1 Intro mathématique

1.1 Trigo

$$\cos^2(\alpha) + \sin^2(\alpha) = 1 \qquad \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{1}{\cot(\alpha)}$$

$$\frac{1}{\cos^2(\alpha)} = 1 + \tan^2(\alpha) \qquad \frac{1}{\sin^2(\alpha)} = 1 + \cot^2(\alpha)$$

$$\cos(\alpha + 2\pi) = \cos(\alpha) \qquad \sin(\alpha + 2\pi) = \sin(\alpha) \qquad \tan(\alpha + \pi) = \tan(\alpha)$$

$$\cos(-\alpha) = \cos(\alpha) \qquad \sin(-\alpha) = -\sin(\alpha) \qquad \tan(-\alpha) = -\tan(\alpha)$$

$$\cos(\pi - \alpha) = -\cos(\alpha) \qquad \sin(\pi - \alpha) = \sin(\alpha) \qquad \tan(\pi - \alpha) = -\tan(\alpha)$$

$$\cos(\pi + \alpha) = -\cos(\alpha) \qquad \sin(\pi + \alpha) = -\sin(\alpha) \qquad \tan(\pi + \alpha) = \tan(\alpha)$$

$$\cos(\frac{\pi}{2} - \alpha) = \sin(\alpha) \qquad \sin(\frac{\pi}{2} - \alpha) = \cos(\alpha) \qquad \tan(\frac{\pi}{2} - \alpha) = \cot(\alpha)$$

$$\cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha) \qquad \sin(\frac{\pi}{2} + \alpha) = \cos(\alpha) \qquad \tan(\frac{\pi}{2} + \alpha) = -\cot(\alpha)$$

$$\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \qquad \cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)$$

$$\tan^{2}\left(\frac{\alpha}{2}\right) = \frac{1-\cos{(\alpha)}}{1+\cos{(\alpha)}} \quad \tan\left(\frac{\alpha}{2}\right) = \frac{1-\cos{(\alpha)}}{\sin{(\alpha)}} = \frac{\sin{(\alpha)}}{1+\cos{(\alpha)}}$$

$$\cos{(\alpha)} + \cos{(\beta)} = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) \quad \cos{(\alpha)} - \cos{(\beta)} = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

$$\sin{(\alpha)} + \sin{(\beta)} = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) \quad \sin{(\alpha)} - \sin{(\beta)} = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

$$\tan{(\alpha)} + \tan{(\beta)} = \frac{\sin{(\alpha+\beta)}}{\cos{(\alpha)}\cos{(\beta)}} \quad \tan{(\alpha)} - \tan{(\beta)} = \frac{\sin{(\alpha-\beta)}}{\cos{(\alpha)}\cos{(\beta)}}$$

 $a\cos(\alpha) + b\sin(\alpha) = \sqrt{a^2 + b^2}\cos(\alpha - \varphi)$

 $cos(x) = a \Rightarrow \begin{cases} x = \arccos(a) + k \cdot 2\pi \text{ ou} \\ x = -\arcsin(a) + k \cdot 2\pi \end{cases}$

 $\sin(x) = a \Rightarrow \begin{cases} x = \arcsin(a) + k \cdot 2\pi & \text{ou} \\ x = \pi - \arcsin(a) + k \cdot 2\pi \end{cases}$

 $tan(x) = a \Rightarrow x = \arctan(a) + k \cdot \pi$

 $a^2 = b^2 + c^2 - 2bc\cos(\alpha)$ $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}$

 $\varphi = \arccos\left(\frac{a}{\sqrt{a^2 + b^2}}\right) = \arcsin\left(\frac{b}{\sqrt{a^2 + b^2}}\right) = \arctan\left(\frac{b}{a}\right)$

 $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$ $\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$

