Infinite Stairs: Simulating Stairs in Virtual Reality based on Visuo-Haptic Interaction

Ryohei Nagao The University of Tokyo nagao@cyber.t.u-tokyo.ac.jp Keigo Matsumoto The University of Tokyo matsumoto@cyber.t.u-tokyo.ac.jp Takuji Narumi The University of Tokyo narumi@cyber.t.u-tokyo.ac.jp

Tomohiro Tanikawa The University of Tokyo tani@cyber.t.u-tokyo.ac.jp Michitaka Hirose The University of Tokyo hirose@cyber.t.u-tokyo.ac.jp

Figure 1: "Infinite Stairs," which evokes a realistic feeling of walking up/down virtual stairs in a virtual environment for users using the flat ground and tiny bumps based on visuo- haptic interaction.

ABSTRACT

In the field of virtual reality, a few methods exist that allow a user to walk up and down the stairs in a virtual environment (VE); however, most of them are based on a complicated device system that generates physical steps using actuators. Because it is difficult for users wearing head mounted displays (HMDs) to keep track of the surrounding environment, walking on physical steps could prove to be very dangerous and lead to injuries. Further, these systems have disadvantages in that the user cannot walk naturally. Therefore, we present "Infinite Stairs," which is a novel technique to simulate the sensation of walking up and down the stairs in a VE based on visuo-haptic interaction. The haptic stimuli provided by a small bump under the feet of the users correspond to the edge of the stair in the VE, and the visual stimuli of the stairs and shoes, provided by the HMD, evoke visuo-haptic interaction for the user. "Infinite Stairs" enables the user to experience any type of virtual stairs, including Penrose stairs, in a virtual reality setting.

CCS CONCEPTS

•Human-centered computing →Virtual reality;

KEYWORDS

Virtual stairs, foot-haptics, visuo-haptic interaction, virtual reality

ACM Reference format:

Ryohei Nagao, Keigo Matsumoto, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2017. Infinite Stairs: Simulating Stairs in Virtual

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

SIGGRAPH '17 Emerging Technologies, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-5012-9/17/07...\$15.00
DOI: http://dx.doi.org/10.1145/3084822.3084838

Reality based on Visuo-Haptic Interaction. In *Proceedings of SIGGRAPH '17 Emerging Technologies, Los Angeles, CA, USA, July 30 - August 03, 2017,* 3 pages.

DOI: http://dx.doi.org/10.1145/3084822.3084838

1 INTRODUCTION

In the field of virtual reality (VR), much research has been conducted on the method of walking in the horizontal direction in virtual environments (VEs). However, only a few methods focus on walking in the vertical direction, such as on staircases, in VEs. Further, most of these studies are based on a complicated system that uses actuators. [Iwata et al. 2001] uses treadmills, where it is possible for users to walk up and down by taking physical steps. However, there is a disadvantage in that the system itself is complicated and too large.

Further, [Schmidt et al. 2015] suggests another technique to allow users to climb a step by attaching actuators to footwear. Foot-wear-based device systems enable users to walk freely as compared with a system using a treadmill. However, because of the weight of the shoes with actuators, and the nature of the system, it is impossible to experience continuous steps as on a staircase. Furthermore, because these systems require the user to perform physical steps, there is a danger of injury when the user walks wearing the head mounted display (HMD). Therefore, a simple and low-cost system that allows users to walk safely and freely in the vertical direction in a VE is highly desirable.

Meanwhile, the other studies attempted to modify users' spatial perception by using both visual and haptic stimuli to generate the effect of visuo-haptic interaction. Visuo-haptic interaction is a phenomenon that modifies users' proprioceptive perceptions according to visual stimuli when haptic and visual sensations are presented simultaneously. In particular, [Ban et al. 2012] revealed that by presenting a small edge, it is possible to change the shape perception of an entire object that the user touches with their hand

in the VE. Furthermore, it is known that haptic information is very important for evoking the walking sensation in VEs. [Matsumoto et al. 2016] showed that haptic signals strengthen the effect of redirected walking techniques. Redirected walking is a method for manipulating horizontal spatial perception by manipulating the visual information of a walking user.

Based on previous studies, we believe that we can change the shape perception of the ground surface into that of a stair by presenting haptic stimulus corresponding to the edge of the step on the soles of the user, thus creating visuo-haptic interaction. This would allow manipulating the user's spatial perception in the vertical direction strongly. [Marchal et al. 2010] proposed a method wherein the user experiences walking up and down stairs without performing physical steps; this method employed viewpoint manipulation to achieve this effect. By combining this type of viewpoint manipulation and visuo-haptic interaction, we believe that it is possible to evoke the strong sense of walking up and down stairs in users. Then, in this study, we propose, "Infinite Stairs," which is a system that allows users to walk up and down stairs in a VE, even though the users walk on a flat ground in a real space (Fig.1). We hypothesize that our system strengthens the immersive and realistic feeling of ascent/descent and makes the user feel that he/she is walking up/down the virtual stairs. In addition, the proposed system enables us to present a sense of ascent/descent safely without presenting physical steps.

