Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Лабораторная работа №6

«Исследование качества генераторов случайных чисел»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-72Б		(Сафронов Н.С.
, ,	(подпись)		(Ф.И.О.)
Проверил:		(Никитенко У.В.
	(подпись)		(Ф.И.О.)
Дата сдачи (защиты):			
Результаты сдачи (защиты):			
- Балльная	оценка:		
- Оценка:			

Калуга, 2023

Цель работы: изучить и практически освоить оценки качества генераторов случайных чисел (ГСЧ) в различных системах программирования по заданным теоретическим показателям, с помощью критериев согласия и с помощью нормированной автокорреляционной функции на предмет независимости случайных чисел.

Постановка задачи

Вариант 14

Выполняемые задания: 2, 4.3(4-6), 5.2.

Задание 2

- 1. Написать программу на языке программирования формирования простых трехзначных чисел с целью их использования в качестве начальных чисел в методе Фибоначчи. Рассчитать относительные погрешности по математическому ожиданию, дисперсии, стандартному отклонению.
- 2. Построить гистограммы для сформированных выборок (Zx и Zy) с разбивкой графического окна.

Задание 4.3

1. Полагая в формуле, написать в MATLAB(PYTHON) программу формирования случайных чисел, приняв следующие числа для расчета модуля в зависимости от номера варианта:

2. В качестве первого назначаемого случайного числа (в зависимости от номера варианта) принять следующие значения:

```
№3 №1: m(31), №2: m(32), №3: m(33), №4: m(34), №: m(35), №6: m(36), №7: m(37), №8: m(38), №9: m(38), где m — массив простых чисел, сформированный с помощью выражения m = primes (N);
```

- 3. Вычислить период формируемой случайной последовательности;
- 4. Произвести статистический анализ созданного ГСЧ по линейному конгруэнтному методу;

- 5. Построить гистограммы полученных распределений случайных чисел.
- 6. Построить функции плотности и распределения для сформированных выборок случайных чисел. Совместить диаграммы с теоретическими функциями.

Задание 5.2.

По критерию Колмогорова — Смирнова протестировать выборки случайных чисел объема 100, 500, 1000, сформированных по линейному конгруэнтному методу.

Ход выполнения работы

Задание 2

```
Среднее выборочное: 524.94
Выборочная дисперсия: 69046.21
Выборочное стандартное отклонение: 262.77

Относительная погрешность по математическому ожиданию: 4.56%
Относительная погрешность по дисперсии: 2.29%
Относительная погрешность по стандартному отклонению: 1.14%
```

Рисунок 1 – Результаты расчёта относительных погрешностей по математическому ожиданию, дисперсии и стандартному отклонению

Рисунок 2 - Гистограммы для сформированных выборок Zx и Zy

Задание 4.3

```
При N=8440000 и R0=m(34)=149
Период формируемой случайной последовательности равен: 4219994
Среднее выборочное: 0.50
Выборочная дисперсия: 0.08
Выборочное стандартное отклонение: 0.29
Относительная погрешность по математическому ожиданию: 0.01%
Относительная погрешность по дисперсии: 2.10%
Относительная погрешность по стандартному отклонению: 1.06%
```

Рисунок 3 - Результат вычисления периода и погрешностей ГСЧ, созданного по линейному конгруэнтному методу при $N=8.44\cdot 10^6$, R0=m(34)

Рисунок 4 - Гистограмма распределения при $N=8.44\cdot 10^6$, R0=m(34)

Рисунок 5 - Функция распределения при $N=8.44\cdot 10^6$, R0=m(34)

Рисунок 6 - Функция распределения при $N = 8.44 \cdot 10^6$, R0 = m(34)

```
При N=9550000 и R0=m(35)=151
Период формируемой случайной последовательности равен: 9549982
Среднее выборочное: 0.51
Выборочная дисперсия: 0.08
Выборочное стандартное отклонение: 0.29
Относительная погрешность по математическому ожиданию: 1.02%
Относительная погрешность по дисперсии: 1.62%
Относительная погрешность по стандартному отклонению: 0.81%
```

Рисунок 7 - Результат вычисления периода и погрешностей ГСЧ, созданного по линейному конгруэнтному методу при $N=9.55\cdot 10^6$, R0=m(35)

Рисунок 8 - Гистограмма распределения при $N = 9.55 \cdot 10^6$, R0 = m(35)

