1 Infinite Computations

Theorem 1. NBA-recognizable languages are closed under complement.

Proof.

Theorem 2.

 \square

Theorem 3 (Landweber). Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \mathcal{F})$ be a DMA.

- 1. L(A) is DBA-recognizable iff \mathcal{F} is closed under super loops.
- 2. L(A) is E-recognizable iff \mathcal{F} is closed under reachable loops.

Proof.

Theorem 4. NBAs, S1S, S1S₀, and \exists S1S have the same expressive power.

Proof. **NBA** $\Rightarrow \exists \mathbf{S1S}$ Let $\mathcal{A} = (Q, \mathbb{B}^n, 1, \Delta, F)$ be the NBA with $Q = \{1, \dots, m\}$. We encode a run of \mathcal{A} on a word with a formula.

$$\varphi_{\mathcal{A}}(X_{1}, \dots, X_{n}) = \exists Y_{1} \dots \exists Y_{m} \operatorname{Part}(\overline{Y}) \wedge Y_{1}(0) \wedge \operatorname{Trans}(\overline{X}, \overline{Y}) \wedge \operatorname{Fin}(\overline{Y})$$

$$\operatorname{Part}(Y_{1}, \dots, Y_{m}) = \forall x \left(\bigvee_{i=1}^{m} Y_{i}x \wedge \bigwedge_{i=1}^{m} \bigwedge_{j \neq i} \neg Y_{i}x \vee \neg Y_{j}x \right)$$

$$\operatorname{Trans}(\overline{X}, \overline{Y}) = \forall x \bigvee_{\tau \in \Delta} \psi_{\tau}(x, \overline{X}, \overline{Y})$$

$$\psi_{(p,a,q)}(x, X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}) = Y_{p}x \wedge Y_{q}(x+1) \wedge X_{a}x$$

$$\operatorname{Fin}(Y_{1}, \dots, Y_{m}) = \forall x \exists y \left(x < y \wedge \bigvee_{q \in F} Y_{q}y \right)$$

 $\exists \mathbf{S1S} \Rightarrow \mathbf{S1S}$ trivial

 $S1S \Rightarrow S1S_0$ Let $\varphi \in S1S$. We define an equivalent $\varphi' \in S1S_0$ inductively.

• Boolean operators stay the same.

- $\exists x \psi(x) \mapsto \exists X_x(\operatorname{Sing}(X_x) \land \psi'(X_x))$
- $Xx \mapsto X_x \subseteq X$
- $x + 1 = y \mapsto \operatorname{Succ}(X_x, X_y)$

 $S1S_0 \Rightarrow NBA \exists, \lor, \neg$ correspond to projection, union, and complement of automata respectively. Therefore it suffices to give NBAs for the three base formulas.

- $X_1 \subseteq X_2$: $Q = F = \{q_0\}, \Delta = \{(q_0, a, q_0) \mid a \neq (1 \ 0)\}.$
- $\operatorname{Sing}(X)$: $Q = \{q_0, q_f\}, F = \{q_f\}, \Delta = \{(q_0, 0, q_0), (q_f, 0, q_f), (q_0, 1, q_f)\}.$
- Succ(X_1, X_2): $Q = \{q_0, q_1, q_2\}, F = \{q_2\},\$ $\Delta = \{(q_0, (0\ 0), q_0), (q_2, (0\ 0), q_2), (q_0, (1\ 0), q_1), (q_1, (0\ 1), q_2)\}.$

The complexity of this construction is $2 \uparrow \uparrow |\varphi|$.

Theorem 5 (McNaughton). A language is NBA-recognizable iff it is DMA-recognizable.

Proof.
$$\Leftarrow$$
 NBA with $L(\mathcal{A}) = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} L(\mathcal{A}_q) \cap \bigcap_{q \notin F} \overline{L(\mathcal{A}_q)} \right)$ where \mathcal{A}_q is \mathcal{A} starting in q .

Theorem 6. For each Muller automaton, one can construct an equivalent parity automaton. The construction preserves determinism.

Theorem 7. For each ABA, one can construct an equivalent NBA with states at most $3^{|Q|}$.

Proof. Let
$$\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$$
 be an ABA. We define $\mathcal{A}' = (\{0, 1, 2\}^Q, \Sigma, f_0, \Delta, \{0, 2\}^Q)$ with $f_0(q) = \begin{cases} 1 & \text{if } q = q_0 \\ 0 & \text{else} \end{cases}$ and Δ as described below.

