LICENCE D'INFORMATIQUE

Sorbonne Université

LU3IN003 – Algorithmique Cours 2 : Programmation récursive (diviser pour régner)

Année 2020-2021

Responsables et chargés de cours Fanny Pascual Olivier Spanjaard

Un exemple classique : tri fusion

Division de T[i..j] en 2 sous-tableaux

Appel récursif de TRI_FUSION(T, i, i+[n/2]-1);

Appel récursif de TRI_FUSION(T, i+[n/2], j);

Construction de la solution par un algorithme d'interclassement sur place de T[i..i+[n/2]-1] et T[i+[n/2]..j].

i,j appel non terminal (j>i)

L'ordre chronologique des appels à INTERCLASSER(T, i, i+ $\lfloor n/2 \rfloor$ -1, j) est l'ordre des terminaisons des appels non terminaux : (1,2), (4,5), (3,5), (1,5), (6,7), (9,10), (8,10), (6,10), (1,10)

Preuve de TRI_FUSION

Propriété: TRI_FUSION(T, i, j) se termine et trie le tableau T[i..j].

Preuve (récurrence forte sur la taille n=j-i+1)

- Cas de base : la propriété est vraie pour n=j-i+1=1.
- Etape d'induction : Soit T[i..j] un énoncé de taille n=j-i+1. Supposons la propriété vraie pour tous les énoncés de taille < n.

```
Procédure TRI_FUSION(T, i, j);
n:=j-i+1;
Si n>1 alors
TRI_FUSION(T, i, i+[n/2]-1);
TRI_FUSION(T, i+[n/2], j);
INTERCLASSER(T,i, i+[n/2]-1,j)
Finsi.
```

```
D'après l'induction ([n/2]<n), après l'exécution de TRI_FUSION(T, i, i+[n/2]-1), T[i..i+[n/2]-1] est trié;

D'après l'induction ([n/2]<n), après l'exécution de TRI_FUSION(T, i+[n/2], j), T[i+[n/2]..j] est trié;

Après l'exécution d'INTERCLASSER(T,i,i+[n/2]-1,j), le tableau T[i..j] est trié.
```

Complexité de TRI_FUSION

Hypothèses:

- 1. On compte le nombre de « comparaisons de 2 clés »;
- 2. INTERCLASSER(T,i,k,j) exécute au plus n=j-i+1 comparaisons de clés.

On note T(n) la fonction complexité de TRI_FUSION.

Il résulte de la structure de contrôle de TRI_FUSION que:

```
T(1)=0;

T(n)\leq T(\lfloor n/2\rfloor)+T(\lceil n/2\rceil)+n
(R)
```

```
Procédure TRI_FUSION(T, i, j);
n:=j-i+1;
Si n>1 alors
TRI_FUSION(T, i, i+[n/2]-1);
TRI_FUSION(T, i+[n/2], j);
INTERCLASSER(T,i,i+[n/2]-1,j)
Finsi.
```

```
Considérons la suite récurrente U(n) définie par :
U(1)=0;
U(n)=U(|n/2|)+U([n/2])+n
U(n) majore toute solution de (R)
Calculons U(n) dans le cas particulier où n=2<sup>k</sup>.
          On a U(n)=U(2^k).
          Posons V(k)=U(2^k). Combien vaut V(k)?
          On a : V(0)=0 et V(k)=2V(k-1)+2^k.
  2^{0} V(k)=2^{1}V(k-1)+2^{k}
  2^{1}V(k-1)=2^{2}V(k-2)+2^{k}
                                 En sommant, il vient :
  2^{2}V(k-2)=2^{3}V(k-3)+2^{k}
                                 V(k)=k2^k=n\log_2 n
  2^{k-1}V(1)=2^kV(0)+2^k
  2^{k}V(0)=0
 Cas général (n quelconque):
```

On peut montrer que $U(n)=\Theta(n\log_2 n)$

Quiz: Comparaison d'algorithmes

Un élément d'un tableau T[1...n] est appelé un leader si il est plus grand que tous les éléments situés à sa droite dans T. Quel est le meilleur algorithme envisageable pour trouver tous les leaders d'un tableau ?

