Föreläsning 12

Signalbehandling i multimedia - ETI265

Kapitel 9

Strukturer

LTH 2015

Nedelko Grbic

(mtrl. från Bengt Mandersson)

Institutionen för elektro- och informationsteknik Lund Universitet

Kapitel 9 Strukturer (fortsättning på z-transform)

Differensekvationer

IIR
$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

FIR
$$y(n) = \sum_{k=0}^{M} b_k x(n-k) = \sum_{k=0}^{M} h(k) x(n-k)$$

FIR Fördelar Alltid stabila

kan göras med linjär fas om h(n) symmetrisk

Nackdelar M stort (beräkningskrävande)

Icke-parametrisk (svårt att beskriva tex

resonanstoppar)

IIR Fördelar Mindre gradtal (färre beräkningar)

Parametriskt (tex poler ger resonanstoppar)

Nackdelar Kan bli instabila, sämre fasgång

FIR-filter

Detta ritsätt kallas direktform, transversalfilter, tapped delay filter.

Ur figuren får vi direkt

$$y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + h[3]x[n-3] + h[4]x[n-4] =$$

$$= \sum_{k=0}^{4} h[k]x[n-k]$$

och med z-transform

$$Y(z) = h[0]X(z) + h[1]z^{-1}X(z) + h[2]z^{-2}X(z) + h[3]z^{-3}X(z) + h[4]z^{-4}X(z) =$$

$$= H(z)X(z)$$

Kommentar:

Vid FIR-filter med linjär fas är impulssvaret symmetriskt. Detta kan man utnyttja för att reducera antalet multiplikationer, se boken

IIR-filter

Direktform I och direktform II (normalform)

Exempel: Första ordningen

$$y(n) + a_1 y(n-1) = \underbrace{b_0 x(n) + b_1 x(n-1)}_{w(n)}$$

Detta kan vi rita som (direktform I)

Eftersom det är linjärt kan vi kasta om ordningen på delkretsarna

Vi kan slå ihop fördröjningen och får då direktform II (normalform, kanonisk form)

145

För en andra ordningens krets får vi

Om ovanstående krets är given och då vi söker in-utsignalsamband måste vi införa en hjälpvariabel, här v(n).

Lös med z-transform

$$V(z) = -z^{-1}a_{1}V(z) - z^{-2}a_{2}V(z) + X(z)$$

$$V(z) + z^{-1}a_{1}V(z) + z^{-2}a_{2}V(z) = X(z)$$

$$V(z)(1 + a_{1}z^{-1} + a_{2}z^{-2}) = X(z)$$

$$V(z) = \frac{X(z)}{(1 + a_{1}z^{-1} + a_{2}z^{-2})}$$

$$Y(z) = b_{0}V(z) + z^{-1}b_{1}V(z) + z^{-2}b_{2}V(z) = Y(z)$$

$$Y(z) = (b_{0} + b_{1}z^{-1} + b_{2}z^{-2})V(z) = Y(z)$$

vilket ger

$$Y(z) = \underbrace{\frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}}_{H(z)} X(z)$$

Vilket är det samma som (i Z-transform domän)

$$Y(z) + z^{-1}a_1Y(z) + z^{-2}a_2Y(z) = b_0X(z) + z^{-1}b_1X(z) + z^{-2}b_2X(z)$$

Vilket är det samma som (i differansekv.)

$$y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$$

Parallell, kaskad (serie)

Vid implementering är det numeriskt bäst att implementera systemet som kaskad eller seriekoppling av 1:a och 2:a ordningens delsystem.

Exempel

$$H(s) = \frac{1}{\underbrace{1 - \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2} - \frac{1}{8}z^{-3}}_{hela}} = \begin{bmatrix} poler & p_1 = 0.5 \\ p_{2,3} = \pm j & 0.5 \end{bmatrix}$$

$$= \frac{1}{\underbrace{1 + \frac{1}{4}z^{-2}}_{kaskad(serie)}} \cdot \underbrace{\frac{1}{1 - \frac{1}{2}z^{-1}}}_{parallell} = \underbrace{\frac{1}{2} + \frac{1}{4}z^{-1}}_{parallell} + \underbrace{\frac{1}{2}z^{-1}}_{parallell} = \underbrace{\frac{1}{2} + \frac{1}{4}z^{-1}}_{parallell} + \underbrace{\frac{1}{2}z^{-1}}_{parallell} = \underbrace{\frac{1}{2} + \frac{1}{4}z^{-1}}_{parallell} = \underbrace{\frac{1}{2} + \frac{1}{2}z^{-1}}_{parallell} = \underbrace{\frac{1}{2}$$

Kaskad

Parallell

Latticefilter

En struktur som är mycket vanlig vid modellering av signaler, speciellt talssignaler är latticefilter. Vi går igenom det med exempel.

