Matrices bistochastiques

Jean Etienne ROMBALDI

4 décembre 2012

Table des matières

Mat	trices bistochastiques	1
1.1	Ensembles convexes, polyèdres convexes	1
1.2	Enveloppe convexe, théorème de Carathéodory	2
1.3	Le théorème de projection sur un convexe fermé dans un espace de Hilbert	5
1.4	Le théorème de Krein-Milman	7
1.5	Matrices bistochastiques	11
1.6	Exercices	15
	1.1 1.2 1.3 1.4 1.5	Matrices bistochastiques 1.1 Ensembles convexes, polyèdres convexes

Matrices bistochastiques

1.1 Ensembles convexes, polyèdres convexes

On désigne, pour ce paragraphe, par E un espace vectoriel réel et on désigne par E^* le dual algébrique de E, à savoir l'espace vectoriel des formes linéaires sur E.

Si a, b sont deux éléments de E, on note [a, b] le segment d'extrémités a, b, à savoir la partie de E définie par :

$$[a, b] = \{(1 - \lambda) a + \lambda b \mid 0 \le \lambda \le 1\}.$$

Si E est un espace vectoriel normé, alors un segment dans E est fermé.

Définition 1.1 On dit qu'une partie C de E est convexe, si pour tout couple (a,b) d'éléments de E, le segment [a,b] est contenu dans E.

Remarque 1.1 On vérifie aisement qu'une intersection d'ensembles convexes dans E est convexe.

Remarque 1.2 Dans un espace vectoriel normé, l'adhérence d'un convexe est convexe. En effet si C est convexe et $a = \lim_{k \to +\infty} a_k$, $b = \lim_{k \to +\infty} b_k$ sont dans l'adhérence \overline{C} de C, les a_k et b_k étant dans C, on a pour tout réel λ compris entre 0 et 1:

$$(1 - \lambda) a + \lambda b = \lim_{k \to +\infty} ((1 - \lambda) a_k + \lambda b_k) \in \overline{C}$$

Remarque 1.3 Si F est un autre espace vectoriel et u une application linéaire de E dans F, alors pour tout convexe C dans E [resp. dans F] l'image directe [resp. l'image réciproque] de C par u est un convexe de F [resp. E]. Ces résultats se déduisent immédiatement de la linéarité de u.

Cette remarque nous permet de donner les exemples suivants de parties convexes.

Exemple 1.1 Si φ est une forme linéaire non nulle sur E, alors pour tout réel α l'ensemble :

$$H=\varphi^{-1}\left(\alpha\right)=\left\{ x\in E\mid\varphi\left(x\right)=\alpha\right\}$$

est convexe dans E comme image réciproque du convexe $\{\alpha\}$ de \mathbb{R} par l'application linéaire φ .

On dit que H est l'hyperplan affine d'équation $\varphi(x) = \alpha$.

Exemple 1.2 De manière analogue, pour tout $\varphi \in E^* \setminus \{0\}$, les ensembles $\varphi^{-1}([\alpha, +\infty[)])$ et $\varphi^{-1}([-\infty, \alpha])$ [resp. $\varphi^{-1}([\alpha, +\infty[)])$] et $\varphi^{-1}([-\infty, \alpha])$] sont convexes dans H.

On dit que ces ensembles sont les demi espaces fermés [resp. ouverts] limités par H. Dans ce qui suit, si H est un hyperplan affine d'équation $\varphi(x) = \alpha$, on note :

$$\begin{cases} H^+ &= \varphi^{-1}\left([\alpha,+\infty[\right) = \left\{x \in E \mid \varphi\left(x\right) \geq \alpha\right\}, \\ H^{+,*} &= \varphi^{-1}\left([\alpha,+\infty[\right) = \left\{x \in E \mid \varphi\left(x\right) > \alpha\right\}, \\ H^- &= \varphi^{-1}\left([-\infty,\alpha]\right) = \left\{x \in E \mid \varphi\left(x\right) \leq \alpha\right\}, \\ H^{-,*} &= \varphi^{-1}\left([-\infty,\alpha[\right) = \left\{x \in E \mid \varphi\left(x\right) < \alpha\right\}, \end{cases}$$

les demi espaces fermés et ouverts limités par H.

Remarque 1.4 En dimension finie, l'application $x \mapsto \varphi(x) - \alpha$ est continue et en conséquence les demi-espaces H^+ et H^- [resp. $H^{+,*}$ et $H^{-,*}$] sont biens bien des fermés [resp. ouverts] de E.

Définition 1.2 On appelle polyèdre dans un espace vectoriel réel de dimension finie E, une partie bornée de E qui peut s'écrire comme intersection d'un nombre fini de demi-espaces fermés de E.

Dans le cas où E est un plan vectoriel, on retrouve la notion de polygone.

Un polyèdre est fermé et convexe comme intersection d'ensembles fermés et convexes. Étant fermé et borné, il est compact dans E qui est de dimension finie.

Exemple 1.3 Dans \mathbb{R}^n l'ensemble :

$$P = \left\{ x \in (\mathbb{R}^+)^n \mid ||x||_1 = \sum_{i=1}^n x_i = 1 \right\}$$

est un polyèdre convexe.

Cet ensemble est borné puisque contenu dans la boule unité fermée de $(\mathbb{R}^n, \|\cdot\|_1)$. En désignant par $\{e_i^* \mid 1 \leq i \leq n\}$ la base duale de la base canonique de \mathbb{R}^n $(e_i^*(x) = x_i, pour$ tout $x \in \mathbb{R}^n$) et par φ la forme linéaire définie par $\varphi = \sum_{i=1}^n e_i^*$, on a :

$$x \in P \Leftrightarrow \begin{cases} e_i^*(x) \ge 0 & (1 \le i \le n) \\ \varphi(x) \ge 1 & \\ -\varphi(x) \ge -1 \end{cases}$$

ce qui prouve que P est un polyèdre convexe de \mathbb{R}^n .

1.2 Enveloppe convexe, théorème de Carathéodory

On désigne toujours par E un espace vectoriel réel.

