INFORMÁTICA 2

Manual de Usuario - Placa Base Infotronic para el Stick LPC845

MdU-PlacaBaseLPC845-V1.01

Revisión: 1.01

agosto 19

2021

1. Introducción

La Placa Base Infotronic ha sido diseñada con fines educativos como un kit de desarrollo que le permitirá corroborar el correcto funcionamiento de los Trabajos Prácticos de Clase (TPC), así como también será el hardware base para la realización del Trabajo Práctico Obligatorio (TPO).

Características principales:

- Microcontrolador: Zócalo para conexión de módulo de evaluación <u>LPC845-BRK</u>.
- Interfaz de Usuario:
 - Display de caracteres de 2 filas x 16 columnas (1602A o 1602B).
 - Display de 7 segmentos: 2 displays de 3 dígitos cada uno.
 - Teclas touch switch: cantidad 6.
- Entradas Digitales: cantidad 2.
 - Entrada Digital 0: conexión a puerto de entradas digitales CN10.

- Entrada Digital 1: conexión compartida a:
 - Puerto de entradas digitales CN10,
 - Final de carrera montado en el PCB,
 - Conector para sensor óptico CN5.

- Entradas Analógicas: cantidad 1.
 - Entrada Analógica 0: conexión interna o externa seleccionable vía jumper:
 - Jumper CN11 abierto: conexión a puerto de entrada analógica CN8.
 - Jumper CN11 cerrado: conexión interna a resistencia variable por temperatura (termistor).
- Salidas Digitales: cantidad 4.
 - Salida Digital 0 a 3: conexión a puerto de salidas digitales CN6, con LEDs indicadores de estados incorporado en el PCB. Lógica negativa.
- Salidas Analógicas: cantidad 1.
 - Salida Analógica 0: conexión compartida a:
 - Conexión a puerto de salida analógica CN7.
 - Buzzer.
- Comunicación
 - Puerto Serie Virtual (a través del conector USB CN2 del stick LPC845)
 - Puerto Serie (lógica TTL)
 - RS485

2. Distribución de componentes

3. Alimentación

La alimentación de la Placa Base es a través de una fuente de 9V / 1A conectada al JACK1.

Para alimentar el Stick, cuenta con dos opciones, pero antes de explicarlas, queremos remarcar que existen dos conectores cuya denominación es "CN2", uno está ubicado en la Placa Base y el otro esta ubicado en el propio Stick.

¡Son conectores distintos y tienen distintas funcionalidades! ¡Por favor lea con atención teniendo en cuenta ese dato!

En la siguiente imagen se muestra del lado izquierdo el conector USB "CN2" perteneciente al Stick y del lado derecho el Jumper "CN2" perteneciente a la Placa Base.

Alimentación del Stick mediante la PC: Conecté un cable USB desde la PC al conector USB CN2 ubicando en el propio stick. Este cable, además de proveer la alimentación, permite realizar tareas de debug. IMPORTANTE: En esta opción, el Jumper CN2 ubicado en la placa base debe estar "abierto".

Alimentación del Stick mediante la Placa Base: En algunas circunstancias especiales, puede requerir que el Stick <u>no esté conectado</u> a la PC mediante el cable USB. Por ejemplo, si el proyecto es una plataforma móvil, seguramente no será posible tener el stick conectado mientras la plataforma se desplaza.

Revisión: 1.01

Para estos casos, cierre el Jumper "CN2" para que el Stick tome alimentación de la placa base.

IMPORTATNE: En esta opción, asegúrese de no conectar el cable USB

4. Descripción de Conectores

Conector	Descripción	Referencia SCH
CN1	Zócalo de conexión para el stick LCP845	HOJA 3/9 – B2
CN2	Jumper de alimentación del stick LPC845	HOJA 3/9 – B3
CN3	Comunicación serie / Módulo BT	HOJA 9/9 – D3
CN4	Comunicación serie / Módulo WiFi	HOJA 9/9 – C2
CN5	Sensor Óptico	HOJA 5/9 – C3
CN6	Salida Digitales	HOJA 5/9 – D2
CN7	Salidas Analógicas	HOJA 6/9 – D2
CN8	Entradas Analógicas	HOJA 6/9 – D2
CN9	Misceláneo	HOJA 3/9 – D2
CN10	Entradas Digitales	HOJA 5/9 – D2
CN11	Jumper de habilitación/deshabilitación del termistor NTC1	HOJA 6/9 – B3
JACK1	Alimentación de la placa base: Fuente de Continua 9Vcc / 1A	HOJA 2/9 – B2
BR1	Comunicación serie RS422/RS485	HOJA 9/9 – B4
LCD1	Zócalo de conexión para LCD de caracteres 2x16	HOJA 8/9 – B4

