Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 763 572 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

= US 5,821,373

(43) Veroffentlichungstag

19.03.1997 Patentblatt 1997/12

(51) Int Cl.6: C09B 67/22, C09B 67/48, C08K 5/3415 // C09B57/00

(21) Armekienummer. 96810600.5

(22) Armeldetag 10.09.1996

(84) Benannte Vertragsstaaten: CH DE FR GB LI

(30) Proritat 18 09:1995 CH 2630/95

(71) Anmelder Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)

(72) Erfinder:

Hao, Zhimin 1723 Marly (CH)

 Wallquist, Olof 1723 Marly (CH)

Feste Lösungen von 1,4-Diketopyrrolopyrrolen (54)

Feste Losungen bestehend aus einem Pyrrolopyrrol der Formel (57)

(I)

und

a) einem Pyrrolopyrrol der Formel

(Forts. nächste Selte)

worin A und B, unabhängig voneinander für eine Gruppe der Formel

oder

$$- \underbrace{+}_{R_6}^{R_5} G - \underbrace{+}_{R_3}^{R_4}$$

stehen, oder

b) einem Chinacridon der Formel

worin R_8 Wasserstoff, Halogen, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy ist im jeweiligen Mischverhältnis von I:II oder I:III von 20-90 Gew.%:80-10 Gew.%.

Für die Bedeutung der Substituenten R₁-R₆ und G wird auf Anspruch 1 verweisen.

Die neuen festen Lösungen eignen sich ausgezeichnet zum Pigmentieren von hochmolekularem organischem Material

Beschreibung

5

15

20

25

30

Die vorliegende Erfindung betrifft neue, einphasige feste Lösungen aus 3,6-Bis(biphenyl-4-yl)-2,5-dihydro-pyrrolo [3.4-c]pyrrol-1.4-dion und einem Chinacridon oder einem anderen Pyrrolopyrrol, sowie ihre Herstellung und ihre Ver-

Aus den US-Palenten 4 783 540 und 4 810 304 ist bekannt, dass beim Mischen zweier verschiedener 1,4-Diketopyrrolopyrroletzw einem 1.4-Diketopyrrolopyrrol mit einem Chinacridon und nachfolgender Behandlung, z.B. durch Knoten Mahlen oder Umfallen, feste Lösungen erhalten werden können. Die festen Lösungen sind durch ihre Röntgenbeugungsdiagramme charakterisiert, wobei sich die Röntgenbeugungsdiagramme der festen Lösungen von der Summe der Rontgenbeugungsdiagramme der Einzelkomponenten unterscheiden. Es ist allerdings festgestellt worden, dass es sich bei den dort beschriebenen Produkten um mehrphasige feste Lösungen handelt, d.h. die entsprechenden Rontgenbeugungsdiagramme weisen ausser den neuen Linien der festen Lösung auch noch Linien der einen und/ oder der anderen Einzelkomponente auf.

Es ist nun gefunden worden, dass in Anwesenheit von 3,6-Bis-(biphenyl-4-yl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1.4-dion (bisher in der Patentliteratur als 1.4-Diketo-3,6-bis-(biphenyl-4-yl)-pyrrolo[3,4-c]pyrrol bezeichnet) sich überraschenderweise andere Pyrrolopyrrole und Chinacridone in dessen Kristallgitter (Wirtsgitter) als Gast unter Bildung einer einphasigen lesten Losung einlagem. Die erhaltene feste Lösung besitzt demnach dasselbe Kristallgitter wie dasjenige des 3 6-B s (biphenyl-4-yl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion und die entsprechenden Röntgenbeugungsdiagramme sind praktisch identisch.

Durch die Bildung solcher festen Lösungen können sehr interessante und vorteilhafte Nuancenverschiebungen erzielt weiden ohne die guten Pigmenteigenschaften des bereits bewährten 3,6-Bis-(biphenyl-4-yl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1 4-dions zu beeinträchtigen.

Die vorliegende Erlindung betrifft demnach feste Lösungen bestehend aus einem Pyrrolopyrrol der Formel

a) einem Pyrrolopyrrol der Formel

55

50

und

worin A und B, unabhängig voneinander für eine Gruppe der Formel

N N N O oder
$$R_5$$
 R_6 R_6

stehen, worin

5

10

35

40

45

50

55

 R_1 und R_2 unabhängig voneinander Wasserstoff, Halogen, C_1 - C_{18} -ACyD, C_1 - C_{18} -Alkoxy, C_1 - C_{18} -Alkoxycarbonyl, C_1 - C_{18} -Alkylamino, C_1 - C_{18} -Alkylaminocarbonyl, -CN, -NO₂, Trifluormethyl, C_5 - C_6 -Cycloalkyl, -C=N-(C_1 - C_{18} -Alkyl),

$$-C=N$$
 R_4

Imidazolyl, Pyrazolyl, Triazolyl, Piperazinyl, Pyrrolyl, Oxazolyl, Benzoxazolyl, Benzthiazolyl, Benzimidazolyl, Morpholinyl. Piperidinyl oder Pyrrolidinyl bedeuten,

G -CH₂-, -CH(CH₃)-, -C(CH₃)₂-, -CH=N-, -N=N-, -O-, -S-, -SO-, -SO₂-, -CONH- oder -NR₇- ist,

 R_3 und R_4 unabhängig voneinander Wasserstoff, Halogen, C_1 - C_6 -Alkyl, C_1 - C_{18} Alkoxy oder -CN sind, R_5 und R_6 unabhängig voneinander Wasserstoff, Halogen oder C_1 - C_6 -Alkyl und R_7 Wasserstoff oder C_1 - C_6 -Alkyl bedeuten.

oder

b) einem Chinacridon der Formel

10

20

5

worin R₈ Wasserstoff, Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy ist im jeweiligen Mischverhältnis I:II oder I:III von 20-90 Gew.%:80-10 Gew.%.

Bedeuten etwaige Substituenten Halogen, dann handelt es sich z.B. um Jod, Fluor, insbesondere Brom und bevorzugt Chlor;

bei C_1 - C_6 -Alkyl handelt es sich beispielsweise um Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Amyl, tert.-Amyl, Hexyl und bei C_1 - C_{18} -Alkyl zusätzlich z.B. um Heptyl, Octyl, 2-Ethylhexyl, Nonyl, Decyl, Dodecyl, Telradecyl, Hexadecyl oder Octadecyl;

 C_1 - C_{18} -Alkoxy bedeutet, auch in C_1 - C_{18} -Alkoxycarbonyl, wie für C_1 - C_6 -Alkoxy z.B. Methoxy, Ethoxy, n-Propoxy, Isopropoxy, Butyloxy, Hexyloxy und zusätzlich Decyloxy, Dodecyloxy, Hexadecyloxy oder Octadecyloxy;

25 C₁-C₁₈-Alkylmercapto steht beispielsweise für Methylmercapto, Ethylmercapto, Propylmercapto, Butylmercapto, Octylmercapto, Decylmercapto, Hexadecylmercapto oder Octadecylmercapto;

 C_1 - C_{18} -Alkylamino bedeutet, auch in C_1 - C_{18} -Alkylaminocarbonyl, z.B. Methylamino, Ethylamino, Propylamino, Hexadecylamino oder Octadecylamino.

