

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 179 592 A1

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 13.02.2002 Bulletin 2002/07
- (21) Application number: 01912238.1
- (22) Data of filing: 09.03.2001

- (51) Int CI.7: **C12N 15/12,** C07K 14/78, C07K 16/18
- (86) International application number: PCT/JP01/01871
- (87) International publication number: WO 01/66736 (13.09.2001 Gazette 2001/37)
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR
- (30) Priority: 09.03.2000 JP 2000006595
- (71) Applicants:
 - Japan Science and Technology Corporation Kawaguchi-shi, Saltama 332-0012 (JP)
 - Takahashi, Kenichi Kobe-ahi, Hyogo 655-0854 (JP)

- (72) Inventors:
 - TAKAHASHI, Kenichi Kobe-shi, Hyogo 655-0854 (JP)
 - TAKAI, Yoahimi Kobe-shi, Hyogo 651-2102 (JP)
 - NAKANISHI, Hiroyuki
 Kobe-shi, Hyogo 651-2103 (JP)
 - SATO, Kelko
 Nishi-ku, Kobe-shi, Hyogo 651-2112 (JP)
- (74) Representative: Gardner, Rebecca Frank B. Dehn & Co. 179 Queen Victoria Street London EC4V 4EL (GB)

(54) PROTEINS NECTIN-3

(57) This application provides a novel protein, nectin-3 having an amino acld sequence of any of SEQ ID NO: 2, 4 or 6, which belongs to a nectin protein family participating in cell-cell adhesion. It also provides a polynucleotide that codes for the nectin-3 and has a base sequence of any of SEQ ID NO: 1, 3 or 5; a recombinant vector having the polynucleotide; and an antibody against the protein nectin-3. The protein nectin-3 provides important information for clarifying all aspects of

the molecular mechanism in cell-cell binding systems, and, in addition, it leads to the possibility of clarifying the mechanism of, for example, humectation and metastasis of carcinoma, and is expected to be applicable to diagnosis of carcinoma for its malignancy and to a method for treating cases with carcinoma and also to development of madicines for carcinoma.

Description

20

30

35

50

55

TECHNICAL FIELD

[0001] The invention of this application relates to a noval protein nectin-3 that participates in cadhann-based callcell adherens junctions, and to gene-engineering materials for obtaining and utilizing the protein.

BACKGROUND ART

[0002] Cell-cell adhesion systems to be formed by transmembrane proteins, such as adhesion molecules, receptors and channels play an important role in various cell-level phenomena such as cell-cell adhesion, cell movement and cell morphology determination in animal individuals. Above all, cell-cell adherens junctions (AJs) bear a role indispensable for histocompatibility. Evidence is increasing to say that AJs further participate in controlling cell propagation and morphologic tissue formation, in addition to their mechanistic role as above. It has become clarified that many F-actin-binding proteins play a role as a linker to link actin cytoskeletons to adhesion molecules. However, the molecule-level understanding of AJs is insufficiant, and it is not clear as to which molecules may bind actin cytoskeletons to cell membranes.

[0003] To clarify this, the invantors of this application have isolated soma novel F-actin-binding protains from rats' brains, analyzed the structura of the protein especially specific to neurocytes and abundantly existing in synapses, and named it "neurabin", for which the applicant already filed a patent application (Japanesa Patent Application No. 276784/1998). Further, the inventors of this application have individually isolated 1-afadin, a novel F-actin-binding protein, and ponsin, a protein that binds with 1-afadin, for both of which the applicant filed patent applications (for 1-afadin, Japanese Patent Application No. 89572/ 1999; for ponsin, Japanese Patent Application No. 174687/1999). Still further, the Inventors of this application have identified novel proteins, nectin-1α, 1β and nectin-2α, 2δ that function for cadherin-based AJ formation along with afadin (J. Cell Biol., 145:539-549, 1999). They have found that these nectin-1, -2 are Ca²⁺-independent immunoglobulin-like adhesion molecules and act on AJ formation in one system along with afadin and ponsin (Genes Cells 4:573-581, 1999; J. Biol. Chem., 275:613-618, 2000).

[0004] Clarifying the molecular mechanism of celi-cell adhesion will make it possible to clarify, for example, the mechanism of humectation and metastasis of carcinoma, and is expected to be applicable to diagnosis of carcinoma for its malignancy and to a method for treating cases with carcinoma and also to development of medicines for carcinoma. For clarifying it, it is necessary to clarify all the details of the molecules that participate in cell-cell adhesion.

[0005] The invention of this application has been made in consideration of the current situation as above, and its one object is to provide a novel protein that participates in cell-cell adharans junctions.

[0006] Another object of the invention is to provide a gene-engineering material for producing the protein.

DISCLOSURE OF THE INVENTION

[0007] To solve the problems noted above, this application provides a protein nectin-3 having the amino acid sequence of any of SEQ iD NO: 2, 4 or 6.

40 [0008] The protein nectin-3 is derived from mice, including three splicing variants expressed by mouse genomic gene (these proteins are hereinafter referred to as nectin-3α, nectin-3β, nectin 3γ).

[0009] This application also provides a polynucleotide that encodes the protein nectin-3. The polynucleotide includes genomic DNA, mRNAs and cDNAs.

[0010] This application further provides cDNAs each encoding the three types of nectin-3, or that is, polynucleotides each having the base sequence of any of SEQ ID NO: 1, 3 or 5.

[0011] This application still further provides a recombinant vector having any of these polynuclaotides.

[0012] This application still further provides an antibody against any of the three types of protein nectin-3.

[0013] Like nectin-1 and nectin-2, the protein nectin-3 of this invention is common to all mammals, existing In any and every mammal. Therefore, the protein nectin-3 and the polynucleotide encoding it are not limited to only mouse-derived ones.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

[001.]

Fig. 1 is to compare the amino acid sequences of nectin- 3α , -3β and -3γ . The black background indicates the identical sequence among the three variants; the gray background indicates the identical sequence between nectin- 3β and -3γ , the underline indicates the signal peptide; the double underlines indicate the transmembrane regions;

and the asterisks Indicate the glycosylated sites in asparagine.

Fig. 2 shows the experimental data of trans homo-interaction of nectin- 3α . (A) indicates the expression lavel of nectin- 3α , for which a call lysata was subjected to development in SDS-PAGE followed by Westam blot analysis with a polyclonal anti-nactin- 3α antibody. (B) indicates cell aggregation activities of parantal L calls (o) and nectin- 3α -axpressing L cells (o). (C) indicates cell aggregation activities of parental L cells (C1) and nectin- 3α -expressing L cells (C2). The bar is 100 μ m.

Fig. 3 shows the experimental data of cis homo-dimenzation of nectin-3α. Nectin-3α-expressing cells were incubated in the presence or absence of BS3; each cell lysate was subjected to development in SDS-PAGE followed by Western blot analysis with a polyclonal anti-nectin-3α antibody. The arrow indicates the monomer; and the arrowhead indicates the dimer.

Fig. 4 shows the experimental data of mixed-cell aggregation activities of labeled nectin-1α-expressing L cells and unlabeled nectin-2α-expressing L cells (A1 to A3), labeled nectin-3α-expressing L cells and unlabeled nectin-2α-expressing L cells and unlabeled nectin-2α-expressing L cells and unlabeled nectin-2α-expressing L cells (C1 to C3). A1, B1 and C1 are the images in interference contrast microscopy; A2, B2 and C2 are the images in fluorescence microscopy; A3, B3 and C3 are the data in statistical analysis. The bars are 40 μm.

Fig. 5 shows the images in immunofluorescence microscopy of co-cultured two L'cell lines of nectin- la-expressing L cells and -2α -expressing L cells (A1 to A3), nectin- 3α -expressing L cells and -1α -expressing L cells (B1 to B3), and nectin- 3α -expressing L cells and -2α -expressing L cells (C1 to C3). In A1 and B2, seen is nectin- 1α ; in A2 and C2, nectin- 2α ; in B1, nectin- 3α (monoclonal antibody); in C1, nectin- 3α (polyclonal antibody); and in A3, B3 and C3, merged. The bars are 10 μ m.

Fig. 6 shows the experimental data of trans hetero-interaction affinity, for which a cell composition (labeled and unlabeled cells) of two-cell aggregates was quantitatively analyzed. A indicates the data of labeled nectin-1α-expressing L cells; B indicates the data of labeled nectin-3α-expressing L cells; B indicates the data of labeled nectin-3α-expressing L cells; and C indicates the data of labeled nectin-3α-expressing L cells and unlabeled nectin-3α-expressing L cells and unlabeled nectin-2α-axpressing L cells.

Fig. 7 shows the experimental data of cis hetero-dimerization nectin-3 α with nectin-1 α or -2 α . A is for companson of cis dimerization. A1 indicates the data of nectin-1 α -expressing L cells (lane 1) and -1 α 3 α -expressing L cells (lane 2); A2 indicates the data of nectin-2 α -expressing L cells (lane 1) and -2 α 3 α -expressing L cells (lane 2). B4 shows the data of immunoprecipitation. B1 indicates the data of nectin-1 α 3 α -expressing L cells; B2 indicates the data of nectin-2 α 3 α -expressing L cells. The cell extract is in lane 1; the supermatant is in lane 2; the precipitate is in lane 3. The arrows indicate monomers; and the arrowheads indicate the dimers.

Fig. 8 shows the experimental data of nectin-3 distribution in tissues. A shows the data of Northern blot analysis of nectin-1 (A1), nectin-2 (A2) and nectin-3 (A3). B shows the data of Northern blot analysis of nectin-3 α (B1), nectin-3 β (B2) and nectin-3 γ (B3). Lane 1 is in heart; lane 2 is in brain; lane 3 is in spleen; lane 4 is in lung; lane 5 is in liver; lane 6 is in skeletal muscle; lane 7 is in kidney; and lane 8 is in testis.

Fig. 9 shows the experimental data of intracellular localization of nectin-3 α in mouse small intestine absorptive epithelia. In A, seen is nectin-3 α ; in B, nectin-2; and in C, merged. The asterisks indicate the inner space of small intastinas. The bar is 10 μ m.

Fig. 10 shows the experimental data of direct binding of afadin to nectin-3 α . The arrow indicates a fusion protein, GST-nectin-3 α -CP; and the arrowhead indicates a fusion protein, MBP-afadin-PDZ.

BEST MODE FOR CARRYING OUT THE INVENTION

[0015] A mouse protein, nectin-3 α is encoded by 1650 bp cDNA having the base sequence of SEQ ID NO: 1, and this has the sequence of 549 amino acids as in SEQ ID NO: 2. The complete cDNA of the nectin-3 α has the base sequence of 2178 bp as in SEQ ID NO: 7.

[0016] Nectin-3 β is a protein encoded by 1533 bp cDNA having the base sequence of SEQ ID NO: 3, and this has the sequence of 510 amino acids as in SEQ ID NO: 4.

[0017] Nectin-3γls a protein encoded by 1317 bp cDNA having the base sequence of SEQ ID NO; 5, and this has

5

10

15

20

25

30

35

40

45

the sequenca of 435 amino aclds as in SEQ ID NO: 6.

[0018] These protains nectin-3 can be obtained in any known method, for example, according to a method of isolating them from mouse and other mammal tissues; according to a method that comprises preparing peptidas through chemical synthesis basad on the amino acid sequences provided by this invention; or according to a method of recombinant DNA technology using the polynuclaotidas provided by this invention. Concretally, nectin-3 may be obtained through recombinant DNA technology as follows: An RNA is prepared through in-vitro transcription from a vector having a polynucleotide that encodes nectin-3, and the nectin-3 is expressed in vitro through in-vitro translation using the RNA as a template. In the case of the polynucleotide encoding the nectin-3 being recombined with a suitable expression vector in a known manner, the nectin-3 encoded by the polynucleotide can be abundantly expressed in E. coli, B. subtills, yeast, animal or plant cells, etc.

