18-100 Introduction to Electrical and Computer Engineering

Lecture 07 Capacitors

Week	Date	Day	Lecture Topic	Lab Out	Lecturer
1	13-Jan	М	L01: Intro, Physics, EM, Leveling Students		Greg and Mark
	15-Jan	W	L02: Circuits Basics	Lab1: Circuits	Mark
2	20-Jan	M	Martin Luther King Celebration (No Lecture)		
	22-Jan	W	L03: Equivalent Circuits	Pause for MLK	Mark
3	27-Jan	M	L04: Semiconductors, Diodes, LEDs		Mark
	29-Jan	W	L05: MOSFETs to Simple Gates	Lab2:Adder	Mark
4	3-Feb	M	L06: Professional Identity, Professional Responsibility, and Ethics		Greg
	5-Feb	W	Exam 1	Pause for exam	N/A
5	10-Feb	М	L07: Capacitors, RC Time Constants, RC Circuits		Mark
	12-Feb	W	L08: Inductors, RL Time Constants, 555	Lab3: MOSFETs	Mark
6	17-Feb	M	L09: Binary, Logic Gates, Boolean Logic		Greg
	1 9-Fe b	W	L10: Latches, Registers, RAM, Flip-Flops	Lab4: Timer Lab	Greg
7	24-Feb	М	L11: Computers		Greg
	26-Feb	W	L12: Op Amps	Lab5: Op Amps	Mark
	3-Mar	M	SPRING BREAK		
	5-Mar	W	SPRING BREAK	Pause for break	
8	10-Mar	M	L13: Arduino Programming Case Study		Greg
	12-Mar	W	L14: Serial Communication Protocols	Lab 6: I2C	Greg
			L15: Analog-to-Digital (ADC) and Digital-to-Analog (DAC)		
9	17-Mar	М	Conversion		Greg
	19-Mar	W	L16: Time Varying Signals and Spectra (Trig)	Lab7: ADC	Mark
10	24-Mar	М	L17: Wireless Communication: Modulation to Protocols		Mark
	26-Mar	W	L18: Review/Exam Preview	Pause for exam	Greg
11	31-Mar	M	Exam 2		

Objectives of this Lecture

- MOSFETs Have Capacitance
- What Is Capacitance?
- Charging and Discharging Capacitors
- Implications of Output Capacitance on Logic Gates

NMOSFET: Conducts Current for $V_{GS} > V_{THN}$

18-100 S25 L07 Capacitors

MOSFET: "Metal" Oxide Semiconductor

Capacitor: $C = A \in /d$ Stores Energy as

Stores Energy as
$$\Box$$
 Electrostatic Potential C

$$C_1 = 1F$$

- If I put 1 C of charge on C_1 , $v_1 = 1$ V
- If I want $V_{Gate} = 5V$, how much charge do I need on C_1 ? (5C)

2N7000 MOSFET, $C_{Gate} = 60 \mathrm{pF}$

- How much charge do I need to raise V_{Gate} to 5V?
- q = (60 pF)(5 V) = 300 pC

Capacitor: $C = A \in /d$ Stores Energy as

- on a capacitor?

So, how do we put charge

- Current! (1A = 1Coulomb/second)
- $300pC = 300x10^{-12}$ Coulombs
- Charge with $1nA = 1x10^{-9}$ Amperes
- time = 300pC / 1nA = 300ms!
- Cannot charge / discharge instantly!!!

