Chapter 14

Descriptive Methods in Regression and Correlation

Section 14.1 Linear Equations with One Independent Variable

Definition 14.1

y-Intercept and Slope

For a linear equation $y = b_0 + b_1 x$, the number b_0 is called the **y-intercept** and the number b_1 is called the **slope**.

Key Fact 14.1

Graphical Interpretation of Slope

The graph of the linear equation $y = b_0 + b_1 x$ slopes upward if $b_1 > 0$, slopes downward if $b_1 < 0$, and is horizontal if $b_1 = 0$, as shown in Fig. 14.6.

Section 14.2 The Regression Equation

Definition 14.2

Scatterplot

A **scatterplot** is a graph of data from two quantitative variables of a population. In a scatterplot, we use a horizontal axis for the observations of one variable and a vertical axis for the observations of the other variable. Each pair of observation is then plotted as a point.

Table 14.2

Age and price data for a sample of 11 Orions

Car	Age (yr)	Price (\$100)
1	5	85
2	4	103
2 3 4 5 6	6	70
4	5	82
5	5	89
6	5	98
7	6	66
8	6	95
9	2	169
10	7	70
11	7	48

Figure 14.7

Scatterplot for the age and price data of Orions from Table 14.2

Table 14.3 & Figure 14.8

Three data points

x	у
1	3
3	5

Scatterplot for the data points in Table 14.3

Figure 14.9

Two possible lines to fit the data points in Table 14.3

Line *B*:
$$y = 1 + x$$

Table 14.4

Determining how well the data points in Table 14.3 are fit by (a) Line A and (b) Line B

Lir	Line <i>A</i> : $y = -1 + 2x$				Liı	Line <i>B</i> : $y = 1 + x$			
x	y	ŷ	e	e^2	\boldsymbol{x}	y	ŷ	e	e^2
1	3	1	2	4	1	3	2	1	1
2 3	1	3	-2	4	2	1	3	-2	4
3	5	5	0	0	3	5	4	1	1
				8					6
	(a) (b)								

Key Fact 14.2 & Definition 14.3

Least-Squares Criterion

The **least-squares criterion** is that the line that best fits a set of data points is the one having the smallest possible sum of squared errors.

Regression Line and Regression Equation

Regression line: The line that best fits a set of data points according to the least-squares criterion.

Regression equation: The equation of the regression line.

Definition 14.4

Notation Used in Regression and Correlation

For a set of n data points, the defining and computing formulas for S_{xx} , S_{xy} , and S_{yy} are as follows.

Quantity	Defining formula	Computing formula
S_{xx}	$\Sigma (x_i - \bar{x})^2$	$\Sigma x_i^2 - (\Sigma x_i)^2/n$
S_{xy}	$\Sigma(x_i-\bar{x})(y_i-\bar{y})$	$\sum x_i y_i - (\sum x_i)(\sum y_i)/n$
S_{yy}	$\Sigma(y_i - \bar{y})^2$	$\Sigma y_i^2 - (\Sigma y_i)^2/n$

Formula 14.1

Regression Equation

The regression equation for a set of n data points is $\hat{y} = b_0 + b_1 x$, where

$$b_1 = \frac{S_{xy}}{S_{xx}}$$
 and $b_0 = \bar{y} - b_1 \bar{x} = \frac{1}{n} (\Sigma y_i - b_1 \Sigma x_i).$

These two equations give the slope and y-intercept of the regression line, respectively.

Table 14.6

Table for computing the regression equation for the Orion data

Age (yr)	Price (\$100)	xy	x ²
5	85	425	25
4	103	412	16
6	70	420	36
5	82	410	25
5	89	445	25
5	98	490	25
6	66	396	36
6	95	570	36
2	169	338	4
7	70	490	49
7	48	336	49
58	975	4732	326

Figure 14.11

Regression line and data points for Orion data

Definition 14.5

Response Variable and Predictor Variable

Response variable: The variable to be measured or observed.

Predictor variable: A variable used to predict or explain the values of the response variable.

Figure 14.12

Extrapolation in the Orion example

Figure 14.13

Regression lines with and without the influential observation removed

Key Fact 14.3

Criterion for Finding a Regression Line

Before finding a regression line for a set of data points, draw a scatterplot. If the data points do not appear to be scattered about a line, do not determine a regression line.

Section 14.3 The Coefficient of Determination

Definition 14.6

Sums of Squares in Regression

Total sum of squares, SST: The total variation in the observed values of the response variable: $SST = \Sigma (y_i - \bar{y})^2$.

Regression sum of squares, SSR: The variation in the observed values of the response variable explained by the regression: $SSR = \Sigma (\hat{y}_i - \bar{y})^2$.

Error sum of squares, SSE: The variation in the observed values of the response variable not explained by the regression: $SSE = \Sigma (y_i - \hat{y}_i)^2$.

Definition 14.7

Coefficient of Determination

The **coefficient of determination**, r^2 , is the proportion of variation in the observed values of the response variable explained by the regression. Thus,

$$r^2 = \frac{SSR}{SST}.$$

Table 14.7

Table for finding the three sums of squares

x	у	ŷ	$y-\bar{y}$	$(y-\bar{y})^2$	$\hat{y} - \bar{y}$	$(\hat{y} - \bar{y})^2$	$y - \hat{y}$	$(y-\hat{y})^2$
1	3	2	0	0	-1	1	1	1
2	1	3	-2	4	0	0	-2	4
3	5	4	2	4	1	1	1	1
				8		2		6

Key Fact 14.4

Regression Identity

The total sum of squares equals the regression sum of squares plus the error sum of squares: SST = SSR + SSE.

Formula 14.2

Computing Formulas for the Sums of Squares

The computing formulas for the three sums of squares are

$$SST = \Sigma y_i^2 - (\Sigma y_i)^2 / n, \quad SSR = \frac{\left[\Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i) / n\right]^2}{\Sigma x_i^2 - (\Sigma x_i)^2 / n},$$

and SSE = SST - SSR.

Table 14.8

Table for finding SST and SSR for the Orion data by using the computing formulas

Age (yr)	Price (\$100)	xy	x^2	y^2
5	85	425	25	7,225
4	103	412	16	10,609
6	70	420	36	4,900
5	82	410	25	6,724
5	89	445	25	7,921
5	98	490	25	9,604
6	66	396	36	4,356
6	95	570	36	9,025
2	169	338	4	28,561
7	70	490	49	4,900
7	48	336	49	2,304
58	975	4732	326	96,129

Section 14.4 **Linear Correlation**

Definition 14.8 & Formula 14.3

Linear Correlation Coefficient

For a set of n data points, the linear correlation coefficient, r, is defined by

$$r = \frac{\frac{1}{n-1}\Sigma(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y},$$

where s_x and s_y denote the sample standard deviations of the x-values and y-values, respectively.

Computing Formula for a Linear Correlation Coefficient

The computing formula for a linear correlation coefficient is

$$r = \frac{\sum x_i y_i - (\sum x_i)(\sum y_i)/n}{\sqrt{\left[\sum x_i^2 - (\sum x_i)^2/n\right]\left[\sum y_i^2 - (\sum y_i)^2/n\right]}}.$$

Figure 14.18

Various degrees of linear correlation

Key Fact 14.5

Relationship between the Correlation Coefficient and the Coefficient of Determination

The coefficient of determination equals the square of the linear correlation coefficient.