Par changement de variable (x = f(t)): $\int g(x) dx = \int g(f(t))f'(t) dt$

f'(x)	f(x)	F(x)
0	a	ax
1	x	x^2
$-\frac{1}{x^2}$	$\frac{1}{x}$	$\ln x $
$-\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x\sqrt{x}$
$-\frac{1}{2}\sqrt{x^3}$	$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
nx^{n-1}	x^n	$\frac{1}{n+1}x^{n+1}$
$\frac{-n}{x^{n-1}}$	$\frac{1}{x^n}$	$\frac{-1}{n-1} \frac{1}{x^{n-1}}$
$\frac{x^{n-1}}{\frac{1}{x^n}}$	x^n $\sqrt[n]{x}$	$\frac{n-1}{n} \sqrt[n]{x^{n+1}}$
ae^{ax}	e^{ax}	$\frac{1}{-}e^{ax}$
$ab^{ax} \ln(b)$	b^{ax}	$\frac{a^{b^{ax}}}{a \ln(b)}$
1 x	ln(x)	$x(\ln(x)-1)$
$\frac{1}{x \ln(a)}$	$\log_a(bx)$	$x \log_a \left(\frac{bx}{e} \right)$
$\cos(x)$	sin(x)	$-\cos(x)$
$-\sin(x)$	cos(x)	sin(x)
$\frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) $
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1-x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \arccos(x) - \sqrt{1-x^2}$
$\frac{1}{1 + x^2}$	$\arctan(x)$	$x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$
$g'(x)^2 + g(x)g''(x)$	g(x)g'(x)	$\frac{1}{2}g(x)^{2}$
$\frac{g''(x)g(x) - g'(x)^2}{g(x)^2}$	$\frac{g'(x)}{g(x)}$	$\ln g(x) $

1.4 Polynômes Taylor

$$P_N(x) = \sum_{n=0}^{N} \frac{1}{n!} \frac{\mathrm{d}^n f}{\mathrm{d}x^n} \bigg|_{x=x_0} (x - x_0)^n$$

2 Cinématique

Formule de poisson

 $\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \ddot{\vec{r}} = \frac{d^2}{dt^2} (x_1 \vec{u}_1 + x_2 \vec{u}_2 + x_3 \vec{u}_3)$

 $\vec{a} = \frac{\mathrm{d}v}{\mathrm{d}t} \vec{u_t} + v \frac{\mathrm{d}\vec{u_t}}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t} \vec{u_t} + \frac{v^2}{P} \vec{u_n}$

2.1 Coordnonnée cylindrique

Projection de \vec{b} sur \vec{a} : $\vec{b}' = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a} \qquad \qquad \|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \varphi$ $\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} = -(\vec{b} \times \vec{a})$

 $\|\vec{a}\| = \sqrt{\vec{a} \cdot \vec{a}}$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

1.3 Dérivés et integrales

 $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \varphi$

1.2 Géométrie

1.2.1 Vecteur

 $\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$ Par substitution : $\int g(f(x))f'(x)dx = G(x) + c$

f'(x)	6()	F(x)
	f(x)	F(x)
0	a	ax
1	x	x^2
- 1	$\frac{1}{x}$	$\ln x $
$-\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x\sqrt{x}$
$-\frac{1}{2}\sqrt{x^{3}}$	$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
nx^{n-1}	x^n	$\frac{1}{n+1}x^{n+1}$
$\frac{-n}{x^{n-1}}$	$\frac{1}{x^n}$	$\frac{-1}{n-1}\frac{1}{x^{n-1}}$
$\frac{1}{n} \sqrt[n]{x^{n-1}}$	x^n $\sqrt[n]{x}$	$\frac{n-1}{n} \frac{x^{n-1}}{\sqrt[n]{x^{n+1}}}$
ae^{ax}	e^{ax}	$\frac{1}{a}e^{ax}$ a b
$ab^{ax} \ln(b)$	b^{ax}	$\frac{b}{a \ln(b)}$
$\frac{1}{x}$	ln(x)	$x(\ln(x) - 1)$
$\frac{\frac{x}{1}}{x \ln(a)}$	$\log_a(bx)$	$x \log_a \left(\frac{bx}{e}\right)$
$\cos(x)$	sin(x)	$-\cos(x)$
$-\sin(x)$	cos(x)	sin(x)
$\frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) $
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	arccos(x)	$x \arccos(x) - \sqrt{1 - x^2}$
$\frac{1}{1 + x^2}$	$\arctan(x)$	$x \arctan(x) - \frac{1}{2} \ln(1 + x^2)$
$g'(x)^2 + g(x)g''(x)$	g(x)g'(x)	$\frac{1}{2}g(x)^{2}$
$\frac{g''(x)g(x) - g'(x)^2}{g(x)^2}$	$\frac{g'(x)}{g(x)}$	$\ln g(x) $

$$\vec{t}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \dot{\vec{v}} = \dot{\vec{r}} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} (x_1 \vec{u}_1 + x_2 \vec{u}_2 + x_3 \vec{u}_3)$$

