International Rectifier

30ETH06 30ETH06S 30ETH06-1

Hyperfast Rectifier

Features

- · Hyperfastfast Recovery Time
- · Low Forward Voltage Drop
- · Low Leakage Current
- 175°C Operating Junction Temperature
- Dual Diode Center Tap

 t_{rr} = 28ns typ. $I_{F(AV)}$ = 30Amp V_R = 600V

Description/ Applications

State of the art Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, Hyperfast recover time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC Boost stage in the AC-DC section of SMPS, inverters or as freewheeling diodes.

The IR extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

Absolute Maximum Ratings

	Parameters		Max	Units
V _{RRM}	Peak Repetitive Reverse Voltage		600	V
I _{F(AV)}	Average Rectifier Forward Current	@ T _C = 103°C	30	A
I _{FSM}	Non Repetitive Peak Surge Current	@ T _J = 25°C	200	
T _J , T _{STG}	Operating Junction and Storage Temper	- 65 to 175	°C	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Conditions
V_{BR}, V_r	Breakdown Voltage, Blocking Voltage	600	-	-	V	Ι _R = 100μΑ
V _F	Forward Voltage	-	2.0	2.6	V	I _F = 30A, T _J = 25°C
		-	1.34	1.75	V	I _F = 30A, T _J = 150°C
I _R	Reverse Leakage Current	-	0.3	50	μΑ	V _R = V _R Rated
		-	60	500	μA	$T_J = 150$ °C, $V_R = V_R$ Rated
C _T	Junction Capacitance	-	33	-	pF	V _R = 600V
L _S	Series Inductance	-	8.0	-	nH	Measured lead to lead 5mm from package body

Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameters	Min	Тур	Max	Units	Test Condition	าร		
t _{rr}	Reverse Recovery Time	-	28	35	ns	$I_F = 1.0A$, $di_F/dt = 5$	0A/μs, V _R = 30V		
		-	31	-		T _J = 25°C	I _F = 30A		
			77	-		T _J = 125°C	V _R = 200V di _F /dt = 200A/µs		
I _{RRM}	Peak Recovery Current	-	3.5	-	Α	T _J = 25°C	αι _Ε /αι – 200Α/μ5		
		-	7.7	-		T _J = 125°C			
Q _{rr}	Reverse Recovery Charge	-	65	-	nC	T _J = 25°C			
		-	345	-		T _J = 125°C			

Thermal - Mechanical Characteristics

	Parameters	Min	Тур	Max	Units
TJ	Max. Junction Temperature Range	- 65	-	175	°C
T _{Stg}	Max. Storage Temperature Range	- 65	-	175	
R _{thJC}	Thermal Resistance, Junction to Case Per Leg	-	0.7	1.1	°C/W
R _{thJA} ^①	Thermal Resistance, Junction to Ambient Per Leg	-	-	70	
R _{thCS} ^②	Thermal Resistance, Case to Heatsink	-	0.2	-	
Wt	Weight	-	2.0	-	g
		-	0.07	-	(oz)
	Mounting Torque	6.0	-	12	Kg-cm
		5.0	_	10	lbf.in

Typical Socket Mount
 Mounting Surface, Flat, Smooth and Greased

Fig. 1-Typical Forward Voltage Drop Characteristics

Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics

Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7 - Typical Reverse Recovery vs. di _F/dt

Fig. 8 - Typical Stored Charge vs. di $_{\rm F}/{\rm dt}$

 $\begin{tabular}{ll} \textbf{(3)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; \\ & Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) & (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = rated V_R \\ \end{tabular}$

Fig. 9- Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

Outline Table

Outline Table

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

Visit us at www.irf.com for sales contact information. 08/01