

Roy Madpis - 319091526 Rawaa Makhoul - 316114370 Alexandra Fatyeyeva - 336540950

Working Paper № 2

In this stage, we focused on understanding and cleaning the data. Our main focus was on the <u>final outcome</u> of each loan. We noticed that all loans started in 2016, and the last data snapshot is from 2019. Consequently, we started by removing (filtering) loans that exceeded 36 months (3 years) (otherwise we don't have the loan's final outcome). Secondly, we removed all loans that their status was different from "Fully Paid" or "Charged Off" in the 2019 snapshot. These two steps reduced the number of loans from 434,407 to 269,583 and this is the "new data" that will be used for the EDA. Thirdly, we realized that there are some leakage features – features that their values change through the course of the loan. Accordingly, we created **3** main functions that helped us further investigate the data (see the attached Rmd and Python files):

- Comparing 2018-2019 tables (see function <u>match cols</u> in R rmd file / <u>matching columns</u>² in Python ipynb file): this function compares each column in 2018 with its parallel column in 2019. The goal of this function is to identify the leakage variables:
 - <u>Leakage /"varying" columns</u>: columns that their values are updated throughout the loan can't be used in our prediction model. The reason: on the day the loans were issued, there's a high chance they had a different value / no value at all.
 We found and dealt with 52 "varying" columns (see *Table 3: Matching columns* in the appendix).
 - Consistent columns: columns that their value is or should be consistent through the course of a loan. Some columns that should have been consistent had a tiny inconsistency, for example, the "interest rate" (83 cases). Thus, we built a python function that presents those unmatching rows so we can inspect them closely and decide the proper way to deal with them (see function "unmatched_rows_one_table" in the python file).
- NAs counter (see function NAs_count in R rmd file and see_rows_with_NaN in Python) this R function counts how many NAs each column has, helping us detect columns that might be redundant in case most of the loans in that column have NA values. Otherwise, if the column has little amount of NAs we would like to find the best way to deal with them. For this purpose we built a python function "see_rows_with_NaN" the input is a certain column and the output is all the rows with NaN values. This function enables us to explore if the other values in the other different columns also hold NaN values and thus encouraging us to filter those rows.
- Cleaning function (see function clean_data in R): gets as an input a table and performs all the cleaning actions we will present in this Working Paper and the appendix (table 1 and especially table 2). Moreover, it creates the realized return column. The realized return will be calculated according to the following equation:

Realized Return =
$$\frac{p-f}{f} \times \frac{12}{t}$$

 $p = \text{full amount recovered from the loan} = \text{total_pymnt_inv}$ (total payment that the investor got)

¹ R file

² Python file

f = full amount invested in a loan = funded_amnt_inv

t =Nominal duration of the loan in months = column term (=36 month)

We will present 3 main steps we used in this stage for cleaning the data:

1. Exploratory Data Analysis (EDA):

To understand and clean the data, we explored the columns from different perspectives:

- A. NAs Count and analysis: Columns that most of their values are NAs are good candidates for filtering. The threshold we used for filtering is 2% if more than 2% of a column's value are NAs this column will be a good candidate for filtering. Else, if the column is too important to remove, we explored the distribution of the feature and decided the right way to deal with those NAs (see part 3 of Altering + Cleaning columns)
- B. Exploration of the distribution of the features + Scatter plots of a feature and the target column (realized return) and identify occurrences of outliers. We also used functions as tables and summary in **R** to explore each feature.
- C. <u>Density plot of the target variable</u> (Realized return) given the different classes of a discrete variable.
- D. <u>Correlation Analysis:</u> We may want to filter columns with low correlation with our target variable or features that have high correlation with each other.³ We believe that feature selection is a more appropriate tool for filtering columns in the claim they don't have predicting power. (We wish to address this in the following stage [building a model]).
 - * The full EDA is presented in the rmd file.

The EDA step has provided us a better understanding of the data and helped us in the following two steps:

2. **Removing columns**: The given data has 150 different features, many of those are irrelevant or shouldn't be used for several different reasons.

We Categorized 5 main reasons for filtering columns:

- A. <u>Business-wise</u>: The column is irrelevant from the business perspective.
- B. The column is redundant: There is a similar/identical column or there is a high correlation with another column.
- C. Too many NA's / Missing Values⁴.
- D. "Varying Column": There are several columns that hold "updating" information, meaning that on the day the loan was issued (In 2016), the column held a different value. That means we can't use that column in our model (as we don't know the values of the loans for this column on the day the loan was issued)⁵.

³ We may take an action only if the correlation is very High (>~0.99) or very small (<~0.01), due to the fact that a feature might have little correlation with the target variable. However, a combination of some features might have good predicting power.

⁴ For example, all the columns that are related to joint application, settlement plan and hardship plan - Most of the loans had NAs.

