ЛЕКЦИЯ 9

Основные понятия.

Дифференциальные уравнения 1-го порядка. Дифференциальные уравнения с разделяющимися переменными.

§1. Основные понятия.

<u>Определение 1.</u> Дифференциальным уравнением (ДУ) называется уравнение, которое содержит производные (или дифференциалы) от искомой функции и может содержать искомую функцию и независимую переменную (переменные).

Различают

1. Уравнения в частных производных.

В этом случае искомая функция зависит от нескольких переменных $y = f(x_1, x_2, ..., x_n)$ и ДУ содержит частные производные от искомой функции по независимым переменным, а также может содержать искомую функцию $f(x_1, x_2, ..., x_n)$.

2. Обыкновенные дифференциальные уравнения (ОДУ).

В этом случае y = f(x), т.е. искомая функция зависит только от одной переменной.

Пример № 1.

1.1.
$$z = f(x, y), \quad x \frac{\partial z}{\partial y} - y \frac{\partial z}{\partial x} = 0.$$

1.2.
$$y''-y'=\sin x$$
, $y=f(x)$.

Мы будем изучать ОДУ.

<u>Определение 2.</u> Порядок старшей производной (дифференциала), входящей в ДУ называется порядком ДУ.

Пусть y = f(x), тогда уравнение

$$F(x, y, y', ..., y^{(n)}) = 0$$
 (1)

это ДУ *п*-го порядка общего вида.

Если разрешить это уравнение относительно старшей производной, то получится уравнение

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)}),$$
(2)

которое называется ДУ *п*-го порядка в нормальной форме.

Заметим, что (1) – ДУ n-го порядка неразрешенное относительно старшей производной, (2) – ДУ n-го порядка разрешенное относительно старшей производной.

Интегрирование ДУ.

Определение 3. Процесс нахождения решения ДУ называется решением ДУ.

При интегрировании ДУ возможны два следующих случая:

- 1. Все решения ДУ выражаются через элементарные функции. Это уравнение, которое интегрируется в элементарных функциях.
- 2. ДУ не интегрируется в элементарных функциях, но все его решения выражаются через неопределенные интегралы от элементарных функций.

Операция взятия неопределенного интеграла называется квадратурой, поэтому такие ΠY называются интегрируемыми в квадратурах.

<u>Пример № 2.</u> 2.1. y''+y=0;

 $y = c_1 \cdot \sin x + c_2 \cdot \cos x$ – решение ДУ проинтегрировано В элементарных функциях.

2.2. $y' = \frac{\sin x}{x}$; $y = \int \frac{\sin x}{x} dx + c$ — решение ДУ проинтегрировано в квадратурах.

Рассматриваем ДУ в общем виде $F(x,y,y',....,y^{(n)})=0$ (1) или в нормальной форме $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ (2).

<u>Определение 4.</u> Любая функция y = f(x), определенная и непрерывная в промежутке $x \in X$, $X \subseteq R$ вместе со своими производными $y', y'', ..., y^{(n-1)}, y^{(n)}$ до порядка n, которая при подстановке в уравнение (1) или (2) обращает его в тождество, справедливое при $x \in X$, называется *решением* этого уравнения в интервале X.

Пример № 3.

3.1.
$$y''+y=0$$
; Решения: $y(x)=\sin x$, $y(x)=\cos x$, $y(x)=c_1\cos x+c_2\sin x$.

Это можно проверить путем подстановки указанных функций в заданное уравнение.

3.2.
$$y'=y^2$$
. Решение: $y=\frac{1}{1-x}$, $x \ne 1$.

Проверка: Имеем
$$y' = \frac{1}{(1-x)^2}$$
, $y^2 = \frac{1}{(1-x)^2}$.

Следовательно, $\frac{1}{(1-x)^2} = \frac{1}{(1-x)^2}$.

Заметим, что график решения ДУ называется интегральной кривой.

Пример № 4.

