Package 'multisensi'

May 20, 2010

Type Package

Title Mul	tivariate Sensitivity Analysis	
Version 1	.0-3	
Date 2010	0-05-20	
	Matieyendou LAMBONI <clamboni@yahoo.fr>, Herve MONOD erve.monod@jouy.inra.fr></clamboni@yahoo.fr>	
Maintaine	er Herve MONOD <herve.monod@jouy.inra.fr></herve.monod@jouy.inra.fr>	
Description	on An R library for performing sensitivity analysis on a model with multivariate output	
License C	CeCILL-2	
Repositor	y CRAN	
LazyLoad	l yes	
Depends	R (>= 2.8.0)	
Suggests	MASS	
_	es documented:	2
	1 6	2 3
		4
		4
		5 6
		7
		8
	•	9
_	raph.pc	0
g	rpe.gsi	1
_	si	1
-	lan	3
	lanfact	
_	lanfact.as	
r	llot.dynsi	5

2 multisensi-package

	plot.gsi	
	print.dynsi	
	print.gsi	
	quality	
	simulmodel	
	summary.dynsi	
	summary.gsi	
	yapprox	
Index		

multisensi-package Multivariate sensitivity Analysis

Description

Sensitivity Analysis (SA) for models with multivariate output

Details

This package contains three methods for performing sensitivity analysis on simulation models with multivariate output:

- i) gsi function for the Generalised Sensitivity Analysis (Lamboni et al., 2009) based on inertia decomposition. This method synthesizes the information that is spread between the time outputs or between the principal components and produces a unique sensitivity index for each factor.
- ii) gsi function for the componentwise sensitivity analysis obtained by computing sensitivity indices on principal components (Campbell et al., 2006)
- iii) dynsi function for the dynamic sensitivity analysis obtained by computing sensitivity indices on each output variable.

For all three methods, sensitivity indices are calculated presently by using a factorial design and a classical ANOVA decomposition.

Simulation model management

The multisensi package works on simulation models coded either in R or using an external language (typically as an executable file). Models coded in R must be either functions or objects that have a predict method, such as Im objects. Models defined as functions will be called once with an expression of the form y < -f(X) where X is a vector containing a combination of levels of the input factors, and y is the output vector of length q, where q is the number of output variables. If the model is external to R, for instance a computational code, it must be analyzed with the decoupled approach: the methods require an input data frame (X) containing all the combinations of the input levels and the outputs data frame (Y) containing the response of the model corresponding to these combinations. The size of X is n * p and the size of Y is n * q where p is the number of the input levels. This approach can also be used on R models that do not fit the required specifications.

Author(s)

Matieyendou Lamboni clamboni@yahoo.fr>, Herv\'e Monod herve.monod@jouy.inra.fr>

acp 3

References

Lamboni, M., Makowski, D., Monod, H., 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, volume 113. pp. 312-320

Lamboni, M., Makowski, D., Monod, H., 2009. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models (submitted in october 2009 to Reliability Engineering \& System Safety

Saltelli, A., Chan, K., Scott, E.M. eds, 2000. Sensitivity Analysis Wiley, New York.

acp

Principal Component Analysis (PCA)

Description

Principal Component Analysis (PCA) for the generalized sensitivity analysis

Usage

```
ACP(simuls, normalized = TRUE)
```

Arguments

simuls data frame, typically a multivariate model output

normalized If TRUE, a normalized PCA is performed

Value

an object of class prcomp; see the prcomp help for further details

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

See Also

prcomp

4 anovadec

anoasg

Dynamic main and total sensitivity indices

Description

Function to compute the main and total dynamic sensitivity indices

Usage

```
anoasg(ANO, nbcomp = 2)
```

Arguments

ANO anova object obtained from the anovadec function

nbcomp number of model output to be considered

Value

A list with the following components:

SI data frame of first order, second order, ... indices

tSI data frame of total sensitivity

mSI data frame of main sensitivity indices

iSI data frame of interaction sensitivity indices

indic.fact data frame of anova object attribute

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

anovadec

Computation of several anovas on the output of a PCA

Description

A function to compute sum of squares decomposition on principal components by using the aov function

