Visualizing Multilevel Models

Andy Grogan-Kaylor

2 Mar 2023 14:38:03

Introduction

An evolving set of notes on visualizing results from multilevel models.

The examples below use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

Setup

I am not terrifically fond of Stata's default s2color graph scheme. Therefore I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

. set scheme michigan

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack

Get Data

. use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-m > ultilevel-data/simulated_multilevel_data.dta", clear

Scatterplots

- . twoway scatter outcome warmth
- . graph export myscatter.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatter.png saved as PNG format

Simple Linear Fit

- . twoway lfit outcome warmth
- . graph export mylinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylinear.png saved as PNG format.

Linear Fit With Confidence Interval

- . twoway lfitci outcome warmth
- . graph export mylfitci.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylfitci.png saved as

Figure 1: Scatterplot

Figure 2: Linear Fit

PNG format

Figure 3: Linear Fit With Confidence Interval

Combine Scatterplot and Linear Fit

```
. twoway (scatter outcome warmth) (lfit outcome warmth)
```

. graph export myscatterlinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatterlinear.png saved as PNG format

Spaghetti Plots (spagplot)

```
. spagplot outcome warmth, id(country)
```

. graph export myspaghetti.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti.png saved as PNG format

Small Multiples

I use the aspect option to adjust the aspect ratio of the graph for better visual presentation. I also use the mcolor(%30) option to create some transparency in the dots of the scatterplot, which helps the presentation of these small multiples. The mcolor(%30) option could be useful in the other graphs in this tutorial as well.

```
. twoway (scatter outcome warmth, mcolor(%30)) (lfit outcome warmth), by(country) aspe > ct(1)
```

. graph export mysmallmultiples.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mysmallmultiples.png saved as PNG format

Figure 4: Scatterplot and Linear Fit

Figure 5: Spaghetti Plot

Figure 6: Small Multiples

Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs—unless we take steps to correct this—reflect unadjusted, or bivariate associations. We may sometimes wish to develop a graphs that reflect the adjusted or predicted estimates from our models.

In multilevel models, *prediction* is a complex question. The procedures below outline graphs that incorporate predictions using the variables, but do not include predictions that incorporate the random effects. (This will be added!)

Using Predicted Values

Estimate The Model

. mixed outcome warmt	h physical_pu	nishment i	group	country	: // est	imate 1	MLM
Performing EM optimiz	ation:			_			
Performing gradient-b	ased optimiza	tion:					
<pre>Iteration 0: log li Iteration 1: log li</pre>							
Computing standard er	rors:						
Mixed-effects ML regr	ession		Numbe	er of obs	=	3,0	000
Group variable: country				er of gro	-		30
			Obs P	per group			
					min =	:	100
					avg =	100	0.0
					max =	:	100
			Wald	chi2(3)	=	401	.00
Log likelihood = -966	88.0859		Prob	> chi2	=	0.00	000
outcome	Coefficient	Std. err.	z	P> z	[95%	conf.	interval]
warmth	.961837	.0581809	16.53	0.000	.8478	3046	1.075869
physical_punishment	8457672	.0798128	-10.60	0.000	-1.00	2197	6893369
2.group	1.084409	.2200548	4.93	0.000	.653	1099	1.515709
cons	51.64797	.4645466	111.18	0.000	50.7	3748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values

. predict outcome_hat // predict yhat
(option xb assumed)

Graph With twoway Syntax

- . twoway (scatter outcome_hat warmth) (lfit outcome_hat warmth)
- . graph export mypredictedvalues.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues.png saved as PNG format

Figure 7: Predicted Values From predict

Spaghetti Plot With Predicted Values

- . spagplot outcome_hat warmth, id(country)
- . graph export myspaghetti2.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti2.png saved as PNG format

margins and marginsplot

Estimate The Model

. mixed outcome warmth physical_punishment i.group || country: // estimate \mathtt{MLM}

Spaghetti plot of outcome_hat warmth id country

Figure 8: Spaghetti Plot With Predicted Values

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -9668.0859
Iteration 1: log likelihood = -9668.0859

Computing standard errors:

Mixed-effects ML regression	Number of obs	=	3,000
Group variable: country	Number of groups =	=	30
•	Obs per group:		
	min =	=	100
	avg =	=	100.0
	max =	=	100
	Wald chi2(3) =	=	401.00
Log likelihood = -9668.0859	Prob > chi2 =	=	0.0000

outcome	Coefficient	Std. err.	z	P> z	[95% conf	. interval]
warmth physical_punishment 2.group _cons	.961837	.0581809	16.53	0.000	.8478046	1.075869
	8457672	.0798128	-10.60	0.000	-1.002197	6893369
	1.084409	.2200548	4.93	0.000	.6531099	1.515709
	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]	
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659	
var(Residual)	36.01911	.9346952	34.23295	37.89847	

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values At Specified Values With margins

Expression: Linear prediction, fixed portion, predict()

1._at: warmth = 1
2._at: warmth = 2
3._at: warmth = 3
4._at: warmth = 4
5._at: warmth = 5
6._at: warmth = 6
7._at: warmth = 7

	Delta-method						
	Margin	std. err.	z	P> z	[95% conf.	interval]	
_at#group							
1 1	50.4999	.3983539	126.77	0.000	49.71914	51.28066	
1 2	51.58431	.3994365	129.14	0.000	50.80143	52.36719	
2 1	51.46174	.3809288	135.10	0.000	50.71513	52.20834	
2 2	52.54615	.38173	137.65	0.000	51.79797	53.29432	
3 1	52.42357	.371884	140.97	0.000	51.6947	53.15245	
3 2	53.50798	.3723656	143.70	0.000	52.77816	54.23781	
4 1	53.38541	.3718315	143.57	0.000	52.65664	54.11419	
4 2	54.46982	.3719738	146.43	0.000	53.74077	55.19888	
5 1	54.34725	.3807751	142.73	0.000	53.60094	55.09355	
5 2	55.43166	.3805823	145.65	0.000	54.68573	56.17759	
6 1	55.30909	.398109	138.93	0.000	54.52881	56.08937	
6 2	56.3935	.397607	141.83	0.000	55.6142	57.17279	
7 1	56.27092	.4228024	133.09	0.000	55.44225	57.0996	
7 2	57.35533	.4220306	135.90	0.000	56.52817	58.1825	

Graph With marginsplot

. marginsplot // plot of predicted values
Variables that uniquely identify margins: warmth group

. graph export mymarginsplot.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mymarginsplot.png saved as PNG format

Figure 9: Predicted Values From margins and marginsplot

Curvilinear and Linear Fits Random Effects