

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

CSIRO

Last time...

- $\rightarrow \lambda$ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- \rightarrow λ calculus is expressive (Turing complete)
- \rightarrow λ calculus is inconsistent (as a logic)

Content

ATA 1	CS	III IRO

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[3ª]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction, Isar (part 2) 	$[6, 7^b]$
 Hoare logic, proofs about programs, invariants 	[8]
 C verification 	[9]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense: $1\ 2$, true false, etc.

λ calculus is inconsistent

Can find term R such that R $R =_{\beta} not(R R)$

There are more terms that do not make sense: 12, true false, etc.

Solution: rule out ill-formed terms by using types. (Church 1940)

Idea: assign a type to each "sensible" λ term.

Idea: assign a type to each "sensible" λ term.

Examples:

 \rightarrow for term t has type α write $t :: \alpha$

Idea: assign a type to each "sensible" λ term.

- \rightarrow for term t has type α write $t :: \alpha$
- **→** if x has type α then λx . x is a function from α to α Write: $(\lambda x. x) :: \alpha \Rightarrow \alpha$

Idea: assign a type to each "sensible" λ term.

- \rightarrow for term t has type α write $t :: \alpha$
- → if x has type α then λx . x is a function from α to α Write: $(\lambda x. x)$:: $\alpha \Rightarrow \alpha$
- → for s t to be sensible: s must be a function t must be right type for parameter

```
If s :: \alpha \Rightarrow \beta and t :: \alpha then (s t) :: \beta
```


Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

Types:
$$\tau$$
 ::= b | ν | $\tau \Rightarrow \tau$ b $\in \{\text{bool}, \text{int}, \ldots\}$ base types $\nu \in \{\alpha, \beta, \ldots\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

Types:
$$\tau$$
 ::= b | ν | $\tau \Rightarrow \tau$ b \in {bool, int, ...} base types $\nu \in \{\alpha, \beta, ...\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:

 Γ : function from variable and constant names to types.

Syntax for λ^{\rightarrow}

Terms:
$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

Types:
$$\tau$$
 ::= b | ν | $\tau \Rightarrow \tau$ b \in {bool, int, ...} base types $\nu \in \{\alpha, \beta, ...\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$
$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$
$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y. \ y) \ z :: \mathtt{bool}$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \mathtt{int}] \vdash y :: \mathtt{int}$$

$$[z \leftarrow \mathtt{bool}] \vdash (\lambda y.\ y)\ z :: \mathtt{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow \text{bool}] \vdash (\lambda y. \ y) \ z :: \text{bool}$$

$$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$$

A term t is **well typed** or **type correct** if there are Γ and τ such that $\Gamma \vdash t :: \tau$

Variables: $\overline{\Gamma \vdash x :: \Gamma(x)}$

√ariables:	$\Gamma \vdash x :: \Gamma(x)$

Application: $\frac{}{\Gamma \vdash (t_1 \ t_2) :: \tau}$

Variables: $\overline{\Gamma \vdash x :: \Gamma(x)}$

Application: $\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}{\Gamma}$$

Variables:
$$\overline{\Gamma \vdash x :: \Gamma(x)}$$

Application:
$$\frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1 \ t_2) :: \tau}$$

Abstraction:
$$\frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau}$$

$$\boxed{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$$

$$\frac{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}{[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$$

$$\frac{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}{[x \leftarrow \alpha] \vdash \lambda y. \ x :: \beta \Rightarrow \alpha}$$
$$[] \vdash \lambda x \ y. \ x :: \alpha \Rightarrow \beta \Rightarrow \alpha$$

