知能システム論 自然言語処理(3) 構文解析 宮尾 祐介

yusuke@is.s.u-tokyo.ac.jp
https://mynlp.github.io/

なぜ自然言語処理が必要?

- 自然言語データをそのまま文字列として処理したらよいのでは?
- ■ポイント: 文字列の近さと意味の近さが異なる
 - 友達からケーキをもらった
 - 友達からケヤキをもらった
 - 友達からモンブランをもらった
 - 友達がケーキをもらった
- 文字列そのままではなく、何らかの形で「意味」 をとらえる必要がある

構文解析

- ■文の構造を計算する技術
- ■入力:単語列(十品詞)、出力:構造木

S: 文(sentence)

NP: 名詞句(noun phrase)

VP: 動詞句(verb phrase)

N: 名詞 (noun) V: 動詞 (verb)

なぜ構文解析が必要?

- ■意味を計算する第一歩
 - 文中で単語がどのように組み合わさっているのか (→ 構文木に沿って意味を計算する)

「言った」の主語は「太郎」

「言った」の主語は「太郎」ではない

構文解析アルゴリズムは重要

- ■構文解析の各種アルゴリズムは「自然言語の構文解析」だけに使われるわけではない
 - 機械翻訳、画像解析、自動証明、遺伝子解析、 etc...
- ■理論的にも重要
 - 木構造=動的計画法が適用できる重要なデータ 構造
 - 系列ラベリング(HMM, CRF etc.)よりもう一段複雑な動的計画法が必要
 - 構文解析アルゴリズムが理解できれば、世の中の多くの動的計画法は理解できる

構文木

- ■単語のまとまり(句)を木構造で表す
- ■句構造とも言う

S: 文(sentence)

NP: 名詞句(noun phrase)

VP: 動詞句(verb phrase)

N: 名詞 (noun) V: 動詞 (verb)

構文解析

■入力:単語列(十品詞)

■出力:構文木

John loves Mary

構文解析

NP
NP
NP
NP
NP
NP
John loves Mary

■構文木を計算するにはどういうデータ構造と アルゴリズムを用いればよいか?

文脈自由文法

- Context-Free Grammar (CFG)
- ■構文木を生成する規則の集合を考える
- ■部分木が組み合わさって一つの木になったと考える

文脈自由文法

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$

 $NP \rightarrow N$

 $VP \rightarrow V NP$

 $N \rightarrow John$

 $N \rightarrow Mary$

 $V \rightarrow loves$

定式化

- 文法 $G = \langle N, \Sigma, R, S \rangle$
 - N = {S, NP, VP, ...}: 非終端記号の集合
 - Σ = {friend, gave, cake, ...}: 終端記号の集合
 - $R = \{S \rightarrow NP \ VP, ...\}$: 生成規則の集合 • $r \in R$: $lhs \rightarrow rhs$ where $lhs \in N$, $rhs \in (N \cup \Sigma)^*$
 - S ∈ N: 開始記号

■導出

- 開始記号からスタートして、非終端記号を書き 換えていく
- 最終的に終端記号列(=文)が得られる

CFGの例

導出

 $S \rightarrow NP VP$

 $NP \rightarrow D N$

 $NP \rightarrow NP PP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

 $D \rightarrow a$

 $D \rightarrow the$

 $N \rightarrow girl$

 $N \rightarrow moon$

N → telescope

 $V \rightarrow saw$

 $P \rightarrow with$

- S ←開始記号
- NP VP
- D N VP
- a N VP
- a girl VP
- a girl VP PP
- a girl V NP PP
- a girl saw NP PP
- a girl saw D N PP
- a girl saw the N PP
- a girl saw the moon PP
- a girl saw the moon P NP
- a girl saw the moon with NP
- a girl saw the moon with D N
- a girl saw the moon with a N
- a girl saw the moon with a telescope

D: 冠詞 (determiner) P: 前置詞 (preposition) PP: 前置詞句 (prepositional phrase)

構文木

構文木=導出の履歴

- S
- NP VP
- DNVP
- a N VP
- a girl VP
- a girl VP PP
- a girl V NP PP
- a girl saw NP PP
- a girl saw D N PP
- a girl saw the N PP
- a girl saw the moon PP
- a girl saw the moon P NP
- a girl saw the moon with NP
- a girl saw the moon with D N
 - a girl saw the moon with a N
- a girl saw the moon with a telescope

D: 冠詞 (determiner) P: 前置詞 (preposition) PP: 前置詞句 (prepositional phrase)

演習1:構文木

■Time flies like an arrow の構文木をすべ て挙げよ

```
S \rightarrow NP \ VP \ | \ VP
NP \rightarrow N \ | \ D \ N \ | \ N \ NP \ PP
VP \rightarrow V \ NP \ | \ V \ | \ VP \ PP
PP \rightarrow P \ NP
D \rightarrow a \ | \ an \ | \ the
N \rightarrow girl \ | \ moon \ | \ telescope
```

