

AD A 0 39271

VARIABLES AFFECTING RADIATION-INDUCED PERFORMANCE DECREMENTS

April 1977

Interim Report for Period June 1975-August 1976

Approved for public release; distribution unlimited.

USAF SCHOOL OF AEROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235

NOTICES

This interim report was submitted by personnel of the Weapons Effects Branch, Radiation Sciences Division, USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas, under job order 7757-05-22.

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

The animals involved in this study were procured, maintained, and used in accordance with the Animal Welfare Act of 1970 and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources-National Research Council.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

GILBERT CARROLL BROWN

Project Scientist

ROBERT G. MCIVER

Brigadier General, USAF, MC

Commander

FARRER, Ph.D. Supervisor

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P	-1.1. (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	BEFORE COMPLETING FORM
	. GOVY ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
SAM-TR-77-3 V		4
TITLE (end Subtitle)	A PARTY OF THE PROPERTY OF THE	S. TYPE OF REPORT A PERIOD COVERE
VARIABLES AFFECTING RADIATION-INDUC	CED PERFORMANCE	Interim Report
DECREMENTS.	A ROOM BY A SHOOK OF THE PARTY	June 75 - August 76
		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a) G. Carroll Brown, B.A.		8. CONTRACT OR GRANT NUMBER(s)
Michael G. /Yochmowitz, Captain, USA	4 TP	
Rayford P. Patrick, Lieutenant Colo		
	oner, osar	
Kenneth A. Hardy M.S. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
USAF School of Aerospace Medicine	(RZW)	62202F
Aerospace Medical Division (AFSC)	(1)	7757-05-22
Brooks Air Force Base, Texas 7823	5	(0)
CONTROLLING OFFICE NAME AND ADDRESS	0	12. REPORT DATE
USAF School of Aerospace Medicine	(RZW) (11)	Apr 77
Aerospace Medical Division (AFSC)		
Brooks Air Force Base, Texas 7823	from Controlling Office)	15. SECURITY CLASS. (o" this report)
The state of the s	ON FOR	Unclassified
	(12) 59DI	
	FI	15. DECLASSIFICATION DOWNGRADING
s. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distri	ibution unlimite	ed.
Approved for public release; distri		
Approved for public release; distribution statement (of the abetract enfered in		
Approved for public release; district of the abstract entered in Supplementary notes	n Block 20, il dillerent fro	om Report)
Approved for public release; district on the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task	n Block 20, il dillerent fro	om Report)
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement	n Block 20, il dillerent fro	om Report)
Approved for public release; district of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement Emesis	n Block 20, il dillerent fro	om Report)
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement	n Block 20, il dillerent fro	om Report)
Approved for public release; district of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement Emesis Performance decrement	Block 20, if different fro	om Report)
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract ent	Block 20, if different from the state of the	A discrete behavioral task
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in DISCRED Continue on reverse elde if necessary and DISCRED behavioral task Differential reinforcement Emesis Performance decrement ABSTRACT (Continue on reverse elde if necessary and as initiated to study the effects of	Identify by block number, identify by block number, identify by block number, identify by block number)	A discrete behavioral task
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement Emesis Performance decrement ABSTRACT (Continue on reverse side if necessary and as initiated to study the effects of sposure profile upon positively (for	Identify by block number, Identify by block number, Identify by block number, Identify by a 300-rad variod reward) and re-	A discrete behavioral task table dose rate protracted-negatively (shock) reinforce
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement Emesis Performance decrement ABSTRACT (Continue on reverse side if necessary and as initiated to study the effects of Exposure profile upon positively (for roups of primates. Subjects performances of primates.	Identify by block number, f a 300-rad variod reward) and red the task for	A discrete behavioral task table dose rate protracted-negatively (shock) reinforce of 12 hours. Among the 8 sho
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in DISTRIBUTION STATEMENT (continue on reverse elde if necessary and as initiated to study the effects of Exposure profile upon positively (for roups of primates. Subjects performed 7 food subjects, effects noted we	Identify by block number, f a 300-rad variod reward) and received the task for the performance	A discrete behavioral task table dose rate protracted-negatively (shock) reinforce 12 hours. Among the 8 sho decrements in 2 shock and 2
Approved for public release; district Approved for public release; district of the abstract entered in the state of	Identify by block number, Identify by block number, Identify by block number, If a 300-rad variod reward) and remarks for the task for the performance in 3 shock and	A discrete behavioral task table dose rate protracted-negatively (shock) reinforce 12 hours. Among the 8 sho decrements in 2 shock and 2 is 3 food subjects, and emesi
Approved for public release; district of the abstract entered in DISTRIBUTION STATEMENT (of the abstract entered in Supplementary notes KEY WORDS (Continue on reverse side if necessary and Discrete behavioral task Differential reinforcement Emesis Performance decrement ABSTRACT (Continue on reverse side if necessary and as initiated to study the effects of exposure profile upon positively (for yours of primates. Subjects performed 7 food subjects, effects noted we	Identify by block number, f a 300-rad variod reward) and red the task for ere performance in 3 shock and information is	A discrete behavioral task table dose rate protracted-negatively (shock) reinforce 12 hours. Among the 8 sho decrements in 2 shock and 2 is important to military

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified 3/7 000
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

VARIABLES AFFECTING RADIATION-INDUCED PERFORMANCE DECREMENTS

INTRODUCTION

In the event of armed conflict, Air Force systems may be subjected to environments resulting from the detonations of nuclear weapons. The capability of such systems to withstand exposure to these environments, without loss of their mission completion capabilities, is termed "systems nuclear survivability." Air Force Regulation 80-38, Management of the Air Force Survivability Program, 6 September 1973, and Air Force Systems Command Supplement 1, 12 July 1974, establish policy for conducting the Air Force nuclear survivability program.

Of the numerous systems in the inventory or in development, the manned aircraft is germane to crew survivability/vulnerability (S/V) analysis. The crew represents a vital and potentially susceptible subsystem of the manned aircraft, so a complete S/V analysis must include consideration of the crew.

Detonation of nuclear weapons generates blast, thermal, X-ray, electromagnetic pulse, and nuclear-radiation environments. The aircraft itself provides protection to the crew from the blast environment and thermal curtains or shields with PLZT flashblindness/retinal burn protective window segments can be used to isolate crewmembers relatively easily from the external thermal environment (3). Baum et al. (2) recently reported that the electromagnetic pulse environment has little or no effect upon crewmembers even after exposure to 108 pulses of electromagnetic energy with amplitudes of 447,000 volts per meter. In the lower reaches of the atmosphere, which is the operational regime of most manned systems, X-rays produced during detonation are absorbed by the atmospheric gases in relatively short distances and are of limited concern in crew S/V analysis. Therefore, of the many components of the nuclear environment, nuclear radiation is the most significant contributor to crew S/V effects.

The Aerospace Medical Division (in particular, the USAF School of Aerospace Medicine) is responsible for providing support and guidance to field commands, laboratories, and program offices on human operator performance and biomedical aspects of system survivability/vulnerability. In initial studies, Pickering et al. (13) investigated the effects of high-dose-rate gamma radiation on the behavior, physiology, biochemistry, and pathology of the rhesus monkey. The present approach involves extensive system-modeling techniques which include the human as a vital element. Data are obtained from experiments using trained infrahuman primates (the rhesus monkey) performing in nuclear radiation environments. Interspecies models are then used to generate extrapolative estimates of human response

to nuclear radiation, by dose and time (Fig. 1), based on the monkey data (14). These estimates are incorporated into system-level models which are used to predict the effects of nuclear radiation upon the manned system's performance.

Figure 1. The prodromal syndrome.

Experimentally, the major objective is to obtain information on the emetic behavior and performance degradation exhibited by rhesus monkeys in a protracted low-dose-rate nuclear radiation environment. Also, emetic behavior and performance are compared between groups of animals with different levels and types of motivation while subjected to both identical work requirements and ionizing-radiation exposure profiles (rate and dose). The emesis data are compiled and combined with other data to support the development of an analytical model that can be used to predict emetic behavior of rhesus monkeys (and ultimately humans).

The task used in this experiment is a relatively simple one in which the animal responds to a stimulus, i.e., depressing a lever when a red cue light is illuminated. Discrete aircrew tasks (e.g., activating firesuppression subsystems in response to a fire-warning light) would be similar.

EXPERIMENTAL METHODOLOGY AND EQUIPMENT

Experimental Parameters

To achieve similarity between experimental parameters and actual operational parameters of an aircraft on a strategic mission, the mission scenario, ionizing-dose accumulation during the mission, and crew workload were realistically integrated.

Mission Scenario -- A hypothetical mission profile of a manned strategic bomber is presented in Figure 2. The takeoff and climbout phase of

Figure 2. Hypothetical mission and dose profiles.

the mission requires approximately 30 minutes. The bomber then cruises at optimum altitude and speed to conserve fuel during continental United States (CONUS) exit. At 3 hours into the mission, the bomber refuels from a tanker for approximately 30 minutes and then resumes cruise status. About 9 hours into the mission, the bomber descends to approximately 500-ft altitude and begins penetration of hostile territory. The point at which the last weapon is delivered on target is defined as the end of the nuclear S/V mission and occurs 12 hours after takeoff.

Ionizing-Dose Accumulations During the Mission — To formulate a reasonable hypothesis for the spectra of ionizing radiation which the bomber crew could encounter during the hypothetical mission scenario, we must postulate nuclear threats to the bomber. Because intercontinental ballistic missiles (ICBM) are the most accurate of enemy missile systems and most capable of large payload delivery, they would probably be targeted against the hardened U.S. missile silos (9, 16). Bomber bases are most apt to be targeted by submarine-launched ballistic missiles (SLBM) because of their more rapid flight to their targets (9).

It is assumed that our bombers, having successfully escaped their base, could have momentarily contacted the edge of a minutes-old nuclear cloud from the detonation of a several-hundred-kiloton SLBM warhead and would have been exposed to gamma radiation from decaying fission products. The dose accumulated by crews of surviving aircraft grazing the early nuclear cloud is estimated to be about 50 rads (tissue).

During CONUS exit, the bomber could encounter other airborne radio-active dust clouds from multiple megaton-class detonations resulting from a massive attack upon U.S. missile fields. For this mission, it is hypothesized that the bomber would accumulate about 65 rads (tissue) over a 20-to 30-minute period from decaying fission products in the cloud. It is also assumed that the bomber cockpit is supplied with unfiltered air via its environment-control system. Therefore, some of the airborne radio-active material could be trapped in the cockpit and be a take-along source of crew ionizing dose for the remainder of the mission. For the experiment, this take-along dose is prothesized to be about 10 rads (tissue)/hr.

Also, during the penetration phase of the mission, the bomber could be subjected to nuclear radiation environments as a result of hostile actions from air-to-air or surface-to-air missiles with low-yield nuclear warheads, as a result of encountering radioactive dust clouds from collateral detonation, and as a result of damage-assessment surveys of previously attacked targets (11, 12). The dose accumulated during penetration is

^aDose estimated using the new code, FIREFLY, developed by the Air Force Weapons Laboratory (10).

bDose estimated using techniques presented by Patrick et al. (11).

assumed to be a 3-minute exposure of about 75 rads (tissue). The above considerations resulted in the ionizing-dose profile (Fig. 2) used in the experiment and is not meant to replicate any specific manned system.

<u>Crew Workload</u> — The various states of crew activity during different mission phases were simulated by varying the task frequency. During takeoff and climbout, refueling, and penetration, the frequency of stimulus presentation was twice that during cruise. This variation in task frequency, depicted in Figure 2, simulates increased workload generally experienced by crews during critical mission phases.

Subjects

Fifteen male rhesus monkeys (Macaca mulatta), weighing between 2.95 and 4.32 kg, were randomly selected and divided into two groups trained to press a lever when a visual stimulus (a red light) was presented. Seven animals were reinforced with a food pellet (S+ group) upon each correct response. (These food subjects were fed on nontest days in order to maintain approximately 90% of original body weight plus a small allowance for growth.) The remaining 8 animals (S- group) received a mild shock for failure to respond correctly.

Training -- Each subject was trained individually until performance on the task was sufficiently stable for training to continue by automated programming equipment (7). Each subject was then placed in the training unit each work day for approximately 1 hour. Training sessions were gradually lengthened to duplicate the exact schedule to be exercised during final baseline and exposure conditions. (See Fig. 2.) The final performance profiles included four consecutive sessions: session 1 lasted 3 hours; sessions 2 and 3 lasted 2 hours 40 minutes; and session 4 lasted 3 hours 40 minutes. There was a 20-minute rest period between sessions. The stimulus presentation frequency of each session was not constant. In sessions 1 and 2, an average 20-minute interval consisted of 37 stimuli; whereas a similar interval in session 3 averaged 30 presentations, and in session 4 averaged 60 presentations. Session 1 simulated the takeoff, climb, and cruise phases of the profile; session 2, the refueling and cruise activities; and session 3, the low-level cruise activity. The greatest activity rates were in session 4--to coincide with the penetration phase of the hypothetical mission.

Diet Control:

(a) Avoidance (Shock) Group — Four percent of body weight was calculated, and the animals were fed 1/3 of this amount for each of three daily feeding periods. The last daily portion was replaced with 1/2 apple on Tuesday and Thursday.

(b) Appetitive (Food) Group — These subjects were fed only during task performance for working days with the exception of their receiving 1/2 apple per week. Variable amounts of monkey chow were available to these subjects on nonworking days. Body weight was monitored each day to insure adequate nutrition and was maintained to approximately 85%—90% of prestudy weight, except for a small projected growth increase.

Feeding and work schedules are listed in Table 1. Diet: Purina Monkey Chow, 5-gm nonmedicated biscuits, and apples.

TABLE 1. FEEDING AND WORK SCHEDULE

Schedule for subjects in holding cages:

Lights on			0700
Feed shock subjects	0720,	1200,	1600
Feed food subjects	0720,	1200,	1600 ^a
Lights off —			1800

Baseline and exposure schedule for subjects on testing days:

Lights on	0700
Feed (shock subjects only) not later than	0720
Move subjects for testing	0745
Subjects in position to begin testing session —————	0800
Start baseline/exposure session ———————	
End session ————————————————————————————————————	
Return subjects to holding cage	

^aVariable amounts of food to insure adequate nutrition and weight maintenance.

Equipment and Tasks

The apparatus consisted of a panel with a single lever and associated cue light. The subject was required to press the lever within 1 second after the light came on.

BRS Program — The experiment was controlled by Tech Serv Inc.'s Behavioral Research Systems (BRS) solid state modules which randomly activated the stimulus according to mean presentation rates (VI $_1$ = 20 sec, VI $_2$ = 40 sec). BRS logic also controlled the duration of the stimulus and the presentation or withholding of food and shock rewards. Data were accumulated on and recorded from BRS counters. Figure 3 contains a flow diagram of this BRS system.

Emesis Recording — The entire radiation—exposure period was recorded on video tape so that the emetic episodes were available for later quantification. An emetic episode was defined as a series of three or more reflexive movements consisting of coordinated mouth opening, opisthotonos, and maximal abdominal musculature contraction (5).

