Funktionen

Symetrien

• Eine Funktion f heisst gerade, wenn f(-x) = f(x) für alle

• Eine Funktion f heisst ungerade, wenn f(-x) = -f(x) für alle

Umkehrfunktionen

Für die Umkehrfunktionen einfach nach x auflösen und dann x und y vertauschen.

Eigenschaften von Umkehrfunktionen:

- Für jede Relation R gilt $R^{-1^{-1}} = R$
- R ist genau dann linksvollständig, wenn R^{-1} rechtseindeutig ist.
- R ist genau dann linkseindeutig, wenn R^{-1} rechtseindeutig ist.

1.3 Komposition

Für $g: A \to B$ und $f: B \to C$ definieren wir:

$$f \circ g : A \to C$$

$$(f \circ g)(x) = f(g(x))$$

g zuerst ausgeführt wird.

1.3.1 Assoziativität

Für $f: A \rightarrow B$, $g: B \rightarrow C$ und $h: C \rightarrow D$ gilt:

•
$$(f \circ g) \circ h = f \circ (g \circ h)$$

1.4 Summenformel

Arithmetische Summenformel:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Summe der Quadratzahlen:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

1.5 Betragsfunktion

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Polynome

2.1 Definition

Ein Polynom ist eine Funktion der Form:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

2.2 Nullstellen

Im Polynom $f(x) = (x-1)(x+3)(x-8)^2(x-6)^3$ ist 8 eine Doppelnullstelle und 6 eine Dreifachnullstelle.

2.2.1 Nullstellen Raten

Wörtlich sagt man auch "f nach g" da f nach g ausgeführt wird bzw. In Analyis 1 der ZHAW dürfen zudem Nullstellen geraten werden. Diese sind immer im folgenden Bereich: $\{-3, -2, -1, 0, 1, 2, 3\}$

2.3 Horner-Schema

$$f(x) = 3x^4 - 2x^3 + 5x^2 - 7x - 12$$

$$a_3 = -2 \qquad a_2 = 5 \qquad a_1 = -7 \qquad a_0 = -12$$

$$b_3 \cdot x_0 = -6 \qquad b_2 \cdot x_0 = 16 \qquad b_1 \cdot x_0 = -42 \qquad b_0 \cdot x_0 = 98$$

$$a_{4} = 3 \qquad a_{3} = -2 \qquad a_{2} = 5 \qquad a_{1} = -7 \qquad a_{0} = -12$$

$$b_{3} \cdot x_{0} = -6 \qquad b_{2} \cdot x_{0} = 16 \qquad b_{1} \cdot x_{0} = -42 \qquad b_{0} \cdot x_{0} = 98$$

$$b_{3} = 3 \qquad b_{2} = -8 \qquad b_{1} = 21 \qquad b_{0} = -49 \qquad \underline{f(x_{0}) = 86}$$

2.4 Polynomdivision

GOOD LUCK HOMIE

Ableiten

Ableitungsregeln

3.1.1 Faktorregel

$$(c \cdot f)(x)' = c \cdot f'(x)$$

3.1.2 Summenregel

$$(f+g)(x)' = f'(x) + g'(x)$$

3.1.3 Produktregel

$$(u \cdot v)'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

3.1.4 Quotientenregel

$$\left(\frac{u}{v}\right)'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$$

3.1.5 Kettenregel

$$(F \circ u)'(x) = F'(u) \cdot u'(x)$$

3.2 Ableitungen bestimmter Funktionen

- sin(x)' = cos(x)
- cos(x)' = -sin(x)
- $(e^x)' = e^x$
- $(a^x)' = a^x \cdot ln(a)$
- $(ln(x))' = \frac{1}{x}$
- $(log_a(x))' = \frac{1}{x \cdot ln(a)}$

3.3 Linearisierung einer Funktion

Die Funktionsgleichung für die Tangente von f(x) an der Stelle x_0 lautet:

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

4 Integral

Um die Fläche unter einer Funktion zu berechnen muss man folgende Schritte durchgehen:

- 1. Bestimme die Stammfunktion F(x)
- 2. Berechne F(b) F(a)

4.1 Stammfunktion

Die Stammfunktion F(x) einer Funktion f(x) ist die Funktion, deren Ableitung f(x) ist, also äufleiten".

4.2 Satz

Gegeben ist eine Funktion f, die auf einem Intervall I stetig ist, und eine beliebige Stamm- funktion F von f. Dann gilt für alle $a, b \in I$:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

4.3 Integrale von bestimmten Funktionen

4.3.1 Potenz- und Logharithmusfunktionen

- $\int a^x dx = \frac{a^x}{\ln(a) + C}$
- $\int ln(x)dx = x \cdot ln(x) x + C$
- $\int log_a(x)dx = \frac{1}{ln(a)} \cdot (x \cdot ln(x) x) + C$

4.3.2 Trigonometrische Funktionen

- $\int \sin(x) \, dx = -\cos(x) + C$
- $\int \cos(x) \, dx = \sin(x) + C$
- $\int \tan(x) dx = -\ln|\cos(x)| + C$
- $\int (1 + \tan^2(x)) dx = \int \frac{1}{\cos^2(x)} dx = \tan(x) + C$
- $\int (1-x^2)^{-1/2} dx = \arcsin(x) + C$
- $\int -(1-x^2)^{-1/2} dx = \arccos(x) + C$
- $\int (1+x^2)^{-1} dx = \arctan(x) + C$

5 Folgen und Reihen

5.1 Folgen

5.1.1 Arithmetische Folge

$$a_n = c + (n-1) \cdot d$$

5.1.2 Geometrische Folge

$$a_n = c \cdot q^{n-1}$$

5.1.3 Grenzwert von Folgen

Fall 1: Zählergrad < Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = 0$$

$$\lim_{n \to \infty} \frac{3n^2 + 7n - 15}{n^3 - 2n^2 + n + 10} = 0$$

Fall 2: Zählergrad > Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = \infty \text{ oder } -\infty$$

$$\lim_{n \to \infty} \frac{3n^4 + 7n - 15}{6n^3 - 2n^2 + 10} \to \infty$$

Fall 3: Zählergrad = Nennergrad. Dann gilt:

$$\lim_{n \to \infty} \frac{g(n)}{h(n)} = \frac{\text{führender Term von } g}{\text{führender Term von } h}$$

$$\lim_{n \to \infty} \frac{2n^3 + n^2 + 8n}{5n^3 + 4n^2 + 17} = \frac{2}{5}$$

Spezialfall: Folge führt gegen $e \approx 2.718$:

$$((1+\frac{1}{n})^n)=e$$

5.2 Rechnen mit Grenzwerten

$$\lim_{n\to\infty} c \cdot a_n = c \cdot \lim_{n\to\infty} a_n$$

$$\lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$$

$$\lim_{n\to\infty}(a_n\cdot b_n)=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n$$

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$$

5.2.1 Arithmetische Reihe

$$s_n = n \cdot a_1 + \frac{n \cdot (n-1)}{2} \cdot d$$

5.2.2 Geometrische Reihe

$$s_n = \frac{a_1 \cdot (1 - q^n)}{1 - q}$$

5.2.3 Grenzwert von Reihen

Arithmetische Reihe

Geht (divergiert) immer gegen ∞ oder $-\infty$

Geometrische Reihe

Eine geometrische Reihe konvergiert genau dann, wenn |q| < 1 ist.

Fall 1: q > 1

Die Reihe strebt gegen ∞ oder $-\infty$.

Fall 2: $q \le -1$

Die Reihe springt zwischen positiven und negativen Werten hin und her.

Fall 3: |q| < 1

Die Reihe strebt gegen $a_1 \cdot \frac{1}{1-q}$.