Lesson 01: Graph Representations and Breadth-First Search

Michael T. Gastner (21 February 2023)

Disclaimer: These slides are based on and occasionally quote from 'Introduction to Algorithms' (3rd ed.) by Cormen et al. (2009), MIT Press.

What is a Graph?

A Mathematical Representation of a Network!

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search A graph G is a pair (V,E) of two sets:

- V: Set of **vertices** (singular: vertex), also called 'nodes'.
- E: Set of edges, also called 'links'.

To emphasise that V and E are attributes of G, we sometimes write V as G.V and E as G.E.

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search In a **directed graph**, also called a 'digraph', the edges are ordered pairs of vertices. That is, $(r,s) \in E$ does not necessarily imply $(s,r) \in E$. In plots, the order is usually indicated by an arrow from r to s.

In an **undirected graph**, the edges are unordered pairs of vertices. That is, (r,s)=(s,r).

What is a Graph?

A Mathematical Representation of a Network!

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search A graph is **simple** if it does not contain parallel edges or self-loops.

In this course, we only work with simple graphs. For brevity, the adjective 'simple' will be omitted but is always implicit unless otherwise stated.

Michael T. Gastner

Learning Objectives

By the end of this lesson, you should be able to ...

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

- Name real-world examples of graphs in different domains (e.g. transportation, social and computer networks).
- Recall important definitions related to graphs (e.g. vertex, edge, directedness and path).
- Construct adjacency-list and adjacency-matrix representations of a given graph.
- ullet Determine the reachability of a vertex v from a vertex u.
- ullet Find the shortest path from u to v if v is reachable from u.

Example World Wide Web

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Network of 180 web pages of a large corporation. Colours depict an automatically detected division into communities.

Image by M. E. J. Newman and M. Girvan.

DOI: 10.1103/PhysRevE.69.026113

- Directed graph.
- Vertices are websites.
- Edges are hyperlinks.

Example Social Network

Michael T. Gastner

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search

Florentine marriage network

- Undirected graph.
- Vertices are influential families in Renaissance Florence.
- Edges are marriages.

Data from Pagett and Ansell. DOI: 10.1086/230190

Example Public Transport

Real-World Graphs

Breadth-First

Network of Singapore Mass Rapid Transit. Image from Land Transport Guru.

- Undirected graph.
- Vertices are stations.
- Edges are railway tracks.

Paths

Contiguous Sequences of Vertices

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search A **path** of **length** k from a vertex u to a vertex u' in a graph G = (V, E) is a sequence $\langle v_0, v_1, \dots, v_k \rangle$ of vertices such that all of the following conditions are satisfied:

- $u = v_0$
- $\bullet u' = v_k$
- $\bullet (v_{i-1}, v_i) \in E \quad \forall i \in \{1, 2, \dots, k\}$

There is always a path from u to u of length 0 for all $u \in V$.

If there is a path p from u to u', we say that u' is **reachable** from u via p.

A path is **simple** if all vertices in the path are distinct.

Application

Reachability and Shortest Path

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Is Dhoby Ghaut reachable from Bencoolen?

If yes, what is the shortest path, measured by the number of visited stations?

How can we program a computer to find the answers?

Maximum Number of Possible Edges $O(V^2)$

Real-World Graphs

Graph Representations

Breadth-First Search If a simple graph has $\left|V\right|$ vertices, what is the maximum possible number of edges?

It depends on whether the graph is directed or undirected:

- In a directed graph, there are $|V|^2 |V|$ possible edges, which equals the number of all ordered pairs $|V|^2$ of vertices minus the number of self-loops |V|.
- In an undirected graph, there are only $\frac{1}{2} \left(|V|^2 |V| \right)$ possible edges because an edge (r,s) always implies that (s,r) is also in E.

However, in both cases, the maximum number of edges is $O(|V|^2)$, which we will write as $O(V^2)$ for the sake of brevity.

