Extreme Weather and Agricultural Productivity: Farm Level Responses

Juan Pablo Rud Royal Holloway, University of London and IFS

joint with Fernando M. Aragón (SFU) and Francisco Oteiza (RHUL)

University of Kent - June 21, 2017

Climate Change and Extreme Weather events

Climate Change in Developing Countries

A rise in average temperatures and an expected increase in extreme weather events:

- Rural poor on the front line
- In many developing countries traditional farming is still the main economic activity and source of livelihood
- Weather shocks are a constant threat to the subsistence of small farming households

Research questions

Focus on developing countries with traditional farming

- ► How does extreme temperature events affect agricultural productivity?
- What are the margins for mitigation/adaptation available to farmers?
- ► To what extent the economic and geographic environment play a role in these responses?

What we know

- Non-linear relationship between temperatures and yields
 - After a certain threshold, high temperatures reduce crop yields (Deschenes & Greenstone 2007, 2012, Roberts & Schlenker 2009)
 - Usually explored with aggregate data (district, county, etc), mostly in the US.
- ► Little evidence of mitigation strategies being at place (Burke & Emerik 2016)
- Little evidence from other developing countries
 - Guiteras (2009) documents non-linearities in yields using district data in India
 - A constrained data-intensive exercise: e.g. no monitoring stations in rural areas; monthly averages temperatures absorb important variation

Our Contribution

- 1. We propose the use of high frequency satellite data on temperatures and precipitation
 - ► We geo-match it with information for Peruvian household farms (2007-2015)
- We use rich agricultural data to unpack the effect of extreme temperature on yields
 - Yields are Y/T: we model the shock as a reduction in TFP that can affect both Y and T
 - A production function approach to identify effects on TFP
- We highlight the importance of the economic and geographic environment
 - Region-specific analysis: Coast v Highlands
- 4. We simulate impacts on yields under different standard climate change scenarios using our estimates

Our Results

- 1. We find strong non-linearities of temperature on yields
 - ► Thresholds similar to the US, but vary across regions
- We document negative effects of extreme temperature on TFP
- 3. Yield decomposition differs by region: in the richer coast $Y \downarrow$, T unchanged; in the highlands $T \uparrow$, Y unchanged
 - Consistent with a model of consumer-producer households with subsistence that face imperfect input markets
 - ▶ We find other margins of adjustment in labor and crop mix
- 4. Our simulation of climate change scenarios suggest strong heterogeneous effects
 - ► The hotter coast would suffer strong damages on averages, while the cooler highlands would benefit from higher temperatures

Context: Rural Peru

- ► Rural poverty rate is >50%
- ▶ Mostly households farming small parcels of land (< 3 hs)
- Diverse climatic regions and agricultural practices
 - ► Coast: sub-tropical, hot, arid (< 1 mm/day)
 - ► Highlands: high altitude, cool, wet (> 3.5 mm/day)

Figure: Distribution of daily average temperature by climatic region

: Coast

: Highlands

Data

- ► ENAHO 2007-2015: HH survey with sample of 55K farmers in the coast and highlands of Peru.
- ▶ Daily average daytime land surface temperatures (LSTs) from NASA at 5.6km x 5.6km squares (MODIS)
- ► Monthly precipitation rates from reanalysis at 5.6km x 5.6km squares (CHIRPS)
- Soil quality data at a 9km x 9km grid (IIASA FAO)

Rural Peru: households

Figure: Agricultural survey observations by region

Summary Statistics

Variable	Coast	Highlands	p-value
		0	(1)=(2)
	(1)	(2)	(3)
A. Household characteristics			
Daily per capita expenditure	4.040	2.347	0.000
Poor (%)	0.261	0.550	0.000
()			0.000
Extreme poor (%)	0.045	0.209	01000
Has at least 1 unmet need (%)	0.295	0.382	0.000
Child labor (%)	0.132	0.390	0.000
Household size	4.406	4.312	0.001
HoH completed primary educ. (%)	0.590	0.498	0.000
B. Agricultural characteristics			
Value of agric. output	3052.7	682.0	0.000
Output per hectarea	2323.8	1077.3	0.000
Land used (ha)	2.381	1.906	0.000
Hire workers (%)	0.558	0.471	0.000
Nr. HH members work in agric.	2.197	2.315	0.000
Fruits (% total output)	0.318	0.035	0.000
Tubers (% total output)	0.056	0.356	0.000
Cereals (% total output)	0.302	0.314	0.010
Use tractor (%)	0.541	0.164	0.000
Use fertilizer (%)	0.768	0.744	0.000
Use pesticides (%)	0.651	0.412	0.000
Uncultivated land (% of land holding)	0.121	0.448	0.000
Irrigated land (% land holding)	0.823	0.287	0.000
Observations	7,969	47,026	

