Multiclass linear prediction

DSE 220

Topics we'll cover

- 1 Multiclass logistic regression
- 2 Multiclass Perceptron
- **3** Multiclass support vector machines

Multiclass classification

Of the classification methods we have studied so far, which seem inherently binary?

- Nearest neighbor?
- Generative models?
 - Linear classifiers?

The main idea

Remember Gaussian generative models...

$$F_{j}(x) = \ln \left(\prod_{j} P_{j}(x) \right)$$

weight & Gaussian density

of class j

for class j

Gaussian case:

- · F; (x) quadratic
- . But linear if coverience natrices all equal

To classify a new point x:

- · Evaluate F, (x), F2(x), ., Fx(x) [if k classes]
- . The biggest value wins -> we predict that class

For linear classification, each class (j=1,2,., k) gets its own linear function. if xelpd then $\omega_1, \ldots, \omega_k \in \mathbb{R}^d$ wiex + bi Class 1: Class Z: Wz·X + bz bing be ER MK·X + PK Class k: Linear classification To predict the class of a new point X: in the multiclass · Evaluate all k of these functions setting · largest value wins

From binary to multiclass logistic regression

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^d$, classifier given by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x + b}}{1 + e^{w \cdot x + b}}$$

From binary to multiclass logistic regression

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^d$, classifier given by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x + b}}{1 + e^{w \cdot x + b}}$$

Labels $\mathcal{Y} = \{1, 2, ..., k\}$: specify a classifier by $w_1, ..., w_k \in \mathbb{R}^d$ and $b_1, ..., b_k \in \mathbb{R}$:

$$\Pr(y=j|x) \propto e^{w_j \cdot x + b_j}$$

From binary to multiclass logistic regression

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^d$, classifier given by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x + b}}{1 + e^{w \cdot x + b}}$$

Labels $\mathcal{Y} = \{1, 2, \dots, k\}$: specify a classifier by $w_1, \dots, w_k \in \mathbb{R}^d$ and $b_1, \dots, b_k \in \mathbb{R}$:

$$\Pr(y = j | x) \propto e^{w_j \cdot x + b_j}$$

What is the fully normalized form of the probability?

$$Pr(y=j|x) = \frac{e^{w_j \cdot x + b_j}}{\sum_{k=1}^{k} e^{w_k \cdot x + b_k}}$$
 "softmax"

• Given a point x, which label to predict?

Multiclass logistic regression

- Label space: $\mathcal{Y} = \{1, 2, ..., k\}$
- Parametrized classifier: $w_1, \ldots, w_k \in \mathbb{R}^d$, $b_1, \ldots, b_k \in \mathbb{R}$:

$$Pr(y = j|x) = \frac{e^{w_j \cdot x + b_j}}{e^{w_1 \cdot x + b_1} + \dots + e^{w_k \cdot x + b_k}}$$

- **Prediction**: given a point x, predict label arg max_i $(w_i \cdot x + b_i)$.
- Learning: Given: $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$. $X^{(i)} \in \mathbb{R}^d$, $Y^{(i)} \in \{1, 2, ..., k\}$ Find: $w_1, \ldots, w_k \in \mathbb{R}^d$ and b_1, \ldots, b_k that maximize the likelihood

$$\prod_{i=1}^n \Pr(y^{(i)}|x^{(i)})$$

Taking negative log gives a convex minimization problem.

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_{j} (w_j \cdot x + b_j)$

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_j (w_j \cdot x + b_j)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$:

- Initialize $w_1=\cdots=w_k=0$ and $b_1=\cdots=b_k=0$
- Repeat while some training point (x, y) is misclassified:
 - for correct label y: $w_y = w_y + x$ $b_y = b_y + 1$
- for predicted label \widehat{y} : $w_{\widehat{y}} = w_{\widehat{y}} x$ \widehat{y} is classes $b_{\widehat{y}} = b_{\widehat{y}} 1$ $argmax w_{\widehat{j}} \cdot x + b_{\widehat{j}}$

Multiclass Perceptron: example

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_i (w_i \cdot x + b_i)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{w_1,\ldots,w_k\in\mathbb{R}^d,b_1,\ldots,b_k\in\mathbb{R},\xi\in\mathbb{R}^n}\sum_{j=1}^k\|w_j\|^2+C\sum_{i=1}^n\xi_i$$

$$w_{y^{(i)}}\cdot x^{(i)}+b_{y^{(i)}}-w_y\cdot x^{(i)}-b_y\geq 1-\xi_i \quad \text{for all } i, \text{ all } y\neq y^{(i)}$$

$$\xi>0$$

Point
$$x^{(i)}$$
 has true label $y^{(i)}$
.: Want $W_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} > W_{y} \cdot x^{(i)} + b_{y}$ for all other labels $y \neq y^{(i)}$
As before, replace with $W_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} > W_{y} \cdot x^{(i)} + b_{y} + 1 - \frac{1}{2} \cdot \frac{1}{4}$

Multiclass SVM example: iris

Multiclass SVM example: iris

Multiclass SVM

Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{w_1, \dots, w_k \in \mathbb{R}^d, b_1, \dots, b_k \in \mathbb{R}, \xi \in \mathbb{R}^n} \sum_{j=1}^k ||w_j||^2 + C \sum_{i=1}^n \xi_i$$

$$w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i \quad \text{for all } i, \text{ all } y \ne y^{(i)}$$

$$\xi \ge 0$$

Once again, a convex optimization problem.

Question: how many variables and constraints do we have?

Variables	Constraints
1) The classifiers: k(d+1)	For each data pt: want the correct label to Leat the remaining k-1 labels.
2 Slack variables: n	Total of n (k-1) constraints.

Back to binary setting:

$$y^{(i)}$$
 (w.x⁽ⁱ⁾ + b) > 0 for all i=1...n

| Multiply w,b by a large enough constant |

 $y^{(i)}$ (w.x⁽ⁱ⁾ + b) ≥ 1 for all i=1...n }

if in this form, have a nice expression for the margin (margin = /||w||)