Appetitive Task — Food availability was signaled on a dual-rate variable-interval schedule ($VI_1 = 20$ sec, $VI_2 = 40$ sec)^C by the presentation of the cue light, which remained lit for 1 second. If the subject pressed the lever within this time, a 97-mg Noyes banana-flavored food pellet was delivered immediately. If the subject failed to respond, he did not receive a pellet and had to wait until the next presentation of the cue light. Pressing the lever in the absence of the cue light resulted in a 25-second period in which scheduled lights were suppressed. In 20-minute periods, data were recorded in the form of (a) food-reinforced responses, (b) failures to respond, and (c) response latencies.

Avoidance Task — The cue light was presented on a similar dual-rate variable-interval schedule (VI $_1$ = 20 sec, VI $_2$ = 40 sec) with a limited hold of 1 second. The subject could terminate the cue light and avoid a shock by pressing the response lever, in which case the response was recorded as a successful avoidance response. Failure to respond within 1 second resulted in a 0.2-second shock administered through foot shock plates. Response latencies were accumulated for each 20-minute epoch, and failures to respond were recorded. Responding in the absence of the cue light resulted in an immediate shock (0.1-sec duration). Shock level was assessed for each subject to be mildly aversive in sustaining avoidance responding under normal daily conditions (approximately 4 mA). Shock levels did not disrupt performance and did not harm the animals.

 $^{^{\}rm C}{\rm VI}_1$ presentation range was once per 5 to 35 seconds, with a mean of 20 seconds; ${\rm VI}_2$ range was once per 10 to 70 seconds, with a mean of 40 seconds.

Figure 3. Flow diagram of BRS system.

DOSIMETRY

An accumulated total dose of 292 rads was programmed. (See Fig. 2 dose profile.) The SAM/RZ 9000 curie AECL cobalt-60 facility was chosen for this study because of the high dose rate available for "pulsed" exposures and the low dose rate for cruise.

The initial stage of the dosimetry procedure involved determining the free air exposure rates in roentgens/unit time necessary to deliver the required midline dose rates in rads/unit time. Using a rad-to-roentgen conversion factor of 0.95 and an approximate attenuation factor of 0.90 for midline dose (based on clinical depth dose data), exposure rates of approximately 115 and 11.5 R/hr were required to deliver 100 and 10.5 rads/hr midline, respectively. At the maximum possible exposure distance from the unattenuated source, 5.5 meters, the dose rate was approximately 275 R/hr; therefore, it was necessary to resort to lead attenuators to reduce the rate to the desired levels. Measurements with NBS-calibrated condenser R-Chambers and varying thicknesses of lead attenuation established that the desired exposure rates of 115 and 11.5 R/hr could be achieved at 5.5 meters from the source by using 0.5 and 2.06 inches (1.3 and 5.2 cm) of lead attenuation, respectively.

The physical size of the animal performance booths and the requirement to expose 2 animals simultaneously restricted the minimum exposure distance to about 2 meters; corresponding to an exposure dose rate of 33.5 R/min. This was equivalent to a midline rate of about 28.5 rads/min, using the conversion factors listed above.

The next phase involved measurements in Alderson tissue-equivalent primate phantoms to establish the midline dose rate (Table 2). The primate phantoms are constructed from an actual primate skeleton with Alderson Rando plastic which is tissue-equivalent to gamma rays. The physical size of the phantom corresponds closely to the primates used in this experiment. The phantoms are cross sectioned into eight segments, with holes drilled into each segment for insertion of dosimeters (Fig. 4). Figure 5 shows a cross section corresponding to the midepigastric region. Dosimetric measurements were made in the cross sections corresponding to the head, midepigastric, and lower abdominal regions of the animals for each of the required exposure configurations. The overall midline dose rate was determined at each position from the average of the midline doses obtained from all three sections. The phantoms were exposed in the same manner as were the experimental animals, seated in aluminum chairs inside the actual animal performance booth.

The midline dose is selected as the dosimetric point of reference because it has been found under whole-body exposure conditions to yield a close approximation to the overall average cross-sectional dose, upon which the biological effect is believed to primarily depend. This correlation between average dose and midline dose is illustrated in Table 2 where the dosimetric results from cross section 6 are tabulated

TABLE 2. DOSES MEASURED IN MIDEPIGASTRIC SECTION (SEC 6) OF ALDERSON PRIMATE PHANTOM FOR EACH EXPERIMENTAL EXPOSURE CONFIGURATION

Dosimeter site	Configuration I 3-min exposure (rads)	Configuration II 38-min exposure (rads)	Configuration III 3-hr exposure (rads)
Anterior	65	49	2.4
1	68	49	24 24
2	72	54	25
3	77	57	26
4 (midposition)			299.7 rads/hr
5	93	65	31
6	96	68	32
7	88	62	30
8	86	60	28
9	85	60	28
10	84	60	28
11		62	29
Posterior	99	70	31
Right side	96	69	32
Left side	96	87	30
Cross-sectional	av: 8528.3 rads/mi	in 6297.9 rads/hr	28-9.3 rads/hr

for each of the exposure configurations used in this experiment. Note that the average cross-sectional dose agrees quite well with the midline dose for all three configurations.

Type 700 LiF thermoluminescent dosimeter (TLD) powder encapsulated in polyethylene tubing was used in the phantom measurements. The dose response of this material was determined by comparison to known cobalt-60 doses delivered on the AECL cobalt-60 source. This source has been calibrated with NBS-calibrated 3-terminal guard-ring chambers and condenser R-Chambers. The LiF powder was read out on a Harshaw Model 2000 TLD reader. Approximately five readings were obtained from each dosimeter site. Based on the results of these measurements, the midline dose rates were established at each exposure configuration (Table 3). These dose rates compare favorably with the target dose rates given in Figure 2.

Thermoluminescent dosimeters and R-Chambers were also exposed simultaneously with the phantoms in each configuration so that correlation factors with the measured midline doses could be obtained and used in monitoring the subsequent animal exposures. The TLD monitors were placed on the backs of the aluminum animal chairs. The R-Chamber monitors were positioned between the primate performance booths.

Figure 4. Phantom segments.

Figure 5. Phantom midepigastric cross section. (Numbered spots indicate dosimeter sites.)

TABLE 3. SUMMARY OF EXPOSURE CONFIGURATIONS

Configuration	Distance (meters)	Lead attenuation	Measured ^a midline dose rate	In air exposure rate
I	2.0	none	27.6 rads/min	33.5 R/min
II .	5.5	0.5 in Pb (1.3 cm)	97.5 rads/hr	115 R/hr
III	5.5	2.06 in Pb (5.2 cm)	9.9 rads/hr	11.5 R/hr

^aAverage of midline dose measured in head, midepigastric, and lower abdominal sections of Alderson primate phantoms. These dose rates closely approximate the target dose rates given in Figure 2.

Figure 6 illustrates the exposure configurations used in the animal irradiation. The animals were exposed whole body, posterior-anterior, while seated in aluminum chairs inside of the performance booths. At 1 hour into the experiment, they were exposed to the unattenuated beam for 2 minutes at 27.6 rads/min midline. They were then moved back to 5.5 meters, and 0.5 inch (1.3 cm) of lead attenuator was placed in front of the source. Then at 2 hours into the run, they were exposed to approximately 62 rads at 97.5 rads/hr. Upon termination of this phase, a 2.06inch (5.2 cm) lead attenuator was placed in beam and the 9.9 rad/hr (midline) exposure was begun. This continued until the 10th hour of the experiment, at which time the animals were again positioned at 2 meters and exposed for 3 minutes to the unattenuated beam. The 2.06-inch (5.2 cm) lead attenuator was then repositioned, the animals moved back again to 5.5 meters, and the 9.9-rads/hr exposure resumed until the 13th hour of the experiment -- when the experimental run was terminated. Changeover time from one configuration to another took about 2 minutes. Five changeovers were required, for a total time of 10 minutes. The effect of changeover time on the total dose is considered negligible. The cumulative dose as a function of elapsed experimental time is shown in Figure 7.

Based on the measured dose-rate values, the total programmed dose was 303 rads. This dose compares favorably with the target dose of 292 rads. A summary of the primate exposures is given in Table 4; the results of the monitor dosimeters are included and indicate that all of the animals were exposed to within + 6% of the programmed values.

Figure 6. Primate exposure configuration.

Figure 7. Cumulative dose vs. time.

TABLE 4. SUMMARY OF ANIMAL IRRADIATION AND DOSIMETRY RESULTS

Animal No.	Date o irradi		TLD dose (rads)	R-Chamber dose (rads)
446	30 Sep	75	304	313
468	1 Oct		319	307
134C	2 Oct	75	300	305
454	3 Oct	75	316	313
130	6 Oct	75	308	312
418	8 Oct	75	307	307
410	8 Oct	75	307	307
504	9 Dec	75	lost	304
50C	9 Dec	75	312	304
92	10 Dec	75	293	307
460	10 Dec	75	319	307
424	11 Dec	75	299	318
490	11 Dec	75	286	318
540	12 Dec	75	286	306
54	12 Dec	75	299	306

^aProgram doses of 303 rads (Fig. 7) closely approximate the target dose of 292 rads (tissue) given in Figure 2.

RESULTS

Performance (percent correct response) and reaction-time scores (for correct responses only) were measured regularly at 20-minute intervals for each subject. Given our small sample size, we decided to collect data from five successive baselines in order to provide a standard with which one exposure and two postexposure runs could be compared. All runs were separated by 2-day intervals. The experimental data were analyzed on two levels. The first entailed examining individual animal effects. The second involved treating food and shock groups as two distinct populations so that exposure and postexposure behavior could be compared with baseline behavior on a session-by-session basis.

Simultaneous tolerance limits studied by Rahe (15) were used to define bands of normal behavior for baseline reaction—time scores. That is, linear regression models were used to fit the five preexposure baselines, and 95% simultaneous confidence intervals were constructed for this model so that it contained 95% of the population of baseline reaction—time scores. Appendix A summarizes these findings pictorially by subject. A total of 3 of 7 food (animals 50, 410, 424) and 3 of 8 shock (animals 134, 446, 454) subjects exhibited delayed reaction times by this criterion.

Page's distribution free test (8) for ordered alternatives indicated no reaction-time baseline trend for these 3 shock animals. For the 3 food animals, however, the test indicated a baseline trend towards shorter reaction times. We find it significant to note that exposure-day reaction times reversed this trend in these food animals.

Using the maximum deviation between exposure reaction time and the reaction times defined by the regression model as "normal" behavior, monkeys No. 454 (shock) and No. 50 (food) had the greatest change in reaction times of all subjects in their respective groups. By the same criterion, No. 454 took up to 0.26 second longer to respond while No. 50 took up to 0.46 second longer. We also note that only No. 454 exhibited longer-than-normal reaction times on both postexposures. However, monkeys No. 446 (shock) and No. 410 (food) showed longer-than-normal reaction times on the second postexposure. The remaining 4 of 7 food animals (Nos. 130, 418, 460, 540) were too variable to make decisions concerning their reaction times, as was the case in 1 (No. 490) of the remaining 5 shock animals. The other 4 shock subjects (Nos. 92, 54, 468, 504) indicated normal reaction times based upon this criterion. When there is a detectable reaction-time delay, it appears to take place for an entire session for the shock group; whereas a delay in the food group is of longer duration, but occurs more sporadically.

Performance effects were also examined on a by-subject basis. A pictorial summary of shock performance scores is given in Appendix B. Two of 8 shock animals (Nos. 454, 468) indicated lower and more variable performance scores during the exposure and first postexposure periods; No. 468 achieved a new minimum performance score of 48%. The increased variability and negative trend in No. 468's fifth baseline was attributable to the presence of maintenance personnel in the training room which distracted the subject during this baseline.

The food animals were not as highly motivated as the shock subjects. Their baselines were highly variable from day to day and seldom exhibited clear-cut strategy in animal behavior. Nevertheless, radiation effects in the form of work cessation were readily apparent (Appendix C) in 2 of 7 food monkeys (Nos. 50, 410). In the consistency of baseline scores, No. 410 most closely resembled the shock subjects. His unusual behavior during the first baseline was attributed to a malfunctioning feeder—hence, the decline in his performance. Neglecting this baseline, his usual performance score in the remaining four baselines was in the 90's,

dConfidence limits for food animals were constructed the same way as confidence limits for shock animals. The existence of a baseline trend in food animals makes it difficult to separate this effect from the error variance. Our results are conservative compared to an analysis based only on limits constructed for the last baseline.

with one 44% minimum performance score of 20-minute duration. In contrast, he had zero performance for 2 hours 40 minutes during exposure; for 5 hours 40 minutes during the first postexposure period; and for 9 hours 40 minutes during the second postexposure period. Food monkey No. 50 exhibited far less consistent baseline behavior. He does, however, suggest a willingness to perform prior to exposure. In contrast, his exposure day is represented by 4 hours 40 minutes of zero performance and a total of 8 hours of less than 10% performance, followed by a recovery in performance during the two postexposure periods.

The basic data (Appendix D) were smoothed in order to examine population effects among all food and all shock subjects. This was done by examining:

- 1. A single measure of session performance and of reaction time for each group. (Performance was the number of correct responses in session i divided by the number of trials in session i. A similar measure was used for session reaction time; that is, it was computed over session i for the correct responses.)
- 2. The consistency of performance and reaction scores via session standard deviations of the 20-minute scores.
- 3. Worst cases; i.e., minimum 20-minute performance or maximum 20-minute reaction session scores.
- 4. Fatigue or improvement trends via slopes of least-square regression lines fitted to 20-minute scores.
- 5. Initial session scores via adjusted intercepts of regression lines fitted to 20-minute scores.

Friedman rank sums were computed on these scores for each group on a session basis (8). When Friedman's test indicated significance at the $\alpha=.05$ level, exposure runs were contrasted with baseline and post-exposure runs at the $\alpha=.05$ level by a multiple comparison procedure developed by Dunnett (4). Table 5 summarizes significant findings by session and group for each of these variables.

