ECE367 Cheatsheet

Hanhee Lee

September 23, 2024

Contents

1	Vec		3
	1.1	Linear transformation	3
		1.1.1 Matrix representation of a linear transformation	3
	1.2	Vectors	3
	1.3		4
			4
	1.4		5
	1.5		5
			6
	1.6		6
	1.0		6
	1.7	v -	7
	1.1		7
	1.8		7
	1.0		8
			8
			9
	1.9		9
	1.9		9
			9
		1.9.3 Cauchy-Schwartz inequality and its generalization	
		1.9.4 Inner product induces a norm	
	1 10		-
	1.10	Orthogonal decomposition	
		1.10.2 Orthonormal basis	
		1.10.3 Orthogonal	
		1.10.4 Orthogonal complement	1
2	Ortl	hogonal Decomposition, Projecting onto Subspaces, Gram-Schmidt, QR Decomposition, Hyper-	
-		nes and Half-Spaces (Ch. 2.2-2.3)	2
	2.1	Projection onto subspaces	
		2.1.1 Basic problem	
		2.1.2 Projection onto a 1D subspace	
		2.1.3 Projection onto an n dimensional space	
		2.1.4 Application of projections: Fourier series	
	2.2	Gram-Schmidt and QR decomposition	
	4.4	2.2.1 What if the set of basis vectors is not orthonormal?	-
		2.2.2 Gram-Schmidt Procedure	
		2.2.3 QR decomposition	
	2.3	Projection of a subspace defined by its orthogonal vectors	
	4.0	2.3.1 Subspace defined by its orthogonal vectors	
		2.3.2 Projection	
	9.4	·	-

3	Non-Euclidean Projection, Projection onto Affine Sets, Functions, Gradients and Hessians (3-2.4)	(Ch. 21
	.1 Non-Euclidean projection	
	3.2.1 Affine spaces	
	3.2.2 Projection of Affine space defined in terms of basis vectors of corresponding subspace 3.2.3 Projection of Affine space defined in terms of orthogonal vectors to corresponding subspace	
	3.2.4 Show that the two affine sets are equal	25
	3 Functions	
	.4 Gradients	
	U Ticosiano	20
4	Matrices, Range, Null Space, Eigenvalues, Eigenvectors, Matrix Diagonalization (Ch. 3.1-3.5)	28 28
	.1 Matrices	
	3 Null Space	
	.4 Eigenvalues and eigenvectors	
	.5 Matrices diagonalization	28
5	ymmetric Matrices, Orthogonal Matrices, Spectral Decomposition, Positive Semidefinite Matri	
	Ellipsoids (Ch. 4.1-4.4)	28
	.1 Symmetric matrices	
	3 Spectral decomposition	
	.4 Positive semidefinite matrices	28
	.5 Ellipsoids	28
6	ingular Value Decomposition, Principal Component Analysis (Ch. 5.1, 5.3.2)	28
	.1 Singular value decomposition	
	.2 Principle component analysis	28
7	nterpretations of SVD, Low-Rank Approximation (Ch. 5.2-5.3.1)	28
	.1 Interpretation of SVD	
	.2 Low-rank approximation	28
8	east Squares, Overdetermined and Underdetermined Linear Equations (Ch. 6.1-6.4)	28
	.1 Least squares	
	Overdetermined linear equation	
9	Regularized Least-Squares, Convex Sets and Convex Functions (Ch. 6.7.3, 8.1-8.4) 1 Regularized least-squares	28 28
	.2 Convex sets and convex functions	
10		
10	agrangian Method for Constrained Optimization, Linear Programming and Quadratic Programming (Ch. 8.5, 9.1-9.6)	ram- 28
	0.1 Lagrangian method for constrained optimization	
	0.2 Linear programming and quadratic programming	
11	Numerical Algorithms for Unconstrained and Constrained Optimization (Ch. 12.1-12.3)	28
	1.1 Numerical algorithms for unconstrained optimization	
	1.2 Numerical algorithms for constrained optimization	28
T.i	t of Figures	
	Vector addition and scalar multiplication.	
	Norm balls of different p values	
	Drawing any x	

5	Error vector being perp. to S	2
6	Visual representation of the projection problem	3
7	Generalization of projection	5
8	Periodic triangle function	6
9	Not orthogonal, but similar to projection with orthonormal basis	7
10	Gram-Schmidt Process for 2D	8
11	Projection onto a subspace defined by its orthogonal vectors	0
12	Affine space of a 2D space, where the $x^{(0)}$ is the constant (i.e. shifting origin to the Affine set) that we are	
	adding to shift all the vectors to the affine space	2
13	Projection problem visualization, where we are projecting the vector onto the Affine space	2
14	Projection problem visualization, where we are projecting the vector onto the affine space, which is in line	
	with the orthogonal vectors	3

List of Tables

1 Vectors, Norms, Inner Products (Ch. 2.1-2.2)

1.1 Linear transformation

Definition: $T: X \to Y$ that satisfies

1. Additivity: $T(x_1 + x_2) = T(x_1) + T(x_2)$

2. Homogeneity: $T(\alpha x) = \alpha T(x)$

• Note: Linear algebra is the study of linear transformations over vector spaces.

1.1.1 Matrix representation of a linear transformation

Definition: Let \mathcal{V} and \mathcal{W} be vector spaces. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. When $\mathcal{V} = \mathbb{R}^n$ (or \mathbb{C}^n) and $\mathcal{W} = \mathbb{R}^m$ (or \mathbb{C}^m), then T can be uniquely represented as a matrix $A \in \mathbb{R}^{m \times n}$ such that:

$$T(\mathbf{x}) = A\mathbf{x}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• **Key:** Any linear transformation is a matrix multiplication. Any matrix multiplication is a linear transformation.

1.2 Vectors

Definition: Ordered collection of numbers, where $x_i \in \mathbb{R}$ or \mathbb{C}

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}.$$

• n: Dimension of \mathbf{x}

• x: Column vector

• \mathbf{x}^T : Transpose of x (row vector)

• T: Transpose

• x_i : i-th element of x.

1.3 Vector spaces

Definition: A vector space over a field \mathbb{F} (e.g. \mathbb{R}/\mathbb{C}) consists of:

- 1. A set of vectors \mathcal{V}
- 2. A vector addition operator $+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ s.t. $\forall x, y \in \mathcal{V} \to x + y \in \mathcal{V}$ (i.e. closed under VA)
- 3. A scalar multiplication operator $: \mathbb{F} \times \mathcal{V} \to \mathcal{V}$ s.t. $\forall \alpha \in \mathbb{F}, \ \forall x \in \mathcal{V} \to \alpha x \in \mathcal{V}$ (i.e. closed under SM)
- \bullet × is not scalar multiplication.

