Exercise 1

The file catheter .rda can be downloaded from the website and can be read with load().

```
dat = load("data/catheter.rda")
```

The variable height describes the height of a patient in cm, the variable weight describes his weight in kg. The target variable catlength is the optimal length of a catheter that is used for an examination of the heart. The goal is to estimate this quantity from the available data set.

(a) Do a simple linear regression for both catlength \sim height and catlength \sim weight. Are the predictors significant?

```
# linear regressions
mod1 <- lm(catlength ~ height, data=catheter)</pre>
mod2 <- lm(catlength ~ weight, data=catheter)</pre>
summary(mod1)
##
## Call:
## lm(formula = catlength ~ height, data = catheter)
## Residuals:
    Min 1Q Median 3Q
                                   Max
## -7.0929 -0.7298 -0.2608 1.1652 6.6879
##
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
## height 0.23774 0.04034 5.893 0.000152 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.009 on 10 degrees of freedom
## Multiple R-squared: 0.7764, Adjusted R-squared: 0.7541
## F-statistic: 34.73 on 1 and 10 DF, p-value: 0.0001525
summary(mod2)
##
## Call:
## lm(formula = catlength ~ weight, data = catheter)
```

```
## Residuals:
## Min 1Q Median 3Q Max
## -7.9676 -1.4963 -0.1386 2.0980 7.0205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.62631 2.00264 12.796 1.59e-07 ***
## weight 0.61613 0.09759 6.313 8.75e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.797 on 10 degrees of freedom
## Multiple R-squared: 0.7994, Adjusted R-squared: 0.7794
## F-statistic: 39.86 on 1 and 10 DF, p-value: 8.755e-05
# The predictor is highly significant in both cases
```

(b) Fit a multiple linear regression catlength \sim height + weight. Is there an influence of the predictors on the target overall? Is it significant?

```
# multiple regression
mod <- lm(catlength ~ height + weight, data=catheter)</pre>
summary(mod)
##
## Call:
## lm(formula = catlength ~ height + weight, data = catheter)
## Residuals:
          1Q Median 3Q
##
    Min
## -7.0497 -1.2753 -0.2595 1.9095 6.9933
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.08527 8.77037 2.404 0.0396 *
## height
         0.07681
                        0.14412 0.533 0.6070
## weight
             0.42752 0.36810 1.161 0.2753
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Residual standard error: 3.94 on 9 degrees of freedom
## Multiple R-squared: 0.8056,Adjusted R-squared: 0.7624
## F-statistic: 18.65 on 2 and 9 DF, p-value: 0.0006301

# Yes, there is an influence of the predictors on the target variable
# overall. This is assessed by the global F-test. Its p-value is smaller
# than 0.01 so that the null hypothesis is rejected at the 1\% level.
# At least one of the predictors is necessary.
```

(c) Test the null hypotheses $H_0: \beta_1 = 0$ and $H_0: \beta_2 = 0$. Compare the results with those from the two simple linear regressions. Comment and explain the differences if there are any.

```
# As we can see from the summary output (see above), both null hypotheses # are retained, i.e. the predictors are not significant. Is this a # contradiction to the results from the two simple linear regressions? # No, in multiple regression the hypotheses tests assess whether we need # (e.g.) the predictor height when we already know the predictor weight. # The answer is no and the same holds vice versa. # On the other hand, the global F-test indicates that we need at least # one of the two predictors. So we do not need to include both predictors # simultaneously but we need one of them. This situation occurs when the # predictors are strongly correlated. Due to the smaller p-value we would # prefer the predictor weight in this case.
```

(d) For a child that is 120cm tall and has a weight of 25kg, compute the 95% prediction interval with the multiple regression model as well as with the simple regression models. In practice, a prediction error of \pm 2cm would be acceptable. Do the data and the models allow for a prediction of catlength that is sufficiently precise? Does it make sense to use both predictors?

```
## prediction intervals
newdat <- data.frame(height=120, weight=25)
predict(mod1, newdata=newdat, interval="prediction")

## fit lwr upr
## 1 40.65609 31.20891 50.10327

predict(mod2, newdata=newdat, interval="prediction")

## fit lwr upr
## 1 41.02954 32.06162 49.99747</pre>
```

```
newdata=newdat, interval="prediction")
predict(mod,
          fit
                   lwr
                            upr
## 1 40.99072 31.53989 50.44154
# The predictions differ slightly. We note that the prediction interval
# is not shortest for the multiple regression model which one might
# expect since it uses the largest amount of information. However, the
# multiple model requires estimating one additional parameter based on
# the available 12 data points. This is associated with a larger
# estimation error of each single parameter. In most practical cases
# the prediction accuracy increases by including an additional parameter
# but in our case the increased estimation error has a stronger, negative
# influence. This is due to the fact that the two predictors are strongly
# correlated -- adding the second predictor when the first one is already
# present does hardly yield additional information.
# In practice, a prediction error of $\pm$ 2cm would be acceptable.
# Thus, the data and the models do not allow for a prediction of
# catlength that is sufficiently precise.
```

