2. Докажите, что в десятичной записи числа $\sqrt{2018}$ можно переставить цифры так, что полученная дробь станет рациональным числом.

3. Докажите, что существуют иррациональные α и β такие, что число α^{β} рационально.

4. Найдите все x такие, при которых среди четырёх чисел $a=x-\sqrt{2},$ $b=x-\frac{1}{x},$ $c=x+\frac{1}{x},$ $d=x^2+2\sqrt{2}$ ровно одно не является целым.

5. Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение — рациональное число. Докажите, что квадраты всех чисел рациональны.

6. Числа x, y и z таковы, что все три числа x + yz, y + zx и z + xy рациональны, а $x^2 + y^2 = 1$. Докажите, что число xyz^2 также рационально.

7. Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём ровно 50 из них рациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

8. Даны числа x_1, x_2, \ldots, x_n , причем $x_1 \cdot x_2 \cdot \ldots \cdot x_n = a$. Известно, что число $|x_i - a|$ нечетно для всех $i = 1, 2, \ldots, n$. Докажите, что все x_i иррациональны.

9. Числовое множество M, содержащее 2018 различных чисел, таково, что для любых двух различных элементов a,b из M число $a^2+b\sqrt{2}$ рационально. Докажите, что для любого a из M число $a\sqrt{2}$ рационально.

10. Докажите, что существуют $m, n \in \mathbb{N}$ такие, что $|m\sqrt{2} - n| < \frac{1}{10^{100}}$.

11. Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что количество треугольников чётно.

12. Выпишем число: 0, запятая, а дальше все натуральные степени числа 2019 в произвольном порядке. Может ли такое число быть рациональным?

13. В числе $\alpha=0,12457\dots n$ -я цифра после запятой равна цифре слева от запятой в числе $n\sqrt{2}$. Докажите, что α – иррациональное число.

14. Найдутся ли на плоскости 4 точки, все попарные расстояния между которыми — нечётные числа?

8 класс Рациональное и иррациональное 29 сентября 2018

1. Докажите, что высота в треугольнике с рациональными длинами сторон делит противоположную сторону на отрезки рациональной длины.

2. Докажите, что в десятичной записи числа $\sqrt{2018}$ можно переставить цифры так, что полученная дробь станет рациональным числом.

3. Докажите, что существуют иррациональные α и β такие, что число α^{β} рационально.

4. Найдите все x такие, при которых среди четырёх чисел $a=x-\sqrt{2}$, $b=x-\frac{1}{x},\,c=x+\frac{1}{x},\,d=x^2+2\sqrt{2}$ ровно одно не является целым.

5. Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение — рациональное число. Докажите, что квадраты всех чисел рациональны.

6. Числа x, y и z таковы, что все три числа x + yz, y + zx и z + xy рациональны, а $x^2 + y^2 = 1$. Докажите, что число xyz^2 также рационально.

7. Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём ровно 50 из них рациональные. Затем в каждую клетку таблицы он записал произведение чисел, написанных около её строки и её столбца ("таблица умножения"). Какое наибольшее количество произведений в этой таблице могли оказаться рациональными числами?

8. Даны числа x_1, x_2, \ldots, x_n , причем $x_1 \cdot x_2 \cdot \ldots \cdot x_n = a$. Известно, что число $|x_i - a|$ нечетно для всех $i = 1, 2, \ldots, n$. Докажите, что все x_i иррациональны.

9. Числовое множество M, содержащее 2018 различных чисел, таково, что для любых двух различных элементов a,b из M число $a^2+b\sqrt{2}$ рационально. Докажите, что для любого a из M число $a\sqrt{2}$ рационально.

10. Докажите, что существуют $m, n \in \mathbb{N}$ такие, что $|m\sqrt{2} - n| < \frac{1}{10^{100}}$.

11. Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что количество треугольников чётно.

12. Выпишем число: 0, запятая, а дальше все натуральные степени числа 2019 в произвольном порядке. Может ли такое число быть рациональным?

13. В числе $\alpha = 0, 12457\dots n$ -я цифра после запятой равна цифре слева от запятой в числе $n\sqrt{2}$. Докажите, что α – иррациональное число.

14. Найдутся ли на плоскости 4 точки, все попарные расстояния между которыми — нечётные числа?