Teoria de grafs

M1 - FIB

Continguts:

- 1. Conceptes bàsics de grafs
- 2. Recorreguts, connexió i distància
- 3. Grafs eulerians i grafs hamiltonians
- 4. Arbres

Anna de Mier Montserrat Maureso Departament de Matemàtiques Febrer 2019

Tema 1

Conceptes bàsics de grafs

- 1. Primeres definicions
- 2. Graus
- 3. Isomorfisme de grafs
- 4. Tipus de grafs
- 5. Subgrafs

1. Primeres definicions

Un graf G és un parell (V, A) amb V un conjunt finit no buit i A un conjunt de parells no ordenats d'elements diferents de V, és a dir, $A \subseteq \{\{u, v\} : u, v \in V\}$

S'anomena

```
vèrtexs als elements de V arestes als elements de A ordre de G al nombre de vèrtexs, |V| mida de G al nombre d'arestes, |A|
```

Siguin $u, v \in V$ vèrtexs i $a, e \in A$ arestes de G, direm que: u i v són adjacents o veïns si $\{u, v\} \in A$, es denota $u \sim v$ o $uv \in A$ u i v són independents si no són adjacents, es denota $u \not\sim v$ o $uv \not\in A$ u i e són incidents si $e = \{u, w\}$, per algun $w \in V$ e i a són incidents si tenen un vèrtex en comú, altrament són independents grau de u és el nombre de vèrtexs adjacents a u, $g(u) = \#\{v \in V | u \sim v\}$

Observació: Si n = |V| i m = |A|, aleshores $0 \le m \le \frac{n(n-1)}{2}$

Representació gràfica d'un graf G = (V, A)

Els vèrtexs es representen mitjançant un punt i les arestes mitjançant una corba que uneix els dos punts que representen els vèrtexs incidents a l'aresta

Llista d'adjacències (o taula d'adjacències) d'un graf G = (V, A)

Siguin $v_1, v_2, ..., v_n$ els vèrtexs de G. La llista d'adjacències de G és una llista de longitud n on a la posició i hi ha el conjunt dels vèrtexs adjacents a v_i , per a tot $i \in [n]$

Sigui G=(V,A) un graf d'ordre n i mida m amb $V=\{v_1,v_2,\ldots,v_n\}$ i $A=\{a_1,a_2,\ldots,a_m\}$

Matriu d'adjacència de G és la matriu $M_A = M_A(G)$ de tipus $n \times n$, tal que l'element m_{ij} de la fila i columna j és

$$m_{ij} = egin{cases} 1, & ext{si } v_i \sim v_j \ 0, & ext{altrament} \end{cases}$$

- $-M_A$ és binària, amb zeros a la diagonal, i simètrica
- El nombre d'uns de la fila i és el grau de v_i
- No és única, depèn de l'ordenació que s'escull al conjunt de vèrtexs

Matriu d'incidència de G és la matriu $M_I = M_I(G)$ de tipus $n \times m$, tal que l'element b_{ij} de la fila i columna j és

$$b_{ij} = \begin{cases} 1, & \text{si } v_i \text{ i } a_j \text{ són incidents} \\ 0, & \text{altrament} \end{cases}$$

 $-M_I$ és binària. El nombre de uns de la fila i és el grau de v_i i a cada columna hi ha exactament dos uns. No és única

Variants de la definició de graf:

- Multigraf: graf que admet arestes múltiples, és a dir, dos vèrtexs adjacents per més d'una aresta
- Pseudograf: graf que admet arestes múltiples i llaços (aresta que uneix un vèrtex amb ell mateix)

2. Graus

Sigui G=(V,A) un graf d'ordre n i $v\in V$ un vèrtex, anomenem grau de v, g(v): al nombre d'arestes incidents a v grau mínim de G, $\delta(G)$: al mínim dels graus dels vèrtexs grau màxim de G, $\Delta(G)$: al màxim dels graus dels vèrtexs seqüència de graus de G: a la successió dels graus dels vèrtexs de G ordenats de forma decreixent graf regular: al graf tal que $\delta(G)=\Delta(G)$, és a dir, tots els vèrtexs tenen el mateix grau

