A Family of Well-Clear Boundary Models for the Integration of Unmanned Aircraft Systems in the National Airspace System

C. A. Muñoz A. J. Narkawicz M.C. Consiglio J.M. Upchurch

> NASA Langley Research Center in Support of the UAS in the NAS Project

> > March 24, 2015

See and Avoid vs. Sense and Avoid

A Motivation for a Formal Definition of Well Clear

- ► The FAA SAA Workshop for UAS defines sense and avoid as: "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic."
- How will a UAS determine if it is well clear from other airborne traffic?
- In the absence of an on-board human pilot with the experience and judgement to determine well clear, a formal definition is needed to provide guidance to a ground pilot or possibly an automated algorithm.
- ▶ This definition should be more **conservative** than TCAS, a system intended to be the last resort in collision avoidance, so as to be compatible.
- NASA has examined and developed several formal definitions which considered to be a family of well-clear boundary models.

The Approach

A key characteristic of NASA's concept is that the self-separation threshold is a conservative extension of the collision avoidance threshold defined by TCAS. $^{\rm 1}$

*ATC Separations Services apply as necessary

Volumes and thresholds are shown as cylinders for illustrative purposes only. In general, these shapes are irregular, with the exception of the collision volume.

¹Consiglio, Chamberlain, Muñoz, and Hoffler, ICAS, 2012

Interoperability with TCAS RA Logic

- ► TCAS is a family of airborne devices that are designed to reduce the risk of mid-air collisions between aircraft equipped with operating transponders. TCAS II, the current generation of TCAS devices, is mandated in the US for aircraft with greater than 30 seats or a maximum takeoff weight greater than 33,000 lbs,
- ➤ To ensure compatibility of NASA's self-separation concept and TCAS, the mathematical definition of the volume determined by the SST is considered to be a conservative extension of the core TCAS II Resolution Advisory logic which checks against independent horizontal and vertical time and distance threshold.²

²Muñoz, Narkawicz, and Chamberlain, GNC, 2013.

Assumptions

- Two aircraft, the ownship and intruder,
- ▶ Accurate aircraft state information is available for both, i.e.,
 - ▶ Horizontal positions \mathbf{s}_o , \mathbf{s}_i and velocities \mathbf{v}_o , \mathbf{v}_i
 - ▶ Altitudes s_{oz} , s_{iz} and vertical speeds v_{oz} , v_{iz}
 - ▶ Relative position $\mathbf{s} = \mathbf{s}_o \mathbf{s}_i$ and velocity $\mathbf{v} = \mathbf{v}_o \mathbf{v}_i$
 - lacktriangle Relative altitude $s_z=s_{oz}-s_{iz}$ and vertical speed $v_z=v_{oz}-v_{iz}$
- Prediction at a particular time instant of a future well-clear violation is based on a straight-line trajectory from that time instant, i.e., constant velocity is assumed.

A Family of Well-Clear Boundary Models

Definition of the Well Clear Volume

$$WCV_{t_{\text{var}}}(\mathbf{s}, s_z, \mathbf{v}, v_z) \equiv \text{Horizontal_WCV}_{t_{\text{var}}}(\mathbf{s}, \mathbf{v}) \text{ and}$$

$$\text{Vertical_WCV}(s_z, v_z), \tag{1}$$

Anywhere inside the volume determined by this function, the aircraft are **not well clear**.

$$\begin{split} \text{Horizontal_WCV}_{t_{\text{var}}}(\mathbf{s},\mathbf{v}) &\equiv \|\mathbf{s}\| \leq \text{DTHR or} \\ & (d_{\text{cpa}}(\mathbf{s},\mathbf{v}) \leq \text{DTHR and } 0 \leq t_{\text{var}}(\mathbf{s},\mathbf{v}) \leq \text{TTHR}), \\ \text{Vertical_WCV}(s_z,v_z) &\equiv |s_z| \leq \text{ZTHR or } 0 \leq t_{\text{coa}}(s_z,v_z) \leq \text{TCOA}. \end{split}$$

$$egin{aligned} d_{ ext{cpa}}(\mathbf{s},\mathbf{v}) &\equiv r(t_{ ext{cpa}}(\mathbf{s},\mathbf{v})) = \|\mathbf{s} + t_{ ext{cpa}}(\mathbf{s},\mathbf{v})\mathbf{v}\|, \ \|s\| &\equiv \sqrt{\mathbf{s}^2} = \sqrt{\mathbf{s}\cdot\mathbf{s}} \ |s_z| &\equiv s_{oz} - s_{iz} \end{aligned}$$

A Family of Well-Clear Boundary Models

Definition of the Well Clear Volume

$$WCV_{t_{\text{var}}}(\mathbf{s}, s_z, \mathbf{v}, v_z) \equiv \text{Horizontal_WCV}_{t_{\text{var}}}(\mathbf{s}, \mathbf{v}) \text{ and}$$

$$\text{Vertical_WCV}(s_z, v_z), \tag{1}$$

Anywhere inside the volume determined by this function, the aircraft are **not well clear**.

