ANNULAR WEBS AND A CONJECTURE OF HAIMAN

MINH-TÂM QUANG TRINH

ABSTRACT. Haiman conjectured that when traces corresponding to monomial symmetric functions are evaluated on the Hecke-algebra elements denoted C_w' by Kazhdan–Lusztig, the resulting polynomials have nonnegative coefficients. We show that recent work on annular webs implies this for permutations w that are 321-hexagon-avoiding. As a byproduct, we observe a precise analogy that matches the two bases in Kazhdan–Lusztig's work with elementary and homogeneous symmetric functions.

1. Introduction

1.1. Let $H_n(x)$ be the Iwahori–Hecke algebra of the symmetric group S_n over $\mathbf{Z}[x^{\pm 1}]$. As a quotient of the group algebra of a braid group, it has a standard basis $\{\sigma_w\}_{w\in S_n}$, consisting of the images of the positive permutation braids.

Kazhdan-Lusztig introduced two new bases for $H_n(x)$ with remarkable properties [KL79]. Taking our x to be their $q^{1/2}$, we will focus on the basis that they denote by $\{C'_w\}_w$, but write b_w in place of C'_w for simplicity. When the elements b_w are expanded in the standard basis, the coefficients are Laurent polynomials in x with nonnegative integer coefficients. Up to rescaling, these are the celebrated Kazhdan-Lusztig polynomials for S_n . Their positivity can be proved through a geometric interpretation of $H_n(x)$ in terms of sheaves on flag varieties.

The representation theory of S_n deforms to that of $H_n(x)$. In particular, each character $\chi: S_n \to \bar{\mathbf{Q}}$ defines a $\mathbf{Z}[x^{\pm 1}]$ -linear function $\chi_x: H_n(x) \to \overline{\mathbf{Q}(x)}$ that still enjoys the trace property $\chi(\alpha\beta) = \chi(\beta\alpha)$. At the same time, the *irreducible* characters of S_n are indexed by integer partitions of n. Let χ^{λ} be the irreducible character indexed by $\lambda \vdash n$. A geometric argument, similar to that used in the positivity of the Kazhdan–Lusztig polynomials, proves that $\chi_x^{\lambda}(b_w) \in \mathbf{Z}_{\geq 0}[x^{\pm 1}]$ for all w and λ .

Haiman found evidence for a stronger positivity statement. Recall that for all λ, μ , the Kostka number $K_{\lambda,\mu}$ counts semistandard Young tableaux of shape λ and weight μ . The Kostka numbers can be assembled into a unitriangular matrix of nonnegative integers. In particular, this matrix has an inverse with integer entries, so there are functions $\phi_x^{\mu}: H_n(x) \to \mathbf{Z}[x^{\pm 1}]$ uniquely defined by requiring

(1.1)
$$\chi_x^{\lambda} = \sum_{\mu} K_{\lambda,\mu} \phi_x^{\mu} \quad \text{for all } \lambda \vdash n.$$

What follows is the main part of Conjecture 2.1 in [Hai93].

Conjecture 1.1 (Haiman). $\phi_x^{\mu}(b_w) \in \mathbb{Z}_{>0}[x^{\pm 1}]$ for all $w \in S_n$ and $\mu \vdash n$.

Abreu–Nigro observe that Conjecture 1.1 would imply several conjectures about the indifference graphs of Hessenberg functions in algebraic combinatorics: notably, the Stanley–Stembridge conjecture on the e-positivity of their chromatic symmetric functions, and Shareshian–Wachs's generalization of this conjecture to chromatic quasi-symmetric functions [AN24].

1.2. This note will show how recent work of Queffelec-Rose and Gorsky-Wedrich on the diagrammatics of $H_n(x)$ solves some cases of Conjecture 1.1.

For $1 \le i \le n-1$, let $b_i = b_{s_i}$, where $s_i \in S_n$ is the transposition that swaps i and i+1. The main theorem is:

Theorem 1.2. $\phi_x^{\mu}(b_{i_1}\cdots b_{i_\ell}) \in \mathbf{Z}_{\geq 0}[x^{\pm 1}]$ for any sequence of indices i_1,\ldots,i_ℓ that range between 1 and n-1 inclusive, and any $\mu \vdash n$.

