

AD-A031 480

GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9
ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING. APPENDICES, A---ETC(U)
JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380

RADC-TR-76-186-VOL-4-PT-1 NL

UNCLASSIFIED

1 OF 3
ADA031480

AD A031480

RADC-TR-76-186, Vol IV, Pt 1
Final Technical Report
June 1976

(12)

ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING
(Appendices A-K, M)

General Dynamics

COPY AVAILABLE TO DDC DOES NOT
PERMIT FULLY LEGIBLE PRODUCTION

Approved for public release;
distribution unlimited.

Laboratory Directors' Fund Number 01707310
with Proj. 6512 funds added.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK 13441

ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING
(APPENDICES A-K M)

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

APPROVED:

John C. Cleary

JOHN C. CLEARY
Project Engineer

APPROVED:

Moses A. Diab

MOSES A. DIAB
Acting Technical Director
Surveillance Division

FOR THE COMMANDER:

John P. Huss

JOHN P. HUSS
Acting Chief, Plans Office

Initially funded under RADC Laboratory Directors' Funds with Proj. 6512 funds added.

Do not return this copy; retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
18. SPONSORING SOURCE NUMBER <i>(18) RADC-TR-76-186, Vol IV, Pt 1</i>		2. GOVT ACCESSION NO. <i>(18) D91TR-76-186-Vol-4 Pt-1</i>	3. RECEIPT'S CATALOG NUMBER
4. TITLE (and Subtitle) <i>(6) ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING Appendices, A-K, M</i>		5. PERIOD OF REPORT & PERIOD COVERED <i>(9) Final Technical Report</i>	
7. AUTHOR(s) <i>(10) Robert J. Hancock Fred H. Cleveland</i>		8. PERFORMING ORG. REPORT NUMBER <i>(15) N/A</i>	
9. PERFORMING ORGANIZATION NAME AND ADDRESS <i>General Dynamics Convair Aerospace Division P O Box 748, Ft Worth TX 76101</i>		10. PROGRAM ELEMENT, PROJECT, TASK & WORK UNIT NUMBERS <i>(15) 61101F LDF 01707310</i>	
11. CONTROLLING OFFICE NAME AND ADDRESS <i>(11) Rome Air Development Center (OCSA) Griffiss AFB NY 13441</i>		12. REPORT DATE <i>(11) June 1976</i>	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>Same</i>		13. NUMBER OF PAGES <i>(15) 222</i>	
		15. SECURITY CLASS. (of this report) <i>(15) UNCLASSIFIED</i>	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>(N/A</i>	
16. DISTRIBUTION STATEMENT (of this Report) <i>Approved for public release; distribution unlimited.</i>			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) <i>(17) Same</i>			
18. SUPPLEMENTARY NOTES <i>(18) RADC Project Engineer: John C. Cleary (OCSA) Initially funded under RADC Laboratory Directors' Funds with Proj. 6512 funds added.</i>			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) <i>Radar Simulation Computer Modeling</i>			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>(20) This effort is concerned with the development and implementation of a set of digital computer programs that will augment the RADC digital computer radar simulation model procured under Contr F30602-72-C-0393 (01707201). The computer programs shall consist of a sequence of subroutines that correspond to separate functions such as a chaff model, target model, propagation effects and clutter model. The original radar simulation model will be expanded to include a bistatic capability and will include ECM and phase coded pulse compression</i>			

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

receiver techniques. In addition, an interactive system has been designed for the simulation. Using an interactive display, an engineer would be able to understand what is happening by being able to observe results at several intermediate points in the problem. A picture is worth a thousand words. For example, an antenna pattern or waveform response to a target is more meaningful than a long table of numerical listings. Parts of the simulation were used by RADC for Deep Space Surveillance Radar (DSSR) waveform analysis, generating antenna patterns and tradeoffs involving phase shifter bit-size for the Advanced Space Defense Program (ASDP). The RADC radar simulation model is being used to support Seek Sail, Cobra Judy, Digital Coded Radar and Seek Sentry.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

This report contains a large percentage of machine-produced copy which is not of the highest printing quality but because of economical consideration, it was determined in the best interest of the government that they be used in this publication.

This report contains Vol I, Pt 1 (Sections 1-7 and 9-10) (Pages 1-1 thru 1-5, 2-1 thru 2-24, 3-1 thru 3-35, 4-1 thru 4-23, 5-1 thru 5-6, 6-1 thru 6-39, 7-1 thru 7-30, 9-1 thru 9-3 and 10-1 thru 10-2).

Vol I, Pt 2 contains Section 8 (Pages 8-1 thru 8-174).

Vol I, Pt 3 contains Section 8 (Pages 8-175 thru 8-418).

Vol II, Pt 1 contains (Sections 1-8 and 10 & 11) (Pages 1-1, 2-1 thru 2-24, 3-1 thru 3-15, 4-1 thru 4-137, 5-1 thru 5-16, 6-1 thru 6-44, 7-1, 8-1 thru 8-26, 10-1 thru 10-4 and 11-1 thru 11-2).

Vol II, Pt 2 contains Sections 9 and 10 (Pages 9-1 thru 9-234 and Pages 10-1 thru 10-4).

Vol III contains Sections 1 thru 6 (Pages 1-1 thru 1-2, 2-1 thru 2-22, 3-1 thru 3-53, 4-1 thru 4-141, 5-1 thru 5-3 and 6-1).

Vol IV, Pt 1 contains Appendices A-K and Appendix M.

Vol IV, Pt 2 contains Appendix L.

BECAUSE THIS DOCUMENT IS A COMPUTER SOFTWARE PROGRAM MANY CONSECUTIVE PAGES CONTAIN ILLEGIBLE AREAS WITH VERY MINOR (1, 2 or 3 LINES) CHANGES FROM ONE PAGE TO THE NEXT. FOR THAT REASON THE OVERALL VALUE OF THE PROGRAM AFTER CONSIDERING THE LOSS OF THE ILLEGIBLE PAGES IS NOT DEGRADED TO ANY DEGREE AND THE SOFTWARE PROGRAM REMAINS CLEARLY UNDERSTANDABLE. FOR CLARIFICATION OF ANY PORTION, CONTACT RADC/OCSA.

T A B L E O F C O N T E N T S

<u>APPENDIX</u>	<u>TITLE</u>	<u>PAGE</u>
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
A	GLOSSARY	A-1
B	SOFTWARE MODULES USED IN THE RADAR SIMULATION MODEL	B-1
	B.1 Software Modules Listed by Module Name	B-1
	B.2 Software Modules Listed by Reference Number	B-18
C	VARIABLES USED IN THE RADAR SIMULATION MODEL	C-1
D	TABLE OF TIME SHARING FILES	D-1
E	TSCHEBYSCHEFF FILTER DESIGN DATA	E-1
F	DIGITAL FILTER DESIGN	F-1
	F.1 The Bilinear Z-Transformation	F-1
	F.1.1 Low-Pass to Low-Pass High-Pass to High-Pass Transformation)	F-2
	F.1.2 Low-Pass to High-Pass (High-Pass to Low-Pass) Transformation	F-2
	F.2 Determining Digital Filter Coefficients	F-2
	F.3 Examples of Digital Filter Designs	F-5
	F.3.1 Low-Pass Filter Design	F-5
	F.3.2 High-Pass Filter Design	F-6
	F.3.3 Integrator Design	F-9
G	COMPUTER PROGRAM USED IN READING RADAR CROSS SECTION TAPES	G-1
H	COMPUTER PROGRAM FOR IMAGING COHERENT SHORT PULSE TARGET DATA	H-1

from iii

<u>APPENDIX</u>	<u>TITLE</u>	<u>PAGE</u>
I	TSAR SIMULATION RUN CATALOGUES	I-1
J	ANTENNA LOBE SCANNER OUTPUT DATA	J-1
K	INTERACTIVE RADAR SIMULATOR DESIGN STUDY	K-1
K.1	Introduction	K-1
K.2	Interactive Radar Simulator Back- ground and Requirements	K-2
K.2.1	Simulation Model Usage	K-2
K.2.2	Simulation Model Limita- tions	K-3
K.2.3	Dedicated User Interface	K-4
K.3	Dedicated User Interface Hardware	K-6
K.3.1	System Design #1	K-6
K.3.2	System Design #2	K-12
K.3.3	Comparison of Designs	K-15
K.4	Dedicated User Interface Software	K-18
K.4.1	Allocation of Processing Tasks	K-18
K.4.2	Communications Buffer Executive	K-20
K.4.3	Radar System Simulation Model	K-20
K.4.4	Plot Programs	K-21
K.4.5	Simulation Job Setup Program	K-21
K.5	Interactive Radar Simulation Operation	K-24
K.5.1	Phase I - Simulation Job Setup	K-24
K.5.2	Phase II - Job Submission	K-26
K.5.3	Phase III - Simulation Execution	K-28
K.5.4	Phase IV - Retrieval of Results	K-28
K.5.5	Phase V - Autonomous Operation	K-29
L	RADAR CROSS SECTION ANALYTIC MODEL DESCRIPTIONS (Contained in Volume IV, Part 2)	iv

from iv

APPENDIX

TITLE

PAGE

M	HEWLETT PACKARD 9820A COMPUTER PROGRAM TO PLOT FILTER TRANSFER FUNCTIONS	M-1
---	---	-----

M.1	Introduction	M-1
M.2	Program Operation	M-1
M.3	Sample Problem	M-3
M.4	How to Use the Filter Program Results with RADSIM	M-3

L I S T O F F I G U R E S

<u>NUMBER</u>	<u>TITLE</u>	<u>PAGE</u>
F.1-1	Double Delay Digital Filter Diagram	F-4
F.3.1-1	Impulse Response - 0.5 dB Tchebyscheff Lowpass Filter	F-7
F.3.2-1	Impulse Response - 1dB Tchebyscheff Highpass Filter	F-7
F.3.3-1	Impulse Response - Digital Integrator	F-10
K.3-1	Interactive Radar Simulator System Block Diagram	K-7
K.3-2	Design #1 Block Diagram	K-8
K.3-3	Design #2 Block Diagram	K-13
K.4-1	Job Definition File Structure	K-23
K.5-1	Interactive Radar Simulator Functional Block Diagram	K-25
K.5-2	Display During Simulation Job Setup	K-27
M.3-1	HP9820 Listing Showing Filter Program Inputs	M-4
M.3-2	6-Pole Chebyshev Filter	M-6
M.3-3	6-Pole Chebyshev Filter	M-7
M.4-1	6-Pole Chebyshev Filter	M-9
M.4-2	HP9820 Listing of Filter Program	M-10

L I S T O F T A B L E S

<u>NUMBER</u>	<u>TITLE</u>	<u>PAGE</u>
B.1-1	Software Modules Listed by Module Name	B-2
B.2-1	Software Modules Listed by Reference Number	B-19
C-1	Variables Used in the Radar Simulation Model	C-2
C-2	Module Variable Name/System Variable Name Cross Reference Table	C-22
D-1	Time Sharing Files	D-2
I-1	TSARJB Run Catalog	I-2
I-2	TSARTM Run Catalog	I-4
I-3	FSANTM Run Catalog	I-6
I-4	FSANT Run Catalog	I-6
J-1	Antenna Lobe Scanner Output	J-2
K.3-1	HP2100A/DEC PDP-11/05 Comparison	K-16

A P P E N D I X A
G L O S S A R Y O F A B B R E V I A T I O N S
A N D S Y M B O L S

CARDIN	- TSS subsystem which allows submission of batch jobs from a remote terminal.
CFG	- Simulation configuration
CPU	- Central Processor Unit. The central and arithmetic portion of a computer.
$\delta(t-t_i)$	- Dirac delta function. Unit impulse at time equal to t_i
DFT	- Discrete Fourier Transform
DSRN	- Data Set Reference Number
ECM	- Electronic Counter Measures
ECCM	- Electronic Counter Counter Measures
EDITOR	- TSS subsystem which facilitates modification or correction of TSS files
$F []$	- Fourier transform operator
$F^{-1} []$	- Inverse Fourier transform operator
FFT	- Fast Fourier Transform algorithm
GCOS	- Honeywell General Comprehensive Operating Supervisor
GHz (Gc)	- Gigahertz
$H []$	- Hilbert transform operator
HIS 635	- Honeywell/GE 635 computer system
IF	- Intermediate Frequency
LSB	- Least Significant Bit

LTI	- Linear Time Invariant
MCC	- Module Classification Code
MRN	- Module Reference Number
MSB	- Most Significant Bit
MTI	- Moving Target Indication
ns (or NS)	- nanosecond (10^{-9} second)
PASS	- Pass through a simulation configuration
PRMFL	- Permanent disc storage file
RADSIM	- Radar System Simulation Model
RCS	- Radar Cross Section
RF	- Radio (Radiated) Frequency
RV	- Reentry Vehicle
STF	- Stimulus/Transfer Function
$s^*(t)$ or $S^*(f)$	- Complex conjugate of $s(t)$ or $S(f)$
$s_*(t)$	- A function composed of samples of $s(t)$
$S_*(f)$	- The Fourier transform of a sampled function, such as $s_*(t)$
$\hat{s}(t)$	- Hilbert transform of $s(t)$
$S_+(f)$	- Positive frequency components of the signal $s(t)$
$S_-(f)$	- Negative frequency components of the signal $s(t)$
$s_+(t)$	- The function of time which corresponds to the positive frequency components of $s(t)$

- | | |
|------------|---|
| $s_{-}(t)$ | - The function of time which corresponds to the negative frequency components of $s(t)$ |
| $s_I(t)$ | - In-phase video channel representation of the bandlimited signal $s(t)$ |
| $s_Q(t)$ | - Quadrature video channel representation of the bandlimited signal $s(t)$ |
| TSS | - Time-sharing system |

A P P E N D I X B

S O F T W A R E M O D U L E S U S E D I N

T H E R A D A R S I M U L A T I O N M O D E L

The software modules used in the radar simulation module are listed herein by module name and by reference number.

B.1 SOFTWARE MODULES LISTED BY MODULE NAME

The following table includes all of the software modules listed in alphabetical order by module name. Column headings in the list are defined as follows:

1. Module Ref. Number: This is the number by which the module is called in any system model program.
2. Input: Locations where input data to module must be located before execution.
3. Output: These are the locations where output data is placed.
4. Subroutine Name: This column contains a list of subroutines used by module.
5. Subroutine PRMFL: This column contains a list of the permanent file where the subroutine is located. This file must be loaded in any system model program that uses module.
6. System Parameters: The system parameters are constants that are used in the module and are defined by module number 301, (SYS). Parameters are described in Appendix C.
7. Module Parameters: Module parameters are constants that are used in module and are defined in a namelist immediately following the module call in the system model program.
8. Comments: This column is provided for a short term description of the module.

Table B.1-1 SOFTWARE MODULES LISTED BY MODULE NAME

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	COMMENTS			
NAME	#	INPUT	OUTPUT	NAME	NAME	LOC	NAME	LOC
ADDA	207	XT,XA	XT	CONV	OMISCI	-	-	-
ADDA	239	YT,XB	YT	CONV	OMISCI	-	-	-
ADRNDRD	235	XT	XT	RNDARY RRAND	OSUF2 OSUF1	-	NTYFER	45
ADRNDRD	236	YT	YT	RNDARY RRAND	OSUF2 OSUF1	-	NTYFER	45
ADRNDC	237	XT,YT	XT,YT	RNDARY RRAND	OSUF2 OSUF1	-	NTYFER	45
ANTARY	413	--	XT,YT	ANTARY	QANT1	N2 RFF@	RFF@	3
ANTFAT	504	--	XT,YT	ZFFT	OZFFT	N2 RFF@	1 DDUMP NTSAR DX THETAS NROWS NBFSRG TRPSCG NBFSR TRPSR NFULS TSRLDS(1)	21 76 77 78 79 80 81 82 83 85 401
ATOD	216	XT	IXT	ATOD	ODFIN	-	RFF@	3
ATOD	217	YT	IYT	ATOD	ODFIN	-	DDUMP NTSAR DX THETAS NROWS NBFSRG TRPSCG NBFSR TRPSR INORM INPULS TSRLDS(1)	21 76 77 78 79 80 81 82 83 84 85 401
ATOD						-	XLSB NBITS IROFF ADCFS	103 104 105 149
ATOD						-	XLSB NBITS IROFF ADCFS	103 104 105 149

MODULE	ARGUMENTS			SUBROUTINES & SYMREFS REQ'D		SYSTEM PARAMETERS		MODULE NAMELIST PARAMETERS		COMMENTS	
	NAME	*	INPUT	OUTPUT	NAME	PRMFNL	NAME	LOC	NAME	LOC	
CDFNCL	404	XT,YT	XT,YT	CDIGFL	ODFIN	-	-	FFR FFI FBR FBI	68 69 70 71	DIGITAL FILTER-COMPLEX Storage registers not zeroed	
CDIGFL	403	XT,YT	XT,YT	CDIGFL	ODFIN	-	-	FFR FFI FBR FBI	68 69 70 71	DIGITAL FILTER-COMPLEX Storage registers zeroed	
CFAR	459	XT	XA	CFAR	OMISC1	TI	12	TAVG	198	CONSTANT FALSE ALARM RATE PROCESSOR	
CFAR	460	YT	XB	CFAR	OMISC1	TI	12	TAVG	198	CONSTANT FALSE ALARM RATE PROCESSOR	
C.GEN	425	--	XT,YT (XA)*	CGEN	OTSAR	RFF0 SIMF0	3	RFF0	3	TSAR CONTROL GENERATOR	
				FGENMF DFT	OMNTR2 OMISC2	TI	12	IDUMP DX	21 77	* Array XA used for scratch storage	
				SHIFTS	OMISC1			THETAS NRDMS NBPSG IRPSG INPULS NCGPLS TCGNOM FMBW NFWTX RISTIM FALTIM TINLSR WTX(I,J)	78 79 80 81 85 88 89 93 94 98 99 115 201		
C.GENCW	455	--	XT,YT	CGENSF	OTSAR1	RFF0 SIMF0	3	DX	77	FSAR CONTROL GENERATOR FOR FREQUENCY SCANNED	
C.GENSF	453	--	XT,YT	CGENSF	OTSAR1	RFF0 SIMF0	8	THETAS NRDMS TCGNOM	78 79 89	PHASED ARRAY	
CLINT	302	--	--	CLINT	OCLINT		3	RFF0	3	CONTROL GENERATOR - BURST Pulse to pulse phase shift deleted	
							8	DX	77		
								THETAS NRDMS NCGPLS TCGNOM	78 79 88 89		
								TRNGCEL LAMBDA RNCGEL	12 13 14	CLUTTER MODEL INITIALIZER	
								IDUMP NRCS RWPH WNDEL VELANG	21 46 48 49 50		

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D			SYSTEM PARAMETERS		MODULE NAMELIST PARAMETERS		COMMENTS
		NAME	INPUT	OUTPUT	NAME	NAME	LOC	NAME	
CLINT (cont.)					RNEXT	RNB	51		
					AZEXT	AZB	52		
CLUTTR	503 --	XT,YT (XB)*	XA	CUMDIS	OTGCL OSUP2 OSUP2	TIME FS RNGCEL TI	16 2 14 12	-	CLUTTER MODEL (Initialized by CLINT) * Array XB used for scratch storage
CUMDIS	208 XT			CUMDIS	OSUP2	-	-	TLIM BLIM NHIST NCPACK NDPACK	HISTOGRAM GENERATION
CUMDIS	209 YT			CUMDIS	OSUP2	-	-	TLIM BLIM NHIST NCPACK NDPACK	HISTOGRAM GENERATION
CONV	204 XT,YT, XA,XB			CONV	OMISCI	-	-	-	ARRAY MULTIPLICATION Complex rectangular
CONMF	205 XT,YT, XA,XB			CONV	OMISCI	-	-	-	ARRAY MULTIPLICATION Complex polar
(DATA XFER)	114 XT,YT			DBLXX	OSUP1	-	-	-	
(DATA XFER)	115 XA,XB			DBLXX	OSUP1	-	-	-	
DCFAR	440 IXT			DCFAR	ODFIN	-	-	NCELL	DIGITAL CFAR VIDEO PROCESSOR
DCFAR	441 IYT			DCFAR	ODFIN	-	-	NCELL	DIGITAL CFAR VIDEO PROCESSOR
DFT	201 --			DFT	OMISCI2	NORMFT FI TI SIMBW	9 11 12 4	SIMBW IDUMP NIMP DFTIN(I,J)	DISCRETE FOURIER TRANSFORM Video data

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST	COMMENTS					
NAME	#	INPUT	OUTPUT	NAME	NAME	LOC	NAME	LOC		
DFTF@	234	--	XT, YT	DFT	DMISC2	NORMFT FI TI SIMBW SIMF@	9 11 12 4 8	SIMBW SIMF@ IDUMP NIMP DFTIN(I,J)	4 8 21 200 201	DISCRETE FOURIER TRANSFORM Intermediate Frequency(IF) data
DFTRF	233	-	XT, YT	DFT	DMISC1	NORMFT FI TI SIMBW RFF@	9 11 12 4 3	RFF@ SIMBW IDUMP NIMP DFTIN(I,J)	3 4 21 200 201	DISCRETE FOURIER TRANSFORM Radio Frequency(RF) data
DIGFSF	463	XT, YT	XT, YT	DIGFSF	ODFIN	-	-	RADIUS NSAM NBFZ FSAM(I,J)	195 196 197 201	DIGITAL FILTER-FREQUENCY SAMPLING DESIGN Low Pass filter only
DIGFIL	461	XT, YT	XT, YT	DIGFIL	ODFIN	-	-	SF NSEC FFCOEF(I,J)	74 199 201	DIGITAL FILTER-MULTIPLE SECTION Storage registers zeroed
DIGFNC	462	XT, YT	XT, YT	DIGFIL	ODFIN	-	-	SF NSEC FFCOEF(I,J)	74 199 201	DIGITAL FILTER-MULTIPLE SECTION Storage registers not zeroed
DIGTFL	422	IYT	IYT	DIGTFL	ODFIN	-	-	NTAPS ITAP(I,J)	101 201	DIGITAL TRANSVERSAL FILTER
DIGTFL	423	IYT	IYT	DIGTFL	ODFIN	-	-	NTAPS ITAP(I,J)	101 201	DIGITAL TRANSVERSAL FILTER
DIVA	206	XT, YT, XA, XB	XT, YT	CONV	DMISC1	-	-	-	-	COMPLEX POLAR ARRAY DIVISION
DTOA	218	IYT	XT	ATOD	ODFIN	-	-	-	-	DIGITAL TO ANALOG CONVERSION
DTOA	219	IYT	YT	ATOD	ODFIN	-	-	-	-	DIGITAL TO ANALOG CONVERSION
DTOA	220	IYT	XA	ATOD	ODFIN	-	-	-	-	DIGITAL TO ANALOG CONVERSION
DTOA	228	IYT	XA	ATOD	ODFIN	-	-	-	-	DIGITAL TO ANALOG CONVERSION
ECM	512	XT, YT	XT, YT	ECM DIGFSF	ODFIN ODFIN	N2 TIME	1 16	JUEL JPEROD JRNG JRSIM JMAZ	156 157 171 172 173	NOISE JAMMER

MODULE	DESCRIPTION	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	COMMENTS
NAME	INPUT	OUTPUT	NAME	NAME	LOC
FUR(cont.)				JHG1 JERF JFMW JPW JF0 RAD1US NSAM NDFZ FSAM(I,J)	174 175 176 177 178 195 196 197 201
ERGDCF	118	XI*YT	SYSOUT	ERGYCF OMISCI	-
ERGRF	116	XT	SYSOUT	ERGYCF OMISCI	-
EGURE	117	YI	SYSOUT	ERGYCF OMISCI	-
FGENMF	421	--	XI*YT	FGENXY 0xMTR2 N2 FS TI SIMF0 NORMFT	1 2 12 8 9
				10DUMP FW FMBW NFWTX SFW NSUBF SWTIM RISTIM FALTIM TSTART WTX(I,J) FCODE(I) CHIRP UPEAK FSTRT	21 90 93 94 95 96 97 98 99 100 201 451 92 129 91
				1 2 12 8 9 NSUBF SWTIM RISTIM FALTIM TSTART WTX(I,J) FCODE(I) CHIRP UPEAK FSTRT	8 21 90 93 94 95 96 97 98 99 100 201 451 92 91 129
FGENXY	420	--	XI*YT	FGENXY 0xMTR2 N2 FS TI SIMF0 NORMFT	1 2 12 8 9 NSUBF SWTIM RISTIM FALTIM TSTART WTX(I,J) FCODE(I) CHIRP FSTRT UPEAK
				10DUMP FW FMBW NFWTX SFW NSUBF SWTIM RISTIM FALTIM TSTART WTX(I,J) FCODE(I) CHIRP FSTRT UPEAK	8 21 90 93 94 95 96 97 98 99 100 201 451 92 91 129

MODULE	NAME	ARGUMENTS	SUBROUTINES & SYMREF'S REQ'D		SYSTEM PARAMETERS		MODULE NAMELIST PARAMETERS		COMMENTS
			NAME	NAME	LOC	NAME	LOC	NAME	
FILT	407	XI,YI	OUT,OUT	FILT	OMISCI	-	NZ	72	TRANSFER FUNCTION SPECIFIED IN S-FLANE
						-	NP	73	
						-	SF	74	
						-	FZERO(I,J)	201	
						-	FPOLE(I,J)	301	
FILT	408	XA,XB	XA,XB	FILT	OMISCI	-	NZ	72	TRANSFER FUNCTION SPECIFIED IN S-FLANE
						-	NP	73	
						-	SF	74	
						-	FZERO(I,J)	201	
						-	FPOLE(I,J)	301	
FWDET	416	XT	XT	HWDET	OMISCI	-	-	-	FULL-WAVE DETECTOR
FWDET	417	YT	YT	HWDET	OMISCI	-	-	-	FULL-WAVE DETECTOR
HLIM	438	XT	XT	HWDET	OMISCI	-	-	-	HARD LIMITER
HLIM	439	YT	YT	HWDET	OMISCI	-	-	-	HARD LIMITER
HWDET	414	XT	XT	HWDET	OMISCI	-	-	-	HALF-WAVE DETECTOR
HWDET	415	YT	YT	HWDET	OMISCI	-	-	-	HALF-WAVE DETECTOR
IFWDET	447	IXT	IXT	HWDET	OMISCI	-	-	-	DIGITAL FULL-WAVE DETECTOR
IFWDET	448	IYT	IYT	HWDET	OMISCI	-	-	-	DIGITAL FULL-WAVE DETECTOR
IHLIM	442	IXT	IXT	HWDET	OMISCI	-	-	-	DIGITAL HARD LIMITER
IHLIM	443	IYT	IYT	HWDET	OMISCI	-	-	-	DIGITAL HARD LIMITER
IHWDET	445	IXT	IXT	HWDET	OMISCI	-	-	-	DIGITAL HALF-WAVE DETECTOR
IHWDET	446	IYT	IYT	HWDET	OMISCI	-	-	-	DIGITAL HALF-WAVE DETECTOR
INGTOR	409	XT	INGTOR	ODFIN	-	-	FBCK	75	INTEGRATOR
INGTOR	410	YT	INGTOR	ODFIN	-	-	FBCK	75	INTEGRATOR
IONOS	511	XT,YT	IONOS	OTGCL	RFFQ	3	SEDENS	148	IONOSPHERIC DISPERSION EFFECTS
ISQDET	449	IXT	IXT	HWDET	OMISCI	-	-	-	DIGITAL SQUARE LAW DEVICE
ISQDET	450	IYT	IYT	HWDET	OMISCI	-	-	-	DIGITAL SQUARE LAW DEVICE
LAMFCP	458	XT,YT	LAMFCP	OMISCI	-	-	GAIN	145	LINEAR AMPLIFIER
LAMFRE	456	XT	LAMFCF	OMISCI	-	-	GAIN	145	LINEAR AMPLIFIER

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST	COMMENTS
NAME	INPUT	OUTPUT	NAME	PARAMETERS	LOC
LAMFRE	457	YT	LAMPFC	OM1SC1	-
MTIFLT	430	XT or IXT*	MTIFLT	ODIG	-
					FF0 FF1 FB1 FB2 IFF0N IFF0D IFF1N IFF1D IFB1N IFB1D IFB2N IFB2D MODEDF NBITDF
					68 69 70 71 160 161 162 163 164 165 166 167 168 169
					DOUBLE DELAY MTI FILTER Delay line storage zeroed
					* XT used for MODEDF=1 (Floating Point arithmetic) IXT used for MODEDF=2 (Integer arithmetic)
MTIFLT	431	YT or IYT*	MTIFLT	ODIG	-
					FF0 FF1 FB1 FB2 IFF0N IFF0D IFF1N IFF1D IFB1N IFB1D IFB2N IFB2D MODEDF NBITDF
					68 69 70 71 160 161 162 163 164 165 166 167 168 169
					DOUBLE DELAY MTI FILTER Delay line storage zeroed
					* YT used for MODEDF=1 (Floating Point arithmetic) IYT used for MODEDF=2 (Integer arithmetic)
MTINCL	432	XT or IXT*	MTIFLT	ODIG	-
					FF0 FF1 FB1 FB2 IFF0N IFF0D IFF1N IFF1D IFB1N IFB1D IFB2N IFB2D MODEDF NBITDF
					68 69 70 71 160 161 162 163 164 165 166 167 168 169
					DOUBLE DELAY MTI FILTER Delay line storage not zeroed
					* XT used for MODEDF=1 (Floating Point arithmetic) IXT used for MODEDF=2 (Integer arithmetic)

MODULE	SUBROUTINES			SYSTEM PARAMETERS			MODULE NAMELIST		
	NAME	PARAMETERS	NAME	NAME	LOC	NAME	LOC	NAME	LOC
PHENR	435	LINEAR	OUT1	OUT1	-	FFB	68	ROUTE RELAY M1 FILTER	
PHENR	436	LINEAR	Y1	Y1	-	FFF1	69	Relay line storage not zeroed	
PHENR	437	Y1	SUMINT	0DIG	-	FBI	70		
PHENR	438	X1	NOMLN	0MISCI	-	FB2	71		
PHENR	439	X1	NOMLN	0MISCI	-	IFFBN	160	* Y1 used for MODE=1 (Floating point arithmetic)	
PHENR	440	Y1	SUMINT	0DIG	-	IFFWD	161	Y1 used for MODE=2 (Integer arithmetic)	
PHENR	441	X1	SUMINT	0DIG	-	IFFIN	162		
PHENR	442	Y1	NOMLN	0MISCI	-	IFFID	163		
PHENR	443	X1	NOMLN	0MISCI	-	IFFIN	164		
PHENR	444	X1	NOMLN	0MISCI	-	IFFID	165		
PHENR	445	Y1	SUMINT	0DIG	-	IFFCN	166		
PHENR	446	Y1	SUMINT	0DIG	-	IFRCN	167		
PHENR	447	X1	NOMLN	0MISCI	-	MODE1	168		
PHENR	448	Y1	SUMINT	0DIG	-	NBT1DF	169		
PHENR	449	X1	NOMLN	0MISCI	-				
PHENR	450	X1	NOMLN	0MISCI	-				
PHENR	451	X1	NOMLN	0MISCI	-				
PHENR	452	Y1	NOMLN	0MISCI	-				
PHENR	453	X1	CUMDIS	0SUF2	-				
PHENR	454	X1	CUMDIS	0SUF2	-				
PHENR	455	X1	CUMDIS	0SUF2	-				
PHENR	456	X1	CUMDIS	0SUF2	-				
PHENR	457	X1	CUMDIS	0SUF2	-				
PHENR	458	X1	CUMDIS	0SUF2	-				
PHENR	459	X1	CUMDIS	0SUF2	-				
PHENR	460	-	PHDEC	0MISCI	-				
PHENR	461	-	PHDEC	0MISCI	-				
PHENR	462	-	PHDEC	0MISCI	-				
PHENR	463	-	PHENC	0MISCI	-				
PHENR	464	-	PHENC	0MISCI	-				
PHENR	465	-	PHENC	0MISCI	-				
PHENR	466	-	PHENC	0MISCI	-				
PHENR	467	-	PHENC	0MISCI	-				
PHENR	468	-	PHENC	0MISCI	-				
PHENR	469	-	PHENC	0MISCI	-				
PHENR	470	-	PHENC	0MISCI	-				
PHENR	471	-	PHENC	0MISCI	-				
PHENR	472	-	PHENC	0MISCI	-				
PHENR	473	-	PHENC	0MISCI	-				
PHENR	474	-	PHENC	0MISCI	-				
PHENR	475	-	PHENC	0MISCI	-				
PHENR	476	-	PHENC	0MISCI	-				
PHENR	477	-	PHENC	0MISCI	-				
PHENR	478	-	PHENC	0MISCI	-				
PHENR	479	-	PHENC	0MISCI	-				
PHENR	480	-	PHENC	0MISCI	-				
PHENR	481	-	PHENC	0MISCI	-				
PHENR	482	-	PHENC	0MISCI	-				
PHENR	483	-	PHENC	0MISCI	-				
PHENR	484	-	PHENC	0MISCI	-				
PHENR	485	-	PHENC	0MISCI	-				
PHENR	486	-	PHENC	0MISCI	-				
PHENR	487	-	PHENC	0MISCI	-				
PHENR	488	-	PHENC	0MISCI	-				
PHENR	489	-	PHENC	0MISCI	-				
PHENR	490	-	PHENC	0MISCI	-				
PHENR	491	-	PHENC	0MISCI	-				
PHENR	492	-	PHENC	0MISCI	-				
PHENR	493	-	PHENC	0MISCI	-				
PHENR	494	-	PHENC	0MISCI	-				
PHENR	495	-	PHENC	0MISCI	-				
PHENR	496	-	PHENC	0MISCI	-				
PHENR	497	-	PHENC	0MISCI	-				
PHENR	498	-	PHENC	0MISCI	-				
PHENR	499	-	PHENC	0MISCI	-				
PHENR	500	-	PHENC	0MISCI	-				
PHENR	501	-	PHENC	0MISCI	-				
PHENR	502	-	PHENC	0MISCI	-				
PHENR	503	-	PHENC	0MISCI	-				
PHENR	504	-	PHENC	0MISCI	-				
PHENR	505	-	PHENC	0MISCI	-				
PHENR	506	-	PHENC	0MISCI	-				
PHENR	507	-	PHENC	0MISCI	-				
PHENR	508	-	PHENC	0MISCI	-				
PHENR	509	-	PHENC	0MISCI	-				
PHENR	510	-	PHENC	0MISCI	-				
PHENR	511	-	PHENC	0MISCI	-				
PHENR	512	-	PHENC	0MISCI	-				
PHENR	513	-	PHENC	0MISCI	-				
PHENR	514	-	PHENC	0MISCI	-				
PHENR	515	-	PHENC	0MISCI	-				
PHENR	516	-	PHENC	0MISCI	-				
PHENR	517	-	PHENC	0MISCI	-				
PHENR	518	-	PHENC	0MISCI	-				
PHENR	519	-	PHENC	0MISCI	-				
PHENR	520	-	PHENC	0MISCI	-				
PHENR	521	-	PHENC	0MISCI	-				
PHENR	522	-	PHENC	0MISCI	-				
PHENR	523	-	PHENC	0MISCI	-				
PHENR	524	-	PHENC	0MISCI	-				
PHENR	525	-	PHENC	0MISCI	-				
PHENR	526	-	PHENC	0MISCI	-				
PHENR	527	-	PHENC	0MISCI	-				
PHENR	528	-	PHENC	0MISCI	-				
PHENR	529	-	PHENC	0MISCI	-				
PHENR	530	-	PHENC	0MISCI	-				
PHENR	531	-	PHENC	0MISCI	-				
PHENR	532	-	PHENC	0MISCI	-				
PHENR	533	-	PHENC	0MISCI	-				
PHENR	534	-	PHENC	0MISCI	-				
PHENR	535	-	PHENC	0MISCI	-				
PHENR	536	-	PHENC	0MISCI	-				
PHENR	537	-	PHENC	0MISCI	-				
PHENR	538	-	PHENC	0MISCI	-				
PHENR	539	-	PHENC	0MISCI	-				
PHENR	540	-	PHENC	0MISCI	-				
PHENR	541	-	PHENC	0MISCI	-				
PHENR	542	-	PHENC	0MISCI	-				
PHENR	543	-	PHENC	0MISCI	-				
PHENR	544	-	PHENC	0MISCI	-				
PHENR	545	-	PHENC	0MISCI	-				
PHENR	546	-	PHENC	0MISCI	-				
PHENR	547	-	PHENC	0MISCI	-				
PHENR	548	-	PHENC	0MISCI	-				
PHENR	549	-	PHENC	0MISCI	-				
PHENR	550	-	PHENC	0MISCI	-				
PHENR	551	-	PHENC	0MISCI	-				
PHENR	552	-	PHENC	0MISCI	-				
PHENR	553	-	PHENC	0MISCI	-				
PHENR	554	-	PHENC	0MISCI	-				
PHENR	555	-	PHENC	0MISCI	-				
PHENR	556	-	PHENC	0MISCI	-				
PHENR	557	-	PHENC	0MISCI	-				
PHENR	558	-	PHENC	0MISCI	-				
PHENR	559	-	PHENC	0MISCI	-				
PHENR	560	-	PHENC	0MISCI	-				
PHENR	561	-	PHENC	0MISCI	-				
PHENR	562	-	PHENC	0MISCI	-				
PHENR	563	-	PHENC	0MISCI	-				
PHENR	564	-	PHENC	0MISCI	-				
PHENR	565	-	PHENC	0MISCI	-				
PHENR	566	-	PHENC	0MISCI	-				
PHENR	567	-	PHENC	0MISCI	-				
PHENR	568	-	PHENC	0MISCI	-				
PHENR	569	-	PHENC	0MISCI	-				
PHENR	570	-	PHENC	0MISCI	-				
PHENR	571	-	PHENC	0MISCI	-				
PHENR	572	-	PHENC	0MISCI	-				
PHENR	573	-	PHENC	0MISCI	-				
PHENR	574	-	PHENC	0MISCI	-				
PHENR	575	-	PHENC	0MISCI	-				
PHENR	576	-	PHENC	0MISCI	-				
PHENR	577	-	PHENC	0MISCI	-				
PHENR	578	-	PHENC	0MISCI	-				
PHENR	579	-	PHENC	0MISCI	-				
PHENR	580	-	PHENC	0MISCI	-				
PHENR	581	-	PHENC	0MISCI	-				
PHENR	582	-	PHENC	0MISCI	-				
PHENR	583	-	PHENC	0MISCI	-				
PHENR	584	-	PHENC	0MISCI	-				
PHENR	585	-	PHENC	0MISCI	-				
PHENR	586	-	PHENC	0MISCI	-				
PHENR	587	-	PHENC	0MISCI	-				
PHENR	588	-	PHENC	0MISCI	-				
PHENR	589	-	PHENC	0MISCI	-				
PHENR	590	-	PHENC	0MISCI	-				
PHENR	591	-	PHENC	0MISCI	-				
PHENR	592	-	PHENC	0MISCI	-				
PHENR	593	-	PHENC	0MISCI	-				
PHENR	594	-	PHENC	0MISCI	-				
PHENR	595	-	PHENC	0MISCI	-				
PHENR	596	-	PHENC	0MISCI	-				
PHENR	597	-	PHENC	0MISCI	-				
PHENR	598	-	PHENC	0MISCI	-				
PHENR	599	-	PHENC	0MISCI	-				
PHENR	600	-	PHENC	0MISCI	-				
PHENR	601	-	PHENC	0MISCI	-				
PHENR	602	-	PHENC	0MISCI	-				
PHENR	603	-	PHENC	0MISCI	-				
PHENR	604	-	PHENC	0MISCI	-				
PHENR	605	-	PHENC	0MISCI	-				
PHENR	606	-	PHENC	0MISCI	-				
PHENR	607	-	PHENC	0MISCI	-				
PHENR	608	-	PHENC	0MISCI	-				
PHENR	609	-	PHENC	0MISCI	-				
PHENR	610	-	PHENC	0MISCI	-				
PHENR	611	-	PHENC	0MISCI	-				
PHENR	612	-	PHENC	0MISCI	-				
PHENR	613	-	PHENC	0MISCI	-				
PHENR	614	-	PHENC	0MISCI	-				
PHENR	615	-	PHENC	0MISCI	-				
PHENR	616	-	PHENC	0MISCI	-				
PHENR	617	-	PHENC	0MISCI	-				
PHENR	618	-	PHENC	0MISCI	-				
PHENR	619	-	PHENC	0MISCI	-				
PHENR	620	-	PHENC	0MISCI	-				
PHENR	621	-	PHENC	0MISCI	-				
PHENR	622	-	PHENC	0MISCI	-				
PHENR	623	-	PHENC	0MISCI	-			</td	

MODULE	ARGUMENTS	INPUT	OUTPUT	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	COMMENTS	
NAME	#	NAME	NAME	NAME	NAME	NAME		
PHENC (cont.)								
PHENC	507	X*T	Y*T	PHENC FGENXY	UXMTR1 UXMTR2 FS TI SIMF@ NORMFT	SPW NSUBF SWTIM TSTART SIMF@ OPENAK RISTIM FALTIM	95 96 97 100 8 129 98 99	
					1 NSR MOSEPH 12 TPK(I) 8 ICQUE 9 CHIRP FSTART	164 Complex polar output	PHASE ENCODED TRANSMITTER	
PLOTTR	307	X*T	FLOTR	FRMFL OR MAG TAPE	UFLOTS	-	ST RNG NSKP IFCODE VIL(I) VBL(I) GLBL(I)	59 60 63 113 201 251 301
							OUTPUT DATA FOR OFF-LINE PLOTTER	
							Floating point format.	
PLOTTR	308	YT	FLOTR	FRMFL OR MAG TAPE	OFLOTS	-	ST RNG NSKF IFCODE VIL(I) VBL(I) GLBL(I)	59 60 63 113 201 251 301
							OUTPUT DATA FOR OFF-LINE PLOTTER	
							Floating point format.	
PLOTTR	309	XA	FLOTR	FRMFL OR MAG TAPE	OFLOTS	-	ST RNG NSKF IFCODE VIL(I) VBL(I) GLBL(I)	59 60 63 113 201 251 301
							OUTPUT DATA FOR OFF-LINE PLOTTER	
							Floating point format.	

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D		SYSTEM PARAMETERS		MODULE NAMELIST PARAMETERS		COMMENTS	
		NAME	LOC	NAME	LOC	NAME	LOC		
FLOTTR	310 XB	PRMFL OR MAG TAPE	OPLOTS	-	-	ST RING NSKP IFCODE VOL(1) GLR(1)	59 60 63 113 201 251 301	OUTPUT DATA FOR OFF-LINE PLOTTER Floating point format	
FLTFMT	113 XI*YT	XA	FLTFMT	OANT1	-	ADELT ASTRT ASTOP	33 34 35	TRANSFORMATION OF DATA IN SINE SPACE TO ANGLE SPACE Output data in dB	
PTLIST	303 XT	PRMFL	PTLIST	OPLOTS	-	ST RING LF NSKP NAUTO TH TL IFCODE VOL(1)	59 60 62 63 64 65 66 113 251	OUTPUT DATA FOR OFF-LINE PLOTTER Integer format-13 Bit accuracy	
PTLIST	304 YT	PRMFL	PTLIST	OPLOTS	-	ST RING LF NSKP NAUTO TH TL IFCODE VOL(1)	59 60 62 63 64 65 66 113 251	OUTPUT DATA FOR OFF-LINE PLOTTER Integer format-13 Bit accuracy	
PTLIST	305 XA	PRMFL	PTLIST	OPLOTS	-	ST RING LF NSKP NAUTO TH TL IFCODE VOL(1)	59 60 62 63 64 65 66 113 251	OUTPUT DATA FOR OFF-LINE PLOTTER Integer format-13 Bit accuracy	
PTLIST	306 XB	PRMFL	PTLIST	OPLOTS	-	ST RING LF NSKP NAUTO TH TL	59 60 62 63 64 65 66	OUTPUT DATA FOR OFF-LINE PLOTTER Integer format-13 Bit accuracy	

MODULE NAME	ARGUMENTS	SUBROUTINES & SYMBOLS REQ'D		SYSTEM PARAMETERS		MODULE NAMELIST PARAMETERS		COMMENTS
		INPUT	OUTPUT	NAME	LOC	NAME	LOC	
FTLIST (cont.)								
FXFRM	454	---	XT,YT	FXFRM	OTSAR1	SIMBW FI SIMFθ	4 11 8	IFCODE UDL(1)
RDFNCL	406	XT,YT	XT,YT	RDIGEL	ODFIN	-	-	SIMFθ SPW NSUBP BPRI
KUIGFL	405	XT,YT	XT,YT	RDIGEL	ODFIN	-	-	FFθ FF1 FB1 FB2
RECFC	451	XT,YT	XT,YT	RECFC	DFT	OTSAR1 OMISC2	-	FFθ FF1 FB1 FB2
RELFTF	452	---	XT,YT	RECFC	DFT	OTSAR1 OMISC2	-	FBCK DX NROWS RECDL RECIRT THE TAR
RNDARY	214	--	XT	RNDARY	OSUF2	-	-	FBCK DX NROWS RECDL RECIRT THE TAR
RNDARY	215	--	YT	RNDARY	OSUF2	-	-	NRNDPT NTYPER
RRAND	101	--	--	RRAND	OSUP1	-	-	NRNDPT IRND IADD1 JRND UMEAN UEXT XMEAN SIGMA NRAND(1)
FOURIER TRANSFORM OF SINGLE PULSE OF MULTIPLE PULSE BURST Closed form solution								
DIGITAL FILTER-REAL Storage registers not zeroed								
TSAR RECEIVER PROCESSOR								
* XA and XB are used for temporary storage								
TSAR RECEIVER PROCESSOR TRANSFER FUNCTION								
LOADS ARRAY WITH RANDOM NUMBERS								
EXECUTION OF MODULE NUMBER 101 INITIALIZES THE RANDOM NUMBER GENERATOR								

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	LOC	COMMENTS
NAME	4 INPFILE	INPFILE	NAME	NAME	-	
KRAND	102	---	KRAND	OSUF1	-	SAME AS 101 EXCEPT ONLY DISTRIBUTION PARAMETERS ARE INITIALIZED
RSHIFT	229 XT*YT	XT*YT SHIFT	OMISC1	SIMF0	25 26 27 28	WAVEFORM TIME SHIFT WITH JITTER
RSHIFT	230 XT*YT	XA,XB SHIFT	OMISC1	SIMF0	8 180 181 182	WAVEFORM TIME SHIFT WITH JITTER
RSHIFTS	231 XT*YT	XA,XB SHIFT	OMISC1	SIMF0	8 180 181 182	WAVEFORM TIME SHIFT WITH JITTER
RSHIFTS	232 XT*YT	XA,XB* SHIFT	OMISC1	SIMF0	8 180 181 182	WAVEFORM TIME SHIFT WITH JITTER
RTOFDR	103 XT*YT	XA,XB RTOFDR	OSUF2	-	-	RECTANGULAR TO POLAR CONVERSION
RTOFM	110 XT*YT	XA,XB RTOFDR	OSUP2	-	-	RECTANGULAR TO POLAR CONVERSION
RTOFM2	111 XT*YT	XA,XB RTOFDR	OSUF2	-	-	RECTANGULAR TO POLAR CONVERSION
SCANNR	313 XA	SYSOUT SCANNR	DANT2	-	-	DATA SCANNER (determines main lobe and side lobe parameters)
SHIFT	224 XT*YT	XT*YT SHIFT	OMISC1	SIMF0	8 180 181	WAVEFORM TIME SHIFT
SHIFT	225 XT*YT	XA,XB SHIFT	OMISC1	SIMF0	8 180 181	WAVEFORM TIME SHIFT
SHIFTS	226 XT*YT	XA,XB SHIFT	OMISC1	SIMF0	8 180 181 8	WAVEFORM TIME SHIFT

MODULE	ARGUMENTS	SUBROUTINES & SUBFCTS REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST
NAME	*	NAME	NAME	PARAMETERS
SHIFTS	227	XT, YT	XA, XB*	PRNFL
SPCAUG	312	XA	SYSDUT	SHIFT
SQDET	418	XT	XT	SFCANG
SODET	419	YT	YT	HWDET
SMFINT	434	XT	XT	SWFINT
SMFINT	435	YT	YT	SWFTNT
(SYS)	301	--	--	OSUP1
				MAIN1 MAIN2
				OLDDR OSIMEX
				N2 FS
				RFF0
				SIMBW
				ISDUMP
				ICINV
				ICFOR
				SIMF0
				NORMFT
				WSCAN
				FI
				TI
				LAMBDA
				RNGCEL
				TIME
				ANTAZ0
				ANTEL0
				FRI(I)
				NPRIS
				IPRIFT
				NREFET
				AZBST
				NPTAZ
				ELBST
				NPTEL
				ANTAZ(I,J)
				ANTEL(I,J)
TARGET	501	--	XT, YT*	TARGET
				OTGCL
				RFF0
				SIMBW
				SIMF0
				FI
				TIME
				3
				RFF0
				4
				IDUMP
				8
				HTGT
				106
				RTGT
				107
				ANBTGT
				108

WAVEFORM TIME SHIFT
* XA and XB are zeroed prior to execution
ANTENNA OUTPUT INTEGRATED OVER ALL SPACE

SQUARE LAW DETECTOR
SWEET INTEGRATOR
Delay line storage is zeroed

SWEET INTEGRATOR
Delay line storage is zeroed

EXECUTION OF MODULE NUMBER 301 INITIALIZES
THE SYSTEM PARAMETER TABLE

If FS is specified, TI will be computed
If RFF0 is specified, LAMBDA will be computed

MODULE	ARGUMENTS	SUBROUTINES & SYMREF'S REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	COMMENTS				
NAME	*	INPUT	OUTPUT	NAME	NAME	LOC	NAME	LOC	LOC
TARGET (cont.)									
TGTINCL	502	--	XI,YT	TARGET	OTGCL	RFF0 SIMBW SIMF0 FI TIME	TOINT RSIM NSCAT TGTVPL TSCAT(I,J)	109 110 111 112 201	3 TARGET MODEL TRANSFER FUNCTION
TSARY	426	--	XI,YT XA,XB *	TSARY	OTSAR	RFF0 SIMBW OMISC2 FI	RFF0 INDUMP NTSAR DX THETAS NROWS NBFSR IRFSR TDLINE ANGLE MOTDSR RECDEL THETAR TRIMON TSRLOS(1)	109 110 111 112 201	3 PHASED ARRAY ANTENNA TRANSFER FUNCTION -- INITIAL EXECUTION Wide bandwidth waveforms
TSARY1	427	--	XI,YT XA,XB *	TSARY	OTSAR	RFF0 SIMBW OMISC2 FI	RFF0 INDUMP NTSAR DX THETAS NROWS NBFSR IRFSR TDLINE ANGLE MOTDSR RECDEL THETAR TRIMON TSRLOS(1)	109 110 111 112 201	3 PHASED ARRAY ANTENNA TRANSFER FUNCTION -- SUBSEQUENT EXECUTIONS Wide bandwidth waveforms

MODULE	ARGUMENTS	SUBROUTINES & SYMREFS REQ'D	SYSTEM PARAMETERS	PRMFL	NAME	LOC	MODULE NAMELIST PARAMETERS	NAME	LOC	COMMENTS
TSRFAT	505 XT,YT	XT,YT XA,XB *	TSRFAT TSARY DFT RECFF	OTSAR OTSAR OMISC2 OTSARI	RFF0 SIMBW SIMF0 FI	3 ADEL T 4 ASTRT 6 ASTQP 11 FBCK 15 NTSAR	33 PHASED ARRAY FAR FIELD PATTERN GENERATION 34 Wide bandwidth waveforms 35 * XA and XB are used for scratch storage	DX	77	
WEITCP	222 XT,YT	XT,YT	WEITRE	OMISC1	-	-	37 WEIGHTING FUNCTION Rectangular complex on rectangular complex	NPWT ORIG WT(I,J)	38 201	
WEITMF	223 XT,YT	XT,YT	WEITRE	OMISC1	-	-	37 WEIGHTING FUNCTION Polar on Polar	NPWT ORIG WT(I,J)	38 201	
WEITRE	221 XT,YT	XT,YT	WEITRE	OMISC1	-	-	37 WEIGHTING FUNCTION Real on rectangular complex	NPWT ORIG WT(I,J)	38 201	
WUGUID	510 XT,YT	XT,YT	WUGUID	OTGCL	RFF0	3 CFREQ XWLENG	146 TRANSFER FUNCTION OF PERFECTLY CONDUCTING WAVEGUIDE 147	-	-	
XYTDB	104 XT,YT	XA	RTOPDB	OSUF2	-	-	RECTANGULAR TO MAGNITUDE CONVERSION Output in dB	RTOPDB	-	
XYTDB	108 XT,YT	XT	RTOPDB	OSUF2	-	-	RECTANGULAR TO MAGNITUDE CONVERSION Output in dB	RTOPDB	-	
XYTOM	105 XT,YT	XA	RTOPDB	OSUF2	-	-	RECTANGULAR TO MAGNITUDE CONVERSION Output in linear units	RTOPDB	-	
XYTOM2	106 XT,YT	XA	RTOPDB	OSUF2	-	-	RECTANGULAR TO MAGNITUDE CONVERSION Output in squared units	RTOPDB	-	

MODULE	ROUTINES	SUBROUTINES & SYMBOLES REQ'D	SYSTEM PARAMETERS	MODULE NAMELIST PARAMETERS	LOC	COMMENTS
NAME	INPUT	OUTPUT	NAME	NAME	LOC	
ZFFT 1	Z02	X1,Y1	ZFFT	0ZFFT N2 SIMBLW ICINV ICFOR NORMFT	1 4 6 7 9 15	FAST FOURIER TRANSFORM
ZIFFT 1	Z03	X1,Y1	ZFFT	0ZFFT N2 SIMBLW ICINV ICFOR NORMFT	1 4 6 7 9 15	INVERSE FOURIER TRANSFORM
(BISTAT -SYS)	--	--	MATIN2	-	-	A D D E N D A
CHAFF	514	--	XT, YT	CHAFF OCHAFF** RFF0 FEXT FI	3 4 11	Chaff Model XT, YT cleared prior to execution
					212 213 214 215 321 219 220	NDIPOL CHFRNG CHFHGT CHFAZ DORINT (I,J) DIPLNG DIPDIA

MODULE	ARGUMENTS	SUBROUTINES & SYMBOLS REQ'D			SYSTEM PARAMETERS			MODULE NAMELIST PARAMETERS		COMMENTS
		NAME	INPUT	OUTPUT	NAME	NAME	LOC	NAME	LOC	
CHAFF	515	XT, YT	XT, YT	CHAFF	OCHAFF*	RFFØ FEXT FI	3 4 11	NDIPOL CHFRNC CHFHGT CHFAZ DORINT (I,J) DIPLNG DIPDIA	212 213 214 215 321 219 220	Chaff Model Transfer functions summed into XT, YT
DIPOLE	464	--	XT, YT	DIPOLEOCHAFF*	RFFØ FEXT FI	3 4 11	THETAD RHOD TSHFTD DIPLNG DIPDIA	216 217 218 219 220	Thin wire dipole scatterer XT, YT cleared prior to execution	
DIPOLE	465	XT, YT	XT, YT	DIPOLEOCHAFF*	RFFØ FEXT FI	3 4 11	THETAD RHOD TSHFTD DIPLNG DIPDIA	216 217 218 219 220	Thin wire dipole scatterer Transfer function summed into XT, YT	
SCYL	513	XT, YT	XT, YT	SCYL	OCYL*	RFFØ BASLIN	3 19	HTGT RTGT ANGTGT TORINT RSTM ACYL HCYL IPOL	106 107 108 109 110 201 202 205	Target model - right circular cylinder

* These modules are located in BECAVUØ1 and the SELECT cards must be of the form:

\$:SELECT:BECAVUØ1/RCSMS\$JR/—

B.2 SOFTWARE MODULES LISTED BY REFERENCE NUMBER

This table includes all of the software modules listed in numerical order by module reference number.