Функция распределения при N=9550000 и m(35) Эмпирическая функция распределения, n=500 1.0 Теоретическая функция распределения Доверительный интервал в 95% 0.8 0.6 (x) 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Рисунок 9 - Функция распределения при $N = 9.55 \cdot 10^6$, R0 = m(35)

Рисунок 10 - Функция распределения при $N = 9.55 \cdot 10^6$, R0 = m(35)

```
При N=9660000 и R0=m(36)=157
Период формируемой случайной последовательности равен: 9659988
Среднее выборочное: 0.51
Выборочная дисперсия: 0.09
Выборочное стандартное отклонение: 0.29
Относительная погрешность по математическому ожиданию: 1.68%
Относительная погрешность по дисперсии: 4.40%
Относительная погрешность по стандартному отклонению: 2.18%
```

Рисунок 11 - Результат вычисления периода и погрешностей ГСЧ, созданного по линейному конгруэнтному методу при $N=9.66\cdot 10^6$, R0=m(36)

Рисунок 12 - Гистограмма распределения при $N = 9.66 \cdot 10^6$, R0 = m(36)

Рисунок 13 - Функция распределения при $N=9.66\cdot 10^6$, R0=m(36)

Рисунок 14 - Функция распределения при $N = 9.66 \cdot 10^6$, R0 = m(36)

Рисунок 15 - Диаграмма оценки равномерности случайных чисел

Из графика выше (рис.15) можно сделать вывод, что разработанные ГСЧ работают корректно, так как точки равномерно распределены по диаграмме.

Задание 5.2

```
При размере выборки равном: 100
При экспоненциальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 1.5550790371345692e-07
При равномерном распределении и уровне значимости 0.05, нулевая гипотеза не подтверждается: р = 1.0
При нормальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 1.0245697148897385e-13
При размере выборки равном: 500
При экспоненциальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 1.4363212332187476e-27
При равномерном распределении и уровне значимости 0.05, нулевая гипотеза не подтверждается: р = 1.0
При нормальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 1.4765110719589765e-62
При размере выборки равном: 1000
При экспоненциальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 1.2295379067920271e-57
При равномерном распределении и уровне значимости 0.05, нулевая гипотеза не подтверждается: р = 1.0
При нормальном распределении и уровне значимости 0.05, нулевая гипотеза не подтверждается: р = 1.0
При нормальном распределении и уровне значимости 0.05, нулевая гипотеза подтверждается: р = 2.9587730366111342e-123
```

Рисунок 16 - Проверка выборок по критерию Колмогорова — Смирнова

Из результата вычислений выше можно сделать вывод, что с увеличением выборки идёт увеличение точности проверки по критерию Колмогорова—Смирнова. Кроме того, т.к. нулевая гипотеза, гласящая о том, что 2 выборки берутся не из одного распределения вероятности, не подтверждается только при равномерном распределении, то можно сделать вывод что ГСЧ, созданный по линейному конгруэнтному методу, выдаёт равномерное распределение чисел.

Вывод: в ходе выполнения лабораторной работы были сформированы практические навыки оценки качества генераторов случайных чисел (ГСЧ) в различных системах программирования по заданным теоретическим показателям, с помощью критериев согласия и с помощью нормированной автокорреляционной функции на предмет независимости случайных чисел.

