

SCC.141 Professionalism in Practice

Week 14: Malware, Malevolent online practices, Threat Modelling

5th February 2025 Dr Elmira Yadollahi, <u>e.yadollahi@lancaster.ac.uk</u> School of Computing and Communications

Learning Objectives

- Define different types of malware
- Recognize various malevolent online practices and how they exploit vulnerabilities in technologies
- Understand threat modelling (STRIDE, DREAD) and apply it to real-world scenarios
- Develop a Holistic Approach to Cybersecurity

Agenda

- Malware Basics & Taxonomy
- Malevolent Online Practices: Social Engineering, Grooming, Online Stalking, etc.)
- Threat Modelling: Why, how, and frameworks (STRIDE & DREAD)
- Summary & Key Takeaways

Malware

The Weakest Link Principle

People often represent the weakest link in the security chain and are chronically responsible for the failure of security systems" (Bruce Schneier, 2000, p. 149).

The Weakest Link Principle

- Exploitation of software and information systems often targets the weakest link:
 - Human factors: Social engineering, unintentional errors
 - Technology vulnerabilities:
 - Outdated or insecure apps
 - Operating system defects
 - Exposed personal traits:
 - Oversharing on social media (e.g., sensitive interests or habits)
- Role of Designers (i.e., You!):
 - Anticipate and mitigate potential threats
 - Build systems that prioritize security and user awareness

Historical Example — Enigma & "CILLY"

- The Enigma Machine, used at WWII, was thought unbreakable
- The Enigma's settings offered **150,000,000,000,000,000,000** possible solutions, yet the Allies were eventually able to crack its code

Historical Example — Enigma & "CILLY"

- The Enigma Machine, used at WWII, was thought unbreakable
- The Enigma's settings offered **150,000,000,000,000,000** possible solutions, yet the Allies were eventually able to crack its code
- Cracked at Bletchley Park because of human errors
 - CILLY was the start of every message sent out by one particular German operator
 - This predictable sequence of letters was an example of regularly occurring patterns in Enigma-encrypted messages
 - The Enigma machine, when used properly, was highly secure
- Lesson: Cracking Enigma was not a machine flaw, but a human one

Defining Malware

What is Malware?

- Malware is short for Malicious software.
- Any software designed to cause harm to computer systems, networks, or users
- Malware can take many forms

What Does Malware Do?

- Malware is designed to harm and exploit your computer or network
- Steal sensitive information like passwords and credit card numbers
- Disrupt system's operations
- Allow attackers to gain unauthorized access to your device

Malware Taxonomy: Virus

- Virus is malicious executable code attached to another executable file
 - Resident Virus (stays in memory) vs. Non-Resident Virus (Don't stay after execution)
- How It Spreads: Spreads through infected files
- Impact: Can corrupt files, slow down systems, or cause crashes
- Prevention: Use antivirus and avoid untrusted files
- Example:
 - Conficker (2008)
 - Virus that exploited Win32 weaknesses to create a distributed remote-controlled botnet
 - It worked by killing the tasks associated with antivirus software before it could be detected
 - 15,000,000 computers affected

Malware Taxonomy: Worm

- Worms are self-replicating malware that doesn't require a host to spread
 - Compared to a virus they don't need a host program, worms can run by themselves
- How It Spreads: Exploits security flaws to propagate over networks
- Impact: Disrupts networks and consumes bandwidth
- Prevention: Regular updates and firewall use
- Example:
 - ILOVEYOU Worm (2000)
 - Email attachments containing Visual Basic Script that damaged the computer by overwriting files
 - Opening the attachment sent the email to the user's contacts

Malware Taxonomy: Trojan

- Trojans are malware disguised as legitimate software to trick users to install them
 - Normally something you want!
- How It Spreads: Delivered through phishing or malicious downloads
- Impact: Steals data or provides unauthorized access
- Prevention: Be cautious with emails and downloads
- Example:
 - Back Orifice (1998):
 - User installs server-side program
 - 3rd party can then control/access the machine via client

