Online: http://dust.ess.uci.edu/facts Built: Tue 21st Feb, 2017, 14:20

Particle Size Distributions: Theory and Application to Aerosols, Clouds, and Soils

by Charlie Zender University of California, Irvine

Department of Earth System Science	zender@uci.edu
University of California	Voice: (949) 891-2429
Irvine, CA 92697-3100	Fax: (949) 824-3256

Copyright © 1998–2017, Charles S. Zender

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. The license is available online at http://www.gnu.org/copyleft/fdl.html.

Contents

Co	ontent	ts	i
Li	st of T	Tables	1
1	Intr	oduction	1
	1.1	Modal vs. Sectional Representation	2
	1.2	Nomenclature	2
	1.3		2
	1.4		3
			3
2	Stat	istics of Size Distributions	4
	2.1	Generic	4
	2.2	Mean Size	4
	2.3	Variance	5
	2.4	Standard Deviation	5
3	Clou	ad and Aerosol Size Distributions	5
	3.1	Gamma Distribution	5
	3.2	Normal Distribution	5
	3.3		6
		3.3.1 Distribution Function	6
		3.3.2 Lognormal Relations	8
		3.3.3 Related Forms	4

		3.3.4 Variance	16
		3.3.5 Non-standard terminology	16
			16
		3.3.7 Statistics of Bounded Distributions	17
		3.3.8 Overlapping Distributions	18
			19
			19
			20
	3.4		21
			22
			23
4	Imn	lementation in NCAR models	24
•	4.1		 25
	4.2		-5 26
	1.2		26
			-0 26
			27
5	Δnn	endix 2	27
J	5.1		27 27
	5.2	· · · · ·	27 27
	5.3		27 28
	5.4		28
	5.5		29
Bi	bliog	raphy	59
In	dex		62
L	ist o	of Tables	
	1	Lognormal Distribution Relations	9
	2		ر 11
	3		11 13
	4		1 <i>5</i> 25
	5		29 30
	6		38
	7	1	36 46
	1	CLM Output Fields	τU

1 Introduction

This document describes mathematical and computational considerations pertaining to size distributions. The application of statistical theory to define meaningful and measurable parameters for

2 1 INTRODUCTION

defining generic size distributions is presented in §2. The remaining sections apply these definitions to the size distributions most commonly used to describe clouds and aerosol size distributions in the meteorological literature. Currently, only the lognormal distribution is presented.

1.1 Modal vs. Sectional Representaation

mdlsxn *Lu and Bowman* (2004) designed and optimal non-linear least squares-based procedure for converting from sectional to modal representations.

1.2 Nomenclature

nomenclature There is a bewildering variety of nomenclature associated with size distributions, probability density functions, and statistics thereof. The nomenclature in this article generally follows the standard references, (see, e.g., *Hansen and Travis*, 1974; *Patterson and Gillette*, 1977; *Press et al.*, 1988; *Flatau et al.*, 1989; *Seinfeld and Pandis*, 1997), at least where those references are in agreement. Quantities whose nomenclature is often confusing, unclear, or simply not standardized are discussed in the text.

1.3 Distribution Function

This section follows the carefully presented discussion of *Flatau et al.* (1989). The *size distribution* function $n_n(r)$ is defined such that $n_n(r) dr$ is the total concentration (number per unit volume of air, or # m⁻³) of particles with sizes in the domain [r, r + dr]. The total number concentration of particles N_0 is obtained by integrating $n_n(r)$ over all sizes

$$N_0 = \int_0^\infty n_{\rm n}(r) \, \mathrm{d}r \tag{1}$$

The size distribution function is also called the *spectral density function*. The dimensions of $n_{\rm n}(r)$ and N_0 are # m⁻³ m⁻¹ and # m⁻³, respectively. Note that $n_{\rm n}(r)$ is only normalized if $N_0=1.0$ (cf. Section 3.4.2).

Often N_0 is not an observable quantity. A variety of functional forms, some of which are overloaded for clarity, describe the number concentrations actually measured by instruments. Typically an instrument has a lower detection limit r_{\min} and an upper detection limit r_{\max} of particle sizes which it can measure.

$$N(r < r_{\text{max}}) = \int_0^{r_{\text{max}}} n_{\text{n}}(r) dr$$
 (2)

$$N(r > r_{\text{max}}) = \int_{r_{\text{max}}}^{\infty} n_{\text{n}}(r) dr$$
 (3)

$$N(r_{\min}, r_{\max}) = N(r_{\min} < r < r_{\max}) = \int_{r_{\min}}^{r_{\max}} n_{\mathrm{n}}(r) \,\mathrm{d}r \tag{4}$$

Equations (2)–(4) define the *cumulative concentration*, *lower bound concentration*, and *truncated concentration*, respectively. The cumulative concentration is used to define the *median radius* \tilde{r}_n .

Half the particles are larger and half smaller than \tilde{r}_{n}

$$N(r < \tilde{r}_{\rm n}) = N(r > \tilde{r}_{\rm n}) = \frac{N_0}{2} \tag{5}$$

These functions are often used to define $n_n(r)$ via

$$n_{\rm n}(r) = \frac{\mathrm{d}N}{\mathrm{d}r} \tag{6}$$

Note that the concentration nomenclature in (6) is N not N(r). Using N(r) would indicate that the concentration has not been completely integrated over all sizes. By definition, the total concentration N_0 is integrated over all sizes, as defined by (1). A concentration denoted N(r) makes no sense without an associated size bin width Δr , or truncation convention, as in (2)–(4). We try to use N and N_0 for normalized (N = 1) and non-normalized (N = 1), i.e., absolute concentrations). However this convention is not absolute and (1) defines both N and N_0 .

1.4 Probability Density Function

Describing size distributions is easier when they are normalized into probability density functions, or PDFs. In this context, a PDF is a size distribution function normalized to unity over the domain of interest, i.e., $p(r) = C_n n_n(r)$ where the normalization constant C_n is defined such that

$$\int_0^\infty p(r) \, \mathrm{d}r = 1 \tag{7}$$

In the following sections we usually work with PDFs because this normalization property is very convenient mathematically. Comparing (7) and (1), it is clear that the normalization constant C_n which transforms a size distribution function (1) into a PDF p(r) is N_0^{-1}

$$p(r) = \frac{1}{N_0} n_{\rm n}(r) \tag{8}$$

1.4.1 Choice of Independent Variable

The merits of using radius r, diameter D, or some other dimension L, as the independent variable of a size distribution depend on the application. In radiative transfer applications, r prevails in the literature probably because it is favored in electromagnetic and Mie theory. There is, however, a growing recognition of the importance of aspherical particles in planetary atmospheres. Defining an equivalent radius or equivalent diameter for these complex shapes is not straighforward (consider, e.g., a bullet rosette ice crystal). Important differences exist among the competing definitions, such as equivalent area spherical radius, equivalent volume spherical radius, (e.g., Ebert and Curry, 1992; McFarquhar and Heymsfield, 1997).

A direct property of aspherical particles which can often be measured is its maximum dimension, i.e., the greatest distance between any two surface points of the particle. This maximum dimension, usually called L, has proven to be useful for characterizing size distributions of aspherical particles. For a sphere, L is also the diameter. Analyses of mineral dust sediments in ice core deposits or sediment traps, for example, are usually presented in terms of L. The surface area

and volume of ice crystals have been computed in terms of power laws of L (e.g., Heymsfield and Platt, 1984; Takano and Liou, 1995). Since models usually lack information regarding the shape of particles (early exceptions include Zender and Kiehl, 1994; Chen and Lamb, 1994), most modelers assume spherical particles, especially for aerosols. Thus, the advantages of using the diameter D as the independent variable in size distribution studies include: D is the dimension often reported in measurements; D is more analogous than T to T.

The remainder of this manuscript assumes spherical particles where r and D are equally useful independent variables. Unless explicitly noted, our convention will be to use D as the independent variable. Thus, it is useful to understand the rules governing conversion of PDFs from D to r and the reverse.

Consider two distinct analytic representations of the same underlying size distribution. The first, $n_{\rm n}^D(D)$, expresses the differential number concentration per unit diameter. The second, $n_{\rm n}^r(r)$, expresses the differential number concentration per unit radius. Both $n_{\rm n}^D(D)$ and $n_{\rm n}^r(r)$ share the same dimensions, $\#\,{\rm m}^{-3}\,{\rm m}^{-1}$.

$$D = 2r (9)$$

$$dD = 2 dr (10)$$

$$n_{\rm n}^D(D) \, \mathrm{d}D = n_{\rm n}^r(r) \, \mathrm{d}r \tag{11}$$

$$n_{\rm n}^D(D) = \frac{1}{2} n_{\rm n}^r(r)$$
 (12)

2 Statistics of Size Distributions

2.1 Generic

Consider an arbitrary function g(x) which applies over the domain of the size distribution p(x). For now the exact definition of g is irrelevant, but imagine that g(x) describes the variation of some physically meaningful quantity (e.g., area) with size. The *mean value* of g is the integral of g over the domain of the size distribution, weighted at each point by the concentration of particles

$$\overline{g} = \int_0^\infty g(x) \, p(x) \, \mathrm{d}x \tag{13}$$

Once p(x) is known, it is always possible to compute \overline{g} for any desired quantity g. Typical quantities represented by g(x) are size, g(x)=x; area, $g(x)=A(x)\propto x^2$; and volume $g(x)=V(x)\propto x^3$. More complicated statistics represented by g(x) include variance, $g(x)=(x-\overline{x})^2$. The remainder of this section considers some of these examples in more detail.

2.2 Mean Size

The number mean size \bar{x} of a size distribution p(x) is defined as

$$\bar{x} = \int_0^\infty p(x) \, x \, \mathrm{d}x \tag{14}$$

Synonyms for number mean size include mean size, average size, arithmetic mean size, and number-weighted mean size (Hansen and Travis, 1974). Flatau et al. (1989) define $\bar{D}_n \equiv \bar{D}$, a convention we adopt in the following.

2.3 Variance 5

2.3 Variance

The variance σ_x^2 of a size distribution p(x) is defined in accord with the statistical variance of a continuous mathematical distribution.

$$\sigma_x^2 = \int_0^\infty p(x)(x - \bar{x})^2 \,\mathrm{d}x \tag{15}$$

The variance measures the mean squared-deviation of the distribution from its mean value. The units of σ_x^2 are [m²]. Because σ_x^2 is a complicated function for standard aerosol and cloud size distributions, many prefer to work with an alternate definition of variance, called the *effective* variance.

The effective variance $\sigma_{x,\text{eff}}^2$ of a size distribution p(x) is the variance about the effective size of the distribution, normalized by x_{eff} (e.g., *Hansen and Travis*, 1974)

$$\sigma_{x,\text{eff}}^2 = \frac{1}{x_{\text{eff}}^2} \int_0^\infty p(x) (x - x_{\text{eff}})^2 x^2 dx$$
 (16)

Because of the $x_{\rm eff}^{-2}$ normalization, $\sigma_{x,{\rm eff}}^2$ is non-dimensional in contrast to typical variances, e.g., (15). In the terminology of *Hansen and Travis* (1974), $\sigma_{x,{\rm eff}}^2 = v$.

2.4 Standard Deviation

The standard deviation σ_x of a size distribution p(x) is the square root of the variance (15),

$$\sigma_x = \sqrt{\sigma_x^2} \tag{17}$$

 σ_x has units of [m]. For standard aerosol and cloud size distributions, σ_x is an ugly expression. Therefore many authors prefer to work with alternate definitions of standard deviation. Unfortunately, nomenclature for these alternate definitions is not standardized.

3 Cloud and Aerosol Size Distributions

3.1 Gamma Distribution

Statistics of the *gamma distribution* are presented in http://asd-www.larc.nasa.gov/~yhu/paper/thesisall/node8.html. Currently, the aerosol property program mie implements gamma distributions in a limited sense.

3.2 Normal Distribution

The *normal distribution* is the most common statistical distribution. The normal distribution n(x) is expressed in terms of its mean \bar{x} (14) and standard deviation σ_x (17)

$$n(x) = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left[-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma_x}\right)^2\right]$$
 (18)

With our standard nomenclature for number distribution n_n and particles diameter D, (18) appears as

$$n_{\rm n}(D) \equiv \frac{\mathrm{d}N}{\mathrm{d}D} = \frac{1}{\sqrt{2\pi}\,\sigma_D} \exp\left[-\frac{1}{2}\left(\frac{D - \bar{D}_{\rm n}}{\sigma_D}\right)^2\right] \tag{19}$$

The cumulative normal distribution is called the error function and is discussed in Section (5.1). Integration of the error function shows that 68.3% of the values of (19) are in $\bar{D}_n \pm \sigma_D$, 95.4% are in $\bar{D}_n \pm 2\sigma_D$, and 99.7% are in $\bar{D}_n \pm 3\sigma_D$.

3.3 Lognormal Distribution

The *lognormal distribution* is perhaps the most commonly used analytic expression in aerosol studies.

3.3.1 Distribution Function

In a lognormal distribution, the logarithm of abscissa is normally distributed (Section 3.2). Substituting $x = \ln D$ into (18) yields

$$n_{\rm n}(\ln D) \equiv \frac{\mathrm{d}N}{\mathrm{d}\ln D} = \frac{1}{\sqrt{2\pi} \ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln D - \ln \tilde{D}_{\rm n}}{\ln \sigma_{\rm g}} \right)^2 \right]$$
(20)

where σ_g and \tilde{D}_n are parameters whose physical significance is to be defined. In particular, there is no closed-form algebraic relationship between σ_D (19) and σ_g (20). The former is a true standard deviation and the properties of the latter are as yet unknown.

Substituting $d \ln D = D^{-1} dD$ in (20) leads to the most commonly used form the *lognormal* distribution function

$$n_{\rm n}(D) \equiv \frac{\mathrm{d}N}{\mathrm{d}D} = \frac{1}{\sqrt{2\pi} D \ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
(21)

One of the most confusing aspects of size distributions in the meteorological literature is in the usage of σ_g , the *geometric standard deviation*. Some researchers (e.g., *Flatau et al.*, 1989) prefer a different formulation (21) which is equivalent to

$$n_{\rm n}(D) = \frac{1}{\sqrt{2\pi}\,\tilde{\sigma}_{\rm g}D} \exp\left[-\frac{1}{2}\left(\frac{\ln(D/\tilde{D}_{\rm n})}{\tilde{\sigma}_{\rm g}}\right)^2\right]$$
(22)

where

$$\tilde{\sigma_{\rm g}} \equiv \ln \sigma_{\rm g}$$
 (23)

In practice, (21) is used more widely than (22) and we adopt (21) in the following.

The definition of $\tilde{\sigma_g}$ in (22) may be more satisfactory from a mathematical point of view (*Flatau et al.*, 1989), and it subsumes an "ln" which reduces typing. This is seen by transforming x in (18) with

$$x = \frac{1}{\tilde{\sigma_{g}}} \ln \left(\frac{D}{\tilde{D}_{n}} \right)$$

$$D = \tilde{D}_{n} \exp(\tilde{\sigma_{g}}x)$$

$$dD = \tilde{\sigma_{g}}\tilde{D}_{n} \exp(\tilde{\sigma_{g}}x) dx$$

$$dx = (\tilde{\sigma_{g}}\tilde{D}_{n})^{-1} dD$$

This maps $x \in (-\infty, +\infty)$ into $D \in [0, \infty)$.

One is occasionally given a "standard deviation" or "geometric standard deviation" parameter without clear specification whether it represents $\sigma_{\rm g}$ (or $\ln \sigma_{\rm g}$, or $\exp \sigma_{\rm g}$, or σ_x) in (17), (21), or (22). As a true standard deviation, σ_x has dimensions of x, whereas both $\sigma_{\rm g}$ and $\tilde{\sigma_{\rm g}}$ are dimensionless so units cannot disambiguate them. A useful rule of thumb is that $\sigma_{\rm g}$ in (21) and $e^{\tilde{\sigma_{\rm g}}}$ in (22) are usually between 1.5–2.5 for realistic aerosol populations. Since we adopted (21), physically realistic values are $\sigma_{\rm g} \in (1.5, 2.5)$.

Seinfeld and Pandis (1997) p. 423 describe the physical meaning of the geometric standard deviation σ_g . Define the special particle sizes

$$D_{\sigma_{g}}^{+} \equiv \tilde{D}_{n} \sigma_{g} \tag{24a}$$

$$D_{\sigma_{g}}^{-} \equiv \tilde{D}_{n}/\sigma_{g} \tag{24b}$$

The cumulative concentration smaller than $D_{\sigma_g}^+$, simplifies from (38) to

$$N(D < D_{\sigma_g}^+) = \frac{N_0}{2} + \frac{N_0}{2} \operatorname{erf}\left(\frac{1}{\sqrt{2}}\right) = 0.841344746069N_0$$
 (25)

Numerical integration must be used to obtain the final result, $0.841N_0$, as erf() has no closed-form solution here. Using (25) to invert (24), we may define σ_g as the ratio of the diameter $D_{\sigma_g}^+$ (larger than 84.1% of all particles) to the median diameter \tilde{D}_n . Monodisperse populations have $\sigma_g \equiv 1$.

Similarly the cumulative concentration smaller than $D_{\sigma_g}^-$, simplifies from (38) to

$$N(D < D_{\sigma_g}^-) = \frac{N_0}{2} + \frac{N_0}{2} \operatorname{erf}\left(-\frac{1}{\sqrt{2}}\right) = 0.158655253931N_0$$
 (26)

where we have used the numerical result in (26) with the error function's anti-symmetric property, $\operatorname{erf}(-x) = -\operatorname{erf}(x)$. Subtracting (26) from (25) shows that 68.3% of all particles in a lognormal distribution lie in $D \in [D_{\sigma_x}^-, D_{\sigma_x}^+]$.

By raising σ_g to any power \hat{x} in (24), it is straightforward to verify that the number of particles within $D \in [\tilde{D}_n \sigma_g^{-x}, \tilde{D}_n \sigma_g^x]$ is

$$N(\tilde{D}_{\rm n}\sigma_{\rm g}^{-x} < D < \tilde{D}_{\rm n}\sigma_{\rm g}^{x}) = N_0 \operatorname{erf}(x/\sqrt{2})$$
 (27)

Application of (27) for small integer x shows that 68.3% of all particles lie within $\tilde{D}_{\rm n}/\sigma_{\rm g} < D < \tilde{D}_{\rm n}\sigma_{\rm g}$, that 95.4% of all particles lie within $\tilde{D}_{\rm n}\sigma_{\rm g}^{-2} < D < \tilde{D}_{\rm n}\sigma_{\rm g}^{2}$, and that 99.7% of all particles

¹Seinfeld and Pandis (1997) p. 423 has a typo on this point. That page erroneously states that the bounds bracketing 95% of a lognormal distribution are $\tilde{D}_{\rm n}/(2\sigma_{\rm g}) < D < 2\tilde{D}_{\rm n}\sigma_{\rm g}$.

lie within $\tilde{D}_{\rm n}\sigma_{\rm g}^{-3} < D < \tilde{D}_{\rm n}\sigma_{\rm g}^{3}$. These bounds are identical to the fraction of particles enclosed within one, two, and three standard deviations of the mean of a normal distribution (Section 3.2).

