OTOMATA 07

PUSHDOWN AUTOMATA & TURING MACHINE

Mahasiswa memahami keleluasaan mendefinisikan bahasa melalui PDA dan TM (dibanding FA)

Materi Pertemuan

- Komponen PDA
- Membentuk PDA dari CFG
- Komponen Mesin Turing
- Tugas Mingguan X

Komponen PDA (1)

- 1. Himpunan berhingga alphabet Σ input string untuk PDA dibentuk dari himpunan ini
- 2. Sebuah state START START
- state untuk memulai penelusuran
- 3. Satu atau lebih operator READ → READ → V
 - state untuk melakukan pembacaan karakter input string
- 4. Dua atau lebih halt state yang berbentuk state ACCEPTED dan REJECTED

input string dikenali jika penelusuran berhenti pada state ACCEPTED

Komponen PDA (2)

Contoh:

Komponen PDA (3)

5. Sebuah INPUT TAPE yang berisi sel-sel

untuk menampung karakter-karakter input string

6. Sebuah PUSHDOWN STACK

untuk menampung karakter yang telah terbaca

7. Satu atau lebih operator PUSH -- PUSHX -- Jumlah outgoing edge = 1, tetapi incoming edge >= 1

untuk memasukkan karakter yang telah terbaca ke dalam stack

8. Satu atau lebih operator POP

untuk mengambil/menghapus karakter dari stack

Komponen PDA (4)

Penelusuran untuk input string : aaabbb adalah seperti berikut :

Komponen PDA (5)

Contoh:

Misal dibuat PDA untuk bahasa palindrome yang berbentuk s X reverse(s) dimana s adalah substring dari (a + b)*

Bagian depan dari PDA akan mempunyai bentuk :

b

b

a

λ

Misal jika diberi input string abbXbba, maka pemrosesan untuk substring abb adalah seperti berikut :

Komponen PDA (

Sedang bagian lain dibuat untuk mengakomodasi penelusuran substring reverse(s):

Dan substring bba akan diproses seperti berikut :

Komponen PDA (7)

Bentuk keseluruhan PDA untuk palindrome s X reverse(s) adalah seperti berikut :

Membentuk PDA dari CFG (1)

1. Sebuah non-terminal X₁ yang menjadi Start Symbol akan direpresentasikan menjadi :

Sebuah production X_i → X_jX_k, direpresentasikan menjadi :

Sebuah production X_i → b, direpresentasikan menjadi :

4. Sebuah production X_i → ε, akan menjadi :

Membentuk PDA dari CFG (2)

Contoh:

$$s \rightarrow AB$$

$$A \rightarrow BB$$

$$B \rightarrow AB$$

$$A \rightarrow c$$

$$B \rightarrow a$$

 $B \rightarrow b$

Proses pembentukan PDA dari CFG di atas adalah seperti berikut :

Untuk Start Symbol S:

Untuk production : S → AB

 $A \rightarrow BB$

 $B \rightarrow AB$

Membentuk PDA dari CFG (3)

Sedangkan untuk production :

5 → a

 $A \rightarrow a$

B **→** b

Komponen Mesin Turing (1)

- 1. Himpunan berhingga alphabet Σ input string untuk PDA dibentuk dari himpunan ini
- 2. Sebuah INPUT TAPE berbentuk rangkaian sel yang masing-masing berisi satu karakter

Alan Turing

- 3. Sebuah TAPE HEAD untuk membaca karakter input. Pembacaan dilakukan per karakter. Saat inisialisasi, tape head berada pada posisi pertama.
- 4. Himpunan berhingga alphabet Γ dimana output string adalah anggota himpunan Γ^*
- 5. Himpunan berhingga STATE dengan satu state sebagai START STATE dan satu sebagai HALT STATE
- 6. Himpunan berhingga ARC untuk menghubungkan antar state. Label ARC berbentuk (input, output, arah)

Komponen Mesin Turing (2)

Contoh: Sebuah mesin turing yang mendefinisikan bahasa (a+b) b (a+b)* dapat digambarkan sebagai berikut:

Misal akan dikenali sebuah input string: aba

Maka pada saat inisialisasi, posisi input tape dan tape head akan terlihat seperti berikut :

Komponen Mesin Turing (3)

Proses pengenalan input string dapat lebih mudah dipahami melalui penyajian dalam bentuk tabular:

STATE	POSISI TAPE HEAD	OUTPUT KARAKTER
start	<u>a</u> b a λ	
2	a <u>b</u> a λ	a
3	a b <u>a</u> λ	a b
3	a b a <u>λ</u>	a b a
halt	a b a λ	a b a

Komponen Mesin Turing

Note:

Semua bentuk mesin turing bersifat DETERMINISTIC. Sehingga tidak ada state yang mempunyai dua atau lebih outgoing edge (arc) dengan input karakter yang sama.

Crash terjadi jika:

- Tidak ada path untuk melanjutkan eksekusi sesuai dengan input karakter yang terdapat pada input tape;
- Terdapat perintah "L" (left) pada saat tape head berada pada posisi sel pertama.

Tugas

1. Konversikan FA di samping menjadi PDA yang ekivalen ;

Buatlah penelusuran pada PDA di samping untuk input :

- 2. aaabbb
- 3. aaabaa

Konversikan CFG di bawah menjadi bentuk PDA:

$$X \rightarrow aX \mid bX \mid \lambda$$