```
In [32]:

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from sklearn.cluster import KMeans
5 %matplotlib inline
```

读取数据

Out[2]:

	ld	R	F	М
0	1	27	6	232.61
1	2	3	5	1507.11
2	3	4	16	817.62
3	4	3	11	232.81
4	5	14	7	1913.05

数据可视化

In [3]: 1 data[['R', 'F', 'M']].plot(cmap='brg', subplots=True)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:308: MatplotlibDeprecation Warning:

The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get_subplotspec().rowspan.start instead.

layout[ax.rowNum, ax.colNum] = ax.get visible()

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:308: MatplotlibDeprecation Warning:

The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get_subplotspec().colspan.start instead.

layout[ax.rowNum, ax.colNum] = ax.get_visible()

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:314: MatplotlibDeprecation Warning:

The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get_subplotspec().rowspan.start instead.

if not layout[ax.rowNum + 1, ax.colNum]:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:314: MatplotlibDeprecation Warning:

The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases la ter. Use ax.get_subplotspec().colspan.start instead.

if not layout[ax.rowNum + 1, ax.colNum]:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:308: MatplotlibDeprecation Warning:

The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get subplotspec().rowspan.start instead.

layout[ax.rowNum, ax.colNum] = ax.get_visible()

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:308: MatplotlibDeprecation Warning:

The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get subplotspec().colspan.start instead.

layout[ax.rowNum, ax.colNum] = ax.get_visible()

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:314: MatplotlibDeprecation Warning:

The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get_subplotspec().rowspan.start instead.

if not layout[ax.rowNum + 1, ax.colNum]:

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_tools.py:314: MatplotlibDeprecation Warning:

The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two minor releases later. Use ax.get_subplotspec().colspan.start instead.

if not layout[ax.rowNum + 1, ax.colNum]:

Out[3]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)


```
▶ In [7]:

data = data.dropna() # 去除空值

s_data = (data[['R', 'F', 'M']]-data[['R', 'F', 'M']].mean(axis=0))/(data[['R', 'F', 'M']].std(data.head())

data = data.dropna() # 去除空值

s_data = (data['R', 'F', 'M']].mean(axis=0))/(data['R', 'F', 'M']].std(data.head())

s_data['id'] = data['Id']

s_data

s_data
```

Out[7]:

	R	F	М	id
0	0.764186	-0.493579	-1.158711	1
1	-1.024757	-0.630079	0.622527	2
2	-0.950217	0.871423	-0.341103	3
3	-1.024757	0.188922	-1.158432	4
4	-0.204824	-0.357079	1.189868	5
5	0.167872	-0.493579	-1.176237	6
6	-0.875678	-1.039580	-0.623124	7
7	0.689647	-1.039580	-0.002828	8
8	0.316951	-0.084078	-1.057791	9
9	-1.099296	1.553924	0.232388	10
10	-0.130285	-1.039580	-0.755630	11
11	0.689647	-0.903079	-0.871351	12
12	0.018793	0.188922	0.954373	13
13	0.987804	0.871423	1.251907	14
14	-0.875678	-0.357079	0.911383	15
15	-0.950217	1.553924	0.987300	16
16	5.683780	-1.039580	-0.063372	17
17	-0.055746	-0.903079	-0.155585	18
18	-0.950217	-1.176080	-0.428718	19
19	0.764186	-1.176080	-1.072591	20
20	-0.875678	-1.176080	-1.210856	21
21	0.018793	-0.903079	1.095237	22
22	-0.353903	0.461922	0.520754	23
23	0.316951	-0.903079	-1.098279	24
24	0.093333	-0.630079	-0.855223	25
25	0.987804	1.553924	0.792433	26
26	-0.950217	-1.039580	1.025455	27
27	-0.726600	0.325422	1.012639	28
28	0.093333	-1.176080	-0.534223	29
29	3.223983	-0.357079	5.949751	30
910	-0.577521	0.598423	0.790351	913
911	-0.428442	2.509425	0.130000	914
912	0.018793	-1.176080	-1.436875	915
913	-0.130285	-0.084078	1.254982	916
914	-0.502982	1.690424	0.725991	917
915	0.764186	-0.630079	1.143426	918

```
R
                                      id
     0.615108 -0.903079
916
                           0.112809
                                    919
917 -0.130285 -1.176080
                          -1.239730
                                    920
918 -0.875678 -1.039580
                          -0.591007 921
     0.167872 -0.766579
919
                          0.008521 922
920
    -0.204824
                1.690424
                          0.397248
                                   923
921
     -0.801139 -0.903079
                          0.348528 924
922
     0.689647 -0.220578
                          -0.138451 925
923
     0.466029
               -1.176080
                          -1.084135 926
924
     0.018793
                1.007923
                          0.824578 927
    -0.055746
925
               -0.903079
                          0.617999
                                    928
926
     -0.801139
                0.461922
                          0.621647 929
927
     0.391490
                1.963424
                          -0.610140
                                    930
928
     0.838726
                1.007923
                          0.952137 931
929
     0.018793
                2.236425
                          0.322183
                                    932
930
    -0.055746
               -0.357079
                          1.033798
                                   933
931
    -1.173835
                2.372925
                          0.731526
                                   934
932
     0.018793
                2.372925
                           9.410511 935
933
    -1.099296
                1.007923
                          1.789270
                                    936
934 -1.173835
               -0.630079
                          1.123804
                                    937
935
     0.167872
               -0.766579
                          0.141712 938
936
    -0.577521
               -0.357079
                          -0.076342 939
937
     0.764186
               -0.357079
                          0.365132 940
938
     0.987804
               -0.766579
                          -0.281299 941
939
     0.391490 -1.176080
                          -0.398292 942
```

