Segment Anything Model

• • •

Modelos fundacionales en visión por computadora

Repaso: ¿Qué es la segmentación? Presentación sobre Segmentación

Son algoritmos de clasificación, en el ámbito de la visión por computadora, que asignan a cada píxel de una imagen una clase en función de su contexto espacial. Hay tres tipos de segmentación: semántica, instancia y panóptica.

CamVid dataset

Aplicaciones típicas

- ❖ Videollamadas:
 - > Eliminar el fondo en las videoconferencias
- Vigilancia
 - > Entender los actores presentes en la escena
- ❖ Agricultura
 - Análisis de cultivos y enfermedades
- Conducción autónoma
 - Comprensión profunda del escenario
- Medicina
 - > Interpretar radiografías y tomografías.
 - > Se realizan segmentaciones en 3D
- Redes sociales
 - Filtros en redes sociales
- ❖ Industria
 - Líneas de producción, detección de fallos, etc

Modelos fundacionales Paper Blog

Un modelo fundacional es cualquier modelo que ha sido entrenado en una gran cantidad de datos y que puede ser adaptado (e.g <u>fine-tuning y transfer learning</u>) a un amplio rango de tareas posteriores.

Ejemplos de modelos fundacionales son: BERT, Modelos GPT, CLIP, LLaMA, etc.

Estos modelos tienen la capacidad de *Emergencia* y *Homogeneización*.

- Emergencia hace referencia al comportamiento del modelo aprendido mediante inducción. Es decir, los modelos aprenden nuevas habilidades fuera del conjunto de entrenamiento.
- La homogeneización implica que estos modelos pueden ser utilizados como base para diversas tareas de inteligencia artificial.

¿Qué es SAM? Paper

El objetivo de SAM es obtener un modelo fundacional para *segmentación de imágenes*. Para esto se desarrolla una **metodología** basada en 3 componentes:

- I. Una *tarea* adaptable(*promptable*) suficientemente general.
- 2. Un *modelo* flexible que reciba los prompts y los interprete
- 3. Una fuente de **información** de gran escala

Aportes significativos

- Zero-shot transfer: Responder adecuadamente a cualquier prompt en <u>tiempo de</u> inferencia
- Metodología de etiquetado: Anotación automática y semiautomática
- Tiempo de ejecución:
 - La carga de trabajo la realiza el encoder. Este paso se realiza una sola vez para obtener los embeddings.
 - El encoding de las máscaras es barato. Aproximadamente demora 50ms en CPU.

Promptable segmentation

¡Cómo interactuamos y entrenamos el modelo! Un prompt puede incluir información posicional, texto descriptivo. Pero los prompts pueden ser ambiguos!

Objetivo:

Producir una máscara válida para cualquier prompt, incluso si es ambiguo.

Prompt encoder:

Se consideran dos tipos de prompts: <u>sparse</u> (bb, pts) y <u>dense</u> (mask). Los bb y pts se representan con encodings posicionales a los cuales se suman los embeddings de texto (CLIP text encoder). Los embedding de las máscaras se realizan utilizando convoluciones y se suman elemento a elemento con los embedding de la imagen.

Segment Anything Model

- ❖ Image encoder: MAE ViT (Modelo)
- Prompt encoder: Explicado en filmina anterior
- Lightweight mask decoder: Transformer decoder block + Dynamic prediction head + MLP. Tiempo de ejecución muy bajo en CPU.

Dataset SA-1B Link

- 11 M de imágenes
 - > Alta resolución
 - Protección a la privacidad
 - Caras
 - Patentes
 - > Avg: 1500x2250px
- ❖ 1.1B de máscaras!
 - > Avg: 100 mask / img
 - > 99.1% generadas automáticamente!!!
 - > SA-1B solo incluye máscaras generadas automáticamente.
- Anotaciones en formato
 COCO RLE <u>link</u>
- Sin método de muestreo

IA Responsable

- Distribución gráfica y de ingresos
 - Países TOP 3 de diferentes continentes
 - África y países con bajos ingresos están subrepresentados (en todos los dataset)
 - > SAM tiene más máscaras en países subrepresentados que cualquier otro dataset (10x).
 - El número promedio de máscaras por imagen es consistente entre países.

