Déterminants

Groupe symétrique

Exercice 1 [02231] [Correction]

Soit $n \geq 2$ et c la permutation circulaire $c = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix}$. Déterminer toutes les permutations σ de \mathcal{S}_n qui commutent avec c.

Exercice 2 [02225] [Correction]

Dans S_n avec $n \geq 2$, on considère une permutation σ et un p-cycle :

$$c = \begin{pmatrix} a_1 & a_2 & \dots & a_p \end{pmatrix}$$
.

Observer que la permutation $\sigma \circ c \circ \sigma^{-1}$ est un p-cycle qu'on précisera.

Exercice 3 [02224] [Correction]

Soient n un entier supérieur à $2, (i, j) \in \{1, 2, ..., n\}^2$ tel que $i \neq j$ et $\sigma \in \mathcal{S}_n$. Montrer que σ et $\tau = (i \quad j)$ commutent si, et seulement si, $\{i, j\}$ est stable par σ .

Exercice 4 [00121] [Correction]

Soit H l'ensemble des $\sigma \in \mathcal{S}_n$ vérifiant $\sigma(k) + \sigma(n+1-k) = n+1$ pour tout $k \in \{1, \ldots, n\}$.

Montrer que H est un sous-groupe de (S_n, \circ)

Exercice 5 [02226] [Correction]

Déterminer la signature de :

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 8 & 7 & 6 & 2 & 1 \end{pmatrix}$$
 (b) $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 7 & 4 & 8 & 5 & 6 \end{pmatrix}$

Exercice 6 [02227] [Correction]

Soit $n \in \mathbb{N}^*$. Déterminer la signature de la permutation suivante :

(a)
$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$
.

(b)
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n & n+1 & n+2 & \dots & 2n-1 & 2n \\ 1 & 3 & 5 & \dots & 2n-1 & 2 & 4 & \dots & 2n-2 & 2n \end{pmatrix}$$
.

Exercice 7 [02228] [Correction]

Soit $n \geq 2$ et τ une transposition de S_n .

- (a) Montrer que l'application $\sigma \mapsto \tau \circ \sigma$ est une bijection de \mathcal{S}_n vers \mathcal{S}_n .
- (b) En déduire le cardinal de l'ensemble \mathcal{A}_n formé des permutations de signature 1 élément de \mathcal{S}_n .

Exercice 8 [02230] [Correction]

Soit n > 5.

Montrer que si $(a \ b \ c)$ et $(a' \ b' \ c')$ sont deux cycles d'ordre 3 de S_n , alors il existe une permutation σ , paire, telle que

$$\sigma \circ (a \quad b \quad c) \circ \sigma^{-1} = (a' \quad b' \quad c').$$

Formes multilinéaires alternées

Exercice 9 [01410] [Correction]

Soient F et G deux sous-espaces vectoriels supplémentaires d'un \mathbb{K} -espace vectoriel E.

Soient f une forme linéaire sur E, p la projection vectorielle sur F parallèlement à G et $q = \mathrm{Id} - p$ sa projection complémentaire.

Montrer que l'application $\varphi \colon E \times E \to \mathbb{K}$ définie par

$$\varphi(x,y) = f(p(x))f(q(y)) - f(p(y))f(q(x))$$

est une forme bilinéaire alternée sur E.

Déterminant d'un endomorphisme

Exercice 10 [01411] [Correction]

Soient E un \mathbb{R} -espace vectoriel de dimension finie et f un endomorphisme de E vérifiant $f^2 = -\mathrm{Id}$. Montrer que l'espace E est de dimension paire.

Exercice 11 [01412] [Correction] Soit $V = \{x \mapsto e^x P(x) \mid P \in \mathbb{R}_n[X] \}$.

(a) Montrer que V est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$ dont on déterminera la dimension.

(b) Montrer que l'application $D \colon f \mapsto f'$ est un endomorphisme de V dont on calculera le déterminant.

Exercice 12 [03071] [Correction]

Soit f un endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} .

(a) Montrer qu'il existe d'uniques complexes a, b tels que

$$\forall z \in \mathbb{C}, f(z) = az + b\overline{z}.$$

(b) Exprimer en fonction de a et b le déterminant de f.

Exercice 13 [00752] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $\varphi_A \in \mathcal{L}(\mathcal{M}_n(\mathbb{C}))$ déterminé par

$$\varphi_A(M) = AM$$
.

Calculer la trace et le déterminant de φ_A

Exercice 14 [03641] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall i \in \{1, \dots, n\}, |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$$

- (a) Montrer que A est inversible.
- (b) On suppose en outre

$$\forall i \in \{1, \dots, n\}, a_{i,i} > 0.$$

Montrer que $\det A > 0$.

Déterminant d'une matrice carrée

Exercice 15 [01414] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$. On note $\overline{A} = (\overline{a}_{i,j}) \in \mathcal{M}_n(\mathbb{C})$. Former une relation liant $\det(A)$ et $\det \overline{A}$.

Exercice 16 [01415] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que ${}^tA = \overline{A}$. Montrer que det $A \in \mathbb{R}$.

Exercice 17 [01416] [Correction]

Soit A une matrice antisymétrique réelle d'ordre 2n + 1. Montrer

$$\det(A) = 0.$$

Ce résultat est-il encore vrai lorsque A est d'ordre pair?

Exercice 18 [01417] [Correction]

Comparer $\det(a_{i,j})$ et $\det((-1)^{i+j}a_{i,j})$ où $(a_{i,j})_{1\leq i,j\leq n}\in\mathcal{M}_n(\mathbb{K})$.

Exercice 19 [03382] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall i, j \in \{1, \dots, n\}, a_{i,j} \in \{1, -1\}.$$

Montrer

$$2^{n-1} \mid \det A$$
.

Exercice 20 [00738] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ de colonnes C_1, \ldots, C_n .

Calculer le déterminant de la matrice B de colonnes

$$C_1 - C_2, \dots, C_{n-1} - C_n, C_n - C_1.$$

Exercice 21 [02603] [Correction]

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est élément de $GL_n(\mathbb{Z})$ si la matrice A est à coefficients entiers, qu'elle est inversible et que son inverse est à coefficients entiers.

- (a) Montrer que si $A \in GL_n(\mathbb{Z})$ alors $|\det A| = 1$.
- (b) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant :

$$\forall k \in \{0, 1, \dots, 2n\}, A + kB \in \operatorname{GL}_n(\mathbb{Z}).$$

Calculer $\det A$ et $\det B$.

Exercice 22 [02604] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{R}) (n \geq 2)$ de colonnes A_1, \ldots, A_n et $B \in \mathcal{M}_n(\mathbb{R})$ de colonnes B_1, \ldots, B_n déterminées par

$$B_j = \sum_{i \neq j} A_i.$$

Exprimer $\det B$ en fonction de $\det A$.

Exercice 23 [02695] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ (avec $n \geq 2$) vérifiant pour tout $X \in \mathcal{M}_n(\mathbb{C})$,

$$\det(A+X) = \det(A) + \det(X).$$

Montrer que det(A) = 0 puis A = 0.

Exercice 24 [00229] [Correction]

Soient A et H dans $\mathcal{M}_n(\mathbb{R})$ avec $\operatorname{rg} H = 1$. Montrer:

$$\det(A+H)\det(A-H) \le \det A^2.$$

Exercice 25 [01587] [Correction]

Soient $A \in \mathcal{M}_{2n}(\mathbb{R})$ antisymétrique et $J \in \mathcal{M}_{2n}(\mathbb{R})$ la matrice dont tous les coefficients sont égaux à 1. Établir

$$\forall x \in \mathbb{R}, \det(A + xJ) = \det A.$$

Exercice 26 [03278] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall (i,j) \in \{1,\ldots,n\}^2, a_{i,j} \ge 0 \text{ et } \forall i \in \{1,\ldots,n\}, \sum_{j=1}^n a_{i,j} \le 1.$$

Montrer

$$|\det A| \le 1.$$

Exercice 27 [04970] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer $\det(A^2 + \mathbf{I}_n) \geq 0$.

Calculs de déterminants élémentaires

Exercice 28 [01418] [Correction]

Calculer sous forme factorisée les déterminants suivants :

(a)
$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}$$

(b)
$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$

(c)
$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$

(f)
$$\begin{vmatrix} 1 & 1 & 1 \\ \cos a & \cos b & \cos c \\ \sin a & \sin b & \sin c \end{vmatrix}$$

Exercice 29 [01419] [Correction]

Soient $a_1, \ldots, a_n \in \mathbb{C}$. Calculer $\det(a_{\max(i,j)})$. En déduire en particulier $\det(\max(i,j))$ et $\det(\min(i,j))$.

En deddire en partieuner des(man(s, j)) es des(min(

Exercice 30 [01420] [Correction]

Soient $a_1, a_2, \ldots, a_n \in \mathbb{K}$. Calculer

$$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ & \ddots & \ddots & \vdots \\ & & \ddots & a_2 \\ (a_1) & & a_1 \end{vmatrix}$$

Exercice 31 [01421] [Correction]

Soit $n \in \mathbb{N}^*$. Calculer

$$\begin{vmatrix} S_1 & S_1 & S_1 & \cdots & S_1 \\ S_1 & S_2 & S_2 & \cdots & S_2 \\ S_1 & S_2 & S_3 & \cdots & S_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_1 & S_2 & S_3 & \cdots & S_n \end{vmatrix}$$

où pour tout $1 \le k \le n$ on a

$$S_k = \sum_{i=1}^k i.$$

Exercice 32 [01423] [Correction]

Soit

$$A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$$

avec $a, b, c, d \in \mathbb{R}$.

- (a) Calculer ${}^{t}A.A.$ En déduire det A.
- (b) Soient $a, b, c, d, a', b', c', d' \in \mathbb{Z}$. Montrer qu'il existe $a'', b'', c'', d'' \in \mathbb{Z}$ tels que :

$$(a^{2} + b^{2} + c^{2} + d^{2})(a'^{2} + b'^{2} + c'^{2} + d'^{2}) = a''^{2} + b''^{2} + c''^{2} + d''^{2}.$$

Exercice 33 [03377] [Correction]

(a) Calculer

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}.$$

(b) En déduire

$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}.$$

Exercice 34 [03366] [Correction]

Montrer

$$D_n = \begin{vmatrix} 1 & n & n-1 & \dots & 2 \\ 2 & 1 & \ddots & & 3 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ n-1 & & \ddots & 1 & n \\ n & n-1 & \dots & 2 & 1 \end{vmatrix} = (-1)^{n+1} \frac{(n+1)n^{n-1}}{2}.$$

Exercice 35 [04965] [Correction]

Soient $n \geq 2$ et a_1, \ldots, a_n des réels tous non nuls. Calculer le déterminant de

$$M = \left(\frac{a_i}{a_j} + \frac{a_j}{a_i}\right)_{1 \le i, j \le n} \in \mathcal{M}_n(\mathbb{R}).$$

Calculs de déterminants avancés

Exercice 36 [01425] [Correction]

Soient $a \neq b$ et $\lambda_1, \lambda_2, \dots, \lambda_n$. On pose

$$\Delta_n(x) = \begin{vmatrix} \lambda_1 + x & a + x & \cdots & a + x \\ b + x & \lambda_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & a + x \\ b + x & \cdots & b + x & \lambda_n + x \end{vmatrix}_{[n]}$$

- (a) Montrer que $\Delta_n(x)$ est une fonction affine de x.
- (b) Calculer $\Delta_n(x)$ et en déduire $\Delta_n(0)$.

Exercice 37 [02693] [Correction]

Calculer le déterminant

$$\begin{vmatrix} a_1 + x & (x) \\ \vdots & \vdots \\ (x) & a_n + x \end{vmatrix}$$

où x, a_1, \ldots, a_n réels.

Exercice 38 [00299] [Correction]

On pose

$$P_n(X) = X^n - X + 1 \text{ (avec } n \ge 2).$$

- (a) Montrer que P_n admet n racines distinctes z_1, \ldots, z_n dans \mathbb{C} .
- (b) Calculer le déterminant de

$$\begin{pmatrix} 1+z_1 & 1 & \cdots & 1 \\ 1 & 1+z_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 1+z_n \end{pmatrix}.$$

Exercice 39 [03806] [Correction]

(Déterminant de Hurwitz) Soient $a, \lambda_1, \ldots, \lambda_n \in \mathbb{C}$. Calculer le déterminant de la matrice suivante

$$H = \begin{pmatrix} a + \lambda_1 & (a) \\ & \ddots & \\ (a) & a + \lambda_n \end{pmatrix}.$$

Exercice 40 [03124] [Correction]

Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$. Calculer le déterminant de la matrice de coefficient

$$a_{i,j} = \begin{cases} a_i + b_i & \text{si } i = j \\ b_j & \text{sinon.} \end{cases}$$

Exercice 41 [03578] [Correction]

Soient un naturel $n \geq 2$ et (x_1, \ldots, x_n) une famille de n réels distincts de $[0; \pi]$. On pose

$$P_n = \prod_{1 \le i < j \le n} (\cos x_j - \cos x_i)$$

et on considère la matrice $M_n \in \mathcal{M}_n(\mathbb{R})$ de coefficient général

$$m_{i,j} = \cos((j-1)x_i).$$

- (a) Montrer que $m_{i,j}$ est un polynôme en $\cos x_i$ et donner son coefficient dominant.
- (b) Calculer $\det M_n$ en fonction $\det P_n$.

Exercice 42 [03577] [Correction]

Pour une famille de n réels distincts (x_k) de $[0; \pi]$, on pose

$$P_n = \prod_{1 \le i \le j \le n} (\cos(x_i) - \cos(x_j)).$$

- (a) Combien le produit définissant P_n comporte-t-il de facteurs?
- (b) Pour $(i,j) \in [1;4]^2$ écrire la matrice $M \in \mathcal{M}_4(\mathbb{R})$ de coefficient général

$$m_{i,j} = \cos((j-1)x_i).$$

- (c) Montrer que $m_{i,j}$ est un polynôme en $\cos(x_i)$.
- (d) Calculer det(M) en fonction de P_4 et montrer |det(M)| < 24

Calculs de déterminants par une relation de récurrence

Exercice 43 [01426] [Correction]

Calculer en établissant une relation de récurrence

$$D_n = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \cdots & -1 & 0 \end{vmatrix}_{[n]}.$$

Exercice 44 [01427] [Correction]

Calculer en établissant une relation de récurrence

$$D_n = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{vmatrix}_{[n]}.$$

Exercice 45 [01429] [Correction]

Calculer en établissant une relation de récurrence

$$D_n = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & 3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & n+1 \end{vmatrix}_{[n]}$$

On exprimera le résultat à l'aide des termes de la suite (H_n) avec

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

Exercice 46 [01431] [Correction]

Calculer

$$D_{n} = \begin{vmatrix} C_{1}^{0} & C_{1}^{1} & 0 & \cdots & \cdots & 0 \\ C_{2}^{0} & C_{2}^{1} & C_{2}^{2} & 0 & & \vdots \\ C_{3}^{0} & C_{3}^{1} & C_{3}^{2} & C_{3}^{3} & \ddots & \vdots \\ C_{4}^{0} & C_{4}^{1} & C_{4}^{2} & C_{4}^{3} & \cdots & 0 \\ \vdots & & \ddots & C_{n-1}^{n-1} \\ C_{n}^{0} & C_{n}^{1} & C_{n}^{2} & C_{n}^{3} & \cdots & C_{n}^{n-1} \end{vmatrix}_{[n]}$$

en notant

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Exercice 47 [01432] [Correction]

Calculer

$$D_{n+1} = \begin{vmatrix} C_0^0 & C_1^1 & \cdots & C_n^n \\ C_1^0 & C_2^1 & \cdots & C_{n+1}^n \\ \vdots & \vdots & & \vdots \\ C_n^0 & C_{n+1}^1 & \cdots & C_{2n}^n \end{vmatrix}_{[n+1]}$$

en notant par

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Exercice 48 [03254] [Correction]

Calculer le déterminant de

$$A_n = \begin{pmatrix} a & (b) \\ \ddots & \\ (c) & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

Calculs de déterminants tridiagonaux

Exercice 49 [02584] [Correction] Soit $(a,b) \in \mathbb{R}^2$; calculer

Exercice 50 [00739] [Correction] Soient $x \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Calculer

Exercice 51 [00740] [Correction] Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Calculer

$$D_n = \begin{vmatrix} 2\cos(\theta) & 1 & & & (0) \\ 1 & \ddots & \ddots & & \\ & \ddots & \ddots & 1 \\ & (0) & & 1 & 2\cos(\theta) \end{vmatrix}_{[n]}.$$

Exercice 52 [00741] [Correction]

Calculer

$$D_n = \begin{vmatrix} 0 & 1 & & & & & & & & & \\ n & 0 & 2 & & & & & & \\ & n-1 & \ddots & \ddots & & & & \\ & & \ddots & \ddots & n & & \\ & & & 1 & 0 & \\ & & & & 1 & 0 & \\ \end{vmatrix}_{[n+1]}$$

Exercice 53 [01433] [Correction]

Pour $a \in \mathbb{K}^*$, calculer

Applications des déterminants

Exercice 54 [01422] [Correction]

(Identité de Lagrange) Calculer de deux façons :

$$\begin{vmatrix} a & -b \\ b & a \end{vmatrix} \begin{vmatrix} c & -d \\ d & c \end{vmatrix}.$$

Exercice 55 [01441] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \begin{pmatrix} 3 & -2 & -3 \\ -2 & 6 & 6 \\ 2 & -2 & -2 \end{pmatrix}.$$

- (a) Pour quelles valeurs de λ , a-t-on det $(A \lambda I_3) = 0$?
- (b) Déterminer une base $\mathcal{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E telle que

$$\operatorname{Mat}_{\mathcal{C}} f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

Exercice 56 [01442] [Correction]

Soient $n \in \mathbb{N}^*$, $A \in \mathrm{GL}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$.

Montrer qu'il existe $\varepsilon > 0$ tel que :

$$\forall x \in [-\varepsilon; \varepsilon], A + xB \in \mathrm{GL}_n(\mathbb{R}).$$

Exercice 57 [01445] [Correction]

Soient $\alpha \in \mathbb{C}$ et

$$M = \begin{pmatrix} 1 & \alpha & & 0 \\ & \ddots & & \\ 0 & & \ddots & \alpha \\ \alpha & 0 & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

- (a) Calculer $\det M$.
- (b) Déterminer, en fonction de α le rang de M.

Exercice 58 [03417] [Correction]

On note $GL_n(\mathbb{Z})$ l'ensemble formé des matrices inversibles d'ordre n à coefficients entiers dont l'inverse est encore à coefficients entiers.

Soient a_1, \ldots, a_n des entiers $(n \geq 2)$. Montrer qu'il existe une matrice de $\mathrm{GL}_n(\mathbb{Z})$ dont la première ligne est formée des entiers a_1, a_2, \ldots, a_n si, et seulement si, ces entiers sont premiers dans leur ensemble.

Exercice 59 [00749] [Correction]

Établir que l'inverse de la matrice $H=\left(\frac{1}{i+j-1}\right)_{1\leq i,j\leq n}$ est à coefficients entiers.

Exercice 60 [04960] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible et X, Y deux colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$. Établir

$$A + Y^t X \in GL_n(\mathbb{R}) \iff 1 + {}^t X A^{-1} Y \neq 0.$$

Exercice 61 [04981] [Correction]

Soient I un intervalle non vide de \mathbb{R} et (f_1, \ldots, f_n) une famille de fonctions de I vers \mathbb{R} .

Montrer que la famille (f_1, \ldots, f_n) est libre si, et seulement si, il existe x_1, \ldots, x_n dans I tels que le déterminant de la matrice $(f_i(x_j))_{1 \le i,j \le n}$ soit non nul.

Exercice 62 [05017] [Correction]

Soient A_1, \ldots, A_n des parties de [1; n] distinctes deux à deux. On suppose que les parties A_i s'intersectent en des singletons deux à deux et on forme la matrice $M=(m_{i,i})\in\mathcal{M}_n(\mathbb{R})$ déterminée par

$$m_{i,j} = \begin{cases} 1 & \text{si } i \in A_j \\ 0 & \text{sinon.} \end{cases}$$

Montrer que la matrice ${}^{t}MM$ est inversible et en déduire que la réunion des A_{i} est égale à [1; n].

Systèmes de Cramer

Exercice 63 [01437] [Correction]

Soient a, b, c et d des éléments de \mathbb{K} . Résoudre sur \mathbb{K} les systèmes suivants :

(a)
$$\begin{cases} x+y+z=1\\ ax+by+cz=d\\ a^2x+b^2y+c^2z=d^2 \end{cases}$$
 avec a,b,c deux à deux distincts.

(a)
$$\begin{cases} x+y+z=1\\ ax+by+cz=d\\ a^2x+b^2y+c^2z=d^2 \end{cases} \text{ avec } a,b,c \text{ deux à deux distincts.}$$
 (b)
$$\begin{cases} x+y+z=1\\ ax+by+cz=d\\ a^3x+b^3y+c^3z=d^3 \end{cases} \text{ avec } a,b,c \text{ deux à deux distincts et } a+b+c\neq 0.$$

Exercice 64 [01438] [Correction]

Résoudre

$$\begin{cases} x+y+z=a\\ x+jy+j^2z=b\\ x+j^2y+jz=c \end{cases}$$

en fonction de $a, b, c \in \mathbb{C}$.

Exercice 65 [01439] [Correction]

Résoudre en fonction de $a \in \mathbb{C}$ le système

$$\begin{cases} x + ay + a^2z = 0\\ \overline{a}x + y + az = 0\\ \overline{a}^2x + \overline{a}y + z = 0. \end{cases}$$

Exercice 66 [01440] [Correction]

Soient $a, b, c \in \mathbb{C}$ distincts.

(a) Résoudre

$$\begin{cases} x + ay + a^{2}z = a^{3} \\ x + by + b^{2}z = b^{3} \\ x + cy + c^{2}z = c^{3} \end{cases}$$

en introduisant : $P = X^3 - (x + yX + zX^2)$

(b) Même question pour

$$\begin{cases} x + ay + a^2z = a^4 \\ x + by + b^2z = b^4 \\ x + cy + c^2z = c^4. \end{cases}$$

Comatrice

Exercice 67 [01444] [Correction]

Soient n un entier supérieur à 2 et $A \in \mathcal{M}_n(\mathbb{K})$.

(a) Établir

$$\begin{cases} \operatorname{rg}(A) = n \implies \operatorname{rg}(\operatorname{Com}(A)) = n \\ \operatorname{rg}(A) = n - 1 \implies \operatorname{rg}(\operatorname{Com}(A)) = 1 \\ \operatorname{rg}(A) \le n - 2 \implies \operatorname{rg}(\operatorname{Com}(A)) = 0 \end{cases}$$

(b) Montrer

$$\det(\operatorname{Com}(A)) = (\det(A))^{n-1}.$$

(c) En déduire

Exercice 68 [03142] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

On suppose que les matrices A et B commutent. Montrer que les comatrices de Aet B commutent.

Exercice 69 [03576] [Correction]

(a) Donner le rang de $B = {}^{t}(\operatorname{Com} A)$ en fonction de celui de $A \in \mathcal{M}_{n}(\mathbb{K})$

(b) On se place dans le cas où rg A = n - 1. Soit $C \in \mathcal{M}_n(\mathbb{K})$ telle que

$$AC = CA = O_n$$
.

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que

$$C = \lambda B$$
.

Exercice 70 [02659] [Correction]

Soient des matrices $A, B \in \mathcal{M}_n(\mathbb{Z})$ telles que det A et det B sont premiers entre eux.

Montrer l'existence de $U, V \in \mathcal{M}_n(\mathbb{Z})$ telles que

$$UA + VB = I_n$$
.

Exercice 71 [03944] [Correction]

Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que la comatrice de S est symétrique.

Déterminants de Vandermonde et apparentés

Exercice 72 [02385] [Correction]

Calculer

$$D_k = \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-1} & a_1^{k+1} & \cdots & a_1^n \\ 1 & a_2 & \cdots & a_2^{k-1} & a_2^{k+1} & \cdots & a_2^n \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^{k-1} & a_n^{k+1} & \cdots & a_n^n \end{vmatrix}.$$

Exercice 73 [02386] [Correction]

Soit $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ distincts et $P(X) = \prod_{i=1}^n (X - \lambda_i)$. Calculer:

$$\Delta(X) = \begin{vmatrix} \frac{P(X)}{X - \lambda_1} & \frac{P(X)}{X - \lambda_2} & \cdots & \frac{P(X)}{X - \lambda_n} \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-2} & \lambda_2^{n-2} & \cdots & \lambda_n^{n-2} \end{vmatrix}.$$

Calculs de déterminants par blocs

Exercice 74 [03129] [Correction]

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ telles que C et D commutent.

(a) On suppose que D est inversible, établir

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC).$$

(b) Généraliser la formule au cas où D n'est plus supposée inversible.

Exercice 75 [02694] [Correction]

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ avec AC = CA. Montrer que

$$\det\begin{pmatrix} A & C \\ B & D \end{pmatrix} = \det(DA - BC).$$

Exercice 76 [02387] [Correction]

(a) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que

$$\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \ge 0.$$

- (b) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB = BA. Montrer que $\det(A^2 + B^2) \ge 0$.
- (c) Trouver un contre-exemple à b) si A et B ne commutent pas.
- (d) Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$ telles que AC = CA. Montrer que

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - CB).$$

Exercice 77 [00198] [Correction]

Soient $B \in \mathcal{M}_n(\mathbb{R})$ et

$$A = \begin{pmatrix} I_n & B \\ B & I_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

- (a) À quelle condition la matrice A est-elle inversible?
- (b) Donner son inverse quand cela est possible.

Exercice 78 [00713] [Correction]

On considère une matrice $M \in \mathcal{M}_n(\mathbb{K})$ inversible écrite sous la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

avec $A \in \mathcal{M}_p(\mathbb{K})$ et $D \in \mathcal{M}_{n-p}(\mathbb{K})$.

On écrit la comatrice de M sous une forme analogue

$$\operatorname{Com} M = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$$

avec $A' \in \mathcal{M}_p(\mathbb{K})$ et $D' \in \mathcal{M}_{n-p}(\mathbb{K})$.

Vérifier

$$\det A' = \det(M)^{p-1} \det D.$$

Exercice 79 [03147] [Correction]

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$.

(a) On suppose C^tD symétrique et D inversible. Montrer que

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A^t D - B^t C).$$

(b) On suppose toujours C^tD symétrique mais on ne suppose plus D inversible. Montrer que l'égalité précédente reste vraie.

Exercice 80 [03288] [Correction]

Soient A,B,C,D des matrices carrées d'ordre n, réelles et commutant deux à deux. Montrer que la matrice

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

est inversible si, et seulement si, AD - BC l'est.

Corrections

Exercice 1 : [énoncé]

Pour commencer, notons que, pour tout $k \in \{1, ..., n\}$, $c^{k-1}(1) = k$ et, par conséquent, on a aussi $c^{-(k-1)}(k) = 1$.

Soit σ une permutation commutant avec c_n .

Posons $k = \sigma(1) \in \{1, 2, \dots, n\}$ et $s = c^{-(k-1)} \circ \sigma$ de sorte que s(1) = 1.

Comme σ et c commutent, s et c commutent aussi et on a, pour tout $2 \le i \le n$,

$$s = c^{(i-1)} \circ s \circ c^{-(i-1)}$$

d'où

$$s(i) = c^{(i-1)} \circ s \circ c^{-(i-1)}(i) = c^{(i-1)} \circ s(1) = \sigma^{(i-1)}(1) = i$$

car $c^{-(i-1)}(i) = 1$. Par conséquent, $s = \text{Id puis } \sigma = c^k$.

Inversement, les permutations de la forme c^k avec $1 \le k \le n$ commutent avec c.

Exercice 2 : [énoncé]

Pour $x = \sigma(a_i)$, on a

$$(\sigma \circ c \circ \sigma^{-1})(x) = \sigma(a_{i+1})$$

(en posant $a_{p+1} = a_1$).

Pour $x \notin \{\sigma(a_1), \ldots, \sigma(a_p)\}$, on a

$$(\sigma \circ c \circ \sigma^{-1})(x) = \sigma \circ \sigma^{-1}(x) = x$$

 $\operatorname{car} c(\sigma^{-1}(x)) = \sigma^{-1}(x) \text{ puisque } \sigma^{-1}(x) \notin \{a_1, \dots, a_p\}.$

Ainsi

$$\sigma \circ c \circ \sigma^{-1} = (\sigma(a_1) \quad \sigma(a_2) \quad \dots \quad \sigma(a_p)).$$

Exercice 3: [énoncé]

Si $\{i, j\}$ est stable par σ alors $\{\sigma(i), \sigma(j)\} = \{i, j\}$.

On a alors

$$\forall x \notin \{i, j\}, (\sigma \circ \tau)(x) = \sigma(x) = (\tau \circ \sigma)(x).$$

Pour x = i alors $(\sigma \circ \tau)(i) = \sigma(j) = (\tau \circ \sigma)(i)$ et pour x = j, $(\sigma \circ \tau)(j) = \sigma(i) = (\tau \circ \sigma)(j)$.

Par suite

$$\sigma \circ \tau = \tau \circ \sigma$$
.

Inversement, si $\sigma \circ \tau = \tau \circ \sigma$ alors $\sigma(i) = (\sigma \circ \tau)(j) = (\tau \circ \sigma)(j) = \tau(\sigma(j))$.

Puisque $\tau(\sigma(j)) \neq \sigma(j)$ on a $\sigma(j) \in \{i, j\}$.

De même $\sigma(i) \in \{i, j\}$ et donc $\{i, j\}$ stable par σ .

Exercice 4 : [énoncé]

 $H \subset \mathcal{S}_n$, Id $\in H$. Remarquons, $\forall k \in \{1, \dots, n\}$, $\sigma(k) = n + 1 - \sigma(n + 1 - k)$. Soient $\sigma, \sigma' \in H$,

$$(\sigma' \circ \sigma)(k) = \sigma'(\sigma(k)) = n + 1 - \sigma'(n + 1 - \sigma(k)) = n + 1 - \sigma' \circ \sigma(n + 1 - k)$$

donc $\sigma' \circ \sigma \in H$.

Soit $\sigma \in H$. Posons $\ell = \sigma^{-1}(k)$. On a

$$\sigma(n+1-\ell) = n+1 - \sigma(\ell) = n+1-k$$

donc $\sigma^{-1}(n+1-k) = n+1-\ell$ puis

$$\sigma^{-1}(k) + \sigma^{-1}(n+1-k) = \ell + (n+1-\ell) = n+1.$$

Exercice 5 : [énoncé]

On note $I(\sigma)$ le nombre d'inversions de la permutation σ :

$$I(\sigma) = \operatorname{Card}(\{1 \le i < j \le n \mid \sigma(i) > \sigma(j)\}.$$

On a $\varepsilon(\sigma) = (-1)^{I(\sigma)}$ et $I(\sigma)$ se calcule en dénombrant, pour chaque de terme de la seconde ligne, le nombre de termes inférieurs qui le suit.

(a)
$$I(\sigma) = 2 + 3 + 2 + 4 + 3 + 2 + 1 + 0 = 17 \text{ donc } \varepsilon(\sigma) = -1.$$

(b)
$$I(\sigma) = 0 + 1 + 0 + 3 + 0 + 2 + 0 + 0 = 6 \text{ donc } \varepsilon(\sigma) = 1.$$

Exercice 6: [énoncé]

On note $I(\sigma)$ le nombre d'inversions de la permutation σ :

$$I(\sigma) = \operatorname{Card}(\{1 \le i < j \le n \mid \sigma(i) > \sigma(j)\}.$$

On a $\varepsilon(\sigma) = (-1)^{I(\sigma)}$ et $I(\sigma)$ se calcule en dénombrant, pour chaque de terme de la seconde ligne, le nombre de termes inférieurs qui le suit.

(a)
$$I(\sigma) = (n-1) + (n-2) + \dots + 1 + 0 = \frac{n(n-1)}{2}$$
 donc

$$\varepsilon(\sigma) = (-1)^{\frac{n(n-1)}{2}}.$$

(b)
$$I(\sigma) = 0 + 1 + 2 + \dots + (n-1) + 0 + \dots + 0 = \frac{n(n-1)}{2}$$
 donc

$$\varepsilon(\sigma) = (-1)^{\frac{n(n-1)}{2}}.$$

Exercice 7: [énoncé]

- (a) L'application $\sigma \mapsto \tau \circ \sigma$ est involutive, donc bijective.
- (b) L'application $\sigma \mapsto \tau \circ \sigma$ transforme \mathcal{A}_n en $\mathcal{S}_n \setminus \mathcal{A}_n$ donc Card $\mathcal{A}_n = \operatorname{Card} \mathcal{S}_n \setminus \mathcal{A}_n$. Or \mathcal{S}_n est la réunion disjointe de \mathcal{A}_n et de $\mathcal{S}_n \setminus \mathcal{A}_n$ donc

 $\operatorname{Card} A_n = \frac{1}{2} \operatorname{Card} S_n = \frac{n!}{2}.$

Exercice 8 : [énoncé]

Notons que

$$\sigma \circ (a \quad b \quad c) \circ \sigma^{-1} = (\sigma(a) \quad \sigma(b) \quad \sigma(c)).$$

Soit $\sigma \colon \mathbb{N}_n \to \mathbb{N}_n$ une permutation définie par :

$$\sigma(a) = a', \sigma(b) = b' \text{ et } \sigma(c) = c'.$$

Si σ est paire alors le problème est résolu.

Si σ est impaire alors soit $d \neq e \in \mathbb{N}_n \setminus \{a, b, c\}$ (possible car $n \geq 5$) et $\tau = \begin{pmatrix} d & e \end{pmatrix}$. La permutation $\sigma \circ \tau$ est paire et satisfait la relation voulue.

Exercice 9: [énoncé]

 $\varphi \colon E \times E \to \mathbb{K}$.

 $\varphi(y,x) = f(p(y))f(q(x)) - f(p(x))f(q(x)) = -\varphi(x,y)$. Il suffit d'étudier la linéarité en la 1ère variable.

 $\varphi(\lambda x + \mu x', y) = f(p(\lambda x + \mu x'))f(q(y)) - f(p(y))f(q(\lambda x + \mu x'))$ or f, p et q sont linéaires donc

 $\varphi(\lambda x + \mu x', y) = \big(\lambda f(p(x)) + \mu f(p(x'))\big)f(q(y)) - f(p(y))\big(\lambda f(q(x)) + \mu f(q(x'))\big)$ puis en développant et en réorganisant : $\varphi(\lambda x + \mu x', y) = \lambda \varphi(x, y) + \mu \varphi(x', y)$. φ est donc une forme bilinéaire antisymétrique donc alternée.

Exercice 10: [énoncé]

Posons $n = \dim E$. Comme $\det(f^2) = \det(-I_n)$ on a $\det(f)^2 = (-1)^n \ge 0$, donc n est pair.

Exercice 11 : [énoncé]

(a) Il est clair que V est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$. On pose $f_k \colon \mathbb{R} \to \mathbb{R}$ définie par $f_k(x) = x^k e^x$. $\mathcal{B} = (f_0, \dots, f_n)$ forme une base de V, donc dim V = n + 1. (b) Pour $f(x) = P(x)e^x$ on a $D(f)(x) = f'(x) = (P(x) + P'(x))e^x$.

D est bien une application de V dans V.

De plus la linéarité de D découle de la linéarité de la dérivation et on peut donc conclure $D \in \mathcal{L}(V)$.

Puisque $(x^k e^x)' = (x^k + kx^{k-1})e^x$ on a $D(f_k) = f_k + kf_{k-1}$ donc a

$$\operatorname{Mat}_{\mathcal{B}}(D) = \begin{pmatrix} 1 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & n \\ 0 & & & 1 \end{pmatrix}.$$

Par suite det $D = 1 \times 1 \times \cdots \times 1 = 1$.

Exercice 12 : [énoncé]

(a) La famille (1,i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} . Pour $a,b\in\mathbb{C}$, l'application $\varphi_{a,b}\colon z\mapsto az+b\overline{z}$ est \mathbb{R} -linéaire et sa matrice dans la base (1,i) est

$$\begin{pmatrix} \operatorname{Re} a + \operatorname{Re} b & \operatorname{Im} b - \operatorname{Im} a \\ \operatorname{Im} a + \operatorname{Im} b & \operatorname{Re} a - \operatorname{Re} b \end{pmatrix}.$$

Pour f endomorphisme du \mathbb{R} -espace vectoriel \mathbb{C} de matrice

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$$

dans la base (1, i), on a $f = \varphi_{a,b}$ si, et seulement si,

$$\begin{cases} \operatorname{Re} a + \operatorname{Re} b = \alpha \\ \operatorname{Im} a + \operatorname{Im} b = \beta \\ \operatorname{Im} b - \operatorname{Im} a = \gamma \\ \operatorname{Re} a - \operatorname{Re} b = \delta. \end{cases}$$

Ce système possède une unique solution qui est

$$a = \frac{\alpha + \delta}{2} + i \frac{\beta - \gamma}{2}$$
 et $b = \frac{\alpha - \delta}{2} + i \frac{\beta + \gamma}{2}$.

(b) Le déterminant de f vaut

$$\det f = \alpha \delta - \beta \gamma = |a|^2 - |b|^2.$$

Exercice 13: [énoncé]

Notons $E_{i,j}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{C})$. On observe

$$\varphi_A(E_{i,j}) = \sum_{k=1}^n a_{k,i} E_{k,j}.$$

Par suite dans la base $(E_{1,1}, \ldots, E_{n,1}, E_{1,2}, \ldots, E_{n,2}, \ldots, E_{1,n}, \ldots, E_{n,n})$, la matrice de l'endomorphisme φ_A est diagonale par blocs avec n blocs diagonaux tous égaux à A. On en déduit

$$\operatorname{tr} \varphi_A = n \operatorname{tr} A \operatorname{et} \operatorname{det} \varphi_A = (\operatorname{det} A)^n.$$

Exercice 14: [énoncé]

(a) Notons C_1, \ldots, C_n les colonnes de A et supposons

$$\lambda_1 C_1 + \dots + \lambda_n C_n = 0.$$

Si $m = \max(|\lambda_1|, \dots, |\lambda_n|) \neq 0$ alors, puisque pour tout $1 \leq i \leq n$,

$$\sum_{j=1}^{n} \lambda_j a_{i,j} = 0$$

on obtient

$$|\lambda_i| \le \frac{\sum_{j \ne i} |\lambda_j| |a_{i,j}|}{|a_{i,i}|} \le m \frac{\sum_{j \ne i} |a_{i,j}|}{|a_{i,i}|} < m$$

ce qui est absurde compte tenu de la définition de m.

Par suite, la famille (C_1, \ldots, C_n) est libre et donc A inversible.

(b) Considérons l'application $f: x \in \mathbb{R} \mapsto \det(A + xI_n)$.

La fonction f est clairement polynomiale de monôme dominant x^n , elle est donc continue et de limite $+\infty$ quand $x \to +\infty$.

De plus, le résultat précédent s'applique à la matrice $A + xI_n$ pour tout $x \ge 0$ et donc $f(x) \ne 0$ sur $[0; +\infty[$.

Par continuité, la fonction f ne peut prendre de valeurs ≤ 0 et donc

$$\forall x \ge 0, f(x) > 0.$$

En particulier $\det A = f(0) > 0$.

Exercice 15: [énoncé]

Par conjugaison d'une somme et de produits

$$\det \overline{A} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \overline{a_{\sigma(i),i}} = \overline{\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}} = \overline{\det A}.$$

Exercice 16: [énoncé]

Ici ${}^{t}A = \overline{A}$, donc $\det(A) = \det({}^{t}A) = \det \overline{A}$.

Comme

$$\det \overline{A} = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \overline{a_{\sigma(i),i}} = \overline{\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}} = \overline{\det A}$$

on peut conclure $\det A \in \mathbb{R}$.

Exercice 17: [énoncé]

Comme ${}^tA = -A$ on a

$$\det(A) = \det({}^{t}A) = \det(-A) = (-1)^{2n+1} \det(A) = -\det(A)$$

donc det(A) = 0.

La matrice

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

fournit un contre-exemple au second problème posé.

Exercice 18: [énoncé]

Notons $A = (a_{i,j})$ et $B = ((-1)^{i+j} a_{i,j})$. On a

$$\det B = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n (-1)^{\sigma(i)+i} a_{\sigma(i),i}$$

en regroupant les puissance de (-1)

$$\det B = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) (-1)^{\sum_{i=1}^n \sigma(i) + i} \prod_{i=1}^n a_{\sigma(i),i}$$

puis

$$\det B = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) (-1)^{n(n+1)} \prod_{i=1}^n a_{\sigma(i),i}.$$

Ainsi

$$\det B = (-1)^{n(n+1)} \det A = \det A$$

car n(n+1) est pair.

Exercice 19: [énoncé]

En ajoutant la première colonne de A à chacune des suivantes, on obtient une matrice dont les colonnes d'indices 2 jusqu'à n ont pour coefficients 0, 2 ou -2. On peut donc factoriser 2 sur chacune de ces colonnes et l'on obtient

$$\det A = 2^{n-1} \det B$$

avec B une matrice dont les coefficients sont 0,1 ou -1 de sorte que $\det B \in \mathbb{Z}$

Exercice 20: [énoncé]

La somme des colonnes de B est nulle donc det B=0.

Exercice 21 : [énoncé]

- (a) $AA^{-1} = I_n$ donne $(\det A)(\det A^{-1}) = 1$ or $\det A, \det A^{-1} \in \mathbb{Z}$ donc $\det A = \pm 1$.
- (b) Posons $P(x) = \det(A + xB)$. P est une fonction polynomiale de degré inférieur à n.

Pour tout $x \in \{0, 1, ..., 2n\}$, on a $P(x) = \pm 1$ donc $P(x)^2 - 1 = 0$. Le polynôme $P^2 - 1$ possède au moins 2n + 1 racines et est de degré inférieur à 2n, c'est donc le polynôme nul.

On en déduit que pour tout $x \in \mathbb{R}$, $P(x) = \pm 1$.

Pour x = 0, on obtient $\det A = \pm 1$.

Pour $x \to +\infty$,

$$\det\left(\frac{1}{x}A + B\right) = \frac{P(x)}{x^n} \to 0$$

donne $\det B = 0$.

Exercice 22 : [énoncé]

On note \mathcal{B} la base canonique de l'espace des colonnes.

$$\det A = \det_{\mathcal{B}}(A_1, \dots, A_n)$$

 $_{
m et}$

$$\det B = \det_{\mathcal{B}}(B_1, \dots, B_n) = \det_{\mathcal{B}}\left(\sum_{i=1}^n B_i, B_2, \dots, B_n\right)$$

avec

$$\sum_{i=1}^{n} B_i = (n-1) \sum_{i=1}^{n} A_i.$$

Par suite

$$\det B = (n-1)\det_{\mathcal{B}} \left(\sum_{i=1}^{n} A_i, B_2 - \sum_{i=1}^{n} A_i, \dots, B_n - \sum_{i=1}^{n} A_i \right).$$

Ce qui donne

$$\det B = (n-1)\det_{\mathcal{B}}\left(\sum_{i=1}^{n} A_i, -A_2, \dots, -A_n\right) = (-1)^{n-1}(n-1)\det(A_1, \dots, A_n).$$

Finalement

$$\det B = (-1)^{n-1}(n-1)\det A.$$

Exercice 23: [énoncé]

Notons que pour n = 1: la relation $\det(A + X) = \det(A) + \det(X)$ est vraie pour tout A et tout X.

On suppose dans la suite $n \geq 2$.

Pour X = A, la relation $\det(A + X) = \det(A) + \det(X)$ donne $2^n \det(A) = 2 \det(A)$ et donc $\det(A) = 0$.

La matrice A n'est donc par inversible et en posant r < n égal à son rang, on peut écrire $A = QJ_rP$ avec P,Q inversibles et

$$J_r = \begin{pmatrix} I_r & (0) \\ (0) & O_{n-r} \end{pmatrix}.$$

Posons alors $X = QJ'_rP$ avec

$$J_r' = \begin{pmatrix} O_r & (0) \\ (0) & I_{n-r} \end{pmatrix}.$$

Puisque $A + X = QI_nP = QP$, la matrice A + X est inversible et donc $det(X) = det(A + X) \neq 0$.

On en déduit que la matrice J'_r est l'identité et donc r=0 puis $A=O_n$.

Exercice 24 : [énoncé]

La matrice H est équivalente à la matrice J_1 dont tous les coefficients sont nuls sauf celui en position (1,1). Notons $P,Q \in \mathrm{GL}_n(\mathbb{R})$ telles que

$$H = QJ_1P$$

et introduisons $B \in \mathcal{M}_n(\mathbb{R})$ déterminée par

$$A = QBP$$
.

La relation

$$\det(A+H)\det(A-H) \le \det A^2$$

équivaut alors à la relation

$$\det(B+J_1)\det(B-J_1) \le \det B^2.$$

Notons C_1, \ldots, C_n les colonnes de B et $\mathcal{B} = (E_1, \ldots, E_n)$ la base canonique de l'espace $\mathcal{M}_{n,1}(\mathbb{K})$. On a

$$\det(B+J_1) = \det_{\mathcal{B}}(C_1+E_1, C_2, \dots, C_n) \text{ et } \det(B-J_1) = \det_{\mathcal{B}}(C_1-E_1, C_2, \dots, C_n).$$

Par multilinéarité du déterminant

$$\det(B+J_1) = \det B + \det_{\mathcal{B}}(E_1, C_2, \dots, C_n) \text{ et } \det(B-J_1) = \det B - \det_{\mathcal{B}}(E_1, C_2, \dots, C_n)$$
Exercice 27 : [énoncé]

d'où l'on tire

$$\det(B+J_1)\det(B-J_1) = \det B^2 - \det_{\mathcal{B}}(E_1, C_2, \dots, C_n)^2 \le \det B^2.$$

Exercice 25 : [énoncé]

En retranchant la première ligne aux autres lignes, le déterminant de la matrice A + xJ apparaît comme le déterminant d'une matrice où figure des x seulement sur la première ligne. En développant selon cette ligne, on obtient que $\det(A+xJ)$ est une fonction affine de la variable x.

De plus

$$\det(A - xJ) = \det(-^t A - xJ) = (-1)^{2n} \det(^t A + xJ)$$

et puisque la matrice J est symétrique

$$\det(A - xJ) = \det({}^tA + x^tJ) = \det(A + xJ).$$

La fonction affine $x \mapsto \det(A - xJ)$ est donc une fonction paire et par conséquent c'est une fonction constante. On a alors

$$\forall x \in \mathbb{R}, \det(A + xJ) = \det(A + 0.J) = \det A.$$

Exercice 26 : [énoncé]

Raisonnons par récurrence sur $n \in \mathbb{N}^*$.

La propriété est immédiate pour n = 1.

Supposons la propriété vérifiée pour n > 1.

Soit $A = (a_{i,j}) \in \mathcal{M}_{n+1}(\mathbb{R})$ vérifiant les propriétés énoncées. En développant le déterminant de A selon la première ligne, on obtient

$$\det A = \sum_{j=1}^{n+1} (-1)^{1+j} a_{1,j} \Delta_{1,j}$$

avec $\Delta_{1,j}$ mineur d'indice (1,j) de la matrice A.

Puisque la matrice définissant le mineur $\Delta_{1,j}$ est à coefficients positifs et que la somme des coefficients de chaque ligne est inférieure à 1, on peut lui appliquer l'hypothèse de récurrence et affirmer $|\Delta_{1,i}| \leq 1$.

On en déduit

$$|\det A| \le \sum_{j=1}^{n+1} a_{1,j} \le 1.$$

Récurrence établie.

On factorise $A^2 + I_n$ dans le cadre des matrices complexes.

Puisque les matrices A et I_n commutent, on peut écrire

$$A^{2} + I_{n} = A^{2} - (i^{2})I_{n} = (A - iI_{n})(A + iI_{n}).$$

Le déterminant d'un produit étant le produit des déterminants, on poursuit

$$\det(A^2 + I_n) = \det(A - iI_n) \det(A + iI_n).$$

Or, si \overline{M} désigne la matrice obtenue par conjugaison des coefficients d'une matrice carrée M, on observe

$$\det(\overline{M}) = \overline{\det(M)}$$

et donc

$$\det(A^2 + \mathbf{I}_n) = \overline{\det(A + i\mathbf{I}_n)} \det(A + i\mathbf{I}_n) = \left| \det(A + i\mathbf{I}_n) \right|^2 \ge 0.$$

Exercice 28 : [énoncé]

(a) En développant selon la première ligne,

$$\begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix} = -a \begin{vmatrix} a & c \\ b & 0 \end{vmatrix} + b \begin{vmatrix} a & 0 \\ b & c \end{vmatrix} = abc + abc = 2abc.$$

(b) En sommant les colonnes sur la première et en factorisant

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix}.$$

En retirant la première ligne aux suivante et en développant sur la première colonne

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = (a+b+c) \begin{vmatrix} a-b & b-c \\ c-a & a-b \end{vmatrix} = (a+b+c)(a^2+b^2+c^2-(ab+bc+ca)).$$

(c) En retranchant la première colonne aux suivantes puis en sommant les colonnes sur la première

$$D = \begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}$$

$$= \begin{vmatrix} a+b & c-a & c-b \\ a^2+b^2 & c^2-a^2 & c^2-b^2 \\ a^3+b^3 & c^3-a^3 & c^3-b^3 \end{vmatrix} = \begin{vmatrix} 2c & c-a & c-b \\ 2c^2 & c^2-a^2 & c^2-b^2 \\ 2c^3 & c^3-a^3 & c^3-b^3 \end{vmatrix}.$$

En factorisant par 2 puis en retranchant la première colonne aux suivantes

$$D = 2 \begin{vmatrix} c & -a & -b \\ c^2 & -a^2 & -b^2 \\ c^3 & -a^3 & -b^3 \end{vmatrix}.$$

Enfin en factorisant on se ramène à un déterminant de Vandermonde

$$D = 2abc \begin{vmatrix} 1 & 1 & 1 \\ c & a & b \\ c^2 & a^2 & b^2 \end{vmatrix} = 2abc \begin{vmatrix} 1 & 1 & 1 \\ 0 & a-c & b-c \\ 0 & a^2-c^2 & b^2-c^2 \end{vmatrix}.$$

Finalement

$$D = 2abc(a - c)(b - c)\begin{vmatrix} 1 & 1 \\ a + c & b + c \end{vmatrix} = 2abc(a - c)(b - c)(b - a).$$

(d) En retranchant à chaque ligne la précédente (en commençant par la dernière)

$$D = \begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix} = \begin{vmatrix} a & a & a & a \\ 0 & b - a & b - a & b - a \\ 0 & 0 & c - b & c - b \\ 0 & 0 & 0 & d - c \end{vmatrix} = a(b - a)(c - b)(d - c).$$

(e) En sommant toutes les colonnes sur la première et en factorisant

$$D = \begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix} = \begin{vmatrix} a+b+2c & c & c & b \\ a+b+2c & a & b & c \\ a+b+2c & b & a & c \\ a+b+2c & c & c & a \end{vmatrix} = (a+b+2c) \begin{vmatrix} 1 & c & c & b \\ 1 & a & b & c \\ 1 & b & a & c \\ 1 & c & c & a \end{vmatrix}.$$

En retranchant la première ligne aux suivantes et en factorisant

$$D = (a+b+2c) \begin{vmatrix} 1 & c & c & b \\ 0 & a-c & b-c & c-b \\ 0 & b-c & a-c & c-b \\ 0 & 0 & 0 & a-b \end{vmatrix}$$

donc

$$D = (a+b+2c)(a-b)\begin{vmatrix} a-c & b-c \\ b-c & a-c \end{vmatrix} = (a+b+2c)(a-b)((a-c)^2 - (b-c)^2)$$

puis

$$D = (a + b + 2c)(a - b)^{2}(a + b - 2c).$$

(f) En retirant la première colonne aux suivantes

$$D = \begin{vmatrix} 1 & 1 & 1 \\ \cos a & \cos b & \cos c \\ \sin a & \sin b & \sin c \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ \cos a & \cos b - \cos a & \cos c - \cos a \\ \sin a & \sin b - \sin a & \sin c - \sin a \end{vmatrix}.$$

Par la formule de factorisation

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}.$$

$$D = -4\sin\frac{b-a}{2}\sin\frac{c-a}{2} \begin{vmatrix} \sin\frac{b+a}{2} & \sin\frac{c+a}{2} \\ \cos\frac{b+a}{2} & \cos\frac{c+a}{2} \end{vmatrix}$$

puis

$$D = -4\sin\frac{b-a}{2}\sin\frac{c-a}{2}\sin\frac{b-c}{2}.$$

Exercice 29 : [énoncé]

$$\det(a_{\max(i,j)}) = \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_2 & a_3 & \cdots & a_n \\ a_3 & a_3 & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_n & a_n & a_n & \cdots & a_n \end{vmatrix}.$$

En retranchant à chaque colonne la précédente (en commençant par la première)

$$\det(a_{\max(i,j)}) = \begin{vmatrix} a_1 - a_2 & a_2 - a_3 & \cdots & a_{n-1} - a_n & a_n \\ 0 & a_2 - a_3 & \cdots & a_{n-1} - a_n & a_n \\ & 0 & \ddots & \vdots & \vdots \\ & & \ddots & a_{n-1} - a_n & a_n \\ (0) & & 0 & a_n \end{vmatrix}$$

et donc

$$\det(a_{\max(i,j)}) = (a_1 - a_2)(a_2 - a_3) \dots (a_{n-1} - a_n)a_n$$

Pour $a_i = i$,

$$\det(a_{\max(i,j)}) = (-1)^{n-1}n.$$

Pour $a_i = n + 1 - i$,

$$\det(a_{\min(i,j)}) = 1.$$

Exercice 30 : [énoncé]

$\begin{vmatrix} a_1 & a_2 & \cdots & a_n \\ & \ddots & \ddots & \vdots \\ & & \ddots & a_2 \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$

Exercice 31 : [énoncé]

Via $L_n \leftarrow L_n - L_{n-1}, L_{n-1} \leftarrow L_{n-1} - L_{n-2}, \dots, L_3 \leftarrow L_3 - L_2, L_2 \leftarrow L_2 - L_1$ (dans cet ordre)

$$\begin{vmatrix} S_1 & S_1 & S_1 & \cdots & S_1 \\ S_1 & S_2 & S_2 & \cdots & S_2 \\ S_1 & S_2 & S_3 & \cdots & S_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S_1 & S_2 & S_3 & \cdots & S_n \end{vmatrix} = \begin{vmatrix} S_1 & S_1 & \cdots & \cdots & S_1 \\ & 2 & \cdots & \cdots & 2 \\ & & 3 & \cdots & 3 \\ & & (0) & & \ddots & \vdots \\ & & & & n \end{vmatrix} = n!$$

Exercice 32 : [énoncé]

(a) ${}^tAA = \operatorname{diag}(\delta, \delta, \delta, \delta)$ avec $\delta = a^2 + b^2 + c^2 + d^2$. Par suite $\det A = \pm (a^2 + b^2 + c^2 + d^2)^2.$

Or b, c, d fixés, par développement de déterminant, l'expression de det A est un polynôme en a unitaire de degré 4 donc

$$\det A = (a^2 + b^2 + c^2 + d^2)^2.$$

(b) Avec des notations immédiates : AA' = A'' avec :

$$\begin{cases} a'' = aa' - bb' - cc' - dd' \\ b'' = ab' + b'a + cd' - dc' \\ c'' = ac' - bd' + ca' + db' \\ d'' = ad' + bc' - cb' + da'. \end{cases}$$

Par égalité des déterminants et considération de signes

$$(a^2 + b^2 + c^2 + d^2)^2(a'^2 + b'^2 + c'^2 + d'^2)^2 = (a''^2 + b''^2 + c''^2 + d''^2)^2$$

et les quantités suivantes étant positives

$$(a^2 + b^2 + c^2 + d^2)(a'^2 + b'^2 + c'^2 + d'^2) = a''^2 + b''^2 + c''^2 + d''^2$$

avec $a'', b'', c'', d'' \in \mathbb{Z}$ par opérations.

Exercice 33: [énoncé]

$$C_1 \leftarrow C_1$$
 (a) En factorisant les colonnes
$$C_2 \leftarrow C_2 - C_3$$

$$\vdots$$

$$C_{n-1} \leftarrow C_{n-1} - C_n$$

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

En retranchant à chaque ligne a fois la précédente

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc \begin{vmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b(b-a) & c(c-a) \end{vmatrix}$$

et enfin en développant

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc(b-a)(c-a)(c-b).$$

(b) En séparant la première colonne en deux

$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix} = \begin{vmatrix} a & b+c & c+a \\ a^2 & b^2+c^2 & c^2+a^2 \\ a^3 & b^3+c^3 & c^3+a^3 \end{vmatrix} + \begin{vmatrix} b & b+c & c+a \\ b^2 & b^2+c^2 & c^2+a^2 \\ b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix}.$$

Puis en procédant à des combinaisons judicieuses sur les colonnes

$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix} = \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} + \begin{vmatrix} b & c & a \\ b^2 & c^2 & a^2 \\ b^3 & c^3 & a^3 \end{vmatrix}.$$

Enfin, par permutation des colonnes dans le deuxième déterminant

$$\begin{vmatrix} a+b & b+c & c+a \\ a^2+b^2 & b^2+c^2 & c^2+a^2 \\ a^3+b^3 & b^3+c^3 & c^3+a^3 \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = 2abc(b-a)(c-a)(c-b).$$

Exercice 34: [énoncé]

En sommant toutes les colonnes sur la première

$$D_n = \frac{n(n+1)}{2} \begin{vmatrix} 1 & n & n-1 & \dots & 2 \\ 1 & 1 & \ddots & & 3 \\ \vdots & 2 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & n \\ 1 & n-1 & \dots & 2 & 1 \end{vmatrix}$$

En retranchant à chaque ligne la précédente (en commençant par la fin)

$$D_n = \frac{n(n+1)}{2} \begin{vmatrix} 1 & n & n-1 & \dots & 2 \\ 0 & 1-n & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 1 & \dots & 1 & 1-n \end{vmatrix}.$$

On développe selon la première colonne et on se ramène à

$$D_n = \frac{n(n+1)}{2} \begin{vmatrix} a & & (b) \\ & \ddots & \\ (b) & & a \end{vmatrix}_{[n-1]}$$

avec a = 1 - n et b = 1. La poursuite du calcul donne alors

$$D_n = \frac{n(n+1)}{2}(-1)^{n-1}n^{n-2}$$

d'où la formule proposée.

Exercice 35: [énoncé]

On remarque que les colonnes de M sont combinaisons linéaires de deux colonnes particulières.

Introduisons les colonnes $X = {}^t (a_1 \cdots a_n)$ et $X' = {}^t (a_1^{-1} \cdots a_n^{-1})$. La j-ème colonne de la matrice M s'écrit

$$C_j = \frac{1}{a_j}X + a_jX'.$$

Les colonnes de M sont donc toutes combinaisons linéaires des colonnes X et X'. $Cas: n \geq 3$. Le déterminant de la matrice M est nul car ses colonnes forment une famille liées puisque c'est une famille de n éléments de l'espace Vect(X, X') de dimension au plus 2.

Cas: n = 2. Un calcul direct est possible

$$\det(M) = 2 \times 2 - \left(\frac{a}{b} + \frac{b}{a}\right)^2 = -\left(\frac{a}{b} - \frac{b}{a}\right)^2.$$

Exercice 36: [énoncé]

(a) En retirant la première colonne aux suivantes

$$\Delta_n(x) = \begin{vmatrix} \lambda_1 + x & a - \lambda_1 & \cdots & a - \lambda_1 \\ b + x & \lambda_2 - b & (a - b) \\ \vdots & \ddots & \vdots \\ b + x & (0) & \lambda_n - b \end{vmatrix}_{[n]}.$$

Puis en développant selon la première colonne on obtient une expression de la forme.

$$\Delta_n(x) = \alpha x + \beta.$$

(b) Par déterminant triangulaire

$$\Delta_n(-a) = \prod_{i=1}^n (\lambda_i - a) \text{ et } \Delta_n(-b) = \prod_{i=1}^n (\lambda_i - b).$$

On en déduit

$$\alpha = \frac{\prod_{i=1}^{n} (\lambda_i - a) - \prod_{i=1}^{n} (\lambda_i - b)}{b - a} \text{ et}$$
$$\beta = \frac{b \prod_{i=1}^{n} (\lambda_i - a) - a \prod_{i=1}^{n} (\lambda_i - b)}{b - a}.$$

Exercice 37: [énoncé]

En retirant la première colonne aux autres, on obtient un déterminant où ne figurent des x que sur la première colonne. En développant selon cette première colonne, on obtient une expression affine de la variable x.

$$\begin{vmatrix} a_1 + x & (x) \\ \vdots & \vdots \\ (x) & a_n + x \end{vmatrix} = \alpha x + \beta.$$

Il reste à déterminer les réels α,β exprimant cette fonction affine. D'une part

$$\beta = \begin{vmatrix} a_1 + x & (x) \\ & \ddots \\ (x) & a_n + x \end{vmatrix}_{x=0} = \begin{vmatrix} a_1 & (0) \\ & \ddots \\ (0) & a_n \end{vmatrix} = a_1 \dots a_n$$

et d'autre part

$$\alpha = \frac{\mathrm{d}}{\mathrm{d}x} \begin{vmatrix} a_1 + x & (x) \\ (x) & a_n + x \end{vmatrix}_{x=0}^{\prime}$$

La dérivée d'un déterminant est la somme des déterminants obtenus lorsqu'on ne dérive qu'une colonne

$$\alpha = \sum_{j=1}^{n} \begin{vmatrix} a_1 & 1 & (0) \\ & \vdots & \\ (0) & 1 & a_n \end{vmatrix}$$

où la colonne formée de 1 est à la position j. Chaque déterminant se calcule en développant selon la ligne ne contenant que le coefficient 1 et l'on obtient

$$\alpha = \sum_{j=1}^{n} \prod_{i \neq j} a_i.$$

Exercice 38: [énoncé]

(a) Par l'absurde, supposons que P_n possède une racine multiple z. Celle-ci vérifie

$$P_n(z) = P'_n(z) = 0.$$

On en tire

$$z^{n} - z + 1 = 0(1)$$
 et $nz^{n-1} = 1$ (2)

(1) et (2) donnent

$$(n-1)z = n (3)$$

(2) impose $|z| \le 1$ alors que (3) impose |z| > 1. C'est absurde.

(b) Posons $\chi(X)$ le polynôme caractéristique de la matrice étudiée. On vérifie

$$\chi(z_i) = \begin{vmatrix} 1 + z_1 - z_i & 1 & (1) \\ & \ddots & \vdots & \\ & & 1 & \\ & & \vdots & \\ & & & 1 & 1 + z_n - z_i \end{vmatrix}.$$

En retranchant la *i*-ème colonne à toutes les autres et en développant par rapport à la *i*ème ligne, on obtient

$$\chi(z_i) = \prod_{j=1, j \neq i}^{n} (z_j - z_i) = (-1)^{n-1} P'(z_i).$$

Cependant les polynômes χ et P' ne sont pas de même degré... En revanche, les polynômes χ et $(-1)^n(P-P')$ ont même degré n, même coefficient dominant $(-1)^n$ et prennent les mêmes valeurs en les n points distincts z_1, \ldots, z_n . On en déduit qu'ils sont égaux. En particulier le déterminant cherché est

$$\chi(0) = (-1)^n (P(0) - P'(0)) = 2(-1)^n.$$

Exercice 39 : [énoncé]

On décompose la première colonne en somme de deux colonnes

$$\begin{pmatrix} a + \lambda_1 \\ a \\ \vdots \\ a \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix} = \lambda_1 E_1 + aC$$

avec E_1 colonne élémentaire et C colonne constituée de 1. On décompose de même chacune des colonnes. On peut écrire

$$\det H = \det(\lambda_1 E_1 + aC, \dots, \lambda_n E_n + aC)$$

On développe par multilinéarité et on simplifie sachant que le déterminant est nul lorsque la colonne C apparaît deux fois. On obtient

$$\det H = \det(\lambda_1 E_1 + \dots + \lambda_n E_n) + \sum_{i=1}^n \det(\lambda_1 E_1, \dots, aC, \dots, \lambda_n E_n)$$

et donc

$$\det H = \prod_{i=1}^{n} \lambda_i + a \sum_{i=1}^{n} \prod_{k=1, k \neq i}^{n} \lambda_k.$$

Exercice 40: [énoncé]

Notons D_n le déterminant recherché.

On décompose la première colonne en somme de deux colonnes

$$\begin{pmatrix} a_1 + b_1 \\ b_1 \\ \vdots \\ b_1 \end{pmatrix} = \begin{pmatrix} a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_1 \\ \vdots \\ b_1 \end{pmatrix} = a_1 E_1 + b_1 C$$

avec E_1 colonne élémentaire et C colonne constituée de 1. On décompose de même chacune des colonnes. On peut écrire

$$D_n = \det(a_1 E_1 + b_1 C, \dots, a_n E_n + b_n C).$$

On développe par multilinéarité et on simplifie sachant que le déterminant est nul lorsque la colonne C apparaît deux fois. On obtient

$$D_n = \det(a_1 E_1 + \dots + a_n E_n) + \sum_{i=1}^n \det(a_1 E_1, \dots, b_i C, \dots, a_n E_n)$$

et donc

$$D_n(a_1, \dots, a_n, b_1, \dots, b_n) = \prod_{i=1}^n a_i + \sum_{i=1}^n b_i \prod_{k=1, k \neq i}^n a_k.$$

Exercice 41 : [énoncé]

(a) $\cos(0.x_i)$ est un polynôme en $\cos(x_i)$ de degré 0. $\cos(1.x_i)$ est un polynôme en $\cos(x_i)$ de degré 1.

Par récurrence double, on montre que $\cos(jx_i)$ est un polynôme en $\cos(x_i)$ de degré j en exploitant la relation :

$$\cos((j+1)x_i) + \cos((j-1)x_i) = 2\cos(x_i)\cos(jx_i).$$

On peut aussi par récurrence affirmer que le coefficient dominant de $\cos(jx_i)$ est 2^{j-1} pour $j \ge 1$.

On peut même être plus précis et affirmer que $\cos((j-1)x_i)$ est une expression polynomiale de degré j-1 en $\cos(x_i)$.

(b) det M_n est une expression polynomiale en $\cos(x_1)$ de degré au plus n-1. Puisque $\cos(x_2), \ldots, \cos(x_n)$ sont n-1 racines distinctes du polynôme correspondant, on peut écrire

$$\det M_n = \lambda(x_2, \dots, x_n) \prod_{j=2}^n (\cos x_j - \cos x_1).$$

L'expression du coefficient $\lambda(x_2, \ldots, x_n)$ est polynomiale en $\cos(x_2)$ de degré au plus n-2 (car il y a déjà le facteur $\cos(x_2) - \cos(x_1)$ dans le produit) et puisque $\cos(x_3), \ldots, \cos(x_n)$ en sont des racines distinctes, on peut écrire

$$\lambda(x_2, \dots, x_n) = \mu(x_3, \dots, x_n) \prod_{j=3}^n (\cos x_j - \cos x_2).$$

En répétant la démarche, on obtient

$$\det M_n = \alpha_n \prod_{1 \le i < j \le n} (\cos x_j - \cos x_i) = \alpha_n P.$$

Il reste à déterminer la valeur de α_n ...

Un calcul immédiat donne $\alpha_2 = 1$.

En développant selon la dernière ligne

$$\det M_n = \cos((n-1)x_n) \det M_{n-1} + \cdots$$

où les points de suspensions contiennent une expression polynomiale en $\cos(x_n)$ de degré < n-1.

En identifiant les coefficients dominant des expressions polynomiale en $cos(x_n)$ dans cette égalité, on obtient

$$\alpha_n = 2^{n-2} \alpha_{n-1}.$$

Cette relation permet de conclure

$$\alpha_n = 2^{\frac{(n-1)(n-2)}{2}}$$

Exercice 42: [énoncé]

(a) Il y autant de facteurs que de paires $\{i, j\}$ i.e.

$$\binom{n}{2} = \frac{n(n-1)}{2}.$$

(b)

$$M = \begin{pmatrix} 1 & \cos(x_1) & \cos(2x_1) & \cos(3x_1) \\ 1 & \cos(x_2) & \cos(2x_2) & \cos(3x_2) \\ 1 & \cos(x_3) & \cos(2x_3) & \cos(3x_3) \\ 1 & \cos(x_4) & \cos(2x_4) & \cos(3x_4) \end{pmatrix}.$$

- (c) La propriété est immédiate pour j=1 ou j=2. Pour j=3, $\cos(2x_i)=2\cos^2(x_i)-1$.
 - Pour j = 4, $\cos(3x_i) = 4\cos^3(x_i) 3\cos(x_i)$
- (d) $\det(M)$ est une expression polynomiale en $\cos(x_1)$ de degré au plus 3. Puisque $\cos(x_2), \cos(x_3), \cos(x_4)$ sont 3 racines distinctes du polynôme correspondant, on peut écrire

$$\det(M) = \lambda(x_2, x_3, x_4) \prod_{j=2}^{4} (\cos(x_1) - \cos(x_j)).$$

L'expression du coefficient $\lambda(x_2, x_3, x_4)$ est polynomiale $\cos(x_2)$ de degré au plus 2 (car il y a déjà le facteur $\cos(x_1) - \cos(x_2)$ dans le produit) et puisque $\cos(x_3)$, $\cos(x_4)$ en sont des racines distinctes, on peut écrire

$$\lambda(x_2, x_3, x_4) = \mu(x_3, x_4) \prod_{j=3}^{4} (\cos(x_2) - \cos(x_j)).$$

En répétant la démarche, on obtient

$$\det(M) = \alpha \prod_{1 \le i \le j \le 4} \left(\cos(x_i) - \cos(x_j) \right) = \alpha P_4.$$

Il reste à déterminer la valeur de α .

Une démarche analogue à la précédente aurait donnée

$$\begin{vmatrix} 1 & \cos(x_1) & \cos(2x_1) \\ 1 & \cos(x_2) & \cos(2x_2) \\ 1 & \cos(x_3) & \cos(2x_3) \end{vmatrix} = \beta P_3$$

et

$$\begin{vmatrix} 1 & \cos(x_1) \\ 1 & \cos(x_2) \end{vmatrix} = \gamma P_2 \text{ avec } \gamma = -1.$$

En développant det(M) selon la dernière ligne et en considérant le coefficient dominant de det(M) vu comme polynôme en $cos(x_4)$, on obtient

$$4\beta P_3 = (-1)^3 \alpha P_3$$

et de façon analogue on a aussi

$$2\gamma P_2 = (-1)^2 \beta P_2$$

On en déduit

$$\alpha = 8$$
.

Puisque $\operatorname{Card}(\mathcal{S}_4) = 24$, $\det(M)$ peut se voir comme la somme de 24 termes qui sont tous inférieurs à 1 en valeur absolue. On en déduit

$$|\det(M)| \le 24.$$

Certains des termes (par exemple $1 \times \cos(x_1) \times \cos(2x_2) \times \cos(3x_3)$) étant strictement inférieurs à 1 en valeur absolue, on a aussi

$$\left| \det(M) \right| < 24.$$

Exercice 43: [énoncé]

Par les opérations élémentaires $C_1 \leftarrow C_1 + C_n$ puis $L_1 \leftarrow L_1 + L_n$ on obtient

$$D_n = \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & -1 & \ddots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 1 \\ -1 & -1 & \cdots & -1 & 0 \end{vmatrix}_{[n]}$$

En développant, on parvient à la relation de récurrence

$$D_n = D_{n-2}.$$

Comme $D_1 = 0$ et $D_2 = 1$, on a

$$D_n = \frac{1 + (-1)^n}{2}.$$

Exercice 44: [énoncé]

Par les opérations élémentaires : $C_1 \leftarrow C_1 - C_n$ puis $L_1 \leftarrow L_1 - L_n$ on obtient

$$D_n = \begin{vmatrix} -2 & 0 & \cdots & 0 & 1 \\ 0 & 0 & & & & (1) \\ \vdots & & \ddots & & & \\ 0 & & & \ddots & & \\ 1 & (1) & & & 0 \end{vmatrix}_{[n]}$$

En développant, on parvient à la relation de récurrence

$$D_n = -2D_{n-1} - D_{n-2}.$$

La suite (D_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2 + 2r + 1 = 0$ de racine double -1.

Sachant $D_1 = 0$ et $D_2 = -1$, on parvient à

$$D_n = (-1)^{n-1}(n-1).$$

Exercice 45 : [énoncé]

En décomposant la dernière colonne en somme de deux colonnes

$$D_{n} = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & n & 1 \\ 1 & \cdots & 1 & 1 \end{vmatrix} + \begin{vmatrix} 2 & \cdots & (1) & 0 \\ & \ddots & & \vdots \\ & & n & 0 \\ (1) & & & n \end{vmatrix}_{[n]}$$

En retranchant la dernière colonne à chacune des autres

$$\begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & n & 1 \\ 1 & \cdots & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & & & (0) & 1 \\ & \ddots & \ddots & \vdots \\ & & n-1 & 1 \\ (0) & & & 1 \end{vmatrix} = (n-1)!$$

En développant selon la dernière colonne

$$\begin{vmatrix} 2 & & & (1) & 0 \\ & \ddots & & \vdots \\ & n & 0 \\ (1) & & & n \end{vmatrix}_{[n]} = nD_{n-1}.$$

Ainsi

$$D_n = (n-1)! + nD_{n-1}.$$

Par suite

$$\frac{D_n}{n!} = \frac{1}{n} + \frac{D_{n-1}}{(n-1)!}$$

 $_{
m donc}$

$$\frac{D_n}{n!} = D_0 + \sum_{k=1}^{n} \frac{1}{k}$$

puis

$$D_n = (1 + H_n)n!$$

Exercice 46: [énoncé]

En retirant à chaque ligne la précédente (et en commençant par la dernière)

$$D_n = \begin{vmatrix} 1 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & C_1^0 & C_1^1 & 0 & & \vdots \\ \vdots & C_2^0 & C_2^1 & C_2^2 & \ddots & \vdots \\ \vdots & C_3^0 & C_3^1 & C_3^2 & \ddots & 0 \\ \vdots & & & \ddots & C_{n-2}^{n-2} \\ 0 & C_{n-1}^0 & C_{n-1}^1 & C_{n-1}^2 & \cdots & C_{n-1}^{n-2} \end{vmatrix}_{[n]}$$

en vertu de la formule du triangle de Pascal

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$$

En développant selon la première colonne, on obtient

$$D_n = D_{n-1}.$$

Ainsi

$$D_n = D_1 = 1.$$

Exercice 47: [énoncé]

En retirant à chaque ligne la précédente (et en commençant par la dernière) on obtient

$$D_{n+1} = \begin{vmatrix} C_0^0 & C_1^1 & \cdots & C_n^n \\ 0 & C_1^0 & \cdots & C_n^{n-1} \\ \vdots & \vdots & & \vdots \\ 0 & C_n^0 & \cdots & C_{2n-1}^{n-1} |_{[n+1]} \end{vmatrix}$$

en vertu de la formule du triangle de Pascal

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$$

En développant selon la première colonne

$$D_{n+1} = \begin{vmatrix} C_1^0 & \cdots & C_n^{n-1} \\ \vdots & & \vdots \\ C_n^0 & \cdots & C_{2n-1}^{n-1} |_{[n]} \end{vmatrix}.$$

Via $C_n \leftarrow C_n - C_{n-1}, \dots, C_2 \leftarrow C_2 - C_1$ et en exploitant $C_p^0 = C_{p+1}^0$, on obtient

$$D_{n+1} = \begin{vmatrix} C_0^0 & \cdots & C_{n-1}^{n-1} \\ \vdots & & \vdots \\ C_{n-1}^0 & \cdots & C_{2n-2}^{n-1} \end{vmatrix} = D_n.$$

Finalement

$$D_n = 1.$$

Exercice 48: [énoncé]

 $\operatorname{Cas} b = c$:

C'est un calcul classique, on effectue $C_1 \leftarrow C_1 + \cdots + C_n$ puis $L_i \leftarrow L_i - L_1$ (pour $i = 2, \dots, n$) pour triangulariser le déterminant et obtenir

$$\det A_n = (a + (n-1)b)(a-b)^{n-1}.$$

Cas $b \neq c$:

Posons $D_n = \det A_n$. À chaque ligne on retranche la précédente

$$D_n = \begin{vmatrix} a & b & \cdots & b \\ c - a & a - b & & (0) \\ & \ddots & \ddots & \\ (0) & & c - a & a - b \end{vmatrix}$$

et on développe selon la dernière colonne

$$D_n = b(a-c)^{n-1} + (a-b)D_{n-1}$$
 avec $n \ge 2$.

Ainsi

$$D_n = b(a-c)^{n-1} + b(a-b)(a-c)^{n-2} + \dots + b(a-b)^{n-2}(a-c)^1 + (a-b)^{n-1}D_1$$

Par sommation géométrique des premiers termes

$$D_n = b(a-c)^{n-1} \frac{1 - \left(\frac{a-b}{a-c}\right)^{n-1}}{1 - \frac{a-b}{a-c}} + a(a-b)^{n-1}$$

puis après simplification

$$D_n = \frac{b(a-c)^n - c(a-b)^n}{b-c}.$$

Exercice 49: [énoncé]

Par développement d'un déterminant tridiagonal,

$$D_n = (a+b)D_{n-1} - abD_{n-2}.$$

La suite (D_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2 - (a+b)r + ab = 0$ de racines a et b.

Si $a \neq b$ alors on peut écrire $D_n = \lambda a^n + \mu b^n$ et compte tenu des valeurs initiales, on obtient

$$D_n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Si a = b alors on peut écrire $D_n = (\lambda n + \mu)a^n$ et on parvient cette fois-ci à

$$D_n = (n+1)a^n.$$

Exercice 50: [énoncé]

En développant par rapport à la première colonne, puis par rapport à la première ligne dans le second déterminant on obtient pour $n \geq 2$

$$D_n = (1+x^2)D_{n-1} - x^2D_{n-2}$$

 (D_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2 - (1+x^2)r + x^2 = 0$ de racines 1 et x^2 .

Si $x^2 \neq 1$ alors $D_n = \lambda + \mu x^{2n}$ avec $\lambda, \mu \in \mathbb{C}$

 $D_0 = 1$ et $D_1 = 1 + x^2$ donnent

$$D_n = \frac{1 - x^{2n+2}}{1 - x^2}.$$

Si
$$x^2 = 1$$
 alors $D_n = \lambda n + \mu$.
 $D_0 = 1$ et $D_1 = 2$ donnent

$$D_n = n + 1.$$

Exercice 51: [énoncé]

En développant par rapport à la première colonne, puis par rapport à la première ligne dans le second déterminant on obtient pour $n \ge 2$

$$D_n = 2\cos(\theta)D_{n-1} - D_{n-2}$$

 (D_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique

$$r^2 - 2\cos(\theta)r + 1 = 0$$

de racines $e^{i\theta}$ et $e^{-i\theta}$.

Cas: $\theta \not\equiv 0$ [π]. On écrit $D_n = \lambda \cos(n\theta) + \mu \sin(n\theta)$. Les conditions $D_0 = 1$ et $D_1 = 2\cos(\theta)$ donnent

$$\begin{cases} \lambda = 1 \\ \lambda \cos(\theta) + \mu \sin(\theta) = 2\cos(\theta) \end{cases}$$

puis

$$\begin{cases} \lambda = 1 \\ \mu = 1/\tan(\theta). \end{cases}$$

Ainsi,

$$D_n = \frac{\sin((n+1)\theta)}{\sin(\theta)}.$$

Cas: $\theta \equiv 0$ [2π]. $D_n = \lambda n + \mu$. $D_0 = 1$ et $D_1 = 2$ donnent

$$D_n = n + 1.$$

Cas: $\theta \equiv \pi \ [2\pi]$. $D_n = (\lambda n + \mu)(-1)^n$. $D_0 = 1$ et $D_1 = -2$ donnent $D_n = (-1)^n (n+1)$.

Exercice 52 : [énoncé]

En développant selon la première colonne, puis la première ligne et en recommençant : $D_n = (-n) \times 1 \times (2-n) \times 3$ etc. . . Si n est pair le développement s'arrête sur le calcul de

$$\begin{vmatrix} n-1 & 0 \\ 1 & 0 \end{vmatrix} = 0.$$

Si n est impair le développement s'arrête par l'étape

$$\begin{vmatrix} 0 & n-2 & 0 & 0 \\ 3 & 0 & n-1 & 0 \\ 0 & 2 & 0 & n \\ 0 & 0 & 1 & 0 \end{vmatrix} = -3 \begin{vmatrix} n-2 & 0 & 0 \\ 2 & 0 & n \\ 0 & 1 & 0 \end{vmatrix} = -3(n-2) \begin{vmatrix} 0 & n \\ 1 & n \end{vmatrix} = 3n(n-2).$$

En écrivant n = 2p + 1, on parvient à

$$D_n = (-1)^{p+1} (1 \times 3 \times \dots \times 2p + 1)^2$$

Exercice 53: [énoncé]

En développant par rapport à la première colonne, puis par rapport à la première ligne dans le second déterminant on obtient pour $n \geq 2$

$$D_n = 2aD_{n-1} - a^2D_{n-2}$$

 (D_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2-2ar+a^2=0$ de racines double a.

On a alors $D_n = (\lambda n + \mu)a^n$ avec $\lambda, \mu \in \mathbb{K}$.

 $D_0 = 1$ et $D_1 = 2a$ donnent

$$D_n = (n+1)a^n.$$

Exercice 54: [énoncé]

D'une part

$$\begin{vmatrix} a & -b \\ b & a \end{vmatrix} \begin{vmatrix} c & -d \\ d & c \end{vmatrix} = (a^2 + b^2)(c^2 + d^2).$$

D'autre part

$$\begin{vmatrix} a & -b \\ b & a \end{vmatrix} \begin{vmatrix} c & -d \\ d & c \end{vmatrix} = \begin{vmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{vmatrix} = (ac - bd)^2 + (ad + bc)^2.$$

Exercice 55: [énoncé]

(a) Après calculs

$$\det(A - \lambda I_3) = (1 - \lambda)(4 - \lambda)(2 - \lambda).$$

On a donc

$$\det(A - \lambda I_3) = 0 \iff \lambda = 1, 2 \text{ ou } 4.$$

(b) Après résolution de l'équation $f(x) = \lambda x$ pour $\lambda = 1, 2$ ou 4, on obtient

$$\varepsilon_1 = e_1 - 2e_2 + 2e_3, \varepsilon_2 = e_1 - e_2 + e_3$$
 et $\varepsilon_3 = e_1 - 2e_2 + e_3$

convenables.

Exercice 56: [énoncé]

Notons $A = (a_{i,j})$ et $B = (b_{i,j})$. On sait

$$\det(A + xB) = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n (a_{\sigma(i),i} + xb_{\sigma(i),i}).$$

La fonction $x \mapsto \det(A + xB)$ est continue (car polynomiale) et ne s'annule pas en 0 (car $\det(A) \neq 0$), donc elle ne s'annule pas sur un voisinage de 0 ce qui résout le problème posé.

Exercice 57: [énoncé]

(a) En écrivant la première colonne comme somme de deux colonnes on obtient

$$\det M = 1 - (-1)^n \alpha^n.$$

(b) Si $\det M \neq 0$ alors M est inversible et $\operatorname{rg} M = n$. Si $\det M = 0$ alors M n'est pas inversible donc $\operatorname{rg} M < n$. Or M possède une matrice extraite de rang n-1 donc $\operatorname{rg} M = n-1$. Finalement

$$\operatorname{rg} M = \begin{cases} n-1 & \text{si } -\alpha \in U_n \\ n & \text{sinon.} \end{cases}$$

Exercice 58: [énoncé]

Soit A une matrice de $\mathrm{GL}_n(\mathbb{Z})$. Le déterminant de A ainsi que celui de son inverse sont des entiers. Puisque

$$\det A \times \det A^{-1} = 1$$

on en déduit det $A = \pm 1$. Inversement, si une matrice $A \in \mathcal{M}_n(\mathbb{Z})$ est de déterminant ± 1 alors son inverse, qui s'exprime à l'aide de la comatrice de A, est à coefficients entiers. Ainsi les matrices de $\mathrm{GL}_n(\mathbb{Z})$ sont les matrices à coefficients entiers de déterminant ± 1 .

Soit A une matrice de $GL_n(\mathbb{Z})$ dont la première ligne est formée par les entiers a_1, \ldots, a_n . En développant le calcul de det A selon la première ligne de la matrice, on obtient une relation de la forme

$$a_1u_1 + \dots + a_nu_n = 1$$

avec les u_k égaux, au signe près, à des mineurs de la matrice A. Ces u_k sont donc des entiers et la relation qui précède assure que les entiers a_1, \ldots, a_n sont premiers dans leur ensemble.

Pour établir la réciproque, raisonnons par récurrence sur $n \geq 2$ pour établir qu'il existe une matrice à coefficients dans \mathbb{Z} , de déterminant 1, dont la première ligne est a_1, \ldots, a_n premiers dans leur ensemble.

Pour n=2. Soient a,b deux entiers premiers entre eux. Par l'égalité de Bézout, on peut écrire

$$au + bv = 1$$
 avec $u, v \in \mathbb{Z}$.

Considérons alors la matrice

$$A = \begin{pmatrix} a & b \\ -v & u \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}).$$

Celle-ci étant de déterminant 1, elle appartient à $GL_2(\mathbb{Z})$

Supposons la propriété établie au rang $n \geq 2$.

Soient $a_1, \ldots, a_n, a_{n+1}$ des entiers premiers dans leur ensemble. Posons

$$d = \operatorname{pgcd}(a_1, \dots, a_n).$$

Les entiers d et a_{n+1} étant premiers entre eux, il existe $u, v \in \mathbb{Z}$ tels que

$$du + a_{n+1}v = 1.$$

De plus, on peut écrire

$$a_1 = da'_1, \dots, a_n = da'_n$$

avec a'_1, \ldots, a'_n premiers dans leur ensemble.

Par hypothèse de récurrence, il existe une matrice

$$\begin{pmatrix} a'_1 & a'_2 & \cdots & a'_n \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n,1} & \alpha_{n,2} & \cdots & \alpha_{n,n} \end{pmatrix} \in \mathcal{M}_n(\mathbb{Z})$$

de déterminant 1.

Considérons alors la matrice

$$\begin{pmatrix} da'_{1} & da'_{2} & \cdots & da'_{n} & a_{n+1} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ \alpha_{n,1} & \alpha_{n,2} & \cdots & \alpha_{n,n} & 0 \\ -va'_{1} & -va'_{2} & \cdots & -va'_{n} & u \end{pmatrix}$$

Celle-ci est à coefficients entiers et en développant son déterminant par rapport à la dernière colonne, on obtient 1.

Récurrence établie.

Exercice 59 : [énoncé]

On a $H^{-1} = \frac{1}{\det H} {}^t \operatorname{Com} H$ avec $\operatorname{Com} H = (H_{i,j})$. Par opérations élémentaires,

$$\det\left(\frac{1}{a_i + b_j}\right)_{1 \le i, j \le n} = \frac{\prod_{1 \le i < j \le n} (a_j - a_i)(b_j - b_i)}{\prod_{1 \le i, j \le n} (a_i + b_j)}.$$

En simplifiant les facteurs communs, on obtient

$$\frac{H_{k,\ell}}{\det H} = \frac{(-1)^{k+\ell}(n+k-1)!(n+\ell-1)!}{(k+\ell-1)(k-1)!^2(\ell-1)!^2(n-k)!(n-\ell)!}$$

puis

$$\frac{H_{k,\ell}}{\det H} = (-1)^{k+\ell} (k+\ell-1) \binom{n+k-1}{k+\ell-1} \binom{n+\ell-1}{k+\ell-1} \binom{k+\ell-2}{k-1} \in \mathbb{Z}.$$

Exercice 60: [énoncé]

On commence par se ramener au cas où $A = I_n$.

Puisque la matrice A est inversible, on obtient en multipliant à gauche par son inverse

$$A + Y^t X \in \mathrm{GL}_n(\mathbb{R}) \iff \mathrm{I}_n + A^{-1} Y^t X \in \mathrm{GL}_n(\mathbb{R}).$$

En considérant la colonne $Y' = A^{-1}Y$ au lieu de Y, on peut considérer que le problème est résolu dès lors que le cas $A = I_n$ est élucidé. Supposons désormais $A = I_n$ et étudions l'inversibilité de $M = I_n + Y^t X$.

Le déterminant de M est lié au polynôme caractéristique de Y^tX .

La matrice Y^tX est de rang inférieur à 1, son noyau est donc de dimension n-1. Or le noyau d'une matrice correspond à l'espace propre associé à la valeur propre 0. On peut donc affirmer que 0 est racine de multiplicité au moins n-1 du polynôme caractéristique de Y^tX . Cependant, on sait aussi que ce polynôme est unitaire, de degré n et que le coefficient du terme d'exposant n-1 est lié à la trace de la matrice. On peut donc écrire

$$\chi_{Y^tX} = X^n - \operatorname{tr}(Y^tX)X^{n-1}.$$

En particulier,

$$\det(\mathbf{I}_n + {}^t X Y) = (-1)^n \det((-1).\mathbf{I}_n - Y^t X)$$

= $(-1)^n \chi_{Y^t X} (-1) = 1 + \operatorname{tr}(Y^t X).$

On peut alors conclure.

Exercice 61: [énoncé]

Raisonnons par double implication.

 (\Leftarrow) Supposons qu'il existe x_1, \ldots, x_n dans I tel que la matrice $A = (f_i(x_j))_{1 \le i,j \le n}$ soit inversible. Soit $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tel que

$$\lambda_1 f_1 + \dots + \lambda_n f_n = 0.$$

En évaluant cette égalité fonctionnelle en x_1, \ldots, x_n on obtient les n équations du système suivant :

$$\begin{cases} \lambda_1 f_1(x_1) + \dots + \lambda_n f_n(x_1) = 0 \\ \vdots & \vdots \\ \lambda_1 f_1(x_n) + \dots + \lambda_n f_n(x_n) = 0. \end{cases}$$

Ce système correspond à l'équation matricielle ${}^tAX = 0$ avec $X = {}^t(\lambda_1 \cdots \lambda_n)$. Or la matrice A est inversible et la seule solution de ce système est la solution nulle : la famille (f_1, \ldots, f_n) est donc libre.

 (\Longrightarrow) On raisonne par récurrence sur $n \in \mathbb{N}^*$.

Pour n = 1, si (f_1) est une famille libre, la fonction f_1 n'est pas nulle et il existe donc $x_1 \in I$ tel que $f_1(x_1) \neq 0$.

Supposons la propriété établie au rang $n \geq 1$. Au rang suivant, considérons $(f_1, \ldots, f_n, f_{n+1})$ une famille libre de fonctions de I vers \mathbb{R} . En appliquant l'hypothèse de récurrence à la sous-famille libre (f_1, \ldots, f_n) , on obtient x_1, \ldots, x_n dans I tel que le déterminant de la matrice $(f_i(x_j))_{1 \leq i,j \leq n}$ soit non nul. Pour $x \in I$, étudions alors

$$D(x) = \begin{vmatrix} f_1(x_1) & \cdots & f_1(x_n) & f_1(x) \\ \vdots & & \vdots & \vdots \\ f_n(x_1) & \cdots & f_{n+1}(x_n) & f_n(x) \\ f_{n+1}(x_1) & \cdots & f_{n+1}(x_n) & f_{n+1}(x) \end{vmatrix}.$$

On développe ce déterminant selon la dernière colonne.

Par l'absurde, si la fonction D est nulle sur I, on obtient par développement du déterminant selon la dernière colonne l'identité

$$\lambda_1 f_1(x) + \dots + \lambda_n f_n(x) + \lambda_{n+1} f_{n+1}(x) = 0 \quad \text{pour tout } x \in I$$
 (1)

avec $\lambda_1, \ldots, \lambda_{n+1}$ les réels (indépendant de x) donnés par

[Une figure]

En particulier, λ_{n+1} correspond au déterminant de $(f_i(x_j))_{1 \leq i,j \leq n}$ et n'est donc pas nul. L'égalité (??) détermine alors une relation linéaire sur les éléments de la famille (f_1,\ldots,f_n,f_{n+1}) . Ceci est absurde car cette famille est supposée libre. On en déduit l'existence d'un réel x_{n+1} dans I tel que $D(x_{n+1}) \neq 0$. La récurrence est établie.

Exercice 62: [énoncé]

On exprime les coefficients de ${}^{t}MM$ en fonction des cardinaux des ensembles A_{i} avant de calculer le déterminant de la matrice obtenue.

La ligne d'indice i de la matrice M détermine les indices j pour lesquels i est élément de A_j . Inversement, la colonne d'indice j de M détermine les éléments i qui constituent A_j . Le coefficient général de la matrice tMM est

$$\sum_{k=1}^{n} [{}^{t}M]_{i,k} [M]_{k,j} = \sum_{k=1}^{n} [M]_{k,i} [M]_{k,j}.$$

Dans cette dernière somme, le terme vaut 1 si k est élément de $A_i \cap A_j$ et 0 sinon. Le coefficient général de tMM est donc $\operatorname{Card}(A_i \cap A_j)$. L'hypothèse de travail, assure que ce cardinal est égal à 1 lorsque $i \neq j$ et celui-ci vaut le cardinal de A_i si i = j. On peut donc écrire

$${}^{t}MM = \begin{pmatrix} a_1 & (1) \\ \ddots & \\ (1) & a_n \end{pmatrix}$$
 avec $a_i = \operatorname{Card}(A_i)$.

On calcule le déterminant de cette matrice tMM comme cela a été réalisé avec une forme plus générale dans le sujet 4455:

$$\det({}^{t}MM) = \prod_{i=1}^{n} (a_{i} - 1) + \sum_{i=1}^{n} \left(\prod_{\substack{1 \le k \le n \\ k \ne i}} (a_{k} - 1) \right).$$

Les a_i sont des entiers naturels non nuls (car les A_i sont assurément non vides) et parmi ceux-ci, il y en a au plus un qui vaut 1. En effet, s'il existe des indices i et j distincts pour lesquels les ensembles A_i et A_j sont des singletons, ceux-ci sont égaux ou disjoints ce que le sujet exclu. Dans la somme exprimant le déterminant, il y a alors assurément un produit non nul. Puisque tous les autres termes sont positifs, le déterminant de tMM n'est pas nul et cette matrice est inversible. En particulier, la matrice M est inversible et elle ne comporte donc pas de ligne nulle : chaque $i \in [1;n]$ appartient au moins à l'un des ensembles A_i .

Exercice 63: [énoncé]

(a) On a

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b) \neq 0.$$

Par les formules de Cramer

$$\begin{cases} x = \frac{(b-d)(c-d)(c-b)}{(b-a)(c-a)(c-b)} \\ y = \frac{(d-a)(c-a)(c-d)}{(b-a)(c-a)(c-b)} \\ z = \frac{(b-a)(d-a)(d-b)}{(b-a)(c-a)(c-b)}. \end{cases}$$

(b) On a

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (b-a)(c-a)(c-b)(a+b+c) \neq 0.$$

Par les formules de Cramer

$$x = \frac{(b-d)(c-d)(c-b)(d+b+c)}{(b-a)(c-a)(c-b)(a+b+c)}$$

et y, z par symétrie.

Exercice 64: [énoncé]

Le système est de Cramer via déterminant de Vandermonde.

(1) + (2) + (3) donne

$$x = \frac{a+b+c}{3}$$

 $(1) + j^2(2) + j(3)$ donne

$$y = \frac{a + bj^2 + cj}{3}$$

et $(1) + j(2) + j^2(3)$ donne

$$z = \frac{a + bj + cj^2}{3}.$$

Exercice 65: [énoncé]

Le déterminant du système est

$$\begin{vmatrix} 1 & a & a^2 \\ \overline{a} & 1 & a \\ \overline{a}^2 & \overline{a} & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 - |a|^2 & a(1 - |a|^2) \\ 0 & \overline{a}(1 - |a|^2) & 1 - |a|^4 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 - |a|^2 & a(1 - |a|^2) \\ 0 & 0 & 1 - |a|^2 \end{vmatrix}.$$

Si $|a| \neq 1$ alors est le système est de Cramer et homogène

$$\mathcal{S} = \{(0,0,0)\}.$$

Si |a| = 1 alors le système équivaut à une seule équation

$$x + ay + a^2z = 0$$

car les deux autres lui sont proportionnelles. On en déduit

$$\mathcal{S} = \left\{ (-ay - a^2z, y, z) \mid y, z \in \mathbb{C} \right\}.$$

Exercice 66: [énoncé]

Les deux systèmes proposés sont de Cramer via déterminant de Vandermonde.

(a) Si x, y, z est sa solution alors P(a) = P(b) = P(c) = 0 et donc

$$P = (X - a)(X - b)(X - c).$$

On en déduit

$$x = abc, y = -(ab + bc + ca)$$
 et $z = a + b + c$.

(b) Introduisons

$$P = X^4 - (x + yX + zX^2).$$

Si x, y, z est solution alors P(a) = P(b) = P(c) = 0 et donc

$$P = (X - a)(X - b)(X - c)(X - d).$$

Puisque le coefficient de X^3 dans P est nul, la somme des racines de P est nulle et donc

$$a+b+c+d=0$$

puis

$$P = (X - a)(X - b)(X - c)(X + (a + b + c)).$$

En développant, on obtient

$$x = \sigma_3 \sigma_1, y = \sigma_3 - \sigma_1 \sigma_2$$
 et $z = \sigma_1^2 - \sigma_2$

avec $\sigma_1, \sigma_2, \sigma_3$ les expressions symétriques élémentaires en a, b, c.

Exercice 67: [énoncé]

(a) Si rg(A) = n alors A est inversible et sa comatrice l'est alors aussi donc

$$\operatorname{rg}(\operatorname{Com}(A)) = n.$$

Si $rg(A) \le n-2$ alors A ne possède pas de déterminant extrait d'ordre n-1 non nul. Par suite $Com(A) = O_n$ et donc

$$\operatorname{rg}(\operatorname{Com}(A)) = 0.$$

Si $\operatorname{rg}(A) = n - 1$, exploitons la relation $A^t \operatorname{Com}(A) = \det(A) \cdot \operatorname{I}_n = \operatorname{O}_n$. Soient f et g les endomorphismes de K^n canoniquement associés aux matrices A et ${}^t\operatorname{Com}(A)$.

On a $f \circ g = 0$ donc $\operatorname{Im}(g) \subset \operatorname{Ker}(f)$. Comme $\operatorname{rg}(f) = n - 1$, $\dim \operatorname{Ker}(f) = 1$ et par suite $\operatorname{rg}(g) \leq 1$.

Ainsi $\operatorname{rg}(\operatorname{Com}(A)) \leq 1$.

Comme rg(A) = n - 1, il existe un déterminant extrait non nul d'ordre n - 1 et par suite $Com(A) \neq O_n$.

Finalement

$$\operatorname{rg}(\operatorname{Com}(A)) = 1.$$

(b) Comme $A^t \operatorname{Com}(A) = \det(A) \cdot I_n$ on a

$$\det(A)\det(\operatorname{Com}(A)) = (\det(A))^n.$$

Si $det(A) \neq 0$ alors

$$\det(\operatorname{Com}(A)) = (\det(A))^{n-1}.$$

Si det(A) = 0 alors $rg(Com(A)) \le 1 < n$ donc

$$\det(\operatorname{Com}(A)) = 0.$$

(c) Si rg(A) = n alors

$${}^{t}\operatorname{Com}(\operatorname{Com}(A)).\operatorname{Com}(A) = \det(\operatorname{Com}(A)).\operatorname{I}_{n} = \det(A)^{n-1}.\operatorname{I}_{n}.$$

Donc

t
Com(Com(A)) = det(A)ⁿ⁻¹ Com(A)⁻¹.

Or ${}^{t}Com(A).A = det(A).I_{n} donc$

t
Com $(A) = \det(A).A^{-1}$

puis sachant $^{t}(B)^{-1} = (^{t}B)^{-1}$ on a :

$$Com(Com(A)) = det(A)^{n-2}A.$$

Si
$$\operatorname{rg}(A) \le n-1$$
 et $n \ge 3$ alors $\operatorname{rg}(\operatorname{Com}(A)) \le 1 \le n-2$ donc $\operatorname{Com}(\operatorname{Com}(A)) = \operatorname{O}_n$.

Si n=2 alors pour

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $Com(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$ et $Com(Com(A)) = A$.

Exercice 68: [énoncé]

 $\operatorname{Cas} A \text{ et } B \text{ inversibles}$

Puisque A et B commutent, leurs inverses commutent aussi On en déduit

$$\frac{1}{\det A}{}^t(\operatorname{Com} A)\frac{1}{\det B}{}^t(\operatorname{Com} B) = \frac{1}{\det B}{}^t(\operatorname{Com} B)\frac{1}{\det A}{}^t(\operatorname{Com} A).$$

En simplifiant et en transposant on obtient

$$Com(A) Com(B) = Com(B) Com(A)$$
.

Cas général

Pour p assez grand, les matrices

$$A + \frac{1}{p}I_n$$
 et $B + \frac{1}{p}I_n$

sont inversibles et commutent donc

$$\operatorname{Com}\left(A + \frac{1}{p}I_n\right)\operatorname{Com}\left(B + \frac{1}{p}I_n\right) = \operatorname{Com}\left(B + \frac{1}{p}I_n\right)\operatorname{Com}\left(A + \frac{1}{p}I_n\right).$$

En passant à la limite quand $p \to +\infty$, on obtient

$$Com(A) Com(B) = Com(B) Com(A)$$
.

Exercice 69 : [énoncé]

(a) On sait $AB = BA = \det(A)I_n$.

Si $\operatorname{rg} A = n$ alors A est inversible donc B aussi et $\operatorname{rg} B = n$.

Si rg A=n-1 alors dim Ker A=1 et puisque $AB=\mathrm{O}_n$, Im $B\subset\mathrm{Ker}\,A$ puis rg $B\leq 1$.

De plus, la matrice A étant de rang exactement n-1, elle possède un mineur non nul et donc $B \neq O_n$. Finalement $\operatorname{rg} B = 1$.

Si rg $A \le n-2$ alors tous les mineurs de A sont nuls et donc $B = \mathcal{O}_n$ puis rg B = 0.

(b) Puisque $\operatorname{rg} A = n - 1$, $\dim \operatorname{Ker} A = 1$ et $\dim \operatorname{Ker}^t A = 1$. Il existe donc deux colonnes X et Y non nulles telles que

$$\operatorname{Ker} A = \operatorname{Vect} X$$
 et $\operatorname{Ker}^t A = \operatorname{Vect} Y$.

Soit $M \in \mathcal{M}_n(\mathbb{K})$ vérifiant $AM = MA = \mathcal{O}_n$. Puisque $AM = \mathcal{O}_n$, Im $M \subset \operatorname{Ker} A = \operatorname{Vect} X$ et donc on peut écrire par blocs

$$M = (\lambda_1 \mid \ldots \mid \lambda_n X) = XL$$

avec $L = (\lambda_1 \quad \dots \quad \lambda_n)$.

La relation $MA = O_n$ donne alors $XLA = O_n$ et puisque $X \neq 0$, on obtient LA = 0 puis $^tA^tL = 0$. Ceci permet alors d'écrire L sous la forme $L = \lambda^t Y$ puis M sous la forme

$$M = \lambda X^t Y$$

Inversement une telle matrice vérifie $AM = MA = \mathcal{O}_n$ et donc

$$\{M \in \mathcal{M}_n(\mathbb{K}) \mid AM = MA = \mathcal{O}_n\} = \operatorname{Vect}(X^t Y).$$

Cet espace de solution étant une droite et la matrice B étant un élément non nul de celle-ci, il est dès lors immédiat d'affirmer que toute matrice $C \in \mathcal{M}_n(\mathbb{K})$ vérifiant $AC = CA = O_n$ est nécessairement colinéaire à B.

Exercice 70 : [énoncé]

Il existe $u, v \in \mathbb{Z}$ tels que $u \det A + v \det B = 1$. $U = u^t(\operatorname{Com} A)$ et $V = v^t(\operatorname{Com} B)$ conviennent alors.

Exercice 71 : [énoncé]

Le coefficient d'indice (i, j) de la comatrice de S est

$$(-1)^{i+j}\Delta_{i,j}$$

avec $\Delta_{i,j}$ le mineur d'indice (i,j) de la matrice S i.e. le déterminant de la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne de S. Or le déterminant d'une matrice est aussi celui de sa transposée et puisque la matrice S est symétrique, le mineur d'indice (i,j) est égal à celui d'indice (j,i). On en déduit que la comatrice de S est symétrique.

Exercice 72 : [énoncé]

Considérons le polynôme

$$P(X) = (X - a_1)(X - a_2) \dots (X - a_n).$$

Celui-ci se développe sous la forme

$$P(X) = X^n + \alpha_{n-1}X^{n-1} + \dots + \alpha_0$$

avec $\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{K}$ et en particulier $\alpha_k = (-1)^{n-k} \sigma_{n-k}$ où les $\sigma_1, \ldots, \sigma_n$ désignent les expressions symétriques élémentaires en a_1, \ldots, a_n . En procédant à l'opération $C_n \leftarrow C_n + \sum_{j=0}^{k-1} \alpha_j C_{j+1} + \sum_{j=n}^{n-1} \alpha_j C_j$, les coefficients de la dernière colonne de la matrice sont transformés en

$$P(a_i) - \alpha_k a_i^k = -\alpha_k a_i^k \text{ car } P(a_i) = 0.$$

Ainsi

$$D_k = (-1)^{n+1-k} \sigma_{n-k} \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-1} & a_1^{k+1} & \cdots & a_1^{n-1} & a_1^k \\ 1 & a_2 & \cdots & a_2^{k-1} & a_2^{k+1} & \cdots & a_2^{n-1} & a_2^k \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{k-1} & a_n^{k+1} & \cdots & a_n^{n-1} & a_n^k \end{vmatrix}.$$

En permutant de façon circulaire les n-k dernières colonnes, on obtient

$$D_k = \sigma_{n-k} \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-1} & a_1^k & a_1^{k+1} & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{k-1} & a_2^k & a_2^{k+1} & \cdots & a_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{k-1} & a_n^k & a_n^{k+1} & \cdots & a_n^{n-1} \end{vmatrix}.$$

Sachant calculer un déterminant de Vandermonde, on obtient

$$D_k = \sigma_{n-k} \prod_{1 \le i \le j \le n} (a_j - a_i).$$

Exercice 73: [énoncé]

En développant selon la première ligne, on peut affirmer que Δ est un polynôme de degré inférieur à n-1.

Pour $k \in \{1, ..., n\}$,

$$\Delta(\lambda_k) = (-1)^{k+1} \prod_{i \neq k} (\lambda_k - \lambda_i) V_{n-1}(\lambda_1, \dots, \hat{\lambda}_k, \dots, \lambda_n) = (-1)^{n+1} V_n(\lambda_1, \dots, \lambda_n)$$

où $V_n(a_1, \ldots, a_n)$ désigne le Vandermonde de (a_1, \ldots, a_n) . Le polynôme Δ coïncide en n point avec le polynôme constant égal à $(-1)^{n+1}V_n(\lambda_1, \ldots, \lambda_n)$, ils sont donc égaux.

Exercice 74: [énoncé]

(a) On multiplie la matrice étudiée par une matrice triangulaire par blocs afin que le produit obtenu soit lui aussi triangulaire par blocs.

On a

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & \mathcal{O}_n \\ -C & \mathcal{I}_n \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ \mathcal{O}_n & D \end{pmatrix}.$$

Le déterminant d'une matrice triangulaire par blocs est le produit des déterminants des blocs diagonaux. En calculant le déterminant des deux membres

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \det D = \det(AD - BC) \det D.$$

On conclut en simplifiant par det D ce qui est possible car det $D \neq 0$.

(b) On introduit $D_{\varepsilon} = D + \varepsilon I_n$ et on passe à la limite quand ε tend vers 0^+ .

La matrice D_{ε} commute avec C et, pour ε assez petit et strictement positif, il s'agit d'une matrice inversible ¹ ce qui permet d'écrire

$$\det\begin{pmatrix} A & B \\ C & D_{\varepsilon} \end{pmatrix} = \det(AD_{\varepsilon} - BC).$$

Les deux membres de cette équation correspondent à des fonctions continues (car polynomiales) de la variable ε . On conclut en passant à la limite quand ε tend vers 0^+

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC).$$

Exercice 75: [énoncé]

Supposons pour commencer la matrice A inversible.

Par opérations par blocs :

$$\begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} I & -A^{-1}C \\ 0 & I \end{pmatrix} = \begin{pmatrix} A & 0 \\ B & D - BA^{-1}C \end{pmatrix}.$$

On en déduit

$$\begin{vmatrix} A & C \\ B & D \end{vmatrix} = \det(D - BA^{-1}C) \det A = \det(DA - BA^{-1}CA).$$

^{1.} Le déterminant de D_{ε} est la valeur du polynôme caractéristique de -D en ε et celui-ci ne possède qu'un nombre fini de racines.

Or les matrices A et C commutent donc A^{-1} et C commutent aussi et

$$\begin{vmatrix} A & C \\ B & D \end{vmatrix} = \det(DA - BC).$$

Supposons A non inversible.

Pour p assez grand, la matrice $A_p = A + \frac{1}{n}I$ est inversible et commute avec C donc

$$\det\begin{pmatrix} A_p & C \\ B & D \end{pmatrix} = \det(DA_p - BC).$$

En passant à la limite quand $p \to +\infty$, la continuité du déterminant donne

$$\det\begin{pmatrix} A & C \\ B & D \end{pmatrix} = \det(DA - BC).$$

Exercice 76: [énoncé]

(a) En multipliant les n dernières lignes par i et les n dernières colonnes aussi :

$$\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = (-1)^n \det \begin{pmatrix} A & iB \\ -iB & -A \end{pmatrix}$$

puis par opérations sur les lignes

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = (-1)^n \det\begin{pmatrix} A & iB \\ A - iB & -A + iB \end{pmatrix}$$

et par opérations sur les colonnes

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = (-1)^n \det\begin{pmatrix} A+iB & iB \\ 0 & -A+iB \end{pmatrix}.$$

On en déduit

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = (-1)^n \det(A + iB) \det(-A + iB)$$

et enfin

$$\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \det(A + iB)\det(A - iB).$$

Les matrices A et B étant réelles, cette écriture est de la forme $z\overline{z} = |z|^2 \ge 0$.

(b) $\det(A+iB)\det(A-iB) = \det(A^2+B^2)$ car A et B commutent donc $\det(A^2+B^2) > 0$.

- (c) $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ par exemple.
- (d) Si A est inversible, on remarque

$$\begin{pmatrix} I & O \\ -CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & -CA^{-1}B + D \end{pmatrix}$$

donc det $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(-CA^{-1}B + D) = \det(AD - CB)$ car A et C commutent.

On étend cette égalité aux matrices non inversibles par densité :

Les applications $A \mapsto \det \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ et $A \mapsto \det(AD - CB)$ sont continues et coïncident sur l'ensemble des matrices inversibles commutant avec C. Or cet ensemble est dense dans l'ensemble des matrices commutant avec C: si A commute avec C alors pour tout $\lambda > 0$ assez petit $A + \lambda I_n$ est inversible et commute avec C). Par coïncidence d'applications continues sur une partie dense, les deux applications sont égales.

Exercice 77: [énoncé]

(a) Par les opérations $L_{n+1} \leftarrow L_{n+1} + L_1, \dots, L_{2n} = L_{2n} + L_n$,

$$\det A = \begin{vmatrix} \mathbf{I}_n & B \\ B + \mathbf{I}_n & \mathbf{I}_n + B \end{vmatrix}.$$

Par les opérations $C_1 \leftarrow C_1 - C_{n+1}, \dots, C_n \leftarrow C_n - C_{2n}$,

$$\det A = \begin{vmatrix} \mathbf{I}_n - B & B \\ O_n & \mathbf{I}_n + B \end{vmatrix} = \det(\mathbf{I}_n - B) \det(\mathbf{I}_n + B).$$

Ainsi A est inversible si, et seulement si, $I_n - B$ et $I_n + B$ le sont (i.e. $1, -1 \notin \operatorname{Sp} B$).

On aurait aussi pu étudier le noyau de A.

(b) On peut présumer que l'inverse de A est alors de la forme

$$\begin{pmatrix} M & N \\ N & M \end{pmatrix}$$
.

Puisque

$$\begin{pmatrix} \mathbf{I}_n & B \\ B & \mathbf{I}_n \end{pmatrix} \begin{pmatrix} M & N \\ N & M \end{pmatrix} = \begin{pmatrix} M + BN & N + BM \\ BM + N & BN + M \end{pmatrix}$$

Corrections

32

et puisque

$$\begin{cases} M + BN = I_n \\ BM + N = O_n \end{cases} \iff \begin{cases} M = (I_n - B^2)^{-1} \\ N = -B(I_n - B^2)^{-1} \end{cases}$$

on obtient

$$A^{-1} = \begin{pmatrix} (\mathbf{I}_n - B^2)^{-1} & -B(\mathbf{I}_n - B^2)^{-1} \\ -B(\mathbf{I}_n - B^2)^{-1} & (\mathbf{I}_n - B^2)^{-1} \end{pmatrix}.$$

On aurait pu aussi inverser l'équation AX = Y

Exercice 78: [énoncé]

On introduit

$$N = \begin{pmatrix} {}^t A' & O_{p,n-p} \\ {}^t B' & I_{n-p} \end{pmatrix}.$$

On a

$$MN = \begin{pmatrix} A^t A' + B^t B' & B \\ C^t A' + D^t B' & D \end{pmatrix}.$$

Or

$$M^{t}(\operatorname{Com} M) = \begin{pmatrix} A^{t}A' + B^{t}B' & A^{t}C' + B^{t}D' \\ C^{t}A' + D^{t}B' & C^{t}C' + D^{t}D' \end{pmatrix} = (\det M)^{n}I_{p}$$

donc

$$MN = \begin{pmatrix} \det(M)I_p & B \\ O_{n-p,p} & D \end{pmatrix}.$$

En passant cette relation au déterminant, on obtient

$$\det M \times \det^t A' = \det(M)^p \det D$$

puis facilement la relation proposée sachant $\det M \neq 0$.

Exercice 79: [énoncé]

(a) Cas D inversible Sachant $C^tD = D^tC$, on a

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} {}^tD & O_n \\ {}^tC & I_n \end{pmatrix} = \begin{pmatrix} A^tD - B^tC & B \\ O_n & D \end{pmatrix}$$

et en passant au déterminant on obtient la relation

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} \det^t D = \det (A^t D - B^t C) \det D$$

puis la relation voulue sachant $\det D = \det^t D \neq 0$

(b) Cas D non inversible

Posons $r = \operatorname{rg} C$. On peut écrire $C = PJ_rQ$ avec P,Q inversibles et J_r la matrice (symétrique) dont tous les coefficients sont nuls sauf les r premiers de la diagonale qui sont égaux à 1. Considérons alors $D' = D + \lambda P^t Q^{-1}$ pour $\lambda \in \mathbb{R}$.

On peut écrire

$$D' = P(P^{-1}D^{t}Q + \lambda I_{n})^{t}Q^{-1}.$$

Si $-\lambda$ n'est pas valeur propre de $P^{-1}D^tQ$, la matrice D' est inversible. Puisqu'une matrice n'a qu'un nombre fini de valeurs propres, la matrice D' est assurément inversible quand $\lambda \to 0^+$ avec λ assez petit. De plus, C^tD' est symétrique car

$$C^{t}D' - D'^{t}C = C^{t}D + \lambda P J_{r}QQ^{-1}P - D^{t}C - \lambda P^{t}Q^{-1}Q^{t}J_{r}P = 0.$$

Par l'étude qui précède, on obtient

$$\det\begin{pmatrix} A & B \\ C & D' \end{pmatrix} = \det(A^t D' - B^t C)$$

et en passant à la limite quand $\lambda \to 0^+$, on obtient

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A^t D - B^t C).$$

Exercice 80 : [énoncé]

Cas où la matrice A inversible :

 Pour

$$P = \begin{pmatrix} I_n & -A^{-1}B \\ O_n & I_n \end{pmatrix}$$

on a

$$MP = \begin{pmatrix} A & O_n \\ C & -CA^{-1}B + D \end{pmatrix}.$$

On en déduit

$$\det M = \det(MP) = \det A \times \det(-CA^{-1}B + D).$$

Or

$$\det A \times \det(-CA^{-1}B + D) = \det(AD - ACA^{-1}B) = \det(AD - BC)$$

car la matrice C commute avec les matrices A et B.

On en déduit

$$\det M = \det(AD - BC).$$

Cas général :

Pour $p \in \mathbb{N}^*$ assez grand, la matrice $A_p = A + 1/pI_n$ est inversible et les matrices A_p, B, C, D commutent deux à deux. Si on pose

$$M_p = \begin{pmatrix} A_p & B \\ C & D \end{pmatrix}$$

l'étude qui précède donne

$$\det M_p = \det(A_p D - BC).$$

En faisant tendre p vers $+\infty$, on obtient à la limite

$$\det M = \det(AD - BC).$$

Il est alors immédiat de conclure que l'inversibilité de M équivaut à celle de AD-BC.