

FM2112(文件编号: S&CIC1574)

1 节磷酸铁钾电池保护 IC

概述

FM2112系列IC,内置高精度电压检测电路和延迟电路,是用于单节磷酸铁锂可再充电 电池的保护IC。 本IC适合于对1节磷酸铁锂可再充电电池的过充电 、过放电和过电流进行保护 。

特点

FM2112全系列IC具备如下特点:

(1) 高精度电压检测电路

>	过充电检测电压Vcun(n=1,2)	3.600V~4.000V	精度 ±25mV
>	过充电释放电压VcRn(n=1,2)	3.400V~4.000V	精度 ±50mV
>	过放电检测电压V _{DLn} (n=1,2)	1.800V~2.200V	精度 ±50mV
\triangleright	过放电释放电压 V DRn(n=1,2)	1.80V~2.40V	精度 ±50mV
>	放电过流检测电压	(可选择)	精度 ±15mV
>	充电过流检测电压	(可选择)	
>	负载短路检测电压	0.85V (固定)	精度±300mV

▶ 负载短路检测电压 (2) 各延迟时间由内部电路设置(不需外接电容)

▶ 过充电检测延迟时间 典型值1200ms 过放电检测延迟时间 典型值140ms \triangleright 放电过流检测延迟时间 典型值12ms ▶ 充电过流检测延迟时间 典型值8ms ▶ 负载短路检测延迟时间 典型值400µs

(3) 低耗电流

▶ 工作模式 典型值3.0μA , 最大值6.0μA (VDD=3.2V)

休眠模式 最大值0.1µA

- (4) 连接充电器的端子采用高耐压设计(CS端子和OC端子,绝对最大额定值是20V)
- (5) 允许向0V电池充电功能:可选择"允许"或"禁止"
- (6) 宽工作温度范围: -40℃~+85℃
- (7) 小型封装: SOT23-6
- (8) FM2112 系列是无卤素绿色环保产品

产品应用

▶ 1节磷酸铁锂可再充电电池组

管脚定义及功能说明

	序号	符号	说明
6 5 4	1	OD	放电控制用MOSFET门极连接端子
	2	cs	过电流检测输入端子,充电器检测端子
	3	ОС	充电控制用MOSFET门极连接端子
•	4	NC	无连接
1 2 3	5	VDD	电源端,正电源输入端子
SOT23-6	6	VSS	接地端,负电源输入端子

FM2112(文件编号: S&CIC1574)

1 节磷酸铁锂电池保护 IC

产品目录

参数	过充电检测	过充电释放	过放电检测	过放电释放	放电过流	充电过流检	向 0V 电池充
型号	电压	电压	电压	电压	检测电压	测电压	电功能
至与	V _{CUn}	V_{CRn}	V_{DLn}	V_{DRn}	V_{DIP}	V _{CIP}	V_{0CH}
FM2112-BB	3.75±0.025V	3.60±0.05V	2.10±0.05V	2.30±0.05V	150±15mV	-200±30mV	允许
FM2112-CB	3.75±0.025V	3.60±0.05V	2.10±0.05V	2.30±0.05V	200±15mV	-200±30mV	允许

方框图

绝对最大额定值

(VSS=0V, Ta=25°C, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	V
OC 输出端子电压	Voc	VDD-20~VDD+0.3	V
OD 输出端子电压	V _{OD}	VSS-0.3~VDD+0.3	V
CS 输入端子电压	Vcs	VDD-20~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	$^{\circ}$ C
储存温度范围	T _{ST}	-40~+125	$^{\circ}$ C
容许功耗	P _D	250	mW

FM2112(文件编号: S&CIC1574)

1 节磷酸铁锂电池保护 IC

电气特性

(VSS=0V, Ta=25°C, 除非特别说明)