The study attempted to control S- food intake prior to and during exposure since time after feeding is important. Emetic episodes were experienced by 4 of 7 food subjects, in contrast to 1 of 8 shock subjects. Most emetic episodes occurred in subjects that responded early, supporting the hypothesis of individual susceptibility—the earlier the onset of nausea and vomiting, the more severe the syndrome may be (6). Table 6 summarizes the details of these episodes. Comparison of the data was not attempted owing to the small sample size of each group. The continual presence of food for the S+ group likely accounted for their excessive emetic responses relative to the S- group. We note that animals 540 (food) and 134 (shock) had shorter emetic episodes than did 8 nuclear accident

TABLE 5. EXPOSURE AND NONEXPOSURE COMPARISONS (a = .05) FOR REACTION AND PERFORMANCE

Cumulative dose (rads) 120 150 180 300 120 150 180 Avg presentations/20-min interval 37 38 30 60 37 38 30 score S.D Reaction time 37 38 30 score S.D E>B2,P1 E>B2,B3,B5 EB2,B5 EB2,B1 EB2,B1		-	Food	Food animals	4	1	Shock 2	Shock animals	4
## 37 38 30 60 37 38 ## A	9 9	120	150	180	300	120	150	180	300
E>B2,P1 E>B2,B3,B5 E>B2,B3,B5 E>B4,B5 E>B2,B5 E>P1 E>B2,B5 E>P1 E>P1 E>P1 E>P1 E>P1 E>P1 E>P1 E>P1	7- 7- 7a1	37	38	30	09	37	38	30	09
E>B2,P1 E>B2,B3,B5 E>B4,B5 E>B4,B5 E>B2,B5 E>B2,B5 E>B2,B5 E>B4,B5 E>B2 E>B2 E>B2 E>B1,B3 E <b2,b5 e<b1,b3="" e<b1,b4="" e<b5,p2<="" td=""><td></td><td></td><td></td><td></td><td>React</td><td>tion time</td><td></td><td></td><td></td></b2,b5>					React	tion time			
E>B2,B5 E <b2,b5 e="" e<b2,b5="" e<b4,b5="" e<p1="">B1,B3 E<p1 e="">B1,B3 E<p1 e="">B1,B3 E<p1 e="">B1,B3 E<p1 e="">B1,B3 E>P1,P2 E<b1,b3 e<b1,b4<="" e<b1,p1="" e<b2,b5="" td=""><td></td><td></td><td></td><td>E>82, P1 E>82, 85 E>P1</td><td>E>82,83,85 E>82,85 E>P1</td><td></td><td></td><td></td><td></td></b1,b3></p1></p1></p1></p1></b2,b5>				E>82, P1 E>82, 85 E>P1	E>82,83,85 E>82,85 E>P1				
E <b2,b5 e<b1,b3="" e<b2,b5="" e<b4,b5="" e<p1="" e<p1<="" td=""><td></td><td></td><td>E>84,85</td><td>E>82</td><td></td><td></td><td></td><td></td><td></td></b2,b5>			E>84,85	E>82					
E <b2,b5 e="" e<b1,b3="" e<b2,b5="" e<b4,b5="" e<p1="">P1 E>P1 E>P1 E>P1,B2 E<p1,p2 e<<="" e<b1,p1="" e<b2,b5="" td=""><td></td><td></td><td></td><td></td><td>Pel</td><td>rformance</td><td></td><td></td><td></td></p1,p2></b2,b5>					Pel	rformance			
E>B2,B4 E>B1,B3 E>B4,B5 E>B4,B5 E>P4,B5 E>P1,P2 E <b2,b5 e<b1,b4<="" e<b1,p1="" e<b5="" td=""><td></td><td></td><td>E<b2,b5< td=""><td>E<b2,b5< td=""><td></td><td>E<81,83 E<84,85 E<p1< td=""><td>E<84,85</td><td></td><td>E<81,83 E<85</td></p1<></td></b2,b5<></td></b2,b5<></td></b2,b5>			E <b2,b5< td=""><td>E<b2,b5< td=""><td></td><td>E<81,83 E<84,85 E<p1< td=""><td>E<84,85</td><td></td><td>E<81,83 E<85</td></p1<></td></b2,b5<></td></b2,b5<>	E <b2,b5< td=""><td></td><td>E<81,83 E<84,85 E<p1< td=""><td>E<84,85</td><td></td><td>E<81,83 E<85</td></p1<></td></b2,b5<>		E<81,83 E<84,85 E <p1< td=""><td>E<84,85</td><td></td><td>E<81,83 E<85</td></p1<>	E<84,85		E<81,83 E<85
E <b2,b5 e<b1,b4="" e<b1,p1="" e<b2,b5="" e<b5,p2<="" td=""><td></td><td></td><td>E>B2, B4</td><td></td><td></td><td>E>81,83 E>84,85 E>P1,P2</td><td>E>85</td><td></td><td>E>B1, B3</td></b2,b5>			E>B2, B4			E>81,83 E>84,85 E>P1,P2	E>85		E>B1, B3
E <b5< td=""><td></td><td></td><td>E<82,85</td><td>E<b2,b5< td=""><td>E<b2,b5< td=""><td>E<81,P1</td><td>E<81,85</td><td></td><td></td></b2,b5<></td></b2,b5<></td></b5<>			E<82,85	E <b2,b5< td=""><td>E<b2,b5< td=""><td>E<81,P1</td><td>E<81,85</td><td></td><td></td></b2,b5<></td></b2,b5<>	E <b2,b5< td=""><td>E<81,P1</td><td>E<81,85</td><td></td><td></td></b2,b5<>	E<81,P1	E<81,85		
				E <b5< td=""><td></td><td>E<b1,b4 E<b5,p2< td=""><td></td><td></td><td>E<81,P1</td></b5,p2<></b1,b4 </td></b5<>		E <b1,b4 E<b5,p2< td=""><td></td><td></td><td>E<81,P1</td></b5,p2<></b1,b4 			E<81,P1

TABLE 6. SUMMARY OF EMETIC FINDINGS

Accumulation dose (rads) at episode	140	130 130 140	155 167 177	295	285 292
Time since last episode (h:m:s)	:54:54	:15:56	1:08:33		:41:23
No. of Contractions	7 15	34 34 8	24 33 17	4	დ თ
Duration (m:s)	:32	:54 4:40 1:45	:35 1:05 :28	:25	:23
Offset (h:m:s)	4:56:35	2:48:24 3:09:00 4:15:35	5:39:52 6:49:30 7:47:58	11:22:15	10:16:37 10:58:23
Onset (h:m:s)	4:55:30	2:47:30 3:04:20 4:13:50	5:39:17 6:48:25 7:47:30	11:21:50	10:16:00
Subject No. A	130 (F)	50 (F)	460 (F)	540 (F)	134 (S)

aGroup: Food (F), Shock (S)

victims in the 236-365-rad partial-body dose range reported by Zellmer (18); they also had considerably later onset times than did the accident victims. The other animals appear to agree with the cases given by Zellmer. As noted by Warren and Bowers (17), radiation sensitivity varies considerably between species as well as within species.

CONCLUSIONS

Low levels of gamma radiation can impair performance. While 2 of 7 food animals ceased performance completely, only 1 of 8 shock animals had a minimum performance score as low as 48%. The remaining shock animals showed no operationally significant performance effects. Radiation seems to affect the shock group's performance during the simulated penetration and last-cruise phases of the hypothetical crew work schedule, after accumulation of about 190 rads, rather than during earlier phases. In contrast, the food group appears to cease performance after accumulation of 117 rads, where refueling and later tasks of the crew work schedule could be operationally affected. Our interpretation of these performance differences between the two groups is that negatively reinforced (shock) subjects provide the most stable performance baselines for the profile given in Figure 2. The reinforcement contingency (motivation) for the food group permits a nonexternal-threat type stress that allows the subject a wide latitude of response behavior (whether to respond at all, how fast to respond for a period of time, and whether or not to eat available food before responding again). Shock subjects do not have such flexibility. Their motivation is quite different; they "must" respond within 1 second or else experience unpleasant shock. Their reaction times and variability in their performance accuracy were significantly diminished during both training and baseline conditions. The shock group not only maintained greater frequency of responding, they also showed the effects of radiation and/or fatigue later in the mission. On the other hand, the optional nature of the reinforcement contingency, coupled with the effects of nausea and emesis for the food group (with its continual availability of food), created performance deterioration much earlier in time.

Low levels of gamma radiation can cause an increase in reaction time. Reaction delays in the shock group appear to occur for entire sessions, whereas delays in the food group are sporadic but of longer duration. Motivation may account for these differences. Based upon reaction-time comparisons with the regression model, the slowest animal in the shock group took approximately 0.26 second longer than normal to respond to a cue, while the slowest animal in the food group took approximately 0.46 second longer. For the shock group, reaction times appear to be more sensitive to radiation than performance scores. Because they were avoiding shock, their response accuracy was usually near 100% for preexposure baselines, and their associated reaction times were generally shorter than those of the food subjects. The shock subjects, therefore, could take longer to respond and still maintain almost 100% accuracy scores. Their shorter and less variable reaction times enhanced the probability of finding statistically significant exposure times for the shock group.

Reinforcement contingency is a crucial factor in assessing performance decrements attributed to low doses of radiation. Highly motivated (shocked) subjects can perform their task more easily in this environment. Diet and/or motivation plays an important role in affecting emetic responses in low-dose environments. The greater the amount or more recent the food intake, the greater the chance for productive emesis. The food subjects ingested food pellets until retching occurred, and often would even take a pellet after the onset of retching. Emesis by 4 of 7 food subjects and by only 1 of 8 shock subjects supports the food/emesis hypothesis. Shock monkeys were fed their normal portion of biscuits, which would have been mostly digested before 125 rads had been accumulated (4 hours into the mission).

Table 7 indicates animals showing apparent radiation effects on reaction time, performance, and emesis. Note that performance and reaction-time effects need not coincide; i.e., one can occur in the absence of the other. Baseline behavior was too variable for monkeys Nos. 130, 460, and 540 to determine clear-cut reaction and performance effects.

TABLE 7. RADIATION EFFECTS

Subject No.	Emesis	Performance	Reaction time
Shock			
134	+		+
446			+
454		+	+
468		+	
Food			
50	+	+	+
410		+	+
424			+
130	+		
460	+		
540	+		

^{+ =} radiation effect

All subjects were regularly checked through the days following exposure. No emesis occurred for any subject after removal from the exposure cell. The animals were closely monitored to detect any vomitus on their fur, particularly around the face, and the cage floor area was examined.

When removed from the test situation, more than half of the subjects exhibited mild but noticeable facial erythema. All subjects continued to drink water, but a wide range of consumption was apparent. Some subjects would not eat a monkey biscuit immediately, but all of them readily accepted and immediately consumed any type of fresh fruit. As noted earlier, some food subjects continued to perform poorly during the two postexposure runs.

Of the 4 (of 7) food subjects experiencing emesis, none had an episode during a period when the light was lit. The 1 shock subject with productive emesis continued to work (as recorded on video tape) with no visible response degradation. During the period of retching and emesis, only one trial was missed—totally consistent with the subject's previous work record. The subject obviously experienced discomfort and inconvenience in attempting to continue to work the task (which was a high presentation rate at that point).

The need to predict man's ability to function in a nuclear radiation environment is important to planners and commanders. Credibility of the manned portion of the TRIAD of strategic forces is contingent upon accurate nuclear vulnerability and survivability assessments (1). A 12-hour, 300-rad gamma radiation experiment using trained rhesus monkeys resulted in statistically significant radiation effects on their performance. Direct extrapolation of performance decrements in these animals performing relatively simple tasks to human aircrew members performing enormously more complex tasks is difficult. However, these results strongly suggest that some deleterious effects would occur.

ACKNOWLEDGMENTS

We wish to express our appreciation to Sgts Ricardo Jordan and Richard Nolen, A1C Lloyd Gerkin, and Amn VonMichael Marbley for data collection, apparatus maintenance, and animal care; and to Ms Beatriz Cardona for assisting in data collation. We also wish to thank Mr. John E. Pickering, Drs. Donald N. Farrer and Phelps Crump, Mr. Donald Barnes, and Mr. Richard McNee for helpful conversations.

REFERENCES

- Albanese, R. A., and J. E. Pickering. Aircrew vulnerability in nuclear encounters. Milit Med 139:945-951 (1974).
- 2. Baum, S. J., W. D. Skidmore, and M. E. Ekstrom. Continuous exposure of rodents to 10⁸ exposures of electromagnetic radiation. AFRRI SR-73-23, Armed Forces Radiobiological Research Institute, Defense Nuclear Agency, Bethesda, Md., Dec 1973.
- 3. Cutchen, J. T., J. O. Harris, Jr., and G. R. Laguna. Applications of PLZT electro-optic shutters. SAND 75-0253, Sandia Laboratories, Albuquerque, N. Mex., Apr 1975.
- 4. Dunnett, C. W. New tables for multiple comparisons with a control. Biometrics 20:482-491 (1964).
- Fleishman, R. W., U. Schaeppi, and D. J. Craig. Selection and evaluation of L-aspartic acid as a nontoxic emetic agent in the rhesus monkey. SAM-TR-73-39, Dec 1973.
- Gerstner, H. B. Reaction to short-term radiation in man. Ann Rev Med 11:289-302 (1960).
- 7. Hilgard, E. R., and G. H. Bower. Theories of learning, pp. 107-146. New York: Appleton-Century-Crofts, 1966.
- 8. Hollander, M., and D. A. Wolfe. Nonparametric statistical methods. New York: John Wiley & Sons, 1973.
- 9. Jones, D. C. FY 1976 posture statement. Supplement to the Air Force Policy Letter for Commanders, No. 4-1975, pp. 28-29, 1975.
- 10. Murphy, H. M., Jr. Firefly: A computer code to calculate initial nuclear radiation doses to an aircraft. Unpublished report. A. F. Weapons Laboratory, Kirtland AFB, N. Mex., 1976.
- 11. Patrick, R. P., G. D. Arnett, W. A. Yingling. Aircraft penetration of clouds by nuclear bursts. AFWL-TR-73-82, A. F. Weapons Laboratory, Kirtland AFB, N. Mex., Sep 1974.
- 12. Patrick, R. P., and G. D. Arnett. Aircraft ionizing doses and dose rates from radioactive clouds and fallout. AFWL-TR-75-214, A. F. Weapons Laboratory, Kirtland AFB, N. Mex., Apr 1976.
- 13. Pickering, J. E., W. H. Langham, and W. A. Rambach. The effects from massive doses of high dose rate gamma radiation on monkeys. SAM-TR-60-57, July 1960.

- 14. Pickering, J. E. Radiation Sciences Division, USAF School of Aerospace Medicine. Personal communication, 4 Aug 1976.
- 15. Rahe, A. J. On two-sided confidence and tolerance limits for normal distributions. M.S. Dissertation, Virginia Polytechnic Institute, June 1967.
- 16. Rumsfeld, D. H. Defense Department Report Slides. FY 77, Supplement to the Air Force Policy Letter for Commanders, No. 4-1976, p. 8, 1976.
- 17. Warren, S., and J. Z. Bowers. The acute radiation syndrome in man. Annals Intern Med 32:207-216 (1950).
- 18. Zellmer, R. W. Human ability to perform after acute sublethal radiation. Milit Med 126:681-687 (1961).

APPENDIX A

PICTORIAL REACTION-TIME SUMMARY

Linear regression models are fitted to five preexposure baselines (squares). We present 95% simultaneous confidence intervals which contain 95% of the population of baseline reaction-time scores. The E's denote exposure values, and the 1's and 2's represent first and second postexposure scores, respectively. Values above the upper tolerance limits indicate significantly longer reaction times than could be predicted from baseline reaction scores.

APPENDIX B

PICTORIAL SHOCK-PERFORMANCE SUMMARY

Performance scores are presented at 20-minute intervals for each baseline, exposure, and postexposure run. These runs are separated by 2-day intervals. The curves shown are least-square fits to the data and are presented to indicate trends and model changes, as well as to be a yardstick by which variability can be measured through the amount of scatter about the curve. The behavior of most shock animals can be described by a straight line—the slopes and intercepts of these curves can be used in making daily comparisons.

