Docket No.: 8733.873.00-US

Group Art Unit: N/A

Examiner: Not Yet Assigned

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Yong-Sup Hwang, et al.

Application No.: Not Yet Assigned

Filed: June 30, 2003

For: ARRAY SUBSTRATE FOR LCD DEVICE

HAVING DOUBLE-LAYERED GATE AND DATA LINES AND MANUFACTURING

METHOD THEREOF

CLAIM FOR PRIORITY

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Applicant hereby claims priority under 35 U.S.C. 119 based on the following prior foreign application filed in the following foreign country on the date indicated:

Country	Application No.	Date
Korea, Republic of	P2002-52660	September 3, 2002

By_

Dated: June 30, 2003

Respectfully submitted,

Song K. Jung

Registration No.: 35,210

MCKENNA LONG & ALDRIDGE LLP

1900 K Street, N.W. Washington, DC 20006

(202) 496-7500

별첨 사본은 이래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0052660

Application Number

출 원 년 월 일

2002년 09월 03일

Date of Application

인

SEP 03, 2002

술 원

엘지.필립스 엘시디 주식회사

LG.PHILIPS LCD CO., LTD.

Applicant(s)

2003

녀 05

3

특 허 청

COMMISSIONER

【서지사항】

【서류명】

명세서 등 보정서

【수신처】

특허청장

【제출일자】

2003.04.28

【제출인】

【명칭】

엘지 .필립스엘시디(주)

【출원인코드】

1-1998-101865-5

【사건과의 관계】

출원인

【대리인】

【성명】

정원기

【대리인코드】

9-1998-000534-2

【포괄위임등록번호】

1999-001832-7

【사건의 표시】

【출원번호】

10-2002-0052660

【출원일자】

2002.09.03

【발명의 명칭】

액정표시장치용 어레이기판과 제조방법

【제출원인】

【접수번호】

1-1-2002-0287395-77

【접수일자】

2002.09.03

【보정할 서류】

명세서등

【보정할 사항】

【보정대상항목】

별지와 같음

【보정방법】

별지와 같음

【보정내용】별지와 같음

【취지】

특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규정에의하여 위와 같이 제출합니다. 대리인

정원기 (인)

【수수료】

【보정료】

0 원

【추가심사청구료】

0 원

【기타 수수료】

0 원

【합계】

() 원

1020020052660

【보정대상항목】 요약

【보정방법】 정정

【보정내용】

본 발명은 액정표시장치에 관한 것으로 특히, 액정표시장치용 어레이기판과 그 제조방법에 관한 것이다.

본 발명에서 제안하는 제 1 구조는, 게이트 전극일 경우에는 기판과 접촉특성이 양호한 금속(Ti,Ta,Mo,Cr,W,Ni)과 구리의 이중 금속층으로 형성하고, 소스/드레인 전극일 경우에는 하부 오믹콘택층과 구리와의 반응을 막을 수 있는 금속(Ti,Ta,Mo,Cr,W,Ni)의 이중 금속층으로 형성한다.

본 발명에서 제안하는 제 2 구조는 상기 제 1 구조에서 기판의 전면에 절연 막으로 보호층을 더욱 형성하는 구조이다.

이때, 게이트 전극일 경우에는 기판과 밀착성이 좋은 금속 (Ti,Ta,Mo,Cr,W,Ni)과 구리의 이중금속층으로 형성하고, 소스/드레인 전극일 경우에는 하부 오믹콘택층과 구리와의 반응을 막을 수 있는 금속(Ti,Ta, Ti,Ta,Mo,Cr,W,Ni)의 이중 금속층으로 형성한다.

전술한 바와 같이 구리를 포함한 이충 금속층로 게이트 및 드레인 전극을 형성하면, 공정지연을 방지할 수 있고 박막트랜지스터의 동작 특성을 개선할 수 있어 제품의 수율을 향상할 수 있다.

10 0

1020020052660

【보정대상항목】 식별번호 37

【보정방법】 정정

【보정내용】

도 2c에 도시한 바와 같이, 상기 잔류 PR층(27) 사이로 노출된 제 1 금속층 (23a)과 그 하부의 제 2 금속층(23b)을 식각하게 되면, 패턴된 제 1 금속층(29a)인 알루미늄(Al) 또는 알루미늄 합금층은 패턴된 제 2 금속층(29b)인 몰리브덴 (Mo)층 보다 빨리 식각되는 특성이 있기 때문에, 제 1 금속층(29a)과 제 2 금속 층(29b)은 오버행(overhang)형상이 된다.

【보정대상항목】 식별번호 42

【보정방법】 정정

【보정내용】

결과적으로 도 2e에 도시한 바와 같이, 몰리브덴/알루미늄(또는 알루미늄합금)(Mo/Al(AlNd))의 이중층으로 게이트 전극(31)과, 게이트 전극(31)에 연결되고 일끝단에 게이트 패드 전극(35)를 포함하는 게이트 배선(33)을 형성할 수 있게된다.

【보정대상항목】 식별번호 69

【보정방법】 정정

【보정내용】

이때, 상기 게이트 전극으로 구리와 함께 사용되는 버퍼 금속층은 기판과의 밀착성이 좋아야 한다.

10 (

1020020052660

【보정대상항목】 식별번호 70

【보정방법】 정정

【보정내용】

또한, 상기 소스 및 드레인 전극으로 구리와 함께 사용되는 버퍼 금속층은 하부 오믹 콘택층과 구리와의 반응을 막을 수 있는 금속이면 된다.

【보정대상항목】 식별번호 73

【보정방법】 정정

【보정내용】

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질로 구성한다, 이러한물질로는 탄탈륨(Ta),티타늄(Ti),크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)등이 있다.

【보정대상항목】 식별번호 74

【보정방법】 정정

【보정내용】

상기 제 2 금속 버퍼층은 하부 오믹 콘택층과 구리와의 반응을 막을 수 있는 물질로 구성한다. 이러한 물질로는 탄탈륨(Ta), 티타늄(Ti),크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W) 등이 있다.

10

1020020052660

출력 일자: 2003/5/27

【보정대상항목】 식별번호 77

【보정방법】 정정

【보정내용】

상기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절 연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수 지(resin)를 포함한 유기절연물질그룹 중 선택된 하나 또는 이중층으로 구성한다.

【보정대상항목】 식별번호 85

【보정방법】 정정

【보정내용】

먼저, 기판(121) 상에 몰리브덴(Mo), 크롬(Cr), 텅스텐(W),니켈(Ni),탄탈륨(Ta),티타늄(Ti) 또는 이들의 합금을 포함하는 도전성 금속그룹 중 선택된 하나를 증착하여 제 1 금속층(123a)을 형성하고, 제 1 금속층(123a)의 상부에 구리(Cu)를 증착한 제 2 금속층(123b)을 적층하여 형성한다.

【보정대상항목】 식별번호 92

【보정방법】 정정

【보정내용】

도 5c에 도시한 바와 같이, 상기 잔류 PR층(127) 사이로 노출된 제 2 금속 층(125b)과 그 하부의 제 1 금속층(125a)을 습식식각 하게 되면, 패턴된 제 1 금

1020020052660

속층(129a)과 구리(Cu)층인 제 2 금속층(129b)의 측면이 연속적으로 테이퍼지게 구성된다.

