SBML Model Report

Model name: "Gupta2009 - Eicosanoid Metabolism"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following six authors: Byrnes Robert¹, Shakti Gupta², Mano Ram Maurya³, Daren L. Stephens⁴, Edward A. Dennis⁵ and Shankar Subramaniam⁶ at January 22nd 2010 at 10:59 p. m. and last time modified at December eleventh 2012 at 7:15 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	13
events	7	constraints	0
reactions	22	function definitions	1
global parameters	77	unit definitions	7
rules	4	initial assignments	0

 $^{^1} San\ Diego\ Supercomputer\ Center\ and\ Department\ of\ Bioengineering,\ UCSD,\ {\tt rbyrnes@sdsc.edu}$

²University of California, San Diego, shakti@sdsc.edu

 $^{^3}$ University of California, San Diego, mano@sdsc.edu

⁴University of California, San Diego, dstephens@ucsd.edu

⁵University of California, San Diego, edennis@ucsd.edu

⁶University of California, San Diego, shankar@sdsc.edu

Model Notes

Gupta2009 - Eicosanoid Metabolism

Integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis.

This model is described in the article: An integrated model of eicosanoid metabolism and signaling based on lipidomics flux analysis. Gupta S, Maurya MR, Stephens DL, Dennis EA, Subramaniam S.Biophys. J. 2009 Jun; 96(11):4542-51.

Abstract:

There is increasing evidence for a major and critical involvement of lipids in signal transduction and cellular trafficking, and this has motivated large-scale studies on lipid pathways. The Lipid Metabolites and Pathways Strategy consortium is actively investigating lipid metabolism in mammalian cells and has made available time-course data on various lipids in response to treatment with KDO(2)-lipid A (a lipopolysaccharide analog) of macrophage RAW 264.7 cells. The lipids known as eicosanoids play an important role in inflammation. We have reconstructed an integrated network of eicosanoid metabolism and signaling based on the KEGG pathway database and the literature and have developed a kinetic model. A matrix-based approach was used to estimate the rate constants from experimental data and these were further refined using generalized constrained nonlinear optimization. The resulting model fits the experimental data well for all species, and simulated enzyme activities were similar to their literature values. The quantitative model for eicosanoid metabolism that we have developed can be used to design experimental studies utilizing genetic and pharmacological perturbations to probe fluxes in lipid pathways.

This model is hosted on BioModels Database and identified by: BIOMD0000000436.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of eleven unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

 $\textbf{Definition} \ \ 3600 \ s$

2.2 Unit perh

Definition $(2.778 \cdot 10^{-4} \text{ s})^{-1}$

2.3 Unit pmolperugDNA

Definition $pmol \cdot \mu g^{-1}$

2.4 Unit ug

Definition µg

2.5 Unit pmol

Definition pmol

2.6 Unit pmolperh

Definition pmol $\cdot (2.778 \cdot 10^{-4} \text{ s})^{-1}$

2.7 Unit ugDNAperh

Definition $\mu g \cdot (3600 \text{ s})^{-1}$

2.8 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.9 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.10 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.11 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
c1			3	1		Z	

3.1 Compartment c1

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 13 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
FA		c1	pmol		\overline{Z}
HETE		c1	pmol	\Box	
PGH2		c1	pmol		
PGE2		c1	pmol		
PGF2a		c1	pmol		
PGD2		c1	mol		
PGJ2		c1	pmol		
dPGJ2		c1	pmol		
AA	Arachidonic acid	c1	pmol		
LPS		c1	dimensionless $\cdot 1^{-1}$		
DG		c1	dimensionless $\cdot 1^{-1}$		
GPCho		c1	pmol		
dPGD2		c1	pmol		

