Reversible logic synthesis and RevKit

Mathias Soeken

Integrated Systems Laboratory, EPFL, Switzerland

Introduction and background

Reversible logic synthesis

Introduction into RevKit

Introduction and background

Reversible logic synthesis

Introduction into RevKi

Quantum computing is getting real

- ▶ 17-qubit quantum computer from IBM based on superconducting qubits (16-qubit version available via cloud service)
- ▶ 9-qubit quantum computer from Google based on superconducting circuits
- ▶ 5-qubit quantum computer at University of Maryland based on ion traps
- Microsoft is investigating topological quantum computers
- ▶ Intel is investigating silicon-based qubits

Quantum computing is getting real

- ▶ 17-qubit quantum computer from IBM based on superconducting qubits (16-qubit version available via cloud service)
- ▶ 9-qubit quantum computer from Google based on superconducting circuits
- ▶ 5-qubit quantum computer at University of Maryland based on ion traps
- Microsoft is investigating topological quantum computers
- ► Intel is investigating silicon-based qubits
- ▶ "Quantum supremacy" experiment may be possible with ≈50 qubits (45-qubit simulation has been performed classically)
- ► Smallest practical problems require ≈100 (logical) qubits

1. Quantum computers process qubits not bits

1. Quantum computers process qubits not bits

- 1. Quantum computers process qubits not bits
- 2. All gubit operations, called quantum gates, must be reversible

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible

- 1. Quantum computers process qubits not bits
- 2. All gubit operations, called quantum gates, must be reversible
- 3. Standard gate library for today's physical quantum computers is non-trivial

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible
- 3. Standard gate library for today's physical quantum computers is non-trivial
- 4. Circuit is not allowed to produce intermediate results, called garbage qubits

Multiple-controlled Toffoli

Multiple-controlled Toffoli

Quantum gates

- Qubit is vector $|\varphi\rangle = \left(\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right)$ with $|\alpha^2| + |\beta^2| = 1$.
- ▶ Classical 0 is $|0\rangle = (\frac{1}{0})$; Classical 1 is $|1\rangle = (\frac{0}{1})$

Quantum gates

- Qubit is vector $|\varphi\rangle = \left(\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right)$ with $|\alpha^2| + |\beta^2| = 1$.
- ▶ Classical 0 is $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; Classical 1 is $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$|\varphi_{1}\rangle \xrightarrow{\bullet} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} |\varphi_{1}\varphi_{2}\rangle$$

$$|\varphi\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} |\varphi\rangle$$

$$|\varphi\rangle \xrightarrow{T} \begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix} |\varphi\rangle$$

CNOT Hadamard

Composing quantum gates

► Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$|\varphi\rangle = \left(\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right) - \boxed{U} - U |\varphi\rangle$$

Composing quantum gates

► Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$|arphi
angle = \left(egin{array}{c} lpha \ eta \end{array}
ight) - \overline{U} - U |arphi
angle$$

Applying quantum gates in sequence (matrix product)

$$|arphi
angle =$$
 ($^{lpha}_{eta}$) $\overline{U_1}$ $\overline{U_2}$ $-$ (U_2U_1) $|arphi
angle$

Composing quantum gates

► Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$|\varphi\rangle = \left(\begin{smallmatrix} \alpha \\ \beta \end{smallmatrix} \right) - U - U |\varphi\rangle$$

Applying quantum gates in sequence (matrix product)

$$|arphi
angle = \left(egin{array}{c}lpha\eta
ight) - \overline{U_1} - \overline{U_2} - \left(U_2U_1
ight)|arphi
angle$$

Applying quantum gates in parallel (Kronecker product)

$$egin{aligned} |arphi_1
angle &= \left(egin{array}{c} lpha_1 \ eta_2
angle &= \left(egin{array}{c} lpha_2 \ eta_2 \end{array}
ight) - \overline{U_2} \ \end{bmatrix} \left(U_1\otimes U_2
ight) |arphi_1arphi_2
angle \end{aligned}$$

Mapping Toffoli gates

Mapping Toffoli gates

Mapping Toffoli gates

 \odot Costs are number of qubits and number of T gates

▶ Open source C++ framework for reversible logic synthesis (since 2009)

