Statistical Modeling of the Red Sea Chlorophyll Concentration and Application to the ERSEM Ecological Model

Thesis by

Denis Dreano

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia

Insert Date (Month, Year)

The thesis of Your Full Name is approved by the examination committee

Committee Chairperson: Your advisor's name

Committee Member: Second name

Committee Member: Third name

Copyright ©Year

Your Full Name

All Rights Reserved

TABLE OF CONTENTS

\mathbf{E}	xami	nation	Committee Approval	2
C	opyri	ght		3
$\mathbf{L}^{\mathbf{i}}$	ist of	Figur	es	11
$\mathbf{L}_{\mathbf{i}}$	ist of	Table	\mathbf{s}	13
1	Intr	oduct	ion and Motivation	15
	1.1	Phyto	plankton and the Red Sea Biology: Importance, Impact, Large-	
		Scale	Features, and Applications	16
		1.1.1	The Importance of Phytoplankton	16
		1.1.2	Red Sea Large-Scale Phytoplankton Dynamics	16
	1.2	Remo	tely-Sensed Chlorophyll Data: Relevance and Challenges for the	
		Red S	ea	16
		1.2.1	Measuring Chlorophyll Concentration	16
		1.2.2	Limitation of Remotely-Sensed Chlorophyll Data	16
	1.3	Mode	ling Chlorophyll: Data-Driven and Physics-Driven Approaches	
		and A	applications	16
		1.3.1	Why Modeling Chlorophyll?	16
		1.3.2	Data-Driven Approaches	16
		1.3.3	Deterministic Models	16
		1.3.4	Ecological Models	16
		1.3.5	Data Assimilation	16
	1.4	Thesis	s Objectives	16
2	Res	earch	Plan	17
	2.1	Task 1	1: Dataset Building and Exploration	18
		2.1.1	Motivation	18
		2.1.2	Open Questions	18
		2.1.3	Method	18

	2.1.4	Expected Outcomes
	2.1.5	Accomplished Word and Preliminary Results
2.2	Task 2	2: Forecasting Chlorophyll Concentration in Regional Aggregates 18
	2.2.1	Motivation
	2.2.2	Open Questions
	2.2.3	Method
	2.2.4	Expected Outcomes
	2.2.5	Accomplished Word and Preliminary Results
2.3	Task 3	3: Global Geostatistical Model for Chlorophyll Forecasting 18
	2.3.1	Motivation
	2.3.2	Open Questions
	2.3.3	Method
	2.3.4	Expected Outcomes
	2.3.5	Accomplished Word and Preliminary Results
2.4	Task 4	4: Local Geostatistical Model for Forecasting
	2.4.1	Motivation
	2.4.2	Open Questions
	2.4.3	Method
	2.4.4	Expected Outcomes
	2.4.5	Accomplished Word and Preliminary Results
2.5	Task 5	5: Assimilation of 1D Ecological Models and Comparison to Sta-
	tistica	l Models
	2.5.1	Motivation
	2.5.2	Open Questions
	2.5.3	Method
	2.5.4	Expected Outcomes
	2.5.5	Accomplished Word and Preliminary Results
2.6	Task (6: Improving an Ecological Model Data Assimilation Scheme
	throug	gh Statistical Predictive Models
	2.6.1	Motivation
	2.6.2	Open Questions
	2.6.3	Method
	2.6.4	Expected Outcomes
	2.6.5	Accomplished Word and Preliminary Results

References

P	f Appendices	25

LIST OF FIGURES

LIST OF TABLES

Chapter 1

Introduction and Motivation

- 1.1 Phytoplankton and the Red Sea Biology: Importance, Impact, Large-Scale Features, and Applications
- 1.1.1 The Importance of Phytoplankton
- 1.1.2 Red Sea Large-Scale Phytoplankton Dynamics
- 1.2 Remotely-Sensed Chlorophyll Data: Relevance and Challenges for the Red Sea
- 1.2.1 Measuring Chlorophyll Concentration
- 1.2.2 Limitation of Remotely-Sensed Chlorophyll Data
- 1.3 Modeling Chlorophyll: Data-Driven and Physics-Driven Approaches and Applications
- 1.3.1 Why Modeling Chlorophyll?