- $C_1 = 1F$
 - If I put 1C of charge on C_1 ,
- $v_1 = 1V$ If I want $V_{Gate} = 5V$, how much charge do I need on C_1 ? (5C)
- 2N7000 MOSFET, $C_{Gate} = 60 \text{pF}$
- How much charge do I need to raise V_{Gate} to 5V?
- q = (60 pF)(5 V) = 300 pC

18-001: Capacitors for ECEs

• The voltage across a capacitor cannot change instantly: $v_C(t=0^-) = v_C(t=0^+)$

- When current first starts to flow through a capacitor, it acts like a short circuit
- If nothing is changing in your circuit, after a long time (steady state), the capacitor will act like an open circuit

Capacitors Cannot Be Charged (or Discharged) Instantly (Voltage Across a Capacitor Cannot Change Instantly)

$\tau = RC$ Is Called the **Time Constant**

$$v_C(t) = V_0 e^{-t/\tau}$$

Capacitors Cannot Be Charged (or Discharged) Instantly (Voltage Across a Capacitor Cannot Change Instantly)

the **Time Constant**

Capacitors Cannot Be Charged (or Discharged) Instantly (Voltage Across a Capacitor Cannot Change Instantly)

Remember MOSFETs?

Model	$V_{\it Gate} = {f HI}$	$V_{\it Gate} = {f L0}$
NMOS	Transistor is on. Acts like a short circuit.	Transistor is off. Acts like an open circuit.
PMOS	Transistor is off. Acts like an open circuit.	Transistor is on. Acts like a short circuit.

Remember MOSFETs?

Model	$V_{Gate} = {f HI}$	$V_{Gate} = {f L0}$
NMOS	Transistor is on. Acts like a short circuit.	Transistor is off. Acts like an open circuit.
PMOS	Transistor is off. Acts like an open circuit.	Transistor is on. Acts like a short circuit.

Remember MOSFETs?

Model	$V_{Gate} = {f HI}$	$V_{\it Gate} = { t L0}$
NMOS	Transistor is on. Acts like a short circuit.	Transistor is off. Acts like an open circuit.
PMOS	Transistor is off. Acts like an open circuit.	Transistor is on. Acts like a short circuit.

MOSFET (New) Switched Resistor Model

Switched	$V_{\it Gate} = {\sf HI}$	$V_{\it Gate} = {f L0}$
NMOS	Transistor is on. Acts like a small resistance.	Transistor is off. Acts like an open circuit.
PMOS	Transistor is off. Acts like an open circuit.	Transistor is on. Acts like a small resistance.

2025_01_28A

14% 5%

 0τ

MOSFET (New) Switched Resistor Model

 2τ

 1τ

 3τ

Switched	$V_{Gate} = {f HI}$	$V_{Gate} = extbf{LO}$			
NMOS	Transistor is on. Acts like a small resistance.	Transistor is off. Acts like an open circuit.			
PMOS	Transistor is off. Acts like an open circuit.	Transistor is on. Acts like a small resistance.			
$v_{C}(t) = 5e^{-t/\tau} V$					

MOSFET (New) Switched Resistor Model

ate
$$\tau = R_P C_{OUT}$$

$$R_N = 10\Omega$$
 (proportional to cost)
 $R_P = 20\Omega$ (usually bigger than R_N)

$$C_{OUT} = 60 \text{pF} = 60 \text{x} 10^{-12} \text{ Farads}$$

Charging:
$$\tau = R_P C_{OUT} = (20\Omega)(60 \text{ps}) = 1.2 \text{ns}$$

Charging Time $\approx 5 \tau = 6 \text{ns}$

$\tau = RC$ Is Called

$v_{C}(t) = V_{0}\left(1 - e^{-t/\tau}\right)$

the Time Constant

$$R_N = 10\Omega$$
 (proportional to cost)
 $R_P = 20\Omega$ (usually bigger than R_N)

$$C_{OUT} = 60 \text{pF} = 60 \text{x} 10^{-12} \text{ Farads}$$

Discharging:
$$\tau = R_N C_{OUT} = (10\Omega)(60\text{ps}) = 0.6\text{ns}$$

Discharging Time $\approx 5 \tau = 3 \text{ns}$

$\tau = RC$ Is Called

the Time Constant

$$R_N = 10\Omega$$
 (proportional to cost)
 $R_P = 20\Omega$ (usually bigger than R_N)

