Shortest Paths in Weighted Graphs

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 12

 Recall that BFS explores a graph level by level

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, . . .
 - Weighted graph

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Adjacency matrix: record the weight wherever there is an edge, 0 if no edge

- Recall that BFS explores a graph level by level
- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- May assign values to edges
 - Cost, time, distance, ...
 - Weighted graph
- \blacksquare $G = (V, E), W : E \rightarrow \mathbb{R}$
- Adjacency matrix: record the weight wherever there is an edge, 0 if no edge

	0	1	2	3	4	5	6
0	0	10	80	0	0	0	0
1	10	0	6	0	20	0	0
2	80	6	0	70	0	0	0
3	0	0	70	0	0	0	0
4	0	20	0	0	0	50	5
5	0	0	0	0	50	0	10
6	0	0	0	0	5	10	0

Shortest paths in weighted graphs

 BFS computes shortest path, in terms of number of edges, to every reachable vertex

Shortest paths in weighted graphs

- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- In a weighted graph, add up the weights along a path

Shortest paths in weighted graphs

- BFS computes shortest path, in terms of number of edges, to every reachable vertex
- In a weighted graph, add up the weights along a path
- Weighted shortest path need not have minimum number of edges
 - Shortest path from 0 to 2 is via 1

Single source shortest paths

■ Find shortest paths from a fixed vertex to every other vertex

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

All pairs shortest paths

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

All pairs shortest paths

Find shortest paths between every pair of vertices i and j

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

All pairs shortest paths

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities

Negative edge weights

Can negative edge weights be meaningful?

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle
- By repeatedly traversing a negative cycle, total cost keeps decreasing

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle
- By repeatedly traversing a negative cycle, total cost keeps decreasing
- If a graph has a negative cycle, shortest paths are not defined

Negative edge weights

- Can negative edge weights be meaningful?
- Taxi driver trying to head home at the end of the day
 - Roads with few customers, drive empty (positive weight)
 - Roads with many customers, make profit (negative weight)
 - Find a route toward home that minimizes the cost

- A negative cycle is one whose weight is negative
 - Sum of the weights of edges that make up the cycle
- By repeatedly traversing a negative cycle, total cost keeps decreasing
- If a graph has a negative cycle, shortest paths are not defined
- Without negative cycles, we can compute shortest paths even if some weights are negative

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights
- Length of a path is the sum of the weights
 - Shortest path in a weighted graph need not be minimum in terms of number of edges

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights
- Length of a path is the sum of the weights
 - Shortest path in a weighted graph need not be minimum in terms of number of edges
- Different shortest path problems
 - Single source from one designated vertex to all others
 - All-pairs between every pair of vertices

- In a weighted graph, each edge has a cost
 - Entries in adjacency matrix capture edge weights
- Length of a path is the sum of the weights
 - Shortest path in a weighted graph need not be minimum in terms of number of edges
- Different shortest path problems
 - Single source from one designated vertex to all others
 - All-pairs between every pair of vertices
- Negative edge weights
 - Should not have negative cycles
 - Without negative cycles, shortest paths still well defined

