

# SLLIMM™ nano - 2<sup>nd</sup> series IPM, 3-phase inverter, 8 A, 600 V, short-circuit rugged IGBTs



#### **Features**

- IPM 8 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pull-down/ pull-up resistors
- Internal bootstrap diode
- Optimized for low electromagnetic interference
- · Undervoltage lockout
- Short-circuit rugged TFS IGBTs
- · Shutdown function
- Interlocking function
- · Op-amp for advanced current sensing
- · Comparator for fault protection against overcurrent
- Isolation ratings of 1500 V<sub>rms</sub>/min.
- UL recognition: UL 1557, file E81734
- NTC (UL 1434 CA 2 and 4)

### **Applications**

- · 3-phase inverters for motor drives
- Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps



#### Product status link

STGIPQ8C60T-HZ

| Product summary           |                  |  |  |  |
|---------------------------|------------------|--|--|--|
| Order code STGIPQ8C60T-HZ |                  |  |  |  |
| Marking GIPQ8C60T-HZ      |                  |  |  |  |
| Package                   | N2DIP-26L type Z |  |  |  |
| Packing                   | Tube             |  |  |  |

#### **Description**

This second series of SLLIMM (small low-loss intelligent molded module)-nano provides a compact, high-performance AC motor drive in a simple, rugged design. It is composed of six improved short-circuit rugged trench gate fieldstop IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing low electromagnetic interference (EMI) characteristics with optimized switching speed. The package is designed to allow a better and more easily screwed-on heatsink, and is optimized for thermal performance and compactness in built-in motor applications or other low power applications where assembly space is limited. This IPM includes a completely uncommitted operational amplifier and a comparator that can be used to design a fast and efficient protection circuit. SLLIMM™ is a trademark of STMicroelectronics.



# Internal schematic diagram and pin configuration

GND (1) N W (26) T/ SD / OD (2) NTC W, OUT W (25) GND Vcc W (3) Vboot W (24) OUT HIN W (4) HIN LVG SD/OD LIN W (5) LIN Vboot OP+ (6) N V (23) OPOUT (7) GND OP+ OPOUT V, OUT V (22) HVG OP- (8) vcc Vcc V (9) HIN SD/OD HIN V (10) Vboot V (21) LIN V (11) N U (20) GND CIN (12) HVG Vcc U (13) U, OUT U (19) OUT vcc HIN HIN U (14) SD/OD P (18) T / SD / OD (15) Vboot U (17) LIN U (16)

Figure 1. Internal schematic diagram

GIPG300720141542SMD

DS11492 - Rev 4 page 2/25



Table 1. Pin description

| Pin | Symbol              | Description                                                                              |
|-----|---------------------|------------------------------------------------------------------------------------------|
| 1   | GND                 | Ground                                                                                   |
| 2   | T/SD/ OD            | NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output) |
| 3   | V <sub>CC</sub> W   | Low-voltage power supply W phase                                                         |
| 4   | HIN W               | High-side logic input for W phase                                                        |
| 5   | LIN W               | Low-side logic input for W phase                                                         |
| 6   | OP+                 | Op-amp non-inverting input                                                               |
| 7   | OP <sub>OUT</sub>   | Op-amp output                                                                            |
| 8   | OP-                 | Op-amp inverting input                                                                   |
| 9   | V <sub>CC</sub> V   | Low-voltage power supply V phase                                                         |
| 10  | HIN V               | High-side logic input for V phase                                                        |
| 11  | LIN V               | Low-side logic input for V phase                                                         |
| 12  | CIN                 | Comparator input                                                                         |
| 13  | V <sub>CC</sub> U   | Low-voltage power supply for V phase                                                     |
| 14  | HIN U               | High-side logic input for V phase                                                        |
| 15  | T/SD/ OD            | NTC thermistor terminal/shutdown logic input (active low)/open-drain (comparator output) |
| 16  | LIN U               | Low-side logic input for U phase                                                         |
| 17  | V <sub>boot</sub> U | Bootstrap voltage for U phase                                                            |
| 18  | Р                   | Positive DC input                                                                        |
| 19  | U, OUT <sub>U</sub> | U phase output                                                                           |
| 20  | N <sub>U</sub>      | Negative DC input for U phase                                                            |
| 21  | V <sub>boot</sub> V | Bootstrap voltage for V phase                                                            |
| 22  | V, OUT <sub>V</sub> | V phase output                                                                           |
| 23  | N <sub>V</sub>      | Negative DC input for V phase                                                            |
| 24  | V <sub>boot</sub> W | Bootstrap voltage for W phase                                                            |
| 25  | W, OUT <sub>W</sub> | W phase output                                                                           |
| 26  | N <sub>W</sub>      | Negative DC input for W phase                                                            |

