Pattern Frequenti e Regole di Associazione Confidenti

Caso di studio di Metodi Avanzati di Programmazione

AA 2016-2017

Data Mining

Lo scopo del data mining è l'*estrazione* (semi) automatica di *conoscenza* nascosta in voluminose basi di dati al fine di renderla disponibile e direttamente utilizzabile

Aree di Applicazione

1. previsione

utilizzo di valori noti per la previsione di quantità non note (es. stima del fatturato di un punto vendita sulla base delle sue caratteristiche)

2. classificazione

individuazione delle caratteristiche che indicano a quale gruppo un certo caso appartiene (es. discriminazione tra comportamenti ordinari e fraudolenti)

3. segmentazione

individuazione di gruppi con elementi omogenei all'interno del gruppo e diversi da gruppo a gruppo (es. individuazione di gruppi di consumatori con comportamenti simili)

4. associazione

individuazione di elementi che compaiono spesso assieme in un determinato evento (es. prodotti che frequentemente entrano nello stesso carrello della spesa)

5. sequenze

individuazione di una cronologia di associazioni (es. percorsi di visita di un sito web)

. . .

Pattern frequenti

Dati:

- una collezione D di transazioni
- dove, ogni transazione è un vettore di coppie attributovalore (item)

Lo scopo è:

 Identificare gli insiemi di item (itemset o pattern) che occorrono con una frequenza minima in D

Pattern frequenti

- Sono inizialmente definiti nel market basket analysis (http://it.wikipedia.org/wiki/Market_basket_analysis).
- Motivazione: scoprire regolarità in un data base di transazioni di un cliente
- Quali prodotti SPESSO compaiono sullo stesso scontrino emesso da un supermercato (sono comprati insieme)?

Esempio

• Nel 2% degli scontrini di un supermercato sono registrati pannolini, omogeneizzati e birra

PANNOLINI, OMOGENEIZZATI,

BIRRA

Regole di associazione

• Più interessante,

Il 98% degli scontrini in cui sono registrati pannolini e omogeneizzati registrano anche l'acquisto di birra

PANNOLINI, OMOGENEIZZATI → BIRRA

Regola di associazione che correla la presenza di PANNOLINI e OMOGENEIZZATI (*antecedente*) alla presenza di BIRRA (*conseguente*).

Regole di associazione

In generale, una regola di associazione è nella forma

$$X \rightarrow Y (s\%, c\%)$$

- X è *l'antecedente* della regola
- Y è il conseguente della regola
- X e Y sono insiemi di item tali che $X \cap Y = \emptyset$
- La percentuale s% denota il *supporto* della regola. Esso stima $p(X \cup Y)$
- La percentuale c% denota la *confidenza* della regola. Essa stima p(Y|X)

Regole di associazione: Confidenza

- Una regola deve avere una minima confidenza specificata dall'utente
- PANNOLINI, OMOGENEIZZATI → BIRRA
 ha una confidenza del 90% se il 90% degli scontrini che
 includono pannolini e omogeneizzati, includono anche
 la birra.
- In generale,

$$c(X \to Y) = \frac{p(X \cup Y)}{p(X)} = \frac{\text{numero di transazioni in cui si osserva } X \in Y}{\text{numero di transazioni in cui si osserva } X}$$

Regole di associazione: Supporto

- Una regola deve avere un minimo *supporto* specificato dall'utente
- PANNOLINI, OMOGENEIZZATI & BIRRA
 devono comparire insieme in un minimo numero di scontrini
 per avere una qualche valenza statistica.
- In generale,

$$s(X \to Y) = \frac{p(X \cup Y)}{D} = \frac{\text{numero di transazioni in cui si osserva } X \in Y}{\text{numero totale di transazioni}}$$

Scoperta di regole di associazione: Definizione del problema

• Dati:

- un database di transazioni;
- un valore di minimo supporto (0<minS<=1);</p>
- un valore di minima confidenza (0<minC<=1).
- Trovare tutte le *regole di associazione* in D che siano frequenti (supporto maggiore o uguale di minS) e confidenti (confidenza maggiore uguale di minC)

