Cheat Sheet: Conic Sections - Exercise 6.3 (Chapter 6, Mathematics Part-II, Class 12)

This cheat sheet summarizes key concepts from Exercise 6.3, Chapter 6: Conic Sections, focusing on circle properties (normals, tangents, circumcenter, mean proportional) and parabolas (definitions, standard forms). Examples are drawn from the exercise to clarify high-difficulty applications.

1. Circle Properties

- Circle General Form: $x^2 + y^2 + 2gx + 2fy + c = 0$
 - Center: (-g, -f)
 - Radius: $\sqrt{g^2 + f^2 c}$
- Tangent at Point (x_1, y_1) :

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

• Normal at Point (x_1, y_1) : Passes through center (-g, -f).

$$(y-y_1)(x_1+g) = (x-x_1)(y_1+f)$$

• Chord of Contact from (x_1, y_1) :

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

2. Key Circle Theorems

- 1. Normals Pass Through Center (Q.1):
 - *Proof*: Circle $x^2 + y^2 = r^2$, point (x_1, y_1) .
 - Tangent slope: $\frac{dy}{dx} = -\frac{x_1}{y_1}$.
 - Normal slope: $\frac{y_1}{x_1}$.
 - Normal equation: $y y_1 = \frac{y_1}{x_1}(x x_1)$, simplifies to $x_1y = y_1x$.
 - Center (0,0) satisfies: $x_1 \cdot 0 = y_1 \cdot 0$.
- 2. Line from Center Perpendicular to Tangent (Q.2):
 - *Proof*: Circle $x^2 + y^2 = r^2$, point (x_1, y_1) .
 - Tangent slope: $-\frac{x_1}{y_1}$.
 - Perpendicular slope: $\frac{y_1}{x_1}$.

- Line from center (0,0): $y = \frac{y_1}{x_1}x$, passes through (x_1,y_1) .
- 3. Midpoint of Hypotenuse as Circumcenter (Q.3):
 - Proof: Right triangle at O(0,0), vertices A(a,0), B(0,b).
 - Midpoint of hypotenuse AB: $C\left(\frac{a}{2}, \frac{b}{2}\right)$.
 - Distances: $|CA| = |CB| = |CO| = \sqrt{\frac{a^2}{4} + \frac{b^2}{4}}$.
 - Equal distances confirm C is circumcenter.
- 4. Perpendicular from Point to Diameter (Q.4):
 - Proof: Circle $x^2 + y^2 = r^2$, point P(a, b), diameter AB(-r, 0) to (r, 0).
 - Perpendicular at Q(a, 0).
 - Lengths: |PQ| = b, |AQ| = r + a, |QB| = r a.
 - Mean proportional: $|AQ| \cdot |QB| = (r+a)(r-a) = r^2 a^2 = b^2 = |PQ|^2$.
- 5. Chord of Contact (Q.9 from Ex. 6.2):
 - Example: Circle $2x^2 + 2y^2 8x + 12y + 21 = 0$, point (4, 5).
 - Divide by 2: $x^2 + y^2 4x + 6y + \frac{21}{2} = 0$, g = -2, f = 3, $c = \frac{21}{2}$.
 - Chord: $4x + 5y 2(x + 4) + 3(y + 5) + \frac{21}{2} = 0$, simplifies to 4x + 16y + 35 = 0.

3. Parabola Introduction

- **Definition**: Set of points P(x, y) where distance from focus F equals distance from directrix L(|PF| = |PM|).
- Standard Forms (vertex at origin):
 - $-y^2 = 4ax$ (opens right)
 - $-y^2 = -4ax$ (opens left)
 - $-x^2 = 4ay$ (opens up)
 - $-x^2 = -4ay$ (opens down)
- Vertex at (h, k):
 - $(y k)^2 = 4a(x h)$
 - $-(y-k)^2 = -4a(x-h)$
 - $(x h)^2 = 4a(y k)$
 - $(x h)^2 = -4a(y k)$
- Key Features:
 - Axis: Line through focus, perpendicular to directrix.
 - $-\ \it Vertex$: Intersection of axis and parabola.
 - Chord: Line joining two points on parabola.
 - $-\ Focal\ Chord$: Chord through focus.

- Latus Rectum: Focal chord perpendicular to axis.

4. Common Pitfalls

- Normal Proof: Ensure normal slope is reciprocal of tangent slope (Q.1).
- Perpendicular Line: Verify line from center passes through tangency point (Q.2).
- Circumcenter: Use midpoint formula correctly; check distances (Q.3).
- Mean Proportional: Confirm $|AQ| \cdot |QB| = |PQ|^2$ using circle equation (Q.4).
- Parabola Forms: Distinguish between vertex at origin and shifted vertex.

