

Modelos de Recuperación de la Información

Almacenamiento y Recuperación de la Información Manuel Serrano E.S. Informática CR – UCLM

<u>Manuel.Serrano@uclm.es</u> <u>http://alarcos.inf-cr.uclm.es/doc/ari/</u>

1

Introducción

- 3 Modelos clásicos
 - Booleano
 - Vectorial
 - Probabilístico
- Normalmente nos basamos en términos para indexar y también para recuperar

Introducción

- Los términos son palabras claves que representan al documento
 - Manualmente (mejores, pero alguien tiene que elegirlos)
 - Automáticamente
- Los términos no tienen porque aparecer en el documento

3

Introducción

- Problema:
 - El enfoque es una simplificación
 - Sólo tenemos aspecto léxico
 - No tenemos
 - Sintaxis
 - Semántica
 - Pragmática
- Los 3 modelos clásicos usan esta simplificación
- Los documentos se representan por un conjunto de términos de indexación.

Introducción

- Modelo booleano
 - Los documentos son un conjunto de términos
 - Las preguntas son expresiones booleanas
- Modelo vectorial
- Modelo probabilístico

F

Introducción

- El modelo de representación de los documentos (D)
- Método de representación de las preguntas (P)
- Una función S: $D \times P \rightarrow \mathfrak{R}$
 - Para cada par (documento,pregunta) asigna un valor real de similitud

Introducción

- Estas 3 características determinan el núcleo de un SARI, ignorando el modo de uso
- D y P son conjuntos de términos que analizaremos en los temas 3 y 4
- En este tema nos centraremos en la función

7

Archivos

- Tenemos un archivo con todos los documentos
- Una solución es recorrer el archivo buscando palabras → Ineficiente.
- Otra forma es tener un registro para cada documento con un 0 ó 1 por cada término

Archivos

	T1	T2	T3	T4	T5
D1	0	0	0	1	0
D2	0	1	0	1	0
D3	1	0	1	1	0
D4	0	1	1	0	1

Archivo Directo

 Para saber si un documento tiene un término miramos en la tabla

c

Archivos

	D1	D2	D3	D4	D5
T1	0	0	0	1	0
T2	0	1	0	1	0
T3	1	0	1	1	0
T4	0	1	1	0	1

Archivo Invertido

 Es más eficiente pues al buscar un término sólo miramos un registro

Archivos: Archivo Invertido

- El tamaño de los registros aumenta con el número de documentos
- La matriz está llena de 0's
- Solución: Partir el archivo en 2:
 - Diccionario
 - Archivo de almacenamiento de listas (Postings file)

- Implementación:
 - Orden de aparición
 - A medida que vamos añadiendo documentos vamos metiendo nuevos nuevos términos
 - Ineficiente
 - Tabla ordenada
 - El problema es que tiene que ser dinámica
 - Árboles B
 - Eficientes para implementación en disco

13

Archivos: Diccionario

Árbol B

- Árboles digitales:
 - Las claves se construyen con 0's y 1's
 - Las claves están repartidas por árbol
 - Es más eficiente que los árboles B
 - Hay muchos tipos el de la figura anterior se llama TRIE
 - Traducción CUPE (reTRIEval → reCUPEración)
 - Son muy útiles cuando se hacen búsquedas por prefijos

- Árboles digitales:
 - Árbol Patricia
 - Optimización del TRIE
 - Los nodos que sólo tienen un descendiente se eliminan y se indica el nivel que se salta

17

Archivos: Diccionario

- Tablas de dispersión (Tablas Hash)
 - Es la más eficiente
 - mejor tiempo de acceso
 - Problemas:
 - Si es muy dinámica y está muy llena:
 - Colisiones
 - Método de resolución de colisiones
 - Es la forma más utilizada

- Tablas de dispersión (Tablas Hash)
 - La clave se utiliza como argumento de la función que nos dice donde está
 - La función la mayoría de las veces acierta
 - El índice de aciertos decrece a medida que la tabla se va llenando

10

Archivos: Diccionario

- Tablas de dispersión (Tablas Hash)
 - Cuando hay colisiones
 - Utilizar la clave donde debería estar como clave para la nueva localización
 - Tener un área de desbordamiento
 - Las búsquedas son muy eficientes
 - Es lo que más hacemos

- Tablas de dispersión (Tablas Hash)
 - Las inserciones dependen de lo llena que esté.
 - Un orden de llenado del 60% 70% está bien
 - Problemas:
 - No hay orden lexicográfico
 - Claves desordenadas
 - Nos sabemos cual es el siguiente a un término

21

Modelo Booleano

 El método de representación de los documentos es un conjunto de términos de indexación o palabras clayes

 Diccionario: Conjunto de todos los términos

$$T = \{t1, t2, t3, ...\}$$

 Documento: Conjunto de términos del diccionario donde tiene valor

$$Di = \{t1, t2, t3, ...\}$$

ti = Verdad si es una palabra clave del doc

าา

Modelo Booleano

- Las preguntas son expresiones booleanas cuyos componentes son términos de nuestro diccionario
- Operadores
 - **■** 0 (∪)
 - Y (∩)
 - No (-)
 - (No suele implementarse, se suele implementar y_no)
- Ejemplo: (Perro o gato) y blanco

- Función de similitud o semejanza
 - Sem(di,p) es verdad si p(di) = verdad
 - Sem(di,p) es falso si p(di) = falso
 - **■** Ej:
 - sem(d1,p) = (perro o gato) y blanco = falso
 - Sem(d3,p) = (perro o gato) y blanco = verdad

25

Modelo Booleano

- Ventajas:
 - Más sencillo imposible
- Desventajas:
 - La función semejanza sólo tiene 2 valores
 - El lenguaje de consulta no es sencillo

- Algoritmo
 - Nos permite calcular el valor de la función de semejanza
 - 1ª aproximación: aplicar la función a todos los docs, pero esto no es eficiente
 - Necesitamos una función que nos devuelva los id de los docs que tienen un término
 - fácil mirando el archivo invertido
 - Luego mezclamos las listas

27

Modelo Booleano

- Algoritmo:
 - Entrada: 2 listas ordenadas ascendentemente
 - Salida: 1 lista ordenada con la mezcla de las 2 listas de entrada
 - El orden puede ser el número de identificación de documento

Algoritmo

MIENTRAS verdad

SI ambas listas están vacias ENTONCES FIN

SI_NO SI una lista de entrada está vacia

ENTONCES

transferir resto de elementos de la lista no vacia a salida

FIN

SI_NO tomar elemento de cabeza de L1(R1) y L2(R2)

SI R1 < R2

ENTONCES transferir R1 a salida y eliminarlo de L1

SI_NO transferir R2 a salida y eliminarlo de L2

FIN_MIENTRAS

29

Modelo Booleano

- Ti y Tj
 - Mezclamos las 2 listas y es verdad para los términos que estén duplicado en la mezcla
 - Ejemplo
 - d1 = (t1, t3, t4) d2 = (t1, t2, t4)
 - $t1 = \{d1, d2\} \ t2 = \{d2\} \ t3 = \{d1\} \ t4 = \{d1, d2\}$
 - t1 y t4: Mezcla={d1,d1,d2,d2}→{d1,d2}
 - t1 y t3: Mezcla={d1,d1,d2}→{d1}

- Ti o Tj
 - Mezclamos las 2 listas y es verdad para los términos que estén 1 ó 2 veces
- No Ti
 - Los que no estén en la lista → Ineficiente
- Ti y no Tj
 - Hacemos Ti y Tj, Mezclamos(Ti, Ti y Tj) y quitamos los que aparecen más de una vez

31

Modelo Booleano

- Ejemplo
 - \blacksquare T1={d1,d3} T2={d1,d2} T3={d2,d3,d4}
 - P = (T1 o T2) y_no T3
 - Mezcla(T1,T2) = {d1,d1,d2,d3}
 - T1 o T2 = {d1,d2,d3} (Aparecen 1 o 2 veces)
 - Mezcla([T1 o T2],T3) = {d1,d2,d2,d3,d3,d4}
 - (T1 o T2) y T3 = {d2,d3} (Aparecen 2 veces)
 - Mezcla([T1 o T2],[(T1 o T2) y T3]) = {d1,d2,d2,d3,d3}
 - (T1 o T2) y_no T3 = {d1} (Quitando los duplicados)

- Es el más usado
- Permite dar graduación a la pertenencia de un documento a una pregunta
- Los docs están representados por un pto en el espacio vectorial que construimos
- La pregunta es otro punto en el mismo espacio vectorial
- Diferencia con el booleano → El método de representación es el mismo para las preguntas y los documentos

22

Modelo Vectorial

- El espacio vectorial tiene tantas dimensiones como términos de indexación tiene el diccionario
- Cada elemento del vector indica el grado de importancia de los términos en el documento (ℜ+)
 - di = (wi1,wi2,wi3,...,win)
 - n: nº de términos distintos de la colección
 - wij ∈ ℜ +

- Ejemplo
 - Diccionario (t1=perro, t2=gato, t3=azul t4=verde, t5=pequeño)
 - d1 = (perro, azul, pequeño) = (1,0,1,0,1)
 - d2 = (gato, verde) = (0,1,0,1,0)
 - Asumiendo peso = 1

35

Modelo Vectorial

- Preguntas
 - Igual que los documentos
 - P = (wp1, wp2, wp3, ..., wpn)
 - n: nº de términos distintos de la colección
 - wpj $\in \Re +$

- Función de semejanza
 - Tiene que ordenar los docs dependiendo de la proximidad con la pregunta
 - Una 1ª aproximación es el vector diferencia
 - No se usa
 - Los docs extensos tienen más términos y están más alejados
 - Las preguntas tienen pocos términos
 - Se penalizarían los docs largos

37

Modelo Vectorial

- Función de semejanza
 - Producto interno (Producto escalar)
 - Favorece los documentos largos pues al tener más términos suman más

$$sem(p,di) = \sum_{j=1}^{n} wpj \times wij$$

- Función de semejanza
 - Función Coseno
 - Normaliza los vectores respecto a su longitud
 - Si p y di son ortogonales la relevancia es 0
 - Si son paralelos es muy relevante

$$sem(p,di) = \frac{\sum_{j=1}^{n} wpj \times wij}{\sqrt{\sum_{j=1}^{n} wpj^{2}} \sqrt{\sum_{j=1}^{n} wij^{2}}} = \cos(\alpha)$$

4

Modelo Vectorial

- Calculo automático de pesos
 - wij: peso del término j en el doc i
 - ftij: frecuencia del término j en el doc i
 - n: n° de términos
 - fdj: n° de docs que tienen el término j
 - d: no de docs
 - fidj = log(d/fdj) (Frecuencia inversa)
 - Mínimo=0 fdj=d (tj aparece en todos los docs)
 - Máximo=log(d) fdj=1 (tj sólo aparece en 1 doc)

- Calculo automático de pesos
 - wij = ftij ⋅ fidj
 - Frecuencia del término en el doc X frecuencia inversa
 - Lo importante que es el término en el doc X lo importante que es el término en la colección
 - Para las preguntas calculamos wpj igual que wij

41

Modelo Vectorial

- Calculo automático de pesos
 - Implementación
 - En los docs se almacena la frec de aparición de cada término
 - La frec inversa se deja como característica de los términos (depende de la colección)
 - Necesitamos d (nº de docs) pero es un entero que depende de la colección
 - Lo más eficaz es almacenar todo en el archivo invertido

- Cálculo de la semejanza
 - El método típico para el cálculo de la semejanza es extraer los documentos que tienen alguno de los términos de la pregunta
 - Así solo calculamos la semejanza para unos pocos documentos

- La base de cálculo es la probabilidad de un documento de ser relevante a una pregunta dada
- La función de semejanza es la probabilidad de que un doc sea relevante

Sem(p,di) = P(R|di)

45

Modelo Probabilístico

- Utilizaremos el modelo probabilístico de independencia de términos binarios
 - La probabilidad de los términos es independiente (un término es independiente de los otros)
 - Los pesos asignados a los términos son binarios

- Representación igual al modelo booleano
 - di={wi1, wi2,, win}
 - wij= {1 si tj es término de di, 0 si no}
- Las preguntas son un subconjunto de términos

47

Modelo Probabilístico

 Para la función de semejanza es mejor coger como relevante aquellos docs en los que su probabilidad de ser relevante es mayor que la de no serlo

$$P(R \mid di) > P(\overline{R} \mid di)$$

$$sem(p, di) = \frac{P(R \mid di)}{P(\overline{R} \mid di)} \rightarrow \begin{cases} >1 & relevante \\ <1 & no relevante \end{cases}$$

Aplicando el Teorema de Bayes

$$sem(p,di) \approx \frac{P(di \mid R)}{P(di \mid \overline{R})}$$

 P(di|R) es la probabilidad de que dado el conjunto de relevantes di esté dentro

49

Modelo Probabilístico

Simplificando...

$$sem(p,di) = \sum_{j=1}^{m} w_{pj} w_{ij} \log \frac{p_{j}(1-q_{j})}{q_{j}(1-p_{j})}$$

- pj es la probabilidad de que tj esté en el conjunto de docs relevantes
- qi es la probabilidad de que tj esté en el conjunto de docs no relevantes

Si conociéramos R:

		Relevancia		
		SI	NO	
Término j	SI	r	n-r	n
	NO	R-r	N-R-n+r	N-n
		R	N-R	N

- N = Nº docs colección
- R = N° docs relevantes
- r = N° docs relevantes que tienen tj
- n = N° docs colección que tiene tj

5

Modelo Probabilístico

- Si conociéramos R:
 - pj: probabilidad de que cogiendo un doc relevante tenga tj

$$pj = (r/R)$$

 qj: probabilidad de que en los docs no relevantes no esté tj

$$qj = (n-r)/(N-R)$$

- Si conociéramos R:
 - Substituimos pj y qj

$$sem(p,di) \approx \sum \log \frac{\frac{r}{R-r}}{\frac{n-r}{N-R-n+r}}$$

53

Modelo Probabilístico

- Como no conocemos R
 - La prob de que un término esté en el conj de docs relevantes es la misma para todos los términos. A priori no hay un término más relevante que otro

$$pj=0'5$$

 Para qj se usa la frec inversa del término en la colección

fdj: N° de docs con el término tj N: N° de docs de la colección

- Como no conocemos R:
 - Usamos pj=0'5 y qj=fdj/N
 - Recuperamos los N primeros y consideramos que son relevantes
 - Preguntamos al usuario y recalculamos pj y qj

55

Modelos de navegación

- La necesidad de información no se expresa por una pregunta
- En un sistema real tenemos una mezcla:
 - Hago una pregunta
 - Exploro los resultados
 - Reformulo la pregunta...
- El interfaz de usuario es más importante

Modelos de navegación

- Navegación directa
 - Los docs están normalmente almacenados en una lista sin un criterio de ordenación útil o agrupados por su proximidad semántica
 - La carga de exploración corre por parte del usuario
 - Para agruparlos se suele utilizar una función de semejanza entre los docs
 - El criterio de semajanza es muy difuso → que estén próximos

57

Modelos de navegación

- Navegación guiada por una estructura
 - Los docs están organizados por UN criterio
 - Este criterio genera una estructura jerárquica
 - Los temas de la raíz son genéricos y las hojas específicos
 - Se usa en bibliotecas y centros de documentación

Modelos de navegación

- Navegación guiada por hipertexto
 - Los docs están organizados por un sistema multicriterio
 - Obtenemos un grafo
 - Los docs son nodos cualesquiera del grafo
 - Es el sistema de moda

50

Modelos Avanzados

- Son extensiones del modelo booleano
- El modelo booleano no permite dar orden al conjunto de docs relevantes
- El modelo booleano sólo permite decir si son relevantes o no
- En las extensiones se permite dar un orden

Conjuntos Difusos

- Se basa en que la representación de un doc por un conjunto de término no sea categórica
- Se difumina la pertenencia para que no sea binaria
- F(D,t)=0 ó 1 ⇒ f(D,t) ∈ [0,1]
 (Función de pertenencia)

6

Conjuntos Difusos

Fórmula lógica	Fórmula de evaluación	
f(di,tj y tk)	F(di,tj) * F(di,tk) ≡ min(F(di,tj),F(di,tk)	
f(di,tj o tk)	$F(di,tj) + F(di,tk) - (F(di,tj) * F(di,tk))$ $\equiv max(F(di,tj),F(di,tk))$	
f(di,tj y_no tk)	F(di,tj) * (1 – F(di,tk))	

Conjuntos Difusos

- Cálculo de pesos
 - Generalmente se hacer como en el modelo vectorial
 - wij = fdij * fidj
- Cuando las funciones sólo toman 0 ó 1 degenera en el modelo booleano

63

Conjuntos Difusos

- Desventajas:
 - Es menos flexible de lo que parece
 - No podemos dar pesos a las preguntas
 - La ordenación puede estar desfigurada pues sólo algunos términos influyen en la semejanza
 - Ej: $d1 = \{(t3,0'8)\}\ d2 = \{(t1,0'7),(t2,0'7),(t3'08)\}$
 - P=t1 o t2 o t3
 - A los dos les da 0'8 (Máximo) aun cuando el d2 sería más relevante

- Aquí todos los términos contribuyen
- Introducimos los pesos

$$Sem(d,t_{j} \circ t_{k}) = \sqrt{\frac{w_{pj}^{2}w_{ij}^{2} + w_{pk}^{2}w_{ik}^{2}}{w_{pj}^{2} + w_{pk}^{2}}}$$

$$sem(d, t_{j}yt_{k}) = 1 - \sqrt{\frac{w_{pj}^{2}(1 - w_{ij})^{2} + w_{pk}^{2}(1 - w_{ik})^{2}}{w_{pj}^{2} + w_{pk}^{2}}}$$

Booleano Extendido

Podemos dar peso a los operandos (p)

$$sem(d, t_{j} \circ^{p} t_{k}) = \sqrt[p]{\frac{w_{pj}^{p} w_{ij}^{p} + w_{pk}^{p} w_{ik}^{p}}{w_{pj}^{p} + w_{pk}^{p}}}$$

$$sem(d,t_{j}y^{p}t_{k}) = 1 - \sqrt[p]{\frac{w_{pj}^{p}(1-w_{ij})^{p} + w_{pk}^{p}(1-w_{ik})^{p}}{w_{pj}^{p} + w_{pk}^{p}}}$$

$$sem(di, t_j y _no^p t_k) = w_{pj} \cdot w_{ij} \cdot w_{pk} \cdot (1 - w_{ik})$$

$$\operatorname{Si} p = \infty$$

$$\operatorname{sem}(d, t_{j} \circ^{\infty} t_{k}) = \lim_{p \to \infty} \left(\sqrt[p]{\frac{w_{pj}^{p} w_{ij}^{p} + w_{pk}^{p} w_{ik}^{p}}{w_{pj}^{p} + w_{pk}^{p}}} \right)$$

$$\operatorname{max}(w_{pj} w_{ij}, w_{pk} w_{ik})$$

$$sem(d, t_{j} \circ^{\infty} t_{k}) = \frac{\max(w_{pj}w_{ij}, w_{pk}w_{ik})}{\max(w_{pj}, w_{pk})}$$

$$sem(d, t_{j} \circ^{\infty} t_{k}) = \frac{\max(w_{pj}w_{ij}, w_{pk}w_{ik})}{\max(w_{pj}, w_{pk})}$$

$$sem(d, t_{j}y^{\infty}t_{k}) = 1 - \frac{\max(w_{pj}(1 - w_{ij}) + w_{pk}(1 - w_{ik}))}{\max(w_{pj} + w_{pk})}$$

Booleano Extendido

- Si p=∞ y wpj=wpk=1
 - Sem(di, tj o tk) = max(wij,wik)
 - Sem(di, tj y tk) = 1 min(wij,wik)
- Es lo mismo que el modelo de conjuntos difusos
- El modelo booleano extendido engloba al modelo de conjuntos difusos

■ Si p=1

$$sem(d, t_{j} \circ^{1} t_{k}) = \frac{w_{pj}w_{ij} + w_{pk}w_{ik}}{w_{pj} + w_{pk}}$$

$$sem(d, t_{j} y^{1} t_{k}) = 1 - \frac{w_{pj}(1 - w_{ij}) + w_{pk}(1 - w_{ik})}{w_{pj} + w_{pk}}$$

$$sem(d, t_{j} y^{1} t_{k}) = 1 - \frac{w_{pj} (1 - w_{ij}) + w_{pk} (1 - w_{ik})}{w_{pj} + w_{pk}}$$

$$sem(d, t_{j} y^{1} t_{k}) = \frac{w_{pj} w_{ij} + w_{pk} w_{ik}}{w_{pj} + w_{pk}}$$

Booleano Extendido

- Si p=1
 - No hay diferencia entre "y" y "o"
 - La ordenación es igual a la del modelo vectorial
 - El modelo booleano extendido engloba también al modelo vectorial
- Si 1<p<∞</p>
 - Situaciones intermedias
 - Con p→∞ nos acercamos al booleano estándar
 - Con p→1 nos acercamos al modelo vectorial

$$P = ((A,a)y^2(B,b))o^{\infty}(C,c)$$

 Pregunta: Quiero que el "y" se asemeje al modelo vectorial y el "o" al modelo booleano

72

Booleano Extendido

- Ventajas
 - Modelo generalista
 - Engloba a muchos otros
- Desventajas
 - Las leyes booleanas (asociativa, distributiva,...) no se cumplen
 - Ej: $sem((A y B) y C) \neq sem(A y (B y C))$
 - Coste computacional es muy alto (Normalmente solo se permite p=1, 2 e ∞)
 - Los usuarios no se sienten a gusto con la formulación (Por defecto p=2)