Contents

2장 논리

- 학습목표
 - 명제를 이해하고 진릿값을 판별한다.
 - 논리연산자를 이용해 합성명제를 만들고 그 진릿값을 판별한다.
 - 논리적 동치를 이해하고 동치인 명제를 작성한다.
 - 논의영역에 따른 명제함수의 진릿값을 판별한다.
 - 추론을 이해하여 결론을 유도한다.

❖ 진릿값과 명제

정의 3-1 명제(Proposition)

객관적인 기준으로 진릿값을 구분할 수 있는 문장이나 수식: 영어 소문자 $p,q,r\cdots$ 로 표현

정의 3-2 진릿값(Tuth value)

참(true: T)이나 거짓(false: F)을 가리키는 값

예제 3-1

다음 문장이 명제인지 아닌지 구분하고 그 이유를 설명하라.

- (1) 대한민국의 수도는 서울특별시이다. (2) 컴퓨터 가격은 비싸다.

(3) x+1=2

(4) 1+1=3

- "정수 χ 에 대하여 $|\chi| \le 0$ 를 만족하는 정수는 적어도 한 개는 있다."
 - |x| ≤ 0를 만족하는 정수의 존재여부에 따라 진릿값이 결정됨
 - \bullet 즉, 위의 문장은 미지수 χ 가 포함되어 있지만 명제가 될 수 있음

다음 문장이 명제인지 명제가 아닌지 구분하고. 명제인 문장은 진릿값을 구하라.

- (1) 정수 값 중에는 $2^n = n^2$ 를 만족하는 정수 n이 하나 이상 존재한다.
- (2) x = y
- (3) 모든 실수 a에 대해 $a^2 = 1$ 을 만족하는 경우는 오로지 a = 1뿐이다.

예제 3-3

다음 명제의 진릿값을 구하라.

미국의 수도는 뉴욕이다.

- (2) 5+3=8 (3) 4는 양수다.

- ❖ 논리연산자와 합성명제
 - 부정

정의 3-3 부정(NOT): $\sim p$ 또는 $\neg p$

문장 p가 명제일 때 "p가 아니다"를 의미하여 p의 진릿값과 반대의 진릿값을 갖는 명제

• 명제 $\neg p = "p$ 가 아니다", "not p" 혹은 "p의 부정" 으로 읽음

[표 3-1] 부정 진리표

p $\neg p$

부정 연산 NOT을 이용해 다음 명제들의 부정 명제 표기와 문장을 작성하고 진릿값을 구하라.

(1) p: 4는 양수이다.

(2)
$$q: 3+5=4$$

(3) r: 뉴욕은 미국의 동부에 있다.

■ 논리곱

정의 3-4 논리곱(AND): *p* ∧ *q*

문장 p, q가 명제일 때 "p 그리고 q"를 의미하여 명제 p, q의 진릿값이 모두 참(T)일 때 참(T)이 되고, 그렇지 않을 때는 거짓(F)이 되는 명제

- 두 개의 명제를 결합하는 이항연산자, '그리고'의 의미를 가짐
- 명제 $p \land q$ 는 "p 그리고 q" 혹은 "p and q" 라고 읽음

[표 3-2] 논리곱 진리표

p	q	$p \wedge q$
---	---	--------------

논리곱 연산 AND를 이용해 다음 명제들의 논리곱 명제 표기와 문장을 작성하고 진릿값을 구하라.

(1) p: 4는 양수이다.

q: 2+6=0

(2) r: 뉴욕은 미국의 동부에 있다. s: 밴쿠버는 캐나다의 서부에 있다.

■ 논리합

정의 3-5 논리합(OR): *p* ∨ *q*

문장 p, q가 명제일 때 "p 또는 q"를 의미하여 명제 p, q의 진릿값이 둘 중 어느 하나라도 참(T) 일 때 참(T)이 되고, 모두 거짓(F)일 때는 거짓(F)이 되는 명제

- 두 개의 명제를 결합하는 데에 사용하는 이항연산자로, '또는'의 의미
- 명제 $p \vee q$ 는 "p 또는 q" 혹은 "p or q" 라고 읽음

[표 3-3] 논리합 진리표

p	q	$p \lor q$
---	---	------------

논리합 연산 OR을 이용해 다음 명제들의 논리합 명제 표기와 문장을 작성하고 진릿값을 구하라.

