

jegyzetek notes Notizen

$$|+(x)| = 1 + \frac{1}{2}(x-1) - \frac{1}{2}(x-1)^{2} + \frac{5}{216}(x-1)^{3} - \frac{1}{216}(x-1)^{3}(x-4) + \frac{3}{6400} \cdot (x-1)^{3}(x-4)^{2}$$

jegyzetek notes Notizen

3)
$$x$$
: $4[x]$

-2 4

-4 1

-2 4

-4 1

-2 4

-4 1

-3 1

0 0

1 1

1 1

1 1

1 1

1 1

2 1

4) 1

2 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

4) 1

5.) 1

5.) 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

6. 1

7. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8. 1

8

1113 Budapest, Bocskai út 134-146., Tel.: 1 463-8100, Fax: 1 463-8101 e-mail: kemia@merck.hu, honlap: www.merck.hu www.merck-chemicals.hu

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [0; 4]} | (Q(x)) | = \frac{\pi^4}{24} \cdot \frac{1}{16} = \frac{\pi^6}{384}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [0; 4]} | (Q(x)) | = \pi^4$$

$$| (x) - H(x) | \leq \max_{x \in [0; 4]} | (x \cdot (x - 1))|^2 = \left[\frac{1}{2} \left(\frac{1}{2} - 1 \right) \right]^2 = \frac{1}{16}$$

$$| (x) - H(x) | = \max_{x \in [0; 4]} | (x \cdot (x - 1))|^2 = \left[\frac{1}{2} \left(\frac{1}{2} - 1 \right) \right]^2 = \frac{1}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{2048}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{2048}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} \cdot \frac{81}{16} = \frac{1275}{16} = \frac{81}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} = \frac{16}{16}$$

$$| (x) - H(x) | \leq \frac{M_4}{4!} \cdot \max_{x \in [1; 4]} | (x \cdot (x - 1))|^2 = \frac{45}{16} = \frac{16}{16}$$

jegyzetek notes Notizen

jegyzetek

9.
$$|S(x)| = \begin{cases} a_0 + a_1 \times a_2 \times^2; & x \in [A_i; A_i] \\ b_0 + b_1 \times b_2 \times^2; & x \in [A_i; A_i] \end{cases}$$
Interpolació; $S \in C$

$$x \in [A; A]$$
 $x \in [A; A]$

$$S(0) = -1:$$
 $a_0 = -1$

$$S(1) = 1$$
:

$$S(1) = 1$$
: $a_0 + a_1 + a_2 = 1$

$$\frac{S \in D}{S'(1+0)} = S'(1-0);$$

$$a_1 + 2a_2 = b_1 + 2b_2$$

$$S'(0) = 0: \quad a_1 = 0$$

$$a_0 = -1$$
 $a_1 = 0$ $a_2 = 2$
 $b_1 = -9$ $b_2 = 16$ $b_3 = -6$

$$S(x) = \begin{cases} a_0 + a_1 x + b_0 x^2; & x \in [-2; -1) \\ b_0 + b_1 x + b_2 x^2; & x \in [-1; 0] \end{cases}$$

$$S(-2)=2:$$
 $a_0-2a_1+4a_2=2$

$$b_0 - b_1 + b_2 = 1$$

 $S(0) = -1$: $b_0 = -1$

$$S(-1)=1: a_0-a_1+a_2=1$$
 $a_1-2a_2=b_1-2b_2$

Ponem felt.

$$S'(0) = -2:$$
 $G_1 = -2$

$$a_0 = -2$$

Meo:
$$a_0 = -2$$
 $a_1 = -4$ $a_2 = 1 - 1$

$$b_0 = -1$$
 $b_1 = -2$ $b_2 = 0$

$$S(x) = \begin{cases} -1 x^{2} - 1 x - 2 & \text{if } x \in [-2; -1) \\ -2x - 1 & \text{if } x \in [-4; 0] \end{cases}$$

$$-4 \times^2 4 \times -2$$

$$b_2 = C$$

jegyzetek notesNotize

M.)
$$S(x) = \begin{cases} a_0 + a_1 x + a_2 x^2 & \text{if } x \in [-\Lambda; 0) \\ b_0 + b_4 x + b_2 x^2 & \text{if } x \in [0; \Lambda] \end{cases}$$

$$S(-1) = 0: \quad \alpha_0 - \alpha_1 + \alpha_2 = 0$$

$$S(0) = 1$$
: $a_0 = 1$

$$S(1) = 2: b_0 + b_1 + b_2 = 2$$

$$\frac{S \in D}{S'(0-0)} = S'(0+0)$$
:

$$a_{\lambda} = b_{\lambda}$$

$$S'(-1) = 0$$
: $a_1 - 2a_2 = 0$

Mev.:
$$a_0 = 1$$
 $a_1 = 2$ $a_2 = 1$ $S(x) = \begin{cases} x^2 + 2x + 1 & x \in [-1, 0) \\ -x^2 + 2x + 1 & x \in [0, 1] \end{cases}$

$$C(x) = \begin{cases} -x_3 + 5x + 1 & x \in [0, 1] \\ x_3 + 5x + 1 & x \in [-1, 0] \end{cases}$$

