ŞIRURI DE NUMERE REALE

1. Se consideră șirurile (x_n) și (y_n) , definite respectiv prin

$$x_n = \left(1 + \frac{1}{n}\right)^n, y_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Să se demonstreze că:

a) $\forall n \in \mathbb{N} : x_n < x_{n+1} < y_{n+1} < y_n;$

b) $\forall n \in \mathbb{N} : 0 < y_n - x_n < \frac{4}{n}$.

Observație. Din afirmațiile a) și b) rezultă că șirurile (x_n) și (y_n) sunt convergente și au aceeași limită. Numărul real care este limita comună a celor două șiruri se notează cu e, de la numele matematicianului Leonhard Euler. Valoarea aproximativă este $e \approx 2.718281...$

2. Să se demonstreze că pentru orice număr natural n are loc

$$\frac{e}{2n+2} < e - \left(1 + \frac{1}{n}\right)^n < \frac{e}{2n+1}.$$

3. Să se demonstreze că pentru orice număr natural n > 1 are loc

$$\frac{1}{2ne} < \frac{1}{e} - \left(1 - \frac{1}{n}\right)^n < \frac{1}{ne}.$$

Concursul William Lowell Putnam 2002

4. Se consideră șirurile (u_n) și (v_n) , definite respectiv prin

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!},$$
 $v_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{n \cdot n!}.$

Să se demonstreze că:

a) $\forall n \in \mathbb{N} : u_n < u_{n+1} < v_{n+1} < v_n;$

b) $\lim_{n\to\infty} u_n = e;$

c) $\forall n \in \mathbb{N} : 0 < e - 1 - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{n!} < \frac{1}{n \cdot n!};$

d) $e \in \mathbf{R} \setminus \mathbf{Q}$.

5. Se consideră șirurile (x_n) și (y_n) , definite respectiv prin

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n+1),$$
 $y_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n.$

1

Să se demonstreze că:

a)
$$\forall n \in \mathbb{N} : x_n < x_{n+1} < y_{n+1} < y_n;$$

b)
$$\lim_{n \to \infty} (y_n - x_n) = 0.$$

Observație. Din afirmațiile a) și b) rezultă că șirurile (x_n) și (y_n) sunt convergente și au aceeași limită. Numărul real care este limita comună a celor două șiruri se numește constanta lui Euler și se notează cu γ . Conform lui a) avem $0 < \gamma < 1$, valoarea aproximativă fiind $\gamma \approx 0.57721...$ Este o problemă deschisă dacă γ este număr irațional sau nu.

6. (Generalizarea problemei precedente) Fie $f:[1,\infty[\to]0,\infty[$ o funcție strict descrescătoare cu proprietatea $\lim_{x\to\infty} f(x) = 0$, iar (x_n) și (y_n) șirurile definite respectiv prin

$$x_n = f(1) + \dots + f(n) - \int_1^{n+1} f(x)dx, \qquad y_n = f(1) + \dots + f(n) - \int_1^n f(x)dx.$$

Să se demonstreze că:

a)
$$\forall n \in \mathbb{N} : x_n < x_{n+1} < y_{n+1} < y_n;$$

b)
$$\lim_{n \to \infty} (y_n - x_n) = 0.$$

7. Să se demonstreze că

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2.$$

8. Să se demonstreze că

$$\lim_{n \to \infty} \left(\frac{1}{1^2} + \frac{1}{1^2 + 2^2} + \dots + \frac{1}{1^2 + 2^2 + \dots + n^2} \right) = 6(3 - 4 \ln 2).$$

9. (Şirul lui Traian Lalescu) Să se demonstreze că

$$\lim_{n\to\infty} \left(\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right) = \frac{1}{e}.$$

Indicație. Fie $L_n := \sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}$ și $x_n := \frac{L_n}{\sqrt[n]{n!}}$. Se ține seama că $(x_n) \longrightarrow 0$ și că

$$L_n = \frac{x_n}{\ln(1+x_n)} \cdot \frac{\sqrt[n]{n!}}{n+1} \cdot (n+1)\ln(1+x_n).$$

10. (Şirul lui Wallis) Să se demonstreze că

$$\lim_{n \to \infty} \frac{2^2}{1 \cdot 3} \cdot \frac{4^2}{3 \cdot 5} \cdots \frac{(2n)^2}{(2n-1)(2n+1)} = \frac{\pi}{2}.$$

11. Să se determine mulțimea punctelor limită ale șirului $(x_n)_{n\geq 1}$, de termen general $x_n = \sqrt{n} - \lceil \sqrt{n} \rceil$.

2

SERII DE NUMERE REALE

1. Să se calculeze:

1)
$$\sum_{n=1}^{\infty} \frac{1}{4n^3 - n}$$
;

R: $2 \ln 2 - 1$

2)
$$\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2};$$

3)
$$\sum_{n=0}^{\infty} \left[\left(\sum_{i=1}^{k} \frac{1}{kn+j} \right) - \frac{1}{n+1} \right], \quad k \in \mathbb{N}, \ k \ge 2;$$

A. Kheyfits, The College Math. J. [1998, 152]

4)
$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$
;

5)
$$\sum_{n=1}^{\infty} \frac{a^n b^n}{(a^{n+1} - b^{n+1})(a^n - b^n)}$$
, $a, b > 0, a \neq b$ (D. Oprişa);

R: $\frac{\min\{a,b\}}{(a-b)^2}$

6)
$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^{2^n} + 1};$$

V. Ia. Rojenko, Matematika v Şkole, [1989, no. 4, p. 101]

R: 1

7)
$$\sum_{n=1}^{\infty} 3^{n-1} \sin^3 \frac{x}{3^n}, \quad x \in \mathbf{R};$$

8)
$$\sum_{n=1}^{\infty} 2^{n-1} \operatorname{tg} \frac{x}{2^{n-1}} \operatorname{tg}^2 \frac{x}{2^n}$$
, $0 \le x < \frac{\pi}{2}$;

9)
$$\sum_{n=1}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$
;

10)
$$\sum_{n=1}^{\infty} \arctan \frac{1}{2n^2};$$

11)
$$\sum_{n=1}^{\infty} \arctan \frac{4}{4n^2+3}$$
;

12)
$$\sum_{n=1}^{\infty} \arctan \frac{2}{n^2};$$

13)
$$\sum_{n=1}^{\infty} \operatorname{arctg} \frac{8n}{n^4 - 2n^2 + 5}$$
.

2. Să se studieze natura următoarelor serii:

1)
$$\sum_{n>1} \frac{1}{n^p}$$
, $p \in \mathbf{R}$;

$$2) \sum_{n>2} \frac{1}{n(\ln n)^p}, \quad p \in \mathbf{R};$$

3)
$$\sum_{n>1} \frac{1}{n^{1+\frac{1}{n}}};$$

4)
$$\sum_{n>1} \left(\frac{1}{n} - \sin\frac{1}{n}\right)^{\alpha}, \quad \alpha \in \mathbf{R};$$

5)
$$\sum_{n>1} \left(\frac{1}{n \sin \frac{1}{n}} - 1 \right)^{\alpha}, \quad \alpha \in \mathbf{R};$$

Concursul William Lowell Putnam 1988

6)
$$\sum_{n>1} \frac{(2n)!!}{n^n}$$
;

7)
$$\sum_{n>1} \frac{a^n}{n!}$$
, $a>0$;

8)
$$\sum_{n\geq 1} a^n \left(1 + \frac{1}{n}\right)^{n^2 + bn + c}$$
, $a > 0, b, c \in \mathbf{R}$;

9)
$$\sum_{n>1} a^{\ln n}$$
, $a>0$;

10)
$$\sum_{n\geq 1} \frac{n^n}{n!a^n}$$
, $a>0$;

11)
$$\sum_{n\geq 1} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2$$
;

12)
$$\sum_{n \ge 1} \frac{n^p}{2^{\sqrt{n}}}, \quad p \ge 1;$$

13)
$$\sum_{n\geq 1} \frac{\alpha(\alpha+1)\cdots(\alpha+n-1)\cdot\beta(\beta+1)\cdots(\beta+n-1)}{n!\cdot\gamma(\gamma+1)\cdots(\gamma+n-1)} x^n, \quad \alpha,\beta,\gamma,x>0.$$

(seria hipergeometrică)

3. Să se calculeze suma seriei $\sum 1 / \binom{n}{k}$, unde sumarea se face pentru toate numerele naturale k și n cu proprietatea 1 < k < n - 1.

M. Bhargava, The College Math. J. [1998, 434]

4. Să se calculeze
$$\sum_{n=1}^{\infty} \left[(2n+1) \ln \frac{n+1}{n} - 2 \right].$$

J. Graham-Eagle, The College Math. J. [1999, 61]

5. Să se calculeze
$$\sum_{n=1}^{\infty} \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n-1}}{2n(2n+2)}.$$

S. Weiner, Amer. Math. Monthly [1956, 39]

6. Să se calculeze
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln n}{n}.$$

M. S. Klamkin, Amer. Math. Monthly [1954, 350]

7. Fie $(a_n)_{n\geq 1}$ şirul de numere reale definit recursiv astfel:

$$a_1 = \frac{1}{2}$$
, $a_{n+1} = \sqrt{\frac{1 - \sqrt{1 - a_n^2}}{2}}$, $n \ge 1$.

Să se demonstreze că $\sum_{n=1}^{\infty} a_n < 1.03$.

D. Akulici, Kvant [1990]

8. Pentru fiecare număr natural n notăm cu $\langle n \rangle$ cel mai apropiat număr natural de \sqrt{n} . Să se calculeze

$$\sum_{n=1}^{\infty} \frac{2^{\langle n \rangle} + 2^{-\langle n \rangle}}{2^n}.$$

Concursul William Lowell Putnam 2001

9. Pentru fiecare număr natural n notăm cu b(n) numărul cifrelor 1 din reprezentarea binară a lui n. De exemplu, $b(6) = b(110_2) = 2$, $b(15) = b(1111_2) = 4$ etc. Să se demonstreze că seria $\sum_{n\geq 1} \frac{b(n)}{n(n+1)}$ este convergentă și să se determine suma ei.

