Teoria de Resposta ao Item Itens Politômicos

Antonio Eduardo Gomes aegomes@unb.br

Quando estamos trabalhando com itens politômicos (descritos na Unidade 1), na maioria dos casos, as alternativas de resposta para o item estão ordenadas de tal forma que, quanto mais alta a alternativa escolhida pelo respondente, maior deve ser a intensidade do traço latente.

Para este tipo de situação, utilizamos o "Modelo de Resposta Gradual" (MRG), proposto por Samejima (1969).

Modelo de Resposta Gradual (Graded Responde Model)

Proposto por Samejima (1969).

Suponha que, cada item, possui m categorias de respostas. Seja $P_{ik}(\theta)$ a probabilidade de um respondente com proficiência θ escolher a categoria k para o item i. Temos,

$$\sum_{k=1}^{m} P_{ik}(\theta) = 1.$$

Seja $P_{ik}^*(\theta)$ a probabilidade de um respondente escolher a categoria k+1 ou superior (portanto, $P_{i0}^*(\theta)=1$ e $P_{im}^*(\theta)=0$). Com isso, $P_{ik}(\theta)=P_{i,k-1}^*(\theta)-P_{ik}^*(\theta)$.

No MRG, temos que ter as curvas $P^*_{ik}(\theta)$, $-\infty < \theta < \infty$, tais que $P^*_{i,k-1}(\theta) > P^*_{ik}(\theta)$.

Para que esta condição seja sempre satisfeita, adotamos

$$P_{ik}^*(\theta) = \frac{1}{1 + \exp[-a_i(\theta - b_{ik})]},$$

com $b_{i1} < b_{i2} < \ldots < b_{i,m-1}$.

Note que não temos parâmetro de acerto ao acaso, pois isso não faz sentido para itens politômicos.

Na figura a seguir, temos um exemplo para as curvas de um item com 4 categorias de resposta.

Na figura abaixo, vemos os gráficos de $P_{ik}(\theta)$. Note que podemos definir intervalos de valores da proficiência onde cada categoria de resposta é mais provável do que as demais. A categoria 1 é mais provável para $\theta < -1.3$, a categoria 2 para $-1.3 \leq \theta < 0$, a categoria 3 para $0 \leq \theta < 1.3$, e a categoria 4 para $\theta \geq 1.3$.

Obs.: Mesmo que uma categoria não seja aquela com maior probabilidade $P_{ik}(\theta)$ de ser escolhida para nenhum intervalo de valores de θ , a categoria k deve ser mantida entre as opções de resposta. Se $P_{ik}(\theta) \approx 0$, para $-\infty < \theta < \infty$, temos uma indicação de que a categoria k não foi escolhida por quase nenhum respondente, evidenciando que o número de categorias de resposta poderia ser reduzido, caso isso faça sentido para o problema real.

A estimação dos parâmetros $a_i,\ b_{i1},\ldots,b_{i,m-1},\ i=1,\ldots,I,\ e\ \theta_j,\ j=1,\ldots,n,$ é feita por processos análogos aos utilizados para os modelos dicotômicos. Os procedimentos estão descritos em detalhes em

Baker, F.B. e Kim, S.H. (2004). Item Response Theory - Parameter Estimation Techniques, 2nd ed.

A função de logverossimilhança é dada por

$$\mathcal{L}(\Theta, \gamma) = \sum_{i=1}^{I} \sum_{k=1}^{m} \sum_{j=1}^{n} u_{ikj} \log P_{ik}(\theta_j),$$

sendo $u_{ikj} = 1$, se o j-ésimo respondente escolher a categoria k para o item i, e 0 caso contrário.

Outros modelos para itens politômicos, mas pouco utilizados, são:

- Modelo de Escala Gradual;
- Modelo de Crédito Parcial:
- Modelo de Resposta Nominal (em que não há ordenação entre as categorias).

Modelo de Escala Gradual (Rating Scale Model)

Proposto por Andrich (1978).

