PRÁCTICA 1: Distribuciones de probabilidad, números aleatorios, simulación de variables y estimación puntual.

DESARROLLO DE LA PRÁCTICA CON RSTUDIO

Para la creación de números aleatorios, lo más práctico es realizar un sencillo programa de instrucciones, que invoque a las diferentes distribuciones. Para una distribución dada, se puede solicitar \mathbf{d} (density functions) función de densidad o distribución de probabilidades; \mathbf{p} (probability distribution functions) la función de distribución; \mathbf{q} (quantile functions) los cuantiles de la distribución o \mathbf{r} (random number generation) la generación de valores aleatorios. Letra que se debe anteponer a la distribución en particular. Por ejemplo para la distribución normal "norm" podría ponerse dnorm, pnorm, qnorm o rnorm, según el caso.

Distribución discreta

A) Supongamos que queremos hallar la probabilidad de que una variable X de Poisson con lambda=3.5 tome el valor 0

```
dpois(x=0,lambda=3.5)
# o más sencillo:
dpois(0, 3.5)
```

¿Cuál es la probabilidad de que X=5? ¿Y de que X sea par y menor o igual a 20?

Para hallar la probabilidad acumulada de que una variable X de Poisson con lambda=3.5 tome valor como máximo 6

```
ppois (6, 3.5)
```

¿Cuál es la probabilidad de que X valga más de 2? ¿Y de que X sea distinto de 3? ¿Y que X valga entre 3 y 7, ambos incluidos? ¿En qué valor de X se tiene una probabilidad acumulada de 0.999?

B) Considerar ahora una variable X binomial con n=10 y p=0.65. Para hallar la probabilidad acumulada de que esta variable X tome valor como máximo 8

```
pbinom (8, 10, 0.65)
```

¿De qué otra forma se puede hallar esta probabilidad utilizando la función de densidad de probabilidad, es decir, con dbinom?

Distribución continua

Supongamos que queremos hallar la probabilidad de que una variable X normal con mu=15 y sigma=5 valga menos de 13

```
pnorm(13,mean=15,sd=5)
# o más sencillo:
pnorm (13, 15,5)
```

¿Cuál es la probabilidad de que X valga más de 16? ¿Y de que X esté entre 10 y 20? ¿Para qué valor de X se tiene una probabilidad acumulada de 0.2, , es decir, Pr(X<x)=0.2? ¿Y para qué valor se tiene que la probabilidad acumulada por encima del mismo sea 0.2, es decir, Pr(X>x)=0.2? ¿Cómo se hallaría el valor anterior considerando la probabilidad que hay por debajo del mismo, es decir, Pr(X<x)=0.8?

```
Hallar Pr(|X-mu| < sigma), Pr(|X-mu| < 2*sigma) y Pr(|X-mu| < 3*sigma)
```

NÚMEROS ALEATORIOS

Para generar 1000 números de una distribución uniforme U(0,1) y posterior histograma (ver NOTA al final del documento), tenemos las siguientes líneas de código:

```
n <- 1000
x <- runif(n)
hist(x, frec=FALSE, col='light blue', main='Distribución Uniforme')
curve(dunif(x), add=T, col='red', lty=1, lwd=3)
```


Por defecto, los números aleatorios se generan según el método de Mersenne-Twister. Si deseamos generar el mismo conjunto de datos aleatorios, debemos indicar la semilla (seed) elegida, esto se puede conseguir con el siguiente comando

```
set.seed(149653)
```

Si los habitantes de un municipio son 26712, y deseamos realizar una m.a.s. de tamaño $20\,\mathrm{con}$ reemplazamiento, se puede ejecutar los siguientes comandos

```
set.seed(149653)

n <- 20

x1 <- runif(n)

x2<-round(26712*x1, digits=0)

x3<-sort(x2)

print(x3)

#save(x3, file=" uniforme.Rdata")
```

```
Para la realización de un m.a.s. también se puede aplicar el comando y \leftarrow sample(1:26712, size=20, replace = FALSE, prob = NULL) print(sort(y))
```

siempre que se disponga de una base de datos con todas las unidades de la población.

SIMULAR DISTRIBUCIONES

Con las siguientes líneas de código se generan 1000 números aleatorios de una normal N(0,1) y se realiza una gráfica

```
set.seed(149653)

n < 1000

x < rnorm(n)

hist(x, freq=FALSE, ylim=c(0,0.4), col='light blue', main='Distribución Normal')

<math>curve(dnorm(x), add=T, col='red', lty=1, lwd=3)
```


Para evaluar si los datos generados aleatoriamente se pueden considerar como procedentes de una distribución normal, podemos realizar los gráficos Q-Q y P-P. Los siguientes comandos

```
qqplot\ (qnorm(ppoints(1000)),\ x,\ pch=20,\ main\ =\ "Q-Q\ plot",\ ylab="datos\ observados",\ xlab="datos\ teóricos") qqline(x,\ distribution\ =\ qnorm,\ prob\ =\ c(0.25,\ 0.75),\ col\ =\ 2,lwd=3,\ qtype=7)
```

nos proporcionan el siguiente gráfico cuantil-cuantil (Q-Q plot)

El gráfico Q-Q plot representa los cuantiles observados $x_{(i)}$ frente a los cuantiles teóricos $F^{-1}(p_i)$, donde $p_i = \frac{i-0.5}{n}$ son las probabilidades acumuladas (generadas con ppoints) para $i=1,\ldots,n$.