V → saw | time | flies | like

| time | flies | arrow

A → time | like | happy

 $P \rightarrow with | like | in$

Time flies like an arrow

A: 形容詞 (adjective)

構文木

構文木

構文解析

- 文が与えられた時、その構文木を計算するに はどうしたらよいか?
 - 入力:終端記号列
 - 出力:構文木
- 与えられた文を生成するような導出を計算す ればよい
 - つまり、導出の逆向きがしたい
- ■基本アイディア
 - ある終端記号列を生成するような規則を見つけて 逆向きに適用する(ボトムアップ構文解析)

構文解析の例

 $S \rightarrow NP VP$

 $NP \rightarrow D N$

 $NP \rightarrow NP PP$

 $VP \rightarrow V NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow P NP$

 $D \rightarrow a$

 $D \rightarrow the$

 $N \rightarrow girl$

 $N \rightarrow moon$

N → telescope

 $V \rightarrow saw$

 $P \rightarrow with$

曖昧性の問題

- ■同じ終端記号列に対して、複数の構文木が作れる場合がある
- ■全ての構文木を列挙すると、同じ部分木を何回 も計算する必要がある

曖昧性の問題

- ■全ての構文木を列挙すると指数爆発する
 - c.f. カタラン数

動的計画法

- ■構文解析の途中結果(部分木)を保存しな がら解析する
- ■保存した部分木を再利用することで、同じ 部分木を再計算しない
 - → 指数爆発しない

保存した部分木を再利用して、この部分を計算

ボトムアップに構文木を計算し、部分木を保存

- Chomsky標準形(CNF)の CFG の構文解析アルゴリズム
 - CNF: 全ての生成規則の rhs は終端記号1個か、あるいは非終端記号2個
 - $\blacksquare A \rightarrow a$
 - $\blacksquare A \rightarrow B C$
 - 非終端記号1個の生成規則があっても、簡単な拡張で対応可能
 - $A \rightarrow B$

CKY表

■ セル (x,y) は $x+1$ 単語目から y 単語目までの部分木を保存 $(0,7)$									
■ 一番上のセル (0, 8) に S が 入れば構文木が完成 (0, 6)							(2, 8)		
(0, 5) (1, 6)						(2, 7)	(3, 8)		
(0, 4)				(1, 5)	(2, 6)	(3, 7)	(4, 8)		
		(0, 3)	(1, 4)	(2, 5)	(3, 6)	(4, 7)	(5, 8)		
	(0, 2)	(1, 3)	(2, 4)	(3, 5)	(4, 6)	(5, 7)	(6, 8)		
(0, 1)	(1, 2)	(2, 3)	(3, 4)	(4, 5)	(5, 6)	(6, 7)	(7, 8)		

girl saw the moon with a telescope

CKY表

■ (x, y) は, (x, k) と (k, y) から計算できる								
	(3, 8) ((0, 7)	(1, 8)					
• (3, 4), (4, 8) (0, 6)							(2, 8)	
• (3, 5), (5, 8) • (3, 6), (6, 8) (0, 5)						(2, 7)	(3, 8)	
(0 7) (7 0)			(0, 4)	(1, 5)	(2, 6)	(3, 7)	(4, 8)	
		(0, 3)	(1, 4)	(2, 5)	(3, 6)	(4, 7)	(5, 8)	
	(0, 2)	(1, 3)	(2, 4)	(3, 5)	(4, 6)	(5, 7)	(6, 8)	
(0, 1)	(1, 2)	(2, 3)	(3, 4)	(4, 5)	(5, 6)	(6, 7)	(7, 8)	

a girl saw the moon with a telescope


```
[初期化: CKY表の1段目を埋める]
for i = 2 to n \leftarrow CKY表の i 段目
 for x = 0 to n - i
   y = x + i
   for k = x + 1 to y - 1
    for X \in \text{table}(x, k) for Y \in \text{table}(k, y) 左と右のセルに入っている非終端記号
       for Z \in N
                                   XYを生成するような生成規則が
        if Z \to X Y \in R then
                                   あったらCKY表に追加
          table(x, y) \leftarrow table(x, y) \cup \{Z\}
          \operatorname{back}(x, y, Z) \leftarrow \operatorname{back}(x, y, Z) \cup \{(k, X, Y)\}
```

計算量は?

- ■途中結果を保存して表を順番に埋めていく という方針は同じ
 - アーリー法
 - チャート法
 - 一般化LR法

曖昧性解消

- ■CFGによる解析では、一つの文に対して複数の構文木が作られる
- ■通常, 人間の解釈は一つの構文木に対応
- ■人間の解釈に相当する構文木を出力するには?