Usage

```
anovadec(ACP, plan, ord.inter, nbcomp = 2)
```

asg 5

Arguments

ACP data.frame of model output, usually the x component of a PCA object

plan data.frame of input design

ord.inter ANOVA formula like "A+B+c+A:B" OR an integer giving the maximum in-

teraction order (1 for main effects)

nbcomp number of principal components to be considered (e.g 3)

Value

The anovadec function returns a two-component list:

aov list of AOV objectsPC prediction of output

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

See Also

aov

asg Main and total generalized sensitivity computation

Description

Function to compute the main and total generalized sensitivity indices

Usage

```
asg(ANO, ACP, sigma.car, nbcomp = 2)
```

Arguments

ANOVA Object obtained from anovadec function

ACP object

sigma.car Inertia for the model output

nbcomp Numbers of principal component (PC) to be considered

6 biomasse

Value

A list with the following components:

SI data frame of first order, second order, ... indices

mSI data frame of main sensitivity indices

tSI data frame of total sensitivity

iSI data frame of interaction sensitivity indices

cor data frame of correlation between PCs and model output

inertia Vector of Inertia explained by PCs

indic.fact data frame of anova object attribute

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

biomasse

The Winter Wheat Dynamic Model

Description

The Winter Wheat Dynamic Model, a toy model to illustrate the main multisensi methods

Usage

```
biomasse(input, climdata, annee = 3)
```

Arguments

input vector of input value

annee year

climdata a meteorological data.frame specific to biomasse

Details

The Winter Wheat Dry Matter model (WWDM) is a dynamic crop model running at a daily time step (Makowski et al, 2004). It has two state variables, the above-ground winter wheat dry matter U(t), in g/m^2 and the leaf area index LAI(t) with t the day number from sowing (t=1) to harvest (t=223). In the multisensi-package implementation, the biomasse function simulates the output for only one parameter set (the first row of input if it is a matrix or a data frame).

Value

a vector of daily dry matter increase of the Winter Wheat biomass, over 223 days

Climat 7

Author(s)

initially Makowski, D., 2004

References

Makowski, D., Jeuffroy, M.-H., Gu\'erif, M., 2004 Bayesian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

Climat

Climate data

Description

Climate data for the WWDM model (needed by the biomasse function)

Usage

data(Climat)

Format

A data frame with 3126 observations on the following 4 variables.

ANNEE a factor with levels 1 to 14, indicating 14 different years

RG daily radiation variable

Tmin daily maximum temperature

Tmax daily minimum temperature

Source

Makowski, D., Jeuffroy, M.-H., Gu\'erif, M., 2004 Bayesian methods for updating crop model predictions, applications for predicting biomass and grain protein content. In: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain (van Boeakel et al. eds), pp. 57-68. Kluwer, Dordrecht.

Monod, H., Naud, C., Makowski, D., 2006 Uncertainty and sensitivity analysis for crop models. In: Working with Dynamic Crop Models (Wallach D., Makowski D. and Jones J. eds), pp. 55-100. Elsevier, Amsterdam

8 dynsi

dynsi	Dynamic Sensitivity Indices: DSI	

Description

dynsi implements the Dynamic Sensitivity Indices. This method allows to compute classical Sensitivity Indices on each output variable of a dynamic or multivariate model by using the ANOVA decomposition

