Things You Should Know How to Do on the SAT Math

Heart of Algebra:

number of possible outcomes

- Remember
 - "or" = adding probabilities
 - "and" = multiplying probabilities
- Make inferences about population parameters based on sample data
 - Use statistics to investigate measures of center of data and analyze shape, center, and spread
 - Mean, median and mode: Do you know what all of them are? How do you find each one?
 - If your set of data is changed so that each number is increased by 5, how does that affect mean, median and mode?
- Evaluate reports to make inferences, justify conclusions, and determine appropriateness of data collection methods

Passport to Advanced Math:

- Create a quadratic or exponential function
 - What is doest a linear, exponential, and quadratic equation look like?
- Determine the most suitable form of an expression
- Create equivalent expressions involving rational exponents and radicals
 - What are the rules of exponents? What is the relation between exponents and radicals?
- Create an equivalent form of an algebraic expression
 - Do you know how to go forwards and backwards on a quadratic expression?
 - Do you know how to go from factoring to FOIL and from FOIL to factoring?
- Solve a quadratic equation—you have a couple ways, use the easiest way
 - Completing the square
 - Quadratic equation
 - Factoring
 - Graphing (if you are allowed to use a graphing calculator)
- Add, subtract, and multiply polynomial expressions and simplify the result
 - Know which variables' coefficients combine.
 - Example: $3x + 5x^2 + 7x + 3 = (3x + 7x) + 5x^2 + 3$ notice we can only combine 3x and 7x, because $5x^2$ is entirely different from 7x and 3x!!!
- □ Solve an equation in one variable that contains radicals or contains the variable in the denominator of a fraction
 - Know how to notice extraneous solutions!
 - ♦ Does it make sense in the problem? Example: Can the length of the side of a box be negative?
 - $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$, NEVER!!! However, $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$. Do you remember the law of exponents and radicals?
 - Know how to translate $\frac{\frac{c}{b}}{\frac{c}{d}} = \frac{a}{b} \div \frac{c}{d}$. Do you see that the two dots on the dividing sign are just place holders for the
 - "numbers" like a fraction? Do you know how to divide fractions?
 - Do you know how to "rationalize" a fraction with radicals? (Hint: Use the conjugate)
 - The conjugate of $3 \sqrt{5}$ is the negative of the *radical* part i.e. $3 + \sqrt{5}$ is the conjugate!
 - ♦ You have to notice that when you multiply: $(3 \sqrt{5}) \times (3 + \sqrt{5})$, you must FOIL and what does this look like? (*Hint: Difference of squares*)
 - Do know that $\sqrt{a} = a^{\frac{1}{2}}$? Do you know how to solve $x^2 = 9$? How about $\sqrt{x+1} = 5$?
- □ Solve a system of one linear equation and one quadratic equation
 - If two quadratic equations are the same what does that say about the coefficients of the two equations? (Hint: they must match in some way)
- Rewrite simple rational expressions

- Use your answer choices and try to move things around so it looks similar to what you are given.
- Example: if $3 + \frac{2}{x+1}$ was given as one of your answer choices, change it so that you have one fraction! $3 + \frac{2}{x+1} = 3 \times \frac{x+1}{x+1} + \frac{2}{x+1} = \frac{3(x+1)}{x+1} + \frac{2}{x+1}$ and so then you can combine the fractions.
- Interpret parts of nonlinear expressions in terms of their context
 - What does the constant of the expression stand for? Example: If the equation of a ball's position after it has been dropped from a cliff is $s(t) = 16t^2 + 3t + 20$, what does the 20 mean?
- Understand the relationship between zeros and factors of polynomials, and use that knowledge to sketch graphs.
 - How are factors of a polynomial and zero of a polynomial similar? Are they different in some way?
- Understand a nonlinear relationship between two variables by making connections between their algebraic and graphical representations
- Use function notation, and interpret statements using function notation.
 - f(x) = 3x, $g(x) = x^2 + 3$, what is f(g(x))? g(f(x))? What about f(g(5t))?
- Use structure to isolate or identify a quantity of interest
 - Example: If 3x y = 17 and 2x 2y = 6, what is the value of x + y?
 - Stack them:

$$3x - y = 17$$

$$2x - 2y = 6$$

$$x + y = ?$$

Now do you see how to get x+y? (There is always at least one on the SAT)