 C_5 - C_6 -Cycloalkyl steht z.B. für Cyclopentyl und insbesondere für Cyclohexyl.

Bevorzugte Pyrrolopyrrole der Formel II sind solche, worin A und B unabhängig voneinander eine Gruppe der Formel

35

40

50

55

30

$$\mathbb{A}_{R_2}^{R_1}$$
, $\mathbb{A}_{R_2}^{N_1}$

45 oder

$$G \longrightarrow G$$

sind, worin

 B_1 und B_2 unabhängig voneinander Wasserstoff, Chlor, Brom, C_1 - C_4 -Alkyl, C_1 - C_6 -Alkylamino oder CN bedeuten,

G -O-, -NR₇-, -N=N- oder -SO₂- ist, R_3 und R_4 Wasserstoff und R_7 Wasserstoff, Methyl oder Ethyl bedeuten,

und insbesondere jene, worin A und B eine Gruppe der Formel

R₂

10

15

25

5

sind, worin R_1 und R_2 unabhängig voneinander Wasserstoff, Methyl, tert.-Butyl, Chlor, Brom oder CN bedeuten. R_2 ist bevorzugt Wasserstoff und A und B sind vorzugsweise gleich.

Bevorzugte Chinacridone der Formel III sind solche, worin R_B Wasserstoff, Methyl oder insbesondere Chlor ist. Die erfindungsgemässen festen Lösungen können ausgehend von physikalischen Mischungen der oben definierten Komponenten der Formeln I und II oder III nach folgenden an und für sich bekannten Verfahren hergestellt werden:

- durch Kontaktierung in polaren organischen Lösungsmitteln, bevorzugt durch Verrühren der Komponentenmischung bei Rückflusstemperatur,
 - durch alkalische Umfällung der Komponentenmischung in polaren organischen Lösungsmitteln oder durch Verrühren der Komponentenmischung in polaren organischen Lösungsmitteln in Gegenwart von Alkalialkoholaten, Alkalihydroxiden oder quaternären Ammoniumverbindungen oder
 - durch saure Umfällung, d.h. Auflösung der Komponentenmischung in Säure und Fällung der festen Lösung durch Verdünnen mit Wasser,
- durch intensive Mahlung oder Knetung der Komponentenmischung, gegebenenfalls mit anschliessender Rekristallisation in Wasser und/oder organischen Lösungsmitteln,

wobei wie z.B. in US-Patent 4 783 540 detailliert beschrieben vorgegangen werden kann.

Eine weitere neue Herstellungsmethode besteht darin, dass die Verbindungen der Formeln I und II oder III nach an sich bekannten Methoden mit einem Dicarbonat der Formel

35

oder mit einem Trihaloessigsäureester der Formel

40

$$(R_9)_3C-D$$
 (V),

oder mit einem Azid der Formel

45

50

oder mit einem Carbonat der Formel

D-OR₁₀

(VII),

oder mit einem Alkylideniminooxyameisensäureester der Formel

$$\begin{array}{c}
O \\
\parallel \\
D-OCO-N=C
\end{array}$$

$$\begin{array}{c}
R_{11} \\
R_{12}
\end{array}$$
(VIII),

worin D eine Gruppe der Formel

10

15

5

$$\begin{array}{c}
O \\
\parallel \\
-CO \\
-C$$

20

25

30

bedeutet.

R₉ Chlor Fluor oder Brom, R₁₀ C₁-C₄-Alkyl oder unsubstituiertes oder durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder -CN substituiertes Phenyl, R₁₁ -CN oder -COOR₁₀ und R₁₂ unsubstituiertes oder durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder -CN substituiertes Phenyl sind und R₁₃, R₁₄ und R₁₅ unabhängig voneinander Wasserstoff, C₁-C₆-Alkyl oder C₂-C₅-Alkenyl bedeuten, wobei mindestens zwei von R₁₃, R₁₄ und R₁₅ Alkyl oder Alkenyl sein müssen, im Molverhaltnis 1.2 in einem aprotischen organischen Lösungsmittel in Gegenwart einer Base als Katalysator, zu löslichen Verbindungen der Formeln

35

40

45

50

5

10

15

20

25

30

oder

35

40

45

50

55

umgesetzt werden,

die Verbindungen IX und X oder die Verbindungen IX und XI entweder

i) nach allgemein bekannten Methoden in Pulverform im Molverhältnis 1:1 homogen vermischt werden oder

b

(XI)

ii) nach allgemein bekannten Methoden in Pulverform im Molverhältnis 1:1 homogen vermischt werden und das Gemisch in einem Lösungsmittel gelöst wird oder

iii) zuerst gelöst werden und in Lösung im Mischverhältnis 1:1 vermischt werden

und danach

 aus dem trockenen oder gelösten Gemisch durch thermische, photolytische oder chemische Behandlung die gew
 ünschten Mischkristalle ausgef
 ällt werden.

R₁₃, R₁₄ und R₁₅ bedeuten als C₂-C₅Alkenyl z.B. Vinyl, Allyl, Methallyl, n-But-2-enyl, 2-Methyl-prop-2-enyl oder n-Pent-2-enyl.

Bevorzugt sind R_{13} und R_{15} Methyl und R_{14} C_1 - C_6 -Alkyl und insbesondere Methyl.

Bevorzugt werden die Verbindungen der Formeln I und II oder III mit einem Dicarbonat der Formel IV umgesetzt Die Dicarbonate der Formel IV, Trihaloessigsäureester der Formel V, Azide der Formel VI, Carbonate der Formel VII und Alkylideniminooxyameisensäureester der Formel VIII sind bekannte Substanzen. Sollten einige noch neu sein, so können sie in Analogie zu allgemein bekannten Methoden hergestellt werden.

Geeignete aprotische organische Lösungsmittel sind beispielsweise Ether, wie Tetrahydrofuran oder Dioxan, oder Glykoläther, wie Ethylenglykol-methyläther, Ethylenglykolethylether, Diethylenglykol-monomethylether oder Diethylenglykol-monomethylether, ferner dipolar-aprotische Lösungsmittel, wie Acetonitril, Benzonitril, N,N-Dimethylformamid, N,N-Dimethylacetamid, Nitrobenzol, N-Methylpyrrolidon, halogenierte aliphatische oder aromatische Kohlenwasserstoffe, wie Trichlorethan, Benzol oder durch Alkyl, Alkoxy oder Halogen substituiertes Benzol, wie Toluol, Xylol, Anisol oder Chlorbenzol oder aromatische N-Heterocyclen, wie Pyridin, Picolin oder Chinolin. Bevorzugte Lösungsmittel sind z.B. Tetrahydrofuran, N,N-Dimethylformamid, N-Methylpyrrolidon. Die genannten Lösungsmittel können auch als Mischungen eingesetzt werden. Zweckmässigerweise verwendet man 5-20 Gew.-Teile Lösungsmittel auf 1 Gew.-Teil der Reaktionsteilnehmer.

