Федеральное агентство по образованию МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(Национальный исследовательский университет)

Кафедра 106

КУРСОВАЯ РАБОТА

по дисциплине «Динамика полета»

Выполнил Москвитин Андрей Студент гр. М1О-403Б-18

Подпись:

Москва

РЕФЕРАТ

Курсовая работа по дисциплине «Динамика полета» 43 с., 45 рис., 0 источн., 25 табл. РАСЧЕТ ЛЁТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК.

Объектами исследования является расчет лётно-технических, взлётно-посадочных характеристик, траектории полета, диаграммы транспортных возможностей, характеристик продольной и статической устойчивости и управляемости самолета ИЛ-76

Цель работы – закрепление и систематизация знаний по динамике полета, а также овладение навыками инженерной работы в части расчета летных и пилотажных характеристик самолета.

содержание

1.	Исх	кодные данные	4
2.	Pac	ечет лётно – технических характеристик самолета	5
3.	Pac	чет траектории полета	25
	3.1.	Расчет характеристик набора высоты	25
	3.2.	Расчет характеристик крейсерского полета	28
	3.3.	Расчет характеристик участка снижения	29
	3.4.	Расчет диаграммы транспортных возможностей	33
	3.5.	Расчет взлетно-посадочных характеристик самолета	34
	3.6.	Расчет характеристик маневренности самолета	36
	3.7.	Расчет характеристик продольной статической устойчивости и управляемости	37

1. Исходные данные

Таблица 1.1 — Исходные данные для самолета ИЛ-76

Ограничение режима полета	$M \le 0.8; V_i \le 650 \frac{\text{km}}{\text{q}}$
m_0 , тонн	140
$ar{m}_{ ext{ iny ILH}}$	0.26
$ar{m}_{\scriptscriptstyle m T}$	0.39
$ar{m}_{ ext{ch}}$	0.46
$ar{P}_0$	0.315
$Ce_0, rac{\kappa r}{\pi^{ m ah*y}}$	0.54
$rac{n_{\mathtt{AB}}}{n_{\mathtt{PeB}}}$	4/2
$P_s, \frac{\mathrm{Aah}}{\mathrm{M}^2}$	535
b_a , м	140
$ar{L}_{ ext{ro}}$	3.90

2. Расчет лётно - технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 2.1-2.7:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива

3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.20.30.40.50.60.70.80.90.95]$$

$$V = Ma_H, (2.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{2.2}$$

где ρ_H — плотность воздуха на высоте H.

$$C_{y_n} = \frac{\bar{m}p_s 10}{q},\tag{2.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, p_s — удельная нагрузка на крыло.

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2$$
(2.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}, C_{x_m}$ — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{r_n}} \tag{2.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{2.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{2.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 g} \tag{2.8}$$

$$V_y^* = \Delta \bar{P}V \tag{2.9}$$

$$\bar{R} = \frac{P_n}{P_p} \tag{2.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(2.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6V},$$
 (2.12)

где $q_{\mbox{\tiny ч}}$ — часовой расход топлива, $q_{\mbox{\tiny км}}$ — километровый расход топлива.

Таблица 2.1 — Результаты расчета для высоты H=0 км

<i>q</i> км	KT KM	199.52	33.84	17.86	16.62	19.34	23.57	29.53	39.50	44.28	39.98
$q_{ ext{\tiny H}}$	Ψ.	24442	8292	6563	8144	11849	17325	25322	38710	48822	46531
$ar{R}_{ ext{KP}}$	I	1.38	0.39	0.29	0.37	0.57	0.89	1.39	2.50	4.50	5.72
V_y^*	M C	-3.4	6.6	16.1	17.7	14.2	4.1	-15.9	-64.6	-156.3	-213.3
$\Delta ar{p}(n_x)$	I	-0.099	0.146	0.158	0.130	0.083	0.020	-0.067	-0.237	-0.510	099.0-
$P_p * 10^{-5}$	Н	3.531	3.282	3.062	2.856	2.679	2.510	2.342	2.173	2.005	1.920
$P_n * 10^{-5}$	Н	4.887	1.282	0.890	1.071	1.535	2.234	3.259	5.435	9.013	10.980
K_n	I	2.67	10.18	14.65	12.19	8.50	5.84	4.00	2.40	1.45	1.19
C_{y_n}	I	6.454	1.614	0.717	0.403	0.258	0.179	0.132	0.101	0.080	0.072
b	$\frac{H}{M^2}$	602	2837	6383	11348	17732	25534	34754	45394	57451	64012
Λ	KM 4	123	245	368	490	613	735	858	980	1103	1164
Λ	Z IX	34	89	102	136	170	204	238	272	306	323
M	I	0.10	0.20	0:30	0.40	0.50	09:0	0.70	0.80	06.0	0.95

 $_{naxP} = 0.627$

3.0

2.5

2.0

[H]d

Рисунок $2.2-\Gamma {\rm paфик}~C_{\rm y_{non}},~C_{y_n}$

Рисунок 2.4 — График $q_{\scriptscriptstyle \mathrm{KM}},\,q_{\scriptscriptstyle \mathrm{T}}$