確率による曖昧性解消

- ■構文木 T に対して確率 p(T) を求める
- $T^* = \underset{T}{\operatorname{argmax}} p(T)$ を出力する

確率文脈自由文法(PCFG)

- ■生成規則に確率を割り当てる
- **文法** $G = \langle N, \Sigma, R, S, p \rangle$
 - N = {S, NP, VP, ...}: 非終端記号の集合
 - Σ = {friend, gave, cake, ...}: 終端記号の集合
 - $R = \{S \rightarrow NP \ VP, ...\}$: 生成規則の集合 • $r \in R$: $lhs \rightarrow rhs$ where $lhs \in N$, $rhs \in (N \cup \Sigma)^*$
 - *S* ∈ *N*: 開始記号
 - p(r): 生成規則の確率
- ■構文木の確率は生成規則の確率の積

$$p(T) = \prod_{r \in T} p(r)$$

確率文脈自由文法(PCFG)

- **■***p* の定義
- ■左辺が同じ記号の生成規則の確率の和が1 =左辺の記号を条件にした条件付き確率

```
p(\mathsf{NP} \to \mathsf{D} \ \mathsf{N} \ | \ \mathsf{NP}) p(\mathsf{NP} \to \mathsf{NP} \ \mathsf{PP} \ | \ \mathsf{NP}) [0.7] \mathbb{E} \mathbb{D} \mathbb{E} \mathbb{D} \mathbb{E} \mathbb{E}
```

■ A girl saw the moon with a telescope のすべて の構文木の確率を求めよ

```
S \rightarrow NP VP
                     [1.0]
NP \rightarrow D N
                     [0.8]
NP \rightarrow NP PP
                     [0.2]
VP \rightarrow V NP
                     [0.6]
VP \rightarrow VP PP \quad [0.4]
PP \rightarrow P NP
                     [1.0]
D \rightarrow a
                     [0.5]
                     [0.5]
D \rightarrow the
                     [0.4]
N \rightarrow girl
                     [0.3]
N \rightarrow moon
N \rightarrow \text{telescope } [0.3]
V \rightarrow saw
                     [1.0]
                                        a girl saw the moon with a telescope
```

 $P \rightarrow with$

[1.0]

構文木1

S → NP VP [1.0] $NP \rightarrow D N$ $[0.8] \times 3$ $NP \rightarrow NP PP$ [0.2] $VP \rightarrow V NP$ [0.6] $VP \rightarrow VP PP$ [0.4] $PP \rightarrow P NP$ [1.0] $[0.5] \times 2$ $D \rightarrow a$ $D \rightarrow the$ [0.5][0.4] $N \rightarrow girl$ [0.3] $N \rightarrow moon$ $N \rightarrow \text{telescope} [0.3]$ [1.0] $V \rightarrow saw$ $P \rightarrow with$ [1.0]

$$p(T_1) = 1.0 \times 0.8^3 \times 0.6 \times 0.4 \times 1.0$$

 $\times 0.5^2 \times 0.5 \times 0.4 \times 0.3 \times 0.3 \times 1.0 \times 1.0$
= 0.00055296

構文木2

$S \rightarrow NP VP$	[1.0]
$NP \rightarrow D N$	$[0.8] \times 3$
$NP \rightarrow NP PP$	[0.2]
$VP \rightarrow V NP$	[0.6]
$VP \rightarrow VP PP$	[0.4]
$PP \rightarrow P NP$	[1.0]
$D \rightarrow a$	$[0.5] \times 2$
$D \rightarrow the$	[0.5]
$N \rightarrow girl$	[0.4]
$N \rightarrow moon$	[0.3]
N → telescope	[0.3]
V → saw	[1.0]
P → with	[1.0]

```
p(T_1) = 1.0 \times 0.8^3 \times 0.6 \times 0.4 \times 1.0
 \times 0.5^2 \times 0.5 \times 0.4 \times 0.3 \times 0.3 \times 1.0 \times 1.0
 = 0.00055296

p(T_2) = 1.0 \times 0.8^3 \times 0.2 \times 0.6 \times 1.0
 \times 0.5^2 \times 0.5 \times 0.4 \times 0.3 \times 0.3 \times 1.0 \times 1.0
 = 0.00027648
```


PCFG の諸問題

■学習データを用意する

- 文法 $G = \langle N, \Sigma, R, S, p \rangle$ をデータから学習する
 - 教師付き学習: 構文木の正解データから学習
 - 教師なし学習: 単語列のみから学習
 - → EMアルゴリズムを適用(本講義では割愛)
- 文法 $G = \langle N, \Sigma, R, S, p \rangle$ が与えられた時、入力文に対して確率が最大となる構文木を推定する

PCFGによる構文解析

■PCFGによる構文解析=入力文に対して、確率最大の構文木を計算する

$$T^* = \underset{T}{\operatorname{argmax}} \prod_{r \in T} p(r)$$

- ■すべての構文木を列挙して確率を計算 → 指数爆発
- ■動的計画法:部分構文木の確率値を表に保 存しながらボトムアップに確率を計算
- ■CKY アルゴリズムの拡張
 - CKY表を埋める時に、確率が最大の部分構文木 を求める


```
[初期化:CKY表の1段目を埋める]
for i = 1 to n
 for x = 0 to n - i
   y = x + i
   for k = x + 1 to y - 1
    for X \in table(x, k)
      for Y \in table(k, y)
       for Z \in N
         if Z \rightarrow XY \in R then XY を生成する生成規則があったら
           p = \text{prob}(x, k, X) \text{prob}(k, y, Y) p(Z \rightarrow X Y) 確率値を計算
           if p > \text{prob}(x, y, Z) then
            table(x, y) \leftarrow table(x, y) \cup \{Z\}
            \operatorname{prob}(x, y, Z) \leftarrow p
\operatorname{back}(x, y, Z) \leftarrow (k, X, Y)
                                              確率最大の部分木だけ残す
```

PCFG の諸問題

■学習データを用意する

- 文法 $G = \langle N, \Sigma, R, S, p \rangle$ をデータから学習する
 - 教師付き学習: 構文木の正解データから学習
 - 教師なし学習:単語列のみから学習
 - → EMアルゴリズムを適用(本講義では割愛)
- 文法 $G = \langle N, \Sigma, R, S, p \rangle$ が与えられた時、入力文に対して確率が最大となる構文木を推定する

文法と確率の学習

- 文法を人手で作るのは難しい(確率パラメータはほぼ 無理)
 - → データから学習する
- ・ 文法・確率を自分で作るのは大変だが、学習データを 作ることはできる(データ主導のアプローチ)

$S \rightarrow NP VP$	[1.0]
$NP \rightarrow D N$	[8.0]
$NP \rightarrow NP PP$	[0.2]
$VP \rightarrow V NP$	[0.6]
$VP \rightarrow VP PP$	[0.4]
$PP \rightarrow P NP$	[1.0]

学習データ=ツリーバンク

- ■構文木の正解データ
- 英語を中心にいろいろな言語でツリーバンクが 開発されている
 - Penn Treebank [Marcus et al. 1993]
 - SUSANNE [Sampson 1995]
 - TIGER Treebank [Brants et al. 2002]
 - Prague Dependency Treebank [Hajic 1998]
 - Verbmobil [Hinrichs et al. 2000]
 - Universal Dependencies [Nivre et al. 2016]
 - EDRコーパス [EDR 1995]
 - 京都大学テキストコーパス [黒橋ら 1997]
 - 日本語話し言葉コーパス(CSJ) [前川ら 2000]
 - 現代日本語書き言葉均衡コーパス(BCCWJ) [前川ら 2010]

Penn Treebank

- ■最初の大規模ツリーバンク [Marcus et al. 1993]
- Wall Street Journal から抽出した約5万文に品詞と構文木が付いている

```
(S (NP A/DT
                                                動詞句
       record/NN
                         名詞句
       date/NN)
   (VP has/VBZ
                       冠詞
                             NP
       n't/RB
                              NN
                                       VBZ RB VBN VBN
       (VP been/VBN
           set/VBN))
                                  date/has n't been set.
   ./.)
                                   三単現動詞
                         普通名詞
```

生成規則の学習

■ツリーバンクの各分岐を生成規則だと思って生成規則を抽出

パラメータの学習

■ツリーバンクでの出現頻度から確率を推定 (最尤推定)

$$p(lhs \to rhs) = \frac{C(lhs \to rhs)}{\sum_{rhs'} C(lhs \to rhs')}$$

教師なし学習

- ■HMMのBaum-Welchアルゴリズムと同様 の方法
- ■内側・外側アルゴリズム:内側確率と外側 確率を計算し、各生成規則の期待値を計算

CFG+機械学習

- 同様に、CFGと機械学習を組み合わせること もできる
 - 期待値計算 → ログ線形モデル
 - argmax → パーセプトロン
 - マージン → SVM

自然言語の構文解析

■ PCFGによる構文解析は精度が低い(70%~80%)

- ■構文解析
- ■文脈自由文法 (CFG)
 - 導出、構文木
 - CKY法
- ■確率文脈自由文法 (PCFG)
 - ビタビアルゴリズム
 - 教師付き学習
 - 教師なし学習