

Cours d'algèbre 1 (M.I.P)

Chapitre 3: Applications et Relations binaires

(Ce document ne peut en aucun cas remplacer les séances de cours en présentiel)

PR. EL MEHDI BOUBA

Année universitaire :2023–2024

3. Applications et Relations binaires

3.1. Applications.

3.1.1. Correspondances.

Définition 3.1. Soient E et F deux ensembles. On appelle correspondance de E vers F tout triplet (Γ, E, F) , où Γ est un graphe de E vers F. E est alors appelé ensemble de départ et F ensemble d'arrivée de la correspondance.

Définition 3.2. Soit $f = (\Gamma, E, F)$ une correspondance de E vers F.

- 1. On appelle ensemble de définition de f, et on note D_f , l'ensemble $D_f = \{x \in E \mid \exists y \in F \text{ tel que } (x,y) \in \Gamma\}.$
- 2. On appelle ensemble image de f, et on note Im(f), l'ensemble $Im(f) = \{y \in F \mid \exists x \in E \text{ tel que } (x,y) \in \Gamma\}.$

Définition 3.3. Soit $f = (\Gamma, E, F)$ une correspondance de E vers F.

- 1. On dit que Γ est un graphe fonctionnel si et seulement si $\forall x \in E$, l'ensemble $\{y \in F \text{ tel que } (x,y) \in \Gamma\}$ est vide ou réduit à un seul élément. Dans ce cas, on dit que f est une fonction de E vers F.
- 2. Si, de plus, $D_f = E$, c-à-d $\forall x \in E$, $\exists ! y \in F$; $(x, y) \in \Gamma$, alors on dit que f est une application de E vers F.

 Γ est dit le graphe de l'application (resp. fonction).

Remarque 3.4.

- 1. Une fonction de E vers F associe à chaque élément x de E au plus un élément y de F.
- 2. Une application de E vers F associe à tout élément x de E un et un seul élément y de F.

Remarques 3.5. Soit $f = (\Gamma, E, F)$ une application.

- 1. Si $(x, y) \in \Gamma$, on dit que y est l'image (unique) de x par f et que x est un antécédent de y par f et on écrit f(x) = y.
- 2. L'ensemble E s'appelle l'ensemble de départ et l'ensemble F s'appelle l'ensemble d'arrivée de f. On note souvent une application par $f: E \to F$ ou, si les ensembles E et F sont sous-entendus, $x \mapsto f(x)$.
 - Si par exemple $E=\{a,b,c,d\}$ et $F=\{1,2,3,4,5\}$, l'application f est représenté par le diagramme suivant

FIGURE 1. Diagramme d'une application

Remarques 3.6. Soit $f = (\Gamma, E, F)$ une application.

- 1. Le graphe Γ de l'application f est donc l'ensemble des couples $\{(x, f(x)) | x \in E\}$.
- 2. L'application $x \mapsto x$ de E dans E est dite application identique de E; elle se note id_E.
- 3. Si $A \subset E$, alors l'application $x \mapsto x$ de A dans E est appelée l'injection canonique de A dans E, et est notée i_A .
- 4. Toute application est une fonction, mais l'inverse n'est pas vrai.
- 5. L'ensemble des applications de E vers F est noté $\mathcal{F}(E,F)$ ou F^E .
- 6. L'application $f: E \longrightarrow F$ est dite constante si l'on a f(x) = f(y) quels que soient x, y dans E.
- 7. Soit E un ensemble. On appelle application $\operatorname{caract\'{e}ristique}$ de E, l'application

$$\chi_E : E \longrightarrow \mathbb{R}$$
 à valeurs réelles définie par : $\chi_E(x) = \begin{cases} 1 & \text{si } x \in E \\ 0 & \text{si } x \notin E. \end{cases}$

 χ_E est aussi dite application indicatrice de E.

8. Soient E et F deux ensembles. Les applications

$$E \times F \longrightarrow E, (x, y) \longmapsto x, E \times F \longrightarrow F, (x, y) \longmapsto y$$

s'appellent la première et la deuxième projection respectivement.

Exemples 9. On donne dans ce qui suit quelques exemples des applications :

- 1. $f: \mathbb{N} \longrightarrow \mathbb{N}$ le graphe de f est $\Gamma = \{(n, 2n + 1) | n \in \mathbb{N}\}.$ $n \longmapsto f(n) = 2n + 1$
- 2. $f: \mathbb{N} \longrightarrow \mathbb{R}$ le graphe de f est $\Gamma = \{(n, \sqrt{n+1}) | n \in \mathbb{N}\}.$ $n \longmapsto f(n) = \sqrt{n+1}$
- 3. $f: \mathbb{N} \longrightarrow \mathbb{R}$ $n \longmapsto f(n) = \sqrt{n-1}$

f n'est pas une application mais est une fonction, car 0 n'a pas d'image dans \mathbb{R} , et on a; $D_f = \mathbb{N}^*$.

4. $f: \mathbb{Q} \longrightarrow \mathbb{R}$ le graphe de f est $\Gamma = \{(x, f(x)) | x \in \mathbb{Q}\}.$ $x \longmapsto f(x) = \frac{x^2 + 3x - 7}{x^2 + 6}$

5.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \frac{x^2 + 3x - 7}{|x| - 2}$ f n'est pas une application car -2 et 2 n'ont pas d'images dans \mathbb{R} . Mais f est une fonction telle que $D_f = \mathbb{R} - \{-2, 2\}$.

Exercice. Soit l'application $f: \mathbb{N}^2 \longrightarrow \mathbb{N}$

$$(x,y) \longmapsto f(x,y) = x + y$$

- 1. Déterminer les antécédents de 0 par f.
- 2. Déterminer l'ensemble des antécédents de 3 par f.
- 3. L'implication suivante est elle juste : $f(a,b) = f(a',b') \Rightarrow (a,b) = (a',b')$?

Définition 3.7. Soient E, G, F et H des ensembles. On dit que deux applications $f: E \to F$ et $g: G \to H$ sont égales si et seulement si E = G, F = H et leur graphe sont égaux, c'est-à-dire $\forall x \in E, f(x) = g(x)$.

3.1.2. Les familles.

Définition 3.8. On appelle famille indexée par un ensemble I, une application de Idans un ensemble \mathcal{A} . On note l'image de $i \in I$ par a_i , et la famille est noté par $(a_i)_{i \in I}$. Il est possible bien sûr que les a_i soient eux-mêmes des ensembles. Si I est fini, la famille sera dite finie.