Malware Taxonomy: Ransomware

- Ransomware infects computer, encrypts files or locks systems for ransom
- How It Spreads: Typically, via phishing emails or infected websites
- Impact: Data loss, financial extortion, and system downtime
- Prevention: Backup important files and avoid suspicious links
- Example:
 - WannaCry (2017)
 - Exploited a vulnerability in Windows systems
 - Encrypted files demanding Bitcoin payments
 - Spread across the globe, affecting thousands of organizations, including the NHS in the UK

Malware Taxonomy: Zombie

- Zombie is a compromised computer controlled by hackers to perform malicious acts
- How It Spreads: Zombies can be created by any malware, i.e., Trojans or worms
- Impact: Used in botnets for spam or Distributed Denial of Service (DDoS) attacks
- Prevention: Regular updates, monitor, unusual activity, and strong authentication
- Example:
 - Zeus Trojan (2007)
 - The Zeus Trojan is notorious for turning infected systems into zombies for use in a botnet
 - Typically for stealing banking credentials and launching DDoS attacks

Malware Taxonomy: Botnet

- Botnet is a network of zombies controlled remotely by cybercriminals
- How It Spreads: Malware infiltrates devices, turning them into bots that can be used for malicious purposes
- Impact: Used to launch attacks like DDoS, send spam emails, or steal sensitive information
- Prevention: Secure IoT devices, use firewalls, and antivirus software
- Example:
 - Mirai Botnet (2016)
 - The Mirai botnet exploited unsecured IoT devices like cameras and routers
 - Turned them into bots for large-scale DDoS attacks that brought down major websites and services

What is a DDoS Attack?

A distributed denial of service (DDoS) attack is kind of like a traffic jam on a website

It Involves Zombies!

What is a DDoS Attack?

A distributed denial of service (DDoS) attack is kind of like a traffic jam on a website

A DDoS attack is when a hacker makes a website or other service inaccessible by **flooding it with requests from many different devices**

How Malware Gains Access?

- Phishing Emails: Malicious attachments or links trick users into downloading malware
- Exploiting Vulnerabilities: Malware often takes advantage of unpatched software or system weaknesses
- Social Engineering: Attackers manipulate victims into revealing sensitive information or executing malicious code
- Malicious Websites/Ads: Malware is delivered through compromised or fake websites and ads
- Infected Software/Downloads: Malware can hide in seemingly legitimate software or files

What Are the Effects of Malware?

- Data Theft: Personal, financial, or business data is stolen for malicious use
- System Damage: Malware can corrupt or delete files, slow down or crash systems
- Loss of Privacy: Sensitive information such as passwords or browsing history may be exposed
- Financial Loss: Ransomware and data breaches can lead to direct financial damage
- Performance Issues: Malware can reduce system speed or disrupt normal operation
- Reputation Damage: Organizations or individuals may suffer from compromised trust and credibility

Who Are Malware Practitioners?

- **Cybercriminals:** Individuals or groups who create and distribute malware for financial gain
- Hacktivists: People or organizations who use malware as a tool for political or social causes
- State-Sponsored Actors: Governments or military organizations that use malware for espionage, sabotage, or warfare
- Script Kiddies: Less skilled attackers who use pre-made malware for fun or to gain attention
- Cybersecurity Researchers: Ethical hackers who analyze malware to develop protections or solutions (often the counterforce to malicious actors)

Who: Malware Practitioners

Malevolent Online Practices

Malevolent Online Practices

- Creation and use of malware is NOT the only malevolent practice on the Web...
- Rise of social networks & digital communication → New malicious practices
- Often target vulnerable groups:
 - Elderly people
 - Single men and women
 - Children
- You need to be able to spot these practices

Malevolence I: Phishing

- Phishing: Spam emails containing a convincing hyperlink
 - Looks like it's from a trusted source
 - Actual address may be foreign or suspicious
 - Victims tricked into entering personal info
 - Clicking confirms your email is active → more spam!
- Examples: Banks, tax agencies, social media
- Compare with spear-phishing

