Tutorat Mathématiques : Examen

Université François Rabelais

Analyse

Démonstration des formules d'Euler

À l'aide des formules de Maclaurin ou d'une étude de la fonction f proposée, démontrer les formules d'Euler.

$$f: \mathbb{R} \to \mathbb{C}$$
 telle que $f(x) = \frac{\cos(x) + i \sin(x)}{e^{ix}}$

$$\forall x \in \mathbb{R} | e^{ix} = \cos(x) + i\sin(x)$$

On rappellera que les formules de Maclaurin correspondent à un dévelopement limité en 0 à l'ordre n écrit sous forme d'une somme.

exemple :
$$e^t = 1 + t + ... + \frac{t^n}{n!} = \sum_{n=0}^{\infty} \frac{t^n}{n!}$$

Vrai ou faux ??

Répondre par vrai ou faux aux questions suivantes en démontrant si c'est vrai ou en donnant un contre-exemple si c'est faux.

- 1. L'intégrale sur [-1,1] d'une fonction majorée par α est inférieure à 2α ?
- 2. Si f est paire alors : $\int_0^1 f(x)dx \ge 0$?
- 3. Toute fonction intégrale sur [a, b] est continue ?
- 4. Si une fonction f est telle que : $\forall x \in [-1, 1], f(x) < x^3$ alors : $\int_{-1}^{1} f(x) dx < 0$?

Bonus:

Il existe $a_1, a_2, ..., a_n$ des réels, tels que pour tout x réel et $i \in \mathbb{N}^*$: $f_i(x) = a_i \cos(ix) > 0$?

Développements limités

Soit la fonction f telle que $f(x) = \frac{x}{e^x - 1}$

- 1. Calculer le développement limité de la fonction f en 0 à l'ordre 2.
- 2. En déduire que la fonction f peut-être prolongée par continuité en 0 en posant $\tilde{f}(0) = 1$.
- 3. Démontrer que f est dérivable en 0 et calculer f'(0).
- 4. Donner l'équation T_0 , de la tangeante à la courbe représentative \mathcal{C} de f en x=0 et la position relative de T_0 par rapport à la courbe \mathcal{C} .

Bonus

Déterminer une asymptote A_1 et A_2 à la courbe représentative C de f en $+\infty$ et $-\infty$.

Intégration

Fraction rationnelle

Soit l'intégrale I définie telle que : $I=\int_0^1 \frac{2x}{x^2+x+1} dx$

- 1. Montrer que I est de la forme : $\int_0^1 \frac{\alpha x + \beta}{x^2 + x + 1} + \frac{\gamma}{x^2 + x + 1} dx \text{ où } (\alpha, \beta, \gamma) \in \mathbb{R}^3.$
- 2. Déterminer la forme canonique de $x^2 + x + 1$.
- 3. En déduire l'intégrale I et la calculer.

Changement de variable

Soit l'intégrale $\varphi(x) = \int \frac{1}{\sin(x)} dx$

- 1. À l'aide des formules d'Euler (ou d'une autre méthode), montrer que $\sin(2x) = 2\sin(x)\cos(x)$.
- 2. En posant le changement de variable $u=\frac{x}{2}$, montrer que l'intégrale est de forme $\frac{\tan'}{\tan}$.
- 3. En déduire la forme de $\varphi(x)$.

Intégration par parties (Intégrales de Wallis)

Soit l'intégrale $\mathcal W$ telle que $\forall n\in\mathbb N$ on a : $\mathcal W_n=\int_0^{\pi/2}\sin^n(x)dx$

- 1. Calculer les intégrales W_0 et W_1 .
- 2. Déterminer que : $W_n = \int_0^{\pi/2} \sin^{n-2}(x) dx \int_0^{\pi/2} \sin^{n-2}(x) \cos^2(x) dx$.
- 3. On pose $I_n = \int_0^{\pi/2} \sin^{n-2}(x) \cos^2(x) dx$, en réalisant une intégration par parties de cette intégrale en déduire une relation de récurrence de W_n .