Remarques:

- $-0 \le g(v) \le n-1$
- Tot graf d'ordre \geq 2 té almenys dos vèrtexs amb el mateix grau

Lema de les encaixades:
$$2|A| = \sum_{v \in V} g(v)$$

Corol.lari: Tot graf té un nombre parell de vèrtexs de grau senar

Una sequència d'enters decreixent és gràfica si hi ha algun graf que la té com a sequència de graus

3. Isomorfisme de grafs

Siguin G = (V, A) i G' = (V', A') dos grafs, direm que $\triangleright G$ i G' són grafs iguals, G = G', si V = V' i A = A' $\triangleright G$ i G' són grafs isomorfs, $G \cong G'$, si existeix una aplicació bijectiva $f: V \to V'$ tal que, per a tot $u, v \in V$,

$$u \sim v \Leftrightarrow f(u) \sim f(v)$$

a l'aplicació f se l'anomena isomorfisme de G en G'

Remarques:

- Un vèrtex i la seva imatge per un isomorfisme tenen el mateix grau
- Dos grafs isomorfs tenen la mateixa mida i el mateix ordre. El recíproc és fals
- Dos grafs isomorfs tenen la mateixa seqüència de graus. El recíproc és fals
- Ser isomorfs és una relació d'equivalència

4. Tipus de grafs

Siguin *n* un enter positiu i $V = \{x_1, x_2, ..., x_n\}$

Graf nul d'ordre n, N_n : és un graf d'ordre n i mida 0 Graf trivial: N_1

Graf complet d'ordre n, K_n : és un graf d'ordre n amb totes les arestes possibles – Mida de $K_n = \frac{n(n-1)}{2}$

Graf trajecte d'ordre n, $T_n = (V, A)$: és un graf d'ordre n i mida n-1 amb conjunt d'arestes $A = \{x_1x_2, x_2x_3, ..., x_{n-1}x_n\}$ $-\delta(T_n) = 1$ i $\Delta(T_n) = 2$

Graf cicle d'ordre n, $n \ge 3$, $C_n = (V, A)$, amb $n \ge 3$: és un graf d'ordre n i mida n amb conjunt d'arestes $A = \{x_1x_2, x_2x_3, ..., x_{n-1}x_n, x_nx_1\}$ $-\delta(C_n) = \Delta(C_n) = 2$

Graf roda d'ordre n, $n \ge 4$, $W_n = (V, A)$: és un graf d'ordre n i mida 2n - 2 tal que $A = \{x_1x_2, x_2x_3, ..., x_{n-1}x_1\} \cup \{x_nx_1, x_nx_2, ..., x_nx_{n-1}\}$

Siguin r i s enters positius

Graf r-regular d'ordre n: és un graf regular on r és el grau dels vèrtexs

- El graf complet K_n és un graf (n-1)-regular
- El graf cicle C_n és un graf 2-regular
- Si G = (V, A) és un graf r-regular: 2|A| = r|V|

Graf bipartit: és un graf G = (V, A) tal que hi ha dos subconjunts no buits V_1 i V_2 de V tals que $V = V_1 \cup V_2$ i $V_1 \cap V_2 = \emptyset$, i per a tota aresta $uv \in A$ es té que $u \in V_1$ i $v \in V_2$, o viceversa.

Anomenem parts estables del graf a V_1 i V_2

$$-\sum_{v \in V_1} g(v) = \sum_{v \in V_2} g(v) = |A|$$

Graf bipartit complet, $K_{r,s} = (V, A)$: graf bipartit amb parts estables V_1 i V_2 tals que $|V_1| = r$ i $|V_2| = s$ i tots els vèrtexs de V_1 són adjacents a tots els vèrtexs de V_2 . És a dir, $A = \{uv | u \in V_1, v \in V_2\}$

- L'ordre de $K_{r,s}$ és r + s i la mida és rs
- El graf $K_{1,s}$ se l'anomena graf estrella