2.2 Coordnonnée sphérique

$$\frac{\frac{\mathrm{d}}{\mathrm{d}t}\vec{u}_{\theta}}{\frac{\mathrm{d}}{\mathrm{d}t}\vec{u}_{\varphi}} = -\dot{\theta}\vec{u}_{r} + \dot{\varphi}\cos\theta\vec{u}_{\varphi} \qquad \text{surface.}$$

$$\frac{1}{\mathrm{d}t}\vec{u}_{\varphi} = -\dot{\varphi}\sin\theta\vec{u}_{r} - \dot{\varphi}\cos\theta\vec{u}_{\theta} \qquad \text{Statique}:$$

$$\vec{v} \begin{cases} v_{r} = \dot{r} \\ v_{\theta} = r\dot{\theta} & \vec{a} \end{cases} \begin{cases} a_{r} = \ddot{r} - r\dot{\theta}^{2} - r\dot{\varphi}^{2}\sin^{2}\theta \\ a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\varphi}^{2}\cos\theta\sin\theta \\ v_{\varphi} = r\dot{\varphi}\sin\theta \end{cases} \qquad \left\| \vec{F}_{fr} \right\| \leq F_{Max}^{fr} = F^{arr} = \mu_{s} \| \vec{N} \|$$

2.3 Changement de base

Cartésien-cylindrique:

$$\begin{array}{lll} \overrightarrow{u}_{\rho} = \cos\varphi \overrightarrow{u}_x + \sin\varphi \overrightarrow{u}_y & \overrightarrow{u}_x = \cos\varphi \overrightarrow{u}_{\rho} - \sin\varphi \overrightarrow{u}_{\varphi} & \textbf{4} & \textbf{Energie} \\ \overrightarrow{u}_{\varphi} = -\sin\varphi \overrightarrow{u}_x + \cos\varphi \overrightarrow{u}_y & \overrightarrow{u}_y = \sin\varphi \overrightarrow{u}_{\rho} + \cos\varphi \overrightarrow{u}_{\varphi} & \textbf{4.1} & \textbf{Quantit\'e de mouvement} \\ \overrightarrow{u}_z = \overrightarrow{u}_z & \overrightarrow{u}_z = \overrightarrow{u}_z \end{array}$$

Cartésien-sphérique :

$$\vec{u}_r = \sin\theta\cos\varphi \vec{u}_x + \sin\theta\sin\varphi \vec{u}_y + \cos\theta \vec{u}_z$$

$$\vec{u}_\theta = \cos\theta\cos\varphi \vec{u}_x + \cos\theta\sin\varphi \vec{u}_y - \sin\theta \vec{u}_z$$

$$\vec{u}_\varphi = -\sin\varphi \vec{u}_x + \cos\varphi \vec{u}_y$$

$$\vec{u}_x = \sin\theta\cos\varphi \vec{u}_r + \cos\theta\cos\varphi \vec{u}_\theta - \sin\varphi \vec{u}_\varphi$$

$$\vec{u}_y = \sin\theta\sin\varphi \vec{u}_r + \cos\theta\sin\varphi \vec{u}_\theta + \cos\varphi \vec{u}_\varphi$$

$$\vec{u}_z = \cos\theta \vec{u}_r - \sin\theta \vec{u}_\theta$$

Cylindrique-sphérique:

$$\begin{array}{ll} \overrightarrow{u}_{\rho} = \sin\theta \, \overrightarrow{u}_r + \cos\theta \, \overrightarrow{u}_{\theta} & \overrightarrow{u}_r = \sin\theta \, \overrightarrow{u}_{\rho} + \cos\theta \, \overrightarrow{u}_z \\ \overrightarrow{u}_{\varphi} = \overrightarrow{u}_{\varphi} & \overrightarrow{u}_{\theta} = \cos\theta \, \overrightarrow{u}_{\rho} - \sin\theta \, \overrightarrow{u}_z \\ \overrightarrow{u}_z = \cos\theta \, \overrightarrow{u}_r - \sin\theta \, \overrightarrow{u}_{\theta} & \overrightarrow{u}_{\varphi} = \overrightarrow{u}_{\varphi} \end{array}$$

