CSISAT: Interpolation for LA+EUF

Dirk Beyer¹ Damien Zufferey² Rupak Majumdar³

¹ Simon Fraser University, BC, Canada

² EPFL, Switzerland

³ UCLA, CA, USA

CAV'08, Princeton, July 11, 2008

Interpolation

2 How to use CSISAT?

3 How CSISAT works?

Outline

- Interpolation
- 2 How to use CSISAT?
- 3 How CSISAT works ?

Definition [Craig 57]

Let A and B be two formulas such that $A \wedge B$ unsat.

An interpolant *I* has the following properties:

- *I* contains only *AB*-common symbols.
- A implies I
- $I \wedge B$ unsat.

Interpolation exists for LA+EUF.

A:
$$a = b \land b = c$$
 B: $f(a) \neq f(c)$

A:
$$a = b \wedge b = c$$

A:
$$a = b \wedge b = c$$

Interpolant for LA

$$A\vec{x} \leq \vec{a}$$

Interpolant for LA

 $A\vec{x} \leq \vec{a}$

 $B\vec{x} \leq \vec{b}$

Interpolant for LA

$$A\vec{x} \leq \vec{a}$$

- Predicate discovery for CEGAR-based model checkers for refinement of abstract states.
- Example: BLAST¹ 2.5 is based on CSISAT:

- Open-source software and freely extendable by others.
 - Total of 7500 lines of code written in Ocaml.
 - Includes interpolation code and SMT solver.

¹http://mtc.epfl.ch/blast/

²http://www.kenmcmil.com/foci.html

³http://www.mpi-sws.mpg.de/~rybal/clp-prover/

- Predicate discovery for CEGAR-based model checkers for refinement of abstract states.
- Example: BLAST¹ 2.5 is based on CSISAT:
 - $FOCI^2$ for DL + EUF.

- Open-source software and freely extendable by others.
 - Total of 7500 lines of code written in Ocaml.
 - Includes interpolation code and SMT solver.

¹http://mtc.epfl.ch/blast/

²http://www.kenmcmil.com/foci.html

³http://www.mpi-sws.mpg.de/~rybal/clp-prover/

- Predicate discovery for CEGAR-based model checkers for refinement of abstract states.
- Example: Blast¹ 2.5 is based on CSIsat:
 - FOCI² for DL + EUF.
 - \bullet CLPPROVER³ for LA + EUF, but only conjunctions.
- Open-source software and freely extendable by others.
 - Total of 7500 lines of code written in Ocaml.
 - Includes interpolation code and SMT solver.

¹http://mtc.epfl.ch/blast/

²http://www.kenmcmil.com/foci.html

³http://www.mpi-sws.mpg.de/~rybal/clp-prover/

- Predicate discovery for CEGAR-based model checkers for refinement of abstract states.
- Example: BLAST¹ 2.5 is based on CSISAT:
 - $FOCI^2$ for DL + EUF.
 - CLPPROVER³ for LA + EUF, but only conjunctions.
 - \bullet CSISAT is a new implementation for LA + EUF.
- Open-source software and freely extendable by others.
 - Total of 7500 lines of code written in Ocaml.
 - Includes interpolation code and SMT solver.

¹http://mtc.epfl.ch/blast/

²http://www.kenmcmil.com/foci.html

³http://www.mpi-sws.mpg.de/~rybal/clp-prover/

Outline

- Interpolation
- 2 How to use CSISAT?
- 3 How CSISAT works?

What to give, what to expect

• Input: n formulae X_1, \ldots, X_n such that

$$\bigwedge_{i=1}^{n} X_i \models \bot$$

• Output: n-1 interpolants such that

$$\bigwedge_{j=1}^{i} X_{j} \models I_{i}$$
 $I_{i} \wedge \bigwedge_{j=i+1}^{n} X_{j} \models \bot$

Syntax

- Formula syntax is very simple and easy to integrate.
- CSIsat supports also Foci syntax.

Example: A:
$$a = b \land b = c$$
 B: $f(a) \neq f(c)$
 $a = b \& b = c$; not $f(a) = f(c)$

Example

Input:

Example

Input:

$$a = b;$$
 $b = c;$
 \longrightarrow
 $CSISAT$

not $f(a) = f(c)$

Example

Input:

$$a = b;$$

$$b = c;$$

$$not f(a) = f(c)$$

Output:

$$a = b$$

$$a = c$$

CSISAT

Outline

- 1 Interpolation
- 2 How to use CSISAT?
- How CSISAT works?

Generating a resolution proof of unsatisfiability.

Generating a resolution proof of unsatisfiability.

- Generating a resolution proof of unsatisfiability.
- 2 Constructing the interpolant.

- Generating a resolution proof of unsatisfiability.
- 2 Constructing the interpolant.

- Generating a resolution proof of unsatisfiability.
- 2 Constructing the interpolant.

Rybalchenko, Sofronie-Stokkermans 07

- Generating a resolution proof of unsatisfiability.
- 2 Constructing the interpolant.

Rybalchenko, Sofronie-Stokkermans 07

- Generating a resolution proof of unsatisfiability.
- 2 Constructing the interpolant.

Rybalchenko, Sofronie-Stokkermans 07

Performance

Program	#queries	Foci	CLPprover	CSISAT
Blast ⁴				
floppy	235	1.17 s	1.55 s	0.55 s
cdaudio	130	0.60 s	0.70 s	$0.26\mathrm{s}$
ssh	6881	29 s	_	17 s
ARMC ⁵				
magill	9860	_	30 s	21 s

Related work: the new version of $\mathrm{MATHSAT}$ [CAV 08] can generate interpolants.

⁴http://mtc.epfl.ch/blast/

⁵http://www.mpi-sws.mpg.de/~rybal/armc/

Try it out!

CSISAT is freely available online:

Project web page: http://www.cs.sfu.ca/~dbeyer/CSIsat

Sources and bug reports: http://csisat.googlecode.com

Feedback very welcome!

• Questions?