- ▶ Open source C++ framework for reversible logic synthesis (since 2009)
- ▶ Implemented as add-on in CirKit, an open source C++ framework for logic synthesis

- ▶ Open source C++ framework for reversible logic synthesis (since 2009)
- ▶ Implemented as add-on in CirKit, an open source C++ framework for logic synthesis
- ▶ Provides command-line interface shell (CLI) and API

- ▶ Open source C++ framework for reversible logic synthesis (since 2009)
- ▶ Implemented as add-on in CirKit, an open source C++ framework for logic synthesis
- Provides command-line interface shell (CLI) and API
- ► CLI allows batch processing and can be used via Python API

- ▶ Open source C++ framework for reversible logic synthesis (since 2009)
- ► Implemented as add-on in CirKit, an open source C++ framework for logic synthesis
- Provides command-line interface shell (CLI) and API
- ► CLI allows batch processing and can be used via Python API
- ► No Python API for C++ API

- ▶ Open source C++ framework for reversible logic synthesis (since 2009)
- ► Implemented as add-on in CirKit, an open source C++ framework for logic synthesis
- Provides command-line interface shell (CLI) and API
- ► CLI allows batch processing and can be used via Python API
- ► No Python API for C++ API
- ▶ Implement core functionality in C++ and expose it via CLI commands

▶ Obtain from Github: github.com/msoeken/cirkit

- ▶ Obtain from Github: github.com/msoeken/cirkit
- ▶ Works smoothly on modern Mac OS and Linux distributions

- ▶ Obtain from Github: github.com/msoeken/cirkit
- ▶ Works smoothly on modern Mac OS and Linux distributions
- ▶ Works on Windows OS using Ubuntu subsystem

- ▶ Obtain from Github: github.com/msoeken/cirkit
- Works smoothly on modern Mac OS and Linux distributions
- ▶ Works on Windows OS using Ubuntu subsystem
- ▶ Install dependencies via package manager (in Mac OS, e.g., brew)

- Obtain from Github: github.com/msoeken/cirkit
- Works smoothly on modern Mac OS and Linux distributions
- ▶ Works on Windows OS using Ubuntu subsystem
- ▶ Install dependencies via package manager (in Mac OS, e.g., brew)
- More details: msoeken.github.io/revkit.html

RevKit [Generalities]

- RevKit is commands plus stores
- ▶ Stores for each relevant data structure: e.g., reversible circuits, reversible truth tables, AND-inverter graphs, binary decision diagrams, . . .
- ► Stores can contain several instances, commands work on current element

```
revkit> read_real -s "t a b c, f b a c"
revkit> store -c
[i] circuits in store:
  * 0: 3 lines, 2 gates
revkit> tof
revkit> ps -c
Lines: 3
Gates: 4
T-count: 14
Logic qubits: 4
revkit> write_liquid file.fs
```

Introduction and background

Reversible logic synthesis

Introduction into RevKi

Reversible logic synthesis

Boolean function
$$\xrightarrow[\text{embedding}]{}$$
 Rev. function $\xrightarrow[\text{synthesis}]{}$ Rev. circuit

- ▶ What is the input representation?
- Is the input representation reversible or irreversible?
- ► Explicit vs. implicit embedding

Reversible logic synthesis

- ▶ What is the input representation?
- Is the input representation reversible or irreversible?
- ► Explicit vs. implicit embedding

Reversible logic synthesis

Boolean function
$$\xrightarrow[\text{embedding}]{\text{optimum}}$$
 Rev. function $\xrightarrow[\text{synthesis}]{\text{ancilla-free}}$ Rev. circuit

- ▶ What is the input representation?
- Is the input representation reversible or irreversible?
- ► Explicit vs. implicit embedding

С	X	y	С	S	
	0	0	0	0	
	0	1	0	1	
	1	0	0	1	
	1	1	1	0	

С	X	У	С	S	X
	0	0	0	0	0
	0	1	0	1	0
	1	0	0	1	1
	1	1	1	0	1

 Add additional outputs to disambiguate duplicate output pattern, preferably inputs

