13.1 Vector Functions and Curves

Parameterizing curves in \mathbb{R}^2

1. Sketch $\mathbf{r}(t) = \langle t, t^2 \rangle$ in \mathbb{R}^2 and express the curve as a function of x and y.

2. Sketch $\mathbf{r}(t) = \langle 4, \cos(t), \sin(t) \rangle$ in \mathbb{R}^3 and express the curve as a function of x, y, and z.

Definition. A vector function r(t) is continuous at t = a if

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

Note that by the above definition to check r(t) is continuous at t = a you need to verify that r(a) and $\lim_{t\to a} r(t)$ are both defined and equal to each other.

3. Show that $r(t) = \langle \sin(\pi t) + 1, t^2 + t, 1 \rangle$ is continuous at t = -1.

Parameterizing curves in \mathbb{R}^2

4. Find a vector function r(t), $t \in \mathbb{R}$ that represents the curve $x + y^2 = 4$ shown below.

(a) Try parametezing the curve by setting x = t and explain what makes that approach difficult (there is not one correct answer)..

(b) Now try parameterizing by setting y = t.

(c) Verify the vector function you found satisfies $x + y^2 = 4$ for any arbitrary choice of t.

(d) What would you do differently for the curve $x^2 + y = 4$?

5. Find a vector function $\mathbf{r}(t)$ that represents the curve $x^2 + 16y^2 = 4$

- (a) Try parameterizing by setting x = t and then try setting y = t. What makes these so difficult to work with?
- (b) Rewrite the above equation so that it has the form

$$(f(x))^2 + (g(y))^2 = 1$$

- (c) Find r(t) by setting $f(x) = \cos t$ and $g(y) = \sin t$. Be sure to include the domain for t.
- (d) What do you need to change to represent the portion of $x^2 + 36y^2 = 4$ where $y \ge 0$? What about x > 0?

Parameterizing curves in \mathbb{R}^3

6. Find a vector function that represents the curve of intersection between the two surfaces

$$y = 4z^2 + x^2 \quad \text{and} \quad x = z^2$$

Hint: Try x = t, y = t, and z = t and see which gives you something you can work with.