ПРИЛОЖЕНИЯ

Листинг программы

Задание 2

```
import math
import typing
import numpy as np
import matplotlib.pyplot as plt
def is_prime(n: typing.Union[int, float]) -> bool:
   if n <= 1:
       return False
   for i in range (2, int(n ** 0.5) + 1):
       if n % i == 0:
          return False
   return True
def generate prime numbers() -> list[int]:
   primes = [num for num in range(100, 1000) if is prime(num)]
   return primes
def calculate errors (
       data: np.array,
       expected mean: float,
       expected var: float,
       expected std dev: float
) -> tuple:
   mean = np.mean(data)
   variance = np.var(data)
   std dev = np.std(data)
   relative_error mean = abs(mean - expected mean) / expected mean
   relative error var = abs(variance - expected var) / expected var
   relative error_std_dev = abs(std_dev - expected_std_dev)
expected std dev
                                         relative error var,
                    relative error mean,
relative error std dev
if name == ' main ':
   prime numbers = generate prime numbers()
   print(f"Среднее выборочное: {np.mean(prime numbers):.2f}")
   print(f"Выборочная дисперсия: {np.var(prime numbers):.2f}")
   print(f"Выборочное
                                  стандартное
                                                           отклонение:
{np.std(prime numbers):.2f}")
```

```
print()
expected mean = 550
expected var = 67500
expected std dev = math.sqrt(expected var)
relative errors = calculate errors(
    prime numbers,
    expected_mean,
    expected var,
    expected std dev
)
print(
    f"Относительная погрешность по математическому ожиданию: "
    f"{relative errors[0] * 100:.2f}%"
)
print(
    f"Относительная погрешность по дисперсии: "
    f"{relative_errors[1] * 100:.2f}%"
print(
    f"Относительная погрешность по стандартному отклонению: "
    f"{relative_errors[2] * 100:.2f}%"
Zx = np.random.choice(prime numbers, size=100)
Zy = np.random.choice(prime numbers, size=100)
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.hist(Zx, bins=20, color='skyblue', edgecolor='black')
plt.title('Гистограмма Zx')
plt.xlabel('Значения')
plt.ylabel('Частота')
plt.subplot(1, 2, 2)
plt.hist(Zy, bins=20, color='salmon', edgecolor='black')
plt.title('Гистограмма Zy')
plt.xlabel('Значения')
plt.ylabel('Частота')
plt.tight layout()
plt.show()
```

