99日本国特許庁(JP)

@ 特許出願公告

$\Psi 4 - 78803$ 許 公 報(B2)

filnt, Cl. 5

識別記号

庁内整理番号

6000公告 平成 4 年(1992)12月14日

F 01 D 9/02

101

9038-3G

発明の数 1 (全9頁)

60発明の名称

ターピンノズル

创特 顧 昭62-263767

開 平1-106903 ❷公

多出 昭62(1987)10月21日 @平1(1989)4月24日

60発 明 者 川岸 裕

神奈川県横浜市鶴見区末広町2の4 株式会社東芝京浜事

攀所内

60出 随人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

四代 理 人 弁理士 則近 憲佑 外1名

審査官

山岸 利治

多参考文献

特開 昭57-38604 (JP, A)

昭62-170707 (JP, A) 特開

特開 昭54-45405 (JP. A)

特開 昭56-143303 (JP, A)

実開 昭57-68103 (JP, U)

特公 昭35-5151(JP, B1)

特公 昭59-25091 (JP, B2)

1

発明の詳細な説明

【発明の目的】

(産業上の利用分野)

本発明は軸流ターピンのターピンノズルに係 り、特にタービンノズルの環状流路周壁面に生じ る境界層の発達を抑制することによって二次流れ の発生を防止し、さらに二次流れが攪拌して発生 する二次渦による損失を低減し、ターピン性能を 向上し得るターピンノズルに関する。

2

近年、発電プラントの運転経済性を改善し、発 電効率の改善を図るためにターピン性能の向上を 図ることが重要な課題となつている。

ターピン性能の向上を図るには各ターピン段落 に対する傾斜角度を8., Aとし、また上記ノズル 15 の損失を低減する必要がある。ターピン段落にお ける内部損失には、翼形損失、漏洩損失、流出損 失などがあるが、特にアスペクト比が小さくノズ ル翼高さが低いターピン段落においては二次流れ による二次損失の比率が支配的であり、その二次 20 損失を低減することがターピン性能を向上する上 で大きな課題となつている。

> 一般的な軸流ターピンのノズル機成を第7例に 示す。複数枚のノズル翼1が、ダイヤフラム外輪

切特許請求の範囲

1 ダイヤフラム内輪とダイヤフラム外輪との間 に形成される環状流路の周方向に複数のノズル翼 を列状に配設し、各ノズル翼をダイヤフラム内輪 側の接合端およびダイヤフラム輪側の接合端にお 5 いて固定して構成したターピンノズルにおいて、 ノズル翼の両接合端部における後縁線を直線状に 形成し、かつ上配後縁線がターピンの回転中心を 通る基準線に対してノズル翼の腹面方向に傾斜す るように接合端を接合するとともに、ノズル翼の 10 (従来の技術) 中間部における後縁線は腹面方向に彎曲するよう に形成してなり、ノズル翼の高さをhとし、ノズ ル翼の両接合端部における直線状にして傾斜させ た上記後縁線のターピンの回転中心を通る基準線 翼の両接合端部における直線状にして傾斜させた 上記後縁線の高さをし、しとするとき、

25°≤みおよびみ≤25°

 $0.05 \le \frac{l_1}{h} \pm \lambda \mathcal{U} \cdot \frac{l_1}{h} \le 0.35$

の関係式を満たすように構成することを特徴とす るターピンノズル。

2とダイヤフラム内輪3との間に形成される環状 流路4に固設される。また第4図に示すように上 記ノズル翼1に対向して下流側に複数枚の動翼5 が配設される。動算5は、ロータデイスク6の外 周の周方向に所定間隔で列状に植設される。動翼 5 5の外周端には動翼端を固定するため、および作 動流体の漏洩を防止するためのシュラウドイが固 着される。

次に上記の段落構成においてノズル翼 1 におけ る。第7図は第4図に示すターピンノズルをノズ ル出口側から観察した傾斜図である。

各ノズル翼1は、ロータデイスク6の回転中心 を通る基準線Eに対して傾斜しておらず、ダイヤ 例で示している。

高圧蒸気などの作動流体は、隣接するノズル翼 1, 1間の異間液路を流れるときに、流路中で円 弧状に曲げられて流れる。このときノズル翼1の 力と静圧とが平衡しているため、腹面下における 静圧が高くなり、一方背面Bにおいては作動流体 の流速が大きいため静圧が低い。そのため、流路 内では腹面F側から背面B側に圧力勾配を生じ フラム内輪3の周壁面上に形成される流速のおそ い層、すなわち境界層においても同様である。