⁵ In order to know which columns are varying, we have built a function in R and Python (see function match_cols / matching_columns in rmd and ipynb files respectively). The result of the function is presented in table 3 in column number 3 "Matching Rows (between 2018 to 2019)" in the appendix.

E. Other reasons.

We went over all of the features and ended up removing 92 different features.

See Table 1: *Features to remove* in the appendix for the full table of the columns we filtered and the reasons for filtering each and every one of them.

<u>Important notes:</u>

- We are certain that we will remove more features in the following stage of building a model we will
 use "feature selection" and may find features that don't have predicting power towards the target
 variable.
- We might retrieve columns that were filtered in this step, for instance, if we find them contributing to the predicting model.
- 3. **Altering + Cleaning columns:** Regarding the **59** columns that were left (after filtering columns in stage 2), some of those required cleaning. We conducted **4** different types of cleaning on those columns:
 - A. <u>Dealing with **NA's**</u> / <u>Missing Values</u>: For columns with NAs, we had to determine the method to deal with them. We can either filter those rows (on the price of losing the whole loan's data) or change the NA values (replace the NA with mean/mode values for example).
 - B. <u>Altering the column's type</u>: Some columns were wrongly parsed, therefore we had to alter those column types.⁶
 - C. Altering specific values: We may want to replace specific values in various columns.
 - D. <u>Dealing with Outliers</u>. We might consider removing rows with outlying values or alter those values.⁸

See Table 2: *Cleaning Methods* in the appendix for the full table of the cleaning methods we used on each and every column that is not mentioned in table 1 (all the features we haven't filtered).

- Some columns were necessary for calculating the realized return and thus were not filtered in stage 1 (table 1) even though we won't use them in the model.
- In the following stages we may locate more "problems" within the columns that were not filtered (the columns mentioned in table 2 in the appendix) and may need to conduct more cleaning.

⁶ For example, from string to number or from string to date.

⁷ For example, changing column "term" values: from "36 months" to 36 and as integer.

⁸ For example, in the "purpose" column, one value was "wedding", we treated this value as an outlier and changed its value to "other".

Appendixes

Table 1: Features to remove

Removing Features Legend:

There are 5 main reasons for removing features:

- 1. **Business-wise**: The column is irrelevant from the business perspective As the analytical team we can tell for some specific columns that they won't be useful for our prediction.
- 2. **The column is redundant**: There is a similar/identical column or there is a high correlation with another column.
- 3. Too many NAs / Missing Values.
- 4. **Leakage variables / "Varying Column" =** There are several columns that hold "updating" information, meaning that on the day the loan was issued (In 2016), the column held a different value. That means we can't use that column in our model (as we don't know the values of the loans for this column in the day the loan was issued).

5. Other reason

- ** In the following table the number in the "reason for removing" column indicates the number of reasons as mentioned above.
- ** col numbers that are colored in pink are columns that we decided to filter in this stage, even though we believe we might want to consider re-entering them in the model / check if they can increase the model's predicting power.

Column Number	Column Name	Reason for removing (See Removing Feature Legend)	Notes
2	member_id	1 + 3	Empty column + Not relevant from Business perspective
4	funded_amnt	2	Column C (loan_amnt) has identical values (except for 3 rows in Q2).
5	funded_amnt_inv	2	Linear dependent with loan_amnt Scatter plot of funded_amnt VS loan_amnt:

			Moreover, regarding the day the loan was issued - this column had the value 0 - as nothing was given to the borrower The loan have just been issued and thus no one gave him money yet. Thus we can't use this column in the predicting model. **This column helped us calculate the realized return.
11	emp_title	3	19,525 NAs (7.24% of the data) + Too many distinct values - more than 100k unique levels.
12	emp_length	1 + 3	19,395 NA's (7.19% of the data)
15	verification_status	4	There are 7021 unmatching loans' verification status between 2018 and 2019. This is an indication that the verification_status may change throughout the course of a loan, meaning we can't assume the value we have in this column in 2019 was the same on the day the loan was given.
18	pymnt_plan	2	After filtering - for loans that are Fully Paid / Charged Off the value of the column is "n". Meaning the column is redundant.
19	url	1	Not relevant from the business perspective.
20	desc	1 + 3	269,573 NA's
22	title	2 + 3	Hold similar information as column "purpose" and has 14,615 NA's
23	zip_code	1 + 2	Hold similar information as column "addr_state" and can't be analyzed from business perspective
28	fico_range_low	2	The difference between fico_range_low to fico_range_high is quite similar for all of the loans, and is up to 5 points. That means that this column holds similar information as column fico_range_high and thus redundant. Moreover the significance of the difference between the thigh and low fico score is negligible since the borrowers still have the same fico status. >580 = poor; 580-669 = fair; 670-739 = good; 740 - 799 = very good; 800 = exceptional
31	mths_since_last_deli nq	3	127,175 NA's
32	mths_since_last_rec ord	3	216,551 NA's