Malevolence I: Phishing

- Phishing: Spam emails containing a convincing hyperlink
 - Looks like it's from a trusted source
 - Actual address may be foreign or suspicious
 - Victims tricked into entering personal info
 - Clicking confirms your email is active → more spam!
- Examples: Banks, tax agencies, social media
- Compare with spear-phishing
 - A more targeted and personalized form of phishing where attackers tailor their fraudulent messages to a specific individual or organization

Malevolence I: Phishing

- Phishing: Spam emails containing a convincing hyperlink
 - Looks like it's from a trusted source
 - Actual address may be foreign or suspicious
 - Victims tricked into entering personal info
 - Clicking confirms your email is active → more spam!
- Examples: Banks, tax agencies, social media
- Compare with spear-phishing
 - A more targeted and personalized form of phishing where attackers tailor their fraudulent messages to a specific individual or organization

Evolving risks to (formerly) excluded

- Many older adults going online for the first time during Covid
- 660% increase in phishing attacks aimed at older adults

THE GLOBAL YEAR IN BREACH 2021:

What Happened in 2020, Why It Happened and What To Do Next

E-mail Users

Dear Students, Faculty and Staff,

This email is from Memphis Information Technology Services (ITS).

Kindly verify your Memphis.edu e-mail within 24 hours or your e-mail will be temporarily suspended. Click Here to verify your e-mail.

http://werfg56453.weebly.com/

Malevolence II: Social Engineering

- Social engineering is often described as "hacking without code"
- Based on the principle of trust
- The perpetrator collects data through:
 - Dumpster diving (that's why you should always shred documents!)
 - Monitoring social media e.g., Facebook and Twitter
 - Shoulder surfing (peeking at screen in public)
- The perpetrator convinces the victim to trust them, ask for money/details:
 - Via a dating site
 - Serious Organized Crime Agency reported 200k victims in the UK up to 2011
- Contact methods: email, telephone, social networking sites

Malevolence III: Grooming

- Gaining trust of a victim by being nice over time
 - Often a long process of building rapport
- Once trust has been gained and established:
 - Get the victim to reveal information about themselves
 - i.e. key personal data for online banking
 - Involve them in a crime unknowingly
 - Handling stolen goods, provision of alibis
- Not just restricted to paedophiles:
 - Romance scams con single adults out of money

Malevolence IV: Online Stalking

- Stalking: obsessively following or watching a person without their knowledge
 - Often "lateral" (covert) surveillance
 - Increase due to social networks:
 - Checking a former partner's statuses or updates
- Lateral surveillance: viewing someone's online presence without their knowledge
 - Employers do background checks online
- Doxing: publishing private data (addresses, phone numbers) with malicious intent

Malevolence V: Deepfakes & Synthetic Media

- Deepfakes: Al-generated images, videos, or audio that appear real
 - Technology uses machine learning to mimic faces, voices, or actions
- Applications in Cybercrime:
 - Impersonating executives for fraud (e.g., fake calls or emails)
 - Creating fake evidence for blackmail or manipulation
 - Spreading misinformation or fake political speeches
- Broader Implications:
 - Challenges in verifying authentic media
 - Potential for eroding trust in digital content

Malevolence VI: Misinformation & Propaganda

- Misinformation: Sharing false or misleading information unintentionally
- Disinformation: Deliberate spread of false information to manipulate or deceive
- Techniques:
 - Fake news, doctored images, Al-generated content
 - Bots and fake accounts amplifying narratives
 - Deepfakes used to fabricate speeches or events

Impacts:

- Erodes trust in media and institutions
- Polarizes society and amplifies echo chambers
- Influences political outcomes and public opinion

Threat Modelling

Threat Modelling

• What is threat modelling?

 A technique within the security lifecycle to analyze a system's security & privacy concerns

• Why threat model?

