基于遗传算法的应急生活物资物流配送路径规划研究

文/王巍

1.引言

随着现代社会快速发展和城市化进程加快。近些年,突发公共性事件发生的频率增加。突发公共性事件发生时,要组织好生活物资的分配,应急物流及时有效配送生活物资成为保障居民生活的关键。目前关于应急物流的研究内容主要以省市为主,保障生活物资与居民生活的物流配送路径规划几乎没有。这些事件爆发时前期由于需求不明确、供给不及时,导致生活物资没有及时配送到居民区,因此,本文对应急生活物资物流配送活动进行研究,选择最短的配送路径,最短时间内将生活物资配送到居民区内。

2.应急生活物资物流配送现状分析

目前应急生活物资趋向由社会各界定向采购,随着全国医疗资源或生活物资的加入,同时需求的医院或者需求的单位逐步明确需求种类,一方面捐助者也越来越了解需求者的真正需求 需要的物资形成了定向捐助 这种定向采购的供应链供需之间越来越精准 协同起来越来越高效。另一方面是政府的全面介入 ,在政府全面监管下 ,形成工厂的直采、直供模式 ,比如有国家对战略储备的猪肉快速调拨等;另外还有在政府协调和鼓励下商业企业参与下的社会运营保障 ,像新零售、前置仓、社区团购、社区菜店等 ,参与社会民生保障的基础性运营。

3.应急生活物资物流配送模式分析

针对以上应急物流现状分析,应急生活物资物流配送进行一系列调研,分析总结出一些物流配送模式。

3.1 社区团购 + 集中取货

应急生活物资特点是居民需求多样性、配送时间相对固定, 取货时间相对集中。居民可以通过在聊天群、在线服务平台等方式发起团购通知,以家庭为单位根据需求选择生活物资,由社区工作人员进行采购或领取相关物资,并进行物资分配等工作。

3.2 前置仓 +O2O 平台共享资源(配送员)配送模式

居民可在 O2O 平台下单购买所需生活物资 线下配送因外卖员或快递人员不足不能及时满足 ,各 O2O 平台(也包括外卖平台)共享资源同时也吸纳闲散人员 ,他们根据平台订单 ,依次在各门店取货后(这时的各门店可看做前置仓) ,将生活物资等直接配送到社区门口 ,这种情况也可解决配送劳动力不足等。

4.基干遗传算法的配送路径规划

根据以上分析 本次应急物流配送路径研究是以"社区团购+集中取货"模式为主,该模式因居民区人口密度较大,所需生活物资种类相对集中等,比较便于使用模型工具对其解决配送路径问题。

4.1 遗传算法模型研究

遗传算法是通过对生物学中基因遗传、基因变异与适应等概念的模仿,从随机解开始,不断在选择、交叉、变异等过程中形成新解,在多次迭代后得到最优解,目前被广泛用于解决复杂的路径优化问题。

4.1.1 参数定义

(1)根据对研究问题的描述和假设 ,定义如下变量 ,如表 1 所示:

(2)目标函数

运输费用与运输距离成正比 总运输费用可表示为:

$$z_{l} = \sum_{i=0}^{n} \sum_{i=0}^{n} \sum_{j=0}^{m} \sum_{k=0}^{m} d_{ij} \times c \times x_{ij}^{k} \quad (1)$$

