Name:	Centre/Index No:
School	Signature

P525/1 CHEMISTRY Paper 1 July/August 2024 2 ¾ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas volume at s.t.p = 22.4 dm³

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

© WAKISSHA Joint Mock Examinations 2024

Turn Over

SECTION A (46 MARKS)

Attempt all questions in this section.

1	Electrode potentials for some half-cells are given below.	
	Table 1	
		_

Half cell	$E^{\theta}(V)$
$Zn^{2+}(aq)/Zn(s)$	-0.76
Cr ₂ O ₇ ²⁻ (aq), H ⁺ (aq), Cr ³⁺ (aq)/Pt	+1.33

	(a)	Write t	he cell n	otation for the cell	formed when the tw	o half-cells are c	onnected. (01 mark)
	(b)	Write	an equati	on for the overall			(1½ marks)
	(c)	(i)			change of the cell.		
							(02 marks)
		(ii)		nether the cell reac eason for your an	etion is feasible or no swer.	ot.	(01 mark)
2.	sulphu	ric aci	ane whe d to form addition	n oxidized in air a compounds X ar	t 5 atm formed liqui d Y. Compound Y f lution of sodium hyd	d Q which reacts orms a crystallin	with dilute
	(4)	(i)					
		(ii)	Y: .				(01 mark)
		(iii)	White p	recipitate			. (01 mark)
	(b)				ed to confirm compo		(01 mark)
	(c)				hen the reagent nan		
	(0)	State	what wot	aid be observed w	men the reagent han	ied in (b) above	(01 mark)
		•••••					

5.	(a)		lead oxide (PD_3O_4) was snaken with diffice in the acid and the fure filtered. Identify the;	Courtain
		(i)	cation in the filtrate.	(½ mark)
	*	(ii)	residue	(½ mark)
	(b)		e an equation for the reaction that took place.	(1½ mark)
	(1-)		anium indide actuain was added to the filtrate in (2) shove:	
	(b)	(i)	ssium iodide solution was added to the filtrate in (a) above; State what was observed.	(01 mark)
		(ii)	Write an equation for the reaction that took place.	(1½ marks)
4.	(a)	Write	e the;	
		(i)	equation for the hydrolysis of ammonium sulphate in water.	(01 mark)
		(ii)	expression for the hydrolysis constant, Kh for ammonium sulp	
				(01 mark)
		as.		
	(b)	(i)	The pH of 20 cm ³ of 0.05M ammonium sulphate solution at 2	5 °C was
			found to be 5.125	(02 1)
			Calculate the hydrolysis constant of ammonium sulphate.	(03 marks)
			,	
		(::)	State the comment of the body	
		(ii)	State the assumptions you have made in b(i) above.	(01 mark)

				Turn Over

© WAKISSHA Joint Mock Examinations 2024

3

5.	place	what would be observed a when the following pairs HO — CH ₂ COOH and p	would take								
	(a)	Observation:	mosphorous (v) cinoriae.		(½ mark)					
		Equation:				(01 mark)					
	(b) (NHCH ₃ and an ice	-cold mixture								
		Observation:									
						(01 o-de)					
		Equation:				(01 mark)					
	(c)	Cobalt (II) sulphate solu Observation:				(½ mark)					
					•••••						
		Equation:				(01 mark)					
		•••••									
6.	The melting points of some fluorides of period 3 elements of the Periodic Tabshown in table 2. Table 2:										
	Tab	Formula of fluoride	NaF	AlF ₃	SiF ₄						
		Melting point (°C)	993	1290	-90.2						
	(a)	State the trend in the m	(01 mark)								
	(b)	Explain your answer in	(a).			(04 marks)					
	()										

		4		
7.	of or	empirical formula of cor cygen and the mixture ex on absorption by concen	inpound R is CHO . 20 cm ³ of R were mixed sploded. The residual gas was cooled to room trated potassium hydroxide, there was a cont	n temperature
	(a)	Calculate the molecular	ar formula of R.	(2½ marks)
		•••••••••••••••••••••••••••••••••••••••		
		•		
	(b)	R decolourises broming effervescence.	ne water and reacts with sodium carbonate so	olution with
		Write the structural fo	rmulae and IUPAC names of two geometric	isomers of R. (03 marks)
				•
		······································	••••••	
		••••••		
		••••••		
3.	(a)	Define the term standa	ard enthalpy of combustion.	(01 mark)
		•••••		
		•••••		
	(b)	The enthalpies of comboning Table 3:	bustion of some substances are shown in tabl	le 3.
		Substance	Enthalpy of combustion (KJmol ⁻¹)]
		Carbondisulphide	-1108.8	
		Carbon	-393.5	_
		Sulphur	-296.8	
		Calculate the enthalpy	of formation of carbon disulphide.	(03 marks)
		© WAKIS	SHA Joint Mock Examinations 2024	Turn Over

