DSC 5101 – Computer Programming in DSAI HO 00 - Course Outline

Opim Salim Sitompul

Department of Data Science and Artificial Intelligence
Universitas Sumatera Utara

Outline

- Semester Learning Plan
- Course Description and Objective
- 3 Learning Outcomes
- Reference books
- Teaching and Learning Methods
- Weekly Course Planning
- Evaluation System
- 8 Compiler/IDE
- Programming Assignment
- 10 Academic Integrity

Semester Learning Plan

- Study Program: Masters in Data Science and Artificial Intelligence
- Course ID: DSC 5101
- Course Name: Computer Programming in Data Science and Artificial Intelligence
- Credits: 3
 - Class: 150 minutes
 - Lab activities: 150 minutes
 - Face-to-face: 16 weeks
 - Minimum attendance: 80%
- Lecturer: Prof. Dr. Opim Salim Sitompul, M.Sc.
- Prerequisite: None

Course Description and Objective

- This course is a laboratory course that provides students with the computer programming background required for success in data science and artificial intelligence.
- In this course, students will learn how to program data science and artificial intelligence related problems using Python programming language.

Course Description and Objective

- Huge interest in the Python programming language is driven by several factors [1]:
 - its use in schools with the Raspberry Pi platform,
 - its ability to be used for DevOps scripts,
 - its use in data science and machine learning and
 - the language itself.

Learning Outcomes

- Upon successful completion of the course, students will be able to
 - Prepare data for further analysis using data analytic tools
 - Manipulate data sets programmatically
 - Perform exploratory data analysis programmatically
 - Apply basic text processing techniques to unstructured data sets
 - Visualize data sets effectively
 - Perform basic statistical analyses programmatically
 - Build data-driven predictive models

Reference books

- A Beginners Guide to Python 3 Programming
 - John Hunt
 - Springer Nature Switzerland AG, Switzerland, 2019
- Advance Guide to Python 3 Programming
 - John Hunt,
 - Springer Nature Switzerland AG, Switzerland, 2019
- Python Data Science Handbook
 - Jake VanderPlas
 - O'Reilly, California, 2016
- Hands-On Machine Learning with Scikit-Learn \$ TensorFlow
 - Aurelién Gerón
 - Wiley, 2014

Reference books

- Python tutorials available online
- Jupyter notebook tutorials available online
- Numpy tutorials available online
- Pandas tutorials available online
- NItk tutorials available online
- Matplotlib tutorials available online
- Visdom tutorials available online
- Scikit-learn tutorials available online
- Pytorch tutorials available online

Teaching and Learning Methods

- Use of online tutorials: Students will make use of online tutorials for self-learning.
- 2 Laboratory sessions: Students will be required to perform a series of exercises and submit a lab report.
- One of the control of the control
- Individual Project Assignment: Each student is required to submit individual project report in completion of the assignment.

Weekly Course Planning

- I Fundamentals
 - Python programming Basics
 - Using Function
 - Using Class
- II Working with data
 - Numerical computation using numpy
 - Data manipulation using pandas
 - Exploratory data analysis
 - Text processing with nltk
- III Data visualization
 - Matplotlib
 - Pandas
 - Visdom

Weekly Course Planning

IV Statistics

- Random variables
- Probability distributions
- Hypothesis testing using scipy and statsmodels
- V Machine learning tools
 - Scikit-learn
 - Pytorch
 - Keras

Evaluation System

Table 1: Grading Components

Programming Home Works	20%
Mid Term Exam	20%
Final Exams	20%
Individual Project Assignment	30%
Total:	100%

Evaluation System

Table 2: Grading System

		Α	\geq	80
75	<	B+	<	80
70	\leq	В	<	75
65	\leq	C+	<	70
60	\leq	С	<	65
50	<u> </u>	D	<	60
		Е	<	50

- Notes:
- If grade obtained are in C+, C, D, and E categories, students must take Retest in the following semester.

Compiler/IDE

- Python IDLE (latest version supporting Scikit Learn + Keras)
- Jupyter Notebook
 - https://jupyter.org/install
- PyCharm
 - https://www.jetbrains.com/

Programming Assignment

- Using USU e-learning
 - https://elearning.usu.ac.id/
 - Filename upload: NIM ????.py, NIM ????.ipynb
- Filename Example:
 - 2070321??_A01a.py, 2070321??_A01a.ipynb, etc.
 - Please send only program source codes, not zip, rar, etc.
- Remark:
 - Send your assignment within time range provided, late submission will not accepted.

Academic Integrity

- In Class Conduct
 - Obstructive and/or annoying behaviors are not allowed in this class.
- Mobile phone policy
 - All mobile phones must be off or silence during class.
 - Use only laptop browser to access Internet for required resources.
- Academic Integrity
 - Academic Violation (such as plagiarism, cheating, copying, etc.) are not allowed in this class in what so ever conditions.
 - Students who are found violate this rules will be given low semester grade and will be expelled from this class.
 - You are expected to do your own work assignments as well as exams and programming.
 - Helping other students or receiving help from other students while debugging program are OK; however, writing modification and/or copying source code for/from other students are considered violation.

References I

- Hunt, J., A Beginners Guide to Python 3 Programming, Springer Nature Switzerland AG, Switzerland, 2019.
- Hunt, J., Advance Guide to Python 3 Programming, Springer Nature Switzerland AG, Switzerland, 2019.