İşletim Sistemlerine Genel Bakış

Bölüm 1: Giriş

- İşletim Sistemleri Ne Yapar?
- Bilgisayar Sistemi Organizasyonu
- Bilgisayar Sistemi Mimarisi
- İşletim Sistemi Yapısı
- İşletim Sistemi İşleyişi
- İşlem Yönetimi
- Hafıza Yönetimi
- Depolama Birimi Yönetimi
- Koruma ve Güvenlik
- Dağıtık Sistemler
- Özel Amaçlı Sistemler
- Bilgisayar Ortamları
- Açık Kodlu İşletim Sistemleri

Hedefler

- Temel işletim sistemi bileşenlerini gözden geçirmek
- Temel bilgisayar sistemi organizasyonunu gözden geçirmek

İşletim Sistemi Nedir?

- Bilgisayar donanımı ile bilgisayar kullanıcısı arasında bir ara katman olarak aracılık etmek
- İşletim sisteminin hedefleri:
 - Kullanıcı programlarını çalıştırmak ve kullanıcı problemlerini çözmeyi kolaylaştırmak
 - Bilgisayar sisteminin kullanımını kolaylaştırmak
 - Bilgisayar donanımını verimli bir şekilde kullanmak

Bilgisayar Sistemi Yapısı

- Bilgisayar sistemi dört bileşene ayrılabilir:
 - Donanım (hardware) temel bilişim (computing) kaynaklarını sağlar
 - İşlemci (CPU), hafıza, I/O cihazları
 - İşletim sistemi (operating system)
 - Donanımın pek çok uygulama ve kullanıcı arasında paylaşımlı kullanımını koordine eder
 - Uygulama programları kullanıcıların bilişim problemlerini sistem kaynaklarını kullanarak çözmeye yardımcı olan yazılımlardır
 - Kelime işlemciler, derleyiciler (compilers), web tarayıcıları, veritabanı sistemleri, oyunlar
 - Kullanıcılar
 - İnsanlar, makinalar, diğer bilgisayarlar

Bilgisayar Sisteminin Dört Bileşeni

İşletim Sistemi Tanımı

- İşletim sistemi kaynak dağıtıcıdır (resource allocator)
 - Tüm kaynakları yönetir
 - Birbirine aykırı istekler arasında verimli ve adil kullanımı gözeterek karar verir
- İşletim sistemi bir kontrol programıdır (conrol program)
 - Programların çalışmasını hatalara ve uygun olmayan kullanımlara engel olmak için kontrol eder

İşletim Sistemi Tanımı (Devamı)

- Evrensel kabul gören bir tanım yok
- "İşletim sistemi üreticisinin bir işletim sistemine dahil ettiği herşeydir" doğruya yakın bir cevap ©
 - Fakat büyük oranda değişmekte
- Çekirdek (kernel): Bilgisayarda her zaman çalışan tek programdır
 - Diğer her şey ya sistem programıdır (işletim sistemi ile birlikte gelir) ya da uygulama programıdır

Bilgisayarın Başlatılması

- Bilgisayar yeniden başlatıldığında ya da açıldığında önyükleyici program (bootstrap program) çalıştırılır
 - Tipik olarak ROM veya EPROM'da tutulur ve genellikle aygıt yazılımı (firmware) olarak adlandırlır
 - Sistemi tüm yönleri ile başlatır
 - İşletim sistemi çekirdeğini yükler ve çalıştırır

Bilgisayar Sistemi Organizasyonu

- Bilgisayar sistemi işleyişi:
 - Bir veya daha fazla işlemci ve cihaz denetleyici (device controller) ortak bir veri yolu üzerinden paylaşılan hafızaya bağlanır
 - Aynı anda çalışan işlemciler ve cihazlar hafızaya erişmek için birbirleriyle yarışırlar