DS11492 - Rev 4 page 3/25

PIN 16



Exposed pin not connected

Exposed pin internally connected to GND

Figure 2. Pin layout (top view) - N2DIP-26L type Z

★ Dummy pins internally connected to P (positive DC input)

GADG181220181216IG

DS11492 - Rev 4 page 4/25



# 2 Electrical ratings

 $T_J$  = 25 °C unless otherwise specified

### 2.1 Absolute maximum ratings

Table 2. Inverter part

| Symbol                         | Parameter                                                                                                                                              | Value | Unit |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| V <sub>CES</sub>               | Collector-emitter voltage for each IGBT (V <sub>IN</sub> <sup>(2)</sup> = 0)                                                                           | 600   | V    |
| Ic                             | Continuous collector current for each IGBT (T <sub>C</sub> = 25 °C)                                                                                    | 8     | Α    |
| I <sub>CP</sub> <sup>(1)</sup> | Peak collector current for each IGBT (less than 1 ms)                                                                                                  | 16    | Α    |
| P <sub>TOT</sub>               | Total power dissipation for each IGBT (T <sub>C</sub> = 25 °C)                                                                                         | 19.2  | W    |
| t <sub>SCW</sub>               | Short-circuit withstand time (V <sub>CE</sub> = 300 V, T <sub>J</sub> = 125 °C, V <sub>CC</sub> = V <sub>boot</sub> = 15 V, $V_{IN}^{(2)}$ = 0 to 5 V) | 5     | μs   |

<sup>1.</sup> Pulse width limited by maximum junction temperature.

Table 3. Control part

| Symbol                | Parameter                                                                                 | Min.                   | Max.                    | Unit |
|-----------------------|-------------------------------------------------------------------------------------------|------------------------|-------------------------|------|
| V <sub>CC</sub>       | Low voltage power supply                                                                  | -0.3                   | 21                      | V    |
| V <sub>boot</sub>     | Bootstrap voltage                                                                         | -0.3                   | 620                     | V    |
| V <sub>OUT</sub>      | Output voltage applied among OUT <sub>U</sub> , OUT <sub>V</sub> , OUT <sub>W</sub> - GND | V <sub>boot</sub> - 21 | V <sub>boot</sub> + 0.3 | V    |
| V <sub>CIN</sub>      | Comparator input voltage                                                                  | -0.3                   | V <sub>CC</sub> + 0.3   | V    |
| V <sub>op+</sub>      | Op-amp non-inverting input                                                                | -0.3                   | V <sub>CC</sub> + 0.3   | V    |
| V <sub>op-</sub>      | Op-amp inverting input                                                                    | -0.3                   | V <sub>CC</sub> + 0.3   | V    |
| V <sub>IN</sub>       | Logic input voltage applied among HINx, LINx and GND                                      | -0.3                   | 15                      | V    |
| V <sub>T/SD/OD</sub>  | Open-drain voltage                                                                        | -0.3                   | 15                      | V    |
| dV <sub>out</sub> /dt | Allowed output slew rate                                                                  |                        | 50                      | V/ns |

Table 4. Total system

| Symbol           | Parameter                                                                                 | Value      | Unit             |
|------------------|-------------------------------------------------------------------------------------------|------------|------------------|
| V <sub>ISO</sub> | Isolation withstand voltage applied to each pin and heatsink plate (AC voltage, t = 60 s) | 1500       | V <sub>rms</sub> |
| TJ               | Power chip operating junction temperature                                                 | -40 to 150 | °C               |
| T <sub>C</sub>   | Module case operation temperature                                                         | -40 to 125 | °C               |

DS11492 - Rev 4 page 5/25

<sup>2.</sup> Applied among  $HIN_x$ ,  $LIN_x$  and GND for x = U, V, W



#### 2.1.1 Thermal data

Table 5. Thermal data

| Symbol               | Parameter                                     | Value | Unit |
|----------------------|-----------------------------------------------|-------|------|
| P., a                | Thermal resistance junction-case single IGBT  | 6.5   | °C/W |
| R <sub>th(j-c)</sub> | Thermal resistance junction-case single diode | 10    | C/VV |

DS11492 - Rev 4 page 6/25



### 3 Electrical characteristics

 $T_J$  = 25 °C unless otherwise noted.

