Exercícios do Capítulo 2

Os símbolos **© ESD** e **© AL** indicam que o exercício foi retirado de uma lista de exercícios da Professora Esmeralda Sousa Dias ou do Professor Amarino Lebre, respectivamente.

I ESPAÇOS LINEARES, BASES E DIMENSÃO

EXERCÍCIO 1.—Considere os vectores $v_1 = (2, 1, 0, 3), v_2 = (3, -1, 5, 2)$ e $v_3 = (-1, 0, 2, 1)$. Quais dos vetores seguintes pertencem a $L_V(\{v_1, v_2, v_3\})$? a) (2, 3, -7, 3); b) (0, 0, 0, 0); c) (1, 1, 1, -1); d) (-4, 6, -13, 4).

Exercício 2.—Quais dos seguintes conjuntos com as operações usuais de adição vectorial e multiplicação por escalares reais são subespaços lineares de \mathbb{R}^3 ?

- (a) O conjunto de vectores da forma (a, 0, 0) com a real.
- (b) O conjunto de vectores da forma (a, 1, 1) com a real.
- (c) O conjunto de vectores da forma (a, b, c) com b = a + c e $a, b \in \mathbb{R}$.
- (d) O conjunto de vectores da forma (a, b, c) com $a, b, c \in \mathbb{Z}$.
- (e) O conjunto de vectores da forma (a, b, c) com b = a + c + 1 e $a, b \in \mathbb{R}$.

Exercício 3.—Para cada uma das matrizes, determine dois conjuntos geradores distintos para: (i) o núcleo (ou espaço nulo); (ii) o espaço das colunas; (iii) o espaço das linhas.

$$A = \begin{bmatrix} 2 & 1 & -2 & 0 \\ 4 & 2 & -4 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 6 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix}$$

Exercício 4.—Sempre que b pertencer ao espaço das colunas de *A* escrevao como combinação linear dessas colunas.

a)
$$A = \begin{bmatrix} 1 & 2 \\ 1 & -6 \end{bmatrix}$$
, $b \begin{bmatrix} -2 \\ 5 \end{bmatrix}$;
b) $B = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 1 & 5 \end{bmatrix}$, $b = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$;

c)
$$C = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ -1 & 2 & 3 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Exercício 5.—Seja A uma matriz real 4×4 e b um vector de \mathbb{R}^4 para o qual o sistema Ax = b tem solução única. Explique por que razão as colunas de A geram \mathbb{R}^4 .

Exercício 6.—Indique quais dos seguintes conjuntos W são subespaços © ESD lineares de \mathbb{R}^3 ?

- (a) $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 10\}.$
- (b) $W = L_{\mathbb{R}^3}(\{(1,0,1),(1,1,1)\}).$
- (c) $W = L_{\mathbb{R}^3}(\{(1,0,1)\}) \cup \{(x,y,z) \in \mathbb{R}^3 \mid x+y=z\}.$
- (d) $W = L_{\mathbb{R}^3}(\{(1, -1, 0)\}) \cup \{(x, y, z) \in \mathbb{R}^3 \mid -x + y + z = 0\}.$
- (e) $W = L_{\mathbb{R}^3}(\{(1,1,1)\}) \cap \{(x,y,z) \in \mathbb{R}^3 \mid x+y-z=0\}.$
- (f) $W = L_{\mathbb{R}^3}(\{(1,1,1)\}) \cap \{(x,y,z) \in \mathbb{R}^3 \mid x+y-z=1\}.$

Exercício 7.—Seja $A \in \mathbb{R}^{p \times q}$ e A^{T} a sua transposta. Suponha que:

- I O núcleo de A^{T} tem dimensão 3,
- II Existe um vector v em \mathbb{R}^p formando uma base do espaço das linhas da mariz transposta A^{T} ,
- III O núcleo de A tem dimensão 4.

Então os valores de p e q são:

A)
$$p = 5, q = 5$$
; B) $p = 5, q = 4$; C) $p = 4, q = 5$.

Exercício 8.—Considere o subespaço linear de \mathbb{R}^3 definido por:

© ESD

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + 3z = 0\}.$$

- (a) Determine uma base ordenada B de W, e indique a dimensão de W.
- (b) Verifique que o vetor v = (1, 2, 1) pertence a W, e determine o vector de coordenadas de v na base B.

