Problem 2.46. Prove that the set of all rational numbers of the form 3^m6^n , where m and n are integers, is a group under multiplication.

Solution:

Let $S = \{3^m 6^n | m, n \in \mathbb{Z}\}$ and let $a = 3^i 6^j$ and $b = 3^k 6^l$ be two arbitrary elements of S. Then $ab = 3^{i+k} 6^{j+l} \in S$, hence multiplication is a binary operation on S. Define G to be the set S together with the binary operation of multiplication. Let a and b be as above.

Associativity. Since multiplication in \mathbb{Q} is associative, it is also associative in G.

Identity. We can write $1 = 3^0 6^0 \in G$, so G has an identity.

Inverses. Let $c=3^{-i}6^{-j}\in G$ then $ac=ca=3^{i-i}6^{j-j}=1$, so any element in G has an inverse. \blacksquare

Problem 2.48*.** Prove that the set of all 3×3 matrices with real entries of the form

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

is a group.

Solution:

Let
$$S = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} | a \in \mathbb{R}, a \neq 0 \right\}$$
. By the definition of multiplication provided, this

is a binary operation on S. Define G to be the set S alongside the binary operation of multiplication defined. Let

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{bmatrix}, \text{ and } C = \begin{bmatrix} 1 & a'' & b'' \\ 0 & 1 & c'' \\ 0 & 0 & 1 \end{bmatrix}$$

be arbitrary elements of S.

Associativity.

$$(AB)C = \begin{pmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a' & b' \\ 0 & 1 & c' \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 & a'' & b'' \\ 0 & 1 & c'' \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+a' & b'+ac'+b \\ 0 & 1 & c+c' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a'' & b'' \\ 0 & 1 & c'' \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & (a+a')+a'' & b''+(a+a')c''+(b'+ac'+b) \\ 0 & 1 & (c+c')+c'' \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a+(a'+a'') & (b''+a'c''+b')+a(c'+c'')+b+1 \\ 0 & 1 & c+(c'+c'') \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a'+a'' & b''+a'c''+b' \\ 0 & 1 & c'+c'' \\ 0 & 0 & 1 \end{bmatrix}$$

$$= A(BC)$$

Identity.
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is in G and that for any $A \in G$, $IA = AI = A$.

In the second of A is a condition of A in the second of A in the second of A is a condition of A .

The second of A is a condition of A in the second of A in the second of A is a condition of A .

Inverses. Let
$$M = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$
. Then,

$$MA = AM = \begin{bmatrix} 1 & a-a & ac-b+a(-c)+b \\ 0 & 1 & c-c \\ 0 & 0 & 1 \end{bmatrix} = I,$$

so that every element of G has an inverse. Hence G is a group. \blacksquare

Problem 2.52. Let $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} | a \in \mathbb{R}, a \neq 0 \right\}$. Show that G is a group under matrix multiplication. Explain why each element of G has an inverse even though the matrices have 0 determinants.

Solution: Let $A = \begin{bmatrix} a & a \\ a & a \end{bmatrix}$ and $B = \begin{bmatrix} b & b \\ b & b \end{bmatrix}$ be arbitrary elements of G. Then

$$AB = \begin{bmatrix} 2ab & 2ab \\ 2ab & 2ab \end{bmatrix} \in G,$$

so that matrix multiplication is a binary operation on the set of G.

Associativity. Since matrix multiplication is associative and G is closed under matrix multiplication, this binary operation is also associative on G.

Identity. We determine the identity of G by attempting to find a matrix $I = \begin{bmatrix} c & c \\ c & c \end{bmatrix}$ such that AI = IA = I. First, by the work above, we see that any two elements of G commute. Next, observe that:

$$AI = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} c & c \\ c & c \end{bmatrix} = \begin{bmatrix} 2ac & 2ac \\ 2ac & 2ac \end{bmatrix} = \begin{bmatrix} a & a \\ a & a \end{bmatrix},$$

if and only if 2ac = a for all $a \in \mathbb{R}$. Hence $c = \frac{1}{2}$ and $I = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is the identity element of G.

