THE LAW OF LARGE NUMBERS

Jerzy Szulga

Department of Mathematics and Statistics
Auburn University

MATH 5670-6670 FALL 2019

PROBABILITY I

October 21, 2019

Outline

1 LLN

2 Chebyshev's inequality and WLLN

SLLN

Another "Iron Rule" of probability

A random sample is just a sequence X_1, \ldots, X_n of iid random variables. LLN - the Law of Large Numbers states that sample average in a large sample is close to the ideal average

$$\overline{X} = \frac{X_1 + \dots + X_n}{n} \approx \mu = \mathsf{E} X_i, \quad n \text{ large.}$$

Theorem

For a random sample with mean μ , $Var(\overline{X} - \mu) \to 0$ as $n \to \infty$.

Proof: easy.

Closeness

The symbol " $A \approx B$ " means that that two quantities A and B are close under some circumstances.

If A and B are RVs with equal means, then

$$||A - B||_2 = \sqrt{\mathsf{Var}(A - B)}$$

is a natural measurement of the closeness, akin to the Euclidean distance or norm in an n-space.

Typically, we use a **metric** (Google it up) to measure the distance. Other methods do exist. One appears below.

An obvious simple inequality

Denote a Boolean (a.k.a. "logic") function by $\mathbb{1}_{\{statement\}}$. Its value is 1 if the statement is true, 0 if it is false.

Consider a random variable $X \ge 0$ and a number c > 0. Then

$$X \ge X \mathbb{1}_{\{X>c\}} \ge c \mathbb{1}_{\{X>c\}}$$

Apply the expectation:

$$\mathsf{E}\left(X\right) \ge \mathsf{E}\left(X1\!\!1_{\{X>c\}}\right) \ge \mathsf{E}\left(c1\!\!1_{\{X>c\}}\right) = c\mathsf{P}(X>c)$$

Chebyshev's inequality

Rewriting,

$$P(X>c)\leq \frac{E\,X}{c}.$$

Theorem (Chebyshev's inequality)

$$P(|X - \mu| > \epsilon) \le \frac{Var(X)}{\epsilon^2}$$
.

Proof In the top inequality, substitute $X:=|X-\mu|^2\geq 0$ and put $c=\epsilon^2$. Algebra:

$$\mathsf{P}(|X-\mu|>\epsilon)=\mathsf{P}(|X-\mu|^2>\epsilon^2)\leq \frac{\mathsf{E}\,|X-\mu|^2}{\epsilon^2}=\frac{\mathsf{Var}(X)}{\epsilon^2}.$$

WLLN

Corollary (Weak Law of Large Numbers)

Let $E X^2 < \infty$. For the sample average of a sample of size n:

$$P(|\overline{X} - \mu| > \epsilon) \to 0$$

Proof:
$$P(|\overline{X} - \mu| > \epsilon) \le \frac{Var(X)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0.$$

In words: the probability that the deviation of the sample mean from the ideal mean exceeds any ϵ is almost 0 when n is large.

Remark. The WLLN is valid when only the mean exists.

A potential proof exceeds the math prerequisites for this course.

SLLN

Why this LLN is called "weak"?

First, it is derived from a stronger LLN based on the variance.

Secondly, the term "strong" is reserved for the following LLN whose proof is rather advanced.

Theorem (Strong Law of Large Numbers)

For the sample average of a sample of size n:

$$P\left(\lim_{n} \overline{X} = \mu\right) = 1$$

Illustration: WEAK but not STRONG

Consider a sequence of Bernoulli random variables with $p_n \to 0$.

The following "wandering" variables do not converge at all.

Yet, the probability of any ϵ -deviation from 0 converges to 0.

