

Long-Distance Gesture Recognition using Dynamic Neural Networks

[ILLINOIS

Shubhang Bhatnagar, Sharath Gopal, Narendra Ahuja, Liu Ren

Motivation

- Gestures are a natural interface for communication between humans and machines
- Provide a convenient and contact-less way to communicate with robots

Challenges in Long Distance Recognition

Gesturing subject is small

3D CNNs down sample input

Features might lose too much gesture informati on

Higher resolution video requires more compute, bandwidth!

Use Spatially Dynamic Neural networks

Can adapt computational graph to input at run-time

Discard background features

Preserve gesturing subject features

Proposed Spatially Dynamic Neural Network

Binary Gesture Classifier

- Core of Patch selection subnetwork
- Predicts if input patch features contain subject
- Trained using rough subject location annotations

Preliminary Features No Gesture

Selected Patch

Discarded Patches

 $L = L_{h_{\phi}} + \lambda L_{g_{\psi}}$ $L_{h_{\phi}}$ = Cross entropy for Gesture Recognition $L_{g_{\eta}}$ = Cross entropy for Patch Selection

Method	Compute (GFLOPS)	•
Ours (3D MobileNet)	1.5	76.68
3D MobileNet [6]	1.5	65.33

Experimental Results

Num of patches (m x n)	Compute (GFLOPS)	Accuracy %
1 x 2	26	86.48
2 x 2	18	88.67
2 x 3	10	89.94

- Lower compute & Better performance compared to state-ofthe-art
- Lower performance deterioration with distance
- Smaller patches improve accuracy, efficiency

Scan To **Know More**

