Ziemskie pole magnetyczne

Cel ćwiczenia.

✓ Wyznaczenie indukcji magnetycznej ziemskiego pola magnetycznego i porównanie je z wartością katalogową.

Zagadnienia teoretyczne:

- 1. Pole magnetyczne ziemskie. Deklinacja i inklinacja.
- 2. Indukcja magnetyczna.
- 3. Cewki Helmholtza.

Wprowadzenie.

Zagadnienia elementarne.

Indukcję magnetyczną pary cewek Helmholtza wyznacza się sporządzając jej wykres w funkcji natężenia prądu elektrycznego $I_{\rm H}$ przepływającego przez nie.

$$B_H^h = f(I_H) = k \cdot I_H \qquad (1)$$

gdzie k jest współczynnikiem kalibracji.

Dla *k* wzór (1) przyjmuje więc postać:

$$k = \frac{B_{\rm H}^{\rm (h)}}{I_{\rm H}} \qquad (2)$$

Gdy przez cewki nie przepływa prąd, igła magnetyczna kieruje się zgodnie z poziomą składową B_Z^h (kierunek północ-południe) ziemskiego pola magnetycznego.

Jeśli na tę składową nałożymy, przy pomocy cewek Helmholtz'a dodatkowe pole magnetyczne B_H^h , to igła obróci się o kąt α i będzie wskazywać kierunek wypadkowego pola magnetycznego B_W^h .

W szczególnym przypadku, gdy oś cewek jest prostopadłą do kierunku północ-południe, otrzymujemy zależność:

$$\frac{B_H^h}{B_Z^h} = \operatorname{tg} \alpha \tag{3}$$

lub

Zmierzony kąt inklinacji

$$\vartheta = \frac{1}{2} \left(\vartheta_1 + \vartheta_2 \right) \right)$$

wstawiamy do związku:

$$\frac{B_Z^{\nu}}{B_Z^h} = \tan \vartheta \quad \Rightarrow \quad B_Z^{\nu} = B_Z^h \cdot \tan \vartheta \tag{5}$$

Pełna indukcja magnetyczna B_Z wynosi:

$$B_Z = \sqrt{(B_Z^v)^2 + (B_Z^h)^2} = \frac{B_Z^h}{\cos(\theta)}$$
 (6)

Niepewność względna wyznaczenia indukcji pola magnetycznego Ziemi należy obliczyć według wzoru: $\frac{\Delta B_{\rm Z}}{B_{\rm Z}} = \frac{\Delta B_{\rm Z}^{\rm (h)}}{B_{\rm Z}^{\rm (h)}} + tg \mathcal{G} \cdot \Delta \mathcal{G} \ , \ {\rm gdzie} \ {\rm niepewność} \ {\rm bezwzględną} \ \Delta \mathcal{G} \ {\rm wyznaczenia}$ kata \mathcal{G} należy podstawiać w radianach.

Przebieg ćwiczenia

Wyposażenie potrzebne do przeprowadzenia ćwiczenia:

- para cewek Helmholtza
- zasilacz uniwersalny, opornica suwakowa 100Ω; 1,8A
- teslomierz cyfrowy z sondą Halla
- multimetr cyfrowy
- igła magnetyczna deklinacyjno-inklinacyjna

Cewki Helmholtza połączone są szeregowo i przez opornicę podłączone są do zasilacza prądu stałego oraz uniwersalnego multimetru cyfrowego.

Sondę Halla umieszczamy w osi cewek, tak aby jej koniec znajdował się pośrodku układu Helmholtza. Zmieniając wartość prądu I_H w zakresie $0,15 \div 1,35$ A z krokiem ~ 0,15A zmierzyć indukcję B_H^h (mT). Pomiary zapisać w Tabeli 1.

Tabela 1. Indukcja pola magnetycznego cewki Helmholtza $B_{\rm H}^{\rm (h)}$ w zależności od prądu cewki $I_{\rm H}$

$I_{ m H}$ /A	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35
$B_{\rm H}^{\rm (h)}/{ m mT}$									
k/mTA ⁻¹									
$k_{\rm \acute{s}r}$ /mTA ⁻¹									
$\Delta k / \text{mTA}^{-1}$									
$\Delta k/k_{ m \acute{s}r}$									

2.

W tej części wyznaczamy zależność kąta odchylenia α igły magnetycznej od kierunku północ-południe w funkcji natężenia prądu płynącego przez cewki Helmholtza.

Usuwamy sondę Halla, a w jej miejsce wstawiamy igłę magnetyczną, tak zmieniając położenie pary cewek, aby ich oś była dokładnie prostopadłą do kierunku północ-południe (oczywiście $I_H = 0$).

Następnie ustawiamy prąd I_H na poziomie ~ 30mA (Regulacja U \approx 1V, regulacja I \approx 0,5A) zmieniając w odpowiedni sposób położenie suwaka opornicy.

Wychylenie igły magnetycznej przy zmianie kierunku prądu powinno być jednakowe ($\alpha_l = \alpha_p$). Jeśli tak nie jest, lekko zmienić położenie układu Helmholtza.

Zmieniając natężenie prądu w zakresie 10 ÷ 60 mA z krokiem ~ 5mA zmierzyć odchylenie igły magnetycznej α. Wyniki zapisać w Tabeli 2. i uzupełnić o stosowne obliczenia.

