Hoja nº 3

Funciones

1. ¿Cuáles de las siguientes funciones son inyectivas? ¿Cuáles sobreyectivas? ¿Es alguna de ellas biyectiva? (Comenzar comprobando que todas ellas son funciones y que lo son entre los conjuntos que se indican).

- a) $f: \mathbb{N} \to \mathbb{N}$, f(m) = m + 2.
- b) $f: \mathbb{Z} \to \mathbb{Z}$, f(m) = 2m 7.
- c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x x^3$.
- d) $f: \mathbb{Q} \to \mathbb{Q}$, $f(x) = x^2 + 4x$.
- e) $f: \mathbb{N} \to \mathbb{N}$, f(n) = n(n+1).
- f) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 1}$.
- g) $f: \mathbb{Z} \to \mathbb{N}$, $f(n) = n^2 + n + 1$.
- **h)** $f: \mathbb{N} \to \mathbb{Q}$, f(t) = t/(t+1).

2. Dada $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |2x+1/2|-1/2, hallar su imagen y también $f(\mathbb{Z})$. Demostrar que f no es ni sobreyectiva ni inyectiva. Probar que, sin embargo, se da una biyección entre \mathbb{Z} y su imagen.

3. Sea $f: X \to Y$ una función. Dados subconjuntos $Z, W \subset Y$, demostrar:

- a) $f^{-1}(Z \cup W) = f^{-1}(Z) \cup f^{-1}(W)$.
- **b)** $f^{-1}(Z \cap W) = f^{-1}(Z) \cap f^{-1}(W)$.
- c) $f(f^{-1}(Z)) = f(X) \cap Z$.
- $\mathbf{d)}\ X\setminus f^{-1}(Z)=f^{-1}(Y\setminus Z).$

4. Sea $f: \mathcal{P}(\mathbb{N}) \longrightarrow \mathcal{P}(\mathbb{N})$ dada por $f(A) = \{(n+1)/2 : (n \in A) \land (n \text{ es impar})\}$ para $A \subset \mathbb{N}$. Estudiar si la función es inyectiva y/o sobreyectiva. ¿Quién es $f^{-1}(\emptyset)$?

5. Sean $f, g: \mathbb{N} \setminus \{1\} \longrightarrow \mathbb{P} = \{primos\}$ las funciones definidas por

- f(n) =el mayor primo que divide a n
- g(n) =el menor primo que divide a n.
 - a) Decidir si son inyectivas y/o sobreyectivas.
- **b)** ¿Quién es $f^{-1}(\{3\})$? ¿Quién es $g^{-1}(\{3\})$?
- **6.** Sean $f, g : \mathbb{R} \to \mathbb{R}$ las funciones definidas por:

$$f(x) = \begin{cases} x^2 & \text{si } x \le 1, \\ 1 - x^2 & \text{si } x > 1, \end{cases} \qquad g(x) = \begin{cases} x^2 & \text{si } x < 0, \\ (x - 1)^2 & \text{si } x \ge 0. \end{cases}$$

- a) Dibujar los gráficos de las funciones $f, g, g \circ f$ y $f \circ g$.
- b) Encontrar las imágenes de cada una de las cuatro funciones anteriores y decidir si son inyectivas y/o sobreyectivas.

- 7. Dadas funciones $f: X \to Y$, $g: Y \to Z$, probar las siguientes afirmaciones:
 - a) f invectiva y g invectiva $\Rightarrow g \circ f$ invectiva.
 - **b)** f sobre g sobre $g \circ f$ sobre.
 - c) Si falta alguna de las dos hipótesis en los casos anteriores, la conclusión puede ser falsa.
 - d) Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva. Si $g \circ f$ es inyectiva, entonces f es inyectiva.
- e) Si g es biyectiva, $g \circ f$ es inyectiva si y sólo si lo es f, y es sobre si y sólo si lo es f. f) Si además X = Z, la afirmación del apartado anterior también es cierta para $f \circ g$.
- 8. Sean A y B dos conjuntos finitos de m y n elementos respectivamente.
- a) Hallar el número de funciones $f: A \longrightarrow B$.
- **b)** Hallar el número de funciones inyectivas $f: A \longrightarrow B$.
- 9. Sea X un conjunto finito con n elementos. ¿Cuántos subconjuntos tiene $X \times X$? ¿Cuántas funciones hay de X en $X \times X$?
- 10. Demostrar que dados n enteros a_1, a_2, \ldots, a_n , no necesariamente distintos, existen enteros k y l con $0 \le k < l \le n$ tales que la suma $a_{k+1} + a_{k+2} + \cdots + a_l$ es un múltiplo de n.
- 11. Considerando que la amistad es siempre mutua, demostrar que en un grupo de n personas $(n \ge 2)$ siempre existen dos con el mismo número de amistades.
- 12. Demostrar que si elegimos 7 números distintos del conjunto $\{1, 2, 3, ..., 10, 11\}$, entre ellos siempre habrá dos que sumen 12.