Notes: Sample restricted to farming households in Coast and Highlands. Columns 1 and 2 display mean values. Columns 3 shows the p-value of a mean comparison test between both regions. Expenditure and agricultural output are measured in 2007 USD. HoH=household head, HH=household, HDD=harmful degree days

Climatic regions have different agricultural practices:

- Coast: richer, more modern, market- oriented
- Highlands: poorer, subsistence farming
- We study short run responses to weather shocks in these two different models, both prevalent in developing countries

Analytical framework

- ► The botanical literature has established long ago that very high temperatures are harmful for plant growth.
- ▶ That would mean that, conditional on inputs (land *T* and labor *L*), output *Y* decreases with extreme temperature: this is a TFP shock.
- Most of the literature focuses on how extreme temperature affects yields Y/T in the US.
- However, we need to be explicit about constraints farmers face to rationalize a drop in yields, e.g. is land fixed in the short run?
- ► How is the farming environment different for small household farmers in developing countries?

Analytical framework

A Simple Model of Producer-Consumer Households

- ▶ Utility: non-homothetic over consumption c: U(c s, I)
- ▶ Production subject to productivity shocks A: F(A, L, T)
- Weather w affects productivity A(w), both directly (i.e. health of crops) and indirectly (via quality of L and T).
- Additionally:
 - Inter-temporal use of land (fallow or crop rotation), optimal to have uncultivated land
 - Outside opportunities are restricted, households rely on their endowments.

Implications for the empirical analysis

- Extreme temperatures should reduce TFP
 - Endowments should be a good predictor of input use
- Response to extreme heat (drop in TFP) depends of how close the HH is to minimum consumption level s

Table 2: Main empirical predictions

Effect of extreme temperature on	Non-subsistence farmers	Subsistence farmers
	c > s	c = s
Yields (Y/T)	-	-
Agricultural output (Y)	-	0
Hired labor (L^h)	-	-
Domestic labor (L^d)	?	+
Land (T)	?	+

Empirical Approach

Starting from a Cobb-Douglas production function, estimate:

$$\ln Y_{ivt} = \alpha \ln T_{it} + \beta \ln L_{it} + \underbrace{g(\gamma, \omega_{it}) + \phi Z_i + \rho_j + \psi_t}_{\text{In TFP}} + \xi_{ivt}$$

- Y: annual agricultural output (in constant prices)
- ▶ T: land used
- L: labor (hours, wage bill)
- $g(\gamma, \omega_{it})$: Non linear function of the weather
- $\phi Z_i + \rho_j + \psi_t$: District and growing season FE + controls (soil, HH charact.)

Empirical Approach

We model $g(\gamma, \omega_{it})$ following recent literature (Schlenkler & Roberts 2006, Deschenes & Greenstone 2007):

- Temperature:
 - Cumulative exposure to heat has a non-linear effect
 - ▶ Degree days (DD): 8 τ_{High}
 - ▶ Harmful degree days (HDD): above τ_{High}
 - ▶ In our case, estimate τ_{High} by region
 - ► Average: 32 C (Previous US studies: 29-32 C). Coast: 27 C , Highlands: 35 C

Degree Days

g enters our estimation as

$$g(\gamma, \omega_{it}) = \underbrace{\gamma_0 DD_{it} + \gamma_1 HDD_{it}}_{\text{temperature}} + \underbrace{\gamma_2 PP_{it} + \gamma_3 PP_{it}^2}_{\text{precipitation}}$$

Results: Temperature and yields

Figure 3: Non-linear relationship between temperature and agricultural yields

Notes: Top panels depict piece-wise function for temperature, including degree-days and harmful degree days at each region's respective thresholds. Bottom panel shows coefficients of individual regressions of model 3 using 1°C bins that measure the fraction of the growing season spent in that temperature. Bars indicate 95% confidence intervals.

