

Lógica para Programação

Repescagem do Segundo Teste

11 de Julho de 2009

09:00-10:30

Nome:	N T /
Nomo:	Número:
NOME.	Numero.

- Esta prova, individual e sem consulta, tem 6 páginas com 14 perguntas. A cotação de cada pergunta está assinalada entre parêntesis.
- Escreva o seu número em todas as folhas da prova. O tamanho das respostas deve ser limitado ao espaço fornecido para cada questão. O corpo docente reserva-se o direito de não considerar a parte das respostas que excedam o espaço indicado.
- Pode responder usando lápis.
- Em cima da mesa devem apenas estar o enunciado, caneta ou lápis e borracha e cartão de aluno. Não é permitida a utilização de folhas de rascunho, telemóveis, calculadoras, etc.
- Boa sorte.

Pergunta	Cotação	Nota
1.	1.0	
2.	1.0	
3.	1.0	
4.	1.0	
5.	1.0	
6.	1.5	
7.	1.0	
8.	1.0	
9.	1.0	
10.	2.0	
11.	1.0	
12.	1.5	
13.	3.0	
14.	3.0	
Total	20.0	

1. **(1.0)** O que é uma *fbf* satisfazível?

Resposta:

É uma *fbf* para a qual existe uma interpretação que a satisfaz.

2. (1.0) Sendo s_1 e s_2 duas substituições, qual o significado da substituição que corresponde à composição destas substituições $(s_1 \circ s_2)$?

Resposta:

É a substituição s tal que para qualquer fbf α , $\alpha \cdot s = (\alpha \cdot s_1) \cdot s_2$.

3. (1.0) Enuncie o princípio da resolução para cláusulas com variáveis.

Resposta:

Sejam Ψ e Φ duas cláusulas, α e β dois literais tais que $\alpha \in \Psi$ e $\beta \in \Phi$, e α e $\neg \beta$ são unificáveis. Seja s o unificador mais geral de α e $\neg \beta$. Então, usando o princípio da resolução, podemos inferir a cláusula $((\Psi - \{\alpha\}) \cup (\Phi - \{\beta\})) \cdot s$.

4. **(1.0)** No contexto da programação em lógica diga o que é uma resposta correcta de um programa a um objectivo.

Resposta:

Sendo Δ um programa e α um objectivo, uma substituição s para as variáveis de α diz-se uma resposta correcta de Δ ao objectivo α se $\Delta \models (\alpha \cdot s)$.

- 5. **(1.0)** Considere a conceptualização:
 - *Universo de discurso.* $D = \{ \odot, \bullet \}$
 - Conjunto de funções. $F = \{\{(\odot, \bullet), (\bullet, \odot)\}\}$
 - Conjunto de relações. $R = \{\{(\odot, \odot), (\odot, \bullet)\}\}$

e a seguinte interpretação:

$$\begin{split} &I(a) \mapsto \odot \\ &I(b) \mapsto \bullet \\ &I(f) \mapsto \{(\odot, \bullet), (\bullet, \odot)\} \\ &I(P) \mapsto \{(\odot, \odot), (\odot, \bullet)\} \end{split}$$

Diga, justificando, se a seguinte *fbf* é satisfeita pela interpretação *I*.

$$P(b,b) \vee P(f(b),a)$$

Resposta:

A interpretação I satisfaz a $\mathit{fbf}\ P(b,b) \lor P(f(b),a)$ se e só se I satisfizer pelo menos uma das $\mathit{fbfs}\ P(b,b)$ ou P(f(b),a):

- Satisfação da *fbf* P(b,b). A interpretação I satisfaz a *fbf* P(b,b), se e só se (I(b),I(b)) for um elemento da relação I(P). Como $(I(b),I(b))=(\bullet,\bullet)$ e como $(\bullet,\bullet)\not\in\{(\odot,\odot),(\odot,\bullet)\}$, a interpretação não satisfaz a *fbf* P(b,b).
- Satisfação da $\mathit{fbf}\ P(f(b),a)$. A interpretação I satisfaz a $\mathit{fbf}\ P(f(b),a)$, se e só se (I(f(b)),I(a)) for um elemento da relação I(P). Como $(I(f(b)),I(a))=(I(f)(I(b)),\odot)$ $=(I(f)(\bullet),\odot)=(\odot,\odot)$ e como $(\odot,\odot)\in\{(\odot,\odot),(\odot,\bullet)\}$, a interpretação satisfaz a $\mathit{fbf}\ P(f(b),a)$.

