MOLECULAR ECOLOGY

Background selection and F_{ST} : consequences for detecting local adaptation

Journal:	Molecular Ecology
Manuscript ID	MEC-19-0061
Manuscript Type:	Original Article
Date Submitted by the Author:	17-Jan-2019
Complete List of Authors:	Matthey-Doret, Remi; University Of British Columbia, Department of Zoology Whitlock, Michael; University of British Columbia, Department of Zoology
Keywords:	Adaptation, Evolutionary Theory, Population Genetics - Theoretical, Population Structure, Local Adaptation

SCHOLARONE™ Manuscripts

1	
2	Title : Background selection and F_{ST} : consequences for detecting local adaptation
3	
4	Authors : Remi Matthey-Doret ¹ and Michael C. Whitlock
5	
6	Affiliation: Department of Zoology and Biodiversity Research Centre, University of
7	British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
8	
9	¹ Corresponding author: matthey@zoology.ubc.ca
10	
11	

Abstract

Background selection is a process whereby recurrent deleterious mutations cause a decrease in the effective population size and genetic diversity at linked loci. Several authors have suggested that variation in the intensity of background selection could cause variation in F_{ST} across the genome, which could confound signals of local adaptation in genome scans. We performed realistic simulations of DNA sequences, using recombination maps from humans and sticklebacks, to investigate how variation in the intensity of background selection affects F_{ST} and other statistics of population differentiation in sexual, outcrossing species. We show that, in populations connected by gene flow, Weir & Cockerham's (1984) estimator of F_{ST} is largely insensitive to locus-to-locus variation in the intensity of background selection. Unlike F_{ST} , however, d_{XY} is negatively correlated with background selection. Background selection does not greatly affect the false positive rate in F_{ST} outlier studies. Overall, our study indicates that background selection will not greatly interfere with finding the variants responsible for local adaptation.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Introduction

Maynard Smith & Haigh (1974) recognized the influence of selection on linked neutral sites, proposing that strong positive selection could reduce genetic diversity at nearby sites. This process is now referred to as a 'selective sweep'. Much later, Charlesworth et al. (1993) proposed that deleterious mutations could also affect genetic diversity at nearby sites, because some haplotypes would be removed from the population as selection acts against linked deleterious alleles. They named this process background selection (BGS). Both selective sweeps and background selection affect genetic diversity; they both reduce the effective population size and distort the site frequency spectrum (SFS) of linked loci. Empirical evidence of a positive correlation between genetic diversity and recombination rate has been reported in several species (Cutter and Payseur, 2013), including Drosophila melanogaster (Begun & Aquadro, 1992; Elyashiy et al., 2016), humans (Spencer et al., 2006), collared flycatchers, hooded crows and Darwin's finches (Dutoit et al., 2017; see also Vijay et al., 2017). BGS is also expected to affect F_{ST} (Charlesworth et al., 1997; Cutter & Payseur, 2013; Cruickshank & Hahn, 2014; Hoban et al., 2016). The negative relationship between effective population size N_e and F_{ST} is captured in Wright's classical infinite island result; $F_{ST} = \frac{1}{1 + 4Ne(m + \mu)}$ (Wright, 1943), where m is the migration rate and μ is the mutation rate. One might therefore expect that loci under stronger BGS would show higher F_{ST} .

- 49 Many authors have also argued that, because BGS reduces the within-population
- diversity, it should lead to high F_{ST} (Cutter & Payseur, 2013; Cruickshank & Hahn,
- 2014; Hoban et al., 2016). Expressed in terms of heterozygosities, $F_{ST} = \frac{H_T H_S}{H_T}$
- 52 = $1 \frac{H_S}{H_T}$, where H_T is the expected heterozygosity in the entire population and H_S is
- the average expected heterozygosity within subpopulations (H_S and H_T are also
- 54 sometimes called π_S and π_T ; e.g. Charlesworth, 1998). All else being equal, a
- decrease of H_S would indeed lead to an increase of F_{ST} . However, all else is not equal;
- 56 H_T is also affected by BGS (Charlesworth et al., 1997). Therefore in order to
- understand the effects of BGS on F_{ST} , we must understand the relative impact of BGS
- on both H_S and H_T .
- 59 Performing numerical simulations, Charlesworth et al. (1997) report that BGS
- reduces the within population heterozygosity H_S slightly more than it reduces the
- total heterozygosity H_T , causing a net increase in F_{ST} . The effect on F_{ST} reported is
- quite substantial, but, importantly, their simulations were not meant to be realistic.
- The authors highlighted their goal in the methods:
- "The simulations were intended to show the qualitative effects of the various
- forces studied [...], so we did not choose biologically plausible values [...].
- Rather, we used values that would produce clear-cut effects".
- For example, talking about their choice for the deleterious mutation rate of 8×10^{-4}
- 68 per site:

69	"This unrealistically high value was used in order for background selection to
70	produce large effects []"
71	Much of the literature on the effect of BGS on \mathcal{F}_{ST} is based on the results in
72	Charlesworth et al. (1997), even though they only intended to show proof of concept
73	(see also Zeng & Charlesworth, 2011 and Zeng & Corcoran, 2015). They did not
74	attempt to estimate how strong of an effect BGS has on F_{ST} in real genomes.
75	The intensity of BGS varies throughout the genome as a consequence of variation in
76	recombination rate, selection pressures and mutation rates. Therefore, if BGS
77	significantly affects F_{ST} , we should expect that baseline F_{ST} to vary throughout the
78	genome. It is important to distinguish two separate questions when discussing the
79	effect of BGS on F_{ST} ; 1) How does BGS affect the average genome-wide F_{ST} ? and 2)
80	How does locus-to-locus variation in the intensity of BGS affect locus-to-locus
81	variation in F_{ST} ? The second question is of particular interest to those trying to
82	identify loci under positive selection (local selection or selective sweep). Locus-to-
83	locus variation in F_{ST} due to BGS potentially could be confounded with the F_{ST} peaks
84	created by positive selection. In this paper, we focus on this second question.
85	The identification of loci involved in local adaptation is often performed via \mathcal{F}_{ST}
86	outlier tests (Lotterhos & Whitlock, 2014; Hoban et al., 2016). Other tests exist to
87	identify highly divergent loci such as cross-population extended haplotype
88	homozygosity (XP-EHH; Sabeti et al., 2007), comparative haplotype identity(Lange
89	& Pool, 2016) and cross-population composite likelihood ratio (XP-CLR; Chen et al.,

90	2010). F_{ST} outlier tests, such as FDist2 (Beaumont & Nichols, 1996), BayeScan (Foll
91	& Gaggiotti, 2008) or FLK (Bonhomme et al., 2010), look for genomic regions
92	showing particularly high \mathcal{F}_{ST} values to find candidates for local adaptation. If BGS
93	can affect F_{ST} unevenly across the genome, then regions with a high intensity of BGS
94	could potentially have high F_{ST} values that could be confounded with the pattern
95	caused by local selection (Charlesworth et al., 1997; Cruickshank & Hahn, 2014).
96	BGS could therefore inflate the false positive rate when trying to detect loci under
97	local selection.
98	The potential confounding effect of BGS on signals of local adaptation has led to an
99	intense effort trying to find solutions to this problem (Bank et al., 2014; Huber et al.,
100	2016; Aeschenbacher et al., 2017). Many authors have understood from
101	Cruickshank and Hahn (2014) that d_{XY} should be used instead F_{ST} in outlier tests
102	(e.g. McGee et al., 2015; Yeaman, 2015; Whitlock & Lotterhos, 2015; Brousseau et al.,
103	2016; Picq et al., 2016; Payseur & Rieseberg, 2016; Hoban et al., 2016; Vijay et al.,
104	2017; see also Nachman & Payseur, 2012). F_{ST} is a measure of population divergence
105	relative to the total genetic diversity, while d_{XY} is an absolute measure of population
106	divergence defined as the probability of non-identity by descent of two alleles
107	drawn in the two different populations averaged over all loci (Nei, 1987; Nei, 1987
108	originally called it D_{XY} but, here, we follow Cruickshank and Hahn's, 2014
109	terminology by calling it d_{XY}). The argument is that because F_{ST} is a measure of
110	divergence relative to the genetic diversity and d_{XY} an absolute measure of
111	divergence and because BGS reduces genetic diversity (Cruickshank & Hahn, 2014;

Hoban et al., 2016), then BGS must affect F_{ST} but not d_{XY} , a claim that we will investigate in this paper.

