Математический анализ 1. Лекция 2.9 Выпуклые функции. Скалярные функции, заданные неявно

30 ноября 2023 г.

Выпуклые и вогнутые функции нескольких вещественных переменных

- Критерии выпуклости и вогнутости функций
- Экономический пример
- Теоремы об экстремумах выпуклой и вогнутой функций

Нелинейное уравнение и неявная функция

Случай скалярной функции одной вещественной переменной

Выпуклые множества и функции.

Определение. 1 (напоминание). Множество $D\subset \mathbb{R}^n$ называется выпуклым, если вместе с каждыми двумя точками ${\bf x}$ и ${\bf y}$ оно содержит соединяющий их отрезок:

$$\mathbf{x},\mathbf{y}\in D\Rightarrow \alpha\mathbf{x}+(1-\alpha)\mathbf{y}\in D$$
 при всех $\alpha\in[0,1].$

- 2. Скалярная функция $f:X \to \mathbb{R}$, заданная на выпуклом множестве $X \subset \mathbb{R}^n$, называется:
 - **выпуклой**, если

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leqslant \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

для всех $\mathbf{x}, \mathbf{y} \in X$ и $\alpha \in [0,1]$;

вогнутой, если

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

для всех $\mathbf{x}, \mathbf{y} \in X$ и $\alpha \in [0,1].$

строго выпуклой, если

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

для всех $\mathbf{x}, \mathbf{y} \in X$, $\mathbf{x} \neq \mathbf{y}$ и $\alpha \in (0, 1)$;

строго вогнутой, если

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) > \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

для всех $\mathbf{x}, \mathbf{y} \in X$, $\mathbf{x} \neq \mathbf{y}$ и $\alpha \in (0, 1)$.

Замечание

- 1. Функция f выпуклая тогда и только тогда, когда функция (-f) вогнутая.
- 2. Функция f строго выпуклая тогда и только тогда, когда функция (-f) строго вогнутая.

Простейшими примерами строго выпуклой и нестрого выпуклой функции служат соответственно $f(\mathbf{x}) = |\mathbf{x}|^2$ и $g(\mathbf{x}) = \max\{|\mathbf{x}|^2, 1\}$, а строго вогнутой и нестрого вогнутой функций – те же функции, взятые со знаком минус.

Определение. Для любой скалярной функции $f:X \to \mathbb{R}$, где $X = D(f) \subset \mathbb{R}^n$,

ее надграфиком называется множество

$$epi f = \{(\mathbf{x}, y) \in X \times \mathbb{R} : y \geqslant f(\mathbf{x})\},\$$

• ее подграфиком называется множество

$$hyp f = \{(\mathbf{x}, y) \in X \times \mathbb{R} : y \leqslant f(\mathbf{x})\}.$$

 $\operatorname{epi} f$

Теорема

- lacktriangle Скалярная функция $f:X o\mathbb{R}$, заданная на выпуклом множестве $X\subset\mathbb{R}^n$, является
 - выпуклой тогда и только тогда, когда ее надграфик выпуклый;
 - вогнутой тогда и только тогда, когда ее подграфик выпуклый.

 $\operatorname{epi} f$ выпуклое множество, функция f выпуклая.

 $\mathrm{hyp}\,f$ выпуклое множество, функция f вогнутая.

Определение. Квадратичная форма

$$(A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} h_j h_i$$

называется неотрицательно определенной, если

$$(A\mathbf{h},\mathbf{h})_{\mathbb{R}^n}\geqslant 0$$
 при всех $\mathbf{h}\in\mathbb{R}^n,$

и называется неположительно определенной, если

$$(A\mathbf{h}, \mathbf{h})_{\mathbb{R}^n} \leqslant 0$$
 при всех $\mathbf{h} \in \mathbb{R}^n$.

Эти свойства называются также соответственно неотрицательностью $A\geqslant 0$ и неположительностью $A\leqslant 0$ матрицы A.

Очевидно, что свойства $A\geqslant 0$ и $-A\leqslant 0$ эквивалентны.

Для симметричной матрицы A свойство $A\geqslant 0$ эквивалентно неотрицательности всех ее собственных значений, а свойство $A\leqslant 0$ эквивалентно неположительности всех ее собственных значений.

В частности, для диагональной матрицы A свойство $A\geqslant 0$ эквивалентно неотрицательности ее диагональных элементов.