项目	符号	条件	最小值	典型值	最大值	单位
输入电压				•		
VDD-VSS工作电压	V _{DSOP1}	_	1.5	_	8	V
VDD-CS工作电压	V _{DSOP2}	_	1.5	_	20	V
耗电流						
工作电流	I _{DD}	VDD=3.2V	_	3.0	6.0	uA
休眠电流	I _{PD}		_	_	0.1	uA
检测电压						
过充电检测电压	V _{CU}	3.6~4.0V,可调整	VCU-0.025	VCU	VCU +0.025	V
过充电释放电压	V _{CR}	3.4~4.0V,可调整	VCR -0.05	VCR	VCR +0.05	V
过放电检测电压	V_{DL}	1.8~2.2V,可调整	VDL -0.05	VDL	VDL +0.05	V
过放电释放电压)	V_{DR}	1.8~2.4V,可调整	VDR -0.05	VDR	VDR +0.05	V
放电过流检测电压	V_{DIP}		VDIP -15	VDIP	VDIP +15	mV
负载短路检测电压	V _{SIP}		0.55	0.85	1.15	V
		VDD=3.6V, 50mV <v<sub>CIP<150mV</v<sub>	V _{CIP} -20	V _{CIP}	V _{CIP} +20	mV
充电过流检测电压	V _{CIP}	VDD=3.6V, 150mV <v<sub>CIP<250mV</v<sub>	V _{CIP} -30	V _{CIP}	V _{CIP} +20	mV
		VDD=3.6V,V _{CIP} ≫ 250mV	V _{CIP} -50	V _{CIP}	V _{CIP} +20	mV
延迟时间						
过充电检测延迟时间	Toc		900	1200	1500	ms
过放电检测延迟时间	T _{OD}		105	140	170	ms
放电过流检测延迟时间	T _{DIP}		9	12	15	ms
充电过流检测延迟时间	T _{CIP}		6	8	10	ms
负载短路检测延迟时间	T _{SIP}		200	400	600	μs
控制端子输出电压						
OD端子输出高电压	V_{DH}		VDD-0.1	VDD-0.02		V
OD端子输出低电压	V_{DL}			0.1	0.5	V
OC端子输出高电压	V _{CH}		VDD-0.1	VDD-0.02		V
OC端子输出低电压	V _{CL}			0.1	0.5	V
向 0V 电池充电的功能(允许	或禁止)					
充电器起始电压(允许向 0V 电池充电功能)	V _{0CH}	允许向0V电池充电功 能	1.2	-	-	V
电池电压(禁止向 0V 电池充电功能)	Voin	禁止向 0V 电池充电功能	-	-	0.5	V
P. 34 HP.	L	110				

FM2112(文件编号: S&CIC1574)

1 节磷酸铁锂电池保护 IC

应用电路图

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定VDD、加强ESD	100Ω	100Ω	470Ω	*1
R2	电阻	限流	100Ω	2ΚΩ	2ΚΩ	*2
C1	电容	滤波,稳定VDD	0.01µF	0.1µF	1.0µF	*3
M1	N-MOSFET	放电控制	-	-	-	*4
M2	N-MOSFET	充电控制	-	-	-	*5

- 1、R1连接过大电阻, 由于耗电流会在R1上产生压降, 影响检测电压精度。当充电器反接时, 电流从充电 器流向 IC, 若R1 过大有可能导致 VDD~VSS 端子间电压超过绝对最大额定值的情况发生。
- ·2 、R2 连接过大电阻 , 当连接高电压充电器时 , 有可能导致不能切断充电电流的情况发生。但为控制充电器 反接时的电流, 请尽可能选取较大的阻值。
- *3 、C1 有稳定 VDD 电压的作用,请不要连接 0.01uF 以下的电容。
- *4、使用 MOSFET 的阂值电压在过放电检测电压以上时 ,可能导致在过放电保护之前停止放电。
- *5 、门极和源极之间耐压在充电器电压以下时,N-MOSFET 有可能被损坏。

FM2112(文件编号: S&CIC1574)

1 节磷酸铁钾电池保护 IC

工作说明

▶ 正常工作状态

此 IC 持续侦测连接在 VDD 和 VSS之间的电池电压,以及CS与VSS之间的电压差,来控制充电和放电。 对于有放电过流检测电压(V_{DIP})的 IC ,当电池电压在过放电检测电压 (V_{DL}) 以上并在 过充电检测 电压 (Vcu) 以下 ,且cs 端子电压在放电过流检测电压 (VDIP) 以下时 ,IC 的OC和 OD 端子都输出 高电平 ,使充电控制用 MOSFET 和放电控制用 MOSFET 同时导通 ,这个状态称为"正常工作状态" 。此状 态下, 充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接CS端子和VSS端子,或者连接充电器,就能 恢复到正常工作状态。

▶ 过充电状态

正常工作状态下的电池 , 在充电过程中 , 一旦电池电压超过过充电检测电压 (Vcu) , 并且这种状 态持续的时间超过过充电检测延迟时间(Toc)以上时,FM2112 系列 IC会自动关闭充电控制用的 MOSFET (OC 端子),停止充电,这个状态称为"过充电状态"。

过充电状态在如下 2 种情况下可以释放:

不连接充电器时

- (1) 由于自放电使电池电压降低到过充电释放电压 (VcR) 以下时 , 过充电状态释放 , 恢复到正常工 作状态。
- (2) 连接负载放电 , 放电电流先通过充电控制用 MOSFET 的寄生二极管流过 , 此时, CS端子侦测到一 个"二极管正向导通压降(Vf)的电压。当CS端子电压在放电过流检测电压 (VDP) 以上且电池电 压降低到过充电检测电压 (Vcu) 以下时,过充 电状态释放,恢复到正常工作状态。

注意:

(1) 进入过充电状态的电池,如果仍然连接着充电器,即使电池电压低于过充电释放电压(VcR),过 充电状态也不能释放 。断开充电器,CS端子电压高于充电过流检测电压(Vcip)以上时 ,过充电状态才能释 放。

