יחסים - שימור תכונות

$A \times A$ משלים ל	הפרש	חזקה	כפל	הופכי	חיתוך	איחוד	הפעולה
R'	R-S	$R^n (n \ge 1)$	RS	R^{-1}	$R \cap S$	$R \cup S$	התכונה
לא	לא	כן	כן	כן	כן	כן	רפלקסיביות
כן	כן	כן	לא	כן	כן	כן	סימטריות
לא	כן	לא	לא	כן	כן	לא	אנטיסימטריות
לא	לא	כן	לא	כן	Jo	לא	טרנזיטיביות

<u>הוכחות</u>

<u>רפלקסיביות</u>

$I_A\subseteq R$ למעשה מספיק שאחד היחסים יהיה רפלקסיבי: אם R רפלקסיבי אז	איחוד
$I_A \subseteq R \cup S$ ולכן	$R \cup S$
$I_A\subseteq R\cap S$ ו- $I_A\subseteq S$ לכן $I_A\subseteq R$ לכן S - ור R מכיוון ש- S ו- R מכיוון ש-	חיתוך
	$R \cap S$
$m{I_A}^{-1} = m{I_A}$ אבל . $m{I_A}^{-1} \subseteq m{R}^{-1}$ לכן גם ; $m{I_A} \subseteq m{R}$ אבל . R מכיוון ש	הופכי
$.$ $oldsymbol{I_A} \subseteq oldsymbol{R}^{-1}$ כך ש-	R^{-1}
$:$ אם $R\subseteq S$ ו- $R\subseteq S$ אז $RT\subseteq S$ הוכחה:	
$(a,b) \in RT \implies (a,x) \in R \text{ and } (x,b) \in T \implies$	
\Rightarrow $(a,x) \in S$ and $(x,b) \in U$ \Rightarrow $(a,b) \in SU$	כפל
1 בעזרת בעזרת (בעזרת למה ; $I_A \subseteq S$ ו- S ו- S רפלקסיביים מתקיים S ו- S ו- S	RS
. $m{I}_{A} \subseteq m{RS}$, ולכן , $m{I}_{A}^{\ 2} = m{I}_{A}$. אבל . $m{I}_{A}^{\ 2} \subseteq m{RS}$. אבל	
נובע מהעובדה שכפל יחסים משמר רפלקסיביות.	חזקה
	$R^n (n \ge 1)$
$m{R}-m{S}=\phi \;\; \Leftarrow \;\; m{R}=m{S}=m{I}_A$: דוגמה נגדית	הפרש
	R-S
$m{R}^{-1} = egin{pmatrix} 12 \\ 21 \end{pmatrix} \;\; \Leftarrow \;\;\; m{R} = m{I}_A : A = \{1,2\} \;\;$ דוגמה נגדית מעל	משלים R '

<u>סימטריות</u>

$(a,b) \in R \cup S \implies (a,b) \in R \text{ or } (a,b) \in S \implies$	איחוד
\Rightarrow $(b,a) \in R$ or $(b,a) \in S$ \Rightarrow $(b,a) \in R \cup S$	$R \cup S$
$(a,b) \in R \cap S \Rightarrow (a,b) \in R \text{ and } (a,b) \in S \Rightarrow$	חיתוך
\Rightarrow $(b,a) \in R$ and $(b,a) \in S$ \Rightarrow $(b,a) \in R \cap S$	$R \cap S$
$(a,b) \in R^{-1} \Rightarrow (b,a) \in R \Rightarrow (a,b) \in R \Rightarrow (b,a) \in R^{-1}$	הופכי
	R^{-1}
$\mathbf{p}_{\mathbf{S}}$ $\begin{pmatrix} 2 \\ \end{pmatrix}$ \leftarrow \mathbf{S} $\begin{pmatrix} 1 \\ \end{pmatrix}$ \mathbf{p} $\begin{pmatrix} 12 \\ \end{pmatrix}$	כפל
$\mathbf{RS} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \iff \mathbf{S} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} :$ דוגמה נגדית	RS
$:$ אז: $n \geq 1$ אז: מימטרי. אם $ extbf{\emph{R}}^n$ סימטרי אז: באינדוקציה $ extbf{\emph{R}}^1$ סימטרי. אם	
$(a,b) \in R^{n+1} \Rightarrow (a,b) \in R^n R \Rightarrow (a,x) \in R^n \text{ and } (x,b) \in R \Rightarrow$	חזקה
\Rightarrow $(x,a) \in \mathbb{R}^n$ and $(b,x) \in \mathbb{R}$ \Rightarrow $(b,a) \in \mathbb{R} \cdot \mathbb{R}^n$ \Rightarrow $(b,a) \in \mathbb{R}^{n+1}$	$R^n (n \ge 1)$
$(a,b) \in R-S \Rightarrow (a,b) \in R \text{ and } (a,b) \notin S \Rightarrow$	הפרש
\Rightarrow $(b,a) \in R$ and $(b,a) \notin S$ \Rightarrow $(b,a) \in R - S$	R-S
$(a,b) \in R' \Rightarrow (a,b) \notin R \Rightarrow (b,a) \notin R \Rightarrow (b,a) \in R'$	משלים
	R'