3.3.2 Lognormal Relations

Table 1 summarizes the standard lognormal distribution parameters. Note that $\tilde{\sigma_g} \equiv \ln \sigma_g$. The statistics in Table 1 are easy to misunderstand because of the plethora of subtly different definitions. A common mistake is to assume that patterns which seems to apply to one distribution, e.g., the number distribution $n_n(D)$, apply to distributions of all other moments. For example, the number distribution $n_n(D)$ is the *only* distribution for which the moment mean size (i.e., number mean size \bar{D}_n) equals the moment-weighted size (i.e., number-weighted size D_n). Also, the number mean size \bar{D}_n differs from the number median size \tilde{D}_n by a factor $\exp(\tilde{\sigma}_g^2/2)$. But this factor is not constant and depends on the moment of the distribution. For instance, \bar{D}_s differs from \tilde{D}_s by $\exp(\tilde{\sigma}_g^2)$, while \bar{D}_s differs from \tilde{D}_s by $\exp(\tilde{\sigma}_g^2/2)$. Thus converting from mean diameter to median diameter is not the same for number as for mass distributions.

Table 1: Lognormal Distribution Relations 234

Sym- bol	Value	Units	Description	Defining Relation
N_0	N_0	# m_3	Total number concentration	$N_0 = \int_0^\infty n_{\rm n}(D) \mathrm{d}D$
D_0	$N_0 ilde{D}_{ m n} \exp(ilde{\sigma}_{ m g}^2)$	$\mathrm{m}\mathrm{m}^{-3}$	Total diameter	$D_0 = \int_0^\infty D n_{ m n}(D) { m d}D$
A_0	$rac{\pi}{4}N_0 ilde{D}_{ m n}^2\exp(ilde{\sigma}_{ m g}^2/2)$	$\mathrm{m}^2\mathrm{m}^{-3}$	Total cross-sectional area	$A_0 = \int_0^{\infty} \frac{\pi}{4} D^2 n_{ m n}(D) { m d}D$
S_0	$\pi N_0 ilde{D}_{ m n}^2 \exp(2 ilde{\sigma}_{ m g}^2)$	$\mathrm{m}^2\mathrm{m}^{-3}$	Total surface area	$S_0 = \int_0^\infty \pi D^2 n_{\rm n}(D) \mathrm{d}D$
V_0	$\frac{\pi}{6}N_0\tilde{D}_{\rm n}^3\exp(9\tilde{\sigma}_{\rm g}^2/2)$	$\mathrm{m}^3\mathrm{m}^{-3}$	Total volume	$V_0 = \int_0^\infty rac{\pi}{6} D^3 n_{ m n}(D) { m d}D$
M_0	$rac{\pi}{6}N_0 ho ilde{D}_{ m n}^3\exp(9 ilde{\sigma}_{ m g}^2/2)$	${ m kg}~{ m m}^{-3}$	Total mass	$M_0 = \int_0^\infty \frac{\pi}{6} ho D^3 n_{ m n}(D) { m d}D$
\bar{D}	$\tilde{D}_{ m n} \exp(\tilde{\sigma}_{ m g}^2/2)$	m #-1	Mean diameter	$N_0\bar{D} = N_0\bar{D}_{\rm n} = D_0$
$ar{A}$	$\frac{\pi}{4} \tilde{D}_{ m n}^2 \exp(2 ilde{\sigma}_{ m g}^2)$	m^2 # $^{-1}$	Mean cross-sectional area	$N_0 \bar{A} = N_0 \frac{\pi}{4} \bar{D}_{\rm s}^2 = A_0$
\mathcal{S}	$\pi ilde{D}_{ m n}^2 \exp(2 ilde{\sigma}_{ m g}^2)$	m^2 # $^{-1}$	Mean surface area	$N_0ar{S}=N_0\piar{D}_{ m s}^2=S_0$
$ar{L}$	$rac{\pi}{6} ilde{D}_{ m n}^3 \exp(9 ilde{\sigma}_{ m g}^2/2)$	$\mathrm{m}^3 \mathrm{\#}^{-1}$	Mean volume	$N_0ar{V}=N_0rac{\pi}{6}ar{D}_{ m v}^3=V_0$
$ar{M}$	$\frac{\pi}{6} ho ilde{D}_{ m n}^3\exp(9 ilde{\sigma}_{ m g}^2/2)$	$kg \#^{-1}$	Mean mass	$N_0 \bar{M} = N_0 \frac{\pi}{6} \rho \bar{D}_{\rm v}^3 = M_0$
N_0	$\frac{6}{\pi\rho}M_0\tilde{D}_{\rm n}^{-3}\exp(-9\tilde{\sigma}_{\rm g}^2/2)$ #m ⁻³	# m_3	Number concentration	$N_0 = \int_0^\infty n_{\rm n}(D) \mathrm{d}D$
$ ilde{D}_{ m n}$	$\left(\frac{6M_0}{\pi N_0 \rho}\right)^{1/3} \exp(-3\tilde{\sigma}_{\rm g}^2/2)$	ш	Median diameter	$\int_0^{\tilde{D}_\mathrm{n}} n_\mathrm{n}(D) \mathrm{d}D = \frac{N_0}{2}$
$D_{ m eff}$	$rac{6M_0}{ ho S_0}$	ш	Effective diameter	$D_{ m eff} = rac{1}{A_{ m o}} \int_{\hat{\kappa}}^{\infty} D rac{\pi}{4} D^2 n_{ m n}(D) { m d}D$
$\mathcal{S}_{\hat{v}}$	$ ho rac{6}{ ho D_{ m eff}}$	$\mathrm{m}^2\mathrm{kg}^{-1}$	Specific surface area	$\hat{S} = S_0/M_0$

	_	_
_	_	~
۲	C	7
	ā	5
	U	•
	Ξ	3
	Ξ	=
	7	=
•	-	٠.
١	+	
	c	=
	7	
	C	
		•
	C	٫ د
`	١	ر
		رد
		ر :
,	•	ر :
,	•	ر :
•		Ċ
•	<u>.</u>	
	1	2
	Č	2
	1	2
	Č	anic
·	Č	7

Sym- bol	Value	Units	Description	Defining Relation
$ ilde{D}_{ m n}$	$ar{D}_{ m n} \exp(- ilde{\sigma}_{ m g}^2/2)$	E	Median diameter, Scaling diameter, Number median diameter. Half of particles are larger than, and half smaller than, $\tilde{\mathcal{D}}_n$	$\int_0^{\tilde{D}_{\mathbf{n}}} n_{\mathbf{n}}(D) \mathrm{d}D = \frac{N_0}{2}$
$ar{D}_{ m n}, ar{D}, \ ar{D}_{ m n}$	$ ilde{D}_{ m n} \exp(ilde{\sigma}_{ m g}^2/2)$	Œ	Mean diameter, Average diameter, Number-weighted mean diameter	$ar{D}_{ m n} = rac{1}{N_0} \int_0^\infty D n_{ m n}(D) { m d}D$
$\mathcal{L}_{ m s}$	$L_{ m n} \exp(\sigma_{ m g}^{z})$	Ш	Surface mean diameter	$N_0\pi U_{ m s}^{ m z}=N_0S=S_0$
$ar{D}_{ m v}$	$ ilde{D}_{ m n} \exp(3 ilde{\sigma}_{ m g}^2/2)$	m	Volume mean diameter, Mass mean diameter	$N_0 \frac{\mu}{6} ar{D}_{ m v}^3 = N_0 ar{V} = V_0$
$ ilde{D}_{ m s}$	$ ilde{D}_{ m n} \exp(2 ilde{\sigma}_{ m g}^2)$	m	Surface median diameter	$\int_{q}^{D_{\mathrm{s}}} \pi D^2 n_{\mathrm{n}}(D) \mathrm{d}D = rac{S_0}{2}$
$D_{ m s}, \ D_{ m eff}$	$ ilde{D}_{ m n} \exp(5 ilde{\sigma}_{ m g}^2/2)$	m	Area-weighted mean diameter, effective diameter	$D_{\rm s} = \frac{1}{A_0} \int_0^{\pi} D\frac{\pi}{4} D^2 n_{\rm n}(D) \mathrm{d}D$
$ ilde{D}_{ m v}$	$ ilde{D}_{ m n} \exp(3 ilde{\sigma}_{ m g}^2)$	Œ	Volume median diameter Mass median diameter	$\int_0^{\infty} \frac{\pi}{6} D^3 n_{\mathbf{n}}(D) \mathrm{d}D = \frac{V_0}{2}$
$D_{ m v}$	$\tilde{D}_{ m n} \exp(7 ilde{\sigma}_{ m g}^2/2)$	m	Mass-weighted mean diameter, Volume-weighted mean diameter	$D_{\rm v} = \frac{1}{V_0} \int_0^{\infty} D \frac{\pi}{6} D^3 n_{\rm n}(D) \mathrm{d}D$

For brevity Table 1 presents the lognormal relations in terms of diamter D. Change the relations to befunctions of radius r is straightforward. For example, direct substitution of D=2r into (21) yields

$$n_{\rm n}(D) = \frac{1}{\sqrt{2\pi} 2r \ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(2r/2\tilde{r}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$

$$= \frac{1}{2} \frac{1}{\sqrt{2\pi} r \ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(r/\tilde{r}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$

$$= \frac{1}{2} n_{\rm n}^r(r)$$
(28)

in agreement with (12).

Table 2 lists applies the relations in Table 1 to specific size distributions typical of tropospheric aerosols.

Table 2: Measured Lognormal Dust Size Distributions⁵

$ ilde{ ilde{D}_{ m n}}$	$ ilde{D}_{ m v}$	$\sigma_{ m g}$	M	Ref.
μm	μm			
Patterson o	and Gillette (1977)	6		
0.08169	0.27	1.88		??
0.8674	5.6	2.2		??
28.65	57.6	1.62		??
Shettle (19	$(84)^7$			
0.003291	0.0111	1.89	2.6×10^{-4}	??
0.5972	2.524	2.0^{8}	0.781	??, ??
7.575	42.1	2.13	0.219	??
Balkanski	et al. (1996) ⁹			
0.1600	0.832	2.1	0.036	??
1.401	4.82	1.90	0.957	??
9.989	19.38	1.60	0.007	??

⁶Detailed fits to dust sampled over Colorado and Texas in *Patterson and Gillette* (1977), p. 2080 Table 1. Original values have been converted from radius to diameter. M was not given. *Patterson and Gillette* (1977) showed soil aerosol could be represented with three modes which they dubbed, in order of increasing size, modes C, A, and B. Mode A is the mineral dust transport mode, seen in source regions and downwind. Mode B is seen in the source soil itself, and in the atmosphere during dust events. Mode C is seen most everywhere, but does not usually correlate with local dust amount. Mode C is usually a global, aged, background, anthropogenic aerosol, typically rich in sulfate and black carbon. Sometimes, however, Mode C has a mineral dust component. Modes C and B are averages from *Patterson and Gillette* (1977) Table 1 p. 2080. Mode B is based on the summary recommendation that $\tilde{r}_s = 1.5$ and $\sigma_a = 2.2$.

⁷Background Desert Model from *Shettle* (1984), p. 75 Table 1.

⁹Balkanski et al. (1996), p. 73 Table 2. These are the "background" modes of D'Almeida (1987).

Table 2: (continued)

$ ilde{D}_{ m n}$	$ ilde{D}_{ m v}$	$\sigma_{ m g}$	M	Ref.
μm	μm			
-				
Alfaro et a	<i>d</i> . (1998) ¹⁰			
0.6445	1.5	1.7	(0.22, 0.15)	??
3.454	6.7	1.6	(0.69, 0.76)	??
8.671	14.2	1.5	(0.09, 0.09)	??
Dubovik e	t al. (2002a), I	Bahrain (1998–2000) 11	12	
0.1768	0.30 ± 0.08	0.42 ± 0.04		??
1.664	5.08 ± 0.08	0.61 ± 0.02		??
Dubovik e	t al. (2002a), S	Solar Village Saudi Ara	bia (1998–200	0) 13
	0.24 ± 0.10	0.40 ± 0.05		??
1.576	4.64 ± 0.06	0.60 ± 0.03		??
Dubovik e	t al. (2002a), (Cape Verde (1993–2000)) ¹⁴	
0.1134	0.24 ± 0.06	$0.49 + 0.10\tau \pm 0.04$??
1.199	3.80 ± 0.06	$0.63 - 0.10\tau \pm 0.03$??
Maring et	<i>al.</i> (2003) ¹⁵			
	3.6 ± 0.3	none		??
	4.1	none		??
Arimoto et	t al. (2006) 16			
0.0	1.1	0.0		??
0.0	5.5	0.0		??
0.0	14	0.0		??
Mokhtari d	et al. (2012) ¹⁷	•		
0.0	0.2	1.75	0.0008	??
0.0	1.67	1.76	0.0092	??
0.0	11.6	1.70	0.99	??

Mass fractions are reported as (a,b) for measurements and model, respectively, of Spanish soil sample at $u_* = 66 \,\mathrm{cm}\,\mathrm{s}^{-1}$

 $^{^{11}}$ All *Dubovik et al.* (2002a) measurements follow certain conventions. Standard deviation of measurements follows \pm sign. Reported $\sigma_{\rm g}$ is *not* the geometric standard deviation. Their $\sigma_{\rm g}$ is defined as the standard deviation of the logarithm of the size distribution (*Dubovik et al.*, 2002a, p. 606, Equation A2).

¹²Bahrain is an island in the Red Sea.

¹³The Solar Village AERONET station is located in empty land a few kilometers west of Riyadh's international airport.

¹⁴Values of $\tilde{D}_{\rm n}$ were computed using $\sigma_{\rm g}$ based on $\tau=0.1$.

 $^{^{15}}$ Measurements during PRIDE, July 2000, from Izaña and Puerto Rico. Only $\tilde{D}_{\rm v}$ reported as measurements did not fit lognormal distributions.

¹⁶Original manuscript does not contain $\sigma_{\rm g}$.

¹⁷AMMA size distribution used in DEAD coupled with SURFEX.

$ ilde{ ilde{D}_{ m n}}$	$ar{D}_{ m n}, D_{ m n}$	$ar{D}_{ m s}$	$ar{D}_{ m v}$	$ ilde{D}_{ m s}$	$D_{ m s}$	$ ilde{D}_{ m v}$	$D_{ m v}$	$\sigma_{ m g}$
$ ilde{r}_{ m n}$	$ar{r}_{ m n}, r_{ m n}$	$ar{r}_{ m s}$	$ar{r}_{ m v}$	$ ilde{r}_{ m s}$	$r_{ m s}$	$ ilde{r}_{ m v}$	$r_{ m v}$	
μm	μm	μm	μm	μm	μm	μm	μm	
0.1	0.1272	0.1619	0.2056	0.2614	0.3323	0.4227	0.5373	2.0
0.1861	0.2366	0.3009	0.3825	0.4864	0.6185	0.7864	1.0	2.0
0.2366	0.3008	0.3825	0.4864	0.6185	0.7864	1.0	1.272	2.0
0.3009	0.3825	0.4864	0.6185	0.7864	1.0	1.272	1.617	2.0
0.3825	0.4864	0.6185	0.7864	1.0	1.272	1.617	2.056	2.0
0.4864	0.6185	0.7864	1.0	1.272	1.617	2.056	2.614	2.0
0.5915	0.7521	0.9563	1.216	1.546	1.966	2.5	3.179	2.0
0.6185	0.7864	1.0	1.272	1.617	2.056	2.614	3.324	2.0
0.7864	1.0	1.272	1.617	2.056	2.614	3.324	4.225	2.0
0.8281	1.053	1.339	1.702	2.165	2.753	3.5	4.450	2.0
1.0	1.272	1.617	2.056	2.614	3.324	4.227	5.373	2.0
1.183	1.504	1.913	2.432	3.092	3.932	5.0	6.356	2.0
2.366	3.008	3.825	4.864	6.184	7.864	10.0	12.72	2.0

Table 3: Analytic Lognormal Size Distribution Statistics ab

Perry et al. (1997) and Perry and Cahill (1999) describe measurements and transport of dust across the Atlantic and Pacific, respectively. Reid et al. (2003) summarize historical measurements of dust size distributions, and analyze the influence of measurement technique on the derived size distribution. They show the derived size distribution is strongly sensitive to the measurement technique. During PRIDE, measured \tilde{D}_v varied from 2.5–9 µm depending on the instrument employed. Maring et al. (2003) show that the change in mineral dust size distribution across the sub-tropical Atlantic is consistent with a slight updraft of $\sim 0.33 \, \mathrm{cm \, s^{-1}}$ during transport. Ginoux (2003) and Colarco et al. (2003) show that the effects of asphericity on particle settling velocity play an important role in maintaining the large particle tail of the size distribution during long range transport.

Table 3 applies the relations in Table 1 to specific size distributions typical of tropospheric aerosols. Values in Table 3 are valid for radius and diameter distributions. Table 1 shows that all moments of the size distribution depend linearly on \tilde{D}_n (or \tilde{r}_n). Therefore all rows in Table 3 scale linearly (for a constant geometric standard deviation). For example, values in the row with $\tilde{D}_n = 1.0\,\mu m$ are ten times the corresponding values for the row $\tilde{D}_n = 0.1\,\mu m$. Hence it suffices for Table 3 to show a decade range in \tilde{D}_n .

 $^{^{}a}\text{Shown}$ are statistics for each moment equalling 1 $\mu\text{m},$ and for $\tilde{D}_{v}=0.1, 2.5, 3.5, 5.0, 10.0 \,\mu\text{m}.$

 $[^]b$ $\bar{D}_{\rm n}$, $\bar{D}_{\rm s}$, and $\bar{D}_{\rm v}$ are number, surface, and volume-mean diameters, respectively. $\tilde{D}_{\rm n}$, $\tilde{D}_{\rm s}$, and $\tilde{D}_{\rm v}$ are number, surface, and volume median diameters, respectively. $D_{\rm n}$, $D_{\rm s}$, and $D_{\rm v}$ are number, surface, and volume-weighted diameters, respectively.

3.3.3 Related Forms

Many important applications make available size distribution information in a form similar to, but hard to recognize as, the analytic lognormal PDF (21). The Aerosol Robotic Network, *AERONET*, for example, retrieves size distributions from solar almucantar radiances (*Dubovik and King*, 2000; *Dubovik et al.*, 2000, 2002b). AERONET labels the retrieved size distribution $dV(r)/d \ln r$ and reports the values in $[\mu m^3 \mu m^{-2}]$ units. The correspondence between the AERONET retrievals and $dN/d \ln r$ (21) in $[\# m^{-3} m^{-1}]$ units is not exactly clear. Unfortunately, Table 1 does not help much here. Let us now show how to bridge the gap between theory and measurement.

