Edge lower bounds via discharging notes

January 5, 2016

1 Introduction

For a graph G, let d(G) be the average degree of G. Let \mathcal{T}_k be the Gallai trees with maximum degree at most k-1, excepting K_k .

2 Gallai's bound via discharging

Theorem 2.1 (Gallai). For $k \geq 4$ and $G \neq K_k$ a k-AT-critical graph, we have

$$d(G) < k - 1 + \frac{k - 3}{k^2 - 3}.$$

Proof. Start with initial charge function $\operatorname{ch}(v) = d_G(v)$. Have each k^+ -vertex give charge $\frac{k-1}{k^2-3}$ to each of its (k-1)-neighbors. Then let the vertices in each component of the low vertex subgraph share their total charge equally. Let $\operatorname{ch}^*(v)$ be the resulting charge function. We finish the proof by showing that $\operatorname{ch}^*(v) \geq k-1+\frac{k-3}{k^2-3}$ for all $v \in V(G)$.

If v is a k^+ -vertex, then $ch^*(v) \ge d_G(v) - \frac{k-1}{k^2-3}d_G(v) = \left(1 - \frac{k-1}{k^2-3}\right)d_G(v) \ge \left(1 - \frac{k-1}{k^2-3}\right)k = k - 1 + \frac{k-3}{k^2-3}$ as desired.

Let T be a component of the low vertex subgraph. Then the vertices in T receive total charge

$$\frac{k-1}{k^2-3} \sum_{v \in V(T)} k - 1 - d_G(v) = \frac{k-1}{k^2-3} \left((k-1)|T| - 2 ||T|| \right).$$

So, after distributing this charge out equally, each vertex in T receives charge

$$\frac{1}{|T|} \frac{k-1}{k^2 - 3} ((k-1)|T| - 2||T||) = \frac{k-1}{k^2 - 3} ((k-1) - d(T)).$$

By Lemma 2.2, this is at least

$$\frac{k-1}{k^2-3}\left((k-1)-\left(k-2+\frac{2}{k-1}\right)\right) = \frac{k-1}{k^2-3}\left(\frac{k-3}{k-1}\right) = \frac{k-3}{k^2-3}.$$

Hence each low vertex ends with charge at least $k-1+\frac{k-3}{k^2-3}$ as desired.

Lemma 2.2 (Gallai). For $k \geq 4$ and $T \in \mathcal{T}_k$, we have $d(T) < k - 2 + \frac{2}{k-1}$.

Proof. Suppose not and choose a counterexample T minimizing |T|. Then T has at least two blocks. Let B be an endblock of T. If B is K_t for $1 \le t \le k-1$, then remove the non-separating vertices of B from T to get T'. By minimality of |T|, we have

$$2\|T\| - t(t-1) = 2\|T'\| < \left(k - 2 + \frac{2}{k-1}\right)|T'| = \left(k - 2 + \frac{2}{k-1}\right)|T| - \left(k - 2 + \frac{2}{k-1}\right)(t-1).$$

Hence we have the contradiction

$$2\|T\| < \left(k - 2 + \frac{2}{k - 1}\right)|T| + (t + 2 - k - \frac{2}{k - 1})(t - 1) \le \left(k - 2 + \frac{2}{k - 1}\right)|T|.$$

The case when B is an odd cycle is the same as the above, a longer cycle just makes things better. Finally, if $B = K_{k-1}$, remove all vertices of B from T to get T'. By minimality of |T|, we have

$$2 ||T|| - (k-1)(k-2) - 2 = 2 ||T'||$$

$$< \left(k - 2 + \frac{2}{k-1}\right) |T'|$$

$$= \left(k - 2 + \frac{2}{k-1}\right) |T| - \left(k - 2 + \frac{2}{k-1}\right) (k-1).$$

Hence $2||T|| < (k-2+\frac{2}{k-1})|T|$, a contradiction.