In what follows, suppose that $w \in S_n$ is given by $w = [w_1 w_2 \cdots w_n]$, meaning it sends i to w_i for $1 \le i \le n$. Fix $m \le n$ and $v = [v_1 v_2 \cdots v_m] \in S_m$. We say that w is $v_1 \cdots v_m$ -avoiding if and only if the sequence (w_1, \ldots, w_n) does not contain a subsequence of size m whose elements have the same relative order as (v_1, \ldots, v_m) . More formally, this means we cannot find indices $1 \le p_1 < \cdots < p_m \le n$ such that $w_{p_i} < w_{p_j}$ whenever i < j and $v_i < v_j$.

We write $S_n^{v_1 \cdots v_m} \subseteq S_n$ for the set of $v_1 \cdots v_m$ -avoiding elements. Following Billey-Warrington, we say that w is 321-hexagon-avoiding if and only if

$$w \in S_n^{321} \cap S_n^{46718235} \cap S_n^{46781235} \cap S_n^{56718234} \cap S_n^{56781234}.$$

In [BW01], Billey–Warrington prove that the following conditions are equivalent:

- (1) w is 321-hexagon-avoiding.
- (2) $b_w = b_{i_1} \cdots b_{i_\ell}$ whenever $w = s_{i_1} \cdots s_{i_\ell}$ and ℓ is the minimal length among such expressions.

Via this result, Theorem 1.2 implies:

Corollary 1.3. Conjecture 1.1 holds when w is 321-hexagon-avoiding.

1.3. The key observation is that Remark 4.21 of [GW23], a refinement of the annular web evaluation algorithm of [QR18], provides a counterpart to Theorem 1.2 (in fact, a slightly stronger statement) in the setting of MOY webs. The passage from Hecke-algebra traces to web diagrammatics is best explained by assembling the cocenters of all the Hecke algebras into a direct sum that we identify with Macdonald's ring of symmetric functions $\Lambda(x)$ over $\mathbf{Z}[x^{\pm 1}]$, after extending scalars. This defines a universal trace

$$\operatorname{\sf tr}: igoplus_n H_n(x) o \Lambda(x).$$

There is a natural candidate for the diagrammatic counterpart to tr: the map ann that sends a rectangular web to its annular closure.

For any $\beta \in H_n(x)$, the value of $\phi_x^{\mu}(\beta)$ is just the μ -th coefficient when we expand $\operatorname{tr}(\beta)$ in the basis of complete homogeneous symmetric functions $\{h_{\mu}\}_{\mu}$: a fact already noted in [AN24]. Ultimately, we relate Theorem 1.2 to [GW23, Rem.

4.21] through a commutative diagram that relates tr to ann, and assigns simple webs to the b_i and h_{μ} .

I do not know of any earlier statement of this commutative diagram in the literature, despite closely related results in the work of Aiston, Lukac, Morton, et al.: See [MM08] and the references there.

In fact, there is an analogous but inequivalent commutative diagram, where $\{b_w\}_w$ is replaced by Kazhdan–Lusztig's *other* basis for the Hecke algebra, and $\{h_\mu\}_\mu$ is replaced by the basis of elementary symmetric functions $\{e_\mu\}_\mu$. The dichotomy between the two diagrams seems related to the dichotomy between the framed and unframed Khovanov–Rozansky functors in [GW23], though not exactly. We expand on this at the end of the note.

1.4. **Acknowledgments.** I thank Elijah Bodish, Mikhail Khovanov, and Paul Wedrich for helpful discussions.

2. Hecke Algebras and Symmetric Functions

- 2.1. Recall that S_n forms a Coxeter group, in which the transpositions s_i for $1 \le i \le n-1$ (see §1.2) form a system of simple reflections. With respect to this Coxeter presentation, let ℓ_w denote the Bruhat length of $w \in S_n$, and let ℓ_w be the Bruhat order on ℓ_w [GP00, Ch. 1].
- 2.2. Formally, we take the *Iwahori–Hecke algebra* of S_n to be the $\mathbf{Z}[x^{\pm 1}]$ -algebra $H_n(x)$ spanned as a free module by elements σ_w for $w \in S_n$, modulo the following relations, where we set $\sigma_i := \sigma_{s_i}$:

(2.1)
$$\sigma_w \sigma_i = \begin{cases} \sigma_{ws_i} & ws_i > w, \\ \sigma_{ws_i} + (x - x^{-1})\sigma_w & ws_i < w. \end{cases}$$

There is an additive involution $D: H_n(x) \to H_n(x)$ that sends $x \mapsto x^{-1}$ and $\sigma_w \mapsto \sigma_{w^{-1}}^{-1}$ for all $w \in S_n$.

