# The bulk kinetic power of radio jets in active galactic nuclei

Minfeng Gu <sup>1\*</sup>, Xinwu Cao<sup>1</sup>, D. R. Jiang<sup>1</sup>

<sup>1</sup> Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China

11 March 2009

## ABSTRACT

Based on the Königl's inhomogeneous jet model, we estimate the jet parameters, such as bulk Lorentz factor  $\Gamma$ , viewing angle  $\theta$  and electron number density  $n_{\rm e}$  from radio VLBI and X-ray data for a sample of active galactic nuclei (AGNs) assuming that the X-rays are from the jet rather than the intracluster gas. The bulk kinetic power of jets is then calculated using the derived jet parameters. We find a strong correlation between the total luminosity of broad emission lines and the bulk kinetic power of the jets. This result supports the scenario that the accretion process are tightly linked with the radio jets, though how the disk and jet are coupled is not revealed by present correlation analysis. Moreover, we find a significant correlation between the bulk kinetic power and radio extended luminosity. This implies that the emission from the radio lobes are closely related with the energy flux transported through jets from the central part of AGNs.

**Key words:** galaxies: active – galaxies: jets – quasars: emission lines

# 1 INTRODUCTION

The formation of highly relativistic jets in active galactic nuclei (AGNs) is one of the unsolved fundamental problems in astrophysics (e.g. Meier et al. 2001). It has been assumed that jets are produced close to the central black hole, involving power extraction from the black hole spin (Blandford & Znajek 1977; Macdonald & Thorne 1982; Thorne & Blandford 1982) and/or from the accretion disk (Blandford & Payne 1982). Although the jet formation remains unclear, the estimate of the jet power is of fundamental physical interest, since it can be used to quantify the power emerging from the central engine of the radio source. Recently, the prescriptions for AGN feedback have been introduced into semi-analytic models of galaxy formation, and both Bower et al. (2006) and Croton et al. (2006) show that this feedback is able to solve the issue of the bright end of the luminosity function, whilst simultaneously solving other problems of galaxy formation models such as why the most massive galaxies are so red. Although the form of the AGN feedback adopted is very different in the two prescriptions, the relativistic ejecta from the AGN is a conceivably important ingredient of AGN feedback. Indeed, in clusters of galaxies containing powerful radio sources, X-ray observations have revealed bubbles and cavities in the hot intracluster medium, evacuated by the expanding radio source (e.g. McNamara et al. 2000; Fabian et al. 2003). Recent studies showed that the mechanical luminosity of radio sources are sufficient to suppress cluster cooling flows (Best et al. 2006; Nusser, Silk & Babul 2006). To understand the interaction between the radio sources and the surrounding medium, it is clearly important to estimate the bulk kinetic power of radio jets, since the expanding radio sources provides a direct way for the AGN output to be coupled to its environment.

The relation between the jets and the accretion processes in active galactic nuclei has been extensively explored by many authors and in different ways. The strong correlations have been found between the low-frequency radio and narrow-line luminosities of 3C radio sources (Baum & Heckman 1989; Rawlings et al. 1989; Saunders et al. 1989), and also between the broad line and extended radio luminosity for radio-loud quasars (e.g. Cao & Jiang 2001). The link between the jets and the accretion processes can also been studied through exploring the relationship between luminosity in line emission and

kinetic power of jets in different scales (Rawlings & Saunders 1991; Celotti & Fabian 1993; Falcke, Malkan & Biermann 1995; Wang, Luo & Ho 2004). Rawlings & Saunders (1991) used the narrow-line luminosity as indicative of the accretion power and estimated the power transported by the jet from the energy content and lifetime of the radio lobes, finding a good correlation between the two. Using radio data on very long-baseline interferometry (VLBI) scales and the standard synchrotron self-Compton (SSC) theory, Celotti & Fabian (1993) estimated the jet kinetic power to put constraints on the matter content of jets. It offers some clues to understand the fundamental questions of the mechanisms, such as the collimation and acceleration of jets. Celotti, Padovani & Ghisellini (1997, hereafter C97) explored the relation of luminosity in broad emission lines with the kinetic power of the jets for a sample of radio-loud AGNs. Their estimate of the bulk kinetic power is based on the adoption of the SSC model applied to the radio VLBI data and X-ray (or optical) fluxes. Lacking more accurate information, the minimum  $\Gamma$  for any given  $\delta$  [i.e.  $\Gamma = 0.5(\delta + 1/\delta)$ ] is used in the derivation of bulk kinetic power for objects with  $\delta > 1$ , otherwise the  $\Gamma$  is derived from an average  $\delta$ . They found a suggestive hint of correlation between these two luminosities which is in favour of a link between the accretion process and the jets. However, by re-estimating the luminosity in broad emission lines on the sample of C97, Wang et al. (2004) argued that the jet bulk kinetic power is significantly correlated with the disk luminosity. Maraschi & Tavecchio (2003, hereafter MT03) found that the jet power is linearly proportional to the disk power for a sample of blazars, for which the jet powers were estimated using physical parameters determined from uniformly modeling their spectral energy distributions. However, by studying a sample of quasars from Wang et al. (2004), Punsly & Tingay (2005) argued that the bulk kinetic power and the bolometric luminosity are very weakly correlated in radio-loud quasars that possess blazar cores.

In the framework of the relativistic beaming and the SSC model, the physical quantities in the jets can be estimated using the VLBI observations and the X-ray flux density. Marscher (1987) derived the beaming parameters on the assumption of homogeneous spherical emission plasma. Ghisellini et al. (1993) adopted Marscher's approach and obtained the Doppler boosting factor  $\delta$  for 105 sources. Moreover, Readhead (1994) estimated the equipartition Doppler boosting factor  $\delta_{\rm eq}$ , assuming that the sources are in equipartition between the energy of radiating particles and the magnetic field. Güijosa and Daly (1996) derived the  $\delta_{\rm eq}$  for the same sample in Ghisellini et al. (1993). The variability Doppler factor  $\delta_{\rm var}$  is derived on the assumption that the associated variability brightness temperature of total radio flux density flares are caused by the relativistic jets (Lähteenmäki & Valtaoja 1999). The advantage of homogeneous sphere model is that the formalism is simple and the value of  $\delta$  derived is independent on the cosmology model. However, it is generally difficult to know the component angular size and the flux at the turnover frequency, so one has to assume that the VLBI observing frequency is the synchrotron self-absorption frequency. In addition, the dependence of core size on the observing frequency in some sources is inconsistent with the homogeneous spherical assumption. Blandford and Königl (1979) and Königl (1981) presented an inhomogeneous relativistic jet model, in which both the flat spectrum characteristics of some AGNs and the dependence of the core size on the observing frequency could be well explained. Based on their model, a new approach has been proposed to derive the jet parameters including bulk Lorentz factor  $\Gamma$ , viewing angle  $\theta$  and electron number density  $n_{\rm e}$  in the jets (Jiang, Cao & Hong 1998, hereafter J98). The proper motion measurements on the jets' components were adopted in their calculations. The correlation between the brightness temperature in the source rest frame and the derived Doppler factor suggested that the derived values of beaming parameters are quite reliable (J98). Moreover, the derived beaming parameters from the homogeneous sphere model is in general consistent with that from their inhomogeneous jet model.

In this work, we follow the method of J98 to derive the physical quantities of jets for a large sample of AGNs, then re-analyze the relation between the luminosity in broad line emissions and the bulk kinetic power of the jets. In Section 2, we describe the sample of sources. The method of jet parameters derivation and the estimate of jet kinetic power are outlined in Section 3. Section 4 includes the results and discussion. In the last section, we draw our conclusions. The cosmology with  $H_0 = 70~{\rm km~s^{-1}~Mpc^{-1}}$ ,  $\Omega_{\rm M} = 0.3$ , and  $\Omega_{\Lambda} = 0.7$  have been adopted throughout the paper.

# 2 THE SAMPLE

In order to use inhomogeneous jet model to estimate the jet parameters, all sources should have VLBI measurements of proper motion of outflowing plasma. Combining with the relevant data of sources, such as the radio flux density, the size of the core and X-ray flux density, the jet parameters can be derived (J98). After searching the literature, our sample is constructed, which consists of 128 sources, including 94 quasars, 26 BL Lac objects and 8 radio galaxies. The observational data for the sample are presented in Table 1: (1) IAU name; (2) classification of the source (Q= quasars; Qc= core-dominated quasars; Ql= lobe-dominated quasars; Qp= GHz peaked quasars; BL= BL Lac objects; G= radio galaxies); (3) redshift z; (4) observation frequency  $\nu_s$  in GHz; (5) core radio flux density  $f_c$  at frequency  $\nu_s$ ; (6) VLBI core size  $\theta_d$  in mas; (7) reference for the VLBI data; (8) the proper motion  $\mu_{app}$ ; (9) reference for the proper motion; (10) 1 keV X-ray flux density  $f_{1keV}$  in  $\mu_{JY}$ ; (11) reference for the X-ray flux.

When there are more than one moving components, we adopted the fastest one, which is regarded as a good approximation of jet bulk motion. In addition, we use the core flux density measured at the highest frequency, when VLBI core was measured

at more than one frequency. We assume that all the observed X-ray flux density is attributable to the SSC emission in the derivation, which will introduce some uncertainties. However, the derived jet parameters are not sensitive to the adopted X-ray flux density (J98). The redshift of 0716+714 is not available, and a value of 0.3 is assumed in the calculation. To calculate the total luminosity of broad emission lines, the available measurements of various broad emission lines for each source are collected from literatures. Moreover, we search the literatures and collect all available radio extended emission data from VLA observations for each source. The data are available for all 128 sources, of which the data from Australia Telescope Compact Array (ATCA) are used for the southern source 0208-512, and only upper limit is available for 8 sources due to the faintness or non-detection of extended emission. The extended flux density is k-corrected to 5 GHz in the rest frame of the source assuming  $\alpha_e = -1$  ( $f_{\text{ext}} \propto \nu^{\alpha_e}$ ).

#### 3 BULK KINETIC POWER

We estimate the bulk kinetic power based on the inhomogeneous jet model (Königl 1981). Using VLBI radio data, including proper motion of plasma, and X-ray fluxes, we can calculate the comoving electron number density  $n_e$ , the magnetic field intensity, Lorentz factor  $\Gamma$  and the viewing angle  $\theta$ . A brief description of the method is given below, and we refer to J98 and references therein for a complete description. In brief, the jet parameters were calculated by relating the model predicted size of optically think region in the jet, radio emission from the optically think region along the jet, SSC X-ray emission from the unresolved jet, and the apparent transverse velocity to the observables of radio core size, radio core flux density, X-ray flux density, and the proper motion. In this paper, we assume that the X-rays are from the jet rather than the intracluster gas and the radio blob speed is the jet flow speed.

In Königl's inhomogeneous jet model, the magnetic field B(r) and the number density of the relativistic electrons  $n_{\rm e}(r,\gamma_{\rm e})$  in the jet are assumed to vary with the distance from the apex of the jet r as  $B(r) = B_1(r/r_1)^{-m}$  and  $n_{\rm e}(r,\gamma_{\rm e}) = n_1(r/r_1)^{-n}\gamma_{\rm e}^{-(2\alpha+1)}$ , respectively, where  $r_1 = 1$  pc and  $\gamma_{\rm e}$  is the Lorentz factor of the electron in the jet. Given that the bulk motion velocity of the jet is  $\beta c$  (corresponding to a Lorentz factor  $\Gamma$ ) with an opening half-angle  $\phi$ , and the axis of the jet makes an angle  $\theta$  with the direction of the observer, the distance from the origin of the jet,  $r(\tau_{\nu_{\rm s}} = 1)$ , at which the optical depth to the synchrotron self-absorption at the observing frequency  $\nu_{\rm s}$  equals unity, is given as

$$\frac{r(\tau_{\nu_{\rm s}} = 1)}{r_1} = (2c_2(\alpha)r_1n_1\phi\csc\theta)^{2/(2\alpha+5)k_{\rm m}}(B_1\delta)^{(2\alpha+3)/(2\alpha+5)k_{\rm m}}(\nu_{\rm s}(1+z))^{-1/k_{\rm m}}$$
(1)

where  $c_2(\alpha)$  is the constant in the synchrotron absorption coefficient,  $\delta$  is the Doppler factor, and  $k_{\rm m} = [2n + m(2\alpha + 3) - 2]/(2\alpha + 5)$ .

The projection of the optically thick region in the jet is then used as the observed VLBI core angular size  $\theta_{\rm d}$ ,

$$\theta_{\rm d} = \frac{r(\tau_{\nu_{\rm s}} = 1)\sin\theta}{D_{\rm a}} \tag{2}$$

where  $D_{\rm a}$  is the angular diameter distance of the source.

By integrating the emission from the optically thick region along the jet, the radio flux of the core can be obtained

$$s(\nu_{\rm s}) = \frac{r_1^2 \phi \sin \theta}{(4+m)\pi D_{\rm a}^2} \frac{c_1(\alpha)}{c_2(\alpha)} B_1^{-1/2} \nu_{\rm s}^{5/2} \left(\frac{\delta}{1+z}\right)^{1/2} \left(\frac{r(\tau_{\nu_{\rm s}}=1)}{r_1}\right)^{(4+m)/2}$$
(3)

where  $\nu_s$  is the VLBI observing frequency, and  $c_1(\alpha)$  and  $c_2(\alpha)$  are the constants in the synchrotron emission and absorption coefficients, respectively.

Equation (13) in Königl's work gives the X-ray flux density estimation from an unresolved jet. As in J98, we adopt the expression in the frequency region  $\nu_c > \nu_{cb}(r_M)$ , where  $r_M$  is the smallest radius from which optically thin synchrotron emission with spectral index  $\alpha$  is observed (Königl 1981).

The proper motion observed with VLBI can be converted to the apparent transverse velocity  $\beta_{app}$ , which is related to the bulk velocity of the jet  $\beta c$  and viewing angle  $\theta$ ,

$$\beta_{\rm app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta} \tag{4}$$

Given the three parameters  $\alpha$ , m, n, and the relation between the opening half angle  $\phi$  and the Lorentz factor  $\Gamma$ , the parameters of an inhomogeneous jet can be derived from VLBI and X-ray observations, using the above equations and equation (13) in Königl (1981). In our calculation, we take  $\alpha = 0.75$ , the opening half-angle  $\phi = 1/\Gamma$ , and assume m = 1, n = 2 corresponding to a free jet (Hutter & Mufson 1986).

With the estimated comoving total electron number density  $n_t$ , Lorentz factor  $\Gamma$  and the cross section of the jet S, the bulk kinetic power is then derived as

$$L_{\rm kin} = Sn_{\rm t}(m_{\rm e}\langle\gamma\rangle + m_{+}\langle\gamma_{+}\rangle)c^{2}\Gamma(\Gamma - 1)\beta c,\tag{5}$$

where  $m_e$  is the electron rest mass,  $m_+$  is the rest mass of positive charge,  $\langle \gamma \rangle$  is the average Lorentz factor of electrons, and  $\langle \gamma_+ \rangle$  is the average Lorentz factor of positive charges. For a conical jet with an opening half-angle  $\phi$ ,  $S = 2\pi r^2 (1 - \cos \phi)$ . The total electron number density  $n_t$  is given by

$$n_{\rm t} = \int_{\gamma_{\rm min}}^{\gamma_{\rm max}} n_{\rm e}(r, \gamma_{\rm e}) d\gamma_{\rm e},\tag{6}$$

The bulk kinetic power of the inhomogeneous jet becomes

$$L_{\rm kin} = \alpha^{-1} \pi r^{2-n} r_1^n n_1 \gamma_{\rm min}^{-2\alpha} (1 - \cos \phi) (m_e \langle \gamma \rangle + m_+ \langle \gamma_+ \rangle) \Gamma(\Gamma - 1) \beta c^3$$
(7)

With our adoption of  $\alpha = 0.75$ ,  $\phi = 1/\Gamma$ , m = 1, and n = 2, the bulk kinetic power of the jet is then given by

$$L_{\rm kin} = \frac{4}{3}\pi r_1^2 n_1 \gamma_{\rm min}^{-\frac{3}{2}} (1 - \cos 1/\Gamma) (m_{\rm e}\langle\gamma\rangle + m_+\langle\gamma_+\rangle) \Gamma(\Gamma - 1)\beta c^3$$
(8)

We note that the bulk kinetic power  $L_{\rm kin}$  is independent of r, since n=2 is adopted in the calculation and the particle conservation is then satisfied along r.  $L_{\rm kin}$  is largely dependent of the matter content of jets and the low energy cut-off  $\gamma_{\rm min}$  of electrons. In present, the jet composition is still unclear, i.e. whether electron-positron or electron-proton (see Worrall & Birkinshaw 2006, for a recent review and reference therein). However, for an electron-proton plasma,  $\gamma_{\rm min} \sim 100$  has been suggested, while  $\gamma_{\rm min}$  could be as low as unity for an electron-positron jet (e.g. Celotti & Fabian 1993). The detection of circular polarization strongly suggests that the jets are electron-positron plasmas with  $\gamma_{\rm min} \lesssim 10$  at least in some sources (e.g. Wardle et al. 1998). The similar conclusion is also arrived from powerful large scale X-ray jets, if they are interpreted as inverse-Compton scattering of cosmological microwave background photons in fast jets. From equation (8), however, we find that the bulk kinetic power  $L_{\rm kin}$  for a electron-proton jet with  $\gamma_{\rm min} \sim 100$  ( $m_+ = 1836$   $m_{\rm e}$  and  $\langle \gamma_+ \rangle = 1$ ) is in agreement with that of electron-positron one with  $\gamma_{\rm min} \lesssim 10$  ( $m_+ = m_{\rm e}$  and  $\langle \gamma_+ \rangle = \langle \gamma \rangle$ ) within a factor of three. In present work, we calculate the bulk kinetic power  $L_{\rm kin}$  assuming electron-positron jets with  $\gamma_{\rm min} = 1$ . A change to  $\gamma_{\rm min} = 10$  will uniformly reduce  $L_{\rm kin}$  by about a factor of three. However, in this work, we mainly focus on the correlation between the bulk kinetic power  $L_{\rm kin}$  and the luminosity in broad emission lines  $L_{\rm BLR}$ , therefore, the value of  $\gamma_{\rm min}$  will not affect the correlation analysis, if the assumption that all sources have the same value  $\gamma_{\rm min}$  holds.

The observational data necessary for calculations are presented in Table 1. Following C97, we use the line ratios reported by Francis et al. (1991) and add the contribution from line  $H_{\alpha}$  to derive the total broad line luminosity  $L_{\rm BLR}$ . The derived values of jet parameters,  $L_{\rm kin}$ ,  $L_{\rm BLR}$  and 5 GHz radio extended luminosity for our sources are listed in Table 2: (1) IAU name; (2) the viewing angle of jet  $\theta$ ; (3) the Lorentz factor  $\Gamma$ ; (4) the Doppler factor  $\delta$ ; (5) the normalization factor of electron energy distribution  $n_1$ ; (6) the bulk kinetic power of jet  $L_{\rm kin}$ ; (7) the total luminosity in broad emission lines  $L_{\rm BLR}$ ; (8) the references for flux of broad emission lines used to estimate  $L_{\rm BLR}$ ; (9) the radio extended 5 GHz luminosity  $L_{\rm ext,5GHz}$ ; (10) the references for the radio extended flux.

# 4 RESULTS AND DISCUSSION

## 4.1 Bulk kinetic power and BLR luminosity

Out of 128 sources, the measurements of various broad emission lines are only available for 98 sources from literature or Sloan Digital Sky Survey (SDSS) spectra, including 81 quasars, 15 BL Lac objects, and 2 radio galaxies. The reason of no measurements for remaining 30 sources could be either the non-detection of broad emission lines in 11 BL Lac objects and 6 radio galaxies, or no published line flux measurements for 13 quasars. We have calculated the total luminosity of broad emission lines for these 98 sources. The relationship between  $L_{\rm BLR}$  and  $L_{\rm kin}$  is shown in Fig. 1. We find a strong correlation between these two luminosities with a Spearman correlation coefficient of r = 0.565 at  $\gg 99.99\%$  confidence. It should be noted that this correlation may be caused by the common dependence on redshift. We present the bulk kinetic power and BLR luminosity as functions of redshift z for the sample in Fig. 2. We therefore use the partial Spearman rank correlation method (Macklin 1982) to check this correlation. Still, a significant correlation with a correlation coefficient of 0.323 is present at about 99.9% significance level between  $L_{\rm BLR}$  and  $L_{\rm kin}$ , independent of the redshift. We also perform a statistic analysis on the sources in the restricted redshift range 0.5 < z < 1.0. For this subsample of sources, we check the correlation between luminosity and redshift, and no correlation between either the bulk kinetic power or the BLR luminosity and redshift, is found (see Fig. 2), while a significant correlation is still present at 99.1 per cent confidence between the bulk kinetic power and total broad-line luminosity (see Fig. 1). Therefore, we conclude that this correlation might be intrinsic, at least for our present sample. Assuming that the BLR luminosity is due to the reprocessing of the ionizing radiation from the accretion disk, it therefore strongly supports the scenario of a tight connection between the relativistic jet and the accretion process.

For all 98 sources, the ordinary least-squares (OLS) bisector method gives the following fit in Fig. 1:

(9)

$$\log L_{\rm kin} = (0.86 \pm 0.07) \log L_{\rm BLR} + (8.78 \pm 3.05)$$

Apart from finding a significant correlation, Rawlings & Saunders (1991) found that the relationship between the bulk kinetic power and narrow line luminosity is close to proportionality,  $Q \propto L_{\rm NLR}^{0.9\pm0.2}$ , which extends over four orders of magnitude. Our relation of  $L_{\rm kin} \propto L_{\rm BLR}^{0.86\pm0.07}$  is consistent with the relationship between the jet power and narrow-line luminosity in Rawlings & Saunders (1991) and Celotti & Fabian (1993), whereas it is somehow deviated, but not much, from the linear relation between the jet power and disk power found by MT03. However, it is much steeper than that of Wang et al. (2004),  $L_{\rm kin} \propto L_{\rm BLR}^{0.37}$ . Although what cause these differences is unclear, we note that the methods used to estimate the jet power in MT03 and Wang et al. (2004) are different from ours. The jet powers of MT03 were estimated using physical parameters determined from uniformly modeling their spectral energy distributions, while Wang et al. (2004) directly used the jet bulk kinetic power from C97, which was estimated using the homogeneous sphere SSC model. Moreover, MT03 obtained their disk luminosities either directly from the optical-UV luminosity of the big blue bump or from the original prescription of C97. The method Wang et al. used to estimate  $L_{\rm BLR}$  is basically same as ours. In addition, Wang et al. sample consists of 35 blazars, and only 16 sources (11 quasars and 5 BL Lac objects) were considered in MT03. Their samples are much smaller than our sample. Whether these factors influence the dependence of  $L_{\rm kin}$  on  $L_{\rm BLR}$  needs further investigations. Despite this, our results strongly support the scenario that the accretion process are tightly linked with the kinetic power in the jet, though how the disk and jet are coupled is not revealed by present correlation analysis.

In general, BL Lac objects, which is thought to be FR I radio galaxies pointing at us, are characterized by very weak or absent emission lines, invisible blue bumps, and relatively powerful jets. From Fig. 1, it is clear that BL Lac objects have fainter broad-line luminosity compared to quasars, though only 15 BL Lac objects are in our sample. We find that the  $L_{\rm kin} - L_{\rm BLR}$  relation of BL Lac objects deviate from that of quasars, although it generally follows that of the whole sample. The linear fit using OLS bisector method for BL Lac objects shows

$$\log L_{\rm kin} = (0.71 \pm 0.12) \log L_{\rm BLR} + (15.85 \pm 4.99) \tag{10}$$

while for quasars, we have

$$\log L_{\rm kin} = (1.12 \pm 0.08) \log L_{\rm BLR} - (2.94 \pm 3.39)$$
 (11)

Although the mechanism of jet formation is unclear, the different dependence of  $L_{\rm kin}$  on  $L_{\rm BLR}$  in BL Lac objects and quasars can be due to the difference of the accretion power as measured in units of the Eddington one. Compared to quasars, BL Lac objects are characterized by radiatively inefficient accretion disks (Cao 2003), thus in these sources the jet power may be relatively dominant. To further check the  $L_{\rm kin}-L_{\rm BLR}$  correlation in Fig. 1, we re-examine it for quasars only. When BL Lac objects and radio galaxies are excluded, we still find a strong correlation between  $L_{\rm BLR}$  and  $L_{\rm kin}$  with correlation coefficient of r=0.380 at 99.95% confidence. This further confirms the tight link between the accretion process and the kinetic power in the jet.

If the accretion process and the jet formation are indeed closely related, then the tight relation between the mass channelled into jets and that accreted by black hole would be expected. We then investigate the relationship between the mass outflowing rate and accretion one, on assumption of  $L_{\rm bol} \approx 10 L_{\rm BLR}$  (Netzer 1990), and with the expression of the kinetic and the accretion powers as

$$L_{\rm kin} = \Gamma \dot{M}_{\rm out} c^2; \ L_{\rm bol} = \eta \dot{M}_{\rm in} c^2, \tag{12}$$

where  $\dot{M}_{\rm out}$  is the mass outflowing rate,  $\Gamma$  is jet Lorentz factor,  $\dot{M}_{\rm in}$  is the mass accretion rate, and  $\eta$  is the efficiency of mass to energy conversion for accretion. Adopting the typical value of  $\eta \sim 0.1$ , we find a significant correlation between  $\dot{M}_{\rm out}$  and  $\dot{M}_{\rm in}$  for whole sample, with a Spearman correlation coefficient 0.514 at  $\gg 99.99\%$  confidence. This implies that the mass outflowing rate in jet is closely linked with the accretion one in accretion disk.

The present analysis is based on the derivation of jet parameters using inhomogeneous jet model. Some parameters and assumptions are adopted in the inhomogeneous jet model to derive the physical quantities of the jet (J98), which may induce some uncertainties in the estimation of  $L_{\rm kin}$ . The most important is probably the intrinsic differences of the low energy cut-off  $\gamma_{\rm min}$  of electrons between the radio sources themselves. In this work, we adopt the same value of  $\gamma_{\rm min}$  in deriving the kinetic power of the jet, which may not be true. However, we are not able to estimate  $\gamma_{\rm min}$  for each source at present stage. Nevertheless, we believe that the adoption of an uniform  $\gamma_{\rm min}$  for all sources in the correlation analysis would not affect the main conclusion drawn here. Moreover, our results are based on the assumption of  $\alpha = 0.75$ , m = 1, and n = 2, and we adopted these same values for all sources in our model calculation. However, we find that the alternative adoption of  $\alpha$ , m, and m do not change our main conclusion, e.g. the strong correlation between  $L_{\rm kin}$  and  $L_{\rm BLR}$ . In practice, the sources may have different values of parameters  $\alpha$ , m, and n, and, in principle, these parameters could be constrained by the observable quantities (J98). Unfortunately, the information is only found for a few cases through multi-frequencies VLBI observations. Further high resolution multi-frequencies VLBI observations would be helpful to improve our model calculations.

It should be noted that not all sources in our sample have available BLR luminosity. Therefore, the selection effects may be introduced in our correlation analysis, i.e. those sources without published broad line flux measurements may likely be

biased towards those with weak lines, especially the 11 BL Lac objects without broad line flux measurements. To evaluate the selection effects, we tentatively calculate the upper limit of BLR luminosity assuming equivalent width of broad  ${\rm H}\beta$  line EW < 5Å for these 11 BL Lacs. Moreover, we calculate the BLR luminosity for 13 quasar without BLR luminosity by randomly assigning the BLR flux in the BLR flux range of 81 quasars with BLR luminosity. Combining these 24 sources with those having BLR luminosity, we use the Astronomy Survival Analysis (ASURV) package (Isobe, Feigelson & Nelson 1986) to investigate the correlation by taking the upper limit into account. A significant correlation is still found with Spearman's rho correlation method. This correlation is confirmed by using the partial correlation method for censored data of Akritas & Siebert (1996) to exclude the common dependence of redshift. Furthermore, the correlation remains significant even we conservatively adopt broad  ${\rm H}\beta$  line EW < 1Å for 11 BL Lacs. It thus seems that the non-BLR luminosity sources do not affect our correlation results.

## 4.2 Bulk kinetic power and radio extended luminosity

In Fig. 3, the relation between bulk kinetic power and 5 GHz radio extended luminosity is shown for all 128 sources. Since only the upper limit of 5 GHz extended luminosity is given for 8 sources, we use ASURV package (Isobe et al. 1986) to investigate the correlation and perform the linear regression analysis for our censored data. We find the significant correlation with a Spearman's rho correlation coefficient of r = 0.493 at  $\gg 99.99\%$  confidence. Using the partial correlation method for censored data of Akritas & Siebert (1996) to exclude the common dependence of redshift, a significant correlation is still present between  $L_{\rm ext,5GHz}$  and  $L_{\rm kin}$ . We use the Schmitt-binning method (Schmitt 1985) to perform y/x and x/y fits and then calculate a bisector of these two fits, as described in Shapley, Fabbiano & Eskridge (2001) (see also Isobe et al. 1990). We obtain:

$$\log L_{\rm kin} = (0.82 \pm 0.09) \log L_{\rm ext,5GHz} + (12.38 \pm 4.00) \tag{13}$$

which is shown as the solid line in Fig. 3.

The extended radio flux is usually emerged from the optically thin radio lobes, and thus is free from the Doppler boosting effects, since the lobe material is generally thought to be of low enough bulk velocity. Therefore, the extended radio luminosity can be a good tracer of jet power (e.g. Cao & Jiang 2001). The significant correlation between  $L_{\rm kin}$  and  $L_{\rm ext,5GHz}$  implies that the emission from radio lobes are tightly related with the energy ejected into the jet from the central parts of AGNs. This result is not surprising, as it could be naturally expected. Although the detailed mechanism of jet formation is still unclear, the energy can be transported through the jets to the radio lobes once the jets are generated. Most of the energy flux of jets is not radiated away, instead are in mechanical form (i.e. bulk kinetic power), of which the particles and fields are necessary to produce the synchrotron luminosity that is detected in the radio lobes. If the radiative efficiency of radio lobes are similar between our radio sources, then the tight link between the bulk kinetic power of jets and the radio extended emission is expected, since the latter is optically thin and not effected from the Doppler enhancement.

Motivated largely by the observed effects of radio-loud AGN on their environments at galaxy cluster scales (e.g. Fabian et al. 2003), whether the heating effect of AGN activity, particularly radio-loud AGN activity, can balance the cooling of the gas has recently arose much interest (e.g. Best et al. 2005, 2006; Croton et al. 2006; Nusser, Silk & Babul 2006). Independently of the radio properties, Bîrzan et al. (2004) estimated the mechanical luminosity associated with the radio source, by studying the cavities and bubbles that are produced in clusters and groups of galaxies due to the interactions between the radio sources and the surrounding hot gas. The dependence of the mechanical luminosity on the 1.4 GHz radio luminosity of the associated radio sources,  $L_{\rm mech} \propto L_{\rm radio}^{0.44\pm0.06}$  fitted for their entire sample, is somewhat deviated from ours (equation 13). However, the dependence for the radio-filled cavities only (see Bîrzan et al. 2004 for details),  $L_{\rm mech} \propto L_{\rm radio}^{0.6\pm0.1}$  is marginally consistent with ours within the errors. Despite this, we note that their work is mainly based on the galaxy clusters and the radio sources in these clusters, however, our present study focused on the powerful radio sources. Moreover, the jet power is estimated using different methods, and the different radio luminosity is used. In present, we are not able to draw a solid calibration between the radio emission and the kinetic power of jets, and it needs further investigations.

Despite the strong correlation presented in Fig. 3, the significant scatter is clearly seen. This is not surprising since even for a source of fixed jet kinetic power the radio luminosity changes as the source ages (e.g. Kaiser et al. 1997). However, there are several factors that can introduce the scatter into the correlation. We note that the observed radio extended emission has been dissipated over a long period, which is not contemporaneous with the estimated bulk kinetic power. Moreover, when jets transported the energy flux from the central parts of AGNs to outer radio lobes, the jets can be decelerated by the interaction with the nuclear ISM and/or the entrainment of external gas (e.g. Tavecchio et al. 2006). As a result, the part of jet power will be lost to the ISM. In some extreme cases, the kinetic power of the jet on kiloparsec scales could be about three orders of magnitude weaker than the power of the jet on 10 - 100 pc scales due to the jet-ISM interaction, i.e. virtually all of the jet power can be lost to the ISM within the inner kiloparsec (Gallimore et al. 2006). Consequently, the difference of jet-ISM interactions between the radio themselves may bring scatter. Furthermore, part of the scatter may be due to the different radiative efficiency in individual source.

#### 4.3 Bulk kinetic power versus radiative luminosity

It is well known that the monochromatic radio luminosity does not provide a good indicator of the mechanical energy output of a radio source. Radio sources are inefficient radiators. Bicknell (1995) estimated that the kinetic energy output of a radio jet is typically a factor of 100-1000 higher than the total radio luminosity of a radio source, which is recently confirmed by the observations of Bîrzan et al. (2004).

We estimate the amount of radiative dissipation on parsec scales, i.e. the ratio of  $L_{\rm kin}/L_{\rm rad,in}$  of the bulk kinetic power to the intrinsic radiative luminosity. The latter has been computed from the observed VLBI radio core fluxes. The Doppler correction on the monochromatic luminosity is assumed to be  $L_{\rm obs} = \delta^p L_{\rm int}$ , where  $L_{\rm obs}$  and  $L_{\rm int}$  are the observed and intrinsic (comoving) luminosities. We can calculate p from the dependence of the core radio flux on the Doppler factor from equation (3), in which p is dependent of the value of  $\alpha$ , m and n. In Fig. 4, we show the histogram of the derived ratios  $L_{\rm kin}/L_{\rm rad,in}$ . We find that the ratio covers about three orders of magnitude with the average value  $< \log (L_{\rm kin}/L_{\rm rad,in}) >= 4.98 \pm 0.79$ . This result is consistent with that of Celotti & Fabian (1993), although a wider spread of ratio distribution in their sources. The results indicate that for all sources the kinetic power is dominant with respect to the radiative output, and consequently that the radiative dissipation is not an efficient process. Moreover, the large variation in this ratio indicates that the radio luminosity is not necessarily a reliable probe of the available bulk kinetic power.

It is commonly accepted that the synchrotron emission of blazars can extend to optical and even X-ray region, which can dominate over the thermal emission from accretion disk, and the radio emission as well. The spectral energy distribution (SED) of blazars is usually composed of two peaks, of which the first one is dedicated to the synchrotron emission for jets, and the second is due to the inverse Compton process (Fossati et al. 1998; Ghisellini et al. 1998). Thus the total radiative luminosity of the jets, if we can estimate from integrating over the synchrotron domain of SED, can represent the minimum power that must be associated with the jet in order to produce the observed luminosity. In this sense, the radio emission solely might not be a good indicator of the radiative output from the radio jets, i.e. the radiation losses of the kinematic jet flow. MT03 found that the radiative efficiency, i.e. the ratio of the total radiative luminosity of the jet to the jet power, can be in the range 1%-10%. Even so, the radiative dissipation is still not an efficient process, and the most of the energy flux is in the kinetic form. In present, it is not readily to estimate the total radiative luminosity of jets for our sample. Nevertheless, we believe that the inefficient radiators of radio sources would be still retained.

# 5 CONCLUSIONS

Based on the inhomogeneous jet model, we have calculated the jet parameters for a sample of AGNs. The bulk kinetic power of radio jets are then estimated using the derived jet parameters. We found a significant correlation between the bulk kinetic power of the relativistic jet and the total luminosity in broad emission lines, implying a tight link between the jet and accretion process. Moreover, the bulk kinetic power of jets are strongly correlated with the radio extended luminosity. This indicates a closely connection between the emission from radio lobes and the energy flux transported through jets from the central parts of AGNs. In addition, we found that the bulk kinetic power is dominant with respect to the radiative output, which means the radiative dissipation is not an efficient process.

#### ACKNOWLEDGMENTS

We thank the anonymous referee for insightful comments and constructive suggestions. This work is supported by National Science Foundation of China (grants 10633010, 10703009, 10833002, 10773020 and 10821302), 973 Program (No. 2009CB824800), and the CAS (KJCX2-YW-T03). This research has made use of the NASA/ IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics

(MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

### REFERENCES

Akritas M. G., Siebert J., 1996, MNRAS, 278, 919

Antonucci R. R. J., Ulvestad J. S., 1985, ApJ, 294, 158

Baum S. A., Heckman T. M., 1989, ApJ, 336, 702

Best P. N., Kauffmann G., Heckman T. M. et al., 2005, MNRAS, 362, 25

Best P. N., Kaiser C. R., Heckman T. M., Kauffmann G., 2006, MNRAS, 368, L67

Bicknell G. V., 1995, ApJS, 101, 29

Bîrzan L., Rafferty D. A., McNamara B. R., Wise M. W., Nulsen P. E. J., 2004, ApJ, 607, 800

Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433

Blandford R. D., Königl A., 1979, ApJ, 232, 34

Blandford R. D., Payne D. G., 1982, MNRAS, 199, 883

Bloom S. D., Marscher A. P., Moore E. M. et al., 1999, ApJS, 122, 1

Bower R. G., Benson A. J., Malbon R. et al., 2006, MNRAS, 370, 645

Brinkmann W., Yuan W., Siebert J., 1997, A&A, 319, 413

Brotherton M. S., 1996, ApJS, 102, 1

Browne I. W. A., Murphy D. W., 1987, MNRAS, 226, 601

Brunthaler A., Falcke H., Bower G. C. et al., 2000, A&A, 357, L45

Cao X. W., 2000, A&A, 355, 44

Cao X. W., Jiang D. R., 1999, MNRAS, 307, 802

Cao X. W., Jiang D. R., 2001, MNRAS, 320, 347

Cao X. W., 2003, ApJ, 599, 147

Celotti A., Fabian A. C., 1993, MNRAS, 264, 228

Celotti A., Padovani P., Ghisellini G., 1997, MNRAS, 286, 415 (C97)

Chen Z. Y., Gu M. F., Cao X., 2009, MNRAS, submitted

Comastri A., Fossati G., Ghisellini G., Molendi S., 1997, ApJ, 480, 534

Cooper N. J., Lister M. L., Kochanczyk M. D., 2007, ApJS, 171, 376

Corbett E. A., Robinson A., Axon D. J. et al., 1996, MNRAS, 281, 737

Croton D., Springel V., White S. D. M. et al., 2006, MNRAS, 365, 11

Donato D., Ghisellini G., Tagliaferri G., Fossati G., 2001, A&A, 375, 739

Donato D., Sambruna R. M., Gliozzi M., 2005, A&A, 433, 1163

Fabian A. C., Sanders J. S., Allen S. W. et al., 2003, MNRAS, 344, L43

Falcke H., Malkan M. A., Biermann P. L., 1995, A&A, 298, 375

Fan Z. H., Cao X., Gu M. F., 2006, ApJ, 646, 8

Fey A. L., Clegg A. W., Fomalont E. B., 1996, ApJS, 105, 299

Fey A. L., Charlot P., 1997, ApJS, 111, 95

Fey A. L., Charlot P., 2000, ApJS, 128, 17

Fossati G., Maraschi L., Celotti A., Comastri A., Ghisellini G., 1998, MNRAS, 299, 433

Francis P. J., Hewett P. C., Foltz C. B. et al., 1991, ApJ, 373, 465

Galbiati E., Caccianiga A., Maccacaro T. et al., 2005, A&A, 430, 927

Gallimore J. F., Axon D. J., O'Dea C. P., Baum S. A., Pedlar A., 2006, AJ, 132, 546

Gambill J. K., Sambruna R. M., Chartas G. et al., 2003, A&A, 401, 505

Gelfand J. D., Lazio T. J. W., Gaensler B. M., 2005, ApJS, 159, 242

Ghisellini G., Padovani P., Celotti A., Maraschi L., 1993, ApJ, 407, 65

Ghisellini G., Celotti A., Fossati G., Maraschi L., Comastri A., 1998, MNRAS, 301, 451

Güijosa A., Daly R. A., 1996, ApJ, 461, 600

Ho L. C., Filippenko A. V., Sargent W. L. W., Peng C. Y., 1997, ApJS, 112, 391

Hough D. H., Vermeulen R. C., Readhead A. C. S. et al., 2002, AJ, 123, 1258

Hutter D. J., Mufson S. L., 1986, ApJ, 301, 50

Imanishi M., Ueno S., 1999, ApJ, 527, 709

Isobe T., Feigelson E. D., Nelson P. I., 1986, ApJ, 306, 490

Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104

Jackson N., Browne I. W. A., 1991, MNRAS, 250, 414

Jiang D. R., Cao X., Hong X., 1998, ApJ, 494, 139 (J98)

Jorstad S. G., Marscher A. P., Mattox J. R. et al., 2001, ApJS, 134, 181

Kaiser C. R., Dennett-Thorpe J., Alexander P., 1997, MNRAS, 292, 723

Kellermann K. I., Lister M. L., Homan D. C. et al., 2004, ApJ, 609, 539

Kharb P., Shastri P., 2004, A&A, 425, 825

Königl A., 1981, ApJ 243, 700

Kovalev Y. Y., Kellermann K. I., Lister M. L. et al., 2005, AJ, 130, 2473

Kuraszkiewicz J. K. et al., 2004, ApJS, 150, 165

Lähteenmäki A., Valtaoja E., 1999, ApJ, 521, 493

Lister M. L., 2001, ApJ, 562, 208

Liu Y., Jiang D. R., Gu M. F., 2006, ApJ, 637, 669

Macdonald D., Thorne K. S., 1982, MNRAS, 198, 345

Macklin J. T., 1982, MNRAS, 199, 1119

Maraschi L., Tavecchio F., 2003, ApJ, 593, 667 (MT03)

Marcha M. J. M., Browne I. W. A., Impey C. D., Smith P. S., 1996, MNRAS, 281, 425

Marscher A. P., 1987, in Superluminal Radio Sources, ed. J. A. Zensus & T. J. Pearson (Cambridge: Cambridge Univ. Press), 280

Marshall H. L., Schwartz D. A., Lovell J. E. J. et al., 2005, ApJS, 156, 13

McNamara B. R., Wise M., Nulsen P. E. J. et al., 2000, ApJ, 534, L135

Meier D., Koide S., Uchida Y., 2001, Science, 291, 84

Netzer H., 1990, in Active Galactic Nuclei, ed. R. D. Blandford, H. Netzer, & L. Woltjer (Berlin: Springer), 57

Nusser A., Silk J., Babul A., 2006, MNRAS, 373, 739

Pedlar A., Ghataure H. S., Davies R. D. et al., 1990, MNRAS, 246, 477

Perlman E. S., Stocke J. T., 1993, ApJ, 406, 430

Perlman E. S., Stocke J. T., Shaffer D. B., Carilli C. L., Ma C., 1994, ApJ, 424, L69

Punsly B., 1995, AJ, 109, 1555

Punsly B., Tingay S. J., 2005, ApJ, 633, L89

Rawlings S. G., Saunders R. D. E., Eales S. A., Mackay C. D., 1989, MNRAS, 240, 701

Rawlings S., Saunders R. 1991, Nature, 349, 138

Readhead A. C. S., 1994, ApJ, 426, 51

Rector T. A., Stocke J. T., 2001, AJ, 122, 565

Reich W., Fürst E., Reich P. et al., 2000, A&A, 363, 141

Rokaki E., Lawrence A., Economou F., Mastichiadis A., 2003, MNRAS, 340, 1298

Saikia D. J., Junor W., Cornwell T. J. et al., 1990, MNRAS, 245, 408

Saunders R., Baldwin J. E., Rawlings S., Warner P. J., Miller L., 1989, MNRAS, 238, 777

Scarpa R., Falomo R., 1997, A&A, 325, 109

Schmitt J. H. M. M., 1985, ApJ, 293, 178

Sergeev S. G., Pronik V. I., Sergeeva E. A., Malkov Y. F., 1999, AJ, 118, 2658

Shapley A., Fabbiano G., Eskridge P. B., 2001, ApJS, 137, 139

Siebert J., Brinkmann W., Drinkwater M. J. et al., 1998, MNRAS, 301, 261

Stanghellini C., Baum S. A., O'Dea C. P., Morris G. B., 1990, A&A, 233, 379

Tavecchio F., Maraschi L., Sambruna R. M. et al., 2006, ApJ, 641, 732

Thorne K. S., Blandford R. D., 1982, in Extragalactic Radio Sources, IAU Symp. 97, 255

Tinti S., Dallacasa D., de Zotti G., Celotti A., Stanghellini C., 2005, A&A, 432, 31

Ulvestad J., Johnston K., Perley R., Fomalont E., 1981, AJ, 86, 1010

Vermeulen R. C., Cohen M. H., 1994, ApJ, 430, 467

Walsh D., Carswell R. F., 1982, MNRAS, 200, 191

Wang T. G., Lu Y. J., Zhou Y. Y., 1998, ApJ, 493, 1

Wang J. M., Luo B., Ho L. C., 2004, ApJ, 615, L9

Wardle J. F. C., Homan D. C., Ojha R., Roberts D. H., 1998, Nature, 395, 457

Wilkes B. J., 1986, MNRAS, 218, 331

Wills B. J., Browne I. W. A., 1986, ApJ, 302, 56

Worrall D. M., Birkinshaw M., 2006, Lecture Notes Phys., 693, 39

Wu Z. Z., Jiang D. R., Gu M. F., Liu Y., 2007, A&A, 466, 63

Zhang J. S., Fan J. H., 2003, Chinese J. Astron. Astrophys., 3, 415



Figure 1. The bulk kinetic power versus BLR luminosity. The circles represent quasars, and the triangles are BL Lac objects, while the rectangles show radio galaxies. The filled symbols are the sources in the redshift range 0.5 < z < 1.0. The solid line is the fitted line for the whole sample using the OLS bisector method, and the dashed line is fitted for quasars only, while the dot-dashed line is fitted for BL Lac objects only.



Figure 2. The bulk kinetic power versus redshift (upper panel) and the BLR luminosity versus redshift planes (lower panel) for the sample. The circles represent quasars, and the triangles are BL Lac objects, while the rectangles show radio galaxies. The restricted redshift range, 0.5 < z < 1.0, is indicated with the dotted lines.



Figure 3. The bulk kinetic power versus radio 5 GHz extended luminosity. The symbols are the same as in Fig. 2. The arrows indicate the upper limit of extended luminosity. The solid line is the bisector linear fit using Schmitt-binning method for censored data (see text for details).



Figure 4. The histogram shows the distribution of the ratio of the bulk kinetic power to intrinsic core radio radiative luminosities.