First, total distributions contain N_0 particles per unit volume and thus N_0 applies as a multiplicative factor to (21)

$$n_{\rm n}(D) = \frac{N_0}{\sqrt{2\pi} D \ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
 (29)

Note that (29) is only normalized if $N_0 = 1.0$ (cf. Section 3.4.2).

Applying (6) to (29) yields

$$\frac{\mathrm{d}N}{\mathrm{d}D} = \frac{N_0}{\sqrt{2\pi} D \ln \sigma_{\mathrm{g}}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\mathrm{n}})}{\ln \sigma_{\mathrm{g}}} \right)^2 \right]$$
(30)

Multiplying each side of (30) by D and substituting $d \ln D = D^{-1} dD$ leads to

$$\frac{\mathrm{d}N}{\mathrm{d}\ln D} = \frac{N_0}{\sqrt{2\pi}\,\ln\sigma_{\mathrm{g}}} \exp\left[-\frac{1}{2}\left(\frac{\ln(D/\tilde{D}_{\mathrm{n}})}{\ln\sigma_{\mathrm{g}}}\right)^2\right] \tag{31}$$

The derivative in (31) is with respect to the logarithm of the diameter. The change in the independent variable of differentiation defines a new distribution which could be written $n_n(\ln D)$ to distinguish it from the normal linear distribution $n_n(D)$ (6). However, the nomenclature $n_n(\ln D)$ could be misinterpreted. We follow *Seinfeld and Pandis* (1997) and denote logarithmically-defined distributions with a superscript e on the distribution that re-inforces the use of $\ln D$ as the independent variable

$$n_{\rm n}^{\rm e}(\ln D) \equiv n_{\rm n}(\ln D) \equiv \frac{\mathrm{d}N}{\mathrm{d}\ln D}$$
 (32)

The SI units of $n_{\rm n}(D)$ (6) and $n_{\rm n}^{\rm e}(\ln D)$ (32) are [# m⁻³ m⁻¹] and [# m⁻³], respectively.

Remote sensing applications often retrieve columnar distributions rather than volumetric distributions. The columnar number distribution $n_{\rm n}^{\rm c}(D)$, for example, is simply the vertical integral

¹⁸ The almucantar radiances are radiance measurements in a circle of equal scattering angle centered in a plane about the Sun, i.e., radiance measurements at known forward scattering phase function angles.

of the particle number distribution $n_n(D)$,

$$n_{\rm n}^{\rm c}(D) \equiv \frac{\mathrm{d}N_0^{\rm c}}{\mathrm{d}D} = \int_{z=0}^{z=\infty} n_{\rm n}(D,z) \,\mathrm{d}z = \mathrm{same} \tag{33a}$$

$$n_{\rm x}^{\rm c}(D) \equiv \frac{\mathrm{d}A_0^{\rm c}}{\mathrm{d}D} = \int_{z=0}^{z=\infty} n_{\rm x}(D,z) \,\mathrm{d}z = \int_{z=0}^{z=\infty} \frac{\pi}{4} D^2 n_{\rm n}(D,z) \,\mathrm{d}z$$
 (33b)

$$n_{\rm s}^{\rm c}(D) \equiv \frac{\mathrm{d}S_0^{\rm c}}{\mathrm{d}D} = \int_{z=0}^{z=\infty} n_{\rm s}(D,z) \,\mathrm{d}z = \int_{z=0}^{z=\infty} \pi D^2 n_{\rm n}(D,z) \,\mathrm{d}z$$
 (33c)

$$n_{\rm v}^{\rm c}(D) \equiv \frac{{\rm d}V_0^{\rm c}}{{\rm d}D} = \int_{z=0}^{z=\infty} n_{\rm v}(D,z) \,{\rm d}z = \int_{z=0}^{z=\infty} \frac{\pi}{6} D^3 n_{\rm n}(D,z) \,{\rm d}z$$
 (33d)

$$n_{\rm m}^{\rm c}(D) \equiv \frac{\mathrm{d}M_0^{\rm c}}{\mathrm{d}D} = \int_{z=0}^{z=\infty} n_{\rm m}(D,z) \,\mathrm{d}z = \int_{z=0}^{z=\infty} \frac{\pi}{6} \rho D^3 n_{\rm n}(D,z) \,\mathrm{d}z$$
 (33e)

SI units of the columnar distributions n_x^c for $x=\mathrm{n,x,s,v,m}$ (33) are one less "per meter" than the corresponding volumetric distributions, e.g., n_v and n_v^c are in $[\mathrm{m^3\,m^{-3}\,m^{-1}}]$ and $[\mathrm{m^3\,m^{-2}\,m^{-1}}]$, respectively. This is because of integration over the vertical coordinate.

Combining (33) with (31) leads to

$$n_{\rm n}^{\rm e,c}(\ln D) \equiv \frac{\mathrm{d}N_0^{\rm c}}{\mathrm{d}\ln D} = \frac{N_0^{\rm c}}{\sqrt{2\pi}\,\ln\sigma_{\rm g}} \exp\left[-\frac{1}{2}\left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln\sigma_{\rm g}}\right)^2\right] \tag{34a}$$

$$n_{\rm x}^{\rm e,c}(\ln D) \equiv \frac{\mathrm{d}A_0^{\rm c}}{\mathrm{d}\ln D} = \sqrt{\frac{\pi}{2}} \frac{N_0^{\rm c}D^2}{4\ln \sigma_{\rm g}} \exp\left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}}\right)^2\right]$$
(34b)

$$n_{\rm s}^{\rm e,c}(\ln D) \equiv \frac{\mathrm{d}S_0^{\rm c}}{\mathrm{d}\ln D} = \sqrt{\frac{\pi}{2}} \frac{N_0^{\rm c} D^2}{\ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
(34c)

$$n_{\rm v}^{\rm e,c}(\ln D) \equiv \frac{\mathrm{d}V_0^{\rm c}}{\mathrm{d}\ln D} = \sqrt{\frac{\pi}{2}} \frac{N_0^{\rm c} D^3}{6\ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
(34d)

$$n_{\rm m}^{\rm e,c}(\ln D) \equiv \frac{\mathrm{d}M_0^{\rm c}}{\mathrm{d}\ln D} = \sqrt{\frac{\pi}{2}} \frac{\rho N_0^{\rm c} D^3}{6\ln \sigma_{\rm g}} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
(34e)

These logarithmic columnar (vertically integrated) distributions (34) are one less "per meter" than the corresponding linear columnar distributions (33), e.g., $n_{\rm v}^{\rm c}$ and $n_{\rm v}^{\rm e,c}$ are in [m³ m⁻² m⁻¹] and [m³ m⁻²], respectively. In order for the area under the curve to be proportional to the integrated distributions, logarithmic distributions should be plotted on semi-log axes, e.g., horizontal axis with logarithmic size D and vertical axis with linearly spaced values of $n_{\rm v}^{\rm e}(\ln D)$ (Seinfeld and Pandis, 1997, p. 415).

Measurements (or retrievals such as AERONET) are usually reported in historical units that can be counted rather than in pure SI. SI units for $n_{\rm v}(D)={\rm d}V(D)/{\rm d}D$ are [m³ m⁻³ m⁻¹], i.e., particle volume per unit air volume per unit particle diameter. These units condense to [m³ m⁻²], or, multiplying by 10^6 , [μ m³ μ m⁻²]. These condensed units may be confused with particle volume per unit particle surface area (V(D)/S(D)), or with columnar particle volume per unit horizontal

surface (e.g., ground or ocean) area ($\int V(z) dz$). AERONET most definitely does *not* report any of these three quantities dV/dr, V(D)/S(D), or $\int V(z) dz$. AERONET reports $n_{\rm v}^{\rm e,c}(\ln D)$ the vertically integrated logarithmic volume distribution (34d), the logarithmic derivative of the columnar volume $V_0^{\rm c}$.

3.3.4 Variance

According to (15), the variance σ_D^2 of the lognormal distribution (21) is

$$\sigma_D^2 = \frac{1}{\sqrt{2\pi} \ln \sigma_g} \int_0^\infty \frac{1}{D} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_n)}{\ln \sigma_g} \right)^2 \right] (D - \bar{D})^2 dD$$
 (35)

3.3.5 Non-standard terminology

Non-standard terminology leads to much confusion in the literature. For example, *Dubovik et al.* (2002a) provide precise analytic definitions of their supposedly lognormal size distribution parameters. However, their terminology is inconsistent with their definitions. Distributions computed according to their definitions are not lognormal distributions. *Dubovik et al.* (2002a) Equation A1 (their p. 606) defines the *mean* logarithmic radius \bar{r}_v of the volume distribution which they confusingly name the volume *median* radius \tilde{r}_v . *Dubovik et al.* (2002a) Equation A2 (their p. 606) defines the standard deviation of the logarithm of the volume distribution. This differs from the geometric standard deviation σ_g of a lognormal distribution. The correct parameters of a lognormal distribution (21) are \tilde{r}_n and σ_g (or $\tilde{\sigma}_g \equiv \ln \sigma_g$) For a lognormal volume path distribution $n_v^{e,c}(\ln D)$ (34d) the appropriate parameters are \tilde{r}_v and σ_g (or $\tilde{\sigma}_g \equiv \ln \sigma_g$), not \bar{r}_v and $\sqrt{\sigma_r^2}$ (35). *Dubovik et al.* (2002a) Equation 1 (their p. 593) is the correct form for $n_v^{e,c}(\ln D)$ (34d).

3.3.6 Bounded Distribution

The statistical properties of a bounded lognormal distribution are expressed in terms of the error function ($\S 5.2$). The cumulative concentration bounded by D_{max} is given by applying (2) to (21)

$$N(D < D_{\text{max}}) = \frac{N_0}{\sqrt{2\pi} \ln \sigma_{\text{g}}} \int_0^{D_{\text{max}}} \frac{1}{D} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\text{n}})}{\ln \sigma_{\text{g}}} \right)^2 \right] dD$$
 (36)

We make the change of variable $z = (\ln D - \ln \tilde{D}_n)/\sqrt{2} \ln \sigma_g$

$$z = (\ln D - \ln \tilde{D}_{n})/\sqrt{2} \ln \sigma_{g}$$

$$D = \tilde{D}_{n} e^{\sqrt{2}z \ln \sigma_{g}}$$

$$= \tilde{D}_{n} \sigma_{g}^{\sqrt{2}z}$$

$$dz = (\sqrt{2}D \ln \sigma_{g})^{-1} dD$$

$$dD = \sqrt{2} \ln \sigma_{g} \tilde{D}_{n} e^{\sqrt{2}z \ln \sigma_{g}} dz$$

$$= \sqrt{2} \ln \sigma_{g} \tilde{D}_{n} \sigma_{g}^{\sqrt{2}z} dz$$
(37)

17

which maps $D \in (0, D_{\text{max}})$ into $z \in (-\infty, \ln D_{\text{max}} - \ln \tilde{D}_{\text{n}})/\sqrt{2} \ln \sigma_{\text{g}})$. In terms of z we obtain

$$N(D < D_{\text{max}}) = \frac{N_0}{\sqrt{2\pi} \ln \sigma_{\text{g}}} \int_{-\infty}^{(\ln D_{\text{max}} - \ln \tilde{D}_{\text{n}})/\sqrt{2} \ln \sigma_{\text{g}}} \frac{1}{\tilde{D}_{\text{n}} e^{\sqrt{2}z \ln \sigma_{\text{g}}}} e^{-z^{2}} \sqrt{2} \ln \sigma_{\text{g}} \tilde{D}_{\text{n}} e^{\sqrt{2}z \ln \sigma_{\text{g}}} dz$$

$$= \frac{N_0}{\sqrt{\pi}} \int_{-\infty}^{(\ln D_{\text{max}} - \ln \tilde{D}_{\text{n}})/\sqrt{2} \ln \sigma_{\text{g}}} e^{-z^{2}} dz$$

$$= \frac{N_0}{\sqrt{\pi}} \left(\int_{-\infty}^{0} e^{-z^{2}} dz + \int_{0}^{(\ln D_{\text{max}} - \ln \tilde{D}_{\text{n}})/\sqrt{2} \ln \sigma_{\text{g}}} e^{-z^{2}} dz \right)$$

$$= \frac{N_0}{2} \left(\frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-z^{2}} dz + \frac{2}{\sqrt{\pi}} \int_{0}^{(\ln D_{\text{max}} - \ln \tilde{D}_{\text{n}})/\sqrt{2} \ln \sigma_{\text{g}}} e^{-z^{2}} dz \right)$$

$$= \frac{N_0}{2} \left[\text{erf}(\infty) + \text{erf} \left(\frac{\ln(D_{\text{max}}/\tilde{D}_{\text{n}})}{\sqrt{2} \ln \sigma_{\text{g}}} \right) \right]$$

$$= \frac{N_0}{2} + \frac{N_0}{2} \text{erf} \left(\frac{\ln(D_{\text{max}}/\tilde{D}_{\text{n}})}{\sqrt{2} \ln \sigma_{\text{g}}} \right)$$
(38)

where we have used the properties of the error function (§5.2). The same procedure can be performed to compute the cumulative concentration of particles smaller than D_{\min} . When $N(D < D_{\min})$ is subtracted from (38) we obtain the truncated concentration (4)

$$N(D_{\min}, D_{\max}) = \frac{N_0}{2} \left[\operatorname{erf} \left(\frac{\ln(D_{\max}/\tilde{D}_{n})}{\sqrt{2} \ln \sigma_{g}} \right) - \operatorname{erf} \left(\frac{\ln(D_{\min}/\tilde{D}_{n})}{\sqrt{2} \ln \sigma_{g}} \right) \right]$$
(39)

We are also interested in the bounded distributions of higher moments, e.g., the mass of particles lying between D_{\min} and D_{\max} . The cross-sectional area, surface area, volume, and mass distributions of spherical particles are related to their number distribution by

$$n_{\rm x}(D) = \frac{\pi}{4} D^2 n_{\rm n}(D)$$
 (40a)

$$n_{\rm s}(D) = \pi D^2 n_{\rm n}(D) \tag{40b}$$

$$n_{\rm v}(D) = \frac{\pi}{6}D^3 n_{\rm n}(D) \tag{40c}$$

$$n_{\rm m}(D) = \frac{\pi}{6} \rho D^3 n_{\rm n}(D) \tag{40d}$$

so that we may simply substitute $\tilde{D}_n = \tilde{D}_v$, for example, in (39) and we obtain

$$V(D_{\min}, D_{\max}) = \frac{N_0}{2} \left[\operatorname{erf} \left(\frac{\ln(D_{\max}/\tilde{D}_{v})}{\sqrt{2} \ln \sigma_{g}} \right) - \operatorname{erf} \left(\frac{\ln(D_{\min}/\tilde{D}_{v})}{\sqrt{2} \ln \sigma_{g}} \right) \right]$$
(41)

3.3.7 Statistics of Bounded Distributions

All of the relations given in Table 1 may be re-expressed in terms of truncated lognormal distributions, but doing so is tedious, and requires new terminology. Instead we derive the expression for a

typical size distribution statistic, and allow the reader to generalize. We generalize (13) to consider

$$\overline{g}^* = \int_{D_{\min}}^{D_{\max}} D \, p^*(D) \, \mathrm{d}D \tag{42}$$

Note the domain of integration, $D \in (D_{\min}, D_{\max})$, reflects the fact that we are considering a bounded distribution. The superscript * indicates that the average statistic refers to a truncated distribution and reminds us that $\overline{g}^* \neq \overline{g}$. Defining a closed form expression for $p^*(D)$ requires some consideration. This truncated distribution has N_0^* defined by (39), and is completely specified on $D \in (0, \infty)$ by

$$p^{*}(D) = \begin{cases} 0, & 0 < D < D_{\min} \\ N(D_{\min}, D_{\max}) p(D) / N_{0}, & D_{\min} \le D \le D_{\max} \\ 0, & D_{\max} < D < \infty \end{cases}$$
(43)

The difficulty is that the three parameters of the lognormal distribution, $\tilde{D}_{\rm n}$, $\sigma_{\rm g}$, and N_0 are defined in terms of an untruncated distribution. Using (39) we can write

$$p^*(D) = \frac{1}{N_0^*} n_{\rm n}(D) N_0^* = N(D_{\rm min}, D_{\rm max})$$
(44)

If we think of p^* order to be properly normalized to unity, note that (fxm) Thus when we speak of truncated distributions it is important to keep in mind that the parameters $\tilde{D}_{\rm n}$, $\sigma_{\rm g}$, and N_0 refer to the untruncated distribution.

The properties of the truncated distribution will be expressed in terms of $\tilde{D}_{\rm n}^*$, $\sigma_{\rm g}^*$, and N_0^* , respectively.

Consider the mean size, D. In terms of (13) we have g(D) = D so that

$$\bar{D} = \int_{D_{\min}}^{D_{\max}} D p(D) \, \mathrm{d}x \tag{45}$$

3.3.8 Overlapping Distributions

Consider the problem of distributing I independent and possibly overlapping distributions of particles into J independent and possibly overlapping distributions of particles. To reify the problem we call the I bins the source bins (these bins represent the parent size distributions in mineral dust source areas) and the J bins as sink bins (which represent sizes transported in the atmosphere). Typically we know the total mass M_0 or number N_0 of source particles to distribute into the sink bins and we know the fraction of the total mass to distribute which resides in each source distribution, M_i . The problem is to determine matrices of overlap factors $N_{i,j}$ and $M_{i,j}$ which determine what number and mass fraction, respectively, of each source bin i is blown into each sink bin j.

The mass and number fractions contained by the source distributions are normalized such that

$$\sum_{i=1}^{I} M_i = \sum_{i=1}^{I} N_i = 1 \tag{46}$$

In the case of dust emissions, M_i and N_i may vary with spatial location.

The overlap factors $N_{i,j}$ and $M_{i,j}$ are defined by the relations

$$N_{j} = \sum_{i=1}^{I} N_{i,j} N_{i}$$

$$= N_{0} \sum_{i=1}^{I} N_{i,j} N_{i}$$

$$M_{j} = \sum_{i=1}^{I} M_{i,j} M_{i}$$

$$= M_{0} \sum_{i=1}^{I} M_{i,j} M_{i}$$
(48)

Using (39) and (46) we find

$$N_{i,j} = \frac{1}{2} \left[\operatorname{erf} \left(\frac{\ln(D_{\max,j}/\tilde{D}_{n,i})}{\sqrt{2} \ln \sigma_{g,i}} \right) - \operatorname{erf} \left(\frac{\ln(D_{\min,j}/\tilde{D}_{n,i})}{\sqrt{2} \ln \sigma_{g,i}} \right) \right]$$
(49)

$$M_{i,j} = \frac{1}{2} \left[\operatorname{erf} \left(\frac{\ln(D_{\max,j}/\tilde{D}_{v,i})}{\sqrt{2} \ln \sigma_{g,i}} \right) - \operatorname{erf} \left(\frac{\ln(D_{\min,j}/\tilde{D}_{v,i})}{\sqrt{2} \ln \sigma_{g,i}} \right) \right]$$
 (50)

fxm: The mathematical derivation appears correct but the overlap factor appears to asymptote to 0.5 rather than to 1.0 for $D_{\rm max} \gg \tilde{D}_{\rm n} \gg D_{\rm min}$.

