Chapter 2

Question B.2

Associative Commutative Identity Inverses

Yes \square No \boxtimes Yes \square No \boxtimes Yes \square No \boxtimes Yes \square No \boxtimes

(i)
$$1*2 = 1+4-2 = 3 \neq 2 = 2+2-2 = 2*1$$

(Thus, * is not commutative)

(ii)
$$(x * y) * z = (x + 2y - xy) * z = (x + 2y - xy) + 2z - (x + 2y - xy)z =$$

$$x + 2y - xy + 2z - xz - 2yz + xyz$$

$$x * (y * z) = x + 2(y * z) - x(y * z) = x + 2(y + 2z - yz) - x(y + 2z - yz) =$$

$$x + 2y + 4z - 2yz - xy - 2xz + xyz$$

(Thus, * is not associative)

(iii) Solve
$$e$$
 for $x * e = x$, $x + 2e - xe = x$, $e = 0$. Solve e for $e * x = x$,

$$e + 2x - ex = x$$
, $e(1-x) + 2x = x$, $e = \frac{-x}{1-x} \neq 0$

(Thus, * does not have an identity element)

(iv) (Since * does not have an identity element, an inverse cannot exist.)

Question B.5

Associative Commutative Identity Inverses $Yes \ \square \ No \ \boxtimes \quad Yes \ \square \ No \ \square \quad Yes \ \square \ No \ \boxtimes \quad Yes \ \square \ No \ \boxtimes$

(i) x * y = xy + 1 = yx + 1 = y * x

(Thus, * is commutative)

(ii) (x*y)*z = (xy+1)z+1 = xyz+z+1, x*(y*z) = x(yz+1)+1 = xyz+x+1(Thus, * is not associative)

(iii) Solve e for x * e = x, xe + 1 = x, e = (x - 1)/x.

(e depends on x. Thus, * does not have an identity element)

(iv) (Since * does not have an identity element, an inverse cannot exist.)

Question C.2

*	0	1	2	3	4	5	6	7	8	9	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	
(a,a)	a	\boldsymbol{a}	a	a	a	a	a	a	b	b	b	b	b	b	b	b	•
(a,b)	a	a	a	a	b	b	b	b	a	a	a	a	b	b	b	b	
(b,a)	a	a	b	b	a	a	b	b	a	a	b	b	a	a	b	b	
(b, b)	a	b	a	b	a	b	a	b	a	b	a	b	a	b	\boldsymbol{a}	b	

Operation * 0, 1, 6, 7, 8, 9, E, F are commutative.

Chapter 3

Question A.3

Associative Commutative Identity Inverses

Yes \boxtimes No \square Yes \boxtimes No \square Yes \boxtimes No \square Yes \boxtimes No \square

(i) x * y = x + y + xy = y + x + yx = y * x

(Thus, * is commutative)

(ii) (x * y) * z = (x + y + xy) * z = x + y + xy + z + xz + yz + xyz

x * (y * z) = x * (y + z + yz) = x + y + z + yz + xy + xz + xyz = (x * y) * z

(Thus, * is associative)

(iii) Solve e for x * e = x, x + e + xe = x, e + xe = 0, e(1 + x) = 0, e = 0

Solve *e* for e * x = x, e + x + ex = x, e + ex = 0, e = 0

(Thus, * has an identity element 0)

(iv) Solve $x^{-1} * x = 0$, $x^{-1} + x + x^{-1}x = 0$, $x^{-1}(1+x) = -x$, $x^{-1} = \frac{-x}{1+x}$

(Since * is commutative, every x has an inverse)

Therefore this is an Abelian Group.

4

Question B.1

Associative Commutative Identity Inverses

Yes \boxtimes No \square Yes \boxtimes No \square Yes \boxtimes No \square Yes \boxtimes No \square

(i) (a,b)*(c,d) = (ad+bc,bd), (c,d)*(a,b) = (cb+da,bd) = (a,b)*(c,d)

(Thus, * is commutative)

(ii) ((a,b)*(c,d))*(e,f) = (ad+bc,bd)*(e,f) = (adf+bcf+bde,bdf)

(a,b)*((c,d)*(e,f)) = (a,b)*(cf+de,df) = (adf+bcf+bde,bdf)

(Thus, * is associative)

(iii) Solve e for x * e = x, $(a, b) * (e_1, e_2) = (ae_2 + be_1, be_2)$, $e_1 = 0$, $e_2 = 1$

Solve e for e * x = x, $(e_1, e_2) * (a, b) = (e_1b + e_2a, e_2b)$, $e_1 = 0$, $e_2 = 1$

(Thus, * has an identity element (0,1))

(iv) Solve $x * x^{-1} = (0,1)$, (a,b) * (a',b') = (ab' + ba',bb'), $a' = \frac{-a}{b^2}$, $b' = \frac{1}{b}$

(Since * is commutative, every x has an inverse)

Therefore this is an Abelian Group.

Question B.4

Associative Commutative Identity Inverses

 $Yes oxtimes No \Box$ $Yes oxtimes No \Box$ $Yes oxtimes No \Box$ $Yes oxtimes No \Box$

(i)
$$(c,d)*(a,b) = (ca-db,cb+da) = (a,b)*(c,d)$$

(Thus, * is commutative)

(ii) ((a,b)*(c,d))*(e,f) = (ac-bd,ad+bc)*(e,f) = (ace-bde-adf-bcf,acf-bdf+ade+bce)

$$(a,b)*((c,d)*(e,f)) = (a,b)*(ce-df,cf+de) = (ace-adf-bcf-bde,acf+ade+bce-bdf)$$

(Thus, * is associative)

(iii) Solve e for x * e = x, $(a, b) * (e_1, e_2) = (ae_1 - be_2, ae_2 + be_1)$, $e_1 = 1$, $e_2 = 0$

Solve e for e * x = x, $(e_1, e_2) * (a, b) = (e_1a - e_2b, e_1b + e_2a)$, $e_1 = 1$, $e_2 = 0$

(Thus, * has an identity element (1,0))

(iv) Solve $x * x^{-1} = (1,0)$, (a,b) * (a',b') = (aa' - bb', ab' + a'b), $a' = \frac{a}{a^2 + b^2}$, $b' = \frac{-b}{a^2 + b^2}$

(Since * is commutative, every x has an inverse)

Therefore this is an Abelian Group.

C

1. Prove:
$$A + \phi = (A - \phi)U(\phi - A) = AV\phi = A$$

$$\phi + A = (\phi - A)U(A - \phi) = \phi UA = A.$$

$$\Rightarrow \phi = A + \phi = A + \phi = A + \phi = A + \phi = A$$

$$\Rightarrow A + \phi = A +$$

2. $A+A=(A-A)V(A-A)=\phi U\phi = \phi$ for all $A \in \mathcal{P}_0$ => A is inverse

3. D= 4a.b.c) Po= 4p, {al {bl.{u.{a.b}.{b.cl.{a.b.cl.}}}} operation-table for < Po.+>

2			•					5 1.
+	Φ	493	{b}	503	{a.b}	46.03	16.01	sa.b.c}
中	Þ	1503	(1)	503	sa. b}	36.63	fail?	D.
10]	(a)	b	5a.b}	[a.1]		Di	901	46.63
16)	163	150.11	D	Shel	fal	463	D	50.63
44	(0)	(soic)	16-17	4	D.	163	993	Sa. 61 -
son b?	1 a.b?	1563	Sal	D.		faill	(b. c)	303
16.c	3 Sb. C	1 D	103	167	{a.c}	Ø	5a.b5	503
(a.c	} { Q.c	1603	Di	1az	s b. c}	4a,b}	4	5b). 4,
{a.b.	3 D	16.6	sa.c3	1a. h3	107	{a}	363	14, 4/4
	! 2						()	Ø.