Revisión: 1.01

Detalle de conexionado

CN1 - Zó	calo de conex	ión para el stick LCP845
1	PIO0_16	TX1 (COMUNICACIONES)
2	PIO0_17	RX1 (COMUNICACIONES)
3	PIO0_18	RST (DISPLAY 7 SEG.)
4	PIO0_19	CK (DISPLAY 7 SEG.)
5	PIO0_20	BCD_A (DISPLAY 7 SEG.)
6	PIO0_21	BCD_D (DISPLAY 7 SEG.)
7	PIO0_22	BCD_C (DISPLAY 7 SEG.)
8	PIO0_23	BCD_B (DISPLAY 7 SEG.)
9	PIO0_05	Sin conexión
10	PIO0_24	Sin conexión
11	PIO0_25	Sin conexión
12	PIO0_26	DIG_IN1 (IO DIGITALES)
13	PIO0_27	COLUMNA0 (TECLADO)
14	PIO0_28	COLUMNA1 (TECLADO)
15	PIO0_29	AN_OUT (IO ANALÓGICAS)
16	PIO0_30	FILA2 (TECLADO)
17	PIO0_31	FILA1 (TECLADO)
18	PIO0_09	Sin conexión
19	PIO0_08	Sin conexión
20	GND	Ground

40	VDD	3.3V
39	PIO0_00	EN (COMUNICACIONES)
38	PIO0_01	DIG_OUT3 (IO DIGITALES)
37	PIO0_02	SWDIO
36	PIO0_03	SWCLK
35	PIO0_04	DIG_IN0 (IO DIGITALES)
34	PIO0_05	KEY_RESET
33	PIO0_06	AN_IN (IO ANALÓGICAS)
32	PIO0_07	Sin conexión
31	PIO1_0	DIG_OUTO (IO DIGITALES)
30	PIO1_1	DIG_OUT1 (IO DIGITALES)
29	PIO1_2	DIG_OUT2 (IO DIGITALES)
28	PIO0_15	LCD-RS (LCD)
27	PIO0_14	LCD-E (LCD)
26	PIO0_13	LCD-D7 (LCD)
25	PIO0_12	DP (DISPLAY 7 SEG.)
24	PIO0_11	LCD-D6 (LCD)
23	PIO0_10	LCD-D5 (LCD)
22	PIO0_09	LCD-D4 (LCD)
21	PIO0_08	FILAO (TECLADO)

CN2 - Jumper de alimentación del stick LPC845		
1	VDD	Salida de 3.3V (si el cable de
		USB está conectado).
		Entrada de 3.3V (si el cable de
		USB no está conectado).
2	3.3V	3.3V de la placa base

CN3 - Comunicación serie / Módulo BT		
1	-	Sin conexión
2	TX1	Transmisión

3	RX1	Recepción
4	GND	Ground
5	5V	Alimentación del módulo
6	EN	Habilitación

CN4 - Co	CN4 - Comunicación serie / Módulo WiFi		
1	RX1	Recepción	
3	3.3V	Alimentación del módulo	
5	-	Sin conexión	
7	3.3V	Alimentación del módulo	

2	GND	Ground
4	-	Sin conexión
6	-	Sin conexión
8	TX1	Transmisión

CN5 – Sensor Óptico		
1	5V	Alimentación del sensor
2	GND	Ground
3	DIG_IN1	Entrada digital 1
4	-	Sin conexión

CN6 - Sa	CN6 - Salidas Digitales			
1	5V	Alimentación 5 V		
2	OUT3	Salida digital 3		
3	OUT2	Salida digital 2		
4	OUT1	Salida digital 1		
5	OUT0	Salida digital 0		
6	GND	Ground		
7	3.3V	Alimentación 3.3V		