A mass distribution has the same form as a lognormal number distribution but has a different median diameter. Thus the overlap matrix elements apply equally to mass and number distributions depending on the median diameter used in the following formulae. For the case where both source and sink distributions are complete lognormal distributions,

$$M(D) = \sum_{i=1}^{i=I} M_i(D)$$

3.3.9 Median Diameter

Substituting $D = \tilde{D}_n$ into (38) we obtain

$$N(D < \tilde{D}_{\rm n}) = \frac{N_0}{2} \tag{51}$$

This proves that \tilde{D}_n is the median diameter (5). The lognormal distribution is the only distribution known (to us) which is most naturally expressed in terms of its median diameter.

3.3.10 Mode Diameter

The mode is the most frequently occurring value of a distribution. The mode diameter or modal diameter of the number distribution $n_n(D)$ is the diameter \hat{D}_n that satisfies

$$\frac{\mathrm{d}n_{\mathrm{n}}(D)}{\mathrm{d}D}\bigg|_{D=\hat{D}_{\mathrm{n}}} = 0 \tag{52}$$

Applying condition (52) to (21) proves that the median and modal diameters are identical for lognormal distributions

$$\hat{D}_{\rm n} = \tilde{D}_{\rm n} \tag{53}$$

The number, surface, volume, and mass distributions are all lognormal if any one is. Therefore (53) implies $\hat{D}_s = \tilde{D}_s$, and $\hat{D}_v = \tilde{D}_v$.

3.3.11 Multimodal Distributions

Realistic particle size distributions may be expressed as an appropriately weighted sum of individual modes.

$$n_{\rm n}(D) = \sum_{i=1}^{I} n_{\rm n}^{i}(D)$$
 (54)

where $n_{\rm n}^i(D)$ is the number distribution of the *i*th component mode¹⁹. Such particle size distributions are called *multimodal istributions* because they contain one maximum for each component distribution. Generalizing (1), the total number concentration becomes

$$N_{0} = \sum_{i=1}^{I} \int_{0}^{\infty} n_{n}^{i}(D) dD$$

$$= \sum_{i=1}^{I} N_{0}^{i}$$
(55)

where N_0^i is the total number concentration of the *i*th component mode.

The median diameter of a multimodal distribution is obtained by following the logic of (36)–(39). The number of particles smaller than a given size is

$$N(D < D_{\text{max}}) = \sum_{i=1}^{I} \frac{N_0^i}{2} + \frac{N_0^i}{2} \operatorname{erf}\left(\frac{\ln(D_{\text{max}}/\tilde{D}_{\text{n}}^i)}{\sqrt{2}\ln\sigma_{\text{g}}^i}\right)$$
(56)

For the median particle size, $D_{\rm max} \equiv \tilde{D}_{\rm n}$, and we can move the unknown $\tilde{D}_{\rm n}$ to the LHS yielding

$$\sum_{i=1}^{I} \frac{N_0^i}{2} + \frac{N_0^i}{2} \operatorname{erf}\left(\frac{\ln(\tilde{D}_n/\tilde{D}_n^i)}{\sqrt{2}\ln\sigma_g^i}\right) = \frac{N_0}{2}$$

$$\sum_{i=1}^{I} N_0^i \operatorname{erf}\left(\frac{\ln(\tilde{D}_n/\tilde{D}_n^i)}{\sqrt{2}\ln\sigma_g^i}\right) = 0$$
(57)

where we have used $N_0 = \sum_i^I N_0^i$. Obtaining $\tilde{D}_{\rm n}$ for a multimodal distribution requires numerically solving (57) given the N_0^i , $\tilde{D}_{\rm n}^i$, and $\sigma_{\rm g}^i$.

 $^{^{19}}$ Throughout this section the i superscript represents an index of the component mode, not an exponent.

21

3.4 Higher Moments

It is often useful to compute higher moments of the number distribution. Each factor of the independent variable weighting the number distribution function $n_{\rm n}(D)$ in the integrand of (14) counts as a *moment*. The kth moment of $n_{\rm n}(D)$ is

$$F(k) = \int_0^\infty n_{\rm n}(D)D^k \,\mathrm{d}D \tag{58}$$

The statistical properties of higher moments of the lognormal size distribution may be obtained by direct integration of (58).

$$F(k) = \frac{N_0}{\sqrt{2\pi} \ln \sigma_g} \int_0^\infty \frac{1}{D} \exp\left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_n)}{\ln \sigma_g}\right)^2\right] D^k dD$$
$$= \frac{N_0}{\sqrt{2\pi} \ln \sigma_g} \int_0^\infty D^{k-1} \exp\left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_n)}{\ln \sigma_g}\right)^2\right] dD$$
(59)

We make the same change of variable $z=(\ln D-\ln \tilde{D}_{\rm n})/\sqrt{2}\,\ln\sigma_{\rm g}$ as in (37). This maps $D\in(0,+\infty)$ into $z\in(-\infty,+\infty)$. In terms of z we obtain

$$F(k) = \frac{N_0}{\sqrt{2\pi} \ln \sigma_g} \int_{-\infty}^{+\infty} (\tilde{D}_n e^{\sqrt{2}z \ln \sigma_g})^{k-1} e^{-z^2} \sqrt{2} \ln \sigma_g \tilde{D}_n e^{\sqrt{2}z \ln \sigma_g} dz$$

$$= \frac{N_0}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (\tilde{D}_n e^{\sqrt{2}z \ln \sigma_g})^k e^{-z^2} dz$$

$$= \frac{N_0 \tilde{D}_n^k}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{\sqrt{2}kz \ln \sigma_g} e^{-z^2} dz$$

$$= \frac{N_0 \tilde{D}_n^k}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-z^2 + \sqrt{2}kz \ln \sigma_g} dz$$

$$= \frac{N_0 \tilde{D}_n^k}{\sqrt{\pi}} \sqrt{\pi} \exp\left(\frac{2k^2 \ln^2 \sigma_g}{4}\right)$$

$$= N_0 \tilde{D}_n^k \exp\left(\frac{1}{2}k^2 \ln^2 \sigma_g\right)$$

$$(60)$$

where we have used (73) with $\alpha = 1$ and $\beta = \sqrt{2}k \ln \sigma_g$.

Applying the formula (60) to the first five moments of the lognormal distribution function we obtain

$$F(0) = \int_{0}^{\infty} n_{\rm n}(D) \, \mathrm{d}D = N_{0} = N_{0} = N_{0} = N_{0}$$

$$F(1) = \int_{0}^{\infty} n_{\rm n}(D)D \, \mathrm{d}D = N_{0}\tilde{D}_{\rm n} \exp(\frac{1}{2}\ln^{2}\sigma_{\rm g}) = D_{0} = N_{0}\bar{D}_{\rm n}$$

$$F(2) = \int_{0}^{\infty} n_{\rm n}(D)D^{2} \, \mathrm{d}D = N_{0}\tilde{D}_{\rm n}^{2} \exp(2\ln^{2}\sigma_{\rm g}) = \frac{S_{0}}{\pi} = N_{0}\bar{D}_{\rm s}^{2}$$

$$F(3) = \int_{0}^{\infty} n_{\rm n}(D)D^{3} \, \mathrm{d}D = N_{0}\tilde{D}_{\rm n}^{3} \exp(\frac{9}{2}\ln^{2}\sigma_{\rm g}) = \frac{6V_{0}}{\pi} = N_{0}\bar{D}_{\rm v}^{3}$$

$$F(4) = \int_{0}^{\infty} n_{\rm n}(D)D^{4} \, \mathrm{d}D = N_{0}\tilde{D}_{\rm n}^{4} \exp(8\ln^{2}\sigma_{\rm g})$$

Table 1 includes these relations in slightly different forms.

The first few moments of the number distribution are related to measurable properties of the size distribution. In particular, F(k=0) is the number concentration. Other quantities of merit are ratios of consecutive moments. For example, the volume-weighted diameter $D_{\rm v}$ is computed by weighted each diameter by the volume of particles at that diameter and then normalizing by the total volume of all particles.

$$D_{v} = \int_{0}^{\infty} D \frac{\pi}{6} D^{3} n_{n}(D) dD / \int_{0}^{\infty} \frac{\pi}{6} D^{3} n_{n}(D) dD$$

$$= \int_{0}^{\infty} D^{4} n_{n}(D) dD / \int_{0}^{\infty} D^{3} n_{n}(D) dD$$

$$= F(4) / F(3)$$

$$= \frac{N_{0} \tilde{D}_{n}^{4} \exp(8 \ln^{2} \sigma_{g})}{N_{0} \tilde{D}_{n}^{3} \exp(\frac{9}{2} \ln^{2} \sigma_{g})}$$

$$= \tilde{D}_{n} \exp(\frac{7}{2} \ln^{2} \sigma_{g})$$
(62)

The surface-weighted diameter $D_{\rm s}$ is defined analogously to $D_{\rm v}$. $D_{\rm s}$ is more often known by its other name, the effective diameter (twice the effective radius). The term "effective" refers to the light extinction properties of the distribution. Light impinging on a particle distribution is, in the limit of geometric optics, extinguished in proportion to the cross-sectional area of the particles. Hence the effective diameter (or radius) characterizes the extinction properties of the distribution. Following (62), the effective diameter of a lognormal distribution is

$$D_{s} = F(3)/F(2)$$

$$= \frac{N_{0}\tilde{D}_{n}^{3} \exp(\frac{9}{2}\ln^{2}\sigma_{g})}{N_{0}\tilde{D}_{n}^{2} \exp(2\ln^{2}\sigma_{g})}$$

$$= \tilde{D}_{n} \exp(\frac{5}{2}\ln^{2}\sigma_{g})$$
(63)

Moment-weighted diameters, such as the volume-weighted diameter $D_{\rm v}$ (62), characterize disperse distributions. A disperse mass distribution $n_{\rm m}(D)$ behaves most like a monodisperse distribution with all mass residing at $D=D_{\rm v}$. Due to approximations, physical operators may be constrained to act on a single, representative diameter rather than an entire distribution. The "least-wrong" diameter to pick is the moment-weighted diameter most relevant to the process being modeled. For example, $D_{\rm v}$ best represents the gravitational sedimentation of a distribution of particles. On the other hand, $D_{\rm s}$ (63) best represents the scattering cross-section of a distribution of particles.

3.4.1 Aspherical Particles

The useful relation (60) is a property of the lognormal distribution itself, rather than the particle shape. A lognormal distribution of aspherical particles also obeys (60). Important measurable properties of most convex aspherical habits may be represented by a constant times the $k^{\rm th}$ moment F(k) of the distribution. For example, the surface area $S_{\rm h}$ [m²] and volume $V_{\rm h}$ [m³] of hexagonal

23

prisms are given by (81)– $(83)^{20}$.

To be consistent with the diameter-centric expressions in Table 1, we introduce $D_{\rm h}$, the hexagonal prism diameter. Adopting the convention that $D_{\rm h}\equiv 2a$, the full-width of the basal face, we obtain

$$S_{\rm h} = \left(\frac{3\sqrt{3}}{4} + 3\Gamma\right) D_{\rm h}^2 \tag{64}$$

$$V_{\rm h} = \frac{3\sqrt{3}}{8}\Gamma D_{\rm h}^3 \tag{65}$$

The functional forms for $S_{\rm h}$ and $V_{\rm h}$ consist of constants multiplying the diameter's second and third moments, respectively. The surface area (πD^2) and volume $(\pi D^3/6)$ of spheres have the same form. Therefore the higher moments of aspherical particle distributions must be the same as spherical particle distributions modulo the leading constant expressions. Inserting $S_{\rm h}$ and $V_{\rm h}$ into (64), (65), and (60) leads to analytic expressions for the total surface area $S_{0,\rm h}$ [m² m⁻³] and volume $V_{0,\rm h}$ [m³ m⁻³] of a lognormal distribution of hexagonal prisms:

$$S_{0,h} = \left(3\Gamma + \frac{3\sqrt{3}}{4}\right)\tilde{D}_{n,h}^2 \exp(2\tilde{\sigma}_g^2)$$
 (66)

$$V_{0,h} = \frac{3\sqrt{3}}{8} \Gamma \tilde{D}_{n,h}^3 \exp(9\tilde{\sigma}_g^2/2)$$
 (67)

The total concentration $N_{0,{\rm V/S}}$ of equivalent V/S-spheres corresponding to a known distribution of hexagonal prisms must be computed numerically unless the size dependence of the aspect ratio $\Gamma(D)$ takes an analytic form. In the simplest case, one can imagine or assume distributions of hexagonal prisms with constant aspect ratio, i.e, $\Gamma \neq \Gamma(D)$. In this idealized case, the ratio $N_{\rm V/S}/N_{\rm h}$ (??) is constant throughout the distribution. Then the analytic number concentration of equivalent V/S-spheres is simply $N_{\rm V/S}/N_{\rm h}$ times the analytic number concentration of hexagonal prisms which is presumably known directly from the lognormal size distribution parameters (cf. Table 1).

3.4.2 Normalization

We show that (21) is normalized by considering

$$n_{\rm n}(D) = \frac{C_n}{D} \exp \left[-\frac{1}{2} \left(\frac{\ln(D/\tilde{D}_{\rm n})}{\ln \sigma_{\rm g}} \right)^2 \right]$$
 (68)

²⁰ My LATEX skills are too poor to reference equations in other documents. All "undefined" analytic formula below are in the aerosol FACT, aer.pdf, and that's why their equation numbers appear as question marks in this FACT. 20150303: Some equations are now in a new appendix of this document. Look in aer.pdf to see the other equations.

where C_n is the normalization constant determined by (7). First we change variables to $y = \ln(D/\tilde{D}_n)$

$$y = \ln D - \ln \tilde{D}_{n}$$

$$D = \tilde{D}_{n}e^{y}$$

$$dy = D^{-1} dD$$

$$dD = \tilde{D}_{n}e^{y} dy$$
(69)

This transformation maps $D \in (0, +\infty)$ into $y \in (-\infty, +\infty)$. In terms of y, the normalization condition (7) becomes

$$\int_{-\infty}^{+\infty} \frac{C_n}{\tilde{D}_n \exp y} \exp \left[-\frac{1}{2} \left(\frac{y}{\ln \sigma_g} \right)^2 \right] \tilde{D}_n \exp^y dy = 1$$
$$\int_{-\infty}^{+\infty} C_n \exp \left[-\frac{1}{2} \left(\frac{y}{\ln \sigma_g} \right)^2 \right] dy = 1$$

Next we change variables to $z = y/\ln \sigma_{\rm g}$

$$z = y/\ln \sigma_{g}$$

$$y = z \ln \sigma_{g}$$

$$dz = (\ln \sigma_{g})^{-1} dy$$

$$dy = \ln \sigma_{g} dz$$
(70)

This transformation does not change the limits of integration and we obtain

$$\int_{-\infty}^{+\infty} C_n \exp\left(\frac{-z^2}{2}\right) \ln \sigma_g \, dz = 1$$

$$C_n \sqrt{2\pi} \ln \sigma_g = 1$$

$$C_n = \frac{1}{\sqrt{2\pi} \ln \sigma_g}$$
(71)

In the above we used the well-known normalization property of the Gaussian distribution function, $\int_{-\infty}^{+\infty} e^{-x^2/2} dx = \sqrt{2\pi}$ (72).

4 Implementation in NCAR models

The discussion thus far has centered on the theoretical considerations of size distributions. In practice, these ideas must be implemented in computer codes which model, e.g., Mie scattering parameters or thermodynamic growth of aerosol populations. This section describes how these ideas have been implemented in the NCAR-Dust and Mie models.

25

Soil Texture	$\tilde{D}_{ m n}$	$\sigma_{ m g}$	Description
Sand			Sand
Silt			Silt
Clay			Clay
Soil Texture	$\tilde{D}_{ m n}$	$\sigma_{ m g}$	Description
Sand			Sand
Silt			Silt
Clay			Clay

Table 4: Source size distribution associated with surface soil texture data of *Webb et al.* (1993) and of *Foley* (1998).

4.1 NCAR-Dust Model

The NCAR-Dust model uses as input a time invariant dataset of surface soil size distribution. The two such datasets currently used are from *Webb et al.* (1993) and from IBIS (*Foley*, 1998). The *Webb et al.* dataset provides global information for three soil texture types: sand, clay and silt. At each gridpoint, the mass flux of dust is partitioned into mass contributions from each of these soil types. To accomplish this, the partitioning scheme assumes a size distribution for the source soil of the deflated particles. Table 4 lists the lognormal distribution parameters associated with the surface soil texture data of *Webb et al.* (1993) and of *Foley* (1998). The dust model is a size resolving aerosol model. Thus, overlap factors are computed to determine the fraction of each parent size type which is mobilized into each atmospheric dust size bin during a deflation event.

4.2 Mie Scattering Model

This section documents the Mie scattering code mie. mie is box model intended to provide exact simulations of microphysical processes for the purpose of parameterization into larger scale models. mie provides instantaneous and equilibrium decriptions of many processes ranging from surface flux exchange, dust production, reflection of polarized radiation, and, as its name suggests, the interaction of particles and radiation. Thus the inputs to mie are the instantaneous state (boundary and initial conditions) of the environment. Given these, the program solves for the associated rates of change and unknown variables.

There is no time-stepping loop primarily because mie generates an extraordinary amount of information about the instantaneous state. Time-stepping this environment in a box-model-like format would be prohibitive if all quantities were allowed to evolve.

4.2.1 Input switches

The flexibility and power of mie can only be exercised by actively using the hundreds of input switches which control its behavior. This section describes how some of these switches are commonly used to control fundamental properties of the microphysical environment. A complete reference table for these switches, there default values, and dimensional units, is presented in Appendix 5.5.

The heart of mie is an aerosol size distribution. Most users will wish to initialize this size distribution to a particular type of aerosol, and to a particular shape. This is accomplished with the cmp_aer and psd_typ keywords. The linearity, range, and resolution of the grid on which the analytic size distribution is discretized are controlled by the sz_grd, sz_mnm, sz_mxm, sz_nbr switches, respectively. Compute size distribution characteristics of a lognormal distribution

```
mie -dbg -no_mie --psd_typ=lognormal --sz_grd=log --sz_mnm=0.01 \
--sz_mxm=10.0 --sz_nbr=300 --rds_nma=0.4 --gsd_anl=2.2
mie -dbg -no_mie --psd_typ=lognormal --sz_grd=log --sz_mnm=1.0 \
--sz_mxm=10.0 --sz_nbr=25 --rds_nma=2.0 --gsd_anl=2.2
```

4.2.2 Moments of Size Distribution

Determine the analytic (or resolved) moments of an arbitrary size distribution.

