Praktikumsversuch: Photolumineszenz von Halbleiter-Quantenpunkten

Semiconductor Quantum Dots (QD)

Artificial atoms
(size ≤ 50 nm)
discrete density of
states (DOS) with
quantized energy
levels

Applications

- Laser, Solar cells: dense QD ensembles
- Quantum information: single QDs

Entangled photons for quantum cryptography

Quantum sensors,

• • • •

• Integration:

Photonic environment

Quantum photonic integrated circuits,
quantum network

Rb vapour cell as a quantum memory

Optical Spectroscopy

Luminescence: ,,cold light"

Photoluminescence: inelastic light scattering

Photoluminescence (PL) spectroscopy:

- Excitation by laser in reflection
- Often excitation / emission through one objektive
- Spectral analysis of the emission
- <u>Information</u>: energy of the states inside the sample (absolute energy)

Raman spectroscopy:

- Setup like PL, in addition precise laser filter
- <u>Information</u>: energy loss in the sample (energy relative to the laser energy)

Photoluminescence (PL) Spectroscopy on QDs

PL spectroscopy:

- Excitation with monochromatic light either resonantly or non-resonantly into the barrier material generates electron-hole-pairs (excitons)
- Excitons diffuse into positions with lowest energy (e.g. QD states)
- The excess energy is relaxed by phonon emission (Raman effect)
- Radiative recombination of excitons by emission of photons with energy:

 $E_n = E_g + E_{ne} + E_{nh} - E_C$, with bandgap energy E_g of the QD material, electron and hole quantization energies E_{ne} , E_{nh} , exciton binding energy E_C (Coulomb interaction)

- Optical selection rules: transitions between e-h states with equal quantum numbers have the highest probability
- In GaAs, the light-hole (lh) density of states (DOS) is 6% of the total DOS (hh+lh): heavy holes (hh) dominate the PL emission

PL Spectra: Example GaAs QDs

[Appl. Phys. Lett. **94**, 183113 (2009), New Journal of Physics **14** (2012)]

Ensemble (macro-PL):

- QD shell structure: splitting by quantization energy $\Delta E = 5-100 \text{ meV}$
- Linewidth: 10-50 meV, broadened by QD size fluctuation (Gaussian distribution)

Single-dot (mikro-PL, confocal microscope):

- Excitonic complexes, splitting be Coulom-interaction $\Delta E = 0.5-3$ meV
- Linewidth: natural linewidth a few µeV (Lorentzian distribution) often broadened by fluctuating charges

Harmonic Oscillator: single-Particle frame

For a QD size < de Broglie wavelength: size quantization becomes relevant

Quantization energy in Cartesian coordinates: $E_n = E_x + E_y + E_z$

QDs have often approximately equidistant energy levels ⇒ parabolic potential

1D parabolic potential: $V = \frac{1}{2}m^*\omega_x^2x^2$, with effective mass m^* , oscillator frequency ω_x Eigenenergies of 1D <u>harmonic oscillator</u>: $E_x = \hbar\omega_x\left(n_x + \frac{1}{2}\right)$,

with quantum number $n_x = 0, 1, 2, 3...$

Approximation: QD size \cong ground-state <u>oscillator length</u> L:

For
$$x = \frac{L}{2}$$
: $V(x) = E_0$ and $L^2 = \frac{4\hbar^2}{m^*\hbar\omega_x}$

Spherical QD shape
$$(\omega_x = \omega_y = \omega_z = \omega_0)$$

$$E_n = E_x + E_y + E_z = \hbar \omega_0 \left(n + \frac{3}{2} \right),$$
 with $n = n_{xyz} = n_x + n_y + n_z$

Degeneracy (without spin):

n = 0: no degeneracy

$$n = 1$$
: deg. = 3 (n_{100} , n_{010} , n_{001})

$$n = 2$$
: deg. = 6 $(n_{110}, n_{011}, n_{101}, n_{200}, n_{020}, n_{002})$

Harmonic Oscillator: Size Quantization

Optical emission from QDs: radiative recombinations of excitons

QD emission energy: $E_n = E_g + E_{ne} + E_{nh} - E_C$,

with bandgap energy E_g of the QD material, <u>electron</u> and <u>hole</u> quantization energies E_{ne} , E_{nh} , and exciton binding energy E_C (Coulomb interaction)

Approximations: <u>3D harmonic oscillator</u>, spherical QD shape, no Coulomb interaction, n = 0:

$$E_{ne} = \left(n + \frac{3}{2}\right)\hbar\omega_e = \frac{3}{2}\hbar\omega_e, E_{nh} = \frac{3}{2}\hbar\omega_h$$

With
$$\hbar\omega_e = \frac{4\hbar^2}{m_e^*L^2}$$
, $\hbar\omega_h = \frac{4\hbar^2}{m_h^*L^2}$:

$$E_0 = E_g + \frac{6\hbar^2}{L^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$$

