Light hadron production in $B_c \to J/\psi + X$ decays

A. K. Likhoded* and A. V. Luchinsky † Institute for High Energy Physics, Protvino, Russia

Decays of ground state B_c -meson $B_c \to J/\psi + n\pi$ are considered. Using existing parametrizations for $B_c \to J/\psi$ form-factors and $W^* \to n\pi$ spectral functions we calculate branching fractions and transferred momentum distributions of $B_c \to J/\psi + n\pi$ decays for n=1,2,3,4. Inclusive decays $B_c \to J/\psi + \bar{u}d$ and polarization asymmetries of final charmonium are also investigated. Presented in our article results can be used to study form-factors of $B_c \to J/\psi$ transitions, π -meson system spectral functions and give the opportunity to check the factorization theorem.

PACS numbers: 13.20.He, 13.35.Dx, 13.38.Be, 14.40.Aq

I. INTRODUCTION

Recent measurements of B_c -meson mass and lifetime in CDF [1] and D0 [2] experiments allow us to hope that more detailed investigation of this particle on LHC collider, where about $10^{10}~B_c$ -events per year are expected, would clarify mechanisms of B_c production and decay modes. Currently only products of B_c -meson production cross section and branching fractions of decays $B_c \to J/\psi \pi$, $J/\psi \ell \nu$ are known experimentally. For example, the following ratios are measured [3]:

$$\frac{\sigma_{B_c} Br (B_c \to J/\psi e^+ \nu_e)}{\sigma_B Br (B_c \to J/\psi K)} = 0.282 \pm 0.038 \pm 0.074$$

for positron in the final state and

$$\frac{\sigma_{B_c} Br(B_c \to J/\psi \mu^+ \nu_{\mu})}{\sigma_B Br(B_c \to J/\psi K)} = 0.249 \pm 0.045^{+0.107}_{-0.076}$$

for muon. These ratios are about an order of magnitude higher than the theoretical predictions based on current estimates of B_c -meson production cross section and branching fraction $Br(B_c \to J/\psi \ell \nu) \approx 2\%$ [4]. The mode $B_c \to J/\psi \pi$ was used mainly to determine precisely B_c -meson mass. No information on production cross section, decay branching fraction, and even the product of these quantities was determined in this experiment.

Investigation of other B_c -meson decay channels and determination of their branching fractions will be one of interesting tasks of future experiments on LHC. Weak B_c decays can be caused by decays of both constituent quarks. Dominant are c-quark decay modes, which amount to $\sim 70\%$ of all B_c -meson decays. Unfortunately, none of such reactions were observed, although large branching fractions are expected for some of these decay modes (for example, for $B_c \to B_s \rho$ we have approximately 16% branching fraction). Mentioned above decays $B_c \to J/\psi \ell \nu$ and $B_c \to J/\psi \pi$ are examples of other class, caused by b-quark decay. Total branching fraction of this process is about 20%.

In the present paper we will fill the gap in existing theoretical predictions of B_c -meson decay branching fractions [4–7] and consider multi-particle processes $B_c \to J/\psi + n\pi$ with n=1,2,3,4. These reactions are caused by weak b-quark decay $b \to cW^* \to c\bar{u}d$ and clean analogy with similar τ -lepton decays $(\tau \to \nu_{\tau} + n\pi)$ can be easily seen. This analogy allows us to use existing experimental data on τ -lepton decays and give reliable predictions of $B_c \to J/\psi + n\pi$ branching fractions.

In the next section we give analytical expressions for distributions of $B_c \to J/\psi + n\pi$ decays branching fractions over invariant mass of the light hadron system and study different asymmetries of final J/ψ -meson polarization as a function of this kinematic variable. In section III we use existing experimental data on τ -lepton decays calculate branching fractions of $B_c \to J/\psi + n\pi$ decays for n=1,2,3,4. In section IV inclusive reaction $B_c \to J/\psi \bar{u}d$ is considered in connection with duality relation. Short results of our work are given in the final section.

