

/ Projektdokumentation

Wohngebäude Mehrfamilienhäuser

Elektro Mustermann Musterstraße 21 54321 Musterstadt

Tel.: +49 123 456-0 Fax: +49 123 456-100

E-Mail: info@el-mustermann.de Internet: www.el-mustermann.de

Projektnummer: ---

Standort: Deutschland / München

Datum: 23.10.2023

Erstellt mit Sunny Design 5.60.1 © SMA Solar Technology AG 2023

/ Inhaltsverzeichnis

Projektübersicht	3
Fact Sheet	4
Auslegungen der Wechselrichter	6
Hinweise	11
Eigenverbrauch (Strom)	12
Monatswerte	13
Betrachtung der Wirtschaftlichkeit	14
Unverbindliche Kostenschätzung	16
Dachplan	17

Elektro Mustermann Musterstraße 21 54321 Musterstadt

Tel.: +49 123 456-0 Fax: +49 123 456-100

E-Mail: info@el-mustermann.de Internet: www.el-mustermann.de

Elektro Mustermann • Musterstraße 21 • 54321 Musterstadt

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München **Netzspannung:** 230V (230V / 400V)

Systemübersicht

167 x .SMA SMA Demo Poly 425W (Gebäude 1: Fläche 1-West)

Azimut: 90 °, Neigung: 10 °, Montageart: Dach, Peak-Leistung: 70,98 kWp

171 x .SMA SMA Demo Poly 425W (Gebäude 1: Fläche 1-Ost)

Azimut: -90 °, Neigung: 10 °, Montageart: Dach, Peak-Leistung: 72,68 kWp

1 x SMA STP110-60 (CORE2)

2 x SMA STP 20-50

Batteriesystem

3 x SMA Sunny Tripower Storage 60

3 x SMA, Storage Business 67 kWh (67 kWh)

PV-Auslegungsdaten			
Gesamtanzahl der PV-Module:	338	Spez. Energie-Ertrag*:	1005 kWh/kWp
Peak-Leistung:	143,65 kWp	Leitungsverluste (in % von PV-Energie):	
Anzahl der PV-Wechselrichter:	3	Schieflast:	0,00 VA
AC-Nennleistung der PV-Wechselrichter:	150,00 kW	Jährlicher Energieverbrauch:	135 MWh
AC-Wirkleistung:	135,00 kW	Eigenverbrauch:	96.041 kWh
Wirkleistungsverhältnis:	94 %	Eigenverbrauch squote:	66,5 %
Jährlicher Energie-Ertrag*:	144,32 MWh	Autarkiequote:	68,5 %
Mehrertrag durch SMA Shadefix:	15.353 kWh	Gesamte Nennkapazität:	201,00 kWh
Energienutzungsfaktor:	100 %	Jährliche Nennkapazitätsdurchsätze der Batterie:	206
Performance Ratio*:	85 %	CO ₂ -Reduktion nach 20 Jahren:	969 t

^{*}Wichtig: Die angezeigten Ertragswerte sind Schätzwerte. Sie werden mathematisch ermittelt. SMA Solar Technology AG übernimmt keine Haftung für den realen Ertragswert, der von den hier angezeigten Ertragswerten abweichen kann. Gründe für Abweichungen sind verschiedene äußere Umstände, z. B. Verschmutzungen der PV-Module oder Schwankungen der Wirkungsgrade der PV-Module.

Ihr Energiesystem auf einen Blick

// Projekt: Wohngebäude Mehrfamilienhäuser

Elektro Mustermann Musterstraße 21 54321 Musterstadt Tel.: +49 123 456-0

Fax: +49 123 456-100 E-Mail: info@el-mustermann.de

Internet: www.el-mustermann.de

Projektnummer: ---

Standort: Deutschland / München

Datum: 23.10.2023

Erstellt mit Sunny Design 5.60.1 © SMA Solar Technology AG 2023

/ Energiesystem

PV-Anlage	PV-Wechselrichter 1 x SMA STP110-60 (CORE2) 2 x SMA STP 20-50	PV-Generatoren 338 x .SMA SMA Demo Poly 425W
Batteriesystem	Batterie-Wechselrichter 3 x SMA Sunny Tripower Storage 60	Batterie 3 x SMA, Storage Business 67 kWh (67 kWh)
Zusätzliche Komponenten	Energiemanagement 1 x SUNNY PORTAL powered by ennexOS	
Systemgröße	PV-Anlage 143,65 kWp	Batteriesystem 201,00 kWh