Рисунок $2.3-\Gamma {\rm paфик}\ V_y^*(M,H)$

Рисунок $2.1 - \Gamma$ рафик располагаемой и потребной тяги

8:0

0.6

0.4

0.2

0.0 0.0 T

 $P_{\mathbf{p}}(H = 0.000 [\text{KM}])$ $P_{\mathbf{n}}(H = 0.000 [\text{KM}])$

0.5

1.0

M

Таблица 2.2 — Результаты расчета для высоты $H=2~\mathrm{km}$

$q_{ m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	237.14	39.61	17.73	14.44	15.77	18.64	23.38	32.25	39.63	39.31
$q_{^{\mathrm{H}}}$	Kr 4	28389	9483	9989	6914	9442	13389	19589	30890	42702	44704
$ar{R}_{ m KP}$	I	1.99	0.53	0.33	0.36	0.50	0.75	1.14	2.04	3.65	4.63
V_y^*	$\frac{M}{C}$	-7.5	8.9	13.7	16.5	15.1	8.7	-5.4	-42.1	-112.3	-156.2
$\Delta ar{p}(n_x)$	I	-0.226	0.103	0.138	0.124	0.091	0.044	-0.023	-0.158	-0.375	-0.494
$P_p * 10^{-5}$	H	3.153	2.983	2.814	2.650	2.501	2.376	2.245	2.095	1.945	1.870
$P_n * 10^{-5}$	H	6.261	1.576	0.925	0.946	1.255	1.776	2.566	4.271	7.096	8.660
K_n	I	2.08	8.28	14.11	13.79	10.40	7.35	5.09	3.06	1.84	1.51
C_{y_n}	ı	8.226	2.057	0.914	0.514	0.329	0.229	0.168	0.129	0.102	0.091
b	$\frac{H}{M^2}$	557	2226	5009	8904	13913	20034	27269	35617	45077	50225
7	$\frac{\mathrm{KM}}{\mathrm{q}}$	120	239	359	479	599	718	838	958	1077	1137
Λ	C	33	29	100	133	166	200	233	266	299	316
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

12000 ... 225 16000 14000 10000 8000 200 \£133.013 175 $V_{
m [M/c^2]}$ $-\sqrt{4\epsilon_{min}}$ =109.735 125 --- $q_{\text{KM}}(H = 2.000[\text{KM}])$ --- $q_{\text{4}}(H = 2.000[\text{KM}])$ 100 22 20 $q_{\kappa_M}[\kappa_{\Gamma}/\kappa_M]$ 24 14 12

 $_{maxP} = 0.671$ 8:0 0.6 $_{\rm I}=0.34$ M0.4 $P_{p}(H = 2.000 [KM])$ $P_{n}(H = 2.000 [KM])$ 0.2 0.0 2.5 0.5 0.0 2.0 -P[H] 1.0

3.0

Рисунок $2.7-\Gamma {\rm paфик}\ V_y^*(M,H)$

0.8

9.0

- $V_y^*(H = 2.000[\text{KM}])$

2.5

0.5

0.0

 $V[{
m M/c}^2]$

Рисунок 2.8 — График $q_{\scriptscriptstyle \mathrm{KM}},\,q_{\scriptscriptstyle \mathrm{T}}$

10

97

22

Таблица 2.3 — Результаты расчета для высоты $H=4~\mathrm{km}$

<i>q</i> км	KT	262.99	48.11	19.39	13.47	13.19	14.97	18.46	25.87	34.23	36.55
ф.	Kr 4	30731	11243	9629	6297	7707	10495	15101	24181	35998	40578
$ar{R}_{ m KP}$	I	3.30	0.83	0.44	0.39	0.48	0.68	1.00	1.70	2.88	3.56
V_y^*	C K	-13.4	1.9	9.2	13.0	13.3	9.3	-0.2	-26.0	-77.1	-109.6
$\Delta ar{p}(n_x)$	I	-0.412	0.029	0.095	0.100	0.082	0.048	-0.001	-0.100	-0.264	-0.355
$P_p * 10^{-5}$	Н	2.461	2.397	2.333	2.268	2.177	2.083	2.010	1.965	1.926	1.906
$P_n * 10^{-5}$	Н	8.113	1.998	1.034	0.890	1.055	1.425	2.020	3.339	5.552	6.788
K_n	I	1.61	6.53	12.62	14.67	12.37	9.16	6.46	3.91	2.35	1.92
C_{y_n}	I	10.606	2.652	1.178	0.663	0.424	0.295	0.216	0.166	0.131	0.118
b	$\frac{H}{M^2}$	432	1726	3885	9069	10791	15538	21150	27624	34961	38954
Λ	KM 4	117	234	351	467	584	701	818	935	1052	1110
Λ	C	32	65	26	130	162	195	227	260	292	308
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

 $--- q_{rt}(H = 4.000[\text{Kal}])$ $--- q_{rt}(H = 4.000[\text{Kal}]$

оми [кг/км]

20

Рисунок 2.11 — График $V_y^*(M, H)$

Рисунок $2.12-\Gamma {\rm paфик}~q_{\mbox{\tiny KM}},~q_{\mbox{\tiny T}}$

10

12

12

Таблица 2.4 — Результаты расчета для высоты H=6 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	238.38	58.57	21.77	13.37	11.58	12.29	14.65	20.50	27.83	30.44
$q_{ ext{\tiny T}}$	Kr	27157	13346	7439	6093	6598	8404	11687	18679	28534	32940
$ar{R}_{ ext{ iny KP}}$	I	5.19	1.29	0.62	0.47	0.49	0.63	0.89	1.48	2.47	3.04
V_y^*	C K	-19.8	-2.7	5.2	9.6	11.2	9.5	3.2	-15.5	-53.5	-78.0
$\Deltaar{p}(n_x)$	I	-0.626	-0.042	0.054	0.076	0.071	0.050	0.015	-0.061	-0.188	-0.259
$P_p * 10^{-5}$	H	2.053	2.018	1.984	1.950	1.909	1.858	1.808	1.771	1.755	1.748
$P_n * 10^{-5}$	H	10.644	2.598	1.237	0.908	0.934	1.172	1.607	2.614	4.334	5.309
K_n	I	1.23	5.02	10.55	14.37	13.97	11.13	8.12	4.99	3.01	2.46
C_{yn}	I	13.851	3.463	1.539	0.866	0.554	0.385	0.283	0.216	0.171	0.153
b	$\frac{H}{M^2}$	331	1322	2975	5288	8263	11899	16196	21153	26772	29830
<i>N</i>	$\frac{\mathrm{KM}}{\mathrm{q}}$	114	228	342	456	570	684	797	911	1025	1082
Λ	$\frac{M}{C}$	32	6 9	96	127	158	190	222	253	285	301
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок $2.16 - \Gamma$ рафик $q_{\text{км}}, q_{\text{ч}}$

