

To:		
10:		

Application: _

SPECIFICATION

Rev. 2.0

 				
VACUUM	FLUORES	CENT DI	ISPLAY M	IODULE

Model No.: 16LF01UA3

Rev. No.	Issued Date	Descriptions	Remark
Tentative	Aug. 13, 1996	* First Edition	All Pages
Rev 1.0	Oct. 12, 1999	* Second Edition - Correction of the Reset Pulse Width (100us → 1ms)	Page 8,9
Rev 2.0	Mar. 06. 2006	* Third Edition - Change of the Format	All Pages
		- Change of the Format	All Pages

Issued by	proces 3/6
Checked by	
Approved by	On 3/6

Customer's Approval

~~~~~ Index ~~~~~~

1. SCOPE	3
1 EE ATUDEC	2
2. FEATURES	3
3. PRECAUTIONS (OPERATING RECOMMENDATIONS)	3
4. PRODUCT SPECIFICATIONS	
4.1 Type	
4.2 Outer Dimensions, Weight	
4.3 Environment Conditions.	
4.4 Absolute Maximum Ratings	
4.6 DC Characteristics (V _{CC} =+5.0 V _{DC} , Ta=+25 °C)	
i i i i i i i i i i i i i i i i i i i	
4.7 Timing Chart	5
4.7.1 SCER and DATA Timing 4.7.2 Transmit Timing	
4.8 Signal Interfacing	
4.9 System Block Diagram	
4.10 Outer Dimensions	
4.11 Pattern Details	
1.11 I decili Demis	·······/
5. FUNCTIONS	8
5.1 Control Data	
5.1.1 Buffer Pointer Control	8
5.1.2 Digit Counter Control	
5.1.3 Brightness Control	
5.2 Input Display Data Word	
5.3 Reset	
5.4 Data Set-up Flow	10
* Annandiy A CC POM Character Code Table	11

1. SCOPE

This specification applies to VFD module (Model No. 16LF01UA3) manufactured by Samsung SSVD (Shanghai Samsung Vacuum Devices).

2. FEATURES

- * Simple connection to the host system data bus via two-wired serial interface.
- * Since a DC/DC converter is used, only $+5V_{DC}$ power source is required to operate the module.
- * One chip controller offers integral 64×16 bit programmable logic array, low power consumption and high reliability in services.
- * 32 brightness levels can be selected by brightness control command.
- * High quality blue-green (505 nm) vacuum fluorescent display provides an attractive and readable medium. Other colors can be achieved by simple wavelength filters.
- * Characters are provided in an attractive 16-segment starburst format.

3. PRECAUTIONS (OPERATING RECOMMENDATIONS)

- * Avoid applying excessive shock or vibration beyond the specification for the VFD module.
- * Since VFD is made of glass material, careful handling is required. i.e. Direct impact with hard material to the glass surface(especially exhaust tip) may crack the glass.
- * When mounting the VFD module to your system, leave a slight gap between the VFD glass and your front panel. The module should be mounted without stress to avoid flexing of the PCB.
- * Avoid plugging or unplugging the interface connection with the power on, otherwise it may cause the severe damage to input circuitry.
- * Exceeding any of maximum ratings may cause the permanent damage.
- * Since the VFD modules contain high voltage source, careful handling is required during powered on.
- * When the power is turned off, the capacitor does not discharge immediately. The high voltage applied to the VFD must not contact to the ICs. In other words, the compulsory short-circuit of mounted components on PCB within 30 seconds after power-off may cause damage to the module.