3 An initial improved bound

Lemma 2.2 is best possible as can be seen by the family of graphs with blocks on a path alternating K_{k-1} and K_2 . But we have reducible configurations (see the last section for the precise statements) that place restrictions on K_{k-1} blocks. To state these restrictions, we need the following auxiliary bipartite graph.

For a k-AT-critical graph G, let $\mathcal{L}(G)$ be the subgraph of G induced on the (k-1)-vertices and $\mathcal{H}(G)$ the subgraph of G induced on the k-vertices. For $T \in \mathcal{T}_k$, let $W^k(T)$ be the set of vertices of T that are contained in some K_{k-1} in T. Let $\mathcal{B}_k(G)$ be the bipartite graph with one part $V(\mathcal{H}(G))$ and the other part the components of $\mathcal{L}(G)$. Put an edge between $y \in V(\mathcal{H}(G))$ and a component T of $\mathcal{L}(G)$ if and only if $N(y) \cap W^k(T) \neq \emptyset$. Then Lemma 4.2 says that $\mathcal{B}_k(G)$ is 2-degenerate.

We can use this fact to refine our discharging argument. Let ϵ and γ be parameters that we will determine where $\epsilon \leq \gamma < 2\epsilon$. Start with initial charge function $\operatorname{ch}(v) = d_G(v)$.

- 1. Each k^+ -vertex gives charge ϵ to each of its (k-1)-neighbors not in a K_{k-1} ,
- 2. Each $(k+1)^+$ -vertex give charge γ to each of its (k-1)-neighbors in a K_{k-1} ,
- 3. Let $Q = \mathcal{B}_k(G)$. Repeat the following steps until Q is empty.
 - (a) Remove all components T of $\mathcal{L}(G)$ in Q that have degree at most two in Q.

- (b) Pick $v \in V(\mathcal{H}(G)) \cap V(Q)$. Send charge γ from v to each $x \in N_G(v) \cap W^k(T)$ for each component T of $\mathcal{L}(G)$ where $vT \in E(Q)$.
- (c) Remove v from Q.
- 4. Have the vertices in each component of $\mathcal{L}(G)$ share their total charge equally.

Let $ch^*(v)$ be the resulting charge function. Here is some intuition for why this might be a useful refinement. In (3b), v sends charge to at most two different T and so, by Lemma 4.1 (or our 'beyond degree choosability' classification), v loses charge at most 3γ . On the other hand, from (3a) each component T of $\mathcal{L}(G)$ receives charge γ for all but at most four non-separating vertices in a K_{k-1} (the at most four again coming from Lemma 4.1 and the fact that we leave T in Q until it has degree at most two). So, we can get each T almost as much charge as we could hope for without losing too much from the k-vertices. We don't have the same control over $(k+1)^+$ -vertices, but it won't matter since they have extra charge to start with and sending γ to every (k-1)-neighbor will leave enough charge (we'll use $\gamma < 2\epsilon$ here).

To analyze this discharging procedure we need a bound like Lemma 2.2, but taking into account the number of edges in $\mathcal{B}_k(G)$. We can do this by taking into account the number of non-separating vertices in K_{k-1} 's in T. To this end, for $T \in \mathcal{T}_k$, let q(T) be the number of non-separating vertices in a K_{k-1} in T. We give a family of such bounds.

Lemma 3.1. Let $K \in \mathbb{N}$ and $p: \mathbb{N} \to \mathbb{R}$, $f: \mathbb{N} \to \mathbb{R}$, $h: \mathbb{N} \to \mathbb{R}$ be such that for all $k \geq K \geq 4$ we have

1.
$$f(k) \ge t(t+2-k-p(k))$$
 for all $t \in [k-2]$; and

2.
$$f(k) \ge (5 - k - p(k))s$$
 for all $s \ge 5$; and

3.
$$f(k) \ge (k-1)(1-p(k)-h(k))$$
; and

4.
$$p(k) \ge h(k) + 5 - k$$
; and

5.
$$p(k) \ge \frac{4}{k-2}$$
; and

6.
$$p(k) \ge \frac{2+h(k)}{k-2}$$
; and

7.
$$(k-1)p(k) + (k-3)h(k) \ge k+1$$
.

