Optimal Transport And WGAN

Yiping Lu¹

¹School of Mathmetical Science Peking University

Data Science Seminar, PKU, 2017

Outline

Introduction To Optimal Transport.

- Minkowski Type Problems
 - Picewise Linear Function And Power Diagram

WGAN

Outline

Introduction To Optimal Transport.

- 2 Minkowski Type Problems
 - Picewise Linear Function And Power Diagram
- 3 WGAN

Yiping Lu (pku) Geometry Of WGAN 3/34

Optimal Transport

Monge

Objective: Calculate a transport map $T_{\#}\mu = v$ which minimize the transport cost

$$c(T) = \int c(x, T(x)) d\mu(x)$$

Kantorovich

Objective: Calculate a transport plane minimize the transport cost

$$c(\Pi) = \int c(x,y)\Pi(x,y)$$

Optimal Transport: Linear Programming View

The optimal transport is a convex problem, which can be formulated as

$$\min \langle C, F \rangle$$

$$s.t. \sum_{i} F_{i,j} = q_{i}$$

$$\sum_{j} F_{i,j} = q_{i}$$

is a special case of the linear programming:

$$min c^T x$$
 $s.t.Ax = b, x \ge 0$

Yiping Lu (pku) Geometry Of WGAN 5/34

Linear Programming

Consider the dual problem of the linear programming problem. **Dual:**

Primal:

$$\min c^T x$$
 $\min b^T y$ $s.t.A^T y \le c$ $s.t.Ax = b.x > 0$

and we have the relation:

$$\inf_{Ax=b,x\geq 0} c^T x = \inf_{x\geq 0} \sup_{y} c^T x + y^T (b - Ax)$$
$$= {}^{?} \sup_{y} \inf_{x\geq 0} c^T x - y^T Ax + y^T b$$
$$= \sup_{A^T y \leq c} y^T b$$

Yiping Lu (pku) Geometry Of WGAN 6/34

First, let us express the constraint $\gamma \in \Pi(\mu, v)$ in the following way.

$$\sup_{\phi,\psi} \int_{X} \phi d\mu + \int_{Y} \psi dv - \int_{X\times Y} (\phi(x) + \psi(y)) d\gamma$$

so that the primal problem can be expressed by

$$\min_{\gamma \geq 0} \int_{X \times Y} + \sup_{\phi, \psi} \int_{X} \phi d\mu + \int_{Y} \psi dv - \int_{X \times Y} (\phi(x) + \psi(y)) d\gamma$$

then consider interchanging sup and inf:

$$\sup_{\phi,\psi} \int_{X} \phi d\mu + \int_{Y} \psi dv + \inf_{\gamma \geq 0} \int_{X \times Y} (c(x,y) - (\phi(x) + \psi(y))) d\gamma$$

Yiping Lu (pku) Geometry Of WGAN 7/34

If the central notion in the original Monge-Kantorovich problem is cost, in the dual problem it is price.

Imagine that a company offers to take care of all your transportation problem, buying bread at the bakeries and selling them to the cafes. Let $\psi(x)$ be the price at which a basker of bread at the bakery x and selling them to the cafe y at the price $\phi(y)$ Let us maximize the profit:

$$\sup\left\{\int_{Y}\phi(y)d\upsilon(y)-\int_{X}\psi(x)d\mu(y)|\phi(y)-\psi(x)\leq c(x,y)\right\}$$

Yiping Lu (pku) Geometry Of WGAN 8/34

It is easy to proof that

$$\sup_{\phi-\psi\leq c} \left\{ \int_{Y} \phi(y) dv(y) - \int_{X} \psi(x) d\mu(y) \right\}$$

$$\leq \inf_{\pi\in\Pi(\mu,v)} \left\{ \int_{X\times Y} c(x,y) d\pi(x,y) \right\}$$

If we describe a pair of prices (ϕ, ψ) as tight if

$$\phi(y) = \inf_{x} (\psi(x) + c(x, y))$$
$$\psi(x) = \sup_{y} (\phi(y) - c(x, y))$$

The following formula can be seen as the definition of c-transform.

