Advanced Course on Agentic AI: Single-Agent & Multi-Agent Systems

- Module 1: Introduction to Agentic Al
 - What is Agentic AI? From Traditional AI to Autonomous AI
 - Single-Agent vs Multi-Agent Systems (MAS)
 - Agentic AI in Large Language Models (LLMs)
 - Applications of Agentic AI in Automation, Research, and Business

Hands-on:

- Running a basic autonomous agent using OpenAI API
- Setting up a local agent with Python

Module 2: Building Single-Agent Systems

- Single-Agent AI: Concepts & Architectures
- Decision-Making in Single-Agent AI
- Memory & Long-Term Planning
- Integrating LLMs with Agents (LangChain, OpenAI, Hugging Face)
- Handling User Inputs & Actions with Tool-Use Capabilities

Hands-on:

- Building a goal-driven single AI agent with LangChain
- Implementing memory-based reasoning with FAISS

Module 3: Multi-Agent Systems (MAS)

- What are Multi-Agent Systems (MAS)?
- Agent Communication & Coordination
- Role Assignment in Multi-Agent Environments
- Task-Oriented AI vs Autonomous Decision-Making
- Swarm Intelligence & Distributed Agents

Hands-on:

- Creating a multi-agent research assistant
- Implementing a task-based workflow with CrewAI

📌 Module 4: AI Agents with CrewAI

- Overview of CrewAI: AI Agents Working in Teams
- Role-Based Agent Assignments
- Orchestrating Task Execution Between Agents
- Implementing Workflow Pipelines with CrewAl

Hands-on:

- Creating an Al-powered content generation team
- Using CrewAI for multi-step research tasks

Module 5: SmolAgent – Lightweight AI Agents

- Introduction to SmolAgent: Minimalistic AI Agents
- When to Use SmolAgent vs Heavyweight AI Agents

- Optimizing AI Agents for Cost and Performance
- Combining SmolAgent with LLMs for Fast Execution

- ✓ Deploying a SmolAgent-based chatbot
- ✓ Running SmolAgent on an edge device

Module 6: Phi Data – Memory & Context Optimization

- Introduction to Phi Data: Al Agent Memory & Learning
- Vector Database Integration (FAISS, Pinecone, ChromaDB)
- Retrieval-Augmented Generation (RAG) for AI Agents
- Personalized AI Assistants with Memory

Hands-on:

- Implementing Phi Data for long-term memory
- ✓ Storing and retrieving context for AI-powered Q&A

Module 7: Building & Deploying Agentic AI Applications

- Deploying AI Agents on Cloud (Hugging Face, AWS, Azure)
- Integrating AI Agents into Web Applications (FastAPI, Streamlit)
- Security Considerations in Autonomous AI

Mastering Prompt Engineering for LLMs

Module 1: Introduction to Prompt Engineering

- What is Prompt Engineering?
 - o The role of prompts in LLMs
 - o How LLMs process and interpret prompts
- Why Learn Prompt Engineering?
 - o Optimizing LLM performance
 - Reducing hallucinations & improving accuracy
 - Enhancing Al-driven applications

Hands-on:

Experimenting with OpenAI's API for basic text generation

Module 2: LLM Model Settings & Configurations

- Understanding LLM Settings:
 - Temperature, Top-k, Top-p (Nucleus Sampling)
 - Stop Tokens, Context Length & Tokenization
- Fine-tuning vs Prompt Optimization
- Customizing Model Behavior with System Prompts

Hands-on:

Experimenting with different model settings in OpenAI Playground

Module 3: Prompt Elements & Structuring

• Key Components of a Well-Designed Prompt:

- Instructions
- o Context
- o Input Data
- Output Constraints
- Optimizing Prompts for Accuracy & Consistency

Structuring prompts for summarization, classification, and question-answering

Module 4: Prompt Engineering Techniques (Shot-Based Prompting)

- Zero-Shot Prompting
- One-Shot Prompting
- Few-Shot Prompting
- Comparing Shot-Based Techniques for Different Use Cases

Hands-on:

Designing and testing different shot-based prompts on GPT models

Module 5: Chain of Thought (CoT) Prompting

- What is CoT Prompting?
- Step-by-Step Reasoning in LLMs
- Implementing CoT in Math, Logic & Coding Tasks

Hands-on:

✓ Using CoT to improve reasoning-based problem-solving

Module 6: Self-Consistency in Prompt Engineering

- What is Self-Consistency?
- Generating Multiple Answers & Selecting the Best
- Improving Output Reliability with Self-Consistency

Hands-on:

