学院专业	班	年级	学号		共 2 页 第 1 页
------	---	----	----	--	-------------

2014-2015 学年第一学期期中考试试卷

《线性代数及其应用》

整理: 2017 级理科试验班 4 班 冬,阳

题号	_	1	=	四	成绩	核分人签字	
得分							
須 公		一 (5分)			_	

1. (15 分)设线性方程组

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 - 5x_5 = 3, \\ 2x_1 - 4x_2 + 3x_3 + x_4 - 11x_5 = 6, \\ x_1 - 2x_2 + 2x_3 + 3x_4 - 12x_5 = 6, \\ 3x_1 - 6x_2 + 3x_3 + 2x_4 - 13x_5 = t \end{cases}$$

有解, 求参数 t 及线性方程组的(向量形式)通解.

2. (10 分) 设
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
, 而 M_{3j} , A_{3j} 分别是 a_{3j} $(j = 1, 2, 3, 4)$ 的余子

式、代数余子式.

- (1) $\dot{R} A_{31} + 2A_{32} + 3A_{33} + 4A_{34}$;
- (2) $\vec{X}M_{31} + 2M_{32} + 3M_{33} + 4M_{34}$.

1.
$$(8 \, f)$$
 设 $f(x) =$

$$\begin{vmatrix} 3x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 1 & 1 & x & 2 \\ x & 1 & 2 & x \end{vmatrix}$$
是用 4 阶行列式定义的多项式,求 $f(x)$ 的 4 次项系

数 a_4 与3次项系数 a_3 .

2. (12 分) 设
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
, 求 $\mathbf{A}^{2014} \boxminus | \mathbf{A}^{2014} |$.

学院 专业

班 年级 学号

姓名

共2页第2页

得分

三、(共32分)

1. $(11 \, \%) \, \mathcal{U} A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 6 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}, \quad AX = 3X + 4B, \quad \text{x} \text{EPE} X.$

得分 四、(共23分)

1. (13分)设

$$\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 7 \end{bmatrix}, \quad \boldsymbol{\alpha}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ 4 \\ 1 \\ 7 \end{bmatrix}, \quad \boldsymbol{\alpha}_4 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix}, \quad \boldsymbol{\alpha}_5 = \begin{bmatrix} -3 \\ -4 \\ 1 \\ 3 \end{bmatrix},$$

求向量组 $(I) = \{ \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_5 \}$ 的一个极大无关组(I'),并用(I')线性表示(I)中的其余向量.

2. (11 分)设A, B 分别为n, s(\geq 2)阶可逆矩阵,M*为M= $\begin{bmatrix} A & C \\ O & B \end{bmatrix}$ 的伴随矩阵,

求证
$$M^* = \begin{bmatrix} |B|A^* & -A^*CB^* \\ O & |A|B^* \end{bmatrix}$$
.

2. (10 分)设n 阶方阵 $\mathbf{A} = \mathbf{E}_n - \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}$, 其中 $\boldsymbol{\alpha}$ 为n 元非零列向量, 求证

- (1) $A^2 = A$ 的充分必要条件是 $\alpha^T \alpha = 1$;
- (2) 当α^Tα=1时, A 为降秩矩阵.

3. (10 分) 设 \mathbb{F}^n 中的向量组 (\mathbb{I}) = { $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ } 线性无关,求证向量组 (\mathbb{I}) = { $\boldsymbol{\beta}_1$ = $\boldsymbol{\alpha}_1$ + $2\boldsymbol{\alpha}_2$ - $3\boldsymbol{\alpha}_3$, $\boldsymbol{\beta}_2$ = $\boldsymbol{\alpha}_1$ + $\boldsymbol{\alpha}_2$ + $\boldsymbol{\alpha}_3$, $\boldsymbol{\beta}_3$ = $\boldsymbol{\alpha}_1$ + $4\boldsymbol{\alpha}_2$ + $9\boldsymbol{\alpha}_3$ } 线性无关.