# - L3 Statistics Basics

By the end of this practical you will be able to perform basic statistics operation using Python

# Descriptive Statistics

Recall from the lecture notes that we have discussed the following mean (average), median, standard deviation, skewness and kurtosis. We will use the python to do the implementation.

# ▼ Mean

The mean is the numerical average of the entire data set.

```
nums = \{872, 432, 397, 427, 388, 782, 397\}

mean = \sum nums/|nums|
```

```
def mean(1):
    return sum(1) / len(1)
nums = [872, 432, 397, 427, 388, 782, 397]
print(mean(nums))

527.8571428571429
```

## ▼ Median

Median is the center (position) value in the ordered list.

```
nums = \{872, 432, 397, 427, 388, 782, 397\} = \{388, 397, 397, \underline{427}, 432, 782, 872\}median = 427
```

If the number of values in the data set is even, we take the average of the two center value.

```
from math import * # a library that provides math functions
def median(1):
    if (len(1) % 2 == 1):
        return sorted(1)[int(floor(len(1)/2))]
    else:
        i1 = int(floor(len(1)/2-1))
        i2 = int(floor(len(1)/2))
        s1 = sorted(1)
        return (sl(i)) + sl(i) + sl(i)
```

```
nums = [872, 432, 397, 427, 388, 782, 397]
print(median(nums))

age=[21,20,21,23,23,19,30,60]
print(median(age))

427
22.0
```

## ▼ Mode

Mode - the most frequent observation. If there is no repetition, no mode exists.

$$nums = \{872, \underline{432, 432, 432}, 388, 782, 388\}$$

$$mode = 432$$

```
def mode(1): # assuming 1 is non empty
    d = {}
    for x in 1:
        if (x in d):
            d[x] +=1
        else:
            d[x] = 1
    print(d)
    print(d.items())

return [g for g,l in d.items() if l==max(d.values())]

nums = [872, 432, 397, 427, 388, 782, 397]
print(mode(nums))

    {872: 1, 432: 1, 397: 2, 427: 1, 388: 1, 782: 1}
    dict_items([(872, 1), (432, 1), (397, 2), (427, 1), (388, 1), (782, 1)])
    [397]
```

#### Variance

The variance measures how far each value in the data set is from the mean.

Let x denote the data set, n be the size of the data,  $\bar{x}$  denote the mean, variance  $\sigma^2$  is defined as

$$\sigma^2 = \frac{\Sigma (x - \bar{x})^2}{n}$$

```
def variance(1): # assuming 1 is non empty
    m = mean(1)
    diffsqsum = sum(map(lambda x:(x - m)**2, 1))
    return diffsqsum/len(1)

nums = [872, 432, 397, 427, 388, 782, 397]
```

```
print(variance(nums))
```

36598.69387755102

## ▼ Standard deviation

The standard deviation measures the spread of the data about the mean value. It is useful in comparing sets of data which may have the same mean but a different range.  $\sigma$  is the standard deviation Let x denote the data set, n be the size of the data,  $\bar{x}$  denote the mean, standard deviation  $\sigma$  is defined as

$$\sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}}$$

```
def std(l): # assuming l is non empty
    return sqrt(variance(l))

nums = [872, 432, 397, 427, 388, 782, 397]
print(std(nums))

191.30785106093012
```

## ▼ Skewness

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.skew.html

```
import pandas as pd
dataVal = [(10, 20, 30, 40, 50, 60, 70),
           (10,10,40,40,50,60,70),
           (10, 20, 30, 50, 50, 60, 80)
dataFrame = pd.DataFrame(data=dataVal);
skewValue = dataFrame.skew(axis=1) #by row
print("DataFrame:")
print(dataFrame)
print("Skew:")
print(skewValue)
    DataFrame:
                 2
                     3
                          4
                              5
                                  6
```

```
70
0
   10
      20
            30
                40
                     50
                         60
1
   10
       10
            40
                40
                     50
                         60
                             70
2
   10
       20
            30
                50
                     50
                         60
                             80
Skew:
     0.000000
    -0.340998
1
     0.121467
dtype: float64
```

## kurtosis

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.kurtosis.html

```
[ ] <sup>-</sup>→ 2 cells hidden
```

## ▼ Correlation

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html





×