Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

```
In [2]: df=pd.read_csv("2016.csv")
    df
```

•	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	S
0	2016- 11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN	280
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	280
2	2016- 11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0	280
3	2016- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN	280
4	2016- 11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN	280
•••														
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN	280
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN	280
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN	280
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN	280
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN	280

209496 rows × 14 columns

Data Cleaning and Data Preprocessing

```
In [3]:
         df=df.dropna()
In [4]:
         df.columns
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station'],
               dtype='object')
In [5]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
         Int64Index: 16932 entries, 1 to 209478
        Data columns (total 14 columns):
         #
             Column
                      Non-Null Count Dtype
                      -----
         0
             date
                      16932 non-null object
         1
             BEN
                      16932 non-null float64
         2
             CO
                      16932 non-null float64
         3
             EBE
                      16932 non-null float64
         4
             NMHC
                      16932 non-null float64
         5
             NO
                      16932 non-null float64
         6
             NO_2
                      16932 non-null float64
         7
             0_3
                      16932 non-null float64
         8
             PM10
                      16932 non-null float64
         9
             PM25
                      16932 non-null float64
         10 SO_2
                      16932 non-null float64
         11 TCH
                      16932 non-null float64
         12 TOL
                      16932 non-null float64
         13 station 16932 non-null int64
        dtypes: float64(12), int64(1), object(1)
        memory usage: 1.9+ MB
In [6]:
         data=df[['CO' ,'station']]
Out[6]:
                CO
                      station
             1 1.1 28079008
             6 0.8 28079024
            25 1.0 28079008
            30 0.7 28079024
            49
                0.8 28079008
         209430 0.2 28079024
         209449 0.4 28079008
         209454 0.2 28079024
         209473 0.4 28079008
         209478 0.2 28079024
        16932 rows × 2 columns
```

Line chart

```
In [7]: data.plot.line(subplots=True)
Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)
4-
```


Line chart

```
In [8]: data.plot.line()
```

Out[8]: <AxesSubplot:>

Bar chart

```
In [9]: b=data[0:50]
In [10]: b.plot.bar()
Out[10]: <AxesSubplot:>
```


Histogram

```
In [11]: data.plot.hist()
```

Out[11]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [12]: data.plot.area()
```

Out[12]: <AxesSubplot:>

Box chart

```
In [13]: data.plot.box()
```

Out[13]: <AxesSubplot:>

Pie chart

```
In [14]:
b.plot.pie(y='station')
```

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [15]: data.plot.scatter(x='CO' ,y='station')
Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>
```



```
In [16]:
          df.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 16932 entries, 1 to 209478 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	16932 non-null	object
1	BEN	16932 non-null	float64
2	CO	16932 non-null	float64
3	EBE	16932 non-null	float64
4	NMHC	16932 non-null	float64
5	NO	16932 non-null	float64
6	NO_2	16932 non-null	float64
7	0_3	16932 non-null	float64
8	PM10	16932 non-null	float64
9	PM25	16932 non-null	float64
10	S0_2	16932 non-null	float64
11	TCH	16932 non-null	float64
12	TOL	16932 non-null	float64
13	station	16932 non-null	int64
dtype	es: float	64(12), int64(1)	, object(1

1) memory usage: 1.9+ MB

```
In [17]:
          df.columns
```

In [18]: df.describe()

Out[18]:

	BEN	СО	EBE	NMHC	NO	NO_2	
count	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.000000	16932.00
mean	0.537970	0.349941	0.298955	0.099913	20.815734	39.373376	48.11
std	0.599479	0.203807	0.450204	0.079850	40.986063	31.170307	32.56
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	1.00
25%	0.200000	0.200000	0.100000	0.050000	1.000000	14.000000	21.00
50%	0.400000	0.300000	0.200000	0.090000	7.000000	34.000000	46.00
75%	0.700000	0.400000	0.300000	0.120000	23.000000	58.000000	69.00

	BEN	со	EBE	NMHC	NO	NO_2	
max	12.300000	4.500000	13.500000	2.210000	829.000000	319.000000	181.00

