

COMMUNICATIONS, INC.

SERVICE MANUAL

VHF FM TRANSCEIVER

MODEL XLH-257

TABLE OF CONTENTS

SECTION	1	GENERAL INFORMATION
		<pre>1-1 Description 1-2 Equipment Supplied 1-3 Specifications 1-4 Options 1-5 Equipment Not Supplied 1-6 Installation 1-7 Operation</pre>
SECTION	2	CIRCUIT DESCRIPTIONS
		2-1 Receiver Description 2-2 Transmitter Description 2-3 Synthesizer 2-4 Control Board 205 Decoders 2-6 Power Supply
SECTION	3	PROGRAMMING
		3-1 General 3-2 PROM Insertion 3-3 Radio Programming
SECTION	4	XLH257R
SECTION	20 TO 10 TO 10	
SECTION	utrut ye, suks	4-1 General Description 4-2 XLH257R Conversion 4-3 Frequency Listing
SECTION	5	4-1 General Description 4-2 XLH257R Conversion
	Markey Auto	4-1 General Description 4-2 XLH257R Conversion 4-3 Frequency Listing
	Markey Auto	4-1 General Description 4-2 XLH257R Conversion 4-3 Frequency Listing RECEIVER AND TRANSMITTER ALIGNMENT 5-1 Receiver Alignment
SECTION	5	4-1 General Description 4-2 XLH257R Conversion 4-3 Frequency Listing RECEIVER AND TRANSMITTER ALIGNMENT 5-1 Receiver Alignment 5-2 Transmitter Alignment

ETYSTAND TO SDEAT

1-1 DESCRIPTION

The XLH257 is one of Regency's XL2000 Series transceivers. The XLH257 is an eight-channel, fully synthesized, VHF FM transceiver. It is designed for operation in the 148 to 162 MHz communications band.

The eight channels are programmed into a Programmable Read Only Memory (PROM). Inside the PROM are transmitter, receiver, and CTCSS tone frequency codes. The PROM also contains control bits for transceiver control.

The XLH257 has six modes of operation. These are Simplex with or without CTCSS, full ½ Duplex with or without CTCSS, or Simplex mix with limited ½ Duplex with or without CTCSS. These restrictions are discussed in greater detail later.

The receiver section is a double-conversion receiver with a first IF frequency of 10.695 MHz and a second IF frequency of 455 KHz. Crystal and ceramic IF filters are used for excellent selectivity. The maximum frequency spread of receive frequencies is 1.5 MHz (+.75 MHz from a center-tuned frequency).

The transmitter is all solid-state with an output power of 25 watts. The transmitter modulation is direct FM which is factory set at +5 KHz deviation. The transmitter is type accepted under Parts 21, 81, and 90 of the FCC Rules and Regulations.

1-2 EQUIPMENT SUPPLIED

- a. 1 Transceiver
- b. 1 Microphone w/connector
- c. 1 Mobile mounting bracket w/hardware
- d. 1 DC power cord and fuse

1-3 SPECIFICATIONS

Transceiver specification Drawing No. 304-295 (see following page)

49-162 MHAX 25% MAX	GENERAL	NOMINAL	GUAR				ZONE REV		DESCRIPTION	DATE	T
140 16 16 16 16 16 16 16 1	CHANNELS	80	4,6 OR B				A	1	20	2-2-	81 Hillan
Secretarion Teace 230% Secretarion 250% Secretarion S	-		148-162MHZ								
Section Color Co	-		-3070+60°C								
SEE (W x H x D) 5 49/2 8/29/4 IN 46-6-52-50/CM 4 3/4 16 2 16 KG	-	CYCLE	25% MAX								
PAWER PAWE			IN 14.6×6×23.5CM								
Comment of the control of the cont		4 3/41									
Comment Court Co											
NOMINAL GUAR SCHOOL NOMINAL GUAR NOMINAL	CURRENT DRAIN	@ 13.8 VDC									
NOMINAL GUAR MOMINAL	-	325 MA	425MAMAX				ſ				
AMERINA GA GAS A MAX SO BLOCKING ELA RS-204 A STATE FRAM RADIATED	-		950MAMAX	8	CEIVER	NOMINAL	an ;	TRANS	SMITTER	NOMINAL	GUAR
SECELVER NOMINAL GUAR 29 BLOCKING 51 ROLPS SOLOSING 51	_	6A	625 A MAX	₹	DIO OUT PWR			3 OUT FRE	Q STAB (VOLT)		10001 MAX
PECEIVER NOMINAL GUAR 32 ROW RATTACK TIME ELARS 2004 46 OFFERATING BANDMOTH	-	20U		_	BLOCKING				ARM CONDUCTED	0	-58 dE MIN
SENSITIVITY COMMINAL GUAR SI ROME RATIO CAD BLAGO CAT EMISSION DE SIGNATOR CAD BLAGO CAT EMISSION DE SIGNATOR			ZH		IR ATTACK TIME				IARM RADIATED		FCC PARTS 21,810
SENSITIVITY CORP		NOMINAL	GUAR		A SQ CLOSING				IG BANDWIDTH		T 1.5 MHZ
12 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 12 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 12 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 12 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 13 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 14 ADJO FREG DISTORTION 15 DB 3 INDESPRED CONDUCTED (AFT) 49 MODULATION DE Y RANGE 16 DB 3 INDESPRED RADIATED 40 MODESPRED RADIATED 17 DA 4				_	A E. NOISE RATIO				N DESIGNATOR	2	16 F3
12 DB SINAD 1.3 SµV MAX 35 INDESRIED CONDUCTED (RF) 1.1 µV 1.3 SµV MAX 35 INDESRIED PADIATED 1.1 µV 1.3 µV MAX 37 INGH HUMIDITY 1.1 µV 1.3 µV MAX 37 INGH HUMIDITY 1.1 µV 1.3 µV MAX 38 INGH HUMIDITY 1.2 µV MAX 38 INGH HUMIDITY 1.3 µV MAX 1.3	-		.5 AV MAX		SESIRED CONDUCTED (AC)				ION DEV RANGE		0 TOT 7 KHZ
FCC PARTITY FOR PARTITY	-		35HV MAX		DESIRED CONDUCTED (RF)				REQ DISTORTION		3% MAX
THRESHOLD 11 JUV 12 JUV MAX 37 HIGH HUMIDITY 16 MA HUME CHOISE 16 MA HUME CHOISE 16 MA HUME CHOISE 16 MA MUME CHOISE 16 MUME CHOISE MUME CHOISE MAX 16 MUME CHOISE		WITY			DESIRED RADIATED				E NOISE		40 dB MIN
TIGHT . 43.ΔLV . 7 μ V 38 VBRATION STAB S2 ALDIO FREQ RESPONSE CTCSS CTCSS ALDIO FREG RESPONSE S2 ALDIO FREG RESPONSE ADJ.CH SEL 200B TRANSCARIER ATTACK S3 TRANS CARRIER ATTACK ADJ.CH DESEN 120B — 70 d B 40 PWR OUTPUT©—136 VDC 27 W 25 WIBRATION STABILITY ADJ.CH DESEN 120B — 70 d B 42 OUT FREG STAB (TEMP) + 1000-5 MAX 51 HIGH HUMIDITY SPRRIOUS E. IMAGE — 70 d B 42 OUT FREG STAB (TEMP) + 1000-5 MAX 51 SHOCK STABILITY IM 12 DB SINAD — 70 d B 42 OUT FREG STAB (TEMP) + 1000-5 MAX 51 SHOCK STABILITY IM 12 DB SINAD — 70 d B + 25 SKHZ + 1000-5 MAX + 1000-5 MAX IM 12 DB SINAD + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX IM 12 DB SINAD + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX IM 12 DB SINAD + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX FREG STAB FRANCE + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX + 1000-5 MAX		+			H HUMIDITY				E NOISE		
CTCSS TRANSCARIER NOMINAL GUAR 54 SICRBAND SPECTRUM ADJCH SEL 2008 -70 dB 40 PWR OUTPUT@136 VDC 27 W 25 W MIN 55 HIGH HUMIDITY ADJCH DESEN 1208 -70 dB 40 PWR OUTPUT@136 VDC 27 W 25 W MIN 55 HIGH HUMIDITY SPURIOUS E. IMAGE -70 dB 42 OUT FREQ STAB (TEMP) + 0000 FRATION STABILITY 51 SHOCK STABILITY IM 20 DB 0 -70 dB -70	-	4341			RATION STAB			_	REQ RESPONSE		EIA RS-152 B
ADJ CH SEL 2008 TRANSMITTER NOMINAL GUAR 54 SIDEBAND SPECTRUM ADJ CH SEL 2008 -70 dB 40 PWR OUTPUT© 136 VDC 27 W 25 W MIN 56 VIBRATION STABILITY ADJ CH DESEN 120B -70 dB 42 OUT FREG STAB (TEMP) + (10000 C) MAX 57 SHOCK STABILITY COMMUNICATIONS SPECIFICATIONS 1 NO PWR IN TO FINAL 40 W + (10000 C) MAX 57 SHOCK STABILITY COMMUNICATIONS IN 2 OB SINAD -70 dB + 7.5 KHZ - 7.0	_				ОСК STAB				ARRIER ATTACK		EIARS-152 B
ADJ. CH. DESEN 120B ADJ. CH. DESEN 120B 40 PWR OUTPUT@13.6 VDC 27 W 25 W MIN 55 HIGH HUMIDITY OPERATING BANDWIDTH ± 750 KHZ 41 DC PWR IN TO FINAL 40 W 56 VIBRATION STABILITY SPURIOUS E. INAGE - 70 dB 42 OUT FREG STAB (TEMP) + 0005 %, MAX 57 SHOCK STABILITY IM 20 BB Q - 70 dB - 70 dB - 70 dB - 70 dB - 75 KHZ IM 12 DB SINAD + 7.5 KHZ + 7.5 KHZ + 7.5 KHZ + 1.5 KHZ FREG STAB TEMP. + 7.5 KHZ + 1.5 KHZ + 1.5 KHZ FREG STAB VOLTAGE - 1.005 % - 1.005 % - 1.005 % FREG STAB VOLTAGE - 1.005 % - 1.005 % - 1.005 % AND TANNARIA - 1.005 % - 1.005 % - 1.005 % FREG STAB VOLTAGE - 1.005 % - 1.005 % - 1.005 % ANDIO RESPONSE EIA RE 201A - 1.005 % - 1.005 % ANDIO RESPONSE - 1.005 % - 1.005 % - 1.005 % ANDIO RESPONSE - 1.005 % - 1.005 % - 1.005 %		8	-1	F	PANSMITTER	NOMINAL		_	SPECTRUM		FCC PARTS 238
SPURIOUS E. IMAGE		12.08	-70 dB		P CHIPHTOHE VIC	27 W	Т		MIDITY		
SPURIOUS E IMAGE		мотн	±750 KHZ		PWR IN TO FINAL	40w			ON STABILITY		
M 20 0B 9		ير	- 70 dB	-	T FREQ STAB (TEMP)		+.0005%, MAX		STABILITY	- 0	
M 2 DB SINAD			-70 dB			UMLESS OTHER			484	•	JHI
FREQ STAB TEMP			-70 dB			TOLERANCES A			Kegench		H, FLORIDA 32937
FREG STAB TEMP. # COOS % LOOS % MATERIAL WITHER STAB WITHER STAB SPECIFICATIONS FREG STAB VOLTAGE XLH 257 R			± 7.5 KHZ							- 1	
FREG STAB VOLTAGE KIN FOLTAGE ELA RE-OG A XLH 257 FINISH SECOND FOR SECONDE SE		0.	7,0005				ENGR HOT	1	SPEC	IFICATION.	20
AUDIO DE SPONSE ELA RE 201A XLH 257 FINISH SEE B MATHUMER 304-295 MEN AUDIO DAT PUNE (MAX) 50 WITH 50 SWITH SEE SEE B MATHUMER 304-295 MEN		AGE			XLH 257				XLH	-257	
MICHO CUIT PURE (MAX) 5W WITH SAW WITH NEXT ASSY USED ON			EIA RS							304-29	A V
THE PARTY OF THE P		(MAX) 34 W [XAM)		W.	ASSY	+	SCALE DIMG	-	SCALE	1000	MEET OF

