

Our country, our future

525/1

S6 CHEMISTRY

Exam 27

PAPER 1

DURATION: 2 HOUR 45 MINUTES

Instructions to candidates:

- Attempt all questions in section A and any six from section B
- All questions are to be answered in the spaces provided
- A periodic table with relevant atomic masses is supplied at the end of the paper.

	FOR EXAMINER'S USE ONLY																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	TOTAL

۱.	(a) Define the term enthalpy of formation	on.	(1 mark)
	(b) Calculate the enthalpy of formation	sodium chloride from t $\Delta H^{\theta} \text{ (kJmol}^{-1}\text{)}$	the following data. (3 marks)
	$Na(s) \longrightarrow Na(g)$	+109	
	$Cl2(g) \longrightarrow 2Cl(g)$	+242	
	$Na+(g) + Cl^{-}(g) \longrightarrow NaCl(s)$	-771	
	$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$	-364	
	(c) Comment on the stability of sodium	n chloride. Give a reaso	on for your answer. (1 mark)
2.	Complete the following reactions and in	n each case write the 1U	JPAC names of the
	major organic product.		arks each)
	(a) $CH_3 \underline{MnO_4}^- \mid \overline{O}H(ag)$		
	heat		
	·		

	(b) BrCH ₂ CHCH ₂ CH ₂ Br <u>EtOH EtOH Heat Heat EtOH Eto</u>
	$ m CH_3$
	(c) CH ₃ CHC ≡ CH + H ₂ Lindlar's catalyst CH ₃
3.	0.02M methylamine solution is 4% ionized at 25°C. (a) Write;
	(i) an equation for the ionization of methylamine in water. (1 mark)
	(ii) an expression for the base ionization constant K_b for methylamine. (1 mark)
	(b) Calculate the $ (i) \qquad \text{pH of the methylamine solution } (K_w = 1.0 \text{ x } 10^{-14} \text{ mol}^2 \text{ dm}^{-6}) $

	(ii)	base ionization co	onstant; Kb for methylamine	(1 ½ marks)
	•••••			
	•••••			
	•••••			
4.		e the formula of the bonds present in the	hydrides of sodium and sulge compounds.	phur, in each case state the (2 marks)
	Element	S	Formula of hydride	Type of bond
	Sodium			
	Sulphur			
	(b) Write	e equations to show	how the hydrides react with	n water. (3 marks)
5.	(a) Defin	ne the term Osmotic	c pressure.	(1 mark)

the value of n.	(3 ½ marks)
(c) State any two assumptions made in (b	above. (1 mark)
A powdered element T was investigated	as shown in the table below
A powdered element T was investigated	
Experiment	Results
Experiment (a) A mixture of T and lead (IV) oxide	Results A colourless gas with a chocking sme
Experiment	Results
Experiment (a) A mixture of T and lead (IV) oxide was heated (b) Concentrated nitric acid is added to	Results A colourless gas with a chocking small and turned acidified potassium dichromate from orange to green was
Experiment (a) A mixture of T and lead (IV) oxide was heated (b) Concentrated nitric acid is added to heated T, the products were diluted	Results A colourless gas with a chocking smand turned acidified potassium dichromate from orange to green was evolved. T dissolved in nitric acid with effervescence of a brown gas. On
Experiment (a) A mixture of T and lead (IV) oxide was heated (b) Concentrated nitric acid is added to	Results A colourless gas with a chocking smand turned acidified potassium dichromate from orange to green was evolved. T dissolved in nitric acid with

	(ii) Write equations for the reactions in experime	
7.	(a) 20cm ³ of hydrocarbon Q with general formula C 100cm ³ of oxygen. The mixture was ignited and the room temperature bubbled through concentrated po The final volume was found to be 20cm ³ .	e residual gaseous product at
	(i) Calculate the value of n in Q.	(2 marks)
	(ii) Deduce the molecular formula of Q.	(½ mark)
wi	(b) Q has two isomers X and Y. X decolourises bror ith ammoniacal silver nitrate solution. Y forms a while ver nitrate solution.	nine water but it does not react
(i)	Identify isomers X and Y	(1 mark)
(ii) Write an equation for the reaction between X and bromine water	(1 mark)
	Y and ammoniacal silver nitrate solution.	(1 mark)

