Teoremi di Fondamenti Matematici per l'Informatica

Carlo Ramponi May 8, 2019

1 L'ordinamento dei numeri naturali è un buon ordinamento

Enunciato

L'ordinamento dei numeri naturali è un buon ordinamento

Dimostrazione

Supponiamo che l'insieme $A\subseteq\mathbb{N}$ non abbia minimo e proviamo che allora $A=\emptyset$. Chiamiamo B il suo complementare $(B=\mathbb{N}\setminus A)$ e dimostriamo per induzione che

$$\forall n \in \mathbb{N} \quad \{0, 1, ..., n\} \subseteq B$$

- $0 \notin A$, altrimenti ne sarebbe il minimo, quindi $0 \in B$ e pertanto $\{0\} \subseteq B$.
- Supponiamo che $\{0,1,...,n\}\subseteq B$, allora $0,1,...,n\notin A$ e quindi $n+1\notin A$, altrimenti ne sarebbe il minimo, ma allora $n+1\in B$ e pertanto $\{0,1,...,n,n+1\}\subseteq B$.

Per il principio di induzione di prima forma un insieme con queste proprietà coincide con quello dei numeri naturali $(B = \mathbb{N})$ e quindi $A = \emptyset$

2 Il principio di induzione (seconda forma)

Enunciato

Sia P(n) una famiglia di proposizioni indicate su \mathbb{N} e si supponga che

- 1. P(0) sia vera
- 2. $\forall n > 0 (P(k)vera \forall k < n) \Rightarrow P(n)vera$

allora P(n) è vera $\forall n \in \mathbb{N}$

Dimostrazione

Sia $A = \{n \in \mathbb{N} | P(n) \text{ non è vera } \}$, e supponiamo per assurdo che $A \neq \emptyset$. Allora per la proprietà di buon ordinamento A ha minimo n.

Chiaramente $n \neq 0$ in quanto P(0) è vera per ipotesi.

Inoltre se k < n allora $k \notin A$ in quanto $n = \min A$, ma allora dalla (2) segue che P(n) è vera e quindi $n \notin A$, contraddicendo il fatto che $n \in A$.