Spacetime smoothing rates

Elias Teixeira Krainski¹

October 2025

¹King Abdullah University of Science and Technology (KAUST)

Where

I am from Brazil, meet professor Håvard Rue in Norway

Data and parameters

► Number of children born

	2018	2019	2020
Curitiba	22112	21393	19728
Araucária	2207	2262	2188

► Number of children born

	2018	2019	2020
Curitiba	22112	21393	19728
Araucária	2207	2262	2188

► Infant deaths

	2018	2019	2020
Curitiba	183	139	140
Araucária	26	22	14

► Number of children born

	2018	2019	2020
Curitiba	22112	21393	19728
Araucária	2207	2262	2188

► Infant deaths

2018	2019	2020
183	139	140
26	22	14
	183	183 139

▶ Infant mortality rate (per thousand) (por mil)

	2018	2019	2020
Curitiba	8.276	6.497	7.097

Visualize the observed rates

Visualize the observed rates

Rates vary more in "small areas" (less poputation)

Fitted rates

Considering temporal "neighborhood"

Spatial neighborhood

Old survival in Europe, Ribeiro et al. (2016)

Probability (75-84 years old in 2001 survive until 2011)

Figure 2 Spatial distribution of the 10-year survival rates across small areas of Europe in 2001 and 2011 (women). (A) Survival rates; (B) areas of high (above 95th centile) and low (below 5th centile) survival.

Tuberculosis in Portugal, Apolinário et al. (2017)

4 The International Journal of Tuberculosis and Lung Disease

Figure Spatial distribution of A) tuberculosis-standardised notification rates and B) location of municipalities with higher/lower

Wasting, Stunting and Underweight: shared risk, Kinyoki et al. (2016)

Figure 4 Estimated shared components classified at 95% credible level among children aged 6–59 months using the marginal probabilities calculated using the quintile correction (QC) method.⁵⁵ I=Wasting and Stunting, II=Stunting and Underweight, III=Wasting and Underweight, South Central (A), North East (B) and North West (C).

The spacetime discrete domain case

Spatially structured trends

► Combine models for variation over space with models for variation over time

Spatially structured trends

- Combine models for variation over space with models for variation over time
- ▶ Interaction between fixed and random terms
 - linear trend for each area, Bernardinelli et al. (1995)
 - quadratic trend for each area, Assunção, Reis, and Oliveira (2001)
 - B-splines over time with spatially structured coefficients,
 MacNab and Dean (2001) and MacNab and Dean (2002)

Spatially structured trends

- ► Combine models for variation over space with models for variation over time
- Interaction between fixed and random terms
 - linear trend for each area, Bernardinelli et al. (1995)
 - quadratic trend for each area, Assunção, Reis, and Oliveira (2001)
 - B-splines over time with spatially structured coefficients,
 MacNab and Dean (2001) and MacNab and Dean (2002)
- ► Interaction between spatial and temporal random effects, Clayton (1996)

Kronecker product models

Consider the random vector indexed as follows $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$

Kronecker product models

- Consider the random vector indexed as follows $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$
- Assume

$$\pi(\mathbf{x}) \propto (|\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}|^{-1})^{1/2} \exp\left(-rac{1}{2}\mathbf{x}^{T}\{\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}\}\mathbf{x}
ight)$$

where

- ▶ Q1 has dimension equals T (from a model over time)
- **Q2** has dimension equals n (from a model over space)

Kronecker product models

- Consider the random vector indexed as follows $\mathbf{x} = \{x_{11}, ..., x_{n1}, x_{12}, ..., x_{nT}\}$
- Assume

$$\pi(\mathbf{x}) \propto (|\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}|^{-1})^{1/2} \exp\left(-rac{1}{2}\mathbf{x}^{T}\{\mathbf{Q}\mathbf{1}\otimes\mathbf{Q}\mathbf{2}\}\mathbf{x}
ight)$$

where

- ▶ Q1 has dimension equals T (from a model over time)
- **Q2** has dimension equals n (from a model over space)
- ▶ The Kronecker product models follows the Clayton's rule
- ► Combine Q1 (time) and Q2 (space) available

Some examples on spacetime interactions

- ▶ Precision(**u**) = τ **H** \otimes **R**, Knorr-Held (2000)
 - ► H: precision structure matrix over the temporal domain
 - R: precision structure matrix over the spatial domain
 - ► This defines a precision/covariance separable model for **u**

Some examples on spacetime interactions

- Precision(**u**) = τ **H** \otimes **R**, Knorr-Held (2000)
 - ► H: precision structure matrix over the temporal domain
 - **R**: precision structure matrix over the spatial domain
 - lacktriangle This defines a precision/covariance separable model for f u
- care when main effects are in the model
- super care when Q1 and/or Q2 have rank deficiency
 - e.g. rw1, rw2 and besag models
 - ▶ if both Q1 and Q2 are intrinsic, Knorr-Held (2000):
 - see inla.knmodels()

Some examples on spacetime interactions

- Precision(**u**) = τ **H** \otimes **R**, Knorr-Held (2000)
 - ▶ **H**: precision structure matrix over the temporal domain
 - R: precision structure matrix over the spatial domain
 - lacktriangle This defines a precision/covariance separable model for f u
- care when main effects are in the model
- super care when Q1 and/or Q2 have rank deficiency
 - e.g. rw1, rw2 and besag models
 - ▶ if both Q1 and Q2 are intrinsic, Knorr-Held (2000):
 - see inla.knmodels()
- Proper in time, Martínez-Beneito, López-Quilez, and Botella-Rocamora (2008)
 - example in INLA:

```
f(spatial, model='besag', ...,
group=time, control.group=list(model='ar1'))
```

▶ NOTE: Here the constraints are only set for the main model, and not for the group model!

