Question of the day

• How do we implement elementary data structures like stacks, queues, lists, and trees?

Stacks, queues, lists, and trees

William Hendrix

Outline

- Lists
- Stacks
- Queues
- Sets
- Trees
 - Binary search trees

Review: iterative algorithm analysis

- Identify loops and function calls
 - Everything else is $\Theta(1)$
- For loops:
 - Estimate number of iterations
 - Incrementing by *c*: divide range by *c* to get iterations
 - Multiplying by *c*: take log_c of the end/start ratio
 - Estimate loop body running time
 - Might depend on iteration #
 - If iterations don't depend on i: # iterations * time per iteration
 - Otherwise: sum up all iterations

$$\sum_{i=1}^{x} i = \Theta(x^2) \qquad \sum_{i=1}^{x} \frac{1}{i} = \Theta(\lg x) \qquad \sum_{i=1}^{x} 2^i = \Theta(2^x) \qquad \sum_{i=1}^{x} \frac{1}{2^i} = \Theta(1)$$

- For functions:
 - Analyze other functions separately
 - Recursive functions: set up a recurrence and solve
- Overall complexity: largest loop or function call complexity

Recursive analysis review

- Analyze pseudocode for recurrence
 - E.g., $T(n) = T(n/2) + \Theta(1)$
 - # and size of all recursive calls
 - Time for all nonrecursive code

Recursion tree analysis

- Nodes represent recursive calls
- Start with n, add children based on recursive calls
- Add up nonrecursive complexity for all nodes
 - Complexity may depend on input size

Master Theorem

- Applies to T(n) = aT(n/b) + f(n)
- Calculate $c = \log_b(a)$ and compare n^c vs. f(n)

$$T(n) = \begin{cases} \Theta(n^c), & \text{if } f(n) = O(n^{c-\epsilon}) \text{ for some } \epsilon > 0 \\ \Theta(n^c \lg n), & \text{if } f(n) = \Theta(n^c) \\ \Theta(f(n)), & \text{if } f(n) = \Omega(n^{c+\epsilon}) \text{ for some } \epsilon > 0 \\ & \underline{\text{and }} af(n/b) < f(n) \text{ for large } n \end{cases}$$
 Exponent on n must be $< \text{or } > c$

Data structures in memory

- Contiguous
 - Allocate single chunk of memory
 - Retrieve elements by locating data's index in chunk
 - Very fast if elements are accessed consecutively (caching)
 - No memory wasted on storing pointers
 - Following k links takes O(k) time vs. O(1) for pointer arithmetic
- Link-based
 - Data are stored in small "islands" connected via pointers
 - Retrieve elements by starting at the head/tail/root and traversing links
 - Supports data with irregular structure (graphs, trees)
 - Easier for memory manager to allocate
 - Easy to modify structure by changing links (vs. copying data)
- Hybrid

List

- ADT that stores multiple data values
 - Access based on element index

Main operations

- **Get(i):** returns element at position i
 - Sometimes denoted list[i]
- **Set(i, x):** changes element at position i to x
 - Sometimes denoted list[i] = x
- **Insert(i, x):** adds x as new element at position i
- **Delete(i):** deletes element at position i
- Not same as array: indexes change over time
 - No fixed size
- Two main implementations: array and linked list

Array-based list

- Get and Set are trivial
 - Return or modify index i
- Insert and Delete are trickier
 - Insert shifts elements right to make room

- Needs to increase capacity first if full (next slide)
- Delete shifts later elements left

Array enlargement policy

- **Bad policy:** increment by 1
 - Cost: $\Theta(n)$ every time
 - *n* pushes: $\Theta(1 + 2 + ... + n) = \Theta(n^2)$
 - Average cost per push: O(n)
- **Better policy:** increment by k (k=10, 100, etc.)
 - Cost: $\Theta(n)$ every k^{th} time
 - n pushes: $\Theta(1 + (1+k) + \ldots + (1+k\lfloor \frac{n}{k} \rfloor)) = \Theta\left(\frac{n^2}{k}\right)$
 - Average cost per push: $\Theta(\frac{n}{k})$
 - Caution: space trade-off
 - Increment by 1B: small stacks will be mostly empty space
- **Best policy:** double array size
 - Cost: $\Theta(n)$ after powers of two
 - n pushes: $\Theta(1+2+4+\ldots+2^{\lfloor \lg n \rfloor})=\Theta(n)$ Amortized analysis