Bilgisayar Sistemi İşleyişi

- I/O cihazları ve CPU aynı anda çalışabilir
- Her bir cihaz denetleyicisi belli bir tip cihazın kontrolünden sorumludur
- Tüm cihaz denetleyicilerinin bir yerel tampon belleği (local buffer) vardır
- CPU ana hafıza ile yerel tampon bellekler arasında çift yönlü veri taşır
- I/O işlemi, cihazdan, denetleyicinin yerel tampon belleğine doğrudur
- Cihaz denetleyicisi, işeminin bittiğini, işlemciye kesinti (interrupt) göndererek bildirir

Kesintilerin Genel Özellikleri

- Kesintiler kontrolü, o kesintiye ait kesinti servis rutinine (interrupt service routine) yönlendirir
- Servis rutinleri, kesinti sonucu yapılması gereken işi gerçekleştiren yazılım parçacıklarıdır
- Hangi servis rutininin hangi hafiza adresinde bulunduğu kesinti vektöründe (interrupt vector) bulunmaktadır
- Bilgisayar, kesinti sonunda yarıda kesilen işleme geri dönebilmek için, kesilen işlemin işletilen son komutunun adresini saklamalıdır
- Kayıp kesintilere engel olmak için kesinti işletildiği sürece yeni kesinti gönderimine izin verilmez
- Tuzak (trap) yazılım tarafından oluşturulan kesintilerdir
- Tuzaklara yazılım hataları ya da kullanıcı istekleri neden olur
- İşletim sistemleri kesintilerle yönlendirilirler (interrupt driven)

Kesintilerin İşletilmesi

- İşletim sistemi CPU'nun durumunu kaydeder: yazmaçlar (registers) ve program sayacı (program counter)
- Hangi tür kesintinin gerçekleştiğini belirler:
 - sorgulama (polling) hangi cihazdan gerçekleştiği bulunmalıdır
 - vektör kesinti sistemi (vectored interrupt system) cihazı belirten kod, kesinti ile birlikte gönderilir
- Her bir kesinti için hangi işlemin gerçekleştirileceğini ayrı bir kod parçası belirler

Kesinti Zaman Çizelgesi

Direk Hafıza ErişimYapısı

- Direk Hafıza Erişimi Direct Memory Access (DMA)
- Hafıza hızına yakın bilgi aktarması yapabilen yüksek hızlı I/O cihazları için kullanılır
- Cihaz denetleyicisinin, CPU'nun çalışmasını bölmeden, veri bloklarını cihazın tampon belleğinden direk olarak hafızaya aktarmasıdır
- Her byte için kesinti göndermek yerine, her bir blok için bir kesinti gönderilir

Depolama Birimi Yapısı

- Ana hafıza (main memory) CPU'nun direk erişebileceği tek geniş depolama birimidir
- İkincil depolama birimi (secondary storage) kalıcı bir şekilde bilgilerin depolandığı, ana hafızanın uzantısı olan depolama birimidir
- Manyetik diskler (magnetic disks) manyetik kayıt meteryaliyle kaplı sert metal veya cam tabakalar
 - Disk yüzeyi genellikle mantıksal olarak izlere (tracks) bölünür
 - Her bir iz sektörlere (sectors) bölünür
 - Disk denetleyicisi (disk controller) bilgisayar ile cihaz arasındaki mantıksal etkileşimi sağlar

Depolama Birimi Hiyerarşisi

- Depolama birimlere hiyerarşik bir şekilde organize edilirler
 - Hız (Speed)
 - Maliyet (Cost)
 - Gelgeçlik (volatility)
- Ön belleğe alma (caching) bilgiyi daha hızlı olan depolama birimine geçici olarak alma işlemidir
- Ana bellek ikincil depolama birimi için en son ön bellek (cache) birimidir

