BREVET D'INVENTION

MINISTÈRE DE L'INDUSTRIE

P.V. n° 86.463

N° 1.552.793

SERVICE de la PROPRIÉTÉ INDUSTRIELLE

Classification internationale: C 07 c // A 61 k; C 07 d

Phénoxy acétamides basiques et leur préparation. (Invention : Josef SCHMITT, Roger RAVEUX et Marcel Daniel Pierre BRUNAUD.)

Société anonyme dite: ETABLISSEMENTS CLIN-BYLA résidant en France (Seine).

Demandé le 7 décembre 1966, à 14^h 45^m, à Paris.

Délivré par arrêté du 2 décembre 1968.

(Bulletin officiel de la Propriété industrielle, n° 2 du 10 janvier 1969.)

(Brevet d'invention dont la délivrance a été ajournée en exécution de l'article 11, § 7, de la loi du 5 juillet 1844 modifiée par la loi du 7 avril 1902.)

On sait que la procaïne possède la propriété de stimuler la respiration cellulaire (A. Aslan, Arzneimittelforschung 1958, page 11). On peut accroître cette activité en combinant le groupe aminé libre avec l'acide nicotinique, pour former une fonction amide (K/L Zirm et A Pongratz, Arzneimittelforschung 1960, page 412).

On sait, par ailleurs, que certains dérivés d'acides phénoxy acétiques exercent des effets intéressants chez l'homme sur le métabolisme lipidique.

La présente invention a été conque notamment en vue de procurer des composés qui se rattachent, par leur structure, à la procaïne et aux acides phénoxy acétiques et qui exercent eux aussi, une action favorable sur la respiration cellulaire, la respiration tissulaire et le métabolisme lipidique. Elle concerne les composés répondant à la formule générale I:

dans laquelle:

R₁, R₂, R₃ et R₄ représentent chacun un atome d'hydrogène ou d'halogène, en particulier le chlore, un-radical trifluorométhyle, un radical alkyle inférieur ramifié ou non, éventuellement non saturé, un radical phényl-alkyle ou phényle, un radical hydroxy libre ou éthérifié lui-même par un radical alkyle ramifié ou non, éventuellement non saturé ou encore éthérifié par un radical cyclo-alkyle, phényl-alkyle ou phényle, un radical acyle inférieur, ou un groupement nitro, amino ou sulfamoyle;

X représente un méthylène pouvant éventuellement porter un ou deux substituants du groupe constitué par les radicaux alkyles inférieurs, éventuellement ramifiés, et le radical phényle;

Y désigne un radical dialkylamino alkyle où les deux alkyles liés à l'atome d'azote sont des alkyles inférieurs droits ou ramifiés, pouvant éventuellement être unis en un cycle comprenant ou non un deuxième hétéro-atome tel que l'oxygène et où le radical alkyle lié à l'atome d'oxygène.

gène comporte une chaîne linéaire ou ramifiée de deux ou trois atomes de carbone, Y désignant, de préférence, le radical diéthylamino éthyle qui figure dans la molécule de la procaîne, à l'exclusion des valeurs suivantes:

$$R_1 = Cl; R_2 = R_3 = R_4 = H; X = -C(CH_3)_2 - Y = CH_2 - CH_2 - N C_2H_5$$

La préparation de la substance exclue, qui a été obtenue à l'état de base huileuse sans indication de sels cristallisés, est décrite par M. Melandri, A. Buttini, G.M. Carminati et P. Galimberti dans « Bolletino Chimico Farmaceutico », année 1964, volume 103, page 475.

L'invention comprend, en outre, un procédé de préparation des composés définis ci-dessus, procédé selon lequel on fait réagir les chlorures d'acides répondant à la formule :

8 210928 7

(dans laquelle R₁, R₂, R₃, R₄ et X ont les significations indiquées plus haut) avec la procaïne ou un composé analogue défini par la formule ci-après:

$$\begin{array}{c|c} C-O-Y \\ \hline \\ O \end{array}$$

où Y a la signification mentionnée plus haut. Les chlorures d'acide utilisés au départ peuvent être préparés par une des techniques classiques et, en particulier, l'action du chlorure de thionyle sur un acide convenable en opérant dans un solvant inerte tel que le benzène; ils sont isolés par distillation et utilisés tels quels.

Les acides, d'où sont issus les chlorures d'acide qui-viennent-d'être-mentionnés peuvent-être-préparés par condensation des phénols pourvus de substituants convenables :

Soit avec un ester alkylique, en particulier un ester alkylique inférieur de l'acide α-bromacétique, α-bromobutyrique, α-bromo-isobutyrique, α-bromopropionique, α-bromo-isovalérique ou encore α-bromophénylacétique, l'ester qui résulte de la condensation étant, dans une opération séparée, saponifié en l'acide correspondant;

Soit, dans le cas où X désigne le radical divalent —C(CH₃)₂—, avec l'acétone et le chloroforme en présence de soude pulvérisée.

Un certain nombre d'acides, préparés à titre d'exemple, ne sont pas signalés dans la littérature chimique; ils font partie de l'invention. On les trouvera dans le tableau I ci-dessous; F_K indique le point de fusion mesuré au banc de Kofler et F_c le point de fusion mesuré au tube capillaire, sans correction.

TABLEAU I

$$R_1$$
 O N C OH R_2

R _i	R ₂	- x	Point de fusion et solvant de cristallisation	Lettre d'identifi- cation
Cl Isopropoxy n-butoxy n-pentyloxy n-pentyloxy n-pentyloxy n-hexyloxy Cyclopentyloxy Benzyloxy	H H	CH(C ₆ H ₃) C(CH ₃) ₂ C(CH ₃) ₃ CH ₄ CH(C ₂ H ₃) C(CH ₃) ₂ CH ₂ C(CH ₃) ₂ C(CH ₃) ₂	$F_{\rm K}$ 136-137° (benzène) $F_{\rm X}$ 57° (éther de pétrole) $F_{\rm K}$ 76° (éther de pétrole) $F_{\rm c}$ 115° (éther isopropylique) $F_{\rm c}$ 58° (éther de pétrole) $F_{\rm c}$ 73° (éther de pétrole) $F_{\rm c}$ 114 (benzène) $F_{\rm K}$ 100° (éther isopropylique) $F_{\rm K}$ 137° (éther isopropylique)	A B C D E F G H I

La réaction des chlorures d'acide avec les amino-esters et, en particulier, avec la procaïne est conduite de préférence dans un diluant anhydre et inerte à l'égard des substances mises en réaction, par exemple un hydrocarbure tel que le benzène ou mieux une cétone telle que l'acétone. à une température qui peut aller de la température ambiante à la température d'ébullition du diluant. On obtient l'amide sous la forme de son chlorhydrate qui, dans beaucoup de cas, cristallise directement. Si cela n'est pas le cas, il y a intérêt, en vue de préparer un sel cristallisé, à décomposer le chlorhydrate en solution aqueuse par un agent alcalin tel que le carbonate de sodium, à extraire la base libérée par un solvant adéquat tel que l'éther éthylique ou l'acétate d'éthyle, à évaporer le solvant et à

traiter le résidu par un acide minéral ou organique convenable, tel que l'acide fumarique ou l'acide oxalique en quantité équimoléculaire. Les sels (chlorhydrates, fumarates, oxalates, etc.) peuvent être purifiés par recristallisation. Les bases correspondantes ont été obtenues à l'état cristallin dans un bon nombre de cas.

