Homework 3

1. Exercise 3.42

Proof. This is to show the superlevel sets of W are convex. We know

$$W(x) \ge a \iff |\sum_{i=1}^{n} x_i f_i(t) - f_0(t)| \le \epsilon, \forall 0 \le t < a.$$

Then for $0 \le \theta \le 1$,

$$|(\theta x^1 + (1 - \theta)x^2)^{\top} f(t) - f_0(t)| \le \theta |x^{1\top} f(t) - f_0(t)| + (1 - \theta)|x^{2\top} f(t) - f_0(t)| \le \epsilon.$$

Hence.

2. Exercise 3.54

(a) By definition

$$f'(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, \ f''(x) = -\frac{x}{\sqrt{2\pi}}e^{-x^2/2},$$

so

$$f''(x)f(x) = -\frac{x}{2\pi}e^{-x^2/2} \int_{-\infty}^{x} e^{-t^2/2} dt \le 0 \le f'(x)^2$$

for x > 0.

(b) Trivial by mean value inequality if x and t have the same sign. If xt < 0, then left side ≥ 0 , and right side < 0, so the inequality also holds.

(c) The first inequality is trivial since $\exp(x)$ is monotone increasing. For fixed x < 0, since the equality holds for any x, t, we can just integrate from $-\infty$ to x and we will get the second inequality.

(d)

$$f''(x)f(x) \le -\frac{x}{2\pi}e^{-x^2/2}e^{x^2/2} \int_{-\infty}^{x} e^{-xt}dt = \frac{1}{2\pi}e^{-x^2} = f'(x)^2.$$

3. Exercise 3.57

Proof. We need to show for each fixed $y \in \mathbb{R}^n$, $f(X) = y^{\top} X^{-1} y$ is convex. This can be shown by Example 3.4.

4. Exercise 4.1

(a) $\{(\frac{2}{5}, \frac{1}{5})\}, \frac{3}{5}$

(b) unbounded below.

(c) $\{(0, x_2), x_2 \ge 1\}, 0$

(d) $\{(\frac{1}{3}, \frac{1}{3})\}, \frac{1}{3}$

(e) $\{(\frac{1}{2}, \frac{1}{6})\}$, since ∇f_0 is perpendicular to the boundary at that point.

5. Exercise 4.4

(a) We may notice, for each fixed Q_i , the orbit $\{Q_iQ_i\}$ is just G. Hence for any $x \in \mathbb{R}^n$,

$$Q_i \bar{x} = \frac{1}{k} Q_i \sum_{j=1}^k Q_j x = \frac{1}{k} \sum_{j=1}^k Q_i Q_j x = \frac{1}{k} \sum_{j=1}^k Q_j x = \bar{x}.$$

(b) Since f is convex,

$$f(\bar{x}) = f(\frac{1}{k} \sum_{i=1}^{k} Q_i x) \le \frac{1}{k} \sum_{i=1}^{k} f(Q_i x) = \frac{1}{k} \sum_{i=1}^{k} f(x) = f(x).$$

- (c) Suppose x_0 is the optimal point of the problem, then by (a), $\bar{x_0}$ is feasible, and by (b) $f_0(\bar{x_0}) \leq f_0(x_0)$. So $\bar{x_0}$ is optimal.
- (d) By (a), (b), (c), we notice for a minimizer x_0 of this problem,

$$f(\frac{1}{n!}\sum_{P}Px_0) \le f(x_0).$$

But $\frac{1}{n!} \sum_{P} Px_0 = \alpha 1$. Hence.

6. Exercise 4.8

- (a) i) If the constraint is not feasible, i.e., Ax = b has no solutions, then the optimal result is ∞ .
- ii) Now let $c = A^{\top}c_1 + c_2$, where $Ac_2 = 0$. Then $c^{\top}x = c_1^{\top}b + c_2^{\top}x$. If $c_2 = 0$ then $c^{\top}x \equiv c_1^{\top}b$. If $c_2 \neq 0$, then pick $\hat{x} = x tc_2$, we have $A\hat{x} = b$ and $c_2^{\top}\hat{x} = -t|c_2|^2$, which means it is not bounded below, so the optimal result is $-\infty$.
- (b) Let $c = ka + c_1$, where $c_1^{\top}a = 0$. Then $c^{\top}x = ka^{\top}x + c_1^{\top}x$. If $c_1 = 0$, if k > 0, pick x = -ta, then $a^{\top}x \leq b$ when $t \to -\infty$, and $c^{\top}x = -kt|a|^2$ is unbounded below. If $k \leq 0$, then $ka^{\top}x \geq kb$, so $\min f_0 = kb$. If $c_1 \neq 0$, pick $x = ba tc_1$ and let $t \to -\infty$, the function is not bounded below.
- (c) We can minimize w.r.t. each component separately. For each i, if $c_i > 0$, then $x_i^* = l_i$; if $c_i = 0$, then any $l_i \le x_i \le u_i$ is optimal. if $c_i < 0$, then $x_i^* = u_i$. Hence.
- (d) Notice

$$c^{\top}x \ge \min\{c_i\}1^{\top}x = \min\{c_i\}.$$

If constraint is replaced, then

$$c^{\top}x \ge \min\{0, c_i\}.$$

(e) First suppose $c_1 \leq c_2 \leq \cdot \leq c_n$. Then

$$c^{\top}x \geq \sum_{i=1}^{\alpha} c_i$$
.

If α is not an integer,

$$c^{\top}x \ge \sum_{i=1}^{\lfloor \alpha \rfloor} c_i + (\alpha - \lfloor \alpha \rfloor)c_{\lfloor \alpha \rfloor + 1}.$$

If is replaced with inequality, then

$$c^{\top} x \ge \sum_{i=1}^{k} c_i,$$

where k satisfies $k \leq \alpha$ and

$$c_1 \leq \cdots \leq c_k \leq 0.$$

7. Exercise 4.17

The problem can be written as

maximize
$$\sum_{j=1}^{n} r_j(x_j)$$

subject to
$$x \geq 0, Ax \leq c^{max}$$

This is a convex optimization problem. Notice

$$r_j(x_j) = \min\{p_j x_j, p_j q_j + p_j^{disc}(x_j - q_j)\}.$$

then

$$r_j(x_j) \ge t \iff p_j x_j \ge t, \ p_j q_j + p_j^{disc}(x_j - q_j) \ge t.$$

Hence the LP should be

maximize $1^{\top}t$

subject to
$$x \geq 0$$
, $Ax \leq c^{max}$, $p_i x_i \geq t_i$, $p_i q_i + p_i^{disc}(x_i - q_i) \geq t_i$.