Depolama Cihazı Hiyerarşisi

Ön Belleğe Alma

- Bir bilgisayarda pek çok seviyede (donanım, işletim sistemi, yazılım) gerçekleştirilen önemli bir prensip
- Kullanılan bilgi yavaş depolama biriminden hızlı depolama birimine kopyalanır
- Aranan bilgi öncelikle daha hızlı depolama biriminde mi (ön bellek) kontrol edilir
 - Eğer oradaysa, bilgi direk ön bellekten alnır (hızlı)
 - Eğer değilse, ön belleğe alınır ve oradan kullanılır
- Ön bellek, ön belleğe alınacak bilgiden daha küçüktür
 - Ön bellek yönetimi önemli bir tasarım problemidir
 - Ön bellek boyutu ve yenileme politikası (replacement policy)

Tekli veya Çoklu İşlemciler

- Pek çok sistem tek bir genel amaçlı işlemci kullanır (örn: gömülü sistemler).
 - Aynı zamanda, pek çok sistem de özel amaçlı işlemciler kullanır
- Çokişlemcili sistemler (multiprocessors systems) giderek yaygınlaşmakta ve önem kazanmaktadır
 - Paralel sistemler (parallel systems) ve sıkıca bağlantılı sistemler (tightly-coupled systems) olarak da bilinirler
 - Avantajlar
 - Artan üretilen iş (throughput)
 - Ekonomik olarak katlanma (economy of scale)
 - Artan güvenilirlik (reliability) graceful degradation veya fault tolerance

Çoklu İşlemciler

- İki farklı tür
 - Asimetrik Çoklu İşlemciler (Asymmetric Multiprocessing)
 - Simetrik Çoklu İşlemciler (Symmetric Multiprocessing)
- Asimetrik çoklu işlemciler Görev dağıtan bir işlemci var, diğerleri görev bekliyor (master-slave)
- Asimetrik çoklu işlemciler özellikle ilk zamanlarda kullanılıyor
- Simetrik Çoklu İşlemciler (SMP) tüm işlemciler her tür işi yapıyor

Modern Bilgisayarlar Nasıl Çalışır?

Simetrik Çoklu İşlemci Mimarisi

Çok Çekirdekli Tasarımlar

Avantajlar/Dezavantajlar?

Küme Bilgisayarlar

- Küme Bilgisayarlar (clustered computers)
- Çoklu işlemcili sistemler gibi, fakat birden fazla sistem birlikte çalışıyor
 - Genellikle depolama birimi, storage-area network (SAN) ile paylaşılıyor
 - Arızalara dayanıklı yüksek bulunurluk (high-availability) sağlayan bir servis
 - Asimetrik kümeleme (asymmetric clustering) bir tane gözlem makinası, diğerleri çalışıyor
 - Simetrik kümeleme (symmetric clustering) birden fazla uygulama çalıştıran ve aynı zamanda birbirini gözlemleyen makinaya (node) sahip

Yüksek Performanslı Hesaplama

- Bazı kümeler yüksek performanslı hesaplama high-performance computing (HPC) sağlıyor
- Uygulamalar paralelleştirmeyi (parallelization) kullanacak şekilde yazılmalı

Çoklu Program Desteği

- Çoklu program desteği (multiprogramming) verimlilik için gerekli
 - Tek kullanıcı, CPU and I/O cihazlarını her zaman meşgul edemez
 - Çoklu program desteği, işleri (kod ve veri) CPU'nun her zaman çalıştıracağı bir iş olacak şekilde organize eder
 - Sistemdeki tüm işlerin belli bir kısmı hafızada tutulur
 - İş zamanlaması (job scheduling) ile bir iş seçilir ve çalıştırılır
 - Çalışan iş beklemek zorunda kaldığında (örneğin I/O işlemi için) işletim sistemi başka bir işe geçer

Zaman Paylaşımı

- Zaman Paylaşımı (timesharing veya multitasking), CPU'nun, işleri çalıştırırken, işler arasında çok hızlı geçiş sağlayarak kullanıcıya bilgisayarı interaktif (interactive) şekilde kullanıyormuş hissi vermesidir
 - Cevap süresi (response time) 1 saniyeden az olmalıdır
 - Her bir kullanıcı hafızada çalışan en az bir programa sahiptir
 - Eğer aynı anda birden fazla iş çalışmak için hazırsa ⇒ İşlemci zamanlaması (CPU scheduling)
 - Eğer işlemler hafızaya sığmıyorsa, değiş-tokuş işlemi (swapping) işlemleri, çalıştırmak gerektiğinde hafızaya alır ya da gerektiğinde hafızadan çıkarır
 - Sanal hafıza (virtual memory) tümüyle hafızada bulunmayan işlemleri çalıştırmayı sağlar

