On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetyan

On the Uniqueness of Solutions to the Burgers Equation in Sobolev Spaces

David Karapetyan

10/25/09

The Burgers Cauchy Problem

On the Uniqueness of Solutions to the Burgers Equation in Sobolev Spaces

David Karapetyai Let $u, \omega \in C(I, H^s(\mathbb{T})), \ s > 3/2$ be two solutions to the Cauchy-problem

$$\partial_t u = -u \partial_{\mathsf{x}} u \tag{0.1}$$

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}$$
 (0.2)

with common initial data. Let v=u-w; then v solves the Cauchy-problem

$$\partial_t v = -\frac{1}{2} \partial_x [v(u+w)], \qquad (0.3)$$

$$v(x,0) = 0. (0.4)$$

Applying D^{σ} to both sides of (0.3), then multiplying both sides by $D^{\sigma}v$ and integrating, we obtain

An Energy Estimate for the Difference of Solutions

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetya

$$\frac{1}{2}\frac{d}{dt}\|v\|_{H^{\sigma}(\mathbb{T})}^{2} = -\frac{1}{2}\int_{\mathbb{T}}D^{\sigma}\partial_{x}[v(u+w)]\cdot D^{\sigma}v \ dx. \tag{0.5}$$

Unfortunately, it will not be enough to simply use Cauchy-Schwartz, the Sobolev Imbedding Theorem, or the algebra property of Sobolev Spaces to estimate the right hand side of this equation. We require more heavy machinery.

Rough Estimates

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetyan

Proceeding, we rewrite

$$|i| = \left| -\frac{1}{2} \int_{\mathbb{T}} \left[D^{\sigma} \partial_{x}, \ u + w \right] v \cdot D^{\sigma} v \ dx - \frac{1}{2} \int_{\mathbb{T}} \left(u + w \right) D^{\sigma} \partial_{x} v \cdot D^{\sigma} v \ dx \right|$$

$$\leq \left| -\frac{1}{2} \int_{\mathbb{T}} \left[D^{\sigma} \partial_{x}, \ u + w \right] v \cdot D^{\sigma} v \ dx \right|$$

$$+ \left| \frac{1}{2} \int_{\mathbb{T}} \left(u + w \right) D^{\sigma} \partial_{x} v \cdot D^{\sigma} v \ dx \right|.$$

$$(0.6)$$

Rough Estimates

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetyai Observe that by integrating by parts and applying Cauchy-Schwartz we have

$$\left|\frac{1}{2}\int_{\mathbb{T}}(u+w)D^{\sigma}\partial_{x}v\cdot D^{\sigma}v\ dx\right|\lesssim \|\partial_{x}(u+w)\|_{L^{\infty}(\mathbb{T})}\|v\|_{H^{\sigma}(\mathbb{T})}^{2}.$$
(0.7)

Furtheremore,

$$\left| -\frac{1}{2} \int_{\mathbb{T}} [D^{\sigma} \partial_{x}, u + w] v \cdot D^{\sigma} v \, dx \right|$$

$$\lesssim \| [D^{\sigma} \partial_{x}, u + w] v \|_{L^{2}(\mathbb{T})} \| v \|_{H^{\sigma}(\mathbb{T})} \lesssim \| u + w \|_{H^{\rho}(\mathbb{T})} \| v \|_{H^{\sigma}(\mathbb{T})}^{2}$$

$$(0.8)$$

where the last step follows from the following commutator estimate:

Commutator Estimates (Sharp Estimates)

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetyai

Theorem

If
$$\rho > 3/2$$
 and $0 \le \sigma + 1 \le \rho$, then

$$||[D^{\sigma}\partial_{\mathsf{x}}, f]v||_{L^{2}} \le C||f||_{H^{\rho}}||v||_{H^{\sigma}}.$$
 (0.9)

A proof of a more general version of Theorem 1 can be found in a survey article by Michael Taylor on commutator estimates. We note that the proof relies heavily on the Kato-Ponce commutator estimate.

An ODE From a PDE

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetyai Recallling (0.5), combining our previous estimates and applying the Sobolev Imbedding Theorem, we obtain

$$\frac{1}{2} \frac{d}{dt} \|v\|_{H^{\sigma}(\mathbb{T})}^{2} \lesssim \|u + w\|_{H^{\rho}(\mathbb{T})} \|v\|_{H^{\sigma}(\mathbb{T})}^{2}. \tag{0.10}$$

Gronwall's Inequality

On the
Uniqueness of
Solutions to
the Burgers
Equation in
Sobolev
Spaces

David Karapetya By Gronwall's inequality, (0.10) gives

$$||v||_{H^{\sigma}(\mathbb{T})} \lesssim e^{\int_0^t ||u+w||_{H^{\rho}}} ||v_0||_{H^{\sigma}(\mathbb{T})}, \qquad |t| \leq T.$$
 (0.11)

Since $v_0 = 0$ and $||u + w||_{H^\rho} \le ||u + w||_{H^s(\mathbb{T})} < \infty$ for $|t| \le T$, we conclude from (0.11) that solutions to the HR i.v.p. with initial data in $H^s(\mathbb{T})$ are unique for s > 3/2.