Whether BGS can affect genome-wide F_{ST} under some conditions is not in doubt (Charlesworth et al., 1997), but whether locus-to-locus variation in the intensity of BGS present in natural populations substantially affects variation in F_{ST} throughout the genome is very much unknown. Empirically speaking, it has been very difficult to measure how much of the genome-wide variation in genetic diversity is caused by BGS, as opposed to selective sweeps or variation in mutation rates (Cutter & Payseur, 2013; see also attempts in humans by Cai et al., 2009, McVicker et al. 2009 and Elyashiv et al., 2016). We are therefore in need of realistic simulations that can give us more insight into how BGS affects genetic diversity among populations and how it affects the statistics of population divergence.

In this article, we investigate the effect of BGS in structured populations with realistic numerical simulations. Our two main goals are 1) to quantify the impact of locus-to-locus variation in the intensity of BGS on F_{ST} (Weir & Cockerham, 1984) and d_{XY} (Nei, 1987) and 2) to determine whether BGS inflates the false positive rate of F_{ST} outlier tests.

Methods

Our goal is to perform biologically plausible simulations of the local genomic effects of background selection. BGS is expected to vary with strength of selection (itself

affected by gene density), mutation rate and recombination rate across the genome.
We used data from real genomes to simulate realistic covariation in recombination
rates and gene densities. We chose to base our simulated genomes on two eukaryote
recombination maps, sticklebacks and humans, because these two species have
attracted a lot attention in studies of local adaptation and because sticklebacks have
a variance in recombination rate which is almost 15 times higher than humans (data
not shown), allowing us to test vastly different types of eukaryotic genomes. The
recombination rate variation in humans is extremely fine scale, but it presents the
potential issue that it is estimated from linkage disequilibrium data. As selection
causes linkage disequilibrium to increase, estimates of recombination rate at
regions under strong selection may be under-estimated, which might bias the
simulated variance in the intensity of BGS. Although the recombination map for
stickleback is much less fine-scaled, the estimates are less likely to be biased as they
are computed from pedigrees.
Our simulations are forward in time and were performed using the simulation
platform SimBit version 3.69. We simulated non-overlapping generations,
hermaphroditic, diploid individuals and random mating within patches. Selection
occurred before dispersal. The code and user manual are available at
https://github.com/RemiMattheyDoret/SimBit. The rational for using a new
simulation platform is because all existing simulation platforms today were too slow
for our needs. (See Appendix A.) To double check our results, we also ran some
simulations with SLiM (Haller & Messer, 2017) and Nemo (Guillaume & Rougemont,

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

2006) (see Appendix A), confirming that we get consistent distributions of genetic diversity and of F_{ST} among simulations. For simulations with SLiM and Nemo, independent simulations were parallelized with GNU parallel (Tange, 2011).

Genetics

For each simulation, we randomly sampled a sequence of about 10 cM from either the stickleback (Gasterosteus aculeatus) genome or the human genome (see treatments below) and used this genomic location to determine the recombination map and exon locations for a simulation replicate. For the stickleback genome, we used the gene map and recombination map from Roesti et al. (2013). Ensemblretrieved gene annotations were obtained from Marius Roesti. For the human genome, we used the recombination map from The International HapMap Consortium (2007) and the gene positions from NCBI and positions of regulatory sequences on Ensembl (Zerbino et al., 2017). We excluded sex chromosomes to avoid complications with haploid parts of the genomes. As estimates of mutation rate variation throughout the genome are very limited, we assumed that the haploid mutation rate varies from site to site following an exponential distribution with mean of 2.5×10^{-8} per generation (mean estimate from Nachman & Crowell, 2000). More specifically, we first randomly sampled a sequence of 10⁵ nucleotides, which we will refer to as the focal region. All of the statistics (defined under the section Statistics below) are calculated only on the focal region of each simulation.

Nucleotides that occur in locations determined to be exons in the sampled genomic

map are subject to selection (see *Selection*), while all other nucleotides are assumed to be neutral. The focal region itself contained on average ~ 0.44 genes for the human genome and ~ 3.15 genes for the stickleback genome.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

We simulated a 5 cM region on each side of the focal region (resulting in a window of 10 cM plus the map distance covered by the specific focal region of 10^5 sites) in order to capture the local effects of background selection. In these 10 cM flanking regions, we only tracked exons. In the nearest 1 cM on each side of the focal region, as well within the focal region, we individually simulated each nucleotide as a biallelic locus. On the remaining outer 4 cM, to improve the speed and RAM usage of the process, we tracked the number of mutations in blocks of up to 100 nucleotides. For these blocks, we tracked only the number of mutations but not their location within the block. Ignoring recombination within a block likely had little effect on the results because the average recombination distance between the first and last site of a block is of the order of 10⁻⁶ cM. The expected number of segregating sites within a block is $4N\mu\sum_{i=1}^{2N-1}(1/i)$, which for a mutation rate per block of 10^{-6} and a population size of N = 10,000 is ~ 0.42 . The probabilities of having more than one mutation and more than two mutations (based on a Poisson approximation) are therefore only approximately 6.7% and 0.9%, respectively. Overall, the level of approximation used is very reasonable.

Selection

As we are interested in the effect of BGS, we modelled the effects of purifying selection against novel deleterious mutations. Each nucleotide in the exons (and regulatory sequences for the human genetic map) is subject to purifying selection with a selection coefficient against mutant alleles determined by a gamma distribution described below. For focal regions that include exons, statistics are computed over a sequence that is at least partially under direct purifying selection.

To create variance in selection pressures throughout the genome, each exon (and regulatory sequence for the human genetic map) has its own gamma distribution of

regulatory sequence for the human genetic map) has its own gamma distribution of heterozygous selection coefficients *s*. The mean and variance of these gamma distributions are drawn from a bivariate uniform distribution with correlation coefficient of 0.5 (so that when the mean is high, so is the variance) bounded between 10⁻⁸ and 0.2 for both the mean and the variance. These bounds were inspired by the methodology used in Gilbert et al. (2017). The gamma distributions are bounded to one. Figure S1 shows the overall distribution of selection coefficient *s*, with 2% of mutations being lethal and an average deleterious selection coefficient for the non-lethal mutations of 0.07. In the treatment *Low selection pressure* (see treatments below), the upper bounds for the mean and variance of the gamma distributions were set to 0.1 instead of 0.2. To improve the performance of our simulations, we assumed multiplicative fitness interactions among alleles, where the

214 fitness of heterozygotes is at locus i is 1- s_i and the fitness of the double mutant is (1-215 $(s_i)^2$. Any mutation changes the state of the locus to the other possible allele. 216 As a consequence of our parameter choices, our genome-wide deleterious mutation 217 rate was about 1.6 in sticklebacks and about 3 in humans. 9.8% of the stickleback 218 genome and 2.7% of the human genome was under purifying selection. For 219 comparison, the genome-wide deleterious mutation rate is estimated at 2.2 in 220 humans (Keightley, 2012) and 0.44 in rodents (Keightley & Gaffney, 2003). To our knowledge, there is currently no such estimation for sticklebacks. Note however 221 222 that the above estimates cannot reliably detect mutations that are quasi-neutral (s 223 << 1/2N). By our distribution of selection coefficients, 49% of all deleterious 224 mutations have a heterozygote selection coefficient lower than $1/2N_e$ when N_e = 225 1,000 (42% when N_e = 10,000). The fraction of selection coefficients that are of 226 intermediate effect (between $1/2 N_e$ and $10/2 N_e$) is 10% when $N_e = 1,000$ (7% 227 when $N_e = 10,000$). 228 It is worth noting that, in rodents, about half of the deleterious mutations occur in 229 non-coding sequences (Keightley & Gaffney, 2003). Our simulations using human 230 genetic map had all exons and all regulatory sequences under purifying selection. 231 With our simulations based on the stickleback genome, however, only exons were 232 under purifying selection. It is therefore possible that we would have over-233 estimated the deleterious mutation rate in gene-rich regions and under-estimated 234 the deleterious mutation rate in other regions, especially in stickleback. This would

artificially increase the locus-to-locus variation in the intensity of BGS in our simulations, which is conservative to our conclusions.

