

PROGRAMACIÓN

Unidad 6 - Parte 2: Punteros y arreglos.

2022

Lic. Mariela A. Velázquez

Recordemos un poco...

Punteros y Arreglos

- □ En C existe una fuerte relación entre arreglos y punteros.
- Cualquier operación que pueda lograrse por indexación de un arreglo, también puede realizarse con punteros.
- □ Las versiones con punteros son más rápidas.

Declaraciones

int arreglo[9]


```
int *p_arreglo;
p_arreglo = &arreglo[0]; //asignación
```

Asignación

Sabemos que, el nombre del un arreglo es sinónimo a la dirección del primer elemento del arreglo, por lo tanto la siguiente asignación es válida:

p_arreglo = arreglo;

Asignación

```
int aux;
int arreglo[9];
int *p_arreglo;
p_arreglo = arreglo;
aux = *p_arreglo; // copia el contenido del arreglo[0] en aux
    arreglo
                              2
                                     3
                                           5
                                                 7
                                                        12
                                                              19
                                                                     31
                                           [4]
                                                       [6]
                       [1]
                                    [3]
                                                 [5]
                [0]
                              [2]
                                                              [7]
                                                                     [8]
```

Cátedra de Programación

En general

Si p_arreglo apunta a un elemento en particular del arreglo,

p_arreglo+1 apunta al siguiente elemento y p_arreglo+i apunta i

elementos después de la dirección de arreglo[0]

Ejemplo

```
#include <stdio.h>
#include <ctype.h>

int main()

char cadena[80], *p_cadena;

puts("Introducir una cadena en mayuscula");

gets(cadena);

puts("Esta es la cadena en miniscula");

p_cadena = cadena;

while(*p_cadena != '\0')

f
 printf("%c", tolower(*p_cadena));
 p_cadena++;

}

return 0;

return 0;
```

ARREGLOS

PUNTEROS


```
#include <stdio.h>
int main()
{
   int arreglo[5] = {1, 2, 3, 4, 5};
   int *puntero;

   puntero = arreglo; // apunta primero

   printf("Elementos del arreglo usando punteros:\n");
   for (int i = 0; i < 5; i++)
   {
      printf("Elemento %d: %d\n", i + 1, *puntero);
      puntero++;
   }

   return 0;
}</pre>
```

Punteros

La velocidad es un bien preciado en programación, se debe saber que entre ambas versiones, la de punteros es más rápida.

Existe una diferencia muy importante entre nombre del arreglo y un apuntador.

Un puntero es una variable, es licito escribir:

```
p_cadena = cadena;
p_cadena ++;
```

En tanto: un nombre de arreglo NO es una variable, por lo cual no es correcto

escribir: cadena++;

cadena = punt;

```
#include <stdio.h>
int main()
   printf("Hasta la próxima clase!!\n");
   return 0;
```