최량공액분해로대추적문제를 풀기 위한 분할 브레그만방법의 수렴성

최 철 국

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《새로운 과학기술분야를 개척하기 위한 사업도 전망성있게 밀고나가야 합니다.》 (《김정일선집》 중보판 제11권 138폐지)

이 론문에서는 프레임에 관하여 성긴 표현을 가지는 신호를 회복하는데서 널리 리용되고있는 최량공액분해토대추적문제를 풀기 위한 분할브레그만방법의 수렴성을 증명하였다.

선행연구[2]에서는 최량공액분해토대추적문제를 정식화하고 분할브레그만방법을 리용하여 수치실험을 진행하였으나 수렴성과 관련한 리론적연구는 진행하지 못하였다.

선행연구[1]에서 분할브레그만방법의 수렴성이 증명되였지만 최량공액분해토대추적문 제를 풀기 위한 분할브레그만방법의 수렴성이 나오지 않는다.

우리는 프레임과 그것의 표준공액프레임의 합성연산자의 령공간이 같다는것을 증명하고 그에 기초하여 최량공액부해토대추적문제를 풀기 위한 분할브레그만방법의 수렴성을 증명한다.

1. 문 제 설 정

일반공액프레임에 의하여 성긴 표현을 가지는 신호를 회복하기 위한 일반공액분해토 대추적문제는 다음과 같이 정식화된다.

$$\hat{f} = \underset{\widetilde{f} \in \mathbb{R}^n}{\arg \min} \| \widetilde{D}^{\mathrm{T}} \widetilde{f} \|_1, \| y - \Phi \widetilde{f} \|_2 \le \varepsilon$$
 (*)

여기서 $D \leftarrow \mathbf{R}^n$ 의 프레임원소들을 렬벡토르로 가지는 $n \times d$ 형행렬 즉 프레임의 합성연산자, $\widetilde{D} \leftarrow D$ 의 임의의 공액프레임의 합성연산자이다.

선행연구[2]에서는 문제 (*)을 풀어서 신호가 일반공액프레임에 의하여 성글게 표현되는 경우 효과적으로 회복할수 있다는것을 리론적으로 밝히고 $\widetilde{D}^T f$ 가 가장 성글게 되는 공액프레임 \widetilde{D} 을 어떻게 선택하는가 하는 문제에 대한 대답으로서 최량공액분해토대추적문제라고 부르는 다음과 같은 최량화문제를 정식화하고 분할브레그만방법을 리용하여 수치실험을 진행하였다.

$$\hat{f} = \underset{f \in \mathbf{R}^{n}, D\widetilde{D}^{\mathsf{T}} = I}{\operatorname{arg\,min}} \| \widetilde{D}^{\mathsf{T}} f \|_{1}, \| \Phi f - y \|_{2} \leq \varepsilon$$

$$\tag{1}$$

여기서 최량화는 신호공간뿐아니라 D의 모든 공액프레임에 관하여 진행된다.

식 (1)을 프레임리론에서 성립하는 몇가지 사실을 리용하여 약간 변형하자.

D에 대한 모든 공액프레임이 다음과 같이 표시된다는것은 프레임리론에서 이미 잘 알려진 사실이다.

$$\widetilde{D} = (DD^{\mathsf{T}})^{-1}D + W^{\mathsf{T}}(I_d - D^{\mathsf{T}}(DD^{\mathsf{T}})^{-1}D) = \overline{D} + W^{\mathsf{T}}P$$
 (2)

여기서 $\overline{D}\equiv (DD^{\mathrm{T}})^{-1}D$ 는 D 의 표준공액프레임의 합성연산자이고 $P\equiv I_d-D^{\mathrm{T}}(DD^{\mathrm{T}})^{-1}D$ 는 D의 령공간에로의 직교사영연산자이며 $W\in\mathbf{R}^{d\times n}$ 은 임의의 행렬이다. 식 (2)를 (1)에 넣으면

$$\hat{f} = \underset{f \in \mathbf{R}^n, \ g \in \mathbf{R}^d}{\operatorname{arg\,min}} \| \overline{D}^{\mathrm{T}} f + Pg \|_{1}, \| \Phi f - y \|_{2} \le \varepsilon$$
(3)

을 얻는다. 여기서 $f \neq 0$ 일 때 $g \equiv Wf$ 는 임의의 d 차원벡토르라는 사실을 리용하였다. 이로부터 식 (1)과 동등한 최량화문제인 식 (3)이 얻어졌다.

선행연구[2]에서는 식 (3)의 풀이를 구하기 위하여 측정오차가 없는 경우의 토대추적문제

$$\min_{f, g} \|\overline{D}^{\mathrm{T}} f + Pg\|_{1}, \ \Phi f = y \tag{4}$$

에 대한 브레그만반복도식을 구성하고 그것을 리용하여 수치실험을 진행하였다.

식 (4)에 브레그만반복을 적용하면 다음식이 얻어진다.

$$\begin{cases} (f^{k+1}, g^{k+1}) = \arg\min_{f, g} \|\overline{D}^{T} f + Pg\|_{1} + \frac{\mu}{2} \|\Phi f - y + c^{k}\|_{2}^{2} \\ c^{k+1} = c^{k} + (\Phi f^{k+1} - y) \end{cases}$$

이제 식 (4)를 다음과 같이 동등한 최량화문제로 바꾸자.

$$\min_{f,g,d} \|d\|_{1} + \frac{\mu}{2} \|\Phi f - y + c^{k}\|_{2}^{2} (d = \overline{D}^{T} f + Pg)$$
 (5)

식 (5)에 브레그만반복을 적용하면 다음과 같은 부분문제가 생긴다.

