Shortest Path Algorithms

Definitions

Weighted graph

Weighted path length

Unweighted path length

Single Source Shortest Path Problem

Given input weighted graph, G=(V,E) and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G

Negative Cost Cycle

Eg. Flight routes

Shortest Path Algorithms

Unweighted shortest paths

Dijkstra's Algorithm

Acyclic Graphs

All-Pairs Shortest Path

Unweighted Shortest Path

Initial Configuration Table

V	Known	Dv	Pv
V ₁	0	8	0
V ₂	0	∞	0
V ₃	0	0	0
V ₄	0	8	0
V ₅	0	8	0
V ₆	0	8	0
V ₇	0	8	0

<u>Pseudocode for unweighted shortest path</u> <u>algorithm</u>

```
void unweighted(table t)
{
   queue q;
   vertex v,w;
   q=createqueue(numvertex);
   makeempty(q);
   enqueue(s,q);
   while(!isempty(q))
    v=dequeue(q);
    t[v].known=true;
    for each w adjacent to v
       if(t[w].dist==infinity)
         t[w].dist = t[v].dist + 1;
         t[w].path = v;
         enqueue(w,q);
   disposequeue(q);
```

How the data changes during the unweighted shortest path algorithm

	Initial State			
V	Know n	Dv	Pv	
V_1	0	∞	0	
V ₂ V ₃	0	∞	0	
V_3	0	0	0	
V_4	0	∞	0	
V_5	0	∞	0	
V_6	0	∞	0	
V_7	0	∞	0	
Q:	V_3			

	V ₃ Dequeued			
V	Know n	Dv	Pv	
V_1	0	1	V_3	
V_2	0	∞	0	
V_3	1	0	0	
V_4	0	8	0	
V_5	0	8	0	
V_6	0	1	V_3	
V_7	0	∞	0	
Q:	$V_1 V_6$			

Contd.

	V ₁ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V_3
V_2	0	2	V_1
V_3	1	0	0
V_4	0	2	V_1
V_5	0	8	0
V_6	0	1	V_3
V_7	0	8	0
Q:	V_6 , V_2 , V_4		

	V ₆ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V_3
V_2	0	2	V_1
V_3	1	0	0
V_4	0	2	V_1
V_5	0	8	0
V_6	1	1	V_3
V_7	0	8	0
Q:	$V_2 V_4$		

Contd.

	V ₂ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V_3
V_2	1	2	V_1
V_3	1	0	0
V_4	0	2	V_1
V_5	0	3	V_2
V_6	1	1	V_3
V_7	0	8	0
Q:	V_4 , V_5		

	V ₄ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V_3
V ₂ V ₃	1	2	V_1
V_3	1	0	0
V_4	1	2	V_1
V ₄ V ₅	0	3	V ₂
V_6	1	1	V ₃
V_7	0	3	V_4
Q:	V_5, V_7		
557			

Contd.

	V ₅ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V ₃
V_2	1	2	V_1
V_3	1	0	0
V_4	1	2	V_1
V_5	1	3	V_2
V_6	1	1	V_3
V_7	0	3	V_4
Q:	V_7		

	V ₇ Dequeued		
V	Know n	Dv	Pv
V_1	1	1	V_3
V_2	1	2	$V^{}_1$
V_3	1	0	0
V_4	1	2	$V^{}_1$
V_5	1	3	V_2
V_6	1	1	V_3
V_7	1	3	V_4
Q:	empty		

Dijkstra's Algorithm

<u>Initial Configuration of table used</u> <u>in Dijkstra's algorithm</u>

V	Known	Dv	Pv
V_1	0	0	0
V_2	0	8	0
V_3	0	8	0
V_4	0	8	0
V_5	0	8	0
V_6	0	∞	0
V_7	0	∞	0

After V₁ is declared known

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	0	2	V_1
V ₃	0	∞	0
V ₄	0	1	V_1
V_5	0	∞	0
V ₆	0	∞	0
V ₇	0	∞	0

After V₄ is declared known

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	0	2	V_1
V ₃	0	3	V ₄
V ₄	1	1	V_1
V ₅	0	3	V ₄
V ₆	0	9	V ₄
V ₇	0	5	V_4

After V₂ is declared known

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	1	2	V_1
V ₃	0	3	V ₄
V ₄	1	1	V_1
V ₅	0	3	V ₄
V ₆	0	9	V_4
V ₇	0	5	V ₄

$\frac{After\ V_{\underline{5}}\ and\ then\ V_{\underline{3}}\ are\ declared}{known}$

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	1	2	V_1
V ₃	1	3	V_4
V ₄	1	1	V_1
V ₅	1	3	V ₄
V ₆	0	8	V ₃
V ₇	0	5	V_4

After V₇ is declared known

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	1	2	V_1
V ₃	1	3	V_4
V ₄	1	1	V_1
V ₅	1	3	V_4
V ₆	0	6	V ₇
V ₇	1	5	V_4

$\frac{After\ V_{\underline{6}} \ is\ declared\ known\ and\ algorithm}{terminates}$

V	Known	Dv	Pv
V ₁	1	0	0
V ₂	1	2	V_1
V ₃	1	3	V_4
V ₄	1	1	V_1
V ₅	1	3	V_4
V ₆	1	6	V ₇
V ₇	1	5	V ₄

<u>Declarations for Dijkstra's</u> <u>algorithm</u>

```
typedef int vertex;
struct tableentry
  int known;
 disttype dist;
  vertex path;
};
#define notavertex -1
typedef struct tableentry table[numvertex];
```


Table Initialization Routine

```
void inittable(vertex start, graph g, table t)
  int i;
  readgraph(g,t);
  for(i=0;i<numvertex;i++)</pre>
   t[i].known = false;
   t[i].dist = infinity;
   t[i].path = notavertex;
  t[start].dist = 0;
```

Pseudocode for Dijkstra's Algorithm

```
void dijkstra(table t)
  vertex v,w;
  for(;;)
       v=smallest unknown distance vertex;
        if(v==notavertex)
            break;
       t[v].known = true;
       for each w adjacent to v
        if(!t[w].known)
           if(t[v].dist + Cvw < t[w].dist)
               t[w].dist = t[v].dist + Cvw;
               t[w].path = v;
```


Acyclic Graphs

- Critical Path analysis
- Activity node graph
- Eg. Chemical reactions
- If EC_i is the earliest completion time for node i, then the applicable rules are

$$EC_1 = 0$$

$$EC_w = \max_{(v, w)} (EC_v + C_{v,w})$$

 Latest time, LC_i, each event can finish without affecting the final completion time

$$LC_{n} = EC_{n}$$

$$LC_{v} = \min_{(v, w)} (LC_{w} - C_{v,w})$$

•
$$Slack_{(v,w)} = LC_w - EC_v - C_{v,w}$$

Activity Node Graph

All-Pairs Shortest Path

```
a[] contains the adjacency matrix
     d[] contains the values of the shortest path
     n is the number of vertices
     Actual path is computed using path[]
Algorithm
void allpairs(twodimarray A, twodimarray D, twodimarray path, int n)
{
     int i,j,k;
     for(i=0;i< n;i++)
      for(j=0;j< n;j++)
       {
              d[i][j]=a[i][j];
              path[i][j]=notavertex;
       }
       for(k=0;k<n;k++)
      for(i=0;i< n;i++)
       for(j=0;j< n;j++)
              if(d[i][k]+d[k][j]< d[i][j])
                     d[i][j] = d[i][k] + d[k][j];
                     path[i][k]=k;
              }
}
```

