PRE029006 - PROCESSOS ESTOCÁSTICOS (2024 .2 - T01)

Avaliação 6

Aluno: Wagner Santos

3. Sejam A, B, $C \sim \text{iid Bernoulli}(1/4)$. Considere o processo estocástico X(t) definido por $X(t) = A \operatorname{rect}(t-2/4) + B \operatorname{rect}(t-4/8) + C \operatorname{rect}(t-6/12)$.

(a) Determine e esboce todas as possíveis funções-amostra de X(t).

Combinação	X(t)	Α	В	С
1	0	0	0	0
2	rect((t-6)/12)	0	0	1
3	rect((t-4)/8)	0	1	0
4	rect((t-4)/8) + rect((t-6)/12)	0	1	1
5	rect((t-2)4)	1	0	0
6	rect((t-2)4) + rect((t-6)/12)	1	0	1
7	rect((t-2)4) + rect((t-4)/8)	1	1	0
8	rect((t-2)4) + rect((t-4)/8) + rect((t-6)/12)	1	1	1

Combinação 1 (A = 0, B = 0, C = 0):

Combinação 2 (A = 0, B = 0, C = 1):

Combinação 3 (A = 0, B = 1, C = 0):

Combinação 4 (A = 0, B = 1, C = 1):

Combinação 5 (A = 1, B = 0, C = 0):

Combinação 6 (A = 1, B = 0, C = 1):

Combinação 7 (A = 1, B = 1, C = 0):

Combinação 8 (A = 1, B = 1, C = 1):

Fonte: https://www.geogebra.org/classic/yfxgwvxp

(b) Determine e esboce a função densidade de probabilidade de primeira ordem de X(t). (Deve haver um esboço para cada intervalo de tempo relevante.)

$$P(A=1) = P(B=1) = P(C=1) = 1/4$$

 $P(A=0) = P(B=0) = P(C=0) = 3/4$

Caso
$$t < 0$$
: $x(t) = 0$

Caso
$$0 < t < 4$$
; $x(t) = A + B + C$

Caso
$$8 < t < 12$$
 $x(t) = C$

Caso t > 12
$$x(t) = 0$$

Caso
$$t < 0 \& t > 12$$
: $x(t) = 0$

$$PX(t)(x) = \delta[x]$$

Caso
$$0 < t < 4$$
; $x(t) = A + B + C$

Valores possíveis de X(t):

0:
$$[0\ 0\ 0] = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$$

1:
$$[1\ 0\ 0] = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$$

2:
$$[1\ 1\ 0] = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{9}{64}$$

$$\mathsf{PX}(\mathsf{t})(\mathsf{x}) = 27/64 \; . \; \delta[\mathsf{x}] \; + \; 27/64 \; . \; \delta[\mathsf{x} \; - \; 1] \; + \; 9/64 \; . \; \delta[\mathsf{x} \; - \; 2] \; + \; 1/64 \; . \; \delta[\mathsf{x} \; - \; 3]$$

Caso 4 < t < 8 x(t) = B + C

Valores possíveis de X(t):

0: [0 0] = 3/4 . 3/4 = 9/16

1: [1 0] ou [0 1] = 2 . $\frac{1}{4}$. $\frac{3}{4}$ = 6/16

2: [1 1] = 1/4 . 1/4 = 1/16

 $\mathsf{PX}(\mathsf{t})(x) = 9/16 \ . \ \delta[x] + 6/16 \ . \ \delta[x - 1] + 1/16 \ . \ \delta[x - 2]$

Caso 8 < t < 12
$$x(t) = C$$

PX(t)(x) = 3/4 . $\delta[x] + 1/4$. $\delta[x - 1]$

Caso t < 0:	x(t) = 0	$PX(t)(x) = \delta[x]$
Caso 0 < t < 4;	x(t) = A + B + C	$PX(t)(x) = 27/64 \cdot \delta[x] + 27/64 \cdot \delta[x - 1] + 9/64 \cdot \delta[x - 2] + 1/64 \cdot \delta[x - 3]$
Caso 4 < t < 8	x(t) = B + C	$PX(t)(x) = 9/16 \cdot \delta[x] + 6/16 \cdot \delta[x - 1] + 1/16 \cdot \delta[x - 2]$
Caso 8 < t < 12	x(t) = C	$PX(t)(x) = 3/4 \cdot \delta[x] + 1/4 \cdot \delta[x - 1]$
Caso t > 12,	x(t) = 0	$PX(t)(x) = \delta[x]$

(c) Determine e esboce a função média de X(t).

