Lecture 4 Segment 3

Interpretation of correlations

Correlations 3

- Important topics
 - Validity of a correlation-based argument
 - Reliability of a correlation

- Assumptions underlying correlation analyses:
 - Normal distributions for X and Y
 - Linear relationship between X and Y
 - Homoskedasticity

• The validity of any argument made on the basis of a correlation analysis depends on these assumptions

- Assumptions underlying correlation analyses:
 - Normal distributions for X and Y
 - How to detect violations?
 - Plot histograms and run descriptive statistics

- Assumptions underlying correlation analyses:
 - Linear relationship between X and Y
 - How to detect violations?
 - Examine scatterplots (see following examples)
 - Plot a histogram of residuals (more on this later)

- Assumptions underlying correlation analyses:
 - Homoskedasticity
 - How to detect violations?
 - Examine scatterplots (see following examples)
 - Plot a histogram of residuals (more on this later)

Non-linear relation: Fun example

Non-linear relation: Serious example

Homoskedasticity?!

- In a scatterplot the distance between a dot and the regression line reflects the amount of prediction error
 - In the baseball example, look at one baseball player, using the regression line to guide you, does his score on X accurately predict his score on Y?
 - If so then the distance will be small
 - If not then the distance will be large

Homoskedasticity?!

- Homoskedasticity means that the distances (the errors, or residuals) are not related to the variable plotted on the X axis (they are not a function of X)
- This is best illustrated with a scatterplot

R scatterplot: plot(SAT~WMC)

- Validity of correlation-based arguments depends on several assumptions
 - Normal distribution in X and Y
 - Linear relationship between X and Y
 - Homoskedasticity

Reliability

- Reliability of a correlation
 - Does the correlation reflect more than just chance covariance?
 - One approach to this question is to use NHST

- Null Hypothesis Significance Testing (NHST)
 - $-H_0$ = null hypothesis: e.g., r = 0
 - $\overline{-H_A}$ = alternative hypothesis: e.g., r > 0

- Null Hypothesis Significance Testing (NHST)
 - -Assume H_0 is true, then calculate the probability of observing data with these characteristics, given that H_0 is true
 - Thus, $p = P(D|H_0)$
 - If $p < \alpha$ then Reject H_0 , else Retain H_0

Experimenter Decision

Truth

	Retain H ₀	Reject H ₀
H ₀ true	Correct	Type I error (False alarm)
	Decision	(False alarm)
H ₀ false	Type II error	Correct
	(Miss)	Decision

The normal distribution

Experimenter Decision

Truth

	Retain H ₀	Reject H ₀
H ₀ true	$p = (1 - \alpha)$	$p = \alpha$
H ₀ false	$p = \beta$ (1 - POWER)	$p = (1 - \beta)$ POWER

The normal distribution

- $p = P(D|H_0)$
- Given that the null hypothesis is true, the probability of these, or more extreme data, is p
 - NOT: The probability of the null hypothesis being true is p
 - In other words, $P(D|H_0) \Leftrightarrow P(H_0|D)$

NHST can be applied to:

- r
 - Is the correlation significantly different from zero?
- r1 vs. r2
 - Is one correlation significantly larger than another?

Correlations: Final note

- There are other correlation coefficients
 - Point biserial r
 - When 1 variable is continuous and 1 is dichotomous
 - Phi coefficient
 - When both variables are dichotomous
 - Spearman rank correlation
 - When both variables are ordinal (ranked data)

Correlations 3

- Important topics
 - Validity of a correlation-based argument
 - Reliability of a correlation

Image in slide 8 was retrieved from http://xkcd.com/323/

Image in slide 9 is from Moran, C. C. (1998). Stress and emergency work experience: a non-linear relationship. *Disaster Prevention and Management*, 7(1), 38 - 46

Image in slides 18 and 20 was retrieved from http://www.syque.com/quality_tools/toolbook/Variation/Image375.gif

© 2012 Andrew Conway