[0019] The protein nectin-3 of this invention can be expressed in microorganisms such as E. coll, in the following manner: The polynucleotide of this invention that encodes the protein is inserted into an expression vector having an origin replicavable in microorganisms, a promoter, a ribosome-binding site, a DNA cloning site and a terminator to construct a recombinant expression vector; then host cells are transformed with the expression vector; and the resulting transformant cells are cultured. In that manner, the nectin-3 encoded by the polynucleotide can be abundantly produced in microorganisms. Alternatively, it may be expressed in the form of a fusion protein with any other protein segment. The resulting fusion protein is cleaved with a suitable protease, and only the protein segment encoded by the polynucleotide can be obtained.

[0020] Tha protain nectin-3 of this invention can be expressed in animal cells in tha following manner. Tha polynucleotide of this invention that encodes the protein is recombined with an expression vector for animal cells having a promoter, a splicing region and a poly(A)-addition site, and the recombinant vector is introduced into animal cells, whereby the protein nectin-3 of this invention can be expressed in the thus-transformed animal cells.

[0021] The mouse protein nectin-3 obtained according to the method as above can be used, for example, as an antigen to form an antibody that specifically recognizes this protein.

[0022] The protein nectin-3 includes peptide fragments (of at least 5 amino acid residues) having any partial amino acid sequence of the amino acid sequence of SEQ ID NO: 2, 4 or 6. These peptida fragments are also usable as an antigen for constructing the antibody.

[0023] The polynucleotide of this invention is a genomic gene of mammals that encodes any of the above-mentioned protein nectin-3 α , β or γ . For example, it can be isolated from known genomic librarias, using the polynucleotide having the base sequence of any of SEQ ID NO: 1, 3 or 5 or its partial sequence as a probe.

[0024] A polynucleotide of this invention may be cDNA characterized by having the base sequence of SEQ iD NO: 1, 3 or 5, and it encodes any of the above-mentioned nectin-3 α , β or γ . Clones of the polyauclaotides of this invention can be obtained with asse. Concretely, using an oligonuclaotide probe synthesized on the basis of the base sequence of SEQ ID NO: 1, 3 or 5, mouse and other mammal cDNA libraries are screened. Alternatively, using the oligonucleotides as primars, the intended polynucleotides can be synthesized through polymerase chain reaction (PCR).

[0025] In general, mammal genes include many polymorphs owing to Individual differences. Therefore, polynucleotides modified from those having a base sequence of any of SEQ ID NO: 1, 3 or 5 by adding, deleting and/or substituting one or more nucleotides therein with any other nucleotide(s) are all within the scope of this invention. Similarly, proteins modified through the polynucleotide modification to add, delete and/or substitute one or more amino acid residues with any other amino acid residue(s) are also all within the scope of this invention, so far as they have the activity of the protein having the amino acid sequence of any of SEQ ID NO: 2, 4 or 6.

[0026] The polynucleotide of this invention includes DNA fragments (of at least 10 bp) having any partial base sequence of the base sequence of SEQ ID NO: 1, 3 or 5, and also polynucleotides comprising their antisense chains.

[0027] The antibody of this invention can be obtained as a polyclonal antibody or a monoclonal antibody in any known method of using the protein nectin-3 itself or its partial peptide as an antigen.

[0028] The following Examples are to show the experimental date to confirm the structure and the function of the nectin-3 of this invention.

EXAMPLES

10

20

35

45

50

- 1. Procedures
- 1.1 Molecular Cloning of Mouse Nectin-3 cDNAs

[0029] From the EST database, three different types of mouse EST clones (Al1428160, AA492633, AA497887), which are similar to but are not the same as nectin-1 and -2, were amplified from a mouse brain cDNA (Clontech). Using the mixture of these cDNAs as a probe, a mouse cDNA library (Stratagene) was acreened to obtain a full-length cDNA. For its DNA sequencing, used was a DNA sequencer (ABI 373).

1.2 Construction of Nectin-3 Expression Vectors

[0030] Vectors pCAGIPuro (J. Blol. Chem., 275: 613-618, 2000), pCAGIPuro-FLAG, p-GEX-KG (Anal. Biochem., 192: 262-267, 1991), pMai-C2 (Naw England Biolabs Inc.) and pFastBAc1-Msp-Fc (J. Call. Biol., 145: 539-549, 1999) were used for constructing nectin-3 expression vectors mantioned below. The pCAGIPuro-FLAG was constructed by subcloning a prepro-trypsin signal peptide and the FLAG epitope of p FLAG-CMV1 (Eastman Kodak) into pCAGIPuro.

- (a) pCAGIPuro-nectin-3a: 1-549 amino acids (full length) of SEQ ID NQ: 2,
- (b) pCAGIPuro-FLAG-nectin-3a: 56-549 amino acids of SEQ ID NO: 2,
- (c) GST-nectin-3α-CP: 433-549 amino acids of SEQ ID NO: 2 (cytoplasmic region),
- (d) GST-nectin-3 α -CP- Δ C: 433-545 amino acids of SEQ ID NO: 2 (deletion of the C-terminal four amino acid residues),
- (e) GST-nectin-3γCP: 397-438 amino acids of SEQ iD NO: 6 (cytoplasmic region),
- (f) pFastBac1-Msp-Fc-nectin-3a-EX: 56-400 amino acids of SEQ ID NO: 2 (extracellular region)

1.3 Construction of Transformant Cells

5

10

15

25

35

[0031] L cells (obtained from tha Kyoto University) were cultured in a 10 % fatal calf sarum-containing DMEM madium to prapara parantal L cells for transformation. Full-length human nectin- 1α -expressing L cells (nectin- 1α -L cells) and full-length mouse nectin- 2α -expressing L cells (nectin- 2α -L cells) were constructed according to the method described in references (J. Cell Biol., 145: 539-549, 1999; J. Biol. Chem., 275: 613-618, 2000). Full-length mouse nectin- 3α -expressing L cells (nectin- 3α -L cells) were constructed, using a recombinant vector pCAGIPuro-nectin- 3α . Nectin- 1α and FLAG-nectin- 3α -coexpressing L cells (nectin- $1\alpha/3\alpha$ -L cells), and nectin- 2α and FLAG-nectin- 3α -coexpressing L cells (nectin- $2\alpha/3\alpha$ -L cells) were constructed by transfecting the nectin- 1α -L cells and the nectin- 2α -L cells, respectively, with pCAGIPuro-FLAG-nectin- 3α , using a lipefectamine reagent (GIBCO BRL). Each cell line was cultured for 1 day, replated, and selected by culturing in the presence of 5 μ g/ml of puromycin (Sigma Chemical Co.).

1.4 Preparation of Antibodies:

[0032] A rabbit antiserum (polyclonal antibody) against nectin-3 α was raised against an antigen, GST-nectin-3 α -CP. A rat monoclonal antibody against nectin-3 was raised against an antigen, fusion protein of the extracellular ragion of nectin-3 α with IgG Fc. A rabbit polyclonal anti-nectin-1 α antibody was prepared according to the mathod dascribed in a raferance (J. Call Biol., 145: 539-549, 1999). Another rabbit polydonal anti-nectin-1 α antibody was raised against an antigen, synthetic peptide corresponding to the amino acid sequence 450-468 of nectin-1 α , according to the method described in the reference (J. Cell Biol., 145: 539-549, 1999). A rat monoclonal anti-nectin-2 antibody was prepared according to the method described in references (J. Cell Biol., 145: 539-549, 1999; Exp. Cell Ras., 235: 374-384, 1997); and mouse monoclonal and rabbit polyclonal anti-1-afadin antibodies were prepared according to the method described in references (J. Cell Biol., 139: 517-528, 1997; Oncogene 18: 1609-1618, 1999). A rat monoclonal anti-Ecadhenn antibody was obtained from Dr. Takelchi (Kyoto University). A mouse monoclonal anti-FLAG antibody was bought from Eastman Kodak.

1.5 Other Procedures

[0033] Cell aggregation assay was done according to the method described in referencas (J. Cell Biol., 145: 539-549, 1999; J. Biol. Chem., 275; 613-618, 2000). For mixed-cell aggregation assay between two different L cell lines, one L call lina was prelabated with Dil (Molecular Proba Inc., USA), as describad (J. Call Biol., 103: 171-187, 1986). [0034] Chemical cross-linking was done according to the method described in references (Blood 92: 4602-4611, 1998; J. Biol. Chem., 275: 613-618, 2000). Immunoprecipitation was performed according to the method described in references (J. Cell Biol., 145: 539-549, 1999; J. Biol. Chem., 275: 613-618, 2000). Immunofluorescenca microscopy of cultured cells was done according to the method described in references (J. Cell Biol., 139: 517-528, J. Call Biol., 145: 539-549, 1999; J. Biol. Chem., 275: 613-618, 2000). Protein concentrations were determined with bovine serum albumin as a control, according to the method described in a reference (Anal. Blochem., 72: 248-254, 1976). SDS-PAGE was done as described (Nature, 227: 680-685, 1970).

[0035] Affinity chromatography was performed as follows: The MBP-fusion protein of the PDZ domain of afadin was immobilized on amylose resin beads (New England Biolabs Inc.). GST-nectin-3α-CP and GST-nectin-3α-CP-ΔC were separately applied to the affinity beads. After axtensively washed with PBS (containing 0.1 % Triton X-100), the beads were subjected to elution with PBS (containing 20 mM maltosa, 0.1 % Triton X-100).

2. Results

10

15

20

25

2.1 Cloning and Characterization of Nectin-3 cDNAs

[0036] The cDNA clone obtained from the mouse cDNA library has the base sequence of SEQ ID NO: 7, and encoded a protein (calculated molecular weight: 60,580) comprising 549 amino acids (SEQ ID NO: 2) in the 1647 bp coding region (SEQ ID NO: 1). This clone contained all the above-mentioned EST clones. The protein was named nectin-3α. [0037] The amino acid sequence of The nectin-3α had an N-terminal hydrophobic signal peptide (1-55 amino acids of SEQ ID NO: 2) and a transmembrane region (405-421 amino acids of SEQ ID NO: 2). The sites for N-linked glycosylation were detected at 73, 83, 125, 186, 222 and 331 amino acids. The nectin-3 contained three lg-like domains in the extracellular region and a C-terminal conserved motif in the cytoplasmic region (Table 1).

Table 1

C-Terminal Seque	ences of the Nectin Family
Members	
Nectin-1α	SFISKKEWYV
Nectin-1β	VRTTEPRGEC
Nectin-2α	SLISRRAVYV
Nectin-28	DEFVSRAMYV
Nectin-3α	SVISRREWYV
Nectin-3β	LYINPREHYV
Nectin-3γ	LGQVRALEDT

[0038] As in the above, these structural properties of nectin- 3α are similar to those of nectin- 1α , - 1β , - 2α and - 2δ . The extent of homology varied with the regions of the molecules, but the amino acid sequence of the extracellular region of nectin- 3α showed 35.9 % and 30.7 % identities to those of nectin-1 and nectin-2, raspectively.

[0039] During the isotation of nectin-3 α , two splicing variants (nectin-3 β and -3 γ) were isotated. The nactin-3 β cDNA (coding region) has a base sequence of 1533 bps (SEQ ID NO: 3), and encodes a protein naving an amino acid sequence of 510 amino acids (SEQ ID NO: 4, calculated molecular weight: 55,808). The extracellular region of nectin-3 β (1-357 amino acids of SEQ ID NO: 4) is Identical to that of nectin-3 α , but its transmembrane and cytoplasmic regions (358-510 amino acids of SEQ ID NO: 4) are different from those of nectin-3 α . However, nectin-3 β also has a C-terminal conserved motif (Table 1).

