Fondamenti dell'informatica

Andrea gullì handgull

September 18, 2022

Contents

1	Insiemistica di base		
	1.1	Cos'è	un insieme
	1.2	Rappr	resentazione degli insiemi
			Diagrammi di Eulero-Venn
		1.2.2	Rappresentazione estensionale
		1.2.3	Rappresentazione intensionale
	1.3	Sottoi	nsiemi e insieme potenza
		1.3.1	Sottoinsiemi di un insieme
		1.3.2	Insieme potenza
	1.4	Opera	zioni fra insiemi
		1.4.1	Intersezione di insiemi
		1.4.2	Unione di insiemi

Introduzione

Perchè studiare insiemi? La teoria degli insiemi è un fondamento della matematica e l'informatica deriva strettamente da essa

Concretamente parlando, il campo dell'informatica più influenzato dall'insiemistica a mio avviso è quello delle **basi di dati**.

Ad esempio se una SELECT * FROM coinvolge più di una tabella verrà fatto il **prodotto cartesiano** tra le tuple¹ delle tabelle del database.

Sempre nei database relazionali sono essenziali le operazioni di unione, intersezione (inner JOIN), di differenza e così via.

 $^{^{1}\}mathrm{una}$ tupla è un generico elemento di una relazione con attributi in un database relazionale.

Chapter 1

Insiemistica di base

1.1 Cos'è un insieme

Un **insieme** è una collezione non ordinata di oggetti distinti e ben definiti detti elementi dell'insieme. Per convenzione gli insiemi sono denominati con una lettera maiuscola e sono delimitati da parentesi graffe, gli elementi sono indicati con una lettera minuscola.

Per ogni oggetto (anche un insieme) esistente è possibile chiedersi se esso appartiene o meno ad un determinato insieme.

Se un elemento appartiene ad A si scrive:

$$a \in A$$

Se un elemento b non appartiene ad A si scrive:

$$b \notin A$$

L' **insieme universo** è l'insieme indicato con U che contiene tutti gli tutti gli elementi e tutti gli insiemi esistenti, compreso quindi anche se stesso.

L' **insieme vuoto**, ovvero l'insieme senza elementi, viene denotato con ϕ . Per ogni oggetto x, esiste un insieme $\{x\}$ che viene detto **singoletto**.

$$A = \{1, 2, 3\}$$
$$B = \{3, 2, 1\}$$

$$C = \{1, 1, 2, 3\}$$

In questo caso abbiamo che A = B = C, dato che ordine e numerosità degli elementi non contano, come detto sopra.

 $\{\phi\}$ non è l'insieme vuoto ma è un insieme (un singoletto) contenente l'insieme vuoto.

1.2 Rappresentazione degli insiemi

1.2.1 Diagrammi di Eulero-Venn

Un metodo di rappresentazione grafico estremamente facile da capire ma limitato se si tratta di dover rappresentare insiemi grandi. Molto semplicemente gli elementi dentro il cerchio appartengono all'insieme.

1.2.2 Rappresentazione estensionale

Consiste nell'elencare esplicitamente tutti gli elementi dell'insieme. Anche questo metodo risulta scomodo quando all'interno dell'insieme vi è un gran numero di elementi o addirittura c'è un numero infinito di elementi da elencare.

$$A = \{1, 2, 3\}$$

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

Rappresentazione intensionale 1.2.3

Consiste nel formulare una proprietà caratteristica P che distingue precisamente gli elementi dell'insieme $S = \{x : P\}$. S'è l'insieme di tutti e soli gli elementi per i quali la proprietà P è vera.

$$A = \{x : x \in \mathbb{N}, x > 3, x < 6\} = \{4, 5\}$$

1.3 Sottoinsiemi e insieme potenza

1.3.1 Sottoinsiemi di un insieme

Consideriamo due insiemi:

$$A = \{1, 2, 3, 4\}$$
$$B = \{1, 2, 3\}$$

Osserviamo che ogni elemento di B è anche elemento di A. In questo caso si dice che B è un sottoinsieme di A e si indica con la notazione

$$B \subset A$$

La situazione può essere rappresentata tramite diagrammi di Venn:

Per dire che un sottoinsieme B è contenuto o uguale ad A si può scrivere:

$$B \subset A$$

 $\boxed{\phi\subseteq A\ \forall A}\ \forall$ significa "per ogni" Mentre per dire che B
 non è sottoinsieme di A possiamo scrivere:

$$B \not\subset A$$
 o anche B $\not\subseteq$ A

Possiamo dire che per \subseteq valgono le seguenti proprietà:

• Riflessività: $S \subseteq S \ \forall S$

 \bullet Transitività: se A \subseteq B e B \subseteq C allora A \subseteq C

Se dati due insiemi C e D succede che $C \subseteq D$ e $D \subseteq C$, allora C è detto sottinsieme improprio di D. (C = D).

Ogni insieme (tranne l'insieme vuoto come vedremo a breve) accetta 2 sottoinsiemi impropri:

- L'insieme stesso
- L'insieme vuoto

Se $S \subseteq T$ e $S \neq T$ allora diciamo che S è un **sottoinsieme proprio** di T e che T è un **soprainsieme proprio** di S.

Repetita iuvant, scriviamo quello detto sopra in definizioni intensionali

$$S \subset T = \{x : se \ x \in S \ allora \ x \in T \ con \ S \neq T \}$$

$$(S = T) = \{x : x \in S \ sse \ x \in T \}$$

$$S \subseteq T = \{x : S \subset T \ oppure \ S = T \}$$

1.3.2 Insieme potenza

Un sottoinsieme di un insieme può essere chiamato parte, l'insieme potenza o **insieme delle parti** di A si indica con $\wp(A)$ ed è l'insieme a cui appartengono tutti e soli i sottoinsiemi di A.

$$\wp(S) = \{X : X \subseteq S\}$$

$$A = \{1, 2\}$$

$$\wp(A) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$$

$$\wp\phi = \{\phi\}$$

Se S è composto da n elementi (con $n \ge 0$) il numero di elementi in $\wp(S)$ è 2^n . Sapendo anche che la **cardinalità** di un insieme indica il numero di elementi di esso e si scrive:

$$A = \{1, 2, 3\} |A| = 3$$

Allora potremmo anche dire che $\wp(\mathbf{S})$ è $2^{|S|}$

1.4 Operazioni fra insiemi

1.4.1 Intersezione di insiemi

L'intersezione di due insiemi si scrive $S \cap T$, L'insieme risultante contiene tutti e soli gli elementi che appartenevano sia ad S che a T. (naturalmente se S e T sono disgiunti $S \cap T = \phi$).

$$S \cap T = \{x : x \in S e x \in T\}$$

Per l'operazione \cap valgono le seguenti proprietà:

• Idempotenza: $S \cap S = S$

• Commutatività: $A \cap B = B \cap A$

• Assorbimento: $A \cap B = A$ sse $A \subseteq B$

• Associatività: $(A \cap B) \cap C = A \cap (B \cap C)$

Si noti inoltre che $A \cap \phi = \phi \ \forall A$

1.4.2 Unione di insiemi

L'unione di due insiemi si scrive $S \cup T$, l'insieme risultante contiene tutti gli elementi di S e tutti quelli di T.

Definiamo $S \cup T = \{x : x \in S \text{ oppure } x \in T\}$

L'insieme unione come si può vedere è il più piccolo insieme che contiene sia A che B.

Per l'operazione ∪ valgono le seguenti proprietà:

- Idempotenza: $S \cup S = S$
- \bullet Commutatività: A \cup B = B \cup A
- \bullet Assorbimento: A \cup B = A sse B \subseteq A
- Associatività: (A \cup B) \cup C = A \cup (B \cup C)

Si noti inoltre che ϕ è l'elemento neutro $A \cup \phi = A$ Inoltre \cup e \cap sono legate da delle proprietà distibutive

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$