

.

CPU Scheduling Algo: SRTF, HRRN & Priority Based

Comprehensive Course on Operating System for GATE - 2024/25

Operating System CPU Scheduling FCFS SJF SRTF

By: Vishvadeep Gothi

Scheduling Algorithms

- FCFS
- 2. SJF
- SRTF
- 4. HRRN
- Priority Based
- Round Robin
- Multilevel Queue Scheduling
- 8. Multilevel Feedback Queue Scheduling

Criteria:

Mode:

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	8			
P2	1	5			
Р3	2	1			
P4	3	2			
P5	4	1			
P6	5	4			

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	8			
P2	1	5			
Р3	2	1			
P4	3	2			
P5	4	1			
P6	5	4			

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	4	7			
P2	5	5			
Р3	3	1			
P4	1	2			
P5	2	1			
P6	0	4			

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time	RT
P1	0	9	22	22	13	0
P2	1	6	17	<u>G</u>	7	9
Р3	2	4	5	7	3	0
P4	3	2	5	2	0	0
P5	6	1	7		0	D

Advantages:

- 1. Minimum average waiting time among all scheduling algorithm
- 2. Better throughput in continue run

Disadvantages:

- 1. No practical implementation because Burst time is not known in advance
- 2. Longer Processes may suffer from starvation

Thousked, for jiven process scenarios what can be the min. avg. waiting time? Apply SRIF -if asked, what can be the min. any weiting time for hon-preemplive execut of Processes) Apply SJF

LJF (Longest Job First)

```
Criteria: largest BT first Tie breaker => FCF5

Mode: Non-preenptive
```


LJF (Longest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	6	6	6	0
P2	0	3	13	13	Б
Р3	0	4	10	Io	6
P4	0	2	-12	15	13

LJF (Longest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	2	2	2	0
P2	1	3	9	8	5
Р3	2	4	6	4	0
P4	3	2	11	8	6

RTF (Longest Remaining Time First)

Criteria: largest BT first Tie breaker => FCF5

Mode: Preemptive

RTF (Longest Remaining Time First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time	RT
P1	0	9	- &	8	9	0
P2	0	6	19	وا	13	4
Р3	0	4	20	21	16	9
P4	0	2	2	7	وا	16

Esté LRIF suffer from starration

E Snacademy		AT.	דפ	
	₽ı	0	6	5
	٢٢	ь	8	7
	دع	0	4	3
	ا م	Ó	5	4
+				

trick does not werk
when a process completes
before any other process
arriver

Question GATE-2006

Consider three processes (process id 0, 1, 2 respectively) with compute time bursts 2, 4 and 8 time units. All processes arrive at time zero. Consider the longest remaining time first (LRTF) scheduling algorithm. In LRTF ties are broken by giving priority to the process with the lowest process id. The average turn around time is:

- **(B)** 14 units
- (C) 15 units
- **(D)** 16 units

70	P	ı	P2
1 2		13	14

	AT	ВГ
Po	6	
P)	,	_
12	2	1-3
py	9 /	1
) /	2

15 p		PI/p	6	Pi	P	Pı	P4	12	P
0	Ч	7_	6	7	B	9	16	1	15

.

Tunacaden HRRN (Highest Response Ratio Next)

Objective: Not only favors short jobs but decreases the WT of longer jobs.

Criteria: Response Ratio

Mode: Non-preemptive

Response Ratio =
$$\frac{W+S}{S}$$

$$W = Wait Time$$

 $S = Service/Burst Time$

RRN (Highest Response Ratio Next)

Process	Arrival Time	Burst Time
P1	0	3
P2	2	6
P3	4	4
P4	6	5
P5	8	2

Ratio Next

Process	Arrival Time	Burst Time
P1	0	3
P2	2	6
P3	4	4
P4	6	5
P5	8	2

At time 9:-

R.R.(P3) =
$$\frac{5+4}{4}$$
 = 2.25 (righest)

R.R.(P4) = $\frac{3+5}{5}$ = 1.6

R.R.(P5) = $\frac{1+2}{2}$ = 1.5

$$RR(PY) = \frac{7+5}{5} = \frac{2.4}{5}$$

 $RR(PS) = \frac{5+2}{2} = 3.5 - (Highest)$

At time 13:-

Happy Learning.!

