Page 2

Al

$$R^2$$
 R^3
 A
 B^2
 B^1

wherein X represents a residual group of a color coupler; A represents -NR⁴R⁵ or a hydroxy group; R⁴ and R⁵ each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B¹ represents = C(R⁶)- or = N-; B² represents -C(R⁷)= or -N=; R², R³, R⁶ and R⁷ each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR⁵¹, -SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹; R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰ and R⁷¹ each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ may bond together to form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

Ar

- 5. (Amended) An ink-jet ink according to claim 1, wherein the ionic-group-containing vinyl polymer has at least one ionic group selected from the group consisting of carboxyl groups, sulfonic acid groups and mixtures thereof.
- 6. (Amended) An ink-jet ink according to claim 1, wherein the hydrophobic high-boiling-point organic solvent is at least one hydrophobic high-boiling-point organic solvent selected from the group consisting of hydrophobic high-boiling-point organic solvents represented by following formulae S-1 to S-9:

$$O=P$$
 $(O)_{\overline{a}}R_{1}$
 $(O)_{\overline{b}}R_{2}$
 $(O)_{\overline{c}}R_{3}$

$$(R_8-COO)_f-R_9$$

$$R_{12} - X - N R_{13}$$

$$R_{18}$$
N— $(R_{19})_i$

Ant.

wherein: in the formula S-1, R_1 , R_2 and R_3 each independently represents an aliphatic group or an aryl group, and a, b and c each independently represents 0 or 1;

in the formula S-2, R_4 and R_5 each independently represents an aliphatic group or an aryl group, R_6 represents a fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group, alkoxy group, aryloxy group, alkoxycarbonyl group or aryloxycarbonyl group, d represents an integer from 0 to 3, and where d is more than 1, one R_6 may be different from another R_6 ;

in the formula S-3, Ar represents an aryl group, e represents an integer from 1 to 6, and R_7 represents an e-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-4, R_8 represents an aliphatic group, f represents an integer from 1 to 6, and R_9 represents an f-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-5, g represents an integer from 2 to 6, R_{10} represents a g-valent hydrocarbon group other than an aryl group, and R_{11} represents an aliphatic group or an aryl group;

in the formula S-6, R_{12} , R_{13} and R_{14} each independently represents a hydrogen atom, aliphatic group or aryl group, X represents or -N-CO- or -SO₂-, and one of a pair R_{12} and R_{13} or R_{13} and R_{14} may bond together mutually to form a ring;

in the formula S-7, R_{15} represents an aliphatic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, aryl group or cyano group, R_{16} represents a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic

Ans.

group, aryl group, alkoxy group or aryloxy group, h represents an integer from 0 to 3, and where h is more than 1, one R_{16} may be different form another R_{16} ;

in the formula S-8, R_{17} and R_{18} each independently represents an aliphatic group or an aryl group, R_{19} represents a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic group, aryl group, alkoxy group or aryloxy group, i represents an integer from 0 to 4, and where i is more than 1, one R_{19} may be different from another R_{19} ; and

in the formula S-9, R_{20} and R_{21} each independently represents an aliphatic group or aryl group, and j represents 1 or 2.

A3

10. (Amended) An ink-jet ink according to claim 1, wherein the oil-soluble dye which is represented in said general formula I is a compound which is represented in the following general formula II:

General Formula II

wherein, R^2 , R^3 , A, B^1 , and B^2 are synonymous with R^2 , R^3 , A, B^1 , and B^2 in said general formula I;

A3,

 R^1 represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, $-CO_2R^{13}$, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}COR^{29}$ or $-NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group;

D represents an atom group which forms a five-membered nitrogen-containing heterocyclic ring or a six-membered nitrogen-containing heterocyclic ring which may optionally be substituted by an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{81}$, $-SR^{82}$, $-CO_2R^{83}$, $-OCOR^{84}$, $-NR^{85}R^{86}$, $-CONR^{87}R^{88}$, $-SO_2R^{89}$, $-SO_2NR^{90}R^{91}$, $-NR^{92}CONR^{93}R^{94}$, $-NR^{95}CO_2R^{96}$, $-COR^{97}$, $-NR^{98}COR^{99}$ or $-NR^{100}SO_2R^{101}$;

 R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , R^{87} , R^{88} , R^{89} , R^{90} , R^{91} , R^{92} , R^{93} , R^{94} , R^{95} , R^{96} , R^{97} , R^{98} , R^{99} , R^{100} , and R^{101} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group.

the heterocyclic ring may further form a condensed ring with another ring; and

11. (Amended) An ink-jet ink according to claim 10, wherein the compound which is represented in said general formula II is a compound which is represented in the following general formula III:

General formula III

wherein, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , and R^7 are synonymous with R^1 , R^2 , R^3 , R^4 , R^5 , R^6 ,

and R⁷ in said general formula II;

A3,

 X^1 and Y represent respectively independently -C (R⁸) = or -N=; R^8 represents a hydrogen atom, an aliphatic group, or an aromatic group; and one of X^1 or Y is always -N=, and X^1 and Y are -N= at different times.

