ME 335A Finite Element Analysis Instructor: Adrian Lew Final Review

June 8, 2023

Heat Conduction on a Triangular Bar

The bottom section of a long triangular bar is well insulated, while the sides are maintained at uniform temperatures $T_{\Gamma_{g1}} = 100^{\circ}C$ and $T_{\Gamma_{g2}} = 50^{\circ}C$. The domain Ω has a boundary $\partial\Omega$ partitioned as follows $\Gamma_{g1} = \{(x_1, x_2) \in \partial\Omega \mid x_1 = 0\}$, $\Gamma_h = \{(x_1, x_2) \in \partial\Omega \mid x_2 = 0, x_1 \neq 0\}$ and $\Gamma_{g2} = \partial\Omega \setminus (\Gamma_{g1} \cup \Gamma_h)$. We want to find the temperature $T: \Omega \to \mathbb{R}$ such that

$$\begin{split} &-\operatorname{div}(K(\mathbf{x})\nabla T)=0 & \text{ on } \Omega \\ &T=100^{\circ}C & \text{ on } \Gamma_{g1} \\ &T=50^{\circ}C & \text{ on } \Gamma_{g2} \\ &K(\mathbf{x})\nabla T \cdot \check{n}=0 & \text{ on } \Gamma_{h} \end{split}$$

To this end consider the mesh shown in the figure, made of all \mathcal{P}^1 elements formed with triangles that have a ratio of 1:3.

- 1. Construct a variational equation that T satisfies.
- 2. Define W_h , V_h and S_h and state the finite element method for this problem using the variational equation obtained in part 1.
- 3. Find LV for the given mesh.
- 4. Since the bar has anisotropic properties let us assume that the thermal conductivity is constant for each element (i.e. $K(\mathbf{x}) \approx k^e \mathbf{I}$, $\mathbf{x} \in \Omega^e$, $k^e \in \mathbb{R}$) and have the following values (assume that the units of k^e are consistent with the problem). The expressions for N_a^e and A are also provided to you in case you need them.

$$\begin{split} N_1^e &= \frac{1}{2A} [-(X_2^3 - X_2^2)(x_1 - X_1^2) + (X_1^3 - X_1^2)(x_2 - X_2^2)] \\ N_2^e &= \frac{1}{2A} [-(X_2^1 - X_2^3)(x_1 - X_1^3) + (X_1^1 - X_1^3)(x_2 - X_2^3)] \\ N_3^e &= \frac{1}{2A} [-(X_2^2 - X_2^1)(x_1 - X_1^1) + (X_1^2 - X_1^1)(x_2 - X_2^1)] \\ A &= \frac{1}{2} (X_1^2 - X_1^1)(X_2^3 - X_2^1) - (X_2^2 - X_2^1)(X_1^3 - X_1^1) \end{split}$$

k^e	Value
k^1	14
k^2	27
k^3	45
k^4	27

With this information find the stiffness matrix and load vector. Provide the finite element approximation T_h as a linear combination of the basis functions.

5. Now that you know T_h , find the value of the temperature at the centroid of the elements $\bar{\mathbf{x}}^e$.

$$\frac{\bar{\mathbf{x}}^e}{(1, 4/3)} \\
\frac{(1/3, 1/3)}{(2, 2/3)} \\
\frac{(2, 2/3)}{(4, 1/3)}$$

- 6. With this finite element approximation, assuming that you are in the asymptotic region of convergence, what convergence rate r_1 would you expect to have for $||T T_h||_{0,2,\Omega}$ and for $||T T_h||_{1,2,\Omega}$?
- 7. You are not satisfied with the approximation of the temperature that you get with \mathcal{P}^1 elements and for this reason you will use \mathcal{P}^2 . In this case, assume that you have access to a thermocouple that allows you to get measurements of the temperature T_{meas} at any point \mathbf{x}_{meas} . You can incorporate them in the problem as

$$-\operatorname{div}(K(\mathbf{x})\nabla T) = 0 \quad \text{on } \Omega$$

$$T = 100^{\circ}C \qquad \text{on } \Gamma_{g1}$$

$$T = 50^{\circ}C \qquad \text{on } \Gamma_{g2}$$

$$K(\mathbf{x})\nabla T \cdot \check{n} = 0 \qquad \text{on } \Gamma_{h}$$

$$T(\mathbf{x}) = T_{meas}(\mathbf{x}_{meas})$$

Specify the locations \mathbf{x}_{meas} at which you would measure the temperature. Number the nodes of the new mesh that you get using \mathcal{P}^2 elements, find the stiffness matrix and load vector and provide the finite element approximation T_h as a linear combination of the basis functions that is consistent with the mesh that you provide.

Euler-Lagrange Equations and Assembly in 1D

Consider the weak form: For $g, \ \alpha \in \mathbb{R}$ find $y \in \mathcal{S} = \{s : \Omega = (1,3) \to \mathbb{R} \text{ smooth } | \ s(3) = g\}$ such that $a(u,v) = l(v), \ \forall v \in \mathcal{V} = \{v : \Omega = (1,3) \to \mathbb{R} \text{ smooth } | \ v(3) = 0\}$

$$a(u,v) = \int_{1}^{3} -x^{2}v'y' - xvy' + (x^{2} - \alpha^{2})yv \, dx$$
$$l(v) = v(1)$$

- 1. Obtain the Euler-Lagrange equations. Identify essential and natural boundary conditions.
- 2. Consider the nodes 1 to 7 with positions $\{1, 2, 3, 1.25, 1.5, 1.75, 2.5\}$, respectively as it is shown in the figure. These nodes form \mathcal{P}^2 elements 1, 2, and 3, whose domains are $\Omega^1 = [1, 1.5]$, $\Omega^2 = [1.5, 2]$ and $\Omega^3 = [2, 3]$. Using the node number as the index of global degree of freedom, write down the local-to-global map LG to build a space of continuous basis functions.

- 3. Sketch the basis functions N_2 , N_3
- 4. Sketch the shape functions N_1^3 , N_1^1 .
- 5. State the finite element method for this problem using the given variational equation. Identify V_h , S_h , η_a , η_g and $\bar{u}_h \in S_h$.
- 6. Provide expressions to compute K_{23}^1 , K_{32}^1 and K_{11}^3 in terms of the appropriate shape functions. Do not compute the integrals.
- 7. State where each entry in the second row of K^2 is assembled in the stiffness matrix.
- 8. Provide the numerical values for the load vector.