XAI eXplainable Artificial Intelligence IA explicable

Cours 2 - mardi 26 septembre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6. Sorbonne Université

Au programme du jour

- 1. Résumé de l'épisode précédent
- 2. Un point sur les opérateurs d'agrégation
- 3. Agrégation et exemples contre-factuels
- 4. Exemples contre-factuels divers
- 5. Zoom sur DiCE

Définition des exemples contre-factuels

- Etant donné un classifieur f et une donnée x
 - construire e tel que $f(e) \neq f(x)$ en minimisant l'effort
 - explication = e x, changement minimal à apporter

$$e^* = \arg\min_{e \in \mathcal{E}} c_x(e)$$
 $\mathcal{E} \subseteq \{e/f(e) \neq f(x)\}$

- A définir :
 - la fonction de coût c_x
 - l'espace de recherche pour e
 - la méthode d'optimisation, ou l'heuristique d'identification
- Multiplicité des approches
 - Guidotti 22 en cite une soixantaine !

Fonction de coût : composantes

- Minimalité du changement: proximité entre e et x
 - distance l2, éventuellement pondérée
- Parcimonie du changement : faible nombre d'attributs modifiés
 - distance l₀
- Contextualisation / autres données : réalisme
 - maximiser p(e) ou $p_u(e)$ ou tout le chemin
 - existence d'ue justification par des données d'apprentissage
 - minimiser coût de reconstruction de \emph{e} par auto-encodeur
- Contextualiser / utilisateur : personnalisation
 - maximiser l'actionnabilité / ensemble d'attributs modifiables
 - utiliser des attributs compréhensibles
 - vérifier les contraintes causales
- ⇒ Comment combiner ces critères ?

Au programme du jour

- 1. Résumé de l'épisode précédent
- 2. Un point sur les opérateurs d'agrégation
 - avec exercices TD
- 3. Agrégation et exemples contre-factuels
- 4. Exemples contre-factuels divers
- 5. Zoom sur DiCE

Définition générale

- Définition générale : $Agg: \bigcup_{n\in\mathbb{N}} [0,1]^n \to [0,1]$
 - identité si unique : Agg(u) = u
 - conditions aux limites : $Agg(0,\ldots,0)=0$ et $Agg(1,\ldots,1)=1$
 - monotonie croissante $Agg(u_1,\ldots,u,\ldots,u_n) \leq Agg(u_1,\ldots,v,\ldots,u_n)$ si $u \leq v$
- Abondante littérature : par exemple
 - Calvo, Mayor, Mesiar. Aggregation operators. Springer. 2002
 - Detyniecki. Fundamentals on aggregation operators. 2001
 - Grabisch, Marichal, Mesiar, Pap. Aggregation Functions. Number 127 in Encyclopedia of Mathematics and its Applications. 2009
- Quatre grandes familles

Opérateurs conjonctifs

- Attitude sévère
 - valeur élevée ssi u et v ont des valeurs élevées
- Exemples :
 - $Agg(u, v) = \min(u, v)$
 - $Agg(u, v) = u \cdot v$
 - $Agg(u, v) = \max(u + v 1, 0)$
- Exercice : tracer les lignes de niveau de ces opérateurs
 - $L_t = \{(u, v)/Agg(u, v) = t\}$

Opérateurs conjonctifs

• $Agg(u, v) = \min(u, v)$

 $\bullet Aqq(u,v) = \max(u+v-1,0)$

Opérateurs disjonctifs

- Attitude tolérante
 - valeur élevée ssi u ou v ont des valeurs élevées
- Exemples :
 - $Aqq(u, v) = \max(u, v)$
 - $Agg(u, v) = u + v u \cdot v$
 - $Agg(u,v) = \min(u+v,1)$

• Exercice : lignes de niveau ?

Opérateurs disjonctifs

• $Agg(u, v) = \max(u, v)$

• $Agg(u, v) = u + v - u \cdot v$

• $Agg(u, v) = \min(u + v, 1)$

Marie-Jeanne Lesot - 2023

Dualité opérateurs conjonctifs-disjonctifs

$$AggDisj = 1 - AggConj(1 - u, 1 - v)$$

- Exercice : à montrer pour les couples
- $-Agg(u,v) = \max(u,v)$ $-Agg(u,v) = \min(u,v)$
- $Aqq(u,v) = u \cdot v$ $-Aqq(u,v) = u + v - u \cdot v$
- $-Aqq(u,v) = \max(u+v-1,0)$ $-Aqq(u,v) = \min(u+v,1)$

Opérateurs de compromis

- Autorise la compensation
- Exemples :
 - moyenne arithmétique : $Agg(x_1, \cdots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - variantes pondérées : $Agg(x_1,\cdots,x_n)=\sum_{i=1}^n \mathbf{w}_i x_i$

Lignes de niveaux ?

