Laboratorium 2

Biblioteka Pandas

```
import pandas as pd
dataframe = pd.read_csv('https://marcingabryel.pl/ai/iris.csv')
```

dataframe.head(10)

7,		sepal.length	sepal.width	petal.length	petal.width	variety	
	0	5.1	3.5	1.4	0.2	Setosa	11.
	1	4.9	3.0	1.4	0.2	Setosa	
	2	4.7	3.2	1.3	0.2	Setosa	
	3	4.6	3.1	1.5	0.2	Setosa	
	4	5.0	3.6	1.4	0.2	Setosa	
	5	5.4	3.9	1.7	0.4	Setosa	
	6	4.6	3.4	1.4	0.3	Setosa	
	7	5.0	3.4	1.5	0.2	Setosa	
	8	4.4	2.9	1.4	0.2	Setosa	
	9	4.9	3.1	1.5	0.1	Setosa	
	4						

Kolejne kroki: Wygeneruj kod za pomocą zmiennej dataframe Wyświetl polecane wykresy New interactive sheet

dataframe['variety'].unique()

⇒ array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)

dataframe[dataframe['variety'] == 'Versicolor']

	-	

→		sepal.length	sepal.width	petal.length	petal.width	variety
-	50	7.0	3.2	4.7	1.4	Versicolor
	51	6.4	3.2	4.5	1.5	Versicolor
	52	6.9	3.1	4.9	1.5	Versicolor
	53	5.5	2.3	4.0	1.3	Versicolor
	54	6.5	2.8	4.6	1.5	Versicolor
	55	5.7	2.8	4.5	1.3	Versicolor
	56	6.3	3.3	4.7	1.6	Versicolor
	57	4.9	2.4	3.3	1.0	Versicolor
	58	6.6	2.9	4.6	1.3	Versicolor
	59	5.2	2.7	3.9	1.4	Versicolor
	60	5.0	2.0	3.5	1.0	Versicolor
	61	5.9	3.0	4.2	1.5	Versicolor
	62	6.0	2.2	4.0	1.0	Versicolor
	63	6.1	2.9	4.7	1.4	Versicolor
	64	5.6	2.9	3.6	1.3	Versicolor
	65	6.7	3.1	4.4	1.4	Versicolor
	66	5.6	3.0	4.5	1.5	Versicolor
	67	5.8	2.7	4.1	1.0	Versicolor
	68	6.2	2.2	4.5	1.5	Versicolor
	69	5.6	2.5	3.9	1.1	Versicolor
	70	5.9	3.2	4.8	1.8	Versicolor
	71	6.1	2.8	4.0	1.3	Versicolor
	72	6.3	2.5	4.9	1.5	Versicolor
	73	6.1	2.8	4.7	1.2	Versicolor
	74	6.4	2.9	4.3	1.3	Versicolor
	75	6.6	3.0	4.4	1.4	Versicolor
	76	6.8	2.8	4.8	1.4	Versicolor
	77	6.7	3.0	5.0	1.7	Versicolor
	78	6.0	2.9	4.5	1.5	Versicolor
	79	5.7	2.6	3.5	1.0	Versicolor
	80	5.5	2.4	3.8	1.1	Versicolor
	81	5.5	2.4	3.7	1.0	Versicolor
	82	5.8	2.7	3.9	1.2	Versicolor
	83	6.0	2.7	5.1	1.6	Versicolor
	84	5.4	3.0	4.5	1.5	Versicolor
	85	6.0	3.4	4.5	1.6	Versicolor
	86	6.7	3.1	4.7	1.5	Versicolor
	87	6.3	2.3	4.4	1.3	Versicolor
	88	5.6	3.0	4.1	1.3	Versicolor
	89	5.5	2.5	4.0	1.3	Versicolor
1	90	5.5	2.6	4.4	1.2	Versicolor
	91	6.1	3.0	4.6	1.4	Versicolor
	92	5.8	2.6	4.0	1.2	Versicolor
1	93	5.0	2.3	3.3	1.0	Versicolor
	94	5.6	2.7	4.2	1.3	Versicolor
	95	5.7	3.0	4.2	1.2	Versicolor
	96	5.7	2.9	4.2	1.3	Versicolor
!	97	6.2	2.9	4.3	1.3	Versicolor
	98	5.1	2.5	3.0	1.1	Versicolor

```
99 5.7 2.8 4.1 1.3 Versicolor
```