[0040] The nectin-3γcDNA (coding region) has a base sequence of 1317 bps (SEQ ID NO: 5), and encodes a protein having an amino acid sequence of 438 amino acids (SEQ ID NO: 6, calculated molecular weight: 47,259). The extracellular region, transmembrane region and cytoplasmic region of nectin-3γare identical to those of nectin-3β, but nectin-3γ lacks the C-terminal conserved motif (Table 1).

[0041] Fig. 1 is to compare the amino acid sequences (in one-letter coding) of these nectin-3α, -3β and -3γ.

[0042] The following experiments are principally directed to nectin-3α. This is because the data in Northern blot analysis of various tissues confirm that nectin-3α is a major splicing variant (see Fig. 8, B1 to B3).

2.2 trans Homo-interaction and cis Homo-dimer Formation

[0043] Studies with nectin- 1α -L cells and nectin- 2α -L cells confirm that nectin- 1α and nectin- 2α show cell-cell adhesion activity (trans homo-interaction) (J. Cell Biol., 145: 539-549, 1999; J. Biol. Chem., 275: 613-618, 2000). With that, here in examined was whether nectin- 3α also shows the same activity. The polyclonal anti-nectin- 3α antibody recognized two protein bands with molecular masses of about 100 kDa in the expression products by nectin- 3α -L cells (Fig. 2A, Fig. 3). This may be due to the different levels of the post-translational modification such as glycosylation. These molecular masses are different from the calculated molecular weight based on the deduced amino acid sequence. This difference may also be due to the glycosylation. The expression level of nectin- 1α , - 2α and - 3α in each cell line was almost the same (data not shown).

[0044] Nectin-3α-L cells were tested for the cell aggregation activity of nectin-3α. As a result, the cell aggregation activity of nectin-3α varied time-dependently (Fig. 2B, C1, C2). EDTA added to nectin-3α did not have any influence on this activity of nectin-3α (data not shown). This confirms that the cell-cell adhesion activity of nectin-3α does not depend on Ca²⁺. These results indicate that nectin-3α is a Ca²⁺-independent homophilic CAM (cell adhesion molecule),

like nectin- 1α , -2α end -2δ (J. Cell Biol., 145: 539-549, 1999; Exp. Cell Res., 235: 374-384, 1997; Blood, 92: 4602-4611, 1998; J. Biol. Chem., 275: 613-618, 2000).

[0045] Nectin-1 α end -2 α are known to show cls homo-dimerization (J. Biol. Chem., 275: 613-618, 2000). With that, nectin-3 α was elso tested for the seme ectivity. Nectin-3 α -L cells were dissociated to a single-call suspension and incubeted with a cell surface cross-linker, BS3, and then subjected to Western biot analysis using a polyclonel antinectin-3 α entibody. The cross-linking of the cell line resulted in the formation of edditional bands with molecular messes of about 200 to 220 kDe that correspond to dimers (Fig. 3). Bands with higher molecular messes were also detected. Because the cross-linking was done in a single-cell suspension, it is most likely that the dimers and oligomers are derived from the cis homo-interaction rether than from the trens homo-interaction.

2.3 trens Hetero-Interaction of Nectin-3 α with Nectin-1 α or -2 α

[0046] To examine whether each member of the nectin family shows heterophilic cell-cell adhesion activity (trans hetero-interaction), mixed-cell aggregation essey was performed. When Dil-labeled nectin-1α-L cells were mixed with unlabeled nectin-2α-L cells, the resulting aggregates exclusively consisted of the labeled cells alone or the unlabeled cells elone (Fig. 4 A1-A3). Few eggregates consisting of both the labeled and unlabeled cells were detected. In contrast, when Dil-labeled nectin-3α-L cells were mixed with unlabeled nectin-1α-L cells, the resulting aggregates consisted of both the labeled cells end the unlabeled cells (Fig. 4, B1-B3). This indicetes that nectin-3α shows trans hetero-interection with nectin-1α. The similar rasult was obtained with nactin-3α and nectin-2α (Fig. 4, C1-C3).

[0047] To confirm these results, immunofluorescence microscopy wes performed. When nectin- 1α -L cells were cocultured with nectin- 2α -L cells, nectin- 1α end nectin- 2α were localized in the cell-cell contect sites of the respective L cells (Fig. 5, A1-A3). However, neither nectin- 1α nor nectin- 2α wes detected in the contact sites of the two types of the L cells. In contrast, when nectin- 3α -L cells were co-cultured with nectin- 1α -L cells, nectin- 3α and nectin- 1α coexisted in the cell-cell contact site of the two types of the L cells (Fig. 5, B1-B3). The same result was obtained in coculture of nectin- 3α -L cells and nectin- 2α -L cells (Fig. 5, C1-C3). These result indicate that nectin- 3α shows trans hetero-interaction with nectin- 1α and -2α , whereas nectin- 1α does not trans hetero-interaction with nectin- 2α .

[0048] To determine whether each member of the nectin family prefers trans homo-interaction or trans hetero-interection, two-cell aggregates were analyzed through mixed-cell aggregation assay. Consistent with the result in the enalysis of two-cell aggregates, the mixture of nectin- 1α -L cells and nectin- 2α -L cells resulted in the formation of homotypic two-cell aggregates (Fig. 6A). In contrast, the mixture of nectin- 1α -L cells and nectin- 3α -L cells resulted in the formation of heterotypic two-cell aggregates, end few homotypic two-cell aggregates were found (Fig. 6B). The similar result was obtained when nectin- 3α -L cells end nectin- 2α -L cells were mixed (Fig. 6C). These results indicate that the affinity of trans hetero-interaction of nectin- 3α with nectin- 1α or -2α is obviously higher than that of trans homointeraction of nectin- 1α , -2α or -3α .

2.4 cis Hetero-dimerization of Nectin-3 α with Nectin-1 α or -2 α

[0049] Next examined was whether nectin- 3α forms a cis hetero-dimer with nectin- 1α or -2α . Using nectin- $1\alpha/3\alpha$ -L cells end nectin- $2\alpha/3\alpha$ -L cells, FLAG-nectin- 3α was expressed in the nectin- 1α -L cells and the nectin- 1α -L cells are result, the FLAG-nectin- 3α expressed did not change the size of the cis dimers of nectin- 1α or -2α (Fig. 7, A1 and A2). When nectin- $1\alpha/3\alpha$ -L cells were subjected to cell surface cross-linking, followed by immunoprecipitation using the monoclonal anti-FLAG entibody, then nectin- 1α was recovered in the supernatant end was not communoprecipitated with FLAG-nectin- 3α (Fig. 7, B1). The similar result was obtained with nectin- $2\alpha/3\alpha$ -L cells (Fig. 7, B2). These results indicate that nectin- 3α does not form a cis hetero-dimer with nectin- 1α or -2α .

2.5 Tissue Distribution end Intrecelluler Localization of Nectin-3a

[0050] Consistent with previous reports (J. Virol., 66: 2807-2813, 1992; Gene 155: 261-265,1995; Gene 159: 267-272, 1995), Northern blot enelysis revealed that nectin-1 is abundantly expressed in brain whereas nectin-2 is ubiquitously expressed (Fig. 8, A1 and A2). Northern blot analysis using, es a probe, the coding region common to the three splicing variants of nectin-3 revealed some mRNA bends in venous tissues (Fig. 8, A3). To determine the tissue distribution of eech splicing verlant, a cDNA probe specific to eech variant was used. Nectin-3α geve about 5.2-kb, 3.8-kb, 3.3-kb end 2.7-kb mRNA bands, abundantly expressed in testis but slightly in other tissues (heert, brain, lung, liver end kidney) (Fig. 8, B1). Nectin-3β gave about 5.2-kb and 3.3-kb mRNA bends, expressed in testis (Fig. 8, B2). Nectin-3γ geve en about 3.3-kb mRNA band in testis, and an about 2.1-kb mRNA bend in lung, liver and kidney (Fig. 8, B3).

[0051] To determine the introcellular localization of nectin- 3α , immunofluorescence microscopy was performed, using e-polyclonal anti-nectin- 3α entibody. Nectin- 3α was colocalized with nectin-2 in the junctional complex regions in mouse

10

15

25

35

45

small intestine absorptive epithelia (Fig. 9). These results suggest that nectin-3α is also localized at cadharin-based cell-cell AJs, like nectin-2 (J. Cell Blol., 145: 539-549, 1999).

2.6 Direct Binding of Nectin-3 to Afadin

5

25

30

35

40

45

50

55

[0052] To confirm whether nectin- 3α directly binds to afadin, affinity chromatography was performed. The GST-fusion protein in the cytoplasmic region of nectin- 3α (GST-nectin- 3α -CP) bound to the MBP-fusion protein in the PDZ domain of afadin (MBP-afadin-PDZ) immobilized on amylose resin beads (Fig. 10). The stoichiometry of binding of nectin- 3α to afadin was about 1:1. In contrast, the GST-fusion protein in the C-terminal four amino acid residues-defeted cytoplasmic region of nectin- 3α (GST-nectin- 3α -CP- Δ C) did not bind to the affinity beads. Similarly, the GST-fusion protein in the cytoplasmic region of nectin- 3γ that lacks the C-terminal conserved motified not also bind to the affinity beads.

INDUSTRIAL APPLICABILITY

15 [0053] As described in detail hereinabove, the invention of this application provides a novel protein nectin-3 that belongs to one and the same protein family to which nectin-1 and -2 belong. The protein provides important information for clarifying all aspects of the molecular mechanism in cell-call binding systems, and, in addition, it leads to the possibility of clarifying the mechanism of, for example, humectation and metastasis of carcinoma, and is expected to be applicable to diagnosis of carcinoma for its malignancy and to a method for treating cases with carcinoma and also to development of medicines for carcinoma.

SEQUENCE LISTING

<110>	Japan	Science	and	Technol	Ogy	Corporat	ion

<120> Protein Nectine-3

10

<130> 00-F-039PCT/YS

15

<140> PCT/JP01/01871

<141> 2001-03-09

20

25

<150> JP 2000-65595

<151> 2000-03-09

<160> 7

<170> Patentin Ver. 2.1

30

<211> 1650

⟨210⟩ 1

<212> DNA

35 <213> Mouse

<220>

<221> CDS 40

⟨222⟩ (1).. (1650)

<300> 45

<301> Satoh-Horikawa K. et ai.

<302> Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities.

(303) J. Blol. Chem.