100 SERIES: Basic transfer and input/output operations

200 SERIES: Basic mathematical operations

300 SERIES: Initialization and output configuration routines

400 SERIES: Radar block simulation modules (black box models)

500 SERIES: Radar system modules (radar system models)

Table B.2-1a 100 SERIES MODULES

101	RRAND	Parameter Initialization
102	RRAND	Parameter Initialization
103	RTOPDB	
104	XYTODB	
105	XYTOM	
106	XYTOM2	
108	XYTODB	
110	RTOPM	
111	RTOPM2	
113	PLTFMT	
114	(DATA XFER)	
115	(DATA XFER)	
116	ERGYRE	
117	ERGYRE	
118	ERGYCP	

Table B.2-1b 200 SERIES MODULES

201	DFT	231	RSHFTS
202	ZFFT	232	RSHFTS
203	ZIFFT	233	DFTRF
204	CONV	234	DFTFØ
205	CONVMP	235	ADDRND
206	DIVA	236	ADDRND
207	ADDA	237	ADRNDc
208	CUMDIS	239	ADDA
209	CUMDIS		
210	OUTCUM		
211	OUTCUM		
212	PDF		
213	PDF		
214	RNDARY		
215	RNDARY		
216	ATOD		
217	ATOD		
218	DTOA		
219	DTOA		
220	DTOA		
221	WEITRE		
222	WEITCP		
223	WEITMP		
224	SHIFT		
225	SHIFT		
226	SHIFTS		
227	SHIFTS		
228	DTOA		
229	RSHIFT		
230	RSHIFT		

Table B.2-1c 300 SERIES MODULES

301	(SYSTEM)	
302	CLINT	
303	PTLIST	
304	PTLIST	
305	PTLIST	
306	PTLIST	
307	PLOTTR	
308	PLOTTR	
309	PLOTTR	
310	PLOTTR	
311	(BISTATIC ANTENNA INITIALIZATION)	
312	SPCAVG	
313	SCANNR	

Table B.2-1d 400 SERIES MODULES

401	NONLIN	438	HLIM
402	NONLIN	439	HLIM
403	CDIGFL	440	DCFAR
404	CDFNCL	441	DCFAR
405	RDIGFL	442	IHLIM
406	RDFNCL	443	IHLIM
407/408	FILT	445	IHWDET
409	INGTOR	446	IHWDET
410	INGTOR	447	IFWDET
413	ANTARY	448	IFWDET
414	HWDET	449	ISQDET
415	HWDET	450	ISQDET
416	FWDET	451	RECF
417	FWDET	452	RECFTF
418	SQDET	453	CGENSF
419	SQDET	454	PXFRM
420	FGENXY	455	CGENCW
421	FGENMP	456	LAMPRE
422	DIGTFL	457	LAMPRE
423	DIGTFL	458	LAMPCP
425	CGEN	459	CFAR
426	TSARY	460	CFAR
427	TSARY1	461	DIGFIL
430	MTIFLT	462	DIGFNC
431	MTIFLT	463	DIGFSF
432	MTINCL	464	DIPOLE
433	MTINCL	465	DIPOLE
434	SWPINT		
435	SWPINT		
436	NCSWPI		
437	NCSWPI		

Table B.2-1e 500 SERIES MODULES

501	TARGET
502	TGTNCL
503	CLUTTR
504	ANTPAT
505	TSRPAT
506	PHENC
507	PHENC
508	PHDEC
509	PHDEC
510	WVGUID
511	IONOS
512	ECM
513	SCYL
514	CHAFF
515	CHAFF

A P P E N D I X C
V A R I A B L E S U S E D I N T H E
R A D A R S I M U L A T I O N M O D E L

This list includes all the system and module parameters used in the modules in Appendix B. Column headings in the list are defined as follows:

1. NAME: Name of variable used in the system model program.
2. SYMBOL: Symbol of variable used in text.
3. UNITS: Dimensions of variable used in module program.
4. LOC: Location of variable in module program.
5. MODULE NUMBER and NAME: Modules that use variable.
6. NAME IN MODULE: Name of variable used in the module program.
7. COMMENTS: Short description, restrictions, and default value.

Note that the variable names in column 1 are the system variable names, which are referred to in Volume 1. The variable names in column 6 are the module or subroutine variable names, which are referred to in Volume 2. Table C-2 lists in alphabetical order those module names which are different from their corresponding system names.

Table C-1 VARIABLES USED IN THE RADAR SIMULATION MODEL

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
ADCFS	f_{ADC}	GHz	149	216	ATOD	ADCF5	A-to-D converter sampling rate (Default = FS)
ADELT	$\Delta\theta$	Degrees	33	113	ATOD	ADCF5	Angle increment
ANGLE	θ	Degrees	87	426	FLTFT TSRFAT	DELTHE ADELT	Angle of TSAR response evaluation
ANGTGT	ψ_T	Degrees	108	501	TSARY TSARY1 TSRPAT	ANGLE ANGLE ANGLE	Target azimuth angle with respect to radar
ANTAZ	$G\psi(J)$ $\psi(J)$	Magnitude Degrees	201	301	TARGET TGTNCL	ANGTGT ANGTGT	Sampled antenna azimuth gain pattern (Power Units)
ANTAZ0	ψ_0	Degrees	18	301	(SYS) ANTINT	ANTAZ(2,75) ANTP(2,75)	Initial antenna azimuth angle
ANTEL(1,J)	$G_e(J)$	Magnitude	351	301	(SYS) ANTINT	ANTEL(2,75) ANTP(2,75)	Sampled antenna elevation gain pattern (normalized)
ANTEL(2,J)	$\hat{e}(J)$	Degrees	20	301	(SYS)	ANTEL	Initial antenna elevation angle
J=1,NPTEL			35	113	FLTFT TSRFAT	STOPT ASTOP	Stop angle
ASTRT0	ϵ_o	Degrees	35	505	FLTFT TSRFAT	STARTT ASTRT	Start angle
ASTRT	-	Degrees	34	113	FLTFT TSRFAT	STARTT ASTRT	Antenna azimuth angle
AZANG	ψ	Degrees	17	FUNCTION	AZGAIN	ANTANG	Antenna azimuth bore sight
AZBST	ψ_{BS}	Degrees	150	301	(SYS) ANTINT	AZBST BSIT	With respect to scan pattern
AZEXT	-	Degrees	53	302	CLINT	AZEXT	Clutter volume azimuth extent
AZ0	-	Degrees	54	302	CLINT	AZ000	Clutter volume initial azimuth angle
BLIM	-	-	(9)	503*	CLUTTR	BLIM BLIM	Lower bound of histogram
BPRI	T_B	Ns	40	208	CUMDIS	BPRI BPRI	Burst pulse repetition interval
CFREQ	f_c	GHz	114	453*	PXFRM CGENCW	BPRI BPRI	Cutoff frequency of waveguide
			146	510	WQUD	CFREQ	

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
CHIRF	μ	GHz/Ns	92	420 421 425* 506 507	FGENMF CGEN FGENXY FGENMF	CHIRF CHIRF CHIRF CHIRF CHIRF	The rate of frequency change (User specified only if NFWTX ≠ 0 or NSUBP ≠ 0; otherwise CHIRF = FMHW/FW)
DELAZ	$\Delta\psi$	Degrees	123 (117)	302* 503*	CLINT CLUTTR	DELAZ DELAZ	Azimuth spacing of clutter scatterers
DELEL	$\Delta\theta$	Degrees	124 (118)	302* 503*	CLINT CLUTTR	DELEL DELEL	Elevation spacing of clutter scatterers
DFTIN(J,J)	$\phi(J)$ $t(J)$ $d(J)$ $J=1, NMF$	Degrees Ns Magnitude	201	201	DFT	DIN(3,100)	DFT input samples to be transformed
DFTIN(2,J)				233	DFTRF	DIN(3,100)	
DFTIN(3,J)				234	DFT θ	DIN(3,100)	
				426*	TSARY1	DIN(2,100)	
				427*	TSARY1	DIN(3,100)	
				451*	RECFF	DIN(3,100)	
				452*	RECFTF	DIN(3,100)	
				508*	PHDEC	DIN(3,100)	
				509*	PHDEC	DIN(3,100)	
DOFFRQ	f_{dw}	Hz*	127 (21)	302* 503*	CLINT CLUTTR	DOFFRQ DOFFRQ	Doppler frequency shift of clutter induced by wind. *Always in Hz.
DX	d	Meters	77	413	ANTARY	DX	Antenna element spacing
				425	CGEN	DX	
				426	TSARY	DX	
				427	TSARY1	DX	
				451	RECFF	DX	
				452	RECFTF	DX	
				453	CGENSE	DX	
				455	CGENCW	DX	
				504	ANTFAT	DX	
				505	TSRFAT	DX	
ELANG	ϵ	Degrees	19	FUNCTION	ELGAIN	ANTANG	Antenna elevation angle
ELBST	ϵ_{BS}	Degrees	152	301	(SYS) ANTINT	ELBST BSIT	Antenna elevation boresight with respect to gain pattern
ELEXT	-	Degrees	56	302	CLINT	ELEXT	Clutter volume elevation extent
EL θ	-	Degrees	57 (12)	302 503*	CLINT CLUTTR	EL000 EL000	Clutter volume initial elevation angle

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LDC	MODULE NUMBER	MODULE NAME	VARIABLE MODULE (NAME)	COMMENTS
FALTIM	t_f	Ns		99	FGENMF FGENNF CGEN PHEC/FGENXY PHEC/FGENNP	FALTIM FALTIM FALTIM FALTIM FALTIM	Pulse fall time (Default = TI)
FBCK	-	Gain		75	409 410 434 435 436 437 451 452 505	INGTOR INGTOR SWPINT SWPINT NCSMPI NCSMPI RECFF RECFF TSRPAT	Integration feedback constant
FFCOEF(1,J) FFCOEF(2,J) J=1,NSEC	-	1 Delay Gain 2 Delay Gain		201	461 462	DIGIFL DIGIFC	Feedback coefficients for recursive digital filter
FBI	-	Gain		71	403 404	CDIGFL CDFNCL	Imaginary component of feedback coefficient
FBR	-	Gain		70	403 404	CDIGFL CDFNCL	Real component of feedback coefficient
FB1	-	Gain		70	405	RDIGFL RDFNCL	One delay feedback coefficient
FB2	-	Gain		71	405	RDIGFL RDFNCL	Two delay feedback coefficient
FFCOEF(1,J) FFCOEF(2,J) J=1,NSEC	-	0 Delay Gain 1 Delay Gain		251	461 462	DIGIFL DIGIFC	Feed forward coefficients for recursive digital filter
FFI	-	Gain		69	403 404	CDIGFL CDFNCL	Imaginary component of feed forward coefficient
FFR	-	Gain		68	403 404	FFX FFX	Real component of feed forward coefficient

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
FF0	-	Gain	6B	405 406 430 431 432 433	RDIGFL RDFNCL MTIFLT MTIFLT MTINCL MTINCL	FF0 FF0 FF0 FF0 FF0 FF0	Zero delay feed forward coefficient
FF1	-	Gain	69	405 406 430 431 432 433	RDIGFL RDFNCL MTIFLT MTIFLT MTINCL MTINCL	FF1 FF1 FF1 FF1 FF1 FF1	One delay feed forward coefficient
FI	Δf	GHz	11	201+ 233+ 234+ 301 426+ 427+ 454+ 501+ 502+ 505+	DFT DFTRF DFTF0 (SYS) TSARY TSARY1 PXFRM TARGET TGTNCL TSRFAT	F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	Frequency sampling increment
FNEW	B_{fm}	GHz	93	420 421 425	FGENXY FGENMF CGEN	FNEW FNEW FNEW	Frequency modulation bandwidth
FFPOLE(1,J) FFPOLE(2,J) $J=1, NP$		$\sigma_p(j)$ $f_p(j)$	301	407 408	FILT FILT	FFPOLE(2,50) FFPOLE(2,50)	S-Plane filter specification Pole location(s)
FS	f_s	GHz	2	301 420+ 421+ 506+ 507+ 503+	(SYS) FGENXY FGENMF PHENC/FGENXY PHENC/FGENMF CLUTR	FS FS FS FS FS FS	Time domain sampling rate IF (FS = 0.0 AND TI ≠ 0.0) FS = 1.0/TI
FSAM(1,J) FSAM(2,J) $J=1, NSAM$		-	201	463 512	DIGFSF ECM	FSAM(2,100) --	Equal-spaced samples of filter transfer function
FSHIFT		f_{het}	15	202 203	ZFFT ZIFFT	FSHIFT FSHIFT	Frequency shift
FSTART		f_{st}	91	420 421 422,*	FGENXY FGENMF CGEN	FSTART FSTART F0XMT	Starting frequency (User specified only if NPWTX ≠ 0 or NSURF ≠ 0 and CHIRP ≠ 0.0)

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
FSTART (cont.)							
FZERO(1,J) FZERO(2,J) J=1,NZ	$\sigma_2(J)$ $f_z(J)$	Real-GHz Imag-GHz	201	506 507	FGENX/FGENMP	FSTART	
FDEC		GHz		407 408	FILT	FZERO(2,50) FZERO(2,50)	S-Plane filter specification zero location(s)
GAIN	g	Volts(out)/ Volts(in)	145	456 457 458	LAMPRE LAMPRE LAMPCL	GAIN GAIN GAIN	Linear Amplifier Voltage Gain
GLBL(J)	-	-	301	307 308 309 310	PLOTR PLOTR PLOTR PLOTR	GLBL(18) GLBL(18) GLBL(18) GLBL(18)	Plot label
H_T		Meters	106	501 502	TARGET TGTLCL	HTGT HTGT	Height of target
IADD1		-	23	101	RRAND	MAD1	Random number generator starting address (Default = 1)
ICFLG	-	-	126	302* (20)	CLINT CLUTTR	ICFLG ICFLG	Clutter data flag ICFLG = 0; Clutter model parameters not initialized 1; Clutter model parameters initialized
ICFOR	-	-	7	202 301	ZFFT (SYS)	ICPLXF ICFOR	Fourier transform complex data flag (Default = 1) ICFOR = 0; Real signal data 1; Complex signal data
ICINV	-	-	6	203 301	ZIFFT (SYS)	ICPLXI ICINV	Inverse Fourier transform complex data flag (Default = 1) ICINV = 0; Real signal data 1; Complex signal data
ICODE	-	-	194	506 507	PHENC PHINC	CODE CODE	User specified Phase code (MODEPH = 3)
IDDUMP	-	-	21	101 102 201 233	RRAND RRAND DFT DTRF	IDMY1 IDMY1 IDMF IDMF	Data dump files IDDUMP = 0; Suppress data dump 1; Dump diagnostic data from modules

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	L.OC.	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
IDHUMF (cont.)							
IFB1D	-			234	IFF@	IDMF	
				302	CLINT	IDMF	
				413	ANTARY	IDMF	
				425	CEN	IDMF	
				426	TSARY	IDMF	
				427	TSARY1	IDMF	
				501	TARGET	IDMF	
				502	TG INCL	IDMF	
				503*	CLUTTR	IDMF	
				504	ANIFAT	IDMF	
				505	TSRFAT	IDMF	
						IDMY	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
						IDYR	
						IDYU	
						IDYV	
						IDYW	
						IDYX	
						IDYZ	
						IDYD	
						IDYI	
				</td			

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
IFFID	-	Gain	163	430	MTIFLT	IFFID	One delay integer feed forward coefficient - denominator (Default = 1)
IFFIN	-	Gain	162	430	MTIFLT	IFFID	One delay integer feed forward coefficient - numerator
INORM	-	-	84	413	ANTARY	INORM	Antenna gain normalization flag
INPTF	-	-	155	508	PHREC	INPTF	Flag to indicate user provided inputs are available
IPY(J) J=1,NSR	-	-	186	506	PHENC	IPY(8)	Shift register initial values
IPIRFT	-	-	143	301	(SYS)	IPIRFT	Pulse repetition interval pointer (Default = 1 ; 1 ≤ IPIRFT ≤ NPIRIS ≤ 11)
IRND	-	-	22	101	RRAND	IRND	Random number generator variable
IROFF	-	-	105	216	ATOD	IROFF	A-to-D converter round off flag
IRSCG	-	-	81	413	ANTARY	IRPSCG	Control shifter round off flag
IRPSR	-	-	83	425	CGEN	IRPSCG	IRPSG=
ISDUMP	-	-	5	504	ANTPAT	IRPSG	O: No Roundoff 1: Roundoff Used
					TSARY	IRPSR	Antenna feed network phase
					426	IRPSR	shifter round off flag
					427	IRPSR	O: No Roundoff 1: Roundoff Used
					504	IRPSR	IRPSR=
					505	--	0: No Roundoff 1: Roundoff Used
					(SYS)	ISDUMP	System data dump flag
						ISDUMP=	O: Only first EXEC block Printed 1: EXEC Blocks Printed 2: EXEC & DATA Blocks Printed 3: DATA Blocks Printed

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
ITAP(1,J)	$g_N(J)$	Gain	201	422 423	DIGITFL DIGITFL	ITAP(3,100) ITAP(3,100)	Digital transversal filter
ITAP(2,J)	$g_D(J)$	Gain					
ITAP(3,J)	$I_s(J)$	Denominator					
J=1,NTAPS	$I_s(J)$	Time Increments					
JERP	P_J	Watts	175	512	ECM	JERP	Jammer Effective Radiated Power
JFMRW	B_J	GHz	176	512	ECM	JFMRW	Jammer swept Bandwidth
JFθ	f_0J	GHz	178	512	ECM	JFθ	Jammer center frequency with respect to SINRθ
JHGT	H_J	Meters	174	512	ECM	JHGT	Jammer height
JMAZ	ψ_J	Degrees	173	512	ECM	JMAZ	Jammer azimuth angle
JPEROD	T_J	NS	157	512	ECM	JPEROD	Noise burst repetition interval
JFW	r_J	NS	177	512	ECM	JFW	Length of noise burst
JRND	-	-	24	101	RAND	JRND	Random number generator variable
JRNG	R_J	Meters	171	512	ECM	JRNGθ	Jammer range at TIME = 0.0
JRSIM	R_J^*	Meters	172	512	ECM	JRSIM	Jammer range in simulation for TIME = 0.0 (Used to compute time delays only)
JVEL	v_J	Meters/sec	156	512	ECM	JVEL	Jammer radial velocity
KCELL	-	Samples	128 (22)	302* 503*	CLINT CLUTTR	KCELL KCELL	Number of impulses which represent clutter as a function of range
KK	-	Cells	120	302*	CLINT CLUTTR	KK	Number of clutter volume range increments
LAMBDA	λ	Meters	13	301+ 302+	(SYS) CLINT	LAMBDA LAMBDA	Wavelength $IF(RFF\theta \neq 0.0) LAMBDA = 1.0/RFF\theta$
LF	-	-	62	303 304 305 306	FLIST FLIST FLIST FLIST	LF LF LF LF	Data type flags LF = Magnitude scaling 1 = Decibel scaling 2 = Dependent variable is converted to los10 before plotting 3 = Dependent variable is converted to dR before plotting Plotting, i.e., $10^{los10} R(J)$

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
NH	-	Cells	55 (1.0)	302 503*	CLINT CLUTTR	NH NH	Number of clutter volume azimuth increments Clutter model mode flag
MODE	-	-	122 (16)	302N 503*	CLINT CLUTTR	MODE MODE	MODE = 1:Clutter scatterers fixed during simulation 2:Scatterers phases vary as function of time
MODEDF	-	-	168	430	MTIFLT	--	Digital filter mode flag
MODEDF	-	-	431	MTIFLT	--	MODEDF = 1:Floating point arithmetic 2:Integer arithmetic	
MODEFH	-	-	432	MTINCL	--	Phase encoder mode flag	
MODEFH	-	-	433	MTINCL	--	MODEFH = 1:Stored Barker code 2:Pseudo-random code 3:User specified code	
MODTSR	-	-	183	506 507	PHENC PHENC	MODTSR MODTSR	TSAR mode flag
MODTSR	-	-	116	426 427 505	TSARY1 TSARY1 TSRPAT	MODTSR MODTSR MODTSR	MODTSR = 1:Transmit pencil beam 2:Receive pencil beam 3:Transmit pencil & receive pencil, (THEtar = THETAS, ARYDEL = RECDEL) 4:Transmit pencil & receive pencil, (THEtar # THETAS, ARYDEL = RECDEL) 5:Transmit pencil & receive pencil, (THEtar # THETAS, ARYDEL # RECDEL) 6:Transmit pencil & receive monopulse 7:Receive monopulse
NAUTO	-	-	64	303 304 305 306	PTLIST PTLIST PTLIST PTLIST	NAUTO NAUTO NAUTO NAUTO	Data Processing file
NRITDF	-	Bits	169	430 431 432 433	MTIFLT MTIFLT MTINCL MTINCL	NBITS NBITS NBITS NBITS	NRITDF = Other input data scanned to determine Max(TH) and Min(TL) value of the dependent variable 1:the user provided values of TH and TL used.
NBITS	-	Bits	104	216 217	ATOD ATOD	NBITS NBITS	NBITS = A-to-D converter output Word size (Includes sign bit) (Default = 31 Bits)

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
NRLKS		Records Of Random Pulse File	121	302*	CLINT	NRLKS	Number of records occupied by clutter scatterer data
NBFSCG	-		80	413 425 504	ANTARY CGEN ANTFAT	NBFSCG NBFSCG NBFSCG	Accuracy of TSAR control generator phase shifter (Default = 15 Bits)
NBFSR	-		82	413 426 427	ANTARY TSARY TSARY1	NBFSR NBFSR NBFSR	Accuracy of TSAR antenna feed network phase shifters (Default = 15 Bits)
NCELL	-			504 505	ANTFAT TSRFT	--	
Pulses	-	Range Bits	170	440 441	DCFAR DCFAR	NCELL NCELL	Number of range samples to be averaged
NCGFLS	-		88	425 453	CGEN CGENSF	NSUBF NCGFLS	Number of TSAR control generator subroutines
NCPACK	-		42	210 211	OUTCUM OUTCUM	NCPACK NCPACK	Number of histogram samples combined to generate each cumulative distribution sample (Default = 1)
NDFZ	-		197	463 512	DIGFSF ECM	NDFZ NDFZ	Number of zeros to be synthesised by comb filter (NDFZ \leq 256)
NDPACK	-		43	212 213	PDF PDF	NDPACK NDPACK	Number of histogram samples combined to generate each probability density sample (Default = 1)
NHIST	-	Intervals	41	208 209	CUMDIS CUMDIS	NIXF NIXF	Number of histogram intervals (NHIST \leq 8192)
NIMP	-	Samples	200	201 233 234	DFT DFTRF DFTF0	NIMP NIMP NIMP NIMP	Number of input samples to be processed by DFT (NIMP \leq 100)
NN	-	Cells	58 (13)	320 504*	CLINT CLUTTR	NN NN	Number of clutter volume elevation increments

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
NORMFT	-	-	9	201+	DFT	INORM	Normalization flag
				202	ZFFT	INORM	NORMFT = 0:ZFFT and DFT by TI and
				203	ZIFFT	INORM	ZIFFT by FI
				233+	DFTRF	INORM	1:ZFFT and DFT normalized
				234+	DTFT	INORM	by 1/ (number of input samples)
				301	(SYS)	NORMFT	2:ZIFFT normalized by 1/(2*N2)
				425*	CGEN	INORM	3:Normalizations 1 and 2 combined
				426*	TSARY1	INORM	4:No normalization
				427*	RECFT	INORM	
				451*	RECFTF	INORM	
				452*	FGENXY	INORM	
				420+	FGENMP	INORM	
				421+	PHENC/FGENXY	INORM	
				506+	PHENC/FGENMP	INORM	
				507+	PHDEC	---	
				508+	PHDEC	---	
				509+	PHDEC	---	
NP	-	Poles	73	407	FILT	NP	Number of poles used in
				408	FILT	NP	specifying a filter (NP ≤ 50)
		Intervals	142	301	(SYS)	NPRIS	Number of pulse repetition
				151	302	(SYS)	(NPRIS ≤ 11)
		Points			ANTINT	NPTAZ	Number of points in antenna
		Points			ANTINT	NPT	azimuth pattern (NPTAZ ≤ 75)
				153	301	(SYS)	Number of points in antenna
					ANTINT	NPTEL	elevation pattern (NPTEL ≤ 75)
		Start Pulse		85	413	ANTARY	Oldest pulse in TSAR sub-
		Points			504	ANTPAT	arrays/feed network
					37	WEITRE	Number of points in array
						WEITCP	defining weighting function
						WEITHP	(NPWT ≤ 100)
		Points		94	420	FGENXY	Number of points in array
					421	FGENMP	defining transmitted pulse shape
					425	CGEN	(NPWTX ≤ 100)
				-	-	NRAND	Array of random numbers
						NRAND(129)	(Default-array in BLOCK DATA Sub-program)
				201	101	CLINT	NRCS
				-	-		Scatterer radar cross section probability distribution file (see NTPR)
				46	302		
		Repetitions		144	301	(SYS)	NREPET
							Number of times a configuration is to be repeated

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
NRFNFT	-	Points	44	214 214	RNDIARY RNDIARY	NFTS NFTS	Number of random process samples to be generated (NRFNFT \leq 8192)
NROWS	-	Rows	79	413 425 426 427 451 452 453 455 504 505	ANTARY CEN TSARY TSARY1 REC RECFF CENSE CENCW ANTPAT TSRFT	NROWS NROWS NROWS NROWS NROWS NROWS NROWS NROWS NROWS --	Number of interleaved TSAR subarrays
NSAM	-	Samples	196	463 512	DIGFSF ECM	NSAM --	Number of filter transfer function samples (NSAM \leq 100)
NSCAT	-	Scatterers	111	501 502	TARGET TGTNCL	NSCAT NSCAT	Number of discrete scatterers used to represent a target (NSCAT \leq 100)
NSEC	-	Filter Sections	199	461 462	DIGFIL DIGFNC	NF NF	Number of double delay (2-pole/2-zero) filter sections in digital filter (NSEC \leq 25)
NSKF	-	Points	63	303 304 305 306 307 308 309 310	PTLIST PTLIST PTLIST PTLIST PLOTR PLOTR PLOTR PLOTR	NSKF NSKF NSKF NSKF NSKF NSKF NSKF NSKF	Increment between plotted samples (Default = 1)
NSR	-	Register States	184	506 507	PHENC PHENC	NSR NSR	Number of shift register stages used in generating pseudo-random phase code (NSR \leq 8)
NSURF	-	Pulses	96	420 421 453*	FGENXY FGENMP CENSF FXFRM	NSURF NSURF NSURF NSURF	Number of subpulses in transmitted waveform (NSURF \leq 300)
NTAPS	-	Taps	101	422 423	DIGTFL DIGTFL	NTAPS NTAPS	Number of taps in transversal digital filter (NTAPS \leq 100)
NTFN	-	Points	67	401 402	NONLIN NONLIN	NFTS NFTS	Number of points in array defining non-linear transfer function (NTFN \leq 50)

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
NTSAR	-	Elements	76	413	ANTARY TSARY TSARY1 ANTPAT TSRPAT	NTSAR NTSAR NTSAR NTSAR --	Number of elements in TSAR subarray (NTSAR ≤ 100)
NTYPEP	-		45	214 215 235 236 237	RNDARY RNDARY ADDRND ADDRND ADDRND	NTYPE NTYPE NTYPE NTYPE NTYPE	Probability distribution flag
NZ	Zeros		72	407 408	FILT FILT	NZ NZ	
NZ	-	Bits	1	202 203 301 420+ 421+ 506+ 507+ 504+ 512+	ZFFT ZIFFT (SYS) FGENXY FGENMP PHENC/FGENXY N2POW ANTPAT ECM	N2 N2 N2 N2 N2 N2 N2 N2	Number of zeros used in specifying a filter (NZ ≤ 50) 2**NZ = Number of points processed by FFT algorithm (NZ ≤ 13) (Default-Value set by ZFFT/ZIFFT)
ORIG		GHz or Ns	38	221 222 223 420 421 301 (SYS)	WEITRE WEITCP WEITHP FGENXY FGENMP PRI(11)	ORIG ORIG ORIG PCODE(300) PCODE(300)	Weighting function independent variable offset Transmitted waveform Phase code
PCODE(J) J=1,NSUBP	Φ(J)	Degrees	451	420 421	FGENXY FGENMP CGEN	PRI(11)	Array of pulse repetition intervals
FRI(J) J=1,NPRIS	T(J)	Seconds	130	301	(SYS)		Transmitted pulsewidth or burst length
PW	τ	Ns	90	420 421 425*	FGENXY FGENMP CGEN	PW PW PW	
RADIUS	-	-	195	463 512	DIGFSF ECM	RADIUS --	Radius of circle in z-plane on which poles and zeros are located

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
RECDEL	-	Ns	117	426 427 451 452 505	TSARY TSARY1 RECF RECF1F TSRFAT	RECDEL RECDEL RECDEL RECDEL --	TSAR antenna receive feed network delay line lengths
RECIRT	-	Ns	118	451 452 505	RECF RECF1F TSRFAT	RECIRT RECIRT RECIRT --	TSAR receiver Processor impulse response time span
RFFFO	f _{RF}	GHz	3	233 301 413 425+ 426+ 427+ 453+ 455+ 501+ 502+ 504 505+ 510+ 511+	IFTRF (SYS) ANTARY CGEN TSARY TSARY1 CGENSF CGENCW TARGET TGNCI ANTFAT TSRFAT WGUID TONOS	F@ RFFFO F@ RFFFO RFFFO F@ RFFFO F@ RFFFO F@ F@ RFFFO RFFFO	Radiation frequency of the radar
RISTIM	t _r		98	420 421 425 506 507	FGENXY FGENHF CGEN FHENC/FGENXY FHENC/FGENMP	RISTIM RISTIM RISTIM RISTIM RISTIM	Transmitted pulse rise time (Default = T1)
RNEXT	-	Ns	51 (6)	302 303 304 305 306 307 308 309 310	CLINT CLUTTR PTLIST PTLIST PTLIST PLOTR PLOTR PLOTR PLOTR	RNEXT RNEXT RNG RNG RNG RNG XIVRNG XIVRNG XIVRNG XIVRNG	Clutter volume range extent
RNG	-	-	60	303 304 305 306 307 308 309 310	PTLIST PTLIST PTLIST PLOTR PLOTR PLOTR PLOTR	RNG RNG RNG RNG XIVRNG XIVRNG XIVRNG XIVRNG	Range of independent variable to be plotted
RNGCEL	τ_{cell}	Ns	14	301 302 503*	(SYS) CLINT TCELL CLUTTR	RNGCEL TCELL TCELL	Spacings between impulses which represent clutter as a function of range. If (RNGCEL = 0.0 & SIMRW ≠ 0.0) RNGCEL = 1.0/SIMRW Also RNGCEL = 1

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
RNG	-	Ns	52 (7)	302 503*	CLINT CLUTTR	RNG0 RNG0*	Clutter model initial range
RSIM	R _T *	Meters	110	501 502	TARGET TGNC	R000 R000	Target range in simulation for TIME = 0.0 (used to compute time delay only)
RIGT	R _T	Meters	107	501 502	TARGET TGNC	RTGT0 RTGT0	True target range at TIME = 0.0
RMPH	-	Degrees	48	302 503*	CLINT CLUTTR	RMPH RMPH	Maximum pulse-to-pulse scatterer phase variation
SEDENS	$\int_{g_1}^{g_2} N_{eds}$	Electrons/cm ²	148	511	IONOS	SEDENS	Integrated electron density along propagation path
SF	-	Bair	74	407 408 461 462	FILT FILT DIGFIL DIGFNC	SF SF SF SF	Filter scaling factor
SHFHAS	ϕ_{sh}	Degrees	181	224 225 226 227 229 230 231 232 425*	SHIFT SHIFT SHIFTS SHIFT RSHIFT RSHIFT RSHIFT RSHIFT CGEN	THT THT THT THT THT THT THT THT THT	Phase angle change
SHT0	t _{sh}	Ns	180	224 225 226 227 229 230 231 232 425*	SHIFT SHIFT SHIFTS SHIFT RSHIFT RSHIFT RSHIFT RSHIFT CGEN	T0 T0 T0 T0 T0 T0 T0 T0 T0	Time change
SIGMA	σ	Depends on distribution generated	28	101 102	RRAND RRAND	SIGMA SIGMA	Standard deviation of Gaussian and Rayleigh distributions, Average RCS for Swirling Target Models
SIG2SQ	$-2\sigma^2$	--	30	101* 102*	RRAND RRAND	SIG2SQ SIG2SQ	Random number generator parameter
SIMBW	B _{sim}	Ghz	4	201 202 203	DFT ZFFT ZFFT	FEWT SIMBW SIMBW	Simulation bandwidth (SIMBW \leq FS) (Default = FS)

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
SIMRW (cont.)							
				233	IFTRF	FEIXI	
				234	INTE θ	FEIXI	
				301	(SYS)	SIMRW	
				425*	CGEN	SIMRW	
				426*	TSARY	FEIXI	
				427*	TSARY1	FEIXI	
				454*	PXFRM	SIMRW	
				501*	TARGET	FEIXI	
				502*	TGTNCL	FEIXI	
				505*	TSRFAT	SIMRW	
SIMF θ	f_o	GHz	8	224	SHIFT	SIMF θ	Center frequency of device or waveform
				225	SHIFT	SIMF θ	
				226	SHIFTS	SIMF θ	
				227	SHIFTS	SIMF θ	
				229	RSHIFT	SIMF θ	
				230	RSHFTS	SIMF θ	
				231	RSHFTS	SIMF θ	
				232	DNTF θ	SIMF θ	
				234	(SYS)	SIMF θ	
				301	FGENXY	FO	
				420	FGENMF	FO	
				421	CGEN	SIMF θ	
				425	CGENSE	SIMF θ	
				453*	PXFRM	SIMF θ	
				454	CGENCW	SIMF θ	
				455*	PHENC/FGENXY	FO	
				506	PHENC/FGENMP	FO	(If INPTF ≠ 0, SIMF θ = FθDEC)
				507	PHDEC	SIMF θ	(If INPTF ≠ 0, SIMF θ = FθDEC)
				508*	PHDEC	SIMF θ	
				509*	FGENXY	SPW	
				95	FGENMP	SPW	
				420	CGENSE	SPW	
				421	PXFRM	SPW	
				453*	CGENCW	SPW	
				454	PHENC/FGENXY	SPW	
				455*	PHENC/FGENMP	SPW	
				506	FGENXY	SPW	
				507	FGENMP	SPW	
SPW	τ_s	ns	-	-	PTLIST	ST	
				59	PTLIST	ST	
				303	PTLIST	ST	
				304	PTLIST	ST	
				305	PTLIST	ST	
				306	PTLIST	ST	
				307	FLOTR	XIVST	
				308	FLOTR	XIVST	
				309	FLOTR	XIVST	
				310	FLOTR	XIVST	
ST	-	-	-	-	-	-	Plot starting point - independent variable

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
SWTIM	τ_{sw}	Ns	97	420 421 506 507	FGENXY FGENMP PHEND/FGENXY PHEND/FGENMP	SWTIM SWTIM SWTIM SWTIM	Switching time between sub-pulses (Default = 71)
TAVG	τ_{av}	Ns	198	459	CFAR CFAR	TAVG TAVG	CFAR averaging time interval
TAPSFC	T_t	Ns	154	508 509	PHDEC PHDEC	TAPSFC TAPSFC	Phase decoder tap spacing (User specified if INPTF = 1; otherwise set to SPM)
TCGNOM	-	Ns	89	425 453 455	CGEN CGENSF CGENLW	TINOM TINOM TINOM	TSAR control generator nominal pulse spacing
TDLINE	T_a	Ns	86	426 427 505	TSARY TSARY1 TSRPAT	ARYDEL ARYDEL --	TSAR antenna transmit feed network delay line lengths
TDLMON	-	Ns	185	426 427 505	TSARY TSARY1 TSRPAT	TDLMON TDLMON --	Differential delay used to generate TSAR monopulse receive beam
TFN(1,J) TFN(2,J) J=1,NTFN	$V_{in}(J)$ $V_{out}(J)$	Input Mag. Output Mag.	201	401 402	NONLIN NONLIN	TFN(2,50) TFN(2,50)	Nonlinear transfer function
TGTVEL	v_T	Meters/Sec	112	501 502	TARGET TGTVCL	TGTVEL TGTVEL	Target radial velocity
TH	-	-	65	303 304 305 306	PTLIST PTLIST PTLIST PTLIST	TH TH TH TH	Upper limit of dependent variable to be plotted (NAUTO=1)
THETAR	θ_R	Degrees	119	426 427 451 452 505	TSARY TSARY1 RECFF RECFF TSRPAT	THETAR THETAR THETAR THETAR --	Receive beam steering angle
THETAS	θ_S	Degrees	78	413 425 426 427 453 455 504 505	ANTARY CGEN TSARY TSARY1 CGENSF CGENLW ANTPAT TSRPAT	THETAS THETAS THETAS THETAS THETAS THETAS THETAS --	Transmit beam steering angle

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
TI	Δt	s	12	201+ 233+ 234+ 301 302+ 420+ 421+ 425+ 503+ 506+ 507+	DEF DEFR DFTF@ (SYS) CLINT FGENXY FGENMF CGEN CLUTTR FHENC/FGENXY FHENC/FGENMF	TI TI TI TI TI TI TI TI TI TI TI TI	Time sampling increment. IF (FS ≠ 0.0) TI = 1.0/FS
TIME	t*	Seconds	16	301 501+ 502+ 503+ 512+	(SYS) TARGET TGNCI CLUTTR ECH	TIME TIME TIME TIME TIME	Eapsed time
TIMESB	-	s	115	425	CGEN	TIME TIME TIME TIME	Pulse timing least significant bit size
TJIT	-	s	182	229 230 231 232	RSHIFT RSHIFT RSHFTS RSHFTS	TJIT TJIT TJIT TJIT	Time shift jitter
TL	-	-	66	303 304 305 306	FTLIST FTLIST FTLIST FTLIST	TL TL TL TL	Lower limit of dependent variable to be plotted (NRAUD = 1)
TLIM	-	-	39	208 209	CURDIS CURDIS	TLIM TLIM	Upper bound of histogram
TORINT	Φ _T	Degrees	109	501 502	TARGET TGNCI	TORINT TORINT	Target orientation angle
TSCAT(1,J)	σ(J)	Square Meters	201	501 502	TARGET TGNCI	TSCAT(3,100) TSCAT(3,100)	Target discrete scatterer parameters
TSCAT(2,J)	r(J)	Meters					
J=1,NSCAT	γ(J)	Degrees					
TSRLOS(J,J)	g(J)	Gain	401	41.3 42.6 50.4 50.9	ANTARY TSARY ANTFAT TSRFAT	TSRLOS(100) TSRLOS(100) TSRLOS(100) TSRLOS(100)	TSAR antenna distributed feed network losses
J=1,NTSAR	-	-	100	4.79 4.71 4.79*	FGENXY FGENMF CGEN	START START START	Transmitted pulse starting time

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	MODULE NAME (MODULE)	COMMENTS
TSTART(cont.)								
UEXT	-	-	26	101 102	FGENC/FGENXY FGENC/FGENMF	TSTART TSTART	UEXT UEXI	Width of uniform distribution
UL	-	--	31	101* 102*	RRAND RRAND	UL UL	UL	Lower bound of uniform distribution
UMEAN	-	-	25	101 102	RRAND RRAND	UMEAN UMEAN	UMEAN	Mean of uniform distribution
UBL(J) J=1,12	-	-	251	307 308 309 310	PLOTRR PLOTRR PLOTRR PLOTRR	VOL(12) VOL(12) VOL(12) VOL(12)	CLINT	Plot dependent variable label
VELANG	-	Degrees	50	302	VILANG	VIL(12)	VIL(12)	Wind velocity vector angle
VIL(J) J=1,12	-	-	201	307 308 309 310	PLOTRR PLOTRR PLOTRR PLOTRR	VIL(12) VIL(12) VIL(12) VIL(12)	CLINT	Plot independent variable label
UPEAK	V _T	Volts	129	420 421 506 507	FGENXY FGENMF FGENXY FGENMF	UPEAK UPEAK UPEAK UPEAK	UPEAK UPEAK UPEAK UPEAK	Transmitter peak output voltage (Default = 1.0)
WNVEL	v _w	Meters/Sec	49	302	CLINT	WNVEL	WNVEL	Wind velocity vector magnitude
WSCAN	w _s	Des/Sec	10	301	(SYS)	WSCAN	WSCAN	Antenna scan rate
WT(1,J)	x(J)	Real-Gain	201	221	WEITRE	WT(3,100)	WT(3,100)	Array containing sampled
WT(2,J)	t(J)arf(J)	Ns or GHz		222	WEITCP	WT(3,100)	WT(3,100)	weighting function
WT(3,J)	y(J)	Imag.-Gain			WEITMP	WT(3,100)	WT(3,100)	Array containing sampled
J=1,NFWT								
WT(1,J)	g(J)	Gain	201	223	WEITMP	WT(3,100)	WT(3,100)	weighting function
WT(2,J)	t(J)arf(J)	Ns or GHz						
WT(3,J)	ϕ(J)	Degrees						
J=1,NFWTX								
WTX(1,J)	g(J)	Gain	201	420	FGENXY	WT(3,100)	WT(3,100)	Array containing sampled transmitter
WTX(2,J)	t(J)	Ns		421	FGENMF	WT(3,100)	WT(3,100)	complex envelope
WTX(3,J)	ϕ(J)	Degrees		425	CGEN	WT(3,100)	WT(3,100)	

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LLOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
XLSR	-	Volts	103	216	ATOD	XLSR	A-to-D converter least significant bit size
XMEAN	-	-	27	101	KRAND	XMEAN	Mean of Gaussian distribution
XUEXT	-	-	-	102	KRAND	XMEAN	Random number generator parameter
XVOLANG	-	Radians	32	101*	KRAND	TEXT	Clutter model parameter
XVOLANG	-	Meters	32	102*	KRAND	TEXT	Length of waveguide run
XWLENG	z	-	125 (1.9)	302*	CLINT	XVOLANG	-
XWLENG	-	Meters	147	503*	CLUTTER	XVOLANG	-
				510	WUGUTI	XWLENG	-
A D D E N D A							
ACYL	-	Inches	201	513	SCYL	A	Radius of cylinder
ANRAZØ	BΨΦ	Degrees	150	311	(BISTAT -SYS)	ANBAZØ	Initial receiving antenna azimuth angle
ANBELØ	BEΦ	Degrees	151	311	(BISTAT -SYS)	ANBELØ	Initial receiving antenna elevation angle
BASLIN	-	Meters	19	311	(BISTAT -SYS)	BASLIN	Baseline length between transmit and receive antennas
CHFAZ	-	Degrees	215	514	CHAFF	AZCHFF	Azimuth to centroid of chaff cloud
CHFHGT	-	Meters	214	515	CHAFF	AZCHFF	Height of centroid of chaff cloud
CHFRNG	-	Meters	213	514	CHAFF	RCCENT	Range to centroid of chaff cloud
				515	CHAFF	RCCENT	-

VARIABLE NAME (SYSTEM)	SYMBOL	UNITS	LOC	MODULE NUMBER	MODULE NAME	VARIABLE NAME (MODULE)	COMMENTS
DIPDIA	a	Inches	220	464 465 514 515	DIPOLE DIPOLE CHAFF CHAFF	DIA DIA	Dipole Diameter
DIPLNG	X _L	Inches	219	464 465 514 515	DIPOLE DIPOLE CHAFF CHAFF	XL XL	Dipole length
DORINT	θ_D (1,J) (2,J) (3,J)	Degrees Degrees Meters	321	514 515	CHAFF CHAFF	DORINT (3,100)	Chaff cloud dipole orientations
HCYL	-	Inches	202	513	SCYL	H	Half-length of cylinder
IPOL	-	-	205	513	SCYL	TPOL	Polarization Flag =1, VV Polarization =2, HH Polarization
NDIPOL	-	-	212	514 515	CHAFF CHAFF	NDIPOL NDIPOL	Number of dipoles used in chaff model
RHOD	D	Degrees	217	464 465	DIPOLE DIPOLE	RHO RHO	Dipole orientation angle with respect to E-field vector
THETAD	θ_D	Degrees	216	464 465	DIPOLE DIPOLE	THETA THETA	Dipole azimuth angle with respect to propagation vector
TSHFTD	-	Ns	218	464	DIPOLE	TSHFT	Time delay for computing dipole transfer function
WSCANB	-	Deg/Sec	17	311	(BLSTAT -SYS)	WSCANB	Receiving antenna scan rate

Table C-2 MODULE VARIABLE NAME/SYSTEM VARIABLE
NAME CROSS REFERENCE TABLE

<u>MODULE VARIABLE NAME</u>	<u>SYSTEM VARIABLE NAME</u>
ANTANG	AZANG or ELANG
ANTP	ANTAZ or ANTEL
ARYDEL	TDLINE
AZ 000	AZØ
BSIT	AZBST or ELBST
CODE	ICODE
DELTHE	ADELT
DIN	DFTIN
EL 000	ELØ
FB	FBCOEF
FBX	FBR
FBXY	FBI
FEXT	SIMBW
FF	FFCOEF
FFX	FFR
FFXY	FFI
FSTART	FSTRT
FØ	RFFØ or SIMFØ
FØXMT	FSTRT
IC	IFCODE
ICPLXF	ICFOR
ICPLXI	ICINV
IDMP	IDDUMP
IDMY	IDDUMP
IDMY1	IDDUMP
INORM	NORMFT
MAD1	IADD1
NBITS	NBITDF
NIXF	NHIST
NP	NSEC
NPT	NPTAZ, NPTEL or NIMP
NPTS	NRNDPT or NTFN
NPULS	NIMP
NSUBP	NCGPLS
NTYPE	NTYPER
N2POW	N2
RN 000	RNØ
RTGTØ	RTGT
RØØØ	RSIM
STARPT	ASTRT
STOPT	ASTOP
TCELL	RNGCEL

Table C-2 MODULE VARIABLE NAME/SYSTEM VARIABLE
NAME CROSS REFERENCE TABLE
(Page 2 of 2)

<u>MODULE VARIABLE NAME</u>	<u>SYSTEM VARIABLE NAME</u>
THT	SHPHAS
TNOM	TCGNOM
TØ	SHTØ
UEXT	XUEXT
UUEXT	UEXT
WT	WTX
XIVRNG	RNG
XIVST	ST

ADDENDA

A	ACYL
AZCHFF	CHFAZ
DIA	DIPDIA
H	HCYL
HCHAFF	CHFHGT
RCCENT	CHFRNG
RHO	RHOD
THETA	THETAD
TSHFT	TSHFTD
XL	DIPLNG

A P P E N D I X D
T A B L E O F
T I M E S H A R I N G F I L E S

The table contained herein is a list of the files in the radar simulation model. In the left column, the file or /catalog/file designation that includes the password is listed. The files beginning with the letter "S" are the Fortran-IV decks, and those beginning with the letter "O" are the object decks. In the right column is the list of modules that are located in the corresponding file in the left columns.