Chapter 2

Research Plan

- 2.1 Task 1: Dataset Building and Exploration
- 2.1.1 Motivation
- 2.1.2 Open Questions
- 2.1.3 Method
- 2.1.4 Expected Outcomes
- 2.1.5 Accomplished Word and Preliminary Results
- 2.2 Task 2: Forecasting Chlorophyll Concentration in Regional Aggregates
- 2.2.1 Motivation
- 2.2.2 Open Questions
- 2.2.3 Method
- 2.2.4 Expected Outcomes
- 2.2.5 Accomplished Word and Preliminary Results

REFERENCES

- [Abualnaja et al., 2015] Abualnaja, Y., Papadopoulos, V. P., Josey, S. A., Hoteit, I., Kontoyiannis, H., and Raitsos, D. E. (2015). Impacts of climate modes on air-sea heat exchange in the red sea. *Journal of Climate*, page 150106132132005.
- [Acker et al., 2008] Acker, J., Leptoukh, G., Shen, S., Zhu, T., and Kempler, S. (2008). Remotely-sensed chlorophyll a observations of the northern red sea indicate seasonal variability and influence of coastal reefs. *Journal of Marine Systems*, 69(3-4):191–204.
- [Alvera-Azcarate et al., 2007] Alvera-Azcarate, A., Barth, A., Beckers, J. M., and Weisberg, R. H. (2007). Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. *Journal of Geophysical Research-Oceans*, 112(C3).
- [Anderson, 2005] Anderson, T. R. (2005). Plankton functional type modelling: running before we can walk? *Journal of Plankton Research*.
- [Beckers and Rixen, 2003] Beckers, J. M. and Rixen, M. (2003). EOF calculations and data filling from incomplete oceanographic datasets. *Journal of Atmospheric and Oceanic Technology*, 20(12):1839–1856.
- [Brewin et al., 2013] Brewin, R. J. W., Raitsos, D. E., Pradhan, Y., and Hoteit, I. (2013). Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence. *Remote Sensing of Environment*, 136:218–224.
- [Brown et al., 2000] Brown, P. E., Karesen, K. F., Roberts, G. O., and Tonellato, S. (2000). Blur-generated non-separable space-time models. *Journal of the Royal Statistical Society Series B-Statistical Methodology*, 62:847–860.
- [Butenschon and Zavatarelli, 2012] Butenschon, M. and Zavatarelli, M. (2012). A comparison of different versions of the SEEK Filter for assimilation of biogeochemical data in numerical models of marine ecosystem dynamics. *Ocean Modelling*, 54-55:37–54.

- [Camps-Valls et al., 2006] Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Vila-Frances, J., Amoros-Lopez, J., and Calpe-Maravilla, J. (2006). Retrieval of oceanic chlorophyll concentration with relevance vector machines. *Remote Sensing of Environment*, 105(1):23–33.
- [Ciavatta et al., 2014] Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall'Olmo, G., Polimene, L., and Allen, J. I. (2014). Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling. *Progress in Oceanography*, 127:74–95.
- [Ciavatta et al., 2011] Ciavatta, S., Torres, R., Saux-Picart, S., and Allen, J. I. (2011). Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? *Journal of Geophysical Research-Oceans*, 116.
- [Cressie and Huang, 1999] Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. *Journal of the American Statistical Association*, 94(448):1330–1339.
- [Fontana et al., 2013] Fontana, C., Brasseur, P., and Brankart, J. M. (2013). Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data. *Ocean Science*, 9(1):37–56.
- [Gneiting, 2002] Gneiting, T. (2002). Nonseparable, stationary covariance functions for spacetime data. *Journal of the American Statistical Association*, 97(458):590–600.
- [Gneiting et al., 2007] Gneiting, T., Genton, M. G., and Guttorp, P. (2007). Geostatistical space-time models, stationarity, separability, and full symmetry. *Statistical Methods for Spatio-Temporal Systems*, 107:151–175.
- [Gneiting and Guttorp, 2010] Gneiting, T. and Guttorp, P. (2010). Continuous parameter spatio-temporal processes. *Handbook of Spatial Statistics*, 97:427–436.
- [Gokaraju et al., 2011] Gokaraju, B., Durbha, S. S., King, R. L., and Younan, N. H. (2011). A machine learning based spatio-temporal data mining approach for detection of harmful algal blooms in the Gulf of Mexico. *Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 4(3):710–720.

