3章 重積分

問 1

$$\frac{x}{3} + \frac{y}{4} + \frac{z}{2} = 1$$
 より, $z = -\frac{2}{3}x - \frac{1}{2}y + 2$ また, 領域Dを
$$D = \{(x, y) | 0 \le x \le 1, \ 0 \le y \le 2\}$$
とすれば
$$V = \iint_{D} \left(2 - \frac{2}{3}x - \frac{1}{2}y\right) dx dy$$

問 2

与式 =
$$\int_0^1 \left\{ \int_1^2 (x^2 - xy) dx \right\} dy$$

= $\int_0^1 \left[\frac{1}{3} x^3 - \frac{1}{2} y x^2 \right]_1^2 dy$
= $\int_0^1 \left\{ \left(\frac{8}{3} - 2y \right) - \left(\frac{1}{3} - \frac{1}{2} y \right) \right\} dy$
= $\int_0^1 \left(\frac{7}{3} - \frac{3}{2} y \right) dy$
= $\left[\frac{7}{3} y - \frac{3}{4} y^2 \right]_0^1$
= $\frac{7}{3} - \frac{3}{4} = \frac{28 - 9}{12} = \frac{19}{12}$

問3

(1) 与式 =
$$\int_0^1 \left\{ \int_0^2 (2x + y) dy \right\} dx$$

= $\int_0^1 \left[2xy + \frac{1}{2}y^2 \right]_0^2 dx$
= $\int_0^1 (4x + 2) dx$
= $\left[2x^2 + 2x \right]_0^1$
= $2 + 2 = 4$

(2) 与式 =
$$\int_{-1}^{3} \left\{ \int_{-2}^{1} xy^{2} dy \right\} dx$$

= $\int_{-1}^{3} \left[\frac{1}{3} xy^{3} \right]_{-2}^{1} dx$
= $\int_{-1}^{3} \left(\frac{1}{3} x + \frac{8}{3} x \right) dx$

$$= \int_{-1}^{3} (3x) dx$$

$$= \left[\frac{3}{2} x^{2} \right]_{-1}^{3}$$

$$= \left(\frac{27}{2} - \frac{3}{2} \right)$$

$$= \frac{24}{2} = 12$$

$$(3) \ \, = \int_0^{\frac{\pi}{2}} \left\{ \int_0^{\frac{\pi}{2}} \sin(x+y) \, dy \right\} dx$$

$$= \int_0^{\frac{\pi}{2}} \left[-\cos(x+y) \right]_0^{\frac{\pi}{2}} dx$$

$$= \int_0^{\frac{\pi}{2}} \left\{ -\cos\left(x+\frac{\pi}{2}\right) + \cos x \right\} dx$$

$$= \int_0^{\frac{\pi}{2}} \left\{ -(-\sin x) + \cos x \right\} dx$$

$$= \int_0^{\frac{\pi}{2}} (\sin x + \cos x) dx$$

$$= \left[-\cos x + \sin x \right]_0^{\frac{\pi}{2}}$$

$$= -\cos \frac{\pi}{2} + \sin \frac{\pi}{2} - (-\cos 0 + \sin 0)$$

$$= 0 + 1 + 1 - 0 = 2$$

(4) 与式 =
$$\int_0^1 \left\{ \int_0^1 x e^{xy} dy \right\} dx$$

= $\int_0^1 \left[x e^{xy} \cdot \frac{1}{x} \right]_0^1 dx$
= $\int_0^1 (e^x - e^0) dx$
= $\int_0^1 (e^x - 1) dx$
= $\left[e^x - x \right]_0^1$
= $e^1 - 1 - (e^0 - 0)$
= $e^1 - 1 - 1 = e^1 - 1$

