Algebraic Groups

Contents

1	First properties of algebraic groups	1
	1.1 Basic concepts	1
	1.2 Action and representations	5
	1.3 Lie algebra of an algebraic group	6
2	Decomposition of algebraic groups	7
	2.1	7
3	Structure of linear algebraic groups	7
4	Quotient by algebraic group	7
	4.1 Quotient	7
	4.2 Quotient of affine algebraic group by closed subgroup	8
5	Weil regularization theorem	8
6	Application: birational group of varieties of general type	8

1 First properties of algebraic groups

Let \mathbf{k} be a field and \mathbf{k} its algebraic closure. All varieties are defined over \mathbf{k} unless otherwise specified.

1.1 Basic concepts

Definition 1.1. A group scheme over S is an S-scheme G together with morphisms multiplication $\mu: G \times G \to G$, identity $\varepsilon: S \to G$ and inversion $\iota: G \to G$ over S such that the following diagrams commute:

(a) (Associativity)

(b) (Identity)

$$G \times S \xrightarrow{\mathrm{id}_G \times \varepsilon} G \times G \xleftarrow{\varepsilon \times \mathrm{id}_G} S \times G$$

$$\cong \qquad \qquad \downarrow^{\mu} \qquad \cong \qquad ;$$

Date: October 22, 2025, Author: Tianle Yang, My Homepage

(c) (Inversion)

In other words, a group scheme is a group object in the category of schemes.

Definition 1.2. An *algebraic group* is a **k**-group scheme G which is reduced, separated and of finite type over a field **k**.

Remark 1.3. Even if we work over \mathbb{k} and just consider the closed points $G(\mathbb{k})$ of an algebraic group G, $G(\mathbb{k})$ is not a topological group with respect to the Zariski topology in general. The reason is that the topology on $G(\mathbb{k}) \times G(\mathbb{k})$ is not the product topology of the topologies on $G(\mathbb{k})$.

Definition 1.4. Let G be an algebraic group and $x \in G(\mathbf{k})$ a **k**-point. The *left translation* by x is the morphism

$$l_x: G \xrightarrow{\cong} \operatorname{Spec} \mathbf{k} \times G \xrightarrow{x \times \operatorname{id}_G} G \times G \xrightarrow{\mu} G.$$

Similar definition applies to the right translation r_x .

Remark 1.5. In the context of algebraic groups, we often use multiplicative notation for the group law. That is, for $g, h \in G(\mathbf{k})$, we write gh instead of $\mu(g, h)$ and g^{-1} instead of $\iota(g)$.

Sometimes we also abuse the notation by $\mu:G\times\cdots\times G\to G$ to denote the multiplication of multiple elements, i.e. $\mu(g_1,\ldots,g_n)=g_1\cdots g_n$ for $g_1,\ldots,g_n\in G(\mathbf{k})$.

Proposition 1.6. Let G be an algebraic group. Then G is smooth over \mathbf{k} .

Proof. Since G is reduced and of finite type over a field, it is generically regular. Let $g \in G(\mathbb{k})$ be a regular point. Then the left translation $l_{gh^{-1}}: G \to G$ is an isomorphism, hence G is regular at $h \in G(\mathbb{k})$. It follows that G is regular at every \mathbb{k} -point, hence G is smooth over \mathbb{k} .

Remark 1.7. Let G be an algebraic group. Then the irreducible components of G coincide with the connected components of G. We will use the term "connected" to refer to both concepts since "irreducible" has other meanings in the theory of representations.

