6.26

1. The value of P(i, j) will be the man of three possible cases.

(a) match
$$n_i$$
, $y_i = 8(x_i, j_i) + P(i-1, j-1)$
(b) match $n_i = 8(x_i, j_i) + P(i-1, j-1)$

(b) Match
$$n; - = 8(xi, -1) + P(i-1, j-1)$$

(c) Match $yj, - = 8(-1, yj) + P(i-1, j-1)$

ii.
$$P(i,j) = \begin{cases} P(i-1,0) + 8(x_i, -1) \\ P(0,j-1) + 8(-1,y_i) \end{cases}$$
 if $j = 0$

$$max \{ \delta(x_i, y_i) + P(i-1, j-1), \\ \delta(x_i, -) + P(i-1, j-1), \\ \delta(-, y_i) + P(i, j-1) \}$$

$$for i = 1 \rightarrow n$$

$$P(i,0) = P(i-1,0) + \delta(n,-)$$

$$P(0,j) = P(0,j-1) + S(-, y_j)$$

$$P(i,j) = man \{ S(ni, yi) + P(i-1, j-1), \\ S(ni, -) + P(i-1, j), \\ S(-, yi) + P(i, j-1) \}$$

return P(n,m)

iv. O(nm)