Pour préparer le (p-amino phénoxy acétylamino)-4 benzoate de (diéthylamino-2 éthyle) ou composé 4415 CB, il y a intérêt à réduire le dérivé nitré correspondant selon l'une des méthodes usuelles, par exemple à l'aide de fer, de zinc ou d'étain en milieu acide ou à l'aide de chlorure stanneux ou en présence d'un catalyseur (en particulier le charbon palladié) dans un solvant tel que l'alcool éthylique.

Les produits qui figurent dans le tableau II

présenté plus loin ont été prépares à l'état de sels et de bases; ils illustrent l'invention sans la limiter. Ils ont été bien caractérisés par l'analyse élémentaire et par la spectrographie infrarouge sur appareil « Unicam S.P. 200 ».

Les bases présentent, entre autres, en solution compensée dans le chlorure de méthylène, une bande à 3 400 cm⁻¹ (N—H) une bande large et intense autour de 1 700 cm⁻¹ (bandes amide I et ester sensiblement confondues), une bande double vers 1 600 cm⁻¹ et la bande amide II vers 1 530 cm⁻¹. Quant aux sels, ils présentent parfois certaines particularités: ainsi, le chlorhydrate du composé de l'exemple 3 (composé 2842 CB) peut exister, comme on l'a constaté, sous deux formes cristallines isomères, de même point de fusion (ainsi que leur mélange), et dont la formation est en relation avec la durée

de la cristallisation. Les formes cristallines se distinguent par leurs spectres IR (dans le bromure de potassium): l'une des formes (N° 1) présente, entre autres, et en ce qui concerne la laison C=0, une large bande autour de 1710 cm⁻¹, la seconde, deux bandes nettes, l'une vers 1710 cm⁻¹, l'autre vers 1680 cm⁻¹. On peut avoir passage de l'une à l'autre forme suivant que la séparation du produit cristallisé d'avec son solvant-mère est faite rapidement (première forme) ou non (deuxième forme).

Pour les autres chlorhydrates, les observations faites avec l'une et l'autre des deux formes du composé 2842 CB ou de leur mélange, quant aux bandes C=0, s'appliquent pareillement.

Les fumarates et les oxalates présentent, entre autres, une bande plus ou moins large et souvent complexe entre 1 680 et 1 720 cm⁻¹.

TABLE AU II

					TAI	DE VOIL	•	•
du co	dans le présent mé-	R ₁	R ₂	R ₃	R ₄	x	¥	Caractéristiques
BYLA (CB)	moire			Í				
4 404	1	н	н	н	н	_СН;_	CH ₂ —CH ₂ —N C ₂ H ₅ C ₂ H ₅	Base F _k 86° (éther isopropylique) (*) Chl ¹⁰ F _k (EtOH abs.)
4 513	2	. н	Н	н	н	-CH(C ₂ H ₅)-	Idem	Base huileuse Fumarate neutre F _c 155-156° (acét.)
2 842	3	CI	н	н	н	СH ₂	Idem .	Base F _K 131° (EtOH) Chl ¹ ° F _c 172° (EtOH à 96 %)
4 408	4	. C 1	н	н	н	CH(CH ₃)	Idem	Base huileuse Oxalate acide F _K 180° (EtOH à 96 %)
4 409.	5	CI	H	Н	н	—CH(C₂H₅)—	Idem	Base huileuse Oxalate acide F _k 181° (EtOH à 96 %)
4 438	6	cı-	H	н	н	C(CH ₃) ₂	Idem	Oxalate acide F _c 107° (acétone)
4 410	7	ci	H	H	H	CH ₂	CH ₂ =CH ₂ -N CH(CH ₃) ₂	Chl ¹⁰ F _K 195 ^o (MeOH)
4 411	. 8	C1	н	н	н	CH ₂	CH ₂ —CH ₂ —CH ₂ —N CH ₃	Base F _K 125° (éther isopropylique) Chl [®] F _K 175° (EtOH abs.)
4 412	9	C1	н	.H	н	-CH _z -	CH(CH ₃)-CH ₂ -NCH ₃	Base F _k 104° (éther isopropylique) Chl ¹⁰ F _k 211° (EtOH à 85 %)
4 413	10	Cl	Н	н	н	СН,	CH ₂ —CH _r —N	Base F _k 148° (éther isopropylique) Chl' F _k 205° (Me OH)

