Chapitre 2 : Intégrale sur un segment d'une fonction continue par morceaux

Toutes les fonctions considérées sont à valeurs réelles. a et b désignent deux réels, avec a < b

I Intégrale des fonctions en escalier

A) Subdivisions

On appelle subdivision de [a,b] toute suite finie $(a_0,a_1,...a_n)$ telle que $a=a_0 < a_1 < ... < a_n = b$.

Si $\sigma = (a_0, a_1, ...a_n)$ et $\sigma' = (a'_0, a'_1, ...a'_m)$ sont deux subdivisions de [a, b], on dit que σ' est plus fine que σ lorsque $\{a_0, a_1, ...a_n\} \subset \{a'_0, a'_1, ...a'_m\}$

Si $\sigma = (a_0, a_1, ... a_n)$ et $\sigma' = (a'_0, a'_1, ... a'_m)$ sont deux subdivisions quelconques de [a,b], il est clair qu'on peut toujours fabriquer une subdivision plus fine que σ' et que σ en réordonnant les points de l'ensemble $\{a_0, a_1, ... a_n\} \cup \{a'_0, a'_1, ... a'_m\}$.

B) Fonctions en escalier

On dit qu'une fonction f définie sur [a,b] est en escalier sur [a,b] s'il existe une subdivision $\sigma = (a_0, a_1, ... a_n)$ de [a,b] telle que f soit constante sur chaque intervalle ouvert $]a_{i-1}, a_i[$, i allant de 1 à n.

La subdivision σ est alors dite subordonnée à la fonction en escalier f.

On voit que si f est une fonction en escalier, et si σ est une subdivision subordonnée à f, alors toute subdivision plus fine que σ est subordonnée à la fonction f.

Comme une fonction en escalier sur [a,b] ne prend qu'un nombre fini de valeurs, elle y est bornée.

Etant données deux fonctions f et g en escalier sur [a,b], de subdivisions subordonnées respectives σ et σ' , toute subdivision σ'' plus fine que σ et σ' est subordonnée à la fois à f et à g. Il est alors clair que toute combinaison linéaire de f et g, ainsi que le produit fg, sont en escalier sur [a,b], de subdivision subordonnée σ'' .

De là, il résulte que l'ensemble des fonctions en escalier sur [a,b] (qui contient les fonctions constantes sur [a,b], donc en particulier la constante 1) est une sous algèbre de la \mathbb{R} -algèbre des fonctions définies sur [a,b] (et à valeurs dans \mathbb{R}).

C) Intégrale des fonctions en escalier

Soit f en escalier sur [a,b], et soit $\sigma = (a_0, a_1, ... a_n)$ une subdivision subordonnée à f. Notons, pour tout i de [1,n], y_i la valeur constante prise par f sur l'intervalle ouvert $[a_{i-1},a_i[$. Alors la valeur prise par le nombre $I(f,\sigma) = \sum_{i=1}^n (a_i - a_{i-1})y_i$ ne dépend pas du choix de la subdivision σ subordonnée à f.

Idée de démonstration :

On peut d'abord montrer aisément que si σ' se déduit de σ en ajoutant un point, alors $I(f, \sigma') = I(f, \sigma)$.

De là, on montre par récurrence sur le nombre de points ajoutés que si σ' est plus fine que σ , alors $I(f,\sigma') = I(f,\sigma)$.

Enfin, dans le cas général, on introduit une subdivision σ'' plus fine que σ' et σ , et on a alors $I(f,\sigma') = I(f,\sigma'') = I(f,\sigma)$.

On peut donc définir l'intégrale de f sur [a,b] comme étant la valeur de $I(f,\sigma)$, indépendante du choix de la subdivision σ subordonnée à f. Cette intégrale est notée

$$\int_{[a,b]} f$$
. Ainsi, avec les notations précédentes : $\int_{[a,b]} f = \sum_{i=1}^{n} (a_i - a_{i-1}) y_i$.