For $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and $\alpha, \beta \in \mathbb{F}$. The following properties are satisfied:

- Vector addition satisfies (i.e., Abelian group):
 - 1. Commutativity: x + y = y + x.
 - 2. Associativity: $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.
 - 3. Additive identity: $\exists 0 \in \mathcal{V} \text{ s.t. } \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}.$
 - 4. Additive inverse: $\forall \mathbf{x}, \exists \mathbf{y} \text{ s.t. } \mathbf{x} + \mathbf{y} = \mathbf{0}$ (i.e. $\mathbf{y} = -\mathbf{x}$).
- Scalar multiplication satisfies:
 - 1. Associativity: $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \cdot \beta) \cdot \mathbf{x}$.
 - 2. Multiplicative Identity: $\exists 1 \in \mathbb{F} \text{ s.t. } 1 \cdot \mathbf{x} = \mathbf{x}$.
 - 3. Right Distributivity: $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}$.
 - 4. Left Distributivity: $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}$.

Figure 1: Vector addition and scalar multiplication.

1.3.1 How to prove or disprove a vector space?

Process:

Prove:

- 1. Prove that \mathcal{V} is closed under VA and SM.
- 2. Prove all the properties under VA and SM.

Disprove:

1. Disprove one of the properties or that it isn't closed under VA and SM.

Warning: If standard addition and multiplication then, closed under VA and SM properties is enough to prove it's a vector space.

Example:

• Let $\mathcal{V} = \mathbb{R}^n$ and $\mathbb{F} = \mathbb{R}$: This represents vectors of dimension n where each element belongs to \mathbb{R} .

$$\mathcal{V} = \mathbb{R}^n = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{R} \right\}$$

For
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$:

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

For $\alpha, \beta \in \mathbb{R}$:

$$\alpha \cdot \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{bmatrix}$$

• Let $\mathcal{V} = \mathbb{C}^n$ and $\mathbb{F} = \mathbb{C}$: This represents vectors of dimension n with complex components.

$$\mathcal{V} = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} : x_i \in \mathbb{C} \right\}$$

 \mathcal{V} is a vector space over \mathbb{C} under element-wise addition and scalar multiplication.

• Let $\mathcal{V} = \{\text{set of all continuous functions } f : \mathbb{R} \to \mathbb{R}^n \}$ and $\mathbb{F} = \mathbb{R}$: Let $f_1, f_2 \in \mathcal{V}$, and for $t \in \mathbb{R}$:

$$(f_1 + f_2)(t) = f_1(t) + f_2(t) \implies f_1 + f_2 \in \mathcal{V}$$

For $\alpha \in \mathbb{R}$:

$$(\alpha f)(t) = \alpha f(t) \Rightarrow \alpha f \in \mathcal{V}$$

- f is the vector, $\mathbb{R} \to \mathbb{R}^n$ is the input-output relationship. For 2D, $f(x) = [x_1, x_2]^T$, where x is the input, the vector is the output in 2D, and the vector is f.
- Let $\mathcal{V} = \mathcal{P}_n$, the set of all polynomials with real coefficients and degree $\leq n$:

$$\mathcal{V} = \mathcal{P}_n = \{ p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n : a_0, a_1, \ldots, a_n \in \mathbb{R} \}$$

 ${\mathcal V}$ is a vector space over ${\mathbb R}$ under standard addition and scalar multiplication.

1.4 Subspace

Definition: A subspace is a subset of a vector space $\mathcal V$ that is a vector space by itself.

• Test: To check whether a subset is a subspace, check that it is closed under VA & SM.

Example:

• Let $\mathcal{V} = \mathbb{R}^3$, and consider the set:

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set S is a subspace of \mathbb{R}^3 .

• Let $\mathcal{V} = \mathbb{R}^3$, and consider the set:

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set S is **not** a subspace of \mathbb{R}^3 because adding two vectors will make the last component 2.

• Let $\mathcal{V} = \mathbb{R}^n$, and consider the set:

$$S = \{ \mathbf{0} \}$$

This set S is a subspace of \mathbb{R}^n .

1.5 Span

Definition: Given a finite set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ in the same vector space \mathcal{V} over some field \mathbb{F} then,

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{F} \right\}$$

• Note: Span(S) is always a subspace of V.

1.5.1 How to draw the span?

Process:

- 1. Identify the vectors.
- 2. Plot the vectors: Plot each vector on a coordinate plane starting at the origin.
- 3. Draw the span: Extend the vectors in both directions to show the line or plane formed by their span. If they span the entire plane, draw dashed lines extending their direction.

Example:

• Let $S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$:

$$\operatorname{span}(S) = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

This set span(S) forms a plane in \mathbb{R}^3 . The vectors span the xy-plane with the z-coordinate fixed at zero.

• Let $S = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\0 \end{bmatrix} \right\}$:

$$\operatorname{span}(S) = \left\{ x \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$

In this case, span(S) is a line in \mathbb{R}^3 along the x-axis with y and z coordinates fixed at zero.

1.6 Linear independent (LI) set

Definition: A set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is LI if no vector in S can be written as a LC of other vectors in S. In other words, the only α_i 's that makes $\sum_{i=1}^m \alpha_i \mathbf{v}_i = 0$ is $\alpha_i = 0$, $\forall i$.

- If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is LI, then $\forall \mathbf{u} \in \text{span}(S)$, there is a **unique** set of α_i 's s.t. $\mathbf{u} = \sum_{i=1}^k \alpha_i \mathbf{v}_i$ (i.e. there is no redundancies in representation)
 - Coordinates: $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ of **u** w.r.t. S.
- If S is linearly dependent, then one of the vectors can be written as a LC of the other vectors. In this case, we can remove that vector and continue this process until the remaining set is LI.
 - Note: Such an irreducible linearly independent set is called a basis of $\operatorname{span}(S)$.

1.6.1 How to determine if a set is linearly independent

Process:

- 1. Write a linear combination with coefficients $\alpha_1, \ldots, \alpha_k$.
- 2. Set the linear combination equal to 0.
- 3. Solve for $\alpha_1, \ldots, \alpha_k$ by solving the set of equations (i.e. each component is one equation).
- 4. If $\alpha_1 = \ldots = \alpha_k = 0$, then it is linearly independent.
- 5. Else, linearly dependent by finding a counter example, where the linear combination is 0 for $\alpha_1, \ldots, \alpha_k$ not all equal to 0.

1.7 Basis

Definition: A set of vectors B is a basis of a vector space $\mathcal V$ if

- \bullet B is LI
- $Span(B) = \mathcal{V}$

Example: What is the standard basis for $\mathcal{V} = \mathbb{R}^n$?

$$\mathbf{e}^{(1)} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \quad \mathbf{e}^{(2)} = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \quad \dots \quad , \quad \mathbf{e}^{(n)} = \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \quad \text{for } \mathbb{R}^n$$

If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
, then:

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$

1.7.1 Dimension

Definition: The dimension is the number of basis vectors.