Yiping Lu (pku) Geometry Of WGAN 9/34

Definition

Once a function $c: X \times \to \mathbb{R} \cup \{+\infty\}$ is given , we say that a set $\Gamma \subset X \times Y$ is c-cyclically monotone if for every $k \in \mathbb{N}$, every permutation σ and every finite family of points $(x_1, y_1), \cdots, (x_k, y_k) \in \Gamma$ we have

$$\sum_{i=1}^k c(x_i, y_i) \leq \sum_{i=1}^k c(x_i, y_{\sigma(i)})$$

Yiping Lu (pku) Geometry Of WGAN 10/34

Definition

Once a function $c: X \times \to \mathbb{R} \cup \{+\infty\}$ is given , we say that a set $\Gamma \subset X \times Y$ is c-cyclically monotone if for every $k \in \mathbb{N}$, every permutation σ and every finite family of points $(x_1, y_1), \cdots, (x_k, y_k) \in \Gamma$ we have

$$\sum_{i=1}^k c(x_i, y_i) \leq \sum_{i=1}^k c(x_i, y_{\sigma(i)})$$

Theorem

If γ is an optimal transport plane for the cost c and c is continuous, then $\operatorname{spt}(\gamma)$ is a CM-set.

Yiping Lu (pku) Geometry Of WGAN 10/34

Theorem

Rockafellar's Theorem

If $\Gamma \neq \emptyset$ is a c-CM set in $X \times Y$ and $c: X \times Y \to \mathbb{R}$, then there exists a c-concave function $\phi: X \to \mathbb{R} \cup \{-\infty\}$ such that

$$\Gamma \subset \{(x, y) \in X \times Y : \phi(x) + \phi^{c}(y) = c(x, y)\}$$

Yiping Lu (pku) Geometry Of WGAN 11/34

Theorem

Rockafellar's Theorem

If $\Gamma \neq \emptyset$ is a c-CM set in $X \times Y$ and $c: X \times Y \to \mathbb{R}$, then there exists a c-concave function $\phi: X \to \mathbb{R} \cup \{-\infty\}$ such that

$$\Gamma \subset \{(x,y) \in X \times Y : \phi(x) + \phi^{c}(y) = c(x,y)\}$$

Proof.

The function ϕ can be defined as

$$\phi(x) = \inf\{c(x, y_n) - c(x_n, y_n) + c(x_n, y_{n-1}) - c(x_{n-1}, y_{n-1}) + \cdots + c(x_1, y_0) - c(x_0, y_0) : n \in \mathbb{N}, (x_i, y_i) \in \Gamma\}$$

Yiping Lu (pku) Geometry Of WGAN 11/34

As a result, we can get a theorem as below.

Theorem

If c is C^1 , ϕ is a Kantorovich potential for the cost c in the transport from μ to v, and (x_0, y_0) belongs to the support of an optimal transport plane γ , then $\nabla_{\phi}(x_0) = \nabla_x c(x_0, y_0)$, provided ϕ is differentiable at x_0 .

As a result, we can get a theorem as below.

Theorem

If c is C^1 , ϕ is a Kantorovich potential for the cost c in the transport from μ to v, and (x_0, y_0) belongs to the support of an optimal transport plane γ , then $\nabla_{\phi}(x_0) = \nabla_x c(x_0, y_0)$, provided ϕ is differentiable at x_0 .

As an example, if the cost function has the **following form** c(x,y) = h(x-y), h is strictly convex. Then there is exists an optimal transport plan γ for the cost c(x,y) and is unique of the form $(id,T)_{\#}\mu$.

Moreover, ther exists a Kantorovich potential ϕ and T and the potentials ϕ are linked by

$$T(x) = x - (\nabla h)^{-1}(\nabla \phi(x))$$

Yiping Lu (pku) Geometry Of WGAN 12/34

Quadratic Case

For the quadratic case $c(x, y) = \frac{1}{2}|x - y|^2$

$$T(x) = x - \nabla \phi(x) = \nabla (\frac{x^2}{2} - \phi(x)) = \nabla u(x)$$

Theorem

For function $X:\mathbb{R}^n \to \mathbb{R}$, let us define $u_X = \frac{1}{2}|x|^2 - X(x)$, then we have

$$u_{X^c}=(u_X)^*$$

Proof.

$$u_{X^c}(x) = \sup_{y} \frac{1}{2} |x|^2 - \frac{1}{2} |x - y|^2 + X(y) = \sup_{y} x \cdot y - \left(\frac{1}{2} |y|^2 - X(y)\right)$$

Yiping Lu (pku) Geometry Of WGAN 13/34

Quadratic Case

We go futhur more on the quadratic case, we only need to minimize the $\int x \cdot y d\gamma$ gives the same result.

