Étude de $\langle (i \ j), (1 \ \dots \ n) \rangle$

Ivan Lejeune

8 novembre 2024

Introduction

Dans ce document, nous allons étudier le sous-groupe de \mathfrak{S}_n engendré par

$$\sigma = \langle (i \ j), (1 \ \dots \ n) \rangle$$

pour $1 \le i < j \le n$. On travaillera aussi "modulo n" où les indices iront de 1 à n et où n+1=1.

Quelques résultats préliminaires

Lemme. Soit $\sigma \in \mathfrak{S}_n$ et $i_1 \ldots i_k$ une permutation de $1, \ldots, k$. Alors

$$\sigma(i_1 \ldots i_k)\sigma^{-1} = (\sigma(i_1) \ldots \sigma(i_k)).$$

Lemme. Soit $\sigma \in \mathfrak{S}_n$ et i j une transposition. Alors

$$\langle \sigma, (i \ j) \rangle = \langle \sigma, (1 \ k) \rangle$$

où k = j - i + 1.

Lemme. Soit $\sigma = (1 \dots n)$. Alors

$$\sigma(1 \ k)\sigma^{-1} = (2 \ k+1)$$

pour $k \in \mathbb{N}$.

Le choix de i et j

Le cas j = i + 1

Comme on l'a déjà vu en TD, si i=1, j=2, alors

$$\langle (1\ 2), (1\ \dots\ n) \rangle = \mathfrak{S}_n.$$

Si on ne fixe pas i et on prend j = i + 1, on peut alors se ramener à ce cas en utilisant le lemme 2. Ainsi, un des premiers résultats que l'on peut obtenir est le suivant.

Théorème. Soit $\sigma = \langle (i \ i+1), (1 \ \dots \ n) \rangle$ pour $1 \le i < n$. Alors

$$\sigma = \mathfrak{S}_n.$$

Démonstration. On a

$$\sigma = \langle (i \ i+1), (1 \dots n) \rangle$$
$$= \langle (1 \ 2), (1 \dots n) \rangle$$
$$= \mathfrak{S}_n.$$

Le cas $j \neq i+1$

C'est ici que les choses se compliquent. On va essayer de trouver des conditions sur i et j pour que

$$\langle (i \ j), (1 \ \dots \ n) \rangle = \mathfrak{S}_n.$$

La première chose qu'on peut faire est de se ramener à un cas plus simple en utilisant le lemme 2. On étudie alors

$$\sigma = \langle (1 \ k), (1 \ \dots \ n) \rangle$$

 \triangleright Le premier point important à aborder est que pour engendrer l'ensemble des transpositions adjacentes (qui engendrent \mathfrak{S}_n), il suffit d'en engendrer une seule. En effet, on a

$$(i+1 \ i+2) = (1 \ \dots \ n)(i \ i+1)(1 \ \dots \ n)^{-1}, \quad 1 \le i < n.$$

De plus, on a un "décalage de l'écart entre les indices" qu'on peut effectuer. En effet, à partir de $(i\ j)$ et $(j\ k)$, on peut obtenir $(i\ k)$ en utilisant

$$(i \ j)(j \ k)(i \ j) = (i \ k).$$

Essayons maintenant de voir comment on peut obtenir une telle transposition à partir de (1 k).

Lemme. Soit
$$\sigma = \langle (1 \ k+1), (1 \ \dots \ n) \rangle$$
. Alors

$$k \wedge n = 1 \implies \sigma = \mathfrak{S}_n$$
.

 $D\acute{e}monstration.$ On peut énumérer certains éléments de σ :

$$(1 \ k+1) \rightarrow (2 \ k+2)$$

 $(2 \ k+2) \rightarrow (3 \ k+3)$
:
 $\rightarrow (k+1 \ 2k+1)$
:
 $\rightarrow (2k+1 \ 3k+1)$
:

On voit alors qu'à partir de (1 k + 1), on peut obtenir

$$\{(1 \lambda k + 1) \mid \lambda \in \mathbb{N}\}.$$

D'autre part, si $k \wedge n = 1$, alors il existe $a, b \in \mathbb{Z}$ tels que

$$ak + bn = 1$$
.

En particulier, pour $\lambda = a$, on a

$$(1 \lambda k + 1) = (1 ak + 1)$$
$$= (1 1 - bn + 1)$$
$$= (1 2).$$

On a donc (1 2) $\in \sigma$ et on peut obtenir toutes les transpositions adjacentes.

On a donc une condition suffisante pour que $\langle (i \ j), (1 \ \dots \ n) \rangle = \mathfrak{S}_n$.

On peut facilement vérifier que si $k \wedge n \neq 1$, alors on ne peut pas obtenir de transposition adjacente à partir de seulement (1 k + 1) et $(1 \ldots n)$.

Cependant, il est difficile de prouver que c'est une condition nécessaire.

Conclusion

On a vu que si j=i+1, alors $\langle (i\ j), (1\ ...\ n) \rangle = \mathfrak{S}_n$. Si $j\neq i+1$, on a vu qu'il est possible d'obtenir \mathfrak{S}_n si $k\wedge n=1$. Cependant, on n'a pas réussi à déterminer ce qu'il se passe si $k\wedge n\neq 1$. Ainsi, on peut dire que

Théorème. Soit
$$\sigma = \langle (i\ j), (1\ \dots\ n) \rangle$$
 pour $1 \le i < j \le n$. Alors
$$\sigma = \mathfrak{S}_n$$
 si $j = i+1$ ou $(j-i+1) \land n = 1$.

Remarque

Dans certains cas, on peut vérifier ce qui se passe pour $k \wedge n \neq 1$ mais cela est difficile pour des valeurs de n élevées.

Exemple

On peut vérifier que pour n=4 et k=2, on a

$$\langle (1\ 3), (1\ \dots\ 4) \rangle = \{ (1\ 3), (2\ 4),$$

 $(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3),$
 $(1\ 2\ 3\ 4), (1\ 4\ 3\ 2) \} \neq \mathfrak{S}_4.$

Cela ne prouve pas que si $k \wedge n \neq 1$, alors $\langle (1 \ k+1), (1 \ \dots \ n) \rangle \neq \mathfrak{S}_n$ mais le montre pour n=4.