1-4 OPTIONS

a. MA- 35 - Quick Mount Thumb Bolts

b. MA- 48 - 5-Watt Horn Speaker

c. MA- 79 - Telephone Hand Set

d. MA- 84 - DC Power Cord

e. MA- 87 - DC Power Cord w/Cigarette Lighter Adapter

f. MA-194 - 2805 Decoder

g. MA- 93 - Split Bar Desk Microphone

h. MA-108 - External Speaker

i. MA-126 - Telephone Hand Set w/Hookswitch

j. MA-310 - Hand-Held Microphone

k. MA-311 - Mounting Bracket

1. MA-322 - DC Power Cord for P1412

m. P1412 - 12A DC Power Supply

1-5 EQUIPMENT NOT SUPPLIED

a. Antenna

b. Coaxial Feed Line

c. Connectors for Radio or Antenna

d. Power Supply (Battery)

1-6 INSTALLATION

The XLH257 transceiver is designed for use on 12V negative ground vehicles. Connect the red (+) lead of the power cord to the positive battery terminal and the black (-) leads of the power cord to the negative terminal.

To enable the use of the microphone hang-up button, the microphone hanger clip must be grounded. If mounted on a non-grounded surface, add a ground wire to the clip.

THE ANTENNA USED SHOULD BE PROPERLY ADJUSTED FOR THE 50 OHM OUTPUT IMPEDANCE OF THE TRANSCEIVER. FAILURE TO DO SO WILL RESULT IN POORER TRANSMITTER PERFORMANCE.

Connections for an external speaker is provided (J2) for connecting the MA-108 or the MA-48.

1-7 OPERATION

The On-Off switch is part of the volume control. Turning the control clockwise will turn the radio on. The display will turn on to the first channel position. Any time the radio is turned off the radio will revert to the first channel position when turned on.

Maximum audio is obtained by turning the volume control fully clockwise. The volume control should be adjusted to a comfortable listening level.

Turning the squelch control counter-clockwise will cause the radio to be squelched. The point at which the radio just squelches is called threshold squelch. When a signal is present the squelch will open. If the squelch control is fully counter-clockwise, more signal is required to open the squelch; the receiver will not be "locked out" (i.e. prevented from receiving a signal).

The microphone supplied with the radio plugs into the side of the radio. The connector is locked into place with the locking ring; rotate the ring & turn to lock the connector.

Channels are selected using the channel switch. This switch steps the radio through 8 channel positions.

An option switch is also provided for customizing the radio. Some examples may be to switch an external speaker on or off or to enable or disable a decoder. Three pins are provided on the back of the control board for switch connections.

To transmit a message, press the push-to-talk button on the side of the microphone. The red transmit light will come on to indicate the transmitter is activated.

The MSG (message) light indicates when a message has come in for the user. The light is activated by a decoder (e.g. 2805 or CTCSS decoders).

2-1 RECEIVER DESCRIPTION

The receiver is essentially the same receiver as that used in the XLH252 model transceiver.

Received RF enters at the antenna connector and is routed through the antenna switch (L309, C315 and C316). Circuits involving L310, 311, 312, and 313 involve the transmitter and will be discussed later. The RF then proceeds to the RF amplifier Q401 through the tuned circuits of L401 and L402.

The output of the RF amplifier's collector tank (L403, C409) is fed to the mixer, Q403 via input tuned circuit, L404 and C404, where it is mixed with the L.O. (at 10.695 MHz below the carrier) to produce the first IF.

The L.O. is produced by taking the output of the VCO (voltage controlled oscillator) board and doubling the frequency at the Q402 stage. The L.O. output is tuned using L405 and L406 tank circuits.

From the collector tank of the mixer (Q403) the IF signal is fed through the crystal filters XF401A and XF401B. From the crystal filters the signal is inputted to IC401 at Pin 18. The second L.O. (10.24 MHz reference) is fed into Pin 1 of the same IC. The 455 KHz second L.O. signal from Pin 3 of IC401 goes through the ceramic filter, CF401, and back into IC401 at Pin 5. The recovered audio exits IC401 at Pin 10.

The audio goes through R416 to a low-pass filter, R422 and C442. It is then coupled through a 4-pole high-pass filter whose output is at Pin 7 of IC402. The audio is coupled from the filter to the base of Q404, the squelch switch transistor. The base gets its bias from R414, R431 and R432. The SQ. OUT (Pin 16 of IC401) controls this bias line through R454. The squelch circuit will be described later. From the squelch switch transistor (an emitter follower) the audio goes to the volume control (Pin 5 P501) and on to the audio power amplifier IC403.

The audio from the discriminator (Pin 10 of IC401) also goes through a low-pass filter, IC402A and IC402D. This is the audio source for the CTCSS decoder. The audio goes to Pin 1 of IC508 where it is limited to a +5V to 0V signal, then on to Pin 38 of the microprocessor. The microprocessor takes this signal and determines if the frequency agrees with the programmed tone frequency. If the tone agrees then the SQ. bias is turned on to Q404 from Pin 33 of the microprocessor.

Finally, the discriminated audio goes to the squelch control, R134, on the Control Board. The audio to the squelch pot can be seen at Pin 12 of P501 and returning audio at Pin 11 of P501.

From the squelch control the audio is high-passed through C431, C439 and the amplifier in IC401. The high-passed audio out of Pin 13 of IC401 then is rectified via low-pass filter (R418, R419, C435) and CR401. The rectified voltage goes to IC401 Pin 14 (squelch input) which controls the squelch switch; the output of the squelch control, Pin 16, is connected to R454. When the radio is squelched Pin 16 is low (0V) thus removing the bias to Q404.

The receiver has some self-quieting frequencies. These frequencies are noted below. If any of the eight channels are within the receiver bandwidth (+15 KHz) of the self-quieting frequencies, the following changes must be incorporated on the Main Board:

Remove IC503, 74LS73

Remove purple wire from Pin 2 of IC510 to Pin 0 of IC503

Remove R548, 1.2K ohm resistor

Install a 3.4133 MHz crystal (P/N 2342-3303-301) from Pin 1 of IC510 to Pin 2 of the same IC (see figure below)

SELF QUIETING RECEIVER SPUR FREQUENCIES IN ORDER OF PROMINENCE FOR THE XLH252 (+.015 MHz)

153.600	MHz	151.475	MHz
154.965		159.975	
160.425		154.282	
154.510		159.960	
153.145		151.100	
160.578		153.125	
153.752		154.205	
154.385		155.340	
161.340			

2-2 TRANSMITTER DESCRIPTION

The RF drive for the transmitter comes from the VCO Board (lmw). The frequency is one-half of the carrier frequency. The doubler stage, Q508, brings the VCO output up to the carrier frequency and has a gain of 10dB. The next stages, Q509 and Q510, raise the power level up to 400mw to be fed to the P.A. Deck. The P.A. Deck then amplifies the RF up to 25W. Each stage gives 10dB of gain.

The antenna switch protects the receiver front end from damage due to the high RF level. When the transmitter is keyed 13V is applied to R303. This allows current to flow through CR301 and CR302 and allows L309 and C315 (a parallel tuned circuit) to block the transmitting RF.

L318, C317 and L313, C319 are traps for the Second Harmonic and L311, L312 and C318 form a low-pass filter.

The XLH257 uses a direct FM modulator. The speech from the microphone enters at Ul and is limited by IC50lA and IC50lB. The limited audio can be seen at Pin 7, Ml, of IC50l. From point Ml the audio is fed through the post limiter filter IC50lC, IC50lD. IC50lD, Pin 14 drives the modulation deviation control, R515. The audio from the deviation control is then fed to the VCO Board to CR20l. Note that CR20l is only active when the transceiver is transmitting. This is because Q20l is turned off when transmitting and on when receiving.