 - Array will be at least half-full if not deleting

Array-based list complexity

Operation	Worst-case complexity
Get(i)	$\Theta(1)$
Set(i, x)	$\Theta(1)$
Insert(i, x)	O(n)
Delete(i)	O(n)

- Variant: insert by swapping arr[i] to end, then inserting
 - Delete by swapping last element to index i and decrementing size

- Insert and Delete become $\Theta(1)$
- Doesn't maintain relative order of elements

Linked lists

- Pointer-based data structure
 - Data values "chained" together by pointers
 - Alternative to array
 - Can be doubly- or singly-linked
- Two parts
 - List: represents list as a whole
 - Most list operations are here
 - Stores head pointer, maybe size and tail
 - Node: represents a single link in the chain
 - Data value and next pointer, maybe previous pointer
- May be implemented with or without *sentinel nodes*
 - Simplify code: no special cases for nullptr/head/tail
 - Extra nodes (constructor and destructor)
- Sentinel value
 - Design pattern where a special data value serves as a marker
 - E.g., a node containing -1 when all values are positive

No sentinel nodes:

With sentinel nodes:

Linked list operations

Element access

- Start at head
- Follow next pointers until at correct position

Insert (no sentinel nodes)

- Create new node, and increment size
- Initialize node->next and node->prev
- If not inserting after tail:
 - Set after->prev to node
- Otherwise:
 - tail = node
- If not inserting before head:
 - Set before->next to node
- Otherwise:
 - head = node

Other linked list operations

Remove

- If not head, node->prev->next = node->next
 - Else, head = head->next
- If not tail, node->next->prev = node->prev
 - Else, tail = tail->prev

Destructor

- Scan through list, deleting every node
- Tricky: move to next node before deleting current

Copy constructor

- Scan through original
- For each node:
 - Make copy
 - Connect to previous (if not head)
- Set tail and size

Copy assignment

– If this != rhs, delete then copy

Linked list exercise

- Write pseudocode for a function that takes a doubly-linked list and returns a copy of the list in reverse order
 - LinkedList data members: *head*, *tail*, *size*
 - No sentinel values (nil/NULL pointers at head/tail)
 - LLNode data members: data, next, prev
 - Constructor that accepts *data* (*prev* and *next* set to nil)

```
reverse(list):
    reverseList = List()
    curr = list.tail
    while curr != nil:
        reverseList.append(curr)
        curr = curr.prev
```

Linked list exercise

• Write pseudocode for a function that takes a doubly-linked list and returns a copy of the list in reverse order

```
reverse(list):
  ret = LinkedList()
  ret.size = list.size
  if list.size > 0:
    from = list.tail
    prev = ret.head = LLNode(from.data)
    for i = 2 to ret.size:
       from = from.prev
       prev.next = LLNode(from.data)
       prev.next.prev = prev
       prev = prev.next
    ret.tail = prev
return ret
```

Circular linked lists

- Variant of linked list
- Last pointer points to first
- Used to represent cyclic data
- Traditionally singly-linked
- Store *back* pointer for easy appending
- May use *sentinel node* to indicate "end" of list

List comparison

Operation	Array	Linked list
Get(i)	$\Theta(1)$	O(n)
Set(i, x)	$\Theta(1)$	O(n)
Insert(x, i)	O(n)	O(n)
Delete(i)	O(n)	O(n)

- Both have advantages
 - LinkedList ops are $\Theta(1)$ if given pointers
 - Some LL ops (e.g., concatenation) are faster
 - Array faster if scanning
 - Especially if using swap variant

Stack implementations

- Can be implemented using linked list or array
- Linked list implementation
 - push(): append
 - O(1)
 - pop(): delete tail
 - O(1)
 - peek(): return tail
 - O(1)
- - Similar to vector
 - push(): add and expand when full
 - O(1) "on average"
 - pop(): decrease size
 - O(1)
 - peek(): return last element
 - O(1)

Stack applications

- Stacks used for many algorithms
 - Reversing a string
 - Push everything, then pop everything
 - Matching parentheses
 - Push on (, [, {
 - Pop and match on),], }
 - Return true at end if everything matched
- Backtracking
 - Powerful technique for solving many problems
 - Start at initial state
 - Make a move and push on stack
 - Repeat until you find the goal or run out of moves
 - If out of moves, pop and undo last move, then try something else
 - Often implemented using recursion
 - Call stack