5. Subgrafs

Sigui G = (V, A) un graf

Subgraf de G, G' = (V', A'): és un graf amb $V' \subseteq V$ i $A' \subseteq A$

Subgraf generador de G, G' = (V', A'): és un subgraf tal que V' = V

Subgraf induït (o generat) per $S \subseteq V$: és el graf G[S] = (S, A') tal que $A' = \{uv \in A : u, v \in S\}$

5.1. Grafs derivats d'un graf

Sigui G = (V, A) un graf d'ordre n i mida m

Graf complementari de G, $G^c = (V^c, A^c)$: és el graf amb conjunt de vèrtexs $V^c = V$ i conjunt d'arestes $A^c = \{uv | u, v \in V \text{ i } uv \notin A\}$

- Ordre de G^c = Ordre de G
- Mida de $G^c = \frac{n(n-1)}{2} |A|$
- $-\left(G^{c}\right)^{c}=G$
- Sigui H un graf. Aleshores: $G \cong H \Leftrightarrow G^c \cong H^c$

El graf G és autocomplementari si $G \cong G^c$

Graf que s'obté per la supressió dels vèrtexs de S, $S \subset V$: graf denotat per G-S amb conjunt de vèrtexs $V\setminus S$ i arestes les de G que no són incidents a cap vèrtexs de S. En cas que $S=\{v\}$, el denotem per G-V

- Ordre de (G - u) = n - 1. Mida de (G - u) = m - g(u)

Graf que s'obté per la supressió de les arestes de S, $S \subseteq A$: graf denotat per G-S amb conjunt de vèrtexs V i conjunt d'arestes $A \setminus S$. En cas que $S = \{a\}$, el denotem per G-a

- Ordre de (G - a) = n. Mida de (G - a) = m - 1

Graf que s'obté per l'addició d'una aresta $a \in A$: graf denotat per G + a amb conjunt de vèrtexs V i conjunt d'arestes $A' = A \cup \{a\}$

- Ordre de (G + a) = n. Mida de (G + a) = m + 1

5.2. Operacions amb grafs

Siguin G = (V, A) i G' = (V', A') dos grafs

Graf reunió de G i G', $G \cup G'$: graf amb conjunt de vèrtexs $V \cup V'$ i conjunt d'arestes $A \cup A'$

– Si $V \cap V' = \emptyset$, l'ordre de $G \cup G'$ és |V| + |V'| i la mida |A| + |A'|

Graf producte $G \times G'$: graf amb conjunt de vèrtexs $V \times V'$ i les adjacències $(u, u') \sim (v, v') \Leftrightarrow (uv \in A \mid u' = v') \circ (u = v \mid u'v' \in A')$

- L'ordre de $G \times G'$ és |V| |V'| i la mida és |V| |A'| + |V'| |A|

Tema 2

Recorreguts, connexió i distància

- 1. Recorreguts
- 2. Grafs connexos
- 3. Vèrtexs de tall i arestes pont
- 4. Distància
- 5. Caracterització de grafs bipartits

1. Recorreguts

Sigui G = (V, A) un graf, i siguin $u, v \in V$

Un recorregut de u a v o un u-v recorregut de longitud k és una seqüència de vèrtexs i arestes del graf

$$\mathcal{R}$$
 : $u_0 a_1 u_1 a_2 u_2 \dots u_{k-1} a_k u_k$

tals que $u_0 = u$, $u_k = v$ i $a_i = u_{i-1}u_i \in A$, per a tot $i \in [k]$. En general, el denotarem per $u_0u_1u_2...u_{k-1}u_k$

Direm que el recorregut \mathcal{R} passa pels vèrtexs u_i i passa per les arestes $a_i = u_{i-1}u_i$

Si u=v direm que és un recorregut tancat, i si $u\neq v$ direm que és un recorregut obert

Un vèrtex es considera un recorregut de longitud zero

Tipus de recorreguts: un *u-v* recorregut és un

- camí si tots els vèrtexs són diferents
- cicle si és un recorregut tancat de longitud ≥ 3 amb tots els vèrtexs diferents (llevat del primer i l'últim, que coincidiran per ser tancat)