Scoperta di regole di associazione: Esempio

Day	Outlook	Temperature	Humidity	
D1	Sunny	Hot	High	
D2	Sunny	Hot	High	
D3	Rain	Hot	High	
D4	Rain	Cool	Normal	
D5	Rain	Cool	Normal	
D6	Rain	Cool	Normal	

Per la regola di associazione

Rain → Normal

 $supporto(Rain \rightarrow Normal) = 3/6 = 0.5$

 $confidenza(Rain \rightarrow Normal) = 3/4 = 0.75$

Min. supporto 0.5 Min. confidenza 0.5

Frequent pattern (minS=0.5)	support
Rain	0.66
Hot	0.5
Cool	0.5
High	0.5
Normal	0.5
Rain, Normal	0.5
Rain, Cool	0.5
Cool, Normal	0.5
Hot, High	0.5
Rain,Cool,Normal	0.5

Scoperta di regole di associazione: Decomposizione del problema

- 1. Trovare i pattern frequenti
- 2. Usare i pattern frequenti per generare le regole di associazione confidenti

Scoperta di regole di associazione: 1. individuare i pattern frequenti

Nota: Ciascun sottoinsieme di un pattern frequente DEVE essere frequente

- Se "PANNOLINO,OMOGENEIZZATO,BIRRA" è frequente allora anche "OMOGENEIZZATO, BIRRA" deve essere frequente
- Ogni scontrino che contiene {pannolino,omogeneizzato,birra}contiene anche {omogeneizzato,birra}

Conseguenza: Monotonia del supporto

Se un pattern è infrequente allora raffinamenti dello stesso pattern sono anche infrequenti

Scoperta di regole di associazione: 1. individuare i pattern frequenti

Metodo:

- 1. Scoprire pattern di lunghezza k a partire da pattern FREQUENTI di lunghezza k-1
- 2. Testare i pattern candidati in D

Scoperta di regole di associazione:

1. individuare i pattern frequenti

Min. supporto 0.5

Day	Outlook	Temperature	Humidity	
D1	Sunny	Hot	High	
D2	Sunny	Hot	High	
D3	Rain	Hot	High	
D4	Rain	Cool	Normal	
D5	Rain	Cool	Normal	
D6	Rain	Cool	Normal	

Evacuent nettern (minc. 0.5)	G .
Frequent pattern (minS=0.5)	S
Rain	0.66
Hot	0.5
Cool	0.5
High	0.5
Normal	0.5
Rain, Cool	0.5
Rain, Normal	0.5
Hot, High	0.5
Cool, Rain	0.5
Cool, Normal	0.5
High, Hot	0.5
Normal, Rain	0.5
Normal, Cool	0.5
Rain, Cool, Normal	0.5
Rain, Normal, Cool	0.5
Cool, Rain, Normal	0.5
Cool, Normal, Rain	0.5
Normal, Rain, Cool	0.5
Normal, Cool, Rain	0.5

	-			_	Frequent	S	
Day	Outlook	Temperature	Humidity		pattern (minS=0.5)		——— Dr. A. Appice
D1	Sunny	Hot	High				
D2	Sunny	Hot	High	TZ 1	Sunny	0.33	
	 			K=1	Rain	0.66	
D3	Rain	Hot	High		TT-4	0.5	
D4	Rain	Cool	Normal		Hot	0.5	
		G 1		<i>V</i>	Cool	0.5	
D5	Rain	Cool	Normal		High	0.5	
D6	Rain	Cool	Normal		Iligii	0.3	
	!	ļ		ı	Normal	0.5	

Min. supporto 0.5

Day	Outlook	Temperature	Humidity
D1	Sunny	Hot	High
D2	Sunny	Hot	High
D3	Rain	Hot	High
D4	Rain	Cool	Normal
D5	Rain	Cool	Normal
D6	Rain	Cool	Normal

Frequent pattern (minS=0.5)	S
Sunny	0.33
Rain	0.66
Hot	0.5
Cool	0.5
High	0.5
Normal	0.5

