Ex 25: Grandissement transversal

1. Grandissement transversal avec origine au centre

En utilisant le théorème de Thalès (FIG. 6.1), montrer que : $g_y = \frac{CA'}{\overline{CA}}$

2. Grandissement avec origine aux foyers

2.1. Toujours à l'aide du théorème de Thalès, montrer :
$$g_y = -\frac{\overline{F'A'}}{f'}$$
 et $g_y = -\frac{f}{\overline{FA}}$

- **2.2.** En déduire la relation de Newton : $\overline{FA}.\overline{F'A'} = f.f'$
- 3. Grandissement transversal avec origine au sommet

La relation de Chasles permet d'écrire : $\overline{SA} = \overline{SF} + \overline{FA}$ et $\overline{SA'} = \overline{SF'} + \overline{F'A'}$ En déduire l'égalité suivante : $\frac{\overline{SA'}}{\overline{SA}} = -\frac{f'}{f}g_y$ puis $g_y = \frac{n}{n'}\frac{\overline{SA'}}{\overline{SA}}$

Ex 26: Construction graphique - objet réel

Construire graphiquement l'image de l'objet AB au travers du dioptre sphérique dans les deux cas suivants :

Ex 27: Construction graphique - objet virtuel

Ex 28: Construction graphique d'un faisceau lumineux

Compléter le tracé du faisceau délimité par les deux rayons dans les cas suivants :

Ex 29: Relations de conjugaison

On considère un dioptre sphérique air/verre ($n_{air} = 1, 0$ et $n_{verre} = 1, 5$). Son rayon de courbure vaut $\overline{SC} = 30 \, mm$.

- 1. Représenter graphiquement le dioptre (échelle horizontale : 1/1), en plaçant le sommet, le centre ainsi que les foyers objet et image.
- 2. Un objet AB de hauteur $\overline{AB} = 20 \, mm$ est placé $30 \, mm$ devant le sommet du dioptre. Construire graphiquement l'image A'B' de l'objet AB donnée par le dioptre.
- 3. Déterminer, par le calcul:
 - 3.1. La position de l'image par rapport au sommet S.
 - 3.2. Le grandissement transversal g_y de l'image.
- 4. Déterminer la position de l'objet de sorte que son image se forme 14 cm derrière le sommet du dioptre. L'image est-elle plus grande ou plus petite que l'objet?

Ex 30: La lentille boule

Les lentilles «boule» sont des lentilles sphériques, souvent de petites tailles; elles sont utilisées par exemple dans le couplage des fibres optiques.

La lentille a un rayon R = 1,0 cm, son indice optique vaut n = 2,0

Un objet AB de hauteur 5 mm est placé devant la lentille : $\overline{CA} = -1, 5 \, cm$.

On note A_1B_1 l'image de AB donnée par le 1^{er} dioptre (air/verre); le second dioptre (verre/air) donne l'image finale A'B':

$$AB \xrightarrow{dioptre 1} A_1B_1 \xrightarrow{dioptre 2} A'B'$$

1. Calculer les distances focales objet et image f_1 , f'_1 , f_2 et f'_2 des deux dioptres sphériques.

2. Image intermédiaire A₁B₁

- 2.1. Placer les foyers F_1 , F_1' , F_2 et F_2' sur une construction graphique (échelle horizontale : 2/1), et construire graphiquement A_1B_1 .
- **2.2.** Calculer la valeur de $\overline{S_1A_1}$. Quelle est la nature de l'image intermédiaire?
- **2.3.** Calculer le grandissement transversal de l'image intermédiaire A_1B_1 .

3. Image finale A'B'

- **3.1.** Construire graphiquement A'B'.
- **3.2.** Calculer la valeur de $\overline{S_2A'}$.
- 3.3. Calculer le grandissement transversal de l'image finale par rapport à l'objet AB.

Ex 31 : Lentille épaisse biconcave

Une lentille biconcave est composée de deux dioptres sphériques symétriques :

- face d'entrée : dioptre air/verre de rayon $\overline{S_1C_1}=R=-50\,mm$
- lacktriangledown face de sortie : dioptre verre/air de rayon $\overline{S_2C_2}=50\,mm$

L'épaisseur de la lentille est $\overline{S_1S_2}=e=12,5\,mm$ et l'indice optique du verre est n=1,6.

1. Calculer les distances focales f_1 f'_1 , f_2 et f'_2 des deux dioptres.

Un objet est placé $200\,mm$ devant le foyer objet F_1 de la face d'entrée : $\overline{F_1A} = -200\,mm$.

2. Calculer la position et le grandissement de l'image A'B' en utilisant la relation de Newton.

Ex 32 : Objectif de microscope

La lentille objet d'un objectif de microscope est assimilable à l'association d'un dioptre plan air/verre et d'un dioptre sphérique verre/air.

Cette lentille d'épaisseur $e = 5,0 \, mm$, est taillée dans un verre d'indice n = 1,5.

La distance focale objet du dioptre sphérique est f = -8,0 mm.

L'objet observé AB est situé $4,0\,mm$ devant la lentille : $\overline{HA} = -4,0\,mm$.

On considère la chaîne d'image suivante :

$$AB \xrightarrow{dioptre\ plan} A_1B_1 \xrightarrow{dioptre\ sph\'erique} A'B'$$

1. Utilisation d'un objectif sec

- 1.1. Calculer la position $\overline{SA_1}$ de l'image intermédiaire A_1B_1 par rapport à S.
- 1.2. Calculer la position et le grandissement transversal de l'image finale A'B'.

2. Utilisation d'un objectif à immersion

En microscopie à immersion, on dépose une goutte d'huile d'indice optique n=1,5 entre l'objet et le dioptre plan de la lentille de l'objectif.

Calculer la nouvelle position de l'image finale A'B' ainsi que la nouvelle valeur du grandissement transversal.