-									
		néro mposé				·	-) (¥)	200	
_	Aux Ets CLIN BYLA	dans le présent mé-	R ₁	R ₂	R ₃	R ₄	<u> </u>	Y	Caractéristiques
١	(CB)	moire							
	4 414	11	Cl	Н	H	Н	—CH ₂ —	CH ₂ —CH ₂ —N	Base F_{κ} 130° (benzène) Chl ^{1e} F_{κ} 222° (EtOH à 70 %)
	4 407	12	C1	CI	H	н	—СН <i>—</i>	CH ₂ -CH ₂ -N C ₂ H ₅	Base F _k 130° (EtOH) Chl' F _k 178° (MeOH)
	4 485	13	CI	Cl	н	н	-CH(CH ₃)-	Idem	Base huileuse Fumarate acide F _K 155-156°
	4 484	14	C1	Cl	н	н	—ĊH(C₂H₅)—	Idem	Base hulleuse Fumarate acide F_{κ} 156° (EtOH abs.)
	4 499	15	Cl	Cl	н	н	—С(СН ₃) ₂ —	Idem	Base F _k 90° (éther isopropylique) Fumarate acide F _k 156° (EtOH abs.)
	4 517	16	Cl	Cl	н	н	-CH- C(CH ₃) ₂	Idem	Base huileuse Fumarate acide F _K 95° acétate d'éthyle)
	4 497	17	CI	Cl	н.	H	—CH(C₀H₅)—	Idem	Base F_{κ} 102° (éther isopropylique) Fumarate neutre F_{κ} 167° (EtOH abs.)
	4 565	18	н	н	CF ₃	H	_СH ₂	Idem	Base huileuse Chl [*] F _x 148° (acét.)
	2 886	19	СН,	CH ₃	н	н	CH₂	Idem	Base F _c 101° (éther isopropylique)
	2 841	20	н	СН,	н	сн,	CH	Idem	Base F. 112° (éther isopropylique) Chl ¹⁰ F. 173° (MeOH)
	2 885	21	н	н	CH ₃	СН3	—CH ₂ —	Idem	Base F _c 116° (éther isopropylique) —
	4 486	22	CI	CH ₃	Н	н	—СН ₂ —	Idem	Base F _K 117° (éther isopropylique) — Fumarate neutre F _K 114-115° (EtOH abs.)
	4 498	23	CI	СН3	н	н	—CH(C₂H₅)—	Idem	Base huileuse Fumarate neutre F _k 145° (EtOH abs.)
	4 553	24	CI	CH ₃	Н	н.	C(CH ₃) ₂	Idem	Base huileuse Fumarate neutre F _K 133° (EtOH)
	4 531	25	(H ₃ C) ₃ C	Н	H	H.	-CH _z -	Idem	Base F _k 98° (éther isopropylique)
	4 621	26	(H ₃ C) ₃ C	н	H	н	-CH(C ₂ H ₅)-	Idem	Base huileuse

į.	- 5	
	 	

	néro mposé							
Aux Ets CLIN BYLA (CB)	dans le présent mé- moire	R,	R ₂	R ₃	R ₄	x	Y	Caractéristiques
4 623	27	(H³C)³C	H	н	н	-C(CH ₃) ₂ -	CH ₂ -CH ₂ -N C ₂ H ₅ C ₂ H ₅	Base huileuse Chl ² F _c 195° (acét.)
4 521	-28	C ₆ H ₅	н	н	н	CH ₂	Idem	Base huileuse Chl F _K 177°°(EtOH)
4 518	29	Н	C ₆ H ₅	н	н	-CH ₂ -	Idem	Base huileuse Chl" F _K 174° (EtOH abs.)
4 624	30	C ₆ H ₅ —CH ₂ —	H	H	н	_C(CH ₃) ₂	Idem	Base huileuse
4 622	31	Н	C ₆ H ₅ —CH ₂ —	H	Н	—С(СH ₁) ₂ —	Idem	Base huileuse
4 620	32	C,H,C~(CH ₃) ₂	Н	н	н	-C(CH ₃) ₂ -	. Idem	Base F _c 104° (éther isopropylique)
4 512	33	НО—	н	н	н	CH ₂	Idem	Base F _e 105° (éther isopropylique)
4 405	34	H ₃ CO	н	н	H.	CH _z	Idem	Base F _K 92° (éther isopropylique) Chl° F _K 158° (EtOH abs.)
4 510	35	H ₃ CO—	Н	н	н	—CH(C₂H₅)—	Îdem	Base huileuse Oxalate acide F _c 118-119° (EtOH abs.)
4 511	36	Н	H	H,CO-	н	CH	Idem	Base huileuse Oxalate acide F _c 196° (EtOH 80 %)
4 509	37	H ₃ CO	H,CO	н	н	_CH ₂ _	Idem	Base huileuse Fumarate acide F _c 161° (EtOH)
4 628	38	H ₂ C = _ CH—CH ₂ —_	H ₃ CO—	H	н	-CH _z -	Idem	Base huileuse Chl ^{te} F _k 127° -(EtOH-abs.)
4 630	39	H ₂ C = CH—CH ₂ —	Н,СО—	н	н	-C(CH ₃) ₂ -	Idem	Base huileuse
4 519	40	H₅C₂0—	н	H	н	–CH₂–	Idem	Base F. 78° (éther isopropylique)
4 638	41	$H_2C = CH-CH_2-O-$	Н	н	н.	CH _z	Idem	Base huileuse Chl ¹⁶ F _K 123° (étha- nol)
4 637	42	H ₂ C = CH—CH ₂ -O—	Н	н	Н	_С(СН,),_	Idem	Base huileuse Fumarate F _K 142° (éthanol)
4 629	43	(H ₃ C) ₂ CH-O-	н	H	H.	-C(CH ₃) ₂ -	Idem	Base F _k 88° (éther isopropylique)
4 522	44	n-H ₉ C ₄ O	H	.н	н	-CH _z -	Idem	Base F _K 93° (éther isopropylique) Fumarate acide F _K 124° (acétone)

	uméro composé						'A	
	ts dans le		R ₂	R ₃	R ₄	x	Y	Caractéristiques
BYL				<u>-</u> -	- <u>`</u>			
(CB)			1					,
4 564.	45	n-H ₂ C ₄ -O-	н	н	H	—СН(С₂Н₅)—	CH ₂ -CH ₂ -N C ₂ H ₅ C ₂ H ₅	Base huileuse
4 627	. 46	n-H ₉ C ₄ O-	н	Н	н	-С(СН ₃) ₂ -	Idem	Base huileuse Fumarate neutre F_{κ} 139° (acétone)
4 613.	. 47	n-H ₁₁ C ₅ O	н	н	н	-CH _z	Idem	Base F _K 93° (éther isopropylique) Chl ^{te} 1H ₂ O F _K 103° (acétone)
4 614.	. 48	n-H ₁₁ C ₅ -0-	н	н	н	—CH(C₂H₅)—	. Idem	Base huileuse
4 615.	. 49	n-H ₁₁ C ₅ O	Н	н	н	—С(СН ₃) ₂ —	Idem	Base huileuse Fumarate acide F_{κ} 109° (acétone)
4 672.	50	n-H ₁₃ C ₆ -O-	H	н	H	_CH _z _	Idem	Base F_k 89° (éther isopropylique) Chl ¹ ° 1H ₂ O F_k 95° inst. (acétone)
4 636.	51	<u> </u>	Н	Н	н	—С(СН ₃) ₂ —	Idem	Base F_k 104-105° (éther isopropylique Chl'e F_k 134° (acétone)
4 673.	. 52	0-	н	Н	н	—CH(C₁H₅)—	Idem	Base huileuse
4 674.	. 53	o_	Н	н	н	—CH₂—	Idem	Base F_K 76° (éther isopropylique) Chl ⁿ F_K 129° (acétone)
4 639.	. 54	C ₆ H ₅ -CH ₂ -O-	н.	Н	н	—C(CH ₃) ₂ —	Idem	Base huileuse Fumarate acide F _k 108° (acétone)
4 526.	. 55	CH ₃ —CO	н	н	н	—СН ₂ —	Idem	Base huileuse Chl ^{te} F _K 202° (EtOH 95 %)
4 571 .	. 56	Н	CH ₃ -CO-	н	H	СH _z	Idem.	Base huileuse Chl ^{te} F _k 152º (acé- tone)
4 527.	. 57	CH ₃ —CH ₂ —CO—	H	н	н	—СН_—	Idem	Base huileuse Chl ¹⁶ F _K 197 ^o (EtOH à 95 %)
4 406.	. 58	O₂N	H	Н .	н	—CH ₂ —	Idem	Base F _K 118° (EtOH) Chl ¹⁰ F _K 228° (EtOH) à 25 % eau
4 415.	59	H₂N	н	н	н	CH ₂	Idem	Base F _R 66° (éther isopropylique) Dichl' 1H ₂ O F 230°
4 552.	60	H2NO2S—	н	H .	н	-CH _z -	Idem	Base F _k 170° (acétate d'éthyle)
(*) 0	hlte (Chlo	rhydrate).					· .	-