The Job Definition Files are those used to run the sample problems in Section 8 of Volume I and Section 4 of Volume III.

Table D-1 TIME SHARING FILES

BECRGD01 FILES

*LODREX\$RJH	MAIN1
*OLDDR\$RJH	MAIN1
*SUPRT1\$RJH	IPACK; RRAND; DBLXX; BLOCK DATA
*OSUP1\$RJH	IPACK; RRAND; DBLXX; BLOCK DATA
*SCLINT\$RJH	CLINT
*OCLINT\$RJH	CLINT
*5XMTR1\$RJH	PHENC
*0XMTR1\$RJH	PHENC
*0ARSIN\$RJH	ARSIN
*SIMEX\$RJH	MAIN2
*OSIMEX\$RJH	MAIN2
*SZFFT\$RJH	ZFFT
*0ZFFT\$RJH	ZFFT
*SDFIN\$RJH	DCFAR; DIGTFL; CDIGFL; INGTOR; ATOD; RDIGFL; DIGFIL; ECM; DIGFSF
*0DFIN\$RJH	DCFAR; DIGTFL; CDIGFL; INGTOR; ATOD; RDIGFL; DIGFIL; ECM; DIGFSF
*5XMTR2\$RJH	FGENXY; PHDEC; ABORT
*0XMTR2\$RJH	FGENXY; PHDEC; ABORT
*SPLOTS\$RJH	PTLIST; PLOTTR
*OPLOTS\$RJH	PTLIST; PLOTTR
*SMISCI\$RJH	FILT; WEITRE; CONV; SHIFT; CFAR; LAMPCP; ERGYCP
*0MISCI\$RJH	FILT; WEITRE; CONV; SHIFT; CFAR; LAMPCP; ERGYCP
*STSAR1\$RJH	RECF; PXFRM; CGENSF
*OTSAR1\$RJH	RECF; PXFRM; CGENSF
*/BLOCK1\$RJH/SMISCI\$RJH	NONLIN; HNDET; ANTINT; DFT
*/BLOCK1\$RJH/0MISCI\$RJH	NONLIN; HNDET; ANTINT; DFT
*/BLOCK1\$RJH/SUPRT2\$RJH	RNDARY; CUMDIS; RTOPDB; AZGAIN; ELGAIN
*/BLOCK1\$RJH/OSUP2\$RJH	RNDARY; CUMDIS; RTOPDB; AZGAIN; ELGAIN

*/BLOCK1\$RJH/SANT1\$RJH	ANTARY; PLTFMT
*/BLOCK1\$RJH/DANT1\$RJH	ANTARY; PLTFMT
*/BLOCK1\$RJH/SANT2\$RJH	SCANNR; SPCAVG
*/BLOCK1\$RJH/DANT2\$RJH	SCANNR; SPCAVG
*/BLOCK1\$RJH/STGCL\$RJH	TARGET; CLUTTR; WVGUID; IONOS
*/BLOCK1\$RJH/OTGCL\$RJH	TARGET; CLUTTR; WVGUID; IONOS
*SSTSAR\$RJH	TSRFAT; OGEN; TSARY
*/BLOCK1\$RJH/OTEAR\$RJH	TSRFAT; OGEN; TSARY
*/BLOCK1\$RJH/SDIG\$RJH	MTIFLT; SWPINT
*/BLOCK1\$RJH/ODIG\$RJH	MTIFLT; SWPINT
*TAPEIN	ASSEMBLY LANG PROG TO READ TAPE INTO BUFF
*CKTAPE	PROGRAM TO VERIFY RCS MAG TAPES
*TAFTBL	TAPES SENT TO RADC

JOB DEFINITION FILES

RANJB	I, 8. 2	WGDISP	I, 8. 16
ENDIST	I, 8. 3	IMAGEM	I, 8. 17
DFTPRB	I, 8. 4	CHAFFM	I, 8. 18
NONLNP	I, 8. 5	BISTAT	I, 8. 19
BARKER	I, 8. 6	TXCODE	I, 8. 20
WBTGT1/2	I, 8. 7	DECODE	I, 8. 21
WBTGCL	I, 8. 8	DHFROB	I, 8. 22
NBTGCL	I, 8. 9	RAINPB	I, 8. 23
WAPCG	I, 8. 10	ROSSP	I, 8. 24
ANTNNR1	I, 8. 11	TSARBPP	III, 4. 1
TSARBK	I, 8. 12	CGENOT	III, 4. 2
ECMODL	I, 8. 13	TSARTM	III, 4. 3
DIKFIX	I, 8. 14	TSARJB	III, 4. 4
CFARMD	I, 8. 15	FSANT	III, 4. 5

SELECTED BECRVU01 FILES

*SIMAGF	IMAGP; ERRPRO
*DIMAGF	IMAGP; ERRPRO
*/RCDSM\$JR/SCHAFF	DIPOLE; CHAFF; EXPI
*/RCDSM\$JR/DCCHAFF	DIPOLE; CHAFF; EXPI
*/RCDSM\$JR/SCYL	SCYL; BISTGT
*/RCDSM\$JR/DCCYL	SCYL; BISTGT
*/RCDSM\$JR/SXSA	GRAM; BESS
*/RCDSM\$JR/DSXSA	GRAM; BESS

A P P E N D I X E
T C H E B Y S C H E F F F I L T E R
D E S I G N D A T A

Given the Tschebyscheff approximation of a low-pass filter,
i.e.

$$|F(j\omega)|^2 = \frac{1}{1 + \delta^2 T_n^2(\omega)} ,$$

where $F(j\omega)$ is the transfer function,

δ is the ripple factor (i.e.,

$1 - \frac{1}{(1 + \delta)^2} \frac{1}{2}$ is the peak-to-peak
ripple), and

$T_n(\omega)$ is a Tschebyscheff polynomial of
order n , i.e.,

$$T_n(\omega) = \cos(n \cos^{-1}\omega), |\omega| \leq 1$$

$$= \cosh(n \cosh^{-1}\omega), |\omega| > 1;$$

then it can be shown that the k^{th} pole, s_k , of the
transfer function $F(j\omega)$ is determined as follows:

$$s_k = \sigma_k + j\omega_k$$

$$\sigma_k = -\sinh\left(\frac{1}{n} \sinh^{-1} 1/\delta\right) \sin \frac{(2k-1)\pi}{2n}$$

$$\omega_k = \cosh\left(\frac{1}{n} \sinh^{-1} 1/\delta\right) \cos \frac{(2k-1)\pi}{2n}$$

$$\text{where } F(j\omega) = \frac{1}{(1 + \delta)^2} \frac{1}{2} \text{ when } \omega = 1.$$

By setting $1 + \delta^2 T_n^2(\omega) = 2$ and solving for ω , we can
determine a normalization factor for the poles such that
 $F^2(j1) = \frac{1}{2}$, i.e., the filter response will be -3 dB with
respect to the ripple peak at $\omega = 1$. This normalization
factor is derived as follows:

$$\begin{aligned}\cosh(n \cosh^{-1} \omega_1) &= 1/\delta \\ \omega_1 &= \cosh \frac{1}{n} \cosh^{-1} 1/\delta \\ &= \cosh \frac{1}{n} \sinh^{-1} \sqrt{\frac{1-\delta^2}{\delta^2}}.\end{aligned}$$

If each pole is divided by this factor the response will be -3 db with respect to the peak response. It may be noted that, if the order of the polynomial is odd, the peak response is identical to the response at $\omega = 0$. Thus, the above formula will provide normalization to the DC response of the filter. However, if n is even, the response at $\omega = 0$ is identical to that at the lower limit of the ripple; and, if it is desired to normalize the Tchebyscheff response with respect to the DC level of an even pole filter, a different factor must be used. This factor is derived as follows:

$$T_n^2(0) = 1 \text{ for even } n$$

$$|F(j0)|^2 = \frac{1}{1 + \delta^2 T_n^2(0)} = \frac{1}{1 + \delta^2}$$

$$|F(j\omega_{3dB})|^2 = \frac{1}{2(1 + \delta^2)} = \frac{1}{1 + \delta^2 T_n^2(j\omega_{3dB})}$$

solving for ω_{3dB} ,

$$T_n^2(j\omega_{3dB}) = \frac{2(1 + \delta^2) - 1}{\delta^2} = \frac{2\delta^2 + 1}{\delta^2}$$

$$\cosh(n \cosh^{-1} \omega_{3dB}) = \frac{2\delta^2 + 1}{\delta^2}$$

$$\begin{aligned}\omega_{3dB} &= \cosh \frac{1}{n} \cosh^{-1} \frac{(2\delta^2 + 1)^{\frac{1}{2}}}{\delta} \\ &= \cosh \frac{1}{n} \sinh^{-1} \frac{(1 + \delta^2)^{\frac{1}{2}}}{\delta}\end{aligned}$$

Table B-1 contains the pole locations for Tchebyscheff filters of order 1 through 10 for various ripple factors. The poles are normalized for $|F(1)|^2 = F(\omega_{peak})^2/2$.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS

 $\delta = 0.15262042$ RIPPLE = 0.1 dB

Pole Nr. Poles	1	2	3	4	5
	ω	ω	ω	ω	ω
1	-1.0	0			
2	-.61041904	.71064977			
3	-.34895944	.86836557	-.69791888	0	
4	-.21775331	.92540643	-.52570299	.38331590	
5	-.14676218	.95210617	-.38422837	.58843397	-.47493238
6	-.10494112	.96668431	-.28670448	.70766203	-.39164560
7	-.07850274	.97549887	-.21995978	.78228936	-.31785109
8	-.06082185	.98122944	-.17320598	.83184615	-.25922107
9	-.04845365	.98516257	-.13951672	.86633742	-.21375202
10	-.03948065	.98797802	-.11457731	.89126784	-.17845835

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)

 $\delta = 0.21709111$ RIPPLE = 0.2 dB

Pole Nr.	α	1	2	3	4	5
Nr. Poles	α	α	α	α	α	α
1	-1.0	0				
2	-.37550005	.71384111				
3	-.31735974	.87031820	-.63471948	0		
4	-.19441483	.92662976	-.46935891	.38382261		
5	-.12972133	.95292837	-.33961485	.58894212	-.41978704	
6	-.09220663	.96727048	-.25191320	.70809113	-.34411983	.25917934
7	-.06871748	.97593635	-.19254210	.78264019	-.27823139	.43433254
8	-.05310658	.98156780	-.15123475	.83213300	-.22633880	.55601349
9	-.04223279	.98543177	-.12160446	.86657416	-.18630885	.66319491
10	-.03436782	.98819715	-.09973931	.89146553	-.15534761	.70747105

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)

 $\delta = 0.26743094$ RIPPLE = 0.3 dB

Pole Nr.	0	1	2	3	4	5
Nr. poles						
1	-1.0	0				
2	-.55032824	.71684276				
3	-.29668017	.87209522	-.59336034	0		
4	-.17979926	.92777216	-.43407381	.38427717		
5	-.11929080	.95366066	-.31230736	.58939470	-.38603313	0
6	-.08451407	.96779045	-.23089673	.70847178	-.31541080	.25931867
7	-.06285494	.97632347	-.17611562	.78295063	-.25449444	.43450482
8	-.04850939	.98186672	-.13814307	.83238641	-.20674571	.55618282
9	-.03854011	.98566934	-.11097183	.866678307	-.17001871	.64334997
10	-.03134120	.98839038	-.09095571	.89163984	-.14166684	.70760939

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)
 $\delta = 0.34931140$ RIPPLE = 0.5 dB

Pole Nr.	1	2	3	4	5
Nr. Poles	0	σ	σ	σ	σ
1	-1.0	0			
2	-.51290914	.72246593			
3	-.26829311	.87532371	-.53658623	0	
4	-.16041786	.92969636	-.38728296	.38509284	
5	-.10569927	.95466685	-.27672429	.59020197	-.34205003
6	-.07458969	.96871487	-.20378283	.70914851	-.27837252
7	-.05533807	.97701031	-.15505382	.78350144	.25956637
8	-.04263892	.98233640	-.12142538	.83283546	-.22405927
9	-.03383799	.98608991	-.09743261	.86715292	.43481050
10	-.02749505	.98873224	-.07979375	.89194824	-.24868702
					0
					.19541079
					-.21436034
					.55648286
					-.18311341
					.34246545
					-.15660404
					.45447033
					-.17359692
					.15659980

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHERBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)
 $\delta = 0.41820755$ RIPPLE = 0.7 dB

Pole Nr.	0	1	2	3	4	5
Nr. Poles						
1	-1.0	0				
2	-.48446310	.72772871				
3	-.24818522	.87826076	-.49637045	0		
4	-.14709201	.93146839	-.35511153	.38582684		
5	-.09649247	.95613623	-.25262057	.59092469	-.31235619	0
6	-.06792332	.96954015	-.18556996	.70975265	-.25349327	.25978750
7	-.05031500	.97762246	-.14097948	.78399234	-.20372126	.43508292
8	-.03872942	.98286795	-.11029205	.83323522	-.16506371	.55674997
9	-.03071395	.98646405	-.08843730	.86748193	-.13549380	.64386868
10	-.02494406	.98903619	-.07239047	.89222244	-.11275081	.70807174

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)

 $\delta = 0.50884714$ RIPPLE = 1.0 dB

Pole Nr. Poles	1		2		3		4		5	
	σ	ω								
1	-1.0	0								
2	-45076823	.73514239								
3	-.22567588	.88229691	-.45135176	0						
4	-.13251257	.93388164	-.31991365	.38682644						
5	-.08653231	.95772210	-.22654452	.59190481	-.28002442	0				
6	-.06075675	.97065684	-.16599053	.71057012	-.22674728	.26008672				
7	-.04493586	.97844963	-.12590747	.78465568	-.18194156	.43545105	-.20193990	0		
8	-.03455338	.98350459	-.09839970	.83377493	-.14726555	.55711060	-.17371156	.19563123		
9	-.02738277	.98696887	-.07884554	.86792586	-.12079837	.64419818	-.14818114	.34277069	-.15769107	0
10	-.02222734	.98944613	-.06450624	.89259225	-.10047083	.70836522	-.12660063	.45479847	-.14033788	.15671287

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)

 $\delta = 0.64229086$ RIPPLE = 1.5 dB

Pole Nr. Poles	1		2		3		4		5	
	σ	ω								
1	-1.0	0								
2	-.40779353	.74658558								
3	-.19855287	.88835170	-.39730574	0						
4	-.11541929	.93746599	-.27864681	.38831113						
5	-.07498787	.96006691	-.19632080	.59333398	-.24266585	0				
6	-.05250299	.97230390	-.14344084	.71177586	-.19594383	.26052805				
7	-.03876473	.97966790	-.10861635	.78563265	-.15695517	.43599323	-.17420710	0		
8	-.02974666	.98444135	-.08479106	.83456908	-.12689879	.55764123	-.14968733	.19581756		
9	-.02357751	.98771119	-.06788874	.86857865	-.10401158	.64468269	-.12758909	.34302850	-.13577747	0
10	-.01912789	.99004866	-.05551131	.89313580	-.08646089	.70879659	-.10894708	.45507542	-.12076877	.15680830

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)
 $\delta = 0.76478310$ RIPPLE ≈ 2.0 dB

Pole Nr.	σ	ω	σ	ω	σ	ω	σ	ω
1	-1.0	0						
2	-.37446689	.75720472						
3	-.17860959	.89382276	-.35721919	0				
4	-.10299556	.94067582	-.24865328	.38964068				
5	-.06667806	.96215824	-.17456543	.59464650	-.21577474	0		
6	-.04659352	.97376976	-.12729586	.71284894	-.17388937	.26092082		
7	-.03436071	.98075074	-.09627656	.78650103	-.13912367	.43647514	-.15441562	0
8	-.02637157	.98527329	-.07509987	.83527436	-.11239489	.55811249	-.13257882	.19598304
9	-.02087161	.98837008	-.06009740	.86915806	-.09207456	.64511275	-.11294616	.34325733
10	-.01692620	.99058325	-.04912174	.89361806	-.07650891	.70917931	-.09640685	.45532115
								.10686781
								.15689297

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

TABLE E-1 TCHEBYSCHEFF FILTER NORMALIZED POLE LOCATIONS (cont'd)

 $\delta = 0.99762835$ RIPPLE = 3.0 dB

Pole Nr. Nr. Poles	σ	1 ω	2 σ	3 ω	4 σ	5 ω
1	-1.0	0				
2	-.32225836	.77669610				
3	-.14927069	.90357584	-.29854138	0		
4	-.08515775	.94634388	-.20558900	.39198847		
5	-.05485466	.96583567	-.14361136	.59691927	-.17751340	0
6	-.03822699	.97634157	-.10443808	.71473163	-.14266507	.26160993
7	-.02814428	.98264803	-.07885851	.78802253	-.11395386	.43731951
8	-.02157736	.98672971	-.06144711	.83650906	-.09196210	.55893748
9	-.01706470	.98952288	-.04913584	.87017182	-.07528048	.64586519
10	-.01383163	.99151820	-.04014096	.89446149	-.06252102	.70984866

Note: Only the poles in the second quadrant are shown. The conjugate of all complex poles is implied.

A P P E N D I X F
D I G I T A L F I L T E R D E S I G N

F.1 THE BILINEAR Z-TRANSFORMATION

The bilinear Z-transformation is a convenient means of converting an S-domain transfer function into a Z-domain transfer function which is compatible with digital filter design techniques. Of particular interest in this appendix is the use of the Z-transform to obtain high-pass or low-pass digital filter designs from normalized (i.e., $\omega_{3\text{db}} = 1$) S-domain low-pass filter transfer functions. The bilinear Z-transformation is defined by the following expression:

$$S = \frac{2}{T} \frac{1-Z^{-1}}{1+Z^{-1}} \quad (\text{F-1})$$

where T is the discrete sampling interval. This transformation maps the entire left-half of the S-plane into the area inside the Z-plane unit circle, and maps the right-half S-plane into the area outside of the unit circle. The S-plane $j\omega$ axis becomes the unit circle with $j\omega=0$ mapped to $Z = +1$ and $j\omega=\pm\infty$ mapped to $Z = -1$. This results in a non-linear warping of the frequency scale according to the relation

$$\frac{\omega_c T}{2} = \tan\left(\frac{\omega_d T}{2}\right) = \Omega \quad (\text{F-2})$$

where ω_c is the S-plane frequency and ω_d is the corresponding Z-plane frequency. For convenience, the parameter Ω will

be used to represent $\tan\left(\frac{\omega_d T}{2}\right)$ in the remainder of this appendix. Compensation can be made for the warping effect of the bilinear Z-transform by prewarping the filter cutoff frequency. This is accomplished by solving equation F-2 for $T/2$ and substituting the resulting expression into equation F-1.

$$S = \frac{\omega_c}{\Omega} \frac{1-Z^{-1}}{1+Z^{-1}}. \quad (\text{F-3})$$

F.1.1 Low Pass to Low Pass (High Pass to High Pass) Transformation

In order to transform a normalized S-plane filter design ($\omega_c = 1$) to a Z-plane representation with cutoff frequency ω_d , equation F-3 is solved for Z after 1.0 is substituted for ω_c . The following equation gives the relationship between the S-plane and Z-plane poles (zeros).

$$Z = \frac{1/\Omega + S}{1/\Omega - S} \quad (F-4)$$

F.1.2 Low Pass to High Pass (High Pass to Low Pass) Transformation

In order to transform a low pass S-plane transfer function to its high pass complement in the Z-plane, the following complementary transformation in the S-plane is performed first

$$S' = 1/S \quad (F-5)$$

where S' is the new pole (zero) location in the S-plane. When the substitution specified by equation F-5 is made in equation F-4 the following transform is obtained

$$\begin{aligned} Z &= \frac{1/\Omega + 1/S'}{1/\Omega - 1/S'} \\ &= \frac{S' + \Omega}{S' - \Omega}. \end{aligned} \quad (F-6)$$

F.2 DETERMINING DIGITAL FILTER COEFFICIENTS

Once the transfer function of a filter has been determined in the Z-plane, it is a simple procedure to determine the feedforward and feedback coefficients of a digital filter.

Assume the Z-plane transfer function is defined by the following equation.

$$H(Z) = K_1 K_2 \frac{(Z-Z_{01})(Z-Z_{01}^*)(Z-Z_{02})(Z-Z_{02}^*)}{(Z-Z_{p1})(Z-Z_{p1}^*)(Z-Z_{p2})(Z-Z_{p2}^*)}$$

where the asterisk indicates the complex conjugate. This equation can be rewritten in the form

$$H(z) = K_1 \frac{(z-z_{01})(z-z_{01}^*)}{(z-z_{p1})(z-z_{p1}^*)} \cdot K_2 \frac{(z-z_{02})(z-z_{02}^*)}{(z-z_{p2})(z-z_{p2}^*)} \quad (F-7)$$

The second form of this equation indicates that any physically realizable transfer function can be implemented by cascading quadratic filter sections. Therefore, the analysis can be limited to a single quadratic section with no loss in generality. One section of equation F-7 is expanded to give the following

$$G(z) = K \frac{z^2 - 2Z\operatorname{Re}\{z_o\} + |z_o|^2}{z^2 - 2Z\operatorname{Re}\{z_p\} + |z_p|^2}, \quad (F-8)$$

where $\operatorname{Re}\{ \}$ represents the real part of $\{ \}$.

Since this is a quadratic in Z , it should be possible to implement the function by a double delay filter as shown in Figure F.1-1. The transfer function for this filter will now be determined and compared with equation F-8 above.

$$E_o = \left[\frac{1}{Z^2} E_2 + B_2 \frac{1}{Z} E_2 + B_1 E_2 \right] C \quad (F-9)$$

$$E_2 = E_i + A_1 \frac{1}{Z} E_2 + A_2 \frac{1}{Z^2} E_2. \quad (F-10)$$

By solving equation F-10 for E_2 and substituting into equation F-9, the following expression is obtained.

$$\frac{E_o}{E_i} = C \left[\frac{B_1 Z^2 + B_2 Z + 1}{Z^2 - A_1 Z - A_2} \right]. \quad (F-11)$$

If B_1 is factored from the numerator, the following expression results:

Figure F.1-1 DOUBLE-DELAY DIGITAL FILTER DIAGRAM

$$\frac{E_o}{E_i} = CB_1 \left[\frac{z^2 + \frac{B_2}{B_1} z + \frac{1}{B_1}}{z^2 - A_1 z - A_2} \right] \quad (F-12)$$

By comparing F-12 with equation F-8, the values of the feed-forward and feedback coefficients shown in Figure F-1 can be determined from the Z-plane pole/zero locations:

$$B_1 = \frac{1}{|Z_o|^2} \quad (F-13)$$

$$B_2 = -2B_1 \operatorname{Re}(Z_o) \quad (F-14)$$

$$C = \frac{K}{B_1} \quad (F-15)$$

$$A_1 = 2\operatorname{Re}(Z_p) \quad (F-16)$$

$$A_2 = -|Z_p|^2. \quad (F-17)$$

F.3 EXAMPLES OF DIGITAL FILTER DESIGNS

F.3-1 Low Pass Filter Design

This example will demonstrate the design of a 2-pole Tchebyscheff low-pass filter with a 0.5 dB pass-band ripple, a 3 dB cutoff frequency of 10 Hz, and a pass-band gain of 1. The sample rate is 100 Hz. The S-plane representation (from the table in Appendix E) of the low-pass filter is

$$G(s) = \frac{1}{(s+.5129091-j.7224659)(s+.5129091+j.7224659)}.$$

Substituting the above parameters into equations F-2 and F-4 the following results are obtained.

$$\Omega = \tan\left(\frac{f_d \times 180}{f_s}\right) = \tan 18^\circ = 0.3249197, \text{ and}$$

$$z_p = \frac{\frac{1}{\Omega} + s}{\frac{1}{\Omega} - s} = .6475996 + j.3315148$$

$$z_p^* = .6475996 - j.3315148.$$

The double zero at infinity is represented by

$$z_{01} = z_{02} = -1.0.$$

Thus, the transfer function in the Z-plane is

$$H(z) = \frac{(z+1)(z+1)}{(z-.6475996-j.3315148)(z-.6475996+j.3315148)}.$$

From the roots in the Z-plane, the filter coefficients are determined using equations F-13 through F-17:

$$B_1 = \frac{1}{1^2} = 1$$

$$B_2 = -2(1)(-1) = 2$$

$$A_1 = 2(.6475996) = 1.295199$$

$$A_2 = -(.6475996^2 + .3315148^2) = -.5292872.$$

The impulse response of this filter is shown in Figure F.3.1-1.

F.3.2 High Pass Filter Design

This example problem demonstrates the design of a 2-pole Tchebyscheff high-pass filter with a 100 Hz stopband, 1-dB

Figure F.3.1-1 IMPULSE RESPONSE - 0.5 dB TCHEBYSCHEFF LOWPASS FILTER

Figure F.3.2-1 IMPULSE RESPONSE - 1dB TCHEBYSCHEFF HIGHPASS FILTER

passband ripple and unity passband gain. The sampling rate is 500 Hz. Using the table in Appendix E, the normalized low-pass filter poles are determined:

$$G(S) = \frac{1}{(S+.4507682+j.7351424)(S+.4507682-j.7351424)}$$

$$\Omega = \tan\left(\frac{50}{500} \times 180^\circ\right) = 0.3249197$$

Using the low-pass to high-pass Z-transform,

$$Z = \frac{S + \Omega}{S - \Omega},$$

the roots of the denominator are determined to be

$$z_p = .5586542 - j.4182765$$

$$z_p^* = .5586542 + j.4182765.$$

The two zeros of the low-pass filter located at infinity are transformed to zeros at $Z=1$ for the high-pass digital filter. The transfer function in the Z-plane is the following:

$$H(Z) = \frac{(Z - 1)(Z - 1)}{(Z - .5586542 + j.4182765)(Z - .5586542 - j.4182765)}.$$

The digital filter coefficients are obtained from equations F-13 through F-17:

$$B_1 = \frac{1}{1^2} = 1$$

$$B_2 = -2(1)(1) = -2$$

$$C = 1$$

$$A_1 = 2(.5586542) = 1.117308$$

$$A_2 = -.4870497.$$

The impulse response of this filter is shown in Figure F.3.2-1.

F.3.3 Integrator Design

This example will demonstrate the design of a simple integrator with a 3 dB cutoff of one tenth the sampling rate and no Z-plane zeros. The S-plane representation of an integrator is the following

$$G(S) = \frac{1}{S + 1}$$

Substituting $S_p = -1$ and $\Omega = .3249197$ into equation F-4, the Z-plane pole is determined to be

$$Z = 0.5095254.$$

Since no Z-plane zeros are to be simulated, the Z-plane transfer function is

$$H(Z) = \frac{1}{Z - .5095254}.$$

The filter coefficients are the following:

$$B_1 = 0$$

$$B_2 = 0$$

$$C = 1$$

$$A_1 = 0.5095257$$

$$A_2 = 0.$$

The integrator impulse response is shown in Figure F.3.3-1.

Figure F.3.3-1 IMPULSE RESPONSE - DIGITAL INTEGRATOR

A P P E N D I X G
C O M P U T E R P R O G R A M
U S E D I N R E A D I N G
R A D A R C R O S S S E C T I O N T A P E S

The documentation and listing of the computer program used in reading radar cross-section tapes is provided in this appendix.

SUBROUTINE DATAIN

1. MODULE IDENTIFICATION:

Name	Classification Code	Reference Number
DATAIN	Subroutine	Not user referenced

2. PURPOSE:

This subprogram is used to read Radar Cross Section data types generated by the General Dynamics/Ft. Worth RCS measurement range.

3. INPUT PARAMETERS:

None

4. CALLING SEQUENCES:

CALL DATAIN

Where: Data is passed via blank common.

5. RESTRICTIONS, REQUIREMENTS, AND MISCELLANEOUS DATA:

(a) Data read from the magnetic tape is placed in an array INDAT. In addition, a status word IERW is generated to indicate errors during read, if any. The specification in Fortran of the blank common area containing the above follows:

COMMON INDAT(309), IDUM(3), IERW

IDUM(3) allocates storage for status words used by the subroutine.

- (b) The character sets of the RCS tapes and the Honeywell computer differ in the representation of "=" and "+" signs. Therefore, this routine connects all occurrences of the above 2 characters into their appropriate representation in the Honeywell character set.
- (c) The following GCOS Master Mode Entry (MME) routines are used in this subroutine:
GEINDS and GEROAD. Reference GCOS manual BR43C for an explanation of these routines.
- (d) The file code allocated for the magnetic tape is 13. If a different file code is desired, the variable FA should be changed accordingly.
- (e) This subroutine is structured to read records that are 1850 characters in length.

6. THEORY OF OPERATION

Upon entry to the subroutine, the necessary control words for GEINDS are set up and GEINDS is called. GEROAD is called to halt execution of the program until a record is read from the magnetic tape unit. Upon completion of the read, the status word returned by GEINDS is processed to determine if an error occurred and a status word, IERR, is generated for use by the calling program. The values of IERR are the following:

IERR = 0	No error detected
= 1	End of file
= 2	Longitudinal parity error detected
= 3	Lateral parity error detected
= 4	Error detected but not one of the above
= 16	Blank tape on read

If the last word of the record is incomplete, the 10 is added to IERR. If the record is short by more than 1 word, then 20 is added to IERR.

	SYMDEF	DATAIN	
10	BLOCK		BLANK COMMON
20	INDAT	BSS 309	BUFFER AREA
30	IFEF	BSS 1	CHAR/WORD XMITTAL STATUS
40	STATW	BSS 2	STATUS RETURN WORD
50	IERR	BSS 1	ERROR RETURN TO CALLING PROGRAM
60	USE	PREVIOUS	
70	DATAIN	SAVE	ENTRY POINT
80	LDA	DCW1	
90	STA	DCW	
100	LDA	=-2	
110	STA	STATR	
120	MME	GEINOS	
130	RTD		
140	ZERO	FA, DCW	FILE CODE WORD, DATA CONTROL WORD
150	ZERO	STATR	STATUS RETURN WORD
160	MME	GEROAD	
170	LDAQ	STATR	
180	STAQ	STATW	
190	ANA	=0070000, DU	
200	TZE	ERRF	NO ERRORS DETECTED BY TAPE CONTR
210	CMPA	=0040000, DU	
220	TZE	EOF	END OF FILE DETECTED
230	CMPA	=0030000, DU	
240	TZE	DALRT	DATA ALERT DETECTED
250	LDA	=4, DL	
260	TRA	ERRF	UNKNOWN ERROR DETECTED
270	EOF	LDA	END OF FILE
280	EXIT	IERR	
290	TRA	RTURN	
300	DALRT	LDA	DATA ALERT
310	ANA	STATR	
320	CMPA	=0007700, DU	
330	TNZ	LATPC	TEST FOR BLANK TAPE ON READ
340	LDA	=2, DL	
350	TRA	PCK	
360	TRA	=16, DL	
370	PCK	EOF	
380	ANA	=0001000, DU	
390	TNZ	LATPC	LONGITUDINAL PARITY CHECK
400	LDA	=2, DL	
410	TRA	ERRF	LATERAL PARITY CHECK
420	LATPC	LDA	
430	ERRF	IERR	
440	ANA	=0707777, DL	TEST RECORD LENGTH READ
450	STQ	IFEF	CHAR/WORD REMAINING TO XFER
460	TZE	TEST3	
470	LLS	21	A=NUMBER OF CHAR IN LAST WORD
480	QRS	21	Q=NUMBER OF WORDS NOT XMITTED
490	CMPQ	=1, DL	
500	TZE	SREC	IF Q = 1; then ZERO = 1
510	TNC	CARCK	IF Q < 1; then CARRY = Ø
520	LDD	=20, DL	SHORT REC- MORE THAN 1 WORD DEFECTIVE
530	TRA	ENDE	
540	CARCK	CMPA	
550	LDA	=2, DL	
560	TNC	IERR	
570	TEST3	SREC	IF A < 2; then CARRY = Ø
580	CMPA	=3, DL	
590	TNZ	CHTL	IF A ≠ 3; then ZERO = Ø
600	LDA	=0, DL	
610	STA	IERR	
620	TRA	CHTL	
630	SREC	LDD	SHORT RECORD-LAST WORD DEFECTIVE

620	ENDE	RSQ	IERR	COMBINE REC. LENGTH TEST WITH 10C 'STAT.
630	CHTL	LDX0	=0, DU	CHARACTER TRANSLATE + AND = SIGNS
640	NNORD	CMPX0	=309, DU	BEGINNING OF WORD LOOP
650		TZE	RTURN	
660		LDA	INDAT, 0	X0 IS INDEX REGISTER
670		LDX1	=6, DU	
680		LDR	=0777777777700	
690	TESTC	NOP		BEGINNING OF CHAR. LOOP
700		CMK	=013, DL	TEST RIGHT MOST CHAR FOR =
710		TZE	EQUAL	
720		CMK	=032, DL	TEST RIGHT MOST CHAR FOR +
730		TZE	PLUS	
740	ROTAT	ALR	6	
750		SBX1	=1, DU	
760		TNZ	TESTC	END OF CHAR. LOOP
770		STA	INDAT, 0	
780		ADX0	=1, DU	
790		TRA	NNORD	END OF WORD LOOP
800	EQUAL	ERA	=0000066, DL	CORRECT = SIGN
810		TRA	ROTAT	
820	PLUS	ERA	=0000052, DL	CORRECT + SIGN
830		TRA	ROTAT	
840	RTURN	RETURN	DATAIN	RETURN TO CALLING PROGRAM
850	FA	BCI	1, 000013	
860	STATR	EB55	2	
870	DCW1	IOTD	INDAT, 309	BUFFER ARRAY, NUMBER OF WORDS XMITTED
880	DCW	B55	1	
890		END		

	1	2	4	8	A	B	C	
1	1	1	1	1	1	1	1	Record Prefix (-)
2	/	/	/	/	/	/	/	MSD Model Number
3	/	/	/	/	/	/	/	LSD or Calibration Data Code
4	/	/	/	/	/	/	/	Run Number (Used when all other identifiers are repeated)
5	/	/	/	/	/	/	/	Frequency (1-UHF, 2-L-Band, 3-S-Band, 4-C-Band, 5-X-Band)
6								RBand
7	/	/	/	/	/	/	/	Polarization (Trans-RCV: 1-VV, 2-HH, 3-VH, 4-HV)
8	/	/	/	/	/	/	/	MSD
9	/	/	/	/	/	/	/	Full Scale Range Sweep in inches
10	/	/	/	/	/	1	1	LSD
11						1	1	Blank
12	/	/	/	/	/	1	1	MSD
13	/	/	/	/	/	1	1	Record Number (Progressive from 0000)
14	/	/	/	/	/	1	1	LSD
15	/	/	/	/	/	1	1	Data Prefix (/)
16	1				1			MSD Block Number
17	/	/	/	/	/	1	1	LSD (00 for this application)
18	/	/	/	/	1	1	1	Blank
19					1	1	1	Blank
20					1	1	1	Sign
21					X	1	X	MSD
22	1				1		X	± 9999
23	1				1		X	LSD
24	1				1		X	Sign
25	1				1		X	MSD
26					X	1	X	Sign
27	X	X	X	X	X	1	1	MSD
28	X	X	X	X	X	1	1	In-phase component
29	X	X	X	X	X	1	1	In Millivolts
30	X	X	X	X	X	1	1	LSD
31					X	1	X	Repeated 1 to 128 times
32	X	X	X	X	X	1	1	(90 for this application)
33	X	X	X	X	X	1	1	LSD
34	X	X	X	X	X	1	1	Sign
35	X	X	X	X	X	1	1	MSD
36					X	1	X	Range increment per
37	X	X	X	X	X	1	1	sample (in inches) to
38	X	X	X	X	X	1	1	be marked on each reel
39	X	X	X	X	X	1	1	MSD
40	X	X	X	X	X	1	1	Amplitude Component
								In Millivolts
								LSD
1821								One Sample
1822								Blank
1823								Blank
1824	X	X	X	X	X	1	1	Sign
1825	X	X	X	X	X	1	1	MSD
1826	X	X	X	X	X	1	1	Attenuation Level
1827	X	X	X	X	X	1	1	LSD
1828	X	X	X	X	X	1	1	MSD
1829	X	X	X	X	X	1	1	Cal Phase on Cal Runs in Degrees
1830					X	1	X	LSD
1831	X	X	X	X	X	1	1	Sign
1832	X	X	X	X	X	1	1	MSD
1833	X	X	X	X	X	1	1	Pitch Angle in Tents of Degrees
1834	X	X	X	X	X	1	1	LSD
1835	X	X	X	X	X	1	1	Sign
1836	X	X	X	X	X	1	1	MSD
1837					X	1	X	Roll Angle in Tents of Degrees
1838	X	X	X	X	X	1	1	LSD
1839	X	X	X	X	X	1	1	Sign
1840	X	X	X	X	X	1	1	MSD
1841	X	X	X	X	X	1	1	Yaw, Azimuth, or Aspect in Tents of Degrees
1842	X	X	X	X	X	1	1	LSD
1843	X	X	X	X	X	1	1	Sign
1844					X	1	X	MSD
1845	X	X	X	X	X	1	1	Notes:
1846	X	X	X	X	X	1	1	1) All Recordings @
1847	X	X	X	X	X	1	1	800 BPI in BCD Code
1848	X	X	X	X	X	1	1	2) <input checked="" type="checkbox"/> Fixed Format Bits
1849	X	X	X	X	X	1	1	<input type="checkbox"/> Fixed Format Zero
1850	X	X	X	X	X	1	1	<input type="checkbox"/> Auto or Preset
								<input type="checkbox"/> Bit Changes
								<input checked="" type="checkbox"/> Data Bit Changes
								Longitudinal Parity
								3/4 inch gap
								3/4 inch gap
								Next Record

Fig. G-1 MAGNETIC TAPE FORMAT FOR SHORT PULSE DATA

A P P E N D I X H
C O M P U T E R P R O G R A M F O R
I M A G I N G C O H E R E N T
S H O R T P U L S E T A R G E T D A T A

A printed-out listing of the computer program for imaging coherent short pulse target data is provided in this appendix. The computer program documentation together with a sample program is located in Volume I, Part 3, Section 8.17.

```

18      C      FILE=IMAGP
20      COMMON INDAT(309), IPEF, STATW(2), IERW
30      CHARACTER INDAT1*480, INDAT2*480, INDAT3*480, INDAT4*414
40      EQUIVALENCE (INDAT(1), INDAT1), (INDAT(81), INDAT2),
50      *          (INDAT(161), INDAT3), (INDAT(241), INDAT4)
60      COMMON/BLOCK1/NPTSF, ITC, KAY, DELTAY, DATA(540)
70      COMMON /BLOCK3/ THOLD, DRANG, IA, ITH, ICTRL
80      COMMON/BLOCK9/ ICTROL, RP, RN, SP, SN, ISET, NEND, THT
90      COMMON/BLK1/BK1(500)
100     COMMON/BLOCK11/XFI( 40, 250), XFQ( 40, 250), XFIIC( 64, 250)
110     1, ITI, TOI, DELI, DDI, XRI(128), ITQ, TQQ, DELQ, DDQ, XRQ(128)
120     DIMENSION IDATA(540) , IDATA1(540) , IDATAQ(540) ,
130     1IIA(2) , HEADR(3) , TRAILR(3) , ITHTETA(2) ,
140     2THDES(40) , IFSKP(20) , SYSATT(4) , THMISS(30) ,
150     3TSWNDO(10)
160     DIMENSION W(40), TGTID(10)
170     CHARACTER TGTID
180     EQUIVALENCE(M2, BK1(1))
190     DATA PI, PI02, DTR, RTD/3. 14159265, 1. 5707963, 1. 74533E-02, 57. 29578/
200     DIMENSION CTABL(50)
210     DATA CTABL/020, 020, 020, 052, 071, 070, 067, 066, 065, 064, 063,
220     *          062, 051, 050, 047, 046, 045, 044, 043, 042, 041, 031, 030,
230     *          027, 026, 025, 024, 023, 022, 021, 011, 010, 007, 006, 005, 004,
240     *          003, 002, 001, 000, 013, 060, 032, 033/
250     NAMELIST/CARD1/ TGTID, NBRTGT
260     NAMELIST/CARD2/ KAY, DELTAY, NWNDOS
270     NAMELIST/CARD3/ DRANG, CTGT, THINC, THOLD, FREQ
280     NAMELIST/CARD4/ NFILES , NRPS, IR0, LAST, INOISE, NTH, M2, INCX
290     NAMELIST/CARD5/ M2C, NTH0, ADELY
300     NAMELIST/CARD6/ NFSKP, IFSKP
310     NAMELIST/CARD8/ SYSATQ, TSWNDQ, IFSEP
320     5 READ (5,CARD1)
330     WRITE(6,2060) TGTID, NBRTGT
340     2060 FORMAT(' TARGET =',10A6, ' NBRTGT=',15)
350     READ (5,CARD2)
360     WRITE (6,CARD2)
370     IF( NWNDOS .GT. 0 ) GO TO 6
380     WRITE (6,1002)
390     1002 FORMAT(' NWNDOS IS INCORRECT ' )
400     CALL EXIT
410     6 CONTINUE
420     NWND0 = 1
430     READ (5, CARD3)
440     WRITE (6,CARD3)
450
460     ALMDA = 11. 8/FREQ
470     AK =(2*PI)/ALMDA
480     AKR = AK*DRANG
490     ACTGT = AK*CTGT
500     THOLD1 = 20. 0* ALOG10(THOLD)
510     THTEST = 10. *THINC
520     DTH = 0. 5*THINC
530     READ (5,CARD4)
540     WRITE (6,CARD4)
550     ZNS = INOISE
560     NPTS = LAST - IR0 + 1
570     NPTSF = NPTS/INCX
580     NTH1 = NTH + 1
590     NTHN = 2**M2

```

```

600      IT1=NTHN
610      IT0=NTHN
620      XNTH = NTH
630      NTH02= NTHN/2
640      NT02 = NTH/2
650      XNT2=(NTH - NT02)
660      RKN=PI02/XNT2
670      C
680      C      ***** WEIGHTING FUNCTION DEFINITION ***** C
690      C
700      NT02X=NT02-1
710      DO 17 I=1,NTH
720      XTH = RKN*(NT02X-I)
730      CXTH = COS(XTH)
740      W(I)=0.08+0.92*CXTH+CXTH
750      17 CONTINUE
760      WRITE(6,7676) W
770      7676 FORMAT(' WEIGHTING FUNCT=',6F10.5,(/6F10.5))
780      C
790      WRITE (6, 7500) NPTS, NTH, ZNS, NPTSF
800      7500 FORMAT (' NPTS =',15,/, ' NTH =',15,/, ' ZNS =',F10.3,/
810      1           ' NPTSF =',15 )
820      C
830      IF (NFILES .GT. 0 .AND. NFILES .LT. 30) GO TO 8
840      WRITE (6,1004)
850      1004 FORMAT (' NFILES INCORRECT ')
860      CALL EXIT
870      8 CONTINUE
880      NWDS = 90*NRPS
890      NBA = 1852
900      IF( NRPS .GT. 0 .AND.
910      1       NRPS .LE. 6      ) GO TO 10
920      WRITE (6,2020)
930      2020 FORMAT(' NRPS INCORRECT ')
940      CALL EXIT
950      10 CONTINUE
960      C
970      READ (5,CARD5)
980      NPTSS = 2**M2C
990      WRITE(6,4001) NPTSS, NTHN, NTHO, RDELY
1000      4001 FORMAT (' NUMBER OF POINTS TRANSFORMED IN TIME DOMAIN = ',15,/
1010      1 ' NUMBER OF POINTS IN ANGLE TRANSFORM = ', 15, /' NUMBER OF THREE
1020      2HOLDS IN RTI = ', 15, /' EXPECTED MAXIMUM AMPLITUDE OF IMAGE = ',15
1030      2F8.4)
1040      XU = NPTSF+NTHN*KAY
1050      YL = 0.0
1060      YU = RDELY + NTHN*DELBY
1070      READ (5,CARD6)
1080      WRITE (6,2030)(IFSKP(J),J=1,NFSKP)
1090      2030 FORMAT(' FILES TO BE SKIPPED ',/,10(2X,15) )
1100      C
1110      C
1120      JMISS = 0
1130      IFILE = 1
1140      ISKP = 1
1150      C***** ***** ***** *****
1160      C
1170      READ (5,CARD8)
1180      SYSATT(1)=SYSATQ
1190      TSNND0(1)=TSNNDO
1200      31 CONTINUE
1210      ITHFG = 0
1220      THDES(1) = TSNND0(NWNDO)
1230      DO 40 J=2,NTH
1240      THDES(J) = THDES(J-1) + THINC
1250      40 CONTINUE

```

```

1268      245 THFIN = THDES(NTH)
1270      IF ( THFIN .GE. 360.0 ) ITHFG = 1
1280      WRITE (6,7610) NWNDO, SYSATT(1), THDES(1), THDES(NTH)
1290      7610 FORMAT(' ASPECT WINDOW NUMBER',I2,' SYSATT =',F8.2,/
1300      1           ' WINDOW FROM ',F6.1,' TO ',F6.2,' DEGREES ')
1310      C
1320          DO 45 J=1,NPTSF
1330          DO 45 JJ=1,NTH
1340          XFO (JJ,J) = 0.0
1350          XFI (JJ,J) = 0.0
1360      45 CONTINUE
1370      C
1380          ICTRL = 1
1390          IOFT = 1
1400          IOFRSM = 1
1410          IMISS = 0
1420          NH = 0
1430          ITH = 0
1440          ISPTST = 0
1450      C
1460      250 IF( IFILE .NE. IFSKP(ISKP) ) GO TO 270
1470      WRITE (6,6006)
1480      6006 FORMAT (' FILE TEST START ',)
1490      251 CONTINUE
1500      CALL DATAIN
1510      IF(IERW.EQ.0) GOTO 251
1520      CALL ERRPRC
1530      IF(IERN.EQ.1) GOTO 255
1540      GOTO 251
1550      C
1560      255 WRITE (6,7000) IFILE
1570      7000 FORMAT(' BYPASSED FILE ',I5 )
1580      265 IFILE = IFILE + 1
1590      IF( ISKP .GE. NFSKP ) GO TO 270
1600      ISKP = ISKP + 1
1610      GO TO 250
1620      C
1630      270 WRITE (6,6007)
1640      6007 FORMAT (' FILE TEST END - FILE PROCESS BEGIN ',I10)
1650      C
1660          IPASS = 1
1670          IOER = 0
1680          IGN = 0
1690          I9TST = 0
1700          IK = 0
1710      275 ITH = ITH + 1
1720      C
1730      278 ISRT = 1
1740      IH0 = 3
1750      280 CONTINUE
1760      CALL DATAIN
1770      292 ISTP = ISRT + 89
1780      IF( ISRT .EQ. 91 ) IH0 = 1
1790      IF( ISRT .EQ. 181) IH0 = 2
1800      IF(IERW.EQ.0.DR.IERN.EQ.10.DR.IERW.EQ.13) GOTO 52
1810      CALL ERRPRC
1820      IF(IERN.EQ.1) GOTO 310
1830      IF(IERN.GE.20) GOTO 70
1840      GOTO 315
1850      C
1860      C
1870      52 IF ( IH0 .EQ. 3 ) GO TO 290
1880      ISRTE=ISRT+22
1890      DECODE(INDAT1,6710) <HEADR(J),J=1,3>,
1900      * <IDATA1(J),IDATR0(J),J=ISRT,ISRTE>
1910      6710 FORMAT(3A6,2X,23<5X,2I5,5X)>