We can give the same result easier, actually we have $\phi(x_0) + \phi^*(y_0) = x_0 \cdot y_0$ for $y_0 \in \partial \phi(x_0)$, which means

Theorem

For the quadratic case, there exists unique an optimal transport map T from μ to v and it is of the form $T = \nabla u$ for a convex function u

Quadratic Case

We go futhur more on the quadratic case, we only need to minimize the $\int x \cdot y d\gamma$ gives the same result.

We can give the same result easier, actually we have $\phi(x_0) + \phi^*(y_0) = x_0 \cdot y_0$ for $y_0 \in \partial \phi(x_0)$, which means

Theorem

For the quadratic case, there exists unique an optimal transport map T from μ to v and it is of the form $T = \nabla u$ for a convex function u

Remark

- The φ above is called Kantorovich Potential.
- The u here is called **Brenier Potential**.

Outline

Introduction To Optimal Transport

- Minkowski Type Problems
 - Picewise Linear Function And Power Diagram
- 3 WGAN

Minkowski Problem

Theorem

Suppose Ω is a compact convex polytope with non-empty interior in \mathbb{R}^n are distinct k points and $A_1, A_2, \cdots, A_k > 0$ s.t. $\sum_{i=1}^k A_i = vol(\Omega)$. Then there exists a vector $h = (h_1, \cdots, h_k) \in \mathbb{R}^k$, unique up to adding the constant (c, c, \cdots, c) , so that the piecewise linear convex function

$$u(x) = \max_{x \in \Omega} \{x \cdot p_i + h_i\}$$

satisfies $vol(\{x \in \Omega | \nabla u(x) = p_i\}) = A_i$

Minkowski Problem

Figure 2: Discrete Optimal Transport Mapping (left to right): map W_i to p_i . Discrete Monge-Ampere equation (right to left): $vol(W_i)$ is the discrete Hessian determinant of p_i .

Yiping Lu (pku) Geometry Of WGAN 17/34

Outline

Introduction To Optimal Transport

- Minkowski Type Problems
 - Picewise Linear Function And Power Diagram

3 WGAN

Piecewise Linear(PL) Function

Definition

PL Function: For $P = \{p_1, \dots, p_k\}$ and $h = (h_1, \dots, h_k) \in \mathbb{R}^k$, we define the PL convex function $u_h(x)$ to be

$$u(x) = \max\{p_i \cdot x + h_i | i = 1, 2, \cdots, k\}$$

The domain $D(u^*)$ of the dual function u^* is the convex hull of P and

$$u^*(y) = \min\{-\sum_{i=1}^k t_i h_i | t_i \ge 0, \sum_{i=1}^k t_i = 1, \sum_{i=1}^k t_i p_i = y\}$$

Yiping Lu (pku) Geometry Of WGAN 19/34

Piecewise Linear(PL) Function

PL-convex function *f* defined on a closed convex polyhedron produces a convex subdivision.

Power Diagram

Definition

(**Power Distance**) Given a point $y_i \in \mathbb{R}^n$ with a power weight ϕ_i the power distance is given by

$$pow(x, y_i) = |x - y_i|^2 - \phi_i$$

Definition

(**Power Diagram**) Given weighted points $\{(y_i, \phi_i)\}$, the power diagram is the cell decompostion of \mathbb{R}^n , denote as $V(\phi)$

$$\mathbb{R}^n = \bigcup_{i=1}^k W_i(\phi), W_i(\phi) = \{x \in \mathbb{R}^n | pow(x, y_i) \le pow(x, y_i), \forall j\}$$

Each cell is a convex polytope

Yiping Lu (pku) Geometry Of WGAN 21/34

Power Diagram

Now consider a eqaul construction as let $h_i = \frac{1}{2}(\phi_i - |y_i|^2)$, we construct the convex function

$$u_h(x) = \max_i \{\langle x, y_i \rangle + h\}, W_i(h) = \max_i \{x \cdot p_i + h_i\}$$

Figure 5: Power diagram (blue) and its dual weighted Delaunay triangulation (black), the power weight ψ_i equal to the square of radius r_i (red circle).

