Intel 8086 (e 8088)

Prof. Sérgio L. Cechin

Histórico

- Início da família de processadores
 - -8086 (1978)
 - -8088 (1979)
- 8086
 - Processador de 16 bits
 - Com barramento externo de 16 bits
- 8088
 - Processador de 16 bits
 - Com barramento externo de 8 bits

Registradores

- A, B, C e D
 - AH, AL, BH, BL, CH, CL, DH e DL
 - AX, BX, CX e DX
- 8086
 - AX, BX, CX e DX
 - IP: Instruction Pointer
 - F: Flags

AH	AX	AL	
ВН	вх	BL	
СН	СХ	CL	
DH	DX	DL	

Flags

Códigos de condição

CF: carry flag

ZF: zero flag

SF: sign flag

OF: overflow flag

etc...

Estado do hardware da UCP

- DF: direction flag (usado por algumas instruções)
- IF: interrupt flag
- I/O Privilege level: nível de privilégio de execução das instruções (dois bits)
- etc...

Flags (completo)

Instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file:

Outros Registradores

• 8086

– SP: stack pointer

BP: base pointer

SI: source index

DI: destination index

Modelo de Registradores

8086 REGISTER MODEL

Memória

- Memória física
 - Organizada em bytes
 - Até 1 Mbyte (2²⁰)
- Memória lógica
 - Estruturada em segmentos

Acesso à Memória

- É feito através de:
 - Um SEGMENTO
 - Região da memória especificada por um início e tamanho
 - Um OFFSET dentro do segmento
 - Posição relativa dentro do segmento
- Um endereço é representado por
 - SEGMENTO:OFFSET
- Seleção do segmento:
 - Utiliza um Registrador de Segmento

Registradores de Segmento

- Registradores do 8086
 - CS: Code Segment
 - SS: Stack Segment
 - DS: Data Segment
 - ES: Extra Segment
- Uso dos registradores
 - Fetch: CS
 - Ex: CS:IP
 - Acessos à pilha
 - Ex: SS:SP
 - Acessos à dados: DS e ES
 - Depende da instrução

Geração de Endereços

Formação do Endereço

- Segmentos
 - Tamanho: 2¹⁶ bytes
 - Não existe separação entre os segmentos
 - Os segmentos podem ser sobrepostos
- Capacidade de acesso
 - 20 bits (1 Mbyte)
- Cada instrução faz uso, implícito, de um segmento
 - Pode-se alterar este segmento na própria instrução
- O offset a ser usado também depende do tipo de acesso
 - Busca de instrução
 - Segmento: CS; Offset: IP
 - Manipulação de pilha
 - Segmento: SS; Offset: SP
 - Manipulação de strings
 - Segmento: DS; offset SI
 - Segmento: ES; offset DI

Cálculo do Endereço Físico

Modos de Endereçamento

Registrador

- O operando é um dos registradores (8 ou 16 bits)
- Reg8 = AL, CL, DL, BL, AH, CH, DH, BH
- -Reg16 = AX, CX, DX, BX, SP, BP, SI, DI

Imediato

- O operando é uma constante (8 ou 16 bits)
- lm8 e lm16

Modos de Endereçamento

- Endereço da Memória (EA Effective Address)
 - Absoluto (direto)
 - Valor constante na instrução
 - Indireto
 - Usando o Registrador como endereço
 - Indexado
 - Constante + Registrador = vetores constantes
 - Registrador + Registrador = vetores (ponteiros)
 - Constante + Registrador + Registrador = matrizes
 - Na realidade, existem 17 modos
 - São todas as combinações possíveis (ver a seguir)

Endereços da Memória (EA)

- Determina o EA (Effective Address)
 - EA = DISP + BASE + (INDEX * Scale)
- Descrição
 - DISP: um valor fixo de deslocamento
 - BASE: um valor em um registro de uso geral
 - BX e BP
 - INDEX: um valor em um registro de uso geral
 - SI e DI
- Formas de combinação

17 Combinações

- DISP
- [BX], [BP], [SI], [DI]
- [DISP+BX], [DISP+BP], [DISP+SI], [DISP+DI]
- [BX+SI], [BX+DI], [BP+SI], [BP+DI]
- [DISP+BX+SI], [DISP+BX+DI]
- [DISP+BP+SI], [DISP+BP+DI]

Exemplo – instrução MOV

- Imediato
 - MOV AL, **OAFH**
 - Constante OAFH
- Registrador
 - MOV AL, **DL**
 - Registrador DL
- Absoluto (direto)
 - MOV AX, <u>VARIAVEL</u>
 - DISP: VARIAVEL

Mais Exemplos

- Indireto
 - MOV AL, [BX]
 - BASE: BX
- Indexado (1)
 - MOV AL, [SI+6]
 - *DISP*: 6
 - INDEX: SI
- Indexado (2)
 - MOV AL, [BX+DI+5]
 - *DISP*: 5
 - BASE: BX
 - INDEX: DI

Tipos de Dados

- Existem "tipos" de dados
 - Interpretados pelo montador
 - Interpretados pelo processador

Tipos de Dados do Montador

- Qual o modo de endereçamento de
 - MOV AX, VAR?
- Depende de como foi definida VAR
 - VAR: EQU 20
 - Gera endereçamento imediato
 - VAR: DW 20
 - Gera endereçamento absoluto

Tipos de Dados do Processador

- 8086
 - 8 bits (byte) e 16 bits (word)
- Organização na memória
 - Little Endian

Tipos de Dados Adicionais

- Algumas instruções suportam interpretações adicionais dos tipos básicos
 - Unsigned int: 8 e 16 bits
 - Signed int: 8 e 16 bits
 - Floating point: 32, 64 e 80 bits (usa a FPU)
- Outros tipos
 - Bits
 - String
 - Packed SIMD (Single Instruction Multiple Data)
 - 64-bit Packed SIMD
 - 128-bit Packed SIMD
 - BCD e Packed BCD
 - Floating point

Indicação de endereços (Ponteiros)

NEAR

- Representam apenas o OFFSET do endereço
- Possui 16 bits
- O SEGMENTO a ser usado dependerá do tipo de acesso

FAR

- Representam SEGMENTO e OFFSET do endereço
- Possuem 16 bits no segmento + 16 bits do offset

Intel 8086 (e 8088)

Prof. Sérgio L. Cechin