VIETNAM NATIONAL UNIVERSITY UNIVERSITY OF INFORMATION TECHNOLOGY INFORMATION SYSTEMS FACULTY

REPORT LAB 3

SUBJECT: DATA ANALYSIS IN BUSINESS

Lecturer: Assoc. Prof. Nguyen Dinh Thuan

Instructor: TA. Nguyen Minh Nhut

Class: IS403.O22.HTCL

Group 3:

21521049 - Ho Quang Lam

21521586 - Le Thi Le Truc

21521938 - Nguyen Thanh Dat

Ho Chi Minh City, April 2024

ACKNOWLEDGEMENT

First of all, we would like to express our deepest gratitude and appreciation to our lecturers, Mr. Nguyen Dinh Thuan and Mr. Nguyen Minh Nhut, for their teaching and sharing of extensive knowledge as well as practical examples during the lectures. They have guided us in completing our Lab 01 report by providing valuable feedback, suggestions, and assistance with exercises and revisions.

The Data Analysis in Business course is an interesting and highly practical subject. However, due to our limited expertise and initial unfamiliarity with real-world applications, we acknowledge that our Lab 01 report may contain some shortcomings and inaccuracies despite our best efforts. We sincerely hope to receive further guidance and feedback from Mr. Nguyen Dinh Thuan and Mr. Nguyen Minh Nhut to improve our knowledge and equip ourselves for future projects as well as for our academic and professional endeavors.

Once again, we would like to extend our heartfelt and sincere gratitude to our lecturers and peers.

Ho Chi Minh City, April 2024

Group of student performers

Ho Quang Lam

Le Thi Le Truc

Nguyen Thanh Dat

LECTURER'S COMMENTS							

TABLE OF CONTENTS

Chapter 1. 1	EXPLANATION AND EXAMPLE	7
1.1. M	ultivariable Linear Regression	7
1.1.1.	What is Multivariable Linear Regression?	7
1.1.2.	How does Multivariable Linear Regression work?	7
1.1.3.	Why use Multivariable Linear Regression?	8
1.1.4.	Example	9
1.2. M	ultivariable Nonlinear Regression	11
1.2.1.	What is Multivariable Nonlinear Regression?	11
1.2.2.	How does Multivariable Nonlinear Regression work?	12
1.2.3.	Why use Multivariable Nonlinear Regression?	12
1.2.4.	Example	13
1.3. Lo	ogistic Regression	15
1.3.1.	What is Logistic Regression?	15
1.3.2.	How does Logistic Regression work?	15
1.3.3.	Why use Logistic Regression?	16
1.3.4.	Example	17
Chapter 2.	USE MS EXCEL, R, PYTHON TO PERFORM REGRESSIC	N. 19
2.1. M	ultivariable Linear Regression	19
2.1.1.	MS EXCEL	20
2.1.2.	R LANGUAGE	23
2.1.3.	PYTHON LANGUAGE	25
2.1.4.	CONCLUSION	26

2.2. N	Multivariable Nonlinear Regression	27
2.2.1.	MS EXCEL	28
2.2.2.	R LANGUAGE	29
2.2.3.	PYTHON LANGUAGE	30
2.2.4.	CONCLUSION	30
2.3. I	Logistic Regression	31
2.3.1.	MS EXCEL	32
2.3.2.	R LANGUAGE	32
2.3.3.	PYTHON LANGUAGE	33
2.3.4.	CONCLUSION	33

WORK DISTRIBUTION

Members	Le Thi Le Truc	Ho Quang	Nguyen Thanh
Works	(Leader)	Lam	Dat
Problem statement	√	√	✓
Build the report template	✓		
Do all task 1a		√	
Do all task 1b	√		
Do all task 1c			√
Do all exercise with Excel in task 2	√		
Do all exercise with R in task 2			✓
Do all exercise with		<u> </u>	
Python in task 2		*	
Summarize and edit reports	√	✓	✓
Completion	100%	100%	100%

Chapter 1. EXPLANATION AND EXAMPLE

Explanation (What, How and Why) and example of:

- a) Multivariable Linear Regression.
- b) Multivariable Nonlinear Regression
- c) Logistic Regression

1.1. Multivariable Linear Regression

1.1.1. What is Multivariable Linear Regression?

Regression simply means finding the relationship of a variable, or a vector that depends (Y) on the independent set $X = \{X1, X2, ..., Xn\}$ by a particular means

Linear regression model is an analysis tool in statistics and machine learning, are used to predict the value of dependent variable based on independent variables. It is based on the assumption that the relationship between the variables is linear.

1.1.2. How does Multivariable Linear Regression work?

Multivariate linear regression is a method that describes the relationship between dependent variables independent variables X1, X2,....Xp and error term ϵ

$$\mathbf{Y} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{X}_1 + \mathbf{\beta}_2 \mathbf{X}_2 + \dots + \mathbf{\beta}_p \mathbf{X}_p + \mathbf{\epsilon}$$

In which:

- Y: dependent variable
- o X1, X2, Xp: independent variables
- \circ β0: regression constant (also known as intercept coefficient). This is an index that shows the value of. What would Y be if all X were equal to 0 (no X) when performing on map represents Oxygen, β0 is the point on the Oy axis that the regression line crosses.

$$b_0 = \overline{Y} - b_1 \overline{X}$$

β1, β2, βp: regression coefficient, also known as slope coefficient. This
indicator gives us know about the change in Y caused by the corresponding X.

$$b_1 = \frac{\sum_{i=1}^{n} X_i Y_i - n\overline{X} \overline{Y}}{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}$$

ο ε: error. The larger this index is, the worse the regression's predictive ability becomes should be less accurate or more misleading than reality.

