Logica e Algebra 27 Luglio 2017 Parte di Algebra

Esercizio 1 Data la relazione R su $A = \{1, 2, 3, 4, 5, 6\}$, definita dalla seguente matrice d'incidenza:

$$R = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{array}\right)$$

- 1. Enunciare le proprietà soddisfatte dalla relazione R;
- 2. Costruire la sua chiusura di equivalenza.
- 3. Esiste la chiusura d'ordine \leq di R? In caso affermativo, disegnare il suo diagramma di Hasse. (A, \leq) è un reticolo.
- 4. Può esiste una funzione g contenuta in R? In caso, quante ce ne sono? Quante sono iniettive e quante suriettive?

Traccia di soluzione.

- 1. R è seriale perché in ogni riga della matrice di incidenza c'è un 1, non è riflessiva in quanto la diagonale principale della matrice di incidenza contiene degli 0, non è simmetrica in quanto la matrice di incidenza non è simmetrica, è antisimmetrica perche se nella posizione (i,j) della matrice c'è un 1 nella posizione (j,i) c'è uno 0, non è transitiva in quanto ad esempio (1,4) appartiene ad R, (4,2) appartiene ad R e (1,2) non sta in R
- 2. La chiusura di equivalenza di R è la chiusura transitiva della chiusura simmetrica e riflessiva di R. La chiusura simmetrica e riflessiva di R ha come matrice di incidenza

$$A = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

e si verifica facilmente che A^3 è la matrice i cui elementi sono tutti 1, per cui la chiusura universale di R è la relazione universale. (Facendo il grafo di incidenza si poteva ottenere facilmente lo stesso risultato.)

3. La chiusura d'ordine \leq di R può esistere in quanto R è antisimmetrica. Si deve costruire la chiusura riflessiva e transitiva di R e verificare che conservi l'antisimmetria. La chiusura riflessiva e transitiva di R ha come matrice di incidenza

$$B = \left(\begin{array}{cccccc} 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

e rimane antisimmetrica per cui è la matrice di incidenza della chiusura d'ordine di R. Il diagramma di Hasse di (A, \leq) è

e (A, \leq) è un reticolo.

4. Poiché in ogni riga di R ci sono degli 1 esistono funzioni contenute in R. Poiché ci sono due righe con due 1 ci sono 4 possibili funzioni contenute in R. Nessuna di esse è suriettiva in quanto in nessuna di esse 5 ha controimmagini. Nessuna è iniettiva in quanto ogni funzione da X ad X con X finito è iniettiva se e solo se è suriettiva.

Esercizio 2 Dato l'insieme

$$\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2}, s, r \in \mathbb{Q}\}\$$

- 1. Mostrare che $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ con l'usuale somma e prodotto di numeri reali è un anello
- 2. Sia $\varphi: \mathbb{Q}(\sqrt{2}) \to \mathbb{R}$ la funzione definita da $\varphi(r+s\sqrt{2}) = r+s$ Provare che φ è un omomorfismo tra i gruppi $(\mathbb{Q}(\sqrt{2},+) \ e \ (\mathbb{R},+)$. È anche un omomorfismo tra gli anelli $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ e $(\mathbb{R},+,\cdot)$?

Traccia di soluzione.

1. Per mostrare che $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ con l'usuale somma e prodotto di numeri reali è un anello, basta verificare che è un sottoanello del campo dei reali. Si ha subito che presi comunque $r+s\sqrt{2},t+v\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ si ha $(r+s\sqrt{2})-(t+v\sqrt{2})=(r-t)+(s-v)\sqrt{2}$ e $(r+s\sqrt{2})\cdot(t+v\sqrt{2})=(rt+2sv)+(rv+st)\sqrt{2}$ che stanno entrambi in $\mathbb{Q}(\sqrt{2})$ in quanto somma e prodotti di numeri razionali sono razionali. Dunque $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ è un sottoanello del campo dei reali.

2

2. La $\varphi: \mathbb{Q}(\sqrt{2}) \to \mathbb{R}$ la funzione definita da $\varphi(r+s\sqrt{2})=r+s$ è un omomorfismo tra i gruppi $(\mathbb{Q}(\sqrt{2}),+)$ e $(\mathbb{R},+)$ in quanto $\varphi(r+s\sqrt{2})+\varphi(t+v\sqrt{2})=(r+s)+(t+v)=(r+t)+(s+v)=\varphi((r+t)+(s+v)\sqrt{2}),$ per cui il risultato segue dalla commutatività della somma in \mathbb{Q} . Non è un omomorfismo tra gli anelli in quanto ad esempio $\varphi(\sqrt{2}\sqrt{2})=2$ mentre $\varphi(\sqrt{2})\varphi(\sqrt{2})=1$.