

Slides adapted from Mohri

Classification

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Motivation

- On-line learning:
 - update parameters with each example
 - no distributional assumption.
 - worst-case analysis (adversarial).
 - mixed training and test.
 - Performance measure: mistake model, regret.

General Online Setting

- For t=1 to T:
 - □ Get instance $x_t \in X$
 - □ Predict $\hat{v}_t \in Y$
 - Get true label $y_t \in Y$
 - Incur loss $L(\hat{y}_t, y_t)$
- Classification: $Y = \{0, 1\}, L(y, y') = |y' y|$
- Regression: $Y \subset \mathbb{R}$, $L(y, y') = (y' y)^2$

General Online Setting

- For t=1 to T:
 - □ Get instance $x_t \in X$
 - □ Predict $\hat{v}_t \in Y$
 - Get true label $y_t \in Y$
 - □ Incur loss $L(\hat{y}_t, y_t)$
- Classification: $Y = \{0, 1\}, L(y, y') = |y' y|$
- Regression: $Y \subset \mathbb{R}, L(y, y') = (y' y)^2$
- Objective: Minimize total loss $\sum_{t} L(\hat{y}_t, y_t)$

Perceptron Algorithm

- Online algorithm for classification
- Very similar to logistic regression (but 0/1 loss)
- But what can we prove?

Perceptron Algorithm

```
\vec{w}_1 \leftarrow \vec{0}:
for t \leftarrow 1 \dots T do
       Receive x_t;
      \hat{v}_t \leftarrow \operatorname{sgn}(\vec{w}_t \cdot \vec{x}_t);
      Receive y_t;
      if \hat{y}_t \neq y_t then
             \vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t;
      else
             \vec{w}_{t+1} \leftarrow w_t;
return \underline{w_{T+1}}
                  Algorithm 1: Perceptron Algorithm (Rosenblatt, 1958)
```

Objective Function

Optimizes

$$\frac{1}{T} \sum_{t} \max(0, -y_t(\vec{w} \cdot x_t)) \tag{1}$$

Convex but not differentiable

Margin and Errors

 If there's a good margin ρ, you'll converge quickly

Margin and Errors

- If there's a good margin ρ , you'll converge quickly
- Whenever you se an error, you move the classifier to get it right
- Convergence only possible if data are separable

How many errors does Perceptron make?

If your data are in a R ball and there is a margin

$$\rho \le \frac{y_t(\vec{v} \cdot \vec{x}_t)}{||v||} \tag{2}$$

for some \vec{v} , then the number of mistakes is bounded by R^2/ρ^2

- The places where you make an error are support vectors
- Convergence can be slow for small margins

Why study Perceptron?

- Simple algorithm
- Bound independent of dimension and tight
- Foundation of deep learning
- Proof techniques helped usher in SVMs
- Generalizes to structured prediction