#### 3.1 Inverter part

**Table 6. Static** 

| Symbol               | Parameter                                                            | Test conditions                                                                                   | Min. | Тур. | Max. | Unit |
|----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>CES</sub>     | Collector cut-off current $(V_{IN}^{(1)} = 0 \text{ "logic state"})$ | V <sub>CE</sub> = 550 V, V <sub>CC</sub> = V <sub>Boot</sub> = 15 V                               | -    |      | 250  | μА   |
| V <sub>CE(sat)</sub> | Collector-emitter saturation voltage                                 | $V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_C = 8 \text{ A}$ | -    | 2.0  | 2.4  | V    |
| V <sub>F</sub>       | Diode forward voltage                                                | $V_{IN}^{(1)} = 0$ "logic state", $I_C = 8 A$                                                     | -    | 2.4  |      | V    |

<sup>1.</sup> Applied among  $HIN_x$ ,  $LIN_x$  and  $G_{ND}$  for x = U, V, W

Table 7. Inductive load switching time and energy

| Symbol                             | Parameter                 | Test conditions                                                     | Min. | Тур. | Max. | Unit |
|------------------------------------|---------------------------|---------------------------------------------------------------------|------|------|------|------|
| t <sub>on</sub> <sup>(1)</sup>     | Turn-on time              |                                                                     | -    | 290  | -    |      |
| t <sub>c(on)</sub> <sup>(1)</sup>  | Crossover time (on)       |                                                                     | -    | 145  | -    |      |
| t <sub>off</sub> (1)               | Turn-off time             | V <sub>DD</sub> = 300 V,V <sub>CC</sub> = V <sub>boot</sub> = 15 V, | -    | 515  | -    | ns   |
| t <sub>c(off)</sub> <sup>(1)</sup> | Crossover time (off)      | $V_{IN}^{(2)} = 0 \text{ to } 5 \text{ V}, I_C = 8 \text{ A}$       | -    | 90   | -    |      |
| t <sub>rr</sub>                    | Reverse recovery time     | (see Figure 4. Switching time definition)                           | -    | 110  | -    |      |
| E <sub>on</sub>                    | Turn-on switching energy  |                                                                     | -    | 200  | -    |      |
| E <sub>off</sub>                   | Turn-off switching energy |                                                                     | -    | 95   | -    | μJ   |

<sup>1.</sup>  $t_{ON}$  and  $t_{OFF}$  include the propagation delay times of the internal drive.  $t_{C(ON)}$  and  $t_{C(OFF)}$  are the switching times of IGBT itself under the internally given gate driving conditions.

2. Applied among  $HIN_X$ ,  $LIN_X$  and  $G_{ND}$  for x = U, V, W.

DS11492 - Rev 4 page 7/25



Figure 3. Switching time test circuit





DS11492 - Rev 4 page 8/25



### 3.2 Control part

(V<sub>CC</sub> = 15 V unless otherwise specified)

Table 8. Low-voltage power supply

| Symbol                | Parameter                                   | Test conditions                                                              | Min. | Тур. | Max. | Unit |
|-----------------------|---------------------------------------------|------------------------------------------------------------------------------|------|------|------|------|
| V <sub>CC_hys</sub>   | V <sub>CC</sub> UV hysteresis               |                                                                              | 1.2  | 1.5  | 1.8  | V    |
| V <sub>CC_thON</sub>  | V <sub>CC</sub> UV turn-ON threshold        |                                                                              | 11.5 | 12   | 12.5 | V    |
| V <sub>CC_thOFF</sub> | V <sub>CC</sub> UV turn-OFF threshold       |                                                                              | 10   | 10.5 | 11   | V    |
| I <sub>qccu</sub>     | Undervoltage quiescent supply current       | V <sub>CC</sub> = 10 V, V <sub>T/SD/OD</sub> = 5 V,<br>LIN = HIN = CIN = 0 V |      |      | 150  | μA   |
| I <sub>qcc</sub>      | Quiescent current                           | V <sub>CC</sub> = 10 V, V <sub>T/SD/OD</sub> = 5 V,<br>LIN = HIN = CIN = 0 V |      |      | 1    | mA   |
| $V_{ref}$             | Internal comparator (CIN) reference voltage |                                                                              | 0.51 | 0.54 | 0.56 | V    |