L'intersection d'une famille de convexes dans E étant un convexe et, pour toute partie X de E, l'espace vectoriel E est un convexe qui contient X. Ces remarques nous permettent de donner la définition suivante.

Définition 1.3 Si X est une partie de E, on appelle enveloppe convexe de X, l'intersection de tous les convexes de E qui contiennent X.

On note Cv(X) l'enveloppe convexe de X. C'est un convexe de E.

Cette enveloppe convexe est aussi le plus petit convexe de E contenant X.

Une définition équivalente de la notion d'enveloppe convexe est donnée par le résultat suivant.

Théorème 1.1 Si X est une partie non vide de E, alors l'enveloppe convexe de X est l'ensemble des combinaisons linéaires convexes d'éléments de X, c'est-à-dire qu'un vecteur x est dans Cv(X) si et seulement si il existe des vecteurs x_1, \dots, x_p dans X et des réels positifs ou nuls $\lambda_1, \dots, \lambda_p$ tels que $\sum_{i=1}^p \lambda_i = 1$, $x = \sum_{i=1}^p \lambda_i x_i$, ce qui peut aussi s'exprimer en disant que x est barycentre de points de X affectés de coefficients positifs.

Démonstration. Notons $\mathcal{B}(X)$ l'ensemble des combinaisons linéaires convexes d'éléments de X.

On montre tout d'abord que $\mathcal{B}(X)$ est convexe. C'est donc un convexe de E contenant X et en conséquence il contient Cv(X).

Si $x = \sum_{i=1}^{p} \lambda_i x_i$ et $y = \sum_{i=1}^{q} \mu_i y_i$ sont dans $\mathcal{B}(X)$, avec $\lambda_i \ge 0$, $x_i \in X$ pour $1 \le i \le p$, $\mu_i \ge 0$,

 $y_i \in X$ pour $1 \le i \le q$ et $\sum_{i=1}^p \lambda_i = \sum_{i=1}^q \mu_i = 1$, alors pour tout réel λ compris entre 0 et 1, le vecteur $z = (1 - \lambda) x + \lambda y$ s'écrit :

$$z = \sum_{i=1}^{p} (1 - \lambda) \lambda_i x_i + \sum_{i=1}^{q} \lambda \mu_i y_i,$$

avec $(1 - \lambda) \lambda_i > 0$, $\lambda \mu_j \ge 0$, pour $1 \le i \le p$, $1 \le j \le q$ et :

$$\sum_{i=1}^{p} (1 - \lambda) \lambda_i + \sum_{i=1}^{q} \lambda \mu_i = (1 - \lambda) + \lambda = 1,$$

ce qui signifie que $z \in \mathcal{B}(X)$.

On montre ensuite par récurrence sur $p \geq 1$ que toute combinaison linéaire convexe de p éléments de X est dans Cv(X).

Pour p=1, le résultat découle de $X\subset Cv\left(X\right) .$

Pour p = 2, si x_1, x_2 sont dans X et λ_1, λ_2 sont des réels positifs tels que $\lambda_1 + \lambda_2 = 1$, alors $\lambda_1 x_1 + \lambda_2 x_2$ est dans Cv(X) puisque cet ensemble est convexe.

Supposons le résultat acquis pour $p \geq 2$ et soient x_1, \dots, x_{p+1} dans l'ensemble $X, \lambda_1, \dots, \lambda_{p+1}$ dans \mathbb{R}^+ tels que $\sum_{i=1}^{p+1} \lambda_i = 1$. Notons $\lambda = \sum_{i=1}^p \lambda_i$.

Si $\lambda = 0$, alors tous les λ_i pour $1 \le i \le p$, sont nuls et $\lambda_{p+1} = 1$, de sorte que $\sum_{i=1}^{p+1} \lambda_i x_i = x_{p+1}$ est dans Cv(X).

Si $\lambda \neq 0$, en utilisant l'hypothèse de récurrence, on a :

$$x' = \sum_{i=1}^{p} \frac{\lambda_i}{\lambda} x_i \in Cv(X)$$

et:

$$\sum_{i=1}^{p+1} \lambda_i x_i = \lambda x' + \lambda_{p+1} x_{p+1} \in Cv(X)$$

puisque $\lambda \geq 0$, $\lambda_{p+1} \geq 0$ et $\lambda + \lambda_{p+1} = 1$.

On a donc ainsi montré que $Cv(X) = \mathcal{B}(X)$.

Dans le cas particulier où l'ensemble X est contenu dans un espace vectoriel E de dimension finie, le théorème de Carathéodory nous permet de préciser que dans le résultat qui précède on peut toujours avoir $p \le n+1$, où n est la dimension de E.

Théorème 1.2 (Carathéodory) Si X est une partie non vide dans un espace vectoriel réel E de dimension $n \ge 1$, alors tout élément de l'enveloppe convexe de X est combinaison linéaire convexe de p éléments de X avec $p \le n + 1$.

Démonstration. On sait déjà que tout élément de Cv(X) s'écrit $x = \sum_{i=1}^{p} \lambda_i x_i$ avec $x_i \in X$,

$$\lambda_i \in \mathbb{R}^+ \text{ et } \sum_{i=1}^p \lambda_i = 1.$$

Si $p \le n+1$, il n'y a rien à montrer. Supposons donc que p > n+1. Le système $\{x_i - x_1 \mid 2 \le i \le p\}$ formé de p-1 > n vecteurs est alors lié et il existe des réels μ_2, \dots, μ_p non tous nuls tels que :

$$\sum_{i=2}^{p} \mu_i (x_i - x_1) = 0,$$

ce qui peut aussi s'écrire en posant $\mu_1 = -\sum_{i=2}^p \mu_i$:

$$\sum_{i=1}^{p} \mu_i x_i = 0,$$

avec
$$\sum_{i=1}^{p} \mu_i = 0$$
.

On peut alors écrire pour tout réel positif t:

$$x = \sum_{i=1}^{p} (\lambda_i - t\mu_i) x_i,$$

avec
$$\sum_{i=1}^{p} (\lambda_i - t\mu_i) = 1$$
.

