Automated Fish Classification Using Unprocessed Fatty Acid Chromatographic Data: A Machine Learning Approach

Jesse Wood, Bach Nguyen, Bing Xue, Mengjie Zhang, Daniel Killeen

INTRO

- Gas Chromatography is an analytical chemistry method that produces high-dimensional low-sample data.
- This study compares classification and feature selection when applied to gas chromatagraphy measurements from fish oil data.
- Classification to predict Fish Species and Body Parts, two datasets that share the same features.
- Feature selection to reduce the dimensionality, improve computation efficiency, and (even) improve classification performance.

METHODS

- Evaluation: average balanced classification accuracy using 10-fold cross validation.
- 30 independent runs for each classification method.
- Each feature selection method for number of features in { 50, 100, ..., 4800 }. PSO evaluated on 30 independent runs.

RESULTS

- Classification: Linear SVM performed best, with 98.33% accuracy for fish species, 79.86% accuracy for body parts.
- Feature Selection: mRMR and PSO have 99.17% accuracy for fish species, 86.94% accuracy for body parts.

DISCUSSION

- Linear SVM provides an interpretable and accurate model.
- **PSO/mRMR** feature selection improve the model further with greater **efficient** and **accuracy**.
- Body Parts is more difficult to classify than
 Fish Species

Linear SVM can accurately predict fish species, PSO makes that process 4 times faster, producing an accurate, interpretable and efficient model for Gas Chromatography.

Gas chromatogram where x-axis measures time, the y-axis measure intensity.

Linear SVM hyperplane coefficients for **Fish Species** for the Blue cod class:

A table with **classification** results:

Dataset	Method	Train	Test
Species	KNN	83.57	74.88
	RF	100.0	85.65
	DT	100.0	76.98
	NB	79.54	75.27
	SVM	100.0	98.33
Parts	KNN	68.95	43.61
	RF	100.00	72.60
	DT	100.00	60.14
	NB	65.54	48.61
	SVM	100.00	79.86

Best accuracy for **feature selection** for **Fish Species**

Method	# Features	Train	Test
ReliefF	359	100.0	98.33
mRMR	1500	100.0	99.17
χ^2	3250	100.0	98.33
PSO	1192	100.0	99.17
Full	4800	100.0	98.33

Best accuracy for **feature Selection** for **Body Parts**

# Features	Train	Test
1650	100.0	84.44
1500	100.0	86.94
1550	100.0	82.50
1223	100.0	84.31
4800	100.0	79.86
	1650 1500 1550 1223	1650100.01500100.01550100.01223100.0