3 Dynamique

$$\sum_{i} \vec{F}_{i} = m\vec{a} = m \frac{\mathrm{d}^{2}\vec{r}}{\mathrm{d}t^{2}} \qquad \vec{F}_{1\rightarrow2} = -\vec{F}_{2\rightarrow1}$$

3.1 Ressort

$$\overrightarrow{F}_r = -k(x - l_0)\overrightarrow{u} \qquad \qquad U = \frac{1}{2}k(x - l_0)^2$$

3.2 Gravitation

$$\overrightarrow{F}_{2\rightarrow 1} = -G\frac{m_1m_2}{r_{12}^2} \overrightarrow{u}_{2\rightarrow 1} \qquad \overrightarrow{F} = m \overrightarrow{g}$$

$$U = -G\frac{Mm}{r_{12}} \qquad U = mgh$$

3.3 Electromagnétisme

$$\vec{F}_{2\to 1} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{12}^2} \vec{u}_{2\to 1}$$

$$\vec{F} = q\vec{E} \qquad \vec{F} = q\vec{v} \times \vec{B}$$

3.4 Frottement

3.4.1 Frottement visqueux

$$\vec{F}_{fr} = -f(\|\vec{v}_{rel}\|) \frac{\vec{v}_{rel}}{\|\vec{v}_{rel}\|}$$

Régime laminaire :

$$f(\|\overrightarrow{v}_{rel}\|) = k\eta \|\overrightarrow{v}_{rel}\|$$

Régime turbulant :

$$f(\|\overrightarrow{v}_{rel}\|) = \frac{1}{2}C_x \rho S \|\overrightarrow{v}_{rel}\|^2$$

3.4.2 Frottement sec

Dépend des matériaux et de $\|\vec{N}\|$, pas de l'aire de la

$$\left\| \overrightarrow{F}_{fr} \right\| \le F_{Max}^{fr} = F^{arr} = \mu_s \left\| \overrightarrow{N} \right\|$$
 issement:

$\vec{F} = -\mu_c \| \vec{N} \| \frac{\vec{v}}{\| \vec{A} \|}$

$$\overrightarrow{p} = m \, \overrightarrow{v}$$

$$\overrightarrow{p}_f - \overrightarrow{p}_i = \Delta \, \overrightarrow{p} = \overrightarrow{J} = \int_{t_i}^{t_f} \overrightarrow{F} \, \mathrm{d}t$$

4.2 Travail et Energie

$$W = \vec{F}_1 \cdot d\vec{r_1} + \vec{F}_2 \cdot d\vec{r_2} + \dots = \sum_i \vec{F}_i \cdot d\vec{r}_i$$

Energie cinétique:

$$K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

Energie potentielle d'une force \overrightarrow{F} par rapport à un point P et un point de référence O:

$$U(P) = -\int_{O}^{P} \vec{F} \cdot d\vec{r}$$
 $W = K_B - K_A = \Delta K$

Énergie mécanique :

$$E_m = K + \sum_i U_i$$

$$K_B + \sum_i U_{iB} = K_A + \sum_i U_{iA} + \int_A^B \vec{F}^{NC} \cdot d\vec{r}$$

$$P$$
 est la puissance d'une energie E .
$$P = \frac{\mathrm{d}E}{\mathrm{d}t} \qquad \frac{\mathrm{d}E_m}{\mathrm{d}t} = \vec{F}^{NC} \cdot \vec{v}$$

Si $\vec{F}_{NC} \cdot \vec{v} \neq 0$ l'énergie n'est pas conservé, sinon oui. Les forces conservatives sont tel que :

$$\vec{F} = -\nabla U = -\frac{\partial U}{\partial x} \vec{u}_x - \frac{\partial U}{\partial y} \vec{u}_y - \frac{\partial U}{\partial z} \vec{u}_z$$

Possibilité pour la conservation de l'énergie :

- Si $\vec{F} \perp \vec{v}$, elle ne travaille pas (P=0) et n'affecte ni E_m ni U.
- Si F || v :
 - Si \vec{F} est conservative, elle contribue à U, donc
- à E_m . Si \vec{F} est non-conservative, elle modifie E_m : $\dot{E}_m = P^{NC} = \vec{F} \cdot \vec{v}.$
- Si seules des forces conservatives ou des forces nonconservatives perpendiculaires à \vec{v} agissent, E_m est conservée ($\dot{E}_m = 0$).
- Si une force non-conservative a une composante parallèle à \vec{v} , E_m n'est pas conservée (\dot{E}_m = $P^{NC} \neq 0$).