```

```

1920      ISRTT=ISRTE+1
1930      ISRTE=ISRTE+24
1940      DECODE(INDAT2,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE)
1950      6720  FORMAT(24(5X,215,5X))
1960      ISRTT=ISRTE+1
1970      ISRTE=ISRTE+24
1980      DECODE(INDAT2,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE)
1990      ISRTT=ISRTE+1
2000      ISRTE=ISRTE+19
2010      DECODE(INDAT4,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE),
2020      * (IIR(IHD)), (TRAILR(J), J=1, 2), TRAILR(3), ITHETR(IHD)
2030      6720  FORMAT(19(5X,215,5X), 3X, 13, 2B6, B5, 17)
2040      GO TO 300
2050      298 CONTINUE
2060      IF (ISRT .EQ. 1 .AND. I9TST .EQ. 0) GO TO 79
2070      ISRTE=ISRT+22
2080      DECODE(INDAT1,6740) (IDATRI(J), IDATRQ(J), J=ISRT, ISRTE)
2090      6740  FORMAT(T21,23(5X,215,5X))
2100      ISRTT=ISRTE+1
2110      ISRTE=ISRTE+24
2120      DECODE(INDAT2,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE)
2130      ISRTT=ISRTE+1
2140      ISRTE=ISRTE+24
2150      DECODE(INDAT3,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE)
2160      ISRTT=ISRTE+1
2170      ISRTE=ISRTE+19
2180      DECODE(INDAT4,6720) (IDATRI(J), IDATRQ(J), J=ISRTT, ISRTE)
2190      C
2200      300 IF( ISTP .GE. NHDS ) GO TO 320
2210      ISRT = ISRT + 90
2220      IHD = 3
2230      GO TO 280
2240      C
2250      C
2260      70 CONTINUE
2270      NBR=FLD(21,15,IPEF)
2280      IF(NBR.GT.100) GOTO 72
2290      74 CONTINUE
2300      WRITE (6,5140) THDESC(IHD), NBR
2310      5140 FORMAT ('0SHORT RECORD FOUND - ANGLE = ',F7.1,5X,'NBR = ',16)
2320      76 CALL DATAIN
2330      IF(IERN.EQ.0 OR. IERN.EQ.10 OR. IERN.EQ.13) GOTO 79
2340      CALL ERRPRC
2350      IF(IEPH.EQ.1) GOTO 310
2360      IF(IERN.GE.20) GOTO 74
2370      GOTO 315
2380      C
2390      72 WRITE (6,5180)
2400      5180 FORMAT (' SHORT RECORD ASSUMED TO BE GRP NOISE ')
2410      IGN = IGN + 1
2420      IF (IGN .GE. 3) CALL EXIT
2430      IHD = 3
2440      GO TO 280
2450      C
2460      79 CONTINUE
2470      DECODE(INDAT1,6012) I91,I92
2480      6012  FORMAT(T21,15,T241,15)
2490      IF ( I91 .LT. 0 .AND. I92 .LT. 0 ) GO TO 80
2500      IF (I9TST .EQ. 1) GO TO 76
2510      WRITE (6,9004)
2520      9004 FORMAT ('XXXXXXXXXXXX FIRST RECORD OF FILE BAD XXXXXXXXXXXX//')
2530      GO TO 76
2540      80 ISRT = 1
2550      ISTP = 90
2560      IHD = 3
2570      I9TST = 1

```

```

2580      IGN = 0
2590      GO TO 52
2600 C
2610 C
2620   310 WRITE (6,7002) IFILE
2630   7002 FORMAT( / ' 0FILL ASSUMED AT END OF FILE(1,12,1)...REPLACE DATA ST
2640     1ARTING WITH RESTART ANGLE' )
2650     IF ( < THFIN - THDESC(IH) ) .LE. THINC ) GO TO 96
2660     IOFT = 2
2670     IFILE = IFILE + 1
2680     I9TST = 0
2690     GO TO 278
2700   96 WRITE ( 6,5340 ) IFILE
2710   5340 FORMAT( ' FILE', 15, 'IS ASSUMED COMPLETE' )
2720     IOFASM = 2
2730     GO TO 400
2740 C
2750 C
2760   315 CONTINUE
2770     WRITE (6,7003) IFILE, THETA
2780   7003 FORMAT( ' ERROR ATTEMPTING TO READ FILE(1,12,1), ASPECT=', F8.1 )
2790     IOER = IOER + 1
2800     IF ( IOER .GE. 10 ) CALL EXIT
2810     GO TO 76
2820 C
2830 C
2840   320 IGN = 0
2850     ABSIH = ITHETA(1) - ITHETA(2)
2860     IF ( ABS(ABSIH) .GT. THTEST ) GO TO 120
2870     119 THETA = ITHETA(1)/10.
2880     GO TO 130
2890     120 IF( ITH .EQ. 1 ) GO TO 119
2900       T1 = ITHETA(1)/10.
2910       T2 = ITHETA(2)/10.
2920       D1 = ABS( THETA - T1 )
2930       D2 = ABS( THETA - T2 )
2940       IF( D1 .LT. D2 ) GO TO 125
2950       THETA = T2
2960     GO TO 130
2970     125 THETA = T1
2980     130 CONTINUE
2990     IF ( THETA .LT. 300. .AND. ITHFG .EQ. 1 ) THETA = THETA + 360.0
3000 C
3010     ISPTST = ISPTST + 1
3020     IF ( ISPTST .NE. 2 ) GO TO 319
3030     IF( SYSATT(1).EQ.IIA(1)/10. .OR. SYSATT(1).EQ.IIA(2)/10. ) GO TO 319
3040     WRITE (6,6015) SYSATT(1), IFILE
3050   6015 FORMAT ( '***** ATTENUATION LEVEL OF TAPE WAS NOT EQUAL TO', F8.2,
3060     1/ ' FILE NO. =', 15 )
3070     CALL EXIT
3080     319 CONTINUE
3090     317 CONTINUE
3100     GO TO (324,321), IOFT
3110     321 IOFT = 1
3120     IF( SYSATT(1).EQ.IIA(1)/10. .OR. SYSATT(1).EQ.IIA(2)/10. ) GO TO 3090
3130     WRITE (6,6015) SYSATT(1), IFILE
3140     CALL EXIT
3150     300 CONTINUE
3160     TEST = THETA
3170     J = 0
3180     322 J = J + 1
3190     IF( ABS( THDESC(J) - ABS(THETA) ) .GT. DTH ) GO TO 322
3200     NN = NN + J - ITH
3210 C
3220     328 CONTINUE
3230 C

```

AD-A031 480 GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9
ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING. APPENDICES, A---ETC(U)
JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380
UNCLASSIFIED RADC-TR-76-186-VOL-4-PT-1 NL

2 OF 3
ADA031480


```

3900      DO 554 IK= 1, NTH
3910      TH = (IK-NT02)*THINC
3920      XCTH = CRA*COS( TH*DTR )
3930      XI = COS( XCTH)
3940      XQ = -SIN( XCTH)
3950      XFI(X) = ( XFI(X,IK,J)
3960      XFQ(X) = XFQ(X,IK,J)
3970      XRI(IK) = ( XFI(X,IK,J) - XFQ(X,IK,J) ) * W(IK)
3980      XRQ(IK) = ( XFI(X,IK,J) + XFQ(X,IK,J) ) * W(IK)
3990      554 CONTINUE
4000      C
4010      IF ( NTH .GE. NTH1 ) GO TO 556
4020      DO 555 IK=NTH1,NTHN
4030      XRI(IK) = 0.0
4040      XRQ(IK) = 0.0
4050      555 CONTINUE
4060      556 CONTINUE
4070      C
4080      DELI=1.0
4090      DELQ=1.0
4100      CALL IFT(XRI,XRQ)
4110      IK=NTHN
4120      DO 493 IIK = 1,NTHN
4130      XI = XRI(IK)
4140      XQ = XRQ(IK)
4150      XA = SQRT( XI*XI + XQ*XQ )/XNTH
4160      IK=IK-1
4170      IADD=IFIX(40.0+20.0* ALOG10(XA)+0.5)
4180      IF(IADD.GT.43)IADD=44
4190      IF(IADD.LT.5)IADD=4
4200      XFI(IIK,J)=CTABL(IADD)
4210      493 CONTINUE
4220      C
4230      459 CONTINUE
4240      WRITE (6,7510)
4250      7510 FORMAT(1H1,'AMPLITUDE (TRANSFORM IN THETA DOMAIN) ')
4260      DO 460 J=1,NPTSF
4270      RJ = J*DRANG
4280      WRITE (6,7520)RJ, (XFI(IK,J),IK=1,NTHN)
4290      460 CONTINUE
4300      7520 FORMAT(1H ,F8.5,100R1)
4310      C
4320      JMISS = 0
4330      IF( NWNDO .EQ. NWNDO5 ) GO TO 5
4340      NWNDO = NWNDO + 1
4350      READ (5,CARD8)
4360      SYSATT(1)=SYSATQ
4370      TSWNDO(NWNDO)=TSWNDQ
4380      GO TO (599, 31, 410), IFSEP
4390      599 CONTINUE
4400      TEST = TSWNDO(NWNDO)
4410      IF ( TEST .LE. 300. AND. ITHFG .EQ. 1 ) TEST = TEST + 360
4420      J = 0
4430      600 J = J + 1
4440      IF ( J .GT. NTH ) GO TO 606
4450      IF( ABS(TEST - THDES(J)) .GT. 0.1 ) GO TO 600
4460      IK = 0
4470      DO 602 L=J,NTH
4480      IK = IK + 1
4490      DO 601 LL=1,NPTSF
4500      XFQ(IK,LL) = XFQ(L,LL)
4510      601 XFI(IK,LL) = XFI(L,LL)
4520      602 THDES(IK) = THDES(L)
4530      LL = IK + 1
4540      DO 603 L=LL,NTH
4550      603 THDES(L) = THDES(L-1) + THINC

```

```

4560      ITHFG = 0
4570      DO 604 L = 1, NTH
4580      IF ( THDESL(L) .GE. 360. ) ITHFG = 1
4590      604 CONTINUE
4600      WRITE (6,7610) NNNDO, SYSRTT(1), THDESL(1), THDEE(NTH)
4610      ITH = IK
4620      THFIN = THDESNTH)
4630      DO 605 J= 1, NPTSF
4640      DO 605 JJ= LL,NTH
4650      XFO (JJ,J) = 0.0
4660      XFI (JJ,J) = 0.0
4670      605 CONTINUE
4680      GO TO 275
4690      C
4700      606 CONTINUE
4710      WRITE (6,7006)
4720      7006 FORMAT (' NO MATCH FOUND FOR ANGLE ' )
4730      CALL EXIT
4740      C
4750      410 CONTINUE
4760      IF (IOFRSM .EQ. 1) GO TO 415
4770      IOFRSM = 1
4780      GO TO 411
4790      415 CONTINUE
4800      CALL DATTRIN
4810      IF(IERN EQ. 0) GOTO 410
4820      CALL ERRPRC
4830      IF(IERW EQ. 1) GOTO 411
4840      WRITE(6,7031)IFILE
4850      GOTO 410
4860      7031 FORMAT (' READING TO EOF IN FILE ',15)
4870      C
4880      C
4890      411 WRITE (6,7004) IFILE
4900      7004 FORMAT(' COMPLETED FILE(1,12,)' )
4910      IF( IFILE .EQ. NFILES ) GO TO 610
4920      IFILE = IFILE + 1
4930      GO TO 31
4940      C
4950      610 WRITE (6,7620)
4960      7620 FORMAT(' FILE FOR NEXT WINDOW DOES NOT EXIST ON THIS TAPE ')
4970      GO TO 5
4980      END
4990      SUBROUTINE ERRPRC
5000      COMMON INDAT(309),IPEF,STATWK(2),IERN
5010      DATA IBLBL/0000000002020/
5020      DATA IREAD,IERR1,IERR2,IERR3,IERR4/0,0,0,0,0/
5030      DATA IERR5,IERR6/0,0/,IW/6/
5040      IREAD=IREAD+1
5050      IF(IERN EQ. 0) GOTO 800
5060      ISTAT=FLD(0,12,STATWK(1))
5070      IREC=FLD(0,18,INDAT(3))
5080      IERR=IERN
5090      IF(IERR LT. 10) GOTO 30
5100      IERR=IERR-10
5110      IERR1=IERR1+1
5120      IF(IERR LT. 10) GOTO 20
5130      IERR=5
5140      20  WRITE(IW,1001) IERN, IPEF, IREC, ISTAT
5150      1001 FORMAT(1H ,12,1X,06,1X,R3,1X,04)
5160      10  IERR=IERR+1
5170      10  GOTO(800,550,600,650,700,750,850),IERR
5180      800  ITEST=FLD(12,12,INDAT(304))
5190      800  IF( ITEST .EQ. IBLBL) RETURN
5200      IERR6=IERR6+1
5210      WRITE(IW,1003) ITEST

```

```
5220    1003 FORMAT(1H , 'ITEST=', 04)
5230        RETURN
5240    550    IREAD=IREAD-1
5250        WRITE(IW, 1008) IREAD, IERR1, IERR2, IERR3, IERR4, IERR5, IERR6
5260    1008 FORMAT(1H , 'END OF FILE DETECTED', 14, ' RECORDS PROCESSED BY ',
5270        * ' ERRPRC   ERR=', 6(I3,1X))
5280        IF(IERR .EQ. 7) CALL EXIT
5290        IREAD=0
5300        IERR1=0
5310        IERR2=0
5320        IERR3=0
5330        IERR4=0
5340        IERR5=0
5350        IERR6=0
5360        RETURN
5370    600    IERR2=IERR2+1
5380        WRITE(IW, 1004) IREC, ISTAT
5390    1004 FORMAT(1H , 'LONPCK-', R3, 04)
5400        GO TO 800
5410    650    IERR3=IERR3+1
5420        WRITE(IW, 1005) IREC, ISTAT
5430    1005 FORMAT(1H , 'LATPCK-', R3, 04)
5440        GO TO 800
5450    700    IERR4=IERR4+1
5460        WRITE(IW, 1006) IREC, ISTAT
5470    1006 FORMAT(1H , 'UNKERR-', R3, 04)
5480        GO TO 800
5490    750    IERR5=IERR5+1
5500        GOTO 800
5510    850    WRITE(IW, 1015)
5520    1015 FORMAT(' BLANK TAPE ON READ=THIS JOB WILL TERMINATE')
5530        GOTO 550
5540        END
```

A P P E N D I X I
T S A R S I M U L A T I O N
R U N C A T A L O G U E S

Listings of all the computer program runs for the TSAR Simulation are provided in this Appendix. A detailed explanation of these tables is found in Volume 3 of this series.

TABLE I-1 - TSARIB RUN CATALOG

IDENTIFIERS SNUMB	DATE	SYSTEM			CONTROL GEN.		ARRAY AND SIGNAL PROCESSING				DX	COMMENTS	
		N2	FS	SIMBW	THETAS	NBPSCG	THETAS	NBPSCG	ASTRT	ASTOP	MOTSR	REC	
6669T	11-20	14	1.0	0.1	0.955	3	0.955	4	-5.0	10.0	1	NO	NO 0.299793
2790T	11-27	14	1.0	0.1	0.955	3	0.955	4	-5.0	10.0	1	NO	NO
2837T	11-27	14	1.0	0.1	10.0	3	10.0	4	-5.0	10.0	1	NO	NO
3901T	11-27	14	1.0	0.1	20.0	3	20.0	4	-5.0	40.0	1	NO	NO
1848T	11-29	14	1.0	0.1	0.955	3	0.955	4	-5.0	10.0	1	NO	NO
7771T	11-30	14	1.0	0.1	0.955	3	0.955	4	-5.0	10.0	1	NO	NO
8601T	11-30	14	1.0	0.1	20.0	3	20.0	4	-5.0	40.0	1	NO	NO
2017T	12-03	14	1.0	0.1	40.0	3	60.0	4	-5.0	40.0	1	NO	NO
8878T	12-04	14	1.0	0.1	0.955	3	0.955	4	-5.0	30.0	1	NO	NO
1794T	12-13	14	1.0	0.1	0.955	3	0.955	4	-5.0	5.0	1	NO	NO
2872T	12-13	14	1.0	0.1	0.955	3	0.955	4	-5.0	5.0	2	YES	NO
3566T	12-13	14	1.0	0.1	0.955	3	0.955	4	-5.0	10.0	3	YES	NO
2827T	1-07	14	1.0	0.1	0.955	10	0.955	4	-5.0	10.0	7	NO	NO
4099T	1-07	14	1.0	0.1	0.955	10	0.955	4	-5.0	10.0	1	NO	NO
7809T	1-08	14	1.0	0.1	0.955	10	0.955	4	-5.0	10.0	7	NO	NO
3667T	1-09	14	1.0	0.1	0.955	10	0.955	4	-5.0	10.0	7	NO	NO
8371T	1-10	14	1.0	0.1	0.950	10	0.955	4	0.0	2.0	7	NO	NO
8812T	1-10	14	1.0	0.1	13.70	10	13.70	4	5.0	25.0	2	YES	NO
8967T	1-10	14	1.0	0.1	13.70	10	13.70	4	5.0	25.0	7	NO	NO
2252T	1-11	14	1.0	0.1	13.70	10	13.70	4	5.0	25.0	2	YES	NO
3901T	1-11	14	1.0	0.1	7.18	10	7.18	4	0.0	35.0	2	YES	NO
8414T	1-14	14	1.0	0.1	7.18	10	7.18	4	0.0	35.0	1	NO	NO
3594T	1-15	14	1.0	0.1	0.950	10	0.95	4	0.0	35.0	2	YES	NO
6700T	1-16	14	1.0	0.1	0.950	10	0.95	4	0.0	35.0	1	NO	NO
7688T	1-16	14	0.5	0.1	0.950	10	0.95	4	0.0	15.0	1	NO	NO
2728T	1-17	14	0.5	0.1	0.950	3	0.95	4	0.0	15.0	1	NO	NO
3805T	1-17	14	1.0	0.1	0.950	3	0.95	4	-5.0	35.0	1	NO	NO
7487T	1-18	14	0.5	0.06	0.950	3	0.95	4	-5.0	20.0	1	NO	NO
2749T	1-21	14	0.5	0.06	0.950	3	0.95	4	-5.0	25.0	1	NO	YES 0.299793
8602T	1-22	14	1.0	0.10	0.950	3	0.95	4	-5.0	35.0	1	NO	NO 0.344593
8902T	1-22	14	1.0	0.10	2.0	10	2.0	10	-5.0	35.0	1	NO	NO 0.299793
8902T	1-22	14	1.0	0.10	3.0	10	3.0	10	-5.0	35.0	1	NO	NO 0.299793
8902T	1-22	14	1.0	0.10	4.0	10	4.0	10	-5.0	35.0	1	NO	NO 0.299793
3751T	1-21	14	1.0	0.10	-61.04	10	-61.04	4	-70.0	-30.0	1	NO	NO
4171T	14	1.0	0.10	2.00	3	2.0	4	-5.0	35.0	1	NO	YES	
4171T	14	1.0	0.10	3.00	3	3.0	4	-5.0	35.0	1	NO	YES	
4171T	14	1.0	0.10	4.00	3	4.0	4	-5.0	35.0	1	NO	YES	
2141T	2-05	14	0.5	0.10	13.70	10	13.70	4	12.0	15.0	7	NO	NO
8246T	2-06	14	0.5	0.10	13.70	10	13.70	4	12.0	15.0	7	NO	NO
3765T	2-19	14	0.5	0.10	0.950	3	0.950	4	-5.0	15.0	3	YES	NO
7542T	3-06	14	0.5	0.10	0.950	10	0.950	4	-5.0	20.0	1	NO	YES
7596T	5-06	14	1.0	0.10	0.950	3	0.950	4	-5.0	35.0	2	YES	0.299793

TABLE I-1 - TSARJB RUN CATALOG

IDENTIFIERS SNUM	SYSTEM DATE	CONTROL GEN.			ARRAY AND SIGNAL PROCESSING			COMMENTS		
		N2	FS	STMR	ASTR	ASTOP	M0DSR	REC	FNL	DX
7610T	5-06	14	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
2646T	5-07	14	1.0	0.10	0.950	10	0.950	4	-5.0	35.0
2661T	5-07	14	1.0	0.10	0.950	10	0.950	4	-5.0	35.0
3590T	5-07	15	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
7468T	5-08	15	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
8522T	5-08	14	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
8712T	5-08	15	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
3575T	5-09	14	1.0	0.10	1.0	3	1.0	4	-5.0	35.0
3575T	5-09	14	1.0	0.10	2.0	4	2.0	4	1	NO
3575T	5-09	14	1.0	0.10	3.0	4	3.0	4	1	NO
3575T	5-09	14	1.0	0.10	4.0	4	4.0	4	1	NO
8415T	5-14	15	1.0	0.10	0.950	3	0.950	4	-5.0	35.0
4288T	5-09	14	1.0	0.10	1.0	3	1.0	4	-5.0	40.0
4288T	5-09	14	1.0	0.10	2.0	3	2.0	4	1	NO
4288T	5-09	14	1.0	0.10	3.0	3	3.0	4	1	NO
4288T	5-09	14	1.0	0.10	4.0	3	4.0	4	1	NO
4288T	5-09	14	1.0	0.10	5.0	3	5.0	4	1	NO
4288T	5-09	14	1.0	0.10	0.950	3	0.950	4	-5.0	40.0
2726T	5-09	14	1.0	0.10	0.950	10	0.950	10	-5.0	35.0
7478T	5-16	14	1.0	0.10	0.950	10	0.950	10	-5.0	35.0
7478T	5-16	14	1.0	0.10	0.950	10	0.950	10	-5.0	35.0
2688T	5-17	15	1.0	0.10	13.70	3	13.70	4	10.0	17.5
3404T	5-29	15	1.0	0.10	0.950	3	0.950	--	-5.0	35.0
3732T	5-29	15	1.0	0.10	1.00	3	1.0	4	-5.0	35.0
3732T	5-29	15	1.0	0.10	2.00	3	2.0	4	-5.0	35.0
7546T	5-30	15	1.0	0.10	0.950	10	0.950	4	-5.0	35.0
7462T	06-17	15	1.0	0.10	2.0	3	2.00	4	-5.0	35.0
8462T	06-17	15	1.0	0.10	0.950	10	0.950	4	-5.0	35.0
8462T	06-17	14	1.0	0.10	2.00	10	2.00	4	-5.0	35.0
8430T	06-19	15	1.0	0.10	0.950	4	0.950	4	-5.0	35.0
8430T	06-19	15	1.0	0.10	0.950	6	0.950	4	-5.0	35.0
2730T	07-22	14	2.0	0.080	10.0	10	20.0	40.0	1	NO
2730T	07-22	14	2.0	0.080	20.0	20.0	30.0	40.0	1	NO
2730T	07-22	14	2.0	0.080	40.0	40.0	60.0	60.0	1	NO
2730T	07-22	14	2.0	0.080	80.0	80.0	10.0	10.0	1	NO
3389T	07-22	15	1.0	0.100	10.0	10	20.0	40.0	1	NO
3389T	07-22	15	1.0	0.100	30.0	30.0	40.0	60.0	1	NO
3389T	07-22	15	1.0	0.100	80.0	80.0	10.0	10.0	1	NO
										NOT APPLICABLE
										Control Generator Output Spectrum Scan Only

TABLE I-2 - TSARTM RUN CATALOG

IDENTIFIERS SN#	SYSTEM DATE	CONTROL			ANTENNA ARRAY			FNL	COMMENTS				
		N2	FS	SIMBW	THETAS	NBPSRG	NCCPLS	THETAS THETAR	ANGLE	NBPSR	MOTSR	DX	
6678T	12-14	12	0.5		0.955	3	62	0.955	4				0.299793
3109T	12-17	12	0.5		0.955	3	62	0.955	4				NO
7456T	12-18	12	0.5	0.1	0.955	3	62	0.955	4				NO
8611T	12-18	12	0.5	0.1	0.955	3	62	0.955	4				NO
1935T	12-19	12	0.5	0.1	0.955	3	62	0.955	4				NO
3665T	12-19	13	0.5	0.1	0.955	3	62	0.955	4				NO
6707T	12-20	13	0.5	0.1	0.955	3	62	0.955	7.65	4			NO
8697T	12-20	13	0.5	0.2	0.955	3	62	0.955	0.955	4			NO
1836T	1-07	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
3930T	1-07	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
6693T	1-08	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8676T	1-08	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8762T	1-08	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8843T	1-08	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8946T	1-08	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
3652T	1-09	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
7768T	1-10	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8483T	1-10	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8863T	1-10	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
3726T	1-11	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
6713T	1-16	13	0.5	0.2	0.955	3	62	0.955	0.955	4	1		NO
8388T	1-18	13	0.5	0.06	0.95	3	62	0.95	0.95	4	1		NO
3845T	1-21	13	0.5	0.06	0.95	3	62	0.95	0.95	4	1		YES
8376T	1-22	13	0.5	0.10	2.0	10	62	2.0	2.0	10	1		YES
8700T	1-24	13	0.5	0.10	0.950	3	62	0.95	0.95	4	1		YES
8700T	1-24	13	0.5	0.10	-61.0	3	62	0.95	-61.0	4	1		YES
2713T	1-25	13	0.5	0.10	7.18	3	62	7.18	7.18	4	1		YES
2713T	1-25	13	0.5	0.10	-61.0	3	62	-61.0	-61.0	4	1		YES
8004T	2-06	13	0.5	0.10	7.18	3	62	7.18	7.18	4	1		YES
3133T	2-07	13	0.5	0.10	0.950	3	62	0.950	7.70	4	1		YES
3133T	2-07	13	0.5	0.10	0.400	3	62	0.400	0.400	4	1		YES
3133T	2-07	13	0.5	0.10	0.440	3	62	0.440	0.440	4	1		YES
7691T	2-08	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7		NO
7457T	2-12	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7		NO
8712T	2-12	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7		NO
6704T	2-14	13	0.5	0.10	13.70	10	62	13.70	13.80	4	7		NO
6704T	2-14	13	0.5	0.10	13.70	10	62	13.70	13.60	4	7		NO
2664T	2-19	13	0.5	0.10	13.70	10	62	13.70	13.80	4	7		NO
2665T	2-19	13	0.5	0.10	0.44	3	62	0.44	0.44	4	1		YES
1844T	3-05	13	0.5	0.10	13.70	10	62	13.70	13.80	4	7		YES
1844T	3-05	13	0.5	0.10	13.70	10	62	13.70	13.60	4	7		YES
1871T	3-05	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7		YES

(Error in Second Pass)

MONOTM (Rerun of 6704T)

(Rerun of Plots 9 & 10 of 3133T)

MONOTM (Error in Correcting TSARY)

[NOTE] (Error in Correcting TSARY)

MONOTM

TABLE I-2 - TSARTM RUN CATALOG

IDENTIFIERS SNMB	SYSTEM DATE	N2	FS	SIMBW	CONTROL GENERATOR NBPCCG	NCC PTS	ANTENNA ARRAY			COMMENTS		
							THETAS THETAR	ANGLE	NBFSSR			
7502T 7502T	3-06	13	0.5	0.10	13.70	10	62	13.70	13.80	4	7	0.299793
1825T	3-06	13	0.5	0.10	13.70	10	62	13.70	13.60	4	7	YES
1825T	3-07	13	0.5	0.10	13.70	10	62	13.70	13.80	4	7	MONOTM MONOTM MONOTM MONOTM MONOTM CJ0B2 Control Generator Spectra
2723T	3-07	13	0.5	0.10	0.950	3	62	13.70	13.60	4	7	NO
2723T	3-07	13	0.5	0.10	0.40	3	62					NO
2723T	3-07	13	0.5	0.10	0.44	3	62					NO
2723T	3-07	13	0.5	0.10	0.950	10	62					NO
4156T	3-07	13	0.5	0.10	0.40	10	62					NO
4156T	3-07	13	0.5	0.10	1.0	3	62					NO
4156T	3-07	13	0.5	0.10	2.0	3	62					NO
4156T	3-07	13	0.5	0.10	3.0	3	62					NO
4156T	3-07	13	0.5	0.10	4.0	3	62					NO
4156T	3-07	13	0.5	0.10	5.0	3	62					NO
4156T	3-07	13	0.5	0.10	6.0	3	62					NO
4156T	3-07	13	0.5	0.10	0.44	10	62					NO
7477T	3-08	13	0.5	0.10	13.70	10	62	13.70	13.90	4	7	YES
7477T	3-08	13	0.5	0.10	13.70	10	62	13.70	13.50	4	7	YES
6643T	3-11	13	0.5	0.10	13.70	10	62	13.70	13.75	4	7	YES
6643T	3-11	13	0.5	0.10	13.70	10	62	13.70	13.65	4	7	YES
8457T	3-06	13	0.5	0.10	0.950	3	62					NO
8457T	3-06	13	0.5	0.10	0.40	3	62					NO
8457T	3-06	13	0.5	0.10	0.44	3	62					NO
8457T	3-06	13	0.5	0.10	0.44	3	62					NO
8933T	4-02	Rerun of 8497T with New Phase Detector Mechanization					13.70	13.70	4	7	0.299793	
8386T	5-02	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7	NO
8404T	5-02	13	0.5	0.10	13.70	10	62	13.70	13.70	4	7	YES
3887T	05-09	13	0.5	0.10	0.950	3	62	0.950	7.70	4	1	2.39834
7583T	07-15	13	0.5	0.10	0.950	10	62	-	31.15	-	1	2.39834
7583T	07-15	13	0.5	0.10	0.950	10	62	-	31.15	-	1	2.39834
3604T	07-16	13	0.5	0.10	0.950	10	62	-	31.15	-	1	2.39834
3604T	07-16	13	0.5	0.10	0.950	10	62	-	31.15	-	1	2.39834
2808T	07-16	13	0.5	0.10	0.950	10	62	-	15.50	-	1	2.39834
2808T	07-16	13	0.5	0.10	0.950	10	62	-	15.50	-	1	2.39834

NOTE 1: In runs made prior to this point - the array impulse response was referenced to the center of the antenna array.
Subsequent runs are referenced to the center of the antenna array.

TABLE I-3 - FSANTM RUN CATALOG

IDENTIFIERS		SYSTEM				ARRAY				COMMENTS			
SNUMB	DATE	N2	FS	SIMBW	RFFO	THETAS	SPW	NSUBP	THETAS	NBPSR	MODTSR	FNL	
8812T	01-14	13	0.5	0.2	0.5	0.955	3000.	1	0.950	4	1	NO	Error in Input Data, Run Aborted
1888T	01-15	13	0.5	0.2	0.5	0.955	3000.	1	0.950	4	1	NO	

TABLE I-4 - FSANT RUN CATALOG

IDENTIFIERS		SYSTEM				ARRAY				COMPUTATION LIMITS				COMMENTS	
SNUMB	DATE	N2	FS	SIMBW	RFFO	THETAS	SPW	NSUBP	THETAS	NBPSR	FNL	ASTRT	ASTOP		
7608T	01-14	14	1.0	0.1	0.5	0.950	4620.	1	0.950	4	NO	-5.0	15.0	Job Aborted	
8765T	01-14	14	1.0	0.1	0.5	0.950	4620.	1	0.950	4	NO	-5.0	15.0		
8516T	01-16	14	1.0	0.1	0.5	10.0	4620.	1	10.0	4	NO	0.0	30.0		
3667T	01-23	14	1.0	0.1	0.5	0.950	4620.	1	14.5	10	NO	-5.0	35.0		
8486T	01-24	14	1.0	0.05	0.5	3.5	4620.	1	18.15	4	NO	-5.0	50.0		

A P P E N D I X J
A N T E N N A L O B E S C A N N E R
O U T P U T D A T A

The output data of the Antenna Lobe Scanner computer program TSAR Simulation runs catalogued in Appendix I is provided in this appendix. The relative gain and direction of the antenna pattern side lobes are given for various absolute gains of the main lobe. Listings are given for side lobes, both in order of magnitude and in order of position.

Each page represents one run, which is identified in the upper right hand corner of the page. The snub number (SNUMB) and the data (e.g. 1-22) correspond to the first two columns of the catalogues in Appendix I. The pass number refers to the entry number for that snub number and date. For example, "SNUMB=8902T, 1-22, Pass #2" shown on page J-3 refers to the second entry of "8902T, 1-22" on page I-2.

Plots illustrated in Volume III use these same identification markings.

Table J-1 ANTENNA LOBE SCANNER OUTPUT

* * * * ANTENNA LOBE SCANNER * * * *

SNUMB=8902T
1-22, Pass#1

THE MAIN LOBE GAIN IS 47.6218226

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK REL. GAIN ANGLE

(DB) (DEG)

MAIN	0.0	2.0000000
1	-13.0061264	1.3500000
2	-13.0291300	2.6500000
3	+17.6041594	0.9000000
4	-17.6058664	3.1000000
5	-20.6241126	3.5500000
6	-20.6423063	0.4500000
7	-22.9092073	-0.0000000
8	-22.9405689	4.0000000
9	-24.7926216	-0.4500000
10	-24.7931080	4.4500000
11	-26.3630013	4.9000000
12	-26.3916907	-0.9000000
13	-27.7626324	-1.3500000
14	-27.7920585	5.3500000
15	-28.9807363	-1.8000000
16	+29.0261512	5.8000000
17	+30.0771031	-2.2500000
18	-30.1311698	6.2499999
19	-31.1202965	6.6999999
20	-31.1836705	-2.7000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK REL. GAIN TRUE ANGLE REL. ANGLE

(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	2.4500000	
1	-13.0291300	2.6500000	0.6500000
2	-17.6058664	3.1000000	1.1000000
3	-20.6241126	3.5500000	1.5500000
4	-22.9405689	4.0000000	2.0000000
5	+24.7931080	4.4500000	2.4500000
6	+26.3630013	4.9000000	2.9000000
7	-27.7920585	5.3500000	3.3500000
8	-29.0261512	5.8000000	3.8000000
9	-30.1311698	6.2499999	4.2500000
10	-31.1202965	6.6999999	4.7000000
11	-32.0837040	7.1500000	5.1500000
12	-32.9214311	7.6000000	5.6000000
13	-33.7679514	8.0500000	6.0500000
14	-34.4775119	8.5000000	6.5000001
15	-35.0804257	8.9499999	6.9500000
16	-35.6195593	9.4000000	7.4000000
17	-36.1239052	9.9000000	7.9000000
18	-36.5594797	10.3499999	8.3499999
19	-36.9003377	10.8499999	8.8499999
20	-37.2910542	11.3000000	9.3000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK REL. GAIN TRUE ANGLE REL. ANGLE

(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	1.5500000	
1	-13.0061264	1.3500000	-0.6500000
2	-17.6041594	0.9000000	+1.1000000
3	-20.6423063	0.4500000	+1.5500000
4	-22.9092073	-0.0000000	+2.0000000
5	-24.7926216	-0.4500000	+2.4500000
6	-26.3916907	-0.9000000	+2.9000000
7	-27.7626324	-1.3500000	+3.3500000
8	-28.9807363	-1.8000000	+3.8000000
9	-30.0771031	-2.2500000	+4.2499999
10	-31.1836705	-2.7000000	+4.7000000
11	-32.0971685	-3.1500000	+5.1500000
12	-32.9307470	-3.6000000	+5.6000000
13	-33.6758013	-4.0500000	+6.0500000
14	-34.081964	-4.5000000	+6.4999999
15	-35.0868244	-4.9500000	+6.9499999

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8902T
1-22, Pass#2

* * * * ANTENNA LOBE SCANNER * * * *

THE MAIN LOBE GAIN IS 47.8174233

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	3.0000000
1	-12.9490614	2.3500000
2	-12.9684882	3.6500000
3	-17.5583038	1.9000000
4	-17.6226730	4.1000000
5	-20.6065483	1.4500000
6	-20.6421523	4.5500000
7	-22.9054661	1.0000000
8	-22.9148593	4.9999999
9	-24.7624536	0.5500000
10	-24.7751493	5.4500000
11	-26.3087053	0.1000000
12	-26.3753686	5.9000000
13	-27.6935997	-0.3500000
14	-27.7253823	6.3500000
15	-28.9198308	-0.8000000
16	-28.9306540	6.8000000
17	-30.0383978	7.2499999
18	-30.1132083	-1.2500000
19	-31.0468960	7.6999999
20	-31.1525440	-1.7000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	3.4500000	
1	-12.9564882	3.6500000	0.6500000
2	-17.6226730	4.1000000	1.1000000
3	-20.6421523	4.5500000	1.5500000
4	-22.9148593	4.9999999	2.0000000
5	-24.7751493	5.4500000	2.4500000
6	-26.3087053	5.9000000	2.9000000
7	-27.7253823	6.3500000	3.3500000
8	-28.9198308	6.8000000	3.8000000
9	-30.0383978	7.2499999	4.2500000
10	-31.0468960	7.6999999	4.7000000
11	-32.0782876	8.1500000	5.1500000
12	-32.9089999	8.5999999	5.6000000
13	-33.7036454	9.0500000	6.0500000
14	-34.5619659	9.4499999	6.4500000
15	-34.4971533	9.5500000	6.5500000
16	-35.0923672	10.0000000	7.0000001
17	-35.6169294	10.4499999	7.4500000
18	-36.1427851	10.9000000	7.9000000
19	-36.5689917	11.4499999	8.4499999
20	-36.9418686	11.9000000	8.9000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	2.5500000	
1	-12.9490614	2.3500000	-0.6500000
2	-17.5583038	1.9000000	-1.1000000
3	-20.6065483	1.4500000	-1.5500000
4	-22.9054661	1.0000000	-2.0000000
5	-24.7751493	0.5500000	-2.4500000
6	-26.3087053	0.1000000	-2.9000000
7	-27.6935997	-0.3500000	-3.3500000
8	-28.9198308	-0.8000000	-3.8000000
9	-30.1132083	-1.2500000	-4.2500000
10	-31.1525440	-1.7000000	-4.7000000
11	-32.0619813	-2.1500000	-5.1500000
12	-32.9059062	-2.6000000	-5.6000000
13	-33.6953616	-3.0500000	-6.0500000
14	-34.4029844	-3.5000000	-6.4999999
15	-35.0466642	-3.9500000	-6.9500000
16	-35.7416568	-4.4000000	-7.3999999
17	-36.2972169	-4.9000000	-7.8999999

NO FURTHER SIDE LOBES ON THIS SIDE

• • • • ANTENNA LOBE SCANNER • • • •

SNUMB=8902T
1-22, Pass#3

THE MAIN LOBE GAIN IS 47.8195219

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	4.0000000
1	-12.9868002	3.3500000
2	+13.0212927	4.6500000
3	-17.5588055	2.9000000
4	-17.5960703	5.1000000
5	+20.5808043	2.4500000
6	-20.6431212	5.5500000
7	-22.8563833	2.0000000
8	+22.9253621	5.9999999
9	-24.7384033	1.5500000
10	+24.7682419	6.4499999
11	-26.2969708	1.1000000
12	-26.3245201	6.9000000
13	-27.7062082	7.3500000
14	-27.7198877	0.6500000
15	+28.9366488	7.8000000
16	+28.9457912	0.2000000
17	-30.0452714	-0.2500000
18	-30.0719309	0.2500000
19	+31.0531001	-0.7000000
20	-31.0940461	8.6999999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	4.4500000	
1	-13.0212927	4.6500000	0.6500000
2	+17.5960703	5.1000000	1.1000000
3	-20.6431212	5.5500000	1.5500000
4	-22.9253621	5.9999999	2.0000000
5	+24.7682419	6.4499999	2.4500000
6	-26.3245201	6.9000000	2.9000000
7	-27.7062082	7.3500000	3.3500000
8	-28.9366488	7.8000000	3.8000000
9	-30.0719309	8.2500000	4.2500001
10	-31.0940461	8.6999999	4.7000000
11	-32.1467724	9.1999999	5.2000000
12	-32.9466175	9.6500000	5.6500000
13	-33.7265306	10.0999999	6.1000000
14	-34.4429808	10.5500000	6.5500000
15	-35.4728622	10.8000000	6.8000000
16	-35.0970087	11.0000000	7.0000001
17	-35.6719203	11.4499999	7.4500000
18	-36.4121618	11.8499999	7.8500000
19	-36.2605467	11.9499999	7.9500000
20	-36.6432988	12.4499999	8.4499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	3.5000000	
1	-12.9868002	3.3500000	-0.6500000
2	+17.5588055	2.9000000	-1.1000000
3	-20.5808043	2.4500000	-1.5500000
4	-22.8563833	2.0000000	-2.0000000
5	+24.7384033	1.5500000	-2.4500000
6	-26.2969708	1.1000000	-2.9000000
7	-27.7198877	0.6500000	-3.3500000
8	-28.9457912	0.2000000	-3.8000000
9	-30.0452714	-0.2500000	-4.2500000
10	-31.0531001	-0.7000000	-4.7000000
11	-31.9357543	-1.1500000	-5.1500000
12	-32.9167657	-1.6000000	-5.6000000
13	-33.6852956	-2.0500000	-6.0500000
14	-34.4168429	-2.5000000	-6.4999999
15	-35.0967226	-2.9000000	-6.9000000
16	-35.8800583	-3.2500000	-7.2499999
17	-35.7286062	-3.3500000	-7.3500000
18	-35.8278966	-3.4500000	-7.4500000
19	-36.3107982	-3.9500000	-7.9500000
20	-36.6988586	-4.4000000	-8.4000000

SNUMB=8602T
1-22, Pass#1

* * * * ANTENNA LOBE SCATTER * * * *

THE TOTAL LOBE COUNT IS 47,561,264

LOCATION AND RELATIVE POSITION OF THE LEFT 27 SIDE LOOPS

TELL. ANGLE (DEG) ANGLE (DEG)

	0.0	1.9500000
1	-17.9256124	1.6000000
2	-17.9642614	0.3000000
3	-17.326.483	-2.0500000
4	-17.451.733	2.1500000
5	-17.611.923	-1.1500000
6	-17.531.346	3.9500000
7	-17.7.462.1	2.5000000
8	-22.563.213	-0.6000000
9	-22.7347264	2.9500000
10	-22.434645	-1.0500000
11	-22.4445951	-1.4500000
12	-22.5776973	3.4000000
13	-22.5.592.132	6.9999999
14	-22.4.5153433	12.2499999
15	-22.4.5153524	4.7000000
16	-22.4.5154569	-5.0000000
17	-22.4.5157334	-2.5000000
18	-22.4.5157273	6.2000000
19	-22.4.515343	-4.2500000
20	-22.4.5151251	9.1999999

LOCATION AND RELATIVE POSITION OF THE RIGHT 20 (LEAVE) MAIN LOBE

TELL. ANGLE (DEG) REL. ANGLE (DEG)

	0.0	1.4000000
1	-17.9756124	1.6000000
2	-17.4519723	0.3000000
3	-17.216431	1.5500000
4	-17.2117226	2.9500000
5	-17.5725973	3.4000000
6	-17.4155429	3.9500000
7	-17.5113524	4.7000000
8	-22.1255573	6.9999999
9	-22.1147312	12.2499999
10	-22.1.1473273	4.6500000
11	-22.5.7222172	5.2500000
12	-22.5.7222173	6.0500000
13	-22.5.7222173	6.6000000
14	-22.5.7222173	7.3500000
15	-22.5.7222173	8.2500000
16	-22.5.7222173	9.1700000
17	-22.5.7222173	9.5500001
18	-22.5.7222173	10.0500001
19	-22.5.7222173	10.5000000
20	-22.5.7222173	11.3500000
21	-22.5.7222173	12.3000000

LOCATION AND RELATIVE POSITION OF THE LEFT 20 (LEAVE) MAIN LOBE

TELL. ANGLE (DEG) REL. ANGLE (DEG)

	0.0	0.5700000
1	-12.9447414	0.3000000
2	-12.5117621	-0.1500000
3	-12.5553731	-0.6000000
4	-12.6357451	-1.0500000
5	-12.4415353	-1.4300000
6	-12.3241613	-2.0500000
7	-12.2.3241613	-2.6000000
8	-12.2.3241613	-3.3000000
9	-12.2.3241613	-3.7000000
10	-12.2.3241613	-4.2500000
11	-12.2.3241613	-4.6500000
12	-12.2.3241613	-5.2000000

SNUMB=3805T
1-17, Pass#1

THE MAIN LOBE GAIN IS 47.5484395

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-12.7927752	0.3000000
2	-12.9332924	1.6000000
3	-16.9841747	-0.1500000
4	-17.3261299	2.0500000
5	-20.2226443	-0.6000000
6	-20.2434125	2.5000000
7	-20.6797380	7.6999999
8	-22.4736376	-1.0500000
9	-22.4934831	2.9500000
10	-23.3212700	8.5500000
11	-24.0559015	-1.5000000
12	-24.3340569	3.4000000
13	-25.8522973	3.8500000
14	-25.9318614	-1.9500000
15	-26.7540183	4.3000000
16	-26.8770161	15.4000000
17	-27.1035166	-2.4000000
18	-27.9378462	-2.8500000
19	-28.0519300	6.9499999
20	-28.4699359	4.7499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4000000	
1	-12.9332924	1.6000000	0.6500000
2	-17.3261299	2.0500000	1.1000000
3	-20.2434125	2.5000000	1.5500000
4	-22.4934831	2.9500000	2.0000000
5	-24.3340569	3.4000000	2.4500000
6	-25.8522973	3.8500000	2.9000000
7	-26.7540183	4.3000000	3.3500000
8	-28.4699359	4.7499999	3.8000000
9	-28.5022667	5.2000000	4.2500000
10	-29.7632928	5.7000000	4.7500000
11	-29.5847836	6.1000000	5.1500000
12	-28.0519300	6.9499999	5.9999999
13	-20.6797380	7.6999999	6.7499999
14	-23.3212700	8.5500000	7.6000000
15	-31.0151644	9.3499999	8.4000000
16	-33.7391386	10.2500000	9.3000001
17	-34.5894862	10.5999999	9.6500000
18	-35.3428349	11.0999999	10.1500000
19	-35.3764578	11.5500000	10.6000000
20	-35.8257980	12.0500000	11.1000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	
1	-12.7927752	0.3000000	-0.6500000
2	-16.9841747	-0.1500000	-1.1000000
3	-20.2226443	-0.6000000	-1.5500000
4	-22.4736376	-1.0500000	-2.0000000
5	-24.0559015	-1.5000000	-2.4500000
6	-25.9318614	-1.9500000	-2.9000000
7	-27.1035166	-2.4000000	-3.3500000
8	-27.9378462	-2.8500000	-3.8000000
9	-29.0754943	-3.2500000	-4.2000000
10	-29.6678810	-3.8000000	-4.7500000
11	-29.5699506	-4.1500000	-5.1000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3751T
1-21, Pass#1

2. The following table shows the number of men in each class of the Army and the number of men in each class of the Navy.

