

Laboratório de Instrumentação Eletrônica Aplicada

Análise de circuito amplificador com transistor BJT

Pedro Couto Vieira Braga, N^o : 21 19 de julho de 2022

TP-03

Objetivos

- 1. Simular circuitos eletrônicos de amplificador com variação de parâmetros durante a simulação;
- 2. Calcular ganho de circuitos amplificadores transistorizados para pequenos sinais alternados.
- 3. Analisar o comportamento de amplitude e fase em amplificadores com transistores bipolares.
- 4. Comparar resultados teóricos, de simulação e experimentais para verificar a validade de simplificações usuais na análise de circuitos transistorizados.

Lista de material

Lista de material, equipamentos e aplicativos de software necessários.

- Notebook
 - NIELVIS Instruments: DMM, Multisim, Matlab.
- Módulo NIELVIS II+
- Caixa com alicate de corte, alicate de bico e cabos jumper de protoboard.
- 1 (um) par de cabos (vermelho+preto) para medições com o instrumento virtual DMM.
- Componentes discretos

Item	Descrição	Valor	Qtde.
1	Resistor de $1/4W$	$12\mathrm{k}\Omega$	1
2	Resistor de $1/4W$	$6.8\mathrm{k}\Omega$	1
3	Resistor de 1/4W	$1.8\mathrm{k}\Omega$	2
4	Resistor de 1/4W	220Ω	1
5	capacitor eletrolítico	10 μF	2
6	transistor BC549 ou BC547	10 μF	1

Recomendações Gerais

- O registro com uma foto de você realizando os experimentos é recomendado para confirmar sua presença no laboratório.
- As formas de onda medidas com os instrumentos do NIELVIS II+ devem ser salvas em arquivos texto. Usando um programa Matlab adequado para cada instrumento virtual desenha-se os gráficos para serem inseridos no corpo do relatório.
- É **proibido** o uso de borracha nas bancadas do LEIC.
- É **proibido** manter garrafa de água sobre a bancada no LEIC.

Dez Recomendações para montagens em laboratório

- 1. Desenhe o circuito a ser montado identificando cada componente com um rótulo e respectivo valor.
 - É PROIBIDO iniciar uma montagem sem o diagrama do circuito desenhado em papel por mais simples que seja o circuito.
- 2. Indique os pinos e conexões de alimentação **Positiva**, **Negativa** e **Terra** com destaque.
- 3. Obtenha a folha de dados do circuito integrado ou componente a ser usado e verifique a pinagem com atenção ao tipo de encapsulamento do CI disponível para a montagem.
- 4. Identifique os componentes que tem polaridade (capacitores, CIs, etc.)
- 5. Identifique no Protoboard as linhas verticais para alimentação **Positiva**, **Negativa** ou **Terra**.
- 6. Faça primeiro as conexões dos pinos de alimentação de todos os CIs.
- 7. Utilize cores padronizadas para a alimentação **Positiva** (+Vermelho), **Negativa** (-**Azul** ou -Verde) e **Terra** (Preto ou Cinza). Sinais podem ser de cores variadas inclusive Branco.
- 8. Decapar fios mantendo o alicate de corte apontando para baixo, em direção que não comprometa os seus olhos nem os dos demais colegas. Usar óculos de proteção. Decapar em torno de 7mm apenas.
- 9. Desligar a alimentação dos circuitos antes de efetuar modificações.
- 10. Solicitar a verificação da montagem pelo professor antes de energizar o circuito.

Atenção

Quando terminar a prática, certifique-se de:

- 1. guardar as pontas de prova nas bolsas plásticas,
- 2. recolher e guardar componentes e ferramentas na caixa de sua bancada,
- 3. desligar os equipamentos de bancada (osciloscópio, NIELVIS),
- 4. encerrar sua seção no notebook e fechar a tampa do notebook.
- 5. guardar os cabos de energia e cabos USB nos armários ou no suporte de cabos.

1 Parte teórica

Exercício 1 Analisar o circuito amplificador transistorizado ilustrado na Figura 1 obtendo as componentes contínuas (CC) e alternadas (CA) ([Braga(2020)]) conforme pede-se a seguir: NB: Um sinal composto por uma componente contínua e alternada é representado usando letras maiúsculas e minúsculas e.g. $v_B(t) = V_B + v_b$.

Figura 1: Amplificador transistorizado com BJT. Pinagem do encapsulamento TO-92.

1. Desenhar o diagrama esquemático do modelo de pequenos sinais para o circuito amplificador mostrado na Figura 1.

Figura 2: Modelo de pequenos sinais

- 2. Calcular, teoricamente, usando o modelo ideal de transistor ($|V_{BE}| = 0.7V$ e $I_B \approx 0A$) os valores das voltagens v_B , v_C , v_E , v_{CE} , das correntes i_B, i_C e i_E e dos ganhos $A_1 = \frac{|v_e|}{|v_b|}$ (ganho de buffer, i.e. $A_1 \approx 1$) e $A_2 = \frac{|v_e|}{|v_b|}$ (ganho inversor). Registrar os resultados na Tabela ??.
- 3. Desconectar o capacitor C_1 do circuito mostrado na Figura 1 e recalcular o ganho do circuito, $A_{2x} = \frac{v_c}{v_b}$.

.

