

Here's a compiled set of concise yet complete notes on:

- Fundamental Frequency
- Normalized Frequency
- Normalization Factor $\frac{k}{N}$
- DFT Bin Interpretation
- · Real-World Mapping

Understanding Frequency in DFT: A Practical Guide

♦ 1. Fundamental Frequency

Definition:

The **fundamental frequency** in the context of DFT is the **lowest non-zero frequency** that can be resolved by the transform.

$$f_{
m fundamental} = rac{f_s}{N}$$

Where:

- f_s : Sampling frequency (Hz)
- ullet N: Number of time-domain samples in DFT

Interpretation:

- It's the frequency corresponding to 1 full cycle over N samples.
- All other DFT bin frequencies are integer multiples (harmonics) of this.

♦ 2. Normalized Frequency

Definition:

The frequency expressed as a fraction of the sampling rate, i.e., cycles per sample.

$$f_{
m norm} = rac{f_{
m actual}}{f_s} = rac{k}{N}$$

Where:

• k: DFT bin index

• N: DFT size

• $f_{
m actual}$: Actual frequency in Hz

Units: Cycles per sample (unitless)

Range:

- For real signals, normalized frequency typically spans $\left[0,0.5\right]$ due to symmetry (Nyquist limit).
- For complex signals, full range is [0,1) or [-0.5,0.5)

\clubsuit 3. Normalization Factor $\frac{k}{N}$

This is the core frequency index of DFT — it determines:

- The rate of rotation of the complex exponential used in bin \boldsymbol{k}
- The harmonic component DFT is measuring

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pirac{k}{N}n}$$

- $\frac{k}{N}$: Normalized frequency
- k: Bin number = k-th harmonic

♦ 4. Harmonic Interpretation

Each DFT bin k measures how much of the k-th harmonic (i.e., sinusoid completing k cycles in N samples) is present in the signal.

$$f_k = k \cdot f_{ ext{fundamental}} = rac{k}{N} \cdot f_s$$

So:

• **Bin 0** → DC component (0 Hz)

• Bin 1 \rightarrow 1 cycle over N samples \rightarrow fundamental

• Bin 2 → 2nd harmonic

• ..

• Bin N/2 o Nyquist frequency (if N is even)

♦ 5. Physical Interpretation of Frequencies

Туре	Formula	Units	Meaning
Fundamental	$rac{f_s}{N}$	Hz	Lowest non-zero freq. DFT can detect
Actual freq. of bin $oldsymbol{k}$	$rac{k}{N} \cdot f_s$	Hz	Frequency component measured in bin \boldsymbol{k}
Normalized freq. of bin \boldsymbol{k}	$\frac{k}{N}$	cycles/sample	Fraction of sampling rate
Harmonic number	k	dimensionless	k-th sinusoid in the basis

♦ 6. Example:

Let's say:

• $f_s = 8000 \, \mathrm{Hz}$

• N = 8

Then:

- $f_{
 m fundamental} = rac{8000}{8} = 1000\,{
 m Hz}$
- Bin 2:
 - $_{\circ}~$ Normalized frequency = $\frac{2}{8}=0.25$
 - $_{\circ}~$ Actual frequency = $0.25 \cdot 8000 = 2000 \, Hz$
 - Harmonic = 2nd

♦ 7. Why It Matters

- Normalized frequency lets you work independent of sampling rate useful for algorithms, plotting, etc.
- Actual frequency gives physical meaning e.g., audio tone, RF carrier.
- Fundamental frequency shows your resolution: you can't distinguish between signals closer than $\frac{f_s}{N}$.
- Understanding $\frac{k}{N}$ is essential to interpreting DFT results correctly.

B Summary Table

Concept	Expression	Interpretation
Fundamental frequency	$rac{f_s}{N}$	Lowest resolvable frequency
Normalized frequency	$\frac{k}{N}$	Cycles per sample
Actual frequency	$rac{k}{N} \cdot f_s$	Hz
Harmonic number	k	k-th sinusoidal basis
Nyquist frequency	$\frac{f_s}{2}$	Maximum representable frequency for real signals