```
In [19]:
          df1=df[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2','O_3',
                  'PM10','SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

```
In [20]:
          sns.pairplot(df1[0:50])
         <seaborn.axisgrid.PairGrid at 0x217d78acc70>
Out[20]:
In [21]:
```

sns.distplot(df1['station'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn ing: `distplot` is a deprecated function and will be removed in a future version. Pl ease adapt your code to use either `displot` (a figure-level function with similar f

lexibility) or `histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)

Out[21]: <AxesSubplot:xlabel='station', ylabel='Density'>


```
In [22]: sns.heatmap(df1.corr())
```

Out[22]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [25]:
          from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[25]: LinearRegression()
In [26]:
          lr.intercept
          28079040.05833833
Out[26]:
In [27]:
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[27]:
                 Co-efficient
            BEN
                    1.799305
             CO
                    5.866820
            EBE
                    0.210592
          NMHC
                    3.652970
           NO_2
                   -0.067171
                   -0.028079
            O_3
           PM10
                    0.024436
```

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[28]: <matplotlib.collections.PathCollection at 0x217e0d9bee0>

ACCURACY

SO₂

TCH

TOL

-0.844531

-12.959269

0.258683

```
In [29]: lr.score(x_test,y_test)
Out[29]: 0.8011739192797894
In [30]: lr.score(x_train,y_train)
Out[30]: 0.7916349423598931
```

Ridge and Lasso

```
In [31]: from sklearn.linear_model import Ridge,Lasso
In [32]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)
Out[32]: Ridge(alpha=10)
```

Accuracy(Ridge)

Accuracy(Lasso)

```
In [37]: la.score(x_test,y_test)
Out[37]: 0.6262405487220697
```

Elastic Net

```
In [38]:
           from sklearn.linear_model import ElasticNet
           en=ElasticNet()
           en.fit(x_train,y_train)
          ElasticNet()
Out[38]:
In [39]:
           en.coef
          array([ 0.
                                                                        , -0.07934312,
Out[39]:
                  0. , 0. , 0. , 0. , -0. 
-0.02660259, 0.02377698, -0.85401015, -0.
                                                                           0.2541252 ])
In [40]:
           en.intercept_
          28079025.817570496
Out[40]:
In [41]:
           prediction=en.predict(x_test)
In [42]:
           en.score(x_test,y_test)
Out[42]: 0.686409247096778
```

Evaluation Metrics

```
from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

3.5275189590574367
    20.069655755308172
    4.4799169362063145
```

Logistic Regression

```
In [48]:
          from sklearn.preprocessing import StandardScaler
In [49]:
          fs=StandardScaler().fit_transform(feature_matrix)
In [50]:
          logr=LogisticRegression(max_iter=10000)
          logr.fit(fs,target_vector)
         LogisticRegression(max_iter=10000)
Out[50]:
In [51]:
          observation=[[1,2,3,4,5,6,7,8,9,10]]
In [52]:
          prediction=logr.predict(observation)
          print(prediction)
          [28079008]
In [53]:
          logr.classes_
         array([28079008, 28079024], dtype=int64)
Out[53]:
In [54]:
          logr.score(fs,target_vector)
         0.9923812898653437
Out[54]:
In [55]:
          logr.predict_proba(observation)[0][0]
         1.0
Out[55]:
In [56]:
          logr.predict_proba(observation)
         array([[1.0000000e+00, 1.6336121e-46]])
Out[56]:
```

Random Forest

```
In [57]:
          from sklearn.ensemble import RandomForestClassifier
In [58]:
          rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
         RandomForestClassifier()
Out[58]:
In [59]:
          parameters={'max_depth':[1,2,3,4,5],
                       'min_samples_leaf':[5,10,15,20,25],
                       'n_estimators':[10,20,30,40,50]
          }
```

