

problem: what's the topology of a point cloud?

simplicial complex

Simplicial Complex - A set K of simplicies such that:

- Any face of a simplex in K is also in K.
- The intersection of distinct simplicies in K is a face of both

simplicial homology

p-chain - A formal sum of p-simplicies $c = \sum_i \gamma_i \sigma_i$ with $\gamma_i \in \mathbb{F}$ a field. $C_p(K;\mathbb{F})$ - Vector space of all p-simplicies in K over \mathbb{F} p-cycles - Elements in $C_p(K;\mathbb{F})$ in the kernel of ∂ , denoted $Z_p(K;\mathbb{F})$ p-boundaries - Elements in $C_p(K;\mathbb{F})$ in the image of ∂ , denoted $B_p(K;\mathbb{F})$ $Simplicial\ Homology\ Group$ - $H_p(K;\mathbb{F}) := Z_p(K;\mathbb{F})/B_p(K;\mathbb{F})$ $Betti\ Numbers$ - The numbers $\beta_p(K;\mathbb{F}) := dim(H_p(K;\mathbb{F}))$

Note: We will always work over \mathbb{Z}_2

simplicial homology

simplicial filtrations

Definition. Subcomplex - A subcomplex K_i of a simplicial complex K is a simplicial complex such that $K_i \subset K$

Definition. Filtration - A nested sequence of subcomplexes $\{K_i\}$ that starts with \emptyset and ends with K

$$\emptyset = K_0 \hookrightarrow K_1 \hookrightarrow K_2 \cdots \hookrightarrow K_{m-1} \hookrightarrow K_m = K$$

birth, death, and taxes

Remark. A filtration $\{K_i\}$ generates a sequence of homomorphisms

$$H_p(K_0; \mathbb{Z}_2) \to H_p(K_1; \mathbb{Z}_2) \to H_p(K_2; \mathbb{Z}_2) \cdots \to H_p(K_m; \mathbb{Z}_2)$$

Definition. Born - A homology class γ is born at K_i if it is not in the image of the homomorphism induced by $K_{i-1} \hookrightarrow K_i$

Definition. Dies - A homology class γ dies at K_j if the image of the homomorphism induced by $K_{i-1} \hookrightarrow K_{j-1}$ does not contain the image of γ , but the image of the homomorphism induced by $K_{i-1} \hookrightarrow K_j$ does

persistence

Definition. Persistence - The persistence of a homology element γ born at K_i and dying at K_j is j-i

Remark. What does this have to do with our original question?

Remark. How do we compute the Betti numbers $\beta_p(K; \mathbb{Z}_2)$

Remark. How do we compute persistence?

so what! H_0 H_1 H_2 lmage:<u>Padmanaba01</u> (CC BY 2.0)

calm before the algorithm

Definition. Compatible Total Ordering - A compatible total ordering on a simplicial complex K with filtration $\{K_i\}$ is a total ordering on the simplicies $\sigma_i \in K$ such that:

- Simplicies in each K_i precede those in $K K_i$
- Faces of a simplex precede the simplex

Definition. Boundary Matrix - Matrix D_{ij} with rows and columns corresponding to simplicies of K in a compatible total ordering such that $D_{ij} = 1$ if σ_i is a codimension 1 face of σ_j and $D_{ij} = 0$ otherwise.

Definition. low(j) - The map low(j) is defined to be the row number in D_{ij} of the lowest non-zero entry in column j. If column j contains only 0's, then low(j) = 0

the algorithm: betti numbers

```
for j = 1 to |K| do

while \exists j' < j with low(j') = low(j) \neq 0 do

add column j' of D_{ik} to column j of D_{ik}

end while

end for
```

Definition. $\#Zero_p(R)$ - Number of zero columns in R that correspond to p-simplicies

p-simplicies.

Definition. $\#Low_p(R)$ - Number of lowest ones in rows that correspond to

p-simplicies

Lemma. $B_p(K; \mathbb{Z}_2) = \#Zero_p(R) - \#Low_p(R)$

the algorithm: persistence

```
for j = 1 to |K| do

while \exists j' < j with low(j') = low(j) \neq 0 do

add column j' of D_{ik} to column j of D_{ik}

end while

end for
```

Remark. The persistence of the simplicies can be calculated as follows:

- If low(j) = i > 0, then the persistence of σ_i is j i.
- If low(j) = 0 and there exists no k with low(k) = j, then σ_j essential, i.e. it doesn't die.