39	out_prncp	1	The feature is not necessary for the future model. However, we will probably need it for expected return calculations.
40	out_prncp_inv	5	We do not think that the column is necessary, since it is something that changes during loan lifespan.
41	total_pymnt	2	Redundant to column 42
43	total_rec_prncp	2	Sum of the columns 43,44,45, and 46 gives us the value of the column 42.
44	total_rec_int	2	Sum of the columns 43,44,45, and 46 gives us the value of the column 42.
45	total_rec_late_fee	2	Sum of the columns 43,44,45, and 46 gives us the value of the column 42.
46	recoveries	2	Sum of the columns 43,44,45, and 46 gives us the value of the column 42.
47	collection_recovery_ fee	1	
49	last_pymnt_amnt	1	
50	next_pymnt_d	3	269,583 NA's
51	last_credit_pull_d	1	
52	last_fico_range_high	4	
53	last_fico_range_low	2+3+4	The borrowers with the lowest FICO (499) in column 52 get 0 in this column. Up to 5 point difference between 53 and 52.
55	mths_since_last_maj or_derog	3	190,451 NA's
56	policy_code	1	There is only one value for this column: "1".
58	annual_inc_joint	3	265,442 NA's 98.46% of the data are individual loans. Therefore we are going to remove all the columns which are related to a joint type of loan (4,141 loans of this kind).
59	dti_joint	3	265,442 NA's 98.46% of the data are individual loans. Therefore we are going to remove all the columns which are related to a joint type of loan (4,141 loans of this kind).
60	verification_status_j oint	1 + 3	265,442 NA's 98.46% of the data are individual loans. Therefore we are going to remove all the columns which are related to a joint type of loan (4,141 loans of this kind).
62	tot_coll_amt	1	

	T		After a deep search, we do not fully understand the meaning of
65 ⁹	open_act_il	5	"trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
66	open_il_12m	2	Scatter plot of open_il_24m VS open_il_12m: We can see there is a clear correlation between the two variables, as the open_il_12m increases so do the open_il_24m. Therefore we need to filter one of them! We decided for now to filter the column; open_il_12m
68	mths_since_rcnt_il	3	8,149 NA's
70	il_util	3	37,559 NA's
71	open_rv_12m	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
72	open_rv_24m	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
74	all_util	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
77	total_cu_tl	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
79	acc_open_past_24m ths	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
80	avg_cur_bal	1	We will use this feature only if we will need a number of accounts for a future model. In this stage, we do not find the column useful.
81	bc_open_to_buy	3	3,104 NA's For now we prefer to filter the column, however we may want to consider reentering the column at the cost of filtering 3,104 loans with NA value in this column.

⁹ Column numbers that are coloured in pink are columns that we decided to filter in this stage, even though we believe we might want to consider re-entering them in the model / check if they can increase the model's predicting power.

82	bc_util	3	3,240 NA's For now we prefer to filter the column, however we may want to consider reentering the column at the cost of filtering 3,240 loans with NA value in this column.
85	mo_sin_old_il_acct	3	8,110 NA's
90	mths_since_recent_ bc	3	2,921 NA's For now we prefer to filter the column, however we may want to consider reentering the column at the cost of filtering 2,921 loans with NA value in this column.
91	mths_since_recent_ bc_dlq	3	200,380 NA's
92	mths_since_recent_i nq	3	27,778 NA's
93	mths_since_recent_r evol_delinq	3	171,477 NA's
96	num_actv_rev_tl	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
102	num_rev_tl_bal_gt_ 0	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
104	num_tl_120dpd_2m	3	12,330 NA's.
105	num_tl_30dpd	2	Column 104 includes this column.
108	pct_tl_nvr_dlq	5	After a deep search, we do not fully understand the meaning of "trade/s" in this context. Due to this issue we are not going to use this column, at least for now.
109	percent_bc_gt_75	3	3,127 NAs For now we prefer to filter the column, however we may want to consider reentering the column at the cost of filtering 4,665 loans with NA value in this column.
116	revol_bal_joint	3	269,583 NA's (100%)
117	sec_app_fico_range_l ow	3	269,583 NA's (100%)