Additional Topics in Math:

- □ Solve problems using volume formulas.
 - You are given these formulas; do you know how to split a figure into two volumes you do know? Example: A
 scoop of ice cream in a waffle cone, what are the two shapes you have? What about an hourglass?
- ☐ Use trigonometric ratios and the Pythagorean theorem
 - Do you know SOHCAHTOA?
 - What kind of triangles does Pythagorean Theorem only apply to?
- □ Add, subtract, multiply, divide, and simplify complex numbers.
 - Imaginary numbers—FOIL is your friend.
 - Do you know how to "rationalize" a fraction with imaginary numbers? (Hint: Use the conjugate)
 - ♦ This is similar to "conjugate" in radical expressions: Using a similar example the conjugate of 3 + 5i is the negative of the imaginary part, i.e. 3 5i!!!
 - Do you know the conjugate of 3 or 3i? Put it into the form of a + bi!
- Convert between degrees and radians and use radians to determine arc lengths; use trigonometric functions of radian measure
 - 180 degrees = π
 - So what does 360 degrees in radians mean? What is $\frac{\pi}{3}$ in degrees?
 - Use ratios!!!! That is, $\frac{180^{\circ}}{\pi} = \frac{degrees}{radians}$!!!
- Apply theorems about circles to find arc lengths, angle measures, chord lengths, and areas of sectors
 - Notice there is a direct relation between the area/circumference of the circle and the degrees of the circle

- $\frac{360^{\circ}}{Circumference of Circle} = \frac{degrees of arc}{lengt h of arc}$
- Remember the circumference and area of circle is given on the sheet on the test!
- Use concepts and theorems about congruence and similarity to solve problems about lines, angles, and triangles
 - What are vertical angles, corresponding angles, complementary angles, supplementary angles, alternate interior angles, alternate exterior angles, adjacent angles, perpendicular lines, parallel lines, angle bisectors, line bisectors????
 - Isosceles triangles!!! What are some facts about them? (SAT loves isosceles triangles)
- Use the relationship between similarity, right triangles, and trigonometric ratios; use the relationship between sine and cosine of complementary angles
 - Again know SOHCAHTOA.
 - Know that $\sin (90^{\circ}-x) = \cos (x)$ and $\cos (90^{\circ}-x) = \sin (x)$? (There is always at least one question on this!)
 - If two triangles are similar, what do you know about their angles? What about their sides?
 - In a right triangle $\triangle ABC$, because of that fact up there we get:
 - sin (A) = cos (B)
 - sin (B)= cos (A)

- ☐ Create or use an equation in two variables to solve a problem about a circle in the coordinate plane.
 - What is the equation for a circle?
 - If you are given an equation of a circle in nonstandard form, what do you need to do to find its center and radius? (*Hint: Complete the what?*)

Extra Tips:

• Please do remember, if you have a fractions you can get rid of them by multiplying the whole equation with the *least common denominator*.

4

- If you have a fraction on one side of the equation and a plain number on the other side, cross multiplying never fails!
 - 1. You can only **cross multiply** between an equal sign =
 - ♦ You can remember it by, there are two lines that haven't crossed yet so you can cross multiply.
 - 2. You can **cross cancel** between a multiplying sign \times
 - ♦ And this one is already crossed, so you can't cross multiply and that usually "x" means "cancel"
- If you see x^2 , x^3 or anything with exponents on variables, you got a quadratic in your hands!
- Know what happens when:
 - 1. $(a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2$
 - 2. $(a-b)^2 = (a-b)(a-b) = a^2 2ab + b^2$
 - 3. $(a-b)(a+b) = a^2 b^2$ (Difference of Squares)—this one is very important.

Number 1 and 2 are something you should know, to do things faster, but you don't have to know.

- Do the easy questions first! Underline what you do know and what you are told to find!
- Use the calculator to your advantage! Learn how to use your calculator!