Adapté de l'exercice 3 du bac 2025 Métropole Jour 1.

Certains équipements mécaniques, comme les moteurs, nécessitent l'utilisation d'huiles de valeur de viscosité contrôlée pour pouvoir fonctionner correctement.

Le but de ce TP est d'étudier le principe de fonctionnement d'un viscosimètre à chute de bille permettant de mesurer, à température ambiante, la viscosité d'une huile.

La mesure de la viscosité de l'huile repose sur l'exploitation de la chute verticale d'une bille en acier dans un récipient cylindrique, rempli de cette huile, représenté sur la figure 1. Le mouvement du centre de masse de la bille est étudié dans le référentiel terrestre supposé galiléen, muni d'un repère d'origine O, d'axe vertical (Oz) orienté vers le bas et de vecteur unitaire \vec{k} . La situation est schématisée sur la figure 1.

Figure 1. Schéma du dispositif expérimental de mesure.

Données:

- intensité de la pesanteur terrestre : $g = 9.81 \text{ m} \cdot \text{s}^{-2}$
- volume d'une bille de rayon $r: V_b = \frac{4}{3}\pi r^3$
- pour discuter de l'accord du résultat d'une mesure avec une valeur de référence, on peut utiliser le quotient $\frac{|x-x_{\rm ref}|}{\mathrm{u}(x)}$ avec x la valeur mesurée, $x_{\rm ref}$ la valeur de référence et $\mathrm{u}(x)$ l'incertitude-type associée à la valeur mesurée x.

Lors de sa chute verticale dans l'huile, la bille de masse m est soumise à trois forces :

- son poids noté \overrightarrow{P} ;
- la poussée d'Archimède, exercée par l'huile, d'expression vectorielle $\overrightarrow{P_A} = -\,\rho_h \cdot V_b \cdot g \cdot \vec{k}$;
- la force de frottement exercée par l'huile sur la bille, d'expression vectorielle dans les conditions de l'expérience : $\vec{f} = -\alpha \cdot \eta_h \cdot v \cdot \vec{k}$ avec α une constante homogène à une distance, dépendant des paramètres géométriques du système, η_h la viscosité de l'huile et v la valeur de la vitesse du centre de masse de la bille. On donne $\alpha = 1,92 \times 10^{-2}$ m.

Matériel à disposition :

- grande éprouvette
- petite éprouvette
- balance électronique
- huile
- webcam
- règle
- ordinateur avec Regressi

Proposer un protocole permettant de déterminer le plus précisément possible la masse volumique ρ_h de l'huile et celle ρ_h de la bille avec le matériel à disposition.

$$\rho_h = \dots$$

$$\rho_b = \dots$$

Exprimer le rayon r de la bille à partir de sa masse m et de ρ_b puis calculer sa valeur.

$$r = \dots$$

La mesure de la viscosité η_h se fait grâce à celle de la vitesse limite de la bille dans l'huile. On souhaite ainsi réaliser un pointage de la position de la bille lors de la chute dans l'huile.

Proposer un protocole détaillé permettant d'obtenir la vitesse limite de chute de la bille.

Il faudra faire apparaître à la fois les précautions prises pour l'enregistrement (position et orientation de la webcam, position de la règle, déclenchement de l'enregistrement, etc.) et les détails de l'exploitation (grandeurs calculés, graphes affichés, obtention de la valeur d'intérêt, etc.).

Réaliser l'enregistrement et son exploitation pour l'obtention de v_{lim} .

$$v_{\text{lim}} = \dots$$

Théorie:

Q1. Montrer, à l'aide d'un raisonnement sur les unités, que la viscosité η_h s'exprime en N·m-2·s.

À la date t=0, la bille est lâchée avec une vitesse initiale nulle depuis le point O, situé dans l'huile, en haut du récipient cylindrique. Au bout de quelques instants, le mouvement de la bille devient rectiligne uniforme, la bille atteint alors une vitesse limite notée $v_{\rm lim}$.

- **Q2.** Préciser, en justifiant, si la valeur de la force de frottement \vec{f} augmente ou diminue quand la valeur de la vitesse de la bille augmente.
- **Q3.** Représenter sur un schéma, sans calcul et en justifiant, l'ensemble des forces appliquées au système {bille}, lorsque la vitesse limite est atteinte.
- **Q4.** Montrer que la vitesse limite vérifie l'équation :

$$\alpha \cdot \eta_h \cdot v_{\lim} = \frac{4 \cdot \pi \cdot r^3 \cdot g \cdot (\rho_b - \rho_h)}{3}$$

Q5. Calculer la valeur de la viscosité η_h de l'huile à partir de votre mesure de $v_{\rm lim}$.

Rechercher la valeur de la viscosité de référence de l'huile utilisée.

$$\eta_{\rm ref} = \dots$$

Déterminer par une analyse de type A sur l'ensemble des groupes, la valeur moyenne $\overline{\eta_h}$ de la mesure de la viscosité de l'huile et l'incertitude-type $\mathfrak{u}(\overline{\eta_h})$ associée.

groupe	1	2	3	4	5	6	7	8	9
η_h									

Écriture du résultat (on ne gardera qu'un seul chiffre significatif pour l'incertitude-type :

$$\eta_h =$$
 (..... \pm ) N·m-2·s

Q6. Déterminer si la valeur de la viscosité η_h obtenue expérimentalement est en accord avec la valeur de référence.

On souhaite déterminer la durée nécessaire pour que la bille, lâchée avec une vitesse initiale nulle, atteigne sa vitesse limite.

Q7. Le vecteur accélération \vec{a} du centre de masse de la bille s'écrit : $\vec{a} = a \cdot \vec{k}$. À l'aide de la deuxième loi de Newton, montrer que l'accélération a peut s'écrire :

$$a = g \cdot \left(1 - \frac{\rho_h \cdot V_b}{m}\right) - \frac{\alpha \cdot \eta_h}{m} \cdot v$$
 où m est la masse de la bille

Q8. En déduire que l'évolution de la coordonnée v du vecteur vitesse \vec{v} de chute de la bille au cours du temps obéit à l'équation différentielle suivante :

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{3 \cdot \alpha \cdot \eta_h}{4 \cdot \rho_b \cdot \pi \cdot r^3} \cdot v = g \cdot \left(1 - \frac{\rho_h}{\rho_b}\right)$$

Si la bille est abandonnée avec une vitesse initiale nulle, la résolution de l'équation différentielle précédente permet d'obtenir l'expression de sa vitesse v(t):

$$v(t) = v_{\lim} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$
 avec $\tau = \frac{4 \cdot \rho_b \cdot \pi \cdot r^3}{3 \cdot \alpha \cdot \eta_b}$

Q9. Calculer la valeur de τ en utilisant la valeur de la viscosité de référence de l'huile étudiée. Déterminer distance approximativement à partir de laquelle on peut raisonnablement considérer que la bille à atteint sa vitesse limite. Commenter.