Tutorial 11

December 28, 2019

1 Determine whether the relation R is a partial order on the set A.

- 1. A = Z, and aRb if and only if a = 2b.
 - (a) $1 \neq 2(1), 2 \neq 2(2) \rightarrow \text{not reflexive}$
 - (b) $1 \neq 2(2), 2 = 2(1) \rightarrow \text{antisymmetric}$. No counterexamples
 - (c) $1 \neq 2(2), 2 \neq 2(3), 1 \neq 2(3) \rightarrow \text{not transitive.}$
- 2. A = R, and aRb if and only if $a \le b$.
 - (a) $1 \le 1, 2 \le 2, ... \to \text{reflexive}$. No counterexamples.
 - (b) $1 \le 2, 2 \le 1 \to \text{antisymmetric}$. No counterexamples.
 - (c) $1 \le 2, 2 \le 3, 1 \le 3 \to \text{transitive}$. No counterexamples.
 - (d) : partial order.

3.
$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

(a) Reflexive. The main diagonal is all 1's

$$M_R = \begin{bmatrix} \mathbf{1} & 0 & 1 & 0 \\ 0 & \mathbf{1} & 1 & 0 \\ 0 & 0 & \mathbf{1} & 1 \\ 1 & 1 & 0 & \mathbf{1} \end{bmatrix}$$

(b) Not symmetric. Not all $M_{ij} = M_{ji}$

$$M_R = \begin{bmatrix} 1 & 0 & \mathbf{1} & 0 \\ 0 & 1 & 1 & 0 \\ \mathbf{0} & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

(c) Not transitive.

$$M_R^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 & 1 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix}$$

i. Since $M_{1,4}=0,\,M_{1,4}^2=1,$ the relation is NOT transitive.

(d) NOT partial order

$$4. \ M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) Reflexive. The main diagonal is all 1's

$$M_R = egin{bmatrix} \mathbf{1} & 1 & 1 & 1 & 1 \ 0 & \mathbf{1} & 0 & 1 & 0 \ 0 & 0 & \mathbf{1} & 0 & 1 \ 0 & 0 & 0 & \mathbf{1} & 0 \ 0 & 0 & 0 & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

(b) Antisymmetric . All M_{ij} which is 1, $M_{ij} = M_{ji}$

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- (c) Transitive. For if M_{ij} is 1 in M_R , then M_{ij} is 1 in M_R^2
- (d) Partial order

- (a) Reflexive. All elements have loops
- (b) Antisymmetric. All M_{ij} which is 1, $M_{ij} = M_{ji}$
- (c) Not transitive. There exists no elements such that if $aRb \wedge bRc \rightarrow aRc$
- (d) NOT a partial order.

2 Find the lexicographic ordering of the following strings of lowercase English letters:

- 1. quack, quick, quicksilver, quicksand, quacking
 - $(a) \ \ ANSWER: \ quack, \ quacking, \ quick, \ quicks and, \ quick silver$
- 2. zoo, zero, zoom, zoology, zoological
 - (a) ANSWER: zero, zoo, zoology, zoological, zoom
- 3 List all ordered pairs in the partial order whose Hasse diagram is shown as below.

(a)
$$\{(a, a), (a, b), (b, b), (b, d), (b, c), (c, c), (d, d)\}$$

- 4 Draw the Hasse diagram for each of the following posets.
 - 1. a is a divisor of b on the set $\{1, 2, 3, 5, 7, 11, 13\}$.

(a) Set notation: $\{(1,2),(1,3),(1,5),(1,7),(1,11),(1,13),(2,2),(3,3),(5,5),(7,7),(11,11),(13,13)\}$

(b)

- 2. X is a subset of Y on the set of all subsets of $\{1, 2, 3\}$.
 - (a) Subset of $\{1, 2, 3\} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$

(b)

$$3. \ A = \left\{1, 2, 3, 4, 5\right\}, \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(a)

4.

- (a) Alright guys you know the drill
 - i. Remove all reflexive links

A.

ii. Remove all transitive links

A.

iii. Arrange them in proper levels and connect them with dots

A.