Dans les exemples suivants, qui sont donnés à titre indicatif, les points de fusion ont été mesurés, sauf mention spéciale, au banc de Kofler (F_K) , sinon au tube capillaire sans être corrigés (F_c) . Les produits décrits (sels et bases) ont été soumis à l'analyse élémentaire de tous leurs éléments. Dans tous les cas, les valeurs trouvées ont été en concordance avec les formules données.

Préparation des acides carboxyliques figurant au tableau I :

Exemple 1. - Acide (pentyloxy-4 phénoxy)

acétique (composé D):

A une solution de 12,6 g de pentyloxy-4 phénol dans 60 ml d'acétone, on ajoute 19 g de carbonate de potassium pulvérisé et 13,5 g de bromacétate d'éthyle et on chauffe à reflux avec agitation pendant 6 heures. L'opération terminée, on essore le précipité minéral, on évapore à fond le filtrat et on traite le résidu avec de l'eau et de l'éther. On sépare la phase éthérée, on la lave avec une solution diluée de soude puis avec de l'eau et on la sèche sur sulfate de sodium. On évapore le solvant et on distille le résidu à 180-185° (température du bain de chauffage) sous 0,1 mm. On recueille ainsi l'ester éthylique de l'acide pentyloxy-4 phénoxy-acétique.

A 16 g de cet ester, on ajoute 50 ml d'éthanol et la solution de 6,8 g de potasse dans 120 ml d'eau puis on chauffe à reflux pendant 2 heures. L'opération terminée, on évapore le solvant, on dilue avec de l'eau et on acidifie la solution aqueuse ainsi formée avec une quantité suffisante d'acide chlorhydrique. L'acide pentyloxy-4 phénoxyacétique précipite à l'état cristallin. Il est recristallisé dans de l'éther isopropylique $F_c = 115^{\circ}$.

Les acides A et G du tableau I peuvent être préparés par la même technique. Toutefois pour le composé G on remplace le bromacétate d'éthyle par l'a-bromo phénylacétate d'éthyle en quantité équimoléculaire. Les autres acides peuvent être préparés par la technique dont un exemple est donné ci-dessous.

Exemple 2. — Acide (butoxy-4 phénoxy) iso-

butyrique (composé C).

À une solution de 16,6 g de butoxy-4 phénol dans 125 ml d'acétone, on ajoute, en refroidissant à la température ambiante, 24 g de soude pulvérisée puis, en maintenant la température intérieure du mélange entre 18 et 20°, 18 g de chloroforme. L'addition du chloroforme qui provoque une réaction exothermique demande 1 heure 30 minutes. Lorsque le dégagement de chaleur est terminé, on chauffe à reflux pendant 4 heures, tout en continuant d'agiter. On évapore ensuite le solvant, on traite le résidu avec de l'eau, on extrait la partie insoluble avec de l'éther, on sépare la couche aqueuse et on l'acidifie avec de l'acide chlorhydrique, ce qui pré-

cipite l'acide cherché à l'état brut. Pour purifier ce produit on le dissout dans de l'éther et on extrait l'acide purifié par une solution de carbonate de potassium. On sépare la phase aqueuse et on l'acidifie avec de l'acide chlorhydrique. On essore et on recristallise dans l'éther de pétrole. F_c=76°.

Les chlorures d'acide peuvent être préparés en particulier par action du chlorure de thionyle sur les acides carboxylique. Un exemple

est donné ci-dessous.

Exemple 3. — Chlorure de l'acide (butoxy-4

phénoxy) isobutyrique.

On chauffe à reflux, pendant 2 heures, I2 g d'acide (butoxy-4 phénoxy) isobutyrique dans 30 ml de benzène avec 7,2 g de chlorure de thionyle. L'opération terminée, on évapore le solvant au bain-marie sous le vide de la trompe à eau et on distille le résidu vers 145° (température du bain de chauffage) sous 0,1 mm.

Préparation des produits du tableau II:

La réaction des chlorures d'acides avec les p-amino benzoates de dialkylamino alkyle (notamment le p-amino benzoate de diéthylamino-2 éthyle ou procaîne-base) est réalisé au mieux dans l'acétone (composé 51). Toutefois, d'autres solvants peuvent aussi être utilisés; ainsi un exemple est donné où on utilise le benzène (composé 3).

Exemple 4. — [(cyclopentyloxy-4 phénoxy) isobutyryl amino]-4 benzoate de (diéthylamino-2

éthyle) (composé 51 ou 4636 CB).

A une solution de 10,3 g de chlorure de (cyclopentyloxy-4 phénoxy) acétyle dans 60 ml d'acétone, on ajoute 8,6 g de procaine-base dissoute dans 40 ml d'acétone. La réaction se marque par une élévation de température qui amène le solvant au voisinage de l'ébullition. En revenant à la température ambiante, la solution abandonne 11 g de cristaux blancs. F_c=134°. Recristallisés dans l'acétone, les cristaux fondent à 134-135°; ils sont constitués par le chlorhydrate du composé 4636 CB.

Pour préparer la base correspondante, on dissout le chlorhydrate dans l'eau, puis on ajoute de l'éther et la quantité suffisante d'une solution aqueuse de carbonate de sodium. Après séchage de la solution éthérée sur du sulfate de sodium et évaporation du solvant, on obtient un produit blanc cristallin que l'on peut facilement recristalliser dans de l'éther isopropylique. On obtient ainsi la base $(F_K=104-105^\circ)$.

