Emotions on Image Classification by Reinforcement Learning with Two-State Q-Learning

Ilona Tomkowicz

Goal:
enhancement of
traditional deep
learning emotions
classification

Approach	Accuracy
ResNet50	.8242
Proposed Approach using ResNet50	.8309
Inception V3	.8564
Proposed Approach using InceptionV3	.8644

Experiment results

ResNet, 350 samples, Acc: 21,27 -> 23,40%

Actions: rotation 180 deg, rotation 90 deg, diag. translation

sadness

ResNet, 3500 samples, Acc: 93,64 -> 95,05%

Actions: rotation 180 deg, rotation 90 deg, diag. translation

Inception, 350 samples, Acc: 74,46 -> 78,72%

Actions: rotation 180 deg, rotation 90 deg, diag. translation

Inception, 3500 samples, Acc: 88,70 -> 89,41%

Actions: rotation 180 deg, rotation 90 deg, diag. translation

Too good to be true

Algorithm evaluation methodology

- Evaluation used in article introduces conditional probability
- Assumes we know the test grand truth labels during the algorithm execution

- Use traditional CNN (e.g. ResNet) to define a prediction on a test sample
- 2) If and only if CNN prediction is not equal to GT label use RL enhancement
- 3) If RL was used, treat it's result as the final response, else CNN response is final

Adjustment:

RL for all test samples

Original actions from article

- Rotation 90 degrees
- Rotation 180 degrees
- Diagonal translation right-down 15 pixels

Do they make sense?

Actions comparison - demo

Actions	Rot90,	Rot+10,	Rot+10,
	rot180,	Rot-10,	Rot-10,
	diagTran	diagTran	noAction
Acc change [%]	0	2	2

- 90 and 180 angles do not make sense
- Diagonal translation never works better than no action
- Neither no action nor diagonal translation enhance classification

Adjustment:

4 actions: positive and negative angles for two small values

Actions	ResNet 350 samples, Acc 21%	ResNet 3500 samples, Acc 94%	Inception 350 samples, Acc 74%	Inception 3500 samples, Acc 89%
0: rotation 180 deg, 1: rotation 90 deg, 2: diag. translation	Acc: 21 % Optimal actions: 0: 100%	Acc: 20% Optimal actions: 0: 100%	Acc: 19% Optimal actions: 0: 90%, 1: 10%	Acc: 12% Optimal actions: 0: 95% 1: 5%
0: rotation +10 deg 1: rotation -10 deg, 2: diag. translation	Acc: 23% Optimal actions: 0: 90% 1: 10%	Acc: 20 % Optimal actions: 0: 100%	Acc: 47 % Optimal actions: 0: 95% 1: 5%	Acc: 49 % Optimal actions: 0: 99% 1: 1%
0: rotation +10 deg 1: rotation -10 deg, 2: no action	Acc: 23% Optimal actions: 0: 85% 1: 15%	Acc: 52% Optimal actions: 0: 98% 1: 2%	Acc: 67% Optimal actions: 0: 80% 1: 20%	Acc: 49 % Optimal actions: 0: 99% 1: 1%
0: rotation +5 deg 1: rotation -5 deg, 2: rotation +10 deg, 3: rotation -10 deg	Acc: 23 % Optimal actions: 0: 85% 1: 10% 3: 10%	Acc: 71% 0: 98% 1: 1% 3: 1%	Acc: 64% 0: 85% 1: 10% 3: 5%	Acc: 68% Optimal actions: 0: 95% 1: 5%
Action space search +5/-5/+10/-10/no change	Acc: 21%	Acc: 54%	Acc: 51%	Acc: 62%

States

States in the article are strictly connected with the reward in each step.

No adjustment was made here, even though it is not a good practice.

$$r = \left\{ \begin{array}{ll} +1, & if \ \textit{M}_{1} > \textit{M} \\ 0, & if \ \textit{M}_{1} = \textit{M} \\ -1, & if \ \textit{M}_{1} < \textit{M} \end{array} \right\}$$

State 1 when action enhanced std (reward >= 0)

State 0 otherwise.

Conclusions:

- increasing image features std does not enhance CNN classification,
- the article contains a deceiving algorithm evaluation method.

Literature

"Image Classification by Reinforcement Learning with Two-State Q-Learning" Abdul Mueed Hafiz, 2020

FERG DB: https://grail.cs.washington.edu/projects/deepexpr/ferg-2d-db.html