

Claudio Arbib Università dell'Aquila

Ricerca Operativa

Poliedri: vertici e punti estremi

Sommario

- Poliedri
- <u>Diseguaglianze valide</u>
 - Definizioni: iperpiani di supporto, facce, vertici, spigoli
 - Esempi
- Insiemi convessi, poliedri e punti estremi
- Vertici e punti estremi

Poliedri

Definizione:

Siano $\mathbf{a} \in IR^n$, $b \in IR$. L'insieme $H = \{\mathbf{x} \in IR^n : \mathbf{a}\mathbf{x} = b\} \subseteq IR^n$ si dice iperpiano. L'insieme $S = \{\mathbf{x} \in IR^n : \mathbf{a}\mathbf{x} \leq b\} \subseteq IR^n$ si dice semispazio chiuso.

Definizione:

Un poliedro convesso è l'intersezione di un numero finito m di semispazi chiusi di IR^n .

Quindi $\forall \mathbf{A} \in \mathbb{IR}^{m \times n}$, $\mathbf{b} \in \mathbb{IR}^m$ l'insieme

$$P(\mathbf{A}, \mathbf{b}) = \{ \mathbf{x} \in IR^n : \mathbf{A}\mathbf{x} \leq \mathbf{b} \} \subseteq IR^n$$

definisce un poliedro. In particolare, \emptyset , H, S, IR^n sono poliedri.

Diseguaglianze valide

Definizione:

Una diseguaglianza $\mathbf{a}\mathbf{x} \leq b$ si dice valida per un poliedro $P \subseteq \mathrm{IR}^n$ se $P \subseteq \{\mathbf{x} \in \mathrm{IR}^n : \mathbf{a}\mathbf{x} \leq b\}$. L'insieme $H = \{\mathbf{x} \in \mathrm{IR}^n : \mathbf{a}\mathbf{x} = b\}$ si dice inoltre iperpiano di supporto di P.

Esempio:

Sia P definito dalle disequazioni $x_1 \ge 0$, $x_2 \ge 0$, $x_1 + 2x_2 \le 4$ Le tre disequazioni che definiscono P sono evidentemente valide Altrettanto si può dire per la diseguaglianza $3x_1 + 4x_2 \le 12$ La diseguaglianza $x_1 + x_2 \le 3$ non è invece valida per P

Diseguaglianze valide

Definizione:

Sia P un poliedro di IR^n e $H = \{ \mathbf{x} \in IR^n : \mathbf{a}\mathbf{x} = b \}$ un suo iperpiano di supporto. Allora l'insieme $F = H \cap P$ si dice faccia di P.

Definizione:

Sia F una faccia di un poliedro P.

Se dim(F) = 0, allora $F = \{v\}$, e il vettore v si dice vertice di P.

Se dim(F) = 1, allora F si dice spigolo di P.

Se infine dim(F) = dim(P) - 1, allora F si dice faccia massimale di P.

Esempi

Per ogni poliedro $P \neq IR^n$, l'insieme \emptyset è una faccia di P.

Sia P definito dalle disequazioni $x_2 \ge 0$

$$3x_1 + 2x_2 \le 6$$

Sono facce di *P*: il punto (2, 0) (vertice)

le semirette $\{x \in \mathbb{R}^2: 3x_1 + 2x_2 = 6\}$

 $\{\mathbf{x} \in \mathbb{R}^2: x_2 = 0\}$ (facce massimali)

Insiemi convessi e punti estremi

Definizione:

Un insieme $Q \subseteq IR^n$ si dice convesso se comunque si prendano \mathbf{u} , $\mathbf{v} \in Q$ ogni punto della forma $\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}$ con $0 \le \alpha \le 1$ appartiene ancora a Q.

Teorema:

P(A, b) è effettivamente un insieme convesso.

Dim: $\mathbf{A}\mathbf{u} \le b$, $\mathbf{A}\mathbf{v} \le b \Rightarrow \mathbf{A}[\alpha \mathbf{u} + (1-\alpha)\mathbf{v}] = \alpha \mathbf{A}\mathbf{u} + (1-\alpha)\mathbf{A}\mathbf{v} \le \alpha b + (1-\alpha)b = b$

Definizione:

Sia Q convesso. Allora \mathbf{x} si dice punto estremo di Q se non esistono due punti distinti \mathbf{w} , $\mathbf{z} \in Q$ diversi da \mathbf{x} e tali che $\mathbf{x} \in [\mathbf{w}, \mathbf{z}]$.

