Unified Devanagari Rendering **Engine for Nepali Language**

Team Members

Amar Dura Harish Joshi Sugam Pokharel

[THA077BCT007] Ayush Bhandari [THA077BCT014] [THA077BCT018] [THA077BCT044] **Supervised By** Er. Praches Acharya

Co-supervised By Er. Santa B. Basnet

Department of Electronics and Computer Engineering Institute of Engineering Thapathali Campus Kathmandu, Nepal

PRESENTATION OUTLINE

- Motivation
- Objectives
- Scope of Project
- Project Applications
- Methodology

- Results
- Discussion of Results
- List of Remaining Tasks
- References

MOTIVATION

- Lack of open source tools for pdf rendering for Nepali language
- Inconsistency in composite character representation in different Devanagari fonts [विद्या, विद्या]

OBJECTIVES

 To implement glyph ordering mechanism and standardize composite character representation { क, ि } - { ि, क} - कि

To develop an open source unified Devanagari
 rendering engine for JVM using Apache PDFBox

SCOPE OF PROJECT

- Ensures the correct ordering of glyphs for Nepali text.
- Focus on pdf rendering only.
- Only implemented for multi-byte Unicode fonts
- Apache PDFBox works on JVM only.

PROJECT APPLICATIONS

- Bill Generation
- News Monitoring Tools
- Text Preprocessing Pipeline
- Governmental documentation

System Block Diagram

METHODOLOGY

METHODOLOGY - [2]

Input Devanagari Text

- from text document, database or text repository.
- contains the unicode devanagari text

Example:

"भानुभक्तका हजुरबुवा श्रीकृष्ण आचार्य जुम्ला जिल्लाको <u>सिञ्जा</u> उपत्यकाबाट तनहुँ जिल्लामा बसाइँ सरेका थिए।"

METHODOLOGY - [3]

Fig: Finite State Diagram for Tokenizer

09/08/2024

9

METHODOLOGY - [4]

Tokenization and Labeling

- Each character is a token
- A character fall into a category
- A word is broken into syllable
- Further processing is done on syllable basis.

सिञ्जा

Character	स	ি	ञ	Q	ज	ा
Category	WC	DV	WC	HLN	WC	DV
Syllables	WC_DV		WC_HLN_WC_DV			

Rules Reordering

METHODOLOGY - [5]

- After tokenization, a buffer of glyphs reordered is maintained.
- Each glyph is tagged according to its position in the syllable.
- All syllables may not contain all types of glyphs.

METHODOLOGY - [6]

- The reordering is done in following steps:
- 1. Find base consonant from syllable.
- 2. Decompose and 3. Final reordering: a. Reorder prebable c. Reorder prebable c. Reorder prebable c. 2. Decompose and reorder matras.
 - - a. Reorder prebase matra.
 - b. Reph reorder.
 - c. Reorder prebase consonants.

12

METHODOLOGY - [7]

• Example : सिञ्जा

Syllable	सि		হ-ত	Π		
Characters	स	ি	ञ	Q	ज	ा
Tokenization	WC_DV		WC_HL	N_WC_	DV	
Reordering	ি	स	ञ	Q	ज	ा
Position	POS_PREBASE _MATRA	POS_SYLLA BLE_BASE	POS_PREBAS ANT	E_CONSON	POS_SYL LABLE_B ASE	POS_POST BASE_MAT RA

Font File

METHODOLOGY - [8]

- A OpenType unicode font is used.
- Contains information about shape of glyphs and lookup tables (GPOS, GSUB)
- GSUB table with substitution features
- GPOS table with positioning features

examples: Mangal.otf, Kalimati.otf

METHODOLOGY - [9]

- Substitution features of GSUB table of font file is used
- The order of substitution is based in OpenType shaping

Name	Example	Substituted glyphs
Akhanda	ज + ् + ञ	ज्ञ
Reph	र + ् + क	र्क
Rakaar	भ + ् + र	भ्र
Half form	क + ् + ख	क्ख

METHODOLOGY - [10]

GSUB GPOS
⊞ 'nukt' Nukta Forms in Devanagari lookup 0
akhn' Akhand in Devanagari lookup 1
'akhn' Akhand in Devanagari lookup 1 subtable
⊞ 'rphf' Reph Form in Devanagari lookup 2
🖽 'blwf' Below Base Forms in Devanagari lookup 3
Half' Half Forms in Devanagari lookup 4
🖽 'vatu' Vattu Variants in Devanagari lookup 5

Fig: Structure of GSUB Table

METHODOLOGY - [11]

GPOS Features

- Manage the positions of glyphs relative to each other.
- Includes adjustments for ligatures, kerning, and diacritics.

example: adjustment of ligatures with dependent vowels.

