03/

the first radius TR_1 of the area encompassing the zenith of the tire, wherein each edge of the tread strip defined by the tread width TW is located in an area with a fourth radius, a shoulder radius provided in a transition area to said sidewalls of the tire, in that the size of the radius TRA is determined according to the equation $0.05 \ TR_1 \le TRA \le 0.65 \ TR_1$, in that the radius TR_2 is either smaller or greater than the radius TRA, where, for the case $TR_2 \le TRA$, the size of the radius TR_2 is determined according to the equation $0.6 \ TR_1 \le TR_2 \le 0.95 \ TR_1$ and for the case $TR_2 > TRA$, the size of the radius TR_2 is determined according to the equation $0.1 \ TR_1 \le TR_2 \le 0.95 \ TR_1$.

A'Ad

- 9. (New) The pneumatic vehicle tire according to Claim 8, wherein the radius TR_1 is determined according to the equation $3 \text{ TW} \leq TR_1 \leq 25 \text{ TW}$.
- 10. (New) The pneumatic vehicle tire according to Claim 9 wherein the radius TR is determined according to the equation $3 \text{ TW} \leq \text{TR}_1 \leq 6 \text{ TW}$.
- 11. (new) The pneumatic vehicle tire according to Claim 8, wherein the area with the radius TR_1 and encompassing the zenith of the tire is determined by a separation TW_1 between two points that are symmetrical about the zenith of the tire, where the separation TW_1 is determined according to the equation $0.1 \, TW \le TW_1 \le 0.7 \, TW$.