<304> 275

⟨305⟩ 14

55

				-1029													
5	<307	r> 20)U()-()4 - 07													
	<400	D> 1															
	a tg	gcg	¢gg	acc	CCE	ggc	ccg	gcc	CCE	ttg	tgt	cct	gga	ggc	ggc	aaa	48
o	Met	Ala	Arg	Thr	Pro	Gly	Pro	Ala	Pro	Leu	Cys	Pro	Gly	Gly	Gly	Lys	
	1		,		5					10					15		
5	gça	caa	ctt	tcc	tcg	gCg	ttt	cct	CCC	gcg	gcc	gga	ctg	ctg	ctg	ccg	96
	Ala	Gln	Leu	Ser	Ser	Ala	Phe	Pro	Pro	Ala	Ala	Gly	Leu	Leu	Leu	Pro	
				20					25					30			
0						,											
	gcc	ccg	acg	ccg	ccg	CCB	ctg	ctg	ctg	ctg	ctt	att	ccc	ctg	ctt	ctc	144
	Ala	Pro	Thr	Pro	Pro	Pro	Leu	Leu	Leu	Leu	Leu	lle	Pro	Leu	Leu	Leu	
5			35				٠	40					45				
	t tc	tcc	cgg	ctc	tgt	ggt	BCC	t ta	gct	gga	tca	att	att	gtg	gag	cca	192
o	Phe	Ser	Arg	Leu	Cys	Gly	Ala	Leu	Ala	Gly	Ser	lle	He	Val	Glu	Pro	
		50					55					60					
5	cat	gtc	aca	gca	gtg	tgg	gga	aag	aat	gtt	tca	ttg	aag	tgt	tta	att	240
				Ala													
	65					70		٠			75					80	
o					· .									•			
				gaa													288
	Glu	Val	Asn	Glu			Thr	Gln	ile	Ser	Trp	Glu	Lys	lle	His	Gly	
5					85					90					95		
	aaa	agt	aca	cag	act	gtt	gca	gtt	cat	cat	cct	cag	tat	gga	t tc	tct	336
o	Lys	Ser	Thr	Gin	Thr	Val	Ala	Val	His	His	Pro	Gin	Tyr	Gly	Phe	Ser	
				100					105					110	ı		
	gtt	caa	gga	gat	tat	cae	gga	aga	gtc	ttg	ttt	aaa	aac	tat	tca	ctt	384

	Val Gin	Gly Asp	Tyr Gin Gi	y Arg Val	Leu Phe Lys	Asn Tyr Ser	Leu
5		115		120		125	3 **
	aat gat	gca aca	att act ct	tg cat aac	ata ggc ttc	tca gat tct	gga 432
40	Asn Asp	Ala Thr	lle Thr Le	eu His Asn	lle Gly Phe	Ser Asp Ser	Gly
10	130		13	35		300 17.5	* 1 % ()
	aaa tat	ata tgc	aaa gcc gt	tt aca ttc	cca ctt gga	aat gct cag	tcc 480
15	Lys Tyr	He Cys	Lys Ala Va	al Thr Phe	Pro Leu Gly	Asn Ala Gin	Ser
	145		150.		, 155		160 -
20	tct aca	aca gtg	act gtg tt	ta gtt gaa	ccc aca gtg	agc ctg ata	aaa 528
	Ser Thr	Thr Val	Thr Val Le	eu Val Glu	Pro Thr Val	Ser Leu lle	Lys
		:	165		170	. 175	•
25							
	_				aat gag aca		
	Gly Pro			•	Asn Glu Thr		Val
<i>30</i>		180	t,	185	· (4).	190	
	tgt gta	gca gcc	act gga aa	ag cca gtc	gca cag att	gac tgg gaa	ggt 624
35	Cys Val		Thr Gly Ly	•	Ala Gin lie	· · · · · · · · · · · · · · · · · · ·	Gly
		195		200		205 ,	
40	gat ctt	ggt gaa	atg gaa to	ct agt aca	act tot ttt	cct aat gaa	aca 672
	Asp Leu	Gly Glu	Met Glu Se	er Ser Thr	Thr Ser Phe	Pro Asn Gių	Thr
	210				220		
45					·	•	•
	gca acg	att gtc	age caa ta	ac aag ctg	ttt ccc aca	aga ttt gct	cga 720
	Ala Thr	lle Vaf	Ser Gln Ty	yr Lys Leu	Phe Pro Thr	Arg Phe Ala	Arg
50	225		230		235		240
							700
					cat cca gcc	. , -	•
55	GIY ATS	ATE ITE	INT CYS V	ai vai LyS	His Pro Ala	Leu GIU LYS	ASP

					245					250					255		
5														٠			
	att	CEC	tac	tct	ttc	ata	cta	gac	ata	cag	tat	gct	cct	gaa	gtt	tca	816
	He	Arg	Tyr	Ser	Phe	He	Leu	Asp	He	Gln	Tyr	Ala	Pro	Glu	Val	Ser	
10				260					265					270			
	gta	aca	gga	tat	gat	gga	aat	tgg	ttc	gtg	zga	aga	aaa	ggt	gtt	aac	864
	Val	Thr	Gly	Tyr	Asp	Gly	Asn	Trp	Phe	Val	Gly	Arg	Lys	GI y	Val	Asn	
15			275					280					285				
	ctc	aag	tet	aat	gct	gat	gca	aac	cct	cca	ccc	ttc	aag	tcc	gtg	tee	912
20	Leu				_												
		290	0,1				295					300	-,-	•••	•	11,5	
												004					
25	agr	200	++ o	gat	<i>00</i> 2	r 22	taa	cct	oa t	aa t	tta	† † σ	ata	tra	ast	aat	960
				Asp													300
		VIR	LGU	Wah	uıs		11 0	riu	W2h	uly		Leu	nıa	361	W2h		
	305					310					315					320	
30						_											
				ttt													1008
	Ihr	Leu	His	Phe		HIS	Pro	Leu	Thr		Asn	iyr	Ser	Gly		Tyr	
35		•			325					330					335		
	gtc	tgt	aaa	gta	tca	aat	tcc	ctt	ggt	caa	aga	agt	gat	caa	aag	gtt	1056
40	Val	Cys	Lys	Vai	Şer	Asn	Ser	Leu	Gly	Gln	Arg	Ser	Asp	Gin	Lys	Val	
				340					345					350			
									•								
	atc	tac	att	tca	gat	cct	cct	acc	acc	acc	acc	ctt	çag	CCB	aca	gtt	1104
45	He	Tyr	He	Ser	Asp	Pro	Pro	Thr	Thr	Thr	Thr	Leu	Gln	Pro	Thr	Val	
			355					360					365				
50	cag	tee	cat	tcc	t ca	cct	gct	gar	gtc	Cag	gat	ata	gc a	802	g 2 g	cat	1152
				Ser													
	VIII		1113	961	901	110	375	uah	¥ Ø 1	ų III	uoh		AIG	1111	ulu	111.3	
<i>55</i>		370					313					380					
نن																	

	aaa aaa ttg c	cc ttt cct ttg tca	act ttg gca aca ctt	aag gat gac 1200
5	Lys Lys Leu P	ro Phe Pro Leu Ser	Thr Leu Ala Thr Leu	Lys Asp Asp
	385	390	395	400
			100	
10	aca att ggc a	cc atc att gct agt	gta gtg ggtiggg gct	ctc ttc tta 1248
	Thr lie Gly T	hr lle lle Ala Ser	Val Val Gly Gly Ala	Leu Phe Leu
		405	410	415
15		•		
	gtg ctt gtg a	gc att tta gct ggg	gta ttc tgc tat agg	aga cga cgg 1296
	'Val Leu Val S	er lie Leu Ala Gly	Val Phe Cys Tyr Arg	Arg Arg Arg
		20		430
20			•	
	ace ttt cet e	ga gac tac ttt gcc	aaa aac tac att cca	cca tca gac 1344
		_	Lys Asn Tyr lle Pro	
25	435	440		
				•
	ate cae aaa s	gaa toa cag att gat	gtt ctt cac cag gat	gag ctg gat 1392
30			Val Leu His Gln Asp	
	450	455	460	
	400		,	
35	tot tan one s	rać agt ota aga sag	gaa aac aaa aat cca	gta aac aac 1440
			Glu Asn Lys Asn Pro	
	465	470	475	480
40	400	470	4/5	400
				car ter aat 1488
	-		gag cct gag aaa act	
45	Len lie Arg L		Glu Pro Glu Lys Thr	
		485	490	495
			•	· · · · · · · · · · · · · · · · · · ·
50			gaa aga ccg atg gat	_
			e Glu Arg Pro Met Asp	·
	!	500	505	510

	gat	cta	aaa	atg	gga	atg	aag	ttt	gtc	agt	gat	gaa	CgC	tac	aat	gaa	1584
	Asp	Leu	Lys	Met	Gly	Me t	Lys	Phe	Val	Ser	Asp	Glu	Arg	Tyr	Asn	Glu	
5			515				•	520					525				
	agt	gaa	gat	ggt	ttg	gtt	tct	cat	gta	gat	ggc	tcc	gta	att	tcc	agg	1632
10			Asp														
		530					535					540				_	
		•••															
15	200	720	tgg	tat	etc	taa											1650
			Trp														
	545		116	.,.	, ,	550											
20	343					330											
	/01	n\															
25		0> 2															
25		1> 5															
		2> P															
	(21	37 M	ouse						,								
30																	
		10> 2		- .					•				٥.	٥.	۵.		
	Me t	Ala	Arg	ihr	_		Pro	Ala	Pro			Pro	GIY	Gly		Lys	
35	. 1				5			_		10					15		
	Aia	Gln	Leu	,	Ser	Aia	Phe	Pro			Ala	Giy	Leu	Leu	Leu	Pro	
				20					25					30			
40	Ala	Pro	Thr	Pro	Pro	Pro	Leu	Leu	Leu	Leu	Leu	ile	Pro	Leu	Leu	Leu	
			35					40					45				
	Phe	Ser	Arg	Leu	Cys	Giy	Ala	Leu	Ala	Giy	Ser	ile	Пe	Vai	Giu	Pro	
45		50					55					60					
	His	Val	Thr	Aia	Va i	Trp	Giy	Lys	Asn	Val	Ser	Leu	Lys	Cys	Leu	lie	
	65	5				70					75					80	
50	Giu	ı Vai	Asn	Giu	Thr	lle	Thr	Gin	ile	Ser	Trp	Glu	Lys	lle	His	Gly	
					85	;				90					95	•	
	Lys	Ser	Thr	Gin	Thr	Vai	Ala	Vai	His	HIs	Pro	Gln	Tyr	Gly	Phe	Ser	
				100					105					110			
55																	

	Val	Gln	Gly 115	Asp	Tyr	Gln	Gly	Arg 120	Val	Leu	Phe	Lys	Asn 125	Tyr	Ser	Leu
5	Asn	Asp		Thr	1 le	Thr	Leu	His	Asn	11e	G1 y	Phe	Ser	Asp	Ser	Gly
		130					135					140				
	Lys	Tyr	He	Cys	Lys	Ala	Val	Thr	Phe	Pro	Leu	Gly	Asn	Ala	GIn	Ser
10	145					150					155				•	160
	Ser	Thr	Thr	Val	Thr	Val	Leu	Val	Glu	Pro	Thr	Val	Ser	Leu	11e	Lys
					165					170					175	
15	Gly	Pro	Asp	Ser	Leu	He	Asp	Gly	Gly	Asn	Glu	Thr	Val	Ala	Ala	Val
				180					185					190		
	Cys	Val		Ala	Thr	Gly	Lys		Val	Ala	GIn	He		Trp	Glu	Gly
20			195					200			_		205			
	Asp		Gly	Glu	Met	Glu		Ser	Thr	inr	Ser		Pro	Asn	Glu	Thr
25	Ala	210	116	Val	°0=	C1 n	215	Lvc	Leu	Dha	Dra	220 The	1	Dh.a	Ala	A
25	225	1111	116	Val	JEI	230	1 71	LJS	Leu	LIIG	235	1111	AI &	rite	AIG	240
		Arg	Arg	lle	Thr		Val	Val	Lys	His		Ala	Leu	Glu	Lvs	
30	,				245	0,70			-20	250					255	
	He	Arg	Tyr	Ser		11e	Leu	Asp	11e		Tyr	Ala	Pro	Glu		Ser
				260					265					270		
35	Val	Thr	Gly	Tyr	Asp	Gly	Asn	Trp	Phe	Val	Gly	Arg	Lys	Gly	Val	Asn
			275					280				/	285			
	Leu	Lys	Cys	Asn	Ala	Asp	Ala	Asn	Pro	Pro	Pro	Phe	Lys	Ser	Val	Trp
40		290					295					300				
		Arg	Leu	Asp	Gly		Trp	₽ro	Asp	GI y		Leu	Ala	Ser	Asp	
	305					310					315	_				320
45	Thr	Leu	His	Phe		HIS	Pro	Leu	Thr		Asn	Tyr	Ser	Gly		Tyr
	W. 1	.	• • • •	V-1	325	4	٥	1	.	330		0		01	335	12-1
	Vai	Cys	LYS		3er	ASTI	26L	Leu	Gly 345	GIN	Arg	ser	ASP		LYS	Val
50	Ha	Tue	110	340 Sar	Aca	Dra	D-A	The	Thr	The	The	Lau	Gin	350 Bro	The	: Val
	116	131	355	361	u9b	FIU	FIU	360		1111	1111	LEU	365	FIU	ıar	Väl
	Gin	Tro		Ser	Ser	Pro	Ala		Yal	Gln	Aso	lle		Thr	Gla	His
55		, , p	,,,,,	~~!	- •		,,,,	, .w/	. • 1	-111	p		11		UIU	1119

