1. Common Instructions

- Set the working directory to *Master* folder before running any R code.
- Parts of the code are set up to run in parallel, so after creating the clusters in *Main.R* and *Main_design_selection.R*, ensure each clusters knows the pathway to your R library through either *clusterCall()* or *clusterEvalQ()*, as mentioned in the comments of the code.
- The three R functions available in the main folder can be used to reproduce figures and tables shown in Example 1, Example 2 and in the supplementary material.
- The corresponding individual figures and tables are available in the following folder: Results/Figures_and_Tables.

2. Example 1:

2.1 Obtaining optimal designs

- The R code to obtain designs using three loss functions are available in the following folder: R_codes/Example1.
- You are required to install the R package MaternEx1_1.0.tar.gz to run this example.
- The designs for this example can be obtained by running the main R script called Main_design_selection.R inside the folder.
- Inside the file *Main_design_selection.R*, there are different options for users to run this code. They are:
 - $\circ d_{no} = \text{number of design points in the design}$
 - outility = negative value of the loss function
 - o Dependence = spatial dependency structure of the two responses

We have run this code with two different values for *d_no* (5 and 10) and three different values for *Dependence* (0.2, 0.5 and 0.8) based on the three loss functions. The resulting designs are saved in the following folder: *Results/Example1/Selected_designs*.

2.2 Design evaluation

- After designs have been determined for each loss function, they can be evaluated based on each design objective.
- For this purpose, the *Example1_design_evaluation.R* function available in the folder: *R_codes/Example1* can be used. Here, two parameters, *d_no* and *Dependence* should be set before running this code.
- Design evaluation results are saved in the folder *Results/Example1/Simulation_results/Design evaluation*.

2.3 Compare two approximations

• To compare the two approximations used in the paper for evaluating the prediction loss values, the function *Main.R* can be used. This file is location in folder: *R_codes/Example1*.

2.4 Simulation results

- To obtain the plots and tables shown for Example 1 we used the results obtained in Sections 1.2 and 1.3 above.
- The results obtained in Sections 1.2 and 1.3 are available in *Results/Example1/Simulation_results*.
- Example 1 Results.R in the Master folder can be used to plot the results for Example 1.

3. Example 2:

3.1 Obtaining optimal designs

- The R code to obtain designs using three loss functions are available in the following folder: R_codes /Example2.
- You are required to install the R package *AirQualityRcpp_1.0.tar.gz* to run this example.
- The designs for this example can be obtained by running the main script called Main_design_selection.R inside the folder.
- Inside the *Main_design_selection.R*, there are two options for users to run this code. They are,
 - o d_no = number of design points in the design
 - utility = negative value of the loss function
- We have run this code with four different values for d_no (5, 7, 10 and 15) based on the three loss functions. The resulting designs are saved in the following folder: Results/Example1/Selected_designs.

3.2 Design evaluation

- After designs have been determined for each loss function, they can be evaluated based on each design objective.
- For this purpose, the function called *Example2_design_evaluation.R* available in the folder: *R_codes/Example2* can be used. Here, two parameters, *d_no* and *Dependence* should be set before running this code.
- Design evaluation results are saved in the folder: Results/Example2/Simulation_results/ Design_evaluation.

3.3 Compare two approximations

• To compare the two approximations used in the paper for evaluating the prediction loss values, the *Main.R* function in the following folder can be used: *R_codes/Example2*.

3.4 Simulation results

- To obtain the plots and tables shown for Example 2 we used the results obtained in Sections 2.2 and 2.3 above.
- The results obtained in Sections 2.2 and 2.3 are saved in *Results/Example2/Simulation results*.
- We use the function *Example2_Results.R* available in the *Master* folder to obtain the results related to Example 2.
- You are required to install the R package *mapping* to obtain Figure 1. This can be done either using the source file *mapping_0.1.tar.gz* available in the main folder or using the web link mentioned in the comments of the code.

4. Design comparison (Supplementary material):

- To obtain designs from cluster 3 in Example 2, we used the same set of code discussed in Section 2.1 above.
- Here, the function *Main_design_selection_C3.R* is used for design selection.

