Johns Hopkins Engineering

Immunoengineering

Immunoengineering—Allergy and Autoimmunity

Cell Engineering

General Outline

- Engineered Cells
- Engineered Microbes
- Engineered Proteins
- Engineered Genetic Material

Stem Cell Transplantation for Scleroderma

- Reset the immune system
- Significant increase in patient survival and limiting relapse
- Compared to conventional immunosuppressive chemotherapy cyclophosphamide

Cellular Engineering Background

Advantages

- Overcomes challenges of biologics and small molecules
- Potential for a dynamic response that can regulate therapeutic:
 - Dose
 - Timing
 - Localization
- Act as a living sensor for diagnostics

Cellular Engineering Background

Disadvantages

- Lack of control (e.g. CAR T cells)
- Need to create many circuits to find one that works
- Cell type and source
- Immune reaction
- Nucleic acid delivery

Synthetic Biology and Genetic Circuits

Engineering Approaches

- Computer-aided design
- Modularity & Abstraction
- Feedback control

Genetic Circuits Example - Psoriasis

- TNFa & IL-22 upregulated
 - Target of many current therapies
- IL-4/10 help control
 - Also a therapeutic option
- AND gate for dual production

Genetic Circuits Example - Psoriasis

- Control Psoriasis in vitro and in vivo in mice compared to conventional treatment
 - Need to be encapsulated in alginate gel
- Designer cell responds to cytokine levels from psoriasis patients

Genetic Circuits Example – Grave's Disease

- Low T3/4
 - TSH release from pituitary gland
 - Stimulate thyroid to release T3/4
 - Negative feedback from T3 levels to suppress TSH release in hypothalamus and pituitary gland
- Graves Disease = constitutively activate T3/4 production and disrupt negative feedback loop

Genetic Circuits Example – Grave's Disease

Designer cell

- Input is T3 sensor
 - Which turns ON gene expression if signaled
- Output are TSH antagonists
- Regulated by what it is therapeutically targeting

Genetic Circuits Example – Grave's Disease

Designer cell

- Control T4 levels in mice with hyperthyroidism
- Need to be injected in alginate spheres

Restoring Protective Microbiota

HOME ABOUT THE COMPANY SCIENCE OUR TEAM

Start up around treating food allergies with adding bacteria to the microbiota

Genetic Engineering for bacteria

Advantages

- More straightforward circuit design
- Ability of transfer
- Availability and production of cells

Genetic Engineering for bacteria

Disadvantages

- Safety and Regulation
- Preclinical screens
- Stability
 - Growth rate
 - Loss of function
 - Rate of mutations

Bacterial Engineering Example – Allergies

- Lactococcus lactis GRAS
- Engineered to express IL-10
 - Downregulate immunoflammatory and used in treatment
- Decreased IgE levels to sensitized antigen

Bacterial Engineering Example – Chron's disease

- Lactococcus lactis IL-10
- Reduction of 50% of disease score for mice

Bacterial Engineering Example – Diabetes

- Lactococcus lactis IL-10 & proinsulin autoantigen
- Reduce Diabetes in 66% of mice
- Combination with low dose of systemic anti-CD3

Engineered Bacteria to Persist

- Detect tetrathionate for indicator of inflammation in the gut
- Stable in gut for up to 6 months

Bacterial Mimitopes – A potential way for therapy?

- The Bacteroides integrase encodes a low-avidity mimotope of IGRP206-214
- The microbial epitope recruits diabetogenic CD8+ T cells to the gut
- Crossreactive CD8+ T cells suppress colitis by targeting gut DCs
- Suppression of colitis is MHC class
 I-, Itgb7-, and perforin-dependent

Comparison

Mammalian Cells

- + Ability for systemic administration
- Difficult to genetically engineer
- + May require less engineering because functionally similar
- Difficult to maintain cells and lack of available cell sources

Bacteria Cells

- Limited areas of influence (bacterial restricted sites)
- + Easier to genetically engineer
- Different biology may not be compatible (protein modifications)
- + Easier to grow cells and obtain cell lines

Challenges Facing Cellular Engineering

- Safety
- Control
- Administration and Persistence
- Cost
- Standardization