Concursul William Lowell Putnam 1981

10. Pentru n>1 fie t(n) numărul factorizărilor neordonate ale lui n în produse de divizori strict mai mari decât 1. De exemplu, t(12)=4, căci $12=6\times 2=4\times 3=3\times 2\times 2$. Să se demonstreze că $\sum_{n=2}^{\infty}\frac{t(n)}{n^2}=1$.

D. Beckwith, Amer. Math. Monthly [1998, 559]

11. Fie $(a_j)_{j\geq 0}$ un şir de numere nenegative aşa încât $\sum_{j=0}^{\infty} a_j = s < \infty$. Pentru fiecare număr natural n notăm

$$\alpha_n := \frac{1}{n} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} a_{j+k}, \qquad \beta_n := \frac{1}{n} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} a_{|j-k|}.$$

Să se determine $\lim_{n\to\infty} \alpha_n$ și $\lim_{n\to\infty} \beta_n$.

W. F. Trench, The College Math. J. [1999, 60]

- 12. Să se demonstreze că seria $\sum_{n\geq 2} \frac{\sin n}{\ln n}$ este semiconvergentă.
- 13. Să se demonstreze că dacă seria cu termeni pozitivi $\sum_{n\geq 1} a_n$ este convergentă şi există $\lim_{n\to\infty} na_n$, atunci $\lim_{n\to\infty} na_n = 0$. Să se dea exemplu de serie cu termeni pozitivi $\sum_{n\geq 1} a_n$, care să fie convergentă dar pentru care şirul $(na_n)_{n\geq 1}$ nu converge către 0.
- **14.** Fie $\sum_{n\geq 1} a_n$ o serie divergentă cu termeni pozitivi, iar $s_n = a_1 + \dots + a_n \ (n \geq 1)$. Să se demonstreze că seria $\sum_{n\geq 1} \frac{a_n}{s_n}$ este divergentă, dar seria $\sum_{n\geq 1} \frac{a_n}{s_n^2}$ este convergentă.
- **15.** Fie $(a_n)_{n\geq 1}$ un şir definit recursiv astfel:

$$a_1 \in]0,1[, \quad a_{n+1} = a_n - na_n^2, \quad n \ge 1.$$

Să se demonstreze că seria $\sum_{n\geq 1} a_n$ este convergentă.

L. Panaitopol, Gazeta Matematică [1980]

PRIMITIVE

- 1. Să se determine primitivele funcțiilor următoare.
 - 1) $f: I \to \mathbf{R}$, $f(x) = \frac{\sin(x+a)}{\sin(x+b)}$, unde $a, b \in \mathbf{R}$, iar I este un interval pe care $\sin(x+b) \neq 0$;
 - 2) $f: I \to \mathbf{R}$, $f(x) = \frac{1}{\sin(x+a)\sin(x+b)}$, unde $a, b \in \mathbf{R}$, iar I este un interval pe care $\sin(x+a)\sin(x+b) \neq 0$;
 - 3) $f: I \to \mathbf{R}, \ f(x) = \frac{1}{\sin^2 x \sin^2 a}$, unde $a \in \mathbf{R}$, iar I este un interval pe care $\sin^2 x \sin^2 a \neq 0$;
 - 4) $f: I \to \mathbf{R}, f(x) = \frac{\sin x + 2\cos^2\frac{x}{2} + \ln x^{x+1}}{\sin x + x \ln x}$, unde $I \subseteq]0, \infty[$ este un interval pe care $\sin x + x \ln x \neq 0$;
 - 5) $f: [1, \infty[\to \mathbf{R}, \quad f(x) = \frac{x^2 + 2x + \cos 2x 2\sin 2x}{x^2 + \cos 2x + e^{-x}};$
 - 6) $f: [0, \infty[\to \mathbf{R}, \quad f(x) = \frac{x}{1 + x + e^x};$
 - 7) $f:[0,\infty[\to \mathbf{R}, f(x)] = \frac{x+x^2}{(1+x+e^x)^2};$
 - 8) $f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{e^x \ln x}{e^x + x^x};$
 - 9) $f: \left] -\frac{\pi}{4}, \frac{3\pi}{4} \right[\to \mathbf{R}, \quad f(x) = \frac{1}{\sin x + \cos x};$
 - 10) $f: \left[-\frac{\pi}{4}, \frac{3\pi}{4} \right] \to \mathbf{R}, \quad f(x) = \frac{1}{1 + \sin 2x};$
 - 11) $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \sqrt{x^2 + a^2}$, unde $a \in \mathbf{R} \setminus \{0\}$;
 - 12) $f:]-a, a[\to \mathbf{R}, \quad f(x) = \sqrt{a^2 x^2}, \text{ unde } a > 0;$
 - 13) $f:]0, \infty[\to \mathbf{R}, \quad f(x) = \sin(\ln x);$
 - 14) $f:]-1, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{(x+1)^3} e^{\frac{x-1}{x+1}};$
 - 15) $f:]-1, 1[\to \mathbf{R}, \quad f(x) = \arcsin \sqrt{1 x^2};$
 - 16) $f: \mathbf{R} \to \mathbf{R}, \quad f(x) = \arcsin \frac{2x}{1+x^2};$
 - 17) $f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{x\sqrt{x^4 + x^2 + 1}};$
 - 18) $f: \mathbf{R} \to \mathbf{R}, \quad f(x) = \frac{e^x}{e^{2x} + e^{-2x}};$

19)
$$f: \mathbf{R} \to \mathbf{R}, \quad f(x) = \frac{1}{(x^2+1)\sqrt{x^2+2}};$$

20)
$$f:]1, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 - 1}};$$

21)
$$f:]2, \infty[\to \mathbf{R}, \quad f(x) = \frac{2x^2 + 2x + 13}{(x-2)(x^2+1)^2};$$

22)
$$f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{x(x+1)(x+2)(x+3)};$$

23)
$$f: \mathbf{R} \to \mathbf{R}, \quad f(x) = \frac{x^3}{\sqrt{(1+2x^2)^3}};$$

24)
$$f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{\sqrt[4]{1+x^4}};$$

25)
$$f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{1}{\sqrt{x^3} \sqrt[3]{1 + \sqrt[4]{x^3}}};$$

26)
$$f:]0, \infty[\to \mathbf{R}, \quad f(x) = \frac{2x^2 + 1}{x\sqrt{x^4 + x^2 + 1}};$$

27)
$$f:]2, \infty[\to \mathbf{R}, \quad f(x) = \sqrt{x^2 - 3x + 2};$$

28)
$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbf{R}, \quad f(x) = \frac{\sin^2 x}{1 + \sin^2 x};$$

29)
$$f: \]0, \frac{\pi}{2} [\to \mathbf{R}, \quad f(x) = \frac{1}{3 + \sin x + \cos x};$$

30)
$$f:]0, 2\pi[\to \mathbf{R}, \quad f(x) = \frac{1}{3 + \sin x + \cos x}.$$

INTEGRALE RIEMANN

1. Fie
$$I_n = \frac{1}{n!} \int_0^1 (1-x)^n e^x dx \quad (n \ge 0).$$

- a) Să se arate că $I_n = -\frac{1}{n!} + I_{n-1}$ pentru orice $n \ge 1$.
- b) Să se deducă de aici că $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.
- **2.** Să se calculeze $\int_0^{\frac{\pi}{4}} \operatorname{tg}^{2n} x dx \ (n \geq 0)$. Să se deducă apoi că

$$\lim_{n \to \infty} \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n-1}}{2n-1} \right) = \frac{\pi}{4}.$$

3. Fie
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx \ (n \ge 0).$$

a) Să se arate că pentru orice $n \geq 0$ avem

$$I_{2n} = \frac{(2n-1)!!}{(2n)!!} \cdot \frac{\pi}{2}, \qquad I_{2n+1} = \frac{(2n)!!}{(2n+1)!!}.$$

b) Să se deducă de aici formula lui Wallis

$$\lim_{n \to \infty} \frac{2^2}{1 \cdot 3} \cdot \frac{4^2}{3 \cdot 5} \cdots \frac{(2n)^2}{(2n-1)(2n+1)} = \frac{\pi}{2}.$$

- 4. Să se calculeze $\int_0^{\frac{\pi}{2}} \cos^n x \cos nx \, dx \quad (n \ge 0).$
- **5.** Să se calculeze $\int_0^1 \frac{x^n}{e^x + 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}} dx \quad (n \ge 0).$
- **6.** Fiind dat a > 0, să se calculeze $\lim_{n \to \infty} \frac{1}{n!} \int_{e^{1-a}}^{e} (1 \ln x)^n dx$.
- 7. Să se calculeze $\int_0^1 \frac{x^2 e^{\arctan x}}{\sqrt{1+x^2}} dx.$
- 8. Să se calculeze $\int_2^4 \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}} dx.$

Concursul William Lowell Putnam 1987

9. Să se calculeze
$$\int_{-1}^{1} \frac{dx}{1 + x^3 + \sqrt{1 + x^6}}$$
.

Olimpiada orașului Leningrad, 1986

10. Să se demonstreze că

$$\int_{-1}^{1} x \ln^2(1 + e^x) dx = \int_{-1}^{1} x^2 \ln(1 + e^x) dx.$$

11. Fie $f: \mathbf{R} \to \mathbf{R}$ funcția definită prin $f(x) = \frac{\arctan x}{x^2 + x + 1}$, iar F o primitivă a lui f. Să se calculeze $F(\sqrt{2} + 1) - F(\sqrt{2} - 1)$.

