DISEÑO GEOMÉTRICO DE CARRETERAS, CLASE 3:

DISEÑO GEOMÉTRICO HORIZONTAL: CURVA SIMPLE

ING. GUILLERMO DAVID MENDÓZA GONZÁLEZ SEMINARIO DE TOPOGRAFÍA Y CARRETERAS INGENIERÍA CIVIL UMG-2021.

DEFINICIÓN:

El diseño geométrico horizontal corresponde al diseño de la línea central y otros elementos geométricos de una vía de comunicación terrestre desde el punto de vista de planta, para ello se consideran parámetros estandarizados que dan seguridad y comodidad a la vía bajo cualquier circunstancia.

Para efectuar el diseño geométrico horizontal se utilizan curvas horizontales simples, curvas horizontales compuestas, curvas horizontales inversas o reversas.

CURVAS HORIZONTALES SIMPLES:

Cuando dos tangentes están unidas entre sí por una sola curva circular, está se denominan curvas simples.

Según el sentido del kilometraje, las curvas simples pueden ser hacia la derecha o hacia la izquierda, para ello se utiliza la deflexión formada entre la extensión de la tangente de entrada hacia la tangente de salida de la curva.

GRADO DE LA CURVA: se llama al ángulo según el cual se observa desde el centro de la curva una cuerda de 20.00 m.

SUBTANGENTE: es la distancia tangencial comprendida entre el PC y el PI o entre el PI y el PT.

PRINCIPIO DE CURVA PC Y PRINCIPIO DE TANGENCIA PT: son los puntos de tangencia de la curva.

RADIO DE LA CURVA: Es el radio de la curva circular simple.

CUERDA: Es la recta comprendida entre dos puntos de la curva.

ANGULO DE CUERDA: es el ángulo comprendido entre la prolongación de la tangente y la cuerda considerada.

EXTERNA: es la distancia mínima entre el PI y la curva.

FLECHA: es la ordenada media de la curva circular.

CUERDA LARGA: es la distancia entre el PC y el PT.

T1 = Tangente de entrada

T2 = Tangente de salida

PI = Punto de inflexión

D = Deflexión

PC = Principio de Curva

PT = Principio de Tangencia

LC = Longitud de Curva

CL = Cuerda Larga

ST = Subtangente

O = Centro de la curva

R = Radio de la curva

M = punto medio de la curva

N = punto medio de la cuerda larga.

Ext = Externa

f = flecha

G = Grado de la curva

ESPECIFICACIONES TÉCNICAS PARA EL DISEÑO DE CURVAS CIRCULARES SIMPLES:

GRADO MÁXIMO DE CURVATURA: El grado máximo de curvatura es el que permite a un vehículo recorrer con seguridad la curva con la sobreelevación máxima, a la velocidad de proyecto.

Tipo de camino	Grado Máximo de Curvatura
Especial	11°
Primer Orden	28°
Segundo Orden	40°
Tercer Orden	40°

LONGITUD DE CUERDA:

- Aunque la cuerda usada en nuestros país es la de 20 metros, cuando el radio de la curva es corto conviene emplear cuerdas de menor magnitud, por ejemplo: 10 o 5 m, pues de otro modo el arco no se confunde sensiblemente con la cuerda.
- En la tabla siguiente se da a conocer la variación de la cuerda con respecto al arco, para diversos valores del radio y del grado de la curva. Esta variación muestra porque para determinados valores de G se deja de usar la cuerda de 20 metros y se emplea de 10 o 5 metros.

