Projektna naloga iz Matematičnega modeliranja

Uroš Kosmač

24. julij 2023

Problem

Problem, ki ga bom predstavil v tej projektni naloga je, kako opisati simetrično diskretno verižnico s sodo mnogo členki, kjer je en členek določen z dolžino in maso. Podani podatki, bosta obesišči (x_0, y_0) , (x_{n+1}, y_{n+1}) , ter dolžine L_i in mase M_i vseh "palic". Problem bomo reševali po principu minimalne energije tj. palice podo postavljene tako, da je njihova energija minimalna pod vplivom sile teže.

Matematični opis problema

Problema se lotimo, popolnoma enako kot smo to storili na predavanjih. Imamo obesišči (x_0, y_0) in (x_{n+1}, y_{n+1}) ter množico n členkov $\{(L_1, M_1), (L_2, M_2), \dots (L_{n+1}, M_{n+1})\}$. Dodatne predpostavke so sledeče:

- n+1 je sodo oz. n je liho,
- $y_i = y_{n+1-i}$ (simetričnost),
- $x_i x_{i-1} = x_{n-i+2} x_{n-i+1}$ (simetričnost),
- $L_i = L_{n+2-i}$, kjer je $i = 1, 2, \dots \frac{n+1}{2}$,
- $M_i = M_{n+2-i}$, kjer je $i = 1, 2, \dots \frac{n+1}{2}$.

Potencialna energija verižnic, ki jo želimo minimizirati je:

$$W_p = \sum_{i=1}^{n+1} M_i g \frac{y_i + y_{i+1}}{2} \tag{1}$$

Ker želimo, da so členki povezani, dodamo še pogoje:

$$d((x_i, y_i).(x_{i+1}, y_{i+1})) = (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 = L_{i+1}$$
 (2)

Poslužimo se metode vezanih ekstemov in definiramo funkcijo:

$$g(x,y,\lambda) = \sum_{i=1}^{n+1} \left(M_i g \frac{y_i + y_{i+1}}{2} + \lambda_i ((x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2 - L_i) \right)$$
(3)

Odvajamo po spremenljivkah x_i , y_i in λ_i in dobimo sistem enačb:

$$\lambda_i(x_i - x_{i-1}) - \lambda_{i+i}(x_{i+1} - x_i) = 0 i = 1, \dots, n$$

$$\lambda_i(y_i - y_{i-1}) - \lambda_{i+i}(y_{i+1} - y_i) = -\frac{M_i + M_{i+1}}{4} i = 1, \dots, n$$

$$(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2 = L_i^2 i = 1, \dots, n + 1$$

Zaradi preglednosti uvedemo nove spremenljivke

$$\xi_i = x_i - x_{i-1}, \quad i = 1, \dots, n+1$$

 $\eta_i = y_i - y_{i-1}, \quad i = 1, \dots, n+1$
 $\mu_i = \frac{M_i + M_{i+1}}{2}, \quad i = 1, \dots, n$

Ekvivalenten sistem ima obliko:

$$\lambda_i \xi_i = \lambda_{i+i} \xi_{i+1} \qquad i = 1, \dots, n \tag{4}$$

$$\lambda_i \eta_i = \lambda_{i+i} \eta_{i+1} - \frac{\mu_i}{2} \qquad i = 1, \dots, n$$
 (5)

$$\xi_i^2 + \eta_i^2 = L_i^2 \qquad i = 1, \dots, n+1$$
 (6)

Isto kot smo naredili na predavanjih poenostavimo sistem v sledečo obliko:

$$\lambda_i \xi_i = -\frac{1}{2u}, \quad i = 1, \dots, n+1,$$
 (7)

$$v = \frac{\eta_1}{\xi_1},\tag{8}$$

$$\frac{\eta_i}{\xi_i} = v - u \sum_{j=1}^{i-1} \mu_j, \quad i = 1, \dots, n+1.$$
(9)

Konstanto u moramo še določiti. Iz enačb 6 in 9 dobimo izražavo za ξ_i

$$\xi_i = \frac{L_i}{\sqrt{1 + (v - u \sum_{j=1}^{i-1} \mu_j)^2}} \,. \tag{10}$$

Sedaj ko imamo ξ_i iz enačbe 9 dobimo še izražavo za η_i

$$\eta_i = \frac{L_i}{\sqrt{1 + (v - u \sum_{j=1}^{i-1} \mu_j)^2}} \cdot \left(v - u \sum_{j=1}^{i-1} \mu_j\right)$$
(11)

Da, dobimo enostavno zvezo med u in v bomo pogledali kaj se zgodi z enačbo 9, ko vstavimo indeks za srednji člen tj. $k = \frac{n+1}{2}$. Najprej, poglejmo kako se predpostavki o simetričnosti prevedeta na ξ_i in η_i .

$$\xi_i = x_i - x_{i-1} = x_{n-i+2} - x_{n-i+1} = \xi_{n-i+2} \tag{12}$$

$$\eta_i = y_i - y_{n-1} = y_{n-i+1} - y_{n-i+2} = -\eta_{n-i+2} \tag{13}$$

Sedaj v 12 in 13 vstavimo indeks $k=\frac{n+1}{2}$, da dobimo zvezi $\xi_k=\xi_{k+1}$ in $\eta_k=-\eta_{k+1}$. Vstavimo v enačbo 9

$$v - u \sum_{j=1}^{k-1} \mu_j = \frac{\eta_k}{\xi_k} = -\frac{\eta_{k+1}}{\xi_{k+1}} = -\left(v - u \sum_{j=1}^k \mu_j\right) \Rightarrow v = u\left(\sum_{j=1}^{k-1} \mu_j + \frac{\mu_k}{2}\right)$$

Sedaj, ko imamo to izražavo za v, jo vstavimo 10:

$$\xi_{i} = \frac{L_{i}}{\sqrt{1 + (v - u \sum_{j=1}^{i-1} \mu_{j})^{2}}}$$

$$= \frac{L_{i}}{\sqrt{1 + (u(\sum_{j=1}^{k-1} \mu_{j} + \frac{\mu_{k}}{2}) - u \sum_{j=1}^{i-1} \mu_{j})^{2}}}$$

$$= \frac{L_{i}}{\sqrt{1 + (u(\sum_{j=1}^{k-1} \mu_{j} - \sum_{j=1}^{i-1} \mu_{j} + \frac{\mu_{k}}{2}))^{2}}}, \quad i = 1, \dots, n+1$$

Zaradi simetrije ξ_i -ja je dovolj če vsoto v zgornjem korenu seštejemo le do indeksa srednje točke tj. $k = \frac{n+1}{2}$. Potem se nam, dokončno poenostavi v

$$\xi_i(u) = \begin{cases} \frac{L_i}{\sqrt{1 + (u\sum_{j=i}^{k-1} \mu_j + u\frac{\mu_k}{2})^2}}, & \text{za} & i = 1, \dots, k-1\\ \frac{L_i}{\sqrt{1 + (u\frac{\mu_k}{2})^2}}, & \text{za} & i = k \end{cases}$$

Sedaj dobimo sistem enačb:

$$U(u,v) = \sum_{j=1}^{n+1} \xi_j - (x_{n+1} - x_0) = 0$$
$$V(u,v) = \sum_{j=1}^{n+1} \eta_j - (y_{n+1} - y_0) = 0$$

Da sistem dodatno poenostavimo, pri prvi enačbi zgornjega sistema upoštevamo simetrijo ξ_i , kar pomeni, da je dovolj da seštejemo do k. Pri drugi enačbi sistema lahko zapišemo $y_{n+1} - y_0$ na sledeč način:

$$y_{n+1} - y_0 = (y_{n+1} - y_n) + (y_n - y_{n-1}) + (y_{n-1} - y_{n-2}) + \dots + (y_1 - y_0)$$

$$= \eta_{n+1} + \eta_n + \eta_{n-1} + \dots + \eta_1 = \sum_{i=1}^{n+1} \eta_i$$

Vidimo, da je druga enačba trivialno zadoščena, zato nam ostane le:

$$U(u) = 2\sum_{j=1}^{l} \xi_j(u) - (x_{n+1} - x_0) = 0$$
(14)

Če sedaj definiciji ξ_i in η_i seštejemo do *i*-ja, dobimo enačbi za točke verižnice

$$\sum_{j=1}^{i} \xi_i = \sum_{j=1}^{i} (x_i - x_{i-1}) = x_i - x_0 \Rightarrow x_i = x_0 + \sum_{j=1}^{i} \xi_i$$
 (15)

$$\sum_{j=1}^{i} \eta_i = \sum_{j=1}^{i} (y_i - y_{i-1}) = y_i - y_0 \Rightarrow y_i = y_0 + \sum_{j=1}^{i} \eta_i$$
 (16)

Slika 1: Homogena simetricna veriznica, kjer si vse dolzine 1

Literatura

[1] E. Zakrajšek, *Verižnica*, 6. 10. 1999, [ogled 2. 9. 2023], dostopno na https://ucilnica2021.fmf.uni-lj.si/pluginfile.php/8283/mod_resource/content/2/predavanja/veriznica/veriznica.pdf.