习题六

6.1 随机选取 15 位学生,把他们分成三组,每组 5 人,每一组用一种方法教学。一段时间后,对这 15 位学生进行统考,统考的成绩如下:

方法		成绩					
甲	75	62	71	58	73		
乙	81	85	68	92	90		
丙	73	79	60	75	81		

问: 这三种教学方法的效果有无显著差异? (显著水平 $\alpha = 0.05$)

解 这可以看作是一个单因子方差分析问题。教学方法就是因子 A ,设三组学生的成绩分别为 $\xi_i \sim N(\mu_i,\sigma^2)$, i=1,2,3 。检验三种教学方法的效果有无显著差异,相当于要检

验假设 H_0 : $\mu_1 = \mu_2 = \mu_3$ 。

计算结果见下表:

水平		观测	値(成	绩)		\overline{X}_i	SS_i
$A_1 = \blacksquare$	75	62	71	58	73	67.8	218.8
A_2 \mathbb{Z}	81	85	68	92	90	83.2	362.8
A ₃ 丙	73	79	60	75	81	73.6	271.2
						$SS_A = 604.93$	$SS_e = 852.8$

方差分析表为:

来源	平方和	自由度	均方	F 值	分位数
A	$SS_A = 604.93$	r-1=2	302.465	$F_A = 4.256$	$F_{0.95}(2, 12) = 3.89$
误差	$SS_e = 852.8$	n-r=12	71.067		
总和	$SS_T = 1457.73$	n-1=14			

对显著水平 $\alpha = 0.05$, 查F分布表, 可得 $F_{1-\alpha}(r-1, n-r) = F_{0.95}(2,12) = 3.89$,

因为 $F_A=4.256>3.89$,所以拒绝 $H_0:~\mu_1=\mu_2=\mu_3$,结论是:这三种教学方法的效果有显著差异。比较各水平的均值,还可以看出,乙组学生的成绩最高,甲组学生的成绩最低。

6.2 对某地区 3 所小学五年级男生的身高(单位: cm)进行抽查,测得数据如下:

小学			身	高		
第一小学	128. 1	134. 1	133. 1	138.9	140.8	127.4
第二小学	150. 3	147. 9	136.8	126.0	150.7	155.8
第三小学	140.6	143. 1	144. 5	143.7	148.5	146.4

问:这 3 所小学五年级男生的身高是否有显著的差异?(显著水平 $\alpha = 0.05$)

解 这可以看作是一个单因子方差分析问题。不同的小学就是因子 A ,设 3 所小学五年级 男生的身高分别为 $\xi_i \sim N(\mu_i, \sigma^2)$,i=1,2,3。检验三种教学方法的效果有无显著差异,

相当于要检验假设 H_0 : $\mu_1 = \mu_2 = \mu_3$ 。

计算结果见下表:

水平	观测值(身高)	\overline{X}_i	SS_i
A_1	128. 1 134. 1 133. 1 138. 9 140. 8 127. 4	133.7333	149.01
A_2	150. 3 147. 9 136. 8 126. 0 150. 7 155. 8	144.5833	612.83
A_3	140. 6 143. 1 144. 5 143. 7 148. 5 146. 4	144.4667	37.413
		$SS_A = 465.88$	$SS_e = 799.25$

方差分析表为:

来源	平方和	自由度	均方	F 值	分位数
\boldsymbol{A}	$SS_A = 465.88$	r - 1 = 2	232.94	$F_A = 4.37$	$F_{0.95}(2,15) = 3.68$
误差	$SS_e = 799.25$	n-r=15	53.28		
总和	$SS_T = 1265.13$	n-1 = 17			

对显著水平 $\alpha = 0.05$, 查F分布表, 可得 $F_{1-\alpha}(r-1, n-r) = F_{0.95}(2,15) = 3.68$,

因为 $F_A=4.37>3.68$,所以拒绝 $H_0:\ \mu_1=\mu_2=\mu_3$,结论是:这 3 所小学五年级男生的身高有显著差异。比较各水平的均值,还可以看出,第二小学五年级男生的身高最高,第一小学五年级男生的身高最低。

- **6.3** 单因子的方差分析中,若每个水平下对指标的观测次数是不同的,水平 A_i 下指标的观测值记忆为 $X_{i1}, X_{i2}, \ldots, X_{in_i}$ $(i = 1, 2, \ldots, r)$. 试分析,此时如何进行方差分析?
- **解** 当因子水平的各观测次数可能不同时,因子水平 A_i 下观测次数为 n_i ,且 $\sum_{i=1}^r n_i = n$ 。