Cette définition correspond à une vision « géométrique » de l'intégrale : somme des aires algébriques des rectangles délimités par la courbe de f et l'axe Ox.

On peut remarquer au passage que l'intégrale d'une fonction constante sur [a,b] est k(b-a) où k est la valeur de cette constante.

Propriétés:

On montre aisément que cette intégrale des fonctions en escaliers a les propriétés suivantes : (f et g désignent deux fonctions en escalier sur [a,b], et λ et μ deux réels)

- Positivité : si $f \ge 0$ sur [a,b], alors $\int_{[a,b]} f \ge 0$
- Linéarité : $\int_{[a,b]} \lambda f + \mu g = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g$
- Additivité : Si a < c < b, alors $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$ (on vérifie aisément que f est bien en escalier sur [a,c] et [c,b]).
- Si $f \le g$ sur [a,b], alors $\int_{[a,b]} f \le \int_{[a,b]} g$ (propriété de croissance déduite de la linéarité et de la positivité)

II Fonctions intégrables

Soit f une fonction définie sur [a,b], que l'on suppose bornée. On peut donc introduire sup f et inf f.

Soit $\varepsilon^-(f)$ l'ensemble des fonctions φ en escalier sur [a,b] plus petites que f (c'est-à-dire telles que $\varphi \leq f$)

Soit $\varepsilon^+(f)$ l'ensemble des fonctions ψ en escalier sur [a,b] plus grandes que f (c'est-à-dire telles que $f \leq \psi$)

Les ensembles $\varepsilon^-(f)$ et $\varepsilon^+(f)$ sont non vides : $\varepsilon^-(f)$ contient la fonction constante égale à inf f, et $\varepsilon^+(f)$ la fonction constante égale à sup f.

Soit $A^{-}(f)$ l'ensemble des intégrales des fonctions en escalier de $\varepsilon^{-}(f)$.

Soit $A^+(f)$ l'ensemble des intégrales des fonctions en escalier de $\mathcal{E}^+(f)$.

Les ensembles $A^-(f)$ et $A^+(f)$ sont donc des ensembles non vides de réels, et de plus tout élément de $A^-(f)$ est inférieur à tout élément de $A^+(f)$: en effet, si φ et ψ sont deux fonctions en escalier sur [a,b] telles que $\varphi \leq f \leq \psi$, alors $\varphi \leq \psi$ et par croissance de l'intégrale des fonctions en escalier, on a $\int_{[a,b]} \varphi \leq \int_{[a,b]} \psi$.

Donc $A^-(f)$ admet une borne supérieure, notée $I^-(f)$, et $A^+(f)$ une borne inférieure, notée $I^+(f)$. Ainsi, $I^-(f) \le I^+(f)$.

Si il y a égalité entre ces deux bornes, on dit que f est intégrable sur [a,b], et on appelle l'intégrale de f sur [a,b] la valeur commune de ces bornes.

Dans le cas contraire, ou si f n'est pas bornée sur [a,b], on dira que f n'est pas intégrable sur [a,b].

Cette définition de l'intégrabilité est l'intégrabilité au sens de Riemann.

On peut noter que, selon cette définition, les fonctions en escalier sont bien intégrables sur [a,b], et que leur intégrale au sens de cette définition coïncide avec leur intégrale au sens de la définition du paragraphe précédent (en effet, il suffit de voir que, lorsque f est en escalier, f appartient à $\varepsilon^-(f)$ et à $\varepsilon^+(f)$...)

Enfin, si f est intégrable sur [a,b], son intégrale sur [a,b] est notée $\int_{[a,b]}^b f$, ou $\int_a^b f$ ou encore $\int_a^b f(t)dt$ (dans la dernière notation, t est une variable muette, elle peut prendre n'importe quel autre nom).

On voit que la définition correspond encore bien à une vision « géométrique » de l'intégrale : aire algébrique de la surface délimitée par la courbe de f et l'axe Ox.