【보정대상항목】 식별번호 93

【보정방법】 정정

【보정내용】

연속하여, 상기 잔류 PR층을 제거하고 나면 도 5d에 도시한 바와 같이, 구리/버퍼 금속층(Cu/Ti,Ta,Cr,Mo,W,Ni중 선택된 하나)의 이중층으로 게이트 전극(131)과, 게이트 전극(131)에 연결되고 일 끝단에 게이트 패드 전극(135)를 포함하는 게이트 배선(133)을 형성할 수 있게 된다.

【보정대상항목】 식별번호 94

【보정방법】 정정

【보정내용】

상기 게이트 전극과 게이트 배선과 게이트 패드 전극을 형성하는 공정에 이어 이하, 도 6a 내지 도 6e를 참조하여, 본 발명에 따른 액정표시장치용 어레이기판의 공정을 설명한다.

【보정대상항목】 식별번호 95

【보정방법】 삭제

1020020052660

【보정대상항목】 식별번호 105

【보정방법】 정정

【보정내용】

다음으로, 도 6d에 도시한 바와 같이, 상기 소스및 드레인 전극(149,151)이 형성된 기판(121)의 전면에 질화 실리콘(SiN₂)과 산화 실리콘(SiO_X)을 포함한 무기절연 물질 그룹 중 선택된 하나를 증착하거나, 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지(resin)를 포함한 유기절연 물질 그룹 중 선택된 하나 또는 이중층을 증착/도포하여 보호막(159)을 형성한다.

【보정대상항목】 식별번호 106

【보정방법】 삭제

【보정대상항목】 식별번호 107

【보정방법】 삭제

【보정대상항목】 식별번호 113

【보정방법】 정정

【보정내용】

-- 제 2 실시예 --

1020020052660

【보정대상항목】 식별번호 114

【보정방법】 삭제

【보정대상항목】 식별번호 124

【보정방법】 정정

【보정내용】

전술한 구성에서, 상기 보호층(130)으로 질화 실리콘(SiN_X) 또는 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나와, 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지(resin)를 포함한 유기절연 물질 그룹 중 선택된하나 또는 이중층을 증착 또는 도포하여 사용한다.

【보정대상항목】 청구항 2

【보정방법】 정정

【보정내용】

제 1 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질로 형성된 액정표시장 치용 어레이기판.

10 0

1020020052660

【보정대상항목】 청구항 3

【보정방법】 정정

【보정내용】

제 2 항에 있어서,

상기 제 1 금속 버퍼층을 형성하는 물질은 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W), 티타늄(Ti), 탄탈륨(Ta)으로 구성된 금속 그룹 중 선택된 하나인 액정표시장치용 어레이기판.

【보정대상항목】 청구항 4

【보정방법】 정정

【보정내용】

제 1 항에 있어서,

상기 제 2 금속 버퍼층은 하부 오믹 콘택층과 구리와의 반응을 막을 수 있는 물질로 형성된 액정표시장치용 어레이기판.

【보정대상항목】 청구항 9

【보정방법】 정정

【보정내용】

제 8 항에 있어서,

상기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절 연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수

*0 0

지(resin)를 포함한 유기절연물질그룹 중 선택된 하나 또는 이중층으로 구성된 액정표시장치용 어레이기판.

【보정대상항목】 청구항 12

【보정방법】 정정

【보정내용】

기판 상에, 구리와 제 1 금속 버퍼층의 이중층으로 구성된 게이트 전국과, 게이트 전국과 연결된 게이트 배선과, 게이트 배선에서 연장된 게이트 패드 전국 을 형성하는 단계와;

상기 게이트 전극과 게이트 배선과 게이트 패드 전극 상부에 제 1 절연막을 형성하는 단계와;

상기 게이트 전극 상부의 제 1 절연막 상에 액티브충과 오믹 콘택충을 형성하는 단계와;

상기 오믹 콘택층과 접촉하고, 구리와 제 2 금속 버퍼층의 이중층인 소스 및 드레인 전극과 소스전극과 연결된 데이터배선과 데이터 배선에서 연장된 데이터 패드 전극을 형성하는 단계와;

소스전극과 드레인 전극과 데이터 배선이 형성된 기판의 전면에, 상기 드레인 전극과, 게이트 패드 전극과 데이터 패드 전극의 일부를 노출하는 보호막을 형성하는 단계와;

1020020052660

상기 노출된 드레인 전극과 접촉하는 투명 화소전극과, 게이트 패드 전극과 접촉하는 투명 게이트 패드 전극 전극단자와, 데이터 패드 전극과 접촉하는 투명 데이터 패드 전극단자를 형성하는 단계;

를 포함하는 액정표시장치용 어레이기판.

【보정대상항목】 청구항 13

【보정방법】 정정

【보정내용】

제 12 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질로 형성된 액정표시장 치용 어레이기판 제조방법.

【보정대상항목】 청구항 14

【보정방법】 정정

【보정내용】

제 13 항에 있어서,

상기 제 1 금속 버퍼층을 형성하는 물질은 크롬(Cr), 몰리브덴(Mo), 니켈 (Ni), 텅스텐(W), 티타늄(Ti), 탄탈륨(Ta)으로 구성된 금속 그룹 중 선택된 하나로 형성된 액정표시장치용 어레이기판 제조방법.

1020020052660

【보정대상항목】 청구항 15

【보정방법】 정정

【보정내용】

제 12 항에 있어서,

상기 제 2 금속 버퍼층은 하부 오믹 콘택층과 구리와의 반응을 막을 수 있는 물질로 형성된 액정표시장치용 어레이기판 제조방법.

【보정대상항목】 청구항 20

【보정방법】 정정

【보정내용】

제 19 항에 있어서,

상기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절 연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수 지(Rresin)를 포함한 유기절연물질그룹 중 선택된 하나 또는 이중층으로 형성된 액정표시장치용 어레이기판 제조방법.

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0001

【제출일자】 2002.09.03

【발명의 명칭】 액정표시장치용 어레이기판과 제조방법

【발명의 영문명칭】 Liquid Crystal Display and mathod for fabricating of

the same

【출원인】

【명칭】 엘지 .필립스엘시디(주)

【출원인코드】 1-1998-101865-5

【대리인】

【성명】 정원기

[대리인코드] 9-1998-000534-2

【포괄위임등록번호】 1999-001832-7

【발명자】

【성명의 국문표기】 황용섭

【성명의 영문표기】 HWANG, YONG SUP

【주민등록번호】 741218-1674515

【우편번호】 440-302

【주소】 경기도 수원시 장안구 정자2동 동신아파트 207-804

【국적】 KR

【발명자】

【성명의 국문표기】 채기성

【성명의 영문표기】 CHAE,GEE SUNG

[주민등록번호] 630125-1143617

【우편번호】 406-130

【주소】 인천광역시 연수구 동춘동 한양1차 111동 607호

【국적】 KR

【발명자】

【성명의 국문표기】 조규철

【성명의 영문표기】 JO,cyoo chul

【주민등록번호】 691010-1807618

【우편번호】

435-040

【주소】

경기도 군포시 산본동 1155 가야아파트 512-901

【국적】

KR

17

【취지】

특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대 리인 정원

기 (인)

【수수료】

【기본출원료】

20 면

29,000 원

【가산출원료】

면

17,000 원

【우선권주장료】

0 건

0 원

【심사청구료】

0 항

0 원

【합계】

46,000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

【요약】

본 발명은 액정표시장치에 관한 것으로 특히, 액정표시장치용 어레이기판과 그 제조방법에 관한 것이다.