Теорема (критерии выпуклости и вогнутости функций)

Пусть даны открытое выпуклое множество $D\subset\mathbb{R}^n$ и функция $f\in C^2(D)$. Тогда:

- 1. Функция f выпукла на D тогда и только тогда, когда 2-й дифференциал $d^2f(\mathbf{x})(\mathbf{h})$ неотрицательно определенная квадратичная форма (переменных \mathbf{h}) при всех $\mathbf{x} \in D$.
- 2. Если 2-й дифференциал $d^2 f(\mathbf{x})(\mathbf{h})$ положительно определенная квадратичная форма (переменных \mathbf{h}) при всех $\mathbf{x} \in D$, то функция f строго выпукла на D (обратное, вообще говоря, неверно).
- 3. Функция f вогнута на D тогда и только тогда, когда 2-й дифференциал $d^2f(\mathbf{x})(\mathbf{h})$ неположительно определенная квадратичная форма (переменных \mathbf{h}) при всех $\mathbf{x} \in D$.
- 4. Если 2-й дифференциал $d^2 f(\mathbf{x})(\mathbf{h})$ отрицательно определенная квадратичная форма (переменных \mathbf{h}) при всех $\mathbf{x} \in D$, то функция f строго вогнута на D (обратное, вообще говоря, неверно).

Вместо 2-го дифференциала можно говорить о знаке матрицы Гессе в точках $\mathbf{x} \in D$.

Теорема

Пусть функция f выпукла (вогнута) на открытом выпуклом множестве D и непрерывна на замыкании \overline{D} множества D. Тогда множество \overline{D} выпукло, а функция f выпукла (соответственно, вогнута) на множестве \overline{D} .

Отметим, что строго выпуклая на D функция может быть нестрого выпуклой на $\overline{D}.$

Пример. Рассмотрим функцию

$$f(\mathbf{x}) = (A\mathbf{x}, \mathbf{x})_{\mathbb{R}^n} + (\mathbf{b}, \mathbf{x})_{\mathbb{R}^n} + c$$

с симметричной матрицей A и некоторыми $\mathbf{b} \in \mathbb{R}^n$ и числом c. Она выпукла на \mathbb{R}^n тогда и только тогда, когда $A\geqslant 0$, строго выпукла на \mathbb{R}^n тогда и только тогда, когда A>0, вогнута на \mathbb{R}^n тогда и только тогда, когда $A\leqslant 0$, строго вогнута на \mathbb{R}^n тогда и только тогда, когда A<0.

Экономический пример. Рассмотрим функцию Кобба-Дугласа

$$f(x,y) = Ax^{\alpha}y^{\beta}$$
 при $x \geqslant 0, y \geqslant 0,$

где $A>0, \alpha>0, \beta>0$ — параметры. Требуется исследовать ее на выпуклость/вогнутость.

Поскольку функция f имеет непрерывные 2-е производные в каждой внутренней точке своей области определения (т.е. при $x>0,\ y>0$), то достаточно исследовать на знакоопределенность ее матрицу Гессе с помощью критерия Сильвестра.

Матрица Гессе функции f в точке (x,y) имеет вид

$$H_f(x,y) = \begin{pmatrix} A\alpha(\alpha-1)x^{\alpha-2}y^{\beta} & A\alpha\beta x^{\alpha-1}y^{\beta-1} \\ A\alpha\beta x^{\alpha-1}y^{\beta-1} & A\beta(\beta-1)x^{\alpha}y^{\beta-2} \end{pmatrix}.$$

Ее главные угловые миноры таковы

$$\Delta_1 = A\alpha(\alpha - 1)x^{\alpha - 2}y^{\beta},$$

$$\Delta_2 = A^2\alpha\beta x^{2\alpha - 2}y^{2\beta - 2}(1 - \alpha - \beta).$$

С учетом положительности параметров и переменных выводим:

1. При $\alpha+\beta<1$ для всех $(x,y)\in\mathbb{R}^2_+=\{(x,y):x>0,y>0\}$ имеем $\Delta_1<0,\Delta_2>0.$

Значит, 2-й дифференциал $d^2f(x,y)(h_1,h_2)$ функции f – отрицательно определенная квадратичная форма в каждой точке $(x,y)\in\mathbb{R}^2_+$. Поэтому, во-первых, функция f строго вогнута на множестве \mathbb{R}^2_+ и, значит, во-вторых (по последней теореме), вогнута на всей своей области определения

$$D(f) = \overline{\mathbb{R}}_{+}^{2} = \{(x, y) : x \geqslant 0, y \geqslant 0\}.$$