		SA-1B		% images		
# cour	# countries		#masks	SA-1B	COCO	O.I.
Africa	54	300k	28M	2.8%	3.0%	1.7%
Asia & Oceania	70	3.9M	423M	36.2%	11.4%	14.3%
Europe	47	5.4M	540M	49.8%	34.2%	36.2%
Latin America & Carib.	42	380k	36M	3.5%	3.1%	5.0%
North America	4	830k	80M	7.7%	48.3%	42.8%
high income countries	81	5.8M	598M	54.0%	89.1%	87.5%
middle income countries	108	4.9M	499M	45.0%	10.5%	12.0%
low income countries	28	100k	9.4M	0.9%	0.4%	0.5%

IA Responsable

- Equidad en la segmentación de personas
 - Se utiliza el dataset More Inclusive Annotations for People (MIAP) para representación de género y edad. Además un dataset propietario para el tono de piel.
 - > SAM performa de manera similar para todos los grupos.
 - Se encuentra un BIAS en la segmentación de ropa hacia el genero masculino.

mIol	U at		mIoU at			
1 point	3 points		1 point	3 points		
perceived gender presentation			perceived age group			
76.3 ± 1.1	90.7 ± 0.5	older	81.9 ± 3.8	92.8 ± 1.6		
81.0 ± 1.2	92.3 ± 0.4	middle	78.2 ± 0.8	91.3 ± 0.3		
		young	77.3 ± 2.7	91.5 ± 0.9		
	1 point ender prese 76.3 ± 1.1	mIoU at 1 point 3 points ender presentation 76.3 \pm 1.1 90.7 \pm 0.5 81.0 \pm 1.2 92.3 \pm 0.4	1 point 3 points perceive 76.3 \pm 1.1 90.7 \pm 0.5 older 81.0 \pm 1.2 92.3 \pm 0.4 middle	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Table 6: SAM's performance segmenting clothing across perceived gender presentation and age group. The intervals for perceived gender are disjoint, with mIoU for masculine being higher. Confidence intervals for age group overlap.

	mIol	U at	mIoU at			
	1 point	3 points		1 point	3 points	
perceived gender presentation			perceived skin tone			
feminine	54.4 ± 1.7	90.4 ± 0.6	1	52.9 ± 2.2	91.0 ± 0.9	
masculine	55.7 ± 1.7	90.1 ± 0.6	2	51.5 ± 1.4	91.1 ± 0.5	
perceived a	ige group		3	52.2 ± 1.9	91.4 ± 0.7	
older	62.9 ± 6.7	92.6 ± 1.3	4	51.5 ± 2.7	91.7 ± 1.0	
middle	54.5 ± 1.3	90.2 ± 0.5	5	52.4 ± 4.2	92.5 ± 1.4	
young	54.2 ± 2.2	91.2 ± 0.7	6	56.7 ± 6.3	91.2 ± 2.4	
Joung	0112 112	71.2 _ 0.7		2011 12012	71.2	

Cómo afecta en la industria Ref 1 Ref 2 Open source tool

El costo del etiquetado manual de entidades para segmentación es considerablemente más elevado que para deteccion, de hecho:

 $Cost(segmentation) = 10 \times Cost(detection)$

Si SAM nos permite bajar esos costos a niveles similares a los de detección, pequeñas empresas y hobbistas pueden aplicar esta tecnología con mucho menor esfuerzo y mano de obra, aprovechando las mejoras de esta tecnología.

Además la integración con herramientas Open Source permitirá a la comunidad crear herramientas y modelos de AI más avanzados.

Resultados

Notebooks de ejemplo

Meta provee varios ejemplos de cómo utilizar el modelo en notebooks de Python.

- Generador automático de máscaras
- Predictor con prompt interactivo

Demo online

Meta provee una demo online en su artículo sobre el modelo.

Link a la demo

Gracias!