Topología elemental

Mario Calvarro Marines

Índice general

1.	Espacios topológicos		5
	1.1.	Conjuntos abiertos	5
	1.2.	Conjuntos cerrados	7
	1.3.	Bases	10
	1.4.	Topología relativa	12
2. Aplicaciones continuas		13	
	2.1.	Continuidad	13
	2.2.	Continuidad y subespacios	15
	2.3.	Homeomorfismos	15
3.	Construcciones		19
	3.1.	Imágenes inversas	19
	3.2.	Imágenes directas	20

Espacios topológicos

Conjuntos abiertos

Definición

Una topología en un conjunto X es una colección $\mathcal{T} \subset \mathcal{P}(x)$ de subconjuntos tal que:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. Las uniones arbitrarias de elementos de \mathcal{T} están en \mathcal{T} .
- 3. Las intersecciones finitas de elementos de \mathcal{T} están en \mathcal{T} .

Se dice que (X, \mathcal{T}) es un <u>espacio topológico</u>, los elementos de \mathcal{T} se llaman <u>abiertos</u> y los elementos de X se llaman puntos.

Ejemplo:

- 1. $\mathcal{T} = \{\emptyset, X\}$ es la topología <u>trivial</u>; $\mathcal{T} = P(X)$, topología <u>discreta</u>: si los puntos $\{x\} \in \mathcal{T}$, entonces cualquier $A = \bigcup_{x \in A} \{x\}$ es abierto.
- 2. \mathbb{R}^n con la topología usual definida mediante las bolas euclídeas.
- 3. Cualquier distancia d define una topología mediante sus bolas abiertas, igual que se define la usual. Notación:

$$B(a,\varepsilon) = \{d(a,x) < \varepsilon\}, \ B[a,\varepsilon] = \{d(a,x) \le \varepsilon\}, \ S[a,\varepsilon] = \{d(a,x) = \varepsilon\}$$

4. En un conjunto se pueden definir muchas topologías distintas (por ejemplo (1)) pero se puede asumir que solo "parezcan" distintas. Ya se sabe que la topología usual de \mathbb{R}^n se puede definir mediante muchas distancias distintas.

El dibujo representa distintas distancias 1 en \mathbb{R}^n , pero todas definen la misma topología.

 $^{^{1}}$ Procedentes de normas.

5. Una topología para ilustrar muchas propiedades (y contraejemplos).

Fijamos $a \in X$:

$$\mathcal{T}_a = \{ U \subset X : a \in U \} \cup \{\emptyset\}$$

La topología "del punto". El punto $\{a\}$ y todos los pares de puntos $\{a, x\}$ son abiertos. Se parece a la discreta pero difiere en que en esta última todos los puntos son abiertos.

Definición

Dos topologías $\mathcal{T}_1 \subset \mathcal{T}_2$ en X se llaman comparables: \mathcal{T}_2 es más "fina" que \mathcal{T}_1 .

Siempre se da:

$$\mathcal{T}_{\mathrm{trivial}} \subset \mathcal{T} \subset \mathcal{T}_{\mathrm{discreta}}$$

Sea (X, \mathcal{T}) un espacio topológico; a menudo se omite \mathcal{T} ó el calificativo "topológico".

Definición

- 1. Un entorno abierto de un punto $x \in X$ es un abierto U que lo contiene. Se suele escribir U^x .
- 2. Un <u>entorno</u> de un punto $x \in X$ es un conjunto V que contiene un abierto U que contiene al punto. Se suele escribir V^x .²

Observación:

1.

$$V_1^x \cap V_2^x = V^x$$

$$U_1^x \cap U_2^x = U_{ab}^x \ni x$$

2. $U \in \mathcal{T}$ es entorno de todos <u>sus</u> puntos.

Demostración:

$$x \in U$$
 abierto $\subset U$

Definición

Sea $A \subset X$. Un <u>punto interior de A</u> es un punto del que A es entorno (luego A lo contiene). El <u>interior de A</u> es <u>el conjunto de sus p</u>untos interiores:

$$\operatorname{Int}_{X}(A) = \mathring{A} = \{x \in A : \exists U_{ab}^{x} \subset A\}$$

 $^{^2\}mathrm{La}$ intersección finita de entornos es entorno. (Si son abiertos es trivial)

Proposición

 \mathring{A} es el mayor abierto contenido en A:

$$\mathring{A} = \bigcup_{U^{ab} \subset A} U$$

En particular, A abierto $\Leftrightarrow A = \mathring{A} \Leftrightarrow A$ es un entorno de todos los puntos.

Demostración:

1. \mathring{A} es abierto:

$$\begin{split} \forall x \in \mathring{A} & \Rightarrow \exists U^x_{\mathrm{ab}} \subset A \\ \forall y \in U^x & \Rightarrow A \supset U^x \text{ es un abierto que contiene a } y \Rightarrow y \in \mathring{A}. \\ & \Rightarrow \mathring{A} = \bigcup_{x \in \mathring{A}} U^x \text{ es abierto como unión de abiertos.} \end{split}$$

2. \mathring{A} es el mayor abierto contenido en A.

$$U^{\mathrm{ab}} \subset A \Rightarrow \forall x \in U^{\mathrm{ab}} \subset A \Rightarrow x \in \mathring{A} \Rightarrow U \subset \mathring{A}$$

Ejemplo:

- 1. $(X, \mathcal{T}_{\text{trivial}}): A \neq X \Rightarrow A \not\supset X \Rightarrow \emptyset$ es el único abierto $\subset A \Rightarrow \mathring{A} = \emptyset$.
- 2. En \mathbb{R}^n con $\mathcal{T}_{\text{trivial}}$ ya lo sabemos bien:

Int
$$(B[a,\varepsilon]) = B(a,\varepsilon); \ \mathring{\mathbb{Q}}^n = \emptyset; \ \mathring{\mathbb{Z}}^n = \emptyset$$

3. Si $a \in X$, $\mathcal{T}_a : \{a\} = \{a\}; x \neq a, \{x\} = \emptyset.$

Proposición

- 1. $A \subset B \Rightarrow \mathring{A} \subset \mathring{B}$.
- 2. $\mathring{A} \cap \mathring{B} = \text{Int} (A \cap B)$.