III Fonctions continues par morceaux

A) Définition et généralités

Soit f une fonction définie sur [a,b]. On dit que f est continue par morceaux sur [a,b] s'il existe une subdivision $\sigma = (a_0, a_1, ... a_n)$ de [a,b] telle que :

Pour chaque i de 1 à n, f est continue sur l'intervalle ouvert a_{i-1} , a_i , admet une limite finie à droite en a_{i-1} et une limite finie à gauche en a_i .

La subdivision σ est alors dite subordonnée à la fonction continue par morceaux f. On voit que si f est continue par morceaux sur [a,b], et si la subdivision σ est subordonnée à f, alors toute subdivision plus fine que σ est subordonnée à la fonction f.

Il est clair que f est continue par morceaux sur [a,b] si et seulement si f ne présente qu'un nombre fini de points de discontinuité (voire aucun...), en lesquels f admets

néanmoins des limites finies à droite et à gauche (à droite seulement pour a et à gauche seulement pour b).

Soit f une fonction continue par morceaux sur [a,b], et soit $(a_0,a_1,...a_n)$ une subdivision subordonnée à f. Alors, pour chaque i de [1,n], la restriction de f à l'intervalle ouvert $]a_{i-1},a_i[$ est prolongeable par continuité en une fonction f_i continue sur le segment $[a_{i-1},a_i]$.

Il en résulte qu'une fonction continue par morceaux sur [a,b] y est bornée : en effet, avec les notations précédentes, pour chaque i de [1,n], la fonction f_i est continue sur le segment $[a_{i-1},a_i]$, donc bornée sur ce segment. Comme les points a_i sont en nombre fini, f est bornée sur [a,b], un majorant de |f| étant :

$$\max \biggl(\big| f(a_0) \big|, \big| f(a_1) \big|, \ldots \big| f(a_n) \big|, \sup_{[a_0,a_1]} \big| f_1 \big|, \sup_{[a_1,a_2]} \big| f_2 \big|, \ldots \sup_{[a_{n-1},a_n]} \big| f_n \big| \biggr)$$

On montre, comme pour les fonctions en escalier que toute combinaison linéaire ou produit de fonctions continues par morceaux sur [a,b] est encore continue par morceaux sur [a,b]. De là, on tire que les fonctions continues par morceaux sur [a,b] forment une sous algèbre de la \mathbb{R} -algèbre des fonctions définies sur [a,b].

B) Encadrement par des fonctions en escalier

Théorème 1:

Soit f une fonction continue par morceaux sur [a,b]. Alors, pour tout réel strictement positif ε , il existe une fonction en escalier φ sur [a,b] telle que $|f-\varphi| \le \varepsilon$.

Démonstration :

• Commençons par le cas où f est continue sur [a,b].

Soit $\varepsilon > 0$

Comme f est uniformément continue sur le segment [a,b] (théorème de Heine), il existe $\alpha > 0$ tel que :

$$\forall x \in [a,b], \forall x' \in [a,b], (|x-x'| < \alpha \Rightarrow |f(x) - f(x')| < \varepsilon)$$

On considère un entier naturel non nul n tel que $\frac{b-a}{n} < \alpha$, et la subdivision régulière $\sigma = (x_0, x_1, ... x_n)$ de [a, b] définie par :

$$\forall k \in [0, n], x_k = a + kh$$
, avec $h = \frac{b - a}{n}$ (pas de la subdivision régulière σ)

On considère alors la fonction φ en escalier définie par :

$$\forall k \in [1, n], \forall t \in [x_{k-1}, x_k], \varphi(t) = f(x_{k-1}) \text{ et } \varphi(b) = f(b).$$

Alors $|f - \varphi| \le \varepsilon$:

Soit $t \in [a,b]$

- Si t = b, alors $|f(b) \varphi(b)| = 0 \le \varepsilon$
- Sinon, il existe $k \in [1, n]$ tel que $t \in [x_{k-1}, x_k]$.