118	sec_app_fico_range_h igh	3	269,583 NA's (100%)
119	sec_app_earliest_cr_li	3	269,583 NA's (100%)
120	sec_app_inq_last_6mt hs	3	269,583 NA's (100%)
121	sec_app_mort_acc	3	269,583 NA's (100%)
122	sec_app_open_acc	3 + 5	269,583 NA's (100%) After a deep search, we do not fully understand the meaning of "trade/s" in this context.
123	sec_app_revol_util	3	269,583 NA's (100%) After a deep search, we do not fully understand the meaning of "trade/s" in this context.
124	sec_app_open_act_il	3 + 5	269,583 NA's (100%)
125	sec_app_num_rev_ac cts	3	269,583 NA's (100%)
126	sec_app_chargeoff_within_12_mths	3	269,583 NA's (100%)
127	sec_app_collections_1 2_mths_ex_med	3	269,583 NA's (100%)
128	sec_app_mths_since_l ast_major_derog	3	269,583 NA's (100%)
129	hardship_flag	3	2,168 (~0.8%) of all borrowers have ever been on a hardship plan. Therefore we are going to remove all the columns which are related to a hardship plan.
130	hardship_type	3	267,415 NA's (99.19%).
131	hardship_reason	3	267,415 NA's (99.19%).
132	hardship_status	3	267,415 NA's (99.19%).
133	deferral_term	3	267,415 NA's (99.19%).
134	hardship_amount	3	267,415 NA's (99.19%).
135	hardship_start_date	3	267,415 NA's (99.19%).
136	hardship_end_date	3	267,415 NA's (99.19%).
137	payment_plan_start_d ate	3	267,415 NA's (99.19%).
138	hardship_length	3	267,415 NA's (99.19%).

139	hardship_dpd	3	267,415 NA's (99.19%).
140	hardship_loan_status	3	267,415 NA's (99.19%).
141	orig_projected_additi onal_accrued_interest	3	267,415 NA's (99.19%).
142	hardship_payoff_bala nce_amount	3	267,415 NA's (99.19%).
143	hardship_last_paymen t_amount	3	267,415 NA's (99.19%).
144	disbursement_method	1	The method by which the borrowers receive their loan is not significant.
145	debt_settlement_flag	5	Only 8,552 (3.17%) of all borrowers have been working with a debt-settlement company. Therefore we are going to remove all the columns which are related to a settlement.
146	debt_settlement_flag_ date	3	261,031 NA's (96.83%).
147	settlement_status	3	261,031 NA's (96.83%).
148	settlement_date	3	261,031 NA's (96.83%).
149	settlement_amount	3	261,031 NA's (96.83%).
150	settlement_percentage	3	261,031 NA's (96.83%).
151	settlement_term	3	261,031 NA's (96.83%).

Some additional notes regarding the columns that are associated with hardship plan/debt settlement/joint application:

- Joint application only 2.02% of the loans (8,790 out of 434,407) are of joint type. Therefore all the columns that relate to joint application (57-59; 115-127) are redundant (they are full with NAs).
- Hardship plan only 1.06% of the loans (4,604 out of 434,407) have been on a hardship plan. Therefore most of the loans have "NA" value in those columns, thus all the columns that are associated with the hardship plan (128-142) will be deleted due to a high number of NAs.
- Debt settlement only 2.89% of the loans (12,574 out of 434,407) had a settlement plan. Therefore all the columns that are associated with the debt settlement (144-150) will be deleted due to a high number of NAs.

Table 2: Cleaning Methods

In this table we will present all the columns that we will **be using** in our model or in our calculations (such as when calculating the realized return).

Cleaning Features Legend:

There are 6 main Cleaning options that we will use:

- 1. **Dealing with NA's / Missing Values**: For columns with NA's we had to determine the method to deal with the missing values. We can either filter those rows (on the price of losing the whole loan's data) or change the NA values (replace the NA with mean | mode values for example)
- 2. **Altering the column's type:** Some columns were wrongly parsed, therefore we had to Alter those columns types (for example from string to date).
- 3. Altering specific values: We may want to replace specific values in various columns.
- 4. **Dealing with Outliers**: We might consider removing rows with outlying values or alter the values.
- 5. Filtering values
- 6. Using the column to build a new column (Feature Engineering)
- ** In the following table the number in the "Cleaning Method" column indicates the number of reasons as mentioned above.
- ** "Clean Free" = No cleaning was done in this stage regarding the given column.

Column Number	Column Name	Cleaning Method (See Cleaning Feature Legend)	Notes
1	id	Clean Free	No need to clean in any way this is Primary Key.
3	loan_amnt	Clean Free	
6	term	2+3 5	Alter "36 months" to 36 and "60 months" to 60 and change the column type to integer This feature is important only for filtering the loans that are for 60 months. After Future filtering, this feature we be redundant (As all the loans will be of 36 months)
7	int_rate	2+3	Remove the % sign and change the column type to float. Filter all loans with int_rate = 6. We noticed that there are loans, from all grades, that have int_rate = 6. This can't be the true int_rate.

