

Causal Data Science

Lecture 10.0: Recap of 9 and solutions

Lecturer: Sara Magliacane

Overview on where we are in the course

7/02/2022	Introduction
10/02/2022	Probability recap
	Causal graphs
	Interventions
	Covariate adjustment
	Frontdoor criterion, Instrumental variables
	Counterfactuals and potential outcomes
	Estimating causal effects, Missing data
7/03/2022	Constraint based structure learning
10/03/2022	Score based structure learning
14/03/2022	Advanced structure learning and transportability
17/03/2022	Causality-inspired ML

Background on causal graphs

We know the causal graph, how do we estimate causal effects?

What happens if the graph is unknown?

Last class: Perfect maps - Markov equivalence

• If P is Markov and faithful to G, we say that G is a perfect map of P. Then, for any disjoint $A, B, C \subseteq V$:

$$\mathbf{A} \perp \mathbf{B} \mid \mathbf{C} \iff X_{\mathbf{A}} \perp \perp X_{\mathbf{B}} \mid X_{\mathbf{C}}$$

- In general there are multiple DAGs that can describe the same dseparations (and independences)
- We call these DAGs Markov equivalent and we cannot distinguish them from observational data alone (or without further assumptions)

Last class: Markov equivalence class and CPDAGs

- (Verma and Pearl 1990) show that all DAGs in a Markov equivalence class have the same skeleton and the same v-structures
- We can represent the skeleton and the orientations (edge marks) all DAGs in a Markov equivalence class (MEC) have in common with a Complete Partially Directed Acyclic Graph (CPDAG):
 - We have a directed edge $i \to j$ if all DAGs in the MEC have $i \to j$
 - We have an undirected edge i-j if some DAGs in the MEC have $i\to j$ and others have $j\to i$

Last class: Constraint-based causal discovery

- Idea: we perform conditional independence tests on observational data and use them to constrain the possible graphs using d-separation
- In general, we can narrow down the possible graphs only up to their Markov equivalence class (MEC)
- The output of the algorithms we will see (e.g. SGS, PC) is a CPDAG, a mixed graph in which directed edges represent causal relations on which all DAGs in the MEC agree these relations are identifiable

Last class: SGS algorithm (Spirtes, Glymour, Scheines)

- ullet Assuming P is Markov and faithful to an unknown graph G
- We can estimate a CPDAG from samples of P in three steps:
 - 1. Determine the skeleton
 - 2. Determine the v-structures
 - 3. Direct as many remaining edges as possible
- Note: the directed parts of the CPDAG will agree with G, but some parts might stay undirected

Last class: SGS step 1: Skeleton learning

- 1. Start with completely connected undirected graph ${\it U}$
- 2. For each pair $i, j \in V$, $i \neq j$, and for any subset $S \subseteq V \setminus \{i, j\}$
 - Check if $X_i \perp \!\!\! \perp X_j \mid X_S$ for any S in data
 - If this is true, by faithfulness $i \perp_G j | S$, so we can remove i j in U

Last class: SGS step 2: Determine v-structures

- 1. Start from the skeleton U from previous step
- 2. For each unshielded triple (i,j,k) in U, i.e. $\forall i,j,k \in \mathbf{V}$ such that i-j,j-k and $i \neq k$ in U
 - For all $S \subseteq V \setminus \{i,j,k\}$ check if $X_i \not\perp \!\!\! \perp X_k \mid X_j \cup X_S$ in data
 - If this is true, $i \rightarrow j \leftarrow k$ is a v-structure

Last class: SGS step 3: Direct as many edges as possible

- Cannot create cycles or new v-structures
- Some of the edges can be oriented to disallow these situations to happen

Last class: PC algorithm (Peter Spirtes, Clark Glymour)

- We can estimate a CPDAG from samples of P in three steps:
 - 1. Determine the skeleton in an optimised way
 - 2. Determine the v-structures
 - 3. Direct as many remaining edges as possible
- 1. Start with completely connected undirected graph \boldsymbol{U}
- 2. For k = 0, 1, 2, ..., p 2
 - If i-j in U and there exists a set $\mathbf{S} \subseteq \mathrm{Adj}(i) \cup \mathrm{Adj}(j)$ of size k for which $X_i \perp \!\!\! \perp X_j \mid \mathbf{S}$, remove i-j in U

Last class: PC algorithm - when does it fail?