С	X	У	С	5	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1

- ► Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants

С	X	y	С	S	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- ► Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants
- Optional: assign output pattern to new input pattern

С	X	y	С	S	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0			0
1	0	1			0
1	1	0			1
1	1	1			1

- ► Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants
- Optional: assign output pattern to new input pattern

C	X	y	С	S	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	1	1

- ► Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants
- Optional: assign output pattern to new input pattern

С	X	y	С	S	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	1	1

- Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants
- Optional: assign output pattern to new input pattern
- Upper bound: Number of original inputs + number of original outputs (all inputs are preserved)

C	X	y	С	S	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	1	1

- Add additional outputs to disambiguate duplicate output pattern, preferably inputs
- Add additional inputs to match number of outputs, preferably constants
- Optional: assign output pattern to new input pattern
- Upper bound: Number of original inputs + number of original outputs (all inputs are preserved)
- ▶ Computing whether optimum embedding is possible with ℓ additional lines is coNP-hard

Reversible synthesis classification

	line opt.	gate opt.	nonreversible func.	reversible func.
	•	•		SAT-based Enumerative
functional	~	×		Transformation-based Cycle-based Decomposition-based Metaheuristic Greedy
structural	×	×	CESOP-based CESOP-based CESOP-based CESOP-based CESOP-based CESOP-based CESOP-based	

♀ Idea: Solve question "does there exist a reversible circuit realizing f with r gates?" as SAT problem

- **Q** Idea: Solve question "does there exist a reversible circuit realizing f with r gates?" as SAT problem
- ▶ Try solving question starting from r = 0; increase r until solution is found

- ▶ Try solving question starting from r = 0; increase r until solution is found
- ► Solution can be extracted from satisfying SAT assignment

- ▶ Try solving question starting from r = 0; increase r until solution is found
- ► Solution can be extracted from satisfying SAT assignment
- ightharpoonup Only applicable to functions with small number of variables (pprox 7) that require few gates

- ▶ Try solving question starting from r = 0; increase r until solution is found
- ► Solution can be extracted from satisfying SAT assignment
- ▶ Only applicable to functions with small number of variables (\approx 7) that require few gates

RevKit: exs

Reversible synthesis classification

	line opt.	gate opt.	nonreversible func.	reversible func.
	•	•		SAT-based Enumerative
functional	~	×		Transformation-based Cycle-based Decomposition-based Metaheuristic Greedy
structural	×	×	SESOP-based Hierarchical Building block	

x_1	<i>x</i> ₂ <i>x</i> ₃	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
0	000	111
0	01	000
0	10	110
0	11	100
1	.00	010
1	.01	001
1	10	011
1	.11	101

- ► Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

$x_1 x_2 x_3 $ $y_1 y_2 y_3$ 000 111
000 111
001 000
010 110
011 100
100 010
101 001
110 011
111 101

- Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

X	$_{1}x_{2}x_{3}$	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
	000	000
	001	111
	010	001
	011	011
	100	101
	101	110
	110	100
	111	010

- Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

$x_1 x_2 x_3$	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
000	000
001	001
010	111
011	101
100	011
101	110
110	100
111	010

- ► Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

_		
	$x_1x_2x_3$	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
	000	000
	001	001
	010	010
	011	101
ľ	100	110
	101	011
	110	100
	111	111
-		

- Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

$x_1x_2x_3$	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃
000	000
001	001
010	010
011	011
100	100
101	111
110	110
111	101

- ► Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

$x_1 x_2 x_3$	<i>y</i> 1 <i>y</i> 2 <i>y</i> 3
000	000
001	001
010	010
011	011
100	100
101	101
110	110
111	111

- ► Apply gates adjust output pattern with input pattern
- ▶ By visiting input patterns in numeric order, and by only using positive controlled Toffoli gates, it is ensured that no previous patterns are modified

RevKit [Synthesis commands]

	line opt.	gate opt.	nonreversible func.	reversible func.
	~	~		SAT-based exs Enumerative
functional	~	×		Transformation-based tbs, rms, qbs Cycle-based cyclebs Decomposition-based dbs Metaheuristic Greedy
structural	×	×	ESOP-based esopbs Hierarchical cbs, dxs, hdbs, lhrs Building block	

