Homework Assignment 1 Solution

Exercise 1.5

a. (5 points)

Instructions/sec = f/CPI, where f stands for clock rate

Performance of P1 (instructions/sec) = $3 \times 10^9/1.5 = 2 \times 10^9$ Performance of P2 (instructions/sec) = $2.5 \times 10^9/1.0 = 2.5 \times 10^9$ Performance of P3 (instructions/sec) = $4 \times 10^9/2.2 = 1.8 \times 10^9$

P2 has the highest performance.

b. (10 points)

 $clock\ cycles = time \times clock\ rate,$ then IC = clock cycles/CPI

clock cycles (P1) = $10 \times 3 \times 10^9 = 30 \times 10^9 s$ clock cycles (P2) = $10 \times 2.5 \times 10^9 = 25 \times 10^9 \text{s}$ clock cycles (P3) = $10 \times 4 \times 10^9 = 40 \times 10^9$ s

IC (P1) =
$$30 \times 10^9 / 1.5 = 20 \times 10^9$$

IC (P2) = $25 \times 10^9 / 1 = 25 \times 10^9$

IC (P3) =
$$40 \times 10^9/2.2 = 18.18 \times 10^9$$

c. (5 points)

 $f = IC \times CPI/time$,

where

timenew = timeold \times 0.7= 7s

CPInew = CPIold \times 1.2,

CPI(P1) = 1.8,

CPI(P2) = 1.2,

CPI(P3) = 2.64

$$\begin{split} f(P1) &= 20 \times 10^9 \times 1.8 \ / \ 7 = 5.14 \ GHz \\ f(P2) &= 25 \times 10^9 \times 1.2 \ / \ 7 = 4.28 \ GHz \end{split}$$

$$f(P2) = 25 \times 10^9 \times 12 / 7 = 428 \text{ GHz}$$

$$f(P3) = 18.18 \times 10^9 \times 2.6 / 7 = 6.85 \text{ GHz}$$

Exercise 1.6

(6 points)

Class A: 10⁵ instr.

Class B: 2×10^5 instr.

Class C: 5×10^5 instr.

Class D: 2×10^5 instr.

CPU Time = $IC \times CPI/clock$ rate

Total time P1 =
$$(10^5 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3) / (2.5 \times 10^9) = 10.4 \times 10^{-4} \text{ s}$$

Total time P2 = $(10^5 \times 2 \times 2 + 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2) / (3 \times 10^9) = 6.66 \times 10^{-4} \text{ s}$

P2 is faster

a. (6 points)

CPI(P1) =
$$(1 \times 1/10 + 2 \times 2/10 + 3 \times 5/10 + 3 \times 2/10) = 2.6$$

or
CPI(P1) = CPU time × f/IC = $10.4 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6} = 2.6$
CPI(P2) = $6.66 \times 10^{-4} \times 3 \times 10^{9} / 10^{6} = 2.0$

b. (8 points)

clock cycles = $\sum IC_i \times CPI_i$

clock cycles(P1) =
$$10^5 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3 = 26 \times 10^5$$

clock cycles(P2) = $10^5 \times 2 \times 2 + 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2 = 20 \times 10^5$

Exercise 1.7

a. (5 points)

 $CPI = Texec \times f / IC.$, where f stands for the clock rate

Compiler A CPI = 1.1 Compiler B CPI = 1.25

b. (5 points)
$$fB/fA = (IC(B) \times CPI(B)) / (IC(A) \times CPI(A)) = 1.37$$

c. (5 points)

$$T/Tnew = (IC \times CPI) / (IC_{new} \times CPI_{new})$$

TA/Tnew = 1.67TB/Tnew = 2.27

Exercise 1.12

1.12.1 (7 points)

CPU Time = $IC \times CPI/clock$ rate

$$T(P1) = 5 \times 10^6 \times 0.9/(4 \times 10^9) = 1.125 \times 10^{-3} s$$

 $T(P2) = 10^6 \times 0.75/(3 \times 10^9) = 0.25 \times 10^{-3} s$

Clock rate (P1) > clock rate (P2), but performance (P1) < performance (P2)

1.12.2 (6 points)

 $T = IC \times CPI/clock$ rate

$$T(P1) = 0.225s$$

$$T(P2) = IC(P2) \times 0.75/(3 \times 10^9)$$

Then $IC(P2) = (0.225 \times 3 \times 10^9) / 0.75 = 9 \times 10^8$

same CPU time but P1 runs more instructions

1.12.3 (7 points)

MIPS = Clock Rate
$$\times$$
 10⁻⁶/CPI
MIPS(P1) = $4 \times 10^9 \times 10^{-6}/0.9 = 4.44 \times 10^3$
MIPS(P2) = $3 \times 10^9 \times 10^{-6}/0.75 = 4.0 \times 10^3$

 $MIPS(P1) > MIPS(P2), \ however \ performance(P1) < performance(P2)$

Exercise 1.13

1.13.1 (5 points)

$$Tfp = 70 \times 0.8 = 56s.$$

$$Tnew = 56 + 85 + 55 + 40 = 236s.$$

 $Reduction = (T_{old} - T_{new}) \! / \! T_{old}$

Reduction: 5.6%

1.13.2 (5 points)

Tnew = $250 \times 0.8 = 200s$, Tfp + Tl/s + Tbranch = 195s, Tint =5s. Reduction time INT: 90.9%

1.13.3 (5 points)

Tnew = $250 \times 0.8 = 200 \text{ s}$, Tfp + Tint + Tl/s = 210s > 200sNO, not possible