Inverses. For any $A = \begin{bmatrix} a & a \\ a & a \end{bmatrix} \in G$, we wish to find $M \begin{bmatrix} m & m \\ m & m \end{bmatrix} \in G$ such that:

$$AM = \begin{bmatrix} 2am & 2am \\ 2am & 2am \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

So we need $2am = \frac{1}{2}$, that is, $m = \frac{1}{4a}$. So every element of G has an inverse. Hence G is a group.

Each element of G has an inverse because the identity in this group is not the usual "identity" of matrix multiplication. Hence the property $\det(A) \neq 0$ is not an appropriate property to check for the existence of inverses in this group.

Problem 3.2. Let \mathbb{Q} be the group of rational numbers nder addition and let \mathbb{Q}^* be the group of nonzero rational numbers under multiplication. In \mathbb{Q} , list the elements in $\langle \frac{1}{2} \rangle$. In \mathbb{Q}^* , list the elements in $\langle \frac{1}{2} \rangle$.

Solution:

In
$$\mathbb{Q}$$
, $\langle \frac{1}{2} \rangle = \{ \frac{n}{2} | n \in \mathbb{Z} \}$.

In
$$\mathbb{Q}^*$$
, $\langle \frac{1}{2} \rangle = \{2^n | n \in \mathbb{Z}\}$.

Problem 3.6. In the group Z_{12} , find |a|, |b|, and |a+b| for each case.

a.
$$a = 6, b = 2$$

b.
$$a = 3, b = 8$$

c.
$$a = 5, b = 4$$

Solution:

I will just do this problem all at once, noting that the set of |a|, |b|, and |a+b| for parts a., b., and c. is $\{2, 3, 4, 5, 6, 8, 9, 11\}$.

Since $2 \cdot 6 = 12$, |2| = 6.

Since $3 \cdot 4 = 12$, |3| = 4.

Since $4 \cdot 3 = 12$, |4| = 3.

Since $5 \cdot 12 = 60$ and lcm(5, 12) = 60, |5| = 12.

Since $6 \cdot 2 = 12$, |6| = 2.

Since $8 \cdot 3 = 24$ and lcm(8, 12) = 24, |8| = 3.

Since $9 \cdot 4 = 36$ and lcm(9, 12) = 36, |9| = 4.

Since $11 \cdot 12 = 132$ and lcm(11, 12) = 132, |11| = 12.

Problem 3.8. What can you say about a subgroup of D_3 that contains R_{240} and a reflection F? What can you say about a subgroup of D_3 that contains two reflections?

Solution:

First note that $D_3 = \{R_0, R_{120}, R_{240}, F, FR_{120}, FR_{240}\}$ where F is some reflection.

Let A be a subgroup of D_3 containing R_{240} and a reflection F. Then, since A is a subgroup, any multiple of R_{240} with itself or F must be contained in A. Thus FR_{240} and $R_{240}^2 = R_{120}$ are in A, and thus FR_{120} is also in A. Therefore A has all six elements of D_3 , meaning $A = D_3$.

Suppose that B is a subgroup of D_3 containing two distinct reflections. If B contains F and FR_{120} , then $R_{120} = F(FR_{120})$ is in B and so B must have all the elements of D_3 , meaning $B = D_3$. Similarly, if F and FR_{240} are contained in B, then $R_{240} = F(FR_{240})$ is in B and $B = D_3$. Lastly, if FR_{120} and FR_{240} are contained in B, then since $R_{120} = F(FR_{240})$

Produced by: Kyle Dahlin

 $FR_{120}FR_{240}$ is in B, we again get that $B=D_3$.

Comment: This problem can also be done by using a Cayley Table. Let F, $F_2 = FR_{120}$, and $F_3 = FR_{240}$ be the three distinct reflections of D_3 .

