КРАТКИЙ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ «ГРУБЫЕ ТРАЕКТОРИИ И РЕГУЛЯРНАЯ СТРУКТУРА»

ЛЕКЦИЯ 13

Непрерывность отображения Ito-Lyons

На прошлой лекции доказали теорему существования и единственности решения задачи Коши для грубого дифференциального уравнения.

Пусть $0 < \tau < T < 1$ и $\frac{1}{3} < \beta < \frac{1}{2}$. Предположим, что $(X, \mathbb{X}) \in \mathfrak{C}^{\beta}[0, T]$ и функция f трижды непрерывно дифференцируема и ее производные ограниченны. Контролируемая относительно X кривая $(Y, Y') \in \mathcal{D}_{X}^{2\beta}[0, \tau]$ является на $[0, \tau]$ решением **грубого** дифференциального уравнения

$$dY_t = f(Y_t) dX_t$$

и удовлетворяет начальному условию $Y_0=y,$ если для всех $t\in [0,\tau]$ справедливо равенство

$$Y_t = y + \int_0^t f(Y_u) dX_u,$$

где интеграл в правой части является грубым интегралом по грубой кривой (X, \mathbb{X}) от контролируемой кривой (f(Y), Df(Y)Y').

Теорема 1. Для всякого $y \in \mathbb{R}^m$ существует такое $\tau \in (0,T)$, что грубое уравнение $dY_t = f(Y_t)dX_t$ на $[0,\tau]$ имеет единственное решение, удовлетворяющее начальному условию $Y_0 = y$.

Замечание 1. Можно считать, что построенное при доказательстве теоремы решение Y удовлетворяет неравенству

$$||Y|| \le |y| + |f(y)| + ||X||_{\beta} + ||X||_{2\beta} + 1 = M$$

и τ зависит именно от M.

Замечание 2. Поскольку решение Y является неподвижной точкой сжимающего отображения

$$(Y,Y') \rightarrow \left(y + \int_0^t f(Y_u) dX_u, f(Y_u)\right),$$

то это решение является пределом по норме $\|\cdot\|_{\mathcal{D}}$ последовательности Y^n , где

$$Y_t^0 = y + f(y)X_{0t}, \quad (Y_t^0)' = f(y), \quad Y_t^{n+1} = y + \int_0^t f(Y_u^n) dX_u, \quad (Y_t^{n+1})' = f(Y_t^n).$$

Теорема 2. Пусть $\beta\in(\frac{1}{3},\frac{1}{2}),\ (X,\mathbb{X}),(\widetilde{X},\widetilde{\mathbb{X}})\in\mathfrak{C}^{\beta}[0,T],$ причем

$$||X||_{\beta} + ||X||_{2\beta} + ||X||_{\beta} + ||X||_{2\beta} \le R.$$

Тогда для всякого $y \in \mathbb{R}^d$ существует такое $\tau \in (0,T)$, что на $[0,\tau]$ каждое из грубых дифференциальных уравнений

$$dY_t = f(Y_t)dX_t$$
 и $d\widetilde{Y}_t = f(\widetilde{Y}_t)d\widetilde{X}_t$

имеет единственное решение Y_t и \widetilde{Y}_t соответственно с начальным условием $Y_0 = \widetilde{Y}_0 = y$ и для всякого $\alpha \in (\frac{1}{3},\beta)$ справедлива оценка

$$||Y - \widetilde{Y}||_{\mathcal{D}} \le C(f, \alpha, R) (||X - \widetilde{X}||_{\alpha} + ||X - \widetilde{X}||_{2\alpha}),$$

$$\operatorname{Fde} \|Y - \widetilde{Y}\|_{\mathcal{D}} = \|Y' - \widetilde{Y}'\|_{\alpha} + \|R^Y - R^{\widetilde{Y}}\|_{2\alpha}.$$

Доказательство. Сразу выбираем число $\tau < 1$ так, что существует единственное решение у каждого из грубых дифференциальных уравнений, причем

$$||Y||_{\mathcal{D}}, ||\widetilde{Y}||_{\mathcal{D}} \le M = 1 + |y| + |f(y)| + 2R.$$