Table 9. Bootstrapped voltage

| Symbol                | Parameter                                      | Test conditions                                                                                                            | Min. | Тур. | Max. | Unit |
|-----------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>BS_hys</sub>   | V <sub>BS</sub> UV hysteresis                  |                                                                                                                            | 1.2  | 1.5  | 1.8  | V    |
| V <sub>BS_thON</sub>  | V <sub>BS</sub> UV turn-ON threshold           |                                                                                                                            | 11.1 | 11.5 | 12.1 | V    |
| V <sub>BS_thOFF</sub> | V <sub>BS</sub> UV turn-OFF threshold          |                                                                                                                            | 9.8  | 10   | 10.6 | V    |
| I <sub>QBSU</sub>     | Undervoltage V <sub>BS</sub> quiescent current | $V_{BS} < 9 \text{ V}, V_{T/SD/OD} = 5 \text{ V},$ $LIN = 0 \text{ V} \text{ and HIN} = 5 \text{ V},$ $CIN = 0 \text{ V}$  |      | 70   | 110  | μA   |
| I <sub>QBS</sub>      | V <sub>BS</sub> quiescent current              | $V_{BS} = 15 \text{ V}, V_{T/SD/OD} = 5 \text{ V},$ $LIN = 0 \text{ V} \text{ and HIN} = 5 \text{ V},$ $CIN = 0 \text{ V}$ |      | 150  | 210  | μA   |
| R <sub>DS(on)</sub>   | Bootstrap driver on-resistance                 | LVG ON                                                                                                                     |      | 120  |      | Ω    |

Table 10. Logic inputs

| Symbol            | Parameter                        | Test conditions                                               | Min. | Тур. | Max. | Unit |
|-------------------|----------------------------------|---------------------------------------------------------------|------|------|------|------|
| V <sub>il</sub>   | Low logic level voltage          |                                                               |      |      | 0.8  | V    |
| V <sub>ih</sub>   | High logic level voltage         |                                                               | 2.25 |      |      | V    |
| I <sub>HINh</sub> | HIN logic "1" input bias current | HIN = 15 V                                                    | 20   | 40   | 100  | μA   |
| I <sub>HINI</sub> | HIN logic "0" input bias current | HIN = 0 V                                                     |      |      | 1    | μA   |
| I <sub>LINI</sub> | LIN logic "0" input bias current | LIN = 0 V                                                     |      |      | 1    | μA   |
| I <sub>LINh</sub> | LIN logic "1" input bias current | LIN = 15 V                                                    | 20   | 40   | 100  | μA   |
| I <sub>SDh</sub>  | SD logic "0" input bias current  | <del>SD</del> = 15 V                                          | 210  | 350  | 477  | μA   |
| I <sub>SDI</sub>  | SD logic "1" input bias current  | <del>SD</del> = 0 V                                           |      |      | 3    | μA   |
| Dt                | Dead time                        | See Figure 9. Dead time and interlocking waveform definitions |      | 180  |      | ns   |

DS11492 - Rev 4 page 9/25



Table 11. Op-amp characteristics

| Symbol          | Parameter                         | Test conditions                                               | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------------------|---------------------------------------------------------------|------|------|------|------|
| V <sub>io</sub> | Input offset voltage              |                                                               |      |      | 6    | mV   |
| l <sub>io</sub> | Input offset current              | $V_{ic} = 0 \text{ V}, V_o = 7.5 \text{ V}$                   |      | 4    | 40   | nA   |
| I <sub>ib</sub> | Input bias current <sup>(1)</sup> |                                                               |      | 100  | 200  | nA   |
| V <sub>OL</sub> | Low level output voltage          | $R_L$ = 10 kΩ to $V_{CC}$                                     |      | 75   | 150  | mV   |
| V <sub>OH</sub> | High level output voltage         | $R_L$ = 10 kΩ to GND                                          | 14   | 14.7 |      | V    |
|                 | Output short-circuit current      | Source, V <sub>id</sub> = + 1 V; V <sub>o</sub> = 0 V         | 16   | 30   |      | mA   |
| l <sub>o</sub>  |                                   | Sink, $V_{id} = -1 V$ ; $V_0 = V_{CC}$                        | 50   | 80   |      | mA   |
| SR              | Slew rate                         | V <sub>i</sub> = 1 - 4 V; C <sub>L</sub> = 100 pF; unity gain | 2.5  | 3.8  |      | V/µs |
| GBWP            | Gain bandwidth product            | V <sub>o</sub> = 7.5 V                                        | 8    | 12   |      | MHz  |
| A <sub>vd</sub> | Large signal voltage gain         | $R_L = 2 k\Omega$                                             | 70   | 85   |      | dB   |
| SVR             | Supply voltage rejection ratio    | vs V <sub>CC</sub>                                            | 60   | 75   |      | dB   |
| CMRR            | Common mode rejection ratio       |                                                               | 55   | 70   |      | dB   |

<sup>1.</sup> The direction of input current is out of the IC.

Table 12. Sense comparator characteristics

| Symbol              | Parameter                                                                        | Test conditions                                                                             | Min. | Тур. | Max. | Unit |
|---------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|------|------|------|
| I <sub>ib</sub>     | Input bias current                                                               | V <sub>CIN</sub> = 1 V                                                                      | -    |      | 1    | μA   |
| V <sub>od</sub>     | Open-drain low level output voltage                                              | I <sub>od</sub> = 3 mA                                                                      | -    |      | 0.5  | V    |
| R <sub>ON_OD</sub>  | Open-drain low level output                                                      | I <sub>od</sub> = 3 mA                                                                      | -    | 166  |      | Ω    |
| R <sub>PD_SD</sub>  | SD pull-down resistor <sup>(1)</sup>                                             |                                                                                             | -    | 125  |      | kΩ   |
| t <sub>d_comp</sub> | Comparator delay                                                                 | $V_{T/SD/OD}$ pulled to 5 V through 100 k $\Omega$ resistor                                 | -    | 90   | 130  | ns   |
| SR                  | Slew rate                                                                        | $C_L = 180 \text{ pF}, R_{pu} = 5 \text{ k}\Omega$                                          | -    | 60   |      | V/µs |
| t <sub>sd</sub>     | Shutdown to high-/low-side driver propagation delay                              | V <sub>OUT</sub> = 0, V <sub>boot</sub> = V <sub>CC</sub> ,<br>V <sub>IN</sub> = 0 to 3.3 V | 50   | 125  | 200  |      |
| t <sub>isd</sub>    | Comparator triggering to high-/<br>low-side driver turn-off<br>propagation delay | Measured applying a voltage step from 0 V to 3.3 V to pin CIN                               | 50   | 200  | 250  | ns   |

<sup>1.</sup> Equivalent values as a result of the resistances of three drivers in parallel.

DS11492 - Rev 4 page 10/25



|  |  | h ta |  |
|--|--|------|--|
|  |  |      |  |
|  |  |      |  |

| Conditions                               | Logic input (V <sub>I</sub> ) |                  |                  | Output |     |  |
|------------------------------------------|-------------------------------|------------------|------------------|--------|-----|--|
| Conditions                               | T/SD/OD                       | LIN              | HIN              | LVG    | HVG |  |
| Shutdown enable half-bridge tri-state    | L                             | X <sup>(1)</sup> | X <sup>(1)</sup> | L      | L   |  |
| Interlocking half-bridge tri-state       | Н                             | Н                | Н                | L      | L   |  |
| 0 "logic state" half-bridge tri-state    | Н                             | L                | L                | L      | L   |  |
| 1 "logic state" low-side direct driving  | Н                             | Н                | L                | Н      | L   |  |
| 1 "logic state" high-side direct driving | Н                             | L                | Н                | L      | Н   |  |

<sup>1.</sup> X: don't care.

#### 3.2.1 NTC thermistor

Figure 5. Internal structure of SD and NTC



RPD\_SD: equivalent value as result of resistances of three drivers in parallel.

