第3章 微波传输线

- o 3.1 TEM,TE和TM波的一般解
- 3.2 矩形金属波导
- 3.3 圆波导
- 3.4 同轴线的高次模及单模传输
- 3.5 带状线和微带
- 3.6 介质波导

圆波导研究内容

对比矩形波导

- (1) TE波解
- (2) TM波解
- (3) 主模
- (4)兼并模
- (5) 场结构
- (6) 衰减

圆波导特征

定义

中空金属圆柱管

任意一横截面半径相同

回顾圆柱坐标

不能传输TEM波

反证法

假设可以传输TEM波

复数形式

对称性---

$$\widetilde{\mathbf{E}}(r,\phi,z) = \widetilde{\mathbf{E}}(r,\phi) \cdot \widetilde{Z}(z)$$

仅是横向坐标 (r,φ) 的函数,表示电场在波导横截面内的分布状态——分布函数

仅是纵坐标z的函数,它表示电场沿z轴的传播规律为传播因子

三个分量分别写

$$\widetilde{\mathbf{E}}_r(r,\phi,z) = \widetilde{\mathbf{E}}_r(r,\phi) \cdot \widetilde{Z}_r(z)$$

$$\widetilde{\mathbf{E}}_{\phi}(r,\phi,z) = \widetilde{\mathbf{E}}_{\phi}(r,\phi) \cdot \widetilde{Z}_{\phi}(z)$$

$$\widetilde{\mathbf{E}}_{z}(r,\phi,z) = \widetilde{\mathbf{E}}_{z}(r,\phi) \cdot \widetilde{Z}_{z}(z)$$

対称性
$$\widetilde{\mathbf{E}}(r,\phi,z) = \widetilde{\mathbf{E}}(r,\phi) \cdot \widetilde{Z}(z)$$
波动方程
$$\nabla^2 \widetilde{\mathbf{E}} + \omega^2 \mu \varepsilon \widetilde{\mathbf{E}} = 0$$

$$\nabla^2 \widetilde{\mathbf{E}} = (\nabla_t^2 + \nabla_z^2) (\widetilde{\mathbf{E}}(r,\phi) \cdot \widetilde{Z}(z))$$

$$= (\nabla_t^2 \widetilde{\mathbf{E}}(r,\phi)) \widetilde{Z}(z) + (\nabla_z^2 \widetilde{Z}(z)) \widetilde{\mathbf{E}}(r,\phi)$$

$$\Rightarrow (\nabla_t^2 + \omega^2 \mu \varepsilon) (\widetilde{\mathbf{E}}(r,\phi) \cdot \widetilde{Z}(z)) + (\nabla_z^2 \widetilde{Z}(z)) \cdot \widetilde{\mathbf{E}}(r,\phi) = 0$$

$$(\nabla_t^2 + \omega^2 \mu \varepsilon) \widetilde{\mathbf{E}}(r,\phi) + (\nabla_z^2 \widetilde{Z}(z)) \cdot \frac{\widetilde{\mathbf{E}}(r,\phi)}{\widetilde{Z}(z)} = 0$$

$$-(\nabla_t^2 + \omega^2 \mu \varepsilon) \widetilde{\mathbf{E}}(r,\phi) = (\nabla_z^2 \widetilde{Z}(z)) \cdot \frac{\widetilde{\mathbf{E}}(r,\phi)}{\widetilde{Z}(z)}$$

$$\Rightarrow \frac{-(\nabla_t^2 + \omega^2 \mu \varepsilon) \widetilde{\mathbf{E}}(r,\phi)}{\widetilde{\mathbf{E}}(r,\phi)} = (\nabla_z^2 \widetilde{Z}(z)) \cdot \frac{1}{\widetilde{Z}(z)}$$

$$\frac{-\left(\nabla_{t}^{2}+\omega^{2}\mu\varepsilon\right)\widetilde{\mathbf{E}}\left(r,\phi\right)}{\widetilde{\mathbf{E}}\left(r,\phi\right)}=\left(\nabla_{z}^{2}\widetilde{Z}\left(z\right)\right)\cdot\frac{1}{\widetilde{Z}\left(z\right)}$$

$$\therefore \left(\nabla_z^2 \widetilde{Z}(z)\right) \cdot \frac{1}{\widetilde{Z}(z)} = T^2 \qquad T = \alpha + j\beta$$

$$\frac{d^2\widetilde{Z}(z)}{dz^2} - T^2 \cdot \widetilde{Z}(z) = 0 \qquad \widetilde{Z}(z) = A_+ \cdot e^{-T \cdot z} + A_- \cdot e^{+T \cdot z}$$