RevKit [Synthesis and formats]

RevKit [File formats]

RevKit [Functional synthesis]

```
revkit> revgen --hwb 6
revkit > ths
revkit > dbs -n
revkit > store -c
[il circuits in store:
     0: 6 lines, 141 gates
  * 1: 6 lines, 89 gates
revkit> rec
[i] circuits are equivalent
revkit> reverse
revkit > concat -n
revkit> store -c
[i] circuits in store:
     0: 6 lines, 141 gates
     1: 6 lines, 89 gates
  * 2: 6 lines, 230 gates
revkit> is_identity
[i] circuit represents the identity function
```


▶ Every reversible function can be decomposed into three reversible sub-functions $T_{f_1}(X \setminus \{x_i\}, x_i)$, F', $T_{f_2}(X \setminus \{x_i\}, x_i)$, where F' is a reversible function that does not change in x_i , for all i

- ▶ Every reversible function can be decomposed into three reversible sub-functions $T_{f_1}(X \setminus \{x_i\}, x_i)$, F', $T_{f_2}(X \setminus \{x_i\}, x_i)$, where F' is a reversible function that does not change in x_i , for all i
- ▶ Recursive application of this procedure on B in order i = 1, 2, ..., n 1, n, yields a reversible circuit with 2n 1 gates, where the targets are aligned in a V-shape

-X ₁	<i>X</i> 2	<i>X</i> 3	<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	0
1	0	0	1	1	1
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	0	0

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3						<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0		0	0	0	0	0
0	0	1	0	1		0	1	0	0	1
0	1	0	1	0		1	0	0	1	0
0	1	1	1	1		1	0	1	1	0
1	0	0	0	0		1	1	1	1	1
1	0	1	0	1		1	1	0	1	1
1	1	0	1	0		0	1	1	0	1
1	1	1	1	1		0	0	1	0	0

x_1	<i>x</i> ₂	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1		0	1		0	1	0	0	
0	1	0		1	0		1	0	0	1	
0	1	1		1	1		1	0	1	1	
1	0	0		0	0		1	1	1	1	
1	0	1		0	1		1	1	0	1	
1	1	0		1	0		0	1	1	0	
1	1	1		1	1		0	0	1	0	

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3							<i>y</i> ₁	<i>y</i> 2	<i>y</i> :
0	0	0	0	0	0		0	0	0	0	C
0	0	1		0	1		0	1	0	0	1
0	1	0		1	0		1	0	0	1	0
0	1	1		1	1		1	0	1	1	0
1	0	0	1	0	0		1	1	1	1	1
1	0	1		0	1		1	1	0	1	1
1	1	0		1	0		0	1	1	0	1
1	1	1		1	1		0	0	1	0	C

-X ₁	<i>X</i> 2	<i>X</i> 3								<i>y</i> ₁	<i>y</i> 2	
0	0	0	0	0	0			0	0	0	0	
0	0	1		0	1			0	1	0	0	
0	1	0		1	0			1	0	0	1	
0	1	1		1	1			1	0	1	1	
1	0	0	1	0	0		1	1	1	1	1	
1	0	1		0	1			1	1	0	1	
1	1	0		1	0			0	1	1	0	
1	1	1		1	1			0	0	1	0	

x_1	<i>x</i> ₂	<i>X</i> 3								<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0			0	0	0	0	
0	0	1		0	1			0	1	0	0	
0	1	0		1	0			1	0	0	1	
0	1	1		1	1			1	0	1	1	
1	0	0	1	0	0		1	1	1	1	1	
1	0	1		0	1		0	1	1	0	1	
1	1	0		1	0			0	1	1	0	
1	1	1		1	1			0	0	1	0	

