XY6020L 20A / 1200W Programmable Power Supply

Modbus Interface Documentation

Preface:

Those modules are currently sold at AliExpress (tm).

Unfortunately a feasible documentation of the Modbus interface is missing. I could not find out the original manufacturer to ask for any docs. At least a friendly seller provided a documentation written in Chinese.

Nowadays Google translator allows me to read such stuff ...:-)

So here is my compilation of the most relevant translated excerpts from the original Chinese document (which has no Copyright notice and does not mention the author).

I applied some corrections and added some more explanations and hints.

Addressed to people who are already familiar with **Modbus RTU**. Other's may want to try a Google search for 'Modbus RTU Tutorial' first.

-- Disclaimer --

I am not responsible or liable for any errors or omissions contained in this document.

The information is provided on an "as is" basis with no guarantees of completeness, accuracy, usefulness or timeliness...

I am not responsible for any damage that may occur from using the information contained herein.

Use it at your own risk.

-- Disclaimer --

Released to the Public Domain.

tinkering4fun at GitHub April 2023

Communication Interface

The communication **protocol** is **MODBUS-RTU**.

Factory Modbus ID setting is 01H

The communication interface is TTL serial port;

The **data format** is **8,N,1** (8 data, no parity, one stop bit(s)) The factory **baudrate** setting is **115200**

Interface Connector:

VCC: 5V supply (used for e.g. isolated RS485 adapter)

TX: Serial data input (connect it to master's transmitter output) RX: Serial data output (connect it to master's receiver input)

GND: Ground

Unfortunately there was nothing said about the expected 'TTL' signal levels. As the module provides 5V on the VCC pin, it should be 5V tolerant on the input as ('TTL' would imply).

During my testing, it worked with either 3.3V or 5V.

Rem: The XY6020L module is typically bundled with a '<u>SiniLink XY-WFPOW'</u> Wifi interface board which is based on ESP8285. I guess this module works with 3.3V I/O levels.)

Connection to a **RS485** interface line (real Modbus) requires e.g. **HW-519 RS485** adapter. In this case TX goes to adapter's RXD and RX to adapter's TXD

Function Codes

This machine only supports 0x03, 0x06, 0x10 function codes.

This means, all mentioned registers are 'Holding Registers'

Function code	Definition	Operation (binary)
0x03	Read register data	Read data from one or more registers
0x06	Write a single register	Write a set of binary data to a single register
0x10	Write multiple registers	Write multiple sets of binary data to multiple registers

Register Set (Holding Registers)

Rem: Each register consists of 16 bits, transferred as 2 bytes.

Name	Description	Bytes	Dec.	Unit	Read and write	Register address
V-SET	Voltage setting	2	2	V	R/W	0000H
I-SET	Current setting	2	2	А	R/W	0001H
VOUT	Output voltage display value	2	2	V	R	0002H
IOUT	Output current display value	2	2	А	R	0003H
POWER	Output power display value	2	1	W	R	0004H
UIN	Input voltage display value	2	2	V	R	0005H
AH-LOW	Output AH low 16 bits	2	0	maH	R	0006H
AH-HIGH	Output AH high 16 bits	2	0	maH	R	0007H
WH-LOW	Output WH low 16 bits	2	0	mwH	R	0008H
WH-HIGH	Output WH high 16 bits	2	0	mwH	R	0009H
OUT_H	Open time - hours	2	0	Н	R	000AH
OUT_M	Start time - minutes	2	0	М	R	000BH
OUT_S	Open time - seconds	2	0	S	R	000CH
T_IN	internal temperature value	2	1	F/C	R	000DH
T_EX	External temperature value	2	1	F/C	R	000EH
LOCK	key lock	2	0	-	R/W	000F
PROTECT	protection status	2	0	-	R/W	0010H
CVCC	Constant voltage and constant current state	2	0	-	R	0011H
ONOFF	Switch output	2	0	-	R/W	0012H
F-C	Temperature symbol	2	0	-	R/W	0013H
B-LED	Backlight brightness level	2	0	-	R/W	0014H
SLEEP	off screen time	2	0	М	R/W	0015H

MODEL	Product number (was 6100h)	2	0	-	R	0016H
VERSION	Firmware version number (was 0071h)	2	0	-	R	0017H
SLAVE-ADD	slave address	2	0	-	R/W	0018H
BAUDRATE_L	baud rate (6 == 115200)	2	0	-	R/W	0019H
T-IN-OFFSET	internal temperature correction	2	1	F/C	R/W	001AH
T-EX-OFFSET	External temperature correction	2	1	F/C	R/W	001BH
BUZZER	buzzer switch (not implemented ?)	2	0	-	R/W	001CH
EXTRACT-M	Quickly call out data sets	2	0	-	R/W	001DH
DEVICE	device status This did not work on my device!	2	θ	-	R/W	001EH
Data set area	for Memory M0					
V-SET	voltage setting	2	2	V	R/W	0050H
I-SET	current setting		2	А	R/W	0051H
S-LVP	Low voltage protection value		2	V	R/W	0052H
S-OVP	Overvoltage protection value	2	2	V	R/W	0053H
S-OCP	Overcurrent protection value	2	2	А	R/W	0054H
S-OPP	Over power protection value	2	0	W	R/W	0055H
S-OHP_H	Maximum output timehours	2	0	Н	R/W	0056H
S-OHP_M	Maximum output duration—minutes	2	0	M	R/W	0057H
S-OAH_L	Maximum output AH low 16 bits		0	maH	R/W	0058H
S-OAH_H	Maximum output AH high 16 bits		0	maH	R/W	0059H
S-OWH_L	Maximum output WH low 16 bits	2	0	10mw H	R/W	005AH
S-OWH_H	Maximum output WH high 16 bits	2	0	10mw H	R/W	005BH
S-OTP	Over temperature protection value	2	1	F/C	R/W	005CH
S-INI	Power-on output switch	2	0	-	R/W	005DH

