学習指導案

2022年10月29日更新

授業日 11月11日1校時

 学級
 3年A組

 指導科目
 数学III

使用教科書 数学 III 数研出版

授業者 溝口洸熙

■単元の指導計画・評価計画

- 1. 単元名 回転体の体積
- 2. 単元の目標
 - 目標 1
 - 目標 2
- 3. 単元観

単元観を書く、\par で改行字下げする.

4. 評価規準

知識・技能 [A]	思考・判断・表現 [B]	主体的に学習に取り組む態度 [C]
A1 知識があるといいね A2 技能があるといいね	B1 思考があるといいね B2 判断があるといいね B3 表現があるといいね	C1 主体的に学習に取り組む態度があるといいね

5. 単元の授業計画並びに評価計画

時間	学習活動	評価規準	評価方法
第1時間目	1時間目の学習活動を書く.	A1, B2	観察・小テスト・自己評価
第2時間目	2時間目の学習活動を書く.	B1 , B2	観察・ワークシート
第3時間目	3時間目の学習活動を書く.	C1, B1	観察・ワークシート・自己評価

6. 生徒の実態

現在の生徒の実態を記入する. \par で改行字下げする.

■本時の計画

- 7. 本時の到達目標 (評価規準)
 - 本時の到達目標その 1.
 - 本時の到達目標その 2.
- 8. 本時のポイント

本時のポイントを書く. \par で改行字下げする.

▶本時の展開

段階	学習活動	指導上の留意点	評価の観点
導入	この指導計画表は、何も意味がありません. ただ、できる ことを羅列しているだけです.		
	\dotfill\\で、点線を挿入できる.	\begin{framed} で、囲いができる. \end{framed}	
	$= \frac{2}{3} \cdot 2^{\frac{3}{2}} - \frac{2}{3}$ $= \frac{2}{3} (2\sqrt{2} - 1)$ Oliving 1 2 x $= \frac{2}{3} (2\sqrt{2} - 1)$		

数式の表現 展開 align, equa

align, equation で、数式に番号を振ったり、=で揃えたり、 \begin{equation}

 $\verb|\begin{aligned}|$

V & = \int_{1}^{2} S(x) dx\\

& = \pi\int_{1}^{2}

 $\big{\left(x}\right)^2 dx = \pi$

\end{aligned}

 $\verb|\end{equation}|$

$$V = \int_{1}^{2} S(x)dx$$

$$= \pi \int_{1}^{2} \left\{ \sqrt{x} \right\}^{2} dx = \pi$$
(1)

一般化

一般的に、曲線 y=f(x) と x 軸,及び 2 直線 x=a,x=b(a< b) で囲まれた部分を、x 軸の周りに 1 回転させてできる立体の体積を V とすると、以下の公式が得られる.

$$V = \pi \int_{a}^{b} \left\{ f(x) \right\}^{2} dx = \pi \int_{a}^{b} y^{2} dx$$
 (2)

(a < b)

頑張ったら回転体も描ける.

列を跨いで、いろいろできる。 オイラーの公式とオイラーの等式 $e^{i\theta}=\cos\theta+i\sin\theta$ $e^{i\pi}=-1 \eqno(3)$

列を跨ぐために、\multicolumn を利用する.

微分の定義(tcolorbox を利用)

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$