-2.2	-41.197.002
-2.1, 2.561.444	-55.751.111
-2.1, 2.932.613	-52.401.072
-2.1, 2.627.587	-52.401.071
-2.1, 2.512.737	-55.544.722
-2.1, 2.412.587	-52.401.071
-2.1, 2.143.925	-44.449.999
-2.1, 2.372.527	-55.501.322
-2.1, 2.815.734	-57.151.331
-2.1, 2.326.643	-55.344.722
-2.1, 2.222.527	-44.451.074
-2.1, 2.772.734	-57.151.331
-2.1, 2.327.444	-55.501.322
-2.1, 2.772.734	-57.151.331
-2.1, 2.412.587	-52.401.071
-2.1, 2.472.734	-55.544.722
-2.1, 2.143.925	-52.401.071
-2.1, 2.222.527	-55.501.322
-2.1, 2.772.734	-57.151.331
-2.1, 2.327.444	-55.501.322
-2.1, 2.772.734	-57.151.331

100-177947

-17.5	5184.	-17.7	5157.	14.3	30502
-17.6	5157.	-17.8	5120.	14.2	30503
-17.7	5120.	-17.9	5083.	14.1	30504
-17.8	5083.	-18.0	5046.	14.0	30505
-17.9	5046.	-18.1	5009.	13.9	30506
-18.0	5009.	-18.2	4972.	13.8	30507
-18.1	4972.	-18.3	4935.	13.7	30508
-18.2	4935.	-18.4	4898.	13.6	30509
-18.3	4898.	-18.5	4861.	13.5	30510
-18.4	4861.	-18.6	4824.	13.4	30511
-18.5	4824.	-18.7	4787.	13.3	30512
-18.6	4787.	-18.8	4750.	13.2	30513
-18.7	4750.	-18.9	4713.	13.1	30514
-18.8	4713.	-19.0	4676.	13.0	30515
-18.9	4676.	-19.1	4639.	12.9	30516
-19.0	4639.	-19.2	4602.	12.8	30517
-19.1	4602.	-19.3	4565.	12.7	30518
-19.2	4565.	-19.4	4528.	12.6	30519
-19.3	4528.	-19.5	4491.	12.5	30520
-19.4	4491.	-19.6	4454.	12.4	30521
-19.5	4454.	-19.7	4417.	12.3	30522
-19.6	4417.	-19.8	4380.	12.2	30523
-19.7	4380.	-19.9	4343.	12.1	30524
-19.8	4343.	-20.0	4306.	12.0	30525
-19.9	4306.	-20.1	4269.	11.9	30526
-20.0	4269.	-20.2	4232.	11.8	30527
-20.1	4232.	-20.3	4195.	11.7	30528
-20.2	4195.	-20.4	4158.	11.6	30529
-20.3	4158.	-20.5	4121.	11.5	30530
-20.4	4121.	-20.6	4084.	11.4	30531
-20.5	4084.	-20.7	4047.	11.3	30532
-20.6	4047.	-20.8	4010.	11.2	30533
-20.7	4010.	-20.9	3973.	11.1	30534
-20.8	3973.	-21.0	3936.	11.0	30535
-20.9	3936.	-21.1	3899.	10.9	30536
-21.0	3899.	-21.2	3862.	10.8	30537
-21.1	3862.	-21.3	3825.	10.7	30538
-21.2	3825.	-21.4	3788.	10.6	30539
-21.3	3788.	-21.5	3751.	10.5	30540
-21.4	3751.	-21.6	3714.	10.4	30541
-21.5	3714.	-21.7	3677.	10.3	30542
-21.6	3677.	-21.8	3640.	10.2	30543
-21.7	3640.	-21.9	3603.	10.1	30544
-21.8	3603.	-22.0	3566.	10.0	30545
-21.9	3566.	-22.1	3529.	9.9	30546
-22.0	3529.	-22.2	3492.	9.8	30547
-22.1	3492.	-22.3	3455.	9.7	30548
-22.2	3455.	-22.4	3418.	9.6	30549
-22.3	3418.	-22.5	3381.	9.5	30550
-22.4	3381.	-22.6	3344.	9.4	30551
-22.5	3344.	-22.7	3307.	9.3	30552
-22.6	3307.	-22.8	3270.	9.2	30553
-22.7	3270.	-22.9	3233.	9.1	30554
-22.8	3233.	-23.0	3196.	9.0	30555
-22.9	3196.	-23.1	3159.	8.9	30556
-23.0	3159.	-23.2	3122.	8.8	30557
-23.1	3122.	-23.3	3085.	8.7	30558
-23.2	3085.	-23.4	3048.	8.6	30559
-23.3	3048.	-23.5	3011.	8.5	30560
-23.4	3011.	-23.6	2974.	8.4	30561
-23.5	2974.	-23.7	2937.	8.3	30562
-23.6	2937.	-23.8	2800.	8.2	30563
-23.7	2800.	-23.9	2763.	8.1	30564
-23.8	2763.	-24.0	2726.	8.0	30565
-23.9	2726.	-24.1	2689.	7.9	30566
-24.0	2689.	-24.2	2652.	7.8	30567
-24.1	2652.	-24.3	2615.	7.7	30568
-24.2	2615.	-24.4	2578.	7.6	30569
-24.3	2578.	-24.5	2541.	7.5	30570
-24.4	2541.	-24.6	2504.	7.4	30571
-24.5	2504.	-24.7	2467.	7.3	30572
-24.6	2467.	-24.8	2430.	7.2	30573
-24.7	2430.	-24.9	2393.	7.1	30574
-24.8	2393.	-25.0	2356.	7.0	30575
-24.9	2356.	-25.1	2319.	6.9	30576
-25.0	2319.	-25.2	2282.	6.8	30577
-25.1	2282.	-25.3	2245.	6.7	30578
-25.2	2245.	-25.4	2208.	6.6	30579
-25.3	2208.	-25.5	2171.	6.5	30580
-25.4	2171.	-25.6	2134.	6.4	30581
-25.5	2134.	-25.7	2097.	6.3	30582
-25.6	2097.	-25.8	2060.	6.2	30583
-25.7	2060.	-25.9	2023.	6.1	30584
-25.8	2023.	-26.0	1986.	6.0	30585
-25.9	1986.	-26.1	1949.	5.9	30586
-26.0	1949.	-26.2	1912.	5.8	30587
-26.1	1912.	-26.3	1875.	5.7	30588
-26.2	1875.	-26.4	1838.	5.6	30589
-26.3	1838.	-26.5	1801.	5.5	30590
-26.4	1801.	-26.6	1764.	5.4	30591
-26.5	1764.	-26.7	1727.	5.3	30592
-26.6	1727.	-26.8	1690.	5.2	30593
-26.7	1690.	-26.9	1653.	5.1	30594
-26.8	1653.	-27.0	1616.	5.0	30595
-26.9	1616.	-27.1	1579.	4.9	30596
-27.0	1579.	-27.2	1542.	4.8	30597
-27.1	1542.	-27.3	1505.	4.7	30598
-27.2	1505.	-27.4	1468.	4.6	30599
-27.3	1468.	-27.5	1431.	4.5	30600
-27.4	1431.	-27.6	1394.	4.4	30601
-27.5	1394.	-27.7	1357.	4.3	30602
-27.6	1357.	-27.8	1320.	4.2	30603
-27.7	1320.	-27.9	1283.	4.1	30604
-27.8	1283.	-28.0	1246.	4.0	30605
-27.9	1246.	-28.1	1209.	3.9	30606
-28.0	1209.	-28.2	1172.	3.8	30607
-28.1	1172.	-28.3	1135.	3.7	30608
-28.2	1135.	-28.4	1098.	3.6	30609
-28.3	1098.	-28.5	1061.	3.5	30610
-28.4	1061.	-28.6	1024.	3.4	30611
-28.5	1024.	-28.7	987.	3.3	30612
-28.6	987.	-28.8	950.	3.2	30613
-28.7	950.	-28.9	913.	3.1	30614
-28.8	913.	-29.0	876.	3.0	30615
-28.9	876.	-29.1	839.	2.9	30616
-29.0	839.	-29.2	802.	2.8	30617
-29.1	802.	-29.3	765.	2.7	30618
-29.2	765.	-29.4	728.	2.6	30619
-29.3	728.	-29.5	691.	2.5	30620
-29.4	691.	-29.6	654.	2.4	30621
-29.5	654.	-29.7	617.	2.3	30622
-29.6	617.	-29.8	580.	2.2	30623
-29.7	580.	-29.9	543.	2.1	30624
-29.8	543.	-30.0	506.	2.0	30625
-29.9	506.	-30.1	469.	1.9	30626
-30.0	469.	-30.2	432.	1.8	30627
-30.1	432.	-30.3	395.	1.7	30628
-30.2	395.	-30.4	358.	1.6	30629
-30.3	358.	-30.5	321.	1.5	30630
-30.4	321.	-30.6	284.	1.4	30631
-30.5	284.	-30.7	247.	1.3	30632
-30.6	247.	-30.8	210.	1.2	30633
-30.7	210.	-30.9	173.	1.1	30634
-30.8	173.	-31.0	136.	1.0	30635
-30.9	136.	-31.1	100.	0.9	30636
-31.0	100.	-31.2	63.	0.8	30637
-31.1	63.	-31.3	26.	0.7	30638
-31.2	26.	-31.4	-11.	0.6	30639
-31.3	-11.	-31.5	-48.	0.5	30640
-31.4	-48.	-31.6	-85.	0.4	30641
-31.5	-85.	-31.7	-122.	0.3	30642
-31.6	-122.	-31.8	-159.	0.2	30643
-31.7	-159.	-31.9	-196.	0.1	30644
-31.8	-196.	-32.0	-233.	-0.1	30645
-31.9	-233.	-32.1	-270.	-0.2	30646
-32.0	-270.	-32.2	-307.	-0.3	30647
-32.1	-307.	-32.3	-344.	-0.4	30648
-32.2	-344.	-32.4	-381.	-0.5	30649
-32.3	-381.	-32.5	-418.	-0.6	30650
-32.4	-418.	-32.6	-455.	-0.7	30651
-32.5	-455.	-32.7	-492.	-0.8	30652
-32.6	-492.	-32.8	-529.	-0.9	30653
-32.7	-529.	-32.9	-566.	-1.0	30654
-32.8	-566.	-33.0	-603.	-1.1	30655
-32.9	-603.	-33.1	-640.	-1.2	30656
-33.0	-640.	-33.2	-677.	-1.3	30657
-33.1	-677.	-33.3	-714.	-1.4	30658
-33.2	-714.	-33.4	-751.	-1.5	30659
-33.3	-751.	-33.5	-788.	-1.6	30660
-33.4	-788.	-33.6	-825.	-1.7	30661
-33.5	-825.	-33.7	-862.	-1.8	30662
-33.6	-862.	-33.8	-900.	-1.9	30663
-33.7	-900.	-33.9	-937.	-2.0	30664
-33.8	-937.	-34.0	-975.	-2.1	30665
-33.9	-975.	-34.1	-1012.	-2.2	30666
-34.0	-1012.	-34.2	-1050.	-2.3	30667
-34.1	-1050.	-34.3	-1087.	-2.4	30668
-34.2	-1087.	-34.4	-1125.	-2.5	30669
-34.3	-1125.	-34.5	-1162.	-2.6	30670
-34.4	-1162.	-34.6	-1200.	-2.7	30671
-34.5	-1200.	-34.7	-1237.	-2.8	30672
-34.6	-1237.	-34.8	-1275.	-2.9	30673
-34.7	-1275.	-34.9	-1312.	-3.0	30674
-34.8	-1312.	-35.0	-1350.	-3.1	30675
-34.9	-1350.	-35.1	-1387.	-3.2	30676
-35.0	-1387.	-35.2	-1425.	-3.3	30677
-35.1	-1425.	-35.3	-1462.	-3.4	30678
-35.2	-1462.	-35.4	-1500.	-3.5	30679
-35.3	-1500.	-35.5	-1537.	-3.6	30680
-35.4	-1537.	-35.6	-1575.	-3.7	30681
-35.5	-1575.	-35.7	-1612.	-3.8	30682
-35.6	-1612.	-35.8	-1650.	-3.9	30683
-35.7	-1650.	-35.9	-1687.	-4.0	30684
-35.8	-1687.	-36.0	-1725.	-4.1	30685
-35.9	-1725.	-36.1	-1762.	-4.2	30686
-36.0	-1762.	-36.2	-1800.	-4.3	30687
-36.1	-1800.	-36.3	-1837.	-4.4	30688
-36.2	-1837.	-36.4	-1875.	-4.5	30689
-36.3	-1875.	-36.5	-1912.	-4.6	30690
-36.4	-1912.	-36.6	-1950.	-4.7	30691
-36.5	-1950.	-36.7	-1987.	-4.8	30692
-36.6	-1987.	-36.8	-2025.	-4.9	30693
-36.7	-2025.	-36.9	-2062.	-5.0	30694
-36.8	-2062.	-37.0	-2100.	-5.1	30695
-36.9	-2100.	-37.1	-2137.	-5.2	30696
-37.0	-2137.	-37.2	-2175.	-5.3	30697
-37.1	-2175.	-37.3	-2212.	-5.4	30698
-37.2	-2212.	-37.4	-2250.	-5.5	30699
-37.3	-2250.	-37.5	-2287.	-5.6	30700
-37.4	-2287.	-37.6	-2325.	-5.7	30701
-37.5	-2325.	-37.7	-2362.	-5.8	30702
-37.6	-2362.	-37.8	-2400.	-5.9	30703
-37.7	-2400.	-37.9	-2437.	-6.0	30704
-37.8	-2437.	-38.0	-2475.	-6.1	30705
-37.9	-2475.	-38.1	-2512.	-6.2	30706
-38.0	-2512.	-38.2	-2550.	-6.3	30707
-38.1	-2550.	-38.3	-2587.	-6.4	30708
-38.2	-2587.	-38.4	-2625.	-6.5	30709
-38.3	-2625.	-38.5	-2662.	-6.6	30710
-38.4	-2662.	-38.6	-2700.	-6.7	30711
-3					

TEL. ANGLE
(DEG.) TEL. ANGLE
(DEG.)

* * * * ANTENNA LOBE SCANNER * * * *

SNUMB=2728T
1-17, Pass#1

THE MAIN LOBE GAIN IS 47.5448976

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

BANK	REL. GAIN (DB)	ANGLE (DEG)
------	-------------------	----------------

MAIN	0.0	0.9500000
1	-12.7514744	0.3000000
2	-12.9102144	1.6000000
3	-17.3078956	2.0500000
4	-18.3569708	0.
5	-20.2256680	2.5000000
6	-20.6951466	7.7000000
7	-22.5026350	2.9500000
8	-23.3354301	0.5500000
9	-24.3316240	3.4000000
10	-25.8279252	3.8500000
11	-26.7601342	4.3000000
12	-28.0585971	6.9500000
13	-28.4907932	4.7500000
14	-28.5093365	5.2000000
15	-29.4220567	14.9499999
16	-29.5899444	6.1000000
17	-29.7486134	5.7000000
18	-31.0382600	9.3500000
19	-33.6370106	14.3499999
20	-33.7795157	10.2500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	-------------------	---------------------	---------------------

MAIN LOBE	** NULL **	1.4000000	
1	-12.9102144	1.6000000	0.6500000
2	-17.3078956	2.0500000	1.1000000
3	-20.2256680	2.5000000	1.5500000
4	-22.5026350	2.9500000	2.0000000
5	-24.3316240	3.4000000	2.4500000
6	-25.8279252	3.8500000	2.9000000
7	-26.7601342	4.3000000	3.3500000
8	-28.4907932	4.7500000	3.8000000
9	-28.5093365	5.2000000	4.2500000
10	-29.7486134	5.7000000	4.7500000
11	-29.5899444	6.1000000	5.1500000
12	-28.0585971	6.9500000	6.0000000
13	-20.6951466	7.7000000	6.7500000
14	-23.3354301	8.5500000	7.6000000
15	-31.0382600	9.3500000	8.8000000
16	-33.7795157	10.2500000	9.3000000
17	-34.5925670	10.5999999	9.6499999
18	-35.3558760	11.0999999	10.1499999
19	-35.3683176	11.5999999	10.6499999
20	-35.8125710	12.0500000	11.0999999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	-------------------	---------------------	---------------------

MAIN LOBE	** NULL **	0.5000000	
1	-12.7514744	0.3000000	-0.6500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7487T
1-18, Pass#1

THE MAIN LOBE GAIN IS -47.549-172

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK REL. GAIN (DB)

ANGLE (DEG.)

MAIN	0.0	0.7500000
1	-12.7512550	0.3000000
2	-12.9100737	1.6000000
3	-14.9828591	-0.1500000
4	-17.3075465	2.2500000
5	-20.2204381	-0.6000000
6	-20.2250729	2.5000000
7	-20.4938157	7.6999999
8	-22.4672194	-1.0500000
9	-22.5219064	2.9500000
10	-23.1357742	6.5500000
11	-24.0471101	-1.5000000
12	-24.3307977	3.4000000
13	-25.8273849	3.6500000
14	-25.8989967	-1.9500000
15	-26.7597222	4.3500000
16	-26.9238539	15.4000000
17	-27.0971394	-2.4000000
18	-27.19544759	-2.8500000
19	-28.0612669	6.3499999
20	-28.4913135	4.7499999

MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK REL. GAIN (DB) TRUE ANGLE (DEG.) REL. ANGLE (DEG.)

MAIN LOBE	** FULL **	1.4700000	
1	-12.9102733	1.6000000	0.6500000
2	-17.3075465	2.2500000	1.1000000
3	-21.2250729	2.5000000	1.5500000
4	-22.5219064	2.9500000	2.0000000
5	-24.3307977	3.4000000	2.4500000
6	-25.8273849	3.6500000	2.9000000
7	-26.7597222	4.3500000	3.3500000
8	-26.9238539	15.4000000	3.8000000
9	-27.19544759	-2.8500000	4.2500000
10	-27.0971394	-2.4000000	4.7500000
11	-29.5912223	6.1000000	5.1500000
12	-28.0612669	6.3499999	5.9999999
13	-20.6738152	7.6999999	6.7499999
14	-23.1357840	8.5500000	7.6000000
15	-31.0501652	9.3499999	8.4000000
16	-33.7115975	10.2500000	9.3000001
17	-34.5937045	10.5399999	9.6500000
18	-35.3574694	11.0399999	10.1500000
19	-35.3686669	11.5999999	10.6500000
20	-35.8127346	12.0500000	11.1000000

MAIN LOBE FULL AND FIRST 20 SIDE-LINES TO LEFT OF (BELOW) MAIN LOBE

RANK REL. GAIN (DB) TRUE ANGLE (DEG.) REL. ANGLE (DEG.)

MAIN LOBE	** FULL **	0.5000000	
1	-12.7512550	0.3700000	-0.6500000
2	-15.9289191	-0.1500000	-1.1000000
3	-20.2204381	-0.6000000	-1.5500000
4	-22.4672194	-1.0500000	-2.0000000
5	-24.0471101	-1.5000000	-2.4500000
6	-25.8989967	-1.9500000	-2.9000000
7	-27.0971394	-2.4000000	-3.3500000
8	-27.19544759	-2.8500000	-3.8000000
9	-29.1159757	-3.2500000	-4.2000000
10	-29.5912223	-3.6000000	-4.7500000
11	-29.5658585	-4.1500000	-5.1000000

NO FURTHER SIDE LINES ON THIS SIDE

SNUMB=7610T

5-06, Pass#1

THE MAIN LOBE GAIN IS 47.919 859

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK REL. GAIN ANGLE

(DB) (DEG)

MAIN	0.0	0.9500000
1	-13.4399595	1.6000000
2	-13.5351152	0.3000000
3	-18.0674434	2.0500000
4	-18.1761332	-0.1500000
5	-21.1343040	2.5000000
6	-21.2788285	-0.6000000
7	-23.3925612	2.9500000
8	-23.6311636	-1.0500000
9	-25.2795839	3.4000000
10	-25.5855774	-1.5000000
11	-26.9033703	3.8500000
12	-26.9283762	15.4000000
13	-27.2742853	-1.9500000
14	-28.2689161	4.3000000
15	-28.6997542	-2.4000000
16	-29.5009871	4.7499999
17	-29.7623477	14.9499999
18	-29.9979432	-2.8500000
19	-30.6564312	5.2000000
20	-31.1275902	31.2499998

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
MAIN LOBE	(DB)	(DEG)	(DEG)
** NULL **	1.4000000		
1	-13.4399595	1.6000000	0.6500000
2	-18.0674434	2.0500000	1.1000000
3	-21.1343040	2.5000000	1.5500000
4	-23.3925612	2.9500000	2.0000000
5	-25.2795839	3.4000000	2.4500000
6	-26.9033703	3.8500000	2.9000000
7	-28.2689161	4.3000000	3.3500000
8	-29.5009871	4.7499999	3.8000000
9	-30.6564312	5.2000000	4.2500000
10	-31.1275902	5.6500000	4.7000000
11	-32.602531	6.1000000	5.1500000
12	-33.417187	6.5500000	5.6000000
13	-34.2442050	6.9999999	6.0500000
14	-34.7612352	7.4499999	6.4999999
15	-35.2784681	7.9000000	6.9500000
16	-35.8192778	8.3499999	7.3999999
17	-36.1887839	8.8000000	7.8500000
18	-36.6567851	9.2500000	8.3000001
19	-36.9554217	9.7500000	8.8000001
20	-37.2994366	10.2500000	9.3000001

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
MAIN LOBE	(DB)	(DEG)	(DEG)
** NULL **	0.5000000		
1	-13.5351152	0.3000000	-0.6500000
2	-18.1761332	-0.1500000	-1.1000000
3	-21.2788286	-0.6000000	-1.5500000
4	-23.6311636	-1.0500000	-2.0000000
5	-25.5855774	-1.5000000	-2.4500000
6	-27.2742853	-1.9500000	-2.9000000
7	-28.6997542	-2.4000000	-3.3500000
8	-29.9730472	-2.8500000	-3.8000000
9	-31.1793633	-3.3000000	-4.2500000
10	-32.3126767	-3.7500000	-4.7000000
11	-33.2971210	-4.2000000	-5.1500000
12	-34.2531550	-4.6500000	-5.6000000

NO FURTHER SIDE LOBES ON THIS SIDE

* * * * ANTENNA LOBE SCANNER * * * *

SNUMB=7478T
5-16, Pass#2

THE MAIN LOBE GAIN IS 55.2212550

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-2.4846993	15.4999999
2	-2.5919332	31.1499999
3	-5.091169	15.0500000
4	-6.0360947	30.1999998
5	-7.1381884	15.9499999
6	-7.3153519	32.2500000
7	-31.7532468	28.4499998
8	-33.7454100	74.5499997
9	-37.0932474	4.3000000
10	-38.2104859	26.5500000
11	-40.1887569	8.0999999
12	-40.2117572	8.1999999
13	-40.2974110	23.0500000
14	-40.3358025	23.1499999
15	-40.3545470	21.5500000
16	-40.3904519	21.6499999
17	-40.4418159	22.3499999
18	-40.4878526	22.4499998
19	-40.4972458	22.2500000
20	-40.5146139	6.9499999

RANK MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	MAIN LOBE	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
1	** NULL **		4.2499999	
2	1	-37.0932474	4.3000000	3.3500000
3	2	-40.5146139	6.9499999	5.9999999
4	3	-40.6208129	7.1500000	6.2000000
5	4	-40.6737127	7.2499999	6.3000000
6	5	-40.7351275	7.4499999	6.4999999
7	6	-40.7522106	7.6000000	6.6500000
8	7	-40.1887589	8.0999999	7.1499999
9	8	-40.2117572	8.1999999	7.2499999
10	9	-40.7053356	8.8499999	7.8999999
11	10	-40.6591134	9.0500000	8.1000000
12	11	-5.8790169	15.0500000	14.1000000
13	12	-2.4846993	15.4999999	14.5500000
14	13	-7.1381884	15.9499999	15.0000000
15	14	-40.3545470	21.5500000	20.5999999
16	15	-40.3904519	21.6499999	20.6999998
17	16	-40.5729279	22.0000000	21.0500000
18	17	-40.5834646	22.0999999	21.1499999
19	18	-40.4972458	22.2500000	21.3000000
20	19	-40.4418159	22.3499999	21.3999999
	20	-40.4878526	22.4499998	21.4999998

RANK MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	MAIN LOBE	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
1	NO FURTHER SIDE LOBES ON THIS SIDE			

SNUMB=2726T
5-09, Pass#1

THE MAIN LOBE GAIN IS 55.312494

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	0.9500000
1	-2.4836355	15.1499999
2	-2.5794106	31.1499999
3	-5.865963	15.1500000
4	-5.9999657	30.1599998
5	-7.119.832	15.1499999
6	-7.2632599	32.2500000
7	-18.7194564	7.6999999
8	-20.1409575	23.0000000
9	-20.2598867	22.2500000
10	-21.4241047	6.5999999
11	-21.579198	0.3000000
12	-22.3614583	0.1000000
13	-25.813264	24.0000000
14	-26.246525	29.1499999
15	-26.313611	16.6999999
16	-27.0135508	33.4000001
17	-27.5828614	2.7500000
18	-28.0923738	-0.7000000
19	-28.3593249	17.3999999
20		-4.9000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	2.4500000	1.8000000
1	-27.1135508	2.7500000	2.650000
2	-31.6794717	3.6000000	3.5500000
3	-32.0056252	4.4799999	4.0000000
4	-32.5552344	4.9500000	4.9500000
5	-32.7635330	5.9000000	5.8500000
6	-28.4111231	6.8000000	6.7499999
7	-18.7094564	7.6299999	7.6499999
8	-2.8791637	8.5799999	8.4500000
9	-24.682134	9.4000000	9.4000000
10	-32.129306	10.3499999	10.200000
11	-33.6987247	11.1500000	10.500000
12	-35.062518	11.4499999	11.2500000
13	-33.2937105	12.1999999	11.7000000
14	-32.3957516	12.6500000	14.1000000
15	-5.8681963	15.0500000	14.5500000
16	-2.4935855	15.4999999	15.000000
17	-7.119.832	15.9499999	15.9499999
18	-26.2080525	16.5999999	16.4499998
19	-28.0923738	17.3999999	16.9499998
20	-31.1577892	17.6999999	

MAIN LOBE NULL AND FIRST 2 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
RANK REL. GAIN ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.3500000	-0.6500000
1	-21.424147	0.3000000	-0.6500000
2	-21.5799198	0.1000000	-1.6500000
3	-27.5823614	-0.7000000	-2.6500000
4	-31.4055728	-1.7000000	-3.2000000
5	-32.6825209	-2.2500000	-4.2000000
6	-23.412125	-3.2000000	-4.9500000
7	-31.1237198	-4.0000000	-5.6500000
8	-26.3593240	-4.9000000	

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4288T
5-09, Pass#1

*** SITE 14 LDR SCATTER ***

LOCATION OF RELATIVE DATA TO HIGHEST 20 SITE LOOKS
RANK REF. DATA TRUE ANGLE DEG.
 (DEG.) (DEG.)

RANK	REF. DATA	TRUE ANGLE	DEG.
1	-21.4614451	11.191100	
2	-21.5526126	15.550100	
3	-21.5544749	11.249999	
4	-21.5624455	31.249999	
5	-21.5821161	15.999999	
6	-21.7416369	31.299999	
7	-21.7416369	7.350000	
8	-21.7416369	31.251000	
9	-21.7325441	21.599999	
10	-21.7342367	21.550000	
11	-21.7675533	21.550000	
12	-21.7675533	7.350000	
13	-21.7715555	9.000000	
14	-21.9713722	23.750000	
15	-22.3441963	24.500000	
16	-23.1444555	2.700000	
17	-23.1969273	8.600000	
18	-24.4422235	7.349999	
19	-24.471772199	16.500000	
20	-24.7236776	17.349999	
	-25.2546146	29.199999	

*** SITE 14 LDR SCATTER AND 20 SITE-LTRS TO RIGHT OF HIGHEST 20 SITE LOOKS

RANK	REF. DATA	TRUE ANGLE	DEG.
1	-23.112434	2.460200	
2	-23.112434	2.700000	1.700000
3	-23.599787	3.900000	2.900000
4	-24.2474570	4.350000	3.350000
5	-24.53410	5.000000	4.000000
6	-24.70556	7.350000	6.350000
7	-25.7792341	9.000000	8.000000
8	-25.7812447	10.500000	9.500000
9	-25.7812447	11.999999	10.999999
10	-25.7812447	12.349999	11.349999
11	-25.7812447	12.749999	11.749999
12	-25.7812447	13.150000	12.150000
13	-25.7812447	15.379999	14.379999
14	-25.7812447	16.500000	15.500000
15	-25.7812447	16.999999	15.999999
16	-25.7812447	17.349999	16.349999
17	-25.7812447	17.749999	16.749999
18	-25.7812447	18.150000	17.150000
19	-25.7812447	18.500000	17.500000
20	-25.7812447	18.850000	17.850000

*** SITE 14 LDR SCATTER AND 20 SITE-LTRS TO LEFT OF HIGHEST 20 SITE LOOKS

RANK	REF. DATA	TRUE ANGLE	DEG.
1	-23.112434	2.460200	
2	-23.112434	2.700000	-1.650000
3	-23.112434	3.000000	-2.500000
4	-23.112434	3.350000	-3.350000
5	-23.112434	3.700000	-4.150000

NOTE: 40* REF. SITE-LTRS ON THIS SITE

SNUMB=4288T
5-09, Pass#5

* * * * AFTER A LOSE SCATTER * * *

THE MAIN LOSE GAIN IS -54.99 -24

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SITE LOOPS
RANK REL. GAIN ANGLE
(DB) (DEG)

RANK	REL. GAIN	ANGLE
(DB)	(DEG)	
1	-2.9352157	19.6499999
2	-2.9299569	36.3499999
3	-4.0 15441	19.3999999
4	-4.0857771	35.7499997
5	-1.7922754	20.7499999
6	-11.116 574	77.4499999
7	-17.367615	6.0500000
8	-14.832 961	34.2999997
9	-19.1845757	2.0000000
10	-19.8625921	39.2500000
11	-19.9629126	22.6999998
12	-2.4859345	23.2500000
13	-21.994 252	32.4499998
14	-21.1459343	16.5500000
15	-23.8 41446	71.5500000
16	-24.1214154	33.4000001
17	-24.5749227	11.0999999
18	-25.315 545	-3.2500000
19	-25.135 565	26.0999999
20	-25.5411544	-1.0500000

RANK MAIN LOSE GAIN AND FIRST 20 SITE-LOOPS TO RIGHT OF CARRIED MAIN LOOP
REL. ANGLE
(DB) (DEG) (DEG)

RANK	MAIN GAIN	REL. GAIN	TRUE ANGLE	REL. ANGLE
(DB)	(DB)	(DEG)	(DEG)	(DEG)
1	-24.1417424	6.5500000	1.5500000	
2	-27.61 4644	7.3500000	2.3000000	
3	-17.367615	8.0500000	3.0500000	
4	-12.2155323	8.6999999	3.7000000	
5	-32.4173613	9.5500000	4.500 001	
6	-20.3799410	10.3499999	5.3500000	
7	-24.5749227	11.0999999	6.100 000	
8	-34.162 324	11.9500000	6.900 000	
9	-34.4155337	12.5999999	7.600 000	
10	-24.1417427	13.4000000	8.400 001	
11	-24.4177221	14.1999999	9.200 001	
12	-33.1637222	15.6999995	10.700 001	
13	-21.1459223	16.5500001	11.550 001	
14	-24.1415112	17.3999999	12.400 000	
15	-3 .21 1251	17.8499999	12.850 000	
16	-4. .112441	18.3999999	14.400 000	
17	-24.14162159	19.8499999	14.850 001	
18	-27.7922754	20.3499999	15.350 001	
19	-27.2481 33	21.7999998	17.199 998	
20	-19.9467127	22.6999998	17.699 998	

RANK MAIN LOSE GAIN AND FIRST 20 SITE-LOOPS TO LEFT OF CARRIED MAIN LOOP
REL. ANGLE
(DB) (DEG)

RANK	MAIN GAIN	REL. GAIN	TRUE ANGLE	REL. ANGLE
(DB)	(DB)	(DEG)	(DEG)	(DEG)
1	-24.1417424	2.7500000	-2.2500000	
2	-16. .10157	2.5000000	-3.000 000	
3	-24.1415112	3.2500000	-3.650 000	
4	-24.4155337	4.0000000	-4.300 000	
5	-27.2481 33	4.6499997	-5.2499994	
6	-24.14162159	5.3999997	-6.050 000	
7	-24.1417427	6.0500000	-6.800 000	
8	-24.5749227	6.7999997	-7.650 000	
9	-24.1417427	7.4500000	-8.400 000	
10	-24.1417427	8.1000000	-9.150 000	
11	-24.1417427	8.7500000	-9.900 000	
12	-24.1417427	9.4000000	-10.650 000	
13	-24.1417427	10.0500000	-11.400 000	
14	-24.1417427	10.7000000	-12.150 000	
15	-24.1417427	11.3500000	-12.900 000	
16	-24.1417427	12.0000000	-13.650 000	
17	-24.1417427	12.6500000	-14.400 000	
18	-24.1417427	13.3000000	-15.150 000	
19	-24.1417427	13.9500000	-15.900 000	
20	-24.1417427	14.6000000	-16.650 000	

NO FURTHER SITE LOOPS ON THIS SIDE

SNUMB=4288T
5-09, Pass#4

*** ANTENNA LOBE SUMMER ***

TOP MATRIX LINE 1001 IS 94.97NUFA

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	REL. GAIN (DB)	ANGLE (DEG)
1	-2.7545204	18.7500000
2	-2.798433	35.0499997
3	-4.227103	18.3499999
4	-4.4477348	34.0000000
5	-9.6842144	19.2500000
6	-9.765568	36.1499996
7	-17.5414549	0.6500000
8	-19.7121213	7.3500000
9	-19.3791682	15.1999999
10	-19.5152791	30.8000000
11	-21.4421177	33.0499997
12	-21.611607	39.5499997
13	-21.7475120	38.2999997
14	-21.4524816	22.5000000
15	-21.9361254	21.7499998
16	-22.9232349	29.9499998
17	-23.7575561	31.7499998
18	-24.7724407	-2.6500000
19	-25.1661019	11.6999999
20	-25.643407	26.8499999

DATA FOR LINE 1002 AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN ANGLE
(DB) (DEG)

MATRIX LINE#	** 1002 **	REL. ANGLE (DEG)
1	-19.2722153	5.5500000
2	-29.7779727	5.9999999
3	-29.7719798	6.3700000
4	-19.2151213	7.3500000
5	-27.9777420	8.3499999
6	-33.192223	9.6999999
7	-25.6424521	10.6999997
8	-25.566119	11.6999999
9	-32.426636	13.0500000
10	-26.2143774	14.1500000
11	-19.3751859	15.1999999
12	-31.7529831	16.3000001
13	-4.4271803	18.3499999
14	-2.7545204	18.7500000
15	-9.6842144	19.2500000
16	-26.5412421	20.3999999
17	-29.6771646	20.6499999
18	-29.1252933	21.3499999
19	-21.761954	21.9499998
20	-19.18824816	22.5000000

DATA FOR LINE 1003 AND FIRST 20 SIDE-LOBES TO LEFT OF (ABOVE) MAIN LOBE
RANK REL. GAIN ANGLE
(DB) (DEG)

MATRIX LOBE	** 1003 **	REL. ANGLE (DEG)
1	-25.9236397	3.1000000
2	-3.3555268	2.9700000
3	-12.5445949	1.7100000
4	-27.1435351	0.6500000
5	-31.7757904	-0.3500000
6	-24.7724607	-1.4500000
7	-25.787678	-2.6500000
8	-23.548912	-3.6500000
9	-31.6171746	-4.6500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4288T
5-09, Pass#3

• • • • ANTENNA LOBE SCANNER • • • •
THE MAIN LOBE GAIN IS 54.9932775

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	3.0000000
1	-21.5517938	17.6999996
2	-2.6324990	33.7500000
3	-4.4167753	17.2500000
4	-4.9379354	32.7500000
5	-8.7231267	16.1499979
6	-8.9643269	34.8499999
7	-17.9851227	7.6999999
8	-19.565775	-1.6500000
9	-20.1807222	22.3000000
10	-21.3108320	22.8499999
11	-21.3134561	12.7499999
12	-21.3275318	36.7500000
13	-21.370521	27.9999996
14	-21.6728433	31.8499999
15	-23.9905566	26.8499999
16	-25.1331339	27.5999999
17	-25.4916690	27.2499993
18	-25.7633295	4.0500000
19	-25.127509	17.7500000
20	-24.8332266	7.5499997

RANK MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

MAIN LOBE	REL. GAIN (DB)	ANGLE (DEG)	REL. ANGLE (DEG)
MAIN	•• NULL ••	4.0000000	
1	-23.7633295	4.0500000	1.050.000
2	-33.5363181	6.2000000	3.200.000
3	-17.9851227	7.6999999	4.700.000
4	-34.7181565	9.3499999	6.350.000
5	-35.131332	10.3499999	7.350.000
6	-27.3134661	12.7499999	9.7499999
7	-33.2126608	13.8000000	10.800.000
8	-34.4335542	14.1500000	11.150.000
9	-34.4762616	14.9000000	11.900.000
10	-4.8167753	17.2500000	14.250.000
11	-2.5117938	17.6999996	14.699.998
12	-8.7231207	18.1499999	15.1499999
13	-32.7331843	20.6999995	17.699.995
14	-28.1271539	21.7500000	18.750.000
15	-21.1317222	22.3000000	19.300.000
16	-27.3108320	22.8499999	20.849.999
17	-35.6161936	24.5500000	21.550.000
18	-33.9873342	24.9499997	21.949.998
19	-36.3459754	25.3000000	22.300.000
20	-25.4916690	27.2499998	24.249.998

RANK MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO LEFT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	•• NULL ••	1.0000000	
1	-37.1513966	1.4000000	-1.600.000
2	-33.7963113	0.4000000	-2.600.000
3	-32.6664353	-0.6000000	-3.600.000
4	-19.5165775	-0.8000000	-4.800.000
5	-35.4137351	-0.8000000	-5.800.000
6	-20.1292625	-0.6000000	-7.600.000

No FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4288T
5-09, Pass#2

THE MAIN LORE GAIN IS 100.000000

LOCATION OF RELATIVE GAIN OF HIGHEST 20 SIDE LORES
REL. GAIN (DB) ANGLE (DEG.)

1	-14.5492382	2.0000000
2	-2.6375918	16.5977799
3	-2.5351116	32.5010000
4	-2.5912792	16.1777798
5	-7.2391115	31.4777798
6	-7.2516052	73.5477797
7	-17.1571291	17.1557797
8	-15.4456575	6.2437797
9	-14.2712211	3.7000000
10	-13.2253315	30.6747797
11	-2.1947797	14.6447797
12	-2.1572419	34.0877796
13	-21.2427711	18.1457795
14	-22.3575196	17.5449795
15	-22.4367546	15.2439795
16	-23.1955924	29.4359995
17	-23.1815166	14.6457794
18	-24.4315125	-1.3707700
19	-24.6519412	5.5377700
20	-25.3446373	35.6877795

REL. GAIN OF SIDE LORES TO LEFT OF (REL. 1.000000)

REL. GAIN	ANGLE (DEG.)	ANGLE (DEG.)	ANGLE (DEG.)
** 0.000000	3.2500000		
1	-14.4467572	3.7000000	1.75
2	-24.4315125	4.4500000	2.45
3	-24.4315125	5.1500000	3.35
4	-31.4455471	6.2437797	4.25
5	-26.2547251	7.0500000	5.15
6	-31.9511216	7.9	5.95
7	-31.7421435	8.70	6.75
8	-31.1741435	9.65	7.65
9	-31.1741435	10.55	8.35
10	-22.7457231	11.349977	9.35
11	-31.1741435	12.05	10.55
12	-25.1871435	13.05	11.35
13	-33.1815125	13.85	11.85
14	-23.1755125	14.4577797	12.45
15	-21.6519412	14.5427797	12.84
16	-22.1757231	15.2437797	13.24
17	-25.1831115	16.1557797	14.15
18	-21.6519412	16.5427797	14.54
19	-27.1757231	17.2437797	15.15
20	-21.7421435	17.8447797	15.84

REL. GAIN OF SIDE LORES TO LEFT OF (REL. 1.000000)

REL. GAIN	ANGLE (DEG.)	ANGLE (DEG.)	ANGLE (DEG.)
** 0.000000	1.0000000		
1	-25.1871435	1.95	-1.05
2	-21.6519412	2.35	-1.65
3	-21.6519412	3.55	-2.55
4	-23.1757231	4.35	-3.35
5	-31.1741435	5.35	-4.24
6	-27.1757231	5.95	-4.94
7	-23.1757231	6.55	-5.99
8	-23.1757231	7.2	-6.69

SNUMB=3404T
5-29, Pass#1

*** ANTENNA LOBE SCANNER ***

THE MAIN LOBE GAIN IS 55.5692101

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-2.5167341	15.4999999
2	-2.5661049	31.1499999
3	-5.9850769	15.0500000
4	-6.0276098	30.1999998
5	-7.2518663	15.9499999
6	-7.3308525	32.1999998
7	-25.9125128	0.3000000
8	-26.8225000	1.6000000
9	-30.0418720	14.4000000
10	-31.0144300	16.6499999
11	-31.3987772	29.4499998
12	-32.3351212	33.0000000
13	-34.0490084	2.0000000
14	-34.4856710	40.1000000
15	-35.4602690	17.0999999
16	-35.7845554	28.3999999
17	-36.9889307	33.4000001
18	-37.3338518	2.5500000
19	-37.3935947	-0.6500000
20	-37.5218487	13.9000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	14500000	
1	-26.0225000	1.6000000	0.6500000
2	-34.0490084	2.0000000	1.0500000
3	-37.3338518	2.5500000	1.6000000
4	-37.8556922	3.4000000	2.4500000
5	-50.4714656	3.8500000	2.9000000
6	-49.2536564	4.4000000	3.4500000
7	-50.2272301	4.6000000	3.6500000
8	-54.4931464	5.1500000	4.2000000
9	-55.9364934	6.1500000	5.2000000
10	-52.8368101	6.8000000	5.8500000
11	-43.9571075	7.6999999	6.7499999
12	-46.1468163	8.5000000	7.5500000
13	-53.4251280	9.5000000	8.5500001
14	-53.4849720	9.7500000	8.8000001
15	-53.5996923	10.1500000	9.2000000
16	-55.9060473	10.5999999	9.6500000
17	-54.3259277	11.3000000	10.3500000
18	-50.4157414	11.6500000	10.7000000
19	-50.1002817	11.9999999	11.0500000
20	-49.9505701	12.5500000	11.6000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.4500000	
1	-25.9125128	0.3000000	-0.6500000
2	-34.4856710	-0.1000000	-1.0500000
3	-37.3935947	-0.6500000	-1.8000000
4	-47.3800077	-1.5000000	-2.4500000
5	-50.9495529	-1.9500000	-2.9000000
6	-49.4613333	-2.4500000	-3.4000000
7	-50.6898768	-2.7000000	-3.6500000
8	-54.9968476	-3.2500000	-4.2000000
9	-53.5688808	-4.2500000	-5.2000000
10	-52.7704592	-4.9000000	-5.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8462T
6-17, Pass#1

THE MAIN LORE CATH ISN = 50.491 226

LOCATION AND RELATIVE GATE OF HIGHEST 20 SIDE LORES
MAIN REL. GATE ANGLE
(DEG) (DEG)

MAIN	REL. GATE	ANGLE
1	-2.5056354	15.4999999
2	-2.5644112	31.1499999
3	-5.9514198	15.0500000
4	-6.0192556	30.1999998
5	-7.2076962	15.9499999
6	-7.32.1475	32.1999998
7	-23.7116375	1.5500000
8	-23.7727270	0.3500000
9	-27.4797135	14.4000000
10	-28.2475124	16.5999999
11	-28.5634416	29.4999998
12	-29.4674229	33.3000000
13	-31.1996595	2.0000000
14	-30.2229452	-0.1000000
15	-32.1114631	17.3999999
16	-32.5697002	13.3499999
17	-33.2165565	2.5000000
18	-33.2239337	-0.6500000
19	-33.6758353	26.3999999
20	-34.3112930	13.4999999

MAIN LORE CATH AND FIRST 20 SIDE-LORES TO RIGHT OF (ABOVE) MAIN LORE
REL. GATE TRUE ANGLE REL. ANGLE
(DEG) (DEG) (DEG)

MAIN LORE	REL. GATE	TRUE ANGLE	REL. ANGLE
1	-23.7214378	1.5500000	0.6000000
2	-31.199596	2.0000000	1.0500000
3	-33.2165565	2.5000000	1.5500000
4	-40.495670	4.3000000	3.3500000
5	-43.3712325	6.1000000	5.1500000
6	-44.1935137	6.9999999	6.0500000
7	-44.2735744	7.3000000	6.3500000
8	-44.3781159	7.4499999	6.4999999
9	-47.2492654	8.0999999	7.1499999
10	-49.3167211	8.6499999	7.8999999
11	-49.5519743	9.0000000	8.9500001
12	-49.7845118	10.1999999	9.2500000
13	-49.812573	11.6999999	10.7500000
14	-34.9112530	13.4999999	12.5500000
15	-32.5597132	13.9499999	13.0000000
16	-27.4797335	14.4000000	13.4500000
17	-28.0514125	15.0500000	14.1000000
18	-28.58374	15.4999999	14.5500000
19	-27.27512	15.9499999	15.0000000
20	-28.2475124	16.5999999	15.6500000

MAIN LORE CATH AND FIRST 20 SIDE-LORES TO LEFT OF (ABOVE) MAIN LORE
REL. GATE TRUE ANGLE REL. ANGLE
(DEG) (DEG) (DEG)

MAIN LORE	REL. GATE	TRUE ANGLE	REL. ANGLE
1	-23.7727270	1.3500000	-0.6000000
2	-23.7229478	-0.1000000	1.0500000
3	-23.7779337	-0.6500000	-1.6000000
4	-24.1158510	-2.4000000	-3.3500000
5	-24.1158572	-4.2100000	-5.1500000

NO FURTHER SIDE LORES ON THIS SIDE

* * * * ANTENNA LOBE SCANNER * * * *

SNUMB=8462T
6-17, Pass#2

THE MAIN LOBE GAIN IS 55.2142411

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOOPS

RANK	REL. GAIN (DB)	ANGLE (DEG.)
MAIN	0.0	2.0000000
1	-2.5463057	16.5999999
2	-2.6141109	32.5000000
3	-5.3408642	16.1999999
4	-5.435232	31.4999999
5	-7.9490004	17.1999999
6	-8.0633187	33.5477557
7	-31.2733563	29.6999999
8	-40.1503239	9.1999999
9	-40.2632480	24.3499999
10	-40.2913361	24.2500000
11	-40.3635533	-5.0000000
12	-40.4789760	22.2499999
13	-40.4154728	23.5500000
14	-40.4196477	23.6499999
15	-40.4469256	22.9499999
16	-40.4527454	25.3000000
17	-40.4657412	25.1999998
18	-40.4972354	23.0500000
19	-40.5308375	-4.0500000
20	-40.5429564	24.9499999

MAIN LOBE FULL AND FIRST 20 SIDE-LOOPS TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG.)	REL. ANGLE (DEG.)
MAIN LOBE	** NULL **	0.1999999	
1	-40.6127716	6.2500000	6.2500001
2	-40.6162195	8.3499999	6.3500000
3	-40.6651263	8.4499999	6.4500000
4	-40.6837697	8.5500000	6.5500000
5	-40.7205945	8.6500000	6.6500000
6	-40.6949120	8.7500000	6.7500001
7	-40.1593239	9.1999999	7.2000000
8	-40.6384926	9.5999999	7.6000000
9	-40.697232	9.6999999	7.7000000
10	-40.7242776	9.8000000	7.8000000
11	-40.6973231	9.9000000	7.9000000
12	-40.6834608	10.0000000	8.0000000
13	-5.3414642	16.1999998	14.5999999
14	-2.5461357	16.5999999	14.5999999
15	-7.9490004	17.0999999	15.0999999
16	-40.4057750	22.8499999	20.8499999
17	-40.4469256	22.9499999	20.9499998
18	-40.4972354	23.0500000	21.0500000
19	-40.5619262	23.1999999	21.1999998
20	-40.5762963	23.3000000	21.3000000

MAIN LOBE FULL AND FIRST 20 SIDE-LOOPS TO LEFT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG.)	REL. ANGLE (DEG.)
MAIN LOBE	** NULL **	-4.0000000	
1	-40.5318375	-4.0500000	-6.0500000
2	-40.6333852	-4.2500000	-6.2499999
3	-40.6871495	-4.3500000	-6.3500000
4	-40.6954754	-4.4500000	-6.4499999
5	-40.7114676	-4.5500000	-6.5500001
6	-40.7214660	-4.6500000	-6.6499999

No further side-loops on this side.