Exemple 5. — [(chloro-4 phénoxy) acétylamino]-4 benzoate de (diéthylamino-2 éthyle)

(composé 3 ou 2842 CB).

A une solution de 4,9 g de chlorure de chloro-4 phénoxy acétyle dans 10 ml de benzène, on ajoute 5,6 g de procaïne-base dissoute dans 70 ml de benzène. La réaction porte le benzène à l'ébullition. Par refroidissement le chlorhydrate du composé 2842 CB cristallise.

On le recristallise dans de l'alcool éthylique à 96 %. On en recueille 9,5 g. F_c=172°.

La base correspondante, préparée comme il est indiqué dans l'exemple précédent, fond à 131°

après cristallisation dans l'éthanol.

Tous les composés énumérés dans le tableau II (à l'exception du composé 59) sont préparés suivant la technique donnée ci-dessus pour le composé 51. Dans chaque cas on utilise le chlorure d'acide convenable que l'on met en réaction avec la procaïne-base sauf pour les composés 7, 8, 9, 10 et 11 où l'on remplace la procaïne-base respectivement par les para-amino benzoates de :

di-isopropylamino-2 éthyle (composé 7); diméthylamino-3 propyle (composé 8); diméthylamino-2-méthyl-1 éthyle (composé 9); pipéridino-2 éthyle (composé 10); morpholino-2 éthyle (composé 11).

A titre indicatif, on présente dans ce qui suit quatre exemples (6 à 9) illustrant la technique déjà utilisée dans l'exemple 4.

Exemple 6. — [(chloro-4 phénoxy)-2 butyrylamino]-4 benzoate de (diéthylamino-2 éthyle)

(composé 5 ou 4409 CB).

A une solution de 22,4 g de chlorure de (chloro-4 phénoxy)-2 butyryle dans 135 ml d'acétone, on ajoute une solution de 23 g de procaïnebase dans 115 ml d'acétone. La réaction est exothermique. Après quelques minutes, on évapore sous vide et on décompose le résidu qui est constitué par du chlorhydrate du composé 4409 CB, se présentant à l'état huileux. On opère pour cela-comme il est indiqué plus haut dans l'exemple 4. On obtient ainsi la base à l'état huileux; on la met en solution dans l'acétone et on la traite par la quantité équimoléculaire d'acide oxalique. On obtient 48 g d'oxalate acide que l'on recristallise dans l'éthanol à 90 %.

Exemple 7. — [(dichloro-2.4 phénoxy) acétylamino]-4 benzoate de (diéthylamino-2 éthyle) (composé 12 ou 4407 CB).

A une solution de 35,3 g de dichloro-2.4 phénol dans 200 ml d'acétone, on ajoute une solution de 34,7 g de procaîne-base dans 170 ml d'acétone. Il se forme le chlorhydrate du composé 4407 CB que l'on essore après refroidissement et que l'on recristallise dans du méthanol. On en recueille 61,5 g. F_K=178°.

On prépare la base correspondante à partir de son chlorhydrate suivant la technique indiquée dans l'exemple 4. $F_{\kappa}=130^{\circ}$ (éthanol).

Exemple 8. — [(chloro-4 méthyl-2 phénoxy) isobutyrylamino]-4 benzoate de (diéthylamino-2

éthyle) (composé 24 ou 4553 CB).

À une solution de 35,1 g de chlorure de (chloro-4 méthyl-2 phénoxy) isobutyryle dans 200 ml d'acétone, on ajoute 33,5 g de procaïnebase dissoute dans 170 ml d'acétone. La réaction est exothermique, mais par refroidissement, il

n'est pas possible, même après concentration, d'obtenir le chlorhydrate de 4553 CB à l'état cristallin.

On prépare la base suivant la technique indiquée_dans_l'exemple_4. Elle_se_présente_sous_la forme d'une huile que l'on traite en solution dans l'acétone par la quantité demi-moléculaire d'acide fumarique. Le fumarate neutre cristallise lentement. On l'essore. $F_K=133^{\circ}$. On le recristallise dans l'éthanol absolu à la suite de quoi il ne change pas de point de fusion.

Exemple 9. — [(allyloxy-4 phénoxy) isobuty-rylamino]-4 benzoate de (diéthlyamino-2 éthyle)

(composé 42 ou 4637 CB).

A une solution de 12 g de chlorure d'(allyloxy-4 phénoxy) isobutyryle dans 75 ml d'acétone, on ajoute 10,8 g de procaïne-base dissoute dans 50 ml d'acétone. Après réaction, on évapore le solvant et on décompose le chlorhydrate, comme il est indiqué dans l'exemple 4, puis on dissout la base ainsi obtenue dans de l'acétone, et on la traite par la quantité stoechiométrique d'acide fumarique. Il se forme 22 g de fumarate acide $(F_{\kappa}=142^{\circ})$ que l'on recristallise dans l'éthanol; il ne subit pas de changement de point de fusion.

La préparation du composé 59 ou 4415 CB peut se faire d'après la technique spéciale repro-

duite ci-dessous.

Exemple 10. — [(amino-4 phénoxy) acétylamino]-4 benzoate de (diéthylamino-2 éthyle)

(composé 59 ou 4415 CB).

A une solution de 13,7 g de composé 58 ou 4406 CB dans 300 ml d'éthanol, on ajoute 2 g de charbon palladié (à 5 % de Pd) et on agite, en atmosphère d'hydrogène provenant d'un gazomètre, sous la pression ambiante, jusqu'à la fin d'absorption de l'hydrogène. L'absorption théorique est obtenue en 25 minutes. On sépare le catalyseur, on évapore le solvant, on dissout l'huile résiduaire dans de l'éther et on ajoute la quantité suffisante d'une solution de gaz chlorhydrique dans de l'éther pour que le dichlorhydrate précipite. On essore et on recristallise dans de l'alcool éthylique (7,2 g); le rendement en dichlorhydrate monohydraté est de 45 %. $F_c = 230^{\circ}$.

Pour obtenir la base, on décompose le chlorhydrate en solution aqueuse comme il est indiqué dans l'exemple 4. La base pure fond à 66° après cristallisation dans l'éther isopropylique.

Les produits mentionnés dans le tableau II ont été soumis à différentes épreuves qui sont décrites ci-dessous. En l'occurrence ils ont été utilisés généralement sous la forme de sels ou, à défaut, sous forme de base, quand celle-ci, seule a été isolée :

1° Action sur la teneur, en acides gras totaux, du foie du rat blanc, soumis à un régime carencé en protéïnes.

