Université Paris - Dauphine

Processus Aléatoires Discrets

Examen du ete-2007

Aucun document n'est autorisé. Durée 2 heures.

- 1. Un message codé de façon binaire est transmis à travers un réseau. Chaque bit est transmis avec probabilité d'erreur :
 - égale à a pour un passage de 0 à 1 ($a \neq 0$ et 1),
 - égale à b pour un passage de 1 à 0 ($b \neq 0$ et 1),

Le résultat de la transmission au n-éme relais est noté X_n . On suppose que les relais se comportent indépendamment les uns des autres et que les erreurs sur les bits sont indépendantes. On souhaite calculer la taille critique du réseau au dela de laquelle la probabilité de recevoir un message erroné est supérieure à ϵ .

- (a) Montrer que (X_n) est une chaîne de Markov, donner sa matrice de transition Π .
- (b) La chaine est-elle irréductible? récurrente?
- (c) À l'aide de deux suites de Bernoulli $(U_n)_n$ et (V_n) indépendantes de probabilité de succés a et b respectivement, écrire X_n comme une suite récurrente aléatoire.
- (d) Soit $g_n = \mathbb{P}(X_n = 0)$. Montrér que

$$g_{n+1} = (1 - a)g_n + b(1 - g_n)$$

et calculer g_n en fonction de g_0 .

(e) Calculer

$$r_n(0) = \mathbb{P}(\text{le message } X_n \text{ ne soit pas erroné}|X_0 = 0)$$

et

$$r_n(1) = \mathbb{P}(\text{le message } X_n \text{ ne soit pas erron\'e}|X_0 = 1)$$

(f) Supposons maintenant de envoyer un message de longeur l (l bits) $X_0 = (X_0^1, \ldots, X_0^l)$. Alors $X_n = (X_n^1, \ldots, X_n^l)$ sont indépendantes avec la même loi. Soit r_n la probabilité pour que le message X_n ne soit pas erroné. Montrer que

$$r_n \ge \left[\alpha + (1-\alpha)(1-a-b)^n\right]^l$$
 où $\alpha = \inf\left\{\frac{a}{a+b}, \frac{b}{a+b}\right\}$

en deduire la taille maximale du réseau n_c pour avoir $r_n \geq 1 - \epsilon$.

(g) Déterminer Π^n et les mesures invariantes éventuelles.

(h) Soit, pour
$$x, y \in \{0, 1\}$$
, $N_n(x, y) = E_x \left[\sum_{k=1}^n \mathbf{1}_{\{X_k = y\}} \right]$. Calculer $N_n(x, y)$ puis $\lim_{n \to \infty} \frac{N_n(x, y)}{n}$.

2. (Temps d'attente avant l'apparition d'une séquence).

Soit $(X_n; n \ge 1)$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p \in (0,1)$: $\mathbb{P}(X_n = 1) = 1 - \mathbb{P}(X_n = 0) = p$. On désire calculer le temps moyen avant la première apparition d'une séquence de longueur trois donnée. Pour cela, on pose : $\tau_{ijk} = \inf\{n \ge 3; (X_{n-2}, X_{n-1}, X_n) = (i, j, k)\}$ pour $i, j, k \in \{0, 1\}$.

- (a) Montrer que τ_{ijk} est un temps d'arrêt (par rapport à une filtration que l'on précisera).
- (b) Montrer que $Z_n = (X_{n-2}, X_{n-1}, X_n)$ est une chaine de Markov irreductible sur $M = \{0, 1\}^3$. En deduire que $\mathbb{E}(\tau_{i,j,k}) < +\infty$.

- (c) On pose $S_0 = 0$ et $S_n = (S_{n-1} + 1) \frac{X_n}{p}$ pour tout $n \ge 1$. Montrer que $(S_n n; n \ge 0)$ est une martingale.
- (d) Calculer $E[\tau_{111}]$ (on utilisera le theoreme d'arrêt de Doob).
- (e) Calculer $P(\tau_{111} > \tau_{110})$.