DETECCIÓN AUTOMÁTICA DE GLAUCOMA USANDO IMÁGENES DE FONDO DE OJO

Guarnieri - Velloso - Zino

GLAUCOMA

Mayo Clinic - 27 Enero 2023

- Una de las principales causas de ceguera en personas mayores de 60 años
- Asintomático hasta las etapas más avanzadas
- Relacionada con la alta presión intraocular,

Neuropatía óptica caracterizada por alteraciones en la estructura del nervio óptico

FEATURES

CD

Área de la copa en relación al área del disco

DH

Distancia entre el centro del disco óptico y el punto promedio de los vasos en relación al radio del disco

\sqrt{D}

Área de los vasos del disco en relación al área del disco

OBJETIVOS

Extracción de features

Para la obtención de los features: segmentar el cup, disco, y los vasos sanguíneos.

Análisis de Datos

Determinar si las imágenes de fondo de ojos corresponden a glaucoma o no glaucoma

MÉTODO

Input

Extracción de features

Generación de BD

Clasificación

630 Imágenes etiquetadas y estandarizadas Estandarización() Extracción de los 3 features

RelacionCD()

RelacionDH()
RelacionVD()

Exportación tabla CSV con etiquetas y los 3 features
GenerarTabla()

Clasificación y análisis de Datos en Orange

Entrenamiento de los modelos y evaluación.

RELACIÓN CD

"cup to disk"

Área del cup / Área del disco

SEGMENTACIÓN DEL DISCO

SEGMENTACIÓN DEL CUP

RELACIÓN VD

"vasos y disco"

Área de los vasos / Área del disco

RELACIÓN DH

"distancia del centro del disco a los vasos"

RELACIÓN DH

o. m con línea vertical de 2 px

CLASIFICACIÓN

630 imágenes etiquetadas \rightarrow 307 glaucoma / 323 no glaucoma

RESULTADOS

AUC 0,695 CA 0,605 Prec 0,609

Matriz de confusión

PC1

CONCLUSIONES Y MEJORAS

Los resultados de la clasificación no fueron los esperados

Las imágenes tenían mala iluminación y mal contraste

Mejorar el algoritmo de Estandarización Feature engineering no es la mejor aproximación para este problema

Redes neuronales

A futuro

Sería interesante ver la clasificación del glaucoma y otras patologías ópticas

BASES DE DATOS

$eye_diseases_classification$

Eye Disease Retinal Images

k kaggle.com

Glaucoma Dataset: EyePACS AIROGS - Light

Machine-learning-ready lightweight dataset for glaucoma classification

k kaggle.com

Ocular Disease Recognition

Right and left eye fundus photographs of 5000 patients

k kaggle.com

Fondo de Ojo: Glaucoma-Normal

Glaucoma: 1 No Glaucoma: 0

kaggle.com

BIBLIOGRAFÍA

Nayak, J., Acharya, R., Bhat, P. S., Shetty, N., & Lim, T. C. (2009). Automated Diagnosis of Glaucoma Using Digital Fundus Images. Journal of Medical Systems, 33(5), 337-346.

B. Naveen Kumar, R.P. Chauhan & Nidhi Dahiya (2016): Detection of Glaucoma Using Image Processing Techniques: A Critique, Seminars in Ophthalmology. Seminars in Ophthalmology.

Tim Jerman (2023). Jerman Enhancement Filter (https://github.com/timjerman/JermanEnhancementFilter),

Mayo Clinic Web Page:

https://www.mayoclinic.org/es/diseases-conditions/glaucoma/symptoms-causes/syc-20372839#:~:text=El%20glaucoma%20se%20desarrolla%20cuando,de%20presi%C3%83n%20en%20el%20ojo.

IGRACIAS POR SU ATENCIÓN!