Comme les coefficients μ_i sont tous non nuls de somme nulle, il en existe au moins un qui est strictement positif et on peut poser :

$$t_0 = \inf \left\{ \frac{\lambda_i}{\mu_i} \mid 1 \le i \le p, \ \mu_i > 0 \right\} = \frac{\lambda_k}{\mu_k}$$

pour un indice k compris entre 1 et p.

En posant $\delta_i = \lambda_i - t_0 \mu_i$, pour $1 \le i \le p$, on a $\delta_k = 0$, $\delta_i \ge 0$ pour $1 \le i \le p$ (pour $\mu_i > 0$, on a $\frac{\lambda_i}{\mu_i} \ge t_0$, soit $\delta_i \ge 0$ et pour $\mu_i \le 0$, $\delta_i \ge \lambda_i \ge 0$) et $\sum_{i=1}^p \delta_i = 1$. On a donc $x = \sum_{i=1, i \ne k}^p \delta_i x_i$,

avec $\delta_i \geq 0$, $\sum_{i=1, i\neq k}^p \delta_i = 1$, c'est-à-dire que x est combinaison linéaire convexe de p-1 éléments de X.

Une récurrence descendante nous permet alors de conclure.

Une première application de ce théorème, dans le cas où E est un espace vectoriel normé de dimension finie, est la suivante.

Corollaire 1.1 Dans un espace vectoriel normé de dimension finie l'enveloppe convexe d'un compact est compacte.

Démonstration. On désigne par Δ le compact de \mathbb{R}^{n+1} défini par :

$$\Delta = \left\{ \lambda \in \left(\mathbb{R}^+ \right)^{n+1} \mid \|\lambda\|_1 = \sum_{i=1}^{n+1} \lambda_i = 1 \right\}$$

et si X est un compact non vide de l'espace vectoriel normé E de dimension n, par φ l'application définie par :

$$\forall (\lambda, x) \in \Delta \times X^{n+1}, \quad \varphi(\lambda, x) = \sum_{i=1}^{n+1} \lambda_i x_i.$$

Le théorème de Carathéodory nous dit que l'image de φ est exactement l'enveloppe convexe de X dans E. On en déduit alors que $Cv(X) = \varphi(\Delta \times X^{n+1})$ est compacte dans E comme image du compact $\Delta \times X^{n+1}$ (produit de compacts) par l'application continue φ .

Corollaire 1.2 Dans un espace vectoriel normé de dimension finie l'enveloppe convexe d'une partie bornée est bornée.

Démonstration. Si X est une partie bornée dans l'espace vectoriel normé E de dimension n, elle est alors contenue dans une partie compacte Y et Cv(X) est bornée car contenue dans le compact Cv(Y).

1.3 Le théorème de projection sur un convexe fermé dans un espace de Hilbert

Pour ce paragraphe, E désigne un espace de Hilbert. On note respectivement $\langle \cdot \mid \cdot \rangle$ et $\| \cdot \|$ le produit scalaire et la norme associée sur E.

Théorème 1.3 Soit C une partie non vide de E convexe et fermée. Pour tout x dans E, il existe un unique y dans C tel que :

$$||x - y|| = \inf_{z \in C} ||x - z||. \tag{1.1}$$

Ce vecteur $y \in C$ est également caractérisé par :

$$\forall z \in C, \quad \langle x - y \mid z - y \rangle \le 0. \tag{1.2}$$

Démonstration. L'ensemble $\{||x-z|| \mid z \in C\}$ est une partie non vide minorée de \mathbb{R} , elle admet donc une borne inférieure :

$$\delta = \inf_{z \in C} \|x - z\|.$$

Par définition de cette borne inférieure, on peut construire une suite $(y_k)_{k\geq 1}$ d'éléments de C telle que :

$$\forall k \ge 1, \quad \delta^2 \le \|x - y_k\|^2 \le \delta^2 + \frac{1}{k}$$
 (1.3)

En utilisant l'identité de la médiane, on peut écrire, pour $q > p \ge 1$:

$$||y_q - y_p||^2 = ||(y_q - x) + (x - y_p)||^2$$

= $2(||y_q - x||^2 + ||x - y_p||^2) - ||(y_q - x) - (x - y_p)||^2,$

avec :

$$\|(y_q - x) - (x - y_p)\|^2 = 4 \left\| x - \frac{1}{2} (y_p + y_q) \right\|^2 \ge 4\delta^2$$

puisque $\frac{1}{2}(y_p + y_q) \in C$ (qui est convexe).

On a donc, pour $q > p \ge 1$:

$$||y_q - y_p||^2 \le 2 (||y_q - x||^2 + ||x - y_p||^2) - 4\delta^2$$

$$\le 2 \left(\frac{1}{q} + \frac{1}{p}\right) - 2\delta^2 \le \frac{4}{p}$$

et il en résulte que la suite $(y_k)_{k>1}$ est de Cauchy dans l'espace complet E, elle est donc convergente et sa limite y est dans \overline{C} qui est fermé.

Et en faisant tendre k vers l'infini dans (1.3), on obtient $||x-y|| = \delta$.

On a donc l'existence de $y \in C$ vérifiant (1.1) et il reste à montrer l'unicité.

Si z est un autre élément de C vérifiant (1.1), l'identité de la médiane nous donne alors :

$$||y - z||^{2} = ||(y - x) + (x - z)||^{2}$$

$$= 2(||y - x||^{2} + ||x - z||^{2}) - 4||x - \frac{1}{2}(y + z)||^{2}$$

$$= 4\delta^{2} - 4||x - \frac{1}{2}(y + z)||^{2} \le 4\delta^{2} - 4\delta^{2} = 0,$$

puisque $\frac{1}{2}(y+z) \in C$ (qui est convexe) et nécessairement z = y.