Usage

Arguments

output. The only argument of this function must be a vector containing the inp factors values factors input data.frame (the design) if model is a data.frame OR a list of factors leve such as factor.example <- list(A=c(0,1),B=c(0,1,4)) cumul logical value. If TRUE the sensitivity analysis will be done on the cumulativoutputs simulonly logical value. If TRUE the program stops after calculating the design and the model outputs The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered	formula	ANOVA formula like " $A+B+c+A:B$ " OR an integer equal to the maximum interaction order in the sensitivity model
such as factor.example <- list(A=c(0,1),B=c(0,1,4)) cumul logical value. If TRUE the sensitivity analysis will be done on the cumalativoutputs simulonly logical value. If TRUE the program stops after calculating the design and the model outputs nb.outp The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered Name.File optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc"	model	output data.frame OR the name of the R-function which calculates the model output. The only argument of this function must be a vector containing the input factors values
outputs simulonly logical value. If TRUE the program stops after calculating the design and the model outputs nb.outp The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered Name.File optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc"	factors	input data.frame (the design) if model is a data.frame OR a list of factors levels such as factor.example <- list(A=c(0,1),B=c(0,1,4))
model outputs nb.outp The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered Name.File optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc"	cumul	logical value. If TRUE the sensitivity analysis will be done on the cumalative outputs
outputs are considered Name.File optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc"	simulonly	logical value. If TRUE the program stops after calculating the design and the model outputs
simulation model. e.g "exc.ssc"	nb.outp	The first nb.outp number of model outputs to be considered. If NULL all the outputs are considered
possible fixed parameters of the model function	Name.File	optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc" $$
•		possible fixed parameters of the model function

Details

If factors is a list of factors, the dynsi function generates a complete factorial design. If it is a data.frame, dynsi expects that each column is associated with an input factor.

Value

dynsi returns a list of class "dynsi", containing all the input arguments detailed before, plus the following components:

X	a data.frame containing the experimental design (input samples)
Y	a data.frame containing the output matrix (response)
SI	a data.frame containing the Sensitivity Indices (SI) on each output variable of the model
mSI	a data.frame of principal SI on each output variable

graph.bar 9

```
isi a data.frame containing the total SI on each output variable a data.frame of interaction SI on each output variable
```

Author(s)

Matieyendou LAMBONI

References

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113, 312-320.

A. Saltelli, K. Chan and E. M. Scott eds, 2000. Sensitivity Analysis. Wiley, New York.

See Also

gsi

Examples

graph.bar

Sensitivity index bar plot

Description

A function that plots sensitivity indices by a bar graph

Usage

```
graph.bar(x, col = 1, nb.plot = 15, xmax = NULL, beside = TRUE, ...)
```

10 graph.pc

Arguments

Х	an object of class gsi or dynsi
col	the column number of GSI to represent in the bar graph
nb.plot	number of input factors to be considered
xmax	a user-defined maximal x value ($x \le 1$) in all the bar graphs that show sensitivity indices; or NULL if the user wants to keep default values
beside	if TRUE, the main and total sensitivity indices are represented by two bars; if FALSE, they are represented by the same bar
	graphical parameters

Author(s)

M. LAMBONI

graph	.pc	Principal Components graph for gsi objects

Description

A function that plots the Principal components (PCs) and the sensitivity index on each PC

Usage

Arguments

X	gsi object
nb.plot	number of input factors to be considered
nb.comp	number of PCs
xmax	a user-defined maximal x value ($x \leq 1$) in all the bar graphs that show sensitivity indices; or NULL if the user wants to keep default values
beside	if TRUE, the main and total sensitivity indices are represented by two bars; if FALSE, they are represented by the same bar
	graphical parameters

Author(s)

M. LAMBONI

grpe.gsi 11

grpe.gsi

Group factor GSI, obsolete function

Description

An obsolete function that computed the GSI of a group factor as one factor

Usage

```
grpe.gsi(GSI, fact.interet)
```

Arguments

```
GSI a gsi or dynsi object fact.interet input factor to be grouped
```

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

gsi

Generalized Sensitivity Indices: GSI

Description

The gsi function implements the calculation of Generalised Sensitivity Indices. This method allows to compute a synthetic Sensitivity Index for the dynamic or multivariate models by using factorial designs and the MANOVA decomposition of inertia. It computes also the Sensitivity Indices on principal components

Usage

Arguments

formula	ANOVA formula like " $A+B+C+A:B$ " OR an integer equal to the maximum interaction order in the sensitivity model
model	output data.frame OR the name of the R-function which calculates the model output. The only argument of this function must be a vector containing the input factors values
factors	input data.frame (the design) if model is a data.frame OR a list of factors levels such as: factor, example ≤ -1 ist $(A=c,(0,1),B=c,(0,1,4))$