• Note: Basis is not unique. But dim(V) is well-defined.

Example:

• dim
$$\left(\operatorname{span}\left(\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)\right) = 2$$

• dim
$$\left(\operatorname{span}\left(\left\{\begin{bmatrix} 1\\0\end{bmatrix}\right\}\right)\right) = 1$$

- $\dim\left(\left\{\mathbf{0}\right\}\right) = 0$
- The dimension for $\mathcal{V} = \mathbb{R}^n$ of the standard basis is n

Process:

- 1. Given a set of vectors, S
- 2. If l.i. and $span(S) = \mathcal{V}$, then it's a basis.
- 3. If for each pair of vectors, the inner product is 0, then it's orthogonal basis.
- 4. If unit norm, then it's orthonormal basis.

1.8 Norms (Notion of distance)

Definition: Let \mathcal{V} be a vector space over \mathbb{R} or \mathbb{C} . A norm is a function $\|\cdot\|$: $\mathcal{V} \to \mathbb{R}$ that satisfies

- 1. Non-negativity: $\|\mathbf{x}\| \ge 0$, $\forall \mathbf{x} \in \mathcal{V}$, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$
- 2. Homogeneity: $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \mathbf{x} \in \mathcal{V}, \ \alpha \in \mathbb{F}$
- 3. Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{V}$ (triangular inequality)

Example: ℓ_p norms:

$$\|\mathbf{x}\|_p \equiv \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad 1 \le p < \infty.$$

7

- Note: For p < 1, triangular inequality doesn't hold.
- 1. Sum-of-absolute-values length p = 1: $\|\mathbf{x}\|_1 \equiv \sum_{k=1}^n |x_k|$

- 2. Euclidean length p = 2: $\|\mathbf{x}\|_2 \equiv \sqrt{\sum_{k=1}^n x_k^2}$
- 3. Max absolute value norm $p = \infty$: $\|\mathbf{x}\|_{\infty} \equiv \max_{k=1,\dots,n} |x_k|$
 - Largest term will dominate as if we common factor out the largest term, each of the other terms will go to 0 as noted in the lp norm.
- 4. Cardinality p = 0: The number of non-zero vectors in x is

$$\|\mathbf{x}\|_0 = \operatorname{card}(\mathbf{x}) \equiv \sum_{k=1}^n \mathbb{I}(x_k \neq 0), \text{ where } \mathbb{I}(x_k \neq 0) \equiv \begin{cases} 1 & \text{if } x_k \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

• Key: Not a norm since $\|\alpha \mathbf{x}\|_0 = \|\mathbf{x}\|_0 \neq |\alpha| \cdot \|\mathbf{x}\|_0$ (e.g. if $\alpha = 2$ then this would double the count of number of non-zero vectors for the RS)

1.8.1 Norm balls

Definition: The set of all vectors with ℓ_p norm less than or equal to one,

$$B_p = \{\mathbf{x} : \|\mathbf{x}\|_p \le 1\} \tag{1}$$

Example: For 2D, the norm balls are as follows:

- ℓ_2 : $B_2 = \left\{ \mathbf{x} \mid \sqrt{x_1^2 + x_2^2} \le 1 \right\}$ ℓ_1 : $B_1 = \left\{ \mathbf{x} \mid |x_1| + |x_2| \le 1 \right\}$ ℓ_∞ : $B_\infty = \left\{ \mathbf{x} \mid \max |x_i| \le 1 \text{ or } |x_1| \le 1, |x_2| \le 1 \right\}$

- $\ell_0: B_0 = \{ \mathbf{x} \mid \text{card}(\mathbf{x}) \le 1 \}$

Figure 2: Norm balls of different p values.

1.8.2 **Motivation for Norms**

Example: In optimization problems, different norms are used to achieve various goals. Suppose we are trying to solve an optimal control problem, where $x = (x_1, \ldots, x_n)$ are some action variables.

- $\min \|\mathbf{x}\|_2^2 = x_1^2 + \ldots + x_n^2$ (i.e. minimizing the total energy (power) in \mathbf{x})
- $\min \|\mathbf{x}\|_{\infty}$ (i.e. minimizing the peak energy in \mathbf{x}).
- $\min \|\mathbf{x}\|_1$ (i.e. minimizing the sum of action variables).
- $\min \|\mathbf{x}\|_0$ (i.e. find sparse solution)

1.8.3 Distance metric

Definition: A norm induces a distance metric between two vectors x and y in \mathbb{V} as

$$d(x,y) = ||x - y||$$

• Note: The ℓ_2 -norm induces the Euclidean distance

$$||x - y||_2 = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

1.9 Inner product (Notion of angle)

Definition: An inner product on a vector space \mathcal{V} is a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathcal{F}$ such that:

- 1. Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0 \ \forall \mathbf{x} \in \mathcal{V} \ \mathrm{and} \ \langle \mathbf{x}, \mathbf{x} \rangle = 0 \ \mathrm{iff} \ \mathbf{x} = 0$
- 2. Conjugate Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ in \mathbb{R}^n
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ in \mathbb{C}^n .
- 3. Linearity in first argument: $\langle \alpha \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}, \alpha \in \mathbb{F}$

Example: How to use the properties of inner products?

$$\begin{split} \langle x, \alpha y + z \rangle &\stackrel{(2)}{=} \overline{\langle \alpha y + z, x \rangle} \\ &\stackrel{(3)}{=} \overline{\alpha} \overline{\langle y, x \rangle} + \overline{\langle z, x \rangle} \quad \text{ also by conjugate prop.} \\ &\stackrel{(2)}{=} \overline{\alpha} \langle x, y \rangle + \langle x, z \rangle \end{split}$$

1.9.1 Examples of inner products

Example:

• In
$$\mathbb{R}^n$$
 (Dot product): $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i = \mathbf{x}^\top \mathbf{y} = \mathbf{y}^\top \mathbf{x}$

- **Key:**
$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{i=1}^{n} x_i^2 = \mathbf{x}^{\mathsf{T}} \mathbf{x} = \|\mathbf{x}\|_2^2$$

• In
$$\mathbb{C}^n$$
: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n \overline{x_i} y_i = \mathbf{y}^H \mathbf{x} = \overline{\mathbf{x}^H \mathbf{y}}$

$$-\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{x}^H = \begin{bmatrix} \overline{x_1} & \cdots & \overline{x_n} \end{bmatrix}$$

•
$$\mathcal{V} = \left\{ f : \mathbb{R} \to \mathbb{R} ; \int_{-\infty}^{+\infty} f^2(t) dt < \infty \right\}$$
 (i.e. the set of square integrable functions)

$$\langle f, g \rangle = \int_{-\infty}^{+\infty} f(t)g(t) dt$$

1.9.2 Connection of inner product to angle

In \mathbb{R}^n , the notion of inner product has a geometric interpretation, and is closely related to the notion of angle between vectors.