Un vèrtex es considera un camí de longitud zero

Remarca Un cicle passa per dos vèrtexs u i v si, i només si, hi ha dos u-v camins que no tenen cap vèrtex en comú llevat de u i de v

Un graf sense cicles s'anomena graf acíclic

Proposició 1

Siguin G = (V, A) un graf i u, v vèrtexs diferents. Si a G hi ha un u-v recorregut de longitud k, aleshores hi ha un u-v camí de longitud $\leq k$

Proposició 2

Siguin G = (V, A) un graf i u, v vèrtexs diferents. Si G té dos u-v camins diferents, llavors G conté un cicle

2. Grafs connexos

Un graf G = (V, A) direm que és connex si per a tot parell de vèrtexs diferents u i v hi ha un u-v camí. Altrament direm que el graf és no connex

Remarca Si G = (V, A) és un graf connex d'ordre més gran que 1, llavors $g(v) \ge 1$, per a tot $v \in V$

Definim la relació **R** a V: per a tot $x, y \in V$

 $xRy \Leftrightarrow \text{ existeix un } x - y \text{ camí a } G$

R és una relació d'equivalència:

- Reflexiva, $x\mathbf{R}x$: existeix un x-x camí de longitud zero
- Simètrica: Si $x\mathbf{R}y$, llavors $y\mathbf{R}x$: tot x-y camí recorregut en sentit invers és un y-x camí
- Transitiva: Si $x\mathbf{R}y$ i $y\mathbf{R}z$, Ilavors $x\mathbf{R}z$. Amb un x-y camí $xx_1 \dots x_ny$ i un y-z camí $yy_1 \dots y_mz$, es construeix un x-v recorregut $xx_1 \dots x_nyy_1 \dots y_mz$, per tant, hi ha un x-z camí

Si G=(V,A) és un graf no connex hi ha una partició de V en k>1 subconjunts V_1,V_2,\ldots,V_k , les classes d'equivalència de la relació \mathbf{R} . Per tant, per tot $1\leq i,j\leq k$,

- 1. $V_i \neq \emptyset$, $V_i \cap V_j = \emptyset$ per a tot $i \neq j$, i $V = \bigcup_{i=1}^k V_i$
- 2. $G[V_i]$ (el subgraf induït per V_i) és connex
- 3. No hi ha cap camí entre vèrtexs de $G[V_i]$ i els de $G[V_i]$, amb $i \neq j$
- 4. $G = \bigcup_{i=1}^{k} G[V_i]$

Anomenem components connexos del graf G als subgrafs $G[V_1]$, $G[V_2]$, ..., $G[V_k]$

<u>Remarca</u>

Sigui $G = G_1 \cup G_2 \cup \cdots \cup G_k$, on G_i són els components connexos de G, llavors

ordre
$$G$$
 = ordre $G_1 + \cdots +$ ordre G_k mida G = mida $G_1 + \cdots +$ mida G_k

Proposició 3

Un graf és 2-regular si, i només si, els seus components connexos són cicles

Proposició 4

Sigui G = (V, A) un graf connex i siguin $e = xy \in A$ i $u \in V$. Aleshores

- 1. el graf G-e té com a molt 2 components connexos; si en té 2, a un hi ha el vèrtex x i a l'altre el vèrtex y
- 2. el graf G u té com a molt g(u) components connexos

Proposició 5

Tot graf connex d'ordre n té com a mínim n-1 arestes

2.1 Algoritme DFS: Cerca en profunditat (Depth-first search)

```
Llista DFS(graf G, int v)
/* Pre: un graf G i un vèrtex v (Suposarem que els vèrtexs del graf són enters)
/* Post: la llista dels vèrtexs de G que pertanyen al mateix component connex que v
Pila P;
P.empilar(v);
Llista W;
 W.afegir(v);
 int x;
 while (not P.es_buida) {
 x=P.cim;
 if(''hi ha y tal que és adjacent a x i y no pertany a W'') {
 P.empilar(y);
 W.afegir(y);
  else {
 P.desempilar;
return W;
```

