# UILLE D'EXERCICES N°7 & 8

# ESPACES VECTORIELS NORMÉS

# Exercice 1:

Soit  $(E, \|.\|)$  un espace vectoriel normé, et soient  $x, y \in E$ . Montrer que :

$$||x|| + ||y|| \le ||x + y|| + ||x - y||$$

## Exercice 2:

Soient  $a_1, \ldots, a_n$  des réels. Pour tout  $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$  on pose :

$$N(x) = \sum_{i=1}^{n} a_i |x_i|.$$

Déterminer une condition nécessaire et suffisante portant sur les  $a_i$ pour que N soit une norme sur  $\mathbb{R}^n$ .

# Exercice 3:

Soit A une partie non vide de  $\mathbb{R}$ . Quelle(s) condition(s) doit vérifier A pour que l'application :

$$N: P \mapsto ||P||_A = \sup_{t \in A} |P(t)|$$

soit une norme sur  $\mathbb{R}[X]$ ?

## Exercice 4:

Montrer que l'on définit une norme sur  $\mathbb{R}^2$  par : N(x,y) =. Dessiner la boule unité pour cette norme.

# Exercice 5:

Pour toute matrice  $A \in \mathcal{M}_n(\mathbb{R})$  on pose :

$$N(A) = \sup \{ ||AX||_{\infty} \mid X \in \mathcal{M}_{n,1}(\mathbb{R}), ||X||_{\infty} \le 1 \}.$$

- a) Montrer que N est une norme sur  $\mathcal{M}_n(\mathbb{R})$ .
- b) Montrer que:

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \|AX\|_{\infty} \leq N(A)\|X\|_{\infty}$$
 et en déduire que :

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), N(AB) \leq N(A)N(B).$$

c) Si 
$$A = (a_{ij})_{1 \le i, j \le n}$$
, montrer que  $N(A) = \max_{i \in [1, n]} \sum_{j=1}^{n} |a_{ij}|$ .

## Exercice 6:

1. Soit  $\|.\|$  une norme sur  $\mathcal{M}_n(\mathbb{C})$ . Démontrer qu'il existe un réel k > 0 tel que :

$$\forall A, B \in \mathcal{M}_n(\mathbb{C}), ||AB|| \le k||A||.||B||.$$

2. Démontrer que, pour  $n \geq 2$ , il n'existe pas de norme sur  $\mathcal{M}_n(\mathbb{C})$ telle que ||AB|| = ||BA|| pour toutes matrices A, B de  $\mathcal{M}_n(\mathbb{C})$  (on pourra, dans le cas n=2, considérer les matrices  $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$  et  $\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ et remarquer que ces deux matrices sont semblables).

## Exercice 7:

Soit  $E = \mathscr{C}([0;1],\mathbb{R})$ . On pose, pour  $f \in E$ ,  $N(f) = \int_0^1 e^x |f(x)| dx$ . Montrer que N est une norme, et la comparer à la norme  $\|.\|_{\infty}$  (on pourra considérer la suite  $(f_n)$  telle que  $f_n(x) = 1 - nx$  si  $0 \le x \le \frac{1}{n}$  et  $f_n(x) = 0$  si  $\frac{1}{n} \le x \le 1$ ), ainsi qu'à la norme  $\|.\|_1$  et à la norme

#### Exercice 8:

Soit  $F = \{f \in \mathscr{C}^1([0;1],\mathbb{R}) \mid f(0) = 0\}$ . On pose, pour  $f \in F$ ,  $N(f) = ||f'||_{\infty}.$ 

Montrer que N est une norme sur F. Est-elle équivalente à la norme  $\|\cdot\|_{\infty}$ ?

# Exercice 9:

Dans 
$$E = \mathbb{R}[X]$$
, on pose, si  $P = \sum_{i} a_i X^i$ :  
 $N_1(P) = \max\{|a_i|\}, N_2(P) = \sum_{i} |a_i| \text{ et } N_3(P) = \sup_{t \in [0,1]} |P(t)|.$ 

Montrer que  $N_1, N_2$  et  $N_3$  sont des normes sur E et qu'elles sont deux à deux non équivalentes.