			Moreover many of those rows had different value in the corresponding column in the table of 2018, Therefore we decided to filter them.
8	installment	Clean Free	
9	grade	Clean Free	This feature is important for building the "base model", we may not use this feature for our "fancier" model as we believe that the grade column is an outcome of the company's "home model" which already used other given columns.
10	sub_grade	Clean Free	This feature is important for building the "base model", we may not use this feature for our "fancier" model as we believe that the grade column is an outcome of the company's "home model" which already uses other given columns. Moreover we see High correlation between the sub_grade and int_rate.
			table(loan_2019_All_clean\$home_ownership)
13	home_ownership	Clean Free	ANY MORTGAGE OWN RENT 59 124577 34004 110943
14	annual_inc	Clean Free - for now	Maybe dealing with outliers in the future: [r] summary(loan_2019_All_cleanSannual_inc) Min. 1st Qu. Median Mean 3rd Qu. Max. 600 45000 65000 76856 90000 9573072
16	issued_d	2	We Changed the column's type from character to date. ** This feature is important only for calculating the realized return. It won't be necessary in the model.
17	loan_status	5	We filtered loans so that we will have only loans that were Fully Paid or Charged Off. *The column Can be a Target Variable
21	purpose	3 + 4	Using the column "title" we altered all the loans that had the value "other" in the purpose column and at the same time had a value in the column "title" that wasn't also "other" or NA. Dealing with Outliers: We altered one loan with the value "wedding" into "other".
24	addr_state	Clean Free	
25	dti	1	35 loans with NA value in this column were filtered
26	delinq_2yrs	Clean Free	
27	earliest_cr_line	6	We built a new column using this column: We calculated how many years passed from the day the borrower opened his first credit line to 2016.

			Scatter plot of int_rate X The new column: we can see that as the number of years is smaller, so the grade increases (most of the loans with grade G are of people with little amount of years).
29	fico_range_high	Clean Free	
30	inq_last_6mths	Clean Free	
33	open_acc	Clean Free	
34	pub_rec	Clean Free	
35	revol_bal	Clean Free	
36	revol_util	2 + 1	Remove the % sign and change the column type to float. There are 179 NAs values - for now we will replace them with the mean value of the column, this is because after exploring the scatter plot of realized return X revol_util we found out that there isn't a distinctive correlation between the 2 variables, thus we prefer to "harm" the correlation by replacing NAs with the mean value instead of removing the rows (and losing information) The scatter plot of realized return X revol_util:
37	total_acc	Clean Free	Maybe Dealing with outliers in the future summary(loan_2019_All_clean\$total_acc) Min. 1st Qu. Median Mean 3rd Qu. Max. 2.00 15.00 22.00 24.14 31.00 176.00
38	initial_list_status	Clean Free	initial_list_status numer_of_loans mean_realized_return SD f 69586 0.4590696 9.414004 1.2803619 7.899687 Density plot of Realized return by the two different categories of initial_list_status:

			0 15 - 0 10 - 0 05 - 0 00 - 1 initial list_status r w realized_return
42	total_pymnt_in v		Can be a Target column
48	last_pymnt_d		Relevant to calculating M = the loan's actual amount of time - meaning this is relevant for calculating the realized return. For now, we didn't use this column to calculate the realized return, If we decide to use this column to calculate the realized return, we will need to filter 406 loans with NA value. Otherwise we will filter the column, thus the NA values will not be relevant.
54	collections_12_m ths_ex_med	Clean Free	Scatter plot of realized return VS collection_12_mths_exmed
57	application_type	Clean Free	We may wish to filter this column in the following step as we notices that the distribution of the realized returns for loans with application type = Individuals and for application_type = join app, is almost identical: Moreover, only small amount of the loans are of type Individual Joint App "Joint": 265364 4104

	<u> </u>		
61	acc_now_delinq	Clean Free	Density plot of realized return by different values of acc_not_delinq: Operation
63	tot_cur_bal	Clean Free	Scatter plot of realized return VS tot_cur_bal ### A B B B B B B B B B B B B B B B B B
64	open_acc_6m	1	There are 44 NA's. We decided to filter them
67	open_il_24m	Clean Free	Density plot of realized return by different values of open_il_24m: (There were 44 NA values, However after filtering NAs in column: open_acc_6m, there were no more NAs in this column).
69	total_bal_il	Clean Free	Maybe dealing with outliers in the future Min. 1st Qu. Median Mean 3rd Qu. Max. 0 8592 22329 33718 43685 1547285 Scatter plot of realized return VS tot_cur_bal

			As the total_bal_il increases, so there are more loans with positive realized return: Moreover we noticed a clear correlation between total_bal_il and total_bal_ex_mort:
			The total_bal_il is always equal or smaller than the total_bal_ex_mort
73	max_bal_bc	Clean Free	Maybe dealing with outliers in the future: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 2163 4039 5443 6968 776843 There are only 12 loans with max_bal_bc > 100,000. If we filter those 12 rows and plot a scatter plot of revol_bal vs max_bal_bc:
75	total_rev_hi_lim	Clean Free	
76	inq_fi	Clean Free	
78	inq_last_12m	Clean Free	
83	chargeoff_within _12_mths	Clean Free	
84	delinq_amnt	Clean Free	
86	mo_sin_old_rev_ tl_op	Clean Free	

87	mo_sin_rcnt_rev _tl_op	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 4.00 8.00 12.94 16.00 327.00
88	mo_sin_rcnt_tl	Clean Free	Scatter plot of mo_sin_rcnt_rev_tl_op VS mo_sin_rcnt_tl : We can see that the column: mo_sin_rcnt_rev_tl_op always holds a value that is smaller or equal to mo_sin_rcnt_tl
89	mort_acc	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 1.000 1.479 2.000 51.000 It doesn't seem that different amount of mort accounts (between 0 to 7) influence the realized return distribution. The number of mort account between 8-14 seems to influence the distribution of the realized return more:
94	num_accts_ever_ 120_pd	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.0000 0.5638 1.0000 38.0000 We may use feature engineering - create a new column which will be the quotient of num_accts_ever_120_pd with the total number of accounts (new column we wish to create).
95	num_actv_bc_tl	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 2.000 3.000 3.602 5.000 35.000
97	num_bc_sats	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 3.000 4.000 4.694 6.000 54.000 We may use feature engineering - create a new column which will be the quotient of num_bc_sats with the total number of accounts (new column we wish to create).

			Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 4.00 7.00 7.58 10.00 70.00
98	num_bc_tl	Clean Free	Scatter plot of num_bc_sats VS num_bc_tl: We can see that as the num_bc_tl increases (the total number of bank accounts) so as the number of satisfactory bank accounts increases.
99	num_il_tl	Clean Free	Scatter plot of num_bc_sats (col 97) VS num_il_tl: ### A B B B B B B B B B B B B B B B B B
100	num_op_rev_tl	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 5.000 7.000 8.216 10.000 79.000
101	num_rev_accts	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 2.00 8.00 12.00 13.99 18.00 104.00
103	num_sats	Clean Free	We may use feature engineering - create a new column which will be the quotient of num_satswith the total number of accounts (new column we wish to create). This will provide us with a column that represents the % of accounts that are satisfactory. Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 8.00 11.00 11.62 14.00 80.00 As there are many "outliers", using feature engineering to create a % column can overcome this problem.
106	num_tl_90g_dpd _24m	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.09676 0.00000 22.00000
107	num_tl_op_past _12m	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 1.000 2.000 2.273 3.000 32.000

110	pub_rec_bankru ptcies	Clean Free	Mnn. 1st Qu. Median Mean 3rd Qu. Max. 0.0000 0.0000 0.1483 0.0000 9.0000 233355 33180 2183 511 133 45 13 7 8 9 Density plot of realized return by different values of pub_rec_bankruptcies:
111	tax_liens	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000 0.00000 0.00000 0.07348 0.00000 61.00000
112	tot_hi_cred_lim	Clean Free	*We may wish to deal with outliers in the future: Min. 1st Qu. Median Mean 3rd Qu. Max. 2500 47518 102282 168970 240741 9999999 Scatter plot of total_il_high_credit_limit VS tot_hi_cred_lim while filtering tot_hi_cred_lim 300000: It clearly that as the tot_hi_cred_lim increases so as the total_il_high_credit_limit
113	total_bal_ex_mort	Clean Free	Min. 1st Qu. Median Mean 3rd Qu. Max. 0.000 3.000 5.000 7.769 10.000 289.000
114	total_bc_limit	4	Scatter plot of total_bc_limit VS tot_hi_cred_lim (column 112): We can see that the total bankcard limit (y) is always smaller or equal to the tot_hi_cred_lim Dealing with outliers: for now we filtered loans with total_bc_limit that are higher than 1,000,000 (One loan). This is the summary table before filtering: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 7500 14800 21550 27800 1105500

			This is the summary table after filtering: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 7500 14800 21546 27800 616000 *We may wish to further deal with outliers in the future:
		Dealing with outliers: for now we filtered loans with total_il_high_credit_limit that are higher than 1,000,000 (3 loans).	
total_il_high_t_limit	total_il_high_credi	4	There are 3 loans with total_il_high_credit_limit that is higher than 1,000,000 (and the next highest value is 840,527)
	t_mmt		This is the summary table before filtering: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 15000 32000 42831 57289 2000000
			This is the summary table after filtering: Min. 1st Qu. Median Mean 3rd Qu. Max. 0 15000 32000 42816 57287 840527

Table 3: Matching column & NAs

In this table we will present the results of the function $match_cols$ in R rmd file / $matching_columns$ in Python and the function NAs_count in R.