- [Handcock and Wallis, 1994] Handcock, M. S. and Wallis, J. R. (1994). An approach to statistical spatial-temporal modeling of meteorological fields. *Journal of the American Statistical Association*, 89(426):368–378.
- [Hohn et al., 1993] Hohn, M. E., Liebhold, A. M., and Gribko, L. S. (1993). Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth (lepidoptera: Lymantriidae). *Environmental Entomology*, 22(5):1066–1075.
- [Jeong et al., 2006] Jeong, K. S., Kim, D. K., and Joo, G. J. (2006). River phytoplankton prediction model by artificial neural network: Model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. *Ecological Informatics*, 1(3):235–245.
- [Kim et al., 2014] Kim, Y. H., Im, J., Ha, H. K., Choi, J. K., and Ha, S. (2014). Machine learning approaches to coastal water quality monitoring using GOCI satellite data. *Giscience & Remote Sensing*, 51(2):158–174.
- [Korres et al., 2012] Korres, G., Triantafyllou, G., Petihakis, G., Raitsos, D. E., Hoteit, I., Pollani, A., Colella, S., and Tsiaras, K. (2012). A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: Methods and benefits. *Journal of Marine Systems*, 94:S102–S117.
- [Lee et al., 2003] Lee, J. H. W., Huang, Y., Dickman, M., and Jayawardena, A. W. (2003). Neural network modelling of coastal algal blooms. *Ecological Modelling*, 159(2-3):179–201.
- [Mann and Lazier, 2006] Mann, K. H. and Lazier, J. R. N. (2006). *Dynamics of marine ecosystems: Biological-Physical Interactions in the Oceans*. Blackwell Publishing.
- [Miles and He, 2010] Miles, T. N. and He, R. (2010). Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery. *Continental Shelf Research*, 30(18):1951–1962.
- [Mulia et al., 2013] Mulia, I. E., Tay, H., Roopsekhar, K., and Tkalich, P. (2013). Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-Environment Research, 7(4):279–299.
- [North et al., 2011] North, G. R., Wang, J., and Genton, M. G. (2011). Correlation models for temperature fields. *Journal of Climate*, 24(22):5850–5862.

- [Pal, 2014] Pal, R. (2014). An introduction to phytoplanktons: diversity and ecology. Springer, New York.
- [Pettersson and Pozdniakov, 2013] Pettersson, L. H. and Pozdniakov, D. V. (2013). Monitoring of harmful algal blooms. Springer-Praxis books in geophysical sciences. Springer, published in association with Praxis Publishing, Chichester, UK.
- [Racault et al., 2015] Racault, M. F., Raitsos, D. E., Berumen, M. L., Brewin, R. J., Platt, T., Sathyendranath, S., and Hoteit, I. (2015). Phytoplankton phenology indices in coral reef ecosystems: application to ocean-colour observations in the red sea. Submitted.
- [Raitsos et al., 2011] Raitsos, D. E., Hoteit, I., Prihartato, P. K., Chronis, T., Triantafyllou, G., and Abualnaja, Y. (2011). Abrupt warming of the red sea. *Geophysical Research Letters*, 38(14).
- [Raitsos et al., 2013] Raitsos, D. E., Pradhan, Y., Brewin, R. J., Stenchikov, G., and Hoteit, I. (2013). Remote sensing the phytoplankton seasonal succession of the Red Sea. *PLoS One*, 8(6).
- [Richlen et al., 2010] Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A., and Anderson, D. M. (2010). The catastrophic 2008-2009 red tide in the arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate cochlodinium polykrikoides. *Harmful Algae*, 9(2):163–172.
- [Robinson, 2010] Robinson, I. S. (2010). Discovering the ocean from space: the unique applications of satellite oceanography. Springer praxis series geophysical sciences 4110. Springer, New York, 1st edition.
- [Sirjacobs et al., 2011] Sirjacobs, D., Alvera-Azcrate, A., Barth, A., Lacroix, G., Park, Y., Nechad, B., Ruddick, K., and Beckers, J.-M. (2011). Cloud filling of ocean colour and sea surface temperature remote sensing products over the southern north sea by the data interpolating empirical orthogonal functions methodology. *Journal of Sea Research*, 65(1):114–130.
- [Stein, 2005] Stein, M. L. (2005). Spacetime covariance functions. *Journal of the American Statistical Association*, 100(469):310–321.
- [Steinmetz et al., 2011] Steinmetz, F., Deschamps, P. Y., and Ramon, D. (2011). Atmospheric correction in presence of sun glint: application to meris. *Optics Express*, 19(10):9783–9800.

