Reasonable Agda Is Correct Haskell:

WRITING VERIFIED HASKELL USING AGDATOHS

Jesper Cockx, Orestis Melkonian, Lucas Escot, James Chapman, Ulf Norell

MOTIVATION: ISSUES WITH CURRENT PROGRAM EXTRACTORS

MAlonzo covers the entirety of Agda, but produces unreadable code:

```
d insert 1494 :: Integer -> Integer -> Integer
             -> T Tree 1340 -> T_'8804'__1324 -> T_'8804'__1324 -> T_Tree_1340
d insert 1494 ~v0 ~v1 v2 v3 ~v4 ~v5 = du insert 1494 v2 v3
du insert 1494 :: Integer -> T_Tree_1340 -> T_Tree_1340
du insert 1494 v0 v1 = case coe v1 of
 C Leaf 1348 -> coe C Node 1352 (coe v0) (coe C Leaf 1348) (coe C Leaf 1348)
  C Node 1352 v2 v3 v4 -> coe MAlonzo.Code.Haskell.Prim.du case of 54
   (coe d compare 1474 (coe v0) (coe v2))
   (coe du '46'extendedlambda0 1514 (coe v0) (coe v2) (coe v3) (coe v4))
  -> MAlonzo.RTE.mazUnreachableError
```

MOTIVATION: ISSUES WITH CURRENT PROGRAM EXTRACTORS

Coq extracts more reabable code, but still does not readily support typeclasses:

```
Class Monoid (a : Set) :=
                                       data Monoid a = Build_Monoid a (a -> a -> a)
  { mempty : a
  : mappend : a -> a -> a }.
                                       mempty :: (Monoid a1) -> a1
                                       mempty = ...
Instance MonoidNat : Monoid nat :=
                                       mappend :: (Monoid a1) -> a1 -> a1 -> a1
  \{ memptv := 0 \}
                                       mappend = ...
  ; mappend i j := i + j }.
                                       monoidNat :: Monoid Nat
                                       monoidNat = Build Monoid O add
Fixpoint sumMon {a} `{Monoid a}
 (xs : list a) : a :=
                                       sumMon :: (Monoid a1) -> (List a1) -> a1
 match xs with
                                       sumMon h xs = case xs of {
  | [] => memptv
                                         ([]) -> mempty h;
  x :: xs => mappend x (sumMon xs)
                                         (:) x \times x = 0 -> mappend h x (sumMon h x = 0)}
 end.
```

GOALS

- 1. Writing Haskell within Agda (no need to cover the whole source language)
- 2. Verify your program using Agda's dependent types

GOALS

- 1. Writing Haskell within Agda (no need to cover the whole source language)
- 2. Verify your program using Agda's dependent types

New point in the design space, enabled by:

- Agda's dependent type system
- Agda's support for *erasure*
- + allows for intrinsic verification!

Tree example (extrinsic version)

```
data Tree: Set where
  Leaf: Tree
  Node: Nat \rightarrow Tree \rightarrow Tree \rightarrow Tree
{-# COMPILE AGDA2HS Tree #-}
insert : Nat \rightarrow Tree \rightarrow Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) =
  case compare x y of \lambda where
    (LT ) \rightarrow Node v (insert x l) r
    (EQ) \rightarrow Node \ v \ l \ r
    (GT ) \rightarrow Node v l (insert x r)
{-# COMPILE AGDA2HS insert #-}
```

```
data Tree = Leaf
           Node Natural Tree Tree
insert :: Natural -> Tree -> Tree
insert x leaf = Node x leaf leaf
insert x (Node v l r)
  = case compare x v of
        LT -> Node v (insert x l) r
        EQ -> Node v l r
        GT -> Node v l (insert x r)
```

Tree example (extrinsic proofs)

```
@0 \le \le : Nat \rightarrow Tree \rightarrow Nat \rightarrow Set
l \le \text{Leaf} \le u = l \le u
l \leq \text{Node } x t^l t^r \leq u = (l \leq t^l \leq x) \times (x \leq t^r \leq u)
@0 insert-correct : \forall \{t \ x \ l \ u\} \rightarrow l \le t \le u
   \rightarrow l \le x \rightarrow x \le u \rightarrow l \le \text{insert } x \ t \le u
insert-correct {Leaf} l \le x \ x \le u = l \le x, x \le u
insert-correct {Node v t^l t^r} {x} (IH^l, IH^r) l \le x x \le u
   with compare x y
... | LT x \le y = \text{insert-correct } IH^l l \le x x \le y, IH^r
... | EQ refl = IH^1, IH^r
... | GT y \le x = IH^l, insert-correct IH^r y \le x x \le u
```