Tabela 2. Kąt wychylenia α strzałki magnetycznej i składowa horyzontalna indukcji pola magnetycznego Ziemi $B_Z^{(h)}$ w zależności od prądu cewki I_H

$I_{ m H}$ /mA	10	15	20	25	30	35	40	45	50	55	60
$kI_{ m H}/\mu{ m T}$											
α /stopni											
tgα											
$B_Z^{(h)}/\mu T$											
$B_Z^{(\mathrm{h})}$ sr $/\mu\mathrm{T}$											
$\Delta B_{\rm Z}^{\rm (h)}/\mu{ m T}$											
$\Delta B_{\rm Z}^{\rm (h)}/B_{\rm Z}^{\rm (h)}{}_{\rm \acute{s}r}$											

3.

Wartość składowej pionowej indukcji $B_z^{(v)}$ wyznaczamy podczas gdy przez cewki nie płynie prąd. Kiedy igła magnetyczna wskazuje kierunek N-S należy obrócić ją do płaszczyzny pionowej tak, aby wskazywała teraz kąt inklinacji v_1 . Aby otrzymać v_2 , należy magnetometr obrócić o 180^0 wokół pionu.

Tabela 3. Składowa pionowa $B_Z^{(v)}$ i indukcja całkowita pola magnetycznego Ziemi B_Z

၅ /stopni		
$B_{\rm Z}^{({ m v})}/\mu{ m T}$		
$B_{\rm Z}/\mu{ m T}$		
$B_{\mathrm{Z\acute{s}r}}/\mu\mathrm{T}$		
$\Delta B_Z/\mu T$		
$\Delta B_{ m Z}/B_{ m Z\acute{s}r}$		

Opracowanie wyników

- 1. Na podstawie Tabeli 1 wykonaj wykres zależności $B_H^h = f(I_H)$.
- 2. Oblicz współczynnik kalibracyjny k (wzór 2) dla każdego z pomiarów oraz jego wartość średnią $k_{\acute{s}r}$, niepewność pomiaru Δk_{sr} i niepewność względną pomiaru $\Delta k_{sr}/k_{\acute{s}r}$
- 3. Na podstawie Tabeli 2 wykonaj wykres zależności tg $\alpha = f(I_H)$
- 4. Na podstawie Tabeli2 i wzoru (4) wyznacz składową poziomą indukcji magnetycznej B_Z^h ziemskiego pola magnetycznego oraz jego wartość średnią $B_{Z^{\acute{s}r}}^h$, niepewność pomiaru $\Delta B_{Z^{\acute{s}r}}^h$ i niepewność względną pomiaru $\Delta B_{Z^{\acute{s}r}}^h/B_{Z^{\acute{s}r}}^h$
- 5. Ze wzoru (5) wyznacz składową B_Z^v .
- 6. Ostatecznie ze wzoru (6) oblicz całkowitą indukcję B_Z ziemskiego pola magnetycznego.
- 7. Porównaj uzyskane wyniki z wartością rzeczywistą. Informację o wartości rzeczywistej można znaleźć na stronie np.: https://www.ngdc.noaa.gov/geomagweb/#igrfwmm. Na podanej stronie należy najpierw w polu "GET LOCATION" wybrać kraj i miasto (Poland, Koszalin), a następnie kliknąć na przycisk "Compute Magnetic Field Values".

Protokół pomiarowy

	La	boratorium z fizyki	
Rok akadem:	Temat: Pomiar natężeni	a pola magnetycznego	ziemskiego
Kierunek:	Imię i Nazwisko:		
Grupa:			
	Ocena	Data Zaliczenia	Podpis
L			
S			
K			

Tabela 1. Indukcja pola magnetycznego cewki Helmholtza $B_{\rm H}^{\rm (h)}$ w zależności od prądu cewki $I_{\rm H}$

$I_{ m H}$ /A	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35
$B_{\rm H}^{({\rm h})}/{ m mT}$									
k/mTA^{-1}									
$k_{\rm \acute{s}r}/{\rm mTA}^{-1}$									
$\Delta k / \text{mTA}^{-1}$									
$\Delta k/k_{ m sr}$									

Tabela 2. Kąt wychylenia α strzałki magnetycznej i składowa horyzontalna indukcji pola magnetycznego Ziemi $B_Z^{(h)}$ w zależności od prądu cewki I_H

$I_{\rm H}$ /mA	10	15	20	25	30	35	40	45	50	55	60
kI _H /μT											
α/stopni											
tgα											
$B_{\rm Z}^{\rm (h)}/\mu{ m T}$											
$B_{\rm Z}^{\rm (h)}$ sr $/\mu{ m T}$											
$B_Z^{(h)}_{\text{sr}}/\mu T$ $\Delta B_Z^{(h)}/\mu T$											
$\Delta B_{\rm Z}^{\rm (h)}/B_{\rm Z}^{\rm (h)}$ sr											

Tabela 3. Składowa pionowa $B_Z^{(v)}$ i indukcja całkowita pola magnetycznego Ziemi B_Z

9 /stopni		
$B_Z^{(v)}/\mu T$		
$B_Z/\mu T$		
$B_{Z ext{sr}} / \mu T$		
$\Delta B_{\rm Z}/\mu{ m T}$		
$\Delta B_{ m Z}/B_{ m Z\'sr}$		