Realistic Image Generation using GANs

SHALINI K 21222240095

A deep learning project on generating MNIST images

Abstract

 This project explores the power of Generative Adversarial Networks (GANs) to create realistic handwritten digits. Using a generator and discriminator, the model learns the underlying distribution of the MNIST dataset and produces fake images that become indistinguishable from real ones over time.

Dataset and Preprocessing

- Dataset: MNIST (60,000 images, 28x28 grayscale).
- Preprocessing Steps:
- Normalize pixel values to [-1, 1]
- Data loaded in batches using DataLoader

Model Architecture

- Generator:
- Fully connected layers
- Batch normalization
- Activation: ReLU, Tanh (output)

- Discriminator:
- Fully connected layers
- LeakyReLU activations
- Sigmoid for classification

Training Process

- Loss Function: Binary Cross Entropy
- Optimizer: Adam
- Epochs: 50

- Stability Techniques:
- Label smoothing
- Batch normalization
- Gradual improvement with adversarial loss

Results and Observations

- Outputs over time:
- Epoch 0: Random noise
- Epoch 10: Slight patterns
- Epoch 20: Recognizable digits
- Epoch 50: Clear and realistic handwritten digits

 GANs can effectively learn distributions of complex datasets.

Generated Outputs

- Generated samples are saved in the 'generated' folder:
- epoch_10.png
- epoch_20.png
- epoch_30.png
- epoch_40.png
- epoch_50.png

Generated Images - Epoch 10

Generated Images - Epoch 20

6	5	E	4	3	8	0	1
4	8	4.	8	2	2	1	4
0	2	3	0	3	4.	7	5
6	6	6	9	3	3	7	b
2	3	3	1	q	4	7	7
5	E	3	6	0	9	5	1
7	3	4	7	1	9	4	0
9	9	8	7	1	8	5	5
4	3	9	C	2	3	4	3
3	8	4	3	4	3	9	3
C	1	0	7	\mathcal{B}	3	9	9
0	9	3	1	8	9	8	2

Generated Images - Epoch 30

6.	q	G	-7	1	ů,	8	4
						3	
						\$	
10	3	1	9	4	3	2	4
2	3	3	5	6	4	8	5
						8	
						9	
						8	
						7	
						7	
						3	
						1	

Generated Images - Epoch 40

Generated Images - Epoch 50

				_		•	
9	3	1	1	8	9	4	-
6	1	3	4	B	1	6	5
9	3	G	1	7.	1	3	4
9	7	8	8	3	5	9	9
3	8	9	3	8	2	1	3
0	5	7	9	9	7	8	3
7	6	3	2	8	6	4	7
5	4	4	7	1	5	1	1
8	4	3	4	6	9	2	0
6	0	3	3	5	3	9	5
7	9	2	6	0	9	Z	9
7	1	7	4	1	7	0	2

THANK YOU