$$C_{OUT} = 60 \text{pF} = 60 \text{x} 10^{-12} \text{ Farads}$$

Charging Time
$$\approx 5\tau = 6$$
ns
Discharging Time $\approx 5\tau = 3$ ns

$$R_N = 10\Omega$$
 (proportional to cost)
 $R_P = 20\Omega$ (usually bigger than R_N)

$$C_{OUT} = 60 \text{pF} = 60 \text{x} 10^{-12} \text{ Farads}$$

Charging Time
$$\approx 5 \tau = 6$$
ns

Discharging Time $\approx 5 \tau = 3$ ns

$$f_{Max} = 1 / T = 1 / (6ns + 3ns)$$

= 111MHz

V_A	V_B	V_{OUT}	Time Constant, τ
0	0	1	
0	1	0	
1	0	0	
1	1	0	

V_A	V_B	V_{OUT}	Time Constant, τ
0	0	1	$(R_P + R_P)(C_{OUT})$
0	1	0	
1	0	0	
1	1	0	

V_A	V_B	V_{OUT}	Time Constant, τ
0	0	1	$(R_P + R_P)(C_{OUT})$
0	1	0	$(R_N)(C_{OUT})$
1	0	0	
1	1	0	

V_A	V_B	V_{OUT}	Time Constant, τ
0	0	1	$(R_P + R_P)(C_{OUT})$
0	1	0	$(R_N)(C_{OUT})$
1	0	0	$(R_N)(C_{OUT})$
1	1	0	

V_A	V_B	V_{OUT}	Time Constant, τ
0	0	1	$(R_P + R_P)(C_{OUT})$
0	1	0	$(R_N)(C_{OUT})$
1	0	0	$(R_N)(C_{OUT})$
1	1	0	$(R_N \parallel R_N)(C_{OUT})$

What About Using the Switched Resistor Model with Other Logic Gates? (NOR)

Budnik's Home Cooking Recipes for Solving *RC* Circuits

RC Circuits with No Sources

- 1. You are given $v_C(t=0^-)$
- 2. Capacitor voltage cannot change instantly: $v_C(t=0^+) = v_C(t=0^-) = V_0$
- 3. If necessary, find the current $i_C(t=0^+)$ based on V_0
- 4. Without an external source: $i_C(t=\infty) = 0$ A and $v_C(t=\infty) = 0$ V
- 5. Find time constant: $\tau = RC$
- 6. Both the current and voltage equations will have the form of: $i_C(t)=I_0e^{-t/\tau}$ and $v_C(t)=V_0e^{-t/\tau}$

RC Circuits with Constant Sources

- 1. Calculate $v_C(t=0^-)$ as if capacitor is an open circuit
- 2. Capacitor voltage cannot change instantly: $v_C(t=0^+) = v_C(t=0^-) = V_0$
- 3. Eventually, capacitor looks like an open again, find $v_C(t=\infty)$
- 4. If necessary, find the current $i_C(t=0^+)$ and $i_C(t=\infty)$
- 5. To find the time constant, zero out all sources (0V and 0A): $\tau = RC$
- 6. Current and voltage each could be the form of: $v_C(t) = V_0 e^{-t/\tau}$ or $v_C(t) = (V_{HI} V_{LO})(1 e^{-t/\tau}) + V_{LO}$

RC Circuits with Constant Sources

- Calculate $v_c(t=0^-)$ as if capacitor is an open circuit
- Capacitor voltage cannot change instantly:

$$v_C(t=0^+) = v_C(t=0^-) = V_0$$

3. Eventually, capacitor acts like an open, find $v_C(t=\infty)$

- If necessary, find the current $i_c(t=0^+)$ and $i_c(t=\infty)$
- To find the time constant, zero out all sources (0V and 0A): $\tau = RC$
- 6. Current and voltage each could be the form of:
- $v_C(t) = V_0 e^{-t/\tau}$ or $v_C(t) = V_0 (1 e^{-t/\tau})$