Des rats mâles adultes de 150-200 g sont soumis à un régime pauvre en protéïnes, ayant la composition suivante (Tucker H., Eckstein H.C., Journal of Biological Chemistry, 1937, 121, 479):

*		g
Pour 100 g :		
	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	
Saindoux	• • • • • • • • • • • • • • • • • • • •	40
Cystine		0,5

Ce régime détermine, en 15 jours, une stéatose hépatique importante, le taux des acides gras totaux pouvant augmenter de plus de 100 pour 100 par rapport aux témoins recevant un régime normal.

Une partie des animaux soumis à un tel régime est traitée dès le début de l'essai avec un des nouveaux composés à la dose quotidienne de 0,5 millimol/kg, administrée par voie buccale (gavage).

Le 15° jour de l'expérience, les animaux sont sacrifiés et le taux des acides gras totaux du foie est déterminé par la méthode colorimétrique de Duncomb (Clinica Chimica Acta, 1964, 9, 122), cela après hydrolyse alcaline et extraction par la méthode de Dole, Journal of Clinical Investigation, 1956, 35, 150.

Les résultats sont exprimés en valeur relative de la teneur du foie du rat en acides gras totaux.

Par définition la valeur obtenue chez les animaux témoins recevant un régime normal est prise comme étant égale à 0 et celle qui est obtenue chez les rats recevant le régime carencé en protéines, sans traitement, à +100.

Les résultats sont répertoriés dans le tableau IV.

 -2°- Action sur le métabolisme-d'Aspergillus-Niger (Sterigmatocystis Nigra SN 315).

L'influence des produits sur le métabolisme général d'un organisme en pléthore alimentaire a été étudié avec Aspergillus Niger (Sterigmatocystis Nigra SN 315). Cette moisissure, cultivée sur un milieu très riche en glucides, synthétise une quantité accrue de lipides de réserve et devient productrice d'éthanol exogène. Les substances à essayer sont introduites à différentes concentrations dans les milieux de culture et les poids des récoltes obtenues sont comparés à ceux des mycéliums cultivés sur un milieu identique sans autre adjonction.

On compare aussi la production d'éthanol, ainsi que d'acide &céto glutarique et d'acide pyruvique accumulés dans les milieux.

A. Conditions de culture. — Milieu de culture.

Chaque milieu est constitué par 40 ml d'une solution contenant, par litre :

	g
Glucose Nitrate d'ammonium Chlorure de potassium Sulfate de magnésium, 7H ₂ O Phosphate monopotassique SO ₄ Fe 7H ₂ O SO ₄ Zn 7H ₂ O SO ₄ Cu 5H ₂ O SO ₅ Mn 1H ₂ O Molybdate d'ammonium, 4H ₂ O	150 3 0,5 0,5 1,0 0,01112 0,01150 0,00125 0,000845 0,000353

On effectue les essais en introduisant, dans les milieux, les substances à essayer à 4 concentrations différentes (10^{-3} M, 5×10^{-4} M, 5×10^{-5} M, 5×10^{-6} M).

Tous les milieux sont stérilisés à l'autoclave à 110° pendant 20 minutes.

Ensemencement:

La moisissure A. Niger est entretenu sur tube de carotte. Les spores sont récoltées dans un milieu intermédiaire d'eau stérile et les milieux de culture sont ensemencés par introduction d'une partie aliquote de ce milieu intermédiaire.

Culture:

La culture est effectuée dans les fioles de . 150 ml à embouchure étroite pendant 70 heures à 34-35°C.

Récolte :

Les milieux sont filtrés sur mousseline et les mycéliums sont rincés à l'eau distillée puis essorés avant qu'on en détermine l'extrait sec total. Le milieu et les eaux de lavage sont ajustés à 100 ml à l'aide d'eau distillée, la solution obtenue servant au dosage de l'éthanol et des acides α-céto glutarique et pyruvique.

B. Méthodes de dosage.

Extraits secs : . _ _

Les mycéliums sont finement pulvérisés puis mis à l'étuve à 105° jusqu'à poids constant (environ 7 heures).

Ethanol

Après distillation, l'éthanol est dosé par oxydation à l'aide du réactif nitro-chromique.

Acides a-céto glutarique et pyruvique :

Ces acides sont transformés quantitativement en leurs 2,4-di-nitrophényl hydrazones. Celles-ci sont séparées par chromatographie en couche mince de silice (solvant de développement : n-butanol saturé d'ammoniaque 0,5 N). L'intensité des taches obtenues à partir de différentes dilutions des milieux est comparée à celle des taches données par différentes quantités de solutions témoins de DNPH d'acide \(\alpha\)-céto glutarique et d'acide pyruvique (Rf respectifs voisins de 0,10 à 0,35).

C. Expression des résultats.

Tous les essais sont réalisés en triple pour chaque concentration d'une substance à essayer. La moyenne des résultats fournis par ces 3 essais est comparée à la moyenne des résultats donnés par 6 témoins cultivés d'une façon identique, cette moyenne étant ramenée dans tous les cas à 100.

Les variations relatives à l'intérieur d'une même série (les 3 essais ou les 6 témoins) sont de l'ordre de :

± 2 % en ce qui concerne les extraits; ± 5 % pour l'éthanol;

± 10 % pour les acides cétoniques.

Les résultats sont répertoriés dans le ta-

Extrait sec = Ext sec; éthanol = EtOH; acide α céto glutarique = α-céto; acide pyruvique =

Pouvoir activateur sur la respiration de produits d'homogénisation de cerveaux de rats.

L'étude a été effectuée avec le composé 2842 CB ou composé 3 comparativement à la procaine. La technique employée est celle de Warburg.-Les-cerveaux-de-rats-blancs-ont-été broyés au potter et dilués dans du liquide de Ringer.