(1 ½ marks)							
Observations							
(1 ½ marks)							
(1 ½ marks)							

and ⁻	electrode potentials of $S_2O_8^2$ (aq) $S_2O_8^2$ (aq) $S_2O_8^2$	$\mathrm{SO_4^{2-}(aq)}$ and $\mathrm{I_2(aq)} \mathrm{I^-(aq)}$ are $^+2.01\mathrm{V}$
	Vrite an equation for the reaction that	
(i) anode	(1 mark)
(i	i) cathode	(1 mark)
 (b) W	Vrite the ;	(1 mark)
` ') Cathode	(1 2224222)
(i	i) Overall cell reaction	(1 mark)
	······································	
(c) (i) calculate the e m f of the cell gener	ated from the cell reaction in b(ii) above
••		
 (i	i) State whether the above cell reacti	on is feasible or not. Give a reason for

SECTION B: (54 MARKS)

Answer only six questions from this section

10. Write equations to show how the following conversions can be effecte4d.
Indicate all reagents and conditions necessary for each reaction.

(a)	1 – methylcyclobutene to 2 – methyl cyclobutanol.	(3 marks)
(b)	$C - NH \longrightarrow CH_3$ From benzene and bromometha	ne (4 marks)
(c)	Butane – 2, – diol to 2,3 –butane dionedioxime.	(2 marks)

elements. Br (i) sodiur	m hydroxide s	olution			(2 marks)
(ii) hydro	chloric acid so	olution		,	(2 marks)
			• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
(b) The solu	bilities of the	hydroxides of	group II elem	ents of the per	riodic table
25°C are giv	en below				
25°C are giv Hydroxide	en below Be(OH) ₂	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH) ₂
25°C are giv Hydroxide Solubility	en below				
25°C are giv Hydroxide Solubility g/100g of	en below Be(OH) ₂	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH) ₂
25°C are giv Hydroxide Solubility g/100g of	en below Be(OH) ₂	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH) ₂
25°C are gived Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH) ₂
25°C are give Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH)
25°C are give Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH)
25°C are give Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH)
25°C are gived Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH)
25°C are give Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH)
25°C are gived Hydroxide Solubility g/100g of water	Be(OH) ₂ Insoluble	Mg(OH) ₂ 0.002	Ca(OH) ₂ 0.150	Sr(OH) ₂ 0.900	Ba(OH) ₂

(ii) Different masses of solid Ca(OH) ₂ and Ba(OH) ₂ cor of moles were separately shaken with the same volu Identify the solution with higher pH value. Give a re-	me of water at 25°C.
	(1 ½ marks)
12. (a) The partition coefficient of ammonia between water 25°C is 25.0,	and trichloromethane at
(i) Define the term partition coefficient.	(1 ½ marks)
(ii) State two conditions under which the partition coefficient than constant temperature.	(1 mark)
	•••••
(b) 25cm³ of 0.0056M nickel (II) sulphate solution were volume of ammonia solution at 25°C. The mixture was strichloromethane and allowed to stand until equilibrium trichloromethane layer required 32cm³ of 0.0025M hydroentralization. 7.060cm³ of the aqueous layer required 2 hydrochloric acid. Nickel (II) ions react with ammonia a	shaken with 50cm ³ of was established. The cochloric acid for complete 0cm ³ of 0.02M
$Ni^{2+}(aq) + nNH_3(aq) \longrightarrow [Ni(NH_3)_n]^{2+}(aq)$	<i>S</i>

(i)	culate Molar concentration of the free ammonia in the aqueous layer.(2 1/2m	ark
•		
		••••
		••••
		••••
•		••••
		• • • •
•		••••
•		••••
(ii)	Molar concentration of ammonia that reacted with nickel (II) ions (2 n	narl
•		••••
•		••••
•		· • • • •
(iii) 	Use your answer b (II) above to determine the value of n in [Ni(NH ₃) _n]2+
.(a)	Describe a simple chemical test to distinguish between CH ₃ COCH ₃ and	
CH	₃ CH ₂ CHO (2 marks))
		••••

