Polynomials and Hankel Matrices

Miroslav Fiedler Czechoslovak Academy of Sciences Institute of Mathematics Žitná 25 115 67 Praha 1, Czechoslovakia

Submitted by V. Pták

ABSTRACT

Compatibility of a Hankel $n \times n$ matrix H and a polynomial f of degree $m, m \le n$, is defined. If m = n, compatibility means that $HC_f^T = C_fH$ where C_f is the companion matrix of f. With a suitable generalization of C_f , this theorem is generalized to the case that m < n.

INTRODUCTION

By a Hankel matrix [5] we shall mean a square complex matrix which has, if of order n, the form (α_{i+k}) , i, k = 0, ..., n-1.

If $H = (\alpha_{i+k})$ is a singular $n \times n$ Hankel matrix, the H-polynomial $\varphi_H(x)$ of H was defined [3] as the greatest common divisor of the determinants of all $(r+1)\times(r+1)$ submatrices of the matrix

$$H_{x} = \begin{pmatrix} \alpha_{0} & \alpha_{1} & \cdots & \alpha_{n-1} & 1\\ \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & x\\ \vdots & \vdots & \ddots & \vdots\\ \alpha_{n-1} & \alpha_{n} & \cdots & \alpha_{2n-2} & x^{n-1} \end{pmatrix}, \tag{1}$$

where r is the rank of H. In other words, φ_H is that polynomial for which the $n \times (n+1)$ matrix

$$\begin{pmatrix}
I_r & 0 & 0 \\
0 & \varphi_H(x) & 0 \\
0 & 0 & 0
\end{pmatrix}$$

LINEAR ALGEBRA AND ITS APPLICATIONS 66:235-248(1985)

235

is the Smith normal form [6] of H_x . It has also been shown [3] that φ_H is a (nonzero) polynomial of degree at most r.

It is known [4] that to a nonsingular $n \times n$ Hankel matrix $H = (\alpha_{i+k})$ a linear pencil of polynomials of degree at most n can be assigned as follows:

$$f(x) \equiv f_0 + f_1 x + \dots + f_n x^n \tag{2}$$

belongs to this pencil iff either n = 1, or n > 1 and

$$\begin{pmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_n \\ \alpha_1 & \alpha_2 & \cdots & \alpha_{n+1} \\ \vdots \\ \alpha_{n-2} & \alpha_{n-1} & \cdots & \alpha_{2n-2} \end{pmatrix} \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{pmatrix} = 0.$$
 (3)

Here we shall say, even for the case that $H = (\alpha_{i+k})$ is a singular $n \times n$ Hankel matrix, that H is compatible with the polynomial (2) if (3) is satisfied.

We shall investigate the compatibility of polynomials and (Hankel) matrices; in particular, we shall show that, given a nonzero polynomial f of degree at most n, H is a Hankel matrix compatible with f iff a relation of the form

$$H\Gamma_f^T = \Gamma_f H$$

is satisfied, where Γ_f is an $n \times n$ matrix depending on f only.

1. NOTATION AND PRELIMINARIES

For a monic polynomial of degree $m \ge 1$

$$f(x) \equiv x^m - u_{m-1}x^{m-1} - \dots - u_1x - u_0, \tag{4}$$

we denote by C_f the companion matrix of f:

$$C_f = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ u_0 & u_1 & u_2 & \cdots & u_{m-2} & u_{m-1} \end{pmatrix}.$$

Let us recall that for such f, the infinite companion matrix C_f^{∞} was defined [8] as the infinite matrix with m columns whose first m rows form the identity matrix whereas each further row is a linear combination of the preceding m rows with coefficients $u_0, u_1, \ldots, u_{m-1}$. For $n \ge m$, the finite section of C_f^{∞} with the first n rows will be called $C_f^{(n)}$.

We shall also need the concept of the Vandermonde matrix associated to a polynomial (with ordered roots). Let f of (4) satisfy

$$f(x) \equiv \prod_{i=1}^{s} (x - t_i)^{m_i}, \qquad t_i \text{ distinct}, \ m_i \geqslant 1, \quad i = 1, \dots, s.$$
 (5)