2.3. Let $\mathbf{K} = \mathbf{Q}(x)$. It turns out that $\mathbf{K} \otimes_{\mathbf{Z}[x^{\pm 1}]} H_n(x)$ is split as a \mathbf{K} -algebra. At the same time, there is an isomorphism of rings $H_n(x)|_{x\to 1} \simeq \mathbf{Z}S_n$. So by Tits deformation [GP00, Ch. 7], the semisimplicity of $\mathbf{Q}S_n$ implies the semisimplicity of $\mathbf{K} \otimes_{\mathbf{Z}[x^{\pm 1}]} H_n(x)$, and moreover, there is a bijection between isomorphism classes of simple $\mathbf{Q}S_n$ -modules and those of simple $(\mathbf{K} \otimes_{\mathbf{Z}[x^{\pm 1}]} H_n(x))$ -modules.

This induces the assignment from characters $\chi: S_n \to \bar{\mathbf{Q}}$ to $\mathbf{Z}[x^{\pm 1}]$ -linear trace functions $\chi_x: H_n(x) \to \bar{\mathbf{K}}$ described in the introduction. Explicitly, $\chi_x(\beta)$ is the trace of β on the $(\mathbf{K} \otimes_{\mathbf{Z}[x^{\pm 1}]} H_n(x))$ -module that corresponds to the $\mathbf{Q}S_n$ -module with character χ .

2.4. Kazhdan-Lusztig proved that for all $w \in S_n$, there is a unique *D*-invariant element $b_w \in H_n(x)$ such that

$$b_w = \sum_{y \le w} x^{\ell_y - \ell_w} P_{y,w}(x^2) \sigma_y$$

for some $P_{y,w}(q) \in \mathbf{Z}[q]$ satisfying

(2.2)
$$P_{w,w}(q) = 1, \\ \deg P_{y,w}(q) \le \frac{1}{2}(\ell_w - \ell_y - 1) \text{ for all } w, y \in S_n \text{ with } y \le w.$$

Let j be the additive involution that sends $x \mapsto x^{-1}$ and $\sigma_w \mapsto (-1)^{\ell_w} \sigma_w$. Let $c_w = j(b_w)$. Then c_w is the unique D-invariant element of $H_n(x)$ such that

$$c_w = \sum_{y < w} (-1)^{\ell_y} x^{\ell_w - \ell_y} P_{y,w}(x^{-2}) \sigma_y$$

for some $P_{y,w}(q) \in \mathbf{Z}[q]$ satisfying (2.2). They turn out to be the same polynomials as before.

The sets $\{b_w\}_{w\in S_n}$ and $\{c_w\}_{w\in S_n}$ form bases for $H_n(x)$ as a free $\mathbb{Z}[x^{\pm 1}]$ -module, known as the two Kazhdan-Lusztig bases or canonical bases. The polynomials $P_{y,w}(q)$ are the Kazhdan-Lusztig polynomials for S_n . Note that in [KL79], b_w and c_w are respectively denoted C'_w and $-C_w$.

Henceforth, we will write b_i, c_i in place of b_{s_i}, c_{s_i} . We can check that

(2.3)
$$b_{i} = x^{-1} + \sigma_{i} = x + \sigma_{i}^{-1}, \\ c_{i} = x - \sigma_{i} = x^{-1} - \sigma_{i}^{-1}.$$

Just as $\{\sigma_i\}_i$ generates $H_n(x)$ as a $\mathbf{Z}[x^{\pm 1}]$ -algebra, so do $\{b_i\}_i$ and $\{c_i\}_i$.

