Generic Interrupt Controller (INTC) Specification

1. Overview

The Generic Interrupt Controller (INTC) is a highly configurable hardware IP core designed to manage multiple interrupt sources in a digital system. It provides a unified, programmable interface for interrupt detection, prioritization, masking, and output signaling. The INTC is suitable for a wide range of applications, from microcontroller subsystems to complex SoCs, and is optimized for flexibility, performance, and ease of integration.

2. Key Features

- Parameterized number of interrupt sources (N), configurable at synthesis time.
- Individual enable/disable control for each interrupt source via register.
- Mask feature: Each source can be masked via register, preventing it from propagating to the output interrupt.
- Configurable, programmable priority for each interrupt source.
- Status register indicating pending interrupts for each source.
- Configurable output interrupt polarity: active-high or active-low.
- Configurable output mode: level or pulse. In pulse mode, pulse width is programmable.
- Output interrupt and status can be cleared using a source-specific clear signal.

3. Block Diagram

4. Interface

The INTC IP core provides the following interface signals:

Signal	Direction	Width	Description
clk	Input	1	System clock
rst_n	Input	1	Active-low reset
int_in[N-1:0]	Input	N	Interrupt source inputs
int_enable[N-1:0]	Input/Reg	N	Enable bits for each source
int_mask[N-1:0]	Input/Reg	N	Mask bits for each source
int_priority[N-1:0] [P-1:0]	Input/Reg	N×P	Priority value for each source
int_clear[N-1:0]	Input/Reg	N	Clear signal for each source
out_mode	Input/Reg	1	Output mode select (0=level, 1=pulse)
out_polarity	Input/Reg	1	Output polarity select (0=active- low, 1=active- high)
pulse_width[W-1: 0]	Input/Reg	W	Pulse width for output interrupt in pulse mode

int_status[N-1:0]	Output	N	Status register, 1=pending interrupt
int_out	Output	1	Output interrupt pin
int_vector[log2(N) -1:0]	Output	log2(N)	Index of highest- priority pending interrupt (optional)

5. Register Map (Example)

Register Name	Width	Access	Description
INT_ENABLE	N	RW	Enable bits for each source
INT_MASK	N	RW	Mask bits for each source
INT_PRIORITY	N×P	RW	Priority value for each source
INT_STATUS	N	RO	Status: 1=pending interrupt
INT_CLEAR	N	WO	Write 1 to clear corresponding status bit
OUT_MODE	1	RW	0=level, 1=pulse
OUT_POLARITY	1	RW	0=active-low, 1=active-high
PULSE_WIDTH	W	RW	Pulse width in clock cycles (pulse mode)

6. Operation

- Each interrupt source is monitored. If enabled and not masked, a pending interrupt is set when the input is asserted.
- When multiple interrupts are pending, the source with the highest programmable priority is selected for output.
- Output generation: In level mode, output is asserted as long as any unmasked, enabled, pending interrupt exists. In pulse mode, output is asserted as a pulse of programmable width when a new interrupt is detected.
- Output polarity is configurable as active-high or active-low.
- Writing to the clear register for a source clears its pending status and, if no other interrupts are pending, deasserts the output.

7. Example Use Case

A system with 16 interrupt sources, each with enable, mask, and priority registers. Output interrupt is active-high, pulse mode, 4-cycle pulse width. Software can clear individual interrupts by writing to the INT_CLEAR register.

8. Notes

- All registers are accessible via a standard bus interface (e.g., APB, AXI-lite, or custom).
- All features are fully parameterizable for synthesis-time flexibility.
- The INTC is suitable for both simple and complex SoC designs.