4.1.
$$y''+y=0$$
; $x \in R$.

Решение: $y = \sin x$.

Синусоида – интегральная кривая этого уравнения.

4.2.
$$y' = y^2$$
. $x \ne 1$.

Решение: $y = \frac{1}{1-x}, x \neq 1.$

Равнобочная гипербола – интегральная кривая этого уравнения.

<u>Определение 5.</u> Множество всех без исключения решений ДУ называется общим решением этого уравнения.

Замечание 1.

Термин «общее решение» обычно используется, если все решения заданы явно. Если решение задано неявно, то используется термин «общий интеграл».

Замечание 2.

Общее решение ДУ $F(x,y,y',....,y^{(n)})=0$ n-го порядка имеет n констант $c_1, c_2, ..., c_n$, то есть имеет вид:

$$y = f(x, c_1, ..., c_n).$$

То же можно сказать и об общем интеграле ДУ n-го порядка. Он имеет вид $\varphi(x,y,c_1,c_2,...,c_n)=0$.

Чтобы из общего решения ДУ выделить одно решение, нужно задать n дополнительных условий. Это делается 2-мя способами:

1. Задают начальные условия (в одной точке
$$x_0$$
):
$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, \ y^{(n-1)}(x_0) = y_{n-1},$$
 (3)
$$x_0 \in X, \ y_0, y_1, \dots, y^{(n-1)} - const \text{ (некоторые числа)}.$$

2. Задают краевые условия в нескольких точках $x_1, x_2, ..., x_k$ $(k \ge 2)$ $y(x_0) = y_0, y'(x_1) = y_1, y''(x_2) = y_2, ..., y^{(n-1)}(x_{n-1}) = y_{n-1},$ (4) где $x_0, x_1, ..., x_{n-1} \in X$; $y_0, y_1, ..., y^{(n-1)} - const$ (некоторые числа).

Задание начальных условий позволяет сформулировать *задачу Коши*. Задача Коши для ДУ *n*-го порядка.

Найти решение ДУ *п*-го порядка

 $y^{(n)} = f(x, y, y', ..., y^{(n-1)}), \quad x \in X, \quad X \subseteq R, \quad$ удовлетворяющее начальным условиям (условиям Коши)

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{(n-1)}(x_0) = y_{n-1},$$

где $x_0 \in X$, $y_0, y_1, ..., y^{(n-1)} - const$ (некоторые числа).

Решая задачу Коши, мы находим частное решение ДУ.

Задание граничных условий позволяет сформулировать *граничную задачу*, решая которую мы также находим частное решение ДУ.

Геометрическая интерпретация задачи Коши.

Найти интегральную кривую y = f(x) (или $\varphi(x, y) = 0$), которая является решением ДУ n-го порядка.

 $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$ и проходит через заданную точку $M(x_0, y_0)$.

Пример № 5.

Указать, какие из функций являются решением заданного ДУ. Указать какие функции являются общими решениями, а какие частными.

5.1.
$$y'' + y = 0$$
. Функции: $y(x) = \sin x$, $y(x) = \cos x$, $y(x) = c_1 \sin x + c_2 \cos x$. Решение.

- 1) $y = \sin x$, $y' = \cos x$, $y'' = -\sin x$; $y'' + y = -\sin x + \sin x = 0$. 0 = 0. Частное решение.
- 2) $y = \cos x$, $y' = -\sin x$, $y'' = -\cos x$; $y'' + y = -\cos x + \cos x = 0$. 0 = 0. Частное решение.
- 3) $y = c_1 \sin x + c_2 \cos x$; $y' = c_1 \cos x c_2 \sin x$; $y'' = -c_1 \sin x c_2 \cos x$; y'' + y = 0; $0 \equiv 0$. Общее решение.

5.2.
$$(x+1)dy + xydx = 0$$
. Функции : $y_1 = (x+1) \cdot e^{-x}$, $y_2 = -1$.