Example 1.8. The *additive group* \mathbb{G}_a is defined to be the affine line \mathbb{A}^1 with the group law given by addition. Concretely, we can write $\mathbb{G}_a = \operatorname{Spec} \mathbf{k}[T]$ with the group law given by the morphism

$$\mu: \mathbb{G}_a \times \mathbb{G}_a \to \mathbb{G}_a, \quad (x, y) \mapsto x + y,$$

$$\iota: \mathbb{G}_a \to \mathbb{G}_a, \quad x \mapsto -x,$$

$$\varepsilon: \operatorname{Spec} \mathbf{k} \to \mathbb{G}_a, \quad * \mapsto 0.$$

Example 1.9. The multiplicative group \mathbb{G}_m is defined to be the affine variety $\mathbb{A}^1 \setminus \{0\}$ with the group law given by multiplication. Concretely, we can write $\mathbb{G}_m = \operatorname{Spec} \mathbf{k}[T, T^{-1}]$ with the group law given

by the morphism

$$\mu: \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m, \quad (x, y) \mapsto xy,$$

$$\iota: \mathbb{G}_m \to \mathbb{G}_m, \quad x \mapsto x^{-1},$$

$$\varepsilon: \operatorname{Spec} \mathbf{k} \to \mathbb{G}_m, \quad * \mapsto 1.$$

Example 1.10. The general linear group GL_n is defined to be the open subvariety of \mathbb{A}^{n^2} consisting of invertible matrices, with the group law given by matrix multiplication. Concretely, we can write $GL_n = \operatorname{Spec} \mathbf{k}[T_{ij}, \det(T_{ij})^{-1}]$ where $1 \leq i, j \leq n$ and the group law is given by the morphism

$$\mu: \operatorname{GL}_n \times \operatorname{GL}_n \to \operatorname{GL}_n, \quad (A, B) \mapsto AB,$$

$$\iota: \operatorname{GL}_n \to \operatorname{GL}_n, \quad A \mapsto A^{-1},$$

$$\varepsilon: \operatorname{Spec} \mathbf{k} \to \operatorname{GL}_n, \quad * \mapsto I_n.$$

Example 1.11. An abelian variety is an algebraic group that is also a proper variety.

Example 1.12. Let G and H be algebraic groups. The *product* $G \times H$ is an algebraic group with the group law defined by

$$\mu_{G \times H} = \mu_G \times \mu_H : (G \times H) \times (G \times H) \cong (G \times G) \times (H \times H) \to G \times H,$$

$$\varepsilon_{G \times H} = \varepsilon_G \times \varepsilon_H : \operatorname{Spec} \mathbf{k} \cong \operatorname{Spec} \mathbf{k} \times \operatorname{Spec} \mathbf{k} \to G \times H,$$

$$\iota_{G \times H} = \iota_G \times \iota_H : G \times H \to G \times H.$$

Example 1.13. Let G be an algebraic group over \mathbf{k} and \mathbf{K}/\mathbf{k} a field extension. The base change $G_{\mathbf{K}} = G \times_{\operatorname{Spec} \mathbf{k}} \operatorname{Spec} \mathbf{K}$ is an algebraic group over \mathbf{K} with the group law defined by the base change of the original group law of G to \mathbf{K} .

Definition 1.14. A homomorphism of algebraic groups is a morphism of schemes that is also a group homomorphism. Explicitly, a morphism $f: G \to H$ between algebraic groups G and H is a homomorphism if the following diagram commutes:

$$\begin{array}{ccc}
G \times G & \xrightarrow{\mu_G} & G \\
f \times f \downarrow & & \downarrow f \\
H \times H & \xrightarrow{\mu_H} & H
\end{array}$$

where μ_G and μ_H are the group laws of G and H, respectively.

Definition 1.15. An algebraic subgroup of an algebraic group G is a closed subscheme $H \subseteq G$ that is also a subgroup of G. More precisely, H is an algebraic subgroup and the inclusion morphism $H \hookrightarrow G$ is compatible with the group laws.

An algebraic subgroup H of G is called *normal* if for any **k**-scheme S, the subgroup H(S) is a normal subgroup of the abstract group G(S).

Example 1.16. The *special linear group* SL_n is defined to be the closed subvariety of GL_n defined by the equation det = 1. It is an algebraic subgroup of GL_n .

Proposition 1.17. Let G be an algebraic group and S is a closed subgroup of $G(\mathbb{k})$. Then there exists a unique algebraic subgroup H of G such that $H(\mathbb{k}) = S$.

