Number Systems II:

2's Complement, Arithmetic, Overflow, & Writing Bit-wise Logical & Shifting Code

Today's lecture

- Two's complement signed binary representation
 - Negating numbers in Two's complement
 - Sign extension
- Bit-wise shift operations
 - Writing bit-wise logical and shifting code
- Two's complement arithmetic
 - Addition
 - Subtraction
 - Overflow

Review: 4-bit 2's complement

Two's complement has asymmetric ranges; there is one more negative number than positive number. Here, you can represent -8 but not +8.

Negating Numbers in 2's Complement

To negate a number:

Complement each bit and then add 1.

Example:

```
0100 = +4<sub>10</sub> (a positive number in 4-bit two's complement)

= (invert all the bits)

= -4<sub>10</sub> (and add one)

= (invert all the bits)

= +4<sub>10</sub> (and add one)
```

Sometimes, people talk about "taking the two's complement" of a number. This is a confusing phrase, but it usually means to negate some number that's already in two's complement format.

Converting 2's Complement to Decimal

Algorithm 1:

if negative, negate; then do unsigned binary to decimal

Algorithm 2:

- Same as with n-bit unsigned binary
 - Except, the MSB is worth –(2ⁿ⁻¹)

$$-b_{n-1}2^{n-1} + \sum_{k=0}^{n-2} b_k 2^k$$

Example:

1100 = -4_{10} (a negative number in 4-bit two's complement)

Sign Extension

- In everyday life, decimal numbers are assumed to have an infinite number of O's in front of them. This helps in "lining up" numbers.
- **To subtract 231 and 3, for instance, you can imagine:**

- This works for *positive* 2's complement numbers, but not *negative* ones.
- To preserve sign and value for negative numbers, we add more 1's.
- For example, going from 4-bit to 8-bit numbers:
 - 0101 (+5) should become 0000 0101 (+5).
 - But 1100 (-4) should become 1111 1100 (-4).
- The proper way to extend any signed binary number is to replicate the sign bit.

Sign Extension, cont.

What you need to know for Lab 2.

Review: Bitwise Logical operations

unsigned char a = 0x55; (0)

unsigned char b = 0x0f; (0)

Last time we introduced bit-wise logical operations:

unsigned char c = a l b;

(bit-wise OR)

unsigned char d = a & b;

(bit-wise AND)

unsigned char e = a ^ b; (bit-wise XOR)

unsigned char $n = \sim a$; (bit-wise NOT)

Bit-wise shifting

When doing bit-wise logical operations, it can be useful to "shift" bits to the left or right within a word.

Left shift:

We are shifting bits toward the most significant bit (MSB); we call this a left shift because we think of the MSB being on the left.

Bit-wise shifting, cont.

- Two kinds of right shift, depends on type of variable:
 - Unsigned numbers

Signed numbers

Note: $x \gg 1$ not the same as x/2 for negative numbers; compare $(-3) \gg 1$ with (-3)/2

Useful for extracting bits

- We have the unsigned 8-bit word: $b_7b_6b_5b_4b_3b_2b_1b_0$
- And we want the 8-bit word: $0 0 0 0 0 b_5 b_4 b_3$
 - i.e., we want to extract bits 3-5.

(x >> 3) & 0x7

We can do this with bit-wise logical & shifting operations

$$y = (x >> 3) \& 0x7;$$

$$x$$
 $b_7b_6b_5b_4b_3b_2b_1b_0$ $x >> 3$

Useful for merging two bit patterns

■ We have 2 unsigned 8-bit words: $a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$

$$b_7b_6b_5b_4b_3b_2b_1b_0$$

And we want the 8-bit word:
a₇b₆a₅b₄a₃b₂a₁b₀

Binary addition with 2's Complement

- You can add two's complement numbers just as if they are unsigned numbers.
 - Recall, this was the whole reason for this representation

Subtraction

We can implement subtraction by negating the 2nd input and then adding:

Why does this work?

For n-bit numbers, the negation of B in two's complement is 2ⁿ - B (this is alternative way of negating a 2's-complement number).

$$A - B = A + (-B)$$

= $A + (2^{n} - B)$
= $(A - B) + 2^{n}$

- If A ≥ B, then (A B) is a positive number, and 2ⁿ represents a carry out of 1. Discarding this carry out is equivalent to subtracting 2ⁿ, which leaves us with the desired result (A B).
- If A < B, then (A B) is a negative number and we have 2ⁿ (A B). This corresponds to the desired result, -(A B), in two's complement form.

Overflow Review

Recall that when we add two numbers the result may be larger than we can represent.

(in 5b 2's complement we can represent -16 to +15)

The same thing can happen when we add negative numbers.

How can we know if overflow has occurred?

The easiest way to detect signed overflow is to look at all of the sign bits.

- Overflow occurs only in the two situations above:
 - If you add two positive numbers and get a negative result.
 - If you add two negative numbers and get a positive result.
- Overflow cannot occur if you add a positive number to a negative number. Do you see why?

Overflow in software (e.g., Java programs)

```
public class overflow {
  public static void main(String[] args) {
      int i = 0;
      while (i >= 0) {
         <u>i++;</u>
      System.out.println("i = " + i);
      i--;
      System.out.println("i = " + i);
      i++;
      System.out.println("i = " + i);
 } }
```

```
Output:

i = -2147483648 2<sup>31</sup>

i = 2147483647 2<sup>31</sup>-1

i = -2147483648
```