

planetmath.org

Math for the people, by the people.

examples of minimal polynomials

Canonical name ExamplesOfMinimalPolynomials

Date of creation 2013-03-22 16:55:18 Last modified on 2013-03-22 16:55:18 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 13

Author Wkbj79 (1863)

Entry type Example Classification msc 12F05 Classification msc 12E05

Related topic IrreduciblePolynomialsObtainedFromBiquadraticFields

Note that $\sqrt[4]{2}$ is algebraic over the fields $\mathbb Q$ and $\mathbb Q(\sqrt{2})$. The minimal polynomials for $\sqrt[4]{2}$ over these fields are x^4-2 and $x^2-\sqrt{2}$, respectively. Note that x^4-2 is irreducible over $\mathbb Q$ by using Eisenstein's criterion and http://planetmath.org/GausssLemmaIIGauss's lemma (see http://planetmath.org/Alternat entry for more details), and $x^2-\sqrt{2}$ is irreducible over $\mathbb Q(\sqrt{2})$ since it is a quadratic polynomial and neither of its roots $(\sqrt[4]{2}$ and $-\sqrt[4]{2})$ are in $\mathbb Q(\sqrt{2})$.

A common method for constructing minimal polynomials for numbers that are expressible over \mathbb{Q} is "backwards": The number can be set equal to x, and the equation can be algebraically manipulated until a monic polynomial in $\mathbb{Q}[x]$ is equal to 0. Finally, if the monic polynomial is not irreducible, then it can be factored into irreducible polynomials $\mathbb{Q}[x]$, and the original number will be a root of one of these. A very example is $\sqrt[4]{2}$:

$$x = \sqrt[4]{2}$$

$$x^4 = 2$$

$$x^4 - 2 = 0$$

This method will be further demonstrated with three more examples: One for $\frac{1+\sqrt{5}}{2}$, one for $1+\omega_5$ where ω_5 is a fifth root of unity, and one for $\sqrt[3]{2}+\sqrt[3]{3}$.

$$x = \frac{1+\sqrt{5}}{2}$$

$$2x = 1+\sqrt{5}$$

$$2x-1 = \sqrt{5}$$

$$(2x-1)^2 = 5$$

$$4x^2 - 4x + 1 = 5$$

$$4x^2 - 4x - 4 = 0$$

$$x^2 - x - 1 = 0$$

$$x = 1+\omega_5$$

$$(x-1)^5 = 1$$

$$x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1 = 1$$

$$x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 2 = 0$$

$$x = \sqrt[3]{2} + \sqrt[3]{3}$$

$$x^{3} = 2 + 3\sqrt[3]{2^{2} \cdot 3} + 3\sqrt[3]{2 \cdot 3^{2}} + 3$$

$$x^{3} - 5 = 3\sqrt[3]{6}(\sqrt[3]{2} + \sqrt[3]{3})$$

$$x^{3} - 5 = 3\sqrt[3]{6}x$$

$$(x^{3} - 5)^{3} = 27 \cdot 6x^{3}$$

$$x^{9} - 3 \cdot 5x^{6} + 3 \cdot 25x^{3} - 125 = 162x^{3}$$

$$x^{9} - 15x^{6} - 87x^{3} - 125 = 0$$

Since $x^2 - x - 1$ is a quadratic and has no roots in \mathbb{Q} , it is irreducible over \mathbb{Q} . Thus, it is the minimal polynomial over \mathbb{Q} for $\frac{1+\sqrt{5}}{2}$.

On the other hand, $x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 2$ factors over \mathbb{Q} as $(x-2)(x^4 - 3x^3 + 4x^2 - 2x + 1)$. Since $1 + \omega_5$ is not a root of x-2, it must be a root of $x^4 - 3x^3 + 4x^2 - 2x + 1$. Moreover, this polynomial must be irreducible. This fact can be proven in the following manner: Let m(x) be the minimal polynomial for $1 + \omega_5$ over \mathbb{Q} . Since $\mathbb{Q}(1 + \omega_5) = \mathbb{Q}(\omega_5)$, deg $m(x) = [\mathbb{Q}(1+\omega_5):\mathbb{Q}] = [\mathbb{Q}(\omega_5):\mathbb{Q}] = \varphi(5) = 4 = \deg(x^4 - 3x^3 + 4x^2 - 2x + 1)$. (Here φ denotes the Euler totient function.) Since m(x) divides $x^4 - 3x^3 + 4x^2 - 2x + 1$ and they have the same degree, it follows that $m(x) = x^4 - 3x^3 + 4x^2 - 2x + 1$.

It turns out that $x^9 - 15x^6 - 87x^3 - 125$ is irreducible over \mathbb{Q} . (This can be proven in a manner as above. Note that $[\mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{3}):\mathbb{Q}] = 9$.) Thus, it is the minimal polynomial over \mathbb{Q} for $\sqrt[3]{2} + \sqrt[3]{3}$.