(1) p: 4는 양수다.

q: 2+6=0

(2) r: 뉴욕은 미국의 서부에 있다. s: 밴쿠버는 캐나다의 동부에 있다.

■ 배타적 논리합

정의 3-6 배타적 논리합(Exclusive OR: XOR): $p \oplus q$

문장 $p,\ q$ 가 명제일 때 명제 $p,\ q$ 의 진릿값 둘 중 하나만 참(T)일 때 참(T)이 되고, 그렇지 않을 때는 거짓(F)이 되는 명제

• 명제 $p \oplus q \vdash "p \text{ XOR } q"$ 라고 읽음

[표 3-4] 배타적 논리합 진리표

p q $p\oplus q$

• 배타적 논리합을 부정(NOT), 논리곱(AND), 논리합(OR)으로 표현

$$p \oplus q \equiv (\neg p \land q) \lor (p \land \neg q)$$

• 진리표

p q $p \oplus q$ $\neg p$ $\neg q$ $\neg p \wedge q$ $p \wedge \neg q$ $(\neg p \wedge q) \vee (p \wedge \neg q)$

■ 합성명제

정의 3-7 합성명제(Compound Proposition)

하나 이상의 명제들이 논리연산자에 의해 결합된 명제

[표 3-6] 논리연산자의 우선순위

우선순위	논리연산자
1	()
2	¬
3	^
4	V

❖ 합성명제는 진릿값에 따라 세 종류로 나눔

정의 3-8 항진명제(Tautology): T

합성명제를 구성하는 단일명제의 진릿값에 상관없이 합성명제의 진릿값이 항상 참(T)인 명제

정의 3-9 모순명제(Contradiction): F

합성명제를 구성하는 단일명제의 진릿값에 상관없이 합성명제의 진릿값이 항상 거짓(F)인 명제

정의 3-10 사건명제(Contingency)

항진명제도 모순명제도 아닌 합성명제

다음 합성명제의 종류를 구분하라.

 $(1) \neg p$

(2) $p \vee \neg p$

(3) $p \land \neg p$

다음은 명제 p와 항진명제 T, 모순명제 F와의 연산이다. 각각의 진리표를 구하라.

(1) $p \vee T$

(2) $p \vee F$

(3) $p \wedge T$

(4) $p \wedge F$

❖ 조건명제

정의 3-11 조건명제(Conditional Proposition) / 함축(Implication) : $p \rightarrow q$

문장 p, q가 명제일 때, 명제 p가 가정 또는 전제이고, 명제 q가 결론 또는 결과가 되는 명제

- 조건명제의 영어 표현
 - if p, then q (p이면 q이다.)
 - p implies q(p 는 q를 함축한다.)
 - *p* only if *q*(*p*일 경우에만 *q*이다.)
 - p is sufficient for q (p 는 q 인 것으로 충분하다.)
 - p is necessary for q (p 는 q 를 위해 필요하다.)

[표 3-7] 조건명제 진리표

|--|

다음 명제들의 조건명제 표기와 문장을 작성하고 진릿값을 구하라(단, 앞의 명제가 가정, 뒤의 명제 가 결론이다).

(1) p: 4는 양수이다.

q: 2+6=0

(2) r: 뉴욕은 미국의 동부에 있다. s: 밴쿠버는 캐나다의 서부에 있다.

명제 p,q가 주어졌을 때, 합성명제 $\neg(p\oplus q) \rightarrow (\neg p \rightarrow q)$ 의 진리표를 구하라.