Soit y l'élément de C vérifiant (1.1). Cet ensemble étant convexe, pour tout z dans C et tout λ dans [0,1], le vecteur $v = (1-\lambda)y + \lambda z$ est dans C et :

$$||x - y||^2 \le ||x - v||^2 = ||x - y||^2 - 2\langle x - y \mid z - y \rangle \lambda + ||z - y||^2 \lambda^2,$$

ce qui équivaut à :

$$\forall z \in C, \quad \forall \lambda \in]0,1], \quad 2\langle x-y \mid z-y \rangle \le ||z-y||^2 \lambda.$$

En faisant tendre λ vers 0, on aboutit à :

$$\forall z \in C, \quad \langle x - y \mid z - y \rangle \le 0$$

Réciproquement supposons que $t \in C$ vérifie (1.2). Pour tout $z \in C$, on peut écrire :

$$||x - z||^2 = ||(x - t) + (t - z)||^2$$

$$= ||x - t||^2 - 2\langle x - t \mid z - t \rangle + ||t - y||^2 \ge ||x - t||^2$$

ce qui équivaut à dire que $\|x-t\|=\inf_{z\in C}\|x-z\|$ et nécessairement t=y.

Avec les hypothèses et notations du théorème précédent, la borne inférieure $\delta=\inf_{z\in C}\|x-z\|$ est la distance de x à C. Elle est notée d(x,C). Le vecteur $y \in C$ réalisant cette distance est la meilleure approximation de $x \in E$ par des éléments du convexe C. Ce vecteur y étant également caractérisé par (1.2) est de ce fait aussi appelé la projection de x sur C et noté $y = p_C(x)$. L'application p_C ainsi définie de E sur C est la projection de E sur C.

Corollaire 1.3 Soit C une partie convexe fermée non vide de E, distincte de E. Si pour x dans $E \setminus C$, on désigne par D la droite vectorielle dirigée par $x - p_C(x)$ et par H l'hyperplan affine passant par x et orthogonal à D, soit :

$$H = x + D^{\perp} = \{ z \in E \mid \langle x - p_C(x) \mid x - z \rangle = 0 \},$$

alors cet hyperplan contient x et C est contenu dans le demi-espace ouvert :

$$H^{+,*} = \{ z \in E \mid \langle x - p_C(x) \mid x - z \rangle > 0 \}.$$

Démonstration. On a bien $x \in H$ et pour tout $z \in C$, on a :

$$\langle x - p_C(x) | x - z \rangle = \langle x - p_C(x) | (x - p_C(x)) + (p_C(x) - z) \rangle$$

= $||x - p_C(x)||^2 - \langle x - p_C(x) | z - p_C(x) \rangle$
 $\ge ||x - p_C(x)||^2 > 0$

puisque $x \notin C$.

1.4 Le théorème de Krein-Milman

Pour ce paragraphe, E est un espace vectoriel euclidien de dimension $n \geq 2$. On note (e_1, \dots, e_n) une base orthonormée de E et (e_1^*, \dots, e_n^*) la base duale $(e_i^* \left(\sum_{k=1}^n x_k e_k\right) = x_i$ pour $1 \leq i \leq n$).

Si X est une partie non vide de E, on définit sa frontière par $\operatorname{Fr}(X) = \overline{X} \setminus \overset{\circ}{X}$. Dans le cas où X est fermé, cette frontière est $\operatorname{Fr}(X) = X \setminus \overset{\circ}{X}$.

Définition 1.4 Soit C un convexe dans E non vide et distinct de E. On dit qu'un hyperplan affine H est un hyperplan d'appui de C si $H \cap C$ est non vide et C est contenu dans l'un des demi-espaces fermés limités par H.

Lemme 1.1 Soit C un convexe dans E non vide et distinct de E. Si H est un hyperplan d'appui de C, alors tout point de $H \cap C$ est un point frontière de C.

Démonstration. Soit H un hyperplan d'appui de C d'équation $\varphi(x) = \alpha$.

On rappelle que pour toute forme linéaire φ sur E, on peut trouver un unique vecteur v dans E tel que pour tout x dans E, on ait $\varphi(x) = \langle x \mid v \rangle$ ($v = \sum_{k=1}^{n} \varphi(e_k) e_k$) et ce vecteur est non nul si φ est non nulle.

Soit $a \in H \cap C$ et supposons que $\varphi(x) = \langle x \mid v \rangle \geq \alpha$ pour tout x dans C.

Si a n'est pas dans la frontière de C, il existe un réel $\varepsilon > 0$ tel que la boule ouverte $B\left(a,\varepsilon\right)$ de centre a et de rayon ε soit contenue dans C. Pour tout réel $\lambda > 0$ assez petit, on a $a - \lambda v \in C$ et :

$$\varphi(a - \lambda v) = \langle a \mid v \rangle - \lambda \|v\|^2 < \langle a \mid v \rangle = \alpha$$

en contradiction avec $\varphi\left(a-\lambda v\right)\geq\alpha.$ On a donc $a\in\mathrm{Fr}\left(C\right).$

Exemple 1.4 Soit $C = \bigcap_{i=1}^{p} H_i^+$ un polyèdre convexe dans E, avec :

$$H_i^+ = \{x \in E \mid \varphi_i(x) \ge \alpha_i\} \quad (1 \le i \le p),$$

où les φ_i sont des formes linéaires non nulles sur E et les α_i des réels.

Si $x \in C$ est tel que $\varphi_i(x) > \alpha_i$ pour tout i compris entre 1 et p, avec la continuité des applications φ_i , on déduit alors qu'il existe un réel $\varepsilon > 0$ tel que la boule ouverte $B(x,\varepsilon)$ de centre x et de rayon ε soit contenue dans $C = \bigcap_{i=1}^p H_i^+$ et en conséquence x est dans l'intérieur de C, donc $x \notin Fr(C)$.

On a donc ainsi montré que pour tout $x \in Fr(C)$, il existe un indice i compris entre 1 et p tel que $\varphi_i(x) = \alpha_i$ et H_i est un hyperplan d'appui de C qui contient x. C'est-à-dire que tout point de la frontière de C est contenu dans un hyperplan d'appui.

En fait ce résultat est valable pour tout convexe fermé dans l'espace euclidien E.

Lemme 1.2 Si C est un convexe fermé dans E non vide et distinct de E, alors tout point de la frontière de C est contenu dans un hyperplan d'appui de C.