Demography

In all simulations, we started with a burn-in phase with a single population of N diploid individuals, lasting $5 \times 2N$ generations. The population was then split into two populations of N individuals each with a migration rate between them equal to m. After the burn-in phase, each simulation was run for $5 \times 2N$ more generations for a total of $10 \times 2N$ generations.

Treatments

We explored the presence and absence of deleterious mutations over two patch sizes, three migration rates, two genomes, and three selection scenarios. We considered a basic design and explored variations from this design. The basic design had a population size per patch of N=1000, a migration rate of m=0.005 and used the stickleback genome for its recombination map and gene positions. As deviations from this basic design, we explored modification of every variable, one variable at a time. The *Large N* treatment has N=10000. The *Human Genetic Map* treatment uses the human genome for gene positions, regulatory sequences and recombination map. The treatments *No Migration* and *High Migration* have migration rates of m=0 and m=0.05, respectively. The *Constant* μ treatment assumes that all sites have a

254 mutation rate of 2.5×10^{-8} per generation. The *Low selection pressure* treatment 255 simulates lower selection coefficients (see section Selection above). 256 To test the robustness of our results and because it may be relevant for inversions, 257 we also performed simulations where the recombination rate for the entire 10cM 258 region was set to zero. As a check against previous work, we qualitatively replicated 259 the results of Charlesworth et al. (1997) by performing simulations with similar 260 assumptions as they used. We named this treatment CNC97. In our CNC97 261 simulations, N=2000, m=0.001, and 1000 loci were all equally spaced at 0.1 cM apart 262 from each other with constant selection pressure with heterozygotes having fitness 263 of 0.98 and double homozygotes fitness of 0.9 and constant mutation rate $\mu =$ 264 0.0004. We performed further checks against previous works that are presented in 265 Appendix A. A full list of all treatments can be found in table 1. 266 In all treatments (except *Large N*), we performed 4000 simulations; 2000 267 simulations with BGS and 2000 simulations without selection (where all mutations 268 were neutral). For *Large N*, simulations took more memory and more CPU time. We 269 therefore could only perform 2000 simulations for *Large N*; 1000 simulations with 270 background selection and 1000 simulations without selection. 271 We set the generation 0 at the time of the split. The state of each population was 272 recorded at the end of the burn-in period (generation -1) and at generations 0.001× 273 2N, $0.05 \times 2N$, $0.158 \times 2N$, $1.581 \times 2N$ and $5 \times 2N$ after the split. For N=1000, the 274 sampled generations are therefore -1, 2, 100, 316, 3162 and 10000.

275 Predicted intensity of Background Selection

In order to investigate the locus-to-locus correlation between the predicted intensity of BGS and various statistics, we computed B, a statistic that approximates the expected ratio of the coalescent time with background selection over the coalescent time without background selection $\left(B = \frac{T_{BGS}}{T_{neutral}}\right)$. B quantifies how strong BGS is expected to be for a given simulation (Nordborg et al. 1996). A B value of 0.8 means that BGS has caused a drop of genetic diversity of 20% compared to a theoretical absence of BGS. Lower B values indicate stronger BGS.

283 Both Hudson & Kaplan (1995) and Nordborg et al. (1996) have derived the following theoretical expectation for *B*.

$$285 \qquad B = \exp\left(-\sum_{i} \frac{u_{i}s_{i}}{(s_{i} + r_{i})^{2}}\right)$$

where r_i is the recombination rate between the focal site and the $i^{\rm th}$ site under selection, and s_i is the heterozygous selection coefficient at that site, and u_i is the (haploid) mutation rate at the $i^{\rm th}$ site. By this formula, B is bounded between 0 and 1, where 1 means no BGS at all and low values of B mean strong BGS. We computed B for all sites in the focal region and report the average B for the region.

For the stickleback genome, *B* values ranged from 0.03 to 0.99 with a mean of 0.84 (Figure S2). For the human genome, *B* values ranged from 0.20 to 1.0 with a mean at

293 0.91. In the *No Recombination* treatment, *B* values range from 10^{-10} to 0.71 with a mean of 0.07.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

Excluding the treatments *No recombination* and *CNC97*, we observed that simulations with BGS have a genetic diversity (whether H_T or H_S ; H_T data not shown) 6% to 25% lower than simulations without BGS. Messer & Petrov (2013) simulated a panmictic population, looking at a sequence of similar length inspired from a generich region of the human genome, and reported a similar decrease in genetic diversity. Under the No Recombination treatment, this average reduction of genetic diversity due to BGS is 53%. In empirical studies, linked selection are estimated to reduce genetic diversity by up to at 6% according to Cai et al. (2009) or 19-26% according to McVicker et al. (2009) in humans. In *Drosophila melanogaster*, where gene density is higher, the reduction in genetic diversity due to linked selection is estimated at 36% when using Kim & Stephan (2000)'s methodology and is estimated at 71% reduction using a composite likelihood approach (Elyashiv et al., 2016). In mice, BGS alone cannot explain fully the reduction in genetic diversity at low recombination sites, and selective sweeps due to positive selection are responsible for the majority of the reduction in diversity due to linked selection (Booker & Keightley, 2018). It is worth noting that, because we were interested in the locus-to-locus variation of various statistics in response to varying intensity of BGS, we did not simulate a whole genome worth of BGS and hence the overall reduction in genetic diversity that we observe should not be understood as a genome-wide effect of BGS.

 F_{ST} outlier tests

In order to know the effect of BGS on outlier tests of local adaptation, we used a variant of FDist2 (Beaumont & Nichols, 1996). We chose FDist2 because it is a simple and fast method for which the assumptions of the test match well to the demographic scenario simulated here. Because the program FDist2 is not available through the command line, we rewrote the FDist2 algorithm in R and C++. Source code can be found at https://github.com/RemiMattheyDoret/Fdist2.

Our FDist2 procedure is as follows; first, we estimated the migration rate from the average F_{ST} of the specific set of simulations considered ($m = \frac{1 - F_{ST}}{4\left(\frac{d}{d-1}\right)^2 N \, F_{ST}}$;

Charlesworth, 1998) and then running 50000 simulations each lasting for 50 times the half-life to reach equilibrium F_{ST} given the estimated migration rate (Whitlock, 1992). For each SNP, we then selected the subset of FDist2 simulations for which allelic diversity was less than 0.02 away from the allelic diversity of the SNP of interest. The P-value is computed as the fraction of FDist2 simulations within this subset having a higher F_{ST} than the one we observed. The false positive rate is then defined as the fraction of neutral SNPs for which the P-value is lower than a given α value, using $\alpha = 0.05$. We confirmed that the results were similar for other α values.

For the outlier tests, to avoid issues of pseudo-replication, we considered only a single SNP (randomly sampled from the focal region) per simulation whose minor allele frequency is greater than 0.05. Then, we randomly assembled SNPs from a

given treatment into groups of 500 SNPs to create the data file for FDist2. We have 4000 simulations (2000 with BGS and 2000 without BGS) per treatment (*Large N* is an exception with only 2000 simulations total), which allowed 8 independent false positive rate estimates per treatment (4 estimates with BGS and 4 without BGS). In each treatment, we tested for different false positive rate with and without BGS with both a Welch's *t*-test and a Wilcoxon test.