The function *match_cols* in R and / *matching_columns* in Python gets as input a table from 2018 and a table from 2019, arranges each by the id column and counts how many rows match between the two tables and the matching magnitude in %. For instance, a column that has 100% match between 2018 and 2019 is a column that all of its values in 2018 are identical to the corresponding rows in 2019. Otherwise if the column has a match that is lower than 100% - some rows in the column in 2018 hold different information from the corresponding row in 2019. This can indicate that the column is a "leakage" / "varying" column and thus cannot be used. Otherwise it can be a "good" column that some of its values need addressing (typos / specific problems)

The third column Matching Rows: presents the matching % of the rows in 2018 to the loans in 2019.

The function *NAs_count* in R gets as input a table and counts how many NA values each column has and the proportion of NAs out of all the loans.

We used this function on the filtered data - the 269,583 loans that were left after filtering loans with a term that is not 36 month and loan_status that is not "Fully Paid" or "Charged Off". We wished to understand how many NAs values each column hold.

The fourth column presents the Number of NAs in the given column and the fifth column presents the percent of NAs out of all the loans.

Column Number	Column Name	Matching Rows (between 2018 to 2019)	NA's (2019) out of 269,583	NA's %
1	id	100%	0	0%
2	member_id	0%	0	0%

3	loan_amnt	100%	0	0%
4	funded_amnt	100%	0	0%
5	funded_amnt_inv	100%	0	0%
6	term	100%	0	0%
7	int_rate	99.98%	0	0%
8	installment	99.98%	0	0%
9	grade	100%	0	0%
10	sub_grade	100%	0	0%
11	emp_title	93.44%	19,525	7.24%
12	emp_length	93.51%	19,395	7.19%
13	home_ownership	100%	0	0%
14	annual_inc	100%	0	0%
15	verification_status	98.38%	0	0%
16	issue_d	53.35%	0	0%
17	loan_status	61.36%	0	0%
18	pymnt_plan	99.94%	0	0%
19	url	100%	0	0%
20	desc	00.01%	269,573	99.99%
21	purpose	100%	0	0%
22	title	94.67%	14,615	5.42%
23	zip_code	100%	0	0%
24	addr_state	100%	0	0%
25	dti	99.99%	35	0.01%
26	delinq_2yrs	100%	0	0%
27	earliest_cr_line	0%	0	0%
28	fico_range_low	100%	0	0%
29	fico_range_high	100%	0	0%
30	inq_last_6mths	1%	0	0%
31	mths_since_last_delinq	52.85%	127,175	47.17%
32	mths_since_last_record	19.09%	216,551	80.33%

33	open_acc	100%	0	0%
34	pub_rec	100%	0	0%
35	revol_bal	100%	0	0%
36	revol_util	99.94%	179	0.07%
37	total_acc	100%	0	0%
38	initial_list_status	100%	0	0%
39	out_prncp	39.96%	0	0%
40	out_prncp_inv	39.96%	0	0%
41	total_pymnt	37.47%	0	0%
42	total_pymnt_inv	37.47%	0	0%
43	total_rec_prncp	42.28%	0	0%
44	total_rec_int	42.1%	0	0%
45	total_rec_late_fee	97%	0	0%
46	recoveries	93.13%	0	0%
47	collection_recovery_fee	93.13%	0	0%
48	last_pymnt_d	24.93%	406	0.15%
49	last_pymnt_amnt	66.96%	0	0%
50	next_pymnt_d	0%	269,583	100%
51	last_credit_pull_d	9.72%	8	0.003%
52	last_fico_range_high	21.92%	0	0%
53	last_fico_range_low	21.92%	0	0%
54	collections_12_mths_ex_med	100%	0	0%
55	mths_since_last_major_derog	28.91%	190,451	70.65%
56	policy_code	100%	0	0%
57	application_type	100%	0	0%
58	annual_inc_joint	2.02%	265,442	98.46%
59	dti_joint	2.02%	265,442	98.46%
60	verification_status_joint	2.02%	265,442	98.46%
61	acc_now_delinq	100%	0	0%
62	tot_coll_amt	100%	0	0%