■ 쌍방조건명제

$$(\underline{p \rightarrow q}) \land (\underline{q \rightarrow p})$$
 ①에서 명제 p 는 가정이고 q 는 결론 ②에서는 명제 q 가 가정이고 p 가 결론

- 이 합성명제는 ①, ② 조건명제의 논리곱(AND) 연산임
- 때문에 명제 p와 q가 모두 가정이 되면서 결론이 됨

정의 3-12 쌍방조건명제(Biconditional Proposition): $p \leftrightarrow q$

문장 p, q가 명제일 때, 명제 p와 q가 가정이면서 동시에 결론인 명제

p	q	$p \longleftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

• 합성명제 $(p \rightarrow q) \land (q \rightarrow p)$ 는 쌍방조건명제 $p \leftrightarrow q$ 에 대한 또 다른 표현임

• 논리연산자의 우선순위

[표 3-10] 논리연산자의 우선순위

우선순위	연산자
1	()
2	_
3	^
4	V
5	\rightarrow
6	\leftrightarrow

[丑 3-9]

p	q	$p \leftrightarrow q$	$p{ ightarrow}q$	$q{ ightarrow}p$	$(p \rightarrow q) \land (q \rightarrow p)$
Т	Т	Т			
Т	F	F			
F	Т	F			
F	F	Т			

명제 p,q가 주어졌을 때 합성명제 $(p
ightarrow \neg q)
ightarrow (\neg p
ightarrow q)$ 의 진리표를 구하라.

■ 역, 이, 대우

정의 3-13 역(Converse), 이(Inverse), 대우(Contraposition)

조건명제 $p \to q$ 에 대해 역은 가정과 결론이 바뀐 $q \to p$, 이는 가정과 결론을 각각 부정(NOT)한 $\neg p \to \neg q$ 의 형태. 대우는 가정과 결론을 바꾸고 각각 부정(NOT)한 $\neg q \to \neg p$ 의 형태

[표 3-10] 역, 이, 대우의 진리표

	_	조건명제	역	0	대우
p	q	$p{ ightarrow}q$	$q{\longrightarrow}p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$

명제 "정수 x에 대해 $x \ge 50$ 이면, $x \le 30$ 이다"에 대해 역, 이, 대우를 구하고, x = 72, x = 23, x = 46일 때 각 명제의 진릿값을 구하라.

X = 72 일때

명제 "정수 x 에 대해 $x \ge 50$ 이면, $x \le 30$ 이다"에 대해 역, 이, 대우를 구하고, x = 72, x = 23, x = 46 일 때 각 명제의 진릿값을 구하라.

X = 23 일때

명제 "정수 x에 대해 $x \ge 50$ 이면, $x \le 30$ 이다"에 대해 역, 이, 대우를 구하고, x = 72, x = 23, x = 46일 때 각 명제의 진릿값을 구하라.

X = 46 일때

2. 논리적 동치

정의 3-14 논리적 동치(Logically Equivalence): $P \equiv Q$

두 개의 합성명제 P와 Q의 진릿값이 서로 같은 경우

❖ 진리표를 이용한 논리적 동치 판별

예제 3-19

명제 $p \rightarrow q$ 와 $\neg p \lor q$ 는 어떤 관계에 있는지 진리표를 작성하여 판별하라.

p q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$
-------	----------	-------------------	-----------------

■ 논리적 동치법칙을 이용한 논리적 동치 판별

	논리적 동치	법칙
$p \wedge T \equiv$	$p \vee F \equiv$	항등법칙(Identity Law)
$p \wedge F \equiv$	$p \vee T \equiv$	지배법칙(Domination Law)
$p \land \neg p \equiv$	$p \vee \neg p \equiv$	부정법칙(Negation Law)
$\neg(\neg p) \equiv$		이중 부정법칙(Double Negation Law)
$p \wedge p \equiv$	$p \lor p \equiv$	멱등법칙(Idempotent Law)
$p \wedge q \equiv$	$p \lor q \equiv$	교환법칙(Commutative Law)
$(p \wedge q) \wedge r \equiv$	$(p\vee q)\vee r\equiv$	결합법칙(Associative Law)
$p\vee (q\wedge r)\equiv$	$p \wedge (q \vee r) \equiv$	분배법칙(Distributive Law)
$\neg(p \land q) \equiv$	$\neg(p \lor q) \equiv$	드모르간의 법칙(De Morgan's Law)
$p \land (p \lor q) \equiv$	$p \lor (p \land q) \equiv$	흡수법칙(Absorption Law)
$p \rightarrow q \equiv$		함축법칙(Implication Law)

