Lecture 1- A Bracing Tour of Simple Linear Regression with R

Peter Shaffery

1/19/2020

Example: Penguins! (Con't)

library(palmerpenguins)

Say that we are researchers studying penguins in the Palmer Archipelago of Antarctica. We have collected data on three different penguin species (Adelie, Chinstrap, and Gentoo) on three different islands (Torgersen, Biscoe, and Dream). For each subject in our dataset, we have recorded the following:

- length and depth of the bill (mm)
- length of the flippers (mm)
- body mass (g)
- sex
- year of the measurement

The data looks like this:

penguins

```
## # A tibble: 344 x 8
##
      species island bill_length_mm bill_depth_mm flipper_length_~ body_mass_g
      <fct>
              <fct>
                               <dbl>
                                             <dbl>
##
                                                                           <int>
  1 Adelie Torge~
##
                                39.1
                                              18.7
                                                                 181
                                                                            3750
   2 Adelie Torge~
                                39.5
                                              17.4
                                                                            3800
##
                                                                 186
## 3 Adelie Torge~
                                40.3
                                              18
                                                                 195
                                                                            3250
  4 Adelie Torge~
                                NA
                                              NA
                                                                 NA
                                                                              NA
##
  5 Adelie
             Torge~
                                36.7
                                              19.3
                                                                 193
                                                                            3450
##
  6 Adelie Torge~
                                39.3
                                              20.6
                                                                 190
                                                                            3650
                                38.9
  7 Adelie Torge~
                                              17.8
                                                                 181
                                                                            3625
   8 Adelie
              Torge~
                                39.2
                                              19.6
                                                                 195
                                                                            4675
## 9 Adelie
              Torge~
                                34.1
                                              18.1
                                                                 193
                                                                            3475
## 10 Adelie
                                42
                                              20.2
                                                                 190
                                                                            4250
             Torge~
## # ... with 334 more rows, and 2 more variables: sex <fct>, year <int>
```

We are interested in the relationship between body mass (x) and flipper length (y)

Body Mass and Flipper Length

Regression

Linear regression comes in two flavors: simple (or 1-dimensional), and multivariate (sometimes shortened to "multiple") regression. For most of the course we will be dealing with multiple regression and its variants. However, in order to review some core statistical concepts we will start with an outline of simple regression first.

The regression model is (mathematically) very simple:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Here β_0 and β_1 are called *model coefficients*. β_0 by itself is the **intercept** and β_1 is the **slope**. We say that β_1 represents the **average increase in** y **for a unit increase in** x.

We also introduce ϵ , which is the **error term**. In this course we will always assume that ϵ is a random variable. For any linear regression model we further assume the following facts:

1. Normality ϵ_i is normally distributed with mean 0 and variance σ^2 (which we will assume is known, for now):

$$\epsilon \sim N(0, \sigma^2)$$

- 2. **Independence** The error terms $\epsilon_1, ..., \epsilon_n$ are independent
- 3. Homoskedasticity The value of σ^2 is constant for all values of x

```
xgrid = seq(0,1,.01)
n = length(xgrid)
y.homoskedastic = rnorm(n, 2*xgrid, 1)
y.heteroskedastic = rnorm(n, 2*xgrid, 1*xgrid)
plot(xgrid,y.homoskedastic)
```


plot(xgrid,y.heteroskedastic)

sumption 1 and 2 are so fundamental to regression (and statistics) that we give them a special name: **independent and identically distributed** or **iid** (as in "we assume the errors ϵ_i are **iid** normal with mean 0 and variance σ^2 "). Note that iid random variables can have any distribution, not just normal.

As-

The aim of regression is to determine the *best guess* values of β_0 and β_1 , denoted $\hat{\beta}_0$ and $\hat{\beta}_1$, given a sequence of observations $(x_1, y_1), ..., (x_n, y_n)$. To do so, we will choose values for $\hat{\beta}_0$ and $\hat{\beta}_1$ which minimize the *error* in our model.

For each observations (x_i, y_i) and for a pair of guess $\hat{\beta}_0, \hat{\beta}_1$, note that we can re-arrange the regression model:

$$\epsilon_i = y_i - \hat{\beta_0} - \hat{\beta_1} x_i$$

Now recall that (by Assumption 1) ϵ_i is normally distributed with mean 0, thus:

$$P[\epsilon_i | \sigma^2] = N(\epsilon_i; \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[\frac{-\epsilon_i^2}{2\sigma^2}\right]$$