For any $p \ge m = \sum_{i=1}^{s} m_i$, we denote by $V_f^{(p)}$ the $p \times m$ matrix

$$V_f^{(p)} = (S_{m_1}^{(p)}(t_1), S_{m_2}^{(p)}(t_2), \dots, S_{m_s}^{(p)}(t_s)),$$

where

$$S_m^{(p)}(t) = (q_{ij}), \qquad i = 0, \dots, p-1, \quad j = 0, \dots, m-1,$$
 (6)

$$q_{ij} = {i \choose j} t^{i-j}. (7)$$

The square matrix $V_f^{(m)}$ will be denoted by V_f . It is well known that V_f is nonsingular. If we denote by V_f^{∞} the infinite Vandermonde matrix (it has m columns, and its kth row is the last row of $V_f^{(k)}$, k = 1, 2, ...), then the following two lemmata are clear:

Lemma (1,1). For $k \ge m+1$, the kth row of V_f^{∞} is a linear combination of the preceding m rows with coefficients $u_0, u_1, \ldots, u_{m-1}$.

Lemma (1,2). We have

$$V_f^{\infty} = C_f^{\infty} V_f$$
 and $V_f^{(k)} = C_f^{(k)} V_f$, $k = 1, 2, ...$

Let us denote by $J_k(t)$ the Jordan $k \times k$ block with t along the diagonal and ones in the superdiagonal. For f(x) from (4) with ordered roots t_1, \ldots, t_s as in (5), let J_f be the block diagonal matrix

$$J_f = \operatorname{diag}(J_m(t_1), \dots, J_m(t_s)).$$

The following is well known:

Lemma (1,3). J_f is the Jordan normal form of C_f :

$$C_f V_f = V_f J_f$$
.

In the following lemma, a (rectangular) $p \times q$ Hankel matrix means a matrix

$$(\alpha_{i+j}), \quad i=0,\ldots, p-1, \quad j=0,\ldots, q-1.$$

LEMMA (1,4). Let $B = (\beta_{i+j})$, i = 0, ..., p-1, j = 0, ..., q-1 be a $p \times q$ Hankel matrix; let r, s be positive integers, t a complex number. Then,

$$H = S_p^{(r)}(t)B(S_q^{(s)}(t))^T$$

is an $r \times s$ Hankel matrix:

$$H = (\gamma_{i+j}), \quad i = 0, ..., r-1, \quad j = 0, ..., s-1,$$

where

$$\gamma_m = \sum_{k=0}^{r+s} {m \choose k} \beta_k t^{m-k}, \qquad m = 0, \dots, r+s-2.$$
 (8)

Proof. Compute the entry h_{ij} of H:

$$\begin{split} h_{ij} &= \sum_{u=0}^{i} \sum_{v=0}^{j} \binom{i}{u} t^{i-u} \beta_{u+v} \binom{j}{v} t^{j-v} \\ &= \sum_{k=0}^{i+j} \beta_k t^{i+j-k} \sum_{\substack{u,v \\ u\geqslant 0, v\geqslant 0, \\ u+v=k}} \binom{i}{u} \binom{j}{v} \\ &= \sum_{k=0}^{i+j} \binom{i+j}{k} \beta_k t^{i+j-k}, \end{split}$$

which implies (8).

In the next lemma, we say that a Hankel matrix $B = (\beta_{i+j})$, i, j = 0, ..., k - 1 is upper triangular if $\beta_k = \beta_{k+1} = \cdots = \beta_{2k-2} = 0$. Similarly, B is a lower triangular Hankel matrix if in the same notation, $\beta_0 = \beta_1 = \cdots = \beta_{k-2} = 0$.

Lemma (1,5). A $k \times k$ matrix B is upper triangular Hankel iff for the Jordan block $J_k(0)$ (the shift matrix),

$$BJ_k^T(0) = J_k(0)B.$$

Also, B is lower triangular Hankel iff

$$BJ_k(0) = J_k^T(0)B.$$

REMARK (1,6). Observe that (3) can also be written in the form

$$F_f^{(n-1)}[\alpha] = 0, \tag{9}$$

where for $k = 1, 2, \dots$

$$F_f^{(k)} = \begin{pmatrix} f_0 & f_1 & \cdots & f_n & 0 & \cdots & 0 & 0 \\ 0 & f_0 & \cdots & f_{n-1} & f_n & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & f_{n-1} & f_n \end{pmatrix}$$
(10)

has k rows (and n + k columns) and

$$[\alpha] = (\alpha_0, \alpha_1, \dots, \alpha_{2n-2})^T. \tag{11}$$

We shall also need a well-known result [6]:

LEMMA (1,7). If A is an $m \times m$ matrix, B an $n \times n$ matrix such that A and B have no eigenvalue in common, then the only $m \times n$ matrix X satisfying

$$AX - XB = 0$$

is the zero matrix.

