Всеволод Заостровский, 409 группа

Отчёт по задаче " Метод Фурье для уравнения теплопроводности для двумерного оператора Лапласа".

1 Постановка задачи.

Необходимо решить уравнение:

$$u_t(t, x) = u_{xx}(t, x, y) + u_{yy}(t, x, y) + f(t, x, y).$$

Будем считать, что $0 \le t, x, y \le 1$. В моём варианте, краевые условия:

$$u(t, x, y)\big|_{(x,y)\in\partial\Omega} = 0, \quad \Omega = [0, 1] \times [0, 1].$$

 $u(0, x, y) = u^{0}(x, y), \quad (x, y) \in \Omega.$

2 Решение дифференциального уравнения (для тестов).

Будем искать решение в виде u(t,x,y) = T(t)X(x)Y(y). С учетом краевых условий, получим:

$$u(t, x, 0) = T(t)X(x)Y(0) = 0 \Rightarrow Y(0) = 0,$$

$$u(t, x, 1) = T(t)X(x)Y(1) = 0 \Rightarrow Y(1) = 0,$$

$$u(t, 0, y) = T(t)X(0)Y(y) = 0 \Rightarrow X(0) = 0,$$

$$u(t, 1, y) = T(t)X(1)Y(y) = 0 \Rightarrow X(1) = 0.$$

Разрешим уравнение с учетом u(t, x) = T(t)X(x)Y(y):

$$T'XY = TX''Y + TXY'',$$

$$\frac{X''}{X} + \frac{Y''}{Y} = \frac{T'}{T} = -\lambda.$$

3 Дискретизация дифференциального уравнения.

Исходной задаче (см. раздел 1) предлагается сопоставлять следующую схему:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\tau} = \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_X^2} + \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_Y^2} + f(t_n, x_{i+1}, y_{j+1}),$$

$$i = 1 \dots N_X, \quad j = 1 \dots N_Y, \quad n = 1 \dots N - 1.$$

Краевые условия примут вид:

$$\forall i, j, n \in \{0, 1, \dots, N_X\} \times \{0, 1, \dots, N_Y\} \times \{0, 1, \dots, N_Y\},$$

$$u_h^n(1, j) = u_h^n(0, j) = u_h^n(i, 0) = u_h^n(i, 1) = 0,$$

$$u_h^0(i, j) = u_h^0(i, j).$$

4 Аппроксимация на решении.

Разложим значения решения в ряд Тейлора:

$$\begin{split} u(t_n,x_{i+1},y_j) &= u(t_n,x_i,y_j) + h_X u_x(t_n,x_i,y_j) + \frac{h_X^2}{2} u_{xx}(t_n,x_i,y_j) \\ &\quad + \frac{h_X^3}{6} u_{xxx}(t_n,x_i,y_j) + \frac{h_X^4}{24} u_{xxxx}(t_n,x_i,y_j) + O(h_X^5) \\ u(t_n,x_{i-1},y_j) &= u(t_n,x_i,y_j) - h_X u_x(t_n,x_i,y_j) + \frac{h_X^2}{2} u_{xx}(t_n,x_i,y_j) \\ &\quad - \frac{h_X^3}{6} u_{xxx}(t_n,x_i,y_j) + \frac{h_X^4}{24} u_{xxxx}(t_n,x_i,y_j) + O(h_X^5) \\ u(t_n,x_i,y_{j+1}) &= u(t_n,x_i,y_j) + h_Y u_y(t_n,x_i,y_j) + \frac{h_Y^2}{2} u_{yy}(t_n,x_i,y_j) \\ &\quad + \frac{h_Y^3}{6} u_{yyy}(t_n,x_i,y_j) + \frac{h_Y^4}{24} u_{yyyy}(t_n,x_i,y_j) + O(h_Y^5) \\ u(t_n,x_i,y_{j-1}) &= u(t_n,x_i,y_j) - h_Y u_y(t_n,x_i,y_j) + \frac{h_Y^2}{2} u_{yy}(t_n,x_i,y_j) \\ &\quad - \frac{h_Y^3}{6} u_{yyy}(t_n,x_i,y_j) + \frac{h_Y^4}{24} u_{yyyy}(t_n,x_i,y_j) + O(h_Y^5) \\ u(t_{n+1},x_i,y_j) &= u(t_n,x_i,y_j) + \tau u_x(t_n,x_i,y_j) + \frac{\tau^2}{2} u_{tt}(t_n,x_i,y_j) + \frac{\tau^3}{6} u_{ttt}(t_n,x_i,y_j) \\ &\quad + \frac{\tau^4}{24} u_{tttt}(t_n,x_i,y_j) - \tau u_x(t_n,x_i,y_j) + \frac{\tau^2}{2} u_{tt}(t_n,x_i,y_j) - \frac{\tau^3}{6} u_{ttt}(t_n,x_i,y_j) \\ &\quad + \frac{\tau^4}{24} u_{tttt}(t_n,x_i,y_j) + O(\tau^5) \end{split}$$

