Intervals, Sets of Sets, and Power Set

Intervals

Intervals

An interval in $\mathbb R$ is a subset of $\mathbb R$ that contains all the points between any two of its points.

Definition 1 (Interval)

To say that I is an interval of $\mathbb R$ means that $\underline{I \subseteq \mathbb R}$ and $\underline{\text{for each } u, v \in I}$, $\underline{\text{for each } x \in \mathbb R}$, if u < x < v, then $x \in I$.

The set $\{1, 2, 3\}$ is not an interval in \mathbb{R} because

Bounded Intervals

Bounded Intervals

Let $a, b \in \mathbb{R}$ such that $a \leq b$. Then the following sets are intervals in \mathbb{R} .

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$$
 (closed)
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 (open)
$$[a,b) = \{x \in \mathbb{R} : a \leqslant x < b\}$$
 (left-closed or right-open)
$$(a,b] = \{x \in \mathbb{R} : a < x \leqslant b\}$$
 (left-open or right-closed)

These are called *bounded intervals*. If a = b, these bounded intervals yield

$$[a, b] = \{a\}$$

 $(a, b) = [a, b) = (a, b] = \emptyset$

These are called degenerate intervals.

Unbounded Intervals

Unbounded Intervals

Let $c \in \mathbb{R}$. Then the following sets are intervals in \mathbb{R} .

$$\begin{array}{ll} (c,\infty) = \{x \in \mathbb{R} : c \leqslant x\} & \text{(closed half-line)} \\ (c,\infty) = \{x \in \mathbb{R} : c < x\} & \text{(open half-line)} \\ (-\infty,c] = \{x \in \mathbb{R} : x \leqslant c\} & \text{(closed half-line)} \\ (-\infty,c) = \{x \in \mathbb{R} : x \leqslant c\} & \text{(open half-line)} \\ \end{array}$$

The whole real line

$$(-\infty,\infty)=\mathbb{R}$$

is also an interval in \mathbb{R} . Half-lines and the whole real line are unbounded intervals.

Examples

Question. Determine whether each of the following is an interval.

2
$$[-1,1] \cap (0,2) = (0,1]$$

3
$$[1,2] \cup [3,4]$$
 not an interval

6
$$(3,5) \setminus [4,7]$$

6
$$(4,8] \setminus [5,6)$$

Unions and Intersections of Sets of Sets

Unions of Sets of Sets

Let A be a set of sets. Then the union of A (denoted A) is the set of all things that belong to at least one of the sets in A; in other words,

$$\bigcup \mathcal{A} = \{x : x \in A \text{ for some } A \in \mathcal{A}\}.$$

tun fox = 3 FOR DIE

Example. Let A, B, and C be sets. Then

•
$$\bigcup \{A\} = A$$

•
$$\bigcup \{A, B\} = A \cup B$$

$$\bullet \ \, \bigcup \{A,B,C\} = A \cup B \cup C$$

Example. Let $\mathcal{A} = \{ [1/n, 5] : n \in \mathbb{N} \}.$ Then

$$\bigcup \mathcal{A} = (0, 5].$$

$$\bigcup \mathcal{A} = (0,5].$$

$$\emptyset = \left\{ \begin{bmatrix} 1/3,5 \end{bmatrix}, \begin{bmatrix} 1/2,5 \end{bmatrix}, \\ \begin{bmatrix} 1/3,5 \end{bmatrix}, \\ \end{bmatrix}$$

Intersections of Sets of Sets

Definition 3

Let \mathcal{A} be a <u>nonempty</u> set of sets. Then the <u>intersection of \mathcal{A} </u> (denoted $\bigcap \mathcal{A}$) is the set of all things that belong to all of the sets in \mathcal{A} ; in other words,

$$\bigcap \mathcal{A} = \{x : x \in A \text{ for each } A \in \mathcal{A}\}.$$

Example. Let A, B, and C be sets. Then

- $\bigcap \{A, B\} = A \cap B$
- $\bigcap \{A, B, C\} = A \cap B \cap C$

Example. Let $\mathcal{A} = \{[1/n, 5] : n \in \mathbb{N}\}.$ Then $\mathcal{A} = [1, 5].$

Example 4

For each of the following, find $\bigcup \mathcal{A}$ and $\bigcap \mathcal{A}$. State clearly if either/both of the two is/are undefined.

- $2 \mathcal{A} = \emptyset.$
- **3** $\mathcal{A} = \{1, \{2\}\}.$

- At is undefined.

 3 Ut and At are both undefined because A is not a set of sets.

Q. What if
$$A = \{ \phi \}$$
?

Set Inclusion

Proposition 1

Let A be a nonempty set of sets and let $A_0 \in A$. Then

() LA C A

$$\bigcap \mathcal{A} \subseteq A_0 \subseteq \bigcup \mathcal{A}.$$

Proof Consider any $n \in \mathbb{N}$. Then for each $A \in \mathbb{A}$, $n \in \mathbb{A}$.

In particular, $n \in \mathbb{A}$ because $A \in \mathbb{A}$. This shows that

Consider any 1 ∈ Ao. Since Ao Ed, 1 ∈ A for some A Ed is true. That is, 1 ∈ Ud. This shows that Ao ⊆ Ud.

Not an Element

Proposition 2

Let A be a nonempty set of sets and let x be any object. Then:

- **1** $x \notin \bigcup A$ iff for each $A \in A$, $x \notin A$.
 - 2 $x \notin \bigcap A$ iff there exists $A \in A$ such that $x \notin A$.

Proof We have
$$x \notin UA$$

iff $\neg (x \in UA)$

iff $\neg (x \in UA)$

iff $(\forall A \in A) \neg (x \in A)$ (by GDM)

iff $(\forall A \in A) (x \notin A)$

De Morgan's Laws Again

Theorem 5 (Generalized De Morgan's Laws for Sets of Sets)

Let S be a set and let \mathcal{A} be a nonempty set of sets. Then:

Proof Let
$$1 \text{ be any object. Then we have}$$
 $1 \in S \setminus UA$

iff $1 \in S$ and $1 \notin A$

iff $1 \in S$

iff $1 \in$

Distributive Laws Again

Theorem 6 (Generalized Distributive Laws for Sets of Sets)

Let S be a set and let \mathcal{A} be a nonempty set of sets. Then:

$$2 S \cup \bigcap \mathcal{A} = \bigcap \{S \cup A : A \in \mathcal{A}\}.$$

Power Set of a Set

Power Set of a Set

Definition 7

Let A be a set. The *power set of* A (denoted $\mathcal{P}(A)$) is the set of all subsets of A; in other words, $\mathcal{P}(A) = \{S : S \subseteq A\}$.

Example.

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Note.

• If A is a finite set with n elements, then $\mathcal{P}(A)$ has 2^n elements.

Above:
$$m=2$$
, $2^{n}=2^{2}=4$.

Example: (Recursive) Power Sets of the Empty Set

Let $V_0 = \emptyset$ and for each $n \in \omega$, let $V_{n+1} = \mathcal{P}(V_n)$. That is,

$$\begin{split} V_0 &= \varnothing \\ V_1 &= \mathcal{P}(\varnothing) = \{\varnothing\} \\ V_2 &= \mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\} \\ V_3 &= \mathcal{P}(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\} \} \\ &\vdots \end{split}$$

Counting the number of elements:

Set	# of Elem.	Set	# of Elem.
V_0	0	V_4	$2^4 = 16$
V_1	$2^0 = 1$	V_5	$2^{16} = 65536$
V_2	$2^1 = 2$	V_6	$2^{65536} \approx 2 \times 2^{19,728}$
V_3	$2^2 = 4$		10