EXAMPLE 2.1(a)

Conversion of Euler attitude to Coordinate Transformation Matrices and Quaternions

INPUTS: Set of Euler angles describing rotation from local navigation frame to body frame

		0			
Roll	ϕ_{nb}	-30	degrees	-0.5236	radians
Pitch	$ heta_{\it nb}$	30	degrees	0.523599	radians
Yaw	$\psi_{\it nb}$	45	degrees	0.785398	radians

Conversion to Coordinate Transformation Matrix

Local navigation frame to body frame coordinate transformation matrix

Alternatively,

From (2.22),
$$\mathbf{C}_{n}^{b} = \begin{bmatrix} \cos\theta_{nb}\cos\psi_{nb} & \cos\theta_{nb}\sin\psi_{nb} & -\sin\theta_{nb} \\ -\cos\phi_{nb}\sin\psi_{nb} & \cos\phi_{nb}\cos\psi_{nb} \\ +\sin\phi_{nb}\sin\theta_{nb}\cos\psi_{nb} & +\sin\phi_{nb}\sin\theta_{nb}\sin\psi_{nb} \\ +\cos\phi_{nb}\sin\theta_{nb}\cos\psi_{nb} & +\cos\phi_{nb}\sin\theta_{nb}\sin\psi_{nb} \end{bmatrix} = \begin{bmatrix} \cos\phi_{nb}\cos\psi_{nb} & -\sin\phi_{nb}\cos\phi_{nb} \\ +\sin\phi_{nb}\sin\phi_{nb}\sin\psi_{nb} & +\sin\phi_{nb}\sin\psi_{nb} \\ +\cos\phi_{nb}\sin\theta_{nb}\cos\psi_{nb} & +\cos\phi_{nb}\sin\phi_{nb}\sin\psi_{nb} \end{bmatrix}$$

$$\mathbf{C}_{n}^{b} = \begin{bmatrix} 0.612372 & 0.612372 & -0.5 \\ -0.78915 & 0.435596 & -0.43301 \\ -0.04737 & 0.65974 & 0.75 \end{bmatrix}$$

Body frame to local navigation frame coordinate transformation matrix:

From (2.24),
$$\mathbf{C}_{b}^{n} = \begin{bmatrix} \cos \theta_{nb} \cos \psi_{nb} & \begin{pmatrix} -\cos \phi_{nb} \sin \psi_{nb} \\ +\sin \phi_{nb} \sin \theta_{nb} \cos \psi_{nb} \end{pmatrix} & \begin{pmatrix} \sin \phi_{nb} \sin \psi_{nb} \\ +\cos \phi_{nb} \sin \phi_{nb} \cos \psi_{nb} \end{pmatrix} \\ -\sin \theta_{nb} & \sin \phi_{nb} \cos \theta_{nb} & \cos \phi_{nb} \end{bmatrix} \begin{pmatrix} \sin \phi_{nb} \sin \psi_{nb} \\ +\cos \phi_{nb} \sin \phi_{nb} \cos \psi_{nb} \\ +\sin \phi_{nb} \sin \theta_{nb} \sin \psi_{nb} \end{pmatrix} \begin{pmatrix} -\sin \phi_{nb} \cos \psi_{nb} \\ +\cos \phi_{nb} \sin \theta_{nb} \sin \psi_{nb} \end{pmatrix} \\ \cos \phi_{nb} \cos \phi_{nb} & \cos \phi_{nb} \end{bmatrix}$$

$$\mathbf{C}_{b}^{n} =$$

$$\begin{array}{c}
0.612372 & -0.78915 & -0.04737 \\
0.612372 & 0.435596 & 0.65974 \\
-0.5 & -0.43301 & 0.75
\end{array}$$

Conversion to Quaternions

$$\phi_{nb} / 2 =$$
 -0.2618
 $\theta_{nb} / 2 =$ 0.261799
 $\psi_{nb} / 2 =$ 0.392699

From (2.38),
$$q_{n0}^{b} = \cos\left(\frac{\phi_{nb}}{2}\right)\cos\left(\frac{\theta_{nb}}{2}\right)\cos\left(\frac{\psi_{nb}}{2}\right) + \sin\left(\frac{\phi_{nb}}{2}\right)\sin\left(\frac{\theta_{nb}}{2}\right)\sin\left(\frac{\psi_{nb}}{2}\right)$$
$$q_{n1}^{b} = \sin\left(\frac{\phi_{nb}}{2}\right)\cos\left(\frac{\theta_{nb}}{2}\right)\cos\left(\frac{\psi_{nb}}{2}\right) - \cos\left(\frac{\phi_{nb}}{2}\right)\sin\left(\frac{\theta_{nb}}{2}\right)\sin\left(\frac{\psi_{nb}}{2}\right)$$
$$q_{n2}^{b} = \cos\left(\frac{\phi_{nb}}{2}\right)\sin\left(\frac{\theta_{nb}}{2}\right)\cos\left(\frac{\psi_{nb}}{2}\right) + \sin\left(\frac{\phi_{nb}}{2}\right)\cos\left(\frac{\theta_{nb}}{2}\right)\sin\left(\frac{\psi_{nb}}{2}\right)$$
$$q_{n3}^{b} = \cos\left(\frac{\phi_{nb}}{2}\right)\cos\left(\frac{\theta_{nb}}{2}\right)\sin\left(\frac{\psi_{nb}}{2}\right) - \sin\left(\frac{\phi_{nb}}{2}\right)\sin\left(\frac{\theta_{nb}}{2}\right)\cos\left(\frac{\psi_{nb}}{2}\right)$$

$$\mathbf{q}_{n}^{b} = \begin{bmatrix} 0.836356 \\ -0.32664 \\ 0.135299 \\ 0.418937 \end{bmatrix}$$