Рисунок $2.15-\Gamma {\rm paфик}~V_y^*(M,H)$

Таблица 2.5 — Результаты расчета для высоты $H=8~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	65.20	78.89	25.78	14.11	10.83	10.57	11.97	16.38	22.42	24.79
$q_{\scriptscriptstyle m H}$	KT 4	7232	15278	8579	6261	6006	7032	9292	14533	22380	26118
$ar{R}_{ ext{kp}}$	I	8.71	2.13	76.0	0.63	0.56	0.64	0.84	1.32	2.18	2.68
V_y^*	C	-28.1	-8.2	0.3	5.3	7.8	7.8	4.1	-9.0	-37.2	-55.8
$\Deltaar{p}(n_x)$	I	-0.912	-0.133	0.003	0.043	0.051	0.042	0.019	-0.037	-0.134	-0.191
$P_p * 10^{-5}$	H	1.626	1.618	1.611	1.603	1.596	1.592	1.576	1.571	1.561	1.556
$P_n * 10^{-5}$	H	14.155	3.449	1.564	1.016	0.897	1.016	1.318	2.075	3.405	4.176
K_n	I	0.92	3.78	8.34	12.84	14.55	12.84	9.90	6.29	3.83	3.12
C_{y_n}	I	18.344	4.586	2.038	1.147	0.734	0.510	0.374	0.287	0.226	0.203
d	$\frac{H}{{}_{\mathrm{M}}^2}$	250	866	2246	3993	6239	8984	12228	15972	20214	22523
Λ	KM 4	111	222	333	444	555	999	922	887	866	1054
$ \Lambda $	N C	31	65	85	123	154	185	216	246	277	293
M	I	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95

Рисунок 2.18 — График $C_{\rm y_{rou}},\,C_{y_n}$

Рисунок 2.19 — График $V_y^*(M,H)$

0.8

0.6

 $V_y^*(H = 8.000 [\text{KM}])$

 $V_y^*[M/c^2]$

 $V[{\rm M/c^2}]$

Рисунок $2.20-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

=8.098

Таблица 2.6 — Результаты расчета для высоты $H=10~\mathrm{km}$

M	7	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\left \Delta ar{p}(n_x) \right $	V_y^*	$ar{R}_{ m KP}$	чр	$q_{ m KM}$
I	$\frac{M}{C}$	$\frac{\mathrm{KM}}{\mathrm{q}}$	$\frac{H}{{}_{ m M}^2}$	I	I	H	H	I	C K	I	Kr 4	KT KM
0.10	30	108	185	24.679	0.68	19.109	1.266	-1.299	-38.9	15.09	-58010	-537.97
0.20	60	216	742	6.170	2.80	4.667	1.270	-0.247	-14.8	3.68	16467	76.35
0.30	06	323	1669	2.742	6.32	2.065	1.273	-0.058	-5.2	1.62	10375	32.07
0.40	120	431	2968	1.542	10.55	1.237	1.277	0.003	0.3	0.97	7098	16.46
0.50	150	539	4637	0.987	13.67	0.954	1.281	0.024	3.6	0.75	5930	11.00
09.0	180	647	8299	0.686	13.59	0.960	1.289	0.024	4.3	0.74	6266	9.68
0.70	210	755	6806	0.504	11.33	1.151	1.305	0.011	2.3	0.88	7739	10.25
0.80	240	863	11872	0.386	7.64	1.708	1.321	-0.028	-6.8	1.29	11489	13.32
06.0	270	970	15025	0.305	4.77	2.738	1.341	-0.102	-27.4	2.04	17564	18.10
0.95	285	1024	16741	0.273	3.89	3.357	1.350	-0.146	-41.6	2.49	20734	20.24

Рисунок 2.22 — График $C_{\rm y_{\rm zou}},\,C_{y_n}$

0.8

9.0

 $V_y^*(H = 10.000[\text{KM}])$

 $V_y^*[M/c^2]$

 $V[{\rm M/c^2}]$

Рисунок $2.24-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

Рисунок 2.23 — График $V_y^*(M,H)$

=4.328

Таблица 2.7 — Результаты расчета для высоты $H=11.558~\mathrm{кm}$

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ m KP}$	$q_{ m q}$	$q_{\scriptscriptstyle m KM}$
I	C	KM 4	$\frac{H}{^{\mathrm{M}^2}}$	I	I	Н	Н	I	C IM	I	Kr 4	KT KM
0.10	30	106	146	31.451	0.53	24.407	0.949	-1.708	-50.4	25.71	-224366	-2112.18
0.20	69	212	282	2.863	2.18	626.5	996.0	-0.365	-21.5	61.9	12418	58.45
0:30	68	319	1310	3.495	4.97	2.623	0.983	-0.119	-10.6	2.67	11545	36.23
0.40	118	425	2329	1.966	8.62	1.513	0.999	-0.037	-4.4	1.51	8265	19.45
0.50	148	531	3639	1.258	12.10	1.079	1.016	-0.005	-0.7	1.06	6595	12.42
09.0	177	637	5240	0.874	13.13	0.994	1.032	0.003	0.5	96.0	6402	10.04
0.70	207	744	7132	0.642	11.76	1.109	1.061	-0.004	-0.7	1.05	7445	10.01
0.80	236	850	9316	0.491	8.46	1.542	1.089	-0.033	-7.8	1.42	10273	12.09
0.90	266	956	11790	0.388	5.46	2.391	1.121	-0.092	-24.6	2.13	14816	15.50
0.95	280	1009	13137	0.348	4.46	2.923	1.137	-0.130	-36.5	2.57	17465	17.31

Рисунок 2.26 — График $C_{\rm y_{\pi o n}},\, C_{y_n}$

Рисунок 2.27 — График $V_y^*(M, H)$

Рисунок 2.28 — График $q_{\text{км}}, q_{\text{ч}}$

1.4

 $\begin{array}{c} 0.5 \\ 0.4 \\ V_{s} \\ V_{s} \\ 0.2 \\ 0.1 \\ \hline \end{array}$ $\begin{array}{c} \frac{\kappa_{s}}{V_{s}} \\ 0.2 \\ 0.0 \\ 0.$