Demostración:

- 1. $A \subset B \Rightarrow \mathring{A} \subset A \subset B$ y \mathring{A} es abierto $\Rightarrow \mathring{A} \subset \mathring{B}$.
- 2.

$$\begin{cases} \mathring{A} \cap \mathring{B} \text{ abierto (intersección finita de abiertos)} \\ \mathring{A} \cap \mathring{B} \subset A \cap B \end{cases} \Rightarrow \mathring{A} \cap \mathring{B} \subset \operatorname{Int} (A \cap B)$$

$$A \cap B \subset A, B \Rightarrow \operatorname{Int} (A \cap B) \subset \mathring{A}, \mathring{B} \Rightarrow \operatorname{Int} (A \cap B) \subset \mathring{A} \cap \mathring{B} \end{cases} \Rightarrow \operatorname{Int} (A \cap B) \subset \mathring{A} \cap \mathring{B}$$

Conjuntos cerrados

Sea (X, \mathcal{T}) un espacio topológico.

Definición

Un conjunto <u>cerrado</u> es un subconjunto $F \subset X$ tal que $U = X \setminus F$ es abierto.

Observación:

Cerrado no significa "no abierto", hay conjuntos que no son ni abiertos ni cerrados.

Observación:

Se cumple, $\mathcal{F} = \{cerrados\}:$

- 1. X, \emptyset son cerrados.
- 2. La intersección arbitraria de cerrados es cerrada.
- 3. La unión finita de cerrados es cerrado.

<u>Demostración</u>:

Porque
$$\bigcap_{i \in I} (X \setminus U_i) = X \setminus \bigcup_{i \in I} U_i \text{ y } \bigcup_{i \in I} X \setminus U_i = X \setminus \bigcap_{i \in I} U_i.$$

Ejemplo:

- 1. En la topología trivial solo son cerrados \emptyset y X. En la discreta, todos los subconjuntos son cerrados.
- 2. En \mathbb{R}^n con la topología usual ya sabemos todos los ejemplos: $B[a,\varepsilon]: ||x-a|| \leq \varepsilon$.
- 3. Si $\mathcal{T}_1 \subset \mathcal{T}_2$, todo cerrado de \mathcal{T}_1 es cerrado de \mathcal{T}_2 . (Cuidado con el orden)

Para saber cuándo se aleja un conjunto de ser cerrado tenemos:

Definición

Sea $A \subset X$. Un punto <u>adherente</u> a A es un punto cuyos entornos intersecan todos a A. La <u>adherencia</u> de A es el conjunto de sus puntos adherentes.

$$Adh_X(A) = \overline{A} = \{x \in X : \forall V^x \cap A \neq \emptyset\} \supset A$$

Observación:

Las primeras fórmulas importantes son:

$$\boxed{X \setminus \overline{A} = \operatorname{Int}(X \setminus A)}$$
$$\boxed{X \setminus \mathring{B} = \overline{X \setminus B}}.$$

Demostración:

- $\blacksquare \ x \in X \setminus \overline{A} \Leftrightarrow x \not \in \overline{A} \Leftrightarrow \exists U^x \cap A = \emptyset \Leftrightarrow \exists U^x \subset X \setminus A \Leftrightarrow x \in \operatorname{Int}(X \setminus A)$
- $\bullet \quad x \notin \mathring{B} \Leftrightarrow \not\exists U^x \subset B \Leftrightarrow \forall U^x \cap (X \setminus B) \neq \emptyset \Leftrightarrow x \in \overline{X \setminus B}.$

Proposición

 \overline{A} es el menor cerrado que contiene a A:

$$\overline{A} = \bigcap_{F_{cerrado} \supset A} F$$

En particular, A cerrado $\Leftrightarrow \overline{A} = A \Leftrightarrow A$ contiene todos sus puntos de adherencia.

Demostración:

$$\overline{A} = X \setminus \operatorname{Int}(X \setminus A) = X \setminus \bigcup_{U \subset X \setminus A} U = X \setminus \bigcup_{F \supset A} (X \setminus F) = \bigcap_{F \supset A} F.$$

Observación:

Lo anterior nos implica:

- $\blacksquare \ B \supset A \Rightarrow \overline{B} \supset B \supset A \Rightarrow \overline{B} \supset \overline{A}.$
- $\blacksquare \ \overline{A \cup B} = \overline{A} \cup \overline{B}:$

$$\begin{cases} \overline{A \cup B} \supset A \cup B \supset \begin{cases} A \\ B \end{cases} \Rightarrow \overline{A \cup B} \supset \begin{cases} \overline{A} \\ \overline{B} \end{cases} \Rightarrow \overline{A \cup B} \supset \overline{A} \cup \overline{B} \end{cases}$$

$$A \cup B \subset \overline{A} \cup \overline{B} \Rightarrow \overline{A \cup B} \subset \overline{A} \cup \overline{B}$$

La última implicación por que es cerrado al ser la unión de dos cerrados.