$$\begin{cases}
(f^{k+1}, d^{k+1}, g^{k+1}) = \underset{f, d, g}{\operatorname{arg\,min}} \|d\|_{1} + \frac{\mu}{2} \|\Phi f - y + c^{k}\|_{2}^{2} + \frac{\lambda}{2} \|\overline{D}^{T} f + Pg - d + b^{k}\|_{2}^{2} \\
b^{k+1} = b^{k} + \delta(\overline{D}^{T} f^{k+1} + Pg^{k+1} - d^{k+1})
\end{cases} (6)$$

식 (6)에서 l_1 부분(1-노름)과 l_2 부분(2-노름)을 분리하였기때문에 이 최소화문제는 각각 f, d, g에 관하여 반복적으로 최소화할수 있다. 이로부터 다음과 같이 식 (4)를 풀기 위한 분할브레그만도식을 쓸수 있다.

$$\begin{cases} f^{k+1} = \arg\min_{f} \frac{\mu}{2} \| \Phi f - y + c^{k} \|_{2}^{2} + \frac{\lambda}{2} \| \overline{D}^{T} f + P g^{k} - d^{k} + b^{k} \|_{2}^{2} \\ g^{k+1} = \arg\min_{g} \frac{\lambda}{2} \| P g + \overline{D}^{T} f^{k+1} - d^{k+1} + b^{k} \|_{2}^{2} \\ b^{k+1} = b^{k} + \delta(\overline{D}^{T} f^{k+1} + P g^{k+1} - d^{k+1}) \\ c^{k+1} = c^{k} + (\Phi f^{k+1} - y) \end{cases}$$

$$(7)$$

선행연구[2]에서는 반복도식 (7)에 기초하여 수치실험을 진행하여 최량공액분해토대 추적문제의 효과성을 밝혔지만 반복도식 (7)이 수렴하겠는가 하는 리론적담보는 주지 못하였다. 물론 분할브레그만방법의 수렴성은 증명[1]되였지만 최량공액분해토대추적문제의 특성으로부터 반복도식 (7)의 수렴성이 자명하게 나오지 않는다.

우리는 론문에서 프레임과 그것의 표준공액프레임의 합성연산자의 령공간이 같다는 것을 증명하고 그에 기초하여 최량공액분해토대추적문제를 풀기 위한 분할브레그만반복 도식 (7)의 수렴성을 증명한다.

2. 최량공액분해로대추적문제를 풀기 위한 분할브레그만방법의 수렴성

먼저 프레임과 그것의 표준공액프레임의 합성연산자의 령공간이 같다는것을 증명하자.

보조정리 D를 \mathbb{R}^n 의 프레임원소들을 렬벡토르로 하는 $n \times d$ 형행렬 즉 프레임의 합성연산자, \overline{D} 를 D의 표준공액프레임의 합성연산자라고 하면 이 두 연산자의 령공간은 일치한다.

증명 Dx = 0 이라고 하자. 표준공액프레임의 합성연산자는 $\overline{D} = (DD^{\mathrm{T}})^{-1}D$ 이므로 $\overline{D}x = (DD^{\mathrm{T}})^{-1}Dx = 0$ 이 나온다.

거꾸로 $\overline{D}x = (DD^{\mathrm{T}})^{-1}Dx = 0$ 이라고 하자. DD^{T} 를 량변에 작용하면 Dx = 0 이 나온다. 즉 프레임의 합성연산자와 그것의 표준공액프레임의 합성연산자의 령공간은 같다.(증명끝)

따름 D를 \mathbf{R}^n 의 프레임원소들을 렬벡토르로 하는 $n \times d$ 형행렬, P를 D의 령공간으로의 직교사영연산자, \overline{D} 를 D의 표준공액프레임원소들을 렬벡토르로 가지는 행렬이라고하면 다음과 같은 결과가 성립한다.

$$\overline{D}Px = 0, \ \forall x \in \mathbf{R}^d$$

증명 $\overline{D} = (DD^{\mathrm{T}})^{-1}D$ 이고 P 가 D 의 령공간으로의 직교사영연산자이므로 DPx = 0 이 성립하며 따라서 $\overline{D}Px = (DD^{\mathrm{T}})^{-1}DPx = 0$ 이다.(증명끝)

정리 문제 (4)의 풀이가 적어도 하나 존재한다고 하자. 풀이를 f^* , g^* 이라고 하고 $0 < \delta \le 1$, $\lambda > 0$ 이 성립한다고 하자. 그러면 분할브레그만반복 (7)에 대하여 다음과 같은 사실이 성립한다.

$$\lim_{k \to +\infty} \|\Phi f^k - y\|_2 = 0, \quad \lim_{k \to +\infty} \|\overline{D}^T f^k + P g^k\|_1 = \|\overline{D}^T f^* + P g^*\|_1$$
 (8)

더우기 문제 (4)가 유일풀이 f^* , g^* 을 가진다면

$$\boldsymbol{u}^k = \begin{bmatrix} f^k \\ g^k \end{bmatrix}, \ \boldsymbol{u}^* = \begin{bmatrix} f^* \\ g^* \end{bmatrix}$$

이라고 할 때

$$\lim_{k \to \infty} \| \mathbf{u}^k - \mathbf{u}^* \|_2 = 0 \tag{9}$$

이 성립한다.

참 고 문 헌

- [1] J. Cai et al.; SIAM J. Multiscale Model. Simul., 8 337, 2009.
- [2] Y. Liu et al.; http://arxiv.org/abs/1111.4345, 2013.

주체107(2018)년 3월 10일 원고접수

Convergence of Spilt Bregman Method for Optimal-Dual-Based Analysis Basis Pursuit

Choe Chol Guk

In this paper, we proved the convergence of spilt Bregman method for optimal-dual-based analysis basis pursuit.

Key words: Bregman method, compressed sensing, sparse signal