МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ САНКТ – ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ФАКУЛЬТЕТ ИНФОКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

КАФЕДРА ПРОГРАММНЫХ СИСТЕМ

ОТЧЁТ по лабораторной работе

«МОДЕЛИРОВАНИЕ И ОБРАБОТКА СТОХАСТИЧЕСКИХ СИГНАЛОВ И СТРУКТУР»

Выполнила: студентка группы К4120 Загряжская Н.И

Проверил: к.т.н., доцент И.В. Ананченко

Цель работы

Задание тестовых сигналов в пакетах Mathcad и MATLAB

Ход работы:

При моделировании сигнал задается в виде функции одного или нескольких аргументов, причем функции разделяются на два типа:

- 1. встроенные функции;
- 2. функции, определяемые пользователем.

Пример 1 (детерминированный сигнал). Зададим сигнал в виде дискретной функции, меняющейся по гармоническому закону (Рисунок 1).

Рисунок 1 — Результат выполнения задания 1в Mathcad

Пример 2. Зададим случайный сигнал с однородным (равномерным) распределением вероятностей (Рисунок 2). Для этого воспользуемся встроенной функцией $\operatorname{rnd}(k)$, которая возвращает случайное число, имеющее равномерную плотность распределения на отрезке [0, K].

Рисунок 2 — Результат выполнения второго примера в Mathcad

Пример 3. Зададим случайный сигнал в виде дискретной функции, меняющейся по гармоническому закону(Рисунок 3).

Рисунок 3 — Результат выполнения третьего задания в Mathcad

Пример 4. Зададим случайный сигнал с нормальным (гауссовым) распределением вероятностей (Рисунок 4). Воспользуемся встроенной функцией: rnorm(K, E, σ), где E – математическое ожидание, σ – стандартное отклонение, K > 0 – целое число.

Рисунок 4 — Результат выполнения четвертого задания в Mathcad

Пример 5. Зададим случайный сигнал с логнормальным (логарифмически нормальным) распределением вероятностей (Рисунок 5). Воспользуемся встроенной функцией rlnorm(K, μ , σ), где μ – натуральный логарифм математического ожидания, σ > 0 – натуральный логарифм стандартного отклонения, K > 0 – целое.

Рисунок 5 — Результат выполнения задания 5 в Mathcad

Пример 6. Зададим случайный сигнал с бета-распределением вероятностей (Рисунок 6). Воспользуемся встроенной функцией (K, s1, s2), где (K, s1, s2)

Рисунок 6 — Результат выполнения седьмого задания в Mathcad

Пример 7. Зададим случайный сигнал с χ 2 - распределением вероятностей (рис. 7).

Рисунок 7 — Результат выполнения седьмого примера в Mathcad

Примеры задания сигналов в пакете MATLAB

Octave - свободная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня. Octave представляет интерактивный командный интерфейс для решения линейных и нелинейных математических задач, а также проведения других численных экспериментов.

Пример 2.1. Создадим вектор n, воспользовавшись процедурой linspace(a,b,K), которая генерирует вектор-строку из K точек, равномерно расположенных между точками а и b(рис. 8).

Рисунок 8 — Результат выполнения первого примера в среде Octave

Пример 2.2. Зададим сигнал в виде возмущенной гармонической дискретной функции с помощью среды Octave (Рисунок 9).

Рисунок 9 — Результат второго упражнения в Octave

Пример 2.3. Зададим случайный сигнал в виде функции Вейерштрасса (Рисунок 10).

Рисунок 10 — Результат выполнения третьего задания в Matlab

Индивидуальное задание выполним в соответсвии с вариантом — 4. **Упражнение 4**

- 1. Задайте случайный сигнал k X с нормальным распределением вероятности со следующими параметрами: E=1,5 математическое ожидание, $\sigma=1$ стандартное отклонение, $k=0,1,\dots 1000$ (Рисунок 11).
- 2. Выделите общие закономерности в поведении функции сигнала при варьировании его параметров: E и σ .

Рисунок 11 — Результат выполнения индивидуального задания

Выволы:

Зависимость математического ожидания от времени характеризует в среднем форму развития сигнала во времени.

Дисперсия дает информацию о том, насколько значения отдельных реализаций сигнала в каждом сечении отличаются от соответствующих математических ожиданий. Среднее задает положение кривой на числовой оси и выступает как некоторая исходная, нормативная величина измерения.

Стандартное отклонение задает ширину этой кривой, зависит от единиц измерения и выступает как масштаб измерения

При увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается. Зависимость от времени проявляется как зависимость от времени плотности распределения этой случайной величины и, следовательно, таких числовых характеристик как математическое ожидание или дисперсия.