Supplementary information

Jhoanata M. Bolivar^{a,b}, Carlos A. Sierra^{a,b}

 a Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany b Research Center on Ecosystems and Global Change Carbono & Bosques, Medellín, Colombia

References

- Blanco, J. F., Estrada, E. a., Ortiz, L. F., Urrego, L. E., 2012. Ecosystem-Wide Impacts of Deforestation in Mangroves: The Urabá Gulf (Colombian Caribbean) Case Study. ISRN Ecology 2012, 1–14.
- Bolivar, J., Yepes, A., Sierra, C. A., Urrego, L., Moreno, F., Monsalve, A., Espinosa, S., Agudelo,
 C., Betancur, S., Posada, J., Herrera, D., Mira, J., Sierra-Correa, P., In preparation. Carbon stock in mangroves of cispatá delta estuarine system., in preparation.
- Carbono & Bosques, 2015. Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario la plata, bahía málaga, valle del cauca. Tech. rep., INVEMAR-Fundación Natura.
- De la Peña, A., Rojas, C. A., De la Peña, M., 2010. Valoración económica del manglar por el almacenamiento de carbono .. Clío America 4 (7), 133–150.
- INVEMAR, 2007. Informe del Estado de los Recursos Marinos y Costeros en Colombia: Año 2006. Tech. rep., Instituto de investigaciones Marinas y Costeras "José Benito Vives de Andréis".
- Lema, L. F., Polanía, J., 2007. Estructura y dinámica del manglar del delta del río Ranchería, Caribe colombiano. Revista de Biología Tropical 55 (1), 11–21.

Table 1: Above ground biomass (AGB) data sources used to estimation of total AGB carbon stock in Colombian mangroves and development of predictive models.

			Coordinates		AGB	
Department La Guajira	Coast Caribbean	Location Brazo Riito-Ranchería river delta	X Y		(Mg ha-1)	Source
			-72.8931	11.5578	70.98	Lema and Polanía
La Guajira	Caribbean	Valle de los cangrejos-Ranchería river	-72.8914	11.5588	26.78	(2007) Lema and Polanía
	G	delta	= 4.4000	40.0045	04.40	(2007)
Magdalena	Caribbean	CGSM-Rinconada	-74.4938	10.9615	91.40	De la Peña et al. (2010)
Magdalena	Caribbean	CGSM-Aguas Negras	-74.6075	10.8089	16.10	De la Peña et al. (2010)
Magdalena	Caribbean	CGSM-Caño Grande	-74.4814	10.8619	75.80	De la Peña et al. (2010)
Magdalena	Caribbean	CGSM-Luna	-74.938	10.9071	13.80	De la Peña et al. (2010)
Magdalena	Caribbean	Chengue bay- Tayrona NNP	-74.1284	11.3178	132.10	INVEMAR (2007)
Córdoba	Caribbean	Cispatá bay-Caño Tijí 1	-75.8378	9.3566	147.50	Bolivar et al. (In prepa-