2.5. Let Λ be the graded ring of symmetric functions over **Z** in (countably) infinitely many variables. For background on Λ , we refer to [Mac15, Ch. I]. In this note, we will need the following elements of Λ indexed by integer partitions λ :

the Schur functions s_{λ} , the monomial symmetric functions $m_{\lambda} = m_{\lambda_1} m_{\lambda_2} \dots$, the complete homogeneous symmetric functions $h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \dots$, the elementary symmetric functions $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \dots$

Let Λ_n be the degree-n component of Λ . The Schur functions s_{λ} with $\lambda \vdash n$ form a basis for Λ as a free **Z**-module; analogous statements hold with m_{λ} or h_{λ} or e_{λ} in place of s_{λ} .

Recall the Kostka numbers $K_{\lambda,\mu} \in \mathbf{Z}$ from the introduction. As explained in [Mac15, §I.6], they relate the elements $s_{\lambda}, m_{\mu}, h_{\mu}$ via the identities

(2.4)
$$s_{\lambda} = \sum_{\mu} K_{\lambda,\mu} m_{\mu},$$
$$h_{\mu} = \sum_{\lambda} K_{\lambda,\mu} s_{\lambda}.$$

The first identity shows that Haiman's character ϕ_x^{μ} is to the monomial symmetric function μ_{μ} as the irreducible character χ_x^{λ} is to the Schur function s_{λ} .

Note that $K_{\lambda,\lambda} = 1$ for all λ , and that $K_{\lambda,\mu} = 0$ whenever $\mu > \lambda$ in the dominance order on partitions. This makes precise the unitriangularity mentioned earlier.

2.6. Let $\Lambda(x) = \mathbf{Z}[x^{\pm 1}] \otimes \Lambda$ and $\Lambda_n(x) = \mathbf{Z}[x^{\pm 1}] \otimes \Lambda_n$ for all n. The map tr mentioned in §1.3 is the sum of the $\mathbf{Z}[x^{\pm 1}]$ -linear maps

$$\operatorname{tr}_n: H_n(x) \to \Lambda_n(x)$$
 defined by $\operatorname{tr}_n(\beta) = \sum_{\lambda \vdash n} \chi_x^{\lambda}(\beta) s_{\lambda}$.

By construction, $\operatorname{tr}_n(\alpha\beta) = \operatorname{tr}_n(\beta\alpha)$ for all α, β . So the universal property of the cocenter of $H_n(x)$ defines a $\mathbf{Z}[x^{\pm 1}]$ -linear map from the cocenter into $\Lambda(x)$, which turns out to be an isomorphism of $\mathbf{Z}[x^{\pm 1}]$ -modules.

Let $\langle -, - \rangle : \Lambda(x) \times \Lambda(x) \to \mathbf{Z}[x^{\pm 1}]$ be the *Hall pairing*: the $\mathbf{Z}[x^{\pm 1}]$ -linear pairing under which the Schur functions s_{λ} form an orthonormal basis. It lets us write

$$\chi_x^{\lambda}(\beta) = \langle \mathsf{tr}_n(\beta), s_{\lambda} \rangle$$
 for all $\lambda \vdash n$.

By (1.1) and (2.4), we deduce:

$$\operatorname{tr}_n(\beta) = \sum_{\mu \vdash n} \phi_x^{\mu}(\beta) h_{\mu}.$$

Altogether, Theorem 1.2 is claiming that for any sequence of indices i_1, \ldots, i_ℓ that range between 1 and n-1 inclusive, the expansion of $\operatorname{tr}_n(b_{i_1} \cdots b_{i_\ell})$ in the complete homogeneous basis of $\Lambda_n(x)$ will have coefficients in $\mathbf{Z}_{\geq 0}[x^{\pm 1}]$.

- 3.1. We refer to [GW23, §2] for background on the Murakami–Ohtsuki–Yamada (MOY) web calculus. Note that their q is our x.
- 3.2. Let $H_n^{\mathsf{moy}}(x)$ be the free $\mathbf{Z}[x^{\pm 1}]$ -module generated by strictly upward-oriented web diagrams in a rectangle, connecting n inputs with label 1 at the bottom to n outputs with label 1 at the top, modulo the relations of the MOY bracket. It forms a $\mathbf{Z}[x^{\pm 1}]$ -algebra under concatenation of diagrams. Murakami–Ohtsuki–Yamada showed that this algebra is isomorphic to $H_n(x)$ [MOY98].