## Exercice 10:

Dans  $E = \mathcal{C}^2([0;1],\mathbb{R})$ , on pose, pour  $f \in E$ :

$$N_1(f) = \sup_{t \in [0,1]} |f(t)|, \quad N_2(f) = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$$

et

$$N_3(f) = |f(0)| + |f'(0)| + \sup_{t \in [0,1]} |f''(t)|.$$

Montrer que ce sont des normes sur E et les comparer.

## Exercice 11:

Dans  $\mathbb{R}[X]$  on pose, si  $P = \sum_{k=0}^{+\infty} a_k X^k$  (où les  $a_k$  sont nuls à partir d'un certain rang):

$$N_{\infty}(P) = \max_{k \in \mathbb{N}} |a_k|$$
 et  $N(P) = \sum_{k=0}^{+\infty} \frac{|a_k|}{2^k}$ .

Montrer qu'il s'agit de normes sur  $\mathbb{R}[X]$  et les comparer.

#### Exercice 12:

On note L le  $\mathbb{R}$ -espace vectoriel des applications lipschitziennes de [0;1] dans  $\mathbb{R}$ , et E le  $\mathbb{R}$ -espace vectoriel  $\mathscr{C}^1([0;1],\mathbb{R})$ .

- 1. Dire pourquoi E est un sous-espace vectoriel de L.
- 2. Montrer que l'application  $N:L\to\mathbb{R}$  définie par

$$\forall f \in L, \quad N(f) = |f(0)| + \sup_{\substack{(x,y) \in [0,1]^2 \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|}$$

est une norme sur L, et qu'elle n'est pas équivalente à la norme  $\|.\|_{\infty}.$ 

3. Montrer que  $N_1: E \to \mathbb{R}$  définie par :

$$\forall f \in E, \quad N_1(f) = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$$

est une norme sur E et qu'elle coïncide avec N sur E.

#### Exercice 13:

Soit E un espace vectoriel normé.

a) Soient  $a, a' \in E$  et r, r' > 0.

Montrer que B(a,r) + B(a',r') = B(a+a',r+r')

b) Soit  $a \in E, r > 0$  et  $\lambda \neq 0$ . Montrer que  $\lambda B(a, r) = B(\lambda a, |\lambda| r)$ .

## Exercice 14:

Soit (E, ||) un espace vectoriel normé,  $a, a' \in E$  et  $r, r' \in R_+$ . Montrer que:

$$B_f(a,r) \subset B_f(a',r') \iff ||a'-a|| \le r'-r$$

 $\operatorname{et}$ 

$$B(a,r) \subset B(a',r') \iff ||a'-a|| \le r'-r$$

# Exercice 15:

Montrer que l'ensemble

$$A = \{(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \text{ tq } \lambda_i \neq \lambda_j \text{ pour tout } i \neq j\}$$

est un ouvert de  $\mathbb{R}^n$ .

# Exercice 16:

Soit F un sous-espace vectoriel d'un espace vectoriel normé E.

- a) Montrer que son adhérence  $\overline{F}$  est un sous-espace vectoriel de E.
- b) Montrer que, si  $\overset{\circ}{F} \neq \emptyset$ , alors F = E.

# Exercice 17:

Soit A une partie convexe d'un espace vectoriel normé E. Montrer que  $\overline{A}$  et  $\overline{A}$  sont des parties convexes de E.

# Exercice 18:

Soit E un espace vectoriel normé de dimension finie, et  $(u_n)_{n\in\mathbb{N}}$ ,  $(v_n)_{n\in\mathbb{N}}$  deux suites de vecteurs telles que :

$$\forall n \in \mathbb{N}, u_n \text{ est colinéaire à } v_n, \quad \lim_{n \to +\infty} u_n = \ell_u, \quad \lim_{n \to +\infty} v_n = \ell_v.$$

Montrer que les vecteurs  $\ell_u$  et  $\ell_v$  sont colinéaires. (on pourra raisonner par l'absurde et compléter alors  $(\ell_u, \ell_v)$  en une base de E.)