Ejemplo:

- 1. En \mathbb{R}^n , \mathcal{T}_{usual} : $B[a,\varepsilon] = \overline{B(a,\varepsilon)}$; $\overline{\mathbb{Q}^n} = \mathbb{R}^n$.
- $a \in X, \mathcal{T}_a$

$$\begin{cases} \overline{\{a\}} = X \left[\forall x, \forall U^x \supset \{a, x\} \ni a \Rightarrow x \in \overline{\{a\}} \right] \\ x \neq a, \overline{\{x\}} = \{x\} \left[y \neq x \Rightarrow U^y = \{a, y\} \cap \{x\} = \emptyset \right] \end{cases}$$

Definición (Otros puntos especiales)

- 1. x es un punto aislado de A si $\exists V^x \cap A = \{x\}$.
- 2. x es un punto de acumulación de A si $\forall V^x \cap A \setminus \{x\} \neq \emptyset$. Y, evidentemente,

$$\overline{A} = \{\underbrace{puntos\ aislados}_{\subset A}\} \sqcup \{\underbrace{puntos\ de\ acumulación}_{\supset \overline{A}\backslash A}\}$$

3. x es un punto frontera de A si es adherente a A y a $X \setminus A$, o bien, si no es interior de $X \setminus A$ ni de A. La frontera de A es:

9

$$\operatorname{Fr}\left(A\right)=\left\{x\in X:x\ es\ punto\ frontera\ de\ A\right\}=\overline{A}\cap\overline{X\setminus A}=\overline{A}\setminus\mathring{A}$$

- 1. En \mathbb{R} , \mathcal{T}_n todos los puntos de \mathbb{Z} son aislados, $\operatorname{Fr}(\mathbb{Z}) = \mathbb{Z}$.
- 2. En \mathbb{R}^n , \mathcal{T}_n : Fr $(B(a,\varepsilon)) = \text{Fr}(B[a,\varepsilon]) = S[a,\varepsilon]: ||x-a|| = \varepsilon$.
- 3. En $\mathcal{T}_{\rm discreta}$ todos los puntos son aislados, todas las fronteras son vacías.

4. $a \in X, \mathcal{T}_a$:

$$\begin{cases} \operatorname{Fr}\left(\{a\}\right) = \overline{\{a\}} \setminus \{\overset{\circ}{a}\} = X \setminus \{a\} \\ x \neq a, \operatorname{Fr}\left(\{x\}\right) = \overline{\{x\}} \setminus \{\overset{\circ}{x}\} = \{x\} \end{cases}$$

Ahora, un concepto importante:

Definición

 $A \subset X$ es <u>denso</u> si $\overline{A} = X$, o bien, todo punto es adherente a A, o bien, todo abierto $(\neq \emptyset)$ corta a A

Ejemplo:

- 1. $\mathbb{Q} \subset \mathbb{R}$, \mathcal{T}_{usual} ; $\mathbb{Q} \times \cdots \times \mathbb{Q} \subset \mathbb{R}^n$, \mathcal{T}_{usual} son densos.
- 2. $\{a\}$ es denso en (X, \mathcal{T}_a) .

Bases

Sea X, \mathcal{T} un espacio topológico.

Definición

Una <u>base de entornos</u> de $a \in X$ es una colección \mathcal{V}^a de entornos de a, tal que todo entorno de a contiene uno de la \mathcal{V}^a .

Observación:

No se supone ninguna propiedad especial, ni que sean abiertos. Veremos que la existencia de base de entornos con propiedades adicionales es una de las cosas que determinan el comportamiento de la topología.

Pero: $\forall \mathcal{V}^a$ se puede <u>refinar</u> a una base \mathcal{B}^a de entornos de abiertos.

$$[\forall V^a \in \mathcal{V}^a \exists U^a \subset V^a \Rightarrow \mathcal{B}^a = \{U^a : V^a \in \mathcal{V}^a\} \text{ es base de entornos}]$$

Política general?

Bastan las bases de entornos para comprobar propiedades de todos los entornos.

Ilustración:

$$a \in \overline{A} \stackrel{\text{def}}{\Longleftrightarrow} \forall W^a \text{ entorno } : W^a \cap A \neq \emptyset$$

$$\iff \forall V^a \in \mathcal{V}^a : V^a \cap A \neq \emptyset.$$

Ejemplo:

1. \mathbb{R}^n , \mathcal{T}_{usual} :

$$\begin{cases} \mathcal{B}^{a} = \{B\left(a,\varepsilon\right) : \varepsilon > 0\} \text{ base de entornos abiertos.} \\ \mathcal{V}^{a} = \{B\left[a,\varepsilon\right] : \varepsilon > 0\} \text{ base de entornos cerrados.} \end{cases}$$

2.
$$a \in X, \mathcal{T}_a : \mathcal{B}^a = \{\{a\}\}, \mathcal{B}^x = \{\{a, x\}\}, x \neq a.$$

Definición

Una <u>base de abiertos</u> de \mathcal{T} es una colección de abiertos $B \subset \mathcal{T}$ tal que todo abierto es unión de abiertos de B.

Proposición

 \mathcal{B} base de abiertos $\Leftrightarrow \forall x \in X$, $\mathcal{B}^x = \{B \in \mathcal{B} : x \in B\}$ es base de entornos abiertos de $x \Leftrightarrow \forall x \in U$, $\exists B \in \mathcal{B} : x \in B \subset U$.