- A) Un algorithme en Θ(n) qui fait un parcours de T de la droite vers la gauche.
- B) Un algorithme en $\Theta(n)$ qui fait un parcours de T de la gauche vers la droite.
- C) Un algorithme en Θ(n log n) de type diviser pour régner.
- D) Un algorithme en $\Theta(n^2)$.

Rappel de la séance précédente

 On s'est intéressé au comptage des lapins, via le calcul du nème terme de la suite de Fibonacci;

```
F_0 = 1

F_1 = 1

F_n = F_{n-1} + F_{n-2}
```

- On a vu deux algorithmes pour ce problème :
 - Algorithme Fib1 de complexité O(20.694n)
 - Algorithme Fib2 de complexité O(n²)

Algorithme Fib3 matriciel

On écrit $F_1=F_1$ et $F_2=F_0+F_1$ en matriciel :

$$\left(\begin{array}{c} F_1 \\ F_2 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} F_0 \\ F_1 \end{array}\right)$$

où $F_0=0$ et $F_1=1$. De même,

$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Et plus généralement

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Calcul de F_n: élever la matrice à la puissance n.

Algorithme Fib3 matriciel

• Le problème se réduit à calculer :

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

Réalisable en O(log₂ n) produits matriciels (plus précisément, mises au carré) :

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{2^{2^{2\cdots}}}$$

Analyse de la complexité de Fib3

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right) \qquad \left(\begin{array}{cc} 2 & 3 \\ 3 & 5 \end{array}\right) \qquad \left(\begin{array}{cc} 13 & 21 \\ 21 & 34 \end{array}\right)$$

- A chaque itération, la mise au carré requiert :

 - 8 multiplications.

- 4 additions,
On va s'intéresser aux nombres d'opérations élémentaires induites par les multiplications

- Initialement, chaque nombre dans la matrice tient sur $1 = 2^{0}$ bit.
- A la ke itération de Fib3, il tient sur 2k bits (les longueurs sont doublées à chaque itération).

Analyse de la complexité de Fib3

- A la k^e itération (mise au carré) de Fib3, une composante de la matrice tient sur 2^k bits.
- Supposons que la multiplication de deux nombres de n bits requiert O(n²) opérations élémentaires
- Le nombre d'opérations élémentaires induites par les multiplications au cours des log₂n itérations est :

$$\sum_{k=0}^{\log_2 n} 2^{ka} = \frac{2^{a(\log_2 n + 1)} - 1}{2^a - 1} \in O(2^{a \log_2 n}) = O(n^a)$$

(somme des $(log_2n + 1)$ termes d'une suite géométrique de premier terme 1 et de raison 2^a)

Analyse de la complexité de Fib3

En conclusion : pour savoir si Fib3 est plus rapide que Fib2, il faut s'intéresser à la complexité de la multiplication de deux nombres de n bits. Si on peut le faire avec une complexité moindre que $O(n^2)$, alors Fib3 est plus rapide.

Multiplication

Intuitivement plus difficile qu'une addition... Une analyse permet de *quantifier* cela.

[13] [11]					1 1	1	0	1 1
			0	1 0	1 1 0	1 0 0	0 1	1
		1	1	0	1			
[143]	1	0	0	0	1	1	1	1

Pour multiplier deux nombres de n bits : créer un tableau de n sommes intermédiaires, et les additionner. Chaque addition est en O(n)... un total en $O(n^2)$.

Il semble donc que l'addition est linéaire, alors que la multiplication est quadratique.

Doit-on en conclure que Fib3 ne fait pas mieux que Fib2?