此时,
$$\overline{X_i} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$
, $SS_i = \sum_{j=1}^{n_i} \left(X_{ij} - \overline{X_i} \right)^2$, $\overline{X} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij} = \frac{1}{r} \sum_{i=1}^r \overline{X_i}$,

$$SS_{T} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X} \right)^{2}, SS_{e} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} \left(X_{ij} - \overline{X}_{i} \right)^{2} = \sum_{i=1}^{r} SS_{i}, SS_{A} = \sum_{i=1}^{r} n_{i} \left(\overline{X}_{i} - \overline{X} \right)^{2}$$

可以证明离差分解公式: $SS_T = SS_e + SS_A$, 以及在 H_0 : $\mu_1 = \mu_2 = \ldots = \mu_r$ 成立时有

$$F_{A} = \frac{\frac{SS_{A}}{(r-1)}}{\frac{SS_{e}}{(n-r)}} \sim F(r-1, n-r)$$

对于给定的显著性水平 α , H_0 的拒绝域为 $F_A > F_{1-\alpha} (r-1, n-r)$ 。

6.4 对某厂早,中,晚三班的产量统计如下:

班次	产量
早班	279 334 303 338 198
中班	229 274 310
晚班	210 285 117

问在显著性水平 $\alpha = 0.05$ 下能否认为不同班次的产量无显著性差异?

解 方差分析的前提为早、中、晚班的产量均服从正态分布,相互独立且方差相等,

$$\xi_i \sim N(\mu_i, \delta^2)$$
, $i = 1, 2, 3$.

$$H_0: \mu_1 = \mu_2 = \mu_3$$

$$F_{A} = \frac{SS_{A}}{(r-1)} = \frac{14365.53/2}{30453.2/8} = 1.8869$$

查表

$$F_{1-\alpha}(r-1, n-r) = F_{0.95}(2, 8) = 4.4589; F_A < F_{1-\alpha}(r-1, n-r)$$

故接受 H_0 ,即在显著性水平 $\alpha=0.05$ 下认为不同班次产量无显著性差异。

方差分析:	单因素方	差分析				
SUMMARY						
组	观测数	求和	平均	方差		
行 1	5	1452	290.4	3248.3		
行 2	3	813	271	1647		
行 3	3	612	204	7083		
方差分析						
差异源	SS	df	MS	F	P-value	F crit
组间	14365.53	2	7182.764	1.886899	0.213154	4. 45897
组内	30453.2	8	3806.65			
总计	44818.73	10				

6.5 对 3 种不同密度(单位:g/cm³)的木材: A_1 = 0.34~0.47 , A_2 = 0.48~0.52 , A_3 = 0.53~0.56;采用 3 种不同的加荷速度(单位:kg/(cm²·min)): B_1 = 600, B_2 = 2400, B_3 = 4200; 测得木材的抗压强度(单位:kg/cm²)如下:

		加荷速度			
		B_1	B_2	B_3	
	$A_{\rm l}$	3.72	3.90	4.02	
比重	A_2	5.22	5.24	5.08	
	A_3	5.28	5.74	5.54	

问: (1) 密度的不同对于木材的抗压强度是否有显著的影响? (显著水平 $\alpha = 0.05$)

(2) 加荷速度的不同对于木材的抗压强度是否有显著的影响? (显著水平 $\alpha = 0.05$)

解 这可以看作是一个不考虑交互作用的双因子方差分析问题。设在不同的加荷速度下不同密度木材的抗压强度为 $\xi_{ij} \sim N(\mu_{ij},\sigma^2)$,其中, $\mu_{ij} = \mu + \alpha_i + \beta_j$, i=1,2,3, j=1,2,3。

检验密度的不同对木材的抗压强度是否有显著影响,相当于要检验

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \alpha_3$.

检验加荷速度的不同对木材的抗压强度是否有显著影响,相当于要检验

$$H_{02}: \beta_1 = \beta_2 = \beta_3$$
 .

