Apellidos	Dier Amoyo
Nombre	Manuel

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .

(b) (½ punto) Dada $A \in \mathrm{GL}(2,\mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in \mathrm{GL}(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
- o's (d) (½ punto) Demuestra que la aplicación $f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$ $A \longmapsto \sigma_A$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
- (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $GL(2, \mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

Manuel Mirs Arrayo. (a) possible par l'enmes vo que es une relection de equivaloria: Refairs: In is => is=±is (Franklike Superiguno) Simetrius Tonn => n= To Supergunos que v=±n => n=±v=> nev v. Ofgennition; だいでんていた => でんし Supergunu ()=> v=± n n=± w Pa () v=± n (P²(IF₃)={(0,1), (1,0), (1,1)} = teo (1,1) Va que extenor en IF₃. (6) Supergamon que $\overline{U}_1 = \overline{U}_Z$. 19, - 10z (I) => A (U1-U2) # Him you persences w I. Pero, subernos por como por contra tora to the =7 A(U1-U2) EI Représentation de juicien de ideal. Per los que A vi = A vi => Esté laien définida.

$$\begin{array}{ll}
(0,1) &= \{(0,0)\} \text{ wanter, Naccess} \\
(0,1) &= \{(0,1), (0,2), (0,2)\} \\
\hline
(1,0) &= \{(1,1), (-2,1), (2,0)\} \\
\hline
(1,1) &= \{(1,1), (-2,1), (8,-1), (-2,-2), (2,2), (-2,2)$$

$$(20)$$
, $(0,1)$, $(1,0)$, $(1,1)$?

- Supongemon que 7 A: la no rea biyedier, como el conjento de llegade et el mismo que el de partide of tode exte implier qu'el I A: Boso Sience vi you distintes A Oi = A. 192 => (Sience A invertible per definition) A.A. V1 = A.A. V2 => 01 = 02!! Por la que toder les modures de GL (2,1Fz) etablecen una appliación biejedite.

- Schemer and you and vector vi, i=1,2,3,43,05 ain a un vector vij , j={12,314}, fyer que el vector Un Newspre 100 a in a 101 A. (8) = (8) Per le que estate pora cada matriz A, existe una personatraión Ex: PA(Toi) = 10 BA (i) y rempre la aren de la forma (1234)

(m) mi, it = \$12,2,43

Munuel Dinz Anoge /(A1)=6,1 Veema que [A, [0]] = [0] = 7 [Az. A1. (0)] = [0] [6] [6] [6] $f(A_{z}) \circ f(A_{1}) = 6_{A_{z}} \circ 66_{A_{1}} = f(A_{z} \cdot A_{1})$ Salesmos per la aprentido anteriores que analquies permetrais de sectores es examenço al grup Eq por la que en reus Como (([[[]]) = [[Voril]], podemor nymenter estate eth apliación como una permitación, ademá, comos los mádices representan movimientos en el espació y demetremos, que a ende matriz le pertere ce una permutación, en específico pademos realizar Transpolicioner den matrices 2x2. Se deduce ficilmente que f es sobre spective ya que y permitación debe existin una motion que que represente diche permitación.

Como existe el momentimo extre su y GL (2,1/2) (2)

el número de elementor de Sq = 4! => 1GL(2,1/3)=4!