Multiplication égypto-franco-russe

- Il existe d'autres façons de multiplier!
- La paternité de la méthode ci-dessous varie selon les sources (d'où le titre du transparent) :

Répéter

Diviser par 2 le nb de gauche Multiplier par 2 le nb de droite Jusqu'à ce que nb de gauche = 1 Retourner la somme des nbs de la colonne de gauche qui sont face à des nbs impairs

Réécrit en binaire...

	1011	1101				
	101	11010	Multiplier par 2 un nombre			
-	10	110100	binaire : insérer un bit 0 en fin de représentation			
	1	1101000	Diviser par 2 un nombre			
			binaire : supprimer le			
		10001111	dernier bit de la			
		10001111	représentation			

Hum... ça ne rappelle pas quelque chose?

représentation

Comparaison des deux méthodes

Une multiplication récursive

```
fonction multiplier(x,y)
Entrée: Deux entiers x et y sur n bits
Sortie: Leur produit
si x = 1 retourner y
z = multiplier(x/2,y) (division entière)
si x est pair retourner 2z
sinon retourner y+2z
```

Analyse de cet algorithme en TD

Une multiplication récursive

Remarque importante : cet algorithme récursif peut en fait se voir comme une autre formulation de la multiplication égypto-franco-russe...

MAIS c'est formateur de le voir en exercice.

Néanmoins, cela ne fait pas avancer le comptage des lapins, car **Fib3** n'est toujours pas de meilleure complexité que **Fib2**...

Quiz: Fonction récursive

Que calcule la fonction récursive Fun ci-dessous ?

```
Fun(x,y)
si y=0 alors
retourner 1
sinon
si y%2=0 alors
retourner Fun(x,y//2)*Fun(x,y//2)
sinon
retourner x*Fun(x,y//2)*Fun(x,y//2)
```

- A) x*y
- B) x+y
- C) 2^{x+y}
- D) x^y

Résumé des épisodes précédents

- On s'est intéressé au comptage des lapins, via le calcul du nème terme de la suite de Fibonacci :
 - algorithme **Fib1** de complexité $O(2^{0.694n})$
 - algorithme Fib2 de complexité O(n²)
 - Algorithme Fib3 matriciel :

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

La complexité de **Fib3** est équivalente à la complexité de multiplication de deux entiers de n bits. On cherche donc à concevoir un algorithme de multiplication de complexité $O(n^{\alpha})$ avec $\alpha < 2$.

Diviser pour régner

Pour concevoir des algorithmes plus rapides :

DIVISER un problème en sous-pbs plus petits RESOUDRE les sous-problèmes récursivement FUSIONNER les réponses aux sous-pbs afin d'obtenir la réponse au problème de départ

Application à la multiplication

$$X = X$$

$$Y = Y$$

$$n \text{ bits}$$

$$X$$

$$Y = N/2 \text{ bits}$$

$$X = a 2^{n/2} + b$$
 $Y = c 2^{n/2} + d$
 $X \times Y = ac 2^n + (ad + bc) 2^{n/2} + bd$

Pour simplifier la présentation, mais sans perte de généralité, on suppose que n est une puissance de 2.

Application à la multiplication

$$X \times Y = ac 2^n + (ad + bc) 2^{n/2} + bd$$

fonction mult(x,y)

Entrée: Deux entiers x et y sur n bits

Sortie: Leur produit

```
si n = 1 retourner xy
sinon partitionner x en a,b et y en c,d
    retourner mult(a,c)2<sup>n</sup> +
        (mult(a,d)+ mult(b,c))2<sup>n/2</sup> + mult(b,d)
```

Ce qui donne en décimal

$$X = \begin{bmatrix} a & b \\ Y = \begin{bmatrix} c & d \\ \hline n/2 \text{ bits} \end{bmatrix}$$

$$X = a \cdot 10^{n/2} + b$$
 $Y = c \cdot 10^{n/2} + d$
 $X \times Y = ac \cdot 10^{n} + (ad + bc) \cdot 10^{n/2} + bd$

