NIBR NX-SIGMA Cheminformatics

Novartis Chemical Universe Searching (Astronomically) Large Spaces

Brian Kelley RDKit UGM October, 2016

What is the NCU?

What are we searching for?

New Heaven and Earth

I, new-awakened, with my hand stretching out and touching the unknown, the real unknown, the unknown unknown.

DH Lawrence (not Rumsfeld)

I claim this land for Novartis

We are not alone in the universe

The Proximal Lilly Collection: Mapping, Exploring and Exploiting Feasible Chemical Space.

Nicolau C et al.

J Chem Inf Model, 2016 Jun 27

Known Knowns

Internal/External Screening compounds 10s of millions

DNA Encoded Libraries 100s of millions

Available reagents 100s of thousands

Reagents used sometime-somewhere 1s of millions

Public RDKit UGM

Known Knowns

Reactions

Functional Groups (Aldehyde/Carboxylic acid ...)

59 Robust Reactions

(internal) Condensed Multistep reactions (~1K)

(External) Photochemistry, C-H Activation

Lilly annotated reaction set

A Collection of Robust Organic Synthesis Reactions for *In Silico* Molecule Design *J. Chem. Inf. Model.*, **2011**, *51* (12), pp 3093–3098

DOI: 10.1021/ci200379p

Known Unknowns

Is a reagent compatible in a reaction?

- Can we use new reagents with reactions we have already done?
- If so will the products be useful in products?
 - Soluble?
 - Drug Like?
 - Active?
 - Novel?

Is the NCU feasible?

- What is the utility?
- Who enters new reactions?

Unknown Unknowns

Source wikipedia

Electronic representation of chemical reality

- Various levels of chemical fidelity
- Most electronically described reactions are only valid within a smallish window of reagents.

Negishi Coupling

organohalide

alkenyl, aryl, allyl, alkynyl or propargyl

chloride, bromide, or iodide, (triflate and acetyloxy)

Negishi Coupling (SMARTS Encoding)

[#6;\$([#6]~[#6]);!\$([#6]~[S,N,O,P]):1][CI,Br,I].

[CI,Br,I][#6;\$([#6]~[#6]);!\$([#6]~[S,N,O,P]):2]

>>[#6:2][#6:1]

Got it?

Negishi Coupling (SMARTS Encoding)

[CI,Br,I][#6;\$([#6]~[#6]);!\$([#6]~[S,N,O,P]):2]

>>[#6:2][#6:1]

Reagent1

Reagent2

Product (C-C coupling)

Cl →slow Negishi Coupling (SMARTS Encoding) [#6;\$([#6]~[#6]);!\$([#6]~[S,N,O,P]):1<mark>[[Cl,Br,I]</mark>. [CI,Br,I][#6;\$([#6]~[#6]);!\$([#6]~[S,N,O,P]):2] >>[#6:2][#6:1] Missing triflate, acetyloxy

Most reactions in the NCU are so called template based reactions

- A + B = > C
- Makes it easy™

Risks

- Enough information to get the known reagents, not enough information to know the incompatible.
- Hydrogens (and electronic environments) are tricky
 - For now, lets say the NCU is an "idea" generator backed by good but not great knowledge of chemistry.

Reactions in RDKit Space

MD Reaction files

Smarts based reactions (not smirks, but superset)

New RDKit Reaction tools

SanitizeRXN - simple fixes for common reaction failures

Auto detect atom maps from Rgroups (ChemDraw/ICM)

Auto convert dummy atoms to RGroups

Attempt to add aromaticity to MD Files for reaction searching

New RDKit Reaction tools

Enumerate – enumeration class for enumeration and sampling

Different sampling strategies can be used

ALL – uses current strategy

RandomSample – standard random sampling

RandomSampleAllBBs – enforces sampling of all reagents

EvenSamplePairs – useful for sampling a small number of products trying

to use as many pairs of reagents as possible

Picklable

pickle and restore building blocks and reaction

Restartable

get nth sample, save state and continue later.

QSAR in enumeration space

Additive fingerprints

Grieco three component condensation

Additive fingerprints

Self similarity by adding bits

$$.7 \text{ (radius = 1)}$$

$$.6 \text{ (radius = 2)}$$

Use information you have

Must be C-a bond Either: C-C c-C or C-c Separate reactions that make different environments to add bits that *must* exist

Self similarity by adding bits

$$.9 (radius = 1)$$

$$.8 (radius = 2)$$

Search Strategy

Generate fps for each reagent in the context of the reaction

Sort reagents by similarity to target, choose top N to fully enumerate.

Search Strategy

query

Grieco three component condensation

Glare: or where are the classm(olecule) planets

Some Properties are easier than others

- LDC Criteria
 - MW < 650
 - CLOGP < 6.5
 - PSA < 170
 - ROTORS < 10
 - UNDEFINED STEREO CENTERS <=4

And Fingerprints are (kinda) additive as well.

F 7 a
B 6 f
D 1 b

Score G9h

Additive Properties (MW, alogp, TPSA, fp bits)

MW(G) + MW(9) + MW(h) + core

G,9,h => added sidechains **not** reactants

Score		Reagents ir
G9h G9i G9d G5h G5i G5d	E9h E9i E9d E5h E5i E5d	"good" Products G-0 —C-6 E-2
G4h G4i G4d C9h	E4h E4i E4d	9-5 5-3 4-0
C9i C9d C5h		h-3 i-4 d-3
C5i C5d C4h C4i C4d		

Iterate until "done"

30

Takes about 1 minute to search 200 billion products

- 400 lines of python
- Including comments

Truchon. Bayly. Jchem Inf Model 2006 Jul-Aug;46(4):1536-48. GLARE: a new approach for filtering large reagent lists in combinatorial library design using product properties.

https://commons.wikimedia.org/wiki/File:PIA1934 1-MilkyWayGalaxy-SpiralArmsData-WISE-20150603.jpg

QSAR in reaction space

Finding needles in haystacks

DNA Encoded Library ~ 150M compounds
Single Reaction synthesis is "top" 150 million out of ~200 billion

– More variety in Negishi Reaction reagents.

Finding needles in haystacks

Not a be all end all

- Need the reactions
- Need the reagents
- Puts a *lot* of pressure on your models.

But...

- Fast (at least get the wrong answers quicker)
- Can now use QSAR models to help choose reagent diversity
- When dealing with trillions of products...

Acknowledgements

Aileen Novero (now at Vertex)

Gregory Landrum (RDKit/Knime)

Nik Stiefl (Novartis)

Clayton Springer (Novartis)

Andrew Dalke (ChemFP)

Michael Tarselli (Novartis)

Margaret Pancost-Heidebrecht (Novartis)

Thank you