Statistics

 F_{ST} and d_{XY} are both measures of population divergence. In the literature there are several definitions of F_{ST} , and we also found potential misunderstanding about how d_{XY} is computed. We want to clarify here these definitions and what we mean when we use the terms F_{ST} and d_{XY} .

There are two main estimators of F_{ST} in the literature; G_{ST} (Nei, 1973) and θ (Weir & Cockerham, 1984). In this article, we focus on θ as an estimator of F_{ST} (Weir & Cockerham, 1984). There are also two methods of averaging F_{ST} over several loci. The first method is to simply take an arithmetic mean over all loci. The second method consists at calculating the sum of the numerator of θ over all loci and dividing it by the sum of the denominator of θ over all loci. Weir and Cockerham (1984) showed that this second averaging approach has lower bias than the simple arithmetic mean. We will refer to the first method as the "average of ratios" and to the second method as "ratio of the averages" (Reynolds et al. 1983; Weir & Cockerham, 1984) . In this article, we use F_{ST} as calculated by "ratio of the averages",

as advised by Weir and Cockerham (1984). To illustrate the effects of BGS on the biased estimator of F_{ST} , we also computed F_{ST} as a simple arithmetic mean ("average of the ratio"), and we will designate this statistic with a subscript F_{ST} (average of ratios). d_{XY} is a measure of genetic divergence between two populations X and Y. Nei (1987) defined d_{XY} as

361
$$d_{XY} = \frac{\sum_{l=1}^{L} \left(1 - \sum_{k=1}^{A_l} x_{l,k} y_{l,k}\right)}{L}$$

where L is the total number of sites, A_l is the number of alleles at the l^{th} site and $x_{l,k}$ and $y_{l,k}$ are the frequency of the k^{th} allele at the l^{th} locus in the population X and Y respectively.

Some population genetics software packages (e.g., EggLib; De Mita and Siol, 2012) average d_{XY} over polymorphic sites only, instead of averaging over all sites, as in Nei's (1987) original definition of d_{XY} . This measure averaged over polymorphic sites only will be called d_{XY-SNP} ; otherwise, we use the original definition of d_{XY} by Nei (1987).

We report the average F_{ST} , d_{XY} , and within population genetic diversity

 $H_S = \sum_{l=1}^{L} \left(1 - \sum_{k=1}^{A_l} x_{l,k}^2\right) / L$. Our main results lie in the comparison between simulations

372 with BGS and simulations without BGS within each treatment. Because theoretical

expectations exist for the strength of BGS on genetic diversity within populations, we also investigated the relationships between this theoretical expectation, B, and $F_{ST,F_{ST}(average\ of\ ratios)}$, $d_{XY,}d_{XY-SNP}$ and H_S in five independent tests for each treatment and at each generation. For this, we used Pearson correlation test, Spearman correlation tests, ordinary least squares regressions, robust regressions (using Mestimators; Huber, 1964), and permutation tests. The results were systematically consistent. Permutations tests of Pearson's correlation coefficients were performed with 50,000 iterations. Because all tests were congruent, we only report the Pearson correlation coefficient and the P-values from permutation tests.

Results

The distributions of F_{ST} values from simulations with BGS are extremely similar to the distribution of F_{ST} values of simulations where all mutations were neutral. This remains true even in the most extreme treatment with no recombination. This general result is exemplified in Figure 1 by comparing the *Default* treatment to the *No Recombination* treatment. As we have a large number of simulations, the means of the distributions of F_{ST} are significantly different between simulations with BGS and simulations without BGS for both the *Default* (Wilcoxon tests: W=47875000; P=0.00002) and the *No Recombination* (Wilcoxon tests: W=47804000; P=0.002) treatments but the increase in mean F_{ST} due to BGS is only of 4.3% for the *Default* treatment and of 2.6% in the *No Recombination* treatment.

393 Figure 2 shows the means and standard errors for F_{ST} , d_{XY} , and H_S for the treatments 394 Default, High Migration, Large N, Human Genetic Map, Low selection pressure, 395 Constant μ and No Migration. Similar graphs for the treatments No Recombination 396 and CNC97 can be found in Figure S2. 397 Figure 3 shows the correlation between B and the statistics F_{ST} , d_{XY} and H_S for 398 *Default* at the last generation. F_{ST} is not correlated with B (P = 0.24, r = -0.02). The strongest correlations with B are observed for the statistics d_{XY} (P = 4 × 10⁻⁵, r = 399 0.06) and H_S ($P = 4 \times 10^{-5}$, r = 0.06). In fact, the two statistics d_{XY} and H_S are very 400 401 highly correlated ($P < 2.2 \times 10^{-16}$, r = 0.99). This high correlation explains the 402 resemblance between the central and right graphs of figure 3. All correlations 403 between the statistics H_S , F_{ST} , F_{ST} (average of ratios), d_{XY} , and d_{XY-SNP} and B, are summarized 404 in tables S1, S2, S3, S4 and S5, respectively. 405 When looking at correlations between B and the statistics of population divergence, 406 the *No Migration* treatment is an exception to the other treatments. For the *No* 407 *Migration* treatment, F_{ST} is not significantly correlated with B at early generations 408 but become slightly correlated as divergence rises to an F_{ST} of 0.6 and higher. d_{XY} 409 shows an opposite pattern. d_{XY} is very significantly correlated with B at early 410 generations and seemingly independent of B at the last generation. Note that for F_{ST} all correlation coefficients are always very small. The largest r^2 observed for F_{ST} is 411 412 r^2 =0.01(found for F_{ST} No Migration).

413	As expected, in the <i>CNC97</i> simulations, there is a strong difference between
414	simulations with BGS and simulations without BGS for all three statistics (F_{ST} , d_{XY} ,
415	and H_S) at all generations (Welch's <i>t</i> -tests; all $P < 2.2 \times 10^{-16}$; Figure S3). For more
416	simulations and discussion with similarly unrealistic genetic parameters, please see
417	Appendix A.
418	F_{ST} averaged over loci as advised by Weir and Cockerham (1984) was generally less
419	sensitive to BGS than F_{ST} calculated as an average of ratios (compare tables S2 and
420	S3). This effect is again partially visible in the correlations with <i>B</i> . Figure S3
421	illustrates the sensitivity of $F_{ST\ (average\ of\ ratios)}$ in the worst case, the No Recombination
422	treatment. This sensitivity is driven largely by rare alleles and goes away when
423	minor alleles below a frequency of 0.05 are excluded.
424	The observed false positive rate for the F_{ST} outlier test is relatively close to the α
425	values except for No Migration (with and without BGS) and CNC97 (with BGS).
426	Excluding the unrealistic treatment CNC97, we do not see more significant
427	differences between the FPR with and without BGS than we would expect by chance.
428	(Figure 4 and figure S4). There are other statistics of interest that one can consider
429	to investigate whether BGS causes \mathcal{F}_{ST} outliers. Among all treatments (excluding
430	CNC97), the fraction of SNPs that are associated with a F_{ST} that is greater than 10
431	times the average F_{ST} in its particular treatment is 0.075% with BGS and 0.085%
432	without BGS. These numbers go up to 1.7% and 1.8% for SNPs that have a F_{ST} 5
433	times greater than the average F_{ST} , for treatments with BGS and without BGS,

respectively. We have also computed, in each treatment, the ratio of the largest F_{ST} to the average F_{ST} . Among treatments without BGS, the largest F_{ST} was on average 12.2 times the average F_{ST} , while among treatments with BGS, the largest F_{ST} was on average 12.1 times the average F_{ST} . With an alpha threshold of 0.001, we observe that 0.080% and 0.083% of the SNPs turn out false positives among treatments without BGS and among treatment with BGS, respectively. For the conditions considered in this paper, BGS does not increase the rate of F_{ST} outliers.

