대수적으로 이차부등식 풀기
$$(ax^2+bx+c\geq 0\ (a>0,\ b,c\in\mathbb{R}))$$
 (Solving Quadratic Inequalities $(ax^2+bx+c\geq 0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra)

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

▶ Start ▶ End

$$ax^2 + bx + c \geq 0 \ (a > 0, \ b, c \in \mathbb{R})$$

$$ax^2 + bx + c \geq 0 \; (a>0,\; b,c\in \mathbb{R})$$

$$ax^2 + bx + c \ge 0 \ (a>0, \ b, c \in \mathbb{R})$$

Let $D=b^2-4ac$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$
Let $D=b^2-4ac$

Let
$$D=b^2-4ac$$
 $D>0$: Let

Let
$$D=b^2-4ac$$
 $D>0$: Let α

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and

Let
$$D=b^2-4ac$$
 $D>0$: Let $lpha$ and eta

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

Let $D=b^2-4ac$

• D > 0: Let α and β be roots

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$
Let $D=b^2-4ac$

• D > 0: Let α and β be roots of

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$
Let $D=b^2-4ac$

• D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where

$$ax^2 + bx + c \geq 0 \; (a>0,\; b,c\in\mathbb{R})$$

$$ax^2 + bx + c \geq 0 \; (a>0,\; b,c\in\mathbb{R})$$

٠.

$$ax^2 + bx + c \geq 0 \ (a>0, \ b, c \in \mathbb{R})$$

$$\therefore x \leq \alpha$$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.
 - $\therefore x \leq \alpha \text{ or }$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

$$\therefore x \leq \alpha \text{ or } x \geq \beta$$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

$$\therefore x \leq \alpha \text{ or } x \geq \beta$$

D ≤ 0

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

$$\therefore x \leq \alpha \text{ or } x \geq \beta$$

 $D \leq 0$

$$ax^2 + bx + c \geq 0 \ (a>0, \ b,c \in \mathbb{R})$$

- D > 0: Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.
 - $\therefore x \leq \alpha \text{ or } x \geq \beta$
- $D \leq 0$ \mathbb{R} proof

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Find
$$ax^2 + bx + c \ge 0$$

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

Let

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

Let α and β

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

Let α and β be roots

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$

Solving Quadratic Inequalities $(ax^2+bx+c\geq 0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

Let α and β be roots of $ax^2 + bx + c = 0$ where $\alpha < \beta$.

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \ge 0$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0$$

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$(x - \alpha)(x - \beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0$$

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow$$

Home Start End
$$ax^{2} + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

by i), ii)

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

by i), ii) ...

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

by i), ii) $\therefore x < \alpha$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

by i), ii) $\therefore x \le \alpha$ or

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta) \ge 0$$

i)
$$x - \alpha \ge 0, x - \beta \ge 0 \Rightarrow x \ge \beta$$

ii)
$$x - \alpha \le 0, x - \beta \le 0 \Rightarrow x \le \alpha$$

by i), ii) $\therefore x < \alpha \text{ or } x > \beta$

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

► Home ► Start ► End

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start
$$ax^2 + bx + c \ge 0$$

Solving Quadratic Inequalities $(ax^2 + bx + c \ge 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Lend
$$ax^2 + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$

Home Start Lend
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \ge 0$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$ $(x + \frac{b}{2a})^2 - \frac{b^2}{4a^2} + \frac{c}{a} \ge 0$ $(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} \ge 0$

Home Start Find
$$ax^2 + bx + c \ge 0 \quad (a > 0, b, c \in \mathbb{R})$$
 $x^2 + \frac{b}{a}x + \frac{c}{a} \ge 0 \quad (\because a > 0)$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \ge 0$ $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \ge 0$

$$\mathbb{R}$$

Home Start Pend
$$ax^2 + bx + c \geq 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} \geq 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \geq 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} \geq 0$$

 $\mathbb{R} (:: b^2 - 4ac < 0)$

Github:

https://min7014.github.io/math20210510001.html

Click or paste URL into the URL search bar, and you can see a picture moving.