Opérateurs de compromis ordinaux

- Principe des Ordered Weighted Average, OWA
 - les poids dépendent de l'ordre, non des attributs
 - σ permutation telle que $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(n)}$

$$- OWA_w(x_1, \dots x_n) = \sum_{i=1}^n w_i x_{\sigma(i)}$$

• Exemple : $w_1 = \frac{9}{10}$, $w_2 = \frac{1}{10}$

$$OWA(u,v) = \left\{ \begin{array}{ll} \frac{9}{10}u + \frac{1}{10}v & \text{si } u \leq v \\ \frac{9}{10}v + \frac{1}{10}u & \text{sinon} \end{array} \right.$$

- Exercices
 - lignes de niveaux
 - $\max = OWA_w$ pour quel w ?
 - $\min = OWA_w$ pour quel w ?

Encore plus expressifs

- Intégrales de Choquet
 - pour la prochaine séance

Bilan des opérateurs d'agrégation par compromis

• Famille très riche et expressive !

- Une dernière famille : opérateurs à attitude variable
 - conjonctifs, disjonctifs ou de compromis suivant les valeurs à agréger

Opérateurs à attitude variable

• Exemple : intégrales de Gödel

$$= \left\{ \begin{array}{ll} G_{\mu}^{\otimes}(u,v) & G_{\mu}^{\rightarrow} \\ \min(u,v) & \text{si } u \leq 1-\alpha_u \text{ et } v \leq 1-\beta_v \\ \max(u,v) & \text{si } u > 1-\alpha_u \text{ et } v > 1-\beta_v \\ u & \text{si } u > 1-\alpha_u \text{ et } v \leq 1-\beta_v & // & v \\ v & \text{si } u \leq 1-\alpha_u \text{ et } v > 1-\beta_v & // & u \end{array} \right.$$

Caractérisations théoriques

- Propriétés éventuelles d'intérêt
 - associativité :

$$Agg(u,v,w) = Agg(Agg(u,v),w) = Agg(u,Agg(v,w))$$

- symétrie : Agg(u, v) = Agg(v, u)
- élément absorbant : Agg(u, k) = k
- élément neutre : Agg(u, v, k) = Agg(u, v)
- idempotence : Agg(u, u) = u
- compensation : $\min(u, v) \le Agg(u, v) \le \max(u, v)$
- contre-effet : $\forall t, \forall u, \forall v \exists w \ Agg(u, v, w) = t$
- renforcement : $(u \ge k \land v \ge k) \Rightarrow Agg(u, v) \ge \max(u, v)$
- _ ...

Au programme du jour

- 1. Résumé de l'épisode précédent
- 2. Un point sur les opérateurs d'agrégation
- 3. Agrégation et exemples contre-factuels
- 4. Exemples contre-factuels divers
- 5. Zoom sur DiCE

Choix classiques

- Critères de qualité : tous souhaitables mais souvent incompatibles
 - exemple : maximiser la parcimonie et la proximité
 - ⇒ pas d'agrégation conjonctive
- Compromis explicite : moyenne pondérée (Mahajan et al., 19)
 - problème 1 : choix des poids, évidemment
 - problème 2 : gestion de la commensurabilité des critères
- Compromis implicite : priorité entre les critères
 - optimisation sous contrainte : définition de $\mathcal{E}=\{e/f(e)\neq f(x)\land p(e)>\eta\}$ (Artelt et Hammer, 20 ; FACE, Poyiadzi et al., 20 ; Ustun et al., 19)
 - heuristique : Growing Spheres : "optimise" la parcimonie après la proximité

Importance du problème d'agrégation

- Influence sur les résultats obtenus, évidemment
 - illustration avec les half-moons
 - x: point vert, classifieur f: SVM
 - $c_x(e) = agg(d_2(e, x), -\log p_y(e)), p_y$ Gaussian KDE

- rouge : proximité seule
- violet : densité seule
- rose : moyenne pondérée
- magenta : proximité prioritaire
- orange : densité prioritaire

Importance du problème d'agrégation

- Influence sur les résultats obtenus, évidemment
- Conséquences indésirables
 - compromis non souhaitable : aucun des critères n'est satisfait
 - effet compris par l'utilisateur ?
 - ni le respect de la causalité, ni la proximité ne sont satisfaits
 - l'un vient aux dépens de l'autre

