Correctievoorschrift HAVO

2013

tijdvak 2

scheikunde (pilot)

Het correctievoorschrift bestaat uit:

- 1 Regels voor de beoordeling
- 2 Algemene regels
- 3 Vakspecifieke regels
- 4 Beoordelingsmodel
- 5 Inzenden scores
- 6 Bronvermeldingen

1 Regels voor de beoordeling

Het werk van de kandidaten wordt beoordeeld met inachtneming van de artikelen 41 en 42 van het Eindexamenbesluit v.w.o.-h.a.v.o.-m.a.v.o.-v.b.o.

Voorts heeft het College voor Examens (CvE) op grond van artikel 2 lid 2d van de Wet CvE de Regeling beoordelingsnormen en bijbehorende scores centraal examen vastgesteld.

Voor de beoordeling zijn de volgende passages van de artikelen 36, 41, 41a en 42 van het Eindexamenbesluit van belang:

- 1 De directeur doet het gemaakte werk met een exemplaar van de opgaven, de beoordelingsnormen en het proces-verbaal van het examen toekomen aan de examinator. Deze kijkt het werk na en zendt het met zijn beoordeling aan de directeur. De examinator past de beoordelingsnormen en de regels voor het toekennen van scorepunten toe die zijn gegeven door het College voor Examens.
- 2 De directeur doet de van de examinator ontvangen stukken met een exemplaar van de opgaven, de beoordelingsnormen, het proces-verbaal en de regels voor het bepalen van de score onverwijld aan de gecommitteerde toekomen.
- 3 De gecommitteerde beoordeelt het werk zo spoedig mogelijk en past de beoordelingsnormen en de regels voor het bepalen van de score toe die zijn gegeven door het College voor Examens.

- De gecommitteerde voegt bij het gecorrigeerde werk een verklaring betreffende de verrichte correctie. Deze verklaring wordt mede ondertekend door het bevoegd gezag van de gecommitteerde.
- 4 De examinator en de gecommitteerde stellen in onderling overleg het aantal scorepunten voor het centraal examen vast.
- Indien de examinator en de gecommitteerde daarbij niet tot overeenstemming komen, wordt het geschil voorgelegd aan het bevoegd gezag van de gecommitteerde. Dit bevoegd gezag kan hierover in overleg treden met het bevoegd gezag van de examinator. Indien het geschil niet kan worden beslecht, wordt hiervan melding gemaakt aan de inspectie. De inspectie kan een derde onafhankelijke gecommitteerde aanwijzen. De beoordeling van de derde gecommitteerde komt in de plaats van de eerdere beoordelingen.

2 Algemene regels

Voor de beoordeling van het examenwerk zijn de volgende bepalingen uit de regeling van het College voor Examens van toepassing:

- De examinator vermeldt op een lijst de namen en/of nummers van de kandidaten, het aan iedere kandidaat voor iedere vraag toegekende aantal scorepunten en het totaal aantal scorepunten van iedere kandidaat.
- Voor het antwoord op een vraag worden door de examinator en door de gecommitteerde scorepunten toegekend, in overeenstemming met het beoordelingsmodel. Scorepunten zijn de getallen 0, 1, 2, ..., n, waarbij n het maximaal te behalen aantal scorepunten voor een vraag is. Andere scorepunten die geen gehele getallen zijn, of een score minder dan 0 zijn niet geoorloofd.
- 3 Scorepunten worden toegekend met inachtneming van de volgende regels:
 - 3.1 indien een vraag volledig juist is beantwoord, wordt het maximaal te behalen aantal scorepunten toegekend:
 - 3.2 indien een vraag gedeeltelijk juist is beantwoord, wordt een deel van de te behalen scorepunten toegekend, in overeenstemming met het beoordelingsmodel;
 - 3.3 indien een antwoord op een open vraag niet in het beoordelingsmodel voorkomt en dit antwoord op grond van aantoonbare, vakinhoudelijke argumenten als juist of gedeeltelijk juist aangemerkt kan worden, moeten scorepunten worden toegekend naar analogie of in de geest van het beoordelingsmodel;
 - 3.4 indien slechts één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, wordt uitsluitend het eerstgegeven antwoord beoordeeld;
 - 3.5 indien meer dan één voorbeeld, reden, uitwerking, citaat of andersoortig antwoord gevraagd wordt, worden uitsluitend de eerstgegeven antwoorden beoordeeld, tot maximaal het gevraagde aantal;
 - 3.6 indien in een antwoord een gevraagde verklaring of uitleg of afleiding of berekening ontbreekt dan wel foutief is, worden 0 scorepunten toegekend, tenzij in het beoordelingsmodel anders is aangegeven;
 - 3.7 indien in het beoordelingsmodel verschillende mogelijkheden zijn opgenomen, gescheiden door het teken /, gelden deze mogelijkheden als verschillende formuleringen van hetzelfde antwoord of onderdeel van dat antwoord;
 - 3.8 indien in het beoordelingsmodel een gedeelte van het antwoord tussen haakjes staat, behoeft dit gedeelte niet in het antwoord van de kandidaat voor te komen;