For $1 \leq i \leq n-1$, let $\operatorname{can}_i \in H_n^{\mathsf{moy}}(x)$ denote the *i*th merge-split web. The notation can is intended to suggest the adjective *canonical*. The precise statement proved in [MOY98], up to sign and up to use of Schur-Weyl duality, is that there is an isomorphism of $\mathbf{Z}[x^{\pm 1}]$ -algebras

$$\Theta_b: H_n(x) \to H_n^{\mathsf{moy}}(x)$$
 defined by $\Theta_b(b_i) = \mathsf{can}_i$.

To explain how this isomorphism appears in [GW23]: Recall that we can identify $H_n(x)$ with the skein algebra of a rectangle with n inputs and n outputs, by sending σ_i to the ith simple twist. Decategorified, rectangular analogues of formulas (16) and (17) in [GW23] define two isomorphisms from this skein algebra to $H_n^{\text{moy}}(x)$. Our map Θ_b corresponds to their *framed* map (16).

3.3. Let $\mathcal{C}^{\mathsf{moy}}(x)$ be the free $\mathbf{Z}[x^{\pm 1}]$ -module generated by positively-oriented web diagrams in an annulus. It forms a commutative $\mathbf{Z}[x^{\pm 1}]$ -algebra under nesting of diagrams.

For any n and $\mu \vdash n$, let $o^{\mu} \in \mathcal{C}^{\mathsf{moy}}(x)$ be the diagram consisting of concentric essential circles with labels μ_1, μ_2, \ldots Note that by the commutativity of $\mathcal{C}^{\mathsf{moy}}(x)$,

the order of these circles does not matter. The annular web evaluation algorithm of Queffelec-Rose [QR18, Lem. 5.2] shows that the set $\{o_{\mu}\}_{\mu}$ forms a basis for $\mathcal{C}^{\mathsf{moy}}(x)$ as a free $\mathbf{Z}[x^{\pm 1}]$ -module. The definition of the MOY bracket then implies, directly, that $\mathcal{C}^{\mathsf{moy}}(x)$ is freely generated as an algebra by the elements $o_n := o_{(n)}$ corresponding to single, labeled essential circles. By placing o_n in degree n, we can further endow $\mathcal{C}^{\mathsf{moy}}(x)$ with the structure of a graded algebra.

At the same time, display (2.4), resp. (2.8), in [Mac15] implies that $\Lambda(x)$ is freely generated as an algebra by the set $\{e_n\}_n$, resp. the set $\{h_n\}_n$. Thus, there are isomorphisms of graded $\mathbf{Z}[x^{\pm 1}]$ -algebras

$$\Xi_h, \Xi_e : \Lambda(x) \to \mathcal{C}^{\mathsf{moy}}(x)$$
 defined by $\Xi_e(e_u) = o_u$ and $\Xi_h(h_u) = o_u$.

They differ precisely by the $\mathbf{Z}[x^{\pm 1}]$ -algebra involution of $\Lambda(x)$ that swaps h_{μ} and e_{μ} .

Prior to the introduction of webs, an analogous isomorphism for the skein algebra of the annulus was first established by Turaev [Tur88].

3.4. As in the literature on skein algebras, there is a $\mathbf{Z}[x^{\pm 1}]$ -linear map

$$\operatorname{ann}:\bigoplus_n H_n^{\operatorname{moy}}(x)\to \mathcal{C}^{\operatorname{moy}}(x)$$

called *annular closure*. It is defined graphically, by embedding a rectangle into an annulus as a sector, so that the upward orientation in the rectangle becomes the positive orientation in the annulus, then wrapping the n outputs of the rectangle around the annulus, without crossing, back to the n inputs.

Queffelec-Rose's annular web evaluation algorithm originally treated $C^{\text{moy}}(x)$ as the triangulated Grothendieck group of the bounded homotopy category of a graded, linear category of annular foams between positively-oriented webs. Gorsky-Wedrich observed that it could be refined, by instead treating $C^{\text{moy}}(x)$ as the additive Grothendieck group of the *Karoubi* or *idempotent completion* of this foam category [GW23, Rem. 4.21]. The refinement shows:

Theorem 3.1 (Positive Annular Web Evaluation). The expansion of any single positively-oriented annular web in the basis $\{o_{\mu}\}_{\mu}$ for $C^{\text{moy}}(x)$ will have coefficients in $\mathbf{Z}_{\geq 0}[x^{\pm 1}]$. In particular, this applies to $\text{ann}(\text{can}_{i_1} \cdots \text{can}_{i_\ell})$ for any indices i_1, \ldots, i_ℓ .