5 Parameters

This model contains 77 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1		0000009	355.637	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k2		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k3		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k4		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k5		0000009	10^{-15}	$\mu g \cdot (3600 \text{ s})^{-1'}$	
k6		0000009	0.330	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k7		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\overline{Z}
k8		0000009	0.007	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\overline{Z}
k9		0000009	0.187	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
k10		0000009	0.024	$\mu g \cdot (3600 \text{ s})^{-1}$	
k11		0000009	0.111	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\mathbf{Z}
k12		0000009	0.098	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\mathbf{Z}
k13		0000009	0.204	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\mathbf{Z}
k14		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	$ \mathbf{Z} $
k15		0000009	0.061	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	Z
k16		0000009	10^{-15}	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	$ \mathbf{Z} $
k17		0000009	3.116	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	☑
k18		0000009	0.054	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	v ✓
k19		0000009	0.029	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	v ✓
k20		0000009	0.014	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	≥
k21		0000009	0.034	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	≥
k22		0000009	0.034	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DNA		0000003	1.000	μg	1
DGperDNA		0000002	1.000	$pmol \cdot \mu g^{-1}$	
onepmol			1.000	pmol	\overline{Z}
t0			0.000	3600 s	$\overline{\mathbf{Z}}$
t1			0.500	3600 s	
t2			1.000	3600 s	\square
t3			2.000	3600 s	Ø
t4			4.000	3600 s	
t5			8.000	3600 s	$ \mathbf{Z} $
t6			12.000	3600 s 3600 s	\mathbf{Z}
timevalue			0.000	2000 S	

Id	Name	SBO	Value	Unit	Constant
zero			0.000	dimensionless	
LPSactivi	ty		0.000	dimensionless	
LPSslope			0.000	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
LPSint			0.000	dimensionless	
LPSslopez	ero		2.000	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
LPSslope1			-0.667	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	$\overline{\mathbf{Z}}$
LPSslope3			0.000	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	$\overline{\mathbf{Z}}$
LPSintzer	0		0.000	dimensionless	$\overline{\mathbf{Z}}$
LPSint1			1.334	dimensionless	$\overline{\mathbf{Z}}$
LPSint3			0.000	dimensionless	$\overline{\mathbf{Z}}$
DGactivit	у		1.000	dimensionless	
DGint			1.000	dimensionless	
DGslope			1.000	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	\Box
DGslopeze	ro		0.301	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope1			-0.157	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope2			0.044	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope3			-0.091	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope4			0.098	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope5			0.071	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGslope6			0.085	$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
DGintzero			1.000	dimensionless	
DGint1			1.229	dimensionless	
DGint2			1.028	dimensionless	
DGint3			1.299	dimensionless	
DGint4			0.543	dimensionless	
DGint5			0.755	dimensionless	\checkmark
DGint6			0.593	dimensionless	
GPChorati	0		1.000	dimensionless	
GPChoint			315.314	pmol	
GPChoslop	е		-158.430	pmol ·	\Box
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
GPChoslop	ezero		-158.430	pmol ·	
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
GPChoslop	e1		112.280	pmol ·	
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	_
GPChoslop	e2		24.310	pmol ·	
_				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	_
GPChoslop	e3		-39.930	pmol ·	
-				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	

Id	Name	SBO	Value	Unit	Constant
GPChoslope4			5.480	pmol ·	\overline{Z}
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
${ t GPChoslope5}$			27.080	pmol	
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
GPChoslope6			-4.874	pmol	
				$(2.778 \cdot 10^{-4} \text{ s})^{-1}$	
${\tt GPChointzero}$			315.314	pmol	
GPChoint1			179.960	pmol	
GPChoint2			267.930	pmol	
GPChoint3			396.410	pmol	
GPChoint4			214.770	pmol	
GPChoint5			41.930	pmol	
GPChoint6			425.430	pmol	

6 Function definition

This is an overview of one function definition.

6.1 Function definition activitycalc

Arguments x, slopea, yintercepta

Mathematical Expression

yintercepta
$$+ x \cdot slopea$$
 (1)

7 Rules

This is an overview of four rules.

