COMS22202: 2015/16

Language Engineering

Dr Oliver Ray

(csxor@Bristol.ac.uk)

Department of Computer Science University of Bristol

Tuesday 16th February, 2016

Structural Induction: p11

 The use of compositional definitions permits the use of structural induction proofs (which are often simpler than normal proofs by induction)

Proofs by structural induction have two parts:

Base Cases:

prove that the property holds for each basis element

2. Inductive Cases:

assume property holds for all constituents of a composite element and prove the property holds for the composite element itself

Example - Binary Numerals: p10

```
Syntax: n : := 0 \mid 1 \mid n \mid 0 \mid n \mid 1

Semantics: \mathcal{N} [[0]] = 0 // basis elements

\mathcal{N} [[1]] = 1 // compound elements
```

 $\mathcal{N}[[n \ 1]] = 2 * \mathcal{N}[[n]] + 1$

Proof of Functionality

- Theorem: \mathcal{N} is a function: $\forall n \in \text{Num}. \forall a,b \in Z. \mathcal{N}[[n]] = a \land \mathcal{N}[[n]] = b \rightarrow a = b$
- Proof: by induction in the structure of the numeral n
- Base cases
 - if n=0 then $\mathcal{N}[[n]]=a \wedge \mathcal{N}[[n]]=b \rightarrow a=b=0$ as only first rule applies
 - if n=1 then $\mathcal{N}[[n]]=a \wedge \mathcal{N}[[n]]=b \rightarrow a=b=1$ as only second rule applies
- Induction step
 - if n=n' 0 then $\mathcal{N}[[n']]=i \land \mathcal{N}[[n']]=j \rightarrow i=j$ by ind. hyp.
 - $\mathcal{N}[[n]]=a \wedge \mathcal{N}[[n]]=b \rightarrow a=b=2i$ as only third rule applies
 - if n=n' 1 then $\mathcal{N}[[n']]=i \land \mathcal{N}[[n']]=j \rightarrow i=j$ by ind. hyp.
 - $\mathcal{N}[[n]]=a \wedge \mathcal{N}[[n]]=b \rightarrow a=b=2i+1$ as only fourth rule applies
 - (using the fact that integer addition and multiplication are functions)

Proof of Totality

- Theorem: \mathcal{N} is a function: $\forall n \in \text{Num}. \exists a \in Z. \mathcal{N}[[n]] = a$
- Proof: by induction in the structure of the numeral n
- Base cases
 - if n=0 then $\mathcal{N}[[n]]=0=a$ as first rule applies
 - if n=1 then $\mathcal{N}[[n]]=1=a$ as second rule applies
- Induction step
 - if n=n' 0 then $\mathcal{N}[[n']]=i$ by ind. hyp.
 - $\mathcal{N}[[n]]=2i=a$ as third rule applies
 - if n=n' 1 then $\mathcal{N}[[n']]=i$ by ind. hyp.
 - $\mathcal{N}[[n]]=2i+1=a$ as fourth rule applies
 - (using the fact that addition of 1 and multiplication by 2 are total)

Combined Proof of Total Functionality

- Theorem: N is a total function: ∀n∈Num.∃!a∈Z.N[[n]]=a where ∃!x.P(x) means "there is exactly one x such that P" and is defined ∃x.∀y. P(y) ↔ x=y
- i.e. we need to show $\forall n \in \text{Num}. \exists a \in Z. \forall b \in Z. \mathcal{N}[[n]] = b \leftrightarrow a = b \text{ in FOL}$
- Proof: by induction in the structure of the numeral n
- Base cases
 - if n=0 then \forall b. $\mathcal{N}[[n]]=b \leftrightarrow b=0$ so a=0 as only first rule applies
 - if n=1 then \forall b. $\mathcal{N}[[n]]=b \leftrightarrow b=1$ so a=1 as only second rule applies
- Induction step
 - if n=n' 0 then $\exists !b \in Z.\mathcal{N}[[n']]=b$ by ind. hyp.
 - $\therefore \forall y. \ \mathcal{N}[[n]]=y \leftrightarrow a=y=2b$ as only third rule applies
 - if n=n' 1 then $\exists !b \in Z.\mathcal{N}[[n']]=b$ by ind. hyp.
 - $\therefore \forall y. \mathcal{N}[[n]]=y \leftrightarrow a=y=2b+1$ as only fourth rule applies