Déterminants

QCOP DET.1

Soit $n \in \mathbb{N}^*$.

- Soient $A, B \in M_n(\mathbb{R})$. Que vaut det(AB)? Les questions qui suivent sont indépendantes.
- Soit $A \in M_n(\mathbb{R})$. Montrer que $\det(AA^\top) \geqslant 0.$
- Soit $A \in M_n(\mathbb{R})$. Montrer que $\left(\exists k \in \mathbb{N}^* : A^k = 0_n\right) \implies \det(A) = 0.$
- **%** Montrer que

$$\mathsf{SL}_n(\mathbb{R}) \coloneqq \left\{ A \in \mathsf{M}_n(\mathbb{R}) \;\;\middle|\;\; \mathsf{det}(A) = 1
ight\}$$
 est un sous-groupe de $\mathsf{GL}_n(\mathbb{R})$.

QCOP DET.2

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{C})$.

- \blacksquare Définir la comatrice de A, notée Com(A).
- \blacksquare Énoncer la formule reliant A à Com(A) et l'écrire dans le cas où A est inversible.
- On se place dans le cas n = 2 et A inversible. Déterminer A^{-1} en fonction des coefficients de A.

QCOP DET.3

Soient $n, p \in \mathbb{N}$. Soient $A \in M_n(\mathbb{C})$, $B \in M_{n,p}(\mathbb{C})$ et $C \in M_p(\mathbb{C})$.

(a) Calculer

$$\det\begin{pmatrix} I_n & B \\ 0_{p,n} & C \end{pmatrix} \text{ et } \det\begin{pmatrix} A & 0_{n,p} \\ 0_{p,n} & I_p \end{pmatrix}.$$

- **(b)** En déduire det $\begin{pmatrix} A & B \\ 0_{p,n} & C \end{pmatrix}$.
- Généraliser : calculer le déterminant d'une matrice triangulaire par blocs.

QCOP DET.4

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{C})$.

Montrer que

$$A ext{ et } B ext{ sont semblables} \implies \det(A) = \det(B).$$

- X L'implication réciproque est-elle vraie en général?
- Le résultat subsiste-t-il pour A et B supposées seulement équivalentes?
- Soit E un espace vectoriel de dimension finie. Soit $u \in L(E)$. Définir det(u).

QCOP DET.5

Soit $n \in \mathbb{N}^*$. Soient $A, B \in M_n(\mathbb{C})$.

On note, pour $M \in M_n(\mathbb{C})$, $\chi_M : x \longmapsto \det(x I_n - M)$.

- \blacksquare Énoncer la formule donnant det(A) en fonction des coefficients de A.
- (a) Justifier que χ_A est une fonction polynomiale de degré n.

 Ceci étant justifié, on note désormais χ_A le polynôme de $\mathbb{R}[X]$ dont χ_A est la fonction polynomiale associée.
 - (b) Montrer que

$$\chi_A = \mathsf{X}^n - \mathsf{Tr}(A)\mathsf{X}^{n-1} + \dots + (-1)^n \det(A).$$

% Montrer que

A et B sont semblables
$$\implies \chi_A = \chi_B$$
.

- \aleph On se place dans le cas n=2.
 - (a) Exprimer χ_A en fonction de Tr(A) et det(A).
 - **(b)** Montrer que $\chi_A(A) = 0_2$.

On fera particulièrement attention au « type » des objets écrits et manipulés.