- Recognize potential failures or attacks
- Identify design & implementation flaws early
- Inform decisions throughout development, testing, & deployment

Assets, Threats and Risks

5 Key phases of Threat Modelling

- Asset Identification
- Threat Analysis
- Vulnerability Analysis
- Risk Assessment
- Risk Communication

Assets, Threats and Risks

5 Key phases of threat modelling

- Asset Identification
- Threat Analysis
- Vulnerability Analysis
- Risk Assessment
- Risk Communication

- Determine what you're trying to protect
- Identify potential attacks or events that could compromise these assets
- Pinpoint the weaknesses in the setup-both technical and organizational
- Evaluate the likelihood and impact of each threat
- Share the findings with stakeholders (developers, management, end-users)

Assets, Threats and Risks

- 5 Key phases of threat modelling
- Asset Identification
- Threat Analysis
- Vulnerability Analysis
- Risk Assessment
- Risk Communication

These phases identify:

- Which assets need protection
- Relevant threats & vulnerabilities
- Risk level for each threat
- Mitigation & contingency priorities

What is a Threat Agent?

- Natural threats and/or accidents
 - Non-intentional threat agents (e.g., floods, fires, user mistakes)
- Malicious agents
 - Intentional actions, the ones everyone thinks of
 - Characteristics
 - Motivation
 - Capability
 - Access
 - Amplifiers
 - Inhibitors

Natural and Accidental Threats

Natural

- Well-studied (insurance data, actuarial tables)
- Relatively predictable in terms of frequency so organizations can plan accordingly

Accidental

- Come from human error with no malicious intent
 - lost or stolen devices, misconfigurations, or employees clicking on phishing links
- Hard to track
- Implement awareness training, strict policies around data handling, and proper incident reporting

Malicious Agents

- **Definition:** An agent can be an individual or group that implements a threat
 - Influenced by amplifiers(motivators, resources, alliances) or inhibitors (legal risk, limited access, fear of exposure)

Characteristics:

- Motivation: Why do they act?
- Capability: Skills & resources
- Catalyst: What triggered the action?
- Inhibitors: What might deter them?
- Amplifiers: What might push them forward?

Success Factors:

An exploitable vulnerability and a system worth attacking

Sequence of Factors

Threat Modeling Frameworks

- STRIDE and DREAD threat models are frameworks used in threat modeling
- They are systematic processes to identify and assess security risks in a system
- STRIDE is a mnemonic that categorizes potential threats based on the types of attacks they represent
 - Each letter corresponds to a specific category of threat:
- DREAD is a risk assessment model that evaluates threats based on five criteria
 - It's a scoring system designed to prioritize and quantify risks

STRIDE Threat Model

	Threat Type	Description	Security Control	
S	<u>S</u> poofing	Impersonating a user, device, or system to gain unauthorized access	Authentication	
Т	<u>T</u> ampering	Unauthorized modification of data during transit or at rest Integrity		
R	<u>R</u> epudiation	Denying performing an action, often due to a lack of proper logging or auditing	Non-repudiation	
ı	<u>I</u> nformation Disclosure	nauthorized access to sensitive data Confidentiality		
D	<u>D</u> enial of Service	Availability		
Ε	<u>E</u> levation of Privilege	Gaining unauthorized, higher-level access to the system	Authorization 48	

DREAD Threat Model

	Threat Type	Description	Score between 1 to 10
D	Damage Potential	How bad would the impact be if the threat is realized?	Nothing system compromised
R	Reproducibility	How easy is it for an attacker to replicate the threat?	Hard Easy, no skill required
E	Exploitability	How easy is it for an attacker to launch the attack?	Bespoke tool commonly available
A	Affected Users	How many users or systems would be impacted?	None All
D	Discoverability	How likely is it that the vulnerability will be found by attackers?	Hard Easy 49

Key Takeaways

- Understanding malware types is essential for effective prevention and response
- Cybercriminals exploit trust and human behaviour via phishing, grooming, social engineering, and stalking
- Threat Modelling is a proactive method to building secure systems
- Core Message
 - Cybersecurity is a balance of addressing **technical vulnerabilities** (e.g., malware, system weaknesses) and **human factors** (e.g., phishing, social engineering)

Future Outlook

• Questions?

Looking Ahead: Next week—Digital Exclusion

Thank you for attending, any questions?