1.1.3. Why use Multivariable Linear Regression?

Multivariable linear regression is a statistical technique that allows us to analyze the relationship between multiple independent variables and a dependent variable. It offers several advantages in data analysis and modeling.

First, it enables us to examine the individual contributions of each independent variable to the dependent variable while controlling for other variables. By considering multiple factors simultaneously, we can better understand the unique impact of each variable on the outcome of interest.

Second, multivariable linear regression can be used for prediction. By fitting a regression model to historical data, we can make informed estimates or forecasts of the dependent variable's values based on the values of the independent variables. This predictive capability is valuable in fields where future projections are essential for decision-making.

Third, multivariable linear regression helps us assess the strength and direction of the relationships between independent variables and the dependent variable. By examining the estimated coefficients, we can determine which variables have significant associations with the outcome. This information aids in identifying key factors or variables that influence the dependent variable.

1.1.4. Example

A data collection software company a sample of 20 programming members. People recommend using regression analysis to determine whether salary is associated with years of experience and capacity about the city organization installer?

Number of years of experience, competency test score and qualified annual salary (\$1000) of 20 installations users are presented in the following table:

	А	В	С	D	Е
1	Programmer	b0	Experience	Score	Salary
2	1	1	4	7.8	24
3	2	1	7	10	43
4	3	1	1	8.6	23.7
5	4	1	5	8.2	34.3
6	5	1	8	8.6	35.8
7	6	1	10	8.4	38
8	7	1	0	7.5	22.2
9	8	1	1	8	23.1
10	9	1	6	8.3	30
11	10	1	6	9.1	33
12	11	1	9	8.8	38
13	12	1	2	7.3	26.6
14	13	1	10	7.5	36.2
15	14	1	5	8.1	31.6
16	15	1	6	7.4	29
17	16	1	8	8.7	34
18	17	1	4	7.9	30.1
19	18	1	6	9.4	33.9
20	19	1	3	7	28.2
21	20	1	3	8.9	30

Suppose we believe that the annual salary (y) is related to number of years of experience (x1) and performance test scores aptitude (x2) according to the following regression model:

$$y = b0 + b1x1 + b2x2 + e$$

With

y: Annual salary

x1: Number of years of experience

x2: Aptitude test score

Regression results by tool:

SUMMARY OUTPUT	Г							
Regression S	Statistics							
Multiple R	0.913334059							
R Square	0.834179103							
Adjusted R Square	0.814670762							
Standard Error	2.418762076							
Observations	20							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	500.3285303	250.1643	42.76013	2.32774E-07			
Residual	17	99.45696969	5.85041					
Total	19	599.7855						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	3.17393627	6.156066829	0.515579	0.612789	-9.814229424	16.16210196	-9.814229424	16.16210196
Experience	1.403902485	0.198566912	7.070173	1.88E-06	0.984962921	1.822842049	0.984962921	1.822842049
Score	2.508854478	0.77354127	3.243336	0.00478	0.876825058	4.140883899	0.876825058	4.140883899

Regression results by step - by - step:

XT	1	1	1	1	1	1
	4	7	1	5	8	10
	7.8	10	8.6	8.2	8.6	8.4
V=. V		404	405.5			
XT*X	20	104	165.5			
	104	708	875			
	165.5	875	1380.53			
(XT*X)-1	6.477692832	0.037845783	-0.80054			
	0.037845783	0.006739497	-0.00881			
	-0.80054271	-0.0088086	0.102278			
(XT*X)-1*XT	0.384842846	-1.262813761	-0.36913	0.102472	-0.104208186	0.131591922
,	-0.00390331	-0.003063741	-0.03117	-0.00069	0.016007796	0.031248509
	-0.03801156	0.16057344	0.070236	-0.00591	0.008576151	-0.029496576
(XT*X)-1*XT*Y	3.17393627					
	1.403902485					
	2.508854478					

Regression equation estimate:

$$SALARY = 4.09 + 0.499(EXPER) + 2.894(SCORE)$$

• F test:

Hypothetical:

H0: b1 = b2 = 0

Ha: There is at least 1 non-zero bi parameter

Rejection rule:

With a = 5% and Degrees of Freedom are 2 and 17

Look up table F.05 = 3.59

F = MSR/MSE = 250.16/5.85 = 42.76

Reject H0 if p-value < .05 or F > 3.59

Conclusion: p-value < .05, so H0 can be rejected (also, F = 42.76 > 3.59)

⇒ Concluding that at least one of the independent variables has a significant significance effect on the dependent variable in the regression model.

