ΓΙΑ ΤΟΝ ΜΑΘΗΤΗ Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΑΣΚΗΣΗ: ΜΕΤΡΗΣΗ ΒΑΡΟΥΣ – ΜΑΖΑΣ - ΠΥΚΝΟΤΗΤΑΣ (Εργαστηριακή άσκηση 2)

Όνομα:	• • • • • • • • • • • • • • • • • • • •
Ημερομηνία:	
Τάξη	

ΣΤΟΧΟΙ ΤΗΣ ΑΣΚΗΣΗΣ

- Να επιλέγεις τα σωστά όργανα μέτρησης βάρους, μάζας, πυκνότητας ανάλογα με την μέτρηση που θέλουμε να πετύχουμε
- Να ξεχωρίζεις τα μεγέθη βάρος(πόσο δυνατά μας τραβάει η γη προς το κέντρο της), μάζα (πόσο πολύ έχουμε από κάτι), πυκνότητας (πόσο πολύ έχουμε από κάτι σε συγκεκριμένο χώρο)
- Να κάνεις σωστή ζύγιση. Σε περίπτωση που υπάρχει υγρό να προσέχεις το απόβαρο
- Να εξοικειωθείς με την έννοιες της κλίμακας και των μονάδων
- Να μάθεις να διαβάζεις σωστά τις κλίμακες στο δυναμόμετρο και τον ογκομετρικό κύλινδρο
- Να υπολογίζεις όγκο υγρού, στερεού σώματος
- Να τοποθετείς σε σωστή θέση το μάτι σου, ώστε να παίρνεις σωστές μετρήσεις
- Να κατανοήσεις την αξία των σωστών μετρήσεων έτσι ώστε να έχουμε σωστά αποτελέσματα όπου αυτές χρησιμοποιούνται

<u>Α. ΜΕΤΡΗΣΗ ΜΑΖΑΣ</u>

Όργανο μέτρησης μάζας:

Ζυγός Ηλεκτρονική ζυγαριά

<u>Μονάδες</u>

Χιλιόγραμμο (Kg) / International System (IS) Γραμμάριο (g) 1Kg = 1000 g

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Α1.Ζύγιση στερεού

<u>Υλικά</u>

Ζυγός σειρά ''σετ μετάλλων'' βαρίδια

<u>Βήμα 1ο:</u> Ανοίγουμε τον ζυγό και κάνουμε ζύγιση σε 3-4 κύβους διαφορετικών υλικών από τη σειρά 'σετ μετάλλων''

<u>Βήμα 20:</u> Συμπληρώστε τον παρακάτω πίνακα

Μάζες σωμάτων
$m_{\xi\delta\lambda o} =$
π _{αλουμίνιο} =
π _{χαλκός} =
π _{μόλυβδος} =

Α2.Ζύγιση υγρού

<u>Υλικά</u>

Ζυγός(2) Ογκομετρικός κύλινδρος(3) ή απλό δοχείο νερό

Βήμα 1ο:

Ανοίγουμε τον ζυγό. τοποθετούμε πάνω σ' αυτόν το δοχείο σημειώνουμε την ένδειξη

<u>Βήμα 2°</u>: ρίχνουμε νερό μέσα στο δοχείο. Τοποθετούμε πάλι το δοχείο με το νερό πάνω στο ζυγό και σημειώνουμε την καινούργια ένδειξη

<u>Βήμα 30</u>: Συμπληρώνουμε τον πίνακα:

Μάζα υγρού(νερού)
$m_{\delta \alpha \chi \epsilon i \alpha \nu} =$
π _{νερού-δοχείου} =
$m_{\nu \epsilon \rho o \acute{\nu}} =$

Β. Μέτρηση Βάρους

Όργανο μέτρησης βάρους:

Δυναμόμετρο

<u>Mονάδες</u> Newton (N)

<u>Σύμβολο</u> Β, W

 $W = m \times g$

Αντιστοιχία μάζας - βάρους στην επιφάνεια της Γης είναι: Μάζα 1 Kg έχει βάρος περίπου 10 Newton (N)

1Kg = 1000 g

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Υλικά

Δυναμόμετρο βαρίδια ορθοστάτης ράβδοι μεταλλικοί απλός σύνδεσμος

Βήμα 1ο: Ελέγχουμε αν είναι μηδενισμένο το δυναμόμετρο, αν όχι το μηδενίζουμε

<u>Βήμα 2ο:</u> Συναρμολογούμε την διάταξη της εικόνας

<u>Βήμα 3ο</u>:κρεμάμε διάφορα βαρίδια

	Ενδείξεις δυναμόμετρου
$W_1 =$	
$W_2 =$	
$W_3=$	

Ερώτηση: Σπρώχνουμε με το χέρι μας το βαρίδιο προς	τα πάνω. Θα
αλλάξει η ένδειξη του δυναμόμετρου. Αν ναι, πως το εξ	ηγείτε;
	• • • • • • • • • • • • • • • • • • • •