APPENDIX C

PICTORIAL FOOD-PERFORMANCE SUMMARY

Performance scores are presented at 20-minute intervals for each baseline, exposure, and postexposure run. These runs are separated by 2-day intervals. The curves shown are least-square fits to the data and are presented in order to indicate trends and model changes, as well as to be a yardstick by which variability changes can be measured through the amount of scatter about the curve. These curves emphasize the lack of a clear-cut performance strategy in food subjects, as well as their low motivation to work this task following any disruption, e.g., environmental disturbance.

APPENDIX D

PERFORMANCE AND REACTION-TIME DATA

Performance scores (percent correct response and average reaction time for a correct response) are given for each 20-minute interval. At times 200, 380, and 560, blanks and stars represent rest periods; elsewhere they represent missing data or failure of the subject to respond within 1 second.

SHOCK MONKEY 54

			20 MIN	UTE PERFO	KMANCE SC	URES		
TIME	81	82	63	84	85	E	P1	PZ
20	103	10)	100	100	100	97	100	100
40	100	100	120	100	100	100	100	100
60	100	160	130	100	100	100	100	100
80	100	100	100	100	100	97	98	98
100	100	160	98	100	100	100	100	100
120	100	97	100	100	100	100	100	100
140	100	100	100	100	100	100	100	100
163	100	100	100	97	100	96	100	100
183	100	100	100	100	100	100	100	100
220	100	100	100	100	100	100	100	100
240	100	100	100	100	100	100	100	100
260	100	93	130	100	100	100	100	100
280	100	100	100	100	100	98	100	100
330	100	100	100	90	100	48	100	97
320	100	100	100	96	100	100	100	97
340	100	97	100	100	100	97	130	97
360	100	100	100	100	100	100	100	100
380								
403	100	100	100	92	100	100	100	100
420	100	96	100	100	100	100	100	100
443	100	160	130	100	100	93	100	100
460	100	163	100	100	100	100	100	97
480	100	90	100	100 .	100	100	100	100
500	100	100		90	100	100	97	97
520	100	100	130	100	100	96	96	100
540	100	97	100	100	100	100	100	100
560				•••				200
580	100	10)	100	93	100	100	100	94
600	100	100	120	97	100	100	100	95
623	100	160	100	100	100	100	100	98
643	100	100	100	98	100	100	100	100
007	100	160	100	100	100	100	100	96
030	100	100	130	100	100	100	100	100
700	100	160	100	100	98	98	100	100
723	100	100	130	100	100	98	100	100
743	100	100	130	100	100	100	100	98
760	100	100	100	100	100	100	100	9.8
782	100	100	100	100	100	100	100	100

SHOCK MONKEY 54

			20 MINUTE	REACTION	SCORES			
TIME	81	32	83	84	85	E	PI	PZ
20	0.48	0.42	0.42	C. 52	0.43	0.39	0.53	0. **
40	0.58	6.46	0.48	0.40	0.46	C.39	0.57	C.47
63	2.48	0.52	0.44	0. 47	0.47	0.38	0.46	0.46
60	0.52	0.54	0.41	0.44	2.46	0.39	0.44	0.44
100	3.51	0.5+	0.45	C. 46	0.48	C.41	0.41	3.47
120	3.52	C. 57	0.43	0.47	0.43	0.39	0.48	0.53
140	C.61	0.33	0.50	0.48	0.52	0.43	0.42	0.50
160	0.50	0.61	0.43	0.43	0.54	0.41	0.45	0.57
180	3.35	0.57	C.42	0.46	0.48	C.39	0.44	0.50
200	****	****	****	****		****	****	****
220	0.61	0.59	6.+1	C. 45	0.55	0.37	0.45	0.55
240	0.52	0.59	0.46	0.47	0.48	0.41	0.47	2.62
260	C.56	0.52	0.40	0.41	0.45	0.44	0.43	0.65
283	0.52	0.53	0.43	0.46	0.48	0.50	0.52	0.01
300	0.59	0.53	0.48	0. +8	0.52	C.50	0.56	0.66
320	2.53	0.58	0.48	0.44	2.46	C.52	0.52	0.64
340	0.68	0.68	0.50	C. +2	0.52	0.54	0.52	0.69
300	0.65	0.59	0.78	0.43	0.50	0.52	0.55	0.71
380			****	****	****	****	****	****
400	0.59	C. 65	0.45	0.40	0.54	0.53	0.52	0.59
+20	C.53	6.50	0.46	C.37	0.46	C.57	0.52	2.61
4+3	0.50	0.01	0.41	C. 41	0.52	0.54	0.52	0.62
460	3.59	0.62	0.52	C. +3	0.50	C.57	0.52	0.59
480	0.53	0.55	C.56	0.42	0.53	C.63	0.40	2.63
500	0.62	0.35	****	0.42	0.53	0.53	0.50	0.64
520	0.60	0.57	0.+8	6.41	0.53	0.56	0.48	0.57
543	3.52	0.52	0.52	0. 48	0.52	C.50	0.47	0.04
560		****	****	****	****	****	****	****
580	7.52	0. +>	0.56	C. 48	0.46	0.52	0.52	0.55
600	3.53	0.40	0.57	C. 43	0.47	0.57	0.44	0.50
623	0.52	0. +8	0.54	0. **	0.50	0.52	0.42	0.48
640	C.54	0.48	0.50	0.43	0.49	(.56	0.45	0.52
663	0.24	6. +4	C.53	C. +5	0.51	0.50	0.43	3.53
680	0.56	0. +7	0.51	0.43	0.49	0.57	0.40	0.52
700	3.50	0.51	0.53	C. 51	0.54	0.58	0 7	2.55
720	0.59	0.45	0.04	0.45	3.59	0.53	0.47	0.53
740	2.00	0.55	C.61	0. +6	0.58	C.57	0.51	0.54
760	3.73	0.50	0.00	0.40	0.53	0.02	0.54	0.52
780	0.69	0.56	0.71	0.43	0.57	0.56	0.50	0.58

SHOCK MONKEY 92

			23 MINU	TE PERFO	RMANCE	SCERES		
TIME	81	62	8.3	84	85	ε	P1	PZ
23	97	100	97	100	100	91	100	100
40	100	93	100	96	100	100	96	100
63	100	97	136	100	100	100	100	100
80	100	100	100	100	100	100	130	100
100	100	100	130	100	100	100	100	100
120	100	100	130	100	100	103	100	97
140	100	100	130	100	100	100	100	100
100	100	100	100	100	100	97	100	100
180	100	100	100	100	100	100	100	100
200								
223	100	93	100	100	100	97	100	100
243	1.00	96	100	100	100	100	130	100
263	100	97	100	100	100	100	100	100
283	100	100	100	100	100	98	100	93
300	100	100	100	100	100	100	100	97
320	100	100	120	100	100	100	97	100
340	100	100	100	100	100	93	100	100
300	100	100	136	100	100	100	100	100
3 40								
400	100	100	130	100	100	100	97	100
423	100	160	130	100	100	100	100	97
443	100	100	130	100	100	100	100	96
463	100	163	100	100	100	100	100	100
463	90	100	10	100	97	100	100	100
500	100	100	100	100	97	96	100	100
520	100	100	100	100	100	100	100	100
543	100	96	100	100	100	100	100	100
560								
583	100	100	100	100	100	100	100	100
500	100	100	130	100	100	98	100	100
620	100	100	100	98	100	97	96	100
6+3	100	100	130	100	100	100	100	100
563	100	100	100	100	100	100	100	100
683	100	98	100	100	100	98	100	98
700	100	100	100	98	100	98	100	100
720	100	98	100	100	100	100	100	100
740	100	98	100	97	100	100	97	100
760	100	10)	130	100	100	100	100	100
780	103	100	100	98	100	100	100	98

SHOCK MONKEY 92

	20 MINUTE REACTION SCORES										
TIME	81	62	83	84	85	Ε	P1	PZ			
20	0.50	0.52	0.47	6. 44	0.43	C.43	0.42	0.41			
40	0.60	0.50	0.45	6.41	0.45	0.41	0.40	0.46			
60	0.50	C. 57	0.42	0.39	0.52	0.45	0.41	0.43			
80	0.5+	0.52	0.48	6.42	3.48	0.45	0.43	3.45			
103	0.45	0.51	0.43	0.42	0.48	0.43	0.50	0.47			
120	2.41	0.47	0.45	C. 40	0.40	0.41	0.46	0. +1			
140	0.45	0.+7	0.+3	0.48	0.55	0.+1	0.50	0.45			
100	0.52	0. +6	0.43	0.40	0.53	0.41	0.52	0.42			
180	0.50	0.55	0.45	C.50	0.54	0.45	0.52	0.46			
200		****	****	****	****	****	****	****			
223	0.50	0.59	0.48	0. +5	0.52	0.48	0.53	0.47			
243	07	0.58	C.44	0.52	0.52	0.34	0.50	0.48			
260	0.55	0.53	0.43	0.48	0.52	0.51	0.51	0.41			
280	J.56	0.59	0.46	0.46	0.54	C.21	0.52	0.45			
300	0.58	C.51	C.+3	(.52	0.52	C.52	0.54	0.41			
320	0.54	6.58	0.50	0.50	C.54	0.53	0.48	0.41			
343	0.50	0.51	0.54	0.52	0.54	0.54	0.52	0.40			
367	9.63	0.59	0.54	0.50	0.56	0.55	0.48	0.43			
38)		****	****	****	****	****	****	****			
403	0.58	1.57	0.53	C.54	0.54	C.63	0.50	0.+3			
420	0.62	0.53	0.53	C . +5	0.52	0.50	0.48	0.41			
440	0.52	0.59	0.57	0.63	0.53	0.48	0.54	0.42			
460	0.07	0.62	C.52	C . +2	0.59	C.53	0.50	0.41			
483	3.04	0.32	0.57	C. 44	0.59	0.45	C.48	0.46			
500	0.56	0.52	0.52	0.48	0.55	0.52	0.55	0.42			
520	0.60	0.43	C.56	0.52	0.57	0.48	0.48	0.48			
543	0.45	0.48	0.57	0.52	0.60	0.46	0.52	0.42			
500	****	****	••••	****	••••	••••	••••	****			
580	0.53	6.52	6.58	(.52	0.63	C.48	08	0.48			
603	0.55	0.63	0.00	0.52	0.55	0.47	0.54	0.44			
623	U.55	0.50	0.00	0.48	0.60	C.44	0.50	0.49			
640	2.02	0.53	0.71	C.52	0.54	0.42	0.53	0.51			
663	10.61	C. 64 -	6.79	C.56	0.57	0.49	0.54	0.51			
683	7.50	0.65	0.70	0.59	0.60	0.51	0.57	0.51			
700	0.62	0.03	C.78	0.57	0.57	0.47	0.57	0.56			
720	0.58	0.65	0.82	C.52	0.04	0.46	0.55	0.57			
740	3.67	0.03	0.80	6.59	0.62	0.+3	0.54	0.59			
763	0.74	0.60	0.81	0.56	0.61	0.53	0.56	0.56			
780	0.00	0.59	0.70	0.61	0.58	C.54	0.61	0.60			

SHOCK MONKEY 134

20	MINUTE	PERFORMANCE	SCURES

TIME	81	82	83	84	85	£	P1	PZ
23	100	94	100	100	96	100	100	100
40	100	95	130	100	100	100	100	100
63	100	160	100	100	100	100	100	100
83	100	100	100	100	100	100	100	103
100	100	100	100	100	100	96	100	100
120	100	90	100	100	100	100	100	100
140	100	100	100	97	100	100	100	100
160	100	.00	100	100	100	100	100	100
183	100	100	100	96	100	100	130	100
200								
220	90	100	100	100	100	93	100	100
240	100	100	100	100	100	100	100	100
260	98	100	130	98	100	100	98	100
283	100	100		100	100	98	100	93
303	100	100	100	100	100	96	100	100
320	100	160	100	100	100	100	100	100
340	100	163	100	100	100	96	100	100
360	94	100	100	100	100	100	100	100
360								
403	100	100	100	100	100	160	100	100
423	96	102	97	100	100	100	100	100
440	96	89	100	97	96	96	100	100
+63	100	100	100	100 -	100	93	100	100
483	100	95	130	100	100	100	100	100
500	100	10)	96	97	100	100	96	96
520	100	100	136	100	100	100	100	100
540	100	100	97	100	100	97	100	90
500								
582	130	100	100	93	100	96	100	97
600	100	103	97	100	100	95	100	98
620	100	93	100	98	100	98	98	100
643	98	163	100	100	100	100	100	100
663	98	98	100	100	100	100	100	100
683	100	16)	130	100	100	96	100	100
700	98	100	100	100	100	100	98	100
720	100	100	100	100	100	100	100	100
743	93	98	100	100	98	98	100	98
760	100	100	100	100	100	100	98	100
780	100	100	100	94	100	100	100	100

SHOCK MONKEY 134

20 MINUTE REACTION SCORES

714E	31	82	83	84	65	Ε	Pl	PZ
20	0.31	0.35	0.33	C.32	0.32	0.35	0.35	0.37
43	0.32	0.33	0.35	0.35	C.31	C.45	0.37	0.36
63	0.33	0.34	0.38	0.30	0.35	C. +8	0.36	0.40
80	0.36	0.37	0.37	C.32	0.31	0.42	0.34	0.38
100	0.47	0.34	0.38	6.37	C.33	0.45	0.36	3.40
120	3.34	0.33	0.43	0.36	0.34	0.39	0.37	2.33
140	C.38	0.32	0.39	0.36	C.31	0.43	0.38	0.38
163	0.33	0.34	0.36	0.35	0.35	0.44	0.36	0.41
180	0.38	6.36	0.43	0.42	0.33	0.45	0.39	0.30
200	****	****	****	****	****	****	••••	****
220	3.34	0.33	0.43	C. 40	C.35	0.48	0.39	0.37
2+3	C.35	0.36	0.40	0.36	0.40	0.48	0.41	0.38
260	0.41	(.36	0.40	0.41	0.34	0.48	0.40	0.37
283	0.39	0.35	****	C.37	0.35	0.49	0.33	0.40
300	0.38	0.39	0.+1	0.38	0.37	0.48	0.43	C.38
323	0.40	0.38	0.40	C. 40	0.40	0.50	0.42	0.39
343	0.39	6.40	08	0.40	0.35	0.54	0.40	C.43
360	0.39	0.38	0.46	0.41	€.38	0.52	0.41	0.40
380	****	****	****	****	****	****	****	****
-00	0.34	0.39	0.48	0.47	0.35	0.52	0.32	0.37
423	0.39	0.41	0.43	0.41	01	C.50	0.41	C.42
443	0.33	6.40	C.39	C. 45	0.44	C.54	0.42	3.40
463	0.41	0.34	0.32	0.42	0. 12	0.43	0.45	0.39
483	C.37	6.38	C.34	06	0.41	0.47	0.43	0.42
500	0.33	0.35	C.38	0.50	0.39	0.43	0.48	C. 39
520	0.43	0.41	C.35	C. 47	C.41	C.47	0.43	0.38
540	2.43	0.41	C.3+	0.50	0.48	0.57	0.45	0.41
563		****	****	****	****	••••	****	****
580	0.39	0.39	0.37	0.43	C.41	0.48	0.37	0.42
600	0.45	0.42	0.39	6.42	0.40	0.47	0.40	3.42
623	3.41	2.37	C.35	C. 38	0.40	0.+2	0.40	C.37
643	2.43	0.39	C.31	0.33	0.40	C.39	0.41	0.38
663	C.39	0.39	0.36	0.35	0.43	0.47	0.42	
683	0.40	C. 40	0.36	0.35	0.43	C.47	0.43	0.41
700	C . 38	6.37	0.37	0.37	0.40	0.45	0.44	0.41
723	C.38	0. 41	0.38	0.40	0.45	0.47	0.41	0.44
743	0.44	0.43	0.40	0.47	0.41	0.48	0.43	0.42
760	C.39	0.38	0.43	0.51	0.41	0.51	0.44	
783	0.42	0.37	0.45	0.42	0.44	0.41	0.42	0.44

