$$= \overline{\overline{B} + \overline{C}} + \overline{A + C} + \overline{B + C}$$

