§ 3.

Grenzwerte bei Funktionen, Stetigkeit

Vereinbarung: Stets in dem Paragraphen: Sei $\emptyset \neq D \subseteq \mathbb{R}^n$ und $f: D \to \mathbb{R}^m$ eine (**vektorwertige**) Funktion. Für Punkte $(x_1, x_2) \in \mathbb{R}^2$ schreiben wir auch (x, y). Für Punkte $(x_1, x_2, x_3) \in \mathbb{R}^3$ schreiben wir auch (x, y, z). Mit $x = (x_1, \ldots, x_n) \in D$ hat f die Form $f(x) = f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$, wobei $f_j: D \to \mathbb{R}$ $(j = 1, \ldots, m)$. Kurz: $f = (f_1, \ldots, f_m)$.

Beispiele:

(1)
$$n = 2, m = 3$$
. $f(x,y) = (x + y, xy, xe^y)$; $f_1(x,y) = x + y, f_2(x,y) = xy, f_3(x,y) = xe^y$.

(2)
$$n = 3, m = 1$$
. $f(x, y, z) = 1 + x^2 + y^2 + z^2$

Definition

Sei $x_0 \in \mathcal{H}(D)$.

- (1) Sei $y_0 \in \mathbb{R}^m$. $\lim_{x \to x_0} f(x) = y_0 : \iff$ für **jede** Folge $(x^{(k)})$ in $D \setminus \{x_0\}$ mit $x^{(k)} \to x_0$ gilt: $f(x^{(k)}) \to y_0$. In diesem Fall schreibt man: $f(x) \to y_0(x \to x_0)$.
- (2) $\lim_{x \to x_0} f(x)$ existiert : $\iff \exists y_0 \in \mathbb{R}^m : \lim_{x \to x_0} f(x) = y_0.$

Beispiele:

- (1) $f(x,y) = (x+y,xy,xe^y)$; $\lim_{(x,y)\to(1,1)} f(x,y) = (2,1,e)$, denn: ist $((x_k,y_n))$ eine Folge mit $(x_k,y_k)\to (1,1) \stackrel{2.1}{\Longrightarrow} x_k\to 1, y_k\to 1 \implies x_k+y_k\to 2, x_ky_k\to 1, x_ke^{y_k}\to e \stackrel{2.1}{\Longrightarrow} (x_k,y_k)\to (2,1,e)$.
- $(2) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, \text{ falls } (x,y) \neq (0,0) \\ 0 &, \text{ falls } (x,y) = (0,0) \end{cases}$ $f(\frac{1}{k},0) = 0 \to 0 \ (k \to \infty), (\frac{1}{k},0) \to (0,0), f(\frac{1}{k},\frac{1}{k}) = \frac{1}{2} \to \frac{1}{2} \ (k \to \infty), (\frac{1}{k},\frac{1}{k}) \to (0,0), \text{ d.h.}$ $\lim_{(x,y)\to(0,0)} f(x,y) \text{ existiert nicht! } \mathbf{Aber: } \lim_{x\to 0} (\lim_{y\to 0} f(x,y)) = 0 = \lim_{y\to 0} (\lim_{x\to 0} f(x,y)).$

Satz 3.1 (Grenzwerte vektorwertiger Funktionen)

- (1) Ist $f = (f_1, \ldots, f_m)$ und $y_0 = (y_1, \ldots, y_m) \in \mathbb{R}^m$, so gilt: $f(x) \to y_0 \ (x \to x_0) \iff f_j(x) \to y_j \ (x \to x_0) \ (j = 1, \ldots, m)$
- (2) Die Aussagen des Satzes Ana I, 16.1 und die Aussagen (1) und (2) des Satzes Ana I, 16.2 gelten sinngemäß für Funktionen von mehreren Variablen.

Beweis

(1) folgt aus 2.1

(2) wie in Ana I

Definition (Stetigkeit vektorwertiger Funktionen)

- (1) Sei $x_0 \in D$. f heißt **stetig** in x_0 gdw. für jede Folge $(x^{(k)})$ in D mit $(x^{(k)}) \to x_0$ gilt: $f(x^{(k)}) \to f(x_0)$. Wie in Ana I: Ist $x_0 \in D \cap \mathcal{H}(D)$, so gilt: f ist stetig in $x_0 \iff$ $\lim_{x \to x_0} f(x) = f(x_0).$
- (2) f heißt auf D stetig gdw. f in jedem $x \in D$ stetig ist. In diesem Fall schreibt man: $f \in C(D, \mathbb{R}^m) \ (C(D) = C(D, \mathbb{R})).$
- (3) f heißt auf D gleichmäßig (glm) stetig gdw. gilt: $\forall \varepsilon > 0 \ \exists \delta > 0 : \|f(x) - f(y)\| < \varepsilon \ \forall x, y \in D : \|x - y\| < \delta$
- (4) f heißt auf D Lipschitzstetig gdw. gilt: $\exists L \ge 0 : ||f(x) - f(y)|| \le L||x - y|| \ \forall x, y \in D.$