- 1. Generate the size distribution. (It may have more than one moment)
- 2. Select the statistics of interest

```
# 1. Lognormal distribution with mass median diameter 3.5 um, GSD = 2.0
mie -no_mie --psd_typ=lognormal --sz_grd=log --sz_nbr=1000 \
--sz_mnm=0.005 --sz_mxm=50.0 --dmt_vma=3.5 --gsd_anl=2.0
# 2. Extract median and weighted analytic moments of diameter
ncks -H -v dmt_vwa,dmt_vma,dmt_swa,dmt_sma,dmt_nwa,dmt_nma ${DATA}/mie/mie.:
# 3. Extract median and weighted resolved moments of diameter
ncks -H -v dmt_vwr,dmt_vmr,dmt_swr,dmt_smr,dmt_nwr,dmt_nmr ${DATA}/mie/mie.:
# 4. Extract median and weighted analytic moments of diameter
```

```
ncks -H -v rds_vwa,rds_vma,rds_swa,rds_sma,rds_nwa,rds_nma ${DATA}/mie/mie.s
# 5. Extract median and weighted resolved moments of diameter
ncks -H -v rds_vwr,rds_vmr,rds_swr,rds_smr,rds_nwr,rds_nmr ${DATA}/mie/mie.s
# 6. Extract number, surface area, and volume distributions at specific sizencks -H -C -F -u -v dst,dst_rds,dst_sfc,dst_vlm -d sz,1.0e-6 ${DATA}/mie/mie/mie
```

4.2.3 Generating Properties for Multi-Bin

On occasion, a seriouly masochistic scientist will decide to create the ultimate hybrid bin-spectral aerosol method by discretizing the size distribution into a finite number of bins each with an independently configurable analytic sub-bin distribution. Generating properties for all the bins in such a scheme requires enormous amounts of bookkeeping, or, if a computer is available, a relatively simple Perl batch script named psd.pl.

The psd.pl batch script calls mie repeatedly in a loop over particle bin. As input, psd.pl accepts concise array representations of each property of a bin. For example, --sz_nbr={200, 25, 25, 25} specifies that bin 1 is discretized into 200 sub-bins, and the remaining three bins are each discretized into only 25 sub-bins.

```
~/dst/psd.pl --dbg=1 --CCM_SW --ftn_fxd --psd_nbr=4 --spc_idx_sng={01,02,03 --sz_mnm={0.05,0.5,1.25,2.5} --sz_mxm={0.5,1.25,2.5,5.0} --sz_nbr={200,25,2.5,2.5} --dmt_vma_dfl=3.5 > ${DATA}/dst/mie/psd_CCM_SW.txt.v3 2>&1 &
```

5 Appendix

5.1 Properties of Gaussians

The area under a Gaussian distribution may be expressed in closed form for infinite domains. This result can be obtained (IIRC) by transforming to polar coordinates in the complex plane $x = r(\cos \theta + i \sin \theta)$.

$$\int_{-\infty}^{+\infty} e^{-x^2/2} \, \mathrm{d}x = \sqrt{2\pi} \tag{72}$$

This is a special case of a more general result

$$\int_{-\infty}^{+\infty} \exp(-\alpha x^2 - \beta x) \, \mathrm{d}x = \sqrt{\frac{\pi}{\alpha}} \exp\left(\frac{\beta^2}{4\alpha}\right) \qquad \text{where } \alpha > 0$$
 (73)

To obtain this result, complete the square under the integrand, change variables to $y = x + \beta/2\alpha$, and then apply (72). Substituting $\alpha = 1/2$ and $\beta = 0$ into (73) yields (72).

5.2 Error Function

The error function $ext{erf}(x)$ may be defined as the partial integral of a Gaussian curve

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-x^2} dx \tag{74}$$

28 5 APPENDIX

Using (72) and the symmetry of a Gaussian curve, it is simple to show that the error function is bounded by the limits $\operatorname{erf}(0) = 0$ and $\operatorname{erf}(\infty) = 1$. Thus $\operatorname{erf}(z)$ is the cumulative probability function for a normally distributed variable z (fxm: True??). Most compilers implement $\operatorname{erf}(x)$ as an intrinsic function. Thus $\operatorname{erf}(x)$ is used to compute areas bounded by finite lognormal distributions (§3.3.6).

5.3 Properties of Binomials

The number N of trials that result in a given outcome k times in n total trials is

$$N(k,n) = \binom{n}{k} = \frac{n!}{k!(n-k)!} \tag{75}$$

N(k, n) is known as the binomial coefficient.

If the probability of the outcome of a single independent trial (e.g., flipping a coin) is p, then the probability P of that outcome occurring k times in n trials is

$$P(k,n) = N(k,n)p^{k}(1-k)^{(n-k)}$$

$$= \binom{n}{k}p^{k}(1-k)^{(n-k)}$$

$$= \frac{n!}{k!(n-k)!}p^{k}(1-k)^{(n-k)}$$
(76)

P(k, n) is known as the binomial distribution.

The outcome of the binomial distribution is difficult to compute exactly for large n because evaluating the factorial function for large numbers is numerically unwieldy. Instead we make use of *Stirling's Approximation*:

$$n! = \sqrt{2\pi n} \, n^n e^{-n} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right) \tag{77}$$

Substituting (77) in (76) we obtain

$$P(k,n) = \frac{\sqrt{2\pi n} \, n^n e^{-n}}{\sqrt{2\pi k} \, k^k e^{-k} \sqrt{2\pi (n-k)} \, (n-k)^{(n-k)} e^{-(n-k)}} \, p^k (1-k)^{(n-k)}$$

$$= \sqrt{\frac{n}{2\pi k (n-k)}} \frac{n^n e^{-n}}{k^k e^{-k} \, (n-k)^{(n-k)} e^{-(n-k)}} \, p^k (1-k)^{(n-k)}$$
(78)

5.4 Formulae from other FACTs

The surface area S_h [m²] and volume V_h [m³] of a hexagonal prism are

$$S_{\rm h} = 6ac + 3\sqrt{3}a^2 = 3a(2c + \sqrt{3}a)$$
 (80)

$$V_{\rm h} = \frac{3\sqrt{3}a^2c}{2} \tag{81}$$

29

These definitions may be re-cast in terms of a and Γ by using $c = 2a\Gamma$ from (??)

$$S_{\rm h} = 12a^2\Gamma + 3\sqrt{3}a^2 = 3a^2(4\Gamma + \sqrt{3})$$
 (82)

$$V_{\rm h} = 3\sqrt{3}a^3\Gamma \tag{83}$$

It is more convenient to describe hexagons in terms of (a,Γ) than (a,c). This is because natural hexagonal prisms may share similar aspect ratios over a large range of sizes.

5.5 Command Line Switches for mie Code

Table 5 summarizes all of the *command line arguments* available to control the behavior of the mie program. This is a summary only—it is impractical to think that written documentation could ever convey the exact meaning of all the switches²¹. The most frequently used switches are described in Section 4.2.1. The only way to learn the full meaning of the more obscure switches is to read the source code itself.

²¹Perhaps the most useful way to begin to contribute to this FACT would be to systematize and extend the documentation of command line switches

Table 5: Command Line Switches for mie code²²²³

Switch	Purpose	Default	Units
	Boolean flags		
abc_flg	Alphabetize output with ncks	true	Flag
abs_ncl_wk_mdm_flg	Absorbing inclusion in weakly-absorbing sphere	false	Flag
bch_flg	Batch behavior	false	Flag
coat_flg	Assume coated spheres	false	Flag
drv_rds_nma_flg	Derive rds_nma from bin boundaries	false	Flag
fdg_flg	Tune the extinction of a particular band	false	Flag
hxg_flg	Aspherical particles are hexagonal prisms	true	Flag
vts_flg	Apply equal-V/S approximation for aspherical optical properties	false	Flag
ftn_fxd_flg	Fortran fixed format	false	Flag
hrz-flg	Print size-resolved optical properties at debug wavelength	false	Flag
mca_flg	Multi-component aerosol with effective medium approximation	false	Flag
mie_flg	Perform Mie scattering calculation	true	Flag
no-abc_flg	Set abc_flg to false		Flag
no_bch_flg	Set bch_flg to false		Flag
no_hrz_flg	Set hrz_flg to false		Flag
no_mie_flg	Set mie_flg to false		Flag
no_wrn_ntp_flg	Set wrn_ntp_flg to false		Flag
wrn.ntp.flg	Print WARNINGs from ntp-vec()	true	Flag
КН 1ад	Variables Relative humidity w/r/t liquid water	0.8	Fraction
asp_rat_hxg_dfl	Hexagonal prism aspect ratio	1.0	
1			

Table 5: (continued)

Switch	Purpose	Default	Units
	Ellinsoidal asnect ratio	1.0	Fraction
		7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
bnd_SW_LW	Boundary between SW and LW weighting	$5.0 \times 10^{\circ}$	ш
bnd_nbr	Number of sub-bands per output band		Number
cmp-cor	Composition of core	"air,"	String
cmp_mdm	Composition of medium	"air,"	String
cmp_mnt	Composition of mantle	"air,"	String
cmp_mtx	Composition of matrix	"air,"	String
cmp_ncl	Composition of inclusion	"air,"	String
cmp_prt	Composition of particle	"saharan_dust"	String
cnc_nbr_anl_dfl	Number concentration analytic, default	1.0	$\# m^{-3}$
cnc_nbr_pcp_anl	Number concentration analytic, raindrop	1.0	$\# m^{-3}$
cpv_foo	Intrinsic computational precision temporary	0.0	Fraction
	variable		
dbg_1v_1	Debugging level	0	Index
dmn_nbr_max	Maximum number of dimensions allowed in	2	Number
	single variable in output file		
dmn_frc	Fractal dimensionality of inclusions	3.0	Fraction
dmn_rcd	Record dimension name	(())	String
dmt_dtc	Diameter of detector	0.001	m
dmt_nma_mcr	Number median analytic diameter	cmd_ln_dfl	шm
dmt_pcp_nma_mcr	Diameter number median analytic, raindrop,	1000.0	mm
	microns		
dmt_swa_mcr	Surface area weighted mean diameter analytic	cmd_ln_dfl	mm
dmt_vma_mcr	Volume median diameter analytic	cmd_ln_dfl	mm
dns_cor	Density of core	0.0	${ m kg}{ m m}^{-3}$

Table 5: (continued)

Switch	Purpose	Default	Units
	;	•	
dns_mdm	Density of medium	0.0	$kg m^{-3}$
dns_mnt	Density of mantle	0.0	${ m kgm^{-3}}$
dns_mtx	Density of matrix	0.0	${ m kgm^{-3}}$
dns_ncl	Density of inclusion	0.0	${ m kgm^{-3}}$
dns-prt	Density of particle	0.0	${ m kgm^{-3}}$
doy	Day of year [1.0367.0)	135.0	day
drc_dat	Data directory	/data/zender/aca	String
drc_in	Input directory	\${HOME}/nco/data	String
drc_out	Output directory	\${HOME}/c++	String
dsd_dbg_mcr	Debugging size for raindrops	1000.0	шm
dsd_mnm_mcr	Minimum diameter in raindrop distribution	0.666	шm
dsd_mxm_mcr	Maximum diameter in raindrop distribution	1001.0	шm
dsd_nbr	Number of raindrop size bins	1	Number
fdg_idx	Band to tune by fdg_val	0	Index
fdg_val	Tuning factor for all bands	1.0	Fraction
fl_err	File for error messages	"cert"	String
fl_idx_rfr_cor	File or function for refractive indices of core	(6)	String
fl_idx_rfr_mdm	File or function for refractive indices of medium	"	String
fl_idx_rfr_mnt	File or function for refractive indices of mantle	(6)	String
fl_idx_rfr_mtx	File or function for refractive indices of matrix	(6)	String
fl_idx_rfr_ncl	File or function for refractive indices of inclusion	(6)	String
fl_idx_rfr_prt	File or function for refractive indices of particle	(6)	String
fl_slr_spc	File or function for solar spectrum	(6)	String
flt_foo	Intrinsic float temporary variable	0.0	Fraction

Table 5: (continued)

Switch	Purpose	Default	Units
	1 3 11	C C	W2
$$ ILX $_{-}$ LW $_{-}$ GW $_{-}$ SIC	Longwave downweiling hux at surface	0.0	- III W
flx_SW_net_gnd	Solar flux absorbed by ground	450.0	${ m Wm^{-2}}$
flx_SW_net_vgt	Solar flux absorbed by vegetation	0.0	${ m Wm^{-2}}$
flx_frc_drc_sfc_cmd_ln	Surface insolation fraction in direct beam	0.85	Fraction
flx_vlm_pcp_rsl	Precipitation volume flux, resolved	-1.0	${ m m}^3{ m m}^{-2}{ m s}^{-1}$
gsd_anl_dfl	Geometric standard deviation, default	2.0	Fraction
gsd_pcp_anl	Geometric standard deviation, raindrop	1.86	Fraction
hgt_mdp	Midlayer height above surface	95.0	m
hgt_rfr	Reference height (i.e., 10 m) at which surface winds are evaluated for dust mobilization	10.0	m
hgt_zpd_dps_cmd_ln	Zero plane displacement height	cmd_ln_dfl	ш
hgt_zpd_mbl	Zero plane displacement height for erodible	0.0	m
	surfaces		
idx_rfr_cor_usr	Refractive index of core	1.0 + 0.0i	Complex
idx_rfr_mdm_usr	Refractive index of medium	1.0 + 0.0i	Complex
idx_rfr_mnt_usr	Refractive index of mantle	1.33 + 0.0i	Complex
idx_rfr_mtx_usr	Refractive index of matrix	1.0 + 0.0i	Complex
idx_rfr_ncl_usr	Refractive index of inclusion	1.0 + 0.0i	Complex
idx_rfr_prt_usr	Refractive index of particle	1.33 + 0.0i	Complex
lat_dgr	Latitude	40.0	0
1bl_sng	Line-by-line test	"CO5,	String
1gn_nbr	Number of terms in Legendre expansion of phase	8	Number
אל לאל פאל פאל	function Dry land fraction	1.0	1.0 Fraction
7 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\(\) \(\)	?::	11-1
mmw_prt	Mean molecular weight	0.0	kg mol ⁻¹

Table 5: (continued)

Switch	Purpose	Default Units	Units
mno_lng_dps_cmd_ln	Monin-Obukhov length	cmd_ln_dfl	m
mss_frc_cly	Mass fraction clay	0.19	Fraction
mss_frc_snd	Mass fraction sand	0.777	Fraction
ngl_nbr	Number of angles in Mie computation	11	Number
oro	Orography: ocean=0.0, land=1.0, sea ice=2.0	1.0	Fraction
pnt_typ_idx	Plant type index	14	Index
prs_mdp	Environmental pressure	100825.0	Pa
prs_ntf	Environmental surface pressure	prs_STP	Pa
psdtyp	Particle size distribution type	"lognormal"	String
q_H2O_vpr	Specific humidity	cmd_ln_dfl	${ m kgkg^{-1}}$
rds_ffc_gmm_mcr	Effective radius of Gamma distribution	50.0	mm
rds_nma_mcr	Number median analytic radius	0.2986	mm
rds_swa_mcr	Surface area weighted mean radius analytic	cmd_ln_dfl	mm
rds_vma_mcr	Volume median radius analytic	cmd_ln_dfl	mm
rgh_mmn_dps_cmd_ln	Roughness length momentum	cmd_ln_dfl	m
rgh_mmn_ice_std	Roughness length over sea ice	0.0005	m
rgh_mmn_mbl	Roughness length momentum for erodible surfaces	100.0×10^{-6}	ш
rgh_mmn_smt	Smooth roughness length	10.0×10^{-6}	m
rfl-gnd-dff	Diffuse reflectance of ground (beneath snow)	0.20	Fraction
sfc_typ	LSM surface type [028]	2	Index
slf_tst_typ	Self-test type	"BoH83"	String
slr_cst	Solar constant	1367.0	${ m Wm^{-2}}$
slr_spc_key	Solar spectrum string	"LaN68"	String

Table 5: (continued)

Switch	Purpose	Default	Units
slr_zen_ngl_cos	Cosine solar zenith angle	1.0	Fraction
slv_sng	Mie solver to use	"Wis79"	String
snw_hgt_lqd	Equivalent liquid water snow depth	0.0	m
soi_typ	LSM soil type [15]	1	Index
spc_heat_prt	Specific heat capacity	0.0	${ m Jkg^{-1}K^{-1}}$
spc_abb_sng	Species abbreviation for Fortran data	"too,"	String
spc_idx_sng	Species index for Fortran data	"too,"	String
ss_alb_cmd_ln	Single scattering albedo	1.0	Fraction
sz_dbg_mcr	Debugging size	1.0	mm
sz_grd_sng	Type of size grid	"logarithmic"	String
szmnmmcr	Minimum size in distribution	0.0	mm
szmxm_mcr	Maximum size in distribution	1.1	mm
sz_nbr	Number of particle size bins	1	Number
sz-prm_rsn	Size parameter resolution	0.1	Fraction
thr_nbr	Thread number	0	Number
tm_dlt	Timestep	1200.0	S
tpt_bbd_wgt	Blackbody temperature of radiation	273.15	K
tpt_gnd	Ground temperature	300.0	X
tpt_ice	Ice temperature	tpt_frz_pnt	K
tpt_mdp	Environmental temperature	300.0	K
tpt_prt	Particle temperature	273.15	K
tpt_soi	Soil temperature	297.0	K
tpt_sst	Sea surface temperature	300.0	K
tpt_vgt	Vegetation temperature	300.0	X

Table 5: (continued)

Switch	Purpose	Default Units	nits
tst_sng	Name of test to perform (htg, lbl, nc, nsz,	Stri	String
(psd_ntg_dgn)		:
var_ffc_gmm	Effective variance of Gamma distribution	1.0 Fra	Fraction
vlm_frc_mntl	Fraction of volume in mantle	0.5 Fra	Fraction
vmr_CO2	Volume mixing ratio of CO ₂	355.0×10^{-6} mo	${ m molecule\ molecule}^{-1}$
vmr_HNO3_gas	Volume mixing ratio of gaseous HNO ₃	0.05×10^{-9} mo	${ m molecule}\ { m molecule}^{-1}$
vwc_sfc	Volumetric water content	0.03 m^3	$\mathrm{m}^3\mathrm{m}^{-3}$
wbl_shp	Weibull distribution shape parameter	2.4 Fra	Fraction
wnd_frc_dps_cmd_ln	Friction speed	cmd_ln_dfl ms	${\rm ms^{-1}}$
wnd_mrd_mdp	Surface layer meridional wind speed	0.0 m s	$\mathrm{m}\mathrm{s}^{-1}$
wnd_znl_mdp	Surface layer zonal wind speed	10.0 ms	${\rm ms^{-1}}$
wvl_dbg_mcr	Debugging wavelength	0.50 µm	n
wvl-grd_sng	Type of wavelength grid	"regular" Stri	String
wvl_dlt_mcr	Bandwidth	0.1 µm	n
wvl_mdp_mcr	Midpoint wavelength	cmd_ln_dfl	n
wvl_mnm_mcr	Minimum wavelength	0.45 µm	n
wvl_mxm_mcr	Maximum wavelength	0.55 µm	n
wvl_nbr	Number of output wavelength bands	1 Nu	Number
wvn_dlt_xcm	Bandwidth	1.0 cm	cm^{-1}
wvn_mdp_xcm	Midpoint wavenumber	cmd_ln_dfl cm	cm^{-1}
wvn_mnm_xcm	Minimum wavenumber	18182 cm	$ m cm^{-1}$
wvn_mxm_xcm	Maximum wavenumber	22222 cm	cm^{-1}
wvn_nbr	Number of output wavenumber bands	1 Nu	Number
xpt_dsc	Experiment description	Stri	String

Table 6 summarizes the *fields* output by SWNB.

