Network thinking in music

The seven bridges of Königsberg

Gedenkblatt zur sechshundert jährigen Dubelfeier der Königlichen Baupt und Residenz-Stadt Königsberg in Preußen

Network thinking reduces complexity

Pierre-Alexandre Balland Graph theory

Hidden properties of network structures

Graph or networks?

Graph and networks

Networks are found in nature and society

Graph and networks

- Networks are found in nature and society
- Graphs are the mathematical representation of these networks (a map)

Graph and networks

- Networks are found in nature and society
- Graphs are the mathematical representation of these networks (a map)
- In the literature, both are used interchangeably

An advice network

- Emma (1) helps Mason (2)
- Emma (1) helps William (3)
- Mason (2) helps William (3)
- Mason (2) helps Sophia (4)

A graph

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

A graph

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

A graph

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

A network

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

A network

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

A network

- Emma (1)
- Mason (2)
- William (3)
- Sophia (4)

Network terms

- N = number of nodes (size of the network)
- N = 4
- The network is composed by the nodes i = 1, 2, ..., N
- L = number of links
- L = 4
- The connection between Mason and William [Mason (2) helps William (3)] is denoted as (2,3)
- A graph might be denoted as G, its vertex set as V(G), and its edge set as E(G)

Different types of networks

Directed network

Different types of networks

Directed network

Undirected network

Pierre-Alexandre Balland Graph theory

Different types of networks

Directed network

Weighted network

Undirected network

Real world networks

Network name	Nodes	Links	Direction of ties	N
Internet	Routers	Internet connections	No	200,000
www	WebPages	Hyperlinks	Yes	500,000
Friendship network	Individuals	Friendship	No	200
Actor network	Actors	Co-acting	No	200,000
Patent citations network	Patent documents	Citations	Yes	7,000,000
Co-invention network	Inventors	Co-patenting	No	200,000

Network representations

Directed graph (digraph)

Network representations

Directed graph (digraph)

Edge list

Vertex	Vertex	
1	2	
1	3	
2	3	
2	4	

Network representations

Directed graph (digraph)

Edge list

Vertex	Vertex
1	2
1	3
2	3
2	4

Adjacency matrix

Vertex	1	2	3	4
1	-	1	1	0
2	0	-	1	1
3	0	0	-	0
4	0	0	0	-

Ego networks and whole networks

Bipartite network (2-mode)

It is possible to formalize the data that connect **cities** to the **knowledge** they produce as a n by k bipartite **network** (two different sets of nodes)

A **link** between a city *i* and a knowledge domain *j* means that *i* produces knowledge in category *j*

Multiplex networks

- Emma (1) helps Mason (2)
- Emma (1) is friends with Mason (2)
- Emma (1) works with Mason (2)

• ...

 Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person

- Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person
- The target lives in the town of Sharon, MA, a suburb of Boston. He provided the target's name, address, occupation, and some personal information

- Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person
- The target lives in the town of Sharon, MA, a suburb of Boston. He provided the target's name, address, occupation, and some personal information
- Rule the participants could not mail the letter directly to the target; rather, each participant could only advance the letter by forwarding it to a single acquaintance that he or she knew on a first-name basis

- Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person
- The target lives in the town of Sharon, MA, a suburb of Boston. He provided the target's name, address, occupation, and some personal information
- Rule the participants could not mail the letter directly to the target; rather, each participant could only advance the letter by forwarding it to a single acquaintance that he or she knew on a first-name basis
- Goal of reaching the target as rapidly as possible

- Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person
- The target lives in the town of Sharon, MA, a suburb of Boston. He provided the target's name, address, occupation, and some personal information
- Rule the participants could not mail the letter directly to the target; rather, each participant could only advance the letter by forwarding it to a single acquaintance that he or she knew on a first-name basis
- Goal of reaching the target as rapidly as possible.
- Roughly a third of the letters eventually arrived at the target

- Stanley Milgram asked randomly chosen "starter" individuals to each try forwarding a letter to a designated "target" person
- The target lives in the town of Sharon, MA, a suburb of Boston. He provided the target's name, address, occupation, and some personal information
- Rule the participants could not mail the letter directly to the target; rather, each participant could only advance the letter by forwarding it to a single acquaintance that he or she knew on a first-name basis
- Goal of reaching the target as rapidly as possible.
- Roughly a third of the letters eventually arrived at the target
- In a median of six steps (6 degrees of separation)

Small world Milgram – 2 lessons

- Short paths are ubiquitous in human networks (it is a small world after all)
- Individuals are good at finding these short paths (search process: what if no name? no occupation, etc...)

The Bacon number

https://oracleofbacon.org/

Structural features of networks

- Real-world networks are characterized by:
 - (1) Small average path length

Structural features of networks

• Real-world networks are characterized by:

$$l_g = \frac{1}{n.(n-1)} \cdot \sum_{i \neq j} d(v_i, v_j)$$

Compute average path length

Compute average path length

Average path length = (1+2+2+1)/4 = 1.5

Erdős-Rényi Random Graph model

- Early attempt to generate random graphs
- A random network consists of N nodes where each node pair is connected with the same probability p
- Path length in random graphs is short (similar to path length in real-world networks)
- Often used as a benchmark for network metrics
- As p increases the network tends to form a giant component (percolation)

Clustering in networks

Structural features of networks

- Real-world networks are characterized by:
 - (1) Small average path length
 - (2) High clustering coefficient [equation]

Random network

(1) Small average path length

Lattice

(2) <u>High</u> clustering coefficient

Small world model

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440-442.

Structural unequality

Structural features of networks

- Real-world networks are characterized by:
 - (1) Small average path length
 - (2) <u>High</u> clustering coefficient
 - (3) <u>Unequal</u> degree distribution

Long tails and power law distribution

Barabási-Albert model

- A few hubs have a lot of connections
- Most of the nodes have very few
- Barabási-Albert model generates these type of networks by "preferential attachment"
- New network members prefer to make a connection to the more popular existing members

Implementation of the BA model

- The model starts with two nodes connected by an edge
- At each step, a new node is added
- A new node picks an existing node to connect to randomly, but with some bias
- A node's chance of being selected is proportional to the number of connections it already has (degree)

Complex networks

- Non-trivial topology
- Inherently dynamical properties emergent behavior
- High structural heterogeneity