Материалы презентации предназначены для размещения только для использования студентами кафедры «Компьютерные системы и технологии» НИЯУ МИФИ дневного отделения, изучающими курс «Программирование (Алгоритмы и структуры данных)».

Публикация (размещение) данных материалов полностью или частично в электронном или печатном виде в любых других открытых или закрытых изданиях (ресурсах), а также использование их для целей, не связанных с учебным процессом в рамках курса «Программирование (Алгоритмы и структуры данных)» кафедры «КСиТ» НИЯУ МИФИ, без письменного разрешения автора запрещена.

С1. Основы языка программирования С

C1.1

Этапы обработки программы

KC&T

C1.2

Структура исходного файла

```
// файл.с
#include <stdio.h>
#include
            "myheaderfile.h"
Прототипы функций
Глобальные данные
/*
  комментарий
*/
Определение функции 1
Определение функции 2
```

Определение функции

```
тип имя_функции (тип параметр_1, ...)
  предложение описания типа 1
  предложение языка 1
  return выражение;
```

Задача 1 (1)

Написать функцию, которая вычисляет $y=x^n$. Здесь x- вещественное n- целое При n>0 $x^n=x\times x\times \ldots \times x$ При n=0 $x^0=1$ При n<0 $x^n=1$ / $(x\times x\times \ldots \times x)$, $x\neq 0$ При n<0 и x=0 $x^n=\infty$

Задача 1 (2)

```
#include <float.h>
double Pow(double x, int n)
    int k = n < 0 ? -n : n;
    double p = 1;
    if (n < 0 \&\& x == 0)
        return DBL MAX;
    for (; k > 0; --k)
        p = p * x;
    if (n < 0)
        p = 1 / p;
    return p;
```

Предложения языка

• Определение данных

- Описание алгоритма
 - простое предложение
 - пустое
 - вычисления
 - управления
 - составное предложение (блок)

```
C1.7
```

Составное предложение

```
предложение_1
предложение_2
....
```

Простое предложение

```
Пустое
 Вычисления - выражение;
• Управления

    ветвление (условное, переключатель)

    цикл (итерационный, параметрический)

  передача управления:
    break;
    continue;
    return выражение;
```

Условное предложение

```
if (expr)
    stmt_1
else
    stmt_2
```


Итерационный цикл

```
while (expr)
stmt
```


do stmt while (expr); stmt expr истина ложь

Параметрический цикл

```
for (expr1 ; expr2 ; expr3)
  stmt
f = 1;
for (i=2; i<=n;++i)
   f=f*i;
 for(;;)
   stmt
```


Определение данных

```
Категории данных
  переменные
  константы
Свойства данных
  ТИП
  значение
Типы данных
 числа
  коды
 адреса
```

C1.13

Предложение описания типа

KC&T

```
тип имя_объекта = инициализация, ...;
```

Пример:

int a = 5, b;

Числовые данные

```
Типы:
```

целые

вещественные

Вещественные типы данных:

float – 4 байта

double - 8 байтов

Вещественные константы:

1.25 1.2e-3 1.25E-3 – double

1.25f - float

Целые данные

unsigned

```
Целые типы данных int модификаторы long short
```

Целочисленные константы:

числа без знака

```
25 25l 25u 25ul
```

031 029

0x19 0x25fe 0X25FE

Символьные данные

KC&T

Символьный тип данных

char unsigned char

Символьные константы

'символ'

Примеры:

'c' '0' '\377' '\xff' '\XFF'
'' '\n' '\t' '\'' '\\'

Строковые данные

Строковые константы

"произвольный текст"

Примеры

"example" e x a m p l e 00

"\39--\x123fe" 03 9 - - 12 3 f e 00

Операторы языка (1)

1.	>	Выбор члена
2.	[] () ++ 	Доступ по индексу Вызов функции Постфиксный инкремент Постфиксный декремент
3.	sizeof ++ ~ ! - + & *	Размер объекта или типа Префиксный инкремент Префиксный декремент Дополнение Отрицание Унарный минус Унарный плюс Адрес Разыменование

C1.19

Операторы языка (2)

4.	* / %	Умножение Деление Остаток о деления (деление по модулю)
5.	+	Сложение Вычитание
6.	<< >>	Сдвиг влево Сдвиг вправо
7.	< <= > >=	Меньше Меньше или равно Больше Больше или равно
8.	== !=	Равно Не равно

Операторы языка (3)

9.	&	Побитовое И (AND)
10.	٨	Побитовое исключающее ИЛИ (XOR)
11.		Побитовое ИЛИ (OR)
12.	&&	Логическое И (AND)
13.		Логическое ИЛИ (OR)
14.	?:	Условное выражение
15.	= *= /= %= += -= <<= >>= &= ^= =	Простое присваивание Операторы типа умножения и присваивание Операторы типа сложения и присваивание Операторы сдвига и присваивание Побитные операторы и присваивание
16.	,	Запятая (последовательность)

KC&I

Операторы присваивания

$$a \, \text{оп} = \, \text{выражение} \quad \Rightarrow \quad a = a \, \text{оп} \, (\text{выражение})$$

Правило ассоциативности: справа налево

$$a = b \text{ on} = c = d$$
 $\rightarrow a = (b \text{ on} = (c = d))$

выражение

$$a = 5$$

предложение

$$a = 5;$$

Инкремент и декремент

```
++
Префиксный ++а (--а) и постфиксный а++ (--а)
Префиксный ++
int a = 2, x; 3
x = ++a; \rightarrow Результат: a = 3, x = 3
Постфиксный ++
int a = 2, x;
x = a++; \rightarrow Результат: a = 3, x = 2
```