/ Vorteile

2.993 EUREinspeisevergütung im ersten Jahr

68,5 % Autarkiequote

2.851 EUREingesparte Stromkosten pro Monat

969 t CO₂-Reduktion nach 20 Jahren

Gesamte Ersparnis nach 20 Jahr(en): 409.667 EUR

/ Energiebilanz

Auslegungen der Wechselrichter

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

Umgebungstemperatur:

Minimale Temperatur: -18 °C Auslegungstemperatur: 19 °C Maximale Temperatur: 32 °C

Teilprojekt Teilprojekt 1

1 x SMA STP110-60 (CORE2) (Teilanlage 2)

Peak-Leistung:	93,50 kWp
Gesamtanzahl der PV-Module:	220
Anzahl der PV-Wechselrichter:	1
Max. DC-Leistung (cos ϕ = 1):	111,80 kW
Max. AC-Wirkleistung (cos φ = -0,9):	99,00 kW
Netzspannung:	230V (230V / 400V)
Nennleistungsverhältnis:	108 %
Dimensionierungsfaktor:	94,4 %
Verschiebungsfaktor cos φ:	-0,9
Volllaststunden:	864,5 h

PV-Auslegungsdaten

Eingang 1: Gebäude 1: Fläche 1-West

16 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

Eingang 2: Gebäude 1: Fläche 1-West

16 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

Eingang 3: Gebäude 1: Fläche 1-West

17 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

Eingang 4: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 5: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 6: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 7: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 8: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 9: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 10: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 11: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

Eingang 12: Gebäude 1: Fläche 1-Ost

19 x .SMA SMA Demo Poly 425W, Azimut: -90 °, Neigung: 10 °, Montageart: Dach

		Eingang 1:		Eingang 2:		Eingang 3:
Anzahl der Strings:		1		1		1
PV-Module:		16		16		17
Peak-Leistung (Eingang):		6,80 kWp		6,80 kWp		7,23 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		200 V		200 V		200 V
Typische PV-Spannung:	O	580 V	②	580 V	②	617 V
Min. PV-Spannung:		543 V		543 V		577 V
Max. DC-Spannung (Wechselrichter):		1100 V		1100 V		1100 V
Max. PV-Spannung	•	817 V	②	817 V	②	868 V
Max. Eingangsstrom pro MPPT:		26 A		26 A	:	26 A
Max. PV-Generatorstrom:	•	11,1 A	•	11,1 A	•	11,1 A
Max. Kurzschluss-Strom pro MPPT:		40 A		40 A		40 A
Max. Kurzschluss-Strom PV	•	11,7 A	•	11,7 A	•	11,7 A
		Eingang 4:		Eingang 5:		Eingang 6:
Anzahl der Strings:		1		1		1
PV-Module:		19		19		19
Peak-Leistung (Eingang):		8,08 kWp		8,08 kWp		8,08 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		200 V		200 V	:	200 V
Typische PV-Spannung:	•	689 V	②	689 V	②	689 V
Min. PV-Spannung:		645 V		645 V		645 V
Max. DC-Spannung (Wechselrichter):		1100 V		1100 V		1100 V
Max. PV-Spannung	②	970 V	②	970 V	②	970 V
Max. Eingangsstrom pro MPPT:		26 A		26 A	:	26 A
Max. PV-Generatorstrom:	•	11,1 A	②	11,1 A	②	11,1 A
Max. Kurzschluss-Strom pro MPPT:		40 A		40 A		40 A
Max. Kurzschluss-Strom PV	•	11,7 A	•	11,7 A	•	11,7 A
		Eingang 7:		Eingang 8:		Eingang 9:
Anzahl der Strings:		1		1		1
PV-Module:		19		19		19
Peak-Leistung (Eingang):		8,08 kWp		8,08 kWp		8,08 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		200 V		200 V		200 V
Typische PV-Spannung:	•	689 V	②	689 V	②	689 V
Min. PV-Spannung:		645 V		645 V		645 V
Max. DC-Spannung (Wechselrichter):		1100 V		1100 V		1100 V
Max. PV-Spannung	②	970 V	②	970 V	②	970 V
Max. Eingangsstrom pro MPPT:		26 A		26 A		26 A
Max. PV-Generatorstrom:	•	11,1 A	•	11,1 A	•	11,1 A
Max. Kurzschluss-Strom pro MPPT:		40 A		40 A		40 A
Max. Kurzschluss-Strom PV		11,7 A		11,7 A		11,7 A