Рисунок $2.25-\Gamma {\rm pa}фик располагаемой и потребной тяги$

Для построение таблицы 2.8

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M, H_i)$ и $P_p(M, H_i)$ (рисунки 2.1, 2.5, 2.9,2.13,2.17,2.21,2.25).
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M, H_i)$ и $C_{y_{\text{доп}}}(M)$ (рисунки ,2.2, 2.6, 2.10, 2.18, 2.22, 2.26).
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{ ext{max}_{ ext{доп}}} = \min \left\{ M_{ ext{пред}}, M(V_{i_{ ext{max}}})
ight\},$$
где $M(V_{i_{ ext{max}}}) = rac{V_{i_{ ext{max}}}\sqrt{\Delta^{-1}}}{3.6a_H}, \, \sqrt{\Delta^{-1}} = \sqrt{rac{
ho_0}{
ho_H}}$

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{gon}}, M_{\min_{P}} \right\},\,$$

$$M_{\max} = \min\left\{M_{\max_{\mathrm{gon}}}, M_{\max_{P}}, M_{\mathrm{пред}}\right\}.$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M).$$

 Число М₂ полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i).$$

7. Минимальные значения часового $q_{\mathbf{u}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{u}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на рисунка 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i);$$

$$q_{\text{km}_{min}} = \min_{V} q_{\text{km}}(V, H_i), \ V_4 = V(q_{\text{km}_{min}}) = \arg\min_{V} q_{\text{km}}(V, H_i).$$

Таблица 2.8 — Результаты для построение графика высот и скоростей

$q_{ m KM_{min}}$	KT	16.3	14.44	12.99	11.58	10.49	9.67	9.76
$q_{ m q_{min}}$	$\frac{\mathrm{K}\Gamma}{\mathrm{q}}$	6536.16 16.3	0.400 6286.48 14.44	0.460 6193.81	$0.510 \mid 6076.86 \mid 11.58$	0.570 5951.95	0.610 5902.71	0.650 6374.66 9.76
M_4	Ι	0.370	0.400	0.460	0.510	0.570	0.610	0.650
$V_4 \over (q_{ m KM}_{ m min})$	$\frac{\mathrm{KM}}{\mathrm{q}}$	126	133	149	161	176	183	192
V_3 V_4 $V_{4\min}$	$\frac{MM}{P}$	66	110	120	130	145	156	171
$M_2[V_2] \ (V_{ymax}^*)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.380[466]	0.420 [503]	0.460[538]	0.500[570]	0.540[599]	0.590[636]	0.600 [637]
$M_1[V_1] $ $(P_{\scriptscriptstyle \rm II}min)$	$-\left[\frac{\rm KM}{\rm q}\right]$	0.300 [368]	0.340[407]	0.380 [444]	0.440 [501]	0.500[555]	0.540 [582]	0.590 [627]
M[V] max	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750]	0.671[803]	0.699 [817]	0.726 [827]	0.744 [825]	0.739 [796]	0.664 [705]
M[V]	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.240 [293]	0.270[324]	0.307 [359]	0.352[401]	0.406 [451]	0.475[513]	0.544 [578]
M[V] max доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750]	0.675 [808]	0.748 [874]	0.800 [911]	0.800 [887]	0.800 [863]	0.800 [850]
M[V]	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	$0.0 \left \ 17.79 \ \right \ 0.240 \left[293 \right] \ \left \ 0.612 \left[750 \right] \ \right \ 0.240 \left[293 \right] \ \left \ 0.612 \left[750 \right] \ \right \ 0.300 \left[368 \right] \ \left \ 0.380 \left[466 \right] $	16.56 0.270 [324] 0.675 [808] 0.270 [324] 0.671 [803] 0.340 [407] 0.420 [503]	13.58 0.307 [359] 0.748 [874] 0.307 [359] 0.699 [817] 0.380 [444] 0.460 [538]	11.23 0.352 [401] 0.800 [911] 0.352 [401] 0.726 [827] 0.440 [501] 0.500 [570] 0.50	$8.1 \left \begin{array}{c c} 0.406 \left[451 \right] & 0.800 \left[887 \right] & 0.406 \left[451 \right] & 0.744 \left[825 \right] & 0.500 \left[555 \right] & 0.540 \left[599 \right] \end{array} \right $	4.33 0.475 [513] 0.800 [863] 0.475 [513] 0.739 [796] 0.540 [582] 0.590 [636]	11.56 0.5 0.544 [578] 0.800 [850] 0.544 [578] 0.664 [705] 0.590 [627] 0.600 [637] 171
V^*_{ymax}	C	17.79	16.56	13.58	11.23	8.1		0.5
Н	KM	0.0	2.0	4.0	0.0	8.0	10.0	11.56

Рисунок $2.29 - \Gamma$ рафик области высот и скоростей установившегося горизонтального полета

Рисунок 2.30 — График $V^*_{y_{max}}(H)$

Рисунок 2.31 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{k}\mathbf{M}_{min}}(H)$

3. Расчет траектории полета

3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\pi o \pi}}, V_0 = 1.2 V_{min_{\pi o \pi}}.$$

Конечные условия:

$$(H_{\kappa}, M_{\kappa}) = \arg\min_{H,M} q_{\kappa_{\mathrm{M}}}(M, H)$$

Конечная высота принимается равная $H_{\rm k}=11$, км Соотношения для расчета :

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{3.1}$$

$$\kappa = \frac{1}{1 + \frac{V}{g} \frac{dV}{dH}} \tag{3.2}$$

$$\theta_{\text{Haf}} = n_x \kappa 57.3 \tag{3.3}$$

$$V_{y_{\text{Haf}}} = V_{y_{max}}^* \kappa \tag{3.4}$$

$$H_{s}^{i} = H^{i} + \frac{(V^{i})^{2}}{2q} \tag{3.5}$$

$$\Delta H_{9} = H_{9}(V_{\text{Ha6}}^{i+1}, H^{i+1}) - H_{9}(V_{\text{Ha6}}^{i}, H^{i})$$
(3.6)

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_{\mathfrak{g}}^i)} + \frac{1}{n_x(H_{\mathfrak{g}}^{i+1})}\right]$$
 (3.7)

$$\left(\frac{1}{V_y^*}\right)_{\rm cp} = 0.5 \left[\frac{1}{V_y^*(H_{\rm s}^i)} + \frac{1}{V_y^*(H_{\rm s}^{i+1})}\right]$$
(3.8)