Results: Yields and TFP by region

Table 3: Effect of temperature on agricultural productivity

	Coast			Highlands		
	Y/T	TFP	TFP	Y/T	TFP	TFP
	(1)	(2)	(3)	(4)	(5)	(6)
Average DD	0.149**	0.093*	0.104*	0.011	0.013	0.021**
	(0.059)	(0.054)	(0.056)	(0.010)	(0.008)	(0.009)
Average HDD	-0.195***	-0.157***	-0.179***	-0.118*	-0.103*	-0.127*
	(0.065)	(0.054)	(0.054)	(0.068)	(0.061)	(0.064)
Input controls	No	Yes	Yes	No	Yes	Yes
Method	OLS	OLS	2SLS	OLS	OLS	2SLS
Obs.	7,962	7,961	7,961	47,020	47,019	47,019
R-squared	0.195	0.349	0.334	0.267	0.446	0.409
F-stat. (first stage)			311.3			1789.5

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include as controls: district and growing season fixed effects household head's demographics (age, age², gender, and educational attainment), indicators of soil characteristics, average precipitation, and its square. Columns 1 and 4 use log of output per hectare as outcome, while the rest of columns use log of total output. Columns 2-3 and 5-6 include log of inputs as additional controls. Inputs include land used, household members' hours worked in agriculture, and farms' expenditure on hired workers. Columns 3 and 6 use endowments (land owned and household size) as instruments for quantities of land and domestic labor.

Results - Output

Table 4: Effect of temperature on total output and input use

	ln(output)	ln(land used)	Hired	ln(expend. in
		_	workers=1	hired workers)
	Y	T	L^h	L^h
	(1)	(2)	(3)	(4)
A. Coast				
Average DD	0.146**	-0.004	0.029***	0.094
	(0.062)	(0.013)	(0.010)	(0.085)
Average HDD	-0.174**	0.021	-0.028***	0.002
_	(0.071)	(0.013)	(0.009)	(0.052)
Observations	7,962	7,962	7,962	4,436
R-squared	0.189	0.222	0.185	0.277
B. Highlands				
Average DD	0.005	-0.006	-0.000	0.028***
	(0.010)	(0.007)	(0.003)	(0.010)
Average HDD	-0.046	0.073**	0.018	-0.135*
=	(0.070)	(0.036)	(0.021)	(0.080)
Observations	47,020	47,020	47,020	22,126
R-squared	0.266	0.325	0.155	0.290

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include district and growing season fixed effects, average precipitation and its souare, and same household and soil controls as column 1 in Table 3.

Results - Land use

Table 4: Effect of temperature on total output and input use

	ln(output) ln(land used		Hired	ln(expend. in
	, - ,	,	workers=1	hired workers)
	Y	T	L^h	L^h
	(1)	(2)	(3)	(4)
A. Coast				
Average DD	0.146**	-0.004	0.029***	0.094
	(0.062)	(0.013)	(0.010)	(0.085)
Average HDD	-0.174**	0.021	-0.028***	0.002
Trenage TIDD	(0.071)	(0.013)	(0.009)	(0.052)
Observations	7,962	7,962	7,962	4,436
R-squared	0.189	0.222	0.185	0.277
B. Highlands				
Average DD	0.005	-0.006	-0.000	0.028***
	(0.010)	(0.007)	(0.003)	(0.010)
Average HDD	-0.046	0.073**	0.018	-0.135*
	(0.070)	(0.036)	(0.021)	(0.080)
Observations	47,020	47,020	47,020	22,126
R-squared	0.266	0.325	0.155	0.290

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. *denotes significant at 19%, ** significant at 5% and *** significant at 1%. All regressions include district and growing season fixed effects, average precipitation and its square, and same household and soil controls as column 1 in Table 3.

Results - Hired labour

Table 4: Effect of temperature on total output and input use

	ln(output) ln(land used) I		Hired	ln(expend. in
	m(output)	m(mind doed)	workers=1	hired workers)
	Y	T	L^h	L^h
	(1)	(2)	(3)	(4)
A. Coast				
Average DD	0.146**	-0.004	0.029***	0.094
0	(0.062)	(0.013)	(0.010)	(0.085)
Average HDD	-0.174**	0.021	-0.028***	0.002
Trenage HDD	(0.071)	(0.013)	(0.009)	(0.052)
Observations	7,962	7,962	7,962	4,436
R-squared	0.189	0.222	0.185	0.277
B. Highlands				
Average DD	0.005	-0.006	-0.000	0.028***
	(0.010)	(0.007)	(0.003)	(0.010)
Average HDD	-0.046	0.073**	0.018	-0.135*
3	(0.070)	(0.036)	(0.021)	(0.080)
Observations	47,020	47,020	47,020	22,126
R-squared	0.266	0.325	0.155	0.290

Notes: Robust standard errors in parentheses. Standard errors are clustered at district level. * denotes significant at 10%, ** significant at 5% and *** significant at 1%. All regressions include district and growing season fixed effects, average precipitation and its souare, and same household and soil controls as column 1 in Table 3.

