Nome:	R.A.:
-------	-------

Prova (P2)

EE530 Eletrônica Básica, Turma A 10 de novembro de 2004

Atenção: Ao receber esta prova, coloque primeiramente seu nome e R.A.. Deixe um documento de identidade sobre a mesa.

Boa prova!

1) Calcule o potencial interno de uma junção em que as regiões p e n são igualmente dopadas com 10^{16} átomos/cm³. Assuma que n_i = 10^{10} /cm³. Sem nenhuma tensão externa aplicada, qual a largura da camada de depleção, e quanto ela se estende para as regiões n e p? Se a área transversal da junção é $100~\mu m^2$, ache a magnitude da carga armazenada em cada lado da junção, calcule a capacitância de depleção resultante. (2.5 pontos)

$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$	$q_J = qx_p N_A A = qx_n N_D A$	$V_T = \frac{kT}{q}$
$W_{\text{dep}} = x_n + x_p = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_0}$	$C_d = \left(\frac{\tau_T}{V_T}\right) I$	$C_j = \frac{\varepsilon_{\rm c} A}{W_{\rm dep}}$

Sendo que:

 ε_s é a permissividade elétrica do silício = 11,7 × ε_0

$$\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$$

 $V_T = \frac{kT}{q}$; em temperatura ambiente $V_T = 25 \text{ mV}$

$$q = 1.6 \times 10^{-19} \text{ C}$$

 $k = 1.3807 \times 10^{-23} \text{ J/K}$

2) Na análise dos circuitos abaixo assuma: diodos ideais, C1=C2=C3=C4=100 μ F e que $V_i = V \sin(\omega t)$.

Com relação a Figura 1.

- A) Desenhe no próprio gráfico de V_i as formas de onda da tensão em v+ e v-. (0.5 ponto)
- B) Calcule a expressão literal para a corrente no resistor RL e indique seu sentido. (0.75 ponto)

Com relação a Figura 2.

- C) Qual a função deste circuito? (0.5 ponto)
- D) Calcule a expressão literal para a corrente no resistor RL e indique seu sentido. (0.75 ponto)

Figura 1 Figura 2

- 3) No circuito mostrado na Figura 3, ambos os diodos têm n = 1, mas o diodo D₁ tem uma área de junção dez vezes maior que D₂.
- A) Qual o valor de *V*? (1,5 ponto)
- B) Qual a variação desta tensão (V) com a temperatura? (0,5 ponto)
- C) Para obter um valor de V de 50 mV, que corrente I2 é necessária? (0,5 ponto)

OBS: Sabe-se que a tensão de um diodo polarizado diretamente decresce aproximadamente $2\text{mV}/^{\circ}\text{C}$ e a I_{S} dobra a cada 5°C de aumento na temperatura.

$$I_D = I_S(\exp^{V_D/nV_T} - 1)$$

Figura 3

4) A figura abaixo mostra a estrutura simplificada de um transistor pnp. Suponha que este
transistor está operando no modo ativo (JBC diretamente e JBC reversamente polarizadas).
Sabe-se que os níveis de dopagem são: Emissor $N_{AE}=10^{20}$ cm ⁻³ , Base $N_{DB}=10^{16}$ cm ⁻³ e
Coletor $N_{AC}=10^{15} \text{ cm}^{-3}$.

Nesta figura desenhe de forma qualitativa:

- A) As camadas de depleção com os respectivos campos elétricos resultantes. (1 ponto)
- B) O fluxo das lacunas e dos elétrons relativos aos processos de difusão e deriva. (1 ponto)
- C) Indique também os pontos de recombinação. (0,5 ponto)

Emissor p	Base n	Coletor p