		370					375					380				
6	Lys	Lys	Leu	Pro	Phe	Pro	Leu	Ser	Thr	Leu	Ala	Thr	Leu	Lys	Asp	Asp
5	385					390					395					400
	Thr	He	Gly	Thr	He	He	Ala	Ser	Val	Va I	Gly	Gly	Ala	Leu	Phe	Leu
				:,	405					410					415	
10	Val	Leu	Val	Ser	He	Leu	Ala	Gly	Val	Phe	Cys	Tyr	Arg	Arg	Arg	Arg
				420					425					430		
	Thr	Phe	Arg	Gly	Asp	Tyr	Phe	Ala	Lys	Asn	Tyr	He	Pro	Pro	Ser	Asp
15			435					440					445			
	Met	Gln	Lys	Glu	Ser	Gln	He	Asp	Val	Leu	His	GIn	Asp	Glu	Leu	Asp
		450					455					460				
20	Ser	Tyr	Pro	Asp	Ser	Val	Lys	Lys	Glu	Asn	Lys	Asn	Pro	Va I	Asn	Asn
	465					470					475					480
	Leu	He	Arg	Lys	Asp	Tyr	Leu	Glu	Glu	Pro	Glu	Lys	Thr	GIn	Trp	Asn
25					485					490					495	
	Asn	Val	Glu		Leu	Thr	Arg	Phe		Arg	Pro	Met	Asp		Tyr	Glu
				500					505	_				510		
30	Asp	Leu			Gly	Met	Lys			Ser	Asp	Glu		Tyr	Asn	Glu
	_		515					520	•		0.1	.	525			
	Ser	Glu	ASP	GIY	Leu	Val		HIS	Vai	ASP	GIY		Val	116	2er	Arg
35	A	530		*	17-1		535					540				
		Glu	trp	ıyr	Vai											
	545		·		•											. ,
40																
	(21)	0> 3													•	
45		02 0 12 1:														
		2> OI					•									
		3> M														
50		···														
	<22	0>														
		1> C	DS													
55			-													

<222> (1).. (1533) 5 <300> <301> Satoh-Horikawa K. et al. <302> Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows 10 homophilic and heterophilic cell-cell adhesion activities. <303> J. Biol. Chem. <304> 275 15 <305> 14 <306> 10291-10299 <307> 2000-04-07 <308> GenBank accession No. AF195834 20 <309> 2000-04-13 **<400> 3** 25 atg gcg cgg acc ccg ggc ccg gcc ccg ttg tgt cct gga ggc ggc aaa Met Ala Arg Thr Pro Gly Pro Ala Pro Leu Cys Pro Gly Gly Gly Lys 5 1 15 30 gca caa ctt tcc tcg gcg ttt cct ccc gcg gcc gga ctg ctg ctg ccg Ata Gin Leu Ser Ser Ala Phe Pro Pro Ala Ata Gly Leu Leu Leu Pro 35 20 gcc ccg acg ccg ccg ctg ctg ctg ctg ctt att ccc ctg ctt ctc 40 Ala Pro Thr Pro Pro Pro Leu Leu Leu Leu lle Pro Leu Leu Leu 35 40 45 45 ttc tcc cgg ctc tgt ggt gcc tta gct gga tca att att gtg gag cca 192 Phe Ser Arg Leu Cys Gly Ala Leu Ala Gly Ser lie lle Val Glu Pro 50 55 60