*Electronic address: Anatolii.Likhoded@ihep.ru
†Electronic address: Alexey.Luchinsky@ihep.ru

II. ANALYTIC RESULTS

 B_c -meson decays into light hadrons with vector charmonium J/ψ production are caused by b-quark decay $b \to W^* \to c\bar{u}d$ (see diagram shown in fig.1). The effective lagrangian of the latter process reads

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{2\sqrt{2}} V_{cb} V_{ud}^* \left[C_+(\mu) O_+ + C_-(\mu) O_- \right],$$

where G_F is Fermi coupling constant, V_{ij} are the elements of CKM mixing matrix, $C_{\pm}(\mu)$ are Wilson coefficients, that take into account higher QCD corrections and operators O_{\pm} are defined according to

$$O_{\pm} = (\bar{d}_i u_i)_{V-A} (\bar{c}_i b_i)_{V-A} \pm (\bar{d}_i u_i)_{V-A} (\bar{c}_i b_i)_{V-A}.$$

In this expression i, j are color indexes of quarks and $(\bar{q}_1 q_2)_{V-A} = \bar{q}_1 \gamma_{\mu} (1 - \gamma_5) q_2$. Since in our decays light quark pair should be in color-singlet state, the amplitude of the considered here processes is proportional to

$$a_1(\mu) = \frac{1}{2N_c} [(N_c - 1)C_+(\mu) + (N_c - 1)C_-(\mu)]$$

If QCD corrections are neglected, one should set $a_1(\mu) = 1$. Leading logarithmic strong corrections lead to dependence of this coefficient on the renormalization scale μ [8], and on $\mu \sim m_b$ it is equal to

$$a_1(m_b) = 1.17.$$

The matrix element of the decay $B_c \to J/\psi + \mathcal{R}$, where \mathcal{R} is some set of light hadrons, has the form

$$\mathcal{M}\left[B_c \to W^* J/\psi \to \mathcal{R} J/\psi\right] = \frac{G_F V_{cb}}{\sqrt{2}} a_1 \mathcal{H}^{\mu} \epsilon_{\mu}^{\mathcal{R}}. \tag{1}$$

In this expression $e^{\mathcal{R}}$ is the effective polarization vector of virtual W-boson and

$$\mathcal{H}_{\mu} = \langle J/\psi \, | \bar{c} \gamma_{\mu} (1 - \gamma_{5}) \, b | \, B_{c} \rangle = \mathcal{V}_{\mu} - \mathcal{A}_{\mu}.$$

Vector and axial currents are equal to

$$\begin{split} \mathcal{V}_{\mu} &= \langle J/\psi \, | \bar{c} \gamma_{\mu} b | \, B_{c} \rangle = i \epsilon^{\mu \nu \alpha \beta} \epsilon_{\nu}^{\psi} \left(p + k \right)_{\alpha} q_{\beta} F_{V} \left(q^{2} \right), \\ \mathcal{A}_{\mu} &= \langle J/\psi \, | \bar{c} \gamma_{\mu} \gamma_{5} b | \, B_{c} \rangle = \epsilon_{\mu}^{\psi} F_{0}^{A} \left(q^{2} \right) + \left(\epsilon^{\psi} p \right) \left(p + k \right)_{\mu} F_{+}^{A} \left(q^{2} \right) + \left(\epsilon^{\psi} p \right) q_{\mu} F_{-}^{A} \left(q^{2} \right), \end{split}$$

Figure 1: $B_c \to J/\psi + \mathcal{R}$

		SR	QM	LC
F_V	$F_V(0), \text{GeV}^{-1}$	0.11	0.10	0.08
	M_{pole} , GeV	4.5	4.5	4.5
F_0^A	$F_0^A(0)$, GeV	5.9	6.2	4.7
	M_{pole} , GeV	4.5	4.5	6.4
F_+^A	$F_+^A(0), \text{ GeV}^{-1}$	-0.074	-0.70	-0.047
	M_{pole} , GeV	4.5	4.5	5.9

Table I: Parameters of B_c -meson form-factors

where p and k are the momenta of B_c - and J/ψ -mesons, q=p-k is the momentum of virtual W-boson, and $F_V(q^2)$, $F_{0,\pm}^A(q^2)$ are form-factors of $B_c \to J/\psi W^*$ decay. Due to vector current conservation and partial axial current conservation the contribution of the form-factor F_-^A are suppressed by small factor $\sim (m_u + m_d)^2/M_{B_c}^2$, so we will neglect it in the following.

One can use different approaches when deriving the form of the form-factors $F(q^2)$. First of all, it is clear, that quark velocity in heavy quarkonia is small in comparison with c, so one can describe heavy quarkonia in the terms of non-relativistic wave-functions. This fact was used on the so called Quark Models [4, 5, 9–14]. In the following we will refer to this set of form-factors as QM. The speed of the final charmonium in B_c -meson rest frame, on the other hand, is large, so one can expand the amplitude of the considered here process in the powers of small parameter $M_{J/\psi}/M_{B_c}$, as it was done in papers [15–20]. In what follows, we will refer to this set of form-factors as LC. One can also use 3-point QCD sum rules to obtain the information on $B_c \to J/\psi W^*$ form-factors [4, 11, 21, 22] (SR).

In our paper we use the following simple parametrization of form-factors

$$F\left(q^2\right) = \frac{F\left(0\right)}{1 - q^2/M_{pole}^2},$$

where numerical values of parameters $F_i(0)$ and M_{pole} are presented in table I. The width of the $B_c \to J/\psi \mathcal{R}$ decay is

$$d\Gamma \left(B_c \to J/\psi \mathcal{R}\right) = \frac{1}{2M} \frac{G_F^2 V_{cb}^2}{2} a_1^2 \mathcal{H}^{\mu} \mathcal{H}^{*\nu} \epsilon_{\mu} \epsilon_{\nu}^{*\mathcal{R}} d\Phi \left(B_c \to J/\psi \mathcal{R}\right),$$

where Lorentz-invariant phase space is defined according to

$$d\Phi (Q \to p_1 \dots p_n) = (2\pi)^4 \delta^4 \left(Q - \sum p_i \right) \prod \frac{d^3 p_i}{2E_i (2\pi)^3}.$$

It is well known, that the following recurrent expression holds for this phase space:

$$d\Phi \left(B_c \to J/\psi \mathcal{R}\right) = \frac{dq^2}{2\pi} d\Phi \left(B_c \to J/\psi W^*\right) d\Phi \left(W^* \to \mathcal{R}\right).$$

Using this expression one can perform the integration over phase space of the final state \mathcal{R} :

$$\frac{1}{2\pi} \int d\Phi \left(W^* \to \mathcal{R} \right) \epsilon_{\mu}^{\mathcal{R}} \epsilon_{\nu}^{\mathcal{R}*} = \left(q_{\mu} q_{\nu} - q^2 g_{\mu\nu} \right) \rho_T^{\mathcal{R}} \left(q^2 \right) + q_{\mu} q_{\nu} \rho_L^{\mathcal{R}} \left(q^2 \right),$$

where spectral functions $\rho_{T,L}^{\mathcal{R}}\left(q^{2}\right)$ are universal and can be determined from theoretical and experimental analysis of some other processes, for example $\tau \to \nu_{\tau} \mathcal{R}$ decay or electron-positron annihilation $e^{+}e^{-} \to \mathcal{R}$. Due to vector current conservation and partial axial current conservation spectral function $\rho_{L}^{\mathcal{R}}$ is negligible on almost whole kinematical region, so we will neglect is in our paper. Explicit expressions for spectral function $\rho_{T}^{\mathcal{R}}$ for different final states \mathcal{R} are given in the next section.

Figure 2: Polarization asymmetry α of final J/ψ -meson in $B_c \to J/\psi + \mathcal{R}$ decays as a function of squared transferred momentum q^2 (in GeV²). Solid, dashed and dot-dashed lines stand for SR [7, 11], QM [4], and LC [20] respectively

Differential distributions of longitudinally and transversely polarized J/ψ -meson in $B_c \to J/\psi + \mathcal{R}$ decays can easily be obtained from presented above expressions. In the case of longitudinal polarization the polarization vector ϵ^{ψ} is equal to

$$\epsilon_{\mu}^{\psi}(\lambda=0) = \frac{M}{2M_V} \left\{ \beta, 0, 0, \frac{M^2 + M_V^2 - q^2}{M^2} \right\},$$

where z-axes is chosen in the direction of J/ψ movement, M and M_v are B_c - and J/ψ -meson masses and

$$\beta \ = \ \sqrt{\frac{\left(M + M_V\right)^2 - q^2}{M^2}} \sqrt{\frac{\left(M - M_V\right)^2 - q^2}{M^2}}.$$