Teorema 6 Sigui G = (V, A) un graf i v un vèrtex de G. El subgraf G[W] induït pels vèrtexs de G visitats emprant l'algorisme DFS és el component connex de G que conté v

3. Vèrtexs de tall i arestes pont

Sigui G = (V, A) un graf. Siguin $v \in V$ i $a \in A$, direm que

- -v és un vèrtex de tall o vèrtex d'articulació si G-v té més components connexos que G
- -a és una aresta pont si G-a té més components connexos que G
- G és un graf 2-connex si és connex, té almenys 3 vèrtexs i no té vèrtexs de tall

Remarques

- 1. Si G és connex i u és un vèrtex de tall, llavors G u és un graf no connex amb com a molt g(u) components connexos
- 2. Els vèrtexs de grau 1 no són vèrtex de tall
- 3. Si G és connex i a és una aresta pont, llavors G-a és un graf no connex amb exactament 2 components connexos

Teorema 7 Caracterització dels vèrtexs de tall

Sigui G = (V, A) un graf connex. Un vèrtex u de G és de tall si, i només si, existeixen un parell de vèrtexs x, y diferents d'u tals que tot x-y camí passa per u

Teorema 8 Caracterització de les arestes pont

Sigui G = (V, A) un graf connex i a = uv una aresta de G. Són equivalents:

- (a) a és una aresta pont
- (b) existeixen un parell de vèrtexs x, y tals que tot x-y camí passa per a
- (c) per l'aresta a no passa cap cicle

Remarques

- 1. Un graf pot tenir vèrtexs de tall però cap aresta pont
- 2. Sigui a = uv una aresta pont. Si g(u) = 1, u no és un vèrtex de tall; si $g(u) \ge 2$, el vèrtex u és de tall
- 3. L'únic graf connex amb una aresta pont i cap vèrtex de tall és el K_2

4. Distància

Siguin G = (V, A) un graf i u, v vèrtexs de G

- Si u, v són al mateix component connex, definim distància entre u i v, d(u, v), com el valor mínim entre les longituds de tots els u-v camins. Altrament direm que la distància és infinit
- Excentricitat del vèrtex u, e(u): la distància més gran entre u i qualsevol altre vèrtex de G, és a dir, $e(u) = \max\{d(u, v) | v \in V\}$
- Diàmetre de G, D(G): la màxima de les distàncies entre els vèrtexs de G, és a dir,

$$D(G) = \max\{d(u, v)|u, v \in V\} = \max\{e(u)|u \in V\}$$

Remarca Si $xy \in A$, Ilavors d(x, y) = 1

En un graf G = (V, A) (connex) per a tots u, v, z vèrtexs es satisfà:

- 1. $d(u, v) \ge 0$, i d(u, v) = 0 si, i només si, u = v
- 2. d(u, v) = d(v, u)
- 3. $d(u, v) + d(v, z) \ge d(u, z)$ (designaltat triangular)

4.1 Algorisme BFS: Cerca en amplada (Breadth First Search)

```
vector BFS(graf G, int v)
/* Pre: un graf connex G d'ordre n i un vertex v (Suposarem que els vèrtexs del graf són enters)
/* Post: un vector D tal que D[x]=d(v,x)
{
 Cua C;
C.demanar_torn(v);
Llista W;
 W.afegir(v);
 vector<int> D(n);
D[v]=0;
 int x;
 while (not C.es_buida) {
 x=C.primer;
 if(''hi ha y tal que és adjacent a x i y no pertany a W'') {
 C.demanar_torn(y);
 W.afegir(y);
 D[y]=D[x]+1;
  }
  else {
 C.avançar;
return D;
```

Teorema 9 Sigui G = (V, A) un graf i $v \in V$. El vector D donat per l'algorisme BFS emmagatzema la distància del vèrtex v a qualsevol altre vèrtex del graf

5. Caracterització dels grafs bipartits

Lema 10

Sigui G = (V, A) un graf

- 1. Si a G hi ha un recorregut tancat de longitud senar, a G hi ha un cicle de longitud senar
- 2. L'existència de recorreguts tancats de longitud parella a G no assegura la existència de cicles a G.

