Advanced Discretization Methods (WS 19/20) Homework 5

(P. Knabner, L. Wester)

Deadline for submission (theory): November 26th, 2019, 12:15 Deadline for submission (programming): December 3rd, 2019, 12:15

Exercise 11: A trace estimate using the Raviart-Thomas element RT_0 (3+2+2+3)

Let K be a triangle with vertices $x_1, x_2, x_3 \in \mathbb{R}^2$. Denote by e_i the edge opposite to x_i and by ν_i its normal, see the figure above. Define functions $\tau_i \in \mathrm{RT}_0(K)$ by

$$\tau_i(x) := \frac{|e_i|}{2|K|} (x - x_i) \text{ for } i = 1, 2, 3.$$

Let $h := \max\{|e_1|, |e_2|, |e_3|\}$ be the maximal edge length and c > 0 be chosen such that $h^2 \le c|K|$.

- a) Prove that $\tau_i(x) \cdot \nu(x) = \chi_{e_i}(x)$ for $x \in \partial K$ a.e., where χ denotes the characteristic function. Use (8.15) to conclude that $\{\tau_1, \tau_2, \tau_3\}$ is a basis of $\mathrm{RT}_0(K)$.
- b) Prove that for any $u \in H^{1,2}(K)$ and $i \in \{1,2,3\}$ there holds:

$$||u||_{0,e_i}^2 \le ||\nabla \cdot \tau_i||_{L^{\infty}(K)} ||u||_{0,K}^2 + 2||\tau_i||_{L^{\infty}(K)} ||u||_{0,K} ||\nabla u||_{0,K}.$$

Hint: Use a) and apply the divergence theorem: $\int_{\partial \Omega} f \cdot \nu \ d\sigma = \int_{\Omega} \nabla \cdot f \ dx$.

c) Prove that for any $i \in \{1, 2, 3\}$ there holds:

$$\|\tau_i\|_{L^{\infty}(K)} \le \frac{c}{2}$$
 and $\|\nabla \cdot \tau_i\|_{L^{\infty}(K)} \le \frac{c}{h}$.

d) Finally, prove the following trace estimate for $u \in H^{1,2}(K)$:

$$||u||_{0,e_i} \le C \left(h^{-1/2} ||u||_{0,K} + h^{1/2} ||\nabla u||_{0,K} \right)$$

with C > 0 depending on c.

Exercise 12: Poisson's problem with RT_0 - \mathcal{L}_0^0 (10)

We want to study the saddle point formulation of the non-homogeneous Poisson problem

$$-\Delta u = f$$
 in Ω , $u = u_D$ on $\partial \Omega$

with RT_0 - \mathcal{L}_0^0 elements. The discrete problem reads: Find

$$\sigma_h \in V_h := \mathrm{RT}_0(\mathcal{T}_h), \quad u_h \in W_h := \mathcal{L}_0^0(\mathcal{T}_h)$$

such that

$$(\sigma_h, \tau_h) + (u_h, \nabla \cdot \tau_h) = \int_{\partial \Omega} u_D \tau_h \cdot \nu \, d\sigma \qquad \forall \tau_h \in V_h,$$
$$(v_h, \nabla \cdot \sigma_h) = -(f, v_h) \qquad \forall v_h \in W_h$$

We fix the orientation of interior edges e by fixing a normal vector ν_e for each such edge. For given interior edge e we denote K_+ and K_- the adjacent triangles, such that ν_e points from K_+ to K_- . We denote by x_{\pm} the vertices opposite to e in K_{\pm} , see the figure below for all notations. We extend the notation to exterior edges, denoting by ν_e the outward normal.

For any $K \in \mathcal{T}_h$ and adjacent edge e we set

$$\tau_{h,e}(x) := \begin{cases} \pm \frac{|e|}{2|K_{\pm}|} (x - x_{\pm}) & \text{if } x \in K_{\pm}, \\ 0 & \text{else}, \end{cases} \quad v_{h,K}(x) := \begin{cases} 1 & \text{if } x \in K, \\ 0 & \text{else} \end{cases}$$

and $\{\tau_{h,e}; e \text{ edge of } \mathcal{T}_h\}$ forms a basis of V_h (cf. Ex. 11a), $\{v_{h,K}; K \in \mathcal{T}_h\}$ a basis of W_h .

With the notation from Exercise 11a) for a single triangle $K \in \mathcal{T}_h$, find explicit expressions for $(\tau_{h,e_i}, \tau_{h,e_j})_K$ and $(v_{h,K}, \nabla \cdot \tau_{h,e_i})$ for i, j = 1, 2, 3. The sign of $\tau_{h,e}$ may be represented as $\sigma_i := \nu_i \cdot \nu_{e_i}$, where ν_i is the normal relative

to K, as in Ex. 11a, and ν_{e_i} the fixed normal.

