

Q(i)

For data point $i \in C_I$ (data point ${
m i}$ in the cluster C_I), let

$$a(i) = rac{1}{|C_I|-1} \sum_{j \in C_I, i
eq j} d(i,j)$$

be the mean distance between i and all other data points in the same cluster, where $|C_I|$ is the number of points belonging to cluster i, and $\mathrm{d}(\mathrm{i},\mathrm{j})$ is the distance between data points i and j in the cluster C_I (we divide by $|C_I|-1$ because we do not include the distance $\mathrm{d}(\mathrm{i},\mathrm{i})$ in the sum). We can interpret $\mathrm{a}(\mathrm{i})$ as a measure of how well i is assigned to its cluster (the smaller the value, the better the assignment).

b(i)

We then define the mean dissimilarity of point i to some cluster C_J as the mean of the distance from i to all points in C_J (where $C_J \neq C_I$).

For each data point $i \in C_I$, we now define

$$b(i) = \min_{J
eq I} rac{1}{|C_J|} \left| \sum_{j \in C_J} d(i,j)
ight|$$

to be the smallest (hence the min operator in the formula) mean distance of i to all points in any other cluster (i.e., in any cluster of which i is not a member). The cluster with this smallest mean dissimilarity is said to be the "neighboring cluster" of i because it is the next best fit cluster for point i.

3 Silhouette Score

ai < bi => Good charr

ai < bi => bad clear

We now define a silhouette (value) of one data point i

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}},$$
 if $|C_I| > 1$

and

$$s(i)=0$$
, if $\left|C_{I}
ight|=1$

Which can be also written as:

$$s(i) = \begin{cases} \boxed{1 - a(i)/b(i),} & \text{if } a(i) < b(i) \\ \boxed{0,} & \text{if } a(i) = b(i) \\ \boxed{b(i)/a(i) - 1} & \text{if } a(i) > b(i) \end{cases}$$

From the above definition it is clear that

$$-1 \leq s(i) \leq 1$$