7.1 Rule timevalue

Rule timevalue is an assignment rule for parameter timevalue:

$$timevalue = t + t0 (2)$$

Derived unit 3600 s

7.2 Rule LPSactivity

Rule LPSactivity is an assignment rule for parameter LPSactivity:

$$LPSactivity = activity calc (timevalue, LPSslope, LPSint)$$
 (3)

Derived unit dimensionless

7.3 Rule DGactivity

Rule DGactivity is an assignment rule for parameter DGactivity:

Derived unit dimensionless

7.4 Rule GPChoratio

Rule GPChoratio is an assignment rule for parameter GPChoratio:

$$GPChoratio = \frac{activitycalc (timevalue, GPChoslope, GPChoint)}{GPChointzero}$$
 (5)

Derived unit dimensionless

8 Events

This is an overview of seven events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

8.1 Event event_0

Trigger condition

timevalue
$$> t0$$
 (6)

Assignments

LPSint = LPSintzero	(7)
LPSslope = LPSslopezero	(8)
DGint = DGintzero	(9)
DGslope = DGslopezero	(10)
GPChoint = GPChointzero	(11)
GPChoslope = GPChoslopezero	(12)

8.2 Event event_1

Trigger condition

timevalue
$$\geq t1$$
 (13)

Assignments		
	LPSint =LPSint1	(14)
	LPSslope = LPSslope1	(15)
	DGint = DGint1	(16)
	DGslope = DGslope1	(17)
	GPChoint = GPChoint1	(18)
	GPChoslope = GPChoslope 1	(19)
8.3 Event event_2		
Trigger condition	timevalue \geq t2	(20)
Assignments		
	DGint = DGint2	(21)
	DGslope = DGslope2	(22)
	GPChoint = GPChoint2	(23)
	GPChoslope = GPChoslope2	(24)
8.4 Event event_3		
Trigger condition	timevalue \geq t3	(25)
Assignments	umevalue ≥ t3	(23)
	LPSint =LPSint3	(26)
	LPSslope = LPSslope3	(27)
	DGint =DGint3	(28)
	DGslope = DGslope3	(29)
	GPChoint =GPChoint3	(30)
	GPChoslope = GPChoslope3	(31)
8.5 Event event_4		
Trigger condition	timevalue \geq t4	(32)
Assignments		
	DGint =DGint4	(33)
	DGslope = DGslope4	(34)
	GPChoint = GPChoint4	(35)
	GPChoslope = GPChoslope4	(36)

8.6 Event event_5

Trigger condition	timevalue \geq t5	(37)
	timevalue ≥ 13	(37)
Assignments		
	DGint = DGint5	(38)
	DGslope = DGslope5	(39)
	GPChoint = GPChoint5	(40)
	GPChoslope = GPChoslope 5	(41)
8.7 Event event_6		
Trigger condition	timevalue \geq t6	(42)
Assignments		
	DGint = DGint6	(43)
	DGslope = DGslope6	(44)
	GPChoint = GPChoint6	(45)
	GPChoslope = GPChoslope6	(46)

12

9 Reactions

This model contains 22 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

1 2		Name	Reaction Equation	SBO
2	r2		$FA \longrightarrow AA$	
2	r3		$DG \longrightarrow AA$	
3	r7		$GPCho \longrightarrow AA$	
4	r5		$\operatorname{GPCho} \overset{\operatorname{DG}}{\longrightarrow} \operatorname{AA}$	
5	r11		$AA \xrightarrow{LPS} PGH2$	
6	r10		$AA \xrightarrow{DG} PGH2$	
7	r8		$AA \longrightarrow HETE$	
8	r4		$AA \longrightarrow \emptyset$	
9	r9		$HETE \longrightarrow \emptyset$	
10	r13		$PGH2 \longrightarrow PGE2$	
11	r14		$PGE2 \longrightarrow \emptyset$	
12	r15		$PGH2 \longrightarrow PGF2a$	
13	r16		$PGF2a \longrightarrow \emptyset$	
14	r17		$PGH2 \longrightarrow PGD2$	
15	r18		$PGD2 \longrightarrow PGJ2$	
16	r19		$PGD2 \longrightarrow dPGD2$	
17	r20		$\mathrm{dPGD2} \longrightarrow \emptyset$	
18	r21		$PGJ2 \longrightarrow dPGJ2$	
19	r22		$dPGJ2 \longrightarrow \emptyset$	
20	r1		$FA \xrightarrow{LPS} AA$	
21	r6		$\operatorname{GPCho} \overset{\operatorname{LPS}}{\longrightarrow} \operatorname{AA}$	

