MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 3

Linear Algebra

January 31, 2019

- 1. True or False? Give justifications.
 - (a) Let A be an $m \times n$ matrix. Then there exist **b** and **b**' such that $A\mathbf{x} = \mathbf{b}$ has a unique solution but $A\mathbf{x} = \mathbf{b}'$ has infinitely many solutions.
 - (b) Let \mathbf{x} and \mathbf{y} be nonzero vectors in \mathbb{R}^n such that $\mathbf{x}^T\mathbf{y} = 0$. Then \mathbf{x} and \mathbf{y} are linearly independent (LI).
 - (c) Let S_1, S_2 and S_3 be distinct subsets of \mathbb{R}^n such that $\mathrm{span}(S_1 \cup S_2) = \mathrm{span}(S_1 \cup S_3)$. Then $\operatorname{span}(S_2) = \operatorname{span}(S_3).$
 - (d) The column spaces of A and rref(A) are equal.

Solution: a) False. Let $S_H = \{x | A\mathbf{x} = \mathbf{0}\}$. If $A\mathbf{x} = \mathbf{b}$ is consistent then $S = \{x | A\mathbf{x} = \mathbf{b}\}$ $S_H + y$ for some $y \in S$.

- b) True. Since \mathbf{x}, \mathbf{y} are nonzero vectors and not LI implies $\mathbf{x} = \alpha \mathbf{y}$ and $\mathbf{y} = \beta \mathbf{x}$ for nonzero scalars α and β .
- c) False. For example consider n = 2, $S_1 = \{[1, 0]^T\}$, $S_2 = \{[1, 1]^T\}$ and $S_3 = \{[1, 2]^T\}$. d) False. Consider $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. Then $\text{rref}(A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- 2. Check whether the set $S = \left\{ \begin{array}{c|c} 3 \\ 0 \\ -3 \end{array}, \begin{array}{c|c} 1 \\ 2 \\ 2 \end{array}, \begin{array}{c|c} 2 \\ -2 \\ 3 \end{array}, \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array} \right\}$ is LI.

Solution: Yes it is LI.

- 3. Let S be a subspace of \mathbb{R}^4 and $\mathbf{x}, \mathbf{y} \in S$ be LI.
 - (a) Show that if $\mathbf{u} \in \mathbb{R}^4 \setminus S$ then $\{\mathbf{x}, \mathbf{y}, \mathbf{u}\}$ is LI.
 - (b) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4 \setminus S$ are LI then does it imply that $\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ is LI?

Solution: a) If there exist c_1, c_2, c_3 not all zeros, such that $c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{u} = \mathbf{0}$, then $c_3 \neq 0$, otherwise it will contradict that $\mathbf{x}, \mathbf{y} \in S$ are LI. But then $\mathbf{u} = (-\frac{c_1}{c_3})\mathbf{x} + (-\frac{c_2}{c_3})\mathbf{y}$ which will contradict $\mathbf{u} \in \mathbb{R}^4 \setminus S$.

b) No. For example take
$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ and $S = \text{span}\{\mathbf{x}, \mathbf{y}\}$.

4. Let $A \in \mathcal{M}_n(\mathbb{R})$. Show that $\operatorname{row}(A^T A) = \operatorname{row}(A)$, that is, $A^T A$ and A are row equivalent.

Solution:
$$A\mathbf{x} = \mathbf{0} \Rightarrow A^T A \mathbf{x} = \mathbf{0}$$
. Also $A^T A \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x}^T A^T A \mathbf{x} = \mathbf{y}^T \mathbf{y} = 0$ which implies $\mathbf{y} = A \mathbf{x} = \mathbf{0}$.

Remark: The above result is also true for any $m \times n$ matrix A.

If m < n then add (n - m) zero rows to A to obtain $B = \begin{bmatrix} A \\ \mathbf{0} \end{bmatrix}$, then $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent and by the above argument $B\mathbf{x} = \mathbf{0}$ and $A^T A \mathbf{x} = \mathbf{0}$ are equivalent. Hence B and $A^T A$ are row equivalent, which will imply, $\operatorname{row}(A) = \operatorname{row}(A^T A)$.

If n < m then add (m - n) zero rows to $A^T A$ to obtain $C = \begin{bmatrix} A^T A \\ \mathbf{0} \end{bmatrix}$.

Then $C\mathbf{x} = \mathbf{0}$ and $A^T A \mathbf{x} = \mathbf{0}$ are equivalent, and $C\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{0}$ are equivalent. Hence A and C are row equivalent and $\operatorname{row}(A) = \operatorname{row}(A^T A)$.

