

Prévision du rendement

éolien chez

Komlan Katakou &

Jana Taleb

2024 - 2025

Pourquoi ce projet?

La transition énergétique

Ressource abondante, renouvelable et bien répartie sur le territoire français.

Prédire l'indice de rendement éolien à partir des données météorologiques et géographiques sur 10 zones climatiques

Objectif

Régime de fonctionnement des éoliennes

En dessous de la vitesse de démarrage, pas de production ; au-delà, la puissance augmente rapidement avec la vitesse du vent.

2 Plein régime

Puissance nominale

atteinte (à V ≈ 12 m/s):

production maximale

constante au-delà de cette

vitesse jusqu'à la vitesse

d'arrêt.

Au-delà de la vitesse d'arrêt, l'éolienne se met en arrêt de sécurité pour éviter les dommages.

Deux indicateurs techniques

Puissance installée (pi)

Définition : puissance maximale que produirait l'installation dans des conditions de vent idéales

- Rôle: sert de référence technique pour évaluer la capacité du parc, indépendamment des variations météo.
- **Remarque** : il s'agit d'une valeur théorique, différente de la production réelle observée.

Facteur de charge (FC)

 Définition : ratio entre la production réelle et la production maximale théorique

FC = eolien / pi

- **Utilité** : indicateur clé pour évaluer le rendement des éoliennes, utilisé par RTE et d'autres organismes énergétiques.
- Interprétation : reflète le rendement réel de l'éolienne et l'adéquation entre l'équipement et le vent local.

Le plan

Les données

2 Etude descriptive

La démarche de RTE

4 Notre apport

Conclusion et Perspectives

Les données

Grille de coordonnées géographiques (Longitude, Latitude) de résolution 6351 x 6351 points et Classification en dix zones climatiques

Les données

Données de production

Quantité d'énergie électrique produite par l'éolien

eCO2mix_RTE_Annuel-Definitif_2017.xls, ...

С	D	E	F	G	Н	I	J	K	L
Date	Heures	Consommation	Prévision J-1	Prévision J	Fioul	Charbon	Gaz	Nucléaire	Eolien
2017-01-01	00:00	76259	76100	76500	164	1579	7617	53528	267
2017-01-01	00:15		75500	75800					
2017-01-01	00:30	74981	74900	75100	601	1506	6626	53456	311
2017-01-01	00:45		74150	74250					
2017-01-01	01:00	72912	73400	73400	596	1291	6593	53431	351
2017-01-01	01:15		73650	73650					
2017-01-01	01:30	72682	73900	73900	587	1028	6595	53429	367
2017-01-01	01:45		73600	73600					
2017-01-01	02:00	72166	73300	73300	599	1024	6548	53381	360
2017-01-01	02:15		72350	72550					
2017-01-01	02:30	71790	71400	71800	634	1056	6404	53322	354
2017-01-01	02:45		70450	70750					
2017-01-01	03:00	69709	69500	69700	629	993	6240	53010	340
2017-01-01	03:15		68750	68900					
2017-01-01	03:30	68048	68000	68100	480	1046	5841	53212	341
2017-01-01	03:45		67250	67300					
2017-01-01	04:00	66476	66500	66500	400	937	5625	52940	376
2017-01-01	04:15		65900	66000					
2017-01-01	04:30	65338	65300	65500	339	1026	5684	53239	392
2017-01-01	04:45		65100	65100					
2017-01-01	05:00	64321	64900	64700	179	1014	5676	53200	410
2017-01-01	05:15		65000	64750					
2017-01-01	05:30	64364	65100	64800	194	1046	5719	53264	428
2017-01-01	05:45		65000	64550					

Les données

Données météorologiques

Composantes U et V de la vitesse du vent enregistrées toutes les heures en chaque 3 point d'une grille de coordonnées de résolution 71 x 51 points

wind_2017.nc, ..., wind_2022.nc

2 variables (excluding dimension variables):
 short u100[longitude,latitude,time]
 scale_factor: 0.000829374955909171
 add_offset: 4.05863110414802
 _FillValue: -32767
 missing_value: -32767
 units: m s**-1
 long_name: 100 metre U wind component
 short v100[longitude,latitude,time]
 scale_factor: 0.00080198685220234
 add_offset: -0.96512553413655
 _FillValue: -32767
 missing_value: -32767
 units: m s**-1
 long_name: 100 metre V wind component

3 dimensions:

longitude Size:71
 units: degrees_east
 long_name: longitude
latitude Size:51

units: degrees_north long_name: latitude

time Size:8760

units: hours since 1900-01-01 00:00:00.0

long_name: time calendar: gregorian

Structure du fichier wind_2017.nc

Format NetCDF

- Utilisé pour stocker des données multidimensionnelles sous l'extension .nc
- Package ncdf4: permet de manipuler des fichiers de la version 4 du format NetCDF, très adaptée pour des ensembles de données très grands.

