ME40064: Systems Modelling & Simulation ME50344: Engineering Systems Simulation Lecture 5

Dr Andrew Cookson University of Bath, 2019-20

LECTURE 5 FEM: Galerkin Formulation

- Able to convert Poisson's equation into weak form suitable for FEM
- Understand basic concept of discretisation of equations in FEM
- Understand the Galerkin assumption

REVIEW Governing Equations

In lecture 3 we derived the transient advection-diffusion-reaction equation

$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = D\nabla^2 c + \lambda c + f$$

To illustrate principles of FEM start with simpler version of this, Poisson's equation

$$D\nabla^2 c + f = 0$$

THE POISSON EQUATION A 1D Formulation

Steady state diffusion with a source term

$$D\frac{\partial^2 c}{\partial x^2} + f = 0$$

This is the strong form of the equation

We will solve an integral or weak form

$$\int_{\Omega} v \left(D \frac{\partial^2 c}{\partial x^2} + f \right) dx = 0$$

where v is a weighting function and integral is defined over domain omega

WEAK FORM What Is The Reasoning Behind It?

- Only solving equation in a "weak" sense
- Weighting the error distributes it over the domain
- Therefore spatially averaging the error to be zero
- Choice of weighting is very important

WEAK FORM What Is The Reasoning Behind It?

WEAK FORM What Is The Reasoning Behind It?

Distribute error over all the line segments to minimise total error

INTEGRATION BY PARTS

Formula for integration by parts

$$\int w(x)v'(x)dx = w(x)v(x) - \int w'(x)v(x)dx$$

Apply this to weak form equation

$$\int_{\Omega} D \frac{\partial v}{\partial x} \frac{\partial c}{\partial x} dx = \int_{\Omega} v f dx + \left[v D \frac{\partial c}{\partial x} \right]_{\partial \Omega_0}^{\partial \Omega_L}$$

2nd order operator is now linear, making the equation easier to solve

INTEGRATION BY PARTS Incorporation Of Neumann Bcs

$$\int_{\Omega} D \frac{\partial v}{\partial x} \frac{\partial c}{\partial x} dx = \int_{\Omega} v f dx + \left[v D \frac{\partial c}{\partial x} \right]_{\partial \Omega_0}^{\partial \Omega_L}$$

INTEGRATION BY PARTS Incorporation Of Neumann Bcs

$$\int_{\Omega} D \frac{\partial v}{\partial x} \frac{\partial c}{\partial x} dx = \int_{\Omega} v f dx + \left[v D \frac{\partial c}{\partial x} \right]_{\partial \Omega_0}^{\partial \Omega_L}$$

This term represents a flux at the boundary of the domain

- known as Neumann boundary conditions

This is the form of the equation that will be solved on the finite element mesh

GALERKIN ASSUMPTION What And Why?

- First, we need appropriate choice of weighting function
- Galerkin showed that choosing weighting function to be same as that for the solution is "optimal" for convergence
- So what functions should we use?

BACK TO THE BASIS FUNCTIONS Discretisation Of Galerkin Formulation

- Use linear Lagrange nodal basis functions to represent c and v
- c, representing solution = trial function
- v, representing the weighting = test function

$$c = c_0 \psi_0(\xi) + c_1 \psi_1(\xi)$$

$$x = x_0 \psi_0(\xi) + x_1 \psi_1(\xi)$$

$$\xi = 2\left(\frac{x - x_0}{x_1 - x_0}\right) - 1$$

BASIS FUNCTIONS Linear Nodal Lagrange

Use sum of two linear functions to represent each linear segment in the line fitted to the data

BACK TO THE BASIS FUNCTIONS Moving From One Element To Three

Now equation has been discretised, need to discretise the domain into multiple elements:

$$\int_{0}^{1} vf dx = \int_{0}^{1/3} vf dx + \int_{1/3}^{2/3} vf dx + \int_{2/3}^{1} vf dx$$

$$\int_{1/3}^{2/3} vf dx = \int_{-1}^{1} vf J d\xi$$

BACK TO THE BASIS FUNCTIONS Mapping Of Local To Standard Element

Jacobian is the transformation between $J = \left| \frac{dx}{d\xi} \right|$ coordinates of local and standard elements