```
In [23]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
In [24]: data=pd.read_csv("/home/placement/Downloads/TelecomCustomerChurn.csv")
```

In [25]: data.head(10)

Out[25]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtec
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	
5	9305- CDSKC	Female	0	No	No	8	Yes	Yes	Fiber optic	No	
6	1452- KIOVK	Male	0	No	Yes	22	Yes	Yes	Fiber optic	No	
7	6713- OKOMC	Female	0	No	No	10	No	No phone service	DSL	Yes	
8	7892- POOKP	Female	0	Yes	No	28	Yes	Yes	Fiber optic	No	
9	6388- TABGU	Male	0	No	Yes	62	Yes	No	DSL	Yes	

10 rows × 21 columns

In [26]: data.shape

Out[26]: (7043, 21)

```
In [27]: list(data)
Out[27]: ['customerID',
           'gender',
          'SeniorCitizen',
          'Partner',
          'Dependents',
          'tenure',
          'PhoneService',
          'MultipleLines',
           'InternetService',
          'OnlineSecurity',
          'OnlineBackup',
          'DeviceProtection',
          'TechSupport',
          'StreamingTV',
          'StreamingMovies',
          'Contract',
          'PaperlessBilling',
          'PaymentMethod',
          'MonthlyCharges',
          'TotalCharges',
          'Churn']
```

```
In [28]: data.isnull().sum()
Out[28]: customerID
                              0
         gender
                              0
         SeniorCitizen
                              0
         Partner
                              0
         Dependents
                              0
         tenure
         PhoneService
                              0
         MultipleLines
                              0
         InternetService
                              0
         OnlineSecurity  
                              0
         OnlineBackup
                              0
         DeviceProtection
                              0
         TechSupport
                              0
         StreamingTV
                              0
         StreamingMovies
                              0
         Contract
                              0
         PaperlessBilling
                              0
         PaymentMethod
                              0
         MonthlyCharges
                              0
         TotalCharges
                              0
         Churn
                              0
         dtype: int64
In [29]: data1=data.drop(['customerID'],axis=1)
In [30]: data1=pd.get_dummies(data)
In [ ]:
```

In [31]: data1.head()

Out[31]:

	SeniorCitizen	tenure	MonthlyCharges	customerID_0002- ORFBO	customerID_0003- MKNFE	customerID_0004- TLHLJ	customerID_0011- IGKFF	customerID_0013- EXCHZ	customerII
0	0	1	29.85	0	0	0	0	0	_
1	0	34	56.95	0	0	0	0	0	
2	0	2	53.85	0	0	0	0	0	
3	0	45	42.30	0	0	0	0	0	
4	0	2	70.70	0	0	0	0	0	

5 rows × 13620 columns

In [32]: data1['SeniorCitizen']=data['SeniorCitizen'].map({'Yes':1,'No':0})

In [33]: data1

Out[33]:

	SeniorCitizen	tenure	MonthlyCharges	customerID_0002- ORFBO	customerID_0003- MKNFE	customerID_0004- TLHLJ	customerID_0011- IGKFF	customerID_0013- EXCHZ	custon
0	NaN	1	29.85	0	0	0	0	0	
1	NaN	34	56.95	0	0	0	0	0	
2	NaN	2	53.85	0	0	0	0	0	
3	NaN	45	42.30	0	0	0	0	0	
4	NaN	2	70.70	0	0	0	0	0	
7038	NaN	24	84.80	0	0	0	0	0	
7039	NaN	72	103.20	0	0	0	0	0	
7040	NaN	11	29.60	0	0	0	0	0	
7041	NaN	4	74.40	0	0	0	0	0	
7042	NaN	66	105.65	0	0	0	0	0	

7043 rows × 13620 columns

```
In [34]: y=data['Churn']
x=data.drop(columns='Churn')
```

In [35]: x=pd.get_dummies(x)

In [36]: x.head()

Out[36]:

	SeniorCitizen	tenure	MonthlyCharges	customerID_0002- ORFBO	customerID_0003- MKNFE	customerID_0004- TLHLJ	customerID_0011- IGKFF	customerID_0013- EXCHZ	customerl
0	0	1	29.85	0	0	0	0	0	_
1	0	34	56.95	0	0	0	0	0	
2	0	2	53.85	0	0	0	0	0	
3	0	45	42.30	0	0	0	0	0	
4	0	2	70.70	0	0	0	0	0	

5 rows × 13618 columns

In [37]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [38]: x_test.head(5)

Out[38]:

	SeniorCitizen	tenure	MonthlyCharges	customerID_0002- ORFBO	customerID_0003- MKNFE	customerID_0004- TLHLJ	customerID_0011- IGKFF	customerID_0013- EXCHZ	custon
185	0	1	24.80	0	0	0	0	0	
2715	0	41	25.25	0	0	0	0	0	
3825	0	52	19.35	0	0	0	0	0	
1807	0	1	76.35	0	0	0	0	0	
132	0	67	50.55	0	0	0	0	0	

5 rows × 13618 columns

In [39]: x test.shape

```
Out[39]: (2325, 13618)
In [40]: y test.head(5)
Out[40]: 185
                 Yes
         2715
                  Nο
         3825
                  No
         1807
                 Yes
         132
                  No
         Name: Churn, dtype: object
         RandomForestClassifier
In [41]: from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning
         from sklearn.ensemble import RandomForestClassifier
         cls=RandomForestClassifier()
         n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
         criterion=['gini', 'entropy'] #criteria for choosing nodes default = 'gini'
         max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
         parameters={'n estimators': n estimators,'criterion':criterion,'max depth':max depth} #this will undergo 8*2
         RFC cls = GridSearchCV(cls, parameters)
         RFC cls.fit(x train, y train)
Out[41]:
                      GridSearchCV
          ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [42]: RFC cls.best params
Out[42]: {'criterion': 'qini', 'max depth': 3, 'n estimators': 25}
```

localhost:8888/notebooks/Untitled.ipynb