Table 6: SWNB Output Fields²⁴

Name(s)	Purpose	Units
	,	
abs_bb_SAS	Broadband absorptance of surface-atmosphere	fraction
	system	
abs_bb_atm	Broadband absorptance of surface	fraction
abs_bb_sfc	Broadband absorptance of atmosphere	fraction
abs_nst_SAS	FSBR absorptance of surface-atmosphere system	fraction
abs_nst_atm	FSBR absorptance of surface	fraction
abs_nst_sfc	FSBR absorptance of atmosphere	fraction
abs_spc_SAS	Spectral absorptance of surface-atmosphere	fraction
	system	
abs_spc_atm	Spectral absorptance of atmosphere	fraction
abs_spc_sfc	Spectral absorptance of surface	fraction
alb_sfc	Specified Lambertian surface albedo	fraction
alt_cld_btm	Highest interface beneath all clouds in column	meter
alt_cld_thick	Thickness of region containing all clouds	meter
alt_ntf	Interface altitude	meter
alt	Altitude	meter
azi_dgr	Azimuthal angle (degrees)	degree
azi	Azimuthal angle (radians)	radian
bnd	Midpoint wavelength	meter
flx_abs_atm_rdr	Flux absorbed in atmosphere at longer	${\rm Wm^{-2}}$
	wavelengths	
flx_bb_abs_atm	Broadband flux absorbed by atmospheric column	${ m Wm^{-2}}$
flx_bb_abs_sfc	only Broadband flux absorbed by surface only	$\mathrm{W}\mathrm{m}^{-2}$

Table 6: (continued)

flx_bb_abs_ttl F		
	Broadband flux absorbed by surface-atmosphere	$\mathrm{W}\mathrm{m}^{-2}$
S	system	
flx_bb_abs F	Broadband flux absorbed by layer	${ m Wm^{-2}}$
flx_bb_dwn_TOA	Broadband incoming flux at TOA (total	${\rm W}{\rm m}^{-2}$
	insolation)	
flx_bb_dwn_dff I	Diffuse downwelling broadband flux	${ m Wm^{-2}}$
flx_bb_dwn_drc I	Direct downwelling broadband flux	${ m Wm^{-2}}$
flx_bb_dwn_sfc F	Broadband downwelling flux at surface	${ m Wm^{-2}}$
flx_bb_dwn 7	Total downwelling broadband flux	${ m Wm^{-2}}$
	(direct+diffuse)	
flx_bb_net \	Net broadband flux (downwelling-upwelling)	${ m Wm^{-2}}$
flx_bb_up	Upwelling broadband flux	${ m Wm^{-2}}$
flx_nst_abs_atm F	FSBR flux absorbed by atmospheric column only	${ m Wm^{-2}}$
flx_nst_abs_sfc F	FSBR flux absorbed by surface only	${ m Wm^{-2}}$
flx_nst_abs_ttl F	FSBR flux absorbed by surface-atmosphere	${ m Wm^{-2}}$
S	system	
flx_nst_abs F	FSBR flux absorbed by layer	${ m Wm^{-2}}$
flx_nst_dwn_TOA F	FSBR incoming flux at TOA (total insolation)	${ m Wm^{-2}}$
flx_nst_dwn_sfc F	FSBR downwelling flux at surface	${ m Wm^{-2}}$
flx_nst_dwn 7	Total downwelling FSBR flux (direct+diffuse)	${ m Wm^{-2}}$
flx_nst_net	Net FSBR flux (downwelling-upwelling)	${ m Wm^{-2}}$
flx_nst_up (Upwelling FSBR flux	${ m Wm^{-2}}$
flx_slr_frc F	Fraction of solar flux	fraction
flx_spc_abs_sas S	Spectral flux absorbed by surface-atmosphere	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$

Table 6: (continued)

Name(s)	Purpose	Units
flx_spc_abs_atm	Spectral flux absorbed by atmospheric column only	${\rm W}{\rm m}^{-2}{\rm m}^{-1}$
flx_spc_abs_sfc	Spectral flux absorbed by surface only	${ m W}{ m m}^{-2}{ m m}^{-1}$
flx_spc_abs	Spectral flux absorbed by layer	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
flx_spc_act_pht_TOA	Spectral actinic photon flux at TOA	$\#\mathrm{m}^{-2}\mathrm{s}^{-1}\mathrm{m}^{-1}$
flx_spc_act_pht_sfc	Spectral actinic photon flux at surface	$\#\mathrm{m}^{-2}\mathrm{s}^{-1}\mathrm{m}^{-1}$
flx_spc_dwn_TOA	Spectral solar insolation at TOA	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
flx_spc_dwn_dff	Spectral diffuse downwelling flux	${\rm W}{\rm m}^{-2}{\rm m}^{-1}$
flx_spc_dwn_drc	Spectral direct downwelling flux	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
flx_spc_dwn_sfc	Spectral solar insolation at surface	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
flx_spc_dwn	Spectral downwelling flux	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
flx_spc_pht_dwn_sfc	Spectral photon flux downwelling at surface	$\#\mathrm{m}^{-2}\mathrm{s}^{-1}\mathrm{m}^{-1}$
flx_spc_up	Spectral upwelling flux	$\mathrm{W}\mathrm{m}^{-2}\mathrm{m}^{-1}$
frc_ice_ttl	Fraction of column condensate that is ice	fraction
htg_rate_bb	Broadband heating rate	$K s^{-1}$
j_NO2	Photolysis rate for $NO_2 + h\nu \longrightarrow O(^3P) + NO$	s^{-1}
j_spc_NO2_sfc	Spectral photolysis rate at sfc for $NO_2 + h\nu \longrightarrow O(^3P) + NO$	$s^{-1} m^{-1}$
lat_dgr	Latitude (degrees)	degree
lcl_time_hr	Local day hour	hour
lcl_yr_day	Day of year in local time	day
levp	Interface pressure	pascal
lev	Layer pressure	pascal
mpc_CWP	Total column Condensed Water Path	${ m kg}{ m m}^{-2}$

Table 6: (continued)

Name(s)	Purpose	Units
nra pht	Energy of photon at band center	ioule photon-1
ntn_bb_aa	Broadband azimuthally averaged intensity	${ m W} { m m}^{-2} { m sr}^{-1}$
ntn_bb_mean	Broadband mean intensity	$\mathrm{W}\mathrm{m}^{-2}\mathrm{sr}^{-1}$
ntn_spc_aa_ndr_sfc	Spectral intensity of nadir radiation at surface	$W m^{-2} m^{-1} sr^{-1}$
ntn_spc_aa_ndr	Spectral intensity of nadir radiation	$\rm W m^{-2} m^{-1} sr^{-1}$
ntn_spc_aa_sfc	Spectral intensity of radiation at surface	$W m^{-2} m^{-1} s r^{-1}$
ntn_spc_aa_zen_sfc	Spectral intensity of zenith radiation at surface	$\rm W m^{-2} m^{-1} sr^{-1}$
ntn_spc_aa_zen	Spectral intensity of zenith radiation	$\rm W m^{-2} m^{-1} sr^{-1}$
ntn_spc_chn	Full spectral intensity of particular band	$\rm W m^{-2} m^{-1} sr^{-1}$
ntn_spc_mean	Spectral mean intensity	$\rm W m^{-2} m^{-1} sr^{-1}$
odac_spc_aer	Aerosol absorption optical depth to surface	fraction
odac_spc_bga	Background aerosol absorption optical depth to	fraction
	surface	
odac_spc_ice	Liquid water absorption optical depth to surface	fraction
odac_spc_1qd	Ice water absorption optical depth to surface	fraction
odal_obs_aer	Layer aerosol absorption optical depth	fraction
odal_obs_bga	Layer background aerosol absorption optical denth	fraction
odsl_obs_aer	Layer aerosol scattering optical depth	fraction
ods1_obs_bga	Layer background aerosol scattering optical depth	fraction
odxc_obs_aer	Column aerosol extinction optical depth	fraction
odxc_obs_bga	Column background aerosol extinction optical	fraction
odxc_spc_CO2	depui CO2 optical depth to surface	fraction
odxc_spc_H20H20	H2O dimer optical depth to surface	fraction

5 APPENDIX

Table 6: (continued)

Name(s)	Purpose	Units
odxc_spc_H20	H2O optical depth to surface	fraction
odxc_spc_NO2	NO_2 optical depth to surface	fraction
odxc_spc_02N2	O2N2 optical depth to surface	fraction
odxc_spc_0202	O2O2 optical depth to surface	fraction
odxc_spc_02	O2 optical depth to surface	fraction
odxc_spc_03	O3 optical depth to surface	fraction
odxc_spc_OH	OH optical depth to surface	fraction
odxc_spc_Ray	Rayleigh scattering optical depth to surface	fraction
odxc_spc_aer	Aerosol extinction optical depth to surface	fraction
odxc_spc_bga	Background aerosol extinction optical depth to surface	fraction
odxc_spc_ice	Ice water extinction optical depth to surface	fraction
odxc_spc_1qd	Liquid water extinction optical depth to surface	fraction
odxc_spc_ttl	Total extinction optical depth to surface	fraction
odxl_obs_aer	Layer aerosol extinction optical depth	fraction
odxl_obs_bga	Layer background aerosol extinction optical depth	fraction
plr-cos	Cosine polar angle (degrees)	fraction
plr-dgr	Polar angle (degrees)	degree
plr	Polar angle (radians)	radian
rfl_bb_SAS	Broadband albedo of entire surface-atmosphere	fraction
rfl_bb_sfc	system Broadband albedo of surface	fraction
rfl_nst_SAS	FSBR albedo of entire surface-atmosphere system	fraction
rfl_nst_sfc	FSBR albedo of surface	fraction

Table 6: (continued)

Name(s)	Purpose	Units
rfl_spc_SAS	Spectral planetary flux reflectance	fraction
slr_zen_ngl_cos	Cosine solar zenith angle	fraction
tau_prs	Optical level (pressure)	pascal
tau	Optical level (optical depth)	fraction
tpt_ntf	Interface temperature	kelvin
tpt	Layer Temperature	kelvin
trn_bb_atm	Broadband transmission of atmospheric column	fraction
trn_nst_atm	FSBR transmission of atmospheric column	fraction
trn_spc_atm_CO2	Column transmission due to CO2 absorption	fraction
trn_spc_atm_H2OH2O	Column transmission due to H2O dimer absorption	fraction
trn_spc_atm_H20	Column transmission due to H2O absorption	fraction
trn_spc_atm_NO2	Column transmission due to NO ₂ absorption	fraction
trn_spc_atm_02N2	Column transmission due to O2-N2 absorption	fraction
trn_spc_atm_0202	Column transmission due to O2-O2 absorption	fraction
trn_spc_atm_02	Column transmission due to O2 absorption	fraction
trn_spc_atm_03	Column transmission due to O3 absorption	fraction
trn_spc_atm_OH	Column transmission due to OH absorption	fraction
trn_spc_atm_Ray	Column transmission due to Rayleigh scattering	fraction
trn_spc_atm_aer	Column transmission due to aerosol extinction	fraction
trn.spc.atm.bga	Column transmission due to background aerosol	fraction
trn_spc_atm_ice	Column transmission due to ice extinction	fraction
trn.spc.atm.lqd	Column transmission due to liquid extinction	fraction

Table 6: (continued)

Name(s)	Purpose	Units
trn_spc_atm_ttl	Spectral flux transmission of entire column	fraction
wvl_ctr	Midpoint wavelength in band	meter
wvl_dlt	Width of band	meter
wvl_grd	Wavelength grid	meter
wv1_max	Maximum wavelength in band	meter
wvl_min	Minimum wavelength in band	meter
wvl_obs_aer	Wavelength of aerosol optical depth specification	meter
wvl_obs_bga	Wavelength of background aerosol optical depth	meter
	specification	
wvn_ctr	Midpoint wavenumber in band	centimeter-1
wvn_dlt	Bandwidth in wavenumbers	centimeter-1
wvn_max	Maximum wavenumber in band	centimeter-1
wvn_min_	Minimum wavenumber in band	centimeter-1

45

Table 7 summarizes the *fields* output by CLM.

Table 7: CLM Output Fields²⁵

Name(s)	Purpose	Units
CO2_vmr_clm	Carbon Dioxide volume mixing ratio	fraction
N2O_vmr_clm	Nitrous Oxide volume mixing ratio	fraction
CH4_vmr_clm	Methane volume mixing ratio	fraction
CFC11_vmr_clm	CFC11 volume mixing ratio	fraction
CFC12_vmr_clm	CFC12 volume mixing ratio	fraction
RH_ice	Relative humidity w/r/t ice	fraction
RH	Relative humidity	fraction
RH_1qd	Relative humidity w/r/t liquid	fraction
alb_sfc_NIR_drc	Albedo for NIR radiation at strong zenith angles	fraction
alb_sfc_NIR_dff	Albedo for NIR radiation at weak zenith angles	fraction
alb_sfc	Prescribed surface albedo	fraction
alb_sfc_vsb_drc	Albedo for visible radiation at strong zenith	fraction
	angles	
alb_sfc_vsb_dff	Albedo for visible radiation at weak zenith angles	fraction
alt_cld_btm	Highest interface beneath all clouds in column	meter
alt_cld_mid	Altitude at midpoint of all clouds in column	meter
alt_cld_thick	Thickness of region containing all clouds	meter
alt_cld_top	Lowest interface above all clouds in column	meter
alt_dlt	Layer altitude thickness	meter
alt	Altitude	meter
alt_ntf	Interface altitude	meter
cld_frc	Cloud fraction	fraction
cnc_CO2	CO2 concentration	molecule m ⁻³
cnc_CH4	CH4 concentration	molecule m ⁻³

Table 7: (continued)

Name(s)	Purpose	Units
		ć
cnc_N2O	N2O concentration	molecule m ⁻³
cnc_CFC11	CFC11 concentration	$molecule m^{-3}$
cnc_CFC12	CFC12 concentration	$molecule m^{-3}$
cnc_H20H20	H2O dimer concentration	$molecule m^{-3}$
cnc_H20	H2O concentration	$molecule m^{-3}$
cnc_N2	N2 concentration	$molecule m^{-3}$
cnc_NO2	NO_2 concentration	molecule m ⁻³
cnc_0202	O2O2 concentration	molecule m ⁻³
cnc_02_cnc_N2	O2 number concentration times N2 number	$molecule^2 m^{-6}$
	concentration	
cnc_02_cnc_02	O2 number concentration squared	$molecule^2 m^{-6}$
cnc_02	O2 concentration	$molecule m^{-3}$
cnc_02_npl_N2_clm	Column total O2 number concentration times N2	$molecule^2 m^{-5}$
	number path	
cnc_O2_npl_N2	O2 number concentration times N2 number path	$molecule^2 m^{-5}$
cnc_02_np1_02_clm	Column total O2 number concentration times O2	$molecule^2 m^{-5}$
	number path	
cnc_02_npl_02_clm_frc	Fraction of column total O2-O2 at or above each	fraction
	layer	
cnc_02_np1_02	O2 number concentration times O2 number path	$molecule^2 m^{-5}$
cnc_03	O3 concentration	$\#m^{-3}$
cnc_OH	OH concentration	$\# m^{-3}$
cnc_dry_air	Dry concentration	$\# m^{-3}$
cnc_mst_air	Moist air concentration	$\# m^{-3}$
dns_CO2	Density of CO2	$\rm kgm^{-3}$

Table 7: (continued)

dns_CH4 dns_N20 dns_N20 dns_CFC11 dns_CFC12 dns_H2OH20 dns_H2OB dns_N02 dns_N02 dns_O2O2 dns_O2O2 dns_O2_dns_N2 dns_O2_dns_N2 dns_O2_dns_O2 dns_O2_dns_O2 dns_O2_mpl_N2_clm dns_O2_mpl_N2_clm	Density of CH4 Density of N2O Density of CFC11 Density of CFC12 Density of H20H2O Density of H20 Density of N02 Density of N02 Density of O2-O2 O2 mass concentration times N2 mass concentration O2 mass concentration squared Density of O2 Column total O2 mass concentration times N2 mass path O2 mass concentration times N2 mass path Column total O2 mass concentration times N2	Units kg m ⁻³
dns-Oz-mpl-Oz-cim dns-O3 dns-OH dns-aer dns-bga dns-dry-air dns-mst-air	mass path O2 mass concentration times O2 mass path Density of O3 Aerosol density Background aerosol density Density of dry air Density of moist air	kg m - 5 kg m - 3

Table 7: (continued)

Name(s)	Purpose	Units
eqn_time_sec	foo	second
ext_cff_mss_aer	Aerosol mass extinction coefficient	$\mathrm{m}^2\mathrm{kg}^{-1}$
ext_cff_mss_bga	Background aerosol mass extinction coefficient	$\mathrm{m}^2\mathrm{kg}^{-1}$
frc_ice	Fraction of condensate that is ice	fraction
frc_ice_ttl	Fraction of column condensate that is ice	fraction
frc_str_zen_ngl_sfc	Surface fraction of strong zenith angle	fraction
	dependence	
gas_cst_mst_air	Specific gas constant for moist air	joule kilogram-1 kelvin-1
gmt_day	foo	day
gmt_doy	foo	day
gmt_hr	foo	hour
gmt_mnt	foo	minute
gmt_mth	foo	month
gmt_sec	foo	second
gmt_ydy	foo	day
gmt yr	foo	year
grv	Gravity	meter second-2
oro	Orography flag	flag
lat_cos	Cosine of latitude	fraction
lat_dgr	Latitude (degrees)	degree
lat	Latitude (radians)	radian
lcl_time_hr	Local day hour	hour
lcl_yr_day	Day of year in local time	day
lev	Layer pressure	pascal

Table 7: (continued)

Name(s)	Purpose	Units
levp	Interface pressure	pascal
lmt_day	foo	day
lmt_doy	foo	day
lmt_hr	foo	hour
lmt_mnt	foo	minute
lmt_mth	foo	month
lmt_sec	foo	second
lmt_ydy	foo	day
lmt_yr	foo	year
lon_dgr	foo	degree
lon	foo	radian
lon_sec	foo	second
ltst_day	foo	day
ltst_doy	foo	day
ltst_hr	foo	hour
ltst_mnt	foo	minute
ltst_mth	foo	month
ltst_sec	foo	second
$ltst_ydy$	foo	day
ltst_yr	foo	year
mmw_mst_air	Mean molecular weight of moist air	kilogram mole-1
mpc_CO2	Mass path of CO2 in column	${ m kgm^{-2}}$
mpc_CH4	Mass path of CH4 in column	${ m kgm^{-2}}$
mpc_N20	Mass path of N2O in column	${\rm kgm^{-2}}$

