Sorry for a little delay, will start by 3:07 PM

L81
Intro to Graphs and Generic Trees

RECAP

Facebook Friends · -> facebook user Use A & user B are friends on fb.

A few more examples

- i) Network of reads
- 2) Hights Network

What is a graph?

- 1) graph can be seen as a network of objects called NODES
- 2) Some of these nodes may be connected with each other via EDGES

lychh of 6 nodes

A few types

On the basis of edge direction

a) undirected b) directed Unidirectional edges

On the basis of edge weight

a.) unweightedb.) weighted

· Undirected unwighted graphs

. No self-loops or multiple edges

On the basis of certain conditions

There is an edge blue each

Complete Graph

N nodes
$$\Longrightarrow {}^{N}C_{2} \Rightarrow {}^{N*(N-1)}/2$$

A few terminologies

Connected Components

If the nor of connected components in a graph = 1 Connected Graph

graph with N nodes max components nin- comfonents

U LearnYard

N nodes, M odges

$$\frac{N}{\leq} \deg(i) = 2 \times M$$

 $\ensuremath{\mathbf{Q}}.$ Let's say there are a few nodes with an odd degree. No. of such nodes will be:

- a) Always a multiple of 3
- by Always be even
- c) Always be odd
- d) None of these

Cycles

- Q. A connected graph with N nodes and N 1 edges:
- Will definitely have a cycle
- Will NOT have a cycle for sure May or may not have a cycle

N-1 edges

Again, a tree can be:

- 1. Binary / generic
- 2. Weighted / unweighted
- 3. Rooted / unrooted

For a generic rooted tree having N nodes, what is the min & the max. height! if(N==1) { nuin = 1 max = 1 else g min => 2 3 map => N (1) (1) N LearnYard

Ways to represent graph / tree

Adjacency Matrix

	ı	2	3	4	5
1	٥	0	0	อ	0
2	0	۵	1	0	0
3	0	1	O	1	1
4	0	D	1	Ð	1
5	0	D	1	1	၁

Lot of initial time taken Problem > Benefit \Rightarrow likeking for a specific edge is O(1)

Adjacency List

Parent Array (just for tree)

Taking Input

Thank You!

Reminder: Going to the gym & observing the trainer work out can help you know the right technique, but you'll muscle up only if you lift some weights yourself.

So, PRACTICE, PRACTICE!

