THERMODYNAMIQUE CHIMIQUE

Quelques questions auxquelles il faut savoir répondre

Pré-requis : 1^{er} principe, U, H = U + pV, $C_{p,m}$, $C_{v,m}$, $2^{\grave{e}me}$ principe, S Il s'agit d'appliquer les deux principes de la thermodynamique à un système fermé, au repos, en contact avec une seule source de chaleur et en réaction chimique, sans autre forme de travail échangé que celui des forces de pression.

Description et évolution d'un système vers un EF

Mots clé : Constituant physico-chimique, équation de réaction, avancement, constante d'équilibre thermodynamique K° , quotient réactionnel Q, état standard

- Combien de paramètres sont **à priori** nécessaires pour décrire la composition d'un système à N constituants physico-chimiques ?
- Quels sont les différents paramètres de composition?
- Comment modéliser une transformation physicochimique?
- Quelle information nous fournit l'équation de réaction ?
- Qu'est-ce qu'un état d'équilibre chimique?
- Comment prévoir la composition dans l'EF selon que la transformation chimique est quasi-totale ou aboutit à un état d'équilibre chimique ?
- Comment prévoir le sens d'évolution spontanée d'une réaction chimique connaissant l'EI?

Grandeur de réaction

Mots clé : grandeur de réaction $\Delta_r Z$, grandeur standard de réaction $\Delta_r Z^{\circ}$, grandeur molaire standard z°_i d'un constituant physicochimique.

- Quelle est la définition de $\Delta_r Z$? de $\Delta_r Z^{\circ}$?
- Qu'est-ce qui distingue ces deux grandeurs?
- Quelle information nous fournissent-elles?

Echange thermique en réacteur monobare

Application du premier principe

Mots clé : Réaction endo- ou exothermique, influence de T sur $\Delta_r H^\circ$. Transfert thermique en réacteur monobare monotherme. Variation de température en réacteur adiabatique monobare.

- Pourquoi peut-on faire l'approximation suivante : $\Delta_r H \approx \Delta_r H^{\circ}$?
- Que devient l'expression du principe dans le cas d'une transformation monotherme et monobare ?
- Comment calculer la variation de température d'un système siège d'une transformation adiabatique et monobare ?
- Comment déterminer une grandeur de réaction par calorimétrie ?

Utilisation des tables thermodynamiques

Mots clé : enthalpie molaire standard de formation, de combustion, de changement d'état, de dissociation de liaison. Loi de Hess. Méthode des combinaisons linéaires. Relation de Kirchhoff.

- Quelle est la définition des principales grandeurs tabulées ?
- Comment utiliser les grandeurs tabulées pour calculer n'importe quelle enthalpie de réaction ?
- L'influence de T sur $\Delta_r H^{\circ}$ peut-elle être négligée ?

Evolution et équilibre

Potentiels thermodynamiques

Mots clé : critère d'évolution, condition d'équilibre, affinité chimique \mathcal{A} .

- quels sont les potentiels thermodynamiques pour un système évoluant (sans autre travail échangé que celui des forces de pression) à T et P fixées ? à T et V fixées ?
- comment s'exprime le critère dévolution et la condition d'équilibre à T et P fixées ?
- Toute transformation aboutit-elle à un état d'équilibre chimique ?
- Quel intérêt y-a-t-il à définir l'affinité chimique ?
- Quelle est la relation entre \mathcal{A} et $\delta_c S$?

Potentiel chimique d'un constituant physico-chimique

Mots clé : potentiel chimique μ_i , expression de G, de dG et de Δ_r G. Courbe $G = f(\xi)$.

- Quelle est la condition d'équilibre d'un constituant chimique présent sous deux phases ?
- Quelle est l'allure de la courbe $G_{T,P} = f(\xi)$ pour une transformation totale ?

Expression pratique du critère d'évolution

Mots clé : expressions du potentiel chimique, activité a_i , coefficient d'activité γ_i d'un constituant physico-chimique ; constante thermodynamique K° , quotient réactionnel Q_r .

- Quelles sont les expressions de μ_i , et de a_i pour un constituant physicochimiques dans « un environnement idéal » ?
- Comment ces expressions sont-elles corrigées dans « un environnement non idéal » ?
- Les solutions aqueuses utilisées couramment au laboratoire sont-elles idéales ?

- Existe-t-il un modèle permettant de prévoir par calcul la valeur du coefficient d'activité ?
- Quelle information nous donne le signe de $\Delta_r G$?
- Quelle information nous donne le signe de $\Delta_r G^{\circ}$?
- Quelle différence y-a-t-il entre les constantes K_A , K_S , β_n et la constante thermodynamique K° ?

Utilisation des tables thermodynamiques

Mots clé : entropie standard d'un corps pur, influence de T sur $\Delta_r S^{\circ}$ et $\Delta_r G^{\circ}$. Méthode des combinaisons linéaires.

- Pourquoi peut-on tabuler une entropie molaire standard alors que c'est impossible pour une enthalpie molaire standard?
- L'influence de T peut-elle être négligée sur $\Delta_r S^{\circ}$ et $\Delta_r G^{\circ}$?

Optimisation d'un procédé chimique

Mots clé : variance, loi de modération.

- L'évolution après perturbation d'un système à l'équilibre conduit-elle toujours à un nouvel état d'équilibre de même nature physico-chimique ?
- Combien de paramètres peut-on modifier sans rompre l'équilibre ?
- Comment prévoir le sens de déplacement de l'équilibre sous l'effet d'une contrainte particulière ?

Le but ultime est de savoir optimiser le rendement d'une synthèse à l'aide de considérations thermodynamiques, cinétiques, économiques et écologiques.

- Pourquoi est-on souvent amené à utiliser un catalyseur dans le cas d'une synthèse exothermique ?
- Le rendement thermodynamique est-il modifié par la présence d'un catalyseur?