논리적 동치법칙을 이용해 $\neg(p\lor(\neg p\land q))$ 와 $\neg p\land \neg q$ 가 논리적 동치임을 증명하고, 진리표를 이용하여 확인하라.

3. 변수를 포함하는 명제

❖ 명제함수

정의 3-15 명제함수(Propositional Function): P(x)

논의영역이 주어진 변수 x를 포함하여 진릿값을 판별할 수 있는 문장이나 수식

정의 3-16 논의영역(Domain of Discourse): D

명제함수에 포함된 변수 x의 범위이나 값

예제 3-23

명제함수 P(x)가 $x^2 - 3x = 0$ 일 때, P(1)과 P(3)의 진릿값을 구하라.

명제함수 Q(x,y)가 x=2y일 때, Q(1,2)와 Q(2,1)의 진릿값을 구하라.

❖ 한정자

정의 3-17 전체한정자 또는 전칭한정자(Universal Quantifier): ∀

논의영역의 모든 값

- 논의영역 D에 속하는 모든 x에 대한 명제 P(x): $\forall x P(x)$
- 전체한정자로 범위가 정해진 명제함수는 논의영역에 포함되는 모든 원소에 대해 그 명제가 참(T)이면 명제함수도 참(T)
- 논의영역에 포함되는 원소 중 하나라도 명제가 거짓(F)이면 그 명제는 거짓(F)

정의 3-18 존재한정자(Existential Quantifier): ∃

논의영역 중 어떤 값

- 논의영역 D에 속하는 원소 중 어떤 x에 대한 명제 P(x): $\exists x P(x)$
- 존재한정자로 범위가 정해진 명제함수는 논의영역에 포함되는 원소들 중 하나라도 그 명제를 참(T)으로하는 원소가 있으면 명제함수도 참(T)
- 논의영역에 포함되는 모든 원소에 대해 그 명제가 거짓(F)이면 그 명제는 거짓(F)

논의영역 D가 정수 영역일 때 주어진 명제함수에 대해 $\forall x P(x)$ 를 문장으로 작성하고 진릿값을 구하라.

- (1) P(x): x는 실수이다. (2) P(x): x는 자연수이다. (3) P(x): x는 허수이다.

논의영역 D가 정수 영역일 때 주어진 명제함수에 대해 $\exists x P(x)$ 를 문장으로 작성하고 진릿값을 구하라.

(1) P(x): x는 실수이다. (2) P(x): x는 자연수이다. (3) P(x): x는 허수이다.

- 두 개 이상의 변수가 포함된 명제함수의 경우 그 변수들은 모두 구속변수가 될 수 있으므로 한정자가 중첩되어 사용됨
 - 예) χ 와 y를 갖는 명제함수 $P(\chi, y)$
 - 다음과 같이 8개의 한덩된 명제함수 표현

```
\forall x \forall y P(x,y), \forall x \exists y P(x,y), \exists x \forall y P(x,y), \exists x \exists y P(x,y)
\forall y \forall x P(x,y), \forall y \exists x P(x,y), \exists y \forall x P(x,y), \exists y \exists x P(x,y)
```

- 1) 모든 x는 모든 y와 대응하여 P(x, y)이다.
- 2) 모든 x는 적어도 하나의 y와 대응하여 P(x, y)이다.
- 3) 적어도 하나의 x는 모든 y와 대응하여 P(x, y)이다.
- 4) 적어도 하나의 x는 적어도 하나의 y와 대응하여 P(x, y)이다.
- 5) 모든 y는 모든 x와 대응하여 P(x, y)이다.
- 6) 모든 y는 적어도 하나의 x와 대응하여 P(x, y)이다.
- 7) 적어도 하나의 y는 모든 x와 대응하여 P(x, y)이다.
- 8) 적어도 하나의 y는 적어도 하나의 x와 대응하여 P(x, y)이다.

