Formale Systeme, Automaten, Prozesse Übungsblatt 2 Tutorium 11

Tim Luther, 410886 Til Mohr, 405959 Simon Michau, 406133

Aufgabe H4

Aufgabe H5 Seien Q_A die Zustände von A, $F_A \subseteq Q_A$ die Endzustände von A, $q_{0A} \in Q_A$ der Startzustand von A, δ_A und δ_A die Übergangsfunktionen von A. Sei Σ das Alphabet der Sprache L und somit auch von aL.

$$aL = L(M)$$

$$= \{aw \mid w \in L, \hat{\delta}_{A}(q_{0A}, aw) \in F_{A}\}$$

$$= \{a\}\{w \in L \mid \hat{\delta}_{A}(\delta_{A}(q_{0A}, a), w) \in F_{A}\}$$
(1)

Definiere nun:

$$Q_{B} := Q_{A} \setminus \{q_{0A}\} \qquad F_{B} := F_{A}$$

$$q_{0B} := \delta_{A}(q_{0A}, a)$$

$$\delta_{B}(q, w) := \delta_{A}(q, w) \qquad \hat{\delta}_{B}(q, w) := \hat{\delta}_{A}(q, w)$$

Daraus kann man einen Automaten B definieren, der mithilfe von (1) die Sprache L darstellt:

$$\Rightarrow B = (Q_B, \Sigma, q_{0B}, \delta_B, F_B)$$

$$\Rightarrow L(B) = \{ w \in L \mid \hat{\delta}_B(q_{0B}, w) \in F_B \}$$

$$= \{ w \in L \mid \hat{\delta}_A(\delta_A(q_{0A}, a), w) \in F_A \}$$

$$= L$$

Damit ist B also auch ein DFA.

Aufgabe H6