M. Ivan

- 12. Fie $f:]-1,1[\to \mathbf{R}$ funcția definită prin $f(x) = \int_{\frac{\pi}{4}}^{\arcsin x} \ln(1+\sin^2 t) dt.$
 - a) Să se determine f'.
 - b) Să se calculeze $\int_0^{\frac{\sqrt{2}}{2}} f(x) dx$.
- 13. Să se calculeze $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n + k \cdot \frac{n+1}{n}}$.

Olimpiada municipală de matematică, București 1994

INTEGRALE RIEMANN-STIELTJES

1. Fie $a, b \in \mathbf{R}$ cu a < b, fie $c \in [a, b]$, iar $f, g : [a, b] \to \mathbf{R}$ funcțiile definite prin

$$f(x) = \begin{cases} 1 & \text{dacă } a \le x < c \\ 0 & \text{dacă } c \le x \le b, \end{cases} \qquad g(x) = \begin{cases} 0 & \text{dacă } a \le x \le c \\ 1 & \text{dacă } c < x \le b. \end{cases}$$

Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g atât pe [a, c] cât și pe [c, b] dar nu și pe [a, b].

2. Fie $g:[a,b]\to \mathbf{R}$ funcția definită prin

$$g(x) = \begin{cases} \alpha & \text{dacă } x = a \\ \beta & \text{dacă } x \in]a, b[\\ \gamma & \text{dacă } x = b. \end{cases}$$

Să se demonstreze că dacă $f:[a,b]\to \mathbf{R}$ este continuă în a și b, atunci f este integrabilă Riemann–Stieltjes în raport cu g pe [a,b] și

$$\int_{a}^{b} f(x) dg(x) = f(a)(\beta - \alpha) + f(b)(\gamma - \beta).$$

3. O funcție $g:[a,b]\to \mathbf{R}$ se numește funcție etajată dacă există o diviziune $\Delta=(x_0,x_1,\ldots,x_n)$ a lui [a,b], precum și numere reale c_1,\ldots,c_n în așa fel încât

$$g(x) = c_i$$
 pentru orice $x \in [x_{i-1}, x_i]$ $(j = 1, ..., n)$.

Să se demonstreze că dacă $f:[a,b]\to \mathbf{R}$ este continuă, iar $g:[a,b]\to \mathbf{R}$ este o funcție etajată ca mai sus, atunci f este integrabilă Riemann–Stieltjes în raport cu g pe [a,b] și

$$\int_{a}^{b} f(x) dg(x) = f(b)g(b) - f(a)g(a) - \sum_{j=1}^{n} c_{j}[f(x_{j}) - f(x_{j-1})].$$

- **4.** Determinați $\lim_{n\to\infty} \frac{1}{n} \int_0^1 \ln(1+x^2) d[nx].$
- 5. Fie $f:[-1,1] \to \mathbf{R}$ funcția definită prin

$$f(x) = \begin{cases} \frac{1}{2^n} & \text{dacă} \ |x| = \frac{1}{n}, \ n = 1, 2, \dots \\ 0 & \text{în caz contrar,} \end{cases}$$

iar $g:[-1,1]\to \mathbf{R}$ o funcție continuă. Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g și să se determine $\int_{-1}^1 f dg$.

1

6. Fie $f, g: [a, b] \to \mathbf{R}$ funcțiile definite prin $f(x) = e^x$ și respectiv

$$g(x) = \begin{cases} 1 & \text{dacă } x \in [a, b] \cap \mathbf{Q} \\ 0 & \text{dacă } x \in [a, b] \setminus \mathbf{Q}. \end{cases}$$

Să se demonstreze că f nu este integrabilă Riemann–Stieltjes în raport cu g pe [a, b].

7. Fie $f, g: [-1, 1] \to \mathbf{R}$ funcțiile definite prin

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{dacă } x \in [-1, 1] \setminus \{0\} \\ 1 & \text{dacă } x = 0, \end{cases}$$

$$g(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{dacă } x \in [-1, 1] \setminus \{0\} \\ 0 & \text{dacă } x = 0. \end{cases}$$

Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g pe [-1,1].

8. Fie $f:[a,b]\to \mathbf{R}$ o funcție continuă cu variație mărginită.

a) Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu f pe [a,b] și că

$$\int_{a}^{b} f(x) df(x) = \frac{f^{2}(b) - f^{2}(a)}{2}.$$

b) Să se demonstreze că f^2 este integrabilă Riemann–Stieltjes în raport cu f pe [a,b], că f este integrabilă Riemann–Stieltjes în raport cu f^2 pe [a,b] și că

$$\int_a^b f^2(x) \, df(x) = \frac{f^3(b) - f^3(a)}{3} \,, \qquad \qquad \int_a^b f(x) \, df^2(x) = \frac{2[f^3(b) - f^3(a)]}{3}.$$

- **9.** Dați exemplu de funcție cu variație mărginită $f : [a, b] \to \mathbf{R}$ și cu proprietatea că f nu este integrabilă Riemann–Stieltjes în raport cu f pe [a, b].
- **10.** Fie $a, b \in \mathbf{R}$ cu a < b, I un interval al axei reale şi funcțiile $f : [a, b] \to I$, $\phi : I \to \mathbf{R}$. Se consideră următoarele afirmații:
 - 1° Funcția $\phi \circ f$ este integrabilă Riemann–Stieltjes în raport cu f pe [a,b].
 - 2° Oricare ar fi $\varepsilon > 0$ există un $\delta > 0$ cu proprietatea că pentru orice diviziune $\Delta = (x_0, x_1, \dots, x_k) \in \text{Div}[a, b]$ cu $\|\Delta\| < \delta$ și orice sisteme de puncte intermediare $\xi = (c_1, \dots, c_k) \in P(\Delta)$, $\eta = (d_1, \dots, d_k) \in P(\Delta)$ are loc inegalitatea

$$\left| \sum_{j=1}^{k} [\phi(f(c_j)) - \phi(f(d_j))] [f(x_j) - f(x_{j-1})] \right| < \varepsilon.$$

3° Oricare ar fi $\varepsilon > 0$ există un $\delta > 0$ cu proprietatea că pentru orice diviziune $\Delta = (x_0, x_1, \dots, x_k) \in \text{Div } [a, b]$ cu $||\Delta|| < \delta$ are loc inegalitatea

$$\left| \sum_{j=1}^{k} [\phi(f(x_j)) - \phi(f(x_{j-1}))][f(x_j) - f(x_{j-1})] \right| < \varepsilon.$$

Pentru orice funcții f și ϕ sunt adevărate implicațiile $1^{\circ} \Rightarrow 2^{\circ} \Rightarrow 3^{\circ}$. Să se demonstreze că:

- a) Dacă ϕ este monotonă și f este continuă, atunci $2^{\circ} \Leftrightarrow 3^{\circ}$.
- b) Dacă f și ϕ sunt continue, atunci $1^{\circ} \Leftrightarrow 2^{\circ}$.
- 11. Fiind dată funcția $f:[a,b]\to \mathbf{R}$, să se demonstreze că următoarele afirmații sunt echivalente:
 - 1° f este integrabilă Riemann–Stieltjes în raport cu f pe [a, b].
 - 2° Oricare ar fi $\varepsilon > 0$ există un $\delta > 0$ cu proprietatea că pentru orice diviziune $\Delta = (x_0, x_1, \dots, x_k) \in \text{Div} [a, b]$ cu $||\Delta|| < \delta$ are loc inegalitatea

$$\sum_{j=1}^{k} [f(x_j) - f(x_{j-1})]^2 < \varepsilon.$$

In legătură cu ultimele două probleme se poate consulta articolul lui A. Pelczynski şi S. Rolewicz: Remarks on the existence of the Riemann–Stieltjes integral. *Colloq. Math.* 5 (1957), 74–77.

- **12.** Dați exemplu de funcție continuă $f:[a,b]\to \mathbf{R}$ și cu proprietatea că f nu este integrabilă Riemann–Stieltjes în raport cu f pe [a,b].
- 13. Fie $f:[a,b]\to]0,\infty[$ o funcție continuă cu variație mărginită. Să se demonstreze că $\frac{1}{f}$ este integrabilă Riemann–Stieltjes în raport cu f^2 pe [a,b] și să se determine $\int_a^b \frac{1}{f(x)} \, df^2(x).$
- **14.** Fie $f, g: [a, b] \to \mathbf{R}$ funcții care îndeplinesc următoarele condiții:
 - (i) f este integrabilă Riemann;
 - (ii) există $\alpha \geq 0$ așa încât

$$|g(x) - g(y)| \le \alpha |x - y|$$
 pentru orice $x, y \in [a, b]$.

Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g și că are loc inegalitatea $\left|\int_a^b f dg\right| \leq \alpha \int_a^b |f| dx$.

- **15.** Fie $f_1, f_2, g: [a, b] \to \mathbf{R}$ funcții care îndeplinesc următoarele condiții:
 - (i) q este monotonă;
 - (ii) f_2 este mărginită;
 - (iii) există $\alpha \geq 0$ și $p \geq 1$ în așa fel încât să avem

$$|f_1(x) - f_1(y)| \le \alpha |f_2(x) - f_2(y)|^p$$
 pentru orice $x, y \in [a, b]$.

Să se demonstreze că dacă f_2 este integrabilă Riemann–Stieltjes în raport cu g, atunci şi f_1 este integrabilă Riemann–Stieltjes în raport cu g.