Démonstration. Soit a dans la frontière de C. Pour tout entier naturel non nul k on peut trouver un élément x_k dans la boule ouverte $B\left(a, \frac{1}{k}\right)$ de centre a et de rayon $\frac{1}{k}$ qui n'appartient pas à C. On note alors $y_k = p_C\left(x_k\right)$ la projection de x_k sur C, $z_k = \frac{1}{\|x_k - y_k\|} (x_k - y_k)$ et par H_k l'hyperplan affine passant par x_k et orthogonal à z_k , soit :

$$H_k = \{ z \in E \mid \langle z_k \mid x_k - z \rangle = 0 \}.$$

Le corollaire 1.3 nous dit alors que C est contenu dans le demi-espace ouvert :

$$H_k^{+,*} = \{ z \in E \mid \langle z_k \mid x_k - z \rangle > 0 \}.$$

Chaque vecteur z_k étant dans la sphère unité de E qui est compacte puisque E est de dimension finie, on peut extraire de la suite $(z_k)_{k\geq 1}$ une sous-suite $(z_{\varphi(k)})_{k\geq 1}$ qui converge vers un vecteur v de norme 1. En considérant que la suite $(x_k)_{k\geq 1}$ converge vers a et en utilisant la continuité du produit scalaire, on déduit que pour tout z dans C on a :

$$\langle v \mid a - z \rangle = \lim_{k \to +\infty} \langle z_{\varphi(k)} \mid x_{\varphi(k)} - z \rangle \ge 0,$$

c'est-àdire que C est contenu dans le demi-espace :

$$H^+ = \{ z \in E \mid \langle v \mid a - z \rangle \ge 0 \},\,$$

le vecteur a étant dans l'hyperplan H d'équation $\langle v \mid a-z \rangle = 0$. Cet hyperplan H est donc un hyperplan d'appui de C.

Par analogie à la notion de sommet d'un polygone dans \mathbb{R}^2 , on définit de manière plus générale les sommets, ou points extrémaux, d'un convexe de la manière suivante.

Définition 1.5 Soit C un convexe non vide de E. On dit qu'un point a de C est un point extrémal si tout segment dans C qui contient a admet ce point pour extrémité.

Dire que a dans le convexe C est extrémal équivaut à dire que si $a \in [x, y]$ avec x, y dans C, alors a = x ou a = y, encore équivalent à dire que si $a = (1 - \lambda)x + \lambda y$ avec x, y dans C et $0 < \lambda < 1$, alors a = x = y.

Une définition équivalente de point extrémal d'un convexe est donnée par le résultat suivant.

Lemme 1.3 Soit C un convexe non vide de E. Un point a de C est extrémal si et seulement si $C \setminus \{a\}$ est convexe.

Démonstration. Soit $a \in C$ extrémal et x, y dans $C \setminus \{a\}$.

L'ensemble C étant convexe, on a $[x,y] \subset C$ et $a \in [x,y]$ entraı̂ne x=a ou y=a, ce qui est exclu. On a donc $[x,y] \subset C \setminus \{a\}$. On a donc ainsi montré que $C \setminus \{a\}$ est convexe.

Réciproquement supposons $C \setminus \{a\}$ convexe et soit [x,y] un segment dans C qui contient a. Si x,y sont tous deux dans $C \setminus \{a\}$ qui est convexe, on a alors $a \in [x,y] \subset C \setminus \{a\}$, ce qui est impossible. On a donc x=a ou y=a, ce qui prouve que a est extrémal dans C.

Exemple 1.5 Les points extrémaux du convexe de \mathbb{R}^n :

$$P = \left\{ x \in (\mathbb{R}^+)^n \mid ||x||_1 = \sum_{i=1}^n x_i = 1 \right\}$$

sont les vecteurs e_1, \dots, e_n de la base canonique.

En effet si $e_i = (1 - \lambda) x + \lambda y$ avec x, y dans P et $0 \le \lambda \le 1$, alors:

$$(1 - \lambda) x_j + \lambda y_j = \begin{cases} 0 \text{ si } j \neq i, \\ 1 \text{ si } j = i, \end{cases}$$

avec x_j, y_j positifs pour $1 \le j \le n$. Si $0 < \lambda < 1$, alors $x_j = y_j = 0$ pour $j \ne i$ et $x_i = y_i = 1$ puisque $\sum_{j=1}^n x_j = \sum_{j=1}^n y_j = 1$, c'est-à-dire que $x = y = e_i$. Chaque vecteur e_i est donc extrémal dans P.

Réciproquement si a est un élément extrémal de P et a n'est égal à aucun des e_i , alors ce vecteur a au moins deux composantes a_i et a_j strictement positives avec $1 \le i < j \le n$. Si $t = \min(a_i, a_j)$, alors 0 < t < 1 et en posant $x = a + t(e_i - e_j)$ et $y = a + t(-e_i + e_j)$, on a :

$$\begin{cases} x = (a_1, \dots, a_{i-1}, a_i + t, a_{i+1}, \dots, a_{j-1}, a_j - t, a_{j+1}, \dots, a_n) \in P, \\ y = (a_1, \dots, a_{i-1}, a_i - t, a_{i+1}, \dots, a_{j-1}, a_j + t, a_{j+1}, \dots, a_n) \in P \end{cases}$$

avec $a = \frac{1}{2}(x+y)$, c'est-à-dire que a est le milieu du segment $[x,y] \subset P$ avec $a \neq x$, $a \neq y$, en contradiction avec a extrémal. On a donc ainsi montré que les e_i sont les seuls points extrémaux de P.

De manière plus générale un convexe compact admet des points extrémaux.

Lemme 1.4 Un convexe compact non vide dans E a des points extrémaux.

Démonstration. Soit C un convexe compact non vide dans E. L'application e_1^* étant continue sur le compact C, elle y est bornée et atteint sa borne inférieure, on peut donc poser :

$$t_1 = \inf_{x \in C} e_1^* \left(x \right)$$

 $(t_1 \text{ est la plus petite des premières composantes d'éléments de } C)$. L'ensemble :

$$C_1 = \left\{ x = t_1 e_1 + \sum_{i=2}^n x_i e_i \mid x \in C \right\}$$

est alors un compact non vide de E (il est fermé et borné) et on peut poser :

$$t_2 = \inf_{x \in C_1} e_2^* \left(x \right).$$

En continuant ainsi de suite on construit un vecteur $t = \sum_{i=1}^{n} t_i e_i$ dans C et on vérifie qu'il extrémal.