SHOCK MONKEY 446

20 MINUTE PERFORMANCE :

TIME	81	82	d3	84	85	ε	P1	P 2
20	97	99	130	97	100	100	100	100
43	98	100	120	100	100	95	100	100
63	100	100	96	100	100	92	136	100
83	100	160	130	100	98	100	96	100
100	100	100	100	100	96	100	130	96
123	100	102	130	100	96	100	90	95
140	97	97	100	100	97	96	100	100
103	100	96	100	100	88	92	96	92
183	100	100	71	100	100	100	100	96
200	100	100	41	100	100	100	100	70
223	97	100	100	100	100	96	100	100
240	93	100	120	97	100	160	120	100
260	98	100	100	100	100	100	130	98
230	95	96	90	100	98	98	100	98
300	- 98	100	76	90	90	97	100	100
320	100	95	120	100	100	100	100	100
340	93	100	120	100	100	97	96	96
300	93	92	100	100	100	90	100	96
300	73	72	130		100	70		70
400	91	100	100	93	100	100	97	92
+20	93	96	96	89	100	97	100	100
4+7	97	100	100	93	100	100	96	100
402	98	100	90	96	96	96	100	100
483	43	100	34	88	100	97	97	100
500	97	96	130	86	100	97	100	90
523	98	95	100	90	100	47	94	100
5+0	98	100	100	96	96	100	100	100
560								
580	95	100	130	97	100	100	100	100
633	98	97	28	93	97	100	100	100
620	100	97	98	88	94	98	96	90
640	100	90	100	95	100	97	98	98
660	98	100	98	95	98	95	100	98
680	98	100	98	98	100	100	130	100
700	98	100	98	96	98	96	98	100
720	96	93	98	93	100	98	95	100
743		100	100	97	100	98	98	98
760		95	100	93	98	96	100	160
780		98	130	98	100	98	95	98

SHECK MONKEY 446

23 MINUTE REACTION SCORES

TITE	81	32	83	84	65	ε	P1	PZ
20	3.39	C. 41	0.50	0.76	0.53	0.50	C.44	0.48
40	0.45	80	0.56	0.50	0.41	C.50	0.48	0.57
63	0.45	0.50	0.00	0.58	0.50	0.40	0.48	0.04
80	0.43	0.47	0.59	0.53	0.47	0.49	0.48	0.64
100	0.45	(.52	0.45	6.54	0.47	0.49	0.51	0.71
120	0.43	0.50	0.57	0.54	0.52	0.48	0.44	2.68
140	0.43	C.51	0.07	0.55	0.46	0.50	0.41	2.60
160	3.46	0.63	0.67	0.04	0.55	0.54	0.50	0.61
183	0.52	C.57	0.59	C.52	2.50	C.48	0.53	6.53
500		****	****	****		****	****	****
223	0.47	C.53	0.40	C.52	0.40	0.50	0.5+	0.53
240	0.45	C.50	0.54	0.59	0.52	0.60	0.57	0.52
260	2.44	0.54	6.59	C.61	0.49	6.65	0.55	0.58
CBS	0.45	6.56	C.56	0.63	0.54	C.65	0.59	0.57
300	3.48	0.50	0.55	C. 03	0.54	0.66	0.62	0.61
320	0.49	0.55	0.60	0.61	0.52	0.71	0.58	0.63
3+3	2.40	0.58	0.63	0.59	3,52	0.01	0.59	C. 61
360	0.49	0.60	0.63	0.59	3.50	6.07	0.56	0.07
380		****	****		****	****	****	****
+00	0.48	0. 45	C.56	0.54	0.53	0.03	0.55	0.57
423	0.52	0.54	0.52	0.59	0.53	0.61	0.00	3.57
440	0.57	0.54	0.23	0.59	0.55	6.54	0.54	0.59
463	3.47	0.54	0.57	C.52	0.50	0.05	0.59	0.61
483	3.24	0. +7	0.55	0.61	0.56	0.61	0.57	0.56
500	0.53	0.55	0.57	0.60	0.50	C.68	0.57	0.68
520	0.53	6.55	0.61	0.56	0.52	0.57	0.52	0.53
543	3.54	6.57	0.60	0.59	0.54	0.07	0.59	0.64
560		****	****	****	****	****	****	****
583	0.50	0.35	0.50	0.01	0.50	0.53	0.52	0.50
600	0.48	0.93	0.57	0.61	0.53	0.04	0.54	0.58
623	0.50	C. 34	0.55	1.57	0.49	0.90	0.60	0.62
643	0.58	C.55	0.65	0.60	0.57	0.01	0.58	0.03
600	0.50	0.35	0.56	0.55	0.47	0.61	0.59	0.57
683	0.55	0.59	0.66	0.61	3.53	0.65	0.57	0.58
700	0.02	6.58	0.59	0.63	0.60	6.01	0.64	0.62
720	0.63	0.61	0.26	0.57	0.59	0.58	0.63	0.60
743	****	0.54	0.00	0.63	3.02	C.67	0.63	0.64
760		6.68	0.61	0.00	0.61	0.69	0.65	0.66
780	****	0.65	0.58	0.60	0.60	0.69	0.62	0.72

SHOCK MONKEY 454

			20 MIN	UTE PERF	RMANCE	SCORES		
TIME	81	82	63	84	85	E	P1	PZ
20	100	95	96	90	100	100	100	100
43	100	88	95	100	100	100	100	100
60	100	100	100	100	100	93	100	100
83	100	100	95	98	100	98	96	100
100	100	103	100	98	100	100	100	100
120	100	100	96	100	100	100	100	100
143	100	100	130	100	100	97	100	100
160	100	100	100	100	100	100	96	96
183	100	96	97	100	100	96	100	97
223	100	100	97	100	100	100	96	100
240	96	100	93	100	100	90	92	100
260	98	100	96	100	100	94	100	98
283	100	93	97	100	100	98	98	100
300	100	100	96	100	100	94	42	100
323	100	100	96	100	100	93	92	100
340	97	100	93	100	100	74	100	100
360	100	160	76	96	100	89	100	100
380								
400	100	96	100	100	100	84	100	100
420	100	90	90	100	90	93	93	100
440	100	97	97	100	100	36	90	100
463	100	94	100	100	96	92	100	96
430	100	93	93	100	100	96	93	97
500	100	100	100	100	96	84	39	96
520	100	97	97	100	100	92	96	100
543	97	100	100	100	96	93	92	100
500								
533	97	90	100	97	100	81	100	100
600	100	96	92	100	100	90	100	100
620	100	93	100	100	96	96	98	100
643	100	100	97	100	100	90	96	96
000	98	100	96	100	100	91	98	90
683	100	96	98	100	100	60	100	96
700	100	98	97	98	98	88	96	100
720	100	160	98	98	100	88	100	96
743	100	100	100	100	100	90	100	98
760	100	100	100	100	98	94	93	100
7 40	98	93	98	98	96	84	98	98

SHOCK MONKEY 454

			ZO MINUT	E REACTION	SCORES			
TIME	81	82	83	87	€5	E	PI	PZ
20	3.39	6.54	C.+8	C.52	0.41	C.48	0.52	0.43
43	0.45	C. 55	0.50	0.50	0.41	0.22	0.53	9. 45
63	0.48	0.46	0.48	0.55	0.47	0.48	0.53	0.40
83	C . 47	0. +4	0.51	0.51	0.44	0.53	0.51	0.45
100	0.47	0.43	0.59	C. 46	0.44	(.51	0.58	0.51
120	9.45	0.50	0.56	C.+8	0.45	0.52	0.53	0.46
1-0	3.48	C. +8	0.55	C. +6	0.42	0.57	0.56	0.52
103	C.46	6.50	0.52	0.50	0.46	0.04	0.67	0.50
180	0.48	0.50	0.55	C. 50	0.47	0.07	0.63	0.50
200	****	****	****	****	****	****	••••	****
220	0.48	0.55	0.01	0.45	0.40	0.07	0.60	0.40
240	0.50	0.35	0.56	0.52	0.48	0.05	0.58	0.46
260	0.41	0.49	0.58	0.49	0.45	0.63	0.64	3.48
280	0.42	0.45	0.57	C.53	0.47	0.65	0.73	0 9
300	0.40	0.52	C.56	0.55	0.43	C.67	0.73	C8
323	2.40	0. 55	0.03	0.53	0.50	0.71	0.65	0.50
3+0	0.61	0.52	0.59	0.55	0.49	0.65	0.69	0.52
360	0. +5	0.52	0.52	0.52	0.52	(.68	0.09	C.58
380	****	****	****	****	••••		••••	
400	0.43	0.56	0.54	C.52	2.52	C.69	0.69	0.47
420	0.42	0.58	0.52	0.48	0.50	6.73	0.63	0.47
443	0.40	0.57	C.54	0.48	0.59	0.69	0.69	2.52
463	0.45	0.48	0.59	0.41	0.52	(.72	0.67	0.48
48)	0.44	C.53	6.54	0 7	0.55	C.72	0.67	0.57
500	C. 43	0.57	0.57	C.52	0.54	0.77	0.09	0.58
52)	0.41	0.53	0.54	0.56	0.48	C.75	0.61	2.04
540	0.40	0.54	C. >6	C.48	0.50	0.78	0.03	
500	****	****	••••	****	••••	****	****	
583	0.41	C. 50	0.45	0.52	0.57	0.73	0.53	0.73
603	0.43	0.52	C.61	0.48	0.48	0.70	0.52	2.00
623	3.44	0.46	C.58	C. +8	0.45	C.75	0.54	
643	0.44	0.52	0.63	0.47	0.51	0.78	0.61	0.67
663	0.43	0.51	C.63	C.07	0.44	0.78	C.58	3.51
683	0.39	0.54	C.55	C. 49	0.53	C.77	0.58	0.49
700	0.39	0.50	6.59	0.47	0.51	0.72	0.67	0.50
723	0.40	0.50	0.64	0.47	0.48	C.78	0.66	0.49
740	0.46	0.49	0.55	C.52	0.44	0.74	0.65	0.55
760	0.47	0.49	0.63	0.52	0.44	0.70	0.77	0.62
780	0.48	0.51	0.61	0.53	0.44	0.05	0.73	3.69

SHOCK MONKEY 468

20	MINISTE	PERFORMANCE	224332

TIME	81	82	83	84	65	€	P1	PZ
22	100	100	96	100	78	100	100	100
40	100	100	100	100	93	93	100	100
6)	100	100	100	100	92	93	100	100
65	98	93	100	100	94	100	100	100
100	100	98	120	100	96	100	98	100
120	100	95	100	100	97	96	96	100
140	100	100	100	100	100	85	97	100
160	96	96	100	96	100	97	96	100
180	100	100	100	100	92	93	100	103
200								
223	100	100	100	100	93	92	93	100
243	100	100	100	100	90	92	100	100
260	96	98	97	100	96	88	98	100
280	97	93	100	100	95	91	96	100
300	97	94	73	96	90	79	130	100
320	97	90	93	100	92	97	93	100
347	100	97	9.	100	93	91	96	100
300	100	100	94	100	92	76	100	160
380		• • • •				2.5		
403	97	94	93	100	93	84	89	100
423	96	97	97	100	88	79	90	100
443	100	100	100	96	90	52	96	100
400	97	89	100	100	91	50	90	160
483	100	160	97	100	85	03	96	100
500	93	93	100	100	82	48	96	100
520	96	100	97	100	88	50	96	100
2+0	90	93	90	100	63	48	92	100
500								
580	100	94	100	100	80	61	92	100
600	92	90	100	96	80	64	96	100
020	98	95	130	100	87	74	92	98
643	91	97	100	100	82	83	92	93
000	90	163	78	100	86	80	98	93
683	100	96	100	100	90	74	92	98
700	100	160	100	98	8.5	76	90	. 98
720	100	100	97	100	92	98	93	9.3
740	95	95	100	100	92	61	98	9.
760	98	100	100	100	88	66	90	100
780	100	100	95	100	78	64	100	100

SHOCK MONKEY 468

20	MINUTE	REACTION	SCORPS

TIME	51	9.2	83	84	85	E	Pl	P 2
20	2.46	0.45	C.+2	0.43	0.54	0.47	0.47	0.41
43	3.37	0.50	0.33	C.43	0.52	0.58	0.57	0.43
63	3.48	0.48	0.55	C. 52	0.54	C.58	0.57	2.47
80	0.53	0.51	0.53	0.52	0.57	0.62	0.58	0.43
100	0.53	0.49	6.54	C. +5	0.55	C.59	0.73	0.40
123	3.54	0.53	0.63	0.50	0.53	0.60	0.67	0.41
140	0.57	0.59	0.50	C. 47	0.55	0.59	0.63	0.42
160	0.57	0.56	0.06	0.43	0.59	0.62	0.73	0.45
130	0.60	0.59	0.53	0.47	0.60	0.63	0.63	9.43
200			****	****	****			****
220	0.61	0.50	0.60	0.52	0.59	C.63	0.68	0.47
2+3	3.58	0.57	C.53	0.50	0.61	0.71	0.69	0.42
260	3.50	0.59	0.53	0.51	0.65	C.74	0.61	3. 45
280	0.61	0.57	0.59	6.50	0.67	C 76	0.65	C.46
300	3.55	6.58	0.57	0.50	7.67	0.70	0.71	0.48
323	0.55	0.59	0.09	0.48	3.72	0.71	0.63	0.52
343	0.53	0.58	0.62	0.48	3.63	0.70	0.53	0.48
360	3.62	6.53	0.72	0.48	0.68	0.77	0.65	0.51
390		****	****	****	****	****	****	****
423	0.61	0.00	0.58	6.45	0.71	0.73	0.68	0.48
423	0.58	0.61	6.64	0.46	0.75	0.78	0.70	0.46
4+0	0.64	0.58	0.65	0.42	0.70	0.69	0.75	0.52
407	2.64	0.57	0.08	C. 48	0.71	C.71	0.74	C.54
+80	2.64	0.02	0.00	0.50	0.74	C.79	0.67	0.53
500	3.00	C.59	0.71	0.50	0.79	0.75	0.72	0.55
520	0.03	6.59	0.00	0.52	0.73	0.69	0.74	0.56
543	1.63	0.53	0.73	0.44	0.85	0.64	0.72	0.52
563		****		****	****		****	****
580	0.00	0.62	0.04	C.48	0.75	0.74	0.73	0.54
600	0.65	0.64	0.70	0.50	0.79	0.31	0.71	0.55
620	0.05	0.60	0.03	0.46	3.77	0.74	0.73	9.56
04)	2.67	0.02	0.09	0.49	0.79	0.74	0.66	0.55
000	3.67	0.01	0.7+	C.50	0.74	0.74	0.71	0.58
680	0.58	0.53	0.69	C.53	0.67	0.71	0.61	0.55
733	0.59	0.50	0.80	0.53	0.66	0.07	0.73	0.59
720	0.62	0.57	0.58	0.52	0.80	C.79	0.67	0.62
740	0.60	0.60	0.65	0.54	3.71	C.33	0.65	0.05
760	0.72	0.67	0.68	0.35	3.75	0.28	0.67	0.62
780	0.67	0.04	0.69	0.55	2.77	0.27	0.71	0.63

