Motivating Exploration in Reinforcement Learning

Bob Wei

Department of Computer Science University of Waterloo q25wei@edu.uwaterloo.ca

Akshay Patel

Department of Computer Science University of Waterloo akshay.patel@uwaterloo.ca

Samir Alazzam

Department of Computer Science University of Waterloo q25wei@edu.uwaterloo.ca

Abstract

The abstract paragraph should be indented ½ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

Exploration is something that comes naturally to humans, almost as if there exists an innate sense of curiosity, craving to experience something new, something yet to be seen. Through observing human behaviour, it is clear that the ability to explore a domain is critical to the process of discovery and learning, regardless of the task being considered.

And yet, even with the massive computational resources available today, the most impressive artificial learning agents struggle tremendously in balancing explicit exploration of the environment and stable convergence towards a useful, learned policy. Without adequate exploration and randomness, the agent can easily become stuck and converge towards a flawed policy early on in learning; the agent's policy reflects high certainty on its understanding of the environment when, in reality, it has yet to explore the majority of the state space. On the other hand, Excessive exploration can lead to unstable rewards and updates throughout learning which are detrimental to learning a useful policy. To make matters worse, there is a huge breadth of algorithms and hand-crafted techniques used in reinforcement learning, many of them requiring method or task specific hyperparameter tuning. This in turn leads to very specialized formulations across the field for encouraging exploration.

In this work, we explore a general formulation of curiosity that aims to motivate exploration in reinforcement learning (RL) agents while remaining invariant to the algorithm and task in question. We explore the effects of including an entropy term (of the policy action probability distribution) and a curiosity module based on that of **cite**, which provides an intrinsic reward signal. Due to the scope of the porject, we focus specifically on the Advantage Actor-Critic (A2C) RL algorithm in the *Pong*, *Seaquest*, and *Breakout* Atari environments. These tasks were chosen due to the differences in mechanics and their respective state spaces, specifically the density and magnitude of the extrinsic reward (i.e. reward received from environment itself).

We compare the performance of the agent in the various environments with and without the mentioned exploration factors. Add more on the experimental results once that's finalized

2 Related Work

Someone write this pls

3 Methods

In this section, we present our baseline RL framework using the A2C algorithm which is based on the previous works of **cite**. We then describe the formulations of entropy and curiosity based learning factors to encourage environment exploration.

3.1 Advantage Actor-Critic (A2C)

Our baseline is built around A2C, which is an on-policy learning algorithm. The core decision making of the agent stems from the policy network (π) , which is also referred to as the *Actor*. The policy network is learned and its weights (θ_{π}) are updated via the standard policy gradient equation, wherein the rewards r_t for a trajectory t are weighted by the negative log likelihood of that trajectory. Minimizing this loss \mathcal{L}_P is equivalent to updating π such that the probability of high reward trajectories are maximized.

$$\mathcal{L}_P = \sum_{t} -\log \pi(s_t; \theta_\pi) \times r_t \tag{1}$$

A2C also uses the value network (V) or critic which predicts the accumulated, discounted rewards R_i over the episode timesteps i. The advantages can be computed as $A_i = R_i - V_i$, where V_i are the predictions from V, and are used in place of the actual rewards in the policy update 1, reducing the variance of \mathcal{L}_P , which is a common downfall of on-policy methods. We train the value network V with update equation 2.

$$\mathcal{L}_V = \frac{1}{n} \sum_i (R_i - V_i)^2 \tag{2}$$

The base A2C algorithm does not explicitly seek random exploration as it learns to decide on the action at a https://arxiv.org/pdf/1601.06733.pdf state purely from the policy update. The most commonly used method to introduce randomness to the agent is through maximizing the entropy of the next-action sampling distribution. This distribution is categorical with probabilities defined by the policy network logits.

$$\mathcal{L}_E = \sum_a (-\log \pi_a \times \mu_\pi) \tag{3}$$

Instead of minizing the loss function in 3, we maximize the value so that the individual probabilities of the sampling distribution π_a are as similar as possible; thus, inducing a degree of randomness in the policy network's state to action mapping.