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right]$$
(3.9)

$$L_{\text{\tiny Ha6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000} \tag{3.10}$$

$$t_{\text{\tiny Ha6}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{\tiny Cp}} \frac{\Delta H_9}{60} \tag{3.11}$$

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_9}{3600} \tag{3.12}$$

Таблица 3.1 -Результаты расчета набора высоты

$\frac{\Delta H_{\rm s}}{1000n_x}$	KM	15.69	18.07	23.53	30.07	47.06	0.0
$n_{x_{ m cp}}$	I	0.136	0.103	0.08	0.058	0.032	inf
$\Delta H_{ m 9}$	M	$2507.0 \mid 0.136$	2142.0	2140.0	2135.0	2291.0	0.0
H_9	M	488.0	2994.0	5136.0	7276.0	9411.0	11702.0
$V_{y_{ m Ha6}}$	C M	14.7	15.5	12.7	10.5	7.1	4.3
θ	град.	9.2	6.4	4.9	3.8	2.4	1.3
V_y^*	C IM	17.8	16.6	13.6	11.2	8.1	4.3
n_x	ı	0.16	0.119	0.091	0.071	0.049	0.023
$\frac{\Delta V}{\Delta H}$	1 c	0.021	0.005	0.004	0.004	0.008	0.0
$V_{\scriptscriptstyle m KM}$	KM	352.1	502.8	149.3 537.5 0.004 0.091 13.6	569.6	599.0	182.7 657.8
N	C M	8.76	139.7	149.3	158.2	166.4	182.7
М наб	ı	0.29	0.42	0.46	0.5	0.54	0.61
$H_{ m y3e_{ m II}}$	M	0.0	2.0	4.0	0.9	8.0	10.0

Таблица 3.2- (Продолжение) Результаты расчета набора высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{Cp}}$	$\frac{\Delta H_3}{3600} \left(\frac{CeP}{V_y^*}\right)_{\rm Cp}$	$L_{ m Ha6} \mid V_{y_{ m cp}}^*$	1	$t_{ m Ha}$ 6	Ce
H	-	ı	KΓ	$_{ m KM}$	$\frac{M}{C}$	МИН	$\frac{\mathrm{K}\Gamma}{H_{\mathrm{T}}}$
308927.0 1283.7	1283.7	1042.1	725.6	18.4	$18.4 \mid 0.1$	2.44	0.061
261897.0	1092.4	1036.9	617.0	20.8	0.1	2.39	0.065
221372.0	1123.0	1069.3	635.5	26.8	$26.8 \mid 0.1$	2.9	0.065
190906.0 1158.4 1167.8	1158.4	1167.8	692.5	37.0	$37.0 \mid 0.1$	3.78	0.064
159439.0	1421.7	1570.4	999.2	72.7	0.2	6.77	0.063
129122.0 1892.1	1892.1	0.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 0.0

Таблица 3.3 — Основные параметры в наборе высоты

$t_{ m Ha6}$	Мин	18.3
$L_{\scriptscriptstyle { m Ha6}}$	$ m K_{M}$	175.7
$m_{T_{ m Ha6}}$	Kr	3669.9

Рисунок 3.1 — График зависимости $L(t), m_T(t)$

Рисунок 3.2 — График зависимости $L(t), m_T(t)$

Рисунок 3.3 — Программа набора высоты

3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm kp}$ и дальности $L_{\rm kp}$ крейсерского полета:

$$T_{\text{kp}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}$$
(3.13)

$$L_{\rm kp} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\rm ha6}} - \bar{m}_{T_{\rm np}}}{1 - \bar{m}_{T_{\rm kp}} - \bar{m}_{T_{\rm na}} - \bar{m}_{T_{\rm np}}}$$
(3.14)

где
$$\bar{m}_{\mathrm{T_{\kappa p}}} = 1 - \bar{m}_{\mathrm{cH}} - \bar{m}_{\mathrm{I}} + \bar{m}_{\mathrm{T_{Ha6}}} - \bar{m}_{\mathrm{T_{chf}}} - \bar{m}_{\mathrm{T_{ah3}}} - \bar{m}_{\mathrm{T_{np}}} = 0.1827$$

Принимаем: $m_{\rm цн}=0,26$ – относительная масса пустого снаряженного самолета; $m_{\rm ch}=0,46$ – относительная масса целевой нагрузки;

 $m_{T_{\rm chi}}=0.015$ - относительная масса топлива, расходуемая при снижении и посадке; $\bar{m}_{T_{\rm ha6}}\frac{m_{T_{\rm ha6}}}{m_0}=$ - относительная масса топлива, расходуемая при наборе; высоты $m_{T_{\rm ah3}}=0.05$ - аэронавигационный запас топлива; $m_{T_{\rm np}}=0.01$ - запас топлива для маневрирования по аэродрому, опробования двигателей, взлета; $K_{\Gamma\Pi}=13.51~V=206\,{\rm Mg}^2$

 $Ce = 0.0617 \, \frac{\mathrm{Kr}}{\mathrm{H*q}}$ – удельный расход топлива на высоте крейсерского полета

Высота в конце крейсерского полета $H_{\kappa\kappa p}$ определяется как:

$$\rho_{H \,\mathrm{\kappa p}} = \frac{2\bar{m}_{\mathrm{\kappa \,\kappa p}} P s 10}{C_{y_{\Gamma\Pi}} V_{\mathrm{\kappa}}^2} \tag{3.15}$$

где
$$\bar{m}_{ ext{k}\, ext{KP}} = 1 - \bar{m}_{T_{ ext{Ha}6}} - \bar{m}_{T_{ ext{Hp}}} - \bar{m}_{T_{ ext{KP}}}$$

Результаты

Таблица 3.4 — Результаты расчета участка крейсерского полета

$T_{\rm kp}$	$L_{ m kp}$	$ ho_{H\mathrm{kp}}$	$H_{0 \mathrm{Kp}}$	$H_{ ext{k} ext{K} ext{P}}$
МИН	KM	$\frac{\text{K}\Gamma}{\text{M}^3}$	KM	KM
285.43	2770.0	0.324	11	11.8