S. Rădulescu

16. Să se calculeze următoarele integrale Riemann-Stieltjes:

1)
$$\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{1+x^{2}}} d(x^{4});$$
2)
$$\int_{0}^{\ln 3} \frac{x}{\sqrt{1+e^{x}}} d(e^{x});$$
3)
$$\int_{e^{2}}^{e^{3}} \sqrt{1+\ln x} d(\ln(\ln x));$$
4)
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos^{3} x} d(x^{2});$$
5)
$$\int_{0}^{1} \arctan \sqrt{x} d(x^{2});$$
6)
$$\int_{0}^{1} \frac{\arctan x}{\sqrt{1+x^{2}}} d(x^{2});$$
7)
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \cos^{2} x + b^{2} \sin^{2} x} d(\sin^{2} x), \quad a, b \in \mathbf{R}, \ a^{2} + b^{2} \neq 0;$$
8)
$$\int_{0}^{\pi} x d(\arctan(\cos x));$$
9)
$$\int_{0}^{1} \frac{x}{x^{2}+1} d(\arctan^{2} x);$$
10)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{6}} \frac{1}{\cos(x-\frac{\pi}{c})} d\left(\frac{1}{2} \ln \frac{1+\sin(x+\frac{\pi}{6})}{1-\sin(x+\frac{\pi}{c})}\right).$$

17. Fiind date funcțiile $f, g: \mathbf{R} \to \mathbf{R}$, definite prin f(x) = x și respectiv

$$g(x) = x \arcsin \frac{2x}{1+x^2} - \ln(1+x^2),$$

să se determine $\lim_{a \nearrow 1} \int_0^a f(x) dg(x)$.

18. Fie funcțiile $f, g : [a, b] \to \mathbf{R}$ și $c \in]a, b[$. Să se demonstreze că dacă există r > 0 așa încât $[c - r, c + r] \subseteq [a, b]$, f este continuă pe [c - r, c + r], iar restricția lui g la [c - r, c + r] este cu variație mărginită, atunci are loc egalitatea

$$\lim_{\delta \searrow 0} \int_{c-\delta}^{c+\delta} f(x)dg(x) = f(c)[g(c+0) - g(c-0)].$$

19. Fie funcțiile $f, g : [a, b] \to \mathbf{R}$. Să se demonstreze că dacă există $r \in]0, b-a]$ așa încât f este continuă pe [a, a+r] (respectiv pe [b-r, b]), iar restricția lui g la [a, a+r] (respectiv la [b-r, b]) este cu variație mărginită, atunci are loc egalitatea

$$\lim_{\delta \searrow 0} \int_{a}^{a+\delta} f(x)dg(x) = f(a)[g(a+0) - g(a)]$$

$$\left(\text{ respectiv } \lim_{\delta \searrow 0} \int_{b-\delta}^{b} f(x)dg(x) = f(b)[g(b) - g(b-0)] \right).$$

- **20.** Fie $f:[a,b]\to \mathbf{R}$ o funcție continuă și $g:[a,b]\to \mathbf{R}$ o funcție cu proprietatea că există o diviziune (x_0,x_1,\ldots,x_k) a lui [a,b] astfel încât să fie îndeplinite următoarele condiții:
 - (i) există $r_0, r_k \in]0, b-a]$ așa încât restricțiile lui g la $[a, a+r_0]$ și la $[b-r_k, b]$ sunt cu variație mărginită;
 - (ii) pentru orice $j \in \{1, \dots, k-1\}$ există $r_j > 0$ așa încât $[x_j r_j, x_j + r_j] \subseteq [a, b]$ și restricția lui g la $[x_j r_j, x_j + r_j]$ este cu variație mărginită;
 - (iii) pentru orice $j \in \{1, ..., k\}$ funcția g este derivabilă pe $]x_{j-1}, x_j[$, derivata g' este local integrabilă Riemann pe $]x_{j-1}, x_j[$, iar integrala improprie

$$I_j := \int_{x_{j-1}+0}^{x_j-0} f(x)g'(x)dx$$

este convergentă.

Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g pe [a,b] și că

$$\int_{a}^{b} f(x)dg(x) = \sum_{j=1}^{k} I_{j} + f(a)[g(a+0) - g(a)] + \sum_{j=1}^{k-1} f(x_{j})[g(x_{j}+0) - g(x_{j}-0)] + f(b)[g(b) - g(b-0)].$$

21. Fie $f, g: [-\sqrt{3}, \sqrt{3}] \to \mathbf{R}$ funcțiile definite prin $f(x) = x^2$ și respectiv

$$g(x) = \begin{cases} \arcsin x & \text{dacă} \ |x| \le 1 \\ \arctan x & \text{dacă} \ 1 < |x| < \sqrt{3} \\ 0 & \text{dacă} \ |x| = \sqrt{3}. \end{cases}$$

Să se arate că f este integrabilă Riemann–Stieltjes în raport cu g pe $[-\sqrt{3}, \sqrt{3}]$ și să se calculeze $\int_{-\sqrt{3}}^{\sqrt{3}} f(x)dg(x)$.

22. Fie $\alpha > 0$ și $f, g : [-1, 1] \to \mathbf{R}$ funcțiile definite prin $f(x) = |x|^{\alpha}$ și respectiv

$$g(x) = \begin{cases} \sqrt{x+1} & \text{dacă } x \in [-1,0] \\ -x \ln x & \text{dacă } x \in]0,1[\\ 1 & \text{dacă } x = 1. \end{cases}$$

Să se demonstreze că f este integrabilă Riemann–Stieltjes în raport cu g pe [-1,1] și să se calculeze $\int_{-1}^1 f(x)dg(x)$.

ŞIRURI DE FUNCŢII

- 1. Să se studieze convergența șirului de funcții (f_n) , dacă:
 - 1) $f_n:]0, \infty[\to \mathbf{R}, \ f_n(x) = \frac{nx}{1+nx};$
 - 2) $f_n: [0, \infty[\to \mathbf{R}, f_n(x) = \arctan(nx);$
 - 3) $f_n:]0, \infty[\to \mathbf{R}, f_n(x) = n\left(\sqrt{x + \frac{1}{n}} \sqrt{x}\right);$
 - 4) $f_n: [0, \infty[\to \mathbf{R}, \ f_n(x) = \frac{x}{x+n};$
 - 5) $f_n: \mathbf{R} \to \mathbf{R}, \ f_n(x) = \sqrt{x^2 + \frac{1}{n^2}};$
 - 6) $f_n: \mathbf{R} \to \mathbf{R}, \ f_n(x) = \frac{x^2}{n^2 + x^4};$
 - 7) $f_n: \mathbf{R} \to \mathbf{R}, \ f_n(x) = x \arctan(nx);$
 - 8) $f_n: \mathbf{R} \to \mathbf{R}, \ f_n(x) = \frac{x^n}{(1+x^{2n})^n};$

Concursul Traian Lalescu 1986

- 9) $f_n: \mathbf{R} \to \mathbf{R}$, $f_n(x) = \frac{|x^2 1| + |x + 2|e^{nx}}{|x + 3| + |x^2 3x + 2|e^{nx}}$;
- 10) $f_n: \mathbf{R} \to \mathbf{R}, \ f_n(x) = \frac{x^{2n+1} x^2 + 6}{x^{2n} + x^2 + 4};$
- 11) $f_n: [0,1] \to \mathbf{R}, \ f_n(x) = \frac{nx}{1+n+x};$
- 12) $f_n: [0,1] \to \mathbf{R}, \ f_n(x) = x^n x^{2n};$
- 13) $f_n: [0,1] \to \mathbf{R}, \ f_n(x) = n^{\alpha} x (1-x^2)^n, \ \alpha \in \mathbf{R};$
- 14) $f_n : \mathbf{R} \to \mathbf{R}, \ f_n(x) = \frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \dots + \frac{\cos nx}{n^2}.$
- **2.** Fie $f_n: \mathbf{R} \to \mathbf{R} \ (n \in \mathbf{N})$ şirul de funcţii de termen general $f_n(x) = \frac{x}{1 + n^2 x^2}$. Se cere:
 - a) Să se determine mulțimea de convergență și limita punctuală f a șirului (f_n) .
 - b) Să se studieze convergența uniformă a șirului (f_n) .
 - c) Să se determine mulțimea de convergență și limita punctuală g a șirului (f'_n) .

1

- d) Să se studieze convergența uniformă a șirului (f'_n) .
- e) Să se compare f' cu g și să se explice rezultatul.

3. Acelaşi enunţ pentru şirul $f_n: \mathbf{R} \to \mathbf{R} \ (n \in \mathbf{N})$, având termenul general

$$f_n(x) = x - \frac{x^n}{n}.$$

- **4.** Fie $f_n:[0,1]\to \mathbf{R}\ (n\in \mathbf{N})$ şirul de funcţii de termen general $f_n(x)=nxe^{-nx^2}$. Se cere:
 - a) Să se demonstreze că șirul (f_n) converge punctual pe [0,1] și să se determine limita sa punctuală f.
 - b) Să se studieze convergența uniformă a șirului (f_n) .
 - c) Să se compare $\int_0^1 f(x) dx$ cu $\lim_{n \to \infty} \int_0^1 f_n(x) dx$ și să se explice rezultatul.
- **5.** Fie $f_n: \mathbf{R} \to \mathbf{R}$ $(n \in \mathbf{N})$ şirul de funcții de termen general $f_n(x) = \frac{n^2x}{x^2 + n^2}$. Se cere:
 - a) Să se demonstreze că șirul (f_n) converge punctual pe \mathbf{R} și să se determine limita sa punctuală f.
 - b) Să se arate că (f_n) nu converge uniform pe \mathbf{R} .
 - c) Să se arate că $\int_0^x f(t)dt = \lim_{n \to \infty} \int_0^x f_n(t)dt$ pentru orice $x \in \mathbf{R}$.
- **6.** Fie $A \subseteq \mathbf{R}^m$ o mulţime nevidă, iar $f_n : A \to \mathbf{R}$ $(n \in \mathbf{N})$ un şir de funcţii uniform continue, care converge uniform către funcţia $f : A \to \mathbf{R}$. Să se demonstreze că f este uniform continuă.
- 7. Fie $f_n: \mathbf{R} \to \mathbf{R} \ (n \in \mathbf{N})$ un şir de funcţii care converge uniform pe \mathbf{R} către funcţia $f: \mathbf{R} \to \mathbf{R}$. Presupunem că pentru fiecare $n \in \mathbf{N}$ există $\ell_n = \lim_{x \to \infty} f_n(x) \in \mathbf{R}$. Să se demonstreze că există şi sunt egale limitele $\lim_{n \to \infty} \ell_n$ şi $\lim_{x \to \infty} f(x)$.