Teorema 11 Caracterització dels grafs bipartits

Un graf d'ordre ≥ 2 és bipartit si, i només si, no té cicles de longitud senar

Tema 3

Grafs eulerians i grafs hamiltonians

- 1. Grafs eulerians
- 2. Grafs hamiltonians

1. Grafs eulerians

Un recorregut d'un graf s'anomena senderó si és obert i no repeteix arestes, i s'anomena circuit si és tancat, no trivial i no repeteix arestes

Sigui G un graf connex, s'anomena

- senderó eulerià a un senderó que passa per totes les arestes de G
- circuit eulerià a un circuit que passa per totes les arestes de G
- graf eulerià a G si té un circuit eulerià

Teorema Caracterització dels grafs eulerians

Sigui G un graf connex no trivial. Aleshores,

G és eulerià si, i només si, tots els vèrtexs tenen grau parell

Corol.lari

Un graf connex té un senderó eulerià si, i només si, té exactament dos vèrtexs de grau senar

En aquest cas, el senderó eulerià comença en un vèrtex de grau senar i acaba en l'altre vèrtex de grau senar

2. Grafs hamiltonians

Sigui G un graf connex, s'anomena

- camí hamiltonià a un camí no tancat que passa per tots el vèrtexs de G
- cicle hamiltonià a un cicle que passa per tots els vèrtexs de G
- graf hamiltonià a G si té un cicle hamiltonià

Condicions necessàries

Sigui G = (V, A) un graf hamiltonià d'ordre n, aleshores

- (1) $g(v) \ge 2$, per a tot $v \in V$
- (2) si $S \subset V$ i k = |S|, el graf G S té com a molt k components connexos

Condicions suficients

Teorema de Ore G = (V, A) graf d'ordre $n \ge 3$ tal que per a tot $u, v \in V$ diferents i no adjacents es té $g(u) + g(v) \ge n$. Aleshores, G és un graf hamiltonià

Teorema de Dirac G = (V, A) graf d'ordre $n \ge 3$ tal que $g(u) \ge n/2$, per a tot $u \in V$. Aleshores, G és hamiltonià

Tema 4

Arbres

- 1. Arbres i teorema de caracterització
- 2. Arbres generadors
- 3. Enumeració d'arbres

1. Arbres i teorema de caracterització

Anomenarem

- arbre a un graf connex i acíclic
- bosc a un graf acíclic
- fulla a tot vèrtex d'un arbre o d'un bosc que tingui grau 1

Observació: Els components connexos d'un bosc són arbres

Remarques: Siguin T = (V, A) un arbre, a una aresta i u un vèrtex de T. Llavors

- 1. T conté almenys una fulla
- 2. a és aresta pont
- 3. T a és un bosc de 2 components connexos
- 4. si $g(u) \ge 2$, u és un vèrtex de tall
- 5. T u és un bosc de g(u) components connexos
- 6. si u és una fulla, aleshores T-u és un arbre

Proposició 1

Tot graf acíclic d'ordre n té mida com a molt n-1.

Teorema 2 Caracterització d'arbres

Sigui T = (V, A) un graf d'ordre n i mida m. Aleshores, són equivalents

- (a) T és un arbre
- (b) T és acíclic i m = n 1
- (c) T és connex i m = n 1
- (d) T és connex i tota aresta és pont
- (e) per cada parell de vèrtexs u i v hi ha un únic u-v camí a T
- (f) T és acíclic i l'addició d'una aresta crea exactament un cicle

Corol·lari 3

Un bosc G d'ordre n i k components connexos té mida n-k

Corol·lari 4

Si T és un arbre d'ordre $n \geq 2$, T té almenys dos vèrtexs de grau 1

2. Arbres generadors

Anomenarem arbres generadors (o d'expansió) als subgrafs d'un graf que són subgrafs generadors i a més arbres