Nº Id	Name	Reaction Equation	SBO
22 r12		$AA \longrightarrow PGH2$	

9.1 Reaction r2

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$FA \longrightarrow AA$$
 (47)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
FA		

Product

Table 7: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_1 = k2 \cdot FA \tag{48}$$

9.2 Reaction r3

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$DG \longrightarrow AA$$
 (49)

Table 8: Properties of each reactant.

Id	Name	SBO
DG		

Product

Table 9: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_2 = k3 \cdot DGactivity \cdot DGperDNA \cdot DNA$$
 (50)

9.3 Reaction r7

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$GPCho \longrightarrow AA \tag{51}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
GPCho		

Product

Table 11: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

Derived unit $\left(2.778 \cdot 10^{-4} \text{ s}\right)^{-1} \cdot \text{pmol}$

$$v_3 = k7 \cdot GPChoratio \cdot GPCho$$
 (52)

9.4 Reaction r5

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$GPCho \xrightarrow{DG} AA \tag{53}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
GPCho		

Modifier

Table 13: Properties of each modifier.

Id	Name	SBO
DG		

Product

Table 14: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{pmol}$

$$v_4 = \frac{\text{k5} \cdot \text{DGactivity} \cdot \text{GPChoratio} \cdot \text{GPCho}}{\text{DNA}}$$
 (54)

9.5 Reaction r11

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$AA \xrightarrow{LPS} PGH2$$
 (55)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
AA	Arachidonic acid	

Modifier

Table 16: Properties of each modifier.

Id	Name	SBO
LPS		

Product

Table 17: Properties of each product.

Id	Name	SBO
PGH2		

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_5 = k11 \cdot AA \tag{56}$$

9.6 Reaction r10

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$AA \xrightarrow{DG} PGH2$$
 (57)

Table 18: Properties of each reactant.

Id	Name	SBO
AA	Arachidonic acid	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
DG		

Product

Table 20: Properties of each product.

Id	Name	SBO
PGH2		

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{pmol}$

$$v_6 = \frac{\text{k10} \cdot \text{DGactivity} \cdot \text{AA}}{\text{DNA}}$$
 (58)

9.7 Reaction r8

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$AA \longrightarrow HETE$$
 (59)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
AA	Arachidonic acid	

Product

Table 22: Properties of each product.

Id	Name	SBO
HETE		

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_7 = k8 \cdot AA \tag{60}$$

9.8 Reaction r4

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$AA \longrightarrow \emptyset \tag{61}$$

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

 $\textbf{Derived unit} \ \left(2.778 \cdot 10^{-4} \ s\right)^{-1} \cdot pmol$

$$v_8 = \mathbf{k4} \cdot \mathbf{AA} \tag{62}$$

9.9 Reaction r9

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$HETE \longrightarrow \emptyset \tag{63}$$

Table 24: Properties of each reactant.

Id	Name	SBO
HETE		

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_9 = k9 \cdot HETE \tag{64}$$

9.10 Reaction r13

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGH2 \longrightarrow PGE2$$
 (65)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
PGH2		

Product

Table 26: Properties of each product.

Id	Name	SBO
PGE2		

Kinetic Law

 $\textbf{Derived unit} \ \left(2.778 \cdot 10^{-4} \ s\right)^{-1} \cdot pmol$

$$v_{10} = k13 \cdot PGH2 \tag{66}$$

9.11 Reaction r14

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$PGE2 \longrightarrow \emptyset \tag{67}$$

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
PGE2		

Kinetic Law

SBO:0000044 mass action rate law for first order irreversible reactions

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{11} = k14 \cdot PGE2 \tag{68}$$

9.12 Reaction r15

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGH2 \longrightarrow PGF2a$$
 (69)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
PGH2		

Product

Table 29: Properties of each product.