Berkeley 1999

8. Fie $f_1:[a,b]\to \mathbf{R}$ o funcție integrabilă Riemann, iar $f_n:[a,b]\to \mathbf{R}$ $(n\in \mathbf{N})$ șirul de funcții definit recursiv prin

$$f_{n+1}(x) = \int_a^x f_n(t)dt$$
 pentru orice $x \in [a, b]$ şi orice $n \ge 1$.

Să se demonstreze că șirul (f_n) converge uniform către funcția nulă pe [a,b].

9. Fie $f_n:[0,1]\to \mathbf{R}$ $(n\in \mathbf{N})$ şirul definit recursiv astfel: $f_1(x)=0$,

$$f_{n+1}(x) = f_n(x) + \frac{1}{2} [x - f_n^2(x)]$$
 pentru orice $x \in [0, 1]$.

Să se demonstreze că șirul (f_n) converge uniform pe [0,1] către funcția $f(x) = \sqrt{x}$.

2

10. Să se calculeze
$$\lim_{n\to\infty} \int_0^1 \underbrace{\sqrt{\frac{x}{2} + \sqrt{\frac{x}{2} + \dots + \sqrt{\frac{x}{2} + \sqrt{2}}}}_{n \text{ radicali}} dx.$$

- 11. Fie funcția $f: \mathbf{R} \to \mathbf{R}$. Să se demonstreze că există un şir de funcții polinomiale $f_n: \mathbf{R} \to \mathbf{R} \ (n \in \mathbf{N})$, uniform convergent către f, dacă şi numai dacă funcția f este polinomială.
- **12.** Fie $m \in \mathbb{N}$ şi $f_n : [0,1] \to \mathbb{R}$ $(n \in \mathbb{N})$ un şir de funcţii polinomiale de grad cel mult m, care converge punctual către funcţia $f : [0,1] \to \mathbb{R}$. Să se demonstreze că f este o funcţie polinomiaă de grad cel mult m şi că şirul (f_n) converge uniform către f pe [0,1].

SERII DE FUNCȚII

1. Să se determine mulțimea de convergență a următoarelor serii de funcții:

1)
$$\sum_{n>1} \frac{2n^2 + 5}{7n^2 + 3n + 2} \left(\frac{x}{2x+1}\right)^n, \quad x \in \mathbf{R} \setminus \left\{-\frac{1}{2}\right\};$$

2)
$$\sum_{n\geq 1} (-1)^n \frac{n+1}{n^2+n+1} \left(\frac{x^2-2}{1-2x^2}\right)^n, \quad x \in \mathbf{R} \setminus \left\{-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\};$$

3)
$$\sum_{n>1} \frac{2n}{4n^2+1} \sin 2nx, \qquad x \in \mathbf{R};$$

4)
$$\sum_{n\geq 2} \ln\left(1 + \frac{(-1)^n}{n^x}\right), \quad x \in]0, \infty[.$$

2. Să se studieze convergența seriei de funcții $\sum_{n\geq 1} f_n$, unde $f_n: [0,1[\to \mathbf{R} \text{ este funcția}$ definită prin $f_n(x) = \frac{x^{2^{n-1}}}{1-x^{2^n}}$.

Concursul William Lowell Putnam 1977

- 3. Să se demonstreze că seria de funcții $\sum_{n\geq 1} \frac{x}{n^2} \arctan \frac{n^2}{x}$ $(x\in]0,\infty[)$ este punctual convergentă, iar suma sa este o funcție derivabilă.
- 4. Să se demonstreze că seria de funcții $\sum_{n\geq 1} e^{-nx} \sin nx \ (x\in [1,\infty[)$ este uniform convergentă, iar suma sa este o funcție derivabilă cu derivata continuă.
- 5. Să se demonstreze că seria de funcții

$$\sum_{n>1} \frac{x^n}{(1+x)(1+x^2)\cdots(1+x^n)} \qquad (x \in [0,\infty[)$$

este uniform convergentă.

6. Să se demonstreze că mulțimea de convergență a seriei de funcții $\sum_{n\geq 1} \frac{e^{-nx}}{1+n^2}$ $(x\in \mathbf{R})$ este $[0,\infty[$. Considerând funcția $f:[0,\infty[\to\mathbf{R},$ definită prin

$$f(x) = \sum_{n=1}^{\infty} \frac{e^{-nx}}{1 + n^2},$$

să se demonstreze că f este continuă pe $[0, \infty[$ şi derivabilă pe $]0, \infty[$.

Olimpiadă studențească, U.R.S.S.

7. Fie $a>0,\ f_1:[0,a]\to {\bf R}$ o funcție continuă, iar $f_n:[0,a]\to {\bf R}$ $(n\in {\bf N})$ șirul de funcții definit recursiv prin

$$f_{n+1}(x) = \int_0^x f_n(t)dt$$
 pentru orice $x \in [0, a]$ şi orice $n \ge 1$.

Să se demonstreze că seria de funcții $\sum_{n\geq 1} f_n$ este uniform convergentă și să se determine suma sa.

- 8. Să se calculeze $\int_{0+0}^{1-0} \ln x \ln(1-x) dx.$
- **9.** Să se demonstreze că $\int_{0+0}^{1} x^{-x} dx = \sum_{n=1}^{\infty} n^{-n}$.

Olimpiadă studențească, U.R.S.S.

10. Pentru calculul integralei improprii $I:=\int_{0+0}^{\infty}\frac{x}{e^x-1}\,dx$, se poate folosi următoarea idee: oricare ar fi $x\in(0,\infty)$ are loc egalitatea

$$\frac{x}{e^x - 1} = \sum_{n=1}^{\infty} x e^{-nx},$$

deci

$$I = \int_{0+0}^{\infty} \left(\sum_{n=1}^{\infty} x e^{-nx} \right) dx = \sum_{n=1}^{\infty} \int_{0+0}^{\infty} x e^{-nx} dx = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Identificați în lanțul de egalități de mai sus semnul "=" care necesită o justificare riguroasă. Indicați apoi o metodă riguroasă de calcul al integralei I, bazată pe ideea de mai sus.

SERII DE PUTERI

1. Să se determine raza de convergență și mulțimea de convergență pentru următoarele serii de puteri:

1)
$$\sum_{n>0} \left(\frac{n}{2n+1}\right)^{2n-1} x^n;$$

2)
$$\sum_{n\geq 1} a^n \left(1 + \frac{1}{n}\right)^{n^2} (x+1)^n, \quad a>0;$$

3)
$$\sum_{n>0} \frac{(-1)^n \binom{2n}{n}}{2^{2n}} x^n;$$

4)
$$\sum_{n>0} \frac{(n!)^2}{(2n)!} \cdot \frac{(2n)!!}{(2n-1)!!} (x-3)^n;$$

5)
$$\sum_{n\geq 0} \frac{n^n}{a^n n!} (x+2)^n, \quad a>0;$$

6)
$$\sum_{n\geq 0} \left(\frac{n^2+2n+2}{n^2+1}\right)^{n^2} x^n$$
.

2. Fie $\sum_{n\geq 0} a_n x^n$ o serie de puteri având raza de convergență r>0 și fie $\lambda>r$. Există

o serie de puteri $\sum_{n\geq 0} b_n x^n$ astfel încât

a) seria
$$\sum_{n\geq 0} b_n x^n$$
 are raza de convergență r , iar

b) seria
$$\sum_{n>0} (a_n + b_n) x^n$$
 are raza de convergență λ ?

S. Zheng şi Y. Song, The College Math. J. [1998, 153]

3. Să se dezvolte în serie de puteri funcția
$$f:]-1, 1[\to \mathbf{R}, \, f(x) = \frac{1}{\sqrt{1-x^2}}.$$

- **4.** Să se dezvolte în serie de puteri funcția $f: [-1,1] \to \mathbf{R}$, definită prin $f(x) = \arcsin x$. Să se determine mulțimea de convergență a seriei de puteri obținute.
- 5. Să se demonstreze că funcția $f: \mathbf{R} \to \mathbf{R}$, definită prin

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{dacă } x \neq 0\\ 0 & \text{dacă } x = 0 \end{cases}$$

este de clasă C^{∞} dar nu este dezvoltabilă în serie de puteri în jurul lui 0 pe nici un interval nedegenerat $I \subseteq \mathbf{R}$ care conține pe 0.

1

6. Este seria de puteri $\sum_{n>0} \frac{(-1)^n}{(2n)!} x^{2n}$ uniform convergentă pe **R**?

Olimpiadă studențească, U.R.S.S.

7. Să se determine mulțimea de convergență și suma seriei de puteri $\sum_{n\geq 1} \frac{n^2+1}{2^n n!} x^n$.

Olimpiadă studențească, U.R.S.S.

- 8. Să se calculeze $\sum_{n=1}^{\infty} \frac{1}{n(n+1)2^n}.$
- 9. Să se calculeze $\sum_{n=0}^{\infty} \frac{(-1)^n}{3n+1}.$
- 10. Să se demonstreze că

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{4 \cdot 5 \cdot 6} + \frac{1}{7 \cdot 8 \cdot 9} + \dots = \frac{\pi \sqrt{3}}{12} - \frac{1}{4} \ln 3.$$

Olimpiadă studențească, U.R.S.S.

- 11. Să se calculezeze $\int_{0+0}^{1} \frac{\ln(1+x)}{x} dx.$
- 12. Se consideră șirul de termen general $a_n = \int_0^n \ln(1+e^{-x})dx \ (n \ge 1)$. Să se arate că șirul (a_n) este convergent, iar limita sa aparține intervalului $\left[\frac{3}{4},1\right]$.