- 3.9 indien een kandidaat op grond van een algemeen geldende woordbetekenis, zoals bijvoorbeeld vermeld in een woordenboek, een antwoord geeft dat vakinhoudelijk onjuist is, worden aan dat antwoord geen scorepunten toegekend, of tenminste niet de scorepunten die met de vakinhoudelijke onjuistheid gemoeid zijn.
- 4 Het juiste antwoord op een meerkeuzevraag is de hoofdletter die behoort bij de juiste keuzemogelijkheid. Voor een juist antwoord op een meerkeuzevraag wordt het in het beoordelingsmodel vermelde aantal scorepunten toegekend. Voor elk ander antwoord worden geen scorepunten toegekend. Indien meer dan één antwoord gegeven is, worden eveneens geen scorepunten toegekend.
- 5 Een fout mag in de uitwerking van een vraag maar één keer worden aangerekend, tenzij daardoor de vraag aanzienlijk vereenvoudigd wordt en/of tenzij in het beoordelingsmodel anders is vermeld.
- 6 Een zelfde fout in de beantwoording van verschillende vragen moet steeds opnieuw worden aangerekend, tenzij in het beoordelingsmodel anders is vermeld.
- Indien de examinator of de gecommitteerde meent dat in een examen of in het beoordelingsmodel bij dat examen een fout of onvolkomenheid zit, beoordeelt hij het werk van de kandidaten alsof examen en beoordelingsmodel juist zijn. Hij kan de fout of onvolkomenheid mededelen aan het College voor Examens. Het is niet toegestaan zelfstandig af te wijken van het beoordelingsmodel. Met een eventuele fout wordt bij de definitieve normering van het examen rekening gehouden.
- 8 Scorepunten worden toegekend op grond van het door de kandidaat gegeven antwoord op iedere vraag. Er worden geen scorepunten vooraf gegeven.
- 9 Het cijfer voor het centraal examen wordt als volgt verkregen. Eerste en tweede corrector stellen de score voor iedere kandidaat vast. Deze score wordt meegedeeld aan de directeur. De directeur stelt het cijfer voor het centraal examen vast op basis van de regels voor omzetting van score naar cijfer.
- NB1 Het aangeven van de onvolkomenheden op het werk en/of het noteren van de behaalde scores bij de vraag is toegestaan, maar niet verplicht.
 Evenmin is er een standaardformulier voorgeschreven voor de vermelding van de scores van de kandidaten.
 Het vermelden van het schoolexamencijfer is toegestaan, maar niet verplicht.
 Binnen de ruimte die de regelgeving biedt, kunnen scholen afzonderlijk of in gezamenlijk overleg keuzes maken.
- NB2 Als het College voor Examens vaststelt dat een centraal examen een onvolkomenheid bevat, kan het besluiten tot een aanvulling op het correctievoorschrift.

 Een aanvulling op het correctievoorschrift wordt zo spoedig mogelijk nadat de onvolkomenheid is vastgesteld via Examenblad.nl verstuurd aan de examensecretarissen.

Soms komt een onvolkomenheid pas geruime tijd na de afname aan het licht. In die gevallen vermeldt de aanvulling:

NB

- a. Als het werk al naar de tweede corrector is gezonden, past de tweede corrector deze aanvulling op het correctievoorschrift toe.
- b. Als de aanvulling niet is verwerkt in de naar Cito gezonden WOLF-scores, voert Cito dezelfde wijziging door die de correctoren op de verzamelstaat doorvoeren.

Een onvolkomenheid kan ook op een tijdstip geconstateerd worden dat een aanvulling op het correctievoorschrift ook voor de tweede corrector te laat komt. In dat geval houdt het College voor Examens bij de vaststelling van de N-term rekening met de onvolkomenheid.

3 Vakspecifieke regels

Voor dit examen kunnen maximaal 76 scorepunten worden behaald.

Voor dit examen zijn de volgende vakspecifieke regels vastgesteld:

- 1 Als in een berekening één of meer rekenfouten zijn gemaakt, wordt per vraag één scorepunt afgetrokken.
- 2 Een afwijking in de uitkomst van een berekening door acceptabel tussentijds afronden wordt de kandidaat niet aangerekend.
- Als in de uitkomst van een berekening geen eenheid is vermeld of als de vermelde eenheid fout is, wordt één scorepunt afgetrokken, tenzij gezien de vraagstelling het weergeven van de eenheid overbodig is. In zo'n geval staat in het beoordelingsmodel de eenheid tussen haakjes.
- 4 De uitkomst van een berekening mag één significant cijfer meer of minder bevatten dan op grond van de nauwkeurigheid van de vermelde gegevens verantwoord is, tenzij in de vraag is vermeld hoeveel significante cijfers de uitkomst dient te bevatten.
- Als in het antwoord op een vraag meer van de bovenbeschreven fouten (rekenfouten, fout in de eenheid van de uitkomst en fout in de nauwkeurigheid van de uitkomst) zijn gemaakt, wordt in totaal per vraag maximaal één scorepunt afgetrokken van het aantal dat volgens het beoordelingsmodel zou moeten worden toegekend.
- 6 Indien in een vraag niet naar toestandsaanduidingen wordt gevraagd, mogen fouten in toestandsaanduidingen niet in rekening worden gebracht.