17

cat gtc aca gca gtg tgg gga aag aat gtt tca ttg aag tgt tta att 240

His Val Thr Ala Val Trp Gly Lys Asn Val Ser Leu Lys Cys Leu lie

50

	65					70					75					80	
5					٠												
	gaa	gtg	aat	gaa	act	ata	acc	cag	atc	tca	tgg	gag	aag	ata	cat	ggc	288
	Glu	Val	Asn	Glu	Thr	lle	Thr	Gin	He	Ser	Trp	Glu	Lys	He	His	Gly	
10					85					90					95		
															-		
					act												336
15	Lys	Ser	Thr		Thr	Vai	Ala	Val		His	Pro	Gla	Tyr		Phe	Ser	
				100					105					110			
			~~~						-+-					4.4		-11	204
20					tat Tyr												384
	Tai	GIH	115	USh	131	0111	QI y	120	741	LCU	FIIC	LJS	125	131	351	LGU	
			110		•			120					125				
25	aat	gat	gca	aca	att	act	cts	cat	aac	ata	ggc	ttc	tca	gat	tct	gga	432
					He												
		130					135					140		-		•	
30																	
	aaa	tat	ata	tgc	aaa	gcc	gtt	a ca	ttc	cca	ctt	gga	aat	gct	cag	tcc	480
	Lys	Tyr	He	Cys	Lys	Ala	Val	Thr	Phe	Pro	Leu	Gly	Asn	Ala	Gln	Ser	
35	145					150					155					160	
				•					•								
					act												528
40	Ser	Thr	Thr	Val	Thr	Val	Leu	Val	Glu		Thr	Val	Şer	Leu		Lys	
					165					170					175		
																	F70:
45					tta												576
	GIY	Pro	ASD		Leu	116	ASP	ыу			GIU	i ri r	Vai		AIZ	vai	
				180					185					190			
50	tøt	gta	gca	gêê	act	222	220	CCA	gte	gca	cag	att	gac	tgø	gas	ggt	624
					Thr												
			195				_ • •	200					205			<b>-</b>	

_			ica act tot tit cot a	
5	Asp Leu Gly Glu	Met Glu Ser Ser 1	Thr Thr Ser Phe Pro A	sn Glu Thr
	210	215	220	1 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 1
		•		
10	gca acg att gto	age caa tae aag o	cts itt ccc aca aga t	tt gct cga 720
	Ala Thr lle Val	Ser Gin Tyr Lys L	Leu Phe Pro Thr Arg Pi	he Ala Arg
	225	230	235	240
15				
	gga agg cga att	act tgt gtt gta a	aaa cat cca gcc tta g	aa aag gac 768
	Gly Arg Arg Ile	Thr Cys Val Val l	Lys His Pro Ala Leu G	lu Lys Asp
20		245	250	255
	att cgc tac tct	ttc ata cta gac	ata cag tat gct cct g	aa gtt tca 816
25	lle Arg Tyr Ser	Phe lie Leu Asp	ile Gin Tyr Ala Pro G	lu Val Ser
	260	,	265 2	70
		·	• ,	<i>*</i> :
30	gta aca gga tat	gat gga aat tgg	ttc gtg gga aga aaa g	gt gtt aac 864
	Val Thr Gly Tyr	Asp Gly Asn Trp !	Phe Val Gly Arg Lys G	ly Val Asn
	275	280	285	
<i>35</i>				
	ctc aag tgt aaf	gct gat gca aac	cct cca ccc ttc aag t	cc gtg tgg 912
	Leu Lys Cys Asr	Ala Asp Ala Asn I	Pro Pro Pro Phe Lys S	er Val Trp
40	290	295	445 Age 300 julija	
			••	
	age age ttg gat	gga caa tgg cct i	gat ggt tta ttg gcg t	ca gat aat 960
45	Ser Arg Leu Ass	Gly Gln Trp Pro	Asp Gly Leu Leu Ala S	er Asp Asn
70	305	310	315	320
50	act ctt cat tt	gtc cat cca ttg	act gtc aat tat tct g	sc gtt tat 1008
	Thr Leu His Pho	· Val His Pro Leu	Thr Val Asn Tyr Ser G	ily Val Tyr
		325	330	335

19

	gtc tgt	aaa gta	tca aat	tcc ctt	ggt caa	aga agt	gat caa	aag gtt	1056
5	Val Cys	Lys Val	Ser Asn	Ser Leu	Gly Gln	Arg Ser	Asp Gin	Lys Val	
		340			345		350		
			٠.						
10	atc tac	att tca	gac atc	ccg ctt	acg cag	acc tca	tcc ata	gca gtg	1104
	lle Tyr	lle Ser	Asp lle	Pro Leu	Thr Gln	Thr Ser	Ser lle	Ala Val	
		355		360		•	365		
15	gct gga	gcc gtg	att gga	gct gtc	ctg gcc	ctc ttc	atc atc	acc gtc	1152
	Ala Gly	Ala Val	He Gly	Ala Val	Leu Ala	Leu Phe	He He	Thr Val	
	370			375		380			
20									
	ttt gtg	act gtg	ttg ctg	acg cct	cgg aaa	aag aga	ccg tcc	tat ctt	1200
	Phe Val	Thr Val	Leu Leu	Thr Pro	Arg Lys	Lys Arg	Pro Ser	Tyr Leu	
25	385		390			395		400	
	gac aaa	gta atc	gac ctt	cca cct	aca cat	aag cca	ccc cct	gta tat	1248
30	Asp Lys	Val lle	Asp Leu	Pro Pro	Thr His	Lys Pro	Pro Pro	Val Tyr	
			405		410			415	
35	gaa gaa	cga att	cet tet	ctc cct	cag aaa	gac ctt	ctt ggc	cag act	1296
	Glu Glu	Arg Ilé	Pro Ser	Leu Pro	Gin Lys	Asp Leu	Leu Gly	Gin Thr	
		420			425		430		
40									
40	gaa cac	ttg cct	ttg cag	act cag	ttc aag	gag aaa	gga gct	ggt ggt	1344
	Glu His	Leu Pro	Leu Gin	Thr Gin	Phe Lys	Glu Lys	Gly Ala	Gly Gly	
		435		440			445		
45									
	ctt cag	ccc tct	aat gga	cca att	agc agg	aga ttt	gac tat	gag gat	1392
	Leu Gin	Pro Ser	Asn Gly	Pro 11e	Ser Arg	Arg Phe	Asp Tyr	Glu Asp	
50	450			455		460			
	gag agc	aca atg	caa gaa	gat gga	act cag	cgc atg	tgc ccc	ctt tat	1440
55 ·									

	Glu Ser Thr	Met Gin	Glu Asp G	ly Thr Gin	Arg Met Cys	Pro Leu Tyr
5	465		470		475 ,,	480
	agc cag atg	tgc cac	caa gac c	ga agc cct	cgc caa cat	cac cca cgc 1488
10	Ser Gln Met	Cys His	GIn Asp A	rg Ser Pro	Arg Gln His	His Pro Arg
		485		490		495
						•
15	aac ccc gag	aga ctc	tac atc a	ac cca cga	gaa cat tat	gtg tga 1533
	Asn Pro Glu	Arg Leu	Tyr lle A	sn Pro Arg	Glu His Tyr	Val
		500		505		510
20						
	⟨210⟩ 4					
	<b>&lt;211&gt;</b> 510					
25	<212> PRT					
	<213> Mouse					
					•	
30	<b>&lt;400&gt; 4</b>					
	Met Ala Arg	Thr Pro	Gly Pro A	la Pro Léu	Cys Pro Gly	Gly Giy Lys
	1	5		10		15
35	Ala Gin Leu	Ser Ser	Ala Phe P	ro Pro Ala	Ala Gly Leu	Leu Leu Pro
		20		25		30
	Ala Pro Thr	Pro Pro	Pro Leu L	.eu Leu Leu	<b>Leu lle Pro</b>	Leu Leu Leu
40	35			40	45	
	Phe Ser Arg	Leu Cys	Gly Ala L	eu Ala Gly	Ser lle lle	Val Glu Pro
	50		55		60	
45	His Val Thr	Ala Val	Trp Gly L	ys Asn Val	Ser Leu Lys	Cys Leu Ile
	65		70		75	80
	Glu Val Asn	Glu Thr	lle Thr G	Gin lie Ser	Trp Glu Lys	lle His Gly
50		85		90		95
	Lys Ser Thr	GIn Thr	Val Ala V	/al His His	Pro Gln Tyr	Gly Phe Ser
		100		105		110
55	Val Gln Gly	Asp Tyr	Gin Gly A	rg Val Leu	Phe Lys Asn	Tyr Ser Leu

			115		·		•	120					125			
5	Asn	Asp	Ala	Thr	11e	Thr	Leu	His	ksn	He	Gly	Phe	Ser	Asp	Ser	Gly
		130					135					140				
	Lys	Tyr	He	Cys	Lys	Ala	Val	Thr	Phe	Pro	Leu	Gly	Asn	Ala	GIn	Ser
10	145					150					155					160
10	Ser	Thr	Thr	Val	Thr	Val	Leu	Val	Glu	Pro	Thr	Va I	Ser	Leu	He	Lys
					165					170					175	
	Gly	Pro	Åsp	Ser	Leu	He	Asp	Gly	Gly	Asn	Glu	Thr	Val	Ala	Ala	Val
15				180					185					190		
	Cys	Va l	Ala	Ala	Thr	Gly	Lys	Pro	Va I	Ala	GIn	He	Asp	Trp	Glu	Gly
			195					200					205		•	
20	Asp	Leu	Gly	Glu	Met	Glu	Ser	Ser	Thr	Thr	Ser	Phe	Pro	Asn	Glu	Thr
		210					215					220				,
	Ala	Thr	He	Val	Ser	Gln	Tyr	Lys	Leu	Phe	Pro	Thr	Arg	Phe	Ala	Arg
25	225					230					235					240
	Gly	Arg	Arg	He	Thr	Cys	Val	Val	Lys	His	Pro	Ala	Leu	Glu	Lys	Asp
					245					250					255	
30	He	Arg	Tyr	Ser	Phe	He	Leu	Y2b		Gln	Tyr	Ala	Pro	Glu	Val	Ser
				260					265					270		
	Val	Thr			Asp	Gly	Asn			Val	Gly	Arg			Val	Asn
35			275					280		_	_		285			_
	Leu			Asń	Ala	Asp		Asn	Pro	Pro	Pro			Ser	Val	Trp
		290			•		295	0		<b>0</b> 1		300		•		<b>.</b>
40		Arg	Leu	ASP	Gly			rro	ASP	GIY		reu	VIS	Ser	ASP	Asn
	305		U! -	01	W - 1	310		1	Th	W-1	315	T	c	<u>ما</u>	W- I	320
	INT	Leu	HIS	Pne			Pro	Leu	ınr			ıyr	Ser	GIY		Tyr
45	V. 1	<b>C</b> -	1	VI - 1	325			1	ČLu	330		Sar	A ca	^1 <u>~</u>	335	Val
	vai	Lys	LÀS			AZII	261	Leu	345		AIR	261	¥2ħ	350		Val
	114	Tur	114	340		114	Bra	1			The	Car	Car			Val
. :.	116	ıyı	355		, wah	116	riv	360		Gill	. 1111	961	365	•	MIA	Val
	Ala	Č1			114	Člu	. <u>.</u>			Ala	1	Dha			Th-	Val
	VIG	370		401	116	Gil	375		-cu	N14	Fen	380				val
55		010					U1 U	,				500	•			

Phe Val Thr Val Leu Leu Thr Pro Arg Lys Lys Arg Pro Ser Tyr Leu 385 390 395 5 Asp Lys Val lie Asp Leu Pro Pro Thr His Lys Pro Pro Pro Val Tyr 405 410 Glu Glu Arg lle Pro Ser Leu Pro Gln Lys Asp Leu Leu Gly Gln Thr 10 425 Glu His Leu Pro Leu Gin Thr Gin Phe Lys Glu Lys Gly Ala Gly Gly 440 15 Leu Gin Pro Ser Asn Gly Pro 11e Ser Arg Arg Phe Asp Tyr Glu Asp 450 455 460 Glu Ser Thr Met Gin Glu Asp Gly Thr Gin Arg Met Cys Pro Leu Tyr 20 475 470 Ser Gin Met Cys His Gin Asp Arg Ser Pro Arg Gin His His Pro Arg 485 490 25 Asn Pro Glu Arg Leu Tyr lle Asn Pro Arg Glu His Tyr Val 500 505 30 <210> 5 <211> 1317 35 <212> DNA <213> Mouse <220> <221> CDS <222> (1).. (1317) 45 <300> <301> Satoh-Horikawa K et al. <302> Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows 50 homophilic and heterophilic cell-cell adhesion activities. <303> J. Biol. Chem.

23

	<304	1> 27	75			-											
5	<305	5> 14	•														
	<306	5> 10	J291-	1029	9												
	<307	7> 20	0-00(	4-07	•		•										
40	<308	3> Ge	enBan	k ac	cess	ion	No.	AF19	5835	;							
10	<309	3> 20	000-0	)4 <b>-</b> 13	;												
15	<400	)> 5															
15	atg	gcg	cgg	acc	CCE	ggc	CCE	gcc	ccg	ttg	tgt	cct	gga	ggc	ggc	aaa	48
	Met	Ala	Arg	Thr	Pro	Gly	Pro	Ala	Pro	Leu	Cys	Pro	Gly	Gly	Gly	Lys	
20	1				5					10					15		
20																	
	gca	caa	ctt	tcc	tcg	aca	ttt	cct	CCC	gcg	gcc	gga	ctg	ctg	ctg	CCg	96
as.	Ala	GIn	Leu	Ser	Ser	Ala	Phe	Pro	Pro	Ala	Ala	Gly	Leu	Leu	Leu	Pro	
25				20					25					30			
3 <b>0</b>			açg														144
30	Ala	Pro	Thr	Pro	Pro	Pro	Leu		Leu	Leu	Leu	He		Leu	Leu	Leu	
			35					40					45				
35	***	• • •	000		٠	~~4			+		+00					444	102
			cgg Arg														192
	1116	50		LGU		uiy	55	Leu	ДІА	uij	361	60		141	QI U	110	
40		•					••					-					# .7
	cat	gtc	aca	gca	ete	t gg	ggā	aag	aat	gtt	tca	ttg	aag	tgt	tta	att	240
			Thr														
45	65					70		_			75					80	
						,											
	gaa	gtg	aat	gaa	act	ata	acc	cag	atc	tca	tgg	gag	aag	ata	cat	ggc	288
50	Glu	Val	Asn	Glu	Thr	He	Thr	Gln	He	Ser	Trp	Glu	Lys	He	His	Gly	
					85					30					95		
55	aaa	agt	aca	cag	act	gtt	gça	gtt	cat	cat	cct	cag	tat	gga	ttc	tct	336