✓ Implementing Self-Consistency for multi-answer tasks

Module 7: Out-of-Date Learning in Prompt Engineering

- How LLMs Handle Outdated Information
- Strategies to Overcome Out-of-Date Learning:
 - Prompting with External Data
 - o Fine-Tuning vs Retrieval-Augmented Generation (RAG)
- When to Use Updated APIs & Tools

Hands-on:

Experimenting with model responses on time-sensitive queries

Module 8: Role-Playing in Prompt Engineering

- What is Role-Playing in Prompting?
- Creating AI Personas for Specialized Tasks
- Enhancing Response Accuracy with Role-Based Prompts

Hands-on:

Designing AI assistants with different personas (e.g., Doctor, Lawyer, Coder)

- Module 9: RAG (Retrieval-Augmented Generation) in Prompt Engineering
 - What is RAG & Why is it Important?
 - Integrating Vector Databases (FAISS, Pinecone, ChromaDB)
 - Enhancing AI Responses with External Knowledge

✓ Implementing a RAG-based chatbot using FAISS & OpenAI

- Combining CoT + Tool Use for Autonomous Agents
- Building AI Agents that Reason & Execute Actions

Hands-on:

✓ Implementing a ReAct-based agent using LangChain

Module 11: DSP (Dynamic Structured Prompting)

- What is Dynamic Structured Prompting (DSP)?
- Generating Structured & Dynamic Prompts Based on Context
- Using DSP for Adaptive AI Interactions

Hands-on:

Creating dynamically structured prompts for personalized AI responses

Advanced Course on Generative AI:

- Module 1: Introduction to Generative AI
 - What is Generative AI?
 - Types of Generative AI Models:
 - Text-based (GPT, LLaMA, Claude)
 - Multimodal (CLIP, DALL·E, Stable Diffusion)
 - Use Cases in NLP, Image Generation, and Code Generation

Hands-on:

Running a simple text-based generative model using OpenAI API

- Module 2: Text-Based Generative Models
 - How Text-Based Models Work
 - Training LLMs (Large Language Models) with Transformers
 - Pretrained Models vs Fine-Tuned Models
 - Popular LLMs: GPT-4, LLaMA, Mistral, Falcon

Hands-on:

Generating text using Hugging Face Transformers

★ Module 3: Multimodal Models (Text + Image + Audio)

- What are Multimodal Models?
- Combining Text & Vision Models for AI Applications
- Examples of Multimodal Models: CLIP, DALL·E, Gemini, GPT-4 Turbo

Hands-on:

- ✓ Running OpenAl's CLIP model for text-to-image retrieval
- Module 4: CLIP (Contrastive Language-Image Pretraining) Architecture
 - How CLIP Works: Text-Image Pairing
 - Applications of CLIP in Image Search & Generation
 - Fine-tuning CLIP for Custom Tasks

- ✓ Using CLIP to find relevant images based on text prompts
- ★ Module 5: VQGAN & Taming Transformers
 - Introduction to VQGAN (Vector Quantized GAN)
 - How Taming Transformers Improve Image Quality
 - Combining VQGAN + CLIP for AI Art

Hands-on:

- ✓ Generating AI Art using VQGAN + CLIP
- Module 6: Autoencoders & VAEs (Variational Autoencoders)
 - What is an Autoencoder?
 - Difference Between Autoencoders & VAEs
 - Generating High-Resolution Images with VAEs

Hands-on:

- ✓ Implementing a simple Variational Autoencoder (VAE) in PyTorch
- Module 7: Retrieval-Augmented Generation (RAG)
 - What is RAG & Why It Matters for AI?
 - Enhancing LLMs with External Knowledge
 - Vector Databases for RAG (FAISS, Pinecone, ChromaDB)

Hands-on:

- ✓ Implementing a RAG-based chatbot using LlamaIndex & FAISS
- Module 8: Hugging Face Ecosystem
 - Overview of Hugging Face Transformers
 - Fine-tuning LLMs with Hugging Face
 - Deploying Models Using Hugging Face Spaces

Hands-on:

- ✓ Fine-tuning a text generation model on Hugging Face
- Module 9: CrewAI for Multi-Agent AI Systems
 - What is CrewAI?
 - Building Teams of Al Agents
 - Role-Based Task Assignment in CrewAl

Hands-on:

- Setting up an AI research team using CrewAI
- Module 10: Groq High-Speed AI Inference
 - What is Groq?