Note 1:

This product is designed with a total of **10 sets of storage data sets M0-M9**, each set contains a total of **14** data registers. M0 data set starting address is 0050H.

The data groups called by default when the product is powered on, the M1 and M2 data groups are the data groups quickly called out by the product panel, and the M3-M9 are common storage data groups Group, the calculation method of the starting address of the data group is: 0050H+data group number*0010H, for example, the starting address of the M3 data group is: 0050H+3*0010H=0080H.

A comment on the memory concept:

Calling memory M1-M9 is accomplished by writing the desired number 1..9 to the EXTRACT-M register at 001DH. As a result, the called memory values are copied to the M0 area at 0050H ff..

M0 is the current effective operation data set. Updates to this area take immediate effect. (Calling memory M0 has no effect.)

Programming memories M1-M9 is accomplished by writing the desired values to the respective register address area (M1 = 0060H ff., M2 = 0070H ff., ..., M9 = 00E0H ff.). Updates have no effect, until the memory is called.

Writing to memory M0 area means to immediately change the current effective operation parameters (e.g. over voltage protection etc.)

Hint: Registers 0000H and 0001H are always mirrored to 0050H and 0051H.

Note 2:

The reading and writing values of the **key lock function** are 0 and 1, 0 is unlocked, and 1 is locked.

Note 3:

The read value of **protection status** is 0-10:

0: normal operation, 1: OVP, 2: OCP, 3: OPP, 4: LVP, 5: OAH, 6: OHP, 7: OTP, 8: OEP, 9: OWH, 10: ICP.

OVP is triggered when a programming request for a higher voltage is made (e.g write to register V-SET 0000H).

Display backlight starts blinking when a protection state is encountered.

Protection state may be reset by clearing register PROTECT (0010H)

Note 4:

The reading value of constant voltage and constant current state is 0 and 1, 0 is CV state, 1 is CC state.

Note 5

The reading and writing values of the **switch output function** are 0 and 1, 0 is off, and 1 is on.

Note 6:

The reading and writing range of **backlight brightness level** is 0-5, level 0 is the darkest, level 5 is the brightest.

Note 7:

The written value of the **quick recall data group function** is 0-9, and the corresponding data group data will be automatically called out after writing.

Note 8:

Description of WiFi related registers

Rem: Only relevant with Wifi module (not tested)

Name	Detailed description	Register address
MASTER	Host type (0x3B3A: WIFI, others to be determined)	0030H
WIFI-CONFIG	WIFI pairing status (0: Invalid 1: Touch pairing 2: AP pairing)	0031H
WIFI-STATUS	WIFI status (0: Invalid network 1: Connected to the router 2: Successfully connected to the server 3: Touch pairing 4: AP pairing)	0032H
IPV4-H	The first two bytes of the IP address are 0xC0A8	0033H
IPV4-L	The last two bytes of the IP address are 0x0108	0034H

IPV4-H: 0xC0A8 - IPV4-L: 0x0108

IPV4 Address = 192.168.1.8

Communication example

The host reads the output voltage and output current display values

The message format sent by the host:

Data Item	Numbe r of bytes	Data sent	Remark
Slave address	1	01	Send to slave with address 01
Function code	1	03	Read register
Register start address	2	0002H	Register start address
Number of register addresses	2	0002H	2 bytes in total
CRC code	2	65CBH	The CRC code calculated by the host

For example, if the current display value is 05.00V, 1.500A, then the

Message format returned by the slave machine:

Data Item	Numbe r of bytes	Data sent	Remark
Slave address	1	01	Received from slave with address 01
Function code	1	03	Read register
Bytes in response	1	04	Number of data bytes in response
Content of register 0002H	2	01F4H	Output voltage display value
Content of register 0003H	2	05DCH	Output current display value
CRC code	2	B8F4H	The CRC code calculated by the slave

Output of Modbus test program

The following command of my Modbus utility, reads 2 holding registers, starting at register number 2.

The program prints out the bytes sent and received at the communication interface.

Just to illustrate the message data exchanged ...

```
./mbpoll -b 115200,8,N,1 -h 2 -n 2
```

Please consider that the current reading here was zero, and not 1.5 A