Sparse and Dense Graphs

Comparing Maximum to Actual Number of Edges

Introductio

Real-World Graphs

Graph Representations

Breadth-First

- A graph is **sparse** if |E| is much less than $|V|^2$. Often, a sparse graph is assumed to satisfy |E| = O(V).
- A graph is **dense** if |E| is close to $|V|^2$. Often, a dense graph is assumed to satisfy $|E| = O(V^2)$.

Note that |V| and |E| cannot be varied in most real-world networks. They are usually fixed numbers given by the input data.

Thus, statements such as |E|=O(V) need to be taken with a grain of salt because we cannot predict how many edges a network would have if the number of vertices were to change.

Graph Representations

Adjacency List and Adjacency Matrix

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search We will learn two standard ways to represent a graph G = (V, E):

- Adjacency list
- Adjacency matrix

Rules of thumb:

- The adjacency-list representation tends to be better when a graph is sparse.
- The adjacency-matrix representation tends to be better when a graph is dense.

For a given graph, vertex v is **adjacent** to vertex u if (u,v) is an edge in the graph.

Adjacency List

Array of Lists of Adjacent Vertices

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search An adjacency list of a graph G=(V,E), is an array Adj of |V| lists with one list for each vertex in V.

For each $u \in V$, the list Adj[u] contains all the vertices v that are adjacent to u. The order of the elements in Adj[u] does not matter.

To emphasise that Adj is an attribute of G, we sometimes write the adjacency list explicitly as G.Adj.

Adjacency List

Example: Undirected Graph

Introductio

Real-World Graph

Graph Representations

Breadth-Firs Search

Graph

Adjacency list

Adjacency List

Example: Directed Graph

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Graph (not simple because of self-loop)

Adjacency list

Michael T. Gastner

Memory Needed for Adjacency List

$$\Theta(V+E)$$

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search What is the sum Σ of the lengths of all sublists in an adjacency list?

• In a directed graph, every edge corresponds to one element in one of the sublists.

Hence,
$$\Sigma = |E|$$
.

• In an undirected graph, every edge $(u,v) \in E$ corresponds to one element in Adj[u] and one element in Adj[v]. Hence, $\Sigma = 2|E|$.

In addition to Σ , we also must reserve memory for the array of |V| pointers to the sublists. Consequently, an adjacency list requires $\Theta(V+E)$ memory.

- For sparse graphs, $\Theta(V+E) = \Theta(V)$.
- For dense graphs, $\Theta(V+E) = \Theta(V^2)$.

Adjacency Matrix

Binary $|V| \times |V|$ Matrix

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search The adjacency matrix of a graph G=(V,E) with vertices $V=\{1,2,\ldots,|V|\}$ is a $|V|\times |V|$ matrix $A=(a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

G is undirected if and only if A is symmetric; that is,

$$a_{ij} = a_{ji} \qquad \forall i, j \in \{1, 2, \dots, |V|\}.$$

Adjacency Matrix

Example: Undirected Graph

Introduction

Real-World Graphs

Graph Representations

Breadth-Firs Search

Graph

Adjacency matrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	0 1 1 0 1	0

Adjacency Matrix

Example: Directed Graph

Introduction

Real-World Graphs

Graph Representations

Breadth-Firs Search Graph (not simple because of self-loop)

Adjacency matrix

	1	2	3	4	5	6 0 0 1 0 0
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Properties of the Adjacency Matrix

Memory and Usage

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search The adjacency matrix A requires $\Theta(V^2)$ memory, regardless of the number of edges.

The adjacency-list representation is asymptotically at least as space-efficient as the adjacency-matrix representation, and the difference in required memory is largest for sparse graphs.

Because most real-world networks are sparse, graph algorithms usually assume that the graph is represented by the adjacency list.

Breadth-First Search

Graph Traversal Algorithm

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search We begin our study of graph algorithms with **breadth-first search** for the following reasons:

- Breadth-first search is one of the simplest algorithms for searching a graph.
- Breadth-first search returns information about the reachability of one node from another.
- If vertex v is reachable from u, breadth-first search computes a shortest
 path (i.e. a path containing the smallest number of edges) from u to v.
- Breadth-first search is a prototype for many important graph algorithms (e.g. Prim's minimum-spanning-tree algorithm and Dijkstra's single-source shortest-paths algorithm).