	(c)	Come		
	(0)	Com	nent on the stability of carbondisulphade. Give a reason for yo	(01 mark)
9.	The	molecul	lar structures of two polymers; Kevlar and Neoprene are show	n below.
	Kev	√lar		
	Neo	prene	$-\text{I-CH}_2$ CH_2 I-n	
	(a)	Nom	CI H	
	(a)	(i)	e the type of polymer. Kevlar	(I/ morts)
				(½ mark)
		(ii)	Neouprene	(½ mark)
	(b)	Write	the structural formula(e) of the monomer(s) of;	
		(i)	Kevlar	(01 mark)
	•			
		(ii)	Neouprene	(½ mark)
				27
	(c)	State	one use of each of the polymers above.	
	(•)			(02 marks)
			SECTION B (54 MARKS)	
			Attempt any six questions from this section.	
			Any additional question(s) answered will not be market	ed.
10.	(a)	Zinc i	s extracted from zinc blende.	
		(i)		217 - 543
		(1)	State one method by which the ore can be concentrated.	(½ mark)
			C. W. LY ISSUE I. C. A. A. E. C. C. 2024	

		(ii)	Write equa	ation(s) to show	how zinc is obtain	ned from the conc	entrated (02 marks)			
			· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •		,			
				••••						
							117172010000			
	(b)	Zinc (i)	dust was add			n containing nitrat				
		(ii)								
		()				took place.	(1½ marks)			
			••••••	•••••	•••••					
						.,				
	(c)	result in the and 0 Calcu	ant solution aqueous lay .0025 moldn late the perc	shaken with trick er and trichloror n ⁻³ respectively a entage by mass o	hloromethane. The methane layer at e at 25 °C. of zinc in the ore.	ncentrated ammore e concentrations of quilibrium were 0 I trichloromethane	f ammonia .08 moldm ⁻³ is 25)			
							(04 marks)			
				•••••	···········					
				• • • • • • • • • • • • • • • • • • • •						
11.	(a)	Hydrogen peroxide oxidises iodide ions according to the equation. $H_2O_2(aq) + 2H^+(aq) + 3I^-(aq) \longrightarrow 2H_2O(s) + I_3^-(aq)$								
		The rate of reaction is independent of the concentration of hydrogen ions and								
		the reaction is first order with respect to hydrogen peroxide. Given the kinetic data in the table 1 below obtained at 25°C.								
		Table		and in the table 1	ociow obtained t	25 0.				
		[H ₂ O	₂]moldm ⁻³	[I ⁻] moldm ⁻³	[H ⁺] moldm ⁻³	Initial rate mole				
			0.025	0.02	0.50	5.20 x 1				
			0.05	0.04	1.00	2.08 x 10)-2			
		(i)	State two m	ethods by which	the rate of reacti	on above can be	determined. (02 marks)			
						Tu	ırn Over			
			© WA	KISSHA Joint Mock I	Examinations 2024		7			

		(ii)	Determine the rate equation for the reaction.	(02 marks)
		(iii)	Calculate the value of the rate constant and state its units.	
	(b)		of the experiments in Table 1 was repeated at 40 °C using the sontrations of all reactants. State the effect on the value of the rate constant in a(iii) above	ame
		(ii)	Explain your answer in b(i)	(2½ marks)
12.	Write (a)	CH ₃ C	nanism to show how each of the following conversions can be H CH ₃ to CH ₃ CH CH ₃	
		O	H I	
		•••••		
				••••••
	(b)		OH to OOCCH3	(03 marks)
		,		
	(c)	CH ₃ CI I B	$H CH_2Br$ to $CH_3C \equiv CH$	(03 marks)

			••••••	
13.	Expla (a)		of the following observations. anhydrous aluminium chloride is exposed to moist air, misty d.	fumes are (03 marks)
	(b)		ous solutions of Copper (I) salts are colourless while solutions or (II) salts are coloured.	of (03 marks)
		·····		
	(d)	When solution	hydrogen sulphide gas is bubbled into acidified ammonium d on, the orange solution turns green and a yellow precipitate is	ichromate formed. (03 marks)
14.	(a)	Fluori (i)	ine and Iodine belong to group VII of the Periodic Table. Expl Fluorine and Iodine have different physical states at room ter	ain why; nperature. (2½ marks)
		(ii)	Fluorine reacts directly with carbon while Iodine does not.	(02 marks)
				Turn Over

