# $\chi^2$ Contingency Test:

 Tests goodness-of-fit to the data of the null hypothesis of <u>independence of variables</u>

 Two categorical variables but, unlike the Odds Ratio, each variable can have more than 2 categories

# A chi-squared test statistic in a test of a contingency table that is equal to zero means:

- A. The two nominal variables have values consistence with independence.
- B. The two nominal variables have values that are consistent with equality.
- C. The two nominal variables have the same proportions listed in Ho.
- D. All of these choices.

# $\chi^2$ Contingency Test:

 Tests goodness-of-fit to the data of the null hypothesis of <u>independence of variables</u>

 Two categorical variables but, unlike the Odds Ratio, each variable can have more than 2 categories

# When is it appropriate to use Chi-Squared tests?

-----

- a. When you are determining if two categorical variables are associated.
- b. When you are directly comparing proportions
- c. When your number of independent data points is less than 5
- d. When you are looking for an exact P value.

# Example: Is there a relationship between age at first birth and the development of breast cancer?

|                 | <20  | 20-29 | 30-34 | >=35 | Row total |
|-----------------|------|-------|-------|------|-----------|
| Cancer          | 320  | 2217  | 463   | 220  | 3220      |
| No Cancer       | 1422 | 7325  | 1092  | 406  | 10245     |
| Column<br>Total | 1742 | 9542  | 1555  | 626  | 13465     |

# STEP 1: Formulate null hypothesis

Example: Is there a relationship between age at first birth and the development of breast cancer?

|                 | <20  | 20-29 | 30-34 | >=35 | Row<br>total |
|-----------------|------|-------|-------|------|--------------|
| Cancer          | 320  | 2217  | 463   | 220  | 3220         |
| No Cancer       | 1422 | 7325  | 1092  | 406  | 10245        |
| Column<br>Total | 1742 | 9542  | 1555  | 626  | 13465        |

### Step 1:

H<sub>0</sub>: The development of breast cancer is *independent* of the age at first birth

H<sub>A</sub>: The development of breast cancer is *dependent* of the age at first birth

Step 2: Identify the test statistic

 $\chi^2$  expectation under independence

With independence,

P[Age at first birth AND breast cancer] = ?

Example: Is there a relationship between age at first birth and the development of breast cancer?

|                 | <20  | 20-29 | 30-34 | >=35 | Row<br>total |
|-----------------|------|-------|-------|------|--------------|
| Cancer          | 320  | 2217  | 463   | 220  | 3220         |
| No Cancer       | 1422 | 7325  | 1092  | 406  | 10245        |
| Column<br>Total | 1742 | 9542  | 1555  | 626  | 13465        |

### <u>Step 1:</u>

H<sub>0</sub>: The development of breast cancer is *independent* of the age at first birth

H<sub>A</sub>: The development of breast cancer is *dependent* of the age at first birth

### Step 2: Identify the test statistic

 $\chi^2$  expectation under independence

With independence,

P[Particular Age at first birth AND breast cancer] = P[Particulat Age at first birth]P[Breast cancer]

### Calculating the expectations under $H_0$ :

|                 | <20  | 20-29 | 30-34 | >=35 | Row<br>total |
|-----------------|------|-------|-------|------|--------------|
| Cancer          | 320  | 2217  | 463   | 220  | 3220         |
| No Cancer       | 1422 | 7325  | 1092  | 406  | 10245        |
| Column<br>Total | 1742 | 9542  | 1555  | 626  | 13465        |

$$P[Age < 20Birth] = \frac{1742}{13465} = 0.13$$

$$P[Cancer] = \frac{3220}{13465} = 0.24$$

$$P[Cancer] = \frac{3220}{13465} = 0.24$$
$$P[NoCancer] = \frac{10245}{13465} = 0.76$$

## If H<sub>0</sub> is true, then:

P[< 20 Age at first birth AND breast cancer] = 0.13\*0.24 = 0.031

# Calculating the expected **COUNTS** under H<sub>0</sub>:

| EXPECTED<br>values<br>Under Ho | <20    | 20-29  | 30-34  | >=35  | Row total |
|--------------------------------|--------|--------|--------|-------|-----------|
| Cancer                         |        |        |        |       | 3220      |
|                                | 416.6  | 2281.9 | 371.9  | 149.7 |           |
|                                | 320    | 2217   | 463    | 220   |           |
| No Cancer                      |        |        |        |       | 10245     |
|                                | 1325.6 | 7260.2 | 1183.2 | 477   |           |
|                                | 1422   | 7325   | 1092   | 406   |           |
| Column Total                   | 1742   | 9542   | 1555   | 626   | 13465     |

## χ<sup>2</sup> Contingency Test

$$\chi^{2} = \sum_{i} \frac{(Observed_{i} - Expected_{i})^{2}}{Expected_{i}} = 104.76$$

$$=\frac{(416.6-320)^2}{416.6}+\frac{(2281.9-2217)^2}{2281.9}+\frac{(371.9-463)^2}{371.9}+\frac{(149.7-220)^2}{149.7}+\frac{(1325.6-1422)^2}{1325.6}+\frac{(7260.2-7325)^2}{7260.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(477-406)^2}{477}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183.2-1092)^2}{1183.2}+\frac{(1183$$

