## Electronics 2, Assignment #10, Operational Amplifiers.

1- Design a circuit which its output voltage is according to the following relation.  $V_1$  and  $V_2$  are the input voltages.

$$V_{out} = 4 \times V_1 + 3 \times V_2$$

2- Design a circuit which solves the following differential equation.

$$\frac{d^2 v}{dt^2} = -20 \frac{dv}{dt} - 100 v + 25 V$$

- 3- a) In the following circuit which acts as a current source, determine  $V_S$  and R such that the output current ( $I_L$ ) will be 5 mA. Assume ideal opamp.
  - b) Considering Vs = 1 V and  $R = 1k\Omega$ , if the output resistance of the opamp equals  $1k\Omega$ , Determine  $A_V$  (voltage gain of the opamp) so that the output resistance of the current source will be  $1M\Omega$ .



به صفحه بعد مراجعه فرمایید

دو سوال زیر سؤال مفهومی و سختی هستند، نیاز به درک دقیق مباحث مطرح شده در کلاس دارند و به چندین و جزو سوالات طراحی مدار طبقهبندی میشوند. این سوالها جواب واحد ندارند و به چندین روش قابل حل هستند. جهت درک دقیق صورت سوال، این سوالها بهصورت فارسی نگارش شدهاند:

۴- میخواهیم مداری طراحی کنیم که ۴ بیت دیجیتال را به جریانی آنالوگ تبدیل کند؛ به طوری که اگر بیتهای دیجیتال همگی ۱ بودند، بیتهای دیجیتال همگی ۵ بودند، جریان خروجی ۲ میلی آمپر و اگر بیتهای دیجیتال همگی ۱ بودند، جریان خروجی معادل با ۱۰ میلی آمپر شود. توجه کنید که جریان خروجی باید مستقل از مقدار بار باشد. سرعت تغییرات بیتهای دیجیتال ۱ مگابیت بر ثانیه است (بیت بر ثانیه در حوزه دیجیتال معادل با هرتز در حوزه آنالوگ است).

به کمک آپامپ این مدار را طراحی کرده و مقدار المانها و مشخصات موردنیاز آپامپهای آن را بدست آورید. تمامی فرضیات خود را نوشته و راهحل و مدار حاصل را به صورت کامل توضیح دهید.

 $S_1$  منبع ولتاژ  $V_{in}$  در شکل زیر، شامل سه سیگنال  $S_1$  و  $S_2$  و  $S_3$  است. سیگنال  $S_1$  یک سیگنال سینوسی با دامنه قابل تغییر بین صفر تا ۱۰۰ میلیولت و فرکانس  $S_2$  سیگنال سینوسی دیگر با دامنه قابل تغییر بین صفر تا ۱۰۰ میلیولت و فرکانس  $S_3$  هرتز است. سیگنال  $S_3$  نیز یک سیگنال سینوسی دیگر با فرکانس  $S_3$  نیز سیگنال بهصورت دیگر با فرکانس  $S_3$  کیلوهرتز است و دامنه ای بین صفر تا ۱۰۰ میلیولت است. این سه سیگنال بهصورت مخلوط با یکدیگر تحت عنوان  $S_3$  وارد مدار می شوند.

میخواهیم مداری طراحی کنیم که در خروجی خود جریانی DC تولید کند که متناسب با مجموع دامنه  $S_1$  و  $S_2$  باشد، بهطوری که اگر مجموع دامنه  $S_1$  و  $S_2$  حداقل (صفر ولت) باشد، جریان خروجی صفر و اگر مجموع دامنه  $S_2$  دامنه  $S_3$  و  $S_4$  حداکثر (۲۰۰ میلیولت) باشد، جریان خروجی  $S_4$  میلی آمپر باشد. این جریان باید به یک بار مقاومتی تحویل داده شود که مقدار مقاومت بار، مشخص و ثابت نیست. توجه کنید که سیگنال  $S_3$  نباید بر روی جریان خروجی هیچ تأثیری داشته باشد.

این مدار را طراحی کنید. تمامی فرضیات و راهحل خود را ذکر کنید و بهطور کامل توضیح دهید.



موفق باشيد - محمدرضا اشرف