Data Preprocessing Preparación de la información

Karim Pichara B.

PUC Chile

Data Preprocessing

¿Por qué preprocesar los datos?

- **Datos incompletos:** falta de valores en algunos atributos, datos que vienen sólo agregados.
- Datos ruidosos: Errores de ingreso, outliers

Karim Pichara B.

Data Preprocessing

¿Por qué preprocesar los datos?

- Datos inconsistentes: Diferencias en nombres de atributos para distintas áreas de la compañía, diferencias de unidades, codificaciones, mismo registro con distintos nombres en distintas bases de datos, etc.
- Muchos datos: A veces es necesario reducir la información para hacer el análisis

Karim Pichara B. PUC Chile

Análisis descriptivo de los datos

"Data don't make any sense, we will have to resort to statistics."

Karim Pichara B

Análisis descriptivo de los datos

- Objetivo: Tener una visión de algunas características generales de los datos
- Es útil para el análisis inicial de la información.
- Ejemplo de algunas medidas descriptivas iniciales: media, mediana, varianza, etc.

Karim Pichara B

PUC Chile

🧝 Medidas de tendencia Central

• Media aritmética: $\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$

 Media aritmética con pesos (weighted aritmetic mean):

$$\overline{x} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i}$$

 Algunos problemas: Sensibilidad a valores extremos

Karim Pichara B

Medidas de tendencia Central

- Media recortada (trimmed mean): Se excluyen los valores más extremos para el cálculo de la media, ej. Se puede eliminar el 2% más alto y el 2% más bajo de los datos. Valores muy altos de exclusión causan pérdida de información
- •Mediana: Utilizada más en datos asimétricos. Si ordenamos los números en un arreglo de tamaño N, la mediana corresponde al valor central del arreglo si N es impar, y al promedio de los dos valores del centro si N es par.

PUC Chile Karim Pichara B.

🤪 Medidas de tendencia Central

• Moda: Es el valor que tiene más frecuencia en el set de datos.

Karim Pichara B

• Medida holística: Medidas que sólo se pueden obtener computando el set de datos completo como un todo. Ej Mediana, promedio*.

Las medidas holísticas son más caras de computar

Karim Pichara B. PUC Chile

Medidas de Dispersión de los datos

- •Rango: Para un set de datos x_1, x_2, \ldots, x_N (Observaciones de un atributo), corresponde a la Diferencia entre el mayor y el menor valor
- •K-ésimo percentil: Para un set de observaciones ordenadas en forma creciente corresponde al valor para el cual el K% de los datos queda antes que él (la mediana es el 50° percentil).

Karim Pichara B.

100 - quantiles = percentiles

10 - quantiles = deciles

5 – quantiles = quintiles

4 - quantiles = cuartiles

- Ej. De uso de IQR: En detección de outliers, para valores a una distancia mayor a 1.5*IQR por sobre Q3 o bajo Q1.
- Five number summary: Corresponde a la secuencia de los valores Min, Q1, Mediana, Q3, Max

Karim Pichara B.

Boxplots in Python

· Example in python:

import numpy as np import pandas as pd import matplotlib.pyplot as plt

#create some artificial data
s = pd.Series((5, 15, 10, 15, 5, 10, 10, 20, 25, 15))
plt.boxplot(s)
plt.yticks(range(max(s)))
plt.show()

Data Cleaning

- •Datos en el mundo real tienden a ser incompletos, ruidosos e inconsistentes.
- •El proceso de limpieza de datos trata de llenar los valores que faltan, identifica valores erróneos tratando de corregirlos y elimina inconsistencias en la información.

Karim Pichara B.

Datos Faltantes

- Muchas veces un atributo viene vacío
- •Esta situación afecta el proceso de análisis
- Existen varias opciones para solucionar el problema:

Karim Pichara B.

PUC Chile

Datos Faltantes(Cont..)

- •Ignorar la tupla: Método poco efectivo a menos que falten muchos atributos en la misma fila.
 - Problemas cuando faltan valores en pocos atributos (aleatoriamente) pero en muchas tuplas.
- Llenar los valores manualmente: No es practicable cuando el set de datos presenta muchos valores faltantes
- •Usar una cte. Global para llenar los valores: Ej:

"desconocido", "-∞",etc. Trae problemas para algunos algoritmos de data mining que considerarían estos valores como datos válidos y trataría de encontrar patrones para ellos

Karim Pichara B. PUC Chile

Datos Faltantes (Cont..)

- •Usar la media del atributo: Llenar todos los valores faltantes en dicho atributo con el valor de la media para ese atributo. Es poco exacto
- •Usar la media por clases: Igual que el método anterior pero utilizando la media considerando sólo los elementos que corresponden a la misma clase. Ej: Si falta el valor correspondiente al sueldo de un cliente de la clase business, llenarlo con el promedio del sueldo de todos los clientes business.
- •Usar el valor más probable: Este valor puede ser determinado por regresión, herramientas de inferencia, árboles de decisión, etc.

Karim Pichara B. PUC Chile