- [Taylor et al., 2013] Taylor, M. H., Losch, M., Wenzel, M., and Schroter, J. (2013). On the sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. *Journal of Climate*, 26(22):9194–9205.
- [Tett and Barton, 1995] Tett, P. and Barton, E. D. (1995). Why are there about 5000 species of phytoplankton in the sea. *Journal of Plankton Research*, 17(8):1693–1704.
- [Triantafyllou et al., 2013] Triantafyllou, G., Hoteit, I., Luo, X., Tsiaras, K., and Petihakis, G. (2013). Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea. *Journal of Marine Systems*, 125:90–100.
- [Triantafyllou et al., 2014] Triantafyllou, G., Yao, F., Petihakis, G., Tsiaras, K. P., Raitsos, D. E., and Hoteit, I. (2014). Exploring the red sea seasonal ecosystem functioning using a three-dimensional biophysical model. *Journal of Geophysical Research: Oceans*, 119(3):1791–1811.
- [Waite and Mueter, 2013] Waite, J. N. and Mueter, F. J. (2013). Spatial and temporal variability of chlorophyll-a concentrations in the coastal Gulf of Alaska, 1998-2011, using cloud-free reconstructions of SeaWiFS and MODIS-Aqua data. *Progress in Oceanography*, 116:179–192.
- [Wang and Yang, 2013] Wang, H. and Yang, X. (2013). Prediction and elucidation of algal dynamic variation in Gonghu Bay by using artificial neural networks and canonical correlation analysis.
- [Weikert, 1987] Weikert, H. (1987). Plankton and the pelagic environment, pages 90–111. Pergamon Press, Oxford.
- [Wu et al., 2014] Wu, N. C., Huang, J. C., Schmalz, B., and Fohrer, N. (2014). Modeling daily chlorophyll a dynamics in a german lowland river using artificial neural networks and multiple linear regression approaches. *Limnology*, 15(1):47–56.
- [Yao et al., 2014] Yao, F. C., Hoteit, I., Pratt, L. J., Bower, A. S., Kohl, A., Gopalakrishnan, G., and Rivas, D. (2014). Seasonal overturning circulation in the red sea: 2. winter circulation. *Journal of Geophysical Research-Oceans*, 119(4):2263–2289.
- [Zhai and Bower, 2013] Zhai, P. and Bower, A. (2013). The response of the red sea to a strong wind jet near the tokar gap in summer. *Journal of Geophysical Research-Oceans*, 118(1):422–434.

[Zhan et al., 2014] Zhan, P., Subramanian, A. C., Yao, F. C., and Hoteit, I. (2014). Eddies in the red sea: A statistical and dynamical study. *Journal of Geophysical Research-Oceans*, 119(6):3909–3925.

APPENDICES

A Appendix A Title

Detailed experimental procedures, data tables, computer programs, etc. may be placed in appendices. This may be particularly appropriate if the dissertation or thesis includes several published papers.

B Appendix B Title

Your content goes here.

C Papers Submitted and Under Preparation

- Author 1 Name, Author 2 Name, and Author 3 Name, "Article Title", Submitted to Conference/Journal Name, further attributes.
- Author 1 Name, Author 2 Name, and Author 3 Name, "Article Title", Submitted to Conference/Journal Name, Mon. Year.