NAME: SHUBHAM SHARMA ROLL NO: 18i190002 MSC PHD (OR)

Q1)

Exercise 1: LP Reformulation. [4 Marks] Consider the following optimisation problem:

$$\max \ 0.043x_1 + 0.027x_2 + 0.025x_3 + 0.022x_4 + 0.045x_5 - 0.0275y$$
 s.t.
$$x_1 + x_2 + x_3 + x_4 + x_5 - y \le 100$$

$$x_2 + x_3 + x_4 \ge 40$$

$$\frac{2x_1 + 2x_2 + x_3 + x_4 + 5x_5}{x_1 + x_2 + x_3 + x_4 + x_5} \le 1.4$$

$$\frac{9x_1 + 15x_2 + 4x_3 + 3x_4 + 2x_5}{x_1 + x_2 + x_3 + x_4 + x_5} \le 5$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$y \in [0, 10]$$

Solution:

Solution to part 1 of the above question:

As $x_i \ge 0$ for all i, we can multiply the denominator of third and forth constraint to R.H.S. and solve the following lpp, so after simplifying 3^{rd} and 4^{th} constraints, we get the lpp as follows:

maximize 0.043*x1 + 0.027*x2 + 0.025*x3 + 0.022*x4 + 0.045*x5-0.0275*y;

subject to constraints:

```
x1 + x2 + x3 + x4 + x5 - y \le 100;

x2 + x3 + x4 \ge 40;

0.6*x1 + 0.6*x2 - 0.4*x3 - 0.4*x4 + 3.6*x5 \le 0;

4*x1 + 10*x2 - x3 - 2*x4 - 3*x5 \le 0;
```

Where $x1\ge0, x2\ge0, x3\ge0, x4\ge0, x5\ge0, 0\le y\le10$;

Solution to part 3 of the above question:

We have solved the following lpp through ampl:

```
■ | 🚉 | 🛃 🖳 🕶 🗂 🖚 🗀
Console
AMPL
ampl: reset;
ampl: include ex1.run;
Gurobi 8.0.0: optimal solution; objective 3.007
5 simplex iterations
x1 = 24
x2 = 0
x3 = 81
x4 = 0
x5 = 5
y = 10
cost = 3.007
con1.lb = -Infinity
con1.ub = 100
con1.body = 100
con2.1b = 40
con2.ub = Infinity
con2.body = 81
con3.lb = -Infinity
con3.ub = 0
con3.body = 0
con4.lb = -Infinity
con4.ub = 0
con4.body = 0
ampl:
```

Solution to part 3 of the above question:

- 1) The optimal solution came out to be:3.007
- 2) The values are variables at optimal solution is:

X1 = 24

X2 = 0

X3 = 81

X4 = 0

X5=5

Y = 10

3)we have calculated the upper bound and lower bound of the given constraint 1 through AMPL:

Lower bound= -infinity
Upper bound=100
Body of constraint 1=100

4)we have calculated the upper bound and lower bound of the given constraint 2 through AMPL:

Lower bound= 40
Upper bound= infinity
Body of constraint 2=81

5)we have calculated the upper bound and lower bound of the given constraint 3 through AMPL:

Lower bound= -infinity

Upper bound= 0

Body of constraint 3=0

5)we have calculated the upper bound and lower bound of the given constraint 4 through AMPL:

Lower bound= -infinity

Upper bound= 0

Body of constraint 4=0

Q2)

It is the beginning of monsoon semester at IIT Bombay, and our department needs a system adminstrator to be working every weekday (Mon-Fri) from 8AM to 10PM. There are six candidates available who can do this job, but they are also busy doing other activities during the week. Their availability and wage-rate is listed in the table below

	Wage-rate	Availability in hours				
	(per hour)	Mon	Tue	Wed	Thu	Fri
K.C.	150	6	0	6	0	6
D.H.	152	0	6	0	6	0
H.B.	148	4	8	4	0	4
S.C.	146	5	5	5	0	5
K.S.	166	3	0	3	8	0
N.K.	176	0	0	0	6	2

Each candidate has a different qualification and hence they have a different wage-rate. According to the contract, K.C., D.H., H.B. and S.C., must work at least 8 hours every week. K.S. and N.K. must work at least 7 hours every week. There should be exactly one administrator on duty every weekday during the work hours.

Solution:

Solution to part 3 of the above question:

. No of constraints:11

. No variables:18

- . The number of variables having non-zero coefficients in each of the constraints are:
- 1) The number of variables having non-zero coefficients in constraint 1 are:3
- 2) The number of variables having non-zero coefficients in constraint 2 are:2
- 3) The number of variables having non-zero coefficients in constraint 3 are:4
- 4) The number of variables having non-zero coefficients in constraint 4 are:4
- 5) The number of variables having non-zero coefficients in constraint 5 are:3
- 6) The number of variables having non-zero coefficients in constraint 6 are:2
- 7) The number of variables having non-zero coefficients in constraint 7 are:4
- 8) The number of variables having non-zero coefficients in constraint 8 are:3
- 9) The number of variables having non-zero coefficients in constraint 9 are:4
- 10) The number of variables having non-zero coefficients in constraint 10 are:3

11) The number of variables having non-zero coefficients in constraint 11 are:4

Solution to part 1 of the above question:

The lpp of the above problem is:

Minimize

```
150*x11+150*x13+150*x15+152*x22+152*x24+148*x31+14
8*x32+148*x33+148*x35+146*x41+146*x42+146*x43+146*
x45+166*x51+166*x53+166*x54+176*x64+176*x65;
Subject to constraints:
x11+x13+x15>=8;
x22+x24>=8;
x31+x32+x33+x35>=8;
x41+x42+x43+x45>=8;
x51+x53+x54>=7;
x14+x31+x41+x51=14;
x22+x32+x42=14;
x13+x33+x43+x53=14;
x24+x54+x64=14;
x15+x35+x45+x65=14;
```

where

```
0<=x11<=6;0<=x13<=6;0<=x15<=6;0<=x22<=6;0<=x24<=6;0<=x31<=4;0<=x32<=8;0<=x33<=4;0<=x35<=4;0<=x41<=5;0<=x4
2<=5;0<=x43<=5;0<=x45<=5;0<=x51<=3;0<=x53<=3;0<=x54<=8;0<=x64<=6;0<=x65<=2;
```

Solution to part 2 of the above question:

The following problem has been solved by AMPL:

```
| Console | Ampl. catt| | Ampl
```

Solution to part 4 of the above question:

- 1) The optimal solution came out to be:10692
- 2) The values are variables at optimal solution is:

$$x11 = 4$$
$$x13 = 2$$

3)we have calculated the upper bound and lower bound of the given constraints through AMPL:

con4.body = 20

con 5.lb = 7

con5.ub = Infinity

con5.body = 7

con6.lb = 7

con6.ub = Infinity

con6.body = 7

con7.lb = 14

con7.ub = 14

con7.body = 14

con8.lb = 14

con8.ub = 14

con8.body = 14

con9.lb = 14

con9.ub = 14

con9.body = 14

con10.lb = 14

con10.ub = 14

con10.body = 14

con11.lb = 14

con11.ub = 14

con11.body = 14

Q3)

Exercise 3: Fitting. [7 Marks] (Adapted from Bradley, Hax, and Magnanti, Addison-Wesley, 1977)

The selling prices of a number of warehouses in Powai overlooking the lake are given in the following table, along with the size of the lot and its elevation.

Warehouse	Selling price	Lot size (sq. ft.)	Elevation (feet)
i	P_i	L_i	E_i
1	155000	12000	350
2	120000	10000	300
3	100000	9000	100
4	70000	8000	200
5	60000	6000	100
6	100000	9000	200

You have been asked by Sanju Warehousing Company to construct a model to forecast the selling prices of other warehouses in Powai from their lot sizes and elevations. The company feels that a linear model of the form $P = b_0 + b_1 L + b_2 E$ would be reasonably accurate and easy to use. Here b_1 and b_2 would indicate how the price varies with lot size and elevation, respectively, while b_0 would reflect a base price for this section of the city. You would like to select the "best" linear model in some sense. If you knew the three parameters b_0 , b_1 and b_2 , the six observations in the table would each provide a forecast of the selling price as follows:

$$\hat{P}_i = b_0 + b_1 L_i + b_2 E_i$$
 $i = 1, 2, ..., 6$.

However, since b_0, b_1 and b_2 cannot, in general, be chosen so that the actual prices P_i are exactly equal to the forecast prices \hat{P}_i for all observations, you would like to minimize the absolute value of the residuals $R_i = P_i - \hat{P}_i$.

1. [R] Formulate a mathematical program to find the "best" values of b_0, b_1 and b_2 by minimizing the linear absolute residual $\sum_{i=1}^{6} |P_i - \hat{P}_i|$. Write the model in the report.

Solution:

Solution1)

Solution to part 1 of the above question:

subject to constraints:

```
\begin{split} z2>&=-120000+b0+b1*10000+b2*300;\\ z3>&=100000-b0-b1*9000-b2*100;\\ z4>&=70000-b0-b1*8000-b2*200;\\ z4>&=-70000+b0+b1*8000+b2*200;\\ z5>&=60000-b0-b1*6000-b2*100;\\ z5>&=-60000+b0+b1*6000+b2*100;\\ z6>&=100000-b0-b1*9000-b2*200;\\ z6>&=-100000+b0+b1*9000+b2*200;\\ where z1>&=0;z2>&=0;z3>&=0;z4>&=0;z5>&=0;b0>&=0;b1&b2\\ belongs to real;\\ where zi=&|P_i-\widehat{P}i|, P_i=&elling price and $\widehat{P}i=$estimated value of $P_i$. \end{split}
```

The model of the above problem is thus given as follows:

$$\widehat{Pi} = 0 + 8.57143*L_{i}+114.268*E_{i}$$

Solution to part 2 of the above question:

The following problem has been solved by AMPL:

```
### Console

#### AMPI

#### sepi: include 3.7m;

#### sepi: include 3
```

Solution to part 3 of the above question:

- 1) The optimal solution came out to be: 47857.1
- 2) The values are variables at optimal solution is:

b2 = 114.286

3)we have calculated the upper bound and lower bound of the given constraints through AMPL:

con1.1b = 155000con1.ub = Infinity con1.body = 155000con2.1b = -155000con2.ub = Infinity con2.body = -130714con3.1b = 120000con3.ub = Infinity con3.body = 120000con4.1b = -120000con4.ub = Infinity con4.body = -120000con5.1b = 1e+05con5.ub = Infinity con5.body = 1e+05con6.lb = -1e+05con6.ub = Infinity con6.body = -77142.9con7.1b = 70000con7.ub = Infinity con7.body = 112857con8.1b = -70000con8.ub = Infinity con8.body = -70000con9.1b = 60000con9.ub = Infinity con9.body = 65714.3

con10.lb = -60000
con10.ub = Infinity
con10.body = -60000
 con11.lb = 1e+05
con11.ub = Infinity
con11.body = 1e+05
 con12.lb = -1e+05
con12.ub = Infinity
con12.ub = Infinity