63	tot_cur_bal	100%	0	0%
64	open_acc_6m	99.99%	44	0.02%
65	open_act_il	99.99%	44	0.02%
66	open_il_12m	99.99%	44	0.02%
67	open_il_24m	99.99%	44	0.02%
68	mths_since_rcnt_il	97.29%	8,149	3.02%
69	total_bal_il	99.99%	44	0.02%
70	il_util	86.78%	37,559	13.93%
71	open_rv_12m	99.99%	44	0.02%
72	open_rv_24m	99.99%	44	0.02%
73	max_bal_bc	99.99%	44	0.02%
74	all_util	99.98%	60	0.02%
75	total_rev_hi_lim	100%	0	0%
76	inq_fi	99.99%	44	0.02%
77	total_cu_tl	99.99%	44	0.02%
78	inq_last_12m	99.99%	44	0.02%
79	acc_open_past_24mths	100%	0	0%
80	avg_cur_bal	100%	0	0%
81	bc_open_to_buy	98.93%	3,104	1.15%
82	bc_util	98.89%	3,240	1.2%
83	chargeoff_within_12_mths	100%	0	0%
84	delinq_amnt	100%	0	0%
85	mo_sin_old_il_acct	97.31%	8,110	3%
86	mo_sin_old_rev_tl_op	100%	0	0%
87	mo_sin_rcnt_rev_tl_op	100%	0	0%
88	mo_sin_rcnt_tl	100%	0	0%
89	mort_acc	100%	0	0%
90	mths_since_recent_bc	98.99%	2,921	1.08%
91	mths_since_recent_bc_dlq	25.58%	200,380	74.33%
92	mths_since_recent_inq	89.53%	27,778	10.3%

93	mths_since_recent_revol_delinq	36.27%	171,477	63.61%
94	num_accts_ever_120_pd	100%	0	0%
95	num_actv_bc_tl	100%	0	0%
96	num_actv_rev_tl	100%	0	0%
97	num_bc_sats	100%	0	0%
98	num_bc_tl	100%	0	0%
99	num_il_tl	100%	0	0%
100	num_op_rev_tl	100%	0	0%
101	num_rev_accts	100%	0	0%
102	num_rev_tl_bal_gt_0	100%	0	0%
103	num_sats	100%	0	0%
104	num_tl_120dpd_2m	95.08%	12,330	4.57%
105	num_tl_30dpd	100%	0	0%
106	num_tl_90g_dpd_24m	100%	0	0%
107	num_tl_op_past_12m	100%	0	0%
108	pct_tl_nvr_dlq	100%	0	0%
109	percent_bc_gt_75	98.93%	3,127	1.16%
110	pub_rec_bankruptcies	100%	0	0%
111	tax_liens	100%	0	0%
112	tot_hi_cred_lim	100%	0	0%
113	total_bal_ex_mort	100%	0	0%
114	total_bc_limit	100%	0	0%
115	total_il_high_credit_limit	100%	0	0%
116	revol_bal_joint	0%	269,583	100%
117	sec_app_fico_range_low	0%	269,583	100%
118	sec_app_fico_range_high	0%	269,583	100%
119	sec_app_earliest_cr_line	0%	269,583	100%
120	sec_app_inq_last_6mths	0%	269,583	100%
121	sec_app_mort_acc	0%	269,583	100%
122	sec_app_open_acc	0%	269,583	100%

123	sec_app_revol_util	0%	269,583	100%
124	sec_app_open_act_il	0%	269,583	100%
125	sec_app_num_rev_accts	0%	269,583	100%
126	sec_app_chargeoff_within_12_mths	0%	269,583	100%
127	sec_app_collections_12_mths_ex_me d	0%	269,583	100%
128	sec_app_mths_since_last_major_dero	0%	269,583	100%
129	hardship_flag	99.91%	0	0%
130	hardship_type	0.74%	267,415	99.2%
131	hardship_reason	0.74%	267,415	99.2%
132	hardship_status	0.67%	267,415	99.2%
133	deferral_term	0.74%	267,415	99.2%
134	hardship_amount	0.74%	267,415	99.2%
135	hardship_start_date	0.4%	267,415	99.2%
136	hardship_end_date	0.39%	267,415	99.2%
137	payment_plan_start_date	0.4%	267,415	99.2%
138	hardship_length	0.74%	267,415	99.2%
139	hardship_dpd	0.74%	267,415	99.2%
140	hardship_loan_status	0.74%	267,415	99.2%
141	orig_projected_additional_accrued_int erest	0.56%	267,415	99.2%
142	hardship_payoff_balance_amount	0.74%	267,415	99.2%
143	hardship_last_payment_amount	0.74%	267,415	99.2%
144	disbursement_method	0%	0	0%
145	debt_settlement_flag	98.17%	0	0%
146	debt_settlement_flag_date	0.29%	261,031	96.83%
147	settlement_status	0.4%	261,031	96.83%
148	settlement_date	0.69%	261,031	96.83%
149	settlement_amount	1.03%	261,031	96.83%
150	settlement_percentage	1.04%	261,031	96.83%

151 settlement_term	1.05%	261,031	96.83%
---------------------	-------	---------	--------