- * Sending any input signals to the VFD module during power-off condition may cause I/O port damage in VFD circuitry.
- * The power supply must be capable of providing at least 5 times the rated current, because the inrush current maybe 5 times the specified current consumption when the power is turned on.
- * Avoid using the module where excessive noise interference is expected. Noise may affects the interface signal and causes improper operation. And it is important to keep the length of the interface cable less than 15 meters (50 feet).
- * Since all VFD modules contain C-MOS ICs, anti-static handling procedures are always required.

4. PRODUCT SPECIFICATIONS

4.1 Type

Type	16LF01UA3
Digit Format	16-Segment & Comma, Decimal Point

4.2 Outer Dimensions, Weight

Parameters	Symbols	Specification	Unit
Outer Dimensions	W * H * t	218.0 * 45.0 * 26.5	mm
Glass Size	W * H	205.2 * 29.0	mm
Display Area	W * H	173.6 * 14.25	mm
Character Size	CW * CH	7.0 * 12.50	mm
Character Pitch	CP(x)	11.0	mm
Weight		Approx. 130	g

4.3 Environment Conditions

Parameters	Symbols	Min.	Max.	Unit
Operating Temperature	T_{OPR}	-20	+70	o _C
Storage Temperature	T_{STG}	-40	+85	o _C
Humidity (Operating)	H_{OPR}	30	85	%
Humidity (Non-operating)	H_{STG}	30	90	%
Vibration (10 ~ 55 Hz)	-	-	4	G
Shock	-	-	40	G

4.4 Absolute Maximum Ratings

Parameters	Symbols	Min.	Max.	Unit
Supply Voltage	V_{CC}	-0.3	+7.0	V_{DC}
Input Signal Voltage	$V_{\rm IN}$	-0.4	+5.5	V_{DC}

4.5 Recommend Operating Conditions

Parameters	Symbols	Min.	Тур.	Max.	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V_{DC}
H-Level Input Voltage	V_{IH}	3.6	-	5.5	V_{DC}
L-Level Input Voltage	$ m V_{IL}$	-	-	1.0	V_{DC}

4.6 DC Characteristics (V_{CC} =+5.0 V_{DC} , Ta=+25°C)

Parameters	Symbol	Min.	Тур.	Max.	Unit
Supply Current (*)	I_{CC}	-	600	800	mA
H-Level Input Current	I_{IH}	-2.0	1	2.0	uA
L-Level Input Current	${ m I}_{ m IL}$	-2.0	1	2.0	uA
Brightness	-	100	200	-	ft-L
Display Color	-	Gree	en (x=0.250, y=0.	439)	-

^{*:} The surge current can be approx. 5 times the specified supply current at power on.

4.7 Timing Chart

4.7.1 SCLK and DATA Timing 20 us >= Ton(SCLK) >= 1.0 us -4.2 V $-4.2 \text$

Fig.-1 SCLK and Serial DATA Timing Diagram

4.7.2 Transmit Timing

Fig.-2 Data word LSB/MSB Timing Diagram

4.8 Signal Interfacing

Connector: PH-2S06-FG (Aster) or equivalent.

→ Mate Socket (Female): HIF3B-12D-2.54R (HIROSE) or equivalent.

Pin No.	Signal	Pin No.	Signal	Signal Name Description
1	Vcc	2	Vcc	Vcc: Power Supply Terminal. (+5Vdc is required)
3	N/P	4	N/C	N/P: No Pin, N/C: No Connection
6	N/C	6	N/C	N/C: No Connection
7	N/C	8	SCLK	SCLK: Shift Clock of Shift Register. (Falling Edge Active)
9	DATA	10	/RST	DATA: Input Terminal for Display or Control Codes. /RST: Input Terminal for Reset of VFD Module. (Low Active)
11	GND	12	GND	GND: Ground Terminal.

4.9 System Block Diagram

Fig.-3 System Block Diagram