• t Test:

Hypothetical:

H0 : bi = 0

Ha: bi # 0

Conclusion:

p-value
$$< 0.05 =>$$
 Reject both H0: b1 = 0 and H0: b2 = 0

⇒ Both independent variables (Experience and Score) are significant

1.2. Multivariable Nonlinear Regression

1.2.1. What is Multivariable Nonlinear Regression?

Multivariate nonlinear regression is a method of determining the nonlinear relationship between a dependent variable and multiple independent variables

1.2.2. How does Multivariable Nonlinear Regression work?

The multivariate nonlinear regression model can be represented by a nonlinear function:

$$Y = f(X1, X2, ..., Xn) + \varepsilon$$

In there:

Y: dependent variable

X1, X2,..., Xn: independent variables

f: a nonlinear function

ε: random error

Non-linear regression functions include exponential functions, logarithmic functions, trigonometric functions, and exponential functions factorial, Gauss function, and Lorenz curve

1.2.3. Why use Multivariable Nonlinear Regression?

When there are multiple independent variables affecting the dependent variable, multiple nonlinear regression variables can be used to evaluate the impact of each independent variable on the dependent variable.

In some cases, the relationship between variables is not a relationship simple linear. Multivariate nonlinear regression can be used to model termites this complex relationship.

Minimize error: When there are many independent variables, multivariate nonlinear regression can help minimizes error compared to a univariate linear regression model

1.2.4. Example

Problem request: The influence of house area and number of bedrooms on the price of the house

area	rooms	price_usd
38	1	33,333
40	1	51,316
42	1	24,123
42	1	78,947
46	1	46,009
50	1	4,386
50.17	1	118,421
54	1	76,754
40	2	48,246
48	2	70,175
50	2	60,526
50	2	62,281
50	2	65,789
50	2	65,789
50	2	65,789
50	2	71,491
50	2	72,368
50	2	74,123

Sample regression model:

Price = β 0 + β 1 * log10(area)+ β 2 * log10(rooms)

We use the tool in Excel to calculate the following results:

SUMMARY OUTPUT								
Regression Stat	tistics							
Multiple R	0.6169008							
R Square	0.3805667							
Adjusted R Square	0.3798984							
Standard Error	99736.141							
Observations	1857							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	1.1331E+13	5.6653E+12	569.529	2E-193			
Residual	1854	1.8442E+13	9947297799					
Total	1856	2.9773E+13						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	-995828.7	37361.805	-26.6536558	9E-133	-1069104	-922553	-1069104	-922553
log10(area)	643464.05	22834.9205	28.1789484	1E-145	598679	688249	598679	688249
log10(room)	-177970.2	23052.0794	-7.72035361	1.9E-14	-223181	-132759	-223181	-132759

Or we calculate coefficisigmodent step by step:

XT	1	1	1	1	1
	1.579783597	1.60206	1.62324929	1.62324929	1.66276
	0	0	0	0	0
XT*X	1857	3411.3759	549.083788		
	3411.375851	6307.2515	1037.79334		
	549.0837884	1037.7933	202.027986		
(XT*X)-1	0.140330018	-0.084925	0.05485346		
	-0.084925261	0.0524196	-0.03845829		
	0.054853455	-0.038458	0.05342138		
(XT*X)-1 * XT	0.006166483	0.0042747	0.00247515	0.00247515	-0.00088
	-0.002113602	-0.000946	0.00016485	0.00016485	0.00224
	-0.005902319	-0.006759	-0.00757394	-0.00757394	-0.00909
(XT*X)-1 * XT*Y	-995828.6909				
	643464.0462				
	-177970.2045				

⇒ From the above results we can draw the following conclusion:

Regression equation:

Price = -995828 + 643464 * log10(area) - 177970 * log10(rooms)

1.3. Logistic Regression

1.3.1. What is Logistic Regression?

Logistic regression analysis is a statistical technique to examine the association between variables independent (numerical or categorical variable) with the dependent variable being a binary variable

1.3.2. How does Logistic Regression work?

Logistic icon recovery method:

$$\log\left(\frac{P}{I-P}\right) = \beta_0 + \beta_1 X + e$$

Let P be the probability of event A occurring and 1-P be the opposite event of event A

$$ODDs = \frac{P}{I-P}$$

If ODDs > 1, the probability of event A occurring is higher than its counterpart.

If ODDs < 1, the probability of event A occurring is less likely than its counterpart.

If ODDs = 1, the probability of event A occurring is equal to its opposite event

From the above equation we can calculate the probability p according to the X value

$$p(X) = rac{e^{b_0 + b_1 X}}{1 + e^{b_0 + b_1 X}}$$

In which:

e is the mathematical constant approximately equal to 2.71828 (Euler's number).

1

B0 and B1 are coefficients representing the intercept and slope, respectively.

x is the predictor variable.

P(X) represents the probability of the binary outcome Y being equal to

And the logistic curve has the following form

This is the sigmoid function, which forms an "S" shaped curve and ensures that the output of the logistic regression lies between 0 and 1.

The sigmoid function is used to convert the output of linear regression into probabilities.