(3)约束条件

a.车辆载重量约束

每台车上所配送的总货物量不超过配送车辆的最大载重量。

$$\sum_{i=1}^{nk} x_t^k g_i \leq G_k \quad (2)$$

b.配送车辆约束

在配送过程中,每辆车可以给多个配送点进行配送,每个配送点只有一辆配送车辆进行送。

$$\sum_{k=1}^{m} x^{k} = 1 (i=1 \ 2 \ k \ n) \quad (3)$$

$$\sum_{i=1}^{n} (x_{ii}^{k} x_{ii}^{k}) = 0 \quad (4)$$

c.配送点数量约束

每辆车所配送的配送点数量小于总的配送点数量。

$$\sum_{k=1}^{m} n^{k} = n(0 \le n^{k} \le n) (5)$$

d.每台车辆都必须从配送中心出发

$$\sum_{k=1}^{m} x_{i0}^{k} = m \quad (6)$$

e.每次配送活动结束后车辆必须回到配送中心

$$\sum_{i=1}^{n} x_{i0}^{k} = 1 \quad (7)$$

将调研得到的数据代入上列公式再通过计算机运行算法的 计算来得到最终结果。

表 1

符号	含义		
m	城市分拣中心可使用的车辆书目		
k	可配送的车辆集合 k=(1,2m)		
G	车辆 k 的载重量		
n	居民区数量		
i,j	居民区集合 i,j=(1,2n),i=0 表示城市分拣中心		
с	每辆车每公里的行使费用		
g	居民区i的需求量		
d	居民区 i,j 之间的距离		
n	第 k 辆车所配送的小区数量		

4.2 实证研究

本次研究选取成都市锦江区 14 个小区为研究对象 居民可在团购、外卖平台下单(美团、饿了么、盒马鲜生等)获取生活物资,平台再给消费者进行配送到居民区。物流配送路径问题基本可以看作是 O2O 线上线下模式的路径规划 城市分拣中心配送辐射范围比较近,一般在 20km-30km 之间,所以选取了配送中心 20km 范围内的 14 个居民区为研究对象进行研究分析,并对所获得的数据进行处理、整理以方便研究的进行。

用百度地图确定了各个小区坐标后,归纳如表2所示:

通过实地调查得到了以下计算所需要的相关数据。车型 拥 式冷藏车;配送中心可使用车辆数目 4 辆;车辆最大装载量 3 吨;每辆车每公里的运输费用 4 元;车辆平均行驶速度:60km/h。

区块链技术在物流企业财务管理体系构建与实施中的应用

文/王晓

1.基于区块链技术构建物流企业财务管理体系

1.1 建立物流供应链财务集成管理机制

集成供应链物流财务要素管理绩效[1],即可得到物流企业财务管理整体绩效,为了满足物流企业成本控制要求,文中以最优节省绩效为目标,从供应性物流财务要素、制造性物流财务要素、销售性物流财务要素三方面入手,建立新型财务管理集成模型。其中,通过控制原材料性价比、提升供应商质量等多个角度控制方式,可以同时完成供应链物流财务要素的集成管理,使得该方面节省的绩效最高。 $F_i=[n_1(\alpha_1,\alpha_2,\alpha_3,\cdots\alpha_m)]$ (1)

公式中 F_1 表示供应性物流财务要素的集中管理创造绩效,表示求和函数 f_1 表示财务要素数量 f_2 表示财务要素。针对制造商非实质创造物流绩效进行划分后,得到制造商相关财务要素,通过物流企业内部财务管理,控制这部分要素的管理,得到最优管理绩效为 F_2 =[f_1 (f_1 , f_2 , f_3 , f_4)] (2)

公式中 F₂ 表示制造性物流财务要素的集中管理创造绩效, P 表示财务要素数量 ,p 表示非形质创造的物流管理财务要素。考虑到很多物流项目 ,是将产品从制造商直接交给消费者 ,中间不存在其他环节 ,这种情况下 ,物流企业的财务要素管理 ,需要从制造商的生产计划入手 ,求出最优化物流绩效:

 $F_3 = [\mathbf{\eta} (\delta_1 \delta_2 \delta_3 \cdots \delta_n)] (3)$

公式中 F_3 表示销售性物流财务要素的集中管理创造绩效 , n 表示财务要素数量 δ 表示销售商物流财务管理要素。综合分析上述三类财务要素 , 文中将物流供应链财务管理集成模型的整体绩效表示为 $F=F_1+F_2+F_3$ (4)