<u>Ответ:</u> y_1 и y_2 — частные решения заданного уравнения. Доказательство также как и в предыдущем случае выполняется непосредственной подстановкой.

Отметим, что поиск решения ДУ (1), удовлетворяющего начальным условиям (3) называется решением задачи Коши для уравнения (1).

Замечание. Решение задачи Коши – частное решение ДУ (1).

Пример № 6.

Проверить, что $y = x^4 + 2$ – решение задачи Коши $x^2y'''-2y'=16x^3$ и удовлетворяет начальным условиям:

$$y(0) = 2$$
, $y'(0) = y''(0) = 0$.

Решение:

Имеем $y = x^4 + 2$, $y' = 4x^3$, $y'' = 12x^2$, y''' = 24x.В результате подстановки полученных производных в уравнение получаем:

$$x^2 \cdot 24x - 2 \cdot 4x^3 = 16x^3$$
, To ect $0 = 0$.

Ответ: $y = x^4 + 2$ — частное решение заданного ДУ.

§2. Дифференциальные уравнения 1-го порядка.

$$F(x, y, y') = 0 - ДУ$$
 1-го порядка общего вида (5)

$$y' = f(x, y) - ДУ$$
 1-го порядка в нормальной форме (6)

Определение 6. Любая функция y = f(x) определенная и непрерывная в промежутке $x \in (a,b)$ вместе со своей производной y'(x), которая при подстановке в уравнение (5) или (6) обращает его в тождество, справедливое при $x \in (a,b)$, называется решением этого уравнения в интервале (a,b).

Установим связь между уравнением y'=f(x,y) и его интегральными кривыми.

Пусть правая часть этого уравнения (y'=f(x,y)) определена в области $G, G \subset \mathbb{R}^2$. (рис. 4)

y = y(x) — интегральная кривая этого уравнения, проходящая через т. M(x, y).

Проведем касательную в т. М.

 $\angle \alpha$ — угол, который образует эта касательная к кривой y = f(x) в т. M с положительным направлением оси Ox.

$$\operatorname{tg} \alpha = f'(x) \Longrightarrow$$

$$tg \alpha = f(x, y)$$

Следовательно, справедливо следующее:

- 1. Наклон касательной к интегральной кривой заранее определен самим ДУ;
- 2. Наклон касательной можно указать не находя интегральных кривых.

Это делаем так:

В каждой точке $M \in G$ строим единичный отрезок с центром в этой точке, который составляет $\angle \alpha$ с положительным направлением оси Ox.

Множество таких единичных отрезков, построенных на области G, образует поле направлений, определяемое уравнением

$$\frac{dy}{dx} = f(x, y) \tag{6}.$$

Замечание:

Можно определить под каким углом интегральные кривые пересекают ось Ox. В этом случае y=0, т.е. уравнение (6) перепишется в виде: y'=f(x,0), т.е.

$$tg \alpha = f(x,0).$$

Пример № 7.

 $\frac{dy}{dx} = x^2 + y^2$. Определить под каким углом интегральные кривые пересекают ось Ox в точках: x=1, x=3.

Имеем:

$$\frac{dy}{dx} = 1^2$$
; tg $\alpha = 1$ в т. $M(1;0)$.
 $\frac{dy}{dx} = 3^2$; tg $\alpha = 9$ в т. $M(3;0)$.

Ответ: $tg \alpha = 1$; $tg \alpha = 9$.

Замечание 2.

Можно определить какой угол с осью Ox образуют интегральные кривые уравнения $\frac{dy}{dx} = f(x,y)$ в точках их пересечения с заданной кривой $y = \varphi(x)$.

В этом случае тангенс нужного угла определяется по формуле: $tg \alpha = f(x, \varphi(x))$.

<u>Пример № 8.</u> Найдите какой угол с осью Ox образуют интегральные кривые уравнения $\frac{dy}{dx} = y - x$ в точках их пересечения с кривой y = x.