Отсюда имеем:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\tau} = \frac{u(t_{n+1}, x_i, y_j) - u(t_n, x_i, y_j)}{\tau} = u_t(t_n, x_i, y_j)$$

$$+ \frac{\tau}{2} u_{tt}(t_n, x_i, y_j) + \frac{\tau^2}{6} u_{ttt}(t_n, x_i, y_j) + \frac{\tau^3}{24} u_{tttt}(t_n, x_i, y_j) + O(\tau^2)$$

$$\frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_X^2} = \frac{u(t_{n+1}, x_{i+1}, y_j) - 2u(t_{n+1}, x_i, y_j) + u(t_{n+1}, x_{i-1}, y_j)}{h_X^2} =$$

$$= u_{xx}(t_n, x_i, y_j) + \frac{h_X^2}{12} u_{xxxx}(t_n, x_i, y_j) + O(h_X^4)$$

$$\frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_Y^2} = \frac{u(t_{n+1}, x_i, y_{j+1}) - 2u(t_{n+1}, x_i, y_j) + u(t_{n+1}, x_i, y_{j-1})}{h_Y^2} =$$

$$= u_{yy}(t_n, x_i, y_j) + \frac{h_Y^2}{12} u_{yyyy}(t_n, x_i, y_j) + O(h_Y^4)$$

Подставив эти выражения в дифференциальное уравнение, получим:

$$\left| \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\tau} - \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_X^2} - \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_Y^2} - f(t_n, x_{i+1}, y_{j+1}) \right| =$$

$$= \left| \left| -u_{xx}(t_n, x_i, y_j) - u_{yy}(t_n, x_i, y_j) + u_t(t_n, x_i, y_j) - f(t_n, x_{i+1}, y_{j+1}) + O(\dots) \right| \right| =$$

$$= O(\tau + h_X^2 + h_Y^2).$$

С учетом того, что начальные условия даны точно и, очевидно, $|f(t_n,x_i,y_j)-f_{i,j}^n|\to 0$, получаем, что порядок аппроксимации на решении данной схемы составляет $O(\tau+h_X^2+h_Y^2)$.

5 Алгоритм численного решения.

5.1 Общая идея решения.

Запишем схему в виде:

$$-\frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{h_X^2} - \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{h_Y^2} - \frac{u_{i,j}^{n+1}}{\tau} =$$

$$= -\frac{u_{i,j}^n}{\tau} + f(t_n, x_{i+1}, y_{j+1}).$$

Фактически, это трехмерная система уравнений. Первый слой $u_{i,j}^0 \Big|_{0 \le i,j, \le 1}^{n+1}$ известен из начального условия. Если, располагая этими данными, удастся вычислить следующий слой, то, повторяя процесс шаг за шагом мы вычислим всю матрицу. Это возможно, поскольку, если считать $u^n =$ const схема выше представляет собой систему линейных уравнений относительно $u_{i,j}^{n+1}$. Далее подробно описан процесс нахождения сети методом Фурье.

5.2 Получение n+1 слоя из n-го.

Если нам известен слой $u_{i,j}^n|_{0\leq i,j,\leq 1}^{n={\rm const}}$, то для определения слоя $u_{i,j}^n|_{0\leq i,j,\leq 1}^{n+1}$ необходимо решить систему уравнений выше. Проще всего сделать это методом Фурье. Заметим, что эта система образует схему для дифференциальной задачи:

$$-\Delta u(x,y) - pu(x,y) = \hat{f}(x,y),$$

где
$$p = \frac{1}{\tau}$$
, а $\hat{f} = -\frac{u}{\tau} + f(x, y)$.