אנטיסימטריות

$\mathbf{R} \cup \mathbf{S} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} \iff \mathbf{S} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ דוגמה נגדית:	איחוד $R \cup S$
$(a,b) \in R \cap S \text{ and } (b,a) \in R \cap S \Rightarrow (a,b) \in R \text{ and } (b,a) \in R \Rightarrow$	חיתוך
$\Rightarrow a = b$	$R \cap S$
$(a,b) \in R^{-1}$ and $(b,a) \in R^{-1} \Rightarrow (b,a) \in R$ and $(a,b) \in R \Rightarrow$	הופכי
$\Rightarrow a = b$	R^{-1}
$\mathbf{RS} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} \iff \mathbf{S} = \begin{pmatrix} 34 \\ 21 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 12 \\ 34 \end{pmatrix} $ דוגמה נגדית:	כפל RS
(1234) (1234)	חזקה
$\mathbf{R}^2 = \begin{pmatrix} 1234 \\ 2143 \end{pmatrix} \iff \mathbf{R} = \begin{pmatrix} 1234 \\ 3421 \end{pmatrix}$ דוגמה נגדית:	
$(a,b) \in R - S \text{ and } (b,a) \in R - S \Rightarrow (a,b) \in R \text{ and } (b,a) \in R \Rightarrow$	
$\Rightarrow a = b$	R-S
$m{R}^{-1} = egin{pmatrix} 12 \\ 21 \end{pmatrix} \;\; \Leftarrow \;\;\; m{R} = m{I}_A : A = \{1,2\} \;\;$ דוגמה נגדית מעל	משלים R '

טרנזיטיביות

$\mathbf{R} \cup \mathbf{S} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} \Leftarrow \mathbf{S} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} :$ דוגמה נגדית	איחוד $R \cup S$	
$(a,b) \in R \cap S \text{ and } (b,c) \in R \cap S \Rightarrow$	חיתוך	
$\Rightarrow ((a,b) \in R \ and \ (b,c) \in R)$	$R \cap S$	
and		
$((a,b) \in S \text{ and } (b,c) \in S) \Rightarrow$		
\Rightarrow $(a,c) \in R$ and $(a,c) \in S$ \Rightarrow $(a,c) \in R \cap S$		
$(a,b) \in R^{-1}$ and $(b,c) \in R^{-1} \Rightarrow (b,a) \in R$ and $(c,b) \in R \Rightarrow$	הופכי	
$\Rightarrow (c,a) \in R \Rightarrow (a,c) \in R^{-1}$	R^{-1}	
$\mathbf{RS} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} \iff \mathbf{S} = \begin{pmatrix} 34 \\ 21 \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 12 \\ 34 \end{pmatrix} :$ דוגמה נגדית:	כפל RS	
. $ extbf{\emph{R}}^2 \subseteq extbf{\emph{R}}$ טרנזיטיבי אםם R : 2		
הוכחת הכיוון הראשון:		
$(a,b) \in \mathbb{R}^2 \implies (a,x) \in \mathbb{R} \text{ and } (x,b) \in \mathbb{R} \implies (a,b) \in \mathbb{R}$		
הוכחת הכיוון השני:		
$(a,b) \in R \text{ and } (b,c) \in R \Rightarrow (a,c) \in R^2 \Rightarrow (a,c) \in R$	חזקה	
$m{R^n}$ אם $m{R}^2 \subseteq m{R}$ (למה 2). אם $m{R}^1$ אם ועכשיו באינדוקציה : נתון ש	$R^n (n \ge 1)$	
$R^2 R^{2n} \subseteq RR^n$: טרנזיטיבי עבור $n \geq 1$ אז $R^2 R^2 \subseteq R^n$ (למה 2). מלמה 1 מקבלים $n \geq 1$		
(למה 2). ולכן גם $m{R}^{n+1}$ טרנזיטיבי $m{R}^{2(n+1)} \subseteq m{R}^{n+1}$ כלומר		
$\mathbf{R} - \mathbf{S} = \begin{pmatrix} 12 \\ 21 \end{pmatrix} \iff \mathbf{S} = \begin{pmatrix} 12 \\ 12 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} 1212 \\ 2112 \end{pmatrix}$: דוגמה נגדית	חפרש R – S	
$m{R}^{-1} = egin{pmatrix} 12 \\ 21 \end{pmatrix} \;\; \Leftarrow \;\;\; m{R} = m{I}_A : A = \{1,2\} \;\;$ דוגמה נגדית מעל	משלים R '	