1.3.3. Why use Logistic Regression?

Logistic regression is a popular statistical method used in situations where the dependent variable is a binary variable. Here are some reasons why logistic regression should be used:

Logistic regression models are suitable for binary dependent variables:
 Logistic regression is ideal for modeling data with a dependent variable that takes
 only two values, such as yes or no, success or failure. lose. It allows predicting the

probability of occurrence of the dependent variable based on the independent variables.

- Effective in identifying influencing factors: Logistic regression helps identify
 factors that influence the dependent variable. Logistic regression coefficients indicate
 the influence of each independent variable on the probability of occurrence of the
 dependent variable, based on analysis of the data sample.
- O Determining thresholds and classification: Logistic regression allows determining thresholds to classify observations into different groups based on probability. This could be useful in classifying and predicting outcomes in fields such as medicine, finance and marketing.

1.3.4. Example

A survey of diabetes in area K shows the relationship between age and the likelihood of developing this disease includes 2 columns: column y (diabetes) and column x (age):

Tuổi	Tiểu đường
20	0
23	0
24	0
25	0
25	0
26	0
26	0
28	0
28	0
29	0
30	0
30	0
30	0
30	0
30	0
30	0
32	0
32	0
33	0
33	0
34	0
34	0
34	0
34	0

First we use Excel's tool to calculate:

Following all calculations above, Logistic regression of this data's formula:

$$\log(\frac{p}{1-p}) = -8.877 + 0.188 * (age)$$

Set:

Odd(**0**) =
$$(\frac{p}{1-p}) = e^{-8.877} = 0.0001$$
 when age = 0

Odd(1) =
$$(\frac{p}{1-p})$$
 = $e^{-8.877 + 0.188}$ = 0.002 when age = 1

Then we have the ratio between Odd(1)/Odd(0) = 2

⇒ At this point we can conclude that for every 1 year increase in age for exercise, the likelihood of diabetes will increase 2 times.

Chapter 2. USE MS EXCEL, R, PYTHON TO PERFORM REGRESSION

- a) Using MS Excel, R language and Python language to perform **Multivariable**Linear Regression with data file: Colleges and Universities
- b) Using MS Excel, R language and Python language to perform **Multivariable Nonlinear Regression** with optional real data about/of Vietnam.
- c) Using MS Excel, R language and Python language perform **Logistic Regression** with optional real data about/of Vietnam

2.1. Multivariable Linear Regression

Some Colleges and Universities try to predict Student Graduation Rates using a variety of characteristics, such as: Median SAT, Acceptance rate, Expenditures/student, Top 10% of student class.

$$Y^{n}=b_0+b_1X_1+b_2X_2+...+b_kX_k+e$$

In which:

Y is Graduation (%)

X1, ..., Xk are the independent (explanatory) variables

b0 is the intercept term

b1, ... bk are the regression coefficients for the independent variables e is the error term

⇒ So, apply the formula: Graduation %= b0 + b1 * Median SAT + b2 *Acceptance rate +b3 * Expenditures/student+ b4 * Top 10% HS

Problem statement: "With confidence 95%, consider if we can find any relationship between the Student Graduation Rate and Median SAT, Acceptance rate, Expenditures/student, Top 10% of HS class or not?"

Dependent variable: Graduation%

Independent variables: Median SAT, Acceptance rate, Expenditures/student, Top 10% of HS class

2.1.1. MS EXCEL

2.1.1.1. Using tool:

SUMMARY O	UTPUT								
Regression	on Statistics								
Multiple R	0.731044486								
R Square	0.534426041								
Adjusted R S	0.492101135								
Standard Err	5.30833812								
Observations	49								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regression	4	1423.209	355.8023	12.62675	6.33E-07				
Residual	44	1239.852	28.17845						
Total	48	2663.061							
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	5
Intercept	17.92095587	24.55722	0.729763	0.469402	-31.5709	67.41279	-31.5709	67.41279	
Median SAT	0.072006285	0.017984	4.003927	0.000236	0.035762	0.10825	0.035762	0.10825	
Acceptance I	-24.8592318	8.315185	-2.98962	0.00456	-41.6174	-8.10108	-41.6174	-8.10108	
Expenditures.	-0.00013565	6.59E-05	-2.05744	0.0456	-0.00027	-2.8E-06	-0.00027	-2.8E-06	
Top 10% HS	-0.162764489	0.079345	-2.05136	0.046214	-0.32267	-0.00286	-0.32267	-0.00286	
-	•								