ところが、境界層付近においては流速が小さ く、作用する遠心力も小さいため、腹面F側から 背面Bへの圧力勾配に抗しきれずに腹面F側から 30 流れ8を抑止するものである。 背面B側へ向かう流れ、すなわち二次流れ8が生 じる。

そして上記二次流れ8はノズル翼1の背面B側 に衝突して巻き上がり、ノズル翼1の内輪側およ a, 9 bを発生する。かくして作動流体が保有す るエネルギは、二次禍9を形成するためにその一 部が散逸する。

このようにノズル流路内で発生する二次渦9 a, 9 b は作動流体の不均一な流れを生じ、ノズ 40 段にはなり得ていない。 ル性能を著しく低下させるうえに、下流側の動翼 5に流入する作動液体のエネルギ損失を招き、各 ターピン段落の性能を低下させている。

上記のノズル流路内で発生する二次渦9a,9

bに起因する二次損失を低減するために種々のタ ーピンノズル構造が研究されている。

例えば環状流路の周壁面に発達する境界層の暑 さを低減するターピンノズルの構成が特開昭53ー 90502号公報に開示されている。第8図aはその 従来例を示すターピンノズルを示す断面図であ り、ノズル翼1の上流側の境界層生成領域に境界 層制御棒10を配置した例を示す。この境界層制 御棒10によつて、周壁面上に発達する境界層の る二次流れの発明機構を第7図を参照して説明す 10 厚さを薄くして二次流れによる損失を低減するこ とを企画したものである。

また第9図は特開昭52-54809号公報に開示さ れたターピンノズルの従来例を示す断面図であ り、ノズル翼1の腹面下側の接合端に吸込孔11 フラム内輪3の外周面に対して垂直に配設された 15 を設ける一方、背面B側の接合端に吹出孔12を 設けて、吸込孔11から吹出孔12に抜ける連通 孔13を形成している。

環状流路の周壁面近傍を流れる作動流体を連通 孔13を経由して逃がすようにして、隣接したノ 背面Bから腹面F方向に遠心力を生じ、この遠心 20 ズル翼1,1間において、腹面F側から背面B側 に流れる二次流れを極力低減するようにしたもの である。

さらに第10図は、実開昭52-148802号公報に 開示されたターピンノズルであり、ダイヤフラム る。この圧力勾配はダイヤフラム外輪2とダイヤ 25 外輪2またはダイヤフラム内輪3の周壁面上で隣 接されるノズル翼1,1間に邪魔板14を配設し た従来例である。

> 発生が予想される作動流体の壁面境界層の厚さ を越える高さを有する邪魔板 14によつて、二次

(発明が解決しようとする問題点)

しかしながら第8図aに示す従来のターピンノ ズルにおいては、環状流路の周壁近傍に境界層制 御棒10を配設したことにより、周壁面上に発達 び外輪側の両接合端において、それぞれ二次渦9 35 する二次流れはある程度抑止することが可能とな る。しかし、第8図bに示すように、ターピン作 動流体の速度分布Gが乱れ、境界層制御棒10の 2次側において、作動流体主流に大きな速度欠損 をもたらし、タービン性能を抜本的に改善する手

> また第9図に示すようにノズル翼1基部に連通 孔13を設けた従来のターピンノズルでは、隣設 されたノズル翼1、1間の流路において、一方の ノズル翼1の腹面F側から、他方のノズル翼1の

5

背面B側に生じる二次流れは大幅に低減すること ができる。しかし腹面下側から吸込んだ流れを背 面Bに吹出すため、作動流体主流の流線を大きく 擾乱するおそれがあり、損失が逆に増大する場合 がある。

また、この従来例によると、連通孔13の構造 が複雑であり、その加工精度を高く設定する必要 があるため、加工製作費が高騰する問題点があ る。

に邪魔板14を配設した従来のターピンノズルに おいては、環状流路4の周壁面上に邪魔板14が 設けられているため、周壁面近傍においてノズル 異間を横断する流れはある程度低減されるもの 二次流れ8または、邪魔板14から隣設されるノ ズル製1の背面B側に至る二次流れ8は、解消さ れず残存するため、二次損失の大幅の低減には直 結しない問題点があつた。

