

Definitions: Given the function
$$z = f(x,y)$$
, the first partial derivatives of f with respect to x and y , respectively, are $\frac{\partial z}{\partial x} \equiv \frac{\partial f}{\partial x} \equiv f_1(x,y) \equiv f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$

$$\frac{\partial z}{\partial y} \equiv \frac{\partial f}{\partial y} \equiv f_2(x,y) \equiv f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

In the above definitions, for (2, y) means the partial derivative of f wnt the 1st argument, i.e & and fz (xig) means the partial derivative of f wat the 2nd argument, i.e., y.

Rule of finding partial derivatives of == f(x,y)

1. To Obtain fx, we consider y as a constant and differentiate f(z,y) wat x.

2. To obtain by, we consider as a constant and differentiate $f(z_1y)$ wat y.

 $\frac{2x!}{2x!}$: If $z = f(x,y) = xy + x^2$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at

Solution
$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial \mathcal{L}}{\partial y} + \frac{\partial \mathcal{L}}{\partial$$

$$\frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \left(xy + z^2 \right) = \frac{\partial}{\partial x} \left(xy \right) + \frac{\partial}{\partial x} \left(x^2 \right)$$

$$= y \frac{\partial}{\partial x} (x) + 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left(\frac{x}{x}y + \frac{\partial}{x} \right)$$

$$= \frac{\partial}{\partial y} \left(\frac{x}{x}y + \frac{\partial}{x} \right)$$

	$\frac{\partial}{\partial y}(y)$ \rightarrow
At the point (2	(U)
$\frac{3\times}{9\pm}$	$\frac{1}{(2,0)} = \frac{1}{2} + \frac{1}{2} \times \frac{1}{(2,0)} = \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2$
	$(z_{10}) = x _{(z_{10})} = 2 Ans.$
Geometric meani	of partial derivatives
	(C_z) (C_1) $Z = \int (x_1, y_1)$
	$\vec{\tau}_1$
	(L ₁)
25	Slope of the tangent line (4) to (6, at P(a, b, f(a, b))
0x 1 (a, b)	tand
32 (a1P) =	Slope of the tangent line (Lz) to (Cz) at P.
=	tan \$ = To be tangent vectors to (G) & (C2) to the surface
	the point P(a,b, f(a,b)). Then
	$\overline{f}_{1} = (1, 0, f_{*}(a,b))$
	$\overline{I_2} = (0, 1, f_y(a, b))$ normal vector \overline{N} to the surface $\overline{z} = f(z_{1/2})$ at P
î	$\vec{J} = \vec{T}$, $\times \vec{T}_z$ (See Stewart, chapter 12 about the (Noss-product)
	= î j k
	$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & f_{x}(a, k) \\ 0 & 1 & f_{y}(a, k) \end{vmatrix}$
	$= \hat{i} \bigcirc \int_{x} (a, b) -\hat{j} 1 f_{x}(a, b) +\hat{k} 1 \bigcirc 1$ $= \hat{i} \bigcirc f_{y}(a, b) -\hat{j} 1 f_{x}(a, b) +\hat{k} 1 \bigcirc 1$
	$= \hat{i} \left(-f_{\times}(a,b) \right) - \hat{j} \left(f_{y}(a,b) \right) + 1 \hat{k}$ $= -f_{\times}(a,b) \hat{i} - f_{y}(a,b) \hat{j} + 1 \hat{k}$ $\vec{N}(a,b,c)$
	$= -f_{\times}(a,b)\hat{i} - f_{y}(a,b)\hat{j} + 1\hat{k}$ $= -f_{\times}(a,b)\hat{i} - f_{y}(a,b)\hat{j} + 1\hat{k}$

