MATA KULIAH: LOGIKA INFORMATIKA

dosen: Ino Suryana, M.Kom

S-1 Teknik Informatika Unpad

Proposisi

Pernyataan atau kalimat deklaratif yang bernilai benar (*true*) atau salah (*false*), tetapi tidak keduanya.

 Pernyataan yang melibatkan peubah (variable) disebut predikat, kalimat terbuka, atau fungsi proposisi

Contoh: "x > 3", "y = x + 10"

Notasi: P(x), misalnya P(x): x > 3

- Predikat dengan quantifier: $\forall x P(x)$
- Kalkulus proposisi: bidang logika yang berkaitan dengan proposisi.
- Kalkulus predikat: bidang logika yang berkaitan dengan predikat dan *quantifier* → TOPIK KULIAH BERIKUTNYA (Logika Predikat).

SIMBOL

- Kembali ke kalkulus/Logika proposisi
- Proposisi dilambangkan dengan huruf kecil p, q, r,
 dst

Contoh (Ekspresi Logika / logical expressions):

p: 13 adalah bilangan ganjil.

q: Soekarno adalah alumnus UGM. - ITB

r: 2+2=4

Mengkombinasikan Proposisi

(Operator Proposisi)

- Misalkan p dan q adalah proposisi.
 - 1. **Konjungsi** (conjunction): p dan qNotasi $p \wedge q$,
 - 2. **Disjungsi** (disjunction): p atau q Notasi: $p \vee q$
 - 3. **Ingkaran** (negation) dari p: tidak p
 Notasi: ~p
- p dan q disebut **proposisi atomik**
- Kombinasi p dengan q menghasilkan **proposisi majemuk** (compound proposition) atau logical expressions.

Contoh 3. Diketahui proposisi-proposisi berikut:

p: Hari ini hujan

q: Murid-murid diliburkan dari sekolah

Dari p dan q dapat dibuat *logical expressions* (ekspresi logika)

- $p \wedge q$: Hari ini hujan dan murid-murid diliburkan dari sekolah
- $p \lor q$: Hari ini hujan atau murid-murid diliburkan dari sekolah
- ~p : Tidak benar hari ini hujan (atau: Hari ini *tidak* hujan)

Contoh 4. Diketahui proposisi-proposisi berikut:

p : Pemuda itu tinggi

q: Pemuda itu tampan

Nyatakan dalam bentuk simbolik:

- (a) Pemuda itu tinggi dan tampan
- (b) Pemuda itu tinggi tapi tidak tampan
- (c) Pemuda itu tidak tinggi maupun tampan
- (d) Tidak benar bahwa pemuda itu pendek atau tidak tampan
- (e) Pemuda itu tinggi, atau pendek dan tampan
- (f) Tidak benar bahwa pemuda itu pendek maupun tampan

Penyelesaian:

- (a) $p \wedge q$
- (b) $p \wedge \sim q$
- (c) $\sim p \wedge \sim q$
- (d) $\sim (\sim p \vee \sim q)$
- (e) $p \vee (\sim p \wedge q)$
- (f) $\sim (\sim p \land \sim q)$

Tabel Kebenaran

p	q	$p \wedge q$	p	q	$p \lor q$
T	T	T	T	T	T
T	F	F	T	F	Γ
F	T	F	F	T	Γ
F	F	F	\mathbf{F}	F	F

p	~q
T	F
F	$\mid T \mid$
	<u> </u>

Contoh 5. Misalkan

p: 17 adalah bilangan prima (benar)

q: bilangan prima selalu ganjil (salah)

 $p \wedge q$: 17 adalah bilangan prima dan bilangan prima selalu ganjil (salah)

• Operator proposisi di dalam *Google*

Contoh 6. Bentuklah tabel kebenaran dari proposisi majemuk $(p \land q) \lor (\sim q \land r)$.

p	q	r	$p \wedge q$	~ q	$ \sim q \wedge r $	$(p \land q) \lor (\sim q \land r)$
T	Т	T	T	F	F	T
T	T	F	T	F	F	T
T	F	T	F	T	T	T
T	F	F	F	T	F	F
F	T	T	F	F	F	F
F	T	F	F	F	F	F
F	F	T	F	T	T	T
F	F	F	F	T	F	F

 Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus

• Proposisi majemuk disebut **kontradiksi** jika ia salah untuk semua kasus.

Contoh 7. $p \lor \sim (p \land q)$ adalah sebuah tautologi

p	q	$p \wedge q$	$\sim (p \wedge q)$	$p \lor \sim (p \land q)$
T T F F	T F T F	T F F	F T T	T T T

Tautologi

Contoh 8. $(p \land q) \land \neg (p \lor q)$ adalah sebuah kontradiksi

p	q	$p \wedge q$	$p \lor q$	$\sim (p \vee q)$	$(p \land q) \land \neg (p \lor q)$
T	T	T	F	F	F
T	F	F	T	F	
F	T	F	T	F	F
F	F	F	F		

Kontradiksi

Dua buah proposisi majemuk, P(p, q, ...) dan Q(p, q, ...) disebut **ekivalen** secara logika jika keduanya mempunyai tabel kebenaran yang identik.