Los comandos

```
z3<-pnorm(sort(x))
plot (ppoints(1000), z3, type = 'p', ylim = c(0, 1), pch=20, xlab = 'probabilidad teórica',
ylab = 'probabilidad empírica', main = 'P-P plot')
abline(0,1, col = 2, lwd=3)
```

nos proporciona la gráfica probabilidad-probabilidad (P-P plot) siguiente

El gráfico P-P plot representa las probabilidades acumuladas $F(x_{(i)})$ (empíricas) frente a las probabilidades acumuladas $p_i = \frac{i-0.5}{n}$ (teóricas) para i=1,...,n.

El procedimiento para generar valores de diversas variables, se puede realizar con los mismos comandos ya expuestos, pero tomando la distribución correspondiente.

COMPROBAR PROPIEDADES

```
Supongamos que X_i \sim N(\mu = 10, \sigma^2 = 4), i=1,...,n.

Comprobar que E[X_1 + \cdots + X_n] = n\mu y Var[X_1 + \cdots + X_n] = n\sigma^2

set.seed(149653)
vec <- sum(rnorm(50,10,2))
simul <- replicate(1000, vec )

mean(simul) \# próximo a 50*10
var(simul) \# próximo a 50*4
```

Para obtener los estimadores de máxima verosimilitud (MV) de los parámetros de determinadas distribuciones, podemos utilizar la librería "MASS" y si queremos obtener un estimador MV en condiciones generales debemos recurrir a la librería "bbmle".

ESTIMACIÓN PUNTUAL: Estimadores de máxima verosimilitud

En este apartado también optamos por generar valores aleatorios de determinadas distribuciones y solicitar los estimadores de máxima verosimilitud

Caso1: Distribución Normal

Generamos 100 valores aleatorios de una distribución normal $N(5,\,4)\,$ y después le indicamos que nos obtenga los estimadores de ML de $\,\mu\,$ y $\,\sigma\,$. Se consigue con los comandos

```
set.seed(1496)
x<-rnorm(100,5,2)
library(fitdistrplus)
fitdist(x, distr = "norm")</pre>
```

sus resultados son

estimate Std. Error mean 4.883205 1.989778 sd 0.1989778 0.1406984
$$\widehat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \widehat{\sigma} = \frac{1}{n} \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Caso2: Distribución Exponencial

Generamos 100 valores aleatorios de una distribución exponencial Exp(0.5) y después le indicamos que nos obtenga el estimador de ML de β . Se consigue con los comandos

```
set.seed(1496)
x<-rexp(100,0.5)
fitdist(x, distr = "exp")</pre>
```

su resultado es

rate 0.4800118 0.04800097
$$\hat{\beta} = \frac{1}{x}$$

Caso3: Distribución Gamma

Generamos 100 valores aleatorios de una distribución normal Ga(4,0.5) y después le indicamos que nos obtenga los estimadores de MV de α y β , respectivamente. Se consigue con los comandos

```
set.seed(1496)
x<-rgamma(100,4,0.5)
fitdist(x, distr = "gamma")
```

sus resultados son

estimate Std. Error shape 4.1279016 0.56176847 rate 0.5578038 0.08072361

Caso4: Distribución Binomial

Generamos 100 valores aleatorios de una distribución normal Bi(12, θ =0.3) y después le indicamos que nos obtenga el estimador de ML de θ . En este caso,

Se consigue con los comandos

set.seed(1496)
x<-rbinom(100,12,0.3)
fitdist(x, discrete = T, distr = "binom", fix.arg=list(size=12), start=list(prob=0.2))</pre>

su resultado es

prob estimate Std. Error 0.2924996 0.01313201 $\hat{p} = \frac{x}{n}$

EJERCICIOS:

1.- Simular 1000 valores de las siguientes distribuciones

```
Bi(n, p) \to Bi(12, 0.3),

P(\lambda) \to P(3.1),

BiNe(r, p) \to BiNe(4, 0.6),

Geo(p) \to Geo(0.35),

H(N, M, n) \to H(500, 200, 37),

N(\mu, \sigma^2) \to N(7.2, 6),

Ga(\alpha, \beta) \to Ga(11, 3),

Exp(\beta) \to Exp(1.5);

Be(\alpha, \beta) \to Be(2, 7),

U(a, b) \to U(5, 12)
```

comprobando que los datos simulados se pueden considerar que proceden de las correspondientes distribuciones.

2.- Hallar los estimadores MLE de la variable "peso" en el archivo de datos "HIPER200.RData" y comparar con al media y desv. típica. ¿Se puede considerar que la variable sigue una distribución normal (comprobar con histograma y Q-Q plot)? Filtrar las personas con hipertensión (variable es_hip=1) y analizar la normalidad para el peso de dichos individuos.

NOTA: La función hist() de R representa, por defecto, un gráfico similar a un histograma. Al ejecutar con la opción freq=TRUE, se utilizan las frecuencias absolutas (counts)

```
vec<-rnorm(40)
h<-hist(vec,freq=TRUE) # se representa h$counts</pre>
```

pero al especificar freq=FALSE, el gráfico que se obtiene es tal que el área del histograma es 1

```
h<-hist(vec,freq=FALSE) # observar que sum(h$density)>1
```

Si se desea representar un histograma con frecuencias relativas, habría que hacer

```
h <- hist(vec, freq=TRUE, plot=FALSE)
h$counts=h$counts/sum(h$counts)
plot(h)</pre>
```