본 발명에서 제안하는 제 1 구조는, 게이트 전국일 경우에는 구리(Cu)/기판과 접촉특성이 양호하고, 패턴용액이 기판에 영향주지 않는 금속(Mo,Cr,W,Ni)의 이중 금속층으로 형성하고, 드레인 전국일 경우에는 구리(Cu)/투명 전국을 패턴하는 약액에 의해 구리와 반응하지 않는 금속(Ti,Ta,Mo,Cr,W,Ni)의 이중 금속층으로 형성한다.

본 발명에서 제안하는 제 2 구조는 상기 제 1 구조에서 기판의 전면에 절연막으로 보호층을 더욱 형성하는 구조이다.

이때, 게이트 전극일 경우에는 구리/기판과 밀착성이 좋은 금속(Ti,Ta,Mo,Cr,W,Ni)의 이중 금속층으로 형성하고, 드레인 전극일 경우에는 구리/ 투명전극을 패턴하는 약액에 구리와 반응하지 않는 금속(Ti,Ta, Ti,Ta,Mo,Cr,W,Ni)의 이중 금속층으로 형성한다.

전술한 바와 같이 구리를 포함한 이중 금속층로 게이트 및 드레인 전극을 형성하면, 공정지연을 방지할 수 있고 박막트랜지스터의 동작 특성을 개선할 수 있어 제 품의 수율을 향상할 수 있다.

【대표도】

도 6e

【명세서】

【발명의 명칭】

액정표시장치용 어레이기판과 제조방법{Liquid Crystal Display and mathod for fabricating of the same}

【도면의 간단한 설명】

도 1은 액정표시장치용 어레이기판의 일부를 도시한 평면도이고,

도 2a 내지 도 2f와 도 3a 내지 도 3e는 도 1의 Ⅱ-Ⅱ'와 Ⅲ-Ⅲ'와 Ⅳ-Ⅳ'를 따라 절단하여, 종래 공정 순서에 따라 도시한 공정 단면도이고,

도 4는 도 3e의 D를 확대한 단면도이고,

도 5a 내지 도 5d와 도 6a 내지 도 6e는 도 1의 Ⅱ-Ⅱ'와 Ⅲ-Ⅲ'와 Ⅳ-Ⅳ'를 따라 절단하여, 본 발명의 공정 순서에 따라 도시한 공정 단면도이고,

도 7은 도 1의 Ⅱ-Ⅱ'와 Ⅲ-Ⅲ'와 IV-IV'를 따라 절단한 본 발명의 제 2 실시예에 따른 액정표시장치용 어레이기판의 단면도이다.

<도면의 주요부분에 대한 부호의 설명>

121 : 기판

131 : 게이트 전극

133 : 게이트 배선

135 : 게이트 패드 전극

137 : 게이트 절연막

139 : 액티브층

141 : 오믹 콘택층

149 : 소스 전극

~ ~

151 : 드레인 전극 153 : 데이트 배선

155 : 데이터 패드 전극 157 : 소스.드레인 금속층

159 : 보호막 169 : 화소 전극

171 : 게이트 패드 전극단자 173 : 데이터 패드 전극단자.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

본 발명은 액정표시장치(liquid crystal display device)에 관한 것으로, 구리를 포함한 이중 금속층으로 형성된 게이트 전극과 소스 및 드레인 전극을 포함하는 액정표 시장치용 어레이기판과 그 제조방법에 관한 것이다.

<16> 도 1은 액정표시장치용 어레이기판의 일부를 도시한 확대평면도이다.

<17> 기판(21)상에 스위칭 소자인 박막트랜지스터(T)가 매트릭스 형태(matrix type)로 위치하고, 이러한 다수의 박막트랜지스터(T)를 교차하는 게이트배선(33)과 데이터배선 (53)이 형성된다.

<18> 상기 게이트배선(33)의 일 끝단에는 게이트 패드 전극(35)이 형성되어 있고, 상기 게이트 패드 전극(35)은 게이트 배선(33)에 비해 큰 폭을 가지도록 구성된다.

<19> 상기 데이터배선(53)의 일 끝단에는 데이터 패드 전극(55)이 형성되어 있고, 상기데이터 패드 전극(55) 또한 데이터배선(53)에 비해 큰 폭을 가지도록 형성된다.

<20> 상기 게이트 패드 전극(35)과 데이터 패드 전극(55)은 각각 외부의 신호를 직접 인가 받는 수단인 투명한 게이트 패드 전극 전극단자(71)와 데이터 패드 전극단자(73)와 접촉하여 구성된다.

- <21> 이때, 상기 게이트배선(33)과 데이터배선(53)이 교차하여 정의되는 영역을 화소영역(P)이라 한다.
- <22> 상기 게이트배선(33)의 일부 상부에 스토리지 캐패시터(C)가 구성되고, 상기 화소 영역(P)에 구성된 투명한 화소전극(69)과 회로적으로 병렬로 연결된다.
- <23> 상기 박막트랜지스터(T)는 게이트 전극(31)과 소스 전극(49)과 드레인 전극(51)과,
 상기 게이트전극(31) 상부에 구성된 액티브층(39)으로 이루어진다.
- 전술한 구성에서, 상기 캐패시터(C)는 게이트 배선(33)의 일부를 제 1 캐패시터 전 극으로 하고, 상기 게이트 배선(33)의 일부 상부에 위치하고 상기 소스 및 드레인 전극 (49,51)과 동일층 동일물질로 형성되고 상기 화소 전극(69)과 콘택홀(63)을 통해 접촉된 소스-드레인 금속층(57)을 제 2 캐패시터 전극으로 한다.
- 전술한 구성 중, 상기 게이트 전극(31)과 게이트 배선(33)과 게이트 패드 전극(35)
 은 신호 지연을 방지하기 위해 저 저항 금속인 알루미늄(AI)(또는 알루미늄합금)을 사용하며, 알루미늄(또는 알루미늄합금)의 공정상 단점을 보완하기 위해 일반적으로는 알루미늄(또는 알루미늄합금)에 별도의 금속층을 적층하여 구성한다.
- <26> 상기 드레인 전극(51)과 데이터 배선(53)과 데이터 패드 전극(55)또한, 저항을 낮추기 위해 알루미늄을 사용하는 경우가 있으며, 이 때에는 알루미늄(또는 알루미늄합금)의 상부와 하부에 별도의 금속층을 더욱 구성하게 된다.

1020020052660

<27> 이하, 도 2a 내지 2d와 3a 내지 도 3e를 참조하여, 종래에 따른 액정표시장치용 어레이기판의 제조공정을 설명한다.

