VECTORES EN \mathbb{R}^2 y EN \mathbb{R}^3

DEFINICIONES Y PROPIEDADES

Una flecha, que sirve para representar cantidades físicas (fuerzas, velocidades), es un *vector*.

Para dar un vector necesitamos un *origen* (*A*) y un *extremo* (*B*) que lo determinan totalmente, proporcionando su dirección, longitud y sentido.

Vectores equivalentes son los que tienen igual dirección, longitud y sentido.

Los vectores de la izquierda son todos equivalentes a **v**.

Los vectores se pueden sumar.

La suma $(\mathbf{v} + \mathbf{w})$, de \mathbf{v} y \mathbf{w} es equivalente a una de las diagonales del paralelogramo de lados \mathbf{v} y \mathbf{w} .

También se puede multiplicar un vector por un número (escalar).

El resultado es un vector de igual dirección que el dado, el número afecta la longitud y el sentido del vector.

En el plano \mathbb{R}^2 los puntos están dados por pares de números reales (sus coordenadas); para dar un vector bastará dar dos pares de números reales que caractericen su origen y su extremo.

$$\mathbf{v} = \overrightarrow{AB}$$
 está dado por $A = (1,2)$ y $B = (5,3)$

 $\mathbf{w} = \overrightarrow{OC}$ está dado por O = (0,0) y C = (2,1)

Algo análogo se puede decir en el espacio de tres dimensiones \mathbb{R}^3 ; ahora, cada punto, en particular el origen y el extremo de un vector, estará dado por una terna de números reales.

En adelante trabajaremos con vectores cuyo origen O tiene todas sus coordenadas iguales a cero $(O=(0,0) \text{ en } \mathbb{R}^2, O=(0,0,0) \text{ en } \mathbb{R}^3)$ identificando entonces el punto A con la flecha \overrightarrow{OA} .

Dados A y B en \mathbb{R}^2 , $A = (a_1, a_2)$ y $B = (b_1, b_2)$, definimos

la suma
$$A+B=(a_1+b_1,\,a_2+b_2) \;\; \mathbf{y}$$
 el producto por un escalar $c\in\mathbb{R}$ $c\;A=(ca_1,\,ca_2).$

Análogamente, en \mathbb{R}^3 , si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$

la suma
$$A + B = (a_1+b_1, a_2+b_2, a_3+b_3)$$
 y

el *producto* por un escalar $c \in \mathbb{R}$ $cA = (ca_1, ca_2, ca_3)$.

Propiedades:

1)
$$A + (B + C) = (A + B) + C$$

2)
$$A + B = B + A$$

3) Si
$$c \in \mathbb{R}$$
, $c(A+B) = cA + cB$

4) Si
$$c_1 \in \mathbb{R}$$
 y $c_2 \in \mathbb{R}$, $(c_1 + c_2) A = c_1 A + c_2 A$ y $(c_1 c_2) A = c_1 (c_2 A)$

5)
$$O + A = A$$

6)
$$1 A = A$$

7)
$$A + (-1) A = O$$

Notación –
$$A = (-1) A$$

8)
$$0A = 0$$

En este contexto,

- a) \overrightarrow{AB} es *equivalente* a \overrightarrow{CD} si y sólo si D C = B A; en particular, \overrightarrow{AB} es equivalente a \overrightarrow{OP} si y sólo si P = B A.
- b) \overrightarrow{AB} y \overrightarrow{CD} son paralelos o tienen igual dirección si existe k en \mathbb{R} , $k \neq 0$ tal que

$$B-A=k$$
 ($D-C$).

Si k > 0, \overrightarrow{AB} y \overrightarrow{CD} tienen igual sentido; si k < 0, \overrightarrow{AB} y \overrightarrow{CD} tienen sentidos opuestos.

LONGITUD DE UN VECTOR

En \mathbb{R}^2 , si $\mathbf{v} = (v_1, v_2)$, la *norma* o *longitud* de \mathbf{v} , que notaremos $\|\mathbf{v}\|$, es $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$

Análogamente, en \mathbb{R}^3 , si $\mathbf{v} = (v_1, v_2, v_3)$ la *norma* o *longitud* de \mathbf{v} es $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Propiedades:

1) Si A = O, entonces ||A|| = 0; si $A \neq O$, entonces ||A|| > 0.

2)
$$||A|| = ||-A||$$

3) Si
$$c \in \mathbb{R} \| cA \| = |c| \|A\|$$
.

4) Designaldad triangular: $||A + B|| \le ||A|| + ||B||$.

Si A y B son dos puntos de \mathbb{R}^2 , la *distancia* entre A y B es la longitud del vector B - A

(equivalente a \overrightarrow{AB}) y se nota

$$d(A,B) = ||B - A||$$

Análogamente, en \mathbb{R}^3 , la *distancia* entre dos puntos A y B es

$$d(A,B) = ||B - A||$$

Un vector A se dice *unitario* si ||A|| = 1.

ÁNGULO ENTRE DOS VECTORES

Llamaremos ángulo entre A y B al ángulo $\theta(A,B)$ que determinan los dos vectores y verifica $0 \le \theta(A,B) \le \pi$.