12

 $\textbf{Table 1.} \ \text{VLBI and X-ray Data of the Sample}.$ 

| Source              | Туре             | z                | $ \nu_{\rm s} $ (GHz) | $f_{\rm c}$ (Jy) | $\theta_{ m d}$ (mas) | Refs.         | $\mu_{\rm app}$ (mas yr <sup>-1</sup> ) | Refs.    | $f_{ m 1keV} \ (\mu  m Jy)$ | Refs.    |
|---------------------|------------------|------------------|-----------------------|------------------|-----------------------|---------------|-----------------------------------------|----------|-----------------------------|----------|
| 0003-066            | BL               | 0.347            | 15.0                  | 1.850            | 0.17                  | 1             | 0.010                                   | 11       | 0.169                       | 13       |
| 0007 + 106          | Qc               | 0.089            | 43.0                  | 1.540            | 0.07                  | 2             | 0.237                                   | 2        | 2.740                       | 14       |
| 0016 + 731          | Qc               | 1.781            | 15.0                  | 1.020            | 0.10                  | 1             | 0.220                                   | 4        | 0.050                       | 15       |
| 0035 + 413          | Qc               | 1.353            | 15.0                  | 0.380            | 0.27                  | 1             | 0.100                                   | 11       | 0.099                       | 14       |
| 0106 + 013          | Qc               | 2.107            | 15.0                  | 2.320            | 0.12                  | 1             | 0.280                                   | 11       | 0.220                       | 4        |
| 0108 + 388          | G                | 0.670            | 8.5                   | 0.240            | 0.21                  | 3             | 0.100                                   | 12       | 0.060                       | 16       |
| 0112 - 017          | Qc               | 1.365            | 15.0                  | 0.480            | 0.08                  | 1             | 0.020                                   | 11       | 0.150                       | 15       |
| 0133 + 207          | Ql               | 0.425            | 10.7                  | 0.082            | 0.22                  | 4             | 0.240                                   | 4        | 0.753                       | 4        |
| 0133 + 476          | Qc               | 0.859            | 15.0                  | 4.710            | 0.09                  | 1             | 0.040                                   | 11       | 0.300                       | 15       |
| 0153 + 744          | Qc               | 2.338            | 15.0                  | 0.190            | 0.11                  | 1             | 0.080                                   | 4        | 1.000                       | 4        |
| 0202 + 149          | Qc               | 0.405            | 15.0                  | 1.760            | 0.16                  | 1             | 0.250                                   | 11       | 0.060                       | 15       |
| 0208 - 512          | Qc               | 1.003            | 5.0                   | 2.770            | 0.35                  | 4             | 0.600                                   | 4        | 0.080                       | 4        |
| 0212 + 735          | Qc               | 2.367            | 15.0                  | 2.400            | 0.20                  | 1             | 0.090                                   | 4        | 0.260                       | 15       |
| 0219+428            | $_{\mathrm{BL}}$ | 0.444            | 43.2                  | 0.593            | 0.02                  | 5             | 1.110                                   | 5        | 1.560                       | 15       |
| 0234 + 285          | Qc               | 1.207            | 22.3                  | 1.700            | 0.10                  | 4             | 0.300                                   | 4        | 0.150                       | 4        |
| 0235 + 164          | $_{ m BL}$       | 0.940            | 5.0                   | 1.750            | 0.50                  | 4             | 0.840                                   | 4        | 0.170                       | 4        |
| 0316 + 413          | G                | 0.017            | 22.2                  | 6.000            | 0.30                  | 4             | 0.540                                   | 4        | 18.000                      | 4        |
| 0333 + 321          | Qc               | 1.263            | 15.0                  | 1.840            | 0.12                  | 1             | 0.400                                   | 11       | 0.440                       | 15       |
| 0336 - 019          | Qc               | 0.852            | 15.0                  | 1.780            | 0.07                  | 1             | 0.420                                   | 5        | 0.100                       | 17       |
| 0415 + 379          | G                | 0.049            | 86.2                  | 2.900            | 0.13                  | 4             | 1.540                                   | 4        | 3.283                       | 4        |
| 0420 - 014          | Qc               | 0.915            | 43.2                  | 2.724            | 0.06                  | 5             | 0.290                                   | 11       | 0.370                       | 15       |
| 0430 + 052          | G                | 0.033            | 15.0                  | 1.710            | 0.10                  | 1             | 2.660                                   | 4        | 10.000                      | 4        |
| 0440 - 003          | Qc               | 0.844            | 15.0                  | 0.620            | 0.15                  | 1             | 0.340                                   | 5        | 0.189                       | 13       |
| 0454+844            | BL               | 0.112            | 5.0                   | 1.300            | 0.55                  | 4             | 0.140                                   | 4        | 0.050                       | 4        |
| 0458-020            | Qc               | 2.286            | 43.2                  | 0.934            | 0.02                  | 5             | 0.150                                   | 4        | 0.100                       | 17       |
| 0528 + 134          | Qc               | 2.060            | 43.2                  | 3.875            | 0.07                  | 5             | 0.400                                   | 4        | 0.310                       | 15       |
| 0552+398            | Qp               | 2.365            | 8.4                   | 2.620            | 0.73                  | 6             | 0.040                                   | 12       | 0.490                       | 6        |
| 0605-085            | Qc               | 0.872            | 15.0                  | 1.790            | 0.27                  | 1             | 0.180                                   | 11       | 0.168                       | 18       |
| 0607-157            | Qc               | 0.324            | 15.0                  | 6.920            | 0.19                  | 1             | 0.170                                   | 11       | 0.290                       | 14       |
| 0615+820            | Qc               | 0.710            | 5.0                   | 0.610            | 0.50                  | 4             | 0.050                                   | 4        | 0.040                       | 15       |
| 0642+449            | Qp               | 3.408            | 15.0                  | 2.920            | 0.12                  | 1             | 0.010                                   | 11       | 0.120                       | 15       |
| 0710+439            | G                | 0.518            | 5.0                   | 0.630            | 0.96                  | 4             | 0.040                                   | 4        | 0.550                       | 4        |
| 0716+714            | BL               | 0.300            | 43.2                  | 0.390            | 0.04                  | 5             | 1.200                                   | 5        | 0.990                       | 15       |
| 0723+679            | Ql               | 0.846            | 43.0                  | 0.677            | 0.06                  | 7             | 0.190                                   | 12       | 0.162                       | 18       |
| 0735+178 $0736+017$ | BL               | 0.424            | 15.0                  | 0.950            | 0.14                  | $\frac{1}{1}$ | 0.640                                   | 11<br>11 | 0.220                       | 15       |
| 0738+313            | Qc               | $0.191 \\ 0.630$ | $15.0 \\ 15.0$        | $1.450 \\ 0.870$ | $0.06 \\ 0.11$        | 1             | $0.930 \\ 0.070$                        | 11       | $0.640 \\ 0.075$            | 15<br>14 |
| 0735+313 $0745+241$ | Qc               | 0.409            | 15.0                  | 0.830            | 0.11                  | 1             | 0.320                                   | 11       | 0.073                       | 19       |
| 0743+241 $0748+126$ | Qc               | 0.409 $0.889$    | 15.0 $15.0$           | 2.860            | 0.10 $0.11$           | 1             | 0.320 $0.274$                           | 11       | 0.131 $0.209$               | 20       |
| 0748+120 $0754+100$ | $_{ m Qc}$       | 0.869 $0.266$    | 15.0 $15.0$           | 1.420            | 0.11 $0.11$           | 1             | 0.700                                   | 11       | 0.209 $0.720$               | 15       |
| 0804+100            | Qc               | 1.432            | 15.0                  | 1.020            | 0.09                  | 1             | 0.130                                   | 11       | 0.170                       | 15       |
| 0804+499 $0808+019$ | BL               | 0.930            | 15.0                  | 1.020 $1.270$    | 0.03                  | 1             | 0.110                                   | 11       | 0.380                       | 15       |
| 0803+019 $0814+425$ | $_{ m BL}$       | 0.950 $0.258$    | 15.0                  | 1.080            | 0.04                  | 1             | 0.320                                   | 11       | 0.050                       | 15       |
| 0814+423 $0823+033$ | $_{ m BL}$       | 0.256 $0.506$    | 15.0                  | 1.100            | 0.07                  | 1             | 0.480                                   | 11       | 0.030 $0.415$               | 13       |
| 0827 + 243          | Qc               | 0.939            | 43.2                  | 1.406            | 0.05                  | 5             | 0.480                                   | 5        | 0.340                       | 17       |
| 0829 + 046          | BL               | 0.180            | $\frac{43.2}{22.2}$   | 0.796            | 0.05                  | 5             | 1.400                                   | 5        | 0.400                       | 15       |
| 0836 + 710          | Qc               | 2.172            | 43.2                  | 1.570            | 0.06                  | 5             | 0.240                                   | 5        | 2.260                       | 15       |
| 0850+710 $0850+581$ | Qc               | 1.322            | 15.0                  | 0.070            | 0.08                  | 1             | 0.240                                   | 11       | 0.970                       | 4        |
| 0851 + 202          | BL               | 0.306            | 43.2                  | 1.640            | 0.04                  | 5             | 0.670                                   | 5        | 2.240                       | 15       |
| 0859 - 140          | Ql               | 1.339            | 15.0                  | 1.170            | 0.09                  | 1             | 0.260                                   | 11       | 0.171                       | 14       |
| 0906 + 015          | Qc               | 1.018            | 15.0                  | 2.360            | 0.15                  | 1             | 0.220                                   | 11       | 0.141                       | 14       |
| 0906+430            | Qc               | 0.670            | 5.0                   | 0.875            | 0.10                  | 4             | 0.180                                   | 4        | 0.090                       | 4        |
| 0917 + 449          | Qc               | 2.180            | 22.2                  | 1.042            | 0.05                  | 5             | 0.150                                   | 5        | 0.470                       | 15       |
| 0917 + 624          | Q                | 1.446            | 8.4                   | 1.220            | 0.11                  | 4             | 0.230                                   | 4        | 0.120                       | 4        |
| 0923 + 392          | Qc               | 0.695            | 15.0                  | 0.230            | 0.34                  | 1             | 0.180                                   | 4        | 0.370                       | 4        |
| 0945+408            | Qc               | 1.252            | 15.0                  | 0.990            | 0.06                  | 1             | 0.370                                   | 11       | 0.110                       | 15       |
| 0953 + 254          | Qc               | 0.712            | 15.0                  | 0.360            | 0.12                  | 1             | 0.310                                   | 11       | 0.097                       | 14       |
| 0954 + 658          | BL               | 0.368            | 5.0                   | 0.477            | 0.19                  | 4             | 0.440                                   | 4        | 0.160                       | 15       |
| 1012 + 232          | Qc               | 0.565            | 15.0                  | 1.080            | 0.07                  | 1             | 0.270                                   | 11       | 0.088                       | 14       |
| 1015 + 359          | Qc               | 1.226            | 15.0                  | 0.710            | 0.13                  | 1             | 0.200                                   | 11       | 0.051                       | 14       |
| 1039 + 811          | Qc               | 1.260            | 8.5                   | 0.450            | 0.09                  | 8             | 0.070                                   | 12       | 0.180                       | 15       |

 ${\bf Table~1.}~Continued.$ 

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.121 0.064 1 0.164 2.210 1 0.164 2 0.164 2 0.340 1 0.343 1 0.200 0.440 1 0.410 1 0.420 1 0.680 1 0.500 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.026 1 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.210     1       0.164     2       3.100     1       0.340     1       0.061     1       0.343     1       0.200     0.440       0.440     1       0.420     1       0.680     1       1.500     1       0.723     1       0.110     1       0.450     1       0.038     2       0.075     1       0.050     1       0.226     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.164       2         3.100       1         0.340       1         0.061       1         0.343       1         0.200       0         0.440       1         0.440       1         0.420       1         0.680       1         1.500       1         0.723       1         0.110       1         0.450       1         0.038       2         0.075       1         0.050       1         0.226       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1101+384   BL   0.031   15.0   0.450   0.10   1   1.330   4   36   1127-145   Qc   1.187   22.2   1.060   0.14   5   0.520   5   0   1128+385   Qc   1.733   15.0   0.940   0.05   1   0.010   11   0.010   11   137+660   QI   0.646   8.4   0.119   0.23   9   0.060   12   0   0.05   0   0.060   12   0   0.05   0   0.060   12   0   0.05   0   0.060   12   0   0.060   0.060   0.50   0   0.060   0.12   0   0.066   0.50   0   0.060   0.50   0   0.060   0.50   0   0.060   0.50   0   0.060   0.50   0   0.060   0.50   0   0.060   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.50   0.05   0.50   0.05   0.50   0.50   0.05   0.50   0.09   1   0.310   11   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.0                                           | 3.100     1       0.340     1       0.061     1       0.343     1       0.200     0       0.440     1       0.440     1       0.420     1       0.680     1       1.500     1       0.723     1       0.110     1       0.450     1       0.038     2       0.075     1       0.050     1       0.226     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.340 1 0.061 1 0.343 1 0.200 0.440 1 0.410 1 0.420 1 0.680 1.500 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 1128 + 385 & Qc & 1.733 & 15.0 & 0.940 & 0.05 & 1 & 0.010 & 11 & 0.011 \\ 1137 + 660 & Ql & 0.646 & 8.4 & 0.119 & 0.23 & 9 & 0.660 & 12 & 0.011 \\ 1156 + 295 & Qc & 1.250 & 5.0 & 0.460 & 0.50 & 4 & 0.110 & 4 & 0.00 \\ 1156 + 295 & Qc & 0.729 & 22.2 & 1.372 & 0.05 & 5 & 0.540 & 5 & 0.00 \\ 1219 + 285 & BL & 0.102 & 22.2 & 0.263 & 0.09 & 5 & 0.600 & 5 & 0.00 \\ 1222 + 216 & Ql & 0.435 & 22.2 & 0.960 & 0.06 & 5 & 0.900 & 5 & 0.00 \\ 1226 + 023 & Qc & 0.158 & 43.2 & 8.040 & 0.13 & 5 & 1.600 & 5 & 0.00 \\ 1228 + 127 & G & 0.004 & 15.0 & 1.390 & 0.33 & 1 & 3.070 & 4 & 0.00 \\ 1225 - 055 & Qc & 0.538 & 43.2 & 13.773 & 0.07 & 5 & 0.310 & 5 & 1.000 \\ 1302 - 102 & Qc & 0.286 & 15.0 & 0.530 & 0.09 & 1 & 0.310 & 11 & 0.00 \\ 1308 + 326 & BL & 0.996 & 15.0 & 2.590 & 0.14 & 1 & 0.750 & 4 & 0.00 \\ 1345 + 125 & G & 0.121 & 8.5 & 0.480 & 0.89 & 10 & 0.160 & 11 & 0.00 \\ 1406 - 076 & Q & 1.494 & 22.2 & 0.833 & 0.07 & 5 & 0.630 & 5 & 0.00 \\ 1413 + 135 & BL & 0.247 & 15.0 & 1.420 & 0.04 & 1 & 0.450 & 11 & 0.00 \\ 1508 - 055 & Ql & 1.191 & 15.0 & 0.590 & 0.99 & 1 & 0.530 & 11 & 0.00 \\ 1508 - 055 & Ql & 1.191 & 15.0 & 0.590 & 0.99 & 1 & 0.530 & 11 & 0.00 \\ 1540 - 079 & Qc & 0.360 & 43.2 & 1.458 & 0.05 & 5 & 0.850 & 11 & 0.00 \\ 1540 - 079 & Qc & 0.412 & 15.0 & 0.320 & 0.23 & 1 & 0.210 & 11 & 0.00 \\ 1540 - 079 & Qc & 0.412 & 15.0 & 0.320 & 0.23 & 1 & 0.210 & 11 & 0.00 \\ 1540 - 077 & Qc & 0.412 & 15.0 & 0.880 & 0.11 & 1 & 0.050 & 11 & 0.00 \\ 1548 - 106 & Qc & 1.420 & 15.0 & 0.880 & 0.11 & 1 & 0.050 & 11 & 0.00 \\ 1611 + 343 & Qc & 1.401 & 43.2 & 1.460 & 0.08 & 5 & 0.570 & 5 & 0.00 \\ 1637 + 826 & G & 0.023 & 10.7 & 0.680 & 0.20 & 4 & 0.300 & 4 & 0.00 \\ 1637 + 826 & G & 0.023 & 10.7 & 0.670 & 0.20 & 4 & 0.300 & 4 & 0.00 \\ 1637 + 826 & G & 0.023 & 10.7 & 0.670 & 0.20 & 4 & 0.300 & 4 & 0.00 \\ 1641 + 399 & Qc & 0.593 & 22.0 & 6.900 & 0.30 & 4 & 0.490 & 11 & 0.00 \\ 1655 + 077 & Qc & 0.621 & 15.0 & 1.590 & 0.23 & 1 & 0.430 & 11 & 0.00 \\ 1665 + 077 & Qc & 0.621 & 15.0 & 1.590 & 0.23 & 1 & 0.430 & 11 & 0.00 \\ 1721 + 343 & Ql & 0.205 & 10.7 & 0.109 &$ | 0.061 1 0.343 1 0.200 0.440 1 0.400 1 0.410 1 0.680 1.500 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.343 1 0.200 0.440 1 0.400 1 0.410 1 0.420 1 0.680 1.500 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.200 0.440 1.400 1.410 0.420 1.500 1.500 1.723 1.0110 1.0450 1.0038 1.0038 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0050 1.0 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.440 1 0.400 1 0.410 1 0.420 1 0.680 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.400 1 0.410 1 0.420 1 0.680 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.410 1 0.420 1 0.680 1.500 1 0.723 1 0.110 1 0.450 1 0.038 2 0.075 1 0.050 1 0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.420 1<br>0.680 1<br>1.500 1<br>0.723 1<br>0.110 1<br>0.450 1<br>0.038 2<br>0.075 1<br>0.050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.680<br>1.500 1<br>0.723 1<br>0.110 1<br>0.450 1<br>0.038 2<br>0.075 1<br>0.050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.500 1<br>0.723 1<br>0.110 1<br>0.450 1<br>0.038 2<br>0.075 1<br>0.050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.723     1       0.110     1       0.450     1       0.038     2       0.075     1       0.050     1       0.226     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.110     1       0.450     1       0.038     2       0.075     1       0.050     1       0.226     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.450 1<br>0.038 2<br>0.075 1<br>0.050 1<br>0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.038       2         0.075       1         0.050       1         0.226       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ).075 1<br>).050 1<br>).226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.050 1<br>0.226 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1147 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.147 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.490 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.840 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.018 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.080 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.240 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.080 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.250 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.145 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.153 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1721 + 343 Ql $0.205$ $10.7$ $0.109$ $0.24$ 4 $0.280$ 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ).353 1<br>).041 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ).041 1<br>L.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1150-150 QC 0.502 45.2 5.650 0.01 5 0.460 11 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.630 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.150 1 $0.150$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.131 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ).111 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.300 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.344 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.470 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1921-293 Qc 0.352 15.0 0.410 0.19 1 0.190 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.060 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1928+738 Qc 0.302 15.0 2.580 0.11 1 0.600 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2007+776 BL 0.342 5.0 1.361 0.19 4 0.180 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2134+004 Qp 1.932 15.0 2.020 0.15 1 0.020 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.260 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.120 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2144+092 Qc $1.113$ $15.0$ $0.550$ $0.07$ $1$ $0.030$ $11$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.035 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.360 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.200 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2223-052 Qc $1.404$ $15.0$ $1.980$ $0.10$ 4 $0.490$ $11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.200 	 1 \ 3.780 	 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Table 1. Continued.

| Source     | Type | z     | $ \frac{\nu_{\rm s}}{({ m GHz})} $ | f <sub>c</sub> (Jy) | $\theta_{\rm d}$ (mas) | Refs. | $\mu_{\rm app}$ (mas yr <sup>-1</sup> ) | Refs. | $f_{1	ext{keV}} \ (\mu	ext{Jy})$ | Refs. |
|------------|------|-------|------------------------------------|---------------------|------------------------|-------|-----------------------------------------|-------|----------------------------------|-------|
| 2230+114   | Qc   | 1.037 | 43.2                               | 2.428               | 0.04                   | 5     | 0.500                                   | 4     | 0.730                            | 15    |
| 2234 + 282 | Qc   | 0.795 | 15.0                               | 0.460               | 0.32                   | 1     | 0.120                                   | 11    | 0.050                            | 16    |
| 2243 - 123 | Qc   | 0.630 | 15.0                               | 1.920               | 0.17                   | 1     | 0.290                                   | 11    | 0.279                            | 24    |
| 2251 + 158 | Qc   | 0.859 | 43.2                               | 2.015               | 0.05                   | 5     | 0.530                                   | 5     | 1.370                            | 15    |
| 2345 - 167 | Qc   | 0.576 | 15.0                               | 1.460               | 0.10                   | 1     | 0.030                                   | 11    | 0.180                            | 16    |

Column (1): IAU name; Column (2): classification of the source (Q= quasars; Qc= core-dominated quasars; Ql= lobe-dominated quasars; Qp= GHz peaked quasars; BL= BL Lac objects; G= radio galaxies); Column (3): redshift z; Column (4): observation frequency  $\nu_s$  in GHz; Column (5): core radio flux density  $f_c$  at frequency  $\nu_s$ ; Column (6): VLBI core size  $\theta_d$  in mas; Column (7): reference for the VLBI data; Column (8): the proper motion  $\mu_{\rm app}$ ; Column (9): reference for the proper motion; Column (10): 1 keV X-ray flux density  $f_{1\text{keV}}$  in  $\mu$ Jy; Column (11): reference for the X-ray flux.

References: (1) Kovalev et al. (2005); (2) Brunthaler et al. (2000); (3) Fey & Charlot (1997); (4) J98; (5) Jorstad et al. (2001); (6) Rokaki et al. (2003); (7) Lister (2001); (8) Fey & Charlot (2000); (9) Hough et al. (2002); (10) Fey, Clegg & Fomalont (1996); (11) Kellermann et al. (2004); (12) Vermeulen & Cohen (1994); (13) Siebert et al. (1998); (14) Brinkmann, Yuan & Siebert (1997); (15) Donato et al. (2001); (16) Ghisellini et al. (1993); (17) Comastri et al. (1997); (18) Gambill et al. (2003); (19) Marshall et al. (2005); (20) Reich et al. (2000); (21) Imanishi & Ueno (1999); (22) Galbiati et al. (2005); (23) Bloom et al. (1999); (24) Donato, Sambruna & Gliozzi (2005).

 ${\bf Table~2.~Derived~Jet~Parameters~and~Luminosity~of~the~Sample.}$ 

|                         |                   | Т.                  |                   |                                 | 1 r                                        | 1 7                                      | D (    | 1 7                                              | D (             |
|-------------------------|-------------------|---------------------|-------------------|---------------------------------|--------------------------------------------|------------------------------------------|--------|--------------------------------------------------|-----------------|
| Source                  | $\theta$ (degree) | Γ                   | δ                 | $\binom{n_1}{(\text{cm}^{-3})}$ | $\log L_{\rm kin} \\ ({\rm erg \ s^{-1}})$ | $\log L_{\rm BLR}  ({\rm erg \ s^{-1}})$ | Refs.  | $ \log L_{\rm ext, 5GHz}  ({\rm erg \ s}^{-1}) $ | Refs.           |
| 0003-066                | 56.7              | 1.0                 | 1.1               | 9.48E+04                        | 45.19                                      | 43.15                                    | 1      | 41.57                                            | 21              |
| 0007 + 106              | 51.0              | 1.9                 | 1.1               | 1.32E + 04                      | 46.17                                      | 44.14                                    | 2      | 39.00                                            | 22              |
| 0016 + 731              | 4.4               | 17.7                | 12.4              | 6.75E + 04                      | 47.27                                      | 44.98                                    | 1      | 43.88                                            | 23              |
| 0035 + 413              | 17.1              | 19.2                | 1.1               | 5.01E + 06                      | 49.14                                      | 44.64                                    | 1      | 43.41                                            | 24              |
| 0106 + 013              | 2.8               | 23.9                | 20.1              | 1.15E + 05                      | 47.51                                      | 46.15                                    | 1      | 44.51                                            | 25              |
| 0108 + 388              | 25.7              | 5.9                 | 1.5               | 1.24E + 05                      | 47.47                                      |                                          |        | 41.65                                            | 26              |
| 0112 - 017              | 23.4              | 1.7                 | 2.3               | 9.52E + 04                      | 46.97                                      | 45.26                                    | 1      | 43.38                                            | 25              |
| 0133 + 207              | 18.0              | 28.6                | 0.7               | 2.09E+06                        | 48.77                                      | 45.02                                    | 1      | 43.26                                            | 25              |
| 0133 + 476              | 4.5               | 3.7                 | 6.7               | 4.42E + 04                      | 46.96                                      | 44.47                                    | 1      | 41.85                                            | 21              |
| 0153 + 744              | 14.5              | 12.3                | 2.3               | 2.23E+06                        | 48.78                                      | 46.14                                    | 1      | 42.79                                            | 23              |
| 0202+149                | 12.1              | 6.6                 | 4.5               | 1.63E+04                        | 46.60                                      |                                          |        | 41.23                                            | 21              |
| 0208-512                | 2.2               | 32.0                | 25.9              | 2.07E+04                        | 46.77                                      | 45.19                                    | 3      | $43.52^{b}$                                      | 27              |
| 0212+735                | 8.9               | 8.4                 | 6.2               | 5.06E+05                        | 48.11                                      | 44.95                                    | 1      | 42.52                                            | 25              |
| 0219+428                | 3.1               | 38.0                | 14.6              | 1.89E+04                        | 46.73                                      | <br>45.26                                | <br>1  | 43.06                                            | $\frac{28}{25}$ |
| 0234+285 $0235+164$     | $\frac{4.8}{2.4}$ | $20.6 \\ 66.5$      | $10.5 \\ 14.9$    | 1.05E+05<br>1.37E+05            | 47.47 $47.60$                              | 43.86                                    | 1      | 42.61 $42.36$                                    | $\frac{25}{25}$ |
| 0235+104 $0316+413$     | 88.9              | 1.3                 | 0.8               | 4.76E+03                        | 45.23                                      | 42.70                                    | 4      | 40.64                                            | 29              |
| 0333+321                | 3.3               | 27.5                | 15.4              | 1.01E+05                        | 47.46                                      | 45.94                                    | 5      | 42.90                                            | 5               |
| 0336-019                | 2.5               | 19.7                | 22.5              | 9.73E+03                        | 46.43                                      | 45.00                                    | 1      | 42.94                                            | 25              |
| 0415 + 379              | 21.9              | 17.3                | 0.8               | 2.09E+05                        | 47.76                                      |                                          |        | 42.09                                            | 23              |
| 0420-014                | 5.7               | 15.6                | 9.2               | 1.01E+05                        | 47.44                                      | 44.92                                    | 1      | 42.24                                            | 25              |
| 0430 + 052              | 8.6               | 6.0                 | 6.6               | 3.43E+02                        | 44.92                                      | 42.93                                    | 6      | 39.40                                            | 22              |
| 0440 - 003              | 6.7               | 29.0                | 4.6               | 2.89E + 05                      | 47.91                                      | 44.77                                    | 1      | 42.74                                            | 25              |
| 0454 + 844              | 49.0              | 1.4                 | 1.3               | 3.45E + 03                      | 45.34                                      |                                          |        | 40.44                                            | 30              |
| 0458 - 020              | 3.1               | 13.8                | 17.7              | 4.42E + 04                      | 47.08                                      | 45.32                                    | 1      | 44.39                                            | 25              |
| 0528 + 134              | 2.6               | 38.7                | 19.0              | 3.22E + 05                      | 47.97                                      |                                          |        | 43.54                                            | 21              |
| 0552 + 398              | 25.9              | 4.9                 | 1.7               | 5.03E + 06                      | 49.06                                      | 46.28                                    | 7      | 45.43                                            | 7,31            |
| 0605 - 085              | 11.9              | 13.4                | 3.1               | 4.77E + 05                      | 48.11                                      | 44.62                                    | 1      | 42.98                                            | 25              |
| 0607 - 157              | 9.9               | 3.9                 | 5.4               | 1.39E + 04                      | 46.46                                      | 43.56                                    | 1      | < 41.95                                          | 25              |
| 0615 + 820              | 40.0              | 2.6                 | 1.3               | 1.02E + 05                      | 47.22                                      | •••                                      | •••    | 42.78                                            | 23              |
| 0642 + 449              | 7.8               | 2.2                 | 3.9               | 5.30E + 05                      | 47.88                                      | 46.11                                    | 1      | 42.98                                            | 25              |
| 0710+439                | 74.8              | 3.5                 | 0.4               | 2.40E+06                        | 48.68                                      |                                          | •••    | 42.87                                            | 26              |
| 0716+714                | 4.8               | 49.5                | 5.5               | 6.91E+04                        | 47.30                                      |                                          |        | 42.21                                            | 21              |
| 0723+679                | $11.9 \\ 6.1$     | 15.3                | $\frac{2.8}{6.2}$ | 3.82E+05                        | 48.02                                      | 44.80                                    | 1      | 43.84                                            | $\frac{25}{30}$ |
| 0735+178 $0736+017$     | 3.3               | $25.2 \\ 12.3$      | 16.5              | 4.70E+04<br>1.05E+03            | 47.12 $45.45$                              | <br>44.18                                | <br>1  | 40.27 $40.74$                                    | 30<br>25        |
| 0738+313                | 20.8              | $\frac{12.3}{2.7}$  | 2.8               | 2.64E+04                        | 46.66                                      | 45.78                                    | 1      | 42.25                                            | $\frac{25}{25}$ |
| 0745+241                | 9.6               | 8.6                 | 5.6               | 1.20E+04                        | 46.49                                      |                                          |        | 42.29                                            | 30              |
| 0748 + 126              | 4.0               | 13.2                | 14.3              | 2.69E+04                        | 46.86                                      | 44.95                                    | 5      | 42.25                                            | 5               |
| 0754+100                | 6.6               | 12.8                | 8.1               | 8.83E+03                        | 46.38                                      |                                          |        | 40.39                                            | 30              |
| 0804 + 499              | 6.9               | 8.8                 | 8.3               | 6.67E + 04                      | 47.24                                      | 45.39                                    | 1      | 42.04                                            | 25              |
| 0808 + 019              | 1.9               | 9.6                 | 17.3              | 1.11E+04                        | 46.46                                      |                                          |        | 43.59                                            | 30              |
| 0814 + 425              | 5.4               | 6.2                 | 9.2               | 1.11E + 03                      | 45.43                                      | 41.81                                    | 1      | 41.34                                            | 25              |
| 0823 + 033              | 4.2               | 14.6                | 13.7              | 8.33E + 03                      | 46.36                                      | 43.40                                    | 1      | 40.82                                            | 25              |
| 0827 + 243              | 4.0               | 32.1                | 10.7              | 1.23E + 05                      | 47.54                                      | 44.93                                    | 8      | 42.18                                            | 32              |
| 0829 + 046              | 4.8               | 17.6                | 11.3              | 1.97E + 03                      | 45.74                                      |                                          |        | 40.97                                            | 30              |
| 0836 + 710              | 4.8               | 29.3                | 8.5               | 1.50E + 06                      | 48.63                                      | 46.43                                    | 1      | 43.78                                            | 25              |
| 0850 + 581              | 8.7               | 37.6                | 2.2               | 2.02E+06                        | 48.76                                      | 45.66                                    | 1      | 43.78                                            | 25              |
| 0851 + 202              | 6.3               | 14.3                | 8.3               | 1.87E + 04                      | 46.71                                      | 43.60                                    | 1      | 40.48                                            | 25              |
| 0859-140                | 3.9               | 16.8                | 14.7              | 4.13E+04                        | 47.06                                      | 45.74                                    | 1      | 43.45                                            | 25              |
| 0906+015                | 6.3               | 12.2                | 8.7               | 7.05E+04                        | 47.28                                      | 45.11                                    | 1      | 42.53                                            | 25              |
| 0906+430                | 1.8               | 11.0                | 19.5              | 2.95E+03                        | 45.90                                      | 43.35                                    | 1      | 43.86                                            | 25              |
| 0917+449                | 3.7               | 13.1                | 15.2              | 8.70E+04                        | 47.37                                      | $45.21^a$                                | 9      | 44.66                                            | 33              |
| 0917+624                | 2.5               | 16.5                | 21.8              | 1.91E+04                        | 46.72                                      | 45.06<br>45.78                           | 1      | 42.14                                            | 25<br>25        |
| 0923+392 $0945+408$     | $15.9 \\ 2.4$     | 43.4 $22.7$         | $0.6 \\ 23.8$     | 1.77E+07<br>1.55E+04            | 49.71 $46.64$                              | 45.78 $45.59$                            | 1<br>1 | 43.45 $43.15$                                    | $\frac{25}{25}$ |
| 0943+408 $0953+254$     | 8.4               | $\frac{22.7}{22.4}$ | 23.8<br>3.8       | 1.39E+04<br>1.39E+05            | 46.64 $47.59$                              | 45.59 $44.97$                            | 1      | 45.15                                            | $\frac{25}{25}$ |
| 0953+254 $0954+658$     | 6.8               | 10.3                | 3.8<br>8.3        | 4.17E+03                        | 46.04                                      | 44.97                                    | 1      | 41.32                                            | $\frac{25}{25}$ |
| 1012+232                | 4.9               | 9.3                 | 11.3              | 5.70E+03                        | 46.17                                      | 45.16                                    | 10     | 42.73                                            | 34              |
| 1012 + 252 $1015 + 359$ | 7.6               | 15.2                | 6.1               | 1.07E+05                        | 47.47                                      | 45.98                                    | 9      | <43.48                                           | 35              |
| 1039+811                | 7.4               | 4.9                 | 7.0               | 2.53E+04                        | 46.76                                      |                                          |        | 42.67                                            | 23              |