2 SYSTEM TO SIMULATE STAIRS BASED ON VISUO-HAPTIC INTERACTION

To generate visuo-haptic interaction, small angle bars (height: 10 mm) are placed on the floor in the 4 m \times 4 m tracking space. A user wears an HMD (HTC Vive) and shoes attached to the controllers. The HMD and controllers are motion-tracked. The HMD shows virtual stairs and sneakers corresponding to the position of user and their feet in the VE (Fig.1). To present a sense of walking up and down the stairs, the height of the virtual camera corresponding to the user's viewpoint and the sneakers are moved according to the position in the real space (Fig.1). When stepping on the stairs in the VE, the user steps on the small physical edge set at the position corresponding to the edge of the step. This haptic stimulus and the viewpoint manipulation introduced by the HMD generate visuohaptic interaction, and this make the user feel the haptic sensation of the edge of the stairs. This shape perception strengthens the sense of ascent/descent on the virtual stairs for the user walking on the flat ground. Because physical steps are not used, there is no physical risk for the user.

It is possible to express multiple hierarchies by placing the small angle bars at the end of the tracking space. As the space is expanded in the vertical direction, it is possible to make complete use of the VE consisting of a 3D space. For example, our system can be applied for building simulations in architectural design.

3 USER STUDY

We conducted a simple user study to investigate the effect of our system. Twelve male candidates (mean age 21.9 years) from our institution participated in this user study. The participants wore an HMD and put on shoes with controllers. They climbed five steps

in the VE. We presented 6 conditions (2 haptic conditions: with or without bumps on the floor in real world \times 3 visual conditions: 75, 100, 125cm as the height of stairs in total). We compared the user's immersive feeling using SUS PQ [Slater et al. 1995] and the height felt by the user at the top of the virtual stairs between conditions.

Figure 2: Immersive scores of SUS PQ (Mean±SE).

The perceived height of the stairs in each visual condition was higher with bumps condition (57.7cm, 71,7cm, 87.5cm, respectively) than without bumps condition (53.5cm, 64.3cm, 83.6cm, respectively). There was a significant difference in the perceived height of the stairs between two haptic conditions. Moreover, the score of the immersive feeling is significantly higher with bumps condition than without bumps conditions (Fig.2). These results showed that the proposed method increased the immersive feeling and made the perception of movement in the vertical direction more realistic

4 DEMONSTRATION AT SIGGRAPH2017

We demonstrate a system that allows users to walk up and down the virtual half-turn stairs and spiral stairs in an endless manner such as in the case of the Penrose stairs. A user can walk up/down infinitely with a strong feeling of ascent and descent by stepping on stairs with the edges set at the center of the tracking space.

REFERENCES

Yuki Ban, Takashi Kajinami, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2012. Modifying an identified curved surface shape using pseudo-haptic effect. Haptics Symposium 2012, HAPTICS 2012 - Proceedings (2012), 211–216. DOI: http://dx.doi.org/10.1109/HAPTIC.2012.6183793

Hiroo Iwata, Hiroaki Yano, Hiroyuki Fukushima, and Haruo Noma. 2005. CirculaFloor. IEEE Computer Graphics and Applications 25, 1 (jan 2005), 64–67. DOI: http://dx.doi. org/10.1109/MCG.2005.5

Hiroo Iwata, Hiroaki Yano, and Fumitaka Nakaizumi. 2001. Gait Master: a versatile locomotion interface for uneven virtual terrain. Proceedings IEEE Virtual Reality 2001 (2001), 131–137. DOI: http://dx.doi.org/10.1109/VR.2001.913779

Maud Marchal, Anatole Lecuyer, Gabriel Cirio, Laurent Bonnet, and Mathieu Emily. 2010. Walking up and down in immersive virtual worlds: Novel interactive techniques based on visual feedback. 2010 IEEE Symposium on 3D User Interfaces (3DUI) (2010), 19–26. DOI: http://dx.doi.org/10.1109/3DUI.2010.5446238

Keigo Matsumoto, Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2016. Curvature manipulation techniques in redirection using haptic cues. In 2016 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 105–108. DOI: http://dx.doi.org/10.1109/3DUI.2016.7460038

Dominik Schmidt, Rob Kovacs, Vikram Mehta, Udayan Umapathi, Sven Köhler, Lung-Pan Cheng, and Patrick Baudisch. 2015. Level-Ups: Motorized Stilts that Simulate Stair Steps in Virtual Reality. Proceedings of the ACM CHI'15 Conference on Human Factors in Computing Systems 1 (2015), 2157–2160. DOI: http://dx.doi. org/10.1145/2702123.2702253

Mel Slater, Martin Usoh, and Anthony Steed. 1995. Taking steps: the influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction 2, 3 (1995), 201–219. DOI: http://dx.doi.org/10.1145/210079.210084