Assignment 04, Question 5&6

Jeff Nguyen

April 1, 2021

University of Southern California Marshall School of Business FBE 543 Forecasting and Risk Analysis

Student Name: Ngoc Son (Jeff) Nguyen

Question 5

a. Do a three-period ahead forecasting using the given initial values and statistics. Write 95% confidence interval for each forecast.

a)

```
alpha_0 <- 6
alpha_1 <- .7
alpha_2 <- .12
y_0 <- 5
y_1 <- 6
sigmaSq <- 1.21
f <- function(y_tMinus1, y_tMinus2) {alpha_0 + alpha_1*y_tMinus1 + alpha_2*y_tMinus2}
y_2 <- f(y_1, y_0)
y_3 <- f(y_2, y_1)
y_4 <- f(y_3, y_2)</pre>
```

$$Y_t = 6 + 0.7Y_{t-1} + 0.12Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 5$$

$$y_1 = 6\sigma^2 = 1.21$$

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
	10.8	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[8.644, 12.956]
$Y_3^F = 6 + 0.7Y_2 + 0.12Y_1$	14.28	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2)}$	[11.6482666,13.4317334]

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$\overline{Y_4^F} =$	17.292	$Y_{t+3}^F \pm$	[14.3499486,20.2340514]
$6 + 0.7Y_3 +$		$1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_2^2+\alpha_1^4+2\alpha_1^2)}$	$\overline{lpha_2)}$
$0.12Y_{2}$, , , , , , , , , , , , , , , , , , ,	,

b)

```
alpha_0 <- 2.5
alpha_1 <- .3
alpha_2 <- -.28
y_0 <- 1
y_1 <- 2
sigmaSq <- 6.25
f <- function(y_tMinus1, y_tMinus2) {alpha_0 + alpha_1*y_tMinus1 + alpha_2*y_tMinus2}
y_2 <- f(y_1, y_0)
y_3 <- f(y_2, y_1)
y_4 <- f(y_3, y_2)</pre>
```

$$Y_t = 2.5 + 0.3Y_{t-1} + -0.28Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 1$$

$$y_1 = 2\sigma^2 = 6.25$$

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
	2.82	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-2.08, 7.72]
$Y_3^F = 2.5 + 0.3Y_2 + -0.28Y_1$	2.786	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2)}$	[-2.3297502,7.9357502]
$Y_4^F = 2.5 + 0.3Y_3 + -0.28Y_2$	2.5462	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_2^2+\alpha_1^4+2\alpha_1^2)}$	$\frac{[-2.6535751, 7.7459751]}{\alpha_2)}$

c)

```
alpha_0 <- 1.2
alpha_1 <- -.2
alpha_2 <- -.35
y_0 <- 1.5
y_1 <- 2
sigmaSq <- .49
f <- function(y_tMinus1, y_tMinus2) {alpha_0 + alpha_1*y_tMinus1 + alpha_2*y_tMinus2}</pre>
```

$$Y_t = 1.2 + -0.2Y_{t-1} + -0.35Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 1.5$$

$$y_1 = 2\sigma^2 = 0.49$$

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$ Y_2^F = 1.2 + -0.2Y_1 + -0.35Y_0 $	0.275	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-1.097, 1.647]
$Y_3^F = 1.2 + $ $-0.2Y_2 + $ $-0.35Y_1$	0.445	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2)}$	[-0.954171,1.674171]
$Y_4^F = 1.2 + -0.2Y_3 + -0.35Y_2$	1.01475	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_2^2+\alpha_1^4+2\alpha_1^2)}$	$\frac{[-0.4476372, 2.4771372]}{\alpha_2)}$

d)

$$Y_t = 2.5 + -0.07Y_{t-1} + 0.06Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 6$$

$$y_1 = 5\sigma^2 = 3.69$$

Forecast	Forecasted	95% Confidence Interval	95% Confidence Interval
Variable	Value	Equation	
	2.51	$Y_{t+1}^F \pm 1.96\sqrt{\sigma^2}$	[-1.2550371, 6.2750371]