Proof. Yang: To be continued...

Remark 1.18. By Proposition 1.17, we often identify an algebraic group G with its set of closed points $G(\mathbb{k})$ when there is no confusion.

Remark 1.19. If one replaces k by k in Proposition 1.17, the statement may not hold. For example, let $k = \mathbb{Q}$ and G be the elliptic curve defined by $X^3 + Y^3 = Z^3$ in \mathbb{P}^2 . It is well-known that $\#G(\mathbb{Q}) = 3$. Let G be the disjoint union of the three G-points of G endowed with the reduced subscheme structure and the group structure induced from G. Then G is a proper closed subgroup of G and we have $G(\mathbb{Q}) = G(\mathbb{Q})$. This contradicts the uniqueness in Proposition 1.17.

Indeed, in this chapter, despite working over an arbitrary field \mathbf{k} , we mostly consider the closed points of algebraic groups over \mathbf{k} .

Definition 1.20. Let G be an algebraic group. The neutral component G^0 is the connected component of G containing the identity element ε .

Proposition 1.21. The neutral component G^0 is a closed, normal algebraic subgroup of G.

Proof. Yang: To be continued...

Proposition 1.22. Let G be an algebraic group and $H \subseteq G(\mathbb{k})$ a subgroup (not necessarily closed). Then the Zariski closure \overline{H} of H in G is an algebraic subgroup of G. If $H \subseteq G(\mathbb{k})$ is constructible, then $H = \overline{H}(\mathbb{k})$.

Proof. Yang: To be continued...

Example 1.23. Let $G = SL_2$ over k, $T = \{ diag(t, t^{-1}) | t \in k^{\times} \}$ and $g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Set $S = gTg^{-1}$.

Then both T and S are closed algebraic subgroups of $G(\mathbb{k})$, but the product TS is not closed in $G(\mathbb{k})$. By direct computation, we have

$$S = \left\{ \begin{pmatrix} s & s^{-1} - s \\ 0 & s^{-1} \end{pmatrix} \middle| s \in \mathbb{R}^{\times} \right\}.$$

Then

$$TS = \left\{ \begin{pmatrix} ts & t(s^{-1} - s) \\ 0 & (ts)^{-1} \end{pmatrix} \middle| t, s \in \mathbb{k}^{\times} \right\}.$$

We have

$$TS \cap \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{k} \right\} = \left\{ \begin{pmatrix} 1 & s^{-2} - 1 \\ 0 & 1 \end{pmatrix} \middle| s \in \mathbb{k}^{\times} \right\}.$$

The right hand side is not closed in $SL_2(\mathbb{k})$ since it does not contain the matrix $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Hence TS is not closed in $G(\mathbb{k})$.

Proposition 1.24. Let G be an algebraic group, X_i varieties over \mathbf{k} and $f_i: X_i \to G$ morphisms for $i=1,\ldots,n$ with images $Y_i=f_i(X_i)$. Suppose that Y_i pass through the identity element of G. Let H be the closed subgroup of G generated by Y_1,\ldots,Y_n , i.e. the smallest closed subgroup of G containing Y_1,\ldots,Y_n . Then H is connected and $H=Y_{a_1}^{e_1}\cdots Y_{a_m}^{e_m}$ for some $a_1,\ldots,a_m\in\{1,\ldots,n\}$ and $e_1,\ldots,e_m\in\{\pm 1\}$.

Proof. Yang: To be continued...

Remark 1.25. We can take $m \le 2 \dim G$ in Proposition 1.24.