M. Chiriță, Olimpiada județeană de matematică, București 1994

13. Să se demonstreze că

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m(m+1)\cdots(m+n)} = \int_{0+0}^{1} \frac{e^x - 1}{x} dx.$$

Olimpiadă studențească, U.R.S.S.

14. (Generalizarea problemei precedente) Să se demonstreze că pentru orice $m \in \mathbf{N}^*$

$$\sum_{n_m=1}^{\infty} \cdots \sum_{n_1=1}^{\infty} \sum_{n_0=1}^{\infty} \frac{1}{n_0(n_0+1)\cdots(n_0+n_1+\cdots+n_m)}$$
$$= (-1)^{m-1} \left(\int_{0+0}^{1} \frac{e^x - 1}{x} dx + \sum_{j=1}^{m-1} \frac{1}{j} \left(1 - e \sum_{j=0}^{j-1} \frac{(-1)^j}{j!} \right) \right).$$

N. Anghel, Amer. Math. Monthly [1996, 426]

INTEGRALE IMPROPRII

1. Să se studieze dacă integralele improprii de mai jos sunt convergente, iar în caz afirmativ să se determine valoarea lor.

1)
$$\int_{a}^{b-0} \frac{1}{(b-x)^p} dx$$
, $a, b, p \in \mathbf{R}$, $a < b$;

2)
$$\int_0^{1-0} \sqrt{\frac{1+x}{1-x}} \, dx;$$

3)
$$\int_0^{1-0} x^n \sqrt{\frac{1+x}{1-x}} \, dx, \quad n \in \mathbf{N};$$

4)
$$\int_{a}^{\infty} \frac{1}{x^{p}} dx$$
, $a > 0$, $p \in \mathbf{R}$;

5)
$$\int_{1}^{\infty} \frac{\arctan x}{x^2} \, dx;$$

6)
$$\int_0^\infty \frac{\arctan x}{(1+x^2)^{3/2}} dx;$$

7)
$$\int_0^\infty \frac{\arctan x}{x^2 + 2bx + 1} dx$$
, $|b| < 1$, (M. Ivan);

8)
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^{2n} + x^{n} + 1}}, \quad n \in \mathbf{N};$$

9)
$$\int_0^\infty \frac{dx}{x^4 + 1}$$
;

10)
$$\int_0^\infty \frac{dx}{(1+x^2)(1+x^\alpha)}, \quad \alpha > 0;$$

11)
$$\int_0^\infty e^{-ax} \sin bx \, dx, \quad \int_0^\infty e^{-ax} \cos bx \, dx, \quad a, b \in \mathbf{R}, \ a > 0;$$

12)
$$\int_0^\infty e^{-ax} \sin^n x \, dx, \quad a > 0, \ n \in \mathbf{N};$$

13)
$$\int_0^\infty e^{-x^2} dx$$
, (Euler-Poisson);

14)
$$\int_{a+0}^{b} \frac{1}{(x-a)^p} dx$$
, $a, b, p \in \mathbf{R}$, $a < b$;

15)
$$\int_{1+0}^{4} \frac{dx}{x\sqrt{2x^2 - x - 1}};$$

16)
$$\int_{1+0}^{2} \frac{dx}{x \ln x}$$
;

17)
$$\int_{0+0}^{1} (\ln x)^n dx, \quad n \in \mathbf{N};$$

18)
$$\int_{0+0}^{1} [\ln x] dx;$$

$$19) \int_{0+0}^{1} x \left[\frac{1}{x} \right] dx;$$

20)
$$\int_{0+0}^{1} \left\{ \frac{1}{x} \right\} dx;$$

21)
$$\int_{0+0}^{1} \left\{ \frac{1}{x} \right\}^2 dx;$$

$$22) \int_{0+0}^{1} x \left[\frac{1}{x} \right] \left\{ \frac{1}{x} \right\} dx;$$

23)
$$\int_{0+0}^{\frac{\pi}{2}} \ln(\sin x) dx$$
, $\int_{0+0}^{\pi-0} \ln(\sin x) dx$, (Euler);

24)
$$\int_{0+0}^{\pi-0} x \ln(\sin x) dx;$$

25)
$$\int_{0+0}^{1} \frac{\arcsin x}{x} \, dx;$$

26)
$$\int_{a+0}^{b-0} \frac{dx}{\sqrt{(x-a)(b-x)}}, \quad a, b \in \mathbf{R}, \ a < b;$$

27)
$$\int_{a+0}^{b-0} \frac{x}{\sqrt{(x-a)(b-x)}} dx$$
, $a, b \in \mathbf{R}$, $a < b$;

28)
$$\int_{0}^{\pi} \frac{dx}{4 + 3\cos x}$$
;

29)
$$\int_{0+0}^{1-0} \frac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}} \, dx;$$

$$30) \int_{0+0}^{1-0} \frac{\ln x}{\sqrt{1-x}} \, dx;$$

31)
$$\int_{-1+0}^{1-0} \frac{x^3}{\sqrt{1-x^2}} \ln \frac{1+x}{1-x} \, dx;$$

32)
$$\int_{0+0}^{1-0} \frac{\ln x}{\sqrt{1-x^2}} \, dx;$$

33)
$$\int_{1+0}^{\infty} \frac{dx}{(x^2+1)\sqrt{x^2-1}};$$

34)
$$\int_{0+0}^{\infty} \frac{\ln x}{x^2 + a^2} \, dx, \quad a > 0;$$

35)
$$\int_{0+0}^{\infty} \frac{\ln x}{(x^2+1)^2} \, dx;$$

36)
$$\int_{0+0}^{\infty} \frac{x \ln x}{(x^2+1)^3} \, dx;$$

37)
$$\int_{0+0}^{\infty} \frac{x^3 \ln x}{(x^4+1)^3} \, dx;$$

$$38) \int_{0+0}^{\infty} \frac{\sin x}{x} \, dx;$$

39)
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + x^2 + 1} dx$$
.

- **2.** (integralele lui Froullani) Fie a,b>0 și $f:]0,\infty[\to {\bf R}$ o funcție continuă. Să se demonstreze că:
 - a) Dacă există și sunt finite limitele $\lim_{x\searrow 0} f(x) =: f(0+)$ și $\lim_{x\to\infty} f(x) =: f(\infty)$, atunci are loc egalitatea

$$\int_{0+0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = [f(0+) - f(\infty)] \ln \frac{b}{a}.$$

b) Dacă există și este finită limita $\lim_{x \searrow 0} f(x) =: f(0+)$ și există c > 0 așa încât integrala improprie $\int_{c}^{\infty} \frac{f(x)}{x} dx$ este convergentă, atunci are loc egalitatea

$$\int_{0+0}^{\infty} \frac{f(ax) - f(bx)}{x} \, dx = f(0+) \ln \frac{b}{a}.$$

c) Dacă există și este finită limita $\lim_{x\to\infty} f(x) =: f(\infty)$ și există c>0 așa încât integrala improprie $\int_{0+0}^c \frac{f(x)}{x} \, dx$ este convergentă, atunci are loc egalitatea

$$\int_{0+0}^{\infty} \frac{f(ax) - f(bx)}{x} dx = -f(\infty) \ln \frac{b}{a}.$$

3. Fiind date numerele reale a, b > 0, să se calculeze următoarele integrale improprii:

1)
$$\int_{0+0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} dx;$$

2)
$$\int_{0+0}^{\infty} \frac{\arctan(ax) - \arctan(bx)}{x} dx;$$

3)
$$\int_{0+0}^{\infty} \frac{\cos(ax) - \cos(bx)}{x} dx;$$

4)
$$\int_{0+0}^{\infty} \frac{1}{x^2} \ln \frac{(1+ax)^b}{(1+bx)^a} dx.$$

4. Să se studieze convergența următoarelor integrale improprii:

1)
$$\int_0^{1-0} \frac{dx}{\sqrt[4]{1-x^4}}$$
;

2)
$$\int_0^{1-0} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}, \quad |k| < 1, \quad \text{(integralele eliptice de speţa întâi)};$$

3)
$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}(1+x^{2})^{\beta}}, \quad \alpha, \beta \in \mathbf{R};$$

4)
$$\int_{1}^{\infty} \frac{x^{\alpha} \arctan x}{1 + x^{\beta}} dx, \quad \alpha, \beta \in \mathbf{R};$$

5)
$$\int_0^\infty \frac{dx}{1 + x^4 \cos^2 x}$$
;

6)
$$\int_0^\infty \frac{x}{1 + x^2 \cos^2 x} \, dx;$$

7)
$$\int_0^\infty \sin(x^2) dx$$
, $\int_0^\infty \cos(x^2) dx$, (integralele lui Fresnel);

8)
$$\int_{b}^{\infty} \left(\sqrt{\sqrt{x+a} - \sqrt{x}} - \sqrt{\sqrt{x} - \sqrt{x-b}} \right) dx, \quad a, b > 0;$$

Concursul William Lowell Putnam 1995

9)
$$\int_{\pi}^{\infty} \frac{\sin x}{\ln x} \, dx;$$

10)
$$\int_{0+0}^{1} \frac{dx}{\sqrt[3]{x(e^x - e^{-x})}};$$

11)
$$\int_{-\frac{\pi}{2}+0}^{\frac{\pi}{4}} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right)^p dx, \quad p > 0;$$

12)
$$\int_{0+0}^{1-0} x^{a-1} (1-x)^{b-1} dx, \quad a, b \in \mathbf{R}, \quad \text{(integralele lui Euler de speța întâi)};$$

13)
$$\int_{0+0}^{\infty} x^{a-1} e^{-x} dx$$
, $a \in \mathbf{R}$, (integralele lui Euler de speţa a doua);

$$14) \int_{0+0}^{\infty} \frac{|\sin x|}{x} \, dx;$$

15)
$$\int_{0.10}^{\infty} \sin(x \ln x) dx;$$

16)
$$\int_{0+0}^{\infty} \frac{1}{x^2} \left(\frac{1}{2} - \frac{x}{e^x - e^{-x}} \right) dx.$$

5. Fie
$$f:[0,\infty[\to[0,\infty[$$
 o funcție descrescătoare cu proprietatea $\int_0^\infty f(x)dx<\infty$. Să se demonstreze că $\lim_{x\to\infty} xf(x)=0$.