The well known <u>Brus equation</u> considers also an approximation for Coulomb interaction:

$$E_0 = E_g + \frac{2\pi^2 \hbar^2}{L^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right) - \frac{3.6e^2}{\varepsilon_s L}$$

with the semiconductor permittivity ε_s [L. Brus, J. Phys. Chem. **90**, 2555 (1986)]

Harmonic Oscillator: Example spherical GaAs QDs

Example: PL spectrum of GaAs QDs in AlGaAs

- Bulk GaAs Peak at 1.469 eV (E_g at T = 192 K)
- QDs: nearly equidistant peaks $E_1-E_0 \cong E_2-E_1$, $(E_n=E_g+E_{ne}+E_{nh}-E_C)$ Harmonic oscillator approximation can be used: $E_{ne}=\left(n+\frac{3}{2}\right)\hbar\omega_e$, $E_{nh}=\left(n+\frac{3}{2}\right)\hbar\omega_h$
- Electron, hole quantization (harmonic oscillator): $E_1 E_0 = \hbar \omega_e + \hbar \omega_h = 57 \text{ meV}$
- Oscillator length: $L^2 = \frac{4\hbar^2}{m_e^*\hbar\omega_e} = \frac{4\hbar^2}{m_h^*\hbar\omega_h}$ Energy [eV] yields: $\frac{\omega_e}{\omega_h} = \frac{m_h^*}{m_e^*}$ and: $E_1 E_0 = \hbar\omega_e \left(1 + \frac{m_e^*}{m_h^*}\right)$ or: $\hbar\omega_e = \frac{E_1 E_0}{1 + \frac{m_e^*}{m_h^*}}$ and: $\hbar\omega_h = \frac{E_1 E_0}{1 + \frac{m_h^*}{m_h^*}}$

For GaAs ($m_e^* = 0.066$, $m_{hh}^* = 0.5$): $\hbar \omega_e = 50.4$ meV, $\hbar \omega_h = 6.6$ meV

Estimation of QD diameter:
$$L = \left(\frac{4\hbar^2}{m_o^*\hbar\omega_o}\right)^{1/2} = 9.6 \text{ nm}$$

• <u>Coulomb interaction</u> (approx.: spherical QD):

$$E_0 - E_g = \frac{3}{2}(\hbar\omega_e + \hbar\omega_h) - E_C$$
 and $E_1 - E_0 = \hbar\omega_e + \hbar\omega_h$
yields: $E_C = \frac{3}{2}(E_1 - E_0) - (E_0 - E_g) = 20.7 \text{ meV}$

Excitonic Complexes

Energy [eV] [Nanoscale Res. Lett. 5, 1633 (2010)]

Excitonic states:

- s-level: up to 2 electrons and holes (spin-splitted): exciton X, biexciton XX
- Optical emission by radiative recombination of one exciton
- The presence of additional charge carriers shifts the emission energy due to Coulomb interactions (Ceh, Cee, Chh)

d

Basic Micro-PL Spectrometer

PL-Setups

<u>PL1</u>

- Sample cooling down to 3 K
- Ultra-low vibrations
- Extensions: high resolution, lifetime

<u>PL2</u>

• Sample cooling down to 30 K

PL-Setups: Software

Fabrication of Semiconductor Quantum Dots

Synthesis of colloidal QDs

Powder / in a liquid

- + Mass production
- Contacts (ligands)
- Optical instability (blinking)

Self-assembly of epitaxial QDs

Wafer based

- + Tunable density
- + Contacts
- + Optically stable

Lithography by gates, etching

Wafer based

- + Single QDs
- + Contacts
- Optical emission

Fabrication of Semiconductor Quantum Dots

QD Samples

QD Samples

QD Sample A

Messung an QD-Probe A bei T = 300 K:

(Bereich 600-900 nm, zusammengesetzt aus Einzelspektren)

- Starker AlGaAs-Peak + schwache QD Peaks
- Zoom: QD-Peaks mit 4 Energieniveaus

Auswertungen:

- QD-Peaks sind (halbwegs) äquidistant:
 - → parabolisches Potenzial
- Bestimmung der Quantisierungsenergien
- Abschätzung der <u>QD-Größe</u> (Ausdehnung der Wellenfunktion)
- Abschätzung der <u>Coulomb-Wechselwirkung</u> zwischen Elektron und Loch

QD Sample A

QD-Probe A, Einfluss Laserleistung P

Bei reduzierter Laserleistung:

- Abnehmende Intensität
- Relative Abnahme h\u00f6herer Schalen (Besetzungsstatistik)
- Blauverschiebung des Grundzustandes (Rotverschiebung durch höhere Schalen)

QD-Probe A, Einfluss Probentemperatur TBei Kühlung:

- Intensitätserhöhung (Reduktion thermischer Emission aus den QD)
- Blauverschiebung der Energieniveaus (Analog GaAs-Bandlücke)
- Besetzung höherer Schalen

Location

Meeting point:

Office Christian Heyn

Center for Hybrid Nanostructures (CHyN) Luruper Chaussee 149 Building 600

Room: 2.46

