Chapter 3: Inference

Stats 500, Fall 2017 Brian Thelen, University of Michigan 443 West Hall, bjthelen@umich.edu

Inference

- Estimates: $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$
- Draw conclusions about $\beta_0, \beta_1, \ldots, \beta_p$
- Two main inference tools:
 - hypothesis tests
 - confidence intervals

Savings Example

- 50 different countries
- Data from 1960 1970
- Response: aggregate personal savings divided by disposable income (sr)
- Predictors:
 - per capital disposable income (dpi),
 - percentage rate of change in per capita disposable income (ddpi),
 - percentage of population under 15 (pop 15),
 - percentage of population over 75 (pop75)

```
> data(savings)
```

> savings

```
sr pop15 pop75 dpi ddpi
Australia 11.43 29.35 2.87 2329.68 2.87
Austria 12.07 23.32 4.41 1507.99 3.93
```

> summary(result)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.5660865 7.3545161 3.884 0.000334
pop15 -0.4611931 0.1446422 -3.189 0.002603
pop75 -1.6914977 1.0835989 -1.561 0.125530
dpi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471
```

Residual standard error: 3.803 on 45 degrees of freedom Multiple R-Squared: 0.3385, Adjusted R-squared: 0.2797 F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904

Savings Example Ctd

- Is pop 75 significant in the full model?
- Estimation from the data:

$$\widehat{sr} = 28.6 - 0.46 \times pop15 - 1.69 \times pop75$$

$$- 0.0003 \times dpi + 0.41 \times ddpi$$

Q: Is "-1.69" random fluctuation due to chance? Or does it indicate that the coefficient is truly different from 0?

• Each test only makes sense in the context of the fitted model

Hypothesis Tests

- Testing: use probability to decide whether data is consistent with hypothesis
- Null hypothesis H_0 (e.g. $\beta_{pop75} = 0$)
- Alternative hypothesis H_A (e.g. $\beta_{pop75} \neq 0$)
- Decide whether data is consistent with H_0 :
 - If no, reject H_0 and accept H_A
 - Otherwise, fail to reject H_0

Errors in Hypothesis Testing

		True State	
		H_0 true	H_0 false
Our	Not reject H_0	✓	Type II error
Decision	Reject H_0	Type I error	✓

Usually type I error is more serious

The legal system analogy

- H_0 : The accused is innocent
- H_A : The accused is guilty
- Type I error: convict an innocent person
- Type II error: acquit a guilty person

Presumption of innocence:

- H_0 assumed true unless there is convincing evidence for H_A
- H_A carries the "burden of proof"

Procedure

- Set $\alpha = Pr$ (type I error). Typically $\alpha = 0.05$ or 0.01. α is called the significance level.
- Compute p-value: the probability of observed data or even more extreme departure from H_0 (in favor of H_A) when H_0 is true.
- If p-value $< \alpha$, reject H_0 .

Savings Example

Full model:

$$sr = \beta_0 + \beta_{pop15} \times pop15 + \beta_{pop75} \times pop75 + \beta_{dpi} \times dpi + \beta_{ddpi} \times ddpi$$

- Null hypothesis: $\beta_{pop75} = 0$
- Alternative hypothesis: $\beta_{pop75} \neq 0$

We observe that

$$\widehat{sr} = 28.6 - 0.46 \times pop15 - 1.69 \times pop75 - 0.0003 \times dpi + 0.41 \times ddpi$$

Therefore, the p-value is

$$Pr(|\hat{\beta}_{pop75}| \ge 1.69 \mid \beta_{pop75} = 0)$$