### **Degrees of Freedom:**

$$dof = (row - 1)(column - 1)$$

For the Birth age/cancer example,

$$dof = (2-1)(4-1)=3$$

# What would a chi-square contingency test resulting in a significance value of P > 0.05 suggest?

\_\_\_\_\_

- A. We cannot reject the hypothesis of independence between the two variables
- B. We cannot reject the hypothesis of dependency between the two variables
- C. There is a significant relationship between the two variables
- D. We can reject the hypothesis of dependency between the two variables

# **Conclusion:**

$$\chi^2 = 104.76 >> \chi_3^2 = 7.81$$

We can reject the null hypothesis of independence with a significance level of at least 0.05 and say that the age of first birth Was not independent on whether or not breast cancer eventually Developed.

# **Assumptions:**

• The  $\chi^2$  test is a special case of the  $\chi^2$  goodness-of-fit test and so it has the same assumptions

 You can't have any expectation < 1 and no more than 20% of the expected categories < 5</li> Example: Does the nationality of background music effect the nationality of wine that is bought?

| <u>Observed</u>              | French<br>Music | German<br>Music | Row<br>Totals |
|------------------------------|-----------------|-----------------|---------------|
| Bottles of French Wine       | 40              | 12              | 52            |
| Bottles of<br>German<br>Wine | 8               | 22              | 30            |
| Column<br>Totals             | 48              | 34              | 82            |

Example: Does the nationality of background music effect the nationality of wine that is bought?



Example: Does the nationality of background music effect the nationality of wine that is bought?

# Hypotheses:

H<sub>0</sub>: The nationality of the purchased bottle of wine is *independent* of the nationality of the music played when it is sold

H<sub>A</sub>: The nationality of the bottle of wine sold *depends* on the nationality of the music played when it is sold

Example: Does the nationality of background music effect the nationality of wine that is bought?

### Hypotheses:

H<sub>0</sub>: The nationality of the purchased bottle of wine is *independent* of the nationality of the music played when it is sold

H<sub>A</sub>: The nationality of the bottle of wine sold *depends* on the nationality of the music played when it is sold

2. Test statistic:  $\chi^2$  expectation under independence With independence,

P[French wine AND French music] = ?

Example: Does the nationality of background music effect the nationality of wine that is bought?

### Hypotheses:

H<sub>0</sub>: The nationality of the purchased bottle of wine is *independent* of the nationality of the music played when it is sold

H<sub>A</sub>: The nationality of the bottle of wine sold *depends* on the nationality of the music played when it is sold

2. Test statistic:  $\chi^2$  expectation under independence

With independence,

P[French wine AND French music] =

P[French Wine]xP[French Music]

### Calculating the expectations under H<sub>0</sub>:

| Obs' d                          | French<br>Music | German<br>Music | Row<br>Totals |
|---------------------------------|-----------------|-----------------|---------------|
| Bottles<br>of<br>French<br>Wine | 40              | 12              | 52            |
| Bottles<br>of<br>German<br>Wine | 8               | 22              | 30            |
| Column<br>Totals                | 48              | 34              | 82            |

$$P[FrenchWine] = \frac{52}{82} = 0.634$$
$$P[FrenchMusic] = \frac{48}{82} = 0.585$$

### If H<sub>0</sub> is true, then:

P[Fr Music and Fr Wine] = (0.634)(0.585)

# Calculating the expectations under H<sub>0</sub>:

| Expected               | French Music          | German Music | Row Totals |
|------------------------|-----------------------|--------------|------------|
| Bottles of French Wine | 0.37(82) = 30.4<br>40 | 21.6         | 52         |
| Bottles of German Wine | 17.6                  | 12.4         | 30         |
| Column Totals          | 48                    | 34           | 82         |

## χ<sup>2</sup> Contingency Test

$$\chi^{2} = \sum_{i} \frac{(Observed_{i} - Expected_{i})^{2}}{Expected_{i}}$$

$$= \frac{(40-30.4)^2}{30.4} + \frac{(12-21.6)^2}{21.6} + \frac{(8-17.6)^2}{17.6} + \frac{(22-12.4)^2}{12.4}$$

= 20

## **Degrees of Freedom:**

$$dof = (row - 1)(column - 1)$$

For the music/wine nationality example,

$$dof = (2-1)(2-1)=1$$

# **Conclusion:**

$$\chi^2 = 20 >> \chi^2_{1,\alpha=0.05} = 3.85$$

We can reject the null hypothesis of independence with a significance level of at least 0.05 and say that the nationality of the wine sold was not independent on what music was played.

# **Assumptions:**

• The  $\chi^2$  test is a special case of the  $\chi^2$  goodness-of-fit test and so it has the same assumptions

 You can't have any expectation < 1 and no more than 20% of the categories < 5</li>