Yiping Lu (pku) Geometry Of WGAN 22/34

Variation

Proposition

Suppose $\sigma \to \mathbb{R}$ is continuous defined on a compact convex domain $\Omega \subset \mathbb{R}^n$. If $p_1, \dots, p_k \in \mathbb{R}^n$ are distinct and $h \in \mathbb{R}^k$ so that $vol(W_i(h) \cap \Omega) > 0$ for all i, then $\omega_i(h) = \int_{W_i(h) \cap \Omega} \sigma(x)$ is a differentialable function in h so that for $j \neq i$ and $W_i(h) \cap \Omega$ and $W_i(h) \cap \Omega$ share a codimension-1 face F,

$$\frac{\partial \omega_i(h)}{\partial h_i} = -\frac{1}{|p_i - p_i|} \int_F \sigma_F(x) dA$$

where dA is the area form on F and parital derivative is zero otherwise.

Geometry Of WGAN 23/34

Variation

It is easy to observe that $\frac{\partial \omega_i}{\partial h_i} = \frac{\partial \omega_j}{\partial h_i}$, thus we can give our main theorem.

Theorem

Theorem 4.3 (Gu-Luo-Sun-Yau[12]) Let Ω be a compact convex domain in \mathbb{R}^n , $\{y_1, ..., y_k\}$ be a set of distinct points in \mathbb{R}^n and μ a probability measure on Ω . Then for any $\nu_1, ..., \nu_k > 0$ with $\sum_{i=1}^k \nu_i = \mu(\Omega)$, there exists $h = (h_1, ..., h_k) \in \mathbb{R}^k$, unique up to adding a constant (c, ..., c), so that $w_i(h) = \nu_i$, for all i. The vectors h are exactly maximum points of the concave function

$$E(h) = \sum_{i=1}^{k} h_i \nu_i - \int_0^h \sum_{i=1}^k w_i(\eta) d\eta_i$$
 (19)

on the open convex set

$$H = \{ h \in \mathbb{R}^k | w_i(h) > 0, \forall i \}.$$

Furthermore, ∇u_h minimizes the quadratic cost

$$\int_{\Omega} |x - T(x)|^2 d\mu(x)$$

among all transport maps $T_{\#}\mu = \nu$, where the Dirac measure $\nu = \sum_{i=1}^k \nu_i \delta_{y_i}$.

Yiping Lu (pku) Geometry Of WGAN 24/34

Semi-discrete Optimal Mass Transport

For our empirical distribution is defined as the sum of several Dirac measure $v = \sum_{j=1}^{k} v_j \delta(y - y_j)$ Define the discrete Kantorovich potential $\phi : Y \to \mathbb{R}, \phi(y_i) = \phi_i$, then

$$\int_{Y} \phi dv = \sum_{j=1}^{k} \phi_{j} v_{j}$$

Define the c-transformation of ϕ is given by

$$\phi^{c}(x) = \min_{1 \le j \le k} \{c(x, y_j) - \phi_j\}$$

and each cell is defined as

$$W_i(\phi) = \{x \in X | c(x, y_i) - \phi_i \le c(x, y_i) - \phi_i, \forall 1 \le i \le k\}$$

