

Data Visualization CSE3020

Prof. Ramesh Ragala

January 18, 2018

- Visualization Application
 - Conceptual perspective
 - Practical Perspective
- The conceptual description of the structure of visualization applications includes:
 - Data Importing
 - Data Filtering and enrichment
 - Data Mapping
 - Data Rendering
- The role of visualization is to create images that convey various types of insight into a given process

Visualization Pipeline

■ Visualization Pipe:

Figure Functional view on the visualization pipeline.

DATA ACQUISITION

- The Visualization Process consists of sequence of steps or operations, that manipulate the data produced by the process under study and ultimately deliver the desired images.
- Divide and conquer strategy in designing process of data visualization → manage the complexity of the whole process.
- The visualization process can be treated as a pipeline \rightarrow consisting of several stages \rightarrow each stage modelled by specific data transformation operation.
- Input data \rightarrow flows through many stages in pipeline \rightarrow output image
- the sequence of data transformations that take place in the visualization process is often called the visualization pipeline.

- The Visualization Pipeline has four stages:
 - Data Importing
 - Data Filtering and enrichment
 - Data Mapping
 - Data Rendering
- Conceptual representation of visualization pipeline:
 - \blacksquare $V_{is}:D_i \rightarrow I$
 - D ; the all possible types of raw input data
 - \blacksquare I \rightarrow set of produced images
- Insight function: A process, which maps from the output image to the input data → inverse direction to the V_i function.
 - Insight : $I \rightarrow D_i$
- lacksquare insight function o mapping from images to raw data
- Insight maps from the produced images to the actual questions the user has about the raw data, which are not necessarily one-to-one with the data itself.

- When visually monitoring a live process that generate data, the user may want to steer the process on a given path by changing its parameters.
- i.e loop between the application input and visualization output.
 → if the complete round trip is executed in seconds → the user effectively steers the process at hand by means of visual feedback → Computational Steering.
- some of visualization software, which has computational steering are:
 - SciRUN, CUMULVS and CSE
- For, real-world complex application, we are not able to construct the desired visualization function in single step. it is not easy.
- So the combination of sub-functions in each step in visualization pipeline gives the desired visualization V_{is} .

simple visualization procedure for complex applications

Figure The visualization process seen as a composition of functions.

- some of most important factors in complex visualization of real time scenario for qualitative and quantitative are:
 - Domain Specific Knowledge of user
 - The procedure used in visualization pipeline
 - \blacksquare Type of user interaction \rightarrow interaction of various parameters

■ Data Import:

- Identify the representation of original information
 - Continuous
 - Discrete
- Most probably, the datasets are of type, Uniform, Structured, Unstructured and rectilinear.
- The function for importing data is: Import : $D_I \rightarrow D$
- Practically, importing data means choosing a specific dataset implementation and converting the original information D_I to the representation implied by the chosen dataset type D.
- Import is a One to One mapping \rightarrow reading the input from
 - from External Storage: files or database
 - from Live streams: Measuring devices, scanner, analog-to-digital converter.
- data importing can imply the translating of
 - different data storage formats
 - resampling the data from the continuous to the discrete domain
- one resolution to another **Example:** Plot on continuous data Prof. Ramesh Ragala

- The choice made during data import determines:
 - Quality of resulting images
 - Effectiveness of Visualization
- if the import data is incorrect, incomplete, uncertain, low quality
 - ightarrow restoring the data quality later is difficult
- more information has to be given in data import step.

■ Data Filtering and Enrichment:

- decides which are the important feature
- Imported data is not one to one in many cases.
- lacktriangleright Distill the raw dataset into more appropriate representation ightarrow Enriched Datasets
- Enriched datasets → Encode the features of interest in more appropriate form for visualization and analysis. → process called Data filtering or Data Enriching
- simply
 - Data is filtered to extract relevant information
 - Data is enriched with high level information that supports a given task.
- The function representation of data filtering:
 - \blacksquare Filter : D \rightarrow D
- Here input and output of filtering function are datasets. \rightarrow filtering is a data manipulation function.

- Data filtering is necessary in many situations:
 - See what is relevant:
 - **subset of interest** that is relevant for a task.
 - subset of interest → selection can be done in spatial domain or attribute value domain or combination of both.
 - Handle large data:
 - If the data is large \rightarrow efficient processing is difficult \rightarrow for interactive visualization applications.
 - Example: Very Big Visualizing 2D dataset which has color attributes specified for cell.
 - If the input datasets exceed a certain size, ???
 - Solution 1 is Zooming: → subsampling of input image → displays a only a subset of its pixels that captures the overall characteristics of the complete dataset
 - Solution 2: **Panning**: Selecting the subset of the input images at its original resolution.
 - Ease of Use:
 - datasets are transformed from one form to another form, which fits best for visualization.

■ Data Mapping:

- Filtering operation produces enriched data → directly represents the features of interest for exploration
- In this data mapping, the task is → map the features of interest to the visual domain → associating elements of visual domain with data elements in enriched data.
- The visual domains consists of visual features
- The mathematical function for this mapping process is
 - $\blacksquare \ \mathsf{Mapping}: \ \mathsf{D} \to \mathsf{D}_V$
- The Mapping mainly depends upon,
 - Application
 - Purpose of Visualization
 - Designer's preferences for that visualization

■ Data Mapping:

- Reasons for data mapping:
 - Mapping encodes explicit design decisions about what and how, we want to visualize
 - Mapping typically converts "invisible" data to "visible" representations.
 - \blacksquare Mapping \to the visible attributes that encodes actual data
 - \blacksquare Rendering \to the remaining visual attributes that users can tune according to 3D scene
 - \blacksquare simply rendering \to 2D or 3D visualization
 - Modularity → Modularise the visualization pipeline
- Desirable mapping properties:
 - Data mapping is arguably the visualization pipeline step that is most characteristic for the visualization process.
 - Importing and Filtering data → resampling, projection, restriction and many other signal processing operations.
 - Rendering → applying computer graphics techniques → coordinate transformation, lighting, texture mapping and rasterization.

- Data mapping: targets → invisible data to visible data and multidimensional to low-dimensional
- To do this Data mapping function should satisfy several desirable properties.
- Data mapping should follow the injective property
- Different Values \rightarrow should map different visual variables
- Different values $x_1 \neq x_2 \in D$ (dataset) to be visualized should be mapped to different visual attribute values $Map(x_1) \neq Map(x_2)$ in the visual feature dataset D_V
- This property is essential for the design of an effective visualization.
- After the feedback given by user \rightarrow invert function \rightarrow to adjust the data inorder to produce more effective visualization.
- **Filter** and **Import** functions are may not be invertible practically. → **Map** and **Render** are invertible.

Inverting the mapping:

- Map invertible is not enough in mathematical view
- We must know how, and be able, to do the inversion mentally when we look at the pictures
- We must know the significance of the visual attributes used in the rendering.
- we must know how color, shape, position, texture, and the other visual attributes used in the mapping relate to data attributes of interest.
- This knowledge can be implicit, encoded in well-established conventions that are assumed to be known by all our users.
- weather maps \rightarrow wind speed and direction, sun intensity, type and strength of rain fall. \rightarrow uses different icons.
- $lue{}$ cartographic maps ightarrow North direction on top of the map
- \blacksquare shades of blue \rightarrow water, lakes ...
- $lue{}$ Color legend ightarrow color mapping to values ightarrow color-to-value