Evaluación 2

Cálculo de la Evapotranspiración de referencia ET0

Jorge Benz Olguín Aguilar

División de Ciencias Exactas, Departamento de Física

Universidad de Sonora

27 de mayo de 2019

Dentro del intercambio constante de agua entre los océanos, los continentes y la atmósfera, la evaporación es el mecanismo por el cual el agua es devuelta a la atmósfera en forma de vapor; en su sentido más amplio, involucra también la .evaporación" de carácter biológico que es realizada por los vegetales, conocida como transpiración y que constituye, según algunos, la principal fracción de la evaporación total. Sin embargo, aunque los dos mecanismos son diferentes y se realizan independientemente no resulta fácil separarlos (considérese también la intercepción de la precipitación por el dosel arbóreo y el suelo), pues ocurren por lo general de manera simultánea; de este hecho deriva la utilización del concepto más amplio de evapotranspiración que engloba a ambos.

La evapotranspiración constituye un importante componente del ciclo y balance del agua. Se estima que un 70 % del total de agua recibida por una zona (precipitación) es devuelta a la atmósfera a través del proceso, mientras que el 30 % restante constituye la escorrentía superficial y subterránea. Junto con ser un componente del ciclo hidrológico, la evapotranspiración interviene en el balance calorífico y en la redistribución de energía mediante los traspasos que de ella se producen con los cambios de estado del agua, permitiendo así un equilibrio entre la energía recibida y la perdida. El conocimiento de las pérdidas de agua mediante el proceso permite tener un acercamiento a las disponibilidades del recurso y consecuentemente puede realizarse una mejor distribución y manejo del mismo.[5]

La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), publicó su reporte número 56, para calcular la Evapotranspiración y estimar el uso de agua en los cultivos. El método que utilizó la FAO para modelar la Evapotranspiración fue la ecuación de Penman-Monteith. Esta ecuación requiere conocer la temperatura diaria promedio, la velocidad del viento, la humedad relativa y la radiación solar.[1]

Como es costumbre descargamos los datos de la estación de la costa en nuestra cesión de notebook, el archivo es un csv llamado meteo-vid-2018. Una vez realizado lo anterior filtramos las columnas que son de interes para la páctica utilizando la función filter(), la cual nos crea un nuevo arreglo el cual convertiremos a Data Frame para poder utilizar las funciones propias de este esquema. En la organización de los datos a trabajar debemos manipular las columnas de Time y Date, utilizando la función apply() y la función datetime(), para crear nuevas columnas que agregaremos al Data Frame donde tendremos año, mes, día y hora como nuevas columnas.

Ahora lo que procede es utilizar groupby() y transform() para obtener máximos, minimos y promedios de las variables a trabajar, estos a su vez los agregamos como columnas al DF. Como hay varias columnas que ya no son necesarias se eliminaran para evitar ruido en el DF. La páctica nos pide elaborar 3 gráficas con las variación mensual de: Temperaturas, Humedad Relativa y Radiación Solar. A continuación las presentamos

La figura 1 es muy muy clara con respecto a que julio y agosto son los meses más calidos en nuestra región, en este caso cerca de la costa de Hermosillo donde se encuentra la estación de los campos de vid.

Figura 1:

La humedad relativa mayor también la obtenemos durante los meses de de junio, julio y hasta septiembre; el problema es que durante la mayoría del año los niveles de humedad relativa son sensiblemente bajos.

Figura 2:

La figura 3 nos enseña que la cantidad de radiación que recibe esta región es muy alta durante la mayoría del año

Figura 3:

Para la siguiente parte donde calcularemos la evapotranspiración ETo mensual promedio, utilizaremos las siguientes ecuaciones:

Ecuación(7) de Jensen y Haise (1963)

$$ET_0 = (0.0252T + 0.078)Rs$$

Ecuación (31) Valiantzas (2012)

$$ET_0 = 0.0393Rs(T_{mean} + 9.5)^{0.5} - 0.19Rs^{0.6}\phi^{0.15} + 0.0061(T_{mean} + 20)$$

$$(1.12T_{mean} - T_{min} - 2)^{0.7}$$

Ecuación (34) Valiantzas 4 (2013)

$$ET_0 = 0.051(1 - \alpha)Rs(T_{mean} + 9.5)^{0.5} - 2.4\left(\frac{Rs}{Ra}\right)^2 + 0.048(T_{mean} + 20)\left(1 - \frac{RH}{100}\right)$$

$$(0.5 + 0.536u^2) + 0.00012Z$$

La siguiente tabla muestra los valores encontrados con las ecuaciones antes mencionadas para los meses del año:

Mes	ET_07	ET_031	ET_034
Enero	17.552264	6.669480	7.644315
Febrero	28.811025	10.466810	7.275746
Marzo	52.376584	18.243966	7.455101
Abril	84.342678	27.693491	13.585049
Mayo	109.461092	34.603153	21.360890
Junio	130.190583	37.524763	32.865057
Julio	135.627659	37.233995	27.185697
Agosto	126.616620	35.133306	34.524428
Septiembre	112.877826	31.608780	35.073393
Octubre	63.409089	19.913380	26.435253
Noviembre	30.530785	11.230194	15.950747
Diciembre	19.742655	7.845300	8.603738

Tabla 1: Valores ETo

Conclusiones

Como ya se explica al principio la evapotranspiración es parte fundamental del ciclo hidrológico y por lo tanto un área de estudio de vital interés para la agricultura. Las ecuaciones que se utilizan para calcular la ETo varían de una región a otra; ya que, es imposible establecer un modelo universal por los distintos tipos de clima que existen simplemente en una región. Adaptar los modelos será trabajo de los investigadores y técnicos.

Referencias

- [1] http://fisicacomputacional.pbworks.com/w/page/133285608/Evaluacion2
- [2] http://fisicacomputacional.pbworks.com/w/file/133287516/meteo-vid-2018.csv

- $[3] \ http://fisicacomputacional.pbworks.com/w/file/133287549/flujos-vid-2018.csv$
- [4] http://www.fao.org/3/X0490E/x0490e00.htm
- [5] Evapotranspiración. (2019,9 de mayo). Wikipedia, La enciclo-Fecha pedia libre. deconsulta:04:57,mayo 27, 2019 desde https://es.wikipedia.org/w/index.php?title=Evapotranspiraci%C3%B3noldid=115824608.