Компьютерные методы обработки изображений

Лекция 1

Источник, формирующий изображение, может быть разный:

- Электромагнитное излучение (оптическое, рентгеновское и т.д.)

Источник, формирующий изображение, может быть разный:

- Электромагнитное излучение (оптическое, рентгеновское и т.д.)
- Упругие (акустические) волны (например, в УЗИ)

Источник, формирующий изображение, может быть разный:

- Электромагнитное излучение (оптическое, рентгеновское и т.д.)
- Упругие (акустические) волны (например, в УЗИ)
- Электронные пучки (электронная микроскопия)
- Другие

ЭМ излучение: гамма-лучи

Позитронно-эмиссионная томография (ПЭТ)

Пациент принимает радиоактивный изотоп, распад которого сопровождается позитронным излучением. При встрече позитрона с электроном они аннигилируют с выделением двух гамма-квантов.

ЭМ излучение: гамма-лучи

Съемка неба в диапазоне гамма-лучей космическим гамма-телескопом Fermi

ЭМ излучение: рентгеновское излучение

Идея получения рентгеновского изображения основана на различном ослаблении излучения при прохождении через ткани с разной плотностью и последующей его регистрацией.

ЭМ излучение: рентгеновское излучение

Компьютерная томография

При продольном перемещении пациента формируется множество изображений (срезов), которые в совокупности образуют трехмерное представление внутреннего строения тела с продольным разрешением, пропорциональным количеству срезов.

ЭМ излучение: рентгеновское излучение

Компьютерная томография

При продольном перемещении пациента формируется множество изображений (срезов), которые в совокупности образуют трехмерное представление внутреннего строения тела с продольным разрешением, пропорциональным количеству срезов.

ЭМ излучение: УФ диапазон

Наблюдение космических объектов в ультрафиолетовом диапазоне

ЭМ излучение: УФ диапазон

Флуоресцентная микроскопия

Принцип работы заключается в облучении подготовленного объекта ярким активизирующим освещением и последующем выделении значительно более слабого флуоресцентного свечения.

ЭМ излучение: УФ диапазон

Флуоресцентная микроскопия

Принцип работы заключается в облучении подготовленного объекта ярким активизирующим освещением и последующем выделении значительно более слабого флуоресцентного свечения.

ЭМ излучение: видимый диапазон

ЭМ излучение: инфракрасный диапазон

ЭМ излучение: инфракрасный диапазон

Работа тепловизора

ЭМ излучение: микроволновый диапазон

Радиолокация: объекты по-разному отражают узконаправленные радиоимпульсы сантиметрового диапазона.

Изображение горного массива в Тибете

ЭМ излучение: радиоволны

Магнитно-резонансная томография (МРТ) – метод получения томографических изображений, основанный на явлении ядерного магнитного резонанса (ЯМР).

Пациент помещается в сильное магнитное поле, и через его тело пропускают радиоволны в форме коротких импульсов. Протоны атомов водорода временно переходят на более высокий энергетический уровень и, возвращаясь в основное состояние, испускают излучение определенной частоты.

Упругие (акустические волны)

Ультразвуковое исследование (УЗИ)

Частота: от 2 до 30 МГц (примерно)

Упругие (акустические волны)

Ультразвуковое исследование (УЗИ)

Частота: от 2 до 30 МГц (примерно)

Электронные пучки

В электронном микроскопе для получения изображения объекта применяется сфокусированный пучок электронов.

Scanning Electron Microscope (SEM)

Одиночный сенсор, линейка и матрица сенсоров

Два основных вида сенсоров:

- **ПЗС** (прибор с зарядовой связью, CCD charge-coupled device)
- **КМОП** (комплементарная структура металл оксид полупроводник)

В ПЗС сигнал считывается ряд за рядом и преобразуется в напряжение в выходной ячейке; в КМОП сигнал считывается из каждой ячейки

Схема работы цифровой камеры, а также возможные шаги постобработки

Фильтр Байера для получения цветных изображений.

Недостающие цвета получаются в результате интерполяции значений; данный процесс называется демозаикинг (demosaicing)

В КМОП-матрице обходятся без светофильтра