Exercise List: Variance Reduced Gradient Methods

Francis Bach and Robert M. Gower

April 19, 2019

The SAG algorithm

Ex. 1 — The SAG Algorithm. Consider the optimization problem

$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{j=1}^n f_j(x),\tag{1}$$

and the following implementation of the SAG algorithm given in Algorithm 1.

Algorithm 1 SAG: Stochastic Average Gradient descent

- 1: **Initialize** $x^0, g_i = 0 \in \mathbb{R}^d$ for i = 1, ..., n. Choose $\eta > 0$ the stepsize.
- 2: **for** k = 1, ..., T 1 **do**

- Sample $i_k \in \{1, \dots, n\}$ $g_{i_k} = \nabla f_{i_k}(x^k)$ $G^k = \frac{1}{n} \sum_{j=1}^n g_j$
- $x^{k+1} = \dot{x}^k \eta G^k$
- 7: Output: x^T

Part I

Assume that calculating $\nabla f_{i_k}(x^k)$ costs O(d) operations and that sampling i_k costs O(1). What is the computational cost of a single iteration of Algorithm 1?

Part II

Re-write this implementation of SAG in such a way that the computational cost of a single iteration is O(d).