WARNING: Runtime no longer has a reference to this dataframe. nlease re-run this cell and try again for variety in dataframe['variety'].unique(): print(f"5 pierwszych dla: {variety}") print(dataframe[dataframe['variety'] == variety].head(5)) 5 pierwszych dla: Setosa sepal.length sepal.width petal.length petal.width variety а 5.1 3.5 1.4 0.2 Setosa 4.9 3.0 1.4 0.2 Setosa 2 4.7 3.2 1.3 0.2 Setosa 3 4.6 3.1 1.5 0.2 Setosa 4 5.0 3.6 5 pierwszych dla: Versicolor sepal.length sepal.width petal.length petal.width varietv 7.0 3.2 4.7 1.4 Versicolor 51 6.4 3.2 4.5 1.5 Versicolor 52 6.9 4.9 3.1 1.5 Versicolor 53 5.5 2.3 4.0 1.3 Versicolor 54 6.5 2.8 4.6 1.5 Versicolor 5 pierwszych dla: Virginica sepal.length sepal.width petal.length petal.width variety 100 2.5 Virginica 3.3 6.0 101 1.9 Virginica 102 7.1 3.0 5.9 2.1 Virginica 103 6.3 2.9 5.6 1.8 Virginica 104 3.0 5.8 2.2 Virginica 6.5 dataframe['sepal.length'].min() → 4.3 print("Wartości maksymalne:") print(dataframe[['sepal.length', 'sepal.width', 'petal.length', 'petal.width']].max()) print("\nWartości minimalne:") print(dataframe[['sepal.length', 'sepal.width', 'petal.length', 'petal.width']].min()) print("\nWartości średnie:") print(dataframe[['sepal.length', 'sepal.width', 'petal.length', 'petal.width']].mean()) → Wartości maksymalne: sepal.length 7.9 sepal.width petal.length 6.9 petal.width dtype: float64 Wartości minimalne: sepal.length 4.3 sepal.width 2.0 petal.length 1.0 petal.width 0.1 dtype: float64 Wartości średnie: sepal.length 5.843333 3.057333 sepal.width petal.length 3.758000 1.199333 petal.width dtype: float64 dataframe['y'] = dataframe['variety'].copy() $\label{lambdata} \verb|dataframe['y'] = \verb|dataframe['y'].replace('Setosa', 1.0).replace(['Versicolor', 'Virginica'], 0.0)| \\$ print(dataframe) sepal.length sepal.width petal.length petal.width variety 0 5.1 3.5 1.4 0.2 Setosa 1.0 1 4.9 3.0 1.4 0.2 Setosa 1.0 2 4.7 3.2 1.3 0.2 Setosa 1.0 4.6 3 3.1 1.5 0.2 Setosa 1.0 4 5.0 1.4 0.2 3.6 Setosa 1.0 . . . 6.7 3.0 2.3 Virginica 145 5.2 0.0 146 6.3 2.5 5.0 1.9 Virginica 0.0 147 3.0 5.2 6.5 2.0 Virginica 0.0 148 6.2 3.4 5.4 2.3 Virginica 0.0

149

5.9

3.0

5.1

1.8 Virginica 0.0

```
X = dataframe[['sepal.length', 'sepal.width', 'petal.length', 'petal.width']]
nrint(X)
```

```
sepal.length sepal.width petal.length petal.width
\overline{\Rightarrow}
    0
                          3.5
                5.1
                                           1.4
                                                       0.2
    1
                 4.9
                              3.0
                                           1.4
                                                        0.2
                 4.7
                              3.2
                                           1.3
                                                        0.2
                             3.1
                                           1.5
    3
                                                       0.2
                 4.6
    4
                 5.0
                              3.6
                                                        0.2
                 6.7
                              3.0
                                           5.2
                                                        2.3
                                                    2.3
1.9
2.0
2.3
    146
                 6.3
                             2.5
                                           5.0
    147
                              3.0
                                           5.2
                 6.5
                              3.4
    148
                 6.2
                                            5.4
    149
                              3.0
                                           5.1
                 5.9
                                                        1.8
```