2.1.1.2. Calculating Step-by-step

XT	1	1	1	1	1	1	1	1
	1315	1220	1240	1176	1300	1281	1255	1400
	0.22	0.53	0.36	0.37	0.24	0.24	0.56	0.31
	26636	17653	17554	23665	25703	24201	18847	102262
	85	69	58	95	78	80	70	98
XT*X	49	61892	18.67	1472956	3636			
	61892	78364472	23339.98	1.89E+09	4613164			
	18.67	23339.98	7.9719	533014.1	1332.36			
	1472956	1.89E+09	533014.1	5.58E+10	1.14E+08			
	3636	4613164	1332.36	1.14E+08	278620			
(XT*X)-1	21.40136017	-0.01494	-4.95058	2.88E-05	-0.02001			
(*** ***)	-0.014942977	1.15E-05	0.002617	-2.1E-08	9.19E-07			
	-4.950578724	0.002617	2.453729	-5.2E-06	0.011683			
	2.87721E-05	-2.1E-08	-5.2E-06	1.54E-10	-7.2E-08			
	-0.020013406	9.19E-07	0.011683	-7.2E-08	0.000223			
(XT*X)-1*XT	-0.272545944	-0.32589	0.43415	0.776325	-0 03416	0.166511	-0.98307	-0.0725
(,	0.000254781	0.000146	-7.7E-05	-0.00088	0.000148	-3.8E-05	0.000603	-8.1E-05
	-0.115266332	0.256748	-0.23604	0.021352	-0.18236	-0.20087	0.427408	0.084959
	-1.53952E-06	-1.4E-06	-1.7E-07	-6.4E-07	-9.7E-07	-9.6E-07	-2.2E-06	6.96E-06
	0.000826606	0.001437	-0.00298	0.004901	-0.00045	8.83E-05	0.001957	-0.00062
(XT*X)-1*XT*Y	17.92095587							
. ,	0.072006285							
	-24.8592318							
	-0.00013565							
	-0.162764489							

[⇒] Conclusion: The result of manual calculation again is the same as the result excel

2.1.2. R LANGUAGE

F-statistic: 12.63 on 4 and 44 DF, p-value: 6.332e-07

```
> reg1=lm(`Graduation %` ~ `Median SAT` + `Acceptance Rate` + `Expenditures/Student` + `Top 10% HS`)
> summary(reg1)
Call:
lm(formula = `Graduation %` ~ `Median SAT` + `Acceptance Rate` +
    `Expenditures/Student` + `Top 10% HS`)
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-11.8674 -2.0462
                   0.6193
                            3.6417 11.2090
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       1.792e+01 2.456e+01 0.730 0.469402
                                             4.004 0.000236 ***
                       7.201e-02 1.798e-02
`Median SAT`
`Acceptance Rate`
                      -2.486e+01 8.315e+00 -2.990 0.004560 **
`Expenditures/Student` -1.356e-04 6.593e-05 -2.057 0.045600 *
`Top 10% HS`
                      -1.628e-01 7.934e-02 -2.051 0.046214 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.308 on 44 degrees of freedom
Multiple R-squared: 0.5344, Adjusted R-squared: 0.4921
```


2.1.3. PYTHON LANGUAGE

```
results_mul=sm.OLS(y,x1).fit()
results_mul.summary()
```

OLS Regression Results

Dep. Variable: R-squared: 0.534 У Model: OLS Adj. R-squared: 0.492 Method: Least Squares F-statistic: 12.63 Date: Sun, 07 Apr 2024 Prob (F-statistic): 6.33e-07 Time: Log-Likelihood: -148.69 11:10:33

No. Observations: 49 AIC: 307.4

Df Residuals: 44 BIC: 316.8

Df Model: 4

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const 17.9210 24.557
 0.730 0.469 -31.571 67.413

 x1 0.0720 0.018 4.004 0.000 0.036 0.108

 x2 -0.2486 0.083 -2.990 0.005 -0.416 -0.081

 x3 -0.0001 6.59e-05 -2.057 0.046 -0.000 -2.77e-06

 x4 -0.1628 0.079 -2.051 0.046 -0.323 -0.003

 Omnibus:
 1.954 Durbin-Watson: 2.010

 Omnibus:
 1.954
 Durbin-Watson:
 2.010

 Prob(Omnibus):
 0.376
 Jarque-Bera (JB):
 1.833

 Skew:
 -0.450
 Prob(JB):
 0.400

 Kurtosis:
 2.706
 Cond. No.
 1.09e+06

2.1.4. CONCLUSION

If Pr(>|t|) of expend > 0.05, it means there is no statistical evidence to conclude that the expend variable has a significant effect on the dependent variable. In other words, the expend variable may not be necessary for the model.

In this case, we already have a suitable model.

%graduation = 17.921 + 0.072*median_sat - 24.8592*accept - 0.0001* expend - 0.1628*top

• F test:

Hypothetical:

$$H0: b1 = b2 = 0$$

Ha: There is at least 1 non-zero bi parameter

Rejection rule:

Conclusion: p-value < .05, so H0 can be rejected

⇒ Concluding that at least one of the independent variables has a significant significance effect on the dependent variable in the regression model.

• t Test:

Hypothetical:

H0 : bi = 0

Ha: bi # 0

Conclusion:

p-value
$$< 0.05 =>$$
 Reject both H0: b1 = 0 and H0: b2 = 0

Both independent variables (Median SAT, Acceptance rate,

Expenditures/student, Top 10% of HS class) are significant

2.2. Multivariable Nonlinear Regression

The dataset: Vietnamese car price

Description: This is data about buying and selling used cars in the Vietnamese market at the beginning of 2023. The data includes information about the car such as price, number of kilometers traveled, and information about the seller such as phone number..., name, sales website (if exists)

Dataset overview:

The price of the car depends on the number of seats and the year of manufacture

- ⇒ **Independent variables:** seating_car and year_of_manufacture
- ⇒ **Dependent variable:** price.price_car

Sample regression model:

Price_car = $\beta 0 + \beta 1 * \log 10$ (seating car) + $\beta 2 * \log 10$ (year_of_manufacture)

2.2.1. MS EXCEL

2.2.1.1. Using tool:

SUMMARY OUTPUT								
Regression Sta	atistics							
Multiple R	0.14198641							
R Square	0.02016014							
Adjusted R Square	0.01976797							
Standard Error	2682.41726							
Observations	5000							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	7.4E+08	3.7E+08	51.40647	0			
Residual	4997	3.6E+10	7195362					
Total	4999	3.67E+10						
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	lpper 95.0%
Intercept	-768239.07	125309.3	-6.13074	9.42E-10	-1013900	-522578	-1013900	-522578
log(seating)	-3078.0393	367.6619	-8.37193	7.28E-17	-3798.82	-2357.26	-3798.82	-2357.26
log(year)	233608.261	37916.79	6.161078	7.79E-10	159274.7	307941.8	159274.7	307941.8

2.2.1.2. Step by step:

XT	1	1	1	1	1	1
	0.301029996	0.845098	0.90309	0.69897	0.90309	0.30103
	3.305781151	3.305781	3.305996	3.305996	3.305781	3.305996
XT*X	5000	3661.935	16526.12			
	3661.935089	2735.337	12103.54			
	16526.11825	12103.54	54622.52			
(XT*X)-1	2182.299258	0.329554	-660.331			
	0.329554301	0.018786	-0.10387			
	-660.3306314	-0.10387	199.807			
(XT*X)-1 * XT	-0.51009083	-0.33079	-0.45347	-0.52074	-0.31168	-0.65188
(XI X) I XI	-0.008161574	0.00206	0.003127	-0.00071	0.003149	
	0.156197678	0.099685	0.136567	0.157769	0.093662	0.199103
(XT*X)-1 * XT*Y	-768239.5156					
	-3078.039406					
	233608.3947					

[⇒] Comparing with the Data Analysis results calculation tool, we see that the value systems in the two tables are the same

2.2.2. R LANGUAGE

```
> attach(df)
> reg <- lm(df$price..Price ~ df$log.seating. + df$log.year.)</pre>
> summary(reg)
Call:
lm(formula = df$price..Price ~ df$log.seating. + df$log.year.)
Residuals:
          1Q Median
   Min
                        3Q
                              Max
 -2866 -1158 -784
                       -17 37935
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               -768239.1 125309.3 -6.131 9.42e-10 ***
(Intercept)
                              367.7 -8.372 < 2e-16 ***
df$log.seating.
                -3078.0
                                      6.161 7.79e-10 ***
                233608.3
                            37916.8
df$log.year.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2682 on 4997 degrees of freedom
Multiple R-squared: 0.02016, Adjusted R-squared: 0.01977
F-statistic: 51.41 on 2 and 4997 DF, p-value: < 2.2e-16
```

2.2.3. PYTHON LANGUAGE

```
y = data['price. Price']

# For independent variables (x), select the desired columns
x = data[['log(seating)', 'log(year)']]

# Add a constant term to the independent variables
x = sm.add_constant(x)

reg = sm.OLS(y,x).fit()
reg.summary()

OLS Regression Results

Dep. Variable: price. Price R-squared: 0.020
```

9.316e+04

 Model:
 OLS
 Adj. R-squared:
 0.020

 Method:
 Least Squares
 F-statistic:
 51.41

 Date:
 Sun, 07 Apr 2024 Prob (F-statistic):
 7.96e-23

 Time:
 09:38:12
 Log-Likelihood:
 -46566.

 No. Observations:
 5000
 AIC:
 9.314e+04

Df Residuals: 4997 BIC: Df Model: 2

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 -7.682e+05
 1.25e+05
 -6.131
 0.000
 -1.01e+06
 -5.23e+05

 log(seating)
 -3078.0393
 367.662
 -8.372
 0.000
 -3798.818
 -2357.261

 log(year)
 2.336e+05
 3.79e+04
 6.161
 0.000
 1.59e+05
 3.08e+05

 Omnibus:
 5614.000
 Durbin-Watson:
 1.660

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 605360.083

Skew: 5.729 **Prob(JB):** 0.00 **Kurtosis:** 55.673 **Cond. No.** 1.22e+04

2.2.4. CONCLUSION

From the above results we can draw the following conclusions:

Regression equation:

```
Price_car = -768239 - 3078*log10(seating_car) + 233608
*log10(year_of_manufacture)
```

The coefficients in the equation represent the contribution of each independent variable to the value of Price_car:

The coefficient -3078*log10(seating_car) represents the relationship between the number of car seats and the Price_car. The negative coefficient (-3078) indicates that as the number of seats increases, the Price_car tends to decrease.

