fe_find_ind	ex (node_lis	\rightarrow retur	ns index	
	1×8 vector,	connectivit	y for single	element
	24 vector,	global dof	ID's for each	node for
	single elem			
Notes: . The goal is	s to populate	the vector	index.	
· Using two	for loops u	ue populate	index from	the zero
			one of one.	
	ue ID from by 3 or nd		s you the glod	bal dof ID
for that	- particular	node ID. Thi		
	nat ID in in		, so the nex	t two ID's
For the	rode are components.			
5.) Repeat	For other sev	en nodes in	element.	
	de 1 node:		Т	
	1 global x, y for node	, 2 dof ID'S		

ex										
		ode ID								
X cc	MPON.	ent wa	vid 6	e 17	x 3 = 9	5 I. T	he g	lobal	ID'S	for
the	Y and	2 CON	npone	nts 1	Pluor	6e	52 a	nd 53	•	
			; cc	orrespo	onds to	con	npone	۸+		
		4	of	node.	list.	recto.	Γ,			
		0			4		6 7	-		
nod	e_list	= [17	3,	21, 5	, 7,	10, 1	12,1	7 '		
(3 × 1					7	(P)			
		× YV	7.	glol	eal comp	onent	ID'S			
			My M		Τ					
ind	6X =	51,5	2,53,]						
24,	×	0	2	1/ -	orrespo	200	0 (0	IMPO NO	n.+	
				~ K C	ingex	veot	o T.	1 01101	V (