Malicious Software

Malicious Software

- Also called malware.
- It is software used or created to disrupt computer operation, gather sensitive information, or gain access to private computer systems.
- It can appear in the form of code, scripts, active content, and other software.

Malware

 A program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim's data, applications, or operating system or otherwise annoying or disrupting the victim."

- Programs exploiting system vulnerabilities known as malicious software or malware
 - program fragments that need a host program
 - e.g. viruses, logic bombs, and backdoors
 - independent self-contained programs
 - e.g. worms, bots
 - replicating or not
- Sophisticated threat to computer systems

Usage of Malware

- Malware is used primarily to steal sensitive personal, financial, or business information for the benefit of others.
- Also sometimes used broadly against government or corporate websites to gather guarded information, or to disrupt their operation in general.

- To partially control the user's computer, for reasons such as:
 - To subject the user to advertising
 - To launch DDoS on another service
 - To spread spam
 - To track the user's activity ("spyware")
 - To commit fraud, such as identity theft and affiliate fraud

Ways of Spread of malware

Drive-by download

 unintended download of computer software from the Internet

Homogeneity

Vulnerability

 A security defect in software that can be attacked by a malware.

Backdoor:

Types of Malware Attacks

- O-Day: A zero-day vulnerability is an undisclosed flaw that hackers can exploit.
- **Exploit:** A threat made real via a successful attack on an existing vulnerability.
- Privilege escalation: Situation where the attacker gets escalated access to restricted data that is on a higher level of security.
- **Evasion:** The techniques malware maker design to avoid detection and analysis of their malware by security systems and software.

 Blended threat: A malware package that combines the characteristics of multiple types of malware

Types of Malware

- Viruses
- Trojan horses
- Worms
- Spyware
- Zombie
- Phishing
- Spam
- Adware
- Ransomware

Taxonomy of Malicious Programs

Some terms

- Payload: The part of the malware program that actually does the damage.
- Crimeware: kits for building malware; include propagation and payload mechanisms
 - Zeus, Sakura, Blackhole, Phoenix
- APT (advanced persistent threats)
 - Advanced: sophisticated
 - Persistent: attack over an extended period of time
 - Threat: selected targets (capable, well-funded attackers)

- **Signature:** Signs that are specific to either a certain type of behavior or a specific item of malware.
- **Privilege:** In computing, privilege means the access to modify a system.

Viruses

- Piece of software that infects programs
 - modifying them to include a copy of the virus
 - so it executes secretly when host program is run
- Specific to operating system and hardware
 - taking advantage of their details and weaknesses
- A typical virus goes through phases of:
 - dormant: idle
 - propagation: copies itself to other program
 - triggering: activated to perform functions
 - execution: the function is performed

Virus structure

- Components:
 - infection mechanism: enables replication
 - trigger: event that makes payload activate
 - payload: what it does, malicious or benign
- When infected program invoked, executes virus code then original program code
- Can block initial infection (difficult) or propagation (with access controls)

```
program V :=
{goto main;
   1234567;
   subroutine infect-executable :=
       {loop:
       file := get-random-executable-file;
       if (first-line-of-file = 1234567)
          then goto loop
          else prepend V to file; }
   subroutine do-damage :=
       {whatever damage is to be done}
   subroutine trigger-pulled :=
       {return true if some condition holds}
main: main-program :=
       {infect-executable;
       if trigger-pulled then do-damage;
       goto next;}
next:
```

Types of Viruses

- Parasitic Virus attaches itself to executable files as part of their code. Runs whenever the host program runs.
- Memory-resident Virus Lodges in main memory as part of the residual operating system.
- Boot Sector Virus infects the boot sector of a disk, and spreads when the operating system boots up.

- Stealth Virus explicitly designed to hide from Virus Scanning programs.
- Polymorphic Virus mutates with every new host to prevent signature detection.
- Metamorphic virus mutates with every infection, but rewrites itself completely every time.