A state is a function $f: Q \to \{0,1,2\}$. Consider a run-tree of $\mathcal A$ on some word and all states that are "active" on one level in the tree. f(q) is 0 for all states which are not active and 1 or 2 for all others. A state is assigned to 1 by default, which just means that it is active in some path. It is assigned 2 if "recently" on all paths it is active on, a final state in F was seen. Recently means that it occurred since the last time that an entire level in the run tree was made up of final states.

Formally, we have $(f, a, g) \in \Delta$ for all $g: Q \to \{0, 1, 2\}$ which satisfy the following:

- The active states need to be passed on, i.e. for all $q \in Q$: if $f(q) \in \{1,2\}$ then there must be an $X_q \subseteq Q$ with $X_q \models \delta(q,a)$ such that $g(X_q) \subseteq \{1,2\}$.
- A state is assigned 2 if it is final, i.e. g(q) = 2 if $q \in F$.
- Otherwise, a 1 overwrites a 2 for succession, i.e. for all $p \in P$, if there is a q with f(q) = 1 and $p \in X_q$, then also g(p) = 1.
- If all states are marked with a 2, \mathcal{A}' reached a final state. We reset the values to g(p) = 2 iff $p \in F$.

2 Tree Automata

Theorem 8. Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be a TWA. There is an NTA \mathcal{A}' of size exponential in |Q| that recognizes $T(\mathcal{A})$.

Proof. Let $\sim_{T(\mathcal{A})}$ be the usual equivalence relation, i.e. $t_1 \sim_{T(\mathcal{A})} t_2$ iff $\forall s \in S_{\Sigma} : s \cdot t_1 \in T(\mathcal{A}) \leftrightarrow s \cdot t_2 \in T(\mathcal{A})$. We define a relation $\sim \subseteq T_{\Sigma} \times T_{\Sigma}$ such that $\operatorname{index}(\sim_{T(\mathcal{A})}) \leq \operatorname{index}(\sim) \leq 2^{|Q|^2 \cdot m + 1}$, where m is the maximal rank in Σ .

Let $t_0 \in T_{\Sigma}$ and $a_m \in \Sigma_m$ be arbitrary. For every $t \in T_{\Sigma}$ and $1 \le i \le m$, we define $t^{(i)} = a_m(t_0, t_0, \dots, t, \dots, t_0)$, meaning the *i*-th subtree below the root is *t*. Further, we define a relation $B_t^i \subseteq Q \times Q$ with $(p, q) \in B_t^i$ iff there is a run segment ρ of \mathcal{A} on $t^{(i)}$, such that the run begins at the root of t, never leaves that subtree until the end. Meaning, $\rho = (p, i)(q_1, iu_1) \dots (q_n, iu_n)(q, \varepsilon)$.

Finally, let $t_1 \sim t_2$ iff $t_1 \in T(\mathcal{A}) \leftrightarrow t_2 \in T(\mathcal{A})$ and $\forall i : B_{t_1}^i = B_{t_2}^i$.

Idea: $(p,q) \in B_t^i$ if \mathcal{A} can enter t as i-th child with state p and after some while leaves it again with state q.

Claim : Let $t_1 \sim t_2$. Then $t_1 \sim_{T(\mathcal{A})} t_2$.

Let $s \in S_{\Sigma}$. Due to the symmetric definition of \sim , it suffices to show that $t_1 \in T(\mathcal{A})$ implies $t_2 \in T(\mathcal{A})$, so let $t_1 \in T(\mathcal{A})$. If $s = \circ$, then $s \cdot t_1 = t_1 \in T(\mathcal{A})$. By definition of \sim , this implies $s \cdot t_2 = t_2 \in T(\mathcal{A})$.

Otherwise $s \neq \infty$. Let $\rho_1 \rho_2 \rho_3$ be an accepting run of \mathcal{A} on $s \cdot t_1$ such that ρ_1 only stays outside of t_1 and ρ_2 only stays inside of t_1 . Since $B^i_{t_1} = B^i_{t_2}$, there is a run segment of \mathcal{A} on t_2 which enters and exits the tree with the same states as ρ_2 does, meaning it can replace ρ_2 in the accepting run. Repeating this procedure gives an accepting run of \mathcal{A} on $s \cdot t_2$, so $t_2 \in T(\mathcal{A})$.