Differential distribution has the form

$$\frac{d\Gamma\left[B_{c} \to J/\psi_{\lambda=0} + \mathcal{R}\right]}{dq^{2}} = \frac{G_{F}^{2}M^{3}V_{cb}^{2}a_{1}^{2}\beta}{128\pi M_{V}^{2}}\rho_{T}^{\mathcal{R}}\left(q^{2}\right)\frac{M^{4}}{4M_{V}^{2}}\left\{\left(\beta^{2} + \frac{4M_{V}^{2}q^{2}}{M^{4}}\right)\left|F_{0}^{A}\right|^{2} + M^{4}\beta^{4}\left|F_{+}^{A}\right|^{2}\right. \\
+ 2\beta^{2}\left(M^{2} - M_{V}^{2} - q^{2}\right)F_{0}^{A}F_{+}^{A}\right\}.$$

In the case of transversely polarized vector meson ϵ^{ψ}_{μ} has the form

$$\epsilon_{\mu}^{\psi}\left(\lambda=\pm1\right) \;=\; \left\{0,\frac{1}{\sqrt{2}},\frac{\pm i}{\sqrt{2}},0\right\},$$

and the corresponding differential distribution is

$$\frac{d\Gamma\left[B_{c} \to J/\psi_{\lambda=\pm 1} + \mathcal{R}\right]}{dq^{2}} = \frac{G_{F}^{2}V_{cb}^{2}}{32\pi M}a_{1}^{2}\beta q^{2}\rho_{T}^{\mathcal{R}}\left(q^{2}\right)\left\{\left|F_{0}^{A}\right|^{2} + M^{4}\beta^{2}\left|F_{V}\right|^{2} \pm \frac{2\beta M^{2}}{M_{V}^{2}}\operatorname{Re}\left(F_{0}^{A}F_{V}\right)\right\}.$$

It should be stressed, that the above expressions are universal and spectral function $\rho_T^{\mathcal{R}}(s)$ depends on the final state \mathcal{R} .

If the polarization if final vector meson is not observed, the q^2 -distribution is, obviously,

$$\frac{d\Gamma\left[B_c \to J/\psi + \mathcal{R}\right]}{dq^2} = \sum_{\lambda=0,\pm 1} \frac{d\Gamma\left[B_c \to J/\psi_\lambda + \mathcal{R}\right]}{dq^2}.$$
 (2)

It is also useful to study some polarization asymmetries. For example, polarization degree α is defined according to

$$\alpha = \frac{d\Gamma_{\lambda=+1} + d\Gamma_{\lambda=-1} - 2d\Gamma_{\lambda=0}}{d\Gamma_{\lambda=+1} + d\Gamma_{\lambda=-1} + 2d\Gamma_{\lambda=0}}.$$

Figure 3: Kinematics of $B_c \to J/\psi u\bar{d}$ decay

Production of transversely polarized, longitudinally polarized and unpolarized J/ψ -meson corresponds to $\alpha=1$, $\alpha=-1$ and $\alpha=0$ respectively. We would like to note, that in the framework of factorization model this asymmetry does not depend on final state \mathcal{R} . So, experimental investigation of this asymmetry can be used for determination of B_c -meson form factors and test of QCD factorization. In fig.2 we show q^2 -dependence of this asymmetry for different sets of B_c -meson form-factors. One can easily explain qualitatively the behavior of these curves. Let us consider q^2 -dependence of asymmetry α in $B_c \to J/\psi \bar{u}d$ decay. At low q^2 the direction of \bar{u} - and d-quarks momenta in B_c -meson rest frame will be close to each other and opposite to the direction of the momentum of J/ψ -meson. The spin of light \bar{u} -antiquark (d-quark) is directed along (opposite to) its momentum (see fig.3a), so quark-antiquark pair has $\lambda=0$ projection on Oz axis. From angular momentum conservation it follows, that J/ψ -meson should also be longitudinally polarized. This can be observed in figure 2, where at low q^2 we have $\alpha=-1$ for all sets of B_c -meson form-factors. In high q^2 -region, on the contrary, direction of quark and antiquark momenta are opposite to each other and J/ψ -meson stay at rest in B_c -meson rest frame (see fig.3b). As a result, final J/ψ -meson is unpolarized in this region and $\alpha=0$. Another example is transverse asymmetry

$$\alpha_T = \frac{d\Gamma_{\lambda=1} - d\Gamma_{\lambda=-1}}{d\Gamma}.$$

This asymmetry also depends only on B_c -meson form-factors and its dependence on squared transferred momentum is shown in fig.4.

