

Multiple View Geometry: Solution Sheet 2

Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger Computer Vision Group, TU Munich

http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: May 2nd, 2018

Part I: Theory

1. Groups and inclusions:

Groups

(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions in \mathbb{R}^3)

(f) E(n): euclidean group

(g) A(n): affine group

Inclusions

(a) $SO(n) \subset O(n) \subset GL(n)$

(b) $SE(n) \subset E(n) \subset A(n) \subset GL(n+1)$

2.
$$\lambda_a = \frac{(\lambda_a v_a)^\top v_b}{\langle v_a, v_b \rangle} = \frac{v_a^\top A^\top v_b}{\langle v_a, v_b \rangle} = \frac{v_a^\top A v_b}{\langle v_a, v_b \rangle} = \frac{v_a^\top (\lambda_b v_b)}{\langle v_a, v_b \rangle} = \lambda_b$$

3. Let V be the orthonormal matrix (i.e. $V^{\top} = V^{-1}$) given by the eigenvectors, and Σ the diagonal matrix containing the eigenvalues:

$$V = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix} \quad \text{ and } \quad \Sigma = \begin{pmatrix} \lambda_1 & 0 & \ddots \\ 0 & \ddots & 0 \\ \ddots & 0 & \lambda_n \end{pmatrix}.$$

As V is a basis, we can express x as a linear combination of the eigenvectors $x = V\alpha$, for some $\alpha \in \mathbb{R}^n$. For ||x|| = 1 we have $\sum_i \alpha_i^2 = \alpha^\top \alpha = x^\top V V^\top x = x^\top x = 1$. This gives

$$x^{\top} A x = x^{\top} V \Sigma V^{-1} x$$
$$= \alpha^{\top} V^{\top} V \Sigma V^{\top} V \alpha$$
$$= \alpha^{\top} \Sigma \alpha = \sum_{i} \alpha_{i}^{2} \lambda_{i}$$

1

Considering $\sum_i \alpha_i^2 = 1$, we can conclude that this expression is minimized iff only the α_i corresponding to the smallest eigenvalue(s) are non-zero. If $\lambda_{n-1} \geq \lambda_n$, there exist only two solutions $(\alpha_n = \pm 1)$, otherwise infinitely many.

For maximisation, only the the α_i corresponding to the largest eigenvalue(s) can be non-zero.

4. We show that: $x \in \text{kernel}(A) \Leftrightarrow x \in \text{kernel}(A^{\top}A)$.

"⇒": Let
$$x \in \text{kernel}(A)$$

$$A^{\top} \underbrace{Ax}_{=0} = A^{\top}0 = 0 \quad \Rightarrow x \in \text{kernel}(A^{\top}A)$$
"\(\neq\)": Let $x \in \text{kernel}(A^{\top}A)$

$$0 = x^{\top} \underbrace{A^{\top}Ax}_{=0} = \langle Ax, Ax \rangle = ||Ax||^2 \quad \Rightarrow Ax = 0 \quad \Rightarrow x \in \text{kernel}(A)$$

5. Singular Value Decomposition (SVD)

Note: There exist multiple slightly different definitions of the SVD. Depending on the convention used, we might have $S \in \mathbb{R}^{m \times n}$, $S \in \mathbb{R}^{n \times n}$, or $S \in \mathbb{R}^{p \times p}$ where $p = \operatorname{rank}(A)$. In the lecture the third option was presented, for which S is invertible (no zeros on the diagonal). In the following, we present the results for the first option, since that is the one that Matlab's svd function returns by default.

- (a) $A \in \mathbb{R}^{m \times n}$ with m > n, $U \in \mathbb{R}^{m \times m}$, $S \in \mathbb{R}^{m \times n}$, $V \in \mathbb{R}^{n \times n}$
- (b) Similarities and differences between SVD and EVD:
 - i. Both are matrix diagonalization techniques.
 - ii. The SVD can be applied to matrices $A \in \mathbb{R}^{m \times n}$ with $m \neq n$, whereas the EVD is only applicable to quadratic matrices $(A \in \mathbb{R}^{m \times n})$ with m = n.
- (c) Relationship between U, S, V and the eigenvalues and eigenvectors of $A^{\top}A$ and AA^{\top} :
 - i. $A^{\top}A$: The columns of V are eigenvectors; the squares of the diagonal elements of S are eigenvalues.
 - ii. AA^{\top} : The columns of U are eigenvectors; the squares of the diagonal elements of S are eigenvalues (possibly filled up with zeros).
- (d) Entries in S:
 - i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
 - ii. The number of non-zero singular values gives us the rank of the matrix A.