Заметим, что

$$||X||_{\alpha} = \tau^{\beta - \alpha} ||X||_{\beta} \le \tau^{\beta - \alpha} M \le M, \quad ||X||_{2\alpha} = \tau^{2\beta - 2\alpha} ||X||_{\beta} \le \tau^{2\beta - 2\alpha} M \le M.$$

Применяя лемму 5 из прошлой лекции, получаем

$$||f(Y) - f(\widetilde{Y})||_{\alpha} \le C(M) (||Y - \widetilde{Y}||_{\alpha} (\tau^{\alpha} + \tau^{\beta - \alpha} M) + ||X - \widetilde{X}||_{\alpha}),$$

$$\|R^{\int f(Y)\,dX} - R^{\int f(\widetilde{Y})\,d\widetilde{X}}\|_{2\alpha} \le C(M) \big(\|Y - \widetilde{Y}\|_{\alpha} (\tau^{\alpha} + \tau^{2\beta - 2\alpha}M) + \|X - \widetilde{X}\|_{\alpha} + \|\mathbb{X} - \widetilde{\mathbb{X}}\|_{2\alpha} \big).$$

Поскольку

$$Y_t = y + \int_0^t f(Y_u) dX_u, \quad Y_t' = f(Y_t), \quad \widetilde{Y}_t = y + \int_0^t f(\widetilde{Y}_u) d\widetilde{X}_u, \quad \widetilde{Y}_t' = f(\widetilde{Y}_t),$$

ТО

$$||Y - \widetilde{Y}||_{\mathcal{D}} = ||f(Y) - f(\widetilde{Y})||_{\alpha} + ||R^{\int f(Y) dX} - R^{\int f(\widetilde{Y}) d\widetilde{X}}||_{2\alpha}.$$

Следовательно, верна оценка

$$||Y - \widetilde{Y}||_{\mathcal{D}} \le 2C(M) (||Y - \widetilde{Y}||_{\alpha} (\tau^{\alpha} + \tau^{\beta - \alpha} M + \tau^{2\beta - 2\alpha} M) + ||X - \widetilde{X}||_{\alpha} + ||X - \widetilde{X}||_{2\alpha}).$$

Для достаточно малого τ можно считать, что

$$2C(M)(\tau^{\alpha} + \tau^{\beta - \alpha}M + \tau^{2\beta - 2\alpha}M) < \frac{1}{2}$$

и верна оценка

$$||Y - \widetilde{Y}||_{\mathcal{D}} \le 4C(M) (||X - \widetilde{X}||_{\alpha} + ||X - \widetilde{X}||_{2\alpha}).$$

Замечание 3. Выше мы не предполагали ограниченность отображения f, а только ограниченность его производных. Поэтому доказанные выше результаты верны для грубых дифференциальных линейных уравнений. Если функция f ограничена, то в теореме существования и единственности решения и в теореме о непрерывности отображения Ito-Lyons можно считать, что τ не зависит от начальной точки y и утверждение теорем распространяется на весь отрезок [0,T].

Замечание 4. Пусть $(X, \mathbb{X}) \in \mathfrak{C}_g^{\beta}([0,T])$ и $\alpha \in (\frac{1}{3},\beta)$. Тогда существует такая последовательность гладких кривых X_t^n , что

$$||X^n - X||_{\alpha} + ||\mathbb{X}^n - \mathbb{X}||_{2\alpha} \to 0,$$

где

$$\mathbb{X}^n_{st} = \int_s^t X^n_{s\tau} \otimes dX^n_{\tau},$$

причем $\sup_n (\|X^n\|_{\beta} + \|X^n\|_{2\beta}) < \infty.$

Пусть Y_t^n и Y_t — решения грубых дифференциальных уравнений

$$dY_t^n = f(Y_t^n) dX_t^n, \quad dY_t = f(Y_t) dX_t, \quad Y_0^n = Y_0 = y.$$

Из последней теоремы следует, что на некотором отрезке $[0,\tau]$ все эти решения существуют и Y^n сходится к Y по норме $\|\cdot\|_{\mathcal{D}}$, в частности по норме пространства $C^{\alpha}([0,\tau])$. Поскольку кривая X^n_t гладкая, то грубый интеграл совпадает с обычным интегралом Римана—Стилтьеса, а грубое уравнение можно считать обычным дифференциальным уравнением. Таким образом, решение грубого дифференциального уравнения можно считать пределом решений классических уравнений.

