Quiz 1 Solution

#1. For any fiven £70, we take $0 \le \frac{2}{3}$. It follows that $0 \le |x-1| \le 3 \Rightarrow |2x+3-5| = 2|x-1| \le 2 \cdot \frac{6}{3} = 2$. (15 points) Even if $\{-1\}$ is Subtracted from the domain 1R, the limit Still exists. Since

Even if $\{-1\}$ is subtracted from the domain IR, the limit still exists, Since, in the fiven definition, the first inequality of $0 < |x-\alpha| < S$ is strict, and accordingly the definition is independent from the fact whether the domain of a fiven function contains the point where the limit is evaluated.

(5 points)

#2. (1) First we factorize: $x^5-32 = (\chi-2)(\chi^4+a\chi^3+b\chi^2+c\chi+d)$ = $\chi^5+a\chi^4+b\chi^3+c\chi^2+d\chi$ - $2\chi^4-2a\chi^3-2b\chi^2-2c\chi-2d$

(*) $x^5 + (a-2)x^4 + (b-2a)x^3 + (c-2b)x^2 + (d-2c)x - 2d$

Since the equality should hald for all X + IR, the above equality is an identity

We compare coefficients:

a-2=0 b-2a=0 a=26 c-2b=0 b=45d-2c=0 c=85

Henre lim x5-32 (x2)(x4+2x3+4x2+8x+16)

= $\lim_{x\to 2} x^4 + 2x^3 + 4x^2 + 8x + 16 = 5 \cdot 2^4 = \frac{80}{2}$

mentioned.

(2) $\lim_{\delta x \to 0} \frac{\sin(x+\delta x) - \sin x}{\delta x} = \lim_{\delta x \to 0} \frac{\sin x \cos \delta x + \cos x \sin \delta x - \sin x}{\delta x}$

= $Sin \times \left(\lim_{\delta x \to 0} \frac{\cos \delta x - 1}{\delta x} \right) + \cos x \lim_{\delta x \to 0} \frac{Sin \delta x}{\delta x}$

= $\frac{\cos x}{\sin x}$, Since $\lim_{x\to 0} \frac{\sin x}{\sin x} = 1$ and $\lim_{x\to 0} \frac{\cos x}{\sin x} = 0$

Don't need to prove these, but if these were not mentioned, deduct 10 points.

#3 lim $\sqrt{x+5} - 3$ = lim $(\sqrt{x+5} - 3)(\sqrt{x+5} + 3)$ = lim $\frac{x+5-9}{(x-4)(\sqrt{x+5} + 3)} = \frac{1}{(x-4)(\sqrt{x+5} + 3)} = \frac{1}{$

#4. $\lim_{\alpha \to 0} \frac{\cos \alpha \tan \alpha}{\alpha} = \lim_{\alpha \to 0} \frac{\cos \alpha \frac{\sin \alpha}{\cos \alpha}}{\alpha} = \lim_{\alpha \to 0} \frac{\sin \alpha}{\alpha} = \frac{1}{2}$