Groups and linear algebra (SC220) Autumn 2019 In Sem -I Time: 1hr 30 min

Name:
Student I.D.:
Section 1. True/False (2 pts. each)
Print "T" if the statement is true, otherwise print "F". In either case give a very brid (One or Two line) justification or a counter example.
$A_4 = <(12)(34), (13)(24) >$
The group $(\mathbb{Q}, +)$ is isomorphic to (\mathbb{Q}^+, \times)
S_3 is isomorphic to $Z_2 \times Z_3$
There are an all Contain and in a face 7 to 7
There are exactly 6 automorphisms from \mathbb{Z}_9 to \mathbb{Z}_9
In C let $\sigma = (122)(124)$ then σ^{2019} is a
In S_4 let $\sigma = (123)(134)$ then σ^{2019} is e

If G is a group of order p^k where p is a prime then it has a subgroup of order p^m for some positive integer $m \leq k$.
The number of 4 cycles in S_5 is 24
The elements r^2s and r^3s generate D_5
The remainder when 13^{36} is divided by 18 is 1
D_6 (Group of Symmetries of a hexagon) is isomorphic to A_4 (Group of even permutations of 4 letters)

Section 2. Short Answer (10 pts each)

Answer all problems in as thorough detail as possible.

1. Prove that if H and K are proper subgroups of a finite group G such that gcd(|H|, |K|) = 1, then $H \cap K = \{e\}$. Is the converse true? That is, if H and K are proper subgroups of G such that $H \cap K = \{e\}$ then is it necessary that gcd(|H|, |K|) = 1.

2. Show that if G and H are groups and $A \leq G$ and $B \leq H$ then $A \times B$ is a subgroup of $G \times H$. Does every subgroup of $G \times H$ has to be of the form $A \times B$ where $A \leq G$ and $B \leq H$?

- 3. Let G be a finite group.
 - i) Show that if $x \in G$ then the map $\lambda_x : G \to G$ given by $\lambda_x(g) = xg$ is a 1-1 and onto map from G to G (that is the map λ_x is a permutation of the elements of G).
 - ii)Let S_G be the set of all permutations of G. Show that the map $\Phi: G \to S_G$ given by $\Phi(g) = \lambda_g$ is a 1-1 mapping and satisfies $\Phi(x * y) = \Phi(x) * \Phi(y)$. Hence conclude that every finite group is isomorphic to a subgroup of the permutation group S_n .