 $[] \vdash \lambda f \times f \times x ::$

$$\boxed{ \boxed{ \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \ x \ x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \ x. \ f \ x \ x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f \times :: \alpha \Rightarrow \beta}{\Gamma \vdash f \times x :: \beta}$$

$$\underline{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta}$$

$$\underline{[] \vdash \lambda f \times x. \ f \times x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f \times :: \alpha \Rightarrow \beta}{\Gamma \vdash f \times x :: \beta}$$

$$\frac{\Gamma \vdash f \times x :: \alpha}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta}$$

$$\frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f \times x :: \alpha \Rightarrow \beta}{[] \vdash \lambda f \times x. \ f \times x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\frac{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}{\Gamma \vdash f x :: \alpha \Rightarrow \beta} \frac{\Gamma \vdash x :: \alpha}{\Gamma \vdash f x x :: \beta} \frac{\Gamma \vdash f x x :: \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f x x :: \alpha \Rightarrow \beta} \frac{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. \ f x x :: \alpha \Rightarrow \beta}{[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \Rightarrow \alpha \Rightarrow \beta}$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

$$\Gamma = [f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta, x \leftarrow \alpha]$$

A term can have more than one type.

A term can have more than one type.

Example: $[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool$$
 $[] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$int \Rightarrow bool \lesssim \alpha \Rightarrow \beta \lesssim \beta \Rightarrow \alpha$$

A term can have more than one type.

Example:
$$[] \vdash \lambda x. \ x :: bool \Rightarrow bool \\ [] \vdash \lambda x. \ x :: \alpha \Rightarrow \alpha$$

Some types are more general than others:

$$au \lesssim \sigma$$
 if there is a substitution S such that $au = S(\sigma)$

Examples:

$$\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$$

Fact: each type correct term has a most general type

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

 \Rightarrow type checking: checking if $\Gamma \vdash t :: \tau$ for given Γ and τ

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- ightharpoonup type inference: computing Γ and au such that $\Gamma \vdash t :: au$

Fact: each type correct term has a most general type

Formally:

$$\Gamma \vdash t :: \tau \quad \Longrightarrow \quad \exists \sigma. \ \Gamma \vdash t :: \sigma \land (\forall \sigma'. \ \Gamma \vdash t :: \sigma' \Longrightarrow \sigma' \lesssim \sigma)$$

It can be found by executing the typing rules backwards.

- **→ type checking:** checking if $\Gamma \vdash t :: \tau$ for given Γ and τ
- ightharpoonup type inference: computing Γ and au such that $\Gamma \vdash t :: au$

Type checking and type inference on λ^{\rightarrow} are decidable.

Definition of β reduction stays the same.

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally:
$$\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$$

This property is called **subject reduction**

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

 \Rightarrow = $_{\beta}$ is decidable

To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.

 β reduction in λ^{\rightarrow} always terminates.

(Alan Turing, 1942)

- \Rightarrow = $_{\beta}$ is decidable
 - To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates), and compare result.
- \Rightarrow = $_{\alpha\beta\eta}$ is decidable This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

Not all computable functions can be expressed in $\lambda^{\rightarrow}!$

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y::(\tau\Rightarrow\tau)\Rightarrow\tau$ with $Y\;t\longrightarrow_{\beta}t\;(Y\;t)$ as only constant.

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y::(\tau\Rightarrow\tau)\Rightarrow\tau$ with $Y\;t\longrightarrow_{\beta}t\;(Y\;t)$ as only constant.

- → Y is called fix point operator
- → used for recursion
- \rightarrow lose decidability (what does $Y(\lambda x. x)$ reduce to?)
- → (Isabelle/HOL doesn't have Y; it supports more restricted forms of recursion)

```
DATA CSIRO
```

```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K

b \in \{bool, int, \dots\} base types

\nu \in \{\alpha, \beta, \dots\} type variables

K \in \{set, list, \dots\} type constructors

C \in \{order, linord, \dots\} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \ t) \mid (\lambda x. \ t)

\nu, x \in V, \quad c \in C, \quad V, C \text{ sets of names}
```



```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K

b \in \{bool, int, \dots\} base types

\nu \in \{\alpha, \beta, \dots\} type variables

K \in \{set, list, \dots\} type constructors

C \in \{order, linord, \dots\} type classes

Terms: t ::= \nu \mid c \mid ?\nu \mid (t \ t) \mid (\lambda x. \ t)

\nu, x \in V, \quad c \in C, \quad V, C \text{ sets of names}
```

