Theo III - Blatt 2

Benjamin Möller & Nick Daiber

November 24, 2024

3

1

"⇒"

wenn $D_i = d(i)$ gilt $d(1) = 0 = D_1$

"⇐'

sei Sei $D_i = d(i)$ ein Distanzvektor mit $D_1 \neq 0$, dann ist $d(1) \neq 0$, aber der kürzeste weg $i \Rightarrow i$ ist immer 0. Dies ist ein widerspruch zur Annahme

 $\mathbf{2}$

Sei D_i ein Distanzvektor, dann gilt nach Annahme $d(i) = \inf\{c(\pi)\}$. Da der Pfad $1 \Rightarrow j \Rightarrow i \in \pi$ gitl $c(1 \Rightarrow j) + \gamma(j,i) \in \{c(\pi)\} \Rightarrow \inf\{c(\pi)\} \geq c(1 \Rightarrow j) + \gamma(j,i)$

3

$$\begin{split} d(j) &= \inf\{c(1 \Rightarrow j)\} \\ \text{OBDA W\"{a}hle } i \in V \text{ so, dass} \\ \inf\{c(1 \Rightarrow j)\} &= \inf\{c(1 \Rightarrow i \Rightarrow j)\} \\ \inf\{c(1 \Rightarrow i)\} + \gamma(i,j) \end{split}$$