Als Katalysator geeignete Basen sind beispielsweise die Alkalimetalle selbst, wie Lithium, Natrium oder Kalium sowie deren Hydroxide und Carbonate, oder Alkaliamide, wie Lithium-, Natrium- oder Kaliumamid oder Alkalihydride, wie Lithium-, Natrium- oder Kaliumhydrid, oder Erdalkali- oder Alkalialkoholate, die sich insbesondere von primären, sekundären oder tertiären aliphatischen Alkoholen mit 1 bis 10 C-Atomen ableiten, wie z.B. Lithium-, Natrium- oder Kaliummethylat, -ethylat, -n-propylat, -isopropylat, -n-butylat, -sek.-butylat, -tert.-butylat, -2-methyl-2-butylat, -2-methyl-2-pentylat, -3-methyl-3-pentylat, und ferner organische aliphatische, aromatische oder heterocyclische N-Basen, darunter z.B. Diazabicyclooctan, Diazabicycloundecen und 4-Dimethylaminopyridin und Trialkylamine, wie z.B. Trimethyl- oder Triethylamin. Man kann aber auch ein Gemisch der genannten Basen verwenden.

Bevorzugt werden die organischen N-Basen, wie z.B. Diazabicyclooctan, Diazabicycloundecen und insbesondere 4-Dimethylaminopyridin.

Die Umsetzung wird zweckmässig bei Temperaturen zwischen 10 und 100°C, insbesondere zwischen 18 und 40°C, d.h. vorzugsweise bei Zimmertemperatur, durchgeführt und zwar bei atmosphärischem Druck.

Die Verbindungen der Formel I, II oder III werden entweder nach allgemein bekannten Methoden in Pulverform im gewünschten Verhältnis vermischt und das Gemisch im Lösungsmittel gelöst oder sie werden zuerst gelöst und die Lösungen im gewünschten Verhältnis vermischt.

Es können zweckmässig folgende Lösungsmittel eingesetzt werden: Ether, wie Tetrahydrofuran oder Dioxan, oder Glykoläther, wie Ethylenglykol-methyläther, Ethylenglykol-ethylether, Diethylenglykol-monomethylether oder Diethylenglykol-monomethylether, Polyalkohole, wie Polyethylenglykol, Ketone, wie Aceton, Ethylmethylketon, Isobutylmethylketon oder Cyclohexanon, femer dipolar-aprotische Lösungsmittel, wie Acetonitril, Benzonitril, N,N-Dimethylformamid, N,N-Dimethylacetamid, Nitrobenzol, N-Methylpyrrolidon, Dimethylsulfoxyd, halogenierte aliphatische oder aromatische Kohlenwasserstoffe, wie Trichlorethan, Dichlormethan, Chloroform, Benzol oder durch Alkyl, Alkoxy oder Halogen substituiertes Benzol, wie Toluol, Xylol, Anisol oder Chlorbenzol, aromatische N-Heterocyclen, wie Pyridin, Picolin oder Chinolin oder hochsiedende Lösungsmittel, wie Decalin, n-Dodecan oder Kerosin oder Gemische derselben. Bevorzugte Lösungsmittel sind z.B. Toluol, Diphenylether, N-Methylpyrrolidon, N,N-Dimethylformamid, Dimethylsulfoxyd und Chinolin.

Die Konzentration der Verbindungen der Formel I, II bzw. III im Lösungsmittel oder Lösungsmittelsystem kann je nach Lösungsmittel stark variieren. Zweckmässig setzt man 0,1 bis 20 Gew.% Verbindung der Formel I, II, bzw. III bezogen auf die gesamte Lösung und vorzugsweise 0,2 bis 5 Gew.% ein.

Aus dem trockenen oder gelösten Gemisch können die festen Lösungen bestehend aus den Verbindungen der Formein I, II oder III auf einfachste Weise erhalten werden, sei es durch a) thermische, d.h. z.B. durch Aufheizen auf Temperaturen zwischen 50 und 400°C, bevorzugt zwischen 100 und 200°C oder Laserbestrahlung, b) photolytische, d.h. z.B. durch Belichtung mit Wellenlängen unter 375 nm, oder c) chemische, d.h. z.B. mit organischen oder anorganischen Säuren, wie beispielsweise Essig-, Toluolsulfon-, Trifluoressig-, Salz- oder Schwefelsäure, Behandlung des trockenen oder gelösten Gemisches und Isolierung des erhaltenen Produktes nach üblichen Methoden.

Das Mischverhältnis zwischen den die erfindungsgemässen festen Lösungen bildenden Komponenten ist bevorzugt 60-90 Gew.% Pyrrolopyrrol der Formel I zu 40-10 Gew.% Pyrrolopyrrol der Formel II bzw. 80-90 Gew.% Pyrrolopyrrol der Formel II zu 20-10 Gew.% Chinacridon der Formel III.

Ist eine Rekristallisation bzw. thermische Behandlung der erfindungsgemässen festen Lösungen nötig so geschieht sie nach für Pigmente üblichen Methoden. Im allgemeinen handelt es sich um eine thermische Nachbehandlung in

5

20

25

30

40

Wasser oder in einem organischen Lösungsmittel, gegebenenfalls unter Druck. Vorzugsweise verwendet man organische Lösungsmittel, z.B. durch Halogenatome, Alkyl- oder Nitrogruppen substituierte Benzole, wie Xylole, Chlorbenzol, o-Dichlorbenzol oder Nitrobenzol, sowie Pyridinbasen, wie Pyridin, Picolin oder Chinolin, ferner Ketone, wie Cyclohexanon, Alkohole, wie Isopropanol, Butanole oder Pentanole, Ether, wie Ethylenglykolmonomethyl- oder -monoethylether, Amide, wie Dimethylformamid oder N-Methylpyrrolidon, sowie Dimethylsulfoxid oder Sulfolan. Man kann die Nachbehandlung auch in Wasser, gegebenenfalls unter Druck, in Gegenwart von organischen Lösungsmitteln und/ oder mit Zusatz von oberflächenaktiven Substanzen durchführen.

Die erfindungsgemässen festen Lösungen können als Pigmente zum Färben von hochmolekularem organischem Material verwendet werden.

Hochmolekulare organische Materialien, die mit den erfindungsgemässen festen Lösungen gefärbt bzw. pigmentiert werden können, sind z.B. Celluloseether und -ester, wie Ethylcellulose, Nitrocellulose, Celluloseacetat, Cellulosebutyrat, natürliche Harze oder Kunstharze, wie Polymerisationsharze oder Kondensationsharze, wie Aminoplaste, insbesondere Hamstoff- und Melamin-Formaldehydharze, Alkydharze, Phenoplaste, Polycarbonate, Polyolefine, Polystyrol, Polyvinylchlorid, Polyamide, Polyurethane, Polyester, ABS, Polyphenylenoxide, Gummi, Casein, Silikon und Silikonharze, einzeln oder in Mischungen.

Die erwähnten hochmolekularen organischen Verbindungen können einzeln oder in Gemischen als plastische Massen, Schmelzen oder in Form von Spinnlösungen, Lacken, Anstrichstoffen oder Druckfarben vorliegen. Je nach Verwendungszweck erweist es sich als vorteilhaft, die erfindungsgemässen festen Lösungen als Toner oder in Form von Präparaten einzusetzen.

Bezogen auf das zu pigmentierende hochmolekulare organische Material kann man die erfindungsgemässen festen Lösungen in einer Menge von 0,01 bis 30 Gew.%, vorzugsweise von 0,1 bis 10 Gew. %, einsetzen.

Die Pigmentierung der hochmolekularen organischen Substanzen mit den erfindungsgemässen festen Lösungen erfolgt beispielsweise derart, dass man solche feste Lösungen gegebenenfalls in Form von Masterbatches diesen Substraten unter Verwendung von Walzwerken, Misch- oder Mahlapparaten zumischt. Das pigmentierte Material wird hierauf nach an sich bekannten Verfahren, wie Kalandrieren, Pressen, Strangpressen, Streichen, Giessen oder Spritzgiessen, in die gewünschte endgültige Form gebracht. Oft ist es erwünscht, zur Herstellung von nicht starren Formlingen oder zur Verringerung ihrer Sprödigkeit den hochmolekularen Verbindungen vor der Verformung sogenannte Weichmacher einzuverleiben. Als solche können z.B. Ester der Phosphorsäure, Phthalsäure oder Sebacinsäure dienen. Die Weichmacher können vor oder nach der Einverleibung der erfindungsgemässen festen Lösungen in die Polymeren eingearbeitet werden. Zwecks Erzielung verschiedener Farbtöne ist es ferner möglich, den hochmolekularen organischen Stoffen neben den erfindungsgemässen festen Lösungen noch Füllstoffe bzw. andere farbgebende Bestandteile, wie Weiss-, Bunt- oder Schwarzpigmente, in beliebigen Mengen zuzufügen.

Zum Pigmentieren von Lacken, Anstrichstoffen und Druckfarben werden die hochmolekularen organischen Materialien und die erfindungsgemässen festen Lösungen gegebenenfalls zusammen mit Zusatzstoffen, wie Füllmitteln, anderen Pigmenten, Siccativen oder Weichmachern, in einem gemeinsamen organischen Lösungsmittel oder Lösungsmittelgemisch fein dispergiert bzw. gelöst. Man kann dabei so verfahren, dass man die einzelnen Komponenten für sich oder auch mehrere gemeinsam dispergiert bzw. löst, und erst hierauf alle Komponenten zusammenbringt.

Besonders geeignet sind die erfindungsgemässen festen Lösungen zum Einfärben von Kunststoffen, insbesondere Polyvinylchlorid und Polyolefinen, und Lacken, insbesondere Automobillacken.

In Färbungen, beispielsweise von Polyvinylchlorid oder Polyolefinen, zeichnen sich sowohl die erfindungsgemässen festen Lösungen durch gute allgemeine Pigmenteigenschaften, wie gute Dispergierbarkeit, hohe Farbstärke und Reinheit, gute Migrations-, Hitze-, Licht- und Wetterbeständigkeit sowie gute Deckkraft aus.

Die nachfolgenden Beispiele erläutem die Erfindung.

45 <u>Beispiel 1a)</u>: (Herstellung des löslichen Diketopyrrolopyrrols)

Einer Mischung aus 14,75 g (0,0512 Mol) 3,6-Diphenyl-2,5-dihydro-pyrrolo[3,4-c]pyrrol1,4-dion und 27,94 g (0,128 Mol) Di-tert.-butyl-dicarbonat in 500 ml Tetrahydrofuran werden 3,23 g (0,0264 Mol) 4-Dimethylaminopyridin zugegeben. Die erhaltene rote Suspension wird 2 Stunden bei Raumtemperatur unter Ausschluss von atmosphärischer Feuchtigkeit gerührt. Das Lösungsmittel wird bei vermindertem Druck abdestilliert. Der gelbe Rückstand wird mit Methanol gewaschen und im Vakuum bei Raumtemperatur getrocknet. Man erhält 23,8 g (95 % d.Th.) N,N-Di-tert.-butoxycarbonyl-3,6-diphenyl-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion.

	Analyse	С	Н	N
	Ber.:	68,84 %	5,78 %	5,73 %
١	Gef.:	68,71 %	5,79 %	5,71 %

55

50

10

20

Beispiel 1b): (Herstellung des löslichen Diketopyrrolopyrrols)

Einer Suspension von 11,01 g (0,025 Mol) 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion in 500 ml N,N-Dimethylformamid (über Molekularsieb getrocknet) werden 1,70 g (0,014 Mol) 4-Dimethylaminopyridin und danach 13,64 g (0,062 Mol) Di-tert.-buyldicarbonat zugegeben. Das Reaktionsgemisch wird bei Raumtemperatur unter Ausschluss von atmosphärischer Feuchtigkeit gerührt. Nach 20 Stunden werden zusätzliche 13,64 g (0,062 Mol) Ditert. -butyldicarbonat zugegeben und 70 Stunden weitergerührt. Die ausgefallene Substanz wird abfiltriert, mit Methanol gewaschen und im Vakuum bei Raumtemperatur getrocknet. Man erhält 14,0 g (87 % d.Th.) eines orangen Produktes.

Analyse	С	Н	N
Ber.:	74,98 %	5,66 %	4,37 %
Gef.:	74,22 %	5,75 %	4,92 %

Beispiel 1c): (Herstellung der festen Lösung) 15

10

20

25

30

35

40

45

50

55

Einer Mischung von 0,98 g (2,0 mMol) des Produktes aus a) und 5,13 g (8,0 mMol) des Produktes aus b) wird in 200 ml Toluol unter Rühren auf 70°C aufgewärmt. Zur entstandenen Mischung werden 20,0 g (0,10 Mol) Toluol-4-sulfonsäure-monohydrat zugegeben und auf 110°C erhitzt, bei dieser Temperatur 2 Stunden gerührt und anschliessend auf Raumtemperatur abkühlen gelassen. Die gebildete feste Substanz wird abfiltriert, zuerst mit Methanol dann mit Wasser gewaschen und im Vakuum bei 80°C getrocknet. Man erhält 3,3 g (80 % d.Th.) eines roten Pulvers.

Analyse	C .	Н	N
Ber.:	80,84 %	4,52 %	6,83 %
Gef.:	81,09 %	4,31 %	6,67 %

Die vollständigen Röntgenbeugungsdiagramme werden nach üblichen Methoden mit Hilfe eines SIEMENS D 500® Röntgen-Diffractometers (CuK_{α} -Strahlung) bestimmt.

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,6969	3,89	100
11,1340	7,93	16
7,3831	11,98	17
4,9988	17,73	75
4,7213	18,78	48
4,4016	20,16	16
3,6334	24,48	13
3,4269	25,98	23
3,3602	26,51	51 -
3,2202	27,68	28
3,1623	28,20	17
3,0660	29,10	14

gekennzeichnet.

Das Röntgenbeugungsdiagramm der das Wirtgitter liefernden Verbindung 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion ist durch folgende Beugungslinien

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,1785	3,98	51
11,0008	8,03	10
7,3287	12,07	12
4,9809	17,79	100
4,7273	18,76	59

(fortgesetzt)

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (2 0)	relative Intensität (%)
4,3773	20,27	11
3,6218	24,56	14
3,4124	26,09	29
3,3473	26,61	85
3,2073	27,79	39
3,1654	28,17	17
3,0553	29,21	17

gekennzeichnet. Der Vergleich zeigt, dass die beiden Röntgenbeugungsdiagramme praktisch übereinstimmen.

Beispiel 2:

5

10

15

20

25

30

35

40

45

50

Eine Mischung von 0,80 g (2,24 mMol) 3,6-Bis-(4-chlorphenyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion, 2,24 g (5,08 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion und 0,93 g (16,58 mMol) Kaliumhydroxid wird in 65 ml Dimethylsulfoxid unter Rühren auf 50°C erhitzt und bei dieser Temperatur 2 Stunden gerührt. Die erhaltene violette Lösung wird in eine Mischung von 150 ml Wasser, 60 ml Methanol und 0,91 ml (16,63 mMol) konz. Schwefelsäure bei 20°C geschüttet und dann bei Raumtemperatur 6 Stunden gerührt. Das ausgefallene Pigment wird abfiltriert, zuerst mit Methanol, dann mit Wasser gewaschen und im Vakuum bei 60°C getrocknet. Man erhält 2,64 g (87 % d. Th.) eines roten Pulvers.

Analyse	С	Н	Z	CI
Ber.:	76,31 %	4,12 %	6,74 %	5,12 %
Gef.:	74,79 %	4,29 %	6,57 %	5,22 %

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,1548	3,99	100
10,9616	8,06	16
7,3090	12,10	24
4,9515	17,90	75
4,7245	18,77	58
4,3778	20,27	25
3,6162	24,60	26
3,3633	26,48	54
3,3416	26,66	62
3,1908	27,94	41
3,1602	28,22	38

gekennzeichnet.

Beispiel 3:

Ersetzt man bei gleicher Arbeitsweise, wie in Beispiel 2 beschrieben, die entsprechenden Pigmente mit 2,9-Dichlorchinacridon (1,54 mMol) und 3,6-Bis-(4-biphenyly!)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion (6,02 mmol) um, so erhält man 2,98 g (92 % d.Th.) eines roten Pulvers.

Analyse	С	Н	N	CI
Ber.:	78,46 %	4,23 %	6,53 %	3,31 %
Gef.:	76,92 %	4,31 %	6,35 %	3,32 %

EP 0 763 572 A2

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,1808	3,81	100
11,0967	7,96	16
7,3487	12,03	24
5.0351	17,60	56
4,9901	17,76	62
4,7163	18,80	55
4,4141	20,10	27
3,3733	26,40	62
3.3579	26,52	63
3,2247	27,64	48
3,2065	27,80	43

gekennzeichnet.

20 Beispiel 4:

5

10

15

25

30

35

40

45

50

Eine Mischung aus 1,43 g (4 mMol) 3,6-Bis-(4-Chlorphenyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion, 2,64 g (6 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion und 1,68g Kaliumhydroxid in 70 ml Dimethylsulfoxid wird auf 60°C aufgewärmt und bei dieser Temperatur 2,5 Stunden gerührt. Danach wird das Reaktionsgemisch in eine Lösung von 0,81 ml konz. Schwefelsäure und 240 ml Wasser eingetragen und 3 Stunden bei 60°C gerührt. Die rote Suspension wird abfiltriert und der Rückstand mit Methanol, dann Wasser gewaschen und im Vakuum bei 60°C getrocknet. Man erhält 3,5 g (84% d. Th.) eines roten Pulvers.

Analyse:	С	н	N	CI
Ber.:	73,29%		6,96%	7,94%
Gef.:	74,47%		6,87%	6;93%

Das Röntgenbeugungsdiagramm ist durch tolgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,544	3,92	100
11,052	7,99	. 20
7,359	12,02	28
4,974	17,82	96
4,795	18,49	.73
4,386	20,23	28
3,624	24,54	33
3,413	26,09	46
3,349	26,59	75
3,206	27,80	54
3,165	28,17	48
2,911	30,69	22

Beispie15:

Eine Mischung aus 5,7 g (16 mMol) 3,6-Bis-(4-Chlorphenyl)-2,5-dihydropyrrolo[3,4-c]pyrrol- 1,4-dion, 10,6 g (24 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion und 6,73 g Kaliumhydroxid in 250 ml tert.-Amylalkohol wird auf 100°C erhitzt und bei dieser Temperatur 1 Stunde gerührt. Danach wird das Reaktionsgemisch auf 60°C gekühlt, in eine auf 0°C gekühlte Lösung von 170 ml Methanol und 170 ml Wasser eingetragen und 2 Stunden bei 0°C weitergerührt. Die rote Suspension wird abfiltriert und der Rückstand mit Methanol sowie Wasser gewaschen

und im Vakuum bei 80°C getrocknet. Man erhält 14,8 g (90,8 % d.Th.) eines roten Pulvers.

Analyse:	С	н	2	CI
Ber.:	73,29%	3,88%	6,96%	7,94%
Gef.:	73,48%	3,89%	6,70%	7,21%

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,365	3,95	100
11,041	8,00	21
7,404	11,94	30
4,912	18,05	63
4,734	18,73	55
4,436	20,00	29
3,617	24,59	28
3,462	25,71	30
3,339	26,68	46
3,165	28,17	39

Beispiel 6:

5

10

15

20

25

30

35

40

45

50

55

Eine Mischung aus 2,14 g (6 mMol) 3,6-Bis-(4-Chlorphenyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion, 10,57 g (24 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion und 5,05 g Kaliumhydroxid in 200 ml tert.-Amylalkohol wird auf 100°C erhitzt und bei dieser Temperatur 1 Stunde gerührt. Danach wird das Reaktionsgemisch auf 80°C gekühlt, in eine auf 0°C gekühlte Lösung von 2,64 ml konz. Schwefelsäure, 300 ml Methanol und 300 ml Wasser eingetragen und 2 Stunden bei 0°C weitergerührt. Die rote Suspension wird abfiltriert und der Rückstand mit Methanol sowie Wasser gewaschen und im Vakuum bei 80°C getrocknet. Man erhält 11,85 g (93 % d.Th.) eines roten Pulvers.

Analyse:	С	Н	N	C
Ber.:	77,55%	4,22%	6,66%	3,97%
Gef.:	77,52%	4,41%	6,44%	3,44%

Das Röntgenbeugungsdiagramm ist durch tolgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,785	3,71	100
11,421	7,74	13
7,573	11,68	21
4,968	17,84	54
4,774	18,57	45
4,704	18,85	38
4,505	19,69	22
3,647	24,39	16
3,449	25,81	26
3,354	26,55	41
3,185	27,99	23

Beispiel 7:

Ersetzt man bei gleicher Arbeitsweise, wie in Beispiel 6 beschrieben, die entsprechenden Pigmente jeweils mit 2,9-Dichlorchinacridon (6 mMol) und 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4 -dion (24 mMol) um,

so crhall man 12 6 g (98 % d.Th.) eines roten Pulvers.

Analyse :	С	Н	N	CI
Ber.:	78,04%	4,19%	6,56%	3,72%
Gef.:	76,32%	4,13%	6,24%	3,40%

Drts Rontgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Nct/cbcnenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,522	3,75	100
11,344	7,79	18
7,555	11,70	28
4,954	17,89	66
4,724	18,77	50
4,523	19,61	29
3.350	26,59	50
3,249	27,43	50
3.023	29,52	24

Beispiel 8

5

10

15

20

25

30

35

40

45

50

Eine Mischung aus 0.76 g (2 mMol) 2,9-Dichlorchinacridon, 3,52 g (8 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3.4-c]cyrrol-1 4-diòn und 120 ml Dowtherm®A* wird auf 250°C erhitzt und bei dieser Temperatur 4 Stunden gerührt. Danach wird das Reaktionsgemisch auf 80°C gekühlt. Die rote Suspension wird abfiltriert und der Rückstand mit Methanol dann Wasser gewaschen und im Vakuum bei 80°C getrocknet. Man erhält 3,85 g (90 % d.Th.) eines roten Pulvers

I	Analyse	С	Н	N	CI
	Ber.:	78,04%	4,19%	6,56%	3,72%
	Gef.:	77,68%	4,07%	6,40%	3,42%

Das Rontgenbougungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (2Θ)	relative Intensität (%)
22,078	3,99	100
10,990	8,04	19 .
7.309	12,10	21
4,980	17,80	64
4,736	18,72	37
4.373	20,29	18
3.622	24,56	13
3.413	26,08	17
3.349	26,60	50
3,211	27,77	44
3,035	29,41	12

Beispiel 9:

Eine Mischung aus 1,09 g (3 mMol) 3-Phenyl-6-(4-biphenyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion, 2,64 g (6 mMol) 3,6-Bis-(4-biphenylyl)-2,5-dihydropyrrolo[3,4-c]pyrrol-1,4-dion und 1,51g Kaliumhydroxid in 60 ml Dimethylsulfoxid wird auf 50°C aufgewärmt und bei dieser Temperatur 4,5 Stunden gerührt. Danach wird das Reaktionsgemisch in eine Lösung von 60 ml Methanol und 240 ml Wasser eingetragen und 4 Stunden bei Raumtemperatur gerührt. Die *Dowherm® A = Biphenyl-Diphenylether-Gemisch

rote Suspension wird abfiltriert und der Rückstand mit Methanol, dann Wasser gewaschen und im Vakuum bei 60° getrocknet. Man erhält 3,4 g (91 % d.Th.) eines roten Pulvers.

Analyse :	O	Ŧ	N
Ber.:	80,90%	4,53%	6,80%
Gef.:	79,52%	4,60%	6,47%

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,595	3,74	100
11,513	7,67	13
7,450	11,87	20
5,015	17,67	49
4,759	18,63	51
4,505	19,69	29
3,638	24,45	17
3,347	26,61	57
3,221	27,67	29
3,055	29,21	15

Beispiel 10.

5

10

15

20

25

30

35

40

45

50

55

Eine Mischung aus 0,42 g (1,46 mMol) 3.6-Diphenyl-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion, 2,58 g (5,86 mMol) 3.6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4-dion und 0,91 g Kaliumhydroxid in 90 ml Dimethylsulfoxid wird auf 50°C aufgewärmt und bei dieser Temperatur 2 Stunden gerührt. Danach wird das Reaktionsgemisch in eine Losung von 0.88 ml konz. Schwefelsäure, 90 ml Methanol und 180 ml Wasser eingetragen und 3 Stunden bei 60°C geruhrt Die rote Suspension wird abfiltriert und der Rückstand mit Methanol, dann Wasser gewaschen und im Vakuum bei 60°C getrocknet. Man erhält 2,5 g (82 % d.Th.) eines roten Pulvers.

Analyse :	O	H	N
Ber.:	80,84%	4,52%	6,86%
Gef.:	79,95%	4,72%	6,71%

Das Rontgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,385	3,77	100
11,069	7,98	15
7,410	11,93	24
4,905	18,07	65
4,769	18,59	60
3,719	23,91	19
3,354	26,55	61
3,163	28,19	30

Beispiel 11

Ersetzt man bei gleicher Arbeitsweise, wie in Beispiel 9 beschrieben, die entsprechenden Pigmente jeweils mit 2,9-Dimethylchinacridon (2 mMol) und 3,6-Bis-(4-biphenylyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrol-1,4 -dion (8 mMol) um, so erhält man 3,8 g (91 % d.Th.) eines roten Pulvers.

Analyse :	С	Н	N
Ber.:	80,97%	4,61%	6,74%
Gef.:	79,50%	4,75%	6,35%

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
23,202	3,80	100
11,115	7,95	15
7,475	11,83	28
4.993	17,75	59
4,734	18,73	59
3,673	24,21	23
3,347	26,62	67
3,154	28,27	30
3,049	29,27	24

Beispiel 12:

5

10

15

20

25

30

35

40

45

50

Verlährt man analog wie in Beispiel 8 beschrieben, verwendet aber anstelle von 0,76 g 2,9-Dichlorchinacridon 0,68 g 2,9-Dimethylchinacridon, so erhält man 3,9 g (93 % d.Th.) eines roten Pulvers.

Analyse :	С	н	N.
Ber.:	80,97% 80,60%	4,61% 4,50%	6,74% 6,39%
Gef.:	80,00%	4,5078	0,0070

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,392	3,94	100
11,064	7,98	18
7,344	12,04	20
4,993	17,75	71 ·
4,758	18,63	42
4,387	20,22	17
3,629	24,51	14
3,418	26,05	20
3,355	26,55	51
3 215	27,72	27
3,165	28,17	16
3,048	29,28	15

Beispiel 13:

Ersetzt man die im Beispiel 8 verwendeten 0,76 g 2,9-Dichlorchinacridon durch 0,62 g Chinacridon, so erhält man nach analoger Aufarbeitung gemäss Beispiel 8 ein rotes Pulver (3,8 g, 92 % d.Th.).

Analyse :	С	Н	Ν
Ber.:	80,82%	4,43%	6,88%
Gef.:	80,82%	4,34%	6,53%

Das Röntgenbeugungsdiagramm ist durch folgende Beugungslinien gekennzeichnet:

Netzebenenabstände (d-Werte in Å)	doppelte Glanzwinkel (20)	relative Intensität (%)
22,208	3,98	100
11,005	8,03	17
4,985	17,78	56
4,739	⁻ 18,71	33
4,378	20,27	15
3,624	24,54	10
3,410	26,11	17
3,350	26,59	44
3,211	27,76	23
3,161	28,21	12
3,053	29,23	11

Beispiel 14:

5

10

15

20

25

30

35

40

55

7,5 g der lesten Lösung aus Beispiel 1, 98,9 g CAB-Lösung bestehend aus

41,0 g	Celluloseacetobutyrat ®CAB 531.1, 20 %ig in Butanol/Xylol 2:1 (Eastman Chem.)
1,5 g	Zirkonium Octoat,
18,5 g	®SOLVESSO 150 (aromatische Kohlenwasserstoffe, ESSO),
21,5 g	Butylacetat und
17,5 g	Xylol,

36,5 g Polyesterharz ®DYNAPOL H700 (Dynamit Nobel), 4,6 g Melaminharz MAPRENAL MF650 (Hoechst) und 2,5 g Dispergiermitel ®DISPERBYK 160 (Byk Chemie) werden zusammen während 90 Minuten mit einer Schüttelmaschine dispergiert (Total Lack 150 g; 5 % Pigment).