▶ 过放电状态及休眠状态

正常工作状态下的电池, 在放电过程中, 当电池电压降低到过放电检测电压 (VDL) 以下, 并且这种状态 持续的时间超过过放电检测i延迟时间 (Top) 以上时 , FM2112 系列 IC 会关闭放电控制用的 MOSFET (OD 端子) ,停止放电 ,这个状态称为"过放电状态"。

当关闭放电控制用 MOSFET 后, CS由IC 内部电阻上拉到 VDD, 使 IC 耗电流减小到休眠时的耗电流值, 这个状态称为"休眠状态"。

过放电状态的释放,有以下两种情况:

- (1)连接充电器,若CS端子电压低于充电过流检测电压(Vcp),当电池高于过放电检测电压(Vdl)时,过 放电状态释放,恢复到正常工作状态。
- (2) 连接充电器 ,若CS端子电压高于充电过流检测电压 (VCIP) ,当电也电压高于过放电释放电压(VDR) 时,过放电状态释放,恢复到正常工作状态。

▶ 放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池 , FM2112 通过检测CS端子电压持续侦测放电电流 。一旦CS端子电压超过放电过 流检测电压 (V_{DIP}) ,并且这种状态持续的时间超过放电过流检测延迟时间 (T_{DIP}) ,则关闭放电控制用的 MOSFET

FM2112(文件编号: S&CIC1574)

1 节磷酸铁锂电池保护 IC

(OD端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压(V_{SIP}),并且这种状态持续的时间超过负载短 路检测延迟时间 (T_{SIP}) 时 ,则也关闭放电控制用的 MOSFET (OD端子),停止放电 ,这个状态称为"负载短路状态"。

当连接在电池正极(PB+)和电池负极(PB-)之间的阻抗大于放电过流、负载短路释放阻抗时,放电过 流状态和负载短路状态释放 ,恢复到正常工作状态 。另外,即使连接在电池正极 (PB+) 和电池负极 (PB-) 之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS端子电压降低到放电过流保护电压(VDIP) 以下,也会释放放电过流状态或负载短路状态,回到正常工作状态。

注意:

(1) 若不慎将充电器反接时 , 回路中的电流方向与放电时电流方向一致, 如果 CS端子电压高于放电过流 检测电压(VDIP),则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

充电过流状态

正常工作状态下的电池, 在充电过程中, 如果CS端子电压低于充电过流检测电压(VcIP), 并且这种状态 持续的时间超过充电过流检测延迟时间(TcIP),则OC端子输出电压由高电平变为低电平,关闭充电控制用的 MOSFET (OC端子),停止充电,这个状态称为"充电过流状态"。

进入充电过流检测状态后 ,如果断开充电器使CS端子电压高于充电过流检测电压(V_{CIP})时,充电过流状 态被解除,恢复到正常工作状态。

向**0V**电池充电功能 允许

此功能用于对已经自放电到0V的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-) 之间的 充电器电压,高于"向0V电池充电的充电器起始电压(V_{0CH})时,充电控制用 MOSFET 的门极固定为 VDD 端 子的电位,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导 通(OC端子),开始充电。这时,放电控制用 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。 当电池电压高于过放电检测电压(V_{DL})时, FM2112 系列 IC 进入正常工作状态。

注意:

(1) 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商, 确认所购买的电也是否具备"允许向0V电池充电"的功能, 还是"禁止向0V 电池 充电"的功能。

向**0V**电池充电功能 禁止

当连接内部短路的电池(OV电池)时,禁止向OV电池充电的功能会阻止对它再充电。当电池电压低于"OV电 池充电禁止的电池电压(Voln)"时,充电控制用 MOSFET 的门极固定为PB-电压 ,禁止充电 。当电池电压高于 "OV电池充电禁止的电池电压(VoIN)"时,可以充电。

注意:

(1) 某些完全自放电后的电池,不允许被再次充电,这是由锂电电池的特性决定的。请询问电池供应商, 确认所购买的电也是否具备"允许向0V电池充电"的功能,还是"禁止向0V电池充电"的功能。

FM2112(文件编号: S&CIC1574)

1 节磷酸铁锂电池保护 IC

封装信息

SOT23-6

SYMBOL	MILLIMETER					
3 IMDOL L	MIN	NOM	MAX			
A	-	1. 19	1.24			
A1	-	0.05	0.09			
A2	1. 05	1. 10	1.15			
А3	0. 31	0. 36	0.41			
b	0. 35	0. 40	0.45			
с	0. 12	0. 17	0.22			
D	2. 85	2. 90	2.95			
Е	2. 80	2. 90	3.00			
E1	1. 55	1. 60	1.65			
е	j	0. 95BSC	2			
L	0. 37	0. 45	0.53			
L1	0. 65BSC					
θ	0°	2°	8°			