12 gsi

inertia	cumulated proportion of inertia (a scalar < 1) to be explained by the selected Principal components OR number of PCs to be used (e.g 3)
normalized	logical value. TRUE (default) computes a normalized Principal Component analysis.
cumul	logical value. If TRUE the PCA will be done on the cumulative outputs
simulonly	logical value. If TRUE the program stops after calculating the design and the model outputs
Name.File	optional name of a R script file containing the R-function that calculates the simulation model. e.g "exc.ssc" $$
	possible fixed parameters of the model function

Details

If factors is a list of factors, the gsi function generates a complete factorial design. If it is a data.frame, gsi expects that each column is associated with an input factor.

Value

gsi returns a list of class "gsi", containing all the input arguments detailed before, plus the following components:

X	a data.frame containing the experimental design (input samples)
Υ	a data.frame containing the output matrix (response)
SI	a data.frame containing the Sensitivity Indices (SI) on PCs and the Generalized SI (GSI) $$
mSI	a data.frame of first order SI on PCs and first order GSI
tSI	a data.frame containing the total SI on PCs and the total GSI
iSI	a data.frame of interaction SI on PCs and interaction GSI
cor	a data.frame of correlation between PCs and outputs
inertia	vector of inertia per PCs and global criterion
Rsquare	vector of dynamic coefficient of determination

Author(s)

M. Lamboni

References

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, volume 113. pp. 312-320

M. Lamboni, D. Makowski and H. Monod, 2009. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Submitted to Reliability Engineering and System Safety.

See Also

dynsi

plan 13

Examples

```
##---- Should be DIRECTLY executable !! ----
# Test case : the Winter Wheat Dynamic Models (WWDM)
  input factors design
data(plan)
# input climate variable
data(Climat)
GSI <- gsi(2, biomasse, plan, inertia=3, normalized=TRUE, cumul=FALSE, climdata=Climat)
summary(GSI)
print(GSI)
plot(x=GSI, beside=FALSE)
#plot(GSI, nb.plot=4)
                               # the 'nb.plot' most influent factors
                               # are represented in the plots
#plot(GSI,nb.comp=2, xmax=1) # nb.comp = number of principal components
#plot(GSI,nb.comp=3, graph=1) # graph=1 for first figure; 2 for 2nd one
                               # and 3 for 3rd one; or 1:3 etc.
#graph.bar(GSI,col=1, beside=F) # sensitivity bar plot on the first PC
#graph.bar(GSI,col=2, xmax=1)
```

plan

A factorial input design for the main example

Description

Factorial design (resolution V) data for the 7 WWDM model input factors

Usage

```
data(plan)
```

Format

A data frame with 2187 observations on the following 7 variables.

Eb First WWDM input factor name

Eimax Second WWDM input factor name

K Thirth WWDM input factor name

Lmax Fourth WWDM input factor name

- A Fifth WWDM input factor name
- B Sixth WWDM input factor name
- TI Seventh WWDM input factor name

See Also

biomasse

Examples

```
data(plan)
## maybe str(plan) ; plot(plan) ...
```

14 planfact.as

planfact

Complete factorial design in lexical order

Description

Function that generates a complete factorial design in lexical order

Usage

```
planfact(nb.niv, make.factor = TRUE)
```

Arguments

nb.niv vector containing the number of each input levels

make.factor logical value. If TRUE the columns of the output are of class factor

Value

plan data frame of the complete factorial design

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

planfact.as

Complete factorial design

Description

Computation of a complete factorial design for model input factors

Usage

```
planfact.as(input)
```

Arguments

input list of factor levels

Value

complete factorial design of model input

Note

This is essentially an internal function for the multisensi package

plot.dynsi 15

Author(s)

M. LAMBONI

plot.dynsi

Plot method for dynamic sensitivity results

Description

Plot method for dynamic sensitivity results of class dynsi

Usage

```
## S3 method for class 'dynsi':
plot(x, text.tuning = NULL, ...)
```

Arguments

```
x a dynsi objecttext.tuning NULL or a small integer to improve the position of input factor labelsgraphical parameters
```

Details

For labels that would be partly positioned outside the plot frame, the argument "text.tuning" may allow to get a better positioning. If it is equal to n, say, these labels are moved by n positions inside the frame, where 1 position corresponds to 1 output variable on the x-axis.