- If the conditional independence tests give the wrong result
 - Too few samples
 - A very weak dependence
 - Wrong parametric assumption (e.g. partial correlation on nonlinear data)
- If there are unmeasured confounders or selection bias (causal sufficiency)

Main advantage of constraint based methods

- More advanced algorithms like Fast Causal Inference (FCI)
 - Chapter 6 in [SGS] Causation Prediction and Search
 - https://www.researchgate.net/publication/242448131_Causation_Prediction_and_Search

1

Multiple choice 1 point

What is the skeleton of the graph over nodes {1,2,3,4} that one can learn using the above conditional independences (and no other independence)? If you forgot, here is the pseudo-code for the skeleton learning phase

- 1. Start with completely connected undirected graph ${\it U}$
- 2. For k = 0, 1, 2, ..., p 2
 - If i-j in U and there exists a set $\mathbf{S} \subseteq \mathrm{Adj}(i) \cup \mathrm{Adj}(j)$ of size k for which $X_i \perp \!\!\! \perp X_j \mid \mathbf{S}$, remove i-j in U

X₁ III X₄

X₁ II X₄ X2 4 X4 X, 11 X3 X2 X111 X4 X2 X2 11 X4 X1 X, 4X4 X3, X2 2 Multiple choice 1 point

Which are the unshielded triples in the skeleton (note that the definition is the same for undirected graphs):

- A triple of nodes (i, j, k) in a DAG G is a an unshielded triple if i j, j k and i is not adjacent to k, i.e. $i \neq k$, in G
- (1,2,3), (2,3,4)
- (1,4,3), (4,3,2)
- O none
- (1,3,4)

3 Multiple choice 1 point

Which are the v-structures that we can determine using the following rules and the original conditional independences: written in the original list, then the variables are dependent. Here are the steps to determine v-structures:

- 1. Start from the skeleton U from previous step
- 2. For each unshielded triple (i, j, k) in U, i.e. i j, j k and $i \neq k$ in U
 - For all $S \subseteq V \setminus \{i,j,k\}$ check if $X_i \not\perp \!\!\! \perp X_k \mid X_j \cup X_S$ in data
 - If this is true, $i \rightarrow j \leftarrow k$ is a v-structure
- (2,3,4)
- (1,2,3)
- (1,4,3)
- none

$$(1,2,3)$$
 \times $X_1 \coprod X_3 X_2 \times$
 $(2,3,4)$ $X_2 \coprod X_4 X_4 X_3$
 $(not in list)$
 $X_2 \coprod X_4 X_3 X_1$

True or False 1 point

Consider the graph you have obtained up to now, after phase 1: skeleton learning, and phase 2: determining the v-structures. In this graph, in phase 3, we can orient one or more edges by using the acyclicity or "no new v-structures" constraint.

- True
- False

$$1 - 2 \rightarrow 3 \leftarrow 4$$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \quad V$$

$$1 \leftarrow 2 \rightarrow 3 \rightarrow 4 \quad V$$

X₁ III X₄ X2 4 X4 X, 11 X3 X2 XIII X4 X2 X2 11 X4 X1 X, 4X4 X3, X2

4 True or False 1 point

Consider the graph you have obtained up to now, after phase 1: skeleton learning, and phase 2: determining the v-structures. In this graph, in phase 3, we can orient one or more edges by using the acyclicity or "no new v-structures" constraint.

- True
- False

 $1 - 2 - 3 \leftarrow 4$

0 AC19)

True or False 1 point

The final graph (the CPDAG we obtain after all phases) is fully oriented (there are no undirected edges, only directed ones)

- True
- Fals

Multiple choice 1 point

X₁ II X₄ X2 4 X4 X, 11 X3 X2 X111 X4 X2 X2 11 X4 X1 X, 4X4 X3, X2

In the true causal graph, what is the relationship between 1 and 2 (based on what you can learn from the CPDAG)?

We can represent the skeleton and the orientations (edge marks) all DAGs in a Markov equivalence class (MEC) have in common with a Complete Partially Directed Acyclic Graph (CPDAG):

- We have a directed edge i → j if all DAGs in the MEC have i → j
- We have an undirected edge i − j if some DAGs in the MEC have i → j
 and others have j → i
- either 1 -> 2 or 1 <- 2</p>
- 1 -> 2 (and there are no other options)
- 1 <- 2 (and there are no other options)</p>
- 1 is not adjacent to 2

$$1-2-34-6$$

