Introduction:

☐ We consider two points A and B that are located in a continent

☐ Due to the sea level rise, the areas submerged by water are getting larger and some are merging to form an archipelago of islands.

□ At some point, it will no longer be impossible to find a path from point A to point B.

Problematic:

Hypothesis: Any point on a continent can be randomly submerged with a given probability "p"

To what proportion of submerged points is it no longer possible for a living species to move from a point to another?

PLAN:

- Généralités sur la théorie des graphes
 - Définitions
 - Réseau carré
- Percolation sur \mathbb{L}^2 :
 - \circ Espace de probabilité sur \mathbb{L}^2
 - \circ Cluster sur \mathbb{L}^2
 - La probabilité de percolation
- Simulations

Graph Theory

Définitions:

- A simple undirected graph **G** is a an ordered pair **(V,E)**, comprising **V** is a set and **E** is a set of pairs of **V** elements.
- The elements of **V** are called **vertices** or **nodes**, and the elements of **E** are called **edges**.
- A path is is a sequence of distincts nodes **x0**, **x1**, ... which verify: $\forall i \geq 0$, $\{x_i, x_{i+1}\}$ is an edge.
- A graphs is said to be connected if every pair of vertices in the graph is connected. This means that there is a path between every pair of vertices

$$V=\{1,2,3,4,5\}$$

$$E=\{(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\}$$

Square Lattice:

Distance between x and y:

$$\delta(x,y) = \sum_{i=1}^2 |x_i - y_i|, orall x, y \in \mathbb{Z}^2.$$

- We consider the graph \mathbb{L}^2 obtained from \mathbb{Z}^2 as it is shown in the figure
- \mathbb{E}^2 is the set of those vertices
- The distance between two vertices that are neighbours is unchanged

$$\mathbb{L}^2 = (\mathbb{Z}^2, \mathbb{E}^2)$$

Percolation in \mathbb{L}^2 :

Site percolation (vertices)

1. Probability space in \mathbb{L}^2 :

- The vertices are independant:
 - ullet Considering $\Omega=\{0,1\}^{\mathbb{E}^2}$, we say :
 - an element $\,\omega\in\Omega\,$ is a configuration in $\,\mathbb{L}^2\,$
 - a site **e** of \mathbb{L}^2 is open if $\omega(e)=0$ and closed if $\omega(e)=1$
 - Each site is open (resp. closed) with a probability p (resp. 1-p) where p is a real number in [0,1]
 - We provide Ω with a σ -algebra ${\mathcal F}$ and a probability ${\mathbb P}_p$ of a Bernoulli distribution having p as a parameter

2. Cluster in \mathbb{L}^2 :

- For a configuration ω , we define $K(\omega)$ as the set obtained from \mathbb{Z}^2 by removing the unavailable sites
- The connected elements of the graph $G=(K(\omega),\ E)$ are called open clusters.
- A path is said to be open if all its vertices are open.
- For a node x, C(x) is the sub-set of the vertices that are linked to x by an open path.

- Cluster example -

3. Percolation probability:

- In theory, and in an infinite graph, the cluster must be infinite to have percolation

$$|C| = \infty$$

- Percolation example -

- We introduce the function heta as a percolation probability;

$$egin{aligned} heta(p): [0,1] & o [0,1] \ p & o heta(p) = \mathbb{P}_p(|C| = \infty) \end{aligned}$$

- θ is a monotonically increasing function, that takes the value 0 when p=0 and 1 when p=1.

- Percolation threshold: $p_c := \sup\{p|\theta(p) = 0\}$

o Threshold theoretical value for site percolation in $\,\mathbb{L}^2: \boxed{p_c = 0.592746}\,$