Practice Problems for 2nd Midterm for Calculus-Based Physics-1: Mechanics (PHYS150-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy
October 16th, 2017

1 Vectors and Newton's Laws

For each of the exercises below, $\vec{a} = 3\hat{i} + 4\hat{j}$, and $\vec{b} = 6\hat{i} + 8\hat{j}$.

- 1. Calculate the magnitude of \vec{a} : $|\vec{a}| = \sqrt{3^2 + 4^2} = 5$.
- 2. Calculate the magnitude of \vec{b} : $|\vec{b}| = \sqrt{4^2 + 8^2} = 10$.
- 3. Calculate the dot product $\vec{a} \cdot \vec{b}$: 3 * 6 + 4 * 8 = 50 (Notice the dot product gives a number).
- 4. Using $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, get the angle θ between the vectors: $\vec{a} \cdot \vec{b}/(|\vec{a}| |\vec{b}|) = \cos \theta = 50/(5*10) = 1$. So $\cos \theta = 1$, therefore $\theta = 0$.

2 Newton's Laws, and Circular Motion

1. The centripetal acceleration is $a_{\rm C}=v^2/r=r\omega^2$, and the centripetal force is $F_{\rm C}=mv^2/r=mr\omega^2$. Show that if a a person is swinging a rock attached to a line in a circle over their head (think of a sling, or bolas), that the rock must have speed $v=\sqrt{rg}$ in order stay aloft, if the circular trajectory of the rock is perpindicular to the ground:

The gravitational force on the stone pulls down, creating tension in the rope, which is eventually sideways pulling the stone with centripetal force. Thus, $T = mg = mv^2/r$. Solving for v, we have $v^2 = rg$ or $v = \sqrt{rg}$.

3 Frictional Forces

1. We did a lab to measure μ_k , the coefficient of static friction. Show that the free-body diagram yields the following equation $\mu_k = \frac{m_p}{m_B} < 1$:

The pulley transmits the gravitational force (which points down) into tension which pulls the block sideways. The tension is therefore $m_{\rm P}g$, where $m_{\rm P}$ is the mass on the pulley. The frictional force is $\mu_{\rm B}N$, where N is the normal force. The normal force is $m_{\rm B}g$, where $m_{\rm B}$ is the mass of the block. If these forces are in balance, we have $\mu_{\rm B}m_{\rm B}g=m_{\rm P}g$ so $\mu=\frac{m_{\rm P}}{m_{\rm B}}$. The mass on the pulley was always smaller because the block mass included the wood and weights added to it.