11) Publication number:

0 100 843

A1

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 83106043.9

(51) Int. Cl.³: C 08 L 23/04

22 Date of filing: 21.06.83

C 08 J 5/18

30 Priority: 22.06.82 US 391056

43 Date of publication of application: 22.02.84 Bulletin 84/8

Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE

(1) Applicant: PHILLIPS PETROLEUM COMPANY 5th and Keeler Bartlesville Oklahoma 74004(US)

(2) Inventor: Bailey, Fay Wallace 6001 S.E. Harvard Drive Bartlesville Oklahoma 74003(US)

(2) Inventor: Whitte, William Michael 1801 S.E. Rolling Hills Place Bartlesville Oklahoma 74003(US)

Partner Postfach
Bardehle-Pagenberg-Dost-Altenburg & Partner Postfach
86 06 20
D-8000 München 86(DE)

54 Ethylene polymer blend.

(5) Ethylene polymer blends of a high molecular weight ethylene polymer, preferably an ethylene-mono-1-olefin copolymer, and a low molecular weight ethylene polymer preferably an ethylene homopolymer, both preferably with narrow molecular weight distribution and low levels of long chain branching exhibit excellent film properties and good environmental stress crack behavior superior to that expected for polyethylene of comparable density and melt flow. These resins are useful for the manufacture of film or in blow molding techniques, the production of pipes and wire coating.

EFFECT OF HLMI OF HIGH MOLECULAR WEIGHT COMPONENT ON MELT INDEX OF BLEND CONCENTRATION OF HIGH MOLECULAR WEIGHT POLYMER IS 52%. DASHED LINES ARE 95% CONFIDENCE INTERVALS. $FIG.\ I$

ETHYLENE POLYMER BLENDS

Background of the Invention

The present invention relates to the production and use of blends of ethylene polymers of different molecular weight. More specifically the present invention relates to film grade ethylene polymer blends.

5

10

15

20

25

In recent years high density polyethylene film has been commercially very successful as a replacement for kraft paper. Several new film resins have therefore been introduced on the market. Among these new resins are high molecular weight high density polyethylene resins having a broad molecular weight distribution.

The production of high density polyethylene today can be called a mature technology. One of the continuing goals in this technology is to develop catalysts with high productivities so that a catalyst removal step can be avoided in the polymer production. Such high productivity catalysts have been developed in recent years. These catalysts sometimes produce ethylene polymers with a narrow molecular weight distribution.

Thus, resins produced with/high productivity catalysts in view of their narrow molecular weight distribution are often not ideal for the above described application of the high density polyethylene as a film forming resin. It would be very desirable to have an ethylene polymer composition available which can be produced with high productivity catalysts and which still has film grade resin qualities. There is a further specific problem encountered in the production of resins for applications as films. The film properties desired and the desired processability of the resin are often in conflict. Improvements on the

processability frequently result in reduced film qualities and vice versa.

The desired properties of film for many applications conflict with each other. For example, polymers with good toughness (impact resistance) are usually deficient in stiffness for grocery sacks. Those that make stiff sacks are too brittle. Thus, most film polymers are a compromise: a balance of performance features.

The Invention

It is one object of this invention to provide an ethylene 10 polymer resin composition useful for such applications as film production.

Another object of this invention is to provide ethylene polymer resin mixtures that are satisfactory with respect to both the film properties and the processability of the resin.

Another object of this invention is to provide ethylene polymer resin for blown film applications.

15

20

25

30

35

A further object of this invention is to provide ethylene polymer resin compositions, the polymers of which can be made with high productivity olefin polymerization catalysts.

Yet another object of this invention is to provide a process for the production of such resin compositions.

Still another object of this invention is to provide a process for the manufacture of polyolefin film from such a resin composition which has acceptable film properties.

A yet further object of this invention is to provide an ethylene polymer film having high strength and, in particular, high tear strength, puncture resistance, impact strength and high environmental stress crack resistance (ESCR).

An important object of this invention is to provide a resin composition having a better balance of stiffness and impact and ESCR as compared to known resins.

These and other objects, advantages, features, details and embodiments of this invention will become apparent to those skilled in the art from the following detailed description of the invention and the appended claims and the drawings in which Figures 1-7 show regression analysis correlations between HLMI of the high molecular weight component

and blend properties, Figures 8 and 9 show typical molecular weight distributions of blends of this invention.

In accordance with this invention it has been found that a mixture of a low molecular weight ethylene polymer and a high molecular weight ethylene polymer exhibits both desirable processing properties and excellent film properties when extruded into a polyolefin film. The polymer blends so composed are useful for the production of polyolefin film, particularly by blown tubing techniques, and for blow-molding (e.g. to produce bottles), pipe production and wire coating.

5

10

The low molecular weight ethylene polymer, the high molecular weight ethylene polymer and the blend are further characterized in Table I. The typical bimodal molecular weight distribution of the resin blends of this invention is shown for two different samples in Figure 8 and 9, respectively.

TABLE I

PROPERTIES OF THE ETHYLENE POLYMERS AND BLENDS

				
5		High Molecular Weight Ethylene Polymer	Low Molecular Weight Ethylene Polymer	Blend
	HLMI (g/10 min)			
	generally preferred	0.1-1.5 0.2-0.6		3-34 5-12
10 ·	MI (g/10 min)			
	generally preferred		45-300 100-300	0.01-0.6 0.03-0.5
15	Density (g/cc)			
	generally preferred	about 0.930-0.955 about .930945	about 0.945-0.975 about .950975	.940965 .950960
	Structure (Monomers)		•	
20	generally -	Ethylene or Ethylene and 0 to 30 wt. % C ₃₋₁₀ olefins	Ethylene or Ethylene and 0 to 30 wt. % C ₃₋₁₀ olefins	
25	preferred	Ethylene and 1 to 15 wt. % C ₃₋₇ olefins	0.5 to 5 wt. $\%$ C_{3-10} olefins	
30	most preferred	Ethylene and 5 to 10 wt.% C ₄₋₁₀ olefins (random copolymer)	Ethylene ("Homopolymer" i.e. one that contains less than about 2 weight % C ₄₋₁₀ olefin comonomer most preferably a true	
35	Branching	essentially no branching other than short chain branching from comonomer	ethylene homopolymer) essentially linear	
40	$\frac{\text{Molecular Weight}}{\text{Distribution (SEO)}} $ $\frac{\text{(HI = M}_{w}/\text{M}_{n})}{\text{(HI = M}_{w}/\text{M}_{n})}$	<u>:)</u>		
	generally	<10	<6	>18
	preferred	4-9	2-4	20-35

The various polymer properties in this table and following tables are determined as follows:

MI (melt index, g/10 min, 190°C): ASTM D 1238-65T, load of

2.16 kg

5 HLMI (High load melt index, g/10 min, 190°C): ASTM D 1238-65T, load of

21.6 kg

Density(g/cc): ASTM D 1505-68

M_w = weight average molecular weight, determined by size exclusion chromatography (SEC)

 M_n = number average molecular weight, determined by size exclusion chromatography (SEC)

HI = heterogeneity index = $\frac{M}{W} / \frac{M}{n}$

10

The preferred polymers and blends have molecular weights and molecular weight distributions roughly as shown in the following table:

TABLE II	
Component #1 (High Molecular Weight)	
Approximate Values	Typical Range
M _w ~ 500,000	400,000 to 700,000
M _n ~ 70,000	•
$M_{\rm w}/M_{\rm m} \sim 7.5$	4 to 9
Component #2 (Low Molecular Weight)	
M _w ~ 15,000	10,000 to 20,000
M _n ~ 5,000	
M _w /M _n ~ 3	2 to 4
Blend	
M _w ~ 270,000	200,000 to 400,000
M _n ~ 10,000	,
$M_{\rm w}/M_{\rm n} \sim 27$	20 to 35
	Component #1 (High Molecular Weight) Approximate Values Mw ~ 500,000 Mn ~ 70,000 Mw/Mn ~ 7.5 Component #2 (Low Molecular Weight) Mw ~ 15,000 Mn ~ 5,000 Mn ~ 3 Blend Mw ~ 270,000 Mn ~ 10,000

The presently preferred ethylene polymers and copolymers within the limits set forth above are those produced with high productivity catalysts such as titanium/magnesium catalysts used in conjunction with organoaluminum cocatalysts. Such catalysts as well as polymerization processes to make such ethylene polymers are described in more detail in

European Patent Application No. 81 106 259.5 and 81 102 181.5 disclosure of which is herein incorporated by reference.

In accordance with the first embodiment of this invention a process to produce an ethylene polymer composition is provided. process comprises blending the two ethylene polymers described above in relative quantities described below. The blending can be done by simply dry blending the two kinds of polymers in fluff (powder) form. Other possibilities to mix the polymers include melt blending in a pelletizing Banbury mixers and single or twin screw extruders can be extruder. The preferred method is dry blending followed by melt utilized. The blending conditions depend upon the blending technique blending. If a dry blending of the polymer fluff is the blending employed. technique, the blending conditions may include temperatures from room temperature up to about 120° C and blending times in the range of a few seconds to minutes, e.g. 2 seconds to 5 minutes. If extrusion blending is used, the temperature of the polymers introduced into the extruder will be generally between room temperature and a temperature near the melting point of the polymer; the outlet temperature of the extrusion blended polymer will be in the range between the melting point of the polymer and up to 160° C above the melting point. The individual polymer particles usually remain in the extruder for a time of about 10 20 seconds to about 15 minutes. If solution blending techniques are employed the blending temperature will generally be 25 to 50° C above the cloud point of the solution involved.