The coefficient 233608*log10(year_of_manufacture) represents the relationship between the year of car manufacture and the Price_car. The positive coefficient (233608) indicates that as the year of manufacture increases, the Price_car tends to increase

2.3. Logistic Regression

The dataset: Vietnamese car price

Description: This is data about buying and selling used cars in the Vietnamese market at the beginning of 2023. The data includes information about the car such as price, number of kilometers traveled, and information about the seller such as phone number..., name, sales website (if exists)

Dataset overview:

ad_id	origin	condition	car_model	mileage	exterior_c	interior_co	num_of_de	seating_ca	engine fuel_syster	transmissi	drive_t	ype fuel_consu	describe brand	grade	year_of_mcar_name price.priccurl
17042	Domestic a	New car	Truck	0 Km	White	gray	2-door	2-seat	Petrol1.0 L	Manual	RFD - F	Rear L/100Km	Super Carl Suzuki	Super Carr	2022 Suzuki Sup 249 Million https://bonb
53794	Imported	New car	SUV	0 Km	Black	Black	5-door	7-seat	Petrol3.4 L	Automatic	AWD -	4-w 10L/100Kn	New Toyota Toyota	Land Cruis	2022 Toyota Lan 4 Billion 28 https://bonba
73954	Domestic a	New car	Crossover	0 Km	Silver	Brown	5-door	8-seat	Petrol2.0 L	Automatic	RFD - F	Rear L/100Km	**Registra Toyota	Innova	2023 Toyota Innc 885 Million https://bonba
74150	Imported	New car	SUV	0 Km	White	Black	5-door	5-seat	Petrol1.8 L	Automatic	FWD -	Fror L/100Km	2 interior c Toyota	Corolla Cro	2023 Toyota Cor 754 Million https://bonba
87573	Domestic a	New car	Crossover	0 Km	Silver	gray	5-door	8-seat	Petrol2.0 L	Automatic	RFD - F	Rear L/100Km	Toyota Innc Toyota	Innova	2022 Toyota Innc 850 Million https://bonba
97011	Domestic a	New car	Van/Miniva	0 Km	White	gray	5-door	2-seat	Petrol1.0 L	Manual	RFD - F	Rear 7L/100Km	Suzuki Blin Suzuki	Super Carr	2023 Suzuki Sup 299 Million https://bonba
101726	Domestic a	New car	SUV	0 Km	White	Black	5-door	7-seat	Petrol1.5 L	Automatic	FWD -	Fror L/100Km	Honda CR- Honda	CRV	2023 Honda CR\ 984 Million https://bonba
135739	Imported	New car	SUV	0 Km	Copper	Black	5-door	7-seat	Petrol2.7 L	Automatic	RFD - F	Rear L/100Km	Toyota For Toyota	Fortuner	2023 Toyota For 1 Billion 22 https://bonba
142495	Domestic a	New car	Baln tal‰i	0 Km	Grey	Black	4-door	5-seat	Diesel2.2 l Single turb	Automatic	RFD - F	Rear 7L/100Km	FORD RAN Ford	Ranger	2023 Ford Range 688 Million https://bonba
143308	Domestic a	New car	Baln tal‰i	0 Km	Black	Black	4-door	5-seat	Diesel2.2 l Single turb	Automatic	4WD -	Fou 7L/100Km	FORD RAN Ford	Ranger	2023 Ford Range 830 Million https://bonba
174951	Domestic a	New car	Van/Miniva	0 Km	White	Cream	4-door	7-seat	Diesel2.2 l TDCi	Manual	RFD - F	Rear 9L/100Km	FORD TRAI Ford	Transit	2023 Ford Trans 940 Million https://bonba
182003	Domestic a	New car	Crossover	0 Km	Silver	gray	5-door	8-seat	Petrol2.0 L	Manual	RFD - F	Rear L/100Km	Toyota Innc Toyota	Innova	2022 Toyota Innc 750 Million https://bonba
182298	Imported	New car	SUV	0 Km	White	Cream	5-door	5-seat	Petrol2.7 L VVTi	Automatic	4WD - I	Fou 10L/100Kn	Land Cruis Toyota	Prado	2022 Toyota Pra 2 Billion 58 https://bonba
183963	Domestic a	New car	Sedan	0 Km	White	Yellow	4-door	5-seat	Petrol1.5 L Multi-point	Automatic	FWD -	Fror 6L/100Km	Toyota Vio: Toyota	Vios	2022 Toyota Vio: 542 Million https://bonba
203337	Imported	New car	SUV	0 Km	White	Black	5-door	7-seat	Diesel2.0 L Single turb	Automatic	RFD - F	Rear 7L/100Km	FORD EVEI Ford	Everest	2023 Ford Evere 1 Billion 99 https://bonba
211394	Imported	New car	Hatchback	0 Km	Red	Cream	5-door	5-seat	Petrol1.5 L	Automatic	FWD -	Fror L/100Km	Toyota Yari Toyota	Yaris	2022 Toyota Yar 650 Million https://bonba
304604	Domestic a	New car	Sedan	0 Km	Black	Cream	4-door	5-seat	Petrol1.5 L VVTI	Automatic	FWD -	Fror 6L/100Km	Toyota Vio: Toyota	Vios	2022 Toyota Vio: 592 Million https://bonba
449343	Domestic a	New car	SUV	0 Km	White	Black	5-door	7-seat	Petrol2.0 L Multi-point	Automatic	FWD -	Fror 8L/100Km	Free prem Mitsubish	Outlander	2022 Mitsubishi 825 Million https://bonba

