In questions 17 to 32, fill in the blanks to make the statements true.

- **17.** Sum or difference of two like terms is _____.
- **18.** In the formula, area of circle = πr^2 , the numerical constant of the expression πr^2 is _____.
- **19.** $3a^2b$ and $-7ba^2$ are _____ terms.
- **20.** $-5a^2b$ and $-5b^2a$ are _____ terms.
- **21.** In the expression $2\pi r$, the algebraic variable is _____
- **22.** Number of terms in a monomial is _____.
- **23.** Like terms in the expression n(n + 1) + 6 (n 1) are _____ and ____.
- **24.** The expression 13 + 90 is a _____.

```
58. Subtract
```

(a) $-7p^2qr$ from $-3p^2qr$.

(b) $-a^2 - ab$ from $b^2 + ab$.

(c) $-4x^2y - y^3$ from $x^3 + 3xy^2 - x^2y$.

12.
$$5\frac{1}{6} \div \frac{9}{2}$$
 is equal to

(a)
$$\frac{31}{6}$$

(b)
$$\frac{1}{27}$$

(a)
$$\frac{31}{6}$$
 (b) $\frac{1}{27}$ (c) $5\frac{1}{27}$ (d) $\frac{31}{27}$

(d)
$$\frac{31}{27}$$

13. Which of the following represents $\frac{1}{3}$ of $\frac{1}{6}$?

(a)
$$\frac{1}{3} + \frac{1}{6}$$
 (b) $\frac{1}{3} - \frac{1}{6}$ (c) $\frac{1}{3} \times \frac{1}{6}$ (d) $\frac{1}{3} \div \frac{1}{6}$

(b)
$$\frac{1}{3} - \frac{1}{6}$$

(c)
$$\frac{1}{3} \times \frac{1}{6}$$

(d)
$$\frac{1}{3} \div \frac{1}{6}$$

14. $\frac{3}{7}$ of $\frac{2}{5}$ is equal to

(a)
$$\frac{5}{12}$$
 (b) $\frac{5}{35}$ (c) $\frac{1}{35}$ (d) $\frac{6}{35}$

(b)
$$\frac{5}{35}$$

(c)
$$\frac{1}{35}$$

(d)
$$\frac{6}{35}$$

15. One packet of biscuits requires $2\frac{1}{2}$ cups of flour and $1\frac{2}{3}$ cups of sugar. Estimated total quantity of both ingredients used in 10 such packets of biscuits will be

- less than 30 cups
- between 30 cups and 40 cups
- between 40 cups and 50 cups
- above 50 cups

67. How many $\frac{1}{16}$ kg boxes of chocolates can be