VERIFICATION OF RECOIL SEPARATOR PROPERTIES THROUGH REACTION MEASUREMENTS

Michael T Moran November 9, 2018

University of Notre Dame

Introduction

CAPTURE REACTIONS

Primary burning processes for energy production depend on the properties of the star

Hydrogen burning:

- · low mass: pp-chains
- · massive stars: CNO, NeNa, and MgAl cycles

Helium burning:

• Triple-lpha process and $^{12}{
m C}(lpha,\gamma)^{16}{
m O}$

Additional He reactions:

- main sources of neutrons for s-process: $^{13}{\rm C}(\alpha,{\rm n})^{16}{\rm O}$ and $^{22}{\rm Ne}(\alpha,{\rm n})^{25}{\rm Mg}$ (AGB stars)
- \cdot reactions on ashes of cyclic H burning (e.g. $^{14}{
 m N}(lpha,\gamma)^{18}{
 m F})$

1

RADIATIVE CAPTURE

Reactions: (p, γ) and (α, γ) (in general, $A(a, \gamma)B$)

 \cdot studied by detecting γ -ray produced

Detecting the γ can be difficult due to:

- · large background count rates (move underground)
- low count rates (measure only resonances)
- limited detector efficiency

INVERSE KINEMATICS

Perform reaction in inverse kinematics: $a(A, B)\gamma$

- heavy projectile impinges on light target (H or He)
- heavy recoil escapes the target
- · detect with high-efficiency detector

Incident beam also passes through the light target, so we need to stop this beam from reaching our detector

RECOIL SEPARATION

St. George

Couder et al., 2008

PARTICLE SELECTION

Uniquely identify particles by charge, energy, mass, and momentum

PARTICLE SELECTION

Uniquely identify particles by charge, energy, mass, and momentum

Magnetic Selection

$$B\rho = \frac{\sqrt{2mT}}{q} = \frac{p}{q}$$

Particle Selection

Uniquely identify particles by charge, energy, mass, and momentum

Magnetic Selection

$$B\rho = \frac{\sqrt{2mT}}{q} = \frac{p}{q}$$

Electric Selection

$$E\rho = \frac{2T}{q}$$

PARTICLE SELECTION

Uniquely identify particles by charge, energy, mass, and momentum

Magnetic Selection

$$B\rho = \frac{\sqrt{2mT}}{q} = \frac{p}{q}$$

Electric Selection

$$E\rho = \frac{2T}{q}$$

Wien Filter Selection

$$V = \frac{E\rho}{B\rho}$$

ANGULAR AND ENERGY ACCEPTANCE

Recoils leave target with a range of momentum/energy values and angles due to kinematics of the reaction

$$p_{\text{recoil}} = \sqrt{2m_A E_A} \pm p_{\gamma}$$
 $\theta_{\text{recoil}} = \left(\frac{p_{\gamma}}{\sqrt{2m_A E_A}}\right)$

Recoils must be transported within defined parameter bounds

$$\Delta E/E = \pm 7.5 \%$$
 $\Delta \theta = \pm 40 \text{ mrad}$

These bounds must hold for all possible E
ho and B
ho

IMPORTANCE OF ACCEPTANCES

In an experiment, all produced recoils must be transported to the detector plane

Verifying the acceptance will:

- eliminate St. George as a potential source of uncertainty
- show the beam rejection properties are sufficient to measure the cross section

Once verified for enough $B\rho$ and $E\rho$ possibilities, separator has a single tune that is scaled to new values

ACCEPTANCE MEASUREMENTS

The goal is for 100 % of the particles to make it to the final detector plane

- "particles" are produced recoils or incident test beam
- measure with Faraday cups or particle detectors

The goal is for 100 % of the particles to make it to the final detector plane $\frac{1}{2}$

- · "particles" are produced recoils or incident test beam
- measure with Faraday cups or particle detectors

Energy

change the particle energy without interfering with other properties

The goal is for 100 % of the particles to make it to the final detector plane

- · "particles" are produced recoils or incident test beam
- measure with Faraday cups or particle detectors

Energy

change the particle energy without interfering with other properties

Angular

change the deflection of the particle at the target location

The goal is for 100 % of the particles to make it to the final detector plane

- "particles" are produced recoils or incident test beam
- measure with Faraday cups or particle detectors

Energy

change the particle energy without interfering with other properties

Angular

change the deflection of the particle at the target location

Joint

adjust both at the same time

ENERGY ACCEPTANCE

For a particle beam with a given $B\rho$ and $E\rho$:

- Tune the test beam to a given energy, and tune St. George for that energy
- · Verify 100 % transmission, adjust the tune if necessary
- Adjust the beam energy within the energy acceptance bounds and measure transmission
- Adjust the tune if necessary to have 100 % transmission for all possible energy changes within the acceptance bounds

ENERGY ACCEPTANCE

Energy acceptance results in a single tune for St. George

Adapted from Meisel, Moran, et al., 2017

ANGULAR ACCEPTANCE

For a particle beam with a given $B\rho$ and $E\rho$:

- Tune the test beam to a given energy, and tune St. George for that energy
- Verify 100 % transmission, adjust the tune if necessary
- "Deflect" the beam at the target location within the acceptance bounds (horizontally and vertically)
- Adjust the tune if necessary to have 100 % transmission for all possible angular changes within the acceptance bounds

JOINT ACCEPTANCE

All experiments will have an angular and energy spread, so must confirm that the acceptances can be achieved at the same time Can use a degrader foil to create an angular and energy spread at the same time

- target properties matched to test beam selection
- limited by diagnostic equipment (can't use a detector due to high-intensity beam)
- energy and angular distribution make it more difficult to refine the tune if we don't have 100 % transmission

REACTION MEASUREMENTS

JUSTIFICATION FOR REACTION MEASUREMENTS

Use the known kinematics of the reaction to gradual move toward a full acceptance solution

- · known cross section, angular and energy distribution, etc.
- tune so that 100 % of the produced particles captured by detector (can check with incident beam as well)
- St. George then has at least the acceptance necessary for the reaction

THE 27 Al $(\mathbf{p}, \alpha)^{24}$ Mg REACTION

Focus on two isolated resonances:

- high energy: $E_{\rm p}=$ 1.36 MeV $\rightarrow E_{\alpha}=$ 2.77 MeV
- \cdot low energy: $E_{
 m p}=$ 1.18 MeV o $E_{lpha}=$ 2.59 MeV
- both are 2+ resonances with isotropic angular distribution

For both reactions, kinematics and target effects give $\Delta E/E=3\,\%$

The $^{27}\mathbf{Al}(\mathbf{p},\alpha)^{24}\mathbf{Mg}$ Reaction

Cross section is well-known, reducing it as an uncertainty in the measurements

ALTERNATE TUNE

Due to limits of previous work at the time, we have to move our detector system up to the Wien filter focal plane

- can replicate this work once angular acceptance measurements extended to last section of St. George
- beam suppression is sufficient to reject the incident proton beam before the detector
- · "canonical" St. George tune cannot be used

ALTERNATE TUNE

Determined expected field strengths using COSY and verified with direct particle transport before the experiment

ALTERNATE TUNE

Determined expected field strengths using COSY and verified with direct particle transport before the experiment

ANGULAR ACCEPTANCE MEASUREMENT

The reaction $^{27}{\rm Al}({\rm p},\alpha)^{24}{\rm Mg}$ emits the α particles within an isotropic angular distribution

- target cup aperture limits entrance to \approx 40 mrad acceptance
- we will attempt to transport all α particles (based on the cross section) to the detector

This is an alternate to a full acceptance measurement with St. George (limited energy acceptance, subset of separator)

- · built upon previous acceptance measurements
- still supports ongoing work to prepare the separator for future experiments

ACCEPTANCE

We can relate the yield at our detector to what we expect from the cross section to determine our angular acceptance

$$\theta = \arccos\left(1 - 2\frac{Y_{\rm experiment}}{Y_{\rm theory}}\right)$$

This assumes a "symmetric" acceptance (constant opening angle for acceptance cone)

ACCEPTANCE MEASUREMENTS

UNCERTAINTY DECOMPOSITION

ACCEPTANCE UNCERTAINTY

We can attribute the uncertainty at each measurement to the underlying variables within our control: energy, current, time, and target thickness

- \cdot $E_{
 m res}$ and higher: dominated by current uncertainty
- energies lower than E_{res} : dominated by energy uncertainty
- · attribution through a hybrid Monte Carlo/Bayesian approach

Final irreducible uncertainty cannot be avoided, but controllable uncertainty can be minimized

FUTURE DIRECTIONS

EXPERIMENTAL OUTCOME

St. George has been shown to have the following acceptances:

- $\Delta E/E > \pm 7.5\%$
- $\Delta E/E=\pm3$ % and $\Delta\theta=\pm40$ mrad (to WF)

Preliminary beam reduction measurements on the order of 10¹²

Separation properties and beam currents are suitable for low-energy and off-resonance cross section measurements

THE FUTURE OF ST. GEORGE

- · St. George can be used for a restricted subset of experiments
- Ability to fine-tune the separator and verify its properties over a range of $B\rho$ and $E\rho$ values essential for future experiments
- Diagnostic equipment and procedures developed to be applied to future separators (SECAR)
- Final parts of the St. George system (HIPPO supersonic jet gas target, full detector system, additional diagnostics, etc) will unlock the full range of experimental work

VERIFICATION OF RECOIL SEPARATOR PROPERTIES THROUGH REACTION MEASUREMENTS

Michael T Moran November 9, 2018

University of Notre Dame

95 % CONTRIBUTIONS

ACCEPTANCE BOUNDS WITH HELD VARIABLES, $95\,\%$

Held	241	234	260^{\dagger}	255	248	288	282	277	270^{\dagger}	264
$E_{\rm p}~[{ m MeV}]$	1.178	1.183	1.188	1.193	1.198	1.353	1.359	1.364	1.369	1.374
δE	49.4	7.5	101.1	75.8	93.0	64.1	39.6	13.2	102.4	50.9
δt	101.8	95.3	101.3	99.8	99.6	102.7	101.0	97.9	99.0	107.6
δi	86.6	97.3	26.8	51.1	66.3	77.7	93.9	93.6	26.5	102.0
$\delta\Delta$	95.4	98.2	101.4	80.4	82.9	98.7	104.2	95.8	103.5	75.8
$\delta E,\delta t$	47.4	7.2	96.7	73.4	93.4	63.8	39.6	13.2	101.4	50.2
$\delta E,\delta i$	12.0	1.7	23.0	18.1	55.5	20.1	12.5	3.0	24.0	42.7
$\delta E,\delta \Delta$	46.8	7.6	100.3	72.0	73.8	60.4	38.0	12.9	103.5	20.6
$\delta t, \delta i$	88.0	97.2	13.4	50.1	64.6	78.2	96.8	96.9	15.2	94.7
$\delta t, \; \delta \Delta$	98.5	98.3	98.2	86.7	83.5	99.4	102.0	98.8	99.8	75.9
$\delta i, \delta \Delta$	87.7	95.9	26.6	29.7	29.1	76.9	93.4	93.5	25.6	72.9
$\delta E,\delta t,\delta i$	11.1	1.0	8.1	18.6	54.0	17.8	11.5	1.5	8.3	43.5
$\delta E,\delta t,\delta \Delta$	47.4	7.2	96.8	70.1	76.0	59.9	39.0	12.9	99.4	20.4
$\delta E,\delta i,\delta \Delta$	7.9	1.6	21.4	8.4	5.0	8.4	7.4	2.7	22.4	4.6
$\delta t,\delta i,\delta \Delta$	86.2	98.6	13.1	29.6	27.0	78.2	94.2	96.5	14.5	68.0
All	5.4	1.0	4.0	2.8	3.8	6.6	5.2	0.9	3.7	1.3

†: Denotes runs at resonance energy

DETECTOR SPECTRUM

INITIAL TEST REACTIONS

Table 1

Inverse (α, γ) reactions of astrophysical interest

Beam	Recoil	Beam E _{lab} (MeV)	$E_{\rm cm}$ (MeV)	Recoil E_{lab} (MeV)	Recoil Q [14]	Recoil abund. (%)	Half angle (mrad)	E range $\pm\%$	Mom. p (MeV/ c)	<i>Β</i> ρ (T m)
¹⁶ O ²	²⁰ Ne	5.8	1.16	4.64	5	42	14.2	2.8	415.7	0.277
		12.5	2.5	10.02	6	40	11.8	2.4	610.9	0.340
¹⁸ O ²²	²² Ne	1.94	0.35	1.59	3	38	39.2	7.8	177.1	0.284
		3.3	0.60	2.70	4	42	30.9	6.2	332.6	0.277
	38Ar	10.0	1.05	8.95	8	32	10.4	2.1	795.7	0.332
		38.0	4.00	34.00	12	32	7.2	1.4	1551.0	0.431
³⁶ Ar	⁴⁰ Ca	12.5	1.25	11.25	9	31	9.1	1.8	915.3	0.339
		40.0	4.00	36.00	13	30	6.7	1.3	1638.0	0.420