<u>Решение:</u> $\frac{dy}{dx} = x - x = 0$. Следовательно, $\operatorname{tg} \alpha = 0$.

Определение 7. Кривая $\omega(x,y) = 0$, в каждой точке которой направление поля, определенное ДУ $\frac{dy}{dx} = f(x,y)$ одно и то же, называется изоклиной этого уравнения.

Уравнение изоклин: f(x, y) = k; $k = \operatorname{tg} \alpha$; k - const.

Особые точки ДУ 1-го порядка.

Дано ДУ 1-го порядка в нормальной форме:

$$\frac{dy}{dx} = f(x, y).$$

Если функция f(x) не определена в точке $M_0(x_0,y_0)$, но определена в окрестности этой точки $u(M_0)$, то в точке $M_0(x_0,y_0)$ поле направлений не задано.

Такие точки называются особыми или изолированными точками ДУ или поля направлений.

Пример № 9. Указать особые точки ДУ: $\frac{dy}{dx} = \frac{y}{x}$.

<u>Решение</u>: Это уравнение имеет особую точку O(0;0). $\lg \alpha = \frac{y}{x} = k$. Следовательно y = kx, если $x \neq 0$. Получаем следующие интегральные кривые рассматриваемого уравнения:

$$\begin{cases} y = k \cdot x, & \text{если } x \neq 0 \\ x = 0, & \text{если } y \neq 0 \end{cases}$$

Эти интегральные кривые изображены на рис 5.

Задача Коши для ДУ 1-го порядка.

Найти решение ДУ 1-го порядка $\frac{dy}{dx} = f(x, y)$, удовлетворяющее начальному условию (условию Коши)

$$y(x_0) = y_0$$
, где $x_0, y_0 - const$ (числа).

Замечание:

Если $y_0 = 0$, то задача Коши называется нулевой.

Геометрическая интерпретация задачи Коши:

Найти интегральную кривую y = f(x),

являющуюся решением $\frac{dy}{dx} = f(x, y)$ и проходящую через заданную точку $M(x_0, y_0)$.

Пример № 10.

Показать, что $y = e^x + 1$ — решение задачи Коши 1-го порядка:

$$y'=y-1, y(1)=e+1.$$

<u>Решение:</u> $y = e^x + 1$, $y' = e^x$;

 $e^{x} = e^{x} + 1 - 1$; 0=0; y(1) = e + 1, что и требовалось показать.

Существуют разные типы ДУ 1-го порядка. Перейдем к рассмотрению некоторых из них.

§3. Дифференциальные уравнения с разделяющимися переменными.

Определение 8. Уравнение вида
$$g(y)dy = f(x)dx \tag{7}$$

называется уравнением с разделенными переменными.

Решение уравнения (7) базируется на следующей теореме:

Теорема 1. Пусть в уравнении (7) функции f(x) и g(y) непрерывны на интервалах $I = (x_1, x_2)$ и $J = (y_1, y_2)$ соответственно. Пусть G(y) и F(x) некоторые первообразные функций g(y) и f(x) на интервалах J и I соответственно. Тогда общий интеграл ДУ (1) задается равенством

G(y) = F(x) + c, где c – произвольная постоянная.

$$\frac{dy}{dy} = \frac{dx}{x}$$

Решение:
$$\int \frac{dy}{y} = \int \frac{dx}{x}$$
; $\ln|y| = \ln|x| + \ln|c|$, $c \neq 0$.

Otbet: $y = c \cdot x, c \neq 0$.

Определение 2. Дифференциальное уравнение вида

$$f_1(x) \cdot g_1(y) dx + f_2(x) \cdot g_2(y) dy = 0$$
 (8)

называется ДУ с разделяющимися переменными.