Satz 3.2 (Stetigkeit vektorwertiger Funktionen)

- (1) Sei $x_0 \in D$ und $f = (f_1, \ldots, f_m)$. Dann ist f stetig in x_0 gdw. alle f_j stetig in x_0 sind. Entsprechendes gilt für "stetig auf D", "glm stetig auf D", "Lipschitzstetig auf D".
- (2) Die Aussagen des Satzes Ana I, 17.1 gelten sinngemäß für Funktionen von mehreren Variablen.
- (3) Sei $x_0 \in D$. f ist stetig in x_0 gdw. zu jeder Umgebung V von $f(x_0)$ eine Umgebung U von x_0 existiert mit $f(U \cap D) \subseteq V$.
- (4) Sei $\emptyset \neq E \subseteq \mathbb{R}^m$, $f(D) \subseteq E$, $g: E \to \mathbb{R}^p$ eine Funktion, f stetig in $x_0 \in D$ und gstetig in $f(x_0)$. Dann ist $g \circ f : D \to \mathbb{R}^p$ stetig in x_0 .

Beweis

- (1) folgt aus 2.1
- (2) wie in Ana 1
- (3) Übung
- (4) wie in Ana 1

Beispiele: (1)
$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 $(D = \mathbb{R}^2)$

$$f(\frac{1}{k}, \frac{1}{k}) = \frac{1}{2} \to \frac{1}{2} \neq 0 = f(0, 0) \implies f \text{ ist in } (0, 0) \text{ nicht stetig.}$$

(2)
$$f(x,y) := \begin{cases} \frac{1}{y}\sin(xy), & y \neq 0\\ x, & y = 0 \end{cases}$$

Für
$$y \neq 0$$
: $|f(x,y) - f(0,0)| = \frac{1}{|y|} |\sin(xy)| \le \frac{1}{|y|} |xy| = |x|$.

Also gilt: $|f(x,y)-f(0,0)| \le |x| \ \forall (x,y) \in \mathbb{R}^2 \implies f(x,y) \to f(0,0) \ ((x,y) \to (0,0)) \implies f \text{ ist stetig in } (0,0).$

(3) Sei $\Phi \in C^1(\mathbb{R}), \ \Phi(0) = 0, \ \Phi'(0) = 2 \text{ und } a \in \mathbb{R}.$

$$f(x,y) := \begin{cases} \frac{\Phi(a(x^2+y^2))}{x^2+y^2}, & (x,y) \neq (0,0) \\ \frac{1}{2}, & (x,y) = (0,0) \end{cases}$$

Für welche $a \in \mathbb{R}$ ist f stetig in (0,0)?

Fall 1: a = 0

 $f(x,y) = 0 \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \implies f \text{ ist in } (0,0) \text{ nicht stetig.}$

Fall 2: $a \neq 0$

 $r:=x^2+y^2$. $(x,y)\to(0,0)\iff \|(x,y)\|\to0\iff r\to0$, Sei $(x,y)\neq(0,0)$. Dann gilt:

$$f(x,y) = \frac{\Phi(ar)}{r} = \frac{\Phi(ar) - \Phi(0)}{r - 0} = a \frac{\Phi(ar) - \Phi(0)}{ar - 0} \stackrel{r \to 0}{\to} a\Phi'(0) = 2a$$
. Das heißt: $f(x,y) \to 2a \ ((x,y) \to (0,0))$.

Daher gilt: f ist stetig in $(0,0) \iff 2a = \frac{1}{2} \iff a = \frac{1}{4}$.

Definition (Beschränktheit einer Funktion)

 $f: D \to \mathbb{R}^m$ heißt **beschränkt** (auf D) gdw. f(D) beschränkt ist ($\iff \exists c \geq 0 : ||f(x)|| \leq c \ \forall x \in D$).