For the first subgroup, we can see that the six elements of D_3 are generated just by products of R_{240} and F by looking at the orange cells of the table.

D_3	R_0	R_{120}	R_{240}	F	F_2	F_3
R_0	R_0	R_{120}	R_{240}	F	F_2	$\overline{F_3}$
R_{120}	R_{120}	R_{240}	R_0	F_3	F	F_2
R_{240}	R_{240}	R_0	R_{120}	F_2	F_3	F
F	F	F_2	F_3	R_0	R_{120}	R_{240}
F_2	F_2	F_3	F	R_{240}	R_0	R_{120}
F_3	F_3	F	F_2	R_{120}	R_{240}	R_0

For the subgroup with two reflections, notice that if we choose any two distinct elements out of $\{F, F_2, F_3\}$, then the subtable will always include R_{240} and we can apply the result from above to say that this subgroup must be all of D_3 .

D_3	R_0	R_{120}	R_{240}	F	F_2	F_3
R_0	R_0	R_{120}	R_{240}	\overline{F}	F_2	$\overline{F_3}$
R_{120}	R_{120}	R_{240}	R_0	F_3	F	F_2
R_{240}	R_{240}	R_0	R_{120}	F_2	F_3	F
F	F	F_2	F_3			
F_2	F_2	F_3	F	R_{240}	R_0	R_{120}
F_3	F_3	F	F_2	R_{120}	R_{240}	R_0

Problem 3.20. Let x belong to a group. If $x^2 \neq e$ and $x^6 = e$, prove that $x^4 \neq e$ and $x^5 \neq e$. What can we say about the order of x?

Solution:

Let x be an element of a group with $x^2 \neq e$ and $x^6 = e$. Suppose that $x^4 = e$ or $x^5 = e$. If $x^4 = e$, then

$$x^2 = x^2 \cdot e = x^2 \cdot x^4 = x^6 = e,$$

a contradiction. If $x^5 = e$, then

$$x = x \cdot e = x \cdot x^5 = x^6 = e,$$

which implies that $x^2=e,$ a contradiction. Hence $x^4\neq e$ and $x^5\neq e.$

Since the order of x must divide 6 and it cannot be 2, the order of x is either 3 or 6.

Problem 3.26. Prove that a group with two elements of order 2 that commute must have a subgroup of order 4.

Solution:

Let G be a group with $x,y \in G$ having the properties: $x \neq y$, |x| = |y| = 2, and xy = yx. Let $H = \langle x, y \rangle$. Then $H = \{e, x, y, yx\}$ since xy = yx, (yx)x = y = x(yx), y(yx) = x = (yx)y and $(yx)^2 = x^2y^2 = e$ are all the possible elements of H. Hence H has order 4.

Comment: This problem should have you assume that the two elements of order 2 are distinct.

It is necessary to show that e, x, y, yx are all of the elements in $H = \langle x, y \rangle$, since in general H will have infinitely many distinct elements, for example, $xyx^2yxy^3x^{43}y^{-4}xy^{-1}$, yx^{-1} , etc. The relations and orders of x and y are what ensure that H has precisely four distinct elements.

Problem 3.27. For every even integer n, show that D_n has a subgroup of order 4.

Solution:

Since n is even, $R_{180} \in D_n$. Let F be a reflection in D_n with $F \neq R_{180}$. Since $|F| = |R_{180}| = 2$ and $FR_{180}F = R_{180}^{-1} = R_{180}$, we get that D_n has two distinct elements of order two that must commute. Hence D_n has a subgroup of order 4, by Problem 3.26.

Problem 3.32. If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.

Solution:

We will use Theorem 3.1, the One-step Subgroup Test. Suppose that $h, k \in H \cap K$. Then since H is a subgroup, $hk^{-1} \in H$ and since K is a subgroup, $hk^{-1} \in K$. Hence $hk^{-1} \in H \cap K$ and $H \cap K$ is a subgroup by Theorem 3.1.