Demostración:

 \Rightarrow) $\forall V^x \Rightarrow x \in U \subset V^x \Rightarrow$

$$\mathcal{B}$$
 base $U = \bigcup_{i \in I} \underbrace{B_i} \xrightarrow{x \in U} \exists x \in B_i \subset U \subset V^x$

 $\Leftarrow)U\in\mathcal{T},\ \forall x\in U,\ \exists\underbrace{B^x}_{\in\mathcal{B}}\subset U\Rightarrow U=\bigcup_{x\in U}B^x$ unión de abiertos de $\mathcal{B}.$

Ejemplo:

- 1. $\mathcal{T}_{\text{discreta}}: \mathcal{B} = \{\{x\} : x \in X\} \text{ es } \underline{\text{m\'inima}}. \quad \left[siB' \text{ es base } : \forall x, \{x\} = \bigcup_{i \in I} \underbrace{B_i}^{\in B'} \Rightarrow B_i = \{x\} \right]$
- 2. $\mathcal{T}_a : \mathcal{B} = \{ \{a, x\} : x \in X \}.$
- 3. \mathbb{R}^n , $\mathcal{T}_{usual}\mathcal{B} = \{B(x,\varepsilon) : \varepsilon > 0, x \in \mathbb{R}^n\}$

Pero también,

porque

$$B\left(x,\varepsilon \right) = \bigcup_{i\in I} cuadrados = \bigcup_{j\in J} rectangulos$$

Política general , como antes: a menudo basta considerar los abiertos de $\mathcal B$

Ilustración: $A \subset X$ denso $\Leftrightarrow \forall B \in \mathcal{B}, B \cap A \neq \emptyset$.

Proposición

 $\mathcal{B} \subset \mathcal{P}(X)$ es base de una topología (única) \mathcal{T} es X. Es equivalente a:

- $X = \bigcup_{B \in \mathcal{B}} B.$
- $\forall x \in B_1 \cap B_2, \exists B^x \subset B_1 \cap B_2.$

Demostración:

- Unicidad: $\mathcal{T} = \{\bigcup_{i \in I} B_i : \{B_i\} \subset \mathcal{B}\}.$
- Existencia: Esa \mathcal{T} es efectivamente topología. Lo importante: $B_1, B_2 \in \mathcal{B} \Rightarrow B_1 \cap B_2 = \bigcup_{x \in B_1 \cap B_2} B^x \in \mathcal{T}$.

Topología relativa

Sea (X, \mathcal{T}) espacio topológico.

Definición

 $Y \subset X : \mathcal{T}|_{Y} = \{U \cap Y : U \in \mathcal{T}\}$ es una topología en Y (fácil), denominada <u>relativa</u> ó <u>restricción</u> a Y; también se dice que $(Y, \mathcal{T}|_{Y})$ es un subespacio de (X, \mathcal{T}) y que (X, \mathcal{T}) es el espacio <u>ambiente</u>.

Observación:

1. Los cerrados en $\mathcal{T}|_Y$ son $F \cap Y$ con F cerrado en \mathcal{T} .

$$[Y \setminus U \cap Y = Y \cap (X \setminus U) = Y \cap F]$$

2.
$$\begin{cases} y \in Y \subset X \\ \mathcal{V}^y \text{ base de entornos de } y \text{ en } \mathcal{T} \end{cases} \Rightarrow \begin{cases} \mathcal{V}^y \cap Y = \{V^y \cap Y : V^y \in \mathcal{V}^y\} \\ \text{base de entornos de } y \text{ en } \mathcal{T}|_Y \end{cases}$$

3. \mathcal{B} base de $\mathcal{T} \Rightarrow \mathcal{B} \cap Y = \{B \cap Y : B \in \mathcal{B}\}$ base de $\mathcal{T}|_{Y}$

Esta idea es general: en un subespacio se hacen las construcciones intersecando.

Ejemplo:

- 1. y es un punto aislado de $Y \Leftrightarrow \{y\}$ abierto en $\mathcal{T}|_Y$. $[\{y\} = V^y \cap Y]$
- 2. Todos los puntos de Y son aislados $\Leftrightarrow C|_Y =$ discreta.

Se dice: Y es un subespacio discreto.

Por ejemplo, en $\mathbb{Z} \subset \mathbb{R}$:

3. $a \in X, \mathcal{T}_a|_{X \setminus \{a\}} = \text{discreta}.$

Observación:

1. $Y \subset_{ab} X : W$ abierto de $Y \Leftrightarrow W$ abierto de X contenido en Y.

$$[W = U \cap Y^{ab}, U^{ab} \subset X \Rightarrow W^{ab} \subset X \text{ por intersección finita}]$$

2. $Y \subset_{\operatorname{cerr}} X : F$ cerrado de $Y \Leftrightarrow F$ cerrado de X contenido en Y.

$$[C = F \cap Y^{\text{cerr}}, F^{\text{cerr}} \subset X \Rightarrow C^{\text{cerr}} \subset X \text{ por intersección finita}]$$

12

Aplicaciones continuas

Continuidad

El famoso
$$\varepsilon - \delta$$
 en $\mathbb{R}^n \mathcal{T}_u; x_0 \in X, \ f: X \to Y$:

$$\forall \varepsilon > 0, \exists \delta > 0 : \begin{cases} \|x - x_0\| < \delta \Rightarrow \|f(x) - f(x_0)\| < \varepsilon \Leftrightarrow \\ x \in B(x_0, \delta) \Rightarrow f(x) \in B(f(x_0), \varepsilon) \Leftrightarrow \\ f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon) \end{cases} \Rightarrow$$