$$(\nabla_t^2 + \omega^2 \mu \varepsilon) \widetilde{\mathbf{E}}(r, \phi) + T^2 \cdot \widetilde{\mathbf{E}}(r, \phi) = 0$$

$$\Rightarrow \nabla_t^2 \widetilde{\mathbf{E}}(r, \phi) + (\omega^2 \mu \varepsilon + T^2) \cdot \widetilde{\mathbf{E}}(r, \phi) = 0$$

$$K_c^2 = \omega^2 \mu \varepsilon + T^2 = k^2 + T^2$$

定义

$$\nabla_t^2 \widetilde{\mathbf{E}}(r, \phi) + K_c^2 \cdot \widetilde{\mathbf{E}}(r, \phi) = 0$$

截止波数

$$T=0 \Rightarrow Cut \ Off \Rightarrow K_c = \cdots$$

$$\nabla_t^2 \widetilde{\mathbf{E}}(r, \phi) + K_c^2 \cdot \widetilde{\mathbf{E}}(r, \phi) = 0$$

柱坐标系中 $\widetilde{\mathbf{E}} = \{\widetilde{E}r, \widetilde{E}\phi, \widetilde{E}z\}$

$$\widetilde{\mathbf{E}} = \left\{ \widetilde{E}r, \widetilde{E}\phi, \widetilde{E}z \right\}$$

$$\nabla^{2} \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^{2}} \cdot \frac{\partial^{2} \psi}{\partial \phi^{2}} + \frac{\partial^{2} \psi}{\partial z^{2}}$$

$$\widetilde{\mathbf{E}}(r,\phi) = \left[E_{r}(r,\phi), E_{\phi}(r,\phi), E_{z}(r,\phi) \right] \longrightarrow \widetilde{\mathbf{E}}$$

三个波动方程 加磁场共三对

$$\nabla_{t}^{2}\widetilde{\mathbf{E}}(r,\phi) + K_{c}^{2} \cdot \widetilde{\mathbf{E}}(r,\phi) = 0 \Longrightarrow \begin{cases} \nabla_{t}^{2}\widetilde{\mathbf{E}}_{r} + K_{c}^{2} \cdot \widetilde{\mathbf{E}}_{r} = 0 \\ \nabla_{t}^{2}\widetilde{\mathbf{E}}_{\phi} + K_{c}^{2} \cdot \widetilde{\mathbf{E}}_{\phi} = 0 \end{cases}$$
$$\nabla_{t}^{2}\widetilde{\mathbf{E}}_{z} + K_{c}^{2} \cdot \widetilde{\mathbf{E}}_{z} = 0$$

TE、TM波解

首先计算Ez或Hz

$$\begin{cases} \nabla_t^2 \tilde{\mathbf{E}}_r + K_c^2 \cdot \tilde{\mathbf{E}}_r = 0 \\ \nabla_t^2 \tilde{\mathbf{E}}_\phi + K_c^2 \cdot \tilde{\mathbf{E}}_\phi = 0 \\ \nabla_t^2 \tilde{\mathbf{E}}_z + K_c^2 \cdot \tilde{\mathbf{E}}_z = 0 \end{cases}$$

$$(TM) \qquad H_z = 0$$

$$\nabla_t^2 \tilde{\mathbf{E}}_z(r,\phi) + K_c^2 \cdot \tilde{\mathbf{E}}_z(r,\phi) = 0$$

$$(TE) \qquad E_z = 0$$

$$\nabla_t^2 \tilde{\mathbf{H}}_z(r,\phi) + K_c^2 \cdot \tilde{\mathbf{H}}_z(r,\phi) = 0$$

$$\nabla_{t}^{2}\widetilde{\mathbf{U}}\left(r,\phi\right)+K_{c}^{2}\cdot\widetilde{\mathbf{U}}\left(r,\phi\right)=0$$

$$\widetilde{\mathbf{U}}(r,\phi) = \widetilde{\mathbf{R}}(r) \cdot \widetilde{\mathbf{\Phi}}(\phi)$$

$$\nabla_t^2 \widetilde{\mathbf{U}} + K_c^2 \cdot \widetilde{\mathbf{U}} = 0$$

$$\nabla^{2}U = \frac{1}{r} \frac{\partial}{\partial r} \left(r \cdot \frac{\partial U}{\partial r} \right) + \frac{1}{r^{2}} \cdot \frac{\partial^{2}U}{\partial \phi^{2}} + \frac{\partial^{2}U}{\partial z^{2}} \underbrace{\widetilde{U}(r,\phi) = \widetilde{R}(r) \cdot \widetilde{\Phi}(\phi)}_{\mathcal{X}}$$
波动方程
$$\nabla_{t}^{2}\widetilde{U} + K_{c}^{2} \cdot \widetilde{U} = 0$$
求解

$$\frac{1}{r}\frac{d}{dr}\left(r\cdot\frac{dR}{dr}\right)\Phi + \frac{1}{r^2}\cdot\frac{d^2\Phi}{d\phi^2}R + K_c^2\cdot\Phi R = 0$$

$$\frac{r}{R}\frac{d}{dr}\left(r\cdot\frac{dR}{dr}\right) + \frac{1}{\Phi}\cdot\frac{d^2\Phi}{d\phi^2} + K_c^2\cdot r^2 = 0$$

$$\frac{r}{R}\frac{d}{dr}\left(r\cdot\frac{dR}{dr}\right) + K_c^2 \cdot r^2 = -\frac{1}{\Phi} \cdot \frac{d^2\Phi}{d\phi^2} = Cons \tan t = i^2$$

$$\begin{cases} \frac{1}{\Phi} \cdot \frac{d^2 \Phi}{d\phi^2} = -i^2 \\ \frac{r}{R} \frac{d}{dr} \left(r \cdot \frac{dR}{dr} \right) + K_c^2 \cdot r^2 = i^2 \end{cases}$$

波动方程
$$\frac{r}{R}\frac{d}{dr}\left(r\cdot\frac{dR}{dr}\right) + \frac{1}{\Phi}\cdot\frac{d^2\Phi}{d\phi^2} + K_c^2\cdot r^2 = 0$$

$$\therefore \frac{r}{R} \frac{d}{dr} \left(r \cdot \frac{dR}{dr} \right) + K_c^2 \cdot r^2 = i^2 \qquad \frac{1}{\Phi} \cdot \frac{d^2 \Phi}{d\phi^2} = -i^2$$

$$\frac{1}{\Phi} \cdot \frac{d^2 \Phi}{d\phi^2} = -i^2$$

$$\Phi_n(\phi) = A_n \cdot \sin(i_n \cdot \phi) + B_n \cos(i_n \cdot \phi)$$

因为
$$\Phi(i_n\phi) = \Phi(i_n(\phi + 360^\circ)) = \Phi(i_n\phi + i_n 360^\circ)$$
 : $i_n = n$ 为整数

$$i_n = n$$

$$\Phi_n(\phi) = A_n \cdot \sin(n\phi) + B_n \cos(n\phi)$$

$$r^{2} \frac{d^{2}R}{dr^{2}} + r \cdot \frac{dR}{dr} + \left[K_{c}^{2} \cdot r^{2} - n^{2}\right] \cdot R = 0$$

贝塞尔方程

$$u = K_c \cdot r$$

$$u^{2} \frac{d^{2}R}{du^{2}} + u \cdot \frac{dR}{du} + \left[u^{2} - n^{2}\right] \cdot R = 0$$

贝塞尔

Friedrich Wilhelm Bessel

德國天文學家和數學家。

生: 公元 1784年 7月 22日 於 西發里亞 (德國) 明登(Minden) 卒: 公元 1846年 3月 17日 於 普魯士 (俄羅斯)

著作: 導出用於天文計算的內插法貝塞爾公式,提出貝塞爾函數。

榮譽: 貝塞爾1837年測量天鵝座61 号星的视差是0".31(0.31秒), 這是世界最早的恆星視差測定之一。由此推算该星座距地球为11 光年。观测织女星视差是0".125±0".065, 计算出织女星距地球27 光年, 此外他还将精密的测量方法引入到双星观测中, 共发现220 对新的双星。

n阶贝塞尔方程

$$u^{2} \frac{d^{2}R}{du^{2}} + u \frac{dR}{du} + (u^{2} - n^{2})R = 0$$

解:
$$R = A_1 J_n(u) + A_2 N_n(u)$$

$$R(r) = A_1 J_n(K_c r) + A_2 N_n(K_c r)$$

第一类n阶贝塞尔函数

第二类n阶贝塞尔函数

$$J_n(u)$$
 $N_n(u)$

参考附录

回忆贝塞尔函数

波动方程

第一类n阶贝塞尔函数

$$\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$$

$$J_{n}' = J_{n-1} - \frac{nJ_{n}}{x}$$

$$J_{n-1} + J_{n+1} = \frac{2nJ_n}{x}$$

$$J_{n-1} - J_{n+1} = 2J_n'$$

$$J_{-n}(x) = (-1)^n J_n(x)$$

回忆贝塞尔函数

波动方程

第一类贝塞尔函数 第二类贝塞尔函数

Small x
$$J_n \approx \frac{1}{n!} \left(\frac{x}{2}\right)^2$$
 $n \neq 0$ $N_n \approx -\frac{(n-1)!}{\pi} \left(\frac{x}{2}\right)^2$ $n \neq 0$