4 Beoordelingsmodel

Vraag

Antwoord

Scores

MTBE in drinkwater

1 maximumscore 2

$$CH_3$$
- OH of CH_3 OH of H - C - OH H

Indien de formule CH₄O is gegeven

1

2 maximumscore 2

Een juist antwoord kan als volgt zijn geformuleerd: Bij deze reactie verdwijnt de dubbele binding, dus is het een additiereactie.

de dubbele binding verdwijnt

1

• conclusie

1

Indien het antwoord "Additiereactie" is gegeven, zonder uitleg of met een onjuiste uitleg

0

Opmerking

Wanneer een antwoord is gegeven als: "Uit twee moleculen wordt één molecuul gevormd, dus is het een additiereactie." of "Uit twee stoffen wordt één stof gevormd, dus is het een additiereactie.", dit goed rekenen.

3 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- In (moleculen) MTBE ontbreken (OH en/of NH) groepen die waterstofbruggen kunnen vormen. Daarom (moet MTBE tot de hydrofobe stoffen worden gerekend en) lost MTBE beter op in (een hydrofoob oplosmiddel als) benzine dan in water.
- (Een) MTBE (molecuul) bevat (veel) methylgroepen. Daardoor is MTBE apolair en zal het slecht oplossen in het polaire water en goed oplossen in het apolaire benzine.
- in een MTBE molecuul komen geen OH en/of NH groepen voor / groepen voor die waterstofbruggen kunnen vormen

1

1

1

1

1

1

 daarom (is MTBE een hydrofobe stof en) lost MTBE beter op in benzine dan in water

of

- uitleg waarom MTBE een apolaire stof is
- water is polair en benzine is apolair (daarom lost MTBE slechter op in water dan in benzine)

4 maximumscore 3

Een juiste berekening leidt tot de conclusie dat het drinkwater niet aan de richtlijn voldoet.

- berekening van het aantal mol MTBE in het reservoir: 150 (kg) vermenigvuldigen met 10³ (g kg⁻¹) en delen door de massa van een mol MTBE (88,15 g)
- berekening van de concentratie van MTBE in het reservoir: het aantal mol MTBE in het reservoir delen door 5,0·10⁶ (m³) en delen door 10³ (L m⁻³)
- conclusie 1

Opmerking

Wanneer een fout tegen de significantieregels is gemaakt, dit hier niet aanrekenen.

5 maximumscore 2

Een voorbeeld van een juist antwoord is:

Titaandioxide is TiO_2 . De zuurstofionen hebben hierin lading 2-, dus moeten de titaanionen lading 4+ hebben. Dus het cijfer is IV.

- juiste uitleg dat de titaanionen lading 4+ moeten hebben
- conclusie 1

Indien het antwoord "IV" is gegeven, zonder uitleg

1 Indien een antwoord is gegeven als: "Titaandioxide is TiO₂, dus IV."

6 maximumscore 3

$$2 C_5 H_{12}O + 15 O_2 \rightarrow 10 CO_2 + 12 H_2O$$

- uitsluitend $C_5H_{12}O$ en O_2 voor de pijl
- uitsluitend CO₂ en H₂O na de pijl
- C, H en O balans juist

Indien een kloppende vergelijking is gegeven waarin ${\rm TiO_2}$ voor de pijl staat en Ti na de pijl, zoals bijvoorbeeld:

$$2 C_5 H_{12}O + 15 TiO_2 \rightarrow 10 CO_2 + 12 H_2O + 15 Ti$$

Indien de vergelijking $2 C_5 H_{12}O + 21 O_2 \rightarrow 10 CO_2 + 12 H_2O_3$ is

gegeven $2 \frac{1}{2} \frac{$

2

1

1

Indien een vergelijking is gegeven als:

$$C_5H_{12}O + O_2 \rightarrow C_4H_{10} + CO_2 + H_2O$$

Opmerking

Wanneer de structuurformule van MTBE is gebruikt, dit goed rekenen.

De ontleding van waterstofperoxide

7 maximumscore 1

Voorbeelden van een juist antwoord zijn:

- Dat het jodide niet wordt verbruikt.
- Dat het aantal mol jodide na afloop van de reactie gelijk is aan het aantal mol jodide aan het begin van de reactie.

Indien een antwoord is gegeven als: "Dat het jodide niet wordt gebruikt." 0

8 maximumscore 3

Een juiste berekening leidt tot de uitkomst 10 (mL).

- berekening van het aantal mmol I⁻ in de onverdunde oplossing:
 0,44 (mmol mL⁻¹) vermenigvuldigen met 30 (mL)
- berekening van het volume van de verdunde oplossing in mL: het aantal mmol I⁻ in de onverdunde oplossing delen door 0,33 (mmol mL⁻¹)
- berekening van het aantal mL water dat moet worden toegevoegd: het volume van de verdunde oplossing in mL verminderen met 30 (mL)

of

 berekening van de verdunningsfactor: 0,44 (mmol mL⁻¹) delen door 0,33 (mmol mL⁻¹) 	1
• berekening van het volume van de verdunde oplossing in mL: 30 (mL) vermenigvuldigen met de gevonden verdunningsfactor	1
• berekening van het aantal mL water dat moet worden toegevoegd: het volume van de verdunde oplossing in mL verminderen met 30 (mL)	1
Indien een antwoord is gegeven als: "Als je aan 30 mL 0,44 M oplossing 30 mL water toevoegt, krijg je een 0,22 M oplossing. Je moet halverwege uitkomen, dus moet je 15 mL water toevoegen."	1

Opmerking

Wanneer een antwoord is gegeven als: "Je moet eerst 30 mL water toevoegen (dan krijg je een 0,22 M oplossing) en daarna 30 mL van de verkregen oplossing mengen met 30 mL 0,44 M oplossing.", dit goed rekenen.