Teorema 5

G = (V, A) és un graf connex si, i només si, G té un arbre generador

2.1 Algoritme DFS per a obtenir arbres generadors

```
arbre DFS(graf G, int v)
/* Pre: un graf G i un vertex v
/* Post: un arbre generador del component connex de G al que pertany v
Pila P;
P.empilar(v);
Llista W;
W.afegir(v);
Llista B;
int x;
while (not P.es_buida) {
 x=P.cim;
 if(''hi ha y tal que és adjacent a x i y no pertany a W'') {
 P.empilar(y);
 W.afegir(y);
 B.afegir(xy);
 else {
 P.desmpilar;
return (W,B);
```

Teorema 6

T = (W, B) és un arbre generador del component connex de G que conté v

2.2 Algoritme BFS per a obtenir arbres generadors

```
arbre BFS(graf G, int v)
/* Pre: un graf connex G d'ordre n i un vertex v
/* Post: un arbre generador del component connex de G al que pertany v
Cua C;
C.demanar_torn(v);
Llista W;
W.afegir(v);
Llista B;
 int x;
while (not C.es_buida) {
 x=C.primer;
 if(''hi ha y tal que és adjacent a x i y no pertany a W'') {
 C.demanar_torn(y);
 W.afegir(y);
 B.afegir(xy);
 else {
 C.avançar;
return (W,B);
```

Teorema 7

T = (W, B) és un arbre generador del component connex de G que conté v

3. Enumeració d'arbres

Teorema de Cayley

El nombre d'arbres generadors diferents del graf complet K_n és n^{n-2}

El teorema equival a dir que el nombre d'arbres diferents d'ordre n amb conjunt de vèrtexs [n] és n^{n-2}

La prova es basa en la construcció d'una aplicació bijectiva

$$Pr: \{T: T \text{ arbre generador de } K_n\} \longrightarrow [n]^{n-2},$$

suposant que el conjunt de vèrtexs de K_n és [n]

S'anomena sequència de Prüfer de T a la imatge de T per l'aplicació Pr:

$$Pr(T) = (a_1, a_2, \cdots, a_{n-2})$$

ullet Construcció de la seqüència de Prüfer d'un arbre T=([n],A)

Construcció recursiva

```
vector seqPrufer(arbre T, int n)
/* Pre: un arbre T amb conjunt de vèrtexs {1,2,...,n}
/* Post: un vector de longitud n-2 contenint la seqüència de Prüfer de T
{
 arbre Taux=T;
 int k=0;
 int fulla;
 vector<int> seq(n);
 while(k < n-2) {
  fulla=''fulla de Taux amb etiqueta més petita'';
  seq[k]=''vèrtex adjacent a fulla'';
  Taux=Taux-fulla;
 k++;
return seq;
```

Observacions:

Siguin $b_1, ..., b_{n-2}$ els vèrtexs de T que en algun moment han estat fulla en l'algorisme

- Taux és un arbre en cada pas de l'algorisme
- els vèrtexs b_1, \dots, b_{n-2} són 2 a 2 diferents
- $T \{b_1, \dots, b_{n-2}\} \simeq K_2$
- n és un dels vèrtexs de $T \{b_1, \dots, b_{n-2}\}$
- $-x \in [n]$ apareix a la seqüència de Prüfer tants cops com g(x)-1
- els vèrtexs que no apareixen a la seqüència de Prüfer són fulles de T

• Reconstrucció de l'arbre T a partir d'una paraula $(a_1, ..., a_{n-2})$ en l'alfabet [n]. És a dir, definir l'aplicació inversa de Pr

```
arbre arbrePrufer(vector<int> seq, int n)
/* Pre: un vector de n-2 enters entre 1 i n
/* Post: l'arbre que té seq com a seqüència de Prüfer
{
Llista A;
vector<int> fulles(n-1);
fulles[0]=min([n]-{seq[0],seq[1],...,seq[n-3]});
A.afegir({seq[0],fulles[0]});
 int k=1;
while(k < n-2) {
 fulles[k]=min([n]-\{seq[k],seq[k+1],...,seq[n-3],fulles[0],...,fulles[k-1]\});
 A.afegir({seq[k],fulles[k]});
 k++;
 }
fulles [n-2] = min([n] -{fulles [0],...,fulles [n-3]});
A.afegir({fulles[n-2],n});
return ([n],A);
```