Hint: Show that for barycentric coordinates λ_i, λ_j in K it holds

$$\int_{K} \lambda_{i} \lambda_{j} \, \mathrm{d}x = \frac{|K|}{12} (1 + \delta_{ij})$$

Programming exercise 5: Stokes with Taylor-Hood elements (25)

Now we finally want to solve a Stokes problem: Given a domain $\Omega \subset \mathbb{R}^2$ find $(\boldsymbol{u},p) \in (H_0^{1,2}(\Omega))^2 \times L_0^2(\Omega)$, s.t.

$$a(\boldsymbol{u}, \boldsymbol{v}) + b(\boldsymbol{v}, p) = (\boldsymbol{f} + \boldsymbol{f}_D, \boldsymbol{v}) \qquad \forall \boldsymbol{v} \in (H_0^{1,2}(\Omega))^2$$

 $b(\boldsymbol{u}, q) = (g_D, q) \qquad \forall q \in L_0^2(\Omega)$

where $L_0^2(\Omega) := \{ q \in L^2(\Omega) \mid \int_{\Omega} q \, \mathrm{d}x = 0 \}$ and

$$a(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{v} \, \mathrm{d}x, \qquad b(\boldsymbol{v}, p) := -\int_{\Omega} \mathrm{div} \; \boldsymbol{v} p \, \mathrm{d}x, \qquad \boldsymbol{f} \equiv [0, -g]^T$$

for $\boldsymbol{u}, \boldsymbol{v} \in (H_0^{1,2}(\Omega))^2$, $p \in L_0^2(\Omega)$ and $g \geq 0$ is a constant representing gravity. Reminder: in continuous form, this problem is given as: Find $\boldsymbol{u} \in C^2(\Omega)^2 \cap C^0(\overline{\Omega})^2$, $p \in C^1(\Omega)$, s.t.

$$-\Delta \boldsymbol{u} + \nabla p = \boldsymbol{f} \qquad \text{in } \Omega$$
$$\operatorname{div} \boldsymbol{u} = 0 \qquad \text{in } \Omega$$
$$\boldsymbol{u} = \boldsymbol{u}_D \qquad \text{on } \partial \Omega$$

(i.e. the right-hand side f_D and g_D in the variational formulation are not additional forcing terms, but only the result of shifting the Dirichlet-b.c. In other words: $(f_D, \mathbf{v}) = -a(\mathbf{u}_D, \mathbf{v}), (g_D, q) = -b(\mathbf{u}_D, q)$

To solve this problem, we use \mathcal{P}_2 Lagrange elements for the velocity components u_1, u_2 , but \mathcal{P}_1 -elements for the pressure p. Let $\varphi_1, ..., \varphi_{N_2}$ be the \mathcal{P}_2 shape functions and $\psi_1, ..., \psi_{N_1}$ the \mathcal{P}_1 shape functions. Then the above problem leads to a discretized system of the form

$$\begin{bmatrix} A & 0 & B_1^T \\ 0 & A & B_2^T \\ B_1 & B_2 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ p \end{bmatrix} = \begin{bmatrix} f_{D_1} \\ -g + f_{D_2} \\ g_D \end{bmatrix}$$

where $A \in \mathbb{R}^{N_2 \times N_2}$, $B_1, B_2 \in \mathbb{R}^{N_1 \times N_2}$ are given as follows:

$$A_{ij} = a(\varphi_j, \varphi_i) \qquad i, j = 1, ..., N_2$$

$$(B_1)_{ij} = \int_{\Omega} -\partial_{x_1} \varphi_j \psi_i \, dx \qquad i = 1, ..., N_1; \ j = 1, ..., N_2$$

$$(B_2)_{ij} = \int_{\Omega} -\partial_{x_2} \varphi_j \psi_i \, dx \qquad i = 1, ..., N_1; \ j = 1, ..., N_2$$

As mentioned before, f_{D_1}, f_{D_2}, g_D are an artifact of introducing Dirichlet-b.c. into the system.

Write a function

B = AssembleMixedMatrix(coord,elemNodeTable)

which assembles $B = [B_1 \ B_2]$. (Note: After Programming Exercise 03, your coord should be ordered so that you can extract the \mathcal{P}_1 mesh from the first 3 columns of elemNodeTable. If this is not the case, we recommend generating a mesh using gen_mesh_rectangle.m from the solution of PE03 on StudOn).

Use AssembleMatrices.m to generate A, AssembleRHS.m to generate the right-hand side and test your function by solving the lid-driven cavity problem for different values of $g \ge 0$, $u_{\text{max}} > 0$:

- $\Omega = (0,1)^2$
- $\bullet \ \ \boldsymbol{u}|_{[0,1]\times\{1\}} = \begin{bmatrix} u_{\max} \\ 0 \end{bmatrix}$
- $u|_{\partial\Omega\setminus([0,1]\times\{1\})}=0$

You may assemble the full block system and simply solve it using the backslashoperator.

Plot u using quiver and p with a method of choice (e.g. trisurf, contour). Comment on your results.

Note: The constraint for the pressure $(\int_{\Omega} p \, dx = 0)$ is not straightforward to implement. Instead, you can simply assume the Dirichlet-b.c. $p(\mathbf{x}_0) = 0$ for a single, but fixed, $\mathbf{x}_0 \in \partial \Omega$.

2nd Note: The programming exercise is due in 2 weeks, on Dec. 3rd.