计算结果见下表:

	B_1	B_2	B_3	\overline{X}_{iullet}	$SS_{i\bullet}$
A_1	3.72	3.90	4.02	3.88	0.0456
A_2	5.22	5.24	5.08	5.18	0.0152
A_3	5.28	5.74	5.54	5.520	0.1064
$\overline{X}_{ullet j}$	4.74	4.96	4.88	$\overline{X} = 4.86$	$SS_B = 0.0744$
$SS_{ullet j}$	1.5624	1.8104	1.2152	$SS_A = 4.4952$	$SS_e = 0.0928$

方差分析表为:

来源	平方和	自由度	均方	F 值	分位数
A	4.4952	r-1=2	2.2476	96.88	$F_{0.95}(2, 4) = 6.94$
В	0.0744	s - 1 = 2	0.0372	1.60	$F_{0.95}(2, 4) = 6.94$
误差	0.0928	(r-1)(s-1) = 4	0.0232		
总和	4.6624	$r \ s - 1 = 8$			

因为 $F_A = 96.88 > 6.94 = F_{0.95}(2,4)$,所以拒绝 H_{01} ,密度的不同对于木材的抗压

强度有显著的影响;因为 $F_B=1.60<6.94=F_{0.95}(2,4)$,所以接受 H_{02} ,加荷速度的不同对于木材的抗压强度没有显著的影响。

6.6 在农业试验中,选择 4 个不同品种的小麦种植在 3 种不同的土壤上,每块试验田的面积都相等。各块试验田上得到的小麦产量(单位:kg)分别为:

		土壤			
		B_1	B_2	B_3	
	$A_{\rm l}$	26	25	24	
小麦	A_2	30	23	25	
小麦 品种	A_3	22	21	20	
	A_4	20	21	19	

问: (1) 品种的不同对于小麦产量是否有显著的影响? (显著水平 $\alpha = 0.05$)

(2) 土壤的不同对于小麦产量是否有显著的影响? (显著水平 $\alpha = 0.05$)

解 这可以看作是一个不考虑交互作用的双因子方差分析问题。设种在不同的土壤上不同品种小麦的产量为 $\xi_{i,i} \sim N(\mu_{i,i}, \sigma^2)$,其中, $\mu_{i,i} = \mu + \alpha_i + \beta_i$,i = 1, 2, 3, 4,j = 1, 2, 3 。

检验品种的不同对于小麦产量是否有显著影响,相当于要检验

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$ •

检验土壤的不同对于小麦产量是否有显著影响,相当于要检验

$$H_{02}: \beta_1 = \beta_2 = \beta_3$$
 .

计算结果见下表:

	B_1	B_2	B_3	$\overline{X}_{i\bullet}$	$SS_{i\bullet}$
A_1	26	25	24	25	2
A_2	30	23	25	26	26
A_3	22	21	20	21	2
A_4	20	21	19	20	2
$\overline{X}_{ullet j}$	24.5	22.5	22.0	$\overline{X} = 23$	$SS_B = 14$
$SS_{\bullet j}$	59	11	26	$SS_A = 78$	$SS_e = 18$

方差分析表为:

来源	平方和	自由度	均方	F 值	分位数
\boldsymbol{A}	$SS_A = 78$	r - 1 = 3	26	8.67	$F_{0.95}(3, 6) = 4.76$
В	$SS_B = 14$	s - 1 = 2	7	2.33	$F_{0.95}(2, 6) = 5.14$
误差	$SS_e = 18$	(r-1)(s-1)=6	3		
总和	$SS_T = 110$	$r \ s - 1 = 11$			

因为 $F_A = 8.67 > 4.76 = F_{0.95}(3,6)$,所以拒绝 H_{01} ,品种的不同对于小麦产量有显

著的影响;因为 $F_B=2.33<5.14=F_{0.95}(2,6)$,所以接受 H_{02} ,土壤的不同对于小麦产量没有显著的影响。

6.7 在某种化工产品的生产过程中,选择 3 种不同的浓度: A_1 =2% , A_2 = 4% , A_3 = 6% ; 4 种不同的温度: B_1 =10°C , B_2 =24°C , B_3 =38°C , B_4 =52°C ;每种浓度和温度的组合都重复试验 2 次,得到产品的收率(单位:%)如下:

			温	l度	
		B_1	$oldsymbol{B}_2$	B_3	B_4
	$A_{\rm l}$	10 , 14	11, 11	9 , 13	10 , 12
浓度	A_2	7,9	8, 10	7 , 11	6 , 10
	A_3	5 , 11	13, 14	12 , 13	10 , 14

