Instructional Design + Knowledge Components:

A Systematic Method for Refining Instruction

Computer Science: Luke Gusukuma, Austin Cory Bart, Dennis Kafura

Education: Jeremy Ernst, Katherine Cennamo

Cliff Notes

Theoretical

Knowledge Component

Instructional

Prior Work

Modularization: a Key for the Dynamic Selection of Relevant Knowledge Components

Mathieu d'Aquin, Marta Sabou, and Enrico Motta

Reusing Knowledge Componen

The Knowledge Warehouse: Discovering Prerequisite Relationships among Knowledge Components

Richard Scheines

Elizabeth Silver

Ilya Goldin

INSTRUCTIONAL

DESIG

Michael Yacci

Specifications of Knowledge Components for Reuse

Enrico Motta¹, Dieter Fensel², Mauro Gaspari¹, and Richard Benjamins³

The Knowledge-Learning-Instruction Framework: Bridging the Science-Practice Chasm to Enhance Robust Student Learning

Kenneth R. Koedinger, Albert T. Corbett, Charles Perfettic

Components of instruction toward a theoretical tool for instructional design

M. DAVID MERRILL

Systematically Improving Instruction

- Instruction revision is crucial to course design
- Instruction needs to evolve with time
- Don't typically need to revise an entire course
- Don't have a formalized process

What is ID + KC

Knowledge Component

"...an acquired unit of cognitive function or structure that can be inferred [observed] from performance..."

Knowledge Component - Example

You can add together a number and a list

You can't add together a number and a list

ID + KC: The steps

ID + KC: The steps

Identify Instructional Goals

Construct an algorithm that outputs a quantitative measure of the values in a given list

Instructional Goal

Identify Performance Tasks

Mhh3

Helps create assessments

Groups misconceptions together

Identify Performance Tasks

Construct an algorithm that outputs a quantitative measure of the

ID + KC: The steps

Identify Student Misconceptions

- Identifying Misconceptions
 - Classroom Observations
 - Personal Experience
 - Manual Inspection student work
 - Automated Code Analysis

Identify Student Misconceptions

- Identifying Misconceptions
 - Classroom Observations
 - Personal Experience
 - Manual Inspection student work
 - Clustering Algorithms
- Why?
 - Pervades everything
 - Polish instructional goal
 - Helps create assessments
 - Student driven KNOWLEDGE COMPONENTS

ID + KC: The steps

Generating Questions

- Mhh3
 - Systematically ties student data to Instructional Goals

Generating Questions

Question: PERFORMANCE TASK •

- a) Mistake a
- b) Mistake b
- c) Mistake c

1.3 Construct the body of the iteration using the iteration property and the properties accumulating values

Generating Questions

1.3 Construct the body of the iteration using the iteration property and the properties accumulating values

When using the iteration shown below to compute the sum of the numbers in the distance_list, which of the following is the correct statement to be in the body of the iteration?

```
distance_sum = 0
for distance in distance_list:
```

- a) distance_sum = distance_list + distance
- b) distance = distance_sum + distance
- c) distance_sum = distance_sum + distance_list
- d) distance_sum = distance_sum + distance
- e) distance list = distance
- f) distance sum = distance sum + 1
- g) distance sum = distance list

Instructional Goal

Construct an algorithm that outputs a quantitative measure of the values in a given list

The data block in the BlockPy canvas below provides a list of the number of students taking the 2015 SAT test in each state. Write an algorithm to compute and print the total number of students taking the SAT test in 2015.

Timing Assessments

Pre-test

Baseline knowledge

Before Instruction

Beginning of Day 3

Beginning of Day 4

Final post-test

Learning Results

Beginning of Day 20

Embedded post-test

- Improvement over time
- Speed of acquisition

Far transfer post-test

Retention

ID + KC: The steps

Metrics Analysis

	Perd	cent o Cor	f Stud rect	ents	Learning Gains			Discrimination	
	pre	post1	post2	post3	post1 post2 post3		post3	Average	
Question 1									
Question 2									
Question 3				,	Learning Gain =			Pearson Correlation	
Question 4	1	Studen er of stu			$\int \frac{post - 1}{1 - 1}$		<i>pre</i> < 1	$poor < 0.10 \le$	
Question 5	total number of students				$\left \begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array} \right $		re = 1	$fair \le 0.3 \le good$	
Question 6		1easure (of stude	nt	Measure of Learning gain relative to pre-test				
Question 7			mance	111				Measure of question quality	
Question 8									
Question 9									

Metrics Analysis

23

	Perd		f Stud rect	ents	Learning Gains			Discrimination
	pre	post1	post2	post3	post1	post2	post3	Average
Question 1	0.65	0.55	0.71	0.59	-0.3	0.18	-0.2	0.59
Question 2	0.63	0.95	1	1	0.86	1	1	0
Question 3	0.33	0.95	0.93	0.94	0.92	0.9	0.91	0.22
Question 4	0.24	0.69	0.71	0.8	0.6	0.62	0.73	0.6
Question 5	0.71	1	1	1	1	1	1	0
Question 6	0.52	0.91	0.88	0.9	0.81	0.74	0.79	0.55
Question 7	0.33	0.47	0.89	0.94	0.21	0.83	0.91	0.4
Question 8	0.37	0.51	0.82	0.73	0.22	0.72	0.57	0.66
Question 9	0.44	0.77	0.93	0.81	0.59	0.88	0.66	0.36