4.3 Méthode pour les position d'équilibres et variations

1.
$$\sum \vec{F} = m \vec{a} = 0 \Big|_{x_{eq}} \Leftrightarrow x_{eq} = \dots$$

—
$$\left. \frac{\mathrm{d} \vec{F}}{\mathrm{d} x} \right|_{xeq} > 0$$
 — equilibre stable

$$-\frac{\mathrm{d}\vec{F}}{\mathrm{d}x}\Big|_{x_{eq}} < 0 \rightarrow \text{equilibre instable}$$

$$\begin{array}{ll} 2. & \left.\frac{\mathrm{d} U}{\mathrm{d} x}\right|_{x_{eq}} = 0 \Leftrightarrow x_{eq} = \dots \\ & - \left.\frac{\mathrm{d}^2 U}{\mathrm{d} x^2}\right|_{x_{eq}} > 0 \to \text{equilibre stable} \\ & - \left.\frac{\mathrm{d}^2 U}{\mathrm{d} x^2}\right|_{x_{eq}} < 0 \to \text{equilibre instable} \end{array}$$

5 Oscillations

$$-\ddot{x} = -\omega_0^2 x$$

$$-\ddot{x} = A$$

$$-x = A\sin\omega_0 t + B\cos\omega_0 t$$

$$-x = C\sin(\omega_0 t + \phi)$$

$$-x = C\cos(\omega_0 t + \phi')$$

$$-\ddot{x} + 2\gamma \dot{x} = -\omega_0^2 x$$

$$\gamma^2 < \omega_0^2 \to x = Ce^{\gamma t}\cos(\omega t + \phi)$$
— Amortissement fort (surcritique):

$$\gamma^2 > \omega_0^2 \rightarrow x = e^{-\gamma t} (Ae^{\omega t} + Be^{-\omega t})$$

$$\gamma^2 = \omega_0^2 \to x = e^{-\gamma t} (A + Bt), \quad \omega^2 = |\gamma - \omega_0^2|$$

$$-\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = f\cos(\Omega t)$$

$$t > > \frac{1}{\gamma}$$

$$-x \approx A(\Omega) \cos(\Omega t + \phi(\Omega))$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

$$-x + 2\gamma x + \omega_0 x = f \cos(\alpha t)$$

— Résonnance max :
$$\Omega_{Max} = \sqrt{\omega_0^2 - 2\gamma^2}$$

$$- \phi(\Omega) = \arctan\left(\frac{2\gamma\Omega}{\Omega^2 - \omega^2}\right)$$

— Periode pour une oscillation :
$$T = \frac{1}{f} = \frac{2\pi}{m}$$
 (avec $\omega = \omega_0$ pour un un oscillateur harmonique)

Referentiel non-absolu

$$\overrightarrow{\omega} = \tfrac{1}{2} \sum_{i=1}^{3} \left(\overrightarrow{u}_i' \times \frac{\operatorname{d} \overrightarrow{u}_i'}{\operatorname{d} t} \right) \qquad \xrightarrow{\operatorname{d} \overrightarrow{u}_i'} = \overrightarrow{\omega} \times \overrightarrow{u}_i'$$

$$\overrightarrow{v}_p = \overrightarrow{v}_p' + \overrightarrow{v}_{O'} + \overrightarrow{\omega} \times \overrightarrow{O'P}$$

$$\overrightarrow{a}_p = \overrightarrow{a}_p' + 2\overrightarrow{\omega} \times \overrightarrow{v}_p' + \overrightarrow{a}_{O'} + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{O'P}) + \frac{\mathrm{d}\overrightarrow{\omega}}{\mathrm{d}t} \times \overrightarrow{O'P}$$

$$m\vec{a}'_{p} = \sum \vec{F} - \underbrace{\vec{F}_{i}}_{m\vec{a}_{i}}$$

6.1 Moment cinétique

$$\overrightarrow{L}_0 = \overrightarrow{OP} \times \overrightarrow{p}$$

Théorème du moment cinétique :

$$\frac{\mathrm{d}\vec{L}_0}{\mathrm{d}t} = \overrightarrow{OP} \times \vec{F} = \vec{M}_0$$

