# Vivado软件使用

- 设计输入 采用Verilog HDL描述功能
- 功能仿真 验证设计文件的逻辑功能是否正确
- 用户约束 对I/O引脚位置、时序等附加约束
- 综合 将HDL转换为为门级(逻辑单元)表示的过程

# 实验步骤

•设计实现

包括逻辑优化、映射、布局和布线等过程

• 下载配置

将设计后的设计文件转化成bitstream文件,进行设备控制和通信,控制程序烧写到FPGA芯片中



#### • 流水灯电路

8个发光二极管间隔0.5s轮流发光

设置一个direction开关控制流水灯点亮方向。direction=0时,向右轮流点亮;direction=1时,向左轮流点亮。

设置一个reset按钮,复位时,最右边灯亮。



• Verilog HDL代码,存放在F:\FlowingWaterLight\src下

分频器模块counter\_n.v

计数器模块counter\_up\_down.v

译码器模块decode.v

顶层模块FlowingWaterLight.v

仿真测试代码FlowingWaterLight\_tb.v



• 建立Vivado工程文件,存放在F:\FlowingWaterLight\vivado下,工程名称和路径都不能出现中文和空格,下一步选RTL Project







• 若目标器件为EGO1开发板,对应Artix-7 xc7a35tcsg324-1





• 若目标器件为Basys3开发板,对应Artix-7 xc7a35tcpg236-1





• 加入Verilog HDL源文件和仿真测试文件



•加入4个模块文件





• 加入用于功能仿真的仿真文件





• 设计文件的层次结构



## 功能仿真

- 左侧Flow Navigator窗口下,点击SIMULATION->Run Simulation->Run Behavioral Simulation, Vivado将会打开仿真窗口并运行1000ns
- LED信号改成二进制观察,波形窗口右击led[7:0]信号,在弹出的快捷菜单执行 Radix->Binary 命令。



## 功能仿真

- 在文件层次结构区域中,选中顶层模块FlowingWaterLight\_inst,在Objects中选定pulse2Hz信号,右键选Add to Wave Window加入到波形窗口。
- 执行菜单Run->Restart
- 本次仿真中, 分频器被设置为10分频, 以便于仿真观察
- 执行菜单Run->Run-ALL, 再次仿真
- 若修改了代码,必须执行Run->Relaunch Simulation, Run->Run-ALL



#### 电路代码综合

- 左侧Flow Navigator窗口下,点击SYNTHESIS->Run synthesis,弹出的窗口点OK, Vivado将开始综合。
- 综合完成后选择查看综合结果,在右上角Layout下拉列表选择Debug可查看原理图



• 需要指定FPGA引脚位置和电器标准。因为本例流水灯是时序电路,还需要对主时钟的 周期进行约束。

• 有两种方法可以添加约束文件: 一是在图形界面进行设置; 二是直接新建XDC约束文件,

手动输入约束命令

Basys3引脚约束电器标准均为LVCMOS33

clk信号:系统100MHz主时钟信号

reset信号:中间按键 (BTNC)