Exemple (en décimal)

12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276
12*21 12*39 34*21 34*39
1*2 1*1 2*2 2*1
2 1 4 2

Ainsi: $12*21 = 2*10^2 + (1+4)10^1 + 2 = 252$

X = a b Y = c d $X \times Y = ac 10^{n} + (ad + bc) 10^{n/2} + bd$

Exemple (en décimal)

12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276

252 468 714 1326
$$*10^4 + *10^2 + *10^2 + *1 = 2639526$$

$$X = a$$
 b
 $Y = c$ d
 $X \times Y = ac 10^{n} + (ad + bc) 10^{n/2} + bd$

Exemple (en décimal)

12345678 * 21394276

= 264126842539128

$$X = a$$
 b
 $Y = c$ d
 $X \times Y = ac 10^{n} + (ad + bc) 10^{n/2} + bd$

Arbre des appels récursifs

A chaque niveau k de l'arbre, il y a 4^k nœuds.

Calculs en un nœud T(n/2k)

$$X = \begin{bmatrix} a & b \\ Y = \begin{bmatrix} c & d \\ \hline n/2^{k+1} \text{ bits} \end{bmatrix}$$

$$X \times Y = ac \ 2^{n/2^k} + (ad + bc) \ 2^{n/2^{k+1}} + bd$$

A un nœud T(n/2^k), on réalise une multiplication par 2^{n/2}_k (n/2^k décalages vers la gauche), une autre par 2^{n/2}_{k+1}, et trois additions avec des nombres comportant au plus n/2^{k-1} bits, soit :

O(n/2^k) opérations élémentaires

Arbre des appels récursifs

$$T(n) = \sum_{k=0}^{\log_2 n} 4^k \left(\frac{n}{2^k}\right) = \sum_{k=0}^{\log_2 n} n \left(\frac{4}{2}\right)^k = n \left(2^{\log_2 n + 1} - 1\right) = n \left(2n - 1\right)$$

Arbre des appels récursifs

Complexité en O(n²)

Quiz : Diviser pour régner

Laquelle de ces étapes ne fait pas partie de la stratégie diviser pour régner ?

- A) Diviser le problème en sous-problèmes.
- B) Trier les sous-problèmes.
- C) Résoudre les sous-problèmes.
- D) Fusionner les résultats.

Question

- Soient deux nombres complexes a+bi et c+di
- Leur produit : (a+bi)(c+di) = [ac-bd] + [ad+bc]i
- Entrée : a, b, c, d
- Sortie: ac-bd, ad+bc

Si la multiplication de deux nombres coûte 1€ et leur addition coûte 1 centime, quelle est la façon la moins coûteuse d'obtenir la sortie à partir de l'entrée ?

Pouvez-vous faire mieux que 4.02€?

La solution de Gauss à 3.05€

Entrée: a,b,c,d

Sortie: ac-bd, ad+bc

1 centime : $P_1 = a + b$

1 centime : $P_2 = c + d$

1€: $P_3 = P_1P_2 = ac + ad + bc + bd$

1€: $P_4 = ac$

1€: $P_5 = bd$

1 centime : $P_6 = P_4 - P_5 = ac - bd$

2 centimes: $P_7 = P_3 - P_4 - P_5 = bc + ad$

Carl Friedrich Gauss 1777-1855

mult gaussifiée (Karatsuba, 1962)

fonction mult2(x,y)

Entrée: Deux entiers x et y sur n bits

Sortie: Leur produit

si n = 1 retourner xy
sinon

Anatolii Alexeevich Karatsuba, 1937-2008

```
partitionner x en a,b et y en c,d
P3=mult2(a+b,c+d); P4=mult2(a,c); P5=mult2(b,d)
retourner P4.2<sup>n</sup> + (P3-P4-P5).2<sup>n/2</sup> + P5
```

mult2: arbre des appels récursifs

mult2: arbre des appels récursifs

Complexité: $3n^{\log_2 3} - 2n \in O(n^{1,58}) \text{ car } \log_2 3 = 1,58$

$$O(n^{1,58}) << O(n^2)$$

Grâce à mult2, on a donc un algorithme de complexité O(n^{1.58}) pour compter les lapins!