Tree example (intrinsic version)

```
data Tree (@0 lu: Nat): Set where
   Leaf : (@0 pf: l \le u) \rightarrow \text{Tree } l u
   Node : (x : Nat) \rightarrow Tree \ l \ x \rightarrow Tree \ x \ u
      \rightarrow Tree lu
{-# COMPILE AGDA2HS Tree #-}
insert : \{ @0 \ l \ u : Nat \} (x : Nat) \rightarrow Tree \ l \ u
   \rightarrow @0 \ (l \le x) \rightarrow @0 \ (x \le u) \rightarrow \mathsf{Tree} \ l \ u
insert x (Leaf ) l \le x x \le u =
   Node x (Leaf l \le x) (Leaf x \le u)
insert x (Node v l r) l \le x x \le u =
   case compare x y of \lambda where
     (LT x \le y) \rightarrow Node y (insert x l l \le x x \le y) r
     (EQ x = v) \rightarrow Node v l r
     (GT \ y \le x) \longrightarrow Node \ y \ l \ (insert \ x \ r \ y \le x \ x \le u)
```

```
data Tree = Leaf
             Node Natural Tree Tree
insert :: Natural -> Tree -> Tree
insert x leaf = Node x leaf leaf
insert x (Node v l r)
  = case compare x v of
        LT -> Node v (insert x l) r
        EO \rightarrow Node \times l r
        GT -> Node v l (insert x r)
```

Primitives

• Export lowercase type variables to feel like home:

$$id: a \to a$$
$$id x = x$$

PRIMITIVES

• Export lowercase type variables to feel like home:

$$id: a \to a$$
$$id x = x$$

• Match Agda built-ins to Haskell built-ins:

```
e.g. \ Agda. Builtin. Nat \leftrightarrow \textbf{Numeric.Natural}
```

PRIMITIVES

• Export lowercase type variables to feel like home:

```
id: a \longrightarrow aid x = x
```

• Match Agda built-ins to Haskell built-ins:

```
e.g. \ Agda. Builtin. Nat \leftrightarrow \textbf{Numeric.Natural}
```

• If not available in Agda, define them:

```
infix -2 if_then_else_

if_then_else_: Bool \rightarrow a \rightarrow a \rightarrow a

if False then x else y = y

if True then x else y = x
```

PRIMITIVES

• Export lowercase type variables to feel like home:

```
id: a \to aid x = x
```

• Match Agda built-ins to Haskell built-ins:

```
e.g. \ Agda. Builtin. Nat \leftrightarrow \textbf{Numeric.Natural}
```

• If not available in Agda, define them:

```
infix -2 if_then_else_

if_then_else_: Bool \rightarrow a \rightarrow a \rightarrow a

if False then x else y = y

if True then x else y = x
```

REMEMBER

We want to cover as many Haskell features as possible, not Agda features.

PRELUDE

Port Haskell's Prelude, staying faithful to the original functionality

What about partial functions such as head?

PRELUDE

Port Haskell's Prelude, staying faithful to the original functionality

What about partial functions such as head?

- ⇒ implement safe version with extra preconditions
- ⇒ only allow calls to error in unreachable cases:

```
error : (@0 \ i : \bot) \rightarrow String \rightarrow a

error ()

head : (xs : List \ a) \ \{@0 \ \_ : NonEmpty \ xs\} \rightarrow a

head (x :: \_) = x

head [] \ \{p\} = error \ i \ "head: empty \ list"

where @0 \ i : \bot

i = case \ p \ of \ \lambda ()
```

```
head :: [a] -> a
head (x : _) = x
head [] = error "head: empty list"
```

Don't forget

On the Haskell side, we can feed head arbitrary input!

Typeclasses

Correspondence with Agda's **instance arguments**.

