MATH 454: Counter Examples

McGill University (Fall 2023)

Jake R. Gameroff

- 1. Continuity of measure. If $m_*(A_1) < \infty$ is dropped in the continuity of measure (i.e. $m(\bigcap_{k \in \mathbb{N}} A_k) \to m(A_k)$), we can take $A_k = [k, \infty)$ so that $\bigcap_{k \in \mathbb{N}} A_k = \emptyset$ but $m(A_k) = \infty$ for each $k \in \mathbb{N}$.
- 2. Existence of non-measurable set. Let $A \subseteq \mathbb{R}^d$ have positive outer measure. Then there exists a subset $D \subseteq A$ that is not measurable.
- 3. Existence of non-Borel measurable set. Let φ be the Cantor-Lebesgue function, \mathcal{C} be the Cantor set, $\psi: x \mapsto \varphi(x) + x$, and $E \subseteq \psi(\mathcal{C})$ be a non-measurable subset (since $m_*(\psi(\mathcal{C})) > 0$). Then $D = \psi^{-1}(E)$ is measurable but not a Borel set.
- 4. Existence of non-measurable pre-image of measurable set by measurable function. Let $f = \psi^{-1}$ and E, be as above from 3. Then $f^{-1}(D) = (\psi^{-1})^{-1}(D) = \psi(D) = E$ is not measurable.
- 5. Composition of measurable functions is not measurable. If $g: A \to B$ is continuous and $f: B \to \mathbb{R}$ is measurable, $A \subseteq \mathbb{R}^d$ is measurable and $B \subseteq \mathbb{R}$ is a Borel set: let ψ , D, E be defined as in 3. Let $g = \psi^{-1}$ and $f = \chi_D$. Then

$$(f \circ g)^{-1}([1, \infty]) = g^{-1}(f^{-1}([1, \infty])) = g^{-1}(D) = \psi^{-1}(D) = E$$

is not measurable.

- 6. Egorov's theorem, finite measure of domain requirement. Take $f_k = \chi_{[k,k+1)}$ on $[1,\infty)$ to attain pointwise convergence to 0; uniform convergence is impossible.
- 7. **Uniform boundedness in BCT.** Define $f_k := k \cdot \chi_{(0,1/k)}(x)$ in [0, 1]. Then, $\int_{[0,1]} f_k = k \cdot m(0,1/k) = 1$ but $f_k \to 0$ so that $\int_{[0,1]} 0 = 0$.
- 8. Fatou's Lemma with strict inequality. Let $f_k = k \cdot \chi_{(0,1/k)}$. Then $\int_{(0,1)} \liminf_{k \to \infty} f_k = \int_{(0,1)} 0 < \lim \inf_{k \to \infty} \int_{(0,1)} f_k = 1$.
- 9. Non-measurability of slices everywhere. Let $D \subseteq [0,1]$ be a non-measurable set. Let $C = \{0\}$. Then $A = D \times C$ is measurable in \mathbb{R}^2 (D has measure 0). But $A^0 = \{x \in \mathbb{R} : (x,0) \in A\} = D$ is not measurable.
- 10. Fubini interchanging. It is not always true that

$$\int_{\mathbb{R}^{d_1}} \int_{A_x} f(x, y) \ dy \ dx = \int_{\mathbb{R}^{d_2}} \int_{A^y} f(x, y) \ dx \ dy.$$

Just take $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$.

- 11. **Example of:** $\int_a^b f' < f(b) f(a)$. Let $f = \chi_{[1/2,1]}$ in [0,1]. Then f' exists everywhere except at 1/2, and $\int f' = 0 < f(1) f(0) = 1$. Another example is the Cantor-Lebesgue function, it is a.e. locally constant.
- 12. Vitali c < 3. Take $F = \{[-1, 0], [0, 1]\}$.
- 13. Function not of bounded variation. Take $f(x) = x \cos \frac{\pi}{2x}$ for $x \in (0,1]$ and 0 when x = 0.