```
In [60]:
          from sklearn.model_selection import GridSearchCV
          grid search =GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accuracy
          grid search.fit(x train,y train)
Out[60]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [61]:
          grid_search.best_score_
         0.9946000674991562
Out[61]:
In [62]:
          rfc_best=grid_search.best_estimator_
In [63]:
          from sklearn.tree import plot_tree
          plt.figure(figsize=(80,40))
          plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c',
Out[63]: [Text(2266.1632653061224, 1993.2, 'EBE <= 0.15\ngini = 0.5\nsamples = 7548\nvalue =
         [6038, 5814] \setminus class = a'),
          Text(1070.4489795918369, 1630.8000000000002, 'BEN <= 0.15\ngini = 0.319\nsamples =
         3731\nvalue = [1157, 4664]\nclass = b'),
          Text(409.9591836734694, 1268.4, 'NO_2 <= 11.5\ngini = 0.124\nsamples = 1436\nvalue
         = [147, 2075]\nclass = b'),
          Text(182.20408163265307, 906.0, 'SO_2 <= 3.5\ngini = 0.026\nsamples = 1058\nvalue =
         [22, 1631] \setminus class = b'),
          Text(91.10204081632654, 543.599999999999, 'gini = 0.0\nsamples = 1042\nvalue = [0,
         1629 \nclass = b'),
          Text(273.30612244897964, 543.59999999999, 'gini = 0.153\nsamples = 16\nvalue = [2
         2, 2] \setminus ass = a'),
          Text(637.7142857142858, 906.0, 'NMHC <= 0.065\ngini = 0.343\nsamples = 378\nvalue =
         [125, 444] \setminus class = b'),
          Text(455.51020408163265, 543.599999999999, 'NMHC <= 0.055\ngini = 0.013\nsamples =
         210 \cdot value = [2, 309] \cdot value = b'),
          Text(364.40816326530614, 181.19999999999982, 'gini = 0.0\nsamples = 163\nvalue =
         [0, 239] \setminus class = b'),
          Text(546.6122448979593, 181.19999999999982, 'gini = 0.054 \nsamples = 47 \nvalue =
         [2, 70] \setminus class = b'),
          \nvalue = [123, 135] \setminus class = b'),
          Text(728.8163265306123, 181.199999999999, 'gini = 0.295\nsamples = 103\nvalue =
         [123, 27] \setminus ass = a'),
          Text(911.0204081632653, 181.19999999999982, 'gini = 0.0\nsamples = 65\nvalue = [0,
         108 \nclass = b'),
          Text(1730.938775510204, 1268.4, 'SO 2 <= 3.5\ngini = 0.404\nsamples = 2295\nvalue =
         [1010, 2589]\nclass = b'),
          Text(1366.530612244898, 906.0, 'BEN <= 0.35\ngini = 0.021\nsamples = 1626\nvalue =
         [27, 2534] \setminus class = b'),
          Text(1184.326530612245, 543.599999999999, 'NMHC <= 0.065\ngini = 0.008\nsamples =
         1264 \text{ nvalue} = [8, 1986] \text{ nclass} = b'),
          Text(1093.2244897959185, 181.1999999999982, 'gini = 0.0\nsamples = 864\nvalue =
         [0, 1356] \setminus class = b'),
          Text(1275.4285714285716, 181.199999999999, 'gini = 0.025\nsamples = 400\nvalue =
         [8, 630] \setminus class = b'),
          Text(1548.734693877551, 543.599999999999, '0_3 <= 26.5\ngini = 0.065\nsamples = 36
         2\nvalue = [19, 548]\nclass = b'),
          Text(1457.6326530612246, 181.19999999999982, 'gini = 0.007\nsamples = 183\nvalue =
         [1, 288] \setminus class = b'),
          Text(1639.8367346938776, 181.19999999999982, 'gini = 0.121\nsamples = 179\nvalue =
```