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3								<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0			0	0	0	0	
0	0	1		0	1			0	1	0	0	
0	1	0		1	0			1	0	0	1	
0	1	1		1	1			1	0	1	1	
1	0	0	1	0	0		1	1	1	1	1	
1	0	1	0	0	1		0	1	1	0	1	
1	1	0		1	0			0	1	1	0	
1	1	1		1	1			0	0	1	0	

x_1	<i>x</i> ₂	<i>X</i> 3								<i>y</i> ₁	<i>y</i> 2	
0	0	0	0	0	0			0	0	0	0	
0	0	1	1	0	1			0	1	0	0	
0	1	0		1	0			1	0	0	1	
0	1	1		1	1			1	0	1	1	
1	0	0	1	0	0		1	1	1	1	1	
1	0	1	0	0	1		0	1	1	0	1	
1	1	0		1	0			0	1	1	0	
1	1	1		1	1			0	0	1	0	

x_1	<i>x</i> ₂	<i>X</i> 3								<i>y</i> ₁	<i>y</i> 2	
0	0	0	0	0	0			0	0	0	0	
0	0	1	1	0	1	1	1	0	1	0	0	
0	1	0		1	0			1	0	0	1	
0	1	1		1	1			1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	1	
1	0	1	0	0	1	0	0	1	1	0	1	
1	1	0		1	0			0	1	1	0	
1	1	1		1	1			0	0	1	0	

x_1	<i>x</i> ₂	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0		1	0		1	0	0	1	
0	1	1		1	1		1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0		1	0	0	0	1	1	0	
1	1	1		1	1		0	0	1	0	

x_1	<i>x</i> ₂	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0		1	0		1	0	0	1	
0	1	1		1	1		1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1		1	1		0	0	1	0	

<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3							<i>y</i> ₁	<i>y</i> 2	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0	1	1	0		1	0	0	1	
0	1	1		1	1		1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1		1	1		0	0	1	0	

<i>X</i> ₁	<i>X</i> 2	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0	1	1	0	1	1	0	0	1	
0	1	1		1	1		1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1		1	1		0	0	1	0	

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3					Τ			<i>y</i> ₁	<i>y</i> 2	
0	0	0	0	0	0		T	0	0	0	0	
0	0	1	1	0	1	1	:	. 0	1	0	0	
0	1	0	1	1	0	1	:	. 1	0	0	1	
0	1	1		1	1	0	(1	0	1	1	
1	0	0	1	0	0	1	:	. 1	1	1	1	
1	0	1	0	0	1	0	(1	1	0	1	
1	1	0	0	1	0	0	(0	1	1	0	
1	1	1		1	1			0	0	1	0	

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0	1	1	0	1	1	0	0	1	
0	1	1	0	1	1	0	1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1		1	1		0	0	1	0	

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0	1	1	0	1	1	0	0	1	
0	1	1	0	1	1	0	1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1	1	1	1		0	0	1	0	

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3							<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0		0	0	0	0	
0	0	1	1	0	1	1	0	1	0	0	
0	1	0	1	1	0	1	1	0	0	1	
0	1	1	0	1	1	0	1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	
1	0	1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	0	0	1	1	0	
1	1	1	1	1	1	1	0	0	1	0	

			_									
x_1	<i>x</i> ₂	<i>X</i> 3								<i>y</i> ₁	<i>y</i> ₂	
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	1	1	0	1	1	1	0	1	0	0	
0	1	0	1	1	0	1	1	1	0	0	1	
0	1	1	0	1	1	0	0	1	0	1	1	
1	0	0	1	0	0	1	1	1	1	1	1	
1	0	1	0	0	1	0	0	1	1	0	1	
1	1	0	0	1	0	0	0	0	1	1	0	
1	1	1	1	1	1	1	1	0	0	1	0	

	<i>X</i> ₂	<i>X</i> 3											<i>y</i> ₁	<i>y</i> ₂	<u>У</u> з
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	1	1	1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	1	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	0	0	0	1	0	1	1	0
1	0	0	1	0	0	1	0	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0	1	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	0	0	1	0	0	1	1	0	1
_ 1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

	<i>X</i> ₂	<i>X</i> 3												<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1	1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1	0	1	1	0	0	1	0
0	1	1	0	1	1	0		1	0	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0		1	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0		0	0	1	0	0	1	1	0	1
_1	1	1	1	1	1	1		1	1	0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3												<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1	1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1	0	1	1	0	0	1	0
0	1	1	0	1	1	0		1	0	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0		1	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	0	0	1	1	0	1
_ 1	1	1	1	1	1	1		1	1	0	1	0	0	1	0	0

