

EE603 - DSP and its applications

Assigned on: November 6, 2020

Due on: November 20, 2020

Due: November 20, 2020

Notes:

- (1) Copying will be dealt with strictly. Institute disciplinary procedures will be invoked if any form of cheating is detected.
- (2) All computer assignments should be solved using Python and submitted as a Colab note-book shared with the instructor and the TAs. The name of the file should be ROLLNUM-BER_HW5.ipynb
- (3) Questions on which it is not mentioned that Python has to be used: you can either solve it using paper and pen, or use Python, according to your choice. Correct answers will be accepted irrespective.
- (4) All question responses must be in the same notebook and shared with the TA with edit permissions.

Problem 1

(5 points)

(a) Suppose

$$x[n] = 0, n < 0, n > (N-1).$$

is an N-point sequence having at least one nonzero sample. Is it possible for such a sequence to have a DTFT

$$X(e^{j2\pi k/M}) = 0, k = 0, 1, ..., M - 1$$

where M is an integer greater than or equal to N? If your answer is yes, construct an example. If your answer is no, explain your reasoing.

(b) Suppose M < N. Repeat Part (a).

Problem 2

(5 points) Suppose $x_1[n]$ is an infinite-length, stable (i.e., absolutely summable) sequence with z— transform given by

$$X_1(z) = \frac{1}{1 - \frac{1}{3}z^{-1}}.$$

Suppose $x_2[n]$ is a finite-length sequence of length N, and the N-point DFT of $x_2[n]$ is

$$X_2[k] = X_1(z)|_{z=e^{j2\pi k/N}}, k = 0, 1, ..., N-1.$$

Determine $x_2[n]$.

PROBLEM 3

(5 points) Two finite-duration sequences $h_1[n]$ and $h_2[n]$ of length 8 are sketched in the figure. The two sequences are related by a circular shift i.e, $h_1[n] = h_2[((n-m))_8$.

$$h_1[n] = h_2[((n-m))_8]$$

- (a) Specify whether the magnitudes of the eight point DFTs are equal.
- (b) We wish to implement a low pass FIR filter and must be either h₁[n] or h₂[n] as impulse response. Which one of the following statements is correct?

- (i) h₁[n] is a better lowpass filter than h₂[n]
- (ii) $h_2[n]$ is a better lowpass filter than $h_1[n]$
- (iii) The two sequences are both about equally good (or bad) as lowpass filters.

PROBLEM 4

(5 points) Let $x_1[n]$ be a sequence obtained by expanding the sequence $x[n] = (\frac{1}{4})^n u[n]$ by a factor of 4 i.e,

$$x_1[n] = \begin{cases} x[n/4], & k = 0, \pm 4, \pm 8, ... \\ 0, & \text{otherwise.} \end{cases}$$

Find and sketch a six-point DFT Q[k] that satisfies the two constraints

$$Q[0] = X_1(1), Q[3] = X_1(-1)$$

where $X_1(z)$ represents the z-transform of $x_1[n]$.

PROBLEM 5

(5 points) Two finite-length sequences $x_1[n]$ and $x_2[n]$, which are zero outside the interval $0 \le n \le 99$ are circularly convolved to form a new sequence y[n]; i.e.,

$$y[n] = x_1[n] \underbrace{100} x_2[n] = \sum_{k=0}^{99} x_1[k] x_2[((n-k))_{100}], \quad 0 \leqslant n \leqslant 99.$$

If, in fact, $x_1[n]$ is non-zero only for $10 \le n \le 39$, determine the set of values of n for which y[n] is guaranteed to be identical to the *linear* convolution of $x_1[n]$ and $x_2[n]$.

Problem 6

(5 points) Consider two finite-length sequences x[n] and h[n] for which x[n] = 0 outside the interval $0 \le n \le 49$ and h[n] = 0 outside the interval $0 \le n \le 9$.

- (a) What is the maximum possible number of non-zero values in the *linear* convolution of x[n] and h[n]?
- (b) The 50-point *circular* convolution of x[n] and h[n] is

$$x[n] (50) h[n] = 10, \quad 0 \le n \le 49.$$

The first 5 points of the *linear* convolution of x[n] and h[n] are

$$x[n] * h[n] = 5, \quad 0 \leqslant n \leqslant 4.$$

Determine as many points as possible of the linear convolution of x[n] * h[n].

Problem 7

(5 points) A real values continuous-time segment of a signal $x_c(t)$ is sampled at a rate of 20,000 samples/sec, yielding a 1000-point finite-length discrete-time sequence x[n] that is nonzero in the interval $0 \le n \le 999$. It is known that $x_c(t)$ is also bandlimited such that $X_c(j\Omega) = 0$ for $|\Omega| \ge 2\pi(10,000)$; i.e., assume that the sampling operation does not introduce any distortion due to aliasing.

X[k] denotes the 1000-point DFT of x[n]. X[800] is known to have the value X[800] = 1 + j.

- (a) From the information given, can you determine X[k] at any other values of k? If so, state which value(s) of k and what the corresponding value of X[k] is. If not, explain why not.
- (b) From the information given, state the value(s) of Ω for which $X_c(j\Omega)$ is known and the corresponding value(s) of $X_c(j\Omega)$.

PROBLEM 8

(5 points)

A continuous-time signal $x_c(t) = \cos(\Omega_0 t)$ is sampled with period T to produce the sequence $x[n] = x_c(nT)$. An N-point rectangular window is applied to x[n] for 0, 1, ..., N-1, and X[k], for k = 0, 1, ..., N-1, is the N-point DFT of resulting sequence.

- (a) Assuming that Ω_0 , N and k are fixed, how should T be chosen so that $X[k_0]$ and $X[N-k_0]$ are nonzero and X[k] = 0 for all other values of k?
- (b) Is your answer unique? If not, give another value of T that satisfies the conditions of part (a).

Problem 9

(10 points) Consider the following signal

$$x[n] = \cos(0.2\pi n) + \sin(0.22\pi n) + 0.0005\sin(0.6\pi n);$$

Notice that two frequencies are very close, and the third one is very weak. We consider a windowed version of x[n]. For each value of window size N, we wish to observe the DFT and infer what properties of the signal can be obtained.

- (a) For window size N = 64, plot the absolute value of the DFT of x[n] in log scale versus k when windowed using the rectangular window, Hanning window and Hamming windows. Which windows allow you to see the "frequency split" near 0.2π ? Which windows allow you to see the weak 0.6π frequency?
- (b) Repeat for N = 128, 256, 1024, 4096. What do you observe in each case? Comment on the connection between N and the performance of each window.

Due: November 20, 2020