3.5. Together, (2.5) and Theorem 3.1 reduce Theorem 1.2 to the following result:

Theorem 3.2. The following diagram commutes:

$$\begin{array}{ccc} H_n(x) & \xrightarrow{\quad \text{tr} \quad} \Lambda(x) \\ \Theta_b & & & \downarrow \Xi_h \\ H_n^{\text{moy}}(x) & \xrightarrow{\quad \text{ann} \quad} \mathcal{C}^{\text{moy}}(x) \end{array}$$

That is: For any $\beta \in H_n(x)$ and $\mu \vdash n$, the value of $\phi_x^{\mu}(\beta)$ is the coefficient of o_{μ} when we expand $\operatorname{ann}(\Theta_b(\beta))$ in the basis $\{o_{\mu}\}_{\mu}$.

$$Proof.$$
 TODO

3.6. Theorem 3.1 suggests a categorification of Conjecture 1.1.

Let C be the category denoted $\operatorname{Kar}(A\mathbf{Foam}^+)$ in [GW23]: a Karoubi-complete, graded, linear category of foams between positively-oriented webs. Let H_n be the analogous category where we replace the annulus by a rectangle with n inputs and n outputs. By work of Mackaay–Vaz [MV10], H_n is a diagrammatic presentation of the category of Soergel bimodules for S_n , and hence, categorifies $H_n(x)$. Let \mathbf{B}_w be the indecomposable object of H_n indexed by $w \in S_n$, so that the isomorphism from the Grothendieck group to $H_n(x)$ sends $[\mathbf{B}_w]$ to b_w . Let \mathbf{O}_μ be the object of C_n underlying the annular web o_μ .

Conjecture 3.3. For all $w \in S_n$, the annular closure of \mathbf{B}_w is isomorphic in C to a direct sum of objects of the form \mathbf{O}_u .

4. The Other Commutative Diagram

4.1. We claim that there is an isomorphism of $\mathbf{Z}[x^{\pm 1}]$ -algebras

$$\Theta_c: H_n(x) \to H_n^{\mathsf{moy}}(x)$$
 defined by $\Theta_c(c_i) = \mathsf{can}_i$,

analogous to but distinct from Θ_b . Indeed, the relations (2.1) show that if either $\alpha_i = b_i$ for all i, or $\alpha_i = c_i$ for all i, then $H_n(x)$ is generated by its subset $\{\alpha_i\}_i$ modulo the relations

$$\begin{cases} \alpha_i \alpha_{i+1} \alpha_i - \alpha_i = \alpha_{i+1} \alpha_i \alpha_{i+1} - \alpha_{i+1}, \\ \alpha_i \alpha_j = \alpha_j \alpha_i & \text{for } |i-j| > 1, \\ \alpha_i^2 = (x+x^{-1})\alpha_i. \end{cases}$$

We see that Θ_c is the precomposition of Θ_b with the $\mathbb{Z}[x^{\pm 1}]$ -algebra involution of $H_n(x)$ that swaps b_i and c_i . Note that this involution is not the map j from §2.4, since j is not $\mathbb{Z}[x^{\pm 1}]$ -linear.

4.2. Moreover, we claim the following analogue of Theorem 3.2.

Theorem 4.1. The following diagram commutes:

$$H_n(x) \xrightarrow{\operatorname{tr}} \Lambda(x)$$

$$\Theta_c \downarrow \qquad \qquad \downarrow \Xi_e$$

$$H_n^{\operatorname{moy}}(x) \xrightarrow{\operatorname{ann}} \mathcal{C}^{\operatorname{moy}}(x)$$