12. (Amended) An ink-jet ink according to claim 1, wherein the oil-soluble dye which is represented in said general formula I is at least one compound selected from the group consisting of compounds which are represented in the following formulas IV-1 to IV-4:

$$R^{202}$$
 N
 R^{203}
 N
 R^{203}
 R^{201}
 R^{203}
 R^{2}
 R^{2}
 R^{3}
 R^{3}

$$\begin{array}{c}
R^{202} \\
R^{201} \\
R^{201}
\end{array}$$

$$\begin{array}{c}
R^{203} \\
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
R^{2} \\
R^{3}
\end{array}$$

$$R^{202}$$

$$R^{201}$$

$$R^{203}$$

$$R^{203}$$

$$R^{203}$$

$$R^{203}$$

$$R^{2}$$

$$R^{3}$$

$$(IV-2)$$

$$R^{202}$$
 R^{203}
 R^{201}
 R^{201}
 R^{201}
 R^{201}
 R^{201}
 R^{201}
 R^{202}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}
 R^{203}

A3.

wherein, A, R^2 , R^3 , B^1 , and B^2 are synonymous with A, R^2 , R^3 , B^1 , and B^2 in said general formula I;

 R^{201} , R^{202} , and R^{203} represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-OR^{11}$, $-SR^{12}$, $-CO_2R^{13}$, $-OCOR^{14}$, $-NR^{15}R^{16}$, $-CONR^{17}R^{18}$, $-SO_2R^{19}$, $-SO_2NR^{20}R^{21}$, $-NR^{22}CONR^{23}R^{24}$, $-NR^{25}CO_2R^{26}$, $-COR^{27}$, $-NR^{28}COR^{29}$ or $-NR^{30}SO_2R^{31}$;

 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , and R^{31} represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group; and

 R^{201} and R^{202} may be combined with each other to form a ring structure.

13. (Amended) A coloring composition comprising a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C, the coloring particulate being dispersed in a water-based medium, wherein the oil-soluble dye is represented by general formula I:

$$R^2$$
 R^3
 A
 B^2
 B^1

wherein X represents a residual group of a color coupler; A represents -NR⁴R⁵ or a hydroxy group; R⁴ and R⁵ each independently represents a hydrogen atom, aliphatic group,

aromatic group or heterocyclic group; B¹ represents = C(R6)- or = N-; B² represents

-C(R7) = or -N=; R², R³, R6 and R7 each independently represent a hydrogen atom,
halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR 51,
-SR52, -CO2R53, -OCOR54, -NR55R56, -CONR57R58, -SO2R59, -SO2NR60R61,
-NR62CONR63R64, -NR65CO2R66, -COR67, -NR68COR69, or -NR70SO2R71; R51, R52, R53, R54,
R55, R56, R57, R58, R59, R60, R61, R62, R63, R64, R65, R66, R67, R68, R69, R70 and R71 each
independently represents a hydrogen atom, aliphatic group or aromatic group; and any of
pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R6, and R6 and R7 may bond together to
form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

14. (Amended) An ink-jet recording method in which recording is conducted using an ink-jet ink on a recording material, the ink comprising a coloring composition containing a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C, the coloring particulate being dispersed in a water-based medium, wherein the oil-soluble dye is represented by

general formula I:

wherein X represents a residual group of a color coupler; A represents -NR⁴R⁵ or a hydroxy group; R⁴ and R⁵ each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B¹ represents = C(R⁶)- or = N-; B² represents -C(R⁷)= or -N=; R², R³, R⁶ and R⁷ each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR⁵¹, -SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹; R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰ and R⁷¹ each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ may bond together to form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

17. (Amended) An ink-jet recording method comprising the step of:

(a) preparing an ink-jet ink containing a coloring composition in which a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C are dispersed in an aqueous medium, wherein the oil-soluble dye is represented by general formula I:

$$R^2$$
 R^3
 A
 B^2
 B^1

wherein X represents a residual group of a color coupler; A represents -NR⁴R⁵ or a hydroxy group; R⁴ and R⁵ each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B¹ represents=C(R⁶)- or =N-; B² represents
-C(R⁷)= or -N=; R², R³, R⁶ and R⁷ each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR⁵¹,
-SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹,
-NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹; R⁵¹, R⁵², R⁵³, R⁵⁴,
R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰ and R⁷¹ each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs, R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ may bond together to form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and

Application No. <u>09/800,649</u> Attorney's Docket No. <u>003510-083</u> Page 15

At cont.

with the content of the hydrophobic high-boiling-point organic solvent in the coloring composition being at least 25% by mass and not more than 95% by mass with respect to total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent,

- (b) disposing the ink-jet ink in a cartridge adapted for use in an ink-jet printer, and
- (c) using the cartridge in an ink jet printer for recording images.