[150 rows x 4 columns]

```
Y = dataframe['y']
print(Y)
```

```
\overline{\Rightarrow}
            1.0
            1.0
     2
            1.0
     3
            1.0
     4
            1.0
     145
             0.0
     146
             0.0
     147
     148
             0.0
     149
            0.0
     Name: y, Length: 150, dtype: float64
```

Biblioteka matplotlib

```
import matplotlib.pyplot as plt
import numpy as np
import math as m

def draw_sin():
    x = np.arange(-2.0, 2.0, 0.02)
    y = np.sin(2 * np.pi * x)
    plt.plot(x, y)
```

draw_sin()


```
def draw_sin_functions(a):
    t = np.linspace(-2 * np.pi, 2 * np.pi, 400)
    y1 = a * np.sin(t - 0.25)
    y2 = a * np.sin(t - 0.5)

plt.plot(t, y1)
    plt.plot(t, y2)
```

```
plt.grid(True)
plt.show()
```

draw_sin_functions(3)


```
def draw_ab(a, b):
    x = np.linspace(-10, 10, 100)
    y = a * x + b
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title(f'y = {a}x + {b}')

plt.grid(True)
    plt.plot(x, y)
```

draw_ab(-2, -3)


```
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np

def plot_surface_function():
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    x = np.arange(-5, 5, 0.25)
    y = np.arange(-5, 5, 0.25)
    X, Y = np.meshgrid(x, y)

Z = np.sqrt(X**2 + Y**2)
```

```
surf = ax.plot_surface(X, Y, Z, cmap=cm.viridis)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
plot_surface_function()
```


Generowanie i prezentacja danych

Dla funkcji liniowej

```
import matplotlib.pyplot as plt
import numpy as np
import random
N=100
p = np.random.random([N,2]) * 20 - 10

x = np.linspace(-10, 10, 100)
y = -1.5 * x + 0.5
plt.plot(x, y)

for points in p:
    a = points[0]
    b = points[1]
    if b > -1.5 * a + 0.5:
    plt.plot(a, b, '.', color='gray')
    else:
        plt.plot(a, b, '.', color='black')
```

```
#plt.plot(p[:,0], p[:,1],'.',color='black')
```



```
import matplotlib.pyplot as plt
import numpy as np
N = 100
a = -0.8
b = 1.2
p = np.random.random([N,2]) * 20 - 10
#plt.plot(p[:, 0], p[:, 1], '.', color='black')
x_vals = np.linspace(-10, 10, 100)
y_vals = a * x_vals + b
plt.plot(x_vals, y_vals, color='red')
above_line = p[:, 1] > (a * p[:, 0] + b)
below_line = p[:, 1] \leftarrow (a * p[:, 0] + b)
plt.scatter(p[above_line, 0], p[above_line, 1], color='gray', label='Above line')
plt.scatter(p[below_line, 0], p[below_line, 1], color='black', label='Below line')
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
```


Dla funkcji y = 2sin(x) - x/2

```
N = 100
x_range = (-5, 5)
p = np.random.random([N, 2]) * (x_range[1] - x_range[0]) + x_range[0]
```

```
curve_y = 2 * np.sin(p[:, 0]) - p[:, 0] / 2

d = np.zeros(N)
d[p[:,1] > curve_y] = 1

d

x_vals = np.linspace(x_range[0], x_range[1], 500)
y_vals = 2 * np.sin(x_vals) - x_vals / 2

plt.plot(x_vals, y_vals, color='blue')

plt.scatter(p[d == 1, 0], p[d == 1, 1], color='gray',)
plt.scatter(p[d == 0, 0], p[d == 0, 1], color='black')

plt.xlabel('X')
plt.ylabel('Y')
plt.grid(True)
plt.show()
```


Wykresy 3D

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.linspace(-5, 5, 500)
y = np.linspace(-5, 5, 500)
x, y = np.meshgrid(x, y)

z = np.sin(x**2 + y**2) / (np.abs(x * y) + 1)

fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(x, y, z, cmap='viridis')
ax.plot_surface(x, y, z, cmap='viridis')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')

plt.show()
```

 $\overline{\pm}$


```
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

x = np.linspace(-5, 5, 500)
y = np.linspace(-5, 5, 500)
x, y = np.meshgrid(x, y)

z = np.sqrt(x**2 + y**2) + 3 * np.cos(np.sqrt(x**2 + y**2)) + 5

fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(x, y, z, cmap='plasma')

ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')

plt.show()
```