2. RESULTS

The following theorem is partly known [1,2].

THEOREM (2,1).

$$f(x) \equiv \prod_{i=1}^{s} (x - t_i)^{n_i},$$

 t_i distinct, $n_i \ge 1$, be a polynomial of degree n; let H be an $n \times n$ matrix. Then the following are equivalent:

- (i) H is a Hankel matrix compatible with f;
- (ii) $HC_f^T = C_f H$; (iii) $V_f^{-1} H(V_f^{-1})^T$ is a block diagonal matrix with blocks of dimensions n_1, \ldots, n_s which are upper triangular Hankel matrices.

Proof. Let
$$f(x) \equiv f_0 + f_1 x + \cdots + f_n x^n$$
, $f_n = 1$.
(i) \rightarrow (ii): If $H = (\alpha_{i+k})$ satisfies (3), then

$$HC_f^T = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} & -(\alpha_0 f_0 + \cdots + \alpha_{n-1} f_{n-1}) \\ \alpha_2 & \alpha_3 & \cdots & \alpha_n & -(\alpha_1 f_0 + \cdots + \alpha_n f_{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_n & \alpha_{n+1} & \cdots & \alpha_{2n-2} & -(\alpha_{n-1} f_0 + \cdots + \alpha_{2n-2} f_{n-1}) \end{pmatrix}.$$

By (3), HC_f^T is symmetric, so that

$$HC_{\epsilon}^{T} = (HC_{\epsilon}^{T})^{T} = C_{\epsilon}H.$$

(ii) \rightarrow (iii): By Lemma (1,3) $C_f V_f = V_f J_f$. Therefore,

$$\begin{split} J_f V_f^{-1} H \Big(V_f^{-1} \Big)^T &= V_f^{-1} C_f H \Big(V_f^{-1} \Big)^T \\ &= V_f^{-1} H C_f^T \Big(V_f^{-1} \Big)^T \\ &= V_f^{-1} H \Big(V_f^{-1} \Big)^T J_f^T. \end{split}$$

Since J_f is block diagonal and the eigenvalues of any two blocks are mutually distinct, $V_f^{-1}H(V_f^{-1})^T=D$ is, by Lemma (1,7), also block diagonal

with blocks of dimensions n_1, \ldots, n_s . Since the *i*th block D_i of D satisfies $J_{n_i}(t_i)D_i = D_i(J_{n_i}(t_i))^T$, D_i is, by Lemma (1,5), upper triangular Hankel. (iii) \rightarrow (i): Assuming (iii),

$$H = V_f D V_f^T, (12)$$

where $D = \text{diag }(D_i)$, D_i upper triangular Hankel. By Lemma (1,4), H is a sum of Hankel matrices and hence a Hankel matrix. It follows from (12) and Lemma (1,4) that the left-hand side of (3) can be written as

$$(S_{n_1}^{(n-1)}(t_1), \dots, S_{n_s}^{(n-1)}(t_s)) D(S_{n_1}^{(n+1)}(t_1), \dots, S_{n_s}^{(n+1)}(t_s))^T [f]$$

$$= V_f^{(n-1)} D(V_f^{(n+1)})^T [f],$$

where $[f] = (f_0, f_1, ..., f_n)^T$. Since $(V_f^{(n+1)})^T [f] = 0$, (3) is satisfied and H is compatible with f.

In the next theorem, the general case will be considered.

Theorem (2,2). Let m, n be integers, $n \ge m \ge 1$. Let f(x) be a monic polynomial of degree m,

$$f(x) = \prod_{i=1}^{s} (x - t_i)^{m_i}.$$

For t complex, denote by $\Gamma_f(t)$ the $n \times n$ matrix

$$\Gamma_f(t) = \begin{pmatrix} C_f & 0 \\ ZC_f - J_{n-m}^T(t)Z & J_{n-m}^T(t) \end{pmatrix},$$

where Z is the $(n-m)\times m$ matrix for which

$$\binom{I}{Z} = C_f^{(n)}.$$

If H is an $n \times n$ matrix, then the following are equivalent:

(i) H is a Hankel matrix compatible with f (as a polynomial of degree at most n);