Le tableau ci-dessous indique les résultats obtenus exprimés en pour-cents d'augmentation de la glycolyse aérobie par rapport à une période témoin, en fonction de la concentration des produits dans le produit d'homogénéisation de cerveau de rat :

TABLEAU III

Concentrations moléculaires composé	5.10-5	5.10-6	5.10-7
Procaïne	+ 2	+ 5	+ 5
2 842 CB (composé 3)	+ 33	+ 25	+ 10

TABLE AU IV

N°	Acide gras foie rat	Asp. Nig	10-3 M	5 × 10-4 M	5 × 10-5 M	5 × 10-6 M
4 404 ou 1	+ 108	Ext. sec EtOH a-céto pyr.				
4513 ou 2	+ 44	Ext. sec EtOH α-céto pyr.			1	
2842 ou 3	+ 43	Ext. sec EtOH a-céto pyr.	75 50 170 1 350	76 73 420 100	105 100 85 100	105 100 40 100
4408 ou 4:	0.	Ext. sec EtOH α-céto pyr.	54 160 185 100	62 210 215 100	100 150 65 600	100 140 90 450
4409 ou 5	— 15	Ext. sec EtOH α-céto pyr.	60 85 140 180	66 130 140 120	100 110 110 100	103 100 70 100
4438 ou 6	+ 4	Ext. sec EtOH α-céto pyr.	.55 120 120 360	70 180 130 270	100 140 110 100	105 80 70 100
4410 ou 7	+ 52	· • <u>-</u>	~·.		_	<u> </u>
4411 ou 8	+ 55	· "	·		·	
4412 ou 9	+ 100	*****	. —		_	
4413 ou 10	+ 40	_	_	·		· _
4 414 ou 11	· + 35					
4 407 ou 12	- 28	Ext. sec EtOH α-céto pyr.	47 125 140 - 200	68 160 180 150	92 130 160 100	100 120 120 100

						002.193]
N°	Acide gras foie rat	Asp. Nig	10-3 M	5 × 10-4 M	5 × 10-5 · M	5 × 10-6 M
4 485 ou 13	+ 5 toxique	Ext. sec EtOH a-céto pyr.	< 1 0 30 200	42 40 120 100	100 115 90 70	105 80 60 45
4 484 ou 14	+ 19	Ext. sec EtOH a-céto pyr.	< 1 0 30 170	60 63 135 140	95 60 73 140	104 91 90 110
4 499 ou 15	+. 1	Ext. sec EtOH α-céto pyr.	< 1 0 20 420	< 1 0 20 310	100 80 30 400	100 100 60 600
4 517 ou 16	_ ,	Ext. sec EtOH a-céto pyr.	1 0 40 100	7 20 40 100	93 100 120 100	100 100 100 100
4 497 ou 17	+ 10	Ext. sec EtOH α-céto pyr.	53 - 135 120 - 250	62 100 120 170	100 100 100 140	100 100 100 170
4 565 ou 18	+ 74	Ext. sec EtOH α-ceto pyr.	65 110 175 100	75 150 175 100	95 150 65 50	103 105 65 0
2 886 ou 19	_		_	· _		
2 841 ou 20		_	-	-	_	- -
2 885 ou 21		 :	_			
4 486 ou 22	- 6	Ext. sec EtOH α-céto pyr.	80 115 150 280	85 110 120 170	100 125 90 225	100 100 90 100
4 498 ou 23	+ 20	Ext. sec EtOH α-ceto pyr.	< 0 0 55 450	45 65 110 300	100 85 . 75 100	100 105 85 100
4 553 ou 24	— 3	Ext. sec EtOH a-céto pyr.	5 0 70 200	58 52 130 150	98 84 100 100	102 93 100 100
4 531 ou 25	+ 62 -	Ext. sec EtOH a-céto pyr.	< 1 0 10	26 55 130	94 140 130	97 105 75
A 621 ou 26	+ 23	Ext. sec EtOH a-céto pyr.	< 1 . 0 . 20 200	< 1 0 20 200	97 100 60 100	100 82 60 100
4 623 ou 27	+ 12	Ext. sec EtOH a-céto pyr.	43 64 120 200	50 95 150 160	97 95 60 130	103 70 60 100
4 521 ou 28	+ 8	Ext. sec EtOH α-céto pyr.	< 1 0 20 100	< 1 0 20 100	92 110 70 100	100 110 70 100
4 518 ou 29	+ 22	Ext. sec EtOH α-céto pyr.	< 1 0 15 200	< 1 0 15 150	85 190 100 100	98 115 70 100

[1.552.175]		**	1			
N°	Acide gras foie rat	Asp. Nig	10-3 M	5 × 10-4 M	5 × 10-5 M	5 × 10-6 M
-4-(21-2-20-	ii)	Ext. sec	< 1	< 1	96	100
4 624 ou - 30	-	EtOH α-céto pyr.	0 35 160	0 35 160	85 90 100	100 60 65
4 622 ou 31	+ 46	Ext. sec EtOH	< 1 0 30 200	< 1 0 30 200	97 70 80 130	100 65 80 100
4 620 ou 32	(Ext. sec EtOH a-céto pyr.	6 14 65 160	28 33 40 160	85 85 120 130	100 75 120 100
4 512 ou 33	+ 90	Ext. sec EtOH a-céto pyr.				
4 405 ou 34	- 1	Ext. sec EtOH	100 115 200 100	100 100 170 0	100 115 85 0	100 85 85 0
4 510 ou 35	+ 55	Ext. sec EtOH a-céto pyr.				
4511 ou 36	+ 18	Ext. sec EtOH α-céto pyr.	85 215 210 0	92 150 <u>1</u> 70 0	105 86 130	100 76 100 0
4 509 ou 37	+ 53	Ext. sec EtOH a-céto pyr.	87 150 210 25	95 185 160 0	106 80 115 0	103 65 115 0
4 628 Ou 38	+ 24	Ext. sec EtOH	56 75 100 0	81 78 100 0	100 85 100 0	100 100 75 0
4 630 ou 39	+ 23	Ext. sec EtOH α-céto pyr.	0 0 0 0	23 15 65 0	87 92 50 0	100 87 50 0
4 519 ou 40	+ 60	Ext. sec EtOH a-ceto pyr.	98 85 120 0	98 94 100 0	104 80 80 0	102 70 40 0
4 638 ou 41	— 10	Ext. sec EtOH a-céto pyr.	84 72 130 90	84 87 130 90	96 120 90 90	110 75 90 90
4 637 ou 42	— 8	Ext. sec EtOH a-céto pyr.	80 60 55 130	94 70 55 130	92 120 90 130	100 94 90 90
4 629 ou 43	+ . 21	Ext. sec EtOH a-céto pyr.	83 45 70 0	93 60 50 0	104 74 50 0	95 116 50 0
4 522 ou 44	+ 16	Ext. sec EtOH a-céto pyr.	< 1 0 50 200	49 100 160 130	98 100 100 100	100 115 100 100