Definición

 $f: X \to Y \ ser\'a \ \underline{continua \ en \ x_0} \in X \ si$:

$$\forall V^{f(x_0)}: f^{-1}\left(V^{f(x_0)}\right) = V^{x_0}$$

Proposición (Composición de continuidades)

La composición de funciones continuas es continua:

$$X \xrightarrow{f} Y \xrightarrow{g} Z : \begin{cases} f \text{ continua en } x_0 \\ g \text{ continua en } y_0 \end{cases} \Rightarrow h = g \circ f \text{ continua en } x_0$$

Demostración:

Sea
$$V^{h(x_0)} \to h^{-1}V^{h(x_0)} = f^{-1}q^{-1}V^{g(y_0)} = f^{-1}V^{y_0} = V^{x_0}$$
.

- 1. $\forall f: X_{\text{discreta}} \to Y$ es continua. [Todo es abierto, luego todo es entorno en $\mathcal{T}_{\text{disc}}$]
- 2. $\forall f:X\to Y_{\rm trivial}$ continua. $[V^{f(x)}=Y]$ es el único abierto, luego el único entorno, de $f^{-1}V^{f(x)}=f^{-1}Y=X$ es abierto]
- 3. $f: X \to Y_{\text{discreta}}$ es continua $\Rightarrow f$ localmente creciente. $[\{f(x_0)\} = V^{f(x_0)}]$ en $\mathcal{T}_{\text{discr}} \xrightarrow{f \text{ cont.}} f^{-1}f(x_0) = V^{x_0} \land f \equiv f(x_0)]$

4. $f: X \to Y$ localmente constante \Rightarrow continua.

$$[\forall x_0 \in X, \exists U^{x_0}: f \stackrel{U^{x_0}}{\equiv} f(x_0) \Rightarrow \forall V^{f(x_0)}: f^{-1}V^{f(x_0)} \supset U^{x_0} \Rightarrow f^{-1}V^{f(x_0)} = V^{x_0} \text{ es entornode } x_0]$$

Proposición

Son equivalentes:

- 1. f es continua.
- 2. $f^{-1}(abierto) = abierto, \forall abierto \in Y$.
- 3. $f^{-1}(cerrado) = cerrado$, $\forall cerrado de Y$.

4.
$$f^{-1}\left(\mathring{A}\right) \subset \operatorname{Int}\left(f^{-1}\left(A\right)\right), \ \forall A \subset Y$$

5.
$$f(\overline{A}) \subset \overline{f(A)}, \ \forall A \subset X$$

Demostración:

$$1. 1 \Rightarrow 2$$

$$W^{\mathrm{ab}} \subset Y \Rightarrow W$$
 ent. de $f(x)$, $\forall x \in f^{-1}W \Rightarrow f^{-1}W$ ent. de $\forall x \in f^{-1}W \Rightarrow f^{-1}W \subset X$

$$2. 2 \Rightarrow 3$$

$$C_{\operatorname{cerr}} \subset Y \Rightarrow Y \setminus C \subset Y \Rightarrow^{2} \underbrace{f^{-1}(Y \setminus C)}_{=X \setminus f^{-1}C} \subset X \Rightarrow f^{-1}C \overset{\operatorname{cerr}}{\subset} X$$

 $3. 3 \Rightarrow 5)$

$$\overline{f\left(A\right)} \overset{\mathrm{cerr}}{\subset} Y \Rightarrow^{3)} \underbrace{f^{-1}\overline{f\left(A\right)}}_{\subset f^{-1}f\left(A\right)\supset A} \subset X \Rightarrow \overline{A} \subset f^{-1}\overline{f\left(A\right)} \Rightarrow f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$$

 $4.5 \Rightarrow 4$

$$Y \setminus \mathring{A} \Rightarrow \overline{Y \setminus A} \supset \overline{f(X \setminus f^{-1}A)} \stackrel{5)}{\supset} f\left(\overline{X \setminus f^{-1}(A)}\right) = f\left(X \setminus \operatorname{Int}\left(f^{-1}A\right)\right) \Rightarrow$$
$$X \setminus \operatorname{Int}\left(f^{-1}A\right) \subset f^{-1}\left(Y \setminus \mathring{A}\right) = X \setminus f^{-1}\left(\mathring{A}\right) \Rightarrow f^{-1}\left(\mathring{A}\right) \subset \operatorname{Int}\left(f^{-1}A\right).$$

 $5. 4 \Rightarrow 1)$

$$V^{f(x)} \Rightarrow f\left(x\right) \in \operatorname{Int}\left(V^{f(x)}\right) \Rightarrow x \in f^{-1}\left(\operatorname{Int}\left(V^{f(x)}\right)\right) \subset \operatorname{Int}\left(f^{-1}V^{f(x)}\right) \Rightarrow f^{-1}V^{f(x)} \text{ entorno de } x.$$

Observación:

- 1. Los cuatros primeros enunciados tratan sobre "imágenes inversas". Por ejemplo, la segunda dice que $f^{-1}\mathcal{T}_Y \subset \mathcal{T}_X$.
- 2. Pensando que un punto adherente es un "punto límite", 5 nos dice que "la imagen del límite es el límite de la imagen".
- 3. $Id: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ es continua $\Rightarrow \mathcal{T}_2 \subset \mathcal{T}_1$. $[Id^{-1}\mathcal{T}_1 = \mathcal{T}_2]$

Y no mencionamos todos los ejemplos conocidos en espacios afines \mathbb{R}^n con \mathcal{T}_u .

