

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger libremente cinco ejercicios completos de los diez propuestos. Se expresará claramente cuáles son los elegidos. Si se resolvieran más, sólo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados.

2.- CALCULADORA: Podrán usarse calculadoras no programables, que no admitan memoria para texto, ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

E1 .- (Álgebra)

Calcular λ y μ para que el sistema de ecuaciones lineales $\begin{cases} x + 2y + z = \mu \\ \lambda x + y = 1 \\ y + \lambda z = -1 \end{cases}$ soluciones. (2 puntos)

E2.- (Álgebra)

Dadas las matrices $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} x & 0 \\ y & 1 \\ z & x + y \end{pmatrix}$ y $C = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$, calcular los valores de $x, y, z \in \mathbb{R}$ para que AB sea igual a la inversa C^{-1} de la matriz C. (2 puntos)

E3. (Geometría)

Calcular la ecuación del plano π que es perpendicular al plano $\sigma \equiv x + 2y + 3z = 0$ y pasa por los puntos P = (0,0,0) y Q = (0,1,1). (2 puntos)

E4.- (Geometría)

Dados el plano $\pi \equiv x + 2y - 2z = 0$ y la recta $r \equiv \frac{x}{-2} = \frac{y-4}{2} = \frac{z-1}{1}$, se pide:

- a) Comprobar que r es paralela a π .
- b) Hallar el plano σ , distinto de π y paralelo a π , cuya distancia a r coincide con la de π . (1 punto)

E5.- (Análisis)

- a) Determinar a y b de modo que las funciones $f(x) = x^2 a$ y $g(x) = (x b)e^x$ tomen el mismo valor en un punto en el que ambas tengan un extremo relativo. (1 punto)
- **b)** Demostrar que la función $f(x) = 2x + \sin x$ solo se anula en el punto x = 0. (1 punto)

(1 punto)

E6.- (Análisis)

a) Determínense el dominio de definición, intervalos de crecimiento y decrecimiento y los máximos y mínimos relativos, si existen, de la función $f(x) = x (\ln x - 1)$. (1 punto)

b) Calcúlese
$$\int x (\ln x - 1) dx$$
. (1 punto)

Calcular
$$\lim_{x\to 2} \frac{\sqrt{x^3+x-1}-\sqrt{x^3+1}}{x-2}$$
. (2 puntos)

E8.- (Análisis)

Calcular el área del recinto limitado por la gráfica de la función $f(x) = xe^{-x}$ y el eje de abscisas cuando x varía en el intervalo [-1,0]. (2 puntos)

E9.- (Probabilidad y Estadística)

Un 50% de los participantes en un torneo abierto de ajedrez celebrado en Salamanca son españoles, un 30% son europeos no españoles y los demás proceden del resto del mundo. De ellos, dos tercios de los españoles, la mitad de los europeos no españoles y un tercio de los no europeos no pasan de los 40 años.

- a) Indicar las 6 probabilidades que aparecen en el enunciado (0,6 puntos)
- b) Si se selecciona un participante al azar ¿Calcular la probabilidad de que no tenga más de 40 años? (0,7 puntos)
- c) Si se elige al azar un participante del torneo y no tiene más de 40 años, ¿cuál es la probabilidad de que sea español? (0,7 puntos)

E10.- (Probabilidad y Estadística)

Si lanzamos al mismo tiempo dos dados idénticos y del tipo usual (es decir, que sean cúbicos, que todas sus caras tengan la misma probabilidad de quedar hacia arriba y que en cada una de ellas aparezca un número de puntos que varíe desde el uno hasta el seis), ¿cuál es la probabilidad de que la suma de las puntuaciones obtenidas en los dos dados coincida con la suma más frecuente? (2 puntos)

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999