Queues

- Data structures related to stacks
- Three main operations
 - enqueue(x)
 - Add a new element to the back of the queue
 - dequeue()
 - Remove the element to the front of the queue
 - peek()
 - Return the front of queue without removing
 - Analogy: line
 - First-In, First-Out (FIFO) ordering
 - Complementary to stack
- Deque ("deck")
 - Double-Ended QUEue
 - 4 operations: push_front(), push_back(), pop_front(), pop_back()
 - Can simulate stack (push_back/pop_back) or queue (push_back/pop_front)

Queue applications

- Not as common as stacks overall
- Used for resource allocation
 - E.g., printer queues
 - Good because everyone waits roughly the same amount of time to get through the queue
- Also used in graph and tree traversals
- C++ STL provided templated stack and queue implementations

```
#include <stack>
#include <queue>
//...
stack<int> s; //s.push(0), s.pop(), s.top()
queue<double> q; //q.push(0); q.pop(), q.front()
//Both: .size(), .empty()
```

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

- Linked list implementation
 - enqueue(): append
 - O(1)
 - dequeue(): delete head
 - O(1)
 - peek(): return head
 - O(1)
- Array implementation (usually preferred)
 - Two indexes: head and tail (plus capacity)
 - enqueue(): add after tail
 - O(1) "on average"
 - dequeue(): move head forward
 - O(1)
 - peek(): return array[head]
 - O(1)

- Enqueue(0, 1, 2)
- Dequeue() * 2
- Enqueue(3, 4)
- Dequeue()
- Enqueue(5, 6)

- Movement quirk
 - When head and tail reach capacity, start back over at o
 - Queue is empty when head == tail
 - Queue is full when tail encounters head
 - Double capacity and copy

Stack/queue analysis

- Allow us to access elements in a specific order
- Used by many algorithms
- All operations O(1) worst case or amortized time complexity
- More restrictive than array/vector
 - Can only access one element at a time

Stack/queue exercise

- Use an STL stack to implement the solve () member function of the provided Maze class.
 - Use push (), top (), and pop ()
- Relevant methods
 - void getMoves (bool& up, bool& right, bool& left, bool& down);
 - Returns whether you can move up, right, left, or down from current position
 - bool move (direction t dir);
 - Moves UP, DOWN, LEFT, or RIGHT
 - Leaves a "breadcrumb trail"
 - getMoves() excludes previously visited directions
 - bool move_back(direction t dir)
 - "Undoes" a move
 - Doesn't change visited status
 - bool isSolved()
 - Returns whether you've found the Maze exit

Set or dictionary

- Abstract data type for storing and retrieving values
 - Main implementations: balanced BSTs and hash tables

Primary operations

- Search(x): returns the location of x in the set, or NIL if not contained
- Insert(x): adds x to the set
- Delete(x): removes x from the set

Additional operations

- Build(data): construct set from unsorted array
- Max(), Min(): return the location of the largest/smallest element
- Successor(x), Predecessor(x): return the next largest/smallest element than x

Trees

- Nonlinear linked data structure
- From graph theory: any connected acyclic graph
- Most trees in CS are rooted
 - Special vertex
 - Other vertices are defined in relation to root
 - Root has children, children have children, etc.
- *Leaf*: vertex with degree 1 (no children)
- Level: nodes at same distance from root
- *Height*: max level
- Siblings: vertices with same parent
- Binary tree
 - Tree where every node has at most 2 children
 - *left* and *right*
 - *m*-ary tree: every node has at most *m* children
 - Full binary tree: all non-leaf nodes have 2 children

Tree implementation

- Often implemented similar to linked list
- BinaryTree
 - Data member: root
 - Optional: size, height
- BinaryTreeNode
 - Data members: data, left, right
 - Left and right null if not present
 - Optional: parent (null if root)
- *m*-ary tree: two main implementations
 - Main class the same
 - Implementation 1: node has array of children
 - Parent optional in both
 - Impl. 2: node has 2 pointers: firstChild and nextSibling

Tree implementation

- Often implemented similar to linked list
- BinaryTree
 - Data member: root
 - Optional: size, height
- BinaryTreeNode
 - Data members: data, left, right
 - Left and right null if not present
 - Optional: parent (null if root)
- *m*-ary tree: two main implementations
 - Main class the same
 - Implementation 1: node has array of children
 - Parent optional in both
 - Impl. 2: node has 2 pointers: firstChild and nextSibling
 - Effectively a binary tree

