

Joint Modeling of (Un)bounded Longitudinal Markers, Competing Risks, and Recurrent Events in Cystic Fibrosis Data **International Society for Clinical Biostatistics**

Eleni-Rosalina Andrinopoulou

PM Afonso, D Rizopoulos, AK Palipana, E Gecili, C Brokamp, JP Clancy, RD Szczesniak

July. 2024

Introduction

Cystic Fibrosis

- → Genetic disorder affecting the lungs, pancreas, and other organs
- → 40,000 children and adults living with CF in the US
- \rightarrow > 75 percent of people with CF are diagnosed by age 2

SURVIVAL

YEARS 2015 - 2019

46

Among people with CF born between 2015 and 2019, half are predicted to live to 46 years old or more. This does not reflect individual variability in survival seen among people with CF.

Survival statistics for the years 2015 through 2019.

What to expect?

- \rightarrow Chronic respiratory problems \rightarrow lung infections
- → Poor growth → low weight
- → Increased risk of death and lung transplantation

What to expect?

- \rightarrow Chronic respiratory problems \rightarrow lung infections
- \rightarrow Poor growth \rightarrow low weight
- → Increased risk of death and lung transplantation

US Cystic Fibrosis Registry

- ♦ Baseline characteristics: Sex. F508del. SESlow. Enzymes
- Biomarkers: Lung function decline (ppFEV₁)
- ♦ Nutritional status: BMI
- ♦ Survival: Pulmonary exacerbations, death or lung transplantation

What to expect?

- \rightarrow Chronic respiratory problems \rightarrow lung infections
- \rightarrow Poor growth \rightarrow low weight
- → Increased risk of death and lung transplantation

Incorporating all information could improve decisions regarding the monitoring and treatment strategies of the patients

Introduction: Research question

- → How ppFEV₁ and BMI relate to the risk of recurrent pulmonary exacerbations?
- \rightarrow How ppFEV₁ and BMI relate to the competing risks of death and transplantation?
- ightarrow Are pulmonary exacerbations related to the competing risk of death and transplantation?

This research is supported by the National Institutes of Health / National Heart, Lung and Blood Institute (grant R01 HL141286)

Introduction: Descriptive statistics

US Cystic Fibrosis Registry

- \rightarrow >23,000 patients
- \rightarrow >1.400.000 observations
- \rightarrow on average >10 years of follow-up
- → 11% lung transplantation
- → 18% died

Introduction: Descriptive statistics

Introduction: Descriptive statistics

Introduction: Challenges

- → High-dimensional data
- → Complex data
 - Multiple longitudinal data
 - ♦ Recurrent events
 - ♦ Competing risks

Introduction: Challenges

- → High-dimensional data
- → Complex models
 - ♦ Multiple longitudinal data
 - Bounded biomarkers
 - ♦ Competing risks
 - ♦ Recurrent events

Introduction: Challenges

Methods

Common practice

- → Separate/simplified analysis
 - $\Leftrightarrow FEV_1$
 - ♦ BMI
 - ⋄ Time-to-first exacerbation

Andrinopoulou, E. R., Clancy, J. P., & Szczesniak, R. D. Multivariate joint modeling to identify markers of growth and lung function decline that predict cystic fibrosis pulmonary exacerbation onset. BMC pulmonary medicine. 20. 1-

Incorporating all information could improve decisions regarding the monitoring and treatment strategies of the patients

Longitudinal submodels

- → ppFEV₁
- → BMI

$$g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^\top(t)\beta_j + \boldsymbol{z}_{ji}^\top(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$$

Longitudinal submodels

- → ppFEV₁
- → BMI

$$g_j[E\{Y_{ji}(t)\mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^\top(t)\beta_j + \boldsymbol{z}_{ji}^\top(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$$

- $\diamond \ \boldsymbol{x}_{ii}^{\top}(t)\beta_j$ fixed effects
- $\diamond \ \boldsymbol{z}_{ii}^{\top}(t)\boldsymbol{b_{ji}}$ random effects
- $\diamond g_i[.]$ link function

Longitudinal submodels

- → ppFEV₁
- → BMI

$$g_j[E\{Y_{ji}(t)\mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^\top(t)\beta_j + \boldsymbol{z}_{ji}^\top(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$$

- where
 - $\diamond x_{ii}^{\top}(t)\beta_i$ fixed effects
 - $\diamond \ \boldsymbol{z}_{ii}^{\top}(t)\boldsymbol{b}_{ii}$ random effects
 - $\diamond g_i[.]$ link function
 - identity for the unbounded outcome
 - logit for the bounded outcome

→ Recurrent event times

$$h_{i}^{R}(t) = h_{0}^{R}(t - t_{0_{li}}) \exp \left[\boldsymbol{w}_{i}^{R^{\top}}(t) \boldsymbol{\gamma}^{R} + \sum_{i=1}^{J} \sum_{m=1}^{M_{j}} H_{jm}^{R} \{ \eta_{ji}(t) \} \alpha_{jm}^{R} + v_{i}^{R} \right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C}}^{\top}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0li}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C^{\top}}}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

- $\diamond h_0^R(t-t_{0_{Ii}})$ baseline hazard
- \diamond $t_{0_{l}}$ starting time of the risk interval for the lth recurrent event

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0li}) \exp\left[w_i^{R^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C^{\top}}}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \boldsymbol{\alpha}_{kjm}^{C} + \boldsymbol{v}_{ki}^{C} \right]$$

- $\diamond w_i^{R^{\top}}(t)$ baseline or time-varying covariates
- $\diamond \gamma^R$ regression coefficients

Erasmus MC University Medical Center Betterdam 2 a/v

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0li}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C^{\top}}}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{i=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

- \diamond $H_{im}^R\{\eta_{ji}(t)\}$ functional forms of the longitudinal outcomes
- $\diamond \ \alpha_{im}^R$ association between longitudinal and recurrent events

→ Recurrent event times

$$h_{i}^{R}(t) = h_{0}^{R}(t - t_{0_{li}}) \exp \left[\boldsymbol{w}_{i}^{R^{T}}(t) \gamma^{R} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{jm}^{R} \{ \eta_{ji}(t) \} \alpha_{jm}^{R} + \upsilon_{i}^{R} \right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C^{\top}}}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

where

 $\diamond v_i^R$ frailty term

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\mathbf{w}_i^{R^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R \{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C}}^{\top}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

where

 $\diamond h_{0h}^{C}(t)$ cause-specific baseline hazard

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0li}) \exp\left[\boldsymbol{w}_i^{R^{\top}}(t) \boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R \{\eta_{ji}(t)\} \alpha_{jm}^R + \upsilon_i^R \right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[w_{i}^{C^{\top}}(t) \gamma_{k}^{C} + \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

- $\diamond w_i^{C^{\top}}(t)$ baseline or time-varying covariates
- $\diamond \gamma_k^C$ regression coefficients

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[w_i^{R^{\top}}(t) \gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R \{ \eta_{ji}(t) \} \alpha_{jm}^R + v_i^R \right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C}}^{\top}(t) \boldsymbol{\gamma_{k}^{C}} + \sum_{i=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + v_{ki}^{C} \right]$$

- \diamond $H_{kim}^{C}\{\eta_{ii}(t)\}$ functional forms of the longitudinal outcomes
- $\diamond \ \alpha_{kim}^{C}$ association between longitudinal and the competing events

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\mathbf{w}_i^{R^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R \{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp \left[\boldsymbol{w_{i}^{C}}^{\top}(t) \boldsymbol{\gamma}_{k}^{C} + \sum_{i=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C} \{ \eta_{ji}(t) \} \alpha_{kjm}^{C} + \upsilon_{ki}^{C} \right]$$

- $\diamond v_{ki}^C$ frailty term
- $\diamond v_{hi}^C = v_i^R \alpha_h^v$

Challenges and opportunities: association

$$g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^{\top}(t)\beta_j + \boldsymbol{z}_{ji}(t)^{\top}\boldsymbol{b_{ji}} = \eta_{ji}(t)$$

When $g_i[.] \neq identity function$

- $\diamond q^{-1}\{\eta_{ii}(t)\}$
- \diamond Beta: logit link \rightarrow expit function

Challenges and opportunities: association

$$g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^{\top}(t)\beta_j + \boldsymbol{z}_{ji}(t)^{\top}\boldsymbol{b_{ji}} = \eta_{ji}(t)$$

When $g_i[.] \neq identity function$

- $\diamond g^{-1}\{\eta_{ii}(t)\}$
- \diamond Beta: logit link \rightarrow expit function
- → Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w_i^R}^\top(t) \boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R[\boldsymbol{g_j^{-1}} \{ \eta_{ji}(t) \}] \alpha_{jm}^R + \boldsymbol{v_i^R} \right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[w_{i}^{C^{\top}}(t)\gamma_{k}^{C} + \sum_{i=1}^{J} \sum_{m=1}^{M_{j}} H_{kjm}^{C}[g_{j}^{-1}\{\eta_{ji}(t)\}]\alpha_{kjm}^{C} + v_{ki}^{C}\right]$$

Challenges and opportunities: recurrent event time

$$h_i^R(t) = h_0^R(t - t_{0i}) \exp\left[w_i^{R^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

Calendar vs gap time

- ightharpoonup the calendar timescale uses a shared reference time for all events (e.g., study entry), $t_{0,i}=0$
- → the gap timescale uses the end of the previous event, assuming a renewal after each event and resetting the time to zero
- → non-risk periods in which a patient is still experiencing the previous event

Application

Model specification

→ ppFEV₁

- ♦ sex, birth cohort, genotype, enthicity
- percentage of green space, average annual truck, deprivation index

→ BMI

- sex, birth cohort, genotype, enthicity
- deprivation index
- ⋄ enzyme intake

Model specification

→ Recurent event

- number of previous PEx events
- ♦ ppFEV₁'s value, standardized cumulative effect of BMI's underlying value
- ⋄ gap time scale

→ Lung transplantation/death

- ♦ sex, birth cohort, genotype, enthicity
- ♦ ppFEV₁ value and rate of change, standardized cumulative effect of BMI's underlying value

Results: longitudinal outcomes

Results: association parameters

	PEx	Transplantation	Death
	-3.8%	-17%	-11.6%
1-unit pp FEV_1 value (\uparrow)	(95%CI -3.9 to -3.8)	(95%CI -17.5 to 16.5)	(95%CI -11.8 to -11.3)
1-unit pp FEV_1 slope (\uparrow)		-13.7%	-9.1%
(less steep)	-	(95%CI -16.1 to -10.9)	(95%CI -10.8 to -7.5)
1-unit BMI area (†)	0.04% (95%Cl 0.037 to 0.042)	6% (95%Cl 4.4 to 7.6)	7.1% (95%Cl 5.4 to 8.7)

Simulation

Simulation: Set-up

→ Simulate

- ♦ Beta (bounded outcome): underlying value, transformed in original scale
- ♦ terminal event: baseline covariate

→ Fit

- ♦ Beta (bounded outcome): underlying value, transformed in original scale
- ♦ terminal event: baseline covariate

Simulation: Set-up

→ Simulate

- ♦ Beta (bounded outcome): underlying value, transformed in original scale
- ♦ terminal event: baseline covariate

→ Fit

- ♦ Gaussian (unbounded outcome): underlying value
- ♦ terminal event: baseline covariate

Simulation: Results

Parameters:

	True parameter	Correclty specified model	Misspecified model
	(Beta)	(Beta)	(Gaussian)
β_1	2.00	1.999	0.765
$-\beta_2$	-1.00	-0.999	-0.119
$\overline{\gamma}$	0.25	0.246	0.214
$\overline{\alpha}$	-2.00	-2.066	-7.870

Simulation: Results

Convergence:

Conclusion

Conclusion

Extended Joint Model

- → multiple (un)bounded longitudinal outcomes
- → recurrent events
 - ⋄ gap and calendar time scales
- → competing risks
- → different functional forms

Conclusion

Extended Joint Model

- → multiple (un)bounded longitudinal outcomes
- → recurrent events
 - gap and calendar time scales
- → competing risks
- → different functional forms
- → Software: JMbayes2 drizopoulos.github.io/JMbayes2/

More details:

Afonso PM, Rizopoulos D, Palipana AK, Gecili E, Brokamp C, Clancy JP, Szczesniak RD, Andrinopoulou ER. A joint model for (un) bounded longitudinal markers, competing risks, and recurrent events using patient registry data. arXiv preprint arXiv:2405.16492. 2024 May 26.

Thank you for your attention!

p.mirandaafonso@erasmusmc.nl e.andrinopoulou@erasmusmc.nl