Author(s)

M. LAMBONI

See Also

dynsi

plot.gsi

Plot method for generalised sensitivity analysis

Description

Plot method for generalised sensitivity analysis of class gsi

Usage

print.dynsi

Arguments

x a gsi object

nb.plot number of input factors to be considered

nb.comp number of Principal Components to be plotted

graph figures number: 1 or 2 or 3

xmax a user-defined maximal x value ($x \le 1$) in all the bar graphs that show sensitivity

indices; or NULL if the user wants to keep default values

beside if TRUE, the main and total sensitivity indices are represented by two bars; if

FALSE, they are represented by the same bar

... graphical parameters

Author(s)

M. LAMBONI

See Also

gsi

print.dynsi

print DYNSI

Description

A function to print DYNSI results

Usage

```
## S3 method for class 'dynsi':
print(x, ...)
```

Arguments

x a dynsi object

... print parameters

Author(s)

M. LAMBONI

See Also

dynsi

print.gsi 17

print.gsi

print GSI

Description

function to print GSI results

Usage

```
## S3 method for class 'gsi':
print(x, ...)
```

Arguments

```
x a gsi object... print parameters
```

Author(s)

M. LAMBONI

See Also

gsi

quality

quality of any approximation

Description

Function that computes the sensitivity quality after making some assumptions about the number of PCs and the number of interactions

Usage

```
quality(echsimul, echsimul.app, normalise = TRUE)
```

Arguments

```
echsimul model outputs
echsimul.app Predicted model output
normalise logical value
```

Value

A list with the following components:

```
moy meanbiais biaiscoef.det R-square
```

18 simulmodel

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

simulmodel *Model simulation*

Description

Function that simulates the model outputs

Usage

```
simulmodel(model, plan, nomFic = NULL, verbose = FALSE, ...)
```

Arguments

model name of R-function

plan data frame of input design

nomFic name of file that contains the model function

verbose verbose

... ... possible fixed parameters of the R-function

Details

The model function must be a R-functions. Models defined as functions will be called once with an expression of the form y < -f(X) where X is a vector containing a combination of levels of the input factors, and y is the output vector of length q, where q is the number of output variables

Value

data frame of model outputs

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

summary.dynsi 19

summary.dynsi

dynsi summary

Description

Function to summarize the dynamic sensitivity results

Usage

```
## S3 method for class 'dynsi':
summary(object, ...)
```

Arguments

```
object a dynsi object ... summary parameters
```

Author(s)

M. LAMBONI

See Also

dynsi

summary.gsi

summary of GSI results

Description

function to summarize the GSI results

Usage

```
## S3 method for class 'gsi':
summary(object, ...)
```

Arguments

```
object a GSI object summary parameters
```

Author(s)

M. LAMBONI

See Also

gsi

20 yapprox

yapprox

Prediction based on PCA and anovas

Description

A function that predicts the model output after PCA and aov analyses

Usage

```
yapprox(ACP, nbcomp = 2, aov.obj)
```

Arguments

ACP prcomp object
nbcomp number of PCs
aov.obj aov object

Value

A list with components

Y model output predictions **trace** model output inertia

Note

This is essentially an internal function for the multisensi package

Author(s)

M. LAMBONI

Index

```
*Topic datasets
    Climat, 7
   plan, 12
ACP (acp), 2
acp, 2
anoasq, 3
anovadec, 4
asg, 5
biomasse, 6, 13
Climat, 7
dynsi, 2, 7, 15, 16, 18
graph.bar,9
graph.pc, 10
grpe.gsi, 10
gsi, 2, 11, 15, 16, 19
multisensi (multisensi-package), 1
{\tt multisensi-package, 1}
plan, 12
planfact, 13
planfact.as, 14
plot.dynsi, 14
plot.gsi, 15
print.dynsi, 16
print.gsi, 16
quality, 17
simulmodel, 17
summary.dynsi, 18
summary.gsi, 19
yapprox, 19
```