Continuidad y subespacios

Proposición

Sea $f: X \to Y$ continua y $Z \subset X$ subespacio $\Rightarrow f|_Z: Z \to Y$ es continua.

<u>Demostración</u>:

Se aplica el criterio "imagen inversa de abierto es abierto" y la fórmula:

$$(f|_Z)^{-1}(A) = Z \cap f^{-1}A, \ \forall A \subset Y$$

Criterios de continuidad por recubrimientos. Sea $f: X \to Y$.

■ Por abiertos: $\exists X = \bigcup_{i \in I} U_i : \forall f|_{U_i} : U_i \to Y$ es continua.

<u>Demostración</u>:

 $W \subset Y \Rightarrow$

$$\begin{cases} f^{-1}W = \bigcup_{i \in I} U_i \cap f^{-1}W = \bigcup_{i \in I} \left(f|_{U_i} \right)^{-1} W \\ \left(f|_{U_i} \right)^{-1} W \subset U_i \subset X \Rightarrow \left(f|_{U_i} \right)^{-1} W \subset X \end{cases} \Rightarrow f^{-1}W \subset X$$

Por unión de abiertos.

■ Por cerrados: $\exists X = \bigcup_{i \in I} F_i : \forall f|_{F_i} : F_i \to Y$ es continua.

Demostración:

$$C \subset Y \Rightarrow$$

$$\begin{cases} f^{-1}C = \bigcup_{i \in I} F_i \cap f^{-1}C = \bigcup_{i \in I} (f|_{F_i})^{-1} C \\ (f|_{F_i})^{-1} C \subset F_i \subset X \Rightarrow (f|_{F_i})^{-1} C \subset X \end{cases} \Rightarrow f^{-1}C \subset X$$

Por unión finita de cerrados.

Homeomorfismos

Recordemos las definiciones de continuidad que hemos visto:

$$f$$
 continua $\Leftrightarrow f^{-1}$ (abierto) = abierto $\Leftrightarrow f^{-1}$ (cerrado) = cerrado

Ahora veamos que ocurre al invertir la relación.

Definición

Sea
$$f: X \to Y$$
, $será\left\{\frac{abierta}{cerrada}\right\} \Leftrightarrow \begin{cases} f(ab) = ab \\ f(cerr) = cerr \end{cases}$

Observación:

Cuidado continuidad no implica que sea abierta, cerrada ni viceversa.

1.
$$Id: X_{\text{trivial}} \to X_{\text{discreta}}$$
, -cont. +ab. +cerr.

2. $Id: X_{\text{discreta}} \to X_{\text{trivial}}, +\text{cont. -ab. -cerr.}$

3. $j:[0,1]\subset\mathbb{R}_u$, +cont. -ab. +cerr.

4. $j:(0,1)\subset\mathbb{R}_u$, +cont. +ab. -cerr.

Proposición (Trivialidades esenciales)

Sea f biyectiva es equivalente:

- f es abierta
- f es cerrada
- f^{-1} es continua.

Demostración:

1.
$$F_{\operatorname{cerr}} \subset X \Rightarrow X \setminus F_{\operatorname{ab}} \subset X \Rightarrow^{f \operatorname{ab}} \underbrace{f(X \setminus F)}_{=Y \setminus f(F)(\operatorname{biy.})} \subset_{\operatorname{ab}} X \Rightarrow f(F) \subset_{\operatorname{cerr}} Y \Rightarrow f \operatorname{cerr}.$$

2.
$$F_{cerr} \subset X \Rightarrow^{f_{cerr}} \underbrace{f(F)}_{=(f^{-1})^{-1}(F)(\text{biy})} \subset_{cerr} Y \Rightarrow f^{-1} \text{ cont.}$$

3.
$$U_{ab} \subset X \Rightarrow^{f^{-1}cont} \underbrace{(f^{-1})^{-1}(U)}_{f(U)(biy.)} \subset Y \Rightarrow f \text{ ab.}$$

Definición

Sea $f: X \to Y$ biyectiva, es homeomorfismo si $f \& f^{-1}$ son continuas, o equivalentemente si:

$$\begin{cases} f \ biy. \\ cont. \\ ab. \end{cases} \Leftrightarrow \begin{cases} f \ biy. \\ cont. \\ cerr. \end{cases}$$

Definición (Localización de un homeomorfismo)

Sea $f: X \to Y$, es homeomorfismo local en $x_0 \in X$ si $f: V^{x_0} \to V^{f(x_0)}$ es homeomorfismo para entornos de x_0 y $f(\overline{x_0})$. Se suele decir para entornos "suficientemente pequeños".

Ejercicio: Se pueden tomar $V^{x_0}, V^{f(x_0)}$ abiertos.

Observación:

Un homeomorfismo local es abierto.

Demostracion:
$$U \subset_{ab} X \Rightarrow f(U) \text{ entorno } \forall y_0 = f\left(\overbrace{x_0}^{\in U}\right) \in f(U). \text{ Como } f \text{ hom. local } \Rightarrow f|: V^{x_0} \to V^{y_0} \text{ es}$$

$$hom. \Rightarrow f\left(\overbrace{U \cap V^{x_0}}^{\ni y_0 = f(x_0)}\right) \subset_{ab} V^{y_0} \Rightarrow f\left(\overbrace{U \cap V^{x_0}}^{\subseteq f(U)}\right) \text{ entorno de } y_0 \Rightarrow f(U) \text{ entorno de } y_0.$$

Ejemplo: (¡Importantes!)