Exercício 9.—Seja W o subespaço linear de \mathbb{R}^4 definido por:

$$W = \{(x, y, z, w) \in \mathbb{R}^4 \mid x - y + 2z - w = 0 \land -x + z = 0\}.$$

- (a) Determine uma base ordenada B para o subespaço W, e indique a dimensão de W.
- (b) Verifique que o vetor v = (1, 2, 1, 1) pertence a W, e determine o vetor v_B (o vector de coordenadas de v na base B.

Exercício 10.—Sejam v_1 , v_2 , v_3 , v_4 e v_5 vectores não nulos de um espaço linear V e $W=L_V(\{v_1,v_2,v_3,v_4,v_5\})$ o subespaço por eles gerado. Admitindo que:

- (a) $v_2 \notin L_V(\{v_1\}),$
- (b) $2v_1 3v_2 + 2v_3 = 0$,
- (c) $v_4 \notin L_V(\{v_1, v_2, v_3\}),$
- (d) $v_5 \notin L_V(\{v_1, v_2, v_3, v_4\}),$

qual a dimensão de W?

A) 3; B) 4; C) 5; D) 2.

Exercício II.—Seja $S=\{v_1,v_2,v_3\}$ uma base de um espaço linear W. Mostre que $\{u_1,u_2,u_3\}$, com $u_1=v_1$, $u_2=v_1+v_2$ e $u_3=v_1+v_2+v_3$, também é uma base de W.

Exercício 12.—Considere a base ordenada B = (u, v, w) de um espaço linear V e $x_B = (6, 2, 1)$. Determine x_{B_i} (i = 1, 2, 3) onde:

- (a) $B_1 = (u + v, u v, w)$.
- (b) $B_2 = (u + v + w, v, v w).$
- (c) $B_3 = (2u, v + w, v w)$.

Exercício 13.—Seja A uma matriz 3×4 cujo núcleo admite uma base formada pelo vector (2,0,0,6). Considere a seguinte lista de afirmações:

- I $\dim(EL(A)) = 3$;
- II $\dim(\operatorname{Nuc}(A)) = 1$;
- III $\dim(\operatorname{Nuc}(A^{\top}) = 2;$
- IV $\dim(EC(A^{T}) = 2$.

Indique todas as conclusões que pode inferir.

- A) I, III e IV; B) I e II; C) II e IV;
- **Exercício** 14.—Sejam S e U os subespaços de \mathbb{R}^3 definidos como se segue:

D) I e III.

$$\begin{split} S &= L_{\mathbb{R}^3}(\{(1,2,3),(-3,7,1),(19,10,-13)\}) \\ U &= L_{\mathbb{R}^3}(\{(1,-11,-7),(4,-5,2)\}). \end{split}$$

Designando por a, b as dimensões de $S \cap U$ e S + U, respectivamente, indique qual o valor do par (a, b):

A) (1,3); B) (1,4); C) (2,2); D) (2,3).

© AL

© AL

© ESD

Exercício 15.—Considere o subespaço S de $\mathbb{R}^{3\times3}$ formado por todas as matrizes que são triangulares superiores e que têm traço nulo (o traço de uma matriz quadrada A, que se denota $\operatorname{tr}(A)$ é a soma dos elementos da diagonal principal de A). Qual a dimensão de S?

- A) 3;
- B) 4;
- C) 5;
- D) 6

Exercício 16.—Seja

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ 1 & 2 & -3 \end{bmatrix}$$

e considere as seguintes afirmações:

- I As linhas de A formam um conjunto linearmente independente;
- II As colunas de A formam um conjunto linearmente independente;
- III A característica de A é igual a 3;
- IV O sistema de equações lineares Au = b tem uma única solução, qualquer que seja $b \in \mathbb{R}$.

Qual é a lista completa de afirmações verdadeiras?

- A) I e II;
- B) I, II e III;
- C) III;
- D) Todas.

Exercício 17.—Determine uma base e equações cartesianas que descrevam o subespaço $S=L_{\mathbb{R}^4}(X)\subset\mathbb{R}^4$, onde

$$X = \{(1, -1, 1, 0), (1, 0, 0, 1), (1, -2, 2, -1), (-2, 10, -10, 8), (-1, 8, -8, 7)\}.$$

Exercício 18.—Seja B uma base ordenada e x_B o vector das coordenadas de x na base B. Determine em cada alínea o vector x.