Exemples 10.

- 1. Une suite $(u_n)_{n\in\mathbb{N}}$ réelle est une famille de nombres réels indexée par \mathbb{N} .
- 2. Si $I = \{1, \dots, n\}$, la famille indexée par I est le n-uplet (a_1, \dots, a_n) , où $a_i \in \mathcal{A}$, $\forall i \in I$.

Définition 3.9. Soit $(A_i)_{i\in I}$ une famille d'ensembles, on appelle réunion de la famille $(A_i)_{i\in I}$ l'ensemble $A=\bigcup_{i\in I}A_i=\{x\mid \exists i\in I, x\in A_i\}$. Il est caractérisé par :

$$a \in A \iff \exists i \in I, a \in A_i.$$

Si $I = \{i_1, i_2\}$, on retrouve la réunion traditionnelle de deux ensembles. Si I est vide, la réunion est vide.

Définition 3.10. Soient I un ensemble non vide et $(A_i)_{i\in I}$ une famille d'ensembles, on appelle intersection de la famille $(A_i)_{i \in I}$ l'ensemble $B = \bigcap_{i \in I} A_i = \{x \mid \forall i \in I, x \in A_i\}.$ Il est caractérisé par :

$$a \in B \iff \forall i \in I, a \in A_i$$
.

B est vide si l'un des A_i est vide.

Exemples 11. Soient E un ensemble non vide.

- 1. $\bigcup \{x\} = E$, et $\bigcap \{x\} = \emptyset$ si E a au moins deux éléments.
- 2. $\mathcal{P}(E)^* = \mathcal{P}(E) \{\emptyset\}$ est non vide, on a : $\bigcup_{A \in \mathcal{P}(E)^*} A = E$, et $\bigcap_{A \in \mathcal{P}(E)^*} A = \emptyset$ si E a au

moins deux éléments.

Remarque 3.11. La commutativité, l'associativité et la distribution (de \cap par rapport à \cup , et de \cup par rapport à \cap) se généralisent considérablement.

3.1.3. Restriction et prolongement.

Définition 3.12. Soient $f: E \to F$ et $g: A \to F$ deux applications. On dit que l'application g est une restriction de f à A si $A \subset E$ et $\forall x \in A, f(x) = g(x)$. L'application g est souvent notée f_A .

Exemple 3.13. Soit l'application $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto f(x) = |x - 2|,$$

l'application $g: [2, +\infty[\longrightarrow \mathbb{R}]$ est la restriction de f à $[2, +\infty[$. $x \longmapsto g(x) = x - 2$

Définition 3.14. Soient $f: E \to G$ et $g: F \to G$ deux applications. On dit que l'application g est un prolongement de f à F si $E \subset F$ et $\forall x \in E, f(x) = g(x)$.

Exemple 3.15. L'application $g: \mathbb{R} \longrightarrow \mathbb{R}$

$$x \longmapsto g(x) = |x - 2|,$$

est un prolongement de l'application $f: [2, +\infty[\longrightarrow \mathbb{R}$ $x \longmapsto f(x) = x - 2.$

3.1.4. Composition des applications.

Définition 3.16. Soient $f: E \to F$ et $g: F \to G$ deux applications. L'application $h: E \to G$ définie par

$$\forall x \in E \quad h(x) = g(f(x))$$

est dite application composée de f et g, et est notée $g \circ f$.

Exemple 3.17. Soient les deux applications f(x) = x + 1 et $g(x) = x^2$ définies de \mathbb{R} dans \mathbb{R} . On a

$$g \circ f(x) = g(f(x)) = (x+1)^2$$
 et $f \circ g(x) = f(g(x)) = x^2 + 1$.

On voit que $f \circ g \neq g \circ f$ en général.

Généralisation de la composition.

- 1. Soient les applications $f_1: E_1 \to E_2, f_2: E_2 \to E_3, ..., f_n: E_n \to E_{n+1}$, on peut former l'application composée $f_n \circ f_{n-1} \circ ... \circ f_2 \circ f_1: E_1 \to E_{n+1}$.
- 2. Soit $f: E \to E$ une application d'un ensemble E dans lui même. Les applications composées $f \circ f$, $f \circ f \circ f$, $f \circ f \circ f$, ...; se notent f^2 , f^3 , f^4 ,

Proposition 3.1. Soient $f: E \to F$, $g: F \to G$ et $h: G \to H$ des applications, on a :

- 1. $h \circ (g \circ f) = (h \circ g) \circ f$ (associativité de la composition).
- 2. $id_F \circ f = f$ et $f \circ id_E = f$.

Preuve. Simple à vérifier.

3.1.5. Image directe et image réciproque.

Définition 3.18. Soient $f: E \to F$ une application, $A \subset E$ et $B \subset F$. Alors

1. On appelle image directe de A par f, et on note f(A), l'ensemble

$$\{f(a) \mid a \in A\} = \{y \in F \mid \exists a \in A, y = f(a)\}.$$

2. On appelle image réciproque de B par f, et on note $f^{-1}(B)$, l'ensemble des $x \in E$ tels que $f(x) \in B$, on a : $f^{-1}(B) = \{x \in E \mid f(x) \in B\}$.

Attention. Soient $f: E \to F$ une application, $A \subset E$ et $B \subset F$.

- 1. f(A) est un sous-ensemble de F, tandis que $f^{-1}(B)$ est un sous-ensemble de E.
- 2. L'image directe d'un singleton $f(\lbrace x\rbrace) = \lbrace f(x)\rbrace$ est un singleton. Par contre l'image réciproque d'un singleton $f^{-1}(\lbrace y\rbrace)$ dépend de f. Cela peut être un singleton, un ensemble à plusieurs éléments; mais cela peut-être E tout entier (si f est une fonction constante) ou même l'ensemble vide (si aucune image par f ne vaut g).

Remarques 3.19. Soient $f: E \to F$ une application, $A \subset E$ et $B \subset F$.

- 1. L'image f(E) de E s'appelle l'image de f et se note Im(f).
- 2. Si $f(A) \subset A$, alors l'ensemble A est dit stable par f.
- 3. Si f(A) = A, alors l'ensemble A est dit invariant par f.
- 4. Si pour un $x \in E$, f(x) = x, alors l'élément x est dit un point fixe.
- 5. L'application $g: A \to B$, où $B \subset F$, telle que $\forall x \in A$, g(x) = f(x) est appelée l'application induite par f sur A.