2. При $\alpha+\beta>1$ для всех $(x,y)\in\mathbb{R}^2_+$ имеем

$$\Delta_2 < 0.$$

Значит, 2-й дифференциал $d^2f(x,y)(h_1,h_2)$ функции f – знакопеременная квадратичная форма в каждой точке $(x,y)\in\mathbb{R}^2_+$. Поэтому функция f не выпукла и не вогнута ни на одном выпуклом открытом подмножестве в \mathbb{R}^2_+ .

3. При $\alpha+\beta=1$ можно 2-й дифференциал функции f в любой точке $(x,y)\in\mathbb{R}^2_+$ преобразовать так (проверьте!):

$$d^{2}f(x,y)(h_{1},h_{2}) = -A\alpha\beta x^{\alpha-2}y^{\beta-2}(yh_{1} - xh_{2})^{2} \leq 0,$$

т.е. это неположительно определенная форма. Поэтому функция f вогнута на множестве R_+^2 , а, значит, и на всей своей области определения $D(f)=\overline{\mathbb{R}}_+^2$.

Теоремы об экстремумах выпуклой функции

Определение (точек локального экстремума на множестве). Для функции $f:X\to\mathbb{R},\ X=D(f)\in\mathbb{R}^n$ точка $\mathbf{x}_0\in X$ называется:

1) точкой строгого локального максимума на X, если $f(\mathbf{x}_0) > f(\mathbf{x})$ для всех \mathbf{x} из пересечения X и некоторой проколотой окрестности $\mathcal U$ точки \mathbf{x}_0 ; 2) точкой строгого локального минимума на X, если $f(\mathbf{x}_0) < f(\mathbf{x})$ для всех \mathbf{x} из пересечения X и некоторой проколотой окрестности $\mathcal U$ точки \mathbf{x}_0 ; 3) точкой (нестрогого) локального максимума на X, если $f(\mathbf{x}_0) \geqslant f(\mathbf{x})$ для всех \mathbf{x} из пересечения X и некоторой окрестности $\mathcal U$ точки \mathbf{x}_0 ; 4) точкой (нестрогого) локального минимума на X, если $f(\mathbf{x}_0) \leqslant f(\mathbf{x})$ для всех \mathbf{x} из пересечения X и некоторой окрестности $\mathcal U$ точки \mathbf{x}_0 .

Теорема (1-я теорема об экстремумах выпуклой функции)

Пусть даны выпуклое множество D и функция $f:D o\mathbb{R}$. Тогда:

- 1. если функция f (строго) выпукла на D, то всякая точка $\mathbf{x} \in D$ (строгого) локального минимума функции f на множестве D есть ее точка (строгого) **глобального минимума** на $D \Leftrightarrow$
- 2. если функция f (строго) вогнута на D, то всякая точка $\mathbf{x} \in D$ (строгого) локального максимума функции f есть ее точка (строгого) глобального максимума на D.

Теорема (2-я теорема об экстремумах выпуклой функции)

Пусть даны выпуклое открытое множество D и функция $f \in C^1(D)$. Тогда:

- 1. если функция f (строго) выпукла на D, то всякая стационарная точка $\mathbf{x} \in D$ функции f есть ее точка (строгого) глобального минимума на $D \Leftrightarrow$
- 2. если функция f (строго) вогнута на D, то всякая стационарная точка $\mathbf{x} \in D$ функции f есть ее точка (строгого) **глобального максимума** на D.

Теорема (3-я теорема об экстремумах выпуклой функции)

Максимум выпуклой функции и минимум вогнутой функции на выпуклом множестве D могут достигаться только на границе множества D.

Пример

Найдем точку глобального максимума функции $f(x,y)=x^{0.1}y^{0.5}-x-5y$ на множестве \mathbb{R}^2_+ , если она существует.