	Eingang 10:	Eingang 11:	Eingang 12:
Anzahl der Strings:	1	1	1
PV-Module:	19	19	19
Peak-Leistung (Eingang):	8,08 kWp	8,08 kWp	8,08 kWp
Min. DC-Spannung WR (Netzspannung 230 V):	200 V	200 V	200 V
Typische PV-Spannung:		⊘ 689 V	⊘ 689 V
Min. PV-Spannung:	645 V	645 V	645 V
Max. DC-Spannung (Wechselrichter):	1100 V	1100 V	1100 V
Max. PV-Spannung	⊘ 970 V	⊘ 970 V	⊘ 970 V
Max. Eingangsstrom pro MPPT:	26 A	26 A	26 A
Max. PV-Generatorstrom:	⊘ 11,1 A	⊘ 11,1 A	⊘ 11,1 A
Max. Kurzschluss-Strom pro MPPT:	40 A	40 A	40 A
Max. Kurzschluss-Strom PV	⊘ 11,7 A	⊘ 11,7 A	⊘ 11,7 A

PV/WR kompatibel

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

Auslegungen der Wechselrichter

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

Umgebungstemperatur:

Minimale Temperatur: -18 °C Auslegungstemperatur: 19 °C Maximale Temperatur: 32 °C

/ Teilprojekt Teilprojekt 1

2 x SMA STP 20-50 (Teilanlage 1)

Peak-Leistung:	50,15 kWp
Gesamtanzahl der PV-Module:	118
Anzahl der PV-Wechselrichter:	2
Max. DC-Leistung (cos φ = 1):	20,41 kW
Max. AC-Wirkleistung (cos ϕ = -0,9):	18,00 kW
Netzspannung:	230V (230V / 400V)
Nennleistungsverhältnis:	73 %
Dimensionierungsfaktor:	139,3 %
Verschiebungsfaktor cos φ:	-0,9
Volllaststunden:	1230,7 h

PV-Auslegungsdaten

Eingang A: Gebäude 1: Fläche 1-West

30 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

Eingang B: Gebäude 1: Fläche 1-West

15 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

Eingang C: Gebäude 1: Fläche 1-West

14 x .SMA SMA Demo Poly 425W, Azimut: 90 °, Neigung: 10 °, Montageart: Dach

		Eingang A:		Eingang B:		Eingang C:
Anzahl der Strings:		2		1		1
PV-Module:		15		15		14
Peak-Leistung (Eingang):		12,75 kWp		6,38 kWp		5,95 kWp
Min. DC-Spannung WR (Netzspannung 230 V):		150 V		150 V		150 V
Typische PV-Spannung:	•	544 V	②	544 V	②	508 V
Min. PV-Spannung:		509 V		509 V		475 V
Max. DC-Spannung (Wechselrichter):		1000 V		1000 V		1000 V
Max. PV-Spannung	•	766 V	•	766 V	②	715 V
Max. Eingangsstrom pro MPPT:		24 A		24 A		24 A
Max. PV-Generatorstrom:	•	22,3 A	②	11,1 A	②	11,1 A
Max. Kurzschluss-Strom pro MPPT:		37,5 A		37,5 A		37,5 A
Max. Kurzschluss-Strom PV	•	23,3 A	©	11,7 A	②	11,7 A

PV/WR bedingt kompatibel

PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 79 %).