3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты раздел 3.1. Только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги. Определяется по графику $M(P_{n \text{ min}}) = f(H)$ (Рисунок 2.2).

$$M_0 = 0.6; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при H = 0. $M_{\kappa}=0.30;$ $H_{\kappa}=0$ Результаты расчетов приведены на таблице №3.3.2, по этим данным построили

Таблица 3.5 — Результаты расчета снижения высоты

$\frac{\Delta H_{9}}{1000n_{x}}$	KM	37.91	38.09	39.2	38.92	40.41	0.0-
$n_{x_{ m cp}}$	I	-0.063	-0.058	-0.055	-0.054	-0.052	inf
$\Delta H_{ m e}$	M	-2437.0	-2221.0	-2213.0	-2124.0	-2120.0	0.0
H_9	M	11646.0	9210.0	6988.0	4775.0	2652.0	531.0
$V_{y_{ m cH}}$	$\frac{M}{C}$	-3.5	6.9-	-9.3	-11.5	-14.1	-15.7
θ	град.	-3.0	-3.0	-2.9	-2.9	-2.8	-0.051 17.8 -2.9
V_y^*	$\frac{M}{C}$	2.0	6.3	11.2	13.6	16.6	17.8
n_x	I	-0.064	-0.058	-0.056 11.2	-0.055	-0.052	-0.051
$\Delta V \over \Delta H$	$\frac{1}{c}$	0.013	0.007	0.008).005	0.005	0.0
$V_{ m KM}$	$\frac{KM}{4}$	647.0 0.013	554.6	501.3 0.008	444.0	407.0	367.5
Λ	C	179.7	154.1	6.0 0.44 139.2	123.3	113.1	$102.1 \mid 367.5$
М	ı	9.0	0.5	0.44	0.38	0.34	0.3
$H_{ m y3e_{ m I}}$	M	10.0	8.0	0.9	4.0	2.0	0.0

Таблица 3.6- (Продолжение) Результаты расчета снижения высоты

Ь	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{Cp}}$	$\frac{\Delta H_{\rm s}}{3600} \left(\frac{CeP}{V_y^*}\right)_{\rm cp}$	$L_{ m cH}$	$V_{y_{\mathrm{cp}}}^*$	$t_{ m cH}$	Ce
Н	ı	ı	KΓ	KM	C	МИН	$\frac{\mathrm{K}\Gamma}{H_{\mathrm{T}}}$
6779.0	-237.2	-161.8	109.5	38.7	-0.2	7.33	0.123
8629.0	-146.7	-131.7	81.3	38.2	38.2 -0.1	4.19	4.19 0.117
11614.0	11614.0 -146.9	-131.8	81.0	39.9	39.9 -0.1	3.28	3.28 0.118
13687.0	-140.2	-129.9	76.6	39.7	-0.1	2.63	2.63 0.118
16476.0	16476.0 -136.2	-132.9	78.3	40.8	40.8 -0.1	2.3	2.3 0.116
18370.0	18370.0 -137.7	0.0	0.0	0.0	0.0		0.0 0.118

Таблица 3.7 - Основные параметры снижения высоты

$t_{ m _{CH}}$	Мин	2.61
$L_{\scriptscriptstyle m CH}$	$ m K_{M}$	197.3
$m_{T_{ m cH}}$	Kr	426.7

Рисунок 3.4 — График зависимости $L(t), m_T(t)$

Рисунок 3.5 — График зависимости $L(t), m_T(t)$

Рисунок 3.6 — Программа снижения

Рисунок 3.7 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

3.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 3.4.1) Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\rm цн}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 3.1, 3.2,3.3

$$m_{\mathrm{ijh}} = \frac{m_{\mathrm{ijh}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny KD}} + L_{\text{\tiny CH}}$$

Для упрощения для дальности полета и расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

$$\begin{split} \bar{m}_{\text{взл}} &= 1 \\ \bar{m}_{T_{\text{кр}}} &= \bar{m}_{T_{max}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{анз}}} - \bar{m}_{T_{\text{пр}}} \\ \bar{m}_{T_{max}} &= 0.5258 \\ L_{\text{кр}} &= \frac{36VK}{gCe} \ln \frac{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}}{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{кр}}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}} \\ \bar{m}_{\text{цн}} &= 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}} \\ \bar{m}_{\text{пуст}} &= \frac{88500}{m_0} \end{split}$$

Режим 3.

$$\bar{m}_{\scriptscriptstyle \mathrm{B3J}} = \bar{m}_{\scriptscriptstyle \mathrm{HYCT}} + \bar{m}_{T_{max}}$$

Таблица 3.8 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle m L\!\!\!\!/H}$
$\mathcal{N}^{\underline{o}}$	KM	КГ
1	3143.0	64400.0
2	5422.0	36400.0
3	7898.0	0.0

Рисунок 3.8 — График зависимости $m_{\text{цн}}(L)$

3.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\text{отр}}$, длины разбега L_{p} , взлетной дистанции $L_{\text{вд}}$, скорости касания ВПП при посадке $V_{\text{кас}}$, длины пробега $L_{\text{пр}}$, посадочной дистанции $L_{\text{пд}}$.

Предполагается что:

- 1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^{\circ}$
- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp}=\alpha_{\rm kac}=6^\circ$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny BSJ}}=10.7\,\mbox{м}$ и $H_{\mbox{\tiny пос}}=15\,\mbox{м}$
- 4. Тяга двигателей $P_{\text{взл}} = (1.2...1.3)P, Ce_{\text{взл}} = (1.03...1.05)Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(3.16)

$$C_p = 0.9\bar{P}_{\text{\tiny B3,I}} - f_p \tag{3.17}$$

$$b_p = (C_{x_p} - f_p C_{y_p}) \frac{\rho_0}{2P_s 10}, \tag{3.18}$$

где $f_p = 0.02$

$$L_p = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\text{opp}}^2}$$
 (3.19)

$$V_2 = 1.1 V_{\text{orp}}$$
 (3.20)

$$\hat{V}_{\rm cp} = \sqrt{\frac{V_2^2 + V_{\rm opp}^2}{2}} \tag{3.21}$$

$$\hat{n}_{x_{\rm cp}} = \bar{P}_{{}_{\rm B3J}} - \frac{C_{x_{\rm opp}} \rho_0 \hat{V}_{\rm cp}^2}{P_{\circ} 20}$$
(3.22)

$$L_{\text{\tiny BYB}} = \frac{1}{\hat{n}_{x_{\text{\tiny CP}}}} \left(\frac{V_2^2 + V_{\text{\tiny OTP}}^2}{2g} + H_{\text{\tiny B3,II}} \right) \tag{3.23}$$

$$\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}} \tag{3.24}$$

$$V_{\text{\tiny Kac}} = \sqrt{\frac{2\bar{m}_{\text{\tiny Hoc}}P_s10}{C_{y_{\text{\tiny Kac}}}\rho_0}}$$
 (3.25)

$$\bar{P}_{\text{peB}} = \frac{P_{\text{peB}}}{m_{\text{mod}} a} \tag{3.26}$$

$$a_n = -\bar{P}_{\text{peb}} - f_n \tag{3.27}$$

$$b_n = \frac{\rho_0}{\bar{m}_{\text{про}} P_s 20} (C_{x_{\text{про}6}} - f_n C_{y_{\text{про}6}})$$
(3.28)

$$L_{\text{проб}} = \frac{1}{2qb_n} \ln \frac{a_n - b_n V_{\text{kac}}^2}{a_n}$$
 (3.29)

$$C_{y_{\text{noc}}} = 0.7C_{y_{\text{kac}}}(\alpha_{\text{kac}}) \tag{3.30}$$

$$V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_{s}10}{C_{y_{\text{пос}}}\rho_{0}}}$$
 (3.31)

$$K_{\text{noc}} = \frac{C_{y_{\text{noc}}}}{C_{x_{\text{noc}}}} \tag{3.32}$$

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2g} \right)$$
 (3.33)

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}} \tag{3.34}$$

Результаты расчетов на таблице № 3.5.1

Таблица 3.9 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m B,\!$	$V_{ m kac}$	$L_{ m \pi p}$	$L_{\scriptscriptstyle \Pi extsf{I}}$
<u>М</u> С	M	M	<u>М</u> С	M	M
90.0	1830.0	2289.0	65.0	811.0	1418.0

3.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы №3.6.1:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\text{доп}}} = \min \left\{ n_{y_{\text{9}}}, \, n_{y}(C_{y_{\text{доп}}}) \right\}$$
 $n_{y_{\text{9}}} = 3, \, n_{y}(C_{y_{\text{доп}}}) = rac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}}, \, C_{y_{\Gamma\Pi}} = rac{ar{m}_{\text{c}}P_{s}10}{q}$

2. Нормальная перегрузка предельного правильного виража

$$\begin{split} n_{y_{\mathtt{вир}}} &= \min \left\{ n_{y_{\mathtt{доп}}}, \, n_{y_P} \right\} \\ n_{y_P} &= \frac{1}{C_{y_a} \Gamma \Pi} \left(C_{y_m} + \sqrt{\frac{\bar{P} C_{y_a} \Gamma \Pi - C_{x_{\mathtt{M}}}}{A}} \right), \, \bar{P} = \frac{P_p}{mg} \end{split}$$

3. Кинематические параметры виража:

$$\omega_{\text{вир}} = \frac{g}{V} \sqrt{n_{y\,\text{вир}}^2 - 1}$$

$$r_{\text{вир}} = \frac{V}{\omega_{\text{вир}}}$$

$$t_{\text{вир}} = \frac{2\pi r_{\text{вир}}}{V}$$

4. Диапазон Маха берется: $M = [0.4, \, 0.5, \, 0.6, \, 0.7, \, 0.8]$

Таблица 3.10 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m дon}}$	$n_{y_{ m доп}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	<u>м</u> с	<u>КМ</u> Ч	$\frac{H}{{}_{ m M}^2}$	-	-	-	-	Н	Н
0.4	127.0	456.	5287.0	0.866	1.112	1.284	14.36	6.196	15.694
0.5	158.0	570.	8262.0	0.554	1.083	1.954	13.97	6.371	15.368
0.6	190.0	684.	11897.0	0.385	1.033	2.684	11.13	7.996	14.955
0.7	222.0	797.	16193.0	0.283	0.977	3.0	8.12	10.96	14.555

Таблица 3.11 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{Bup}}}$	$\omega_{ ext{вир}}$	$r_{\text{вир}}$	$t_{\scriptscriptstyle \mathrm{B}\mathrm{H}\mathrm{p}}$
_	_	_	$\frac{1}{c}$	M	c
0.142	1.612	1.284	0.062	2026.7	100.6
0.139	1.865	1.865	0.098	1620.9	64.4
0.135	1.838	1.838	0.08	2383.8	78.9
0.132	1.27	1.27	0.035	6393.1	181.3

Рисунок 3.9 — График зависимости $n_{y_{\text{вир}}}(M), \, \omega_{\text{вир}}(M), \, r_{\text{вир}}(M), \, t_{\text{вир}}(M)$

3.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma {
m O}}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma {
m O}}$ рассчитываются предельно передняя $\bar{x}_{{
m T}\Pi\Pi}$ для режима посадки

 $(H=0,\,M=0.2)$ и предельно задняя $\bar{x}_{\rm T\Pi 3}$ центровки:

$$\bar{x}_{\text{ТПП}} = \frac{-m_{Z_0 \text{ БГО}} + \bar{x}_{F \text{ БГО}} C_{y \text{ БГО}} + C_{y \text{ ГО}} \bar{S}_{\text{ГО}} K_{\text{ГО}} \bar{L}_{\text{ГО}}}{C_{y \text{ БГО}}}$$