Table 7: (continued)

Name(s)	Purpose	Units
	,	c ,
mpc_CFC11	Mass path of CFC11 in column	$\mathrm{kg}\mathrm{m}^{-z}$
mpc_CFC12	Mass path of CFC12 in column	${ m kg}{ m m}^{-2}$
mpc_CWP	Total column Condensed Water Path	${ m kgm^{-2}}$
mpc_H20H20	Mass path of H2O dimer in column	${ m kgm^{-2}}$
mpc_H20	Mass path of H2O in column	${ m kgm^{-2}}$
mpc_IWP	Total column Ice Water Path	${ m kgm^{-2}}$
mpc_LWP	Total column Liquid Water Path	${ m kgm^{-2}}$
mpc_N2	Mass path of N2 in column	${ m kgm^{-2}}$
mpc_NO2	Mass path of NO ₂ in column	${ m kgm^{-2}}$
mpc_0202	Mass path of O2-O2 in column	${ m kgm^{-2}}$
mpc_02	Mass path of O2 in column	${ m kgm^{-2}}$
mpc_03_DU	Mass path of O3 in column	Dobson
mpc_03	Mass path of O3 in column	${ m kgm^{-2}}$
mpc_OH	Mass path of OH in column	${ m kgm^{-2}}$
mpc_aer	Total column mass path of aerosol	${ m kgm^{-2}}$
mpc_bga	Total column mass path of background aerosol	${ m kgm^{-2}}$
mpc_dry_air	Mass path of dry air in column	${ m kgm^{-2}}$
mpc_mst_air	Mass path of moist air in column	${ m kgm^{-2}}$
mp1_C02	Mass path of CO2 in layer	${ m kgm^{-2}}$
mpl_CH4	Mass path of CH4 in layer	${ m kgm^{-2}}$
mp1_N20	Mass path of N2O in layer	${ m kgm^{-2}}$
mpl_CFC11	Mass path of CFC11 in layer	${ m kgm^{-2}}$
mpl_CFC12	Mass path of CFC12 in layer	${ m kgm^{-2}}$
mpl_CWP	Layer Condensed Water Path	${ m kgm^{-2}}$

Table 7: (continued)

Units	c in layer kg m $^{-2}$		${ m kg}{ m m}^{-2}$		$ ext{kg}^2 ext{m}^{-5}$	${ m kg}{ m m}^{-2}$	ayer $kg m^{-2}$		$ ext{kg m}^{-2}$		2 kg m $^{-2}$	2 sol 2	2 kg m $^{-2}$	$^{-1}$ layer kg m $^{-2}$	color colo	CH4 molecule m ⁻²	N2O molecule m ⁻²	CFC11 molecule m ⁻²	CFC12 molecule m ⁻²	H2O dimer molecule m ⁻²	H2O molecule m ⁻²	O2 molecule m ⁻²	NO
Purpose	Mass path of H2O dimer in layer	Mass path of H2O in layer	Layer Ice Water Path	Layer Liquid Water Path	Mass path of N2 in layer	Mass path of NO_2 in layer	Mass path of O2-O2 in layer	Mass path of O2 in layer	Mass path of O3 in layer	Mass path of OH in layer	Layer mass path of aerosol	Layer mass path of aerosol	Mass path of dry air in layer	Mass path of moist air in layer	Column number path of CO2	Column number path of CH4	Column number path of N2O	Column number path of CFC11	Column number path of CFC12	Column number path of H2O dimer	Column number path of H2O	Column number path of O2	Column number path of NO.
	mp1_H2OH2O	mp1_H20	mpl_IWP	mpl_LWP		mp1_NO2	mp1_0202	mp1_02	mp1_03	mpl_oH	mpl_aer	mpl_bga	mpl_dry_air	mpl_mst_air	npc_CO2	npc_CH4	npc_N20	npc_CFC11	npc_CFC12	npc_H20H20	npc_H20	npc_N2	npc_NO2

Table 7: (continued)

Name(s)	Purpose	Units
npc_02	Column number path of O2	$ m moleculem^{-2}$
npc_03	Column number path of O3	$ m moleculem^{-2}$
npc_0H	Column number path of OH	$ m moleculem^{-2}$
npc_dry_air	Column number path of dry air	$ m moleculem^{-2}$
npc_mst_air	Column number path of moist air	$ m moleculem^{-2}$
npl_CO2	Number path of CO2 in layer	$ m moleculem^{-2}$
npl_CH4	Number path of CH4 in layer	$ m moleculem^{-2}$
np1_N20	Number path of N2O in layer	$ m moleculem^{-2}$
npl_CFC11	Number path of CFC11 in layer	$ m moleculem^{-2}$
npl_CFC12	Number path of CFC12 in layer	$ m moleculem^{-2}$
пр1_Н2ОН2О	Number path of H2O dimer in layer	$ m moleculem^{-2}$
np1_H20	Number path of H2O in layer	$ m moleculem^{-2}$
npl_N2	Number path of N2 in layer	$molecule^2 m^{-5}$
npl_NO2	Number path of NO_2 in layer	$ m moleculem^{-2}$
np1_0202	Number path of O2-O2 in layer	$ m moleculem^{-2}$
np1_02	Number path of O2 in layer	$molecule^2 m^{-5}$
np1_03	Number path of O3 in layer	$ m moleculem^{-2}$
npl_OH	Number path of OH in layer	$ m moleculem^{-2}$
npl-dry-air	Number path of dry air in layer	$ m moleculem^{-2}$
npl_mst_air	Number path of moist air in layer	$ m moleculem^{-2}$
odxc_obs_aer	Column aerosol extinction optical depth	fraction
odxc_obs_bga	Column background aerosol extinction optical	fraction
	depth	
odxl_obs_aer	Layer aerosol extinction optical depth	fraction

54 SPPENDIX

Table 7: (continued)

Name(s)	Purpose	Units
odx1_obs_bga	Layer background aerosol extinction optical depth	fraction
oneD_foo	•	
ppr_C02	Partial pressure of CO2	pascal
ppr-CH4	Partial pressure of CH4	pascal
ppr_N20	Partial pressure of N2O	pascal
ppr_CFC11	Partial pressure of CFC11	pascal
ppr-CFC12	Partial pressure of CFC12	pascal
ppr-H20H20	Partial pressure of H2O dimer	pascal
ppr-H20	Partial pressure of H2O	pascal
ppr_N2	Partial pressure of N2	pascal
ppr_NO2	Partial pressure of NO_2	pascal
ppr-0202	Partial pressure of O2O2	pascal
ppr-02	Partial pressure of O2	pascal
ppr-03	Partial pressure of O3	pascal
ppr_OH	Partial pressure of OH	pascal
ppr-dry-air	Partial pressure of dry air	pascal
prs_cld_btm	Highest interface beneath all clouds in column	pascal
prs_cld_mid	Pressure at midpoint of all clouds in column	pascal
prs_cld_thick	Thickness of region containing all clouds	meter
prs_cld_top	Lowest interface above all clouds in column	pascal
prs_dlt	Layer pressure thickness	pascal
prs	Pressure	pascal
prs_ntf	Interface pressure	pascal

Table 7: (continued)

Name(s) prs_sfc q_C02 q_C02 q_C14 q_C24 q_C202 q_H20H20 q_H20H20 q_H20 q_L20 q_N02 q_02 q_02 q_03 q_04 q_04 q_05 q_06 q_07 q_08 q_08 q_08 q_08 q_08 q_08 q_08 q_08 q_09 q_08 q_09 q_09 q_09 q_08 q_0	Surface pressure Mass mixing ratio of CO2 Mass mixing ratio of N2O Mass mixing ratio of CFC11 Mass mixing ratio of CFC12 Water vapor dimer mass mixing ratio Ratio of dimer mant to monomer mmr Water vapor mass mixing ratio Mass mixing ratio of NO2 Ozone mass mixing ratio Mass mixing ratio of O2 Ozone mass mixing ratio Mass mixing ratio of O4 Saturation mixing ratio of OH Saturation mixing ratio w/r/t liquid Dry-mass mixing ratio (r) of CO2 Dry-mass mixing ratio (r) of CH4 Dry-mass mixing ratio (r) of CFC11	Pascal kg kg ⁻¹ fraction fraction fraction fraction kg kg ⁻¹
r_CFC12 r_H20H20 r_H20	Dry-mass mixing ratio (r) of CFC12 Dry-mass mixing ratio (r) of H2O dimer Dry-mass mixing ratio (r) of H2O	$kg kg^{-1}$ $kg kg^{-1}$ $kg kg^{-1}$

Table 7: (continued)

Name(s)	Purpose	Units
		·
r_N2	Dry-mass mixing ratio (r) of N2	$ m kgkg^{-1}$
r_NO2	Dry-mass mixing ratio (r) of NO_2	$ m kgkg^{-1}$
r_0202	Dry-mass mixing ratio (r) of O2O2	${ m kgkg^{-1}}$
r_02	Dry-mass mixing ratio (r) of O2	${ m kgkg^{-1}}$
r_03	Dry-mass mixing ratio (r) of O3	${ m kgkg^{-1}}$
r_OH	Dry-mass mixing ratio (r) of OH	${ m kgkg^{-1}}$
rds_fct_ice	Effective radius of ice crystals	micron
rds_fct_lqd	Effective radius of liquid droplets	micron
rgh_len	Aerodynamic roughness length	meter
scl_hgt	Local scale height	meter
sfc_ems	Surface emissivity	fraction
slr_azi_dgr	Solar azimuth angle	degree
slr_crd_gmm_dgr	foo	degree
slr_cst	Solar constant	${ m Wm^{-2}}$
slr_dcl_dgr	Solar declination	degree
slr_dmt_dgr	Diameter of solar disc	degree
slr_dst_au	Earth-sun distance	astronomical units
slr_elv_dgr	Solar elevation	degree
slr_flx_TOA	Solar flux at TOA	${ m Wm^{-2}}$
slr_flx_nrm_TOA	Solar constant corrected for orbital position	${ m Wm^{-2}}$
slr_hr_ngl_dgr	Solar hour angle	degree
slr_rfr_ngl_dgr	Solar refraction angle	degree
slr_rgt_asc_dgr	Solar right ascension	degree
slr_zen_ngl_cos	Cosine solar zenith angle	fraction

Table 7: (continued)

Name(s)	Purpose	Units
slr-zen.ngl-dgr	Solar zenith angle in degrees	degree
slr_zen_ngl	Solar zenith angle	radian
snow_depth	Snow depth	meter
spc_heat_mst_air	Specific heat at constant pressure of moist air	joule kilogram-1 kelvin-1
time_lmt	Seconds between 1969 and LMT of simulation	second
time_ltst	Seconds between 1969 and LTST of simulation	second
time_unix	Seconds between 1969 and GMT of simulation	second
tpt_cls	Layer temperature (Celsius)	celsius
tpt_cls_ntf	Interface temperature (Celsius)	celsius
tpt	Layer Temperature	kelvin
tpt_ntf	Interface temperature	kelvin
tpt_sfc	Temperature of air in contact with surface	kelvin
tpt_skn	Temperature of surface	kelvin
tpt_vrt	Virtual temperature	kelvin
vmr_CO2	Volume mixing ratio of CO2	number number-1
vmr_CH4	Volume mixing ratio of CH4	number number-1
vmr_N20	Volume mixing ratio of N2O	number number-1
vmr_CFC11	Volume mixing ratio of CFC11	number number-1
vmr_CFC12	Volume mixing ratio of CFC12	number number-1
vmr_H20H20	Volume mixing ratio of H2O dimer	number number-1
vmr_H20	Volume mixing ratio of H2O	number number-1
vmr_N2	Volume mixing ratio of N2	number number-1
vmr_NO2	Volume mixing ratio of NO_2	number number-1
vmr_0202	Volume mixing ratio of O2O2	number number-1

Table 7: (continued)

Units	number number-1	number number-1	number number-1	cation meter	lepth meter		fraction
Purpose	Volume mixing ratio of O2	Volume mixing ratio of O3	Volume mixing ratio of OH	Wavelength of aerosol optical depth specification	Wavelength of background aerosol optical depth	specification	Eccentricity factor
Name(s)	vmr_02	vmr_03	vmr_OH	wvl_obs_aer	wvl_obs_bga		xnt_fac

BIBLIOGRAPHY 59

Bibliography

Alfaro, S. C., A. Gaudichet, L. Gomes, and M. Maillé (1998), Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, *Geophys. Res. Lett.*, 25(7), 991–994. 2

- Arimoto, R., et al. (2006), Characterization of Asian dust during ACE-Asia, *In Press in Global and Planetary Changes*. 2
- Balkanski, Y., M. Schulz, B. Marticorena, G. Bergametti, W. Guelle, F. Dulac, C. Moulin, and C. E. Lambert (1996), Importance of the source term and of the size distribution to model the mineral dust cycle, in *The Impact of Desert Dust Across the Mediterranean*, edited by S. Guerzoni and R. Chester, pp. 69–76, Kluwer Academic Pub., Boston, MA. 2, 9
- Chen, J.-P., and D. Lamb (1994), The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition, *J. Atmos. Sci.*, 51(9), 1206–1221. 1.4.1
- Colarco, P., O. Toon, and B. Holben (2003), Saharan dust transport to the caribbean during PRIDE: Part 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind AOD events from simulations of and remote sensing observations, *J. Geophys. Res.*, 108(D19), 8589, doi:10.1029/2002JD002,658. 3.3.2
- Dubovik, O., and M. D. King (2000), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, *J. Geophys. Res.*, 105(D16), 20,673–20,696. 3.3.3
- Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker (2000), Accuracy assessments of aerosol optical properties retrieved from aeronet sun and skyradiance measurements, *J. Geophys. Res.*, 105(D8), 9791–9806. 3.3.3
- Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker (2002a), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, *J. Atmos. Sci.*, 59(3), 590–608. 2, 2, 11, 3.3.5
- Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker (2002b), Non-spherical aerosol retrieval method employing light scattering by spheroids, *Geophys. Res. Lett.*, 29(10), doi:10.1029/2001GL014,506. 3.3.3
- Ebert, E. E., and J. A. Curry (1992), A parameterization of ice cloud optical properties for climate models, *J. Geophys. Res.*, 97(D4), 3831–3836. 1.4.1
- Flatau, P. J., G. J. Tripoli, J. Verlinde, and W. R. Cotton (1989), *The CSU-RAMS Cloud Microphysics Module: General Theory and Code Documentation*, Dept. of Atmospheric Science Paper No. 451, 88 pp., Colorado State University, Fort Collins, Colo. 1.2, 1.3, 2.2, 3.3.1, 3.3.1
- Foley, J. (1998), personal communication. 4, 4.1, 4.1
- Ginoux, P. (2003), Effects of non-sphericity on mineral dust modeling, *J. Geophys. Res.*, 108(D2), 4052, doi:10.1029/2002JD002,516. 3.3.2

60 BIBLIOGRAPHY

Hansen, J. E., and L. D. Travis (1974), Light scattering in planetary atmospheres, *Space Sci. Rev.*, *16*, 527–610. 1.2, 2.2, 2.3, 2.3

- Heymsfield, A. J., and C. M. R. Platt (1984), A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content, *J. Atmos. Sci.*, 41(5), 846–855. 1.4.1
- Lu, J., and F. M. Bowman (2004), Conversion of multicomponent aerosol size distributions from sectional to modal representations, *Aerosol Sci. Technol.*, 38(4), 391–399, doi:10.1080/02786820490442,842. 1.1
- Maring, H., D. L. Savoie, M. A. Izaguirre, L. Custals, and J. S. Reid (2003), Mineral dust aerosol size distribution change during atmospheric transport, *J. Geophys. Res.*, 108(D19), 8592, doi:10.1029/2002JD002,536. 2, 3.3.2
- McFarquhar, G. M., and A. J. Heymsfield (1997), The definition and significance of an effective radius for ice clouds, *J. Atmos. Sci.*, sub judice, J. Atmos. Sci. 1.4.1
- Mokhtari, M., L. Gomes, P. Tulet, , and T. Rezoug (2012), Importance of the surface size distribution of erodible material: an improvement of the Dust Entrainment And Deposition DEAD model, *Geosci. Model Dev. Disc.* 2
- Patterson, E. M., and D. A. Gillette (1977), Commonalities in measured size distributions for aerosols having a soil-derived component, *J. Geophys. Res.*, 82(15), 2074–2082. 1.2, 2, 6
- Perry, K. D., and T. A. Cahill (1999), Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii, *J. Geophys. Res.*, 104, 18,521–18,533. 3.3.2
- Perry, K. D., T. A. Cahill, R. A. Eldred, and D. D. Dutcher (1997), Long-range transport of North African dust to the eastern United States, *J. Geophys. Res.*, 102, 11,225–11,238. 3.3.2
- Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988), *Numerical Recipes in C*, first ed., 735 pp., Cambridge Univ. Press, New York, NY. 1.2
- Reid, J. S., et al. (2003), Comparison of size and morphological measurements of coarse mode dust particles from Africa, *J. Geophys. Res.*, 108(D19), 8593, doi:10.1029/2002JD002,485. 3.3.2
- Schulz, M., Y. J. Balkanski, W. Guelle, and F. Dulac (1998), Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness, *J. Geophys. Res.*, 103(D9), 10,579–10,592.
- Seinfeld, J. H., and S. N. Pandis (1997), *Atmospheric Chemistry and Physics*, 1326 pp., John Wiley & Sons, New York, NY. 1.2, 3.3.1, 1, 3.3.3, 3.3.3
- Shettle, E. P. (1984), Optical and radiative properties of a desert aerosol model, in *IRS '84: Current Problems in Atmospheric Radiation*, edited by G. Fiocco, August 21–28, Perugia, Italy, pp. 74–77, Proceedings of the International Radiation Symposium, A. Deepak, Hampton VA. 2, 7

BIBLIOGRAPHY 61

Takano, Y., and K.-N. Liou (1995), Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals, *J. Atmos. Sci.*, 52(7), 818–837. 1.4.1

- Webb, R. S., C. E. Rosenzweig, and E. R. Levine (1993), Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities, *Global Biogeochem. Cycles*, 7, 97–108. 4, 4.1, 4.1
- Zender, C. S. (1999), Global climatology of abundance and solar absorption of oxygen collision complexes, *J. Geophys. Res.*, 104(D20), 24,471–24,484.
- Zender, C. S., and J. T. Kiehl (1994), Radiative sensitivities of tropical anvils to small ice crystals, J. Geophys. Res., 99(D12), 25,869–25,880, doi:10.1029/94JD02,090. 1.4.1
- Zender, C. S., B. Bush, S. K. Pope, A. Bucholtz, W. D. Collins, J. T. Kiehl, F. P. J. Valero, and J. Vitko, Jr. (1997), Atmospheric absorption during the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), *J. Geophys. Res.*, 102(D25), 29,901–29,915.