Dr. A. Appice

K=2

Frequent pattern (minS=0.5)Rain, Hot 0.166 Rain,Cool 0.5 Rain, High 0.166 Rain, Normal 0.5 Hot, Rain 0.166 Hot, High 0.5 Hot, Normal 0 Cool, Rain 0.5 Cool, High 0 Cool, Normal 0.5 High, Rain 0.166 High, Hot 0.5 High, Cool 0 Normal, Rain 0.5 Normal, Hot 0 Normal, Cool 0.5

Min. supporto 0.5

Day	Outlook	Temperature	Humidity		Frequent	S							
D1	Sunny	Hot	High	K=1	pattern (minS=0.5)		(<u></u>	Dr. A. Appice					
D2	Sunny	Hot	High		Sunny	0.33		Frequent	S				
D3	Rain	Hot	High			Rain	0.66	K=2	pattern (minS=0.5)				
D4	Rain	Cool	Normal		Hot	0.5	1X -2	Rain,Hot	0.166				
D5	Rain	Cool	Normal		Cool	0.5		Rain,Cool	0.5				
D6	Rain	Cool	Normal		ĺ		ĺ]	High	0.5		Rain,High
					Normal	0.5	_	Rain, Normal	0.5				
			Frequent p	oattern (minS=0.5	5)	S		Hot, Rain	0.166				
		•	Rain,Cool, Hi	σh		0	4	Hot, High	0.5				
		-	Rain, Cool, N	<u> </u>		0.5		Hot, Normal	0				
		-	Rain, Normal.			0	- IZ 0	Cool, Rain	0.5				

Min. supporto 0.5

Rain,Cool, High	0
Rain, Cool, Normal	0.5
Rain, Normal, Hot	0
Rain, Normal, Cool	0.5
Hot, High ,Sunny	0.33
Hot, High, Rain	0.166
Cool, Rain, High	0
Cool, Rain, Normal	0.5
Cool, Normal, Sunny	0
Cool, Normal, Rain	0.5
High, Hot, Sunny	0.33
High, Hot, Rain	0.166
Normal, Rain, Hot	0
Normal, Rain, Cool	0.5
Normal, Cool, Sunny	0
Normal Cael Dain	0.5

Rain, Normal

Hot, Rain

O.166

Hot, High

O.5

Hot, Normal

Cool, Rain

Cool, High

Cool, Normal

High, Rain

O.5

High, Cool

Normal, Rain

O.5

Normal, Hot

O

Normal, Cool

0.5

Scoperta di regole di associazione: 2. Derivare regole confidenti

- Nota: pattern frequenti ≠ regole di associazione
- Un ulteriore passo è richiesto per scoprire le regole di associazione
- Per ciascun pattern frequente P,
 Per ciascun sottoinsieme non vuoto X di P,
 - Sia Y = P X
 - $-X \Rightarrow Y$ è una regola di associazione se e solo se

confidenza $(A \Rightarrow B) \ge \min C$,

dove:

- $supporto(A \Rightarrow B) = supporto(AB) e$
- confidenza $(A \Rightarrow B) = \text{supporto } (AB) / \text{supporto } (A)$

Day	Outlook	Temperature	Humidity	Min. confidenza 1	
D1	Sunny	Hot	High	Willi. Collinaciiza 1	Dr. A. Appice
D2	Sunny	Hot	High	Frequent pattern (minS=0.5, minC=1)	c
D3	Rain	Hot	High	Rain → Cool	0.75
D4	Rain	Cool	Normal	Rain → Normal	0.75
D5	Rain	Cool	Normal	Hot → High	1
D6	Rain	Cool	Normal	Cool, → Rain	1
]	Frequent pattern	(minS=0.5)	s	Cool → Normal	1
Rain			0.66	High → Hot	1
Hot			0.5	Normal → Rain	1
Cool			0.5	Normal → Cool	1
High		0.5	Rain → Cool, Normal	0.75	
Normal		0.5	Rain, Cool > Normal	1	
Rain, Cool		0.5	Rain → Normal, Cool	0.75	
Rain, N			0.5	Rain, Normal → Cool	1
Cool, R			0.5	Hot → High, Sunny	0.66
Cool, N			0.5	Hot, High → Sunny	0.66
High, H	igh, Hot		0.5	Cool, → Rain, Normal	1
Norma	l, Rain		0.5	Cool, Rain → Normal	1
Normal, Cool		0.5	Cool → Normal, Rain	1	
Rain,Cool, Normal		0.5	Cool, Normal → Rain	1	
Rain, Normal, Cool		0.5	Normal → Rain, Cool	1	
Cool, Rain, Normal		0.5	Normal, Rain → Cool	1	
Cool, Normal, Rain		0.5		1	
	Normal, Rain, Cool 0.5			Normal → Cool, Rain	
rorma.	ormal, Cool, Rain 0.5			Normal, Cool → Rain	1