III. EXCLUSIVE DECAYS

In this section we present differential widths and branching fractions of the decays $B_c \to J/\psi + n\pi$ using presented above universal formula (2) and specific expressions for spectral function $\rho_T^{\mathcal{R}}(q^2)$.

Figure 4: Transverse polarization asymmetry α_T of final J/ψ -meson in $B_c \to J/\psi + \mathcal{R}$ decays as a function of squared transferred momentum q^2 (in GeV²). Solid, dashed and dot-dashed lines stand for SR [7, 11], QM [4], and LC [20] respectively

A.
$$B_c \rightarrow J/\psi \pi$$

Let us first of all consider two-particle decays $B_c \to J/\psi \pi$ and $B_c \to J/\psi \rho$. In the case of $B_c \to J/\psi \pi$ decay the $W^* \to \pi$ transition is expressed through leptonic constant f_π :

$$\langle \pi | \bar{u} \gamma_{\mu} \gamma_5 d | 0 \rangle = \sqrt{2} f_{\pi} q_{\mu}. \tag{3}$$

The numerical value of this constant can be determined from $\pi \to \mu\nu_{\mu}$ decay width: $f_{\pi} \approx 140$ MeV. The spectral function, that corresponds to vertex (3) is

$$\rho_T^{\pi} \left(q^2 \right) = 2 f_{\pi}^2 \delta \left(q^2 \right).$$

Using this spectral function it is easy to obtain the following values of $B_c \to J/\psi \pi$ decay branching fractions for different sets of form-factors:

$${\rm Br}_{LC} \left(B_c \to J/\psi \pi \right) = 0.13\%, {\rm Br}_{QM} \left(B_c \to J/\psi \pi \right) = 0.17\%, {\rm Br}_{SR} \left(B_c \to J/\psi \pi \right) = 0.17\%.$$

B.
$$B_c \to J/\psi + 2\pi$$

The 2π channel is saturated mainly by $B_c \to J/\psi \rho$ decay. The $W^* \to \rho$ transition vertex is also expressed through ρ -meson leptonic constant

$$\langle \rho | \bar{u} \gamma_{\mu} d | 0 \rangle = \sqrt{2} f_{\rho} M_{\rho} \epsilon_{\mu}$$

where $f_{\rho} \approx 150$ MeV. If one neglects the width of ρ -meson, the corresponding spectral function has the form

$$\rho_T^{\rho}\left(q^2\right) = 2f_{\rho}^2\delta\left(q^2 - m_{\rho}^2\right). \tag{4}$$

The branching fractions of $B_c \to J/\psi \rho$ for different sets of form-factors are:

$${\rm Br}_{LC} (B_c \to J/\psi \rho) = 0.38\%,$$

 ${\rm Br}_{QM} (B_c \to J/\psi \rho) = 0.44\%,$
 ${\rm Br}_{SR} (B_c \to J/\psi \rho) = 0.48\%.$

In order to take ρ -meson width into account, one can use experimental data on $\tau \to \nu_{\tau} + 2\pi$ decay. The differential branching ratio of this reaction is equal to

$$\frac{d\Gamma\left(\tau \to \nu_{\tau} \mathcal{R}\right)}{dq^2} = \frac{G_F^2}{16\pi m_{\tau}} \frac{\left(m_{\tau}^2 - q^2\right)^2}{m_{\tau}^3} \left(m_{\tau}^2 + 2q^2\right) \rho_T^{\mathcal{R}}\left(q^2\right).$$