12.)
$$S(x) = \begin{cases} a_0 + a_1 x + a_2 x^2; & x \in [-1, 0] \\ l_0 + l_1 x + l_2 x^2; & x \in [0, 1] \end{cases}$$

$$S(-1) = -1: a_0 - a_1 + a_2 = -1$$

$$S(0) = 1$$
: $a_0 = 1$

$$a_0 = 1$$

$$S(1) = -1: \quad b_0 + b_1 + b_2 = -1$$

$$S'(0-0) = S'(0+0)$$
:

$$a_1 = b_1$$

$$S'(-1) = 0: \alpha_1 - 2\alpha_2 = 0$$

Meo.:
$$a_0 = 1$$
 $a_1 = 4$ $a_2 = 2$ $b_0 = 1$ $b_1 = 4$ $b_2 = -6$

$$S(x) = \begin{cases} 2x^2 + 4x + 1; & x \in [-1/6] \\ -6x^2 + 4x + 1; & x \in [0; 1] \end{cases}$$

13.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + b(x-1)_+^2$$
$$S'(x) = a_1 + 2a_2 x + 2b(x-1)_+$$

$$S(0)=-1$$
: $a_0=-1$

$$S(\Lambda) = \Lambda$$
: $a_0 + a_1 + a_2 = \Lambda$

$$S(2) = -1$$
: $a_0 + 2a_1 + 4a_2 + b = -1$

Meo.:
$$a_0 = -1$$
 $a_1 = 0$ $a_2 = 2$ $b = -8$
 $S(x) = -1 + 2x^2 - 8(x-1)^2_+$

14.
$$S(x) = a_0 + a_1 x + a_2 x^2 + b(x11)_+^2$$
$$S'(x) = a_1 + 2a_2 x + 2b(x11)_+$$

Interpolocia

$$S(-1)=1:$$
 $a_0-a_1+a_2=1$

$$S(0) = -1:$$
 $a_0 + b = -1$

15.
$$S(x) = a_0 + a_1 \times + a_2 \times^2 + b(x-c)_+^2$$

 $S'(x) = a_1 + 2a_2 \times + 2b(x-c)_+$

Interpoláció

$$S(-1) = 0$$
: $a_0 - a_1 + a_2 = 0$

$$S(0) = 1$$
: $a_0 = 1$

$$S(1) = 2$$
: $a_0 + a_1 + a_2 + b = 2$

Peren let.

$$S'(0)=B: \quad \alpha_{\lambda}=0$$

Peren felt.

Mec:
$$a_0 = -2$$
 $a_1 = -4$ $a_2 = -1$ $b = 1$

Mev:
$$c_0 = -2$$
 $c_1 = -4$ $c_2 = -1$ $b = 1$
 $S(x) = -2 - 4x - x^2 + (x+1)_+^2$

$$S'(-1)=0: \alpha_1-2\alpha_2=0$$

$$a_0 = 1$$
 $a_1 = 2$ $a_2 = 1$ $b = -2$

$$\int_{a_0}^{a_0} = 1 \quad a_1 = 2 \quad a_2 = 1 \quad b = -2$$

$$S(x) = 1 + 2x + x^2 - 2(x - 0)_+^2$$

16.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + b_1(x-0)^2_+$$

 $S'(x) = a_1 + 2a_2 x + 2b_1(x-0)_+$

$$S(-1) = -1: a_0 - a_1 + a_2 = -1$$

$$S(0) = 1$$
: $a_0 = 1$

$$S'(-\Lambda) = 0: a_{\Lambda} - 2a_{Z} = 0$$

$$\int_{C_0=1}^{C_0=1} a_1 = 4 \quad a_2 = 2 \quad b = -8$$

$$S(x) = 1 + 4x + 2x^2 - 8(x-0)_+^2$$

17.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b (x-0)_+^3$$

$$S'(x) = a_1 + 2a_2x + 3a_3x^2 + 3b(x-0)_+^2$$

Interpolació

$$S(-T_1) = -1:$$
 $a_0 - T_{0,1} + T_1^2 a_2 - T_3^3 a_3 = -1$

$$S(0) = 1$$
: $a_0 = 1$

Pener lett.

