Supermarket Grocery Project

1. Import Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load datasets

2	2. Load datasets													
d	<pre>df = pd.read_csv("E:\Data Analyst Project\Supermart Grocery Sales - Retail</pre>											ic		
d	<pre>df.head()</pre>													
	Ord	ler ID	Customer Name	Category	Sub Category	City	Order Date	Region	Sales	Discount	Profit	S		
0	0	D1	Harish	Oil & Masala	Masalas	Vellore	11- 08- 2017	North	1254	0.12	401.28	T N		
1	0	D2	Sudha	Beverages	Health Drinks	Krishnagiri	11- 08- 2017	South	749	0.18	149.80	T N		
2	. 0	D3	Hussain	Food Grains	Atta & Flour	Perambalur	06- 12- 2017	West	2360	0.21	165.20	T N		
3	0	D4	Jackson	Fruits & Veggies	Fresh Vegetables	Dharmapuri	10- 11- 2016	South	896	0.25	89.60	T N		
4	. 0	D5	Ridhesh	Food Grains	Organic Staples	Ooty	10- 11- 2016	South	2355	0.26	918.45	T N		

In [4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 11 columns):
   Column
                 Non-Null Count Dtype
--- -----
                 -----
                9994 non-null
0
    Order ID
                                object
   Customer Name 9994 non-null
1
                                object
             9994 non-null
2 Category
                                object
   Sub Category 9994 non-null
                                object
   City
4
                 9994 non-null
                                object
    Order Date
5
                 9994 non-null
                                object
                 9994 non-null
6
    Region
                                object
7
    Sales
                 9994 non-null
                                int64
                 9994 non-null float64
8
    Discount
    Profit
                 9994 non-null
                                float64
10 State
                 9994 non-null
                                object
dtypes: float64(2), int64(1), object(8)
memory usage: 859.0+ KB
```

3. Data Preprocessing

Handling Missing Values

```
print(df.isnull().sum())
In [5]:
        Order ID
        Customer Name
                          0
        Category
        Sub Category
        City
                          0
        Order Date
        Region
        Sales
                          0
                          0
        Discount
        Profit
                          0
        State
        dtype: int64
In [6]:
         df.dropna(inplace = True)
In [7]:
         df.drop_duplicates(inplace = True)
```

Convert Date Columns to Date Time Format

```
In [8]: df['Order Date'] = pd.to_datetime(df['Order Date'], format='mixed', errors='coerce'
In [9]: df['Day'] = df['Order Date'].dt.day
    df['Month'] = df['Order Date'].dt.month
    df['Year'] = df['Order Date'].dt.year
In [10]: df.head()
```

Out[10]:		Order ID	Customer Name	Category	Sub Category	City	Order Date	Region	Sales	Discount	Profit	S
	0	OD1	Harish	Oil & Masala	Masalas	Vellore	2017- 11-08	North	1254	0.12	401.28	T N
	1	OD2	Sudha	Beverages	Health Drinks	Krishnagiri	2017- 11-08	South	749	0.18	149.80	T N
	2	OD3	Hussain	Food Grains	Atta & Flour	Perambalur	2017- 06-12	West	2360	0.21	165.20	T N
	3	OD4	Jackson	Fruits & Veggies	Fresh Vegetables	Dharmapuri	2016- 10-11	South	896	0.25	89.60	T N
	4	OD5	Ridhesh	Food Grains	Organic Staples	Ooty	2016- 10-11	South	2355	0.26	918.45	T N

Label Encoding for Categorical Variables

```
In [11]: from sklearn.preprocessing import LabelEncoder,StandardScaler
le = LabelEncoder()
df['State'] = le.fit_transform(df['State'])
df['Sub Category'] = le.fit_transform(df['Sub Category'])
df['City'] = le.fit_transform(df['City'])
df['Region'] = le.fit_transform(df['Region'])
```

In [12]: df.head()

Out[12]:		Order ID	Customer Name	Category	Sub Category	City	Order Date	Region	Sales	Discount	Profit	State	Da
	0	OD1	Harish	Oil & Masala	14	21	2017- 11-08	2	1254	0.12	401.28	0	
	1	OD2	Sudha	Beverages	13	8	2017- 11-08	3	749	0.18	149.80	0	
	2	OD3	Hussain	Food Grains	0	13	2017- 06-12	4	2360	0.21	165.20	0	1
	3	OD4	Jackson	Fruits & Veggies	12	4	2016- 10-11	3	896	0.25	89.60	0	1
	4	OD5	Ridhesh	Food Grains	18	12	2016- 10-11	3	2355	0.26	918.45	0	1

4. Exploratory Data Analysis

Sales By Category

```
In [13]: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Category', y='Sales', data= df, palette='Set2')
    plt.title('Sales Distribution by Category')
    plt.xlabel('Category')
    plt.ylabel('Sales')
    plt.show()
```

C:\Users\USER\AppData\Local\Temp\ipykernel_10152\3764011399.py:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0. 14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(x='Category', y='Sales', data= df, palette='Set2')


```
In [14]: Sales_category=df.groupby("Category")["Sales"].sum()

Sales_category.plot(kind='bar')
plt.title('Category by Sales', fontsize = 14)
plt.xlabel('Category')
plt.ylabel('Sales')
plt.show()
```


Sales Trends Over Time

```
In [15]: plt.figure(figsize=(12, 6))
    df.groupby('Order Date')['Sales'].sum().plot()
    plt.title('Total Sales Over Time')
    plt.xlabel('Date')
    plt.ylabel('Total Sales')
    plt.show()
```


Sales By Year