This method was used by ALEPH collaboration to measure the spectral function $\rho_T^{2\pi}(q^2)$ in the kinematically allowed region $q^2 < m_{\tau}^2$ [23] and can be approximated by the expression (see fig.5a)

$$\rho_T^{2\pi}(s) \approx 1.35 \times 10^{-3} \left(\frac{s - 4m_\pi^2}{s}\right)^2 \frac{1 + 0.64s}{(s - 0.57)^2 + 0.013},$$

where s is measured in GeV². In fig.5b we show corresponding distributions $d\Gamma\left(B_c \to J/\psi + 2\pi\right)/dq^2$. Solid, dashed and dash-dotted lines in this figure correspond to form-factors SR, QM, and LC respectively. The branching fractions of the decay $B_c \to J/\psi + 2\pi$ are almost equal to $B_c \to J/\psi \rho$ decay branching fractions:

$${\rm Br}_{LC} \left(B_c \to J/\psi \pi \pi \right) = 0.35\%,$$

 ${\rm Br}_{QM} \left(B_c \to J/\psi \pi \pi \right) = 0.44\%,$
 ${\rm Br}_{SR} \left(B_c \to J/\psi \pi \pi \right) = 0.48\%.$

Figure 5: fig (a) — spectral function $\rho_T^{2\pi}$; (b) — $\Gamma^{-1}d\Gamma(B_c \to J/\psi + 2\pi)/dq^2$ distribution for different sets of B_c -meson form-factors. Solid, dashed and dot-dashed lines stand for SR [7, 11], QM [4], and LC [20] respectively

Figure 6: Spectral function and differential width for $B_c \to J/\psi + 3\pi$ decay. Notations are the same as in fig.5.

C.
$$B_c \rightarrow J/\psi + 3\pi$$

In the case of $B_c \to J/\psi + 3\pi$ decay (where 3π stands for the sum of $\pi^-\pi^0\pi^0$ and $\pi^-\pi^+\pi^-$ decay modes) the G-parity of the final state is negative. So we can expect, that this mode is saturated by axial-vector resonance a_1 . The width of this state is too large to neglect it, so we cannot use the expression similar to (4) for $W^* \to 3\pi$ transition. The corresponding spectral function can be determined from experimental and theoretical data on $\tau \to \nu_{\tau} + 3\pi$ decay. In our article we use the following expression to approximate this function (see. fig.6a):

$$\rho_T^{3\pi}(s) \approx 5.86 \times 10^{-5} \left(\frac{s - 9m_\pi^2}{s}\right)^4 \frac{1 + 190.s}{\left[\left(s - 1.06\right)^2 + 0.48\right]^2}.$$

Distributions over q^2 for different sets of B_c -meson form factors are shown in fig.6b. The branching fractions of $B_c \to J/\psi + 3\pi$ decay are

$${\rm Br}_{LC}\left(B_c \to J/\psi + 3\pi\right) = 0.52\%, \ {\rm Br}_{QM}\left(B_c \to J/\psi + 3\pi\right) = 0.64\%, \ {\rm Br}_{SR}\left(B_c \to J/\psi + 3\pi\right) = 0.77\%.$$

D.
$$B_c \rightarrow J/\psi + 4\pi$$

In the decay $B_c \to J/\psi + 4\pi$ both $\pi^-\pi^0\pi^0\pi^0$ and $\pi^-\pi^+\pi^-\pi^-$ modes are possible in the following we consider the sum of these states. The kinematically allowed region in $\tau \to \nu_{\tau} + 4\pi$ decay is too small to determine the form of spectral function $\rho_T^{4\pi}$, so it is more convenient to use energy dependence of 4π production cross section in

Figure 7: Spectral function and differential width for $B_c \to J/\psi + 4\pi$ decay. Notations are the same as in fig.5

electron-positron annihilation. It is easy to obtain the following expression for this cross section:

$$\sigma\left(e^+e^- \to 4\pi\right) = \frac{4\pi\alpha^2}{s}\rho_T^{4\pi}(s).$$

Spectral function $\rho_T^{4\pi}$, calculated from experimental data [24] is shown in fig.7a and later we use the following parametrization:

$$\rho_T^{4\pi}\left(s\right) \; \approx \; 1.8 \times 10^{-4} \left(\frac{s-16m_\pi^2}{2}\right) \frac{1+5.07s+8.63s^2}{\left[\left(s-1.83\right)^2+0.61\right]^2}.$$

The distributions corresponding to this spectral function are shown in fig.7b. The branching fraction for different sets of B_c -meson form-factors are

$${\rm Br}_{LC} \left(B_c \to J/\psi + 4\pi \right) = 0.26\%,$$

 ${\rm Br}_{QM} \left(B_c \to J/\psi + 4\pi \right) = 0.33\%,$
 ${\rm Br}_{SR} \left(B_c \to J/\psi + 4\pi \right) = 0.40\%.$