Alors $|f(t) - \varphi(t)| = |f(t) - f(x_{k-1})| < \varepsilon$, la dernière inégalité venant du fait que, pour $t \in [x_{k-1}, x_k[$, on a $|t - x_{k-1}| \le \underbrace{x_k - x_{k-1}}_{} < \alpha$

• Si maintenant f n'est que continue par morceaux :

On introduit une subdivision $\sigma = (a_0, a_1, ... a_m)$ subordonnée à f, et, pour chaque i de $[\![1,m]\!]$, on considère la fonction f_i comme introduite dans le \underline{A}), qui est continue sur le segment $[a_{i-1},a_i]$ et qui coı̈ncide avec f sur $]\![a_{i-1},a_i]$. Etant donné $\varepsilon>0$, on applique alors le résultat précédent à chaque fonction f_i pour construire, sur chaque segment $[a_{i-1},a_i]$ une fonction en escalier φ_i telle que $\forall t\in [a_{i-1},a_i], |f_i(t)-\varphi_i(t)| \leq \varepsilon$. On peut ensuite construire une fonction φ définie sur [a,b] par :

$$\forall i \in [0, m], \varphi(a_i) = f(a_i), \text{ et } \forall i \in [1, m], \forall t \in [a_{i-1}, a_i], \varphi(t) = \varphi_i(t).$$

Alors φ est évidemment en escalier sur [a,b], et $|f-\varphi| \le \varepsilon$.

Autre énoncé du théorème, plus commode pour la suite :

Théorème 1 : (variante)

Soit f une fonction continue par morceaux sur [a,b]. Alors, pour tout réel strictement positif ε , il existe deux fonctions en escalier φ et ψ sur [a,b] telles que :

$$\varphi \le f \le \psi$$
 et $\psi - \varphi \le \varepsilon$

Les deux énoncés reviennent au même, car si φ est une fonction en escalier telle que $|f-\varphi| \le \varepsilon$, alors les fonctions $\varphi' = \varphi - \varepsilon$ et $\psi' = \varphi + \varepsilon$ sont en escalier et on a $\varphi' \le f \le \psi'$ et $\psi - \varphi \le 2\varepsilon$, et inversement, si $\varphi \le f \le \psi$ et $\psi - \varphi \le \varepsilon$, alors évidemment $|f-\varphi| \le \varepsilon$.

C) Conséquence : intégrabilité

Théorème 2:

Toute fonction continue par morceaux sur [a,b] est intégrable sur [a,b].

Démonstration:

Soit f une fonction continue par morceaux sur [a,b].

Soit $\varepsilon > 0$. Selon le théorème précédent, on peut introduire deux fonctions en escalier φ et ψ sur [a,b] telles que $\varphi \le f \le \psi$ et $\psi - \varphi \le \varepsilon$.

Alors, en reprenant les notations de la définition du \underline{I} , $\varphi \in \varepsilon^-(f)$ et $\psi \in \varepsilon^+(f)$, on a donc $\int_{[a,b]} \varphi \leq I^-(f) \leq I^+(f) \leq \int_{[a,b]} \psi$.

Par linéarité et croissance des intégrales des fonctions en escalier, on a alors :

$$\int_{[a,b]} \varphi - \int_{[a,b]} \psi = \int_{[a,b]} \varphi - \psi \le \int_{[a,b]} \varepsilon = (b-a)\varepsilon$$

Donc
$$0 \le I^+(f) - I^-(f) \le (b - a)\varepsilon$$

Comme cet encadrement est valable quel que soit le réel $\varepsilon > 0$, il en résulte, par passage à la limite, que $I^+(f) - I^-(f) = 0$

Ainsi, par définition, f est intégrable sur [a,b].

IV Compléments hors programme

On dit qu'une fonction f définie sur [a,b] est réglée lorsque, pour tout réel strictement positif ε , il existe deux fonctions en escalier φ et ψ sur [a,b] telles que :

$$\varphi \le f \le \psi$$
 et $\psi - \varphi \le \varepsilon$.