- class definitions \sim record types
- instance declarations \sim record values
- constraints \sim instance arguments

Typeclasses: class definitions \sim record types

```
record Monoid (a : Set) : Set where
  field
    mempty : a
    mappend : a \rightarrow a \rightarrow a
    @0 left-identity : mappend mempty x = x
    @0 right-identity : mappend x mempty = x
    @0 associativity : mappend (mappend x y) z
                      \equiv mappend x (mappend y z)
open Monoid {{...}} public
{-# COMPILE AGDA2HS Monoid class #-}
```

```
class Monoid a where
  mempty :: a
  mappend :: a -> a -> a
```

Typeclasses: instance declarations \sim record values

```
instance
  MonoidNat: Monoid Nat
  MonoidNat = \lambda where
     .mempty \rightarrow 0
    .mappend i j \rightarrow i + j
     .left-identity \rightarrow \cdots
    .right-identity \rightarrow \cdots
     .associativity \rightarrow \cdots
{-# COMPILE AGDA2HS MonoidNat #-}
```

```
instance Monoid Nat where
  mempty = 0
  mappend i j = i + j
```

Typeclasses: constraints \sim instance arguments

```
sumMon : {{ Monoid a }} \rightarrow List a \rightarrow a sumMon [] = mempty sumMon (x :: xs) = mappend x (sumMon xs) {-# COMPILE AGDA2HS sumMon #-}
```

```
sumMon :: Monoid a => [a] -> a
sumMon [] = mempty
sumMon (x : xs) = mappend x (sumMon xs)
```

Default methods & minimal complete definitions

```
record Show (a : Set) : Set where
  field show : a \rightarrow String
        showsPrec: Nat \rightarrow a \rightarrow ShowS
        showList: List a \rightarrow ShowS
                                                                   class Show a where
record Show<sub>1</sub> (a : Set) : Set where
                                                                      show :: a -> String
  field showsPrec : Nat \rightarrow a \rightarrow ShowS
  show x = \text{showsPrec } 0 x'''
  showList = defaultShowList (showsPrec 0)
record Show<sub>2</sub> (a : Set) : Set where
  field show : a \rightarrow String
                                                                      showsPrec x s = show x ++ s
  showsPrec x s = \text{show } x ++ s
  showList = defaultShowList (showsPrec 0)
open Show {{...}}}
```

{-# COMPILE AGDA2HS Show class Show₁ Show₂ #-}

```
showsPrec :: Nat -> a -> ShowS
showList :: [a] -> ShowS
{-# MINIMAL showsPrec | show #-}
show x = showsPrec 0 x ""
showList = defaultShowList
```

(showsPrec 0)

MINIMAL INSTANCE

```
instance
```

```
ShowMaybe : \{\{\text{Show }a\}\} \rightarrow \text{Show }(\text{Maybe }a)

ShowMaybe \{a = a\} = \text{record }\{\text{Show}_1 \text{ s}_1\}

where

s_1 : \text{Show}_1 \text{ (Maybe }a)

s_1 : \text{Show}_1.\text{showsPrec }n = \lambda \text{ where}
```

```
(Just x) \rightarrow showParen True
(showString "just " \circ showsPrec 10 x)
```

{-# COMPILE AGDA2HS ShowMaybe #-}

Nothing → showString "nothing"

```
Nothing -> showString "nothing"
(Just x) -> showParen True
  (showString "just " . showsPrec 10 x)
```

=> Show (Maybe a) where

instance (Show a)

showsPrec $n = \c$

IOG USE CASE

```
data Kind: Set where
                                                      data Kind
  Star : Kind
                                                        = Star
  :=> : Kind \rightarrow Kind \rightarrow Kind
                                                         | Kind :=> Kind
data Type (n : Set) : Set where
  TyVar : n \rightarrow \text{Type } n
                                                      data Type n
  TyFun : Type n \rightarrow Type n \rightarrow Type n \rightarrow
                                                         = TvVar n
                                                         | TyFun (Type n) (Type n)
  TvForall: Kind \rightarrow Tvpe (Maybe n)
                                                         | TvForall Kind (Tvpe (Mavbe n))
    \rightarrow Type n
                                                         | TyLam (Type (Maybe n))
  TyLam : Type (Maybe n) \rightarrow Type n
                                                         | TyApp (Type n) (Type n) Kind
  TyApp : Type n \to \text{Type } n \to \text{Kind}
                                                      ren :: (n -> n') -> Type n -> Type n'
    \rightarrow Type n
                                                      sub :: (n -> Type n') -> Type n -> Type n'
ren : (n \rightarrow n') \rightarrow \text{Type } n \rightarrow \text{Type } n'
sub: (n \to \mathsf{Type}\ n') \to \mathsf{Type}\ n \to \mathsf{Type}\ n'
```

IOG USE CASE: LAWS

ren is a functorial map on Type.