- 问: (1) 浓度的不同对产品收率是否有显著的影响? (显著水平 $\alpha = 0.05$)
 - (2) 温度的不同对产品收率是否有显著的影响? (显著水平 $\alpha = 0.05$)
 - (3) 浓度与温度的交互作用对产品收率是否有显著的影响? (显著水平 $\alpha = 0.05$)
- **解** 这是一个考虑交互作用的双因子方差分析问题。浓度就是因子 A ,温度就是因子 B 。 设各种浓度与温度下的收率为 $\xi_{ij}\sim N(\mu_{ij},\sigma^2)$,其中, $\mu_{ij}=\mu+\alpha_i+\beta_j+\gamma_{ij}$, i=1,2,3 , j=1,2,3,4 。

检验浓度对产品收率是否有显著的影响,相当于要检验 H_{01} : $\alpha_1 = \alpha_2 = \alpha_3$ 。

检验温度对产品收率是否有显著的影响,相当于要检验 H_{02} : $\beta_1=\beta_2=\beta_3=\beta_4$ 。检验交互作用对产品收率是否有显著的影响,相当于要检验

$$H_{03}: \ \gamma_{11} = \gamma_{12} = \dots = \gamma_{34}$$
 .

计算结果见下表:

			因于	$\not\vdash B$		\overline{X}_{iullet}	$SS_{i\bullet}$	
		B_1	B_2	B_3	B_4	A _{i•}	55 _i •	
因	A_1	12/8	11/0	11/8	11/2	11.25	1.50	
子	A_2	8/2	9/2	9/8	8/8	8.50	2.00	
A	A_2	8/ /18	13.5/0.5	12.5/0.5	12/8	11.50	35.00	
\bar{X}	• j	9.3333	11.1667	10.8333	10.3333	$\overline{X} = 10.4167$	$SS_B = 11.50$	
SS	$S_{\bullet j}$	21.3333	20.3333	12.3333	17.3333	$SS_A = 44.333$	$SS_{AB} = 27.00$	

$$SS_e = \sum_{i=1}^r \sum_{j=1}^s SS_{ij} = 18.00 + 1.62 + 8.82 + 16.82 + 2.88 + 25.92 = 74.06$$
.

方差分析表为:

来源	平方和	自由度	均方	F 值	分位数
A	44.3333	r - 1 = 2	22.1667	4.09	$F_{0.95}(2, 12) = 3.89$
В	11.50	s - 1 = 3	3.8333	0.71	$F_{0.95}(3,12) = 3.49$
$A \times B$	27.00	(r-1)(s-1) = 6	4.5000	0.83	$F_{0.95}(6, 12) = 3.00$
误差	65.00	r s (t-1) = 12	5.4167		
总和	147.8333	r s t - 1 = 23			

因为 $F_A = 4.09 > 3.89 = F_{1-\alpha}(r-1, r \ s \ (t-1))$,所以拒绝 H_{01} ,浓度的不同对产品收率有显著的影响。

因为 $F_B=0.71<3.49=F_{1-\alpha}(s-1,r\;s\;(t-1))$,所以接受 H_{02} ,温度的不同对产品收率没有显著的影响。

因为 $F_{AB}=0.83<3.00=F_{1-\alpha}((r-1)(s-1),r\ s\ (t-1))$,所以拒绝 H_{03} ,浓度与温度的交互作用对产品收率没有显著的影响。

6.8 某化工厂为了提高塑料大红 R 颜料的收率,对合成过程中的酰氯化反应条件进行 3 因子 3 水平正交试验,所取的因子和水平分别为:

因子 A 是酰氯化温度, A_1 是 85°C , A_2 是 95°C , A_3 是 105°C ;

因子 B 是 SOCl₂用量, B_1 是 4.2 ml , B_2 是 4.6 ml , B_3 是 5.0 ml ;

因子 C 是催化剂用量, C_1 是 $0.2 \,\mathrm{ml}$, C_2 是 $0.5 \,\mathrm{ml}$, C_3 是 $0.8 \,\mathrm{ml}$ 。

选用正交表 $L_9(3^4)$,将因子 A, B, C 依次安排在第 1, 2, 3 列。按照设计做试验,各次试验中,塑料大红 R 颜料的收率(单位:%)为:

表头	A	В	С	1160 201
列号 试验号	1	2	3	收率
1	1	1	1	72.0
2	1	2	2	82.8
3	1	3	3	77.5
4	2	1	2	73.5
5	2	2	3	80.4
6	2	3	1	87.7
7	3	1	3	70.7
8	3	2	1	87.2
9	3	3	2	82.8