By substituting $y_i - \beta_0 - \beta_1 x_i$ for ϵ_i in the above equation, we can get the probability of observing y_i , given β_0, β_1 and x_i :

$$P[y_i|\hat{\beta}_0, \hat{\beta}_1, x_i, \sigma^2] = N(\hat{\beta}_0 + \hat{\beta}_1 x_i; \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[\frac{-(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{2\sigma^2}\right]$$

Since β_0 and β_1 are free variables (we have no observed them, only x_i and y_i), we could rewrite the above probability as a function of the β s. This function is known as the **likelihood** function:

$$L(\hat{\beta}_0, \hat{\beta}_1; x_i, y_i) = P[y_i | \hat{\beta}_0, \hat{\beta}_1, x_i, \sigma^2]$$

The likelihood function is a central concept in statistical modeling. Since the ϵ_i are independent (by Assumption 2), we can write the overall likelihood function:

$$L(\hat{\beta}_0, \hat{\beta}_1; x_1, ..., x_n, y_1, ..., y_n) = \prod_{i=1}^n P[y_i | \hat{\beta}_0, \hat{\beta}_1, x_i, \sigma^2]$$
$$= \frac{1}{\sigma \sqrt{2\pi}} \exp\left[\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2\right]$$

Recall that the likelihood represents the probability of observing the data you got, given that the coefficient values are β_0 and β_1 . It follows that the "best guess" values of β_0 and β_1 are the ones which maximize the probability of the observed data, ie. the **maximum likelihood estimator**.

Because the function L is the product of a bunch of probabilities, which can get very small, often the numerical value of L is computationally difficult to work with (particularly for large N). It is far more convenient to maximize the log-likelihood:

$$l(\hat{\beta}_0, \hat{\beta}_1; x_1, ..., x_n, y_1, ..., y_n) = \ln \left[L(\hat{\beta}_0, \hat{\beta}_1; x_1, ..., x_n, y_1, ..., y_n) \right]$$

$$= -\ln \left(\sigma \sqrt{2\pi} \right) + \frac{-1}{2\sigma^2} * \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\propto - \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

We finally observe that the log-likelihood is the same as the negative square error, and that choosing $\hat{\beta}_0$ and $\hat{\beta}_1$ to maximimize l is equivalent to:

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname{argmin}_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Coefficients estimated in this way are thus called the least squares estimates:

It can be shown (eg. by setting $\frac{\partial Square\ Error}{\partial \beta_1} = 0$ and solving for β_1) that the values which minimize the sum of squares are:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})(x_{i} - \bar{x})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Note that we could also write $\hat{\beta_1} = \frac{\text{Cov}(x,y)}{\text{Var}[x]} = \text{Cor}(x,y) \frac{s_y}{s_x}$. Simple linear regression is therefore fundamentally the same kind of procedure as calculating covariance (or correlation) between x and y.

Let's use the covariance formula now to calculate $\hat{\beta}_0$ and $\hat{\beta}_1$ for our example data:

```
beta.1.hat = cov(x,y)/var(x)
beta.0.hat = mean(y) - beta.1.hat*mean(x)
c(beta.0.hat,beta.1.hat)
```

```
## [1] 137.03962089 0.01519526
```

Prediction Having estimated $\hat{\beta}_0 = 137$ and $\hat{\beta}_1 = .015$ we can make *predictions* about unobserved datapoints. Say that we measure a new penguin with body mass $x_{\text{new}} = 5000g$, our "best guess" for its flipper length is $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = 137 + .015 * 5000 = 212mm$.

```
xgrid = seq(min(x),max(x),.01)
fit = beta.0.hat + beta.1.hat*xgrid
plot(x,y,main='Body Mass and Flipper Length',xlab='Body Mass (g)',ylab='Flipper Length (mm)')
lines(xgrid,fit,col='red')
```

Body Mass and Flipper Length

Hypothesis Testing

So far we've been focusing primarily on the *modeling* and not much on the *statistics*. Say that we now want to make a decisions: whether body mass and flipper length are actually related or not. One way to do so would be to decide whether β_1 is "big enough". Unfortunately, like covariance, the regression model coefficients are also not independent of scale, so it's not clear how "big" is "big enough"

```
x.lbs = x/454 # 454g per lb
beta.1.hat.lbs = cov(x.lbs,y)/var(x.lbs)
beta.0.hat.lbs = mean(y) - beta.1.hat.lbs*mean(x.lbs)
c(beta.0.hat.lbs,beta.1.hat.lbs)
```

```
## [1] 137.03962 6.89865
```

We will therefore use a procedure called hypothesis testing.

Hypothesis testing compares two "models":

- 1. The **null hypothesis** (H_0) , $\beta_1 = 0$
- 2. The alternate hypothesis (H_A) $\beta_1 \neq 0$

 H_0 represents the case of "no effect", and in this example it would be the model with $\beta_1 = 0$ (ie. no relationship between body mass and flipper length). The alternate hypothesis, H_A , would be that there is an effect, ie.that $\beta_1 \neq 0$.

