

REDES DE COMPUTADORES LOCAIS (LANS)

- Placas de redes
- Modems
- Hubs e Switches
- Routers
- Bridges
- Repetidores, Access Point
- Firewall
- Outros equipamentos de rede

O PADRÃO DE REDES ETHERNET

- O padrão Ethernet é atualmente, o padrão de redes locais (LAN) que conhece maior difusão.
- É definido fundamentalmente ao nível da camada de Ligação de Dados e a sua implementação começa por ser feito nas próprias placas de rede.
- As redes Ethernet conheceram grande difusão em topologias bus com cabos coaxiais.
- Entretanto, com a difusão da tecnologia dos hubs, tornaram-se mais comuns redes Ethernet de topologias em estrela, com cabos de pares entrançados não blindados.

REDES ETHERNET — TAXA TRANSMISSÃO

- As taxas de transmissão das redes Ethernet vão desde os 10 Mbps e chegam até a 10 Gbps.
- O padrão Ethernet normal tem uma taxa de transmissão até 10 Mbps.
- A versão Fast Ethernet permite taxas de transmissão até 100 Mbps.
- A versão Gigabit Ethernet permite taxas de transmissão até 1 Gbps.
- 10 Gigabit Ethernet (10 GbE ou como 10GE ou 10 GigE) até 10 bilhões de bits por segundo.

10 Gigabit Ethernet versions

CABLE TYPE	IEEE STANDARD NAME	VERSION	DISTANCE METERS (M)/ KILOMETERS (KM)	SINGLE-MODE FIBER (SMF)/MULTIMODE FIBER (MMF)
Copper	802.3ak-2004	10GBASE-CX4	15 m	NA
Fiber	IEEE 802.3ae	10GBASE-ER	40 km	SMF
Fiber	IEEE 802.3ae	10GBASE-LR	10 km	SMF
Fiber	IEEE 802.3ae	10GBASE-SR	65 m	MMF
Fiber	IEEE 802.3ae	10GBASE-ZR	80 km	SMF
SONET	IEEE 802.3ae	10GBASE-EW	40 km	SMF
SONET	IEEE 802.3ae	10GBASE-SW	65 m	MMF

ADAPTADOR DE REDE

Os interfaces (placas) que ligam os computadores ao cabo de rede estão sempre a receber a informação que circula pelos cabos.

Num dado instante em que está em curso uma transmissão, todos os outros computadores da rede são obrigados a ficar em estado de contenção. isto é.

sem poderem transmitir.

PLACAS DE REDE

PLACAS DE REDE

- Um computador liga-se a uma rede local através de uma placa de rede ou cartão de interface de rede (NIC – Network Interface Card).
- Os interfaces de redes locais variam no seu formato, bem como ao nível dos padrões que incorporam (por exemplo: Ethernet, Token Ring, etc.).
- Placas de rede que encaixam nos slots de expansão dos computadores e assim estabelecem a ligação do computador ao cabo da rede.

PLACAS DE REDE

- Através de ondas eletromagnéticas (Wi-Fi), cabos metálicos ou cabos de fibra ótica.
- Cada arquitetura de rede pode exigir um tipo específico de placa de rede, como as redes em anel do tipo Token Ring e as redes Ethernet.
- Diferenciam-se também pela taxa de transmissão, cabos suportados e barramento utilizado (PCI, PCI Express, USB ou <u>Thunderbolt (interface)</u>)

1 - Exercício

1- Crie no seu caderno digital com o nome: "**Equipamento de redes - vosso nome**", uma secção (separador) para cada uma das seguintes referências:

Placas de redes

- ★Tipos de placas de rede;
- Características das placas de redes;
- Marcas de placas de rede;
- ×Preços de placas de rede.

MODEMS

MODEMS

- O sinal providenciado pelo ISP – Operador, é diferente de sinal em funcionamento de uma rede
- O Modem é responsável pela conversão(em ambos os sentidos) desse sinal

MODEMS

- A ligação de um computador a uma rede alargada (WAN, Internet, etc.) é feita, normalmente, através de um modem.
- Os modems são utilizados para:
 - Converter os sinais digitais do computador para os sinais analógicos das linhas telefónicas tradicionais;

• Converter os sinais analógicos provenientes das linhas telefónicas tradicionais para os

sinais digitais dos computadores.

CARATERÍSTICAS MODEMS

- Um modem externo apresenta, em relação a um modem interno, a vantagem de poder facilmente ser desligado de um computador e usado num outro.
- No modem interno implica a abertura do computador para o retirar do slot que o liga ao bus.
- Modems possuem sinais luminosos que podem fornecer indicações úteis em relação às operações em curso.