The modulation symetry is controlled by R512, which controls the bias point of the modulator's four operational amplifiers.

The subaudible tone for the CTCSS modulation is derived from the microprocessor at Pin 32 of IC510. The tone is filtered through IC509A and IC509B, a low-pass filter. From Pin 7 of IC509 the subaudible tone goes to the tone deviation control, R517. From the arm of the control the tone is then fed to the input of the first post limiter filter amp (Pin 9 of IC501C). It can be seen that the modulation deviation control not only controls the modulation deviation but also the tone deviation of the CTCSS tone. It is because of this that before setting the CTCSS tone deviation the modulation deviation (from mic input) be set by R515. Then adjust R517 for the desired CTCSS tone deviation.

A transmitter shut-down circuit is used to protect the P.A. from a high VSWR (such as an open antenna line). A rectified voltage directly proportional to the amount of reflected power is at Pin 4 of IC507. With the output terminated into 50 ohms and with R580 properly adjusted, the voltage at Pin 4 will be about 3V. When the load is disconnected from the ant. connector (open load) the voltage will increase about 200mV, and the voltage at Pin 10 of IC507, will be reduced.

WARNING: With R580 adjusted to maximum clockwise position the VSWR protection circuit is disabled. For VSWR protection R580 must be set according to the procedure described in the transmitter alignment procedure.

2-3 SYNTHESIZER

The frequency synthesizer is comprised of the VCO Board, the microprocessor and the synthesizer chip (IC511) on the Main Board. The microprocessor, IC510, receives data from the front panel, via P501 and P502 cables, and converts this data to proper codes for the synthesizer chip, IC511. The microprocessor also translates data from jumpers on the Main Board, JU's N through Y. The translated data from IC510 goes to IC511 via the SYNDATA line (Pin 32 of IC510). The data is received by IC511 at Pin 10 where it is loaded using the SYNCLOCK line (Pin 7 of IC510) as a clock.

IC511, the synthesizer chip, contains the reference oscillator, the reference divider, the VCO programmable divider, the phase detector, and the out-of-lock detector. The reference oscillator runs at 10.240 MHz and is divided internally for the reference signal to the phase detector. Y501 maintains the frequency of the oscillator over the full temperature range. The 10.240 reference signal can be measured at Pin 14 of IC511. The reference oscillator's frequency is controlled by one of two variable capacitors (for adjusting receiver and transmitter frequencies), C518 and C520. If the receive frequency is an even multiple of 5 KHz (i.e. 152.480, 152.490, etc.) then C518 adjusts the receiver frequency and C520 adjusts the transmitter frequency. If the receive frequency is an odd multiple of 5 KHz (i.e. 152,475, 152.485, etc.) then C520 adjusts the receive frequency and C518 adjusts the transmitter frequency. The capacitors C518 and C520 are switched by the synthesizer IC, IC511, via Q501 and C502, respectively.

By dividing the reference oscillator's output by 4 the micro-processor clock is produced (3.413 MHz at Pin 9 of IC503).

The variable frequency output of the VCO Board (Pin 7 of IC201) is fed to Pin 8 of IC511. This is the input to the programmable divider. The programmable divider (interval to IC511) divides the signal from the VCO in accordance with the data transferred from the microprocessor, IC510 (as discussed in first paragraph). The output of the programmable divider goes to the phase detector which outputs the phase error signal out on Pin 4. This Ø DET OUT signal steers the VCO to make the phase error smaller. From Pin 4 of IC511, the Ø DET OUT signal is filtered by R540, C514 and the low-pass filter/amplifier IC502. The output of the low-pass filter, Pin 6 of IC502, (also M5 metering point) is the steering voltage for the VCO. The lower the M5 voltage the lower the VCO frequency; the higher the M5 voltage the higher the VCO frequency. When the synthesizer is "locked" this voltage is controllable by adjusting L201. The synthesizer will remain "in-lock" as long as this voltage remains between 1V and 7V.

The M5 test point is factory set for 5V for Simplex radios and is set for 2.5 to 3V for ½ Duplex radios with over a 5 MHz frequency split, adjusted on lower frequency. The M5 voltage increases 1 volt for every 2.5 MHz increase.

The VCO Board contains the voltage-controlled oscillator, the modulator, a buffer amplifier and a dual-mode counter. The oscillator, Q202, runs at 75 MHz where the frequency determining components are C208, C210, L201, CR202 in parallel with C218 and CR201 (only when transmitting). The output of the oscillator is coupled to the buffer, Q203 through C209. An amplified output of the buffer goes to the input of the counter. The counter divides the VCO frequency down to about 5 MHz. The output Pin 7 then goes out to the synthesizer chip IC511, Pin 8. From the emitter of the buffer comes the TX drive coax, for driving the exciter and the RX drive coax, for the receiver L.O.

To protect the radio from spraying the countryside with unwanted RF signals, there is a transmitter disable circuit that, when the synthesizer is "out-of-lock", will prevent the transmitter from being keyed. From Pin 7 of IC511, the "out-of-lock" detector, a voltage level of 4.5V will be presented if the systhesizer is locked on frequency. This enables IC504D's output to go high (4V) when the TXDLY line goes low. But if the synthesizer is not locked on frequency, Pin 7 of IC511 will be low (0V) and thus will not allow Pin 13 of IC504D to go high, thereby "locking out" the transmitter.

The frequency stability with ambient temperature change is accomplished by the crystal characteristics of Y501 and with some help from a crystal heater circuit for temperatures below freezing. The crystal heater consists of a 100 ohm 2 watt resistor, Q511, R566, R568, and RT501. As the ambient temperature drops, the thermistor's (RT501) resistance increases allowing a higher base current through Q511 and, therefore, an increase in current through the heater resistor R567. The temperature that the heater starts to turn on is 10°C (50°F).

2-4 CONTROL BOARD

The Control Board does exactly as the name implies, it controls the radio. Besides being able to change the volume and squelch levels, it stores the information that is required to make the transceiver operational.

The Control Board has 14 lines which interface with the microprocessor, IC510, on the Main Board. These 14 lines output the frequency codes for the receiver and/or the transmitter, plus the CTCSS tone codes. All the codes sent over the 14 lines are held inside the Programmable Read Only Memory (PROM), IC102. Once the PROM has been programmed, its contents cannot be altered.

The majority of the circuitry on the front panel deals with getting the information out of the PROM and on the 14 lines going to the microprocessor. For the following descriptions refer to the Control Board Block Diagram and Schematic.

The center of activity is the PROM, it has a 32 x 8 bit arrangement. Channel selection is accomplished by stepping through eight positions on the line counter. The name of line counter is given because it addresses one of eight lines on one of four pages of memory. Each page of the memory is addressed by the page counter (pages 0 through 3). Data on pages 1, 2, and 3 is latched into 24 latches via an 8-bit data bus. Page Ø data is not latched because the page counter stops at page Ø after all the data (on pages 1, 2, and 3) have been latched. Page Ø contains the display code.

When the user advances to the next channel, the step switch grounds R101 putting a low (.8V) on Pin 9 of IC110. The output, Pin 8, goes high, momentarily pulsing Pin 5 of IC110. The output, Pin 6, will be a negative going pulse. This negative going pulse does two things. First it advances the line counter to look at the next line position in the memory (i.e. next channel position). Secondly, it starts the page oscillator running.

Looking at the page oscillator, the page oscillator is inhibited when Q101 is turned on (Pin 2 of IC110 is therefore low). When the pulse from Pin 6 of IC110 turns off Q101, C104 charges up through R113 until the input (Pin 3 of IC110) recognizes the voltage as a high. When this happens the output (Pin 4 of IC110) goes low and starts to discharge C104 until the input recognizes the low; when the output goes high completing the cycle. The oscillator output to the Control Board is at Pin 2 of IC110.

The page oscillator's output is divided by two by one section of ICl01. This creates a two-bit binary code which makes up the page address. The wave forms shown on the schematic start at t_0 . The time t_0 is the time at which the channel step switch is pressed.

Looking at the wave forms of the lines connecting to Pins 13 and 14 of IC102 (page address A3 and A4, respectively) noting that Pin 13 is the Least Significant Bit (LSB). A3 goes high 4ms after the channel step swich is pressed and A4 remains low. This is page one and at this point the data out of ICl02 (Pins 1-7, and 9) is the data from the line (channel position) as addressed by IC101, the line counter. As the oscillator continues to run the A3 line goes low and the A4 line goes high. The same line is still addressed but now it is that line on page two. Similarly, the data for the same line gets outputted when the A3 line toggles once more, addressing page three. Note that during this entire paging operation that the A3 and A4 lines also connect to the base of Q102 via R415 and R414, respectively. This keeps Q102 turned on to allow the page oscillator to continue running until all the pages have been addressed and consequently all the data (corresponding to the line address) to be sent out and latched. When page zero is reached, A3 and A4 equal to a low, then 0102 releases the base of Q101 and Q101 turns on stopping the page oscillator.

XLH-257 — 11 — SECTION 2

The page oscillator always stops on page 0 because the data on page 0 is the display code. By holding ICl02 at page 0 the display code (at the line on the page designated by ICl01) drives the display which is directly connected to the outputs of ICl02.