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Consider graph on the right.

Objective: find ${\it distance}$ (i.e. length of shortest path) from source vertex s to target vertex t

Illustrative Example

Introductio

Real-World Graph

Graph Representations

Breadth-Firs

Mark s as 'active' (red).

Illustrative Example

Introductio

Real-World Graph

Graph Representations

Breadth-Firs

Mark s as 'active' (red).

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search It is guaranteed that s has distance 0 from itself.

We also know that no other vertex has distance 0 from s.

Indicate all vertices with distance 0 (i.e. only s) with a dark grey circle.

Illustrative Example

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search It is guaranteed that s has distance 0 from itself.

We also know that no other vertex has distance 0 from s.

Indicate all vertices with distance 0 (i.e. only s) with a dark grey circle.

Illustrative Example

Introductio

Real-World Graphs

Graph Representation

Breadth-First Search Suppose the active vertex s has a virus that can spread to all adjacent vertices.

All adjacent vertices become active (red).

Meanwhile, the source develops immunity and becomes white.

Illustrative Example

Introductio

Real-World Graphs

Graph Representation

Breadth-First Search Suppose the active vertex s has a virus that can spread to all adjacent vertices.

All adjacent vertices become active (red).

Meanwhile, the source develops immunity and becomes white.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Currently active (red) vertices have distance 1 from s because they can be reached from s in one step.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First

Currently active (red) vertices have distance 1 from s because they can be reached from s in one step.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Currently active (red) vertices spread the virus to adjacent susceptible (green) vertices.

Adjacent green vertices become active.

The immune (white) vertex s has perpetual immunity and stays white.

Vertices that are currently active also develop immunity.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Currently active (red) vertices spread the virus to adjacent susceptible (green) vertices.

Adjacent green vertices become active.

The immune (white) vertex s has perpetual immunity and stays white.

Vertices that are currently active also develop immunity.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Currently active (red) vertices have distance 2 from s.

They cannot have a shorter distance because they were unreachable in zero or one steps.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

Currently active (red) vertices have distance 2 from s.

They cannot have a shorter distance because they were unreachable in zero or one steps.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First

Repeat the previous steps:

- 1. Currently red vertices
 - ► infect adjacent green vertices, which become red.
 - become immune (white).

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First

Repeat the previous steps:

- 1. Currently red vertices
 - ► infect adjacent green vertices, which become red.
 - become immune (white).

Illustrative Example

Introductio

Real-World Graphs

Michael T. Gastner

Graph Representations

Breadth-Fire Search

Repeat the previous steps:

- 1. Currently red vertices
 - ► infect adjacent green vertices, which become red.
 - become immune (white).
- 2. Distances of new red vertices equals 1 plus the distance of the vertex that infected them.

Illustrative Example

Introductio

Real-World Graphs

Michael T. Gastner

Graph Representations

Breadth-First Search

Repeat the previous steps:

- 1. Currently red vertices
 - ► infect adjacent green vertices, which become red.
 - become immune (white).
- 2. Distances of new red vertices equals 1 plus the distance of the vertex that infected them.

Illustrative Example

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search

Repeat the previous steps:

- 1. Currently red vertices
 - ► infect adjacent green vertices, which become red.
 - become immune (white).
- 2. Distances of new red vertices equals 1 plus the distance of the vertex that infected them.

Stop when assigning distance to target vertex t.

Illustrative Example

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search In the animation on the right (viewable in Acrobat Reader), note how the red vertices spread from s like burning trees in a forest fire:

- green: healthy tree
- red: tree on fire
- white: tree has burnt down and cannot be reignited

Because of this metaphor, in physics 'breadth-first search' is often called 'burning algorithm'.

Illustrative Example

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search We now know that the distance from s to t is 3.