PRODUCTO INTERNO O ESCALAR

Dados dos vectores A y B llamaremos producto interno (o escalar) de A y B al número real $A \cdot B = ||A|| ||B|| \cos \theta$ ($\theta = \theta(A,B)$).

Propiedad:

$$A \cdot B = \frac{1}{2} (\| B \|^2 + \| A \|^2 - \| B - A \|^2)$$

En particular si A y B son vectores en el plano, $A = (a_1, a_2)$ y $B = (b_1, b_2)$

$$A \cdot B = a_1b_1 + a_2b_2$$

En \mathbb{R}^3 , si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$

$$A \cdot B = a_1b_1 + a_2b_2 + a_3b_3$$

Observaciones: 1) El producto escalar de dos vectores es un número real.

$$2) \parallel A \parallel = \sqrt{A \cdot A}$$

Propiedades:

PE1.- $A \cdot B = B \cdot A$

PE2.-
$$A \cdot (B + C) = A \cdot B + A \cdot C = (B + C) \cdot A$$

PE3.- Si
$$k \in \mathbb{R}$$
, $(kA) \cdot B = k (A \cdot B) = A \cdot (kB)$

PE4.- Si
$$A = O$$
, $A \cdot A = 0$. Si $A \neq O$, $A \cdot A > 0$

PE5.- Desigualdad de Cauchy-Schwarz: $|A \cdot B| \le |A| |B|$

De PE5 se deduce que si A y B son ambos distintos de cero, vale

$$-1 \le \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} \le 1$$

Propiedad: el ángulo entre dos vectores A y B $(\theta = \theta(A,B))$ es el único ángulo θ entre 0 y

$$\pi$$
 que verifica cos $\theta = \frac{A \cdot B}{\|A\| \|B\|}$

Diremos que dos vectores A y B son ortogonales o perpendiculares si $A \cdot B = 0$.

PRODUCTO VECTORIAL

Si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$ son vectores de \mathbb{R}^3 , el producto vectorial de A y B es:

$$A \times B = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

Observación: El producto vectorial de dos vectores de \mathbb{R}^3 es un vector de \mathbb{R}^3 .

Propiedades:

PV1.-
$$A \times B = -B \times A$$

PV2.-
$$A \times (B + C) = A \times B + A \times C$$

$$(B+C) \times A = B \times A + C \times A$$

PV3.- Si
$$k \in \mathbb{R}$$
, $(k A) \times B = k (A \times B) = A \times (k B)$

$$PV4.-A \times A = O$$

PV5.- $A \times B$ es perpendicular a A y a B

PV6.-
$$||A \times B||^2 = ||A||^2 ||B||^2 - (A \cdot B)^2$$

PV7.- $||A \times B|| = ||A|| ||B|| || \operatorname{sen} \theta |$ donde θ es el ángulo formado por A y B.

Observación:

De PV7 se deduce que $||A \times B||$ es el área del paralelogramo de vértices O, A, B, A + B.

RECTAS

Dados en el plano \mathbb{R}^2 un vector A y un punto P la ecuación paramétrica de la recta L que pasa por *P* en la dirección de *A* es:

$$X = t A + P \quad (t \in \mathbb{R}).$$

Si
$$A = (a_1, a_2)$$
 y $P = (p_1, p_2)$,

se escribe: $(x, y) = t (a_1, a_2) + (p_1, p_2)$

$$\begin{aligned}
\delta & \begin{cases}
x = t a_1 + p_1 \\
y = t a_2 + p_2
\end{aligned}$$

Si $c = a_2 p_1 - a_1 p_2$, la recta L es el conjunto de soluciones de la ecuación

$$a_2 x - a_1 y = c$$

Para describir una recta en \mathbb{R}^2 podemos utilizar la ecuación parámetrica X = t A + P

(donde X = (x, y)) o utilizar la ecuación implícita ax + by = c.

Dados en \mathbb{R}^3 un vector A y un punto P la ecuación paramétrica de la recta L que pasa por Pen la dirección de A es:

$$X = t A + P \quad (t \in \mathbb{R}).$$

Si
$$A = (a_1, a_2, a_3)$$
 y $P = (p_1, p_2, p_3)$ tenemos

$$(x, y, z) = t (a_1, a_2, a_3) + (p_1, p_2, p_3)$$

$$\begin{cases}
 x = t a_1 + p_1 \\
 y = t a_2 + p_2 \\
 z = t a_3 + p_3
\end{cases}$$

Si $c = a_2 p_1 - a_1 p_2$ y $d = a_3 p_2 - a_2 p_3$, la recta L es el conjunto de soluciones del sistema

$$\begin{cases} a_2 x - a_1 y = c \\ a_3 y - a_2 z = d \end{cases}$$

Para describir una recta en \mathbb{R}^3 podemos utilizar la ecuación paramétrica X = tA + P (donde X = (x, y, z)) o un sistema de dos ecuaciones lineales con tres incógnitas.