9 maximumscore 2

Een juiste berekening leidt tot de uitkomst $4,4\cdot10^{-2}$ (mol L⁻¹ s⁻¹).

- aflezen van het aantal seconden dat de reactie heeft geduurd: 62 ± 2 (s)
 berekening van de gemiddelde reactiesnelheid: 2,7 (mol L⁻¹) delen door
- berekening van de gemiddelde reactiesnelheid: 2,7 (mol L⁻¹) delen door het aantal seconden dat de reactie heeft geduurd

Indien het antwoord
$$\frac{2.7 \text{ (mol L}^{-1})}{120 \text{ (s)}} = 2.3 \cdot 10^{-2} \text{ (mol L}^{-1} \text{ s}^{-1}) \text{ is gegeven}$$

Opmerking

Wanneer bij het aflezen van het aantal seconden dat de reactie heeft geduurd het eerste horizontale deel van het diagram niet is meegeteld,

leidend tot een antwoord als
$$\frac{2.7 \, (\text{mol } L^{-1})}{56 \, (\text{s})} = 4.8 \times 10^{-2} \, (\text{mol } L^{-1} \, \text{s}^{-1})$$
, dit goed rekenen.

10 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- In proef III is de jodideconcentratie het grootst (en in proef I het kleinst). Uit het diagram blijkt dat naarmate de jodideconcentratie groter wordt de reactie eerder is afgelopen.
- In proef III is de jodideconcentratie het grootst (en in proef I het kleinst). En naarmate de jodideconcentratie groter wordt, lopen de curves (voor een deel) steiler.
- in proef III is de jodideconcentratie het grootst (en in proef I het kleinst)

 naarmate de jodideconcentratie groter wordt, is de reactie eerder afgelopen 1

1

1

1

of

• in proef III is de jodideconcentratie het grootst (en in proef I het kleinst)

naarmate de jodideconcentratie groter wordt, lopen de curves (voor een deel) steiler

'Groen' piepschuim

11 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- In de tekst staat dat de bolletjes aan elkaar kleven wanneer ze worden verwarmd. Dit betekent dat het piepschuim zacht wordt bij verwarming. Het is dus een thermoplast.
- De bolletjes worden zacht / smelten (waardoor ze aan elkaar kleven) bij verwarmen. Het is dus een thermoplast.
- Het polymeer wordt gemaakt en krijgt daarna door verwarming (in een mal) een bepaalde vorm. Dat kan alleen met een thermoplast.
- De polymeerkorrels worden verwarmd en schuimen vervolgens op (tot bolletjes). Dat betekent dat het polymeer vervormbaar is, dus is het een thermoplast.
- de bolletjes kleven aan elkaar / worden zacht / smelten bij verwarming
 conclusie

of

 het polymeer kan na verwarming opschuimen / krijgt na verwarming 		
een bepaalde vorm	1	
• conclusie	1	
Indien een antwoord is gegeven als: "Ze kleven aan elkaar. Dus het is een		
thermoplast." of "Ze vervormen. Dus het is een thermoplast."	1	
Indien het antwoord "thermoplast" is gegeven zonder uitleg of met een		
oniuiste uitleg	0	

maximumscore 2 12

Een juiste berekening leidt tot de uitkomst 20 (vrachtwagens).

Voorbeeld van een juiste berekening is:

46 ton piepschuim-bolletjes is
$$\frac{46 \cdot 10^{3} (\text{kg})}{22,5 (\text{kg m}^{-3})} = 2,0 \cdot 10^{3} (\text{m}^{3})$$

Er zijn dus
$$\frac{2,0\cdot10^3 \text{ (m}^3)}{100 \text{ (m}^3)}$$
 = 20 vrachtwagens nodig.

- berekening van het volume van 46 (ton) piepschuim-bolletjes: $46 \cdot 10^3$ (kg) delen door 22,5 (kg m⁻³)
- berekening van het aantal vrachtwagens: het volume van 46 (ton) piepschuim-bolletjes delen door 100 (m³) 1

Indien een antwoord is gegeven als: "Het volume van de piepschuim-

bolletjes is
$$\frac{1,06 \cdot 10^3 \left(\text{kg m}^{-3} \right)}{22,5 \left(\text{kg m}^{-3} \right)} = 47,1 \text{ keer zo groot als van de}$$

polymeerkorrels. Er zijn dus 48 vrachtwagens nodig."

Opmerking

Wanneer bij een juiste berekening het antwoord 20,4 of 21 (vrachtwagens) is gegeven, dit goed rekenen.

1

13 maximumscore 2

Een juist antwoord kan er als volgt uitzien:

$$CH = CH_2$$
 HC
 CH
 CH
 CH

dubbele binding getekend tussen de CH groep en de CH2 groep

rest van de formule juist

Opmerking

Wanneer een juiste structuurformule is gegeven waarin de fenylgroep als C_6H_5 is weergegeven, dit goed rekenen.

maximumscore 3 14

Voorbeelden van een juist antwoord zijn:

of

$$\sim O - CH - \overset{O}{C} - O - CH - \overset{O}{C} - O - CH - \overset{O}{C} - O + CH - \overset{O}{C} - OH$$

of

1

• de estergroepen weergegeven als C - O - C • methylgroepen, zuurstofatomen en waterstofatomen aan de keten op een juiste wijze weergegeven

1

in de getekende keten drie monomeereenheden verwerkt, het carboxyluiteinde of het hydroxy-uiteinde juist weergegeven en het andere uiteinde aangegeven met • of − of ~

15 maximumscore 2

Een voorbeeld van een juist antwoord is:

Voor de polymerisatie van styreen is warmte/energie nodig. Die wordt (meestal) verkregen door verbranding van (fossiele) brandstoffen. Daarbij komt CO₂ vrij. Bij de vorming van polymelkzuur komt juist energie vrij. Het warmte-effect van de polymerisatiereacties is dus in het voordeel van BioFoam[®].

