Arquitetura(modo como são construídos) ARM(consome menos energia e geram menor calor), X86(exige cooler porque gera muito calor, 64 bits), já estamos na quinta geração de computadores, hoje as arquiteturas de conversam, envolvendo hardware, software básico e software aplicativo.

BSP/Driver software que controla a comunicação entre o software e o hardware.

Barramento é a quantidade de bit's endereçados de uma vez.

Barramento do	Responsável pela comunicação do processador com seu exterior
processador	
Barramento de	Indica o local onde os processos devem ser extraídos e para onde
endereços	devem ser enviados após o processamento.
Barramento de	Iremos abordar mais a fundo a seguir.
entrada/saída	
Barramento de memória	Barramento responsável pela conexão da memória principal ao
	processador

Um registrador de 8 bits quando recebe a letra A recebe 01000001. Um registrador de 8 bits quando recebe o número 1 recebe 00110001.

		CÓ	DIGO	BIN	IARIO			Número	Cód. Binário
Α	01000001	N	01001110	a	01100001	n	01101110	0	00110000
В	01000010	0	01001111	b	01100010	0	01101111	1	00110001
C	01000011	P	01010000	C	01100011	р	01110000	6 550	Tehresis in the
D	01000100	Q	01010001	d	01100100	q	01110001	2	00110016
E	01000101	R	01010010	е	01100101	r	01110010	3	00110011
F	01000110	S	01010011	f	01100110	S	01110011	4	00110100
G	01000111	T	01010100	g	01100111	t	01110100		00110100
Н	01001000	U	01010101	h	01101000	u	01110101	5	00110101
1	01001001	٧	01010110	i	01101001	V	01110110	6	00110110
J	01001010	W	01010111	j	01101010	W	01110111		A. C.
K	01001011	X	01011000	k	01101011	×	01111000	7	00110111
L	01001100	Y	01011001	1	01101100	У	01111001	8	00111000
M	01001101	Z	01011010	m	01101101	Z	01111010		CHI AND THE SE
=								9	00111001

ULA – Temos as seguintes: aritmética, vídeos, músicas e ponto flutuantes.

Alguns registradores de controle e estado

PC (Contador de Programa): contém o endereço da próxima instrução a ser buscada

MAR (Registrador de Endereçamento à Memória): contém o endereço de uma posição de memória

MBR (Registrador de Armazenamento Temporário de Dados): contém uma Palavra de dados a ser escrita na Memória ou a palavra lida mais recentemente

IR (Registrador de Instrução): contém a última instrução buscada

Ao trabalhar com endereço o tamanho do dado é o tamanho do barramento.

Circuitos Lógicos

Pequeno dispositivo que transfere sinais eletrônicos através de um resistor

Existem bilhões de transistores ligados entre si no processador, formando circuitos capazes de fazer cálculos simples ou extremamente complexos, como a posição do mouse na tela até o volume de partículas de fumaça em um jogo.

.

Binário contêm apenas 0 ou 1, ligado desligado.

Álgebra booleana

Manipulação de objetos que podem assumir apenas dois valores: verdadeiro e falso

Temos 5 elementos:

Entrada, saída, controle, processamento e memória.

Transistores com portas lógicas:

NOT tem uma entrada e uma saída. As demais podem ter duas ou mais entradas.

AND para multiplicação. OR para adição.

Resumo dos Blocos Lógicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade	
E (AND)	A S=A.B	S=A.B S=AB	A B S-AB 0 0 0 0 1 0 1 0 0 1 1 1	
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1	
NÃO (NOT) Inversor	A ◆ S=Ā	S=Ā S=A' S= ¬ A	A S=Ā 0 1 1 0	
NE (NAND)	A B S=Ā.B	S=A.B S=(A.B)' S= -(A.B)	A B S-AB 0 0 1 0 1 1 1 0 1	
NOU (NOR)	$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} S = \overline{A + B} \end{array}$	S=A+B S=(A+B)' S= -,(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 0 1 1 0	
XOR	A S=A+B	S=A⊕B	A B S=ABB 0 0 0 0 1 1 1 0 1	

Memória

Registradores

Registradores de Propósito Geral

Registradores trabalham com bits, tem um barramento específico. Um dado no registrador á tratado com endereço e tamanho.

Tipos de registradores:

De segmento, de estado, gerais e de ponteiro e índice.

Registradores de segmento

Registrador de Estado

- Flags utilizadas para indicar os resultados obtidos em operações aritméticas ou lógicas;
- . CF = Carry Flag
- PF = Paity Flag
- AF = Auxiliar Flag
- . ZF = Zero Flag
- SF = Signal Flag
- OF = Overflow Flag

Registradores gerais

- AX
 - Acumulador.
 - Comumente usado em operações matemáticas e de E/S.
- BX
 - Base.
 - Comumente usado como uma base ou registrador apontador.
- CX
 - Contador.
 - Usado freqüentemente em loops.
- DX
 - Deslocamento.
 - Similar ao registrador de base.

Registradores de ponteiro e índice

Registrador serial síncrono(deslocamento) Shift Register

DADO DE ENTRADA = 0101

Do menos significativo para o mais significativo.

Registrador SR.

Flip-Flop com Clock

- ☐ Sistemas Digitais podem operar de 2 maneiras:
 - ✓ Assíncrona: As saídas do FF podem mudar a qualquer momento em que uma ou mais entradas mudam de estado;
 - ✓ **Síncrona**: Os momentos exatos que uma saída qualquer pode mudar são determinados por um sinal de Clock.
- □ Clock = É um trem de pulsos retangulares ou uma onda quadrada;
 - ✓ Geralmente é distribuído por todo o sistema, fazendo que a maioria das saídas só mudem quando ocorre uma transição no sinal do Clock.

Clock

- Elementos do CLOCK:
 - Ciclo de relógio ou apenas ciclo:
 - É o intervalo de tempo entre o início da subida, ou da descida, de um pulso até o início da subida, ou da descida, do outro pulso; (a figura abaixo tem 4 ciclos)

Conceitos: Sinais de "clock".

Núcleos processam os dados simultaneamente.

ARMAZENAMENTO DE BIT: LATCH e FLIP-FLOP

Latch tipo SR assíncrono(existe outro o JK)

Entrada paralela de dados(uma subida de clock apenas).

Registradores universais

- Comercialmente existe um tipo de registrador de deslocamento chamado universal. Este tipo de registrador permite trabalhar de todos os modos possíveis:
 - Entrada-serial / saída-paralelo
 - Entrada-paralelo / saída-serial
 - Entrada-paralelo / saída-paralelo
 - Entrada-serial / saída-serial

Registradores com entradas e saídas seriais e paralelas.

Circuito combinacional, só depende das suas entradas. Circuito sequencial, depende de entradas e saídas.