Córdoba	Caribbean	Cispatá bay-Caño Tijí 2	-75.8284	9.3606	186.60	ration) Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Palermo	-75.8423	9.3525	129.70	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Grande 1	-75.8505	9.3712	153.20	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-El Claval	-75.7912	9.3874	80.20	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 1	-75.8563	9.382	122.80	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 2	-75.8588	9.3811	159.30	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-La Flotante-Caño Nis- peral	-75.8029	9.3906	90.40	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Vertel-Caño el Nene	-75.8397	9.3823	151.20	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Salado 1	-75.8721	9.4155	131.70	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Ciénaga Galo	-75.8266	9.3673	101.80	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Ostional	-75.8639	9.3961	89.30	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-La Zona, Rincón el grillo	-75.8384	9.397	72.00	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-La Camaronera	-75.7914	9.3844	74.00	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Ciénaga Remediapobres	-75.8435	9.3679	133.20	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Ciénaga Soledad	-75.8464	9.3407	171.40	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Garzal 3	-75.8447	9.3954	102.10	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Grande 2	-75.854	9.3690	220.80	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Jesús Primera	-75.8439	9.3784	128.50	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño Salado 2	-75.8276	9.4183	69.30	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Angostura	-75.5885	9.4221	246.90	Bolivar et al. (In preparation)
Córdoba	Caribbean	Cispatá bay-Caño el Soldado	-75.8548	9.3557	77.70	Bolivar et al. (In preparation)
Antioquia	Caribbean	Atrato river delta	-77.1005	8.0508	178.60	Blanco et al. (2012)
Antioquia	Caribbean	Puerto Cesar - Punta Coquito	-76.7407	7.9592	41.60	Blanco et al. (2012)
Antioquia	Caribbean	Punta Yarumal-Punta Las Vacas	-76.7478	8.1111	61.60	Blanco et al. (2012)
Antioquia	Caribbean	Punta Yarumal-Punta Las Vacas 2	-76.7478	8.1111	35.00	Blanco et al. (2012)
Antioquia	Caribbean	Rionegro cove 1	-76.9292	8.5458	21.20	Blanco et al. (2012)
Antioquia	Caribbean	Rionegro cove 2	-76.9292	8.5458	43.80	Blanco et al. (2012)
Antioquia	Caribbean	Rionegro cove 3	-76.9292	8.5458	30.80	Blanco et al. (2012)
Valle del Cauca	Pacific	Málaga bay-Luisico	-77.2148	4.0678	109.60	Carbono & Bosques
Valle del Cauca	Pacific	Málaga bay-Luisico-Winul	-77.2055	4.0842	45.30	(2015) Carbono & Bosques
Valle del Cauca	Pacific	Málaga bay-Luisico-Cangrejal	-77.2051	4.0874	295.90	(2015) Carbono & Bosques (2015)
Valle del Cauca	Pacific	Málaga bay-El Morro-Aserrío	-77.1927	4.0506	4.00	Carbono & Bosques (2015)
						(2010)
Valle del Cauca	Pacific	Málaga bay-Corozal	-77.2678	4.0805	63.40	Carbono & Bosques (2015)