As was mentioned previously, the data from pages 1, 2, and 3 are latched from the data lines of ICl02. In order to latch this data clock pulses must be generated at the proper time. The clock generation is done by the page mux (multiplex) control circuit. This circuit consists of Q105, Q107, one of the inverters of IC110, and ICl03. Q107 is turned on by a positive transition from the page oscillator (A3 line). This causes a negative spike to occur at the collector of Q107. Negative transitions on the A3 line cause negative pulses at the collector of Q107 from R116 and C107. From these collector pulses, a low-going pulse will occur at the collector of Q106 every time a positive-going or negative transition appears on the A3 address line. The output from Q106 drives the INHIBIT input to ICl03. When the INHIBIT input is high the outputs (Q1, Q2, Q3) are all disabled. When a transition occurs on the A3 line the current page being addressed on ICl02 is the same address on ICl03. The transition causes the short positive pulse to go out on the output corresponding to the address lines, lines A and B (Pins 11 and 10, respectively). The pulses at Pins 14, 15 and 12 are the clocks for page 1, page 2, and page 3 latches, respectively. That is, on the negative going edge of the pulse at Pin 14 of IC103 (Q1 line) the data out of IC102 is page 1 data and this data is latched into ICl05 and ICl07. At Pin 15 of ICl03 (Q2 line) the data from IC102 is page 2 data and is latched into IC104 and IC108 at the negative edge of the clock pulse. Similarly, the data for page 3 is latched into IC106 using the clock signal from the Q3 line (Pin 12 of IC103).

To recap, when the channel step switch is pushed down, the line counter advances to the next line position, the page counter starts and the latches are clocked to allow the data out of ICl02 to be stored for processing by the microprocessor on the Main Board.

The data in the latches are as follows:

- ICl06 Holds the frequency codes for the low frequency.

 These are the frequency codes B through I.
- ICl05 Holds the B and C bits for the ½ duplex frequency.
- IC107 Holds the \overline{A} (high order freq. bit) frequency code, the \overline{A} freq bit for the $\frac{1}{2}$ duplex frequency, and the J through M frequency codes for the low frequency.
- IC108 Holds the tone codes and the tone control bit.

 These are the AA through EE codes and the Z bit.
- ICl04 This latch holds two transceiver bits. They are the transmitter enable bit and the $\frac{1}{2}$ duplex enable bit labeled Tx EN and ΔF , respectively.

The control circuit in the Block Diagram involves Qll1, Qll2, Ql09, Qll0, and one of the inverters of ICl10. The transmitter is controlled by Qll2 and the data that is latched into section 1 of ICl04. A High at Pin 12 of ICl04 will disable the transmitter. Otherwise the PTT signal at Pin 6 of Jl01 will be able to turn on Qll0 to produce a delayed transmit signal (delayed 10ms), $\overline{\text{TXDLY}}$. When in the full ½ duplex mode the $\overline{\text{FH}}$ line is low. When the transmit frequency is to change to the higher frequency (e.g. RCC Radio) the $\overline{\text{FH}}$ line is pulled low by Ql09. The ΔF line can be inhibited from going high when Pin 2 of ICl04 is high. This is done for simplex operation.

The $\overline{F_H}$ line can also be pulled low by the channel step switch. This is to alert the microprocessor that (while in the receive mode) the user is changing channels.

NOTE: The microprocessor will not recognize a change in channels if the channel step switch is pressed while in the transmit mode.

The ΔF line's function varies from operating mode to operating mode. The transceiver has three ways which Rx and Tx frequencies can be selected; these are Simplex, Simplex with limited $\frac{1}{2}$ Duplex, and full $\frac{1}{2}$ Duplex.

In the Simplex mode all the jumpers in the radio are uncut and the ΔF line remains low in both receive and transmit conditions.

In the Simplex with limited $\frac{1}{2}$ Duplex mode the Y jumper is cut along with the appropriate N through X jumper. The ΔF line in this mode is high if the transmit frequency is the same as the receive frequency. The ΔF line is low if the transmit frequency is offset from the receive frequency. Note that this is limited $\frac{1}{2}$ Duplex since the "split" is only determined by the N through W jumpers.

In the full ½ Duplex mode all the jumpers in the radio are uncut. In this mode the ΔF line is high when the push-to-talk button is pressed. This is to allow the data at the output of ICl09 to change by selecting the B lines (Pins 3, 6, and 10 of ICl09) and therefore change the transmitter frequency (the N through W jumpers add to the frequency change) at Pin 1. In this mode the transmit frequency is always higher than the receive frequency. The ΔF line is low when receiving.

The power-up reset circuit is made up of Q103, Q104, and Q105. When the power is first turned on (by on-off volume control) Q103 is biased on through C105 until it becomes fully charged. This in turn causes Q104 to be on momentarily and resets IC101. Q104 also causes Q105 to turn on and this allows the page oscillator to run and latch the data out of IC102.

The front panel has some option pins located on the non-component side (solder side) of the P.C. Board. These pins allow connections of wires for optional variations, such as adding a 2805 decoder.

The option switch is connected via three pins located towards the center of the Control Board. The top pin is SØ, the center pin is Sl and the bottom pin is S2. The last pin, which is located by the chassis wiall near the VCO Board, is used if the MSG light is to be lit by another decoder other than the internal CTCSS decoder. If another decoder is to light the MSG LED then JUl06 must be removed. A positive voltage must be maintained on this pin (Dl pin) to hold the MSG light on.

Lastly, the number of channels selected by the front panel can be selected to be 4, 6 or 8 channel. The radio is normally set up as an 8-channel radio (only JU103 installed). By changing jumpers JU101 through JU103, around the line counter can reset for 4 or 6 channels. Follow the programming table on the Schematic.

2-5 DECODERS

The XLH257 comes equipped with a CTCSS decoder which is included in the programming of the microprocessor, IC510. When the CTCSS decoder is active the tone codes are fed to IC510 from the latches on the Control Board along with the CTCSS decoder enable bit (% line). R587 must be installed in order to connect the microphone hang-up button to Pin 3 of IC510. Lifting the ground from this line puts the radio into the monitor mode.

The choice of CTCSS tone frequencies are given in the list below. These are the only encoding and decoding tones available at this time.

CTCSS TONE FREQUENCIES

67.00	107.2	141.3	186.2
71.90	110.9	146.2	192.8
77.00	114.8	151.4	203.5
82.50	118.8	156.7	210.7
88.50	123.0	162.2	218.1
94.80	127.3	167.9	225.7
100.0	131.8	173.8	233.6
103.5	136.5	179.9	241.8

If an alternate decoder is used the CTCSS decoder must be disabled. To disable the CTCSS decoder R587 must be removed, R517 must be adjusted fully clockwise, and the PROM must be programmed for no CTCSS tones. The alternate decoder can then be installed.

The control points for an auxiliary decoder are:

- Squelch control Pin 14 of IC401; when pulled up through diode will squelch the radio
- Audio source Pin 10 of IC401 or at the top of the squelch potentiometer
- Monitor switch Using the microphone hang-up button and/or the option switch on the Control Board

2-6 POWER SUPPLY

The power supplied to the Receiver, Transmitter and Control Boards originate from three sources, the unregulated 13V line (P \emptyset , P1), a regulated 8V source and a regulated 5V source. The 5V regulated supply (from IC505) feeds all the logic circuits on the Control Board and the Main Board along with the counter on the VCO Board.

Circuits that receive 5V as their supply are:

- 1. All the IC's on the Control Board
- 2. IC201 on the VCO Board
- 3. Bias for Q404, squelch switch transistor
- 4. IC503, IC504, IC508, IC510, and IC511 on the Main Board

The 8V regulated supply is electrically switched to supply 8V switched to the transmitter and receiver circuits. An 8V line (not electrically switched) also feeds to some circuits that do not require Tx or Rx switching. A summary of circuits receiving 8V are as follows:

+8V Rx switched (collector of Q504):

- 1. The collector supply of Q401, RCVR RF AMP
- 2. The collector supply of Q402, RCVR L.O. Doubler
- 3. The supply to IC402, Pin4, RCVR IF sub-system chip

+8V Tx switched (collector of Q503):

- 1. Collector and bias supply for Q508, Tx doubler
- 2. Collector and bias supply for Q509. Tx amplifier
- 3. Muting source to audio amplifier, IC403, and receiver squelch input of IC401

+8V (from IC506):

- 1. IC402, Pin 4, RCVR audio filters
- 2. Collector of Q404, Squelch switch
- 3. Supply to Q403, RCVR MIXER
- 4. IC501, Pin 4, Tx sppech amplifier
- 5. IC502, Pin 7, VCO loop filter
- 6. VCO supply, brown wire
- 7. bias for modulation varactor, CR201
- 8. IC509, Pin 8, CTCSS tone filter

The 8V switching circuit uses the logic level from the outputs of IC504 Pins 13 and 1 to control the switching transistors. When in the receive mode Pin 13 is a low (0V) and Pin 1 is a high (greater than 2V). This allows Q506 to be on and Q507 to be off. When in the transmitting mode Pin 13 is high and Pin 1 is low (provided the VCO is "in-lock"). This turns Q506 off and Q507 on.

The 13V line is broken up into three supplies; the 13V unswitched, the 13V switched and the 13V Tx switched. The 13V unswitched supply connects to the on-off switch on the Control Board to be turned into the 13V switched supply. Also the 13V unswitched supply feeds the power to the transistors on the P.A. Board. The 13V switched line feeds power to the RCVR audio amplifier, IC403, the crystal heater element, R567, and the VSWR control, IC507. The 13V Tx switched supply only feeds voltage to connect the antenna (via the antenna switch) to the P.A.'s output.

3-1 GENERAL

The XLH257 radio frequencies are programmed using a Programmable Read Only Memory (PROM). Because of hardware restrictions programming restrictions are limited to the following:

- a. The XLH257 can be programmed for all CTCSS channels or none at all.
- b. The radio can be programmed for all Simplex channels.
- c. The radio can be programmed to mix Simplex channels with ½ Duplex channels provided that all the ½ Duplex channels have the same Rx/Tx "split" and that Rx/Tx "split" does not exceed 5.26 MHz (these are the same "splits" as for the XLH252).
- d. The radio can be programmed for all ½ Duplex channels with the same "split" (within the transceiver band pass) provided the transmitter frequency is higher than the receive frequency (full ½ Duplex implies up to a 14 MHz split).
- e. The radio can be programmed for all ½ Duplex channels, where the transmitter frequency is higher or lower than the receive frequency, provided the split is within 5.26 MHz (the same splits as for the XLH252).

