

Tensorflow's Data Type

Tensor

• Tensor는 데이터를 담는 자료형을 의미한다

Scala (0D Tensor)

- 하나의 숫자만 담고 있는 텐서는 축(axis, dimension)이 없으므로 0D tensor이다
- Numpy에서는 float32, float64 타입의 숫자가 Scala Tensor로 사용된다
- 축의 개수는 ndim 속성을 이용하여 알 수 있다
- import numpy as np
- x = np.array(12)

```
    print(x)
    print(type(x))
    print(x.ndim)
```


Vector (1D Tensor)

• 다음과 같이 하나의 축으로 된 배열을 vector 또는 1D tensor라고 부른다

```
• x = np.array([12, 3, 6, 14, 7]) 이 숫자열 전체가 한 대상의 특징을 설명한다
```

```
• print(x)
```

- print(type(x))
- print(x.ndim)

```
[12  3  6 14  7]
<class 'numpy.ndarray'>
1
```

1D TENSOR, VECTOR

Matrix (2D Tensor)

- 벡터가 2개의 축으로 결합된 것이 행렬이다
- Row(행)와 Column(열)으로 구성된다

```
• x = np.array([[12, 3, 6, 14, 7],
[10, 5, 8, 13, 8],
[11, 6, 7, 12, 7]])
```

이 숫자열 전체가 한 대상의 특징을 설명한다

2D TENSOR, MATRIX

12	3	6	14	7
10	5	8	13	8
11	6	7	12	7

a print()	[[12	3	6 14	7]
print(x)	[10	5	8 13	8]
print(type(x))	[11	6	7 12	7]]
print(x.ndim)	<clas< td=""><td>s ˈ</td><td>numpy.</td><td>ndarray'></td></clas<>	s ˈ	numpy.	ndarray'>

3D & High-Dimensional Tensor

- 행렬을 하나의 새로운 배열로 합치면 큐브로 해석될 수 있는 3D 텐서가 만들어진다
- 이와 같은 식으로 딥러닝에서는 4D 텐서까지 만들어 사용한다
- 동영상 데이터는 5D 텐서까지 가기도 한다

```
• x = np.array([[[12, 3, 6, 14, 7], [10, 5, 8, 13, 8], [11, 6, 7, 12, 7]], [[12, 3, 6, 14, 7], [10, 5, 8, 13, 8], [11, 6, 7, 12, 7]], [[12, 3, 6, 14, 7], [10, 5, 8, 13, 8], [11, 6, 7, 12, 7]]])
```

- print(x)
- print(type(x))
- print(x.ndim)

층으로 된 숫자열 전체가 한 대상의 특징을 설명한다

연습문제

• 4D 텐서를 만들어 보시오

※ print(x.ndim) 하였을 때 4가 나와야 합니다

- 다음 슬라이드에 정답이 있습니다

연습문제 정답

```
import numpy as np
x = np.array([[[[12, 3, 6, 14, 7],
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]],
              [[12, 3, 6, 14, 7],
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]],
              [[12, 3, 6, 14, 7],
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]]],
             [[[12, 3, 6, 14, 7],
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]],
              [[12, 3, 6, 14, 7],
                                         이 층의 층으로 된 숫자열 전체가 한 대상의 특징을 설명한다
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]],
              [[12, 3, 6, 14, 7],
               [10, 5, 8, 13, 8],
               [11, 6, 7, 12, 7]]]
print(x)
print(x.ndim)
                                       # 4
```

차원

• 데이터사이언스 분야에서 '차원(Dimension)'은 두 가지 모습으로 나타난다

<u>1D</u>	2D	3D	4D	5D
12	3	6	14	7
10	5	8	13	8
11	6	7	12	7

*	Sepal.Length $^{\scriptsize \scriptsize $	Sepal.Width	Petal.Length $^{\scriptsize \scriptsize $	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa

컬럼을 차원이라 부를 때는 각 컬럼을 다른 종류의 정보로 볼 때

2 2 2	BD_					
1D	12	3	6	14	7	\mathbb{H}
	10	5	8	13	8	\mathbb{H}
	11	6	7	12	7	μ

층(Z축)을 차원이라 부를 때는 각 층을 다른 종류의 정보로 볼 때