- (a) $B = ((5, -1), (1, -1)) e x_B = (3, -1);$
- (b) $B = ((1, -1, 4), (0, 1, 2), (1, 2, 0)) e x_B = (3, -1, 1).$

Exercício 19.—Considere os seguintes vectores de \mathbb{R}^3 :

$$v_1 = (1, 2, 1), v_2 = (1, 2, 3), v_3 = (1, 2, 2).$$

Qual dos vectores a seguir indicados não pertence ao subespaço de \mathbb{R}^3 gerado por $\{v_1,v_2,v_3\}$?

- A) (0,0,0);
- B) (0, 0, 1);
- C) (1, 1, 5);
- D) (0, 1, 0).

Exercício 20.—Determine uma base e a dimensão de cada um dos subespaços lineares gerados pelos conjuntos seguintes.

- (a) $\{(1, 1, 2), (1, 2, 2), (2, 3, 4)\}.$
- (b) $\{(-1, 1, 1, 2), (1, 1, 0, 1), (-2, 0, 1, 1), (3, 1, -1, 0)\}.$

Exercício 21.—Diga qual das afirmações seguintes é verdadeira para

© ESD

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y - z = 0\}$$

- (a) V não é subespaço linear de \mathbb{R}^3 .
- (b) $\{(1,2,0),(0,1,1)\}$ é uma base de V.
- (c) $\{(1,2,0),(0,1,1),(1,3,1)\}$ é uma base de V.
- (d) $\{(1,0,2),(0,1,1)\}$ é uma base de V.

Exercício 22.—Seja A uma matriz tal que $\{(1,1,0,0),(1,0,2,1)\}$ é uma base do núcleo Nuc(A) da matriz A. Considere as afirmações seguintes:

- (a) O vetor x = (-5, -2, 3, -2) é solução do sistema Ax = 0;
- (b) A dimensão do espaço das colunas EC(A) da matriz $A \notin 2$;
- (c) A matriz A tem 4 colunas;
- (d) Nuc(A) = $\{(x, y, z, w) \in \mathbb{R}^4 \mid x + 2z = y \land z = w\}.$

A lista completa das afirmações correctas é:

A) (a), (b) e (c) B) (b), (c) e (d) C) (b) e (d) D) (b) e (c)

Exercício 23.—Seja A uma matriz 4 × 4. Responda às questões seguintes. © **ESD**

- (a) Se o espaço das colunas de A não é \mathbb{R}^4 que pode dizer a respeito do núcleo de A?
- (b) Se o núcleo de A não é o subespaço $\{0\}$ que pode dizer a respeito do espaço das colunas de A?
- (c) Se o espaço das colunas de $A \in \mathbb{R}^4$ que pode dizer a respeito das soluções do sistema Ax = b para $b \in \mathbb{R}^4$?
- (d) Se o núcleo de A é $\{0\}$ que pode dizer a respeito das soluções do sistema Ax = b para $b \in \mathbb{R}^4$?

Exercício 24.—Dê exemplos, se existirem, de:

© ESD

© ESD

- (a) uma matriz $A \in \mathbb{R}^{3\times 4}$ tal que dim EL(A) = 2;
- (b) uma matriz $A \in \mathbb{R}^{4\times3}$ tal que dim Nuc(A) = 2;
- (c) três vetores distintos de \mathbb{R}^4 que gerem um subespaço de dimensão 2.

Exercício 25.—Seja x=(1,3,2) uma solução (particular) do sistema não homogéneo Ax=b. Sabendo que a solução geral do sistema homogéneo associado (Ax=0) é $\{(x,y,z)\in\mathbb{R}^3\mid x=y-4z\}$, indique a forma vectorial da solução geral de Ax=b.

Exercício 26.—Exprima a matriz X como combinação linear das matrizes R, S, T onde:

$$X = \begin{bmatrix} 5 & 9 \\ 0 & 5 \end{bmatrix}, \quad R = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \quad T = \begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix}$$

Exercício 27.—Exprima o polinómio $p(x) = -5 + 19x - 8x^2$ como combinação linear dos polinómios

$$p_1(x) = 3x - x^2$$
, $p_2(x) = 2 + 4x - x^2$, $p_3(x) = 1 - x + 3x^2$.

