MATH 303 Midterm Exam A Solution

Problem 1

Consider the transition matrix P obtained from running the notebook with your student ID.

The notebook will give the following possible outputs

• Case (a):
$$P = \begin{pmatrix} 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.0 & 0.5 \\ 0.2 & 0.0 & 0.6 & 0.0 & 0.2 \\ 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.4 & 0.0 & 0.0 & 0.6 \end{pmatrix}, i = 5$$

• Case (b):
$$P = \begin{pmatrix} 0.8 & 0.0 & 0.2 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\ 0.4 & 0.0 & 0.6 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.1 & 0.1 & 0.8 \end{pmatrix}, i = 3$$

• Case (c):
$$P = \begin{pmatrix} 0.2 & 0.6 & 0.2 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 0.2 & 0.8 & 0.0 \\ 0.0 & 0.0 & 0.4 & 0.6 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \end{pmatrix}, i = 4$$

$$\bullet \text{ Case (d): } P = \begin{pmatrix} 0.4 & 0.6 & 0.0 & 0.0 & 0.0 \\ 0.5 & 0.5 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.3 & 0.0 & 0.0 & 0.3 & 0.4 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \end{pmatrix}, \ i = 2$$

a. Draw the transition diagram associated with P with the states corresponding to their row index in the matrix (i.e. first row correspond to state 1, second to state 2 etc.).

Solution: See Figure 1

b. Determine all the communication states (no need to justify).

Solution: Overall, There are 3 classes.

- Case (a): $\{\{1,4\},\{2,5\},\{3\}\}$
- Case (b): $\{\{1,3\},\{2,4\},\{5\}\}$
- Case (c): $\{\{3,4\},\{2,5\},\{1\}\}$
- Case (d): $\{\{1,2\},\{3,5\},\{4\}\}$

Figure 1: Transition diagram for case (a). Other cases are similar (permute the states and change transion probabilities accordingly)

c. Determine which states are recurrent and which are transient (briefly justify).

Solution: Overall, There are 2 recurrent classes and one transient class (the one with only one state).

- Case (a): $\{\{1,4\}r,\{2,5\}r,\{3\}t\}$. Justification: Starting from 1 the only possible trajectory is 1,4,1,4, etc. so 1 is recurrent and 4 is too since they communicate. The class $\{2,5\}$ is closed and finite thus recurrent. There is no transition to state 3 apart from $p_{3,3}$ which means that if one starts from 3 and leaves the state it is not possible to come back. Since leaving 3 happens with positive probability the state 3 is transient.
- Case (b): $\{\{1,3\}r,\{2,4\}r,\{5\}t\}$ (similar justification as in (a))
- Case (d): $\{\{1,2\}r,\{3,5\}r,\{4\}t\}$ (similar justification as in (a))
- **d.** Determine the period of each state (briefly justify).

Solution: Overall, There is a class with period 2 and two aperiodic classes (including the one with only one state).

- b=0: $\{\{1,4\}d=2,\{2,5\}d=1,\{3\}d=1\}$. Justification: The chain started from 1 is deterministic and alternates between 1 and 4 in particular $p_{1,1}^{(2k)}=1$ for all $k\geq 1$ and $p_{1,1}^{(2k+1)}=0$ for all $k\geq 0$ so the gcd of all the even numbers is 2. Thus the period of 1 is equal to 2 and the same holds for 4. For the class $\{2,5\}$, from the transition diagram we see that $p_{2,2}^{(1)}>0$ and thus 2 has period 1. Since the state 5 is in the same class and since the period is a class property we see that the period of 5 is 1. Finally since $p_{3,3}^{(1)}>0$ we have that the period of 3 is equal to 1.
- b=1: $\{\{1,3\}\ d=1,\{2,4\}\ d=2,\{5\}\ d=1\}$ (similar justification as in (a))
- b=2: $\{\{3,4\} d = 1, \{2,5\} d = 2, \{1\} d = 1\}$ (similar justification as in (a))
- b=3: $\{\{1,2\} d = 1, \{3,5\} d = 2, \{4\} d = 1\}$ (similar justification as in (a))

e. Starting from i, what is the mean number of steps to re-visit i? (justify your calculation with key steps; answers directly written won't be accepted).

