

Outline

- Differencing
- ☐ ARIMA Model

Which of these series are stationary?

- (a) Google stock price for 200 consecutive days;
- (b) Daily change in the Google stock price for 200 consecutive days;
- (c) Annual number of strikes in the US;
- (d) Monthly sales of new onefamily houses sold in the US;
- (e) Annual price of a dozen eggs in the US (constant dollars);
- (f) Monthly total of pigs slaughtered in Victoria, Australia;
- (g) Annual total of lynx trapped in the McKenzie River district of north-west Canada;
- (h) Monthly Australian beer production;
- (i) Monthly Australian electricity production

We normally restrict autoregressive models to stationary data, in which case some constraints on the values of the parameters are required.

- For an AR(1) model: $-1 < \phi_1 < 1$.
- For an AR(2) model: $-1 < \phi_2 < 1$, $\phi_1 + \phi_2 < 1$, $\phi_2 \phi_1 < 1$.

The invertibility constraints for other models are similar to the stationarity constraints.

- For an MA(1) model: $-1 < \theta_1 < 1$.
- For an MA(2) model: $-1 < \theta_2 < 1$, $\theta_2 + \theta_1 > -1$, $\theta_1 \theta_2 < 1$.

$$Y_t = 3Y_{t-1} + e_t \qquad e_t \sim iid(0, \sigma_e^2)$$

Iterating into the past as we have done before yields

$$Y_t = e_t + 3e_{t-1} + 3^2e_{t-2} + \dots + 3^{t-1}e_1 + 3^tY_0$$
 $Y_0 = 0$

An Explosive "AR(1)" Series

								1 ,	
t	1	2	3	4	5	6	7	8	
e_t	0.63	-1.25	1.80	1.51	1.56	0.62	0.64	-0.98	
Y_t	0.63	0.64	3.72	12.67	39.57	119.33	358.63	1074.91	

Simulation of the Explosive "AR(1) Model" $Y_t = 3Y_{t-1} + e_t$

$$Var(Y_t) = \frac{1}{8}(9^t - 1)\sigma_e^2$$

and

$$Cov(Y_t, Y_{t-k}) = \frac{3^k}{8} (9^{t-k} - 1)\sigma_e^2$$

respectively. Notice that we have

$$Corr(Y_t, Y_{t-k}) = 3^k \left(\frac{9^{t-k} - 1}{9^t - 1}\right) \approx 1$$
 for large t an

for large t and moderate k

Differencing

$$AR(1): Y_t = \phi Y_{t-1} + e_t \qquad e_t \sim iid(0, \sigma_e^2)$$

if $|\phi| \ge 1$, the AR(1) is non stationary model

Suppose $\phi = 1$

$$Y_t = Y_{t-1} + e_t$$

$$Y_t - Y_{t-1} = e_t$$

$$\nabla^1 Y_t = e_t$$

$$E(\nabla^{1}Y_{t}) = E(e_{t}) = 0$$

$$Var(\nabla^{1}Y_{t}) = Var(e_{t}) = \sigma_{e}^{2}$$

Stationary model

Differencing

Backshift (B):

$$B(Y_t) = Y_{t-1}$$

$$B^2(Y_t) = Y_{t-2}$$

$$B^k(Y_t) = Y_{t-k}$$

Backward (∇) :

$$\nabla = 1 - B$$

$$\nabla^2 = (1 - B)^2 = (1 - 2B - B^2)$$

$$\nabla Y_t = (1 - B)Y_t = Y_t - Y_{t-1}$$

$$\nabla^2 Y_t = (1 - B)^2 Y_t = (1 - 2B - B^2)Y_t = Y_t - 2Y_{t-1} + Y_{t-2}$$

ARIMA Models

A time series $\{Y_t\}$ is said to follow an **integrated autoregressive moving average** model if the dth difference $W_t = \nabla^d Y_t$ is a stationary ARMA process. If $\{W_t\}$ follows an ARMA(p,q) model, we say that $\{Y_t\}$ is an ARIMA(p,d,q) process. Fortunately, for practical purposes, we can usually take d=1 or at most 2.