Exercise 2

The left figure shows the price of 100 books (y; in Pence) as a function of their width (x; in mm). The data were taken for the estimation of a potential damage loss of a household insurance. The following linear regression model has been fitted to the data:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ iid

Here, you see a part of the R output:

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 300.485    57.468    5.229    ???
## Dicke    15.071    3.171    4.752    ???
##
## Residual standard error: ??? on 98 degrees of freedom
## Multiple R-squared: 0.1873, Adjusted R-squared: 0.179
```

Loading required package: carData

[1] 83 36

- (a) There is a significant correlation between width and price of books (β is significantly different from 0).
 - (a) true
 - (b) false

- (b) Which of the following intervals is an exact 95% confidence interval for β under the assumption of normally distributed errors?
 - (a) $15.071 \pm 1.984 \cdot 3.171$
 - (b) $15.071 \pm 1.984 \cdot 4.752$
 - (c) $15.071 \pm \frac{1.984}{\sqrt{100}} \cdot 3.171$
 - (d) $15.071 \pm \frac{1.984}{\sqrt{100}} \cdot 4.752$
 - (e) None of the indicated intervals

```
# (a) the quantile is
qt(0.975,df=98)
## [1] 1.984467
```

- (c) What's the estimate for $\hat{\sigma}$ approximately ("?" in the output)?
 - (a) $0 \le \hat{\sigma} < 10$
 - (b) $10 \le \hat{\sigma} < 100$
 - (c) $100 \le \hat{\sigma} < 1000$
 - (d) $1000 \le \hat{\sigma}$

```
# (c) the standard deviation of the errors can be estimated by
# looking at the distribution of the residuals in the Tukey-
# Anscombe plot.
```

- (d) How much does a book of a width of 30 mm approximately cost (in Pence), based on the regression fit?
 - (a) 500
 - (b) 750
 - (c) 1000
 - (d) 1250
 - (e) 1500

```
# (b) Based on the estimated coefficients, the predicted cost is
300.485 + 30*15.071
## [1] 752.615
```

- (e) Do the model assumptions hold for the fitted data set?
 - (a) The connection between width and price is non-linear.
 - (b) The errors are not normally distributed.
 - (c) No deviations from the model assumptions are visible.

```
# (b) can be seen from the QQ Plot
```

Exercise 3

The following data give the income, number of cows and area for a number of American farms.

Income (Dollar)	960	830	1260	610	590	900	820	880	860	760
Number of cows (cows)	18	0	14	6	1	9	6	12	7	2
Size of farm (acres)	60	220	180	80	120	100	170	110	160	230
Income (Dollar)	1020	1080	960	700	800	1130	760	740	980	800
Number of cows (cows)	17	15	7	0	12	16	2	6	12	15
Size of farm (acres)	70	120	240	160	90	110	220	110	160	80

To these data, the linear regression model

$$Dollar_i = \beta_0 + \beta_1 cows_i + \beta_2 acres_i + E_i$$

with iid $E_i \sim N(0, \sigma^2)$ was fitted. This is part of the output from R:

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 285.457 81.379 3.508 0.0027 **
## cows 32.569 3.728 ??? 1.08e-07 ***
## acres 2.138 0.394 5.434 4.47e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 76.45 on ??? degrees of freedom
## Multiple R-squared: 0.8179,Adjusted R-squared: 0.7965
## F-statistic: 38.17 on ??? and ??? DF, p-value: 5.165e-07
```

- (a) The size of a farm has a statistically significant influence on its income.
 - (a) True
 - (b) False

```
# (a) the p-value of the variable ``acres'' is clearly below $0.05$.
```

- (b) The number of cows on a farm has a statistically significant influence on its income.
 - (a) True
 - (b) False

```
# (a) the p-value of the variable ``cows'' is clearly below $0.05$.
```

- (c) What is the outcome of the test of the null hypothesis H_0 : $\beta_2 = 0$ against the alternative H_A : $\beta_2 \neq 0$?
 - (a) Keep H_0
 - (b) Reject H_0

(b)

- (d) How many degrees of freedom are there in this model fit?
 - (a) ∞
 - (b) 20
 - (c) 18
 - (d) 17
 - (e) 3

(d)

- (e) Which of the following is an exact 95% confidence interval for β_1 ?
 - (a) $32.569 \pm 2.11 \cdot 3.7276$
 - (b) $32.569 \pm 1.96 \cdot 3.7276$
 - (c) $32.569 \pm \frac{2.11}{\sqrt{17}} \cdot 5.45$
 - (d) None of these

```
# (a)
qt(0.975,df=17)
## [1] 2.109816
```

- (f) How high an income would you predict for a 100-acre farm without cows?
 - (a) 285
 - (b) 213
 - (c) 499
 - (d) 325

```
# (c) based on the estimate coefficients, the income is
285.457 + 100*2.138
## [1] 499.257
```

- (g) In a simple linear regression model using the area of a farm as the only explanatory variable, would it (the area) have a significant influence on the income?
 - (a) Definitely
 - (b) Definitely not
 - (c) It isn't clear

(c)