# Curse and bless of bias

Identifying, mitigating and inducing it in CV

#### Contents

Towards computer vision in real scenarios: robustness to unexpected variations

A "bias(ed) perspective" on model robustness

Identifying/Understanding bias: shortcut learning in the Fourier domain

Mitigating bias: augmentations, and (demographic) privacy-preserving face analysis

Inducing (positive) bias

Expert knowledge from neurophysiology findings

Camera pose priors in visual place recognition

### Identifying bias: Simplicity Bias and Shortcut Learning

Networks tend to learn easy (less costly) solutions to a problem [1]



Lapuschkin, S. et al. Unmasking Clever Hans predictors and assessing what machines really learn. Nat Commun 10, 1096 (2019).

Shortcuts are decision rules based on spurious correlations between data and ground truth, rather than on the correlation of semantic and task-related cues [2]

## Frequency (implicit) shortcuts

these can be computed - we designed an algorithm for 'culling irrelevant frequencies' true class: frog predicted: frog predicted: frog select only 'white' frequency components true class: golden retriever



explicit, visible shortcuts

implicit, difficulty to 'see', frequency shortcuts

predicted: golden retriever

predicted: frog



### Frequency shortcuts and texture-bias of CNNs



CNNs (trained on ImageNet) are texture-biased (Geirhos et al, ICLR 2019): we can measure this bias

**negative effects on generalization:** not learning semantics





# Mitigating bias in face analysis



**FaceNet**: minimize a triplet loss - push positive together and negative away



**ArcLoss**: faces of the same identity (classes) clustered together with high inter-class margin



#### Problem!? Soft-biometrics are encoded in face recognition

Un-bias the model from using soft biometrics => reduce (or trade-off) recognition by gender





#### Reduce bias by a gender-privacy adversary





# **Results**: improved gender-privacy





## Visual place recognition

Inductive bias via application-related priors

#### **Objective:**

recognize whether two images depict the same place, under seasonal and weather changes, time-of-the-day variations, etc.



# Visual place recognition: an Image Retrieval task



query



### Contrastive learning of image descriptors

#### How

Train using image pairs (or triplets)

#### **Objective**

- Embed descriptor of similar images close together in a latent space
- ...descriptors of non-similar images are pushed away in a latent space





$$\mathcal{L}_{CL}(x_i, x_j) = egin{cases} rac{1}{2} d(\hat{f}(x_i), \hat{f}(x_j))^2, & ext{if } y_{i,j} = 1 \ rac{1}{2} \max( au - d(\hat{f}(x_i), \hat{f}(x_j)), 0)^2, & ext{if } y_{i,j} = 0 \end{cases}$$

Hadsell et al., Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006

# Image similarity ground truth is *noisy*

Rule in VPR: images taken within 25 meters are of a similar place







## Image similarity as a continuous property







+++







## Similarity via camera/scene geometry priors

Estimate the Field-of-View of the camera, using extra information in the data sets



r: radius

Θ: fov angle

a: direction

#### Mapillary Street Level Sequences (MSLS): GPS + compass angle







 $\Psi=0.755$ 

**TrimBot2020 TB-Places**: laser tracker + IMU (6dof camera pose)







 $\Psi=0.41$ 



# **Generalized Contrastive Loss**: induce continuous (pose) similarity prior into Contrastive Learning

Generalized

**Contrastive Loss** 



#### What the GCL looks at



## What if? Learning VPR descriptors by regression

Descriptor distance as direct measure of fov overlap (image similarity)



data-efficiency and better performance

#### Summary and take home message

- Networks may learn shortcuts and/or biased descriptors (bias in data)
- Prior knowledge helps to robustify computer vision models
  - Visual system is robust to variations and generalizes well: use neurophysiology findings into CV model design (!)
  - Application-related priors (f.i. camera FoV overlap in VPR) also work
  - ... any ideas for priors ...



Identifying, mitigating and inducing it in CV



Nicola Strisciuglio n.strisciuglio@utwente.nl

UNIVERSITY OF TWENTE.