MTH 419

1. Review: set theory

Sets

In general sets will be denoted by capital letters: A, B, C, \dots

Frequently used sets:

 \emptyset = the empty set (i.e. the set that contains no elements)

 $\mathbb{N} = \{0, 1, 2, \dots\}$ the set of natural numbers

 $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ the set of integers

 $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$ the set of positive integers

 $\mathbb{Q}=$ the set of rational numbers

 \mathbb{R} = the set of real numbers

We will write $x \in A$ to denote that x is an element of the set A and $y \notin A$ to indicate that y is not an element of A. For example, $5 \in \mathbb{Z}$, $\frac{1}{3} \notin \mathbb{Z}$.

Subsets

A set B is a *subset* of a set A if every element of B is in A. In such case we write $B \subseteq A$.

A set B is a proper subset of A if $B \subseteq A$ and $B \neq A$.

Example. Some subsets of \mathbb{Z} :

- $A = \{n \in \mathbb{Z} \mid n > 10\}$ the set of integers greater than 10.
- $B = \{ n \in \mathbb{Z} \mid n = 2k \text{ for some } k \in \mathbb{Z} \}$ the set of even integers.

Operations on sets

• The *union* of sets A and B is the set $A \cup B$ that consists of all elements that belong to either A or B (or both):

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• The *intersection* of sets A and B is the set $A \cap B$ that consists of all elements that belong to both A and B:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

• The *difference* of sets A and B is the set $A \setminus B$ that consists of all elements that belong to A but not to B:

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

Example. If $A = \{a, b, c, d\}$, $B = \{c, d, e, f\}$ then:

$$A \cup B = \{a, b, c, d, e, f\}$$
$$A \cap B = \{c, d\}$$
$$A \setminus B = \{a, b\}$$

Note. We say that sets *A* and *B* are *disjoint sets* if $A \cap B = \emptyset$.

• The *Cartesian product* of sets A, B is the set consisting of all ordered pairs of elements of A and B:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Example. If
$$A = \{1, 2, 3\}$$
, $B = \{2, 3, 4\}$ then

$$A \times B = \{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$$

Functions

Composition of functions:

• A function $f: A \to B$ is 1-1 if f(a) = f(a') only if a = a'.

ullet A function $f\colon A o B$ is *onto* if for every $b\in B$ there is $a\in A$ such that f(a)=b

• A function $f: A \to B$ is a *bijection* if f is both 1-1 and onto.

Note. If $f: A \to B$ is a bijection then the inverse function $f^{-1}: B \to A$ exists and it is also a bijection. Then for every $a \in A$ and $b \in B$ we have:

$$f^{-1}(f(a)) = a$$
 and $f(f^{-1}(b)) = b$

Cardinality

We will denote by |A| the cardinality of the set A. For a finite set, this is the number of elements of A.

Note. If A, B are sets, then |A| = |B| if and only if there exists a bijection $f: A \to B$.