Os modems diferenciam-se também quanto à velocidade ou taxas de transmissão que proporcionam.

Modem

TIPO DE MODEMS

- Interno placa que encaixa num slot de expansão do computador;
- Externo dispositivo com a forma de caixa que contém internamente uma placa do mesmo género das placas dos modems internos; porém, diferentemente, dos modems internos, os externos ligam-se ao computador através de um cabo a uma porta série ou USB;
- Cartão PCMCIA ou PC Card os modems deste tipo (tal como os cartões de rede) foram criados principalmente para os portáteis e ligam-se a encaixes próprios PCMCIA ou PC Card.

OUTROS TIPOS DE MODEMS

- Os modems para acesso em banda larga podem ser USB, Wi-Fi ou Ethernet.
- Os modems ADSL diferem dos modems para acesso discado porque não precisam converter o sinal de digital para analógico e de analógico para digital;
- O sinal é sempre digital (ADSL Asymmetric Digital Subscriber Line).
- Cable Modem ou modem a cabo utiliza as redes de transmissão de TV por cabo (chamadas de televisão a cabo - Community Antenna Television)
- Transmitir dados em velocidades que variam de 70 Kbps a 1 Gbps.
- Em Portugal, as empresas de TV por cabo: NOS (ZON, TVCabo), Nowo (Cabovisão), Bragatel, TVTEL, Pluricanal.

NOVO TIPO DE MODEMS DE FIBRA

- A ONU (Optical Network Unit), conhecida como ONT (Optical Network Termination), é o equipamento que recebe o sinal ótico e o converte em sinal elétrico (os dois sinais são digitais).
- A ONT é um equipamento ativo que pode ser externo ou interno no Router.
- O meio da conversão do sinal ótico que vem do fornecedor serviço da internet, por meio de uma rede ótica passiva (rede PON – Passive Optical Network) para o sinal elétrico.

NOVO TIPO DE MODEMS / ROUTER PARA INTERNET MÓVEL

- Internet móvel pode ser definida como o uso de tecnologias de comunicação sem fio (wireless) para acesso a informações e aplicações Web a partir de dispositivos móveis.
- As redes móveis tem objetivos dar acessos de voz e de dados (Internet mais rápidos), aos dispositivos tecnológicos como smartphones, portáteis e tablets.
- Por isso, vejamos as principais diferenças entre a rede 3G, 4G e 5G.

Technology	1G	2G	3G	4G	5G
Year	1979	1991	2001	2009	2019
Use Cases	Analog System, Dropped Calls, Giant Cell Phones	Texting (SMS), MMS, Conference Calls, Long Distance Call Tracking	Cheap data transmission, GPS, Web Browsing, SD Video Streaming	HD Video Streaming, Wearable Devices, High Speed Applications	Internet of Things, Cloud Storage, Remote Surgical Robots
Frequency	30 KHz	1.8 GHz	1.6-2 GHz	2-8 GHz	3-30 GHz
Bandwidth	2 kbps	364 kbps	3 Mbps	100 Mbps	10 Gbps
Avg Speeds	2 kbps	40 kbps	300 kbps	25 Mbps	150 Mbps
Range	N/A	50 mi	35 miles	10 miles	1,000 ft

NUNO RAMOS

2- Exercício

1- Crie no seu caderno digital com o nome: "**Equipamento de redes - vosso nome**", uma secção (separador) para cada uma das seguintes referências:

Modems

- Tipos de modems;
- Características dos modems;
- Marcas de modems;
- ×Preços de modems.

HUBS E SWITCHES

HUBS E SWITCHES

- Hub pode traduzir-se como centralizador de ligações.
- Switch significa comutador de ligações.
- Os hubs são dispositivos de centralização de ligações em redes de computadores.
- Os switches permitem, tal como os hubs, a centralização das ligações em rede, mas possibilitando a comutação dessas ligações e uma melhor gestão do tráfego nas redes.
- hubs e switches têm vindo a ser bastante utilizados na criação de redes locais estruturadas.
- Devido à maior eficácia e aos baixos preços dos switches, os hubs têm vindo a ser substituídos por estes últimos e são cada vez menos utilizados.