Portanto, a interpretação I satisfaz a $fbf P(b, b) \vee P(f(b), a)$.

6. (1.5) Considere o seguinte conjunto de cláusulas de Horn:

$$\begin{aligned} &Q(a,b) \leftarrow \\ &P(a) \leftarrow \\ &Q(x,y) \leftarrow R(x,y) \\ &R(b,b) \leftarrow \\ &R(a,a) \leftarrow \\ &P(b) \leftarrow S(a) \end{aligned}$$

Usando uma árvore de resolução SLD e uma função de selecção que escolha para unificar o *último* literal do objectivo, mostre todas as soluções para o seguinte objectivo: $\leftarrow P(x), Q(x,y)$. No final indique explicitamente todas as soluções.

Resposta:

Este objectivo tem duas soluções: x = a e y = b, x = a e y = a.

7. **(1.0)** Utilize o algoritmo de unificação para determinar se o seguinte conjunto de *fbfs* é unificável.

$${A(a, f(x_1)), A(x_2, g(b)), A(x_3, x_4)}$$

No caso de o ser, determine o unificador mais geral. Mostre todos os passos intermédios usados no cálculos.

Resposta:

Conjunto de fbfs	Conj. Desacordo	Substituição
${A(a, f(x_1)), A(x_2, g(b)), A(x_3, x_4)}$	$\{a, x_2, x_3\}$	$\{a/x_2\}$
${A(a, f(x_1)), A(a, g(b)), A(x_3, x_4)}$	$\{a,x_3\}$	$\{a/x_3\}$
${A(a, f(x_1)), A(a, g(b)), A(a, x_4)}$	$\{f(x_1), g(b), x_4\}$	$\{g(b)/x_4\}$
$\{A(a, f(x_1)), A(a, g(b))\}$	$\{f(x_1),g(b)\}$	não unificáveis

As fbfs não são unificáveis, pois a função f não unifica com a função g.

8. (1.0) Sejam $s_1 = \{a/x, f(x)/y, y/z\}$ e $s_2 = \{b/x, z/y, g(x)/z, b/w\}$. Calcule $s_1 \circ s_2$. Indique todos os passos realizados.

Resposta:

$$s_1 \circ s_2 = \{a \cdot \{b/x, z/y, g(x)/z, b/w\}/x, f(x) \cdot \{b/x, z/y, g(x)/z, b/w\}/y, y \cdot \{b/x, z/y, g(x)/z, b/w\}/z, b/w\} =$$

$$= \{a/x, f(b)/y, z/z, b/w\} =$$

$$= \{a/x, f(b)/y, b/w\}$$

9. (1.0) Considere o seguinte conjunto de cláusulas:

$$\{\{\neg F(x), G(x)\}, \{\neg G(y), H(y)\}, \{F(a)\}, \{\neg H(a)\}\}.$$

Número: _____ Pág. 4 de 6

Apresente uma demonstração por refutação a partir desse conjunto, usando resolução linear e $\{\neg F(x), G(x)\}$ como cláusula inicial.

Resposta:

10. Considere o seguinte programa em PROLOG (no qual c_1 , ..., c_4 são identificadores de cláusulas e não pertencem ao programa). Tanto membro1 como membro2 pretendem implementar o predicado membro do livro.