논의영역이 $D=\{a|-3\leq a\leq 3\}$ 인 변수 x,y에 대하여 명제함수가 P(x,y): x-y=3일 때 다음 명제들을 문장으로 작성하고 진릿값을 구하라.

(1) $\forall x \forall y P(x, y)$

 $(2) \ \exists \ x \ \forall \ y P(x,y)$

(3) $\exists y \forall x P(x, y)$

 $(4) \ \exists \ y \exists \ x P(x,y)$

❖ 한정자와 부정 연산자

■ 명제함수도 명제이기 때문에 논리연산이 가능

[표 3-12] 한정자와 논리곱(AND), 논리합(OR)에 대한 정리

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$$

$$\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$$

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

[표 3-13] 한정자와 부정(NOT)에 대한 정리

- $\neg (\forall x P(x)) \equiv \exists x (\neg P(x))$
- $\neg (\exists x P(x)) \equiv \forall x (\neg P(x))$

논의영역 D가 $D=\{x\mid 0< x\leq 4, x$ 는 양의 정수}이고, 명제 P(x)가 $x^2<10$ 일 때 다음 명제의 부정(NOT)의 기호 표현과 문장을 쓰고 진릿값을 구하라.

(1) $\forall x P(x)$

(2) $\exists x P(x)$

4. 추론

정의 3-19 추론(Inference) 또는 논증(Argument)

참(T)인 명제를 근거로 하여 다른 명제가 참(T)임을 유도하는 방식

정의 3-20 가정 또는 전제(Hypothesis), 결론(Conclusion)

- \bullet 전제 또는 가정: 결론의 근거가 되는 최종 결론을 제외한 명제, 진릿값이 참(T)으로 간주되는 명제
- 결론: 주어진 전제에 의해 유도된 명제

■ 유효추론과 허위추론

정의 3-21 유효추론 또는 정당한 추론

주어진 전제를 이용해 유도된 결론이 정확한 추론, 전제가 참(T)일 때 결론이 모두 참(T)인 추론

정의 3-22 허위추론 또는 부당한 추론

주어진 전제를 이용해 유도된 결론이 틀린 추론, 전제가 참(T)인 경우, 결론이 거짓(F)인 경우가 하나라도 있는 추론

■ 유효추론의 예

• 태양이 달보다 지구와 멀면 지구는 자전한다

• 태양은 달보다 지구와 멀다

• 그러므로 지구는 자전한다.

• 명제 p : 태양은 달보다 지구와 멀다

• 명제 q: 지구는자전한다

 $p \rightarrow q$

p

 $\therefore q$

[표 3-14] 유효추론 예

전제	결론	전제
p	q	$p{ ightarrow}q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- 전제는 항상 참(T)이라고 했으므로, 주어진 전제 $p \to q$ 와 p 가 모두 참(T)인 경우는 위의 진리표에서 사각형이 그려진 부분만임
- 전제가 모두 참(T)인 사각형으로 표시된 부분에서 결론인 q의 진릿값 역시 참(T) 이므로 이 추론은 유효추론, 정당한 추론임

