

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A2	(11) International Publication Number:	WO 00/02384
H04N 5/44		(43) International Publication Date:	13 January 2000 (13.01.00)
(21) International Application Number:	PCT/IB99/01149	(81) Designated States:	JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date:	21 June 1999 (21.06.99)		
(30) Priority Data:	98202260.0 6 July 1998 (06.07.98)	EP	Published <i>Without international search report and to be republished upon receipt of that report.</i>
(71) Applicant:	KONINKLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).		
(71) Applicant (for SE only):	PHILIPS AB [SE/SE]; Kottbygatan 7, Kista, S-164 85 Stockholm (SE).		
(72) Inventor:	DE MEERSMAN, Erik; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).		
(74) Agent:	STEENBEEK, Leonardus, J.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).		

(54) Title: IMAGE DATA COMPRESSION

(57) Abstract

In an image data compression method, digitized luminance (Y_{in}) and chrominance (U_{in} , V_{in}) signal samples in a ratio $y_{in}:u_{in}:v_{in}$ are subsampled (IDC) to obtain subsampled luminance (Y_{out}) and chrominance (U_{out} , V_{out}) signal samples in a ratio $y_{out}:u_{out}:v_{out}$, wherein $y_{in}:y_{out}$ exceeds $u_{in}:u_{out}$ and/or $y_{in}:y_{out}$ exceeds $v_{in}:v_{out}$.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	l.iberia	SG	Singapore		

Image data compression.

The invention relates to an image data compression such as used for Picture-In-Picture (PIP) or double-window TV.

5 Luminance (Y) and chrominance (U, V) are commonly sampled (digitized) in a ratio Y:U:V = 4:1:1. In NTSC countries, where the signals I and Q are used instead of U and V, this would be Y:I:Q = 4:1:1. In PIP or double window applications, this ratio is commonly preserved at the downsampling operation to obtain the smaller image.

10 It is, inter alia, an object of the invention to obtain a better color resolution after subsampling. To this end, a first aspect of the invention provides a method and a device as defined by claims 1 and 2. A second aspect of the invention provides an image display apparatus device as defined by claim 3.

15 In an image data compression method in accordance with a primary aspect of this invention, digitized luminance and chrominance signal samples in a ratio $y_{in}:u_{in}:v_{in}$ are subsampled to obtain subsampled luminance and chrominance signal samples in a ratio $y_{out}:u_{out}:v_{out}$, wherein $y_{in}:y_{out}$ exceeds $u_{in}:u_{out}$ and/or $y_{in}:y_{out}$ exceeds $v_{in}:v_{out}$.

These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

20 The drawing shows an embodiment of an image display apparatus in accordance with the present invention.

25 The embodiment shown in the drawing comprises an image data compression device, comprising inputs 2a, 2b, 2c for receiving digitized luminance signal samples Y_{in} and chrominance signal samples U_{in} , V_{in} in a ratio $y_{in}:u_{in}:v_{in}$. As mentioned above, a common ratio would be $y_{in}:u_{in}:v_{in} = 4:1:1$. Alternatively, $y_{in}:u_{in}:v_{in} = 4:2:2$. The embodiment further comprises an image data compression device IDC for subsampling the digitized luminance Y_{in} and chrominance U_{in} , V_{in} signal samples to obtain subsampled luminance signal samples Y_{out} and chrominance signal samples U_{out} , V_{out} in a ratio $y_{out}:u_{out}:v_{out}$. In accordance with

the present invention, $y_{in}:y_{out}$ exceeds $u_{in}:u_{out}$ and/or $y_{in}:y_{out}$ exceeds $v_{in}:v_{out}$. So, where in the prior art a 4:1:1 sampled signal would stay a 4:1:1 ($=1:\frac{1}{4}:\frac{1}{4}$) sampled signal upon subsampling, in accordance with the present invention, a 4:1:1 sampled signal becomes a 4:2:2 ($=1:\frac{1}{2}:\frac{1}{2}$) or even a 4:4:4 ($=1:1:1$) sampled signal. Thereby, the color resolution is enhanced

5 with regard to the luminance resolution just by throwing away less chrominance samples than what would be proportionate to the reduction in luminance samples. In one example, no chrominance samples whatsoever are thrown away.

The embodiment further comprises a device P for processing a first signal S1 applied to an input 1 to obtain a processed first signal PS1. In a PIP application, the device P 10 would be formed by the main signal channel, while in a double window application, the device P would be similar to the image data compression device IDC. The first signal S1 may be a composite video signal, or a set of luminance and chrominance signals just as present at the inputs 2a, 2b and 2c. A combination device C combines the processed first signal PS1 and the compressed signals Yout, Uout, Vout to obtain a display signal DS. A display device D 15 displays the display signal DS.

It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. Especially, where the embodiments mention U and V signals, I and Q signals may be used in an NTSC environment.

20 In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of other elements or steps than those listed in a claim. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means can be embodied by one and 25 the same item of hardware.

CLAIMS:

1. An image data compression method, comprising:
receiving (2a, 2b, 2c) digitized luminance (Yin) and chrominance (Uin, Vin)
signal samples in a ratio yin:uin:vin; and
subsampling (IDC) said digitized luminance (Yin) and chrominance (Uin, Vin)
5 signal samples to obtain subsampled luminance (Yout) and chrominance (Uout, Vout) signal
samples in a ratio yout:uout:vout, wherein yin:yout exceeds uin:uout and/or yin:yout exceeds
vin:vout.
2. An image data compression device, comprising:
10 means for receiving (2a, 2b, 2c) digitized luminance (Yin) and chrominance
(Uin, Vin) signal samples in a ratio yin:uin:vin; and
means for subsampling (IDC) said digitized luminance (Yin) and chrominance
(Uin, Vin) signal samples to obtain subsampled luminance (Yout) and chrominance (Uout,
Vout) signal samples in a ratio yout:uout:vout, wherein yin:yout exceeds uin:uout and/or
15 yin:yout exceeds vin:vout.
3. An image display apparatus, comprising:
means for processing (P) a first signal (S1) to obtain a processed first signal
(PS1);
20 an image data compression device (IDC) as claimed in claim 2 for compressing
a second signal including digitized luminance (Yin) and chrominance (Uin, Vin) signal
samples to obtain a compressed second signal including subsampled luminance (Yout) and
chrominance (Uout, Vout) signal samples;
means for combining (C) said processed first signal (PS1) and said compressed
25 second signal (Yout, Uout, Vout) to obtain a display signal (DS); and
means for displaying (D) said display signal (DS).

1/1

