

M1C1_Mini

360°激光扫描测距雷达开发手册

目录

数据格式标准说明数据格式标准说明	2
1、雷达工作方式	2
2、雷达指令格式	2
2.1、雷达信息指令	3
2. 2、雷达数据指令	4
修订	7

数据格式标准说明

1、雷达工作方式

- ➤ M1C1_Mini 激光雷达上电默认处于静止状态,通过指令控制,启动雷达转动, 然后输出点云数据;同时,通过指令控制可以实现雷达转动停止控制,转动方向 为顺时针方向。
- → M1C1_Mini 激光雷达在转速稳定后才输出数据,在转速调整过程中,伴随部分 0xFE 或 0xFF 的单字节速度调整指令。
- ➤ M1C1_Mini 激光雷达暂不支持外部调速。

2、雷达指令格式

雷达指令包括控制指令和信息指令两种,其中控制指令用于激光雷达的转动动作控制,包括转动和停止两种。

➤ 控制指令

AA 55 FO OF : <mark>转动指令</mark>

AA 55 50 07 00 00 00 00 00 00 A8 : <mark>转动应答</mark>

AA 55 F5 OA : 停止指令

AA 55 55 07 00 00 00 00 00 00 AD : <mark>停止应答</mark>

▶ 信息指令

A5 5A XX XX YY YY ZZ

A5 5A : 包头

XX XX : 长度, 低位在前, 如 05 00 代表长度 5

YY YY : 校验和,除了此字段外所有字节和

ZZ : 包类型, 0x81=上传雷达数据; 0x01=上传雷达信息

2.1、雷达信息指令

雷达信息上传,本条指令为雷达上电的发出的第一条指令,上传指令详细描述了 M1C1 Mini 激光雷达的信息。

A5 5A 14 00 03 04 01 数据区

其中数据区长度为 20 个字节,以下为具体数据:

字节偏移:

1		3		5		7		9		11		13	3	15	5	17	7	19	9
4D	31	43	31	5F	4D	69	6E	69	00	00	00	0C	00	00	01	00	00	00	04

第 1-12 字节为激光雷达型号。其中, 第 1-9 字节为 M1C1_Mini 的 ASCCII 码;

第 10 字节为 0x00, 代表结束。

第 13-14 字节为 0C 00,代表雷达数据零度角与下图标注零度角的夹角为 12°, 顺时针方向,低位在前。

第 15 字节为 0x00,代表雷达旋转方向为顺时针。

第 16 字节为 0x01,表示需要在扫地机的驱动代码中实现角度矫正。

第 17-19 字节预留, 默认为 0。

第 20 字节为 0x04,表示当前的软件版本号为 Rev 4。

图 1 M1C1 Mini 零度角偏移示意图

2.2、雷达数据指令

开始扫描,在开始扫描前固定发送,本条指令为雷达上电后发出的第二条指令。

A5 5A 00 00 80 01 81 数据区

其中, 0x80 0x01 为检验和, 0x81 位类型码。

数据区为系统扫描的点云数据,按照以下数据结构,以16进制发送给外部设备。

_															
PH		PHH	CT	LSN	FSAL	FSAH	LSAL	LSAH	CSL	CSH	S1L	S1H	S2L	S2H	
РП	_	РПП	CI	LSIN	FSAL	гэАп	LSAL	LSAH	CSL	СЗП	31L	3111	32L	32П	
AA		55													

表 1 M1C1 Mini 数据包格式描述

标识	名称	描述
PH	数据包头	AA 55
CT	包类型	0x00=点云数据包; 0x01=起始数据包; (注)
LCNI	□#¥上##目	表示当前数据包中包含的采样点数量;起始数据包中只有1个
LSN	采样点数量	起始点的数据,该值为 1。
FSA	起始角度	采样数据中第一个采样点对应的角度数据

LSA	结束角度	采样数据中最后一个采样点对应的角度数据
CS	校验码	当前数据包的校验码,采用双字节异或对当前数据包进行校验
Si	采样数据	系统测试的采样数据,为采样点的距离数据

➤ 起始位解析:

当检测到 CT=1 时,表明该包数据为起始数据包,表示一圈数据的开头,该数据包中 LSN = 1,即 Si 的数量为 1;其距离、角度的具体值解析参见下文。

➤ 距离解析:

距离解算公式: Distance = (SiL+SiH<<8)>>2;单位为 mm。

设采样数据为 E4 6F, 由于本系统是小端模式, 所以本采样点 D = 0x6FE4, 带

入到距离解算公式, 得 Distance = 0x6FE4>>2= 7161mm。

➤ 角度解析:

角度数据保存在 FSA 和 LSA 中,每一个角度数据有如下的数据结构,

AngleL[1:7]	C[0]	AngleH[0:7]

C 是校验位, 其值固定为 1。 角度解析具体过程如下:

起始角解算公式: Angle fsa = (FSA>>1)/64- AngCorrect

结束角解算公式: Angle Isa = (LSA>>1)/64-AngCorrect_{LSN}

中间角解算公式:

Angle(i) =
$$(FSA > 1)/64 + \frac{(LSA >> 1)/64 - (FSA >> 1)/64}{LSN-1} * (i-1) - AngCorrect_i;$$
[i=1,2,3...LSA-1]

其中 AngCorrect 为角度修正值,公式如下:

IF
$$Distance_i = 0$$

$$AngCorrect_i = 0$$
ELSE
$$AngCorrect_i = arctan (19.16 * \frac{Distance_i - 90.15}{90.15 * Distance_i})$$

设数据包中,第1~8字节为:

AA 55 00 19 39 18 97 23

同时设: $Distance_1 = 1000$, $Distance_{LSN} = 8000$.

所以: LSN = 0x19 = 25, FSA = 0x1839, LSA = 0x2397, 带入角度解算公

式,得:

Angle_fsa = 48.4375°-10.9442°=37.4933°

Angle Isa = 71.1718°-11.8653°=59.3065°

Angle(i) = $48.4375^{\circ} + 0.9473^{\circ} * (i-1) - AngCorrect_{i}$

➤ 校验码解析:

校验码采用双字节异或,对当前数据包除 CS 外所有字节进行校验,其本身不参与异或运算,因此,校验码解算公式为:

 $CS = PH ^ (CT | LSN << 8) ^ FSA ^ LSA ^ Si;$

注: PH=(PHL|PHH<<8); 其他字段也同样计算。

日期	版本	修订内容
2019-9-20	1.0	初撰
2020-1-22	1.1	增加控制指令说明,调整图 1 零位角示意图及说明