- voor de polymerisatie van styreen is warmte/energie nodig en voor de vorming van polymelkzuur niet
- notie dat bij het produceren van de benodigde energie voor de polymerisatie van styreen CO₂ vrijkomt en conclusie

1

1

1

16 maximumscore 2

Een voorbeeld van een juist antwoord is:

De grondstoffen voor BioFoam[®] zijn suikers en zetmeel. De grondstof voor EPS is aardolie. Zowel bij de vorming van suikers en zetmeel als bij de vorming van aardolie wordt CO₂ gebonden. Maar bij de vorming van aardolie is dat al veel langer geleden gebeurd (dan bij de vorming van suikers en zetmeel). Dus het verschil in grondstoffen draagt ertoe bij dat de netto CO₂ uitstoot per ton polymeer voor BioFoam[®] lager is dan voor EPS.

- notie dat bij de vorming van suikers en zetmeel CO₂ wordt gebonden
- rest van de uitleg en conclusie

Opmerkingen

- Wanneer een antwoord is gegeven als: "De grondstof voor EPS is styreen. Dat moet uit aardolie worden gewonnen en dat kost veel energie. Bij de opwekking van die energie komt CO₂ vrij. De grondstof voor BioFoam[®] is melkzuur. Voor de vorming van het melkzuur uit suikers en zetmeel is geen / veel minder energie nodig. Dus het verschil in grondstoffen draagt ertoe bij dat de netto CO₂ uitstoot per ton polymeer voor BioFoam[®] lager is dan voor EPS.", dit goed rekenen.
- Wanneer een antwoord is gegeven als: "De grondstof voor EPS is styreen. Dat moet uit aardolie worden gewonnen en dat kost veel energie. Bij de opwekking van die energie komt CO₂ vrij. De grondstof voor BioFoam[®] is melkzuur dat wordt gevormd uit suikers en zetmeel. Daarvoor zijn planten geteeld. Ik weet niet hoeveel energie is verbruikt of hoeveel CO₂ is vrijgekomen bij deze teelt. Dus het is onduidelijk of het verschil in grondstoffen ertoe bijdraagt dat de netto CO₂ uitstoot per ton polymeer voor BioFoam[®] lager is dan voor EPS.", dit goed rekenen.

IJzer in cornflakes

17 maximumscore 2

halfreactie oxidator: $2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{H}_2$ halfreactie reductor: $\text{Fe} \rightarrow \text{Fe}^{2+} + 2 \text{ e}^$ totale reactievergelijking: $2 \text{ H}^+ + \text{Fe} \rightarrow \text{H}_2 + \text{Fe}^{2+}$

- de vergelijking van een halfreactie juist
- de vergelijking van de andere halfreactie juist en beide vergelijkingen van de halfreacties juist gecombineerd tot een totale reactievergelijking

Indien een antwoord is gegeven als:

halfreactie oxidator: Fe \rightarrow Fe²⁺ + 2 e⁻ halfreactie reductor: 2 H⁺ + 2 e⁻ \rightarrow H₂ totale reactievergelijking: 2 H⁺ + Fe \rightarrow H₂ + Fe²⁺

of

halfreactie oxidator: $2 \text{ H}^+ \rightarrow \text{ H}_2 + 2 \text{ e}^$ halfreactie reductor: $\text{Fe} + 2 \text{ e}^- \rightarrow \text{Fe}^{2+}$ totale reactievergelijking: $2 \text{ H}^+ + \text{Fe} \rightarrow \text{H}_2 + \text{Fe}^{2+}$

of

halfreactie oxidator: Fe + 2 e⁻ \rightarrow Fe²⁺ halfreactie reductor: 2 H⁺ \rightarrow H₂ + 2 e⁻ totale reactievergelijking: 2 H⁺ + Fe \rightarrow H₂ + Fe²⁺

Opmerkingen

- Wanneer een antwoord is gegeven als: "halfreactie oxidator: $2H^+ + 2e^- \rightarrow H_2$ halfreactie reductor: $Fe^{2+} + 2e^- \rightarrow Fe$ totale reactievergelijking: $2H^+ + Fe \rightarrow H_2 + Fe^{2+}$ ", dit goed rekenen.
- Wanneer evenwichtstekens zijn gebruikt in plaats van reactiepijlen, dit goed rekenen.

