Classification: K-nearest neighbours and Overfitting

Alex Lewin

London School of Hygiene and Tropical Medicine

Spring 2022

A different way of estimating P(Y|X) = f(X)

- Logistic regression \rightarrow parametric: specify functional form of f(X), find best fitting parameters
- K-nearest neighbours → non-parametric:
 f(X) is estimated as averages over data points

In K-NN, cannot write a simple equation for f(X) in terms of X.

No inference here, only prediction.

2D illustration: here $f(x_1, x_2)$ is going to be our prediction of Y for a new point (x_1, x_2)

Idea is to use the data points which are similar in X-space to our new point.

- For the new point (x_1, x_2) , call observations "neighbours" if they have similar values of (X_1, X_2) .
- ② Find the K nearest neighbours of the point (x_1, x_2) .
- **3** This defines a neighbourhood \mathcal{N}_0 of (x_1, x_2) in X-space.
- Predict the class of the new point to be the most common class of observations in the neighbourhood.

2D example, K=3

Can write the predicted classification probability as

$$P(Y = j | X = x_0) = f(x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} \mathcal{I}[y_i = j]$$

where \mathcal{N}_0 is the set of nearest neighbours to x_0 .

Note that different choices of K give different results:

- Larger K smooths more (less flexible model, but more general)
- Smaller K estimates are more local (more flexible, but less general)

Model fit for classification

How do we assess model fit for classification models?

Recall model fit in linear regression based on sums of squared residuals:

Mean square error $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ related to Residual mean squares.

In classification we count the number of errors in prediction:

Simplest error rate:

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{I}[y_i \neq \hat{y}_i]$$

However, there are 2 ways to make an error in classification ...

Model fit for classification

There are 2 ways to make an error in classification: false positives, and

false negatives.

	Predicted	Predicted	
	$\hat{y}_i = 0$	$\hat{y}_i = 1$	
Observed			
$y_i = 0$	TN	FP	
Observed			
$y_i = 1$	FN	TP	

Sensitivity: TP/(TP+FN), how many of the real signals do we detect? Specificity: TN/(TN+FP), how many of the real non-signals do we falsely declare?

Sensitivity \longleftrightarrow false negatives Specificity \longleftrightarrow false positives

Model fit for classification

There are 2 ways to make an error in classification: false positives, and

false negatives.

	Predicted	Predicted	
	$\hat{y}_i = 0$	$\hat{y}_i = 1$	
Observed			
$y_i = 0$	TN	FP	
Observed			
$y_i = 1$	FN	TP	

In machine learning:

Recall is the same as sensitivity: TP/(TP+FN)

Precision: TP/(FP+TP), out of the *declared signals*, how many are true?

Recall \longleftrightarrow false negatives Precision \longleftrightarrow false positives

Training and Test data

Error rate can be calculated on the data used to fit (train) the model:

 \rightarrow Training error.

The training error will be low (relatively) because this data was used to find the best model $\hat{f}(X)$.

Actually we are interested in estimating the error rate when this function $\hat{f}(X)$ is used to make predictions about **new observations**:

 \rightarrow this is called Test error.

The test error will in general be higher because this data was not used to find the best model $\hat{f}(X)$. But it gives a better idea of how general the model is (will it fit other data sets well).

Training and Test data in practice

Ideally have validation data set to test the model on.

But usually split the data set into training and test data.

Training data: fit the model.

Test data: test the model predictions.

Back to K-NN:

Fit on training data:

- Larger K smooths more (less flexible model, but more general)
- Smaller K estimates are more local (more flexible, but less general)

Bias-variance tradeoff

Fit on training data:

- Larger K more general
- Smaller K more flexible

More general (less flexible) model \longrightarrow Lower Variance, Higher Bias.

Less general (more flexible) model — Lower Bias, Higher Variance.

Training and Test error

Training error keeps on decreasing as K decreases.

Test error decreases at first: this shows model is getting better at fitting the test data.

When K gets too small, test error increases: the training data is not representative of the test data - this is **over-fitting**.

- Blue: training error,
 Orange: test error
- K decreases to the right

Training and Test error

Test error has a characteristic U-shape: balance between over-fitting and under-fitting the data.

This helps us choose the optimal K number of neighbours to use in the K-NN model.

Reading

ISLR book (download a pdf from https://statlearning.com/):

Section 2.2.3 discusses K-NN method and bias-variance tradeoff for classification problems.

Figures in this presentation are taken from ISLR.