- 허위추론의 예
 - 태양이 달보다 지구와 멀면 지구는 자전한다
 - 지구는 자전한다.
 - 그러므로 태양은 달보다 지구와 멀다

• 명제 p : 태양은 달보다 지구와 멀다

• 명제 q: 지구는자전한다

 $p \rightarrow q$

a

 $\therefore p$

[표 3-15] 허위추론 예

결론	전제	전제	
p	q	$p{\longrightarrow}q$	
Т	T	Т	0
Т	F	F	
F	Т	T	2
F	F	Т	

- 전제는 항상 참(T)라고 했으므로, 주어진 전제 $p \to q$ 와 q 가 모두 참(T)인 경우는 위의 진리표에서 사각형이 그려진 부분(①, ②)만임
- ①의 경우 p의 진릿값은 참(T). 그러나 ②의 경우, p의 진릿값은 거짓(F)
- 전제($p \to q$ 와 q)가 모두 참(T)일 때 결론(p)이 거짓(F)인 경우가 하나라도 있으면 허위추론, 부당한 추론이 됨

다음 논증식이 정당한지 판별하라.

$$(1) \quad p \lor (q \lor r) \\ \neg r$$

$$(2) \quad p \rightarrow q \lor \neg r$$
$$q \rightarrow p \land r$$
$$\therefore p \rightarrow r$$

$$\therefore p \lor q$$

p q r	_			전	결론
	$q \vee r$	$p\!\vee\!(q\!\vee\!r)$	$\neg r$	$p \lor q$	

	_			~\/_ n		전	제	결론
p q r	T	$\neg r$	$q \vee \neg r$	$p \wedge r$	$p{ ightarrow}q{ee}{\neg}r$	$q{ ightarrow}p\wedge r$	$p{ ightarrow} r$	

❖ 논리적 추론법칙

[표 3-16] 논리적 추론법칙

법칙 이름	추론법칙	항진명제
논리곱 (Conjunction)	$p \\ q \\ \therefore p \land q$	없음
선언적 부가 (Disjunctive Addition)	$\begin{array}{c} p \\ \therefore \ p \lor q \end{array}$	$p \rightarrow (p \lor q)$
단순화 (Simplication)	$\begin{array}{c} p \wedge q \\ \therefore p \end{array}$	$(p \land q) \longrightarrow p$
긍정논법 (Modus Ponens)	$\begin{array}{c} p \\ p \rightarrow q \\ \therefore q \end{array}$	$[p \land (p \rightarrow q)] \rightarrow q$
부정논법 (Modus Tollens)	$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$[\neg q \land (p \to q)] \to \neg p$
선언적 삼단논법 또는 소거 (Disjunctive Syllogism)	$\begin{array}{c} p \vee q \\ \neg q \\ \therefore p \end{array}$	$[(p \lor q) \land \neg q] \to p$
가설적 삼단논법 또는 추이 (Hypothetical Syllogism)	$p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$

추론법칙을 이용하여 정당한 추론이 되도록 빈칸을 채워라.

(1) 긍정논법

영수가 수학을 공부하면, 희영이는 영어를 공부한다. 영수가 수학을 공부한다.

∴.

(2) 부정논법

고양이가 강아지를 이기면, 강아지는 개구리를 이긴다. 강아지는 개구리를 이기지 못한다.

∴.

(3) 가설적 삼단논법 또는 추이 톰이 야구를 하면, 존은 축구를 한다.

: 톰이 야구를 하면, 그렉은 수영을 한다.

(4) 선언적 삼단논법 또는 소거

데스크톱 컴퓨터는 날씨를 예측하지 못한다.

: 슈퍼컴퓨터는 날씨를 예측한다.

논리적 추론법칙을 이용해 다음 추론이 유효추론인지 판별하라.

A:
$$(\neg p \lor \neg q) \rightarrow \neg r$$

B:
$$\neg r \rightarrow \neg s$$

C: s

 $\therefore q$

다음과 같은 명제가 전제로 주어져 있다. 논리적 추론법칙을 이용해 유효 추론이 되도록 결론을 작성 하시오.

- (a) 열쇠가 서랍에 있었다면, 출근할 때 열쇠를 보았다.
- (b) 내가 아침을 먹었다면, 열쇠는 서랍에 있다.
- (c) 나는 샤워를 했거나 아침을 먹었다.
- (d) 내가 샤워를 했다면, 열쇠는 가방 속에 있다.
- (e) 내가 출근할 때, 나는 열쇠를 보지 못했다.