	Lys	Ser	Thr	GIn 100	Thr	Val	Ala	Vai	His 105	His	Pro	Gin	Tyr	GI y 110	Phe	Ser	
5																	
	gtt	caa	gga	gat	tat	cag	gga	aga	gtc	ttg	ttt	aaa	aac	tat	tca	ctt	384
10	Val	Gla	Gly	Asp	Tyr	Gln	Gly	Arg	Vai	Leu	Phe	Lys	Asn	Tyr	Ser	Leu	
10			115					120			•		125				
																; <i>.</i>	•
15				aca													432
15	Asn		Ala	Thr	ile	Thr		His	Asn	He	Gly	Phe	Ser	Asp	Ser	Gly	·
		130					135					140					
00										٠.							455
20				tgC													480
		Tyr	ile	Cys	Lys		Val	Ihr	Phe	Pro		Gly	Asn	Ala	GIN		
	145					150					155					160	
25	4.4			a+a	201	 ب. ون	***	~+ +	<b>~</b>	000	200	~ t ~		c t a	2 2 2		E98
				gtg Val						_							528
	261	1111	1 1111	741	165	741	.ccu					***	361	CGU	175	_	
30				.·· ·													
	ggg	ccg	gat	tct	tta	att	gat	gga	ggg	aat	gag	aca	gta	gca	gcc	gtt	576
0.5	Gly	Pro	Asp	Ser	Leu	11e	Asp	Gly	Gly	Asn	Glu	Thr	Val	Ala	Ala	Val	
35				180					185	.:	· .			190	+ ;	•	
				:						•	3.5	e William	,		. 7.	. 1	-
40	tgt	gta	gca	gcc	act	gga	aag	cca	gtc	gca	cag	att	gac	tgg	gaa	ggt	624
40	Cys	Val	Ala	Ala	Thr	Gly	Lys	Pro	Val	Ala	Gin	He	Asp	Trp	Glu	Gly	
			195	٠٠٠ .	•			200			-		205	:			٠٠٠.
45									٠.	: ;				•		1. 4	
45	gat	ctt	ggt	gaa	atg	gaa	tct	agt	aca	act	tct	ttt	cct	aat	gaa	aca	672
	Asp	Leu	Gly	Glu	Met	Glu	Ser	Ser	Thr	Thr	Ser	Phe	Pro	Asn	Glu	Thr	
		210					215					220					
50												•	•				٠
	gca	acg	att	gtc	agc	caa	tac	aag	ctg	ttt	ccc	aca	aga	ttt	gc t	cga	720
	Ala	Thr	i i e	Val	Ser	Gin	Tyr	Lys	Leu	Phe	Pro	Thr	Arg	Phe	Ala	Årg	
55																	

5	225	230	235	240
	gga agg cga att	t act tgt gtt gta aaa ca	it cca gcc tta gaa aag	gac 768
10	Gly Arg Arg Ile	e Thr Cys Val Val Lys Hi 245 25		
15	lle Arg Tyr Sen	t ttc ata cta gac ata ca r Phe IIe Leu Asp IIe GI	In Tyr Ala Pro Glu Val	Ser
	gta aca gga ta	0 265 t gat gga aat tgg ttc gt	270 tg gga aga aaa ggt gt	t aac 864
20		r Asp Gly Asn Trp Phe Va 280		
25	Leu Lys Cys As	nt got gat goa aac oot oo n Ala Asp Ala Asn Pro Pr	ro Pro Phe Lys Ser Va	
30	290 age agg ttg ga	295 it gga caa tgg cct gat gg	300 · gt tta ttg gcg tca ga	taat 960
35	Ser Arg Leu As 305	sp Gly Gln Trp Pro Asp Gl 310	ly Leu Leu Ala Ser Asi 315	320
		et gtc cat cca ttg act gt ne Val His Pro Leu Thr Va		- * ,
40			30 33.	
45	-	ta toa aat too ott get o al Ser Asn Ser Leu Gly G 40 · 345		g gtt 1056 s Val
50		ca gac atc ccg ctt acg c er Asp lie Pro Leu Thr G 360		

	gct	gga	gcc	gtg	att	gga	gct	gtc	ctg	gcc	ctc	ttc	a t c	atc	acc	gtc	1152
5	Ala	Gly	Ala	Val	He	Gly	Ala	Val	Leu	Ala	Leu	Phe	He	He	Thr	Val	
		370					375					380					
		•											٠.	. 1	5	1 .	
10	+++	ata	act	ete	tte	cte	acg	cct	CRR	aaa	aag	aga	CCE	tcc	tat	ctt	1200
10													Pro		• *		
		761	1111	141	LUG		• • • • • • • • • • • • • • • • • • • •	110	פות					001	.,,	400	
	385					390				·	395	٠.			•	400	
15											·	i. *					1 1 1
							•						CCC				1248
	Asp	Lys	Val	lie	Asp	Leu	Pro	Pro	Thr	His	Lys	Pro	Pro	Pro	Val	Tyr	
20					405					410					415		
		•														1.	
	gaa	gaa	cga	att	cct	tct	ctc	cct	cag	aa a	gac	ctt	ctt	ggc	cag	gta.	1296
25	Glu	Glu	Arg	11e	Pro	Ser	Leu	Pro	Gln	Lys	Asp	Leu	Leu	Gly	Gln	Va I	
25				420					425					430			•
	cgt	gct	ctc	gaa	gac	act	taa										1317
30			Leu														
			435		·												
						•											
35					,												
	/25	n\ c															
		0> 6		1	٠.					•		,		•	•		
40		1> 4		•		•		٠.	•			٠.	:			-	•
		2> P								•							
	<21	3> M	ouse														
4.5										•						•	•
45	<40	0> 6	•								•	:					
	Met	Ala	Arg	Thr	Pro	Gly	Pro	Ala	Pro	Leu	Cys	Pro	Gly	Gly	Gly	Lys	
	1				5	ı				10					15		
50	Ala	Gln	Leu	Ser	Ser	Ala	Phe	Pro	Pro	Ala	Ala	Gly	Leu	Leu	Leu	Pro	
				20					25					30			
	Ala	Pro	Thr			Pro	Leu	Leu			Leu	. 11e	Pro			Leu	
55	- 41 44				- •				~					~~			

			35					40					45			
5	Phe	Ser	Arg	Leu	Cys	Gly	Ala	Leu	Ala	Gly	Ser	lle	He	Val	Glu	Pro
		50					- 55					60				
	His	Val	Thr	Ala	Val	Trp	Gly	Lys	Asn	Val	Ser	Leu	Lys	Cys	Leu	11e
	65					70					<b>7</b> 5					80
10	G1u	Val	Asn	Glu	Thr	He	Thr	Gin	He	Ser	Trp	Glu	Lys	He	His	Gly
					85					90					95	
	Lys	Ser	Thr	Gln	Thr	Val	Ala	Val	His	His	Pro	Gln	Tyr	Gly	Phe	Ser
15				100					105					110		
	Val	Gln	Gly	Asp	Tyr	Gln	Gly	Arg	Val	Leu	Phe	Lys	Asn	Tyr	Ser	Leu
			115					120					125			
20	Åsn	Asp	Ala	Thr	He	Thr	Leu	His	Asn	lle	Gly	Phe	Ser	Asp	Ser	Gly
		130					135					140				_
	Lys	Tyr	He	Cys	Lys	Ala	Val	Thr	Phe	Pro	Leu	Gly	Asn	Ala	GIn	Ser
25	145					150					155					160
	Ser	Thr	Thr	Val	Thr	Val	Leu	Val	Glu	Pro	Thr	Val	Ser	Leu	He	Lys
					165					170	•				175	
30	Gly	Pro	Asp	Ser	Leu	He	Asp	Gly	Gly	Asn	Giu	Thr	Val	Ala	Ala	Val
				180					185					190		
	Cys	Val	Ala	Ala	Thr	Gly	Lys	Pro	Val	Ala	Gin	He	Asp	Trp	Glu	Gly
35			195					200					205			
-	Asp	Leu	Gly	Glú	Met	Glu	Ser	Ser	Thr	Thr	Ser	Phe	Pro	Asn	Glu	Thr
		210					215					220				
	Ala	Thr	He	Val	Ser	Gln	Tyr	Lys	Leu	Phe	Pro	Thr	Arg	Phe	Ala	Arg
40	225					230					235					240
	Gly	Arg	Arg	He	Thr	Cys	Val	Val	Lys	His	Pro	Ala	Leu	Glu	Lys	Asp
					245					250					255	
45	He	Arg	Tyr	Ser	Phe	He	Leu	Asp	He	GIn	Tyr	Ala	Pro	Glu	Val	Ser
				260					265					270		
	Val	Thr	Gly	Tyr	Asp	Gly	Asn	Trp	Phe	Val	Gly	Arg	Lys	Gly	Val	Åsn
50			275					280					285	-		
	Leu	Lys	Cys	Asn	λla	Asp	Ala	Asn	Pro	Pro	Pro	Phe	Lys	Ser	Val	Trp
		290					295					300				•
55							•					Í				

	Ser Arg Leu Asp Gly Gin Trp Pro Asp Gly Leu Leu Ala Ser Asp Asn
5	305 310 315 320 320 320 320
	Thr Leu His Phe Val His Pro Leu Thr Val Asn Tyr Ser Gly Val Tyr
	325 330 335
0	Val Cys Lys Val Ser Asn Ser Leu Gly Gln Arg Ser Asp Gln Lys Val
	340 345 350
	lle Tyr lle Ser Asp lle Pro Leu Thr Gln Thr Ser Ser lle Ala Val
5	355 360 365
	Ala Gly Ala Val lie Gly Ala Val Leu Ala Leu Phe lie Ile Thr Val
	370 375 380
20	Phe Val Thr Val Leu Leu Thr Pro Arg Lys Lys Arg Pro Ser Tyr Leu
.5	385 390 395 400
	Asp Lys Val lie Asp Leu Pro Pro Thr His Lys Pro Pro Pro Val Tyr
).E	405 410 415
?5	Giu Giu Arg ile Pro Ser Leu Pro Gin Lys Asp Leu Leu Gly Gin Val
	420 425 430
	Arg Ala Leu Glu Asp Thr
30	435
35	/010 7
	<210> 7 <a href="#">(211)</a> 2178
_	<211> 2178 <212> DNA
10	(213) Mouse
	(2:0) HOUSV
	⟨220⟩
<b>4</b> 5	<221> CDS
	<222> (197) (1846)
50	<300>
	<301> Satoh-Horikawa K. et al.
	<302> Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows the control of the cell adhesion molecules and the cell adhesion molecules.

		ho	moph	ilio	and	het	erop	hili	с се	-c	ell	adhe	sion	act	ivit	ies.	
	<303	> J.	Bio	1. 0	hem			•									
5	<304	> 27	5														
	<305	> 14	<b>.</b> .														
	<306	> 10	291-	1029	19												
10	<307	> 20	00-0	4-07	,												
	<308	> Ge	n <b>B</b> ar	ık ac	cess	ion	No.	AF19	5833	3							
	<309	> 20	00-0	) <del>4-</del> 13	1												
15					•												
	<400	> 7															
	gaat	tcgg	ca c	gago	gace	g C	gagi	cgas	gca	gccg	cga	gcgc	tcge	CC (	gagte	geege	60
20																٠.	
	gggc	ggcg	ac e	gege	agga	e co	gege	gtte	age	gaca(	gcg	cgct	ggc	ct 1	tccg	gccgc	120
25	ggcc	gcc8	CC E	gC C g C	cgcc	a co	caga	gcct	gag	gecge	cgg	ggce	cege	cg	agcgi	getgge	180
	ccgg	ggca	ag (	cee												st cct	
30					Me		la Ai	rg Th	ır Pı	_	y Pi	ro Al	la Pi			ys Pro	)
						1				5				•	10		
							-44			***		4			<b></b> .		200
35					•											gga	280
	Gly	uiy	15	F32	MIA	UIII	Fén	20	361	Ala	rile	riu	25	Ala	MIA	uly	
					,			20								, •;	
40	rtø	ctø	ctø	·009	acc	cca	aco	CCF	cca	CCG						att	
										_	-					lle	
		30		•••			35					40			~~~	• • •	
45							-										
	CCC	ctg	ctt	ctc	ttc	tcc	cgg	ctc	tgt	ggt	gcc	tta	gct	gga	tca	att	376
	Pro	Leu	Leu	Leu	Phe	Ser	Arg	Leu	Cys	Gly	Ala	Leu	Ala	Gly	Ser	He	
50	45					50					<b>5</b> 5					60	
					-	,											
	att	gtg	gag	cca	cat	gtc	aca	gca	gtg	tgg	gga	aag	aat	gtt	tca	ttg	424
<i>55</i>																	

	He	Va!	Glu	Pro		Va!	Thr	Ala	Va!		Gly	Lys	Asn	'Va!	Ser		:
5					65					70					75		
	aag	tgt	tta	att	gaa	gtg	aat	gaa	act	ata	acc	cag	atc	tca	teg	gag	472
10	Lys	Cys	Leu	He	Glu	Yal	Asn	Glu	Thr	He	Thr	Gín	He	Ser	Trp	Glu	
				80					85					90			
15	aag	ata	cat	ggc	aaa	agt	aca	cag	ac t	gtt	gca	gtt	cat	cat	cct.	cag	520
	Ĺys	He	HIs	Gly	Lys	Ser	Thr	Gln	Thr	Val	Ala	Val	His	His	Pro	Gln	•
			95					100					105				;
20	tat	gga	ttc	tct	gtt	caa	gga	gat	tat	cag	gga	aga	gtc	t tg	ttt	aaa	568
															Phe		3
		110					115					120					
25										<b>'</b> .							
	aac	tat	tca	ctt	aat	gat	gca	aca	att	act	ctg	cat	aac	ata	ggc	ttc	616
00	Asn	Tyr	Ser	Leu	Asn	Asp	Ala	Thr	He	Thir	Leu	His	Asn	He	Gly	Phe	
30	125					130					135					140	
	tca	gat	tct	gga	aaa	tat	a ta	tgc	aaa	gcc	gtt	aca	ttc	cca	ctt	gga	664
35	Ser	Asp	Ser	Gly	Lys	Tyr	He	Cys	Lys	Ala	Val	Thr	Phe	Pro	Leu	Gly	
					145					150					155		
40	aat	gc t	cag	tcc	tct	aca	aca	gtg	act	gtg	tta	gtt	gaa	ccc	aca	gtg	712
	Asn	Ala	Gln	Ser.	Ser.	Thr	Thr	Val	Thr	· Val	. Leu	·Val	Glu	Pro	Thr	Val	• .
				160					165					170			
45																	
	agc	ctg	ata	aaa	ggg	ccg	gat	tct	tta	att	gat	gga	ggg	aat	gag	aça	760
	Ser	Leu	He	Lys	Gly	Pro	Asp	Ser	Leu	He	Asp	Gly	Gly	Asn	Glu	Thr	
50			175					180					185				
	gta	gca	gcc	gtt	tgt	gta	gca	gcc	act	gga	aag	cca	gtc	gca	cag	att	808
55	Va 1	Ala	Ala	Val	Cys	Val	·Ala	Ala	Thr	Gly	Lys	Pro	Val	Ala	GIn	He	

