Темы лабораторных работ по предмету "Искусственный Интеллект".

Лабораторная работа №6.

Конечные автоматы.

Написать программу на Прологе реализующую конечный автомат, который распознает слова, имеющие следующий общий вид:

- 1. $a(abc)^n c$, $n \ge 0$
- 2. $(ab)^n (cd)^m$, $n \ge 1$, $m \ge 0$
- 3. a^nbd^m , $n\geq 0$, $m\geq 1$
- 4. $ab^n cd^m e$, $n \ge 1$, $m \ge 1$
- 5. $(abc)^n d(ef)^m$, $n \ge 0$, $m \ge 0$
- 6. $a^n b^m c^k e$, $n \ge 0$, $m \ge 0$, $k \ge 0$
- 7. $a(abc)^n(de)^m$, $n \ge 0$, $m \ge 0$, $n+m \ge 1$
- 8. $(abc)^n(ab)^m$, $n \ge 1$, $m \ge 1$
- 9. $a^n b^m$, $n \ge 0$, $m \ge 0$, $n+m \ge 1$
- 10. $a^n b^m c^k$, $n \ge 0$, $m \ge 0$, $k \ge 0$, $n + m \ge 1$
- 11. $(ab)^n (cd)^m$, $n \ge 2$, $m \ge 1$, n четное, m нечетное
- 12. $a(bc)^n d(de)^m$, $n \ge 0$, $m \ge 0$
- 13. $a^n b^m (cd)^k$, $n \ge 0$, $m \ge 0$, $k \ge 1$
- 14. $(abc)^n de^m$, $n \ge 0$, $m \ge 0$
- 15. $(abcd)^n (ef)^m$, $n \ge 1$, $m \ge 1$
- 16. $a^n(bc)^m(cd)^k$, $n\geq 0$, $m\geq 1$, $k\geq 1$
- 17. $(bc)^n (ab)^m d$, $n \ge 0$, $m \ge 0$, $n+m \ge 1$
- 18. $a^n b^m c^k$, $n \ge 1$, $m \ge 2$, $k \ge 3$, n нечетное, m четное, k делится на 3
- 19. $a^{n}(bc)^{m}(de)^{k}$, $n \ge 1$, $m \ge 1$, $k \ge 1$, m нечетное
- 20. $(abc)^n (bcd)^m e$, $n \ge 0$, $m \ge 0$, $n+m \ge 1$

Лабораторная работа №7.

Распределение чисел. Комбинаторные задачи.

- **1.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - если число i находится в некоторой коробке, тогда число k=2*i $(k\leq n)$, не может находиться в этой же коробке;
 - если числа i и j находятся в некоторой коробке, тогда число k=i+j $(k \le n)$, не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

- **2.** Разбить числовое множество на два подмножества таким образом, чтобы суммы элементов двух подмножеств совпадали.
- **3.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - если число i находится в некоторой коробке, тогда число k=2*i+1 $(k \le n)$, не может находиться в этой же коробке;
 - если числа i и j находятся в некоторой коробке, тогда число k=i+j-1 $(k \le n)$, не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

- **4.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - четные числа могут находиться только в коробках А и С;
 - нечетные числа могут находиться только в коробках В и С;
 - если числа i и j находятся в некоторой коробке, тогда число k=i+j $(k \le n)$, не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

- **5.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - в коробке А могут находиться только четные числа;
 - в коробке В могут находиться только нечетные числа;
 - если число i находится в некоторой коробке, тогда число k=2*i $(k\le n)$, не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

- **6.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - если число i находится в некоторой коробке, тогда число k=n-i $(k\leq n)$, не может находиться в этой же коробке;
 - если числа i и j находятся в некоторой коробке, тогда число k=(i+j)/2 ($k\le n$), не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

7. Дети семьи Брайт.

В семье Брайт есть пять детей. Их возраста -4, 5, 6, 7 и 8 лет. Одного из них зовут *Rose* и каждый из них обладает некоторым талантом. Один из них играет хорошо на *пианино*.

Определить возраст и талант каждого из них если извесно что

- 1. Весса имеет 4 года и не сильна в математике.
- 2. Ребенок, отлично знающий компьютер, на год старше чем Stu.
- 3. Виолончелисту 7 лет.
- 4. *Іопа* имеет возраст отличный от 8.
- 5. В свои 5 лет *Rob* моложе того, кто разбирается в *литературе*.
- **8.** В очереди за мороженым стоят Юра, Ира, Оля, Саша и Коля. Юра стоит раньше Иры, но после Коли. Оля и Коля не стоят рядом, а Саша не находится рядом ни с Колей, ни с Юрой, ни с Олей. В каком порядке стоят ребята?
- **9.** В семье 4 детей, им 5, 8, 13 и 15 лет, а зовут их Таня, Юра, Света и Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Таня старше, чем Юра, а сумма лет Тани и Светы делится на 3?
- **10.** Распределить числа от 1 до **n** по трем коробкам **A**, **B**, **C**, таким образом, чтобы выполнялись следующие условия:
 - если число i находится в некоторой коробке, тогда число k=2*i $(k\le n)$, не может находиться в этой же коробке;
 - если числа i и j находятся в некоторой коробке, тогда число k=i+j $(k \le n)$, не может находиться в этой же коробке.