要求进行不考虑交互作用的正交试验设计,列出方差分析表,检验因子 A, B, C 的作用是否显著(显著水平 $\alpha = 0.05$),并且找出最优水平组合。

- 解 (1)选正交表。按照 r=3, $m \ge 3$,n 尽可能小的原则,选用 $L_{o}(3^4)$ 。
 - (2) 设计表头。将因子 A, B, C 依次安排在第 1, 2, 3 列。
 - (3) 按照设计做试验,取得试验观测值。试验得到的观测值见下表。
 - (4) 求各列与各水平对应的均值和各列的平方和。计算结果见下表。

表头	A	В	C		观测值(收率)
列号 试验号	1	2	3	4	$X_{\scriptscriptstyle k}$
1	1	1	1	1	72.0
2	1	2	2	2	82.8
3	1	3	3	3	77.5
4	2	1	2	3	73.5
5	2	2	3	1	80.4
6	2	3	1	2	87.7
7	3	1	3	2	70.7
8	3	2	1	3	87.2
9	3	3	2	1	82.8
\overline{X}_{1j}	77.4333	72.0667	82.3	78.4	4 11
\overline{X}_{2j}	80.5333	83.4667	79.7	80.4	$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k = 79.4$
\overline{X}_{3j}	80.2333	82.6667	76.2	79.4	A -
SS_j	17.54	242.96	56.22	6.00	$SS_T = \sum_{j=1}^m SS_j = 79.4$

(5) 列方差分析表,作显著性检验。

来源	平方和	自由度	均方	F 值	分位数
A	$SS_A = 17.54$	r - 1 = 2	8.77	$F_A = 2.92$	$F_{0.95}(2, 2) = 19.0$
В	$SS_B = 242.96$	r - 1 = 2	121.48	$F_{B} = 40.49$	$F_{0.95}(2, 2) = 19.0$
C	$SS_C = 56.22$	r - 1 = 2	28.11	$F_{C} = 9.37$	$F_{0.95}(2, 2) = 19.0$
误差	$SS_e = 6.00$	8-2-2-2=2	3.00		
总和	$SS_T = 322.72$	n-1 = 8			

因为 $F_{\scriptscriptstyle A}=2.92 < 19.0 = F_{\scriptscriptstyle 1-\alpha}(f_{\scriptscriptstyle A},f_{\scriptscriptstyle e})$,所以因子 A (酰氯化温度)作用不显著。

因为 $F_{\scriptscriptstyle B}=40.49>19.0=F_{\scriptscriptstyle 1-\alpha}(f_{\scriptscriptstyle B},\,f_{\scriptscriptstyle e})$,所以因子 B (SOCl $_{\scriptscriptstyle 2}$ 用量)作用显著。

因为 $F_C = 9.37 < 19.0 = F_{1-\alpha}(f_C, f_e)$,所以因子 C (催化剂用量)作用不显著。 (6) 寻找最优水平组合。

对于因子 A ,因为 A_1 的均值 $\overline{X}_{11}=77.4333$, A_2 的均值 $\overline{X}_{21}=80.5333$, A_3 的均值 $\overline{X}_{31}=80.2333$,其中 $\overline{X}_{21}=80.5333$ 最大,所以 A_2 是最优水平。

对于因子 B ,因为 B_1 的均值 $\overline{X}_{12}=72.0667$, B_2 的均值 $\overline{X}_{22}=83.4667$, B_3 的均值 $\overline{X}_{32}=82.6667$,其中 $\overline{X}_{22}=83.4667$ 最大,所以 B_2 是最优水平。

对于因子 C ,因为 C_1 的均值 $\overline{X}_{13}=82.3$, C_2 的均值 $\overline{X}_{23}=79.7$, C_3 的均值 $\overline{X}_{33}=76.2$,其中 $\overline{X}_{13}=82.3$ 最大,所以 C_1 是最优水平。

把 3 个因子的最优水平组合起来,就得到最优水平组合 (A_2,B_2,C_1) ,即酰氯化温度为 95°C ,SOCl $_2$ 用量为 4.6 ml ,催化剂用量为 0.2 ml 。

6.9 在梳棉机上纺粘锦混纺纱,为了提高质量,减少棉结粒数,进行 3 因子 2 水平正交试验。所取的因子和水平分别为:

因子 A 是金属针布, A_1 是日本产品, A_2 是青岛产品;