10

15

25

30

Another embodiment of this invention is a polymer blend of the Such a blend consists two ethylene polymers as defined above. essentially of the two polymers and commonly used polymer additives such as antioxidants, UV stabilizers, fillers, pigments etc. The main polymer ingredients are present in this blend in quantities based on the total polymer as specified in Table III.

TABLE III BLEND COMPOSITION (WEIGHT %)

7

		Generally	Preferred
5	High molecular weight ethylene polymer (HLMI 0.1 to 1.5)	40 to 70	about 50 to about 55
10	Low molecular weight ethylene polymer (MI 45-300)	60 to 30	about 50 to about 45

The resins blended are preferably selected from the HLMI and the MI ranges respectively so that a high molecular weight resin from the lower end of the range for HLMI values is blended with a low molecular weight resin from the higher end of the range for the MI values and vice versa.

Other embodiments of this invention are a method to produce an ethylene polymer film and the film so produced. The method of producing the ethylene polymer film includes extruding a molten web composed of the ethylene polymer blend defined above which is drawn down to the desired thickness, generally in the range of 0.1 to 5 mil. Extruding a flat film (width between 1 foot and 15 feet) and extruding a film tubing are both contemplated in this embodiment. The tubular extrusion with a blow/up ratio of tubing diameter to orifice die diameter in the range of about 2:1 to 10:1 is presently preferred. Typical dies have orifice diameters of 1" to 100".

The invention will be still more fully understood from the following examples which are intended to illustrate the invention and further preferred embodiments thereof without undue limitation of the scope of this invention.

The experimental methods and procedures employed in the following examples were as follows:

Ethylene Polymer Production

15

20

25

30

In a pilot plant several ethylene homopolymers and ethylene

1-hexene copolymers were produced with high activity titanium/magnesium
catalysts. These catalysts are described in detail in the above cited
European Patent Applications. Polymers produced were either high
molecular weight or low molecular weight polymers as further specified in

the following examples. For stabilization during the processing the following additives were admixed with the polymers:

BHT (2,6-di-t-butyl-4-methylphenol)	0.05 weight %
DLTDP (dilauryl thiodipropionate)	0.03 weight %
Calcium stearate	0.04 weight %

In some of the examples 0.1 weight % of Irganox 1010[®] (tetrakis-[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)]methane commercially available from Ciba-Geigy) was also added.

The mixing of the two ethylene polymer components was carried out in a variety of apparatus. A Henschel mixer was used to blend the fluff. A Farrel Banbury size 00, a Farrel 2FCM and a Davis-Standard 38 mm single screw extruder were used as shown in the following tables. The polymer blend obtained from the Banbury mixer was finished in a Foremost QG10-10 granulator, a Davis-Standard 150S 38 mm extruder or respectively a Cumberland 6 pelletizer.

The ethylene polymer blend was converted to a blown film using a 38 mm Davis-Standard extruder of 24-1 length/diameter ratio screw. The film die was 10.2 cm in diameter with a 0.56 mm die gap. An air ring was used to cool and support the ethylene polymer bubble in a film tower. The extrusion temperature was in the range of 250 \pm 20° C. The film produced generally had a thickness of 1 mil. The blow/up ratio was 4:1 and the linear drawdown ratio was 5.5:1.

The various properties of the ethylene polymer film were measured as follows:

25 Dart Impact:

5

10

15

20

30

The dart impact resistance of the one mil film was measured using ASTM D 1709-75. This method measured the energy required to break the film upon impact of a free falling dart. This method established the weight of the dart dropped from a height of 26 inches which caused 50 percent of the samples to break. The staircase method was used to determine the 50 percent failure level, and the missile weight increment was 15 g.

Elmendorf Tear:

The Elmendorf tear resistance, called tear in Table XV, was measured using ASTM D 1922. This is a modification for polymer film

adapted from the Elmendorf tear test used for paper. This method determined the average force in grams per specimen required to propagate a tear through 2.5 inches of film. The method was used to rank relative tearing resistance of different blends.

5 Patterson Puncture:

The resistance to puncture/propagation of tear was measured by a modification of ASTM D 2582. This test method is used for determination of dynamic tear resistance or resistance to snagging of plastic film. The ASTM method was modified for lower weight carriages.

10 Spencer Impact:

15

20

Spencer impact was measured using ASTM D 3420. The following formula was used to obtain an impact value in joules.

E = RC/100

E = Energy to rupture, Joules "

C = Apparatus capacity, 1.35 Joules

R = Scale Reading on a 0 to 100 scale.

This method was more rapid than dart impact and could be used as a control test while the film line was running. This test measured the energy necessary to burst and penetrate the center of a one mil thick specimen, mounted between two rings with a 3½ inch diameter. Fish Eye:

Fish eye count or gel count was made on two sections of film one mil thick and one square foot in area. Only fish eyes greater than ten mils in at least one dimension were counted. In the case of film with fish eye count greater than 50 per square foot a five square inch section of film was counted.

Tensile Strength and Elongation:

Tensile strength and elongation were measured in accordance with ASTM D 638, 2"/min.

30 Shore Hardness:

Shore D hardness was measured in accordance with ASTM D 2240-68.

RDI:

Rheological distribution index (RDI) is an arbitrary

35 rheological index value obtained from measurements made on a polymer sample with a Rheometrics Dynamic Spectrometer (Rheometric's Company). A

molten polymer sample is subjected to a sinusoidal, oscillating shear strain between two parallel circular plates at 190° C. The frequency of oscillation is varied from 10^{-1} to 5 x 10^2 radians/sec. A log-log plot of frequency vs. dynamic loss modulus is made and the slope of the curve determined when the loss modulus is equal to 10⁵ dynes/cm². reciprocal of the slope is defined as RDI. The larger the RDI value, the greater the shear response of the polymer. Since polymer shear response is related to its molecular weight distribution (the broader the distribution the greater the shear response) the RDI value is thought to provide a reliable indication of molecular weight distribution.

Flexural Modulus, MPa:

The flexural modulus is determined in accordance with ASTM D 790.

The Environmental Stress Cracking Resistance was determined in ESCR (Bell): accordance with ASTM D 1693-60, condition A. 15

10

20

30

The dynamic shear viscosity, in units of 10^5 Poise, is obtained Viscosity: from the Rheometrics Dynamic Spectrometer as is the RDI. The viscosity reported is that at 0.1 radians/second (frequency of oscillation).

Throughout all of the following examples, the following abbreviations will be used.

PE: ethylene homopolymer

EHC: ethylene 1-hexene copolymer, 75-99 wt. % ethylene and 1 to 25 wt. % 1-hexene. 25

EXAMPLE I

In this example film was produced from commercially available ethylene polymer resins Hostalen GM9255 (Hoechst), and TR130 polyethylene (Phillips Petroleum Company) produced with a chromium oxide catalyst, and an ethylene polymer blend as specified mixed in different equipment as shown in the following table. The film test results as well as the properties of the polymer blend used for the production of the film are given in the following Table IV.

In comparing polymers and blends, in a given series, constant conditions were employed and the film was extruded on the same day if at 35 all possible.

2	١
TABLE	
	•

FILM RESIN PROPERTIES

				1	- T 1101 T 11 11 11 11 11 11 11 11 11 11 11 11	21			
2		Dart Impact 8	Elmendorf Tear 8	Patterson Puncture Kg	Spencer Impact	Fish Eye Count 2	Melt Index	HIMI	Density
	Ethylene Polymer :	26"/13"	MD/TD	M/TD	ר	gel/char	g/10 min.	g/10 min.	30/8
	Control:								(
	Hostalen GM9255	100/240	22/290	1.7/2.7	0.24	3/0.1	0.05	8.4	0.95
	TR130	<50/130	17/170	1.8/2.0	0.18	2.5/0.1	0.28	21.5	276.0
,									
2	Blends:			-		-	•		-
	50 wt. % EHC 0.27 HLMI 0.936 g/cc 50 wt. % PE 280 MI 0.970 g/cc								
	Banbury mixed	200/390	56/290	2.9/3.0	0.32	3.0/4.0	0.09	7.6	0.959
	38 mm Davis- Standard Single Screw Extruder		3		-		;	•	. !
70	ylno	190/390	51/360	2.7/3.0	0.34	40/1.0	0.09	8.2	0.957
	2FCM blended only	210/400	44/400	2.9/3.1	0.34	7.0/1.0	0.09	8.4	0.959

The data in Table IV compare the properties for the preferred ethylene polymer blend in accordance with this invention, which is an approximately 50/50 wt. % blend of the low molecular weight and the high molecular weight ethylene polymer with the film properties achieved with two commercial resins and three experimental blends. The ethylene polymer blend resulted in an improved impact, tear and puncture resistance compared to the commercial film resins even though measurable physical properties were similar. The fish eye count was increased when the mixing was scaled up to the 38 mm Davis-Standard single screw extruder but the char was reduced by the continuous mixing method. It is also to be noted that the blend obtained in the 2FCM apparatus had reduced fish eye count compared to the single screw extruder blend.

EXAMPLE II

In this example the influence of the MI (melt index) of the low molecular weight ethylene polymer component in the blend was tested. The components used and the results obtained as well as the mixing techniques employed are shown in the following Table V.