Si $t = (1 - \lambda) x + \lambda y$ avec x, y dans C et λ dans]0,1[, alors de $t_1 = (1 - \lambda) x_1 + \lambda y_1$ avec $t_1 \le x_1, t_1 \le y_1$ et $0 < \lambda < 1$, on déduit que nécessairement $t_1 = x_1 = y_1$. Puis par récurrence, vue la construction des t_k , on déduit que $t_k = x_k = y_k$ pour tout k compris entre 1 et n. On a donc t = x = y, ce qui prouve que t est extrémal dans C.

Lemme 1.5 Si C est un convexe compact non vide dans E alors pour tout hyperplan d'appui H de C, $C \cap H$ (qui est convexe compact et non vide) admet des points extrémaux qui sont aussi des points extrémaux de C.

Démonstration. Notons $H = \{x \in E \mid \varphi(x) = \alpha\}$ un hyperplan d'appui de C. On a $\varphi(x) \ge \alpha$ pour tout $x \in C$ et H contient un point frontière de C. L'intersection $C \cap H$ est alors un convexe compact non vide et il admet des points extrémaux (lemme 1.4).

Soit x un point extrémal de $C \cap H$. Si il existe y, z dans C et λ dans]0,1[tels que $x=(1-\lambda)y+\lambda z,$ alors :

$$\alpha = \varphi(x) = (1 - \lambda)\varphi(y) + \lambda\varphi(z) > (1 - \lambda)\alpha + \lambda\alpha = \alpha$$

si $\varphi(y) > \alpha$ ou $\varphi(z) > \alpha$, ce qui est impossible. On a donc $\varphi(y) = \alpha$ et $\varphi(z) = \alpha$, c'est-à-dire que y et z sont dans $C \cap H$ et y = z = x puisque x est un point extrémal de $C \cap H$. En conclusion x est un point extrémal de C.

Théorème 1.4 (Krein-Milman) Tout compact convexe dans l'espace euclidien E est l'enveloppe convexe de ses points extrémaux.

Démonstration. Soit C un convexe compact non vide dans E. On note S(C) l'enveloppe convexe de l'ensemble des points extrémaux de C. On a $S(C) \subset C$.

Supposons qu'il existe a dans C qui n'est pas dans S(C). On a alors $a \notin \overline{S(C)}$, ce dernier ensemble étant convexe (l'adhérence d'un convexe est convexe) et fermé dans E. On peut donc utiliser le corollaire 1.3 pour dire qu'il existe un hyperplan affine d'équation $\varphi(x) = \alpha$ contenant a et tel que $\varphi(x) > \alpha$ pour tout $x \in \overline{S(C)}$. L'image de C par φ est convexe (image d'un convexe par l'application linéaire φ) et compacte (image du compact C par l'application continue φ) dans \mathbb{R} , c'est donc un intervalle réel [u,v] qui contient α (puisque $\varphi(a) = \alpha$). Désignons par K l'hyperplan affine d'équation $\varphi(x) = u$. On a $K \cap C \neq \emptyset$ et $\varphi(x) \geq u$ pour tout $x \in C$ car $[u,v] = \varphi(C)$, c'est-à-dire que K est un hyperplan d'appui de C et le lemme 1.5 nous dit que K contient des points extrémaux de C, si x est l'un de ces points il est alors dans S(C) et $\varphi(x) > \alpha \geq u$ en contradiction avec $\varphi(x) = u$ (x est dans K). On a donc $C \subset S(C)$ et C = S(C).

Pour des énoncés dans un cadre plus général, on peut consulter [1] ou [2].

1.5 Matrices bistochastiques

Si n est un entier naturel supérieur ou égal à 2, on désigne par \mathfrak{S}_n le groupe des permutations de l'ensemble $\{1, \dots, n\}$ et par $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

Pour tout couple (i, j) d'entiers naturels, on note $\delta_{i,j}$ le symbole de Kronecker $(\delta_{ii} = 1 \text{ et } \delta_{i,j} = 0 \text{ pour } i \neq j)$.

Définition 1.6 Si $\sigma \in \mathfrak{S}_n$, on appelle matrice de permutation associée à σ , la matrice de passage P_{σ} de la base canonique de \mathbb{R}^n à la base $\mathcal{B}_{\sigma} = (e_{\sigma(1)}, \dots, e_{\sigma(n)})$.

On a donc, si P_{σ} est une matrice de permutation, $P_{\sigma}e_j = e_{\sigma(j)}$ pour tout entier j compris entre 1 et n, ce qui revient à dire que :

$$P_{\sigma} = \left(\left(\delta_{i,\sigma(j)} \right) \right)_{1 \le i,j \le n}.$$

Définition 1.7 On dit qu'une matrice $A = ((a_{i,j}))_{1 \leq i,j \leq n}$ dans $\mathcal{M}_n(\mathbb{R})$ est stochastique si elle est positive et :

$$\forall i \in \{1, \dots, n\}, \sum_{i=1}^{n} a_{ij} = 1$$

Exemple 1.6 Une matrice de permutation est stochastique.

Il est facile de vérifier que l'ensemble $\mathcal{P}_n(\mathbb{R})$ des matrices stochastiques est convexe et compact.

Définition 1.8 On appelle matrice doublement stochastique une matrice stochastique A telle que tA soit aussi stochastique.

Les matrices de permutation sont des matrices doublement stochastiques.

On note $\mathcal{B}_n(\mathbb{R})$ l'ensemble des matrices bistochastiques dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{E}_n(\mathbb{R})$ le sousespace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices A vérifiant $\sum_{k=1}^n a_{ik} = \sum_{j=1}^n a_{kj} = 0$ pour tous i, j compris entre 1 et n.

Lemme 1.6 L'espace vectoriel $\mathcal{E}_n(\mathbb{R})$ est de dimension égale à $(n-1)^2$.