Id	Name	SBO
PGF2a		

 $\textbf{Derived unit} \ \left(2.778 \cdot 10^{-4} \ s\right)^{-1} \cdot pmol$

$$v_{12} = k15 \cdot PGH2 \tag{70}$$

9.13 Reaction r16

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$PGF2a \longrightarrow \emptyset \tag{71}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
PGF2a		

Kinetic Law

Derived unit $\left(2.778 \cdot 10^{-4} \text{ s}\right)^{-1} \cdot \text{pmol}$

$$v_{13} = k16 \cdot PGF2a \tag{72}$$

9.14 Reaction r17

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGH2 \longrightarrow PGD2 \tag{73}$$

Table 31: Properties of each reactant.

Id	Name	SBO
PGH2		

Product

Table 32: Properties of each product.

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{14} = k17 \cdot PGH2 \tag{74}$$

9.15 Reaction r18

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGD2 \longrightarrow PGJ2 \tag{75}$$

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
PGD2		

Product

Table 34: Properties of each product.

Id	Name	SBO
PGJ2		

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{mol}$

$$v_{15} = k18 \cdot PGD2 \tag{76}$$

9.16 Reaction r19

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGD2 \longrightarrow dPGD2 \tag{77}$$

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
PGD2		

Product

Table 36: Properties of each product.

Id	Name	SBO
dPGD2		

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{mol}$

$$v_{16} = k19 \cdot PGD2 \tag{78}$$

9.17 Reaction r20

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$dPGD2 \longrightarrow \emptyset \tag{79}$$

Table 37: Properties of each reactant.

Id	Name	SBO
dPGD2		

 $\textbf{Derived unit} \ \left(2.778 \cdot 10^{-4} \ s\right)^{-1} \cdot pmol$

$$v_{17} = k20 \cdot dPGD2 \tag{80}$$

9.18 Reaction r21

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$PGJ2 \longrightarrow dPGJ2 \tag{81}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
PGJ2		

Product

Table 39: Properties of each product.

Id	Name	SBO
dPGJ2		

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{18} = k21 \cdot PGJ2 \tag{82}$$

9.19 Reaction r22

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$dPGJ2 \longrightarrow \emptyset \tag{83}$$

Table 40: Properties of each reactant.

Id	Name	SBO
dPGJ2		

SBO:000001 rate law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{19} = k22 \cdot dPGJ2 \tag{84}$$

9.20 Reaction r1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$FA \xrightarrow{LPS} AA$$
 (85)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
FA		

Modifier

Table 42: Properties of each modifier.

Id	Name	SBO
LPS		

Product

Table 43: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{20} = k1 \cdot \text{onepmol} \cdot \text{LPSactivity}$$
 (86)

9.21 Reaction r6

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$GPCho \xrightarrow{LPS} AA \tag{87}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
GPCho		

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
LPS		

Product

Table 46: Properties of each product.

Id	Name	SBO
AA	Arachidonic acid	

Kinetic Law

 $\textbf{Derived unit} \ \left(2.778 \cdot 10^{-4} \ s\right)^{-1} \cdot pmol$

$$v_{21} = \text{k6} \cdot \text{GPCho} \cdot \text{GPChoratio} \cdot \text{LPSactivity}$$
 (88)

9.22 Reaction r12

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$AA \longrightarrow PGH2$$
 (89)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
AA Arachidonic acid		

Product

Table 48: Properties of each product.