IV. INCLUSIVE DECAYS AND DUALITY RELATION

Let us know consider the inclusive decay $B_c \to B_c + X$ where X stands for an arbitrary state of light hadrons. On quark level this reaction corresponds to $B_c \to J/\psi + \bar{u}d$ decay. If one neglects u- and d-quark masses, the spectral function of $W^* \to \bar{u}d$ transition is energy independent and equals to

$$\rho_T^{ud} = \frac{1}{2\pi^2}.$$

In fig.8 distributions of $B_c \to J/\psi + \bar{u}d$ decay branching fractions for different sets of B_c -meson form-factors are shown. Integrated branching fractions of this decay are

$${\rm Br}_{LC} \left(B_c \to J/\psi + \bar{u}d \right) = 7\%, {\rm Br}_{QM} \left(B_c \to J/\psi + \bar{u}d \right) = 8.6\%, {\rm Br}_{SR} \left(B_c \to J/\psi + \bar{u}d \right) = 12\%.$$

It should be noted, that sum of presented above branching fractions (that is $Br(B_c \to J/\psi + n\pi)$, n = 1, ...4) gives only about 30% the inclusive decay branching fraction. So one could expect noticeable events with multi-pion production in B_c -meson decays.

Below KK-production threshold only π -mesons can be produced in $\bar{u}d$ -pair hadronization, so the duality relation should be satisfied

$$\int_{\Gamma} \frac{1}{\Gamma} \frac{d\Gamma(B_c \to J/\psi \bar{u}d)}{dq^2} = \sum_{n} Br(B_c \to J/\psi + n\pi),$$

Figure 8: Differential $B_c \to J/\psi \bar{u}d$ branching fractions for different sets of B_c -meson form-factors. Notations are the same as in fig.5

	π	2π	3π	4π	$\bar{u}d$
LC	0.13	0.35	0.52	0.26	7
QM					
SR	0.17	0.48	0.77	0.40	12

Table II: $B_c \to J/\psi \mathcal{R}$ decays branching fractions (in %) for different sets of B_c -meson form-factors

where Δ is the duality window. If we restrict ourselves to $n \leq 4$ in the right-hand side of this relation, it is valid for

$$\Delta \approx 0.6 \, \text{GeV}.$$

It is interesting to note that this value is almost independent on the choice of B_c -meson form-factors and close to the value of duality parameter in $gg \to J/\psi c\bar{c}$ and $\chi_b \to J/\psi c\bar{c}$ reactions [25, 26].

V. CONCLUSION

In our paper we study exclusive and inclusive decays of B_c -meson into light hadrons and vector charmonium J/ψ , that is the processes $B_c \to J/\psi + \bar{u}d$ and $B_c \to J/\psi + n\pi$ where n=1,2,3,4. According to QCD factorization theorem the amplitude of these processes splits into two independent parts. The first factor describes the decay $B_c \to J/\psi W^*$ and one can use existing parametrizations of B_c -meson form-factors to calculate this amplitude. The second factor describes the fragmentation of virtual W-boson. The information about these processes was taken from experimental distributions of multi-pion production in τ -lepton decays and electron-positron annihilation.

Our results are gathered in table II, where branching fractions of multi-pion production in $B_c \to J/\psi + n\pi$ for different B_c -meson form-factors are presented. The last column of this table contains the branching fraction of the inclusive decay $B_c \to J/\psi + \bar{u}d$. It is clear that up to KK-production threshold only π -mesons could be produced in $B_c \to J/\psi + X$ decay, so some duality relation should hold. In our article it is shown, that to satisfy this relation it is sufficient to integrate the inclusive spectrum up to squared transferred momentum $q^2 = (2m_K + \Delta)^2$. It turns out, that Δ is almost independent on the choice of B_c -meson form-factors and equals to ~ 0.6 GeV.