						_			_								
x_1	<i>X</i> ₂	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0		1	0		0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0		1	0		1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0
			•			•			•								

	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0		1	0		0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0		1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0		1	0		0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0		0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
_ 1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> ₂	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
0	0	1	1	0	1	1		1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
_ 1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

X ₁	X2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	n	0	0	n	0	0	n	n	0	n	0	0	0	0	0
		1	1	0	1	1	O	1	1	U	1	1					1
0	0	Ţ	1	0	T	1		T	1		T	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1		1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1		0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	У2	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1		0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

						_						_					
x_1	<i>X</i> ₂	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1		0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0
			•			•			•						•		

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1		0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	Va	<i>y</i> 3
		^3													уі	<i>y</i> ₂	<u> </u>
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1	1	0	1		1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0		<u> </u>	0	0	0	0	0	0	_	0	0	0	0	0	-		
U	0	U	U	U	0	U	U	0	0	U	0	U	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1		1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
_ 1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

-X ₁	<i>X</i> 2	<i>X</i> 3													<i>y</i> ₁	У2	<i>У</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1	0	1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0

						_			_			_					
x_1	<i>X</i> ₂	<i>X</i> 3													<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0	1	1	0	1	1	0	1	0	0	1
0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0
0	1	1	0	1	1	0	1	1	0	1	0	0	1	0	1	1	0
1	0	0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1
1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	1	1
1	1	0	0	1	0	0	1	0	0	1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	1	0	0
			•			•			•								

Reversible synthesis classification

	line opt.	gate opt.	nonreversible func.	reversible func.
	•	•		SAT-based Enumerative
functional	~	×		Transformation-based Cycle-based Decomposition-based Metaheuristic Greedy
structural	×	×	SESOP-based Hierarchical Building block	

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

= $\bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

$$= \bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$$

$$= x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$$

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

$$= \bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$$

$$= x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$$

$$\begin{split} f\big(x_1, x_2, x_3, x_4\big) &= \big[\big(x_4 x_3 x_2 x_1\big)_2 \text{ is prime}\big] \\ &= \bar{x}_4 \bar{x}_3 x_2 \vee \bar{x}_4 x_3 x_1 \vee x_4 \bar{x}_3 x_2 x_1 \vee x_4 x_3 \bar{x}_2 x_1 \\ &= x_4 x_2 x_1 \oplus x_3 x_1 \oplus \bar{x}_4 \bar{x}_3 x_2 \end{split}$$

ESOP-based synthesis

$$\begin{split} f\big(x_1, x_2, x_3, x_4\big) &= [(x_4 x_3 x_2 x_1)_2 \text{ is prime}] \\ &= \bar{x}_4 \bar{x}_3 x_2 \vee \bar{x}_4 x_3 x_1 \vee x_4 \bar{x}_3 x_2 x_1 \vee x_4 x_3 \bar{x}_2 x_1 \\ &= x_4 x_2 x_1 \oplus x_3 x_1 \oplus \bar{x}_4 \bar{x}_3 x_2 \end{split}$$

RevKit: esopbs

$$f_{1} = [3 \mid (x_{4}x_{3}x_{2}x_{1})_{2}]$$

$$= \bar{x}_{1}\bar{x}_{2}x_{3} \oplus \bar{x}_{1}\bar{x}_{4} \oplus x_{1}\bar{x}_{3}x_{4} \oplus$$

$$x_{1}x_{2}x_{4} \oplus x_{2}\bar{x}_{3}\bar{x}_{4}$$

$$f_{2} = [(x_{4}x_{3}x_{2}x_{1})_{2} \text{ is prime}]$$

RevKit [General commands]

- alias creates an alias
- convert converts one store element into another
- current changes current store element
- help shows all commands
- print prints current store element as ASCII
- ps prints statistics about current store element
- 🔅 quit quits RevKit
- set sets global (settings) variable
- show generates visual representation of current store element (as DOT file)
- store interact with the store

