Bemerk dat er vier verschillende concepten zijn:

integraal over kromme	lijnintegraal
integraal over oppervlak	oppervlakintegraal

Het grootste verschil zit feitelijk hier: in het ene geval inegreren we een scalaire functie. In het andere geval integreren we in feite over een vectorveld.

- 1. kijk bijvoorbeeld naar de totale oppervlakte van een muurtje met gegeven hoogte of beschou we gemiddelde temperatuur van een vlakke of gebogen plaat of het massacentrum van een voorwerp
- 2. we hebben een vectorveld ter beschikking. We beschouwen bijvoorbeeld de out ow van materie doorheen een kromme (in 2D) of doorheen een oppervlak. Het vectorveld zelf kan aan leuke eigenschappen voldoen zoals conser- vativiteit.

1 Integraal over/langs kromme en integraal over oppervlak

integraal over/langs kromme		
parametrisatie	$\vec{\gamma}(t)$	$t \in [a, b]$
lengte v/e kromme	$l(C) = \int_{a}^{b} \gamma'(t) dt$	
natuurlijke parametrisatie	$r(x) = \vec{\gamma}(t(s))$	$s \in [0, 1]$
integraal over/langs een kromme	$M(C) = \int_{a}^{f} [\vec{\gamma}(t)] \vec{\gamma}'(t) dt$	
	toepassing: ber	ekening massacentrum

integraal over/langs oppervlak		
parametrisatie	$\vec{\Sigma}(u,v)$	$(u,v) \in D \in \mathbb{R}^2$
oppervlakte v/e oppervlak	$A(S) = \iint_D \vec{n}(u, v) du dv$	
integraal over/langs een oppervlak	$M(S) = \iint_D f[\vec{\Sigma}(u,v)] \vec{n}(u,v) du dv$	
	toepassi	ng: berekening massacentrum

2 Vectoranalyse: lijintegraal en oppervlakintegraal

lijnintegraal	
kromme met parametrisatie $\vec{\gamma}(t)$	$t \in [a,b]$
lijnintegraal in het vectorveld \vec{F}	$\int_a^b \vec{F}(\vec{\gamma}(t)).\vec{\gamma}'(t)dt$

oppervlakintegraal	
oppervlak met parametrisatie $\vec{\Sigma}(u, v)$	$(u,v) \in D \in \mathbb{R}^2$
oppervlakintegraal in het vectorveld \vec{F}	$\iint_D \vec{F}(\vec{\Sigma}(u,v)).\vec{n}(u,v)dudv$

2.1 Vectoranalyse: enkele leuke stellingen en gelijkheden

rotor van een vectorveld \vec{F}	$ec{ abla} imesec{F}$
divergentie van een vectorveld \vec{F}	$ec{ abla}.ec{F}$
gradiënt van een scalaire functie f	$\vec{\nabla} f$
Laplaciaan van een scalaire functie f	$\Delta f = \vec{\nabla}^2 f = \vec{\nabla} \cdot \vec{\nabla} f$

Voor een conservatief vectorveld gelden volgende eigenschappen

- \bullet heeft potentiaalfunctie f
- is irrotationeel, namelijk $\vec{\nabla} \times \vec{F} = 0$

Enkele belangrijke stellingen

stelling	
Green	dubbele integraal over gebied D
(2D-vectorveld \vec{F})	vs. lijnintegraal over kromme ${\cal C}$
	$\iint_{D} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy = \int_{C} M dx + N dy$
	toepassing: oppervlakteberekening
Stokes	oppervlakintegraal over gebied S
	vs. lijnintegraal over rand C (kromme)
(2D-vectorveld \vec{F})	$\iint_S \vec{ abla} imes \vec{F} = \int_c \vec{F}$
Gauss	integraal over 3D gebied
	integraal over zijn rand
(3D-vectorveld \vec{F})	$\iiint_d ec{ abla} . ec{F} = \iint_S ec{F}$
(2D-vectorveld \vec{F})	$\iint_{D} \vec{\nabla} . \vec{F} = \int_{S} f$
potentiaalfunctie f	

Bij het opstellen van dit overzicht werd gebruik gemaakt van [1]. Dank aan meneer Scheerlinck voor het ontdekken van fouten/typo's.

References

[1] Stefan Vandewalle and L Beernaert. Analyse II: Handboek. SVB Janssen, Leuven, 2018.