1.2 Action and representations

Definition 1.26. An action of an algebraic group G on a variety X is a morphism

$$\sigma: G \times X \to X$$

such that the following diagrams commute:

$$G \times G \times X \xrightarrow{\mu \times \mathrm{id}_X} G \times X \qquad \mathrm{Spec} \ \mathbf{k} \times X \xrightarrow{\varepsilon \times \mathrm{id}_X} G \times X$$

$$\downarrow^{\mathrm{id}_G \times \sigma} \qquad \downarrow^{\sigma} \qquad \downarrow^{\sigma}$$

$$G \times X \xrightarrow{\sigma} X$$

where μ is the group law of G and ε is the identity element of G. In other words, for any **k**-scheme S, the induced map $G(S) \times X(S) \to X(S)$ defines a group action of the abstract group G(S) on the set X(S).

For simplicity, we often write g.x instead of $\sigma(g,x)$ for $g \in G(\mathbf{k})$ and $x \in X(\mathbf{k})$.

Example 1.27. There are three natural actions of an algebraic group G on itself:

- (a) Left translation: $g.h = l_g(h) = gh$;
- (b) Right translation: $g.h = r_g(h) = hg^{-1}$;
- (c) Conjugation: $g.h = Ad_g(h) = ghg^{-1}$.

All of them are morphisms of varieties since they are defined by the group law and inversion of G.

Example 1.28. The general linear group GL_n acts on the affine space \mathbb{A}^n by matrix multiplication. It is given by polynomials, hence is a morphism of varieties.

Example 1.29. The general linear group GL_{n+1} acts on the projective space \mathbb{P}^n by

$$A \cdot [x_0 : \dots : x_n] = [y_0 : \dots : y_n], \text{ where } (y_0, \dots, y_n)^T = A(x_0, \dots, x_n)^T.$$

Let U_i be the standard affine open subset of \mathbb{P}^n defined by $x_i \neq 0$. The map is given by polynomials on the principal open subset of $\mathrm{GL}_{n+1} \times U_i$ defined by $y_j \neq 0$ for any j. Hence it is a morphism of varieties.

Definition 1.30. A linear representation of an algebraic group G on a finite-dimensional vector space V over \mathbbm{k} is an abstract group representation $\rho: G(\mathbbm{k}) \to GL(V)$ such that if we identify V with \mathbb{A}^n for some n, then the map $G(\mathbbm{k}) \times \mathbb{A}^n(\mathbbm{k}) \to \mathbb{A}^n(\mathbbm{k})$ is a morphism of varieties.

Definition 1.31. Let G be an algebraic group acting on a variety X. For any $x \in X(\mathbf{k})$, the *orbit* of x is the locally closed subvariety $G \cdot x = \sigma(G \times \{x\})$ of X.

Proposition 1.32. Let G be an algebraic group acting on a variety X. Then for any $x \in X(\mathbf{k})$, the orbit $G \cdot x$ is a locally closed subvariety of X, and $\overline{G \cdot x} \setminus G \cdot x$ is a union of orbits of strictly smaller dimension.

Proof. Yang: To be continued...

Let G be an algebraic group acting on an affine variety $X = \operatorname{Spec} A$. For $x \in G(\mathbf{k})$, we have the left translation of functions $\tau_x : A \to A$ defined by $\tau_x(f)(y) = f(x^{-1}y)$ for $y \in X(\mathbf{k})$.

Lemma 1.33. Let G be an algebraic group acting on an affine variety $X = \operatorname{Spec} A$. For any finite-dimensional subspace $V \subseteq A$, there exists a finite-dimensional G-invariant subspace $W \subseteq A$ containing V.

Proof. Yang: To be continued...

Theorem 1.34. Any affine algebraic group is isomorphic to a closed algebraic subgroup of some GL_n .

Proof. Yang: To be continued...

1.3 Lie algebra of an algebraic group

Let G be an algebraic group. The Lie algebra of G is defined to be the tangent space of G at the identity element ε :

$$Lie(G) = T_{\varepsilon}G$$
.

It is a finite-dimensional vector space over \mathbf{k} .