Discussion

In agreement with previous works (e.g. Charlesworth, 2012; Elyashiv et al., 2016; Messer & Petrov, 2013; Nordborg et al., 1996; Vijay et al., 2017; Zeng & Charlesworth, 2011), we show that background selection reduces genetic diversity, both within and among populations. The magnitude of this effect is very similar to previous realistic simulations (Messer & Petrov, 2013). The effect of BGS on F_{ST} is however rather small and does not seem to impact the overall distribution of F_{ST} in the sexual outcrossing species that we study here (Figure 1). The relative robustness of F_{ST} to variation in the intensity of BGS is contrary to what has been found in less realistic simulations (Charlesworth et al., 1997; Zeng & Corcoran, 2015). F_{ST} was also generally not significantly correlated with B. The only exception is for the No Migration treatment, where, after many generations, as the average F_{ST}

becomes very high ($F_{ST} > 0.5$), we observe a slight, yet significant, negative

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

correlation between the expected effects of BGS, B, and F_{ST} (intense BGS lead to high values of F_{ST}). This highlights that F_{ST} is not completely insensitive to BGS, but F_{ST} is largely robust to BGS. The observed correlation coefficients are always very small with not a single r^2 value greater than 1%. It is important to highlight that B has not been defined in order to estimate the effect of BGS onto F_{ST} but only for the effect of BGS on H_S in a panmictic population. Here, we consider these correlations to consolidate the evidence brought by comparing simulations with and without BGS and to clarify how BGS affect the different statistics of population divergence. In this study, we investigated the locus-to-locus variation in the intensity of BGS and how it affects F_{ST} . Future research is needed to attempt a theoretical estimate of the genome-wide effect of BGS on F_{ST} (but see Charlesworth et al., 1997; Zeng & Corcoran, 2015). Our work has been restricted to the stickleback and human recombination maps. While these two genomes are good representatives of many cases of eukaryotic genomes, they are not good representatives of more compact genomes such as bacterial genomes or yeasts. Our simulations used randomly mating diploid populations. Non-random mating, selfing, and asexual reproduction could also affect our general conclusion, and potentially strongly increase the effects of BGS on F_{ST} (Charlesworth *et al.* 1997). Also, we did not explore the effect of haploid selection as we only considered autosomes (see Charlesworth; 2012). We have explored two population sizes, but we could not explore population sizes of the order of a million individuals (like *Drosophila melanogaster*) and still realistically simulate such long stretch of DNA. It is not impossible that a much greater

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

population size or a more complex demography could result in BGS having a greater effect on F_{ST} than what we observed here (Torres et al. 2017). In the No Recombination treatment, we have explored cases of complete suppression of recombination over stretches of DNA of, on average, 0.8% of the stickleback genome and our results were still consistent. However, we have not explored the effect of suppression of recombination over greater regions, such as a whole chromosome that does not recombine. We have also not explored such suppression of recombination in perfectly isolated populations as we mainly focused on interconnected populations. It is not impossible that in such cases we might observe a greater impact of BGS on F_{ST} such as those observed in Zeng & Corcoran (2015) and reproduced in appendix A. Some have argued that, because BGS reduces the within population diversity, it should lead to high F_{ST} (Cutter & Payseur, 2013; Cruickshank & Hahn, 2014; Hoban et al., 2016). All else being equal, this statement is correct. However, BGS reduces H_T almost as much as H_S (Figure S6). It is therefore insufficient to consider only one component, and we must consider the ratio of these two quantities captured by the definition of F_{ST} , $F_{ST} = 1 - \frac{H_S}{H_T}$. This ratio, as we have shown, appears to be relatively robust to BGS. While genome-wide BGS might eventually be strong enough to cause departures with F_{ST} values, it appears that locus-to-locus variation in the intensity of BGS is not strong enough to have much impact on F_{ST} in outcrossing sexual organisms, at least as long as populations are not too highly diverged. In theoretical studies, it is also possible to consider the coalescent time definition of F_{ST} (Slatkin,

Page 26 of 48

499	1991). In appendix A, we show that, for sites that are directly under selection, the
500	coalescent definition yield to different estimates than the definition based on allelic
501	state.
502	We also investigated the consequences of BGS on the widely-used but imperfect
503	estimator, $F_{ST (average \ of \ ratios)}$, for which F_{ST} measures for each locus are averaged to
504	create a genomic average. It is well known that $F_{ST(average\ of\ ratios)}$ is a biased way to
505	average F_{ST} over several loci (Weir & Cockerham, 1984); however, its usage is
506	relatively common today. In our simulations, $F_{ST(average\ of\ ratios)}$ is more affected by
507	BGS than F_{ST} . Interestingly, $F_{ST (average \ of \ ratios)}$ is most often higher with weaker BGS.
508	The directionality of this correlation may seem unintuitive at first. To understand
509	this discrepancy, remember that BGS affects the site frequency spectrum; we
510	observed that BGS leads to an excess of loci with low H_T (results not shown but see
511	Charlesworth et al., 1995; see also contrary expectation in Stephan, 2010). Loci
512	associated with very low H_T also have low F_{ST} (figure S5), a well-known result
513	described by Beaumont and Nichols (1996). As BGS creates an excess of loci with
514	low H_T and loci with low H_T tend to have low F_{ST} , BGS can actually reduce $F_{ST (average \ of \ o$
515	ratios). After filtering out SNPs with a minor allele frequency lower than 5%, most of
516	the correlation between $F_{ST (average \ of \ ratios)}$ and B is eliminated (Figure S3).
517	The absolute measure of divergence d_{XY} is more sensitive to BGS than F_{ST} (Figure 2;
518	Figure 3; Tables S2 and S4). Regions of stronger BGS are associated with low d_{XY} .
519	This is in agreement with correlation tests between B and d_{XY} . The effect, although

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

output of a given software package.

significant, is of relatively small size. The expected d_{XY} for neutral loci is $d_{XY} = 4N\mu +$

 $2t\mu$ (Nei, 1987), where t is the time in generations since the populations started to diverge. $4N\mu$ is the expected heterozygosity in the ancestral population (before splitting) and $2t\mu$ is the expected number of mutations fixed over time in either population since the population split. BGS does not affect the rate of fixation of neutral mutations arising after the populations diverged, but BGS affects the expected heterozygosity. Therefore, BGS should affect d_{XY} by its effect on the expected heterozygosity, and this effect should be greater early in divergence when the $4N\mu$ term is large relative to the fixation term. This is consistent with the results of our simulations. This result is in agreement with Vijay et al. (2017) who reported a strong correlation between H_S and d_{XY} when F_{ST} is low $(F_{ST} \approx 0.02)$, but this correlation breaks down when studying more distantly related populations ($F_{ST} \approx$ 0.3). Previous works have even suggested a potential negative correlation between F_{ST} and d_{XY} (Nachman & Payseur, 2012; Irwin et al. 2016). Of course, any potential effect of BGS on F_{ST} should disappear as F_{ST} approaches one as the statistic is saturated. As BGS also leads to a reduction of the number of polymorphic sites, BGS has an even stronger effect on d_{XY-SNP} than on d_{XY} (Figure S3). (The measure that we call d_{XY} . SNP is d_{xy} improperly calculated based only on polymorphic sites, as is done in some software packages.) This result highlights the importance of not blindly trusting the