Exercício 28.—Seja $\mathbb{R}_2[t]$ o espaço real dos polinómios definidos em \mathbb{R} de grau menor ou igual a 2, considere os elementos de $\mathbb{R}_2[t]$ definidos por:

$$p_1(t) = 1, p_2(t) = (1-t)(1+t), p_3(t) = (1-t)(1+2t), p_4(t) = t(1-t), t \in \mathbb{R},$$

e os seguintes subconjuntos de $\mathbb{R}_2[t]$:

$$P_1 = \{p_1, p_2\}, P_2 = \{p_1, p_2, p_3\}, P_3 = \{p_2, p_3, p_4\}, P_4 = \{p_1, p_2, p_4\}.$$

Qual a lista completa de conjuntos que constituem bases de $\mathbb{R}_2[t]$?

A)
$$P_1 \in P_2$$
; B) $P_2 \in P_3$; C) $P_2 \in P_4$; D) $P_3 \in P_4$.

Exercício 29.—Seja S o subespaço de $\mathbb{R}^{2\times 2}$ gerado pelas matrizes R, S, T onde:

$$A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 1 \\ -1 & 9 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \quad T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Considere as seguintes afirmações:

- I. S tem dimensão 2,
- II. S tem dimensão 3,
- III. $A \in S$,
- IV. $A \notin S$.

Quais as verdadeiras?

Exercício 30.—Seja S o subespaço de \mathbb{R}^4 gerado por $v_1=(1,0,-1,0)$, $v_2=(0,1,0,-1), v_3=(1,0,-2,-1)$ e $v_4=(0,1,1,0)$. Qual das seguintes afirmações é verdadeira?

A)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 \mid x - y - z - w = 0\},\$$

B)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 \mid x - y + z - w = 0\},\$$

C)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y - z - w = 0\},\$$

D)
$$S = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z - w = 0\}.$$

Exercício 31.—Seja $\mathbb{R}_2[t]$ o espaço dos polinómios reais de variável real com grau menor ou igual a 2, munido com as operações usuais de adição e multiplicação por um número real.

© ESD

© ESD

© ESD

- (a) Indique uma base ordenada de $\mathbb{R}_2[t]$ e calcule o vector das coordenadas de p(t) = (1-t)(1+t) nessa base.
- (b) Considere $S = L_{\mathbb{R}_2[t]}(\{1-2t, 1+t^2, 1+2t-3t^2, t^2\})$. Verifique que $\{1-2t, 1+t^2, 1+2t-3t^2, t^2\}$ não é uma base de S, e indique uma base ordenada de S.
- (c) Determine as coordenadas do polinómio $p(t) = 5 + t^2$ nas bases das alíneas (a) e (b).
- (d) Considere o conjunto $W = \{p(t) \in \mathbb{R}_2[t] \mid p(0) = 0\}$. Mostre que W é um subespaço linear de $\mathbb{R}_2[t]$ e indique a dimensão deste subespaço.

Exercício 32.—Determine quais dos conjuntos seguintes são espaços lineares reais, e nesses casos indique a dimensão e encontre uma base.

(a) O subconjunto do espaço linear $\mathbb{R}_5[t]$, dos polinómios de variável real com grau menor ou igual a 5, formado pelos polinómios:

$$p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$
 com $a_0 + a_1 = 0$.

(b) O subconjunto do espaço $\mathbb{R}^{2\times 2}$ das matrizes reais quadradas de ordem 2 formado pelas matrizes invertíveis.

(c)
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| a \in \mathbb{Z} \right\}.$$

(d) $L_V({\cos^2 t, \cos 2t, \sin^2 t})$, onde V é o espaço linear das funções contínuas reais de variável real.

Exercício 33.—Considere os subespaços U e W seguintes e determine a dimensão e uma base para $U \cap W$ e U + W. Além disso, verifique em cada caso o teorema da dimensão $(\dim(U+W) = \dim(U) + \dim(W) - \dim(U\cap W))$ e diga se os subespaços U e W decompõem \mathbb{R}^4 em soma directa.

(a)
$$U = L_{\mathbb{R}^4}(\{(1,0,2,0)\})$$
 e
$$W = \{(x,y,z,w) \in \mathbb{R}^4 \mid y+2z-w=0 \land -y+3w=0 \land z=0\}.$$

(b)
$$U = L_{\mathbb{R}^4}(\{(1,0,-1,0),(0,1,1,0)\})$$
 e
$$W = \{(x,y,z,w) \in \mathbb{R}^4 \mid -x+y-2w = 0 \land 2y-z = 0\}.$$

(c)
$$U = L : \mathbb{R}^4(\{(0,0,1,0), (-2,0,0,-2)\})$$
 e
$$W = \{(x,y,z,w) \in \mathbb{R}^4 \mid x+2y-z-w=0 \land x-w=0\}.$$

Exercício 34.—Encontre a matriz mudança de base, da base canónica de \mathbb{R}^2 para a base ordenada B = ((2, -2), (3, 4)), e determine o vector das coordenadas de w = (2, 2) na base B.