Consider then an ARIMA(p,1,q) process. With $W_t = Y_t - Y_{t-1}$, we have

$$W_{t} = \phi_{1} W_{t-1} + \phi_{2} W_{t-2} + \dots + \phi_{p} W_{t-p} + e_{t} - \theta_{1} e_{t-1} - \theta_{2} e_{t-2} \\ - \dots - \theta_{q} e_{t-q}$$

or, in terms of the observed series,

$$\begin{split} Y_t - Y_{t-1} &= \phi_1 (Y_{t-1} - Y_{t-2}) + \phi_2 (Y_{t-2} - Y_{t-3}) + \dots + \phi_p (Y_{t-p} - Y_{t-p-1}) \\ &+ e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q} \end{split}$$

ARIMA Models

$$\begin{split} Y_t - Y_{t-1} &= \phi_1 (Y_{t-1} - Y_{t-2}) + \phi_2 (Y_{t-2} - Y_{t-3}) + \dots + \phi_p (Y_{t-p} - Y_{t-p-1}) \\ &+ e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q} \end{split}$$

which we may rewrite as

$$\begin{split} Y_t &= (1+\phi_1)Y_{t-1} + (\phi_2 - \phi_1)Y_{t-2} + (\phi_3 - \phi_2)Y_{t-3} + \cdots \\ &+ (\phi_p - \phi_{p-1})Y_{t-p} - \phi_p Y_{t-p-1} + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \cdots - \theta_q e_{t-q} \end{split}$$

We call this the **difference equation form** of the model. Notice that it appears to be an ARMA(p + 1,q) process

The IMA(1,1) Model

$$d = 1, q = 1$$

$$Y_t = Y_{t-1} + e_t - \theta e_{t-1}$$

$$Y_t - Y_{t-1} = e_t - \theta e_{t-1}$$

$$W_t = e_t - \theta e_{t-1}$$

 \rightarrow Y_t is Non-stationary process

 W_t is stationary process

The IMA(2,2) Model

$$d = 2, q = 2$$

$$Y_t = 2Y_{t-1} - Y_{t-2} + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

$$Y_t - 2Y_{t-1} + Y_{t-2} = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$$

$$\nabla^2 Y_t = e_t - \theta e_{t-1} - \theta_2 e_{t-2}$$

$$W_t = e_t - \theta e_{t-1} - \theta_2 e_{t-2}$$

 W_t is stationary process

The IMA(2,2) Model

Simulation of an IMA(2,2) Series with θ_1 = 1 and θ_2 = -0.6

Second Difference of the Simulated IMA(2,2) Series

The ARI(1,1) Model

$$p = 1, d = 1$$

$$\nabla Y_t = \phi \nabla Y_{t-1} + e_t$$

$$Y_t - Y_{t-1} = \phi(Y_{t-1} - Y_{t-2}) + e_t$$

$$Y_t = (1 + \phi)Y_{t-1} - \phi Y_{t-2} + e_t$$

 ∇Y_t is stationary process

 Y_t is Non-stationary process

ARIMA Models

 $ARIMA(0, 0, 1) : Y_t = e_t - \theta e_{t-1}$

ARIMA (1,1,0): $\nabla Y_t = \phi \nabla Y_{t-1} + e_t$

 $ARIMA(0, 1, 1) : \nabla Y_t = e_t - \theta e_{t-1}$

ARIMA $(0,2,2): \nabla^2 Y_t = e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}$

 $ARIMA(1, 0, 0) : Y_t = \phi Y_{t-1} + e_t$

ARIMA $(1,1,1): \nabla Y_t = \phi \nabla Y_{t-1} + e_t - \theta_1 e_{t-1}$

Exercise

Consider the process $Y_t = Y_{t-1} + e_t + \frac{1}{4}e_{t-1}$

Is the process invertible?

Is the process stationary?

Other Transformations

☐ We have seen how differencing can be a useful transformation for achieving stationarity.

☐ However, the other transformation is also a useful method for achieving

stationarity.

Common B	ox-Cox Transformations				
Lambda	Suitable Transformation				
-2	$Y^{-2} = 1/Y^2$				
-1	Y ⁻¹ = 1/Y ¹				
-0.5	$Y^{-0.5} = 1/(Sqrt(Y))$				
0	log(Y)				
0.5	Y ^{0.5} = Sqrt(Y)				
1	Y1 = Y				
2	Y ²				

The next meetings

- Model Specification
- Parameter estimation
- ☐ Model Diagnostic
- Forecasting

Thanks