Data Analytics

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

- KNN Classifier
 - Lazy classifier
 - Have to specify the value of K
 - Sensitive to initial clusters, distance measures, K
 - Cannot handle categorical data, have to transform data
- Naïve Bayes Classifier
- Logistic Regression
- Tree-Based Learning

- KNN Classifier
- Naïve Bayes Classifier
 - Requirement: conditionally independent
 - Cannot handle numeric, have to transform data
 - May have imbalance issues in labels (general issue)
 - Laplace smoothing
- Logistic Regression
- Tree-Based Learning

- KNN Classifier
- Naïve Bayes Classifier
- Logistic Regression
 - Utilize regression models for classifications
 - The y variable is log (odd)
 - Feature selections can also be applied
 - Make decisions by using odd or P(Y = 1)
- Tree-Based Learning

- KNN Classifier
- Naïve Bayes Classifier
- Logistic Regression
- Tree-Based Learning
 - More complicated but much more effective sometimes
 - Tree-based learning: a machine learning method
 - Require feature selection
 - Require to handle overfitting problems

- Ensemble Methods
- Multi-Label Classification

Ensembles of Classifiers

- **Basic idea** is to learn a set of classifiers (experts) and to allow them to vote.
- Advantage: improvement in predictive accuracy.
- **Disadvantage:** it is difficult to understand an ensemble of classifiers.

Ensemble Methods

- Bagging
- AdaBoosting
- Random Forest
- And more

Bagging

- Process in bagging:
 - Sample several training sets of size n (instead of just having one training set of size n)
 - Build a classifier for each training set
 - Combine the classifier's predictions by voting or averaging

Bagging classifiers

Classifier generation

Let n be the size of the training set.

For each of t iterations:

Sample n instances with replacement from the training set.

Apply the learning algorithm to the sample. Store the resulting classifier.

classification

For each of the t classifiers:

Predict class of instance using classifier.

Return class that was predicted most often.

Voting and Averaging

- Voting is used for classifications, and averaging is used for regressions
- Voting: Hard and Soft voting

Hard voting

Predictions:

Classifier 1 predicts class A

Classifier 2 predicts class B

Classifier 3 predicts class B

2/3 classifiers predict class B, so class B is the ensemble decision.

Soft voting

Predictions (identical to the earlier example, but now in terms of probabilities. Shown only for class A here because the problem is binary):

Classifier 1 predicts class A with probability 99%

Classifier 2 predicts class A with probability 49%

Classifier 3 predicts class A with probability 49%

The average probability of belonging to class A across the classifiers is (99 + 49 + 49) / 3 = 65.67%. Therefore, class A is the ensemble decision.

Why does bagging work?

- Bagging reduces variance by voting/ averaging, thus reducing the overall expected error
 - In the case of classification there are pathological situations where the overall error might increase
 - Usually, the more classifiers the better

Boosting

- Also uses voting/averaging but models are weighted according to their performance
- Iterative procedure: new models are influenced by performance of previously built ones
 - New model is encouraged to become expert for instances classified incorrectly by earlier models
 - Assign more weights to the misclassified instances to improve the classification iteratively
- There are several variants of this algorithm

AdaBoost.M1

classifier generation

Assign equal weight to each training instance. For each of t iterations:

Learn a classifier from weighted dataset.

Compute error e of classifier on weighted dataset.

If **e** equal to zero, or **e** greater or equal to 0.5: Terminate classifier generation.

For each instance in dataset:

If instance classified correctly by classifier: Multiply weight of instance by **e** / (1 - e).

Normalize weight of all instances.

classification

Assign weight of zero to all classes.

For each of the t classifiers:

Add $-\log(e / (1 - e))$ to weight of class predicted by the classifier.

Return class with highest weight.

School of Applied Technology

Random Forest

Classifier generation

Let n be the size of the training set.

For each of t iterations:

- (1) Sample n instances with replacement from the training set.
- (2) Learn a decision tree s.t. the variable for any new node is the best variable among m randomly selected variables.
- (3) Store the resulting decision tree.

Classification

For each of the t decision trees:

Predict class of instance.

Return class that was predicted most often.