É um caso particular do modelo de resposta gradual, com a suposição adicional de que os escores das categorias são igualmente espaçados:

$$P_{ik}(\theta_j) = \frac{1}{1 + \exp[-a_i(\theta - b_i + d_k)]} - \frac{1}{1 + \exp[-a_i(\theta - b_i + d_{k+1})]},$$

 $i=1,\ldots,I; j=1,\ldots,n;$ e $k=0,1,\ldots,m;$ com b_i sendo o parâmetro de locação do i-ésimo item e

 d_k sendo o parâmetro de categoria.

Como $P_{i,k}^+ - P_{i,k+1}^+ \ge 0$, então, $d_k - d_{k+1} \ge 0$. Ou seja, devemos ter:

$$d_1 \geq d_2 \geq \cdots \geq d_m$$
.

Note que a maior distinção entre o modelo de resposta gradual e o modelo de escala gradual está na hipótese de nesse último os escores das categorias de resposta devem ser equidistantes. Assim, no modelo de escala gradual o parâmetro $b_{i,k} = b_i - d_k$. Cabe ressaltar que os parâmetros de categoria d_k não dependem do item, isto é, são comuns a todos os itens do teste. Logo, se os itens que compõem a prova tiverem suas próprias categorias de resposta, que podem diferir no número, então este modelo não é adequado. Em um teste composto por itens com (m+1) categorias de resposta cada um, m parâmetros de categoria necessitam ser estimados, além dos parâmetros de inclinação e de locação de cada item. Logo, se o teste tiver I itens, teremos [2I + m] parâmetros de item a serem estimados.

Modelo de Crédito Parcial (Partial Credit Model)

Proposto por Masters (1982)

O modelo de crédito parcial é uma extensão do modelo de Rasch para itens dicotômicos. Todos os parâmetros no modelo são de locação, sendo que o poder de discriminação é assumido ser comum para todos os itens.

Supondo que o item i tem $(m_i + 1)$ categorias de resposta ordenáveis $(k = 0, 1, ..., m_i)$, temos que o modelo de crédito parcial é dado por:

$$P_{i,k}(\theta_j) = \frac{\exp[\sum_{u=0}^{k} (\theta_j - b_{i,u})]}{\sum_{u=0}^{m_i} \exp[\sum_{v=0}^{u} (\theta_j - b_{i,v})]}$$

com i = 1, ..., I; j = 1, ..., n; e $k = 0, 1, ..., m_i$; sendo

 $P_{i,k}(\theta_j)$ a probabilidade de um indivíduo com habilidade θ_j escolher a categoria k, entre as $(m_i + 1)$ categorias do item i;

 $b_{i,k}$ é o parâmetro de item que regula a probabilidade de escolher a categoria k em vez da categoria adjacente (k-1) no item i.

Cada parâmetro $b_{i,k}$ corresponde ao valor de habilidade em que o indivíduo tem a mesma probabilidade de responder à categoria k e à categoria (k-1), isto é, onde $P_{i,k}(\theta_j) = P_{i,k-1}(\theta_j)$.

Assim, para itens com $(m_i + 1)$ categorias de resposta, será necessário estimar m_i parâmetros de item.

Note que, para itens com apenas 2 categorias de resposta, este modelo fica análogo ao modelo de Rasch para itens dicotômicos.

Modelo de Resposta Nominal (Nominal Categories Model)

Proposto por Bock (1972).

Baseado no modelo logístico de dois parâmetros que pode ser aplicado a todas as categorias de resposta escolhidas em um teste com itens de múltipla escolha.

O propósito deste modelo foi maximizar a precisão da habilidade estimada usando toda a informação contida nas respostas dos indivíduos, e não apenas se o item foi respondido corretamente ou não. Bock assumiu que a probabilidade com que um indivíduo j selecionaria uma particular opção k (de m_i opções avaliáveis) do item i seria representada por:

$$P_{i,k}(\theta_j) = \frac{\exp[a_{i,k}^+(\theta_j - b_{i,k}^+)]}{\sum_{h=1}^{m_i} \exp[a_{i,h}^+(\theta_j - b_{i,h}^+)]}$$

com $i=1,\ldots,I; j=1,\ldots,n; k=1,\ldots,m_i$. Note que $\sum_{k=1}^{m_i} P_{i,k}(\theta_j) = 1$.

Este modelo assume que não há nenhuma ordenação a priori das categorias.