The group G is isomorphic to the group labelled by [336, 208] in the Small Groups library. Ordinary character table of $G \cong PSL(3,2)$: C2:

	1a	3a	6a	2a	7a	2b	8a	8b	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	-1	1	1	-1	-1	1
χ_3	6	0	0	0	-1	-2	0	0	2
χ_4	6	0	0	0	-1	2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0
χ_5	6	0	0	0	-1	2	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0
χ_6	7	1	-1	-1	0	-1	1	1	-1
χ_7	7	1	1	1	0	-1	-1	-1	-1
χ_8	8	-1	-1	2	1	0	0	0	0
χ_9	8	-1	1	-2	1	0	0	0	0

Trivial source character table of $G \cong PSL(3,2)$: C2 at p = 2:

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,2)(3,8)(4,5)(6,7)]) \cong C2$ $P_3 = Group([(3,7)(4,5)(6,8)]) \cong C2$

 $P_4 = Group([(1,2)(3,8)(4,5)(6,7),(3,7)(4,5)(6,8)]) \cong C2 \times C2$ $P_5 = Group([(1,2)(3,8)(4,5)(6,7),(1,5,2,4)(3,6,8,7)]) \cong C4$

Third source character table of $C = 1$ $SL(0,2)$. CZ at $P = Z$.														
malisers N_i		N_1		N_2	N_3		N_4	N_5	N_6		N_7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G		P_1		P_2	P_3 P_4		P_5	P_5 P_6		P_7	P_8	P_9	P_{10}	
Representatives $n_j \in N_i$	1a	3a	7a	1a	1 <i>a</i>	3a	1a	1a	1a	3a	1a	1a	1 <i>a</i>	1a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	16	-2	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	32	2	-3	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	16	4	2	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	40	4	-2	8	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	2	1	0	2	2	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-1	1	0	2	-1	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	20	2	-1	4	2	2	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 2 \cdot \chi_3 + 2 \cdot \chi_4 + 2 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	52	4	-4	4	0	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	28	4	0	4	0	0	0	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	12	0	-2	4	0	0	0	0	2	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	26	2	-2	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	0	2	2	2	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	26	2	-2	2	0	0	0	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_{6} = Group([(1,2)(3,8)(4,5)(6,7),(1,3)(2,8)(4,6)(5,7)]) \cong C2 \times C2
P_{7} = Group([(1,2)(3,8)(4,5)(6,7),(1,4)(2,5)(3,8),(3,7)(4,5)(6,8)]) \cong D8
P_{8} = Group([(1,2)(3,8)(4,5)(6,7),(1,3)(2,8)(4,6)(5,7),(1,5,2,4)(3,6,8,7)]) \cong D8
P_{9} = Group([(1,2)(3,8)(4,5)(6,7),(1,7,4,8,2,6,5,3),(1,5,2,4)(3,6,8,7)]) \cong C8
P_{10} = Group([(1,2)(3,8)(4,5)(6,7),(1,4)(2,5)(3,8),(3,7)(4,5)(6,8),(1,3)(2,8)(4,6)(5,7)]) \cong D16
N_{1} = Group([(2,4)(3,5)(7,8),(1,2,3)(4,6,7)]) \cong PSL(3,2) : C2
N_{2} = Group([(1,2)(3,8)(4,5)(6,7),(3,7)(4,5)(6,8),(1,5)(2,4)(6,7),(1,3)(2,8)(4,6)(5,7)]) \cong D16
N_{3} = Group([(3,7)(4,5)(6,8),(3,5,6,7,4,8),(1,2)(3,4)(5,7)]) \cong D12
N_{4} = Group([(3,7)(4,5)(6,8),(1,2)(3,8)(4,5)(6,7),(1,5)(2,4)(6,7)]) \cong D8
N_{5} = Group([(1,5,2,4)(3,6,8,7),(1,2)(3,8)(4,5)(6,7),(3,7)(4,5)(6,8),(1,3)(2,8)(4,6)(5,7)]) \cong D16
N_{6} = Group([(1,3)(2,8)(4,6)(5,7),(1,2)(3,8)(4,5)(6,7),(2,3,8)(4,5,7),(1,4,2,5)(3,7,8,6)]) \cong S4
N_{7} = Group([(3,7)(4,5)(6,8),(1,4)(2,5)(3,8),(1,2)(3,8)(4,5)(6,7),(1,3)(2,8)(4,6)(5,7)]) \cong D16
N_{8} = Group([(1,5,2,4)(3,6,8,7),(1,3)(2,8)(4,6)(5,7),(1,2)(3,8)(4,5)(6,7),(1,3)(2,8)(4,6)(5,7)]) \cong D16
N_{9} = Group([(1,7,4,8,2,6,5,3),(1,4,2,5)(3,7,8,6),(1,2)(3,8)(4,5)(6,7),(3,7)(4,5)(6,8)]) \cong D16
N_{9} = Group([(1,7,4,8,2,6,5,3),(1,4,2,5)(3,7,8,6),(1,2)(3,8)(4,5)(6,7),(3,7)(4,5)(6,8)]) \cong D16
```

 $N_{10} = Group([(1,7)(2,6)(3,4)(5,8),(3,7)(4,5)(6,8),(1,5)(2,4)(6,7),(1,2)(3,8)(4,5)(6,7)]) \cong D16$