(b) Compound Z can be synthesized by the reaction between X and Y as shown below

- (i) Identify compounds X and Y
- (ii) Name the type of reaction that occurs in steps I and I (1 mark)
- (c) Identify the reagents and state the conditions necessary for the reaction in
 (i) step I (1 mark)
- (ii) step III (2 mars)
 - (d) Write the mechanism for the reaction that occurs in step III

nydrochloric acid on warming.	(3 marks)
(b) The acid dissociation constant (Ka) of chloric	(1) acid is lower than the Ka
chloric (VII) acid at 25°C,	(2 marks)
	.: 1. 6.11 1 1: 1:6: . 1 .:
(d) When refluxed with aqueous potassium hydrox nitrate solution. Chloroethane forms a white p	
gives no observable change.	(4 mark)

••••		
••••		
15. HF,H	Cl, HBr and HI are hydrides of group VII elements	
(a) Exp	plain the variation in boiling points of the hydrides.	(3 marks)
••••		
••••		
••••	••••••	•••••
••••		•••••
(b) Aq	ueous solutions of the hydrides of the same concentration	at constant
tem	perature have different ph values.	
••••		
·····	T1 20 4 1 121 1 1 1 4 1	
(i)	Identify the hydride whose solution in water has the lo	owest pH (1 mark)
(ii)	Give a reason for your answer in b(i) above.	(2 marks)
••••		
••••		
••••		
••••		
	ite an equation for the reaction between	
(i)	The hydride of fluorine and excess silicon (IV) oxide	(1 mark)
••••		

	Potassium manganate (VII) solution and the hydride of chlor	1110.
		(1 mark)
(iii) 	Concentrated sulphuric acid and the hydride of bromine.	(1 mark)
) Write	I) iodide is a sparingly soluble salt. e an equation for the solubility of lead (II) iodide in water	
•	concentration of a saturated solution of lead (I) iodide at 40°C 00cm ³ of solution	2 18 0.122g
	whether a mixture of 50cm ³ of 0.01M lead (II) nitrate and 50	lcm ³ of
	IM potassium iodide forms a yellow precipitate of lead (II) iod	
	first potassium routue forms a yenow precipitate of read (11) for	nue or not.
(~	w your working clearly) (6	marks)
	w your working clearly) (6	,
		,
		······································
		······································
		······································
		······································
		······································
		······································
		······································
		······································
		······································

	saturated solution of solution was heated to State whether the	o 60°C in	a closed sy	stem		er 100cm ³ 2 mark)
(ii)	Give a reason for	•	(1 ½ marks)			
pressure	ure of methanol and e of methanol in the s law as shown in th	e vapour	above the so		-	-
Partial v	e of methanol in the s law as shown in the vapour pressure of	e vapour	above the so		-	-
Partial v	e of methanol in the salaw as shown in the vapour pressure of ol (mmHg) action of methanol	e vapour ne table b	above the so	olution vari	es accordin	g to
Partial v methano Mole fra in soluti	e of methanol in the salaw as shown in the vapour pressure of ol (mmHg) action of methanol	e vapour ne table b 40.0 0.10	above the solution above the solution above the solution and the solution above the solut	200.0	es accordin	g to 320.0
Partial v methano Mole fra in soluti	e of methanol in the s law as shown in the vapour pressure of ol (mmHg) action of methanol on	e vapour ne table b 40.0 0.10	above the solution above the solution above the solution and the solution above the solut	200.0	es accordin	320.0 0.80

on of
s mole
mark)
son for your
mark)
mark)
• • • • • • • • • • • • • • • • • • • •

END

THE PERIODIC TABLE

1	2	1							411000			3	4	5	6	7	8
1 H	- ,-				*				**								2 He 4.0
3 Li 6.9	4 Be 9.0						e .				1	5 B	6 C 12.0	7 N 14.0	8 O 16.0		10 Ne 20.2
11 Na 13.0	12 Mg 24.3									***		13 AI 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45,8	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9		29 Cu 63.5		31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 H£ 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 T1 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222
87 Fr (223)	88 Ra (226)	89 Ac (227)			Andrew -												1
1-			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Li
			89 Ac (227	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 25	Rs	100 Fm (257	101 Mv (256	102 No (254	L

^{1.} H - indicates Atomic number.

More exams? browse: digitaltears.co.ug

END.

^{2.} $\frac{H}{1.0}$ - indicates relative Atomic number.