Analysis – Q1

Instructional Design		_	Analyze Student	
Instructional	Create		Learning	
Analyses	Assessments		Evaluate Assessment	
	A		Instruments	
	misconceptions	\rightarrow		

_ //		- 4
	_/	-/1
	/	4

	Percent of Students Correct				Learning Gains			Discrimination
	pre	post1	post2	post3	post1	post2	post3	Average
Question 1	0.65	0.55	0.71	0.59	-0.3	0.18	-0.2	0.59
Question 2	0.63	0.95	1	1	0.86	1	1	0
Question 3	0.33	0.95	0.93	0.94	0.92	0.9	0.91	0.22
Question 4	0.24	0.69	0.71	0.8	0.6	0.62	0.73	0.6
Question 5	0.71	1	1	1	1	1	1	0
Question 6	0.52	0.91	0.88	0.9	0.81	0.74	0.79	0.55
Question 7	0.33	0.47	0.89	0.94	0.21	0.83	0.91	0.4
Question 8	0.37	0.51	0.82	0.73	0.22	0.72	0.57	0.66
Question 9	0.44	0.77	0.93	0.81	0.59	0.88	0.66	0.36

Analysis – Q4

	Percent of Students Correct				Learning Gains			Discrimination
	pre	post1	post2	post3	post1	post2	post3	Average
Question 1	0.65	0.55	0.71	0.59	-0.3	0.18	-0.2	0.59
Question 2	0.63	0.95	1	1	0.86	1	1	0
Question 3	0.33	0.95	0.93	0.94	0.92	0.9	0.91	0.22
Question 4	0.24	0.69	0.71	0.8	0.6	0.62	0.73	0.6
Question 5	0.71	1	1	1	1	1	1	0
Question 6	0.52	0.91	0.88	0.9	0.81	0.74	0.79	0.55
Question 7	0.33	0.47	0.89	0.94	0.21	0.83	0.91	0.4
Question 8	0.37	0.51	0.82	0.73	0.22	0.72	0.57	0.66
Question 9	0.44	0.77	0.93	0.81	0.59	0.88	0.66	0.36

Analysis – Q4

When using the iteration shown below to compute the sum of the numbers in the distance_list, which of the following is the correct statement to be in the body of the iteration?

```
distance_sum = 0
for distance in distance_list:

_____

a) distance_sum = distance_list + distance
b) distance = distance_sum + distance
c) distance_sum = distance_sum + distance_list
d) distance_sum = distance_sum + distance
e) distance_list = distance
f) distance_sum = distance_sum + 1
g) distance_sum = distance_list
```

Question Design

Question 4

When using the iteration shown below to compute the sum of the numbers in the distance_list, which of the following is the correct statement to be in the body of the iteration?

Take Action

a) distance_sum = distance_list + distance

Student Knows

- KC 09: The iteration variable and the list are two different items
- KC 18-1: Need an accumulator variable on the left side
- KC 18-2: Need iteration variable on the right side

...

Student Doesn't know

- KC 08: The list is multiple items
- KC 20: You can't add a list to a number
- KC 13: The sum and the list are two different items

•

Summary

- Decompose a well defined instructional goal into tasks
- Collect Misconceptions
- Create assessments systematically using misconceptions and tasks
- Analyze student learning and assessment instruments using 3 easy to understand metrics

Questions?

- >Contacts:
- Luke Gusukuma: lukesg08@vt.edu
- ➤ Dennis Kafura: <u>kafura@cs.vt.edu</u>
- >Austin Cory Bart: acbart@vt.edu

Future Work

- Looking at specific KCs across questions
- Incorporation of the ID + KC process into automated systems
- Misconceptions as assessment tools in open programming problems

Improvement – Question 4: The Knowledge Components

- KC006: The iteration property takes on each value of the list
- KC007: The iteration property is a single item
- KC008: The list is multiple items
- KC009: The iteration property and the list should be different
- KC012: The sum and the list are two different items
- KC013: The accumulator and the list are two different items
- KC018: Update for sum is accumulator = accumulator + iteration property
 - Contains 6 subcomponents

- KC019: Update for accumulation is accumulator = accumulator + X
- KC020: You can't add the list to a number
- KC022: The list is not used in accumulation
- KC023: The list is not used as an accumulator
- KC024: The iteration property is not an accumulator
- KC025: for each loop is for iter_prop in list

Appendix – Discrimination P-Values

	P-values for discrimination								
	post1	post2	post3						
ql	1.05E-07	6.20429E-11	7.78E-09						
q 2	0.005955	#DIV/0!	#DIV/0!						
q 3	0.234948	0.023552222	0.008578						
q4	6.69E-06	4.66073E-15	2.33E-09						
q 5	#DIV/0!	#DIV/0!	#DIV/0!						
q 6	1.91E-07	5.28738E-13	8.74E-05						
q 7	1.25E-08	0.009457884	0.001904						
q8	8E-07	9.9301E-19	1.3E-12						
q 9	0.002875	0.002527445	8.49E-05						

Item Analysis

Classical Test Theory

- Pros
 - Easy to understand
 - Easy to use
 - Looser Assumptions
- Cons
 - Less flexible
 - Doesn't allow for inter-test comparisons

Item Response Theory

- Pros
 - More Versatile
 - More Flexible
 - More possible Analyses
 - Allows inter-test comparisons
 - Handles larger populations
 - More information
- Cons
 - Difficult to understand
 - Stricter Assumptions