Table 2: Statistical regression models for AGB. When log is the natural logarithm; AGB is the above ground biomass (Mg/ha); BIO9 is the mean temperature of driest quarter ($^{\circ}$ C); BIO16 is the precipitation of the wettest quarter (mm); EVI is the enhanced vegetation index; Lat is the absolute value of latitude (decimal degrees); n is the number of observations; R_a^2 is the adjusted coefficient of determination; MSE is the mean squared error; F is the F-statistic calculated; AIC is the akaike information criterion

Model	n	$R_a^{\ 2}$	MSE	F	AIC
$ (1)AGB = -1.028^{e+03} + 2.011^{e+00}BIO10 + 1.545^{e+00}BIO11 - 3.329^{e-03}BIO16 + 5.881^{e-02}BIO17 + 3.903^{e+02}EVI $	41	0.2164	3331	3.21	456.4188
$(2)AGB = -1.876^{\text{e}+03} + 7.766^{\text{e}+00}BIO1 + 7.64^{\text{e}-02}BIO4 + 5.413^{\text{e}-03}BIO12 - 2.908^{\text{e}-00}BIO15$	43	-0.0278	4338	0.72	488.8498
$3)AGB = -1.152^{\text{e}+03} + 4.167^{\text{e}+00}BIO1 + 9.011^{\text{e}-02}BIO4 + 2.871^{\text{e}-03}BIO12 - 1.175^{\text{e}+00}BIO15 + 3.770^{\text{e}+02}EVI$	41	0.2261	3290	3.34	455.90772
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	41	0.2218	3308	2.90	456.94720
$^{(5)}AGB = -1.372^{e+03} + 6.358^{e+00}BIO10 + 1.789^{e+00}BIO11 - 7.389^{e-02}BIO16 - 1.229^{e-01}BIO17 - 7.746^{e+01}Lat$	43	0.154	3571	2.53	481.33333
$6)AGB = -1.286^{e+03} - 9.594^{e+01}Lat + 8.621^{e+00}BIO1 + .161^{e-01}BIO4 - 6.145^{e-02}BIO12 - 4.687^{e-01}BIO15$	43	0.1819	3453	2.87	479.8905
$7)AGB = -1.099^{e+03} - 4.978^{e+01}Lat + 5.863^{e+00}BIO1 + .100^{e-01}BIO4 - 3.161^{e-02}BIO12 - 5.549^{e-01}BIO15 + 2.529^{e+02}EVI$	41	0.2405	3229	3.11	455.9497
$8)AGB = 35338.8860 - 155.9330 Lat - 2490.0405 \frac{BIO1}{10} + 9.1282(\frac{BIO1}{10})^2 - 85.6399 \frac{BIO1}{10} - 0.1171BIO12 + 0.4483BIO15$	43	0.1975	3387	2.72	479.8824
9) $AGB = 60064.4482 - 127.7343 Lat - 4376.4264 \frac{BIO1}{10} + 1.8955(\frac{BIO1}{10})^2 - 17.3961 \frac{BIO11}{10} - 0.1014BIO12 + 1.9823BIO15 + 20.5646EVI$	41	0.2835	3046	3.26	454.3361
10)AGB = -1916.5321 + 7.3424BIO9 + 0.1126BIO17	43	0.1456	3607	4.58	479.1101
11) $AGB = -1.693^{e+03} - 2.897^{e+01}Lat + 7.567^{e+00}BIO9108^{e-02}BIO17$	43	0.2072	3346	4.66	476.8008
$212)AGB = -1.485^{e+03} - 1.662^{e+00}Lat + 5.443^{e+00}BIO9 + 658^{e-02}BIO17 + 2.770^{e+02}EVI$	41	0.2755	3080	4.80	452.3611
13)AGB = -1368.411 - 11.799Lat + 5.451BIO9 + 231.860EVI	41	0.2889	3023	6.42	450.7176
(4)AGB = -716.047 + 2.522BIO9 + 335.402EVI	41	0.2713	3098	8.44	450.815
(5)AGB = -1860.211 + 7.958BIO9 - 22.944Lat	43	0.2225	3282	7.01	475.052
AGB = -423.235 + 1.943BIO9	43	0.01697	4149	1.72	484.201
$ \begin{array}{l} 17)AGB = -856.79518 - 6.53917BIO11 + 0.01171BIO16 + 9.62033BIO9 + \\ 00.26658EVI \end{array} $	41	0.2859	3036	5.00	451.7686
18)AGB = -1364.4334 + 4.8624BIO11 + 0.0324BIO16 + 358.2106EVI	46	0.2492	3192	5.42	452.9465