本発明は上記の問題点を解決するためになされ 20 たものであり、簡素な構造を有し、ターピンノズ ルの環状流路周壁面上に生じる境界層の発達を抑 止し、二次流れに起因する二次渦の発生による損 失の低減を可能とし、タービン性能を向上し得る ターピンノズルを提供することを目的とする。 (発生の構成)

(問題点を解決するための手段)

上配目的を達成するため本発明は、ダイヤフラ ム内輪とダイヤフラム外輪との間に形成される環 状流路の周方向に複数のノズル翼を列状に配設 30 し、各ノズル翼をダイヤフラム内輪側の接合端お よびダイヤフラム外輪側の接合端において固定し て構成したターピンノズルにおいて、ノズル翼の 両接合端部における後縁線を直線状に形成し、か に対してノズル翼の腹面方向に傾斜するように接 合端を接合するとともに、ノズル翼の中間部にお ける後縁線は腹面方向に彎曲するように形成して なり、ノズル翼の高さをhとし、ノズル翼の両接 線のターピンの回転中心を通る基準線に対する傾 斜角を6., 6.とし、また上記ノズル翼の両接合端 部における直線状にして傾斜させた上記後縁線の 高さをし、しとするとき、

25~≦みおよびも≤25°

$0.05 \le \frac{1}{h} \pm 1 \text{ U} \cdot \frac{1}{h} \le 0.35$

の関係式を満たすように構成することを特徴とす 5 る。

(作用)

上記構成のターピンノズルによれば、ノズル翼 の両接合端部における後縁線を直線状に形成し、 かつ上記後縁線がタービンの回転中心を通る基準 さらに第10図に示すようにノズル翼1,1間 10 線に対して、ノズル翼の腹面方向に傾斜している ため、ダイヤフラム内輪の周壁面近傍に流入した 作動流体はダイヤフラム内輪側の周壁面に押圧さ れる一方、ダイヤフラム外輪の周壁面近傍に流入 した作動流体はダイヤフラム外輪側の周壁面に押 の、ノズル翼1の腹面F側から邪魔板14に至る 15 圧される。そのため両周壁面における境界層の発 達が効果的に抑制され、さらに二次流れによつて 各ノズル翼の背面側に発生する二次渦の成長が抑 止される。

> また各ノズル翼の中間部における後縁線は腹面 方向に彎曲するように形成しているため、両接合 始部から翼長方向の中間部に平行に分布する作動 流体の流線は、滑らかに変化し、大きな提拌が生 じることがない。そのため作動流体が動翼に流入 した場合においても、動翼間における損失が少な 25 V.

上記のように本発明によれば各ノズル翼の両接 合端部における二次損失が低減され、また動質間 における損失も少ないため、ターピン効率を大幅 に向上させることができる。

(実施例)

次に本発明の一実施例について、添付図面第1 図~第6図を参照して説明する。第1図は本発明 に係るターピンノズルの構造を示す傾斜図であ り、ノズル出口側より観察した例を示す。また第 つ上記後縁線がターピンの回転中心を通る基準線 35.2図は、ノズル翼1の形状を示すものでノズル出 口側より見た図であり、第7図に示す従来例と同 一要素には同一符号を付してその説明は省略す

本実施例に係るターピンノズルは、ダイヤフラ 合端部における直線状にして傾斜させた上記後縁 40 ム外輪2と、ダイヤフラム内輪3との間に形成さ れる環状流路4に複数のノズル翼1 aを周方向に 所定間隔をおいて列状に配設して構成する。各ノ ズル翼1aのチップ側およびルート側の接合端は それぞれダイヤフラム外輪2とダイヤフラム内輪

3とに接合されている。

各ノズル翼1aは第2図に示すように、その両 接合端部における後縁線αι、αzが直線状に形成さ れ、かつ上記後縁線αι, αι がターピンの回転中心 を通る基準線Eに対して、それぞれ角度A。Aだ けノズル翼1aの腹面方向に傾斜するように接合 端が接合されている。またノズル翼 1 a の中間部 における後縁線asは傾斜部の両後縁線as。asに滑 らかに接続し、腹面方向に彎曲するように形成さ れる。

またノズル翼1aの傾斜した接合端部の高さ L, kはノズル翼1 a の全高 h に対して0.05~ 0.35hの範囲に設定される。

また接合蟾部の傾斜角度6, 6は基準線Eに対 して25~25度に設定される。

本実施例に係るターピンノズルにおいて、ダイ ヤフラム外輪 2 倒の傾斜部に流入した作動流体 は、傾斜したノズル翼1aの腹面Fに沿つて流 れ、ダイヤフラム外輪2の周壁面に押圧される。 そのため周壁面における境界層の発達が抑止さ 20 失が少ない。 れ、二次潟の発生が防止される。