Definition:

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} = \left\langle \frac{\mathbf{x}}{\|\mathbf{x}\|_2}, \frac{\mathbf{y}}{\|\mathbf{y}\|_2} \right\rangle$$
(2)

- $\langle \mathbf{x}, \mathbf{y} \rangle = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta = \frac{\pi}{2}$ (i.e. perpendicular) $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \Rightarrow \cos \theta = 1 \Rightarrow \theta = 0$ (i.e. \mathbf{x} and \mathbf{y} are aligned) $\langle \mathbf{x}, \mathbf{y} \rangle = -\|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \Rightarrow \cos \theta = -1 \Rightarrow \theta = \pi$ (i.e \mathbf{x} and \mathbf{y} are in opposite directions)

- $\langle \mathbf{x}, \mathbf{y} \rangle > 0 \Rightarrow \cos \theta > 0 \Rightarrow \text{angle is acute}$
- $\langle \mathbf{x}, \mathbf{y} \rangle < 0 \Rightarrow \cos \theta < 0 \Rightarrow \text{angle is obtuse}$

Derivation: L3: Inner products and orthogonality.

Cauchy-Schwartz inequality and its generalization

Definition:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \tag{3}$$

Hölder's Inequality (generalization):

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}||_p ||\mathbf{y}||_q \quad \text{where } 1 \le p, q < \infty \text{ and } \frac{1}{p} + \frac{1}{q} = 1$$
 (4)

Example: For p = 1 and $q = \infty$, we have:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_1 \cdot \|\mathbf{y}\|_{\infty}$$

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \left(\sum_{i=1}^{n} |x_i|\right) \cdot \max_{i} |y_i|$$

Inner product induces a norm

Definition: Any inner product induces a norm, but not all norms are induced by an inner product.

• Key: If given an inner product, take the square root of the inner product to get the norm. - e.g. $\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, which holds for \mathbb{R}^n and \mathbb{C}^n

Figure 3: Ordering of the vector spaces.

Warning: A norm doesn't induce an inner product (e.g. l_1 or l_{∞})

1.10 Orthogonal decomposition

1.10.1 Mutually orthogonal

 $\textbf{Definition: A set of non-zero vectors } S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\} \text{ is } \textbf{mutually orthogonal } \text{if } \langle \mathbf{v}^{(i)}, \mathbf{v}^{(j)} \rangle = 0 \; \forall \; i \neq j.$

- Fact: Orthogonal set of vectors $S = \{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)}\}$ is linearly independent.
 - Proof: In L3.

1.10.2 Orthonormal basis

Definition: Set of orthogonal basis vectors that have unit norm.

If $S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\}$ is a set of mutually orthogonal vectors, then $\left\{ \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \dots, \frac{\mathbf{v}_d}{\|\mathbf{v}_d\|} \right\}$ is an orthonormal basis for span(S)

Example: Standard basis is an orthonormal basis for \mathbb{R}^n

1.10.3 Orthogonal

Definition: Consider $\mathbf{x} \in \mathcal{V}$, and let S be a subspace of \mathcal{V} . We say \mathbf{x} is orthogonal to S if:

$$\langle \mathbf{x}, \mathbf{v} \rangle = 0 \quad \forall \, \mathbf{v} \in S.$$

We write: $\mathbf{x} \perp S$.

1.10.4 Orthogonal complement

Definition: The **orthogonal complement** of S, denoted S^{\perp} , is the set of all orthogonal vectors to S:

$$S^{\perp} = \{ \mathbf{x} \in \mathcal{V} : \mathbf{x} \perp S \}$$

- S^{\perp} is a subspace. (Closed under addition and scalar multiplication)
- $S \cap S^{\perp} = \{0\}$
- Orthogonal decomposition: Any $\mathbf{x} \in \mathcal{V}$ can be uniquely written as: $\mathbf{x} = \mathbf{x}_S + \mathbf{x}_{S^{\perp}}$ where $\mathbf{x}_S \in S$ and $\mathbf{x}_{S^{\perp}} \in S^{\perp}$

Figure 4: Drawing any x.

$$\bullet \ \mathcal{V} = S + S^{\perp} = \left\{ \mathbf{u} + \mathbf{v} \ : \ \mathbf{u} \in S, \ \mathbf{v} \in S^{\perp} \right\}$$

2 Orthogonal Decomposition, Projecting onto Subspaces, Gram-Schmidt, QR Decomposition, Hyperplanes and Half-Spaces (Ch. 2.2-2.3)

2.1 Projection onto subspaces

Definition:

$$x^* = \text{Proj}_S(x) = \arg\min_{y \in S} ||x - y||_2$$
 (5)

If $\{v^{(1)}, \dots, v^{(d)}\}$ is an orthonormal basis of S then

$$x^* = \sum_{i=1}^{d} \langle x, v^{(i)} \rangle v^{(i)} \tag{6}$$

• The error vector should be orthogonal to each vector in the subspace.

Figure 5: Error vector being perp. to S.

Example: For
$$v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

The ith component can be extracted by doing the inner product with the ith standard basis:

$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = v_1$$
$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = v_2$$
$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = v_3$$

Therefore, analogous to x*, we can write them as the sum of the inner product times the standard basis.

$$v = v_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + v_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + v_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

2.1.1 Basic problem

Intuition: Given $x \in \mathcal{V}$ and a subspace S. Find the closest point (in norm) in S to x:

$$\operatorname{Proj}_{S}(x) = \arg\min_{y \in S} \|y - x\| \tag{7}$$

- ||y x||: Some norm.
- Subspace: S doesn't have to be a subspace.
- arg min: Vector y that minimizes ||x y||

2.1.2 Projection onto a 1D subspace

Derivation: Projection onto a 1-dimensional subspace.

Let $S = \text{span}(\mathbf{v})$, and we denote the projection of \mathbf{x} onto S as:

$$\operatorname{Proj}_{S}(\mathbf{x}) = \mathbf{x}^{*}$$

Under the Euclidean norm (i.e. 12 norm), we have nice geometry: we should have

$$\langle \mathbf{x} - \mathbf{x}^*, \mathbf{v} \rangle = 0$$

Since $\mathbf{x}^* \in S$, $\mathbf{x}^* = \alpha \mathbf{v}$ for some scalar α .

We need to find α .

So,

$$\langle \mathbf{x} - \alpha \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow \langle \mathbf{x}, \mathbf{v} \rangle - \alpha \langle \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow \alpha = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Thus,

$$\mathbf{x}^* = \alpha \mathbf{v} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

which simplifies to:

$$\mathbf{x}^* = \frac{\mathbf{x}^\top \mathbf{v}}{\|\mathbf{v}\|_2^2} \mathbf{v} = \left\langle \mathbf{x}, \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \right\rangle \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$$

- Orthonormal Basis for S: $\left\{\frac{\mathbf{v}}{\|\mathbf{v}\|_2}\right\}$ since $\left\|\frac{\mathbf{v}}{\|\mathbf{v}\|_2}\right\|_2 = 1$
- Projection Coefficient: $\left\langle \mathbf{x}, \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \right\rangle$
- Note: x^* is the point we are looking for in the projection problem.