The function $t_{\text{var}}(\mathbf{s}, \mathbf{v})$ is the only change between the models

$$\begin{split} \text{Horizontal_WCV}_{t_{\text{var}}}(\mathbf{s},\mathbf{v}) &\equiv \|\mathbf{s}\| \leq \text{DTHR or} \\ & \left(d_{\text{cpa}}(\mathbf{s},\mathbf{v}) \leq \text{DTHR and } 0 \leq t_{\text{var}}(\mathbf{s},\mathbf{v}) \leq \text{TTHR} \right), \\ \text{Vertical_WCV}(s_z,v_z) &\equiv |s_z| \leq \text{ZTHR or } 0 \leq t_{\text{coa}}(s_z,v_z) \leq \text{TCOA}. \end{split}$$

$$egin{aligned} d_{ ext{cpa}}(\mathbf{s},\mathbf{v}) &\equiv r(t_{ ext{cpa}}(\mathbf{s},\mathbf{v})) = \|\mathbf{s} + t_{ ext{cpa}}(\mathbf{s},\mathbf{v})\mathbf{v}\|, \ \|s\| &\equiv \sqrt{\mathbf{s}^2} = \sqrt{\mathbf{s}\cdot\mathbf{s}} \ |s_z| &\equiv s_{oz} - s_{iz} \end{aligned}$$

Parameter: Time Variables and Thresholds

Four choices for $t_{var}(\mathbf{s}, \mathbf{v})$:

$$\tau(\mathbf{s}, \mathbf{v}) \equiv \begin{cases} -\frac{\mathbf{s}^2}{\mathbf{s} \cdot \mathbf{v}} & \text{if } \mathbf{s} \cdot \mathbf{v} < 0, \\ -1 & \text{otherwise}, \end{cases}$$
 (2)

$$t_{cpa}(s, v) \equiv \begin{cases} -\frac{s \cdot v}{v^2} & \text{if } v \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$
 (3)

$$\tau_{\text{mod}}(\mathbf{s}, \mathbf{v}) \equiv \begin{cases} \frac{\text{DTHR}^2 - \mathbf{s}^2}{\mathbf{s} \cdot \mathbf{v}} & \text{if } \mathbf{s} \cdot \mathbf{v} < 0, \\ -1 & \text{otherwise}, \end{cases}$$
 (4)

$$t_{ep}(s, \mathbf{v}) \equiv \begin{cases} \Theta(s, \mathbf{v}, \mathtt{DTHR}, -1) & \text{if } s \cdot \mathbf{v} < 0 \text{ and } \Delta(s, \mathbf{v}, \mathtt{DTHR}) \geq 0, \\ -1 & \text{otherwise}, \end{cases} \tag{5}$$

where

$$\begin{split} \Theta(\mathbf{s},\mathbf{v},D,\epsilon) &\equiv \frac{-\mathbf{s}\cdot\mathbf{v} + \epsilon\sqrt{\Delta(\mathbf{s},\mathbf{v},D)}}{\mathbf{v}^2}, \\ \Delta(\mathbf{s},\mathbf{v},D) &\equiv D^2\mathbf{v}^2 - (\mathbf{s}\cdot\mathbf{v}^\perp)^2. \end{split}$$

All four models use the same vertical time variable to compare to TCOA:

$$t_{\text{coa}}(s_z, v_z) \equiv \begin{cases} -\frac{s_z}{v_z} & \text{if } s_z v_z < 0, \\ -1 & \text{otherwise.} \end{cases}$$
 (6)