Apriori: pseudo-code

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, 1994.

(http://en.wikipedia.org/wiki/Apriori_algorithm)

http://rakesh.agrawal-family.com/

http://www.rsrikant.com/

Apriori: pseudo-codice

```
frequentPatternDiscovery(D,minS) \rightarrow P
begin
   P = \emptyset
   L_1 = \{1 - item \text{ che compaiono in minS} \times |D| \text{ transazioni di D} \}
   K=2
   while L_{\kappa-1} \neq \emptyset do
   begin
          C_{\kappa}= candidati generati da L_{k-1} aggiungendo un nuovo item
          \Gamma^{\kappa} = \emptyset
          for each (p \in C_k) do
                    if (supporto(p, D) >= minS) then
                               L_{\kappa}=L_{\kappa}\cup p
          P=P\cup L_{\nu}
          K=K+1
   end
    return P
end
```

Apriori: pseudo-codice

```
ConfidentAssociationRuleDiscovery(D,P,minC) \rightarrow AR
begin
  AR = \emptyset
  for each (p \in P) do
       for each (j=1 to j<p.LENGTH) do
       // p = p[1], p[2], ..., p[p.LENGTH]
       begin
              ar= p[1],...,p[j] \rightarrow p[j+1],..., p[p.LENGTH]
              if (confidenza(ar, D) >= minC) then
                     AR=AR∪ar
       end
return AR
end
```

Problema:

Gestione di attributi numerici

- Attributi discreti (genere, stato civile)
- Attributi numerici (età, reddito)
 - Discretizzare l'attributo numerico

Id	Età	Stato civile	Numero di Auto di proprietà
1	23	celibe	1
2	25	coniugato	1
3	29	celibe	0
4	34	coniugato	2
5	39	coniugato	2

$$minS = 0.3 \ minC = 0.5$$

Età= $[23...31] \rightarrow$ Stato Civile =celibe (s=0.33, c=0.66)

Discretizzazione in uguale ampiezza

- Sia dato il numero di intervalli k
- Si ricavano k intervalli di uguarle ampiezza

Caso di studio

- Progettare e realizzare un sistema client-server denominato "APRIORI".
- Il server include funzionalità di data mining per la scoperta di pattern frequenti e regole di associazione confidenti.
- Il client consente di usufruire del servizio di scoperta remoto e visualizza la conoscenza (pattern e regole) scoperta.

Istruzioni

- 1. Il progetto dello A.A. 2016/17 denominato RULE, è valido solo per coloro che superano la prova scritta o prove in itinere entro il corrente A.A.
- 2. Ogni progetto può essere svolto da gruppi di al più TRE (3) studenti.
- 3. Coloro i quali superano la prova scritta devono consegnare il progetto ENTRO la data prevista per la corrispondente prova orale.
- 4. Il voto massimo assegnabile al progetto è 33.
- 5. Il voto finale sarà stabilito sulla base della media aritmetica del voto attribuito allo scritto e del voto attribuito al progetto. Un voto superiore a 30 equivale a 30 e lode.

Non si riterrà sufficiente, e come tale non sarà corretto, un progetto non sviluppato in tutte le su parti (client-server, parte grafica, accesso al db, serializzazione,...)