Propagation Techniques

- Removable Storage
 - Boot sector viruses, executable viruses
 - Yamaha's CD-R drive firmware update contained the Chernobyl virus.
- Email attachments
- Shared directories

Viruses: The Principle

- Virus attaches itself to a host that can execute instructions contained in the virus.
- When the host is invoked, the virus copies itself to other locations on the system.

Companion Infection Technique

 OS will call the virus when the user requests the companion file.

Windows:

- Virus is Notepad.com to hide as Notepad.exe.
- Set the hidden attribute to prevent the virus from being seen.
- Launch the true notebook.exe file from the virus.
- If the user selects Start → Run and types in notebook, then windows starts the virus (notebook.com instead of notebook.exe)

Companion Infection Technique

- Virus renames Notepad.exe to Notepad.ex_ and hides it.
- Virus takes the place of Notepad.exe.
- Works with shortcuts.
- Used in the Trilisa virus / worm (2002)

Companion Infection Technique

- Virus uses alternate data stream feature of NTFS:
 - Streams look like one file in explorer and directory listings.
 - System activates the default stream, the virus.
 - Virus calls alternate stream.
 - Win2KStream Virus (2000)

Overwriting Techniques

- Virus replaces part of an executable.
- Usually the executable looses functionality.
- Users will now that there is something wrong.

Prepending Techniques

- Virus placed in front of executable.
- After virus executes, host program is called.
- Very easy for .com files.
- Easy to clean files.
 - Bliss virus had a disinfect mode built into it.
- Used by the NIMDA worm.

Appending Infection Technique

- Insert itself at the end of host file.
- Add a jump at the beginning of host file.

Stealth Techniques for Prepending and Appending

- Compress host.
- When virus calls hosts, host is uncompressed into RAM.
- Fill up total package (virus, compressed host) to same size as original host.
- Change filler so that checksum is not changed.

Macro viruses

- Became very common in mid-1990s since
 - platform independent
 - infect documents
 - easily spread
- Microsoft Office applications allow "macros" to be part of the document. The macro could run whenever the document is opened, or when a certain command is selected (Save File).
- More recent releases include protection
- Recognized by many anti-virus programs

E-Mail Viruses

- More recent development
- Melissa
 - exploits MS Word macro in attached doc
 - if attachment opened, macro activates
 - sends email to all on users address list and does local damage

Examples of computer viruses are:

- Macro virus
- Boot virus
- Logic Bomb virus
- Directory virus
- Resident virus

Virus countermeasures

- Prevention: ideal solution but difficult
- Realistically need:
 - detection: determine what occurred
 - identification: identify the specific virus
 - removal: remove all traces
- If detected but can't identify or remove, must discard and replace infected program

Anti-virus evolution

- Virus & antivirus tech have both evolved
- Early viruses simple code, easily removed
- As viruses become more complex, so did the countermeasures
- Generations
 - first signature scanners (bit patterns all the same)
 - second heuristics (integrity checks; checksums)
 - third identify actions (find by actions they do)
 - fourth combination packages

Anti-Virus Defense

- Antivirus software on gateways:
 - User workstations
 - File servers
 - Mail servers
 - Application servers
 - Border firewalls

Anti-Virus Defense

- Virus signatures
 - Looks for small patterns indicative of a known virus.
 - Polymorphic viruses
- Heuristics
 - Looks for programs with bad behavior:
 - Attempts to access the boot sector
 - Attempts to locate all files in a directory
 - Attempts to write to an exe file
 - Attempts to delete hard drive contents

Anti-Virus Defense

- Integrity Verification
 - Generate database of hashes of important files.
 - Recalculate these hashes and compare them to known values.
- Configuration Hardening
 - Least privilege
 - Minimize active components.
 - Set warnings (e.g. against macros)
 - User education

Self-modification

- Self-modification, which defeats signature scanners, because each infected file contains a different variant of the virus.
 - Simple self-modifications: exchanging subroutines in the code.
 - Encryption: virus consists of a small decrypting module and an encrypted copy of the virus code.
 Key randomly generated each time.