Bref: diviser pour régner

DIVISER le problème en *a* sous-pbs de taille n/b RESOUDRE les sous-problèmes récursivement FUSIONNER les réponses aux sous-pbs en O(n^d) afin d'obtenir la réponse au problème de départ

A partir de la connaissance des valeurs des paramètres a, b et d, le théorème maître permet de déterminer « automatiquement » la complexité d'une méthode de type diviser pour régner.

Théorème maître

- Les algorithmes de type « diviser pour régner » résolvent a souspbs de taille n/b et combinent ensuite ces réponses en un temps O(nd), pour a,b,d > 0
- Leur temps d'exécution T(n) peut donc s'écrire :

$$T(n) = aT(n/b) + O(n^d)$$

(« n/b » signifiant ici partie entière inférieure ou supérieure de n/b)

• Le terme général est alors :

$$T(n) = \begin{cases} O(n^d) & \text{si } d > \log_b a \\ O(n^d \log n) & \text{si } d = \log_b a \\ O(n^{\log_b a}) & \text{si } d < \log_b a \end{cases}$$

Ce théorème permet de déterminer la complexité de la plupart des algorithmes de type « diviser pour régner ».

Preuve

Le niveau k est composé de a^k sous-problèmes, chacun de taille n/b^k

Preuve

- Sans perte de généralité, on suppose que n est une puissance de b.
- Le niveau k est composé de a^k sous-problèmes, chacun de taille n/b^k. Le travail total réalisé à ce niveau est :

$$a^k \times O(\frac{n}{b^k})^d = O(n^d) \times (\frac{a}{b^d})^k$$

- Comme k varie de 0 (racıne) a ιοg
 _bn (τeuιιιes), ces nombres forment une suite
 géométrique de raison a/b
 ^d
- Trois cas :
 - La raison est inférieure à 1 : la suite est décroissante et la somme des termes est du même ordre de grandeur que le premier terme, soit O(nd)
 - La raison est supérieure à 1 : la suite est croissante et la somme des termes est du même ordre de grandeur que le dernier terme, soit O(n^{log a}) :

$$n^{d} \left(\frac{a}{b^{d}}\right)^{\log_{b} n} = n^{d} \left(\frac{a^{\log_{b} n}}{(b^{\log_{b} n})^{d}}\right) = a^{\log_{b} n} = a^{(\log_{a} n)(\log_{b} a)} = n^{\log_{b} a}$$

 La raison est exactement 1 : dans ce cas les O(log n) termes de la suite sont égaux à O(nd)

Quiz: Théorème maître

On considère un algorithme de complexité :

$$T(n) = 2*T(n/3) + T(n/2) + O(n)$$

Peut-on utiliser le théorème maître pour calculer T(n)?

- A) Oui
- B) Non
- C) Ca dépend du problème

Le théorème « marche » bien

• Pour $T(n) = aT(n/b) + O(n^d)$, le terme général est :

$$T(n) = \begin{cases} O(n^d) & \text{si } d > \log_b a \\ O(n^d \log n) & \text{si } d = \log_b a \\ O(n^{\log_b a}) & \text{si } d < \log_b a \end{cases}$$

- Algorithme mult: T(n) = 4T(n/2) + O(n) $a=4, b=2, d=1 \text{ et donc } 1<2=\log_2 4 \rightarrow O(n^{\log 4})=O(n^2)$
- Algorithme mult2: T(n) = 3T(n/2) + O(n) $a=3, b=2, d=1 \text{ et donc } 1<1,58\approx \log_2 3 \rightarrow O(n^{\log 3}) = O(n^{1,58})$
- Algorithme TRI_FUSION: T(n) = 2T(n/2) + O(n)
 a=2, b=2, d=1 et donc 1=1=log₂2 → O(n log n)

Quiz : Diviser pour régner

En calculant la complexité d'un algorithme diviser pour régner, on aboutit à la formule $T(n) = T(n/2) + \Theta(1)$ et T(0) = 1. Quelle est la complexité T(n) de cet algorithme ?

