Collaborators: none

1 question

Given. Murder occurred involving father, mother, son and daughter. M_1 murdered M_2 , M_3 was witness, M_4 was an accomplice.

- M_2 and M_4 are opposite sex
- Oldest member and M_4 are opposite sex
- Youngest member and M_3 are opposite sex
- M_4 age $> M_2$ age
- Father was the oldest
- M_1 is not the youngest

To Find. The murderer.

Solution.

2 question

Given. A pack of two-sided cards, claiming where if one side is vowel \rightarrow other side is an even number. 4 cards are shown where we see **W**, **U**, **4**, **9**.

To Find. The cards to turn to check if the conjecture is true or not.

Solution.

3 question

To Negate.

1. $\forall n, \exists m \text{ s.t. } n > m$ $\exists n, \forall m \text{ s.t. } n \leq m$

- 2. $\exists n, m \text{ s.t. } m \neq n$ $\forall n, m \text{ st. } n = m$
- 3. $\forall m, m^2 > 0 \implies m > 0$ $\exists m, m^2 \le 0 \implies m > 0$
- 4. $\forall a, b, c \in S, a R b \text{ and } b R c \implies a R c$

4 question

Given. We prove by induction that any n things are the same. If n = 0 or n = 1 this is clear. or the induction step, assume we can say that any k things are the same. Let a finite set of k + 1 things, $x_1, x_2, x_3, \ldots x_k, x_{k+1}$ be given. By induction hypothesis, we get that if we take a subset of k of these things, we get them to be the same. It follows that:

- x1 = x2 = ... = xk
- $x2 = \dots = x_k = x_{k+1}$

Thus it follows that

$$x_1 = x_2 = \dots = x_k = x_{k+1}$$

Thus for any n things, they are the same.

To Find. The error in the proof.

5 question

To Check and Prove. Which of the following results hold.

- 1. If f is bijective and g is bijective, then $g \circ f$ is bijective.
- 2. If $f \circ f$ is injective, then f is injective.
- 3. if $f \circ f$ is surjective, then f is surjective.
- 4. If $g \circ f$ is surjective, then f is surjective.

Solution.

- 1. No. Consider $f(x) = x^2$ and $g(x) = x^3$. Then f and g are bijective but $g \circ f = x^6$ is not bijective.
- 2. Yes. If $f \circ f$ is injective, then f is injective. Let f(x) = f(y). Then $f(f(x)) = f(f(y)) \implies x = y$.
- 3. No. Consider $f(x) = x^2$. Then $f(f(x)) = x^4$ is not surjective.
- 4. Yes. If $g \circ f$ is surjective, then f is surjective. Let $y \in Y$. Then $\exists x \in X$ such that g(f(x)) = y. Since g is surjective, $\exists z \in X$ such that g(z) = y. Thus f(z) = x.

6 question

To Check. If $f \circ g$ are bijective then are both f and g bijective?

Solution. No. Consider $f(x) = x^2$ and $g(x) = x^3$. Then $f \circ g = x^6$ is bijective but f and g are not bijective.

7 question

To Show. The set operation $A \setminus B$ is not associative. That is, $(A \setminus B) \setminus C \neq A \setminus (B \setminus C)$ Solution.

To Show. Show that for every

8 question

To Prove. $A \subset B$ and $B \subset C \implies A \subset C$.

Solution.

To Prove.
$$((P \longrightarrow R) \land (Q \longrightarrow R)) \longrightarrow (P \lor Q) \longrightarrow R)$$

Solution.

The truth table for the following is as follows

	The train table for the following is as follows							
Р	Q	R	$P \longrightarrow R$	$Q \longrightarrow R$	$P \lor Q$	$(P \lor Q) \longrightarrow R$	$((P \longrightarrow R) \land (Q \longrightarrow R)) \longrightarrow (P \lor Q) \longrightarrow R)$	
T	Т	Т	Τ	Τ	Т	T	T	
T	T	F	${ m F}$	${ m F}$	T	\mathbf{F}	T	
T	F	Т	${ m T}$	${ m T}$	T	${ m T}$	T	
T	F	F	\mathbf{F}	${ m T}$	Т	${ m T}$	T	
F	Γ	Т	${ m T}$	${ m T}$	Т	${ m T}$	T	
F	Т	F	${ m T}$	${ m F}$	Т	\mathbf{F}	T	
F	F	Т	T	${ m T}$	F	${ m T}$	T	
F	F	F	${ m T}$	${ m T}$	F	${ m T}$	T	

9 question

Given. $n \neq 0$ divides k if there is a $q \in \mathbb{N}$ such that $k = n \times q$.

To Check. Whether divides as a relation on natural number is reflexive, symmetric, transitive or not.

Solution. Let a relation \sim defined on \mathbb{N} as $\mathbb{N} \times \mathbb{N}$, such that $(k, n) \sim (n, k) \iff \exists q \in \mathbb{N}$ such that $k = n \times q$.

10 question

Given. Panedmic affects 1 person on the first day. After that each person spreads it to a people, where a is average rate of transmission. Number of people infected on n^{th} day is $(n-1)^{th} \times a$. Two programmers wrote the code below.

Naive Coder.

```
fun pandemic(num-days :: Number, rate :: Number) -> Number:
    doc: "counting number of pandemic infected"
    if num-days == 0:
```

```
1
  else:
    pandemic(num-days - 1, rate) * rate
  end
end
```

Mathematics Coder.

```
fun altpandemic(num-days :: Number, rate :: Number) -> Number:
    doc: "counting using power"
    num-expt(rate, num-days)
end
```

To Prove. Given an input, both the functions give the same output.

Solution.

11 question

To Write. A bijective map from $\mathbb{N} \to \mathbb{Z}$.

Solution. A bijection from $\mathbb{N} \to \mathbb{Z}$ can be given by the function $f(n) = (-1)^n \times \left[\frac{n}{2}\right]$.

$$f(0) = 0$$

$$f(1) = -1$$

$$f(2) = 1$$

$$f(3) = -2$$

$$f(4) = 2$$

$$f(5) = -3$$

$$\vdots$$

$$f(n) = (-1)^n \times \left[\frac{n}{2}\right]$$

12 question

Given. A relation \leq on a set S is called a pre-order if it is reflexive and transitive. A relation \equiv on S such that $x \equiv y \iff x \leq y$ or $y \leq x$.

To Prove. \equiv is an equivalence relation.

Solution.

13 question

Given. A pre-order is called a partial order if it is antisymmetric, i.e., $x \leq y \vee y \leq x \leftrightarrow x = y$