Связь со стохастическими уравнениями

Пусть отображение f ограничено, трижды дифференцируемо и его производные ограничены. Предположим, что (B, \mathbb{B}) — грубая траектория, соответствующая винеровскому процессу w_t , построенная с помощью интеграла Ито, то есть

$$B_t = w_t, \quad \mathbb{B}_{st}^{ij} = \int_s^t w_{s\tau}^i dw_{\tau}^j.$$

Через \mathcal{F}_t обозначаем фильтрацию, соответствующую винеровскому процессу w_t . Пусть $Y_t(\omega)$ — решение грубого дифференциального уравнения

$$dY_t(\omega) = f(Y_t(\omega)) dB_t(\omega), \quad Y_0(\omega) = y, \quad t \in [0, T].$$

Предложение 1. Случайный процесс Y_t согласован с \mathcal{F}_t и является сильным решением стохастического уравнения Uто

$$dY_t = f(Y_t)dw_t.$$

Доказательство. Мы знаем, что для достаточно малого τ решение Y_t является пределом последовательности

$$Y_t^0 = y + f(y)B_t$$
, $(Y_t^0)' = f(y)$, $Y_t^{n+1} = y + \int_0^t f(Y_u^n) dB_u$, $(Y_t^{n+1})' = f(Y_t^n)$.

Ясно, что величины $Y_t^0, (Y_t^0)'$ измеримы относительно \mathcal{F}_t . Предположим, что уже известна измеримость $Y_t^n, (Y_t^n)'$. Поскольку

$$Y_t^{n+1} = y + \int_0^t f(Y_u^n) dB_u = y + \lim_{\lambda(\mathbb{T}) \to 0} \sum_{[u,v]} (f(Y_u^n) B_{uv} + Df(Y_u^n) (Y_u^n)' \mathbb{B}_{uv},$$

то величина Y_t^{n+1} измерима относительно \mathcal{F}_t , а $(Y_t^{n+1})' = f(Y_t^n)$. Так как Y_t является пределом Y_t^n , то величина Y_t измерима относительно \mathcal{F}_t . Выше было отмечено, что в случае ограниченной функции f число τ не зависит от начальной точки. Применяя это рассуждение к $[0,\tau]$, $[\tau,2\tau]$ и т.д., получаем измеримость Y_t относительно \mathcal{F}_t для всех $t \in [0,T]$.

Так как грубый интеграл от согласованного с \mathcal{F}_t процесса (Y_t, Y'_t) по грубой траектории (B, \mathbb{B}) почти наверное совпадает с интегралом Ито от Y_t по w_t , то с вероятностью единица верно равенство

$$Y_t = y + \int_0^t f(Y_u) dw_u.$$

Аналогичное утверждение верно для стохастического уравнения в форме Стратоновича.

Итак, подняв траекторию винеровского процесса до грубой траектории с помощью стохастического интеграла, решение стохастического уравнения можно построить совершенно детерминированным образом без привлечения стохастического интеграла.

Teopeмa Wong-Zakai

Пусть f — ограниченное и трижды непрерывно дифференцируемое отображение с ограниченными производными и (B, \mathbb{B}) — грубая траектория, полученная из винеровского процесса с помощью интеграла Стратоновича.