Γ. Υπολογισμός πυκνότητας

Στοιχεία θεωρίας

η πυκνότητα ενός υλικού ορίζεται σαν το πηλίκο της μάζας δια του αντιστοίχου όγκου

$$\pi \upsilon \kappa \nu \acute{o} \tau \eta \tau \alpha = \frac{\pi o \sigma \acute{o} \tau \eta \tau \alpha \quad \mu \acute{\alpha} \zeta \alpha \varsigma}{\alpha \nu \tau \acute{o} \tau o \iota \chi o \varsigma \quad \acute{o} \gamma \kappa o \varsigma}$$

$$d = \frac{m}{v}$$

<u>Μονάδες</u>

$$\frac{Kgr}{m^{3}}$$

$$\frac{gr}{cm}$$

$$1\frac{gr}{cm^{3}} = 1000\frac{kgr}{m^{3}}$$

Οργανα και υλικά για την μέτρηση της πυκνότητας της πλαστελίνης

Γ.1. Υπολογισμός της πυκνότητας σώματος ακανόνιστου σχήματος (πλαστελίνη)

<u>Υλικά</u>

Ογκομετρικός κύλινδρος Ζυγός Πλαστελίνη Νερό

Προαιρετικά

Βάση στήριξης Ράβδοι μεταλλικοί Σύνδεσμος απλός

Βήμα 10: Ζυγίζουμε την πλαστελίνη

Βήμα 20: Γεμίζουμε τον ογκομετρικό κύλινδρο με νερό

<u>Βήμα 3ο</u>: Σημειώνουμε την ένδειξη του νερού Va (χρησιμοποιούμε υδροβολέα για να πετύχουμε την ένδειξη που θέλουμε)

<u>Βήμα 40</u>: Βυθίζουμε την πλαστελίνη μέσα στο ογκομετρικό κύλινδρο και σημειώνουμε την νέα ένδειξη του ογκομετρικού σωλήνα Vτ

Συμπληρώνουμε τον παρακάτω πίνακα:

Πυκνότητα πλαστελίνης;		
	Va=	
m=	Vτ=	d=m/ Vπ=
	Vπ= Vτ- Va=	d=

Ερωτήσεις

1.Το αρχικό κομμάτι της πλαστελίνης, το χωρίζω σε δύο ίσα μέρη; Τι πιστεύετε; Μεγαλύτερη πυκνότητα θα έχει το αρχικό κομμάτι, το μισό η θα έχουν ίδια πυκνότητα Εξηγείστε;
• • • • • • • • • • • • • • • • • • • •

.....

Γ.2. Υπολογισμός της πυκνότητας σώματος γεωμετρικού

σχήματος

<u>Υλικά</u>

Ζυγός ''σετ μετάλλων'' Χάρακας

Βήμα 20: Υπολογίζουμε από τον αντίστοιχο τύπο τον όγκο του σώματος Συμπληρώνουμε τον πίνακα

Πυκνότητα μετάλλων			
1o	$_{\mathbf{A}$ ργίλιο $m_1=$	V ₁ =1cm ³	$d_1=$
2o	_{Ξύλο} m ₂ =	$V_1=1$ cm ³	$d_2=$
3o	χαλκός m3=	$V_1=1$ cm ³	$d_3=$

Γ.3. Υπολογισμός της πυκνότητας υγρού σώματος (νερού)

<u> Υλικά</u>

Ζυγός(2) Δοχείο υγρού Ογκομετρικός κύλινδρος Νερό

<u>Βήμα 1ο</u>: υπολογίζουμε τη μάζα του νερού όπως μάθαμε στη ζύγιση μάζας υγρού. Δεν

ξεχνάμε να πάρουμε υπόψη το απόβαρο

Βήμα 20: υπολογίζουμε το όγκο του νερού, όπως ήδη έχουμε μάθει

Συμπληρώνουμε τον πίνακα:

Πυκνότητα νερού(gr/cm3)		
m _δ =		
$m_{\nu} =$	$V_{\nu}=$	$d=m_{\nu}/V_{\nu}=$
$m_{\nu} = m_{\nu \delta} - m_{\delta}$ $m_{\nu} =$		$d_{\nu}=$

Ερωτήσεις

1.Η τιμή της πυκνότητας που βρίσκουμε από το πείραμα είναι ίδια με
αυτή που μάθαμε από την θεωρία μας;

2. Αν όχι; που πιστεύετε ότι οφείλεται αυτό;

Δεν ξεχνάμε να διαβάζουμε σωστά τις ενδείξεις στις κλίμακες

<u>Γ.4.Δοκιμάστε να κατασκευάσετε ένα πυκνόμετρο με απλά</u> υλικά

<u> Υλικά</u>

Τρία δοχεία Αλάτι Λάδι Νερό Πλαστελίνη καλαμάκι

1.Τι είναι το πυκνόμετρο;	• • • • • • • • • • • • • • • • • • • •
2.Γνωρίζεις περιπτώσεις όπου χρησιμοποιείται;	
3.Με ποιό τρόπο θα διαπιστώσεις ποιο έχει την μεγαλύτε Το νερό, το αλατόνερο, η το λάδι; Πρότεινε τρόπους	ερη πυκνότητα.
	 Καλή Επιτυχία