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

10 / 17 Version: 5.60.1 / 23.10.2023

Hinweise

Projekt: Wohngebäude Mehrfamilienhäuser **Standort:** Deutschland / München

Projektnummer: ---

Wohngebäude Mehrfamilienhäuser

- Mit Inkrafttreten des EEG 2014 ist in Deutschland die Förderung des eingespeisten Stroms von PV-Anlagen, die ab dem 1. Januar 2016 neu in Betrieb genommen werden, ab einer Peak-Leistung von 100 kWp nur noch im Marktmodell der Direktvermarktung möglich. Hierbei ist die Fernsteuerbarkeit der Anlage durch das Direktvermarktungsunternehmen über einen sicheren Kommunikationskanal gefordert. Dies kann beispielsweise über die Direktvermarktungsschnittstelle des SMA Data Manager oder Power Plant Controller erfolgen.
- Anlagen mit einer installierten Leistung von mehr als 25 kWp müssen gemäß EEG 2021 mit technischen Einrichtungen ausgestattet sein, mit denen der Netzbetreiber jederzeit die Einspeiseleistung bei Netzüberlastung ferngesteuert reduzieren kann.
- In Deutschland müssen Energieerzeugungsanlagen mit einer Leistung größer 13,8 kVA ab 1.1.2012 Blindleistung nach Vorgabe des Netzbetreibers bereitstellen können. Der Verschiebungsfaktor der verwendeten Wechselrichter wird automatisch auf 0,9 untererregt (-) angepasst.

Teilprojekt 1

1 x SMA STP110-60 (CORE2) (Teilanlage 2)

Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

2 x SMA STP 20-50 (Teilanlage 1)

- PV-Generator und Typ des Wechselrichters sind nur bedingt kompatibel, da der Wechselrichter für diese Kombination unterdimensioniert ist (< 79 %).
- Diesen Wechselrichter bekommen Sie inklusive SMA ShadeFix. SMA ShadeFix ist eine patentierte Wechselrichter-Software, die den Ertrag von Photovoltaikanlagen automatisch in jeder Situation optimiert. Auch bei Verschattung.

11 / 17

Version: 5.60.1 / 23.10.2023

Eigenverbrauch (Strom)

Projekt: Wohngebäude Mehrfamilienhäuser **Standort:** Deutschland / München

Projektnummer: ---

Ergebnis

Angaben zum Eigenverbrauch

Verbrauchsprofil: Mehrfamilienhaus

Kleines energieeffizientes Mehrfamilienhaus mit 11 Wohneinheiten und 24 überwiegend

berufstätigen Bewohnern

Jährlicher Energieverbrauch: 135 MWh

Eigenverbrauchsoptimierung

SMA Data Manager M

Mit integriertem System Manager

3 x SMA Sunny Tripower Storage 60

Zur Eigenverbrauchsoptimierung und Lastspitzenkappung (Peak Load Shaving) für gewerbliche Anlagen mit Hochvolt Lithium-Batterien. Batteriespannungsbereich: 575 V - 1000 V

Batterien: SMA, Storage Business 67 kWh

Kapazität: 67,00 kWh Davon nutzbar: 100 %

Voraussetzung für den Betrieb des Geräts ist die Verwendung eines Inverter Manager. Zusätzlich wird ein Netzanalysator UMG 604-PRO der Janitza electronics GmbH benötigt.

Ohne Eigenverbrauchsoptimierung

Details	
Jährlicher Energieverbrauch	135 MWh
Jährlicher Energie-Ertrag	144 MWh
Netzeinspeisung	89.605 kWh
Netzbezug	80.188 kWh
Max. Leistung Netzbezug	82,13 kW
Eigenverbrauch	54.712 kWh
Eigenverbrauchsquote (in % von PV-Energie)	37,9 %
Autarkiequote (in % vom Energieverbrauch)	40,6 %

