Homework 3 for math 6262

1) Let X denote the outcome of a random experiment with a four sided die. Assume that the die is not symmetric, so that the probabilities for the different sides are:

$$P_{\theta}(X=1) = c \cdot \theta, P_{\theta}(X=2) = 2c \cdot \theta, P_{\theta}(X=3) = 3c \cdot \theta, P(X=4) = 4c \cdot \theta$$

where $c = c(\theta)$ is a constant which depends on the parameter $\theta > 0$.

- a)Calculate $c(\theta)$.
- b) Estimate Fisher-Information.
- c) What is maximum-likelihood estimate of θ . Suppose that you have hundred i.i.d. observations $x_1, x_2, \ldots, x_{100}$ all following the above model for one unknown θ . (All x_i 's have been generated with the same θ .)
- d) Find 95%-confidence interval.
- 2) Say you are given n observations: x_1, x_2, \ldots, x_n which are drawn from an exponential distribution with parameter λ .
- a) Calculate the maximum-likelihood estimate of λ .
- b) Find Fisher-Information.
- c) Find a 95% confidence interval using Fisher Information. What do you say?
- 3) We have a parameter θ which can take three different values: 1, 2 and 3 corresponding to three different dice. On each dice we have the number 4, 5 and 6. So, these are three sided dices. Now, the probabilities for each dice are as follows:

θ	$P_{\theta}(X=4)$	$P_{\theta}(X=5)$	$P_{\theta}(X=6)$
1	0.2	0.3	0.5
2	0.6	0.2	0.2
3	0.8	0.1	0.1

- a) Find maximum likelihood estimate of θ .
- b) find only non-biased estimate of θ .
- c) Assume that the table gets changed and we have the following table:

θ	$P_{\theta}(X=4)$	$P_{\theta}(X=5)$	$P_{\theta}(X=6)$
1	0.2	0.3	0.5
2	0.6	0.2	0.2
3	0.6	0.2001	0.1999

Calculate the only unbiased estimator. Is that estimator good?

- 4) The probability to catch disease a is 10%. The probability to get diseases b is 17%. The probability to get at least one of the two a or b is 20%.
- a) What is the probability to get sick with both a and b?
- b) What is the probability to get a or b but not both at the same time?
- 5) In a randomly selected group of 100 people from a population in a certain country we find that
 - gene a, is present in 30% of the people in our sample.
 - gene b, present in 40%.
 - gene a and gene b at the same time, are present in 10% of sampled people.

Let p_a , p_b resp. p_{acapb} be the probabilities that gene a, b, resp. a and b at the same time are present in a randomly selected individual.

- a) Find a maximum-Likelihood estimate for these three probabilities.
- b) (Optional+more difficult) What would be a 95% confidence interval for the parameter vector $(p_1, p_b, p_{a \cap b})$?