Assignment - 4

Shruthi Reddy Pingel 1001710021.

1) We have 11 variables.

A has 5 values.

B1, B2, B3, -- , B10 has 7 values.

So, total AXBIXB2X --- XB10.

Hence 5x7x7x7x...x7.

10 times

5x7 values of 5x7 1-1 numbers So, this can be done in 5x7 1-1 ways.

D P(A, B1, B2, ..., B10).

= P(B1/A) P(B2/A).

Hence, P(Bi/A) needs (7-1)x5 = 30 values.

P(A) needs 5-1=4 values.

So Total: 30×10+4

300+4

= 304 values.

. Total 304 values.

Jask-4

1	P(B)	_	
t	0.3041	1	

В	P(TV)
T	0.9279
F	0.1181

P	10.4	1)
0.	169	8

TV	Out	P(CZT)	P(C=F)
7	T	0.0416	0.9583
T	F	0.7064	0.2935
F	T	0.3157	0.6842
F	F	0.9587	0.04124

Here, TV: George watches TV Out: Out of CAT food.

a) Markovian Blanket of N Children of N: R,5

Parents of Children of node N: M,O.

Parent of N: I.

Markovian Blanket: R, S, M, O, I.

b)
$$P(A, F) = P(F/A) \times P(A)$$
.
= 0.8 × 0.8
= 0.64.

9)
$$P(N, not(D)/I) = \frac{P(N, D', I)}{P(I)}$$

= $\frac{P(N/I) P(I/D') P(D')}{P(I/D) P(D) + P(I/D') P(D')}$
= $\frac{D \cdot 1 \times 0.2 \times 0.5}{0.5 \times 0.5 + 0.2 \times 0.5}$
= $\frac{0 \cdot 01}{0.35}$
= $\frac{1}{35}$

Consider 1st case with A as root node.

(3)
$$H(\epsilon_3) = \frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4})$$

= 0.81127.

$$\Psi$$
 $H(E_3) = -\frac{1}{3}log_2(\frac{1}{3}) - \frac{2}{3}log_2(\frac{2}{3})$
 $= 0.5278 - 0.3956$
 $= 0.9234$
 $InfoGain(A)$
 $= H(E) - \frac{1}{10}H(E_2) - \frac{3}{10}H(E_3)$
 $= 0.3858$

In the second case with B as root node.
$$H(\epsilon) = 1$$

$$H(\epsilon_1) = \frac{1}{4} \log_2(\frac{1}{4}) - \frac{3}{4} \log_2(\frac{3}{4}).$$

$$H(F_2) = \frac{-3}{4} log_2(\frac{3}{4}) - \frac{1}{4} log_2(\frac{1}{4}).$$

= 0.821127.

$$H(\epsilon_3) = 1$$

Considering 30d case with c as root node, $H(\epsilon)=1$

$$H(\epsilon_1) = \frac{1}{5} \log_2(\frac{1}{5}) - \frac{4}{5} \log_2(\frac{4}{5}).$$

= 0.7218.

$$H(\epsilon_2) = \frac{-3}{4} \log_2(\frac{3}{4}) - \frac{1}{4} \log_2(\frac{1}{4}),$$

= 0.81127.
 $H(\epsilon_3) = 0.$

InfoGain (c) =
$$H(c) - \frac{5}{10}H(\epsilon_1) - \frac{4}{10}H(\epsilon_2) - \frac{1}{10}H(\epsilon_3)$$
.
= $1 - (\frac{1}{2} \times 0.7218) - (\frac{2}{5}(2 \times 0.8 + 1.29))$.
= 0.3146 .

$$\frac{30}{4}$$
 Entropy $H(A) = H(\frac{80}{100}, \frac{20}{100})$.

$$H(A) = \frac{-80}{100} log_2(\frac{80}{100}) - \frac{20}{100} log_2(\frac{20}{100}).$$

$$=H(A)-\frac{35}{100}\times H\left(\frac{20}{85},\frac{15}{35}\right)-\frac{65}{100}\times 4\left(\frac{5}{65},\frac{60}{65}\right).$$

$$= 0.7218 - \frac{35}{100} \left(\frac{-20}{35} \log_2 \left(\frac{20}{35} \right) - \frac{15}{35} \log_2 \left(\frac{15}{35} \right) \right)$$
$$-\frac{65}{100} \left(\frac{-60}{65} \log \left(\frac{60}{65} \right) - \frac{5}{65} \log \left(\frac{5}{65} \right) \right)$$

:. No, change would be observed.

$$A \longrightarrow B \longrightarrow D$$
.

output: will wait.