SLOT FILM STUDY OF EFFECT OF MELT INDEX OF LOW MOLECULAR WEIGHT COMPONENT

	EHC 1.3 HLMI, 0.940 g/cd	: 55	55	55	55	55
5	PE 158 MI, 0.966 g/cc	45				
	PE 67 MI, 0.968 g/cc		45			
	PE 47 MI, 0.971 g/cc			45	45	45
	Mixing:					
	Henschel Powder Mix	yes	yes	yes	yes	yes
10	Force Feeder	yes	yes	yes	yes	yes
	Screw Type	2.2/1SS ⁽¹⁾	2.2/1SS	2.2/188	2.2/1SS	DDD ⁽²⁾
	Static Mixer (3)	yes	yes	yes	yes	yes
	Temp. °C	220	220	220	160	220
	Results:			•		
15	Fish Eye Count/ft ²	564	840	192	312	132
	Melt Index, g/10 min	0.23	0.22	0.23	0.23	0.19
_	HLMI, g/10 min	16.4	12.5	12.7	12.7	11.5
	Density, g/cc	0.9577	0.9568	0.9559	0.9559	0.9550
•	RDI	1.58	1.52	1.44	1.49	1.53
20	ESCR, hours	>1000	>1000	>1000	>1000	>1000

- (1)_{2.2/1SS} is a single stage screw having a compression ratio of 2.2.
- (2) DDD is a devolatilizing screw with a double Dulmage mixing section.
- (3) Static mixer section (Kenics Co.) located between extruder and pelletizing die.

The results in Table V indicate that while the fish eye count was reduced by using a mixing screw, decreasing the melt temperature from 220°C to 160°C did not reduce the fish eye count. This is a significant and advantageous result because it shows that an increase in temperature does not increase the fish eye count. The data of this table also indicate that the melt index or molecular weight of the low molecular weight component was not a controlling factor in the fish eye count.

EXAMPLE III

The previous example was essentially repeated with a group of different resins. The ingredients and quantities used as well as the data obtained are shown in Table VI.

Ν	
BLE	
Z	

55		45	Vex	3 1	yes _{Dnn} (2)	חממ	yes	200		230	0.05	3.5	0.9562		>1000
55	u Y	Ç	902	s o	yes ,,,,(2)	, , , , , , , , , , , , , , , , , , , ,	yes	200	;	09	0.04	3.1	0.9553	1.55	>1000
55	45		Ç	מ ע איני	yes (2)		yes	180		280	0.05	3.7	0.9581	1.54	>1000
20		50	1	yes	yes	2,000	yes	180		1000	90.0	5.0	0.9570	1.67	>1000
50	1	20		yes	yes	000	yes	180		250	90.0	5.0	0.9591	1.68	1000
50	20			yes	yes	000(5)	yes	180		620	90.0	5.9	0.9589	1.57	>1000
45		55		yes	yes	000(5)	yes	. 180		2300	0.09	8.0	0.9581	1.73	>1000
45		55		yes	yes	000	yes	180		1600	0.08	7.5	0.9591	1.76	>1000
cc 45	55			yes	yes	DDD (2)	yes	180		1300	0.10	10.2	0.9611	1.75	>1000
EHC 0.22 HLMI, 0.936 g/cc 45	PE 158 MI, 0.966 g/cc	PE 67 MI, 0.968 g/cc PE 47 MI, 0.971 g/cc	Mixing:	Henschel Powder Mix	Force Feeder	Screw Type	Static Mixer (3)	Temp. °C	Results:	Fish Eve Count/ft	Melt Index, g/10 min	HIMI. g/10 min	Density, g/cc	RDI	ESCR, hours
		ប)				0) f				5)		

(2)(3)_{See} footnotes of Table V.

The data in Table VI demonstrate a strong dependency of the fish eye count upon the quantity of high molecular weight polymer utilized. The higher the quantity of the high molecular weight component in the resin the lower the fish eye count became. Fish eye count and blend melt index are again shown to be independent of the melt index of the low molecular weight component.

EXAMPLE IV

The previous example was again essentially repeated with the components as shown in Table VII. In this experiment the high molecular weight polyethylene was not an ethylene 1-hexene copolymer but rather an ethylene homopolymer.

10

т	
-	
>	
ഥ	
н	
7	
₽	

55	45	yes	DDD (2)	yes	240	250	0.007	1.79	0.9597	1 86	
رج در	45	yes yes) DDD (2)	yes	240	190	0.007	1.90	0.9605	1.82	079
55 45		yes	DDD (2)	yes	230	100	900.0	2.3	0.9607	1.84	373
50	50	yes yes	DDD (2)	yes	230	1400	0.014	3.4	0.9609	1.93	240
50	50	yes yes	DDD (2)	yes	230	400	0.01	3.5	0.9612	1.92	, 275
50		yes	_{DDD} (2)	yes	230	007	0.013	4.3	0.9634	1.96	305
45	55	yes ves	DDD (2)	yes	230	3300	0.03	5.8	0.9615	1.97	109
45	55	yes	, (2)	yes	230	2000	0.02	4.4	0.9635	1.91	381
: 45 55		yes) co DDD (2)	yes	230	2900	0.02	8.9	0.9641	1.92	155
Ethylene Polymers: PE 0.10 HLMI, 0.940 g/cc 45 PE 158 MI 0.966 g/cc 55	PE 67 MI, 0.968 g/cc PE 47 MI, 0.971 g/cc	Henschel Powder Mix	Screw Type	Static Mixer (3)	Temp. °C	Results: Fish Eye Count/ft ²	Melt Index, g/10 min	HLMI, g/10 min	Density, g/cc	RDI	ESCR, hours
	ស		10				15				

 $(2)(3)_{See}$ footnotes of Table V.

The data in Table VII show the same trend as observed in the earlier examples, namely that the fish eye count goes down with increasing quantity of high molecular weight ethylene polymer. Additionally, however, the above data show that the environmental stress crack resistance is substantially reduced when an ethylene homopolymer is used as compared to the previous examples where an ethylene 1-hexene copolymer was used as the high molecular weight component.

EXAMPLE V

In this example various blends of 60 weight percent of high molecular weight resin and 40 weight percent of low molecular weight resin were tested. The polymers used and the results obtained as well as the mixing procedure are shown in Table VIII.

		TABLE VIII			
	Ethylene Polymer:		•		
15	PE 47 MI, 0.9706 g/cc	40	40		
	EHC 49 MI, 0.9543 g/cc			40	
	EHC 45 MI, 0.9489 g/cc	-		•	40
	PE 1.5 HLMI, 0.9522 g/cc	•	•	60	60
20	EHC 1.3 HLMI, 0.9447 g/cc EHC 1.3 HLMI, 0.9404 g/cc	60	60		
20		60			
	Mixing:				
	Henschel Mix	yes	yes	yes	yes
	Banbury Mix	yes	yes	yes	yes
	Pelletize	yes	yes	yes	yes
25	Properties:				•
	Melt Index, g/10 min.	0.20	0.19	0.23	0.25
	HLMI, g/10 min.	. 10.2	9.6	10.9	12.2
	Density, g/cc	0.9560	0.9577	0.9550	0.9553
20	Flexural Modulus, MPa	1370	1520	1400	1260
30	ESCR, hours	>1000	>1000	87	87
	Film Test Results:	•			
	Dart Impact, g, 26"/13" (1)	<50/100	<50/100	(surged)	<50/70
	Elmendorf Tear, g, MD/TD ⁽¹⁾	60/150	50/130	No good	
25	Patterson Puncture, Kg, MD/TD	2.4/2.6	2.2/2.7	film	1.7/2.3
35	Fish Eye Count, Hard Gel/Char	3/8	5/10	2/16	3/22

⁽¹⁾ MD is machine direction; TD is transverse direction.

The data in Table VIII again show a strong dependency of the environmental stress crack resistance upon the structure of the high molecular weight ethylene polymer utilized. Whereas the blend having an ethylene 1-hexene copolymer as the high molecular weight component shows very good environmental stress crack resistance, the blend containing an ethylene homopolymer as the high molecular weight ethylene polymer component in the blend shows a substantially reduced environmental stress crack resistance even though the blend densities and melt flows are very close.

10 EXAMPLE VI

In this example a blend of a low molecular weight ethylene homopolymer and a high molecular weight ethylene 1-hexene copolymer as indicated and specified in the following table were used with varying mixing techniques. The results are shown in Table IX.

15	•	TABLE IX			
	Ethylene Polymer:				
20	PE 47 MI, 0.9706 g/cc EHC 1.3 HLMI, 0.9404 g/cc Zinc Stearate, Part by Weight	45 55 0.05	45 55 0	45 55 .0	45 55 0
20	Ethylene-bis-stearamide, Part by Weight	0	0.05	0.05	0
	Mixing:				
25	Henschel Mix Banbury Mix Pelletize	yes yes yes	yes no yes	yes yes yes	yes no no
	Properties:				
30	Melt Index, g/10 min. HLMI, g/10 min. Density, g/cc Flexural Modulus, MPa ESCR, hours	0.47 28.7 0.958 1490 >1000	0.42 27.1 0.958 1500 >1000	0.25 14.0 0.956 1450 >1000	fluff feed no pellets
	Film Test Results:				
35	Dart Impact, g, 26"/13" Elmendorf Tear, g, MD/TD Patterson Puncture, Kg, MD/TD Fish Eye Count, Hard Gel/Char	60/130 40/90 1.7/2.2 5/7	70/170 40/120 1.6/2.1 750/0		•

The right column of Table IX is particularly interesting since this run demonstrates the possibility for direct feeding of the polymer fluff mixture to a film extruder while obtaining excellent film test results. Thus no extruder or Banbury premixing was required in this run.

5 A force feeder was used during the film extrusion to eliminate surging. The environmental stress crack resistance values for the pellet blends used in this example also were very good.

EXAMPLE VII

In this example the effect of the high molecular weight copolymer on the Dart impact strength was tested. The ethylene polymer components used and the results obtained are shown in Table X.

