$\begin{array}{c} {\rm Math~112} \\ {\rm Chapter~7.1:~Integration~by~Parts} \end{array}$

Integration b	N	narts i	s the	name	α f	the	formula	We	cet i	f we	undo	the	Product	Rule
integration i	U.y	parts	o uic	manne	OI	OHE	mula	WC	geui	T WC	unuo	OHE	1 Todacc	rtuic.

The formula is used to exchange one integral for another. Ideally, we would like to get a more simple integral in the exchange.

EXAMPLES:

$$\int x \cos x \, dx$$

$$\int xe^{3x}\,dx$$

$$\int x \ln x \, dx$$

$$\int e^{2t} \cos t \, dt$$

REDUCTION FORMULAS:

$$\int t^n e^t dt = x^n e^x - n \int x^{n-1} e^x dx$$

$$\int \cos^n \theta \, d\theta = \frac{1}{n} \sin \theta \cos^{n-1} \theta + \frac{n-1}{n} \int \cos^{n-2} \theta \, d\theta$$

DEFINITE INTEGRALS:

$$\int_{1}^{3} t^{3} \ln t \, dt$$

$$\int_0^\pi x^2 \sin x \, dx$$

INTEGRALS OF BASIC FUNCTIONS:

$$\int \ln x \, dx$$

$$\int \arctan x \, dx$$

INTEGRATION BY PARTS + SUBSTITUTION RULE:

$$\int \sin\left(\ln x\right) dx$$

$$\int \sqrt{x}e^{\sqrt{x}}\,dx$$

SUMMARY:

Integration by parts is typically useful if the integrals involve any of the following:

- ullet Products of x^n with trigonometric functions, logarithmic functions, or exponential functions
- Products of exponential and trigonometric functions
- Logarithmic functions
- Inverse trigonometric functions

EXERCISES:

$$\int t \sin 4t \, dt$$

$$\int x^2 \ln 2x \, dx$$

$$\int x \ln x^3 \, dx$$

$$\int (\ln x)^2 \, dx$$

$$\int e^x \sin 5x \, dx$$