Exercício 35.—Seja $B = (u_1, u_2, u_3)$ uma base ordenada de \mathbb{R}^3 , tendo-se que $u_1 = (2, 1, 0), u_2 = (-1, 1, 1), e u_3 = (1, 1, 1).$

- (a) Determine a matriz de mudança de base, da base canónica de \mathbb{R}^3 para a base B.
- (b) Use a matriz calculada na alínea anterior, para determinar o vector de coordenadas de v = (5, 1, 3) na base B.

Exercício 36.—Seja v = (1, 2, 3) e considere $B = (v_1, v_2, v_3)$ a base ordenada de \mathbb{R}^3 , onde $v_1 = (1, 0, 1)$, $v_2 = (1, 1, 0)$ e $v_3 = (1, 1, 1)$, Qual dos seguintes é o vector de coordenadas de v na base B?

A)
$$(3,-2,4)$$
; B) $(-1,4,4)$; C) $(-1,-2,4)$; D) $(-1,-2,6)$.

Exercício 37.—Seja S o subespaço de $\mathbb{R}^{2\times 2}$ gerado pela matrizes:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Quais das matrizes seguintes não pertencem a S?

A)
$$M_1 = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$
, B) $M_2 = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$, C) $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$, D) $M_4 = \begin{bmatrix} 3 & 3 \\ 2 & 1 \end{bmatrix}$.

Exercício 38.—Determine a matriz de mudança de base $M_{B'\leftarrow B}$, onde os vetores das bases ordenadas $B=(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)$ e $B'=(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$ satisfazem:

$$v_1 = u_1 + u_2 - u_3$$

 $v_2 = u_1 - u_2$
 $v_3 = u_1 - u_3$.

Exercício 39.—Seja $\mathbb{R}_2[t]$ o espaço linear dos polinómios reais de variável real de grau menor ou igual a 2. Encontre a matriz de mudança da base canónica de $\mathbb{R}_2[t]$ para a base ordenada $B = (1 - t, t^2, 1 + t + t^2)$ de $\mathbb{R}_2[t]$, e determine o vetor das coordenadas de $w = 2 - 3t + t^2$ na base B.

Exercício 40.—Considere o e.l. W e bases ordenadas $B_1=(u_1,u_2,u_3)$, e **ESD** $B_2=(v_1,v_2,v_3)$ e $B_3=(w_1,w_2,w_3)$ tais que:

$$\begin{array}{lll} u_1 = v_1 - v_2 + v_3 & & w_1 = v_1 + v_2 - v_3 \\ u_2 = v_2 - v_3 & e & w_2 = v_2 + v_3 \\ u_3 = v_1 + v_2 & w_3 = v_1 + v_3 \end{array}$$

- (a) Determine as matrizes de mudança de base $M_{B_2\leftarrow B_1},\,M_{B_3\leftarrow B_2}$ e $M_{B_3\leftarrow B_1}.$
- (b) Seja v = $2u_1 + 5u_2 3u_3$. Use as matrizes calculadas nas alíneas anteriores para determinar v_{B_1} , v_{B_2} e v_{B_3} .

2 Exercícios suplementares

Exercício 41.—Sejam U,W subespaços de V. Mostre que $U\cup W$ é um subespaço de V se e só se $U\subset W$ ou $W\subset U$.

Exercício 42.—Seja $V = {}^{\mathbb{N}}\mathbb{R}$ o espaço linear das sucessões reais. Mostre que o conjunto das sucessões convergentes é um subespaço de V. E o conjunto das sucessões divergentes?

Exercício 43.—Considere os subespaços W_1, W_2 de \mathbb{K}^n definidos por:

$$W_1 = \{(a_1, \dots, a_n) \mid a_n = 0\}, \quad W_2 = \{(a_1, \dots, a_n) \mid a_1 = \dots \cdot a_{n-1} = 0\}.$$

Mostre que $\mathbb{K}^n = W_1 \oplus W_2$.