一方、ダイヤフラム内輪 3 側の傾斜部に流入し た作動流体は同様にダイヤフラム内輪3の周壁面 に押圧されるため、周壁面における境界層の発達

またノズル翼laの中間部においては、その後 緑線asが腹面方向に滑らかな彎曲形状を呈するよ うに形成されているため、作動流体主流の流線が 大きく攪拌されることがなく、作動流体の動翼 5 30 間における混合損失も抑制される。

その結果、ノズル翼1 a全体における損失が低 減され、ターピン効率を大幅に向上させることが できる。

明する。第3図は第1図に示すターピンノズルの 出口部における全圧損失の分布を従来例と比較し て示すグラフである。第7図に示す従来のタービ ンノズルの全圧損失と比較すると、本実施例によ ればノズル翼 1 a の中間部領域における圧力損失 40 の一因といえる。 分布はほぼ近似している。一方、ノズル翼1aの ルート側およびチップ側の両接合端部における圧 力損失は従来例と比較して著しく低減されてい る。

また第4図を参照して本実施例のターピンノズ ルを流れる作動液体の流線変化を説明する。第4 図は子午平面から観察したターピン段落の流線図 である。破線で示す従来例のターピンノズルにお ける流線はほぼ平行に形成され、半径方向への偏 位は観察されない。

一方実線で示す本実施例のターピンノズルにお ける流線Kはダイヤフラム外輪2およびダイヤフ ラム内輪 3 近傍においてやや半径方向に偏位して 10 いる。この偏位はノズル翼 1 a の両接合端部を傾 斜して構成したことによつて、作動流体がそれぞ れ周壁面に押圧されるためである。この押圧力に よつて周壁面における境界層の発達が抑止され、 二次渦の生成が防止される。

15 また、ノズル翼1 a の中間部を通過する作動流 体の流線Kは、ノズル翼 1 a 中間部の後縁線が滑 らかに彎曲形成されているため、大きな攪乱が発 生せず、従来例とほぼ近似している。従つて、動 翼 5 間に流路においても作動流体の混合による損

次に、ノズル翼laの傾斜部分の高さl, kお よび傾斜角度の, のを変化させた場合に、タービ ン段落効率刃に及ぼす影響について説明する。第 5 図は、ノズル翼1 aの傾斜部の傾斜角度&。& が抑止され該部における二次渦による損失が低減 25 と、タービン段落効率カとの関係を示すグラフで あり、縦軸には、第7図に示す従来例のターピン ノズルを使用した場合のターピン段落効率noに対 する本実施例によるタービン段落効率かの比

 $\left(\frac{n}{n_0}\right)$ を表示する。第5図から傾斜角度 θ ., θ .が 25~25度の範囲においてターピン段落効率比が 1.0を越え、従来例より優れた効果を発揮するこ とが判明する。このように、傾斜角度6, 6に従 来技術よりも段落効率が優位になる最適範囲が存 さらに第3図を参照して、損失の低減効果を説 35 在するのは、傾斜角度0., 0.が大きくなりすぎる とノズル出口周壁面における損失が低減する反 面、その周壁面近傍の作動流体の流量が増加し、 本来性能の良い翼中央部付近の流量が減少し、全 体の段落効率としては、むしろ低下することがそ

> また第6図はノズル翼1 aの傾斜部の高さし、 liとターピン段階効率niとの関係を従来例と比較 して示すグラフであり、横軸にはノズル翼1aの 全高力に対する傾斜部高さし、しの比(し/)。

l/h)で表わした無次元値を表示する一方、縦 軸には従来例によるターピン段落効率noに対する 本実施例によるターピン段落効率 η との比($\frac{\eta_1}{\eta_2}$) を患示する。

第6図から、傾斜部の高さle, kをノズル翼1 aの全高hに対して0.05~0.35hの範囲に設定す ると、従来例と比較してターピン段落効率が改 **善されることが実証される。このように、傾斜部** なる最適範囲が存在するのは、傾斜部の高さに ldが大きくなりすぎると、異中央部付近の彎曲部 の曲率が小さくなるため、ノズル翼形状の急激な 変化による諸損失が増加するといえる。