Yiping Lu (pku) Geometry Of WGAN 25/34

Brenier's Approach

We only consider the situation that the cost function is the L^2 distance. Here

$$u_h(x) = \max_{i=1}^k \{\langle x, y_i \rangle + h\}$$

Then

$$W_i(h) = \{x \in X | \nabla u_h(x) = y_i\} \cap \Omega$$

and at the same time

$$\nabla u_h: W_i(h) \rightarrow y_i, i = 1, 2, \cdots, k$$

Outline

Introduction To Optimal Transport

- Minkowski Type Problems
 - Picewise Linear Function And Power Diagram

WGAN

Objective Function:

$$\min_{\boldsymbol{\nu} \in \boldsymbol{U}} \max_{\boldsymbol{\nu}} \mathbb{E}_{\boldsymbol{X} \sim D_{real}}[\phi(D_{\boldsymbol{\nu}}(\boldsymbol{X}))] + \mathbb{E}_{\boldsymbol{X} \sim D_{G}}[\phi(1 - D_{\boldsymbol{\nu}}(\boldsymbol{X}))]$$

- GAN: $\phi = \log$
- WGAN: $\phi = id$

Objective Function:

$$\min_{\boldsymbol{U} \in \boldsymbol{U}} \max_{\boldsymbol{V}} \mathbb{E}_{\boldsymbol{X} \sim D_{real}}[\phi(D_{\boldsymbol{V}}(\boldsymbol{X}))] + \mathbb{E}_{\boldsymbol{X} \sim D_{\boldsymbol{G}}}[\phi(1 - D_{\boldsymbol{V}}(\boldsymbol{X}))]$$

- GAN: $\phi = \log$
- WGAN: $\phi = id$

Rewrite the WGAN Objective:

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[D_v(x)] + \mathbb{E}_{x \sim D_G}[1 - D_v(x)]$$

28/34 Yiping Lu (pku) Geometry Of WGAN

Objective Function:

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[\phi(D_v(x))] + \mathbb{E}_{x \sim D_G}[\phi(1 - D_v(x))]$$

- GAN: $\phi = \log$
- WGAN: $\phi = id$

Rewrite the WGAN Objective:

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[D_v(x)] + \mathbb{E}_{x \sim D_G}[1 - D_v(x)]$$

equal to

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[D_v(x)] - \mathbb{E}_{x \sim D_G}[D_v(x)]$$

Yiping Lu (pku) Geometry Of WGAN 28/34

Objective Function:

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[\phi(D_v(x))] + \mathbb{E}_{x \sim D_G}[\phi(1 - D_v(x))]$$

- GAN: $\phi = \log$
- WGAN: $\phi = id$

Rewrite the WGAN Objective:

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[D_v(x)] + \mathbb{E}_{x \sim D_G}[1 - D_v(x)]$$

equal to

$$\min_{u \in U} \max_{v} \mathbb{E}_{x \sim D_{real}}[D_v(x)] - \mathbb{E}_{x \sim D_G}[D_v(x)]$$

For if c(x, y) = |x - y|, then $\phi^c = -\phi(1-\text{Lip})$, approximate to W_1 Distance

Geometric Generative Model

- Ecoding/Decoding process: This setp maps the smaples between the image space X and the latent space Z by deep neural networks, the encoding map is denoted as $f_{\theta}: X \to Z$ and decoding map is $g_{\varepsilon}: Z \to X$
- Probability measure transformation process: This step transform a fixed distibution $\xi \in P(Z)$ to any given distribution $\mu \in P(Z)$, the mapping is denoted as $T: Z \to Z, T_\# \xi = \mu$. This step can either use conventional deep neural network or use explicit geometric/numerical methods.

Yiping Lu (pku) Geometry Of WGAN 29/34

WGAN

Geometric OMT

Figure 9: Geometric model learns the Gaussian mixture distribution .

Yiping Lu (pku) Geometry Of WGAN 31/34

Geometric Method

Figure 10: Illustration of geometric generative model.

Geometric Method

Figure 11: Illustration of geometric generative model.

Yiping Lu (pku) Geometry Of WGAN 33/34

Conclusion

- 1. 生成器:最优映射等价于Power胞腔分解,将每个胞腔 W_i 映到 y_i ,
- 2. 判别器:Wasserstein距离中 $W_c(\mu,
 u)$ 中的 ψ 等于power 权重,
- 3. 判别器:Wasserstein距离Kantorovich势能 φ 等于power距离, $\varphi(x) = \min_i \{ \mathrm{pow}(x,y_i) \}$
- 4. 生成器: Brenier势能等于Power Diagram的上包络。

Yiping Lu (pku) Geometry Of WGAN 34/34