Figure 6. Equivalent resistance (NTC//R<sub>PD\_SD</sub>)



DS11492 - Rev 4 page 11/25



Figure 7. Equivalent resistance (NTC// $R_{PD\_SD}$ ) zoom



Figure 8. Voltage of T/SD/OD pin according to NTC temperature



DS11492 - Rev 4 page 12/25



#### 3.3 Waveform definitions

CONTROL SIGNAL EDGES HIN OVERLAPPED: INTERLOCKING + DEAD TIME LVG HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES SYNCHRONOUS (\*): DEAD TIME LVG DTHL DTLH HVG gate driver outputs OFF (HALF-BRIDGE TRI-STATE) gate driver outputs OFF (HALF-BRIDGE TRI-STATE) LIN CONTROL SIGNALS EDGES HIN NOT OVERLAPPED, BUT INSIDE THE DEAD TIME: LVG DEAD TIME DTHL HVG gate driver outputs OFF ◀ (HALF-BRIDGE TRI-STATE) gate driver outputs OFF ◀ (HALF-BRIDGE TRI-STATE)

gate driver outputs OFF (HALF-BRIDGE TRI-STATE)

LIN

HIN

LVG HVG

gate driver outputs OFF (HALF-BRIDGE TRI-STATE)

CONTROL SIGNALS EDGES NOT OVERLAPPED, OUTSIDE THE DEAD TIME:

DIRECT DRIVING

Figure 9. Dead time and interlocking waveform definitions

DS11492 - Rev 4 page 13/25



### 4 Shutdown function

The device is equipped with three half-bridge IC gate drivers and integrates a comparator for fault detection.

The comparator has an internal voltage reference  $V_{REF}$  connected to the inverting input, while the non-inverting input pin (CIN) can be connected to an external shunt resistor for current monitoring.

Since the comparator is embedded in the U IC gate driver, in case of fault it disables directly the U outputs, whereas the shutdown of V and W IC gate drivers depends on the RC value of the external SD circuitry, which fixes the disabling time.

For an effective design of the shutdown circuit, please refer to Application note AN4966.

DS11492 - Rev 4 page 14/25



CIN

HIN or LIN

U

V, W

PROTECT ION

OPEN - drain gate (internal)  $t_A$   $t_B$ 

Figure 10. Shutdown timing waveforms



$$\begin{split} t_{A} &\cong \tau_{A} \cdot ln\left(\frac{V_{off} - V_{on}}{V_{il} - V_{on}}\right), \quad t_{B} \cong \tau_{B} \cdot ln\left(\frac{V_{il} - V_{off}}{V_{ih} - V_{off}}\right) \\ &\tau_{A} = (R_{ON\_OD} / / R_{SD} / / R_{PD\_SD} / / * R_{NTC}) \cdot C_{SD} \cong R_{ON\_OD} \cdot C_{SD} \\ &\tau_{B} = (R_{SD} / / R_{PD\_SD} / / * R_{NTC}) \cdot C_{SD} \\ &V_{on} = \frac{R_{ON\_OD} / / R_{PD\_SD} / / * R_{NTC}}{\left(R_{ON\_OD} / / R_{PD\_SD} / / * R_{NTC}\right) + R_{SD}} \cdot V_{bias} \\ &\cong \frac{R_{ON\_OD}}{R_{ON\_OD} + R_{SD}} \cdot V_{bias} \\ &V_{off} = \frac{R_{PD\_SD} / / * R_{NTC}}{\left(R_{PD\_SD} / / * R_{NTC}\right) + R_{SD}} \cdot V_{bias} \end{split}$$

 $R_{SD}$  and  $C_{SD}$  external circuitry must be designed to ensure  $V_{on} < V_{il} \& V_{off} > V_{ih}$ 

Please refer to AN4966 for further details.

\*  $R_{NTC}$  to be considered only when the NTC is internally connected to the  $T/\overline{SD}/OD$  pin.

GADG250120171515FSR

DS11492 - Rev 4 page 15/25



# 5 Application circuit example



Figure 11. Application circuit example

GAD250720161156FSR

Application designers are free to use a different scheme according to the specifications of the device.

