Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation

Yan Zhang*, Zhijiang Guo*, Zhiyang Teng, Wei Lu Shay B. Cohen, Zuozhu Liu, Lidong Bing

AMR-to-Text Generation: Task Definition

I will join this kind of game.

Source: AMR Graph

Target: Text Sequence

AMR-to-Text Generation: Main Challenge

How to learn a good representation of the AMR graph?

Source: AMR Graph

Progress in AMR-to-Text Generation

Progress in AMR-to-Text Generation

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

Structured SAN Cai et al., 2020

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$
 $h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$A_{i,j} = 1$$
 if there is a edge between i and j

$$A_{i,j} = f(h_i, h_j)$$

$$A_{i,j} = f(h_i, h_j, r_{ij})$$

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

Structured SAN Cai et al., 2020

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b) \qquad h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$A_{i,j} = 1$$
 if there is a edge between i and j

$$A_{i,j} = f(h_i, h_j)$$

$$A_{i,j} = f(h_i, h_j, r_{ij})$$

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

Structured SAN Cai et al., 2020

Zhu et al., 2019 Wang et al., 2020

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$h_i = \sigma(\sum_{j=1}^n A_{i,j} W h_j + b)$$

$$A_{i,j} = 1$$
 if there is a edge between i and j

$$A_{i,j} = f(h_i, h_j)$$

$$A_{i,j} = f(h_i, h_j, r_{ij})$$

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

Zhu et al., 2019 Structured SAN Cai et al., 2020

Wang et al., 2020

Time Complexity

O(n)

 $O(n^2)$

 $O(n^2+n)$

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

Structured SAN Cai et al., 2020

Zhu et al., 2019 Cai et al., 2020 Wang et al., 2020

Time Complexity

O(n)

 $O(n^2)$

 $O(n^2+n)$

Neighbour Info

1-order

n-order

n-order

GCN Guo et al., 2019 Damonte et al., 2019

SAN vaswani et al., 2017

this

kind

↓mod

Structured SAN Cai et al., 2020

Zhu et al., 2019 Cai et al., 2020 Wang et al., 2020

 $O(n^2)$ O(n)**Time Complexity** 1-order *n*-order **Neighbour Info** Layers **36** 8 join-01 join-01 ARG0 ARG1 ARG0 ARG1 game game mod mod

this

kind

√mod

 $O(n^2+n)$

n-order

8

Research Questions

 Q1: Can we build a more effective graph encoder solely based on graph convolution?

 Q2: Existing models require large model size to maintain model capacity. Can we build a model with fewer parameters while have similar model capacity?

Research Questions

 Q1: Can we build a more effective graph encoder solely based on graph convolution?

 A: Dynamic fusion mechanism is introduced to graph convolutions to integrate information from higher order neighbors

 Vanilla graph convolutional layer only takes 1-order adjacency matrix as the input.

• Each graph convolutional layer takes k number of k-order adjacency matrices as inputs (here k=3).

- Each graph convolutional layer takes k number of k-order adjacency matrices as inputs (here k=3).
- The dynamic fusion mechanism is able to integrate information from 1- to k-hop neighbors.

- Computational Overhead: In practice, there is no need to calculate or store A^k . A^kH_i is computed with right-to-left multiplication.
- If k=3, we can calculate A^3H_l as $(A(A(AH_l)))$. A is stored as vanilla GCNs.

Research Questions

 Q2: Can we build a lighter model that still achieves competitive performance?

 A: Weight sharing strategies are proposed to reduce memory usage and speed up inference.

Research Questions

 Q2: Existing models require large model size to maintain model capacity. Can we build a model with fewer parameters while have similar model capacity?

- A: Weight sharing strategies are proposed to reduce memory usage and speed up inference.
 - Group Graph Convolution
 - Weight Tied Convolution

Group Graph Convolution: Depthwise

• **Depthwise graph convolution**: the input and output representation of the l-th layer H_{l+1} and H_{l+1} are partitioned into N disjoint groups (here N=3).

Group Graph Convolution: Layerwise

- Densely Connected graph convolution: each layer takes the concatenation of outputs from all preceding layers as its input
- Layerwise graph convolution: The input representation H_{θ} is partitioned into $M\!\!=\!\!3$ disjoint groups.

Weight Tied Graph Convolution

- We further adopt a more aggressive strategy where parameters are shared across all layers.
- Theoretically, weight tied networks *can be unrolled to any depth*, typically with improved feature abstractions as depth increases (Bai et al., 2019).

Vanilla Graph Convolutions

Weight Tied Graph Convolutions

Data Statistics

Dataset	Train	Dev	Test
AMR 1.0 (LDC2015E86)	16,833	1,368	1,371
AMR 2.0 (LDC2017T10)	36,521	1,368	1,371
AMR 3.0 (LDC2020T02)	55,635	1,722	1,898

Main Results

Results on AMR 1.0

- LDGCN_WT: our model with weight tied convolution;
- LDGCN_GC: our model with group graph convolution;

Main Results

Results on AMR 2.0

- LDGCN_WT: our model with weight tied convolution;
- LDGCN_GC: our model with group graph convolution;

Main Results

Results on AMR 3.0

- LDGCN_WT: our model with weight tied convolution;
- **LDGCN_GC:** our model with group graph convolution;

AMR 1.0-With External Training Data

Model	External	BLEU
Seq2Seq (Konstas et al., 2017)	2M	32.3
GraphLSTM (Song et al., 2018)	2M	28.2
Transformer (Wang et al., 2020)	2M	31.6
GT_Dual (Wang et al., 2020)	2M	36.4
Our LDGCN_GC	0.5M	36.0
Our LDGCN_WT	0.5M	36.8

Inference Speed

Model	Speed
Transformer	1.00x
DeepGCN	1.21x
Our LDGCN_GC	1.17x
Our LDGCN_WT	1.22x

Performance against Graph Size

Summary

- We propose the novel LDGCN model, which maintains a better balance between parameter efficiency and model capacity.
- Extensive experiments show that the LDGCN model outperforms state-of-the-art approaches with significantly fewer parameters.

Thank You

Code Available

https://github.com/yanzhangnlp/LDGCNs