- A) $\Theta(\log n)$
- B) $\Theta(n)$
- C) $\Theta(n^2)$
- D) $\Theta(2^n)$

Etant donné n points dans un plan, trouver une paire de points les plus proches au sens de la distance euclidienne

Applications : vision, systèmes d'informations géographiques, contrôle aérien, modélisation moléculaire...

Algorithme naïf : tester toutes les paires de points en $\Theta(n^2)$

Diviser Tracer une droite verticale L de façon à obtenir n/2 points dans chaque sous-région

Régner Trouver la paire de points les plus proches dans chaque sous-région

Combiner Trouver la paire de points les plus proches avec un point dans chaque sous-région

Retourner la meilleure des trois solutions trouvées

Comment trouver efficacement la paire de points les plus proches avec un point dans chaque sous-région ?

Remarque On peut se contenter d'examiner seulement les points de distance $\leq \delta$ de la droite L, où $\delta = \min(d_{\min}(regG), d_{\min}(regD))$

Trier les points dans la bande de largeur de largeur 2δ selon leurs ordonnées

Observation examen des distances que pour 8 positions de la liste triée

Soit s_i le point de la bande de largeur 2δ de i^e plus petite ordonnée

Propriété Si $|i-j| \ge 8$, alors la distance entre s_i et s_i est $\ge \delta$

Preuve (arguments)

1 seul point dans chaque carré

Deux points séparés par au moins deux bandes horizontales sont distants d'au moins $2(\delta/2)$

PairePlusProche(p₁,...,p_n)

Si $n \le 3$ alors retourner distmin entre les points (∞ si n=1) Sinon calculer la ligne de séparation L

- 1. d_{min}(regG) ← PairePlusProche(points regG)
- 2. d_{min}(regD) ← PairePlusProche(points regD)
- 3. $\delta = \min(d_{\min}(regG), d_{\min}(regD))$
- 4. Supprimer tous les points à distance supérieure à δ de L
- 5. Examiner les points dans l'ordre de leurs ordonnées croissantes et comparer la distance entre le point courant et les 7 suivants. Si une de ces distances est $\leq \delta$, mettre à jour δ
- 6. Retourner (δ)

2T(n/2)

--O(n)

On dispose de deux listes des points triés par ordre d'abscisses croissantes et d'ordonnées croissantes (calculées une fois pour toute en O(n log n))

PairePlusProche(p₁,...,p_n)

Si n ≤ 3 alors retourner distmin entre les points (∞ si n=1) Sinon calculer la ligne de séparation L

- d_{min}(regG) ← PairePlusProche(points regG)
- 2. d_{min}(regD) ← PairePlusProche(points regD)
- 3. $\delta = \min(d_{\min}(regG), d_{\min}(regD))$
- 4. Supprimer tous les points à distance supérieure à δ de L
- 5. Examiner les points dans l'ordre de leurs ordonnées croissantes et comparer la distance entre le point courant et les 7 suivants. Si une de ces distances est $\leq \delta$, mettre à jour δ
- 6. Retourner (δ)

T(n) fonction complexité pire-cas de PairePlusProche(p₁,...,p_n)

$$T(1)=O(1);$$

$$T(n)=T(\lfloor n/2 \rfloor)+T(\lceil n/2 \rceil)+O(n)$$

La complexité de l'algorithme diviser pour régner pour le calcul d'une paire de points les plus proches est O(n log n)