Satz 3.3 (Funktionen auf beschränkten und abgeschlossenen Intervallen)

Dsei beschränkt und abgeschlossen und es sei $f \in C(D,\mathbb{R}^m).$

- (1) f(D) ist beschränkt und abgeschlossen.
- (2) f ist auf D gleichmäßig stetig.
- (3) Ist f injektiv auf D, so gilt: $f^{-1} \in C(f(D), \mathbb{R}^n)$.
- (4) Ist m = 1, so gilt: $\exists a, b \in D : f(a) \le f(x) \le f(b) \ \forall x \in D$.

Beweis

wie in Ana I.

Satz 3.4 (Fortsetzungssatz von Tietze)

Sei D abgeschlossen und $f \in C(D, \mathbb{R}^m) \implies \exists F \in C(\mathbb{R}^n, \mathbb{R}^m) : F = f$ auf D.

Satz 3.5 (Lineare Funktionen und Untervektorräume von \mathbb{R}^n)

(1) Ist $f: \mathbb{R}^n \to \mathbb{R}^m$ und linear, so gilt: f ist Lipschitzstetig auf \mathbb{R}^n , insbesondere gilt: $f \in C(\mathbb{R}^n, \mathbb{R}^m)$.

(2) Ist U ein Untervektorraum von \mathbb{R}^n , so ist U abgeschlossen.

Beweis

- (1) Aus der Linearen Algebra ist bekannt: Es gibt eine $(m \times n)$ -Matrix A mit f(x) = Ax. Für $x, y \in \mathbb{R}^n$ gilt: $||f(x) f(y)|| = ||Ax Ay|| = ||A(x y)|| \le ||A|| \cdot ||x y||$
- (2) Aus der Linearen Algebra ist bekannt: Es gibt einen UVR V von \mathbb{R}^n mit: $\mathbb{R}^n = U \oplus V$. Definiere $P: \mathbb{R}^n \to \mathbb{R}^n$ wie folgt: zu $x \in \mathbb{R}^n$ existieren eindeutig bestimmte $u \in U$, $v \in V$ mit: x = u + v; P(x) := u.

Nachrechnen: P ist linear.

$$P(\mathbb{R}^n) = U$$
 (Kern $P = V$, $P^2 = P$). Sei $(u^{(k)})$ eine konvergente Folge in U und $x_0 := \lim u^{(k)}$, z.z.: $x_0 \in U$.

Aus (1) folgt:
$$P$$
 ist stetig $\Longrightarrow P(u^{(k)}) \to P(x_0) \Longrightarrow x_0 = \lim u^{(k)} = \lim P(u^{(k)}) = P(x_0) \in P(\mathbb{R}^n) = U$.

Definition (Abstand eines Vektor zu einer Menge)

Sei $\emptyset \neq A \subseteq \mathbb{R}^n$, $x \in \mathbb{R}^n$. $d(x,A) := \inf\{\|x - a\| : a \in A\}$ heißt der **Abstand** von x und A.

Klar: $d(a, A) = 0 \ \forall a \in A$.

Satz 3.6 (Eigenschaften des Abstands zwischen Vektor und Menge)

- $(1) |d(x, A) d(y, A)| \le ||x y|| \ \forall x, y \in \mathbb{R}^n.$
- (2) $d(x, A) = 0 \iff x \in \overline{A}$.

Beweis

- (1) Seien $x, y \in \mathbb{R}^n$. Sei $a \in A$. $d(x, A) \le ||x a|| = ||x y + y a|| \le ||x y|| + ||y a||$
 - $\implies d(x,A) ||x y|| \le ||y a|| \ \forall a \in A$
 - $\implies d(x,A) ||x y|| \le d(y,A)$
 - $\implies d(x,A) d(y,A) \le ||x y||$

Genauso: $d(y, A) - d(x, A) \le ||y - x|| = ||x - y|| \implies \text{Beh.}$

(2) Der Beweis erfolgt duch Implikation in beiden Richtungen:

$$, \Leftarrow \text{": Sei } x \in \overline{A} \stackrel{2.2}{\Longrightarrow} \exists \text{ Folge } (a^{(k)}) \text{ in } A: a^{(k)} \to x \stackrel{(1)}{\Longrightarrow} d(a^{(k)}, A) \to d(x, A) \implies d(x, A) = 0.$$

$$,,\Longrightarrow \text{``: Sei }d(x,A)=0.\ \forall k\in\mathbb{N}\ \exists a^{(k)}\in A: \|a^{(k)}-x\|<\tfrac{1}{k}\implies a^{(k)}\to x\ \overset{2.2}{\Longrightarrow}\ x\in\overline{A}.$$