SHOCK MONKEY 490

			20 MIN	UTE PERFO	RMANCE SC	CRES		
TIME	81	82	33	84	85	E	P1	P2
20	92	96	100	97	100	98	100	100
43	100	95	130	100	100	100	100	100
63	100	100	100	100	100	96	100	100
80	100	98	100	100	100	97	100	100
100	100	100	100	100	100	100	100	100
120	100	100	100	100	100	100	130	100
140	100	100	100	97	100	100	100	100
163	100	100	100	100	100	100	100	97
140	100	100	100	100	100	160	100	95
200								
223	100	100	100	100	100	100	100	100
243	100	100	100	100	100	100	100	100
200	100	97	100	100	100	97	98	98
280	100	100	100	100	100	100	98	100
300	100	163	130	100	160	100	100	100
320	100	100	100	100	97	100	100	100
340	100	100	100	96	100	100	100	96
360	100	100	100	97	100	100	100	100
383								
400	100	150	100	100	100	100	100	100
+20	100	100	100	90	100	100	100	97
440	100	100	100	100	100	100	130	100
460	100	100	100	100	100	100	100	100
483	100	160	100	100	100	100	100	100
500	100	100	100	100	100	100	100	100
520	100	100	97	100	100	100	100	100
543	100	100	100	100	100	100	96	100
560								
583	100	1()	100	100	100	97	100	100
600	100	100	100	100	100	100	150	97
620	100	100	100	100	100	100	100	100
643	100	100	100	100	100	98	98	93
660	100	98	100	100	100	100	96	100
683	100	100	100	100	100	100	100	100
700	100	163	100	98	93	100	97	100
723	100	100	100	100	98	98	98	100
743	100	100	100	98	100	166	96	97
700	100	100	100	98	98	98	100	100
783	100	100	100	100	100	100	100	100

SHECK MONKEY 490

			23 MINUTE	REACTION	SCORES			
TIME	81	82	63	84	65	E	PI	PZ
20	0.80	0.65	0.70	0.04	0.79	C.51	0.52	0.47
40	0.69	0.65	0.62	0.62	3.59	0.40	0.58	0.55
60	0.74	0.60	C.71	0.60	0.05	C.44	0.53	0.43
90	2.80	0.67	0.81	C.55	0.69	0.57	0.57	0.52
100	0.84	0.65	0.86	0.57	G. 64	0.49	0.50	0.54
120	0.84	0.55	0.71	C.55	0.70	0.50	0.54	0.54
140	C.79	C. 01	0.74	0.59	0.67	0.48	0.57	2.53
100	3.95	C. 55	0.93	C.50	0.70	0.35	0.55	0.55
130	0.81	0.00	0.79	C.55	0.70	0.54	0.59	0.52
200	****	****	****	****	****	****	****	****
220	3.77	C.58	C.63	(.55	0.75	0.42	0.52	0.55
240	0.87	0.55	0.58	0.61	9.76	0.53	0.59	0.58
260	0.97	0.57	0.61	0.59	3.84	0.53	0.56	0.56
230	0.37	0.52	C.79	C.58	0.72	0.53	0.66	0.55
300	0.85	C.55	0.73	C. 61	3.79	C.54	0.62	L.57
320	0.93	0.52	C.73	0.62	0.75	0.53	0.66	0.57
3+3	3.97	0.48	C.73	0.59	0.74	0.52	0.65	2.56
360	2.97	0.48	0.63	0.54	3.07	0.54	0.63	0.58
383		****	****	****	****	••••	••••	****
403	9.97	6. +5	C.65	(.55	0.71	0.57	0.67	0.57
423	0.87	C.55	0.70	0.60	0.01	0.55	0.08	0.61
440	7.75	0.60	0.73	0.57	0.67	0.52	63.0	0.59
460	3.89	0.48	C.74	0.53	0.77	C.50	0.60	0.57
483	3.88	0.50	6.51	0.55	0.74	(.53	0.59	0.54
500	2.82	0.57	6.97	0.60	0.72	0.67	0.66	0.54
520	J.86	0.57	0.90	0.54	3.73	C.63	0.62	0.61
543	0.90	0.53	C.93	0.59	C.84	0.59	0.68	0.59
560	• • • •	****	••••	****	****	••••	••••	0.59
580	0.77	0.45	0.70	0.56	0.70	0.50	0.63	
600	5.81	0.48	C.80	0.90	0.71	0.63	0.67	0.55
620	0.82	C. +9	0.74	C.51	3.75	0.44	0.63	0.49
643	3.91	0.52	0.79	0.56	0.69	C.55	0.60	0.40
663	0.88	(. 49	0.69	C.54	0.83	0.57	0.55	0.40
683	0.84	6.35	0.75	0.51	0.83	0.63	0.59	0.52
700	0.85	0.55	0.75	C.68	0.78	0.59	0.59	0.60
720	0.95	0.55	0.85	0.60	0.77	0.63	0.62	0.59
7+3	0.88	C.54	0.72	0.60	0.61	C.67	0.59	0.63
760	0.84	C. 56	0.78	C.57	3.76	C.64	0.56	0.61
783	0.96	0.58	0.92	0.53	0.83	0.96	0.55	0.59

SHECK MONKEY 504

20	MINITE	PECEMPMANCE	229032

TIME	81	82	8.3	84	85	ε	P1	P 2
20	100	100	100	100	100	100	100	100
40	100	100	96	160	100	97	130	100
6)	100	100	100	100	100	96	130	100
83	100	100	100	100	100	100	100	100
100	100	100	100	100	100	97	100	100
120	100	100	100	100	100	96	120	100
1.0	100	100	100	100	97	100	100	100
160	100	100	100	100	100	100	100	100
180	97	100	100	100	100	100	100	96
200								
220	100	97	97	100	100	100	120	100
2+3	100	100	100	100	100	100	100	100
260	100	100	98	100	100	100	100	100
283	100	163	100	100	100	100	100	100
300	100	160	120	100	100	96	100	100
320	100	100	100	100	100	100	100	100
343	100	100	100	100	100	100	100	100
360	100	160	100	160	100	100	100	93
380								
400	100	100	100	100	100	97	100	160
423	100	10)	130	100	100	96	130	97
443	100	103	95	100	100	100	93	96
400	100	100	100	100	100	100	96	100
480	100	160	100	100	100	100	92	100
500	100	100	100	100	100	100	100	100
520	100	100	130	100	100	100	100	100
540	100	100	96	100	100	100	100	100
500								
500	100	100	9.7	100	90	100	100	97
600	100	100	100	100	96	96	100	27
623	100	1.00	130	100	100	100	100	100
640	100	100	100	100	100	100	100	100
000	98	100	100	100	100	100	100	100
680	100	100	100	100	100	96	98	97
700	100	100	100	100	100	100	95	100
720	100	100	100	100	98	100	98	96
740	98	100	96	100	98	100	93	90
760	100	100	100	100	97	98	97	97
783	100	100	98	100	100	100	96	100

SHUCK MUNKEY 504

20	MINUTE	REACTION	SCORES

TIME	81	82	83	84	65	E	P1	P2
20	3.44	0.48	0.40	0.44	2.60	0.41	0.43	0.41
43	0.40	0.52	0.48	6.40	0.47	0.45	0.49	0.42
63	0.43	0. +2	0.47	0.46	0.48	0.+2	0.48	0.45
80	0.44	0.48	0.47	0.47	0.49	0.42	0.40	0.44
100	0.49	0.50	C.55	0.48	0.49	0.44	0.49	0.47
120	0.45	0.59	0.54	0.50	0.52	0.39	0.48	0.48
143	0.52	0.53	0.52	C.54	0.53	C.42	0.52	0.52
150	0.40	0.62	0.50	0.55	0.48	0.42	0.50	0.46
183	0.50	0.03	0.52	0.52	0.52	0.44	0.52	2.48
200	****	****		****		****	****	****
220	0.45	0.50	0.53	0.52	0.55	0.43	0.45	0.50
243	2.43	0.48	0.52	C.52	0.50	0.+5	0.48	C.48
263	0.47	0.45	0.51	0.22	0.53	C.+2	0.45	0. 44
280	0.48	0.49	0.50	C.54	0.53	0.45	0.48	C.51
300	3.54	C. +5	C.57	0.63	0.54	C.43	0.54	0.55
320	0.52	0.48	C. 48	0.57	0.59	0.44	0.56	0.46
340	0.48	0.52	0.47	0.59	0.54	0.43	0.52	0.54
352	3.54	0. 46	0.45	0.35	6.57	0.50	0.53	0.44
383	****	****	****	****	****	****	****	****
403	0.47	0. 44	0.48	0.23	0.55	0.42	C.48	0.55
+23	0.48	0.40	0.57	0.57	0.59	0.44	0.47	0.45
440	0.50	0.52	0.50	0.52	0.59	0.48	0.70	0.48
463	3.48	0.50	0.57	0.59	0.64	0.48	0.54	0.50
483	0.53	C. 55	0.53	6.50	0.59	0.45	0.51	C.50
500	3.47	C.52	0.55	C. 35	2.59	0.55	0.53	0.52
520	0.54	0.56	0.57	C.53	C.58	0.50	0.52	0.48
540	C.53	0.48	0.50	C.60	0.52	0.50	0.53	0.50
563	****		****	****	****	****	****	****
580	0.48	C. 56	C.53	0.35	0.50	C.54	0.56	0.55
600	7.46	0.57	0.50	0.58	0.48	0.48	0.62	0.52
623). **	0.50	0.47	0.59	0.50	0.50	0.54	0.52
042	0.52	0.52	0.51	C.62	0.51	0.51	0.60	C.53
663	0.51	C. 52	0.50	6.57	0.53	0.55	0.51	C. 54
683	0.51	0.60	0.49	0.50	0.56	0.47	0.53	0.54
700	0.52	0.59	0.52	C. 62	0.59	0.51	0.49	0.53
723	2.53	0.58	0.54	C.60	0.57	0.53	0.55	3.54
740	0.52	0.63	0.52	C.67	0.56	C.53	0.53	C.56
760	3.51	0.00	0.51	0.73	0.53	C.58	0.59	0.57
780	0.50	0.63	0.61	0.73	0.53	0.52	0.58	0.54

FOCO MONKEY 50

			2) MINUTE PERFORMANCE			SCERES			
TIME	81	82	63	84	85	E	P1	PZ	
20	26	97	100	100	46	78	96	100	
43	23	96	9.3	100	93	100	47	100	
60	48	100	23	96	97	89	13	100	
60	44	93	63	100	100	90	22	93	
100	90	93	30	100	98	98	77	100	
120	76	93	33	100	95	100	7	46	
1+3	43	85	97	83	52	87	43	103	
160	90	90	8 4	82	100	100	74	100	
180	32	97	31	100	73	90	77	97	
200									
220	62	9.	100	100	90	30	90	100	
243	86	97	90	97	80	0	92	97	
200	94	93	91	100	98		77	88	
230	93	100	48	96	100	4	98	90	
300	7.6	97	73	100	97	0	97	97	
320	92	95	90	100	0.7	0	39	97	
3+3	40	97	100	100	40	0	5.9	100	
360	63	100	97	97	100	0	100	90	
380									
400	21	95	8.8	52	57	3	96	89	
420	63	16)	76	86	92	0	97	68	
440	04	100	7.7	97	33	15	94	89	
400	72	100	133	90	100	0	90	100	
480	21	96	90	100	65	7	97	89	
500	25	100	97	100	64	3		97	
523		10)	39	97	96	3	96	160	
540	85	100	92	62	92	3	92	97	
500									
580	61	100	73	100	40	20	97	100	
600	59	93	130	97	90	0	59	100	
620	48	100	120	96	72	2	93	90	
043	90	93	70	100	72	3	86	96	
660	61	100	37	98	92	0	30	96	
683	69	100	33	90	50	0	1,0	98	
700	04	100	+ 3	75	98	2	55	75	
720	62	97	92	95	64	0	7.8	63	
740	60	94	70	46	4	0	00	98	
760	57	100	35	93	90	0	79	92	
783	61	63	40	15	73	0	65	93	

FOOD MONKEY 50

			20 MINUT	E BEACTION	SCORES			
TIME	B 1	82	B 1	94	85	Ξ	P1	P2
20	0.67	0.48	0.57	0.56	0.46	0.50	0.52	0.44
40	0.80	0.50	0.60	0.52	0.56	0.50	0.64	0.46
6.0	0.55	0.52	0.60	0.48	0.50	0.48	0.50	0.44
90	0.54	0.49	0.62	0.50	0.50	0.44	0.53	0.51
100	0.58	0.45	0.53	0.47	0.48	0.47	0.60	0.43
120	0.58	0.54	0.54	0.50	0.48	0.43	0.50	0.42
140	0.55	0.59	0.57	0.44	0.50	0.50	0.62	0.46
160	0.57	0.54	0.67	0.52	0.54	0.48	0.57	0.48
180	0.56	0.62	0.56	0.48	0.50	0.56	0.55	0.54
200		****	****	****	****	****		****
220	0.55	0.57	0.54	0.50	0.48	0.50	0.54	0.45
240	0.50	0.54	0.57	0.52	0.50	****	0.54	0.52
260	0.55	0.53	0.55	0.48	0.48	****	0.52	0.45
240	0.53	0.49	0.59	0.51	0.47	0.50	0.51	0.46
300	0.59	0.52	0.55	0.50	0.45	****	0.52	0.46
320	0.58	0.48	0.56	0.52	0.50	****	0.56	0.46
340	0.1.4	0.48	0.68	0.52	0.50	• • • •	0.56	0.53
350	0.15	0.50	0.55	0.55	0.47	****	0.48	0.52
380	••••		• • • •	••••	••••		****	••••
400	0.60	0.48	0.57	0.47	0.50	****	0.48	0.48
420	0.74	0.48	0.65	0.56	0.52	••••	0.54	0.59
440	****	0.44	0.63	0.48	0.50	0.75	0.48	0.44
460	0.57	0.45	0.50	0.58	0.48	••••	0.52	0.48
500	0.67	0.14	0.55	0.52	0.58	0.50	0.52	0.54
	****	0.00	0.57	0.53	0.55	1.00		0.50
520		0.44	0.53	0.52	0.52	••••	0.52	0.53
540	0.59	0.43	0.50	0.56	0.52	1.00	0.54	0.48
580	0.64	0.48	0.59	0.50	••••		****	
600	0.65	0.48	0.57	0.50	0.46	0.60	0.55	0.54
620	6.58	0.43	0.52	0.49	0.54	1.00	0.62	0.54
043	0.64	0.49	0.56	0.50			0.58	
660	0.61	0.49	0.55	0.51	0.50	0.50	0.63	0.53
680	0.69	0.44	0.54	6.98	0.52		0.66	0.55
700	0.54	0.47	0.57	0.53	0.53	1.00	0.61	0.50
720	0.62	0.50	0.54	0.50	0.55	1.00	0.48	6.50
740	0.60	0.46	0.65	0.49	0.57		0.53	0.52
760	0.57	0.48	0.60	0.54	0.55	****	0.59	0.55
780	0.63	0.51	0.61	0.50	0.56	****	0.59	0.55
100	0.03	0.51	0.61	0.50	0.36		V.52	0.55