METHODOLOGY - [12]

GSUB GPOS
🖽 'abvm' Above Base Mark in Devanagari lookup 0
🖽 'abvm' Above Base Mark in Devanagari lookup 1
🖽 'abvm' Above Base Mark in Devanagari lookup 2
⊞ Single Positioning lookup 3
⊞ Single Positioning lookup 4
⊞ Single Positioning lookup 5
🖽 'blwm' Below Base Mark in Devanagari lookup 6

Fig: Structure of GPOS Table

METHODOLOGY - [13]

PDF Generation

- PDF layouts are defined.
- Correctly reordered and shaped glyphs/ligatures are supplied for pdf generation.

PDF File

- It is the final output of the system
- Contains the devanagari text

Correctness measure

Average accuracy =
$$\frac{\sum_{i=1}^{k} Accuracy (Category)_i}{k}$$

where, k = Number of categories Categories by length of sequence: Uni, Bi, Tri, Quad etc.

Correctness measure for reordering algorithm

```
Input : { स, ि, ञ, ्, ज, ा }
Label : { ि, स, ञ, ़, ज, ा }
```

Output after applying reordering rules:

```
Output after applying
(ि, स, ञ, ्, ज, ा }
This is compared with
```

This is compared with label.

RESULT-[1]

Word	Syllables	Decomposition
स्त्री	1(uni)	स्त्री {WC_HLN_WC_DV}
चिट्ठी	2(bi)	चि{WC_DV}, ट्ठी{WC_HLN_WC_DV}
गतम्	3(tri)	ग{WC}, त{WC}, म्{WC_HLN}
कम्प्युटर	4(quad)	क{WC}, म्प्यु{WC_HLN_WC_HLN_WC_DV}, ट{WC}, र{WC}
उपमहानगरपालिका	10(ten)	उ{WV}, प{WC}, म{WC}, हा{WC_DV}, न{WC}, ग{WC}, र{WC}, पा{WC_DV}, लि{WC_DV}, का{WC_DV}

RESULT-[2]

uni	bi	tri	quad	penta	hexa	hepta
कि	ॲंख्या	अँखडि	अँगा लिनु	अँगारधर्मी	ॲंध्यारखाउडे	अक्रमातिशयोक्ति
क्या	ॲंट्वा	अँगर्खा	अँचेटिनु	अँधेरीपक्ष	ॲंध्यारखाउडो	अङ्कपरिवर्तन
क्यु	अक्का	अँगाल्नु	ॲंठ्याउनी	ॲंध्यारमुखे	अंशविषयक	अङ्गप्रतिरोपण
क्यू	अक्को	अँगिया	<u> अँठ्याउनु</u>	अंशविहीन	अकमक्याउनु	अङ्गप्रत्यारोपण
क्ले	अक्खा	अँगुच्छा	अँधेरिनु	अंशसर्वस्व	अकल्याणकारी	अतिक्रमणकारी

RESULT-[3]

Number of Syllables	Count	Sample data
1	110	स्त्री
2	9981	चिट्ठी
3	22153	गतम्
4	27048	कम्प्युटर
5	11508	जलविद्युत्
6	3682	स्वदेशीकरण

Number of Syllables	Count	Sample data
7	597	पदपरिवर्तन
8	119	आवश्यकतापूर्ति
9	21	अन्तरराष्ट्रियकरण
10	2	उपमहानगरपालिका
Total	75221	

DISCUSSION OF RESULT - [1]

- Syllable tokenizer groups the characters of a words into syllable.
- Reordering rule is applied to each syllable separately.
- Wordlist for different sequence length can be tested.
- Error analysis may be need, for better coverage.

LIST OF REMAINING TASK

Labeling of Test Data

Manually reorder the characters of test sequences

Implementation of algorithm

Actual coding in the Apache PDFBox codebase

System evaluation

Testing the reordering algorithm for the test data

09/08/2024 26

REFERENCES - [1]

- Microsoft, "Microsoft Typography Documentation,"
 Accessed: Jul. 19, 2024. [Online]. Available:
 https://learn.microsoft.com/en-us/typography/script-devel
 opment/devanagari
- U. Consortium et al., "The unicode standard, version 14.0. 0-core specification," 2021.
- S. B. Basnet and S. Trishna, "Unification of fonts encoding system of devanagari writing in nepali," Nepalese Linguistics, vol. 32, no. 2, pp. 130–136, 2017.

REFERENCES - [2]

- M. Boualem, M. Leisher, and B. Ogden, "Encoding script-specific writing rules based on the unicode character set."
- S. P. Mudur, N. Nayak, S. Shanbhag, and R. Joshi, "An architecture for the shaping of indic texts," Computers & Graphics, vol. 23, no. 1, pp. 7–24, 1999.
- K. Nepal, "Nepali Font Standards," Kathmandu, Nepal.