© WAKISSHA Joint Mock Examinations 2024

	(b)	Write (i)	an equation for the reaction between; Fluorine and water.	(1½ marks)
		(ii)	T W	(1 ½ marks)
		(iii)	hydride of Iodine and excess concentrated sulphuric acid.	
15.	Lea	d (II) Io	dide is sparingly soluble in water.	
	(a)	Write		
		(i)	equation for the solubility of Lead (II) iodide in water.	(01 mark)
		(ii)	expression for the solubility product, Ksp of Lead (II) iodide.	(01 mark)
	(b)	The	solubility product of Lead (II) iodide is 1.39 × 10 ⁻⁸ mol ³ dm ⁻³	25.00
	(0)	Calcu	• • Y 1/14 12 12 12 12 12 12 12 12 12 12 12 12 12	at 25 °C. _ (03 marks)
		•••••		
	(c)	Explain solution	how the solubility of lead (II) iodide would be affected if to its	saturate
		(i)	a few drops of potassium iodide are added.	(02 marks)
		(ii)	magnesium ribbon is added.	(02 marks)

© WAKISSHA Joint Mock Examinations 2024

10

16.	(a)	The structural formulae of two aromatic organic compounds are OH COOH										
		COOH										
	(i)	Name the reagent(s) that can be used to distinguish between the compounds. (01 mark)										
	···											
	(ii)	State what would be observed when each compound is separately treated with the reagent in a(i) above. (02 marks)										
	(b)	Using equations only, show how OH can be synthesized from COOH										
		COOH (04 marks)										
		OH										
	(c)	A mixture of and methanol was heated in the presence of sulphuric acid.										
		СООН										
		(i) State what was observed. (01 mark)										
		(i) State what was observed. (01 mark)										
		(01 mark)										
		• • • • • • • • • • • • • • • • • • • •										
17.	(a)	The vapour pressures of acetone and benzene are 30 Kpa and 12.68 kPa at 25 °C respectively. A solution containing 20% acetone and 80% benzene at 25 °C exerted a vapour pressure of 18.00 Kpa.										
	(i)	Calculate the vapour pressure above the solution assuming it is ideal. (03 marks)										
		Turn Over										

(ii)	State the type of deviation from ideal behaviour shown by the so and benzene. Give a reason for your answer.	
(b)	Sketch a well labelled boiling point composition diagram for the acetone and benzene.	mixture of (03 marks)

(d) State one method by which an azeotropic mixture of acetone and benzene can be separated. (01 mark)

THE PERIODIC TABLE

1	1		_					_				3	4	5	6	7	•
1 11 1.0																1 11 1.0	He 40
ti ki	1											10.6	C 11.0	7 N 140	00	19.0	10 Ne 10.1
11 23.0	12 24 24 24 24 24											13 Al 32.0	14 5) 74.1)))))	14 5 32.1	17 Cl 35.4	18 A7 40.0
19 K 28.1	20 Ca 601	31 Ne 410	n 47.9	23 V 50.9	14 Cr 51.0	25 Ma 54.9	24 70 95.1	27 Cu 55.9	21 N SA 7	11 Co.	30 Z.s 65,7	31 Ga 65,7	31 Ge 71.8	33 41 749	34 5e 79.0	35 Dr 19,7	34 Kr 12.6
37 RL ES3	34 57	39 Y	40 25 11 3	41 83 92.9	Al Mo PAP	4) Te 913	44 H+	45 Ph 103	325	47 AE 101	# 3 0	47 Le 113	50 50 117	51 55 122	52 To 128	53 1 127	34 25 131
25 C+	56 B. 137	57 La 139	77	7) To 101	74 W 184	75 R.	76 04 190	77 (r 192	78 Pt 195	79 Au 197	50 H4 201	81 71 204	#7 Ph 207	83 161 209	84 Po (209)	85 A1 (110)	## (222
87 Fy (223)	E4 Ra (226)	Av (217)								_							
			51 La 139	100 C+	37	60 No	61 Fm (145)	62 5 m 152	63 54 150	64 Ex 152	64 To D)	66 07 161	67 71 165	a tr 167	67 Tm 169	70 175 173	71 Lu 179
			# (237)	93 Th 132	91 Pa 231	92 U 233	93 Np 337	175	95 Am (243)	Co (247)	97 Bk (247)	50 CT 251	\$9 Es (254)	100 Fm (257)	101 Mv (256)	102 No (254)	Las

1. Indicates atomic number.

2. Il Indicates relative atomic mass

END