Etude descriptive: Approche saisonnière

- · Hiver : vitesses élevées sauf sur la côte sud-ouest et la frontière italo-suisse.
- **Eté** : vitesses plus faibles surtout dans la moitié sud.
- · Toute l'année : de très grandes vitesses de vent sur le pourtour méditerranéen.

Etude descriptive: Approche zonale

Distribution de la vitesse du vent par zone

Constat : différence significative d'une zone à l'autre.

Approche zonale: Test statistique

Toutes les zones ont-elles la même distribution de la vitesse du vent (**Hypothèse H0**) ou non (**Hypothèse H1**)?

Test de Kruskal Wallis et de Dunn

Modélisation statistique: GAMs

 Les GAMs autorisent des relations non linéaires entre les prédicteurs et la variable réponse.

$$g(\mathbb{E}(Y_i)) = X_i^* \theta + f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_p(x_{ip})$$

- \bullet Estimation des f_i : Splines de régression
- Ajustement du modèle : Maximisation de vraisemblance pénalisée (optimisation de la pénalisation par validation croisée)

Partie 1

Le code

1

Agrégation horaire des données de production

Traitement des données du vent : Extraction des composantes U et V Agrégation zonale

2 de

3

Modélisation GAM (eolien ~ ff100) Estimation de la puissance installée

RTE

Résultats de l'estimation

Production réelle et Puissance installée

Ratio eolien / pi (FC)

Partie 2

Le code

1

Définition de la métrique d'évaluation (RMSE)

Récupération des données de production, de puissance installée, de vitesse du vent par zone et calcul du FC

2 de

3

Modélisation GAM par validation croisée et analyse des résidus

Listing 6.1 - Calcul du RMSE entre les colonnes FC et prev

RTE

Amélioration des performances

Le modèle à 5 zones

Idée : voir l'impact du nombre de zones sur la qualité des prédictions.

Le découpage ci-contre de Météo France est une classification zonale selon la vitesse du vent à 50 m d'altitude. Il faudra donc appliquer une transformation sur nos vitesses car elles sont mesurées à 100 m.

$$u_x = u_r \left(\frac{z_x}{z_r}\right)^{\alpha}$$

Résultat obtenu:

Listing 7.4 – RMSE du modèle GAM à 5 zones

Amélioration des performances Transformation des prédicteurs

Puisque la production éolienne est proportionnelle au cube de la vitesse du vent, une approche convenable serait d'expliquer le FC à partir du cube de la vitesse du vent sur chacune des zones.

En transformant les prédicteurs et en reprenant la modélisation GAM comme précédemment, on obtient la RMSE donnée ci-après.

Listing 7.6 – RMSE du modèle GAM à 10 covariables transformées

Amélioration des performances

Le constat

Corrélation

0.5

0.0

-0.5

Pas raisonnable d'ignorer la dépendance spatiale!

Amélioration des performances Décorrélation par ACP

Amélioration des performances Modèles de régularisation

- Ridge (L2)
- Lasso (L1)
- Elastic-Net (L1 + L2)

Listing 7.10 – RMSE des modèles de régularisation

```
print(c(mean(erreurs$rmse_elastic), mean(erreurs$rmse_lasso), mean(erreurs$rmse_ridge)))
[1] 0.04066285 0.04087566 0.04532456
```

Amélioration des performances Redécoupage en 20 zones

On reprend le découpage de Météo France et on refait le zonage à des intervalles plus fins selon la vitesse du vent.. Par exemple, 20 zones comme sur la carte ci-contre.

En reprenant la modélisation comme précédemment, on obtient finalement une RMSE de 0.0004, soit 100 fois mieux que le modèle de RTE.

Listing 7.11 – RMSE du modèle à 20 zones

Conclusion et Perspectives

- Ce qu'on a appris : gérer des données massives dans un contexte réel, manipuler des packages variés et des fichiers de diverses extensions
 - **Ce qu'on a apporté** : des améliorations pour des prédictions plus précises, allant jusqu'à 100 fois mieux que le modèle de RTE
 - PAutres approches à explorer : Modèles de Machine Learning, Deep Learning (RNN) et autres stratégies de découpage connexe

Merci pour votre attention