5. Show that the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ are LI if and only if $P\mathbf{x}, P\mathbf{y}, P\mathbf{z}$ are LI for any $n \times n$ invertible matrix P.

Solution: For any $c_1, c_2, c_3, c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{z} = \mathbf{0}$ obviously implies $P(c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{z}) = \mathbf{0}$. Conversely $P(c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{z}) = \mathbf{0}$ implies $c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{z} = \mathbf{0}$, (since for an invertible $P, P\mathbf{x} = \mathbf{0}$ has the trivial solution). Since $P(c_1\mathbf{x} + c_2\mathbf{y} + c_3\mathbf{z}) = c_1P\mathbf{x} + c_2P\mathbf{y} + c_3P\mathbf{z}$, the result follows.

- 6. Let $A \in \mathcal{M}_5(\mathbb{R})$ be such that $\operatorname{rref}(A)$ has the 1^{st} , 3^{rd} and the 5^{th} column as the only pivot columns.
 - (a) Find two LI solutions of $A\mathbf{x} = \mathbf{0}$.
 - (b) Show that the columns \mathbf{a}_1 , \mathbf{a}_3 and \mathbf{a}_5 (the 1^{st} , 3^{rd} and the 5^{th} column of A) are LI and spans the column space of A.
 - (c) Can the sets $\{\mathbf{a}_1, \mathbf{a}_2\}$, $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4\}$ and $\{\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5\}$ be LI?

Solution: a)
$$\mathbf{u} = \begin{bmatrix} -\tilde{a}_{12} \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -\tilde{a}_{14} \\ 0 \\ -\tilde{a}_{24} \\ 1 \\ 0 \end{bmatrix}$, where \tilde{a}_{ij} is the (i,j) th entry of \tilde{A} .

- b) That the columns \mathbf{a}_1 , \mathbf{a}_3 and \mathbf{a}_5 are LI follows from Question 5.
- By inspection one can check that $\tilde{\mathbf{a}}_2 = \tilde{a}_{12}\tilde{\mathbf{a}}_1$ and $\tilde{\mathbf{a}}_4 = \tilde{a}_{14}\tilde{\mathbf{a}}_1 + \tilde{a}_{24}\tilde{\mathbf{a}}_3$. Hence again by the result of Question 5, $\mathbf{a}_2 = \tilde{a}_{12}\mathbf{a}_1$ and $\mathbf{a}_4 = \tilde{a}_{14}\mathbf{a}_1 + \tilde{a}_{24}\mathbf{a}_3$ and the result follows.
- c) The sets $\{\mathbf{a}_1, \mathbf{a}_2\}$, $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4\}$ will not be LI follows from part b). $\{\mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5\}$ will be LI if $\tilde{a}_{14} \neq \mathbf{0}$.
- 7. True or False? Give justifications.
 - (a) If $\{\mathbf{x},\mathbf{y}\}$ and $\{\mathbf{u},\mathbf{v}\}$ are two different LI subsets of \mathbb{R}^2 , then $\{\mathbf{x},\mathbf{u}\}$ and $\{\mathbf{y},\mathbf{v}\}$ are also LI sets.

(b) If
$$\left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \right\}$$
 is LI in \mathbb{R}^3 then $\left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\}$ is LI in \mathbb{R}^2 .

- (c) If S is a subspace of \mathbb{R}^n then $\mathbf{x} + S$ is a subspace if and only if $\mathbf{x} \in S$.
- (d) If the diagonal entries of a 4×4 upper triangular matrix A are 1, 2, 3 and 4 then $S_1 = \{ \mathbf{x} \in \mathbb{R}^4 \mid A\mathbf{x} = 2\mathbf{x} \}$ is a subspace of \mathbb{R}^4 but $S_2 = \{ \mathbf{x} \in \mathbb{R}^4 \mid A\mathbf{x} = 5\mathbf{x} \}$ is not.

8. Let
$$S = \left\{ \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} a \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \right\}$$
. Find the values of a for which $\operatorname{span}(S) \neq \mathbb{R}^3$.

- 9. If a diagonal entry of a 3×3 upper triangular matrix is zero, then show that the columns are linearly dependent.
- 10. True or False? Give justifications.
 - (a) If S is a subspace of \mathbb{R}^n of dimension n, then $S = \mathbb{R}^n$.
 - (b) For any two matrices A and B for which AB is defined, $rank(AB) \leq min(rank(A), rank(B))$.
 - (c) If $C = [A \mid B]$, then $rank(C) \le rank(A) + rank(B)$.
 - (d) If $C = \begin{bmatrix} A & B \\ \mathbf{0} & D \end{bmatrix}$, then $\operatorname{rank}(C) \ge \operatorname{rank}(A) + \operatorname{rank}(D)$.