- (ii) for any t for which $f(t) \neq 0$, $H\Gamma_f^T(t) = \Gamma_f(t)H$;
- (iii) there exists a number t for which $f(t) \neq 0$ such that

$$H\Gamma_f^T(t) = \Gamma_f(t)H;$$

(iv) if

$$\tilde{V}_f = \left(V_f^{(n)}, P\right)$$

where

$$P = \begin{pmatrix} 0 \\ I_{n-m} \end{pmatrix},$$

then $\tilde{V}_f^{-1}H(\tilde{V}_f^{-1})^T$ is block diagonal, D= diag (D_1,\ldots,D_s,D_0) , where D_i of order m_i is upper triangular Hankel, $i=1,\ldots,s$, and D_0 of order n-m is lower triangular Hankel;

(v) H is a Hankel matrix which is either nonsingular with f belonging to the linear pencil of polynomials (3), or singular with f completely divisible by the H-polynomial φ_H of H (this means: the multiplicity of each root of φ_H , including that of infinity if φ_H is considered as a polynomial of degree r, the rank of H, is less than or equal to the multiplicity of this as root of f, including infinity if f is considered as a polynomial of degree n).

Proof. (i) \rightarrow (ii): If m = n, the assertion holds by Theorem (2, 1). Thus let m < n. Observe that $\Gamma_f(t)$ can be written as

$$\Gamma_f(t) = \begin{pmatrix} I_m & 0 \\ Z & I_{n-m} \end{pmatrix} \begin{pmatrix} C_f & 0 \\ 0 & J_{n-m}^T(t) \end{pmatrix} \begin{pmatrix} I_m & 0 \\ -Z & I_{n-m} \end{pmatrix}. \tag{13}$$

Let H_0 be the $m \times m$ upper-left-corner submatrix of H. Since $f_{m+1} = \cdots = f_n = 0$ in (3), it follows that H_0 is a Hankel matrix compatible with f (as a polynomial of degree at most m). By Theorem (2,1), $V_f^{-1}H_0(V_f^{-1})^T = D$ is a block diagonal matrix whose diagonal blocks have orders m_1, \ldots, m_s and are upper triangular Hankel matrices. Therefore, the $n \times n$ matrix H_1 defined as

$$H_1 = C_f^{(n)} H_0 \left(C_f^{(n)} \right)^T \tag{14}$$

can be written as $C_f^{(n)}V_fDV_f^T(C_f^{(n)})^T$, which is, by Lemma (1,2), equal to $V_f^{(n)}D(V_f^{(n)})^T$. Thus it is, by Lemma (1,4), a Hankel matrix.

If we form an analogous product using H_1 as on the left-hand side of (3), we see easily that it equals $V_f^{(n-1)}D(V_f^{(n+1)})^T[f]$, which is zero. Thus H_1 is compatible with f.

The parameters α_k of H coincide with those of H_1 for $k=0,\ldots,2m-2$. However, both matrices H,H_1 are compatible with f. Therefore, (9) implies that if $\beta_0,\beta_1,\ldots,\beta_{2n-2}$ are the parameters of $H-H_1$, then

$$\begin{pmatrix}
f_0 & f_1 & \cdots & f_{m-1} & f_m & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & f_0 & \cdots & f_{m-2} & f_{m-1} & f_m & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots \\
\beta_{2n-2}
\end{pmatrix} = 0,$$

where the matrix on the left-hand side has n-m zeros as the last entries in the last row. Thus, $\beta_0, \ldots, \beta_{2m-2}$ being zero, we have $\beta_{2m-1} = \cdots = \beta_{m+n-2} = 0$ as well. Consequently, $H_2 = H - H_1$ is a Hankel matrix of the form

$$\begin{pmatrix} 0 & 0 \\ 0 & \tilde{H}_2 \end{pmatrix}, \tag{15}$$

where \tilde{H}_2 is a lower triangular Hankel matrix of order n-m. Now, (13) and (14) imply

$$\begin{split} H_1\Gamma^T(t) &= \begin{pmatrix} I_m \\ Z \end{pmatrix} H_0(I_m, Z^T) \begin{pmatrix} I_m & -Z^T \\ 0 & I_{n-m} \end{pmatrix} \\ &\times \begin{pmatrix} C_f^T & 0 \\ 0 & J_{n-m}(t) \end{pmatrix} \begin{pmatrix} I_m & Z^T \\ 0 & I_{n-m} \end{pmatrix} \\ &= \begin{pmatrix} I_m \\ Z \end{pmatrix} H_0 C_f^T(I_m, Z^T) \\ &= \begin{pmatrix} I_m \\ Z \end{pmatrix} C_f H_0(I_m, Z^T), \end{split}$$

by (ii) of Theorem (2,1). Thus $H_1\Gamma_f^T(t)$ is symmetric, which implies

$$H_1\Gamma_f^T(t) = \Gamma_f(t)H_1. \tag{16}$$

Also, (15) implies

$$H_2\Gamma_f^T(t) = \begin{pmatrix} 0 & 0 \\ 0 & \tilde{H}_2J_{n-m}(t) \end{pmatrix}.$$

Since $\tilde{H}_2 J_{n-m}(t)$ is symmetric by Lemma (1,5) applied to the lower triangular \tilde{H}_2 , $H_2 \Gamma_f^T(t)$ is also symmetric, so that by (16), (ii) follows.

