Alpha-Refine: A Powerful Refinement Module for Object Tracking Winner of VOT2020 Real-Time Challenge

Bin Yan¹, Dong Wang¹, Huchuan Lu¹, Xiaoyun Yang².

Dalian University of Technology
 Remark Holdings

IIAU-LAB: http://ice.dlut.edu.cn/lu/ Group Leader: Professor Huchuan Lu

Project: https://github.com/MasterBin-IIAU/AlphaRefine

pipeline

Robust Target Locailization (DiMP)

Architecture of Alpha-Refine (Base Version)

Alpha-Refine (General Refinement module):

- Precise Feature Aggregation & Global Receptive Field
- Three complementary branches (Box, Corner, Mask)
- Farsighted Branch Selector

Alpha-Refine uses smaller region than SiamMask

Alpha-Refine

SiamMask

Paper link of Alpha-Refine: https://arxiv.org/abs/2007.02024

Experimental Results

	Staple	CSRDCF	SiamFC	CFNet	MDNet	UPDT	Dsiam	Dsiam-Update	GFS-DCF	C-RPN
	[1]	[29]	[2]	[44]	[32]	[4]	[58]	[54]	[51]	[10]
P(%)	47.0	48.0	53.3	53.3	56.5	55.7	59.1	62.5	56.6	61.9
$P_{norm}(\%)$	60.3	62.2	66.6	65.4	70.5	70.2	73.3	75.2	71.8	74.6
AUC(%)	52.8	53.4	57.1	57.8	60.6	61.1	63.8	67.7	60.9	66.9
sv salebytti	ECO .	ECO+AR	RTMDNet	RTMDNet+AR	SiamRPNpp	SiamRPNpp+AR	ATOM	ATOM+AR	DiMP50	DiMP50+AR
P(%)	55.9	69.2	53.3	69.4	69.4	73.3	64.8	72.5	68.7	74.4
$P_{norm}(\%)$	71.0	78.4	69.4	78.7	80.0	81.5	77.1	80.9	80.1	82.5
AUC(%)	61.2	73.2	58.4	73.1	73.3	76.2	70.3	75.9	74.0	77.5

_							
	TrackingNet						
Absolute Gain of AUC (%)							
•	DiMP50	3.5					
•	ATOM	5.6					
•	SiamRPN++	2.9					
•	ECO	12.0					
ŀ	RT-MDNet	14.7					

LaSOT test Absolute Gain of AUC (%) DiMP50 2.1 ATOM 3.4 SiamRPN++ 4.1 ECO 7.4 RT-MDNet 17.1

Conclusion

- Alpha-Refine can significantly improve existing trackers' performance.
- The speed of Alpha-Refine is fast, which promises that trackers can still run in real-time after using Alpha-Refine.

Mask Quality Comparison

- Golden masks are predicted by Alpha-Refine
- Blue masks are predicted by SiamMask

Alpha-Refine (Strengthened Version)

We use "DiMP50 + Alpha-Refine" as our baseline. Improvements are mainly from the following aspects

- More diverse mask datasets
- More powerful mask prediction structure
- More robust base tracker

Youtube-VOS (Videos)

Saliency (Details)

COCO17 Inst Seg (Cluttered Background)

Mask Prediction Structure & Base Tracker

Learning Fast and Robust Target Models for Video Object Segmentation

Model	VOT18 EAO (%)	OTB100 AUC (%)	NFS AUC (%)	UAV123 AUC (%)	LaSOT AUC (%)	TrackingNet AUC (%)	GOT-10k AO (%)	Links
ATOM	0.401	66.3	58.4	64.2	51.5	70.3	55.6	model
DiMP-18	0.402	66.0	61.0	64.3	53.5	72.3	57.9	model
DiMP-50	0.440	68.4	61.9	65.3	56.9	74.0	61.1	model
PrDiMP-18	0.385	68.0	63.3	65.3	56.4	75.0	61.2	model
PrDiMP-50	0.442	69.6	63.5	68.0	59.8	75.8	63.4	model
SuperDimp	-	70.1	64.7	68.1	63.1	78.1	-	model

https://github.com/visionml/pytracking

Improvement Logs

Code: https://github.com/MasterBin-IIAU/AlphaRefine

Paper: https://arxiv.org/abs/2007.02024

Resources: https://github.com/wangdongdut/Online-Visual-Tracking-SOTA

