Aula 23: Árvores Balanceadas

- Conceito de balanceamento
- Introdução às árvores AVL
- Balanceamento de árvores AVL

Conceito de Balanceamento

Aspecto Fundamental no estudo de árvores de busca: o custo de acesso a uma chave depende do valor da altura da árvore.

Conceito de Balanceamento

- Idéia: manter o custo de acesso (e portanto a altura) na mesma ordem de grandeza de uma árvore ótima, isto é, $O(\log n)$.
- \triangle Árvore Balanceada: o custo das operações de <u>busca</u>, inserção, remoção e arrumação da estrutura da árvore mantém-se em $O(\log n)$.

Uma Tentativa para Manter Balanceamento: Uso de Árvores Completas

Embora uma árvore completa possua altura $O(\log n)$, uma operação de inserção com a conseqüente arrumação da estrutura pode consumir tempo $\Omega(n)$ no pior caso. Veja o exemplo:

ANTES: Inserção do nó "0"

Uma Tentativa para Manter Balanceamento: Uso de Árvores Completas

<u>DEPOIS</u>: Arrumação da Estrutura

<u>Definição</u> (nó regulado)

Um nó v de uma árvore binária T é dito <u>regulado</u> se as alturas de suas subárvores esquerda e direita diferem de até uma unidade.

 v_1 está regulado

 v_2 está desregulado cederi

Definição (Árvores AVL)

Uma árvore binária *T* é uma <u>árvore AVL</u> quando <u>todos</u> os seus nós estão regulados.

 $T_1 \in AVL$

T₂ não é AVL

(possui nó v que está desregulado)

A resposta é SIM.

Inicialmente, temos que mostrar que uma árvore AVI de altura h com n nós satisfaz

$$h = O(\log n)$$

Idéia: fixada a altura h, considerar as árvores AVL com o menor número possível de nós e concluir que, mesmo neste caso, h continua satisfazendo $h = O(\log n)$.

$$h = 3$$

$$n = 7$$

$$h = \log (n + 1)$$

$$h = O(\log n)$$

$$h = 3$$

$$n = 3$$

$$h = n$$

$$h = O(n)$$

Isto não ocorrerá para árvores AVL!

<u>Teorema</u>: seja \underline{T} uma árvore AVL de altura \underline{h} com número mínimo de nós \underline{n} . Então $h = O(\log n)$.

<u>Demonstração</u>

Para cada valor de h, vamos desenhar as árvores AVL com número mínimo de nós.

h = 1	
h = 2	ou
h = 3	ou ou ou
h = 4	(T_3) ou (T_2) (T_3) (16 árvores no total)
	cederi

Continuação da Demonstração do Teorema

De modo geral, se T_h é uma árvore com altura \underline{h} e número mínimo de nós \underline{n} , então a estrutura de T_h é

Continuação da Demonstração do Teorema

E o número de nós n de T_h é dado pela tabela:

h	$n = T_h $
1	1
2	2
3	4
4	7
5	12
•	•
$\stackrel{\cdot}{h}$	$\left T_{h\text{-}1}\right + \left T_{h\text{-}2}\right + 1$

Continuação da Demonstração do Teorema

A tabela na tela anterior nos fornece uma recorrência:

$$egin{aligned} ig|T_1 &= 1 \ ig|T_2 &= 2 \ ig|T_h &= ig|T_{h-1} &+ ig|T_{h-2} &+ 1, \ h \geq 3 \end{aligned}$$

Continuação da Demonstração do Teorema

Vamos comparar os valores da tabela com os valores fornecidos pela sequência de Fibonacci.

h	$oxed{T_h}$	$oldsymbol{F}_h$	_	
1	1 —	1		
2	2	_ 2		
3	$4 \longrightarrow$	— 3	Conclusão:	
4	7	5		
5	12 —	8	$ig T_hig \geq F_h$	
6	20 —	— 13		
7	33 —	21		
8	$\overline{)}$	— 34	ceder	i

Continuação da Demonstração do Teorema

Mas sabe-se que

$$F_h = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^h - \left(\frac{1-\sqrt{5}}{2} \right)^h \right]$$

$$\left|T_h\right| > \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^h - \left(\frac{1-\sqrt{5}}{2}\right)^h \right]$$

Como h > 0, temos

$$\frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^h < 1$$

$$|T_h| > \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^h - 1$$

Continuação da Demonstração do Teorema

Fazendo $a = \frac{1+\sqrt{5}}{2}$, temos

$$|T_h| > \frac{1}{\sqrt{5}} * a^h - 1$$

$$\frac{|T_h|+1}{\frac{1}{\sqrt{5}}} > a^h$$

$$a^h < \frac{|T_h| + 1}{\frac{1}{\sqrt{5}}} < \sqrt{5}(|T_h| + 1)$$

$$h < log_a[\sqrt{5}(|T_h| + 1)]$$

Continuação da Demonstração do Teorema

Passando para logaritmo na base 2:

$$h < \frac{\log[\sqrt{5}(|T_h| + 1)]}{\log a}$$

$$h < \frac{\log[\sqrt{5} * 2 * |T_h|]}{\log a}$$

Continuação da Demonstração do Teorema

Usando propriedades de logaritmos:

$$h < \frac{1}{loga} * log|T_h| + \frac{log2\sqrt{5}}{loga}$$

Mas
$$|T_h| = n$$

Fazendo
$$\frac{1}{loga} = a_1$$
 e $\frac{log 2\sqrt{5}}{loga} = a_2$:

$$h < a_1 log n + a_2$$

Finalmente, portanto:

$$h = O(log n)$$

Exercício

Determine a quantidade total Q_h de árvores AVL de altura h com número mínimo de nós n.

h	Q_h
1	1
$egin{array}{c} 1 \ 2 \end{array}$	$egin{array}{cccc} 1 & 2 & \end{array}$
3 4 5	$oxed{4}$
4	16
5	128
•	•
$\overset{\boldsymbol{\cdot}}{h}$ —	$Q_h = ?$
10	\mathbf{q}_h

Você seria capaz de obter uma fórmula para Q_h ?