FOOD MONKEY 130

			20 MINUTE	PERFOR	MANCE SCO	RES		
						E	P 1	PZ
TIME	81	62	8.3	54	8.5	78	-4	80
50	56	94	7 c	56	86	82	42	77
40	52	95	36	7.5	90	86	100	50
60	44	90	43	40		8	100	59
80	44	67	56	30	78 72	58	98	90
100	48	83	00	33		63	96	100
120	52	77	5.2	-0	85	99	90	83
140	44	03	64	48	81	68	76	91
160	41	89	36	+6	80	54	90	67
180	52	95	01	48	77	,,		
200				-		13	76	100
220	37	79	•0	32	86	23	96	77
240	53	63	**	33	88	50	37	81
260	15	0.	50	40	52	67	95	89
283	**	88	10	33	54	34	97	88
300	50	58	40	38	69	40	8.2	97
320	39	7)	60	23	04	30	84	94
340	33	75	50	39	00	6	76	8 +
360	31	83	02	32	50	· ·		
380						4	92	96
400	88	83	32	29	70	9	3.4	96
420	84	73	50	42	32	48	83	73
440	93	84	33	17	38	20	100	85
402	85	90	3 2	26	36	17	93	55
+40	73	78	30	29	48	13	39	17
500	65	87	5 4	21	58	16	79	19
523	62	04	+ 0	17	48	0	71	40
540	03	61	5.5	17	40			
500				25	40	6	8.6	00
580	6.8	93	50	27	42	0	70	03
600	63	87	**	32	44	21	96	57
620	52	91	37	16	55	36	95	92
643	0.7	92	+ 3	29	65	42	98	84
663	46	83	4.3	25	40	13	36	- 85
630	38	85	4.9	18	43	20	90	69
700	39	81	+ 8	30	38	27	95	00
720	42	91	52	39	43	20	89	CZ
740	51	6.5	40		58	32	94	00
760	3+	7+	+0	32	42	10	81	0.0
780	33	84	43	31	**			

POOD HONKEY 130

			20 MINUTE	REACTION S	COPES			
			0.3	1:4	P5	E	P1	P 2
TIME	31	02	0.70	0.89	0.68	9.70	0.77	0.70
20	0.67	0.61	0.90	0.92	Ú. E4	0.79	0.70	0.65
40	0.77	0.60	0.77	0.80	0.59	0.01	0.69	0.92
+0	0.03	0.63	0.85	0.63	0.82	1.00	0.62	0.71
60	0.83	0.65	0.92	0.85	0.91	0.79	0.60	0.67
100	0.73	0.47	0.76	0.82	0.83	0.90	0.96	0.55
120	0.75	0.65	0.78	1.00	0.73	0.79	0.64	0.57
140	0.83	0.80	6.81	0.83	0.80	0.79	0.60	0,62
160	0.62	0.67	0.83	0.85	0.71	2.79	0.60	0.67
180	0.85	0.65	****	****	****	* * * *		••••
200		****	0.82	0.58	3.58	0.75	0.68	0.67
220	0.80	0.65	0.75	0.39	0.63	0.86	0.64	0.60
240	0.57	0.65	0.89	0.93	0.86	0.81	0.08	0.64
260	0.78	0.63	0.92	0.85	0.63	0.54	0.63	0.60
280	0.89	0.61	0.12	0.00	0.99	0.80	0.63	0.59
300	0.63	0.57	0.91	1.60	0.78	0.83	0.20	0.57
320	0.82	0.63	0.82	0.91	0.88	6.75	0.76	0.62
340	0.19	0.64	0.02	0.86	0.92	1.00	0.69	0.59
360	0.88	0.59	0. +2	0.56	****	****	****	****
390		****	****	0.83	0.78	1.00	2.71	0.58
400	0.82	0.61	0.75	0.91	0.75	0.67	0.68	0.56
420	0.61	0.61	0.43	1.00	0.06	1.00	0.75	0.59
440	€.77	0.65	0.29	0.86	0.78	1.00	0.69	0.57
960	0.73	0.58	0.78	0.88	1.00	0.50	0.69	0.50
9110	0.79	0.62	0.80	63.0	0.85	0.67	0.72	0.60
500	6.76	0.67	0.07	1.50	0.88	1.00	0.82	0.67
520	0.78	0.67	0.86	0.75	0.92	1.00	0.71	0.54
590	0.82	0.62	0.91	0.75				
560	****	****			0.92	1.00	0.59	****
580	0.76	0.62	0.82	1.00	0.89		0.69	1.00
600	0.86	0.70	0.92	3.83	0.85	0.80	0.60	0.63
620	0.82	0.67	0.86	0.92	0.96	0.87	0.57	0.62
540	0.82	0.64	0.89	0.96	5.84	0.87	0.57	0.69
660	0.85	0.66	3.94	0.91	0.87	1.00	0.59	0.72
640	(.86	0.67	0.00	0.90	0.89	0.90	0.58	****
700	0.88	0.65	0.84	0.86	3.87	0.83	0.63	
720	0.89	0.67	0.92	0.83	0.89	0.91	0.61	1.00
740	0.86	0.67	3.A3	0.88	0.96	0.61	0.59	****
760	0.77	0.66	0.68		0.90	0.66	0.70	****
780	0.85	0.69	0.89	0.92	0.70			

FODD MONKEY 410

20	MINISTE	OFFERD	MANCE	SCORES

TIME	81	82	83	64	B 5	Ε -	P 1	P2
22	100	79	96	88		84	• 1	27
40	76	74	73	89		93	41	00
60	100	100	110	82		54	44	04
80	92	100	100	100		83	22	00
100	85	98	98	100		94	58	00
120	84	103	93	96	90	73	13	0.0
140	90	93	84	92	62	68	38	CJ
160	93	100	100	96	96	92	00	00
180	100	100	100	90	96	76	00	30
200								
220	93	100	1.30	86	100	69	00	00
243	100	96	100	90	100	00	03	10
263	85	160	96	100	100	00	00	CO
280	100	160	46	94	100	00	02	00
300	100	100	100	96	100	8.0	53	00
320	93	100	100	100	100	00	00	00
340	97	100	100	96	100	00	0.0	00
360	100	100	100	100	100	00	07	0.0
380								
400	68	100	100	100	92	00	00	00
420	100	76	120	100	100	00	00	00
440	100	100	130	100	100	43	03	00
450	83	97	100	100	100	39	0.6	00
483	85	100	100	100	100	88	0.0	00
500	52	103	100	81	100	54	0.6	00
520	27	100	96	96	100	82	0.0	00
540	25	96	96	92	100	74	57	00
560								
580	33	100	65	44	100	55	57	00
600	19	100	100	90	90	100	79	00
620	100	96	96	100	96	41	1.8	0.0
643	94	93	100	98	100	82	00	02
663	100	100	100	100	100	00	20	00
683	90	95	100	100	100	00	0.0	0.2
700	80	95	100	100	100	58	00	00
720	93	100	88	92	100	84	00	00
740	67	98	100	100	100	86	00	00
760	2	93	100	100	98	02	20	00
780	83	100	86	90	100	00	10	02
0								

POOD MONKEY 410

20 MINUTE REACTION SCORES

TIME	B 1 ·	B2	83	84	85	E	P1	P2
20	0.66	0.63	0.61	0.61	****	0.64	0.67	0.75
40	0.63	0.70	0.56	0.52	****	0.61	0.67	****
60	0.59	0.59	0.50	0.54	****	0.67	0.64	****
80	0.57	0.51	0.58	0.51	****	0.60	0.64	****
100	0.58	0.53	0.51	0.52	****	0.61	0.63	****
120	0.63	0.50	0.57	0.54	0.60	0.63	0.67	****
140	0.58	0.57	0.55	0.58	0.53	0.60	0.64	****
160	0.65	0.54	0.57	0.54	0.58	0.63	****	****
180	0.64	0.52	0.59	0.58	0.60	0.65	****	0.71
200	****	****	****	****	****	****	****	****
220	0.64	0.59	0.63	0.54	0.67	0.67	****	****
240	0.67	0.62	0.54	0.58	0.57	****	****	0.75
260	0.69	0.53	0.58	0.57	0.56	****	****	****
280	0.64	0.52	0.57	0.48	0.53	****	0.61	****
300	0.61	0.55	0.56	0.50	0.60	0.80	0.63	****
320	0.63	0.55	0.65	0.57	0.58	****	****	****
340	0.67	0.63	0.62	0.56	0.64	****	****	****
360	0.63	0.56	0.61	0.57	0.55	****		****
390		****	****	****	****	****	****	****
400	0.74	0.59	0.62	0.52	0.62	****	****	****
420	0.64	0.45	0.62	0.40	0.56	****	****	****
440	0.63	0.59	0.59	0.56	0.59	0.69	****	****
460	0.53	0.59	0.60	0.58	0.57	0.64	****	****
480	0.70	0.54	0.62	0.57	0.60	0.65	****	****
500	0.63	0.58	0.58	0.59	0.59	0.75	0.50	****
520	0.75	0.64	0.62	0.62	0.57	0.67	****	****
540	0.71	0.57	0.63	0.61	0.57	0.70	0.69	****
560		****		****	****	****	****	****
580	0.75	0.60	0.60	0.58	0.57	0.69	0.59	****
600	0.50	0.62	0.55	0.60	0.56	0.65	0.64	****
620	0.57	0.55	0.50	0.59	0.57	0.65	0.67	****
640	0.57	0.54	0.56	0.57	0.56	0.65	****	1.00
660	0.54	0.55	0.58	0.60	0.54	****	****	****
680	0.60	0.54	0.60	0.69	0.56	****	****	1.00
700	0.73	0.58	0.59	0.58	0.54	0.64	****	****
720	0.74	0.58	0.60	0.58	0.57	0.67	****	****
740	0.69	0.50	0.62	0.50	0.56	0.67	****	****
760	****	0.67	0.60	0.59	0.56	1.00	0.58	****
780	0.54	0.66	0.64	0.60	0.61	****	0.60	****

FOOD MONKEY 418

	PERFORMANCE	

TIME	81	82	3.3	84	85	E	91	PZ
20	100	74	36	3+	41	79	94	95
40	160	36	70	38	100	96	100	92
60	94	91	33	42	96	88	92	96
80	96	96	36	50	100	38	82	88
103	48	93	43	14	100	23	100	96
120	5.	81	50		100	92	90	60
140	70	96	77	69	96	64	93	69
160	66	81	78	52	100	91	39	92
183	38	96	75	69	100	92	*8	95
200	30	40	1.7	64	100	**	40	
223	28	90	40	33	58	58	40	97
240	32	97	• 7	38	100	72	86	73
	73		76	91	100	100	93	00
260	62	100	58	8	100	100	93	42
282					100	94	96	92
300	**	96	04	92		88	93	89
320	61	90	+6	13	100			
3+3	58	10)	• 7	82	100	86	7.8	83
360	73	100	3 4	10	100	72	57	70
383								
400	03	100	30	28	90	77	100	00
-23	0	100	2.5	77	100	100	93	07
440	03	96	50	56	100	85	89	92
460	41	100	30	3	100	73	80	14
480	33	100	100	19	100	85	31	72
500	32	100	+2	0	100	5+	0.8	97
520	45	100	38	50	100	93	23	66
5+3	07	100	93	92	100	100	67	43
560								
580	17	33	3.9	26	96	88	100	41
600	39	87	90	62	96	96	100	85
620	~1	93	9.6	0	100	89	96	98
643	51	93	100	0	100	7.8	96	78
663	64	91	96	0	98	05	98	93
660	57	98	83	2	100	02	130	98
700	73	96	100	0	100	00	61	. 04
720	80	92	130	2	98	00	00	02
743	87	95	100	4	100	00	0.0	00
760	75	98	100	0	98	00	48	03
780	87	98	100	0	98	00	15	00

POOD MONKEY 418

20 MINUTE REACTION SCORES

TIME	B1	9.2	83	B.4	35	E	21	P2
20	0.48	0.57	0.64	0.64	0.58	0.48	0.41	0.48
40	0.56	0.56	0.62	0.73	0.46	0.46	0.44	0.46
60	0.56	0.50	0.75	0.64	0.50	0.55	0.46	0.44
80	0.64	0.47	0.76	0.63	0.46	0.53	0.44	0.43
100	0.64	0.47	0.59	0.75	0.47	0.43	0.39	0.44
120	0.73	0.50	0.70	1.00	0.48	0.45	0.42	0.53
140	0.67	0.44	0.75	0.65	0.44	0.50	0.50	0.51
160	0.74	0.48	0.73	0.64	0.52	0.52	0.67	0.50
180	0.82	0.50	0.72	0.72	0.44	0.56	0.54	0.52
200		****	****	****		****	****	****
220	0.71	0.48	0.70	0.78	0.56	0.50	0.64	0.50
240	0.75	0.50	0.88	0.82	0.50	0.44	0.56	0.55
260	0.73	0.50	0.74	0.59	0.42	0.50	0.49	****
280	0.71	0.48	0.79	0.60	0.43	0.50	0.47	0.55
300	0.77	0.46	0.78	0.64	0.50	0.52	0.46	0.52
320	0.76	0.54	0.85	0.67	0.48	0.49	0.60	0.48
340	0.71	0.50	0.82	0.57	0.47	0.58	0.57	0.54
360	0.68	0.50	0.80	0.80	0.50	0.57	0.58	0.52
380	****		****	****		****	****	****
400	1.00	0.50	0.88	0.75	0.47	0.50	0.63	****
420		0.48	1.00	0.57	0.52	0.48	0.50	1.00
440	1.00	0.54	0.62	0.61	0.52	0.48	0.54	0.64
460	0.73	0.44	0.63	1.00	0.38	0.53	0.60	0.75
480	0.78	0.52	0.62	0.60	0.50	0.48	0.62	0.67
500	0.78	0.46	0.61	****	0.42	0.54	0.50	0.55
520	0.80	0.53	0.64	0.71	0.43	0.44	0.57	0.58
540	1.00	0.55	0.68	0.72	0.43	0.56	0.65	0.58
560	****	****	****		****	****	****	****
580	1.00	0.70	0.64	0.75	0.41	0.50	0.53	0.62
600	0.78	0.58	0.69	0.65	0.46	0.50	0.53	0.59
620	0.37	0.52	0.60	****	9.44	0.41	0.56	0.44
640	0.78	0.55	0.62		0.45	0.47	0.57	0.53
660	0.80	0.58	0.60	****	0.47	0.67	0.57	0.53
680	0.74	0.55	0.65	1.00	0.46	1.00	0.56	0.57
700	0.76	0.56	0.61	****	0.45	****	0.55	0.50
720	0.79	0.62	0.61	1.00	0.51	****	****	****
740	0.69	0.60	0.61	1.00	0.48	****	****	****
760	0.74	0.57	0.57	****	0.47	****	0.63	****
780	0.75	0.60	0.57	****	0.51	****	0.63	****

