Unit 6: Maze (Area) and Global Routing

Course contents

- Routing basics
- Maze (area) routing
- Global routing

Filling

Retrace

Routing

Routing Constraints

- 100% routing completion + area minimization, under a set of constraints:
 - Placement constraint: usually based on fixed placement
 - Number of routing layers
 - Geometrical constraints: must satisfy design rules
 - Timing constraints (performance-driven routing): must satisfy delay constraints
 - Crosstalk?
 - Process variations?

Two-layer routing

Geometrical constraint

Classification of Routing

Maze Router: Lee Algorithm

- Lee, "An algorithm for path connection and its application," *IRE Trans. Electronic Computer*, EC-10, 1961.
- Discussion mainly on single-layer routing

Strengths

- Guarantee to find connection between 2 terminals if it exists.
- Guarantee minimum path.

Weaknesses

- Requires large memory for dense layout.
- Slow.
- Applications: global routing, detailed routing

Lee Algorithm

Find a path from S to T by "wave propagation".

Time & space complexity for an M × N grid: O(MN)
 (huge!)

Example

												4.0						40						$\overline{}$
Н									13	12	11	10			9	10	11	12	13					H
Ш							Ш	13	12	11	10	9	8	7	8	9	10	11	12	13				L
							13	12	11	10	9	8	7	6	7	8	9	10	11	12	13			
						13				9		7		5		7	8	9	10	11	12	13		Г
					Т					8		6				6		8			11			Г
П										7	6	5				7					12			\vdash
\vdash			13							6	5					8							\vdash	\vdash
Н												4									13		Н	\vdash
Ш		<u>13</u>	12	11	10	9	8	7		5	4	3	2			9	<u>10</u>	<u>11</u>	12	13		_	Ш	<u> </u>
	13	12	11	10	9	8	7	6		4	3	2	1			8	9	10	11	12	13			L
13	12	11	10	9	8	7	6	5					S			7	8	9	10	11	12	13		
									5	4	3	2	1			6	7				11			
						9						3	2			5	6				$\overline{}$		13	Г
						10						4		4	5						11			Т
Н							<u>10</u>					5		5							12		Н	\vdash
Н													4		6									\vdash
			<u> </u>		13	12	11					6	5	6	7	8	9	10	11	12	13		Щ	<u> </u>
						13	12	11	10	9	8	7	6	7	8	9	10	11	12	13				L
							13	12	11	10	9	8	7	8	9	10	11	12	13					
										11											П			

Reducing Memory Requirement

- Akers's Observations (1967)
 - Adjacent labels for k are either k-1 or k+1.
 - Want a labeling scheme such that each label has its preceding label different from its succeeding label.
- Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty, blocked (3 bits required)
- Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, empty, blocked (need only 2 bits)

Sequence: 1, 2, 3, 1, 2, 3, ...

Sequence: 1, 1, 2, 2, 1, 1, 2, 2, ...

Reducing Running Time

- Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- Double fan-out: Propagate waves from both the source and the target cells.
- Framing: Search inside a rectangle area 10--20% larger than the bounding box containing the source and target.
 - Need to enlarge the rectangle and redo if the search fails.

starting point selection

Connecting Multi-Terminal Nets

- Step 1: Propagate wave from the source *s* to the closet target.
- Step 2: Mark ALL cells on the path as s.
- Step 3: Propagate wave from ALL s cells to the other cells.
- Step 4: Continue until all cells are reached.
- Step 5: Apply heuristics to further reduce the tree cost.

Routing on a Weighted Grid

- Motivation: finding more desirable paths
- weight(grid cell) = # of unblocked grid cell segments 1

2

A Routing Example on a Weighted Grid

initialize cell weights

wave propagation

12 11 9 7 5 3 1 4 13 14 11 8 5 2 5 2 19 16 13 16 14 11 8 5 2 5 19 17 19 17 14 11 8 5 8

17 15 13 11

first wave reaches the target

finding other paths

min-cost path found

Line-Search Algorithms

- Overcome the drawback of grid representation used by Lee algorithms
 - Time & space complexity for an $M \times N$ grid: O(MN)
- Consider the base case
 - if no obstacles, two points S and T are to be connected, then a vertical line passing through S and a horizontal line passing through T naturally intersect.

Unit 5

Features of Line-Search Algorithms

• Time and space complexities: O(L), where L is the # of line segments generated.

Mikami-Tabuchi's Algorithm

- Mikami & Tabuchi, "A computer program for optimal routing of printed circuit connectors," *IFIP*, H47, 1968.
- Every grid point is an escape point.

Hightower's Algorithm

- Hightower, "A solution to line-routing problem on the continuous plane," DAC-69.
- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.

Example: Hightower's Algorithm

Comparison of Algorithms

	N	laze routir	Line search			
	Lee	Soukup	Hadlock	Mikami	Hightower	
Time	O(MN)	O(MN)	O(MN)	O(L)	O(L)	
Space	O(MN)	O(MN)	O(MN)	O(L)	O(L)	
Finds path if one exists?	yes	yes	yes	yes	no	
Is the path shortest?	yes	no	yes	no	no	
Works on grids or lines?	grid	grid	grid	line	line	

 Soukup, Mikami, and Hightower all adopt some sort of line-search operations ⇒ cannot guarantee shortest paths.

Global-Routing Problem

- Given a netlist N={ N_1 , N_2 , ..., N_n }, a routing graph G = (V, E), find a Steiner tree T_i for each net N_i , $1 \le i \le n$, such that $U(e_i) \le c(e_i)$, $\forall e_i \in E$ and $\sum_{i=1}^n L(T_i)$ is minimized, where
 - $-c(e_i)$: capacity of edge e_i ;
 - $= x_{ij}$ =1 if e_j is in T_i ; x_{ij} = 0 otherwise;
 - $-U(e_j) = \sum_{i=1}^n x_{ij}$: # of wires that pass through the channel corresponding to edge e_i ;
 - $L(T_i)$: total wirelength of Steiner tree T_i .
- For high-performance, the maximum wirelength $(\max_{i=1}^n L(T_i))$ is minimized (or the longest path between two points in T_i is minimized).

Global Routing in different Design Styles

Global Routing in Standard Cell

- Objective
 - Minimize total channel height.
 - Assignment of **feedthrough**: Placement? Global routing?
- For high performance,
 - Minimize the maximum wire length.
 - Minimize the maximum path length.

Global-Routing: Maze Routing

- Routing channels may be modelled by a weighted undirected graph called channel connectivity graph.
 - Node ↔ channel; edge ↔ two adjacent channels; capacity: (width, length)

route A−A' via 5−6−7

route B-B' via 5-6-7

route B-B' via 5-2-3-6-9-10-7 updated channel graph

maze routing for nets A and B

- Update:
 - If a path bends in a channel, both width and length are reduced
 - If a path goes only vertically/horizontally, only length/width is reduced

Routing Tree

- □ If all nets are two-pin ones, we can apply a general-purpose routing algorithm to handle the problem, such as maze, line-search, and A*-search routing.
- □ For three or more multi-pin nets, one approach is to *decompose* each net into a set of two-pin connections, and then routes the connections one-by-one.

The Routing-Tree Problem

- Problem: Given a set of pins of a net, interconnect the pins by a "routing tree."
- Minimum Spanning Tree (MST): a minimum-length tree of edges connecting all the pins
- Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- \square MRST(P) = MST(P \cup S), where P and S are the sets of original points and Steiner points, respectively.

Theoretic Results for the MRST Problem

- **Hanan's Thm:** There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P.
 - Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.

- Hwang's Theorem: For any point set P, $\frac{Cost(MST(P))}{Cost(MRST(P))} \le \frac{3}{2}$.
 - Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Better approximation algorithm with the performance bound 61/48
 - Foessmeier et al, "Fast approximation algorithm for the rectilinear Steiner problem," Wilhelm Schickard-Institut für Informatik, TR WSI-93-14, 93.

Coping with the MRST Problem

- □ Ho, Vijayan, and Wong, "New algorithms for the rectilinear Steiner problem," TCAD-90.
 - 1. Construct an MRST from an MST.
 - 2. Each edge is straight or L-shaped.
 - 3. Maximize overlaps by dynamic programming.
- \square About 8% smaller than Cost(MST).

Iterated 1-Steiner Heuristic for MRST

□ Kahng & Robins, "A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach," *ICCAD*-90.

```
Algorithm: Iterated 1-Steiner(P)
P: set P of n points.
1 begin
2S \leftarrow \emptyset:
    /* H(P \cup S): set of Hanan points */
    /* \Delta MST(A, B) = Cost(MST(A)) - Cost(MST(A \cup B)) */
3 while (Cand \leftarrow \{x \in H(P \cup S) | \Delta MST(P \cup S, \{x\}) > 0 \} \neq \emptyset) do
     Find x \in Cand and which maximizes \triangle MST(P \cup S, \{x\});
  S \leftarrow S \cup \{x\};
     Remove points in S which have degree \leq 2 in MST(P \cup S);
7 Output MST(P \cup S);
8 end
```


Net Ordering

- Net ordering greatly affects routing solutions
- Finding the optimal net ordering is proven to be NPhard
 - Abel, "On the ordering of connections for automatic wire routing," TC-1972.
- □ In the example, we should route net b before net a

A one-layer routing instance with nets A and B

Route A before B

Route B before A

Net Ordering (cont'd)

- Order the nets in the ascending order of the # of pins within their bounding boxes.
- Order the nets in the ascending (descending) order of their lengths if routability (timing) is the most critical metric
- □ Order the nets based on their timing criticality.

Rip-Up and Re-routing

- Rip-up and re-routing is required if a global or detailed router fails in routing all nets.
- Approaches: the manual approach? the automatic procedure?
- □ Two steps in rip-up and re-routing
 - 1. Identify bottleneck regions, rip off some already routed nets.
 - 2. Route the blocked connections, and re-route the ripped-up connections.
- Repeat the above steps until all connections are routed or a time limit is exceeded.