

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Espacio para la etiqueta identificativa con el código personal del **estudiante**. Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
- Tiempo total: 2 horas

Valor de cada pregunta:

- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?:
- En el caso de poder usar calculadora, de que tipo? NINGUNA
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

EJERCICIO 1

Tiramos sucesivamente una moneda y anotamos el número de lanzamientos que necesitamos hasta obtener por primera vez cara. Realizamos el experimento 100 veces, con los siguientes resultados:

LANZAMIENTO EN EL QUE SALE CARA	1	2	3	4	5	6
N.º DE VECES QUE HA OCURRIDO	48	25	16	4	5	2

- a) Calculad la media.
- b) Calculad su desviación típica y la varianza muestral.
- c) Calculad la mediana y los cuartiles.
- d) Haced el diagrama de cajas de la variable.

Observación: es necesario escribir las fórmulas y los pasos intermedios en cada apartado.

Criterios de puntuación y valoración (sobre 10): a) 2 puntos; b) 3 puntos; c) 3 puntos; d) 2 puntos.

EJERCICIO 2

El 1 % de la población de un determinado lugar padece una enfermedad. Para detectarla se realiza una prueba de diagnóstico. Esta prueba da positiva en el 97 % de los pacientes que padecen la enfermedad; en el 98 % de los individuos que no la padecen da negativa. Elegimos un individuo al azar.

- a) Representad el árbol de probabilidades.
- b) ¿Cuál es la probabilidad de que la prueba dé positiva y padezca la enfermedad?
- c) Si sabemos que la prueba ha dado positiva, ¿cuál es la probabilidad de que padezca la enfermedad?
- d) ¿Los sucesos "dar positiva" y "padecer enfermedad", son sucesos independientes? ¿Por qué?

Criterios de puntuación y valoración (sobre 10): a) 4 puntos; b), c) y d) 2 puntos cada uno.

EJERCICIO 3

El 20% de los clientes que llegan a una gasolinera entran en la tienda de la gasolinera a comprar algo. Supongamos que cada cliente actúa de manera independiente al resto de personas.

a) Llamamos X al número de clientes que llegan a la gasolinera hasta que llega uno que no entra en la tienda a comprar nada. ¿Qué ley sigue la variable X?

Calculad
$$P(X > 2)$$
, $P(X = 2 | X < 2)$, $P(X = 10)$ y $P(X = 0.5)$.

b) Consideramos 6 clientes escogidos al azar ¿Cuál es el número esperado de clientes que entrarán en la tienda a comprar algo?

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

c) Si el tiempo que tarda en llegar el primer cliente a la gasolinera sigue una exponencial de parámetro 0,1 (en minutos), ¿cuál es la probabilidad de que después de abrir se tenga que esperar más de 5 minutos desde la llegada del primer cliente?

En cada apartado tenéis que indicar cuál es la variable aleatoria que estudiamos, cuál es su distribución y cuáles son los cálculos que realizáis.

Criterios de puntuación y valoración: a) Encontrar la ley de X 1 punto y cada probabilidad 1 punto, b) plantear correctamente la esperanza 1 punto y calcularla 1 punto, c) plantear correctamente la probabilidad 1 punto y calcularla 2 puntos.

EJERCICIO 4

Tenemos una nevera para conservar unos medicamentos a cero grados. Tomamos la temperatura durante cuatro días y obtenemos las siguientes temperaturas: 0,1; 0,4; -0,4 y 0,3. Supongamos normalidad de los datos.

- a) Determinad un intervalo de confianza al 90% para la temperatura. ¿A qué conclusión podemos llegar?
- b) Si hacemos un intervalo al 95%, ¿obtendremos un intervalo mayor o menor?

Valores de probabilidades que pueden ser útiles; si no encontráis exactamente el que necesitáis, usad el más cercano.

p(X>= x)	X~ N(0,1)	X~ t de Student con 4 grados de libertad	X~t de Student con 3 grados de libertad
0,01	2,326	3,764	4,540
0,025	1,96	2,776	3,182
0,05	1,645	2,131	2,350
0,005	2,575	4,604	5,840

Criterios de puntuación y valoración: identificar la función pivotante y su ley 3 puntos, plantear y obtener el intervalo correcta 3 puntos, llegar a conclusiones correctas 2 puntos, razonar correctamente sobre el tamaño del intervalo 2 puntos.

EJERCICIO 5

Se ha preguntado a 5 estudiantes de una clase por el tiempo en minutos que invertían en llegar desde su casa hasta la Universidad antes de instalar aparcamientos de bicicletas y después de instalarlos. Se han obtenido los siguientes resultados:

Antes	50	40	23	15
Después	50	30	22	16

Se desea saber si la instalación de dichos aparcamientos hace reducir los tiempos de desplazamiento con un nivel de significación de $\alpha=0,2$. Plantead el correspondiente contraste y explicad claramente a qué conclusión se llega.

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Valores de probabilidades que os pueden ser útiles; si no encontráis exactamente el que necesitáis, usad el más cercano.

p(X>= x)	X~ N(0,1)	X~ t de Student con 3 grados de libertad	X~t de Student con 4 grados de libertad
0,2	0,84	0,97	0,94
0,1	1,28	1,63	1,53
0,4	0,25	0,27	0,27
0,05	1,64	2,53	2,13

Criterios de puntuación y valoración (sobre 10): Plantear el contraste 4 puntos. Fórmulas y cálculos 3 puntos. Conclusión 3 puntos.

EJERCICIO 6

Se está realizando un estudio sobre el precio unitario de compra de unos folletos (*pre*) en función de cuántos se imprimen (*imp*). Con R se han obtenido los siguientes resultados en los que se ha perdido algún número:

```
##
## Call:
## lm(formula = pre \sim imp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7220 -1.7560 0.3621 1.5442 4.6438
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
## imp
         XXXXXXXXX 0.002175 -0.744 0.459
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.361 on 97 degrees of freedom
## Multiple R-squared: 0.005677, Adjusted R-squared: -0.004574
## F-statistic: 0.5538 on 1 and 97 DF, p-value: 0.4586
```

- a) Calculad la recta de regresión del precio unitario de los folletos sabiendo que el precio esperado para una impresión de 65 folletos es 11,969652€; usad cuatro decimales.
- b) Interpretad los coeficientes obtenidos.
- c) Calculad R^2 e indicad si es un buen ajuste.

Criterios de puntuación y valoración (sobre 10): a) Fórmulas y cálculos 4 puntos. b) 3 puntos. c) 3 puntos.

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00

Asignatura	Código	Fecha	Hora inicio
Estadística	75.568	16/06/2018	09:00