```
[18, 260] \setminus class = b'),
Text(2095.3469387755104, 906.0, 'TOL <= 1.35\ngini = 0.1\nsamples = 669\nvalue = [9
83, 55]\nclass = a'),
Text(1913.1428571428573, 543.599999999999, 'TOL <= 1.15\ngini = 0.033\nsamples = 6
13\nvalue = [933, 16]\nclass = a'),
Text(1822.0408163265306, 181.1999999999999, 'gini = 0.009\nsamples = 564\nvalue =
[871, 4] \setminus ass = a'),
Text(2004.2448979591838, 181.1999999999982, 'gini = 0.272\nsamples = 49\nvalue =
[62, 12] \setminus ass = a'),
6\nvalue = [50, 39]\nclass = a'),
Text(2186.448979591837, 181.199999999999, 'gini = 0.432\nsamples = 36\nvalue = [1
8, 39]\nclass = b'),
Text(2368.65306122449, 181.1999999999999, 'gini = 0.0\nsamples = 20\nvalue = [32,
0] \nclass = a'),
Text(3461.877551020408, 1630.8000000000000, 'TCH <= 1.345\ngini = 0.309\nsamples =
3817\nvalue = [4881, 1150]\nclass = a'),
Text(3051.918367346939, 1268.4, 'PM10 <= 13.5\ngini = 0.361\nsamples = 587\nvalue =
[227, 734] \setminus class = b'),
Text(2824.1632653061224, 906.0, 'NMHC <= 0.085\ngini = 0.357\nsamples = 158\nvalue
= [195, 59] \setminus (ass = a'),
7\nvalue = [39, 34]\nclass = a'),
34]\nclass = b'),
Text(2733.061224489796, 181.199999999999, 'gini = 0.0\nsamples = 24\nvalue = [39,
0] \nclass = a'),
Text(3006.367346938776, 543.599999999999, '0_3 <= 18.5\ngini = 0.238\nsamples = 11
1\nvalue = [156, 25]\nclass = a'),
Text(2915.265306122449, 181.1999999999982, 'gini = 0.087\nsamples = 11\nvalue =
[1, 21] \setminus class = b'),
Text(3097.469387755102, 181.199999999999, 'gini = 0.049\nsamples = 100\nvalue =
[155, 4] \setminus ass = a'),
Text(3279.673469387755, 906.0, 'SO_2 <= 10.0\ngini = 0.086\nsamples = 429\nvalue =
[32, 675] \setminus class = b'),
Text(3188.571428571429, 543.599999999999, 'gini = 0.0\nsamples = 409\nvalue = [0,
675]\nclass = b'),
Text(3370.775510204082, 543.599999999999, 'gini = 0.0\nsamples = 20\nvalue = [32,
0] \nclass = a'),
Text(3871.8367346938776, 1268.4, '0_3 <= 3.5\ngini = 0.151\nsamples = 3230\nvalue =
[4654, 416] \setminus class = a'),
Text(3644.081632653061, 906.0, 'SO_2 <= 7.5\ngini = 0.388\nsamples = 131\nvalue =
[54, 151]\nclass = b'),
Text(3552.979591836735, 543.59999999999, 'gini = 0.0\nsamples = 93\nvalue = [0, 1
51\nclass = b'),
Text(3735.183673469388, 543.599999999999, 'gini = 0.0\nsamples = 38\nvalue = [54,
0] \nclass = a'),
Text(4099.591836734694, 906.0, 'NMHC <= 0.085\ngini = 0.103\nsamples = 3099\nvalue
= [4600, 265] \nclass = a'),
Text(3917.387755102041, 543.599999999999, 'TOL <= 3.55\ngini = 0.347\nsamples = 24
1\nvalue = [289, 83]\nclass = a'),
Text(3826.2857142857147, 181.199999999999, 'gini = 0.27\nsamples = 220\nvalue =
[282, 54] \setminus class = a'),
Text(4008.4897959183677, 181.1999999999982, 'gini = 0.313\nsamples = 21\nvalue =
[7, 29] \setminus class = b'),
Text(4281.795918367347, 543.599999999999, '0 3 <= 4.5 \neq 0.078 = 0.078 = 285
8\nvalue = [4311, 182]\nclass = a'),
Text(4190.693877551021, 181.199999999999, 'gini = 0.397\nsamples = 108\nvalue =
[120, 45] \setminus class = a'),
Text(4372.897959183674, 181.19999999999982, 'gini = 0.061\nsamples = 2750\nvalue =
[4191, 137] \setminus [ass = a']
```


Conclusion

Scores

Linear Regression

```
In [64]: lr.score(x_test,y_test)
Out[64]: 0.8011739192797894
In [65]: lr.score(x_train,y_train)
Out[65]: 0.7916349423598931
```

Lasso

```
In [66]: la.score(x_test,y_test)
```

Out[66]: 0.6262405487220697

Ridge

Elastic Net

```
In [69]: en.score(x_test,y_test)
```

Out[69]: 0.686409247096778

Logistic Regression

```
In [70]: logr.score(fs,target_vector)
```

Out[70]: 0.9923812898653437

Random Forest

```
In [71]: grid_search.best_score_
```

Out[71]: 0.9946000674991562

From the above data, we can conclude that random forest regression and logistic regression is preferrable to other regression types

In []: