EA-616: Análise Linear de Sistemas

Prova 1

1. (2.5 pontos)

Obter o modelo matemático do sistema térmico:

T: temperatura do fluido no tanque;

 T_0 : temperatura inicial do fluido no tanque;

 T_e : temperatura do meio externo ao tanque (constante);

V: volume do fluido no tanque;

 ρ : densidade do fluido no tanque;

 C_t : calor específico do fluido no tanque;

 A_1 , A_2 : respectivamente, áreas efetivas de transmissão de calor das paredes 1 e 2 do tanque;

 U_1 , U_2 : respectivamente, coeficientes totais de transmissão de calor das paredes 1 e 2 do tanque.

2. (2.5 pontos)

Resolver a seguinte equação diferencial:

$$D(D+2)y(t) = 2 + 3e^{-2t}$$
; $y(0) = 0$; $Dy(0) = 1$

3. (2.5 pontos)

Obter o modelo matemático nas variáveis $h,\ q$ do sistema hidráulico com fluido incompressível:

h: altura do fluido no tanque;

 h_0 : altura inicial do fluido no tanque;

q: vazão volumétrica de fluido na saida do tanque;

 q_0 : vazão volumétrica inicial de fluido na saida do tanque;

 q_e : vazão volumétrica de fluido entrando no tanque (constante);

A: área da seção transversal do tanque;

L: inertância hidráulica;

R: resistência hidráulica;

 ρ : densidade do fuido;

g: aceleração da gravidade.

4. (2.5 pontos)