EPITA / InfoS1		Janvier 2016
NOM:	Prénom :	Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours : QCM (6,5 points - pas de point négatif)

Entourez la ou les bonnes réponses.

- 1. Qu'est-ce qu'un déplacement quelconque de charges électriques ?
 - a- Une résistance

c- Un courant

b- Une tension

- d- Rien de tout cela
- 2. Selon le type de dipôle, le courant qui sort de ce dipôle peut être supérieur ou inférieur à celui qui y rentre.
 - a- VRAI

b- FAUX

3. On considère le schéma suivant :

On fait les mesures du courant et de la tension, et on trouve $I_{AB} < 0$ et $U_{AB} > 0$. Le dipôle est un dipôle :

a- Récepteur

- b- Générateur
- 4. A quelle unité correspondent des Volts sur des Ampères
 - a- Des Ohms

c- Des Joules

b- Des Siemens

- d- Rien de tout cela
- 5. Une branche dans un circuit électrique est :
 - a- Une portion d'un circuit situé entre 2 nœuds consécutifs.
 - b- Un fil reliant deux dipôles
 - c- Une portion de circuit comprenant un et un seul générateur
 - d- Une portion de circuit comprenant une et une seule résistance
- Quand on associe 2 résistances R₁ et R₂ en parallèle, on conserve :
 - a- La tension aux bornes de R_1
 - b- Le courant qui traverse R_1
 - c- Rien du tout

7. Une résistance court-circuitée a :

- a- un courant infini qui la traverse
- b- une tension infinie à ses bornes
- c- une tension nulle à ses bornes
- d- Aucune de ces réponses

8. Si on applique la loi d'Ohm avec R en $k\Omega$ et I en mA, on obtient directement U en :

a. *kV*

b. *V*

c. mV

d. *MV*

9. Pour annuler une source de courant, on la remplace par :

a- Un fil

c- Une résistance

b- Un interrupteur ouvert

d- Un générateur de tension

10. Pour annuler une source de tension, on la remplace par :

a- Un interrupteur fermé

c- Un interrupteur ouvert

b- Une résistance

d- Un générateur de courant

On considère les 2 circuits suivants :

Ces 2 circuits sont équivalents si et seulement si :

- 11. E =
 - a- I
 - b- R.I

- $C- \frac{R'.R}{R+R'}.$
- d- Aucune de ces réponses

12. R' =

- a- R
- b- $\frac{R.R'}{R+R'}$

- $C-\frac{R}{R+R'}$
- d- Aucune de ces réponses

13. Le théorème de Millman vient :

- a- Du thèorème de Thévenin
- b- De la loi des mailles

- c- De la loi des nœuds
- d- Du théorème de superposition

Exercice 2. Théorème de Norton (6 points)

Soit le circuit ci-contre, dans lequel $R_1=R_2=R_3=R_4=R$.

1.	Déterminer l	e	générateur	de	Norton	vu	par	R_4 .	Vous	utiliserez	la	méthode	de	votre	choix
	(Equivalences	0	u application	du	théorèm	ıe),	et vo	us ex	primei	rez votre r	ésu	ltat en fon	ction	ı de I_{0} ,	E_3 et
	R.														

2. En déduire le courant dans R_4 .

Exercice 3. Théorèmes (7,5 points)

Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

		 41/

EPITA / InfoS1	Janvier 201

Janvier 2016

	A
${\color{red} {\rm BONUS}}$ On considère le circuit ci-contre. Déterminez ${\it U}$ en utilisant le théorème de Millman.	U