

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Majores de 23 Anos - 2019

Prova escrita de conhecimentos específicos de MATEMÁTICA

Instruções gerais

- 1. A prova é constituída por dois grupos de questões obrigatórias.
- 2. A duração da prova é de 2 horas, estando prevista uma tolerância de 30 minutos;
- Só pode utilizar para elaboração das suas respostas e para efetuar os rascunhos as folhas distribuídas pelo docente vigilante, salvo se previsto outro procedimento;
- 4. Não utilize qualquer tipo de corretor. Se necessário risque ou peça uma troca de folha;
- **5.** Não é autorizada a utilização de quaisquer ferramentas de natureza eletrónica (telemóvel, *ipad*, computador portátil, leitores/gravadores digitais de qualquer natureza ou outros não especificados), exceto máquina de calcular para realizar cálculos e obter representações gráficas de funções, devidamente autorizadas.
- 6. Deverá disponibilizar ao docente que está a vigiar a sala, sempre que solicitado, um documento válido de identificação (cartão de cidadão, bilhete de identidade, carta de condução ou passaporte);
- 7. A seguir ao número de cada questão encontra entre parênteses a respetiva cotação.

Leiria, 1 de junho de 2019

Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos – 2019

Prova de Avaliação de MATEMÁTICA

- Identifique claramente os grupos e as questões a que responde.
- As funções trigonométricas estão escritas no idioma anglo saxónico.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- É interdito o uso de "esferográfica lápis" e de corretor.
- A prova de avaliação tem 8 páginas.
- A prova de avaliação inclui um formulário na página 7.
- As cotações da prova de avaliação encontram-se na página 8.

Grupo I

- As dez questões deste grupo são de escolha múltipla.
- Em cada questão são indicadas **quatro alternativas** de resposta das quais **só uma está correta**.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que selecionar para responder a cada questão.
- Se apresentar mais do que uma letra ou se esta for ilegível, a sua **resposta** será considerada **incorreta**.
- As respostas incorretas terão cotação nula.
- Não apresente nem cálculos nem justificações.
- 1. Considere o polinómio P, definido por, $P(x) = 2x^3 3ax^2 + 2x + b$, onde a e b são constantes reais.

Quais os valores de a e b de modo a que o polinómio P seja divisível por x-1 e que dividido por 2x+4 dê resto 3?

(A)
$$a = -13 \land b = 13$$
.

(B)
$$a = -3 \land b = -13.$$

(C)
$$a = 3 \land b = -13$$
.

$$(\mathbf{D}) \quad a = -13 \land b = -3.$$

- 2. Considere a função f, real de variável real, contínua no intervalo [2,5], com f(2)=8 e f(5)=3. Qual das seguintes afirmações é necessariamente verdadeira?
 - (A) A função f tem pelo menos um zero no intervalo [2,5].
 - (B) A função f não tem zeros no intervalo [2, 5].
 - (C) A equação f(x) = 6 tem pelo menos uma solução no intervalo [2, 5].
 - (**D**) A equação f(x) = 6 não tem solução no intervalo [2, 5].
- 3. Considere o limite,

$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 2x}{x^2 - 4x + 3}.$$

Qual é o valor do limite?

$$(\mathbf{A}) \quad \frac{1}{2}.$$

(C)
$$-2$$
.

4. Na figura estão representadas graficamente as funções $f \in g$, de domínio \mathbb{R} , definidas respetivamente por, $f(x) = x^2 e g(x) = |x|$.

Qual é o conjunto solução da inequação, g(x) > f(x)?

(A) $]-1,0[\cup]0,1[.$

(B) $]-1,0[\cup]1,+\infty[.$

(C) $]-\infty, -1[\cup]1, +\infty[$.

- $(\mathbf{D}) \quad]-\infty, -1[\cup]0, 1[...]$
- 5. Considere a função h, real de variável real, definida por,

$$h(x) = \begin{cases} k + \cos(x) & se \quad x \le 0\\ \frac{\ln(1+x)}{x} & se \quad x > 0 \end{cases}$$

onde k é uma constante real, cos designa o cosseno e la designa o logaritmo de base e.

Qual é o valor de k de modo a que a função h seja contínua em \mathbb{R} ?

(A) -1.

 $(\mathbf{B}) \quad 0.$

(C) 1.

- **(D)** 2.
- 6. Considere a função r, real de variável real, de domínio \mathbb{R}^+ , definida por, $r(x) = x^a + a^2 \ln(x)$, onde a é um número real maior do que 1 e ln designa o logaritmo de base e.

Seja s a reta tangente ao gráfico da função r no ponto de abcissa a.

Qual \acute{e} o declive da reta s?

- (A) $a^{a-1} + a^2$. (B) $a^a + a^2$. (C) $a^{a-1} + a$.
- (**D**) $a^a + a$.
- 7. Considere o ângulo θ , orientado, tal que $\sin(\theta) > 0$ e $\tan(\theta) < 0$, onde $\sin(\theta)$ designa o seno e tan designa a tangente.

Qual é a expressão do valor de $\cos(\theta)$?

- (A) $\sqrt{1+\sin^2(\theta)}$. (B) $\sqrt{1-\sin^2(\theta)}$. (C) $-\sqrt{1-\sin^2(\theta)}$. (D) $-\sqrt{1+\sin^2(\theta)}$.

_	_	os jogadores de modo a que	o Raúl, o mais velho
dos irmãos Silva, seja	um dos escolhidos?		
(A) 20.	(B) 16.	(C) 12.	(\mathbf{D}) 8.
10 N 14:11 1 1			1 1
		atividades ao dispor dos jove	_
30 jogam xadrez.	arez. Dos 54 inscritos nes	sas atividades, 33 dançam n	io rancno folciorico e
-	de de um jovem escolhido	o ao acaso jogar xadrez, sal	bendo que dança no
rancho folclórico?	۳	1	10
(A) $\frac{3}{11}$.	(B) $\frac{5}{9}$.	(C) $\frac{1}{6}$.	$(\mathbf{D}) \frac{10}{11}.$
	Grupo) II	
• Nas questões deste gru	ipo apresente o seu racioci	ínio de maneira clara, indica	ando todos os
cálculos que efetuar e t	odas as justificações ne	cessárias.	
• Pode recorrer à sua	máquina de calcular pa	ara efetuar cálculos e obter :	representações
gráficas de funções.	maquina de calcular pe		representações
• Atenção: quando, pa	ra um resultado, não é pe	dida uma aproximação, pret	sende-se sempre o
valor exato.			
	4		

8. Considere a sucessão (u_n) de termo geral $u_n = \sin\left(\frac{n\pi}{2}\right)$, onde sin designa o seno.

cada família para um jogo de matraquilhos, de uma família contra a outra.

9. Os três irmãos Silva e os quatro irmãos Azevedo vão escolher, de entre eles, dois elementos de

(B) (u_n) é decrescente.

(**D**) (u_n) é limitada.

Qual das seguintes afirmações é verdadeira?

(C) (u_n) é um infinitamente grande.

(A) (u_n) é crescente.

- 1. Considere a função polinomial P, real de variável real, definida por, $P(x) = x^3 + 6x^2 + 11x + \alpha$, onde α é um parâmetro real.
 - (a) Determine o valor de α de modo a que a função polinomial P seja divisível por x+1.
 - (b) Considere $\alpha = 6$.
 - i. Determine a decomposição em fatores do $1.^{\circ}$ grau da função polinomial P.
 - ii. Determine o conjunto solução da condição, $P(x) \leq 0$.
 - iii. Determine o valor do limite, $\lim_{x \to -\infty} P(x)$.
- 2. Considere a função f, real de variável real, definida por, $f(x) = 2 + 4x^2e^{-x}$, onde e designa o número de Neper.

Recorrendo exclusivamente a processos analíticos, resolva os itens.

- (a) Determine a derivada da função f.
- (b) Estude a função f quanto à monotonia e quanto à existência de extremos relativos.
- (c) Determine a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa -1.
- (d) Determine o valor do limite, $\lim_{x\to 0} \frac{f(x)-2}{x^2}$.
- 3. Considere a sucessão (u_n) de termo geral $u_n = \frac{3n-10}{n+2}$.
 - (a) Averigue se a sucessão é monótona e, em caso afirmativo, indique o tipo de monotonia.
 - (b) Determine o termo de menor ordem da sucessão que é maior que 2.
 - (c) Indique, justificando, se a sucessão é limitada.
- 4. Num autocarro viajam 12 homens e 6 mulheres.

Determine de quantas maneiras se pode organizar um grupo de 6 dessas pessoas, de forma que pelo menos duas delas, mas não mais que quatro, sejam homens.

5. Num clube desportivo, sabe-se que 52 % dos sócios são homens e que de entre todos os sócios, 35 % dos homens e 60 % das mulheres, pratica natação.

Escolhe-se, ao acaso, sócio do clube desportivo.

- (a) Qual é a probabilidade de que pratique natação?
- (b) Sabendo que pratica natação, qual é a probabilidade de que seja mulher?
- 6. Na figura está representado o triângulo isósceles [ABC] $(\overline{AB} = \overline{CB})$, o qual contém o retângulo [DEFG], onde $\overline{DE} = 1$ e $\overline{DG} = 2$.

Seja x a amplitude (em radianos) do ângulo BAC ($x \in \left]0, \frac{\pi}{2}\right[$).

Recorrendo exclusivamente a processos analíticos, resolva os itens.

(a) Demonstre que a área do triângulo [ABC] é dada, em função de x, por,

$$f(x) = 2 + \tan(x) + \frac{1}{\tan(x)}$$

onde tan designa a tangente.

(b) Demonstre que a derivada da função f é dada por,

$$f'(x) = -\frac{\cos(2x)}{\sin^2(x)\cos^2(x)}.$$

(c) Determine o valor de x para o qual a área do triângulo [ABC] é mínima.

FIM da Prova de Avaliação

FORMULÁRIO

Regras de Derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^k)' = k \cdot u^{k-1} \cdot u' \quad (k \in \mathbb{R})$$

$$\left(\sin\left(u\right)\right)' = u' \cdot \cos\left(u\right)$$

$$\left(\cos\left(u\right)\right)' = -u' \cdot \sin\left(u\right)$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln(a) \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln\left(u\right))' = \frac{u'}{u}$$

$$(\log_a(u))' = \frac{u'}{u \cdot \ln(a)} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Trigonometria

$$\sin(a+b) = \sin(a) \cdot \cos(b) + \sin(b) \cdot \cos(a)$$

$$\cos(a+b) = \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b)$$

Probabilidades

$$\mu = p_1 \cdot x_1 + \ldots + p_n \cdot x_n$$

$$\sigma = \sqrt{p_1 \cdot (x_1 - \mu)^2 + \ldots + p_n \cdot (x_n - \mu)^2}$$

Se
$$X \in N(\mu, \sigma)$$
 então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P\left(\mu - 2\sigma < X < \mu + 2\sigma\right) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1 + u_n}{2} \cdot n$

Progressão geométrica: $u_1 \cdot \frac{1-r^n}{1-r}$

Limites Notáveis

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{u_n \to +\infty} \left(1 + \frac{x}{u_n} \right)^{u_n} = e^x \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Área de Figuras Planas

Trapézio: $\frac{Base\ maior + Base\ menor}{2} \cdot Altura$

COTAÇÕES

Ьru	po I			• • •
	Cada	resposta certa · · · · · · · · · · · · · · · · · · ·	7	
	Cada	resposta errada, anulada ou não respondida	0	
7 7 111	ро І	I		
1.				25
	(a)		5	
	(b)		20	
		i	8	
		ii	7	
		iii	5	
2.			• •	30
	(a)		8	
	(b)		8	
	(c)		7	
	(d)		7	
3.			• •	20
	(a)		6	
	(b)		6	
	(c)		8	
4.			• •	10
5.			• •	20
	(a)		12	
	(b)		8	
6.			• •	25
	(a)		10	
	(b)		10	
	(c)		5	

8

200