Performing Optimizations in Spark

Mohit Batra
Founder, Crystal Talks

linkedin.com/in/mohitbatra

Overview

Work with Spark partitions

Change DataFrame partitions

Memory management

Persist data

Spark join strategies and broadcast join

Optimize join with bucketing

Dynamic resource allocation

Resource allocation using fair scheduling

Working with Spark Partitions

Types of Partitioning

- Chunks of data read in memory
- All partitions together constitute RDD/DataFrame

Disk Partitioning

- Writing output to disk by physically partitioning data based on columns
- Done using partitionBy method

In-Memory Partition Settings

Settings for Reading Data

Settings for Data Shuffling

1. For Reading Data

spark.default.parallelism = 4

[default = no. of cores]

P1 (32 MB)

P2 (33 MB)

P3 (31 MB)

P4 (32 MB)

Partitions may be lesser than default parallelism setting if data size is small

File 1

128 MB

1. For Reading Data

spark.default.parallelism = 4

[default = no. of cores]

spark.sql.files.maxPartitionBytes = 128 MB [default = 128 MB]

SOCK

File 1

1000 MB

P1 (124 MB)

P5 (124 MB)

P2 (128 MB)

P6 (128 MB)

P3 (128 MB)

P7 (128 MB)

P4 (124 MB)

P8 (116 MB)

2. For Shuffling Data

Impact of In-Memory Partitions

Partitions are processed in parallel

Partitions and Cores determine parallelism of a Job

Having very few/big partitions:

- Each task may need to process lot of data
- Cluster resources may be under-utilized

Having lot of/small partitions:

- Too many tasks are created
- Reduces parallelism since tasks go in waiting state

Changing DataFrame Partitions

Methods to Change DataFrame Partitions

Repartition Method

Coalesce Method

Repartition Method

Typically used to increase number of partitions

Wide transformation - performs shuffling

Avoid using it to decrease partitions

Partitioning Options

- Round Robin Creates equal sized partitions
- Hash Co-locates data based on columns
- Range Sorts & co-locates data based on columns

Use Cases

- Reduce skewness (some partitions have much more data than others)
- Reduce size of partitions (when they are too big)
- Co-locate data based on certain columns

Coalesce Method

Used for decreasing number of partitions of DataFrame

Cannot increase partitions

Narrow transformation - no shuffling

Can result in Out-of-Memory exceptions

- Eg: Existing DF = 100 partitions * 100 MB
- Coalesce(1) \rightarrow New DF = 10,000 MB

Use Cases

- Partitions are very small
- Output is required in lesser number of files

Memory Management

App

JVM Heap memory is used for Spark activity

Overhead memory (non-heap memory) is used by non-JVM processes like VM overheads, buffers etc.

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.memoryOverhead

= max (10% of memory or 384 MB)

= 800MB

App

Driver Container

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.memoryOverhead

= max (10% of memory or 384 MB)

= 800MB

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.memoryOverhead

= max (10% of memory or 384 MB)

= 800MB

Executor Container

spark.executor.cores = 4

spark.executor.memory = 14 GB

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.memoryOverhead

= max (10% of memory or 384 MB)

= 800MB

Executor Container

spark.executor.cores = 4

spark.executor.memory = 14 GB

spark.executor.memoryOverhead

= max (10% of memory or 384 MB)

= 1.4 GB

spark.driver.cores = 2

spark.driver.memory = 8 GB

spark.driver.memoryOverhead

= max (10% of memory or 384 MB)

= 800MB

Executor Container

spark.executor.cores = 4

spark.executor.memory = 14 GB

spark.executor.memoryOverhead

= max (10% of memory or 384 MB)

= 1.4 GB

14,000 MB JVM Heap Memory

spark.executor.cores = 4 spark.executor.memory = 14 GB

Reserved Memory = 300 MB

Spark Memory spark.memory.fraction

(14000 MB - 300 MB) * 60% = 8220 MB

Reserved by Spark for internal purposes

For task execution, caching, shuffling, DataFrame operations etc.

spark.executor.cores = 4
spark.executor.memory = 14 GB
spark.memory.fraction = 0.6

User Memory

(14000 MB - 300 MB) * 40% = 5480 MB

For storing data structures created by user, metadata, RDD operations, UDFs etc.