Exemple 3.20. Pour l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $x \mapsto x^2$. Représenter et calculer les ensembles suivants : $f([0,1[), f(\mathbb{R}), f(]-1,2[), f^{-1}([1,2[), f^{-1}([-1,1]), f^{-1}(\{3\}), f^{-1}(\mathbb{R}\backslash\mathbb{N}).$

3.1.6. La bijection.

Définition 3.21. Soit $f: E \to F$ une application. On dit que :

- 1. f est injective si $\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x',$ ou encore par contraposé $x \neq x' \Longrightarrow f(x) \neq f(x')$.
- 2. f est surjective si $\forall y \in F$, $\exists x \in E$ tel que y = f(x).
- 3. f est bijective si f est à la fois injective et surjective.

En termes d'antécédents on a :

Remarques 3.22. Soit $f: E \to F$ une application.

- 1. f est injective si chaque élément $y \in F$ admet au plus un antécédent dans E.
- 2. f est surjective si chaque élément $y \in F$ admet au moins un antécédent dans E, c'est-à-dire que Imf = f(E) = F.
- 3. f est bijective si chaque élément $y \in F$ admet un et un seul antécédent dans E.

Exemples 12.

- 1. $x \mapsto 5x$ est injective non surjective de \mathbb{N} vers \mathbb{N} .
- 2. $x \mapsto x^2$ est surjective non injective de \mathbb{R} vers \mathbb{R}^+ .
- 3. $x \mapsto e^x$ est une bijection de \mathbb{R} vers \mathbb{R}_+^* .
- 4. L'application $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto |x|$ n'est ni injective ni surjective tandis que $g: \mathbb{R} \longrightarrow \mathbb{R}^+$, $x \longmapsto |x|$ est surjective.

Remarque 3.23. Une bijection d'un ensemble E sur lui même est parfois appelée une permutation de E. L'ensemble des permutations de E se note S(E). Si $E = \{1, 2, \dots, n\}$, on écrit S_n au lieu de S(E).

Proposition 3.2. La composée de deux injections (resp. surjections, bijections) est une injection (resp. surjection, bijection).

Preuve. Soient $f: E \to F$ et $g: F \to G$ deux applications.

Supposons que f et g sont injectives, donc $\forall x, x' \in E$ on a :

$$g \circ f(x) = g \circ f(x') \implies g(f(x)) = g(f(x'))$$

 $\Rightarrow f(x) = f(x'), \text{ car } g \text{ est injective}$
 $\Rightarrow x = x', \text{ car } f \text{ est injective}.$

Par suite $g \circ f$ est injective.

Supposons que f et g sont surjectives. Soit $y \in G$, il existe donc $x' \in F$ tel que g(x') = y, puisque g est surjective. Et comme f est aussi surjective, il existe $x \in E$ tel que f(x) = x'. D'où g(f(x)) = g(x') = y c'est-à-dire $g \circ f(x) = y$, par suite $g \circ f$ est surjective.

Si f et g sont bijectives, alors elles sont injectives et surjectives. D'où $g \circ f$ est injective et surjective, par suite $g \circ f$ est bijective.

Proposition 3.3. Soient $f: E \to F$ et $g: F \to G$ deux applications.

- 1. $Si\ g \circ f$ est injective, alors f est injective.
- 2. $Si\ g \circ f$ est surjective, alors g est surjective.

Preuve. 1. Supposons que $g \circ f$ est injective. Soient x et $x' \in E$ avec f(x) = f(x'), alors g(f(x)) = g(f(x')), car g est une application, ainsi $g \circ f(x) = g \circ f(x')$; et comme $g \circ f$ est injective, alors on a x = x'. C'est-à-dire que f est injective.

2. Supposons que $g \circ f$ est surjective, alors $\forall z \in G, \exists x \in E$ tel que $g \circ f(x) = z$. Posons y = f(x), donc g(y) = z, ceci entraı̂ne que g est surjective.

Théorème 3.4. Soit $f: E \to F$ une application. Pour que f soit bijective, il faut et il suffit qu'il existe une application $g: F \to E$ vérifiant

$$g \circ f = \mathrm{id}_E \quad et \quad f \circ g = \mathrm{id}_F.$$
 (3)

Lorsqu'elle existe, l'application g vérifiant (3) est unique; elle est bijective, on l'appelle l'application réciproque de f, et on la note f^{-1} . De plus $(f^{-1})^{-1} = f$

Preuve. Supposons que f est bijective, alors $\forall y \in F$, $\exists ! x \in E$ tel que y = f(x). Soit g la relation définie de F dans E par :

$$g: F \longrightarrow E$$

 $y \longmapsto g(y) = x,$

il est simple de vérifier que g est une application, et que $\forall x \in E, g \circ f(x) = x$; et $\forall y \in F, f \circ g(y) = y$, c'est-à-dire que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$.

Inversement, supposons qu'il existe une application $g: F \longrightarrow E$ telle que

$$q \circ f = \mathrm{id}_E$$
 et $f \circ q = \mathrm{id}_F$,

alors la Proposition 3.3 entraı̂ne que f est surjective et injective (id $_E$ est injective et id $_F$ est surjective). D'où f est bijective.

Exemples 13.

- 1. $x \mapsto e^x$ est une bijection de \mathbb{R} vers \mathbb{R}_+^* et son application réciproque est l'application $x \mapsto \ln(x)$ définie de \mathbb{R}_+^* vers \mathbb{R} .
- 2. $x \mapsto x^2$ est une bijection de \mathbb{R}^+ vers \mathbb{R}^+ et son application réciproque est l'application $x \mapsto \sqrt[2]{x} = \sqrt{x}$.
- 3. $x \mapsto x^3$ est une bijection de \mathbb{R} vers \mathbb{R} et son application réciproque est noté $x \mapsto \sqrt[3]{x}$. Alors $(\sqrt[3]{x})^3 = x$ et $\sqrt[3]{x^3} = x$.

Corollaire 3.5. Soient $f: E \to F$ et $g: F \to G$ deux applications. Si f et g sont bijectives alors $g \circ f$ est bijective et son application réciproque $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Preuve. D'après le Théorème 3.4, il existe $u: F \to E$ tel que $u \circ f = \mathrm{id}_E$ et $f \circ u = \mathrm{id}_F$. Il existe aussi $v: G \to F$ tel que $v \circ g = \mathrm{id}_F$ et $g \circ v = \mathrm{id}_G$.

