Time Machine Algorithm

1 Notation

In the following, the mutation rate is denoted by μ , and the $d \times d$ transition matrix between types by $\mathbf{P} = (p_{ij})$. Moreover, for convenience of notation, we denote by \mathbf{e}_i the d-dimensional row vector with 1 in the i^{th} position and 0 elsewhere. Finally, for a d-dimensional vector \mathbf{x} , we write $|\mathbf{x}|_1 = |x_1| + \ldots + |x_d|$.

2 Algorithm

The algorithm simulates genealogical trees backwards in time from an observed initial population $\mathbf{n}_0 = (n_{1,0}, \dots, n_{d,0})$ with d possible types up to the point when there are N sequences left in the population. Note that the case N=1 corresponds to the ordinary coalescent simulation, whereas N>1 corresponds to the Time Machine.

Starting at t = 0, the following steps will be iterated until $|\mathbf{n}_t|_1 = N$.

- 1. Sample the offspring type i with probability proportional to $n_{i,t}$;
- 2. Sample the ancestor type j; an offspring of type i might have arisen from an ancestor of type j through:
 - (a) a coalescent event, with probability proportional to $|\mathbf{n}_{i,t}|_1 1$;
 - (b) a $j \to i$ mutation (with j possibly equal to i), with probability $\mu \kappa_{ij} p_{ij}$, where

$$\kappa_{ij} = \begin{cases} \frac{n_{j,t} + \mu \pi_j}{|\mathbf{n}_t|_1 - 1 + \mu} & j \neq i, \\ \frac{n_{j,t} - 1 + \mu \pi_j}{|\mathbf{n}_t|_1 - 1 + \mu} & j = i, \end{cases}$$

and π is the stationary distribution associated with **P**;

3. Update the population size within each type,

$$\mathbf{n}_{t+1} = \begin{cases} \mathbf{n}_t - \mathbf{e}_i + \mathbf{e}_j & \text{if a mutation occurred,} \\ \mathbf{n}_t - \mathbf{e}_i & \text{if a coalescent event occurred;} \end{cases}$$

4. Compute the contribution to the likelihood of the simulated event, which is given by

$$w_t = \frac{K_t}{K_{t+1}} \frac{\kappa_{ii}}{\kappa_{ij}} \frac{x_{j,t+1}}{|\mathbf{n}_t|_1}$$

where $K_t = |\mathbf{n}_t|_1 (|\mathbf{n}_t|_1 - 1 + \mu)$, if a mutation occurred, and by

$$w_{t} = \frac{K_{t}}{K_{t+1}} \frac{1}{\kappa_{ii}} \frac{x_{i,t+1} \left(|\mathbf{n}_{t+1}|_{1} - 1 \right)}{n_{i,t} \left(n_{i,t} - 1 \right)}$$

if a coalescent event occurred;

5. Update the log-likelihood,

$$W_t = \begin{cases} \log(w_t) & t = 0, \\ W_{t-1} + \log(w_t) & t \ge 1; \end{cases}$$

- 6. Assess the stopping criterion:
 - (a) if the Time Machine is used (N > 1), stop if $|\mathbf{n}_{t+1}|_1 = N$;
 - (b) otherwise, repeat the above steps until $|\mathbf{n}_{t+1}|_1 = 2$, at which point mutations are simulated until both remaining sequences are of the same type.

For N > 1, the log-likelihood is corrected by adding the following term,

$$\log b = \log \left[\frac{|\mathbf{n}_{\rho}|_1! \Gamma(\mu)}{\Gamma(\mu + |\mathbf{n}_{\rho}|_1)} \right] + \sum_{i=1}^{d} \log \left[\frac{\Gamma(n_{i,\rho} + \mu \pi_i)}{n_{i,\rho}! \Gamma(\mu \pi_i)} \right],$$

where ρ is the last simulated event, and Γ denotes the gamma function.