- 전저, 도 2a에 내지 도 2d는 게이트 전극과 게이트 배선과 게이트 패드 전극을 형성하는 방법을 종래의 공정순서에 따라 도시한 공정 단면도이다.
- 일반적으로, 게이트 배선과 게이트 전극과 게이트 패드 전극은 알루미늄을 포함하는 이중 금속층으로 형성하며 이와 같이 하는 이유는, 알루미늄(AI)이 저항은 작으나 화학적으로 내식성이 약하고, 후속의 고온 공정에서 힐락(hillock)형성에 의한 배선 결함문제를 야기하기 때문에 내식성이 강한 몰리브덴(Mo)이나 크롬(Cr)등의 금속을 적층하는 것이다.
- <30> 이하, 게이트 전극과 게이트 배선과 게이트 패드 전극을 형성하는 공정을 설명한다
- 도 2a에 도시한 바와 같이, 기판(21) 상에 알루미늄(AI) 또는 알루미늄 합금(AINd)
 을 증착한 제 1 금속층(23a)과, 제 1 금속층(23a)의 상부에 몰리브덴(Mo)을 증착한 제 2 금속층(23b)을 적층하여 형성한다.
- <32> 연속하여, 상기 제 2 금속층(23b)의 상부에 포토레지스트(photoresist:이하 "PR"이라 청합)를 도포하여 PR층(25)을 형성한다.
- 다음으로, 상기 PR층(25)의 상부에 투과부(A)와 차단부(B)로 정의된 마스크(M)를 위치시키고, 마스크(M)의 상부로 빛을 조사하여 하부의 PR층(25)을 노광하는 공정을 진행한다.
- <34> 연속하여, 상기 노광된 PR층(25)을 현상하는 공정을 진행한다.

1020020052660

<35> 도 2b에 도시한 바와 같이, 현상되고 남은 잔류 PR층(27) 사이로 하부의 제 2 금속 층(23b)이 노출된다.

- <36> 이때, 상기 잔류 PR층(27)은 베이크(bake)과정을 거치게 되면서, 반원 형상으로 구성된다.
- 도 2c에 도시한 바와 같이, 상기 잔류 PR층(27) 사이로 노출된 제 1 금속층(23a)과 그 하부의 제 2 금속층(23b)을 습식하게 되면, 패턴된 제 1 금속층(29a)인 알루미늄
 (Al) 또는 알루미늄 합금층은 패턴된 제 2 금속층(29b)인 몰리브덴(Mo)층 보다 빨리 식 각되는 특성이 있기 때문에, 제 1 금속층(29a)과 제 2 금속층(29b)은 오버행(overhang) 형상이 된다.
- <38> 이와 같은 형상은 다음공정에서 형성되는 절연막(미도시)의 증차 불량의 원인이 되기 때문에 상기 패턴된 제 1 금속층(29a)과 제 2 금속층(29b)의 측면이 연속적으로 테이퍼(taper)지게 구성하는 공정이 더 필요하다.
- (39) 따라서, 도 2d에 도시한 바와 같이, 건식식각 방식으로 잔류 PR층(27)의 양측(평면적으로 둘레임)과 그 하부의 제 1 및 제 2 금속층(29a,29b)을 식각하는 공정을 진행한다. 이때, 잔류 PR층(27)은 그 모양을 그대로 유지하면서 깍이게 된다.
- <40> 이와 같이 하면 앞서 설명한대로, 상기 제 1 금속층(29a)과 제 2 금속층(29b)의 양 측면이 연속적으로 테이퍼진 형상이 된다.
- <41> 상기 건식 식각 공정이 완료되면 잔류 PR층(27)을 제거하는 공정을 진행한다.

1020020052660

- (42) 결과적으로 도 2e에 도시한 바와 같이, 알루미늄(또는 알루미늄합금)/몰리브덴 (Al(AlNd)/Mo)의 이중층으로 게이트 전극(31)과, 게이트 전극(31)에 연결되고 일끝단에 게이트 패드 전극(35)를 포함하는 게이트 배선(33)을 형성할 수 있게 된다.
- <43> 이하, 도 3a 내지 도 3e는 상기 도 2a 내지 도 2e에 연속적인 공정이다.
- 도 3a에 도시한 바와 같이, 상기 게이트 전극(31)과 게이트 배선(33)과 게이트 패드전극(35)이 형성된 기판(21)의 전면에 질화 실리콘(SiN_x)과 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나를 증착하여, 제 1 절연막인 게이트 절연막(37)을 형성한다.
- 연속하여, 상기 게이트 전극(31)상부의 게이트 절연막(37)상에 비정질 실리콘
 (a-Si:H)과 불순물이 포함된 비정질 실리콘(n+a-Si:H)을 적층하고 패턴하여, 액티브층
 (39)과 오믹 콘택층(41)을 형성한다.
- <46> 다음으로, 도 3b에 도시한 바와 같이, 상기 오믹 콘택충(41)이 형성된 기판(21)의 전면에, 몰리브덴(Mo)과 알루미늄(AI)과 몰리브덴(Mo)을 차례로 증착하여, 제 3,4,5 금 속충(43,45,47)을 적충한다.
- 다음으로, 도 3c에 도시한 바와 같이, 상기 제 3,4,5금속층을 동시에 패턴하여, 몰리브덴/알루미늄/몰리브덴(Mo/Al/Mo)의 3중 금속층으로 구성되고, 상기 오믹 콘택층(41)과 접촉하면서 서로 이격된 소스 전극(49)과 드레인 전극(51)을 형성하고, 동시에 상기소스 전극(49)과 연결되고 일 끝단에 데이터 패드(55)를 포함하는 데이터 배선(53)을 형성한다.

<48> 동시에, 상기 게이트 배선(33)의 일부 상부에 섬 형상의 소스.드레인 금속(57)층을 형성한다.

- 상기 소스 및 드레인 전국(49,51)과 데이터 배선(53)을 몰리브덴(Mo)이나 크롬(Cr)과 같이 저항이 큰 금속을 단일층으로 하여 대면적 기판을 제작하게 되면, 신호 지연에의해 액정패널의 전면에 대해 동일한 화질을 가지는 화상을 얻을 수 없게 된다.
- <51> 따라서, 이를 해결하기 위해 전술한 바와 같이, 상기 소스 및 드레인 전극(49,51)
 과 데이터배선(45)을 저 저항 배선으로 형성하는 것이 필요하다.
- 스턴데, 저저항 배선이 알루미늄층의 상부와 하부에 각각 구성된 몰리브덴층중, 상기 하부 몰리브덴 층은 상기 제 2 금속층인 알루미늄 층이 상기 액티브층(39) 또는 오믹콘택층(41)으로 파고 들어가는 스파이킹(spiking)현상을 방지하기 위해서 형성하고, 상기 상부 몰리브덴 층은 이후 공정에서 형성되는 투명전극과 상기 알루미늄층 사이의 콘택 저항을 줄이기 위한 목적으로 형성하는 것이다.
- <53> 이와 같은 이유로, 상기 소스 및 드레인 전극(49,51)과 데이터 배선(53)을 삼층 (Mo/Al/Mo)으로 구성하였다.
- 전술한 공정에 연속하여, 상기 소스 전극과 드레인 전극(49,51)사이로 노출된 오믹 콘택층(41)을 식각하여 하부의 액티브층(39)을 노출한다.
- <55> 도 3d에 도시한 바와 같이, 상기 소스 및 드레인 전극(49,51)이 형성된 기판(21)의 전면에 절연물질을 증착하여, 제 2 절연막인 보호막(59)을 형성한다.

