Combinaison de mots et de syllabes pour transcrire la parole

Luiza Orosanu Denis Jouvet

Équipe PAROLE, Loria Nancy, France

Introduction

▶ Objectif global du projet

- créer un dispositif portable et autonome
- ▷ intègrer un système de reconnaissance de la parole
- * l'adapter aux besoins des personnes sourdes ou malentendantes
 - améliorer la communication entre les personnes sourdes et leur entourage
 - outil de socialisation et / ou d'intégration au lieu de travail
- * l'adapter aux contraintes imposés par la solution embarquée
 - capacité mémoire & puissance de calcul

► Approche

- De cibler seulement les personnes avec une bonne maitrise du Français écrit
- ▶ faire des sacrifices par rapport à la taille de modèles de reconnaissance

Premier objectif : extraire des informations linguistiques pertinentes

- évaluer différentes unités linguistiques : mots, phonèmes, syllabes
 - → les syllabes offrent des bonnes performances, malgré un lexique limité
- l'importance des mots pour la compréhension de la transcription par des personnes sourdes
- ▶ faire un compromis : combiner mots et syllabes dans un seul modèle de langage
 - > assurer une reconnaissance correcte des mots les plus fréquents
 - proposer des suites de syllabes pour les segments hors vocabulaire

Création d'un modèle de langage hybride

- constituer un corpus d'apprentissage qui repose sur ces deux unités lexicales
- le vocabulaire est défini en sélectionnant
 - ▷ les mots les plus fréquents
 - ▷ les syllabes correspondant aux mots hors vocabulaire
- ► Méthode pour définir les syllabes
 - > corpus d'apprentissage entièrement phonétisé (par alignement forcé)
 - * pour prendre en compte les événements de liaison & réduction
 - > séquence de phonèmes traitée par l'outil de syllabation
 - règles de syllabation [Bigi et al, 2010]
 - * une syllabe contient une seule voyelle
 - * une pause désigne une frontière de syllabe

Exemples de règles de syllabation

Séquence de phonèmes Position de coupure Syllabes obtenues

VV	0	V	V	
VxV	0	V	xV	
VxxV	1	Vx	xV	
VxxxV	2	Vxx	xV	

► Exemple d'une transcription "mots & syllabes"

quel est le prix du **tournevis**quel est le prix du **t u r n swa v i s**quel est le prix du **t u r n swa v i s**← alignement forcé
quel est le prix du **t_u_r n_swa v_i_s**← mots & syllabes

▶ imposer différents seuils minimaux sur la fréquence d'occurrence des mots

 $\theta \in \{3, 5, 10, 25, 50, 100, 300\}$

- → différentes transcriptions du corpus d'apprentissage
- → différents lexiques et modèles de langage

Configuration

- ► Analyse acoustique MFCC
 - ightarrow 12 paramètres MFCC et le logarithme de l'énergie par trame (+ Δ , $\Delta\Delta$)
 - \rightarrow fenêtre de 32 ms, décalage de 10 ms
- ► SRILM : apprentissage des modèles de langage
- ► Sphinx3 : apprentissage des modèles acoustiques
 - → des modèles HMM (avec des mélanges de 64 gaussiennes)
 - → adaptés homme/femme
- ► PocketSphinx : décodage & mesures de confiance (probabilité a posteriori)

Les données utilisés lors de nos expériences

- ► Pour l'apprentissage des modèles acoustiques phonétiques
 - ▷ les données de l'ensemble d'apprentissage d'ESTER2 et d'ETAPE
 - ▷ les données transcrites du corpus EPAC
- ► Pour l'apprentissage des modèles de langage hybrides
- ▷ les corpus des transcriptions d'ESTER2, d'ETAPE et d'EPAC
- ▷ après alignement forcé et transformation mots+syllabes
- ▶ Pour les tests : les ensembles de développement d'ESTER2 et d'ETAPE

Résultats

► But final : récupérer le message porté par la parole (par les mots)

- ▶ La contribution des mesures de confiance sur les syllabes
 → pertinente seulement s'il existe une quantité relativement
 - → pertinente seulement s'il existe une quantité relativement importante de syllabes dans le modèle de langage

Conclusions

- ► le modèle de langage hybride est un compromis efficace
- ▶ parmi les mots reconnus qui ont une mesure de confiance supérieure à 0.5, 85% d'entre eux sont corrects

Travaux futurs

- étudier d'autres solutions pour mieux modéliser les syllabes à l'intérieur d'un modèle hybride
- ► analyser les mesures de confiance sur les syllabes
- ➤ analyser les segments correspondants aux mots hors vocabulaire