The Knorr-Held (2000) models

Linear predictor is modeled as

$$\eta_{it} = \text{other effects} + v_t + s_i + d_{it}$$

- \triangleright v_t is a temporal effect common for all areas,
- \triangleright s_i is a spatial effect common for all times and
- $ightharpoonup d_{it}$ is the space-time effect.

The Knorr-Held (2000) models

Linear predictor is modeled as

$$\eta_{it} = \text{other effects} + v_t + s_i + d_{it}$$

- \triangleright v_t is a temporal effect common for all areas,
- \triangleright s_i is a spatial effect common for all times and
- d_{it} is the space-time effect.
- ▶ Decompose: $v_t = \gamma_t + \alpha_t$ and $s_i = \phi_i + \theta_i$
 - ≥ zero mean Gaussian distributions, with precision τ_{γ} **I**, τ_{α} **K**, τ_{ϕ} **I** and τ_{θ} **R**, for γ , α , ϕ and θ , respectively.
 - ▶ I: identity matrix with required dimention
 - ► K and R: temporal and spatial precision structure matrices, from the neighborhood structure

The Knorr-Held (2000) models (cont.)

- ightharpoonup Let $\mathbf{R} = \tilde{\mathbf{G}} \mathbf{G}$, where
 - ▶ **G** is the spatial neighborhood structure

$$\mathbf{G}_{i,j} = egin{cases} 1 & ext{if} & j \sim i \ 0 & ext{otherwise}, \end{cases}$$

- \triangleright $j \sim i$ means "j neighbor to i"

The Knorr-Held (2000) models (cont.)

- ▶ Let $\mathbf{R} = \tilde{\mathbf{G}} \mathbf{G}$, where
 - ▶ **G** is the spatial neighborhood structure

$$\mathbf{G}_{i,j} = egin{cases} 1 & ext{if} & j \sim i \ 0 & ext{otherwise}, \end{cases}$$

- ▶ $j \sim i$ means "j neighbor to i"
- $ightharpoonup \ ilde{f G}$ is a diagonal matrix, having its diagonal as the row sum of ${f G}$.
- Considering the type IV interaction:

$$\begin{array}{rcl} \tau_d \mathsf{K} \otimes \mathsf{R} & = & \tau_d (\tilde{\mathsf{H}} - \mathsf{H}) \otimes (\tilde{\mathsf{G}} - \mathsf{G}) \\ & = & \tau_d (\tilde{\mathsf{H}} \otimes \tilde{\mathsf{G}} - \tilde{\mathsf{H}} \otimes \mathsf{G} - \mathsf{H} \otimes \tilde{\mathsf{G}} + \mathsf{H} \otimes \mathsf{G}) \end{array}$$

References

- Apolinário, D., A. I. Ribeiro, E. T. Krainski, P. Sousa, M. Abranches, and R. Duarte. 2017. "Tuberculosis Inequalities and Socio-Economic Deprivation in Portugal." *International Union Against Tuberculosis and Lung Disease* 21 (7).
- Assunção, R. M., I. A. Reis, and C. Di L. Oliveira. 2001. "Diffusion and Prediction of Leishmaniasis in a Large Metropolitan Area in Brazil with a Bayesian Spacetime Model." Statistics in Medicine 20 (15): 2319–35.
- Bernardinelli, L., D. G. Clayton, C. Pascutto, C. Montomoli, M. Ghislandi, and M. Songini. 1995. "Bayesian Analysis of Space-Time Variation in Disease Risk." *Statistics in Medicine* 21–22 (14): 2433–43.
- Clayton, D. G. 1996. "Markov Chain Monte Carlo in Practice." In, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 275–301. Chapman & Hall.
- Kinyoki, D. K., N-B Kandala, S. O. Manda, E. T. Krainski, G-A Fuglstad, G. M. Moloney, J. A Berkley, and A. M. Noor. 2016. "Assessing Comorbidity and Correlates of Wasting and Stunting Among Children in Somalia Using Cross-Sectional Household Surveys: 2007 to 2010." BMJ Open 85 (1): 164–76.
- Knorr-Held, L. 2000. "Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk." Statistics in Medicine 19: 2555–67.
- MacNab, Y. C., and C. B. Dean. 2001. "Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates." *Biometrics* 57 (3): 949–56.
- ——. 2002. "Spatio-Temporal Modelling of Rates for the Construction of Disease Maps." Statistics in Medicine 21 (3): 347–58.
- Martínez-Beneito, M. A., A. López-Quilez, and P. Botella-Rocamora. 2008. "An Autoregressive Approach to Spatio-Temporal Disease Mapping." *Statistics in Medicine* 27 (10): 2874–89.
- Ribeiro, A. I., E. T. Krainski, M. S. Carvalho, and M. de F. de Pina. 2016. "Where Do People Live Longer and Shorter Lives? An Ecological Study of Old-Age Survival Across 4404 Small Areas from 18 European Countries." Journal of Epidemiology Community Health 70 (6): 561–68.