- ren-id: $(ty : \mathsf{Type}\ n) \longrightarrow \mathsf{ren}\ \mathsf{id}\ ty = ty$
- ren-comp: $(ty : \mathsf{Type}\ n)\ (\rho : n \to n')\ (\rho' : n' \to n'')$
 - \rightarrow ren $(\rho' \circ \rho)$ ty = ren ρ' (ren ρ ty)

IOG USE CASE: LAWS

ren is a functorial map on Type.

- ren-id: $(ty : \mathsf{Type}\ n) \to \mathsf{ren}\ \mathsf{id}\ ty = ty$
- ren-comp: $(ty: \mathsf{Type}\ n)\ (\rho: n \to n')\ (\rho': n' \to n'')$ $\to \mathsf{ren}\ (\rho' \circ \rho)\ ty = \mathsf{ren}\ \rho'(\mathsf{ren}\ \rho\ ty)$

sub is a monadic bind on Type.

- sub-id: $(t: \mathsf{Type}\ n) \to \mathsf{sub}\ \mathsf{TyVar}\ t = t$
- sub-var: $(x: n) (\sigma: n \rightarrow \mathsf{Type}\ n') \rightarrow \mathsf{sub}\ \sigma(\mathsf{TyVar}\ x) = \sigma\ x$
- sub-comp: $(ty: \mathsf{Type}\ n)\ (\sigma: n \to \mathsf{Type}\ n')\ (\sigma': n' \to \mathsf{Type}\ n'')$ $\to \mathsf{sub}\ (\mathsf{sub}\ \sigma' \circ \sigma)\ ty \equiv \mathsf{sub}\ \sigma'(\mathsf{sub}\ \sigma\ ty)$

CORRECTNESS

How do we know the translation is **sound?**

- 1. Trust the ported Prelude and defined primitives
- 2. Ensure all dependent types appear under *erased* positions
- 3. Ensure source code also adheres to Haskell's naming conventions
 - this check is actually relegated to GHC! % + \gg =

NOTE

all functions are total ⇒ evaluation order doesn't matter

Surface

$$f: Nat \rightarrow Nat$$
 $f x = go$
where
 $go = TODO$
-- may use x

Intermediate

go : Nat \rightarrow Nat go x = TODO

 $f: Nat \rightarrow Nat$ f x = go x

Output

```
f :: Natural -> Natural
f x = go
  where go = TODO
```

Still many unsupported Haskell features:

- GADTs
- pattern guards, views
- 32-bit arithmetic
- · Infinite data
- · Non-termination, general recursion

Still many unsupported Haskell features:

- GADTs \sim identify subset of dependent types
- pattern guards, views \sim use with-matching
- 32-bit arithmetic ∼ first add to Agda itself
- Infinite data ∼ coinductive types
- Non-termination, general recursion \sim partiality/general monad

Still many unsupported Haskell features:

- GADTs ∼ identify subset of dependent types
- pattern guards, views \sim use with-matching
- 32-bit arithmetic ~ first add to Agda itself
- Infinite data ∼ coinductive types
- Non-termination, general recursion ~ partiality/general monad

Extra goodies:

- Generate runtime checks for decidable properties
- QuickCheck postulated properties
- HS2AGDA: inverse translation ⇒ streamline porting of existing libraries

Still many unsupported Haskell features:

- GADTs ∼ identify subset of dependent types
- pattern guards, views ∼ use with-matching
- 32-bit arithmetic ~ first add to Agda itself
- Infinite data ∼ coinductive types
- Non-termination, general recursion ~ partiality/general monad

Extra goodies:

- Generate runtime checks for decidable properties
- QuickCheck postulated properties
- HS2AGDA: inverse translation \Rightarrow streamline porting of **existing** libraries

More **applications** + **comparisons** with LiquidHaskell, hs-to-coq, etc..

AGDA2HS was developed during the last two Agda Implementors' Meetings

• biannual event where Agda users of all levels hack on Agda, its ecosystem, etc..

AIM XXXI in Edinburgh November 10-16, will include:

- talks
- coding sprints
- EuroProofNet day dedicated to the topic of large formal libraries
- a hike along the Scottish seaside

AGDA2HS was developed during the last two Agda Implementors' Meetings

• biannual event where Agda users of all levels hack on Agda, its ecosystem, etc..

AIM XXXI in Edinburgh November 10-16, will include:

- talks
- coding sprints
- EuroProofNet day dedicated to the topic of large formal libraries
- a hike along the Scottish seaside

Questions?