LAB REPORT

0 实验基本信息

小组成员:

- PB22111639 马筱雅
- PB22111644 姬子琢

代码结构

• XGBoost.ipynb: 使用 XGBoost 模型进行预测的代码

• XGBoost.log: 使用 XGBoost 模型进行预测过程的 log 记录,包含不同优化方式的结果。

• XGB-LIGHT.ipynb: 使用 XGBoost 模型和 LightGBM 模型进行预测的代码

• XGB-LIGHT.log: 使用 XGBoost 模型和 LightGBM 模型进行预测的 log 记录

• data-analysis.ipynb: 对数据进行分析和绘图的代码

注:由于最开始没有生成log文件,所以log文件为后续复现结果

1问题描述

实验项目: child-mind-institute-problematic-internet-use

随着互联网的推广,青少年沉迷网络问题日渐严重,本实验目的在于预测青少年互联网沉迷程度。实验给出一部分青少年性别、年龄、身体状况等基本信息,并给出沉迷结果,要求根据已知数据,训练模型,从而对其余青少年的沉迷问题进行分类预测。

本实验说明:使用两种方式,单模型和集成学习,两种方式之间较为独立,由两个人分别完成。

2数据分析

2.1 数据集

数据主要分为测试集 train.csv 和训练集 test.csv ,以及部分青少年佩戴仪器的情况,该部分数据以 .parquet 的形式呈现。

- train.csv: 该部分数据包含 82 个属性, 主要关于10个方面。
 - Demographics (性别、年龄等)

- o Internet Use (每天的互联网使用情况)
- o Children's Global Assessment Scale (评估量表的数据)
- o Physical Measures (身高等身体数据)
- o FitnessGram Vitals and Treadmill (NHANES心血管健康)
- FitnessGram Child (体能评估)
- Bio-electric Impedance Analysis (身体成分评估) ,
- o Physical Activity Questionnaire (活动信息) ,
- o Sleep Disturbance Scale (睡眠评估) ,
- o Actigraphy(体力活动测量),
- Parent-Child Internet Addiction Test (网瘾测评)
- test.csv: 与 train.csv 相比,缺失了 Parent-Child Internet Addiction Test(网瘾测评)的部分,该部分所有的属性值之和用来评估最终的沉迷结果。
- .parquet , 包含佩戴加速度计的基本信息。

在 train.csv 和 test.csv 中,除了用户 id ,只有有关 Season 属性的值是字符串类型,其余均是 int 或者 float 等数字类型。

2.2 数据分布

首先,定义固有属性,包括参与季节,用户年龄,性别。这些属性不随着测评过程而改变,是本身就存在的,观测其分布。

性别分布

• 年龄分布

• 结果分布

可以看出数据结果分布不均衡, 最终可能导致训练结果更偏向于 0 和 1 。

• 季节分布

• 季节和 sii 的关系

对每个属性值进行季节分布的分析,在确定数据值的分布中,不同季节之间的分布没有明显差异,分析其缺失比例如下,不同的测评阶段的季节数据缺失值不同,初步判断季节因素影响不大。

Basic_Demos-Enroll_Season	0.000000
CGAS-Season	0.354798
Physical-Season	0.164141
Fitness_Endurance-Season	0.669697
FGC-Season	0.155051
BIA-Season	0.458333
PAQ_A-Season	0.880051
PAQ_C-Season	0.565404
PCIAT-Season	0.309091
SDS-Season	0.338889
PreInt_EduHx-Season	0.106061

dtype: float64

• 缺失数据分布

○ 所有数据中缺失数量分布

○ 在 sii 不为null中的缺失数据分布

综上,在分布上,性别数量,年龄数量有区别,季节分布差别不大,因此暂时考虑舍弃季节数据。对于 缺失值中缺失过多的数据,考虑进行舍弃,对于缺失数据,进行填充。

2.3 分析parquet数据

- parquet 数据包含加速度计的加速度,光感,电量,测量时间等数据。
- 不是所有的 train.csv 中的数据均有对应的 parquet 数据

3 特征工程

3.1 单模型构造特征

主要思路如下

- 对于缺失值中缺失过多的数据, 舍弃
- 舍弃季节数据
- 对于直观相关的数据,如果大致正相关则相乘,负相关则相除,从而构建联系,并使得不同数据之间有差别。

在此部分仅说明了构造特征,对于特征工程之前数据的处理,见4.2.1节

```
def feature_engineering(df):
   # 为不同属性建立关联,
   height和age有关, waist与age有关
   BIA_BIA_BMI
   BIA_BIA_BMR 基础代谢率
   BIA_BIA_DEE 日常能量消耗
   BIA BIA ECW 细胞外水?
   BIA_BIA_FFM 无脂肪质量
   BIA_BIA_FFMI 无脂质量指数
   BIA_BIA_FMI 脂肪质量指数
   BIA_BIA_Fat 体脂百分比
   BIA_BIA_Frame_num
   BIA_BIA_ICW 细胞内水
   BIA_BIA_LDM 瘦干质量
   BIA BIA LST 瘦软组织
   BIA BIA SMM 骨骼肌肉质量
   BIA BIA TBW 身体水分含量
   BIA-BIA_Activity_Level_num 活动水平
   DEE 和 Activity_Level_num 有关
  BIA BIA BMR 和 BIA BIA Fat 有关
  BIA BIA FMI 和 BIA BIA DEE 有关
   df['Internet_Hours_Age'] = df['PreInt_EduHx-computerinternet_hoursday'] * df['Basic_Demos-Age']
   df['Height-Age'] = df['Basic_Demos-Age'] * df['Physical-Height']
   df['BMI-Age'] = df['Physical-BMI'] * df['Basic_Demos-Age']
   # 体脂越高,基础代谢率可能越低
   df['BMR-Fat'] = df['BIA-BIA_Fat'] / df['BIA-BIA_BMR']
   # DEE 日常能量消耗和重量, FMI有关
   df['DEE_Weight'] = df['BIA-BIA_DEE'] / df['Physical-Weight']
   df['DEE_FMI'] = df['BIA-BIA_DEE'] / df['BIA-BIA_FMI']
   # 身体水分含量和细胞内水有关,和肌肉,成正比
   df['ICW_TBW'] = df['BIA-BIA_ICW'] * df['BIA-BIA_TBW']
   df['SMM TBW'] = df['BIA-BIA SMM'] * df['BIA-BIA TBW']
   1.1.1
   FGC-FGC GSD 总计握力
   FGC-FGC PU 总计push up
   FGC-FGC CU
   0.00
   df['GSD-Age']= df['FGC-FGC_GSND'] * df['FGC-FGC_GSD'] * df['Basic_Demos-Age']
   PreInt_EduHx-computerinternet_hoursday 电脑使用时间
   可能和年龄质量有关
```

```
df['Time-Age'] = df['Basic_Demos-Age'] * df['PreInt_EduHx-computerinternet_hoursday']
df['FMI-Time'] = df['BIA-BIA_FMI'] * df['PreInt_EduHx-computerinternet_hoursday']
# 尝试使用缺失值较少的数据
df['SMM-Height'] = df['BIA-BIA_SMM'] * df['Physical-Height']
df['DEE-ACT'] = df['BIA-BIA_DEE'] * df['BIA-BIA_Activity_Level_num']
return df
```

3.2 集成模型构造特征

主要思路如下

1.1.1

- parquet文件里除去step列有12个特征列,把它们的count、mean、std、min、25%、50%、75%、max分别列为一列,共得到96列,根据parquet文件对应的id合并到csv文件得到的dataframe里。
- 去掉train的dataframe里sii值缺失的行。
- 把与季节有关的列中spring、summer、fall、winter和缺失值分别处理为1,2,3,4,5。
- 使train里除了sii列外,只包含test里有的列。
- 构造新的特征列。

```
#加很多新列
df['BMI_Age'] = df['Physical-BMI'] * df['Basic_Demos-Age']#BMI*年龄
df['Internet_Hours_Age'] = df['PreInt_EduHx-computerinternet_hoursday'] * df['Basic_Demos
df['BMI_Internet_Hours'] = df['Physical-BMI'] * df['PreInt_EduHx-computerinternet_hoursda
df['BFP_BMI'] = df['BIA-BIA_Fat'] / df['BIA-BIA_BMI']
df['FFMI_BFP'] = df['BIA-BIA_FFMI'] / df['BIA-BIA_Fat']
df['FMI_BFP'] = df['BIA-BIA_FMI'] / df['BIA-BIA_Fat']
df['LST_TBW'] = df['BIA-BIA_LST'] / df['BIA-BIA_TBW']
df['BFP_BMR'] = df['BIA-BIA_Fat'] * df['BIA-BIA_BMR']
df['BFP_DEE'] = df['BIA-BIA_Fat'] * df['BIA-BIA_DEE']
df['BMR_Weight'] = df['BIA-BIA_BMR'] / df['Physical-Weight']
df['DEE_Weight'] = df['BIA-BIA_DEE'] / df['Physical-Weight']
df['SMM_Height'] = df['BIA-BIA_SMM'] / df['Physical-Height']
df['Muscle to Fat'] = df['BIA-BIA SMM'] / df['BIA-BIA FMI']
df['Hydration_Status'] = df['BIA-BIA_TBW'] / df['Physical-Weight']
df['ICW_TBW'] = df['BIA-BIA_ICW'] / df['BIA-BIA_TBW']
df['hoursday_Age'] = df['PreInt_EduHx-computerinternet_hoursday'] / df['BMI_Age']
df['Age_Weight'] = df['Basic_Demos-Age'] * df['Physical-Weight']
df['Sex_BMI'] = df['Basic_Demos-Sex'] * df['Physical-BMI']
df['Sex_HeartRate'] = df['Basic_Demos-Sex'] * df['Physical-HeartRate']
df['Age_WaistCirc'] = df['Basic_Demos-Age'] * df['Physical-Waist_Circumference']
df['BMI_FitnessMaxStage'] = df['Physical-BMI'] * df['Fitness_Endurance-Max_Stage']
df['Weight_GripStrengthDominant'] = df['Physical-Weight'] * df['FGC-FGC_GSD']
df['Weight_GripStrengthNonDominant'] = df['Physical-Weight'] * df['FGC-FGC_GSND']
df['HeartRate_FitnessTime'] = df['Physical-HeartRate'] * (df['Fitness_Endurance-Time_Mins
df['Age_PushUp'] = df['Basic_Demos-Age'] * df['FGC-FGC_PU']
df['FFMI_Age'] = df['BIA-BIA_FFMI'] * df['Basic_Demos-Age']
df['InternetUse_SleepDisturbance'] = df['PreInt_EduHx-computerinternet_hoursday'] * df['S
df['CGAS_BMI'] = df['CGAS-CGAS_Score'] * df['Physical-BMI']
df['CGAS_FitnessMaxStage'] = df['CGAS-CGAS_Score'] * df['Fitness_Endurance-Max_Stage']
return df
```

- 用KNN法补全数据列的缺失值, n_neighbors设为5。
- 用两种聚类方法: KMeans法与DBSCAN (基于密度的带噪声应用空间聚类) 法,进行非监督学习,分别得到聚类标签,作为两个新的特征列。

DBSCAN得到的除噪声点以外的的聚类数有2个。(噪声点记为-1)

Unique clusters: 2 Noise points: 1000

分析对于train来说各个聚类数的silhouette_score (轮廓系数,在[-1,1]间,越接近1聚类效果越好),如下图:

可看出聚类数设为2最好,但最后KMeans的聚类数设为9比2好,可能是因为DBSCAN已经有了一个2聚类数的聚类法。

4 模型

4.1 模型调研

适用于分类的模型: XGBoost, LightGBM, CatBoost, 随机森林, TabNet。

• XGBoost:中小规模表格数据的回归、分类任务。

• LightGBM: 大规模稀疏数据,内存消耗少

• CatBoost: 类别型数据为主的表格数据集

• 随机森林: 对特征重要性分析和解释性要求较高的任务。

• TabNet:数据量非常大,适用于表格数据,对特征工程要求不高

以上为搜索结果,不保证正确性。

4.2 模型选择

4.2.1 XGBoost

模型介绍

- **原理**: XGBoost 由决策树构成,这些决策树即为"弱学习器",它们共同组成了 XGBoost。这些组成 XGBoost 的决策树之间是有先后顺序的:后一棵决策树的生成会考虑前一棵决策树的预测结果,即将前一棵决策树的偏差考虑在内,使得先前决策树做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一棵决策树。XGBoost是一种提升树模型,即它将许多树模型集成在一起,形成一个很强的分类器。
- 选择依据:考虑到类型数据较少,筛选出用 XGBoost , LightGBM , TabNet 模型,考虑到复杂度, 筛选出 XGBoost 和 LightGBM 模型,考虑到 XGBoost 模型参数调整可能更灵活,最终选用使 用 XGBoost 模型进行训练。

注:在最初尝试时发现添加parquet数据结果并未有什么提升,可能是因为parquet数据数量较少,加上只是仪器结果,与网瘾没有直接关系。所以在XGBoost后续正式实验中抛弃了该部分数据

数据预处理

• 数据选择

。 由于有的行特征缺失值过多, 选取缺失值数量小于 71 的行。

缺失值处理

- 缺失项过多,不能直接舍弃,加上数据影响结果,所以若采用均值填充等,可能会导致数据缺乏特殊性,脱离了和结果的关系。
- 。 考虑到相同 sii 结果的数据可能具有相似性,或者相似数据会导致相同结果 sii ,故根据不同数据之间的相似度进行填充。采用**图结构**的思想。采用 KNNImputer 对数据进行填充,选取相似度最高的 5 组数据

• 处理完缺失值进行特征处理

模型输入数据

直接将每一行处理过的数据作为输入

:	Basic_Demos- Age		CGAS- CGAS_Score	Physical- BMI	Physical- Height		Physical- Waist_Circumference	Physical- Diastolic_BP	Phys Heart
C	5.0	0.0	51.0	16.877316	46.00	50.80	25.4	63.8	
1	9.0	0.0	65.6	14.035590	48.00	46.00	22.0	75.0	
2	10.0	1.0	71.0	16.648696	56.50	75.60	25.4	65.0	
3	9.0	0.0	71.0	18.292347	56.00	81.60	25.4	60.0	
4	18.0	1.0	61.8	19.131514	58.30	92.32	25.4	63.2	
5	13.0	1.0	50.0	22.279952	59.50	112.20	25.4	60.0	
6	10.0	0.0	67.8	19.660760	55.00	84.60	25.4	123.0	
7	10.0	1.0	67.8	16.861286	59.25	84.20	27.0	71.0	
8	15.0	0.0	61.8	18.482622	58.60	90.32	25.4	74.8	
9	19.0	1.0	61.8	19.131514	58.30	92.32	25.4	63.2	
10	11.0	1.0	61.8	17.721602	57.15	81.92	25.4	75.2	
11	11.0	0.0	66.0	16.596568	55.75	74.20	25.4	65.8	
12	13.0	0.0	63.6	21.079065	57.75	100.00	25.4	63.0	

训练与测试

• 训练数据的划分

为了使在训练过程中,不同的划分集合中数据的分布保持一致,采用 StratifiedKFold 的方式,将数据化分成5份。

每次将一份数据划分成训练部分和测试部分,进行训练。

• 评价指标

采用 quadratic weighted kappa , 评估预测值与真实值之间的相似度。采用 cohen_kappa_score 函数 , 与权重参数 weights='quadratic' 结合可以处理分类的偏差。除此之外,采用 precision 指标来评估每次训练的准确度。

```
def quadratic_weighted_kappa(y_true, y_pred):
    return cohen_kappa_score(y_true, y_pred, weights='quadratic')
```

• 参数初始设置

```
XGB_Params = {
    'learning_rate': 0.05, # 学习率
    'max_depth': 6, # 树的最大深度
    'n_estimators': 200, # 树的数量
    'subsample': 0.8, # 子采样比例
    'colsample_bytree': 0.8, # 列采样比例
    'reg_alpha': 1, # L1正则化项系数
    'reg_lambda': 5, # L2正则化系数
    'random_state': SEED, # 随机种子,防止过拟合
    'tree_method': 'gpu_hist',
}
```

log 信息解释:

- Train QWK: 是指在训练过程中划分得到的训练集的 quadratic weighted kappa 值, Quadratic Weighted Kappa (QWK) 用于衡量两个评分者(或模型预测和真实标签)之间的一致性,该指标越接近1越好,为1说明完全一致,在该实验中训练集结果达到了 0.9
- Validation QWK: 是指在训练过程中划分得到的验证集的 quadratic weighted kappa 值
- Validation Precision: 是指在训练过程中划分得到的验证集的准确度,使用 Precision 指标。

提交得分: 0.411

数据过采样处理(另一种方式)

在训练过程中,不同结果数据的比例不同, 0,1 较多,可能导致训练的模型对在这些数据具有偏好性,考虑到 2,3 类型的数据过少,所以采用过采样的方式,生成新的数据,使结果更均衡。过采样方式选取 SMOTE

```
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)
```

提交得分: 0.395

- 分析:由于特征过多,不同特征之间关联不够明显,所以根据已有数据进行数据生成结果不可信,并且结果没有进行过测试,所以结果反而变差。
- 放弃对数据讲行讨样本处理。

微调

微调 XGBoost 的参数为

```
XGB_Params = {
    'learning_rate': 0.01,
    'max_depth': 7,
    'n_estimators': 300,
    'subsample': 0.6,
    'colsample_bytree': 0.6,
    'reg_alpha': 0.5,
    'reg_lambda': 2,
    'random_state': SEED,
    'tree_method': 'gpu_hist',
}
```

- 分析: 增加树的深度来捕捉更多的非线性特征,增加树的数量来增加模型复杂度,降低采样比例,来提高模型的泛化程度,但是更容易过拟合。
- 最终结果有提升。

提交得分: 0.423

数据样本处理 (优化)

如下图所示,下图为每一行数据中缺失值的数量。对训练集中每一行数据,存在大量缺失情况,对这些数据进行了填充,但填充结果可能与实际结果不同,从而影响模型的准确度,因此对数据进行筛选。

```
1172
        78
1487
        78
2130
        78
3019
        78
2137
       78
2121
         3
2941
        3
2920
434
         3
2411
         3
Length: 3960, dtype: int64
```

在以上模型中,采用 train.csv 中缺失值小于 71 的行,最优得分为0.423

进一步缩小训练集,选取 train.csv 中缺失值小于 61 的行,得分为**0.429**,可知对训练集进行筛选,可以降低填充数据不准确性的影响。由于提交次数有限,没有进行进一步测试。

模型输出结果

首先对于不同的结果(0,1,2,3),分别设置对应的范围(阈值),模型预测结果为一个数字,对该数字进行处理,如果该数字在某个结果的范围内,则预测为该结果。 最优模型输出结果(前面为id,后者为预测的结果):

	id	sii
0	00008ff9	1
1	000fd460	0
2	00105258	1
3	00115b9f	0
4	0016bb22	1
5	001f3379	1
6	0038ba98	1
7	0068a485	1
8	0069fbed	2
9	0083e397	1
10	0087dd65	1
11	00abe655	0
12	13 00af6387	
13		
14		
15	00c0cd71	1
16	00d56d4b	0
17	00d9913d	1
18	00e6167c	0
19	00ebc35d	1

反思

仅使用 XGBoost 模型进行训练,分别采用不同的数据采样方式,参数值进行预测并进行结果比较。最初 我只是简单对数据进行预测,后来参考别人的代码优化了一下,使用门限值进行类别选择,为不同结果 规定预测范围并不断调整,最终采取最优的预测作为最终结果。在此过程中,我构造的特征类型较少,主要采取了主观上更明显的特征,可能影响了最终结果。此外,可能使用 TabNet 模型更优。

4.2.2 集成学习

LightGBM与XGBoost用投票回归器(VotingRegressor)集成

参数选择:

```
LGBM_Params = {
    'learning_rate': 0.04,
    'max_depth': 12,
    'num_leaves': 413,
    'min_data_in_leaf': 14,
    'feature_fraction': 0.8,
    'bagging_fraction': 0.76,
    'bagging_freq': 2,
    'lambda_l1': 4.735,
    'lambda 12': 4.735e-06,
    'random state': SEED}
XGB Params = {
    'learning_rate': 0.04,
    'max_depth': 6,
    'n_estimators': 200,
    'subsample': 0.8,
    'colsample_bytree': 0.8,
    'reg_alpha': 1, # Increased from 0.1
    'reg_lambda': 5, # Increased from 1
    'random_state': SEED}
```

其中SEED为42。

训练与测试

• 训练数据的划分

为了使在训练过程中,不同的划分集合中数据的分布保持一致,采用 StratifiedKFold 的方式,将数据化分成5份。

每次将一份数据划分成训练部分和测试部分,进行训练。

训练过程的 log 信息为:

```
168.7s 1008 Fold 1 - Train QWK: 0.8932, Validation QWK: 0.3517
177.3s 1009 Fold 2 - Train QWK: 0.8979, Validation QWK: 0.3795
185.5s 1010 Fold 3 - Train QWK: 0.8982, Validation QWK: 0.3697
194.0s 1011 Fold 4 - Train QWK: 0.8889, Validation QWK: 0.4028
202.6s 1012 Fold 5 - Train QWK: 0.8941, Validation QWK: 0.4109
```

提交得分: 0.419

4.3 两种模型的对比

采用 XGBoost 和 LightGBM 集成的方式与初始时采用 XGBoost 模型对比 (此时的参数和集成方式相似),可以得到集成方式结果更优 0.419 > 0.411。具体可能原因如下

- 特征工程构造不同,在集成部分构造出了更多的特征,数据属性之间的关联度提高,可能更有利于模型学习数据特征。
- LightGBM 和 XGBoost 两者的分裂策略和优化方式存在差异,两者结合可以从不同角度出发,结合多个模型的预测结果,弥补单个模型的不足,更容易捕获特征。
- 单个模型通常会有偏差 (bias) 和方差 (variance), 尤其是在数据噪声较多或分布复杂时,可能导致不稳定的预测。VotingRegressor 使用多个模型的输出进行加权平均或简单平均,从而平滑各模型的偏差和方差。(这点检索得到)

5 小组分工

- PB22111644 姬子琢: 3.2 和 4.2.2 部分报告书写。两种模型集成, XGB-LIGHT.ipynb 的代码。
- **PB22111639 马筱雅**:除 3.2 和 4.2.2 部分外其余部分报告书写,模型比较, XGBoost 模型多个方向的尝试和优化,数据的分析及绘图, XGBoost.ipynb 和 data-analysis.ipynb 部分代码。

个人心得

- **PB22111639 马筱雅**:在本次实验中,我主要学习了 xGBoost 的使用,特征工程的构造,积累了一点微调参数的经验。在训练部分,参考了别人的方式对我原本的代码进行优化(即采用门限值处理预测数据),同时也学习到了这种解决问题的方式。我也掌握了一些处理数据的方式,更熟悉了对一些库的应用,但是对于如何构造特征,我还比较陌生,需要在以后的学习实践中加强学习。
- **PB22111644 姬子琢**:在这次比赛过程中,我学习了特征工程里特征的设计与选择、模型的集成,了解了机器学习的基本流程,在数据分析与特征选择上还有不足。