## Exercice 19:

Soient  $A, P \in \mathcal{M}_p(C)$  telles que :  $\lim_{n \to +\infty} A^n = P$ . Montrer que AP = PA = P et que  $P^2 = P$ .

# Exercice 20:

Soit  $B \in \mathcal{M}_p(R)$  une matrice antisymétrique, telle que la suite  $(B^n)_{n\in\mathbb{N}}$  converge vers une matrice C. Que peut-on dire de C?

# Exercice 21:

Soient  $A, B \in \mathcal{M}_p(\mathbb{C})$ .

- a) Montrer que si la suite  $((AB)^n)$  tend vers 0, il en est de même de la suite  $((BA)^n)$ .
- b) Montrer que, si A et B commutent, si la suite  $(A^n)$  tend vers P et la suite  $(B^n)$  vers Q, alors P et Q commutent.
- c) Montrer que si  $(A_n)$  est une suite de matrices inversibles qui converge vers A et si la suite  $(A_n^{-1})$  converge vers B, alors A et B sont inversibles et inverses l'une de l'autre.
- d) Est-il possible de trouver une suite  $(A_n)$  de matrices inversibles qui converge et telle que la suite  $(A_n^{-1})$  diverge?

# Exercice 22:

Soit  $(E, \|.\|)$  un espace vectoriel normé de dimension finie, et u un endomorphisme de E tel que :

$$\forall x \in E, ||u(x)|| \le ||x||.$$

Pour tout  $n \in \mathbb{N}$  on pose :  $v_n = \frac{1}{n+1} \sum_{k=1}^{n} u^k$ .

- a) Simplifier  $v_n \circ (u Id_E)$ .
- b) Montrer que

$$A = \operatorname{Ker}(u - Id_E) \oplus \operatorname{Im}(u - Id_E).$$

- c) En déduire que, pour tout  $x \in E : \lim_{n \to +\infty} v_n(x) = p(x)$ , où p est la projection sur  $Ker(u - Id_E)$  parallèlement à  $Im(u - Id_E)$ .
  - d) Soit  $\mathcal{B} = (e_1, \dots, e_n)$  une base de E; on note, pour

$$x = \sum_{i=1}^{n} x_i e_i, ||x||_{\infty} = \max_{i} |x_i|, \text{ puis on définit :}$$

$$\forall f \in \mathcal{L}(E), N(f) = \sum_{i=1}^{n} ||f(e_i)||_{\infty}.$$

Montrer que l'on définit ainsi une norme sur  $\mathcal{L}(E)$ , et que la suite  $(v_n)_{n\in\mathbb{N}}$  converge vers p au sens de cette norme.

# Exercice 23:

Soit  $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ , à diagonale strictement dominante, c'està-dire:

$$\forall i \in [1; n], |a_{ii}| > \sum_{j \neq i} |a_{ij}|.$$

On rappelle que la matrice A est inversible. En conséquence, pour tout  $B \in \mathbb{R}^n$ , l'équation AX = B a une solution unique  $X \in \mathbb{R}^n$ .

On note  $D = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$ . Soit  $X_0 \in \mathbb{R}^n$ , et  $(X_p)_{p \in \mathbb{N}}$  la suite de  $\mathbb{R}^n$  définie par récurrence par :

$$\forall p \in \mathbb{N}, DX_{p+1} = (D - A)X_p + B.$$

Prouver que la suite  $(X_p)$  converge vers la solution de l'équation AX = B.

## Exercice 24:

Étudier les limites en (0,0) des fonctions suivantes :

a) 
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 b)  $f(x,y) = \frac{x^2y}{x^2 + y^2}$  c)  $f(x,y) = \frac{x^3}{y}$ 

d) 
$$f(x,y) = \frac{x^2 + y^2}{|x| + |y|}$$
 e)  $f(x,y) = \frac{\sin xy}{\sqrt{x^2 + y^2}}$ 

# Exercice 25:

Soit  $f: \mathbb{R}^2 \to \mathbb{R}$  définie par

$$f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1\\ -\frac{1}{2}x^2 & \text{sinon.} \end{cases}$$

Montrer que f est continue.

