

## **Data Collection and Storage**



Pedro G. Ferreira

pgferreira@fc.up.pt

## Agenda

- Sources of Data
- Data Storage
- Data Pipelines
- Data Preparation

#### Sources of Data



#### **Company Data**

- Collected by companies
- Helps make them business decisions
- Types of data:
  - Web events
  - Financial Transactions
  - Survey data
  - Customer Data
  - Logistics Data

#### **Open Data**

- Provided in different repositories
  - UCI Machine Learning Dataset
    Repository
  - Kaggle
  - Google Datasets
- Data published from scientific papers or competitions
- Can be downloaded in different formats or accessed via APIs.
- Public Records
  - UN, WHO, Pordata



#### Data Storage

- To organize and store your data consider
- Location
  - Server or cluster to run locally
  - Cloud computing (AWS, Azure, GCP)
- Data types
  - Unstructured
    - Email, text, video and audio files, web pages, social media
    - Stored in Document Database
  - Tabular and Structured
    - Data organized as rows and columns
    - Relational Database
- Retrieval and Data Querying

| Data Type    | Data baseType       | Query Language |
|--------------|---------------------|----------------|
| Unstructured | Document Database   | NoSQL          |
| Tabular      | Relational Database | SQL            |

## **Data Pipelines**

- How do we scale the analysis?
  - Multiple data sources
  - Different data types
    - Unstructured data
    - Tabular data
    - Real-time streaming data



- Data pipeline
  - Moves data into defined stages
  - Automated collected and stored
    - Scheduled by frequency or triggered by an event
  - Monitored with generated alerts
  - Extract Transformation and Load (ETL)



## **Data Pipelines**



- Copied from Angermueller C. et al. Deep learning for computational biology. Mol Syst Biol. 2016 Jul 29;12(7):878

# **Data Pipelines**



- Adapted from Aurélien Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow

#### **Data Preparation**

- Why prepare data?
  - Real-life data is messy
  - Processing is done to prevent:
    - Errors
    - Biasing algorithms
    - Incorrect results
- Tidy data
  - Organize cases as rows
  - Features as columns

#### Adapted from DataCamp

|         | Sara      | Lis   | Hadrien | Lis   |
|---------|-----------|-------|---------|-------|
| Age     | "27"      | "30"  |         | "30"  |
| Size    | 1.77      | 5.58  | 1.80    | 5.58  |
| Country | "Belgium" | "USA" | "FR"    | "USA" |



| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "26" | 1.78 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |
| Lis     | "30" | 5.58 | "USA"     |

## **Data Preparation**

Remove duplicates

| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "27" | 1.77 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |
| Lis     | "30" | 5.58 | "USA"     |



| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "27" | 1.77 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |

Unique Identifiers

| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "27" | 1.77 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |



| ID | Name    | Age  | Size | Country   |
|----|---------|------|------|-----------|
| 0  | Sara    | "27" | 1.77 | "Belgium" |
| 1  | Lis     | "30" | 5.58 | "USA"     |
| 2  | Hadrien |      | 1.80 | "FR"      |

Homogeneity

| ID | Name    | Age  | Size | Country   |
|----|---------|------|------|-----------|
| 0  | Sara    | "27" | 1.77 | "Belgium" |
| 1  | Lis     | "30" | 5.58 | "USA"     |
| 2  | Hadrien |      | 1.80 | "FR"      |



| ID | Name    | Age  | Size | Country   |
|----|---------|------|------|-----------|
| 0  | Sara    | "27" | 1.77 | "Belgium" |
| 1  | Lis     | "30" | 1.70 | "USA"     |
| 2  | Hadrien |      | 1.80 | "FR"      |



| ID | Name    | Age  | Size | Country |
|----|---------|------|------|---------|
| 0  | Sara    | "27" | 1.77 | "BE"    |
| 1  | Lis     | "30" | 1.70 | "US"    |
| 2  | Hadrien |      | 1.80 | "FR"    |

#### **Data Preparation**

**Data Types** 

| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "27" | 1.77 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |



| ID | Name    | Age | Size | Country |
|----|---------|-----|------|---------|
| 0  | Sara    | 27  | 1.77 | "BE"    |
| 1  | Lis     | 30  | 1.70 | "US"    |
| 2  | Hadrien |     | 1.80 | "FR"    |

- Missing values
  - Data entry
  - Error
  - Valid missing value

| Name    | Age  | Size | Country   |
|---------|------|------|-----------|
| Sara    | "27" | 1.77 | "Belgium" |
| Lis     | "30" | 5.58 | "USA"     |
| Hadrien |      | 1.80 | "FR"      |



| ID | Name    | Age | Size | Country |
|----|---------|-----|------|---------|
| 0  | Sara    | 27  | 1.77 | "BE"    |
| 1  | Lis     | 30  | 1.70 | "US"    |
| 2  | Hadrien | 28  | 1.80 | "FR"    |

- Handling Missing values
- Impute (mean, max, median, ...)
- Drop
- Keep it if the algorithm handles it

#### Summary

- Data rarely comes in ready for analysis. Real-life data is messy and dirty.
- Preparing the data conveniently will save you time in later stages of analysis.
- Keep in mind the multiple steps of the analysis pipeline from retrieving the data to presentation of results.
- Most algorithms require data in tabular format without missing data or duplicates. Check that your data is in the right tabular format with cases as rows and features as columns; that you have no missing values; that data types are conveniently represented.