HUBS

- Dispositivo "burro" de encaminhamento de dados, em uma LAN
- Só deteta se tem dispositivos conectados
- Recebe dados por uma porta e envia os mesmos dados por todas as restantes portas
- Cria trafego em excesso desnecessário

HUBS

- Hubs podem ser passivos ou ativos.
- Hub passivo não usa energia elétrica e apenas retransmite os sinais para a rede (para todos os dispositivos).
- Hub ativo pode ser usado para estender a distância entre dois dispositivos, como repetidores ou regeneradores de sinal, por mais 100 metros.
- Atua na camada física (Camada 1) do modelo OSI.
- Não permite a criação de segmentos de rede (VLAN) e tão pouco suporta protocolos.

SWITCHES

- Dispositivo "inteligente" de encaminhamento de dados, em uma LAN
- Opera na Camada 2 do Modelo OSI
- Para além de detetar se tem dispositivos conectados, verifica a morada física dos mesmos e guarda essa informação (tabela de ARP)
- Recebe dados verifica qual o MAC Address de destino, confronta com a tabela de ARP em cache e encaminha
- Só cria o trafego necessário, sendo muito mais eficiente

SWITCHES

- 🖢 O switch pode ser considerado a evolução natural do hub e é fisicamente parecido .
- Os switches (designados switching hubs hubs de comutação) opera na Camada 2 do modelo OSI, são dispositivos que permitirem a centralização / comutação das ligações entre os equipamentos de uma rede local.
- A diferença principal entre um switch e um hub é que no switch os dados provenientes do computador de origem apenas são enviados para o computador de destino, enquanto que no caso do hub os dados são sempre enviados para todos os computadores da rede.
- Dois tipos de switches de rede: os switches gerenciáveis e os não gerenciáveis.
- Switch gerenciáveis é um equipamento que pode ser configurado e gerenciado para otimizar o tráfego na rede
- Segmentar a rede física em várias LANs lógicas, também conhecidas como VLANs.

3- Exercício

1- Crie no seu caderno digital com o nome: "**Equipamento de redes - vosso nome**", uma secção (separador) para cada uma das seguintes referências:

Switches e Hubs

- ★Tipos de switches e hubs;
- Características dos switches e dos hubs;
- Marcas de switches e de hubs;
- ×Preços de switches e de hubs.

- Dispositivo de encaminhamento de dados, entre LANs
- Opera na Camada 3 do Modelo OSI
- Recebe dados verifica qual IP de destino, confronta com a tabela de Roteamento e encaminha para a rede pretendida

- Um roteador (router) é um equipamento que tem a função básica de receber e direcionar pacotes de dados dentro de uma rede ou para outras redes.
- Esse tipo de dispositivo é mais avançado do que o switch.
- É um dispositivo da camada 3 (rede) do Modelo OSI.
- Ou interligar redes remotas, constituindo dessa forma uma WAN ou uma internet (no sentido genérico deste termo: interligação de redes).
- Os routers são dispositivos fundamentais da interligação dos largos milhares de redes que constituem a Internet.

- São os routers que desempenham a função de encaminhar as mensagens da sua rede de origem à rede de destino determinando os melhores percursos que nem sempre são os mais curtos em extensão, mas os que se apresentam disponíveis, menos congestionados ou com melhores níveis de desempenho.
- Enquanto que uma bridge apenas é capaz de discriminar se uma mensagem se destina a um ponto na sua sub-rede de origem ou a um ponto numa outra sub-rede.
- Um router analisa e processa os endereços dos pacotes de dados a um nível superior, sendo capaz de determinar qual o melhor percurso para uma mensagem atingir o seu destino.
- O router pode ser só um nó de interligação de várias sub-redes ou redes constituintes de uma inter-rede ou internet.

- Routers podem ter diferentes quantidades de portas e trabalhar em conjunto com switches ou mesmo hubs.
- Router trabalha com recursos complementares, como ferramentas para firewall, DHCP e DNS.
- Router Wi-Fi (Wi-Fi router) cria uma rede local (uma LAN e WLAN) e conectá-la à internet.
- Modem roteador (neste caso, Wi-Fi), isto é, um equipamento que une essas duas funções.

https://pplware.sapo.pt/internet/altice-labs-cria-o-router-domestico-de-operadora-mais-rapido-do-mundo

4- Exercício

1- Crie no seu caderno digital com o nome: "**Equipamento de redes - vosso nome**", uma secção (separador) para cada uma das seguintes referências:

Routers

- XTipos de routers;
- Características dos routers;
- Marcas de routers;
- ×Preços dos routers.

Wired AP Mode Setting

Need broadband router internet access

REPETIDORES

REPETIDORES

- Repetidor atua na camada 1 (física) do Modelo OSI.
- Os repetidores ou repeaters são simples dispositivos eletrónicos que recebem os sinais transmitidos ao longo de um cabo e repetem-nos para o segmento seguinte desse cabo;
- Regeneram ou amplificam os sinais de modo a evitar a atenuação que ocorre ao longo do cabo, permitindo, desta forma, aumentar o alcance desse cabo.