EXAMPLE 2.1(b)

Conversion of Coordinate Transformation Matrix to Euler attitude and Quaternions

INPUT: Coordinate transformation matrix from body frame to local navigation frame

$$\mathbf{C}_{b}^{n} =$$

$$\begin{array}{c}
0.612372 & -0.78915 & -0.04737 \\
0.612372 & 0.435596 & 0.65974 \\
-0.5 & -0.43301 & 0.75
\end{array}$$

Check validity of matrix

From (2.17),
$$C_b^n C_n^b = I_3$$

$$\mathbf{C}_{b}^{n}\mathbf{C}_{n}^{b} = \begin{bmatrix} 1 & 7.98\text{E}-17 & 4.86\text{E}-17 \\ 7.98\text{E}-17 & 1 & 1.11\text{E}-16 \\ 4.86\text{E}-17 & 1.11\text{E}-16 & 1 \end{bmatrix}$$

Conversion to Euler angles

Set of Euler angles describing rotation from local navigation frame to body frame

Conversion to Quaternions

Set of Quaternions describing rotation from local navigation frame to body frame

From (2.35)
$$q_{n0}^{b} = \frac{1}{2} \sqrt{1 + C_{b1,1}^{n} + C_{b2,2}^{n} + C_{b3,3}^{n}}$$

$$q_{n1}^{b} = \frac{C_{b3,2}^{n} - C_{b2,3}^{n}}{4q_{n0}^{b}}$$

$$q_{n2}^{b} = \frac{C_{b1,3}^{n} - C_{b3,1}^{n}}{4q_{n0}^{b}}$$

$$q_{n3}^{b} = \frac{C_{b2,1}^{n} - C_{b1,2}^{n}}{4q_{n0}^{b}}$$

$$\mathbf{q}_{n}^{b} = \begin{bmatrix} 0.836356 \\ -0.32664 \\ 0.135299 \\ 0.418937 \end{bmatrix}$$

EXAMPLE 2.1(c)

Conversion of Quaternions to Coordinate Transformation Matrix and Euler attitude

INPUTS: Quaterions describing rotation from local navigation frame to body frame

$$\mathbf{q}_{n}^{b} = \begin{bmatrix} 0.836356 \\ -0.32664 \\ 0.135299 \\ 0.418937 \end{bmatrix}$$

Conversion to Coordinate Transformation Matrix

Local navigation frame to body frame coordinate transformation matrix:

From (2.34),
$$\mathbf{C}_{n}^{b} = \begin{pmatrix} q_{n0}^{b^{2}} + q_{n1}^{b^{2}} - q_{n2}^{b^{2}} - q_{n3}^{b^{2}} & 2(q_{n1}^{b}q_{n2}^{b} + q_{n3}^{b}q_{n0}^{b}) & 2(q_{n1}^{b}q_{n3}^{b} - q_{n2}^{b}q_{n0}^{b}) \\ 2(q_{n1}^{b}q_{n2}^{b} - q_{n3}^{b}q_{n0}^{b}) & q_{n0}^{b^{2}} - q_{n1}^{b^{2}} + q_{n2}^{b^{2}} - q_{n3}^{b^{2}} & 2(q_{n2}^{b}q_{n3}^{b} + q_{n1}^{b}q_{n0}^{b}) \\ 2(q_{n1}^{b}q_{n3}^{b} + q_{n2}^{b}q_{n0}^{b}) & 2(q_{n2}^{\alpha}q_{n3}^{\alpha} - q_{n1}^{\alpha}q_{n0}^{\alpha}) & q_{n0}^{\alpha^{2}} - q_{n1}^{\alpha^{2}} - q_{n2}^{\alpha^{2}} + q_{n3}^{\alpha^{2}} \end{pmatrix}$$

$$\mathbf{C}_{n}^{b} =$$

$$\begin{array}{c}
0.612372 & 0.612372 & -0.5 \\
-0.78915 & 0.435596 & -0.43301 \\
-0.04737 & 0.65974 & 0.75
\end{array}$$

Body frame to local navigation frame coordinate transformation matrix:

$$\mathbf{C}_{b}^{n} =$$

$$\begin{array}{c}
0.612372 & -0.78915 & -0.04737 \\
0.612372 & 0.435596 & 0.65974 \\
-0.5 & -0.43301 & 0.75
\end{array}$$

Conversion to Euler angles

Set of Euler angles describing rotation from local navigation frame to body frame

From (2.37),
$$\phi_{nb} = \arctan_2 \left[2 \left(q_{n0}^b q_{n1}^b + q_{n2}^b q_{n3}^b \right), \left(1 - 2 q_{n1}^{b^2} - 2 q_{n2}^{b^2} \right) \right]$$

$$\theta_{nb} = \arcsin \left[2 \left(q_{n0}^b q_{n2}^b - q_{n1}^b q_{n3}^b \right) \right]$$

$$\psi_{nb} = \arctan_2 \left[2 \left(q_{n0}^b q_{n2}^b - q_{n1}^b q_{n3}^b \right) \right]$$
Roll ϕ_{nb} radians radians -30 degrees
Pitch θ_{nb} 0.523599 radians 30 degrees
Yaw ψ_{nb} 0.785398 radians 45 degrees

Note: The arguments of the Excel ATAN2 function are the opposite way round