Reserved Memory = 300 MB

Spark Memory = 8220 MB

Execution Memory (50%) = 4110 MB

Storage Memory (50%) = 4110 MB

User Memory = 5480 MB

For DataFrame operations, task execution, shuffling etc.

For storing cached data

spark.executor.cores = 4

spark.executor.memory = 14 GB

spark.memory.fraction = 0.6

spark.memory.storageFraction = 0.5

spark.executor.cores = 4

Task 1 Task 2 Task 3

Reserved Memory = 300 MB

Execution Memory = 4110 MB	Task 1	Task 2	Task 3	
Storage Memory = 4110 MB				

User Memory = 5480 MB

spark.executor.cores

= 4

spark.executor.cores

= 4

spark.executor.cores

= 4

spark.executor.cores = 4

If Tasks need more memory, it may result in Out-of-Memory exceptions

Persisting Data

Transformations Operations

Executes all 4 transformations, & writes to disk

Action 2

Output 2

Executes all 5 transformations, & writes to disk

Persist data to avoid re-computation of complex transformations with every Action operation

Persisting data is a Lazy operation

Transformations
Operations

No data is cached Lazy operation

Action 1

Executes all 4 transformations, caches data, & writes to disk

Action 2

Uses cached data, applies join, & writes to disk

User Memory = 5480 MB

Partitions can be cached in Storage Memory

If Execution Memory is free, partitions can be cached there too

Partitions will be evicted from Execution Memory if tasks need them

Partitions can be spilled over to disk if Storage Memory does not have enough space

Cache can be manually evicted

Partitions are evicted from cache in LRU (Least-Recently-Used) fashion

Caching Methods

Two methods - cache() and persist()

Applying cache() and persist() without arguments

- On RDD: MEMORY_ONLY
- On DataFrame: MEMORY_AND_DISK

cache() has no arguments

persist() supports Storage Level as argument

- MEMORY_ONLY: Partitions that can fit in memory are cached; others are recomputed each time
- MEMORY_AND_DISK: Partitions that can fit in memory are cached; others are spilled to local disk of Worker
- DISK_ONLY: Only stored on disk; pulled when required
- more...

Recommended to unpersist data if not required

Spark Join Strategies and Broadcast Joins

Spark Join Strategy determines how to move, shuffle, sort, group & merge data across executors during join operation

Join Strategies

Broadcast Hash
Join

Shuffle Sort Merge Join

Shuffle Hash Join

Cartesian Join

Broadcast Nested Loop Join

Shuffle Sort Merge Join

Involves shuffling & sorting of data for both datasets

Great for joining two large datasets

But even if one dataset is small, shuffling still happens

Expensive join strategy

If one dataset in a join operation is small, avoid shuffling using Broadcast Hash Join

Sales DF 100 mn records

Products DF 10K records

Sales DF 100 mn records

............

Products DF 10K records

Broadcast Hash Join App 1 Driver Executor 2 Executor 1 Products Products Core Core Core Core Sales P1 Sales P3 Sales P2

Sales DF 100 mn records

Products DF 10K records

Broadcast Hash Join

Useful when one of datasets is small

Copy of smaller dataset is sent to each executor once

No data shuffling required

Non-expensive & fastest join operation

Spark can perform auto broadcast or can be forced

Optimizing Shuffle Sort Join with Bucketing

10 mn records

Bucketing is an optimization technique to avoid shuffles during joins

ld	City	Amount
1	Seattle	600
2	London	300
3	Seattle	700
4	Delhi	400
5	Paris	900
6	Seattle	900
7	Delhi	200

ld	City	Amount
1	Seattle	600
2	London	300
3	Seattle	700
4	Delhi	400
5	Paris	900
6	Seattle	900
7	Delhi	200

ld	City	Amount
1	Seattle	600
2	London	300
3	Seattle	700
4	Delhi	400
5	Paris	900
6	Seattle	900
7	Delhi	200

ld	City	Amount
1	Seattle	600
2	London	300
3	Seattle	700
4	Delhi	400
5	Paris	900
6	Seattle	900
7	Delhi	200

