CS 305 Lab Tutorial Lab 9 DHCP & Packet-Tracer

Dept. Computer Science and Engineering Southern University of Science and Technology

DHCP

DHCP is built on a **Client-Server** model:

where designated **DHCP server** hosts allocate network addresses and deliver configuration parameters to **dynamically configured hosts**.

"server" refers to a host providing initialization parameters through DHCP, "client" refers to a host requesting initialization parameters from a DHCP server.

BOOTP is a transport mechanism for a collection of configuration information. BOOTP using port **67** AND **68** of **UDP**.

DHCP

RFC 2131

0 1 2 3 4 5 6 7 8 9 0	1 2 3 4 5 6	2 7 8 9 0 1 2 3 4	3 5 6 7 8 9 0 1	
op (1) ht	ype (1)	h1en (1)	hops (1)	
	xid ((4)		
secs (2)		flags (2)		
	ciaddr	(4)		
	yiaddr	(4)		
	siaddr	(4)		
	giaddr	(4)		
	chaddr	(16)		
 	sname	(64)		
 	file	(128)	-	
 	options	(variable)	-	

Figure 1: Format of a DHCP message

Dynamic Host Configuration Protocol

 +
 +
 -
 - - - - - - -
 -
 -

 F
,

March 1997

FIELD	OCTETS	S DESCRIPTION
ор	1	Message op code / message type. 1 = BOOTREQUEST, 2 = BOOTREPLY
htype	1	Hardware address type, see ARP section in "Assigned Numbers" RFC; e.g., '1' = 10mb ethernet.
h1en	1	Hardware address length (e.g. '6' for 10mb ethernet).
hops	1	Client sets to zero, optionally used by relay agents when booting via a relay agent.
xid	4	Transaction ID, a random number chosen by the client, used by the client and server to associate messages and responses between a client and a server.
secs	2	Filled in by client, seconds elapsed since client began address acquisition or renewal process.
flags	2	Flags (see figure 2).
ciaddr	4	Client IP address; only filled in if client is in BOUND, RENEW or REBINDING state and can respond to ARP requests.
yiaddr	4	'your' (client) IP address.
siaddr	4	IP address of next server to use in bootstrap; returned in DHCPOFFER, DHCPACK by server.
giaddr	4	Relay agent IP address, used in booting via a relay agent.
chaddr	16	Client hardware address.
sname	64	Optional server host name, null terminated string.
file	128	Boot file name, null terminated string; "generic" name or null in DHCPDISCOVER, fully qualified directory-path name in DHCPOFFER.
options	var	Optional parameters field. See the options documents for a list of defined options.

Table 1: Description of fields in a DHCP message

DHCP Session(1)

Client-Server interaction - allocating a network address

Source	Destination	Protocol	Info
0.0.0.0	255.255.255.255	DHCP	DHCP Discover - Transaction ID 0x3e5e0ce3
192.168.1.1	255.255.255.255	DHCP	DHCP Offer - Transaction ID 0x3e5e0ce3
0.0.0.0	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x3e5e0ce3
192.168.1.1	255.255.255.255	DHCP	DHCP ACK - Transaction ID 0x3e5e0ce3
192.168.1.101	192.168.1.1	DHCP	DHCP Request - Transaction ID 0x257e55a3
192.168.1.1	255.255.255.255	DHCP	DHCP ACK - Transaction ID 0x257e55a3
192.168.1.101	192.168.1.1	DHCP	DHCP Release - Transaction ID 0xb7a32733

While network interface card is set as DHCP client, using 'ipconfig /renew' to request a dynamically assigned IP addresses. using 'ipconfig /release' to release the dynamically assigned IP addresses.

