Partiel de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM (4 points ; pas de points négatifs)

Entourer la bonne réponse

1- Supposons que le vecteur vitesse est de norme $v = \frac{2}{\sqrt{1-t^2}}$ et l'accélération normale est $a_N = \frac{2}{1-t^2}$, on peut dire que le rayon de courbure vaut :

a)
$$R = 2$$

b)
$$R = \sqrt{1 - t^2}$$

c)
$$R = \frac{1}{\sqrt{1-t^2}}$$

2- Le vecteur accélération d'un mouvement circulaire décéléré en base de Frenet s'écrit :

a)
$$\vec{a} = \begin{pmatrix} a_T < 0 \\ a_N < 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$$

c)
$$\vec{a} = \begin{pmatrix} a_T < 0 \\ a_N = 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$$

a)
$$\vec{a} = \begin{pmatrix} a_T < 0 \\ a_N < 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$$

b) $\vec{a} = \begin{pmatrix} a_T < 0 \\ a_N > 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$

c)
$$\vec{a} = \begin{pmatrix} a_T < 0 \\ a_N = 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$$

d) $\vec{a} = \begin{pmatrix} a_T = 0 \\ a_N > 0 \end{pmatrix}_{(\vec{u}_T, \vec{u}_N)}$

3- Dans la base de Frenet le vecteur vitesse s'écrit :

a)
$$\vec{v} = R\dot{\theta}\overrightarrow{u_T}$$

b)
$$\vec{v} = R \ddot{\theta} \overrightarrow{u_T}$$

c)
$$\vec{v} = R\dot{\theta}\overrightarrow{u_N}$$

4- La condition d'équilibre de rotation est donnée par :

a)
$$\sum (\vec{F}_{ext}) = \vec{0}$$

c)
$$\sum (\vec{F}_{ext}) = m\vec{a}$$

b)
$$\sum \vec{M} /_{\Delta}(\vec{F}_{ext}) = \frac{d\vec{L}}{dt}$$
 d) $\sum \vec{M} /_{\Delta}(\vec{F}_{ext}) = \vec{0}$

d)
$$\sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \vec{0}$$

5- Le moment de la tension \vec{T} par rapport au point d'appui du triangle est :

- a) nul
- b) -T.L/2
- c) 3.T.L/4
- d) T.L/4

6- Une force conservative est une force dont le travail est

- a) nul quel que soit le trajet
- b) strictement positif
- c) indépendant du chemin suivi

7- Le théorème d'énergie mécanique pour un mouvement quelconque est donné par :

a)
$$\Delta E_m = W(\vec{P})$$
 Où \vec{P} est le poids

b)
$$\Delta E_m = W(\vec{f})$$
 Où \vec{f} est la force de frottement

c)
$$\Delta E_m = \Delta E_c + \Delta E_p$$

8- Une masse m glisse sur la piste AB représentée dans le schéma ci-dessous :

$$OA = OB = R$$
.

Le travail de la force de frottement sur le trajet AB est

a)
$$W(\vec{f}) = -f.R.\cos(\theta)$$
 b) $W(\vec{f}) = f(1-\cos(\theta))$ c) $W(\vec{f}) = -f.R\theta$

b)
$$W(\vec{f}) = f(1 - \cos(\theta))$$

c)
$$W(\vec{f}) = -f.R\theta$$

Exercice 1 (4 points)

Un point matériel décrit un cercle de centre 0 et de rayon R avec une vitesse \vec{V} de norme :

$$V(t) = \frac{V_0}{1 + \alpha t}$$
 où V_0 et α sont deux constantes positives.

1- Exprimer l'abscisse curviligne s(t), sachant que s(t = 0) = 0.

2- Exprimer les composantes du vecteur accélération en base de Frenet.
Exercice 2 (6 points)
Une enseigne de magasin est composée d'une barre OA de masse m et de longueur L mobile autour d'un point O. A l'extrémité A de la barre est suspendu un objet décoratif de masse M. En un point B te
que $(OB = \frac{1}{4}.L)$ est fixée une tige BC perpendiculaire à la barre OA. Lorsque l'enseigne est placée sur
son support, la barre OA fait un angle $\alpha = 30^{\circ}$ avec la verticale.
C M M
1- Faire le bilan des forces extérieures exercées sur la barre OA, en précisant leurs points d'application Représenter ces forces.

2- a) Ecrire la condition d'équilibre de rotation, en déduire l'expression littérale de la force \vec{F} exerc par la tige BC sur la barre OA. Sachant qu'elle est dirigée le long de la tige BC	ée:
b) Foire l'application numérique nour m = 2kg : M = 2kg : g = 10m s ⁻²	
b) Faire l'application numérique pour m = 2kg; M = 3kg; g = 10m.s ⁻² .	
3- Utiliser la condition d'équilibre de translation pour exprimer les composantes R _x et R _y de la réacti au point O. Faire l'application numérique.	ion

Exercice 3 (6 points)

Une masse m est lâchée sans vitesse initiale du point $A:(V_A=0)$. Au point B, elle suit le profil circulaire décrit par la boucle BCB de centre O et de rayon R, en tournant dans le sens trigonométrique à l'intérieur de la boucle.

Pour tout l'exercice les frottements sont négligeables.

1- Utiliser le théorème d'énergie mécanique entre A et B pour calculer la vitesse $V_{\rm B.}$ On donne : $g=10 \text{m.s}^{-2}$ et h=1 m.

2- Utiliser le théorème d'énergie mécanique entre le point A et le point M pour exprimer la vitesse V_M au point M, en fonction de g, R (rayon), h et l'angle θ .

représenter la réad ntérieur de la boucle		ır la masse m au p ion de g, h, m, R (r		
deuxième loi de Ne			,,	,