SNUMB=4171T
1-23, Pass#4

THE MAIN LOBE GAIN IS 85.3011589

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

BANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	4.999999
1	-12.8325224	5.650000
2	-12.9156017	4.350000
3	-17.1066046	7.999999
4	-17.1510983	3.900000
5	-17.4322457	6.100000
6	-18.6072278	6.600000
7	-18.6364379	3.400000
8	-19.3693361	2.000000
9	-19.8984404	3.100000
10	-20.0768418	6.900000
11	-22.8662930	7.449999
12	-23.3056126	2.550000
13	-24.6341152	8.699999
14	-24.8616910	1.350000
15	-25.8714886	-0.250000
16	-26.0027361	11.099999
17	-26.5033784	-1.050000
18	-26.6322899	10.300000
19	-27.3211093	-2.150000
20	-27.7068319	12.199999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	BEL. ANGLE (DEG)
MAIN LOBE	** NULL **	5.450000	
1	-12.8325224	5.650000	0.650000
2	-17.4322457	6.100000	1.100000
3	-18.6072278	6.600000	1.600000
4	-20.0768418	6.900000	1.900000
5	-22.8662930	7.449999	2.450000
6	-17.1066046	7.999999	3.000000
7	-24.6341152	8.699999	3.700000
8	-28.2117429	9.250000	4.250000
9	-29.0479412	9.699999	4.700000
10	-26.6322899	10.300000	5.300000
11	-26.0027361	11.099999	6.100000
12	-27.7068319	12.199999	7.200000
13	-30.1534753	13.400000	8.400000
14	-31.3760986	14.050000	9.050000
15	-35.8230948	14.900000	9.900000
16	-35.9558244	15.449999	10.450000
17	-34.3484225	15.949999	10.950000
18	-32.7574086	16.399999	11.400000
19	-37.3014741	17.250000	12.250000
20	-37.2819552	17.750000	12.750000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	BEL. ANGLE (DEG)
MAIN LOBE	** NULL **	4.550000	
1	-12.9156017	4.350000	-0.650000
2	-17.1510983	3.900000	-1.100000
3	-18.6364379	3.400000	-1.600000
4	-19.8984404	3.100000	-1.900000
5	-23.3056126	2.550000	-2.450000
6	-19.3693361	2.000000	-3.000000
7	-24.8616910	1.350000	-3.649999
8	-28.0751691	0.750000	-4.249999
9	-29.0480886	0.350000	-4.650000
10	-25.8714886	-0.250000	-5.249999
11	-26.5033784	-1.050000	-6.050000
12	-27.3211093	-2.150000	-7.149999
13	-28.8733954	-3.300000	-8.300000
14	-31.2834849	-3.950000	-8.949999
15	-35.1468053	-4.750000	-9.749999

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4171T
1-23, Pass#3

THE MAIN LOBE GAIN IS 45.3062787

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	-------------------	----------------

MAIN	0.0	0.0000000
1	-12.9113693	4.6500000
2	-12.9867535	3.3500000
3	-16.9168215	0.6500000
4	-17.0769958	2.9000000
5	-17.2355175	5.1000000
6	-18.6066890	2.4000000
7	-18.7579422	5.8000000
8	-19.5047774	7.3500000
9	-20.0967965	5.9000000
10	-23.3996201	1.5500000
11	-24.1155694	6.1499999
12	-25.9086833	8.3000000
13	-26.2006450	-0.2500000
14	-26.3002996	-2.7000000
15	-26.6671405	-3.0000000
16	-27.4557061	11.1999999
17	-27.6302571	10.6999999
18	-27.6561465	10.8000000
19	-27.8421469	-1.3000000
20	-28.1754169	9.4000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE			
RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	4.4500000	
1	-12.9113693	4.6500000	0.6500000
2	-17.2355175	5.1000000	1.1000000
3	-18.7579422	5.6000000	1.6000000
4	-20.0967965	5.9000000	1.9000000
5	-24.1155694	6.1499999	2.4500000
6	-19.5047774	7.3500000	3.3500000
7	-25.9086833	8.3000000	4.3000000
8	-28.1754169	9.4000000	5.4000000
9	-31.8925085	10.0999999	6.1000000
10	-27.6302671	10.6999999	6.7000000
11	-27.6561465	10.8000000	6.8000000
12	-27.4557061	11.1999999	7.2000000
13	-32.9786391	12.9999999	8.9999999
14	-35.2110956	13.9499999	9.9-99999
15	-34.9892203	14.4000000	10.4000000
16	-29.8211980	15.1500000	11.1500000
17	-38.4253068	16.1999998	12.1399998
18	-38.3207850	16.6499999	12.6499999
19	-39.8752615	17.0500000	13.0500000
20	-42.8657665	17.5500000	13.5500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE			
RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	3.5000000	
1	-12.9867535	3.3500000	-0.6500000
2	-17.0769958	2.9000000	-1.1000000
3	-18.6066890	2.4000000	-1.6000000
4	-23.3996201	1.5500000	-2.4500000
5	-16.9168215	0.6500000	-3.3500000
6	-26.2006450	-0.2500000	-4.2500000
7	-27.8421469	-1.3000000	-5.1000000
8	-31.2047071	-2.0000000	-5.9999999
9	-26.3002996	-2.7000000	-6.7000000
10	-26.6671405	-3.0000000	-6.9999999
11	-31.9049001	-4.9000000	-8.9000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4171T
1-23, Pass#2

THE MAIN LOBE GAIN IS 45.4996330

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
BANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	3.0000000
1	-12.8041649	2.3500000
2	-12.9315119	3.6500000
3	-17.2201746	4.1000000
4	-17.4370646	1.9000000
5	-18.1365647	7.6999999
6	-18.6271539	-4.6000000
7	-18.7666278	1.4000000
8	-19.9463053	4.9000000
9	-20.7159443	-1.7000000
10	-24.0719504	5.4500000
11	-24.2982287	0.5500000
12	-24.6273131	6.4999999
13	-25.2071514	5.9000000
14	-25.3677883	-0.4500000
15	-25.7374415	-0.6500000
16	-25.8415928	0.1000000
17	-26.4766302	12.6999999
18	-27.2476721	10.1999999
19	-28.2891641	-4.1500000
20	-29.3659115	17.5500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
BANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	3.4500000	
1	-12.9315119	3.6500000	0.6500000
2	-17.2201748	4.1000000	1.1000000
3	-18.6271539	4.6000000	1.6000000
4	-19.9463053	4.9000000	1.9000000
5	-24.0719504	5.4500000	2.4500000
6	-25.2071514	5.9000000	2.9000000
7	-24.6273131	6.4999999	3.5000000
8	-18.1365647	7.6999999	4.7000000
9	-30.9420934	9.0000000	6.0000001
10	-31.4118605	9.4499999	6.4500000
11	-31.4162097	9.5500000	6.5500000
12	-27.2476721	10.1999999	7.2000000
13	-33.1407375	10.9000000	7.9000000
14	-33.2485013	11.4999999	8.4999999
15	-26.4766302	12.6999999	9.6999999
16	-33.3815856	13.7499999	10.7499999
17	-34.6035342	14.1500000	11.1500000
18	-36.0675902	14.6500000	11.6500000
19	-35.6888623	15.1500000	12.1500000
20	-34.1877036	15.5999999	12.5999999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE
BANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	2.5000000	
1	-12.8041649	2.3500000	-0.6500000
2	-17.4370646	1.9000000	-1.1000000
3	-18.7666278	1.4000000	-1.6000000
4	-24.2982287	0.5500000	-2.4500000
5	-25.8415928	0.1000000	-2.9000000
6	-25.3677883	-0.4500000	-3.4500000
7	-25.7374415	-0.6500000	-3.6500000
8	-20.7159443	-1.7000000	-4.7000000
9	-31.5891590	-3.0500000	-6.0500000
10	-32.6192460	-3.5000000	-6.4999999
11	-28.2891641	-4.1500000	-7.1499999
12	-34.0846930	-4.8500000	-7.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=4171T
1-23, Pass#1

THE MAIN LOBE GAIN IS 45.3075547

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
BANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	2.0000000
1	-12.9362965	2.6500000
2	-12.9441814	1.3500000
3	-14.8226929	0.3500000
4	-16.2694435	3.6500000
5	-17.1349764	3.1000000
6	-17.2623854	0.9000000
7	-21.8583646	-1.3500000
8	-22.7438679	5.4000000
9	-23.3774176	-0.4500000
10	-23.7896594	4.4500000
11	-24.9378414	-0.9000000
12	-25.4495573	4.9000000
13	-26.7407475	-3.1500000
14	-27.2017274	32.4000001
15	-27.2725258	7.1500000
16	-27.6858468	9.1500000
17	-27.9687972	6.2499999
18	-28.0437083	-2.2500000
19	-28.1228499	6.7499999
20	-28.1240005	-5.0000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
BANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	2.4500000	
1	-12.9362965	2.6500000	0.6500000
2	-17.1349764	3.1000000	1.1000000
3	-16.2694435	3.6500000	1.6500000
4	-23.7896594	4.4500000	2.4500000
5	-25.4495573	4.9000000	2.9000000
6	-22.7438679	5.4000000	3.4000000
7	-27.9687972	6.2499999	4.2500000
8	-28.1228499	6.7499999	4.7500000
9	-27.2725258	7.1500000	5.1500000
10	-30.8247952	8.0500000	6.0500000
11	-27.6858468	9.1500000	7.1500000
12	-33.2294421	10.3499999	8.3499999
13	-32.1743531	11.2499999	9.2499999
14	-35.8339319	12.2499999	10.2499999
15	-33.1865144	13.0999999	11.0999999
16	-36.0003290	13.5500000	11.5500000
17	-36.9695959	14.0999999	12.0999999
18	-34.7104483	14.5999999	12.5999999
19	-34.9165044	14.8499999	12.8499999
20	-38.7324595	15.4000000	13.4000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE
BANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	1.5500000	
1	-12.9441814	1.3500000	-0.6500000
2	-17.2623854	0.9000000	-1.1000000
3	-14.8226929	0.3500000	-1.6500000
4	-23.3774176	-0.4500000	-2.4500000
5	-24.9378414	-0.9000000	-2.9000000
6	-21.8583646	-1.3500000	-3.3500000
7	-28.0437083	-2.2500000	-4.2499999
8	-26.7407475	-3.1500000	-5.1500000
9	-30.3455691	-4.0500000	-6.0500000
10	-30.6851209	-4.5500000	-6.5500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7542T
3-06, Pass#1

THE MAIN LOBE GAIN IS 45.517804.

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-12.9356786	1.6000000
2	-12.9984999	0.3000000
3	-17.3619432	2.0500000
4	-17.4870453	-0.1500000
5	-18.6779509	2.5500000
6	-18.8758287	-0.6500000
7	-20.3417430	-0.9500000
8	-24.3401027	3.4000000
9	-24.6396527	-1.5000000
10	-25.3795252	4.4000000
11	-25.7958112	-2.5000000
12	-25.8784709	4.6000000
13	-25.9462366	3.6500000
14	-26.2940965	-1.9500000
15	-27.5813403	8.0999999
16	-28.9479351	6.2499999
17	-29.5239973	14.9499999
18	-29.5283923	5.2000000
19	-29.6630654	-4.3500000
20	-30.0547667	-3.3000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4000000	
1	-12.9336786	1.6000000	0.6500000
2	-17.3619432	2.0500000	1.1000000
3	-18.6779509	2.5500000	1.6000000
4	-24.3401027	3.4000000	2.4500000
5	-25.9462366	3.6500000	2.9000000
6	-25.3795252	4.4000000	3.4500000
7	-25.8784709	4.6000000	3.6500000
8	-29.5283923	5.2000000	4.2500000
9	-30.4930916	5.6500000	4.7000000
10	-26.9479351	6.2499999	5.3000000
11	-32.8918452	6.9999999	6.0500000
12	-33.2652721	7.4999999	6.5500000
13	-27.5913603	8.0999999	7.1499999
14	-35.3629227	9.3000000	8.3500000
15	-33.3142381	9.8499999	8.9000000
16	-38.1176085	10.6500000	9.7000000
17	-36.1871257	11.1500000	10.2000000
18	-34.2586520	11.5999999	10.6500000
19	-34.6440048	11.9999999	11.0500000
20	-36.1995406	12.4999999	11.5500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	
1	-12.9984999	0.3000000	-0.6500000
2	-17.4470453	-0.1500000	-1.1000000
3	-18.8758287	-0.6500000	-1.6000000
4	-20.3417430	-0.9500000	-1.9000000
5	-24.6396527	-1.5000000	-2.4500000
6	-26.2940965	-1.9500000	-2.9000000
7	-25.7958112	-2.5000000	-3.4500000
8	-30.0547667	-3.3000000	-4.2500000
9	-31.1425605	-3.7500000	-4.7000000
10	-29.6630654	-4.3500000	-5.3000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=2749T

1-21, Pass#1

THE MAIN LOBE GAIN IS 45.2987013.

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
 BANK REL. GAIN ANGLE
 (DB) (DEG)

MAIN	0.0	0.9500000
1	-12.7158108	0.3000000
2	-12.8724976	1.6000000
3	-16.8344303	-0.1500000
4	-17.1360111	2.0500000
5	-18.4243555	2.5500000
6	-18.5232530	-0.6500000
7	-20.5628166	7.6999999
8	-23.0474310	8.5500000
9	-23.7432332	-1.5000000
10	-24.0155276	3.4000000
11	-24.8879037	4.3500000
12	-25.1158494	-2.5000000
13	-25.5206466	3.8500000
14	-25.6071825	-1.9500000
15	-26.9224334	15.4000000
16	-27.7178557	6.1500000
17	-27.7554407	6.9000000
18	-27.9435573	6.6000000
19	-28.0817981	-4.2500000
20	-28.1378126	5.2000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
 BANK REL. GAIN TRUE ANGLE REL. ANGLE
 (DB) (DEG) (DEG)

MAIN LOBE	** NULL **	1.4000000	
1	-12.8724976	1.6000000	0.6500000
2	-17.1360111	2.0500000	1.1000000
3	-18.4243555	2.5500000	1.8000000
4	-24.0155276	3.4000000	2.4500000
5	-25.5206466	3.8500000	2.9000000
6	-24.8879037	4.3500000	3.4000000
7	-28.1378126	5.2000000	4.2500000
8	-29.1944610	5.7000000	4.7500000
9	-27.7178557	6.1500000	5.2000000
10	-27.9435573	6.6000000	5.6500000
11	-27.7554407	6.9000000	5.9500000
12	-20.5628166	7.6999999	6.7499999
13	-23.0474310	8.5500000	7.6000000
14	-30.6621455	9.3499999	8.4000000
15	-34.6648157	11.1500000	10.2000000
16	-33.4095171	11.5999999	10.6500000
17	-34.0189075	11.9999999	11.0500000
18	-35.4603829	12.4999999	11.5500000
19	-35.1353903	12.9499999	12.0000000
20	-33.6322370	13.4499999	12.5000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
 BANK REL. GAIN TRUE ANGLE REL. ANGLE
 (DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.5000000	
1	-12.7158108	0.3000000	-0.6500000
2	-16.8344303	-0.1500000	-1.1000000
3	-18.5232530	-0.6500000	-1.6000000
4	-23.7432332	-1.5000000	-2.4500000
5	-25.6071825	-1.9500000	-2.9000000
6	-25.1108494	-2.5000000	-3.4500000
7	-28.6913977	-3.2500000	-4.2000000
8	-29.2392578	-3.8000000	-4.7500000
9	-28.0817981	-4.2500000	-5.2000000
10	-28.4134472	-4.6500000	-5.6000000
11	-28.7493849	-4.9000000	-5.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=2646T
5-07, Pass#1

THE MAIN LOBE GAIN IS 45.5214362

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	0.9500000
1	-12.9556996	1.6000000
2	-13.0397501	0.3000000
3	-17.3801556	2.0500000
4	-17.4908304	-0.1500000
5	-18.4865082	2.5500000
6	-18.8793907	-0.6500000
7	-20.1321135	2.8500000
8	-20.7429904	-0.9500000
9	-24.3437490	3.4000000
10	-24.6498561	-1.5000000
11	-25.3926921	4.4000000
12	-25.7913504	-2.4500000
13	-25.9717303	3.8500000
14	-26.3251002	-1.9500000
15	-26.7334156	-2.7500000
16	-26.8836068	15.4000000
17	-27.5755557	8.0999999
18	-28.9474473	6.2499999
19	-29.5227213	5.2000000
20	-29.5572103	14.9499999

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4000000	
1	-12.9556996	1.6000000	0.6500000
2	-17.3801556	2.0500000	1.1000000
3	-18.4865082	2.5500000	1.6000000
4	-20.1321135	2.8500000	1.9000000
5	-24.3437490	3.4000000	2.4500000
6	-25.9717303	3.8500000	2.9000000
7	-25.3926921	4.4000000	3.4500000
8	-29.5227213	5.2000000	4.2500000
9	-3.5044456	5.6500000	4.7000000
10	-28.9474473	6.2499999	5.3000000
11	-32.6741102	6.9999999	6.0500000
12	-33.8373468	7.2499999	6.3000000
13	-33.2087216	7.4499999	6.4999999
14	-27.5755657	8.0999999	7.1499999
15	-34.4611702	8.6000000	7.8500000
16	-35.3375354	9.2500000	8.3000000
17	-33.2897491	9.8000000	8.8500000
18	-33.5959430	10.3999999	9.1500000
19	-36.125292	10.6500000	9.7000000
20	-36.1445169	11.1500000	10.2000000

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	
1	-13.0397501	0.3000000	-0.6500000
2	-17.4908304	-0.1500000	-1.1000000
3	-18.8793907	-0.6500000	-1.6000000
4	-20.7429904	-0.9500000	-1.9000000
5	-24.6498561	-1.5000000	-2.4500000
6	-26.3251002	-1.9500000	-2.9000000
7	-25.7913504	-2.4500000	-3.4000000
8	-26.3374156	-2.7500000	-3.7000000
9	-31.1254770	-3.3000000	-4.2500000
10	-31.1254770	-3.7500000	-4.7000000
11	-29.6374140	-4.3000000	-5.2500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8415T
5-14, Pass#1

THE MAIN LOBE GAIN IS 45.4896536

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-12.9713039	1.6000000
2	-13.0746864	0.3000000
3	-17.0437965	2.0500000
4	-17.3399668	-0.1500000
5	-18.5267324	2.5500000
6	-18.7592630	-0.6500000
7	-20.0126393	2.8500000
8	-20.2436352	-0.9500000
9	-20.5834663	7.6999999
10	-23.4843521	6.5500000
11	-24.0232947	3.4000000
12	-24.1664543	-1.5000000
13	-24.9504261	4.3500000
14	-25.4865346	-2.4500000
15	-25.4956262	3.8500000
16	-25.5504098	4.6000000
17	-26.0655362	-1.9500000
18	-26.2704387	-2.7000000
19	-26.9396168	15.4000000
20	-27.8010349	6.1500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	---------------------	-----------------------	-----------------------

MAIN LOBE	** NULL **	1.4000000	
1	-12.9713.39	1.6000000	0.6500000
2	-17.1437955	2.0500000	1.1000000
3	-18.5267324	2.5500000	1.6000000
4	-20.126393	2.8500000	1.9000000
5	-24.2202947	3.4000000	2.4500000
6	-25.4956262	3.8500000	2.9000000
7	-24.9504281	4.3500000	3.4000000
8	-25.5504098	4.6000000	3.6500000
9	-28.2451639	5.2000000	4.2500000
10	-28.9569354	5.7000000	4.7500000
11	-27.8010349	6.1500000	5.2000000
12	-27.8671651	6.6000000	5.6500000
13	-27.8619738	6.8500000	5.9000000
14	-28.5804663	7.6999999	6.7499999
15	-23.4343621	8.5500000	7.6000000
16	-30.7693676	9.3499999	8.4000000
17	-30.7693676	9.4499999	8.5000000
18	-34.7277232	10.5999999	9.6500000
19	-35.4198217	11.1500000	10.2000000
20	-34.7019740	11.5999999	10.6500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	---------------------	-----------------------	-----------------------

MAIN LOBE	** NULL **	0.5000000	
1	-13.0345854	0.3000000	-0.6500000
2	-17.3399668	-0.1500000	-1.1000000
3	-18.7592630	-0.6500000	-1.6000000
4	-20.2436352	-0.9000000	-1.9000000
5	-24.1664543	-1.5000000	-2.4500000
6	-26.1589352	-1.9000000	-2.9000000
7	-25.485346	-2.4500000	-3.4000000
8	-26.274387	-2.7000000	-3.6500000
9	-29.071971	-3.2500000	-4.2000000
10	-29.674793	-3.8000000	-4.7500000
11	-28.419117	-4.2000000	-5.2000000
12	-28.675114	-4.7000000	-5.6500000
13	-28.7142353	-4.9000000	-5.8500000

No FURTHER SIDE LOBES ON THIS SIDE

* * * * ANTENNA LOBE SCANNER * * *

SNUMB=2661T
5-07, Pass#1

THE MAIN LOBE GAIN IS 45.676528

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-13.4260178	1.6000000
2	-13.5081263	0.3000000
3	-17.9250307	2.0500000
4	-18.0380373	-0.1500000
5	-19.0555248	2.5500000
6	-19.2533379	-0.6500000
7	-20.5251389	2.6500000
8	-20.7369347	-0.9500000
9	-25.0047522	3.4000000
10	-25.3042965	-1.5000000
11	-25.8180275	4.4000000
12	-25.2222805	-2.4500000
13	-26.3256531	4.6000000
14	-26.6527014	3.8500000
15	-26.7587833	-2.7500000
16	-26.9256537	15.4000000
17	-27.0198698	-1.9500000
18	-27.7647924	8.0999999
19	-29.3778172	6.2499999
20	-29.7655668	14.9499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4000000	
1	-13.4260178	1.6000000	0.6500000
2	-17.9250307	2.0500000	1.1000000
3	-19.0555248	2.5500000	1.6000000
4	-20.5251389	2.8500000	1.9000000
5	-25.0047522	3.4000000	2.4500000
6	-26.6527014	3.8500000	2.9000000
7	-25.8180275	4.4000000	3.4500000
8	-26.3256531	4.6000000	3.6500000
9	-30.2939854	5.2000000	4.2500000
10	-31.3024397	5.6500000	4.7000000
11	-29.3778172	6.2499999	5.3000000
12	-33.7923876	6.9999999	6.0500000
13	-34.1263981	7.4499999	6.4999999
14	-27.7647924	8.0999999	7.1499999
15	-35.351331	8.8000000	7.8500000
16	-36.2730834	9.2500000	8.3000001
17	-33.7737923	9.8000000	8.8500000
18	-34.0909605	10.0999999	9.1500000
19	-36.9668417	10.6500000	9.7000000
20	-36.9427652	11.1500000	10.2000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	
1	-13.5081263	0.3000000	-0.6500000
2	-18.0380373	-0.1500000	-1.1000000
3	-19.2533379	-0.6500000	-1.6000000
4	-20.7369347	-0.9500000	-1.9000000
5	-25.3042965	-1.5000000	-2.4500000
6	-27.0198698	-1.9500000	-2.9000000
7	-25.2222805	-2.4500000	-3.4000000
8	-26.7587833	-2.7500000	-3.7000000
9	-30.6093576	-3.3000000	-4.2500000
10	-31.9397650	-3.7500000	-4.7000000
11	-30.0744896	-4.3000000	-5.2500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7596T
5-06, Pass#1

*** ANTENNA LOBE SCANNER ***
THE MAIN LOBE GAIN IS 45.6725545

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN	0.0	0.9500000
1	-13.4051104	1.6000000
2	-13.4999638	0.3000000
3	-17.8695063	2.0500000
4	-17.9991722	-0.1500000
5	-19.0473843	2.5500000
6	-19.2402554	-0.6500000
7	-20.510842	2.8500000
8	-20.7308588	-0.9500000
9	-24.9879484	3.4000000
10	-25.2939482	-1.5000000
11	-25.8104029	4.4000000
12	-26.2153692	-2.4500000
13	-26.3183498	4.6000000
14	-26.638281	3.8500000
15	-26.7556813	-2.7500000
16	-26.9274454	15.4000000
17	-27.0779184	-1.9500000
18	-27.7495937	6.0999999
19	-29.3704615	6.2499999
20	-29.7635841	14.9499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4000000	-
1	-13.4051104	1.6000000	0.6500000
2	-17.869563	2.0500000	1.1000000
3	-19.0473843	2.5500000	1.6000000
4	-20.510842	2.8500000	1.9000000
5	-24.9879484	3.4000000	2.4500000
6	-26.638281	3.8500000	2.9000000
7	-25.810429	4.4000000	3.4500000
8	-26.3183498	4.6000000	3.6500000
9	-30.2783899	5.2000000	4.2500000
10	-31.2365917	5.6500000	4.7000000
11	-29.3704615	6.2499999	5.3000000
12	-33.7483969	6.9999999	6.0500000
13	-33.9766788	7.4499999	6.4999999
14	-27.7495937	8.0999999	7.1499999
15	-35.2240896	8.8000000	7.8500000
16	-36.2271452	9.2500000	8.3000001
17	-33.7638931	9.8000000	8.8500000
18	-34.825710	10.0999999	9.1500000
19	-36.9488945	10.6500000	9.7000000
20	-36.935458	11.1500000	10.2000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	-
1	-13.4999638	0.3000000	-0.6500000
2	-17.9991722	-0.1500000	-1.1000000
3	-19.2402554	-0.6500000	-1.6000000
4	-20.7308588	-0.9500000	-1.9000000
5	-25.2939482	-1.5000000	-2.4500000
6	-27.0779184	-1.9500000	-2.9000000
7	-26.2153692	-2.4500000	-3.4000000
8	-26.7556813	-2.7500000	-3.7000000
9	-30.7954521	-3.3000000	-4.2500000
10	-31.9225893	-3.7500000	-4.7000000
11	-33.1673466	-4.3000000	-5.2500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7478T
5-16, Pass#1

THE MAIN LOBE GAIN IS 27.5117397

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	-------------------	----------------

MAIN	0.0	0.9500000
1	-2.4179893	15.4999999
2	-2.5291042	31.1499999
3	-5.8764405	30.1999998
4	-7.1596160	32.1999998
5	+12.9648924	1.6000000
6	-12.9734588	0.3000000
7	-16.1952119	14.4000000
8	-16.2500083	16.6499999
9	-17.2981251	29.3999999
10	-17.3439717	-0.1500000
11	-17.3596315	2.0500000
12	-17.4665236	33.0000000
13	-18.516941	2.5500000
14	-18.6192567	-0.6500000
15	-18.7315006	13.9000000
16	-18.8224468	17.1499999
17	-19.7478609	28.9499998
18	+19.9815393	-0.9500000
19	+19.9922085	2.8500000
20	-20.1955036	13.4499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	-------------------	---------------------	---------------------

MAIN LOBE	** NULL **	1.4000000	
1	-12.9648924	1.6000000	0.6500000
2	-17.3596315	2.0500000	1.1000000
3	-18.6015941	2.5500000	1.6000000
4	-19.992235	2.8500000	1.9000000
5	-24.0703120	3.4000000	2.4500000
6	-25.5558171	3.8500000	2.9000000
7	-24.7677870	4.4000000	3.4500000
8	-25.1787148	4.6500000	3.7000000
9	-28.5097733	5.2000000	4.2500000
10	-29.2299409	5.6500000	4.7000000
11	-27.2774711	6.2499999	5.3000000
12	-30.6201596	6.9999999	6.0500000
13	-30.5573592	7.4499999	6.4999999
14	-24.2447600	8.1500000	7.2000000
15	-30.4030499	8.8000000	7.8500000
16	-30.5818605	9.3499999	8.4000000
17	-27.7503753	9.8499999	8.9000000
18	-27.7833452	9.9499999	9.0000000
19	-27.819755	10.0999999	9.1500000
20	-29.2776437	10.6999999	9.7500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
------	-------------------	---------------------	---------------------

MAIN LOBE	** NULL **	0.5000000	
1	-12.9734686	0.3000000	-0.6500000
2	-17.3439717	-0.1500000	-1.1000000
3	-18.6092567	-0.5500000	-1.6000000
4	-19.9815393	-0.9500000	-1.9000000
5	-24.0859356	-1.5000000	-2.4500000
6	-25.5649886	-1.9500000	-2.9000000
7	-24.7680664	-2.4500000	-3.4000000
8	-25.1424298	-2.7500000	-3.7000000
9	-28.4824662	-3.3000000	-4.2500000
10	-29.2395212	-3.7500000	-4.7000000
11	-27.2838240	-4.3500000	-5.3000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8522T
5-08, Pass#1

THE MAIN LOBE GAIN IS 27.29 ±177

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-2.4162817	15.4999999
2	-2.5144982	31.1499999
3	-5.8353839	30.1999998
4	-7.1172488	32.2500000
5	-12.7863779	1.6000000
6	-12.8343921	0.3000000
7	-15.8744491	14.4000000
8	-15.9701447	16.6499999
9	-16.8654536	-0.1500000
10	-16.9196360	2.0500000
11	-17.1122508	29.3999999
12	-17.293317	33.0499997
13	-17.7106666	7.6999999
14	-18.2415919	-0.6500000
15	-18.2793303	23.0500000
16	-18.3392048	2.5500000
17	-18.3957810	13.9000000
18	-18.4994216	17.1499999
19	-19.2927208	22.3000000
20	-19.2957777	28.9499998

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	•• NULL ••	1.4000000	
1	-12.7863779	1.6000000	0.6500000
2	-16.895360	2.5500000	1.1000000
3	-18.339248	2.5500000	1.6000000
4	-19.407487	2.6500000	1.9000000
5	-23.3069139	3.4000000	2.4500000
6	-24.6850409	3.6500000	2.9000000
7	-24.0437498	4.4000000	3.4500000
8	-24.3697534	4.6500000	3.7000000
9	-27.0157647	5.2000000	4.2500000
10	-27.3168278	5.7000000	4.7500000
11	-25.8R18617	6.1500000	5.2000000
12	-25.5513377	6.6000000	5.6500000
13	-25.5773382	6.9499999	5.9999999
14	-17.7106666	7.6999999	6.7499999
15	-19.4323225	6.5500000	7.6000000
16	-25.5333424	9.4000000	8.4500000
17	-26.397524	10.1500000	9.2000000
18	-27.4084406	10.6500000	9.7000000
19	-27.1784940	11.1500000	10.2000000
20	-25.0932465	11.6500000	10.7000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	•• NULL ••	0.5000000	
1	-12.8343921	0.3500000	-0.6500000
2	-16.8664536	-0.1500000	-1.1000000
3	-18.2415919	-0.6500000	-1.6000000
4	-23.6380315	-1.5000000	-2.4500000
5	-24.9736385	-1.9500000	-2.9000000
6	-24.2315478	-2.4500000	-3.4000000
7	-24.8684158	-2.7500000	-3.7000000
8	-27.1044990	-3.3000000	-4.2500000
9	-27.2272577	-3.8000000	-4.7500000
10	-26.089344	-4.2500000	-5.2000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3575T
5-09, Pass#1

* * * * ANTENNA LORE SCANNER * * * *

THE MAIN LORE GAIN IS 27.2914671

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SITE LOSSES

RANK	REF. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	-1.0	1.0000000
1	-2.4122479	15.5520000
2	-3.127292	31.2499995
3	-5.4351240	30.2499996
4	-7.161194	32.2999997
5	-12.5436333	1.6500000
6	-12.9831276	0.3500000
7	-16.0379620	16.6999998
8	-16.0726223	14.4499999
9	-17.1177989	33.1999999
10	-17.1475330	2.1000000
11	-17.1535623	29.4999998
12	-17.2522095	-0.1000000
13	-17.513529	2.6000000
14	-17.6551447	-0.6000000
15	-17.673663	7.3500000
16	-17.1437446	17.1999996
17	-17.1643774	13.9499999
18	-19.1153326	29.0500000
19	-19.3711125	22.5500000
20	-19.4695067	33.5499997

MAIN LORE NULL AND FIRST 21 SIDE-LORES TO RIGHT OF (AFTER) MAIN LORE

RANK	REF. GAIN (DB)	TRUE ANGLE (DEG)	SEL. ANGLE (DEG)
------	---------------------	-----------------------	-----------------------

MAIN LORE	** -0.00	1.4500000	
1	-12.2455333	1.6500000	0.6500000
2	-17.1475330	2.1000000	1.1000000
3	-17.513529	2.6000000	1.6000000
4	-23.3497801	3.4500000	2.4500000
5	-24.1722125	3.9500000	2.9000000
6	-24.3079641	4.4000000	3.4000000
7	-25.7613359	5.3000000	4.3000000
8	-29.2342556	5.7000000	4.7000000
9	-29.7581574	6.2499999	5.2499999
10	-29.1552401	6.4999999	5.4999999
11	-17.6735563	7.3500000	6.3500000
12	-23.3514524	8.1500000	7.1500000
13	-19.973032	9.0500000	8.0500000
14	-26.2505938	9.9000000	8.9000000
15	-26.257250	10.3000000	9.3000000
16	-25.335229	10.7500000	9.7500000
17	-24.5833793	11.1500000	10.1500000
18	-24.6129554	11.7499999	10.7499999
19	-23.9721283	12.0500000	11.0500000
20	-24.5528493	12.5500000	11.5500000

MAIN LORE NULL AND FIRST 21 SIDE-LORES TO LEFT OF (BEFORE) MAIN LORE

RANK	REF. GAIN (DB)	TRUE ANGLE (DEG)	SEL. ANGLE (DEG)
------	---------------------	-----------------------	-----------------------

MAIN LORE	** -0.00	0.5000000	-0.6500000
1	-12.9831276	0.3500000	-1.1000000
2	-17.161194	-0.1000000	-1.6000000
3	-17.6651447	-0.6000000	-2.4500000
4	-23.6656649	-1.4500000	-2.9000000
5	-24.61589637	-1.9000000	-3.4000000
6	-25.7391415	-2.4500000	-4.7000000
7	-25.772327	-3.7000000	-5.2500000
8	-25.772327	-4.2500000	

NO FURTHER SITE LOSSES ON THIS SIDE

SNUMB=3575T
5-09, Pass#5

THE MAIN LOBE GAIN IS 27.2837052

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN	0.0	4.999999
1	-2.7421927	19.6499999
2	-3.7377357	19.4499998
3	-17.3457749	20.4499998
4	-12.7466478	5.6500000
5	-12.9296654	4.3500000
6	-14.6797900	16.7500000
7	-14.7679067	34.4499998
8	-16.7721853	7.9999999
9	-16.9291110	21.0500000
10	-17.1822166	3.9000000
11	-17.2293844	6.1000000
12	-19.3106785	2.0000000
13	-16.3212624	18.2500000
14	-19.3383527	6.6000000
15	-16.5134997	3.4000000
16	-18.9981365	22.5999999
17	-19.0057526	21.5500000
18	-19.4007225	17.7500000
19	-19.4139371	33.3499999
20	-19.5624905	23.2500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	5.4500000	
1	-12.7466478	5.6500000	0.6500000
2	-17.2293844	6.1000000	1.1000000
3	-18.3363527	6.6000000	1.6000000
4	-19.662132	6.9000000	1.9000000
5	-22.3354607	7.4499999	2.4500000
6	-16.7721853	7.9999999	3.0000000
7	-23.5872664	6.6999999	3.7000000
8	-26.7387328	9.3000000	4.3000000
9	-27.2913327	9.6999999	4.7000000
10	-23.9395870	10.3499999	5.3500000
11	-23.1263554	11.0999999	6.1000000
12	-23.6971236	12.2499999	7.2499999
13	-24.4339196	13.4000000	8.4000001
14	-25.0424733	14.0999999	9.1000000
15	-27.7037826	14.9999999	10.0000000
16	-26.2326169	15.4999999	10.5000000
17	-20.0784783	16.4499998	11.4499999
18	-21.6340532	17.3499999	12.3500000
19	-19.4017225	17.7500000	12.7500001
20	-18.3212624	18.2500000	13.2500001

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	4.5500000	
1	-12.9298654	4.3500000	-0.6500000
2	-17.1822166	3.9000000	-1.1000000
3	-18.5134997	3.4000000	-1.6000000
4	-19.8117371	3.1000000	-1.9000000
5	-22.7326317	2.5500000	-2.4500000
6	-18.3116785	2.0000000	-3.0000000
7	-24.354178	1.3000000	-3.7000000
8	-27.3179355	0.8000000	-4.1999999
9	-27.6218247	0.3000000	-4.6999999
10	-24.4924346	-0.2500000	-5.2499999
11	-23.9215783	-1.0500000	-6.0500000
12	-23.692143	-2.1500000	-7.1499999
13	-23.6577282	-3.3000000	-8.3000000
14	-24.443272	-3.9500000	-8.9499999
15	-27.1994817	-4.8000000	-9.8000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3575T
5-09, Pass#4

THE MAIN LORE GAIN IS 27.2861724

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LORES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	4.0000000
1	-2.6253424	18.7500100
2	-2.734.064	35.0000000
3	-4.3695263	34.0000000
4	-12.9.32931	4.6500100
5	-13.1276029	3.7500100
6	-15.1285747	17.6499999
7	-15.6.29248	33.1099998
8	-15.6481376	0.6500000
9	-15.6627817	19.9499993
10	-17.0.129795	5.1000000
11	-17.1572070	2.9000000
12	-18.5322222	7.3500000
13	-18.2.92547	15.1999997
14	-18.3226246	17.1499999
15	-18.4353196	5.6000000
16	-18.4577439	72.7500000
17	-18.5206372	30.6500000
18	-18.5762248	2.4000000
19	-18.9611697	20.4499996
20	-19.5999804	16.6999996

RANK MAIN LORE NULL AND FIRST 20 SIDE-LORES TO RIGHT OF (AFTER) MAIN LORE
REL. GAIN ANGLE
(DB) (DEG) (DEG)

MAIN LORE	** NULL **		4.4500000	0.650.000
	REL. GAIN	ANGLE		
1	-12.0.038931	4.6500000	0.650.000	0.650.000
2	-17.129795	5.1000000	1.100.000	1.100.000
3	-18.4333196	5.6000000	1.600.000	1.600.000
4	-19.7097674	5.9000000	1.900.000	1.900.000
5	-23.24.9673	6.4499999	2.450.000	2.450.000
6	-18.992272	7.3500000	3.350.000	3.350.000
7	-24.9042106	8.3000000	4.300.000	4.300.000
8	-26.1765175	9.4000000	5.400.000	5.400.000
9	-28.7235647	10.0000000	6.000.001	6.000.001
10	-23.952777	11.2499999	7.2499999	7.2499999
11	-23.1373427	11.6500000	7.650.000	7.650.000
12	-25.8257.95	12.9999999	8.9999999	8.9999999
13	-25.5655.56	14.0500000	10.0500000	10.0500000
14	-18.2192547	15.1999997	11.1999997	11.1999997
15	-22.2341253	16.2500000	12.2500000	12.2500000
16	-19.5999714	16.6599996	12.6599996	12.6599996
17	-18.3285946	17.1499999	13.1499999	13.1499999
18	-15.1985747	17.6499999	13.6499999	13.6499999
19	-2.6253424	18.7500000	14.750.001	14.750.001
20	-15.6627617	19.9499995	15.9499995	15.9499995

RANK MAIN LORE NULL AND FIRST 20 SIDE-LORES TO LEFT OF (BEFORE) MAIN LORE
REL. GAIN ANGLE
(DB) (DEG) (DEG)

MAIN LORE	** NULL **		3.5000000	-0.650.000
	REL. GAIN	ANGLE		
1	-13.0.275.29	3.3500000	-0.650.000	-0.650.000
2	-17.1572.70	2.9000000	-1.100.000	-1.100.000
3	-18.97582248	2.4700000	-1.600.000	-1.600.000
4	-19.7063.19	2.1500000	-1.900.000	-1.900.000
5	-23.4594414	1.6500000	-2.450.000	-2.450.000
6	-16.6481376	0.6500000	-3.350.000	-3.350.000
7	-24.4724973	-0.3000000	-4.300.000	-4.300.000
8	-25.6291434	-1.4.00000	-5.400.000	-5.400.000
9	-23.7235956	-2.0500000	-6.050.000	-6.050.000
10	-23.155852	-2.7000000	-6.749.000	-6.749.000
11	-23.123359	-3.1000000	-7.100.000	-7.100.000
12	-23.215734	-4.9000000	-8.900.000	-8.900.000

DO FURTHER SIDE LORES IN THIS SET

SNUMB=3575T
5-09, Pass#3

• • • • ANTENNA LOBE SCANNER • • • •

THE MAIN LOBE GAIN IS 27.2467846

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	3.0000000
1	-2.513277	17.6999998
2	-2.4674615	33.7500000
3	-4.857899	32.7500000
4	-9.7522545	34.6499999
5	-12.8119221	2.7500000
6	-12.8413129	3.6500000
7	-15.5721443	16.5500000
8	-16.2541118	31.9499998
9	-16.536825	18.6499999
10	-17.111351	4.1000000
11	-17.2214642	7.6999999
12	-17.3792605	1.9000000
13	-18.4261961	4.6000000
14	-18.5234156	-1.7000000
15	-18.5484853	1.4000000
16	-18.6286335	16.7500000
17	-18.8374228	19.3499999
18	-19.0806193	31.4499998
19	-19.277119	22.2500000
20	-19.3407526	12.7499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	3.4500000	
1	-12.6413129	3.6500000	0.6500000
2	-17.1011351	4.1000000	1.1000000
3	-18.4261961	4.6000000	1.6000000
4	-19.7370558	4.9000000	1.9000000
5	-23.4965569	5.4500000	2.4500000
6	-24.6275210	5.9000000	2.9000000
7	-23.9355197	6.4499999	3.4500000
8	-24.2567201	6.8500000	3.8500000
9	-17.2214642	7.6999999	4.7000000
10	-28.4303587	9.0500000	6.0500000
11	-28.4193501	9.4499999	6.4500000
12	-28.4574442	9.5500000	6.5500000
13	-23.6342910	10.1999999	7.2000000
14	-29.0391301	10.9100000	7.9000000
15	-29.3493107	11.0100000	8.0000000
16	-19.3470526	12.7499999	9.7499999
17	-24.3263130	13.8000000	10.8000000
18	-24.6922226	14.1999999	11.1999999
19	-24.9083659	14.6999999	11.6999999
20	-22.9942531	15.1299999	12.1999999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	2.5500000	
1	-12.8119221	2.3500000	-0.6500000
2	-17.3792605	1.9000000	-1.1000000
3	-18.5484853	1.4700000	-1.6000000
4	-23.6175057	0.5500000	-2.4500000
5	-25.1037340	0.1100000	-2.9000000
6	-24.1261234	-0.4500000	-3.4500000
7	-24.3279558	-0.8500000	-3.8500000
8	-18.5294156	-1.7000000	-4.7000000
9	-28.6372848	-3.0500000	-6.0500000
10	-29.5422659	-3.5700000	-6.4799999
11	-29.7591168	-3.6000000	-6.6000000
12	-23.6242011	-4.1200000	-7.1499999
13	-28.3386754	-4.9700000	-7.8999999

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3575T
5-09, Pass#2

THE MAIN LOBE GAIN IS 27.29 dBd

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN (dB) ANGLE (DEG.)

MAIN	REL. GAIN (dB)	ANGLE (DEG.)
1	-2.4603772	16.5999999
2	-2.5755373	32.5000000
3	-5.2461176	31.4999998
4	-7.795517	33.5499997
5	-12.8814563	1.3500000
6	-12.9326366	2.6500000
7	-15.0348773	0.3500000
8	-15.1737736	15.4999999
9	-15.6707154	3.6500000
10	-15.3295179	17.6000000
11	-15.3702423	30.6999998
12	-15.4211345	14.9499999
13	-16.7111540	34.3499996
14	-16.9257755	30.3499999
15	-16.9973479	0.9000000
16	-17.2123172	18.3000000
17	-17.2352795	3.1000000
18	-17.4722281	14.6500000
19	-19.4946463	29.5999999
20	-21.1765479	-1.4000000

RANK MAIN LOBE REL. GAIN TRUE ANGLE REL. ANGLE
(dB) (DEG.) (DEG.)

MAIN LOBE	REL. GAIN (dB)	TRUE ANGLE (DEG.)	REL. ANGLE (DEG.)
1	-12.9755368	2.6500000	0.6500000
2	-17.2152755	3.1700000	1.1000000
3	-15.6777954	3.6500000	1.6500000
4	-22.3539958	4.4500000	2.4500000
5	-24.3914571	4.9000000	2.9000000
6	-21.4419121	5.4000000	3.4000000
7	-26.4492123	6.2499999	4.2500000
8	-24.9443235	7.1500000	5.1500000
9	-23.1690326	7.9999999	6.0000000
10	-23.7244816	9.1799999	7.2000000
11	-27.6555189	10.4000000	8.4000000
12	-25.1344313	11.3000000	9.3000000
13	-26.7351273	12.3000000	10.3000000
14	-22.3265779	13.0999999	11.0999999
15	-24.7145173	13.5999999	11.5999999
16	-17.4722251	14.6500000	12.6500000
17	-16.4711845	14.9499999	12.9499999
18	-15.3737736	15.4999999	13.4999999
19	-12.4513772	16.5999999	14.5999999
20	-15.6299179	17.6000000	15.6000000

RANK MAIN LOBE REL. GAIN TRUE ANGLE REL. ANGLE
(dB) (DEG.) (DEG.)

MAIN LOBE	REL. GAIN (dB)	TRUE ANGLE (DEG.)	REL. ANGLE (DEG.)
1	-12.8814568	1.3500000	-0.6500000
2	-15.9273879	0.9000000	-1.1000000
3	-15.0348773	0.3500000	-1.6500000
4	-23.4712753	-0.4500000	-2.4500000
5	-25.1344721	-0.9000000	-2.9000000
6	-21.1765479	-1.4000000	-3.4000000
7	-26.7145173	-2.2500000	-4.2499999
8	-24.651146	-3.1500000	-5.1500000
9	-27.5485387	-4.0500000	-6.0500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8712T
5-08, Pass#1

THE MAIN LOBE GAIN IS 96.1826654

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	0.9500000
1	-26.0666218	1.6000000
2	-26.1738284	0.3000000
3	-34.2516775	2.0000000
4	-34.9482164	-0.1000000
5	-40.8061312	2.5000000
6	-41.3501396	-0.6000000
7	-45.1561392	2.9500000
8	-45.7956123	-1.0500000
9	-48.8303165	3.4000000
10	-48.8942461	-1.5000000
11	-49.87333263	7.6999999
12	-51.6483060	15.4000000
13	-51.6609583	3.8500000
14	-52.8736649	-1.9500000
15	-53.6742058	4.3000000
16	-54.2353220	8.5500000
17	-54.6396017	14.9999999
18	-54.6734762	-2.4000000
19	-56.1661337	4.7499999
20	-56.7862787	5.1500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.4500000	
1	-26.0666218	1.6000000	0.6500000
2	-34.2516775	2.0000000	1.0500000
3	-40.8061312	2.5000000	1.5500000
4	-45.1561392	2.9500000	2.0000000
5	-48.8303165	3.4000000	2.4500000
6	-51.6609583	3.8500000	2.9000000
7	-53.6742058	4.3000000	3.3500000
8	-56.1661337	4.7499999	3.8000000
9	-56.7862787	5.1500000	4.2000000
10	-58.3572598	5.9000000	4.9500000
11	-57.1964912	6.6000000	5.8500000
12	-49.8733263	7.6999999	6.7499999
13	-54.2353220	8.5500000	7.6000000
14	-63.5139732	9.3499999	8.4000000
15	-67.819842	10.2500000	9.3000001
16	-69.363665	10.5999999	9.6500000
17	-70.9153433	11.1500000	10.2000000
18	-71.8954372	11.5500000	10.6000000
19	-71.9993391	12.0500000	11.1000000
20	-72.2177620	12.4999999	11.5500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.4500000	
1	-26.1738284	0.3000000	-0.6500000
2	-34.9482164	-0.1000000	-1.0500000
3	-41.3501396	-0.6000000	-1.5500000
4	-45.7956123	-1.0500000	-2.0000000
5	-48.8942461	-1.5000000	-2.4500000
6	-52.8736649	-1.9500000	-2.9000000
7	-54.6734762	-2.4000000	-3.3500000
8	-58.294418	-2.8500000	-3.8000000
9	-58.4149742	-3.2500000	-4.2000000
10	-59.5294666	-4.0500000	-5.0000000
11	-58.785491	-4.9000000	-5.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8430T
06-19, Pass#2

THE DATA CONTAINS 41 LINES

LOCATION AND RELATIVE ORDER OF POINTS ON SURFACE LINES
NAME REC. DATE ANGLE
C 1973 C 1973

NAME	REC. 1973	C 1973
1	-21.57-7114	1.55 10.2
2	-21.57-7156	1.55 10.2
3	-21.57-7117	2.1 10.2
4	-21.57-7149	2.1 10.2
5	-21.57-7150	2.1 10.2
6	-21.57-7151	2.1 10.2
7	-21.57-7152	2.1 10.2
8	-21.57-7153	-2.5 10.2
9	-21.57-7154	3.1 10.2
10	-21.57-7155	7.95 10.2
11	-21.57-7156	7.95 10.2
12	-21.57-7157	15.45 10.2
13	-21.57-7158	14.45 10.2
14	-21.57-7159	11.45 10.2
15	-21.57-7160	11.45 10.2
16	-21.57-7161	17.45 10.2
17	-21.57-7162	11.45 10.2
18	-21.57-7163	17.45 10.2
19	-21.57-7164	11.45 10.2
20	-21.57-7165	17.45 10.2

NAME	REC. 1973	C 1973
1	-21.57-7166	1.55 10.2
2	-21.57-7167	1.55 10.2
3	-21.57-7168	2.1 10.2
4	-21.57-7169	2.1 10.2
5	-21.57-7170	2.1 10.2
6	-21.57-7171	2.1 10.2
7	-21.57-7172	2.1 10.2
8	-21.57-7173	2.1 10.2
9	-21.57-7174	7.95 10.2
10	-21.57-7175	7.95 10.2
11	-21.57-7176	11.45 10.2
12	-21.57-7177	11.45 10.2
13	-21.57-7178	17.45 10.2
14	-21.57-7179	11.45 10.2
15	-21.57-7180	17.45 10.2
16	-21.57-7181	11.45 10.2
17	-21.57-7182	17.45 10.2
18	-21.57-7183	11.45 10.2
19	-21.57-7184	17.45 10.2
20	-21.57-7185	11.45 10.2

NAME	REC. 1973	C 1973
1	-21.57-7186	0.45 10.2
2	-21.57-7187	0.45 10.2
3	-21.57-7188	0.45 10.2
4	-21.57-7189	0.45 10.2
5	-21.57-7190	0.45 10.2

SNUMB=3732T
5-29.Pass#1

• • • • ANTENNA LOBE SCANNER • • • •

THE MAIN LOBE GAIN IS 91.5960197

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	0.0	1.0000000
1	+26.0382833	1.6500000
2	+26.1622267	0.3500000
3	+34.9811382	2.1000000
4	+35.1812410	-0.1000000
5	+36.2163143	-0.6000000
6	+36.4496956	2.6000000
7	+48.4974327	3.4500000
8	+48.7085667	7.3500000
9	+49.3990908	4.4000000
10	+49.5082874	-1.4500000
11	+50.2500629	3.9000000
12	+50.2783987	-2.4000000
13	+50.8110867	-1.9500000
14	-52.6775875	15.4499999
15	-53.8558178	5.6500000
16	-54.8898957	8.9499999
17	-54.9535942	-3.6500000
18	-55.3048296	8.1500000
19	-55.7013588	15.0500000
20	-57.0573597	6.2000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.5000000	
1	-26.0382833	1.6500000	0.6500000
2	-34.9811382	2.1000000	1.1000000
3	-36.4496956	2.6000000	1.6000000
4	+48.4974327	3.4500000	2.4500000
5	+50.2500629	3.9000000	2.9000000
6	+49.3990908	4.4000000	3.4000000
7	+57.4847221	5.2499999	4.2499999
8	-53.8558178	5.6500000	4.6500000
9	-57.0573597	6.2000000	5.2000000
10	-48.7085667	7.3500000	6.3500000
11	-55.3048296	8.1500000	7.1500000
12	-54.8898957	8.9499999	7.9499999
13	-66.1152020	9.8499999	8.8499999
14	-65.8676883	10.1999999	9.1999999
15	-65.8178797	10.6500000	9.6500000
16	-68.2846251	11.6999999	10.6999999
17	-67.8466425	11.9999999	10.9999999
18	-70.7128019	12.3499999	11.3499999
19	-72.0573349	13.0500000	12.0500000
20	-67.8950653	13.4999999	12.4999999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.5000000	
1	-26.1622267	0.3500000	-0.6500000
2	-35.1812410	-0.1000000	-1.1000000
3	-36.2163143	-0.6000000	-1.6000000
4	-49.5082874	-1.4500000	-2.4500000
5	+50.8110867	-1.9500000	-2.9500000
6	+50.2763987	-2.4000000	-3.4000000
7	-58.8643456	-3.2500000	-4.2500000
8	-54.9535942	-3.6500000	-4.6500000
9	-58.8245223	-4.2000000	-5.2000000

NO FURTHER SIDE LOBES ON THIS SIDE

• • • ANTENNA LOBE SCANNER • • •

SNUMB=3732T
5-29, Pass#2

THE MAIN LOBE GAIN IS 91.0984230

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	2.000000
1	+13.5852003	0.3500000
2	-16.9246168	1.0000000
3	+17.7893343	1.3500000
4	+25.3000479	2.6500000
5	+26.7220535	3.7000000
6	+32.3995099	+1.3500000
7	-33.7192883	3.1000000
8	-37.1383023	-0.3000000
9	-37.5718284	5.3500000
10	+41.6713243	4.4999999
11	+41.9627337	+3.0000000
12	+44.3799043	+7.0500000
13	+45.2296977	+2.2500000
14	+46.7913661	6.2499999
15	+49.3744941	+3.9000000
16	-49.6418691	7.9499999
17	+50.0995593	+4.7000000
18	-50.6817908	8.7500000
19	-51.6629291	30.3999999
20	-51.7154050	32.4499998