Results - Explained by subsistence farmers

Table 5: Effect of temperature on land and domestic labor, by subsistence level

	Using extreme poverty			Using basic unmet needs			
	ln(land	ln(hours	Child	$\ln(\text{land})$	ln(hours	Child	
	used)	agric. work)	labor=1	used)	agric. work)	labor=1	
	T	L^d	L^d	T	L^d	L^d	
	(1)	(2)	(3)	(4)	(5)	(6)	
A. Subsistence farmers							
Average DD	-0.010	-0.004	-0.020*	-0.008	-0.016*	-0.020**	
	(0.009)	(0.009)	(0.012)	(0.008)	(0.008)	(0.009)	
	()	(=====)	()	()	()	()	
Average HDD	0.150*	0.120	0.197*	0.097*	0.067	0.063	
	(0.080)	(0.077)	(0.101)	(0.050)	(0.052)	(0.056)	
	(====)	(====)	(====)	(=====)	(=====)	(=====)	
Observations	9,783	9,783	9,783	17,946	17,946	17,946	
R-squared	0.382	0.251	0.235	0.377	0.225	0.208	
•							
B. Non-subsistence farmers							
Average DD	-0.006	-0.024***	-0.014***	-0.009	-0.027***	-0.018***	
	(0.007)	(0.007)	(0.005)	(0.006)	(0.007)	(0.006)	
	(=====)	(====)	(/	(/	(/	()	
Average HDD	0.056	0.011	0.016	0.032	-0.002	0.043	
0	(0.036)	(0.042)	(0.029)	(0.039)	(0.051)	(0.036)	
	, ,		` /	, ,	,	,	
Observations	37,173	37,173	37,173	29,023	29,023	29,023	
R-squared	0.331	0.220	0.184	0.326	0.240	0.209	

Other Results

- Household in the highlands expand production into woods (areas covered in bushes, etc)
- Production of cereals is replaced by tubers
- Evidence of botanical impact rather than input productivity (analysis by month)

Climate Change Simulations

- Climate change scenarios are contingent on assumptions about behavioral change (e.g. fossil fuel emissions).
- While economic theory suggests that farming technologies are more flexible in the long run, allowing for adaptation, researchers failed to find evidence, e.g. Burke and Emerick (2016), Guiteras (2009)
- ▶ Using different emission scenarios from The Intergovernmental Panel on Climate Change, it is estimated that Peru's average temperatures would increase between 1.5 and 3 °C

We distribute additional degrees uniformly and use our estimations to compute differences in yields

Distribution of Impacts - 3°C scenario

Substantial damages in the coast, while highlands would benefit from higher temperatures

Conclusion

- ▶ We confirm the non-linear relationship between temperature and agricultural yields in a sample of Peruvian farmers.
- ► The threshold at which temperatures become detrimental is different by region
- Effect via agricultural TFP and regions react differently to it
- Subsistence farmers (mostly in the Highlands) increase land use to compensate for lower productivity and domestic labour, and manage to avoid a drop in output.
- Heterogeneous results by region of climate change scenarios highlight strong redistributional effects

Temperature Function: Degree-Days

Piecewise linear function of daily temperature τ_t

$$DD_{t} = \begin{cases} 0 & \text{if } \tau_{t} < 8^{\circ}\text{C} \\ \tau_{t} - 8 & \text{if } 8 < \tau_{t} \leq \tau_{\textit{High}} \\ \tau_{\textit{High}} - 8 & \text{if } \tau_{\textit{High}} < \tau_{t} \end{cases}$$

And:

$$HDD_t = egin{cases} 0 & ext{if } au_t \leq au_{High} \ au_t - au_{High} & ext{if } au_{High} < au_t < 40 \ 40 - au_{High} & ext{if } 40 < au_t \end{cases}$$

ightharpoonup Threshold temperature au_{High} will be estimated from data