- To compare the efficiencies of the two approximations to the prediction loss function, the same set of R code discussed in Sections 1.3 and 2.3 can used. Here, the *Main_efficiency.R* functions available in the respective folders can be used.
- To compare the designs obtained from the estimation, prediction and dual purpose loss functions with designs suggested in the literature, posterior predictive variances and the posterior variances of the parameters were obtained. For this purpose, the function called <code>Main_common_design.R</code> available in the folder: <code>R_codes/Example1</code> can be used.
- The figures and tables available in the Supplementary material can be obtained using the function *Supplementary_Results.R* available in the *Master* folder.

5. User defined functions

5.1. Example 1 – functions in *functions_Ex1.R* script

Function	Inputs	Outputs
combine_ute()	d – design	mu_post – posterior mean
	X – values for independent	Sigma_post – posterior
	variables	covariance matrix
	Y – data	det.out – dual purpose utility
	theta – parameter vector	kld.out – estimation utility
	distM – distance matrix	pred.out – prediction utility
combine_ute_both()	d – design	mu_post – posterior mean
	X – values for independent	Sigma_post – posterior
	variables	covariance matrix
	Y – data	det.out – dual purpose utility
	theta – parameter vector	kld.out – estimation utility
	distM – distance matrix	pred.out – prediction utility $(ilde{\lambda})$
		pred.out2 – prediction utility $(\hat{\lambda})$
		time1 – time taken to obtain $ ilde{\lambda}$
		time2 – time taken to obtain $\hat{\lambda}$
exp.crit()	d – design	crit – B values of a given utility
· ·	B – number of prior predictive datasets	function.
exp.crit.all()	d – design	crit – a vector containing B
	B – number of prior predictive	values of three utility
	datasets	functions (i.e. estimation,
		dual-purpose and prediction)
exp.crit.both.P()	d – design	crit.dual – B values of the dual-
	B – number of prior predictive	purpose utility
	datasets	crit.kld – B values of the
		estimation utility
		crit.pred.App – B values of the
		prediction utility $(ilde{\lambda})$
		crit.pred – B values of the
		prediction utility ($\hat{\lambda}$)
exp.crit.var()	d – design	post.var – posterior variances of
	B – number of prior predictive	the parameters
	datasets	Y1.post – posterior prediction
		variances for response 1

		Y2.post – posterior prediction variances for response 2
Laplace_approx()	X – values for independent variables Y – data theta – parameter vector	Ip.approx – a list containing the minimum negative log posterior value and its corresponding posterior mode and Hessian matrix
log_post()	distM – distance matrix X – values for independent variables Y – data theta – parameter vector distM – distance matrix	Neg_log_post – the negative log posterior value
Post_pred()	 d – design X – values for independent variables Y – data theta – parameter vector distM – distance matrix 	mu_post – posterior mean Sigma_post – posterior covariance matrix Y1.mat – posterior predictions for response 1 Y2.mat – posterior predictions for response 2
Pred_ute()	X_unsamp – values of independent variables at prediction locations distM – distance matrix post_samp1 – sample from a posterior distribution post_samp2 – sample from a posterior distribution r01 – partial sill r02 – range parameter	pred_ute – prediction utility obtained using the first approximation $(\hat{\lambda})$
Pred_ute.App()	X_unsamp – values of independent variables at prediction locations distM – distance matrix post_samp1 – sample from a posterior distribution r01 – partial sill r02 – range parameter	pred_ute – prediction utility obtained using the second approximation $(\tilde{\lambda})$
trace_mat()	M – square matrix	tr – trace of the matrix

5.2. Example 2 – functions in *functions_Ex2.R* script

Function	Inputs	Outputs
combine_ute()	d – design	mu_post – posterior mean
	X – values for independent	Sigma_post – posterior
	variables	covariance matrix
	Y – data	det.out – dual purpose utility
	theta – parameter vector	kld.out – estimation utility
	distM – distance matrix	pred.out – prediction utility
combine_ute_all()	d – design	mu_post – posterior mean