940 rows × 4 columns

```
In [13]: 1 kmodel = KMeans(n_clusters=10, n_jobs=8) # n_jobs是并行数,一般等于CPU数较好 kmodel.fit(s_data[['R', 'F', 'M']]) ##训练模型
```

```
Out[13]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=10, n_init=10, n_jobs=8, precompute_distances='auto', random state=None, tol=0.0001, verbose=0)
```

```
In [27]:

1 label = pd. Series(kmodel. labels_) # 各样本的类别
num = pd. Series(kmodel. labels_). value_counts() # 统计各样本对应的类别的数目
center = pd. DataFrame(kmodel. cluster_centers_) # 找出聚类中心
center_max = center. values. max()
center_min = center. values. min()
```

```
In [38]: 1 from mpl_toolkits.mplot3d import Axes3D # 用于绘制3D撒黏土
```

```
[59]:
             result = data
        2
             result['c r'] = kmodel.labels # 将聚类类别序号写入数据中
        3
             # plt. style. use('seaborn')
        4
             plt. style. use('ggplot') # plt使用色彩风格
        5
             fig = plt.figure() # 生成plt对象
        6
            c_list= ['#6A5ACD','#B0E0E6','#778899', '#00FF7F','#228B22', '#F0E68C'
        7
                    ,'#FF8C00','#FA8072','#6495ED','#BA55D3'] # 色值列表
        8
             ax = fig. add_subplot(111, projection='3d') # 创建3D图像底版
        9
       10 ▼ for i in range(0, 10): # 提取每一类别的数据并绘图
       11
                c_data = result[result['c_r']==i]
                x0 = c_data['R'].values # 转为array
       12
                y0 = c_{data}[F']. values
       13
                z0 = c data['M'].values
       14
                color = c_list[i] # 选择颜色
       15
                ax. scatter(x0, y0, z0, c=color, marker='.') #绘制3D散点图
       16
       17
             ax. set_xlabel('R')
             ax. set_ylabel('F')
       18
       19
             ax.set_zlabel('M')
             plt.title('KMeans result')
       20
       21
             fig = plt.gcf() # 捕捉当前图像信息,用于保存图片
       22
             plt.show()
       23
       24
             fig. savefig('clustering.png', dpi=800) #保存图片
```

KMeans result


```
In [ ]:
```