Nota: se Q non è convesso cosa accade?

Poliedri e punti estremi

Sia $P = P(\mathbf{A}, \mathbf{b}) \subseteq IR^n$, e sia \mathbf{a}_i l'*i*-esima riga di \mathbf{A} .

Dato $\mathbf{u} \in P$, alcune delle disequazioni di P saranno soddisfatte da \mathbf{u} con il segno "<", altre con il segno "=".

Sia $I(\mathbf{u})$ l'insieme degli indici di riga per i quali si ha $\mathbf{a}_i \mathbf{u} = b_i$.

Sia infine A_I (sia b_I) la sottomatrice di A (di b) contenente le righe con indici in $I(\mathbf{u})$.

Teorema:

Il punto **u** è estremo per *P* se e solo se $rg(\mathbf{A}_I) = n$.

Esempio

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 2 & 0 & 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \qquad I(\mathbf{u}) = \{1, 3\}$$

$$\mathbf{A}_{I} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix} \quad \mathbf{b}_{I} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$

$$rg(\mathbf{A}_I) = 2 < 3$$
 \Rightarrow **u** non è punto estremo di P

Poliedri e punti estremi

Dimostrazione:

(\Leftarrow) Per assurdo. Sia **u** estremo per P ma $\operatorname{rg}(\mathbf{A}_I) < n$. Allora il sistema omogeneo

$$\mathbf{A}_I \mathbf{x} = \mathbf{0}$$

ammette una soluzione non nulla x*. Poiché per def. di I(u) si ha

$$\mathbf{a}_i \mathbf{u} < b_i$$
 $i \notin I(\mathbf{u})$

 $\exists \varepsilon > 0$ tale che $\mathbf{w} = \mathbf{u} + \varepsilon \mathbf{x}^* \ \mathbf{e} \ \mathbf{z} = \mathbf{u} - \varepsilon \mathbf{x}^* \ \text{sono soluzioni di}$

$$\mathbf{a}_i \mathbf{x} \le b_i$$
 $i \notin I(\mathbf{u})$

e inoltre per ogni $i \in I(\mathbf{u})$ si ha

$$\mathbf{a}_i \mathbf{w} = \mathbf{a}_i \mathbf{u} + \varepsilon \mathbf{a}_i \mathbf{x}^* = b_i$$

$$\mathbf{a}_i \mathbf{z} = \mathbf{a}_i \mathbf{u} - \varepsilon \mathbf{a}_i \mathbf{x}^* = b_i$$

da cui si deduce che w, z sono punti di P.

Poliedri e punti estremi

Segue dimostrazione (\Leftarrow):

Inoltre evidentemente $\mathbf{w} \neq \mathbf{z}$, e $\mathbf{u} = \frac{1}{2}\mathbf{w} + \frac{1}{2}\mathbf{z}$. Quindi $\mathbf{u} \in [\mathbf{w}, \mathbf{z}]$, ma allora non è punto estremo.

(\Rightarrow) Supponiamo ora che $\operatorname{rg}(\mathbf{A}_I) = n$, ma **u** non sia estremo per P.

Quindi \exists w, $z \in P$, distinti e diversi da u, tali che $u \in (w, z)$, cioè $\exists \alpha$ strettamente compreso tra 0 e 1 tale che $u = \alpha w + (1-\alpha)z$.

Siccome w, $z \in P$, si ha $Aw \le b$, $Az \le b$.

Ora, se per qualche $i \in I(\mathbf{u})$ si avesse $\mathbf{a}_i \mathbf{w} < b_i$ oppure $\mathbf{a}_i \mathbf{z} < b_i$ ne seguirebbe

$$\mathbf{a}_i \mathbf{u} = \mathbf{a}_i [\alpha \mathbf{w} + (1 - \alpha) \mathbf{z}] = \alpha \mathbf{a}_i \mathbf{w} + (1 - \alpha) \mathbf{a}_i \mathbf{z} < b_i$$

contraddicendo la def. di $I(\mathbf{u})$. Quindi $\mathbf{a}_i \mathbf{w} = b_i e \mathbf{a}_i \mathbf{z} = b_i \forall i \in I(\mathbf{u})$.