												•						
			190					195					200				·	
5																		
		gac	tgg	gaa	ggt	gat	ctt	ggţ	gaa	atg	gaa	tct	agt	aca	act	tct	ttt	856
		Asp	Trp	Glu	Gly	Asp	Leu	Gly	Glu	Met	Glu	Ser	Ser	Thr	Thr	Ser	Phe	
		205					210					215					220	
10							,											
		cct	aat	gaa	aca	gca	acg	att	gtc	agc	caa	tac	aag	ctg	ttt	CCC	aca	904
		Pro	Asn	Glu	Thr	Ala	Thr	lle	Val	Ser	Gln	Tyr	Lys	Leu	Phe	Pro	Thr	
15						225					230					235		
											_		•					
		aga	ttt	gct	cga	gga	agg	cga	att	act	tgt	gtt	gta	aaa	cat	сса	gcc	952
20		_			Arg													
				,,,,	240	•				245					250	_		
										,								
25		++2	<b>σ</b> 22	220	gac	att	rar	tac	tet	ttc	ata	cta	gar	ata	cag	tat	grt	1000
			_		Asp													
		Leu	GIU -		ush	116	VIR	131	260	1 (16	116	Leu	USH	265	GIII	131	Ala	
				255					200					200				
30												4						1040
			_		tca						_							1048
		Pro		Val	Ser	Val	Thr		Tyr	Asp	Gly	Asn		Phe	Val	Gly	Arg	
35			270					275					280					
					ĺ									,				
		aaa	ggt	gtt	aac	ctc	aag	tgt	aat	gct	gat	gca	aac	cct	cca	CCC	ttc	1096
40	1	Lys	Gly	Val	Asn	Leu	Lys	Cys	Asn	Ala	Asp	Ala	Asn	Pro	Pro	Pro	Phe	
		285					290					295					300	
																		•
45		aag	tcc	gtg	t gg	agc	agg	ttg	gat	gga	caa	tgg	cct	gat	ggt	tta	t tg	1144
45	•	Lys	Ser	Val	Trp	Ser	Arg	Leu	Asp	Gly	Gln	Trp	Pro	Asp	Gly	Leu	Leu	
						305					310					315		
50	)	aca	tra	gat	aat	act	ctt	cat	t t t	etc	cat	cca	ttg	act	etc	aat	tat	1192
				_	Asn													,
		nid	341	voh			LÇU	1113					~cu	* 111			131	
55	;				320					325					330	,		

	tct	ggC	gtt	tat	gtc	tgt	aaa	gta	tca	aat	tcc	ctt	ggt	caa	aga	agt	1240
5	Ser	Gly	Val	Tyr	Val	Cys	Lys	Val	Ser	Asn	Ser	Leu	Gly	Gln	Årg	Ser	
		•	335					340					345			1 2 1 7	
										٠.					1	ί	
10	gat	caa	aag	gtt	atc	tac	att	t ca	gat	cct	cct	acc	acc	acc	acc	ctt	1288
	Asp	Gln	Lys	Val	He	Tyr	He	Ser	Asp	Pro	Pro	Thr	Thr	Thr	Thr	Leu	
		350					355		•			360	٠.		P .	- 47.5	· . }
15				•							•	10	٠,	:	٠	8 174	
	cag	ccg	aca	gtt	cag	tgg	cat	tcc	tca	cct	gct	gaç	gtc	cag	gat	ata	1336
	GIn	Pro	Thr	Va!	GIn	Trp	His	Ser	Ser	Pro	Ala	Asp	Va!	Gln	Asp	He	
20	365				•	370					375					380	•
							•			•		•			•	. 1	
	gca	aca	gag	cat	aaa	aaa	ttg	ccc	ttt	cct	ttg	tca	act	ttg	gca	aca	1384
25	Ala	Thr	Glu	His	Lys	Lys	Leu	Pro	Phe	Pro	Leu	Ser	Thr	Leu	Ala	Thr	
					385					390		•	•		395	* . '	٠.٠
											•					•	•
30	ctt	aag	gat	gac	aça	att	ggc	acc	atc	att	gct	agt	gta	gtg	ggt	ggg	1432
	Leu	Lys	Asp	Asp	Thr	He	Gly	Thr	He	He	Ala	Ser	Val	Val	Gly	GI y	
				400			•	•	405		,			410	•		
35																	
				t ta													1480
	Ala	Leu	Mi.	Leu			Val			Leu				Phe	Cys	Tyr	
40			415	٠٠.												i par	 
				cgg													1528
45	ALE		Arg	ALE	ınr	rne		GIY	ASP	ıyr	rne		LYS	ASI	ıyr	lle .	
		430					435					440					,
		•••	<b>.</b>	~				~	<b>.</b>						•		1670
50				gac									_			-	1576
		rro	ser	Asp	met		LYS	GIU	ser	u I II		ASP	ya!	reu	uis		
	445					450					455					460	

	gāt	gag	ctg	gat	tct	tac	cca	gac	agt	gta	aaa	aag	gaa	aac	aaa	aat	1624
5	Asp	Glu	Leu	Asp	Ser	Tyr	Pro	Asp	Ser	Val	Lys	Lys	Glu	Asn	Lys	Asn	
3					465					470					475		
	cca	gta	aac	aac	ctg	atc	CEC	aaa	ga c	tac	tta	gag	gag	cct	gag	aaa	1672
10	Pro	Vai	Asn	Asn	Leu	He	Arg	Lys	Asp	Tyr	Leu	Giu	Glu	Pro	Glu	Lys	
				480					485	•				490			
15	act	cag	tgg	aat	aat	gta	gag	aac	ctc	ac.t	agg	ttt	gaa	aga	ccg	atg	1720
	Thr	Gin	Trp	Asn	Asn	Val	Glu	Asn	Leu	Thr	Arg	Phe	Glu	Årg	Pro	Met	
			495					500					505				
20																	
	gat	tac	tat	gaa	gat	cta	aaa	atg	gga	atg	aag	ttt	gtc	agt	gat	gaa	1768
	Asp	Tyr	Tyr	Glu	Asp	L eu	Lys	Met	Gly	Me t	Ĺys	Phe	Val	Ser	Asp	Glu	
25		510					515					520					
•	cgc	tac	aat	gaa	agt	gaa	gat	ggt	ttg	gtt	tct	cat	gta	gat	ggc	tcc	1816
30	Arg	Tyr	Asn	Glu	Ser	Glu	Asp	Gly	Leu	Vai	Ser	His	Val	Asp	Gly	Ser	
	525					530					535					540	
35	gta	att	tcc	agg	agg	gag	tgg	tat	gtc	taa	cag	ccac	tga	cgcg	actt	ca	1866
	Vai	iie	Ser	Arg	Arg	Glu	Trp	Tyr	Va (								
					545					550							
40																	
	cta	tgta	caa :	ggtt	tcat	tc a	cact	agtt	g ac	catt	ttca	ga t	tgtt	cat	act t	tttctt	1926
45	gag	gaag	aat	aagc	tttt	tc a	agtt	gatt	t cg	agct	tact	ttt	tata	ttc	tgat	ctgaca	1986
45																	
	aatı	gaaa	atg	t aaa:	acct	gg g	ttca	atgt	a tc	t gag	ctgc	ttt	acag	ttt	tcac	tgctat	2046
50	acta	actg	tct	caag	attt	aa a	ttct	aatg	c ag	agta	cttt	att	ggtc	tga :	ggca	cacagg	2106
	taa	gaaa	gat	gtca	acgt	ta a	atgt	atga	c gt	tttt	ggta	çaa	aaat	taa	aaaa	22222	2166
55																	

217

## aaaaaactcg ag

5

15

#### Claims

- 10 1. A protein nectin-3 having the amino acid sequence of SEQ ID NO: 2.
  - 2. A protein nectin-3 having the amino acid sequence of SEQ ID NO: 4.
  - 3. A protein nectin-3 having the amino acid sequence of SEQ ID NO: 6.
  - 4. A polynucleotide encoding the protein nectin-3 of any of claims 1 to 3.
  - 5. The polynucleotide as claimed in claim 2, which has the base sequence of SEQ ID NO: 1.
- 20 6. The polynucleotide as claimed in claim 2, which has the base sequence of SEQ ID NO:3.
  - 7. The polynucleotide as claimed in claim 2, which has the base sequence of SEQ ID NO: 5.
  - 8. A recombinant vector having the polynucleotide of any of claims 4 to 7.
  - 9. An antibody against the protein nectin-3 of any of claims 1 to 3.

30

25

35

40

45

50

Fig. 3



B\$3: - +

Fig.4



 $\zeta \sim \lambda$ 

Fig.5



Fig.6



Fig.7



Fig.8



Fig.9



Fig.10

kD

66-

45-

32-

# INTERNATIONAL SEARCH REPORT

International application No.

	The second se		FCI/UI	-01/010/1					
A CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ Cl2N 15/12, C07K 14/78, C07K 16/18									
	According to International Patent Classification (IPC) or to both national classification and IPC								
	SEARCHED		<u></u>						
	Minimum documentation scarched (classification system followed by classification symbols) Int.Cl. C12N 15/12, C07K 14/78, C07K 16/18								
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic d Swis	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)  SwissProt/PIR/GeneSeq, MEDLINE(STN), Genbank/EMBL/DDBJ/GeneSeq								
	<u> </u>		11	:					
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where an	<u> </u>		Relevant to claim No.					
A	Takahashi K. et al. "an immunoglo molecule recruited to cadherin- through interaction with Afadin, protein" J Cell Biol (1999). V	ased adherens ju a PDZ domain-cor	inctions itaining	1~9					
Α.	Miyahara M. et al. "Interaction of nection with sfadin is necessary for its clustering at cell-cell contact sites but not for its cis dimerization or trans interaction" J Biol Chem(2000), Vol.275, No.1, p.613-8								
Д	Asakura T et al. "Similar and between the nection-afadin-pons systems during the formation ar polarized junctional alignment Genes Cells (1999), Vol.4, NO.1	in and cadherin- d disruption of in epithelial c	catenin ths	1-9					
- Furthe	r documents are listed in the continuation of Box C.	See patent family ar	mex.						
"T" later document published after the international filling depriority date and not in considered to be of particular relevance active document but published on or after the international filling date and not in considered with the application but understand the principle or fiscary underlying the inverse date active document but published on or after the international filling date and not in conflict with the application but understand the principle or fiscary underlying the inverse active document but published on or after the international filling date and not in conflict with the application but understand the principle or fiscary underlying the inverse accument but published on or after the international filling date and not in conflict with the application but understand the principle or fiscary underlying the inversition considered novel or caused be considered to involve an act powhen the document is taken alone document for particular relevance; the claimed invention considered in inversition but understand the principle or fiscary underlying the inversit on the same particular relevance; the claimed invention considered to be obtained invention or other such document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhen the document of particular relevance; the claimed invention considered to involve an act powhe									
27 A	april. 2001 (27.04.01)	15 May, 2001 (15.05.01)  Authorized officer							
	mese Patent Office								
Facsimile N	G.	Telephone No.							

Form PCT/ISA/210 (second sheet) (July 1992)



Creation date: 11-07-2003

Indexing Officer: MCARTER5 - MARK CARTER

Team: OIPEBackFileIndexing

Dossier: 09972268

Legal Date: 28-03-2002

No.	Doccode	Number of pages
1	FOR	64
2	NPL	10
3	NPL	10
4_	NPL	12
5	NPL	10
6	NPL	8
7	NPL	8
8	NPL	12
9	NPL	38
10	NPL	10
11	NPL	6
12	NPL	10
13	NPL	6
14	NPL	12
15	NPL	8
16	NPL	6
17	NPL	6
18	NPL	12
19	NPL	2
20	NPL	2
21	NPL	2
22	NPL	2
23	NPL	2
24	NPL	2
25	NPL	2
26_	NPL	2

Total number o	f pages:	264
----------------	----------	-----

R	۵	m	9	rk	e.
$\Box$	H		~	1 N	

Order of re-scan issued on ......