The other interesting point are the polarization asymmetries of final J/ψ -meson. In the framework of factorization model these asymmetries do not depend on the final state \mathcal{R} , so one can use them to investigate form-factors of B_c -meson and to test the factorization theorem. In our paper we present the polarization degree $\alpha = (d\Gamma_T/dq^2 - 2d\Gamma_L/dq^2)/(d\Gamma_t/dq^2 + 2d\Gamma_L/dq^2)$ and transverse polarization asymmetry $\alpha_T = (d\Gamma_{\lambda=1}/dq^2 - d\Gamma_{\lambda=-1}/dq^2)/(d\Gamma/dq^2)$ for different sets of form-factors.

The authors would like to thank V.V. Kiselev for fruitful discussions. This work was financially supported by Russian Foundation for Basic Research (grants #09-02-00132-a and 07-02-00417-a). One of the author (A.V.L.) was also

supported by President grant (#MK-110.2008.2), grant of Russian Science Support Foundation and noncommercial foundation "Dynasty".

- [1] T. Aaltonen and C. Collaboration, Phys. Rev. Lett., 100 (2008), 182002, arXiv:0712.1506 [hep-ex].
- V. M. Abazov et al., Phys. Rev. Lett., 102 (2009), 092001, 0805.2614.
- [3] V. Papadimitriou, AIP Conf. Proc., 815 (2006), 157, hep-ex/0511043.
- [4] S. S. Gershtein, V. V. Kiselev, A. K. Likhoded, and A. V. Tkabladze, Phys. Usp., 38 (1995), 1, hep-ph/9504319.
- [5] S. S. Gershtein et al., (1997), hep-ph/9803433.
- [6] V. V. Kiselev, A. E. Kovalsky, and A. K. Likhoded, (2000), hep-ph/0006104.
- [7] V. V. Kiselev, A. E. Kovalsky, and A. K. Likhoded, Nucl. Phys., B585 (2000), 353, hep-ph/0002127.
- [8] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys., 68 (1996), 1125, hep-ph/9512380.
- [9] V. V. Kiselev, A. K. Likhoded, and A. V. Tkabladze, Phys. At. Nucl., 56 (1993), 643.
- [10] P. Colangelo and F. De Fazio, Phys. Rev., D61 (2000), 034012, hep-ph/9909423.
- [11] V. V. Kiselev, A. K. Likhoded, and A. I. Onishchenko, Nucl. Phys., B569 (2000), 473, hep-ph/9905359.
- [12] M. A. Ivanov, J. G. Korner, and P. Santorelli, Phys. Rev., D71 (2005), 094006, hep-ph/0501051.
- [13] E. Hernandez, J. Nieves, and J. M. Verde-Velasco, Phys. Rev., D74 (2006), 074008, hep-ph/0607150.
- [14] M. A. Ivanov, J. G. Korner, and P. Santorelli, Phys. Rev., D73 (2006), 054024, hep-ph/0602050.
- [15] A. Y. Anisimov, P. Y. Kulikov, I. M. Narodetsky, and K. A. Ter-Martirosian, Phys. Atom. Nucl., 62 (1999), 1739, hep-ph/9809249.
- [16] A. Y. Anisimov, I. M. Narodetsky, C. Semay, and B. Silvestre-Brac, Phys. Lett., B452 (1999), 129, hep-ph/9812514.
- [17] T. Huang, Z.-H. Li, X.-G. Wu, and F. Zuo, Int. J. Mod. Phys., A23 (2008), 3237, arXiv:0801.0473 [hep-ph].
- [18] H.-M. Choi and C.-R. Ji, (2009), 0909.5028.
- [19] H.-M. Choi and C.-R. Ji, (2009), 0903.0455.
- [20] X.-X. Wang, W. Wang, and C.-D. Lu, Phys. Rev., D79 (2009), 114018, 0901.1934.
- [21] V. V. Kiselev, (2002), hep-ph/0211021.
- [22] K. Azizi and M. Bayar, *Phys. Rev.*, D78 (2008), 054011, 0806.0578.
- [23] S. Schael et al., Phys. Rept., 421 (2005), 191, hep-ex/0506072.
- [24] H. Czyz and J. H. Kuhn, Eur. Phys. J., C18 (2001), 497, hep-ph/0008262.
- [25] A. V. Berezhnoy and A. K. Likhoded, (2006), hep-ph/0602041.
- [26] V. V. Braguta, A. K. Likhoded, and A. V. Luchinsky, Phys. Rev., D73 (2006), 034021, hep-ph/0510060.