FOGO MONKEY 424

20 MINUTE	FERFORMANC	CCDDEC

TIME	81	82	8.3	84	85	E	P1	P2
20	85	93	+ 4	0	90	80	80	100
+0	97		7.9	17	96	100	81	64
60	9.		97	+3	93	90	76	100
90	98		93	91	100	+3	90	100
100	90		9.8	98	98	100	98	98
120	100	91	96	95	93	87	100	97
140	88	81	41	42	95	86	96	74
100	86	75	4.1	23	100	90	94	93
180	78	100	37	71	100	70	79	79
200								1.4
220	35	90	24	93	75	87	94	61
240	96	93	96	97	87	59	77	93
260	95	100	100	100	98	60	98	68
280	98	97	91	92	100	25	98	83
300	93	100	0.7	79	86	26	7.2	90
323	100	43	79	93	100	10	55	92
340	100	100	3 C	90	83	0	93	93
360	89	100	00	97	97	0	93	97
380					100		43	41
400	92	100	8.8	97	93	7	96	97
420	97	63	100	56	100	71	82	90
440	160	93	39	70	90	93	52	95
400	97	100	54	100	82	77	67	93
483	100	100	84	50	90	97	79	100
500	89	93	7.6	71	93	16	53	93
520	100	93	70	73	97	82	65	97
540	88	83	63	96	88	91	78	79
560								
580	84	97	86	83	79	86	100	76
600	97	160	100	100	95	84	9.5	100
620	92	93	94	100	91	85	94	98
640	98	48	9.8	100	100	96	98	100
600	90	93	100	90	98	8*	85	91
683	95	82	+9	77	75	95	91	93
700	89	93	67	78	76	55	95	96
720	92	100	91	89	80	2	88	92
740	98	98	7.7	78	94	9	92	97
762	94	89	49	88	98	0	93	97
782	90	93	74	55	59	42	95	94

FOOD MONKEY 424

20	MINUT	ERE	ACTI	ON	SCOPES

TIME 20	P1	32	83	84	B5	E	P1	P2
	0.61	0.73	0.73		0.67	0.62	0.70	0.62
40	0.67	••••	0.78	0.80	0.56	0.57	0.62	0.64
60	0.69	****	0.72	0.75	0.61	0.56	0.59	0.65
80	0.69	****	0.71	0.72	0.57	0.68	0.57	0.53
100	0.45		0.67	0.67	0.58	0.56	0.56	0.65
120	0.67	0.76	0.68	0.70	0.58	0.65	0.53	0.59
140	0.59	0.77	0.75	0.73	0.65	0.67	0.55	0.59
160	0.65	0.75	0.67	0.83	0.57	0.64	0.62	0.57
160	0.61	0.70	0.73	0.75	0.64	0.63	0.68	0.65
200	• • • •	****	****	****	****	****	****	****
220	0.68	0.73	0.73	0.74	0.67	0.70	0.60	0.68
240	0.68	0.45	0.70	0.71	0.59	0.71	0.70	0.64
260	0.73	0.62	0.67	0.68	0.60	0.79	0.61	0.63
280	0.70	0.65	0.65	0.67	0.56	0.71	0.56	0.67
300	0.69	0.62	0.61	0.65	0.63	0.86	0.57	0.58
320	0.62	0.68	0.78	0.64	0.60	1.00	0.53	0.58
300	0.69	0.68	0.75	0.67	0.63	****	0.59	0.59
360	0.60	0.67	0.80	0.61	0.61	****	0.60	0.61
380		****	****		****	****	****	
400	0.70	0.65	0.70	0.68	0.73	0.50	0.58	0.60
420	0.64	0.71	0.68	0.73	0.61	0.85	0.57	0.62
440	0.66	0.67	0.64	0.76	0.63	0.69	0.60	0.62
460	0.65	0.63	0.78	0.66	0.61	0.74	0.65	0.64
480	0.69	0.61	0.69	0.65	0.67	0.69	0.64	0.62
500	0.72	0.73	0.68	0.65	0.61	0.60	0.69	0.63
520	0.70	0.68	0.68	0.64	0.69	0.65	0.71	0.63
540	0.76	0.74	0.71	0.66	0.61	0.50	0.62	0.74
560	****	****	****		****	****	****	
580	0.70	0.68	0.72	0.60	0.68	0.60	0.59	0.68
600	0.68	0.70	0.72	0.60	0.72	0.62	0.64	0.64
620	0.63	0.66	0.71	0.62	0.63	0.65	0.51	0.55
640	0.69	0.72	0.69	0.56	0.61	0.56	0.63	0.59
660	0.66	0.71	0.74	0.68	0.62	0.73	0.61	0.63
690	0.65	0.76	0.78	0.70	0.63	0.52	0.67	0.73
700	0.66	0.70	0.77	0.72	0.61	0.79	0.60	
720	0.68	0.70	0.76	0.67	0.67	1.00	0.63	0.69
740	0.72	0.73	0.71	0.70	0.68	0.80	0.67	0.65
760	0.70	0.69	0.75	0.74	0.69	****	0.70	0.66
780	0.76	0.72	0.72	0.76	0.71	0.75	0.56	0.66

FUGD MONKEY 460

			20 MIN	UTE PERFO	RMANCE SC	CRES		
				8.	8 >	E	P1	PZ
1145	81	62	83	93	9.	88	34	31
20	0	53	71			87	8	16
40	0	15	90	100	30	93	8	10
63	C	21	97	100	72			
80	0	69	100	98	88	84	49	19
100	28	36	100	97	90	98	80)
120	32	0	36	93	93	96	44	00
140	34	33	96	90	74	69	8.5	14
160	45	85	70	83	73	73	37	08
180	48	+2	76	96	44	69	75	31
200						745		
223	48	3	30	84	70	83	89	46
240	13	24	55	100	9.	41	79	38
260	0	64	24	96	96	76	89	00
280	25	9	0	97	98	34	98	28
300	86	٥	6	96	52	10	74	C7
323	63	21	10	**	71	0	3.6	63
3+0	40	2	C	92	97	4	86	00
360	0	3	38	88	89	10	90	07
380								
400	0	00	14	100	96	4	85	03
420	0	40	3	100	93	0	97	00
440	27	21	20	100	97	7	64	00
463	G		19	96	81	7	7.2	00
460	9		C	64	03	0	84	00
500	٥		11	48	90	0	73	04
520	0		11	60	100	17	+8	00
543	65		12	55	93	3	59	04
560								
580	0	21	29	55	89	55	93	0
603	3	100	3	62	79	63	79	
620	73	95	12	84	98	79	73	0
640	42	93		93	100	77	98	0
660	53	40	2 2 2 2	71	90	79	90	0000
683	92	4.0	2	86	98	38	97	o o
702	79	0	2	38	98	54	93	. 0
720	7	24	,	42	93	6	96	40
743	73	2	-	24	98	00	90	40
760	100	3 2	c	30	93	57	93	Ö
	89	12	•	0	70	37	94	0
783	04	16	•	U	10	31		U

2000 HONKEY 460

			20 MINUTE	PEACTION	SCORES			
TIME	81	82	93	84	85	E	P1	P2
20		0.63	0.50	0.64	0.57	0.71	0.80	0.80
40		0.50	0.54	0.61	0.71	0.72	****	0.60
60	****	0.80	0.52	0.59	0.72	0.65	****	
80	****	0.66	0.54	0.61	0.72	0.69	0.79	0.80
100	0.60	0.57	0.55	0.59	0.73	0.63	0.78	
120	0.75	****	0.58	0.56	0.74	0.62	0.82	****
140	0.80	0.67	0.58	0.61	0.80	0.70	0.73	0.75
160	0.69	0.53	0.64	0.63	0.74	0.64	0.70	0.50
180	0.64	0.53	0.50	0.60	0.75	0.75	0.72	0.75
200	****	****	****	****	****	****	****	****
220	0.80	****	0.56	0.62	0.86	0.73	0.72	0.75
240	0.80	0.57	0.67	0.67	0.66	0.75	0.70	0.73
260	****	0.60	0.59	0.57	0.68	0.71	0.69	****
280	0.85	0.60	****	0.63	0.64	0.68	0.60	0.75
300	0.96	****	0.50	0.63	0.69	1.00	0.70	1.00
320	0.74	0.67	0.80	0.83	0.76	****	0.65	****
340	0.83	****	****	0.63	C.64	1.00	0.50	****
360	****	****	0.50	0.64	0.56	0.67	0.57	0.50
380	****	****	****	****	****	****	****	
400	****	0.53	0.75	0.59	0.74	1.00	0.78	1.00
420	****	0.75	1.00	0.64	0.68	****	0.62	****
440	0.63	0.60	0.50	0.85	0.72	1.00	0.78	****
460	****	****	0.50	0.75	0.73	0.50	0.72	****
480	****	****	****	0.72	0.71	****	0.71	
500	****	****	0.67	0.67	0.81	****	0.73	1.00
520	****	****	0.67	0.73	0.76	0.80	0.73	****
540	0.65	****	0.67	0.69	0.77	****	0.71	****
560	****	****	****	****	****	****	****	****
580	****	0.67	0.67	0.75	0.72	0.81	0.71	****
600	****	0.58	****	0.73	0.61	0.78	0.68	****
620	0.58	0.56	0.57	0.65	0.67	0.76	0.74	****
640	0.54	0.61	****	0.71	0.66	0.76	0.64	****
660	0.69	0.58	1.00	0.72	0.64	0.76	0.62	1.00
680	0.62	****	1.00	0.73	0.54	0.73	0.60	****
700	0.63	****	****	0.76	0.67	0.72	0.62	****
720	0.75	0.57	1.00	0.75	0.67	1.00	0.61	0.70
740	0.60	0.50	1.00	0.79	0.62	0.73	0.60	****
760	0.63	****	****	0.76	0.64	0.73	0.64	****
780	0.59	0.50	1.00	****	0.74	0.68	0.67	****

FOOD MONKEY 540

			20 MINUTE	PERFORMANCE		SCORES		
1146	81	82	83	84	8.5	•	91	29
20	23	17	52	14	32	31	0	7
+3	14	7	8.6	17	89	87	4	7
60	•	3	130	7	92	95	32	0
80	38	12	100	10	100	22	92	0
100	74	13	90	4	100	88	100	0
120	56		100	10	100	92	83	0
140	36	19	100	10	97	69	96	0 0 0
160	78	13	90	21	100	92	92	0
180	77	1.	96	8	85	70	100	0
220	28	21	96	15	89	88	92	0
240	24	21	100	21	100	24	93	
260	79	27	100	19	98	14	88	0
280	86	27	93	22	100	2	2	0
302	59	30	130	35	100	0	0	0
320	78	13	96	50	100	0	0	0
3+0	30	7	93	39	90	Q	14	0 0 0
360	14	22	95	68	97		14	0
383								
400	0)	30	40	83	0	21	0
420	22	14	100	63	93	0	16	0 0 0
4+0	39	7	96	89	9.	0	19	0
463	33	3	92	96	96	0	11	0
*80	26	0	19	78	100	0	0	0
500	21	0		69	88	13	0	0
520	33	4	50	33 .	70	0	0	0
560	31	0	53	•	80	0	14	0
580	65	7	3	7	70	0	29	0
600	90	17	23		97		37	0
620	89	2	8.2	23	95	0	20	0 0 0 0 0
643	95	0	90	4	95	4	82	0
063	95	0	96	0	98	0	93	0
083	73	0	98	0	98	0	94	0
700	91	0	100	3	93	0	96	0
723	86	0	78	44	100	3	100	0
740	91	0	85	59	98	0	72	0
700	36	3	21	79	97	0	2	0
780	0)	100	12	98	2	0	0

POOD MONKEY 540

			20 MINUT	E REACTION	SCORES			
TIME	в1	B 2	83	84	85	,	P1	P2
20	0.67	1.00	0.75	0.67	0.86	0.56	****	1.00
40	0.75	1.00	0.59	0.60	0.67	0.65	1.00	0.50
60	1.00		0.54	1.00	0.63	0.53	0.75	****
80	0.83	0.86	0.48	0.60	0.55	0.55	0.62	
100	0.74	0.86	0.53	1.00	0.53	0.47	0.55	
120	0.71	1.00	0.48	0.67	0.56	0.50	0.63	****
140	0.67	0.80	0.55	1.00	0.64	0.56	0.61	****
160	0.78	0.80	0.60	0.83	0.61	0.50	0.59	****
180	0.63	0.75	0.58	1.00	0.64	0.57	0.58	
200			****	****		****	****	****
220	0.78	0.48	0.71	1.00	0.63	0.55	0.59	****
240	0.67	0.93	0.54	0.67	0.62	0.57	0.58	****
260	0.67	0.75	0.50	0.78	0.56	0.63	0.52	****
280	0.68	0.80	0.57	0.82	0.51	1.00	1.00	****
300	0.77	1.00	0.58	0.78	0.52	****	****	****
320	0.71	1.00	0.63	0.80	0.63	****	****	****
340	0.73	1.00	0.62	0.82	0.58	****	0.75	
360	0.75	0.60	0.65	0.65	0.61	****	0.75	
380		****	****	****		****	****	****
400		****	0.52	0.89	0.68	****	0.83	****
420	0.83	1.00	0.63	0.65	0.60	****	1.00	
440	0.78	0.50	0.60	0.56	0.66	****	0.80	****
460	0.88	1.00	0.50	0.65	0.69	****	1.00	****
480	0.75	****	1.00	0.62	0.62	****	****	****
500	0.83	****	****	0.67	0.70	0.75	****	****
520	0.80	1.00	0.77	0.63	0.71	****	****	
540	0.88	****	0.81	1.00	0.72	****	0.75	****
560	****	****	****	****	****	****		****
580	0.76	1.00	1.00	1.00	0.69	****	0.75	****
600	0.67	0.80	0.80	1.00	0.59	****	0.73	****
620	0.72	****	0.79	0.85	0.63	****	0.90	****
640	0.67	****	0.66	1.00	0.62	0.50	0.69	****
660	0.63	****	0.63	****	0.55	****	0.61	****
680	0.72	****	0.67	****	0.55	****	0.79	****
700	0.05	****	0.63	1.00	0.59	****	0.64	****
720	0.67	****	0.66	0.70	0.57	****	0.62	****
740	0.67	****	0.66	0.70	0.55	****	0.57	****
760	0.72	****	0.83	0.63	0.55	****	1.00	****
780		****	0.64	0.67	0.60	1.00	****	****