Reversible synthesis classification

	line opt.	gate opt.	nonreversible func.	reversible func.
	•	•		SAT-based Enumerative
functional	~	×		Transformation-based Cycle-based Decomposition-based Metaheuristic Greedy
structural	×	×	SESOP-based Hierarchical Building block	

XMG-based synthesis

- ► XMG consists of XOR gates with 2 inputs and MAJ gates with 3 inputs
- ► MAJ gates with constant input can represent AND and OR gates
- Edges can be complemented (dashed lines in graph)

RevKit: dxs

XMG-based synthesis

$$\begin{array}{c} x_1 & \bullet & x_1 \\ x_2 & \oplus & x_1 \oplus x_2 \end{array}$$

XOR (in-place)

MAJ

 $\begin{array}{ccc}
x_1 & & & & \\
x_2 & & & & \\
& & & & \\
0 & & & & & \\
& & & & & \\
\end{array}$ $\begin{array}{ccc}
x_1 & & & & \\
x_2 & & & & \\
& & & & \\
\end{array}$

$$x_1 - x_1$$

$$x_2 - x_2$$

$$1 + \langle 1x_1x_2 \rangle = x_1 \vee x_2$$

AND

OR

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

 Represent input function as classical logic network and optimize it

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates
- 4. Map single-target gates into Clifford+ T networks

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates
- 4. Map single-target gates into Clifford+ T networks

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates
- 4. Map single-target gates into Clifford+ T networks

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T-count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

lg. conv. alg

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates
- 4. Map single-target gates into Clifford+ T networks

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

ew alg. conv. alg

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate *k*-LUT network into reversible network with *k*-input single-target gates
- 4. Map single-target gates into Clifford+ T networks

RevKit: 1hrs

affects #T gates
affects #qubits

LUT mapping

- ▶ Realizing a logic function or logic circuit in terms of a k-LUT logic network
- ▶ A k-LUT is any Boolean function with at most k inputs
- ▶ One of the most effective methods used in logic synthesis

LUT mapping

- ▶ Realizing a logic function or logic circuit in terms of a k-LUT logic network
- ► A *k*-LUT is any Boolean function with at most *k* inputs
- ▶ One of the most effective methods used in logic synthesis
- ► Typical objective functions are size (number of LUTs) and depth (longest path from inputs to outputs)
- Open source software ABC can generate industrial-scale mappings

LUT mapping

- ▶ Realizing a logic function or logic circuit in terms of a k-LUT logic network
- ► A *k*-LUT is any Boolean function with at most *k* inputs
- One of the most effective methods used in logic synthesis
- ► Typical objective functions are size (number of LUTs) and depth (longest path from inputs to outputs)
- Open source software ABC can generate industrial-scale mappings
- ▶ Can be used as technology mapper for FPGAs (e.g., when $k \le 7$)

1 —	
·	
-	
3 ———	
1 ———	
. ——	

- **!** k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed

- ! k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed

- ! k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed

- **!** k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed
- order of LUT traversal determines number of ancillas

- **!** k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed
- order of LUT traversal determines number of ancillas
- maximum output cone determines minimum number of ancillas

- non-output LUTs need to be uncomputed
- order of LUT traversal determines number of ancillas
- maximum output cone determines minimum number of ancillas
- (2) fast mapping that generates a fixed-space skeleton for subnetwork synthesis

Single-target gate LUT mapping

▶ Mapping problem: Given a single-target gate $T_f(X, x_t)$ (with control function f, control lines X, and target line x_t), a set of clean ancillas X_c , and a set of dirty ancillas X_d , find the best mapping into a Clifford+T network, such that all ancillas are restored to their original value.