Solution: By doing a one-step analysis, and with $\mathbb{E}(N(i)|X_0=j)$ being the expected number of steps to visit i given that the chain starts at j,

• Case (a)

$$\mathbb{E}(N(5)|X_0 = 5) = (1 + \mathbb{E}(N(5)|X_0 = 2))p_{52} + p_{55}$$

$$\mathbb{E}(N(5)|X_0 = 2) = (1 + \mathbb{E}(N(5)|X_0 = 2))p_{22} + p_{25}.$$

$$\mathbb{E}(N(5)|X_0 = 5) = (1 + \frac{1}{p_{25}})p_{52} + p_{55}$$
$$= (1 + \frac{1}{0.5})0.4 + 0.6$$
$$= 1.8$$

• Case (b)

$$\mathbb{E}(N(3)|X_0 = 3) = (1 + \mathbb{E}(N(3)|X_0 = 1))p_{31} + p_{33}$$

$$\mathbb{E}(N(3)|X_0 = 1) = (1 + \mathbb{E}(N(3)|X_0 = 1))p_{11} + p_{13}.$$

$$\mathbb{E}(N(3)|X_0 = 1) = (1 + \frac{1}{p_{13}})p_{31} + p_{33}$$
$$= (1 + \frac{1}{0.2})0.4 + 0.6$$
$$= 3$$

• Case (c)

$$\mathbb{E}(N(4)|X_0 = 4) = (1 + \mathbb{E}(N(4)|X_0 = 3))p_{43} + p_{44}$$

$$\mathbb{E}(N(4)|X_0 = 3) = (1 + \mathbb{E}(N(4)|X_0 = 3))p_{33} + p_{34}.$$

$$\mathbb{E}(N(4)|X_0 = 4) = (1 + \frac{1}{p_{34}})p_{43} + p_{44}$$
$$= (1 + \frac{1}{0.8})0.4 + 0.6$$
$$= 1.5$$

• Case (d)

$$\mathbb{E}(N(2)|X_0 = 2) = (1 + \mathbb{E}(N(2)|X_0 = 2))p_{21} + p_{22}$$

$$\mathbb{E}(N(2)|X_0 = 1) = (1 + \mathbb{E}(N(2)|X_0 = 1))p_{11} + p_{12}.$$

$$\mathbb{E}(N(2)|X_0 = 2) = (1 + \frac{1}{p_{12}})p_{21} + p_{22}$$
$$= (1 + \frac{1}{0.6})0.5 + 0.5$$
$$= 11/6 \simeq 1.83$$

Problem 2

Consider the Markov Chain $(X_n)_{n\geq 0}$ defined on $\mathbb{N}=\{0,1,\ldots\}$ with transition probabilities obtained from running the notebook.

The notebook gives $\forall i > 0$ $p_{i,i+1} = p$; $p_{i,i-1} = q$; $p_{i,i} = r$ and $p_{0,1} = p$; $p_{0,0} = 1 - p$. Values of p, q, r are the following:

- Case (a): (p, q, r) = (0.25, 0.5, 0.25)
- Case (b): (p, q, r) = (0.5, 0.25, 0.25)
- Case (c): (p, q, r) = (0.2, 0.4, 0.4)
- Case (d): (p,q,r) = (0.6, 0.2, 0.2)
- **a.** Draw the transition diagram.

Solution:

b. Suppose that the chain admits a stationary distribution π . Find a relation between π_0 and π_1 (justify your answer).

Solution: (replace p, q by their numerical values) Since $\pi = \pi P$, where P is the transition matrix, we have $\pi_0 = P_{00}\pi_0 + P_{10}\pi_1 = (1-p)\pi_0 + q\pi_1$

c. For i > 1, find a relation between by π_{i-1} , π_i and π_{i+1} (justify your answer).

Solution: (replace p, q, r by their numerical values) Similarly, $\pi_i = P_{i-1,i}\pi_{i-1} + P_{i,i}\pi_i + P_{i+1,i}\pi_{i+1} = p\pi_{i-1} + r\pi_i + q\pi_{i+1}$

d. Show by induction that $\frac{\pi_{i+1}}{\pi_i}$ is a constant (to be determined), and deduce π_i in function of i and π_0 . Is the chain positive-recurrent? Justify your answer.

Solution: (replace p,q by their numerical values) The recurrence initializes at i=0 with $\frac{\pi_1}{\pi_0}=\frac{p}{q}$. Assuming $\frac{\pi_i}{\pi_{i-1}}=\frac{p}{q}$, rearranging the relation in \mathbf{c} yields $\pi_i=q\pi_i+r\pi_i+q\pi_{i+1}\Leftrightarrow\pi_i(1-q-r)=q\pi_{i+1}$. Since p+q+r=1, we obtain that $\frac{\pi_{i+1}}{\pi_i}=\frac{p}{q}$ and the recurrence is proved. We hence obtain that $\pi_i=\left(\frac{p}{q}\right)\pi_{i-1}=\left(\frac{p}{q}\right)^2\pi_{i-2}=\ldots=\left(\frac{p}{q}\right)^i\pi_0$. From class, we know that the chain is positive recurrent if and only if π also satisfies $\sum_i \pi_i=1$.

This is achieved if $\sum_{i} \left(\frac{p}{q}\right)^{i} < \infty$. If $\frac{p}{q} < 1$ (determined by the values of p and q set by the student ID), the series converges and the chain is positive recurrent. Else, it is not.

Problem 3

You have a bag containing four marbles. Marbles come in two colors: red and blue. At each step, you put your hand in the bag, remove a marble (selecting one uniformly at random from those in the bag), and replace it with a marble of the *opposite* color. Let X_n be the number of blue marbles in the bag after n steps.

The notebook gives four possible values of i to be used in question b.

a. Draw the transition diagram for X.

Solution:

b. Consider the state *i* obtained from running the notebook. Find $\mathbb{E}(X_2|X_0=i)$ (justify your calculation with key steps; answers directly written won't be accepted).

Solution:

For example, for i = 2 we notice that in two steps and starting from i, there are only three possible states that can be reached: 0, 2 and 4, so

$$\mathbb{E}[X_2|X_0=i] = 2 \times P_{2,2}^2 + 0 \times P_{2,0}^2 + 4 \times P_{2,4}^2,$$

with 2-step transition probabilities (no need to evaluate $P_{2,0}^2$)

$$P_{22}^2 = P_{2,3}P_{3,2} + P_{2,1}P_{1,2} = \frac{3}{4}$$

 $P_{i,i+2}^2 = P_{2,3}P_{3,4} = \frac{1}{8}$

Doing something similar for different possible values of i (check what states can be reached) yields

$$\mathbb{E}[X_2|X_0 = i] = \begin{cases} 7/4, & i = 1\\ 2, & i = 2\\ 9/4, & i = 3\\ 5/2, & i = 4 \end{cases}$$

Remark: One can answer the question by calculating the 2-step transition matrix P^2 , but it is faster to directly use the transition diagram.

c. Show that distribution $\pi = \frac{1}{16}(1, 4, 6, 4, 1)$ is stationary for X, and that the process is reversible.

Solution: We just need to check that detailed balance is satisfied, i.e. $\sum_i \pi_i = 1$ (trivial since the question says that this is a distribution), and

$$\forall i \in \{0, 1, 2, 3\}$$
 $P_{i,i+1}\pi_i = P_{i+1,i}\pi_{i+1}$

Remark: There was no need to show the general relation given by a stationary distribution.

Consider a different Markov chain defined by slightly modifying the marble process: namely, when all the marbles in the bag are the same color, you take two out and replace them with marbles of the opposite color. Let Y_n be the number of blue marbles after n steps in the modified process.

d. We assume that $\sigma = \frac{1}{18}(1,4,8,4,1)$ is stationary for Y. Use a result from class to argue that Y_n converges in distribution to σ as $n \to \infty$. Is Y reversible? Justify.

Solution: Now the transition diagram is

 Y_n is aperiodic (since $P_{22}^3 > 0$ and $P_{22}^2 > 0$), and since the chain is irreducible and finite, it is positive recurrent. Thus it is ergodic, so by a result from class, $Y_n \to \sigma$. It is not reversible, since, for example,

$$\sigma_1 Q_{12} = \frac{1}{6} \neq \frac{2}{9} = \sigma_2 Q_{21}.$$

Problem 4

Complete the Problem 4 set in midtermA.ipynb (there are two questions). Submit the completed notebook as midtermA_complete.ipynb

The notebook gives 3 values for p, q, r

Solution to question a: Enter the following matrix

$$P = \begin{pmatrix} r & (1-r)(1-p) & (1-r)p \\ 1-q & q(1-p) & qp \\ 1-q & q(1-p) & qp \end{pmatrix}$$

Marking: Points are possibly awarded if one enters a 3×3 matrix, the matrix is stochastic, and values are correct.

Solution to question b: Using the empirical distribution obtained by running the code $\mu = (\mu_1, \mu_2, \mu_3)$, enter the following value for the probability of having biked in the previous trip (being in state 'bs'), given that they take a bus (being in state 'Br' or 'Bs'):

$$proba = P_{13} \frac{\mu_3}{\mu_1} + P_{23} \frac{\mu_2}{\mu_1} = (1 - r)p \frac{\mu_3}{\mu_1} + qp \frac{\mu_2}{\mu_1}$$

Marking: Points are possibly awarded if one enters a probability (proba $\in [0,1]$), and the value is correct.