1020020052660

- 《56》 상기 보호막(59)을 식각하여 드레인 전극(51)의 일부를 노출하는 드레인 콘택홀 (61)과, 소스.드레인 금속층의 일부를 노출하는 스토리지 콘택홀(63)과, 상기 게이트 패드 전극(35)을 노출하는 게이트 패드 전극 콘택홀(65)과, 상기 데이터 패드 전극(37)을 노출하는 데이터 패드 콘택홀(67)을 형성한다.
- 도 3e에 도시한 바와 같이, 상기 보호막(59)이 형성된 기판(21)의 전면에 인듐-틴-옥사이드(ITO)와 인듐-징크-옥사이드(IZO)를 포함한 투명 도전성 금속그룹 중 선택된 하나를 증착하고 패턴하여, 상기 드레인 전극(51)과 상기 소스-드레인 금속층(47)과 접촉하는 투명한 화소전극(69)을 형성한다.
- <58> 동시에, 상기 게이트 패드 전극(35)과 접촉하는 게이트 패드 전극단자(71)와 상기 데이터 패드 전극(55)과 접촉하는 데이터 패드 전극단자(73)를 형성한다.
- <59> 전술한 바와 같은 공정으로 종래에 따른 어레이기판을 제작할 수 있다.
- 상기 공정은 5마스크 공정으로 제작될 수 있으나, 상기 게이트 전극과 게이트 배선은 2회의 식각 공정 즉, 습식식각(wet etching)공정과 건식식각(dry etching)공정을 진행하기 때문에 공정이 지연된다.
- 또한, 종래의 공정 중, 소스 및 드레인 전극(49,51)과 데이터배선(53)과 데이터 패드 전극(55)은 삼층의 금속을 혼산용액으로 일괄 식각하여 형성하게 되는데, 식각시 식각용액에 의해 전지반응(갈바닉)이 발생하게 되며, 이때 몰리브덴(Mo)의 두께가 두꺼울수록 전지반응에 의한 영향을 극복할 수 없다.
- 특히, 전지 반응에 의해 하부 몰리브덴 층이 과식각 되어 상기 호보층을 형성하는
 공정 중 알루미늄 층이 주저앉아 하부의 액티브층과 접촉하게 된다.

- <63> 이때, 상기 알루미늄층과 액티브층이 반응하여 누설전류를 증가시켜 소자의 동작특성을 저하하는 원인이 된다.
- <64> 이하, 도 4를 참조하여 설명한다. 도 4는 도 3e의 D를 확대한 단면도이다.
- <65> 도시한 바와 같이, 알루미늄층(45)을 사이에 두고 상부와 하부에 구성된 몰리브덴 (Mo)이 과식각되는 현상이 발생하게 된다.
- 이와 같은 현상은, 상기 소스 및 드레인전극(49,도 3e의 51)과 데이터 배선(도 3e의 53)과 데이터 패드 전극(도 3e의 55)이 형성된 기판의 전면에 보호막(55)을 형성하는 과정에서 상기 알루미늄층(45)의 역 테이퍼(E)에 의해 보호막이 제대로 형성되지 않는 경우가 있다.
- 또한, 상기 알루미늄층이 상부에 형성된 보호층(59)에 눌려 하부의 액티브층(39)또
 는 오믹 콘택층(41)과 접촉하게 된다. 이와 같은 경우에는 상호 확산 작용에 의해 누설
 전류의 상승으로 인해 소자(박막트랜지스터)의 동작을 저하하는 문제가 있다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명은 전술한 바와 같은 문제를 해결하기 위한 목적으로 안출된 것으로, 상기 게이트 전극과 소스 및 드레인 전극을 구성할 때, 구리와 버퍼 금속층을 포함하는 이중 금속층으로 구성한다.
- <69> 이때, 상기 게이트 전극으로 구리와 함께 사용되는 버퍼 금속층은 기판과의 밀착성 이 좋아야 되며 이를 식각하는 식각액이 기판에 데미지를 입히지 않아야 된다.

1020020052660

 또한, 상기 소스 및 드레인 전극으로 구리와 함께 사용되는 버퍼 금속층은 액티브 층과 오믹 콘택층과 반응하지 않고, 상기 투명 금속인 화소전극(ITO 전극)을 식각하는 식각용액에 의해 전지 반응이 발생하지 않는 금속이면 된다.

<71> 상기와 같이 구리를 포함한 이중 금속층으로 게이트 및 드레인 전극을 형성하면, 게이트 전극을 형성하는 공정에서 식각 공정을 두 번에 걸쳐 진행할 필요가 없고, 상기 소스 및 드레인 전극을 알루미늄을 포함하는 삼중금속층으로 형성하였을 때 발생하였던 누설전류 문제를 해결할 수 있다.

【발명의 구성 및 작용】

전술한 바와 같은 목적을 달성하기 위한 액정표시장치용 어레이기판은 기판 상에 구성되고, 구리와 제 1 금속 버퍼층의 이중층으로 구성된 게이트 전극과, 게이트 전극과 연결된 게이트 배선과, 게이트 배선에서 연장된 게이트 패드 전극과; 상기 게이트 전극과 게이트 배선과 게이트 패드 전극 상부에 구성된 제 1 절연막과; 상기 게이트 전극 상부의 제 1 절연막 상에 적층되어 구성된 액티브층과 오믹 콘택층과; 상기 오믹 콘택층과 접촉하고, 구리와 제 2 금속 버퍼층의 이중층으로 구성된 소스 및 드레인 전극과 소스 전극과 연결된 데이터배선과 테이터 배선에서 연장된 데이터 패드 전극과; 소스전극과 드레인 전극과 데이터 배선이 형성된 기판의 전면에 구성되고, 상기 드레인 전극과, 게이트 패드 전극과 데이터 패드 전극의 일부를 노출하는 보호막과; 상기 노출된 드레인 전극과 접촉하는 투명 화소전극과, 게이트 패드 전극과 접촉하는 투명 게이트 패드 전극

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋고, 패턴용액이 기판에 결함을 주지 않는 물질로 구성한다, 이러한 물질로는 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W) 등이 있다.

- 생기 제 2 금속 버퍼층은 상기 액티브층과 오믹 콘택층과 접촉하여 상호 반응하지 않고, 상기 화소전극을 패턴하는 식각용액에 의해 상기 구리와 전지반응이 발생하지 않 는 물질로 구성한다. 이러한 물질로는 탄탈륨(Ta), 티타늄(Ti),크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W) 등이 있다.
- <75> 상기 게이트 배선의 일부 상부에 상기 소스 및 드레인 전극과 동일층 동일물질로 섬형상의 소스.드레인 금속층을 더욱 구성하며, 소스.드레인 금속층은 상기 보호막을 식 각하여 구성한 콘택홀을 통해 상기 화소전극과 접촉하도록 한다.
- <76> 상기 게이트 전극과 게이트배선과 게이트 패드 전극 하부의 기판의 전면에 보호층 을 더욱 구성한다.
- 생기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지(resin)를 포함한 유기절연물질그룹 중 선택된 하나로 구성한다.
- <78> 상기 보호층을 더욱 구성할 경우에는 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질이면 되고 이러한 물질로는 탄탈륨(Ta), 티타늄(Ti), 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)등이 있다.
- 본 발명의 특징에 따른 액정표시장치용 어레이기판 제조방법은 기판 상에, 구리와 제 1 금속 버퍼층의 이중층으로 게이트 전극과, 게이트 전극과 연결된 게이트 배선과,

게이트 배선에서 연장된 게이트 패드 전국을 형성하는 단계와; 상기 게이트 전국과 게이트 배선과 게이트 패드 전국 상부에 제 1 절연막을 형성하는 단계와; 상기 게이트 전국 상부의 제 1 절연막 상에 액티브층과 오믹 콘택층을 형성하는 단계와; 상기 오믹 콘택층과 접촉하고, 구리와 제 2 금속 버퍼층의 이중층인 소스 및 드레인 전국과 소스전국과 연결된 데이터배선과 데이터 배선에서 연장된 데이터 패드 전국을 형성하는 단계와; 소스전국과 드레인 전국과 데이터 배선이 형성된 기판의 전면에, 상기 드레인 전국과, 게이트 패드 전국과 데이터 패드 전국의 일부를 노출하는 보호막을 형성하는 단계와; 상기 노출된 드레인 전국과 접촉하는 투명 화소전국과, 게이트 패드 전국과 접촉하는 투명 게이트 패드 전국 전국단자와, 데이터 패드 전국과 접촉하는 투명 데이터 패드 전국단자와 를 형성하는 단계를 포함한다.