3-2 PROM INSERTION

If radio programming is to be changed, replacement of the PROM will be necessary. The PROM is located on the Control Board. To replace the PROM, the front panel Control Board assembly will have to be disassembled. Refer to Figure 1 on the next page to aid in disassembly.

Front panel disassembly is as follows:

- 1. Remove four sheet metal screws holding the mounting bracket.
- 2. Remove the volume and squelch knobs.
- 3. Remove the five screws holding the front panel to the mounting bracket.

The PROM is located in the socket to the right of the option switch and squelch control (see Figure 2). Remove the old PROM and install the new PROM noting that Pin 1 is in the upper left. Assemble the front panel and Control Board by reversing the disassembly order.

3-3 RADIO PROGRAMMING

y it deal .

This procedure is used if any radio jumpers are to be cut. The jumpers will have to be cut if the radio is not an all Simplex radio. The jumpers to be cut are listed on the programming instructions included with each PROM. The only jumpers that are to be cut are the N through W jumpers, the X jumper and the Y jumper.

The N through W jumpers are cut any time there is a ½
Duplex channel programmed into the PROM. The Y jumper is cut
only if limited ½ Duplex operation is programmed into the PROM
(i.e. the ½ Duplex channel frequency splits are limited to the
cut-range of the N through W jumper). The X jumper is cut only
if the Y jumper is cut and only if the receive frequency (on ½
Duplex channel) is higher than the transmit frequency.

After the proper jumpers have been cut, proceed to the Receiver and Transmitter Tuning Procedures (Section 5).

4-1 GENERAL DESCRIPTION

The XLH257R is an 8-channel VHF radio with the PROM programmed for the RCC VHF frequencies of 1, 3, 5, 7, 9, 11, and 13. The user may select any combination of the RCC channels in any order to produce a 4, 6, or 8-channel RCC radio.

One Simplex channel may be substituted for one of the channels. Note, however, that some degradation of receiver or transmitter must be expected if a Simplex channel is added; this is because the Simplex frequency will be outside the bandpass.

Decoders offered for the XLH257R are a 2805 Decoder or a CTCSS Decoder (if desired). More information on decoders is given in Section 2-5.

4-2 CONVERTING AN XLH257 INTO A XLH257R

The first thing that is needed is an RCC PROM. The RCC PROM must be installed. Follow the PROM insertion instructions in Section 3-2.

The following jumpers must be cut:

NPQRSVW

If the CTCSS Decoder is to be disabled then R587 must be removed and the wire from Pin 5 (microphone hang-up wire) must be secured in a safe place. R517 must also be adjusted to the most clockwise position.

After all programming is complete, continue on to receiver and transmitter tuning in Section 5.

4-3 FREQUENCY LISTING

Channel	Rx Freq.	Tx Freq.
1	152.030 MHz	158.490 MHz
3	152.060 MHz	158.520 MHz
5	152.090 MHz	158.550 MHz
7	152.120 MHz	158.580 MHz
9	152.150 MHz	158.610 MHz
11	152.180 MHz	158.640 MHz
13	152.210 MHz	158.670 MHz
*P	152.240 MHz	Transmitter disabled

*NOTE: This position does not have to be the P-5 channel.

The user may wish to leave it blank or place a receive-only channel of another frequency. A Simplex channel may be placed there, but some receiver and/or transmitter performance degrading must be expected depending on the frequency selected.

SECTION 5 - RECEIVER AND TRANSMITTER ALIGNMENT

5-1 RECEIVER ALIGNMENT

A. Equipment

- 1. XLH257
- 2. RF Signal Generator 148-162 MHz
- 3. AC VTVM
- 4. DC Voltmeter
- 5. 10.695 MHz Signal Source
- 6. Power Supply

B. Set-Up

C. Tuning Procedure

- 1. Connect the DC voltmeter from point M5 to ground. Adjust L201 for 3V if the radio is a ½ Duplex radio with the receive frequency more than 4 MHz below the transmit frequency. Adjust L201 for a voltage of 4.5V if the radio is Simplex or ½ Duplex with split less than 4 MHz.
- Connect a DC voltmeter from point M2 to ground.
 Tune L405 for a dip on the voltmeter.
- 3. Connect a voltmeter between M3 and ground. Tune L406 for a peak; retune L405 and L406 for a peak on M3.
- 4. With the radio unsquelched, connect the AC VTVM across the speaker. Adjust the volume control to a comfortable listening level and note the VTVM reading as the reference level.
- 5. Connect the signal generator to the antenna terminal and adjust it, on frequency, so that 15dB of quieting is obtained.
- 6. Tune L401, L402, L403, and L404 for minimum noise as read on VTVM. Decrease RF signal level to maintain a 15dB quieting level.
- 7. Repeat Step 6.
- 8. Remove signal generator from RF input and couple a 10.695 MHz signal into the mixer stage, Q403. Connect a DC voltmeter to Pin 10 of IC401. Adjust L409 for a 3.2V reading.
- 9. Remove 10.695 MHz signal and re-connect the signal generator. With the signal generator on frequency, adjust C518 if the receive frequency is an even multiple of 5 KHz (i.e. 152.820, 152.830, etc.) or adjust C520 if the receive frequency is an odd multiple of 5 KHz so that the voltage at Pin 10 of IC401 is again 3.2V.
 - NOTE: An alternate method may be used by connecting a counter (using a 1:1 probe) to M4. The appropriate capacitor, C518 or C520, is then adjusted to give a counter frequency of 10.695 MHz less than the receiver carrier frequency with an accuracy of ±100 Hz.
- 10. Adjust L407 for minimum noise as was done in Step 6.

5-2 TRANSMITTER ALIGNMENT

Equipment A.

- 1. XLH257
- 2. Power Meter
- 3. 40dB attenuator
- 4. Frequency Counter (resolution to 100 Hz)
 5. DC Voltmeter
- 6. Deviation Monitor
- Dummy Microphone
 Audio Generator
- 9. Power Supply (6A minimum)
- 10. Oscilloscope

C. Procedure

- 1. Set up equipment as shown on preceding page. Set R580 to maximum clockwise position.
- 2. Set the M5 voltage by tuning L201.
 - a. If the radio is a ½ Duplex radio with the transmit frequency lower than the receive frequency by not more than 4 MHz, set M5 to 4.5V while transmitting.
 - b. If the radio is a ½ Duplex radio with the transmit frequency below the receive frequency by more than 4 MHz then set M5 voltage to 3V (while on the lowest transmit frequency).
 - c. For Simplex radios tune for an M5 voltage of 4.5V as in Step 4-1, Cl.
- 3. Connect the DC voltmeter between M8 and ground.
 - a. Adjust L501 and L502 for a peak on the voltmeter.
 - b. Adjust L503 for a dip on the voltmeter.
 - c. Adjust L504 for a peak on the voltmeter.
- 4. Adjust C301, C307, C311, and C313 on the P.A. Board for maximum power output.
- 5. Repeat Step 4.
- 6. Repeat Steps 3 and 4.
- 7. Adjust R580 counter-clockwise until a reduction in power is observed.
- 8. Repeat Steps 3 and 4.
- 9. Unkey radio.
- 10. Adjust R517, tone deviation pot, to maximum clockwise position.
- 11. Set the audio generator to 1 KHz tone and adjust R512 for a symetrical clipped wave form as observed on test point M1 with the oscilloscope.
- 12. Using the deviation monitor, key the transmitter and adjust R515 for ±4.5 KHz deviation.
- 13. Remove the 1 KHz tone and adjust R517, tone deviation, for +350 Hz deviation, only if CTCSS decoder is desired.
- 14. Set the carrier frequency using the frequency counter. Adjust the appropriate cap (C518 or C520) for the transmit frequency with an accuracy of + 100 Hz.
 - NOTE: Skip this step if both C520 and C518 were adjusted already during receiver tune-up.
 - a. If the transmitter frequency is an even multiple of 5 KHz, adjust C520 for the proper transmit frequency.

b. If the transmitter frequency is an odd multiple of 5 KHz, adjust C518 for the proper transmit frequency.

XLH-257

- 28 -

FIGURE 6-6

SECTION 6 XLH-257 − **33** −

XLH257 CONTROL BOARD

	LOCATION	DESCRIPTION			PART NUMBER	ZONE
	RESISTORS (A1	l maailetee				
	(AI	resistors are	₹W 5%	unless	otherwise noted)	
	R101	680 ohm			4704-0681-032	
	R102	10K ohm			4704 0102 022	G9
	R103	680 ohm 1/8W			4704-0103-032	G9
	R104	10K ohm			4704-0681-031	G8
	R105	10K ohm			4704-0103-032	G7
	R106	470 ohm			4704-0103-032	G7
	R107	100K ohm 1/8W			4704-0471-032	G7
	R108	100K ohm 1/8W			4704-0104-031	D9
	R109	10K ohm 1/8W			4704-0104-031	D8
	R110	100K ohm 1/8W			4704-0103-031	D8
	R111	56K ohm 1/8W			4704-0104-031	D9
	R112	56K ohm 1/8W			4704-0563-031	D8
	R113	680 ohm			4704-0563-031	E8
	R114	10K ohm 1/8W			4704-0681-032	E7
	R115	10K ohm 1/8W			4704-0103-031	E7
1	R116	15K ohm 1/8W			4704-0103-031	E7
	R117	10K ohm 1/8W			4704-0153-031	E6
	R118	10K ohm 1/8W			4704-0103-031	E6
	R119	10K ohm 1/8W			4704-0103-031	D7
	R120	1K ohm			4704-0103-031	D6
	R121	1K ohm			4704-0102-032	C6
	R122.	1K ohm			4704-0102-032	C6
	R123	100K ohm 1/8W			4704-0102-032	C6
	R124	68K ohm 1/8W			4704-0104-031	B9
	R125	10K ohm 1/8W			4704-0683-031	B8
	2126	10K ohm 1/8W			4704-0103-031	B7
	2127	10K ohm 1/8W			4704-0103-031	В7
	2128	180 ohm			4704-0103-031	B7
	2129	4.7K ohm 1/8W			4704-0181-032	B8
	2130	4.7K ohm 1/8W			1704-0472 -031	A8
	131	68 ohm			1704-0472 -031	A7
	132	33K 1/8W			704-0680 -032	G4
	133	68 ohm			704-0333-031	C2
	134				704-0680 -032	G4
	135	10K (L) 12.5mm 10K ohm			751-3278-101	G3
	136				704-0103-032	F3
	137	10K (A) w/sw 10K ohm			751-3294-801	F3
	138				704-0103-032	E3
	139	10:0 ohm			704-0101-032	C2
	140	1K ohm 1/8W			704-0102-031	B4
	141	10K ohm			704-0103-032	В3
	142	680 ohm			704-0581-032	B3
٠١.	176	4.7K ohm 1/8W		4	704-0472-031	D6