6.2 Mouvement sous l'action d'une force centrale

Energie potentielle effective : $V_{eff} = U + \frac{\overrightarrow{L}_{O}^{2}}{2}$

7 Solide en 3D

7.1 Position d'un solide

Un solide est définit comme un ensemble de points dont les distances entre chaques points est fixe.

7.1.1 Angles d'Euler

Pour passer de \mathcal{R} à \mathcal{R}' :

- 1. Précéssion : rotation ψ autour de \vec{u}_z pour amener
- 2. Nutation : rotation θ autour de \vec{n} , amène \vec{u}_z sur
- 3. Rotation propre : rotation φ autour de \vec{u}'_z , amène

7.1.2 Vitesse et acceleration d'un point du solide

$$\begin{split} \overrightarrow{v}_p &= \overrightarrow{v}_{O'} + \overrightarrow{\omega} \times \overrightarrow{O'P} \\ \overrightarrow{a}_p &= \overrightarrow{a}_{O'} + \frac{\mathrm{d}\overrightarrow{\omega}}{\cdots} \times \overrightarrow{O'P} + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{O'P}) \end{split}$$

En utilisant un repère cylindrique on on peut dire que $\vec{\omega} \times \overrightarrow{O'P} = r \frac{d\theta}{dt} \vec{u}_{\theta}$

On remarque aussi que $\vec{\omega} = \dot{\psi} \vec{u}_z + \dot{\theta} \vec{n} + \dot{\varphi} \vec{u}_z'$

7.1.3 Dynamique d'un corps solide

- Thm du centre de masse : $M \vec{a}_G = \vec{F}^{\text{ext}}$
- Thm du moment cinétique :

1.
$$\frac{d\vec{L}_O}{dt} = \vec{M}_O^{\text{ext}}$$
 (O doit être fixe)

$$2. \ \ \frac{\mathrm{d}\, \overrightarrow{L}_G}{\mathrm{d}t} = \overrightarrow{M}_G^{\mathrm{ext}}$$

— Equation de l'énergie : $\Delta K = W^{\text{ext}}$

7.2 Rotation autour d'un axe de symétrie Δ_G

$$\exists \Delta_G \Leftrightarrow \forall P_i, \exists P_i' \text{ tq. } \begin{cases} \overrightarrow{GP}_{i\parallel} = \overrightarrow{GP}_{i\parallel}' \\ \overrightarrow{GP}_{i\perp} = -\overrightarrow{GP}_{i\perp}' \end{cases}$$

7.2.1 Moment cinétique

Valable seulement autour d'un axe de symétrie :

$$\frac{\mathrm{d}\vec{L}_G}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} = \vec{M}_G^{\mathrm{ext}}$$

7.2.2 Energie cinétique

$$K = K_c + K_r = \frac{1}{2}Mv_G^2 + \frac{1}{2}I_{\Delta_G}\omega^2$$

7.3 Rotation autour d'un axe instantané fixe (=sans vitesse) $\Delta \parallel \Delta_G$

O est la projection de G sur Δ . Théorème de Huygens-Steiner :

$$I_{\Delta} = Md^{2} + I_{\Delta_{G}}$$

$$\frac{d\overrightarrow{L}_{O}}{dt} = \frac{d}{dt} = I_{\Delta} \frac{d\overrightarrow{\omega}}{dt} = \overrightarrow{M}_{O}^{\text{ext}}$$

Roulement sans glissement : vitesse instantané du point de contact est égale à 0, malgré le fait que le point de contact change (+ force de frottement statique).