- Polymorphic code: the decryption module is also modified on each infection. No parts stay the same. Detection (by using an emulator, or by statistical pattern analysis of virus body) much more difficult.
- Metamorphic code: virus rewrites itself completely each time. A metamorphic engine is needed. Virus very large and complex. W32/Simile >14000 loc; 90% of it is the metamorphic engine.

Worms

Worms

Worms:

- Propagates across a network
- Typically, does not require user action for propagation.

Virus:

- Infects files.
- Typically requires user interaction.

Taxonomy of Computer Worms

- Taxonomy based on:
 - target discovery
 - Rarrier
 - Pactivation 2
 - payloads ?
 - attackers

Target Discovery

- the mechanism by which a worm discovers new targets to infect
- How do worms propagate
 - Scanning worms
 - Meta-server worm
 - Ask server for hosts to infect
 - Topological worm
 - Use information from infected hosts
 - Contagion worm
 - Propagate parasitically along with normally initiated communication

Scanning worms

- Scanning : entails probing a set of addresses to identify vulnerable hosts. 2
 - sequential: working through a IP address block using an ordered set of addresses ?
 - random : trying address out of a block in a pseudo-random fashion ?

Code-Red, Nimda, Slammer Worm

Hit-list Scanning

- Provide the worm with a list of potentially vulnerable machines.
- The worm, when released onto an initial machine on this hit-list, begins scanning down the list.
- When it infects a machine, it divides the hitlist in half, communicating half to the recipient worm, keeping the other half.

- Random scanning is inefficient : 2
 - many addresses are probed multiple times
 - In o means for a randomly scanning worm to effectively determine when all vulnerable machines are infected
- Permutation scanning:
 - a worm can detect that a particular target is already infected ?
 - all worms share a common pseudo random permutation of the IP address space

Spread of Scanning Worms

- The speed of scanning worms is limited by:
 - Density of vulnerable machines
 - Design of the scanner
 - The ability of edge routers to handle a potentially significant increase in new, diverse communication
- Scanning is highly anomalous behavior.
- Effective detection: defenses designed to stop an entire family of worms

Topological Worms : Internal Target Lists

- Many applications contain information about other hosts providing vulnerable services.
- Topological worm searches for local information to find new victims by trying to discover the local communication topology
 - The original Morris worm used topological techniques including Network Yellow pages, /etc/hosts, and other sources to find new victims.

Topological Worms

- The spread is slower as compared to scanning worms.
- Can bypass defenses by communicating information known by one instance to other instances.
- May present a global anomaly, the local traffic may appear normal.
- Highly distributed sensors may be needed to detect topological worms

Target Discovery: Passive Worms

- A passive worm does not seek out victim machines.
- Instead, it either waits for potential victims to contact the worm or rely on user behavior to discover new targets
- Example: Gnuman, CRclean

Worm Components

- Warhead
- Propagation Engine
- Target Selection Algorithm
- Scanning Engine
- Payload

Worm Warhead

- A piece of code that exploits a vulnerability on the target system
 - Exploits such as Buffer Overflow Exploits
 - File Sharing Attacks
 - E-mail
 - Common Misconfigurations

Worm Propagation Engine

- After gaining access, the worm must transfer itself to the target machine.
- Some worms are completely contained in the warhead.
- File Transfer Mechanisms
 - FTP
 - TFTP
 - HTTP
 - SMB (MS Server Message Block)
 - Windows file sharing
 - Unix servers running SAMBA

Worm Target Selection Algorithm

- Once the worm has gained control of a target, it starts looking for new targets.
 - E-mail addresses
 - Host lists
 - Trusted Systems
 - Network Neighborhood
 - DNS queries
 - Randomly selected IP address.