Proposition 1.35. The group law $\mu: G \times G \to G$ induces the plus map on Lie(G):

$$\mathrm{d}\mu_{(\varepsilon,\varepsilon)}:T_{(\varepsilon,\varepsilon)}(G\times G)\cong T_\varepsilon G\oplus T_\varepsilon G\to T_\varepsilon G,\quad (v,w)\mapsto v+w.$$

Proof. We have

$$\mathrm{d}\mu_{(\varepsilon,\varepsilon)}(v,w) = \mathrm{d}\mu_{(\varepsilon,\varepsilon)}(v,0) + \mathrm{d}\mu_{(\varepsilon,\varepsilon)}(0,w) = (\mathrm{d}\mu \circ (\mathrm{id}_G \times \varepsilon))_\varepsilon(v) + (\mathrm{d}\mu \circ (\varepsilon \times \mathrm{id}_G))_\varepsilon(w) = v + w.$$

2 Decomposition of algebraic groups

2.1

3 Structure of linear algebraic groups

Theorem 3.1. Let G be a linear algebraic group of dimension 1 over an algebraically closed field \mathbb{k} . Then G is isomorphic to either \mathbb{G}_m or \mathbb{G}_a .

Lemma 3.2. Let G be a linear algebraic group over an algebraically closed field k. Then G has a one-dimensional algebraic subgroup.

4 Quotient by algebraic group

Everything in this section is over an arbitrary field \mathbf{k} unless otherwise specified.

4.1 Quotient

Definition 4.1. Let G be an algebraic group acting on a variety X. A quotient of X by G is a variety Y together with a morphism $\pi: X \to Y$ such that

- (a) π is G-invariant, i.e., $\pi(g \cdot x) = \pi(x)$ for all $g \in G$ and $x \in X$.
- (b) For any variety Z and any G-invariant morphism $f:X\to Z$, there exists a unique morphism $\overline{f}:Y\to Z$ such that $f=\overline{f}\circ\pi$.

In other words, the following diagram commutes:

$$X \xrightarrow{\pi} Y$$

$$\downarrow \bar{j}$$

$$Z$$

If a quotient exists, it is unique up to a unique isomorphism. Yang: To be continued...

Such a quotient does not always exist.

Theorem 4.2. Let G be an affine algebraic group acting on a variety X. Then there exists a variety Y and a rational morphism $\pi: X \dashrightarrow Y$ with commutative diagram

$$\begin{array}{c} X - \xrightarrow{\pi} Y \\ \downarrow f \\ Z \end{array}$$

satisfying the following universal property: If a quotient exists, it is unique up to a unique isomorphism.

8

Furthermore, if all orbits of G in X are closed, then π is a morphism (i.e., defined everywhere). Yang: To be continued... Yang: Ref?

4.2 Quotient of affine algebraic group by closed subgroup

Lemma 4.3. Let V be a finite-dimensional vector space over \mathbf{k} and G an abstract group acting linearly on V. Let $W \subseteq V$ be a subspace of dimension m. Then G.W = W if and only if $G. \wedge^m W = \wedge^m W$.

| Proof. Yang: To be filled.

Lemma 4.4. Let G be an affine algebraic group and H a closed subgroup. Then there exists a finite-dimensional linear representation V of G and a one-dimensional subspace $L \subseteq V$ such that H

| Proof. Yang: To be filled.

is the stabilizer of L.

Theorem 4.5. Let G be an affine algebraic group and H a closed subgroup. Then the quotient G/H exists as a quasi-projective variety.

Proof. Yang: To be filled.

5 Weil regularization theorem

6 Application: birational group of varieties of general type

In this section, we apply the results from the previous sections to study the birational automorphism groups of varieties of general type.

Theorem 6.1. Let X be a projective variety of general type over an algebraically closed field k of characteristic zero. Then the group of birational automorphisms Bir(X) is finite.

Proof. We will prove this theorem in several steps. By replacing X with its resolution of singularities, we may assume that X is smooth.

Step 1. For every $m \ge 1$, Bir(X) linearly acts on $H^0(X, mK_X)$ via pull-back of functions.

