大学物理 B---刚体力学作业

- 1. 关于刚体对轴的转动惯量,下列说法中正确的是: ()
 - (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关,
 - (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.
 - (C) 取决于刚体的质量、质量的空间分布和轴的位置.
 - (D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.
- 2. 如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg. 设A、B两滑轮的角加速度分别为 β_A 和 β_B ,不计滑轮轴的摩擦,则有:

(A) $\beta_A = \beta_B$.

(B) $\beta_A > \beta_B$.

(C) $\beta_A < \beta_B$.

- (D) 开始时 $\beta_A = \beta_B$, 以后 $\beta_A < \beta_B$.
- 3. 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为 $\omega_1 = 20\pi \, \text{rad/s}$,再转 60 转后角速度为 $\omega_2 = 30\pi \, \text{rad/s}$,则角加速度 $\beta = 2 \cdot \text{D 8 3 rad/s}$,转过上述 60 转所需的时间 $\Delta t = 4 \cdot \text{S}$.
- 4. 质量为 m,半径为 R 的匀质转盘,以角速度 ω_0 绕中心轴作匀速定轴转动,则转盘的转动动能为 $\frac{1}{2}$ mR^2w^2 ,角动量大小为 mR^2w_0 .
- 5. 一质量 $m = 6.00 \,\mathrm{kg}$ 、长 $l = 1.00 \,\mathrm{m}$ 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量 $J = ml^2/12$. t = 0 时棒的角速度 $\omega_0 = 10.0 \,\mathrm{rad \cdot s^{-1}}$. 由于受到恒定的阻力矩的作用, $t = 20 \,\mathrm{s}$ 时,棒停止运动. 求: (1) 棒的角加速度的大小; (2) 棒所受阻力矩的大小; (3) 从t = 0 到 $t = 10 \,\mathrm{s}$ 时间内棒转过的角度.

解: U) $t_0 = 0$ sof $W_0 = 10 \text{ rad/s}$, $t_1 = 1$ sof, $W_1 = 0$ rad/s *格象为对连度大山 $\beta = \left| \frac{W_1 - W_0}{t_1 - t_0} \right| = \left| \frac{0 - 10}{n - 10} \right| = 1 \text{ rad/s}$ (2) 阳力矩大小 $M_f = \int_0^\infty m L^2/12 \cdot \beta = 6 \times 1^2/12 \times 1 = 0.5 N.m$ (3) $W = W_0 - \beta t$ $\theta = \int_0^\infty w dt = \int_0^\infty (w_0 - \beta t) dt$ $= [W_0 t - \frac{1}{2}\beta t^2]_0^\infty$ $= 10 \times 10 - \frac{1}{2} \times 1 \times 10^2$ $= 5 \times 10 \times 10^2$ 6. 如图所示,设重物的质量分别为m,定滑轮的半径为r,对转轴的转动惯量为J,轻绳与滑轮间无滑动,滑轮轴上摩擦不计. 设开始时系统静止,试求t 时刻滑轮的角速度.

- 7. 一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O转动。棒的质量为m=1.5 kg,长度为l=1.0 m,对轴的转动惯量为 $J=ml^2/3$. 初始时棒静止。今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图。子弹的质量为m'=0.020 kg,速率为v=400 m·s⁻¹. 试 m, l 问:(1) 棒开始和子弹一起转动时角速度 ω 有多大?
- (2) 若棒受到大小为M,=4.0 N·m的恒定阻力矩作用,棒能转过的角度? よる単マ計ち由的 をこれ でき ブーニ がし の

超额量守恒 m/v/=(J+J)W四 J=ml/30 得W=15.4~ad/s

(P) 由网络黎彻姆动能定理