1	Seattle	600
3	Seattle	700

Hash function

••••••••••••••••

2 London 300

Id	City	Amount
1	Seattle	600
2	London	300
3	Seattle	700
4	Delhi	400
5	Paris	900
6	Seattle	900
7	Delhi	200

DataFrame

1	Seattle	600
3	Seattle	700
6	Seattle	900

2	London	300
5	Paris	900

Bucketed data is written to disk

4	Delhi	400
7	Delhi	200

Bucketing

Pre-shuffle large datasets & write it to disk in buckets

Use bucketed data in subsequent queries

Use when dataset is frequently used in joins, aggregations or window operations

Conditions for joining bucketed datasets

- Bucketed datasets must be stored as tables
- Both datasets must be bucketed on join columns
- Number of buckets must be the same

Resource Scheduling for a Job

Scheduling Across Applications Scheduling Within an Application

Resource Scheduling Across Applications

Static Resource Allocation

Dynamic Resource Allocation

Static Resource Allocation

App

spark.dynamicAllocation.enabled = false

Task 1 Task 2

Task 3 Task 4

Task 5 Task 6

Static Resource Allocation

App

spark.dynamicAllocation.enabled = false

Task 5 Ta

Task 6

Static Resource Allocation

spark.dynamicAllocation.enabled = false

CPU Cores & Memory are pre-defined for an application

spark.dynamicAllocation:

.enabled = true

.shuffleTracking. enabled = true

.minExecutors = 0

.maxExecutors = 5

Task 1 Task 2

Task 3 Task 4

Task 5 Task 6

spark.dynamicAllocation:

.enabled = true

.shuffleTracking. enabled = true

.minExecutors = 0

.maxExecutors = 5

.schedulerBacklogTimeout = 1s

App **Driver Process** **************** Executor 1 Executor 2 Core Core Core Core Task 3 Task 4 Task 2 Task 1 Executor 3 Core Core

Task 5

Task 6

App

```
spark.dynamicAllocation:
```

.enabled = true

.shuffleTracking. enabled = true

.minExecutors = 0

.maxExecutors = 5

.schedulerBacklogTimeout = 1s

Executors will increase exponentially

Starting with 1 executor - then 2, 4, 8

spark.dynamicAllocation:

.enabled = true

.shuffleTracking. enabled = true

.minExecutors = 0

.maxExecutors = 5

.schedulerBacklogTimeout = 1s

.executorldleTimeout = 60s

Any cached data on executor will also be removed

No shuffle data is lost

Request more executors to complete pending tasks!

Remove executors when they are idle!

Use Cases

Running ad-hoc interactive applications

Long running ETL jobs to process multiple entities

Jobs with large shuffle operations

Resource Allocation Using Fair Scheduling

Resource Scheduling for a Job

Scheduling Across Applications Scheduling Within an Application

Resource Scheduling Within Application

FIFO Scheduling

FAIR Scheduling

FIFO Scheduling

FIFO Scheduling

Default scheduling

First job gets priority on resources

Other jobs in queue are delayed

Job 2

Task 4

Job 2

Task 4

Fair sharing of resources between jobs

Tasks from different jobs are assigned in a round-robin fashion

Small jobs can finish faster, without waiting for long-running jobs to finish

To configure, set:

spark.scheduler.mode = FAIR

Summary

In-memory partitions

- Settings to control partitions while reading & shuffling
- Change DF partitions using coalesce & repartition

Each driver & executor container has memory allocated

- Allocated JVM heap & non-heap memory
- Flexible memory usage b/w execution & caching

Persist data using cache() and persist()

- Avoids re-running transformations with every Action

Spark supports multiple join strategies

- Broadcast hash join: Large-small dataset join
- Shuffle sort merge join: Large-large dataset join
- Shuffle sort merge join can be improved by Bucketing

Spark supports dynamic allocation of resources

- Resource scheduling across applications
- Resource scheduling within application

Up Next:

Features in Apache Spark 3