- 1. A monopolist can produce at a constant average (and marginal) cost AC = MC = 5. The market demand curve is Q = 53-P.
- (1) Calculate the monopolist's profit-maximizing price and output, and calculate its profit.
- (2) Assume that a second vendor joins the market. The output of the first manufacturer is Q_1 , and the output of the second manufacturer is Q_2 . Market demand function is now $Q_1 + Q_2 = 53 P$. The second manufacturer has the same cost as the first manufacturer. Calculate the profit of each manufacturer (as a function of Q_1 and Q_2).
- (3) Find the "response curve" of each manufacturer. (Assume that each firm chooses its profit-maximizing production level, when its competitor's output is given).
- (4) Calculate Cournot equilibrium. What is the market price? What is the profit of each manufacturer? (That is, calculate the value of Q_1 , Q_2 , P, and the profit of each manufacturer based on question (2) and (3))
- (5) Now there are N manufacturers in this industry, each has the same cost AC = MC = 5. Find Cournot equilibrium. How many products each manufacturer will produce? What will the market price be? And how much profits each manufacturer will make? Also, prove that when N becomes larger, the market price is close to the price under perfect competition.
- 2. Consider the Bertrand duopoly model with homogeneous products. Suppose that the quantity that consumers demand from i is a-p_i when p_i < p_j, 0 when p_i > p_j, and $(a p_i)/2$ when p_i = p_j. Suppose also that there are no fixed costs and that marginal costs are constant at c, where c < a. Show that if the firms choose prices simultaneously, then the unique Nash equilibrium is that both firms charge the price c.
- 3. The game being played is the one shown below; call this the "true" game

		2					
		L	_	R			
1	Т	6,	3	0,	9		
•	В	3,	3	3,	0		

Player 1 knows that she is playing this game, while Player 2 is uncertain as to whether she is playing this game or a different game, shown below, where the payoffs of Player 1 are different:

		2					
		L	-	R			
1	Т	0,	3	3,	9		
•	В	3,	3	0,	0		

For convenience, refer to the "true game" as the game where Player 1 is of type *b* and the "different game" as the game where Player 1 is of type *a*.

Suppose that Player 2 assigns probability $\frac{2}{3}$ to Player 1 being of type *a* and probability $\frac{1}{3}$ to Player 1 being of type *b*. Find a Nash equilibrium.

- 4. Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a Q, where $Q = q_1 + q_2$ is the aggregate quantity on the market. Both firms have total costs $c_i(q_i) = cq_i$, but demand is uncertain: it is high $(a = a_H)$ with probability θ and low $(a = a_L)$ with probability $1-\theta$. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All of this is common knowledge. The two firms simultaneously choose quantities. What are the strategy spaces for the two firms? Make assumptions concerning a_H , a_L , θ , and c such that all equilibrium quantities are positive. What is the Bayesian Nash equilibrium of this game?
- 5. The following static game of complete information (Matching Pennies) has no pure-strategy Nash equilibrium but has one mixed-strategy Nash equilibrium: each player plays H with probability $\frac{1}{2}$.

Provide a pure-strategy Bayesian Nash equilibrium of a corresponding game of incomplete information such that as incomplete information disappears, the players' behavior in the Bayesian Nash equilibrium approaches their behavior in the mixed-strategy Nash equilibrium in the original game of complete information.

Hint: Consider the following Bayesian game in which t_1 and t_2 are independently and uniformly distributed on [0, x].

		Н	∠ I	: T		
1	Н	1+t ₁ ,	-1	-1,	1-t ₂	
'	Т	-1,	1	1,	-1	