Forecast Variable	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_3^F = 2.5 + -0.07Y_2 + 0.06Y_1$	2.6243	$Y_{t+2}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2)}$	[-1.1499501,6.2842501]
$Y_4^F = 2.5 + -0.07Y_3 + 0.06Y_2$	2.466899	$Y_{t+3}^F \pm 1.96\sqrt{\sigma^2(1+\alpha_1^2+\alpha_2^2+\alpha_1^4+2\alpha_1^2)}$	

Do a long-run (unconditional) forecasting and write 95% confidence interval.

a)

```
alpha_0 <- 6
alpha_1 <- .7
alpha_2 <- .12
y_0 <- 5
y_1 <- 6
sigmaSq <- 1.21
yLR <- alpha_0 / (1 - alpha_1 - alpha_2)
sigmaSq_yLR <- (1 - alpha_2)*sigmaSq / ((1 + alpha_2)*((1 - alpha_2)^2 - alpha_1^2))</pre>
```

$$Y_t = 6 + 0.7Y_{t-1} + 0.12Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 5$$

$$y_1 = 6\sigma^2 = 1.21$$
 (5)

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{6}{1 - 0.7 - 0.12}$	33.3333333	$Y_{LR} \pm 1.96\sqrt{\frac{(1-\alpha_2)*\sigma^2}{(1+\alpha_2)[(1-\alpha_2)^2-\alpha_1]}}$	[29.7497601, 36.9169066]

b)

```
alpha_0 <- 2.5
alpha_1 <- .3
alpha_2 <- -.28
y_0 <- 1
y_1 <- 2
sigmaSq <- 6.25
yLR <- alpha_0 / (1 - alpha_1 - alpha_2)
sigmaSq_yLR <- (1 - alpha_2)*sigmaSq / ((1 + alpha_2)*((1 - alpha_2)^2 - alpha_1^2))</pre>
```

$$Y_t = 2.5 + 0.3Y_{t-1} + -0.28Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 1$$

$$y_1 = 2\sigma^2 = 6.25$$

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{2.5}{1 - 0.30.28}$	2.5510204	$Y_{LR} \pm 1.96\sqrt{\frac{(1-\alpha_2)*\sigma^2}{(1+\alpha_2)[(1-\alpha_2)^2-\alpha_1]}}$	[-2.6993898, 7.8014306]

c)

```
alpha_0 <- 1.2
alpha_1 <- -.2
alpha_2 <- -.35
y_0 <- 1.5
y_1 <- 2
sigmaSq <- .49
yLR <- alpha_0 / (1 - alpha_1 - alpha_2)
sigmaSq_yLR <- (1 - alpha_2)*sigmaSq / ((1 + alpha_2)*((1 - alpha_2)^2 - alpha_1^2))</pre>
```

$$Y_t = 1.2 + -0.2Y_{t-1} + -0.35Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 1.5$$

$$y_1 = 2\sigma^2 = 0.49$$

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{1.2}{1 - 0.2 - 0.35}$	0.7741935	$Y_{LR} \pm 1.96\sqrt{\frac{(1-\alpha_2)*\sigma^2}{(1+\alpha_2)[(1-\alpha_2)^2-\alpha_1]}}$	[-0.7067877, 2.2551748]

d)

```
alpha_0 <- 2.5
alpha_1 <- -.07
alpha_2 <- .06
y_0 <- 6
y_1 <- 5
sigmaSq <- 3.69
yLR <- alpha_0 / (1 - alpha_1 - alpha_2)
sigmaSq_yLR <- (1 - alpha_2)*sigmaSq / ((1 + alpha_2)*((1 - alpha_2)^2 - alpha_1^2))</pre>
```

$$Y_t = 2.5 + -0.07Y_{t-1} + 0.06Y_{t-2} + \epsilon_t$$
 given:
$$y_0 = 6$$

$$y_1 = 5\sigma^2 = 3.69$$
 (8)

Forecast Long Run	Forecasted Value	95% Confidence Interval Equation	95% Confidence Interval
$Y_{LR} = \frac{2.5}{10.07 - 0.06}$	2.4752475	$Y_{LR} \pm 1.96\sqrt{\frac{(1-\alpha_2)*\sigma^2}{(1+\alpha_2)[(1-\alpha_2)^2-\alpha_1]}}$	[-1.307087, 6.257582]