Heaps

Prof. Ki-Hoon Lee

Dept. of Computer Engineering

Kwangwoon University

Heap

- A max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any)
- The key in the root of a max (min) tree is the largest (smallest) key in the tree
- A max (min) heap is a complete binary tree that is also a max (min) tree

Heap (cont.)

Heap (cont.)

- Basic Operations
 - Creation of an empty heap
 - Insertion
 - Deletion of the root

Heap Height

• Since a heap is a complete binary tree, the height of an n node heap is $\lceil \log_2(n+1) \rceil$

Maximum number of nodes

$$= 1 + 2 + 4 + 8 + \dots + 2^{h-1}$$
$$= 2^{h} - 1$$

A Heap Represented as an Array

Node Number Properties

- Parent of node i is node i/2, unless i=1.
- Node 1 is the root and has no parent.

Node Number Properties (Cont.)

- Left child of node i is node 2i, unless 2i > n, where n is the number of nodes.
- If 2i > n, node *i* has no left child.

Node Number Properties (Cont.)

- Right child of node i is node 2i+1, unless 2i+1 > n, where n is the number of nodes.
- If 2i+1 > n, node *i* has no right child.

Template Class MaxHeap

Template Class MaxHeap (cont.)

```
template <class T>
MaxHeap<T>::MaxHeap (int theCapacity = 10)
{
  if (theCapacity < 1) throw "Capacity must be >= 1.";
  capacity = theCapacity;
  heapSize = 0;
  heap = new T[capacity + 1]; // heap[0] is not used
}
```

Insertion

- To determine the correct place for the element being inserted, we use a *bubbling up* process
- The bubbling up process begins at a new leaf node and moves up toward the root
- The element to be inserted bubbles up as far as is necessary to ensure a max (min) heap

Complete binary tree with 10 nodes.

Complete binary tree with 11 nodes.

New element is 15.

New element is 15.

New element is 15.

```
template <class T>
 void MaxHeap<T>::Push(const T& e)
\square {// Insert e into the max heap.
   if (heapSize == capacity) {// double the capacity
     ChangeSize1D(heap, capacity, 2 * capacity);
     capacity *=2;
   int currentNode = ++heapSize;
   while (currentNode != 1 && heap[currentNode / 2] < e)</pre>
   {// bubble up
     heap[currentNode] = heap[currentNode/2]; // move parent down
     currentNode /= 2; // move to parent
   heap[currentNode] = e;
```

```
#pragma warning(disable:4996)
#include <algorithm>
using namespace std;
```

http://www.cplusplus.com/reference/algorithm/copy/

Complexity of Insert

Complexity is $O(\log n)$, where n is heap size.

Deletion of the Root from a Max Heap

- 1. Replace the root of the heap with the last element on the last level
- 2. Compare the new root with its children; if they are in the correct order, stop
- 3. If not, swap the element with one of its children and return to the previous step
 - Swap with its smaller child in a min-heap and its larger child in a max-heap.

Max element is in the root.

After max element is removed.

Reinsert 8 into the heap.

Reinsert 8 into the heap.

Reinsert 8 into the heap.

Max element is 15.

After max element is removed.

Reinsert 7.

Reinsert 7.

Reinsert 7.

Deletion from a max heap

```
template <class T>
 void MaxHeap<T>::Pop()
□{// Delete max element.
   if (IsEmpty()) throw "Heap is empty. Cannot delete.";
   heap[1].~T(); // delete max element
   // remove last element from heap
   T lastE = heap[heapSize--];
   // trickle down
   int currentNode = 1; // root
   int child = 2; // a child of currentNode
   while (child <= heapSize)</pre>
    // set child to larger child of currentNode
     if (child < heapSize && heap[child] < heap[child+1]) child++;
    // can we put lastE in currentNode?
     if (lastE >= heap[child]) break; // yes
    // no
    heap[currentNode] = heap[child]; // move child up
     currentNode = child; child *= 2; // move down a level
   heap[currentNode] = lastE;
```

Complexity of Deletion

Complexity is $O(\log n)$.

Priority Queues

- The element to be deleted is the one with highest (or lowest) priority
- At any time, an element with arbitrary priority can be inserted into the queue

Priority Queues (cont.)

Two kinds of priority queues:

- Min priority queue
- Max priority queue

Max Priority Queue

- Collection of elements
- Each element has a priority
- Supports following operations:
 - empty
 - size
 - insert an element into the priority queue (push)
 - get element with max priority (top)
 - remove element with max priority (pop)

Complexity of Operations

Use a heap

empty, size, and top \Rightarrow O(1) time

insert (push) and remove (pop) =>

O(log n) time where n is the size of the priority queue

Applications of Priority Queues

Sorting

- use element key as priority
- insert elements to be sorted into a priority queue
- remove/pop elements in priority order
 - if a min priority queue is used, elements are extracted in ascending order of priority (or key)
 - if a max priority queue is used, elements are extracted in descending order of priority (or key)
- Scheduler of an OS

Heap Sort

• Uses a max (or min) priority queue that is implemented as a heap

- Complexity of sorting n elements.
 - n insert operations \Rightarrow O(n log n) time.
 - n remove max operations \Rightarrow O(n log n) time.
 - total time is $O(n \log n)$.
 - compare with $O(n^2)$ for insertion or bubble sort

Homework #3

Due: 10/1일(월) 자정까지

- 1. Implement and test
 - Programs 5.15, 5.16, 5.17
- 2. 예외처리(try, throw, catch)에 대해 공부하고 예를 들어 설명할 것