```
In [16]: Yearly_Sales=df.groupby("Year")["Sales"].sum()

plt.pie(Yearly_Sales, labels=Yearly_Sales.index,
    autopct='%1.1f%%')
    plt.title('Sales by Year')
    plt.show()
```

Sales by Year

Correlation HeatMap

```
In [17]: plt.figure(figsize=(12, 6))
# Select only numeric columns, but drop 'State'
numeric_cols = df.select_dtypes(include=['number']).drop(columns=['State'], errors=
```

```
corr_matrix = numeric_cols.corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


5. Feature Selection And Model Building

```
features = df.drop(columns = ['Order ID', 'Customer Name', 'Order Date', 'Sales', 'Mont
In [18]:
         target = df['Sales']
         from sklearn.model_selection import train_test_split
In [19]:
         X_train,X_test,y_train,y_test = train_test_split(features,target,test_size = 0.2, r
In [20]:
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler
         # Example: target is 'Sales'
         X = df.drop(columns=['Sales'])
                                           # Features
         y = df['Sales']
                                           # Target
         # Drop datetime columns
         X = X.drop(columns=X.select_dtypes(include=['datetime64[ns]']).columns)
         # Convert categorical columns to numeric
         X = pd.get_dummies(X, drop_first=True)
         # Train-test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
         # Scaling numeric features
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
```

6. Model Training And Evaluation

Linear Regression Model

```
# Model training
In [21]:
          from sklearn.linear_model import LinearRegression
          model = LinearRegression()
          model.fit(X_train,y_train)
          y_pred = model.predict(X_test)
In [22]: # Model Evaluation
         from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
          r2 = r2_score(y_test, y_pred)
          rmse = np.sqrt(mean_squared_error(y_test, y_pred))
          mae = mean_absolute_error(y_test, y_pred)
          print(f"R2 Score: {r2:.4f}")
          print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
          print(f"Mean Absolute Error (MAE): {mae:.2f}")
         R<sup>2</sup> Score: 0.2741
         Root Mean Squared Error (RMSE): 489.29
         Mean Absolute Error (MAE): 414.89
```

Random Forest Model

```
In [23]:
         from sklearn.ensemble import RandomForestRegressor
          from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error
          import numpy as np
          rf_model = RandomForestRegressor(n_estimators = 100, random_state = 42)
          rf_model.fit(X_train,y_train)
          rf_pred = rf_model.predict(X_test)
In [24]: rf_r2 = r2_score(y_test,rf_pred)
          rf_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))
          rf mae = mean absolute error(y test,rf pred)
          print("Random Forest Performance: ")
          print(f"R2 Score: {rf_r2:.4f}")
          print(f"RMSE: {rf rmse:.2f}")
          print(f"MAE: {rf_mae:.2f}")
         Random Forest Performance:
         R<sup>2</sup> Score: 0.3233
         RMSE: 472.42
         MAE: 376.04
```

XGBoost Regressor

```
In [25]: from xgboost import XGBRegressor
   xgb_model = XGBRegressor(n_estimators= 100, learning_rate = 0.1,random_state = 42)
   xgb_model.fit (X_train,y_train)
```

```
In [27]: xgb_pred = xgb_model.predict(X_test)

In [28]: # Model Evaluation
    xgb_r2 = r2_score(y_test, xgb_pred)
    xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_pred))
    xgb_mae = mean_absolute_error(y_test, xgb_pred)

print("\nXGBoost Performance:")
    print(f"R2 Score: {xgb_r2:.4f}")
    print(f"RMSE: {xgb_rmse:.2f}")
    print(f"MAE: {xgb_mae:.2f}")

XGBoost Performance:
    R2 Score: 0.3568
    RMSE: 460.60
    MAE: 377.11
```

7. Visualize Results

```
In [29]: plt.figure(figsize=(8, 6))
    plt.scatter(y_test, y_pred)
    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red')
    plt.title('Actual vs Predicted Sales')
    plt.xlabel('Actual Sales')
    plt.ylabel('Predicted Sales')
    plt.show()
```

Actual vs Predicted Sales

8. Conclusions

1. Compare R-Squared Scores

- The model with the highest R² explains the most variance in target variable (Sales or Profit).
- Typically, Random Forest and XGBoost outperform Linear Regression when relationships are non-linear and there are interactions between variables.

2. Compare RMSE And MAE

- Lower RMSE and MAE mean better prediction accuracy.
- RMSE penalizes large errors more, while MAE shows the average error magnitude.
- The model with the lowest RMSE & MAE is generally preferred.

3. Handling Non - Linearity And Complex Pattern

- Linear Regression assumes a straight-line relationship between features and the target, which is often too simple for retail datasets.
- Random Forest handles non-linear patterns and feature interactions automatically.
- XGBoost also handles complex relationships and can be tuned more precisely.

4. Overfitting Consideration

- Random Forest can overfit if the number of trees is too high or depth is uncontrolled.
- XGBoost has regularization parameters to control overfitting, making it more robust when tuned.

5. Speed And Resource Use

- Linear Regression is fastest and requires least memory.
- Random Forest is slower but still manageable for medium datasets.
- XGBoost is usually the slowest but can achieve the best accuracy after tuning.

Best Model Selection

- Therefore, XGBoost is the overall the best Model as it has highest R-Squared which best at explaining variance.
- It has lowest RMSE and MAE as it gives most accurate predictions