- Running AI Models at Lightning Speed
- Optimizing Large Models for Low Latency

✓ Deploying a transformer model with Groq hardware

- ★ Module 11: Stable Diffusion for Image Generation
 - Understanding Stable Diffusion Architecture
 - Text-to-Image Generation with Diffusion Models
 - Fine-Tuning & Customizing Stable Diffusion

Hands-on:

✓ Running Stable Diffusion on a local machine

- Module 12: GitHub Copilot for AI-Powered Coding
 - How GitHub Copilot Uses AI for Code Generation
 - Best Practices for Using AI in Software Development
 - Comparing Copilot with Other AI Coding Tools

Hands-on:

✓ Writing Al-assisted Python scripts using GitHub Copilot

- Module 13: LlamaIndex Al-Powered Document Processing
 - What is LlamaIndex?
 - Connecting LLMs to Private Data
 - Using LlamaIndex for Enterprise AI Applications

Hands-on:

✓ Implementing LlamaIndex for a document-based AI assistant

- Module 14: FastAPI for AI Model Deployment
 - Introduction to FastAPI for AI
 - Building a REST API for LLMs
 - Deploying AI Models as Web Services

Hands-on:

✓ Deploying a text-based LLM using FastAPI

Advanced Course on: LLMs

Module 1: Introduction to Generative AI & LLMs

What is Generative AI?

- Types of Generative AI Models (Text, Image, Multimodal, Speech)
- Comparison of Leading AI Models (GPT, Gemini, LLaMA, Claude, Mixtral, DeepSeek, Grok)
- Foundation Models vs Fine-Tuned Models

- Running a basic LLM-powered chatbot using OpenAI API
- Module 2: OpenAl's Al Ecosystem
- LangChain Framework
 - Introduction to LangChain
 - Building AI Agents with LangChain
 - Memory & Context Handling in LangChain
 - Connecting LLMs with External Data Sources

Hands-on:

- ✓ Implementing a chatbot using OpenAI + LangChain
- OpenAl Whisper (Speech-to-Text Al)
 - What is OpenAI Whisper?
 - Multilingual Speech Recognition
 - Building Real-World Applications with Whisper

Hands-on:

- ✓ Transcribing audio into text using OpenAl Whisper
- Gemini AI: Google's Multimodal LLM
 - Introduction to Gemini AI
 - Comparison with OpenAI & Meta Models
 - Using Gemini API for Text & Image Generation

Hands-on:

- Generating text & images using Gemini API
- Google Vision: Al for Image Analysis & Recognition
 - What is Google Vision?
 - AI-Powered Image Processing & OCR
 - Building Al-powered Image Search Systems

Hands-on:

- ✓ Using Google Vision API for image classification
- Module 4: DeepSeek, Mistral, Mixtral, Grok & Claude
- O DeepSeek Al
 - Overview of DeepSeek Language Model
 - Optimizing Search and AI Retrieval with DeepSeek
 - Applications in Al-Assisted Knowledge Systems

Hands-on:

- Running DeepSeek for document-based AI search
- Mistral & Mixtral: High-Performance Open-Source Al
 - What is Mistral & Mixtral?
 - Dense vs Sparse Transformer Models
 - Optimizing Mixtral for Multi-Task Al

- ✓ Running Mixtral models on Hugging Face
- Grok (X AI by Elon Musk)
 - How Grok is Designed for Real-Time AI Processing
 - Comparison with GPT, Gemini & Claude
 - Use Cases of Grok in Al Chatbots & Assistants

Hands-on:

- Running Grok on X (formerly Twitter) API
- Claude (Anthropic AI)
 - What is Claude & How It Differs from Other LLMs?
 - Claude's Approach to AI Safety & Constitutional AI
 - Fine-Tuning Claude for Enterprise Applications

Hands-on:

☑ Building an Al-powered assistant with Claude API

Module 5: Meta's Generative AI Ecosystem

- LLaMA 3: Open-Source LLM by Meta
 - Introduction to LLaMA 3
 - Comparison with GPT-4, Gemini, Mixtral, & Claude
 - Fine-Tuning & Customizing LLaMA for Specific Tasks

Hands-on:

- ✓ Running LLaMA 3 on a local machine using Hugging Face
- Building Generative AI on Cloud
 - Cloud Platforms for AI (AWS, GCP, Azure, Meta Cloud)
 - Deploying LLMs on Cloud for Scalability
 - Building Al-Driven Web Apps with Cloud-Based LLMs

Hands-on:

- ✓ Deploying an LLM-powered chatbot on Cloud
- Meta's Foundation Models
 - Understanding Meta's AI Foundation Models
 - Pre-Trained Models vs Custom Models
 - Adapting Foundation Models for Industry Use Cases

Hands-on:

✓ Using Meta's AI Models for custom NLP tasks

- 📌 Module 6: Fine-Tuning LLMs with Quantization, LoRA & QLoRA
- ♦ Fine-Tuning Large Language Models (LLMs)
 - Why Fine-Tune an LLM?
 - Datasets & Preprocessing for LLM Fine-Tuning
 - Fine-Tuning vs Prompt Engineering
- LoRA (Low-Rank Adaptation) Fine-Tuning
 - What is LoRA?
 - Reducing Computation for LLM Training
 - Implementing LoRA with Hugging Face & PyTorch
- QLoRA (Quantized LoRA) for Efficient Model Fine-Tuning
 - What is QLoRA?