LOCATION	DESCRIPTION	PART NUMBER	ZONE
CAPACITORS			
C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 C111 C112 C113 C114 C115 C116	Tant 4.7mf 6V 20% TM .0lmf 50V 20% TC 470pf 50V 10% TM .0lmf 50V 20% TC 560pf 50V 10% CD 56pf 50V 5% TM .lmf 50V 30% Tant 4.7mf 6V 20% TM .lmf 50V 30% TC .00lmf 50V 10% TC .01 25V 30% Tant 4.7mf 6V 20% TC .00lmf 50V 10% TC .00lmf 50V 10% TC .00lmf 50V 10% TC .00lmf 50V 10%	1515-0479-001 1539-0103-704 1538-0471-601 1539-0103-704 1539-0103-704 1539-0103-704 1538-0561-601 1525-0560-004 1539-0104-809 1515-0479-001 1538-0102-601 1538-0102-601 1538-0102-601 1538-0102-601 1538-0102-601	G9 F8 F9 D8 D7 D9 D7 B9 F3 F3 F8 F7
INTEGRATED CIRCUITS			
IC101 IC102 IC103 IC104 IC105 IC106 IC107 IC108 IC109 IC110	74LS93 16 Pin 74S288N PROM CD4051BE MC14013 MC14013 Octal D 74LS373 16 Pin latch HD6431 16 Pin 1atch HD6431 16 Pin 74LS157 7414 Hex Schmitt Inverte	3130-3157-635 3130-5441-501 3130-3193-517 3130-3157-649 3130-3157-649 3130-5441-401 3130-5441-502 3130-5441-502 3130-5441-503 x 3130-3157-654	G7 G6 C7 B6 D5 E4 D4 C4 E4 F7,G9
TRANSISTORS			
Q101 Q102 Q103 Q104 Q105 Q106 Q107 Q108 Q109 Q110 Q111 Q112 Q113 Q114	SPS-952-2 SPS 1476 Blu Top SPS-952-2 2N5447 SPS-952-2 SPS 1476 Blu Top SPS 1476 Blu Top SPS-952-2 SPS-952-2 SPS-952-1 SPS-952-2 SPS-952-2 SPS-952-2 SPS-952-2 SPS-952-2 SPS-952-2	4801-0000-016 4801-0000-003 4801-0000-016 4801-0000-016 4801-0000-003 4801-0000-003 4801-0000-016 4801-0000-016 4801-0000-016 4801-0000-016 4801-0000-016 4801-0000-016	E8 E7 D8 D8 D7 D6 D6 B8 B8 B8 A8 B7 E3 C2

XLH-257 - 35 - SECTION 7

LOCATION	DESCRIPTION	PART NUMBER	ZONE
DIODES			
CR101 CR102 CR103 CR104 CR105 CR106 CR107	IN4148 SP IN4148 IN4148 SP NC7200 Led Red Led Yel Display Led 7-seg Display Led 7-seg	4805-1241-201 4805-1241-201 4805-1241-201 4810-1282-905 4810-1321-400 2000-3285-600 2000-3285-600	D8 G8 D7 B8 C3 F4 F4
MISCELLANEOUS			
S101 S102	SW momentary SPDT SW slide SPDT PC	5113-5154-002 5113-5154-001	G9 G3
MECHANICAL PAI	RTS		QUANTITY
Control Bd, PC Board 504-424 IC Socket 16 Pin (for PROM) IC Socket 14 Pin (for display) Paper spacer (for TX & MSG LEDs) 14 conductor solid flat cable Connecting wafer assy (90° posts) Knob Vol/Sq Mounting bracket, front panel Screw pushtite 4 x 1/4 Screw plastic 5 x 3/8 Screw sheet metal 4 x 1/4 wash H Screw sheet metal 4 x 1/4 phillip Hd *Front panel (modified) *Insert for front panel		1700-5442-400 3140-3425-902 3140-3425-901 2800-1288-707 6008-3300-003 2105-3425-802 2402-6067-201 1411-7061-301 2808-0250-030 2816-3229-601 2811-3185-600 2808-0250-012 1411-7061-301 2403-3424-100	1 1 2 2 1 1 2 1 5 1 2 4 1

*NOTE: These parts are replaced by P/N 1411-7061-303 and 3900-3317-001

SECTION 7

XLH257 VCO BOARD

LOCATION	DESCRIPTION	PART NUMBER	ZONE
RESISTORS	(All resistors are \(\frac{1}{4}W \) 5% u	nless otherwise noted)	
R201 R202 R203 R204 R205 R206 R207 R208 R209 R210 R211 R212	22K ohm 4.7K ohm 4.7K ohm 10K ohm 10K ohm 1K ohm 1K ohm 1K ohm 33 ohm 10K ohm 4.7K ohm	4704-0223-032 4704-0472-032 4704-0473-032 4704-0103-032 4704-0274-032 4704-0102-032 4704-0330-032 4704-0103-032 4704-0472-032 4704-0101-032 4704-0680-032 4704-0181-032	B6 A6 A6 A6 B6 B5 B5 A5 A5
CAPACITORS			
C201 C202 C203 C204 C205 C206 C207 C208 C209 C210 C211 C212 C213 C214 C215 C216 C217 C218 C219	CD 470pf 50V 20% Mud 2.2pf 10% TC .001mf 50V 10% CD 10pf 500V 10% NPO CD 470pf 50V 20% E U 10mf 16V CD .001mf 50V +8-2 CD 6.8pf 500V 5% NPO TC 470pf 50V 10% CD 8.2pf 500V 5% NPO TC 470pf 50V 10% CD .001mf 50V +8-2 E U 10mf 16V MC .05mf 25V +8-2 CD 4.7pf 500V 10% NPO TC .001mf 50V 10% TC .001mf 50V 10% CD 9pf 500V 5% NPO E U 10mf 16V	1523-0471-002 1513-0100-002 1503-0102-003 1500-0689-505 1538-0471-601	B6 A6 A6 B6 B6 B5 A5 B5 B5 A5 B5 B5 B5 B5
DIODES			
CR201 CR202	MV1172 varicap MV2107 varicap	4809-0000-001 4809-0000-011	A6 B6
COILS			
L201 L202 L203 L204	coil 10mm choke 4.7uhy choke 1.0uhy choke LM-2	1800-5149-704 1803-3268-211 1803-3268-210 1803-5125-902	B6 B6 A5 A5

LOCATION	DESCRIPTION	PART NUMBER	ZONE
TRANSISTORS			
Q201 Q202 Q203	SPS-952-2 Trans Jnct Fet Graded SPS1473 Red Top	4801-0000-016 4811-0000-020 4801-0000-035	A6 B6 A5
INTEGRATED CIRCUIT			2.5
IC201	Mod Counter	3130-6060-605	A5
MECHANICAL P	ARTS		QUANTITY
Spacer Screw philli	ps 6-32 x 1/4	2800-1325-701 2807-3298-001	4 8

- 38 -

XLH257 POWER AMPLIFIER BOARD

LOCATION	DESCRIPTION	PART NUMBER	ZONE
RESISTORS	(All resistors are \dagger W 59	unless otherwise noted)	
R301 R302 R303 R304 R305 R306	10 ohm 10 ohm 150 Ohm 2W 10% 4.7K ohm 1.8K ohm 39K ohm	4704-0100-032 4704-0100-032 4700-0151-046 4704-0472-032 4704-0182-032 4704-0393-032	C3 C2 C2 C1 C1
CAPACITORS			a 2
C301 C302 C303 C304 C305 C306 C307 C308 C309 C310 C311 C312 C313 C314 C315 C316 C317 C318 C319 C320 C321	Trim 6-2pf Red CD 27pf 50V 5% NPO RD 82pf 50V 5% NPO RD 56pf 50V 5% NPO CD 470pf 50V 20% CD 18pf 500V 5% Trim 2-18pf E U 10mf 25V CD 470pf 50V 20% RD 68pf 50V 5% NPO Trim 4-60pf SM 470pf 50V 5% Trim 4-60pf EL404 PC CD 470pf 50V 20% CD 18pf 500V 5% CD 18pf 500V 5% CD 18pf 500V 5% CD 8.2pf 500V 5% CD 20pf 500V 10% CD 8.2pf 500V NPO SM 470pf 50V 5% CD .001mf 50V +8-2	1523-0471-002 1500-0180-505 1500-0180-505	C3 C3 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C1 C1 C1 C1
DIODES			
CR301 CR302 CR303	PIN UM9484 PIN UM9484 Hot Carrier MBD201	4815-3408-600 4815-3408-600 4816-3302-200	C1 C1 C1
COILS FB301 FB302 FB303 L301 L302 L303 L304 L305 L306 L307 L308 L309	not used ferrite bead w/lead ferrite bead w/lead choke LM-2 2.5T choke LM-2 10.5T choke LM-2 3½T choke 1.8uhy choke 1.8uhy choke LM-2 7.5T choke LM-2 7.5T choke LM-2 2.5T choke LM-2 2.5T choke LM-2 5.5T	2502-3293-901 2502-3293-901 1803-5125-901 1803-5125-912 1803-5125-906 1803-3268-208 1803-3268-208 1803-5125-913 1803-5125-901 1803-3268-210 1803-5125-905	C3 C2 C3 C3 C2 C2 C2 C2 C2 C2 C2