Где $C_{y\,\text{БГО}} = C_{y_0\,\text{БГО}} + C_{y\,\text{БГО}}^{\alpha} \alpha$, $C_{y\,\text{ГО}} = C_{y\,\text{ГО}}^{\alpha_{\text{ГО}}} \left[\alpha (1 - \epsilon^{\alpha}) + \varphi_{\text{эф}} \right] < 0$, $\varphi_{\text{эф}} = \varphi_{\text{уст}} + n_{\text{в}} \delta_{max}$, $\delta_{\text{max}} = -25^{\circ}$, $\varphi_{\text{уст}} = -4^{\circ}$.

$$\bar{x}_{\text{T}\Pi 3} = \bar{x}_H + \sigma_{n \text{ min}}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \, \mu = \frac{2P_s 10}{\rho g b_a}, \, m_z^{\bar{\omega}_z} = m_{z \, \text{BTO}}^{\bar{\omega}_z} + m_{z \, \text{TO}}^{\bar{\omega}_z}, \, m_{z \, \text{TO}}^{\bar{\omega}_z} = -C_{y \, \text{TO}}^{\alpha_{\text{TO}}} \bar{S}_{\text{TO}} \bar{L}_{\text{TO}} \sqrt{K_{\text{TO}}}$$

$$\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F\Gamma O}$$

$$\Delta \bar{x}_{F_{\Gamma O}} \approx \frac{C_{y \Gamma O}^{\alpha_{\Gamma O}}}{C_{y}^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O}, \ \sigma_{n \min} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma \rm O} = (0.01,\,0.2)$ рассчитывается таблица 3.7.1

Затем графически определяется потребная площадь ГО из условия:

$$\bar{x}_{\text{TH3}}(\bar{S}_{\text{FO}}) - \bar{x}_{\text{THH}}(\bar{S}_{\text{FO}}) = \Delta \bar{x}_{\text{a}} 1.2$$

 $\Delta \bar{x}_9 \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{TII3}} (\bar{S}_{\text{\GammaO}}^*) + \bar{x}_{\text{TIII}} (\bar{S}_{\text{\GammaO}}^*) \right]$$

Значения величин $\bar{x}_F, \bar{x}_H, \bar{x}_{\text{ТПЗ}}, \sigma_n$ определяются в узловых точках по M на высоте H=0 для таблицы 3.7.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

Зависимости $\varphi_{\text{бал}}(M), \varphi^n(M), n_{y_p}(M)$ для трех значений высот: $H = (0 \text{ км}, 6 \text{ км}, H_{\text{кр}}).$

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

$$\bar{x}_F = \bar{x}_{F\,\rm B\,\Gamma\rm O} + \Delta \bar{x}_{F\,\,\Gamma\rm O}, \, m_z^{\delta_{\rm B}} = -C_{y\,\Gamma\rm O}^{\alpha_{\Gamma\rm O}} \bar{S}_{\Gamma\rm O} \bar{L}_{\Gamma\rm O} K_{\Gamma\rm O} n_{\rm B}, \, C_{y\,\Gamma\rm O} = \frac{10 P_s \bar{m}}{q}, \, \bar{m} = 1 - 0.5 \bar{m}_T,$$

$$m_{Z_0} = m_{Z_0 \, \text{B}\Gamma\text{O}} - (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma\text{O}} \bar{L}_{\Gamma\text{O}} K_{\Gamma\text{O}} C_{y \, \Gamma\text{O}}^{\alpha_{\Gamma\text{O}}} \alpha_0$$

$$\delta_{\text{бал}} = -\frac{m_{z_0} m_z^{C_y} C_{y \Gamma \Pi}}{m_z^{\delta_{\text{B}}} \left(1 + \frac{m_z^{C_y}}{L_{\text{ro}}}\right)} + \frac{\varphi_{\text{уст}}}{n_{\text{B}}}$$

$$\delta^n = -57.3 \frac{C_{y \Gamma\Pi} \sigma_n}{m_z^{\delta_B}}$$

$$n_{y_{
m p}} = 1 + rac{\delta_{
m max} + arphi_{
m yct} - \delta_{
m 6aл}}{\delta^n}$$

Таблица 3.12 — Значения для построения графика на рисунке 3.10

$\bar{S}_{{\scriptscriptstyle{\Gamma}}{\scriptscriptstyle{0}}}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2629	0.1422
0.2	0.0543	0.429

Рисунок 3.10 — График зависимости $\bar{x}_{\mathrm{ТПП}}(\bar{S}_{\mathrm{ro}})$

Таблица 3.13 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{ ext{T}\Pi ext{3}}$	σ_n
0.24	0.4331	0.4164	0.3164	-0.1901
0.31	0.4333	0.4166	0.3166	-0.1903
0.41	0.4413	0.425	0.325	-0.1987
0.51	0.4502	0.4342	0.3342	-0.2079

Рисунок 3.11 — График зависимости $\bar{x}_F(M), \bar{x}_H(M), \bar{x}_{\text{ТПЗ}}(M), \sigma_n(M)$

Таблица 3.14 — Результаты расчетов для балансировочных зависимостей для высоты H=0 км

M	V	$arphi_{ m бал}$	φ^n	n_{y_p}
_	<u>М</u> С	град	<u>град</u> ед.перег.	_
0.24	82.0	-1.38	-33.28	1.83
0.31	105.0	-1.11	-19.95	2.398
0.41	139.0	-0.94	-11.52	3.437
0.51	173.0	-0.86	-7.54	4.732

Таблица 3.15 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\,\,\mathrm{km}$

M	V	arphiбал	φ^n	n_{y_p}
_	<u>М</u> С	град	град ед.перег.	-
0.35	111.0	-1.38	-34.58	1.799
0.4	127.0	-1.22	-26.64	2.043
0.5	159.0	-1.04	-17.26	2.62
0.6	190.0	-0.96	-12.36	3.27
0.7	222.0	-0.93	-9.5	3.953

Таблица 3.16 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ {
m km}$

M	V	arphiбал	φ^n	n_{y_p}
-	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.52	153.0	-1.37	-34.4	1.803
0.61	179.0	-1.21	-25.71	2.081
0.71	209.0	-1.14	-19.98	2.394

Рисунок 3.12 — График зависимости $arphi_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 3.13 — График зависимости $\varphi^n(M,\,H=0,6,11\,{\rm km})$

Рисунок 3.14 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\rm кm})$