Further Assumption on Errors

We have only assumed $E(\epsilon) = 0$, $var(\epsilon) = \sigma^2 I$, and ϵ_i are i.i.d. To compute the *p*-value, we also need to assume a distribution for the errors ϵ . Usually

 $\epsilon \sim Normal(0, \sigma^2 I)$

Distribution of $\hat{\beta}$

Then

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2)$$

$$\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma^2)$$

 $\hat{\beta}_j \sim N(\beta_j, (X^T X)_{jj}^{-1} \sigma^2)$

Distribution of $\hat{\beta}$ Ctd

Let

$$sd(\hat{\beta}_j) = \sqrt{(X^T X)_{jj}^{-1} \sigma^2}$$

$$se(\hat{\beta}_j) = \sqrt{(X^T X)_{jj}^{-1} \hat{\sigma}^2}$$

$$Recall \hat{\sigma}^2 = \frac{\sum_i (y_i - \hat{y}_i)^2}{n - (p+1)}$$

Distribution of $\hat{\beta}$ Ctd

It turns out that

$$\frac{\hat{\beta}_{j} - \beta_{j}}{sd(\hat{\beta}_{j})} \sim N(0, 1)$$

$$\frac{\hat{\beta}_{j} - \beta_{j}}{se(\hat{\beta}_{j})} \sim t_{n-(p+1)}$$

t_{df} -distribution

Probability density functions (pdf):

$$N(0,1) \sim \frac{1}{\sqrt{2\pi}} e^{-1/2z^2}$$

$$t_{df} \sim \frac{\Gamma\left(\frac{df+1}{2}\right)}{\sqrt{df \cdot \pi} \cdot \Gamma\left(\frac{df}{2}\right)} (1 + z^2/df)^{-(df+1)/2}$$

- Symmetric around 0, "bell-shaped", but heavier tails than normal
- As $df \to \infty$, $t_{df} \to N(0,1)$

 t_{df} : like normal distribution with wider tails

t-statistic (Savings Example)

If the Null is true, i.e. $\beta_{pop75} = 0$, then

$$\frac{\hat{\beta}_{pop75}}{se(\hat{\beta}_{pop75})} \sim t_{50-(4+1)}$$

From the R output, we have (t-statistic)

$$\frac{\beta_{pop75}}{se(\hat{\beta}_{pop75})} = -1.56$$

t-statistic (Savings Example) Ctd

Is this value extreme for the t_{45} distribution? Or what is the probability of

 $Pr(\text{observe "-1.56" or more extreme}|\beta_{pop75}=0)$

i.e.

$$Pr(|t_{45}| \ge 1.56) = ?$$

What if the test is one-sided?

t-statistic (Savings Example) Ctd

t-test

- Two-sided test: $Pr(|t_{45}| \ge 1.56) = 0.13 > \alpha = 0.05$, therefore we fail to reject H_0 .
- Is pop 75 significant in the full model? Probably not.
- ## CDF of t-distribution
 > pt(1.56, df=45)
 [1] 0.937117
 > 2*(1 pt(1.56, df=45))
 [1] 0.1257658

Another (General) Approach

- Recall RSS: residual sum of squares $\sum_{i} \hat{\epsilon}_{i}^{2}$
- Fit a model under H_0 , compute RSS_{H_0} (e.g. with β_{pop75} set equal to 0)
- Fit another model under $H_0 \cup H_A$, compute $RSS_{H_0 \cup H_A}$ (e.g. no restriction on β_{pop75})
- Compute

$$F = \frac{(RSS_{H_0} - RSS_{H_0 \cup H_A})/(df_{H_0} - df_{H_0 \cup H_A})}{RSS_{H_0 \cup H_A}/df_{H_0 \cup H_A}}$$

General Approach Ctd

• If H_0 is true,

$$F \sim F_{df_1,df_2}; \quad df_1 = df_{H_0} - df_{H_0 \cup H_A}, df_2 = df_{H_0 \cup H_A}$$

• Compute p-value = $Pr(F_{df_1,df_2} > F)$

F-distribution

• Z_1, \ldots, Z_n i.i.d. Normal(0,1). Then

$$U = Z_1^2 + \dots + Z_n^2$$

has χ^2 (chi-square) distribution with n degrees of freedom.

- χ_n^2 is the same as Gamma(n/2,2).
- Suppose $U \sim \chi_n^2$, $W \sim \chi_m^2$ are independent. Then

$$\frac{U/n}{W/m} \sim F_{n,m}$$

F-distribution with n and m degrees of freedom.

Important facts: (1) $F_{df_1,df_2} > 0$ (2) $t_{df}^2 \sim F_{1,df}$

F-test: Savings Example

