Konvergenz im R"

(a(k)) heißt beschränkt

(a(h)) heißt Konverent

Schreibt

Cauchy laite ium

Bolzaco - Weierstraß

Teilfolge

C=> ∃C≥O ∀k∈N: || a(k) || ≤ C.

x & Rh height ein Hautungs wert von (a(k))

(=) ∃a ∈ R": || a(k)- a|| -> 0 (k-100)

(=) YE > 0: a(k) & U6(x0) für un endlich viele k & M.

Hie heißt a de Grenzwet von (a(1)) und men

=) lot (a(k)) nicht konveyant, so helpt (a(k)) divosent

 $\alpha = \lim_{k\to\infty} a^{(k)}$ od $a^{(k)} \to \alpha (|x-x|)$ od $a^{(k)} \to \alpha$

(a(k)) is} Louvegut (=> YE>O] ko ENK, (≥ ko: || a(k) - a(1) || (E.

Ist (a(h)) beschräckt, so enthält (a(h)) eine konvegente

Se: $(a^{(k)})$ eix Folse im \mathbb{R}^n also $(a^{(k)}) = (a^{(n)}, a^{(2)}, ...)$ mit $a^{(k)} = (a^{(k)}, ..., a^{(k)}) \in \mathbb{R}^n$ $(k \in \mathbb{N})$

Ist (a(k))
Teilfolse

Für a =

Ist (a(k)) Iconveyent, so is 2 (a(k)) beschränkt und jede Teilfolge von (a(k)) Iconveyirt segen lim a(k)

Für a = (a, ..., a,) ER:

 $(a^{(k)}) \xrightarrow{(k-3\infty)} a \iff \forall j \in \{1, ..., n\} : \alpha_j^{(k)} \xrightarrow{(k-3\infty)} \alpha_j$

Konvegenz im R" entsprich also Ronvergenz de Koordincten

ACR" x₀ ER heift Häutungspunkt von A

(=) Es existing the exert Folge $(a^{(k)})$ in $A \setminus \{x_o\}$ mit $a^{(k)} \xrightarrow{(k\to\infty)} a$

A ist abseschlossen

Jede Härtrigspuhlt

von Agchört

zu A

Tür jede leonvegente Folge

(a(k)) in Agilt:

lim a(k) EA

A isd Icompolet

(=) Dede Folge in A enthalt eine Konvegente Teilfolge, deren Grenzwert zu Agehort