因子 B 是产量水平, B_1 是 6 kg , B_2 是 10 kg ;

因子 C 是锡林速度, C_1 是 238 转 / 分, C_2 是 320 转 / 分。

在进行正交试验设计时,考虑金属针布与锡林速度的交互作用 $A \times C$ 。

选用正交表 $L_8(2^7)$,将因子 A,B,C 依次安排在第 1,2,4 列。按照设计做试验,各次试验中,得到棉结粒数为:

表头	A	В	С	
列号 试 验号	1	2	4	棉结粒数
1	1	1	1	0.30
2	1	1	2	0.35
3	1	2	1	0.20
4	1	2	2	0.30
5	2	1	1	0.15
6	2	1	2	0.50
7	2	2	1	0.15
8	2	2	2	0.40

要求进行考虑交互作用的正交试验设计,列出方差分析表,检验因子 A,B,C 以及 交互作用 $A\times C$ 是否显著(显著水平 $\alpha=0.05$) ,并且找出最优水平组合(棉结粒数 越少越好) 。

- 解 (1) 选正交表。按照 r=2, $m\geq 4$, n 尽可能小的原则,选用 $L_8(2^7)$ 。
- (2) 设计表头。根据题意和查交互作用表,可将因子 A, B, C 安排在第 1, 2, 4 列,交互作用 $A \times C$ 安排在第 5 列。

- (3) 按照设计做试验,取得试验观测值。试验得到的观测值见下表。
- (4) 求各列与各水平对应的均值和各列的平方和。计算结果见下表。

表头	A	В		С	$A \times C$			观测值
列号 试 验号	1	2	3	4	5	6	7	(棉结粒数) X_k
1	1	1	1	1	1	1	1	0.30
2	1	1	1	2	2	2	2	0.35
3	1	2	2	1	1	2	2	0.20
4	1	2	2	2	2	1	1	0.30
5	2	1	2	1	2	1	2	0.15
6	2	1	2	2	1	2	1	0.50
7	2	2	1	1	2	2	1	0.15
8	2	2	1	2	1	1	2	0.40
\overline{X}_{1j}	0.2875	0.3250	0.3000	0.2000	0.3500	0.2875	0.3125	
\overline{X}_{2j}	0.3000	0.2625	0.2875	0.3875	0.2375	0.3000	0.2750	X = 0.29375
SS_j	0.0003125	0.0078125	0.0003125	0.0703125	0.0253125	0.0003125	0.0028125	$SS_T = 0.1071875$

(5) 列方差分析表,作显著性检验。

来源	平方和	自由度	均方	F 值	分位数
\boldsymbol{A}	$SS_A = 0.0003125$	r - 1 = 1	0.0003125	$F_A = 0.27$	$F_{0.95}(1,3) = 10.1$
В	$SS_B = 0.0078125$	r - 1 = 1	0.0078125	$F_B = 6.82$	$F_{0.95}(1,3) = 10.1$
C	$SS_C = 0.0703125$	r - 1 = 1	0.0703125	$F_C = 61.36$	$F_{0.95}(1,3) = 10.1$
$A \times C$	$SS_{AC} = 0.0253125$	$(r-1)^2 = 1$	0.0253125	$F_{AC} = 22.09$	$F_{0.95}(1,3) = 10.1$
误差	$SS_e = 0.0034375$	7-1-1-1=3	0.0011458		
总和	$SS_T = 0.1071875$	n-1 = 7			

因为 $F_{\scriptscriptstyle A}=0.27<10.1=F_{\scriptscriptstyle 1-lpha}(f_{\scriptscriptstyle A},f_{\scriptscriptstyle e})$,所以因子 A (金属针布)作用不显著。

因为 $F_{\scriptscriptstyle B}=6.82 < 10.1 = F_{\scriptscriptstyle 1-\alpha}(f_{\scriptscriptstyle B},f_{\scriptscriptstyle e})$,所以因子 B (产量水平)作用不显著。

因为 $F_C = 61.36 > 10.1 = F_{1-\alpha}(f_C, f_e)$,所以因子 C (锡林速度)作用显著。

因为 $F_{AC}=22.09>10.1=F_{1-\alpha}(f_{AC},f_e)$,所以 A 与 C 的交互作用 $A\times C$ 显著。

(6) 寻找最优水平组合。

对于因子 A ,因为 A_1 的均值 $\overline{X}_{11}=0.2875$, A_2 的均值 $\overline{X}_{21}=0.3000$,其中 $\overline{X}_{11}=0.2875$ 最小,所以 A_1 是最优水平。