Çok Programlı Sistemlerde Hafıza Dizilimi

İşleme Sorunları

- Donanım tarafından kesinti gönderilebilir
- Yazılım hataları veya istekleri tuzağa (exception veya trap) neden olabilir
 - Sıfıra bölünme, işletim sistmeleri servislerini çalıştırmaya kalkma
- Diğer işleme sorunları:
 - Sonsuz döngü
 - İşlemlerin birbirini değiştirmeye çalışması
 - İşlemlerin işletim sistemini değiştirmeye çalışması

Çift-Modlu İşleme

- Çift-modlu işleme (dual-mode operation), işletim sistemini ve diğer sistem bileşenleri korumayı sağlar
 - Kullanıcı modu (user mode) ve çekirdek modu (kernel mode)
 - Donanım tarafından sağlanan mod biti (mode bit)
 - Sistemin kullanıcı kodu mu yoksa çekirdek kodu mu çalıştırdığını ayırt etmekte kullanılır
 - Bazı komutlar ayrıcalıklı (privileged) olarak tanımlıdırlar ve sadece çekirdek modunda çalıştırılabilirler
 - Sistem çağrıları modu, çekirdek moduna çevirir.
 - Sistem çağrısı bittiğinde mod, kullanıcı moduna çevrilir

Kullanıcı Moddan Çekirdek Moduna Geçiş

- Zamanlayıcı (timer) sonsuz döngülere ve işlemci kilitlenmelerine engel olur
 - Belli bir zaman diliminden sonra kesme gönderilir
 - İşletim sistemi sayacı azaltır
 - Sayaç sıfırlandığında kesme oluşturulur
 - Zamanlayıcı program devreye girmeden sorun çıkaran işlem devre dışı bırakılır veya sonlandırılır

İşlem Yönetimi

- İşlem (process) çalışmakta olan programdır
- Program pasif bir şeyken, işlem aktif bir şeydir
- İşlemler görevlerini yerine getirmek için kaynaklara ihtiyaç duyarlar
 - CPU, hafıza, I/O, dosyalar
 - Başlangıç verisi
- İşlemin sonlandırılması kullanılan kaynakların sisteme iade edilmesini gerektirir

İş Parçacığı Yönetimi

- İş parçacığı (thread) bir program çalışırıken aynı anda yapılması gereken başka işler varsa bunları çalıştırmak için kullanılır
- Tek iş parçacıklı (single-threaded) işlemler, çalıştırılacak bir sonraki komutun hafızadaki konumunu belirten tek bir program sayacına (program counter) sahiptir
 - İşlem sonlanana kadar, komutları tek tek sırayla çalıştırır
- Çok iş parçacıklı (multi-threaded) işlemler her bir iş parçacağı için ayrı bir program sayacına sahiptir
- Tipik olarak sistemlerde, pek çok işlem, birkaç kullanıcı ve pek çok işletim sistemi işlemi aynı anda bir veya birden fazla işlemcide çalıştırılır
 - Aynı anda kullanım (concurrency) işlemcilerin birden fazla işlem veya iş parçacığı arasında ortak kullanımını gerektirir

İşlem Yönetim Faaliyetleri

İşletim sisteminin, işlem yönetimi ile ilişkili faaliyetleri:

- Kullanıcı ve sistem işlemlerinin oluşturulması ve bitirilmesi
- İşlemlerin duraklatılması ve devam ettirilmesi
- İşlemlerin senkronizasyonu için mekanizmalar sağlaması
- İşlemlerin birbiri ile iletişim kurabilmesi için mekanizmalar sağlaması
- Kilitlenmelerin (deadlock) sağlıklı yönetilmesi için mekanizmalar sağlaması