~	5
ŗ	3
۰	3
	3
Ē	Ξ

	50	yes yes no	0.38 22.2 0.9525 1270 30	<50/130 40/210 1.7/1.8 15/0.2
	50	yes yes yes no	0.34 20.2 0.9552 1340 30	65/160 30/190 1.7/2.0 7.6/0.2
	50	yes yes yes no	0.32 20.2 0.9598 1520 462	82/190 40/110 1.9/2.2 7.5/0.8
IABLE A	55 45	yes yes yes no	0.54 33.9 0.9526 1280 15	<50/120 30/100 1.6/1.8 660/0
•	55 45	yes yes yes no	0.53 33.8 0.9558 1390 24	<50/120 30/120 1.6/1.7 780/0
•	55 45	yes yes no	0.45 29.1 0.9596 1680 382	79/160 ·30/110 1.7/1.8 950/0
	Ethylene Polymer: PE 47 MI, 0.9706 g/cc EHC 49 MI, 0.9543 g/cc EHC 45 MI, 0.9489 g/cc PE 1.5 HLMI, 0.9522 g/cc EHC 1.3 HLMI, 0.9447 g/cc	Mixing: Henschel Mix Pelletize Kinetic Mixer Banbury Mix	Properties: Melt Index, g/10 min HLMI, g/10 min Density, g/cc Flexural Modulus, MPa ESCR, hours	Film Test Results: Dart Impact, g, 26"/13" Elmendorf Tear, g, MD/TD Patterson Puncture, Kg, ND/TD Fish Eye Count, Hard Gel/Char
	z,	10	15	20

10

15

20

The data in Table X demonstrate that the dart impact strength is improved if the high molecular weight portion is a copolymer rather than the low molecular weight portion of the ethylene polymer composition. A further surprising result is shown in the above table. Even though in the first and the fourth run the density of the resin mixture was higher than in the second and the fifth run, respectively, the dart impact strength was superior. This is very unusual and surprising because density has a primary influence on dart impact. Superior dart impact is generally associated with lower density. This blend composition thus shows a clear and unexpected advantage over conventional polyethylene film resins in that resin blends with higher density show better dart impact strength than those with comparatively lower density when the preferred copolymer distribution is used. Again a substantial dependency of the environmental stress crack resistance upon the structure of the high molecular weight ethylene polymer component is apparent from the above data. These data confirm the previous finding that the environmental stress crack resistance is best when the high molecular weight ethylene polymer component is an ethylene/1-hexene copolymer. The table above also shows the reduced Fish Eye Count for the 50/50 weight percent blend.

The above runs also demonstrate the feasibility of the elimination of a Banbury mixing step.

EXAMPLE VIII

This example was carried out to demonstrate that a blend of ethylene polymers with a density above 0.960 could have a high Dart impact strength when made into blown film. The components used and the results obtained are again shown in Table XI.

n	1	0	n	8	4	3
·		•	v	•	₹	v

		Table XI			
5	Ethylene Polymer: PE 158 MI, 0.9664 g/cc EHC 0.22 HLMI, 0.9359 g/cc PE 0.10 HLMI, 0.9401 g/cc	60 40	60 40	60 40	60 40
10	Mixing: Henschel Mix Banbury Mix Pelletized Static Mixer	yes no yes no	yes yes yes no	yes no yes no	yes yes yes no
15	Properties: Melt Index, g/10 min. HLMI, g/10 min. Density, g/cc Flexural Modulus, MPa ESCR, hours	0.17 17.6 0.9623 1680 >1000	0.17 15.6 0.9626 1650 >1000	0.08 12.6 0.9643 1800 126	0.08 8.5 0.9639 1620 282
20	Film Test Results: Dart Impact, g, 26"/13" Elmendorf Tear, g, MD/TD Patterson Puncture, Kg, MD/TD	<50/120 30/180 1.7/2.0	150/250 - 50/180 2.1/2.7		40/390

In the blends shown in Table XI very low HLMI.polymers, i.e. ethylene polymers with high molecular weight, were used and they required more intensive mixing such as Banbury mixing in order to obtain good film properties. The data show, however, that the film properties are very good despite the fact that the blend density is above 0.96. ESCR again points out the significance of even small amounts of short branching in high molecular weight component.

25

30

EXAMPLE IX

Ethylene polymer resin blends were fabricated from ethylene polymers and using mixing techniques as indicated in the following table. The properties of the polymer blend as well as the film test results are also shown in Table XII. In the series employing extruder mixing, each composition was prepared with the indicated screw type.

		TABLE	XII			
	Ethylene Polymer:					
	PE 158 MI, 0.9664 g/cc EHC 0.22 HLMI, 0.9359 g/cc	60 40	60 40	60 40	60 40	60 40
5	Mixing:					
	Henschel Mix Banbury Mix Davis-Standard	yes no	yes no	yes no	yes no	yes no
	2.2/1SS Screw(2)	yes	no	no	no	no
10	3.0/1SS Screw ⁽²⁾	no	yes	no	no	no ·
	TSD Screw ⁽³⁾	no	no	yes	no	no
	SSM Screw ⁽⁴⁾	no	no	no	yes	no
	DDD Screw ⁽⁵⁾	no	no	no	no	yes
	Static Mixer	yes	yes	yes	yes	yes
15	Properties:					
	Melt Index g/10 min	0.14	0.16	0.15	0.15	0.10
	HLMI, g/10 min	15.7	20.4	18.6	19.8	19.6
	Density, g/cc	0.9633	0.9628	0.9627	0.9624	0.9622
	Flexural Modulus, MPa	1670	1670	1640	1690	1670
20	ESCR, hours	>1000	>1000	>1000	>1000	>1000
	Film Test Results:	•				
	Dart Impact, g, 26"/13"	<50/<50	<50/<50	<50/<50	<50/<50	<50/<50
	Elmendorf Tear, g, MD/TD	27/270	28/190		,	27/180
	Patterson Puncture, Kg, MD/TI	1.6/1.9		•	1.6/1.7	
	(1)			•	,	,

- 25 (1) Same as footnote 1, Table V.
 - (2)3.0/1SS is a single stage screw having a compression ratio of 3.0.
 - (3) TSD is a two-stage devolatilizing screw.
 - (4) SSM is a single screw with a Maddox mixing section.
 - (5) Same as footnote 2, Table V.

The poor results in Table XII, as indicated by dart impact data, for these blends which all contain less than 50% high molecular weight component, emphasizes the preference of a composition having at least 50% high molecular weight component. Banbury mixing is generally required for good results only if the composition falls below 50% in high molecular weight component.

EXAMPLE X

In this example resin blends were made using again ethylene polymers in quantities as specified in Table XIII. This table also shows the properties of the blend and the film test results.

I	
X	
TABLE	

	Ethylene Polymer: Hostalen GM, 9255	100	100	5			
တ	PE 158 MI, 0.9664 g/cc EHC 0.10 HLMI, 0.9401 g/cc PE 275 MI, 0.9696 g/cc			07	50	50	50
	EHC 0.27 HLMI, 0.9355 g/cc Irganox 1010 (Part by Weight)			0.1	50 0.1	50 0.1	0.1
10	Mixing:						!
	Commercial Resin Control	yes	yes	ou 0	00	ou	no
	Henschel Mix	no	no	yes	yes	yes	yes
	Double Pass-Double Letdown (2)	ou	no	yes	ou	0U	ou 0
	DDD Screw	011	no	yes	no	ou	ou
5	Banbury Mix	00	ou	ou	yes	no	no
?	Pelletize. Davis-Standard:	no	ou	yes	yes	yes	yes
	2.2 1/SS Screw	ou	ou	ou	yes	yes	yes
	Static Mixer	uo	uo	yes	yes	yes	yes
	Properties:						
20	Malt Index o/10 min	0.05	0.28	0.07	0.09		0.09
		8,4	21.5	14.9	7.6	8.2	7.2
		0.9573	0.9417	0.9653	0.9592	9	0.9575
		1570	918	1820	1540		1490
		>1000	>1000	132	>1000	>1000	>1000
25	RDI	2.14	1.72	1.81	1.48		1.59
	Film Test Results:						
	Dart Impact. 9. 26"/13"	100/240	<50/130	<50/<50	200/390	190/390	180/370
	Elmendorf Tear, c. MD/TD	20/290	77/170	26/150	56/290	51/360	45/290
	Patterson Puncture, Kg, MD/TD	1.7/2.7	1.8/1.95	1.5/1.6	2.9/3.0	2.7/3.0	2.7/2.9
30	Spencer Impact, Joules	0.24	0.18	0.09	0.32	0.34	0.34
))	Fish Eye Count, Gel/Char	3/0.1	2.5/0.1	40/1.0	3.0/4.0	40/1.0	68/0
	(1) This recipe gave poor film properties with 2-FCM mix only.	perties wi	th 2-FCM mi	x only.			
	(2) The low molecular weight resin was blended with about 50 volume % of the high molecular	was blend	ed with abo	ut 50 vol	ime % of th	ne high mo	ecular

ine low molecular weight resin was blended with about 30 volume, a cream inch. Most weight resin, then extruded and pelletized. The pellets were blended with the remainder of the high molecular weight resin, then extruded and pelletized again.

The results of this table in this example again seem to indicate that for obtaining a satisfactory blend when using 60 parts by weight of the low molecular weight ethylene polymer and 40 parts by weight of a high molecular weight resin, a Banbury premixing or another intensive premixing is required for the use of the resin in film making processes.