Large x
$$J_n \approx \sqrt{\frac{2}{\pi} \cdot \frac{1}{x}} \cos\left(x - \frac{2n+1}{4}\right) \qquad N_n \approx \sqrt{\frac{2}{\pi} \cdot \frac{1}{x}} \sin\left(x - \frac{2n+1}{4}\right)$$

第一类贝塞尔函数

$$J_0(x) = 1 - \left(\frac{x}{2}\right)^2 + \frac{1}{(2!)^2} \left(\frac{x}{2}\right)^4 - \frac{1}{(3!)^2} \left(\frac{x}{2}\right)^6 + \dots + \left(-1\right)^k \frac{1}{(k!)^2} \left(\frac{x}{2}\right)^{2k} + \dots \qquad k = 0, 1, \dots$$

$$J_1(x) = \left(\frac{x}{2}\right) - \frac{1}{(1!2!)} \left(\frac{x}{2}\right)^3 - \frac{1}{(2!3!)} \left(\frac{x}{2}\right)^5 + \dots + (-1)^k \frac{1}{k!(k+1)!} \left(\frac{x}{2}\right)^{2k+1} + \dots \qquad k = 0,1,\dots$$

$$J_{n-1} - J_{n+1} = 2J_n' \quad J_{n-1} + J_{n+1} = \frac{2nJ_n}{x} \quad J_{-n}(x) = (-1)^n J_n(x)$$

第一类贝塞尔函数

1.2

1.0

波动方程 $N_n(u)$

$$\begin{cases} u^2 \frac{d^2 R}{du^2} + u \frac{dR}{du} + (u^2 - n^2)R = 0 \\ R = A_1 J_n(u) + A_2 N_n(u) \\ R(r) = A_1 J_n(K_c r) + A_2 N_n(K_c r) \end{cases}$$

$$N_n(u)$$

$$r \to 0, u \to 0, N \to -\infty$$

波动方程 $N_n(u)$

波动方程 - ρ $= A_1 J_n(K_c r) + A_2 N_n(K_c r)$

边界条件1

$$:: r = 0$$
 $E \neq \infty$, $::$ 第二类去掉

$$R(r) = A_1 \cdot J_n(K_c \cdot r)$$

边界条件2

切向连续 即
$$r=a$$
 时 $\widetilde{\mathbf{E}}_{\phi}=0$

$$E_z = 0$$

波动方程 - -解

$$\Phi_n(\phi) = A_n \cdot \sin(n\phi) + B_n \cos(n\phi)$$

$$R(r) = A_1 \cdot J_n(K_c \cdot r)$$

$$\widetilde{\mathbf{E}}_{z} = \mathbf{E}_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-T \cdot z}$$

$$\begin{cases} \widetilde{\mathbf{E}}_{z} = \mathbf{E}_{0} \cdot J_{n}(K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \\ \widetilde{\mathbf{H}}_{z} = \mathbf{H}_{0} \cdot J_{n}(K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \end{cases}$$

$$\widetilde{\mathbf{H}}_{z} = \mathbf{H}_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z}$$

TE 波解

 $\widetilde{E}_{2}=0$ 利用麦克斯韦方程得

$$E_{r} = -j\frac{1}{k_{c}^{2}} \left(\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \phi} \right) \qquad H_{r} = -j\frac{1}{k_{c}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \phi} \right)$$

$$E_{\phi} = -j \frac{1}{k^{2}} \left(\frac{\beta}{r} \frac{\partial E_{z}}{\partial \phi} - \omega \mu \frac{\partial H_{z}}{\partial r} \right)$$

$$\begin{cases} \widetilde{\mathbf{E}}_{z} = E_{0} \cdot J_{n}(K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \\ \widetilde{\mathbf{H}}_{z} = H_{0} \cdot J_{n}(K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \end{cases}$$

$$\widetilde{\mathbf{E}}_{z} = \widetilde{\mathbf{E}}_{0} \cdot J_{n}(K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z}$$

$$K_{c}^{2} = \omega^{2} \mu \cdot \varepsilon + T^{2} = k^{2} - k^{2$$

$$\widetilde{\mathbf{H}}_{z} = H_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z}$$