Id	Name	SBO
PGH2		

Kinetic Law

Derived unit $(2.778 \cdot 10^{-4} \text{ s})^{-1} \cdot \text{pmol}$

$$v_{22} = k12 \cdot AA \cdot LPSactivity$$
 (90)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

10.1 Species FA

Notes Fatty acyls

Initial amount 1 Unknownunit pmol

This species takes part in two reactions (as a reactant in r2, r1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FA} = 0\tag{91}$$

10.2 Species HETE

Initial amount 0 *Unknownunit pmol*

This species takes part in two reactions (as a reactant in r9 and as a product in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HETE} = v_7 - v_9 \tag{92}$$

10.3 Species PGH2

Initial amount 0 Unknownunit pmol

This species takes part in six reactions (as a reactant in r13, r15, r17 and as a product in r11, r10, r12).

$$\frac{\mathrm{d}}{\mathrm{d}t} PGH2 = v_5 + v_6 + v_{22} - v_{10} - v_{12} - v_{14}$$
(93)

10.4 Species PGE2

Initial amount 0 Unknownunit pmol

This species takes part in two reactions (as a reactant in r14 and as a product in r13).

$$\frac{d}{dt}PGE2 = v_{10} - v_{11} \tag{94}$$

10.5 Species PGF2a

Initial amount 0 *Unknownunit pmol*

This species takes part in two reactions (as a reactant in r16 and as a product in r15).

$$\frac{d}{dt}PGF2a = v_{12} - v_{13} \tag{95}$$

10.6 Species PGD2

Initial amount 0 mol

This species takes part in three reactions (as a reactant in r18, r19 and as a product in r17).

$$\frac{d}{dt}PGD2 = v_{14} - v_{15} - v_{16} \tag{96}$$

10.7 Species PGJ2

Initial amount 0 *Unknownunit pmol*

This species takes part in two reactions (as a reactant in r21 and as a product in r18).

$$\frac{d}{dt}PGJ2 = v_{15} - v_{18} \tag{97}$$

10.8 Species dPGJ2

Initial amount 0 Unknownunit pmol

This species takes part in two reactions (as a reactant in r22 and as a product in r21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{dPGJ2} = v_{18} - v_{19} \tag{98}$$

10.9 Species AA

Name Arachidonic acid

Initial amount 25 Unknownunit pmol

This species takes part in eleven reactions (as a reactant in r11, r10, r8, r4, r12 and as a product in r2, r3, r7, r5, r1, r6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{A}\mathbf{A} = v_1 + v_2 + v_3 + v_4 + v_{20} + v_{21} - v_5 - v_6 - v_7 - v_8 - v_{22} \tag{99}$$

10.10 Species LPS

Initial amount 0.5 dimensionless

This species takes part in three reactions (as a modifier in r11, r1, r6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{LPS} = 0\tag{100}$$

10.11 Species DG

Notes Arachidonic acid-containing glycerophospholipids

Initial amount 0 dimensionless

This species takes part in three reactions (as a reactant in r3 and as a modifier in r5, r10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DG} = -v_2 \tag{101}$$

10.12 Species GPCho

Notes Glycerophosphocholines

Initial amount 1 *Unknownunit pmol*

This species takes part in three reactions (as a reactant in r7, r5, r6).

$$\frac{d}{dt}GPCho = -v_3 - v_4 - v_{21}$$
 (102)

10.13 Species dPGD2

Initial amount 0 Unknownunit pmol

This species takes part in two reactions (as a reactant in r20 and as a product in r19).

$$\frac{d}{dt}dPGD2 = v_{16} - v_{17} \tag{103}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000001 rate law: mathematical description that relates quantities of reactants to the reaction velocity

SBO:000002 quantitative systems description parameter: A numerical value that defines certain characteristics of systems or system functions. It may be part of a calculation, but its value is not determined by the form of the equation itself, and may be arbitrarily assigned

SBO:000009 kinetic constant: Numerical parameter that quantifies the velocity of a chemical reaction

SBO:0000044 mass action rate law for first order irreversible reactions: Reaction scheme where the products are created from the reactants and the change of a product quantity is proportional to the product of reactant activities. The reaction scheme does not include any reverse process that creates the reactants from the products. The change of a product quantity is proportional to the quantity of one reactant

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany