2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導入	2
謝辞	3
1 設定と h 射影の基本的な性質,予想 1.4 の観察	4
1.1 記号の設定	4
1.2 予想 1.4 の観察: $G = SU(1,1)$, $H = SO(1,1)$ の場合	6
1.3 予想 1.4 の観察: 予想 1.4 の仮定を外した場合の成り立たない例	10
2 具体例と主定理の証明	11
2.1 具体例: 実階数 1 の古典型単純 Lie 群	11
2.2 G の実階数が 1 の場合 \dots	15
2.2.1 補足: 定理 2.5 の微分幾何的側面	21
2.3 G が実階数 1 の実半単純 Lie 群の直積の場合 \dots	22
发 老立計	23

導入

G を非コンパクトな実半単純 Lie 群,K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K = \Theta K$ なるものとする。 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を Θ の微分 $d\Theta$ による \mathfrak{g} の Cartan 分解とするとき,G/K は \mathfrak{p} と微分同相である。G/K に \mathfrak{g} の Killing 形式 B から定まる Riemann 計量によって Riemann 多様体の構造を定める。G の 単位元の G/K での像 eK を通る G/K の極大測地線は B(X,X) = 1 なる $X \in \mathfrak{p}$ によって $e^{tX}K$, $t \in \mathbf{R}$ と書ける。H を G の非コンパクトな閉部分群で, $H = \Theta H$ を満たすものとし, $\mathfrak{h}^{\perp} := \{W \in \mathfrak{g} \mid B(W,\mathfrak{h}) = \{0\}\}$ とする。「分解」という言葉の言い回し:測地線 $e^{tX}K$ の $\mathfrak{h} \cap \mathfrak{p}$ 成分への分解を与える定理として次の定理が知られている。

定理 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義すると、任意の $t \in \mathbf{R}$ に対して $e^{tX}K = e^{Y(tX)}e^{Z(tX)}K$ である.

 $G=SU(1,1),\ H=SO(1,1)$ とするとき, $t\in\mathbf{R}$ に対し,Y(tX) は図 1 に図示するような幾何学的な意味を持つ.図 1 は Poincaré 円板における測地線 $e^{tX}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足(緑の丸)が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の予想について考察し,G が実階数 1 の場合の肯定的な結果を得た.

予想 $Y(\mathbf{R}\,X)$ は $\mathfrak{h}\cap\mathfrak{p}$ の有界な部分集合であることと $\lceil [X_1,X_2]\neq 0$ であるか $X_1=0$ であること」は同値である.

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

謝辞

1 設定と f 射影の基本的な性質, 予想 1.4 の観察

1.1 記号の設定

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示することとする.

記号と定義 1.1

- **N**, **R**, **C**, をそれぞれ 0 を含む自然数全体, 実数全体, 複素数全体, 四元数 全体の集合とする.
- G を非コンパクト実半単純 Lie 群, H を G の非コンパクトな部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e を G の単位元とし, $o_K := eK \in G/K$ とする.
- B(-,-) を \mathfrak{g} の Killing 形式とし、 $\mathfrak{h}^{\perp} := \{W \in \mathfrak{g} \mid B(W,\mathfrak{h}) = \{0\}\}$ とする.
- $X \in \mathfrak{p}$ に対し、ベクトル空間としての分解 $\mathfrak{p} = (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ に対応した 分解を $X = X_1 + X_2$, $X_1 \in \mathfrak{h} \cap \mathfrak{p}$, $X_2 \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ とする.

以下の定理 1.2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 1.2 ([Kob89, Lemma 6.1]) π : $(\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

ここで、 $Y(\mathbf{R} X)$ の有界性について、次の予想 1.4 が小林俊行氏によって立てられた.

定義 1.3 $\mathfrak{p}_{H,\mathrm{bdd.}}\coloneqq\{X\in\mathfrak{p}\mid Y(\mathbf{R}\,X)\$ が $\mathfrak{h}\cap\mathfrak{p}\$ の有界集合である. $\}$ と定める.

予想 1.4 (by T. Kobayashi) $\mathfrak{p}_{H,\mathrm{bdd.}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0\$ あるいは $X_1=0$ である.} である.

予想 1.4 についての基本的な事項を挙げる.

補題 1.5

- 1. $\mathfrak{p}_{H,\mathrm{bdd.}} \subset \{X \in \mathfrak{p} \mid [X_1,X_2] \neq 0$ あるいは $X_1 = 0\}$ である.
- 2. $X \in \mathfrak{p}$ が $X_1 = 0$ を満たすならば $X \in \mathfrak{p}_{H,\mathrm{bdd}}$ である.
- 3. 1, 2 より予想 1.4 と「 $X \in \mathfrak{p}$ が $[X_1, X_2] \neq 0$ ならば $X \in \mathfrak{p}_{H, \mathrm{bdd.}}$ である」は 同値である.
- 4. G が実階数 1 のとき、予想 1.4 と「 $\mathfrak{p}_{H\,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ 」は同値である.

補題 1.5 の証明

- 1. 背理法による. $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ なる $X \in \mathfrak{p}$ に対しては $[X_1, X_2] = 0$ より $e^{tX_1}e^{tX_2} \cdot o_K = e^{t(X_1 + X_2)} \cdot o_K = e^{tX} \cdot o_K$ である. したがって定理 1.2 より $Y(tX) = tX_1$, $Z(tX) = tX_2$ であることから $Y(\mathbf{R} X) = \mathbf{R} X_1$ となり, $X_1 \neq 0$ より $Y(\mathbf{R} X)$ は有界集合とならない.
- 2. $X_1 = 0 \iff X \in \mathfrak{h}^{\perp} \cap \mathfrak{p} \ \sharp \ \mathcal{I}(tX) = tX, \ Y(tX) = 0 \ \text{cbs2cks}.$
- 4. 同値な命題である「 $X \in \mathfrak{p}$ に対し, $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ であることと $fX \in \mathfrak{h} \setminus \{0\}$ であることは同値である」を示せば良い.G の実階数は 1 で,H は非コンパクトかつ $\Theta H = H$ であるから, $\mathfrak{h} \subset \mathfrak{p}$ であり, \mathfrak{h} は \mathfrak{g} の極大可換部分空間である.よって $X_1 \neq 0$ かつ $[X_1, X_2] = 0 \Longrightarrow X_2 = 0$ であり, $X = X_1 + X_2 \in \mathfrak{h} \setminus \{0\}$ を得る.

 $Y(\mathbf{R} X)$ の有界性は $\mathrm{Ad}(k)$ -不変である. つまり補題 1.6 が成り立つ.

補題 **1.6** $k \in K$, $X \in \mathfrak{p}$ に対し, $X' \coloneqq \operatorname{Ad}(k)X$, $\mathfrak{h}' \coloneqq \operatorname{Ad}(k)\mathfrak{h}$ とする. Y'(X'), Z'(X') を, 微分同相 $\pi' \colon (\mathfrak{h}' \cap \mathfrak{p}) \oplus (\mathfrak{h}'^{\perp} \cap \mathfrak{p}) \ni (Y', Z') \mapsto e^{Y'}e^{Z'} \cdot o_K$ を用いて, $X' \in \mathfrak{p}$ に対し, $(Y'(X'), Z'(X')) = \pi'^{-1}(e^{X'} \cdot o_K)$ と定めると, $Y(\mathbf{R} X)$ が有界であることと $Y'(\mathbf{R} X')$ が有界であることは同値である.

補題 1.6 の証明 主張は (X,\mathfrak{h}) と (X',\mathfrak{h}') に対して対称的であるから, $Y(\mathbf{R}\,X)$ が有界ならば $Y'(\mathbf{R}\,X')$ が有界であることのみを示せば十分である.

任意に $r \in \mathbf{R}$ を取る。 $e^{rX'} \cdot o_K = e^{Y'(rX')}e^{Z'(rX')} \cdot o_K$ であり,両辺に左から k^{-1} を掛けると, $e^{rX} = e^{\mathrm{Ad}(k^{-1})(Y'(rX'))}e^{\mathrm{Ad}(k^{-1})(Z'(rX'))} \cdot o_K$ を得る。ここで $Y'(rX') \in \mathfrak{h}' \cap \mathfrak{p}$, $Z'(rX') \in \mathfrak{h}'^{\perp} \cap \mathfrak{p}$ であるから $\mathrm{Ad}(k^{-1})(Y'(rX')) \in \mathfrak{h} \cap \mathfrak{p}$,

 $\operatorname{Ad}(k^{-1})(Z'(rX')) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ である.

定理 1.2 により π は微分同相であるから任意の $r\in \mathbf{R}$ に対して $\mathrm{Ad}(k^{-1})(Y'(rX'))=Y(rX)$ である. $Y'(\mathbf{R}\,X)=\mathrm{Ad}(k)(Y(\mathbf{R}\,X))$ であり、 $\mathrm{Ad}(k)$ は有限次元空間の間の線型写像であるから有界性を保つ.

以上から補題 1.6 が示された.

 $Z(\mathbf{R}\,X)$ の有界性については次の定理が知られており、有界性の判定は Lie 環の言葉のみで行える.

定理 1.7 ([Kob97, Lemmma 5.4]) $X \in \mathfrak{p}$ に対し, $\|Z(X)\| \ge \|X\| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ である.

ここに $\varphi(X,\mathfrak{h}\cap\mathfrak{p})$ は X と $\mathfrak{h}\cap\mathfrak{p}$ の元がなす角度の最小値 $0 \le \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \le \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h} \iff \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \ne 0$ である.

つまり $X \in \mathfrak{p} \setminus \mathfrak{h}$ ならば $\|Z(tX)\| \to \infty$, $|t| \to \infty$ である.

1.2 予想 1.4 の観察: G = SU(1,1), H = SO(1,1) の場合

 $G = SU(1,1), \ H = SO(1,1) \coloneqq \left\{ \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \middle| \ t \in \mathbf{R} \right\}$ の場合に予想 1.4 が正しいことは直接計算により確かめられる。

命題 1.8 G = SU(1,1), H = SO(1,1) のとき予想 1.4 は正しい.

補題 **1.9** $\mathfrak{g}\coloneqq\mathfrak{su}(1,1)$ の Killing 形式から定まる Poincaré 円板 $G/K=\{x+\sqrt{-1}y\mid x^2+y^2<1\}$ の計量は $\frac{8(dx^2+dy^2)}{(1-x^2-y^2)^2}$ である.

補題 **1.9** の証明 \mathfrak{g} の元を G/K 上の左不変ベクトル場と同一視すると $X'\coloneqq\begin{pmatrix}0&1\\1&0\end{pmatrix}=\frac{\partial}{\partial x},\ Y'\coloneqq\begin{pmatrix}0&\sqrt{-1}\\-\sqrt{-1}&0\end{pmatrix}=\frac{\partial}{\partial y}$ である. \mathfrak{g} の Killing 形式 B から定まる \mathfrak{p} 上のノルム $\|-\|$ に対して $\|X'\|^2=\|Y'\|^2=8,\ B(X',Y')=0$ であって, $0\in G/K=\{x+\sqrt{-1}y\mid x^2+y^2<1\}$ で主張が成り立つ.

したがって
$$k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ a_r \coloneqq \begin{pmatrix} \cosh r & \sinh r \\ \sinh r & \cosh r \end{pmatrix}$$
 とすると,
$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'))$$
$$= g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'))$$
$$= 8,$$
$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y')) = 0$$

なるような計量 g が Killing 形式から誘導される計量であるが、それが主張の形であることを示せば良い (これらのベクトルが何を表しているかは図 2 参照).

t=0 での接ベクトルが $d au(k_{ heta/2}a_r)d au(k_{- heta/2})X'$ を与える曲線は

$$\gamma_x(t) := e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \tanh t + \cosh r}$$

であるから,

$$\frac{d}{dt}\bigg|_{t=0}\gamma_x(t)=d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})X'=(1-\tanh^2r)\frac{\partial}{\partial x}=(1-x^2-y^2)\frac{\partial}{\partial x}$$
 Thus.

同様に t=0 での接ベクトルが $d au(k_{\theta/2}a_r)d au(k_{-\theta/2})Y'$ を与える曲線は

$$\gamma_y(t) \coloneqq e^{\sqrt{-1}\theta} \frac{\cosh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta} \sqrt{-1} \tanh t + \cosh r}$$

であるから,

$$\frac{d}{dt}\Big|_{t=0}\gamma_y(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y' = (1-\tanh^2r)\frac{\partial}{\partial y} = (1-x^2-y^2)\frac{\partial}{\partial y}$$

である.

以上より
$$g = \frac{8(dx^2 + dy^2)}{(1 - x^2 - y^2)^2}$$
 が示された.

命題 1.8 の証明 $k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ X_{\theta} \coloneqq k_{\theta/2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} k_{-\theta/2}$ とすると, $\mathfrak{p}\setminus\{0\} = \{tX_{\theta} \mid t\in\mathbf{R}_{>0},\ 0\leq\theta\leq\pi\}$ である.この X_{θ} と $t\in\mathbf{R}$ に対して $Y(tX_{\theta}) = s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ なる $s\in\mathbf{R}$ を求める.

右の円の Euclid 距離での半径を R とし, $e^{tX_{\theta}}\cdot o_{K}$ から $H\cdot o_{K}$ への垂線の足の o_{K} からの Euclid 距離を h とするとき,外側の青色の直角三角形に対して三平方の 定理を用いて $(h+R)^{2}=R^{2}+1$ より $R=\frac{1-h^{2}}{2h},R+h=\frac{1+h^{2}}{2h}$ を得る.

さらに下の紫色の三角形に対して余弦定理を用いて $R^2 = (R+h)^2 + r^2 - 2(R+h)^2$

 $h)\cos\theta$ を得,

$$\frac{2r\cos\theta}{r^2 + 1} = \frac{2h}{h^2 + 1} \tag{1.1}$$

を得る.

要確認: ここで補題 1.9 より $\frac{r}{2\sqrt{2}} = \tanh 2\sqrt{2}t$, $\frac{h}{2\sqrt{2}} = \tanh 2\sqrt{2}s$ であり (1.1) は $\cos \theta \tanh \frac{t}{4\sqrt{2}} = \tanh \frac{s}{4\sqrt{2}}$ と書き直せる. したがって X_{θ} に対して $Y(\mathbf{R}\,X)$ が有界 $\iff |\cos \theta| \neq 1 \iff X \notin \mathfrak{h}$ である.

補足 1.10 命題 1.8 は角度を用いた議論によっても示すことができる. 具体的には、計算により次の補題 1.11 が示せる.

補題 1.11 $e^{tY}e^{sZ}\cdot o_K=\begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}\sqrt{-1}\tanh s\in SU(1,1)/U(1),\ t>0,$ $s\in\mathbf{R}$ に対し, o_K と $e^{tY}e^{sZ}\cdot o_K$ を結ぶ測地線が o_K と $e^{tY}\cdot o_K$ を結ぶ測地線と o_K でなす角 $\varphi_{s,t}$ は, $\tan\varphi_{s,t}=\frac{\tanh 2s}{\sinh 2t}$ を満たす.

ただし、
$$Y\coloneqq\begin{pmatrix}0&1\\1&0\end{pmatrix}$$
、 $Z\coloneqq\begin{pmatrix}0&\sqrt{-1}\\-\sqrt{-1}&0\end{pmatrix}$ とする.

補題 1.11 により命題 1.8 は次のように証明できる.任意の $s \in \mathbf{R}, 0 \neq t \in \mathbf{R}$ に対し,

$$\lim_{s\to -\infty} \tan \varphi_{s,|t|} = \frac{-1}{\sinh 2|t|} \le \tan \varphi_{s,t} \le \lim_{s\to \infty} \tan \varphi_{s,|t|} = \frac{1}{\sinh 2|t|}$$

であるから、 $X \notin \mathbf{R} Y$ の元に対して $Y(\mathbf{R} X)$ が非有界であるとすると、 $\varphi(X,\mathfrak{h}) > \varepsilon > 0$ なる ε に対し、ある $r \in \mathbf{R}$ が存在して、Y(rX) = tY、Z(rX) = sZ に対し $|\tan \varphi_{s,t}| < \tan \varepsilon$ となり、 o_K と $e^{tY}e^{sZ} \cdot o_K$ を結ぶ測地線が o_K と $e^{tY} \cdot o_K$ を結ぶ 測地線と o_K でなす角が ε 未満、つまり \mathfrak{h} と X の角度未満となって矛盾する $(o_K$ と $e^{tX} \cdot o_K (= e^{tY}e^{sZ} \cdot o_K)$ を結ぶ測地線が o_K と $e^{tY} \cdot o_K$ を結ぶ測地線と o_K でなす 角は $\varphi(X,\mathfrak{h})$ である).

系 1.12 G = SO(1, n), H = SO(1, k), $1 \le k \le n - 1$ に対して予想 1.4 は正しい.

系 1.12 の証明 SO(1,n)/SO(n) の開球としての実現を考える. $\lceil e^X \cdot o_K$ と o_K を

結ぶ直線」と $H \cdot o_K$ で張られる超平面で SO(1,n)/SO(n) を切った際の断面を考える.

この断面に現れるのは図3と同じであるから、同様の計算により系1.12を得る.

1.3 予想 1.4 の観察: 予想 1.4 の仮定を外した場合の成り立たない例 予想 1.4 と次の予想 1.13 は同値である.

予想 1.13 $\mathfrak{p}_{H,\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X,(\mathfrak{h} \cap \mathfrak{p})] \neq \{0\}$ あるいは $X \perp (\mathfrak{h} \cap \mathfrak{p})$ である. $\}$ ここで似た予想として次の $\mathfrak{h} \cap \mathfrak{p}$ を \mathfrak{h} に置き換えた予想が立てられる.

予想 $\mathbf{1.14}\ \mathfrak{p}_{H,\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X,\mathfrak{h}] \neq \{0\} \$ あるいは $X \perp \mathfrak{h} \$ である. $\}$ しかし予想 1.14 には反例が存在する.

補題 **1.15**
$$G = SL(3, \mathbf{R})$$
, $Y_1 \coloneqq \operatorname{diag}(1, 1, -2)$, $Y_2 \coloneqq \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

 $\mathfrak{h}=\mathbf{R}\,Y_1\oplus\mathbf{R}\,Y_2,\ X=\mathrm{diag}(1,0,-1)$ に対し, $[X,\mathfrak{h}]
ewidth \{0\}$ であるが $Y(\mathbf{R}\,X)=\mathbf{R}\,Y_1$ であり,非有界である.

補題 1.15 の計算 \mathfrak{h} は可換 Lie 環であり、 $\mathfrak{g} = \mathfrak{sl}(3, \mathbf{R})$ の Cartan 対合 $\theta W \coloneqq -{}^t W$ に対し $\mathfrak{h} = \theta \mathfrak{h}$ である.

 $[X, \mathfrak{h}] \neq 0$ は, $[X, Y_2] \neq 0$ より従う.

ここで $Z_1 := \operatorname{diag}(1,-1,0) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であり、任意の $t \in \mathbf{R}$ に対し、 $e^{2tX} = e^{tY_1}e^{tZ_1}$ であるから、 $Y(\mathbf{R}X) = \mathbf{R}Y_1$ となり、補題 1.15 が示された.

補題 1.15 において X と $\mathfrak h$ は, $[X,\mathfrak h] \neq \{0\}$ だが $[X,(\mathfrak h\cap\mathfrak p)]=\{0\}$ かつ $X\not\perp (\mathfrak h\cap\mathfrak p)$ となるように取った.

つまり予想 1.14 の右辺を次の予想 1.16 のように少し弱めても補題 1.15 はその反例になっている.

予想 1.16 $\mathfrak{p}_{H,\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X,\mathfrak{h}] \neq \{0\}$ あるいは $X \perp (\mathfrak{h} \cap \mathfrak{p})$ である.}

2 具体例と主定理の証明

2.1 具体例: 実階数1の古典型単純 Lie 群

命題 **2.1** G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して予想 1.4 は正しい.

$$G=Sp(1,2),\ \mathfrak{h}=\mathbf{R}egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$$
の場合にのみ示す.その他の場合も全く同様

の議論である.

命題 **2.2** $G = Sp(1,2), \ H = SO(1,1), \ X \in \mathfrak{p}$ に対し、 $Y(\mathbf{R} \ X)$ が有界 \iff $X \in \mathfrak{p} \setminus \mathfrak{h}$ or X = 0 である.

ただし、H は G の左上に入っている。すなわち、 $\mathrm{Lie}\,H=\mathfrak{h}=\mathbf{R}\,A$ 、 $A:=\begin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}$ とする。

記号と定義 2.3 H を四元数体とする. $Sp(1,2)/Sp(1) \times Sp(2) \simeq \{(z_1,z_2) \mid z_1,z_2 \in \mathbf{H}, |z_1|^2 + |z_2|^2 < 1\} =: \mathbf{H} \mathbb{H}^2$ である. なぜならば $^t(1,0,0)$ の自然表現 $Sp(1,2) \curvearrowright \mathbf{H}^2$ による軌道を考え,第 2,第 3 成分に第 1 成分の逆数を右からかけた空間が $\mathbf{H} \mathbb{H}^2$ と微分同相であるためであり, $Sp(1,2) \curvearrowright \mathbf{H}^3$ の $^t(1,0,0)$ 軌道の点

$$egin{pmatrix} z_0 \ z_1 \ z_2 \end{pmatrix}$$
 に対応する $\mathbf{H}\,\mathbb{H}^2$ の点を $\left[\begin{pmatrix} z_0 \ z_1 \ z_2 \end{pmatrix} \right] = \left[\begin{pmatrix} 1 \ z_1 z_0^{-1} \ z_2 z_0^{-1} \end{pmatrix} \right]$ と書く.

愚直な行列計算により,次が示される.

補題
$$\mathbf{2.4} \ \forall z, w \in \mathbf{H} \ \mathcal{C}$$
対し, $\exp \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cosh r & * & * \\ \overline{z} \\ \overline{r} \sinh r & * & * \\ \overline{w} \\ \overline{r} \sinh r & * & * \end{pmatrix}$,ただし

 $r \coloneqq \sqrt{|z|^2 + |w|^2}$, である.

命題 2.2 の証明 $X=0 \Rightarrow Y(\mathbf{R}\,X)=\{0\}$ と $X\in\mathfrak{h}\setminus\{0\}$ のときに $Y(\mathbf{R}\,X)$ が非有界であることは明らかであるから, $X\notin\mathfrak{h}$ の場合にのみ議論すればよい.

G の Cartan 対合を $\Theta(g)=(g^*)^{-1}$ $(g^*$ は g の共役転置)とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K=e^{-Y(tX)}e^{-Z(tX)}\cdot o_K=\Theta(e^X)\cdot o_K=e^{-X}\cdot o_K$ より,「 $Y(\mathbf{R}\,X)$ が非有界 $\iff Y(\mathbf{R}\,X)\subset\mathbf{R}\,A$ が上に非有界」である.

したがって, $Y(\mathbf{R} X)$ が非有界であるとき, 列 $\{t_n \in \mathbf{R}\}_{n \in \mathbf{N}}$ で, $s_n \to \infty$, $n \to \infty$, ただし $Y(t_n X) = s_n A$, なるものが存在する.

また, 任意の
$$\mathfrak{h}^{\perp} \cap \mathfrak{p}$$
 の元はある $Z = \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}, \ z, w \in \mathbf{H} \ \mathrm{s.t.} \ |z|^2 +$

$$|w|^2=1$$
 と $r\in\mathbf{R}$ により rZ と表せる。 $Z(t_nX)=r_nZ_n$, $Z_n\coloneqqegin{pmatrix}0&z_n&w_n\ \overline{z_n}&0&0\ \overline{w_n}&0&0\end{pmatrix}$,

 $z_n, w_n \in \mathbf{H} \text{ s.t. } |z_n|^2 + |w_n|^2 = 1 \text{ とすると, } X \notin \mathfrak{h} \text{ であるから定理}$

$$|r_n| \to \infty$$
 である. $z_n, w_n \in \mathbf{H}$ s.t. $|z_n|^2 + |w_n|^2 = 1$ より、 $\{t_n\}$ の部分列を取るとある Z_∞ が存在して $\lim_{n\to\infty} Z_n = Z_\infty = \begin{pmatrix} 0 & z_\infty & w_\infty \\ \overline{z_\infty} & 0 & 0 \\ \overline{w_\infty} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^\perp \cap \mathfrak{p}$ な

るようにできる. $Z \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z_{\infty} \neq \pm 1$ であることに $a + bi + cj + dk \mapsto a \in \mathbf{R}$ とする).

補題 2.4 より,

$$e^{s_n A} e^{r_n Z_n} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ \pm \overline{z_n} \tanh |r_n| \\ \pm \overline{w_n} \tanh |r_n| \end{pmatrix}$$

$$= \begin{bmatrix} \cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n \\ \sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n \\ \pm \overline{w_n} \tanh |r_n| \end{bmatrix},$$

複号は r_n の符号 \pm と同順, である. このとき $\lim_{n o \infty} anh s_n = 1$ = $\lim_{n \to \infty} \tanh |r_n|$ と $\lim_{n \to \infty} \operatorname{Re} z_n = \operatorname{Re} z_\infty \neq \pm 1$ に注意すると次を得る. 具体的 な計算は後述する.

 $\lim_{n\to\infty} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} = 1$ である.

したがって,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ か

ら
$$\left((\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} \right) \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$$
 * ベクトルがなす Euclidean な内積の値を I_n とすると、 $\lim_{n \to \infty} I_n = 1$ である. しかし、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$ べクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ から $e^{t_n X} \cdot o_K \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$ ベクトルがなす Euclidean な内積の値 J_n は、 $X := \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E}$

しかし,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ から $e^{t_n X}$ ・ox $\in \mathbf{H}\mathbb{H}^2$ へのベクトルがなす Euclidean な内積の値 I は、 $X :=$

$$\begin{pmatrix} 0 & z_0 & w_0 \\ \overline{z_0} & 0 & 0 \\ \overline{w_0} & 0 & 0 \end{pmatrix}, \ z_0, w_0 \in \mathbf{H} \text{ s.t. } |z_0|^2 + |w_0|^2 = 1 \ \text{とするとき} \ J_n = \frac{\overline{z_0}}{r_0} \tanh(tr_0),$$

 $r_0\coloneqq\sqrt{|z_0|^2+|w_0|^2}$ であり, $X\notin ha\iff z_0\ne 1$ より $\lim_{n\to\infty}J_n=rac{\overline{z_0}}{r_0}\ne 1$ である.

以上 2 つの議論を合わせると $e^{s_nA}e^{r_nZ_n}\cdot o_K=e^{t_nX}\cdot o_K\implies 1=\lim_{n\to\infty}I_n=\lim_{n\to\infty}J_n\neq 1$ となり矛盾する.

以上より $[X \in \mathfrak{p} \setminus \mathfrak{h} \Rightarrow Y(\mathbf{R} X)]$ 有界」, したがって 命題 2.2 を得る.

命題 **2.2** の計算 $\lim_{n\to\infty} |(\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1| = 0$ を示せば主張が得られる. 具体的に計算すると,

$$\lim_{n \to \infty} \left| (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1 \right|
= \lim_{n \to \infty} \left| \frac{(\tanh s_n \pm \overline{z_n} \tanh |r_n|) (1 \pm z_n \tanh |r_n| \tanh s_n)}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2} - 1 \right|
= \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z_n} \tanh |r_n|) z'_n - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z'_n|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2}$$
(*)

である. ここで $z_n' \coloneqq 1 \pm z_n \tanh |r_n| \tanh s_n$ とすると,

$$(*) = \lim_{n \to \infty} \frac{|(\tanh s_n \pm \overline{z_n} \tanh |r_n|) z'_n - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z'_n|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|) z'_n|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2}$$

$$= \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

であり、 $0<\min|1\pm\operatorname{Re} z_n|\leq |(1\pm\overline{z_n}\tanh|r_n|\tanh s_n)|\leq \sqrt{2^2+1^2}=\sqrt{5}$ と $\min\{|-1\pm\operatorname{Re} z_n|\}\leq |-1\pm\overline{z_n}\tanh|r_n||\leq \sqrt{5}$ であることと $\lim_{n\to\infty}\operatorname{Re} z_n=\operatorname{Re} z_\infty\neq\pm 1$ より、

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z_n|\}}{\sqrt{5}} \le \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

$$\le \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z_n|\}} = 0$$

より,(2.1) が成り立つ.

G の実階数が1の場合 2.2

定理 2.5 G を実階数 1 の実半単純 Lie 群, H を G の非コンパクトな部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ で $dim \mathfrak{h} = 1$ とするとき,予想 1.4 が成り 立つ.

定理 2.6 ([Hel01, p. 409, Theorem 3.1]) g = ℓ⊕ p を実半単純 Lie 環とその Cartan 対合 θ に対する Cartan 分解とし、 $\alpha, 2\alpha \in \Sigma(\mathfrak{g}, \mathfrak{a})$ と仮定する. $0 \neq X_{\alpha} \in \Sigma(\mathfrak{g}, \mathfrak{a})$ \mathfrak{g}_{α} , $0 \neq X_{2\alpha} \in \mathfrak{g}_{2\alpha}$ を任意に固定したとき, $X_{\alpha}, X_{2\alpha}, \theta X_{\alpha}, \theta X_{2\alpha}$ から生成される Lie 環 \mathfrak{g}^* は $\mathfrak{su}(2,1)$ と同型である.

以下で定理 2.6 を示すための補題や記号を設定し、定理 2.6 を示す.

記号と定義 2.7

- $\mathfrak{a} \subset \mathfrak{g}$ を極大分裂可換部分代数, $\mathfrak{m} \coloneqq \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \coloneqq \{W \in \mathfrak{k} \mid [W,\mathfrak{a}] = \{0\}\}$ とす る. B & g & O Killing 形式とする.
- $\Sigma(\mathfrak{g},\mathfrak{a})$ を \mathfrak{a} に関する制限ルート系とする. \mathfrak{g}_{λ} を $\lambda \in \mathfrak{a}^*$ のルート空間とする
- $A_{\alpha} \in \mathfrak{a}$ を、任意の $H \in \mathfrak{a}$ に対して $B(H, A_{\alpha}) = \alpha(H)$ を満たす元とする. このとき、任意の $H \in \mathfrak{a}$ に対して $B(H, [X_{\alpha}, \theta X_{\alpha}]) = \alpha(H)B(X_{\alpha}, \theta X_{\alpha})$, し たがって $[X_{\alpha}, \theta X_{\alpha}] = B(X_{\alpha}, \theta X_{\alpha})A_{\alpha}$ (同様に $[Y_{\alpha}, \theta Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})A_{\alpha}$,
- $[X_{2\alpha}, \theta X_{2\alpha}] = 2B(X_{2\alpha}, \theta X_{2\alpha})A_{\alpha})$ である.
 $c_{\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})}}$, $c_{2\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})}}$ とする. また,

$$-X_{\alpha}^* \coloneqq c_{\alpha}X_{\alpha}$$

$$-X_{2\alpha}^* := c_{2\alpha}X_{2\alpha}$$

$$-Y_{\alpha}^* := [\theta X_{\alpha}^*, X_{2\alpha}^*] = c_{\alpha} c_{2\alpha} Y_{\alpha}$$
$$-A_{\alpha}^* := \frac{1}{12\alpha(A_{\alpha})} A_{\alpha}$$

$$-A_{\alpha}^* := \frac{1}{12\alpha(A_{\alpha})}A_{\alpha}$$

とする.

補題 2.8 $c\coloneqq 2\alpha(A_\alpha)B(X_\alpha,\theta X_\alpha)$ とすると, $[X_\alpha,Y_\alpha]=cX_{2\alpha}$ である.特に $0\ne Y_\alpha\ne X_\alpha$ である.

証明略, Jacobi 恒等式と $3\alpha \notin \Sigma(\mathfrak{g},\mathfrak{a})$ による.

補題 2.9 $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} \setminus \{0\}$ である.また $[[X_{\alpha}, \theta Y_{\alpha}], X_{\alpha}] = -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha}$ である.

補題 2.9 の証明 $Y_{\alpha} \in \mathfrak{g}_{\alpha}$ より $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} + \mathfrak{a}$ であり、任意の $H \in \mathfrak{a}$ に対して

$$B(H, [X_{\alpha}, \theta Y_{\alpha}]) = B([H, X_{\alpha}], Y_{\alpha}) = \alpha(H)B(X_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}])$$
$$= \alpha(H)B([X_{\alpha}, X_{\alpha}], X_{2\alpha})$$
$$= 0$$

であることより $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m}$ である. さらに、

$$\begin{split} [[\theta X_{\alpha}, Y_{\alpha}], X_{\alpha}] &= -[[Y_{\alpha}, X_{\alpha}], \theta X_{\alpha}] - [[X_{\alpha}, \theta X_{\alpha}], Y_{\alpha}] \\ &= c[X_{2\alpha}, \theta X_{\alpha}] - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -cY_{\alpha} - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} \\ &= -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha} \neq 0 \end{split}$$

より、 $\theta[\theta X_{\alpha},Y_{\alpha}]=[X_{\alpha},\theta Y_{\alpha}]\in\mathfrak{m}\setminus\{0\}$ である.

補題 2.10 R X_{α} + R Y_{α} は $\mathrm{ad}_{\mathfrak{g}}([X_{\alpha},\theta Y_{\alpha}])$ で不変である. さらに

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = -6\alpha (A_{\alpha})^{2} B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) X_{\alpha},$$
$$[Y_{\alpha}, \theta Y_{\alpha}] = -2\alpha (A_{\alpha}) B(X_{\alpha}, \theta X_{\alpha}) B(X_{2\alpha}, \theta X_{2\alpha}) A_{\alpha}$$

である.

補題 ${\bf 2.10}$ の証明 $[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] \in {\bf R} \ X_{\alpha}$ を示せば、補題 2.9 と併せて 補題 2.10 が従う.

$$\begin{split} [[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}] &= -[[\theta Y_{\alpha},Y_{\alpha}],X_{\alpha}] - [[Y_{\alpha},X_{\alpha}],\theta Y_{\alpha}] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} + c[X_{2\alpha},[X_{\alpha},\theta X_{2\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - c[X_{\alpha},[\theta X_{2\alpha},X_{2\alpha}]] - c[\theta X_{2\alpha},[X_{2\alpha},X_{\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - cB(X_{2\alpha},\theta X_{2\alpha})\alpha(A_{2\alpha})X_{\alpha} \end{split}$$

であり $(\mathfrak{g}_{3\alpha} = \{0\} \ \text{による}), \ A_{2\alpha} = 2A_{\alpha} \ \text{であるから},$

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$

を得る.

さらに,

$$B(Y_{\alpha}, \theta Y_{\alpha}) = B(Y_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}]) = -B([X_{\alpha}, Y_{\alpha}], \theta X_{2\alpha})$$
$$= -2\alpha (A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})$$

であるから, 最終的に

$$[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$
$$= -6\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$$

を得る.

補題 **2.11** $[[X_{\alpha}, \theta Y_{\alpha}], X_{2\alpha}] = 0$ である.

証明略. 補題 2.8-2.10 と Jacobi 恒等式による.

補題 **2.12** $[Y_{\alpha}, \theta X_{2\alpha}] = 2\alpha(A_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})\theta X_{\alpha}$ である.

証明略. Jacobi 恒等式を用いて与式を変形し計算することによる.

定理 2.6 の証明 $\mathfrak{g}_0^* \coloneqq \mathbf{R} A_\alpha \oplus \mathbf{R}[X_\alpha, \theta Y_\alpha], \ \mathfrak{g}_\alpha^* \coloneqq \mathbf{R} X_\alpha \oplus \mathbf{R} Y_\alpha, \ \mathfrak{g}_{-\alpha}^* \coloneqq \mathbf{R} \theta X_\alpha \oplus \mathbf{R} \theta X_\alpha \oplus \mathbf{R} \theta X_\alpha$ に $\mathbf{R} \theta Y_\alpha, \ \mathfrak{g}_{-\alpha}^* \coloneqq \mathbf{R} \theta X_{-\alpha} \cong \mathbf{R} \theta X_{-\alpha} \oplus \mathbf{R} \theta X_{-\alpha} \oplus \mathfrak{g}_{-\alpha}^* \oplus \mathfrak{g}$

非自明な \mathfrak{g}^* の Lie 括弧の関係は以下の通りである (残りの関係式はこの両辺に θ をつけることで得られる).

- $[X_{\alpha}^*, Y_{\alpha}^*] = -4X_{2\alpha}^*$ (補題 2.8 による)
- $[X_{\alpha}^*, [X_{\alpha}^*, \theta Y_{\alpha}^*]] = -6Y_{\alpha}^*$ (補題 2.9 による)

- $[X_{\alpha}^*, \theta X_{\alpha}^*] = -24A_{\alpha}^*$ (定義による)
- $[X_{\alpha}^*, X_{2\alpha}^*] = 0 \ (\mathfrak{g}_{3\alpha} = 0 \ に よる)$
- $[X_{\alpha}^*, \theta X_{2\alpha}^*] = \theta Y_{\alpha}^*$
- $[Y_{\alpha}^*, X_{2\alpha}^*] = 0$ (補題 2.11 による)
- $[Y_{\alpha}^*, \theta X_{2\alpha}^*] = -4\theta X_{\alpha}^*$ (補題 2.12 による)
- $[Y_{\alpha}^*, \theta Y_{\alpha}^*] = -96A_{\alpha}^*$ (補題 2.10 による)
- $[Y_{\alpha}^*, [X_{\alpha}^*, \theta Y_{\alpha}^*]] = 24X_{\alpha}^*$ (補題 2.10 による)
- $[[X_{\alpha}^*, \theta Y_{\alpha}], X_{2\alpha}^*] = [[X_{\alpha}^*, \theta Y_{\alpha}], \theta X_{2\alpha}^*] = 0$ (補題 2.12 による)
- $[X_{2\alpha}^*, \theta X_{2\alpha}^*] = -48A_{\alpha}^*$

 \mathfrak{g}^* と $\mathfrak{su}(2,1)$ の対応を,

$$\begin{split} X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & 0 & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ \theta X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, & \theta X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & 0 & 0 \\ -\sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ Y_{\alpha}^* \leftrightarrow -2 \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & \sqrt{-1} & 0 \end{pmatrix}, & \theta Y_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & -\sqrt{-1} & -0 \end{pmatrix}, \\ A_{\alpha}^* \leftrightarrow \frac{1}{12} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & [X_{\alpha}, \theta Y_{\alpha}^*] \leftrightarrow -4 \begin{pmatrix} \sqrt{-1} & 0 & 0 \\ 0 & -2\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \end{split}$$

でつける. この対応が Lie 環としての同型であること (上の関係式が満たされること) は計算することにより従う.

以上より定理 2.6 が示された.

補題 2.13 証明せよ

 $\Sigma(\mathfrak{g},\mathfrak{a})=\{\pm\alpha\}$ の場合,任意に固定した $0\neq X_{\alpha}\in\mathfrak{g}_{\alpha}$ と θX_{α} により生成される部分 Lie 環 \mathfrak{g}' は $\mathfrak{su}(1,1)$ と同型である.

補題 **2.13** の証明 $\mathfrak{g}_{2\alpha}=\mathfrak{g}_{-2\alpha}=\{0\}$ より, $[X_{\alpha},X_{\alpha}]=[X_{-\alpha},X_{-\alpha}]=0$ である. Killing 形式 B は非退化より, $B(X_{\alpha},\theta X_{\alpha})\neq 0$ であるから, 系 2.14 任意の $Y \in \mathfrak{h} \setminus \{0\}$ と任意の $X \in \mathfrak{p} \setminus \mathfrak{a}$ を固定したとき,G が実階数 1 ならば,極大分裂可換部分代数 $\mathfrak{a} \coloneqq \mathbf{R} Y \subset \mathfrak{g}$ に対し $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ あるいは $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ であるから,それぞれ定理 2.6 と補題 2.13 より,X,Y を含む部分 Lie 環 $\mathfrak{g}_0 \subset \mathfrak{g}$ で, $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ か $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ なるものが存在する.

系 2.14 の証明

 $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha}$ と分解すると, $X \in \mathfrak{p} \setminus \mathfrak{a}$ より $X_{-\alpha} = -\theta X_\alpha \neq 0$ である. $Y \in \mathbf{R}[X_\alpha, \theta X_\alpha]$ であるからこの $X_\alpha \neq 0$ に補題 2.13 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ で $X, Y \in \mathfrak{g}_0$ なるものが存在する.

 $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ の場合

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{2\alpha} \oplus \mathfrak{g}_{-2\alpha}$, $\mathfrak{g}_0 \coloneqq \mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})$ より $X \in \mathfrak{p} \setminus \mathfrak{a}$ をこの分解に対応して $X = X_0 + X_\alpha + X_{-\alpha} + X_{2\alpha} + X_{-2\alpha}$ と書くと, $X \in \mathfrak{p}$ より $X_{-\alpha} = -\theta X_\alpha$, $X_{-2\alpha} = -\theta X_{2\alpha}$ である.

 $zz r X \notin \mathfrak{a} \ \mathfrak{b},$

- 1. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} \neq 0$
- 2. $X_{\alpha} \neq 0$ かつ $X_{2\alpha} = 0$
- 3. $X_{\alpha}=0$ かつ $X_{2\alpha}\neq 0$

のいずれかである.

- 1 の場合はこの $X_{\alpha}, X_{2\alpha}$ と Y に,
- 2 の場合はこの X_{α} と、適当な $0 \neq X'_{2\alpha} \in \mathfrak{g}_{2\alpha}$ と Y に、
- 3 の場合はこの $X_{2\alpha}$ と、適当な $0 \neq X'_{\alpha} \in \mathfrak{g}_{\alpha}$ と Y に、

定理 2.6 を適用することにより $\mathfrak{g}_0 \simeq \mathfrak{su}(2,1)$ で $X,Y \in \mathfrak{g}_0$ なるものが存在する.

系 2.14 で定めた \mathfrak{g}_0 について次の 3 つが成り立つ.

補題 2.15 [Hel01, p. 409, Lemma 2.2] \mathfrak{g} の Cartan 対合 θ に対して $\mathfrak{g}_0 = \theta \mathfrak{g}_0$ であり、 \mathfrak{g}_0 への θ の制限は \mathfrak{g}_0 の Cartan 分解を与える.

補題 **2.16** ([Yos38, p. 82]) 系 2.14 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G_0 は G の閉部分群である.

補題 2.17 ([Hel01, p. 409, Lemma 2.3]) 系 2.14 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G = KAN を G の岩澤分解, $G_0 = K_0A_0N_0$ を G の岩澤分解とするとき、

$$K_0 := G_0 \cap K, \ A_0 := G_0 \cap A, \ N_0 := G_0 \cap N,$$

であり、 $G_0/K_0 \simeq G_0/K$ は G/K の全測地的な部分 Riemann 多様体である.

以上のことを用いて,G が実階数 1 の場合を SU(1,2) ないし SU(1,1) に帰着させることにより定理 2.5 を示す.

定理 2.5 の証明 $\mathfrak g$ の極大分裂可換部分代数 $\mathfrak h$ の定めるルート系を $\Sigma(\mathfrak g,\mathfrak h)$ とし、 $\Sigma(\mathfrak g,\mathfrak h)$ の形によって 2 通りに場合分けして証明する.

$$\Sigma(\mathfrak{g},\mathfrak{h}) = \{\pm \alpha\}$$
 のとき

系 2.14 により X とりを含む部分 Lie 環 $\mathfrak{g}' \subset \mathfrak{g}$ で $\mathfrak{su}(1,1)$ に同型なものが存在する. \mathfrak{g}' に対応する G の解析的部分群を G' とし,その岩澤分解を G' = K'A'N' とする. このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G'/K$ であるから $Z(tX) \in \mathfrak{g}' \cap \mathfrak{h}^{\perp} \cap \mathfrak{p} \subset \mathfrak{r}$ であり, $Y(\mathbf{R} X)$ の有界性は全測地的的な部分 Riemann 多様体 $G'/K' \subset G/K$ に対して行えば良いことがわかる. したがって命題 1.8 により $X \in \mathfrak{p}_{H,\mathrm{bdd.}} \iff X = 0$ あるいは $X \in \mathfrak{p} \setminus \mathfrak{h}$ が言え,定理 2.5 が示された.

 $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ のとき

系 2.14 により X とりを含む部分 Lie 環 $\mathfrak{g}^* \subset \mathfrak{g}$ で $\mathfrak{su}(2,1)$ に同型なものが存在する. \mathfrak{g}^* に対応する G の解析的部分群を G^* とし,その岩澤分解を $G^* = K^*A^*N^*$ とする. このとき $e^{Z(tX)} \cdot o_K = e^{-Y(tX)}e^{tX} \cdot o_K \in G'/K$ であるから $Z(tX) \in \mathfrak{g}^* \cap \mathfrak{h}^\perp \cap \mathfrak{p}$ C であり, $Y(\mathbf{R}|X)$ の有界性は全測地的的な部分 Riemann 多様体 $G^*/K^* \subset G/K$ に対して行えば良いことがわかる. したがって命題 2.1 により

 $X \in \mathfrak{p}_{H.\mathrm{bdd.}} \iff X = 0$ あるいは $X \in \mathfrak{p} \setminus \mathfrak{h}$ が言え、定理 2.5 が示された.

2.2.1 補足: 定理 2.5 の微分幾何的側面

定義 2.18 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき,M を Hadamard 多様体といい,Hadamard 多様体 M が visibility manifold であるとは, $\forall p \in M, \forall \varepsilon > 0$ に対し,ある $r(p,\varepsilon) > 0$ が存在して,測地線 $\gamma \colon [t_0,t_1] \to X$ が $d_M(p,\gamma(t)) \geq r(p,\varepsilon)$, $\forall t \in [t_0,t_1]$ ならば, $\angle_p(\gamma(t_0),\gamma(t_1)) \leq \varepsilon$ であることである.

図 5: visibility manifold のイメージ

定理 2.19 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1] $\exists C \subset M$ s.t. $M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である.

- (i) M is visibility manifold $\sigma \delta$.
- (ii) 全測地的な部分 Riemann 多様体 $M'\subset M$ で ${\bf R}^2$ と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 2.19 の (ii) は G の 実階数が 1 以下であることと同値である.したがって G の実階数が 1 の場合 G/K は visibility manifold であり、G=SU(1,2)、H=SO(1,1) の場合の証明と全く同様にして背理法により予想 1.4 が示される.

2.3 G が実階数1の実半単純 Lie 群の直積の場合

定理 2.5 の系として次が示される.

系 2.20 $n \in \mathbb{N}$ を固定し、 $\{G_i\}_{1 \leq i \leq n}$ を実階数 1 の実半単純 Lie 群の族、 Θ_i を G_i の Cartan 対合とする.

G を $\{G_i\}_{1\leq i\leq n}$ の直積からなる Lie 群 $G=G_1\times\cdots\times G_n$ とし,H を G の非コンパクトな部分 Lie 群で,G の Cartan 対合 $\Theta\colon G\to G$, $G\ni (g_1,\ldots,g_n)\mapsto (\Theta_1g_1,\ldots,\Theta_ng_n)\in G$ に対して $\Theta H=H$ で $\dim\mathfrak{h}=1$ なるものとする.このとき予想 1.4 が成り立つ.

系 2.20 の証明 各 G_i を G の部分 Lie 群と自然にみなす。このとき $H_i := G_i \cap H$ とすると, $H \simeq H_1 \times \cdots \times H_n$ である。同様に $\mathfrak{g}_i \subset \mathfrak{g} = \bigoplus_{1 \leq i \leq n} \mathfrak{g}_i$ とみなすと $\mathfrak{h}_i := \mathfrak{g}_i \cap \mathfrak{h}$ は H_i の Lie 環である.

 K_i を $\Theta K_i = K_i$ なる G_i の極大コンパクト部分群とすると, $K := K_1 \times \cdots \times K_n$ は G の極大コンパクト部分群で $\Theta K = K$ を満たす.

 $G/K \simeq G_1/K_1 \times \cdots \times G_n/K_n$ であり, 定理 1.2 により各 $1 \le i \le n$ の (G_i, H_i, Θ_i) に対し上への微分同相 π_i : $(\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i^{\perp} \cap \mathfrak{p}_i) \ni (Y, Z) \mapsto e^Y e^Z \cdot o_K \in G_i/K_i$ が存在する. $X_i \in \mathfrak{p}_i$ に対し $(Y_i(X_i), Z_i(X_i)) \coloneqq \pi_i^{-1}(e^{X_i}K_i)$ と定める.

 $X \in \mathfrak{p}$ に対し, $X = X^{(1)} + \cdots + X^{(n)}$ を $\mathfrak{p} = \bigoplus_{1 \leq i \leq n} \mathfrak{p}_i$ に対応する X の分解とすると, $Y(\mathbf{R}\,X)$ が有界であることは各 $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと同値である.また定理 2.5 より $Y_i(\mathbf{R}\,X^{(i)})$ が有界であることと「 $[X_1^{(i)},X_2^{(i)}] \neq 0$ あるいは $X_1^{(i)} = 0$ であること」が同値である.ここで $X^{(i)} = X_1^{(i)} + X_2^{(i)}$ は $\mathfrak{p}_i = (\mathfrak{h}_i \cap \mathfrak{p}_i) \oplus (\mathfrak{h}_i^{\perp} \cap \mathfrak{p}_i)$ に対応する $X^{(i)} \in \mathfrak{p}_i$ の分解とする.

したがって、 $Y(\mathbf{R} X)$ が非有界であることと「 $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ であること」が同値であり、系 2.20 が示された.

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710.
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), Vol. 122, No. 1, 1985, pp. 171–203.
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999.
- [Borel–Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, 2006.
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, 1972, pp. 492–510.
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, 1972, pp. 151–70.
- [EO73] P. Eberlein and B. O'Neill, *Visibility Manifolds*, Pacific J. Math., Vol. 46, No. 1, 1973, pp. 45–109.
- [Hel84] S. Helgason, Groups and Geometric Analysis—Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, Vol. 83, AMS, 1984.
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, GSM, Vol. 34, AMS, 2001.
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54.

- [Yos37] K. Yosida, A problem concerning the second fundamental theorem of Lie, Proc. Imp. Acad., Vol. 13, No. 5, 1937, pp. 152–155.
- [Yos38] K. Yosida, A Theorem concerning the Semi-Simple Lie Groups, Tohoku Mathematical Journal, First Series, Vol. 44, 1938, pp. 81–84.