Задание 4.3

```
import math
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian kde
```

```
class LinearCongruentialGenerator:
    @classmethod
    def generate_primes(cls, n: int) -> list[int]:
        sieve = [True] * n
        for i in range(3, int(n ** 0.5) + 1, 2):
            if sieve[i]:
                sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2)
* i) + 1)
        return [2] + [i for i in range(3, n, 2) if sieve[i]]
    def find_M(self, N):
        m = self.generate primes(N)
        M = m[-1]
        return M
    def __find_A(self, M):
        a = int(M * (1 / 2 - math.sqrt(3) / 6))
        if a % 2 == 0:
            a += 1
        if a % 8 == 5:
            if math.gcd(a, M) == 1:
                return a
        i = 1
        while True:
            a1 = a + 2 * i
            if a1 % 8 == 5:
                if math.gcd(a1, M) == 1:
                    if a1 < (M - math.sqrt(M)):</pre>
                        return a1
            a2 = a - 2 * i
            if a2 % 8 == 5:
                if math.gcd(a2, M) == 1:
                    if a2 > (M // 100):
                        return a2
            i += 1
    def _init_(self, R0, N, c=0):
        self.__c = int(c)
self.__Rk = int(R0)
        M = self. find M(N)
        self. M = int(M)
        a = self. find A(M)
        self. a = a
    def generate int number(self):
        number = (self.__a * self.__Rk + self.__c) % self.__M
        self. Rk = number
        return number
    def generate float number (self):
        number = (self. a * self. Rk + self. c) % self. M
        self.__Rk = number
        number /= self. M
        return number
```

```
def generate int number array(self, count):
        array = []
        for i in range (count):
            number = (self.__a * self.__Rk + self.__c) % self.__M
            self. Rk = number
            array.append(number)
        return array
    def generate float number array(self, count):
        array = []
        for i in range (count):
            number = (self._ a * self._ Rk + self._ c) % self._ M
            self. Rk = number
            number /= self. M
            array.append(number)
        return array
def print period sequence(N, order):
   m = LinearCongruentialGenerator.generate primes(N)
   R0 = m[order]
   rnd = LinearCongruentialGenerator(R0, N)
   base = rnd.generate int number()
    i = 0
   while True:
        i += 1
        if rnd.generate int number() == base:
            break
   print(
        f"При N=\{N\} и R0=m(\{order\})=\{R0\}\setminus nПериод формируемой случайной
последовательности равен: {i}")
def print distribution parameters(N: int, order: int):
   m = LinearCongruentialGenerator.generate primes(N)
   R0 = m[order]
   rnd = LinearCongruentialGenerator(R0, N)
    x = rnd.generate float number array(500)
   mf = np.mean(x)
   print("Среднее выборочное: %f" % mf)
    sf2 = np.var(x)
   print("Выборочная дисперсия: %f" % sf2)
    sf = np.std(x)
   print ("Выборочное стандартное отклонение: %f" % sf)
   m = 0.5
   Dm = abs((mf - m) / m) * 100
   print("Относительная погрешность по математическому ожиданию:
%f%%" % Dm)
   d = 1 / 12
    Dd = abs((sf2 - d) / d) * 100
   print("Относительная погрешность по дисперсии: %f%%" % Dd)
    sd = np.sqrt(d)
   Ds = abs((sf - sd) / sd) * 100
   print("Относительная погрешность по стандартному отклонению: %f%%"
% Ds)
```

```
def generate histogram(N: int, order: int, size: int):
   m = LinearCongruentialGenerator.generate primes(N)
   R0 = m[order]
   rnd = LinearCongruentialGenerator(R0, N)
    x = rnd.generate float number array(size)
   plt.hist(x, bins=int(size / 10), edgecolor='black', linewidth=1)
   plt.title(f"Гистограмма полученного распределения случайных
чисел\п"
              f"при {N=} и m({order})")
   plt.xlabel("Значение")
   plt.ylabel("Частота")
   plt.show()
def generate_cdf(N, order, size):
   m = LinearCongruentialGenerator.generate primes(N)
   R0 = m[order]
    rnd = LinearCongruentialGenerator(R0, N)
    a = 0
   b = 1
   n = size
    x = np.linspace(a, b, n)
    y = sorted(rnd.generate float number array(n))
   plt.plot(
        x, y, "-g",
        label=f"Эмпирическая функция распределения, n=\{len(x)\}"
    y = (x - a) / (b - a)
    plt.plot(x, y, "-k", label="Теоретическая функция распределения")
    y = x - 1.36 / len(x) ** (0.5)
   plt.plot(x, y, "--r", label="Доверительный интервал в 95%")
   y = x + 1.36 / len(x) ** (0.5)
   plt.plot(x, y, "--r")
   plt.title("Функция распределения\n"
              f"при {N=} и m({order})")
   plt.xlabel("x")
   plt.ylabel("f(x)")
   plt.legend()
   plt.show()
def generate_pdf(N: int, order: int, size: int):
   m = LinearCongruentialGenerator.generate primes(N)
   R0 = m[order]
    rnd = LinearCongruentialGenerator(R0, N)
    a = 0
   b = 1
   n = size
    x = np.linspace(a, b, n)
    y = rnd.generate float number array(n)
   plt.hist(
        y, density=True, fc="none", ec="red",
        label="Эмпирическая плотность, n = %i" % len(x)
   density = gaussian_kde(y)
    density.covariance factor = lambda: .25
    density. compute covariance()
```

```
plt.plot(
        x, density(x), "-q",
        label="Эмпирическая функция плотности, n = %i" % len(x)
    plt.fill between(
        x, 0, density(x), color="none", hatch='\\',
        edgecolor="b"
    y = x * 0 + 1 / (b - a)
    plt.plot(x, y, "-k", label="Теоретическая функция плотности")
    plt.fill between(x, 0, y, color="none", hatch="/", edgecolor="k")
    plt.title("Функция плотности \n"
              f"при {N=} и m({order})")
    plt.xlabel("x")
    plt.ylabel("f(x)")
    plt.legend()
    plt.show()
def plot uniformity diagram (
        first N: float,
        first order: int,
        second N: float,
        second order: int,
        count: int
):
    first random = LinearCongruentialGenerator(first order, first N)
    second random
                             LinearCongruentialGenerator(second order,
second N)
    x = first random.generate float number array(count)
    y = second random.generate float number array(count)
    plt.plot(x, y, 'bo', markersize=4)
    plt.title(
        "Диаграмма оценки равномерности случайных чисел,"
        f"\nпри их количестве равном: {count}"
    plt.xlabel(f"Случайные числа при N={first N} и R0={first order}")
    plt.ylabel(f"Случайные числа при
                                                    N={second N}
R0={second order}")
    plt.show()
   name == ' main ':
    \overline{Ns} = \overline{[int(8.44 * 10 ** 6), int(9.55 * 10 ** 6), int(9.66 * 10 **
6) ]
    orders = [34, 35, 36]
    print()
    print period sequence(Ns[0], orders[0])
    print distribution parameters(Ns[0], orders[0])
    generate histogram(Ns[0], orders[0], 500)
    generate cdf(Ns[0], orders[0], 500)
    generate pdf(Ns[0], orders[0], 500)
    print()
   print period sequence(Ns[1], orders[1])
```

```
print distribution parameters(Ns[1], orders[1])
    generate histogram(Ns[1], orders[1], 500)
    generate cdf(Ns[1], orders[1], 500)
    generate pdf(Ns[1], orders[1], 500)
    print()
    print period sequence(Ns[2], orders[2])
    print distribution parameters(Ns[2], orders[2])
    generate_histogram(Ns[2], orders[2], 500)
    generate_cdf(Ns[2], orders[2], 500)
    generate pdf(Ns[2], orders[2], 500)
    print()
    plot uniformity diagram (
        Ns[0],
        LinearCongruentialGenerator.generate primes (250) [orders[0]],
        Ns[2],
        LinearCongruentialGenerator.generate primes (250) [orders[2]],
        500
    )
    print()
     Задание 5.2
import math
import scipy.stats as sps
class LinearCongruentialGenerator:
    @classmethod
    def generate primes(cls, n: int) -> list[int]:
        sieve = [True] * n
        for i in range(3, int(n ** 0.5) + 1, 2):
            if sieve[i]:
                sieve[i * i::2 * i] = [False] * ((n - i * i - 1) // (2)
* i) + 1)
        return [2] + [i for i in range(3, n, 2) if sieve[i]]
    def __find_M(self, N):
        m = self.generate primes(N)
        M = m[-1]
```