Ma allora $\mathbf{A}_I \mathbf{x} = \mathbf{b}$ ammetterebbe 2 soluzioni distinte, contraddicendo l'ipotesi su $rg(\mathbf{A}_I)$.

Corollari

Corollario 1:

Un punto estremo **u** di un poliedro P è soluzione unica del sistema $\mathbf{A}_I \mathbf{x} = \mathbf{b}_I$.

Corollario 2: Un poliedro P ha un numero finito di punti estremi.

Corollario 3: Un poliedro definito da una matrice A con meno righe che colonne non possiede punti estremi.

Vertici e punti estremi

Teorema: Un vettore $\mathbf{u} \in P$ è punto estremo se e solo se è un vertice di P.

Dimostrazione:

(⇐) Per assurdo. Se **u** è un vertice di *P* allora esiste un iperpiano di supporto

$$H = \{\mathbf{x} \in \mathbb{IR}^n : \mathbf{h}\mathbf{x} \le k\}$$

tale che $H \cap P = \{\mathbf{u}\}.$

Se però **u** non è punto estremo, P contiene **w** e **z** distinti e diversi da **u**, ed $\exists \alpha$, $0 < \alpha < 1$ tale che

$$\mathbf{u} = \alpha \mathbf{w} + (1 - \alpha) \mathbf{z}$$
.

Siccome $\mathbf{h}\mathbf{x} \leq k$ è valida per ogni punto di P e \mathbf{w} , $\mathbf{z} \in P$, deve aversi

$$\mathbf{h}\mathbf{w} < k$$
 $\mathbf{h}\mathbf{z} < k$

(non vale il segno "=" perché $H \cap P = \{\mathbf{u}\}$, quindi $\mathbf{w}, \mathbf{z} \notin H$).

Combinando con coefficienti α e $(1-\alpha)$ si ha

$$\mathbf{h}\mathbf{u} = \mathbf{h}[\alpha \mathbf{w} + (1-\alpha)\mathbf{z}] = \alpha \mathbf{h}\mathbf{w} + (1-\alpha)\mathbf{h}\mathbf{z} < k$$

che contraddice l'appartenenza di **u** a *H*.

Vertici e punti estremi

Segue dimostrazione:

 (\Rightarrow) Sia ora **u** punto estremo di P. Mostriamo che esiste un iperpiano di supporto H che con P ha in comune solo **u**.

Definiamo

$$H = \{ \mathbf{x} \in \mathbb{IR}^n : \mathbf{h}\mathbf{x} = k \}$$

con
$$\mathbf{h} = \sum_{i \in I(\mathbf{u})} \mathbf{a}_i, k = \sum_{i \in I(\mathbf{u})} b_i.$$

Chiaramente, $\mathbf{h}\mathbf{x} \leq k$ è valida per P (somma delle righe).

Inoltre $\mathbf{h}\mathbf{u} = k$, dunque $H \cap P \supseteq \{\mathbf{u}\}$.

Facciamo vedere che **u** è l'unico elemento di $H \cap P$.

Vertici e punti estremi

Segue dimostrazione (\Rightarrow) :

Sia $y \in H \cap P$. Si ha allora

$$\mathbf{a}_i \mathbf{y} \leq b_i \text{ per ogni } i \in I(\mathbf{u})$$
 (in quanto $\mathbf{y} \in P$)

$$\mathbf{h}\mathbf{y} = k \qquad \qquad \text{(in quanto } \mathbf{y} \in H\text{)}$$

Dalla prima si ha $b_i - \mathbf{a}_i \mathbf{y} \ge 0$. Dalla seconda $\sum_{i \in I(\mathbf{u})} [b_i - \mathbf{a}_i \mathbf{y}] = 0$.

Poiché la somma di quantità non negative è nulla se tutte le quantità sono nulle, si ricava $b_i - \mathbf{a}_i \mathbf{y} = 0$ per ogni $i \in I(\mathbf{u})$.

Quindi y è soluzione di

$$\mathbf{A}_{I}\mathbf{y} = \mathbf{b}_{I}$$

ma per il Corollario 1 poiché u è punto estremo, esso è anche l'unica soluzione di questo sistema.

Quindi $H \cap P = \{\mathbf{u}\}.$

fine dimostrazione