Binary search tree

- Important binary tree variant
- BST property:
 - All nodes to left are ≤
 - All nodes to right are ≥
 - Makes it easy to find values
- Search:
 - Start at root
 - If current node == target, return
 - Otherwise, if target < current, search left
 - Otherwise, search right
 - Repeat until you find the value or a null pointer
- Analysis
 - O(1) per recursive call
 - 1 node per level
 - O(h) time total (height h)

BST insert

- Also easy
 - Start at root
 - If ins < current node, move left
 - Otherwise, move right
 - Repeat until you find a null pointer
 - Insert new node at null pointer

BST insert

- Also easy
 - Start at root
 - If ins < current node, move left
 - Otherwise, move right
 - Repeat until you find a null pointer
 - Insert new node at null pointer
- Analysis: same as search
 - $O(1) / level \rightarrow O(h) total$

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node

Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node

Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node
 - Case 2: 1 child
 - Set parent's child to be child
 - Set child's parent to parent
 - Delete node

- Step 3: decrement size
 - Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node
 - Case 2: 1 child
 - Set parent's child to be child
 - Set child's parent to parent
 - Delete node

- Step 3: decrement size
 - Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node
 - Case 2: 1 child
 - Set parent's child to be child
 - Set child's parent to parent
 - Delete node
 - Case 3: 2 children
 - Swap node with max(lhs)
 - Delete node at new location
- Step 3: decrement size
 - Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node
 - Case 2: 1 child
 - Set parent's child to be child
 - Set child's parent to parent
 - Delete node
 - Case 3: 2 children
 - Swap node with max(lhs)
 - Delete node at new location
- Step 3: decrement size
 - Update root if necessary

- More complicated!
- Step 1: search for node to delete
- Step 2: delete node
 - Case 1: no children (leaf)
 - Set parent's child to null
 - Delete node
 - Case 2: 1 child
 - Set parent's child to be child
 - Set child's parent to parent
 - Delete node
 - Case 3: 2 children
 - Swap node with max(lhs)
 - Delete node at new location
- Step 3: decrement size
 - Update root if necessary
- Analysis: still O(h)
 - Case 3 has 0 or 1 children

Tree traversals

- Algorithms to visit every node in rooted tree
- 4 classic traversals
 - Pre-order
 - Process self
 - Process left tree
 - Process right tree
 - In-order
 - Process left, then self, then right
 - Post-order
 - Process left, then right, then self
 - Levelwise
 - Start with root in queue
 - Dequeue: process, then enqueue children
 - Repeat until queue empty
- Analysis:
 - O(1) per node
 - O(n) total

Recursive

Queue-based

Pre-order: 50, 25, 13, 38, 31, 75 In-order: 13, 25, 31, 38, 50, 75

Post-order: 13, 31, 38, 25, 75, 50

Levelwise: 50, 25, 75, 13, 38, 31

Tree height

• How tall can a BST be?

Worst case

- Degenerate tree
 - Only left or right children
 - Height = O(n)
- Can happen if inserting in sorted order
- Best case
 - Complete tree

25 75 13 38 64 88

Complete tree height

- **Theorem:** Complete trees have 2^i nodes on level i, for every level (except possibly bottom level)
 - Proof sketch:
 - $1 = 2^{0}$ on level 0
 - Every subsequent level has twice as many as previous
- # nodes in complete binary tree of height h: $\sum_{i=0}^{n} 2^{i}$
 - Theorem: $\sum_{i=0}^{h} 2^i = 2^{h+1} 1$
 - Proof by induction
 - Exercise for the reader
 - # nodes in complete tree w/ height h is $O(2^h)$
 - Height of tree with *n* nodes is O(lg *n*)
- **Theorem:** half of all nodes in complete tree are leaves

BST complexity

	BST (best)	BST (worst)	Unsorted array	Sorted array
Search(x)	$O(\lg n)$	O(n)	O(n)	$O(\lg n)$
Insert(x)	$O(\lg n)$	O(n)	O(1)	O(n)
Delete(x)	$O(\lg n)$	O(n)	O(1)*	O(n)
Min()	$O(\lg n)$	O(n)	O(n)	O(1)
Max()	$O(\lg n)$	O(n)	O(n)	O(1)

^{*} Swap to end and decrement size

- BST have great best-case complexity
- Worst case is worse than arrays!

Coming up

- Tree traversals
- Balanced BSTs
 - AVL trees
- **Recommended readings:** Chapter 2 (all except 2.2.1)
 - **Practice problems:** R-2.2, R-2.5, C-2.3, C-2.13, A-2.2