LOCATION	DESCRIPTION	PART NUMBER	ZONE
L310 L311 L312 L313	choke molded 1½ turns choke LM-2 6.5T choke LM02 6.5T choke molded 1½ turns	1803-5125-907 1803-5125-909 1803-5125-909 1803-5125-907	C1 C1 C1 C1
TRANSISTORS Q301 Q302	RF MRF260 RF MRF264	4804-3411-801 4804-3411-802	C3 C2
MECHANICAL PAI	RTS		QUANTITY
Screw 6-32 x 3 Spacer (for 6 Spacer Heatsink (Q303 Heatsink (Q303	Q301 & Q302) L)	3807-3298-002 2800-1328-800 2800-3301-101 5400-3301-200 5400-3301-300	7 2 1 1

SECTION 7

MAIN BOARD

XLH257 RECEIVER SECTION

LOCATION	DESCRIPTION	PART NUMBER	ZONE
RESISTORS	(All resistors are 1/4)	V 5% unless otherwise noted)	
R401 R402 R403 R404 R405 R406 R407 R408 R409 R410 R411 R412 R413 R414 R415 R416 R417 R418 R419 R420 R421 R422 R423 R424 R425 R428 R429 R430 R431 R432 R433 R434 R435 R436 R437 R438 R439 R440 R441 R442 R443 R444	8.2K ohm 10K ohm 100 ohm 680 ohm 100 ohm 2.7K ohm 8.2K ohm 390 ohm 100 ohm 100 ohm 1.2K ohm 390 ohm 10 ohm 1.2K ohm 390 ohm 10 ohm 4.7K ohm 68K ohm 1.2K ohm 22K ohm 22K ohm 22K ohm 15K ohm 15K ohm 10K ohm 15K ohm 10K ohm 1,2K oh	4704-0822-032 4704-0101-032 4704-0101-032 4704-0101-032 4704-0272-032 4704-0391-032 4704-0101-032 4704-0101-032 4704-0101-032 4704-0102-032 4704-0102-032 4704-0102-032 4704-0102-032 4704-0102-032 4704-0184-032 4704-0184-032 4704-0223-032 4704-0153-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0153-032 4704-0153-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0104-032 4704-0153-032 4704-0153-032 4704-0104-032 4704-0151-032 4704-0104-032 4704-0151-032 4704-0151-032 4704-0151-032 4704-0151-032 4704-0153-032 4704-0153-032 4704-0151-032 4704-0153-032 4704-0151-032 4704-0151-032 4704-0153-032 4704-0153-032 4704-0184-032 4704-0153-032 4704-0184-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032 4704-0153-032	D6 D6 D6 D7 76 C6 C6 DD DD DCCCCDD4 44 44 44 BC DD DCCCDD4 44 44 DD DCCCDD4 DD DD DCCCDD4 44 44 44 ADD DCCDD4 ADD DCCCDD4 ADD

		,	
LOCATION	DESCRIPTION	PART NÚMBER	ZONE
R446 R447 R448 R449 R450 R451 R452 R453 R454	· 10K ohm	4704-0513-032 4704-0273-032 4704-0683-032 4704-0101-032 4704-0122-032 4704-0103-032 4704-0122-032 4704-0222-032 4704-0471-032	D4 D4 D4 D9 D9 D9 C4
CAPACITORS			
C401 C402 C403 C404 C405 C406 C407 C408 C409 C410 C411 C412 C413 C414 C415 C416 C417 C418 C419 C420 C421 C422 C423 C424 C425 C426 C427 C428 C429 C430 C431 C432 C433 C434 C435 C436 C437 C438 C437 C438 C438 C439 C430 C431 C431 C432 C433 C434 C435 C436 C437 C438 C439 C430 C431 C431 C432 C433 C434 C435 C436 C437 C438 C437 C438 C439 C430 C431 C431 C431 C432 C433 C436 C437 C438 C438 C438 C439 C430 C431 C431 C431 C431 C431 C431 C431 C431	Mud 2.2pf 10% CD 5.6pf 500V 5% Mud .39pf 10% TC 8.2pf 50V 10% CD 39pf 50V 5% TC .01 25V 30% CD 470pf 50V 20% TC 470pf 50V 10% CD 5.6pf 500V 5% Mud .39pf 10% CD 6.8pf 500V 5% TC .01 25V 30% TC .01 25V 30% TC .01 25V 30% TC .01 25V 30% Part of L407, 82pf CD 3.9pf .25pf 500V TC .01 25V 30% E U 10mf 16V MC .05mf 25V +8-2 .01uf 50V MC .2mf 12V +8-2 Part of L409, 180pf MC .05mf 25V T8-2 TC 150pf 50V Y5P TC .00lmf 50V 10% TC .00lmf 50V 10% TC .00lmf 50V 10% CD 470pf 50V 20% TC .01 25V 30% CD 470pf 50V 10% MC .47mf +8-2 TC 4700pf 50V 10% MY .00lmf 100V 5% TC .00lmf 50V 10% MY .00lmf 100V 5% MY .00lmf 100V 5% MY .015mf 100V 5% MY .015mf 100V 5% MY .015mf 100V 5%	1510-0229-900 1500-0569-505 1510-0398-900 1538-0829-608 1500-0390-550 1538-0103-804 1523-0471-002 1538-0471-601 1500-0569-505 1510-0398-900 1500-0689-505 1538-0103-804 1538-0103-804 1538-0103-804 1502-0503-004 1502-0503-004 1502-0503-004 1502-0503-004 1502-0503-004 1538-0102-601 1538-0102-601 1538-0102-601 1538-0102-601 1538-0102-601 1523-0471-002 1538-0103-804 1500-0688-505 1523-0471-002 1502-0103-007 1510-0478-900 1500-0829-505 1538-0472-626 1502-0474-006 1538-0472-626 1502-0474-006 1538-0472-626 1538-0472-626 1538-0680-509 1538-0102-510 1508-0102-510 1508-0102-510 1508-0102-510 1508-0153-510 1508-0153-510	D7 D7 D7 D6 D6 D6 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 D5 D7 D6 D6 D6 D6 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7

XLH-257 - 42 - SECTION 7

LOCATION C445 C446 C447 C448 C449 C450 C451 C452	DESCRIPTION MY .0068mf 100V 10% MY .015mf 100V 5% MY .015mf 100V 5% MY .0068 100V 10% MY .015mf 100V 5% MY .0047mf 100V 5% CD .001mf 50V +8-2 not used	PART NUMBER 1508-0682-610 1508-0153-510 1508-0153-510 1508-0682-610 1508-0153-510 1508-0472-510 1503-0102-003	ZONE C4 D4 C4 D4 C4 D4 C4 D4 C4
C453 C454 C455 C456 C457 C458 C459 C460 C461 C462 C463 C464 C465 C466 C467 C468 C469 C470 C471 C472	MC .lmf 12V 20% MY .015mf 100V 5% E 220mf 16V E U 100mf 10V E 1000mf 16V Tant 2.2mf 25V 20% MY .068mf 100V 10% MY .068mf 100V 10% MY .0022mf 100V 5% MY .068mf 100V 10% MY .0027mf 100V 5% MC .05mf 25V +8-2 TC 470pf 50V 10% TC 470pf 50V 10% MC .47mf +8-2 E U 10mf 16V TC .01 25V 30% TC .01 25V 30% CD .002 50V 20%	1502-0104-005 1508-0153-510 1513-3254-711 1513-0101-001 1513-3254-704 1515-0229-005 1508-0683-610 1508-0683-610 1508-0222-510 1508-0683-610 1508-0272-510 1508-0272-510 1502-0503-004 1538-0471-601 1538-0471-601 1538-0471-601 1538-0471-601 1538-0471-601 1538-0471-601 1538-0471-601 1538-0471-601	C3 C3 D2 C2 C2 C2 D4 D4 D4 D4 D4 D4 D9 D9 D9 D4 D4 D3 D6 C3 D3
INTEGRATED CIRCUITS			
IC401 IC402 IC403	IF Sub Sys LM2902N TDA2002AV	3130-6056-500 3130-3157-637 3130-5407-602	D5 D4 D2
TRANSISTORS			
Q401 Q402 Q403 Q404	SPS 1743 Red Top SPS 1743 Red Top Junct FET 2N5668 SPS-952-2	4801-0000-035 4801-0000-035 4811-0000-030 4801-0000-016	D6 C6 D6 D3
DIODES			
CR401 CR402 CR403 CR404 CR405 CR406 CR407 CR408	IN4148 SP Germ IN4148 IN4148 SP IN4148 Zener 6.8V 5 IN5235B IN4148 IN4148	4805-1241-201 4807-1233-900 4805-1241-200 4805-1241-201 4805-1241-200 4808-0000-042 4805-1241-200 4805-1241-200	C5 D4 C3 C3 C3 D9 D7 C4

XLH-257 — 43 — SECTION 7

LOCATION	DESCRIPTION	PART NÚMBER	ZONE
CR409 CR410 CR411 CR412 CR413 CR414 CR415 CR416	Not used Germ	4807-1233-900	C9
COILS		1007 1200 300	Q 3
L401 L402 L403 L404 L405 L406 L407 L408 L409	RF input Org RF input Org RF RF RF RF Choke 39 uhy 455 KHz	1800-3152-020 1800-3152-020 1800-3152-036 1800-3152-037 1800-3152-037 1800-3152-037 1800-6055-902 1803-3268-201 1800-6055-801	D7 D6 D6 D6 D6 D6 D5
MISCELLANEOUS			
CF401	Cer filter CFU-544Dz	2700-3209-500	D5
XF401A XF401B	xtal filter 10.695 MHz xtal filter 10.695 MHz	2705-3299-900 2705-32990900	D6 D6
	shield cans	2508-1288-901	

