Few-shot learning in NLP final presentation - PRO2

Dawid Przybyliński, Aleksander Podsiad, Piotr Sieńko

Few-shot learning

- Deep learning requires huge amount of data to train
- Labelling the data is costly and time consuming
- Efficient techniques for undersized samples are needed

Few-Shot Methods

Contrastive learning

 Having positive and negative examples, create such an embedding, that distance between instances from the same class is minimized and distance to different classes is maximized

Source: Lilian Weng, Jong Wook Kim, NeurlPS 2021

Phase I – experiments summary

Model	avg Accuracy	avg F1	n train
BERT Contrastive + voting	77.0%	77.4%	100
RoBERTa large + soft-triple loss	83.8%	83.7%	100
SimCSE embeddings + voting	74.5%	70.0%	100
Bag of Words + MLP	66.3%	71.6%	100

- Most of the tests were done with semi cross-validation having 2 or 3 folds
- Most testing datasets had 9000 samples (depending on model)
- Experiment were additionally carried out multiple times

Phase I - plans for next project

- Expanding on the idea of voting with contrastive loss function
- Usage of data augmentation
- Tests for more loss functions
- Transfer learning with new data sources
 - o IMDb: Large Movie Review Dataset 25,000 training, 25,000 test

- Amazon Review Polarity Dataset 1,800,000 training, 200,000 test
- Yelp Review Polarity Dataset 280,000 training, 19,000 test

Dataset - IMDb

- IMDb: Large Movie Review Dataset
- 25,000 training, 25,000 test
- Review examples:

"If you like original gut wrenching laughter you will like this movie..." - positive

"So im not a big fan of Boll's work but then again not many are..." - negative

Dataset - Yelp Reviews

- Yelp Review Polarity Dataset
- 280,000 training, 19,000 test
- Review examples:

"Been going to Dr. Goldberg for over 10 years. I think I was one of his 1st patients when he started at MHMG. He's been great over the years..." - positive

"Unfortunately, the frustration of being Dr. Goldberg's patient is a repeat of the experience I've had with so many other doctors..." - negative

Dataset - Amazon Reviews

- Amazon Review Polarity Dataset
- 1,800,000 training, 200,000 test
- Review examples:

"Stunning even for the non-gamer This soundtrack was beautiful! ..." - positive

"Did not fit 2004 Kia Optima LX I purchased this for my 2004 Kia Optima LX..." - negative

- using Python package NLPAUG
- replacing some percentage of the words in review with their synonyms from NLTK and WordNet
- replacing some percentage of words based on the embeddings from the BERT-base uncased model
- back-translation of the reviews translating from English to German and from German to English
- text summarisation summarising the text with the use of t5-small model

Dataset	Augmentation	avg Accuracy	avg F1	n train
Yelp		84.5%	84.4%	100
Amazon	None	84.6%	84.6%	100
IMDB		75.6%	75.3%	100
Yelp		81.8%	81.7%	200
Amazon	Copying data	85.9%	85.9%	200
IMDB		76.9%	76.7%	200

model: RoBERTa-base with softriple loss

Dataset	Augmentation	avg Accuracy	avg F1	n train
Yelp		84.3%	84.2%	200
Amazon	Synonym replacement	83.4%	83.3%	200
IMDB		74.9%	74.8%	200
Yelp		80.7%	80.3%	200
Amazon	Embedding replacement	84.3%	84.0%	200
IMDB		77.1%	76.9%	200

model: RoBERTa-base with softriple loss

Dataset	Augmentation	avg Accuracy	avg F1	n train
Yelp		80.3%	80.1%	200
Amazon	Back-translation	83.5%	83.3%	200
IMDB		73.8%	73.3%	200
Yelp		84.2%	84.2%	200
Amazon	Text summarisation	84.9%	84.8%	200
IMDB		76.8%	76.6%	200

model: RoBERTa-base with softriple loss

Voting with contrastive loss function

- While experimenting with contrastive learning embeddings, we noticed that while looking for most similar samples, voting with a few of the closest neighbors gives significantly higher results than calculating average similarity to classes
- We checked whether such modification could improve our Siamese Networks performance

Transfer learning with new data sources

- Amazon Review Polarity Dataset: contains reviews about Amazon products
- To what extent learning sentiment from movie reviews helps in analysing sentiment for various products?

Transfer learning for predicting IMDB

Transfer learning for predicting Amazon

Tests for more loss functions

Basic Contrastive Loss:

maximizes the embedding distance when the are from the same class

Source: R. Zhang et al, NAACL 2022

Modified InfoNCE Loss:

$$L = -\log \frac{\exp(sim(x, x^+))/\tau}{\exp(sim(x, x^-))/\tau}$$

they are from the same class

sim(x,y): cosine similarity

au: temperature hyper-parameter

Tests for more loss functions

Model	avg Accuracy	avg F1	n train
BERT Contrastive + voting	77.0%	77.4%	100
BERT Contrastive + voting + InfoNCE	77.8%	78.2%	100

 With the same architecture and samples, modified InfoNCE function achieved better results than simple contrastive loss

Splitting reviews into sentences

- Create more training examples by splitting a review into a set of sentences
- Keep sentences that have more than 50 characters
- From 50 to 464 training examples
- The test dataset was also split into a list of examples
- The final review sentiment estimated by an average sentiment of review's sentences (additional voting)

Model	avg Accuracy	avg F1	n train
BERT Contrastive + voting	77.0%	77.4%	100
BERT Contrastive + voting + split sentence	70.7%	70.5%	50

References

- Generalizing from a Few Examples: A Survey on Few-Shot Learning (Wang, Yao, Kwok, Ni, 2020) https://arxiv.org/abs/1904.05046
- Distributed Representations of Words and Phrases and their Compositionality (Mikolov, Sutskever, Chen, Corrado, Dean) http://arxiv.org/abs/1310.4546
- 3. X. Zhang and J. Zhao and Y. LeCun 2015. Character-level Convolutional Networks for Text Classification, https://doi.org/10.48550/arXiv.1509.0162
- 4. Lilian Weng, Jong Wook Kim, Self-Supervised Learning: Self-Prediction and Contrastive Learning, NeurlPS 2021, https://neurips.cc/media/neurips-2021/Slides/21895.pdf
- 5. Zhang et al. Contrastive Data and Learning for Natural Language Processing, NAACL 2022, https://contrastive-nlp-tutorial.github.io/files/contrastive_nlp_tutorial.pdf

- 6. A survey on semi-supervised learning (Van Engelen, Jesper E and Hoos, Holger H) https://doi.org/10.1007/s10994-019-05855-6
- 7. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms (Oliver, Odena, Raffel, Ekin D. Cubuk & Ian J. Goodfellow)
 https://arxiv.org/abs/1804.09170
- 8. Chen et al. A Simple Framework for Contrastive Learning of Visual Representations, 2022
- Applying SoftTriple Loss for Supervised Language Model Fine Tuning (Sosnowski, Wróblewska, Gawrysiak, 2021)
 - https://arxiv.org/abs/2112.08462.
- 10. https://kevinmusgrave.github.io/pytorch-metric-learning/losses/#softtripleloss