```
## Model under HO
> h0 <- lm(sr ~ pop15 + dpi + ddpi, savings)</pre>
> summary(h0)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.2771687 4.3888974 4.392 6.53e-05
      -0.2883861 0.0945354 -3.051 0.00378
pop15
dpi
          -0.0008704 0.0008795 -0.990 0.32755
        0.3929355 0.1989390 1.975 0.05427
ddpi
## Model under (HO U HA)
> h0a <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)
```


F-test and t-test

- $Pr(F_{1,45} > 2.44) = 0.13 > \alpha = 0.05$, therefore we fail to reject H_0 .
- Notice $t^2 = 1.56^2 = 2.44 = F$
- F-test and two-sided t-test are equivalent for testing a single predictor.

Test a Pair

- Whether both pop75 and dpi can be excluded from the model.
- H_0 : $\beta_{pop75} = \beta_{dpi} = 0$; H_A : not H_0 .

```
> h0 <- lm(sr ~ pop15 + ddpi, savings)</pre>
```

- > h0a <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)</pre>
- > summary(h0)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.59958 2.33439 6.682 2.48e-08
pop15 -0.21638 0.06033 -3.586 0.000796
ddpi 0.44283 0.19240 2.302 0.025837
```

- What if we want to test whether any of the predictors are useful in predicting the response?
- H_0 : $\beta_{pop15} = \beta_{pop75} = \beta_{dpi} = \beta_{ddpi} = 0$

Test a Subspace

- Whether the effect of young people and the effect of old people on the savings rate are the same.
- H_0 : $\beta_{pop15} = \beta_{pop75}$; H_A : $\beta_{pop15} \neq \beta_{pop75}$

```
> h0 <- lm(sr ~ I(pop15 + pop75) + dpi + ddpi, savings)</pre>
```

- > h0a <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)</pre>
- > summary(h0)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 21.6093051 4.8833633 4.425 5.87e-05 I(pop15 + pop75) -0.3336331 0.1038679 -3.212 0.00241 dpi -0.0008451 0.0008444 -1.001 0.32212
```

ddpi 0.3909649 0.1968714 1.986 0.05302

Residual standard error: 3.827 on 46 degrees of freedom Multiple R-Squared: 0.3152, Adjusted R-squared: 0.2705 F-statistic: 7.056 on 3 and 46 DF, p-value: 0.0005328

> anova(h0, h0a)
Analysis of Variance Table

Model 1: sr ~ I(pop15 + pop75) + dpi + ddpi

Model 2: sr ~ pop15 + pop75 + dpi + ddpi

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 673.63

2 45 650.71 1 22.91 1.5847 0.2146

Test another Subspace

- Test whether β_{ddpi} is equal to 0.5
- H_0 : $\beta_{ddpi} = 0.5$; H_A : $\beta_{ddpi} \neq 0.5$
- > summary(h0)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.9287866 7.1608589 3.900 0.000311
pop15 -0.4543714 0.1426430 -3.185 0.002596
pop75 -1.7187908 1.0726662 -1.602 0.115923
dpi -0.0002274 0.0008925 -0.255 0.800004
```

• What about using t-test?

```
> h0a <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)</pre>
> anova(h0, h0a)
Analysis of Variance Table
Model 1: sr \sim pop15 + pop75 + dpi + offset(0.5 * ddpi)
Model 2: sr ~ pop15 + pop75 + dpi + ddpi
 Res.Df RSS Df Sum of Sq F Pr(>F)
     46 653.78
1
2 45 650.71 1 3.06 0.2119 0.6475
```

Confidence Intervals

Why do we care about CI?

- Hypothesis test: yes/no only
- Dependence on sample size
- Statistical significance vs. practical significance

Confidence Intervals for β_j

Consider each parameter individually.

Recall
$$\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \sim t_{n-(p+1)}$$

Hence

$$Pr\left(-t_{n-(p+1)}^{(\alpha/2)} \le \frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \le t_{n-(p+1)}^{(\alpha/2)}\right) = 1 - \alpha$$

Or with probability $1 - \alpha$, i.e. confidence $100(1 - \alpha)\%$

$$\hat{\beta}_j - t_{n-(p+1)}^{(\alpha/2)} \cdot se(\hat{\beta}_j) \le \beta_j \le \hat{\beta}_j + t_{n-(p+1)}^{(\alpha/2)} \cdot se(\hat{\beta}_j)$$

 $t^{(\alpha)}$ is the tail probability: $Pr(t > t^{(\alpha)}) = \alpha$.