4.10 Outer Dimension

Fig.-4 Outer Dimensions

4.11 Pattern Details

Fig.-5 Pattern Details

5. FUNCTIONS

The module has control data and display data write and reset functions.

Input data from the host system is loaded into the module's display buffer via serial data input channel as 8-bit serial data. The MSB value of 8-bit serial data determines whether the input data into this module is control data or display data.

Fig.-6 Synchronous Serial Data Input

5.1 Control Data

The control data can be input by setting MSB to "1". In addition, a command type and associated data with the command is determined by the $D6\sim D0$.

Commond	Function	Binary					Code				
Command	runction	D7	D6	D5	D4	D3	D2	D1	D0		
Buffer Pointer control	Specify the RAM address	1	0	1	0	2^3	2^2	21	2^{0}		
Digit Counter Control	Set the number of digits	1	1	0	0	2^3	2^2	21	2^{0}		
Brightness Control	Set the brightness	1	1	1	2^{4}	2^3	2^2	21	2^{0}		

5.1.1 Buffer Pointer Control

This command changes the display contents only at an arbitrary digit. (The RAM write address is set.) The digit position to be modified is represented by the value of D3~D0. If the most significant digit (left-end digit) is to be selected, each of D3~D0 are set to a value of "1" and if the second digit is to be selected each of D3~D0 are set to a value of "0", otherwise a decimal value of from "1" to "14" should be entered.

The set value of D3~D0 is lower than the decimal value of the specified position by 2.

Digit			В	inary	y Coo	de			Digit	Binary Code							
Digit	D7	D6	D5	D4	D3	D2	D1	D0	Digit	D7	D6	D5	D4	D3	D2	D1	D0
Left End	1	0	1	0	1	1	1	1	9th	1	0	1	0	0	1	1	1
2nd	1	0	1	0	0	0	0	0	10th	1	0	1	0	1	0	0	0
3rd	1	0	1	0	0	0	0	1	11th	1	0	1	0	1	0	0	1
4th	1	0	1	0	0	0	1	0	12th	1	0	1	0	1	0	1	0
5th	1	0	1	0	0	0	1	1	13th	1	0	1	0	1	0	1	1
6th	1	0	1	0	0	1	0	0	14th	1	0	1	0	1	1	0	0
7th	1	0	1	0	0	1	0	1	15th	1	0	1	0	1	1	0	1
8th	1	0	1	0	0	1	1	0	Right End	1	0	1	0	1	1	1	0

5.1.2 Digit Counter Control

This command is used to define the number of display digits. The code is normally used only during initialization routine of the host system.

If all 16 characters are to be controlled, each of D3~D0 are set to a value of "0", otherwise a decimal value from "1" to "15" is entered, corresponding to the actual number of characters to be controlled.

Number of		Binary Code							
Display Digit	D7	D6	D5	D4	D3	D2	D1	D0	
1	1	1	0	0	0	0	0	1	
2	1	1	0	0	0	0	1	0	
3	1	1	0	0	0	0	1	1	
4	1	1	0	0	0	1	0	0	
5	1	1	0	0	0	1	0	1	
6	1	1	0	0	0	1	1	0	
7	1	1	0	0	0	1	1	1	
8	1	1	0	0	1	0	0	0	

Number of			В	inary	/ Co	de		
Display Digit	D7	D6	D5	D4	D3	D2	D1	D0
9	1	1	0	0	1	0	0	1
10	1	1	0	0	1	0	1	0
11	1	1	0	0	1	0	1	1
12	1	1	0	0	1	1	0	0
13	1	1	0	0	1	1	0	1
14	1	1	0	0	1	1	1	0
15	1	1	0	0	1	1	1	1
16	1	1	0	0	0	0	0	0

5.1.3 Brightness Control

This command sets the brightness of the VFD. This command allows the brightness to be adjusted by 1/32 step. As shown in the table below, the test value ranges from 0 to 31.

Larral	Binary Code										