1. Proyección estéreo? $\mathbb{S}^m \setminus \{\text{punto}\} \to \mathbb{R}^m \text{ hom.}$

- 2. Proyección exponencial $\mathbb{R} \to \mathbb{S}' : \theta \mapsto e^{2\pi i \theta} = (\cos 2\pi \theta, \sin 2\pi \theta)$, hom. local.
- 3. Proyección antipodal: $\mathbb{S}^m \to \mathbb{R} P^m : x \mapsto [x]$ hom. local.
- 4. Lemniscata: $f: \mathbb{R} \to X \subset \mathbb{R}^2: t \mapsto \left(\frac{t}{1+t^4}, \frac{t^3}{1+t_4}\right)$ es biy. cont, pero <u>no</u> hom. local.

Engañosamente:

$$\forall t \in \mathbb{R} \exists (t - \varepsilon, t + \varepsilon) = I_{\varepsilon} : f | : I_{\varepsilon} \to f(I_{\varepsilon})$$

es hom.

En t = 0, $f(I_{\varepsilon})$ no es entorno de f(0) = (0, 0).

Definición

Una variedad topológica de dim m es un espacio localmente homeomorfo a \mathbb{R}^m , es decir, cada punto tiene un entorno abierto homeomorfo a una bola $B(0,\varepsilon) \subset \mathbb{R}^m$ (luego a cualquier bola, luego a todo \mathbb{R}^m).

Construcciones

Imágenes inversas

Problema: Hacer $f: Y \to (X, \mathcal{T})$ continua con $\begin{cases} \text{top. discreta en } Y \text{ (matricialidad)} \\ \text{top. } \underline{\text{menos fina}} \text{ en } Y \end{cases}$

Sol: $f^{-1}\mathcal{T} = \{f^{-1}U : U \in \mathcal{T}\}$ top. imagen inversa.

- 1. Es topología (inm.)
- 2. Es mínima. $[f \text{ es continua} \Rightarrow \forall f^{-1}U \text{ es abierto}]$

Teorema (Caracterización imagen inversa)

1.

$$\mathcal{T}' = f^{-1}\mathcal{T} \Leftrightarrow$$

$$\forall g [g \ cont. \Leftrightarrow f \circ g \ cont.]$$
(3.1)

2. Y.

Demostración:

- 1. $T' = f^{-1}T$:
 - $g \text{ cont.} \Rightarrow f \circ g \text{ cont.}$ (Composición de continuas)
 - $\bullet \ f \circ g \text{ cont.} \Rightarrow g \text{ cont.} \ (V \in \mathcal{T}' \Rightarrow g^{-1}V \overset{\mathcal{T}' = f^{-1}\mathcal{T}}{=} g^{-1}f^{-1}U = (f \circ)^{-1}U \overset{f \circ g \text{ cont.}}{\in} \mathcal{T}'')$
- 2. Por otro lado,

Ejercicio: Demostrar (ii) sin usar que $f^{-1}\mathcal{T}$ es la menos fina (usar que cumple la caracterización).

La anterior caracterización se llama propiedad universal.

Caso esencial:

$$f: Y \to X$$
 inyectiva

Definición

Una aplicación continua <u>inyectiva</u> $f:(Y,\mathcal{T}')\to (X,\mathcal{T})$ tal que $\mathcal{T}'=f^{-1}\mathcal{T}$ se llama <u>inmersión</u> (se suelen omitir las topologías).

Observación:

1. $\mathcal{T}' = f^{-1}\mathcal{T} \Leftrightarrow (Y, \mathcal{T}') \xrightarrow{\text{hom.}} (f(Y), \mathcal{T}|_{f(Y)})$

$$[V \in f^{-1}\mathcal{T} \Leftrightarrow V = f^{-1}\underbrace{U}_{\mathcal{T}} = f^{-1}\underbrace{\underbrace{U \cap f(Y)}_{\mathcal{T}|f(Y)}}]$$

2. $f: Y \to X$ 1 – 1 cont. + $\begin{cases} \text{ab.} \Rightarrow \text{inmersión [ab. en } X \Rightarrow \text{ab. en } f(Y) \\ \text{cerr.} \Rightarrow \text{inmersión [cerr. en } X \Rightarrow \text{cerr. en} f(Y) \end{cases}$

$$\begin{cases} f\left(Y\right) \overset{\text{ab.}}{X}: V = f^{-1}U \in f^{-1}\mathcal{T} \Rightarrow fV = U \cap f\left(Y\right) \in \mathcal{T} \text{ (inter. abierto)} \\ f\left(Y\right) \overset{\text{cerr.}}{X}: C \text{ c.} f^{-1}\mathcal{T} \Rightarrow Y \setminus C = f^{-1}U \in f^{-1}\mathcal{T} \Rightarrow f\left(C\right) \left(X \setminus U\right) \cap f\left(Y\right) \overset{\text{cerr.}}{\subset} X \text{ i. c.} \end{cases}$$

- 3. Tenemos:
 - Inmersión + Áb. + Ærr.
 - Inmersión + ab. + Æerr.
 - Inmersión + ab. + cerr.