Parameter: Time Variables and Thresholds

Four choices for $t_{var}(\mathbf{s}, \mathbf{v})$:

$$\tau(\mathbf{s}, \mathbf{v}) \equiv \begin{cases} -\frac{\mathbf{s}^2}{\mathbf{s} \cdot \mathbf{v}} & \text{if } \mathbf{s} \cdot \mathbf{v} < 0, \\ -1 & \text{otherwise}, \end{cases}$$
 (2)

$$t_{\text{cpa}}(\mathbf{s}, \mathbf{v}) \equiv \begin{cases} -\frac{\mathbf{s} \cdot \mathbf{v}}{\mathbf{v}^2} & \text{if } \mathbf{v} \neq \mathbf{0}, \\ 0 & \text{otherwise}, \end{cases}$$
 (3)

$$\tau_{\mbox{mod}}(\mathbf{s},\mathbf{v}) \equiv \begin{cases} \frac{\mbox{DTHR}^2 - \mathbf{s}^2}{\mathbf{s} \cdot \mathbf{v}} & \mbox{if } \mathbf{s} \cdot \mathbf{v} < 0, \\ -1 & \mbox{otherwise}, \end{cases} \tag{4}$$

$$t_{ep}(s, \mathbf{v}) \equiv \begin{cases} \Theta(s, \mathbf{v}, \mathtt{DTHR}, -1) & \text{if } s \cdot \mathbf{v} < 0 \text{ and } \Delta(s, \mathbf{v}, \mathtt{DTHR}) \geq 0, \\ -1 & \text{otherwise}, \end{cases} \tag{5}$$

where

$$\begin{split} \Theta(\mathbf{s},\mathbf{v},D,\epsilon) &\equiv \frac{-\mathbf{s}\cdot\mathbf{v} + \epsilon\sqrt{\Delta(\mathbf{s},\mathbf{v},D)}}{\mathbf{v}^2}, \\ \Delta(\mathbf{s},\mathbf{v},D) &\equiv D^2\mathbf{v}^2 - (\mathbf{s}\cdot\mathbf{v}^\perp)^2. \end{split}$$

The four well clear volumes are in order of increasing containment

All four models use the same vertical time variable to compare to TCOA:

$$t_{\text{COa}}(s_z, v_z) \equiv \begin{cases} -\frac{s_z}{v_z} & \text{if } s_z v_z < 0, \\ -1 & \text{otherwise.} \end{cases}$$
 (6)

Parameter: Time Variables and Thresholds, continued

$$\begin{split} \text{Horizontal_WCV}_{t_{\text{var}}}(\mathbf{s}, \mathbf{v}) &\equiv \|\mathbf{s}\| \leq \text{DTHR or} \\ & (d_{\text{cpa}}(\mathbf{s}, \mathbf{v}) \leq \text{DTHR and } 0 \leq t_{\text{var}}(\mathbf{s}, \mathbf{v}) \leq \text{TTHR}) \end{split}$$

Figure: The 4 well clear volumes are in order of increasing containment

Conceptualizing the Well-Clear Boundary

- Sweep the ownship trajectory around 360° while holding v_{oz} constant,
- ightharpoonup a boundary in three dimensions is determined by calling $WCV_{t_{var}}$ along each trajectory,
- project the resulting surface into the horizontal plane containing s_o.

Figure : Illustration of a 3-dimensional encounter projected into 2 dimensions

WC_TEP

 $WCV_{t_{ep}}(\mathbf{s}, s_z, \mathbf{v}, v_z) \equiv \texttt{Horizontal_WCV}_{t_{ep}}(\mathbf{s}, \mathbf{v}) \; \texttt{and} \; \texttt{Vertical_WCV}(s_z, v_z)$

WC_TAUMOD

 $\textit{WCV}_{\tau_{\mathsf{mod}}}(\mathbf{s}, s_{\mathsf{z}}, \mathbf{v}, \nu_{\mathsf{z}}) \equiv \texttt{Horizontal_WCV}_{\tau_{\mathsf{mod}}}(\mathbf{s}, \mathbf{v}) \text{ and } \texttt{Vertical_WCV}(s_{\mathsf{z}}, \nu_{\mathsf{z}})$

WC_TCPA

 $WCV_{t_{\text{cpa}}}(\mathbf{s}, s_z, \mathbf{v}, \nu_z) \equiv \texttt{Horizontal_WCV}_{t_{\text{cpa}}}(\mathbf{s}, \mathbf{v}) \text{ and } \texttt{Vertical_WCV}(s_z, \nu_z)$

WC_TAU

 $WCV_{ au}(\mathbf{s}, s_z, \mathbf{v}, \nu_z) \equiv ext{Horizontal_WCV}_{ au}(\mathbf{s}, \mathbf{v}) \; ext{and Vertical_WCV}(s_z, \nu_z)$

Properties of Interest: Symmetry

Definition (Symmetry)

A well-clear boundary model specified by $WCV_{t_{var}}$, for a given time variable t_{var} , is symmetric if and only if

$$WCV_{t_{var}}(\mathbf{s}, s_z, \mathbf{v}, v_z) = WCV_{t_{var}}(-\mathbf{s}, -s_z, -\mathbf{v}, -v_z).$$

The ownship and intruder agree on whether they are well clear.

