This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

5

10

1121 ot

15

A semiconductor device comprising: 1.

a substrate having a front surface and a rear surface;

an insulating film comprising aluminum nitride provided on said rear surface of the substrate; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween

2. A semiconductor device comprising:

a substrate having a front surface and a rear surface;

an insulating film comprising aluminum, nitrogen and oxygen

provided on said rear surface of the substrate; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween.

20

3. A semiconductor device comprising:

a substrate having a front surface and a rear surface;

an insulating film comprising aluminum nitride\provided on

said rear surface of the substrate; and

1.2.12E

6

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween,

wherein said insulating film comprising aluminum nitride has a thermal conductivity of 0.6 W/cm·K or higher.

4. A semiconductor device comprising:

a substrate having a front surface and a rear surface;

a multi-layer insulating film provided on said rear surface of the substrate and comprising an aluminum nitride layer and a silicon oxide layer, said aluminum nitride layer and said silicon oxide layer being provided adjacent to each other; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween.

5. An active matrix type liquid crystal display comprising:
a substrate having a front surface and a rear surface;
an insulating film comprising aluminum nitride provided on said rear surface of the substrate; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation

fig.12E

1,5

10

5

112/at

15

20

17.12E

25

region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween.

An active matrix type liquid of ystal display comprising: 6. a substrate having a front surface and a rear surface; an insulating film comprising aluminum, nitrogen and oxygen provided on said rear surface of the substrate; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween.

1121st fig.12 =

15

20

10

7. An active matrix type liquid crystal display comprising: a substrate having a front surface and a rear surface;

an insulating film comprising aluminum nitride provided on said rear surface of the substrate, and

a transistor provided over said front surface of the substrate, said transistor having at least a charmel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween wherein said insulating film comprising aluminum nitride has a thermal conductivity of 0.6 W/cm·K or higher.

fig. 12 E

8. An active matrix type liquid crystal display comprising: a substrate having a front surface\and a rear surface;

,	10
fig	,12E
	15

112 let

5

10

15

a multi-layer insulating film provided on said rear surface of the substrate and comprising an aluminum nitride layer and a silicon oxide layer, said aluminum nitride layer and said silicon oxide layer being provided adjacent to each other; and

a transistor provided over said front surface of the substrate, said transistor having at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation region with said gate insulating film interposed therebetween.

An active matrix type liquid crystal display comprising: 9. a substrate having an insulating film comprising aluminum nitride outside said substrate, and having a transistor inside said substrate, wherein said transistor has at least a channel formation region comprising crystalline silicon, a gate insulating film adjacent to said channel formation region, and a gate electrode adjacent to said channel formation

- The device of claim 1 wherein said substrate is a glass 10. substrate.
- 11. The device of claim 2 wherein said substrate is a glass 20 substrate.

region with said gate insulating film interposed therebetween.

12. The device of claim 3 wherein said substrate is a glass substrate.

- 13. The device of claim 4 wherein said substrate is a glass substrate.
- 14. The display of claim 8 wherein said substrate is a glass substrate.

The display of claim 6 wherein said substrate is a glass substrate.

- 16. The display of claim 7 wherein said substrate is a glass substrate.
- 17. The display of claim 8 wherein said substrate is a glass substrate.
 - 18. The display of claim 9 wherein said substrate is a glass substrate.

add add B^{b}