Observación:

Las inmersiones permiten considerar unos espacios como subespacios de otros. Las frases "el plano proyectivo real no es un subespacio de \mathbb{R}^3 ", "la esfera no es un subespacio de \mathbb{R}^2 ", "el plano proyectivo real es un subespacio de \mathbb{R}^4 " se refieren a esto: cuándo hay o no hay una inmersión del primer espacio en el segundo, es decir, un subespacio del segundo homeomorfismo al primero. Es un problema fundamental de la topología y de la geometría.

Imágenes directas

Problema: Hacer $f:(X,\mathcal{T})\to Y$ continua en $\begin{cases} \text{top. trivial en }Y(\text{matrivialidad})\\ \text{top. }\underline{\text{más fina}}\text{ en }Y \end{cases}$

Sol: $f\mathcal{T} = \{V \subset Y : f^{-1}V \in \mathcal{T}\}$ top. imagen directa.

- 1. Es topología (inm.)
- 2. Máxima [f es continua $\Leftrightarrow \forall f^{-1}V$ es abierto]

Teorema (Caracterización imágenes directas)

1.

$$\mathcal{T}' = f\mathcal{T} \Leftrightarrow$$

$$\forall g [g \ cont. \Leftrightarrow g \circ f \ cont.]$$
(3.2)

2. Y.

Demostración:

- 1. $T' = f^{-1}T$:
 - $g \text{ cont.} \Rightarrow g \circ f \text{ cont.}$ (Composición de continuas)
 - $g \circ f \text{ cont.} \Rightarrow g \text{ cont. } (W \in \mathcal{T}'' \Rightarrow f^{-1}\left(g^{-1}W\right) = \underbrace{\left(g \circ f\right)}_{\text{cont.}} W \in \mathcal{T} \overset{\mathcal{T}' = f\mathcal{T}}{\Rightarrow} g^{-1}W \in \mathcal{T}')$
- 2. Por otro lado,

Ejercicio: Demostrar (ii) sin usar que $f\mathcal{T}$ es la más fina (usar que cumple la caracterización)

La caracterización anterior se llama propiedad universal.

Observación:

$$\overline{f(X)} \text{ es abierto y cerrado en } f\mathcal{T}: \begin{cases} \forall y \in Y \setminus f(X), f^{-1}y = \emptyset \in \mathcal{T} \Rightarrow \{y\} \in f\mathcal{T} \\ f^{-1}f(X) = X \in \mathcal{T} \Rightarrow f(X) \in f\mathcal{T} \end{cases}$$

Caso esencial:

$$f: X \to Y$$
 sobreyectiva.

Para entender los abiertos de una imagen directa es conveniente representarlos en el dominio. El concepto es conjuntista en realidad:

21

Definición

Un conjunto $A \subset X$ es <u>saturado</u> (respecto de f) si $f^{-1}f(A) = A$.

Proposición

Los abiertos de fT son las imágenes de los abiertos saturados de T.

<u>Demostración</u>:

1.
$$V \in f\mathcal{T} \Rightarrow f^{-1}V \in \mathcal{T} \text{ y } V \stackrel{f \text{ sobre}}{=} f^{-1}fV$$

2.
$$U \in \mathcal{T}$$
, saturado $\Rightarrow f(U) = V \in f\mathcal{T} : f^{-1}V = f^{-1}f(U) \stackrel{U \text{ sat.}}{=} U \in \mathcal{T}$

Observación:

Los abiertos \underline{no} saturados de X pueden tener imágenes \underline{no} abiertas de Y.

1.
$$f:[0,1] \to \mathbb{S}^1 = Y: t \mapsto (\cos 2\pi t, \sin 2\pi t) = \exp(2\pi it)$$

La topología imagen directa es la usual en \mathbb{S}^1 .

2. Tenemos:

$$f: R = [0,1] \times [0,1] \to C \subset \mathbb{R}^3: x^2 + y^2 = 1, \ 0 \le z \le 1$$

 $(s,t) \mapsto (\cos 2\pi s, \sin 2\pi s, t).$

Analizando los abiertos saturados y no saturados se concluye que la topología imagen directa es la usual en el tronco del cilindro.

Definición

Una aplicación continua sobre $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ tal que $\mathcal{T}'=f\mathcal{T}$ se llama <u>identificación</u> (se suelen omitir las topologías)

Observación:

1. Identificación: $V \overset{\text{ab}}{\subset} Y \Leftrightarrow f^{-1}V \overset{\text{ab}}{\subset} X$

Continua: $V \overset{\mathrm{ab}}{\subset} Y \Rightarrow f^{-1}V \overset{\mathrm{ab}}{\subset} X$

2. Sea $f:X\to Y$ sobre. continua. Si además es:

• Abierta $\Rightarrow f$ es identificación [por (1)]

 $\blacksquare \text{ Cerrada} \Rightarrow f \text{ es identificación } [f^{-1}V \overset{\text{ab}}{\subset} X \overset{+ \text{ cerr. }}{\Rightarrow} f \left(\underbrace{X \setminus f^{-1}\left(V\right)}_{=Y \setminus V}\right) \overset{\text{cerr. }}{\subset} Y \Rightarrow V \overset{\text{ab}}{\subset} Y$

Tenemos que $x_1 \sim x_2 \stackrel{\text{def}}{\Leftrightarrow} f(x_1) = f(x_2)$

Política general: Los cocientes son cómodos para definir espacios, las identificaciones son mejores para estudiar las propiedades que tenemos. Conviene pues tener triángulos como el anterior. Se puede contemplar Y como un modelo del cociente.

Ejemplo: (Anteriores)

La circunferencia y el cilindro como cocientes:

Para representar cocientes se utilizan dibujos que indican las identificaciones en los espacios de partida:

