INSTITUTO TECNOLÓGICO DE CELAYA

Asignatura: Algebra Lineal

Profesor: Raúl Alvarado Almanza Fecha de Entrega: 11/Oct/2011

Indicaciones: Entregar con portada y calidad.

1. Efectúe las operaciones indicadas con los vectores siguientes:

$$\vec{a} = (3,-1,4,2), \vec{b} = (6,0,-1,4), \vec{c} = (-2,3,1,5)$$

- a. $\vec{a} + \vec{c}$
- b. $\vec{b} \vec{a}$
- c. $2\vec{a} \vec{c}$
- d. $4\vec{b} 7\vec{a}$

- e. $\vec{c} \vec{b} + 2\vec{a}$
- f. $3\vec{a} 2\vec{b} + 4\vec{c}$
- 2. Efectúe las operaciones indicadas con las siguientes matrices:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 4 & 5 \\ 0 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 & 1 \\ 3 & 0 & 5 \\ 7 & -6 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 & 2 \\ 3 & 1 & 0 \\ 0 & -2 & 4 \end{pmatrix}$$

- a. 2A B + 2C
- b. C A B
- c. 4C 2B + 3A
- 3. Realice las operaciones indicadas
 - a. $\begin{pmatrix} -4 & 5 & 1 \\ 0 & 4 & 2 \end{pmatrix} \begin{pmatrix} 3 & -1 & 1 \\ 5 & 6 & 4 \\ 0 & 1 & 2 \end{pmatrix}$
- d. $\begin{pmatrix} 3 & 2 & 1 & -2 \\ -6 & 4 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 0 \\ 1 \end{pmatrix}$
 - b. $\begin{pmatrix} 1 & 4 & 6 \\ -2 & 3 & 5 \\ 1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 2 & -3 & 5 \\ 1 & 0 & 6 \\ 2 & 3 & 1 \end{pmatrix}$
 - c. $\begin{pmatrix} 1 & 6 \\ 0 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 7 & 1 & 4 \\ 2 & -3 & 5 \end{pmatrix}$
- e. $\begin{pmatrix} 3 & -2 & 1 \\ 4 & 0 & 6 \\ 5 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
- 4. Encontrar las soluciones de los siguientes sistemas de ecuaciones por medio de eliminación gaussiana.
 - $3x_1 + 6x_2 6x_3 = 9$ $2x_1 - 5x_2 + 4x_3 = 6$
 - $5x_1 + 28x_2 26x_3 = -8$
- $x_1 + x_2 x_3 = 7$
b. $4x_1 x_2 + 5x_3 = 4$
 - $6x_1 + x_2 + 3x_3 = 18$

INSTITUTO TECNOLÓGICO DE CELAYA

5. Encontrar las soluciones de los siguientes sistemas de ecuaciones por medio de eliminación Gauss-Jordan.

a.
$$3x_1 - 2x_2 + x_3 + x_4 = 2$$

$$3x_1 + 2x_3 - 2x_4 = -8$$

$$4x_2 - x_3 - x_4 = 1$$

$$5x_1 + 3x_3 - x_4 = -3$$
b.
$$2x_1 + 6x_2 - 4x_3 + 2x_4 = 4$$

$$x_1 - x_3 + x_4 = 5$$

$$-3x_1 + 2x_2 - 2x_3 = -2$$

6. Obtenga todas las soluciones a los sistemas no homogéneos dados. Encontrando primero una solución y después hallando todas las soluciones del sistema homogéneo asociado.

a.
$$2x_1 + x_2 + 2x_3 = 2$$

 $x_1 - x_2 - x_3 = 2$
b. $2x_1 + x_2 + 2x_3 = 4$
 $x_1 - 4x_2 - 5x_3 = 2$
b. $2x_1 + x_2 + 2x_3 = 4$
 $x_1 - 4x_2 - 5x_3 = 2$

7. Calcular la inversa de las siguientes matrices:

a.
$$\begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
 b. $\begin{pmatrix} 1 & 6 & 2 \\ -2 & 3 & 5 \\ 7 & 12 & -4 \end{pmatrix}$ c. $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 1 & -1 & 2 & 1 \\ 1 & 3 & 3 & 2 \end{pmatrix}$

8. Escriba el sistema en la forma Ax=b, luego calcule A⁻¹ y después obtenga el vector solución.

$$x_1 + x_2 + x_3 = 2$$
 $2x_1 + 4x_3 = 7$
a. $2x_1 - x_2 + 2x_3 = 4$ b. $-x_1 + 3x_2 + x_3 = -4$
 $-x_1 + 4x_2 + x_3 = 3$ $x_2 + 2x_3 = 5$

9. Un campesino alimenta su ganado con una mezcla de dos tipos de alimento. Una unidad estándar del tipo A suministra a una cabeza de ganado 10% de sus requerimientos diarios mínimos de proteína y 15% de los carbohidratos. El tipo B contiene, en una unidad estándar, 12% del requerimiento de proteínas y 8% del de carbohidratos. Si el campesino desea dar a sus animales el 100% de sus requerimientos mínimos, ¿cuántas unidades de alimento debe dar a cada cabeza de ganado diariamente?