					-,								-				-	-				+	+	+			+					_	+	+	+	_
-	1	16	-1	T	-	0	E	R	1//	= 6	0	7_	C			PEE	0	10	2	P		-0		90	0	121	C			7	1	0	+	+	+	_
_	1	10	. 0	'			-	11	V	V			al	r		100	117	1)-	AL	تار	19	11	10	10	1010	0			2	-	-				-
		\neg					_			-	H				+							+	+	-			+	+	-		-	-	+	-	+	_
a /		no r	∞	10		O 1	1			0	A	.0	1		_		-			0				101	0.0		+	1	-1	0	. ~			1	1.	-
	N	AIR	110	/	u	U	1.0	11		H	XL	10	IX			2		9	37 8	m	1	0	4	ICIT	es	001	004	ecte	a	en	กุย	8	48	ren	ns	_
		+						to	~~	01	110	to			L	2000			1		16		V 0		00	0.0.	1	- 00		ha	(3)			A	0	_
		+					10	161	/ ()	iec	1/0	16	-	DUS	STE	ems	J	Q.r	19		me	er	-6	YOU	1011	ien	1	211	ow	19		M	Orn	ron	ion	_
-		-					4				Barbara III										-	-	-	/	_		+		-	V	0.0	enus	MI.	+	-	_
-	-	-			_		_U	0		œ	0	ex.	C	an	9	ed-		. 0			2		+			77			-				1	+		_
-		-					-	N	3.0	13.7	137	2 1					90	10,9	M			-	131	D/6	0.0	U .			2	33	177	31, N	V	+	+	_
0	P	A.	~	0.0	d	. 4	•	~		<u>L</u>					+		120		1000	1			A	1		- 5	_	1		2.0	1.		10	+-	-	_
	161	re	A GO	NE	U /	un	6	51	40	The same	m)s	S		0	(devi	ces	0	40	J	90	ens	ites	SMA	فىق	<u>Q</u>	+	reh	ang	9	w	mer	U	+	-	_
-	-	-	-				-	- 4			40	0	F					0	Ĵ.		V	1 7		1	~ ∆ 0		^	1	U		-			+	-	_
-	-	-					0	ec	th	vgr	1	d		or	-	more	9	er	g	Si	St	em	S	(()	eti	20r	res	/		3.5	771		~	-	-	_
-	-	-					_			10	1	7	1.6			- 1	-	-	1	U		G	1	-	<u> </u>						70	-hu	+	-	+	_
-	-	-		-						6	(n) () t	er	5	wite	h	r	wo)	() m (lge	5			210	5.)	زعة	184	137	+	-	-		-
-		-														-				-		-	0	-		_	+	+					+	-	-	_
	3	1	•								1.	,		16	1		-				- (F	-	1			+	-	4.		_	_	_	_	4	_
3 4	n	0_	SU	5	te	m	_		0	_8	dec	rice	1	the	†	use	5	05	0)no	Vic	les	en	g -	USE	1	OP	plica	esti	005	2	0	r	-	\blacksquare	_
-	-1		U	-74	ben!	183		Lai	7-	W	. 6	2	-	1837	10	00 10	10/		V		5,00	478	US.	-		1	100	0	78	14	90	1	ting	a.N.	1	0
-	-	_	-		-1			16	th	00	X	-	2,4	Son	10	25		F		الر	ve	0 5	erve	1	Ų		5	sen	ver	- '/	_	4	+	1	4	_
-	-	-		4	-	1	179	100	6,7	_10	540		1	A	1	Xan	40	- 6	04	_	OH	- /	1.03	- 5	XQ	Al	J	400	CC		6	10 ·	43	der		_
-		-	-	-		*	1	Ne	4	20	me	1	20	elec	9	e	nd	30	131	em	S	(eco	we	a	ney	5	1	2#	4	ne	ed	90	Od		
-		-					-	-(\mathcal{L}		-			0	-	neta	200	U	30	73	(1)		904		233	U	7	5		37	1	190	_	V	-	
-		-																							1.2		- "				- 1				1 1	
-	-	\dashv	-	-		岑	-	in	d	21	130	em	5 (het	1	are	a	חח	ect	ed		to	the		nte	net	0	re_	Ols	0	rep	tene	d	TO	23	_
-							A	×		U	/	00	sts	,	00	cou	se	th	ey	ho	st	Cr	10)	JM	err	iet.	ep.	lica	dio	102		'	4	_	-	
	0	00		N	310	G_												21	U	L L	7.25	2/1	43	101	19	AC.	Va	3	*		4		+	+		
	2	(TO	101	Q _m	ne F	VI		ĺ	M	ere	2cc	til	M	M	ode	S										+	A B			4	-	+	-		
-	-	-	1						1	CVK	L	1	0	15 C	1	. en	Vo	Sid		10		9/1-		70	37	m'	-	HIT.	191	ЦО	-	+	+	-	+	
-	\dashv	-	-						U	er.	T		0	erve	r		-			-/	_		-				-	u		-	-	+	+	-	-	_
-	-	-	-	Н					06)	•			+	-								-							-	+	+	+		_
-	-	-	-				N.		Lò	2 F				0 /	+	-			-	-	-	-					-		-	-	-		+	+		
	la l	-	Ť.		<u> </u>	194	1.		4				0		1		1		2		-	4	1			- 11		-				PA.	+	٠.	-	_
-	X 14	1	he	50		40	oe	S	_a	me	n	eve	la	nt	_	0 0	nd	Su	29	em	2	01	rly	1	egs	vidl	ess	0	1	100	J	Hh	e (end		
-	-	-	-			-	-									Dr.							0			4	+	+				. 1	+	-		_
-	-	-		5	148	yer	MS		_a	re	(on	nec	teo		to	ea	ch	_0	the	5	4				-	+	-	1	0	\sqcup	1	+	-		-
-	-	-	-	-											1					-	-	-					-			-			+	+		_
3	\wedge	0 .			0				۸.		-	00	0		1	. / .			1				1	11				Α.	\	1		-	+	1 1	h	_
	-	Vit	M		_0	PA	UU		-VJ	10		2	F	(nO	ae	ls	9	en	et	e	_0	n	of	M	ve	0	pro	eti	On	- (aj	ger	0	1	118	_
+	+	+	-	-		T	0		1	P				- No.	+	+	V			-	-		-			- 1		+		11.	0	1	+	1	-	_
-	+	+	-	+]2				t	$\langle \cdot $	m	00	lel	/.					-	1		1			+	+		1	Pres.	-		+	+	-	
+	+	+	+	+	*		0		!	_ A		2	1	20	\ **	On	1	-1			1	Λ.							1	1111	4	- 1	+	+	+	_
+	-	+	-		1		5/1	171	114	T	101	Λ_	W	MA		pro	100	XX		ar	6	en	1)-6	nq	On	0+0	cols				4	+	+		
-	+	-	+				V	V		16	-		-	U	=	4			-	-	-	+		*		1	Da	ter	1			2	+	+		_
+	+		1		۸ .		Q	MC	101						+								-	-	(market of		1100	ier .	7) ,	3	`	+	+	
-	-	- 1		7-1	Ŋŷ	A			-						+	-			,		-	+	+		8)-		K	out	ers	-	+		-
-	-	+	-	-				7							-/	_			_	-	-				-(1	\vdash	1		1		1	-	, —		
+			-		-	H		-				7				+			- 1				-				+	1		1		1				
+	-	-	-	-				1	7		_	_		_	-				-		-			1		1	-	6)	/	1	-	1	+		_
-	-	+	-	-													8		- 1			1		5		1	+	0	1	_<)	-	-		9	
+	-		-	-			_	_	/					- 1		+			-		-						1	100	ute				-	_	اب	
				+	1	1.	2 - 0	1							0	2	-			-							_	_			+			-		_
	-		-	-		ly	JYV	T							V	erre	r		-	-	1	1					+	-		-	-	-	90	cre	r	
-	+		-												+	- 1						he	M				+	-				-	+			
+	+	-		-											+	-					+		-		-	+	+	-		_	-	-	-	+		_
														1					1																	