- Memory Optimization for Large LLMs
- Running Fine-Tuned Models on Low-End Hardware

Fine-tuning a LLaMA 3 model using LoRA & QLoRA

Module 7: End-to-End Al Model Deployment & Optimization

- Deploying AI Models with APIs (FastAPI, Flask)
- Optimizing AI Models for Performance & Cost
- Best Practices for AI Model Security & Governance

Hands-on:

Deploying a fine-tuned LLM as a FastAPI web service

Vector database

Module 1: Introduction to Vector Databases

What is a Vector Database?

Difference Between Traditional & Vector Databases

Why Use Vector Databases in Generative AI & LLMs?

How Vector Embeddings Work in Al Search & Retrieval

Hands-on:

Generating vector embeddings from text using OpenAl's text-embedding-ada-002

Module 2: Understanding Vector Embeddings

What Are Embeddings in AI?

How LLMs Convert Text, Images & Audio to Vectors

Similarity Metrics: Cosine Similarity, Euclidean Distance, Dot Product

Choosing the Right Embedding Model (OpenAI, Hugging Face, SentenceTransformers, BERT, etc.)

Hands-on:

Generating embeddings with OpenAI, Hugging Face, and BERT models

Module 3: Implementing FAISS (Facebook AI Similarity Search) What is FAISS & How It Works?

Indexing & Searching Large-Scale Vectors with FAISS

Optimizing FAISS for Fast Retrieval

✓ Implementing a FAISS-based search engine for document retrieval

Module 4: Using Pinecone for Scalable AI Search Introduction to Pinecone: A Managed Vector Database

Building Real-Time AI Search Applications with Pinecone

Comparing FAISS vs Pinecone vs Milvus

Hands-on:

Creating a question-answering chatbot using OpenAI + Pinecone

Module 5: ChromaDB for LLMs & AI Applications What is ChromaDB?

How ChromaDB Works with LangChain

Building RAG (Retrieval-Augmented Generation) Pipelines with ChromaDB

Hands-on:

✓ Integrating ChromaDB with OpenAI's GPT for AI-powered search

Module 6: Exploring Weaviate & Its AI Capabilities Overview of Weaviate as a Hybrid Search Engine

Using Weaviate for Semantic Search & Knowledge Graphs

Deploying Weaviate on Cloud & Local Environments

Hands-on:

✓ Implementing a semantic search engine with Weaviate

Module 7: Milvus & Qdrant for Large-Scale AI Applications

Milvus (Distributed & Cloud-Based Vector Search)

Introduction to Milvus for AI Applications

Optimizing Milvus for Large-Scale Data Processing

Qdrant (High-Performance Open-Source Vector DB) What is Qdrant & How It Works?

Fine-Tuning Qdrant for AI Search & Recommendation Systems

Hands-on:

✓ Deploying Milvus & Qdrant for Al-driven search and recommendations

Module 8: Building AI-Powered Search & RAG Applications What is Retrieval-Augmented Generation (RAG)?

Integrating Vector Databases with LLMs for Intelligent Search

Building Enterprise AI Assistants Using Vector Databases

Hands-on:

Building an RAG pipeline using LangChain, Pinecone, and OpenAI

MLOps & CI/CD Pipeline for AI & **Machine Learning**

- What is MLOps & Why is it Important?
- DevOps vs MLOps: Key Differences
- **MLOps Lifecycle & Stages**
- **Understanding CI/CD Pipelines in AI/ML Projects**
- **Challenges in Deploying ML Models at Scale**

Hands-on:

Setting up a basic CI/CD pipeline for ML models using GitHub Actions

Module 2: Containerization & Model Packaging with Docker

- Why Containerize ML Models?
- **Building & Running Docker Containers for ML Applications**
- **Deploying ML Models inside Docker Containers**
- **Optimizing Containers for AI Workloads**

Hands-on:

Containerizing an ML Model with Docker & Running it Locally

Module 3: CI/CD Pipeline for ML with GitHub Actions & Jenkins

- What is CI/CD & How Does It Work in ML?
- Setting up a CI/CD Pipeline for ML Models
- **Automating Model Testing, Validation & Deployment**
- CI/CD with GitHub Actions,

Hands-on:

Implementing a CI/CD Pipeline for an AI Model Deployment Using GitHub Actions

Module 4: MLOps with MLflow

- Introduction to Kubeflow for AI & ML
- **Integrating with MLflow for Experiment Tracking**

Hands-on: Building an ML Workflow	v with Kubeflow Pipelines	
	<u>.</u>	