Если ни одна из функций $f_1(x)$, $f_2(x)$, $g_1(y)$, $g_2(y)$ не равна тождественно нулю, то в результате деления уравнения (8) на $f_2(x) \cdot g_1(y)$ оно приводится к виду:

$$\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0.$$

Почленное интегрирование последнего уравнения приводит к соотношению

$$\int \frac{f_1(x)}{f_2(x)} dx + \int \frac{g_2(y)}{g_1(y)} dy = c.$$

Это уравнение определяет (в неявной форме) решение исходного уравнения. (Такое решение, т.е. решение ДУ, выраженное в неявной форме, называется интегралом этого уравнения).

Пример № 12. Решить уравнения:

$$12.1. \ y^2 dy = x dx.$$

Решение:
$$\frac{y^3}{3} = \frac{x^2}{2} + \frac{c}{6}$$
.

Otbet:
$$2y^3 = 3x^2 + c, c \in R$$
.

$$12.2. xdy - ydx = 0.$$

Решение:
$$\frac{dy}{y} = \frac{dx}{x}$$
; $\ln|y| = \ln|x| + \ln|c|$, $c \neq 0$. $y = cx$, $c \neq 0$.

Кроме того в результате разделения переменных было выполнено деление на функцию $x \cdot y$, в результате которого была сужена область допустимых значений исходного уравнения, что могло привести к потере 2-х решений: $y(x) \equiv 0$, $x \equiv 0$.

Подстановкой убеждаемся, что это решения нашего уравнения. Причем решение $y(x) \equiv 0$ содержится в решении y = cx при c = 0, а функция $x \equiv 0$ не попадает в семейство y = cx ни при каком конечном значении константы c. C учетом этого пояснения записываем ответ.

Otbet:
$$y = cx, x \in R$$
; $x \equiv 0$.

12.3.
$$x(y^2-4)dx + ydy = 0$$
.

Решение:

$$xdx + \frac{ydy}{y^2 - 4} = 0; \quad x^2 + \ln|y^2 - 4| = \ln|c|, \quad c \neq 0.$$
 $y^2 - 4 \neq 0.$ $y^2 - 4 = c \cdot e^{-x^2}$ - общий интеграл ДУ.

В результате сужения ОДЗ могли потерять $y = \pm 2$. Непосредственной проверкой устанавливаем, что это решения нашего уравнения. Эти решения не являются особыми, т.к. получаются из общего интеграла при c=0.

OTBET:
$$y^2 - 4 = c \cdot e^{-x^2}$$
, $c \in R$, $x \in R$.
12.4. $y' = \operatorname{tg} x \cdot \operatorname{tg} y$.

Решение: Разделяем переменные. Получаем $\int \frac{dy}{\mathrm{tg}\ y} = \int \mathrm{tg}\ x dx$, где $y(x) \neq 0$.

Имеем $\int \cot y \, dy = \int \tan x \, dx, \qquad \text{где} \qquad \int \cot x \, dx = \ln \left| \sin x \right| + c,$ $\int \tan x \, dx = -\ln \left| \cos x \right| + c$

Следовательно, $\ln \left|\sin y\right| = -\ln \left|\cos x\right| + \ln \left|c\right|, \ c \neq 0.$ Отбрасывая логарифмы получаем: $\sin y \cdot \cos x = c, \ c \neq 0$

Проверяем и показываем, что $y(x) \equiv 0$ не особое решение ДУ,е особое, т.к. получается из общего при c = 0.

Otbet: $\sin y \cdot \cos x = c, c \in R$.

Решить самостоятельно ДУ и задачи Коши:

- **1.** Решить уравнение: $y' = \frac{ye^x}{1 + e^x}$;
- **2.** $6xdx 6ydy = 3x^2ydy 2xy^2dx$;
- $3.(1+y^2)dx xydy = 0, y(1) = 0;$
- **4.** $y' = \cos(y x)$.

Литература.

- 1. Пискунов Н.С. Дифференциальное и интегральное исчисления. Для втузов, том II.
- 2. Задачи и упражнения по математическому анализу для втузов. Под редакцией Б.П.Демидовича.
- 3. Лекция 9. Антиповой Т.Н.