1.6.6

ee25btech11056 - Suraj.N

In each of the following, find the value of k for which the points are collinear:

1)
$$(7,-2)$$
, $(5,1)$, $(3,k)$

2)
$$(8,1)$$
, $(k,-4)$, $(2,-5)$

Solution: Three points A, B, C are collinear iff the vectors $\mathbf{B} - \mathbf{A}$ and $\mathbf{C} - \mathbf{A}$ are linearly dependent, i.e., the collinearity matrix $M = (\mathbf{B} - \mathbf{A} \quad \mathbf{C} - \mathbf{A})^{\mathsf{T}}$ has rank (M) = 1.

(a) Let
$$A = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} 3 \\ k \end{pmatrix}$.

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 5 - 7 \\ 1 - (-2) \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}, \qquad \mathbf{C} - \mathbf{A} = \begin{pmatrix} 3 - 7 \\ k - (-2) \end{pmatrix} = \begin{pmatrix} -4 \\ k + 2 \end{pmatrix}$$

$$M = \begin{pmatrix} -2 & 3 \\ -4 & k + 2 \end{pmatrix}$$

Apply row transformations:

$$R_2 = R_2 - 2R_1 \quad \Longrightarrow \quad \begin{pmatrix} -2 & 3 \\ 0 & k - 4 \end{pmatrix}$$

For collinearity, rank
$$(M) = 1 \iff k - 4 = 0 \implies \boxed{k = 4}$$
.
(b) Let $A = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} k \\ -4 \end{pmatrix}$, $C = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} k - 8 \\ -5 \end{pmatrix}, \qquad \mathbf{C} - \mathbf{A} = \begin{pmatrix} 2 - 8 \\ -5 - 1 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \end{pmatrix}$$
$$M = \begin{pmatrix} k - 8 & -5 \\ -6 & -6 \end{pmatrix}$$

Use a combination of scaling and addition to eliminate the first entry of R_2 :

$$R_2 = (k-8) R_2 + 6 R_1 \implies \begin{pmatrix} k-8 & -5 \\ 0 & 18-6k \end{pmatrix}$$

For collinearity, rank $(M) = 1 \iff 18 - 6k = 0 \implies \boxed{k = 3}$

Fig 1: Line through the given points

Fig 2: Line through the given points