对于因子 B ,因为 $B_{\rm l}$ 的均值 $\overline{X}_{\rm l2}=0.3250$, $B_{\rm l}$ 的均值 $\overline{X}_{\rm l2}=0.2625$,其

中 $\overline{X}_{22} = 0.2625$ 最小, 所以 B_2 是最优水平。

对于因子 C ,因为 C_1 的均值 $\overline{X}_{14}=0.2000$, C_2 的均值 $\overline{X}_{24}=0.3875$,其中 $\overline{X}_{14}=0.2000$ 最大,所以 C_1 是最优水平。

如果不考虑交互作用,把 3 个因子的最优水平简单地组合起来,可以得到最优水平组合 (A_1, B_2, C_1) 。下面考虑交互作用。

对于交互作用 $A \times C$, 各种双因子水平组合的均值为:

组合	均值	组合	均值
	$\frac{X_1 + X_3}{2} = \frac{0.30 + 0.20}{2} = 0.25$		
(A_2,C_1)	$\frac{X_5 + X_7}{2} = \frac{0.15 + 0.15}{2} = 0.15$	(A_2, C_2)	$\frac{X_6 + X_8}{2} = \frac{0.50 + 0.40}{2} = 0.45$

其中,0.15 最小,所以 (A_2, C_1) 是 $A \times C$ 的最优双因子水平组合。

把上面得到的各个单因子和双因子的最优水平组合,综合起来考虑(特别考虑到单因子A不显著,交互作用 $A\times C$ 十分显著),可以确定,3个因子的最优水平组合为 (A_2,B_2,C_1) ,即金属针布应选用青岛产品,产量水平应选用 $10\,\mathrm{kg}$,锡林速度应选用 238 转 / 分。

6.10 某农药厂生产一种农药,为了提高产品收率,进行 4 因子 2 水平正交试验。所取的因子和水平分别为:

因子 A 是反应温度, A_1 是 60° C , A_2 是 80° C ;

因子 B 是反应时间, B_1 是 2.5 小时 , B_2 是 3.5 小时 ;

因子 C 是某两种原料的配比, C_1 是 1.1/1 , C_2 是 1.2/1 ;

因子 D 是真空度, D_1 是 500 mmHg , D_2 是 600 mmHg 。

在进行正交试验设计时,考虑反应温度与反应时间的交互作用 $A \times B$ 。

选用正交表 $L_8(2^7)$,将因子 A,B,C,D 依次安排在第 1,2,4,7 列。按照设计做试验,各次试验中,得到农药产品的收率(单位:%)为:

表头	\boldsymbol{A}	В	C	D	114 74
列号 试验号	1	2	4	7	收率
1	1	1	1	1	86
2	1	1	2	2	95
3	1	2	1	2	91
4	1	2	2	1	94

5	2	1	1	2	91
6	2	1	2	1	96
7	2	2	1	1	83
8	2	2	2	2	88

要求进行考虑交互作用的正交试验设计,列出方差分析表,检验因子 A, B, C, D 以及交互作用 $A \times B$ 是否显著(显著水平 $\alpha = 0.05$),并且找出最优水平组合。

- 解 (1) 选正交表。按照 r=2, $m \ge 5$, n 尽可能小的原则, 选用 $L_{s}(2^{7})$ 。
- (2) 设计表头。根据题意和查交互作用表,可将因子 A, B, C, D 安排在第 1, 2, 4, 7 列,交互作用 $A \times B$ 安排在第 3 列。
 - (3) 按照设计做试验,取得试验观测值。试验得到的观测值见下表。
 - (4) 求各列与各水平对应的均值和各列的平方和。计算结果见下表。

表头	A	В	$A \times B$	С			D	观测值
列号 试 验号	1	2	3	4	5	6	7	(收率) X _k
1	1	1	1	1	1	1	1	86
2	1	1	1	2	2	2	2	95
3	1	2	2	1	1	2	2	91
4	1	2	2	2	2	1	1	94
5	2	1	2	1	2	1	2	91
6	2	1	2	2	1	2	1	96
7	2	2	1	1	2	2	1	83
8	2	2	1	2	1	1	2	88
\overline{X}_{1j}	91.50	92.00	88.00	87.75	90.25	89.75	89.75	<u></u>
\overline{X}_{2j}	89.50	89.0	93.00	93.25	90.75	91.25	91.25	$\overline{X} = 90.5$
SS_j	8.0	18.0	50.0	60.5	0.5	4.5	4.5	$SS_T = 146.0$