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
MAIN LOBE	(DB)	(DEG)	(DEG)
MAIN LOBE	** NULL **	2.500000	
1	-25.3000479	2.6500000	0.6500000
2	-33.7192883	3.1000000	1.1000000
3	-26.7220535	3.7000000	1.7000000
4	-41.6713243	4.4999999	2.5000000
5	-37.5718284	5.3500000	3.3500000
6	-46.7913661	6.2499999	4.2500000
7	-44.3799043	7.0500000	5.0500000
8	-49.6418691	7.9499999	5.9500000
9	-50.6817908	8.7500000	6.7500001
10	-52.2115121	9.5999999	7.6000000
11	-55.8265767	10.4000000	8.4000000
12	-53.6677060	11.3000000	9.3000000
13	-61.0627646	12.0500000	10.0500000
14	-54.8582520	13.0500000	11.0500000
15	-55.5122752	14.4000000	12.4000000
16	-51.9100146	14.8000000	12.8000000
17	-55.8025813	15.1999999	13.1999999
18	-70.9027805	16.3499999	14.3499999
19	-68.2287655	16.8000000	14.8000000
20	-71.4153032	17.3000000	15.3000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
MAIN LOBE	(DB)	(DEG)	(DEG)
MAIN LOBE	** NULL **	1.500000	
1	-17.7893343	1.3500000	-0.6500000
2	-16.9246168	1.0000000	-1.0000000
3	+13.5852003	0.3500000	-1.6500000
4	-37.1383023	-0.3000000	-2.3000000
5	-32.3995099	-1.3500000	-3.3500000
6	-45.2296977	-2.2500000	-4.2499999
7	-41.9627337	-3.0000000	-4.9999999
8	-49.3744941	-3.9000000	-5.9000000
9	-50.0995593	-4.7000000	-6.6999999

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3765T

2-19, Pass#1

THE MAIN LOBE GAIN IS 91.4039421

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

BANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN	0.0	0.9500000
1	-25.4287643	0.3000000
2	-25.4585829	1.5500000
3	-34.2078018	2.0500000
4	-37.3320942	2.5500000
5	-37.6329222	-0.6500000
6	-47.7754259	-1.5000000
7	-48.2625526	3.4000000
8	-49.6163158	7.6999999
9	-50.4163465	4.3500000
10	-50.9727116	-2.5000000
11	-51.3043974	3.8500000
12	-51.5849543	-1.9000000
13	-53.0992708	8.5000000
14	-54.4399223	14.9999999
15	-56.2053366	5.1500000
16	-56.9352055	6.1000000
17	-56.9948692	6.8000000
18	-57.6355648	-4.2000000
19	-58.8070431	-4.8500000
20	-63.3834143	9.3499999

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.5000000	
1	-25.4585829	1.5500000	0.6000000
2	-34.2078018	2.0500000	1.1000000
3	-37.3320942	2.5500000	1.6000000
4	-48.2625526	3.4000000	2.4500000
5	-51.3043974	3.8500000	2.9000000
6	-50.4163465	4.3500000	3.4000000
7	-56.2053366	5.1500000	4.2000000
8	-56.9352055	6.1000000	5.1500000
9	-56.9948692	6.8000000	5.8500000
10	-49.6163158	7.6999999	6.7499999
11	-53.0992708	8.5000000	7.5500000
12	-63.3834143	9.3499999	8.4000000
13	-64.9997476	10.1500000	9.2000000
14	-69.4696217	11.1999999	10.2500000
15	-67.2222033	11.6500000	10.7000000
16	-68.1311685	11.9499999	11.0000000
17	-71.0880833	12.4999999	11.5500000
18	-70.2194401	12.9999999	12.0500000
19	-67.5275393	13.4499999	12.5000000
20	-67.4471712	13.8499999	12.9000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

BANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.4000000	
1	-25.4287643	0.3000000	-0.6500000
2	-37.6329222	-0.6500000	1.6000000
3	-47.7754259	-1.5000000	-2.4500000
4	-51.5849543	-1.9000000	-2.8500000
5	-50.9727116	-2.5000000	-3.4500000
6	-57.6355648	-4.2000000	-5.1500000
7	-58.8070431	-4.8500000	-5.8000000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7468T
5-08, Pass#1

THE MAIN LOBE GAIN IS 91.5894156

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	0.9500000
1	+26.0164497	1.6000000
2	+26.0449476	0.3000000
3	+34.0812292	2.0000000
4	+34.7594805	-0.1000000
5	+37.5137069	2.5500000
6	+37.9344568	-0.6500000
7	+48.3997517	3.4000000
8	+48.510393	-1.5000000
9	+49.7387686	7.6999999
10	+50.519617	4.4000000
11	+51.300469	3.8500000
12	+51.571467	-2.4500000
13	+51.6452904	15.4000000
14	+51.6556263	4.6000000
15	+52.474219	-1.9500000
16	+53.6536570	8.5000000
17	+54.639466	14.9999999
18	+56.4693995	5.1500000
19	+56.8878470	15.6499999
20	+57.0143080	6.8000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	1.4500000	
1	-26.0164497	1.6000000	0.6500000
2	-34.0812292	2.0000000	1.0500000
3	-37.503769	2.5500000	1.6000000
4	+48.3997517	3.4000000	2.4500000
5	+51.300469	3.8500000	2.9000000
6	+51.5019617	4.4000000	3.4500000
7	+51.6556263	4.6000000	3.6500000
8	+56.4693995	5.1500000	4.2000000
9	+56.536658	5.7499999	4.8000000
10	+57.1173935	6.1000000	5.1500000
11	+57.0143080	6.8000000	5.6500000
12	+49.7387686	7.6999999	6.7499999
13	+53.6536570	8.5000000	7.5500000
14	+63.3744755	9.3499999	8.4000000
15	+63.4181690	9.4499999	8.5000000
16	+65.4244848	10.1500000	9.2000000
17	+68.9583239	10.5999999	9.6500000
18	+71.3941860	11.1500000	10.2000000
19	+68.0884237	11.5999999	10.6500000
20	+68.6140289	11.9499999	11.0000000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.4500000	
1	-26.0449476	0.3000000	-0.6500000
2	-34.7594805	-0.1000000	-1.0500000
3	-37.9344568	-0.6500000	-1.6000000
4	+48.510393	-1.5000000	-2.4500000
5	+52.4740219	-1.9500000	-2.9000000
6	+51.5019617	-2.4500000	-3.4000000
7	+58.147259	-3.2500000	-4.2000000
8	+61.2529238	-3.8000000	-4.7500000
9	+58.1115112	-4.2000000	-5.1500000
10	+58.6125650	-4.9000000	-5.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=3590T
5-07, Pass#1

THE MAIN LOBE GAIN IS 94.4041138

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN	0.0	0.9500000
1	-25.2950783	1.5500000
2	-25.6355798	0.3000000
3	-33.6926465	2.0000000
4	-37.4550595	2.5500000
5	-37.4968895	-0.6500000
6	-47.5103965	3.4000000
7	-48.6561856	-1.5000000
8	-49.6474443	7.6999999
9	-50.1221690	4.4000000
10	-50.6528909	3.8500000
11	-51.2186065	-2.4500000
12	-51.574927	15.4000000
13	-51.7110171	-1.9500000
14	-53.3004870	8.5000000
15	-54.5120130	14.9999999
16	-56.2282033	5.1500000
17	-56.6609893	6.1500000
18	-56.8073106	6.7499999
19	-56.8201480	15.8499999
20	-57.2254500	-3.2500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.5000000	
1	-25.2950783	1.5500000	0.6000000
2	-33.6926465	2.0000000	1.0500000
3	-37.4550595	2.5500000	1.6000000
4	-47.5103965	3.4000000	2.4500000
5	-50.4528909	3.8500000	2.9000000
6	-50.1221690	4.4000000	3.4500000
7	-56.2282033	5.1500000	4.2000000
8	-57.9623609	5.7000000	4.7500000
9	-56.6609893	6.1500000	5.2000000
10	-56.8073106	6.7499999	5.8000000
11	-49.6474443	7.6999999	6.7499999
12	-53.3004870	8.5000000	7.5500000
13	-62.7252059	9.3499999	8.4000000
14	-65.4245472	10.1500000	9.2000000
15	-67.8767443	10.5999999	9.6500000
16	-69.4968895	11.1500000	10.2000000
17	-67.9285603	11.5999999	10.6500000
18	-68.3380470	11.9499999	11.0000000
19	-71.0415697	12.4999999	11.5500000
20	-70.9014616	12.9999999	12.0500000

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	0.4000000	
1	-25.6355798	0.3000000	-0.6500000
2	-37.4968895	-0.6500000	-1.6000000
3	-48.6561856	-1.5000000	-2.4500000
4	-51.7110171	-1.9500000	-2.9000000
5	-51.2186065	-2.4500000	-3.4000000
6	-57.2254500	-3.2500000	-4.2000000
7	-58.0710400	-4.1500000	-5.1000000
8	-58.4515976	-4.9000000	-5.8500000

NO FURTHER SIDE LOBES ON THIS SIDE

SNUMB=7546T
5-30, Pass#1

THE MAIN LOBE GAIN IS 51.503+038

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
PASS 1 TEL. GAIN (DB)

	MAIN	0.0	0.950000
	-26.10 9378		1.60 0000
1	-24.2037315		0.30 0000
2	-35.0674179		2.05 0000
3	-35.3311563		-0.15 0000
4	-37.8458151		2.55 0000
5	-35.2511101		-0.65 0000
6	-44.100-5705		2.85 0000
7	-41.6423451		-0.95 0000
8	-49.1317023		3.40 0000
9	-49.7178702		-1.50 0000
10	-51.3621087		4.35 0000
11	-51.6401131		15.40 0000
12	-52.149931		-2.45 0000
13	-52.3114739		3.65 0000
14	-52.5115810		-4.60 0000
15	-53.0039192		-1.95 0000
16	-53.743-4631		-2.70 0000
17	-54.6516401		14.90 0000
18	-55.3617793		8.10 0000
19	-56.0815741		15.80 0000
20			

MATCH LOBE WITH A SIDE-LOBE TO LEFT OF (ABOVE) MAIN LOBE
PASS 1 TEL. GAIN (DB) TRUE ANGLE (DEG)

	MAIN	0.450000	0.650000
	-26.100378	1.6000 00	1.100000
1	-75.069175	2.3500 00	1.600000
2	-37.846881	2.5500 00	1.900000
3	-41.0041705	2.8500 00	2.450000
4	-49.131725	3.4000 00	2.900000
5	-52.3101733	3.8500 00	3.400000
6	-51.3631197	4.3500 00	3.600000
7	-52.511619	4.6000 00	3.750000
8	-59.2611940	5.2000 00	4.250000
9	-51.0641131	5.6500 00	4.700000
10	-58.4567132	6.2000 00	5.250000
11	-65.3567565	6.8999 99	6.050000
12	-66.910172	7.2499 99	6.300000
13	-65.968133	7.4999 99	6.550000
14	-55.3507373	8.0999 99	7.149999
15	-56.735774	8.8000 00	7.850000
16	-70.454159	9.2500 00	8.100000
17	-70.2287944	9.3000 00	8.350000
18	-69.639101	9.5500 00	8.600000
19	-66.7161623	9.8000 00	8.850000
20			

MATCH LOBE WITH A SIDE-LOBE TO LEFT OF (BELOW) MAIN LOBE
PASS 1 TEL. GAIN (DB) TRUE ANGLE (DEG)

	MAIN	0.450000	-0.650000
	-26.2037315	0.3000 00	-1.100000
1	-35.3311563	-0.1500 00	-1.600000
2	-38.156111	-0.6500 00	-1.900000
3	-41.6423451	-0.9500 00	-2.450000
4	-49.7178702	-1.5000 00	-2.900000
5	-53.0039192	-1.9500 00	-3.400000
6	-52.149931	-2.4500 00	-3.650000
7	-52.5115810	-2.7000 00	-4.250000
8	-53.743-4631	-3.3000 00	-4.700000
9	-56.0815741	-3.7500 00	-5.200000
10	-52.274146	-4.2500 00	
11	-59.921744	-4.2500 00	
12			

No further side lobes on this side

* * * * ANTENNA LOBE SCANNER * * * *

**SNUMB=7462T
06-17, Pass#1**

THE MAIN LOBE GAIN IS 91.5956814

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	ANGLE (DEG)
------	---------------------	------------------

MAIN	3.0	2.0000000
1	-26.0259552	1.3500000
2	-26.1776134	2.6500000
3	-32.7252335	0.3500000
4	-33.9849640	3.6500000
5	-34.7722173	0.9000000
6	-35.2179523	3.1000000
7	-46.415753	-1.3500000
8	-47.0175303	5.4000000
9	-47.2498157	4.4500000
10	-48.8347768	-0.4500000
11	-51.8675433	32.4499998
12	-51.9836364	-0.9000000
13	-52.2309713	4.9000000
14	-54.1909227	31.4499998
15	-54.5821957	-3.0500000
16	-55.3995173	7.1000000
17	-56.1651239	6.2499999
18	-56.1935702	9.1500000
19	-57.0056057	-2.2500000
20	-57.0400057	-5.0000000

MAIN LOBE NULL AND FIRST 20 SIDE LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	2.5000000	
1	-26.1794134	2.6500000	0.6500000
2	-35.2179523	3.1000000	1.1000000
3	-33.9849640	3.6500000	1.6500000
4	-47.7498157	4.4500000	2.4500000
5	-52.2309713	4.9000000	2.9000000
6	-47.0175303	5.4000000	3.4000000
7	-56.1651239	6.2499999	4.2500000
8	-55.3995173	7.1000000	5.1000000
9	-60.9142702	7.9000000	5.9000000
10	-62.5395567	8.5999999	6.6000000
11	-56.1332902	9.1500000	7.1500000
12	-68.6517561	10.1500000	8.1500000
13	-57.4110502	10.3499999	8.3499999
14	-67.7914425	10.5999999	8.5999999
15	-67.1377626	10.9000000	8.9000000
16	-65.5185568	11.2499999	9.2499999
17	-72.6125647	12.1999999	10.1999999
18	-73.1557474	12.4700000	10.4000000
19	-69.7171221	12.7499999	10.7499999
20	-66.2219746	13.0500000	11.0500000

MAIN LOBE NULL AND FIRST 20 SIDE LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	1.5000000	
1	-26.0259552	1.3500000	-0.6500000
2	-34.7722173	0.9000000	-1.1000000
3	-32.7252335	0.3500000	-1.6500000
4	-48.8347768	-0.4500000	-2.4500000
5	-51.9849640	-0.9000000	-2.9000000
6	-46.415753	-1.3500000	-3.3500000
7	-57.0155157	-2.2500000	-4.2499999
8	-54.5821957	-3.0500000	-5.0500000
9	-61.4374411	-3.9000000	-5.9000000
10	-61.5719326	-4.0000000	-5.9999999

No FURTHER SIDE LOBES ON THIS SIDE

SNUMB=8430T
06-19, Pass#1

* * * A T E L A C H O U T C A P T I O N * * *

THE MIZZLEONE MACHINE 91-4755177

LOCATION AND RELATIVE DIA. OF VARIOUS PT. SIZE LOCNS
NAME REFL. DIA. (IN.) (IN.)

1	-27.0512+0	1.000000
2	-27.791527	1.750000
3	-27.754614	1.100000
4	-27.742176	1.600000
5	-27.191779	-1.000000
6	-27.191779	2.700000
7	-27.191779	3.500000
8	-27.191779	-1.650000
9	-37.447261	4.450000
10	-37.447261	-2.500000
11	-37.447261	5.100000
12	-47.711271	-3.200000
13	-47.641752	6.444444
14	-47.641752	-4.200000
15	-47.291149	7.155556
16	-47.291149	7.999999
17	-47.291149	-5.100000
18	-29.177747	7.100000
19	-29.177747	1.000000
20	-29.177747	5.916667

1	-27.0512+0	1.000000	0.650000
2	-27.791527	1.750000	1.250000
3	-27.754614	1.100000	1.700000
4	-27.742176	1.600000	1.550000
5	-27.191779	-1.000000	1.400000
6	-27.191779	2.700000	2.400000
7	-27.191779	3.500000	3.200000
8	-27.191779	-1.650000	2.100000
9	-37.447261	4.450000	5.300000
10	-37.447261	-2.500000	3.200000
11	-37.447261	5.100000	7.155556
12	-47.711271	-3.200000	2.100000
13	-47.641752	6.444444	7.155556
14	-47.641752	-4.200000	5.100000
15	-47.291149	7.155556	12.150000
16	-47.291149	7.999999	12.150000
17	-47.291149	-5.100000	12.150000
18	-29.177747	7.100000	13.150000
19	-29.177747	1.000000	13.150000
20	-29.177747	5.916667	13.150000

1	-27.0512+0	1.000000	0.650000
2	-27.791527	1.750000	1.250000
3	-27.754614	1.100000	1.700000
4	-27.742176	1.600000	1.550000
5	-27.191779	-1.000000	1.400000
6	-27.191779	2.700000	2.400000
7	-27.191779	3.500000	3.200000
8	-27.191779	-1.650000	2.100000
9	-37.447261	4.450000	5.300000
10	-37.447261	-2.500000	3.200000
11	-37.447261	5.100000	7.155556
12	-47.711271	-3.200000	2.100000
13	-47.641752	6.444444	7.155556
14	-47.641752	-4.200000	5.100000
15	-47.291149	7.155556	12.150000
16	-47.291149	7.999999	12.150000
17	-47.291149	-5.100000	12.150000
18	-29.177747	7.100000	13.150000
19	-29.177747	1.000000	13.150000
20	-29.177747	5.916667	13.150000

SNUMB=3389T
07-22, Pass#1

THE MAIN LOBE GAIN IS 71.0271816

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN (DB)

ANGLE (DEG)

RANK	MAIN	REL. GAIN (DB)	ANGLE (DEG)
1		0.0	0.004547
2		-1.3844624	-0.01 3149
3		-7.9706368	0.013787
4		-13.4631548	0.003335
5		-13.5447807	0.007302
6		-14.6051344	-0.01 1013
7		-16.8436485	-0.01 5286
8		-17.9545498	-0.021465
9		-19.0071068	0.001809
10		-18.1287599	0.008828
11		-19.113135	-0.00 9487
12		-19.4651136	-0.01 6812
13		-20.5273795	0.011650
14		-20.8074951	0.000283
15		-20.9712996	0.000354
16		-21.0898099	0.015923
17		-21.9583702	-0.007961
18		-22.5747981	-0.01 8337
19		-22.8492928	0.0028757
20		-23.0487814	0.0051880
		-24.0554190	-0.006436

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE

(DB) (DEG) (DEG)

RANK	MAIN LOBE	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
1	** NULL **	0.0046692		
2		-13.5447807	0.004702	0.0001831
3		-18.1287599	0.0048528	0.0003357
4		-20.9712996	0.005054	0.0004883
5		-23.0487814	0.005180	0.0006409
6		-24.7613158	0.005306	0.0007935
7		-26.1541643	0.005432	0.0009460
8		-27.4194727	0.005658	0.0010986
9		-28.5877057	0.005783	0.0012512
10		-29.6953852	0.005909	0.0014038
11		-30.8243442	0.006135	0.0015564
12		-31.3915566	0.006256	0.0016785
13		-31.9643657	0.006382	0.0018311
14		-32.5453310	0.006508	0.0019836
15		-33.7447699	0.006633	0.0021362
16		-33.8124199	0.006859	0.0022888
17		-34.3715324	0.006985	0.0024414
18		-35.0652401	0.007111	0.0025940
19		-35.5471311	0.0072632	0.0027161
20		-35.8163824	0.007458	0.0028687
		-36.1754923	0.007584	0.0030212

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE

(DB) (DEG) (DEG)

RANK	MAIN LOBE	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
1	** NULL **	0.0043945		
2		-13.4631548	0.0043235	-0.0002136
3		-18.0071068	0.004109	-0.0003662
4		-20.8074951	0.0040283	-0.0005188
5		-22.8492928	0.0038757	-0.0006714
6		-24.431495	0.0037731	-0.0008240
7		-25.8401670	0.0035706	-0.0009766
8		-27.0685145	0.003480	-0.0011292
9		-28.1934853	0.0032554	-0.0012617
10		-29.2613511	0.003128	-0.0014343
11		-30.2451959	0.0029602	-0.0015869
12		-30.8581848	0.002881	-0.0017090
13		-31.3761858	0.0026555	-0.0018616
14		-31.9055331	0.002530	-0.0020314
15		-32.4677186	0.002304	-0.0021667
16		-32.9674416	0.002278	-0.0023193
17		-33.6517544	0.0020752	-0.0024719
18		-34.2721308	0.0019726	-0.0026245
19		-34.6812849	0.001805	-0.0027456
20		-34.8774829	0.001679	-0.0028992
		-35.0739961	0.0016954	-0.0030518

* * * ANTENNA L-BP SCANNER * * *

SNUMB=3389T
07-22, Pass#2

THE MAIN LOBE GAIN IS -21.3683966

L-GAIN AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
1	-0.9+00625	-0.005340	0.001858
2	-8.3654737	-0.01-8975	
3	-13.3220763	-0.005542	
4	-13.3234386	-0.0051575	
5	-14.2142100	0.003994	
6	-14.3959265	0.0059722	
7	-15.1909732	0.0237427	
8	-17.74-5340	-0.0050049	
9	-17.6222592	-0.0057058	
10	-18.8255205	0.0055520	
11	-19.196700	0.008501	
12	-20.5583549	-0.00-8523	
13	-20.7269724	-0.0058594	
14	-21.5859764	-0.0166836	
15	-21.645694	0.006975	
16	-21.8511207	-0.021111	
17	-21.9078288	0.007046	
18	-22.7386117	-0.00-6997	
19	-23.0051550	-0.0070120	
20	-23.6300283	0.005449	

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	-0.0052185	
1	-13.3234386	-0.005175	0.0001831
2	-17.74-5340	-0.005049	0.0003357
3	-20.5583549	-0.004823	0.0004883
4	-22.7386117	-0.004697	0.0006409
5	-24.625130	-0.004571	0.0007935
6	-26.2261056	-0.0044750	0.0009155
7	-27.1388357	-0.004225	0.0010681
8	-28.0633073	-0.004199	0.0012207
9	-29.122846	-0.003973	0.0013733
10	-30.2495098	-0.003847	0.0015259
11	-30.7401524	-0.003626	0.0016479
12	-31.2707205	-0.003500	0.0018005
13	-31.9151204	-0.003375	0.0019531
14	-32.7295313	-0.003249	0.0021057
15	-33.2693348	-0.003128	0.0022278
16	-33.5590234	-0.002902	0.0023804
17	-33.716-583	-0.002876	0.0025330
18	-34.414-454	-0.0026550	0.0026855
19	-35.0641847	-0.002530	0.0028076
20	-35.1355258	-0.002304	0.0029602

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE

RANK	REL. GAIN (DB)	TRUE ANGLE (DEG)	REL. ANGLE (DEG)
MAIN LOBE	** NULL **	-0.0054932	
1	-13.3220753	-0.005542	-0.0002136
2	-17.8222594	-0.005768	-0.0003662
3	-22.7283724	-0.005894	-0.0005168
4	-23.0081654	-0.006020	-0.0006714
5	-25.0212088	-0.006146	-0.0008340
6	-26.45-5121	-0.006266	-0.0009460
7	-27.4825482	-0.006492	-0.0010986
8	-28.563571	-0.006518	-0.0012512
9	-29.6512396	-0.006744	-0.0014038
10	-30.8257065	-0.006865	-0.0015259
11	-31.3224983	-0.007090	-0.0016785
12	-31.899-355	-0.007116	-0.0018311
13	-32.6443648	-0.007342	-0.0019836
14	-33.525-249	-0.0074768	-0.0021362
15	-33.9523282	-0.007589	-0.0022583
16	-34.2432618	-0.0077515	-0.0024109
17	-35.0100050	-0.007941	-0.0025635
18	-35.5782480	-0.0080566	-0.0027161
19	-36.0846286	-0.008187	-0.0028381
20	-36.2213068	-0.0083313	-0.0029907

SNUMB=3389T
07-22, Pass#3

THE MAIN LOBE GAIN IS . 70.8813639

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	0.
1	-4.0771618	-0.01-2822
2	-4.0771618	0.01-2822
3	-13.4364586	-0.00 2136
4	-13.4364586	0.00 2136
5	-17.5237699	-0.01-0666
6	-17.5237703	0.01-0666
7	-17.5371184	-0.01-4956
8	-17.5371184	0.01-4956
9	-18.2814709	-0.00 3662
10	-18.2814709	0.00 3662
11	-20.8976326	-0.00 4683
12	-20.8976326	0.01 4683
13	-21.9975057	-0.01 9465
14	-21.9975057	0.01 9465
15	-22.403484	-0.01-6484
16	-22.403484	0.01-6484
17	-22.9672651	-0.00 6409
18	-22.9672651	0.00 6409
19	-24.5659446	-0.01 7939
20	-24.5659446	0.01 7939

PAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0001526	0.0002136
1	-13.436-686	0.00236	0.0003662
2	-18.286-729	0.0003662	0.0004883
3	-20.8975326	0.004-83	0.006409
4	-22.9672651	0.006-09	0.0007935
5	-24.929596	0.007-35	0.0009155
6	-26.397776	0.009-55	0.0010681
7	-27.3803128	0.010-81	0.0012207
8	-28.5861907	0.012-07	0.0013428
9	-29.7512603	0.013-28	0.0014954
10	-30.2682943	0.014-54	0.0016479
11	-31.0963516	0.015-79	0.0017700
12	-32.1684532	0.017-00	0.0019226
13	-32.4037392	0.019-26	0.0020752
14	-32.9895578	0.020-52	0.0022278
15	-33.9299765	0.022-78	0.0023499
16	-34.0873079	0.023-99	0.0025024
17	-34.4947338	0.025-24	0.0026550
18	-35.2692313	0.026-50	0.0027771
19	-35.4655462	0.027-71	0.0029297
20	-35.7294650	0.029-97	0.0029297

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0001526	-0.0002136
1	-13.436-686	-0.00236	-0.0003662
2	-18.286-729	-0.0003662	-0.0004883
3	-20.8975326	-0.004-83	-0.006409
4	-22.9672651	-0.006-09	-0.0007935
5	-24.929596	-0.007-35	-0.0009155
6	-26.397776	-0.009-55	-0.0010681
7	-27.3803123	-0.010-81	-0.0012207
8	-28.5861902	-0.012-07	-0.0013428
9	-29.7512603	-0.013-28	-0.0014954
10	-30.2682948	-0.014-54	-0.0016479
11	-31.0963516	-0.015-79	-0.0017700
12	-32.1684532	-0.017-00	-0.0019226
13	-32.4037388	-0.019-26	-0.0020752
14	-32.9895573	-0.020-52	-0.0022278
15	-33.9299765	-0.022-78	-0.0023499
16	-34.0873079	-0.023-99	-0.0025024
17	-34.4947338	-0.025-24	-0.0026550
18	-35.2692313	-0.026-50	-0.0027771
19	-35.4655462	-0.027-71	-0.0029297
20	-35.7294645	-0.029-97	-0.0029297

SNUMB=3389T
07-22, Pass#4

THE MAIN LOBE GAIN IS 70.163-985

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	0.006042
1	-0.3900251	-0.0040261
2	-9.1534715	0.02 086
3	-12.7116203	-0.0220947
4	-13.0636710	0.0056289
5	-13.1806579	0.0042256
6	-13.9326396	-0.0042397
7	-14.0388946	-0.0078125
8	-17.6648612	0.0056763
9	-17.7962745	0.0043782
10	-18.2460203	-0.0076904
11	-18.6415195	-0.0043616
12	-20.9487314	0.0055582
13	-21.0313020	-0.0075378
14	-21.2195435	0.0045308
15	-21.3152227	-0.0055144
16	-22.5954751	0.0148975
17	-22.6758800	0.0044116
18	-22.8857573	0.02 282
19	-23.0095120	0.0046528
20	-23.5661174	-0.0073653

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0061646	
1	-13.1806879	0.0062456	0.0001831
2	-17.7962745	0.0063782	0.0003357
3	-21.2195435	0.006578	0.0004863
4	-23.0095120	0.0066528	0.0026104
5	-24.8424280	0.006854	0.0007629
6	-26.5345640	0.0069475	0.0006850
7	-27.832940	0.0070401	0.0013376
8	-28.6833518	0.0072327	0.001902
9	-29.6853976	0.0073547	0.0013123
10	-30.5147181	0.007573	0.0014648
11	-31.6888172	0.0076494	0.0015869
12	-32.0253940	0.0077820	0.0017395
13	-33.0026584	0.0079446	0.0018921
14	-33.0721483	0.0080566	0.002142
15	-33.8197570	0.008292	0.0021667
16	-34.8763042	0.0083618	0.0023193
17	-34.9126406	0.008439	0.0024414
18	-35.5367770	0.0085365	0.0025940
19	-36.0362091	0.008785	0.0027161
20	-36.2629919	0.0089111	0.0026687

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0058899	
1	-13.0638719	0.0058189	-0.0002136
2	-17.6648612	0.0156763	-0.0003662
3	-20.9487314	0.0055442	-0.0004883
4	-22.6758900	0.005416	-0.0006409
5	-24.5160273	0.005295	-0.0007935
6	-26.0103596	0.0051270	-0.0009155
7	-26.968034	0.0049744	-0.0010681
8	-28.3730521	0.0048218	-0.0012207
9	-28.9845752	0.004697	-0.0013428
10	-29.8090572	0.0045471	-0.0014954
11	-30.7984829	0.0044750	-0.0016174
12	-31.7063862	0.0042725	-0.0017700
13	-31.9060706	0.004199	-0.0019226
14	-32.8002052	0.0039478	-0.0020447
15	-32.9480376	0.003852	-0.0021973
16	-33.7375655	0.0037431	-0.0023193
17	-33.7749152	0.0035706	-0.0024749
18	-34.6109276	0.003480	-0.0026245
19	-34.7033286	0.003259	-0.0027466
20	-34.9442163	0.0031433	-0.0028992

SNUMB=3389T
07-22, Pass#5

THE MAIN LOBE GAIN IS 70.2587910

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES.
RANK REL. GAIN ANGLE
(DB) (DEG)

MAIN	0.0	-0.006378
1	-13.1452853	0.0013547
2	-13.67281-3	-0.0020806
3	-11.3446869	0.0020571
4	-13.0719199	-0.001646
5	-13.1511777	-0.0015613
6	-13.9322337	0.0015378
7	-13.5732144	0.0014141
8	-13.9811767	0.0014190
9	-15.0639210	-0.0014120
10	-18.0991302	0.0016924
11	-15.1277824	-0.0017139
12	-20.5154202	-0.0018899
13	-22.75-579-	-0.0018359
14	-22.8051522	0.0018665
15	-22.36-5705	0.0018125
16	-22.9512382	-0.0116669
17	-22.9893127	-0.0017373
18	-23.15192-2	0.0017444
19	-23.24-68265	-0.0018685
20	-23.26-6387	0.0019651

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO EIGHT OF (ABOVE) MAIN LOBE			
RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
(DB)	(DEG)	(DEG)	
MAIN LOBE	** NULL **	-0.0062256	
1	-13.0719099	-0.006146	0.0022136
2	-18.0639210	-0.006020	0.0023662
3	-20.5154202	-0.005899	0.0024883
4	-22.9893127	-0.005773	0.0026409
5	-24.3704286	-0.005652	0.0027629
6	-26.087004	-0.0054526	0.0029155
7	-26.9924340	-0.005306	0.0030376
8	-28.2995371	-0.005150	0.0031902
9	-28.9261540	-0.005059	0.0031323
10	-30.0457816	-0.004933	0.0034648
11	-30.4815959	-0.004713	0.0035869
12	-31.4425478	-0.0046567	0.0037395
13	-31.7366935	-0.004566	0.0038616
14	-32.6272459	-0.004340	0.0020142
15	-32.8040972	-0.004219	0.0021362
16	-33.6272922	-0.004094	0.0022888
17	-33.7086210	-0.003973	0.0024109
18	-34.4698491	-0.003847	0.0025635
19	-34.6752536	-0.0036926	0.0026855
20	-35.2664350	-0.0035400	0.0028381

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELOW) MAIN LOBE			
RANK	REL. GAIN	TRUE ANGLE	REL. ANGLE
(DB)	(DEG)	(DEG)	
MAIN LOBE	** NULL **	-0.0065002	
1	-13.1510777	-0.0065613	-0.0001831
2	-18.1207824	-0.006739	-0.0003357
3	-20.7545094	-0.006859	-0.0004578
4	-23.2408285	-0.0069485	-0.0006104
5	-24.7934713	-0.007106	-0.0007324
6	-26.4535657	-0.0072532	-0.0008850
7	-27.5298929	-0.007353	-0.0010071
8	-28.8395142	-0.0075378	-0.0011597
9	-29.6377177	-0.0076599	-0.0012817
10	-30.7009635	-0.0077125	-0.0014343
11	-31.3118243	-0.0077946	-0.0015566
12	-32.2874455	-0.0080872	-0.0017090
13	-32.7325158	-0.008292	-0.0018311
14	-33.5717318	-0.0083618	-0.0019836
15	-33.9354949	-0.008439	-0.0021057
16	-34.7201190	-0.0086365	-0.0022583
17	-36.9925299	-0.008785	-0.0023804
18	-35.7346830	-0.008911	-0.0025330
19	-35.9805408	-0.0090332	-0.0026550
20	-36.6177163	-0.0091558	-0.0028076

SNUMB=3389T
07-22, Pass#6

THE MAIN LOBE GAIN IS 71.2974668

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SIDE LOBES
MAIN REL. GAIN ANGLE
(DB) (DEG)

MAIN	REL. GAIN	ANGLE
	(DB)	(DEG)
1	-3.5930748	-0.000624
2	-4.7236242	-0.01-3433
3	-13.4659349	0.00 0071
4	-13.6019511	0.00 6409
5	-16.7247262	-0.0155122
6	-16.8461221	-0.0129039
7	-17.7184224	0.01-1632
8	-17.8118229	0.00 -883
9	-17.8797589	0.00 1597
10	-18.0223769	0.01-5569
11	-21.0616386	0.00 287
12	-21.1984663	0.00 3662
13	-21.3267379	-0.0143931
14	-22.312123	-0.0130310
15	-22.5339313	0.01-0381
16	-22.7519706	0.00 2136
17	-22.9861796	0.01-6790
18	-23.0623169	0.00 4343
19	-24.0321965	-0.0122375
20	-24.5228372	-0.0131836

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO EIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0009460	
1	-13.4659348	0.0010 71	0.0001631
2	-17.8797939	0.0011597	0.0001357
3	-21.0616386	0.0012-17	0.0004578
4	-23.0631459	0.0014-43	0.0006104
5	-24.8735061	0.0015664	0.0007324
6	-26.3520017	0.0017 90	0.0008850
7	-27.4689746	0.0018-11	0.0010071
8	-28.8049645	0.0019-36	0.0011597
9	-29.4710913	0.0021 57	0.0012817
10	-30.8213544	0.0022778	0.0014038
11	-31.0994225	0.0023-04	0.0015564
12	-32.0867491	0.0025 24	0.0016785
13	-32.5552506	0.0026-50	0.0018311
14	-33.0991125	0.0027-71	0.0019531
15	-33.7799625	0.0029-97	0.0021057
16	-34.1193650	0.0030318	0.0022278
17	-35.0198164	0.0032 43	0.0023804
18	-35.0237913	0.0033-64	0.0025024
19	-35.7956085	0.0034-85	0.0026245
20	-35.8615632	0.0036 11	0.0027771

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (BELLOW) MAIN LOBE
RANK REL. GAIN TRUE ANGLE REL. ANGLE
(DB) (DEG) (DEG)

MAIN LOBE	** NULL **	0.0006714	
1	-13.6019511	0.0006-09	-0.0001831
2	-17.8118229	0.0004-83	-0.0003357
3	-21.1984663	0.0003 62	-0.0004578
4	-22.9519806	0.0002-36	-0.0006104
5	-24.9763432	0.0001-16	-0.0007324
6	-26.1937399	-0.0000 10	-0.0008850
7	-27.4775105	-0.0001 31	-0.0010071
8	-28.6365709	-0.0003 57	-0.0011597
9	-29.3622181	-0.0004-78	-0.0012817
10	-30.5861200	-0.0006 04	-0.0014343
11	-30.9345061	-0.0007 24	-0.0015564
12	-32.0807679	-0.0008-45	-0.0016785
13	-32.2599139	-0.0010 71	-0.0018311
14	-33.1491699	-0.0012-92	-0.0019531
15	-33.5447454	-0.0012-17	-0.0021057
16	-33.9922433	-0.0014 38	-0.0022278
17	-34.6511087	-0.0015-64	-0.0023804
18	-34.8183942	-0.0016-85	-0.0025024
19	-35.7722073	-0.0018 11	-0.0026245
20	-35.861732	-0.0019531	-0.0027771

*** ANTENNA LOBE SCATTER ***

SNUMB=2730T
07-22, Pass#1

THE MAIN LOBE (45°) IS 7.74947°.

LOCATION: 45° RELATIVE TO NORTH IN DEGREES
RANK (1 TO 20)

RANK	REL. ANGLE (DEG.)	REF. ANGLE (DEG.)
1	-27.752459	-0.12512
2	-2.4947127	0.17492
3	+17.5552168	0.14722
4	+17.1563147	0.0251462
5	+27.3177794	0.19756
6	+23.122132	0.1137763
7	+24.1374177	0.57711
8	+27.1647728	0.44127
9	+28.2672212	0.147754
10	+22.74451	0.117124
11	+27.1565126	0.0341797
12	+21.1252447	0.0351532
13	+31.2732458	0.035247
14	+31.3112771	0.112479
15	+31.3117364	0.1117659
16	+33.155912	0.1117029
17	+33.3577469	0.11337173
18	+37.4470465	0.112752
19	+33.3158171	0.1135359
20	+35.241131	-0.0124532

MAIN LOBE (45°) AND FIRST 20 SIDE-LOBES TO RIGHT OF (REL.+) MAIN LOBE

RANK	REL. ANGLE (DEG.)	REF. ANGLE (DEG.)	REL. ANGLE (DEG.)
1	-26.1394177	0.13711	0.0026545
2	-1.16262877	0.116135	0.0115569
3	+33.0155374	0.05539	0.0121193
4	+25.15451	0.117534	0.113513
5	+17.6755942	0.117137	0.0335621
6	+17.9555557	0.09151	0.0044949
7	+41.1312157	0.046436	0.0191277
8	+47.2748598	0.0112539	0.0057373
9	+41.4247501	0.0115563	0.0164577
10	+41.9725443	0.0115567	0.0777871
11	+42.7.64529	0.01123391	0.0171229
12	+42.74757674	0.01137515	0.00355449
13	+42.6151739	0.0113733	0.0077773
14	+42.1152293	0.01144143	0.0094577
15	+41.6332441	0.0115167	0.0104221
16	+41.3429790	0.01157471	0.0112375
17	+39.9232922	0.01154775	0.0114629
18	+38.3785339	0.01172119	0.012793
19	+36.1535938	0.01179443	0.0136277
20	+31.2732648	0.011655847	0.0747781

MAIN LOBE (45°) AND FIRST 20 SIDE-LOBES TO LEFT OF (REL.-) MAIN LOBE

RANK	REL. ANGLE (DEG.)	REF. ANGLE (DEG.)	REL. ANGLE (DEG.)
1	-21.5552145	0.0142223	-0.3002441
2	-27.154773	0.0134133	-0.3017936
3	+31.3112723	0.0125175	-0.3017091
4	+23.6499558	0.0127792	-0.00224414
5	+35.5994736	0.0113423	-0.0131733
6	+36.4212348	0.01056124	-0.0039053
7	+37.7493929	0.01056124	-0.0145169
8	+38.5539485	0.0107324	-0.0152497
9	+39.3573676	0.0113423	-0.0154594
10	+39.64925459	0.01127792	-0.00759975
11	+39.714556	0.01128176	-0.01073242
12	+39.9154718	0.01134133	-0.0179349
13	+39.5715779	0.01141514	-0.0165672
14	+39.3794324	0.01148875	-0.0193994
15	+35.7543492	0.01154712	-0.0101095
16	+37.6935323	0.01072258	-0.01337422
17	+36.7437735	0.01069575	-0.0114746
18	+35.3432250	0.01075634	-0.0127852
19	+33.0167802	0.01073079	-0.0128174
20	+29.7449808	-0.0090332	-0.0135498

SNUMB=2730T
07-22, Pass#2

• • • ANTENNA LOBE SCANNER • • •

* THE MAIN LOBE IS 15° TO THE LEFT OF THE SIDE LOBES
LOCATED AND RELATIVE TO THE CENTER OF SIDE LOBES
REF. DATA TRUE ANGLE

1	-11.3255216	-0.0123714	-0.01091553
2	-5.1449770	-0.0114975	
3	-17.5426158	-0.02284816	
4	-12.2317149	-0.0137375	
5	-22.763726	-0.0266670	
6	-24.772226	-0.0115513	
7	-25.393427	-0.01143940	
8	-26.3457754	-0.011495	
9	-23.5214161	-0.01059913	
10	-24.6117793	-0.01144253	
11	-27.744732	-0.01173123	
12	-31.117239	-0.0114331	
13	-31.7279363	-0.01135473	
14	-32.4319425	-0.0113543	
15	-32.5714497	-0.01173242	
16	-33.187165	-0.01177501	
17	-33.574291	-0.01172775	
18	-34.3535503	-0.01177963	
19	-35.4237995	-0.01053477	
20	-35.5349795	-0.01060566	

* THE MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO THE LEFT OF THE SIDE LOBE (MAIN ANGLE)

1	-26.3764210	-0.0114345	0.0109766
2	-31.2277563	-0.01135473	0.0113311
3	-33.5741971	-0.01138075	0.0126535
4	-35.53497316	-0.01127562	0.01032959
5	-37.1157617	-0.01133473	0.0114233
6	-38.2319975	-0.01134373	0.01147373
7	-38.7331381	-0.01132441	0.0115152
8	-39.2297525	-0.01139756	0.01163477
9	-39.6132439	-0.0117093	0.01177501
10	-39.671725	-0.01129535	0.01079346
11	-39.1172962	-0.01132459	0.01065671
12	-39.6724070	-0.01134373	0.01193994
13	-37.9431491	-0.01147617	0.01101318
14	-37.12135379	-0.01136152	0.01039353
15	-35.4237535	-0.01133477	0.01171455
16	-35.597735	-0.01137501	0.01124512
17	-29.7440939	-0.01178129	0.01131379
18	-22.344375	-0.01175675	0.01143741
19	-1.0265916	-0.01131553	0.01145204
20	-25.5457754	-0.01110095	0.01153519

* THE MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO THE LEFT OF THE SIDE LOBE (MAIN ANGLE)

1	-11.9397149	-0.01157373	-0.0103662
2	-23.5234150	-0.01165913	-0.0117207
3	-32.6144497	-0.01173242	-0.01149531
4	-35.5389795	-0.01183555	-0.01024855
5	-37.7117999	-0.01169111	-0.01135400
6	-39.2339771	-0.011796435	-0.01042725
7	-40.3487339	-0.011813750	-0.01151349
8	-41.2543957	-0.011811134	-0.01057373
9	-42.0352105	-0.0118118416	-0.01064697
10	-42.875172	-0.0118125755	-0.01077422
11	-42.6199236	-0.0118134277	-0.01060556
12	-42.6721793	-0.0118141512	-0.01067891
13	-42.5263714	-0.0118143975	-0.01095215
14	-42.251276	-0.0118157471	-0.01103761
15	-41.4473656	-0.0118164795	-0.01111074
16	-41.752172	-0.0118177117	-0.01118403
17	-36.4485207	-0.01179443	-0.01123732
18	-34.6533602	-0.01179778	-0.01134277
19	-24.8922520	-0.01195533	-0.01142822
20	-8.3489970	-0.01198979	-0.01149264

SNUMB=2730T
07-22, Pass#3

• • • ENTRE MAIN LOBE SCATTER • • •

LOCATION & P RELATIVE GATV TO HIGHEST SIDE LOBE
RANK (REF. GATV) (DEG)

1	-11.715077	-0.0142522
2	-11.815725	-0.0142522
3	-21.214445	-0.014351
4	-21.214445	-0.014351
5	-25.585231	-0.0142527
6	-25.585231	-0.0142527
7	-32.735377	-0.0143515
8	-32.735377	-0.0143515
9	-32.991513	-0.0142752
10	-32.991513	-0.0142752
11	-33.793235	-0.0143522
12	-33.793235	-0.0143522
13	-34.729653	-0.0143527
14	-35.728653	-0.0143527
15	-35.982245	-0.0142751
16	-35.982245	-0.0142751
17	-37.641953	-0.0143754
18	-37.641953	-0.0143754
19	-38.784774	-0.0143525
20	-38.784774	-0.0143525

MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO LEFT OF (REF. GATV) MAIN LOBE

RANK	REF. GATV	TRUE ANGLE	REL. ANGLE
(DEG)	(DEG)	(DEG)	(DEG)
1	-26.516231	-0.0142527	0.0142207
2	-32.991513	-0.0142752	0.0142297
3	-33.793235	-0.0143527	0.0143754
4	-37.641953	-0.0143754	0.0144327
5	-39.735377	-0.01446317	0.01454932
6	-40.734592	-0.01453477	0.01463477
7	-41.785392	-0.01477871	0.01477571
8	-41.172935	-0.01479345	0.01477346
9	-41.172935	-0.01479345	0.01477346
10	-43.785343	-0.01487571	0.01486781
11	-43.785373	-0.01486435	0.01484436
12	-39.474735	-0.01487493	0.01484938
13	-36.1447845	-0.01491325	0.01491325
14	-35.982245	-0.01492075	0.01492075
15	-32.153975	-0.01493615	0.01493615
16	-21.2134455	-0.01494131	0.01494131
17	-4.313.86	-0.01495222	0.01495222
18	-33.3732352	-0.01495529	0.01495529
19	-30.4747491	-0.01495574	0.01495574
20	-41.9380226	-0.014972119	0.014972119

MAIN LOBE FULL AND FIRST 20 SIDE-LOBES TO LEFT OF (REF. GATV) MAIN LOBE

RANK	REF. GATV	TRUE ANGLE	REL. ANGLE
(DEG)	(DEG)	(DEG)	(DEG)
1	-26.516236	-0.0142545	0.0142207
2	-32.991513	-0.0142732	0.0142297
3	-33.793236	-0.0143267	0.0143297
4	-37.641953	-0.01437342	0.01437442
5	-39.735373	-0.01446347	0.01454932
6	-40.734592	-0.01454932	0.01463477
7	-41.785392	-0.01474347	0.01477571
8	-41.172936	-0.01477751	0.01477346
9	-41.172936	-0.01477751	0.01477346
10	-43.785343	-0.01487491	0.01487971
11	-43.785373	-0.01486435	0.01484436
12	-39.474736	-0.01491493	0.01491493
13	-36.1447845	-0.01491325	0.01491325
14	-35.9822451	-0.01492077	0.01492077
15	-32.153973	-0.01493615	0.01493615
16	-21.2134455	-0.01494131	0.01494131
17	-4.313.77	-0.01495224	0.01495224
18	-33.3732352	-0.01495529	0.01495529
19	-30.4747496	-0.01495574	0.01495574
20	-41.9380221	-0.014972119	0.014972119

* * * * ANTENNA-LEAF SCANNER * * *

SNUMB=2730T
07-22, Pass#4

• 46 • 412 • 000-101-15 • 69,131-42

LOCATION OF THE RELATIVE DAY OF HIGHEST 24-HOUR LOAD
SHELF SHELF SHELF SHELF

1	-7, 17, 2911	6, 243
2	-11, 12, 2712	6, 17, 7514
3	-11, 12, 2713	6, 17, 1416
4	-22, 15, 2821	6, 22, 947
5	-23, 17, 1664	6, 25, 544,
6	-25, 17, 5313	6, 25, 3371
7	-26, 18, 12518	6, 21, 9530
8	-26, 18, 23415	6, 21, 74125
9	-27, 17, 2569	6, 24, 1792
10	-30, 11, 14, 444	6, 16, 6758
11	-31, 17, 5159	6, 14, 2729
12	-31, 19, 5844	6, 14, 5721
13	-32, 11, 14613	6, 13, 9514
14	-32, 11, 34763	6, 13, 77345
15	-33, 2, 275459	6, 12, 27358
16	-33, 4, 277457	6, 12, 17195
17	-34, 5, 343533	6, 13, 412
18	-34, 7, 476145	6, 13, 65149
19	-34, 7, 65-346	6, 13, 174
20	-35, 27, 733, 7	6, 13, 5111

MAIN ROAD TOLL AND FIRST 20 SITES LOCATED TO RIGHT OF (ABOVE) RD.