DS11492 - Rev 4 page 16/25



#### 5.1 Guidelines

- Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull-down resistor is built-in for each input. To avoid input signal oscillation, the wiring of each input should be as short as possible, and the use of RC filters (R<sub>1</sub>, C<sub>1</sub>) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor C<sub>VCC</sub> (aluminum or tantalum) can reduce the transient circuit demand on the
  power supply. Also, to reduce any high-frequency switching noise distributed on the power lines, a
  decoupling capacitor C<sub>2</sub> (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible
  to the V<sub>cc</sub> pin and in parallel with the bypass capacitor.
- The use of an RC filter (R<sub>SF</sub>, C<sub>SF</sub>) is recommended to prevent protection circuit malfunction. The time constant (R<sub>SF</sub> x C<sub>SF</sub>) should be set to 1 µs and the filter must be placed as close as possible to the C<sub>IN</sub> pin.
- The  $\overline{SD}$  is an input/output pin (open-drain type if it is used as output). A built-in thermistor NTC is internally connected between the  $\overline{SD}$  pin and GND. The voltage V<sub>SD</sub>-GND decreases as the temperature increases, due to the pull-up resistor R<sub>SD</sub>. In order to keep the voltage always higher than the high-level logic threshold, the pull-up resistor should be set to 1 k $\Omega$  or 2.2 k $\Omega$  for 3.3 V or 5 V MCU power supply, respectively. The capacitor C<sub>SD</sub> of the filter on  $\overline{SD}$  should be fixed no higher than 3.3 nF in order to assure the  $\overline{SD}$  activation time  $\tau_A \le 500$  ns. Besides, the filter should be placed as close as possible to the  $\overline{SD}$  pin.
- The decoupling capacitor C<sub>3</sub> (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C<sub>boot</sub>, filters high-frequency disturbance. Both C<sub>boot</sub> and C<sub>3</sub> (if present) should be placed as close as possible to the U, V, W and V<sub>boot</sub> pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To avoid overvoltage on the V<sub>cc</sub> pin, a Zener diode (Dz1) can be used. Similarly on the V<sub>boot</sub> pin, a Zener diode (Dz2) can be placed in parallel with each C<sub>boot</sub>.
- The use of the decoupling capacitor C<sub>4</sub> (100 to 220 nF, with low ESR and low ESL) in parallel with the
  electrolytic capacitor C<sub>vdc</sub> is useful to prevent surge destruction. Both capacitors C<sub>4</sub> and C<sub>vdc</sub> should be
  placed as close as possible to the IPM (C<sub>4</sub> has priority over C<sub>vdc</sub>).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-couplers is possible.
- Low-inductance shunt resistors have to be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring on N pins, the shunt resistor and P<sub>WR\_GND</sub> should be as short as
  possible.
- The connection of SGN\_GND to PWR\_GND on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the specifications of the device for application designs. For further details, please refer to the relevant application note.

Table 14. Recommended operating conditions

| Symbol            | Parameter                          | Test conditions                                                      | Min. | Тур. | Max. | Unit |
|-------------------|------------------------------------|----------------------------------------------------------------------|------|------|------|------|
| V <sub>PN</sub>   | Supply voltage                     | Applied among P-Nu, Nv, Nw                                           |      | 300  | 500  | V    |
| V <sub>CC</sub>   | Control supply voltage             | Applied to V <sub>CC</sub> -GND                                      | 13.5 | 15   | 18   | V    |
| V <sub>BS</sub>   | High-side bias voltage             | Applied to $V_{BOOTx}$ -OUT for x = U, V, W                          | 13   |      | 18   | V    |
| t <sub>dead</sub> | Blanking time to prevent arm-short | For each input signal                                                | 1    |      |      | μs   |
| f <sub>PWM</sub>  | PWM input signal                   | -40 °C < T <sub>C</sub> < 100 °C<br>-40 °C < T <sub>J</sub> < 125 °C |      |      | 25   | kHz  |
| T <sub>C</sub>    | Case operation temperature         |                                                                      |      |      | 100  | °C   |

DS11492 - Rev 4 page 17/25



### **6** Electrical characteristics (curves)

Figure 12. Output characteristics (T<sub>J</sub> = 25°C)