direction信号:逻辑开关SW0

led[7:0]信号: LED指示灯

|   | LED  | PIN | CLOCK    | PIN | SWITCH | PIN | BUTTON | PIN | Seven-segment digital tube | PIN |
|---|------|-----|----------|-----|--------|-----|--------|-----|----------------------------|-----|
|   | LD0  | U16 | MRCC     | W5  | SW0    | V17 | BTNU   | T18 | ANO                        | U2  |
|   | LD1  | E19 |          |     | SW1    | V16 | BTNR   | T17 | AN1                        | U4  |
| _ | LD2  | U19 |          |     | SW2    | W16 | BTND   | U17 | AN2                        | V4  |
|   | LD3  | V19 |          |     | SW3    | W17 | BTNL   | W19 | AN3                        | W4  |
| • | LD4  | W18 |          |     | SW4    | W15 | BTNC   | U18 | CA                         | W7  |
|   | LD5  | U15 |          |     | SW5    | V15 |        |     | СВ                         | W6  |
|   | LD6  | U14 |          |     | SW6    | W14 |        |     | CC                         | U8  |
|   | LD7  | V14 |          |     | SW7    | W13 |        |     | CD                         | V8  |
| Ī | LD8  | V13 | USB (J2) | PIN | SW8    | V2  |        |     | CE                         | U5  |
|   | LD9  | V3  | PS2_CLK  | C17 | SW9    | Т3  |        |     | CF                         | V5  |
|   | LD10 | W3  | PS2_DAT  | B17 | SW10   | T2  |        |     | CG                         | U7  |
| Ī | LD11 | U3  |          |     | SW11   | R3  |        |     | DP                         | V7  |
|   | LD12 | P3  |          |     | SW12   | W2  |        |     |                            |     |
|   | LD13 | N3  |          |     | SW13   | U1  |        |     |                            |     |
|   | LD14 | P1  |          | 9   | SW14   | T1  |        |     |                            |     |
|   | LD15 | L1  |          |     | SW15   | R2  |        |     |                            |     |

• EGO1引脚约束 电器标准均为LVCMOS33

clk信号:系统100MHz主时钟信号

reset信号: 复位引脚

direction信号:逻辑开关SW0

led[7:0]信号: LED指示灯

| 名称   | 原理图标号   | FPGA IO PIN |
|------|---------|-------------|
| 时钟引脚 | SYS_CLK | P17         |

| 名称   | 原理图标号      | FPGA IO PIN |  |  |
|------|------------|-------------|--|--|
| 复位引脚 | FPGA_RESET | P15         |  |  |

. . . . . . .

| 名称  | 原理图标号 | F  | PGA IO PIN |
|-----|-------|----|------------|
| SW0 | SW_0  | P5 |            |

| 名称         | 原理图标号                | FPGA IO PIN | 颜色             |
|------------|----------------------|-------------|----------------|
| <b>D</b> 0 | LED0                 | F6          | Green          |
| D1         | LED1                 | G4          | Green          |
| D2         | LED2                 | G3          | Green          |
| D3         | LED3                 | J4          | Green          |
| D4         | LED4                 | H4          | Green          |
| D5         | LED5                 | Ј3          | Green          |
| D6         | LED6                 | J2          | Green          |
| D7         | LED7                 | K2          | Green          |
| D4 D5 D6   | LED4<br>LED5<br>LED6 | H4 J3 J2    | Green<br>Green |



• 完成引脚约束后,点击工具栏的保存按钮,如图窗口输入XDC文件名和保存位置,本例保存在源文件夹src下。

• 完成引脚约束后,在Sources窗口下Constraints中会找到XDC文件



• 时钟约束 (时序电路) 左侧Flow Navigator窗口下,点击SYNTHESIS->Open Synthesis Design -> Constraints->Constraints Wizard,在弹出窗口点Next,设置时钟频率100MHz即可



#### 工程实现

- Implementation是指将综合输出的网表适配到FPGA上
- 左侧Flow Navigator窗口下,点击IMPLEMENTATION->Run Implementation
- 由于约束后没有重新进行综合, Vivado会依次完成综合、实现两个过程。





#### 生成FPGA编程比特流

- Implementation完成后可以直接进行比特流生成工作
- 也可以通过左侧Flow Navigator窗口下,点击PROGRAM AND DEBUG-> Generate Bitstream,在弹出窗口直接点击OK开始生成
- 完成后, 在弹出的界面也可单击取消





## 编程下载

- 用USB线将开发板与计算机的USB接口连接
- 打开开发板电源
- 左侧Flow Navigator窗口下,点击PROGRAM AND DEBUG->Open Hardware Manager



- 在HARDWARE MANAGER窗口单击Open Target,在点击Auto Connect,系统会自动 查找设备。
- 连接完成后,FPGA芯片会出现在Hardware窗口里
- 在HARDWARE MANAGER窗口单击Program device,在弹出窗口中单击Program即可完成下载编程。