Problem A. (1+1+1 points)

Describe examples of smooth projective varieties X over a field k of dimension at least two for which i) the canonical bundle $\omega_{X/k}$ is ample, ii) for which $\omega_{X/k}^*$ is ample, and iii) for which neither of the two holds.

Solution. Consider a smooth hypersurface $X \subset \mathbb{P}^n$ of degree d with $n \geq 3$, then $\omega_X =$ $\mathcal{O}(d-n-1)$. For i) take $d \geq n+2$, for ii) take $d \leq n$ and for iii) take d=n+1.

Problem B. (2+2+2 points)

Let k be an algebraically closed field with $char(k) \neq 2$. Discuss degree two morphisms $X \to \mathbb{P}^1_k$ with X a smooth projective curve of genus g over k.

Solution. The following things should be part of it: Hurwitz formula, the word hyperelliptic should appear, if $q \leq 2$, then all curves are hyperelliptic, can prescribe ramification points. Points should be given for the statement and an explanation but also for indicating the proofs.

Problem C. (3 points)

Let C_1, C_2 be two smooth projective irreducible curves over a field k of genus g_1 and g_2 , respectively. Compute all Hodge numbers of $C_1 \times C_2$.

Solution. Let $X = C_1 \times C_2$, then $h^{p,q}(X) = \dim H^q(X, \Omega^p_{X/k})$ can be computed by Künneth formula:

$$h^{p,q}(X) = \sum_{\substack{p_1 + p_2 = p\\q_1 + q_2 = q}} h^{p_1,q_1}(C_1)h^{p_2,q_2}(C_2).$$

Compute: $h^{0,0} = h^{2,2} = 1$, $h^{1,0} = h^{0,1} = h^{1,2} = h^{2,1} = g_1 + g_2$, $h^{2,0} = h^{0,2} = g_1g_2$, $h^{1,1} = 2 + 2g_1g_2$.

Problem D. (5 points) Let $\pi \colon X \to \mathbb{P}^1 \times \mathbb{P}^1$ be the blow-up of a closed point $y = ([0:1], [s:t]) \in \mathbb{P}^1 \times \mathbb{P}^1$. Consider the exceptional divisor $E := \pi^{-1}(y)$ and the strict transform $\tilde{\Delta} \subset X$ of the diagonal $\Delta \subset \mathbb{P}^1 \times \mathbb{P}^1$ (i.e. the closure of $\pi^{-1}(\Delta \setminus y)$).

Compute $\chi(X_t, \mathcal{O}(\tilde{\Delta}+2E)|_{X_t})$ and $h^0(X_t, \mathcal{O}(\tilde{\Delta}+2E)|_{X_t})$ for the fibres X_t of the composition $f = \operatorname{pr}_1 \circ \pi \colon X \to \mathbb{P}^1$.

Solution. Note that $\mathcal{O}(\Delta) = \mathcal{O}(1,1)$. First consider a point $t \in \mathbb{P}^1$, $t \neq [0:1]$. In this case $X_t \simeq \mathbb{P}^1$ is isomorphic to the fibre of the projection pr_1 , so $\mathcal{O}(2E)|_{X_t} = \mathcal{O}_{X_t}$ and $\mathcal{O}(\tilde{\Delta})|_{X_t} = \mathcal{O}_{X_t}(1)$. We compute: $\chi(X_t, \mathcal{O}(\tilde{\Delta} + 2E)|_{X_t}) = h^0(X_t, \mathcal{O}(\tilde{\Delta} + 2E)|_{X_t}) = 2$. Note that the variety X is irreducible, so the map $f: X \to \mathbb{P}^1$ is flat. In particular the locally free sheaf $\mathcal{O}(\tilde{\Delta} + 2E)$ is flat over \mathbb{P}^1 . This implies that the Euler characterictic χ is constant, and we conclude that $\chi = 2$ for all fibres.

To compute h^0 at the point t = [0:1] note that the fibre X_t has two irreducible components (both isomorphic to \mathbb{P}^1): the exceptional curve E and the strict transform of the fibre of pr₁ which we will denote by F. The two components meet at an ordinary double point p. Let $\eta: E \prod F \to X_t$ be the normalization. Denote $\mathcal{L} = \mathcal{O}(\Delta + 2E)|_{X_t}$. Then we have

$$0 \to \mathcal{L} \to \eta_* \eta^* \mathcal{L} \to \mathcal{O}_p \to 0.$$

We have to consider two cases.