Exercício 44.—Considere os espaço $\mathbb{K}^{n\times n}$

- (a) Mostre que $W_1 = \{A \in \mathbb{K}^{n \times n} \mid A^\top = -A\}$ é um subespaço de $\mathbb{K}^{n \times n}$.
- (b) Seja W_2 o subespaço de $\mathbb{K}^{n\times n}$ constituído pelas matrizes simétricas i.e., as matrizes A que satisfazem $A^{\top} = A$. Mostre que $\mathbb{K}^{n\times n} = W_1 \oplus W_2$.

Exercício 45.— Sejam V um espaço linear sobre \mathbb{K} e W um subespaço de V. Dado $v \in V$ definimos $v + W \coloneqq \{v + w \mid w \in W\}$.

- (a) Prove que v + W é um subespaço de V sse $v \in W$.
- (b) Mostre que $v_1 + W = v_2 + W$ sse $(v_1 v_2) \in W$.
- (c) Considere $V/W = \{v + W \mid v \in V\}$ e as operações:

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

 $\alpha(v_1 + W) = (\alpha v_1) + W$

Mostre que estas operações estão bem definidas, ou seja, verifique que se $v_1+W=w_1+W$ e $v_2+W=w_2+W$ então tem-se que

$$(v_1 + W) + (v_2 + W) = (w_1 + W) + (w_2 + W)$$

e, além disso, verifique que se $v_1 + W = w_1 + W$ então

$$\alpha(v_1 + W) = \alpha(w_1 + W).$$

(d) Mostre que V/W com as operações descritas na alínea anterior é um espaço linear sobre \mathbb{K} . (Designa-se de *espaço quociente* de V por W.)

Exercício 46.—Sejam V um espaço linear e W_1 , W_2 subespaços de V. Mostre que $L_V(S_1 \cap S_2) \subset L_V(S_1) \cap L_V(S_2)$. Dê exemplos em que se tenha a igualdade e exemplos de que a inclusão pode ser estrita.

Exercício 47.—Seja V um espaço linear sobre \mathbb{K} .

- (1) Mostre que $\{u, v\}$ é linearmente independente sse $\{u + v, u v\}$ é linearmente independente.
- (2) Mostre que $\{u, v, w\}$ é linearmente independente sse $\{u+v, u+w, v+w\}$ é linearmente independente.

Exercício 48.—Seja $\mathbb{R}[t]$ o espaço dos polinómios com coeficientes reais. Seja $S \subset \mathbb{R}[t]$ uma família finita de polinómios todos com graus diferentes. Mostre que S é linearmente independente.

Exercício 49.—Considere o espaço \mathbb{R} das funções reais de variável real. Seja $S = \{e^{\alpha t}, e^{\beta t}\}$ onde $\alpha \neq \beta$. Mostre que S é linearmente independente.

Exercício 50.—Seja $W \subset \mathbb{R}^{n \times n}$ o subespaço constituído pelas matrizes A tais que $\operatorname{tr}(A) = 0$.

- (a) Determine uma base de W
- (b) Qual a dimensão de W.

Exercício 51.—Sejam V um espaço linear tal que $\dim(V) = n$ e $S \subset V$ um conjunto que gera V. Mostre que existe $S' \subset S$ que é uma base de V.

Exercício 52.—Sejam $V = \mathbb{R}^{2\times 2}$ e

$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\} \quad W_2 = \left\{ \begin{bmatrix} 0 & a \\ -a & b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Prove que W_1, W_2 são subespaços de V e determine $\dim(W_1), \dim(W_2), \dim(W_1 + W_2)$ e $\dim(W_1 \cap W_2)$.

Exercício 53.—Sejam W_1 , W_2 subespaços de V com bases B_1 e B_2 tais que $B_1 \cap B_2 = \emptyset$. Mostre que $B_1 \cup B_2$ é uma base de $W_1 + W_2$.

Exercício 54.—Sejam V um espaço linear e U um subespaço de V. Mostre que existem W, \bar{W} , subespaços de V, tais que $W \neq \bar{W}$ e

$$V = U \oplus W = U \oplus \bar{W}.$$

Exercício 55.—Considere o exercício e a respectiva notação. Mostre que $\dim(V/W) + \dim(W) = \dim(V)$. (*Sugestão*: estenda uma base de W para obter uma base de V, descrevendo a partir daí uma base de V/W.)