Worm Scanning Engine

 Once targets are identified, the worm scans for the original vulnerability.

Worm Payload

- Some specific action done on behalf of the attacker.
- Opening up a backdoor.
- Planting a distributed denial of service attack.
- Performing complex calculations:
 - password cracking
 - math research (actually happened)

Worm Spread

- Worm spread is limited
 - Diversity of machines
 - Tiny worm
 - targeted only machines running security software from a medium company
 - was successful in infecting most machines.
 - Worms can contain support for multiple entry methods.
 - Too many victims crash
 - Fast worms can cause network congestion

Worm Trends

- Multiplatform worms
- Multiexploit worms
- Zero-day exploit worms
 - No chance to patch
- Fast-spreading worms: Warhol / Flash
 - pre-scan targets
- Polymorphic worms
 - Change appearance
- Metamorphic worms
 - Change functionality

Worm Defenses

- Antivirus tools
- Fast patching services
- Firewalling
 - Block arbitrarily outbound connections
 - Prevents spreading
- Establishment of Incident Response Capabilities

- Worm defense approaches include:
 - signature-based worm scan filtering: define signatures
 - filter-based worm containment (focus on contents)
 - payload-classification-based worm containment (examine packets for anomalies)
 - threshold random walk scan detection (limit the rate of scan-like traffic)
 - rate limiting and rate halting (limit outgoing traffic when a threshold is met)

Email Worm

- Email worm goes into a user's contact/address book and chooses every user in that contact list.
- It then copies itself and puts itself into an attachment; then the user will open the attachment and the process will start over again

Internet Worms

- A internet worm is designed to be conspicuous to the user.
- The worms scans the computer for open internet ports that the worm can download itself into the computer.
- Once inside the computer the worms scans the internet to infect more computers.

The Morris Worm

- One of best know worms
- Released by Robert Morris in 1988
 - Affected 6,000 computers; cost \$10-\$100 M
- Various attacks on UNIX systems
 - cracking password file to use login/password to logon to other systems
 - exploiting a bug in the finger protocol
 - exploiting a bug in sendmail
- If succeed have remote shell access
 - sent bootstrap program to copy worm over

Some historical worms of note

Worm	Date	Distinction
Morris	11/8 8	Used multiple vulnerabilities, propagate to "nearby" sys
ADM	5/98	Random scanning of IP address space
Ramen	1/01	Exploited three vulnerabilities
Lion	3/01	Stealthy, rootkit worm
Cheese	6/01	Vigilante worm that secured vulnerable systems
Code Red	7/01	First sig Windows worm; Completely memory resident
Walk	8/01	Recompiled source code locally
Nimda	9/01	Windows worm: client-to-server, c-to-c, s-to-s,
Scalper	6/02	11 days after announcement of vulnerability; peer-to- peer network of compromised systems
Slammer	1/03	Used a single UDP packet for explosive growth

Trojan Horse

Trojan Horse

- Trojan horse is a malicious program that is disguised as legitimate software.
- Trojan horse programs cannot replicate themselves, in contrast to some other types of malware, like viruses or worms.
- A Trojan horse can be deliberately attached to useful software by a cracker, or it can be spread by tricking users into believing that it is a useful program.

Types of attack

- Credit Card Information (often used for domain registration, shopping with your credit card)
- Any accounting data (E-mail passwords, Dial-Up passwords, Web Services passwords)
- Email Addresses (Might be used for spamming)
- Work Projects (Steal your presentations and work related papers)

Types of Trojans

- Erasing or overwriting data on a computer, corrupting files in a subtle way
- Spreading other malware, such as viruses (dropper)
- Setting up networks of zombie computers in order to launch DDoS attacks or send Spam.
- logging keystrokes to steal information such as passwords and credit card numbers (key logger)
- Phish for bank or other account details, which can be used for criminal activities.
- Installing a backdoor on a computer system.