(1) 領域を図示すると

与式 =
$$\int_{1}^{2} \left\{ \int_{0}^{x} x dy \right\} dx$$
$$= \int_{1}^{2} \left[xy \right]_{0}^{x} dx$$
$$= \int_{1}^{2} x^{2} dx$$

$$= \left[\frac{1}{3}x^3\right]_1^2$$

$$=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$$

(2) 領域を図示すると

与式 =
$$\int_{\frac{1}{2}}^{2} \left\{ \int_{0}^{\frac{1}{x}} (x - 2y) dy \right\} dx$$

= $\int_{\frac{1}{2}}^{2} \left[xy - y^{2} \right]_{0}^{\frac{1}{x}} dx$
= $\int_{\frac{1}{2}}^{2} \left(1 - \frac{1}{x^{2}} \right) dx$
= $\left[x + \frac{1}{x} \right]_{\frac{1}{2}}^{2}$
= $2 + \frac{1}{2} - \left(\frac{1}{2} + \frac{1}{\frac{1}{2}} \right)$
= $2 + \frac{1}{2} - \frac{1}{2} - 2 = \mathbf{0}$

(3) 領域を図示すると

与式 =
$$\int_{1}^{2} \left\{ \int_{y^{2}}^{4} y \sqrt{x} dx \right\} dy$$

= $\int_{1}^{2} \left[y \cdot \frac{2}{3} x^{\frac{3}{2}} \right]_{y^{2}}^{4} dy$
= $\int_{1}^{2} \left[\frac{2}{3} y x \sqrt{x} \right]_{y^{2}}^{4} dy$
= $\int_{1}^{2} \left(\frac{2}{3} y \cdot 4 \sqrt{4} - \frac{2}{3} y \cdot y^{2} \sqrt{y^{2}} \right) dy$
= $\frac{2}{3} \int_{1}^{2} (8y - y^{4}) dy$
= $\frac{2}{3} \left[4y^{2} - \frac{1}{5} y^{5} \right]_{1}^{2}$
= $\frac{2}{3} \left\{ 4 \cdot 2^{2} - \frac{1}{5} \cdot 2^{5} - \left(4 \cdot 1^{2} - \frac{1}{5} \cdot 1^{5} \right) \right\}$
= $\frac{2}{3} \left(16 - \frac{32}{5} - 4 + \frac{1}{5} \right)$
= $\frac{2}{3} \cdot \frac{29}{5} = \frac{58}{15}$

(4) 領域を図示すると

与式 =
$$\int_0^1 \left\{ \int_0^{e^y} 2x dx \right\} dy$$

= $\int_0^1 \left[x^2 \right]_0^{e^y} dy$
= $\int_0^1 \{ (e^y)^2 - 0 \} dy$
= $\int_0^1 e^{2y} dy$
= $\left[\frac{1}{2} e^{2y} \right]_0^1$

$$= \frac{1}{2}e^2 - \frac{1}{2}e^0$$
$$= \frac{1}{2}(e^2 - 1)$$

問 5

(1) $x+y \le 1$ より, $y \le 1-x$ であるから, 領域Dは 次の不等式で表すことができる.

 $0 \le x \le 1, \ 0 \le y \le 1 - x$ したがって

与式 =
$$\int_0^1 \left\{ \int_0^{1-x} (x+y) dy \right\} dx$$

= $\int_0^1 \left[xy + \frac{1}{2} y^2 \right]_0^{1-x} dx$
= $\int_0^1 \left\{ x(1-x) + \frac{1}{2} (1-x)^2 \right\} dx$
= $\int_0^1 \left\{ x - x^2 + \frac{1}{2} - x + \frac{1}{2} x^2 \right\} dx$
= $\int_0^1 \left(-\frac{1}{2} x^2 + \frac{1}{2} \right) dx$
= $\frac{1}{2} \int_0^1 (-x^2 + 1) dx$
= $\frac{1}{2} \left[-\frac{1}{3} x^3 + x \right]_0^1$
= $\frac{1}{2} \left(-\frac{1}{3} + 1 \right) = \frac{1}{3}$

【別解】

 $x+y \le 1$ より, $x \le 1-y$ であるから, 領域Dは次の不等式で表すことができる.