RADIO, en metros	Grado	Cuerda del arco de 20 m
De 6876.00 a 229.00	De 0°10' a 5° 00'	20.00 m
De 208.36 a 143.25	De 5°30' a 8°00'	19.99 m
De 134.82 a 114.60	De 8°30' a 10°00'	19.98 m
De 109.14 a 95.50	De 10°30' a 12°00'	19.97 m
De 91.68 a 84.89	De 12°30' a 13°30'	19.96 m
57.30	20°	19.90 m
40.93	28°	19.80 m
28.65	40°	19.60 m

Use cuerda de 20 metros, para $G \le 10^\circ$ Use cuerda de 10 metros, para $10^\circ < G < 20^\circ$ Use cuerda de 5 metros, sí: $20^\circ < G \le 40^\circ$

EJEMPLO DE CÁLCULO DE CURVA CIRCULAR SIMPLE:

• Calcular la curva circular horizontal simple con los siguientes datos:

km PI = 2 + 782.22

$$\Delta$$
 = 47°36′ D
G = 08°30′=8.5°

• CÁLCULO DE RADIO:

$$R = \frac{1145.92}{G} = \frac{1145.92}{8.5} = 134.814 m$$

• CÁLCULO DE SUBTANGENTE:

$$ST = R \ Tan \ \frac{\Delta}{2} = 134.81 \ Tan \ \frac{47^{\circ}36'}{2} = 59.46 \ m$$

• LONGITUD DE CURVA:

$$LC = \frac{\Delta}{G} * 20 = \frac{47.6}{8.5}(20) = 112.00 m$$

• KILOMETRAJES:

KM PT	2 + 834.76
LC	112.00
KM PC	2 + 722.76
ST	59.46
KM PI	2+782.22

• DEFLEXIÓN POR METRO EN MINUTOS DE ARCO:

$$D'm = 1.5 G = 1.5 (8.5) = 00^{\circ}12.75'00''$$
 (en minutos)

• CUERDA LARGA:

$$CL = 2R \ sen \ \frac{\Delta}{2} = 2(134.81 \ m)sen \ \frac{47^{\circ}36'}{2} = 108.804 \ m$$

• FLECHA:

$$f = R \ sen^{-1} \frac{\Delta}{2} = 134.81(1 - \cos \frac{\Delta}{2}) = 134.81\left(1 - \cos \frac{47^{\circ}36'}{2}\right) = 11.464 \ m$$

• EXTERNA:

$$Ext = R \ ex \ sec \ \frac{\Delta}{2} = 134.81 \left(\frac{1}{\cos \frac{\Delta}{2}} - 1\right) = 12.53 \ m$$

• TABLA DE DEFLEXIONES PARA TRAZAR LA CURVA: como el grado de curvatura G = 8°30'00" y como este valor es menor a 10°, entonces según los valores de la tabla de especificaciones utilizamos cuerdas de 20.00 m.

- CÁLCULO DE SUBCUERDAS Y DEFLEXIONES PARCIALES:
 - SUBCUERDA 2

C2 = 20.00 m

$$D_2 = D'm * C_2 = 12.75' * 20.00 m = \frac{255'}{60} = 4^{\circ}15'$$

SUB CUERDA 1:

KM 2+740.00
KM PC 2+722.76
C1 17.24
$$D_1 = 12.75'C1 = 12.75'(17.24 m) = \frac{220'}{60} = 3°40'$$

SUB CUERDA 3:

KM PT 2 + 834.76
KM 2 + 820.00
$$D_3 = 12.75'C3 = 12.75'(14.76 m) = \frac{220'}{60} = 3^{\circ}08'$$

ESTACIONES	CUERDAS	DEFLEXIONES PARCIALES	DEFLEXIONES TOTALES
PC 2 + 722.76			00°00'
2+740	17.24	3°40'	3°40'
2+760	20	4°15'	7°55'
2+780	20	4°15'	12°10'
2+800	20	4°15'	16°25'
2+820	20	4°15'	20°40'
PT 2+834.76	14.76	3°08'	23°48'

LC = 112.00 m

Comprobación:
$$LC * D'm = 112.00 * 12.75' = \frac{1428'}{60} = 23°48' = \Delta/2$$

PRESENTAR RESULTADOS EN PLANO:

RESÚMEN DE CURVA:

CURVA No. 15

 $D = 47^{\circ}36'$

 $G = 8^{\circ}30'$

R = 134.814 m

ST = 59.46 m

LC = 112.00 m

D'm = 00°12.75′00"

CL = 108.804 m

f = 11.464 m

Ext = 12.53