$$H_{r} = -j\frac{1}{k_{c}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \phi} \right)$$

$$H_{\phi} = -j \frac{1}{k_{c}^{2}} \left(\frac{\beta}{r} \frac{\partial H_{z}}{\partial \phi} + \omega \varepsilon \frac{\partial E_{z}}{\partial r} \right)$$

$$\Rightarrow \left\{ \begin{aligned} \widetilde{\mathbf{H}} &= \left\{ \widetilde{\mathbf{H}}_r, \widetilde{\mathbf{H}}_{\phi}, \widetilde{\mathbf{H}}_z \right\} \\ \widetilde{\mathbf{E}} &= \left\{ \widetilde{\mathbf{E}}_r, \widetilde{\mathbf{E}}_{\phi}, 0 \right\} \end{aligned} \right.$$

$$K_c^2 = \omega^2 \mu \cdot \varepsilon + T^2 = k^2 - \beta^2$$

TE 波解

所以

$$E_z = 0$$

$$H_z = J_n(K_c r) \cos n\phi e^{-jk_z z}$$

$$E_r = \frac{k}{k_z} \sqrt{\frac{\mu}{\varepsilon}} H_{\phi}$$

$$H_r = -j\frac{k_z}{K_c}J'_n(K_c r)\cos n\phi e^{-jk_z z}$$

$$E_{\phi} = -\frac{k}{k_{z}} \sqrt{\frac{\mu}{\varepsilon}} H_{r} \qquad H_{\phi} = j \frac{nk_{z}}{rK_{c}^{2}} J_{n}(K_{c}r) \sin n\phi e^{-jk_{z}z}$$

思考: r=a时边界条件, 磁场切向连续还是电场切向连续?

TE 波解

根据边界条件r=a时, 电场切向连续

所以
$$E_{\phi} = -\frac{k}{k_z} \sqrt{\frac{\mu}{\varepsilon}} H_r = 0$$

$$\Rightarrow H_r = -j \frac{k_z}{K_c} J'_n(K_c r) \cos n\phi e^{-jk_z z} = 0$$

$$\Rightarrow J'_n(K_c r) = \frac{dJ_n(K_c r)}{dr} \Big|_{r=a} = 0$$

看第一个0点 看第二个0点 看第三个0点 **TE 模** 看第四个0点

$$\frac{dJ_n(K_c r)}{dr}\Big|_{r=a} = 0$$

$$J_n(x_n) = 0$$

$$K_c = \frac{x'_{ni}}{a} \qquad i = 1, 2, \cdots$$

n = ? i = ?	$TE_{ni}^{H_{ni}}$	$\mathcal{X}_{ni}^{,}$	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
1 1	TE_{11}	1.842	• •	3.412a
2 1	TE_{21}	3.054	• • •	2.06a
0 1	TE_{01}	3.832	• • •	1.64a
3 1	TE_{31}	• • •	田上	的世化松 <u></u>

TE 模参量

截止频率

$$f_c = \frac{x'_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$$

波导波长

$$\lambda_g = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$$

相速度
$$v_p = \frac{1}{\sqrt{\mu \varepsilon}} \cdot \frac{1}{\sqrt{1 - (f_c/f)^2}}$$

波阻抗

$$Z_{w} = \frac{\omega\mu}{\beta} = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1 - (f_{c}/f)^{2}}}$$

TM 波解

利用麦克斯韦方程 TM模 $\widetilde{H}_{7} \equiv 0$

$$E_{r} = -j\frac{1}{k_{c}^{2}} \left(\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \phi} \right)$$

$$E_{\phi} = -j \frac{1}{k_c^2} \left(\frac{\beta}{r} \frac{\partial E_z}{\partial \phi} - \omega \mu \frac{\partial H_z}{\partial r} \right)$$

$$\widetilde{\mathbf{E}}_{z} = E_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z}$$

$$\begin{cases} \widetilde{\mathbf{E}}_{z} = E_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \\ \widetilde{\mathbf{H}}_{z} = H_{0} \cdot J_{n} (K_{c} \cdot r) \cdot \begin{cases} \cos(n\phi) \\ \sin(n\phi) \end{cases} \cdot e^{-j\beta z} \end{cases}$$

$$H_{r} = -j\frac{1}{k_{c}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \phi} \right)$$

$$H_{\phi} = -j \frac{1}{k_c^2} \left(\frac{\beta}{r} \frac{\partial H_z}{\partial \phi} + \omega \varepsilon \frac{\partial E_z}{\partial r} \right)$$