(ii) → (iii): Obvious.

(iii) \rightarrow (iv): As in the proof of (ii) \rightarrow (iii) of Theorem (2, 1), we get that the matrices

$$egin{pmatrix} J_f & 0 \ 0 & J_{n-m}^T(t) \end{pmatrix} \quad ext{and} \quad ilde{V}_f^{-1} Hig(ilde{V}_f^{-1}ig)^T$$

commute. Thus D is block diagonal of the form asserted.

(iv) \rightarrow (v): By (iv), H is of the form

$$\sum_{i=1}^{s} S_{m_i}^{(n)}(t_i) D_i \left(S_{m_i}^{(n)}(t_i) \right)^T + \tilde{D}_0,$$

where

$$\tilde{D}_0 = \begin{pmatrix} 0 & 0 \\ 0 & D_0 \end{pmatrix}.$$

By Lemma (1,4), H is Hankel. If all D_i , i = 0, ..., s, are nonsingular, then H is nonsingular and the matrix \hat{H} on the left-hand side of (3) can again be written as

$$\sum_{i=1}^{s} S_{m_i}^{(n-1)}(t_i) D_i \left(S_{m_i}^{(n+1)}(t_i) \right)^T + \hat{D}_0, \tag{17}$$

where

$$\hat{D}_0 = \begin{pmatrix} 0 & 0 \\ 0 & D_0 \end{pmatrix}$$

is $(n-1)\times(n+1)$. In the case that the sum in (17) is missing and $H=D_0$, \hat{H} has first column zero. Since $f(x)\equiv f_0$, (3) is satisfied. Otherwise,

$$\hat{H} = \left(S_{m_1}^{(n-1)}(t_1), \dots, S_{m_s}^{(n-1)}(t_s), P_1\right) D\tilde{V}_f,$$

where

$$P_1 = \begin{pmatrix} 0 \\ I \end{pmatrix}$$

is $(n-1)\times(n-m)$ and

$$\tilde{V}_{f} = \begin{pmatrix} \left(S_{m_{1}}^{(n+1)}(t_{1})\right)^{T} \\ \vdots \\ \left(S_{m_{s}}^{(n+1)}(t_{s})\right)^{T} \\ P_{2}^{T} \end{pmatrix}$$

with $P_2^T = (0, I)$ of dimension $(n - m) \times (n + 1)$. Since $\tilde{V}_f[f] = 0$ for $[f] = (f_0, f_1, \dots, f_n)^T$ in the notation (2), Equation (3) is satisfied.

Now let H be singular. To prove the assertion in this case, it suffices to show that the H-polynomial of H has the form

$$h(x) \equiv \prod_{i=1}^{s} (x - t_i)^{p_i}$$

and the rank r of H is $\sum_{i=1}^{s} p_i + p_0$, where p_i is the rank of D_i , i = 0, ..., s. This is clearly equivalent to the following: For any $n \times (n-r-1)$ matrix P and any $(n-r) \times n$ matrix Q [and $X = (1, x, ..., x^{n-1})^T$],

$$\det\begin{pmatrix} 0 & Q & 0 \\ P & H & X \end{pmatrix} \tag{18}$$

is divisible by h(x) and (if nonzero) its degree does not exceed $n - p_0$. To prove this, let us write, for i = 1, ..., s,

$$D_i = \begin{pmatrix} \hat{D}_i & 0 \\ 0 & 0 \end{pmatrix},$$

where \hat{D}_i is $p_i \times p_i$, and

$$D_0 = \begin{pmatrix} 0 & 0 \\ 0 & \hat{D}_0 \end{pmatrix},$$

where \hat{D}_0 is $p_0 \times p_0$. Then,

$$\begin{split} H &= \sum_{i=1}^{s} S_{p_{i}}^{(n)}(t_{i}) \hat{D}_{i} \Big(S_{p_{i}}^{(n)}(t_{i}) \Big)^{T} + \tilde{D}_{0}, \\ \tilde{D}_{0} &= \begin{pmatrix} 0 & 0 \\ 0 & \hat{D}_{0} \end{pmatrix}. \end{split}$$

