ORTHODROMIE (Suite)

3) Calcul de la distance M:

Considérons le triangle sphérique (DPnA), Pn étant le pôle nord, on connaît les 3 éléments

 $\widehat{P} = G_A - G_D = g$, g est comptée de 0 à 180° vers E ou W et les 2 côtés $(P_ND) = 90-\phi D$ et $P_NA = 90-\phi A$

- \checkmark ϕA et ϕD sont (+) si A et D sont nords
- ✓ φA et φD sont (-) si A et D sont suds

M est calculée par la formule fondamentale des cosinus dans laquelle on a :

Cos M= $cos(90-\phi D).cos(90-\phi A) + sin(90-\phi A).sin(90-\phi).cos g$

Cos M= $sin(\phi D)$. $sin(\phi A) + cos(\phi D)$. $cos(\phi A)$. cos g

Soient

а

b

 $\sin \phi D \sin \phi A = a$ et $\cos \phi D \cos \phi A \cos \phi = b$

a > 0 si φD et φA sont mêmes noms

a < 0 si ϕ D et ϕ A sont de noms contraires

 $b > 0 \text{ si } g < 90^{\circ}$

 $b < 0 \text{ si g} > 90^{\circ}$

 $M < 90^{\circ} \text{ si a+b} > 0$

 $M > 90^{\circ} \text{ si a+b} < 0$

Remarque : quand on fait le calcul de M, on le compare tout de suite à la distance m loxo : gain de l'ortho sur la loxo

4) Gain de l'orthodromie sur la loxodromie :

Il suffit de calculer la distance loxodromique séparant les 2 points D et A , en utilisant une des formules de la loxodromie

$$m = V(e^2 + I^2) = e/\sin Rv = I/\cos RV$$

tg Rv= g / Lc avec Lc = LcA - Lc D

et Lc = 7915,7 x ln (tg(45° + φ /2)) ou Lc (en °) = 180/ π x ln (tg(45° + φ /2))

Lc: Latitude croissante

LcA: Latitude croissante du point d'arrivée

LcD: latitude croissante du point de départ

Gain = m - M

5) Calcul de l'angle de route initiale V :

Dans le triangle sphérique PDA, la formule des cotgs donne :

Cotg V = (tg
$$\varphi$$
A. Cos φ D – sin φ D cos g) / sin g

Cet angle peut être calculé également par la formule fondamentale des cosinus ou par l'analogie des sinus, on a alors :

 $Cos V = (sin \varphi A - sin \varphi D cos M) / cos \varphi D sin M$

 $sinV = (cos\phi A \cdot sing) / sin M , après avoir calculé M.$

Il n y a pas de difficulté pour compter V du N ou du S , il suffit de savoir que la concavité de l'orthodromie est toujours tournée vers l'équateur, ou pour lever le doute , on vérifie par $\cot V > 0$, donc V est compté du N , $\cot V < 0$, V est comptée sur S.