On a alors $(g \circ f) \circ (u \circ v) = g \circ (f \circ u) \circ v = g \circ \mathrm{id}_F \circ v = g \circ v = \mathrm{id}_G$. Et $(u \circ v) \circ (g \circ f) = u \circ (v \circ g) \circ f = u \circ \mathrm{id}_F \circ f = u \circ f = \mathrm{id}_E$. Donc $g \circ f$ est bijective et son inverse est $u \circ v$. Comme u est la bijection réciproque de f et v celle de g alors : $u \circ v = f^{-1} \circ g^{-1}$.

Remarques 3.24. Soit $f: E \to F$ une application.

- 1. f est surjective si et seulement si f(E) = F.
- 2. Toute application $f: E \to E$ telle que $f \circ f = I d_E$ est bijective et $f^{-1} = f$. Une telle bijection s'appelle une involution de E.
- 3. Nous avons utilisé la notation f^{-1} dans deux contextes différents : l'applications réciproque et l'image réciproque. Si f n'est pas bijective, f^{-1} n'a pas de sens en tant qu'application de F vers E, mais f^{-1} peut être vu comme une application de $\mathcal{P}(F)$ vers $\mathcal{P}(E)$.

Proposition 3.6. Soient E, F deux ensembles finis et $f: E \to F$ une application.

- 1. Si f est injective alors $card(E) \leq card(F)$.
- 2. Si f est surjective alors $\operatorname{card}(E) \geq \operatorname{card}(F)$.
- 3. Si f est bijective alors card(E) = card(F).

Preuve. 1. Supposons f injective. Supposons aussi que E est de cardinal $n \in \mathbb{N}^*$, alors on peut l'écrire sous la forme $E = \{x_1, \dots, x_n\}$, où les x_i sont deux à deux distincts. En notant $y_i = f(x_i)$ on a donc $F' = f(E) = \{y_1, \dots, y_n\}$. Comme f est injective, alors les y_i sont deux à deux distincts, donc F' = f(E) a n éléments et card(f(E)) = card(E). D'autre part, $f(E) \subset F$, alors $card(f(E)) \leq card(F)$. Donc $card(E) = card(F') \leq card(F)$.

2. Supposons f surjective. Posons $F = \{y_1, \ldots, y_m\}$, donc pour tout élément $y_i \in F$, il existe au moins un élément x_i de E tel que $y_i = f(x_i)$. Par suite $E' = f^{-1}(F)$ contient au moins m éléments c-à-d $\operatorname{card}(E') \geq \operatorname{card}(F)$. De plus on a $E' \subset E$, donc $\operatorname{card}(E) \geq \operatorname{card}(E')$. Par suite $\operatorname{card}(E) \geq \operatorname{card}(F)$.

3. Cela découle de 1. et 2. \Box

Théorème 3.7. Soient E, F deux ensembles finis et $f: E \to F$ une application. Si card(E) = card(F), alors les assertions suivantes sont équivalentes :

- 1. f est injective,
- 2. f est surjective,

3. f est bijective.

Preuve. 1. \Rightarrow 2. Supposons f injective. Alors card(f(E)) = card(E) = card(F). Ainsi f(E) est un sous-ensemble de F ayant le même cardinal que F; cela entraı̂ne f(E) = F et donc f est surjective.

- $2. \Rightarrow 3.$ Supposons f surjective. Pour montrer que f est bijective, il reste à montrer que f est injective. Raisonnons par l'absurde et supposons f non injective. Alors card(f(E)) < card(E) (car au moins 2 éléments ont la même image). Or f(E) = F car f surjective, donc card(F) < card(E). C'est une contradiction, donc f doit être injective et ainsi f est bijective.
 - $3. \Rightarrow 1.$ C'est clair: une fonction bijective est en particulier injective.

3.2. Relations binaires.

3.2.1. Définitions.

Définition 3.25. Soient E et F deux ensembles. On appelle relation binaire de E vers F, et on note \mathcal{R} , une correspondence \mathcal{R} de E vers F, i.e. un triplet $\mathcal{R} = (\Gamma, E, F)$, où Γ est un graphe de E vers F.

Considérons un couple (x, y) de $E \times F$ vérifiant $(x, y) \in \Gamma$. On dit que l'élément x de E est en relation par \mathcal{R} avec l'élément y de F, ce que l'on note $x\mathcal{R}y$.

Définition 3.26. Soit E un ensemble. Une relation binaire \mathcal{R} de E vers E est appelée une relation binaire sur E.

Exemples 14.

- 1. La relation d'égalité a = b sur un ensemble E est une relation binaire dont le graphe est la diagonale de E^2 , c'est-à-dire l'ensemble des couples (x, x) quand x parcourt E. Les ensembles de définition et image de cette relation coïncident avec E.
- 2. Soient E un ensemble, A et B deux parties de E. La relations d'inclusion $A \subset B$ est une relation binaire dans $\mathcal{P}(E)$. Les ensembles de définition et image de cette relation coïncident avec $\mathcal{P}(E)$ tout entier.
- 3. L'inégalité \leq est une relation sur \mathbb{N} , \mathbb{Z} ou \mathbb{R} .
- 4. Le parallélisme et l'orthogonalité sont des relations sur l'ensemble des droites du plan ou de l'espace.
- 5. Soit n un entier naturel. On définit sur \mathbb{Z} la relation binaire \mathcal{R} par son graphe $\Gamma = \{(p,q) \in \mathbb{Z}^2 | \exists k \in \mathbb{Z}, p-q=kn\}$. La relation ainsi définie est appelée congruence modulo n. Au lieu d'écrire $(p,q) \in \Gamma$ ou encore $p\mathcal{R}q$, on écrit $p \equiv q \pmod{n}$, et on lit p congru à q modulo n.
- 6. Soit $f: E \longrightarrow F$ une application d'un ensemble E vers un ensemble F. On définit sur E la relation binaire \mathcal{R} par

$$a\mathcal{R}b \iff f(a) = f(b).$$

Cette relation est dite relation binaire associée à f.

Définition 3.27. Soit \mathcal{R} une relation binaire sur ensemble E. \mathcal{R} est dite :

- 1. réflexive si : $\forall x \in E, x \mathcal{R} x$,
- 2. symétrique si : $\forall (x,y) \in E^2, (x\mathcal{R}y \Rightarrow y\mathcal{R}x),$

- 3. antisymétrique si : $\forall (x,y) \in E^2, ((x\mathcal{R}y \text{ et } y\mathcal{R}x) \Rightarrow x=y),$
- 4. transitive si : $\forall (x, y, z) \in E^3, ((x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z).$

Exemples 15.