1) The point y does not lie on the diagonal Δ . In this case $\mathcal{O}(\tilde{\Delta}) = \pi^* \mathcal{O}(\Delta)$ and $\mathcal{L}|_E = \mathcal{O}(2E)|_E \simeq \mathcal{O}_{\mathbb{P}^1}(-2)$, $\mathcal{L}|_F = \mathcal{O}(\Delta + 2E)|_F \simeq \mathcal{O}_{\mathbb{P}^1}(3)$. We find that $h^0(\eta^*\mathcal{L}) = 4$. Since any

section of \mathcal{L} has to vanish at p, we get $h^0(\mathcal{L}) = 3$. One can also check from the exact sequence above, that $h^1(\mathcal{L}) = 1$ (as it should be from the Euler characteristic).

2) The point y lies on the diagonal Δ . In this case $\mathcal{O}(\tilde{\Delta}) = \mathcal{O}(\pi^*\Delta - E)$ and $\mathcal{L}|_E = \mathcal{O}(-E+2E)|_E \simeq \mathcal{O}_{\mathbb{P}^1}(-1)$, $\mathcal{L}|_F = \mathcal{O}(\Delta+2E)|_F \simeq \mathcal{O}_{\mathbb{P}^1}(2)$. Again, any section of \mathcal{L} has to vanish at p, so in this case $h^0(\mathcal{L}) = 2$ and $h^1(\mathcal{L}) = 0$.

Problem E. (2+2+2 points)

Compare the notion étale and unramified for a morphism $f: X \to Y$.

Solution. One needs to define both, give examples of morphisms that are unramified and not etale and that are not even unramified. Explain the equivalences: etale \Leftrightarrow flat and unramified \Leftrightarrow flat and $\Omega = 0 \Leftrightarrow$ smooth of relative dimension zero.

Problem F. (2+2+1 points)

Let $f: X \to Y$ be a projective morphism of Noetherian schemes and let \mathcal{F} be a coherent sheaf on X which is flat over Y.

- (i) Show that $f_*\mathcal{F}$ is torsion free.
- (ii) What can be said about the higher direct images $R^i f_* \mathcal{F}$?
- (iii) Find examples that show that the flatness in (i) is essential.

Solution. i) We may assume that $Y = \operatorname{Spec}(A)$ for some Noetherian ring A. Higher direct images of f can be computed as cohomology modules of a complex $0 \to K_0 \to \ldots \to K_n \to 0$ of projective A-modules, so $f_*\mathcal{F}$ is a submodule in K_0 which is torsion free.

- ii) Let E be an elliptic curve, $e \in E$ a closed point. Consider the divisor $D = \Delta \{e\} \times E$ in $E \times E$, where Δ is the diagonal. Let $\mathcal{F} = \mathcal{O}(D)$, $X = E \times E$, and f the projection to the first factor. Then $R^1 f_* \mathcal{F}$ is supported at the point e: when $t \in E$ and $t \neq e$ then $\mathcal{F}_t \simeq \mathcal{O}(t e)$ and $H^1(E, \mathcal{F}_t) = 0$; when t = e then $\mathcal{F}_e \simeq \mathcal{O}$ and $H^1(E, \mathcal{F}_e) = k$.
- iii) Take X to be the normalization of $\operatorname{Spec}(k[x,y]/(xy))$ and $\mathcal{F} = \mathcal{O}_X$.

Problem G. (5 points)

Let $\varphi \colon C \to C$ be an endomorphism of a smooth projective connected curve C over a field k. Consider the graph and the diagonal $\Gamma_{\varphi}, \Delta \subset C \times C$. Decide under which conditions the invertible sheaf $\mathcal{O}(\Delta - \Gamma_{\varphi})$ is of the form $\operatorname{pr}_1^* \mathcal{L}$.

Solution. If g(C) = 0 then $\mathcal{O}(\Delta) = \mathcal{O}(1,d)$ and $\mathcal{O}(\Gamma_{\phi}) = \mathcal{O}(d,1)$, so $\mathcal{O}(\Delta - \Gamma_{\varphi}) = \mathcal{O}(1-d,0) = \operatorname{pr}_1^*\mathcal{O}(1-d)$.

Consider the case g(C) > 0 and assume that $\mathcal{O}(\Delta - \Gamma_{\varphi}) = \operatorname{pr}_1^* \mathcal{L}$. Consider the fibre C_t of pr_1 over some point $t \in C$. By assumption $\mathcal{O}(\Delta - \Gamma_{\varphi})|_{C_t} \simeq \mathcal{O}_{C_t}$. But we also have $\mathcal{O}(\Delta - \Gamma_{\varphi})|_{C_t} \simeq \mathcal{O}_{C_t}(t - \varphi(t))$, so we see that the effective divisors t and $\varphi(t)$ are linearly equivalent, which implies that $t = \varphi(t)$. So our condition is equivalent to $\Delta = \Gamma_{\varphi}$.