Absorber characterization COMPASS thesis

Armando Brandonisio

April 23, 2016

Contents

1	Absorber characterization				
	1.1	Experimental set-up	3		
	1.2	Definition of the operative range	6		
	1.3	Circuit calibration with X-ray sources	6		
	1.4	Energy resolution measurement	6		
Re	eferei	nces	7		

Chapter 1

Absorber characterization

We investigated luminescence and scintillation properties of the $Gd_3Al_2Ga_3O_{12}$: Ce (GAGG) produced by Furukawa company. The GAGG crystal has the highest light yield among oxide crystal at room temperature [1] and fast decay time for the detection of radioactivity and in nuclear and particle physics experiments.

A list of the most important parameters for GAGG is reported in Table 1.1.

Some fundamental features of this crystal are that it has no intrinsic radioactivity and it is a non-hygroscopic material. This allows a better usage for experimentation with low risk of contamination from ambient.

The measurements have been carried out by illuminating the scintillation rod with a X-ray beam.

*Si*PM and electronic chain parameters was varied measuring the relative position of the photo-peak in the spectrum produced by the scintillator.

Density	Light	Decay	Peak	Energy	Hygroscopicity
$[g/cm^3]$	yield	time	emission	resolution	
	[photon/MeV]	[ns]	[nm]	[% @662 keV]	
6.63	57000	88 (91%) 258 (9%)	520	5.2	No

Table 1.1: Physical and scintillation properties of GAGG

1.1 Experimental set-up

Laboratory measurements have been carried out using a single rod made of GAGG produced by *Furukawa* company.

The rod has a square-base parallelepipoidale shape with a height of 30mm and a side of 3mm, thus their dimension results 2/3 lower to the one expected for the polarimeter bars ($\sim 10mm$).

To minimize the loss of photons during scintillation, the bar was *wrapped* with Teflon Fig 1.1, that has a high reflection coefficient for small incident angles.

Figure 1.1: Scintillation rod made of GAGG wrapped with teflon

The rod has been placed over a single SiPM, model LCT4/9 produced by the Hamamatsu company.

Properties, CAD scheme and microscopic details of this SiPM are reported in Tab 1.2, Fig 1.2 and Fig 1.3 respectively.

Figure 1.2: CAD scheme for LCT4/9

Table 1.2: Main physical features of the LCT/9

Figure 1.3: Image of LCT4/9 taken through a microscope.

This set of MPPCs produced by Hamamatsu, have an included proprietary circuit board with power supply for a direct hardware control from PC via USB connection (see Fig 1.4).

The C12332 is a simple evaluation starter kit for non-cooled MPPC. MPPC evaluation is possible by mounting an MPPC in the socket of the sensor circuit board. The power supply circuit board is equipped with the C11204-01, a high-accuracy, high-voltage power supply that provides the operating voltage from MPPC. It operates just by connecting to an extenal power supply ($\pm 5V$). It is also equipped with a USB interface that can be used to set the operating voltage and temperature compensation coefficient from a PC running the supplied sample software.

We used the power supply circuit board with serial number C12332 with nominal gain of 21 for LCT4/9.

Figure 1.4: Connection example

- 1.2 Definition of the operative range
- 1.3 Circuit calibration with X-ray sources
- 1.4 Energy resolution measurement

Bibliography

[1] Hye-Lim Kim et al. Journal of Ceramic Processing Research. Vol. 16, No. 1, pp. 124-128, 2015