→ type constructors: construct a new type out of a parameter type. Example: int list

```
DATA CSIRO
```

```
Types: \tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K

b \in \{bool, int, \dots\} base types

\nu \in \{\alpha, \beta, \dots\} type variables

K \in \{set, list, \dots\} type constructors

C \in \{order, linord, \dots\} type classes
```

→ type constructors: construct a new type out of a parameter type. Example: int list

 $v, x \in V$, $c \in C$, V, C sets of names

ightharpoonup type classes: restrict type variables to a class defined by axioms. Example: $\alpha :: \mathit{order}$


```
\begin{array}{lll} \textbf{Types:} & \tau & ::= & \mathbf{b} & \mid \ '\nu \mid \ '\nu :: C \mid \ \tau \ \Rightarrow \ \tau \ \mid \ (\tau, \dots, \tau) \ \textit{K} \\ & \mathbf{b} \in \{\texttt{bool}, \texttt{int}, \dots\} \ \texttt{base types} \\ & \nu \in \{\alpha, \beta, \dots\} \ \texttt{type variables} \\ & \textit{K} \in \{\texttt{set}, \texttt{list}, \dots\} \ \texttt{type constructors} \\ & \textit{C} \in \{\texttt{order}, \texttt{linord}, \dots\} \ \texttt{type classes} \end{array}
```

Terms:
$$t := v \mid c \mid ?v \mid (t \ t) \mid (\lambda x. \ t)$$

 $v, x \in V, c \in C, V, C \text{ sets of names}$

- → type constructors: construct a new type out of a parameter type. Example: int list
- type classes: restrict type variables to a class defined by axioms. Example: α :: order
- **schematic variables**: variables that can be instantiated.

→ similar to Haskell's type classes, but with semantic properties class order = assumes order_refl: "x ≤ x" assumes order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z" ...

→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

→ theorems can be proved in the abstract

```
lemma order_less_trans: " \bigwedge x :: 'a :: order. [x < y; y < z] \implies x < z"
```


→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

→ theorems can be proved in the abstract

```
lemma order_less_trans: " \bigwedge x :: 'a :: order. [x < y; y < z] \implies x < z"
```

→ can be used for subtyping

```
class linorder = order + assumes linorder_linear: "x \le y \lor y \le x"
```


→ similar to Haskell's type classes, but with semantic properties

```
class order = assumes order_refl: "x \le x" assumes order_trans: "[x \le y; y \le z] \implies x \le z" ...
```

→ theorems can be proved in the abstract

```
lemma order_less_trans: " \bigwedge x ::'a :: order. [x < y; y < z] \implies x < z"
```

→ can be used for subtyping

```
class linorder = order + assumes linorder_linear: "x \le y \lor y \le x"
```

→ can be instantiated

```
\textbf{instance} \ \mathsf{nat} \ :: \ "\{\mathsf{order}, \ \mathsf{linorder}\}" \ \textbf{by} \ \ldots
```

Schematic Variables

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

Schematic Variables

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- $\rightarrow x$ is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Schematic Variables

$$\frac{X}{X \wedge Y}$$

→ X and Y must be **instantiated** to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
"

- \rightarrow x is free
- → convention: lemma must be true for all x
- → during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{ll} ?X \wedge ?Y & =_{\alpha\beta\eta} & x \wedge x \\ ?P x & =_{\alpha\beta\eta} & x \wedge x \\ P \ (?f \ x) & =_{\alpha\beta\eta} & ?Y \ x \end{array}$$

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{lll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P & &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P & (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

ightharpoonup Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- ightharpoonup Unification modulo $\alpha\beta\eta$ is undecidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

→ Most cases are well-behaved

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

- \rightarrow Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- \rightarrow Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the form ? f t_1 ... t_n
- \rightarrow and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

→ Simply typed lambda calculus: λ^{\rightarrow}

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- ightharpoonup Typing rules for λ^{\rightarrow} , type variables, type contexts

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- ightharpoonup β -reduction in λ^{\rightarrow} satisfies subject reduction

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle