Multiple Choice Questions

MHT-CET

	MHT-CET 20221
	The statement pattern (v. A. c) (online shift)
1	The statement pattern $(p \land q) \lor (\sim p \land \sim)$
	The statement pattern $(p \land q) \lor (\sim p \land q) \lor (r \land \sim q)$ is logically equivalent to Which of the fell $q \land r$ C) $q \lor r$
2.	Which of the following statement patterns is contradiction? c) $q \lor r$ d) $p \lor r$ a) $S_3 \equiv (\sim p \land q) \land (\sim q)$
*	S = (n x) (statement patterns is contradiction ?
	h) C
	c) $S_2 = (p \rightarrow q) \lor (p \land \neg q)$ b) $S_1 = (\neg p \lor \neg q) \lor (p \lor \neg q)$
	Negation of the statement (16.). d) $S_4 = (-p \land q) \lor (-q)$
3.	Negation of the statement 'If $\forall x$, x is a complex number, then $x^2 < 0$ ' is a) $\exists x, x \text{ is not a complex number and } x^2 > 0$
	a) $\exists x, x \text{ is not a complex number and } x^2 \le 0$ is b) $\forall x, x \text{ is not a complex number and } x^2 \ge 0$
	of a way and total complex name.
	c) -a/ a 10 Hot a Compley number 1 2
	a) · a) a is complex number and?
4.	which of the following is correct statement?
	$(p \land q) = (p \Rightarrow \sim q)$
	$S_2: (p \land q) \land (\neg p \lor \neg q)$ is tautology
	$5_3: [p \land (p \rightarrow \sim q)] \rightarrow q \text{ is contradiction}$
	$5_4: p \rightarrow (q \rightarrow p)$ is contingency
	a) Statement S ₁ is correct b) Statement S ₂ is a second
	c) Statement S ₃ is correct d) Statements S ₄ is correct
5.	If Statement I: If a quadrilateral ABCD is a square, then all a city is the same of the correct
	Statement II: All the sides of a quadrilateral ABCD are equal, then ABCD is a square then
	then then the quadriateral ABCD is a square
	a) statement II is a negation of statement I
	b) statement II is an inverse of statement I
	c) statement II is a converse of statement I
	d) statement II is a contrapositive of statement I
6.	The statement pattern $p \rightarrow (q \rightarrow p)$ is equivalent to
	a) $p \rightarrow (p \lor q)$ b) $p \rightarrow (p \leftrightarrow q)$ c) $p \rightarrow (p \rightarrow q)$ d) $p \rightarrow (p \land q)$
7.	The negation of $\sim s \vee (\sim r \wedge s)$ is equivalent to
	a) $s \wedge (r \vee -s)$ b) $\sim r \wedge s$ c) $s \wedge (r \wedge -s)$ d) $s \wedge r$
3.	Consider the following three statements:
	P: 11 is a prime number
	Q:7 is a factor of 176
	R: LCM of 3 and 7 is 21
	Then the truth value of which of the following statements is true?
	a) $P \vee (\neg Q \wedge R)$ b) $(\neg P) \vee (Q \wedge R)$ c) $(\neg P) \wedge (\neg Q \wedge R)$ d) $(P \wedge Q) \vee (\neg R)$
•	The negation of the statement pattern, $p \lor (q \rightarrow \neg r)$ is
	a) $\sim p \wedge (q \wedge r)$ b) $\sim p \wedge (q \wedge r)$ c) $\sim p \wedge (\sim q \wedge r)$ d) $\sim p \wedge (\sim q \wedge \sim r)$
0.	If $p: A$ man is happy, $q: A$ man is rich, then the symbolic form of 'A man is neither happy
	nor rich' is
	a) $\neg p \land q$ b) $\neg (p \lor q)$ c) $p \lor q$ d) $\neg p \lor \neg q$
	AND KIND OF THE PARTY OF THE PA

23.

- The statement pattern $[(p \lor q) \land \neg p] \land (\neg q)$ is 22.
 - a) a contingency
- b) a contradiction c) a tautology
- d) equivalent to $p \wedge q$
- The negation of the statement 'If 5 < 7 and 7 > 2 then 5 > 2' is
- c) 5 > 7 and 7 > 2 or $5 \le 2$

- b) 5 < 7 and 7 > 2 and 5 > 2
- d) 5 < 7 and 7 > 2 or $5 \le 2$
- The statement pattern $p \land (q \lor \neg p)$ is equivalent to 24.
 - a) $p \rightarrow q$
- b) $p \vee q$
- c) pag
- d) 91~p

The symbolic form of the following circuit is 25.

- a) $(p \land q) \lor \neg p \lor [\neg p \lor p \lor r] = l$
- b) $[(p \lor q) \land \sim p] \lor [\sim p \lor q \lor r] = l$
- c) $(p \wedge q) \vee [-p \wedge (-q \vee p \vee r)] = 1$
- d) $(p \vee q) \wedge [-p \vee (-q \wedge p \wedge r)] = l$
- Which of the following statement patterns is a contradiction?

$$S_1 = (p \to q) \land (p \land \sim q)$$

$$S_2 = [p \land (p \rightarrow q)] \rightarrow q$$

$$S_3 = (p \vee q) \rightarrow \sim p$$

$$S_4 = [p \land (p \rightarrow q)] \leftrightarrow q$$

a) S_3

b) S4

- c) S_2
- d) S₁
- The dual of the statement pattern $-p \wedge (q \vee t)$ is (where t is tautology and c is contradiction)
 - a) $\sim p \vee (q \wedge t)$
- b) $\sim p \vee (q \wedge c)$
- c) $p \vee (q \wedge c)$
- d) $p \vee (q \wedge t)$
- 28. If $(-p \land q) \rightarrow r$ is false, then the truth values of p, q, r are respectively
 - a) F, T, F
- b) T, T, F
- c) F, F, T
- d) F, T, T
- 29. Write the statement in symbolic form 'Sandeep neither likes tea nor coffee but enjoys a soft drink'

where p: Sandeep likes tea,

q: Sandeep likes coffee,

r : Sandeep enjoys a soft drink

- a) $(-p \vee -q) \wedge r$
- b) $(-p \lor -q) \lor r$
- c) $(-p \land q) \lor r$
- d) $(-p \wedge -q) \wedge r$
- Which of the following is logically equivalent to $\neg(\neg p \Rightarrow q)$? 30.
 - a) pag
- b) p∧~q
- c) ~p ^q
- d) ~p ~ ~ q
- [MHT-CET 2019]
- The equivalent form of the statement $\neg(p \rightarrow \neg q)$ is 31.

- b) p ∧ q

a) $\sim p \vee q$

32.

- Which of the following is NOT equivalent to $p \rightarrow q$? a) p is sufficient for q b) p only if q
- c) q only if p
- d) q is necessary for p

- The statement pattern $p \land (-p \land q)$ is 43.
 - a) a tautology
 - c) equivalent to $p \land q$

- b) a contradiction
- d) equivalent to $p \vee q$

[MHT-CET 2017]

- The statement pattern $(-p \land q)$ is logically equivalent to 14.
 - a) $(p \vee q) \vee p$
- b) $(p \lor q) \land \sim p$
- c) $(p \land q) \rightarrow p$ d) $(p \lor q) \rightarrow p$
- Which of the following statement patterns is a tautology?
 - a) $p \lor (q \to p)$

b) $\sim q \rightarrow \sim p$

c) $(q \rightarrow p) \lor (\sim p \leftrightarrow q)$

- d) p∧~p
- If c denotes the contradiction then dual of the compound statement $\sim p \wedge (q \vee c)$ is
 - a) $-p \lor (q \land t)$ b) $-p \land (q \lor t)$
- c) $p \lor (\neg q \lor t)$ d) $\neg p \lor (q \land c)$

[MHT-CET 2016]

If p: Every square is a rectangle q: Every rhombus is a kite

then truth values of $p \rightarrow q$ and $p \leftrightarrow q$ are '.... and'.

a) F, F

- b) T, F
- d) T, T
- Which of the following quantified statements is True?
 - a) The square of every real number is positive.
 - b) There exists a real number whose square is negative.
 - c) There exists a real number whose square is not positive.
 - d) Every real number is rational.
- 49. Symbolic form of the switching circuit is equivalent to (Assume $S_1 = p$ and $S_2 = q$)
 - a) $p \vee -q$
- b) p ~ ~ q
- c) $p \leftrightarrow q$ d) $\sim (p \leftrightarrow q)$

[MHT-CET 2013]

50. Let p: A triangle is equilateral

q : A triangle is equiangular

Then inverse of $q \rightarrow p$ is

- a) If a triangle is not equilateral, then it is not equiangular.
- b) If a triangle is not equiangular, then it is not equilateral. c) If triangle is equiangular, then it is not equilateral.
- d) If a triangle is equiangular, then it is equilateral.

[MHT-CET 2008]

60. a) $T \rightarrow F$

$$(p \to \neg p) \lor (\neg p \to p)$$
 is equivalent to

b)
$$p \wedge \sim p$$

c) T v p

61.

 $p \rightarrow \text{Ram is rich.}$ a → Ram is successful.

 $r \rightarrow Ram$ is talented

Write the symbolic form of the following statement : Ram is neither rich nor successful and he is not talented.

a)
$$\sim p \land \sim q \lor \sim r$$

b)
$$-p \vee -q \wedge -r$$

c)
$$\sim p \vee \sim q \vee \sim r$$
 d) $\sim p \wedge \sim q \wedge \sim r$

[MHT-CET 2007]

If p and q are true statements in logic, which of the following statement patterns is true? a) $(p \vee q) \wedge \neg q$ b) $(p \vee q) \rightarrow \neg q$

b)
$$(p \vee q) \rightarrow \neg q$$

c)
$$(p \land \sim q) \rightarrow q$$

- d) $(-p \wedge q) \wedge q$
- The converse of 'If x is zero, then we cannot divide by x' is
 - a) If we cannot divide by x, then x is zero
 - b) If we divide by x, then x is non-zero
 - c) If x is non-zero, then we can divide by x
 - d) none of these
- 64. $\sim (\sim p \land \sim q)$ is equivalent to

a) p 19

b)
$$p \rightarrow q$$

d) $p \leftrightarrow q$

[MHT-CET 2006]

65. Negation of the statement "A is rich but silly" is

a) Either A is not rich or not silly b) A is poor or clever

c) A is rich not silly

- d) A is either rich or silly
- All teachers are not sincere is represented by

b)

d)

If p: x > yq: y > z

then which of the options represents:

'If x > y and y > z then x > z'.

c) $\sqrt{-9}$ is rational number

a)
$$(p \vee q) \rightarrow r$$

r: x > z

b)
$$(p \lor r) \to q$$

c)
$$(p \land q) \rightarrow r$$

c)
$$(p \land q) \rightarrow r$$
 d) $p \rightarrow (r \land q)$

[MHT-CET 2005]

- Which of the following statements is not a statement in logic?
 - b) Planets are living objects

a) Earth is a planet

d) I am lying

- Negation of $p \leftrightarrow q$ is
 - a) $(p \wedge q) \vee (p \wedge q)$

b) $(p \land \neg q) \lor (q \land \neg p)$

c) $(-p \wedge q) \vee (q \wedge p)$

d) $(p \wedge q) \vee (-q \wedge p)$

- c) If the triangle is an equilateral or an isosceles triangle, then it is an isosceles or it is
- d) If the triangle is an equilateral or an isosceles triangle, then it is not an isosceles and
- 157. The negation of $(p \land \neg q) \rightarrow (p \lor \neg q)$ is

a) a tautology

b) a contradiction c) a contingency d) equivalent to $p \wedge q$

158. Which of the following statements has the truth value T? S₁: Cube roots of unity are in GP and their sum is 1

 $S_2: 4+7 > 10 \text{ iff } 2+8 < 10$

 $S_3: \exists x \in \mathbb{N}$ such that $x^2 - 3x + 2 = 0$ and $\exists x \in \mathbb{N}$ such that x is an odd number

 $S_4: 3+i$ is a complex number or $\sqrt{2}+\sqrt{3}=\sqrt{5}$

a) Only S₁

b) S_2 , S_3 and S_4 c) Both S_1 and S_3 d) Both S_3 and S_4

159. Consider the three statements :

 $p: \forall n \in \mathbb{N}$, 10n - 3 is a prime number, when n is not divisible by 3.

 $q: \frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}}$ are the direction cosines of a directed line.

 $r: \sin x$ is an increasing function in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Then which of the following statement patteren has truth value true?

a) $(p \land q) \leftrightarrow r$

b) $(p \rightarrow q) \rightarrow \sim r$

c) $(-p \vee q) \wedge r$

d) $(\sim p \land \sim q) \leftrightarrow \sim r$

160. Negation of the statement 'For all M > 0, there exist $x \in S$ such that $x \ge M'$ is

a) $\exists M > 0$ such that x > M for all $x \in S$

b) $\exists M > 0, \exists x \in S \text{ such that } x > M$

c) $\exists M > 0$ such that x < M for all $x \in S$

d) \exists M > 0, there exist $x \in S$ such that x < M

161. If the statements p, q and r are true, false and true statements respectively, then the truth value of the statement pattern $(\sim q \land (p \lor \sim q) \land \sim r) \lor p$ and the truth value of its dual statement respectively are

a) T, T

- b) F, T
- c) T, F
- d) F, F

162. Let p: Switch S_1 is closed

9: Switch S_2 is closed

Then the correct interpretation from the following circuit is

b) The lamp is always off

a) The lamp is always on

d) Equivalent to $p \vee q$

c) Symbolic form is $p \vee (-p \wedge -q) \vee q$ Number of switches in alternative simple circuit for the following circuit is (are)