公式中 F 表示整体绩效。综上所述 在物流企业财务管理过程中 需要通过集成处理保证财务管理后的整体绩效符合要求。以最优整体绩效为目标 进行后续财务管理体系的研究。

1.2 设计基于区块链技术的财务信息处理方法

财务数据信息是物流企业财务管理的基础,文中应用区块

链技术、针对物流企业财务数据进行采集、传输与处理²¹,得到高质量的企业财务信息,作为生成管理决策的依据。运用区块链技术的分布式存储、加密算法等多项功能¹³,进行财务数据的完善处理,具体的数据传输和处理过程如图 1 所示。

图 1 基于区块链技术的财务信息处理模式

如图 1 所示,在物流企业财务信息处理过程中应用区块链技术后,主要包括四层处理结构,分别是网络层、传输层、业务层和决策层。其中综合企业内部和外部的计算机节点,组成网络结构层,通过 P2P 方式实现财务数据传输。同时,采用分布式存储策略,将物流企业财务数据分别存储在每个节点中。除此之外,在网络层还需要引入验证机制,确保只有符合要求的节点,才可以充当分布式存储网络节点。网络层初步处理后的数据转移到传输层后,在该层实施区块链技术,实现对财务数据的加密处理、加盖时间截处理、数字签名处理等,并结合哈希算法将物流企业财务数据描述为链式结构。

1.3 制定物流企业财务全面预算方案

应用区块链技术处理后的数据进行全面预算,是物流企业财务管理的核心,也是每个物流部门经营造作的指导。以此为目标,细化各个物流关节,得到各级物流部门的预算结果^[5]。为了得到更加准确的预算数据,文中运用互联网技术,构建一体化物流财务信息共享平台,平台具体结构如图2所示。通过数据处理

城市分拣中心	小区名称	经度	纬度
	绿地 468 公馆一期	104.150365	30.614403
6 0 17	绿地 468 公馆二期	104.153501	30.612857
	绿地 468 公馆三期	104.148031	30.613424
4.1	绿地 468 公馆四期	104.150032	30.614649
1.1	绿地 468 公馆五期云玺	104.159876	30.608621
	绿地 468 公馆六期	104.161086	30.607787
锦江区	锦江区三圣乡锦荣佳苑	104.155184	30.607111
和江区	锦江区三圣乡卓锦城六期	104.144249	30.601011
	锦江区三圣乡卓锦城紫郡	104.146372	30.601834
	锦江区三圣乡卓锦城五期	104.144727	30.603286
	锦江区三圣乡卓锦城一期	104.140385	30.603323
	锦江区三圣乡卓锦城二期	104.137959	30.606146
	锦江区三圣乡卓锦城三期	104.140004	30.605176
	锦江区三圣乡卓锦城红郡	104.144864	30.60164

选用 4 辆配送车辆下单物资进行配送,以配送总时间最短为目标,采用遗传算法,使用 python 软件进行编程求解。

表 3 算例最优解

	最优解	车辆数	达到最优解代数	
计算结果	303. 08	2	52	
路径序号	每条路径配送点顺序			
1	0-7-9-6-10-11-1-0			
2	0-12-14-13-8-3-5-4-2-0			

经过对算例进行多次随机试验,抽出最优实验结果如表 3 所示。

第一辆车的装载率为 91.4% , 第二辆车的装载率为

计算结果表明 算例最优解为 303.08 在第 52 次迭代时生成最优解 配送总成本为 303.08 元 共生成 2 条路径。配送路径由原来的 4 辆车 4 条路径优化到了 2 辆车 两条路径 装载率也都提高到了 90% 以上 这降低了配送的人工成本和配送费用。

项目基金:四川省经济发展战略研究会一般项目: SCJFZL- YB- 202225

引用出处

[1] 陶建彤,基于遗传算法的应急物流配送路径优化研究——以吉林 省为例[J].中国物流与采购,2023.2

[2]张明新,王月春,刘延锋,王彦明 基于混合遗传算法的应急物资配送路径优化[J].物流科技,2022.12