Figure 6: Visual representation of the projection problem.

2.1.3 Projection onto an n dimensional space

Derivation: Let S be a subspace of \mathcal{V} , and let $\{\mathbf{v}_1, \dots, \mathbf{v}_d\}$ be an orthonormal basis of S.

1. Problem setup

$$\mathbf{x}^* = \sum_{i=1}^d \alpha_i \mathbf{v}_i$$

Goal: Find $\alpha_1, \ldots, \alpha_d$ so as to minimize the norm $\|\mathbf{x} - \mathbf{x}^*\|_2$.

2. **Derivation:** By geometry, we require that

$$\langle \mathbf{e}, \mathbf{v}_i \rangle = 0 \quad \forall j = 1, \dots, d$$

which implies:

$$\langle \mathbf{x} - \mathbf{x}^*, \mathbf{v}_j \rangle = 0 \quad \forall j$$

$$\Rightarrow \langle \mathbf{x} - \sum_{i=1}^d \alpha_i \mathbf{v}_i, \mathbf{v}_j \rangle = 0 \quad \forall j$$

Using linearity of the inner product:

$$\Rightarrow \langle \mathbf{x}, \mathbf{v}_j \rangle = \sum_{i=1}^d \alpha_i \langle \mathbf{v}_i, \mathbf{v}_j \rangle$$

Since $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ if $i \neq j$ and 1 if i = j, this simplifies to:

 $\alpha_j = \langle \mathbf{x}, \mathbf{v}_j \rangle$ b/c only the i=j term survives

Thus,

$$\mathbf{x}^* = \sum_{i=1}^d \alpha_i \mathbf{v}_i = \sum_{i=1}^d \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i$$

3. Solution:

$$= \sum_{i=1}^d (\mathbf{x}^\top \mathbf{v}_i) \mathbf{v}_i$$

- $\mathbf{v}_i \in \mathbb{R}^n$.
- Projection Coefficients: $\mathbf{x}^{\top}\mathbf{v}_i$
- 4. Example of Orthogonal Decomposition:

$$\mathbf{e} = \mathbf{x} - \mathbf{x}^* \in S^{\perp}, \quad \mathbf{x}^* \in S$$

So,

$$\mathbf{x} = \mathbf{x}^* + \mathbf{e}$$
, where $\mathbf{x}^* \in S$, $\mathbf{e} \in S^{\perp}$

Figure 7: Generalization of projection.

2.1.4 Application of projections: Fourier series

Example: Fourier series:

1. Suppose we have a periodic function x(t) with period T_0 .

Figure 8: Periodic triangle function.

- 2. Inner product for time domain (complex version): $a_k = \langle x(t), y(t) \rangle = \frac{1}{T} \int_T x(t) \overline{y(t)} dt$
 - **Note:** Real version is without the conjugate.
- 3. Projection (i.e. one component of the sum): $\operatorname{Proj}_{v_i}(\underline{x}) = \langle \underline{x}, \underline{v_i} \rangle \underline{v_i}$
- 4. **Goal:** Express x(t) (i.e. any periodic function) as a sum of complex exponentials:

$$x^*(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

- **Projection:** $\operatorname{Proj}_{e^{jk\omega_0t}}(x(t)) = \langle x(t), \exp(jk\omega_0t) \rangle e^{jk\omega_0t} = a_k e^{jk\omega_0t}$ for a certain value of k.
- Projection coefficient: $a_k = \langle x(t), e^{jk\omega_0 t} \rangle = \frac{1}{T_0} \int_0^T x(t) e^{-jk\omega_0 t} dt$
- Fundamental frequency: $\omega_0 = \frac{2\pi}{T_0}$.
- 5. **Prove orthonormal basis for the complex exponentials:** To prove it's a orthogonal basis, must prove it has unit norm 1 and each pair of vectors are orthogonal (i.e. inner product is 0).
 - (a) Magnitude of exp: $|e^{j\theta}| = 1$. Therefore, it has unit norm.
 - (b) Orthogonality:

$$\langle e^{ji\omega_0 t}, e^{jl\omega_0 t} \rangle = \begin{cases} 1, & i = l \\ 0, & i \neq l \end{cases}$$

Therefore, for each pair of basis vectors, they are orthogonal.

- Conjugate of exp: $(e^{j\theta}) = e^{-j\theta}$
- 6. **Conclusion:** Fourier series is a projection of a function onto the set of othonormal basis functions $\exp(jk\omega_0 t)$, where k is an integer.
 - Optimal: This projection is optimal as it minimizes the approximation error $||x(t) x^*(t)||$, i.e.

$$\frac{1}{T} \int_0^T (x(t) - x^*(t))^2 dt$$

As the number of terms in the summation increases to infinity, the error goes to 0.

2.2 Gram-Schmidt and QR decomposition

2.2.1 What if the set of basis vectors is not orthonormal?

Derivation: Let $\{u^{(1)}, \dots, u^{(d)}\}$ be a set of basis vectors for a subspace S(not necessarily orthonormal)

We can still use the orthogonality principle, i.e.,

$$e = x - x^* \perp S$$

Therefore,

$$\langle x - x^*, u^{(j)} \rangle = 0 \quad \forall j = 1, \dots, d$$

Also, $x^* \in S$ so x^* can be written as a linear combination of basis vectors, so $x^* = \sum_{i=1}^{n} \alpha_i u^{(i)}$

Need to find $\alpha_1, \ldots, \alpha_d$ s.t.

$$\langle x - \sum_{i=1}^{d} \alpha_i u^{(i)}, u^{(j)} \rangle = 0 \quad \forall j = 1, \dots, d$$

$$\Rightarrow \langle x, u^{(j)} \rangle = \sum_{i=1}^{d} \alpha_i \langle u^{(i)}, u^{(j)} \rangle \quad \forall j = 1, \dots, d$$

$$\begin{bmatrix} \langle u^{(1)}, u^{(1)} \rangle & \langle u^{(2)}, u^{(1)} \rangle & \dots & \langle u^{(d)}, u^{(1)} \rangle \\ \langle u^{(1)}, u^{(2)} \rangle & \langle u^{(2)}, u^{(2)} \rangle & \dots & \langle u^{(d)}, u^{(2)} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle u^{(1)}, u^{(d)} \rangle & \langle u^{(2)}, u^{(d)} \rangle & \dots & \langle u^{(d)}, u^{(d)} \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_d \end{bmatrix} = \begin{bmatrix} \langle x, u^{(1)} \rangle \\ \langle x, u^{(2)} \rangle \\ \vdots \\ \langle x, u^{(d)} \rangle \end{bmatrix}$$

Solve for $\alpha_1, \ldots, \alpha_d$, Then, we get $x^* = \sum_{i=1}^d \alpha_i u^{(i)}$

Figure 9: Not orthogonal, but similar to projection with orthonormal basis.