(a) (1.0) Indique *todas* as respostas do PROLOG aos seguintes objectivos (assuma que o utilizador vai escrever ";" até esgotar todas as respostas e, no caso de existir um número infinito de respostas, indique-o explicitamente). NOTA: Todas as alíneas têm igual cotação.

```
i. ?- membro1(2, [1, 4, 6]).
   Resposta:
   No
ii. ?-membro1(2, [2]).
   Resposta:
   Yes
iii. ?- membrol(X, [1, 4, 6]).
   Resposta:
   X = 1;
   X = 4;
   X = 6;
   No
iv. ?- membro1(1, L).
   Resposta:
   L = [1|_{G246}];
   L = [\_G245, 1|\_G249];
   L = [\_G245, \_G248, 1|\_G252];
   L = [\_G245, \_G248, \_G251, 1|\_G255];
v. ?- membro2(X, [1, 4, 6]).
   Resposta:
   X = 1
```

(b) (1.0) Considere o corte da cláusula c_3 . Indique, justificando, se esta utilização do operador de corte corresponde a um aumento de eficiência do programa ou a um corte das respostas interessantes do programa.

Resposta:

Trata-se de um erro, dado que quando é dada uma lista e são pedidos os elementos que a constituem, é devolvido apenas o primeiro elemento da lista. Tal deve-se ao facto de o corte eliminar a possibilidade de encontrar os outros elementos (o primeiro é bem sucedido).

11. (1.0) Considere definido o predicado junta (L1, L2, L3), em que L3 é o resultado de concatenar as listas L1 e L2. Indique, justificando, a que operação sobre listas corresponde o seguinte predicado:

```
xpto(X, Y, L) := junta(\_, [X, Y|\_], L)
```

Resposta:

O predicado xpto (X, Y, L) tem o valor verdadeiro se X e Y aparecerem seguidos na lista L.

12. (1.5) Usando um acumulador, implemente em PROLOG o predicado inverte (L1, L2) em que a lista L2 corresponde à inversão da lista L1.

Resposta:

```
inverte(L1, L2) :- inverte(L1, [], L2).
inverte([], L, L).
inverte([X | L1], Acc, L2) :- inverte(L1, [X|Acc], L2).
```

13. Considere o seguinte programa em PROLOG:

(a) (1.0) Complete a definição da seguinte função recursiva a que corresponde o programa dado.

$$xpto(n) = \left\{ \right.$$

Resposta:

$$xpto(n) = \begin{cases} 1 & \text{se } n = 0\\ n * xpto(n-1) & \text{se } n > 0 \end{cases}$$

(b) (0.5) Indique, justificando, qual o resultado de

$$?- xpto(N, 24)$$
.

Resposta:

ERROR: >/2: Arguments are not sufficiently instantiated Dado que N não está instanciado, não é possível avaliar N > 0.

(c) (1.0) Indique, justificando, qual o resultado de

$$?- xpto(-2, N)$$
.

Número: _____ Pág. 6 de 6

Resposta:

No

O literal xpto (-2, N) não unifica com a primeira cláusula, xpto (0, 1), mas unifica com a segunda cláusula xpto (N, Result). Como para a substituição $\{-2/N\}$, o objectivo N > 0 falha ao ser avaliado, é devolvido o "No".

(d) (0.5) A que conhecida função corresponde a função xpto? Resposta:

Factorial

14. (3.0) Considerando o predicado liga/6 utilizado no projecto, o qual relaciona informação sobre as ligações directas existentes num mapa, recorde que: (1) este predicado é utilizado com a sintaxe liga (loc1, loc2, id, dist, vel, port); (2) dadas duas localidades quaisquer, existe no máximo uma ligação directa entre essas duas localidades; e (3) qualquer estrada pode ser percorrida nos dois sentidos, estando só um deles indicado no ficheiro que é fornecido ao seu programa.

Defina o predicado tres_ligacoes/3. A expressão tres_ligacoes(loc1, loc2, loc3) afirma que as localidades distintas loc2 e loc3 ligam a localidade loc1 consigo própria, exactamente através de três ligações directas.

Resposta:

```
tres_ligacoes(X, Y, Z) :-
    it_elem(X, Y),
    it_elem(Y, Z),
    it_elem(Z, X)
    Y \== Z.

it_elem(X, Y) :- liga(X, Y, _, _, _, _, _).
it_elem(X, Y) :- liga(Y, X, _, _, _, _, _).
```