Command	Explanation	Abbreviation
scalar a = 5	defines scalar $a = 5$	
scalar list	lists scalars	
ttail(df,c)	gives $Pr(T > c)$ for $T \sim T(df)$	
<pre>invttail(df,p)</pre>	gives the value t^* such that $Pr(T > t^*) = p$	
display a	displays value of scalar a or ttail or etc	di
ttest x = c	performs t-test for $H_0: \mu = c$ with variable x	
mean x	estimates mean of x (gives confidence intervals)	

Summary Statistics and Scalars

```
sum x, detail scalar xbar = r(mean) xbar equals mean of x scalar sd = r(sd) sd equals standard deviation of x scalar n = r(N) n equals number of observations for x scalar t = invttail(n-1,0.025) t equals 2-sided 5% critical value with df = n - 1
```

Calculating Confidence Intervals

```
scalar CI_lb = xbar - invttail(n-1,0.025)*sd/sqrt(n)
scalar CI_ub = xbar + invttail(n-1,0.025)*sd/sqrt(n)
di CI_lb, CI_ub
```

Or use mean x. You can change the level to, say, 90%, with command mean x, level (90).

Hypothesis Testing

One-sample t test

```
di invttail(n-1,0.025) gives 5\% critical value for two-sided test di 2*ttail(n-1,2.15) gives two-sided p-value for t-statistic 2.15 . ttest price = 230000
```

[95% Conf. Interval] Variable Obs Mean Std. Err. Std. Dev. price 29 253910.3 6943.281 37390.71 239687.7 268133 3.4437 mean = mean(price) t = Ho: mean = 230000degrees of freedom = Ha: mean != 230000 Ha: mean < 230000Ha: mean > 230000Pr(T < t) = 0.9991Pr(|T| > |t|) = 0.0018Pr(T > t) = 0.0009

Figure 1: The number $\Pr(|T| > |t|) = 0.0018$ is the two-sided *p*-value for null $H_0: \mu_{price} = 230000$. We reject the null at 1%, 5% and 10% significance because 0.0018 is less than all of those significance levels.