Mit Eigenverbrauchsoptimierung

Details	
Jährlicher Energieverbrauch	135 MWh
Jährlicher Energie-Ertrag	144 MWh
Netzeinspeisung	48.276 kWh
Netzbezug	42.433 kWh
Max. Leistung Netzbezug	82,13 kW
Eigenverbrauch	96.041 kWh
Eigenverbrauchsquote (in % von PV-Energie)	66,5 %
Autarkiequote (in % vom Energieverbrauch)	68,5 %
Gesamte Nennkapazität	201,00 kWh
Jährliche Nennkapazitätsdurchsätze der Batterie	206

Monatswerte

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

/ Energie-Ertrag

Monat	Energie-Ertrag [kWh]	Eigenverbrauch [kWh]	Netzeinspeisung [kWh]	Netzbezug [kWh]
1	3956 (2,8 %)	3956	0	8430
2	6042 (4,2 %)	5950	92	5397
3	11192 (7,8 %)	9563	1630	2748
4	16636 (11,6 %)	10589	6048	447
5	19772 (13,7 %)	10778	8994	199
6	20511 (14,2 %)	10814	9697	253
7	20893 (14,5 %)	10883	10010	338
8	17467 (12,1 %)	9886	7581	413
9	12887 (8,9 %)	9401	3486	1868
10	7978 (5,5 %)	7239	739	4395
11	3928 (2,7 %)	3928	0	8349
12	3055 (2,1 %)	3055	0	9595

Betrachtung der Wirtschaftlichkeit

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

/ Jährliche Stromkosten

Ohne PV-Anlage im 1. Jahr

49.913 EUR

Ohne PV-Anlage in 20 Jahr(en)

87.523 EUR

Mit PV-Anlage im 1. Jahr

12.707 EUR

/ Details

Eingesparte Stromkosten im ersten Jahr	34.213 EUR
Gesamte Ersparnis nach 20 Jahr(en)	409.667 EUR
Eingesparte Stromkosten nach 20 Jahr(en)	888.856 EUR
Einspeisevergütung nach 20 Jahr(en)	55.265 EUR
Erwartete Amortisationszeit	10,5 a
Stromgestehungskosten über 20 Jahr(e)	0,321 EUR/kWh
Jährliche Rendite (IRR)	8,00 %
Gesamtinvestition	356.175,00 EUR

Betrachtung der Wirtschaftlichkeit

Projekt: Wohngebäude Mehrfamilienhäuser **Standort:** Deutschland / München

Projektnummer: ---

/ Finanzierung

Die Währung ist EUR

Die Eigenkapitalquote beträgt 100 %

Die Fremdkapitalquote beträgt 0 %

Die Fördersumme beträgt 0,00 EUR

Die Inflationsrate beträgt 3,00 %

Der Betrachtungszeitraum der Wirtschaftlichkeit beträgt 20 Jahre

Strombezugskosten und Einspeisevergütung

Der Strombezugspreis beträgt 0,37000 EUR/kWh

Der Grundpreis beträgt 0,00 EUR/Monat.

Sondertarife werden nicht berücksichtigt

Die jährliche Stromteuerungsrate beträgt 3,0 %

Der anzulegende Wert beträgt 0,06200 EUR/kWh

Die Dauer der Einspeisevergütung beträgt 20 Jahre

Abzug oder Vergütung bei Eigenverbrauch beträgt 0,00000 EUR/kWh

Der Marktwert beträgt 0,03000 EUR/kWh

15 / 17

Version: 5.60.1 / 23.10.2023

Unverbindliche Kostenschätzung

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

Projektkosten		
PV-Anlage	1.500,00 EUR/kWp x 143,65 kWp	215.475,00 EUR
Batteriesystem	700,00 EUR/kWh x 201,00 kWh	140.700,00 EUR
Sonstige Kosten		
Gesamtinvestition		356.175,00 EUR
Fixkosten		
Jährliche Fixkosten (in % der Investitionskosten)	1,50 % der Investitionskosten	5.342,63 EUR
Jährliche Direktvermarktungskosten		1.736,05 EUR

Dachplan - Teilprojekt 1 - Gebäude 1

Projekt: Wohngebäude Mehrfamilienhäuser

Projektnummer: ---

Standort: Deutschland / München