ÁNGULO ENTRE DOS RECTAS

Para definir el ángulo entre dos rectas usamos sus vectores dirección, eligiendo entre los ángulos que éstos forman, el único θ tal que $0 \le \theta \le \pi/2$.

Dos rectas en \mathbb{R}^2 ó en \mathbb{R}^3 son *perpendiculares* si sus direcciones lo son.

Dos rectas en \mathbb{R}^2 ó en \mathbb{R}^3 son *paralelas* si sus direcciones lo son.

PLANOS EN \mathbb{R}^3

Dados un vector N y un punto Q de \mathbb{R}^3 , la ecuación del plano Π que pasa por Q y es

perpendicular a N es
$$\Pi : (X - Q) \cdot N = 0$$

El plano es el conjunto de todos los puntos X tales que (X - Q) es perpendicular a N. Diremos que N es un *vector normal* al plano.

Si
$$X = (x_1, x_2, x_3)$$
 y $N = (a,b,c)$, la ecuación resulta:

Π:
$$a x_1 + b x_2 + c x_3 = d$$
 donde $d = Q \cdot N$

Dos planos son paralelos si sus vectores normales lo son.

Una recta es *paralela a un plano* si el vector dirección de la recta y el vector normal al plano son perpendiculares.

Dados un punto P y un plano Π cuya normal es N, se define $distancia de P a <math>\Pi$ como la distancia de P a P, donde P es el punto de intersección del plano Π con la recta de dirección N que pasa por P.

Si
$$Q$$
 es un punto en el plano, esta distancia es: $d(P,\Pi) = \frac{\left| (Q-P) \cdot N \right|}{\parallel N \parallel}$.

Si
$$P = (x_0, y_0, z_0)$$
 y Π : $ax + by + cz = k$ entonces: $d(P, \Pi) = \frac{\left| ax_0 + by_0 + cz_0 - k \right|}{\sqrt{a^2 + b^2 + c^2}}$.

En el desarrollo de la práctica, para simplificar la notación, suprimiremos las flechas arriba de los vectores.

VECTORES EN \mathbb{R}^n

Llamaremos *punto o vector* en el espacio \mathbb{R}^n a la *n*-upla

$$X = (x_1, x_2, x_3, ..., x_n)$$
 donde $x_1, x_2, x_3, ..., x_n$ son números reales.

Estos números son las *coordenadas* de *X*.

Si
$$A = (a_1, a_2, a_3, ..., a_n)$$
 y $B = (b_1, b_2, b_3, ..., b_n)$

decimos que A = B si y sólo si $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$, ..., $a_n = b_n$.

Definimos la suma

$$A + B = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$
 v

el *producto* por un escalar $c \in \mathbb{R}$ $c A = (ca_1, ca_2, ca_3, ..., ca_n)$.

Propiedades:

1)
$$A + (B + C) = (A + B) + C$$

2)
$$A + B = B + A$$

3) Si
$$c \in \mathbb{R}$$
, $c(A+B) = cA + cB$

4) Si
$$c_1 \in \mathbb{R}$$
 y $c_2 \in \mathbb{R}$, $(c_1 + c_2) A = c_1 A + c_2 A$ y $(c_1 c_2) A = c_1 (c_2 A)$

5)
$$O + A = A$$

6)
$$1 A = A$$

7)
$$A + (-1) A = O$$
 Notación $-A = (-1) A$

8)
$$0A = 0$$

Llamaremos *norma* de $A = (a_1, a_2, a_3, ..., a_n)$ al número

$$||A|| = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

Propiedades:

1) Si
$$A = O$$
, entonces $||A|| = 0$; si $A \neq O$, entonces $||A|| > 0$.

2)
$$||A|| = ||-A||$$

3) Si
$$c \in \mathbb{R} \| cA \| = |c| \|A\|$$
.

4) Designaldad triangular:
$$||A + B|| \le ||A|| + ||B||$$
.

Si $A = (a_1, a_2, a_3, ..., a_n)$ y $B = (b_1, b_2, b_3, ..., b_n)$, llamaremos distancia entre A y B a la longitud del vector AB

$$d(A,B) = ||B-A|| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

Si $A = (a_1, a_2, a_3, ..., a_n)$ y $B = (b_1, b_2, b_3, ..., b_n)$ llamaremos producto escalar de A y B al número real

$$A \cdot B = a_1b_1 + a_2b_2 + ... + a_nb_n$$

Propiedades:

PE1.- $A \cdot B = B \cdot A$

PE2.-
$$A \cdot (B + C) = A \cdot B + A \cdot C = (B + C) \cdot A$$

PE3.- Si
$$k \in \mathbb{R}$$
, $(kA) \cdot B = k (A \cdot B) = A \cdot (kB)$

PE4.- Si
$$A = O$$
, $A \cdot A = 0$. Si $A \neq O$, $A \cdot A > 0$

PE5.- Designaldad de Cauchy-Schwarz: $|A \cdot B| \le ||A|| ||B||$

Dados en \mathbb{R}^n un vector A y un punto P la *ecuación paramétrica* de la recta L que pasa por P en la dirección de A es:

$$X = t A + P \quad (t \in \mathbb{R}).$$