Recall the formula for $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

It can be shown (through properties listed in the Appendix), that if the x_i are constants and the ϵ_i are iid normal, then the y_i are iid normal. Since $\hat{\beta}_1$ is a function of these y_i , then $\hat{\beta}_1$ is also a random variable. In fact, $\hat{\beta}_1$ is normally distributed:

$$\hat{\beta}_1 \sim N(\beta_1^*, \tau^2)$$

Where β_1^* is the *true* value of β_1 , and the variance τ^2 is:

$$\tau^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

Since the null hypothesis H_0 is equivalent $\beta_1^* = 0$, and it's equivalent to saying that:

$$\hat{\beta}_1 \sim N(0, \tau^2)$$

We now have a way to determine whether $\hat{\beta}_1$ is "big enough"! If we scale $\hat{\beta}_1$ by τ , then:

$$\frac{\hat{\beta}_1}{\tau} \sim N(0,1)$$

Thus if $\frac{\hat{\beta}_1}{\tau}$ falls sufficiently far out on the standard normal curve (N(0,1)) then we'll say that it's "big" and reject H_0 . Otherwise we'll "fail to reject H_0 ".

```
xgrid = seq(-5,5,.01)
std.norm.curve = dnorm(xgrid,0,1)
plot(xgrid,std.norm.curve, type='l',xlab='x',ylab='') #plot curve as a line, rather than series of poin
points(.1,0,col='red',pch='x',cex=2)
points(4,0,col='green',pch='o',cex=2)
```


There's only one snag: τ depends on the value of σ . Up until now we've assumed that we know this value, but in reality that never happens, so we'll have to estimate it:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon_i}^2$$

$$= \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$= \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

The sum of the squared error terms, $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}$ is an important quantity, as it measures the overall "fit" of our model (on average, how close to y_{i} was the estimate \hat{y}_{i}). It therefore gets a special name: Sum of Square Error (SSE). Alternatively, since the $\hat{\epsilon}_{i}$ are typically called "residuals", you will sometimes see the SSE called "residual error".

We can now estimate τ :

$$\hat{\tau} = \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

And calculate:

$$\hat{t} = \frac{\hat{\beta}_1}{\hat{\tau}}$$

Unfortunately, because the estimate $\hat{\tau}$ is also a random variable, the random variable t is no long normally distributed. Instead it has a Student-T Distribution with n-2 degrees of freedom.

The distribution of t has no dependence on the scale of x and y, so we're free to choose a cutoff threshold t^* , such that $P[|t| \ge t^*] = \alpha$.

```
n = length(x)

xgrid = seq(-5,5,.01)
```

```
std.t = dt(xgrid,n-2)
alpha = .05
t.star = qt(1-alpha/2,df=n-2)

plot(xgrid,std.t, type='l',xlab='x',ylab='')
abline(v=t.star,col='red')
abline(v=-t.star,col='red')
```


If $|\hat{t}| \geq t^*$ then we'll reject H_0 , otherwise we'll fail to reject.

Let's test the hypothesis that penguin body mass is related to flipper length with a false positive rate of $\alpha = .05$:

```
y.hat = beta.0.hat + beta.1.hat * x
eps.hat = y - y.hat
SSE = sum( eps.hat**2 )
sigma2.hat = SSE/(n-2)
tau.hat = sqrt( sigma2.hat/sum( (x - mean(x))**2 ) )
t.hat = beta.1.hat/tau.hat
n=length(x)
t.grid = seq(-40,40,.01)
t.dist = dt(t.grid, n-2)
alpha = .05
t.star.high = qt(1-alpha/2,df=n-2)
t.star.low = -t.star.high
plot(t.grid,t.dist, type='l',xlab='t',ylab='')
abline(v=t.star.low,col='red')
abline(v=t.star.high,col='red')
points(t.hat,0,col='green',pch='o',cex=2)
```


print(t.hat)

[1] 32.56217

Wow that's really far out there! We therefore confidently reject H_0 .

Alternative Formulations

P-Values A common alternative to selecting t^* explicitly is to consider the **p-value** of t, that is the probability $P[|t| \ge |\hat{t}||\beta_1 = 0]$. This gives us a sense of how "extreme" the observed value of t was, relative to what it would be under H_0 . Let's calculate that now:

```
p.val = pt(t.hat,n-2,lower.tail=FALSE) + pt(-t.hat,n-2)
p.val
```

[1] 3.132836e-105

Since this p-value is lower than $\alpha = .05$, we could come to the same conclusion and reject H_0 .