<80> 이하, 첨부한 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 설명한다.

<81> -- 제 1 실시예 --

- <82> 본 발명의 제 1 실시예는 게이트 전극과 소스 및 드레인 전극을 형성할 때 구리를 포함하는 이중 금속층으로 형성하는 것을 특징으로 한다.
- <83> 이하, 도 5a 내지 도 5d와 도 6a 내지 도 6e를 참조하여, 본 발명에 따른 어레이기 판 제조공정을 설명한다.(본 발명의 평면도는 상기 종래의 평면도와 동일함으로 이를 이용하고, 동일한 구성의 도면부호는 종래의 번호에 100번을 더하여 표시한다.)
- <84> 도 5a 내지 도 5d는 게이트 전극과 게이트 배선과 게이트 패드 전극을 형성하는 공 정을 본 발명의 공정 순서에 따라 도시한 공정 단면도이다.

(85) 먼저, 기판(121) 상에 몰리브덴(Mo), 크롬(Cr), 텅스텐(W),니켈(Ni) 또는 이들의 합금을 포함하는 도전성 금속그룹 중 선택된 하나를 증착하여 제 1 금속층(123a)을 형성 하고, 제 1 금속층(123a)의 상부에 구리(Cu)를 증착한 제 2 금속층(123b)을 적층하여 형 성한다.

- <86> 이때, 구리의 하부에 금속층을 더욱 구성하는 이유는 상기 구리가 유리기판과 접촉 특성이 좋지 않기 때문에 이를 해결하기 위함이다.
- <87> 연속하여, 상기 제 2 금속층(123b)의 상부에 포토레지스트(photoresist:이하 "PR" 이라 칭함)를 도포하여 PR층(125)을 형성한다.
- 다음으로, 상기 PR층(125)의 상부에 투과부(A)와 차단부(B)로 정의된 마스크(M)를 위치시키고, 마스크(M)의 상부로 빛을 조사하여 하부의 PR층(125)을 노광하는 공정을 진행한다.
- <89> 연속하여, 상기 노광된 PR층(125)을 현상하는 공정을 진행한다.
- <90> 도 5b에 도시한 바와 같이, 현상되고 남은 잔류 PR층(127) 사이로 하부의 제 2 금속층(123b)이 노출된다.
- <91> 이때, 상기 잔류 PR층(123b)은 베이크(bake)과정을 거치게 되면서, 반원 형상으로 구성된다.
- 도 5c에 도시한 바와 같이, 상기 잔류 PR층(127) 사이로 노출된 제 2 금속층(125b)
 과 그 하부의 제 1 금속층(125a)을 습식식각 하게 되면, 패턴된 제 1 금속층(129a)인 구리(Cu)층과 제 2 금속층(129b)의 측면이 연속적으로 테이퍼지게 구성된다.

연속하여, 상기 잔류 PR층을 제거하고 나면 도 5d에 도시한 바와 같이, 구리/버퍼 금속층(Cu/Cr,Mo,W,Ni중 선택된 하나)의 이중층으로 게이트 전극(131)과, 게이트 전극(131)에 연결되고 일 끝단에 게이트 패드 전극(135)를 포함하는 게이트 배선(133)을 형성할 수 있게 된다.

- 《94》 상기 버퍼 금속층으로 탄탄륨(Ta)과 티타늄(Ti)이 더욱 포함될 수 있으나, 탄탈륨 (Ta)과 티타늄(Ti)을 식각하는 식각용액이 유리 기판에 데미지를 줄 수 있으므로 이를 사용하지는 않는다.
- <95> 상기 게이트 전극과 게이트 배선과 게이트 패드 전극을 형성하는 공정에 이어 이하, 도 6a 내지 도 6e를 참조하여, 본 발명에 따른 액정표시장치용 어레이기판의 공정을 설명한다.
- <96> 도 6a에 도시한 바와 같이, 상기 게이트 전극(131)과 게이트 배선(133)등이 형성된 기판(121)의 전면에 제 1 절연막인 게이트 절연막(137)을 형성한다.
- <97> 상기 게이트 절연막(137)은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나를 증착하여 형성한다.
- <98> 다음으로, 상기 게이트 전국(131)상부의 게이트 절연막(137)상에 아일랜드 형태로 액티브층(139)(active layer)과 오믹 콘택층(141)(ohmic contact layer)을 형성한다.
- <99> 상기 액티브충(139)은 일반적으로 순수한 비정질 실리콘(a-Si:H)으로 형성하고, 상기 오믹 콘택충(141)은 불순물이 포함된 비정질 실리콘(n+a-Si:H)으로 형성한다.
- <100> 다음으로, 도 6b에 도시한 바와 같이, 상기 오믹 콘택층(141)이 형성된 기판(121)
 의 전면에 탄탈륨(Ta), 티타늄(Ti), 몰리브덴(Mo), 크롬(Cr), 니켈(Ni)등을 포함하는 도

1020020052660

전성 금속 그룹 중 선택된 하나를 증착한 제 1 금속층(143)을 형성하고, 상기 제 1 금속 층(143)의 상부에 구리(Cu)를 증착한 제 2 금속층(145)을 형성한다.

- <101> 이때, 상기 제 1 금속층(143)은 상기 구리층인 제 2 금속층(145)과 반도체층이 직접 접촉하여 상호반응하는 것을 방지 할 수 있다
- <102> 다음으로, 도 6c에 도시한 바와 같이, 상기 제 1 금속층과 제 2 금속층을 습식식각하여, 구리를 포함한 이중 금속층으로 구성된 소스 전극(149)과 이와는 소정간격 이격된 드레인 전극(151)과, 상기 소스 전극(149)과 연결되고 일끝단에 데이터 패드(155)를 포함하는 데이터 배선(153)을 형성한다.
- <103> 동시에, 게이트 배선(133)의 일부 상부에 아일랜드 형상으로 소스-드레인 금속층 (157)을 형성한다.
- <104> 연속하여, 상기 소스전극(149)과 드레인 전극(151)사이의 이격된 영역에 사이로 노출된 오믹 콘택층(141)을 식각하여 하부의 액티브층(139)을 노출한다.
- <105> 상기 소스 및 드레인 전극을 형성하는 공정에서 상기 제 1 금속층(도 6b의 143)을 몰리브덴(Mo)으로 사용할 경우, 경우에 따라 제 1 금속층(도 6b의 143)과 제 2 금속층(도 6b의 145)을 식각하는 용액에 의해 상기 구리(Cu)와 몰리브덴(Mo)층 사이에 전지반응 이 발생할 수 있다.
- <106> 이때에는, 식각 용액에 따라 구리(Cu)와 몰리브덴(Mo)을 같이 사용할 수 없다.
- <107> 다음으로, 도 6d에 도시한 바와 같이, 상기 소스및 드레인 전극(149,151)이 형성된 기판(121)의 전면에 질화 실리콘(SiO₂)과 산화 실리콘(SiN_X)을 포함한 무기절연 물질 그룹 중 선택된 하나를 증착하거나, 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지

1020020052660

(resin)를 포함한 유기절연 물질 그룹 중 선택된 하나를 도포하여 보호막(159)을 형성한다.