$$S'(-\Pi) = S'(\Pi): a_1 + 2\Pi a_2 + 3\Pi^2 a_3 = a_1 + 2\Pi a_2 + 3\Pi^2 a_3 + 3\Pi^2 b$$

$$S''(-TI) = S''(TI): 2a_2 - 6TIa_3 = 2a_2 + 6TIa_3 + 6TIb$$

Mev.
$$a_0 = 1$$
 $a_1 = -\frac{12}{11}$ $a_2 = -\frac{6}{\pi^2}$ $a_3 = -\frac{6}{\pi^3}$ $b = \frac{8}{\pi^3}$

$$S(x) = 1 - \frac{12}{\pi}x - \frac{6}{\pi^2}x^2 - \frac{4}{\pi^3}x^3 + \frac{8}{\pi^3}(x-0)^3 + \frac{1}{\pi^3}(x-0)^3 + \frac{1}{\pi^3}(x-0)^$$

18.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b(x - \frac{\pi}{2})_+^3$$

 $S'(x) = a_1 + 2a_2 x + 3a_3 x^2 + 3b(x - \frac{\pi}{2})_+^2$
 $S''(x) = 2a_2 + 6a_3 x + 6b(x - \frac{\pi}{2})_+$

In tupolació

$$S(0) = 0 : a_0 = 0$$

$$S(\frac{\pi}{2}) = 1$$
: $a_0 + \frac{\pi}{2} a_1 + \frac{\pi^2}{4} a_2 + \frac{\pi^3}{8} a_3 = 1$

$$S(T) = 0$$
: $a_0 + Ta_1 + T^2a_2 + T^3a_3 + T^3b = 0$

Peren Lett.

$$S''(0) = 0$$
: $2a_2 = 0$

$$S''(TT) = 0$$
: $2a_2 + 6TT a_3 + 3TT \cdot b = 0$

Meo.
$$a_0 = 0$$
 $a_1 = \frac{3}{\pi}$ $a_2 = 0$ $a_3 = -\frac{4}{\pi^3}$ $b = \frac{8}{\pi^3}$

$$S(x) = \frac{3}{\pi} \times -\frac{4}{\pi^3} \times^3 + \frac{8}{\pi^3} \left(x - \frac{\pi}{2}\right)_+^3$$

19.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b(x-0)_+^3$$

$$f(x) = x^5$$

$$S'(x) = a_1 + 2a_2 x + 3a_3 x^2 + 3b (x-0)^2$$

$$f'(x) = 5x^4$$

Interpolació

$$S(-1) = -1$$
: $a_0 - a_1 + a_2 - a_3 = -1$

$$S(0) = 0: a_0 = 0$$

$$S(1) = 1$$
: $a_0 + a_1 + a_2 + a_3 + b = 1$

Ponem lebt.

$$S'(-1) = I'(-1):$$
 $a_1 - 2a_2 + 3a_3 = 5$

$$S'(1) = I'(1):$$
 $a_1 + 2a_2 + 3a_3 + 3b = 5$

Meo.
$$a_0 = 0$$
 $a_1 = -1$ $a_2 = 0$

Meo.
$$a_0 = 0$$
 $a_1 = -1$ $a_2 = 0$ $a_3 = 2$ $b = 0$

$$S(x) = -x + 2x^3$$

20.)
$$S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + k(x-0)^3$$

$$S'(x) = a_1 + 2a_2x + 3a_3x^2 + 3b(x-0)^2$$

$$\frac{1}{x}(x) = -x^6$$

Interpolación

$$S(-1) = -1$$
: $a_0 - a_1 + a_2 - a_3 = -1$

$$S(0) = 0 : \alpha_0 = 0$$

$$S(1) = -1$$
: $a_0 + a_1 + a_2 + a_3 + b = -1$

Peren felt.

$$S'(-1) = f'(-1): \quad \alpha_1 - 2\alpha_2 + 3\alpha_3 = 6$$

$$S'(1) = f'(1):$$
 $a_1 + 2a_2 + 3a_3 + 3b = -6$

Mec.
$$a_0 = 0 a_1 = 0 a_2 = 3 a_3 = 4 b = -8$$
$$S(x) = 3x^2 + 4x^3 - 8(x-0)_+^3$$