Notasi:
$$P(p, q, ...) \Leftrightarrow Q(p, q, ...)$$

Contoh 9. Hukum De Morgan: $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$.

p q	$p \wedge q$	$\sim (p \wedge q)$	~ p	~ q	$ \sim p \lor \sim q$
T T T F F F	T F F	F T T	F F T T	F T F T	F T T

Ekivalen – cara Tabel

Hukum-hukum Logika

Disebut juga hukum-hukum aljabar proposisi.

1. Hukum identitas:	2. Hukum <i>null</i> /dominasi:
$- p \vee \mathbf{F} \Leftrightarrow p$	$-p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$
$-p \wedge \mathbf{T} \Leftrightarrow p$	$- p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$
3. Hukum negasi:	4. Hukum idempoten:
$- p \lor \sim p \Leftrightarrow \mathbf{T}$	$- p \lor p \Leftrightarrow p$
$-p \wedge \sim p \Leftrightarrow \mathbf{F}$	$- p \land p \Leftrightarrow p$
5. Hukum involusi (negasi	6. Hukum penyerapan
ganda):	(absorpsi):
$- \sim (\sim p) \Leftrightarrow p$	$- p \lor (p \land q) \Leftrightarrow p$
	$- p \land (p \lor q) \Leftrightarrow p$

7. Hukum komutatif:

- $p \lor q \Leftrightarrow q \lor p$
- $p \land q \Leftrightarrow q \land p$

8. Hukum asosiatif:

- $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$
- $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$

9. Hukum distributif:

- $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
- $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

10. Hukum De Morgan:

- $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$
- $\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q$

• Contoh 10. Tunjukkan bahwa $p \vee \sim (p \vee q)$ dan $p \vee \sim q$ keduanya ekivalen secara logika — cara ALJABAR.

Penyelesaian:

$$p \lor \sim (p \lor q) \Leftrightarrow p \lor (\sim p \land \sim q)$$
 (Hukum De Mogran)
 $\Leftrightarrow (p \lor \sim p) \land (p \lor \sim q)$ (Hukum distributif)
 $\Leftrightarrow T \land (p \lor \sim q)$ (Hukum negasi)
 $\Leftrightarrow p \lor \sim q$ (Hukum identitas)

Contoh 11. Buktikan hukum penyerapan: $p \land (p \lor q) \Leftrightarrow p$ (ekivalen)

Penyelesaian:

$$p \land (p \lor q) \Leftrightarrow (p \lor F) \land (p \lor q)$$
 (Hukum Identitas)
 $\Leftrightarrow p \lor (F \land q)$ (Hukum distributif)
 $\Leftrightarrow p \lor F$ (Hukum $Null$)
 $\Leftrightarrow p$ (Hukum Identitas)

 $p \lor (p \land q) \Leftrightarrow p$ ekivalen?

$$p \lor (p \land q) \Leftrightarrow (p \land T) \lor (p \land q)$$
$$\Leftrightarrow p \land (T \lor q) \Leftrightarrow p \land T \Leftrightarrow p$$

Soal

(Tabel Bebenaran dan Cara Aljabar)

Buktikan bahwa (ekivalen=equivalent):

i.
$$x \lor (\sim x \land y) \Leftrightarrow x \lor y$$

ii.
$$x \land (\neg x \lor y) \Leftrightarrow x \land y$$

iii.~
$$(\sim p \land q) \land (p \lor r) \Leftrightarrow p \lor (\sim q \land r)$$

Latihan 1:

Diberikan pernyataan "Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika".

- (a) Nyatakan pernyataan di atas dalam notasi simbolik (ekspresi logika)
- (b) Berikan pernyataan yang ekivalen secara logika dengan pernyataan tsb (Petunjuk: gunakan hukum De Morgan)

Penyelesaian Latihan 1

Misalkan

- p: Dia belajar Algoritma
- q : Dia belajar Matematika
- "Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika"

maka notasi simbolik (ekspresi logika),

(a)
$$\sim (p \land \sim q)$$

pernyataan yang ekivalen

(b) ~
$$(p \land \sim q) \Leftrightarrow \sim p \lor q$$
 (Hukum **De Morgan**)

dengan kata lain: "Dia tidak belajar Algoritma atau belajar Matematika"

Disjungsi Eksklusif

Kata "atau" (or) dalam operasi logika digunakan dalam salah satu dari dua cara:

1. Inclusive or

"atau" berarti "p atau q atau keduanya"

Contoh: "Tenaga IT yang dibutuhkan harus menguasai Bahasa C++ atau Java".

2. Exclusive or

"atau" berarti "p atau q tetapi bukan keduanya".

Contoh: "Ia dihukum 5 tahun atau denda 10 juta".

Operator logika disjungsi eksklusif: xor

Notasi: ⊕

Tabel kebenaran:

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

Ekslusif OR - xor

SELESAI SESI 2 TRIMS KETEMU DI SESI 3