Confidence Intervals Alternately we could assess the uncertainty in $\hat{\beta}_1$. Since $\hat{\beta}_1$ is normal, "most of the time" β_1^* is going to fall inside the interval:

$$CI = [\hat{\beta}_1 - t_{\{n-2,\alpha/2\}}\hat{\tau}, \hat{\beta}_1 + t_{\{n-2,\alpha/2\}}\hat{\tau}]$$

Where $t_{\{n-2,\alpha/2\}}$ is chosen such that $P[t>t_{\{n-2,\alpha/2\}}]=\alpha/2$

If $0 \notin CI$ then we reject H_0

```
t.quant = qt(1-alpha/2,df=n-2)
CI = c( beta.1.hat-t.quant*tau.hat, beta.1.hat+t.quant*tau.hat )
print(CI)
```

[1] 0.01427728 0.01611325

Choosing α

Notice that our decision process has four outcomes:

	Fail to Reject H_0	Reject H_0
H_0 True	Good False Negative (Type 2 Error)	False Positive (Type 1 Error)
n_0 raise	raise Negative (Type 2 Effor)	Good

The value of α is the probability of a False Positive. When α is small False Positives are rare (since our threshold of evidence is high). However, if α is too small then the probability of a False Negative is high. Choosing α is a compromise between these tradeoffs.

Automating

Doing all this calculation by hand is a huge pain, it's way easier to use R's built in functionality:

```
linear.model = lm(y~x)
summary(linear.model)
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
       Min
                10 Median
                                3Q
                                       Max
##
  -23.698
           -4.983
                     1.056
                             5.101
                                   13.933
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.370e+02 1.999e+00
                                      68.56
                                              <2e-16 ***
               1.520e-02
                         4.667e-04
                                      32.56
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.847 on 331 degrees of freedom
## Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614
## F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16
R has some smart logic around column names also:
linear.model2 = lm(flipper_length_mm ~ body_mass_g, data= dat)
summary(linear.model2)
##
## Call:
## lm(formula = flipper_length_mm ~ body_mass_g, data = dat)
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                       Max
  -23.698
                     1.056
                             5.101
                                    13.933
##
           -4.983
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.370e+02 1.999e+00
                                      68.56
                                              <2e-16 ***
## body_mass_g 1.520e-02 4.667e-04
                                      32.56
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 6.847 on 331 degrees of freedom
## Multiple R-squared: 0.7621, Adjusted R-squared: 0.7614
## F-statistic: 1060 on 1 and 331 DF, p-value: < 2.2e-16</pre>
```

We can plot the best-fit line use predict:

```
y.hat = predict(linear.model2)
plot(x,y.hat,type='l',col='red',xlab='Body Mass (g)',ylab='Flipper Length (mm)')
points(x,y)
```


Alternately we can predict new datapoints:

```
new.dat = data.frame('body_mass_g'=c(3500,4500))
predict(linear.model2, newdata=new.dat)
```

1 2 ## 190.2230 205.4183

Assessing Model Quality

R-squared

P-values and t-statistics (\hat{t}) tell use how plausible it is that $\beta_1 = 0$, but they don't tell us how good our model fit is. For that, we need to turn back to the ϵ_i .

Recall that (by definition):

$$\hat{\epsilon_i} = y_i - \hat{y_i}$$

So, rearranging:

$$y_i = \hat{y_i} + \hat{\epsilon_i}$$

Now let's subtract \bar{y} from both sides:

$$y_i - \bar{y} = (\hat{y}_i - \bar{y}) + \hat{\epsilon}_i$$

Deviation from mean = Deviation due to fit + Deviation due to error

Some fancy algebra (which we will come back to), can be used to show:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

SST = SSR + SSE

We can rewrite this one more:

$$SSR = 1 - \frac{SSE}{SST}$$

We denote the quantity on the left R^2 , and it can be shown that $R^2 = \operatorname{Cor}(x,y)^2$

Appendix: Properties of Normal Random Variables

In this course we'll make a lot of use of normally distributed random variables:

$$x \sim N(\mu, \sigma^2)$$

It's there useful to bear in mind some of the more convenient properties of a normal random variable.

- 1. If $x \sim N(\mu, \sigma^2)$ and a is a fixed constant, then the sum $a + x \sim N(a + \mu, \sigma^2)$ 2. If $x \sim N(\mu, \sigma^2)$ and b is a fixed constant, then the product $\beta x \sim N(b\mu, (b\sigma)^2)$ 3. If $x \sim N(\mu_x, \sigma_x^2)$ and $y N(\mu_y, \sigma_y^2)$ are independent, then the sum $x + y = N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$