FINM 34500/STAT 39000

Problem Set 4 (due February 3)

Reading: Notes through Chapter 3 (remember: indented parts are optional reading)

Exercise 1 Use Itô's formula to find the stochastic differential $df(t, B_t)$ where B_t is a standard Brownian motion and

- 1. $f(t,x) = x e^{-x}$
- 2. $f(t,x) = x t e^{-tx}$
- 3. $f(t,x) = t + [\sin x]^3$
- 4. Repeat these exercises for $f(t, X_t)$ where

$$dX_t = X_t \left[2dt + 2 \, dB_t \right]$$

Exercise 2 Suppose

$$Z_t = \int_0^t A_s \, dB_s$$

where A_s is a bounded, adapted process with continuous paths. Let

$$M_t = Z_t^2 - \langle Z \rangle_t.$$

Show that M_t is a continuous martingale (with respect to the filtration where \mathcal{F}_t is the information in $\{B_s : s \leq t\}$).

Exercise 3 Suppose an asset follows the following geometric SDE,

$$dX_t = X_t \left[2 dt + dB_t \right].$$

- 1. Write the exact solution of this equation. In other words, find X_t as a function of B_t .
- 2. Suppose $X_0 = 1$. What is the probability that $X_1 > 3$?
- 3. Suppose $X_0 = 1/2$. What is the probability that $X_2 < 3$?
- 4. Let $Y_t = \log X_t$ where \log denotes the natural logarithm. Find the equation that Y_t satisfies (your answer should be in terms of Y_t and B_t and should not include X_t).

Exercise 4 Suppose that two assets X_t, Y_t follow the SDEs

$$dX_t = X_t \left[2, dt + 2 dB_t \right],$$

$$dY_t = Y_t \left[3 \, dt - dB_t \right],$$

1

where B_t is a standard Brownian motion. Suppose also that $X_0 = Y_0 = 1$.

- 1. Let $Z_t = X_t Y_t$. Give the SDE satisfied by Z_t .
- 2. Let $Z_t = X_t/Y_t$. Give the SDE satisfied by Z_t .

Exercise 5 Book, pp. 123-124, Exercise 3.7