# LEARNING FROM NOISY SINGLY-LABELED DATA



ASHISH KHETAN

ZACHARY C. LIPTON

Animashree Anandkumar

### CROWDSOURCING: NOISY ANNOTATIONS



#### PROBLEM FORMULATION

- n i.i.d. samples  $(X,Y) \in (\mathcal{X} \times \mathcal{K}) \sim \mathcal{D}$
- ullet r noisy labels  $\{Z_{ij}\}_{j\in[r]}$  on each i-th example  $X_i$
- given by workers  $\{w_{ij}\}_{j\in[r]}$ ,  $w_{ij}\in[m]$
- $\bullet$  want to learn  $\widehat{f} \in \mathcal{F}$  such that  $\widehat{f}(X) = Y$  w.h.p.

## DAWID SKENE MODEL (DS)

- Each a-th worker is characterized by its confusion matrix  $\pi^{(a)}$
- $\pi^{(a)} \in [0,1]^{K \times K} : \sum_{s \in \mathcal{K}} \pi_{ks} = 1$
- $\mathbb{P}[Z_{ij} = s | Y_i = k, w_{ij} = a] = \pi_{ks}^{(a)}$

## LEARNING WITH NOISY LABELS

Posterior probability weighted loss:

$$\ell_{\widehat{\pi}}(f(X), Z^{(r)}, w^{(r)}) \equiv$$

$$\sum_{k \in \mathcal{K}} \mathbb{P}_{\widehat{\pi}}[Y = k | Z^{(r)}; w^{(r)}] \ell(f(X), Y = k)$$

## MODEL BOOTSTRAPPED EM (MBEM)

Input: data  $\{(X_i, Z_i^{(r)}, w_i^{(r)})\}_{i \in [n]}$ Output: deep learning model  $\widehat{f}$ 

Initialize posterior distribution using weighted majority vote

$$\mathbb{P}_{\widehat{\pi}}[Y_i = k \mid Z_i^{(r)}; w_i^{(r)}] \leftarrow (1/r) \sum_{j=1}^r \mathbb{I}[Z_{ij} = k] \text{, for } k \in \mathcal{K}$$

# Repeat T times:

learn predictor function by minimizing probability weighted loss  $\widehat{f} \leftarrow \arg\min_{f \in \mathcal{F}} \frac{1}{n} \ell_{\widehat{\pi}}(f(X_i), Z) i^{(r)}, w_i^{(r)})$ 

predict on the training examples  $t_i \leftarrow \arg\max_{k \in \mathcal{K}} \widehat{f}(X_i)_k$ , for  $i \in [n]$ 

estimate confusion matrices  $\widehat{\pi}$  given model predictions  $\{t_i\}_{i\in[n]}$ 

 $\widehat{\pi}^{(a)} \leftarrow \mathsf{MLE}$  under the DS model assuming  $\{t_i\}$  are true labels,  $a \in [m]$ 

estimate label posterior distribution given  $\widehat{\pi}$ 

 $\mathbb{P}_{\widehat{\pi}}[Y_i = k \mid Z_i^{(r)}; w_i^{(r)}] \leftarrow \mathsf{MLE}$  under the DS model assuming  $\widehat{\pi}$  are true confusion matrices, for  $k \in \mathcal{K}, i \in [n]$  Return  $\widehat{f}$ 

## $\ell$ -RISK UNDER $\mathcal D$

Let  $\ell(f(X), Y)$  denote a loss function.

$$R_{\ell,\mathcal{D}}(f) \triangleq \mathbb{E}_{(X,Y)\sim\mathcal{D}}\left[\ell(f(X),Y)\right].$$

### MAIN THEOREM

- $N \triangleq nr$ . For any hypothesis class  $\mathcal{F}$  with a finite VC dimension V, and binary classification with 0-1 loss  $\ell$ .
- There exists a universal constant C such that for any  $\delta < 1$ , if N is large enough (characterized in the paper) then  $\widehat{f}$  returned by the MBEM algorithm after T=2 iterations satisfies

$$R_{\ell,\mathcal{D}}(\widehat{f}) - \min_{f \in \mathcal{F}} R_{\ell,\mathcal{D}}(f)$$

$$C\sqrt{r} \qquad \int \overline{V} \qquad \log(r)$$

$$\leq \frac{C\sqrt{r}}{1 - 2g(\rho, r)} \left( \sqrt{\frac{V}{N}} + \sqrt{\frac{\log(1/\delta)}{N}} \right)$$

- $g(\rho,r)$  is an analytical function of worker quality  $\rho$  and redundancy r.
- If  $\rho$  is above a threshold then  $\operatorname*{arg\,min}_{r\in\mathbb{N}} \frac{\sqrt{r}}{1-2g(\rho,r)} = 1.$

Labeling once is optimal. It is also seen in all the experiments.

# MS-COCO: REAL ANNOTATIONS

Labeling Once is Optimal.



#### IMAGENET 1K: SIMULATED WORKERS

• class-wise hammer-spammer workers: Always correct with probability  $\gamma$  for each class independently.

## Labeling Once is Optimal.



## CIFAR10: SIMULATED WORKERS

class-wise hammer spammer workers

Labeling Once is Optimal.

redundancy r (fixed budget)