RC Circuits with Constant Sources

Calculate $v_c(t=0^-)$ as if capacitor is an open circuit

$$v_C(t=0^-) = 5V$$

RC Circuits with Constant Sources

- Calculate $v_C(t=0^-)$ as if capacitor is an open circuit
- Capacitor voltage cannot change instantly:

$$v_C(t=0^+) = v_C(t=0^-) = V_0$$

 $v_C(t=0^-) = 5V = v_C(t=0^+) = V_0$

RC Circuits with Constant Sources

- Calculate $v_C(t=0^-)$ as if capacitor is an open circuit

RC Circuits with Constant Sources

- Calculate $v_C(t=0^-)$ as if capacitor is an open circuit
- Capacitor voltage cannot change instantly: $v_C(t=0^+) = v_C(t=0^-) = V_0$
- Eventually, capacitor acts like an open, find $v_c(t=\infty)$
- If necessary, find the current $i_c(t=0^+)$ and $i_c(t=\infty)$

NAND Gate

RC Circuits with Constant Sources

- 1. Calculate $v_C(t=0^-)$ as if capacitor is an open circuit
- 1. Calculate $V_C(t=0)$ as it capacitor is all open circuit
- Capacitor voltage cannot change instantly: $v_C(t=0^+) = v_C(t=0^-) = V_0$
- 3. Eventually, capacitor acts like an open, find $v_C(t=\infty)$
- 4. If necessary, find the current $i_C(t=0^+)$ and $i_C(t=\infty)$
- 5. To find the time constant, zero out all sources ($\frac{\text{OV and OA}}{\text{ON}}$): $\tau = RC$

 $\tau = 2R_{DSN}C_{OUT}$

RC Circuits with Constant Sources

- Calculate $v_c(t=0^-)$ as if capacitor is an open circuit
- Capacitor voltage cannot change instantly: $v_C(t=0^+) = v_C(t=0^-) = V_0$
- Eventually, capacitor acts like an open, find $v_c(t=\infty)$
- If necessary, find the current $i_c(t=0^+)$ and $i_c(t=\infty)$
- To find the time constant, zero out all sources (0V and 0A): $\tau = RC$
- 6. Current and voltage each could be the form of:
 - $v_C(t) = V_0 e^{-t/\tau}$ or $v_C(t) = V_0 (1 e^{-t/\tau})$

Switched Resistor Model

Capacitors Can Store Energy:

Previous Example (2N7000): $E_C = \frac{1}{2} (60 \, pF) (5V)^2 = 750 \, pJ$ $E_C = \frac{1}{2} \, CV^2$

Super Capacitor Example:

$$E_C = \frac{1}{2} (220mF) (5V)^2 = 2.75J$$

Charging and Discharging Logic Gates Takes Power

$$P = CV^2 f = (0.5)(60 pF)(5V)^2 (100MHz) = 75mW$$

$$P_{1\text{M Gates}} = (75mW)(1,000,000) = 75,000W$$

Maximum Processor Frequency by Year

Inductors and Capacitors Are Opposites....

Inductors

Capacitors

Cannot Change

Current $i_L(t=0^-)=i_L(t=0^+)$

 $v_C(t=0^-) = v_C(t=0^+)$

Initially, When Current

Voltage

First Starts to Flow, It Looks Like a Eventually, It Gets Fully

Instantly

Short

Open

Open

Short

Inductors and Capacitors Are Opposites....

$$\dashv \vdash$$

$$L_{eq} = L_1 + L_2 + \dots + L_N$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$$

$$C_{eq} = C_1 + C_2 + \dots + C_N$$

$$\frac{1}{L_{eq}}$$
 =

$$au = L/R$$

$$\tau = RC$$

What Do You Need to Do Next?

1. Take the **Lecture 7 Quiz** on canvas!

PUBLISH NOW, BUDNIK

2. Check out Piazza and Gradescope