Solution:

- (a) True. If $y \in \mathbb{R}^n$ but not in S, then for any basis \mathbb{B} of S, $\mathbb{B} \cup \{y\}$ is LI.
- (b) True. $row(AB) \subseteq row(B)$ and $col(AB) \subseteq col(A)$.
- (c) True. Let $\operatorname{rank}(A) = k$, $\operatorname{rank}(B) = r$ and let the columns a_{i_1}, \ldots, a_{i_k} of A form a basis of $\operatorname{col}(A)$ and the columns b_{j_1}, \ldots, b_{j_r} of B form a basis of $\operatorname{col}(B)$. Then $a_{i_1}, \ldots, a_{i_k}, b_{j_1}, \ldots, b_{j_r}$ spans $\operatorname{col}[A|B]$. Hence $\operatorname{rank}[A|B] \leq r + k$.
- (d) True. If $\operatorname{rank}(A) = k$ and if the columns $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of A forms a basis of $\operatorname{col}(A)$ then the corresponding columns (i_1, i_2, \ldots, i_k) in C are LI. If $\operatorname{rank}(D) = r$ and the columns $d_{j_1}, d_{j_2}, \ldots, d_{j_r}$ of D forms a basis of $\operatorname{col}(D)$ then the corresponding columns $(m+j_1, m+j_2, \ldots, m+j_r)$ (if A has m columns) in C are LI. It can be easily checked that the columns $i_1, i_2, \ldots, i_k, m+j_1, m+j_2, \ldots, m+j_r$ of C are LI. Hence $\operatorname{rank}(C) \geq r+k$.
- 11. If $\operatorname{rank}(A) = \operatorname{rank}(A^2)$ then show that $\operatorname{rank}(A^2) = \operatorname{rank}(A^3)$. Is $\operatorname{rank}(A^5) = \operatorname{rank}(A^6)$? Hint: Note that $\operatorname{col}(A^2) \subseteq \operatorname{col}(A)$, $\operatorname{rank}(A^2) = \operatorname{rank}(A)$ implies $\operatorname{col}(A^2) = \operatorname{col}(A)$. Again note that $\operatorname{col}(A^3) \subseteq \operatorname{col}(A^2)$, show $\operatorname{col}(A^3) = \operatorname{col}(A^2)$, and so on.

Solution: Note that $\operatorname{col}(A^2) \subseteq \operatorname{col}(A)$. $\operatorname{rank}(A^2) = \operatorname{rank}(A)$ implies $\operatorname{col}(A^2) = \operatorname{col}(A)$. Again note that $\operatorname{col}(A^3) \subseteq \operatorname{col}(A^2)$. If $y \in \operatorname{col}(A^2)$, then $y = A^2z = A(Az)$ for some $z \in \mathbb{R}^n$. Since $\operatorname{col}(A^2) = \operatorname{col}(A)$, $Az = A^2u$ for some $u \in \mathbb{R}^n$. Hence $y = A(A^2u)$ for some $u \in \mathbb{R}^n$, that is $y \in \operatorname{col}(A^3)$. Hence $\operatorname{col}(A^3) = \operatorname{col}(A^2)$.

By similar argument one can show that $\operatorname{rank}(A^k) = \operatorname{rank}(A^{k+1})$ for all $k \in \mathbb{N}$. (One could have argued similarly by considering the row space.)

12. (a) Show that for any two $m \times n$ matrices A and B, $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. Hint: $A+B = [A|B] \begin{bmatrix} I_n \\ I_n \end{bmatrix}$.

 $\textbf{Solution:} \ \operatorname{Since} \ A+B=[A|B]\left[\begin{array}{c} I_n \\ I_n \end{array}\right], \ \operatorname{rank}(A+B) \leq \operatorname{rank}(A|B] \leq \operatorname{rank}(A) + \operatorname{rank}(B).$

(b) Hence show that if A is an $m \times n$ matrix and B is the matrix obtained by changing exactly k entries of A, then $\operatorname{rank}(A) - k \leq \operatorname{rank}(B) \leq \operatorname{rank}(A) + k$.

Hint: B = A + C, where C has exactly k nonzero entries.

Solution: Since C has at most k nonzero rows, $\mathrm{rank}(C) \leq k$, Hence $\mathrm{rank}(A+C) \leq \mathrm{rank}(A) + k$.

To show the other inequality, note that A = B + (-C).

**** End ****