XLH-257 - 44 - SECTION 7

MAIN BOARD

XLH257 TRANSMITTER SECTION

LOCATION	DESCRIPTION	PART NUMBER	ZONE
RESISTORS	(All resistors	are ¼W 5% unless otherwise noted)	
R501	36K ohm	4704-0363-032	C8
R502	470K ohm	4704-0474-032	C8
R503	43K ohm	4704-0433-032	C8
R5 0 4	330K ohm	4704-0334-032	C8
R5 0 5	22K ohm	4704-0223-032	C8
R506	15K ohm	4704-0153-032	C8
R5 0 7	2.7K ohm	4704-0272-032	
R5 0 8	4.7K ohm	4704-0472-032	C8 B8
R5 0 9	22K ohm	4704-0223-032	В7
R5 10	15K ohm	4704-0153-032	A7
R5 11	4.7K ohm	4704-0472-032	B8
R5 12	10K var	4751-0103-001	В8
R5 13	15K ohm	4704-0153-032	B7
R5 14 R5 15	Not used	4551 4144 444	
R5 16	10K var	4751-0103-001	A7
R5-17	22K ohm 10K var	4704-0223-032	C8
R5 18	4.7K ohm	4751-0103-001	• ,
R5.19	2.2K ohm	4704-0472-032 4704-0222-032	D8
R5 20	Not used	4704-0222-032	D8
R5 21	18K	4704-0183-032	20
R5 22	Not used	4704 0103 032	D8
R5.23	18K	4704-0183-032	D8
R5 24	Not used		סע
R5 25	12K ohm	4704-0123-032	D8
R5 26	Not used		20
R5 27	Not used		
R5 28	Not used		
R5 29	39K ohm	4704-0393-032	D8
R5 3 0	Not used		
R5 31 R5 32	39K ohm	4704-0393-032	D7
R5 3 3	Not used	4704 0070 000	
R534	27K ohm 22K ohm	4704-0273-032	D7
R535	36K ohm	4704-0223-032	D7
R5 36	10 ohm	4704-0363-032 4704-0100-032	D7
R5 3 7	4.7K ohm	4704-0100-032	В7
R5 38	2.2K ohm	4704-0472-032	B7
R539	10K ohm	4704-0103-032	B7
R540	10K ohm	4704-0103-032	B6
R541	15K ohm	4704-0153-032	B6
R5 4 2	10K ohm	4704-0103-032	B6 A7
R5 4 3	47K ohm	4704-0473-032	A7
R5 4 4	22K ohm	4704-0223-032	A7
R5 4 5	47K ohm	4704-0473-032	A7
R5 4 6	4.7K ohm	4704-0472-032	A6
R5 47	2.2K ohm	4704-0223-032	C5
R5 48	1.2K ohm	4704-0122-032	C6

LOCATION	DESCRIPTION	PART NUMBER	ZONE		
R5 49 R5 50 R5 51 R5 52 R5 53 R5 54 R5 55 R5 56 R5 56 R5 66 R5 66 R5 66 R5 66 R5 66 R5 67 R5 72 R5 77 R5 78 R5 77 R5 88 R5 88 R5 88 R5 88 R5 88 R5 88	22K ohm 10K ohm 10K ohm 10K ohm 10K ohm 10K ohm 2.2K ohm 2.2K ohm 10K ohm 11K ohm 10K ohm 10O ohm WW 2W 5% 2.7 ohm 2.2K ohm 10K ohm	4704-0223-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0222-032 4704-0222-032 4704-0102-032 4704-0102-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0103-032 4704-0102-032 4704-0103-032 4704-0122-032 4704-0202-032 4704-0101-031 4704-0223-032 4704-0101-032 4704-0101-032 4704-0101-032 4704-0101-032 4704-0100-032 4704-0103-032	C6 B3 B4 B4 A4 A2 A3 BA3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A		
CAPACITORS					
C501 C502 C503 C504 C505 C506 C507 C508 C509 C510 C511	MC .2mf 12V +8-2 TC 150pf 50V 10% MY .01mf 100V 5% MY .0047mf 100V 5% E U 10mf 16V MY .015mf 100V 5% MY .001mf 100V 5% E U 10mf 16V E U 10mf 16V E U 1mf 50V E 1000mf 16V MY .22mf	1502-0204-006 1538-0151-601 1508-0103-510 1508-0472-510 1513-0100-002 1508-0153-510 1508-0102-510 1513-0100-002 1513-0100-002 1513-0100-004 1513-3254-704 1508-3300-302	C9 B8 B8 C8 B8 A7 A7 A7 A7 B7 A7		

LOCATION	DESCRIPTION	PART NUMBER	ZONE
C566 C567 C568 C569 C570 C571 C572 C573 C574 C575 C576 C577 C578 C579 C580 C581	TC 470pf 50V 10% TC 24pf 50V 5% CD .01mf 50V 80-20 MC .2mf 12V +8-2 TC .001mf 50V 10% TC .001mf 50V 10% CD 470pf 50V 20% TC 6.8pf 50V 10% TC 470pf 50V 10% TC 470pf 50V 20% CD 150pf 50V 20% CD 470pf 50V 20% MY .015mf 100V 5% E U 1mf 50V CD 470pf 50V 20% CD 470pf 50V 20% CD 15pf 50V 20% CD 15pf 50V 10%	1538-0471-601 1538-0240-508 1502-0103-007 1502-0204-006 1538-0102-601 1538-0102-601 1523-0471-002 1538-0689-608 1538-0471-601 1523-0151-002 1523-0471-002 1523-0471-002 1508-0153-510 1513-0010-004 1501-0471-007 1500-0150-650	A7 C5 B3 A4 B2 A3 A2 C5 B2 B9 B7 B8 B2 B7
INTEGRATED CIRCUITS		11-11-1 1-11-1 1-11-11-1 1-11-11-1	
IC501 IC502 IC503 IC504 IC505 IC506 IC507 IC508 IC509 IC510	LM2902N CA3130E 74LS73 74LS02 Reg 5V 7 MO5C Reg 8V 5 0.1A 78L08AC MC1723 CP 7414 LM358N MP3870-8215 CMOS Synth II	3130-3157-637 3130-3167-914 3130-3157-634 3130-3157-632 3130-0000-019 3130-0000-021 3130-3157-655 3130-3157-654 3130-3167-909 3130-6060-309 3130-6088-000	B8 B6 C6 A4 B3 B3 B2 C9 D8 C8 A4
TRANSISTORS		TOT BANK MATERIAL	
Q501 Q502 Q503 Q504 Q505 Q506 Q507 Q508 Q509 Q510 Q511 Q512 Q513	SPS 1473 Red Top SPS 1473 Red Top SPS 1539 Wht Top SPS 1539 Wht Top SPS 1539 Wht Top SPS-952-2 SPS-952-2 SPS 1473 Red Top SPS 1473 Red Top RF Silicon MPS Darlington D40C1 SPS-952-2 SPS-952-2	4801-0000-035 4801-0000-035 4801-0000-060 4801-0000-060 4801-0000-016 4801-0000-016 4801-0000-035 4801-0000-035 4801-0000-035 4814-0000-016 4801-0000-016	B3 B4 A3 A3 A2 A3 C5 C4 C4 B5 D9

XLH-257 — 48 — SECTION 7

LOCATION	DESCRIPTION	PART NUMBER	ZONE
DIODES			
CR501 CR502 CR503 CR504 CR505 CR506 CR507	Germ Sil Rect 3 Amp 3Al00 IN4148 SP	4807-1233-900 4806-0000-005 4805-1241-201	A4 B2 A3
CR509 CR510 CR511 CR512	IN4148 SP IN4148 SP	4805-1241-201 4805-1241-201	C9 C9
L501	RF	1800-3152-035	C5
L502	RF Input Org	1800-3152-020	C5
L503 L504	RF Input Org	1800-3152-034 1800-3152-020	C4 C4
L505 L506	Choke LM-2 8.5T Choke LM-2 6.5T	1803-5125-910 1803-5125-909	C3
MISCELLANEOUS			
RT501	Thermistor	5300-0000-001	В5
P501	Conn 14 cond.	2105-3299-202	D9
Y501	Xtal 10.240 MHz	2338-3300-501	В4
FB501 FB502 FB503	ferrite bead w/lead Not used	2502-3293-901	C4
FB504	Not used ferrite bead w/lead	2502-3293-901	A2
FB505 FB506	ferrite bead w/lead ferrite bead w/lead	2502-3293-901 2502-3293-901	B4 B5
J502	Cable assy	6008-3425-701	С9
	Crystal clip Heatsink TO-92 (Q510)	2830-6073-500 5400-1329-000	

OTHER MECHANICAL PARTS

DESCRIPTION	PART NUMBER	QUANTITY
Chassis XLH257	1403-5444-000	1
Retainer, power plug	1400-1325-400	1
Conn Housing (J1)		ī
	2101-3262-400	1
Microphone Jack (J3)		ī
Antenna jack	2105-0000-020	1
Contact recept. for	2200 0000 020	
	2107-3244-104	2
	2803-0312-001	2
Screw 4 x 1/4 Hex WH		7
Screw 4 x 1/4 Phillip Hd		6
Shield bottom	2506-6067-400	1
Case bottom	1411-7053-008	1
Screw, plastic 6 x 2 3/8		1
	1301-3299-603	1
Case top	1411-7052-903	1
Push-on fasteners	2853-3275-901	1
Push-on rasteners	2003=32/3=901	4