- 1. La relation d'égalité dans un ensemble quelconque est réflexive, symétrique et transitive.
- 2. L'inclusion dans $\mathcal{P}(E)$ est réflexive, non symétrique, antisymétrique et transitive.
- 3. L'intersection vide dans $\mathcal{P}(E)$ est symétrique, mais n'est ni réflexive, ni antisymétrique, ni transitive.
- 4. Dans \mathbb{Z}^* , la relation $x\mathcal{R}y \iff x$ divise y est reflexive et transitive mais elle n'est ni symétrique ni antisymétrique, ce qui montre au passage que la **propriété d'antisymétrie** n'est pas la négation de la propriété de symétrie.
- 5. Dans \mathbb{N}^* , la relation $x\mathcal{R}y \iff x$ divise y est reflexive, transitive et antisymétrique, mais elle n'est pas symétrique.
- 6. Dans l'ensemble des droites du plan affine euclidien :
 - a. la relation \perp d'orthogonalité est symétrique, mais n'est ni réflexive, ni antisymétrique, ni transitive. Une droite n'est en effet pas perpendiculaire à elle-même et, d'autre part, $D\perp D'$ et $D'\perp D''$ entraînent D||D''| (D parallèle à D''),
 - b. le parallélisme est une relation réflexive, symétrique et transitive; mais elle n'est pas antisymétrique.
- 7. La congruence modulo un entier naturel n est une relation, sur \mathbb{Z} , réflexive, symétrique et transitive; mais elle n'est pas antisymétrique.
- 8. Soit $f: E \longrightarrow F$ une application d'un ensemble E vers un ensemble F. La relation binaire associée à f est une relation sur E réflexive, symétrique et transitive; mais elle n'est pas antisymétrique.

Définition 3.28. Soient E un ensemble, \mathcal{R} une relation binaire sur E et A une partie de E. La relation binaire sur A, notée \mathcal{R}_A , définie par :

$$\forall (x,y) \in A^2, (x\mathcal{R}_A y \Leftrightarrow x\mathcal{R} y),$$

est appelée relation induite par \mathcal{R} sur A.

3.2.2. Relations d'équivalence.

Définition 3.29. Soit \mathcal{R} une relation binaire dans un ensemble E. On dit que \mathcal{R} est une relation d'équivalence si elle est réflexive, symétrique et transitive.

On note $x\mathcal{R}y$ ou $x \equiv y \pmod{\mathcal{R}}$ et on lit : x est équivalent à y modulo \mathcal{R} .

Exemples 16. Nous donnons quelques exemples de relations d'equivalence.

- 1. La relation d'égalité dans un ensemble E quelconque est une relation d'équivalence, puisque elle est réflexive, symétrique et transitive.
- 2. Soit $n \in \mathbb{N}$, la congruence modulo n est une relation d'équivalence dans \mathbb{Z} . En effet :
 - elle est réflexive, car $\forall x \in \mathbb{Z}$, on a $x x = n \cdot 0 \Leftrightarrow x \equiv x \pmod{n}$,
 - elle est symétrique, car $\forall (x,y) \in \mathbb{Z}^2$, $x \equiv y \pmod{n} \Leftrightarrow x-y=nk, k \in \mathbb{Z}$ ceci est équivalent à y-x=n(-k), d'où $y \equiv x \pmod{n}$,

- elle est transitive, en effet $\forall (x, y, z) \in \mathbb{Z}^3$, on a : $\begin{cases} x \equiv y \pmod{n}, & \Leftrightarrow \begin{cases} x - y = nk, \\ y \equiv z \pmod{n}, \end{cases} \Leftrightarrow \begin{cases} x - y = nk, \\ y - z = nk', \end{cases} \Rightarrow x - z = n(k + k').$ D'où $x \equiv z \pmod{n}$.

- 3. Soit $f: E \longrightarrow F$ une application d'un ensemble E vers un ensemble F. La relation binaire \mathcal{R} associée à f est une relation d'équivalence sur E. En effet,
 - \mathcal{R} est réflexive, puisque $\forall x \in E, f(x) = f(x)$,
 - \mathcal{R} est symétrique, puisque si pour $x, y \in E, f(x) = f(y)$, alors f(y) = f(x),
 - \mathcal{R} est transitive, puisque si pour $x, y, z \in E, f(x) = f(y)$ et f(y) = f(z), alors f(x) = f(z).

Étant donnée une relation d'équivalence, on identifie les éléments qui sont en relation en introduisant les classes d'équivalence.

Définition 3.30. Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Pour chaque $x \in E$, on appelle **classe d'équivalence** de x (modulo \mathcal{R}) le sous-ensemble de E défini par les éléments qui sont en relation avec x, on le note C(x) ou \overline{x} . On a :

$$C(x) = \overline{x} = \{ y \in E \mid x \mathcal{R} y \}$$

Tout élément de \overline{x} est appelé un représentant de la classe \overline{x} . L'ensemble des classes d'équivalence modulo \mathcal{R} se nomme **ensemble quotient** de E par \mathcal{R} et se note E/\mathcal{R} . On a

$$E/\mathcal{R} = \{ \overline{x} \mid x \in E \}.$$

Exemples 17. 1. Comme nous l'avons déjà vu, la relation d'égalité dans un ensemble E quelconque est une relation d'équivalence, d'ensemble quotient $\{\{x\} \mid x \in E\}$.

2. La congruence modulo un entier naturel n est une relation d'équivalence dans \mathbb{Z} , la classe d'équivalence d'un entier a est :

$$\overline{a} = \{ b \in \mathbb{Z} | a \equiv b \pmod{n} \}.$$

Comme un tel b s'écrit b = a + nk, pour un certain $k \in \mathbb{Z}$ alors c'est aussi exactement

$$\overline{a} = \{ a + nk | \ k \in \mathbb{Z} \}.$$

Comme aussi $n \equiv 0 \pmod{n}$, alors

pour tout
$$k \in \mathbb{Z}$$
, $n + k \equiv k \pmod{n}$.

Donc pour tout $k \in \mathbb{Z}$, $\overline{n+k} = \overline{k}$ modulo n, c-à-d

$$\overline{n}=\overline{0}, \quad \overline{n+1}=\overline{1}, \quad \overline{n+2}=\overline{2}, \quad \dots$$

donc l'ensemble quotient qu'on note $\mathbb{Z}/n\mathbb{Z}$ ou \mathbb{Z}_n est :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{n-2}, \overline{n-1}\},$$

avec
$$\overline{a} = \{a + nk \mid k \in \mathbb{Z}\}, 0 \le i \le n - 1.$$

 \bullet Par exemple dans \mathbb{Z} , la congruence modulo 2 est une relation d'équivalence \mathcal{R} définie par :

$$m\mathcal{R}n \iff m-n \text{ est pair } \iff m \equiv n \pmod{2}.$$

L'ensemble quotient est $\mathbb{Z}/\mathcal{R} = \{\overline{0}, \overline{1}\} = \mathbb{Z}/2\mathbb{Z}$.

