NAME: SHREERANG MHATRE

ROLLNO: 52 BATCH: A3

IGBT CHARACTERISTICS

AIM: To study the characteristics of IGBT.

APPARATUS: 1) Circuit board with IGBT SGH80N60.

- 2) 3½ & 4½ digit DMMs, ammeters & voltmeters.
- 3) Dual-trace CRO with probes.
- 4) 30V power supplies

THEORY:

characteristics of an IGBT are shown in Fig. 3.

CIRCUIT DESCRIPTION:

The section on the board, shown in Fig. 5, is used for obtaining the transfer & output characteristics of the IGBT.

PROCEDURE:

1. Transfer characteristics of IGBT

- 1.1 Connect a DC ammeter, A3, in 10mA, between X23(+ve) & X24(-ve), in the drain circuit.
- 1.2 Connect a 4½ digit DMM, V1, in 20V range, between X26(+ve) & X27(-ve), in the gate circuit.
- 1.3 Connect a 3½ digit DMM, V2, in 2V range, between X24(+ve) & X22(-ve), in the drain circuit.
- 1.4 Use a table fan to ensure proper cooling of the IGBT mounted on heatsink.
- 1.5 Set potentiometer R11 in the gate circuit to minimum position (maximum anticlockwise).
- 1.6 Connect a DC supply in the gate circuit, V_{GG} , between X25(+ve) & X22 (-ve). Set supply to 2V.
- 1.7 Connect a DC supply in the drain circuit, V_{DD} , between X21(+ve) & X22 (-ve). Set supply to 15V.
- 1.8 Slowly increase the gate voltage, v_{GS} , using V_{GG} & R11 till the IGBT **just** starts conducting i.e. i_D is around 50 μ A. Note value of v_{GS} which is now the threshold gate-source voltage $V_{GS}(\tau_h)$.
- 1.9 Increase the gate voltage further and take five readings of i_D & v_{GS} upto $i_D = 700$ mA. For every reading, ensure that $v_{DS} = 15$ V by adjusting V_{DD} .
- 1.10 Reduce V_{GG} & V_{DD} .

2. Output characteristics of IGBT

- 2.1 Set V_{GS} to a value above $V_{GS(Th)}$.
- 2.2 Slowly increase the drain-source voltage, v_{DS} , by increasing the drain supply voltage, V_{DD} , and note the corresponding values of drain current i_D . Initially the IGBT will be in the ohmic region and then, for higher values of v_{DS} , it will enter the active region. Take three readings in the ohmic region and three readings in the active region, up to i_D =700 mA.
- 2.3 Increase V_{GS} and repeat step 5.2. Readings should be taken for a total three different values of V_{GS}
- 2.4 Switch off all supplies and remove all connections on the chassis

OBSERVATIONS:

1. Transfer characteristics of IGBT

1.1:
$$V_{GS(Th)} = V$$

1.2:
$$i_D$$
 vs v_{GS}

Sr. No.	i_D mA	v_{GS} V
1.		
2.		
3.		
4.		
5.		

2. Output characteristics of IGBT

2.1:
$$v_{GS} = V$$

Sr. No.	Region	i_D mA	v_{DS} V
1.	Ohmic		
2.	Ohmic		
3.	Ohmic		
4.	Active		
5.	Active		
6.	Active		

2.2:
$$v_{GS} = V$$

Sr. No.	Region	i_D mA	v_{DS} V
1.	Ohmic		
2.	Ohmic		
3.	Ohmic		
4.	Active		
5.	Active		
6.	Active		

2.3:
$$v_{GS} = V$$

Sr. No.	Region	i_D mA	v_{DS} V
1.	Ohmic		
2.	Ohmic		
3.	Ohmic		
4.	Active		
5.	Active		
6.	Active		

CHARACTERISTICS & GRAPHS:

- 1. Transfer characteristics of IGBT.
- 2. Output characteristics of IGBT.

CALCULATIONS: Calculate on-state resistance (reciprocal of slope in ohmic region), and output resistance (reciprocal of slope in active region) for each value of v_{GS} .

CONCLUSIONS:

LIST OF FIGURES:

Fig. 1 IGBT I-V characteristics

Fig. 2 Circuit for characteristics of IGBT

Fig. 3 IGBT I-V Characteristics

Exp-2 IGBT

Name - Shreering Mharro
Rollno - 52
Batch - A3
AIM - To study the characteristics
of TGBT.

* observation O Transfer characteristics of IGBT

	SYNO	ép ma	Vas V	desal (d)
	1	0.005.00 A	3.56	
	2	0.28 pa A	3.84	Edgy Kings In a
	3	0.70 pg A	4.00	and the same
	9	0.140 pa A	4.09	m15 4
	5	0.32 mA	4.51	man c
	6	0.67mA	4-60	164 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	7	3-8mA	4.60	Many of Carlot
4 4 1	8	6.0 mA	4.66	
	9	25m A	4.74	ad a poly file
	10	67mA	4-88	
	11	@ 26 @ mA	5.10	grade and by
	12	03620mA	5.25	and the
		THE SHARE		rate -

www.mitwpu.edu.in

2 00tp	out charact	erishics	of IGB	I
i) Vac	s = 4.0 V			
		1) 0	1./ 1/	
SYNO	Region	épm A	Vas	
1	ohmic	30.MA	0.3V	
2	ohmic	65 ut	0.50	
3	ohmic	654A	1 ~	
4	Activo	Beca	0.1~	
5	Achive	12-4A	0.27	
11) Va	s = 4.5v	- A4 T A	n al ful	
11)	5-100			
SYNO	Region	iomA	VosV	
1	Ohmic	2uA	0.1 V	
2	ohmic	8uA	0.2 V	
3	ohmic 6	31 MA	0.3V	
5	Active	55MA	0.4 V	Marie Land
5	Active	Mount	0.5v	
-				
iii) va	- F	-		
III) VG	s = 5V		nh di	
SYNO	Region	ioma	VDS V	
1	ohmi'c	ImA	0.5	
2			6.7	
	opmic	4.4mA 2.2mA	0.6	
3	opmic		0.8	
9	Achive	30mA		
3	Active	48mA	0.9	

	MIT WORLD UNIVERSITY	PEAC PUNE
*	Calculations -	
	For VGS = 4.0 V	
	Onstate resistance $Rov = (0.2 - 1) = 1.509 \text{ kg}$ $(12-65)10^{3}$	
	For $VGS = 4.5 V$ RON = (0.5 - 0.3) - 2.816 - 2 $(110 - 31)10^{-3}$	
	For $V_{GS} = SV$ $R_{ON} = (0.9 - 0.6) - 6.637 \Omega$ $(48 - 2.2)10^{-3}$	
	www.mitw	pu.ed