Теорема 3. Предположим, что B^n_t — такой кусочно гладкий случайный процесс, что (B^n,\mathbb{B}^n) сходится с вероятностью единица к (B,\mathbb{B}) в $\mathfrak{C}^{\alpha}[0,T]$, где $\alpha\in(\frac{1}{3},\frac{1}{2})$ и $\mathbb{B}^n_{st}=\int_s^t B^n_{s\tau}\otimes dB^n_{\tau}$, причем последний интеграл является интегралом Римана—Стилтьеса. Тогда полученное при кажедом ω решение $Y^n_t(\omega)$ классического дифференциального уравнения

$$dY_t^n(\omega) = f(Y_t^n(\omega))\dot{B}_t^n(\omega) dt, \quad Y_0^n = y,$$

с вероятностью единица сходится в $C^{\gamma}[0,T]$, где $\gamma < \alpha$, к решению Y_t стохастического дифференциального уравнения в форме Стратоновича

$$dY_t = f(Y_t) \circ dw_t, \quad Y_0 = y.$$

Доказательство. Это утверждение немедленно следует из теоремы о непрерывности отображения Ito–Lyons. \Box

Для применения теоремы достаточно предъявить какое-нибудь приближение процесса (B, \mathbb{B}) в $\mathfrak{C}^{\alpha}[0, T]$ кусочно гладким процессом. Пусть для простоты обозначений T=1 и

$$B_t^n(\omega) = w_{\frac{k}{2^n}}(\omega) + 2^n(t - \frac{k}{2^n})\left(w_{\frac{k+1}{2^n}}(\omega) - w_{\frac{k}{2^n}}(\omega)\right), \quad t \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right].$$

Положим

$$\mathbb{B}_{st}^n = \int_s^t B_{s\tau}^n \otimes dB_{\tau}^n,$$

где интеграл является обычным интегралом Римана-Стилтьеса.

Предложение 2. Для всякого $\alpha \in (\frac{1}{3}, \frac{1}{2})$ выполнено

$$\lim_{n\to\infty} \left(\|B^n - B\|_{\alpha} + \|\mathbb{B}^n - \mathbb{B}\|_{2\alpha} \right) = 0.$$

Доказательство. Заметим, что

$$B^n = \mathbb{E}(w|\sigma_n), \quad \sigma_n = \sigma(w_{\frac{k}{2n}}, k = 0, 1, \dots, 2^n).$$

Кроме того, выполнено

$$(\mathbb{B}^n_{st})^{ij} = \mathbb{E}\Big(\int_{s}^{t} w^i_{s\tau} \circ dw^j_{\tau} \Big| \sigma_n\Big) = \mathbb{E}\big(\mathbb{B}^{ij}_{st} | \sigma_n\big).$$

По теореме Колмогорова для всякого $\alpha \in (\frac{1}{3}, \frac{1}{2})$

$$|B_{st}(\omega)| \le K_{\alpha}(\omega)|t-s|^{\alpha}, \quad |\mathbb{B}_{st}(\omega)| \le \mathbb{K}_{2\alpha}(\omega)|t-s|^{2\alpha}.$$

Следовательно, аналогичные оценки верны для B^n и \mathbb{B}^n с величинами

$$K_{\alpha}^{n} = \mathbb{E}(K_{\alpha}|\sigma_{n}), \quad \mathbb{K}_{\alpha}^{n} = \mathbb{E}(\mathbb{K}_{\alpha}|\sigma_{n}).$$

По теореме Дуба

$$\mathbb{E}\sup_{n}|K_{\alpha}^{n}|^{2}\leq C\mathbb{E}|K_{\alpha}|^{2},\quad \mathbb{E}\sup_{n}|\mathbb{K}_{\alpha}^{n}|^{2}\leq C\mathbb{E}|\mathbb{K}_{\alpha}|^{2}.$$

Следовательно, с вероятностью единица

$$\sup_{n} \left(\|B^n\|_{\alpha} + \|\mathbb{B}^n\|_{2\alpha} \right) < \infty.$$

Вместе с уже известным нам свойством, что B^n и \mathbb{B}^n сходятся почти наверное к B и \mathbb{B} соответственно, доказанная выше равномерная ограниченность дает сходимость в $\mathfrak{C}^{\gamma}[0,1]$ при $\gamma < \alpha$.

Следующее приложение теории грубых траекторий связано с задачей оценки параметра в коэффициенте сноса.