3.2 Intrinsic Curiosity

Entropy encourages the agent to explore but in a purely random manner, which has been shown to produce exceptional results (as below). However, we also compare with a more targeted approach by leveraging the Intrinsic Curiosity Module (ICM) introduced in **cite**, which provides an intrinsic reward as a learning signal. ICM consists of two linear networks referred to as the forward and inverse models. The forward model f_{Fwd} is trained to predict the next state $(\phi(s_{t+1}))$ given the current state $(\phi(s_t))$ and the action (a_t) decided by the policy net. Note that we use ϕ to denote a feature extractor network used to encode the raw states.

$$r_i = \sum_{t} (\phi(s_{t+1}) - f_{Fwd}(\phi(s_t); a_t))^2$$
(4)

$$r = r_e + \beta r_i \tag{5}$$

The new intrinsic reward r_i is defined as the mean-squared-error of the predicted next state and the actual next state, which is then combined with the extrinsic reward to obtain the total reward used in the policy update 1. Thus, our agent learns to maximize the likelihood of following trajectories that

maximize the intrinsic reward, which means that the agent is encouraged to enter new, unseen states that f_{Fwd} is unable to predict accurately. The forward model itself is trained using the loss below.

$$\mathcal{L}_{Fwd} = \frac{1}{n} \sum_{t} (\phi(s_{t+1}) - f_{Fwd}(\phi(s_t); a_t))^2$$
 (6)

Further, the purpose of the inverse model f_{Inv} is to train the feature extractor ϕ to encode observed features from the raw state that are most impacted by the agent's actions. Specifically, the inverse model takes the current and next states and infers the corresponding action taken: $f_{Inv}(\phi(s_t), \phi(s_{t+1})) = \hat{p}$, where \hat{p} is a vector of probabilities for each possible action. This is trained with the following,

$$\mathcal{L}_{Inv} = -\log\left(\frac{e^{\hat{p}[a_t]}}{\sum_j e^{\hat{p}[j]}}\right) = -\hat{p}[a_t] + \log\left(\sum_j e^{\hat{p}[j]}\right) \tag{7}$$

The described curiosity model is incorporated into the base A2C model and can be trained jointly:

$$\mathcal{L} = \mathcal{L}_P + \lambda_V \mathcal{L}_V - \lambda_E \mathcal{L}_E + \mathcal{L}_{Fwd} + \mathcal{L}_{Inv}$$
(8)

4 Experiments

Below, we provide details on our implementation and setup for training the agent. We also include plots of the smoothed, extrinsic rewards from full episodes throughout the training, where we compare the effectiveness of motivating random or targeted exploration. Finally, we show some qualitative results across various environments that demonstrate interesting agent behaviour.

- 4.1 Implementation Details
- 4.2 Quantitative Results
- 4.3 Qualitative Results

5 Discussion

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long. The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points. Times New Roman is the preferred typeface throughout, and will be selected for you by default. Paragraphs are separated by $\frac{1}{2}$ line space (5.5 points), with no indentation.

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow 1/4 inch space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the page.

For the final version, authors' names are set in boldface, and each name is centered above the corresponding address. The lead author's name is to be listed first (left-most), and the co-authors' names (if different address) are set to follow. If there is only one co-author, list both author and co-author side by side.

Please pay special attention to the instructions in Section ?? regarding figures, tables, acknowledgments, and references.

6 Figures

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction. The figure number and caption always appear after the figure. Place one line space before the figure caption and one line space after the figure. The figure caption should be lower case (except for first word and proper nouns); figures are numbered consecutively.

You may use color figures. However, it is best for the figure captions and the paper body to be legible if the paper is printed in either black/white or in color.

Figure 1: Sample figure caption.

Table 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	$\begin{array}{c} \sim \! 100 \\ \sim \! 10 \\ \text{up to } 10^6 \end{array}$

7 Tables

References

- [1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), *Advances in Neural Information Processing Systems 7*, pp. 609–616. Cambridge, MA: MIT Press.
- [2] Bower, J.M. & Beeman, D. (1995) *The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System.* New York: TELOS/Springer-Verlag.
- [3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. *Journal of Neuroscience* **15**(7):5249-5262.