 ${\bf Table~2.}~Continued.$ 

| Source                  | $\theta \\ (\text{degree})$ | Γ                   | δ            | $\begin{array}{c} n_1 \\ (\text{cm}^{-3}) \end{array}$ | $\log L_{\rm kin}  ({\rm erg \ s^{-1}})$ | $\log L_{\rm BLR}  ({\rm erg \ s^{-1}})$ | Refs.  | $ \log L_{\text{ext,5GHz}} \\ (\text{erg s}^{-1}) $ | Refs.    |
|-------------------------|-----------------------------|---------------------|--------------|--------------------------------------------------------|------------------------------------------|------------------------------------------|--------|-----------------------------------------------------|----------|
| 1040+123                | 18.0                        | 11.8                | 1.6          | 1.10E+06                                               | 48.47                                    | 45.11                                    | 1      | 44.04                                               | 25       |
| 1049 + 215              | 9.5                         | 10.0                | 5.3          | 1.35E + 05                                             | 47.55                                    |                                          |        | 44.00                                               | 36       |
| 1055 + 018              | 1.9                         | 5.5                 | 10.7         | 2.80E + 04                                             | 46.82                                    | 44.53                                    | 1      | 43.13                                               | 25       |
| 1055 + 201              | 10.0                        | 15.9                | 3.7          | 2.19E + 05                                             | 47.78                                    | 46.09                                    | 11     | 44.31                                               | 30       |
| 1101 + 384              | 29.3                        | 3.3                 | 1.8          | 1.67E + 03                                             | 45.51                                    | 41.40                                    | 12     | 39.78                                               | 28       |
| 1127 - 145              | 3.5                         | 69.7                | 7.2          | 9.81E + 05                                             | 48.45                                    | 45.77                                    | 1      | 43.21                                               | 25       |
| 1128 + 385              | 6.6                         | 2.1                 | 3.7          | 7.96E + 04                                             | 47.01                                    | 46.26                                    | 9      | 42.26                                               | 30       |
| 1137 + 660              | 45.7                        | 5.1                 | 0.6          | 6.98E + 05                                             | 48.21                                    | 45.83                                    | 1      | 43.94                                               | 25       |
| 1150 + 812              | 15.1                        | 11.2                | 2.3          | 6.81E + 05                                             | 48.26                                    | •••                                      |        | 42.57                                               | 30       |
| 1156 + 295              | 2.5                         | 22.2                | 23.1         | 1.05E+04                                               | 46.47                                    | 44.90                                    | 5      | 42.99                                               | 5        |
| 1219 + 285              | 25.1                        | 7.0                 | 1.4          | 1.12E+04                                               | 46.44                                    | 42.25                                    | 13     | 38.94                                               | 28       |
| 1222 + 216              | 3.6                         | 27.4                | 13.9         | 1.21E+04                                               | 46.54                                    | 44.73                                    | 14     | 43.01                                               | 21       |
| 1226+023                | 6.2                         | 27.3                | 5.6          | 1.29E + 05                                             | 47.56                                    | 45.59                                    | 1      | 43.14                                               | 25       |
| 1228 + 127              | 85.3                        | 1.6                 | 0.7          | 1.21E+02                                               | 44.00                                    |                                          | •••    | 40.84                                               | 23       |
| 1253 - 055              | 4.1                         | 10.4                | 13.5         | 3.83E+04                                               | 47.01                                    | 44.64                                    | 1      | 43.46                                               | 25       |
| 1302-102                | 14.3                        | 6.3                 | 3.7          | 1.33E+04                                               | 46.51                                    | 44.91                                    | 1      | 41.83                                               | 25       |
| 1308+326                | 2.2                         | 45.3                | 22.5         | 4.41E+04                                               | 47.10                                    | 45.12                                    | 1      | 42.56                                               | 25       |
| 1334-127                | 0.5                         | 9.8                 | 19.4         | 1.06E+04                                               | 46.45                                    | 44.18                                    | 1      | 42.67                                               | 25       |
| 1345+125                | 75.3                        | 6.4                 | 0.2          | 5.13E+05                                               | 48.10                                    |                                          |        | <41.71                                              | 35       |
| 1406-076                | 2.2                         | 61.1                | 18.1         | 1.01E+05                                               | 47.46                                    | 45.47                                    | 15     | <43.81                                              | 33       |
| 1413+135                | 2.1                         | 10.7                | 18.6         | 5.48E+02                                               | 45.16                                    |                                          |        | <39.06                                              | 37       |
| 1458+718                | 6.4                         | 13.1                | 8.3          | 4.58E+04                                               | 47.09                                    | 45.47                                    | 1      | 44.74                                               | 25       |
| 1508-055                | 3.1                         | 43.6                | 13.4         | 8.48E+04                                               | 47.39                                    | 45.52                                    | 15     | 44.72                                               | 36       |
| 1510-089                | 5.2                         | 27.9                | 7.5          | 4.26E+04                                               | 47.08                                    | 44.64                                    | 1      | 42.25                                               | 25       |
| 1532+016                | 8.0                         | 49.7                | 2.0          | 5.15E+06                                               | 49.17                                    | 44.84                                    | 1      | 42.51                                               | 25       |
| 1546+027                | 7.7                         | 2.4                 | 4.2          | 1.85E+04                                               | 46.46                                    | 44.68                                    | 1      | 41.27                                               | 25       |
| 1548+056                | $14.3 \\ 3.2$               | $\frac{3.6}{42.8}$  | 4.0          | 5.14E+04                                               | 47.02                                    | •••                                      |        | 44.27                                               | 36<br>30 |
| 1606+106                | 2.9                         | 42.8<br>82.9        | 12.5         | 1.57E+05                                               | 47.65                                    | <br>45.91                                |        | 42.58 $43.39$                                       | 25       |
| 1611+343                | 33.1                        |                     | 9.1          | 1.07E+06                                               | 48.49                                    |                                          | 1<br>5 |                                                     | 25<br>5  |
| 1618+177                | 33.1<br>4.9                 | $10.3 \\ 21.3$      | $0.6 \\ 9.8$ | 1.17E+06                                               | 48.49 $47.23$                            | 46.14                                    |        | 43.46                                               | 35       |
| 1622-297 $1633+382$     | $\frac{4.9}{4.2}$           | $\frac{21.5}{15.7}$ | 9.8<br>13.7  | 6.06E+04<br>9.90E+04                                   | 47.43                                    | <br>45.84                                | <br>1  | <43.43 $43.04$                                      | 25       |
| 1637 + 826              | 77.7                        | 1.1                 | 1.0          | 4.94E+02                                               | 43.76                                    |                                          |        | 40.04                                               | 23       |
| 1637 + 320 $1641 + 399$ | 6.1                         | 29.5                | 5.4          | 5.91E+05                                               | 48.23                                    | <br>45.47                                | <br>1  | 43.05                                               | 25<br>25 |
| 1641 + 690              | 2.5                         | 16.7                | 21.7         | 6.14E+03                                               | 46.23                                    | 43.86                                    | 1      | 42.98                                               | 25       |
| 1652 + 398              | 45.0                        | 4.2                 | 0.8          | 1.24E+04                                               | 46.43                                    | 41.36                                    | 12     | 39.43                                               | 28       |
| 1655+077                | 6.8                         | 27.7                | 4.7          | 2.28E+05                                               | 47.81                                    | 43.62                                    | 5      | 42.76                                               | 5        |
| 1656+053                | 24.2                        | 7.9                 | 1.3          | 1.12E+06                                               | 48.45                                    | 46.26                                    | 5      | 42.78                                               | 5        |
| 1656+477                | 11.1                        | 4.5                 | 5.1          | 5.54E+04                                               | 47.09                                    | 45.76                                    | 16     | <43.51                                              | 33       |
| 1721 + 343              | 29.7                        | 14.5                | 0.5          | 7.05E + 05                                             | 48.28                                    | 44.62                                    | 1      | 42.22                                               | 25       |
| 1730 - 130              | 3.6                         | 26.2                | 14.1         | 1.32E + 05                                             | 47.57                                    | 44.83                                    | 17     | 42.93                                               | 32       |
| 1749 + 096              | 1.1                         | 8.9                 | 17.3         | 2.62E + 03                                             | 45.83                                    |                                          |        | 39.74                                               | 28       |
| 1749 + 701              | 6.8                         | 11.8                | 8.0          | 2.29E+04                                               | 46.79                                    |                                          |        | 42.24                                               | 38       |
| 1758 + 388              | 24.2                        | 1.0                 | 1.3          | 1.43E + 06                                             | 46.73                                    |                                          |        | 42.44                                               | 39       |
| 1800 + 440              | 0.9                         | 28.2                | 46.7         | 1.91E + 03                                             | 45.73                                    |                                          |        | 43.28                                               | 36       |
| 1803 + 784              | 10.6                        | 1.1                 | 1.6          | 1.04E + 05                                             | 46.17                                    | 44.56                                    | 1      | 41.49                                               | 25       |
| 1807 + 698              | 9.8                         | 10.5                | 5.0          | 6.15E + 02                                             | 45.21                                    | 41.40                                    | 12     | 40.96                                               | 28       |
| 1823 + 568              | 10.4                        | 4.7                 | 5.5          | 2.95E + 04                                             | 46.82                                    | 43.32                                    | 1      | 43.28                                               | 25       |
| 1828 + 487              | 3.8                         | 15.0                | 15.2         | 1.30E + 04                                             | 46.55                                    | 45.26                                    | 1      | 44.65                                               | 25       |
| 1830 + 285              | 22.0                        | 6.9                 | 1.8          | 1.79E + 05                                             | 47.65                                    | 45.41                                    | 1      | 42.97                                               | 25       |
| 1845 + 797              | 41.9                        | 3.8                 | 0.9          | 1.02E + 04                                             | 46.33                                    | 42.99                                    | 5      | 41.11                                               | 5        |
| 1921 - 293              | 25.5                        | 9.0                 | 1.1          | 3.90E + 05                                             | 48.01                                    | 43.67                                    | 18     | < 43.35                                             | 32       |
| 1928 + 738              | 5.3                         | 11.5                | 10.8         | 6.88E + 03                                             | 46.26                                    | 45.18                                    | 1      | 42.02                                               | 25       |
| 2007 + 776              | 5.2                         | 5.1                 | 8.4          | 2.66E + 03                                             | 45.79                                    |                                          |        | 41.28                                               | 28       |
| 2131 - 021              | 9.5                         | 7.8                 | 5.8          | 7.38E+04                                               | 47.27                                    | 43.66                                    | 19     | 42.94                                               | 32       |
| 2134 + 004              | 18.2                        | 2.1                 | 2.9          | 3.41E + 05                                             | 47.64                                    | 46.29                                    | 1      | 42.46                                               | 25       |
| 2136 + 141              | 10.6                        | 2.6                 | 4.1          | 2.44E + 05                                             | 47.60                                    | 46.02                                    | 1      | 41.84                                               | 25       |
| 2144 + 092              | 17.4                        | 2.1                 | 3.0          | 3.30E + 04                                             | 46.65                                    |                                          |        | 42.97                                               | 30       |
| 2145 + 067              | 3.9                         | 3.6                 | 6.6          | 8.31E + 04                                             | 47.23                                    | 45.79                                    | 1      | 42.14                                               | 25       |
| 2200 + 420              | 5.8                         | 7.0                 | 9.3          | 6.27E + 02                                             | 45.19                                    | 42.38                                    | 20     | 39.84                                               | 28       |
| 2201 + 315              | 5.2                         | 7.1                 | 10.0         | 8.23E + 03                                             | 46.31                                    | 45.46                                    | 1      | 43.05                                               | 25       |
| 2223 - 052              | 2.1                         | 33.1                | 26.4         | 4.53E + 04                                             | 47.11                                    | 45.62                                    | 1      | 43.59                                               | 25       |

Table 2. Continued.

| Source     | $\theta$ (degree) | Γ    | δ    | $\begin{array}{c} n_1 \\ (\text{cm}^{-3}) \end{array}$ | $\log L_{\rm kin} $ (erg s <sup>-1</sup> ) | $\log L_{\rm BLR} \\ ({\rm erg \ s^{-1}})$ | Refs. | $ \log L_{\text{ext,5GHz}} \\ (\text{erg s}^{-1}) $ | Refs. |
|------------|-------------------|------|------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------|-----------------------------------------------------|-------|
| 2230+114   | 2.7               | 27.9 | 20.3 | 5.51E+04                                               | 47.19                                      | 45.89                                      | 1     | 43.33                                               | 25    |
| 2234 + 282 | 20.9              | 16.8 | 0.9  | 2.58E + 06                                             | 48.85                                      | 44.52                                      | 1     | 42.05                                               | 25    |
| 2243 - 123 | 8.4               | 12.6 | 5.8  | 7.80E + 04                                             | 47.32                                      | 45.28                                      | 1     | 42.70                                               | 25    |
| 2251 + 158 | 3.8               | 32.4 | 11.5 | 1.67E + 05                                             | 47.68                                      | 45.68                                      | 1     | 43.84                                               | 25    |
| 2345 - 167 | 20.7              | 1.6  | 2.3  | 3.55E + 04                                             | 46.47                                      | 44.38                                      | 5     | 42.66                                               | 25    |

Column (1): IAU name; Column (2): the viewing angle of jet  $\theta$ ; Column (3): the Lorentz factor  $\Gamma$ ; Column (4): the Doppler factor  $\delta$ ; Column (5): the normalization factor of electron energy distribution  $n_1$ ; Column (6): the bulk kinetic power of jet  $L_{\rm kin}$ ; Column (7): the total luminosity in broad emission lines  $L_{\rm BLR}$ , a: also see Chen, Gu & Cao (2009); Column (8): the references for flux of broad emission lines used to estimate  $L_{\rm BLR}$ ; Column (9): the radio extended 5 GHz luminosity  $L_{\rm ext,5GHz}$ , b: from ATCA images; Column (10): the references for the radio extended flux.

References: (1) Cao & Jiang (1999); (2) Sergeev et al. (1999); (3) Scarpa & Falomo (1997); (4) Ho et al. (1997); (5) Liu, Jiang & Gu (2006); (6) Wang, Lu & Zhou (1998); (7) Rokaki et al. (2003); (8) Our unpublished measurements of Mg II line; (9) SDSS spectra; (10) Brotherton (1996); (11) Kuraszkiewicz et al. (2004); (12) C97; (13) Marcha et al. (1996); (14) Fan, Cao & Gu (2006); (15) Wilkes (1986); (16) Walsh & Carswell (1982); (17) Cao (2000); (18) Jackson & Browne (1991); (19) Rector & Stocke (2001); (20) Corbett et al. (1996); (21) Cooper, Lister & Kochanczyk (2007); (22) Wills & Browne (1986); (23) Kharb & Shastri (2004); (24) Gelfand et al. (2005); (25) Cao & Jiang (2001); (26) Vermeulen & Cohen (1994); (27) Marshall et al. (2005); (28) Perlman & Stocke (1993); (29) Pedlar et al. (1990); (30) Antonucci & Ulvestad (1985); (31) Stanghellini et al. (1990); (32) Browne & Murphy (1987); (33) Punsly (1995); (34) Saikia et al. (1990); (35) Ulvestad et al. (1981); (36) Zhang & Fan (2003); (37) Perlman et al. (1994); (38) Wu et al. (2007); (39) Tinti et al. (2005).