Level	D7	D6	D5	D4	D3	D2	D1	D0			
0/31(0.0%)	1	1	1	0	0	0	0	0			
1/31(3.2%)	1	1	1	0	0	0	0	1			
2/31(6.4%)	1	1	1	0	0	0	1	0			
3/31(9.7%)	1	1	1	0	0	0	1	1			
4/31(12.9%)	1	1	1	0	0	1	0	0			
5/31(16.1%)	1	1	1	0	0	1	0	1			
6/31(19.4%)	1	1	1	0	0	1	1	0			
7/31(22.6%)	1	1	1	0	0	1	1	1			
8/31(25.8%)	1	1	1	0	1	0	0	0			
9/31(29.0%)	1	1	1	0	1	0	0	1			
10/31(32.3%)	1	1	1	0	1	0	1	0			
11/31(35.5%)	1	1	1	0	1	0	1	1			
12/31(38.7%)	1	1	1	0	1	1	0	0			
13/31(41.9%)	1	1	1	0	1	1	0	1			
14/31(45.2%)	1	1	1	0	1	1	1	0			
15/31(48 4%)	1	1	1	0	1	1	1	1			

Level	Binary Code										
Level	D7	D6	D5	D4	D3	D2	D1	D0			
16/31(51.6%)	1	1	1	1	0	0	0	0			
17/31(54.8%)	1	1	1	1	0	0	0	1			
18/31(58.1%)	1	1	1	1	0	0	1	0			
19/31(61.2%)	1	1	1	1	0	0	1	1			
20/31(64.5%)	1	1	1	1	0	1	0	0			
21/31(67.7%)	1	1	1	1	0	1	0	1			
22/31(71.0%)	1	1	1	1	0	1	1	0			
23/31(74.2%)	1	1	1	1	0	1	1	1			
24/31(77.4%)	1	1	1	1	1	0	0	0			
25/31(80.6%)	1	1	1	1	1	0	0	1			
26/31(83.9%)	1	1	1	1	1	0	1	0			
27/31(87.1%)	1	1	1	1	1	0	1	1			
28/31(90.3%)	1	1	1	1	1	1	0	0			
29/31(93.5%)	1	1	1	1	1	1	0	1			
30/31(96.8%)	1	1	1	1	1	1	1	0			
31/31(100%)	1	1	1	1	1	1	1	1			

5.2 Input Display Data Word

Display data words are loaded into the display buffer of module as 8-bit codes, with the MSB set to "0". The 64 available code are shown in Appendix-A display data words must be entered to fully load the display data buffer. The display buffer pointer (write in position) specified by the Buffer Pointer control command is automatically increased by one each time the display data is entered. To set the comma or decimal point, the display data codes of 2C Hex or 2E Hex is entered respectively. Only when 2C Hex and 2E Hex data are entered, the display buffer pointer in the RAM is not automatically increased but stays present location.

► Initialization Routine

5.3 Reset

The reset function allows the users to re-initialize the alphanumeric display controller, while the power is still applied to the module, by applying a logical "0" to pin #10(/RST) of the connector.(Pulse Width $\geqslant 1ms$).

When the controller is initialized, the display status is shown in the table below. The RAM data (Display Buffer Data) are the same as the prior data.

Parameter	Reset Status	Binary Code								
rarameter	Reset Status	D7	D6	D5	D4	D3	D2	D1	D0	
Write in Position	Left End Digit	1	0	1	0	1	1	1	1	
Number of Display Digit	16 Digits	1	1	0	0	0	0	0	0	
Brightness Level	0 %	1	1	1	0	0	0	0	0	

5.4 Data Set-up Flow

- 1. Power on -
- 2. /RST signal set to "0" for above 1ms
- 3. Digit counter set
- 4. Brightness set
- 5. Buffer pointer set
- 6. Display data set

* Appendix-A. CG-ROM Character Code Table

MSB LSB	0x000	0x001	0x010	0x011	0x100	0x101	0x110	0x111
000	 <u>-1</u> _	 	/ /	\ <u>/</u>		/		
0 0 1	<u>-</u> -	_ <u></u>	/_/ /_\/	/	\[\bar{\forall}{} \]	\	<i> </i>	
010		<i>II</i>	// /_\	7	11	<u>\\/</u> /\\		_
011	/	_/ -\		<u></u>		<u></u>	<u></u>	
100		<u> </u>	 	\	<u> </u>	*	L	
101	<u></u>	\1	/_/	J	[<u>/</u> /			
110		/\	1/	/\	_ <u>V</u> /_ <u>V</u>	•	 	_7
					/			