Tips in Wireshark: DHCP or udp.port == 67 || udp.port == 68

'igure 3: Timeline diagram of messages exchanged between DHCP client and servers when_allocating a new network address

DHCP Discover

```
> Frame 2: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits)
> Ethernet II, Src: Dell 4f:36:23 (00:08:74:4f:36:23), Dst: Broadcast (ff:ff:ff:ff:ff)
> Internet Protocol Version 4, Src: 0.0.0.0 (0.0.0.0), Dst: 255.255.255.255 (255.255.255.255)
> User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
Bootstrap Protocol (Discover)
    Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6

∨ Option: (53) DHCP Message Type (Discover)
    Hops: 0
                                                                               Length: 1
    Transaction ID: 0x3e5e0ce3
                                                                               DHCP: Discover (1)
    Seconds elapsed: 0
                                                                          ∨ Option: (116) DHCP Auto-Configuration
  > Bootp flags: 0x0000 (Unicast)
                                                                               Length: 1
   Client IP address: 0.0.0.0 (0.0.0.0)
                                                                               DHCP Auto-Configuration: AutoConfigure (1)
    Your (client) IP address: 0.0.0.0 (0.0.0.0)
                                                                          ∨ Option: (61) Client identifier
    Next server IP address: 0.0.0.0 (0.0.0.0)
                                                                               Length: 7
    Relay agent IP address: 0.0.0.0 (0.0.0.0)
                                                                               Hardware type: Ethernet (0x01)
    Client MAC address: Dell 4f:36:23 (00:08:74:4f:36:23)
                                                                               Client MAC address: Dell_4f:36:23 (00:08:74:4f:36:23)

∨ Option: (50) Requested IP Address
    Server host name not given
                                                                               Length: 4
    Boot file name not given
                                                                               Requested IP Address: 192.168.1.101 (192.168.1.101)
    Magic cookie: DHCP
    Option: (53) DHCP Message Type (Discover)
                                                                          ∨ Option: (12) Host Name
                                                                               Length: 4
  > Option: (116) DHCP Auto-Configuration
                                                                               Host Name: Noho
  > Option: (61) Client identifier
  > Option: (50) Requested IP Address

→ Option: (60) Vendor class identifier
                                                                               Length: 8
  > Option: (12) Host Name
                                                                               Vendor class identifier: MSFT 5.0
  > Option: (60) Vendor class identifier
  > Option: (55) Parameter Request List
                                                                          ∨ Option: (55) Parameter Request List
  > Option: (255) End
                                                                               Length: 11
    Padding: 0000000000000000000
                                                                               Parameter Request List Item: (1) Subnet Mask
                                                                               Parameter Request List Item: (15) Domain Name
                                                                               Parameter Request List Item: (3) Router
                                                                               Parameter Request List Item: (6) Domain Name Server
```

Parameter Request List Item: (44) NetBIOS over TCP/IP Name Server Parameter Request List Item: (46) NetBIOS over TCP/IP Node Type Parameter Request List Item: (47) NetBIOS over TCP/IP Scope

Parameter Request List Item: (249) Private/Classless Static Route (Microsoft)

Parameter Request List Item: (31) Perform Router Discover

Parameter Request List Item: (33) Static Route

DHCP Offer

```
> User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)

∨ Bootstrap Protocol (Offer)

    Message type: Boot Reply (2)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0

∨ Option: (53) DHCP Message Type (Offer)
    Transaction ID: 0x3e5e0ce3 <
                                                                  Length: 1
    Seconds elapsed: 0
                                                                  DHCP: Offer (2)
  > Bootp flags: 0x0000 (Unicast)
                                                              v Option: (1) Subnet Mask
    Client IP address: 0.0.0.0 (0.0.0.0)
                                                                  Length: 4
                                                                  Subnet Mask: 255,255,255,0
    Your (client) IP address: 192.168.1.101 (192.168.1.101)

∨ Option: (3) Router 
✓
    Next server IP address: 0.0.0.0 (0.0.0.0)
                                                                  Length: 4
    Relay agent IP address: 0.0.0.0 (0.0.0.0)
                                                                  Router: 192.168.1.1 (192.168.1.1)
    Client MAC address: Dell 4f:36:23 (00:08:74:4f:36:23)

→ Option: (6) Domain Name Server

    Length: 8
    Server host name not given
                                                                  Domain Name Server: ns10.attbi.com (63.240.76.19)
    Boot file name not given
                                                                  Domain Name Server: 204.127.198.19 (204.127.198.19)
    Magic cookie: DHCP

∨ Option: (15) Domain Name 
✓
                                                                  Length: 22
                                                                  Domain Name: ne2.client2.attbi.com
                                                              ∨ Option: (51) IP Address Lease Time
                                                                  Length: 4
                                                                  IP Address Lease Time: (86400s) 1 day
                                                              ∨ Option: (54) DHCP Server Identifier
                                                                  Length: 4
                                                                  DHCP Server Identifier: 192.168.1.1 (192.168.1.1)
                                                              ∨ Option: (255) End
                                                                  Option End: 255
```