Defining $\hat{V} = (S_{p_1}^{(n)}(t_1), \dots, S_{p_s}^{(n)}(t_s), \hat{P})$ where

$$\hat{P} = \begin{pmatrix} 0 \\ I_{p_0} \end{pmatrix},$$

then

$$H = \hat{\mathbf{V}}\hat{D}\hat{\mathbf{V}}^T \qquad \text{for} \quad \hat{D} = \text{diag}(\hat{D}_1, \dots, \hat{D}_s, \hat{D}_0).$$

Therefore, (18) can be written as

$$\det\begin{pmatrix} 0 & Q & 0 \\ P & H & X \end{pmatrix} = \det\begin{pmatrix} 0 & Q & 0 \\ P & VDV^T & X \end{pmatrix}$$

$$= \det\begin{pmatrix} \begin{pmatrix} 0 & 0 & 0 & I \\ P & \hat{V} & X & 0 \end{pmatrix} \begin{pmatrix} I & 0 & 0 \\ 0 & D\hat{V}^T & 0 \\ 0 & 0 & I \\ 0 & Q & 0 \end{pmatrix}$$

$$= \pm \det(P, \hat{V}, X) \det\begin{pmatrix} D\hat{V}^T \\ Q \end{pmatrix}.$$

Since the first factor is divisible by h(x) and has degree at most $n - p_0$, the same is true of (18).

 $(v) \rightarrow (i)$: This being trivial for H nonsingular, let $H = (\alpha_{i+k})$ be singular. Then the H-polynomial $\varphi_H(x)$ of H exists, and its degree does not exceed r.

We can thus write

$$\varphi_H(x) = g_0 + g_1 x + \cdots + g_r x^r.$$

Now, the proof of the following assertion is left to the reader: For

$$G = \begin{pmatrix} g_0 & g_1 & \cdots & g_r & 0 & \cdots & 0 & 0 \\ 0 & g_0 & \cdots & g_{r-1} & g_r & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & g_{r-1} & g_r \end{pmatrix}$$
(19)

of dimensions $(n-r)\times r$,

$$GH=0$$
,

which can also be written as

$$\hat{G}[\alpha] = 0, \tag{20}$$

where \hat{G} has a similar form to (19) but is $(2n-r-1)\times(2n-1)$, and $[\alpha]$ is as in (11).

Let f(x) as in (2) be any multiple of $\varphi_H(x)$ by a nonzero polynomial k(x) of degree not exceeding n-r:

$$k(x) \equiv k_0 + k_1 x + \dots + k_{n-r} x^{n-r},$$

$$f(x) = \varphi_{ij}(x) k(x).$$

Defining the $(n-1)\times(2n-r-1)$ matrix

$$K = \begin{pmatrix} k_0 & k_1 & \cdots & k_{n-r} & 0 & \cdots & 0 & 0 \\ 0 & k_0 & \cdots & k_{n-r-1} & k_{n-r} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & \cdots & k_{n-r-1} & k_{n-r} \end{pmatrix},$$

we obtain easily for $F_f^{(n-1)}$ from (10) that

$$F_{\ell}^{(n-1)} = K\hat{G}.$$

By (20), $F_f^{(n-1)}[\alpha] = 0$ and, using Remark (1,6), (3) is satisfied.

REFERENCES

- 1 S. Barnett and M. J. C. Gover, Some extensions of Hankel and Toeplitz matrices, Linear and Multilinear Algebra 14:45-65 (1983).
- 2 B. N. Datta, Application of Hankel matrices of Markov parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn problems, J. Math. Anal. Appl. 68:276-290 (1979)
- 3 M. Fiedler, Quasidirect decompositions of Hankel and Toeplitz matrices, Linear Algebra Appl., to appear.
- 4 M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl. 58:75 (1984).
- 5 F. R. Gantmacher, Matrix Theory, Chelsea, New York, 1959.
- 6 M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn & Bacon, Boston, 1964.
- 7 V. Pták, Spectral radius, norms of iterates and the critical exponent, *Linear Algebra Appl.* 1:245-260 (1968).
- 8 V. Pták, An infinite companion matrix, Comment. Math. Univ. Carolin. 19:447-458 (1978).
- 9 V. Pták, Biorthogonal systems and the infinite companion matrix, *Linear Algebra Appl.* 49:57-78 (1983).

Received 13 February 1984; revised 30 April 1984