Hafıza Yönetimi

- Tüm veriler işlem öncesi ve sonrası hafızadadır
- Komutların çalıştırılabilmesi için hafızada olması gerekir
- Hafıza yönetimi
 - Neyin hafızada olması gerektiğine karar verir
 - Hedefi, işlemci kullanımını ve kullanıcılara verilen yanıtları optimize etmektir

Hafıza Yönetimi Faaliyetleri

- Hafızanın hangi bölümlerinin kim tarafından kullanıldığını takip etmek
- Hangi işlemlerin ve verilerin hafızaya alınacağına ya da hafızadan çıkarılacağına karar vermek
- Gerektiğinde yeni hafıza alanı ayırmak ya da kullanılmış alanları iade etmek

Depolama Birimi Yönetimi

- İşletim sistemi, depolama birimleri için tek ve mantıksal arayüz sunar
 - Fiziksel özellikleri mantıksal depolama birimine soyutlar: dosya (file)
 - Tüm birimler cihaz tarafından kontrol edilir (i.e., disk, DVD)
 - Değişken özellikler: erişim hızı, kapasite, veri transfer hızı, erişim yöntemi (sırayla veya direk)
- Dosya sistemi yönetimi

Dosya Sistemi Yönetimi

- Dosyalar dizinler kullanılarak organize edilir
- Pek çok sistemde dizinlere veya dosyalara erişim kontrol edilmelidir: erişim kontrolu (access control)
- Dosya sistemi ile ilişkili işletim sistemi aktiviteleri
 - Dosya ve dizinlerin oluşturulması veya silinmesi
 - Dosyaların veya dizinlerin değiştirilmesi için mekanizmanın sağlanması
 - Dosyaların ikincil depolama birimi ile eşleştirilmesi
 - Dosyaların kalıcı depolama birimlerine yedeklenmesi

Mass-Storage Management

- Genellikle diskler, hafızaya sığmayan verileri ya da uzun süre tutulacak verileri tutmakta kullanılır
- Verilerin tutarlı yönetimi çok önemlidir
- Bilgisayarın genel hızı disk altsistemi ve algoritmalarının performansına çok bağlıdır
- İlgili işletim sistemi faaliyetleri:
 - Boş alan yönetimi
 - Depolama alanı ayrımı
 - Disk zamanlaması
- Bazı depolama birimlerinin hızlı olması gerekmez
 - CD, DVD, Manyetik teypler
 - Gene de yönetilmelidir
 - WORM (write-once, read-many-times) ve RW (read-write) erişim modlarında çalışabilirler

Depolama Birimi Performansları

Depolama birimi seviyeleri arasında bilgi aktarımı, kullanıcının isteğine bağlı ya da kullanıcı isteğinden bağımsız gerçekleşebilir

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

A Tamsayısının Diskten Yazmaça Aktarımı

 Çok işlemli ortamlar, en güncel değeri kullanmak konusunda dikkatli olmalıdır (depolama hiyerarşisinin neresinde tutuluyorsa tutulsun)

- Çok işlemcili sistemlerde ön bellek tutarlılığı donanım seviyesinde sağlanmalı ve tüm işlemciler en güncel değere sahip olmalıdır
- Dağıtık ortamlarda durum daha da karmaşıktır
 - Verinin birden fazla kopyası bulunabilir

I/O Alt Sistemi

- İşletim sisteminin amaçlarından biri donanım cihazlarının karmaşıklıklarını kullanıcıdan gizlemektir
- I/O alt sisteminin sorumlulukları:
 - I/O işlemlerinin hafıza yönetimini yapmak
 - Tampon bellek işlemleri (buffering) veriyi bir yerdne diğer yere aktarırken geçci olarak saklamak
 - Ön bellek işlemleri (caching) veriyi geçici olarak daha hızlı depolama birimine aktarmak
 - Kuyruklama (spooling) bir işin çıktısını diğer işin girdisi haline getirmek
 - Genel cihaz sürücüsü arayüzü
 - Özel donanım cihazları için sürücüler

