Pakorn Watanachaturaporn pakorn.wa@KMITL.ac.th

01076244 Advanced Digital System Design

Bachelor Program in Computer Engineering (B.Eng.) Faculty of Engineering

King Mongkut's Institute of Technology Ladkrabang

State-Machine Structure

input

change state at each tick of

the clock

The output logic G determines the output as a function of the current state and input

A set of n flip-flops that store the current state of the machine and has 2^n distinct states

F and G are strictly combinational logic circuits.

Next state = F (current state, input)
Output = G (current state, input)

Output Logic

Mealy machine: output depends on both state and input

Moore machine: the output depends on state alone

Characteristic Equations

ทำใน logic เป็น สมการ พวคณิตศาสตร์ ที่ ระบุว่านกังกันเป็นไอ

- A <u>Characteristic equation</u> is a formally description of a behavior
- The _ suffix means the "_next_value____"
- Note: the characteristic equation does not describe detailed timing behavior of the device (latching vs. edge-triggered, etc.), only the formula to the control input

Device Type	Characteristic Equation
S-R latch	$Q^* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
D flip-flop with enable	$Q^* = EN \cdot D + EN' \cdot Q$
Edge-triggered J-K flip-flop	$Q^* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	$Q^* = EN \cdot Q' + EN' \cdot Q$

Analysis of State Machines with D Flip-Flops

- 1. Determine the <u>next state</u> and <u>output functions</u> F and G.
- 2. Use F and G to construct a <u>state / output table</u> that completely specifies the <u>next state</u> and <u>output</u> of the circuit for every possible combination of current state and input.
- 3. (Optional) Draw a <u>State diagram</u> that presents the information from the previous step in graphical form.

Clocked synchronous state machine using positiveedge-triggered D flip-flops

$$D1 = Q1 \cdot EN' + Q1' \cdot Q0 \cdot E0 + Q1' \cdot Q0' QN$$

Clocked synchronous state machine using positiveedge-triggered D flip-flops

The next value of a state

variable after a clock tick is denoted by appending to the state-variable name.

$$Q0* = D0$$

 $Q1* = D1$

$$Q0* = Q0\cdot EN' + Q0'EN$$

$$Q1* = Q1\cdot EN' +$$

$$Q1\cdot Q0\cdot EN +$$

$$Q1\cdot Q0\cdot QN$$

Clocked synchronous state machine using positive-edge-triggered D flip-flops

ΕN

 S^* , MAX

1

B,0

C,0

D,0

A, ı

0

A,0

8,0

C,0

D, 0

State/output table

State table

D

S*

A

D

- A <u>State diagram</u> presents the information from the <u>state</u> / output table in a graphical format.
- A circle (or **node**) for each state.
- An arrow (or directed arc) for each transition.

Clocked synchronous state machine using positive-edge-triggered D flip-flops

Redrawn logic diagram for a clocked synchronous state machine

s -	EN				
	0	1			
Α	A,0	B , O			
В	B , O	C,0			
С	C,0	D,0			
D	D,0	A , 1			
	S*, MAX				

CLOCK											
EN											
Q1											
Q0				\						\	
MAX							/			\	
MAXS										\	
STATE	A	A	В	С	C	C	D D	D	D	A	A

 $MAX = Q1 \cdot Q0 \cdot EN$

Timing diagram for example state machine

Summarizing detailed steps for analyzing a clocked synchronous state machine

(ทำให้ **เปล่าน** สถานะได้)

- 1. Determine the excitation equations for the flip-flop control inputs.
- 2. <u>Substitute (unui)</u> the excitation equations into the flip-flop characteristic equations to obtain transition equations.
- 3. Use the <u>transition equations</u> to construct a transition table.
- 4. Determine the output equations.
- 5. Add <u>output value</u> to the transition table for each state (Moore) or _______

 <u>State / input_combination</u> (Mealy) to create a transition/output table.
- 6. Name the states and substitute state names for state-variable combinations in the transition/output table to obtain a state/output table.
- 7. (Optional) Draw a state diagram corresponding to the state/output table.

Another example

The excitation equations are:

$$Q0^* = Q1' \cdot X + Q0 \cdot X' + Q2$$

$$Q1^* = Q2' \cdot Q0 \cdot X + Q1 \cdot X' + Q2 \cdot Q1$$

$$Q2* = Q2 \cdot Q0' + Q0' \cdot X' \cdot Y$$

Transition equation

Q2 Q1 Q0	00	01	10	11	Z1 Z2	
000	000	100	001	001	10	
001	001	001	011	011	10	
010	010	110	000	000	10	
011	011	011	010	010	00	
100	101	101	101	101	11	
101	001	001	001	001	10	
110	111	111	111	111	11	
111	011	011	011	011	11	
Q2* Q1* Q0*						

Two output equation

	X Y						
S	00	01	10	11	Z1 Z2		
Α	Α	Е	В	В	10		
В	В	В	D	D	10		
С	C	G	Α	Α	10		
D	D	D	C	C	00		
Ε	F	F	F	F	11		
F	В	В	В	В	10		
G	Н	Н	Н	Н	11		
Н	D	D	D	D	11		
S*							

$$Z1 = Q2 + Q1' + Q0'$$

$$Z2 = Q2 \cdot Q1 + Q2 \cdot Q0'$$

Two output equation

S	00	01	10	11	Z1 Z2	
Α	Α	E	В	В	10	
В	В	В	D	D	10	
C	С	G	Α	Α	10	
D	D	D	C	C	00	
Ε	F	F	F	F	11	
F	В	В	В	В	10	
G	Н	Н	Н	Н	11	
Н	D	D	D	D	11	
S*						

State/output table

State diagram

Transition expression constraints

- No Two transition can equal 1 for the same input combination since a machine cannot have two next state for one input combination.

 No Two transition can equal 1 for the same input cannot have transition cannot have the same of the same input can equal 1 for the same input cannot have transition can equal 1 for the same input cannot have transition can equal 1 for the same input cannot have transition can equal 1 for the same input cannot have transition cannot have transit
- For every possible <u>input combination</u>, some <u>transition expression</u> must equal 1, All inclusion so that all next states are defined.

"The transition expressions on arcs leaving a particular state must be <u>mutually exclusive</u> and <u>all inclusive</u>."