		To:
	X – values for independent	Sigma_post – posterior
	variables	covariance matrix
	Y – data	det.out – dual purpose utility
	theta – parameter vector	kld.out – estimation utility
	distM – distance matrix	pred.out – prediction utility $(\tilde{\lambda})$
		pred.out2 – prediction utility $(\hat{\lambda})$
		time1 – time taken to obtain $ ilde{\lambda}$
		time2 – time taken to obtain $\hat{\lambda}$
exp.crit()	d – design	crit – expected utility values
	B – number of prior predictive	from the three utility
	datasets	functions.
exp.crit.all()	d – design	crit – a vector containing B
	B – number of prior predictive	values of three utility
	datasets	functions (i.e. estimation,
		dual-purpose and prediction)
exp.crit.both.P()	d – design	crit – a vector containing B
	B – number of prior predictive	values of dual-purpose utility,
	datasets	estimation utility, prediction
		utility $(\tilde{\lambda})$, and prediction
		utility $(\hat{\lambda})$
Laplace_approx()	X – values for independent	lp.approx – a list containing the
	variables	minimum negative log
	Y – data	posterior value and its
	theta – parameter vector	corresponding parameter
	distM – distance matrix	vector and the Hessian matrix
log_post()	X – values for independent	Neg_log_post – the negative log
108_001()	variables	posterior value
	Y – data	posterior value
	theta – parameter vector	
	distM – distance matrix	
Pred_ute()	X unsamp – values of	pred ute – prediction utility
1164_466()	independent variables at	obtained using the first
	prediction locations	approximation $(\hat{\lambda})$
	distM – distance matrix	αρριολιπατίοπ (λ)
	post_samp1 – sample from a	
	posterior distribution	
	post samp2 – sample from a	
	posterior distribution	
	r01 – partial sill	
	r02 – range parameter	
Pred_ute.App()	X unsamp – values of	pred ute – prediction utility
Tea_ate.App()	independent variables at	obtained using the second
	prediction locations	approximation $(\tilde{\lambda})$
	distM – distance matrix	
	post samp1 – sample from a	
	posterior distribution	
	r01 – partial sill	
	r02 – range parameter	
trace_mat()	M – square matrix	tr – trace of the matrix
trace_mat()	ivi – square matrix	נו – נומכב טו נווכ ווומנווג

```
> sessionInfo()
R version 4.1.3 (2022-03-10)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
Matrix products: default
locale:
[1] LC COLLATE=English United States.1252
[2] LC CTYPE=English United States.1252
[3] LC MONETARY=English United States.1252
[4] LC NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
                        graphics
[1] parallel
              stats
                                   grDevices
[5] utils
              datasets
                        methods
                                   base
other attached packages:
 [1] AirQualityRcpp 1.0 doParallel 1.0.17
 [3] iterators_1.0.14
                        foreach_1.5.2
 [5] acebayes 1.10
                        lhs 1.1.5
                        nlme_3.1-155
 [7] corpcor_1.6.10
 [9] matrixcalc 1.0-5
                        Matrix 1.4-0
[11] fields_14.0
                        viridis_0.6.2
                        spam 2.9-0
[13] viridisLite 0.4.0
[15] mvtnorm_1.1-3
                        MaternEx1 1.0
[17] ggplot2 3.3.6
loaded via a namespace (and not attached):
                       pillar_1.7.0
 [1] Rcpp_1.0.8.3
                       tools_4.1.3
 [3] compiler 4.1.3
 [5] dotCall64_1.0-1
                       compare 0.2-6
 [7] lattice_0.20-45
                       lifecycle_1.0.1
                       gtable_0.3.0
 [9] tibble_3.1.7
[11] pkgconfig 2.0.3
                       rlang 1.0.4
[13] DBI_1.1.2
                       cli_3.3.0
[15] rstudioapi 0.13
                       gridExtra 2.3
[17] withr_2.5.0
                       dplyr_1.0.9
[19] generics 0.1.2
                       vctrs 0.4.1
[21] maps_3.4.0
                       grid 4.1.3
[23] tidyselect_1.1.2
                       glue_1.6.2
[25] R6 2.5.1
                       randtoolbox 2.0.2
[27] fansi 1.0.3
                       purrr 0.3.4
[29] magrittr_2.0.3
                       codetools_0.2-18
[31] scales 1.2.0
                       ellipsis_0.3.2
[33] assertthat_0.2.1
                       colorspace 2.0-3
[35] utf8_1.2.2
                       rngWELL_0.10-7
[37] munsell_0.5.0
                       crayon_1.5.1
```