DHCP Session(2)

Client-Server interaction:

reusing a previously allocated network address

Tips in Wireshark: DHCP or

udp.port == 67 || *udp.port* == 68

dhop			
Source	Destination	Protocol	Inf≎
activate.adobe.com	255.255.255.255	DHCP	DHCP Request - Transaction ID 0x98bd1be8
192.168.2.1	LAPTOP-RITC8FUU.local	DHCP	DHCP ACK - Transaction ID 0x98bd1be8

DHCP Request & Ack

```
> User Datagram Protocol, Src Port: bootpc (68), Dst Port: bootps (67)
V Dynamic Host Configuration Protocol (Request)
    Message type: Boot Request (1)
    Hardware type: Ethernet (0x01)
    Hardware address length: 6
    Hops: 0
    Transaction ID: 0x98bd1be8
    Seconds elapsed: 0
  > Bootp flags: 0x0000 (Unicast)
    Client IP address: activate.adobe.com (0.0.0.0)
    Your (client) IP address: activate.adobe.com (0.0.0.0)
    Next server IP address: activate.adobe.com (0.0.0.0)
    Relay agent IP address: activate.adobe.com (0.0.0.0)
    Client MAC address: LAPTOP-RITC8FUU.local (90:61:ae:5c:69:58)
    Server host name not given
    Boot file name not given
    Magic cookie: DHCP
  > Option: (53) DHCP Message Type (Request)
  > Option: (61) Client identifier
  > Option: (50) Requested IP Address (192.168.2.104)
  > Option: (12) Host Name
  > Option: (81) Client Fully Qualified Domain Name
  > Option: (60) Vendor class identifier
  > Option: (55) Parameter Request List
  > Option: (255) End
```



```
User Datagram Protocol, Src Port: bootps (67), Dst Port: bootpc (68)
Dynamic Host Configuration Protocol (ACK)
  Message type: Boot Reply (2)
  Hardware type: Ethernet (0x01)
  Hardware address length: 6
  Hops: 0
  Transaction ID: 0x98bd1be8
  Seconds elapsed: 0
> Bootp flags: 0x0000 (Unicast)
  Client IP address: activate.adobe.com (0.0.0.0)
  Your (client) IP address: LAPTOP-RITC8FUU.local (192.168.2.104)
  Next server IP address: 192.168.2.1 (192.168.2.1)
  Relay agent IP address: activate.adobe.com (0.0.0.0)
  Client MAC address: LAPTOP-RITC8FUU.local (90:61:ae:5c:69:58)
  Server host name not given
  Boot file name not given
  Magic cookie: DHCP
> Option: (53) DHCP Message Type (ACK)
> Option: (1) Subnet Mask (255.255.255.0)
> Option: (2) Time Offset
> Option: (3) Router
> Option: (23) Default IP Time-to-Live
> Option: (51) IP Address Lease Time
> Option: (54) DHCP Server Identifier (192.168.2.1)
> Option: (6) Domain Name Server
> Option: (58) Renewal Time Value
> Option: (59) Rebinding Time Value
> Option: (255) End
  Padding: 00
```

Simulator: Packet Tracer

- Packet Tracer allows users to create simulated network topologies by dragging and dropping routers, switches and various other types of network devices.
- Packet Tracer supports an array of simulated Application Layer protocols, as well as basic routing with RIP, OSPF, EIGRP, BGP to the extents required by the current CCNA curriculum.
- Packet Tracer can be run on Linux and Microsoft Windows.
 Similar Android and iOS apps are also available.