Berkeley 1983

6. Fie $f:]0, \infty[\to]0, \infty[$ funcția definită prin

$$f(x) = e^{\frac{x^2}{2}} \int_{x}^{\infty} e^{-\frac{t^2}{2}} dt.$$

Să se demonstreze că:

- a) pentru orice x > 0 are loc inegalitatea $f(x) < \frac{1}{x}$.
- b) funcția f este strict descrescătoare.

Berkeley 1985

7. Fie $f:]0, \infty[\to]0, \infty[$ o funcție strict crescătoare de clasă C^1 . Să se demonstreze că dacă $\int_1^\infty \frac{dx}{f(x) + f'(x)} < \infty$, atunci și $\int_1^\infty \frac{dx}{f(x)} < \infty$.

Olimpiadă studențească, U.R.S.S.

8. Fie numerele reale p>1 și a>0, iar $f:[0,\infty[\to [a,\infty[$ o funcție de clasă C^2 . Să se demonstreze că dacă integrala $\int_0^\infty |f''(x)| dx$ este convergentă, atunci și integrala $\int_0^\infty \frac{[f'(x)]^2}{[f(x)]^p} dx$ este convergentă.

Olimpiadă studențească, U.R.S.S.

9. Să se demonstreze că dacă $f:]0, \infty[\to]0, \infty[$ este o funcție de clasă C^1 , atunci $\int_{0+0}^{\infty} \frac{\sqrt{1+(f'(x))^2}}{f(x)} dx = \infty.$

Olimpiadă studențească, U.R.S.S.

10. Fie $f:[0,\infty[\to \mathbf{R} \text{ o funcție descrescătoare cu proprietatea} \int_0^\infty f(x)dx = \infty$, iar $g:[0,\infty[\to \mathbf{R} \text{ o funcție local integrabilă Riemann care păstrează semn constant pe} [0,\infty[$. Să se demonstreze că

$$\int_0^\infty |f(x)\cos x + g(x)\sin x| dx = \int_0^\infty |f(x)\sin x + g(x)\cos x| dx = \infty.$$

W. F. Trench, Amer. Math. Monthly [1988, E3243]

11. Fie $f:[0,1[\to \mathbf{R}$ o funcție monotonă. Să se demonstreze că limitele

$$\lim_{x \nearrow 1} \int_0^x f(t)dt \qquad \text{si} \qquad \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$

există și sunt egale.

M. Bălună, Olimpiada națională de matematică 1996

- 12. Să se demonstreze că:
 - a) pentru fiecare $n \in \mathbb{N}$ există un unic polinom P_n cu coeficienți reali, de gradul n-1, în așa fel încât

$$\forall x \in \mathbf{R} : \sin nx = \sin x P_n(\cos x).$$

b) are loc egalitatea

$$\int_0^1 P_n^2(t)dt = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}.$$

I. Chiţescu, Olimpiada naţională de matematică 1991

FUNCȚIILE BETA ȘI GAMMA

1. Să se demonstreze că pentru orice a, y > 0 are loc egalitatea

$$\int_{0+0}^{\infty} x^{a-1} e^{-xy} dx = \frac{\Gamma(a)}{y^a}.$$

2. Să se demonstreze că

$$B(a,b) = \int_{0+0}^{\infty} \frac{t^{a-1}}{(1+t)^{a+b}} dt$$
 pentru orice $a, b > 0$.

3. Să se demonstreze că

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
 pentru orice $a,b>0$.

4. Să se demonstreze că:

1)
$$\sum_{k=0}^{n} {n \choose k}^{-1} = \frac{n+1}{2^{n+1}} \sum_{k=1}^{n+1} \frac{2^k}{k}, \quad n \in \mathbf{N};$$

A. M. Rockett, Fibonacci Quart. [1981, pp. 433–437]

2)
$$\sum_{k=1}^{n} \frac{1}{k \binom{n}{k}} = \frac{1}{2^{n-1}} \sum_{\substack{k=1 \ impagr}}^{n} \frac{\binom{n}{k}}{k}, \quad n \in \mathbf{N};$$

G. Galperin şi H. Gauchman, Amer. Math. Monthly [2004, 724]

3)
$$\sum_{k=0}^{2n} (-1)^k {2n \choose k} {4n \choose 2k}^{-1} = \frac{4n+1}{2n+1}, \quad n \in \mathbf{N};$$

T. Trif, Fibonacci Quart. [2000, 80]

4)
$$\sum_{k=0}^{2n} (-1)^k \binom{4n}{2k} \binom{2n}{k}^{-1} = -\frac{1}{2n-1}, \quad n \in \mathbf{N};$$

WMC Problems Group, Amer. Math. Monthly [1996, 74]

5)
$$\sum_{k=0}^{m} {m \choose k} {n+m \choose p+k}^{-1} = \frac{n+m+1}{n+1} {n \choose p}^{-1}, \quad m, n, p \in \mathbb{N}, \ p \le n;$$

Concursul William Lowell Putnam 1987

N. Pavelescu, Gaz. Mat. [1992, 230]

6)
$$\sum_{k=0}^{n} (-1)^k {m+n \choose m+k}^{-1} = \frac{m+n+1}{m+n+2} \left({m+n+1 \choose m}^{-1} + (-1)^n \right), \quad m, n \in \mathbf{N};$$

T. Trif, Fibonacci Quart. [2000, 81]

7)
$$\sum_{k=0}^{\infty} {mk \choose nk}^{-1} = \int_0^1 \frac{1 + (m-1)t^n (1-t)^{m-n}}{(1-t^n (1-t)^{m-n})^2} dt, \quad m, n \in \mathbf{N}, \ m > n;$$

T. Trif, Fibonacci Quart. [2000, 82]

8)
$$\sum_{k=0}^{\infty} {2k \choose k}^{-1} = \frac{4}{3} + \frac{2\pi\sqrt{3}}{27};$$

9)
$$\sum_{k=0}^{\infty} {4k \choose 2k}^{-1} = \frac{16}{15} + \frac{\pi\sqrt{3}}{27} - \frac{2\sqrt{5}}{25} \ln \frac{1+\sqrt{5}}{2};$$

10)
$$\sum_{k=0}^{\infty} {n+k \choose k}^{-1} = \frac{n}{n-1}, \quad n \in \mathbb{N}, \ n \ge 2;$$

J. Pla, Fibonacci Quart. [1997, pp. 342–345]

11)
$$\sum_{k=0}^{\infty} \frac{2^{k+1} (k!)^2}{(2k+1)!} = \pi.$$

J. C. R. Li, Amer. Math. Monthly

5. Să se demonstreze că

$$\lim_{n \to \infty} n^2 \int_0^{\frac{\pi}{2} - 0} \left(1 - \sqrt[n]{\lg x} \right) dx = -\frac{\pi^3}{16}.$$

M. Stănean, Gaz. Mat. (Ser. A) [1989, 192]

6. Fie a_1, a_2, \ldots, a_n numere reale strict pozitive şi fie $a = \frac{a_1 + a_2 + \cdots + a_n}{n}$. Să se demonstreze că

$$\Gamma(a_1)^{\Gamma(a_1)} \cdot \Gamma(a_2)^{\Gamma(a_2)} \cdots \Gamma(a_n)^{\Gamma(a_n)} \ge e^{n(\Gamma(a)-1)}.$$

Z. F. Stark, Amer. Math. Monthly [1996, 695]

SPAŢIUL EUCLIDIAN \mathbf{R}^n

- **1.** Fie $a = (3, -2, -4) \in \mathbf{R}^3$ şi $b = (8, 6, 3) \in \mathbf{R}^3$. Să se determine $a+b, a-b, -3a+b, \langle a, b \rangle, ||a||, ||b||, d(a, b)$.
- 2. Să se demonstreze inegalitatea lui Cauchy-Buneakovski-Schwarz:

$$\forall x, y \in \mathbf{R}^n : |\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}.$$

3. Să se demonstreze identitatea paralelogramului:

$$\forall x, y \in \mathbf{R}^n : \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

4. Fiind date numerele reale p, q > 1, cu proprietatea $\frac{1}{p} + \frac{1}{q} = 1$, să se demonstreze că: 1° Are loc inegalitatea lui Young

$$\forall a, b \in [0, \infty[: ab \le \frac{a^p}{p} + \frac{b^q}{q}].$$

2° Are loc inegalitatea lui Hölder

$$\forall a_1, \dots, a_n, b_1, \dots, b_n \in [0, \infty[: \sum_{k=1}^n a_k b_k \le \left(\sum_{k=1}^n a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^n b_k^q\right)^{\frac{1}{q}}.$$

5. Fiind dat numărul real $p \geq 1$, să se demonstreze că are loc inegalitatea lui Minkowski

$$\forall a_1, \dots, a_n, b_1, \dots, b_n \in [0, \infty[: \left[\sum_{k=1}^n (a_k + b_k)^p \right]^{\frac{1}{p}} \le \left(\sum_{k=1}^n a_k^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^n b_k^p \right)^{\frac{1}{p}}.$$

6. Fiind dat numărul real $p \geq 1$, să se demonstreze că funcția $\|\cdot\|_p : \mathbf{R}^n \to [0, \infty[$, definită prin

$$||x||_p := \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$
 oricare ar fi $x = (x_1, \dots, x_n) \in \mathbf{R}^n$,

este o normă, numită norma Minkowski pe \mathbf{R}^n .