Функции $u(x,y), f(x,y) \in C_0^\infty[0,1]^2$ можно разложить в ряд Фурье, взяв синусы в качестве базисных функций:

$$u(x,y) = \sum_{n,m=1}^{\infty} \hat{c}_{nm} \phi^{(n)}(x) \psi^{(m)}(y),$$

$$\hat{f}(x,y) = \sum_{n,m=1}^{\infty} \hat{d}_{nm} \phi^{(n)}(x) \psi^{(m)}(y),$$

где

$$\phi^{(n)}(x) = \sin \pi n x, \quad \psi^{(m)}(y) = \sin \pi m y.$$

Перейдем в дискретное время:

$$u(x_i, y_j) = u_h(i, j) = \sum_{n, m=1}^{N_X, N_Y} c_{nm} \phi_i^{(n)} \psi_j^{(m)},$$
$$\hat{f}(x_i, y_j) = \hat{f}_h(i, j) = \sum_{n=1}^{N_X, N_Y} d_{nm} \phi_i^{(n)} \psi_j^{(m)},$$

где

$$\phi_i^{(n)} := \phi^{(n)}(x_i) = \sin \pi n i h_X, \quad \psi_j^{(m)} := \psi^{(m)}(x_j) = \sin \pi m j h_Y.$$

В отчете по задаче по линейной алгебре (см. директорию "LinAlg") были вычислены собственные значения этой функции для дискретизации оператора Лапласа:

$$-\Delta_h^X \phi_i^{(n)} = \lambda_n^X \phi_i^{(n)}, \quad \lambda_n^X = \frac{4}{h_X^2} \sin^2 \left(\frac{\pi n h_X}{2}\right),$$
$$-\Delta_h^Y \psi_j^{(m)} = \lambda_m^Y \psi_j^{(m)}, \quad \lambda_m^Y = \frac{4}{h_Y^2} \sin^2 \left(\frac{\pi m h_Y}{2}\right).$$

С учетом этого, для схемы

$$-\Delta_h^X u_h(i,j) - \Delta_h^Y u_h(i,j) - p u_h(i,j) = \hat{f}_h(i,j)$$

справедливо представление в виде ряда:

$$-\left(\Delta_h^X + \Delta_h^Y\right) \sum_{n,m=1}^{N_X,N_Y} c_{nm} \phi_i^{(n)} \psi_j^{(m)} - p \sum_{n,m=1}^{N_X,N_Y} c_{nm} \phi_i^{(n)} \psi_j^{(m)} = \sum_{n,m=1}^{N_X,N_Y} d_{nm} \phi_i^{(n)} \psi_j^{(m)}.$$

Отсюда, учитывая то, что $\phi_i^{(n)}$ и $\psi_j^{(m)}$ — собственные функции, имеем:

$$\sum_{n,m=1}^{N_X,N_Y} c_{nm} (\lambda_n^X + \lambda_m^Y - p) \phi_i^{(n)} \psi_j^{(m)} = \sum_{n,m=1}^{N_X,N_Y} d_{nm} \phi_i^{(n)} \psi_j^{(m)},$$

а значит

$$c_{nm} = \frac{d_{nm}}{\lambda_n^X + \lambda_m^Y - p}, \quad 1 \le n \le N_X, \quad 1 \le m \le N_Y.$$

5.3 Практический алгоритм.

Решить схему из раздела 3 можно по следующему алгоритму:

- 1. На этапе A известен слой $A: u_{i,j}^A|_{0 < i,j,<1}^{A={\rm const}}$ и все слои до него.
- 2. Найдем коэффициенты d_{nm} разложения функции $\hat{f}(x,y)$ в дискретный ряд Фурье:

$$-\frac{u_{i,j}^A}{\tau} + f(t_A, x_i, y_j) =: \hat{f}(x_i, y_j) =: \hat{f}_h(i, j) = \sum_{n,m=1}^{N_X, N_Y} d_{nm} \phi_i^{(n)} \psi_j^{(m)}.$$

3. Найдем коэффициенты c_{nm} разложения функции $u^{A+1}(x,y)$ в дискретный ряд Фурье:

$$u(t_{A+1}, x_i, y_j) = u_h^{A+1}(i, j) = \sum_{n,m=1}^{N_X, N_Y} c_{nm} \phi_i^{(n)} \psi_j^{(m)},$$

пользуясь формулой:

$$c_{nm} = \frac{d_{nm}}{\frac{4}{h_X^2} \sin^2\left(\frac{\pi n h_X}{2}\right) + \frac{4}{h_Y^2} \sin^2\left(\frac{\pi m h_Y}{2}\right) - \frac{1}{\tau}}, \quad 1 \le n \le N_X, \quad 1 \le m \le N_Y.$$

4. Вычислить значения

$$u^{A+1}(i,j) = \sum_{n = 1}^{N_X, N_Y} c_{nm} \phi_i^{(n)} \psi_j^{(m)}$$

и записать их в соответсвующий слой матрицы решения.