DC_Notes_Ip_Academy

Line Coding

05:14

Polar (RZ & Manchester) and Bipolar

01:23

03:19

Sampling Theorem with proof

02:32

What is Quantization?

01:49

Companding

Pulse Code Modulation (PCM)

.. --

00:57

Differential Pulse Code Modulation (DPCM)

. . . . -

Adaptive Delta Modulation (ADM): Analysis

Random Variable | Random Signal Theory

WSS & SSS Random Process | Random Signal Theory

Cumulative Distribution Function (CDF)

Then
$$F_{\chi}(x)=0$$
; $-\infty \leq \chi \leq \chi_{1}$
 $=\frac{\chi}{2}P(\chi=\chi_{1}), \chi_{1} \leq \chi \leq \chi_{1}$
 $=1; \chi_{1} \leq \chi \leq \chi_{2}$
 $=1; \chi_{2} \leq \chi \leq \chi_{3}$

Probability Density Function (PDF)


```
PDF is given by \{x(n) = \alpha e^{-b|x|} where x is a kandom variant whose value lie in the range x = -\infty to n = +\infty.

Whose value lie in the range x = -\infty to n = +\infty.

XEC-0,00)

Determine:

(i) The relationship blue a \ge b.

(Iii) The probability that outcome lies b/w | and a.

IIII) The probability that outcome lies b/w | a = -\infty.

So \{x(n) = ae^{-b|x|}\}

So \{x(n) = ae^{-b|x|}\}

The probability that outcome lies b/w | a = -\infty.

So \{x(n) = ae^{-b|x|}\}

The probability that outcome lies b/w | a = -\infty.

So \{x(n) = ae^{-b|x|}\}

The probability that a = -\infty.

The probability that a = -\infty.

The probability that a = -\infty.

The probability that a = -\infty.
```

$$F_{x}(x) = \int_{0}^{\infty} f_{x}(x) dx$$

$$= \int_{0}^{\infty} ae^{-b(x)} dx$$

$$= \int_{0}^{\infty} ae^{-b(x)} dx + \int_{0}^{\infty} ae^{-bx} dx + \int_{0}^{\infty} ae^{-bx} dx$$

$$= ae^{bx} + (-a)[e^{-bx}] + \frac{1}{a}$$

Joint PDF & Joint CDF

$$Q \ \begin{cases} xy(x_1y) = e^{-Cx+y} \end{cases} \ for \ n \neq 0, \ y \neq 0 \end{cases}$$

$$= 0 \qquad \text{otherwise}.$$

$$(i) \ PCx(x) \qquad (iii) \ PCx + y < 1).$$

$$\rightarrow \begin{cases} xy(x_1y) = e^{-x} \\ e^{-x} = \begin{cases} xy(x_1) \\ -1 \end{cases} \end{cases} \begin{cases} xy(y) \\ e^{-x} = \begin{cases} xy(x_1) \\ -1 \end{cases} \end{cases} = - \left[e^{-x} \right]^{\frac{1}{2}}.$$

$$(ii) \ PCx + y > 1$$

$$(iii) \ PCx + y > 1$$

Marginal PDF or Marginal Densities

Marginal PDF or Marginal Densities

When $S_{x}(x)$ and $J_{y}(y)$ for any randome variable are obtained from $S_{xy}(x,y)$ then $S_{x}(x)$ and $S_{y}(y)$ are called marginal PDF. $S_{xy}(x,y) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$. $S_{xy}(x,y) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$. $S_{x}(x) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$. $S_{xy}(x,y) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$. $S_{xy}(x,y) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$. $S_{xy}(x,y) = \int_{\infty}^{\infty} \int_{xy}^{\infty} \int_{\infty}^{\infty} \int_{xy}^{\infty} (x,y) dxdy$.

Mean, Moments and Central Moment

Nth moment of any bandom variable
$$X = mean(X)$$

$$g(x) = x^n \Rightarrow mean = g(x)$$

$$x_n = g(x) = \int_0^\infty x^n \int_X (x) dx = x^n = E(X^n)$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = E(x) = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n = \int_0^\infty x \int_X (x) dx = mean$$

$$x_n =$$

Correlation Function and its types

```
CORRELATION FUNCTION

I Autocosselation Function

It is defined as a measure of simplesty between a signal and its replica by a variable amount.

R_{X}(t_{j}-t_{i}) = E[X(t_{j}) \times (t_{i})]
autocosselation

Sunction of stationary

Process X(t).

X(t) & X(t_{j}) = Random variable obtained by observing the process

X(t) at times t j and t i respectively

* It only depends on time difference (t_{j}-t_{i}) for stationary

R_{X}(T) = E(X(t_{j}) \times (t_{j}-t_{i}) 

From lag or time delay parameter.
```


Power Spectral Density (PSD)

Chasacteristics of 100 (i)
$$S_{x}(\omega) = S_{x}(-\omega)$$

(i) $S_{x}(\omega) = S_{x}(-\omega)$

(ii) $S_{x}(\omega) = S_{x}(-\omega)$

(iii) It is a seal function of ω

If Energy spectral Density

* Not in Course

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

E=\(\frac{1}{2}\text{T}\)\text{Cw)dw}.

All Distributions in Brief

Central Limit Theorem

