Анна Прилуцкая

Первая часть задачи

Поляроид Глана-Тейлора

По условию задачи:

$$\lambda = 0.5$$
 MKM, $n_{\rm o} = 1.665$, $n_{\rm e} = 1.49$.

Для того, чтобы рассчитать угол в поляроиде, воспользуемся формулой:

$$\theta = \frac{\sqrt{(n_{\rm o}^2 - 1)} + \sqrt{(n_{\rm e}^2 - 1)}}{2},$$

следовательно, $\theta = 50.6^{\circ}$.

Чтобы гарантировать полное отражение обыкновенного луча и пропускание необыкновенного луча, угол i_2 (Puc.1) должен подчиняться неравенству:

$$\arcsin \frac{1}{n_{\rm o}} < i_2 < \arcsin \frac{1}{n_{\rm e}}.$$

Рис. 1

Следовательно, $36^{\circ} < i_2 < 42^{\circ}$.

Фазовая пластинка $\lambda/4$

По условию задачи:

$$\lambda = 570 \text{ HM}, \ n_{\rm o} = 1.545028, \ n_{\rm e} = 1.554178.$$

Вычислим разность толщин $(d = d_1 - d_2)$ двух кварцевых пластинок для фазовой пластинки $\lambda/4$ по формуле:

$$\Delta \phi = \frac{2\pi (n_{\rm o} - n_{\rm e})(d_1 - d_2)}{\lambda}.$$

Так как для пластинки $\lambda/4$ разность фаз $\Delta\phi=\pi/2$, то d=15.57 мкм. С какой точность необходимо выдержать эту разницу, чтобы ошибка в набеге фазы была менее $\pi/100$?

Для того, чтобы ответить на этот вопрос, добавим в выражение для разности фаз ошибку в разности толщин Δd и ошибку в набеге фазы $\Delta \phi^*$:

$$\Delta \phi + \Delta \phi^* = \frac{2\pi (n_{\rm o} - n_{\rm e})(d + \Delta d)}{\lambda}.$$

Потом выразим $\Delta \phi^*$ и потребуем, чтобы она была меньше, чем $\pi/100$:

$$\Delta \phi^* = \frac{2\pi(n_{\rm o} - n_{\rm e})(d + \Delta d)}{\lambda} - \Delta \phi < \pi/100.$$

Далее из полученного неравенства выражаем ошибку в разности толщин двух пластинок:

$$\Delta d < (\Delta \phi + \pi/100) \frac{\lambda}{2\pi (n_0 - n_e)} - d.$$

Откуда получаем, что $\Delta d < 0.31$ мкм.