The last three runs show that the ethylene polymer mixture of this invention results in superior resins for film production. The performance exceeds that expected for polyethylene of this density and melt flow. The last two runs of this example are duplicate runs to test the reproducibility of the results which is, as can be seen, excellent.

EXAMPLE XI

A. Polymers

10

15

20

The polymers used in this example were all prepared in a pilot-plant loop reactor using the Ti/Mg catalyst as described in European Patent Application 81 106 259.5. Relatively narrow molecular weight distribution polymers of widely different molecular weights were produced with this catalyst by changing the hydrogen concentration in the reactor. These polymers are recovered as fine powders or fluff which are easily blended by various techniques such as a Henschel mixer. A description of the different base resins used in this program is presented in Table XIV. All copolymers used 1-hexene as the comonomer.

TABLE XIV

DESCRIPTION OF BLEND COMPONENTS

A. High Molecular Weight Polymers (HMWP)

5	HMWP	Density (g/cc)	HLMI (g/10 min.)
	1H	0.9360	0.24
	2H	0.9355	0.30
	3H	0.9380	0.37
	4H ☆	0.9490	1.41
10	5H*	0.9500	1.56
	6н*	0.9480	0.89
	7H	0.9445	1.40
-	8H	0.9419	2.04
	9H	0.9388	1.80
15	10H	0.9393	1.48
	11H	0.9377	1.71
	12H	0.9331	1.41
	13H	0.9312	1.45

B. Low Molecular Weight Polymers (IMWP)

20	LMWP	Density (g/cc)	Melt Index (g/10 min.)
	20L*	0.9 6 75	67
	21L *	0.9696	275
	22L *	0.9700	146
25	23L*	0.9700	212
	24L*	0.9690	108
	25L	0.9700	150
	26L	0.9600	98
	27L	0.9550	106

30 *indicates homopolymers. All others are 1-hexene copolymers.

B. Mixing and Compounding

35

40

For stabilization during processing 0.05 weight % BHT, 0.03 weight % DLTDP and 0.04 weight % calcium stearate were added to the fluff in the Henschel mixer.

Mixing and pelletizing involved the following steps: 1. Blends of high and low molecular weight fluff were weighed to give the desired ratio. 2. The powder blends were mixed for three minutes at high speed in the Henschel mixer with stabilizers. 3. The powder blends were force fed to the 1.5 inch Davis-Standard extruder with nitrogen protection. The temperature zones on the extruder were set at 221 C. Screw speed was 90 rpm. Extrusion rate was in the range of 30 to 40 pounds per hour. The screw had a 3:1 compression ratio and a 24:1 length to diameter ratio. A 40/80/40 mesh screen pack was used. The six hole

die had 1/8 inch holes. A Cumberland Six Chopper was used for pelletizing. Melt temperatures were in the 230 to 250° C range.

C. Film Blowing

The blends were converted to blown film using a 1.5 inch Davis-Standard extruder with a four inch Sano die with a Sano tower and take-off equipment. The Sano die was a bottom fed spiral design with a 0.76 mm die gap. The die was designed for use with high density, high molecular weight polyethylene. The extruder was a 1.5 inch Davis-Standard with a 24:1 length to diameter ratio. The feed screw had a 2.2:1 compression ratio. A 20/20 mesh screen pack was used. Only one mil film was used for evaluation. The blow-up ratio was 4:1. The frost line height was 26 inches, and the melt temperature was in the range of 230 to 265 C. Take-off speed was 31 feet/minute.

D. Film Evaluation

10

15

The film was evaluated by measuring a variety of properties. The test methods used are as described above.

The results obtained with the various blends are shown in the following tables. .

	7		62	1		38		0.11	8.2	0.9438	879	23.5	37.8	1630	>1000	6.4	1.58	•	120	0.28	90 225	J. 2	
	9			3		07		0.22	12.0	9776.0	1017	23.6	37.7	1310	>1000	, , , ,	1.53		150	0.34	04 780	5 20	
	น	l.	o u	00		42		0 00	12.2	0.9444	1004	23.8	38.8	1700	65 >1000	4.1	1.54		150	0.34	65 250	12	
5	1E3		5 312 312	90		96 0.9600 46 44		0	13.6	0.9455	1023	23.9	37.5	1440	65	3.6	1.48		140	0.30	09	14	
TABLE XV SUMMARY OF BLEND PROPERTIES	ND PROPERT	1311	1.6	54	26L	96 0.9 46	1	000	16.8	0.9466	1089	24.2	37.6	1320	65	71000	1.51		140	0.28	68	210 16	
TABLE XV	ARY OF BLE		•	52		87)	ć	0.32	0.9473	1063	24.5	34.7	1060	65	>1000 2 8	1.54		140	0.31	53	205 22	1
	SUMM			20		č.	2		0.36	7.67	1057	25.2	34.5	1070	65	>1000	1.56		110	0.26	48	160 39	7
		High MW Component:	HLMI, g/10 min. Density, g/cc	Concentration, wt. %	Low MW Component:	MI Density	Concentration, wt. &	Blend Properties	MI, g/10 min.	HLMI, g/10 min.	Density, g/cc	Textia Nield MDs	Tensile Break, MPa	Elongation, %	Hardness, Shore D	Bell ESCR, hrs	Viscosily, Foise Alo RDI	Film Properties			MD Tear, g	TD Tear, 8 -2 Fight Eves ft	or (coff not)
			۲C			10					15				20				2.	3			

 $^{(1)}$ See Table XIV for characterization of blend components.

rable XV (continued)	TTTGTGCGG CHTTG
R	5
TABLE	ac marronio

Ж

	BLEND NO.	8	8A	88	,
	High MW Component:		띩		
5	HLMI, g/10 min.		0.37	,	
	Density, g/cc Concentration, wt. %		50		
	Low MW Component:		23 <u>L</u>		
Ç	MI, g/10 min.		212		
01	Density, g/cc Concentration, wt. %		50		
	Blend Properties	,			
	MI, g/10 min.	0.10	0.09	0.11	
	HIMI, g/10 min.	9.6	9.1	10.0	
15	Density, g/cc	0.9578	0.9579	0.9582	
	Flexural Modulus, MPa	1543	1550	1567	
	Tensile Yield, MPa	1		•	
	Tensile Break, MPa	•	•	1	
	Elongation, %	1	•	ı	
20	Hardness, Shore D	1	;	•	
	Bell ESCR, hrsc	•	ı	•	
	Viscosity, Poise X10 ⁻³	ı	•		
	RDI	ı	1	ı	
	Film Properties				
25	Dart Impact, g, 26"	210	190	190	
	Spencer Impact, J	0.41	0.41	0.42	
	MD Tear, g	34	39	30	
	TD Tear, 8	300	320	410	
	Fish Eyes, ft 2	30	20	. 004	
30	Notes: Three separate blends were identically prepared and	pared and c	converted into film.	to film.	The blend and film

Three separate blends were identically prepared and converted into film. The blend and film properties are similar except for blend 8B which displays very high TD tear and abnormally high fish eyes. The reason for the high fish eye count is not known. Dashes indicate no properties were determined.

	,						, , ,	747	108	0.9690	20	,	90.0	5.0	0.9578	1400	27.8	31.0	820	99	>1000	9.6	1.71		076	0.57	67	220	1100	
ES		10A					1	26L	86	0.9600	20		90.0	5.4	0.9524	1250	25.9	39.1	1300	65	>1000	10.0	1.71		000	0.57	97	340	1200	
TABLE XV (continued)		9A	114	1	0.24	50)	27L	106	0.9550	20		90.0	5.1	0.9492	1108	24.5	37.0	1480	63	>1000	9.7	1.75		010	0.50	, t.	290	750	-
TABLE XV (continued)	TAT OF TANK	10						26L	86	0.9600	50		0.07	7.0	0.9512	1250	25.6	37.6	1140	63	>1000	8.6	1.72		C	230 0 61		330	1000	
II	מחוות	6						27L	106	0.9550	20		0.07		0.9490	1103	8 76	38.0	1420	64	>1000	10.0	1.75		6	230	67.47	000	099	,
		BLEND NO.		High MW Component:	HLMI, g/10 min.	Density, g/cc	Concentration, wt. %	Iow MW Component:		MI, g/10 min.	Concentration, wt. %	Blend Properties		MI, 8/10 min.	ALMI, 8/ 10 III.	my man Man MP.	Flexural Hodgins, III.a	Tensile Ileid, Ilea	r: costle break, ura	Elongarion, %	Hardness, Shore D	DELL EDGN, ULS	VISCOSILY, FOLSE ALC	NU1 - 127	FILM Properties	Dart Impact, 8, 26"	r impaci,	MD Tear, 8	Fish Eves ft	, , , , , , , , , , , , , , , , , , , ,
					ſ,)				•	2				1	7				(20					22				

Blends 9, 9A and 10, 10A are duplicates. Note: 30

Notes: Four separate blends of identical composition were prepared and converted into film.