Cisco CLI

- Different views
 - From user view to system view ,using command "enable" ,
 - From system view to function view, using function name or object name as command, such as "interface giga 0/0"
- Frequently used commands
 - show //display the info (ip routing table, interface, macaddress table)
 - exit, end //back to upper layer, back to root layer
 - ?, Tab // help to find the rest part of command
 - no //the 1st word of command to cancel the following command, such as: using "route rip" to config rip while using "no route rip" to cancel the setting

Packet Tracer(1) Create Network

Download from

https://www.packettracernetwork.com/download/download-packet-tracer.html

Packet Tracer(2) PC Configuration

Config and test on PC

Packet Tracer(3) Router Configuration

Router0

of Science and Technology

Packet Tracer(3) Realtime Mode

```
PC0
 Physical
               Desktop
                       Programming Attributes
  ommand Prompt
 C:\>ipconfig
 FastEthernet0 Connection: (default port)
    Link-local IPv6 Address...... FE80::201:97FF:FE66:591E
    IP Address..... 192.168.1.21
    Subnet Mask..... 255.255.255.0
    Default Gateway....: 192.168.1.1
 Bluetooth Connection:
    Link-local IPv6 Address.....: FE80::200:CFF:FE9E:41A9
    IP Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
    Default Gateway..... 0.0.0.0
 C:\>ping 192.168.1.31
 Pinging 192.168.1.31 with 32 bytes of data:
 Reply from 192.168.1.31: bytes=32 time=1ms TTL=128
 Reply from 192.168.1.31: bytes=32 time<1ms TTL=128
 Reply from 192.168.1.31: bytes=32 time<1ms TTL=128
 Reply from 192.168.1.31: bytes=32 time<1ms TTL=128
 Ping statistics for 192.168.1.31:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
```


Packet Tracer(4) Simulation Mode

Packet Tracer DHCP(1)

Tips: the state of interface of router is down by default

Ra#show interfaces fastEthernet 0/0
FastEthernet0/0 is up, line protocol is up (connected)
Hardware is Lance, address is 00d0.d30b.0201 (bia 00d0.d30b.

10201)
Internet address is 192.168.1.1/24
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Full-duplex, 100Mb/s, media type is RJ45

Packet Tracer DHCP(2)

- 1. Up the interface connect with PC, configure its IP address
- 2. Make a DHCP pool
 - 1) Configure the defaultrouter with the IP address of the interface
 - 2) Configure the network with the same sub-net ID as default-router

Physical	Config	Desktop	Programming	Attributes		
Command	Prompt					
<pre>C:\> C:\>ipc</pre>	onfig					
FastEth	ernet0 (Connection	n:(default po	rt)		l,
IP A Subn	ddress. et Mask		ess:	192.168.1 255.255.2	55.0	
Bluetoo	th Conne	ection:	get ipv	4 addre	ess by DHC	P
Link	-local	IPv6 Addre	ess:	::		
			:			
Dela	uit Gat	-way		0.0.0.0		

Lab9.1 Assignment

- 1. Initiates a DHCP session on your Notebook
 - How to initiate a DHCP session? How to find the DHCP session packets?
 - Is DHCP an application protocal or an network protocal? explain how do you make such a judgement.
 - What's the source IP address and destination IP address of a DHCP request? What is the type of these two IP address?
 - What info items are required for a host if it need to contact with others by its name on the Internet?
 - Find the Lease Time of a dynamic IP address, What's its value? In which type of DHCP packet could this field be set?

Please add the necessary screenshots when answering questions.

Lab9.2 Assignment

2. Practice on Packet Tracer

- Connect two PCs, configure them with static IP address, make them belong to same sub-network, test to see if these two PCs could reach eachother or not.
- Create a network with a Router and 2 PCs, make the info of interface visible
 - configure the interface of Router with IP address and netmask, 'up' the interface
 - configure the IP DHCP pool with name, default-gateway and subnet
 - configure the PC as DHCP client
 - connect the Router with 2 PCs
 - test if PC could reach the Router, test if 2 PCs could reach eachother or not.
 - how many subnet in this network? what are their net IDs?

Please add the necessary screenshots when answering questions.