19)AGB = -822.9927 + 3.0227BIO11 + 0.2433BIO16 - 0.4077BIO17	43	0.04791	4019	1.70	484.6759
$ 20)AGB = -319.78271 - 13.78940BIO11 - 0.00399BIO16 + 9.78050BIO9 + \\ .98395BIO1 + 231.90575EVI $	41	0.2792	3064	4.10	452.9969
$ 21)AGB = 4.173^{e+04} - 1.606^{e+02} \frac{BIO11}{10} - 4.733^{e-02} BIO16 + 602^{e+02} \frac{BIO9}{10} - 3.083^{e+03} \frac{BIO1}{10} + 5.685^{e+01} (\frac{BIO1}{10})^2 + 2.826^{e+02} EVI $	41	0.3096	2935	3.99	452.0376
$22)AGB = -3.485^{e+02} + 1.954^{e-03}BIO10^{2} + 3.104^{e-03}BIO11^{2} - 339^{e-05}BIO16^{2} + 3.609^{e-04}BIO17^{2} + 5.595^{e+02}EVI^{2}$	41	0.233	3261	3.43	455.5412
23) $\log AGB = -54.802662 + 5.751671 \log BIO10 + 5.097236 \log BIO11 - $.003928 $\log BIO16 - 0.004322 \log BIO17 + 1.691458 \log EVI$	41	0.2164	0.585	3.21	101.8848
$ 24)AGB = -3301.918 + 718.549 \log BIO10 - 122.657 \log BIO11 + 0.615 \log BIO16 - 6.271 \log BIO17 + 131.200 \log EVI $	41	0.2008	3397	3.01	457.227
$25\log AGB = -100.7499 + 18.7172\log BIO9 + 0.2023\log BIO16 + 1.1821\log EVI$	41	0.3038	0.520	6.82	95.31651
$26) \log AGB = -25.6202 + 12.1786 \log BIO9 - 4.1606 \log BIO16 + 9.976 \log EVI - 1.1664 Lat $	41	0.3777	0.465	7.07	91.59005
$ 27) \log AGB = 26.5733 + 29.8163 \log BIO9 - 3.8958 \log BIO16 + \\ .7998 \log EVI - 0.9563 Lat - 27.7092 \log BIO11 \\ 28) AGB = 1098.74 - 284068.51 \frac{1}{BIO9} + 35004.17 \frac{1}{BIO16} - 36.37 \frac{1}{EVI} + $		0.3701 0.256	0.470 3163	5.70	92.9368
$13.59 \frac{1}{ Lat }$	41			4.44	453.4474
$.008^{e-01}EVI + 5.315^{e-03} Lat $	41	0.1325 0.0917	0.0014	2.53	147.622
$\begin{array}{lll} 30)\frac{1}{AGB} = -0.12246 + 28.07379\frac{1}{BIO9} - 10.38792\frac{1}{BIO16} + 0.01322\frac{1}{EVI} + \\ .18235\frac{1}{[Lat]} \\ 31)\log AGB & = & 55.0753 + 0.3973\log BIO9 - 5.0320\log BI\red{3}16 + \\ \end{array}$	41				145.736
$31) \log AGB = 55.0753 + 0.3973 \log BIO9 - 5.0320 \log BIO16 + 0.524 \log EVI - 8.5249 \log Lat $	41	0.3756	0.466	7.01	91.73306
$^{1.0324} \log EVI = 3.3249 \log Eut $ $^{1.032} \log AGB = -1.615^{e+01} + 7.970^{e-02} \log BIO9 - 3.738^{e-04} \log BIO16 + 8.816^{e+00} \log EVI - 2.259^{e-01} Lat $	41	0.3193	0.508	5.69	95.26750
$33)AGB = 2577.5 + 186.7 \log BIO9 - 325.0 \log BIO16 + 142.5 \log EVI - 93.8 \log Lat $	41	0.3223	2881	5.76	449.6211
50.816 [BLt] $34) AGB = -2541.15 + 178.36 \sqrt{BIO9} - 2.78 \sqrt{BIO16} + 259.48 \sqrt{EVI} - 30.84 \sqrt{[Lat]}$	41	0.2699	3104	4.70	452.6767
$35)\sqrt{AGB} = -7.719^{\text{e}+01} + 3.201^{\text{e}-01}BIO9 - 7.403^{\text{e}-05}BIO16 + 2.253^{\text{e}+01}EVI - 5.965^{\text{e}-01} Lat $	41	0.3357	7.53	6.05	205.8136
$36) \log AGB = 20.8619 - 4507.8468 \frac{1}{BIO9} + 324.2172 \frac{1}{BIO16} - 4312 \frac{1}{EVI} + 5.6351 \frac{1}{ Lat }$	41	0.2717	0.544	4.73	98.04207
Lat $ AGB = -1368.411 + 5.451BIO9 + 231.860EVI - 11.799 Lat $	41	0.2889	3023	6.42	450.7176