						ſī.	552.793]
. И.	Acide foie	gras rat	Asp. Nig	10-3 M	5 × 10-4 M	5 × 10-5 M	5 × 10-6 . M .
4 564 ou 45	+	63	Ext. sec EtOH a-céto pyr.	0 0 0	35 66 70 _. 0	84 160 70 0	100 100 70 0
4 627 ou 46	.+	38	Ext. sec EtOH a-céto pyr.	< 1 0 25 160	< 1 0 25 160	100 66 44 100	100 87 64 100
4 613 ou 47	-		Ext. sec EtOH α-céto pyr.	< 1 0 30 550	< 1 : 0 30 450	96 77 140 270	92 110 140 180
4 614 ou 48			Ext. sec EtOH a-céto pyr.	< 1 0 30 450	< 1 0 30 350	89 73 100 270	89 120 100 180
4 615 ou 49	<u>-</u>		Ext. sec EtOH α-céto pyr.	< 1 0 30 450	< 1 0 30 350	62 72 100 270	88 105 100 180
4 636 ou 51	_	12	Ext. sec EtOH α-céto pyr.	0 0 0	2 0 0 0	79 107 -75 0	97 100 75 0
4 639 ou 54	+	8	Ext. sec EtOH a-céto pyr.	0 0 0	0 0 0	80 94 90 50	92 92 90 50
4 526 ou 55	+.1	141	Ext. sec EtOH α-céto pyr.	85 170 270 300	94 110 180 270	105 93 90 200	105° - 55 130 200
4 571 ou 56	+	51		·			
4 527 ou 57	+ 1		Ext. sec EtOH a-céto pyr.	91 108 180 130	95 100 180 200	98 87 90 0	103 78 90 0
4 406 ou 58	+_	46	Ext. sec EtOH α-céto pyr.				
4 415 ou 59	+	51	Ext. sec EtOH α-céto pyr.	·			
4 552 ou 60	+ 1	50	Ext. sec EtOH a-céto pyr.				

A titre d'exemple et sans que cela soit limitatif, les substances décrites dans la présente demande, en particulier les composés 3 ou 2842 CB, 6 ou 4438 CB, 24 ou 4553 CB, 32 ou 4620 CB, 49 ou 4615 CB et 51 ou 4636 CB peuvent être employés du point de vue thérapeutique dans les états pathologiques en relation avec le métabolisme des lipides.

Il peut notamment être intéressant d'utiliser ces substances dans :

Les états d'hyperlipémie tels qu'hypercholestérolémie alimentaire, idiopathique familiale et hypertriglycéridémie;

Les surcharges tissulaires en lipides telles que dyslipémie athéromateuse, obésité, stéatose hépatique, xanthomatoses tendineuses, tubéreuses. En général, la posologie peut varier d 10 à 1500 mg par jour, l'administration pouvant s'effectuer en comprimés, suppositoires, préparations pour applications locales, ampoules buvables et injectables.

Il est bien entendu que le présent brevet ne couvre pas les applications thérapeutiques des produits obtenus.

RÉSUMÉ

La présente invention concerne notamment : l° Les acides phénoxy acétiques répondant à la formule générale :

$$A_1$$
— A_3 — X — C — OH

dans laquelle les symboles ont les significations suivantes :

A,	.A ₂	A ₃
Ci (H ₃ C) ₂ CH—0 n—C ₄ H ₃ —0 n—C ₅ H ₃₁ —0 Idem Idem n—C ₆ H ₁₃ —0	Cl H Id. Id. Id. Id. Id.	CH(C ₆ H ₅) C(CH ₃) ₂ Id. CH ₂ CH(C ₂ H ₅) C(CH ₃) ₂ CH ₂
	- Id .	C(CH ₃) ₂
CH ₂ —O	Id.	Id.

2° Les phénoxy acétamides basiques qui répondent à la formule générale :

où R₁, R₂, R₃ et R₄ représentent chacun un atome d'hydrogène ou d'halogène, en particulier le chlore, un radical trifluorométhyle, un radical alkyle inférieur ramifié ou non, éventuellement non saturé, un radical phényl-alkyle ou phényle, un radical hydroxy libre ou éthérifié lui-même par un radical alkyyle ramifié ou non, éventuellement non saturé ou encore éthérifié par un radical cyclo-alkyle, phényl-alkyle ou phényle, un radical acyle inférieur, ou un groupement nitro, amino ou sulfamoyle;

X représente un méthylène pouvant éventuellement porter un ou deux substituants du groupe constitué par les radicaux alkyles inférieurs, éventuellement ramifiés, et le radical phényle;

Y désigne un radical dialkylamino alkyle où les deux alkyles liés à l'atome d'azote sont des alkyles inférieurs droits ou ramifiés, pouvant éventuellement être unis en un cycle comprenant ou non un deuxième hétéro-atome tel que l'oxygène et où le radical alkyle lié à l'atome d'oxygène comporte une chaîne linéaire ou ramifiée de deux ou trois atomes de carbone, Y désignant, de préférence, le radical diéthylamino éthyle qui figure dans la molécule de la procaïne, à l'exclusion des valeurs suivantes :

$$R_1 = Cl; R_2 = R_3 = R_4 = H; X = -C(CH_3)_2 - C_2H_5$$

 $Y = CH_2 - CH_2 - N < C_2H_5$

ainsi que les sels de ces phénoxy acétamides basiques.

3° La préparation des phénoxy acétamides définies sous 2° et de leurs sels par application des méthodes générales connues de synthèse d'amide, en particulier la préparation de leurs chlorhydrates par réaction des chlorures d'acides répondant à la formule :

$$\begin{matrix} R_4 & O - X - C - C \\ \parallel & 0 \\ R_1 & R_2 \end{matrix}$$

(dans laquelle R₁, R₂, R₃, R₄ et X ont les significations indiquées plus haut) avec la procaîne ou un composé analogue défini par la formule ci-après:

$$H_2N$$

où Y a la signification mentionnée plus haut.

4° Des modes d'exécution du procédé énoncé sous 3°, présentant les particularités suivantes prises séparément ou selon les diverses combinaisons possibles :

a. On conduit la réaction dans un diluant anhydre et inerte à l'égard du réactif, en particulier un hydrocarbure tel que le benzène ou une cétone telle que l'acétone;

- b. On effectue la réaction à une température qui peut aller de la température ambiante à la température d'ébullition du diluant spécifié sous a;
- c. On décompose le chlorhydrate obtenu, en solution aqueuse, par un agent alcalin tel que le carbonate de sodium et on extrait la base ainsi libérée, par exemple au moyen d'éther éthylique ou d'acétate d'éthyle puis, le cas échéant, on la
- transforme en un sel pour, éventuellement, la régénérer ensuite;
- d. Dans le cas où l'un des symboles R₁, R₂, R₃, R₄ désigne NO₂, n réduit le composé nitré correspondant.

Société anonyme dite : ÉTABLISSEMENTS CLIN-BYLA

Par procuration:

J. Casanova (Cabinet Armengaud jeune)

THIS PAGE BLANK (USPTO)