• Note: If $\{u^{(1)}, \dots, u^{(d)}\}$ is an orthonormal basis, then the matrix is the identity matrix, and we get α_j $\langle x, u^{(j)} \rangle$ as before.

Example: Function approximation. Let B be the set of basis functions that is not orthonormal:

$$\mathcal{B} = \{1, t, \dots, t^d\}$$

Let x(t) be a function over [0, 1].

- 1st Goal Approximate x(t) by $x^*(t) = \sum_{n=0}^{a} \alpha_n t^n$
- To find $\alpha_0, \alpha_1, \dots, \alpha_d$, need to solve the Ax = b.
- 2nd Goal: Minimize the approximation error $||x(t) x^*(t)||_2 = \left(\int_0^1 (x(t) x^*(t))^2 dt\right)^{1/2}$

Recall: Taylor series expansion

$$x(t) \approx x(0) + x'(0)t + \frac{x''(0)}{2}t^2 + \dots$$

• Taylor series expansion is completely different from the projection method, and the reason is that Taylor series expansion is a local approximation.

2.2.2 Gram-Schmidt Procedure

Motivation: This is to get an orthonormal basis, so we can use the easier projection method.

Intuition: Another way to find the projection of x onto $S = \text{span}\{u^{(1)}, \dots, u^{(d)}\}$ is to first find an orthonormal basis of S, and then the projection problem becomes easier.

Figure 10: Gram-Schmidt Process for 2D.

- 1. Normalize $u^{(1)}$
- 2. Find the error vector by projecting $u^{(2)}$ onto the subspace $v^{(1)}$.
- 3. Normalize the error vector.
- 4. Now you have two vectors that form an orthonormal basis in 2D.

Definition: Turns any set of basis vectors of a subspace into an orthonormal set of basis vectors.

Process:

1. Normalize $u^{(1)}$ to get $v^{(1)}$:

$$v^{(1)} = \frac{u^{(1)}}{\|u^{(1)}\|_2}$$

2. (a) Project $u^{(2)}$ onto $S = \operatorname{span}\{v^{(1)}\}\$ to get:

$$w^{(2)} = \langle u^{(2)}, v^{(1)} \rangle v^{(1)}$$

(b) Set:

$$v^{(2)} = \frac{u^{(2)} - w^{(2)}}{\|u^{(2)} - w^{(2)}\|_2}$$

- 3. Continue similarly:
 - (a) Project $u^{(3)}$ onto $S = \text{span}\{v^{(1)}, v^{(2)}\}$ to get:

$$w^{(3)} = \langle u^{(3)}, v^{(1)} \rangle v^{(1)} + \langle u^{(3)}, v^{(2)} \rangle v^{(2)}$$

(b) Set:

$$v^{(3)} = \frac{u^{(3)} - w^{(3)}}{\|u^{(3)} - w^{(3)}\|_2}$$

4. Continue this process for higher dimensions. Therefore, $\{v^{(1)},\ldots,v^{(d)}\}$ is an orthonormal basis for $\text{span}\{u^{(1)},\ldots,u^{(d)}\}$.

Intuition:

• Create the Gram matrix by making an orthonormal basis.

• Then this terms the matrix into the identity.

2.2.3 QR decomposition

Another way to see Gram-Schmidt procedure is through matrix multiplication.

Definition: Stack all $u^{(i)}$ vectors as columns of a matrix

$$\begin{bmatrix} u^{(1)} & \cdots & u^{(d)} \end{bmatrix} = QR$$

$$\begin{bmatrix} u^{(1)} & \cdots & u^{(d)} \end{bmatrix} = \begin{bmatrix} v^{(1)} & \cdots & v^{(d)} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1d} \\ 0 & r_{22} & \cdots & r_{2d} \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & r_{dd} \end{bmatrix}$$

$$= \begin{bmatrix} r_{11}v^{(1)} & r_{12}v^{(1)} + r_{22}v^{(2)} & \cdots \end{bmatrix}$$

• Q: Orthonomral matrix (i.e., its columns are orthogonal to each other and have unit norm)

• R: Upper triangular.

Intuition: For Ax = b, therefore,

$$QRx = b$$

• Since Q has columns of orthonormal basis, then it has an inverse, which is $Q^{-1} = Q^{T}$.

Then,

$$Rx = Q^T b$$

Example:

$$\{1,t,t^2,\cdots,t^d\}$$

is not an orthonormal basis, which as an example is defined from [0, 1]

The L^2 -norm for this example is given by

$$||f||_2 = \left(\int_0^1 f^2(t) dt\right)^{\frac{1}{2}}.$$

The inner product between two functions f(t) and g(t) is defined as:

$$\langle f, g \rangle = \int_0^1 f(t)g(t) dt.$$

1. Start with $u^{(1)} = 1$, which is equivalent to $v^{(1)}$ because it's unit norm.

2. For $u^{(2)}$, calculate the projection:

$$\omega^{(2)} = \operatorname{Proj}_{\operatorname{span}\{v^{(1)}\}} u^{(2)} = \langle u^{(2)}, v^{(1)} \rangle = \int_0^1 t \cdot 1 \, dt = \frac{1}{2}..$$

So, the projection of $u^{(2)}$ onto $u^{(1)}$ is:

$$\frac{1}{2}v^{(1)}$$

3. Now subtract the projection from $u^{(2)}$ and normalize:

$$v^{(2)} = \frac{u^{(2)} - \omega^{(2)}}{\|u^{(2)} - \omega^{(2)}\|_2} = \frac{t - \frac{1}{2}}{\left(\int_0^1 \left(t - \frac{1}{2}\right)^2 dt\right)^{\frac{1}{2}}}.$$

2.3 Projection of a subspace defined by its orthogonal vectors

2.3.1 Subspace defined by its orthogonal vectors

Intuition:

1. So far, we have defined a subspace by its basis vectors:

$$S = \text{span}\{v^{(1)}, \dots, v^{(d)}\}.$$

2. But, in many cases, we can define S in terms of the set of vectors that are orthogonal to it.

Definition:

$$S = \left\{ x \mid \left(a^{(i)}\right)^T x = 0, i = 1, \dots, m \right\}$$

then the vectors $a^{(1)}, \ldots, a^{(m)}$ are orthogonal to all vectors in S (i.e. the inner products are 0 for all vectors x with $a^{(i)}$). Therefore, $S^{\perp} = \text{span}\{a^{(1)}, \ldots, a^{(m)}\}$.

2.3.2 Projection

Derivation:

1. Projecting a vector x onto a subspace S spanned by the vectors $\{a^{(1)}, \ldots, a^{(m)}\}$. The projection x^* is given by:

$$x^* = \operatorname{Proj}_S(x) = \arg\min_{y \in S} \|x - y\|_2$$

Figure 11: Projection onto a subspace defined by its orthogonal vectors

2. Using the orthogonality principle, the error $e = x - x^*$ must be orthogonal to the subspace S, i.e.,

$$e\perp S$$

This implies that:

$$e \in \text{span}\{a^{(1)}, \dots, a^{(m)}\}\$$

3. The error can be written as a linear combination of the basis vectors:

$$e = x - x^* = \sum_{i=1}^{m} \beta_i a^{(i)}$$

We need to find the coefficients β_1, \ldots, β_m .

4. Since $x^* \in S$, we have the condition:

$$\langle x^*, a^{(j)} \rangle = 0 \quad \forall j = 1, \dots, m$$

which leads to the following equation:

$$(a^{(j)})^T x^* = 0 \quad \forall j = 1, \dots, m$$

5. Substituting $x^* = x - \sum_{i=1}^{m} \beta_i a^{(i)}$ into the above equation, we get:

$$(a^{(j)})^T \left(x - \sum_{i=1}^m \beta_i a^{(i)} \right) = 0 \quad \forall j$$

6. Expanding the terms using linearity in the first argument for inner products:

$$(a^{(j)})^T x = \sum_{i=1}^m \beta_i (a^{(j)})^T a^{(i)}$$

This system of equations can be written in matrix form as:

$$\begin{bmatrix} (a^{(1)})^T a^{(1)} & \cdots & (a^{(1)})^T a^{(m)} \\ \vdots & \ddots & \vdots \\ (a^{(m)})^T a^{(1)} & \cdots & (a^{(m)})^T a^{(m)} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = \begin{bmatrix} (a^{(1)})^T x \\ \vdots \\ (a^{(m)})^T x \end{bmatrix}$$

We can solve this system of linear equations to obtain the values of β_1, \ldots, β_m .

7. Once we have the values of β_i , we can compute the projection as:

$$x^* = x - \sum_{i=1}^{m} \beta_i a^{(i)}$$

8. **Note:** If the set $\{a^{(i)}\}$ is orthonormal, the matrix on the left-hand side becomes the identity matrix I, and the coefficients simplify to:

$$\beta_j = (a^{(j)})^T x = \langle x, a^{(j)} \rangle$$

- 2.4 Hyperplanes and half-spaces
- 3 Non-Euclidean Projection, Projection onto Affine Sets, Functions, Gradients and Hessians (Ch. 2.3-2.4)
- 3.1 Non-Euclidean projection
- 3.2 Projection onto affine sets
- 3.2.1 Affine spaces

Definition: An affine space (or affine set) is a translation (or shift) of a subspace S.

Example: Consider a vector $x^{(0)}$ (not necessarily in S). The affine space \mathcal{A} is defined as:

$$\mathcal{A} = \{ u + x^{(0)} \mid u \in S \}$$

where $x^{(0)}$ is the shifting vector and S is the original subspace. This represents a shifted version of the subspace S.

Figure 12: Affine space of a 2D space, where the $x^{(0)}$ is the constant (i.e. shifting origin to the Affine set) that we are adding to shift all the vectors to the affine space.

3.2.2 Projection of Affine space defined in terms of basis vectors of corresponding subspace

Derivation:

1. The affine space is described by:

$$\mathcal{A} = \left\{ x \mid x = \sum_{i=1}^{d} \alpha_i v^{(i)} + c \right\}$$

- $\{v^{(1)}, \dots, v^{(d)}\}$: Basis vectors of the subspace S
- c: Vector (i.e. shift).

Figure 13: Projection problem visualization, where we are projecting the vector onto the Affine space.

2. Using the orthogonality principle, we must have:

$$\langle x - x^*, v^{(j)} \rangle = 0 \quad \forall j = 1, \dots, d$$

where $x^* \in \mathcal{A}$. Therefore:

$$x^* = \sum_{i=1}^d \alpha_i v^{(i)} + c$$

3. This leads to the condition:

$$\left\langle x - \sum_{i=1}^{d} \alpha_i v^{(i)} - c, v^{(j)} \right\rangle = 0 \quad \forall j = 1, \dots, d$$

4. Simplifying this expression using the linearity in first argument for inner product, we obtain:

$$\langle x - c, v^{(j)} \rangle = \sum_{i=1}^{d} \alpha_i \langle v^{(i)}, v^{(j)} \rangle \quad \forall j = 1, \dots, d$$

5. To solve for $\alpha_1, \ldots, \alpha_d$, we set up the following system of linear equations in matrix form:

$$\begin{bmatrix} \langle v^{(1)}, v^{(1)} \rangle & \cdots & \langle v^{(1)}, v^{(d)} \rangle \\ \vdots & \ddots & \vdots \\ \langle v^{(d)}, v^{(1)} \rangle & \cdots & \langle v^{(d)}, v^{(d)} \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix} = \begin{bmatrix} \langle x - c, v^{(1)} \rangle \\ \vdots \\ \langle x - c, v^{(d)} \rangle \end{bmatrix}$$

- Note: We are projecting onto x-c, which we can see on the RS, which is the subspace.
- 6. Solving this system gives us the values for $\alpha_1, \ldots, \alpha_d$. Finally, the projection x^* onto the affine space \mathcal{A} is:

$$x^* = \sum_{i=1}^d \alpha_i v^{(i)} + c$$

Note: We are projecting onto x - c (i.e. subspace), then adding the shift into the end to be back on the Affine set.

3.2.3 Projection of Affine space defined in terms of orthogonal vectors to corresponding subspace

Derivation:

1. The affine set \mathcal{A} is defined as:

$$\mathcal{A} = \left\{ x \mid \langle x, a^{(i)} \rangle = d_i, \ i = 1, \dots, m \right\}$$

- d_i : Scalars
- $\{a^{(1)}, \ldots, a^{(m)}\}$: A set of vectors spanning the affine space. (Check why this is equivalent to the previous definition of an affine set.)

Figure 14: Projection problem visualization, where we are projecting the vector onto the affine space, which is in line with the orthogonal vectors.

2. Since $x - x^*$ lies in the span of $\{a^{(1)}, \dots, a^{(m)}\}$:

$$x - x^* = \sum_{i=1}^{m} \beta_i a^{(i)}$$

where β_1, \ldots, β_m are the coefficients to be determined.

3. Since $x^* \in \mathcal{A}$, we also have:

$$\langle x^*, a^{(j)} \rangle = d_j \quad \forall j = 1, \dots, m$$

This implies the orthogonality condition for the projection:

$$\langle x - \sum_{i=1}^{m} \beta_i a^{(i)}, a^{(j)} \rangle = d_j \quad \forall j = 1, \dots, m$$

4. Expanding the above expression using the linearity in first argument for inner product, we get:

$$\langle x, a^{(j)} \rangle - \sum_{i=1}^{m} \beta_i \langle a^{(i)}, a^{(j)} \rangle = d_j \quad \forall j = 1, \dots, m$$

5. This leads to the system of linear equations:

$$\langle x, a^{(j)} \rangle - d_j = \sum_{i=1}^m \beta_i \langle a^{(i)}, a^{(j)} \rangle \quad \forall j$$

6. We now solve this system of linear equations for the coefficients β_1, \ldots, β_m . The system can be written in matrix form as:

$$\begin{bmatrix} \langle a^{(1)}, a^{(1)} \rangle & \cdots & \langle a^{(1)}, a^{(m)} \rangle \\ \vdots & \ddots & \vdots \\ \langle a^{(m)}, a^{(1)} \rangle & \cdots & \langle a^{(m)}, a^{(m)} \rangle \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = \begin{bmatrix} \langle x, a^{(1)} \rangle - d_1 \\ \vdots \\ \langle x, a^{(m)} \rangle - d_m \end{bmatrix}$$

7. Solving this system gives the values for β_1, \ldots, β_m . Once the β_i values are known, the projection x^* is given by:

$$x^* = x - \sum_{i=1}^{m} \beta_i a^{(i)}$$

Example:

1. Consider the case where m=1. The affine set \mathcal{A} is defined as:

$$\mathcal{A} = \{ x \mid a^T x = d \}$$

where a is a vector and d is a scalar.

2. To project x onto the affine subspace, we start by using the orthogonality condition:

$$\langle x, a \rangle - d = \beta \langle a, a \rangle$$

This ensures that the difference between x and its projection x^* lies in the direction of a.

3. Solving for β , we get:

$$\beta = \frac{\langle x, a \rangle - d}{\langle a, a \rangle} = \frac{a^T x - d}{\|a\|_2^2}$$

This provides the scalar β , which tells us how much of the vector a needs to be subtracted from x.

4. The projection x^* onto the affine subspace is then:

$$x^* = x - \beta a = x - \left(\frac{a^T x - d}{\|a\|_2^2}\right) a$$

This gives the final expression for the projection of x onto the affine set A.

3.2.4 Show that the two affine sets are equal

Derivation: We define set A as follows:

$$A = \left\{ x \in \mathbb{R}^n \mid x = \sum_{i=1}^d \alpha_i v^{(i)} + c \right\}$$

where $v^{(i)}$ are the basis vectors, α_i are scalar coefficients, and c is a fixed vector (the translation vector of the affine set).

Now, we define set B as:

$$B = \left\{ x \in \mathbb{R}^n \mid a^{(i)T} x = d_i, i = 1, 2, \dots, m \right\}$$

where $a^{(i)}$ are orthogonal vectors, and d_i are scalars defining the affine constraints.

Step 1: Show $A \subseteq B$.

Assume $x \in A$, then we can write:

$$x = \sum_{i=1}^{d} \alpha_i v^{(i)} + c$$

Substitute this into the condition for set B:

$$a^{(i)T}x = a^{(i)T} \left(\sum_{j=1}^{d} \alpha_j v^{(j)} + c \right)$$

Expanding the expression:

$$a^{(i)T}x = \sum_{j=1}^{d} \alpha_j a^{(i)T} v^{(j)} + a^{(i)T} c$$

Since the vectors $a^{(i)}$ are orthogonal to the vectors $v^{(j)}$, we have:

$$a^{(i)T}v^{(j)} = 0 \quad \text{for all } i,j$$

Therefore, the equation simplifies to:

$$a^{(i)T}x = a^{(i)T}c$$

We define $d_i = a^{(i)T}c$. Hence,

$$a^{(i)T}x = d_i$$
 for all i

Thus, $x \in B$.

Step 2: Show $B \subseteq A$.

Assume $x \in B$, then we know:

$$a^{(i)T}x = d_i$$
 for all $i = 1, 2, ..., m$

This implies that the vector x satisfies all the affine constraints defined by the vectors $a^{(i)}$ and scalars d_i . Now, consider the vector c such that:

$$a^{(i)T}c = d_i$$

Subtracting this from the affine constraint for x, we get:

$$a^{(i)T}(x-c) = 0$$
 for all i

This shows that x - c lies in the null space of the vectors $a^{(i)}$. Therefore, x - c must lie in the span of the vectors $v^{(i)}$, meaning:

$$x - c = \sum_{i=1}^{d} \alpha_i v^{(i)}$$

for some scalars $\alpha_1, \alpha_2, \ldots, \alpha_d$. Thus,

$$x = \sum_{i=1}^{d} \alpha_i v^{(i)} + c$$

Therefore, $x \in A$.

Conclusion:

Since we have shown that $A \subseteq B$ and $B \subseteq A$, we conclude that:

$$A = B$$

This proves that the definition of the affine set in terms of orthogonal vectors and the definition in terms of basis vectors are equivalent.

- 3.3 Functions
- 3.4 Gradients
- 3.5 Hessians
- 4 Matrices, Range, Null Space, Eigenvalues, Eigenvectors, Matrix Diagonalization (Ch. 3.1-3.5)
- 4.1 Matrices
- 4.2 Range
- 4.3 Null Space
- 4.4 Eigenvalues and eigenvectors
- 4.5 Matrices diagonalization
- 5 Symmetric Matrices, Orthogonal Matrices, Spectral Decomposition, Positive Semidefinite Matrices, Ellipsoids (Ch. 4.1-4.4)
- 5.1 Symmetric matrices
- 5.2 Orthogonal matrices
- 5.3 Spectral decomposition
- 5.4 Positive semidefinite matrices
- 5.5 Ellipsoids
- 6 Singular Value Decomposition, Principal Component Analysis (Ch. 5.1, 5.3.2)
- 6.1 Singular value decomposition
- 6.2 Principle component analysis
- 7 Interpretations of SVD, Low-Rank Approximation (Ch. 5.2-5.3.1)
- 7.1 Interpretation of SVD
- 7.2 Low-rank approximation
- 8 Least Squares, Overdetermined and Underdetermined Linear Equations (Ch. 6.1-6.4)
- 8.1 Least squares
- 8.2 Overdetermined linear equation
- 8.3 Underdetermined linear equation
- 9 Regularized Least-Squares, Convex Sets and Convex Functions (Ch. 6.7.3, 8.1-8.4)
- 9.1 Regularized least-squares
- 9.2 Convex sets and convex functions
- 10 Lagrangian Method for Constrained Optimization, Linear Programming and Quadratic Programming (Ch. 8.5, 9.1-9.6)