CNNS IMAGES AS FEATURES

martin @ reddragon.ai sam @ reddragon.ai

2 October 2017

WiFi : SG-Guest

Problems with Installation? ASK!

PLAN OF ACTION

TODAY

- Start with project wrap-up
- CNN Basics
- CNN code / experimentation

PLAN OF ACTION

WEDNESDAY

- CNNs on speech data
- Launch into a CNN mini-challenge Discuss Final Project ideas
- Value of the feature layer

"HELLO WORLD" -> MNIST

- Nice dataset from the late 1980s
- Set of 70,000 28x28 images :
 - Training / Validation / Test = 50k / 10k / 10k
- Now end-of-life as a useful benchmark

```
0 H Z 9 2 1 3 1 4 3

5 3 6 1 7 2 8 6 9 M

0 9 7 1 2 9 3 2 7 3

8 6 9 0 5 6 0 7 6 1

8 7 9 3 9 8 5 5 3 3

0 7 7 9 8 0 9 H Z 4

7 6 0 4 5 6 7 0 0 1

2 1 6 3 0 2 7 7 7 9

0 2 6 7 8 3 9 0 4 6

2 4 6 8 0 7 8 3 7 5
```


IMAGE CLASSIFICATION

In 2012, Deep Learning started to beat other approaches...

WHAT IS A CNN?

- Pixels in an images are 'organised':
 - Up/down left/right
 - Translational invariance
- Idea: Use whole image as feature
 - Update parameters of 'Photoshop filters'
- Mathematical term: 'convolution kernel'
 - CNN = Convolutional Neural Network

CNN FILTER

PLAY WITH A FILTER

CON	1VOLU	TION
	Filter parameters -1	
₩ red cat labs		

http:// RedCatLabs.com / c

CNN FLOW

CNN DETAILS

- Some more jargon:
 - Kernel shapes, strides, padding
 - Pooling
 - Receptive field
 - With/without Dense layer

CNN PARAMS

hidden1 = Conv2D(128, 5, strides=(2, 2), padding='same')(input)

See also this notebook

POOLING

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

hidden2 = MaxPooling2D(pool_size=(2, 2))(hidden1)

RECEPTIVE FIELD

 $2 \times (3 \times 3) < (5 \times 5)$

DENSE & SOFTMAX

output = Softmax()(Dense(1000)(Dense(2048, activation='relu')(hidden6)))

FOCUS ON CHANNELS

- Each layer has channels
 - eg: First image layer = 3 channels (R, G and B)
- Each channel depends on all channels in previous layer

CNN EQUATIONS

CNN DIAGRAM

IMAGE COMPETITION

- ImageNet aka ILSVRC
- over 15 million labeled high-resolution images...
 - ... in over 22,000 categories

MORE COMPLEX NETWORKS

GoogLeNet (2014)

... AND DEEPER

Google Inception-v3 (2015)

DEPTH/TIME/RESULTS

Microsoft ResNet (2015)

INCEPTION MODULE

... just the beginning of variations

- QUESTIONS -

MARTIN.ANDREWS@REDDRAGON.AI

My blog: http://mdda.net/

GitHub: mdda