Démonstration. On désigne par φ l'application linéaire qui à toute matrice $X = ((x_{i,j}))_{1 \leq i,j \leq n}$ dans $\mathcal{E}_n(\mathbb{R})$ associe la matrice $Y = ((x_{i,j}))_{1 \leq i,j \leq n-1}$. Si $X \in \mathcal{E}_n(\mathbb{R})$ est telle que $\varphi(X) = 0$, alors $x_{ij} = 0$ pour tous i, j compris entre 1 et n-1,

Si $X \in \mathcal{E}_n(\mathbb{R})$ est telle que $\varphi(X) = 0$, alors $x_{ij} = 0$ pour tous i, j compris entre 1 et n-1, $x_{in} = -\sum_{k=1}^{n-1} x_{ik} = 0$ pour i compris entre 1 et n-1, et $x_{nn} = -\sum_{k=1}^{n-1} x_{kn} = 0$. C'est-à-dire que X = 0 et φ est injective.

Pour toute matrice $Y \in \mathcal{M}_{n-1}(\mathbb{R})$, en posant :

$$x_{in} = -\sum_{k=1}^{n-1} y_{ik}, \ x_{nj} = -\sum_{k=1}^{n-1} y_{kj}, \ (1 \le i, j \le n-1)$$

on a:

$$\sum_{i=1}^{n-1} x_{i,n} = -\sum_{i=1}^{n-1} \sum_{k=1}^{n-1} y_{ik} = -\sum_{k=1}^{n-1} \sum_{i=1}^{n-1} y_{ik} = \sum_{k=1}^{n-1} x_{nk}$$

de sorte que la matrice :

$$X = \begin{pmatrix} y_{11} & \cdots & y_{1,n-1} & x_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ y_{n-1,1} & \cdots & y_{n-1,n-1} & x_{n-1,n} \\ x_{n1} & \cdots & x_{n,n-1} & -\sum_{i=1}^{n-1} x_{i,n} \end{pmatrix}$$

est dans $\mathcal{E}_n(\mathbb{R})$ avec $\varphi(X) = Y$. L'application φ est donc surjective. Il en résulte que c'est un isomorphisme et :

$$\dim \left(\mathcal{E}_n\left(\mathbb{R}\right)\right) = \dim \left(\mathcal{M}_{n-1}\left(\mathbb{R}\right)\right) = \left(n-1\right)^2$$

Lemme 1.7 $\mathcal{B}_n(\mathbb{R})$ est un polyèdre convexe dans $\mathcal{M}_n(\mathbb{R})$ et les points extrémaux de ce polyèdre sont les matrices de permutations.

Démonstration. Il est facile de vérifier que $\mathcal{B}_n(\mathbb{R})$ est fermé et borné, donc compact. Dire que $A = ((a_{i,j}))_{1 \leq i,j \leq n}$ est dans $\mathcal{B}_n(\mathbb{R})$ équivaut à :

$$a_{ij} \ge 0$$
, $\sum_{k=1}^{n} a_{ik} = 1$, $\sum_{j=1}^{n} a_{kj} = 1$ $(1 \le i, j \le n)$.

En notant $(E_{ij}^* \mid 1 \leq i, j \leq n)$ la base duale de la base canonique de $\mathcal{M}_n(\mathbb{R})$ $(E_{ij}^*(A) = a_{ij})$, et pour $1 \leq i, j \leq n$, L_i^* et C_j^* les formes linéaires définies sur $\mathcal{M}_n(\mathbb{R})$ par :

$$L_i^* = \sum_{k=1}^n E_{ik}^*, \ C_j^* = \sum_{k=1}^n E_{kj}^*,$$

on déduit que $A \in \mathcal{B}_n(\mathbb{R})$ équivaut à :

$$E_{ij}^{*}(A) \ge 0, \ L_{i}^{*}(A) = 1, \ C_{j}^{*}(A) = 1 \quad (1 \le i, j \le n).$$

Il en résulte que $\mathcal{B}_n(\mathbb{R})$ est un polyèdre convexe dans $\mathcal{M}_n(\mathbb{R})$.

Soit A une matrice de permutation et supposons que $A = (1 - \lambda) X + \lambda Y$ avec X, Y dans $\mathcal{B}_n(\mathbb{R})$ et $0 < \lambda < 1$. Sur chaque ligne i de la matrice A il y a un seul coefficient non nul $a_{ij} = 1$ et pour $k \neq j$, on a :

$$0 = a_{ik} = (1 - \lambda) x_{ik} + \lambda y_{ik}$$

qui entraîne $x_{ik} = y_{ik} = 0$ et $x_{ij} = y_{ij} = 1$ puisque tous les coefficients d'une matrice bistochastique sont positifs ou nuls et la somme des termes d'une même ligne vaut 1. On a donc X = Y = A.

On a donc ainsi montré que les matrices de permutation sont des points extrémaux de $\mathcal{B}_n\left(\mathbb{R}\right)$.

Pour la réciproque, on procède par récurrence sur $n \geq 2$.

Pour n=2, une matrice stochastique est de la forme :

$$A = \left(\begin{array}{cc} a & 1-a \\ 1-a & a \end{array}\right),$$

avec $0 \le a \le 1$. Si cette matrice est de permutation c'est alors un point extrémal de $\mathcal{B}_2(\mathbb{R})$, sinon on a 0 < a < 1. Supposons, ce qui n'est pas restrictif, que $0 < a \le 1 - a < 1$, soit $0 < a \le \frac{1}{2}$. En posant :

$$X = A + a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} - a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$Y = A - a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2a & 1 - 2a \\ 1 - 2a & 2a \end{pmatrix},$$

on a $X \in \mathcal{B}_2(\mathbb{R})$, $Y \in \mathcal{B}_2(\mathbb{R})$, $A = \frac{1}{2}(X + Y)$, avec $A \neq X$, $A \neq Y$, ce qui signifie que A n'est pas extrémal. Le résultat est donc montré pour n = 2.

Supposons le acquis pour $n-1 \geq 2$ et soit $A \in \mathcal{B}_n(\mathbb{R})$ un élément extrémal. On montre tout d'abord que la matrice A a au plus 2n-1 coefficients non nuls.