Page 28 of 48

541	Outside the effect of BGS on N_e , there are at least two other possible factors that can
542	potentially affect the correlation between B and μ : the effect of deleterious
543	mutations on the effective migration rate and the auto-correlation of μ . Because
544	most deleterious mutations are recessive (García-Dorado and Caballero, 2000;
545	Peters et al., 2003; Shaw & Chang, 2006), the offspring of migrants, who enjoy an
546	increased heterozygosity compared to local individuals, will be at a selective
547	advantage. The presence of deleterious mutations therefore lead to an increase in
548	the effective migration rate (Ingvarsson & Whitlock, 2000). This increases the
549	effective migration rate and hence, leads to a decrease in F_{ST} . In our simulations
550	however, mutational allelic effects are close to additive and hence, we should not
551	expect to see much effect of BGS on the effective migration rate.
552	As mutation rate is auto-correlated throughout the genome, neutral sequences
553	closely linked to sequences that frequently receive deleterious mutation are also
554	likely to experience frequent neutral mutations. As a high mutation rate leads to low
555	F_{ST} values ($F_{ST} \cong \frac{1}{1 + 4Ne(m + \mu)}$, Wright 1943), autocorrelation in mutation rate may
556	also act as to reduce the effect of BGS on F_{ST} . This effect is however likely to be
557	negligible as long as $m >> \mu$.
558	Recently, evidence of a correlation between recombination rate and F_{ST} has been
559	interpreted as likely being caused by deleterious mutations rather than positive
560	selection, whether the divergence between populations is very high (e.g.
561	Cruickshank & Hahn, 2014), moderately high (Vijay et al., 2017) or moderately low

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

(Torres et al., 2017). Here we showed the BGS is unlikely to explain all of these correlations between F_{ST} and recombination rate. As positive selection has been shown to also have important effect on genetic diversity (Eyre-Walker & Keightley, 2009; Hernandez, Kelley, Elyashiv, Melton, & Auton, 2011; Macpherson, Sella, Davis, & Petrov, 2007; Sattath, Elyashiv, Kolodny, Rinott, & Sella, 2011; Wildman, Uddin, Liu, Grossman, & Goodman, 2003), it would be important to investigate whether positive selection (selective sweeps and local adaptation) could be an important driver of the correlations between F_{ST} and recombination rate. More research would be needed to investigate whether this is true. McVicker et al. (2009) attempted an estimation of B values in the human genome (see also Elyashiv et al., 2016). They did so using equations from Nordborg et al. (1996). As there is little knowledge about the strength of selection throughout the genome, to our understanding, this estimation of B values should be highly influenced by the effects of beneficial mutations as well as deleterious mutations. Torres et al. (2017) reused this dataset and found a slight association between B and F_{ST} among human lineages. It is plausible that this correlation between B and F_{ST} could be driven by positive selection rather than by deleterious mutations. Our FDist2 analysis shows that the false positive rate does not differ in simulations with BGS or without BGS (figure 4). The only exceptions concern the unrealistic *CNC97* treatment (figure S4). The average F_{ST} at the last generation of the No *Migration* treatment is greater than 0.8. With such high F_{ST} , the F_{ST} outlier method,

Fdist2, does not seem to perform well and both the simulations without BGS and with BGS lead to very high false positive rates (0.472 without BGS and 0.467 with BGS; Figure S4). While other issues may intervene in F_{ST} outlier methods (Lotterhos & Whitlock, 2014), our results show that BGS should not represent any significant issue for outcrossing sexual species with moderately low mean F_{ST} .

We have shown that BGS affects H_S and d_{XY} but has only a very minor effect on F_{ST} among sexual outcrossing populations connected by gene flow. Many authors (Cutter & Payseur, 2013; Hoban et al., 2016) have raised concerns that BGS can strongly reduce our ability to detect the genomic signature of local adaptation. Our analysis shows that BGS is not a strong confounding factor to F_{ST} outlier tests.

Acknowledgments

Many thanks to Loren H. Rieseberg, Sarah P. Otto and Amy L. Angert for their help in discussing the design of the project and for feedback. Thanks to Sarah P. Otto, Darren E. Irwin, and Bret A. Payseur as well as two anonymous reviewers for helpful comments on the manuscript. We also thank Yaniv Brandvain and Tom Booker for their feedback and Marius Roesti for help with the Ensembl-retrieved gene annotations. We also acknowledge ComputeCanada that provided the hardware resources for running our simulations.

Funding

602	The work was funded by NSERC Discovery Grant RGPIN-2016-037/9 to MCW and
603	by the Swiss National Science Foundation via the fellowship Doc.Mobility
604	P1SKP3_168393 to RMD.
605	References
606	Aeschbacher, S., Selby, J. P., Willis, J. H., & Coop, G. (2017). Population-genomic
607	inference of the strength and timing of selection against gene flow. Proceedings
608	of the National Academy of Sciences, 114(27), 7061–7066.
609	https://doi.org/10.1073/pnas.1616755114
610	Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M., & Jensen, J. D. (2014). Thinking
611	too positive? Revisiting current methods of population genetic selection
612	inference. Trends in Genetics, 30(12), 540–546.
613	https://doi.org/10.1016/j.tig.2014.09.010
614	Beaumont, M. A., & Nichols, R. A. (1996). Evaluating loci for use in the genetics
615	analysis of population structure. Proceedings of the Royal Society B: Biological
616	Sciences, 263, 1619–1626.
617	Begun, D. J., & Aquadro, C. F. (1992). Levels of naturally occuring DNA
618	polymorphism correlate with recombination rate in D. melanogaster. Nature,
619	356.
620	Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., &

Page 32 of 48

621	SanCristobal, M. (2010). Detecting Selection in Population Trees: The Lewontin
622	and Krakauer Test Extended. Genetics, 186(1), 241–262.
623	https://doi.org/10.1534/genetics.110.117275
624	Booker, T. R., & Keightley, P. D. (2018). Understanding the factors that shape
625	patterns of nucleotide diversity in the house mouse genome. <i>BioRxiv</i> , 35(12),
626	2971–2988. https://doi.org/10.1101/275610
627	Brousseau, L., Postolache, D., Lascoux, M., Drouzas, A. D., Källman, T., Leonarduzzi, C.,
628	Vendramin, G. G. (2016). Local adaptation in European firs assessed through
629	extensive sampling across altitudinal gradients in southern Europe. PLoS ONE,
630	11(7), e0158216. https://doi.org/10.1371/journal.pone.0158216
631	Cai, J. J., Macpherson, J. M., Sella, G., & Petrov, D. A. (2009). Pervasive hitchhiking at
632	coding and regulatory sites in humans. <i>PLoS Genetics</i> , 5(1), e1000336.
633	https://doi.org/10.1371/journal.pgen.1000336
634	Charlesworth, B. (1998). Measures of divergence between populations and the effect
635	of forces that reduce variability. Molecular Biology and Evolution, 15(5), 538-
636	543. https://doi.org/10.1093/oxfordjournals.molbev.a025953
637	Charlesworth, B. (2012). The role of background selection in shaping patterns of
638	molecular evolution and variation: Evidence from variability on the Drosophila
639	X chromosome. <i>Genetics</i> , 191(1), 233–246.

640	https://doi.org/10.1534/genetics.111.1380/3
641	Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect of deleterious
642	mutations on neutral molecular variation. <i>Genetics</i> , 134(4), 1289–1303.
643	Charlesworth, B., Nordborg, M., & Charlesworth, D. (1997). The effects of local
644	selection, balanced polymorphism and background selection on equilibrium
645	patterns of genetic diversity in subdivided populations. Genetical Research,
646	70(2), 155–174. https://doi.org/10.1017/S0016672397002954
647	Charlesworth, D., Charlesworth, B., & Morgan, M. T. (1995). The pattern of neutral
648	molecular variation under the background selection model. Genetics, 141(4),
649	1619–1632.
650	Chen, H., Patterson, N., & Reich, D. E. (2010). Population differentiation as a test for
651	selective sweeps. Genome Research, 20(3), 393–402.
652	https://doi.org/10.1101/gr.100545.109
653	Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands
654	of speciation are due to reduced diversity, not reduced gene flow. Molecular
655	Ecology, 23(13), 3133-3157. https://doi.org/10.1111/mec.12796
6 5 6	Cutton A.D. & Davisour D. A. (2012). Conomic signatures of coloction at linked sites
656	Cutter, A. D., & Payseur, B. A. (2013). Genomic signatures of selection at linked sites
657	unifying the disparity among species. <i>Nature Publishing Group</i> , 14(4), 262–274.
658	https://doi.org/10.1038/nrg3425

