전공: 컴퓨터공학 학년: 2 학번: 20171645 이름 박찬우

1. 목적

드모르간의 정리와 논리회로의 간소화 등의 이론에 대해 이해한다.

2. 요구 사항

드모르간의 정리에 대해 조사한다.

드모르간의 정리는 두개의 정리로 구성되어있다.

드모르간의 제1정리 : 변수들의 곱의 보수는 각각의 변수에 보수를 취해 합친것과 같다. 이를 수식으로 나타내면 다음과 같다.

not(A and B)=(not A) or (not B)

그리고 이걸 전자회로로 나타내면 다음과 같다.

A NAND gate is equivalent to an inversion followed by an OR

즉, 드모르간의 제1법칙은 NAND gate = Negative OR gate를 의미한다.

드모르간의 제2정리 : 변수들의 합의 보수는 각각의 변수에 보수를 취해 곱한것과 같다. 이를 수식으로 나타내면 다음과 같다.

not(A or B)=(not A) and (not B)

그리고 이걸 전자회로로 나타내면 다음과 같다.

A NOR gate is equivalent to an inversion followed by an AND

즉, 드모르간의 제2법칙은 NOR gate = Negative AND gate를 의미한다.

논리회로의 간소화에 대해 조사한다.

```
논리회로를 간소화하기 위하여 불대수 논리식을 이용한다.
불대수의 기본공식은 다음과 같다.
1. A + A = A
2. AA = A
3. A + A' = 1
4. AA' = 0
5.1 + A = 1
6. 1A = A
7. OA = 0
8. (A')' = A
위 내용을 일반 법칙이라 하고. 이 외에도 교환법칙, 분배법칙, 결합법칙, 드모르간의
법칙이 성립하는데 각각은 다음과 같다.
교환법칙 : A+B = B+A
결합법칙 : A+A'B = (A+A')(A+B) = A+B
드모르간의 법칙은 위의 설명 참고
불대수로 논리회로를 간소화하는 예시는 다음과 같다.
F = xy'z + x'y'z + xyz
= \chi Z(y + y') + \chi'y'Z
= z(x + x'y')
= z(x + y')
```

카르노 맵에 대해 조사한다.

Quine-McCluskey 최소화 알고리즘에 대해 조사한다.

앞서 언급한 카르노맵은 변수가 5개가 넘어가면 적용하기 매우 어려워지므로, 이때는 Quine-McCluskey 알고리즘을 이용해야 한다. 이는 다음 두 과정을 거친다.

- 1. XY + XY' = X 형태의 식을 기본으로 하여, 가능한 많은 변수를 줄이도록 한다.
- 2. 나온 결과 표를 이용해서 최소한의 결과만으로 이루어진 minimum set을 구한다.

예를들어, 다음과 같은 경우를 생각한다.

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

minterm을 2진수로 표현했을 때의 1의 개수로 그룹을 나누면 다음과 같다.

group 0	0	0000
group 1	(1)	0001
	{ 2	0010
	8	1000
	5	0101
group 2	6	0110
group 2	9	1001
	10	1010
group 3	[7	0111
group 5	14	1110

인접한 그룹끼리 차례로 묶어 column 1을 완성하고, column 2부터는 다음 규칙을 따른다.

- 1. 차례대로 인접한 그룹 두개를 선택해 각 그룹의 원소 중 하나씩 고른다. 2. 중복 숫자 또는 가 3개면 겹치지 않는 숫자를 -으로 바꾸고, 겹치는 숫자는 그대로 표시해 새로운 column에 쓴다.
- 3. 가능한 모든 쌍을 찾아 반복한다. 이 쌍들을 하나의 group으로 한다. 이때, 마찬가지로 체크 표시를 한다.
- 4. 그룹 숫자가 가능한 적어질 때 까지 새로 생성된 group을 바탕으로 반복해준다.

이러한 과정을 통해, 아래와 같은 결과를 얻을 수 있다.

Column I			Column II		Column III	
group 0	0	0000 🗸	0, 1	000- ✓	0, 1, 8, 9	-00-
	(1	0001 🗸	0, 2	00-0 🗸	0, 2, 8, 10	-0-0
group 1	2	0010 🗸	0, 8	-000 ✓	0, 8, 1, 9	-00-
	8	1000 🗸	1, 5	0-01	0, 8, 2,10	-0-0
	5	0101 🗸	1, 9	-001 ✓	2, 6, 10, 14	10
group 2 {	6	0110 🗸	2, 6	0-10 🗸	2, 10, 6, 14	10
	9	1001 🗸	2, 10	-010 ✓		
	10	1010 🗸	8, 9	100- ✓		
aroun 3 d	7	0111 🗸	8, 10	10-0 🗸		
group 3 { 14	1110 🗸	5, 7	01–1			
	141		6, 7	011-		
			6, 14	-110 ✓		
			10, 14	1-10 🗸		