Teoria da computação

Prof. Allan Rodrigo Leite

- Relembrando, uma gramática G = < V,T,S,P >
 - V: conjunto finito de símbolos variáveis ou não-terminais
 - T: conjunto finito de símbolos terminais disjunto de V
 - P: relação finita de produções conforme (V ∪ T)⁺ → (V ∪ T)^{*}
 - S: elemento distinguido de V que representa o símbolo ou variável inicial
- G é chamada irrestrita se todas as produções são da forma: U → V
 - Onde $u \in (V \cup T)^+ e \lor \in (V \cup T)^*$
 - Isto é, podem existir variáveis e terminais no lado direito e esquerdo das produções
 - A única restrição é não permitir o λ no lado esquerdo

• Exemplo 1:

- Dada a linguagem $L = \{a^nb^nc^n \mid n \ge 0\}$, então:
- Gramática irrestrita $G = \langle \{S,C\}, \{a,b,c\}, S,P \rangle$
- S: símbolo inicial
- P: regras de produção
 - S \rightarrow abc | λ
 - ab → aabbC
 - Cb → bC
 - CC → CC

- Exemplo 1 (cont.):
 - Dada a linguagem $L = \{a^nb^nc^n \mid n \ge 0\}$, então:
 - Gramática irrestrita $G = \langle \{S,C\}, \{a,b,c\}, S,P \rangle$
 - S: símbolo inicial
 - P: regras de produção
 - S \rightarrow abc | λ
 - ab → aabbC
 - Cb → bC
 - CC → CC
 - Quando w = aabbcc
 - $S \rightarrow \underline{ab}C \rightarrow aabbCC \rightarrow aabbCC$

- Exemplo 1 (cont.):
 - Dada a linguagem $L = \{a^nb^nc^n \mid n \ge 0\}$, então:
 - Gramática irrestrita $G = \langle \{S,C\}, \{a,b,c\}, S,P \rangle$
 - S: símbolo inicial
 - P: regras de produção
 - S \rightarrow abc | λ
 - ab → aabbC
 - Cb → bC
 - CC → CC

- Exemplo 2 (cont.):
 - Seja L = $\{a^nb^{2n}a^n \mid n \ge 1\}$, então:
 - Gramática irrestrita G = < {S,C},{a,b},S,P >
 - P: ???
 - Quando w = aabbbbaa

- Exemplo 2 (cont.):
 - Seja L = $\{a^nb^{2n}a^n \mid n \geq 1\}$, então:
 - Gramática irrestrita G = < {S,C},{a,b},S,P >
 - P: regras de produção
 - S → aAbba
 - aAb → aabbbA | ab
 - bAb → bbA
 - bAa → Bbaa
 - bB → Bb
 - aB → aA
 - Quando w = aabbbbaa

- Exemplo 2 (cont.):
 - L = $\{a^nb^{2n}a^n \mid n \ge 1\}$
 - $G = \{S,C\},\{a,b\},S,P\}$
 - P: regras de produção
 - S → aAbba
 - aAb → aabbbA | ab
 - bAb → bbA
 - bAa → Bbaa
 - bB → Bb
 - aB → aA
 - Quando w = aabbbbaa

Linguagem recursivamente enumerável

- L é uma linguagem recursivamente enumerável se, e somente se
 - L é gerada por uma gramática irrestrita
- Pode-se gerar gramática irrestrita a partir de uma Máquina de Turing
 - Dada uma MT = $\langle Q, \Sigma, \Gamma, \delta, q_0, \Box, F \rangle$, para cada w $\in L$:
 - $q_0 w \vdash^* xq_f y$
 - Para algum $q_f \in Fex, y \in \Gamma^*$
- Condições
 - S pode derivar q₀w para todo w
 - A segunda equação é possível se e somente se a primeira existir
 - Quando xqfy é gerada, a gramática transforma essa cadeia na original w ∈ L
 - S \Rightarrow * $q_0 w \Rightarrow$ * $xq_f y \Rightarrow$ * w

- Uma gramática irrestrita $G = \langle V, T, S, P \rangle$ é chamada de gramática sensível ao contexto quando:
 - Todas as produções u → V ∈ P seguem a propriedade |u| ≤ |V|
 - A cada etapa de derivação, o tamanho da palavra derivada não pode diminuir
 - Exceto a palavra vazia, se pertencer à linguagem
 - O exemplo 1 é uma linguagem sensível ao contexto
 - Porém, o exemplo 2 não é uma linguagem sensível ao contexto

- Exemplo 3:
 - Seja L = $\{a^nb^{2n}a^n \mid n \geq 1\}$, então:
 - Gramática irrestrita G = < {S,C},{a,b},S,P >
 - P: regras de produção
 - S → aAbba
 - aAb → aabbbA | ab ou seja | aAb | > | ab |
 - bAb → bbA
 - bAa → Bbaa
 - bB → Bb
 - aB → aA
 - Quando w = aabbbbaa

- Exemplo 3 (cont.):
 - Seja L = $\{a^nb^{2n}a^n \mid n \geq 1\}$, então:
 - Gramática irrestrita G = < {S,C},{a,b},S,P >
 - P: regras de produção
 - S → aAbba | abba
 - aAb → aabbbB
 - Bb → bB
 - Ba → Caa | aa
 - bCa → Cba
 - bC → Cb
 - acb → aAb
 - Quando w = aabbbbaa

• Exemplo 3 (cont.):

• Seja L = $\{a^nb^{2n}a^n \mid n \ge 1\}$, então:

• $G = \langle \{S,C\}, \{a,b\}, S,P \rangle$

• P: regras de produção

- S → aAbba | abba
- aAb → aabbbB
- Bb → bB
- Ba → Caa | aa
- bCa → Cba
- bC → Cb
- aCb → aAb
- Quando w = aabbbbaa