Then for $k \geq K$ and $T \in \mathcal{T}_k$, we have

$$2||T|| \le (k - 3 + p(k))|T| + f(k) + h(k)q(T).$$

Proof. Suppose not and choose a counterexample T minimizing |T|. First, suppose T is K_t for $t \in [k-2]$. Then t(t-1) > (k-3+p(k))t + f(k) contradicting (1). If T is C_{2r+1} for $r \ge 2$, then 2(2r+1) > (k-3+p(k))(2r+1) + f(k) and hence f(k) < (5-k-p(k))(2r+1) contradicting (2). If T is K_{k-1} , then (k-1)(k-2) > (k-3+p(k))(k-1) + f(k) + h(k)(k-1) contradicting (3).

Hence T has at least two blocks. Let B be an endblock of T and x_B the cutvertex of T contained in B. Let $T' = T - (V(B) \setminus \{x_B\})$. Then, by minimality of |T|, we have

$$2||T'|| \le (k-3+p(k))|T'| + f(k) + h(k)q(T').$$

Hence

$$2||T|| - 2||B|| \le (k - 3 + p(k))(|T| - (|B| - 1)) + f(k) + h(k)q(T').$$

Since T is a counterexample, this gives

$$2\|B\| > (k-3+p(k))(|B|-1) + h(k)(q(T)-q(T')).$$
(*)

Suppose B is K_t for $3 \le t \le k-3$ or B is an odd cycle. Then q(T') = q(T), $2 ||B|| \le |B| (|B|-1)$ and 2 ||B|| = 2 |B| if |B| > k-3. Since $p(k) \ge \frac{4}{k-2}$ by (5), this contradicts *. If B is K_2 , then $q(T') \le q(T) + 1$ and * gives 2 > k-3+p(k)-h(k) contradicting (4). To handle the cases when B is K_{k-2} or K_{k-1} we need to remove x_B from T as well. Let $T^* = T - V(B)$. Then, by minimality of |T|, we have

$$2||T^*|| \le (k-3+p(k))||T^*| + f(k) + h(k)q(T^*).$$

Hence

$$2||T|| - 2||B|| - 2(d_T(x_B) - d_B(x_B)) \le (k - 3 + p(k))(|T| - |B|) + f(k) + h(k)q(T^*).$$

Since T is a counterexample and B is complete, this gives

$$2\|B\| > (k-3+p(k))|B| - 2(d_T(x_B) + 1 - |B|) + h(k)(q(T) - q(T^*)),$$

which is

$$2\|B\| > (k-1+p(k))|B| - 2d_T(x_B) - 2 + h(k)(q(T) - q(T^*)).$$
(**)

Suppose B is K_{k-2} . Then $d_T(x_B) = k - 1$ or $d_T(x_B) = k - 2$. In the former case, $q(T) = q(T^*)$ and in the latter $q(T^*) \le q(T) + 1$. If $d_T(x_B) = k - 1$, we have

$$(k-2)(k-3) > (k-1+p(k))(k-2) - 2(k-1) - 2 = (k-2)(k-3) - 4 + (k-2)p(k),$$

contradicting (5). If instead $d_T(x_B) = k - 2$, we have

$$(k-2)(k-3) > (k-1+p(k))(k-2)-2(k-2)-2-h(k) = (k-2)(k-3)-2+(k-2)p(k)-h(k)$$
, contradicting (6).