if a1 < (M - math.sqrt(M)):</pre>

a = int(M * (1 / 2 - math.sqrt(3) / 6))

if math.gcd(a1, M) == 1:

if math.gcd(a, M) == 1:

return a

a1 = a + 2 * i if a1 % 8 == 5:

return M

i = 1

while True:

def __find_A(self, M):

if a % 2 == 0: a += 1 if a % 8 == 5:

```
return a1
            a2 = a - 2 * i
            if a2 % 8 == 5:
                if math.gcd(a2, M) == 1:
                    if a2 > (M // 100):
                       return a2
            i += 1
    def __init__(self, R0, N, c=0):
       self._c = int(c)
       self. Rk = int(R0)
       M = self. find M(N)
       self. M = int(M)
        a = self. find A(M)
       self. a = a
    def generate int number(self):
        number = (self. a * self. Rk + self. c) % self. M
        self. Rk = number
       return number
    def generate float number (self):
        number = (self._ a * self._ Rk + self._ c) % self._ M
       self. Rk = number
       number /= self. M
       return number
    def generate int number array(self, count):
       array = []
        for i in range(count):
            number = (self. a * self. Rk + self. c) % self. M
            self.__Rk = number
            array.append(number)
       return array
    def generate float number array(self, count):
        array = []
        for i in range (count):
           number = (self._ a * self._ Rk + self._ c) % self._ M
           self. Rk = number
           number /= self. M
           array.append(number)
        return array
if __name__ == '__main__':
    counts = [100, 500, 1000]
    for count in counts:
       print(f"При размере выборки равном: {count}")
       rnd = LinearCongruentialGenerator(95, int(8.44 * 10 ** 6))
       x = rnd.generate float number array(count)
       F0 = sps.expon.cdf(x)
       H0 = sps.kstest(x, F0, N=count)[1]
       if HO < 0.95:
           print(
                f"При
                       экспоненциальном распределении и уровне
значимости 0.05, "
```

```
f"нулевая гипотеза подтверждается: p = \{H0\}")
       else:
           print(
               f"При экспоненциальном распределении и уровне
значимости 0.05, "
               f"нулевая гипотеза не подтверждается: p = \{H0\}")
       F1 = sps.uniform.cdf(x)
       H1 = sps.kstest(x, F1, N=count)[1]
       if H1 < 0.95:
           print(f"При равномерном распределении и уровне значимости
0.05, "
                 f"нулевая гипотеза подтверждается: p = \{H1\}")
       else:
           print(f"При равномерном распределении и уровне значимости
0.05, "
                  f"нулевая гипотеза не подтверждается: p = \{H1\}")
       F2 = sps.norm.cdf(x)
       H2 = sps.kstest(x, F2, N=count)[1]
       if H2 < 0.95:
           print(f"При нормальном распределении и уровне значимости
0.05, "
                 f"нулевая гипотеза подтверждается: p = \{H2\}")
           print(f"При нормальном распределении и уровне значимости
0.05, "
                 f"нулевая гипотеза не подтверждается: p = \{H2\}")
       print()
```