⇒ Independent variables: mileage

⇒ Dependent variable: condition

Sample regression model:

$$Logit = X = b0 + b1 * (mileage)$$

2.3.1. MS EXCEL

Regression Stat	istics							
Chi Square	4471.115515							
Residual Dev.	2456.593132							
# of iterations	18							
Observations	4999							
	Coefficients	Standard Error	P-value	Odd Ratio	Lower 95%	Upper 95%	Lower 95%	Upper 95%
Intercept	1.804696891	0.052671703	2.8E-257	6.078129	5.481958	6.739135	5.4819575	6.739135
SUMMARY OUT	ΓPUT							
Regression Stat	istics							
Chi Square	4472.153908							
Residual Dev.	2456.897702							
# of iterations	18							
Observations	5000							
	Coefficients	Standard Error	P-value	Odd Ratio	Lower 95%	Upper 95%	Lower 95%	Upper 95%
Intercept	1.805088769	0.052670219	2.1E-257	6.080511	5.484122	6.741757	5.4841222	6.741757
mileage	-0.004142683	0.000628764	4.44E-11	0.995866	0.994639	0.997094	0.9946394	0.997094

2.3.2. R LANGUAGE

```
> logistic <- glm(df$condition ~ df$mileage, data = df, family = binomial())</pre>
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred
> summary(logistic)
glm(formula = df$condition ~ df$mileage, family = binomial(),
   data = df
Deviance Residuals:
   Min
             1Q
                  Median
                               3Q
                                       Max
-1.9786
        0.0000
                  0.5518 0.5518
                                    6.1495
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8050888 0.0526702 34.272 < 2e-16 ***
df$mileage -0.0041427 0.0006287 -6.589 4.42e-11 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 6929.1 on 4999 degrees of freedom
Residual deviance: 2456.9 on 4998 degrees of freedom
AIC: 2460.9
Number of Fisher Scoring iterations: 16
```

2.3.3. PYTHON LANGUAGE

```
logistic = sm.formula.glm('condition ~ mileage', data=data, family=sm.families.Binomial()).fit()
print(logistic.summary())
# x = np.array(data["duration"]).reshape((-1, 1))
# y = np.array(data["term_deposit"])
                 Generalized Linear Model Regression Results
Dep. Variable:
                            condition
                                        No. Observations:
                                                                           5000
Model:
Model Family:
                                        Df Residuals:
                                                                           4998
                                        Df Model:
                             Binomial
Link Function:
                                        Scale:
                                                                         1.0000
                                        Log-Likelihood:
Method:
                                 IRLS
                                                                            nan
                                        Deviance:
Pearson chi2:
Date:
                     Sun, 07 Apr 2024
                                                                         2456.9
Time:
                             14:49:36
                                                                       1.63e+08
No. Iterations:
                                        Pseudo R-squ. (CS):
Covariance Type:
                            nonrobust
                coef
                        std err
                                                 P> z
                                                            [0.025
                                                                         0.975]
Intercept
              1.8051
                           0.053
                                                 0.000
                                                                          1.908
mileage
                                     -6.589
/usr/local/lib/python3.10/dist-packages/statsmodels/genmod/families/links.py:198: RuntimeWarning: overflow encountered in exp
```

t = np.exp(-z)
/usr/local/lib/python3.10/dist-packages/statsmodels/genmod/families/family.py:1056: RuntimeWarning: divide by zero encountered in log special.gammaln(n - y + 1) + y * np.log(mu / (1 - mu + 1e-20)) +
/usr/local/lib/python3.10/dist-packages/statsmodels/genmod/families/family.py:1056: RuntimeWarning: invalid value encountered in multiply

special.gammaln(n - y + 1) + y * np.log(mu / (1 - mu + 1e-20)) +

2.3.4. CONCLUSION

From the results we obtain the Logistic Regression equation as follows:

$$Log(\frac{p}{1-p}) = 1.805 - 0.004 * mileage$$

$$\Rightarrow \frac{p}{1-p} = e^{1.805 - 0.004 * mileage}$$
Set odd = $\frac{p}{1-p}$

$$\mathbf{Odd}(\mathbf{0}) = (\frac{p}{1-p}) = e^{1.805} = 6.08 \text{ when mileage} = 0$$

$$\mathbf{Odd}(\mathbf{1}) = (\frac{p}{1-p}) = e^{1.805 - 0.004} = 6.06 \text{ when mileage} = 1$$

Then we have the ratio between Odd(1)/Odd(0) = 0.997

REFERENCES

- $[1] \ \underline{https://fsppm.fulbright.edu.vn/cache/FSLM-10-MultipleRegressionV-2021-03-01-16463454.pdf}$
- [2] https://www.youtube.com/watch?v=AP_K7SaKkIE
- [3] https://www.kaggle.com/datasets/nguynthanhlun/vietnamese-car-price
- [4] https://xdulieu.com/da-bien/db1-tuong-quan-hoi-quy/ht7-hoi-quy-logistic.html
- [5] J.Donohue. (2013). Ch9-Regression Analysis-T [PowerPoint Slides]
- [6] N.M.Nhut "Lecture-6-Thống-kê-hồi-quy-ALL"

LINK CANVA