Let $\mathcal{K}(X)$ be the function field of X. Then for every $g \in \operatorname{Bir}(X)$, g induces an automorphism of $\mathcal{K}(X)$ over \Bbbk , which we denote by g^* . In particular we know that g^* is injective and \Bbbk -linear. By definition, $H^0(X, mK_X) = \{s \in \mathcal{K}(X) \mid \operatorname{div}(s) + mK_X \geq 0\}$. We only need to show that for every $s \in H^0(X, mK_X)$, $g^*(s) \in H^0(X, mK_X)$ since $\dim_{\Bbbk} H^0(X, mK_X) < \infty$. Consider the commutative diagram

$$\begin{array}{c|c}
\Gamma \\
p \downarrow & q \\
X - \stackrel{g}{\longrightarrow} X
\end{array}$$

with Γ smooth and p,q birational morphisms. Then we have

$$K_{\Gamma} = p^* K_X + E_p = q^* K_X + E_q,$$

where E_p and E_q are p- and q-exceptional divisors respectively. Moreover, E_p and E_q are effective since X is smooth. Yang: ref For every $s \in H^0(X, mK_X)$, we have

$$\operatorname{div}(q^*s) + mK_{\Gamma} = q^*(\operatorname{div}(s) + mK_X) + mE_q \ge 0.$$

Then

$$\operatorname{div}(g^*s) + mK_X = p_*p^*(\operatorname{div}(g^*s) + mK_X)$$

$$= p_*\left(\operatorname{div}(q^*s) + mK_{\Gamma} - mE_p\right)$$

$$= p_*\left(\operatorname{div}(q^*s) + mK_{\Gamma}\right) \ge 0.$$

It follows that $g^*(s) \in H^0(X, mK_X)$.

Step 2. The group Bir(X) is a linear algebraic group by identifying it with a closed subgroup of $PGL(H^0(X, mK_X))$ for some integer m > 0. Moreover, its rational action on X is algebraic.

By ??, there exists an integer m>0 such that the pluricanonical map $\psi: X \dashrightarrow \mathbb{P}(H^0(X, mK_X))$ is birational onto its image Y. Since Bir(X) linearly acts on $H^0(X, mK_X)$ by Step 1, we have a commutative diagram

$$\begin{array}{ccc}
X & ---- & g & & X \\
\downarrow \psi & & \downarrow \psi \\
Y & & & Y & & \downarrow \psi \\
\downarrow & & \downarrow \psi$$

for every $g \in Bir(X)$, where φ_g is the induced automorphism of $\mathbb{P}(H^0(X, mK_X))$. Since ψ is birational, the map $g \mapsto \varphi_g$ defines an injective group homomorphism from Bir(X) to $PGL(H^0(X, mK_X))$. Consider the natural algebraic group structure on $PGL(H^0(X, mK_X))$ and let G be the Zariski closure of the image of Bir(X) in $PGL(H^0(X, mK_X))$. Note that Bir(X) fixes Y. Thus G also fixes Y. In particular, G acts on X birationally. This enforces that G = Bir(X). Note that $PGL(H^0(X, mK_X))$ is a linear algebraic group and so is its closed subgroup Bir(X).

Step 3. If $\dim \operatorname{Bir}(X) > 0$, then it contains \mathbb{G}_a or \mathbb{G}_m as a subgroup. We show that the action of \mathbb{G}_a or \mathbb{G}_m on X leads to X being uniruled, which contradicts the assumption that X is of general type.

By Lemma 3.2 and Theorem 3.1, if $\dim \operatorname{Bir}(X) > 0$, then $\operatorname{Bir}(X)$ contains either \mathbb{G}_a or \mathbb{G}_m as a subgroup. Note that both \mathbb{G}_a and \mathbb{G}_m are rational varieties, without loss of generality, we may assume that $\operatorname{Bir}(X)$ contains \mathbb{G}_m as a subgroup. Then we have a rational map

$$\mathbb{G}_m \times X \dashrightarrow X.$$

By removing the indeterminacy, we obtain a morphism

$$\mathbb{G}_m \times U \to U$$
.