- 3. Dans l'ensemble des droites d'un plan affine, la relation de parallélisme \parallel est une relation d'équivalence. Pour toute droite D, la classe de D modulo \parallel est appelée la direction D.
- 4. Voici un exemple important qui nous définit l'ensemble des rationnels. Définissons sur $E = \mathbb{Z} \times \mathbb{Z}^*$ la relation \mathcal{R} par

$$(p,q)\mathcal{R}(p',q') \iff pq' = p'q.$$

Tout d'abord \mathcal{R} est une relation d'équivalence :

- \mathcal{R} est réflexive : pour tout (p,q) on a bien pq = pq et donc $(p,q)\mathcal{R}(p,q)$.
- \mathcal{R} est symétrique : pour tout (p,q), (p',q') tels que $(p,q)\mathcal{R}(p',q')$ on a donc pq' = p'q et donc p'q = pq' d'où $(p',q')\mathcal{R}(p,q)$.
- \mathcal{R} est transitive : pour tout (p,q), (p',q'), (p'',q'') tels que $(p,q)\mathcal{R}(p',q')$ et $(p',q')\mathcal{R}(p'',q'')$ on a donc pq'=p'q et p'q''=p''q'. Alors (pq')q''=(p'q)q''=q(p''q''). En divisant par $q'\neq 0$ on obtient pq''=qp'' et donc $(p,q)\mathcal{R}(p'',q'')$.

La classe d'équivalence d'un couple $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ sera noter $\overline{(p,q)} = \frac{p}{q}$. Par exemple, comme $(2,3)\mathcal{R}(4,6)$ (car $2 \times 6 = 3 \times 4$) alors les classes de (2,3) et (4,6) sont égales : avec cette notation ces classes s'écrivent : $\frac{2}{3} = \frac{4}{6}$.

C'est ainsi que l'on définit les rationnels :

l'ensemble des classes d'équivalence de la relation \mathcal{R} est noté \mathbb{Q} , et est appelé l'ensemble des rationnels.

Les nombres $\frac{2}{3} = \frac{4}{6}$ sont bien égaux (ce sont les mêmes classes) mais les écritures sont différentes (les représentants sont distincts).

Proposition 3.8. Soit R une relation d'équivalence sur un ensemble E. Alors

- 1. $\forall x, y \in E, xRy \Leftrightarrow \overline{x} = \overline{y}$.
- 2. $\forall x \in E, \ \overline{x} \neq \emptyset, \ (car \ x \in \overline{x}).$
- 3. $\forall x, y \in E$, on $a : \overline{x} = \overline{y}$ ou bien $\overline{x} \cap \overline{y} = \emptyset$.

Preuve.

- 1. Soient x et y dans E tels que xRy, montrons que $\overline{x} = \overline{y}$. Si $a \in \overline{x}$, alors aRx; comme xRy, alors aRy. D'où $a \in \overline{y}$. Par suite $\overline{x} \subset \overline{y}$. De la même façon on montre que $\overline{y} \subset \overline{x}$, ce qui implique $\overline{x} = \overline{y}$.
- 2. Ce point est banal, car $x \in \overline{x}$.
- 3. Soient x et y dans E. Supposons que $\overline{x} \cap \overline{y} \neq \emptyset$, alors il existe $a \in \overline{x} \cap \overline{y}$; donc xRa et aRy. D'où $\overline{x} = \overline{a} = \overline{y}$.

Proposition 3.9. Soient E un ensemble et \mathcal{R} une relation d'équivalence sur E. Les différentes classes d'équivalence de E/\mathcal{R} forment une partition de E.

Preuve.

- $\forall a \in E, \overline{a} \neq \emptyset$ voir Proposition 3.8.
- Soient $a, b \in E$ et supposons que $\overline{a} \cap \overline{b} \neq \emptyset$.

Soit $x \in \overline{a} \cap \overline{b}$; donc on a: $x \in \overline{a}$ implique que $x \mathcal{R} a$ et $a \mathcal{R} x$,

 $x \in \overline{b}$ implique que $x\mathcal{R}b$.

Donc par transitivité on obtient que : aRb, c'est-à-dire $\overline{a} = \overline{b}$. Les classes sont donc bien disjointes.

- On a $\forall a \in E, \{a\} \subset \overline{a} \subset E$. Alors $\bigcup_{a \in E} \{a\} \subset \bigcup_{a \in E} \overline{a} \subset E$. Or $E \subset \bigcup_{a \in E} \{a\}$, par suite $E \subset \bigcup_{a \in E} \overline{a}$, d'où $E = \bigcup_{a \in E} \overline{a}$.

Remarque 3.31. Soit \mathcal{R} une relation d'équivalence sur un ensemble E. L'application

$$p: E \longrightarrow E/\mathcal{R}$$
$$x \longmapsto \overline{x}$$

est surjective appelée la surjection canonique.

Proposition 3.10. Soient \mathcal{R} une relation d'équivalence sur un ensemble $E, p: E \longrightarrow E/\mathcal{R}$ la surjection canonique et $f: E \longrightarrow F$ une application.

Si f est constante sur les classes d'équivalence modulo \mathcal{R} , alors il existe une application $\overline{f}: E/\mathcal{R} \longrightarrow F$ unique telle que $\overline{f} \circ p = f$.

Preuve. Soit $\overline{x} \in E/\mathcal{R}$, alors pour tous x, y dans \overline{x} on a f(x) = f(y), car f est constante sur \overline{x} . Posons

$$\overline{f}: E/\mathcal{R} \longrightarrow F$$
 $\overline{x} \longmapsto f(x)$

donc \overline{f} est bien définie, car si $\overline{x} = \overline{y}$, alors $f(\overline{x}) = f(\overline{y})$; de plus pour tout $x \in E$ on a $\overline{f}(p(x)) = \overline{f}(\overline{x}) = f(x)$, c-à-d, $\overline{f} \circ p = f$.