30

÷

(continued)	PROPERTIE
_	BLEND
TABLE XV	IARY OF
F-4 }	SUMMARY

120										0.12	8.8	0.9598	1594	29.0	43.0	1400	67	101	· ·	1.59		84	0.30	30	110	1.5
12B	2H	1.56	0.9500	1 6	747	108	0.9690	38		0.13	9.6	0.9600	1610	28.8	39.6	1200	89	154	; 1	1.57		96	0.28	28	110	0.5
12A										0.13	9.4	0.9600	1613	29.0	38.5	1100	89	147		1.56		110	0.24	25	130	1.0
12										0.14	10.0	0.9580	1667	29.2	40.1	1200	68	147	ı	1.56		110	0.30	30	170	3.5
BLEND NO.	High MW Component:	HLMI, g/10 min.	Density, g/cc Concentration, wt. %	•	now if component:	MI, g/10 min.	Density, g/cc	Concentration, wt. %	Blend Properties	MI, g/10 min.	HLMI, g/10 min.	Density, g/cc	Flexural Modulus, MPa	Tensile Yield, MPa	Tensile Break, MPa	Elongation, %	Hardness, Shore D	Bell ESCR, hrs	Viscosity, Poise X10 ⁻³	RDI	Film Properties	Dart Impact, g, 26"	Spencer Impact, J	MD Tear, 8	TD Tear, 82	Fish Eyes, ft
		S				,	10					15					20					22				

d) ERTIES		†T	H)	0.89	0.9480	56	25L	150	0.9700	†	1	0.10	7.7	0.9609	1570	28.0	33.2	086	29	173	6.0 1.63	60:1	•	130	33	130) -
TABLE XV (continued) SIMMARY OF BLEND PROPERTIES	Solution of	13	11	1.41	0.9490	62	24 <u>L</u>	108	0.9690	38		0.20	8.9	0.9597	1570	29.3	39.3	1200	65	147	3.4	7.44		45	34	250	0.0
		BLEND NO.	High MW Component:		HLMI, g/10 min.	Density, B/cc Concentration, Wt. %			Mi, g/lu min. Dencity o/co	Concentration, wt. %	Blend Properties	TX /10 min	111, 8/10 min.	Density 8/10 min	micros 6/cc	σ	Tonette Treat, in a	dloretion 9	Hardness Shore D	Bell ESCR. hrs	Viscosity, Poise X10 3	RDI	Film Properties	Dart Impact, g, 26"	Spencer Impact, J MD Tear, g	TD Tear, 8	Fish Eyes, ft

		<u> </u>	TABLE XV (TABLE XV (continued)		
	BLEND NO.	15	16	17	19	20
	High MW Component:		門		H8	
2	HLMI, g/10 min. Density o/cc		1.40		2.04 0.9419	
	Concentration, wt. %	59	59	55	63	62.5
	Low MW Component:	27L	22L	20L	22L	20L
	MI, g/10 min.	106	146	19	146	29
10		0.9550	0.9700	0.9680	0.9700	0.9680
	Concentration, wt. %	41	41	45	37	37.5
	Blend Properties					
		0.17	0.18	0.12	0.21	0.15
		10.7	10.6	9.5	10.6	8.4
15		0.9510	0.9570	0.9547	0.9547	0.9527
		1274	1566	1551	1353	1374
	H.	26.8	29.8	30.1	28.4	28.1
	ᄶ.	38.1	35.7	33.4	38.1	39.4
	Elongation, %	1300	1000	006	1100	1100
20	a D	65	29		29	29
	hrs	454	>1000	>1000	>1000	>1000
	cosity, Poise	3.9	4.1	6.9	3.7	4.5
	RDI	1.51	1.48	1.53	1.43	1.49
	Film Properties					
25	Dart Impact, g, 26"	100	85	110	79	86
	Spencer Impact, J	0.31	0.30	0.28	0.30	0.28
	MD Tear, g	47	37	30	36	31
	TD Tear, 82	200	210	200	210	200
	Fish Eyes, it	9	6	σ,	က	ന

(continued)
Ž
TABLE

	26			59	20L	29	0.9680	14	6	0.20	10.0	0.9536	1400	28.1	43.1	1500	67	>1000	4.1	1.45	1	120	0.31	£3	720	D
	25	1.48	0.9393	59	22 <u>L</u>	146	0.9700	41	4	0.20	11.0	0.9546	1437	27.6	38.6	1200	99	>1000	4.2	1.48	,	100	0.28	36	300	C7
	24			09	27L	106	0.9550	07		0.20	11.0	0.9476	1138	24.3	37.7	1500	65	>1000	4.0	1.46		92	0.27	49	260	ი
ID PROPERTIES	21 22 23			63	20 <u>L</u>	67	0.9680	37		0.17	8.7	0.9528	1368	27.3	40.9	1100	99	>1000	4.2	1.45		130	0.32	51	310	12
ARY OF BLEN	22	영	0.9388	61	22L	1,66	0.9700	39		0.25	14.0	0.9540	1432	27.8	38.0	1100	99	>1000	300	1.45		110	0.35	77	270	28
SUMM	21			58	27L	70.	100	42		0.26	14.0	0.9482	1165	7 70	37.3	1600	1000	\ 0001<	200	1.48		73	0.23	39	210	20
	BLEND NO.	High MW Component:	HLMI, g/10 min.	Density, 8/cc Concentration, Wt. %	Total Mil Component:		MI, g/10 min.	Density, 8/cc Concentration, wt. %	Blend Properties	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	711, 8/10 min.	Aprill, 8/ to main.	Density, g/cc	Flexural Modulus, Hra	renstle fleid, nra	Tensile Break, nra	Flongation, %	Hardness, Shore U	Bell Eduk, Hrs	Viscosity, Foise Alu RDI	Film Properties	Dart Tmnact 0. 26"	Spencer Impact, J	M Tear P	TD Tear, g	Fish Eyes, ft

ស

		29			9.09	20 <u>L</u>	29	30.9680			0.25	12.0	0.9524	1376	27.2	39.9	1100	99	>1000	e .	1.41		86	0.28	9 6	180 29
inued)	PROPERTIES	28	11H	0.71	61	22L	146	0.9700	ò		0.30	15.0	0.9534	1373	27.4	38.1	1100	99	>1000	2.9	1.43	,	68	0.27	2 5	180
TABLE XV (continued)	SUMMARY OF BLEND PROPERTIES	27			60.7	27 <u>L</u>	106	0.9550	C. (C)		0.28	13.0	0.9471	1102	24.7	37.7	1600		>1000	3.0	1.42		83	0.27	0,000	5 5
		BLEND NO.	High MW Component:	HIMI, g/10 min.	Concentration, wt. %	Low MW Component:	MI, g/10 min.	Density, g/cc	concentration, %	Blend Properties	MI, g/10 min.	HLMI, g/10 min.	Density, g/cc	Flexural Modulus, MPa	Tensile Yield, MPa	Tensile Break, MPa	Elongation, %	Hardness, Shore D	Bell ESCR, hrs	Viscosity, Poise $X10^{-3}$	RDI	Film Properties	Dart Impact, 8, 26"	Spencer Impact, J	m m m	in lear, 8 Fish Eyes, ft
				Ŋ				10					15					20					25			

C

1) RTIES	33 34 13H 1.45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9550 0.9700 40.7 41	0.22 0.22	0.9433 0.9489	$\begin{array}{ccc} 972 & 1236 \\ 23.0 & 26.1 \end{array}$	36.4 38.4 1700 1400	53 55 >1000 >1000	3.5 3.2 1.50 1.52		130 150 0,30 0.34	64 57 260 280	
LE XV (continued Y OF BLEND PROPE	30 31 32 12H 1.41	0.9331 58.8 56.4 22L 20L 146 67	0.9700 0.9675 41.2 43.6	0.21 0.21	12.0 13.0 0.9499 0.9500	1268 1255 25.1 26.9	38.7 38.3 1200 1100	66 65 1000 >1000	3.8 1.46 1.51		150 120 0.32 0.31	52 48	200
SUMMARY	30	59.1 27 <u>L</u>	40.9	0.22	$13.0 \\ 0.9490$	1018 22.5	37.0 1800	64 >1000 >	3.0 1.52		140 0 32	57	220
	High MW Component:	Density, g/cc Concentration, wt. % Low MW Component:	mi, g/io min. Density, g/cc Concentration, wt. % Rlend Properties	MI, g/10 min.	HLMI, g/10 min. Densitv. g/cc	Flexural Modulus, MPa Tensile Yield, MPa	Tensile Break, MPa Elongation, %	Hardness, Shore D Bell ESCR, hrs	Viscosity, Poise X10 7 RDI	Film Properties	Dart Impact, 8, 26"	MD Tear, 8	TD Tear, 8

0100843

Some commercially available film resins were converted into film as described. The properties found are shown in Table XVI together with the properties of some of the films/resins blends of this invention.

DISCUSSION OF RESULTS

5 A. Effects of Ratio of Components

10

15

20

One of the most important facts discovered in this work relating to film resins was that, in order to get uniform, homogeneous blends from two widely different molecular weight polymers using continuous processing equipment, it is preferred that >50% by weight of the blend be of the high molecular weight component. This is not necessarily true if batch processing equipment, such as a Banbury, is used to homogenize the mixture.

The explanation for this phenomenon may be that at compositions of less than 50% high molecular weight polymer, the low molecular weight polymer becomes the continuous phase. Due to the extremely low viscosity of the low molecular weight polymer, it is very difficult to apply the necessary shear stresses to the high molecular weight particles to make them disperse uniformly. However, when the concentration of high molecular weight polymer exceeds 50%, it becomes the continuous phase and can easily transmit the shear stresses to the low molecular weight particles. In order to be safe and achieve the best dispersion, it is preferred that the film composition contains at least 52% high molecular weight polymer.

The effects of film blend composition is presented in Table XV, 25 blends 1 through 7. The film fish eye count is a convenient method of measuring the homogeneity of the blend. Note that the fish eye count was at a high level of 39/ft² for the 50/50 blend, but decreased to 5/ft² for the 60/40 blend. Also, the film tear strength improves with increasing high molecular weight polymer content. The exact degree of dispersion 30 for any particlar blend will depend upon the capabilities of the equipment used. However, the relative effect of concentration would be expected to apply in any equipment.