C1.23

Арифметические операторы

```
унарные
  типа умножения
                                   % (только int)
  бинарные (типа сложения) +
Примеры:
5/2 \rightarrow 2
5.0/2 \rightarrow 2.5
5\%2 \rightarrow 1
5.0 % 2 -> error C2296: '%': illegal, left operand has type
  'double'
```

KC&T

Порядок вычисления

$$a \circ nb \circ nc \rightarrow (a \circ nb) \circ nc$$

Порядок вычисления a, b, c — не определен

Примеры:

int
$$x = 2, z$$
;
 $z = ++x * x++;$ $\rightarrow x = 4, z = 9$
 $z = x++ * ++x;$ $\rightarrow x = 4, z = 9$

$$z = ++x++;$$
 \rightarrow error C2105: '++' needs I-value $z = (++x)++;$

Операторы сравнения

Примеры:

2 < 5 → результат: 1

2 > 5 → результат: 0

 $2 < x < 3 \rightarrow$ результат: 1, независимо от значения x

$$2 < x == x < 3 \rightarrow$$
 эквивалентно $(2 < x) == (x < 3)$

Логические операторы

KC&T

```
! && ||
```

Примеры:

$$3 < 5 \&\& 5 != 0$$
 \rightarrow Результат: 1

$$3 < x < 5$$
 \rightarrow Результат: 1

$$3 < (x < 5)$$
 \rightarrow Результат: 0

C1.27

Правила вычисления

- ! && ||
- 1. Операнды вычисляются в порядке слева направо
- 2. Вычисления прекращаются, как только результат становится очевидным

Примеры:

```
a \mid \mid b \&\& c \rightarrow ++a \mid \mid ++b \&\& ++c

a \&\& b \mid \mid c \rightarrow ++a \&\& ++b \mid \mid ++c
```

Побитные операторы

KC&T

```
~ & ^ |
```

$$x = 10110010$$

$$y = 00010111$$

$$x^y = 10100101$$

$$x|y = 10110111$$

Условный оператор

```
expr1 ? expr2 : expr3
x = a > b ? a : b;
Правило ассоциативности — слева направо
Пример:
expr1 ? expr2 : expr3 ? expr4 : expr5
                                              \rightarrow
                   expr1 ? expr2 : (expr3 ? expr4 : expr5)
expr1 ? expr2 ? expr3 : expr4 : expr5
                   expr1 ? (expr2 ? expr3 : expr4) : expr5
```

```
KC&T
```

```
expr1, expr2,...
```

```
Примеры; a = (x = 2, y = 3, x + y)
```

Ввод/вывод (1)

```
#include <stdio.h>
Вывод
printf("строка формата", expr1, expr2, ...);
Строка формата: произвольный текст +
  спецификаци формата
Ввод
scanf("спецификации формата", &var1, &var2, ...);
Безопасная версия:
scanf_s("спецификации_формата", арг, размер, ..., );
```

Ввод/вывод (2)

C1.33

Спецификации формата

%с	символы (тип char)
%s	строки символов
%d	целые десятичные числа со знаком (int)
%u	целые десятичные числа без знака
%o	целые восьмеричные числа без знака
%x %X	целые шестнадцатеричные числа без знака
%f %e %E	вещественные числа (float)
%g %G	вещественные числа в стиле d, f или е
%lf %le	вещественные числа (double)
%p	указатель

Задача 2 (1)

Необходимо проверить правильность работы функции возведения вещественного числа в целую степень.

Функция main() должна

- ввести требуемые данные
- вычислить степень числа
- вывести результат

Задача 2 (2)

```
#include <stdio.h>
#include <math.h>
double Pow(double x, int n);
int main()
    double x, y, z;
    int n;
    printf("enter x and n: ");
    scanf s("%lf%d", &x, &n);
    y = Pow(x, n);
    z = pow(x, n);
    printf("pow(%lf, %d) = %lg (Math library: %lg)\n", x, n, y, z);
    return 0;
```

Результаты тестирования

```
enter x and n: 2.5 2
pow(2.500000, 2) = 6.25 (Math library: 6.25)
```

```
enter x and n: -1.234567890 0 pow(-1.234568, 0) = 1 (Math library: 1)
```

```
enter x and n: 2.5 -2
pow(2.500000, -2) = 0.16 (Math library: 0.16)
```

```
enter x and n: 0 -2
pow(0.000000, -2) = 1.79769e+308 (Math library: 1.#INF)
```

Задача 3 (1)

Дано целое число n.

Написать функцию, которая определяет количество цифр в записи числа.

Протестировать функцию.

Задача 3 (2)

```
KC&T
```

```
int numOfDigits(int a)
  int n = 0;
  do{
      a /= 10;
       ++n;
  } while(a != 0);
  return n;
```

Задача 3 (3)

```
#include <stdio.h>
int numOfDigits(int);
int main()
  int a, n;
  printf("%s", "Enter integer: ");
  scanf("%d", &a);
  n = numOfDigits(a);
  printf("%d has %d digits\n", a, n);
  return 0;
```

Дополнительное задание

1. Дано целое число n. Подсчитать количество двоичных цифр в записи числа. Старшие незначащие нули не учитывать.

2. Дано целое число n. Вывести двоичное представление данного числа. Подсчитать количество единиц в двоичном представлении числа.