Flood Measurement from a Photo

Clint Hoke

Jamie Shaffer

Jonna Pander

Josh Kuehl

Partners

Agenda

- Problem Statement
- Research
- Solution
- Issues

Problem: Create a machine model that can detect flood depth from a photo.

Research

SCHOLARLY ARTICLES

RESOURCES

APIS

LIBRARIES

Latitude Google Cloud Solution Elevation and Earth Engine Local Elevation Longitude Flood Prediction **EXIF** Approximate Flood Depth Google Cloud Image Vision Al **♣** ~ 4 feet Depth 4 **True** ~ 3 feet Depth 3 **AND** ~ 2 feet Depth 2 VGG16 Depth 1 ~ 6 inches **True** Depth 0 No submersion cNN AND/OR Depth 4 ~ 4 feet True Depth 3 ~ 3 feet ~ 2 feet Depth 2 Depth 1 ~ 1 foot Depth 0 No submersion

Google Vision Al

- Detect objects automatically
- Data labeling service
- Image pre-processor
- Built API to run batches of images
- Paid Service

ObjectsLabelsPropertiesSafe Search

image_176.jpg

Person	89%
Person	87%
Person	86%
Person	86%
Clothing	67%
Person	63%

Objects Labels Properties Safe Search

image_176.jpg

Water	94%
Flood	91%
Water Resources	86%
Event	71%
Adaptation	67%
Geological Phenomenon	62%
River	54%

Latitude Google Cloud Image Elevation and Earth Engine Local Elevation Longitude Flood Prediction Processing **EXIF** Approximate Flood Depth Google Cloud Image Vision Al **♣** ~ 4 feet Depth 4 True Depth 3 **AND** ~ 2 feet Depth 2 VGG16 Depth 1 ~ 6 inches **True** Depth 0 No submersion cNN AND/OR Depth 4 ~ 4 feet Depth 3 True ~ 3 feet ~ 2 feet Depth 2 Depth 1 ~ 1 foot Depth 0 No submersion

Results

Truck Model

• Exact Accuracy: 32%

Tolerance(+/-1) Accuracy: 80%

• Most accurate at depths 0 - 2

People Model

• Exact Accuracy: 25%

Tolerance(+/-1) Accuracy: 60%

• Most accurate at depths 0 and 4

Image Augmentation and Challenges

Image: rot-4.5_img_0144.jpg Actual: depth_3 Predicted: depth_2

Image: hflip_img_0144.jpg Actual: depth_3 Predicted: depth_2

- 1. People can swim
- 2. Shortage of training data
- 3. Bow wake
- 4. Personal computer processing power
- 5. Complex images
- 6. Micro terrain
- 7. Time constraint
- 8. Definition of levels

Issues

Questions