Parcial 2 - Informa2

Santiago Vélez Arboleda.

Mariana Noreña Vásquez.

Despartamento de Ingeniería Electrónica y Telecomunicaciones Universidad de Antioquia Medellín Septiembre de 2021

$\acute{\mathbf{I}}\mathbf{ndice}$

L.	. Análisis del problema.							
2.	Desarrollo del problema							
	2.1.	Esquema del problema.	2					
	2.2.	Algoritmo	2					
	2.3	Consideraciones	9					

1. Análisis del problema.

Se requiere un código que haga sobremuestreo y submuestreo de una imagen. Para ello, se aplicarán técnicas que realicen los procesos anteriores. Seguidamente, después de extraer los datos y realizar los procesos se imprimirá la imagen en la matriz led, la cual estará compuesta por un Arduino y tiras Neo pixel conectadas entre sí. .

2. Desarrollo del problema

2.1. Esquema del problema.

- 1. Leer imagen: Se debe recibir una dirección donde se encuentre la imagen. Seguidamente se verificará si verdaderamente lo recibido es una imagen. De lo contrario, se debe enseñar un mensaje de error.
- 2. Escalado de la imagen: Se aplicará una técnica de escalado de la imagen aplicando un factor de escala según se requiera la imagen a proyectar y sumando pixeles consecutivos. Seguidamente, se obtendrán los valores equivalentes de los colores para ser almacenados en una matriz dentro de un archivo de texto.
- 3. Imprimir imagen: Con los valores de los colores, se recorrerá la matriz y se enseñará en la matriz de Neo pixels.

2.2. Algoritmo.

- 1. Ingreso de la ubicación de la imagen.
- 2. Lectura de la imagen y validaciones.
- 3. Aplicar el proceso de factor de escala para redimensionar la imagen.
- 4. Obtener los valores de los colores RGB de la imagen.
- 5. Estructurar la matriz con los colores y escribir dicha información en un archivo .txt.
- 6. Abrir el archivo con un editor de texto.
- 7. Abrir la matriz del archivo .txt y copiarla para posteriormente ingresar dicha información en el simulador de Tinkercad para la representación de la imagen.

2.3. Consideraciones

1. La estructura de cómo se realizará está sujeta a cambios a lo largo del proceso

odigo estará o s de escalar l	-	-	lrá como r	nétodos las