$$\Rightarrow \begin{cases} \widetilde{\mathbf{H}} = \left\{ \widetilde{\mathbf{H}}_r, \widetilde{\mathbf{H}}_{\phi}, 0 \right\} \\ \widetilde{\mathbf{E}} = \left\{ \widetilde{\mathbf{E}}_r, \widetilde{\mathbf{E}}_{\phi}, \widetilde{\mathbf{E}}_z \right\} \end{cases}$$

$$K_c^2 = \omega^2 \mu \cdot \varepsilon + T^2 = k^2 - \beta^2$$

TM 波解

所以

$$E_z = J_n(K_c r) \cos n\phi e^{-jk_z z}$$

$$E_r = -j\frac{k_z}{K_c}J_n'(K_c r)\cos n\phi e^{-jk_z z}$$

$$E_{\phi} = j \frac{nk_z}{rK_c^2} J_n(K_c r) \sin n\phi e^{-jk_z z}$$

$$H_z = 0$$

$$H_r = -\frac{k}{k_z} \sqrt{\frac{\varepsilon}{\mu}} E_{\phi}$$

$$H_{\phi} = \frac{k}{k_{z}} \sqrt{\frac{\varepsilon}{\mu}} E_{r}$$

TM 波解

根据边界条件r=a时, 电场切向连续

所以
$$E_{\phi} = 0$$

$$\Rightarrow E_{\phi} = j \frac{nk_z}{rK_c^2} J_n(K_c r) \sin n\phi e^{-jk_z z} = 0$$

$$\Rightarrow J_n(K_c r)|_{r=a} = 0$$

看第一个0点 看第二个0点 看第三个0点 **TM** 模 看第四个0点 $J_n(K_c r)|_{r=a} = 0$

 $K_{c} = \frac{X_{ni}}{a} \qquad i = 1, 2, \cdots$

n = ? i = ?	TM_{ni}	\mathcal{X}_{ni}	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
0 1	TM_{01}	2.405	•	2.61a
1 1	TM_{11}	3.832	•••	1.64a
2 1	TM_{21}	5.135	•••	1.22a
0 2	TM_{02}	5.520	• • •	1.14a

思考: 单模传输 传输条件?

TE模波阻抗
$$Z_w = \frac{\omega\mu}{\beta} = \frac{\sqrt{\mu/\varepsilon}}{\sqrt{1-(f_c/f)^2}}$$

TM 模参量

截止频率

$$f_c = \frac{x_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$$

波导波长

$$\lambda_g = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$$

$$f_c = \frac{x_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$$
相速度
$$v_p = \frac{1}{\sqrt{\mu \varepsilon}} \cdot \frac{1}{\sqrt{1 - (f_c/f)^2}}$$

波阻抗

$$\lambda_g = \frac{\lambda}{\sqrt{1 - (f_c/f)^2}}$$
 $Z_w = \frac{\beta}{\omega \varepsilon} = \eta \sqrt{1 - (f_c/f)^2}$

$$Z_{wTEni}Z_{wTMni} = ?$$

$$f_{cTE} = \frac{x'_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$$
 $f_{cTM} = \frac{x_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$

TM 模

$$Z_{wTEni}Z_{wTMni} = ? = \eta\sqrt{\frac{\mu}{\varepsilon}} = (120\pi)^2$$

由于截止频率 f_c 不同,所以 $\sqrt{1-(f_c/f)^2}$ 不能约去

而对矩形波导
$$Z_{wTEni}Z_{wTMni} = \eta^2$$

原因 简并态截止频率 f_c 相同

单模传输条件

n=? $i=?$	TE_{ni}	$\mathcal{X}_{ni}^{'}$	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
1 1	TE_{11}	1.842	• • •	3.412a
2 1	TE_{21}	3.054	•••	2.06a
0 1	TE_{01}	3.832	•••	1.64a
3 1	TE_{31}	• • •	• • •	• • •
n=? $i=?$				
$\iota\iota$ -: ι -:	TM_{ni}	\mathcal{X}_{ni}	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
0 1	TM_{ni} TM_{01}	$\frac{x_{ni}}{2.405}$	<i>K</i> _c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$ $2.61a$
			<i>K</i> _c	· ·
0 1	TM_{01}	2.405	• • •	2.61a