Comme les fonctions en escalier sont bornées, il en résulte que toute fonction réglée est bornée. En regardant les résultat précédents, on remarque que le théorème 1 s'énonce alors ainsi : « toute fonction continue par morceaux sur [a,b] », et, en regardant la démonstration du théorème 2, on voit qu'on peut énoncer le théorème : « toute fonction réglée sur [a,b] est intégrable ».

On a donc les implications :

Continue par morceaux \Rightarrow réglée \Rightarrow intégrable \Rightarrow bornée.

Mais toutes les réciproques sont fausses :

• Exemple de fonction bornée non intégrable.

Soit f la fonction caractéristique de \mathbb{Q} sur [0,1] (c'est-à-dire f(x) = 1 si $x \in \mathbb{Q}$, 0 sinon)

Si φ est en escalier sur [0,1] et $\varphi \le f$, alors sur tout intervalle $]a_{i-1},a_i[$ d'une subdivision subordonnée à φ , la valeur constante prise par φ sera nécessairement inférieure ou égale à 0 puisque f prend la valeur 0 sur $]a_{i-1},a_i[$ (qui contient des irrationnels). Donc $I^-(f)=0$. De même, $I^+(f)=1$, d'où la non intégrabilité de f (au sens de Riemann).

• Exemple de fonction non continue par morceaux, même non réglée, mais intégrable :

Soit f définie sur [0,1] par $f(x) = \sin\frac{1}{x}$ si $x \neq 0$, 0 sinon. Déjà, f n'est pas continue par morceaux puisqu'elle n'a pas de limite en 0. De plus, on ne peut pas trouver deux fonctions en escalier φ et ψ sur [0,1] telles que $\varphi \leq f \leq \psi$ et $\psi - \varphi \leq 1$. En effet, comme f prend les valeurs -1 et 1 sur tout intervalle $[0,\alpha]$ avec $0 < \alpha \leq 1$, si deux fonctions en escalier φ et ψ encadrent f alors sur le premier intervalle $[0,a_1]$ d'une subdivision subordonnée à φ et ψ , les valeurs constantes prises par ces fonctions sont distantes d'au moins 2.

Cependant, soit ε tel que $0 < \varepsilon < 1$. Alors f restreinte à $[\varepsilon,1]$ est continue, donc encadrable, sur cet intervalle, par deux fonctions en escalier φ et ψ sur $[\varepsilon,1]$, distantes d'au plus ε . Si on prolonge φ et ψ sur [0,1] en prenant $\varphi(t) = -1$ et $\psi(t) = 1$ pour $t \in [0,\varepsilon[$, alors il est clair que φ et ψ sont en escalier sur [0,1], que $\varphi \le f \le \psi$, et que :

$$\int_{[0,1]} \psi - \int_{[0,1]} \varphi = \int_{[0,\varepsilon]} \psi - \varphi + \int_{[\varepsilon,1]} \psi - \varphi \le 2\varepsilon + (1-\varepsilon)\varepsilon \le 3\varepsilon$$

D'où, comme dans la fin de la démonstration du théorème $2: I^+(f) - I^-(f) = 0$.

• Exemple de fonction non continue par morceaux, qui est pourtant réglée.

Soit f définie sur [0,1] par
$$f(x) = \frac{1}{\left[\frac{1}{x}\right]}$$
 si $x \neq 0$, 0 sinon.

Alors f n'est pas continue par morceaux, car elle a une infinité de points de discontinuité (les $\frac{1}{n}$ pour $n \in \mathbb{N} \setminus \{0\}$). Cependant, on peut facilement l'encadrer à n'importe quel ε près par des fonctions en escalier (voir sur un graphique : pour n assez grand (tel que $\frac{1}{n} < \varepsilon$), on encadre f sur $\left[0, \frac{1}{n}\right]$ par les constantes 0 et $\frac{1}{n}$, et on conserve f sur $\left[\frac{1}{n}, 1\right]$)

Ainsi,
$$f$$
 est réglée, et aussi intégrable. (d'intégrale $I = \frac{\pi^2}{6} - 1$).