Confidence Intervals for β_j Ctd

• General form:

estimate \pm critical value \times s.e. of estimate

• Two-sided t-test and CI

Savings Example

```
> result <- lm(sr ~ pop15 + pop75 + dpi + ddpi, savings)
> summary(result)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.5660865 7.3545161 3.884 0.000334
pop15 -0.4611931 0.1446422 -3.189 0.002603
pop75 -1.6914977 1.0835989 -1.561 0.125530
dpi -0.0003369 0.0009311 -0.362 0.719173
ddpi 0.4096949 0.1961971 2.088 0.042471
```

```
## Convenient way to compute CIs
> conf <- confint(result)</pre>
```

> conf

```
2.5 % 97.5 % (Intercept) 13.753330728 43.378842354 pop15 -0.752517542 -0.169868752 pop75 -3.873977955 0.490982602 dpi -0.002212248 0.001538444 ddpi 0.014533628 0.804856227
```

Simultaneous Confidence Regions

Similarly,

$$\frac{(\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta)}{(p+1)\hat{\sigma^2}} \sim F_{p+1,n-(p+1)}$$

With probability $1 - \alpha$, i.e. confidence $100(1 - \alpha)\%$

$$(\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta) \le (p+1)\hat{\sigma}^2 F_{p+1,n-(p+1)}^{(\alpha)}$$

Savings Example

```
## Need to install the "ellipse" package
> library(ellipse)
## Plot the confidence region
> plot(ellipse(result, c('pop15', 'pop75')),
    type="1", xlim=c(-1,0))
## Add the estimates to the plot
> points(result$coef['pop15'], result$coef['pop75'],pch=18)
## Add the origin to the plot
> points(0, 0, pch=1)
## Add the confidence interval for pop15
> abline(v=conf['pop15',], lty=2)
## Add the confidence interval for pop75
> abline(h=conf['pop75',], lty=2)
```

Savings Example: Confidence region


```
## Correlation between pop15 and pop75
> plot(x=savings$pop15, y=savings$pop75)
> cor(savings$pop15, savings$pop75)
[1] -0.9084787
```

Correlation between predictors

Confidence Intervals for Predictions

• Given new predictors, x_0 , what is the predicted response?

$$\hat{y}_0 = x_0^T \hat{\beta}$$

- Two types of predictions:
 - Prediction of a future observation

- Prediction of the future mean response

• Prediction intervals vs. confidence intervals

Confidence Intervals for Predictions Ctd

For a future observation:

$$\hat{y}_0 \pm t_{n-(p+1)}^{(\alpha/2)} \hat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0}$$

For the future mean response:

$$\hat{y}_0 \pm t_{n-(p+1)}^{(\alpha/2)} \hat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}$$

Savings Example

Prediction Band Plot

Interpreting Parameter Estimates

- What does $\hat{\beta}_1$ mean? A unit change in x_1 will produce a change of $\hat{\beta}_1$ in the response?
- Causal conclusion?
- Easier for orthogonal predictors (designed experiments): if $X = [X_1, X_2]$ and $X_1^T X_2 = 0$, then the coefficients of predictors in X_1 are the same regardless of whether X_2 is in the model or not.
- Randomization can reduce the effect of unknown predictors not included in the model

Interpreting Parameter Estimates Ctd

- For observational data, causal conclusion problematic
 - An unmeasured lurking variable Z may be the real cause or be a confounding variable.
 - Still not OK even if all relevant variables have been measured

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

$$y = \hat{\beta}_0 + (\hat{\beta}_1 - \hat{\beta}_2) x_1 + \hat{\beta}_2 (x_1 + x_2)$$

Lurking Variables

Confounding Variables

Interpreting Parameter Estimates Ctd

- Interpretation cannot be separately done for each variable.
- New interpretation: $\hat{\beta}_1$ is the effect of x_1 when all other predictors are held constant.
- Technically correct, but problematic in practice
- Conclusion: no simple solution

Interpreting Predictions

- True parameter values may never be known
- Concentrate on predicting future responses
- Conceptually simpler, but need to worry about extrapolation