链路状态路由算法

Dijkstra算法

Dijkstra算法流程

- 第一步初始化工作。在子网中标出所有节点到初始节点A的最短距离,只有与A邻接的节点才知道到A距离。
- 第二步循坏迭代,直到找出所有节点到A的最短距离。

- · C(i, j):从节点i到j的成本。如果i到j没有直接链路,则为∞
- · D(v): 从源节点到目标节点v的当前最小成本
- · P(v): 从源节点到目标节点v的当前最小成本路径上前一节点
- · N: 从源点沿已定义最短路径能到达的节点的集合

Dijkstra算法——初始化

假设:根据各节点广播的路由状态包播,源

节点A构造出表示网络拓扑结构的子网图

试问: Dijkstra算法过程(以A为例)

● 初始化

- 将A加入集合N
- 将A邻居到A的距离标为链路成本

与A邻接的节点B和G到A的最 短距离就是链路成本。

Dijkstra算法——迭代过程 (4-1)

循环迭代1

- 选择到A距离最短的节点B加入N
- 标值其他节点经B到A的距离

$$D(C) = min\{ D(C), D(B)+c(B,C) \}$$

= $min\{ \infty, 2+7 \}$

● 循环迭代2

- · 选择到A距离最短的节点E加入N
- 标值其他节点经E到A的距离

$$D(G) = min\{ D(G), D(E)+c(E,G) \}$$

= min{ 6, 4+1}

Dijkstra算法——迭代(4-2)

● 循环迭代3

- · 选择到A距离最短的节点G加入N
- 标值其他节点经G到A的距离

$$D(H) = min\{ D(H), D(G)+c(G,H) \}$$

= $min\{ \infty, 5+4 \}$

● 循环迭代4

- · 选择到A距离最短的节点F加入N
- 标值其他节点经F到A的距离

$$D(H) = min\{ D(H), D(F)+c(F,H) \}$$

= min{ 9, 6+2}

Dijkstra算法——迭代 (4-3)

循环迭代5

- 选择到A距离最短的节点H加入N
- · 标值其他节点经H到A的距离

$$D(D) = min\{ D(D), D(H)+c(H,D) \}$$

= $min\{ \infty, 8+2 \}$

● 循环迭代6

- · 选择到A距离最短的节点C加入N
- 标值其他节点经C到A的距离

$$D(D) = min\{ D(H), D(C)+c(C,D) \}$$

= min{ 10, 9+3}

Dijkstra算法——最短路径的确定

计算最短路径:从任意一个目标节点倒着往前

推即可获得从源节点A到该节点的一条最短路径。

算法结果:从A出发到达D的 最短路径是A-B-E-F-H-D。

A的路由表

目标地址	出境线路	路径长度
Α	-	-
В	В	2
С	В	9
D	В	10
E	В	4
F	В	6
G	В	5
Н	В	8