COMPARISON OF COMMERCIAL FILM RESINS WITH INVENTION BLENDS

		2000					
		Commercial	Commercial Film Resins	ũ	camples of In	vention Bler	ds
		Hizex	Hostalen	Blend No.	Blend No.	Blend No. Blend No. Bl	Blend No.
r,		7000F	GM9255F	8 A		10A	10
י	Melt Index, g/10 min.	0.03	0.06	0.09	90.0	90.0	0.07
	HLMI, g/ 10 min.	10.1	7.6	. 9:1	5.0	5.4	7.0
	Density, g/cc	0.9533	0.9578	0.9579	0.9578	0.9524	0.9512
	Flexural Modulus, MPa	1327	1476	1550	1400	1250	1250
10	Tensile @ yield, MPa	28.6	27.0	N.A.	27.8	25.9	25.6
	Tensile @ Break, MPa	16.7	39.2	N.A.	31.0	39.1	37.6
	Elongation, %	06	1143	N.A.	820	1300	. 1140
	Hardness, Shore D	68	99	N.A.	99	65	. 63
	Bell ESCR, hrs	>1000	>1000	N.A.	>1000	>1000	>1000
15	Dart Impact, 8, (26")	195	179	190	240	200	230
	Spencer Impact, J	0.356	0.359	0.41	0,.57	0.57	0.61
	Elmendorf Tear, R	•			•		
	Æ	53	38	39	65	46	29
	TD	. 128	100	320	220	340	330
20	Fish Eyes, ft ⁻²	7	10	20	1100	1200	1000

The results obtained for blends 8-11 indicate that blends exhibiting excellent impact properties, high tear strengths, high ESCR values and acceptable to high flexural modulus values are obtained with a 50/50 weight percent blend of high molecular weight and low molecular weight components. The high molecular weight component had a HLMI of about 0.2-0.4 with a density of about 0.935 g/cc while low molecular weight polymers having MI values ranging from about 100-210 and densities ranging from about 0.955-0.970 g/cc were employed. The data show that the high fisheye counts (660 to 1200) for blends 9-11 can be substantially reduced by approximately doubling the MI of the low molecular weight component, e.g. from about 100 to about 200.

In the series of blends 12-35 the high molecular weight component varied from 55-63 weight percent, the HLMI varied from about 0.9-2 and the density ranged from about 0.931-0.950 g/cc. The low molecular component varied from 45-37 weight percent, the MI varied from about 70-145 and the density ranged from about 0.955-0.970 g/cc. All of the blends exhibited a low fisheye count (0.5-29) showing the importance of having greater than 50 weight percent high molecular weight component to accomplish a homogeneous blend.

As the density of the high molecular weight component decreased from about 0.950 g/cc of blend 12 to about 0.931 g/cc of blend 35 the results show that a substantial increase in Dart impact, Elmendorf tear and ESCR values were obtained. That is, Dart impact increased from 45 to 150 g, the MD tear increased from 25 to 64 g, the TD tear increased from 110 to 330 g and ESCR increased from 101 to greater than 1000 hours. The MI, density and flexural modulus of the resulting blends depended upon the values of the high and low molecular weight components.

The data in Table XVI demonstrate at approximately equal blend MI and density values relative to Hizex and Hostalen commercial resins that the invention blends generally exhibit superior Elmendorf tear, Dart impact and Spencer impact values. However, the invention blends have unacceptably high fisheyes for film applications but may be suitable for other applications such as blow molded or injection molded containers and the like.

Based on the data presented, an invention blend, when optimized for film applications, is calculated to have acceptably low fisheyes and the physical properties given in Table XVII.

Ξ

5

10

15

20

25

30

35

The calculated data given in Table XVII suggest that an optimized blend compared to commercial resins of similar melt index and density values will exhibit a superior balance of impact strength and tear strength.

The molecular weight distribution obtained with invention blends by gel permeation chromatography is demonstrated in Figures 8 and 9. They are clearly bimodal in character. Figure 9 is based on a previously unreported 50/50 blend of high molecular weight polymer 2H and low molecular weight polymer 2H.

Multiple regression analyses on the data obtained have been made; they show that the weight fraction of high molecular weight polymer has a negative effect upon the HLMI, MI and density of the blend. Increasing this variable has a positive effect upon both the MD and TD tear strength. Surprisingly, the dart and Spencer impact strengths were not significantly affected by the concentration of high molecular weight component over the range of compositions studied. The blends were composed of between 50 and 60% high molecular-weight polymer. relatively narrow range was desirable for two reasons. (1.) As discussed above, there is a practical or economical lower limit for the film resin blend of 50% high molecular weight component due to the homogenization problem. (2.) The melt index and high load melt index drop rapidly as the fraction of high molecular weight polymer increases. processability deteriorates at higher levels. This rather restricted range accounts for the fact that this variable does not show up as a statistically significant factor in the regression analysis of the dart and Spencer impact strength.

B. Effects of Molecular Weights of Components

The molecular weight (here described by HLMI and MI) of the high molecular weight component is the second most important factor in determining the properties of a film resin blend. Figures 1-7 illustrate the effects of this variable. Note, for example, that a HLMI of the high MW component below about 0.6 results in dart impact strength above 200 grams (Figure 4). Also, the tear strength and Spencer impact strength are all functions of this variable. Thus, there is a definite advantage in connection with film resin applications in keeping the HLMI of the high molecular weight component as low as possible. Low HLMI values of the high molecular weight component make it difficult to maintain the

melt index and HLMI of the blend at a sufficiently high level to achieve good processability while still adhering to the >50% rule discussed above.

The molecular weight of the low molecular weight component also enters into consideration but only to a minor extent. The melt index of the low molecular weight component does not appear as a significant variable in any of the film property regression analyses (see Table III). In fact, it is only important in determining the HLMI (but not the MI) of the blend. It appears that this component acts only as a lubricant or diluent to affect the HLMI of the blend. Thus, it is important to keep the MI of the low molecular weight material as high as possible in order to keep the HLMI of the blend sufficiently high to achieve good processability. Most preferably, the MI of the low molecular weight component is at least 200. The calculations used to prepare Figures 1-7 are all based on a blend melt index of 250 for the low molecular weight component.

C. Effects of Densities of Components

The third most important variable in determining the film properties of a blend is the density of the high molecular weight component. This variable has a negative coefficient in each of the film property regression equations except the Spencer impact equation, where it was not significant. Thus, there is a definite advantage in keeping the density of the high molecular weight component as low as possible for maximum film properties. Of course, this must also be balanced against any specifications on density and stiffness.

On the other hand, the density of the low molecular weight component only shows up as significant in the regression equations for blend density and MD tear strength. Even in these cases it only has about 1/3 the effect of the density of the high molecular weight component. Thus, in order to achieve a high blend density and stiffness with high film strength properties it is best to use a high density low molecular weight component and a low density high molecular weight component. In other words, there is a definite advantage to placing the component in the high molecular weight end of the molecular weight distribution of the blend. This is one of the advantages of using a blend approach to optimizing a polymer's molecular structure. There is

no known way of controlling the distribution of comonomer with a single reactor product.

D. Comparison With Competitive Resins

Data for two leading commercial high molecular weight film resins, Hizex 7000F and Hostalen GM 9255F, are presented in Table XVI and compared with several of the inventions blend polymers. These films were all produced under identical conditions. Inspection of these results shows that the invention blends are generally superior to the commercial resins in all film properties. The greatest advantage for the blends appears in the very important TD tear strength where the blends of this invention surpass the commercial resins by a factor of at least 2.

The mathematical models of the blend resin properties of this invention may also be used to formulate a resin to match the HLMI, MI and density of a commercial polymer. Table XVII illustrates these results for a blend which exactly matches the melt index, HLMI and density of Hostalen GM 9255F.

TABLE XVII

COMPARISON OF COMMERCIAL FILM RESINS WITH
CALCULATED PROPERTIES OF OPTIMIZED INVENTION BLEND

20		Competiti	ive Resins	Calcula	ited Blend	*	
		Hizex 7000F	Hostalen GM9255F	Calculated Values	95% Confidence Limits		
	Melt Index	0.03	0.06	0.06	0.02	0.10	
	HLMI	10.1	9.7	9.7	5.5	13.9	
25	Density, g/cc	0.9533	0.9578	0.9577	0.9555	0.9600	
	Dart Impact, g	195	179	200	190	210	
	Spencer Impact, J	0.356	0.359	0.46	0.43	0.49	
	Elmendorf Tear, g					-	
	MD	53	38	41	35	47	
30	TD	128	100	280	220	350	
		<u>*</u>	Blend Compo	sition			

High MW Component:

HLMI = 0.35 g/10 min.

Density = 0.940 g/cc

Weight Fraction = 52%

Low MW Component:

Melt Index = 300 g/10 min.

Density = 0.970 g/cc

Weight Fraction = 48%

35

5

10

15

E. Comparison of Hostalen Film Resin With Invention Film Resin Blend

A commercially available film resin was compared with the blend of this invention with the following results:

5		TABLE XVIIA	
		Invention Ble	end* Hostalen GM 9255F
	HLMI, g/10 min.	7.4	9.7
	MI, g/10 min.	0.09	0.06
	Density, g/cc	0.946	0.9578
10	Dart Impact, g, 26"	213	190
	Spencer Impact, J	0.55	. 0.41
	Elmendorf Tear, g		
	MD	37	38
	TD	394	- 100
15	Fisheyes, ft ⁻²	12	10
	Film Thickness, mils	1.0	1.0 · .
	Blow Up Ratio	4:1	4:1 .
	************* *	Blend Compositi	ion
20	High MW Compo		HLMI = 0.36 g/10 min. Density = 0.9340 g/cc Fraction = 52%
	Low MW Compon		MI = 112 g/10 min. Density = 0.9571 g/cc Fraction = 48%

The results in Table XVIIA show the invention blend to be superior to the commercial resin in dart and Spencer impact values, equivalent in MD Elmendorf tear and about 4-fold better in TD Elmendorf tear. The fisheye content of each film is about the same. Note that film properties of this polymer are all significantly superior to those of the Hostalen resin. Thus, both the actual, observed blend data and the predictions from the models are in agreement with the conclusion that a superior film resin can be produced by this technique.