Finally, suppose B is K_{k-1} . Then $d_T(x_B) = k-1$ and $q(T^*) \le q(T) - (k-2) + 1 = q(T) - (k-3)$. From **, we have

$$(k-1)(k-2) > (k-1+p(k))(k-1) - 2(k-1) - 2 + h(k)(k-3)$$

= $(k-1)(k-2) + p(k)(k-1) - (k+1) + h(k)(k-3)$,

contradicting (7).

Now some examples of using Lemma 3.1. What happens if we take h(k) = 0? Then, by (7), we need $(k-1)p(k) \ge k+1$ and hence $p(k) \ge 1 + \frac{2}{k-1}$. Taking $p(k) = 1 + \frac{2}{k-1}$, (3) requires $f(k) \ge -2$. Using f(k) = -2, all of the other conditions are satisfied and we conclude $2 ||T|| \le (k-2+\frac{2}{k-1}) |T| - 2$ for every $T \in \mathcal{T}_k$ when $k \ge 4$. This is a slight refinement of Gallai's Lemma 2.2.

4 Reducible Configurations

Definition 1. A graph G is AT-reducible to H if H is a nonempty induced subgraph of G which is f_H -AT where $f_H(v) := \delta(G) + d_H(v) - d_G(v)$ for all $v \in V(H)$. If G is not AT-reducible to any nonempty induced subgraph, then it is AT-irreducible.

This first lemma tells us how a single high vertex can interact with the low vertex subgraph. This is the version Hal and i used, it (and more) follows from the classification in "mostlow".

Lemma 4.1. Let $k \geq 5$ and let G be a graph with $x \in V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. G-x has t components H_1, H_2, \ldots, H_t , and all are in \mathcal{T}_k ; and
- 3. $d_G(v) \leq k-1$ for all $v \in V(G-x)$; and
- 4. $|N(x) \cap W^k(H_i)| \geq 1$ for $i \in [t]$; and
- 5. $d_G(x) > t + 2$.

Then G is f-AT where $f(x) = d_G(x) - 1$ and $f(v) = d_G(v)$ for all $v \in V(G - x)$.

To deal with more than one high vertex we need the following auxiliary bipartite graph. For a graph G, $\{X,Y\}$ a partition of V(G) and $k \geq 4$, let $\mathcal{B}_k(X,Y)$ be the bipartite graph with one part Y and the other part the components of G[X]. Put an edge between $y \in Y$ and a component T of G[X] if and only if $N(y) \cap W^k(T) \neq \emptyset$. The next lemma tells us that we have a reducible configuration if this bipartite graph has minimum degree at least three.

Lemma 4.2. Let $k \geq 7$ and let G be a graph with $Y \subseteq V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. the components of G-Y are in \mathcal{T}_k ; and
- 3. $d_G(v) \leq k-1$ for all $v \in V(G-Y)$; and
- 4. with $\mathcal{B} := \mathcal{B}_k(V(G-Y), Y)$ we have $\delta(\mathcal{B}) \geq 3$.

Then G has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for all $v \in V(G' - Y)$.

We also have the following version with asymmetric degree condition on \mathcal{B} . The point here is that this works for $k \geq 5$. As we'll see in the next section, the consequence is that we trade a bit in our size bound for the proof to go through with $k \in \{5, 6\}$.

Lemma 4.3. Let $k \geq 5$ and let G be a graph with $Y \subseteq V(G)$ such that:

- 1. $K_k \not\subseteq G$; and
- 2. the components of G-Y are in \mathcal{T}_k ; and

- 3. $d_G(v) \leq k-1$ for all $v \in V(G-Y)$; and
- 4. with $\mathcal{B} := \mathcal{B}_k(V(G-Y),Y)$ we have $d_{\mathcal{B}}(y) \geq 4$ for all $y \in Y$ and $d_{\mathcal{B}}(T) \geq 2$ for all components T of G-Y.

Then G has an induced subgraph G' that is f-AT where $f(y) = d_{G'}(y) - 1$ for $y \in Y$ and $f(v) = d_{G'}(v)$ for all $v \in V(G' - Y)$.