► Direct

- Direct
 - ▶ Map each control function using ESOP based synthesis

- Direct
 - Map each control function using ESOP based synthesis
 - ▶ Does not use ancillae

- Direct
 - Map each control function using ESOP based synthesis
 - Does not use ancillae
- ► LUT-based

- Direct
 - Map each control function using ESOP based synthesis
 - Does not use ancillae
- ► LUT-based
 - Map control function into smaller LUT network

- ► Direct
 - Map each control function using ESOP based synthesis
 - Does not use ancillae
- ► LUT-based
 - ► Map control function into smaller LUT network
 - Map small LUTs into pre-computed optimum quantum circuits

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

= $\bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

$$= \bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$$

$$= x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$$

$$x_1 - x_2 - x_1 - x_2$$

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = [(x_{4}x_{3}x_{2}x_{1})_{2} \text{ is prime}]$$

$$= \bar{x}_{4}\bar{x}_{3}x_{2} \lor \bar{x}_{4}x_{3}x_{1} \lor x_{4}\bar{x}_{3}x_{2}x_{1} \lor x_{4}x_{3}\bar{x}_{2}x_{1}$$

$$= x_{4}x_{2}x_{1} \oplus x_{3}x_{1} \oplus \bar{x}_{4}\bar{x}_{3}x_{2}$$

$$x_{1} \longrightarrow x_{2} \longrightarrow x_{3}$$

$$x_{2} \longrightarrow x_{3} \longrightarrow x_{4} \longrightarrow x_{4}$$

$$0 \longrightarrow f(x_{1}, x_{2}, x_{3}, x_{4})$$

► Each multiple-controlled Toffoli gate is mapped to Clifford+ T

$$f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]$$

$$= \bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$$

$$= x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$$

- ► Each multiple-controlled Toffoli gate is mapped to Clifford+ T
- (E) ESOP minimization tools (e.g., exorcism) optimize for cube count

LUT-based single-target gate mapping

LUT-based single-target gate mapping

LUT-based single-target gate mapping

▶ Let C_1 and C_2 be circuits that only consist of NOT and CNOT gates

- ▶ Let C_1 and C_2 be circuits that only consist of NOT and CNOT gates
- ▶ Both circuits have the same number of *T* gates

- Let C_1 and C_2 be circuits that only consist of NOT and CNOT gates
- ▶ Both circuits have the same number of T gates
- © Instead of 65 536 4-input functions we only need to consider 18

- Let C_1 and C_2 be circuits that only consist of NOT and CNOT gates
- Both circuits have the same number of T gates
- 😊 Instead of 65 536 4-input functions we only need to consider 18
- © Instead of 4 294 967 296 5-input functions we only need to consider 206

Circuits for affine equivalence classes

quantumlib.stationq.com

The LHRS ecosystem

D arxiv.org/abs/1706.02721

The LHRS ecosystem

D arxiv.org/abs/1706.02721

The LHRS ecosystem

D arxiv.org/abs/1706.02721

$$----=--$$

$$----=-\oplus$$

? Open problem: These six rules (plus SWAP rule) are complete, i.e., one can rewrite any circuit realizing some function into any other circuit realizing the same function

- **?** Open problem: These six rules (plus SWAP rule) are complete, i.e., one can rewrite any circuit realizing some function into any other circuit realizing the same function
- Rule set has been extended to consider ancillae

Circuit rewriting: example

Circuit G₁

Circuit G_2

Circuit rewriting: example

Circuit G_1

Circuit G₂

- ► Can be used for equivalence checking to check $G_1 \equiv G_2$
- ▶ Construct circuit $G = G_2^{-1} \circ G_1$
- ► Rewrite *G* to identity

Circuit rewriting: example

Circuit G₁

Circuit G₂

- ► Can be used for equivalence checking to check $G_1 \equiv G_2$
- ▶ Construct circuit $G = G_2^{-1} \circ G_1$
- ► Rewrite *G* to identity

Equivalence checking of reversible circuits

Exploiting reversibility

Equivalence checking of reversible circuits

Exploiting reversibility

RevKit: rec

Equivalence checking of reversible circuits

- _____
- ▶ Circuit is translated into a SAT formula and solved with a SAT solver
- ► A satisfying solution is witnessing a counter-example
- ► Solvers with support for XOR clauses allow for more natural encoding and better runtimes

RevKit: rec

Introduction and background

Reversible logic synthesis

Introduction into RevKit

Reversible logic synthesis and RevKit

Mathias Soeken

Integrated Systems Laboratory, EPFL, Switzerland