8 Solide quelconque

$$\begin{split} \delta_{\alpha\beta} &= \begin{cases} 0 & \text{si} & \alpha \neq \beta \\ 1 & \text{si} & \alpha = \beta \end{cases} \\ \\ \frac{d\overrightarrow{L}_G}{dt} &= \frac{d}{dt} = \overrightarrow{M}_G^{\text{ext}} \\ \\ \widetilde{I}_{G,\alpha\beta} &= \sum_i m_i \left[\left\| \overrightarrow{GP}_i \right\|^2 \delta_{\alpha\beta} - GP_{i,\alpha}GP_{i,\beta} \right] \\ \\ K_r &= \frac{1}{2} M \|\overrightarrow{v}_G\|^2 + \frac{1}{2} \omega^{\perp} \widetilde{I}_G \omega \\ \\ \omega^{\perp} \widetilde{I}_G \omega &= \overrightarrow{L}_G \cdot \overrightarrow{\omega} \end{split}$$

Si les axes sont parallèles a des axes de symétrie alors on a plus que des composantes sur la diagonale. Pour retrouver dans les coordonées que l'on veut on prend nos axes tel que \widetilde{I}'_G soit diagonale et on compute $\overrightarrow{L}'_G = \widetilde{I}'_G$. $\vec{\omega}'$. Puis on reprojette chaque axe sur ceux que l'on veut : $\vec{L}_G = \left(\vec{L}_G' \cdot \vec{u}_x\right) \vec{u}_x + \left(\vec{L}_G' \cdot \vec{u}_y\right) \vec{u}_y + \left(\vec{L}_G' \cdot \vec{u}_z\right) \vec{u}_z$

8.1 Si O ne bouge pas

$$\begin{split} \frac{\mathrm{d}\overrightarrow{L}_O}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} = \overrightarrow{M}_O^{\mathrm{ext}} \\ \widetilde{I}_{O,\alpha\beta} &= M \left[\left\| \overrightarrow{OP}_i \right\|^2 \delta_{\alpha\beta} - GP_{i,\alpha}GP_{i,\beta} \right] + \widetilde{I}_{G,\alpha\beta} \\ K &= \frac{1}{2}\omega^{\perp}\widetilde{I}_O\omega \end{split}$$

8.2 Les formules utiles

$$\begin{split} M\overrightarrow{d} &= \sum \overrightarrow{F}^{\text{ext}} \qquad \Delta K = W^{\text{ext}} \\ \frac{\text{d}\overrightarrow{L}_G}{\text{d}t} &= \overrightarrow{M}_G^{\text{ext}} \qquad \frac{\text{d}\overrightarrow{L}_O}{\text{d}t} = \overrightarrow{M}_O^{\text{ext}} \\ \forall P \in \text{ solide } \left\{ \begin{aligned} \overrightarrow{L}_O &= \overrightarrow{OG} \times m \overrightarrow{v}_G + \overrightarrow{L}_G \\ \overrightarrow{v}_P &= \overrightarrow{v}_G + \overrightarrow{\Omega} \times \overrightarrow{GP} \end{aligned} \right. \\ \overrightarrow{d}_G &= \frac{\text{d}^2 \overrightarrow{OG}}{\text{d}t^2} \\ K &= \frac{1}{2} M \overrightarrow{v}_A^2 + M \overrightarrow{v}_A \left(\overrightarrow{\omega} \times \overrightarrow{AG} \right) + \frac{1}{2} \overrightarrow{\omega} \left(\widetilde{I}_G \overrightarrow{\omega} \right) \end{split}$$
 Position centre de masse : $\overrightarrow{OG} = \frac{\sum_i m_i \overrightarrow{r}_i}{\sum_i m_i}$

où
$$x_G = \frac{1}{M} \int x \, dm$$

$$\vec{v}_G = \frac{d\vec{r}_G}{dt} = \frac{\vec{p}}{M} \qquad \vec{F}_{\text{ext}} = \frac{d\vec{p}}{dt} = M\vec{a}_G$$

$$\text{EdM d'un solide} : \begin{cases} 3 \text{ eq CDM} : m \overrightarrow{v}_G = \sum \overrightarrow{F}_{\text{ext}} \\ 3 \text{ eq TMC} : \frac{d \overrightarrow{L}_G}{dt} = \overrightarrow{M}_G \end{cases}$$

Energie mécanique d'un solide : Toutes les forces qui sont au point de contact ne sont pas prisent en compte dans E_m (travaillent pas parce que la vitesse au point d'application est nulle).

