AMES, IA

HOUSE SALE PRICE ESTIMATION

A LINEAR REGRESSION ESTIMATING HOUSE PRICES

THE PROBLEM STATEMENT

Home Flippers, LLC, a company focused on flipping homes in the Ames, IA region, contracted me to <u>build a model to predict home</u> values in the area. They were looking to use this model so they could calculate predicted prices for houses on the market in relation to historical sale prices of comparable houses. This information is of concern and value to them to enable them to identify opportunities with the greatest upside after making renovations or remodeling the house for sale.

Obviously the majority of the upside in the sale price from a home flip comes from the improvements made during the renovations, but by identifying undervalued homes in need of repair would allow them to calculate the potential upside compared to the amount of investment they put into the renovation.

Z THE DATA

\$181,469.70

Average house sale price

2,051
Data points

81

Features

EXPLORING AND CLEANING THE DATA

- Investigated correlations against sale price
 - Overall Quality
 - Above Grade Living Area
 - Garage Area
- Categorical features with small groupings
 - Neighborhood
 - Overall Quality
 - Foundation

EXPLORING AND CLEANING THE DATA, CONT'D

Pairplot examining top three correlated features

CLEANING & MAPPING FEATURE ENGINEERING

CLEANING & MAPPING - Assumptions and Judgements

- Efficiency through functions!
- Filling in null values
 - Basement square footage
 - Garage type
- Overwriting condition values
- Mapping minority groups to their nearest neighbors
 - Neighborhoods
 - Quality and Condition ordinal rankings
 - Exterior covering
 - MS Zoning

FEATURE ENGINEERING

- Linear shift / MinMax scaling
- Interaction terms synthesis of categories
 - Total rooms & Living area (above grade)
 - Full bathrooms & Living area (above grade)
 - Functional rating & Overall quality
- Logged features
 - Living area above grade
 - Lot area
 - Basement total square footage
 - Finished basement square footage

4
THE MODEL

MODELING & TUNING

- Establish baseline model
- Plot null hypothesis

MODELING & TUNING

- Feature selection
 - 20 features for dummification
 - 20 numeric columns (not including Id)
- Dum dum dum dum!
 - 113 columns total
 after get_dummies()
- Final model scores after many refinements

METRIC	SPLIT/MODEL	SCORE
RMSE (logged)	Training	0.1028
r2	Training	0.9375
RMSE (logged)	Validation	0.1280
r2	Validation	0.9035
RMSE	Baseline/Null	79276.56
RMSE	Linear Regression	19263.46

MODELING & TUNING - Linear Regression

5 THE FINDINGS

FINDINGS

POTENTIAL FLIPS

- Identified ten lowest priced houses in bins
- Highlighted opportunities in green
- Highlighted constraints in red

6 THE NEXT STEPS

NEXT STEPS

- K-Nearest Neighbors in conjunction with my Linear Regression model
 - Identify comp set
 - Predict sale price after renovations based on improvements
- Extending the model to other towns, counties, or states
- Evaluate accuracy in the present day market

Thanks!