 $0 \le y \le 1, \ 0 \le x \le 1 - y$

したがって

$$= \frac{1}{2} \left[y - \frac{1}{3} y^3 \right]_0^1$$
$$= \frac{1}{2} \left(1 - \frac{1}{3} + \right) = \frac{1}{3}$$

(2) $x^2 + y^2 \le 4$ より、 $y^2 \le 4 - x^2$ 、 すなわち、 $-\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}$ であるから、 領域Dは次の不等式で表すことができる.

$$-2 \le x \le 2, \ 0 \le y \le \sqrt{4 - x^2}$$

したがって

与式 =
$$\int_{-2}^{2} \left\{ \int_{0}^{\sqrt{4-x^2}} y dy \right\} dx$$

= $\int_{-2}^{2} \left[\frac{1}{2} y^2 \right]_{0}^{\sqrt{4-x^2}} dx$
= $\int_{-2}^{2} \left\{ \frac{1}{2} \left(\sqrt{4-x^2} \right)^2 \right\} dx$
= $\frac{1}{2} \int_{-2}^{2} (4-x^2) dx$
= $\frac{1}{2} \cdot 2 \int_{0}^{2} (4-x^2) dx$ ※被積分関数が偶関数
= $\left[4x - \frac{1}{3}x^3 \right]_{0}^{2}$
= $8 - \frac{8}{3} = \frac{16}{3}$

【別解】

 $x^2 + y^2 \le 4$ より、 $x^2 \le 4 - y^2$ 、 すなわち、 $-\sqrt{4 - y^2} \le x \le \sqrt{4 - y^2}$ であるから、 領域Dは次の不等式で表すことができる.

$$0 \le y \le 2, \ -\sqrt{4-y^2} \le x \le \sqrt{4-y^2}$$

したがって

与式 =
$$\int_0^2 \left\{ \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} y dx \right\} dy$$

= $\int_0^2 \left[yx \right]_0^{\sqrt{4-y^2}} dy$
= $\int_0^2 \left\{ y\sqrt{4-y^2} - y\left(-\sqrt{4-y^2}\right) \right\} dy$
= $\int_0^2 2y\sqrt{4-y^2} dy$

 $4-y^2=t$ とおくと、-2ydy=dtより、2ydy=-dtまた、yとtの対応は

$$\begin{array}{c|cccc} y & 0 & \rightarrow & 2 \\ \hline t & 4 & \rightarrow & 0 \end{array}$$

与式 =
$$\int_{4}^{0} \sqrt{t}(-dt)$$
=
$$-\int_{4}^{0} \sqrt{t}dt$$
=
$$\int_{0}^{4} \sqrt{t}dt$$
=
$$\left[\frac{2}{3}t\sqrt{t}\right]_{0}^{4}$$
=
$$\frac{2}{3} \cdot 4\sqrt{4} = \frac{16}{3}$$

問 6

(1)
$$x = 2y \, \xi \, \theta$$
, $y = \frac{x}{2} \, \text{\it cbsh}$

領域は次の不等式で表すことができる.

$$0 \le x \le 2, \quad \frac{x}{2} \le y \le 1$$

したがって

与式 =
$$\int_0^2 \left\{ \int_{\frac{x}{2}}^1 f(x, y) dy \right\} dx$$

(2)
$$y = 2 - \frac{1}{2}x \, \xi \, \theta$$
, $x = 4 - 2y \, \tilde{c} \, \tilde{b} \, \tilde{a} \, \tilde{b}$,

領域は次の不等式で表すことができる.

$$0 \le x \le 4 - 2y$$
, $1 \le y \le 2$

したがって

与式 =
$$\int_1^2 \left\{ \int_0^{4-2y} f(x, y) dx \right\} dy$$

問7

 $0 \le y \le 1$, $y \le x \le 1$ であるから, 領域は図のようになる.