659	De Mita, M. S. (2012). EggLib: processing, analysis and simulation tools for
660	population genetics and genomics. BMC Genetics, 13(1), 27.
661	https://doi.org/10.1186/1471-2156-13-27
662	Dutoit, L., Vijay, N., Mugal, C. F., Bossu, C. M., Burri, R., Wolf, J., & Ellegren, H. (2017).
663	Covariation in levels of nucleotide diversity in homologous regions of the avian
664	genome long after completion of lineage sorting. Proceedings of the Royal
665	Society B: Biological Sciences, 284(1849), 20162756.
666	https://doi.org/10.1098/rspb.2016.2756
667	Elyashiv, E., Sattath, S., Hu, T. T., Strutsovsky, A., McVicker, G., Andolfatto, P., Sella,
668	G. (2016). A Genomic map of the effects of linked selection in Drosophila. PLoS
669	Genetics, 12(8), e1006130. https://doi.org/10.1371/journal.pgen.1006130
670	Eyre-Walker, A., & Keightley, P. D. (2009). Estimating the rate of adaptive molecular
671	evolution in the presence of slightly deleterious mutations and population size
672	change. Molecular Biology and Evolution, 26(9), 2097–2108.
673	https://doi.org/10.1093/molbev/msp119
674	Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci
675	appropriate for both dominant and codominant markers: a Bayesian
676	perspective. <i>Genetics</i> , 180(2), 977–993.
677	https://doi.org/10.1534/genetics.108.092221

678 García-Dorado, A., Caballero, A., Bateman, A. J., Bregliano, J.-C., Laurencon, A., 679 Degroote, F., ... Crow, J. F. (2000). On the average coefficient of dominance of 680 deleterious spontaneous mutations. Genetics, 155(4), 1991–2001. 681 https://doi.org/10.1080/09553005914550241 682 Gilbert, K. J., Sharp, N. P., Angert, A. L., Conte, G. L., Draghi, J. A., Guillaume, F., ... 683 Whitlock, M. C. (2017). Local adaptation interacts with expansion load during 684 range expansion: Maladaptation reduces expansion load. *The American* 685 *Naturalist*, 189(4), 368–380. https://doi.org/10.1086/690673 686 Guillaume, F., & Rougemont, J. (2006). Nemo: An evolutionary and population 687 genetics programming framework. *Bioinformatics*, 22(20), 2556–2557. 688 https://doi.org/10.1093/bioinformatics/btl415 689 Haller, B. C., & Messer, P. W. (2017). SLiM 2: Flexible, interactive forward genetic 690 simulations. *Molecular Biology and Evolution*, 34(1), 230–240. 691 https://doi.org/10.1093/molbev/msw211 692 Hernandez, R. D., Kelley, J. L., Elvashiv, E., Melton, S. C., & Auton, A. (2011). Classic 693 Selective Sweeps were rare in Recent Human Evolution. *Science*, 331(6019), 694 920-924. 695 Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., ... 696 Whitlock, M. C. (2016). Finding the genomic basis of local adaptation: pitfalls,

697 practical solutions, and future directions. The American Naturalist, 188(4), 379-698 397. https://doi.org/10.1086/688018 699 Huber, C. D., Degiorgio, M., Hellmann, I., & Nielsen, R. (2016). Detecting recent 700 selective sweeps while controlling for mutation rate and background selection. 701 *Molecular Ecology*, 25, 142–156. https://doi.org/10.1111/mec.13351 702 Huber, P. J. (1964). Robust Estimation of a Location Parameter. *The Annals of* 703 *Mathematical Statistics*, *35*(1), 73–101. 704 https://doi.org/10.1214/aoms/1177703732 705 Hudson, R. R., & Kaplan, N. L. (1995). Deleterious background selection with 706 recombination. *Genetics*, 141(4), 1605–1617. 707 Ingvarsson, P. K., & Whitlock, M. C. (2000). Heterosis increases the effective migration rate. Proceedings of the Royal Society B: Biological Sciences, 708 709 267(1450), 1321–1326. https://doi.org/10.1098/rspb.2000.1145 710 Irwin, D. E., Alcaide, M., Delmore, K. E., Irwin, J. H., & Owens, G. L. (2016). Recurrent 711 selection explains parallel evolution of genomic regions of high relative but low 712 absolute differentiation in a ring species. *Molecular Ecology*, 25(18), 4488– 713 4507. https://doi.org/10.1111/mec.13792 714 Keightley, P. D. (2012). Rates and fitness consequences of new mutations in humans. 715 *Genetics*, 190(2), 295–304. https://doi.org/10.1534/genetics.111.134668

716 Keightley, P. D., & Gaffney, D. J. (2003). Functional constraints and frequency of 717 deleterious mutations in noncoding DNA of rodents. Proceedings of the National 718 Academy of Sciences, 100(23), 13402-13406. 719 https://doi.org/10.1073/pnas.2233252100 720 Kim, Y., & Stephan, W. (2000). Joint effects of genetic hitchhiking and background 721 selection on neutral variation. *Genetics*, 155(3), 1415–1427. Lange, J. D., & Pool, J. E. (2016). A haplotype method detects diverse scenarios of 722 723 local adaptation from genomic sequence variation. *Molecular Ecology*, 25(13), 724 3081-3100. https://doi.org/10.1111/mec.13671 725 Lotterhos, K. E., & Whitlock, M. C. (2014). Evaluation of demographic history and 726 neutral parameterization on the performance of FST outlier tests. *Molecular* 727 Ecology, 23(9), 2178–2192. https://doi.org/10.1111/mec.12725 728 Macpherson, J. M., Sella, G., Davis, J. C., & Petrov, D. A. (2007). Genomewide spatial 729 correspondence between nonsynonymous divergence and neutral 730 polymorphism reveals extensive adaptation in Drosophila. *Genetics*, 177(4). 731 2083-2099. https://doi.org/10.1534/genetics.107.080226 732 Maynard-Smith, J., & Haig, J. (1974). The hitch-hiking effect of a favourable gene. 733 *Genetical Research*, *23*(1), 23–35. 734 https://doi.org/10.1017/S0016672300014634

McGee, M. D., Neches, R. Y., & Seenausen, O. (2015). Evaluating genomic divergence
and parallelism in replicate ecomorphs from young and old cichlid adaptive
radiations. Molecular Ecology, 25(1), 260–268.
https://doi.org/10.1111/mec.13463
McVicker, G., Gordon, D., Davis, C., & Green, P. (2009). Widespread genomic
signatures of natural selection in hominid evolution. <i>PLoS Genetics</i> , 5(5),
e1000471. https://doi.org/10.1371/journal.pgen.1000471
Messer, P. W., & Petrov, D. a. (2013). Frequent adaptation and the McDonald-
Kreitman test. Proceedings of the National Academy of Sciences of the United
States of America, 110(21), 8615–8620.
https://doi.org/10.1073/pnas.1220835110
Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per
nucleotide in humans. <i>Genetics</i> , 156(1), 297–304.
Nachman, M. W., & Payseur, B. A. (2012). Recombination rate variation and
speciation: theoretical predictions and empirical results from rabbits and mice.
Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587)
409-421. https://doi.org/10.1098/rstb.2011.0249
Nei, M. (1973). Analysis of Gene Diversity in Subdivided Populations. <i>Proceedings of</i>
the National Academy of Sciences, 70(12), 3321–3323.

754 https://doi.org/10.1073/pnas.70.12.3321 755 Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University 756 Press. 757 Nordborg, M., Charlesworth, B., & Charlesworth, D. (1996). The effect of 758 recombination on background selection. *Genetical Research*, 67(02), 159–174. 759 https://doi.org/10.1017/S0016672300033619 760 Payseur, B. A., & Rieseberg, L. H. (2016). A genomic perspective on hybridization 761 and speciation. *Molecular Ecology*, 25(11), 2337–2360. 762 https://doi.org/10.1111/mec.13557 763 Peters, A. D., Halligan, D. L., Whitlock, M. C., & Keightley, P. D. (2003). Dominance and 764 Overdominance of Mildly Deleterious Induced Mutations for Fitness Traits in 765 Caenorhabditis elegans. Genetics, 165(2), 589-599. 766 Picq, S., Mcmillan, W. O., & Puebla, O. (2016). Population genomics of local 767 adaptation versus speciation in coral reef fishes (Hypoplectrus spp. 768 Serranidae). *Ecology and Evolution*, *6*(7), 2109–2124. 769 https://doi.org/10.1002/ece3.2028 770 Reynolds, J., Weir, B. S., & Cockerham, C. C. (1983). Estimation of the coancestry 771 coefficient: Basis for a short-term genetic distance. *Genetics*, 105(3), 767–779.