Написать программу на Прологе решающую эту задачу.

<u>Лабораторная работа №8.</u> Игра "Спички".

1. На столе лежат 23 спички. Двое игроков убирают по очереди некоторое количество спичек. Каждый игрок имеет право убирать за ход 1, 2, или 3 спички. Проигрывает игрок, который убирает **последнюю** спичку.

Написать программу на Прологе, которая использует оптимальную стратегию игры.

2. На столе лежат 23 спички. Двое игроков убирают по очереди некоторое количество спичек. Каждый игрок имеет право убирать за ход 1, 2, или 3 спички. Проигрывает игрок, который убирает **предпоследнюю** спичку.

Написать программу на Прологе, которая использует оптимальную стратегию игры.

<u>Лабораторная работа №9.</u>

1. Пешки.

На горизонтальной доске состоящей из 7 ячеек расположены три белые и три черные пешки с одной свободной ячейкой между ними:

Найти последовательность преобразований начальной конфигурации для получения конечной конфигурации, в которой белые пешки меняются с черными местами:

N	N N	A	Α	A
---	-----	---	---	---

применяя следующие правила:

- черная пешка может быть передвинута влево на соседнюю ячейку, если она свободна, например

A N A N	N N	$N \mid A \mid \rightarrow$	A N A	N	N A

- черная пешка может перепрыгнуть влево через белую, если там находится свободная ячейка, например

_			r 1		,	1	<u>.</u>						
	A	N	A	N	N	A	\rightarrow	A	N	N	A	N	A

- белая пешка может быть передвинута вправо на соседнюю ячейку, если она свободна, например

A	N	A		N	N	A	\rightarrow	Α	N		A	N	N	A
---	---	---	--	---	---	---	---------------	---	---	--	---	---	---	---

- белая пешка может перепрыгнуть вправо через черную, если там находится свободная ячейка, например

пало,	дител	СВООС	днал	<i>N</i> -1CHK	a, 11a1.	ipnime	· ·						
A	A	N		N	N	A	\rightarrow	A	N	A	N	N	A

<u>Лабораторная работа №10.</u> Бидоны с водой.

- **1.** Даны два бидона 7-ми литровый и 5-ти литровый. В начале оба бидона пустые. Найти последовательность действий, в результате которых в 7-ми литровом бидоне останутся 4 литра (неважно сколько воды останется в другом бидоне). Возможные действия, которые можно производить:
 - бидон может быть наполнен;
 - бидон может быть опустошен;
- вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.

- **2.** Даны три бидона 8-ми литровый, 5-ти литровый и 3-х литровый. В начале 8-ми литровый бидон наполнен водой, остальные пустые. Найти последовательность действий, в результате которых в 8-ми литровом бидоне и в 5-ти литровом бидоне останутся ровно по 4 литра воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.
- **3.** Даны три бидона 12-ти литровый, 7-ми литровый и 5-ти литровый. В начале 12-ти литровый бидон наполнен водой, остальные пустые. Найти последовательность действий, в результате которых в 12-ти литровом бидоне и в 7-ми литровом бидоне останутся ровно по 6 литров воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.
- **4.** Даны три бидона 10-ти литровый, 7-ми литровый и 3-х литровый. В начале 10-ти литровый бидон наполнен водой, остальные пустые. Найти последовательность действий, в результате которых в 10-ти литровом бидоне и в 7-ми литровом бидоне останутся ровно по 5 литров воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.
- **5.** Даны три бидона 16-ти литровый, 8-ми литровый и 5-ти литровый. В начале в 16-ти литровом бидоне содержится ровно 14 литров воды, остальные пустые. Найти последовательность действий, в результате которых в 16-ти литровом бидоне и в 8-ми литровом бидоне останутся ровно по 7 литров воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.
- **6.** Даны три бидона 7-ми литровый, 6-ти литровый и 3-х литровый. В начале в 7-ми литровом бидоне содержится 6 литров воды, в 6-ти литровом бидоне содержится 4 литра воды, 3-х литровый бидон пустой. Найти последовательность действий, в результате которых в 7-ми литровом бидоне и в 6-ти литровом бидоне останутся ровно по 5 литров воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.
- 7. Даны три бидона 14-ти литровый, 8-ми литровый и 5-ти литровый. В начале 14-ти литровый бидон наполнен водой, остальные пустые. Найти последовательность действий, в результате которых в 14-ти литровом бидоне и в 8-ми литровом бидоне останутся ровно по 7 литров воды. Допустимые действия: вода может быть перелита из одного бидона в другой до тех пор, пока первый не опустошился или второй не наполнился.

Лабораторная работа №11.

Грамматика.

1. Задана грамматика

$$\rightarrow < A> \rightarrow 01 < A> \rightarrow 01 < B> \rightarrow 2 < B> \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 3$$

которая генерирует числа вида $0^n 1^n 2^m$.

Написать программу на Прологе, которая распознает цепочки такого вида.

2. Задана грамматика $G = (V_N, V_T, P, S); V_N = \{ S \}, V_T = \{ a, b, c \},$

$$P = \{ 1. S \rightarrow a^2 S$$

2.
$$S \rightarrow bc$$
 }

которая генерирует слова вида: $L(G) = \{ a^{2n}bc, n \ge 0 \}$.

Написать программу на Прологе, которая распознает цепочки такого вида.

3. Задана грамматика $G = (V_N, V_T, P, S); V_N = \{ S, H \}, V_T = \{ b, c, d, e \},$

$$P = \{ 1. S \rightarrow bbSe \}$$

2.
$$S \rightarrow H$$

3.
$$H \rightarrow cHdd$$

4.
$$H \rightarrow cd$$
 }

которая генерирует слова вида: $L(G) = \{ b^{2n}c^md^{2m-1}e^n, m \ge 1, n \ge 0 \}.$ Написать программу на Прологе, которая распознает цепочки такого вида.

4. Задана грамматика $G = (V_N, V_T, P, S); V_N = \{ S, A, B \}, V_T = \{ a, b, c \},$

$$P = \{ 1. S \rightarrow AB \qquad 4. B \rightarrow cB$$

$$2 A \rightarrow aAb \qquad 5 B \rightarrow c$$

2.
$$A \rightarrow aAb$$
 5. $B \rightarrow c$ }

3. A
$$\rightarrow$$
 ab

которая генерирует слова вида: $L(G) = \{ a^i b^i c^j, i \ge 1, j \ge 1 \}.$

Написать программу на Прологе, которая распознает цепочки такого вида.

5. Задана грамматика $G = (V_N, V_T, P, S); V_N = \{S\}, V_T = \{a\},$

$$P=\{1. S \rightarrow aSa$$

2.
$$S \rightarrow a$$

которая генерирует слова вида: $L(G) = \{a^{2n-1}, n \ge 1\}$.

Написать программу на Прологе, которая распознает цепочки такого вида.

6. Задана грамматика $G = (V_N, V_T, P, S); V_N = \{ S \}, V_T = \{ a \},$

$$P=\{1. S \rightarrow aSa$$

2.
$$S \rightarrow aa$$
 }

которая генерирует слова вида: $L(G) = \{ a^{2i}, i \ge 1 \}.$

Написать программу на Прологе, которая распознает цепочки такого вида.

7. Задана грамматика
$$G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{a\}, P=\{1.S\to aaS 2.S\to a\}$$
 которая генерирует слова вида: $L(G)=\{a^{2i-1},\ i\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 8. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{a\}, P=\{1.S\to aaS 2.S\to aa\}$ которая генерирует слова вида: $L(G)=\{a^{2j},\ j\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 9. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{a\}, P=\{1.S\to Saa 2.S\to a\}$ которая генерирует слова вида: $L(G)=\{a^{2j-1},\ j\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 10. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{a\}, P=\{1.S\to Saa 2.S\to aa\}$ которая генерирует слова вида: $L(G)=\{a^{2j-1},\ j\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 11. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{x,y\}, P=\{1.S\to xSy 2.S\to xy\}$ которая генерирует слова вида: $L(G)=\{x^ny^n,\ n\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 12. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S\}, V_T=\{x,y\}, P=\{1.S\to xSy 2.S\to xy\}$ которая генерирует слова вида: $L(G)=\{x^ny^n,\ n\ge 1\}.$ Написать программу на Прологе, которая распознает цепочки такого вида. 12. Задана грамматика $G=(V_N,V_T,P,S); V_N=\{S,P,Q\}, V_T=\{a,b,c,d,e,f\},$

12. Задана грамматика G- (
$$v_N$$
, v_T , P , S); v_N -{ S , P , Q }, v_T -{ P = { 1. $S \rightarrow aP$ 2. $P \rightarrow bP$ 3. $P \rightarrow cQ$ 4. $Q \rightarrow dQ$ 5. $Q \rightarrow e$ }

которая генерирует слова вида: $L(G) = \{ ab^n cd^m e, n \ge 0, m \ge 0 \}.$ Написать программу на Прологе, которая распознает цепочки такого вида.