主模

最低阶截止波长

$$x'_{ni} = 1.842$$

$$x'_{ni} = 1.842$$
 $\lambda_c = 3.412a$

$$TE_{11}$$

n = ? i = ?	TE_{ni}	$\mathcal{X}_{ni}^{'}$	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
1 1	TE_{11}	1.842	• • •	<i>3.412a</i>
2 1	TE_{21}	3.054	•••	2.06a
n=? $i=?$	TM_{ni}	\mathcal{X}_{ni}	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$

n=? $i=?$	TM_{ni}	\mathcal{X}_{ni}	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
0 1	TM_{01}	2.405	• • •	2.61a
1 1	TM_{11}	3.832	• • •	1.64a

单模传输

对同轴线主模: TEM模

圆波导主模为TE₁₁模

单模传输条件: $2.61a < \lambda < 3.412a$

场结构

TE mode

TE₀₁模 把n=0, i=1代入E、H方程

$$H_{\phi} = E_r = E_z = 0$$
 $H_z = J_0(K_c r)e^{-jk_z z}$

$$H_r = -j\frac{k_z}{K_c}J_0'(K_cr)e^{-jk_zz}$$

圆柱对称

圆形波导管中电磁波的传输特性——TE₁₁波型

TE₁₁波型的缺点:

当波导加工不完善或波导内有微小的不均匀性存在,都会使场结构的极化面产生旋转。

图 2.5-12 圆波导中 TE₁波型极化面的旋转

圆形波导管中电磁波的传输特性——TE₁₁波型

应用:

- > 长距离传输信号时,不采用这种波型
- 在某些微波元件中可采用这种波型 旋转式移相器和衰减器 截止式衰减器及微波管的输出窗

场结构

TM mode

TM₀₁模 把n=0, i=1代入E、H方程

$$E_{\phi} = H_{r} = H_{z} = 0$$
 $E_{z} = J_{0}(K_{c}r)e^{-jk_{z}z}$

$$E_r = -j\frac{k_z}{K_c}J_0'(K_c r)e^{-jk_z z}$$

当z、r不变时

$$H_{\phi} = \frac{k}{k_z} \sqrt{\frac{\varepsilon}{\mu}} E_r$$
 也不变 圆柱对称

$$J_{n}' = J_{n-1} - \frac{nJ_{n}}{x} \quad J_{-n}(x) = (-1)^{n} J_{n}(x)$$

简并模

$$n = 0$$
?

TM mode

TE mode

 $TM_{1i} \sim TE_{0i}$

$$J_n(K_c r)|_{r=a}=0$$

$$J_n(K_c r)|_{r=a} = 0 \quad J'_n(K_c r) = \frac{dJ_n(K_c r)}{dr}|_{r=a} = 0$$

截止波长相同 即为简并模

$$J_0'(x) = J_{-1}(x) = -J_1(x)$$
 对照图 $\Rightarrow x'_{0i} = x_{1i}$ 年意x值都成立 第i个零点

注意: 简并与场型无关 与矩形波导不同

对任意x值都成立

衰减

介质损耗引起的衰减为
$$\alpha_d = \frac{k^2 \tan \delta}{2\beta}$$

可计算均匀介质填充的任何传输线的衰减

根据106页

根据104页 TE₁₁模由于金属损耗引起的衰减表达式:

$$\alpha_c = \frac{R_S}{ak\eta\beta} \left(k_c^2 + \frac{k^2}{x_{11}^2 - 1} \right)$$

总衰减常数为 $\alpha = \alpha_c + \alpha_d$

衰减

衰减是导波系统的重要指标之一。影响波导衰减的因素主要有:

- ①波导的波型。不同波型有不同的衰减;
- ②与波导尺寸选择有关;
- ③材料的选择。衰减与金属导电率平方根成反比,通常选用电导率较大的柴紫铜作材料;
- ④表面光洁度。波导内壁表面不光滑,损耗将增加,通常要求光洁度在10⁷
- ⑤表面清洁。金属表面不洁净,将使其导电率下降,为防止锈蚀,常在波导镀层上涂以特殊的抗腐蚀高频漆。

例

圆波导半径a=0.5cm,填充介质 ε_r = 2.25 求前两个传输模的截止频率 如果波导内表面镀银, $\tan\delta$ = 0.001 波导工作在13GHz,长度为50cm,计算 TE_{11} 模的衰减

单模传输条件

前两个传输模?

n=? $i=?$	TE_{ni}	$\mathcal{X}_{ni}^{'}$	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
1 1	TE_{11}	1.842	• • •	3.412a
2 1	TE_{21}	3.054	•••	2.06a
0 1	TE_{01}	3.832	•••	1.64a
3 1	TE_{31}	• • •	• • •	• • •
n=? $i=?$	TM_{ni}	\mathcal{X}_{ni}	K_c	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$
n = ? i = ? $0 1$	TM_{ni} TM_{01}	<i>x</i> _{ni} 2.405	K _c ••••	$\lambda_c = 2\pi / K_c = 2\pi a / x_{ni}$ $2.61a$
			<i>K</i> _c	
0 1	TM_{01}	2.405	<i>K</i> _c	2.61a

圆波导半径a=0.5cm,填充介质 ε_r = 2.25

求前两个传输模的截止频率

解: 前两个传输模为 TE_{11} TM_{01}

$$f_{cTE} = \frac{x'_{ni}}{2\pi a \sqrt{\mu \varepsilon}} \qquad f_{cTM} = \frac{x_{ni}}{2\pi a \sqrt{\mu \varepsilon}}$$

所以有:

$$f_{cTE_{11}} = \frac{x'_{11}}{2\pi a \sqrt{\mu \varepsilon}} = \frac{x'_{11}c}{2\pi a \sqrt{\varepsilon_r}} = \frac{1.842 \times 3 \times 10^8}{2\pi 0.005 \sqrt{2.25}} = 11.72GHz$$

$$f_{cTM_{01}} = \frac{x_{01}}{2\pi a \sqrt{\mu \varepsilon}} = \frac{2.405 \times 3 \times 10^8}{2\pi 0.005 \sqrt{2.25}} = 15.31 GHz$$

圆波导半径a=0.5cm, 填充介质 $\varepsilon_r = 2.25$

求前两个传输模的截止频率

$$f_{cTE_{11}} = \frac{x'_{11}}{2\pi a \sqrt{\mu \varepsilon}} = \frac{x'_{11}c}{2\pi a \sqrt{\varepsilon_r}} = 11.72GHz$$

$$f_{cTM_{01}} = \frac{x_{01}}{2\pi a \sqrt{\mu \varepsilon}} = 15.31GHz$$

如果波导内表面镀银,

波导工作在13GHz,长度为50cm,计算

 TE_{11} 模的衰减 可以看出13GHz时只有 TE_{11} 模能传输

圆波导半径a=0.5cm, 填充介质 ε_r = 2.25 如果波导内表面镀银,

波导工作在13GHz,长度为50cm,计算 TE_{11} 模的衰减 TE_{11} 模波数为:

$$k = \frac{2\pi f \sqrt{\varepsilon_r}}{c} = \frac{2\pi \times 13 \times 10^9 \sqrt{2.25}}{3 \times 10^8} = 408.4 / m$$

相移常数为

$$\beta = T = \sqrt{k^2 - K_c^2} = \sqrt{k^2 - (x_{11}^2/a)^2} = 176.7/m$$

介质损耗引起的衰减为

$$\alpha_d = \frac{k^2 \tan \delta}{2\beta} = \frac{408.4^2 \times 0.001}{2 \times 176.7} = 0.47 Np/m$$

金属表面电阻为

$$R_S = \sqrt{\omega \mu_0 / 2\sigma} = 0.029\Omega$$

根据104页 TE_{11} 模的衰减表达式,

所以有:

所以总衰减系数为 $\alpha = \alpha_c + \alpha_d = 0.54 Np/m$ l = 0.5m

所以总衰减为:

$$\alpha = 0.54 \times 0.5 \times 8.686 dB = 2.38 dB$$

波导的制造方法:

拉伸法是广泛采用的方法。将尺寸适当的紫铜圆管,放在相应的模具上进行冷拉,即可得所需之截面形状的波导管。热拉是不允许的,因为冷却后波导要变形的。拉伸次数愈多,波导内表面愈光滑,质量也愈高。

制造形状复杂的、高质量的波导时,可用电铸法。 为减小损耗,波导内壁可镀银以提高导电率。

波导尺寸的选择

波导尺寸的选择就是由给定的工作波长确定波导横截面的尺寸。对于矩形波导就是要确定宽边a和窄边b,对于圆波导就是要确定半径R。

对于用作传输线的波导的基本要求是:

- 1. 在工作频率范围内,波导管中只传输单一波型
- 2. 损耗应尽量小
- 3. 波导须有足够高的击穿强度,功率容量要大
- 4. 波导尺寸及重量尽可能小,制造工艺力求简单

波导尺寸已经标准化

各国使用的波导尺寸不尽统一,例如10厘米波导,有的国家使用的横截面尺寸为76.2×38.1mm²,苏联使用的是72×34mm²,我国使用的是BJ-32,尺寸为72.14×34.04mm²。