Doble Grado en Informática-Matemáticas

Variable Compleja I

(Curso 2015-2016) Control 2

3-Junio-2016

1.

- (i) Dar los conceptos de camino y de integral a lo largo de un camino. Enunciar la propiedad de acotación básica, así como la regla de Barrow, para integrales a lo largo de caminos.
- (ii) Probar que para cualesquiera z_1 y z_2 en el semiplano izquierdo cerrado $S = \{z \in \mathbb{C} : \text{Re}(z) \leq 0\}$ se verifica que $|e^{z_2} e^{z_1}| \leq |z_2 z_1|$.

(2 Puntos)

2:

- (i) Dar el concepto de dominio estrellado y enunciar el Teorema de Cauchy para dominios estrellados.
- (ii) Sea f una función entera, y sea $F:\mathbb{C}\to\mathbb{C}$ la función definida por

$$F(z) := e^{f(z)} \int_{[0,z]} e^{-f(w)} dw.$$

Probar que F es una función entera y que F'(z)=1+f'(z)F(z) para todo $z\in\mathbb{C}.$

(2 Puntos)

3:

(1) Dar los conceptos de

Función holomorfa y Función analítica.

Justificar razonadamente la relación entre ambos.

(2) Considérese la función f de $\mathbb{C}\setminus\{1\}$ en \mathbb{C} definida por

$$f(z) = \log(z - 1).$$

- (i) Determinar el más grande abierto Ω de $\mathbb C$ en el que f es holomorfa.
- (ii) Calcular el desarrollo de Taylor de f centrado en i.
- (iii) Determinar el disco de convergencia de la serie obtenida.
- (iv) Sea φ la función suma de dicha serie definida, naturalmente, en su disco de convergencia. Indica para qué valores de $z \in \Omega$ se verifica que $f(z) = \varphi(z)$.

(3 Puntos)

4.

- (i) Dar el concepto de función armónica y enunciar relaciones entre las funciones armónicas y las funciones parte real de funciones holomorfas.
- (ii) Probar que la función $u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ definida por $u(x,y) := \log(x^2 + y^2)$ es armónica y no existe ninguna función holomorfa $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ tal que u = Re(f).
- (iii) Probar que la composición de una función holomorfa con una función armónica es una función armónica.

(3 Puntos)

SOLUCIONES

1.

(ii) Puesto que la función exponencial es entera con derivada ella misma, se sigue de la regla de Barrow que para cualesquiera números complejos z_1 y z_2

$$\int_{[z_1,z_2]} e^z \, dz = e^{z_2} - e^{z_1}.$$

Por otra parte, para todo $z \in S$ se tiene que

$$|e^z| = e^{\text{Re}(z)} \le e^0 = 1.$$

Ahora, de la acotación básica, deducimos que para cualesquiera z_1 y z_2 en S se verifica que

$$|e^{z_2} - e^{z_1}| = \left| \int_{[z_1, z_2]} e^z dz \right| \le \max\{|e^z| : z \in [z_1, z_2]\} \ell([z_1, z_2]) \le |z_2 - z_1|.$$

2.

(ii) Sea f una función entera, y sea $F:\mathbb{C}\to\mathbb{C}$ la función definida por

$$F(z) := e^{f(z)} \int_{[0,z]} e^{-f(w)} dw.$$

Puesto que f es una función entera, también la función $h:\mathbb{C}\to\mathbb{C}$ definida por $h(z):=e^{-f(z)}$ es entera. Como quiera que \mathbb{C} es un dominio estrellado, se sigue del Téorema de Cauchy para dominios estrellados que h tiene primitivas. Si $H:\mathbb{C}\to\mathbb{C}$ es una primitiva de h, entonces, por la regla de Barrow, tenemos que

$$\int_{[0,z]} h(w)dw = H(z) - H(0) \;\; ext{para todo} \;\; z \in \mathbb{C},$$

y por tanto

$$F(z) = e^{f(z)} \int_{[0,z]} h(w) dw = e^{f(z)} (H(z) - H(0))$$
 para todo $z \in \mathbb{C}$.

Ahora, las reglas de derivación ponen de manifiesto que F es una función entera y que, para todo $z\in\mathbb{C},$

$$F'(z) = f'(z)e^{f(z)}(II(z) - II(0)) + e^{f(z)}H'(z) = f'(z)F(z) + e^{f(z)}h(z)$$
$$= f'(z)F(z) + e^{f(z)}e^{-f(z)} = f'(z)F(z) + 1.$$

3

(2) Consideremos la función $f: \mathbb{C}\setminus\{1\} \to \mathbb{C}$ definida por

$$f(z) = \log(z - 1).$$

- (i) Puesto que la función $z\mapsto z-1$ es biholomorfa de $\mathbb C$ en $\mathbb C$ con inversa $z\mapsto z+1$, y puesto que la función logaritmo principal es holomorfa en $\mathbb C\backslash\mathbb R_0^-$ y discontinua en $\mathbb R^-$, se sigue inmediatamente que f es holomorfa en $\Omega:=\mathbb C\backslash\{x\in\mathbb R:x\leq 1\}$ y discontinua en $\{x\in\mathbb R:x<1\}$.
- (ii) Por el Teorema de Taylor, la serie de Taylor de f en i converge en el disco abierto de centro i y radio $d(i, \mathbb{C} \setminus \Omega) = 1$ con suma f. Puesto que, por la regla de la cadena, para todo $z \in \Omega$

$$f'(z) = \frac{1}{z-1} = -\frac{1}{1-z} = -\frac{1}{1-i-(z-i)} = -\frac{1}{1-i} \frac{1}{1-\frac{z-i}{1-i}}.$$

teniendo en cuenta que $\sum_{n=0}^{\infty}z^n=\frac{1}{1-z}$ cuando |z|<1, deducimos que

$$f'(z) = -\frac{1}{1-i} \sum_{n=0}^{\infty} \left(\frac{z-i}{1-i}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{(1-i)^{n+1}} (z-i)^n = -\sum_{n=1}^{\infty} \frac{1}{(1-i)^n} (z-i)^{n-1}$$

cuando $z \in \Omega$ y $\left| \frac{z-i}{1-i} \right| < 1$, esto es cuando $z \in \Omega$ y $|z-i| < \sqrt{2}$. Ahora, teniendo en mente el Teorema de derivación de la función suma de una serie de potencias, así como el Teorema de Taylor, y notando que

$$D(i, 1) \subseteq \Omega \cap D(i, \sqrt{2})$$
 y $f(i) = \log(i - 1) = \log\sqrt{2} + i\frac{3\pi}{4}$,

concluimos que el desarrollo de Taylor de f centrado en i viene dado por

$$f(z) = \log \sqrt{2} + i \frac{3\pi}{4} - \sum_{n=1}^{\infty} \frac{1}{n(1-i)^n} (z-i)^n$$
 para todo $z \in D(i,1)$.

- (iii) Puesto que para todo natural n se tiene que $|c_n| = \frac{1}{n|1-i|^n} = \frac{1}{n\sqrt{2}^n}$, y en consecuencia $\frac{|c_{n+1}|}{|c_n|} = \frac{n}{\sqrt{2}(n+1)} \longrightarrow \frac{1}{\sqrt{2}}$, el radio de convergencia de convergencia de la serie de Taylor de f en i es $R = \sqrt{2}$, y por tanto el disco de convergencia es $D(i, \sqrt{2})$.
- (iv) Sea $\varphi: D(i, \sqrt{2}) \to \mathbb{C}$ la función suma de la serie. Los apartados (ii) y (iii) ponen de manifiesto que $f = \varphi$ en D(i, 1). Nótese que φ es continua en

 $D(i, \sqrt{2}) \cap \mathbb{R} =]-1, 1[$, mientras que f no lo es, y por tanto f y φ no pueden coincidir en $D(i, \sqrt{2})$. Sin embargo, si consideramos el dominio

$$D(i, \sqrt{2})^+ := D(i, \sqrt{2}) \cap (\text{Semiplano abierto superior}),$$

el Principio de identidad da que $f = \varphi$ en $D(i, \sqrt{2})^+$.

4.

(ii) Consideremos la función $u: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ definida por

$$u(x, y) := \log(x^2 + y^2).$$

Puesto que u es la composición de una función polinómica valuada en \mathbb{R}^+ con la función logaritmo real, y ambas son de clase C^{∞} , es claro que u es de clase C^{∞} . Además

$$\frac{\partial u}{\partial x} = \frac{2x}{x^2 + y^2} \quad y \quad \frac{\partial^2 u}{\partial x^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}$$

У

$$\frac{\partial u}{\partial y} = \frac{2y}{x^2 + y^2} \quad y \quad \frac{\partial^2 u}{\partial y^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}.$$

Luego u verifica la ecuación de Laplace, y por tanto es armónica. Razonando por reducción al absurdo, supongamos que existe

 $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ función holomorfa tal que u = Re(f).

Puesto que claramente $u_{|\mathbb{C}\backslash\mathbb{R}_0^-} = \operatorname{Re}(2\log_{|\mathbb{C}\backslash\mathbb{R}_0^-})$, se sigue que $2\log_{|\mathbb{C}\backslash\mathbb{R}_0^-} - f_{|\mathbb{C}\backslash\mathbb{R}_0^-}$ es una función holomorfa en el dominio $\mathbb{C}\setminus\mathbb{R}_0^-$ que toma valores en el eje imaginario. Por las propiedades elementales de las funciones holomorfas, esta función es constante, y por tanto existe $k \in \mathbb{C}$ tal que

$$\log z = k + \frac{1}{2} f(z)$$
 para todo $z \in \mathbb{C} \setminus \mathbb{R}_0^-$.

Luego log admite una extensión holomorfa a $\mathbb{C} \setminus \{0\}$, lo que es una contradicción con el hecho de que, para cada $r \in \mathbb{R}^-$, el límite $\lim_{z \to r} \log z$ no existe.

(iii) (Ejercicio Resuelto 81) Sean Ω_1 y Ω_2 dos abiertos del plano, $f:\Omega_1 \to \Omega_2$ una función holomorfa, y $u:\Omega_2 \to \mathbb{R}$ una función armónica. Veamos que la composición $u \circ f:\Omega_1 \to \mathbb{R}$ es armónica. Dado $a \in \Omega_1$, y fijado un disco $D(f(a),R) \subseteq \Omega_2$, sabemos que existe una función holomorfa $g:D(f(a),R) \to \mathbb{C}$ tal que u=Re(g) en D(f(a),R). Como f es continua en a

$$\exists \delta > 0 : D(a, \delta) \subseteq \Omega_1 \text{ y } f(D(a, \delta)) \subseteq D(f(a), R).$$

Así, $u \circ f : D(a, \delta) \to \mathbb{R}$ es tal que

$$u \circ f = \operatorname{Re}(g) \circ f = \operatorname{Re}(g \circ f)$$
 en $D(a, \delta)$.

Luego $u \circ f$ es armónica en $D(a, \delta)$. Puesto que a es arbitrario en Ω y el concepto de armonicidad es un concepto local, concluimos que $u \circ f$ es armónica.

