3D RGB Image Compression For Interactive Applications

Chandrajit Bajaj, Insung Ihm and Sanghun Park

Presented by Brian Krisler

3D Image Compression

Goals for Real-time or Interactive-time Applications

- Multi-resolution representation
- Effective exploitation of data redundancy
- Selective block-wise compression
- Fast decoding for random access
- High compression rate and visual fidelity

Transform Coding Algorithm

Typical Stages

Transform

Three Dimensional Haar Wavelet

Averaging and differencing yields average and detail coefficients

8	12	8	24
10	16	-2	-8
13	-3	-2	-8

- Multi-resolution representation
- Tensor products of one dimensional wavelets
- Source reconstructed by inverse transform

Decomposition Tree

Transform of a 4x4x4 cell

Truncation

- Basic wavelet compression theory
 - Select coefficients with largest norm
 - Replace remaining with NULL
- Eliminates 93 99% of coefficients
- Determine relative measure of complexity
 - Partition image into 16x16x16 blocks
 - Perform Haar transform on each block
 - Ratio of non-zero coefficients to all coefficients
- Diminishes "blockiness" effect

Quantization

Vector Quantization of Wavelet Coefficients

- Decomposition uses floating point numbers
- Vector quantization used for high compression
 - Two codebooks:
 - Average codebook (0 255)
 - Detail codebook (-128 127)
 - Contiguous cell regions share codebooks
 - Improves space efficiency
 - Little degradation of reconstructed image quality

Encoding Process

Overview

- Two-stage significance map
 - Reduces encoding and decoding costs
- Stage Zero
 - Indicate detail nodes null/not null
- Stage One
 - For each non-null detail node
 - Store its seven detail coefficients

Encoding

Zerobit Encoding Process

Number of Non-Null Cells

Cell Information Array (CIA)

Cell Bit Flag Table (CBFT)

0110010100100100 0101000000011000 1010011100100000 0100001000000010

Zerobit and Significance Map Stream (ZSMS)

Detail Index Stream (DIS)

Encoding Steps

- 1. Create unit blocks
- 2. Count Non-null cells
- 3. Populate CBFT

For each '1' in CBFT

- 4. Create CIA object
- 5a. Add codebook entry
- 5b. Update ZSMS
- 5c. Update DIS

Decoding

Zerobit Decoding Process

Retrieve: detail coefficient d₅₅ of Cell # 8

Experimental Results

Visible Human Cryosection RGB

Compression Ratio and Visual Fidelity 10-15% Increase

		λ̄: Target Ratio of Nonzero Coef		o Coef's	
		2.0%	3.0%	4.0%	5.0%
Size (MB)		80.78	107.90	136.25	164.88
Com	Compression Ratio		60.69	48.07	39.72
PSNR (dB)	total	32.84	34.27	35.58	36.61
	cropped_abdomen	27.60	28.87	29.77	30.67

Voxel Reconstruction Time 2.5 - 5.7 times faster

	Uncompressed	$\bar{\lambda}$: Target Ratio of Nonzero Coef's				
	-		2.0%	3.0%	4.0%	5.0%
voxel_mode 1	1.87	NEW	2.03	2.30	2.47	2.62
(1M Voxels)		OLD	5.22	5.84	6.31	6.65
voxel_mode 2	1.54	NEW	1.07	1.25	1.39	1.50
(1M Voxels)		OLD	3.58	3.87	4.08	4.25
plane_mode	4.32	NEW	3.07	3.55	3.97	4.37
(1M Planes)		OLD	N/A	N/A	N/A	N/A
cell_mode	11.53	NEW	4.34	5.14	5.93	6.80
(1M Cells)		OLD	24.72	25.62	26.48	27.14

Experimental Results

Light Field Rendering

Compression Ratio and Visual Fidelity

		Vector	Zerobit Encoding (Target Ratio $\bar{\lambda}$)			
	-	Quantization	2.0%	3.0%	4.0%	5.0%
buddha	Size (MB)	8.81	2.11	2.90	3.63	4.31
	Comp. Ratio	21.79	91.11	66.26	52.89	44.51
	PSNR (dB)	38.00	39.26	41.70	43.63	45.18
dragon	Size (MB)	9.52	2.31	3.15	4.09	5.02
	Comp. Ratio	20.18	83.03	60.87	46.99	38.21
	PSNR (dB)	35.58	31.00	32.17	33.37	34.40

Rendering Time (Frames per Second)

		Vector		Zerobit Encoding (Target Ratio $\bar{\lambda}$)		
		Quantization	2.0%	3.0%	4.0%	5.0%
buddha	st-lerp	9.46	13.60	13.60	13.60	13.60
	uvst-lerp	2.68	2.99	2.98	2.98	2.98
dragon	st-lerp	17.55	24.60	24.44	24.20	23.97
	uvst-lerp	5.66	5.74	5.71	5.66	5.62

Experimental Results

3D Textures and Objects

Size of Compressed Textures

Object & Texture	Target Ratio $\bar{\lambda}$	Size (KB)	Comp. Ratio	
Teapot	3%	188	261.5	
with Bmarble	5%	224	219.4	
	10%	268	183.4	
Dragon	3%	192	256.0	
with Wood	5%	232	211.9	
	10%	308	159.6	
Bunny	3%	280	175.5	
with Eroded	5%	356	138.1	
	10%	492	99.9	
Head	3%	332	148.1	
with Gmarbpol	5%	420	117.0	
	10%	540	91.0	

Rendering Time (per frame)

Object & Texture	Texture Target Ratio λ		LINE
	uncomp.	0.13	0.37
Teapot	3%	0.14	0.42
with Bmarble	5%	0.15	0.43
(1,152 faces)	10%	0.16	0.44
	uncomp.	0.45	0.89
Dragon	3%	0.50	0.98
with Wood	5%	0.52	1.00
(12,078 faces)	10%	0.55	1.04
	uncomp.	1.39	1.77
Bunny	3%	1.56	2.04
with Eroded	5%	1.60	2.13
(69,451 faces)	10%	1.66	2.21
	uncomp.	3.68	4.51
Head	3%	3.89	4.85
with Gmarbpol	5%	3.94	4.90
(203,544 faces)	10%	4.00	5.03

Sources

- 3D RGB Image Compression for Interactive Applications Chandrajit Bajaj, Insung Ihm and Sanghun Park ACM Transactions on Graphics, Vol. 20, No. 1, January 2001, Pages 10-38
- Image compression using the Haar wavelet transform Colm Mulcahy
 Spelman Science and Math Journal

Backup Slides

Interactive 3D Applications

- Examples
 - Computer Graphics
 - Volumetric Image Scanners (CT & MRI)
 - Global Climate Simulations
- Consist of Very Large Datasets
 - 100's of MB's GB's