Приравнивая к нулю частные производные, находим стационарные точки:

$$\begin{cases} 0.1x^{-0.9}y^{0.5} - 1 = 0\\ 0.5x^{0.1}y^{-0.5} - 5 = 0 \end{cases} \Rightarrow x = y = \frac{1}{10^{5/2}}.$$

Поскольку 0.1+0.5<1, то по доказанному выше функция $f(x,y)=x^{0.1}y^{0.5}$ строго вогнута на множестве \mathbb{R}^2_+ . Добавление линейной функции не влияет на (строгую) выпуклость/вогнутость (упражнение: почему?). Значит, функция f строго вогнутая, и, следовательно, точка $\left(\frac{1}{10^{5/2}},\frac{1}{10^{5/2}}\right)$ есть точка ее строгого глобального максимума на множестве \mathbb{R}^2_+ .

Замечание

Функция полезности обычно достаточно гладкая и вогнутая.

Теорема о неявной функции: простейший случай

В линейной алгебре изучаются системы **линейных уравнений**. Мы начинаем изучение **нелинейных уравнений и систем уравнений**. Рассмотрим скалярную функцию F, заданную на некотором множестве D на плоскости, и множество точек на плоскости, которое задается уравнением

$$F(x,y) = 0, \quad (x,y) \in D.$$

В общем случае зависимость между переменными x и y, которая определяется этим уравнением, не является функциональной.

Пример 1. Уравнение f(y) - x = 0 для построения обратной функции $y = f^{(-1)}(x)$.

Пример 2. Нелинейное уравнение с параметром $x^2 + y^2 = c$, где c – параметр: анализ на доске.

Пример 3. На рисунке изображена кривая, заданная уравнением

$$(x^2 + y^2 + x)^2 - (x^2 + xy + 20y^2) + 1 = 0.$$

В окрестности каждой точки, кроме шести выделенных, уравнение задает функциональную зависимость y от x.

Теорема

Пусть выполнены условия:

- 1. скалярная функция F определена и имеет непрерывные частные производные в некоторой окрестности $\mathcal O$ точки $(x_0,y_0)\in\mathbb R^2$,
- 2. точка (x_0, y_0) такова, что $F(x_0, y_0) = 0$,
- 3. $F'_y(x_0, y_0) \neq 0$.

Тогда при достаточно малых $\delta>0$, $\varepsilon>0$ для каждого $x\in (x_0-\delta,x_0+\delta)$ существует единственное решение уравнения

$$F(x,y)=0$$
, где $|y-y_0|,$

которое определяет функцию y=f(x) такую, что $y_0=f(x_0)$. Эта функция f обращает уравнение в тождество $F(x,f(x))\equiv 0$ для всех $x\in (x_0-\delta,x_0+\delta)$. Функция f имеет непрерывную производную

$$f'(x) = -\frac{F'_x(x,y)}{F'_y(x,y)}\Big|_{y=f(x)}$$

для всех $x \in (x_0 - \delta, x_0 + \delta)$ (вывод: на доске).

Кроме того, если $F \in C^k(\mathcal{O})$, то $f \in C^k(x_0 - \delta, x_0 + \delta)$ для любого $k \geqslant 1$.

Замечания.

- lacktriangle Условие $F_y'(x_0,y_0)
 eq 0$ и достаточная малость δ существенны: на доске.
- Производную неявно заданной скалярной функции одной вещественной переменной можно вычислять и непосредственно в силу заданного уравнения.

Пример: $x^2 + y^2 = 1 \implies$

$$x^{2} + y^{2}(x) \equiv 1 \implies 2x + 2y(x)y'(x) = 0 \implies y'(x) = -\frac{x}{y(x)}$$

(здесь предполагается, что уравнение $x^2 + y^2 = 1$ локально задает функциональную зависимость y = y(x)).

K этому же результату, естественно, приводит и формула из теоремы (поскольку она так и выводится):

$$y'(x) = -\frac{(x^2 + y^2 - 1)_x'}{(x^2 + y^2 - 1)_y'} = -\frac{x}{y(x)}.$$

 Последний пункт теоремы дает существование производных высших порядков неявно заданной функции. Два способа вычисления:

$$x^2 + y^2 = 1 \implies y' = -\frac{x}{y} \Rightarrow y'' = -\frac{y - xy'}{y^2} = -\frac{x^2 + y^2}{y^3} = -\frac{1}{y^3} \quad \text{или}$$

$$x^2 + y^2 = 1 \implies 2yy' + 2x = 0 \Rightarrow (y')^2 + yy'' + 1 = 0 \Rightarrow \ldots \Rightarrow y'' = -\frac{1}{y^3}.$$