27,69 g des so erhaltenen Volltonlacks werden für die Base-coat-Lackierung mit 17,31 g Al-Stammlösung (8 %ig) bestehend aus

12,65 g	®SILBERLINE SS 3334AR, 60 %ig (Silberline Ltd.)
56,33 g	CAB Lösung (Zusammensetzung wie oben)
20,81 g	Polyesterharz ®DYNAPOL H700
2,60 g	Melaminharz ®MAPRENAL MF650
7,59 g	®SOLVESSO 150

gemischt und auf ein Aluminiumblech spritzappliziert (Nassfilm ca. 20 μ m). Nach einer Abdunstzeit von 30 Minuten bei Raumtemperatur wird ein TSA-Lack bestehend aus

	29,60 g	Acrylharz @URACRON 2263 XB, 50 %ig in Xylol/Butanol (Chem. Fabrik Schweizerhalle),
45	5,80 g	Melaminharz ®CYMEL 327, 90 %ig in Isobutanol,
	2,75 g	Butylglycolacetat,
	5,70 g	Xyloi,
	1,65 g	n-Butanol
50	0,50 g	Siliconöl, 1 %ig in Xylol,
	3,00 g	Lichtschutzmittel @TINUVIN 900, 10 %ig in Xylol (Ciba)
	1,00 g	Lichtschutzmittel @TINUVIN 292, 10 %ig in Xylol (Ciba)

als Top-coat-Lackierung spritzappliziert (Nassfilm ca. 50 μm). Anschliessend wird der Lack nach weiteren 30 Minuten Abdunsten bei Raumtemperatur, 30 Minuten bei 130°C eingebrannt. Man erhält eine rote Lackierung mit sehr guten Beständigkeiten.

Beispiel 15:

0,6 g der festen Lösung von Beispiel 2 werden mit 67 g Polyvinylchlorid, 33 g Dioctylphthalat, 2 g Dibutylzinndilaurat und 2 g Tilandioxid vermischt und auf einem Walzenstuhl während 15 Mintuen bei 160°C zu einer dunnen Folie verarbeitet. Die so erzeugte rote PVC-Folie ist sehr farbstark, migrations- und lichtbeständig.

Beispiel 16:

5

1000 g Polypropylengranulat (®DAPLEN PT-55, Chemie LINZ) und 20 g eines 50 %-igen Pigmentpräparates, bestehend aus 10 g der festen Lösung von Beispiel 3 und 10 g Mg-Behenat, werden in einer Mischtrommel intensiv vermischt. Das so behandelte Granulat wird bei 260 bis 285°C nach dem Schmelzspinnverfahren versponnen. Man erhält rotgefärbte Fasern mit sehr guten Licht- und textilen Echtheiten.

15 Patentansprüche

1. Feste Lösungen bestehend aus einem Pyrrolopyrrol der Formel

a) einem Pyrrolopyrrol der Formel

worin A und B, unabhängig voneinander für eine Gruppe der Formel

 R_1 , R_2 , R_2 , R_2 , R_2 , R_2 , R_2

oder

5

10

15

20

35

40

45

30 stehen, worin

 $\rm R_1$ und $\rm R_2$ unabhängig voneinander Wasserstoff, Halogen, $\rm C_1\text{-}C_{18}\text{-}Alkyl, C_1\text{-}C_{18}\text{-}Alkoxy, C_1\text{-}C_{18}\text{-}Alkylmer-capto, C_1\text{-}C_{18}\text{-}Alkylamino, C_1\text{-}C_{18}\text{-}Alkoxycarbonyl, C1\text{-}C18\text{-}Alkylaminocarbonyl, -CN, -NO_2, Trifluormethyl, C_5\text{-}C_6\text{-}Cycloalkyl, -C=N-(C_1\text{-}C_{18}\text{-}Alkyl),}$

-C=N-R₃

Imidazolyl, Pyrazolyl, Triazolyl, Piperazinyl, Pyrrolyl, Oxazolyl, Benzoxazolyl, Benzthiazolyl, Benzimidazolyl, Morpholinyl, Piperidinyl oder Pyrrolidinyl bedeuten,

G -CH₂-, -CH(CH₃)-, -C(CH₃)₂-, -CH=N-, -N=N-, -O-, -S-, -SO-, -SO₂-, -CONH- oder -NR₇- ist, R₃ und R₄ unabhängig voneinander Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₁₈Alkoxy oder -CN sind, R₅ und R₆ unabhängig voneinander Wasserstoff, Halogen oder C₁-C₆-Alkyl und R₇ Wasserstoff oder C₁-C₆-Alkyl bedeuten.

50 oder

b) einem Chinacridon der Formel

$$\begin{array}{c|c} & H & O & \\ \hline & \dot{N} & \\ \hline & \dot{N} & \\ \hline & \dot{H} & \\ \end{array}$$

10

5

worin R_8 Wasserstoff, Halogen, C_1 - C_6 -Alkyl oder C_1 - C_6 -Alkoxy ist im jeweiligen Mischverhältnis I:II oder I:III von 20-90 Gew.%:B0-10 Gew.%.

 Feste Lösungen gemäss Anspruch 1, dadurch gekennzeichnet, dass sie ein Pyrrolopyrrol der Formel II enthalten, worin A und B unabhängig voneinander eine Gruppe der Formel

$$R_1$$
 R_2
 R_1
 R_2
 R_3

25

20

30

35

50

- G - R_4 R_5

sind,

worin

oder

40

 $\rm R_1$ und $\rm R_2$ unabhängig voneinander Wasserstoff, Chlor, Brom, $\rm C_1$ - $\rm C_4$ -Alkyl, $\rm C_1$ - $\rm C_6$ -Alkylamino oder CN bedeuten,

G -O-, -NR7, -N=N- oder -SO2- ist,

 ${\rm R_3}$ und ${\rm R_4}$ Wasserstoff und ${\rm R_7}$ Wasserstoff, Methyl oder Ethyl bedeuten.

 Feste Lösungen gemäss Anspruch 2, dadurch gekennzeichnet, dass sie ein Pyrrolopyrrol der Formel II enthalten, worin A und B eine Gruppe der Formel

- sind, worin R₁ und R₂ unabhängig voneinander Wasserstoff, Methyl, tert.-Butyl, Chlor, Brom oder CN bedeuten.
 - Feste Lösungen gemäss Anspruch 1, dadurch gekennzeichnet, dass sie ein Chinacridon der Formel III enthalten, worin R₈ Wasserstoff, Methyl oder Chlor ist.

 Verlahren zur Herstellung von festen Lösungen gemäss Anspruch 1 a) und b), dadurch gekennzeichnet, dass die Verbindungen der Formeln I und II oder III nach an sich bekannten Methoden mit einem Dicarbonat der Formel

oder mit einem Trihaloessigsäureester der Formel

$$(R_9)_3$$
C-D (V).

oder mit einem Azid der Formel

oder mit einem Carbonat der Formel

oder mit einem Alkylideniminooxyameisensäureester der Formel

worin D eine Gruppe der Formel

$$\begin{array}{c} O \\ \parallel \\ -CO - CH_2 - \\ \end{array} \begin{array}{c} O \\ \parallel \\ -CO - CH_2 - \\ \end{array} \begin{array}{c} O \\ \parallel \\ -CO - CH_2 - \\ \end{array} \begin{array}{c} R_{13} \\ \parallel \\ -CO - CH_2 - \\ \end{array} \begin{array}{c} O \\ \parallel \\ R_{16} \end{array}$$

O O O
$$\parallel$$
 $-CO-CH_2SO_2$ $-CH_3$ oder $-CO-N$

50 bedeutet,

55

25

30

 R_9 Chlor, Fluor oder Brom, R_{10} C_1 - C_4 -Alkyl oder unsubstituiertes oder durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder -CN substituiertes Phenyl, R_{11} -CN oder -COOR $_{10}$ und R_2 unsubstituiertes oder durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder -CN substituiertes Phenyl sind und R_3 , R_4 und R_{15} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl oder C_2 - C_5 -Alkenyl bedeuten, wobei mindestens zwei von R_{13} , R_{14} und R_{15} Alkyl oder Alkenyl sein müssen, im Molverhältnis 1:2 in einem aprotischen organischen Lösungsmittel in Gegenwart einer Base als Katalysator, zu löslichen Verbindungen der Formeln

5

10

15

20

25

oder

35

30

40

45

50

55

umgesetzt werden,

die Verbindungen IX und X oder die Verbindungen IX und XI entweder

(IX)

D

110

i) nach allgemein bekannten Methoden in Pulverform im Molverhältnis 1:1 homogen vermischt werden oder

l D

(XI)

ii) nach allgemein bekannten Methoden in Pulverform im Molverhältnis 1:1 homogen vermischt werden und das Gemisch in einem Lösungsmittel gelöst wird oder

iii) zuerst gelöst werden und in Lösung im Mischverhältnis 1:1 vermischt werden

und danach

(X)

- aus dem trockenen oder gelösten Gemisch durch thermische, photolytische oder chemische Behandlung die gewünschten Mischkristalle ausgefällt werden.
- Feste Lösungen gemäss Anspruch 1 bestehend aus einem Pyrrolopyrrol der Formel I und einem Pyrrolopyrrol der Formel II im Mischverhältnis I:II von 60-90 Gew.%:40-10 Gew.%.
 - 7. Feste Lösungen gemäss Anspruch 1 bestehend aus einem Pyrrolopyrrol der Formel I und einem Chinacridon der Formel III im Mischverhältnis I:III von 80-90 Gew.%:20-10 Gew.%.
- 10 8. Hochmolekulares organisches Material enthaltend eine feste Lösung gemäss Anspruch 1.
 - 9. Hochmolekulares organisches Material gemäss Anspruch 8, dadurch gekennzeichnet, dass es ein Kunststoff ist.
 - 10. Hochmolekulares organisches Material gemäss Anspruch 8, dadurch gekennzeichnet, dass es ein Lack ist.

15

5

20

25

30

35

40

45

50

Europäisches Patentamt
European Patent Office
Office européen des brevets

EP 0 763 572 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Verofrentlichungslag A3: 01.04.1998 Patentblatt 1998/14
- (43) Verofren:lichungstag A2: 19 03 1997 Patentblatt 1997/12
- (21) Armekienummer 96810600,5
- (22) Armeldetag 10.09.1996

(51) Int CI.⁶: **C09B 67/22**, C09B 67/48, C08K 5/3415 // C09B57/00

(11)

- (84) Benannte Vertragsstaaten: CH DE FR GB LI
- (30) Prioritat 18.09.1995 CH 2630/95
- (71) Annucler Ciba Specialty Chemicals Holding Inc. 4057 Basel (CH)
- (72) Erfinder:
 - Hao, Zhimin
 1723 Mariy (CH)
 - Wailquist, Olof 1723 Marly (CH)
- (54) Feste Lösungen von 1,4-Diketopyrrolopyrrolen
- (57) Feste Losungen bestehend aus einem Pyrrolopyrrol der Formel

(I)

und

a) einem Pyrrolopyrrol der Formel

Printed by Jouve, 75001 PARIS (FR)

(Forts. nächste Seite)

worin A und B, unabhängig voneinander für eine Gruppe der Formel

$$\begin{bmatrix} N \\ N \end{bmatrix}$$
 $\begin{bmatrix} S \\ S \end{bmatrix}$ $\begin{bmatrix} O \\ S \end{bmatrix}$

oder

$$- \underbrace{ \begin{array}{c} R_5 \\ R_6 \end{array}}$$

stehen, oder

b) einem Chinacridon der Formel

worin R₈ Wasserstoff, Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy ist im jeweiligen Mischverhältnis von I:II oder I:III von 20-90 Gew.%:80-10 Gew.%.

Für die Bedeutung der Substituenten R₁-R₆ und G wird auf Anspruch 1 verweisen.

Die neuen festen Lösungen eignen sich ausgezeichnet zum Pigmentieren von hochmolekularem organischem Material.

Europäisches EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 96 81 0600

Categorie	Kennzeichnung des Dokum		1	
	der maßgebliche	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (INLCI.6)
Y	EP 0 094 911 A (CIB * Zusammenfassung * * Seite 13, Absatz		1-10	C09B67/22 C09B67/48 C08K5/3415 //C09B57/00
Y	EP 0 256 983 A (CIB * Seite 2, Zeile 3	A GEIGY AG) - Zeile 40 *	1-10	77,003037700
D	& US 4 783 540 A			
Υ	EP 0 654 506 A (CIB * Seite 16, Zeile 1 *	A GEIGY AG) 6 - Seite 19, Zeile 30	1-5	
A	EP 0 181 290 A (CIB * Zusammenfassung *	A GEIGY AG)	1-10	
P,A	EP 0 707 049 A (CIE * Seite 4, Zeile 30 5 *	A GEIGY AG) 15 - Seite 14; Beispiel	1-10	
P,A	EP 0 704 497 A (CIE * Seite 2, Zeile 5	A GEIGY AG) - Seite 7, Zeile 50 *	1	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
Ε	EP 0 737 723 A (CIE * Zusammenfassung *		1,4	C09B
			!	
Der v	orliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recnerchenor	Abschlußdatum der Recnerche		Prules
	DEN HAAG	6.Februar 1998	Dai	uksch, H
X:vo Y:vo and A:ted	(ATEGORIE DER GENANNTEN DOK in besonderer Bedeutung allein betrach in besonderer Bedeutung in Verbindung Jeren Veröffentlichung derselben Kate- innologischer Hintergrund intschriftliche Offenbarung	E âlteres Patentido tal nach dem Anme g mit einer D : in der Anmelous gorie L : aus anderen Gri	skument, das jeck Idedatum veräffa ng angeführtes Di Inden angeführte	ntlicht worden ist okument

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.