Your Paper 中文

陆翔

2023年3月13日

摘要

这是摘要

目录

1	介绍		3
	1.1	利用图像分析自动估计动物体重的研究现状	3
	1.2	本文的研究目标与内容	3
	1.3	本文的组织架构	3
2	原理	与方法	3
	2.1	数据收集	3
	2.2	定位和图像分割	3
		2.2.1 初步裁剪	3
		2.2.2 基于局部自适应直方图均衡的对比度加强	3
		2.2.3 基于Otsu算法的图像二值化	4
		2.2.4 基于椭圆拟合的图像分割	5
	2.3	ID检测	5
		2.3.1 提取ID标识	5
		2.3.2 基于傅里叶变换的ID匹配	5
	2.4	体重估计	5
		2.4.1 线性回归分析	5
3	实验		6
4	结论	与展望	6

1 介绍

- 1.1 利用图像分析自动估计动物体重的研究现状
- 1.2 本文的研究目标与内容
- 1.3 本文的组织架构
- 2 原理与方法
- 2.1 数据收集
- 2.2 定位和图像分割

这一章节的总流程图,见图1。

图 1: 流程概述, 初步图片, 待修改

2.2.1 初步裁剪

首先,对图片进行初步分割,确定喂食器和猪圈地板的位置。确定地板的范围后,我们将图片边缘处相机机盖裁剪去除。由于喂食器的色泽与猪的身体相近,将其排除也有助于提高后续检测的准确率。

2.2.2 基于局部自适应直方图均衡的对比度加强

为了加强提取轮廓的效果,需要先增加图片的对比度。这里我选择了局部自适应的直方图均衡算法(regionally adaptive histogram equalization)。

图 3: 裁剪边框后

先介绍传统的全局直方图均衡算法的数学原理,以单通道的灰度图片为例。假设图片灰度值可取 $\{0,1,\ldots,L-1\}$,大小为 $M\times N$,记灰度值为i的像素点数量为 n_i ,则有 $MN=\sum_{i=0}^{L-1}n_i$ 。归一化直方图的对应分量 $p_i=\frac{n_i}{MN}$ 。设输入像素点的灰度为i,则输出的灰度为T(i)

$$T(i) = \lfloor (L-1) \sum_{j=0}^{i} p_j \rfloor \tag{1}$$

假如L足够大时,我们可将离散的灰度i近似处理为连续变量。从图片中随机取一点,记对应的连续随机变量为 $X \in [0,L]$,概率密度函数为p(x)。式(1)对应的

然而传统的全局直方图均衡算法有明显的缺点。xxx 而局部自适应的xxx,其方法如下。

2.2.3 基于Otsu算法的图像二值化

用Otsu算法选择阈值,将灰度图片转化为二值图片。Otsu法能最大化二值分类的类间方差,且只用到图片的灰度直方图。其原理如下。

设 M, N, n_i, p_i, L 的定义与之前章节一致。从图片中随机选取一个像素点,记其灰度值为随机变量I,则 $\Pr(I=i)=p_i$ 。

若选择阈值 $T(k) = k \in N$,使得灰度属于[0,k]的像素点被分类为 c_1 ,灰度属于[k+1,L-1]的像素点被分类为 c_2 。则像素点属于 c_i 的概率为

$$\Pr(c_1, k) = \sum_{i=0}^{k} p_i \tag{2}$$

$$Pr(c_2, k) = 1 - Pr(c_1, k)$$

$$(3)$$

这样的分类与k有关,但为了符号上的简洁,以下将参数k略去,例如 $\Pr(c_i) := \Pr(c_i, k)$ 。

属于 c_1 时,由贝叶斯公式,I的条件期望为

$$\mathbf{E}(I|c_1) = \sum_{i=0}^{k} i \Pr(i|c_1) = \frac{1}{\Pr(c_1)} \sum_{i=0}^{k} i p_i$$
 (4)

类似地,属于 c_2 时的条件期望为

$$\mathbf{E}(I|c_2) = \frac{1}{\Pr(c_2)} \sum_{i=k+1}^{L-1} i p_i$$
 (5)

显然,条件期望和期望满足

$$\mathbf{E}(I) = \sum_{i=1,2} \Pr(c_i) \mathbf{E}(I|c_i)$$
(6)

我们定义类间方差为

$$\sigma_B^2 = \sum_{i=1,2} \Pr(c_i) [\mathbf{E}(I|c_i) - \mathbf{E}(I)]^2$$
(7)

,而Otsu算法选择的阈值 k_{Otsu} 即最大化类间方差

$$k_{Otsu} = \arg\max_{k \in N, 0 \le k \le L} \sigma_B^2(k) \tag{8}$$

再根据计算得到的阈值将输入灰度图片f(x,y)变换为黑白图片g(x,y)

$$g(x,y) = \begin{cases} 1, & f(x,y) > k_{Otsu} \\ 0, & \text{otherwise} \end{cases}$$
 (9)

- 2.2.4 基于椭圆拟合的图像分割
- 2.3 ID检测
- 2.3.1 提取ID标识
- 2.3.2 基于傅里叶变换的ID匹配
- 2.4 体重估计
- 2.4.1 线性回归分析

- 3 实验
- 4 结论与展望