Supposons que A ait au moins 2n coefficients non nuls que nous notons a_{i_k,j_k} avec $1 \le k \le 2n$ et les couples (i_k, j_k) deux à deux distincts. On désigne par H le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension 2n engendré par les matrices E_{i_k,j_k} , pour $1 \le k \le 2n$, où $(E_{ij} \mid 1 \le i, j \le n)$ désigne la base canonique de $\mathcal{M}_n(\mathbb{R})$. On a $H \cap \mathcal{E}_n(\mathbb{R}) \ne \{0\}$ à cause des dimensions. Il existe donc une matrice B dans $H \cap \mathcal{E}_n(\mathbb{R}) \setminus \{0\}$. Si pour tout réel t, on note $C_t = A + tB$, on a alors $c_{ij} = a_{ij}$ pour $(i,j) \ne (i_k,j_k)$ et $c_{i_k,j_k} = a_{i_k,j_k} + tb_{i_k,j_k} > 0$ pour t voisin de 0 (on a $a_{i_k,j_k} > 0$ pour tout k), puis avec $B \in \mathcal{E}_n(\mathbb{R})$, on déduit que $\sum_{k=1}^n c_{ik} = \sum_{k=1}^n a_{ik} = 1$, $\sum_{k=1}^n c_{kj} = \sum_{k=1}^n a_{kj} = 1$ pour tous i,j. Pour $t \in]-\varepsilon, \varepsilon[\setminus \{0\}$ avec $\varepsilon > 0$ assez petit, les matrice C_t et C_{-t} sont donc dans $\mathcal{B}_n(\mathbb{R})$ et $A = \frac{1}{2}(C_t + C_{-t})$ avec $A \ne C_t$, $A \ne C_{-t}$, en contradiction avec A extrémal.

La matrice \overline{A} a donc au plus 2n-1 termes non nuls et il existe nécessairement une ligne d'indice i de cette matrice avec un seul coefficient a_{ij} non nul, ce coefficient valant 1. La matrice A étant bistochastique, tous les coefficients de la colonne j, excepté celui en ligne i, sont nuls. La matrice A' extraite de A en supprimant la ligne i et la colonne j est alors dans $\mathcal{B}_{n-1}(\mathbb{R})$ et extrémale. En effet si $A' \in [B', C']$ avec B', C' dans $\mathcal{B}_{n-1}(\mathbb{R})$ alors $A \in [B, C]$, où B, C sont dans $\mathcal{B}_n(\mathbb{R})$ telles que $b_{ij} = c_{ij} = 1$ et B', C' sont extraites de B, C en supprimant la ligne i et la colonne j et A = B ou A = C, ce qui entraîne A' = B' ou A' = B'. Avec l'hypothèse de récurrence, on déduit alors que A' est une matrice de permutation dans $\mathcal{M}_{n-1}(\mathbb{R})$ et A est une matrice de permutation dans $\mathcal{M}_n(\mathbb{R})$.

De ce résultat et des théorèmes de Krein-Milman et de Carathéodory (théorèmes 1.4 et 1.2), on déduit alors le résultat suivant.

Théorème 1.5 (Birkhoff) Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est doublement stochastique si et seulement si elle s'écrit $A = \sum_{k=1}^p \lambda_k P_k$, où $p \leq (n-1)^2 + 1$, les P_k sont des matrices de permutation et les λ_k des réels positifs tels que $\sum_{k=1}^p \lambda_k = 1$.

Démonstration. L'ensemble des matrices bistochastiques étant un polyèdre convexe dans l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$, le théorème de Krein-Milman nous dit que c'est l'enveloppe convexe de ses points extrémaux, donc de l'ensemble des matrices de permutations.

Toute matrice $A \in \mathcal{B}_n(\mathbb{R})$ s'écrit donc $A = \sum_{k=1}^q \mu_k P_k$, où les P_k sont des matrices de permutation et les μ_k des réels positifs tels que $\sum_{k=1}^q \mu_k = 1$. En écrivant $A - I_n = \sum_{k=1}^q \mu_k (P_k - I_n)$, on

déduit que $A-I_n$ est dans l'enveloppe convexe de l'ensemble X, contenu dans $\mathcal{E}_n\left(\mathbb{R}\right)$, formé des matrices $P_\sigma-I_n$, où σ parcourt l'ensemble des permutations de $\{1,\cdots,n\}$. Le théorème de Carathéodory nous dit alors que $A-I_n=\sum\limits_{k=1}^p\lambda_k\left(P_k-I_n\right)$, où $p\leq \dim\left(\mathcal{E}_n\left(\mathbb{R}\right)\right)+1=(n-1)^2+1$, les P_k sont des matrices de permutation et les λ_k des réels positifs tels que $\sum\limits_{k=1}^p\lambda_k=1$, ce qui équivaut à $A=\sum\limits_{k=1}^p\lambda_kP_k$.

Exercices 15

1.6 Exercices

Exercice 1.1 Montrer que si C est un convexe compact dans un espace euclidien E, il est alors l'enveloppe convexe de sa frontière.

Solution 1.1 L'ensemble C étant fermé, on a $\operatorname{Fr}(C) \subset C$ et $\operatorname{Cv}(\operatorname{Fr}(C))$ est contenu dans C puisque C est convexe.

Soit x un élément de C. Pour toute droite D passant par x, $D\cap C$ est convexe comme intersection de convexes, fermé comme intersection de fermés et borné car contenu dans C qui est compact, c 'est donc un convexe compact de D, c 'est-à-dire un segment de D (qui peut être identifiée à $\mathbb R$ par le choix d'une origine). On a donc $x \in D \cap C = [y,z]$ avec y,z dans la frontière de C, ce qui entraîne $x \in Cv(\operatorname{Fr}(C))$. On a donc bien $C = Cv(\operatorname{Fr}(C))$.

Bibliographie

- [1] S. Lang Real analysis. Addison-Wesley (1969).
- [2] W. Rudin Analyse fonctionnelle. Ediscience (1995).
- [3] P. Tauvel $Math\'{e}matiques$ $g\'{e}n\'{e}rales$ pour l'agr\'{e}gation. Masson (1992).