2 Parte experimental

2.1 Simulação

1. Desenhar no PAPO o diagrama esquemático do circuito mostrado na Figura 1 para que possa registrar as conexões quando estiver montando o circuito no protoboard.

Figura 3: Diagrama esquemático do circuito

- 2. Editar no ambiente do Multisim usando a opção **File>New>NIELVISII**+ o diagrama do circuito mostrado na Figura 1. **Simular** o circuito no Multisim mensurando e registrando na Tabela ?? os valores de voltagens e correntes. Verifique as correntes usando a Lei de Ohm com a queda de voltagem sobre os resistores R_3 e R_5 .
- 3. Obter e registrar as formas de onda na entrada v_B e na saída v_C . O sinal de entrada deve ser ajustado para $\tilde{v}_1 = 0.5 \sin(2000\pi t)$.

- 4. Medir, a partir das formas de onda, o ganho do amplificador, $A_2 = \frac{v_c}{v_b}$, para um sinal de entrada com frequência de 1kHz e amplitude de 0.5Vp e registrar na Tabela ??.
- 5. Medir, a partir das formas de onda, o ganho de voltagem $A_1 = \frac{v_e}{v_b}$ e registrar na Tabela ??.
- 6. Desenhar em um mesmo gráfico as formas de onda do gerador (FGEN) v_1 , v_B , v_E e sobre o resistor R_5 , v_D . O sinal de entrada é $v_1 = 0.5 \sin(2000\pi t)$.
- 7. Desconectar o capacitor C_1 do circuito mostrado na Figura 1 e mensurar o ganho do circuito, $A_{2x} = \frac{v_c}{v_b}$.

Figura 4: Grapher com o capacitor conectado.

Figura 5: Grapher sem o capacitor conectado.

2.2 Experimento real

Montar o circuito amplificador no protoboard do NIELVISII+ e anotar na Tabela ?? os resultados experimentais. Refaça os mesmos procedimentos de simulação com o experimento real.

Utilize o multímetro portátil para mensurar as correntes tomando cuidado para não fechar curto-circuito. Se estiver com receio ou dúvida, solicite ajuda do professor.

Figura 6: Voltagem no coletor com o capacitor conectado

Figura 7: Voltagem no coletor com o capacitor desconectado

Figura 8: Voltagem no emissor com o capacitor conectado e desconectado (Nota: o capacitor não muda a voltagem no emissor)

2.3 Análise de resultados

Comparar os resultados registrados na Tabela ??, i.e. previstos teoricamente, simulação e experimental.

- A previsão teórica de amplificação linear (sem distorções) foi verificada em simulação e experimentalmente?
- As discrepâncias observadas são significativas a ponto de comprometer as aproximações teóricas usadas?
- O efeito de <u>buffer</u> (reforçador de sinal) com ganho unitário positivo foi observado no ganho $A_1 = \frac{v_e}{v_h}$?
- \bullet O sinal negativo do ganho A_2 foi verificado como uma inversão de fase em torno de um valor offset positivo de voltagem?
- O efeito do capacitor C_1 no ganho A_{2x} foi verificado como significativo?

Tabela 1: Tabela dos resultados de análise CC e CA do amplificador transistorizado.

Variável	Valor teórico	Valor simulado	Valor experimental
v1 [V]	0.0 + 0.250sin(2kπt)	0.0 + 0.250sin(2kπt)	0.0 + 0.25sin(2kπt)
vB	3.61 + 0.247sin(2kπt)	3.59 + 0.247(2kπt)	3.5 + 0.2755sin(2kπt)
vE	2.91 + 0.247sin(2kπt)	2.95 + 0.223(2kπt)	2.9 + 0.255sin(2kπt)
vC	7.4 - 2.02sin(2kπt)	7.38 - 1.82sin(2kπt)	7.14 - 1.86sin(2kπt)
vCE	4.5 - 2.267sin(2kπt)	4.43 - 2.043sin(2kπt)	4.24 - 2.115sin(2kπt)
vD	2.6 + 0.0sin(2kπt)	2.63 + 0.016sin(2kπt	2.6 + 0.0415sin(2kπt)
iB	0	~0m	~0m
iE	[1.44+1.12sin(2kπt)] m	[1.45+1.01sin(2kπt)] m	[1.43+1.15sin(2kπt)] m
iC	[1.44+1.12sin(2kπt)] m	[1.45+1.01sin(2kπt)] m	[1.43+1.15sin(2kπt)] m
A1	1 ou 0dB	0.9 ou -2.1dB	0.92 ou -1.76dB
A2	8.17 ou 42dB	7.36 ou 39.9dB	6.75 ou 38.19dB
A2x	0.89 ou -2.33dB	0.88 ou -2.55dB	0.86 ou -3.01dB

Figura 9: Tabela dos resultados de análise CC e CA do amplificador transistorizado.

Resposta:

Figura 10: registro de presença no laboratório

3 Conclusões e sugestões

Resposta: Aprendi como funciona o circuito amplificador com transistor BJT e aperfeiçoei minhas práticas no Multisim, Matlab e NI ELVIS. ■

4 Referências bibliográficas

Resposta:

NT2020.13 Analise de Circuito Amplificador com Transistor Bipolar.

Referências

[Braga(2020)] Anísio R. Braga. Análise de amplificador com transistor bipolar. Relatório Interno NAIEA2010-21, Colégio Técnico da UFMG, March 2020.