(5) 列方差分析表,作显著性检验。

来源	平方和	自由度	均方	F 值	分位数
\boldsymbol{A}	$SS_A = 8.0$	r - 1 = 1	8.0	$F_A = 3.2$	$F_{0.95}(1, 2) = 18.5$
В	$SS_B = 18.0$	r - 1 = 1	18.0	$F_{B} = 7.2$	$F_{0.95}(1, 2) = 18.5$
C	$SS_C = 60.5$	r - 1 = 1	60.5	$F_C = 24.2$	$F_{0.95}(1, 2) = 18.5$
D	$SS_D = 4.5$	r - 1 = 1	4.5	$F_D = 1.8$	$F_{0.95}(1, 2) = 18.5$
$A \times B$	$SS_{AB} = 50.0$	$(r-1)^2 = 1$	50.0	$F_{AB} = 20.0$	$F_{0.95}(1, 2) = 18.5$
误差	$SS_e = 5.0$	7-1-1-1-1=2	2.5		
总和	$SS_T = 146.0$	n-1 = 7			

因为 $F_A = 3.20 < 18.5 = F_{1-\alpha}(f_A, f_e)$,所以因子A(反应温度)作用不显著。

因为 $F_{\scriptscriptstyle B}=7.20<18.5=F_{\scriptscriptstyle 1-\alpha}(f_{\scriptscriptstyle B},f_{\scriptscriptstyle e})$,所以因子 B (反应时间)作用不显著。

因为 $F_C = 24.20 > 18.5 = F_{1-\alpha}(f_C, f_e)$, 所以因子 C (原料配比)作用显著。

因为 $F_D = 1.80 < 18.5 = F_{1-\alpha}(f_C, f_e)$, 所以因子 D (真空度)作用不显著。

因为 $F_{AB}=20.00>18.5=F_{1-\alpha}(f_{AB},f_e)$,所以A与B的交互作用 $A\times B$ 显著。 (6) 寻找最优水平组合。

对于因子 A ,因为 A_1 的均值 $\overline{X}_{11}=91.5$, A_2 的均值 $\overline{X}_{21}=89.5$,其中 $\overline{X}_{11}=91.5$ 最大,所以 A_1 是最优水平。

对于因子 B ,因为 B_1 的均值 $\overline{X}_{12}=92.0$, B_2 的均值 $\overline{X}_{22}=89.0$,其中 $\overline{X}_{12}=92.0$ 最小,所以 B_1 是最优水平。

对于因子 C ,因为 C_1 的均值 $\overline{X}_{14}=87.75$, C_2 的均值 $\overline{X}_{24}=93.25$,其中 $\overline{X}_{24}=93.25$ 最大,所以 C_2 是最优水平。

对于因子 D ,因为 D_1 的均值 $\overline{X}_{17}=89.75$, D_2 的均值 $\overline{X}_{27}=91.25$, 其中 $\overline{X}_{27}=91.25$ 最大,所以 D_2 是最优水平。

如果不考虑交互作用,把 4 个因子的最优水平简单地组合起来,可以得到最优水平组合 (A_1,B_1,C_2,D_2) 。下面考虑交互作用。

对于交互作用 $A \times B$, 各种双因子水平组合的均值为:

组合	均值	组合	均值	
(A_1, B_1)	$\frac{X_1 + X_2}{2} = \frac{86 + 95}{2} = 90.5$	(A_1, B_2)	$\frac{X_3 + X_4}{2} = \frac{91 + 94}{2} = 92.5$	
(A_2, B_1)	$\frac{X_5 + X_6}{2} = \frac{91 + 96}{2} = 93.5$	(A_2, B_2)	$\frac{X_7 + X_8}{2} = \frac{83 + 88}{2} = 85.5$	

其中,93.5 最大,所以 (A_2, B_1) 是 $A \times B$ 的最优双因子水平组合。

把上面得到的各个单因子的最优水平和双因子的最优水平组合,综合起来考虑(特别考虑到单因子 A 不显著,交互作用 $A \times B$ 十分显著),可以确定,4 个因子的最优水平组合是 (A_2,B_1,C_2,D_2) ,即反应温度为 80° C ,反应时间为 2.5 小时,两种原料的配比为 1.2/1,真空度为 600 mmHg 。