Selection Sort and Insertion Sort

Arnab Ganguly, Assistant Professor Department of Computer Science, University of Wisconsin – Whitewater Data Structures (CS 223)

Simulation Weblink

https://visualgo.net/bn/sorting

1 Introduction

In the binary search lecture, we saw that the array has to be sorted, i.e., given an array A of n-integers, we should have $A[0] \leq A[1] \leq A[2] \leq \cdots \leq A[n-1]$. Therefore, given an unsorted data, we need to first sort it, in order to be able binary-search it. Besides binary search, sorting has plenty of other applications – finding whether there is any duplicate element in a collection, finding two elements in the collection that are closest to each other, etc.

2 Selection Sort

Main Observation: To sort an array A, position 0 should contain the minimum element in the array, position 1 should contain the second minimum in the array, and so on.

Algorithm: The selection sort algorithm is precisely an implementation of the above observation, and can be described as follows.

- For each position $i = 0, 1, 2, \dots, n-2$, repeat the following step.
- Find a position minIndex in the sub-array A[i, n-1] that contains the minimum value in this sub-array. If $i \neq minIndex$, then swap the values at positions i and minIndex of A.

Table 1: Illustration of Selection Sort. Shows the array at the start and at the end of iteration of outer loop that goes from i = 0 to i = n - 2.

Iteration	i	Array at start	Min value in $A[i, n-1]$	Array at end
1	0	[5, 6, 1, 2, 0]	0	[0,6,1,2,5]
2	1	[0, 6, 1, 2, 5]	1	[0, 1, 6, 2, 5]
3	2	[0, 1, 6, 2, 5]	2	[0, 1, 2, 6, 5]
4	3	[0, 1, 2, 6, 5]	5	[0, 1, 2, 5, 6]

Analysis: The algorithm has two nested for-loops – outer one going from i = 0 to i = n - 2, and the other inner one for finding the minimum value in the sub-array A[i, n - 1]. Therefore, the worst-case complexity is $O(n^2)$. Note that it does not matter what our input array is, the two for-loops will always run till their upper limit, making the algorithm $O(n^2)$, even in best case.

3 Insertion Sort

Main Observation: Suppose, we have sorted A[0, i], where n-1 > i > 0. Then, to sort A[0, i+1], we have to simply place A[i+1] correctly within A[0, i].

Algorithm: The insertion sort algorithm is precisely an implementation of the above observation, and can be described as follows.

- For each position i = 1, 2, ..., n 1, repeat the following steps.
- Let j = i and temp = A[j].
- While j > 0 and temp < A[j-1], assign A[j] = A[j-1] and decrement j by one.
- Assign A[j] = temp.

Table 2: Illustration of Insertion Sort. Shows the array at the start and at the end of iteration of outer loop that goes from i = 0 to i = n - 2.

Iteration	i	Array at start	j = i at beginning	Array at end
1	1	[5, 6, 1, 2, 0]	1	[5, 6, 1, 2, 0]
2	2	[5, 6, 1, 2, 0]	2	[1, 5, 6, 2, 0]
3	3	[1, 5, 6, 2, 0]	3	[1, 2, 5, 6, 0]
4	4	[1, 2, 5, 6, 0]	4	[0, 1, 2, 5, 6]

Analysis: The algorithm has two loops – a for loop running from i=1 to i=n-1, and a nested while loop running from j=i to j=1. In the worst case, therefore, insertion sort has $O(n^2)$ complexity, same as selection sort. However, if we provide a sorted array as input, observe that temp < A[j-1] is always false (since $A[0] \le A[1] \le \cdots A[j-1] \le A[j] \le \cdots \le A[n-1]$). Therefore, for a sorted array, the while loop never executes, leading to a best case complexity of O(n).