- <108> 상기 보호막(159)을 패터닝하여, 상기 드레인 전극(151)의 일부를 노출하는 드레인 콘택홀(161)과 상기 소스-드레인 금속층(157)을 노출하는 스토리지 콘택홀(163)과 상기 게이트 패드 전극(135)의 일부를 노출하는 게이트 패드 전극 콘택홀(165)과, 상기 데이터 패드 전극(137)을 노출하는 데이터 패드 콘택홀(167)을 형성한다.
- <109> 다음으로, 도 6e에 도시한 바와 같이, 상기 보호막(159) 상에 인듐-틴-옥사이드 (ITO)와 인듐-징크-옥사이드(IZO)를 포함한 투명 도전성 금속 그룹 중 선택된 하나를 증착하여, 상기 드레인 전극(151)과 소스-드레인 금속층(157)과 접촉하는 화소전극(169)과, 상기 게이트 패드 전극(135)과 접촉하는 게이트 패드 전극단자(171)와, 상기 데이터 패드 전극(137)과 접촉하는 데이터 패드 전극단자(173)를 형성한다.
- <110> 전술한 바와 같은 공정으로 본 발명의 제 1 실시예에 따른 어레이기판을 제작할 수 있다.
- <111> 전술한 바와 같이, 게이트 전극과 소스 및 드레인 전극을 형성할 때, 저 저항특성을 가진 구리를 사용하게 되면, 공정 시간을 단축할 수 있고 소자의 동작 특성을 개선할수 있다.
- 시 1 실시예는 구리와 금속 버퍼층의 이중 금속층을 사용함으로서 구리의 단점을 보완하였다. 즉, 구리는 유리 기판과의 접촉 특성이 좋지 않고, 상기 오믹 콘택층과 접 촉하면 상호 확산에 의한 누설전류 특성이 커지기 때문에 이를 방지하기 위해 몰리브덴 (Mo), 크롬(Cr), 텅스텐(W), 니켈(Ni)등의 금속을 버퍼층으로서 사용하였다.

1020020052660

<113> 이때, 구리를 게이트 금속으로 사용할 경우에는 앞서도 설명한 바와 같이, 금속 버 퍼층으로 탄탈륨(Ta)과 티타늄(Ti)을 사용할 수 없는데 이를 해결하기 위한 방법을 이하 제 2 실시예를 통해 설명한다.

<114> -- 제 2 실시예 --

- <115> 본 발명의 제 2 실시예의 특징은 상기 게이트 전극을 형성하기전 기판의 전면에 절 연막으로 보호층을 형성하는 것이다.
- <116> 도 7을 참조하여 설명한다.
- <117> 도 7은 도 1의 Ⅱ-Ⅱ`,Ⅲ-Ⅲ`,Ⅳ-Ⅳ`를 따라 절단한 본 발명의 제 2 실시예에 따른 액정표시장치용 어레이기판의 단면도이다.
- <118> 도시한 바와 같이, 기판(121)상에 보호층(130)을 형성하고, 상기 보호층(130)의 상부에 구리(Cu)와 버퍼 금속층(Ti,Ta,W,Cr,Ni,Mo 중 선택된 하나)으로 구성된 이중 금 속층인 게이트 전극(131)과, 이에 연결되고 일 끝단에 게이트 패드 전극(135)를 포함하 는 게이트 배선(133)을 형성한다.
- <119> 상기 게이트 전극(131)과 게이트 배선(133)을 포함하는 기판(121)의 전면에 게이트 절연막(137)을 형성한다.
- <120> 상기 게이트 전극(131) 상부의 게이트 절연막(137)상에는 액티브층(139)과 오믹 콘택층(141)을 형성하며, 상기 오믹 콘택층(141)과 접촉하고 서로 이격되고 구리(Cu)와 버퍼 금속층(Ti,Ta,W,Cr,Ni,Mo 중 선택된 하나)의 이중층인 소스 및 드레인 전극(149,151)

1020020052660

과, 소스 전극(149)에 연결되면서 일 끝단에는 데이터 패드(155)를 포함하는 데이터 배선(153)을 형성한다.

- <121> 이때, 상기 소스 및 드레인 전극(149,151)과 동일층 동일물질로 상기 게이트 배선 (133)의 일부 상부에 섬형상의 소스.드레인 금속층(157)을 형성한다.
- <122> 상기 소스 및 드레인 전극(149,151)이 형성된 기판(121)의 전면에 드레인 전극 (151)의 일부를 노출하는 보호막(159)을 형성한다.
- <123> 상기 보호막(159)의 상부에는 상기 드레인 전극(151)과 접촉하는 화소전극(169)과, 상기 게이트 패드 전극(135)과 접촉하는 게이트 패드 전극 전극단자(171)와, 상기 데이 터 패드 전극(155)과 접촉하는 데이터 패드 전극단자(173)를 형성한다.
- <124> 전술한 구성에서, 상기 보호층(130)으로 질화 실리콘(SiN_X) 또는 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나와, 벤조사이클로부텐(BCB) 과 아크릴(acryl)계 수지(resin)를 포함한 유기절연 물질 그룹 중 선택된 하나를 증착 또는 도포하여 사용한다.
- <125> 보호층(130)으로 인해 게이트 전극(131)으로 구리와 함께 형성되는 금속 버퍼층으로 몰리브덴(Mo), 크롬(Cr), 팅스텐(W), 니켈(Ni) 이외에 티타늄(Ti), 탄탄륨(Ta)을 더사용할 수 있게 된다.
- <126> 즉, 상기 기판(121)상에 보호층(130)을 형성하여 줌으로서, 상기 티타늄(Ti)과 탄탈륨(Ta)을 식각하는 식각액이 기판(121)에 닿지 않게 되기 때문에 이들을 사용할 수 있다.

1020020052660

<127> 전술한 바와 같은 구성으로 본 발명의 제 2 실시예에 따른 액정표시장치용 어레이기판을 제작할 수 있다.

【발명의 효과】

- <128> 본 발명에 따라 액정표시장치용 어레이기판을 제작하게되면, 첫째 구리를 포함한 이중 금속층이 동일한 식각액에 의해 일괄 식각되므로 공정시간을 단축할 수 있는 효과 가 있다.
- <129> 둘째, 드레인 전극을 형성하는 금속과 하부의 액티브층과 반응하지 않기 때문에 박 막트랜지스터의 동작 특성을 개선할 수 있는 효과가 있다.
- <130> 셋째, 게이트 물질과 소스 및 드레인 물질로 저저항 구리를 사용하였기 때문에 대면적 액정패널을 제작할 수 있는 효과가 있다.

【특허청구범위】

【청구항 1】

기판 상에 구성되고, 구리와 제 1 금속 버퍼층의 이중층으로 구성된 게이트 전극과, 게이트 전극과 연결된 게이트 배선과, 게이트 배선에서 연장된 게이트 패드 전 극과;

상기 게이트 전극과 게이트 배선과 게이트 패드 전극 상부에 구성된 제 1 절연막과;

상기 게이트 전극 상부의 제 1 절연막 상에 적충되어 구성된 액티브층과 오믹 콘택층과;

상기 오믹 콘택층과 접촉하고, 구리와 제 2 금속 버퍼층의 이중층으로 구성된 소스 및 드레인 전극과 소스전극과 연결된 데이터배선과 데이터 배선에서 연장된 데이터 패드 전극과;

소스전극과 드레인 전극과 데이터 배선이 형성된 기판의 전면에 구성되고, 상기 드레인 전극과, 게이트 패드 전극과 데이터 패드 전극의 일부를 노출하는 보호막과;

상기 노출된 드레인 전극과 접촉하는 투명 화소전극과, 게이트 패드 전극과 접촉하는 투명 게이트 패드 전극단자와, 데이터 패드 전극과 접촉하는 투명 데이터 패드 전극단자;

을 포함하는 액정표시장치용 어레이기판.

1020020052660

출력 일자: 2003/5/27

【청구항 2】

제 1 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋고, 패턴용액이 기판에 결함을 주지 않는 물질로 구성된 액정표시장치용 어레이기판.

【청구항 3】

제 2 항에 있어서,

상기 제 1 금속 버퍼층을 형성하는 물질은 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속 그룹 중 선택된 하나인 액정표시장치용 어레이기판.

【청구항 4】

제 1 항에 있어서,

상기 제 2 금속 버퍼층은 상기 액티브층과 오믹 콘택층과 접촉하여 상호 반응하지 않고, 상기 화소전극을 패턴하는 식각용액에 의해 상기 구리와 전지반응이 발생하지 않는 물질로 형성된 액정표시장치용 어레이기판.

【청구항 5】

제 4 항에 있어서.

상기 제 2 금속층을 형성하는 물질은 탄탈륨(Ta), 티타늄(Ti),크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속그룹중 선택된 하나인 액정표시장치용 어레이기판.

【청구항 6】

제 1 항에 있어서,

상기 게이트 배선의 일부 상부에 상기 소스 및 드레인 전극과 동일층 동일물질로 섬형상의 소스.드레인 금속층을 더욱 구성한 액정표시장치용 어레이기판.

【청구항 7】

제 6 항에 있어서.

상기 소스-드레인 금속층은 상기 보호막을 식각하여 구성한 콘택홀을 통해 상기 화소전극과 접촉하는 액정표시장치용 어레이기판. /

【청구항 8】

제 1 항에 있어서,

상기 게이트 전극과 게이트배선과 게이트 패드 전극 하부의 기판의 전면에 보호층을 더욱 구성하는 액정표시장치용 어레이기판.

1020020052660

【청구항 9】

제 8 항에 있어서,

상기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지(resin)를 포 함한 유기절연물질그룹 중 선택된 하나로 구성된 액정표시장치용 어레이기판.

【청구항 10】

제 8 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질로 구성된 액정표시장치용 어레이기판.

【청구항 11】

제 10 항에 있어서,

상기 제 1 금속 버퍼층을 형성하는 물질은 탄탈륨(Ta), 티타늄(Ti), 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속 그룹 중 선택된 하나인 액정표시장치용 어레이기판.

【청구항 12】

기판 상에, 구리와 제 1 금속 버퍼층의 이중층으로 게이트 전극과, 게이트 전극과 연결된 게이트 배선과, 게이트 배선에서 연장된 게이트 패드 전극을 형성하는 단계와;

상기 게이트 전극과 게이트 배선과 게이트 패드 전극 상부에 제 1 절연막을 형성하는 단계와;

상기 게이트 전국 상부의 제 1 절연막 상에 액티브층과 오믹 콘택층을 형성하는 단계와;

상기 오믹 콘택층과 접촉하고, 구리와 제 2 금속 버퍼층의 이중층인 소스 및 드레인 전극과 소스전극과 연결된 데이터배선과 데이터 배선에서 연장된 데이터 패드 전극을 형성하는 단계와;

소스전극과 드레인 전극과 데이터 배선이 형성된 기판의 전면에, 상기 드레인 전 극과, 게이트 패드 전극과 데이터 패드 전극의 일부를 노출하는 보호막을 형성하는 단계와;

상기 노출된 드레인 전극과 접촉하는 투명 화소전극과, 게이트 패드 전극과 접촉하는 투명 게이트 패드 전극 전극단자와, 데이터 패드 전극과 접촉하는 투명 데이터 패드 전극단자를 형성하는 단계;

를 포함하는 액정표시장치용 어레이기판.

【청구항 13】

제 12 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋고, 패턴 용액이 기판에 결함을 주지 않는 물질로 형성된 액정표시장치용 어레이기판 제조방법.

1020020052660

【청구항 14】

제 13 항에 있어서,

상기 제 1 금속 버퍼충을 형성하는 물질은 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속 그룹 중 선택된 하나로 형성된 액정표시장치용 어레이기판 제조방법.

【청구항 15】

제 12 항에 있어서,

상기 제 2 금속 버퍼층은 상기 액티브층과 오믹 콘택층과 접촉하여 반응하지 않고, 상기 화소전극을 패턴하는 식각용액에 의해 상기 구리와 전지반응이 발생하지 않는 물질 로 형성된 액정표시장치용 어레이기판 제조방법.

【청구항 16】

제 15 항에 있어서,

상기 제 2 버퍼 금속층을 형성하는 물질은 탄탈륨(Ta), 티타늄(Ti),크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속그룹중 선택된 하나로 형성된 액정표시장치용 어레이기판 제조방법.

【청구항 17】

제 12 항에 있어서,

1020020052660

상기 게이트 배선의 일부 상부에 상기 소스 및 드레인 전극과 동일층 동일물질로 섬형상의 소스.드레인 금속층을 형성하는 단계를 더욱 포함하는 액정표시장치용 어레이 기판 제조방법.

【청구항 18】

제 17 항에 있어서,

상기 소스-드레인 금속층은 상기 보호막을 식각하여 구성한 콘택홀을 통해 상기 화 소전극과 접촉하는 단계를 더욱 포함하는 액정표시장치용 어레이기판 제조방법.

【청구항 19】

제 12 항에 있어서,

상기 게이트 전극과 게이트배선과 게이트 패드 전극 하부의 기판의 전면에 보호층을 형성하는 단계를 더욱 포함하는 액정표시장치용 어레이기판 제조방법.

【청구항 20】

제 19 항에 있어서,

상기 보호층은 질화 실리콘(SiN_X)과 산화 실리콘(SiO₂)을 포함하는 무기절연물질 그룹 중 선택된 하나 또는 벤조사이클로부텐(BCB)과 아크릴(acryl)계 수지(Rresin)를 포 함한 유기절연물질그룹 중 선택된 하나로 형성된 액정표시장치용 어레이기판 제조방법.

【청구항 21】

제 19 항에 있어서,

상기 제 1 금속 버퍼층은 기판과 밀착성이 좋은 물질로 형성된 액정표시장치용 어레이기판 제조방법.

【청구항 22】

제 20 항에 있어서,

상기 제 1 금속 버퍼층을 형성하는 물질은 탄탈륨(Ta), 티타늄(Ti), 크롬(Cr), 몰리브덴(Mo), 니켈(Ni), 텅스텐(W)으로 구성된 금속 그룹 중 선택된 하나로 형성된 액정 표시장치용 어레이기판 제조방법.

【도면】

【도 1】

[도 2a]

00 0

[도 4]

[도 6d]

[도 6e]

[도 7]

