The National School of Artificial Intelligence ENSIA

Probability Semestre 3 2023/2024

Test n°2

Exercice 1 We say that a random variable X follows a triangular distibution with parameter a (a > 0), if the density of X is defined by

$$f_{X}\left(x\right) = \frac{1}{a}\left(1 - \frac{|x|}{a}\right)\mathbb{I}_{\left[-a,a\right]}\left(x\right).$$

- 1. Determine F_X the cumulative function of X.
- 2. For $\theta \in \mathbb{R}$, calculate $\mathbb{P}(X > \theta)$.
- 3. For $k \geq 1$ we set $\theta_k = \frac{a}{2^k}$. Calculate $\mathbb{P}(|X| > \theta_k)$.
- 4. For $r \in \mathbb{N}^*$, calculate $\mathbb{E}[X^r]$.
- 5. Determine φ_X the characteristic function of X.

The National School of Artificial Intelligence ENSIA

Probability Semestre 3 2023/2024

Test n°2

Exercice 1 Let X_1, X_2, \dots, X_n be independent random variables with law

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = \frac{\theta^k}{(1+\theta)^{k+1}}$$

where $\theta > 0$. We define $S_n = X_1 + \cdots + X_n$.

- 1. Determine G_{S_n} the generating function of S_n . Deduce $\mathbb{E}[S_n]$ and $Var(S_n)$.
- 2. Show that the distribution law of S_n is given by

$$\forall k \in \mathbb{N}, \mathbb{P}(X = k) = C_{n+k-1}^k \frac{\theta^k}{(1+\theta)^{k+n}}.$$

3. Using the central limit theorem, find the value of

$$\lim_{n \to \infty} \sum_{k=0}^{n} C_{n+k-1}^{k} \frac{\theta^{k}}{(1+\theta)^{k+n}}.$$

We recall that: $\forall m \geq 1 \text{ and } \forall a \in]-1, 1[: \frac{1}{(1-a)^m} = \sum_{i=0}^{\infty} C_{i+m-1}^i a^i.$