Sequences

James Bang

March 26, 2021

By now I hope all of you know what sequences are. There isn't really anything I need to teach about them, so I guess today's lecture will just be solving assorted sequences problems from algebra and number theory.

Rules for this lecture

- Solve the questions and alert me when you have done so.
- \bullet In the following questions, N is meant to be any given positive integer.
- 1. Is it possible to enumerate \mathbb{Q} as q_1, q_2, q_3, \ldots such that $\sum_n (q_n q_{n+1})^2$ is finite?
- 2. Do there exist two nonzero real sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ such that, for every $n, b_n \leq c_n$ and $x^2 + b_n x + c_n = (x b_{n+1})(x c_{n+1})$?
- 3. Do there exist integers $\{a_n\}_{n=1}^N$ such that $\frac{1}{a_1} + \frac{1}{2a_2} + \cdots + \frac{1}{Na_N} = 1$?
- 4. The real sequence $\{a_i\}_{i=0}^N$ satisfy $a_k = \frac{a_{k-1}}{\sqrt{1+N\cdot a_{k-1}^2}}$ for all $1 \le k \le N$. Show that $|Na_N| < 1$.
- 5. Find all integer sequences $\{a_n\}_{n=1}^{\infty}$ such that, for any $n \geq 1$, $f(n) \mid n^3$ and $\sum_{k=1}^n f(k)$ is a square.
- 6. Does there exist a non-constant integer sequence $\{a_n\}_{n=-\infty}^{\infty}$ such that, for **any** surjective integer sequence $\{b_n\}_{n=-\infty}^{\infty}$, the sequence $\{a_n+b_n\}_{n=-\infty}^{\infty}$ is also surjective?
- 7. Find all integer sequences $\{a_n\}_{n=1}^{\infty}$ that satisfy $\gcd(a_m+n,a_n+m)>\frac{m+n}{100}$ for any integers m,n.
- 8. The integer sequence $\{a_i\}_{i=1}^{n+1}$ satisfy $a_{k+1}=a_k^2-a_k+1$ for any $2 \le k \le n$. Prove $\gcd(a_{n+1},2n+1)=1$.
- 9. Let $f(x) \in \mathbb{R}[x]$ such that f(x) > 0 for any x > 0. Given a positive real sequence $\{a_n\}_{n=1}^{\infty}$ satisfying $0 < a_{n+1} a_n < 100$ for all n, let $\{s_n\}_{n=1}^{\infty}$ be the infinite string of base-10 digits formed when the digits of $\lfloor f(a_1) \rfloor, \lfloor f(a_2) \rfloor, \lfloor f(a_3) \rfloor, \ldots$ are written consecutively.
 - Show that for any n, the set $S_n \stackrel{\text{def}}{=} \{ \overline{s_{n(k-1)+1}s_{n(k-1)+2}\dots s_{nk}} : k \geq 1 \}$ contains all n-digit numbers.