- 1. Пусть ABC прямоугольный треугольник с прямым углом C, H основание высоты, опущенной на гипотенузу, I_B и I_A центры окружностей, вписанных в треугольники HBC и HAC соответственно.
 - 1. Докажите, что $\angle I_A H I_B = 90^{\circ}$
 - 2. Докажите, что $\angle I_ACI_B=45^\circ$
- **2.** Пусть r_B , r_A , r радиусы окружностей, вписанных в $\triangle HBC$, $\triangle HAC$, ABC соответственно.
 - 1. Докажите, что $\triangle ABC$, $\triangle CBH$, $\triangle ACH$ подобны. Чему равны коэффициенты подобия?
 - 2. Докажите теорему Пифагора, используя результат предыдущей задачи.
 - 3. Докажите, что $r^2 = r_A^2 + r_B^2$.
- **3.** Пусть I центр вписанной в $\triangle ABC$ окружности, AB = c, BC = a, AC = b.
 - 1. Докажите, что $AI = \sqrt{2}r$.
 - 2. Докажите, что $r = \frac{a+b-c}{2}$
 - обратите внимание на точки касания, запишите равенство отрезков касательных, проведите радиусы к точке касания, найдите квадратик.
 - 3. Докажите, что $AI^2 = HI_A^2 + HI_B^2$.
- вспомните результат задачи 2.3.
 - 4. Докажите, что $AI = I_A I_B$.
- используйте предыдущую задачу и задачу 1.1.
- **4.** 1. Докажите, что $\triangle I_A I_B H$ подобен $\triangle ABC$.
- вспомните задачу 1.1 и задачи 3 и 4.
 - 2. Найдите коэффициент подобия треугольников из предыдущей задачи.
 - 3. Если есть два подобных треугольника на плоскости, то иногда один из них можно «повернуть» так, чтобы соответственные стороны стали параллельны. На сколько градусов «повернут» $\triangle I_A I_B H$ относительно $\triangle ABC$, если $\angle ABC = \alpha$?
 - 4. Докажите, что угол между прямыми I_AI_B и BC составляет 45°.

Результат последней задачи можно сформулировать очень красиво:

Прямая I_AI_B отсекает от треугольника ABC равнобедренный прямоугольный треугольник.

- **5.** (a) Докажите, что $\angle I_A II_B = 135^{\circ}$.
 - (b) Докажите, что $CI_A \perp BI_B$.
 - (c) Докажите, что $AI \perp I_AI_B$

Аналогично прошлой задаче докажите, что $CI_B \perp AI_A$, а потом воспользуйтесь тем, что высоты пересекаются в одной точке.

- **6.** Пусть I_AI_B пересекается с AC в точке A', а с BC в точке B'. В предыдущем пункте мы доказали, что $\triangle A'B'C$ прямоугольный равнобедренный.
 - (a) Докажите, что B'C = A'C = HC.

I

- Рассмотрите треугольники I_BHC и $I_BB'C$ —они равны!.
- (b) Докажите, что площадь треугольника A'B'C не превосходит половины площади треугольника ABC.

Используйте результат предыдущей задачи и выразите площади треугольников через катеты AC и BC.