- 5 Consider the partial order of divisibility on the set A. Draw the Hasse diagram of the poset and determine which posets are linearly ordered.
 - 1. $A = \{1, 2, 3, 4, 5, 10, 15, 30\}$

	{	(1, 1)	(1, 2)	(1,3)	(1,4)	(1, 5)	(1, 10)	(1, 15)	(1,30)	
			(2,2)		(2,4)		(2, 10)		(2,30)	
				(1,3)				(3, 15)	(3,30)	
(a)					(4, 4)					
						(5, 5)	(5, 10)	(5, 15)	(5, 30)	
							(10, 10)		(10, 30)	
								(15, 15)	(15, 30)	
									(30, 30)	}

(b)(c) NOT Linearly Ordered

2. $A = \{3, 6, 12, 36, 72\}$

(b) Linearly ordered

(a)

6 Given the Hasse diagram of a partial order R on $A = \{a, b, c, d, e, f, g, h\}$. List the elements of R and write down the maximal and minimal elements of A.

$$R = \{(a, a), (a, d), (a, g), (d, d), (d, g), (b, b), (b, e), (b, g), (b, h), (e, e), (e, g), (e, h), (h, h), (f, f)\}$$

- 1. Maximal elements
 - (a) $\{g, h, f\}$
- 2. Minimal elements
 - (a) $\{a, b, c, f\}$

7 Determine the greatest and least element, if exist, of the following posets.

- (a) Greatest element: f
- (b) Least element: a

- 2.
- (a) Greatest elements: DNE (more than 1)
- (b) Least elements: DNE (more than 1)

8 Consider the following posets whose Hasse diagrams are shown. Find, if they exist,

maximal and minimal elements; all upper bounds of B; all lower bounds of B; the least upper bound of B; the greatest lower bound of B.

- (a) Find the maximal and minimal elements
 - i. Maximal: $\{g, h\}$
 - ii. Minimal: $\{a, b\}$
- (b) all upper bounds of B;
 - i. $\{f,g,h\},$ because every element of B is
 $\leq \{f,g,h\}.$
- (c) all lower bounds of B;
 - i. $\{a, b, c\}$
- (d) the least upper bound of B;
 - i. f
- (e) the greatest lower bound of B.
 - i. c

- (a) Find the maximal and minimal elements
 - i. Maximal: $\{f\}$
 - ii. Minimal: $\{a\}$
- (b) all upper bounds of B;
 - i. $\{d, e, f\}$
- (c) all lower bounds of B;
 - i. $\{a, b\}$
- (d) the least upper bound of B;
 - i. $\{d\}$
- (e) the greatest lower bound of B.
 - i. $\{b\}$

- 3.
- (a) Find the maximal and minimal elements
 - i. $Maximal: \{5\}$
 - ii. Minimal: $\{1, 2\}$
- (b) all upper bounds of B;
 - i. {5}
- (c) all lower bounds of B;
 - i. {1}
- (d) the least upper bound of B;
 - i. {5}
- (e) the greatest lower bound of B.
 - i. {1}

9 Answer the following questions concerning the poset $(\{3, 5, 9, 15, 24, 45\}, |)$.

- 1. Find the maximal and minimal elements.
- 2. Determine the greatest element and least element, if exist.
- 3. Find all upper bounds and least upper bounds of $\{3, 5\}$, if exist.
- 4. Find all lower bounds of {15, 45}. Hence determine the greatest lower bound of {15, 45}, if exist.

9.1 Answer

1. Find the poset mapping

$$\left\{ \left. \left(3,3 \right), \left(3,9 \right), \left(3,15 \right), \left(3,24 \right), \left(3,45 \right), \left(5,5 \right), \\ \left(5,15 \right), \left(5,45 \right), \left(9,45 \right), \left(15,15 \right), \left(15,45 \right), \\ \left(24,24 \right), \left(45,45 \right) \right\}$$

- 2. Find the maximal and minimal elements.
 - (a) Maximal: $\{24, 45\}$
 - (b) Minimal: $\{3,5\}$
- 3. Determine the greatest element and least element, if exist.
 - (a) Greatest element
 - i. **Does not exist** (Explanation: split off at end)
 - (b) Least element
 - i. Does not exist (Explanation: Split off at end)
- 4. Find all upper bounds and least upper bounds of $\{3, 5\}$, if exist.
 - (a) All upper bounds: $\{15, 45\}$
 - (b) Least upper bound: {15}
- 5. Find all lower bounds of {15, 45}. Hence determine the greatest lower bound of {15, 45}, if exist.
 - (a) Lower bounds

$$\{15, 45\}$$

(b) GLB

{15}

- 10 Let $A = \{1, 2, 3, 4, 5, 6\}$ and consider the partial order R on A as $R = \{(6, 6), (6, 5), (6, 4), (6, 3), (6, 2), (6, 1), (5, 5), (5, 3), (5, 2), (5, 1), (4, 4), (4, 3), (4, 2), (4, 1), (3, 3), (3, 2), (3, 1), (2, 2), (1, 1)\}.$
 - 1. Draw a Hasse diagram of the poset [A, R]

(a)

- 2. Find the minimal and maximal elements of the poset $\left[A,R\right]$
 - (a) Minimal elements: {6}
 - (b) Maximal elements: $\{1,2\}$
- 3. Find the least upper bound of 2, 5, if it exists.
 - (a) $\{2\}$
- 4. Find the greatest lower bound of 5, 4, if exists.
 - (a) $\{6\}$