WATERSHED	STATION	DISCHARGE (CFS)	DEPTH (FT)
1	-27.1725599	-0.00731242	0.0011956
2	-31.5275644	-0.0059514	0.002752
3	-34.5733453	-0.0115149	0.003516
4	-36.0337413	-0.0149243	0.004273
5	-37.337707	-0.0131773	0.0045553
6	-37.5726765	-0.0121773	0.0055554
7	-35.5426520	-0.013428	0.0067339
8	-37.1473717	-0.013562	0.0074924
9	-37.5213414	-0.0130134	0.0081471
10	-36.5415219	-0.0124448	0.0095215
11	-35.4152674	-0.0124444	0.0104477
12	-34.4177057	-0.0124443	0.0114746
13	-31.1141436	-0.0047229	0.0124271
14	-23.3715544	0.0053711	0.0134277
15	-1.4772511	0.0059814	0.014381
16	-25.9963100	0.0069553	0.015146
17	-32.166183	0.0079346	0.01559912
18	-35.2773317	0.0079111	0.0155375
19	-37.7225549	0.0093777	0.0173443
20	-39.2311359	0.0107422	0.0187733

MAIN-LOBE NULL AND FIRST 2) SIDE-LOBES TO LEFT OF (RELAX) MAIN-LOBE

MAIN LOBE	•	DEG	DEG
(0)	(0)	(DEG)	(DEG)
1	-22.1751711	-0.0165449	-0.0004683
2	-37.8451359	-0.0195215	-0.0171456
3	-34.7422146	-0.0164477	-0.0024414
4	-37.8357353	-0.0114746	-0.0034140
5	-39.7412310	-0.0124312	-0.0143945
6	-41.1713119	-0.0133357	-0.0052497
7	-42.1395646	-0.0142822	-0.0062256
8	-43.2116793	-0.0151537	-0.017871
9	-43.2469232	-0.0161133	-0.008566
10	-43.7713153	-0.0177595	-0.011372
11	-43.4666169	-0.0161656	-0.0180098
12	-42.9119639	-0.0159209	-0.0188643
13	-41.4379532	-0.0159235	-0.0115466
14	-39.5743534	-0.0208740	-0.0129174
15	-11.07335315	-0.0222.947	-0.0141381
16	-12.3734793	-0.02223379	-0.0142522
17	-45.176125	-0.02243375	-0.0158609
18	-51.9799217	-0.0244141	-0.0165974
19	-37.5814931	-0.0269370	-0.0173340
20	-83.9585592	-0.0282451	-0.0181845

SNUMB=2730T
07-22, Pass#5

THE MAIN LOBE RANK IS 71.231 223

LOCATION AND RELATIVE GAIN OF HIGHEST 20 SITE LOC'S
RANK REL. GAIN (DB) ANGLE (DEG)

RANK	REL. GAIN (DB)	ANGLE (DEG)
1	-11.5154146	-0.003477
2	-12.1271545	-0.0020192
3	-14.152362	-0.0111742
4	-22.4931537	-0.0091594
5	-23.3356443	-0.0107137
6	-25.1122419	-0.0134790
7	-25.223721	-0.0133135
8	-31.516392	-0.01036670
9	-31.6477365	-0.01073129
10	-31.458372	-0.01045347
11	-31.9476743	-0.01034932
12	-35.1392743	-0.01034140
13	-35.4132627	-0.01043945
14	-35.5145364	-0.01071650
15	-35.7726949	-0.01029111
16	-35.74205267	-0.01071677
17	-37.1746545	-0.01023193
18	-37.170086	-0.01021193
19	-37.171566	-0.01032957
20	-38.3492306	-0.0012207

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO RIGHT OF (ABOVE) MAIN LOBE
RANK REL. GAIN (DB) ANGLE (DEG)

RANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN LOBE	** NULL **	-0.0073243
1	-22.3931637	-0.0158394
2	-31.4764375	-0.0146337
3	-35.1162743	-0.0134150
4	-37.1735646	-0.0123173
5	-38.3452316	-0.0112217
6	-38.9277467	-0.01071271
7	-39.1027494	-0.01029766
8	-38.5723114	-0.01020752
9	-37.3981566	-0.01032930
10	-35.4132627	-0.01043735
11	-31.9476743	-0.010454732
12	-23.8155433	-0.01071139
13	-0.5154146	-0.01073242
14	-35.5314699	-0.01056673
15	-35.7929257	-0.01095677
16	-39.15774224	-0.01095663
17	-41.0241172	-0.01020550
18	-42.68113872	-0.01011135
19	-43.6292653	-0.01044743
20	-44.0663964	-0.01055029

MAIN LOBE NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (ABOVE) MAIN LOBE

RANK	REL. GAIN (DB)	ANGLE (DEG)
MAIN LOBE	** NULL **	-0.0073243
1	-3.6677465	-0.0178125
2	-35.7029849	-0.0089111
3	-36.5514672	-0.01011310
4	-47.8128322	-0.010112379
5	-41.9534976	-0.01232291
6	-42.6022618	-0.0134277
7	-43.201116	-0.0145264
8	-43.2945372	-0.0158250
9	-42.0591332	-0.0168457
10	-47.274323	-0.0179443
11	-35.5342654	-0.0191650
12	-12.1271525	-0.0200195
13	-39.3531572	-0.0211112
14	-47.7795745	-0.0222159
15	-51.5427175	-0.0234375
16	-59.3427250	-0.0243751
17	-65.5611714	-0.0256343
18	-74.5727294	-0.0266113
19	-78.712142	-0.0280752
20	-80.0070170	-0.0290927

SNUMB=2730T
07-22, Pass#6

THE MAIN LOBE (REF. 13) 7.51A16F5			
LOCATION AND RELATIVE GAIN OF APPROX 20 SIDE LOBES			
RANK	REF. TIME (SEC)	ANGLE (DEG)	REL. GAIN (DB)
MAIN		0.0	0.0000000
1	-29.7751145	-0.0124953	-0.0144643
2	-34.3149157	-0.0114636	-0.0144643
3	-35.1115808	-0.0111536	-0.0144643
4	-36.4573002	-0.0110435	-0.0144643
5	-37.4703457	-0.0109749	-0.0144643
6	-39.7701145	-0.0109104	-0.0144643
7	-31.7512127	-0.0107588	-0.0144643
8	-37.3016501	-0.0105612	-0.0144643
9	-33.2716257	-0.0105297	-0.0144643
10	-31.2516265	-0.0102445	-0.0144643
11	-34.5574216	-0.0101742	-0.0144643
12	-34.3149157	-0.0101493	-0.0144643
13	-35.1126554	-0.0101473	-0.0144643
14	-36.4765373	-0.0100772	-0.0144643
15	-37.3175834	-0.0101715	-0.0144643
16	-37.4513332	-0.0103173	-0.0144643
17	-37.4744552	-0.0102939	-0.0144643
18	-33.2317279	-0.0102754	-0.0144643
19	-38.6802177	-0.0095493	-0.0144643
20	-39.1167748	-0.0094395	-0.0144643
MAIN LOBE (REF. 13) 7.51A16F5 20 SIDE-LOBES TO RIGHT OF (REF. 13)-MAIN LOBE			
RANK	REF. TIME (SEC)	ANGLE (DEG)	REL. GAIN (DB)
MAIN LOBE	** NULL **	0.0	0.0000000
1	-29.1112675	-0.0105659	-0.0144643
2	-32.3715153	-0.0129297	-0.0122752
3	-36.5722373	-0.0042275	-0.0133413
4	-35.682177	-0.0154532	-0.0144643
5	-39.5012141	-0.0167133	-0.0153574
6	-41.5123724	-0.0079345	-0.017511
7	-41.3155557	-0.0092773	-0.0164229
8	-39.3591729	-0.0104530	-0.0195435
9	-37.3175335	-0.0117153	-0.0155453
10	-32.5733501	-0.0130215	-0.0122757
11	-31.5441537	-0.0144433	-0.0133474
12	-31.5711212	-0.0152553	-0.0144643
13	-39.4923470	-0.0156110	-0.0157471
14	-44.5413153	-0.0178523	-0.0162575
15	-47.5712143	-0.0191950	-0.0163159
16	-53.6022635	-0.0203357	-0.0195313
17	-53.1514190	-0.0216164	-0.0207525
18	-55.5424937	-0.0225271	-0.0171777
19	-56.1352625	-0.0241699	-0.0233154
20	-61.0545150	-0.0253915	-0.0245351
MAIN LOBE (NULL AND FIRST 20 SIDE-LOBES TO LEFT OF (REF. 13)-MAIN LOBE)			
RANK	REF. TIME (SEC)	ANGLE (DEG)	REL. GAIN (DB)
MAIN LOBE	** NULL **	-0.0001221	
1	-29.7751145	-0.0106114	-0.0144643
2	-34.3149157	-0.0119531	-0.0122757
3	-37.4351332	-0.0131733	-0.0144643
4	-37.4774359	-0.0177435	-0.0175249
5	-39.3144126	-0.0157373	-0.0165916
6	-39.9415272	-0.0169537	-0.0177812
7	-39.2251279	-0.0143177	-0.01491372
8	-37.3385295	-0.0093994	-0.0102553
9	-34.6574205	-0.0107422	-0.0115287
10	-29.4573032	-0.0126550	-0.0122379
11	-2.924126	-0.126653	-0.0185493
12	-35.1124554	-0.0142322	-0.0151387
13	-41.5322743	-0.0152553	-0.0164793
14	-44.2345640	-0.0168457	-0.0177772
15	-46.3595957	-0.0180564	-0.0169219
16	-49.1172922	-0.0194222	-0.0177257
17	-51.1332515	-0.0204229	-0.014644
18	-52.2281569	-0.0218515	-0.0227351
19	-53.327477	-0.0232713	-0.0239258
20	-53.8053329	-0.0242920	-0.0251455

J-59 COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

A P P E N D I X K
I N T E R A C T I V E R A D A R S I M U L A T O R
D E S I G N S T U D Y

K.1 INTRODUCTION

This appendix documents the results of a study and investigation directed toward the design of an Interactive Radar Simulation system. The Interactive Radar Simulation system described herein will significantly improve the efficiency of design engineers in performing radar system evaluations, in testing new concepts, and in predicting the effect of subsystem parameter changes on total system performance. The suggested design includes features that will streamline the process by which the RADC Radar System Simulation Model (RADSIM) computer program is used.

This streamlining consists of eliminating the menial, time-consuming tasks which are associated with the present method for submission of batch or time sharing computer jobs. An example of this is the typing of simulation control and module parameter cards on either a keypunch machine or a time sharing terminal. At the output end of the simulation process, the digestion of output data by the user is improved by the use of a high resolution CRT graphics display. This device will allow the plotting of output data directly from the host computer. In addition, all information required to convert a radar system block diagram into a form suitable for simulation model usage will be stored locally on magnetic tape in a catalog form complete with index and cross references so that it can be used in the same manner as a reference document. The hardware system for implementing these improvements will be referred to as the Dedicated User Interface (DUI). The Interactive Radar Simulator system described herein consists of the Radar System Simulation Model (RADSIM) computer program, the Honeywell 635 host computer (H635) and the Dedicated User Interface (DUI).

K.2 INTERACTIVE RADAR SIMULATOR BACKGROUND AND REQUIREMENTS

In this section the background and shortcomings of the existing RADSIM computer are discussed and the Dedicated User Interface (DUI) is described in functional terms.

K.2.1 Simulation Model Usage

The RADSIM computer program in its present configuration consists of two segments which are executed as separate activities. These segments are referred to as the Simulation Data Initializer and the Simulation Controller/Modules.

The Simulation Data Initializer serves as the interface between the user and the Simulation Controller. This segmentation of the simulation model computer program was necessary since input data in a format convenient to the user must be converted to a form suitable for use by the simulation modules. The user defines the simulation via two types of punch cards: simulation control cards and module parameter data cards. The term punch card is used here in the sense of either a physical punch card or of a card image if the job is submitted through the CARDIN time sharing subsystem of the H635.

The simulation control cards determine what operations are to be performed in the simulation activity. This includes the following: (1) scheduling of modules for execution, (2) data transfer to and from temporary disc files, and (3) modification of parameters for multiple executions of a simulation model configuration.

The module parameter data cards define the parameters of the simulation modules to be executed in the simulation activity. Each module requiring input data has a unique name-list which contains the input parameters. Upon completion of the Data Initialization activity, the Simulation activity is executed.

At the present time the output data of a simulation job is written onto a permanent disc file or magnetic tape, or punched on cards. The user then picks up the output data at the central site of the host computer or uses the time sharing system to dump data stored on permfile to paper tape or to listing paper.

K.2.2 Simulation Model Limitations

In subsection K.2.1 the use of the existing RADSIM computer program was briefly reviewed. In this subsection those aspects of the computer program which restrict or otherwise hinder the use of the simulation model will be discussed. In performing a simulation job there are two phases which consume the majority of the user's time, i.e. the operations of data input and data retrieval. In other words, the major bottleneck is the interface between the user and the host computer. Most of the time spent in performing these tasks is not engineering design time, e.g. the keypunching of control and module parameter cards or alternatively, typing the cards into a time sharing file. In addition to the typing task, the user must constantly refer to tables of module names, reference numbers, parameters, and units of measure during the process of converting a radar system block diagram into a form suitable for input into the RADSIM computer program.

At the present time, the output of a simulation job is written onto a permanent disc file or on magnetic tape, or is punched on cards. This aspect of the process of accomplishing a simulation is a significant factor in job turn around and is probably the most expensive portion when the manhours expended in the manual handling of data are considered.

In order to summarize the limitations described above, the following example of a simulation job is offered:

1. The user defines the block diagram complete with the parameters of a system to be simulated.
(Elapsed time = 2.0 Hours, User Time = 2.0)
2. The user converts the block diagram into a deck of cards suitable for input to the data loader activity.
(Elapsed Time = 2.0 Hours, User Time = 2.0)
3. The user submits the job to the host computer and the job is executed. (Elapsed Time = 1.0 Hours, User Time = 0.25 Hours)
4. The user retrieves the output data in the form of punch cards or magnetic tape, transports the data to an off line plotter system, and plots the data.
(Elapsed Time = 2.0 Hours, User Time = 2.0 Hours)

In the above example the user spent 6.25 hours performing a complete simulation job of which only 2.0 hours were used in performing an engineering design task. Approximately 60% of the design engineer's time was consumed by non-engineering tasks. In the following subsection a system is described from a functional viewpoint which will improve the productivity of the radar design engineer by freeing him from the menial tasks which must be performed in order to use the current RADSIM computer program. In the example presented above, if the data were dumped to paper tape via an ASR 33 teletype, the time required would be even greater since the ASR 33 data transfer rate is only 10 characters per second (cps). Since 10 to 13 characters are required to represent one floating point number this corresponds to one point of data per second or less. A plot of 3000 points would therefore, require almost one hour to punch on paper tape.

K.2.3 Dedicated User Interface

A Dedicated User Interface for the submission of simulation jobs and retrieval of output data should, as a minimum, have the following capabilities:

- (1) Storage for all computer program data required by the user for the specification of parameters
- (2) The capability of producing block diagrams of the simulation job
- (3) Storage for the job definition file such that it can be used in the construction of future simulation jobs
- (4) A high data rate channel for communication with the host computer. The upper bound on data rate will be determined by characteristics of a voice grade direct dial telephone channel
- (5) A high resolution CRT display capable of plotting the output data
- (6) A device capable of producing a high quality paper copy of anything presented on the CRT display.

With a system having these capabilities, the procedure of job setup will simply be a matter of the user answering a sequence of questions posed by the DUI. When the job definition is complete, the user will have a paper copy of the

simulation block diagram and a magnetic tape cassette containing the job definition file in a form compatible with the RADSIM computer program. The user then connects the DUI system to the host computer, selects CARDIN TSS subsystem, transfers the contents of the cassette to the TSS current file, and gives the RUN command. The DUI is then disconnected from the host computer.

After the simulation job has been executed, the user connects the DUI to the host computer. Again a question/answer sequence is entered where the system asks the user what is to be plotted and some parameters of the plots. The data generated by the simulation job are then plotted on the CRT display. The CRT display can subsequently be reproduced on paper if the user desires a permanent copy. In addition to immediate plotting, the user has the option of transmitting the contents of the simulation job output file to the DUI for recording on a magnetic tape cassette. The stored data can subsequently be plotted off-line. In addition, the data generated by the host computer can be used as input data for programs executed by the DUI as a stand alone computer system.

K.3 DEDICATED USER INTERFACE HARDWARE

A functional block diagram of the suggested Interactive Radar simulator is shown in Figure K.3-1. The DUI subsystem is indicated by a dashed line. Two hardware designs which satisfy the DUI requirements delineated in paragraph K.2.3 are described in this section. The two designs differ primarily in the minicomputer selected for the communications buffer. Design #1 is configured around a Hewlett-Packard 2100A minicomputer. Design #2 is configured around a Digital Equipment Corporation PDP-11/05 minicomputer. Design #1 offers performance superior to that of Design #2 in every respect, but does so at a higher cost. The details of each design are discussed and a comparison made between them in the remainder of this subsection.

K.3.1 System Design #1

The block diagram of the Design #1 system is presented in Figure K.3-2. The features and parameters of the subsystems which make up this design are discussed in the following paragraphs.

K.3.1.1 Hewlett-Packard 2100A Minicomputer

The HP2100A minicomputer is a user microprogrammable general purpose machine. A summary of the HP2100A parameters is presented in paragraph K.3.3 which compares the HP and DEC minicomputers.

The memory requirements for the HP2100A are determined by the combined size (13K) of the minicomputer Basic Control System (4K), the DUI executive program (3K), and the Simulation Job Setup program (6K). Since memory is supplied in either 8K or 16K increments, the memory size chosen for the minicomputer is 16K.

Eleven Input/Output (I/O) channel slots are required to connect the peripheral devices and special processing modules to the HP2100A. The required I/O interface cards and other processor modules are given by the following list:

1. 12587B EIA RS232 Asynchronous data set interface
2. 12531C Current loop interface to operator's console

Figure K. 3-1 INTERACTIVE RADAR SIMULATOR SYSTEM BLOCK DIAGRAM

Figure K.3-2 DESIGN #1 BLOCK DIAGRAM

3. 12539C Time base generator to provide timed system interrupts
4. 12908A Write control store for user microprogram development
5. C-HP21 Controller and interface to the Versatec 1600A printer/plotter (this item available from Versatec)
6. 12620A General Purpose interface to hard copy interface unit
7. 12531C-001 Serial asynchronous interface to Tektronix 4014-1 graphics display
8. 12566B General purpose interface for fabricating interface to the Remex Cassette system and to the HP9865A cassette memory unit (2 cards required)
9. 12597-002 General purpose interface to the HP2748B paper tape reader
10. 12901A Floating point hardware.

K.3.1.2 Anderson-Jacobson Modem

The A-J Model ADAC 1200 Data coupler transmits and receives data at 1200 baud over the dial-up telephone network by wires through a DAA or acoustically via a telephone handset. The ADAC 1200 is compatible with the Bell System 202C Data Set.

K.3.1.3 Teletype

Since the Tektronix display is primarily intended to be a simulation data I/O device, an inexpensive teletype was included in the system to act as an operator's console and also to provide a low speed paper tape punch/read capability.

K.3.1.4 Remex Magnetic Tape Cassette

The Remex RCP0B11/3 serves as the bulk storage device of the DUI. By choosing a 3-deck device, one deck can be permanently allocated for operating system and library storage. The remaining two decks will, in general, serve the

same function as the paper tape reader and punch do in other systems. That is, one will normally be the input file to an executing program and the other will be the output file.

K.3.1.5 H-P Cassette Unit

In order to allow data transfer between the DUI system and the RADC HP9820A Calculator system, the following approach will be used. An additional interface for the HP2100A must be fabricated which is capable of driving a HP9865A cassette memory unit. In addition, a new software I/O driver must be written to properly format the data written to the cassette. Once accomplished, this will allow the HP9820A Calculator to read tapes generated by the DUI and vice versa.

K.3.1.6 Tektronix Display

The Tektronix 4014-1 graphics display is the primary device for information interchange between the computers and the user. This display is available with an extended graphics mode which allows 4096 x 3120 points to be plotted on the display viewing area.

The Tektronix 4014 graphics display is based on a direct view storage tube and requires no local mass storage for display refresh. In addition to the store mode, the Tektronix display has a non-store display capability which is called the write-thru mode. Data presented to the user via this mode is not stored on the tube face and appears only as long as the computer commands it to be displayed. Data presented in this mode must be refreshed approximately thirty times per second.

A capability is provided by Tektronix for scanning the storage tube surface and outputting a video signal which is proportional to intensity. This output video can then be processed and printed by the Versatec printer/plotter. The time required to scan the display face is ten seconds.

K.3.1.7 Hard Copy Device

The Versatec 1600A printer/plotter unit will provide for the generation of paper copies of data presented on the Tektronix display. The Versatec printer/plotter is capable of plotting 1600 points across ten inches at the rate of 120 scans/second. In addition to its capabilities as a plotter, the 1600A is useful as a high speed line printer capable of

300 lines/minute. The type font is a 16 x 16 dot matrix. The 96 ASCII character set is standard.

The alternative to specifying the 1600A would be to use the 1600 plotter unit and then perform the ASCII character to dot matrix conversion in the DUI minicomputer. This approach would be more expensive and would increase the processing load on the DUI minicomputer.

The additional one line buffer option is suggested so that a new line of data can be transmitted to the printer/plotter while the previous line is being plotted or printed.

K.3.1.8 Hard Copy Interface Unit

The hard copy interface unit converts the video, produced by scanning the graphics display storage surface, into a digital form suitable for input to the Versatec printer/plotter. The operation of this unit is described in the following paragraphs.

The video from the Tektronix display is passed through a threshold device which outputs a binary "1" if the video exceeds the threshold and a binary "0" otherwise. The threshold setting is adjustable so that compensation can be made if video noise level varies. Since the resolution of the Tektronix display is 4096 points and that of the Versatec printer/plotter is 1600 points, a reduction in the resolution of the Tektronix output will be required. Therefore, the output of the threshold must be stretched and then sampled at a rate which corresponds to $4096/3 = 1365$ samples per scan line, which is within the capabilities of the Versatec printer/plotter. The sampler output is accumulated in a 16-bit serial in/parallel out shift register. When the shift register is filled, the output word is passed to the minicomputer through a Direct Memory Access (DMA) I/O channel.

In the minicomputer, the incoming data words from the hard copy interface are stored in a buffer area which is 1600 bits in length. After a scan line is loaded into the buffer, the hard copy interface is inhibited for the next two scan lines. This must be done to maintain the geometric fidelity of the Tektronix display in producing the hard copy, i.e. both dimensions are reduced by a factor of three. During the dead time, the Versatec unit will request a new scan line and the buffer will be transmitted to the Versatec at the maximum rate of the DMA channel.

The following is a brief analysis of the data rates anticipated in performing the data transfer from the tektronix graphics display to the Versatec hard copy device. The time required to scan the display face containing 3120 lines is 10 seconds. Therefore, 312 lines per second are transmitted to the hard copy interface. The number of samples taken of one scan line is 1365, therefore the 16-bit word rate out of the hard copy interface is given by the following calculation.

$$\text{data rate} = (1365 \text{ samples/line}) \cdot (312 \text{ lines/sec}) / (16 \text{ samples/word}) \\ = 26618 \text{ words/sec.}$$

This data rate is easily handled by the minicomputer DMA channel which is capable of over 1 million words/second. Since every third scan line from the display is passed to the hard copy device, the scan line transmission rate out of the hard copy interface will be 104 scans/second. The Versatec plotter is capable of accepting up to 120 scans/second.

In producing a hard copy of the Tektronix graphics display, the DUI minicomputer is used simply for buffer storage.

K.3.1.9 Paper Tape Reader

Since Hewlett-Packard software is provided on paper tape a high speed paper tape reader is highly desirable. So an interface should be purchased so that the HP2748B paper tape reader currently in place at RADC (OCSA) can be used with the system.

K.3.2 System Design #2

The block diagram of the Design #2 system is shown in Figure K.3-3. The features and parameters of the subsystems which make up this design are discussed in the following paragraphs. The description of those subsystems which are common to both system designs will not be repeated.

Since the DEC CAPS-11 operating system is resident on the DEC cassette unit, a high speed paper tape reader is not needed in this system.

K.3.2.1 Digital Equipment Corporation PDP-11/05 Minicomputer

The PDP-11/05 minicomputer is a general purpose machine which is widely used in scientific applications. A summary

Figure K.3-3 DESIGN #2 BLOCK DIAGRAM

of the DEC PDP-11/05 parameters is presented in paragraph K.3.3 which compares the DEC and HP minicomputers.

The memory requirements for the PDP-11/05 are determined by the combined size (15K) of the CAPS-11 operating system (4K) the DUI executive program (4K), and the Simulation Job Setup program (7K). The estimated memory requirements for the DEC minicomputer are larger because no microcode capability is available. The memory size chosen for this minicomputer is 16K.

Nine Input/Output (I/O) channel slots are required to connect the peripheral devices and special processing modules to the PDP-11/05. Four of the interfaces require a small peripheral controller (SPC) slot. The remaining five interfaces require system unit (SU) slots. Since the PDP-11/95 has only three SU slots available, two I/O extenders are required to interface all the peripherals and special modules to the PDP-11/05. The peripheral mounting box plugs into one SU in the computer mainframe and provides four SPC's. The extension mounting box plugs into the PDP unibus and provides an additional six SU's. The required I/O interface cards and other processor modules are given by the following list:

1. DC11-AB Serial asynchronous system unit and clock
2. DC11-DA Full duplex serial asynchronous line unit with modem control (plugs into DC11-AB).
3. DL11-C Current loop interface to operator's console.
4. DD11-B Peripheral mounting box (holds 4 SPC's).
5. 8-bit parallel interface to TA11-AA DEC cassette (provided with TA11-AA unit).
6. DR11-C General purpose interface to HP 9865A cassette unit.
7. BM 792-H Bootstrap loader.
8. DL11-A Asynchronous interface to Tektronix 4014-1 graphics display.

9. BA11-EF Extension mounting box (holds 6 SU's)
10. H720-E Power supply for BA11-EF
11. DR11-B DMA general purpose interface to the hard copy interface unit
12. C-PDP-11/DMA Controller and interface to the Versatec 1600A printer/plotter (this item available from Versatec).

K.3.2.2 TA11 DEC Cassette Tape System

The TA11 DEC cassette tape system will serve as the bulk storage device of the DUI.

K.3.3 Comparison of Designs

The important difference between the systems are the minicomputer characteristics, therefore the remainder of this paragraph will consider only the minicomputers. In Table K.3-1, some parameters and capabilities of the two minicomputers are listed. The outstanding differences between the devices are the following:

1. The floating point arithmetic operations of the DEC PDP 11/05 are performed by subroutines and therefore are extremely slow compared to the HP2100A which performs these operations with a combination of hardware and microprogramming.
2. The microprogram in the DEC PDP 11/05 is not accessible to the user. The HP2100A is user microprogrammable. The advantages of microprogramming are: increased speed, reduction of memory space required for the program, and flexibility to adapt the instruction set to a particular application.
3. The DEC PDP 11/05, as configured, can be programmed only in assembly language, whereas the HP2100A can be programmed in FORTRAN II and ALGOL as well as assembly language. The ability to use FORTRAN will significantly reduce the programming task and enhance stand-alone capability.
4. Hewlett-Packard maintains a large library of HP contributed and user contributed programs and micro-

Table K.3-1 HP2100A/DEC PDP-11/05 COMPARISON

	<u>HP2100A</u>	<u>DEC PDP-11/05</u>
Maximum Memory (16 bits/wrd)	32K	28K
Memory Cycle Time (ms)	0.980	0.900
Fixed Point Arithmetic (ms)		
Add	1.96	3.7
Multiply	10.7	4.3
Divide	16.7	4.8
Floating Point Arithmetic (ms)		
Add	24-60	376
Multiply	33-41	1017
Divide	52-56	2169
No I/O Channels	14	3
User Microprogrammable.	Yes	No
Programming Languages	FORTRAN ALGOL Assembly Language	Assembly Language

programs for the 2100 series minicomputers. These programs are available to the user for a small handling charge.

5. The HP2100A is more expensive than the DEC PDP 11/05. The cost of the system configured around the HP minicomputer is approximately 10% higher than the system configured around the DEC minicomputer.

K.4 DEDICATED USER INTERFACE SOFTWARE

The new software to be developed and the modification to be performed on the existing RADSIM computer program are described in this subsection. Before proceeding with the software description, it is felt that the philosophy which guided the allocation of tasks between the DUI minicomputer and the host computer should be discussed.

K.4.1 Allocation of Processing Tasks

The data processing task of the Interactive Radar Simulator is performed by the DUI minicomputer and the H635 host computer. The pertinent factors to consider are:

1. More storage is available in the H635. However, it should be recognized that although the H635 memory is quite large, 256K, the percentage of this available to a particular user during normal working hours is usually less than 25%.
2. The Central Processing Unit (CPU) of the H635 is faster. Although the H635 CPU is an order of magnitude faster than that of the DUI minicomputer, the H635 CPU is time shared by a number of users. Therefore the difference in speed between the dedicated minicomputer and the time shared H635 will probably be less than a factor of three.
3. The data transferred over the phone line should be minimized. Minimizing connect time should be understood to mean not only the problem of obtaining a channel into the time sharing system, but also the latency of the host computer in servicing the TSS user's requests. Experience has shown that the best approach is to move the desired data out of the machine in the quickest possible manner. If binary data (the most compact form) is transmitted to the DUI this will, of course, increase the load on the DUI minicomputer.
4. The DUI minicomputer is dedicated to the performance of one function, whereas the H635 is time shared by a number of users.

5. Since the RADC host computer is already installed, its resources can be considered to have a very low marginal cost and therefore, in configuring a system, it would be prudent to maximize the use of these resources.

In view of the above factors, especially 1, 2, and 5, the portion of the RADSIM computer program which performs the simulation, i.e., the simulation activity, should be executed by the host computer. The function served by the Simulation Data Loader will be moved to the DUI system. By moving the data initialization function to the DUI, all processing of user input data will be done by the minicomputer off-line and the data in a compact form, will then be passed to the host computer over the phone line. This will minimize the amount of data passed over the phone line during job submission.

In the case of the plot programs, the trade offs are not as clear-cut. If minimizing connect time is important, it would be preferable to have the plotter programs executed by the DUI minicomputer with data from the host computer transmitted in binary form. The binary data would then be recorded on magnetic tape cassette and processed for plotting by the DUI minicomputer at a later time. The disadvantage of this approach is that the Tektronix plotter software packages (Terminal Control System (TCS), Advanced Graphics-II (AG-II) and Cal Comp Preview) require more core space than is available in the DUI minicomputer. Therefore, a plotter program executed by the DUI minicomputer could not have all the features provided in the Tektronix software package. An additional advantage of this approach is that since job output data are stored on tape cassette, the data can be reused a number of times in any manner desired by user.

On the other extreme, the simulation output data would be processed by plot programs in the H635. The data transmitted to the DUI would then be in the form of commands to the Tektronix display. The disadvantage of this is that connect time to the host computer will be longer and the data received will be usable by the Tektronix display only. Rather than compromise between these two approaches, the system should be configured such that either technique can be used. If the user wants only a basic plot capability, the plot program in the DUI minicomputer will suffice. For more complicated work, the user will have the full Tektronix software package in the H635 available to him.

In addition to the above, a mode of operation should be included whereby the user can have tabular data transmitted to the DUI under format control and printed by the hard copy device. This will be useful for retrieving tabular output data or program listings. If the user desires only to view the data and requires no hard copy, then the data can be displayed on the Tektronix display. The remainder of the subsection contains a description of the new software to be developed or purchased and the modification to be performed on the existing radar system simulation model.

K.4.2 Communications Buffer Executive

The communications Buffer Executive program (EXEC) executed by the DUI minicomputer serves as a "data traffic cop." The EXEC supervises all input/output operations, provides linkage to job set up routines and plot programs, determines which tasks have the highest priority, handles user requests/answers and system answers/requests.

K.4.3 Radar System Simulation Model

The modifications to be performed on the Radar System Simulation Model (RADSIM) are the following:

1. Develop a new Simulation Data Loader computer program which will accept the job definition file from the DUI system and load the data into a permfile.
2. Modify the existing Simulation Data Loader computer program to write its output data into a permfile instead of to system allocated public disc space. This will be done so that RADSIM can still be available to non-DUI users.
3. Develop a new Data Retrieval computer program which reads simulation output data from permfile, processes it according to mode selected by the user and then transmits the data to the DUI system. The Terminal Control System and Advanced Graphics-II plot programs available from Tektronix should be included in this computer program.

The portion of RADSIM which performs the simulation is unchanged. Therefore, it is not degraded in any way by the addition of the DUI system.

K.4.4 Plot Programs

The programs for converting the simulation output data to a form compatible with the graphics display are available from Tektronix. Some modification of the Tektronix software to be installed on the H635 will be required since it is written for computers having 8-bit bytes and the RADC computer utilizes 9-bit bytes when operating in TSS mode.

The plot program for installation in the DUI minicomputer is also available from Tektronix. This program should require no modification.

The program for generating a hard copy of the Tektronix display will have to be developed. This program will issue commands to the graphics display to start the read scan of the storage surface, accept output data from the hard copy interface and store it in a buffer area, and output the data to the Versatec printer/plotter at the appropriate time.

Since the Versatec printer/plotter is essentially slaved to the Tektronix graphics display for plot hard copy generation there will be no plotter software required for the Versatec printer/plotter.

K.4.5 Simulation Job Setup Program

The computer program for the minicomputer which assists the user in the setting up of a simulation job is, for the most part, composed of four subprograms. These are briefly described in the following paragraphs.

K.4.5.1 Job Setup Controller

This subprogram serves as the supervisor of all operations performed during the job setup procedure. The Job Setup Controller asks questions of the user, accepts and processes the user answers, and passes commands to the appropriate subprograms.

K.4.5.2 Block Diagram Generator

This subprogram processes the information provided by the user and outputs the necessary commands to cause a block diagram to be formed on the graphics display. The user provides the tabular data for identification of modules through

the graphics display keyboard and the positional data for the location of blocks through the graphics display cursors.

K.4.5.3 Job Definition File Generator

The input data to this subprogram is basically the same as that provided the Block Diagram Generator, but the output is in a form that is compatible with the simulation program executed by the host computer. The structure of this data will be the same as the output data from the current Data Initialization activity. The Job Definition File which is the output from this subprogram is written onto a magnetic tape cassette. The tape cassette will then be the user's record of the input data for the simulation to be performed. A pictorial representation of the recommended data structure on the tape is shown in Figure K.4-1. The simulation job represented in this figure is composed of two configurations. The first configuration is to be executed twice for two sets of input data. The second configuration is to be executed only once.

K.4.5.4 RADSIM Catalog and Data Retrieval

As part of the Job Setup Program development effort, all data associated with the RADSIM computer program pertinent to the process of job definition should be cataloged and stored on a tape cassette. During the process of job setup, the user may at any time request that data from this file be presented either on the graphics display in the scratch pad area, or printed on the operator's console.

Figure K.4-1 JOB DEFINITION FILE STRUCTURE

K.5 INTERACTIVE RADAR SIMULATOR OPERATION

The operation of the Interactive Radar Simulator will be described from the users viewpoint in the following paragraphs. Four outstanding features of the system are the following:

1. No punch card handling required.
2. No voluminous quantity of reference material required to set up a simulation job.
3. No trips to host computer to retrieve data from simulation runs.
4. Permanent records of input job definition data and simulation output data are stored in magnetic tape cassettes which are compact and easy to handle.

The operation of the system will be described in terms of the phases through which a simulation job passes. The phases of operation of the interactive radar simulation are shown in Figure K.5-1.

K.5.1 Phase I-Simulation Job Setup

This phase is done off-line, i.e. the DUI system is not connected to the host computer. The intent in this phase is to have all information stored locally that the user must know in order to set up a simulation job. The storage media for the data will be the RADSIM catalog cassette tape. The user can, at any time, call up various lists of information which includes the following:

1. Modules available.
2. Input parameters for each module.
3. Data storage arrays used by each module.
4. The core required.
5. Input parameter units.
6. The default values of parameters.

During the job setup, the display area of the Tektronix graphics display is divided into two areas, a scratch pad

Figure K.5-1 INTERACTIVE RADAR SIMULATOR FUNCTIONAL BLOCK DIAGRAM

area for the system questions and user answers, and an area for display of the block diagram. The block diagram is written in write store mode. System questions and user answers are written in write-through mode. The proposed display layout is shown in Figure K.5-2. In the figure a partially completed block diagram is shown. The module names and reference numbers are placed inside the blocks and the input/output data storage arrays are shown over the lines drawn to connect the modules. On the right side of the figure the system has asked the user to provide a value for the parameter, LSB, which is associated with the ATOD module. The user's answer, 0.0020, is shown below the system question. The amount of data which can be simultaneously displayed in the scratch pad area is limited to approximately 32 characters. This restriction is due to the need for refreshing the displayed information at a rate of 30 times per second. The maximum data rate into the graphics display is 960 characters/second. Therefore, only 32 characters can be refreshed at the rate of 30 times per second.

As the simulation job is defined, the information required by RADSIM for performing the simulation is written on a magnetic tape cassette. When the user has completed the Simulation Job Setup procedure, the complete description of the job will be on a tape cassette and can be reused or modified at a later time. The tape created during a job setup phase can be replayed into the system and stopped at any point. The block diagram will be re-created on the display up to the point at which the procedure is stopped. The user may increment this process one block at a time by granting permissions of: proceed, proceed with write through, skip, substitute or insert steps. This will allow an existing job tape to be used in creating a new job tape.

K.5.2 Phase II-Job Submission

In this phase, the user connects to the host computer via a telephone line and has the Simulation Data Initialization program loaded into the H635. The data on the cassette will then be transmitted to the H635 and then written on a permfile in preparation for execution of the simulation. A simulation job is run as a normal batch job. This is necessary because of its large memory requirements, 60K to 75K.

Figure K.5-2 DISPLAY DURING SIMULATION JOB SETUP

AD-A031 480 GENERAL DYNAMICS FORT WORTH TEX CONVAIR AEROSPACE DIV F/G 17/9
ENDO ATMOSPHERIC-EXO ATMOSPHERIC RADAR MODELING. APPENDICES, A---ETC(U)
JUN 76 R J HANCOCK, F H CLEVELAND F30602-73-C-0380
UNCLASSIFIED RADC-TR-76-186-VOL-4-PT-1 NL

3 OF 3
ADA031480

END

DATE

FILMED

12 - 76

K.5.3 Phase III-Simulation Execution

The simulation activity is performed in the same manner as now, except the output data will be written to permfile in binary form. The current technique is to output the data under format control for subsequent card punch or transmission to a remote terminal, typically a teletype. This will improve the efficiency of the permfile utilization by at least a factor of 2, i.e. twice as much data can be stored per link of disc file space.

K.5.4 Phase IV-Retrieval of Results

In order to retrieve the output data generated by the simulation activity, the user connects to the H635 via a time sharing channel and has the data retrieval program loaded. This program can then be commanded to enter one of four submodes which perform the following operations:

1. Transmit binary data to DUI.
2. Transmit output data to DUI under format control.
3. Process output data through the Tektronix software and then transmit the data to the DUI.
4. Transmit output data to DUI under format control for listing as tabular data.

The Dedicated User Interface, depending on the submode selected, passes the incoming data to the appropriate peripheral device or devices.

1. Convert from binary to formatted data and then store on magnetic tape cassette.
2. Store on magnetic tape cassette.
3. Pass data to the Tektronix display for plotting.
4. Pass the data to the Tektronix display or the Versatec printer/plotter for listing.

Submodes one and two are provided so that data is passed over the communication channel one time and can be processed and displayed in any number of ways by the DUI system off-line from the host computer. The disadvantage associated

with this is that the DUI plot programs will not have as much capability as the H635 plot programs.

K.5.5 Phase V-Autonomous Operation

In addition to serving as the user's interface of the Interactive Radar Simulator, the DUI system can be operated as a stand-alone minicomputer system. RADC personnel who are familiar with FORTRAN can easily make the transition to the computer system configured about the 2100A, i.e. the Design #1 system. The transition to the DEC 11/05 offered in Design #2 will not be as simple since the DEC system will not support a FORTRAN compiler and must therefore be programmed in assembly language. The following two items available from Hewlett-Packard would significantly enhance the stand-alone capabilities of the Design #1 system:

- HP12907A - Fast FORTRAN Processor (Scientific Instruction Set). This board plugs into an I/O slot and provides 13 microcoded subroutines which greatly enhance the through-put efficiency of FORTRAN and other high level languages.
- HP12892A - Memory Protect Fence. This board plugs into the memory section and aids the operating system in running multiple programs.

The addition of a 7 or 9 track magnetic tape transport or a disc subsystem should be considered if the number of autonomous progressing jobs are sufficient to justify the cost.

A P P E N D I X L
R A D A R C R O S S S E C T I O N
A N A L Y T I C M O D E L D E S C R I P T I O N S

Published in Part 2 of this volume.

A P P E N D I X M
H E W L E T T P A C K A R D 9 8 2 0 A
C O M P U T E R P R O G R A M F O R P L O T T I N G
F I L T E R T R A N S F E R F U N C T I O N S

M.1 INTRODUCTION

The S-domain transfer function for a general filter can be represented by the ratio of two polynomials as shown in the following expression

$$H(S) = \frac{(S-Z_1)(S-Z_2)(S-Z_3) \dots (S-Z_{NZ})}{(S-P_1)(S-P_2)(S-P_3) \dots (S-P_{NP})} \cdot SF$$

where:

Z_i represents the i^{th} complex zero,

P_i represents the i^{th} complex pole and

SF is a scale factor.

The frequency units used in the expression above can be any frequency; i.e., KHz, MHz, GHz etc. as long as all inputs are consistent in the same units.

M.2 PROGRAM OPERATION

The filter program plots the baseband filter impulse response based on normalized pole-zero locations. The program can be used to plot magnitude in either voltage vs. frequency or power in dB vs. frequency. The theory of operation is shown on page 4-61 of the RADSIM report Vol. II, Part 1. The following are the user supplied inputs required by the program:

1. BYPASS - Flag set to zero or one; a value of one indicates that the user desires to key in the plot parameters such as frequency range and magnitude of impulse response for plotting; a value of zero indicates that the previous set of plot parameters are to be used for the next plot.

2. FSTART - Starting frequency for plot (frequency Hz, KHz, MHz, etc.)
3. FSTOP - Ending frequency for plot (frequency Hz, KHz, MHz, etc.)
4. LOG PLOT - Flag set to zero or one; zero indicates the magnitude of the impulse response will be plotted in units of voltage vs. frequency; one indicates a plot of dB power vs. frequency.
5. TOP - Maximum magnitude to be plotted (volts or dB).
6. BOTTOM - Minimum magnitude to be plotted (volts or dB).
7. INPUT - Flag set to zero or one; zero indicates use same pole zero locations as for previous plot; one indicates that new pole zero locations are to be entered.
8. NO. POLES - Number of poles to be entered.
9. NO. ZEROES - Number of zeroes to be entered.
10. SCALE - Scale factor: used to normalize magnitude of impulse response to unity.
11. POLE-R - Real part of complex pole.
12. I - Imaginary part of complex pole.
13. ZERO-R - Real part of complex zero.
14. I - Imaginary part of complex zero.

Once all the required input data has been supplied by the user, the filter impulse response is plotted; however, no axes will be drawn or labeled. All inputs are listed on the HP9820 calculator printer so that the user may label the plot if desired. Tables of normalized pole-zero locations for Chebyshev filters are listed in Volume IV, Part 1, Appendix E.

M.3 SAMPLE PROBLEM

The following sample problem will be a plot of the impulse response of a six pole Chebyshev filter with 0.1 dB ripple. The HP9820 calculator printer listing which shows user supplied inputs is shown in Figure M.3-1.

The output impulse response plotted in volts vs. frequency is shown in Figure M.3-2 and in dB vs. frequency is shown in Figure M.3-3. The axes and labels have been done by the user based on the input listing shown in Figure M.3-1.

M.4 HOW TO USE THE FILTER PROGRAM RESULTS WITH RADSIM

The primary purpose of running the filter program is to generate accurate input data for RADSIM and in particular for Module FILT in RADSIM. This subroutine simulates a continuous filter which is defined by an S-domain polynomial transfer function.

When executing FILT, the user must use the impulse response in terms of voltage vs. frequency. The amplitude must be normalized to unity gain and the pole-zero locations must be modified to reflect the desired bandwidth of the filter to be used in the simulation job.

Suppose the input job stream, for this example, has been set up to reflect consistent frequency inputs in gigahertz (GHz) and time inputs in nanoseconds (ns). The frequency scale in Figures M.3-2 and M.3-3 is now constrained to units in GHz. Suppose that the desired six-pole Chebyshev filter with 0.1 dB ripple has a 3 dB bandwidth of 50 MHz and unity gain at the peak of the impulse response. The following procedure would be used to modify the pole-zero locations to reflect the desired 50 MHz 3 dB bandwidth and to calculate a scale factor (SF) to normalize the peak of the impulse response to unity. In Figure M.4-1 the 3 dB bandwidth extends from -1 GHz to +1 GHz. If a lowpass filter is to be simulated, the 3 dB bandwidth would extend from DC (0 frequency) to 1 GHz; however, for a bandpass filter, the bandwidth will be measured symmetrically about zero. To modify the pole locations, the following procedure is used.

1>X1	1 00000	BYPASS
1		
-3>R45H	-3 00000	FSTART
3>R4FH	3 00000	FSTOP
1>R47H	10000	FI
0>R70H	0 00000	LOG PLOT
2		
10>R54H	10 00000	TOP
0>R55H	0 00000	BOTTOM
F1>T		
6>R43H	6 00000	NO. POLES
0>R44H	0 00000	NO. ZEROS
1>R50H	1 00000	SCALE
19		
- 10494112>R2H	- 10494	Real part of first complex pole
- 96668431>R1Z+1		
F		
	96668	Imaginary part of first complex pole
	2 00000	
19		
- 10494112>R2H	- 10494	
- 96668431>R1Z+1		
F		
	96668	2nd complex pole
	4 00000	
19		
- 28670446>R2H	- 28670	
- 78766283>R1Z+1		
F		
	78766	3rd complex pole
	6 00000	

Figure M.3-1 HP9820 LISTING SHOWING FILTER PROGRAM INPUTS

19 - 28670448>R2H - 28670 - 28766203>R2+1 + - 28766 8. 00000	}	4th complex pole
19 - 39164560>R2H - 39165 25902228>R(Z+1) + 25902 10. 00000		5th complex pole
19 - 39164560>R2H - 39165 - 25902228>R(Z+1) + - 25902 12. 00000	}	6th complex pole
20 22		20. 00000

Figure M.3-1 HP9820 LISTING SHOWING FILTER PROGRAM INPUTS (Cont.)

**COPY AVAILABLE TO DDC DOES NOT
PERMIT FULLY LEGIBLE PRODUCTION**

M-5

Figure M.3-2 6-POLE CHEBYSHEV FILTER, 0.1 dB RIPPLE

Figure M.3-3 6-POLE CHEBYSHEV FILTER, 0.1 dB RIPPLE

$$(2 \times 10^9 \text{ Hz})\beta = 50 \times 10^6 \text{ Hz}$$

$$\beta = 50 \times 10^6 / 2 \times 10^9$$

$$\beta = .0250$$

Each normalized pole location is multiplied by β to determine the new pole locations which define the 50 MHz filter.

The scale factor, SF, is defined according to the following expression.

$$SF = (1/A)(\beta)^n$$

where

A = the amplitude of the impulse response

β = pole multiplication factor

n = number of poles

The scale factor for this example would be:

$$SF = (1/8.3)(.0250)^6$$

$$SF = 2.9415 \times 10^{-11}$$

If the filter transfer function contained zeroes, then the scale factor would contain another factor as follows:

$$SF = (1/A)(\beta)^n / \beta^m$$

where

m = number of zeroes

These results are now used by RADSIM module FILT.

An HP9820 calculator listing of the filter program is shown in Figure M.4-2.

Figure M.4-1 6-POLE CHEBYSHEV FILTER, 0.1 dB RIPPLE

0: TBL 3:TBL 6:END 5:TRC 3:OPEN 4:ENT "BYPASS":N:IF X=0:
 GTO +3 E
1: ENT "FSTART",R45,"FSTOP",R46,"FI",R47,"LOG PLOT?",
 R70 E
2: ENT "TOP",R54,"BOTTOM",R55:HOR 1:SCL R45,R46,R55,R5
 4 E
3: IF R70=1:SFG 5:TNT (R54/20) TO R56:TNT (R55/20) TO R57
 E
4: HOR 4:R45 TO R48 E
5: ENT "INPUT?",Y:IF Y=0:SFG 1 E
6: PI R48 TO R41 TO X:0 TO Y E
7: GSB "FILT" E
8: IF FLG 6=0:SPC 3:SFG 6 E
9: IF FLG 5=0:JMP 4 E
10: ABS X TO X:IF R57>X:R55 TO X:JMP 3 E
11: IF X>R56:R54 TO X:JMP 2 E
12: 20LOG X TO X E
13: PLT R48,X E
14: R48+R47 TO R48:IF R48>R46:GTO 0 E
15: GTO 6 E
16: "FILT":IF FLG 6=0:SPC 2:PRT "FILT":SPC 1 E
17: X TO R49:Y TO R50:0 TO Z:IF FLG 1=1:JMP 5 E
18: TRC 1:SFG 1:ENT "NO. POLES",R43,"NO. ZEROES",R44,"S

Figure M.4-2 HP9820 LISTING OF FILTER PROGRAM

```
19: ENT "POLE = R",R2,"I",R(Z+1);Z+2 TO Z;JMP Z=2R43 E
20: 20 TO Z;JMP (R44=0)+1 E
21: ENT "ZERO = R",R2,"I",R(Z+1);Z+2 TO Z;JMP Z=2R44, 20 L
22: NOR 10 TO C TO Z;1 TO B;IF R43=0;JMP 3 E
23: -RZ TO X;R48-R(Z+1) TO Y;GSB "POL" E
24: BX TO B+C-Y TO C;Z+2 TO Z;IF 2R43>Z;JMP -1 E
25: 20 TO Z;IF R44=0;JMP 3 E
26: -RZ TO X;R48-R(Z+1) TO Y;GSB "POL" E
27: XB TO B+C-Y TO C;Z+2 TO Z;IF 2R44>Z-20;JMP -1 E
28: BR49R53 TO X;C+R50 TO Y;RET E
29: "POL";IF Y=0;ABS X TO X;RET E
30: IF X=0;ABS Y TO X; PI Y/2X TO Y;RET E
31: RTN (X/Y) TO R52; SQR (XX+YY) TO X;R52 TO Y;RET E
32: END E
```

Figure M.4-2 HP9820 LISTING OF FILTER PROGRAM

*MISSION
of
Rome Air Development Center*

RADC plans and conducts research, exploratory and advanced development programs in command, control, and communications (C³) activities, and in the C³ areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