772 Roesti, M., Moser, D., & Berner, D. (2013). Recombination in the threespine 773 stickleback genome - Patterns and consequences. *Molecular Ecology*, 22(11), 774 3014–3027. https://doi.org/10.1111/mec.12322 775 Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., ... Stewart, J. 776 (2007). Genome-wide detection and characterization of positive selection in 777 human populations. *Nature*, 449(7164), 913–918. 778 https://doi.org/10.1038/nature06250 779 Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y., & Sella, G. (2011). Pervasive adaptive 780 protein evolution apparent in diversity patterns around amino acid 781 substitutions in drosophila simulans. *PLoS Genetics*, 7(2), e1001302. 782 https://doi.org/10.1371/journal.pgen.1001302 783 Shaw, R. G., & Chang, S. M. (2006). Gene action of new mutations in Arabidopsis 784 thaliana. Genetics, 172(3), 1855-1865. 785 https://doi.org/10.1534/genetics.105.050971 786 Slatkin, M. (1991). Inbreeding coefficients and coalescence times. *Genetics Research*. 787 58(2), 167–175. https://doi.org/10.1017/S0016672300029827 788 Spencer, C. C. A., Deloukas, P., Hunt, S., Mullikin, J., Myers, S., Silverman, B., ... 789 McVean, G. (2006). The influence of recombination on human genetic diversity. 790 *PLoS Genetics*, 2(9), e148. https://doi.org/10.1371/journal.pgen.0020148

791 Stephan, W. (2010), Genetic hitchhiking versus background selection: the 792 controversy and its implications, 365(1544), 1245–1253. https://doi.org/10.1098/rstb.2009.0278 793 794 Tange, O. (2011). GNU Parallel: The Command-Line Power Tool.; Login:, 36(1), 42-795 47. https://doi.org/10.5281/zenodo.16303 796 The International HapMap, C. (2007). A second generation human haplotype map of 797 over 3.1 million SNPs. *Nature*, 449(7164), 851–861. https://doi.org/10.1038/nature06258.A 798 799 Torres, R., Szpiech, Z. A., & Hernandez, R. D. (2018). Human demographic history has 800 amplified the effects background selection across the genome. *PLoS Genetics*, 801 14(6), e1007387. https://doi.org/10.1371/journal.pgen.1007387 802 Vijay, N., Weissensteiner, M., Burri, R., Kawakami, T., Ellegren, H., & Wolf, J. B. W. 803 (2017). Genomewide patterns of variation in genetic diversity are shared 804 among populations, species and higher-order taxa. *Molecular Ecology*, 26(16), 805 4284–4295. https://doi.org/10.1111/mec.14195 806 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of 807 Population Structure. Evolution, 38(6), 1358–1370. 808 Whitlock, M. C. (1992). Temporal Fluctuations in Demographic Parameters and the 809 Genetic Variance among Populations. *Evolution*, 46(3), 608–615.

810	https://doi.org/10.2307/2409631
811	Whitlock, M. C., & Lotterhos, K. E. (2015). Reliable Detection of Loci Responsible for
812	Local Adaptation: Inference of a Null Model through Trimming the Distribution
813	of F_{ST} . The American Naturalist, 186(S1), S24–S36.
814	https://doi.org/10.1086/682949
815	Wildman, D. E., Uddin, M., Liu, G., Grossman, L. I., & Goodman, M. (2003).
816	Implications of natural selection in shaping 99.4% nonsynonymous DNA
817	identity between humans and chimpanzees: enlarging genus Homo.
818	Proceedings of the National Academy of Sciences of the United States of America,
819	100(12), 7181–7188. https://doi.org/10.1073/pnas.1232172100
820	Wright, S. (1943). Isolation by distance. <i>Genetics</i> , 28(2), 114–138.
821	Yeaman, S. (2015). Local Adaptation by Alleles of Small Effect. <i>The American</i>
822	Naturalist, 186(S1), S74–S89. https://doi.org/10.1086/682405
823	Zeng, K., & Charlesworth, B. (2011). The joint effects of background selection and
824	genetic recombination on local gene genealogies. <i>Genetics</i> , 189(1), 251–266.
825	https://doi.org/10.1534/genetics.111.130575
826	Zeng, K., & Corcoran, P. (2015). The effects of background and interference selection
827	on patterns of genetic variation in subdivided populations. <i>Genetics</i> , 201(4),
828	1539-1554. https://doi.org/10.1534/genetics.115.178558

829	Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., Flicek, F
830	(2018). Ensembl 2018. Nucleic Acids Research, 46(D1), D754–D761.
831	https://doi.org/10.1093/nar/gkx1098
832	

Figure 1: Violin plots showing the distribution of F_{ST} values for the *Default* treatment (labelled "With Recombination") and for the *No Recombination* treatment. Simulations with BGS are shown in red, and simulations without BGS are in blue. The means and standard errors are displayed with dots and error bars (although the error bars are barely visible).

Generation after split (2N units)

Figure 2: Comparisons of mean F_{ST} (left column), d_{XY} (central column), and H_S (right column) between simulations with (black) and without (grey) BGS. Similar graphs for the treatments *No Recombination* and *CNC97* are in figure S3. Error bars are 95% CI.

Figure 3: Correlation between B and F_{ST} , H_{S} , and d_{XY} for the last generation (5 x 2N generations after the split) of the *Default* treatment. Each grey dot is a single simulation where there is BGS. The large black dot is the mean of the simulations with no BGS. The P-values are computed from a permutation test and r is the Pearson's correlation coefficient. P-values and r are computed on both simulations with and without BGS. Results are congruent when computing the correlation coefficients and P-value on the subset of simulations that have BGS.

Figure 4: Comparison of false positive rate (FPR) returned by FDist2 between simulations with BGS (black) and without BGS (grey) for all treatments by generation. The significance level is 0.05 and is represented by the horizontal dashed line. Significance based on a Welch's t-test is indicated with stars (*** P < 0.001; ** P < 0.01; * P < 0.05). With Wilcoxon tests, none of the treatments displayed here comes out as significant. Treatments *No Migration* and *CNC97* are presented in Figure S4.

Treatment	N	m	Genome	Other	BGS
Default	1000	0.005	Stickleback	"Normal"	Yes
Dejault					No
 High Migration	1000	0.05		"Normal"	Yes
Tigh Migration	1000	0.03	Stickleback	Ivormat	No
 Large N	10000 0.005	0.005	Stickleback	"Normal"	Yes
Large N		0.003			No
Human genetic	1000	0.005	Human	"Normal"	Yes
тар		0.003	Human	Normai	No
Low selection	1000	0.005	Stickleback	Low selection	Yes
pressure	1000			pressure	No
Constant μ	1000	0.005	Stickleback	Constant mutation rate	Yes
Constant µ					No
No Migration	on 1000 0	0	Stickleback	"Normal"	Yes
No Migration					No
No Posombination	lo Recombination 1000	0.005	Ctialslaba -1-	Absence of	Yes
NO RECOMBINATION			Stickleback	crossover	No
CNC97	2000	0.001	NA NA	See methods	Yes
GIVG97	2000	0.001	IVA	section	No

Table 1: Summary of treatments. For all treatments but *CNC97*, the average mutation rate was set to 2.5×10^{-8} per site, per generation and the mean heterozygous selection coefficient to 0.1.