7. Fie X un spațiu liniar real și $\|\cdot\|: X \to [0, \infty[$ o normă pe X. Se spune că norma $\|\cdot\|$ provine dintr-un produs scalar dacă există un produs scalar $\langle\cdot,\cdot\rangle$ pe X, cu proprietatea $\|x\| = \sqrt{\langle x, x \rangle}$ pentru orice $x \in X$. Să se demonstreze că norma Minkowski $\|\cdot\|_p$ pe \mathbf{R}^n , unde $p \geq 1$, provine dintr-un produs scalar dacă și numai dacă p = 2.

1

8. Să se demonstreze că funcția $\|\cdot\|_{\infty}: \mathbf{R}^n \to [0,\infty[$, definită prin

$$||x||_{\infty} := \max\{ |x_1|, \dots, |x_n| \}$$
 oricare ar fi $x = (x_1, \dots, x_n) \in \mathbf{R}^n$,

este o normă, numită norma Cebîşev pe \mathbb{R}^n . Să se arate că norma Cebîşev nu provine dintr-un produs scalar.

- 9. Să se demonstreze că pentru orice $x \in \mathbf{R}^n$ are loc egalitatea $\lim_{p \to \infty} \|x\|_p = \|x\|_{\infty}$.
- **10.** Să se demonstreze că pentru orice $a \in \mathbf{R}^n$ și orice r > 0 are loc egalitatea cl $B(a, r) = \bar{B}(a, r)$.
- 11. Să se demonstreze că pentru orice mulțime $A\subseteq \mathbf{R}^n$ sunt adevărate următoarele relații:
 - 1° int $A \subseteq A \subseteq \operatorname{cl} A$;
 - $2^{\circ} \operatorname{ext} A = \operatorname{int} (\mathbf{R}^n \setminus A);$
 - $3^{\circ} \operatorname{cl} A = \mathbf{R}^n \setminus \operatorname{int} (\mathbf{R}^n \setminus A);$
 - $4^{\circ} \operatorname{bd} A = (\operatorname{cl} A) \cap \operatorname{cl} (\mathbf{R}^n \setminus A);$
 - 5° (int A) \cup (bd A) = cl A;
 - 6° (int A) \cup (bd A) \cup (ext A) = \mathbf{R}^{n} ;
 - $7^{\circ} (\operatorname{int} A) \cap (\operatorname{bd} A) = \emptyset;$
 - $8^{\circ} (\operatorname{int} A) \cap (\operatorname{ext} A) = \emptyset;$
 - $9^{\circ} (\operatorname{ext} A) \cap (\operatorname{bd} A) = \emptyset;$
 - $10^{\circ} \operatorname{cl} A = A \cup A'.$
- 12. Să se demonstreze că pentru orice mulțimi $A_1, A_2 \subseteq \mathbb{R}^n$ are loc egalitatea

$$cl(A_1 \cup A_2) = (cl A_1) \cup (cl A_2).$$

Este adevărat că pentru orice familie $(A_i)_{i\in I}$ de submulțimi ale lui \mathbf{R}^n are loc egalitatea

$$\operatorname{cl}\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} \operatorname{cl} A_i ?$$

13. Să se demonstreze că pentru orice mulțimi $A_1, A_2 \subseteq \mathbb{R}^n$ are loc egalitatea

$$(A_1 \cup A_2)' = A_1' \cup A_2'.$$

Este adevărat că pentru orice familie $(A_i)_{i\in I}$ de submulțimi ale lui \mathbf{R}^n are loc egalitatea

$$\left(\bigcup_{i\in I} A_i\right)' = \bigcup_{i\in I} A_i' ?$$

14. Să se determine

$$\lim_{k \to \infty} \left(\underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{3}}}}}_{k \text{ radicali}}, \sum_{j=1}^{k} \frac{b(j)}{j(j+1)} \right),$$

unde b(j) este numărul cifrelor 1 din reprezentarea binară a lui j (de exemplu, $b(6) = b(110_2) = 2$, $b(8) = b(1000_2) = 1$).

15. Fie $f: \mathbf{R} \to \mathbf{R}$ o funcție aditivă, adică o funcție cu proprietatea

$$\forall x, y \in \mathbf{R} : f(x+y) = f(x) + f(y)$$

și fie

$$graph(f) := \{ (x, f(x)) \in \mathbf{R}^2 \mid x \in \mathbf{R} \}$$

graficul lui f. Să se demonstreze că:

- a) Dacă f este continuă în cel puţin un punct, atunci f este continuă pe \mathbf{R} .
- b) Dacă f este continuă în cel puţin un punct (deci pe \mathbf{R}), atunci $\forall x \in \mathbf{R}$: f(x) = cx, unde c = f(1).
- c) Dacă f este discontinuă pe \mathbf{R} , atunci clgraph $(f) = \mathbf{R}^2$, adică graph(f) este o submulțime densă a lui \mathbf{R}^2 .
- **16.** Fie (x^k) un şir convergent de puncte din \mathbf{R}^n şi $x = \lim_{k \to \infty} x^k$. Să se demonstreze că mulțimea $A = \{x\} \cup \{x^k \mid k = 1, 2, \dots\}$ este compactă.
- 17. Fiind date multimile $A, B \subseteq \mathbb{R}^n$, notăm

$$A + B := \{ x \in \mathbf{R}^n \mid \exists a \in A \text{ si } \exists b \in B : x = a + b \}.$$

- a) Să se demonstreze că dacă una dintre mulțimile A și B este închisă, iar cealaltă este compactă, atunci mulțimea A+B este închisă.
- b) Dați exemplu de mulțimi închise A și B pentru care mulțimea A+B nu este închisă.

LIMITE ALE FUNCȚIILOR DE MAI MULTE VARIABILE CONTINUITATEA FUNCȚIILOR DE MAI MULTE VARIABILE

- 1. Dați exemplu de funcții $f, g: \mathbf{R} \to \mathbf{R}$, care îndeplinesc următoarele condiții:
 - (i) $\lim_{x\to 0} g(x) = 1;$
 - (ii) $\lim_{y \to 1} f(y) = 2;$
 - (iii) $\lim_{x \to 0} (f \circ g)(x) \neq 2$.
- 2. Să se calculeze următoarele limite:

1)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin \frac{1}{xy};$$

2)
$$\lim_{(x,y)\to(0,2)} \frac{\sin(xy)}{x}$$
;

3)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
;

4)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$$
;

5)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{xy};$$

6)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^3+y^3)}{x^2+y^2};$$

7)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{1+x^2+y^2}-1};$$

8)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{1+x^2y^2}-1}{x^2+y^2};$$

9)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2y^2(x^2+y^2)};$$

10)
$$\lim_{(x,y)\to(0,0)} \frac{e^{-\frac{1}{x^2+y^2}}}{x^4+y^4};$$

11)
$$\lim_{(x,y)\to(0,0)} (1+x^2y^2)^{-\frac{1}{x^2+y^2}};$$

12)
$$\lim_{(x_1,\dots,x_n)\to 0_n} \frac{x_1\cdots x_n}{x_1^2+\dots+x_n^2}, \qquad n\in\mathbf{N};$$

13)
$$\lim_{(x_1,\dots,x_n)\to 0_n} \frac{x_1^p + \dots + x_n^p}{x_1 \cdots x_n}, \qquad n, p \in \mathbf{N}.$$

3. Fie A o submulţime compactă a lui \mathbf{R}^n , fără puncte izolate, iar $f: A \to \mathbf{R}$ o funcţie având limită finită în fiecare punct al lui A. Să se demonstreze că f este mărginită.

4. Fie $A = [0, 1] \times [0, 1]$ și $f : A \to \mathbf{R}$ funcția definită prin

$$f(x,y) = \sum_{\frac{1}{2} \le \frac{m}{n} \le 2} x^m y^n,$$

unde sumarea se face pentru toate perechile de numere naturale (m, n) care satisfac inegalitățile indicate. Să se determine $\lim_{(x,y)\to(1,1)} (1-xy^2)(1-x^2y)f(x,y)$.

Concursul William Lowell Putnam 1999

5. Să se demonstreze că pentru orice număr natural $n \geq 2$ există o funcție $f: \mathbf{R}^n \to \mathbf{R}$ cu proprietatea că toate cele n! limite iterate

$$\lim_{x_{\sigma(1)}\to 0} \lim_{x_{\sigma(2)}\to 0} \cdots \lim_{x_{\sigma(n)}\to 0} f(x_1, x_2, \dots, x_n) \qquad \sigma \in S_n$$

există și sunt distincte două câte două.

Olimpiadă studențească, U.R.S.S.

6. Fie B o submulţime închisă nevidă a lui \mathbf{R}^n şi $f_1, \ldots, f_p, g_1, \ldots, g_q : B \to \mathbf{R}$ funcţii continue pe B. Să se demonstreze că mulţimea

$$A = \{ x \in B \mid f_i(x) = 0, i = 1, \dots, p, g_j(x) \le 0, j = 1, \dots, q \}$$

este închisă.

- 7. Să se demonstreze că norma euclidiană este o funcție continuă de la \mathbb{R}^n în $[0,\infty[$.
- 8. Fie A o submulțime compactă nevidă a lui \mathbb{R}^n și $f:A\to A$ o funcție cu proprietatea

$$\forall x, y \in A \text{ cu } x \neq y : ||f(x) - f(y)|| < ||x - y||.$$

Să se demonstreze că f are un unic punct fix în A.

9. Fie $f: B(0_n, 1) \to B(0_n, 1)$ o funcție continuă cu proprietatea

$$\forall x \in B(0_n, 1) \setminus \{0_n\} : ||f(x)|| < ||x||.$$

Fiind dat un punct oarecare $x^0 \in B(0_n, 1)$, se construieşte recursiv şirul (x^k) punând $x^k := f(x^{k-1})$. Să se demonstreze că $\lim_{k \to \infty} x^k = 0_n$.

Berkeley 1991