この領域は, $0 \le x \le 1$, $0 \le y \le x$ と表せるので

与式 =
$$\int_0^1 \left\{ \int_0^x e^{-x^2} dy \right\} dx$$
$$= \int_0^1 \left[e^{-x^2} y \right]_0^x dx$$

問8

求める体積をVとする. x + y = 2より, y = 2 - x であるから, 領域は次の不等式で表すことができる.

$$0 \le x \le 2, \ 0 \le y \le 2 - x$$

 $=\frac{1}{2}\bigg[e^t\bigg]^0$

この領域内で $z = 4 - x^2 \ge 0$ なので

 $=\frac{1}{2}(e^0-e^{-1})=\frac{1}{2}\left(1-\frac{1}{e}\right)$

$$V = \int_0^2 \left\{ \int_0^{2-x} (4 - x^2) dy \right\} dx$$

$$= \int_0^2 (4 - x^2) \left[y \right]_0^{2-x} dx$$

$$= \int_0^2 (4 - x^2) (2 - x) dx$$

$$= \int_0^2 (x^3 - 2x^2 - 4x + 8) dx$$

$$= \left[\frac{1}{4} x^4 - \frac{2}{3} x^3 - 2x^2 + 8x \right]_0^2$$

$$= 4 - \frac{16}{3} - 8 + 16$$

$$= \frac{12 - 16 + 24}{3} = \frac{20}{3}$$

問 9

(1) 領域Dを, $x^2 + y^2 \le a^2$, $x \ge 0$, $y \ge 0$ とすると, この領域は次の不等式で表すことができる.

$$0 \le x \le a, \ 0 \le y \le \sqrt{a^2 - x^2}$$

この領域内で, $z = y \ge 0$ であるから, 求める体積をVとすると

$$V = 2 \iint_{D} y dx dy$$

$$= 2 \int_{0}^{a} \left\{ \int_{0}^{\sqrt{a^{2} - x^{2}}} y dy \right\} dx$$

$$= 2 \int_{0}^{a} \left[\frac{1}{2} y^{2} \right]_{0}^{\sqrt{a^{2} - x^{2}}} dx$$

$$= \int_{0}^{a} (\sqrt{a^{2} - x^{2}})^{2} dx$$

$$= \int_{0}^{a} (a^{2} - x^{2}) dx$$

$$= \left[a^{2}x - \frac{1}{3}x^{3} \right]_{0}^{a}$$

$$= a^{3} - \frac{1}{3}a^{3} = \frac{2}{3}a^{3}$$

(2) 領域Dを, $x^2 + y^2 \le a^2$, $x \ge 0$, $y \ge 0$ とすると, この領域は次の不等式で表すことができる. $0 \le x \le a$, $0 \le y \le \sqrt{a^2 - x^2}$ この領域内で, $z = \sqrt{a^2 - x^2} \ge 0$ であるから,

求める体積をVとすると

$$V = 4 \iint_{D} \sqrt{a^{2} - x^{2}} dx dy$$

$$= 4 \int_{0}^{a} \left\{ \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{a^{2} - x^{2}} dy \right\} dx$$

$$= 4 \int_{0}^{a} \left\{ \sqrt{a^{2} - x^{2}} \int_{0}^{\sqrt{a^{2} - x^{2}}} dy \right\} dx$$

$$= 4 \int_{0}^{a} \sqrt{a^{2} - x^{2}} \left[y \right]_{0}^{\sqrt{a^{2} - x^{2}}} dx$$

$$= 4 \int_{0}^{a} \sqrt{a^{2} - x^{2}} \sqrt{a^{2} - x^{2}} dx$$

$$= 4 \int_{0}^{a} (a^{2} - x^{2}) dx$$

$$= 4 \left[a^{2}x - \frac{1}{3}x^{3} \right]_{0}^{a}$$

$$= 4 \left(a^{3} - \frac{1}{3}a^{3} \right)$$

$$= 4 \cdot \frac{2}{3}a^{2} = \frac{8}{3}a^{3}$$