S'il existait une autre application $g: E/\mathcal{R} \longrightarrow F$ telle que $g \circ p = f$, alors on aurait pour tout $x \in E$, $\overline{f}(\overline{x}) = \overline{f}(p(x)) = f(x) = g(p(x)) = g(\overline{x})$, d'où $g = \overline{f}$.

Théorème 3.11 (Décomposition canonique d'une application). Soit $f: E \longrightarrow F$ une application.

1. La relation binaire \mathcal{R} définie sur E par :

$$x\mathcal{R}y \iff f(x) = f(y)$$

est une relation d'équivalence, on l'appelle la relation d'équivalence associé à f.

2. Soient $i: \text{Im}(f) = f(E) \longrightarrow F$ l'injection canonique, et $p: E \longrightarrow E/\mathcal{R}$ la surjection canonique. Alors il existe une application bijective unique $\overline{f}: E/\mathcal{R} \longrightarrow \text{Im}(f)$ telle que $i \circ \overline{f} \circ p = f$.

$$E \xrightarrow{p} E/\mathcal{R} \xrightarrow{\overline{f}} \operatorname{Im}(f) \xrightarrow{i} F$$

Définition 3.32. La décomposition $i \circ \overline{f} \circ p = f$ s'appelle la **décomposition canonique** ou la factorisation canonique de l'application f.

La bijection f s'appelle **l'application induite** par f ou encore **l'application déduite** de f par passage au quotient.

Cette décomposition est visualisé par le diagramme carré suivant :

On exprime la relation $i \circ \overline{f} \circ p = f$ en disant que le diagramme est commutatif (i.e., on peut suivre les flèches que l'on veut pour aller de E à F).

Preuve. (du théorème)

- a. Nous avons déjà vérifier que \mathcal{R} est une relation d'équivalence.
- b. L'existence et l'unicité de l'application f sont assurés par la Proposition 3.10.
- c. Remarquons que $\overline{f} \circ p$ coincide avec f dans E, puisque $\forall x \in E, \overline{f} \circ p(x) = \overline{f}(\overline{x}) = f(x)$. Donc $\overline{f} \circ p$ est surjective, d'où \overline{f} est aussi surjective. Montrons enfin que \overline{f} est injective; soit \overline{x} et \overline{y} deux éléments de E/\mathcal{R} tels que $f(\overline{x}) = f(\overline{y})$, d'où f(x) = $\overline{f}(\overline{x}) = \overline{f}(\overline{y}) = f(y)$. Par suite $x\mathcal{R}y$, ce qui implique que $\overline{x} = \overline{y}$.

3.2.3. Relations d'ordre.

Définition 3.33. Une relation binaire \mathcal{R} sur un ensemble E est dite relation d'ordre si elle est réflexive, antisymétrique et transitive.

Notation. En général, une relation d'ordre sera notée \prec .

Définition 3.34. Un ensemble E muni d'une relation d'ordre \leq est appelé un ensemble ordonné.

L'ordre est dit **total** si $\forall x, y \in E$, on a soit $x \leq y$ soit $y \leq x$. Il est dit **partiel** dans le cas contraire.

Définition 3.35. Deux éléments x et y d'un ensemble ordonné E sont dits compa**rables** si on a : $x \leq y$ ou $y \leq x$.

Remarques 3.36. Soit un ensemble E muni d'une relation d'ordre \leq .

- 1. L'ordre est total si et seulement si tous les éléments sont comparables entre eux.
- 2. L'ordre strict associé à l'ordre \leq est la relation binaire, notée \prec définie sur E par : $\forall x, y \in E, (x \prec y \iff x \leq y \text{ et } x \neq y).$
- 3. Une relation binaire sur E qui est réflexive et transitive et dite un préordre sur E.

Exemples 18.

- 1. Soit E un ensemble, l'inclusion est une relation d'ordre partiel sur $\mathcal{P}(E)$.
- 2. L'ordre usuel \leq est une relation d'ordre total sur \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} .
- 3. Dans N*, la relation de divisibilité est une relation d'ordre partiel. Par exemple 2 ne divise pas 7 et 7 ne divise pas 2. Par contre, dans \mathbb{Z}^* la relation de divisibilité n'est pas une relation d'ordre, c'est un préordre.

4. Dans \mathbb{C} , la relation \mathcal{R} définie par $z\mathcal{R}z'$ si $|z| \leq |z'|$ est un préordre.

Exercice.

Soit \mathcal{R} un préordre sur un ensemble E. On considère la relation \bot définie sur E par :

$$x \perp y \iff x \mathcal{R} y \text{ et } y \mathcal{R} x.$$

Montrer que \perp est une relation d'équivalence sur E.

Définition 3.37. Soit (E, \preceq) un ensemble ordonné et soit A une partie de E. La relation $x \preceq y$ entre éléments de A est évidemment une relation d'ordre sur A, appelée relation d'ordre induite sur A par celle de E.

Éléments remarquables d'un ensemble ordonné

Définition 3.38. Soient (E, \preceq) un ensemble ordonné et A une partie de E.

- 1. Un élément $M \in A$ est appelé un **plus grand élément** de A si $\forall a \in A, a \leq M$.
- 2. Un élément $m \in A$ est appelé **plus petit élément** de A si $\forall a \in A, m \leq a$.

Exemple 3.39. Soit $A = \{1, 2, 3, 4, 6, 12\} \subset \mathbb{N}$, sur \mathbb{N} on définit la relation \mathcal{R} par

$$x\mathcal{R}y \iff x \text{ divise } y;$$

 \mathcal{R} est une relation d'ordre. On a $\forall x \in A$, $1\mathcal{R}x$ et $x\mathcal{R}12$. Donc 12 est le plus grand élément de A, par contre 1 est le plus petit élément de A.

Remarque 3.40. Si une partie $A \subset E$ admet un plus grand (ou un plus petit) élément, alors celui-ci est unique. En effet, si $a, a' \in E$ sont tels que $x \leq a$ et $x \leq a'$ quel que soit $x \in E$, alors, en particulier, on a : $a \leq a'$ et $a' \leq a$, d'où a = a'. On pourra donc parler du plus grand (ou du plus petit) élément de E lorsqu'il existe.

Définition 3.41. Soient (E, \preceq) un ensemble ordonné et A une partie de E.

- 1. Un élément $M \in A$ est dit **élément maximal** de A si $a \in A$ et $M \leq a \Rightarrow M = a$.
- 2. Un élément $m \in A$ est dit **élément minimal** de A si $a \in A$ et $a \prec m \Rightarrow m = a$.

