Deep Bike

Quick introduction

- Great deal of time spent searching for ideas and databases
- Focus on bike sharing
- Aim at tackling common issues from consumer standpoint

Summary

I. Studying the current bike network

- Clustering via k-means method
- Social networking method
- Embedding approach

I. Maintaining the network

- Predicting availability in bike stations
- Basic models
- A deep learning model

I. Enforcing security for users

- Detecting users on bike
 - Extracting faces of these users
 - Testing whether they wear a helmet

I. Studying the current bike network

Two main concerns

Problem 1:

Teach a network what is a station from a user-oriented perspective

Problem 2:

Predict where to place a new station

Our first database

Clustering via k-means method

Objective: Plot data on a map to identify connections

-> Managed to identify 3 distinct geographical clusters : SF, San José, Stanford

Volume of traffic between stations

Social networking method

Objective: Run a community detection algorithm on the graph of all stations

Outcome: Massive improvement -> highlights links between cities previously

omitted

Embedding approach

Objective: Train a neural network on maps -> predict where to better place a new

station

Use of NLP methods

Where to put a new station?

II. Maximizing bike availability

Some stations are empty for more than 45 minutes a day!

Predicting availability in bike stations

- The number of bikes available in each station
- The number of empty docks in each station

- The time of the day
- Informations about the weather

Machine Learning Model

The number of bikes available and docks available for each station one hour later

The basic models

The model	Mean Squared Error (after rounding)
Bikes Available at t+1h = Bikes Available at t0	4.1
Linear Regression	3.9
Fully Connected Neural Network	3.8

Note: models were trained on the San Francisco part of the network to accelerate learning

A Better Deep Learning Model

Results

Mean squared error: 3.4

17% improvement over the naïve approach!

Next steps

- Improve predictions using more data
- Improve predictions using better models like Graphnet
- Create a policy to move bikes and reduce empty station time

Make more people use bike sharing systems...

... and improve users safety!

III. Enforcing security for users

Problem:

Implement a clever radar, detecting helmets from video feed

- => Discriminate efficiently bike users and pedestrians
- => Detect whether user wears a helmet or not

Finding bike users on a given image

A given image

Use of pre-trained YOLOv3 algorithm to identify boxes containing people and bicycles.

Calculate intersection between people and bike boxes.

Helmet detection: the second database

Helmet detection: faces of bike users

Face detection algorithm **ON** boxes of bike users previously detected -> yields **face boxes**

Said face boxes -> expanded with margin to ensure helmet inside **box**

Helmet detection: Training the network

Creation of a new dataset made up of labeled faces with or without helmet

Helmet detection: Training the network

Proof of concept

A picture taken today without helmet

Possible improvements

- Speed
- Improved accuracy of the helmet detection
- A bigger database (merely 700 pictures)
- Strive for speed detection, and other features ...

Conclusion

Thanks for listening!

Links

- The SF dataset: https://www.kaggle.com/benhamner/sf-bay-area-bike-share
- The helmet dataset: https://www.kaggle.com/brendan45774/bike-helmets-detection
- Empty station picture:
 https://www.google.com/url?sa=i&url=https%3A%2F%2FmImpages.wordpress.com%2Ftag%2Fvelib
 %2F&psig=AOvVaw2022C29kgr6Fg9
 - cDg0E2M&ust=1618241982643000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOjlqajD9u8CFQAAAAAAAAAAAAADD