1

maximumscore 2 18

Een juist antwoord kan als volgt zijn geformuleerd:

De base die in melk zit, reageert met de H⁺ uit het maagzuur. Daardoor wordt de [H⁺] kleiner en neemt de reactiesnelheid af (en wordt de vorming van Fe²⁺ geremd).

de base reageert met H⁺ 1 daardoor wordt de [H⁺] kleiner en neemt de reactiesnelheid af (en wordt de vorming van Fe²⁺ geremd)

1

0

Opmerking

Wanneer een antwoord is gegeven als: "Melk verdunt het zoutzuur. Daardoor wordt [H⁺] kleiner en neemt de reactiesnelheid af (en wordt de vorming van Fe^{2+} geremd).", dit goed rekenen.

maximumscore 2 19

Een juist antwoord kan als volgt zijn geformuleerd:

Als Fe³⁺ wordt omgezet tot Fe²⁺, worden elektronen opgenomen / reageert het Fe³⁺ als oxidator. Er is dus een reductor nodig om Fe³⁺ om te zetten tot Fe^{2+} .

• Fe³⁺ neemt elektronen op / reageert als oxidator 1 conclusie 1

Indien het antwoord reductor is gegeven zonder uitleg, of met een onjuiste uitleg

20 maximumscore 2

Een voorbeeld van een juist antwoord is:

Overeenkomst: de samenstelling van de kernen is hetzelfde / de aantallen protonen (in de kernen) zijn aan elkaar gelijk.

Verschil: de aantallen elektronen (in de elektronenwolken) zijn niet aan elkaar gelijk.

•	overeenkomst juist	1
•	verschil juist	1

Indien een antwoord is gegeven als:

"Overeenkomst: het gaat in beide gevallen om de atoomsoort / het element ijzer.

Verschil: in een paperclip zijn de ijzerdeeltjes ongeladen en de ijzerdeeltjes die door het lichaam worden opgenomen, zijn geladen."

1

Opmerkingen

- Wanneer een antwoord is gegeven als: "Overeenkomst: in beide gevallen gaat het om Fe²⁺ ionen.
 Verschil: in de paperclip zijn de valentie-elektronen in het (metaal)rooster aanwezig, in het lichaam zijn het Fe²⁺ ionen zonder valentie-elektronen.", dit goed rekenen.
- Wanneer als overeenkomst is vermeld dat de aantallen neutronen in de kernen hetzelfde zijn, dit goed rekenen.

21 maximumscore 2

Een voorbeeld van een juist antwoord is:

De reactiesnelheid van ijzerpoeder I met maagzuur is groter dan die van ijzerpoeder II met maagzuur. Dat komt omdat het oppervlak van de korrels in ijzerpoeder I groter is dan in ijzerpoeder II.

•	het oppervlak van de korrels van ijzerpoeder I is groter dan het	
	oppervlak van de korrels van ijzerpoeder II	1
•	conclusie	1

22 maximumscore 2

Een juiste berekening leidt tot de conclusie dat (uit een portie cornflakes met melk 0,1 mg ijzer wordt opgenomen en uit een portie gekookte spinazie 0,018 mg en dat dus) de uitspraak klopt.

• berekening van het aantal mg ijzer in een portie cornflakes: 40 (g) delen door 100 (g) en vermenigvuldigen met 12 (mg)

1

1

1

• berekening van het aantal mg ijzer dat uit een portie cornflakes met melk wordt opgenomen en van het aantal mg ijzer dat uit een portie gekookte spinazie wordt opgenomen: het berekende aantal mg ijzer in een portie cornflakes vermenigvuldigen met 2(%) en delen door 10²(%) respectievelijk 1,3 (mg) vermenigvuldigen met 1,4(%) en delen door 10²(%) en conclusie

Opmerkingen

- Wanneer een antwoord is gegeven als: "Een portie cornflakes bevat $\frac{40}{100} \times 12 = 4,8 \text{ mg ijzer. Dat is al meer dan wat in een portie spinazie}$ zit. Bovendien is het laagste percentage dat uit cornflakes wordt opgenomen ook hoger dan het percentage dat uit spinazie wordt
- Wanneer een juiste berekening is gegeven die is gebaseerd op het percentage ijzer dat wordt opgenomen uit cornflakes zonder melk, dit goed rekenen.

opgenomen. Dus klopt de uitspraak.", dit goed rekenen.

 Wanneer een fout tegen de significantieregels is gemaakt, dit hier niet aanrekenen.

Grafeen uit koekkruimels

23 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- De koekkruimels verbranden doordat zuurstof (uit de lucht) met de koolhydraten/vetten reageert.
- Grafeen/koolstof zou met zuurstof (uit de lucht) reageren tot koolstofdioxide
- notie dat lucht zuurstof bevat
 rest van de uitleg
 1
- Indien een antwoord is gegeven als: "Er ontstaat dan koolstofdioxide en geen/minder grafeen."

Opmerking

Wanneer een antwoord is gegeven als: "Dan verbrandt de koolstof (en ontstaat dus geen grafeen).", dit goed rekenen.

24 maximumscore 2

$$Cu + Cu^{2+} \rightarrow 2 Cu^{+}$$

- alleen Cu en Cu²⁺ voor de pijl
- alleen 2 Cu⁺ na de pijl

Indien één van de volgende vergelijkingen is gegeven

- Cu \rightarrow Cu⁺ + e⁻
- $Cu^{2+} + e^{-} \rightarrow Cu^{+}$
- $3 Cu + Cu^{2+} + 2 H^{+} \rightarrow 4 Cu^{+} + H_{2}$

25 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- Ja, want zowel Cu als Cu²⁺ veranderen van lading.
- Cu is hier de reductor en Cu²⁺ is de oxidator, dus is het een redoxreactie.
- Het is een redoxreactie want Cu staat e af.
- Het is een redoxreactie want Cu²⁺ neemt e⁻ op.
- Cu en Cu²⁺ veranderen van lading / Cu is de reductor en Cu²⁺ is de oxidator / Cu staat e⁻ af / Cu²⁺ neemt e⁻ op
- conclusie 1

Indien een antwoord is gegeven als: "Cu is bij deze reactie de reductor / Cu²⁺ is bij deze reactie de oxidator, dus het is een redoxreactie."

