Image Based Lighting

Environment Mapping

Better specular reflections

Not highlight but reflected image

 Idea: Look up reflected color in 360° texture

Environment Map

Environment Mapping – 360° Texture Types

Cube map

LongLat map

Environment Mapping – 360° Texture Types

Sphere map

Dual-paraboloid map

Reflective Environment Mapping

Angle of incidence = angle of reflection

R = V - 2 (N dot V) N= reflect (V, N)

V and N normalized!

Specular Environment Mapping

- We can pre-filter the environment map
 - Equals specular integration over the hemisphere
 - Phong lobe (cos^n) as filter kernel
 - textureLod;level according to glossiness
 - R as lookup

Refractive Environment Mapping

- Use refracted vector for lookup:
 - Snells law:

$$\eta_1 \sin \theta_I = \eta_2 \sin \theta_T$$