Propagation Methods

- By visiting a rogue websites
- Lack of security in instant message applications
- Attachments on e-mail messages may contain Trojans

Well Know Trojans

- AceBot Trojan
- Secup Trojan
- Dmsys

Trojan Horses Defenses

- Tripwire could find substitutes for executables.
- Filter email attachments that are executable.

Rootkits

Rootkit

- A rootkit is a tool that is designed to hide itself and other processes, data, and/or activity on a system
- An attacker wants to:
 - Survive system restart
 - Hide processes
 - Hide services
 - Hide listening TCP/UDP ports
 - Hide kernel modules
 - Hide drivers

Rootkits

- Rootkits are Trojan horse backdoor tools that modify existing operating system software so that an attacker can keep access to and hide on a machine.
- Installing a Rootkit on a Target System
 - Hacker have root level access on target system
 - Gain root level access by compromising system via buffer overflow, password attack, social engineering
 - Rootkit allows hacker to get back onto system with root level privilege

How Rootkit Works

- Overwrite first few bytes of target function with a jump to rootkit code
- Create "trampoline" function that first executes overwritten bytes from original function then jumps back to original function
- When function is called, rootkit code executes
- Rootkit code calls trampoline, which executes original function

Types of Rootkits

- User-level Rootkits
- Kernel-level Rootkits

User-level rootkits

- Replace utilities such as ps, ls, ifconfig, etc
- Replace key libraries
- Detectable by utilities like tripwire

Kernel-level rootkits

- Replace key kernel functions
- Prevents user processes from accessing critical kernel data structures.
- Kernel Mode Rootkit Capabilities
 - File & Directory Hiding
 - Process Hiding
 - Network Port Hiding
 - Promiscuous Mode Hiding
 - Execution Redirection
 - Device Interception and Control

Rootkit Defenses

- Preventing Root Kits
 - Harden systems and apply patches.
- Detect Root Kits
 - File Integrity Checking (Signatures)
 - Root Kit Identification
 - By Tripwire, Honeypots

Zombies

What is Botnets?

- A Botnet is a network of compromised computers under the control of a remote attacker.
- Bot program runs silently in the background, awaiting instructions from the attacker

Botnets consist of:

- Bot herder
 - The attacker controlling the malicious network (also called a Bot master)
- Bot
 - A compromised computers under the Bot herders control (also called zombies, or drones).
- Bot Client
 - The malicious Trojan installed on a compromised machine that connects it to the Botnet.
- Command and Control Channel (C&C)
 - The communication channel the Bot herder uses to remotely control the bots.

Botnet topology mainly refers to the organization of C&C channels between zombies and an attacker.

Bot master

- sends viruses, worms, etc. to unprotected PCs
- Direct attacks on home PC without patches or firewall
- Indirect attacks via malicious HTML files that exploit vulnerabilities (especially in MS Internet Explorer)
- Malware attacks on peer-to-peer networks

Bot

- Bot a small program to remotely control a computer
- Characterized by
 - Remote control & communication (C&C) channels to command a victim
 - For ex., perform denial-of service attack, send spam
 - The implemented remote commands
 - For ex., update bot binary to a new version
 - The spreading mechanisms to propagate it further
 - For ex., port scanning, email

C&C channel

- Means of receiving and sending commands and information between the botmaster and the zombies.
- Protocols imply (to an extend) a botnet's communication topology.
 - The topology provides trades-off in terms of bandwidth, affectivity, stealth

- Today, bot herders primarily rely on these three protocols for their C&C:
 - Internet Relay Chat (IRC) Protocol
 - Hyper-Text Transfer Protocol (HTTP)
 - Peer-to-Peer (P2P) networking protocols.

Popular Botnets Propagation Methods

Detection

- Complicated organization of botnets & variety of cover-up techniques make detection of botnets challenging
- Botnet malware use encryption techniques to avoid being detected by signature-based Intrusion detection system