Indien een antwoord is gegeven als: "Het is een redoxreactie want uit Cu / Cu²⁺ ontstaat Cu⁺."

Indien een antwoord is gegeven als: "Het is een redoxreactie want er worden elektronen overgedragen."

Indien een antwoord is gegeven als: "Het is geen redoxreactie want er worden geen elektronen overgedragen."

1

1

1

0

26 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- Het smeltpunt van grafiet is 3823 K. De temperatuur van de oven is (veel) lager dan het smeltpunt van grafiet. (Dus van het verdampen van (de koolstof uit) grafiet kan geen sprake zijn.)
- De (oven)temperatuur moet veel hoger zijn dan 1050 °C, want grafiet smelt pas bij 3823 K.
- Het sublimatiepunt/kookpunt van grafiet is 4098 K. De temperatuur van de oven is (veel) lager (dan 4098 K). (Dus kan (de koolstof uit) grafiet niet verdampen.)
- het smeltpunt van grafiet is 3823 K/3550 °C / het sublimatiepunt/kookpunt van grafiet is 4098 K/3825 °C
 de temperatuur van de oven is lager dan het smeltpunt van grafiet/

1

1

3823 K/3550 °C / het sublimatiepunt/kookpunt van grafiet/4098 K/3825 °C / (slechts) 1050 °C

27 maximumscore 3

Voorbeelden van een juist antwoord zijn:

- Een koolstofatoom kan vier (atoom)bindingen vormen. Daarvoor zijn vier elektronen beschikbaar. In figuur 1 is elk koolstofatoom betrokken bij drie (enkelvoudige) atoombindingen. Dus elk koolstofatoom heeft één elektron dat beschikbaar is voor stroomgeleiding.
- De covalentie van koolstof is 4. In figuur 1 zijn per C atoom drie elektronen betrokken bij de getekende (enkelvoudige atoom)bindingen. Dus elk koolstofatoom heeft één elektron dat beschikbaar is voor stroomgeleiding.
- een koolstofatoom kan vier (atoom)bindingen vormen / de covalentie van koolstof is 4
 elk koolstofatoom (in figuur 1) is betrokken bij drie (atoom)bindingen / gebruikt drie elektronen voor (de getekende atoom)bindingen
- conclusie

Opmerking

Wanneer een antwoord is gegeven als: "Een koolstofatoom heeft zes elektronen. In grafeen worden per koolstofatoom drie elektronen gebruikt voor (drie) atoombindingen. Dus per koolstofatoom zijn drie elektronen beschikbaar voor stroomgeleiding.", dit goed rekenen.

28 maximumscore 2

Een voorbeeld van een juiste berekening is:

$$\frac{220 \times 45}{30 \times 110 \times 70 \times 10^2} = 4.3 \cdot 10^{-4} \text{ (g m}^{-2}\text{)}$$

• berekening van de massa van koolstof in 220 g koekjes: 220 (g) vermenigvuldigen met 45(%) en delen door 10²(%)

1

1

1

• berekening van het aantal g koolstof per m²: het berekende aantal gram koolstof in 220 g koekjes delen door de oppervlakte van dertig voetbalvelden (= 30 × 110 × 70 m²)

29 maximumscore 2

Een voorbeeld van een juiste berekening is:

$$\frac{4,3\cdot10^{-4}\times10^{-3}}{2,5\cdot10^{3}} = 1,7\cdot10^{-10} \text{ (m)}$$

- omrekening van het aantal gram koolstof per m² naar het aantal kg per m²: het berekende aantal gram per m² (= het antwoord op vraag 28) vermenigvuldigen met 10⁻³ (kg g⁻¹)
- berekening van de dikte van de grafeenlaag en de vermelding van de juiste eenheid: het aantal kg grafeen per m² delen door 2,5·10³ (kg m³)

Opmerkingen

- Wanneer een onjuist antwoord op vraag 29 het consequente gevolg is van een onjuist antwoord op vraag 28, dit antwoord op vraag 29 goed rekenen.
- Bij de beoordeling op het punt van rekenfouten en van fouten in de significantie de vragen 28 en 29 als één vraag beschouwen; dus in het totaal van deze beide vragen maximaal 1 scorepunt aftrekken bij fouten op de genoemde punten.