- Ensemble Methods
- Multi-Label Classification

Advanced Topic: Multi-Label Classification

Applications

Data type	Application	Resource	Labels Description (Examples)
text	categorization	news article	Reuters topics (agriculture, fishing)
		web page	Yahoo! directory (health, science)
		patent	WIPO (paper-making, fibreboard)
		email	R&D activities (delegation)
		legal document	Eurovoc (software, copyright)
		medical report	MeSH (disorders, therapies)
		radiology report	ICD-9-CM (diseases, injuries)
		research article	Heart conditions (myocarditis)
		research article	ACM classification (algorithms)
		bookmark	Bibsonomy tags (sports, science)
		reference	Bibsonomy tags (ai, kdd)
		adjectives	semantics (object-related)
image	semantic annotation	pictures	concepts (trees, sunset)
video	semantic annotation	news clip	concepts (crowd, desert)
audio	noise detection	sound clip	type (speech, noise)
	emotion detection	music clip	emotions (relaxing-calm)
structured	functional genomics	gene	functions (energy, metabolism)
	proteomics	protein	enzyme classes (ligases)
	directed marketing	person	product categories

Multi-Label Classification: Example

Movies and Emotions

Title	Actors	Director	Emo_before	Emo_during	Emo_after
Spider Man	XX	XXX	Sad	Exciting	Нарру
Superman	Xxx	Xx	Exciting	Normal	Disappointed
***	•••				
•••			•••		
New Movie	Xxxx	Xxx	?	?	?

Multi-Label Classification: Example

- Twitter and Hashtags
 - You may tweet some texts and use hashtags
 - For a single tweet, you may use more than one hashtag
 - Given a set of knowledge tweet with hashtags, we want to build multi-label classification models
 - Given a new tweet, we predict or suggest the hashtags they can use

Solutions

- Transformation Based Methods
 Transform the task to binary/multi-class classifications
- Adaptation Based Methods
 Develop new algorithms to solve the problem

- Transformation Based Methods
 - Binary Relevance
 - Classifier Chains
 - Label Powerset

Binary Relevance

Example	Attributes	Label set
1	x ₁	$\{\lambda_1,\lambda_4\}$
2	X ₂	$\{\lambda_3,\lambda_4\}$
3	Х3	$\{\lambda_1\}$
4	X4	$\{\lambda_2,\lambda_3,\lambda_4\}$

There are 4 labels, then we simply build 4 binary classifiers

Ex.	Label	
1	λ_1	
2	$\neg \lambda_1$	
3	λ_1	
$4 \mid \neg \lambda_1 \mid$		

(a)

Ex.	Label
1	$\neg \lambda_2$
2	$\neg \lambda_2$
3	$\neg \lambda_2$
4	λ_2

$ \begin{array}{c cc} 1 & \neg \lambda_3 \\ 2 & \lambda_3 \\ 3 & \neg \lambda_3 \\ 4 & \lambda_3 \end{array} $	Ex.	Label
$ \begin{array}{c cc} 2 & \lambda_3 \\ 3 & \neg \lambda_3 \\ 4 & \lambda_3 \end{array} $	1	$\neg \lambda_3$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	λ_3
$4 \lambda_3$	3	$\neg \lambda_3$
	4	λ_3

Ex.	Label
1	λ_4
2	λ_4
3	$\neg \lambda_4$
4	λ_4

(b)

(c)

(d)

Classifier Chains

- The main drawback in binary relevance is that it ignores the label correlations
- Classifier Chains build the model in a chain by taking label correlations into consideration
- It uses the feature to perform binary classification on 1st label, the prediction on 1st label will be reused as the features into the 2nd step to predict the 2nd label
- Repeat the process above until all of the labels are predicted

- Classifier Chains
 - It uses the feature to perform binary classification on 1^{st} label, the prediction on 1^{st} label will be reused as the features into the 2^{nd} step to predict the 2^{nd} label

Repeat the process above until all of the labels are

predicted

- Label Powerset
 - Each subset of the label set will be a single label
 - Assign binary classification or multi-class classification to them
 - Find a way to aggregate the results

Multi-Label Classification Tools

- Mulan
 - Java Based
 - Reuse Weka library
 - No UI
 - http://mulan.sourceforge.net/
- Meka
 - Java Based
 - With UI
 - http://meka.sourceforge.net/

References

- G Tsoumakas, I Katakis, I Vlahavas, Mining multi-label data
- G Tsoumakas, I Katakis, Multi-label classification: An overview
- G Tsoumakas, E Spyromitros-Xioufis, J Vilce, Mulan: A java library for multi-label learning

Exam 2

- Time: April 25, 8:35 to 9:50 AM
- Location: Pending
- Knowledge covered: classifications
 - KNN, Naïve Bayes, Logistic regression
 - Similar to HW 8
 - Know how algorithms work, be evaluated
 - Know how to do manual calculations, similar to HW 8
 - Know how to run and read R outputs
 - Decision Tree and Ensemble Classifications
 - Understand how they work
 - Only one concept question, e.g., how bagging works

Assignments and Exam 1

Next Class

- Coding Practice: HW 7
- Coding Practice: HW 9