Theorem (Symmetry)

The well-clear boundary models WC_TAU , WC_TAUMOD , WC_TCPA , and WC_TEP are symmetric for any choice of threshold values DTHR, TTHR, ZTHR, and TCOA.

Properties of Interest: Inclusion

Theorem (Inclusion)

For all $\mathbf{s}, s_z, \mathbf{v}, v_z$ and choice of threshold values DTHR, TTHR, ZTHR, and TCOA, the following implications hold

- (i) $WCV_{\tau}(\mathbf{s}, s_z, \mathbf{v}, v_z) \implies WCV_{t_{coa}}(\mathbf{s}, s_z, \mathbf{v}, v_z)$,
- (ii) $WCV_{t_{cpa}}(\mathbf{s}, s_z, \mathbf{v}, v_z) \implies WCV_{\tau_{mod}}(\mathbf{s}, s_z, \mathbf{v}, v_z)$, and
- (iii) $WCV_{\tau_{mod}}(\mathbf{s}, s_z, \mathbf{v}, v_z) \implies WCV_{t_{ep}}(\mathbf{s}, s_z, \mathbf{v}, v_z).$

Properties of Interest: Inclusion, continued

 $WCV_{t_{\text{Var}}}(\mathbf{s}, s_{z}, \mathbf{v}, \nu_{z}) \equiv \texttt{Horizontal_WCV}_{t_{\text{Var}}}(\mathbf{s}, \mathbf{v}) \text{ and Vertical_WCV}(s_{z}, \nu_{z})$

Properties of Interest: Local Convexity

A well-clear boundary model specified by $WCV_{t_{var}}$, for a given time variable t_{var} , is *locally convex* if and only if there are no times $0 \le t_1 \le t_2 \le t_3 \le T$ such that

- 1. the aircraft are not well clear at time t_1 , i.e., $WCV_{t_{1},c_{1}}(\mathbf{s}+t_{1}\mathbf{v},s_{z}+t_{1}v_{z},\mathbf{v},v_{z})$,
- 2. the aircraft are well clear at time t_2 , i.e., $\neg WCV_{tvar}(\mathbf{s} + t_2\mathbf{v}, \mathbf{s}_z + t_2\mathbf{v}_z, \mathbf{v}, \mathbf{v}_z)$, and
- 3. the aircraft not well clear at time t_3 , i.e., $WCV_{t_{var}}(\mathbf{s}+t_3\mathbf{v},s_z+t_3v_z,\mathbf{v},v_z)$.

Local Convexity: Along a linear trajectory, the aicraft does not lose well clear, gain it back, and lose it again.

Figure: WC_TEP

Figure: WC_TAU

Properties of Interest: Local Convexity, continued

Theorem

For any choice of threshold values, the well-clear boundary models WC_TCPA , WC_TAUMOD , and WC_TEP are locally convex.

Theorem

For some choices of threshold values, the well-clear boundary model WC_TAU is not locally convex.

Conclusion

- A formal definition of well clear is motivated by the need for UAS to operate safely in the presence of other aircraft in the airspace
- ▶ A family of well-clear boundary models is introduced which are extensions of the TCAS II RA logic
- Characterizing concepts for these models are:
 - Symmetry
 - Inclusion
 - Local convexity
- WC_TAU has instances of non-local convexity and is the least conservative model
- ▶ WC_TEP is the most conservative model

References

The End

Questions?

Encounter Space for Randomly-Generated Trajectories

- Ownship position, and horizontal direction fixed,
- Ownship and intruder horizontal velocity randomly chosen 849 velocities,
- Intruder horizontal position chosen from $\mathcal{U}[\pi, 2\pi]$,
- ▶ Intruder vertical position chosen from $\mathcal{N}(s_{oz}, h/6)$,
- Intruder horizontal velocity direction chosen from $U[0, 2\pi]$,
- Intruder vertical velocity chosen from $\mathcal{N}(0, v_{iz, \max})$.

Example Encounters of Interest

Figure : Large difference in $t_{\rm in}$

Figure : Disagreement in $WCV_{t_{var}}$