Rode modder

30 maximumscore 2

Een juiste berekening leidt tot de uitkomst $[OH^{-}] = 2 \cdot 10^{-2} \text{ (mol L}^{-1}).$

- berekening van de pOH: 14,00 12,3
- berekening van de [OH⁻]: 10^{-pOH}

of

- berekening van de $[H^+]$: $10^{-12,3}$
- berekening van de $[OH^-]$: 1,0·10⁻¹⁴ delen door de berekende $[H^+]$

31 maximumscore 3

Een juiste berekening leidt tot de uitkomst 15(%).

berekening van het aantal ton aluminiumoxide in 1,25 ton rode modder: 1,25 (ton) vermenigvuldigen met 14(%) en delen door 10²(%)
berekening van de totale hoeveelheid aluminiumoxide in het gebruikte bauxiet: het aantal ton aluminiumoxide in 1,25 ton rode modder optellen bij 1,00 (ton)
berekening van het procentuele verlies: het aantal ton aluminiumoxide in 1,25 ton rode modder delen door de totale hoeveelheid aluminiumoxide in het gebruikte bauxiet en vermenigvuldigen met

1

32 maximumscore 2

 $10^2(\%)$

Voorbeelden van een juist antwoord zijn:

- De oxide-ionen (uit het Al₂O₃) worden omgezet tot hydroxide-ionen.
 Dus de oxide-ionen treden als base op.
- O^{2-} (uit Al_2O_3) bindt H^+ (uit H_2O). O^{2-} is dus base.
- oxide-ionen worden hydroxide-ionen / O²⁻ bindt H⁺
 conclusie
 Indien O²⁻ als base is genoemd, zonder uitleg
 Indien een antwoord is gegeven als: "Negatief geladen deeltjes, want die moeten H⁺ binden."

Opmerkingen

- Wanneer een antwoord is gegeven als: " OH^- kan het niet zijn, want na de pijl komt geen H_2O voor. Dus moet O^{2-} (uit het Al_2O_3) als base optreden.", dit goed rekenen.
- Wanneer in een overigens juist antwoord Al_2O_3 als base is genoemd, dit goed rekenen.

33 maximumscore 2

Voorbeelden van een juist antwoord zijn:

- Als je Na⁺ en Al(OH)₄ vergelijkt met Al(OH)₃, blijft een oplossing met Na⁺ en OH⁻ over. Dat is natronloog en kan (nadat de concentratie is aangepast) in reactor 1 worden hergebruikt.
- De reactie die in de kristallisatietank optreedt, is:
 Al(OH)₄⁻ → Al(OH)₃ + OH⁻. Oplossing X is dus natronloog en dat kan (nadat de concentratie is aangepast) weer in reactor 1 worden gebruikt.
- uitleg dat oplossing X natronloog is / uitsluitend Na⁺ ionen en OH⁻ ionen bevat

1

1

Indien een antwoord is gegeven als: "Oplossing X is natronloog en dat kan weer in reactor 1 worden gebruikt."

Opmerking

conclusie

Wanneer is uitgelegd dat oplossing X natronloog is, maar dat die niet in reactor 1 kan worden hergebruikt, omdat de concentratie niet gelijk is aan de concentratie van het natronloog dat in reactor 1 nodig is, dit goed rekenen.

34 maximumscore 1

In calciumsulfaat komen geen deeltjes voor die zure eigenschappen hebben. (Daarom kan gips de pH niet verlagen.)

Opmerkingen

- Wanneer een antwoord is gegeven als: "Calciumsulfaat is matig oplosbaar. Daardoor zal er te weinig Ca^{2+} in de oplossing zijn om met OH^- te kunnen reageren (tot $Ca(OH)_2$). (Bovendien is calciumhydroxide zelf ook matig oplosbaar.)", dit goed rekenen.
- Wanneer een antwoord is gegeven als: "In calciumsulfaat komen geen deeltjes voor die met OH⁻ kunnen reageren. (Daarom kan calciumsulfaat de pH niet verlagen.)", dit goed rekenen.

35 maximumscore 2

Een juiste berekening leidt tot de uitkomst $2,6\cdot10^2$ (kg).

• berekening van de massaverhouding van H_2O en $CaSO_4$: 2 × 18,02 delen door 136,1

1

1

1

1

1

1

• berekening van het aantal kg water dat kan worden opgenomen door $1,0\cdot10^3$ kg calciumsulfaat: de massaverhouding vermenigvuldigen met $1,0\cdot10^3$ (kg)

of

- berekening van het aantal kmol calciumsulfaat in 1,0·10³ kg: 1,0·10³ (kg) delen door 136,1 (kg kmol⁻¹)
- berekening van het aantal kg water dat kan worden opgenomen door 1,0·10³ kg calciumsulfaat: het aantal kmol calciumsulfaat vermenigvuldigen met 2 en met 18,02 (kg kmol⁻¹)

36 maximumscore 2

Een voorbeeld van een juist antwoord is:

argument voor: Als calciumsulfaat aan de rode modder wordt toegevoegd, (wordt het CaSO₄.2H₂O / neemt het water op en) wordt het vast(er) / hard(er). Dan kan de rode modder zich minder gemakkelijk verspreiden. argument tegen: De schadelijke stoffen in de rode modder zijn / de zeer hoge pH is echter niet verdwenen (dus is de rode modder (ter plaatse) nog steeds schadelijk).

- de rode modder kan zich (met calciumsulfaat) minder gemakkelijk verspreiden
- de schadelijke stoffen in de rode modder zijn / de zeer hoge pH is niet verdwenen

5 Inzenden scores

Verwerk de scores van alle kandidaten per school in het programma WOLF. Zend de gegevens uiterlijk op 21 juni naar Cito.

6 Bronvermeldingen

MTBE: naar: http://news.wustl.edu/news/Pages/4365.aspx

Groen piepschuim naar: kunststofmagazine 2009

IJzer in cornflakes: naar: http://www.mkatan.nl/radio-en-tv/152-ijzer-cornflakes-en-de-

keuringsdienst-van-waarde.html

Grafeen uit koekkruimels naar: C2W 14 en ACS Nano en wikipedia.org