HPO	MLS	OLS	FSR(*)	PCR(AICc)	PLS(GMDL)	BST(AICc)	RBST(AIC)	BST(ICM)	RBST(ICM)
Ridge	automobile	95.52(7)	19.91(5)	404.62(8)	18.17(2)	19.91(5)	19.10(4)	18.72(3)	17.60(1)
	fertility	2.21e+13(8)	106.65(6)	106.25(4)	106.17(3)	106.65(6)	106.65(6)	106.10(2)	104.79(1)
	flow	1.79e + 8(8)	64.26(3)	67.89(7)	64.45(5)	64.26(3)	64.26(3)	64.96(6)	
	forest	3.75e+10(8)	102.13(4)	102.21(6)	101.42(1)	102.13(4)	102.13(4)	102.31(7)	101.76(2)
	servo	3.25e + 9(8)	61.51(4)	61.38(2)	61.66(7)	61.51(4)		60.28(1)	
	slump	7.37e + 8(8)	86.94(4)	94.97(7)	86.52(1)	86.94(4)		89.46(6)	
	traffic	7.81e+12(8)	45.01(5)	47.22(7)	43.91(2)	45.01(5)		43.26(1)	
	wine_red	3.20e+4(8)	65.01(3)		65.93(6)	65.01(3)		64.98 (1)	
	wine_white	1.85e + 5(8)	73.10(3)	74.78(7)	74.76(6)	73.10(3)	73.10(3)	73.11(5)	73.10(1)
Avg. Rank		(7.89)	(4.17)	(6.11)	(3.67)	(4.17)	(4.00)	(3.56)	(2.44)
SVR		6.89e + 12(8)	19.48(3)	420.25(7)	19.99(5)	19.48(3)		19.39(1)	
	fertility	715.72(8)	108.31(4)	122.70(7)	121.15(6)	108.31(4)		103.77(2)	
	flow	3.71e + 9(8)	69.56(3)	918.02(7)	68.17(2)	65.89 (1)		72.36(5)	
	forest	427.50(8)	101.88(3)		100.88(1)	101.88(3)		102.03(5)	
	servo	5.91e+15(8)	15.07 (1)		18.91(6)	15.07(1)		15.10(3)	
	slump	3.52e+10(8)	83.74(4)	571.01(7)	80.94(3)	79.90(2)	83.74(4)	78.87(1)	
	traffic	5.17e+4(8)	57.27(6)	538.36(7)	40.92(1)	55.75(5)		50.72(4)	
	wine_red	65.93(7)	65.68(5)		58.35(3)	61.60(4)		57.45 (1)	
	wine_white	59.41(5)	73.34(8)	71.67(7)	58.30(3)	58.81(4)	61.10(6)	58.04(1)	
Avg. Rank		(7.56)	(4.33)	(7.11)	(3.33)	(3.06)	(4.17)	(2.56)	
RF	automobile		12.49(3)	407.79(8)	16.72(6)	12.49(3)		12.27 (1)	
	fertility		102.29(1)	111.04(6)	111.11(7)	107.67(5)	102.29(1)	102.42(3)	
	flow	133.57(7)	67.06(4)	882.23(8)	60.71(1)	67.06(4)	67.06(4)	67.35(6)	
	forest	266.18(8)	123.56(6)	104.31 (1)	107.25(2)	123.56(6)		108.86(3)	
	servo	28.74(8)	18.08(2)	22.66(6)	24.07(7)	18.08(2)		18.29(4)	
	slump	109.28(7)	71.35(3)	531.38(8)	69.76 (1)	71.35(3)		74.45(6)	
	traffic	100.75(8)	45.28(3)		48.33(6)	45.28(3)		42.76(1)	
	wine_red	59.71(6)	59.09(4)	70.56(8)	61.65(7)	59.09(4)		58.67(2)	
	wine_white	60.12 (1)	60.67(4)	69.18(8)	68.41(7)	60.67(4)	60.67(4)	60.53(2)	
Avg. Rank		(6.67)	(3.39)	(6.67)	(4.89)	(3.78)	(3.39)	(3.11)	
Mean Rank		(7.37)	(3.96)	(6.63)	(3.96)	(3.67)	(3.85)	(3.07)	(3.48)

Table 2: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when OLS and the best stop criteria among AIC, AICc, BIC, HQIC, GMDL for FSR, PCR, PLS, BST and RBST and the novel stop criterion ICM for BST and RBST, taking into account some baseline systems (Ridge, SVR and RF) and the RS sampling strategy.