武汉大学 2018-2019 第一学期线性代数 B 期末试题 A

1. (10 分) 计算行列式
$$\begin{vmatrix} a & 2 & 3 & \mathsf{L} & n-2 & n-1 \\ 1 & a & 3 & \mathsf{L} & n-2 & n-1 \\ 1 & 2 & a & \mathsf{L} & n-2 & n-1 \\ \mathsf{L} & \mathsf{L} & \mathsf{L} & \mathsf{L} & \mathsf{L} & \mathsf{L} \\ 1 & 2 & 3 & \mathsf{L} & n-2 & a \end{vmatrix} \quad (a-i \neq 0, i=1, 2, \mathsf{L} \ , n-1).$$

2. (10 分)设
$$A = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $AB = A^{-1} - B$, 求矩阵 $B^{-1} - A$.

3. $(10 \, \text{分})$ 考虑向量 $\alpha_1 = (1 \ 3 \ 2 \ 0)^T, \alpha_2 = (7 \ 0 \ 14 \ 3)^T, \alpha_3 = (2 \ -1 \ 0 \ 1)^T,$

 α_4 =(5 1 6 2) T , α_5 =(2 -1 4 1) T (1) 求向量组的秩;(2) 求此向量组的一个极大线性无关组,并把其余向量分别用该极大线性无关组表示。

4. $(10 \, \beta)$ 已知向量组 $\beta_1 = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}^T$, $\beta_2 = \begin{pmatrix} 1 & \lambda & 0 \end{pmatrix}^T$, $\beta_3 = \begin{pmatrix} 1 & 1 & \mu \end{pmatrix}^T$ 与向量组 $\alpha_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ $\alpha_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$ 有相同的秩,并且 β_3 可由 α_1 , α_2 线性表示,求 m,n 的值。

5、(16 分)
$$a$$
 取何值时,方程组
$$\begin{cases} x_1 + x_2 - 2x_3 = a \\ 3x_1 - x_2 + 2x_3 = a \end{cases}$$
 有无穷多组解?并求通解。
$$x_1 + 5x_2 - 10x_3 = 6$$

6. (8分) 若三阶方阵 A 与对角方阵 $\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ 相似,求行列式 $\left| 6A^{-1} - 2I \right|$ 的值(其中 A^{-1}

为矩阵A的逆矩阵)。

7、(8分)求向量 $\beta = \begin{pmatrix} 5 & -1 & 3 \end{pmatrix}^T$,在基 $\alpha_1 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$, $\alpha_3 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ 下的坐标。

8、(12 分) 设有矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
 (1) 写出矩阵 A 的二次型 f ; (2) 求一个正交相似变换

矩阵P,将A化为对角矩阵;(3)判断f是否是正定二次型。

9、(8分) 设A、B为 $m \times n$ 矩阵,证明A与B等价的充要条件为R(A) = R(B)。

10、(8分)设 A 是 n 阶方阵,I 是 n 阶单位矩阵,A+I 可逆,且 $f(A)=(I-A)(I+A)^{-1}$,证明(1) (I+f(A))(I+A)=2I;(2) f(f(A))=A