Multiclass spectral clustering

Karlo Grozdanić Mislav Jelašić Luka Karlić

SADRŽAJ

01 PROBLEM KLASTERIRANJA

02 KLASIČNI MSC

03 DACA

04 PRIMJERI 2D

05 SEGMENTACIJA

06 PRIMJERI

SADRŽAJ

01	PROBLEM KLASTERIRANJA
02	KLASIČNI MSC
03	DACA
04	PRIMJERI 2D
05	SEGMENTACIJA
06	PRIMJERI

KLASIČNI PROBLEM KLUSTERIRANJA

Težinski graf

Definiramo težinski graf kao uređenu trojku $\mathbb{G} = (\mathbb{V}, \mathbb{E}, W)$, gdje je $\mathbb{V} = \{v_1, v_2, ..., v_n\}$ konačan skup vrhova, $\mathbb{E} \subseteq \mathbb{V} \times \mathbb{V}$ skup bridova koji ih povezuju i $W = (w_{ij}) \in \mathbb{R}^{n \times n}$ matrica težina koja opisuje vjerojatnost da dva vrha pripadaju istoj grupi (matrica susjedstva).

Klasteriranje N točaka u K grupa svodi se na traženje K-particije grafa u oznaci $\Gamma_{\mathbb{V}}^K = \{\mathbb{V}_1, ..., \mathbb{V}_K\}$, odnosno familije nepraznih skupova $\mathbb{V}_1, \mathbb{V}_2, ..., \mathbb{V}_K$ takvih da je $\mathbb{V} = \bigcup_{i=1}^K \mathbb{V}_i$ i $\mathbb{V}_i \cap \mathbb{V}_j = \emptyset$, $\forall i \neq j$.

SADRŽAJ

Mjere povezanosti

$$links(\mathbb{A}, \mathbb{B}) = \sum_{i \in \mathbb{A}, j \in \mathbb{B}} W(i, j).$$

$$degree(\mathbb{A}) = links(\mathbb{A}, \mathbb{V}) = \sum_{i} W(i, j).$$

$$=\frac{links(\mathbb{A},\mathbb{B})}{\mathbb{B}}$$

$$linkratio(\mathbb{A}, \mathbb{B}) = \frac{links(\mathbb{A}, \mathbb{B})}{degree(\mathbb{A})}.$$

$$aegree(\mathbb{A})$$
 $1\sum_{i=1}^{K}$

$$knassoc(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l=1}^{K} linkratio(\mathbb{V}_{l}, \mathbb{V}_{l})$$

$$kncuts(\Gamma_{\mathbb{V}}^{K}) = \frac{1}{K} \sum_{l}^{K} linkratio(\mathbb{V}_{l}, \mathbb{V} \setminus \mathbb{V}_{l})$$

STUPANJ POVEZANOSTI SKUPOVA

NORMIRANA ASOCIJACIJA

Funkcije cilja - minimizacija / maksimizacija

 $knassoc(\Gamma_{\mathbb{V}}^{K})$ i $kncuts(\Gamma_{\mathbb{V}}^{K})$ realni brojevi između 0 i 1, čiji zbroj iznosi točno 1 zbog jednakosti $degree(\mathbb{V}_{l}) = links(\mathbb{A}, \mathbb{V}) + links(\mathbb{A}, \mathbb{V} \setminus \mathbb{V}_{l})$.

$$\epsilon(\Gamma_{\mathbb{V}}^{K}) = knassoc(\Gamma_{\mathbb{V}}^{K}) \longrightarrow max$$

$$\varphi(\Gamma_{\mathbb{V}}^{K}) = kncuts(\Gamma_{\mathbb{V}}^{K}) \longrightarrow min$$

REPREZENTACIJA NORMALIZIRANIH REZOVA

Označimo sa $X \in \mathbb{R}^{N \times K}$ binarnu matricu particije pridruženu particiji $\Gamma_{\mathbb{V}}^{K}$. Preciznije, $X = [X_{1}, ..., X_{K}]$, gdje je X_{l} binarni indikator od V_{l} :

$$X(i,l) = \langle i \in \mathbb{V}_l \rangle = \begin{cases} 1, & i \in \mathbb{V}_l \\ 0, & ina\check{c}e \end{cases}, \ i \in \mathbb{V}, \ l \in [K]. \qquad \text{MATRICA PARTICIJE}$$

 $D = Diag(W1_N)$. DIJAGONALNA MATRICA STUPNJEVA

$$links(\mathbb{V}_l, \mathbb{V}_l) = X_l^T W X_l \quad degree(\mathbb{V}_l) = X_l^T D X_l$$

MODELIRANJE PROBLEMA

$$(PNCX) \begin{cases} maksimiziraj \ \epsilon(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T W X_l}{X_l^T D X_l} \\ uz \ X \in \{0, 1\}^{N \times K}, \ X 1_K = 1_N \end{cases}$$

$$Z = f(X) = X(X^T D X)^{-\frac{1}{2}}.$$

FUNKCIJA NORMALIZACIJE

$$X = f^{-1}(Z) = Diag(diag^{-\frac{1}{2}}(ZZ^T))Z.$$

$$(PNCZ) \begin{cases} maksimiziraj \ \epsilon(Z) = \frac{1}{K} tr(Z^T W Z) \\ uz \ Z^T D Z = I_K \end{cases}$$

REZULTATI SPEKTRALNE ANALIZE

$$Wx = \lambda Dx \iff (D^{-\frac{1}{2}}WD^{-\frac{1}{2}})(D^{\frac{1}{2}}x) = \lambda(D^{\frac{1}{2}}x)$$

Propozicija 1 (Ortonormalna invarijantnost) Neka je $R \in \mathbb{R}^{K \times K}$ ortogonalna matrica. Ako je Z rješenje PNCZ programa, tada je rješenje i cijeli skup $\{ZR : R^TR = I_K\}$. Dodatno, $\epsilon(ZR) = \epsilon(Z)$.

Propozicija 3 (Ograničenost odozgo) Za bilo koji prirodni broj K vrijedi:

$$\max_{\epsilon} \epsilon(\Gamma_{\mathbb{V}}^{K}) \leq \max_{Z^{T}DZ = I_{K}} \epsilon(Z) = \frac{1}{K} \sum_{l=1}^{K} s_{l}$$
$$\max_{Z^{T}DZ = I_{K+1}} \epsilon(Z) \leq \max_{Z^{T}DZ = I_{K}} \epsilon(Z)$$

$$P=D^{-1}W$$
 normalizirana matrica težina

REZULTATI SPEKTRALNE ANALIZE

Propozicija 2 (Optimalno rješenje) Neka su $V = [V_1, ..., V_N]$ i $S = Diag(s_1, ..., s_N)$, $s_1 \ge ... \ge s_N$, matrice svojstvenih vektora i svojstvenih vrijednosti od P, odnosno rješenja svojstvene zadaće PV = PS. Par (V, S) može se dobiti preko ortonormalne matrice $\bar{V} = [\bar{V}_1, ..., \bar{V}_N]$ koja rješava simetrični problem svojstvenih vrijednosti matrice $D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$:

$$V = D^{-\frac{1}{2}}\bar{V}$$

$$D^{-\frac{1}{2}}WD^{-\frac{1}{2}}\bar{V} = \bar{V}S, \ \bar{V}^T\bar{V} = I_N$$

Štoviše, matrice V i S su realne te svakih K različitih svojstvenih vektora čine kandidata za lokalno optimalno rješenje s funkcijom cilja

$$\epsilon([V_{\pi_1}, ..., V_{\pi_K}]) = \frac{1}{K} \sum_{l=1}^K s_{\pi_l},$$

gdje je π vektor indeksa od K različitih elemenata skupa prirodnih brojeva $\{1,...,N\}$. Globalni optimum se stoga postiže za $\pi = [1,...,K]$ što daje rješenje problema:

$$Z^* = [V_1, ..., V_K]$$

$$\Lambda^* = Diag([s_1, ..., s_K])$$

$$\epsilon(Z^*) = \frac{1}{K} tr(\Lambda^*) = \max_{Z^T DZ = I_K} \epsilon(Z)$$

NALAŽENJE OPTIMALNOG RJEŠENJA

NALAŽENJE OPTIMALNOG RJEŠENJA

$$(POD) \begin{cases} minimiziraj \ \phi(X, R) = \|X - \tilde{X}^*R\|_F^2 \\ uz \ X \in \{0, 1\}^{N \times K}, \ X1_K = 1_N, \ R^TR = I_K \end{cases}$$

$$||X - \tilde{X}^*R||_F^2 = ||X||_F^2 + ||\tilde{X}^*||_F^2 - 2tr(XR^T\tilde{X}^{*T})$$

$$(PODX) \begin{cases} minimiziraj \ \phi(X) = \|X - \tilde{X}^* R^*\|_F^2 \\ uz \ X \in \{0, 1\}^{N \times K}, X1_K = 1_N, \end{cases}$$

$$(PODR) \begin{cases} minimiziraj \ \phi(R) = \|X^* - \tilde{X}^*R\|_F^2 \\ uz \ R^T R = I_K, \end{cases}$$

NALAŽENJE OPTIMALNOG RJEŠENJA

Teorem 4 Neka je $\tilde{X} = \tilde{X}^*R^*$. Optimalno rješenje programa PODX je dano s:

$$X(i,l) = \langle l = \arg \max_{k \in [K]} \tilde{X}(i,k) \rangle, \ i \in \mathbb{V}$$

Teorem 5 Rješenje programa PODR dano je SVD dekompozicijom matrice $X^*\tilde{X}^*$:

$$R^* = \tilde{U}U^T,$$

$$X^*\tilde{X}^* = U\Omega\tilde{U}^T, \ \Omega = Diag(\omega_1, ..., \omega_K),$$

gdje je $U^TU = I_K$, $\tilde{U}^T\tilde{U} = I_K$ i $\omega_1 \ge ... \ge \omega_K$.

ALGORITAM (NC)

Dana je matrica težina W i broj elemenata particije K:

- 1. Izračunaj matricu stupnjeva $D = Diag(W1_N)$
- Nađi optimalno rješenje Z* svojstvenog problema:

$$D^{-\frac{1}{2}}WD^{-\frac{1}{2}}\bar{V}_{[K]} = \bar{V}_{[K]}Diag(s_{[K]}), \bar{V}_{[K]}^T\bar{V}_{[K]} = I_{[K]}$$
$$Z^* = D^{-\frac{1}{2}}\bar{V}_{[K]} (opcionalno)$$

- 3. Normaliziraj Z^* : $\tilde{X}^* = Diag(diag^{-\frac{1}{2}}(Z^*Z^{*T}))Z^*$
- Inicijaliziraj X* preko R* na sljedeći način:

$$\begin{split} R_1^* [\tilde{X}^*(i,1),...,\tilde{X}^*(i,K)]^T, \ i \in [N] \ slu\check{c}ajan \\ c &= 0_{\mathbb{N}\times 1} \\ Za \ k &= 2,...,K \ radi : \\ c &= c + abs(\tilde{X}^*R_{k-1}^*) \\ R_k^* &= [\tilde{X}^*(i,1),...,\tilde{X}^*(i,K)]^T, \ i = arg \ min \ c \end{split}$$

ALGORITAM (NC)

- 5. Postavi parametar kovergencije $\bar{\phi}^* = 0$.
- Nađi optimalno diskretno rješenje X*:

$$\begin{split} \tilde{X} &= \tilde{X}^*R^* \\ X^*(i,l) &= \langle l = arg \max_{k \in [K]} \tilde{X}(i,K) \rangle, \ i \in \mathbb{V}, \ l \in [K]. \end{split}$$

Nađi optimalnu ortogonalnu matricu R* pomoću SVD dekompozicije:

$$X^{*T}\tilde{X}^* = U\Omega\tilde{U}^T$$
, $\Omega = Diag(\omega)$
 $\bar{\phi} = tr(\Omega)$
 $Ako\ je\ |\bar{\phi} - \bar{\phi}^*| < mašinska\ preciznost,\ stani\ i\ ispiši\ X^*$
 $\bar{\phi}^* = \bar{\phi}$
 $R^* = \tilde{U}U^T$

8. Idi na korak 6.

Metoda bazinara na diskriminantnoj analizi - DACA

Metoda bazinara na diskriminantnoj analizi - DACA

$$w_{ij}^* = \begin{cases} 1, & ako \ j \in N_k(i) \ ili \ i \in N_k(j) \\ 0, & ina\check{c}e, \end{cases}$$

Dodajemo informaciju o blizini točaka

$$\widehat{W} = (\widehat{w}_{ij})_{N \times N} = (w_{ij} \cdot w_{ij}^*)_{N \times N}$$

$$(DAC) \begin{cases} maksimiziraj \ g(X) = \frac{1}{K} \sum_{n=1}^{K} \frac{X_n^T \widehat{W} X_n}{X_n^T Q X_n} \ = \frac{1}{K} \sum_{n=1}^{K} \frac{[X_n (X_n^T X_n)^{-\frac{1}{2}}]^T \widehat{W} [X_n (X_n^T X_n)^{-\frac{1}{2}}]}{[X_n (X_n^T X_n)^{-\frac{1}{2}}]^T Q [X_n (X_n^T X_n)^{-\frac{1}{2}}]} \\ uz \ X \in \{0,1\}^{N \times K}, X1_K = 1_N, \end{cases}$$

$$P = X(X^TX)^{-\frac{1}{2}} \qquad \qquad (DAC) \begin{cases} maksimiziraj \ h(P) = \frac{1}{K}tr\{(P^TQP)^{-1}(P^T\widehat{W}P)\} \\ uz \ P^TP = I_K \end{cases}$$

