1 point possible (ungraded)

Given two points (p,r) and (q,s), the Lagrange polynomial  $p\left(x\right)$  that passes through the points will be



1 point possible (ungraded)

| Which of the following statements is true? |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

| ·····ar or the rollowing statements is a der                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| igcirc Suppose you are given $n$ nodes, the polynomial will be of degree $n+1$ .                                                                                                     |
| igorup  An $n$ degree polynomial has $(n+1)$ coefficients.                                                                                                                           |
| We cannot add a new node easily after computation in Newton's method.                                                                                                                |
| ○ None of the above.                                                                                                                                                                 |
| Question # 5                                                                                                                                                                         |
| 1 point possible (ungraded)                                                                                                                                                          |
| Suppose a lagrange polynomial $p\left(x\right)$ passes through the points $\left(2,1/8\right)$ , $\left(3,1/18\right)$ and $\left(4,1/32\right)$ . Determine $l_{0}\left(x\right)$ . |
| $\bigcirc \frac{1}{2}(x-2)(x-3)$ .                                                                                                                                                   |
| $\bigcirc -(x-2)(x-4).$                                                                                                                                                              |
| $\bigcirc \frac{1}{2}(x-3)(x-4).$                                                                                                                                                    |
| None of the above.                                                                                                                                                                   |
| Question # 6                                                                                                                                                                         |
| 1 point possible (ungraded)                                                                                                                                                          |
| Suppose a lagrange polynomial $p\left(x ight)$ passes through the points $(2,4)$ and $(3,5)$ . Determine $p\left(2.5 ight)$ .                                                        |
| $\bigcirc$ 6.0                                                                                                                                                                       |
| $\bigcirc$ 4.0                                                                                                                                                                       |
| <b>a</b> 4.5                                                                                                                                                                         |
| $\bigcirc$ 5.0                                                                                                                                                                       |

1 point possible (ungraded)

Consider the function, f(x) and the nodes (2,3,4). What is the correct expression for error for this polynomial in terms of  $\xi$ ?

$$\bigcirc \frac{f^{(4)}\left(\xi\right)}{4!}(x-2)\left(x-3
ight)\left(x-4
ight)$$

$$\bigcirc \frac{f^{(2)}\left(\xi
ight)}{2!}(x-2)\left(x-3
ight)\left(x-4
ight)$$

$$\bullet \frac{f^{(3)}(\xi)}{3!}(x-2)(x-3)(x-4)$$

None of the above

### Question #8

1 point possible (ungraded)

Suppose you have to find the interpolating polynomial using Newton's Divided/Difference method for the function, f(x), and passes through the points (-1,5), (0,1) and (1,1). What is the value of  $f[x_0,x_1]$ ?

 $\bigcirc$  5.



**2**.

 $\bigcirc$  -3.

| Question | # | 9 |
|----------|---|---|
|----------|---|---|

1 point possible (ungraded)

| Suppose you     | u are using Newton's Divided/Difference method to find interpolating polynomia | al. If $f(x)$ | =1/x then |
|-----------------|--------------------------------------------------------------------------------|---------------|-----------|
| $f[x_0,x_1]$ is |                                                                                |               |           |

 $\bigcirc -rac{1}{{{x_0}^2}{x_1}^2}$ 



 $\bigcirc \frac{1}{x_0^2 x_1^2}$ 

 $\bigcirc \frac{1}{x_0x_1}$ 

## Question #10

1 point possible (ungraded)

Which of the following is the degree of the Hermite Interpolation polynomial for n+1 nodes?

 $\bigcirc 2n + 1$ 

 $\bigcirc 2n+2$ 

 $\bigcirc n+1$ 

○ None of the above

# Question #11

1 point possible (ungraded)

How can we avoid the occurrence of Runge phenomenon?

More nodes at the ends of the interval.

More nodes at the middle of the interval.

☐ Increase the number of nodes.

None of the above.

1 point possible (ungraded)

What is the correct expression for taking equal angular points (heta) in the case of the Runge function?

| $\bigcirc rac{(2j)\pi}{2(n+1)}$                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|
| $\bigodot \frac{(2j{+}1)\pi}{2(n{+}1)}$                                                                                             |
| $\bigcirc rac{(2j+2)\pi}{2(n+2)}$                                                                                                  |
| None of the above                                                                                                                   |
| Question # 13                                                                                                                       |
| 1 point possible (ungraded)                                                                                                         |
| Which of the following statement is false?                                                                                          |
| For the runge function, most efficient choice is equally spaced nodes.                                                              |
| For the runge function, most efficient choice is Chebyshev nodes.                                                                   |
| Both of the above.                                                                                                                  |
| None of the above.                                                                                                                  |
| Question # 14                                                                                                                       |
| 1 point possible (ungraded)                                                                                                         |
| Suppose you have a function and $3$ nodes. What will be the degree of Hermite Interpolation polynomial passing through these nodes? |
| $\bigcirc$ 2                                                                                                                        |
| $\bigcirc$ 4                                                                                                                        |
| $\bigcirc$ 3                                                                                                                        |
| None of the above                                                                                                                   |

1 point possible (ungraded)

A function f(x) has values 0, 1, 0 at the nodes -1, 0, 1 respectively. The first derivative values are 1, 0, 1 respectively. What will be the expression of  $l_1(x)$ ?

| $\bigcirc$ | $\frac{1}{2}x^2$ | +      | $\frac{1}{2}x$ |
|------------|------------------|--------|----------------|
| $\cup$     | $\frac{1}{2}u$   | $\top$ | $\frac{1}{2}u$ |

$$\bigcirc \frac{1}{2}x^2 - \frac{1}{2}x$$



None of the above

## Question #16

1 point possible (ungraded)

A function f(x) has values 0, 1, 0 at the nodes -1, 0, 1 respectively. The first derivative values are 1, 0, 1 respectively. What will be the expression of  $l_0(x)$ ?

$$\bigcirc \frac{1}{2}x^2 + \frac{1}{2}x$$

$$\bigcirc \ \tfrac{1}{2}x^2 - \tfrac{1}{2}x$$

$$\bigcirc 1-x^2$$

None of the above

### Question #17

1 point possible (ungraded)

The bases of the Hermite Polynomial are

$$\bigcirc h_{k}^{\prime}\left( x\right) ,\widehat{h}_{k}\left( x\right)$$

$$\bigcirc \, l_{k} \left( x 
ight), \, \widehat{l}_{\,k} \left( x 
ight)$$

$$\bigcirc h_k(x), \widehat{h}_k(x)$$

O None of the above