What if we want to find a path of length 3 (e.g. $s \rightarrow u \rightarrow v \rightarrow t$)?

We would need to determine:

- \bullet which vertex v infected t.
- \bullet which vertex u infected v.

Next, we study a refinement of the algorithm to solve this problem.

Assigning parent vertex

Introduction

Real-World Graph

Grapn Representation

Breadth-First

Number inside vertex = Estimated distance from s

Queue empty

Assigning parent vertex

Introduction

Real-World Graph

Grapn Representation

Breadth-First Search Number inside vertex = Estimated distance from s

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from \emph{s}

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from \emph{s}

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search Number inside vertex = Estimated distance from s

For each green vertex adjacent to popped vertex:

- Push into queue
- Assign distance as 1 plus distance of popped vertex
- Mark popped vertex as 'parent'

Assigning parent vertex

Introduction

Real-World Graphs

Graph Representation

Breadth-First Search Number inside vertex = Estimated distance from s

Conclusion:

The distance from s to t equals 3.

A shortest path is $s \to c \to d \to t$.

Breadth-first search on an undirected graph

Example

Introduction

Real-World Graph

Graph Representations

Breadth-Fire Search

Breadth-first search on an undirected graph

Example

Introduction

Real-World Graph

Graph Representations

Breadth-Firs Search

Conclusion:

The distance from s to t equals 3. A shortest path is $s \rightarrow e \rightarrow f \rightarrow t$.

Pseudocode

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search

```
BFS(G, s, t)
    for each vertex u \in G.V - \{s\} // Initially all vertices are undiscovered.
         u.d = \infty // Distance.
         u.\pi = NIL // Parent.
 4 s.d = 0 // Discover the source.
 5 s.\pi = NIL
 6 Q = \emptyset
    Engueue(Q, s)
     while t.d == \infty and Q \neq \emptyset
          u = \text{Dequeue}(Q)
10
          for each v \in G.Adj[u] // Iterate over adjacent vertices.
11
               if v.d = \infty // v has not been discovered yet.
                     v.d = u.d + 1 // Discover v.
12
13
                     n\pi = n
14
                     \text{Enqueue}(Q, v)
```

Runtime of breadth-first search

Degree and in-degree of a vertex

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search Let k_u be the number of vertices pointing away from u.

• In undirected graphs, k_u is called the **degree** of u. Because every edge (u,v) increases the number of elements in the adjacency list by two (once in the sublist for u and once in the sublist for v),

$$\sum_{u \in V} k_u = 2|E|.$$

ullet In directed graphs, k_u is called the **out-degree** of u. Because every edge (u,v) only increases the number of elements in the adjacency sublist of u,

$$\sum_{u \in V} k_u = |E|.$$

Runtime of Breadth-First Search

O(V+E)

Introduction

Real-World Graphs

Graph Representations

Breadth-First Search The worst-case runtime of breadth-first search is determined by the while-loop (lines 8–14).

- ullet During the lifetime of the program, a maximum of |V| vertices are pushed into the queue. Thus, the queue operations need O(V) time.
- The inner for-loop is repeated k_u times in one iteration of the while-loop. From the previous slide, we know that $\sum_u k_u = O(E)$.

Therefore, breadth-first search runs in O(V+E) time.

Graphs: Breadth-First Search Michael T. Gastner

Outlook and Conclusion

This lesson: breadth-first search. Next lesson: depth-first search

Introductio

Real-World Graphs

Graph Representations

Breadth-First Search In this lesson, we learnt that breadth-first search is a graph traversal algorithm that calculates the distances from a source vertex s to a target vertex t. If breadth-first search returns a distance $t.d=\infty$, then t is not reachable from s. Otherwise, breadth-first search also returns a shortest path from s to t.

If we are only interested in reachability and shortest paths (measured in the number of intermediate edges), breadth-first search is a good method. However, for other tasks, other graph traversal algorithms are more suitable. Next time, we learn one such algorithm: **depth-first search**.