Proof. First, recall that the involution of $\Lambda(x)$ that swaps h_{μ} and e_{μ} also swaps s_{λ} and s_{λ^t} , where λ^t is the transpose of λ [Mac15, (3.8)]. So the map

$$\mathsf{tr}_n^t: H_n(x) \to \Lambda_n(x) \quad \text{defined by } \mathsf{tr}_n^t(\beta) = \sum_{\lambda \vdash n} \chi_x^\lambda(\beta) s_{\lambda^t}$$

satisfies $\Xi_e \circ \operatorname{tr}_n = \Xi_h \circ \operatorname{tr}_n^t$. Next, let η be the $\mathbf{Z}[x^{\pm 1}]$ -algebra involution of $H_n(x)$ that swaps b_i and c_i . Since $\Theta_c = \Theta_b \circ \eta$, it remains to show that $\operatorname{tr}^t = \operatorname{tr} \circ \eta$, then invoke Theorem 3.2.

Observe that $\operatorname{tr}_n^t(\beta) = \sum_{\lambda \vdash n} \chi_x^{\lambda^t}(\beta) s_\lambda$. So we must show that $\chi_x^{\lambda^t} = \chi_x^{\lambda} \circ \eta$ for all λ . Since $\chi^{\lambda^t} = \varepsilon \chi^{\lambda}$, where ε is the sign character of S_n , we are done by the following lemma.

Lemma 4.2. $(\varepsilon \chi)_x = \chi_x \circ \eta$ for all characters χ .

Proof. By Proposition 9.4.1 of [GP00],

$$(\varepsilon \chi^{\lambda})_x(\sigma_w) = (-1)^{\ell_w} \chi_x^{\lambda}(\sigma_w)|_{x \to x^{-1}}.$$

Using (2.3), we deduce that

$$\chi_x^{\lambda^t}(b_{i_1}\cdots b_{i_\ell}) = \chi_x^{\lambda}(c_{i_1}\cdots c_{i_\ell}) = \chi_x^{\lambda}(\eta(b_{i_1}\cdots b_{i_\ell}))$$

for any sequence of indices i_1, \ldots, i_ℓ . But the b_i generate $H_n(x)$ as an algebra, so every element of $H_n(x)$ is a linear combination of elements of the form $b_{i_1} \cdots b_{i_\ell}$. \square

Remark 4.3. The sign character ε , the algebra involution η , and Lemma 4.2 all generalize beyond S_n to any finite Coxeter group.

4.3. **TODO**

References

- [AN24] Alex Corrêa Abreu and Antonio Nigro. An update on Haiman's conjectures. Forum Math. Sigma, 12:Paper No. e86, 15, 2024.
- [BW01] Sara C. Billey and Gregory S. Warrington. Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations. J. Algebraic Combin., 13(2):111–136, 2001.
- [GP00] M. Geck and G. Pfeiffer. Characters of finite Coxeter groups and Iwahori-Hecke algebras, volume 21 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000.
- [GW23] Eugene Gorsky and Paul Wedrich. Evaluations of annular Khovanov-Rozansky homology. Math. Z., 303(1):Paper No. 25, 57, 2023.
- [Hai93] Mark Haiman. Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc., 6(3):569–595, 1993.
- [KL79] David Kazhdan and George Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53(2):165–184, 1979.
- [Mac15] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford University Press, New York, second edition, 2015. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley.
- [MM08] H. R. Morton and P. M. G. Manchón. Geometrical relations and plethysms in the Homfly skein of the annulus. J. Lond. Math. Soc. (2), 78(2):305–328, 2008.
- [MOY98] Hitoshi Murakami, Tomotada Ohtsuki, and Shuji Yamada. Homfly polynomial via an invariant of colored plane graphs. *Enseign. Math.* (2), 44(3-4):325–360, 1998.
- [MV10] Marco Mackaay and Pedro Vaz. The diagrammatic Soergel category and sl(N)-foams, for $N \ge 4$. Int. J. Math. Math. Sci., pages Art. ID 468968, 20, 2010.
- [QR18] Hoel Queffelec and David E. V. Rose. Sutured annular Khovanov-Rozansky homology. Trans. Amer. Math. Soc., 370(2):1285–1319, 2018.
- [Tur88] V. G. Turaev. The Conway and Kauffman modules of a solid torus. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 167:79–89, 190, 1988.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CT 06520 Email address: minh-tam.trinh@yale.edu