CN7 - Salidas Analógicas		
1	5V	Alimentación 5 V
2	AN_OUT	Salida analógica
3	GND	Ground
4	GND	Ground

CN8 - Entradas Analógicas		
1	AN_IN	Entrada analógica
2	3.3V	Alimentación 3.3V
3	3.3V	Alimentación 3.3V
4	GND	Ground

CN9 - Misceláneo			
1	3.3V	Alimentación 3.3V	
2	SWDIO	Debug – Señal SWDIO	
3	SWCLK	Debug – Señal SWCLK	
4	DIG_IN0	Entrada Digital 0	
5	KEY_RESET	Botón de Reset	
6	5V	Alimentación 5V	
7	GND	Ground	

CN10 - Entradas Digitales		
1	5V	Alimentación 5V
2	DIG_IN0	Entrada Digital 0
3	DIG_IN1	Entrada Digital 1
4	GND	Ground
5	3.3V	Alimentación 3.3V

CN11 - Jumper de habilitación del termistor NTC1		
1	AN_IN	Entrada Analógica
2	NTC1	Termistor NTC1

JACK1 - Alimentación de la placa base		
interno	Polo +	+9V

_			
	externo	Polo -	Ground

BR1 - Comunicación serie RS422/RS485		
1	TL	RS485 – TL
2	TH	RS485 – TH
3	GND	Ground

LCD1 - Zócalo de conexión para LCD de caracteres		
1	VSS	5V
2	VCC	GND
3	V0	CONT
4	RS	L CD-RS
5	R/W	GND
6	E	LCD-E
7	D0	GND
8	D1	GND
9	D2	GND
10	D3	GND
11	D4	LCD-D4
12	D5	LCD-D5
13	D6	LCD-D6
14	D7	LCD-D7
15	Α	5V (a través de R19)
16	K	GND

5. Configuración de Jumpers (CN) y DipSwiches (DIP)

5.1. Jumper CN2 - Configuración de alimentación del Stick

Como se explicó en el capítulo "Alimentación", el Stick puede alimentarse de dos lugares distintos.

Posición	Descripción	
Jumper abierto Alimentar el Stick a través del conector USB "CN2" ubicado en el propio Stick.		
Jumper cerrado	El Stick queda alimentado desde la propia placa base. En este caso, no conecte el cable USB.	

5.2. Jumper CN11 - Configuración de la Entrada Analógica "AN_IN"

Posición	Descripción	
Jumper abierto	La entrada analógica "AN_IN" queda conectada al Pin 1 del Conector CN8.	
Jumper cerrado	La entrada analógica "AN_IN" queda conectada al termistor NTC1.	

Observación: El pull-up R13 de 10Kohm queda siempre conectado independientemente de la posición del Jumper CN11.

5.3. DipSwitch DIP1 - Configuración de la comunicación RS485

Poisción	Descripción	
3 switches OFF	La comunicación RS485 queda deshabilitada. En este caso, se puede usar el conector CN3 o CN4	
3 switches ON	La comunicación RS485 queda habilitada. Importante: En este caso, NO USAR el conector CN3 y CN4.	

6. Puente en R7 y R22 en el Stick

Los pines PIO_30 y PIO_31 están conectados al botón capacitivo "S1" que se encuentra ubicado en el propio Stick. NXP dejó la posibilidad de conectar estas líneas a los puertos de entrada salida mediante las resistencias R7 y R22 de 0 Ohm que no están montadas en el PCB. Esto significa que, si bien existe la posibilidad de usar esos pines, el usuario es quien se debe encargar de soldar las resistencias de 0 Ohm, o en su defecto hacer un puente entre los pads con una gota de estaño.

En la siguiente imagen se muestran las resistencias tanto en el circuito esquemático, como en el PCB.

La Placa Base usa esas líneas para el manejo del teclado matricial. De no puentear dichas resistencias en el Stick, simplemente, no le funcionaran las teclas SW2, SW3, SW5 y SW6, pero si le funcionarán SW1 y SW4.