Remarque 3.42. Si E est totalement ordonné les notions de plus grand élément et élément maximal (resp. plus petit élément et élément minimal) coincident.

Exemples 19.

1. Soit l'ensemble $E = \mathbb{N} - \{0, 1\}$. On définit sur E la relation \mathcal{R} par :

$$x\mathcal{R}y \iff x \text{ divise } y$$
,

 \mathcal{R} est une relation d'ordre.

- E n'a pas de plus petit élément (car le nombre qui divise tous les entiers est 1).
- E a une infinité d'éléments minimaux, qui sont les nombres premiers de E. En effet, soit p un nombre premier de E; pour tout $x \in E$,

$$x\mathcal{R}p \iff x \text{ divise } p \Longrightarrow x = p.$$

De même E n'a ni élément maximal ni plus grand élément.

- 2. Dans l'ensemble totalement ordonné (\mathbb{R}, \leq) on a :
 - \mathbb{R}^+ n'a pas d'élément maximal.

• [0, 1] admet un élément maximal et un seul, qui est 1. C'est aussi le plus grand élément de [0, 1].

Remarque 3.43. Notez que l'élément maximal (resp. minimal) n'existe pas toujours. Notez aussi qu'un plus grand élément (resp. petit élément) est un élément maximal (resp. minimal), mais que la réciproque est fausse : par exemple, dans $(\mathbb{N}^*, |)$, 3 est élément minimal, mais ce n'est pas un plus petit élément.

Définition 3.44. Soient (E, \preceq) un ensemble ordonné et A une partie de E.

- 1. Un élément $M \in E$ est appelé un **majorant** de A dans E si $\forall a \in A, a \leq M$. A est dite majorée si elle admet au moins un majorant.
- 2. Un élément $m \in E$ est appelé un **minorant** de A dans E si $\forall a \in A, m \leq a$. A est dite minorée si elle admet au moins un minorant.
- 3. Si A est majorée et minorée, on dit que A est une partie bornée.

Exemple 3.45. Dans l'ensemble totalement ordonné (\mathbb{R}, \leq) on a :

- la partie \mathbb{R}^+ est minorée, mais elle n'est pas majorée.
- la partie [0, 1] est bornée.
- La partie A =]0,1[de \mathbb{R} ordonné par l'ordre usuel est une partie majorée et minorée de \mathbb{R} , mais n'admet ni un plus grand élément ni un plus petit élément.
- Dans $(\mathcal{P}(E), \subset)$, si $X, Y \in \mathcal{P}(E)$, la partie $A = \{X, Y\}$ est minorée et majorée dans $\mathcal{P}(E)$. En effet, $X \cap Y$ (resp. $X \cup Y$) est un minorant (resp. un majorant) de A dans $\mathcal{P}(E)$.

Définition 3.46. Soient (E, \preceq) un ensemble ordonné et A une partie de E.

- 1. La **borne supérieure** de A dans E (s'il existe) est le plus petit élément des majorants de A dans E, on la note $\sup(A)$.
- 2. La **borne inférieure** de A dans E (s'il existe) est le plus grand élément des minorants de A dans E, on la note $\inf(A)$.

Voici une caractérisation des bornes inf et sup d'une partie A d'un ensemble E.

Théorème 3.12. Soient (E, \preceq) un ensemble totalement ordonné, et A une partie de E. Pour qu'un élément M de E soit la borne supérieure de A, il faut et il suffit que M vérifie les deux conditions.

- 1. Pour tout $x \in A$, on $a : x \leq M$.
- 2. Pour tout élément $c \in E$ tel que $c \prec M$, il existe $x \in A$ tel que $c \prec x$.

Preuve. Si M est la borne supérieure de A, alors M est un majorant de A. La condition 2. est vérifiée car sinon c serait un majorant de A strictement inférieur à M.

Réciproquement, si les deux conditions sont vérifiées, alors M est un majorant de A et tout élément de E strictement inférieur à M n'est pas un majorant de A. Donc M est le plus petit des majorants de A, i.e., la borne supérieure de A.

Théorème 3.13. Soient (E, \preceq) un ensemble totalement ordonné, et A une partie de E. Pour qu'un élément m de E soit la borne inférieure de A, il faut et il suffit que m vérifie les deux conditions.

1. Pour tout $x \in A$, on $a : m \leq x$.

2. Pour tout élément $c \in E$ tel que $m \prec c$, il existe $x \in A$ tel que $x \prec c$.

Preuve. Démonstration analogue à celle du théorème précédent.

Exemples 20.

- 1. Dans \mathbb{R} muni de l'ordre usuel,
 - N ne possède pas de borne supérieure.
 - [0, 1] possède une borne supérieure égale à 1 et une borne inférieure égale à 0.

2. Dans Q muni de l'ordre usuel, on considère

$$A = \{x \in \mathbb{Q}_+^* | x^2 < 2\} = \{x \in \mathbb{Q}_+^* | x < \sqrt{2}\}.$$

- 0 est bien la borne inférieure de A mais A n'admet pas de plus petit élément.
- L'ensemble des majorants de A dans \mathbb{Q} est

$${a \in \mathbb{Q}_+^* | a^2 \ge 2} = {a \in \mathbb{Q}_+^* | a^2 > 2} = {a \in \mathbb{Q}_+^* | a > \sqrt{2}},$$

qui n'a pas de plus petit élément (cela revient à $\sqrt{2} \notin \mathbb{Q}$), A n'admet donc pas de borne supérieure dans \mathbb{Q} . Mais A admet une borne supérieure dans \mathbb{R} qui est $\sqrt{2}$.

Remarque 3.47. Si une partie A d'un ensemble E possède un plus grand (resp. un plus petit) élément a, alors a, qui appartient à A, est la borne supérieure (resp. la borne inférieure) de A. Soit en effet a le plus grand élément de A; alors a est un majorant de A et si a' est un autre majorant de A, on a : $a \le a'$ car $a \in A$. Donc a est le plus petit des majorants de A, c'est-à-dire la borne supérieure de A.

Définition 3.48. Soit f une application d'un ensemble A dans un ensemble ordonné E.

- 1. On dit que f est majorée (resp. minorée) si f(A) est une partie majorée (resp. minorée) dans E. Si f est majorée et minorée dans A, on dit que f est bornée dans A.
- 2. On appelle borne supérieure (resp. borne inférieure) de f dans A la borne supérieure (resp. la borne inférieure) dans E (si elle existe) de l'ensemble f(A). On les note respectivement $\sup_{x \in A} f(x)$ et $\inf_{x \in A} f(x)$.