Our Results

$$F_p(x) = \sum_{i=1}^d |x_i|^p$$

- **Theorem** [K, Pagh, Thorup, Woodruff FOCS '23]: For p>2, there is an algorithm using $\tilde{O}(d^{1-2/p})$ space and an update time of O(1)
 - Space is optimal unto polylog factors!
 - Time in the WordRAM model with $O(\log d)$ bits word size
 - Improves on poly(d) update time of Andoni '17

Our Results

- **Theorem**: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using $\varepsilon^{-2} \log d$ bits of space and $O(\log d)$ update time
 - Valid only for $\varepsilon < 1/d^c$
 - Improves on $O(\log^2 d \log \log d)$ update time of [KNPW '11]
- Many other results for CountSketch, $||x||_{\infty}$ estimation etc.