Os repetidores de sinal Wi-Fi são ferramentas disponíveis no mercado para

ampliar o sinal da Internet (sinal Wi-Fi)

REPETIDORES

- Qualquer cabo elétrico utilizado numa rede de área local tem um alcance limitado em relação à propagação do sinal.
- Os cabos de pares entrançados têm um limite variável que pode situar-se entre os 25 e os 100 metros (conforme a qualidade do cabo).
- ·Os cabos coaxiais podem ir até cerca dos 180 metros;
- Os cabos de fibra ótica têm um alcance maior que pode situar-se em torno dos dois quilómetros.
- A utilização de repetidores (ou outros dispositivos que desempenhem a mesma função) permite-nos, até certo ponto, ultrapassar esses limites.

5- Exercício

1- Crie no seu caderno digital com o nome: "**Equipamento de redes - vosso nome**", uma secção (separador) para cada uma das seguintes referências:

Repetidores

- Tipos de repetidores;
- Características dos repetidores;
- *Marcas de repetidores;
- ×Preços de repetidores.

BRIDGES

BRIDGES

- As bridges (pontes) são dispositivos que permitem dividir uma rede local em duas ou interligar duas redes já existentes e, de certa maneira gerir o tráfego entre essas sub-redes resultantes.
- No modelo OSI as pontes operam nas duas primeiras camadas abaixo da camada de rede ou camada 3.
- Estes dispositivos podem ser utilizados, por exemplo, para ligar duas sub-redes locais, situadas em diferentes compartimentos.

BRIDGES

- Desta forma controla-se o tráfego das mensagens, de modo a deixar passar de um segmento da rede para o outro apenas as mensagens destinadas a um computador situado no outro segmento, reduzindo assim possíveis congestionamentos de tráfego de mensagens.
- As bridges podem também ser usadas para interligar sub-redes através de um backbone (espinha dorsal ou cabo principal da rede);
- Ou para interligar redes situadas em locais geográficos afastados, permitindo assim constituir redes mais abrangentes (por exemplo: redes de campus, MAN, etc.).

6- Exercício

1- Crie no seu caderno digital com o nome: "Equipamento de redes - vosso nome", uma secção (separador) para cada uma das seguintes referências:

Bridges

- XTipos de bridges;
- Características das bridges;
- Marcas de bridges;
- ×Preços de bridges.

ACCESS POINT/WIRELESS ACCESS POINT

- Dispositivo que propaga um sinal Wireless
- Permite que seja efetuada comunicação de dispositivos Wireless com a rede

FIREWALL

- Dispositivo que filtra a entrada de dados não desejados/nocivos numa rede privada
- Estes filtros são granulares e podem ser implementados via regras programadas no equipamento
- Existem Firewalls de rede e Firewalls de terminal

OUTROS EQUIPAMENTO DE REDE

OUTROS EXEMPLOS

NUNO RAMOS

OUTROS EXEMPLOS

7- Exercício

1- Crie no seu caderno digital com o nome: "Equipamento de redes - vosso nome", uma secção (separador) para cada uma das seguintes referências:

Access Point / Firewall / PLC / Adaptadores USB para Rede

- XTipos;
- **X**Características;
- × Marcas;
- × Preços.

CLASSES DE ENDEREÇOS IP

	Primeiro	Parte da rede (N) e		L eo	
Classe	Octeto	parte para hosts (H)	Máscara	Nº Redes	Endereços por rede
A	1-127	N.H.H.H	255.0.0.0	126 (2 ⁷ -2)	16,777,214 (2 ²⁴ -2)
В	128-191	N.N.H.H	255.255.0.0	16,382 (2 ¹⁴ -2)	65,534 (2 ¹⁶ -2)
С	192-223	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ -2)	254 (2 ⁸ -2)
D	224-239	Multicast	NA	NA	NA
E	240-255	experimental	NA	NA	NA

	1º Octeto							
	1	2	4	8	16	32	64	128
255	1	1	1	1	1	1	1	1
				teto	2º Oct			
	1	2	4	8	16	32	64	128
255	1	1	1	1	1	1	1	1
				teto	3º Oc			
	1	2	4	8	16	32	64	128
255	1	1	1	1	1	1	1	1
				teto	4º Oc			
	1	2	4	8	16	32	64	128
224 10/2023	0	0	0	0	0	1	1	1

NUNO RAMOS 08/10/2023 47