Andra ordningens lattice-FIR $H(z) = A_2(z)$

Om alla $|K_i| < 1$ är alla rötterna (nollställena) innanför enhetscirklen

Andra ordningens lattice all-pole IIR (används i talsyntes och i GSM)

IIR: $H(z) = \frac{1}{A_2(z)} \quad all \quad pole \quad filter$

$$K_1$$
 K_2
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2
 K_1
 K_2

Om alla $|K_i| < 1$ är alla rötterna (polerna) innanför enhetscirklen

Analys av lattice FIR

Analys steg för steg

Steg 0:

$$A_0(z) = B_0(z) = 1$$

Steg 1:

$$A_1(z) = 1 + K_1 z^{-1}$$

 $B_1(z) = K_1 + z^{-1}$

Steg 2:

$$A_2(z) = A_1(z) + K_2 z^{-1} B_1(z) = 1 + (K_1 + K_1 K_2) z^{-1} + K_2 z^{-2}$$

$$B_2(z) = K_2 A_1(z) + z^{-1} B_1(z) = K_2 + (K_1 + K_1 K_2) z^{-1} + z^{-2}$$

Slutsats: $B_2(z)$ kan fås ur $A_2(z)$ med koeff i omvänd ordning. $K_2=\alpha_2(2)$

Allmänt

Steg m:

$$A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z)$$

$$B_m(z) = K_m A_{m-1}(z) + z^{-1} B_{m-1}(z)$$

I matrisform:

$$\begin{pmatrix} A_m(z) \\ B_m(z) \end{pmatrix} = \begin{pmatrix} 1 & K_m \\ K_m & 1 \end{pmatrix} \begin{pmatrix} A_{m-1}(z) \\ z^{-1} & B_{m-1}(z) \end{pmatrix}$$

och baklänges

$$A_{m-1}(z) = \frac{1}{1 - K_m^2} (A_m(z) - K_m B_m(z))$$

Om alla $|K_i| < 1$ är alla rötterna innanför enhetscirklen

Exempel Givet:

$$H(z) = 1 - z^{-1} + \frac{1}{2}z^{-2}$$

$$z_{1,2} = \frac{1}{\sqrt{2}} e^{\pm j\frac{\pi}{4}}$$

Sökt: Beräkna Lattice-FIR (dvs parametrarna K_i) Lösning: Starta med

$$A_2(z) = H(z) = 1 - z^{-1} + \frac{1}{2}z^{-2}$$
 ger $k_2 = \frac{1}{2}$
 $B_2(z) = \frac{1}{2} - z^{-1} + z^{-2}$

Beräkna sedan (baklänges)

Algoritmer:

Framlänges: Givet K_m

$$A_0(z) = 1$$
 $B_0(z) = 1$

$$A_m(z) = A_{m-1}(z) + K_m z^{-1} B_{m-1}(z)$$

 $B_m(z) = urA_m(z)$ med koeff i omvänd ordning m = 1,2,...M-1 FIR längd M, gradtal M-1

Slutligen
$$H(z) = A_{M-1}(z)$$

Baklänges: Givet H(z)

$$A_{M-1}(z) = H(z)$$

$$K_m = \alpha_m(m)$$

$$A_{m-1}(z) = \frac{1}{1 - K_m^2} (A_m(z) - K_m B_m(z))$$

$$B_{m-1}(z)$$
 ur $A_{m-1}(z)$

ger
$$K_m$$
 $m=M-1,M-2,...,1$

För kännedom: Lattice all-pole IIR (används i GSM)

Vi rita om kretsen enligt nedan. Analyserar vi nu kretsen finner vi att vi får samma ekvationer som tidigare men polynomet A(z) är nu nämnarpolynomet (testa gärna själv).

IIR:
$$H(z) = \frac{1}{A(z)} (all \ pole)$$

Samma ekvationer som för lattice-FIR