なお、第2図に示すようにノズル翼1aの傾斜 15 部の高さ1., laおよび傾斜角度8., 6.は必ずしも両 接合端部において、同一値である必要はなく、

2.5°≤ θ , θ ≤25° θ & θ 50.05≤ $\frac{\ln}{h}$, $\frac{\ln}{h}$ ≤0.35 θ

て、相互に異なる値を設定してもよい。

また第2図においては、各ノズル翼1aの後縁 線a1, a2が基準線Eとダイヤフラム内外輪2, 3 との交点を起点として接合されているが、内輪側 もよい。

以上説明の通り本実施例のターピンノズルによ れば、両接合端部におけるノズル翼1aの後縁線 αι,αιを直線状に形成し、かつ上配後縁線αι,αι 斜しているため、環状流路4の周壁面近傍に流入 した作動流体は、傾斜した腹面下に沿つて案内さ れ周壁面方向に押圧される。そのため両周壁面に おける境界層の発達が効果的に抑止され、さらに する二次渦9a,9bの成長が抑止されるため、 作動流体のターピンノズルにおける損失が低下す る。

特に、ノズル翼1 αの傾斜部の傾斜角度θε, θε が2.5~25度の範囲に設定され、また傾斜部の高 40 来のターピンノズルを示す平断面図である。 さl, lが製1aの全高hに対して0.05~0.35hの 範囲に設定された場合にターピン段落効率の改善 度が顕著となる。

また各ノズル翼1aの中間部における後縁線αs

を腹面方向に滑らかに彎曲形成しているため、作 動流体の流線は大きな攪乱作用を受けない。その ため、作動流体が動翼5内に流入した場合におい ても、損失が少ない。すなわちターピン段落全体 における損失が低減されるため、ターピン効率を 大幅に改善することができる。

〔発明の効果〕

以上説明の通り、本発明に係るターピンノズル によれば各ノズル翼の両接合端部がノズル翼の腹 の高さ1、1に従来技術よりも段落効率が優位に 10 面方向に傾斜して構成されているため、周壁面近 傍に流入した作動流体は、それぞれダイヤフラム 内外輪側の周壁面方向に押圧される。そのため周 壁面における境界層の発達が阻止され、二次流れ および二次渦の発生が効果的に抑止される。

またノズル翼の中間部における後縁線が腹面方 向に彎曲するように形成されているため、作動流 体の流線は攪乱されることが少なく、動翼間流路 における作動流体の損失も少ない。すなわちター ピン段階全体における損失を大幅に低減すること 範囲にあれば作動流体の流量分布特性等を勘案し 20 ができるため、ターピン効率を大幅に向上させる ことができる。

図面の簡単な説明

第1図は本発明に係るターピンノズルの一実施 例を示す傾斜図、第2図は本発明に係るターピン と外輪側とで異なる基準線との交点を起点として 25 ノズルのノズル出口側より観察したノズル翼の形 状を示す図、第3図は本実施例のターピンノズル の全圧損失分布を従来例と比較して示すグラフ、 第4図は本実施例のターピンノズルにおける作動 流体の流線を従来例と比較して示す断面図、第5 が基準線に対してノズル翼 1 a の腹面 F 方向に傾 30 図はノズル翼の傾斜角度とターピン段落効率比と の関係を示すグラフ、第6図はノズル翼の傾斜部 の高さとターピン段落効率比との関係を示すグラ フ、第7図は従来のターピンノズルの構造を示す 斜視図、第8図aは境界層制御棒を配設した従来 二次流れによって各ノズル翼1aの背面側に発生 35 のターピンノズルを示す断面図、第8図bは第8 図aに示すターピンノズルにおける作動流体の速 度分布を示す断面図、第9図はノズル翼接合部に 連通孔を設けた従来のターピンノズルを示す平断 面図、第10図はノズル翼間に邪魔板を設けた従

> 1, 1 a ……ノズル翼、2 ……ダイヤフラム外 輪、3……ダイヤフラム内輪、4……環状流路、 5……動翼、6……ロータデイスク、7……シュ ラウド、8……二次流れ、9, 9a, 9b……二

次編、10……境界層制御棒、11……吸込孔、 12……吹出孔、13……連通孔、14……邪魔 板、B……背面、F……腹面、G……作動流体の 速度分布、E……ターピンの回転中心を通る基準 線、K……流線、a1, a2, a3……後縁線、h…… ノズル翼全高、θ1, β1……傾斜角度、l1, l1……傾 斜部高さ、η, η0, η1……ターピン段落効率。

12

第2図

第4図

第6図

第7図

第8図

第9図

第10図