 $\frac{\partial^2 x}{\partial x^2 \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^2 y}{\partial x^2} \right) = \frac{\partial^2 f}{\partial x \partial y} = \int_{2\pi} (x_1 y_2) = \int_{2\pi} (x_1 y_2) dy$ $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial y}{\partial y} \left(\frac{\partial z}{\partial z} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{12}(x, y) = f_{xy}(x, y)$ The last two partial derivatives are called mixed partial derivatives of f wat a and y. $\{x \}$: Find the 2nd derivatives of $\{(x,y) = x^3y^4 + x^4y^3\}$. $f_{x} = \frac{\partial f}{\partial x} = (3x^{2})y^{3} + (4x^{3})y^{3} = 3x^{2}y^{3} + 7x^{3}y^{3}$ $f_y = \frac{2f}{2y} = (x^3)/(4y^3) + (x^4)(3y^2) = 4x^3y^3 + 3x^4y^2$ $f_{\times\times} = \frac{\partial}{\partial x} \left(3x^2y^4 + 4x^3y^3 \right)$ $= 6 \times y^{7} + 12 \times^{2} y^{3} // Anr.$ $f_{yy} = \frac{\partial}{\partial y} \left(4x^3y^3 + 3x^4y^2 \right)$ $= 4x^{3}(3y^{2}) + 3x^{4}(2y)$ = 12 x3 y2 + 6 x7 y // Ans. $f_{xy} = \frac{\partial}{\partial y} (f_x) = \frac{\partial}{\partial y} (3x^2y^4 + yx^3y^3)$ $= (3x^{2})(4y^{3}) + 4x^{3}(3y^{2})$ = $12 \times^2 y^3 + 12 \times^3 y^2 // Ans.$ $f_{yx} = \frac{\partial}{\partial x} (f_y) = \frac{\partial x}{\partial x} (4x^3y^3 + 3x^3y^3)$ = 12 22 y 3 + 12 23 y2 // Am. We note that fay = frx. This is NOT a coincidence but it is the content of the following theorem Clairault's Theorem: Suppose f, fx, fy, fxy, fxx are continuous in a neighborhood of (a, h) then fx (a,b) = fx (a,b) What is a differential equation (DE)? A DE is an equation consisting of an unknown function and its derivatives. There are 2 types of DES

(i) To the leave to is a fitter of one of all only
(i) If the unknown function is a function of one variable ONLY
then this DE is called an Ordinary Differential Equation (ODE).
(ii) If the unknown function is a functions of two or more independent
variables then this DE is called a Partial Differential Equation (PDE).
The following PDFs are popular and useful in Science
and Physics.
(i) Laplace's equation
$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
where u(z,y) is the unknown function
(ii) The wave equation
$\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$
(iv) The heat equation (or the diffusion equation)
$\frac{\partial f}{\partial n} = D \frac{\partial x}{\partial x^2}$
$\frac{\mathcal{E}_{xy}}{\mathcal{E}_{xy}}$: Show that the function $u=e^{kx}\sin ky$ is a solution of
Caplace's equation.
Solution:
$u_{x} = k e^{kx} \sin ky \qquad $
$u_{xx} = k^2 e^{kx} \sin ky \qquad \qquad u_{yy} = -k^2 e^{kx} \sin ky$
Subst these into the LHS of Laplace's egn
$LHS = u_{xxy} u_{yy}$
= k² ekx sinky - k² ekx sinky
= 0
= RHS V
: 4(2,5) = ekz sinky is a solv of laplace's equation. 11 Ans.
$\frac{\mathcal{E}_{XS}}{\mathcal{E}_{XS}}$: Show $u(z,t) = \sin(z-ct)$ is a solution of the
vave equation 22.
wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$
Soh
$U_{+} = cos(x-ct)(-c) = -ccos(x-ct)$

$u_{tt} = c \sin(\alpha - ct)(-c)$
$=-c^2\sin\left(x-ct\right)$
$u_x = \omega_s(x-t) \frac{\partial}{\partial x}(x-t) = \omega_s(x-t)$
$u_{xx} = -\sin(x-d) \frac{\partial}{\partial x}(x-d) = -\sin(x-d)$
$\frac{3\times}{1}$
LHS of the wave equation = Utt
$= -c^2 \sin (x - ct) $
RHS of the wave equation = c2 4xx
$= c^2 \left(-\sin\left(x-ct\right)\right)$
$= c^{2} \sin (x - ct)$ $= -c^{2} \sin (x - ct) // $
Because LHS = RHS, u(z,t) = sin(z-ct) is a solution of
the wave equation. MAns.
In problem 81, p. 966 ym are asked to show $u(z,t) = \frac{e^{-x^2/4Dt}}{\sqrt{4\pi Dt}}$
$u(z,t) = \frac{1}{\sqrt{4\pi Dt}}$
is a solution by the diffusion equation
$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$
which is you home wak. //
See you on Monday!