Bert 简介

Bidirectional Encoder Representations from Transformers

蔡云麒

Bert——NLP预训练模型:

- ◆1.训练数据少,不足以训练复杂的网络
- ◆2.加快训练速度
- ◆3.参数初始化, 先找到好的初始点, 有利于优化。

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

背景: 从Word Embedding说起

说到利用深度学习来进行自然语言处理,必然绕不开的一个问题就是"Word Embedding"也就是将词转换为计算机能够处理的向量。

随之而来的人们也碰到到了一个根本性的问题,我们通常会面临这样的一个问题,同一个单词在不同语境中的一词多义问题

研究人员对此也想到了对应的解决方案,例如在大语料上训练语境表示,从而得到不同的上下文情况的不同向量表示。

Bert有什么黑科技?

· Bert在模型层面上并没有新的突破,准确来说它更像是NLP领域 近期优秀模型的集大成者

Semi-supervised Sequence Learning (by Andrew Dai 和 Quoc Le); ELMo (by Matthew Peters 和来自AI2 and UW CSE的研究人员); ULMFiT (by fast.ai 创始人 Jeremy Howard 和 Sebastian Ruder); OpenAI transformer (by OpenAI 研究员Radford, Narasimhan, Salimans, and Sutskever); Transformer (Vaswani et al)。Jay Alammar Blog: https://jalammar.github.io/

ELMo的语境学习

Embedding of "stick" in "Let's stick to" - Step #1

ELMo实际上训练了一个双向的LSTM——这样它的语言模型不仅能预测下一个词,还有预测上一个词.

通过将隐藏状态(和初始嵌入)以某种方式(拼接之后加权求和)组合在一起, ELMo 提出了**语境化的词嵌入**。

GPT的Transformer

Transformer是一个非常强大的特征提取器,相比于LSTM它不管词间距离的长短,更能处理长期依赖关系。并且具有可并行的优势。

Jay Alammar Blog: https://jalammar.github.io/

Bert的兼收并蓄

特征提取能力 语境表达能力

特征提取能力

语境表达能力

特征提取能力

语境表达能力

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

Bert需要克服的最大障碍

GPT中存在的最大问题:

Transformer虽然强大,但是如果使用双向的编码器,会产生一些循环,在这些循环中,单词会间接地"窥见"自己

Bert采用的解决办法: <u>"masked language model" (MLM)</u>; Cloze task (Taylor, 1953)

Bert采用了一个非常巧妙的小技巧将各家的思想恰到好处的融合起来了

Bert的效果

刷新了目前几乎所有的NLP记录

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MultiNLI

<u>Premise</u>: Hills and mountains are especially

sanctified in Jainism.

Hypothesis: Jainism hates nature.

Label: Contradiction

CoLa

Sentence: The wagon rumbled down the road.

Label: Acceptable

Sentence: The car honked down the road.

<u>Label</u>: Unacceptable

来自Bert论文中的一句话:

the bidirectional nature of our model is the single most important new contribution.

Bert的运转过程

Input_data准备

第一步: 数据预处理

Bert的运转过程

模型训练

第二步:Bert训练的核心思想

1

Masked LM

每一次以80%的概率用[MASK]替换

went to the store → went to the [MASK]

每一次以10%的概率随机替换

went to the store → went to the running

每一次以10%的概率不进行替换

went to the store → went to the store

(2)

预测下一句

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Bert的运转过程

模型训练

遮罩策略的影响:

Masking Rates			Dev Set Results			
MASK	SAME	RND	MNLI	NER		
			Fine-tune	Fine-tune	Feature-based	
80%	10%	10%	84.2	95.4	94.9	
100%	0%	0%	84.3	94.9	94.0	
80%	0%	20%	84.1	95.2	94.6	
80%	20%	0%	84.4	95.2	94.7	
0%	20%	80%	83.7	94.8	94.6	
0%	0%	100%	83.6	94.9	94.6	

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, arXiv:1810.04805v1

- 一次遮住100%的词让基于特征的方法在性能上有所下降
- 而100%使用随机替换的方式让基于特征的方法在性能上下降幅度较小

Bert模型架构

Jay Alammar Blog: https://jalammar.github.io/

Bert模型架构

Bert有哪些用途?

例子: 句子分类

训练数据: Email message Class

Buy these pills	Spam		
Win cash prizes	Spam		
Dear Mr. Atreides, please find attached	Not Spam		

这种方式源于:

- Semi-supervised Sequence Learning
- ULMFiT

Bert用来解决特定任务

・情感分析

- 输入:一条影评/商品评价。
- 输出: 正面评价还是负面评价?
- 数据集如: **SST**

・事实核查

- 输入:一个句子。
- 输出: 是不是一个断言
- ・阅读理解任务
- ・文本摘要任务
- ・序列标注任务
- · 等等

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

arXiv:1810.04805v1

Bert用于特征提取

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

Bert用于特征提取

Dev F1 Score

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

12			
	•	Ī	
7			
6			
5			
	_	4	
4	_	_	
3		_	
2			
1 [
	_	_	
-		_	
	Hel	p	

First Layer Emb	edding	91.0
Last Hidden Layer	12	94.9
Sum All 12 Layers	12	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four Hidden	12	95.9
Concat Last Four Hidden	9 10 11	96.1

Layers	Dev F1
Finetune All	96.4
First Layer (Embeddings)	91.0
Second-to-Last Hidden	95.6
Last Hidden	94.9
Sum Last Four Hidden	95.9
Concat Last Four Hidden	96.1
Sum All 12 Layers	95.5

Table 7: Ablation using BERT with a feature-based approach on CoNLL-2003 NER. The activations from the specified layers are combined and fed into a two-layer BiLSTM, without backpropagation to BERT.

arXiv:1810.04805v1

Bert模型版本及细节

模型版本:

- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M
 parameters
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

模型细节:

语料: Wikipedia (2.5B words) + BookCorpus (800M words)

Batch Size: 131,072 个词 (1024 个序列* 每个序列128个词或者256个序列*每个序列512个词)

<u>训练步数</u>: 1M steps (~40 epochs)

Optimizer: AdamW, 1e-4 learning rate, linear decay

BERT-Base: 12-layer, 768-hidden, 12-head

BERT-Large: 24-layer, 1024-hidden, 16-head

在4x4 或8x8的TPU slice上训练了4天

Bert模型版本及细节

arXiv:1810.04805v1

Transformer Params (Millions)

- 大模型更有效
- 即使在仅有3,600个标注样本的数据集上,把参数从110M调整到340M也带来了性能提升
- 性能提升并不是渐进的

Bert模型版本及细节

arXiv:1810.04805v1

- 由于仅仅预测15%的词,因此Masked LM收敛速度仅仅慢了一点点
- Masked LM的绝对结果显然更好