8.3 Les cas particulier

Pour une force d'inertie d'un solide entier il faut d'abord le faire pour une masse quelconque m sur le solide puis le généraliser. Exemple d'une tige : Soit $\mu = \frac{1}{2}$ avec M la masse d'un solide et L sa longueur. ON calcule la force d'inertie à une distance ρ du point pour une masse m quelconque: $d\vec{F}_{ie} = \alpha(\theta, \rho)m$ avec $\alpha(\theta, \rho)$ une fonction quelconque. Puis on remplace $m = \mu \, d\rho$ puis on

$$\vec{F}_{ie} = \int_0^L d\vec{F}_{ie} = \int_0^L \alpha(\theta, \rho) \mu d\rho$$

9 Kepler

$$\frac{\mathrm{d}\mathcal{A}}{\mathrm{d}t} = \frac{||\vec{L}_0||}{2m} = \mathrm{const} \qquad \frac{a_A^3}{T_A^2} = \frac{a_B^3}{T_B^2} \qquad \frac{T^2}{R^2} = \frac{4\pi^2}{G(M_s + M)}$$

$$a_A \approx R_A \text{ pour un cercle}$$

10 Chocs

Il v a choc mou lorsque les deux masses se collent. La conservation de la quantité de mouvement est vérifié mais $\Delta K \neq 0$.

10.1 Choc 1-D, élastique

$$\begin{cases} m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \\ \frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_1 v_{2f}^2 - \frac{1}{2} m_1 v_{1f}^2 = 0 \end{cases}$$
Ce système a pour solutions:
$$\begin{cases} v_{1f} = \frac{(m_1 - m_2) v_{1i} + 2m_2 v_{2i}}{m_1 + m_2} \\ v_{2f} = \frac{(m_2 - m_1) v_{2i} + 2m_1 v_{1i}}{m_2 + 2m_2 v_{1i}} \end{cases}$$

10.2 Choc inélastique

$$\Delta K \begin{cases} > 0 \implies \text{exo-\'energetique} \\ < 0 \implies \text{endo-\'energetique} \end{cases}$$

10.3 Choc mou (parfaitement inélastique)

Les deux objet se collent $(\vec{v}_{1f} = \vec{v}_{2f} = \vec{v}_{\text{mou}})$. Dans le cas particulier ou $\overrightarrow{v}_{2i}=0$, la conservation de la quantité de mouvement nous dit que :

$$\begin{split} m_1 \vec{v}_{1i} &= m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} = (m_1 + m_2) \vec{v}_{\text{mou}} \\ \vec{v}_{\text{mou}} &= \frac{m_1}{m_1 + m_2} \vec{v}_{1i} \\ \Delta K &= K^{\text{fin}} - K^{\text{in}} = -\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} v_{\text{mou}}^2 < 0 \end{split}$$

11 Système à masses variable

$$M(t)\frac{\mathrm{d}\,\vec{v}}{\mathrm{d}t} = \sum \vec{F}^{\mathrm{ext}} + \vec{v}_{\mathrm{rel}}\frac{\mathrm{d}M}{\mathrm{d}t}$$

12 Moment d'inertie

 Δ_C =axe du cylindre

Boule (pleine)
$$I = \frac{2}{5}mR^2$$

$$\mathrm{Sphère} \ (\mathrm{creuse}) \qquad I = \frac{2}{3}mR^2$$

$$\mathrm{Anneau} \ (\Delta_c) \qquad I = \frac{mR^2}{2}$$

$$\mathrm{Anneau} \ (\pm \Delta_c) \qquad I = \frac{1}{2}mR^2$$

$$\mathrm{Anneau} \ (\mathrm{épaisseur} \neq 0, \quad I = \frac{1}{2}m(R_1^2 + R_2^2)$$

$$\mathrm{Cylindre} \ (\Delta_c) \qquad I = \frac{1}{2}mR^2$$

$$\mathrm{Cylindre} \ (\pm \Delta_c) \qquad I = \frac{1}{4}mR^2 + \frac{1}{12}mL^2$$

13 Lagrange

$$\frac{\mathcal{L} = K - U}{\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{q}_i}} = \frac{\partial \mathcal{L}}{\partial q_i}$$