Оценка параметра

Предположим, что мы наблюдаем траектории процесса X_t , управляемого стохастическим уравнением Ито

$$dX_t = b(X_t)A dt + dw_t, \quad X_0 = x_0,$$

где A — постоянный параметр, а b — ограниченное гладкое отображение с ограниченными производными.

Напомним теорему Гирсанова.

Теорема 4. Пусть ξ_t ограниченный случайный процесс на $(C[0,T], P_W)$, согласованный с \mathcal{F}_t , где P_W — мера Винера, а $\mathcal{F}_t = \sigma(\omega(s), s \leq t)$. Тогда относительно меры

$$Q = P_W \exp\left(-\int_0^t \xi_s \, dw_s - \frac{1}{2} \int_0^t |\xi_s|^2 \, ds\right)$$

npouecc

$$\eta_t = w_t + \int_0^t \xi_s \, ds$$

является винеровским процессом, то есть $Q \circ \eta^{-1} = P_W$.

Итак, на C[0,T] есть такая вероятностная мера Q, что процесс

$$X_t - x_0 = w_t + \int_0^t h(X_s) A \, ds.$$

является винеровским процессом. Итак, $Q(X(\omega) \in S) = P_W(\omega \in S - x_0)$,

Переформулируем исходную задачу следующим образом. Считаем, что вероятностное пространство — C[0,T] с мерой Q. Тогда $X_t=x_0+w_t$, процесс

$$\widetilde{w}_t = w_t - \int_0^t b(X_s) A \, ds$$

является винеровским относительно меры

$$Q_A = \exp\left(\int_0^t b(X_s) A \, dX_s - \frac{1}{2} \int_0^t |b(X_s) A|^2 \, ds\right) Q.$$

Оценкой максимального правдоподобия называется величина $\widehat{A}_T(X)$, равная значению A, при котором функция

$$A \to \log \frac{dQ_A}{dQ} = \int_0^T b(X_s) A \, dX_s - \frac{1}{2} \int_0^T |b(X_s)A|^2 \, ds$$

достигает максимума. Ясно, что

$$\widehat{A}_T(X) = \left(\int_0^T b(X_s)b(X_s)^t \, ds\right)^{-1} \int_0^T b(X_s)^t \, dX_s,$$

При некоторых условиях на b можно показать, что $\widehat{A}_T(X)$ сходится к A по вероятности, когда $T \to +\infty$. Например, в одномерном случае имеет место равенство

$$\widehat{A}_T(X) - A = \left(\int_0^T b(X_s)^2 \, ds \right)^{-1} \int_0^T b(X_s) \, dw_s.$$

Пусть $0 < c_1 \le |b(x)|^2 \le c_2$. Тогда

$$\mathbb{E}|\widehat{A}_T(X) - A|^2 \le c_1^{-1} T^{-2} \mathbb{E} \int_0^T b(X_s)^2 \, ds \le c_1^{-1} c_2 T^{-1}$$

и
$$\mathbb{E}|\widehat{A}_T(X) - A|^2 \to 0$$
 при $T \to +\infty$.

Поскольку наблюдение за траекторий X_t не является точным, то важнейшим свойством оценки $\widehat{A}_T(X)$ должна быть непрерывная зависимость от X. Однако, в многомерном случае стохастический интеграл

$$\int_0^T h(X_s)^t dX_s$$

не является непрерывным относительно нормы $\max_{[0,T]} |X_s|$. Для восстановления свойства непрерывности надо перейти от стохастического интеграла к грубому интегралу, предварительно подняв процесс X_t до грубой траектории (X, \mathbb{X}) . Тогда получаем оценку

$$\widehat{A}_T(X, \mathbb{X}) = \left(\int_0^T b(X_s)b(X_s)^t ds\right)^{-1} \int_0^T b(X_s)^t dX_s,$$

где последний интеграл является грубым интегралом по (X, \mathbb{X}) . Отображение

$$(X, \mathbb{X}) \to \widehat{A}_T(X, \mathbb{X})$$

является непрерывным относительно метрики пространства грубых траекторий. Кроме того, можно перейти от интеграла Ито к интегралу Стратоновича и воспользоваться приближением такого интеграла интегралами по гладким кривым.