Notes on the construction: each state in the NTA corresponds to a list of Q-states that \mathcal{A} had when visiting this node, together with the direction from which it was coming. That can be used to check the correctness of a run.

Theorem 9. A language of finite trees $T \subseteq T_{\Sigma}$ can be recognized by an NTA iff it can be described by a regular tree expression.

Proof. ⇒ Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be an NTA for T. For $R, I \subseteq Q, q \in Q$, we define $T(R, I, q) \subseteq T_{\Sigma \cup C_R}$ (where $C_R = \{c_p \mid p \in R\}$) as the set of all trees on which \mathcal{A} has a run that only uses states in I and ends in q. We can inductively define regular expressions for T(R, I, q). Then $T(\mathcal{A}) = \bigcup_{q \in F} T(\emptyset, Q, q)$.

For all $R \subseteq Q, q \in Q$, $T(R, \emptyset, q)$ contains only trees of height 0 or 1, so it is a finite union of singular languages.

$$T(R, I \cup \{i\}, q) = T(R, I, q) + T(R \cup \{i\}, I, q) \cdot {}^{c_i} (T(R \cup \{i\}, I, i))^{*c_i} \cdot {}^{c_i} T(R, I, i)$$

 \Leftarrow Show by induction that a regular expression r can be transformed to a NTA A_r .

- If $r = t \in T_{\Sigma \cup C}$, then there is an automaton A_t with $T(A_t) = \{t\}$.
- If r = s + t, then A_r is the union automaton of A_s and A_{\sqcup} .
- If $r = s \cdot c t$, then $A_r = (Q_s \cup Q_t, \Sigma \cup C, \Delta_r, F_s)$, where Δ_r simulates A_s and A_t but the final transitions in A_t are replaced by initial transitions to A_s .
- If $r = s^{+_c}$, let $\mathcal{A}_r = (Q_s, \Sigma \cup C, \Delta_r, F_s)$, where Δ_r simulates \mathcal{A}_s and allows "restarts" when a final state could be reached.

Theorem 10. Let D be an EDTD. We can construct a NUTA A with $T(D)^{\complement} = T(A)$ in polynomial time in |D|.

Proof. Let $D=(\Sigma',P,S^{(1)})$. For $a^{(i)}\in\Sigma'$, let $a^{(i)}\to r_{a,i}$ be the according rule in P, where $r_{a,i}$ is a regular expression that can be transformed to a DFA in polynomial time. If $b\in\Sigma$ occurs in $r_{a,i}$ then it must have a unique type j (since D is single-typed). We call $b^{(j)}$ the b-successor of $a^{(i)}$. If b does not occur in $r_{a,i}$, we say that the b-successor is b^{\perp} . Furthermore, we assume $r_{a,\perp}=\varepsilon$ for all a.

We define a typing function $f: \mathrm{dom}_t \to \{\bot, 1, \dots, k\}$. We assign $f(\varepsilon) = \begin{cases} 1 & \text{if } \mathrm{val}_t(\varepsilon) = S \\ \bot & \text{else} \end{cases}$.

For the other nodes, let u be a node with parent v. We call $\operatorname{val}_t(v) = a$ and $\operatorname{val}_t(u) = b$. Then there is a unique $i \in \{\bot, 1, \ldots, k\}$ such that $b^{(i)}$ is the b-successor of $a^{f(v)}$. We set f(u) := i.

Claim: $t \in T(D)$ iff $\forall v \in \text{dom}_t : f(v) \neq \perp$ and $a_1^{f(v)} \dots a_m^{f(v)} \in L(r_{a,f(v)})$, where $a = \text{val}_t(v)$ and $a_i = \text{val}_t(v)$. (without proof)

Using this claim, we can provide an automaton $\mathcal{A} = (Q, \Sigma, \Delta, F)$ that accepts a tree iff it violates the constraint.