Koruma ve Güvenlik

- Koruma (protection) İşlemlerin veya kullanıcıların herhangi bir kaynağa erişiminin işletim sistemi tarafından kontrol edilmesi
- Güvenlik (security) sistemin içerden ve dışardan gelen saldırılara karşı savunulması
 - Geniş kapsamlı: DoS saldırıları, virusler, solucanlar, kimlik bilgileri hırsızlığı
- Sistemler öncelikle kullanıcıları, kimin ne yapabileceğine göre sınıflandırırlar
 - Kullanıcı adı (user IDs, security IDs) her kullanıcı için isim ve ilişkili numarayı içerir
 - Kullanıcı adı daha sonra, erişim kontrolü amacıyla, kullanıcının sahip olduğu tüm dosya ve işlemlerle ilişkilendirirlir
 - Grup adı (group ID) da benzer şekilde bir grup kullanıcıyı belli işlem ve dosyalarla ilişkilendirmek ve erişim kontrolü sağlamak amacıyla kullanılır

Bilgisayar Ortamları

- Geleneksel bilgisayarlar
 - Sınırlar zamanla değişiyor
 - Ofis Ortamı
 - Terminaller ana bilgisayarlara bağlı ve ana bilgisayar kaynakları kullanıcılar arasında paylaştırılıyor
 - Kişisel bilgisayarlar bir ağa bağlı,
 - Şimdi, portallar ile aynı kaynaklara yerel ağ üzerinden veya uzaktan erişim mümkün
 - Ev Ortamı
 - Önceden bağımsız bilgisayarlar
 - Daha sonra modemlerle Internet'e bağlılar
 - Şimdi, birbirlerine bağlı ve güvenlik duvarına (firewall) sahip

İstemci-Sunucu Sistemleri

- Zamanla akıllı kişisel bilgisayarlar, akılsız terminallerin yerini aldı
- Şu an pek çok sistem sunucu (server) olarak kullanılıyor, ve istemcilerin (clients) isteklerine cevap veriyor
 - İşlem-sunucuları (compute-server) istemcilere çeşitli servisler sağlayan bir arayüz sunar (örn. veritabanı)
 - Dosya sunucuları (file-server) istemcilere dosyaları kaydetmeyi ve indirmeyi sağlayan bir arayüz sunar

Uçtan-Uca Sistemler

- Uçtan-uca sistemler (Peer-to-Peer Systems, P2P)
- Dağıtık sistemlerin bir başka örneği
- P2P istemci ve sunucu arasında ayrım yapmaz
 - Her bir sistem bir uç olarak ele alınır
 - Her bir uç istemci, sunucu veya iki şekilde birden davranabilir
 - Uçlar öncelikle bir P2P ağına bağlanmalıdır.
 - Kendini bu ağdaki merkezi kayıt sistemine kaydetmelidir, veya
 - Keşif prokolü (discovery protocol) ile istekte bulunmalı veya daha önce bulunulan istekleri karşılamalıdır
 - Örnek: Napster ve Gnutella

Web-tabanlı Sistemler

- Artık PC'ler sunucu olarak kullanılabiliyor
- Giderek daha çok cihaz Web'e bağlanıyor
- Web trafiğini yönetmek için yeni tür sunucular ortaya çıkıyor. Örnek: yük dengeleyiciler (load balancers)
- Yeni işletim sistemleri (örn: Linux, Windows 7) artık sunuculara ait özellikleri de barındırıyor ve hem istemci hem de sunucu olabiliyor

Açık Kodlu İşletim Sistemleri

- Bu işletim sistemleri, kapalı makine formatı (closed-source) yerine kaynak kod (source-code) formatında sunuluyor
- Free Software Foundation (FSF) ile başladı "copyleft" GNU Public License (GPL)
- Örnekler: GNU/Linux, BSD UNIX (Mac OS X işletim sistemi temeli), ve Sun Solaris