the client/server model, all end systems are divided into elients and servers each designed for specific purposes. * CLIENTS have on active role and initiate a communication session by sending requests to servers. - they must have knowledge of the available servers the services they provide - they can communicate with servers only * SERVERS have a possive role and respond to their clients by acting on each request and returning results. - one server generally supports numerous clients · Somare rules: * TCP/IP uses different pieces of software for many protocols to implement "climt" and "server" roles. * Some devices may run both dient and server software. · Transactional roles: * In any exchange of information, the client is the entity that initiates communication or sends a guery; the server responds usually by sending information. & types or servers * Iterative servers which iterates through following steps: @ Wait for a client request to arrive 2) Process the request and send the process look (3) Go book to step 1 - They handle clients sequentially, tinishing with one chent before serving the next.

* Thin (oles slim or lean) - Thin clients are devices / programs that have very limited trunctionality and depend heavily on their sever counterports · Benefits / drewbacks of thin clients + no vinses, square, thefts - Geners one the central point of railure + easy to legg the sytuare - systems tend to be pringers proprietary + Cower TCO + fever points of failure - Multimedia - ich applications require a significant amount of boundwith to trunction to their maximum potential · In general application software can be divided into 3 logical Hiers * Presentation logic * Application Logic * Dotabase l'ógic · Each tier in the software is responsible for a specific task in the opplication o This logical layering of application software does not need to be the same Presentation logic p Application [Application logic Detabase logic

· Presentation logic is responsible for displaying the information and interfacing with the user. Application logic processes commands, makes logical decisions, Performs colculations, and coordinates the application Dotabase logic verers to the management of underlying drabases · Physical Tiers * I - tier anchitecture is used to describe systems in which all of the processing is alone on a single post. * 2 - tier architective (ake Het) is used to describe client/sever systems, where clients requests resources end servers respond directly to these requests, using there own resources Server Client Domb Terminal! This Client Fot Wient For Grent Thin Client Client? Presentation Presentation ! Presentation Presentation Presentation Application Aglication Application Presentation Detapose Application Presentation Application Application Detabase Application refolose Detabase Ostabose Dotobox Ustobox Mainfrome Thin server Thin server Senter Fat Server Fot Sewer Host-based Cooperative Server-based processing Chient-based
processing processing