- $Q = \Sigma \times \{\bot, 1, ..., k\} \times \{0, 1\}$, where the last component denotes whether a violation was found.
- $\Delta = \{(L_{a,i,x}, a, (a, i, x)) \mid a \in \Sigma, i \in \{\bot, 1, \dots, k\}, x \in \{0, 1\}\}$ Let $\alpha = (a_1, i_1, x_1) \dots (a_m, i_m, x_m) \in Q^m$ and $w := a_1^{(i_1)} \dots a_m^{(i_m)} \in (\Sigma')^m$.
 - succ : \Leftrightarrow for all $1 \leq j \leq m$, $a_j^{(i_j)}$ is the a_j -successor of $a^{(i)}$.
 - $-\operatorname{sat}_0:\Leftrightarrow w\in L(r_{a,i})$ and for all $1\leq j\leq m,\,x_j=0$ and $i_j\neq\perp$.
 - $-\operatorname{sat}_1:\Leftrightarrow w\notin L(r_{a,i})$ or there is a $1\leq j\leq m$ such that $x_j=1$ or $i_j=\perp$.

Then $\alpha \in L_{a,i,x}$ iff succ and sat_x hold.

• $F = \{(S, 1, 1)\} \cup \{(a, i, x) \mid a \neq S\}$, meaning either a violation was found or the starting symbol was not S.

Theorem 11. The class of DTWA-recognizable languages is closed under complement.

Proof. Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, \{q_f\})$ be a DTWA that only moves to q_f at the root. The **backwards configuration graph** BCG (\mathcal{A}, t) is defined as a tree over $Q \times \text{dom}_t$ with root (q_f, ε) . For a node (q, u), the children are all (p, v) such that $(p, v) \to_{\mathcal{A}} (q, u)$. We define $\overline{\mathcal{A}}$ in a way that it performs DFS on the BCG of the input tree and accepts iff the node (q_0, ε) is found.

For that, let $\prec \subseteq (Q \times \text{Dir})^2$ be an arbitrary linear order on $Q \times \text{Dir}$. We set $\overline{\mathcal{A}} = (\overline{Q}, \Sigma, q_0, \overline{\delta}, q_f)$ with $\overline{Q} = \{q_0, q_f\} \cup \{\langle p, (q, d) \rangle \mid p, q \in Q, d \in \text{Dir}\}$. The behavior of $\overline{\delta}$ is described below. Let $\langle q, (q', d) \rangle$ be a state.

Case 1: In the ordering \prec , (\hat{q}, \hat{d}) is the next largest element after (q', d). (for q_0 we also consider this case with the \prec -minimal pair.)

Case 2 :
$$(q',d)$$

Theorem 12. Let $T \subseteq T_{\Sigma}$. T is regular iff fcns(T) is regular.

Proof. \Rightarrow Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be a NUTA with $T(\mathcal{A}) = T$. Wlog we assume that \mathcal{A} is normalized. For every transition $\tau = (L_{a,q}, a, q) \in \Delta$, let $\mathcal{B}_{a,q} = (P_{a,q}, Q, p_{a,q}^0, \Delta_{a,q}, F_{a,q})$ be a NFA with $L(\mathcal{B}_{a,q}) = L_{a,q}$. We define $\mathcal{A}_{fcns} = (Q_{fcns}, \Gamma, \Delta_{fcns}, F_{fcns})$ so that $T(\mathcal{A}_{fcns}) = fcns(T)$.

- $Q_{\text{fcns}} = \{q_f, q_\#\} \cup \bigcup_{a \in \Sigma, q \in Q} P_{a,q}$
- $F_{\text{fcns}} = \{q_f\}$
- Δ_{fcns} :
 - $-(\#,q_\#)$
 - For all $p \in \bigcup_{a \in \Sigma, q \in Q} F_{a,q}$: (#, p)
 - For all $a \in \Sigma, q \in F$: $(p_{a,q}^0, q_\#, a, q_f)$
 - For all $a \in \Sigma, p \in P, p' \in P, q \in Q$ with $(p, q', p') \in \bigcup_{b \in \Sigma, q' \in Q} \Delta_{b, q'}$: $(p_{a,q}^0, p', b, p)$

Via induction on $t_1 ldots t_n$, one can show that $p \in \Delta_{\text{fcns}}^*(\text{fcns}(t_1 ldots t_n))$ iff there are $q_1, ldots q_n \in Q$ such that $\forall i : q_i \in \Delta^*(t_i)$ and $q_1 ldots q_n \in L(\mathcal{B}_{a,q} \text{ init } p)$.

$$\Leftarrow$$
 Let $\mathcal{A} = (Q, \Sigma, \Delta, F)$ be an NTA with $T(\mathcal{A}) = \text{fcns}(T)$. We define