Index

CEC111 46	
CFC11_vmr_clm, 46	cmp_mnt, 31
CFC12_vmr_clm, 46	cmp_mtx, 31
CH4_vmr_clm, 46 CO2_vmr_clm, 46	cmp_ncl, 31
,	cmp_prt, 31 cnc_CFC11, 47
N2O_vmr_clm, 46	, and the second
RH_ice, 46	cnc_CFC12,47 cnc_CH4,46
RH_lqd, 30, 46 RH, 46	cnc_C02, 46
abc_flq, 30	cnc_H2OH2O, 47
abs_bb_SAS, 38	cnc_H2O, 47
abs_bb_sAs, 38	cnc_N20, 47
abs_bb_atm, 36 abs_bb_sfc, 38	cnc_N2, 47
abs_ncl_wk_mdm_flg, 30	cnc_NO2, 47
abs_nst_SAS, 38	cnc_0202, 47
abs_nst_atm, 38	cnc_02_cnc_N2, 47
abs_nst_sfc, 38	cnc_02_cnc_02, 47
abs_spc_SAS, 38	cnc_02_npl_N2_clm, 47
abs_spc_atm, 38	cnc_02_np1_N2, 47
abs_spc_sfc, 38	cnc_02_npl_02_clm_frc, 47
alb_sfc_NIR_dff, 46	cnc_02_npl_02_clm, 47
alb_sfc_NIR_drc, 46	cnc_02_npl_02,47
alb_sfc_vsb_dff, 46	cnc_02,47
alb_sfc_vsb_drc, 46	cnc_03, 47
alb_sfc, 38, 46	cnc_OH, 47
alt_cld_btm, 38, 46	cnc_dry_air, 47
alt_cld_mid, 46	cnc_mst_air, 47
alt_cld_thick, 38, 46	cnc_nbr_anl_dfl, 31
alt_cld_top, 46	cnc_nbr_pcp_anl, 31
alt_dlt, 46	coat_flg, 30
alt_ntf, 38, 46	cpv_foo, 31
alt, 38, 46	dbg_lvl, 31
asp_rat_hxg_dfl, 30	dmn_frc, 31
asp_rat_lps_dfl, 31	dmn_nbr_max, 31
azi_dgr, 38	dmn_rcd, 31
azi, 38	dmt_dtc, 31
bch_flg, 30	dmt_nma_mcr, 31
bnd_SW_LW, 31	dmt_pcp_nma_mcr, 31
bnd_nbr, 31	dmt_swa_mcr, 31
bnd, 38	dmt_vma_mcr, 31
cld_frc,46	dns_CFC11,48
cmp_aer, 26	dns_CFC12,48
cmp_cor, 31	$dns_CH4, 48$
cmp_mdm, 31	dns_C02,47

dns_H2OH2O, 48	$fl_idx_rfr_ncl, 32$
dns_H2O, 48	fl_idx_rfr_prt, 32
dns_N2O, 48	fl_slr_spc, 32
$dns_N2,48$	flt_foo, 32
dns_NO2,48	flx_LW_dwn_sfc, 33
dns_0202,48	$flx_SW_net_gnd, 33$
dns_02_dns_N2,48	flx_SW_net_vgt, 33
dns_02_dns_02,48	flx_abs_atm_rdr,38
dns_02_mpl_N2_clm, 48	flx_bb_abs_atm, 38
dns_02_mpl_N2,48	flx_bb_abs_sfc, 38
dns_02_mpl_02_clm, 48	flx_bb_abs_ttl, 39
dns_02_mpl_02,48	flx_bb_abs, 39
dns_02,48	flx_bb_dwn_TOA, 39
dns_03,48	flx_bb_dwn_dff, 39
$dns_OH, 48$	flx_bb_dwn_drc, 39
dns_aer,48	flx_bb_dwn_sfc, 39
dns_bga,48	flx_bb_dwn, 39
dns_cor, 31	flx_bb_net, 39
dns_dry_air,48	flx_bb_up, 39
dns_mdm, 32	flx_frc_drc_sfc_cmd_ln, 33
dns_mnt, 32	flx_nst_abs_atm, 39
dns_mst_air,48	flx_nst_abs_sfc, 39
dns_mtx, 32	flx_nst_abs_ttl, 39
$dns_ncl, 32$	flx_nst_abs, 39
dns_prt, 32	$flx_nst_dwn_TOA, 39$
doy, 32	flx_nst_dwn_sfc, 39
drc_dat, 32	flx_nst_dwn, 39
drc_in, 32	flx_nst_net, 39
drc_out, 32	flx_nst_up, 39
drv_rds_nma_flg, 30	flx_slr_frc, 39
dsd_dbg_mcr, 32	flx_spc_abs_SAS, 39
dsd_mnm_mcr, 32	$flx_spc_abs_atm, 40$
dsd_mxm_mcr, 32	flx_spc_abs_sfc,40
dsd_nbr, 32	$flx_spc_abs, 40$
eqn_time_sec, 49	flx_spc_act_pht_TOA, 40
ext_cff_mss_aer,49	flx_spc_act_pht_sfc,40
ext_cff_mss_bga,49	flx_spc_dwn_TOA, 40
fdg_flg, 30	$flx_spc_dwn_dff, 40$
fdg_idx, 32	$flx_spc_dwn_drc, 40$
fdg_val, 32	$flx_spc_dwn_sfc, 40$
fl_err, 32	flx_spc_dwn, 40
fl_idx_rfr_cor, 32	flx_spc_pht_dwn_sfc, 40
fl_idx_rfr_mdm, 32	flx_spc_up, 40
fl_idx_rfr_mnt, 32	flx_vlm_pcp_rsl, 33
fl_idx_rfr_mtx, 32	$frc_ice_ttl, 40, 49$

frc_ice, 49	lmt_mth, 50
frc_str_zen_ngl_sfc, 49	lmt_sec, 50
ftn_fxd_flg, 30	lmt_ydy, 50
	lmt_yr, 50
gas_cst_mst_air, 49	- '
gmt_day, 49	lnd_frc_dry, 33
gmt_doy, 49	lon_dgr, 50
gmt_hr, 49	lon_sec, 50
gmt_mnt, 49	lon, 50
gmt_mth, 49	ltst_day, 50
gmt_sec, 49	ltst_doy, 50
gmt_ydy, 49	ltst_hr, 50
gmt_yr,49	ltst_mnt, 50
grv, 49	ltst_mth, 50
gsd_anl_dfl, 33	ltst_sec, 50
gsd_pcp_anl, 33	ltst_ydy, <mark>50</mark>
hgt_mdp, 33	ltst_yr, 50
hgt_rfr, 33	$mca_flg, 30$
hgt_zpd_dps_cmd_ln, 33	$mie_flg, 30$
hgt_zpd_mbl, 33	mie, 5, 26, 29
hrz_flg,30	mmw_mst_air,50
htg_rate_bb, 40	mmw_prt, 33
htg, 36	mno_lng_dps_cmd_ln,34
hxg_flg, 30	mpc_CFC11, 51
idx_rfr_cor_usr, 33	mpc_CFC12, 51
idx_rfr_mdm_usr, 33	mpc_CH4, 50
idx_rfr_mnt_usr, 33	mpc_CO2, 50
idx_rfr_mtx_usr, 33	mpc_CWP, 40, 51
idx_rfr_ncl_usr, 33	mpc_H2OH2O, 51
idx_rfr_prt_usr, 33	mpc_H2O, 51
j_NO2, 40	mpc_IWP, 51
j_spc_N02_sfc, 40	mpc_LWP, 51
lat_cos, 49	mpc_N20, 50
lat_dgr, 33, 40, 49	mpc_N2, 51
lat, 49	mpc_NO2, 51
lbl_sng, 33	mpc_0202, 51
lbl, 36	mpc_02, 51
lcl_time_hr, 40, 49	mpc_O3_DU, 51
lcl_yr_day, 40, 49	mpc_03, 51
levp, $40,50$	mpc_OH, 51
lev, 40, 49	mpc_aer, 51
lgn_nbr, 33	mpc_bga, 51
<pre>lmt_day, 50</pre>	mpc_dry_air, 51
<pre>lmt_doy, 50</pre>	mpc_mst_air, 51
lmt_hr, 50	mpl_CFC11, 51
lmt_mnt, 50	mpl_CFC12, 51

mpl_CH4, 51	npl_CH4, 53
mpl_CO2, 51	npl_CO2, 53
mpl_CWP, 51	npl_H2OH2O, 53
mpl_H2OH2O, 52	npl_H2O, 53
mpl_H2O, 52	npl_N2O, 53
mpl_IWP, 52	npl_N2, 53
mpl_LWP, 52	npl_NO2, 53
mpl_N2O, 51	npl_0202, 53
mpl_N2, 52	npl_02, 53
mpl_NO2, 52	npl_03, 53
mpl_0202, 52	npl_OH, 53
mpl_02, 52	npl_dry_air, 53
mpl_03, 52	npl_mst_air, 53
mpl_OH, 52	nrg_pht,41
mpl_aer, 52	nsz, 36
mpl_bga, 52	ntn_bb_aa,41
mpl_dry_air, 52	ntn_bb_mean, 41
mpl_mst_air, 52	ntn_spc_aa_ndr_sfc, 41
mss_frc_cly, 34	ntn_spc_aa_ndr,41
mss_frc_snd, 34	ntn_spc_aa_sfc,41
ncks, 30	ntn_spc_aa_zen_sfc,41
nc, 36	ntn_spc_aa_zen, 41
ngl_nbr, 34	ntn_spc_chn, 41
no_abc_flg, 30	ntn_spc_mean, 41
no_bch_flg, 30	odac_spc_aer,41
no_hrz_flg, 30	odac_spc_bga, 41
no_mie_flg, 30	odac_spc_ice, 41
no_wrn_ntp_flg, 30	odac_spc_lqd,41
npc_CFC11, 52	odal_obs_aer,41
npc_CFC12, 52	odal_obs_bga,41
npc_CH4, 52	odsl_obs_aer,41
npc_CO2, 52	odsl_obs_bga,41
npc_H2OH2O, 52	odxc_obs_aer, 41, 53
npc_H2O, 52	odxc_obs_bga, 41, 53
npc_N20, 52	odxc_spc_CO2,41
$npc_N2, 52$	odxc_spc_H2OH2O, 41
npc_NO2, 52	odxc_spc_H2O, 42
npc_0202, 52	odxc_spc_NO2, 42
npc_02, 53	odxc_spc_02N2, 42
npc_03, 53	odxc_spc_0202, 42
npc_OH, 53	odxc_spc_02, 42
npc_dry_air, 53	odxc_spc_03, 42
npc_mst_air, 53	odxc_spc_OH, 42
npl_CFC11, 53	odxc_spc_Ray, 42
npl_CFC12, 53	odxc_spc_aer,42

odxc_spc_bga, 42	q_H20, 55
odxc_spc_ice, 42	q_N20, 55
odxc_spc_lqd, 42	q_N2, 55
odxc_spc_tt1, 42	q_NO2, 55
odxl_obs_aer, 42, 53	q_0202, 55
odx1-obs_bga, 42, 54	q_0202, 55
oneD_foo, 54	q_03, 55
	=
oro, 34, 49 plr_cos, 42	q_OH, 55 qst_H2O_ice, 55
plr_dgr, 42	qst_H2O_lqd, 55
plr, 42	r_CFC11, 55
pnt_typ_idx, 34	r_CFC12, 55
ppr_CFC11, 54	r_CH4, 55
	r_CO2, 55
ppr_CFC12, 54	,
ppr_CH4, 54	r_H2OH2O, 55
ppr_C02, 54	r_H2O, 55
ppr_H2OH2O, 54	r_N20, 55
ppr_H20, 54	r_N2, 56
ppr_N20, 54	r_NO2, 56
ppr_N2, 54	r_0202, 56
ppr_N02, 54	r_02, 56
ppr_0202, 54	r_03, 56
ppr_02, 54	r_OH, 56
ppr_03, 54	rds_fct_ice, 56
ppr_OH, 54	rds_fct_lqd, 56
ppr_dry_air, 54	rds_ffc_gmm_mcr, 34
prs_cld_btm, 54	rds_nma_mcr, 34
prs_cld_mid, 54	rds_swa_mcr, 34
prs_cld_thick, 54	rds_vma_mcr, 34
prs_cld_top, 54	rfl_bb_SAS, 42
prs_dlt,54	rfl_bb_sfc, 42
prs_mdp, 34	rfl_gnd_dff, 34
prs_ntf, 34, 54	rfl_nst_SAS, 42
prs_sfc,55	rfl_nst_sfc, 42
prs, 54	rfl_spc_SAS, 43
psd.pl, 27	rgh_len, 56
psd_ntg_dgn, 36	rgh_mmn_dps_cmd_ln, 34
psd_typ, 26, 34	rgh_mmn_ice_std, 34
q_CFC11, 55	rgh_mmn_mbl, 34
q_CFC12, 55	rgh_mmn_smt, 34
q_CH4, 55	scl_hgt, 56
q_CO2, 55	sfc_ems, 56
q_H2OH2O_rcp_q_H2O, 55	sfc_typ, 34
q_H2OH2O, 55	slf_tst_typ, 34
q_H2O_vpr, 34	slr_azi_dgr, 56

slr_crd_gmm_dgr, 56	tpt_mdp, 35
slr_cst, 34, 56	tpt_ntf, 43, 57
slr_dcl_dgr, 56	tpt_prt,35
slr_dmt_dgr, 56	tpt_sfc,57
slr_dst_au, <mark>56</mark>	tpt_skn,57
slr_elv_dgr, 56	tpt_soi, 35
slr_flx_TOA, 56	tpt_sst, 35
slr_flx_nrm_TOA, 56	tpt_vgt,35
slr_hr_ngl_dgr,56	tpt_vrt,57
slr_rfr_ngl_dgr,56	tpt, 43, 57
slr_rgt_asc_dgr,56	trn_bb_atm,43
slr_spc_key,34	trn_nst_atm,43
$slr_zen_ngl_cos, 35, 43, 56$	trn_spc_atm_CO2,43
slr_zen_ngl_dgr,57	trn_spc_atm_H2OH2O,43
slr_zen_ngl,57	trn_spc_atm_H2O,43
slv_sng, 35	trn_spc_atm_NO2,43
snow_depth, 57	trn_spc_atm_02N2,43
snw_hgt_lqd, 35	trn_spc_atm_0202,43
soi_typ, 35	trn_spc_atm_02,43
spc_abb_sng, 35	trn_spc_atm_03,43
spc_heat_mst_air,57	trn_spc_atm_OH, 43
spc_heat_prt, 35	trn_spc_atm_Ray,43
spc_idx_sng, 35	trn_spc_atm_aer,43
ss_alb_cmd_ln, 35	trn_spc_atm_bga,43
sz_dbg_mcr, 35	trn_spc_atm_ice,43
sz_grd_sng, 35	trn_spc_atm_lqd,43
$sz_grd, 26$	trn_spc_atm_ttl,44
sz_mnm_mcr, 35	tst_sng, 36
sz_mnm, 26	var_ffc_gmm, 36
sz_mxm_mcr, 35	$vlm_frc_mntl, 36$
sz_mxm, 26	vmr_CFC11, 57
sz_nbr, 26, 35	vmr_CFC12,57
sz_prm_rsn, 35	vmr_CH4, 57
tau_prs,43	$vmr_CO2, 36, 57$
tau, 43	vmr_H2OH2O, 57
thr_nbr, 35	vmr_H2O, 57
time_lmt, 57	vmr_HNO3_gas, 36
time_ltst, 57	vmr_N2O, 57
time_unix, 57	$vmr_N2, 57$
$tm_dlt, 35$	vmr_NO2, 57
tpt_bbd_wgt, 35	vmr_0202, 57
tpt_cls_ntf,57	vmr_02, 58
tpt_cls,57	vmr_03, 58
tpt_gnd, 35	vmr_OH, 58
tpt_ice, 35	$vts_flg, 30$

vwc_sfc, 36	differential number concentration, 4
wbl_shp, 36	distribution function, 2
wnd_frc_dps_cmd_ln, 36	dust emissions, 18
wnd_mrd_mdp, 36	
wnd_znl_mdp, 36	effective diameter, 22
wrn_ntp_flg, 30	effective radius, 22
wvl_ctr,44	effective size, 5
wvl_dbg_mcr, 36	effective variance, 5
wvl_dlt_mcr, 36	equivalent area spherical radius, 3
wvl_dlt,44	equivalent diameter, 3
wvl_grd_sng, 36	equivalent radius, 3
wvl_grd, 44	equivalent volume spherical radius, 3
wvl_max,44	error function, 6, 16, 17, 27
wvl_mdp_mcr, 36	Solds 27 45
wvl_min, 44	fields, 37 , 45
wvl_mnm_mcr, 36	gamma distribution, 5
wvl_mxm_mcr, 36	geometric optics, 22
wvl_nbr, 36	geometric standard deviation, 6 , 16
wvl_obs_aer, 44, 58	gravitational sedimentation, 22
wvl_obs_bga, 44, 58	,
wvn_ctr, 44	independent variable, 3
wvn_dlt_xcm, 36	input switches, 26
wvn_dlt,44	I according assessing 22
wvn_max,44	Legendre expansion, 33
wvn_mdp_xcm, 36	lognormal distribution, 6
wvn_min,44	lognormal distribution function, 6
wvn_mnm_xcm, 36	lower bound concentration, 2
wvn_mxm_xcm, 36	mass distribution, 19
wvn_nbr, 36	mdlsxn, 2
xnt_fac, 58	mean size, 4
xpt_dsc, 36	mean value, 4
AEDONET 14	median diameter, 19, 20
AERONET, 14	median radius, 2
almucantar, 14	Mie theory, 3
arithmetic mean size, 4	mineral dust, 3, 18
aspherical particles, 3	modal diameter, 19
average size, 4	mode, 19
binomial coefficient, 28	mode diameter, 19, 19
binomial distribution, 28	moment, 21
bounded distribution, 16	monodisperse distribution, 22
	multimodal distribution, 20
columnar volume, 16	multimodal istributions, 20
command line arguments, 29	
convention, 4	nomenclature, 2
cumulative concentration, 2, 7, 16	normal distribution, 5

normalization constant, 24 number concentration, 22
number distribution, 19
number mean size, 4
number-weighted mean size, 4
overlap factors, 18
overlapping distributions, 18
PDF, 3
Perl, 27
PRIDE, 13
probability density functions, 3
radiative transfer, 3
scattering cross-section, 22
SI, 15
sink bins, 18
size distribution, 2
source bins, 18
source distributions, 18
spectral density function, 2
spherical particles, 4
standard deviation, 5
Stirling's Approximation, 28
surface-weighted diameter, 22
truncated concentration, 2
variance, 5, 16
volume-weighted diameter, 22