1 Terminology

Directed tree: A directed graph that would be a tree if we ingored the directions of the edges.

Arborescence: A directed tree with a "root" such that every node of it has a unique path to it from the root. There's always exactly one root.

Spanning subgraph of D(V, A): A subgraph D(V, B) such that $B \subseteq A$.

Branching system of D(V, A) with k specified root nodes: A spanning subgraph of D created by edge-disjoint arborescences rooted at the k root nodes. Edge-disjoint means none of these arborescences share any edges. Every node has at most k incoming edges (at most one from each arborescence).

Optimal branching system of a weighted digraph with k specified root nodes: the branching system with the lowest total weight.

2 Algorithm

To find an OBS we need to find a min-cost set of edges which is both a basis of matroid M_1 and of M_2 :

- $M_1=(E,J_1)$ in which $j \in J_1$ has no edges entering any root nodes, and at most k edges entering each other node of the graph.
- $M_2=(E,J_2)$ in which $j \in J_2$ can be partitioned into at most k arborescences.

3 Examples:

3.1 3-nodes

3.1.1 1 root (error in the graph! s1->s2 should be going in the opposite direction! ... Also it seems that J1 also should contain subsets of B1 and B2)

The branchings systems are:

$$B_1 = \{A, C\} \tag{3.1}$$

$$B_2 = \{A, B\} \tag{3.2}$$

We also have that $J_1 = J_2 = \{B_1, B_2\}.$

3.1.2 2 roots

The only branching system is:

$$B = \{A\}. \tag{3.3}$$

We also have that $J_1 = J_2 = B$.

3.2 4-nodes:

3.2.1 1 root

The branching systems are:

$$B_1 = \{E, B, A\},\tag{3.4}$$

$$B_2 = \{E, B, D\},\tag{3.5}$$

$$B_3 = \{D, C, B\}. \tag{3.6}$$

We also have that:

$$J_1 = \{B_1, B_2, B_3, \{A, C, B\}\}$$

$$(3.7)$$

$$J_2 = \{B_1, B_2, B_3\}. \tag{3.8}$$

Since $J_2 \subset J_1$, we know that $J_1 \cap J_2 = J_2$, so the OBS will be the min-cost branching system in J_2 .

3.2.2 2 roots (seems wrong since B is going into r2)

There is only one branching system:

$$B = \{E, B, D, C\},\tag{3.9}$$

We also have that: $J_1 = J_2 = B$.

3.3 5-nodes:

3.3.1 2 roots (seems totally wrong)

The branching systems are:

$$B_1 = \{B, C, A, H, D, E\},\tag{3.10}$$

$$B_2 = \{B, C, D, E, H, I\}, \tag{3.11}$$

$$B_3 = \{C, D, I, A, H, E\}. \tag{3.12}$$

We also have that: $J_1 = J_2 = \{B_1, B_2, B_3\}.$