Caso
$$t < 0$$
 e $t > 12$:
uX(t) = 0, pois X(t) = 0

$$uX(t) = 0 \cdot 27/64 + 1 \cdot 27/64 + 2 \cdot 9/64 + 3 \cdot 1/64 = 24/64 + 18/64 + 3/64 = 48/64 = 3/4$$

Caso 4 < t < 8:

$$uX(t) = 0 \cdot 9/16 + 1 \cdot 6/16 + 2 \cdot 1/16 = 0 + 6/16 + 2/16 = \frac{1}{2}$$

Caso 8 < t < 12:

$$uX(t) = 0 \cdot \frac{3}{4} + 1 \cdot \frac{1}{4} = 0 + \frac{1}{4} = \frac{1}{4}$$

Fonte: https://www.geogebra.org/classic/rv6npdri

(d) Determine a função densidade de probabilidade de segunda ordem de X(t), considerando apenas valores t1 e t2 satisfazendo de 0 < t1 < 4 e $-\infty < t2 < \infty$. (Não é necessário esboçar.)

Caso 0 < t1 < 4 e 0 < t2 < 4, x(t) = A + B + C

Valores possíveis de X(t):

0: $[0\ 0\ 0] = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$

1: $[1\ 0\ 0] = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$

2: [1 1 0] = 1/4 . 1/4 . 3/4 = 9/64

3: [1 1 1] = 1/4 . 1/4 . 1/4 = 1/64

t1, t2	x2 = 0	x2 = 1	x2 = 2	x2 = 3
x1 = 0	(27/64)*(27/64)	(27/64)*(27/64)	(27/64)*(9/64)=	(27/64)*(1/64)=
	=729/4096	=729/4096	243/4096	27/4096
x1 = 1	(27/64)*(27/64)	(27/64)*(27/64)	(27/64)*(9/64)=	(27/64)*(1/64)=
	=729/4096	=729/4096	243/4096	27/4096
x1 = 2	(9/64)*(27/64)=	(9/64)*(27/64)=	(9/64)*(9/64)=	(9/64)*(1/64)=
	243/4096	243/4096	81/4096	9/4096
x1 = 3	(1/64)*(27/64)=	(1/64)*(27/64)=	(1/64)*(9/64)=	(1/64)*(1/64)=
	27/4096	27/4096	9/4096	1/4096

Soma = 4096/4096 = 1, Resultado WolframAlfa

Caso 4 < t1 < 8 e 0 < t2 < 4, x(t1) = B + C e x(t2) = A + B + C

Valores possíveis de X(t1):

 $0: [0\ 0] = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$

1: [1 0] ou [0 1] = 2 . $\frac{1}{4}$. $\frac{3}{4}$ = 6/16

2: [1 1] = 1/4 . 1/4 = 1/16

Valores possíveis de X(t2):

0: $[0\ 0\ 0] = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$

1: $[1\ 0\ 0] = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$

2: [1 1 0] = 1/4 . 1/4 . 3/4 = 9/64

3: [1 1 1] = 1/4 . 1/4 . 1/4 = 1/64

t1, t2	x2 = 0	x2 = 1	x2 = 2	x2 = 3
x1 = 0	(9/16)*(27/64)=	(9/16)*(27/64)=	(9/16)*(9/64)=	(9/16)*(1/64)=
	243/1024	243/1024	81/1024	9/1024
x1 = 1	(6/16)*(27/64)=	(6/16)*(27/64)=	(6/16)*(9/1024)	(6/16)*1/64)=
	162/1024	162/1024	=54/1024	6/1024
x1 = 2	(1/16)*(27/64)=	(1/16)*(27/64)=	(1/16)*(9/64)=	(1/16)*(1/64)=
	27/1024	27/1024	9/1024	1/1024

|--|

Soma = 1024/1024 = 1, Resultado WoframAlpha

Caso 8 < t1 < 12 e 0 < t2 < 4, x(t1) = C e X(t2) = A + B + C

Valores possíveis de X(t1):

 $0: [0\ 0] = \frac{3}{4}$

1: [1 0] ou [0 1] = 1/4

Valores possíveis de X(t2):

0: $[0\ 0\ 0] = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$

1: [1 0 0] = 1/4 . 3/4 . 3/4 = 27/64

2: [1 1 0] = 1/4 . 1/4 . 3/4 = 9/64

3: [1 1 1] = 1/4 . 1/4 . 1/4 = 1/64

t1, t2	x2 = 0	x2 = 1	x2 = 2	x2 = 3
x1 = 0	(3/4)*(27/64)= 81/256	(3/4)*(27/64)= 81/256	(3/4)*(9/64)= 27/256	(3/4)*(1/64)= 3/256
x1 = 1	(1/4)*(27/64)= 27/256	(1/4)*(27/64)= 27/256	(1/4)*(9/64)= 9/256	(1/4)*(1/64)= 1/256
x1 = 2	0	0	0	0
x1 = 3	0	0	0	0

Soma = 256/256 = 1, Resultado WolframAlpha

Caso t1 > 12 e t2 > 12, x(t) = 0

P(X(t1)=0, X(t2)=0) = 1todas as outras = 0

t1, t2	x2 = 0	x2 = 1	x2 = 2	x2 = 3
x1 = 0	1	0	0	0
x1 = 1	0	0	0	0
x1 = 2	0	0	0	0
x1 = 3	0	0	0	0

Soma = 1