# Exercice 26:

Soient  $g: \mathbb{R}^2 \to \mathbb{R}$  continue et  $\mathscr{C}$  un cercle de centre O et de rayon R > 0.

- a) Montrer qu'il existe deux points A et B de  $\mathscr C$  diamétralement opposés tels que g(A) = g(B).
- b) Montrer qu'il existe deux points C et D de C, se déduisant l'un de l'autre par un quart de tour tels que g(C) = g(D).

# Exercice 27:

Soit f une application continue de  $\mathbb{R}^n$  dans  $\mathbb{R}$  telle que :

$$\lim_{\|x\|\to+\infty} f(x) = +\infty.$$

Montrer que f admet un minimum.

## Exercice 28:

Soit  $(E, \|.\|)$  un espace vectoriel normé et f l'application définie sur E par :

$$\forall x \in E, f(x) = \frac{x}{1 + ||x||^2}.$$

- a) Montrer que f est continue de E dans E pour la norme  $\|.\|$ .
- b) Montrer que :  $f(E) = B_f(0, \frac{1}{2})$

# Exercice 29:

Soit E un espace vectoriel normé, et  $a \in E$ , non nul. On note f l'application de E dans  $\mathbb{R}$  définie par :

$$\forall x \in E, f(x) = \begin{cases} ||x - a|| & \text{si } ||x|| \le ||a|| \\ 0 & \text{sinon.} \end{cases}$$

- a) Montrer que f est continue en a.
- b) Montrer que f n'est pas continue en -a (considérer par exemple la suite  $(x_n)$  donnée par  $x_n = -\left(1 + \frac{1}{n}\right)a$ .

# Exercice 30:

On munit  $\mathbb{R}^2$  de la norme  $\|.\|_1$  et on considère l'application f définie sur  $\mathbb{R}^2$  par :

$$\forall (x,y) \in \mathbb{R}^2, f(x,y) = (ay,bx).$$

Montrer que f est lipschitzienne.

# Exercice 31:

Soient E et F deux espaces vectoriels normés et  $u \in L(E, F)$ . Démontrer l'équivalence :

u continue  $\iff$   $\begin{cases} \text{pour toute suite } (x_n) \text{ d'éléments de } E \text{ qui} \\ \text{converge vers } 0_E, \text{la suite } (u(x_n)) \text{ est bornée.} \end{cases}$ 

# Exercice 32:

Soit  $E = \mathscr{C}([0;1],\mathbb{R})$ , muni de la norme  $\|.\|_{\infty}$ .

Soit T l'endomorphisme de E qui à toute  $f \in E$  associe sa primitive T(f) qui s'annule en 0.

Montrer que T est un endomorphisme continu de E.

# Exercice 33:

On note E l'espace vectoriel des suites réelles bornées muni de la norme  $\|.\|_{\infty}$  définie par :

$$\forall x \in E, ||x||_{\infty} = \sup_{n>0} |x_n|.$$

On définit l'opérateur de différence  $\Delta$  sur E par :

$$\forall x \in E, \Delta(x) = y \text{ avec}: \forall n \in \mathbb{N}, y_n = x_{n+1} - x_n.$$

Montrer que  $\Delta$  est linéaire et continue pour  $\|.\|_{\infty}$ .

# Exercice 34:

On munit  $\mathbb{R}[X]$  de la norme  $\|.\|_{\infty}$  ( $\|\sum a_i X^i\|_{\infty} = \max(|a_i|)$ ). Étudier la continuité des applications linéaires :

- a)  $f_0: P \mapsto P(x_0) (x_0 \in \mathbb{R});$  b)  $f_1: P \mapsto P';$
- c)  $f_2: P \mapsto (X-1)P$ .