Metoda bazinara na diskriminantnoj analizi - DACA

kompaktnost unutar iste klase separabilnost između različitih klasa

$$B_i = \{u | u \in \mathbb{V}_n, \ i \in N_k(u) \ ili \ u \in N_k(i)\}, \ \overline{B_i} = \{u | u \notin \mathbb{V}_n, \ i \in N_k(u) \ ili \ u \in N_k(i)\},$$

Algoritam DACA

Dan je skup podataka $Z = \{z_1, z_2, ..., z_n\}$ i broj elemenata particije K:

- 1. Kreiraj graf $G = (V, E, W, W^*)$, gdje je $V = \{1, ..., N\}$ skup vrhova, $E \subseteq V \times V$ skup bridova, $W^* = (w_{ij}^*)_{N \times N}$ definirana ranije, $W = (w_{ij})_{N \times N}$, npr., $w_{ij} = \exp(-\operatorname{dist}(z_i, z_j)/2\sigma^2)$, gdje je σ faktor skaliranja, a dist (\cdot) prestavlja neku funkciju udaljenosti.
- 2. Izračunaj $\widehat{W} = (\widehat{w}_{ij})_{N \times N} = (w_{ij} \cdot w_{ij}^*)_{N \times N}$ i $Q = \widehat{D} \widehat{W}$, \widehat{D} dijagonalna dana s $\widehat{d}_{ii} = \sum_j \widehat{w}_{ij}$ za $1 \leq i, j \leq N$. Ako je Q singularna matrica, zamjenjujemo ju s $Q + \epsilon I_N$.
- 3. Odredi \tilde{P} kao K najvećih normaliziranih svojstvenih vektora $Q^{-1}\widehat{W}$.
- 4. Nađi kandidata za rješenje particije grafa: $\tilde{X}=Diag(diag^{-\frac{1}{2}}(\tilde{P}\tilde{P}^T))\tilde{P}$
- 5. Izvedi iterativnu proceduru poboljšanja rješenja na X opisanu u algoritmu (NC).

SADRŽAJ

01 PROBLEM KLASTERIRANJA

02 KLASIČNI MSC

03 DACA

04 PRIMJERI 2D

05 SEGMENTACIJA

06 PRIMJERI

SADRŽAJ

01 PROBLEM KLASTERIRANJA

02 KLASIČNI MSC

03 DACA

04 PRIMJERI 2D

05 SEGMENTACIJA

06 PRIMJERI

KLASIČNI PROBLEM SEMANTIČKE SEGMENTACIJE

- poseban oblik klasteriranja
- bitno područje interesa u računalnom vidu

CILJ: grupirati piksele koji čine smislenu cjelinu

UDALJENOST MEĐU PIKSELIMA

Što je **sigma_f** veći, to će biti veći utjecaj udaljenosti među pikselima na konačni rezultat

$$w_{ij} = e^{-\frac{\|f_i - f_j\|_2^2}{\sigma_f}} \cdot e^{-\frac{\|x_i - x_j\|_2^2}{\sigma_x}} \cdot \gamma_r(i,j), \quad \gamma_r(i,j) = \left\{ \begin{array}{l} 1, \ \text{za} \ \|x_i - x_j\|_2 < r \\ 0, \ \text{inače} \end{array} \right.$$

Što je **sigma_f** veći, to će biti veći utjecaj razlike u bojama na konačni rezultat

SADRŽAJ

Heuristika za dobivanje dobrih rezultata

- 1. Odaberi početne parametre za generiranje matrice W tako da sigma_f bude iz iz [0.5, 4], sigma_x iz [5, 20], radius otprilike 10-20% visine ili širine slike.
- 2. Nacrtaj matricu W te korigiraj parametre.

Heuristika za dobivanje dobrih rezultata

Sigma prevelik

Windows logo

Kanye West - Runaway

Kanye West - Runaway

Kanye West - Runaway + računanje fizičke udaljenosti piksela

grayscale

Kanye West - The Life of Pablo

Kanye West - The Life of Pablo

HVALA NA PAŽNJI