Figure 13. V<sub>CE(sat)</sub> vs collector current



Figure 14. Diode V<sub>F</sub> vs forward current



Figure 15. I<sub>C</sub> vs case temperature



Figure 16. E<sub>on</sub> switching energy vs collector current



Figure 17. E<sub>off</sub> switching energy vs collector current



DS11492 - Rev 4 page 18/25





Figure 18. Thermal impedance for IGBT

DS11492 - Rev 4 page 19/25



# 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

### 7.1 N2DIP-26L type Z package information

Figure 19. N2DIP-26L type Z package outline









8558322\_typeZ\_rev3

DS11492 - Rev 4 page 20/25



Table 15. N2DIP-26L type Z mechanical data

| Dim.   | mm    |       |       |  |  |  |
|--------|-------|-------|-------|--|--|--|
| Dilli. | Min.  | Тур.  | Max.  |  |  |  |
| A      | 4.80  | 5.10  | 5.40  |  |  |  |
| A1     | 0.80  | 1.00  | 1.20  |  |  |  |
| A2     | 4.00  | 4.10  | 4.20  |  |  |  |
| A3     | 1.70  | 1.80  | 1.90  |  |  |  |
| A4     | 1.70  | 1.80  | 1.90  |  |  |  |
| A5     | 8.10  | 8.40  | 8.70  |  |  |  |
| A6     | 1.75  |       |       |  |  |  |
| b      | 0.53  |       | 0.72  |  |  |  |
| b2     | 0.83  |       | 1.02  |  |  |  |
| С      | 0.46  |       | 0.59  |  |  |  |
| D      | 32.05 | 32.15 | 32.25 |  |  |  |
| D1     | 2.10  |       |       |  |  |  |
| D2     | 1.85  |       |       |  |  |  |
| D3     | 30.65 | 30.75 | 30.85 |  |  |  |
| Е      | 12.35 | 12.45 | 12.55 |  |  |  |
| е      | 1.70  | 1.80  | 1.90  |  |  |  |
| e1     | 2.40  | 2.50  | 2.60  |  |  |  |
| eB1    | 16.10 | 16.40 | 16.70 |  |  |  |
| eB2    | 21.18 | 21.48 | 21.78 |  |  |  |
| L      | 0.85  | 1.05  | 1.25  |  |  |  |
| Dia    | 3.10  | 3.20  | 3.30  |  |  |  |

DS11492 - Rev 4 page 21/25



# 7.2 N2DIP-26L packing information

Figure 20. N2DIP-26L tube (dimensions are in mm)



DS11492 - Rev 4 page 22/25



# **Revision history**

**Table 16. Document revision history** 

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                  |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22-Jan-2016 | 1        | Initial release.                                                                                                                                                                                                                                                                         |
| 26-Jul-2016 | 2        | Document status promoted from target to preliminary data.  Updated features in cover page, Section 3: Electrical characteristics, Section 3.2: Control part, Section 5: Application circuit example and Section 6: Guidelines.  Added Section 7: Electrical characteristics (curves).    |
| 16-Dec-2016 | 3        | Document status promoted from preliminary to production data.  Updated Figure 12: V <sub>CE(sat)</sub> vs. collector current.                                                                                                                                                            |
| 30-Jan-2019 | 4        | Updated N2DIP-26L type Z cover image silhouette and Section Features. Added Figure 2. Pin layout (top view) - N2DIP-26L type Z and Figure 15. $I_{\rm C}$ vs case temperature. Updated Section 3.2 Control part and Figure 14. Diode $V_{\rm F}$ vs forward current. Minor text changes. |

DS11492 - Rev 4 page 23/25



# **Contents**

| 1  | Inte   | ernal schematic diagram and pin configuration | 2  |  |  |  |
|----|--------|-----------------------------------------------|----|--|--|--|
| 2  | Elec   | Electrical ratings                            |    |  |  |  |
|    | 2.1    | Absolute maximum ratings                      | 5  |  |  |  |
|    |        | 2.1.1 Thermal data                            | 5  |  |  |  |
| 3  | Elec   | ctrical characteristics                       | 7  |  |  |  |
|    | 3.1    | Inverter part                                 | 7  |  |  |  |
|    | 3.2    | Control part                                  | 9  |  |  |  |
|    |        | 3.2.1 NTC thermistor                          | 11 |  |  |  |
|    | 3.3    | Waveform definitions                          | 12 |  |  |  |
| 4  | Shu    | utdown function                               |    |  |  |  |
| 5  | Арр    | olication circuit example                     | 16 |  |  |  |
|    | 5.1    | Guidelines                                    | 17 |  |  |  |
| 6  | Elec   | ctrical characteristics (curves)              | 18 |  |  |  |
| 7  | Pac    | ckage information                             | 20 |  |  |  |
|    | 7.1    | N2DIP-26L type Z package information          | 20 |  |  |  |
|    | 7.2    | N2DIP-26L packing information                 | 21 |  |  |  |
| Re | vision | history                                       |    |  |  |  |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS11492 - Rev 4 page 25/25

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGIPQ8C60T-HZ