F. Environmental Stress Crack Resistance and Stiffness

Another important property of the blend resins of this invention is their outstanding environmental stress crack resistance. Several of the samples are compared with data from polymers of comparable

melt index and density in Table XVIII produced with a commercially available chromium oxide supported on coprecipitated silica-titania (cogel) catalyst.

TABLE XVIII

COMPARISON OF ESCR DATA FOR BLENDS
WITH COMPARABLE COGEL RESINS

5

35

40

				777	
·	·	Melt Index (g/10 min)	Density (g/cc)	Flexural Modulus (MPa)	Bell ESCR (hrs)
10			0.9500		
	Control Control Invention Blend	0.19 0.12 0.21	0.9503 0.9503 0.9500	1179 1172 1255	530 400 >1000
			0.9536		
15	Control Control Invention Blend	0.24 0.22 0.20	0.9536 0.9537 0.9536	1303 1317 1400	150 115 >1000
		•	0.9540		
20	Control Control Invention Blend	0.30 0.20 0.12	0.9543 0.9540 0.9547	1372 1296 1551	110 130 >1000
			0.9570		
25	Control Control Control	0.17 0.18 0.19	0.9573 0.9568 0.9572	1374 1360 1410	326* 326* 338*
	Invention Blend	0.18	0.9570	1556	>1000

^{*}These three polymers were made from 1000°F activation temperature catalysts to give maximum ESCR.

Note that in all cases the cogel polymers have ESCR values of only a few hundred hours, while all of the blends have ESCR values of >1000 hours. In fact, not one single specimen failed during the 1000 hours for any of the blends in Table XVIII.

Significantly, the stiffness of these polymers is in every case greater than that of the comparable cogel polymers by approximately 100 MPa. Thus the resins of this invention have achieved the outstanding feat of both superior stiffness and ESCR.

Several of these polymer blends were evaluated in blow molded bottles, where it was noted that they were remarkably uniform and free of streaks. Their color and odor were also excellent. These resins were judged to be superior to typical polyethylene resins in this regard.

Example XII

In this example, 42 blends were prepared from resins within the limits specified above and their physical properties and flow properties were determined. Results are listed in Table XV. Mathematical regression analysis of the results obtained was made to ascertain the significance of the independent variables on blend properties. The following significant dependencies were found:

```
(HLMI)_{Blend} = 55.67 - 108.33(W<sub>1</sub>) + 11.61 (HLMI<sub>1</sub>) + 0.021 MI<sub>2</sub>
                    (MI)_{Rlend} = 0.8968 - 1.761(W_1) + 0.231(HLMI_1)
              (Density)<sub>Blend</sub>
                                 = -0.053 - 0.0393(W_1) + 0.644(D_1) + 0.439(D_2)
10
         (Dart Impact) Blend)
                                 = 2165 - 2063(D_1) - 75.07(HLMI_1)
     [Spencer(Joules)]<sub>Blend</sub> = 0.5107 - 0.1369(HLMI)_1
       (Elmendorf, MD)<sub>Blend</sub>
                                 = 2038 + 152.8(W_1) - 1671(D_1 -
                                     9.74(\text{HLMI}_1) - 518(D_2)
        (Elmendorf, TD)<sub>Blend</sub>
                                 = 5870 + 83.88(W_1) - 6367(D_1) - 106.7(HLMI_1)
15
                             W, = Weight fraction of high MW component
                             D, = Density of high MW comonent
                         HLMI, = HLMI of high MW component
                                 = Density of low MW component
20
                            MI<sub>2</sub> = MI of low MW component
```

. Conclusions reached from multiple regression analysis:

- 1. The HLMI and MI of the blend is primarily dependent on weight fractions and HLMI of the high molecular weight component.
- 2. Density of the blend is primarily dependent on the 25 densities of each of the components.
 - 3. Dart impact of the blend is primarily dependent on the density and HLMI of the high molecular weight component.
 - 4. Spencer impact of the blend is primarily dependent on the HLMI of the high molecular weight component.
- 5. Elmendorf tear, MD, is dependent on weight fraction, density and HLMI of the high molecular weight component and the density of the low molecular weight component.

6. Elmendorf tear, TD, is dependent on the weight fractions, density and HLMI of the high molecular weight component.

Reasonable variations and modifications can be made in this invention without departing from the spirit and scope thereof.

*BARDEHLE, PAGENBERG, DOST, ALTENBURG & PARTNER

RECHTSANWALTE

JOCHEN PAGENBERG DE JUIL LE M HARVARD.

BERNHARD FROHWITTER DIPL ING.

GÜNTER FRHR. V. GRAVENREUTH DIPL ING (FH).

PATENTANWALTE - TOAO Q 110 0184 3 TORNEYS
HEINZ BARDEHLE DIFT. ING
WOLFGANG A. DOST DR. DIPT. CHI M
UDO W. ALTENBURG DIPT. PHYS

POSTFACH 860620, 8000 MÜNCHEN 86 TELEFON (089)980361 TELEX 522791 pad d CABLE: PADBÜRO MÜNCHEN BÜRO: GALILEIPLATZ 1, 8 MUNCHEN 80

30 161-EP D/la

Claims

- 1 1. Ethylene polymer blend comprising
 - (a) 40-70 parts by weight of a high molecular weight ethylene polymer having a high load melt index (HLMI) in the range of 0.1 to 1.5 g/10 min, and
- (b) 60-30 parts by weight of a low molecular weight ethylene polymer having a melt index (MI) in the range of 45-300 g/10 minutes.
 - 2. The blend of claim 1 characterized in that both ethylene polymers (a) and (b) have a narrow molecular weight distribution.

3. The blend of claim 1 or 2 characterized in that said polymer (a) is a polymer of ethylene and 0 to 30 weight percent mono-1-olefin having 3-10 carbon atoms, and said polymer (b) is an

ethylene homopolymer.

10

15

4. The blend of any of claims 1 to 3 characterized in that neither polymer (a) nor polymer (b) has any substantial long chain branching.

- 1 5. The blend of any of claims 1 to 4 characterized in that polymer (a) has a high load melt index (HLMI) in the range of 0.2-0.6, the ethylene homopolymer (b) has a melt index (MI) of 100-300, the ethylene homopolymer (b) is essentially linear and polymer (a) is essentially linear and has essentially only short chain branching from the comonomer, if any.
- 6. The blend of any of claims 1 to 5 characterized in that said high molecular weight ethylene polymer/has a density in the range of 0.930 to 0.955 g/ml and said low molecular weight ethylene polymer/has a density in the range of 0.945 to 0.975 g/ml.
- 15 7. Ethylene polymer blend comprising
 - (a) a high molecular weight ethylene polymer randomly copolymerized from ethylene and 5 to 10 weight % of a mono-1-olefin of 4 to 8 carbon atoms, and
 - (b) a low molecular weight ethylene homopolymer.

20

25

İ

- 8. A process for producing an ethylene polymer blend characterized by blending 40 to 70 parts by weight of a high molecular weight ethylene polymer (a) according to any of claims 1 to 7, and 60 to 30 parts by weight of a low molecular weight ethylene polymer according to any of claims 1 to 7.
- The process of claim 8 characterized in that both ethylene polymers (a) and (b) are blended as polymer fluff to obtain a polymer fluff blend as the product.
- 10. A process for producing an ethylene polymer sheet comprising extruding a fluid ethylene polymer blend and forming the extruded blend into a sheet characterized by using the ethylene polymer blend of one of claims 1 to 7.

.

:

.

.

MOLECULAR WEIGHT DISTRIBUTION

0100843 Application number

EP 83 10 6043

	DOCUMENTS CONSIDERED TO BE Citation of document with indication, where appropriate to the state of the state	opriate, F	leleva		CLASSIFICA	CATIO	N OF THE
ategory	of relevant passages		o clair	<u> </u>	APPLICA	HON (int. OiJ
х	US-A-4 230 831 (H. SAKURA) * Column 1, line 39 - col line 41 *		l-1(0			23/04 5/18
x	US-A-4 123 476 (BONNEFON) * Claim 1 *	:	1				
A	GB-A-2 070 625 (NIPPON OI * Claims 1,13 *	L)	1,3	,10			
A	EP-A-O 005 268 (BASF) * Claim 1 *		1			-	
				-	TEC SEAI	HNICA	L FIELDS (Int. Cl. 3)
		·			C C)8 L)8 J	
-	The present search report has been drawn up for a	II claims	1				
	Date of com	pletion of the search	1	GOOV	AERTS	xamine R.	E.
Form 1500	CATEGORY OF CITED DOCUMENTS (: particularly relevant if taken alone (: particularly relevant if combined with another document of the same category A: technological background D: non-written disclosure D: intermediate document	T: theory or E: earlier par atter the f D: documen L: documen &: member of documen	tent d iling of t cited t cited	ocumendate d in the a d for oth	applicationer reason	n IS	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USP10)