⇒ Problème aussi crucial que le choix des critères eux-mêmes

Au programme du jour

- 1. Résumé de l'épisode précédent
- 2. Un point sur les opérateurs d'agrégation
- 3. Agrégation et exemples contre-factuels
- 4. Exemples contre-factuels divers
- 5. Zoom sur DiCE

Exemples contre-factuels multiples

- Principe
 - ne pas choisir un des exemples
 - mais en générer plusieurs

Exemples contre-factuels multiples

- Motivation informatique : solution au problème d'agrégation
 - problème d'optimisation multi-critères
 - notion de front de Pareto : candidats non dominés.
- Motivations cognitives : effet sur la compréhension
 - cadre médical : plusieurs explications aident à meilleur diagnostic (Wang et al. 2019)
 - cadre éducatif : unique analogie → risque d'idée fausse (Spiro et al., 1989)
 - ce que dit Miller : permettre de choisir une explication préférée parmi un ensemble d'explications plausibles (Miller, 2019)
- Motivation pratique : s'adapter à un besoin inconnu
 - offrir plus de flexibilité, et ainsi augmenter les chances de satisfaction de l'utilisateur
 - personnalisation de l'explication

Exemples contre-factuels divers

- De la multiplicité...
 - ne pas choisir un des exemples
 - mais en générer plusieurs
- ... à la diversité
 - les multiples exemples ne doivent pas être redondants
 - mais différer les uns des autres

- Plein de façons de définir la diversité!
 - pour la prochaine séance

Au programme du jour

- 1. Résumé de l'épisode précédent
- 2. Un point sur les opérateurs d'agrégation
- 3. Agrégation et exemples contre-factuels
- 4. Exemples contre-factuels divers
- 5. Zoom sur DiCE

Diverse Counterfactual Explanations: DiCE

• Référence :

607-617, 2020

Ramaravind K. Mothilal, Amit Sharma and Chenhao Tan. Explaining machine learning classifiers through diverse counterfactual explanations. *Proc. of the Int. Conf. on Fairness, Accountability, and Transparency, FAT*20*, pp.

Diverse Counterfactual Explanations: DiCE

- Paramètres
 - f: un classifieur
 - x : requête, donnée dont la prédiction est à expliquer
 - k : nombre de contre-factuels souhaités
 - λ_1, λ_2 : poids des termes
- Fonction de coût.

$$\{e_1^*, \dots, e_k^*\} = \arg\min_{e_1, \dots, e_k}$$

$$\frac{1}{k} \sum_{i=1}^{n} yloss(f(e_i), f(x))$$

$$+ \frac{\lambda_1}{k} \sum_{i=1}^k dist(e_i, x)$$

$$-\lambda_2 \operatorname{div}(e_1,\ldots,e_k)$$

• Ajout de parcimonie

Détails des termes

$$\frac{1}{k} \sum_{i=1}^{k} yloss(f(e_i), f(x))$$

- Validité des exemples contre-factuels
 - prédits d'une classe autre que la requête x
- Choix de yloss
 - |f(e) f(x)| ou $(f(e) f(x))^2$ trop contraignants
 - hinge-loss : cas où classe souhaitée = 1
 - 0 si f(e) > t > 0.5
 - proportionnelle à f(e) f(x) si $f(e) \in [0.5, t]$
 - pénalité élevée si f(e) < 0.5 (classe prédite = 0)

Détails des termes

$$\frac{\lambda_1}{k} \sum_{i=1}^{k} dist(e_i, x)$$

- Proximité des exemples contre-factuels à la requête
- Attributs continus

$$dist(e, x) = \sum_{l=1}^{d} \frac{|e_l - x_l|}{MAD_l}$$

- MAD_l : median absolute deviation calculée sur les données d'apprentissage
- Attributs catégoriels : 1 si valeur différente

Détails des termes

$$div(e_1, \dots, e_k) = det(K)$$
 avec $K_{ij} = \frac{1}{1 + dist(e_i, e_j)}$

- Diversité des exemples contre-factuels
 - même distance que pour la proximité
- avec ajout de petites perturbations aux termes diagonaux pour éviter les déterminants mal définis

Optimisation et post-traitement

- Pour les modèles de sklearn
 - tirage aléatoire
 - algorithme génétique
 - recherche par kd-tree
- Pour les modèles de tensorflow et pytorch
 - descente de gradient
- Parcimonie
 - comme Growing Spheres
 - $e'_i = x_i$ itérativement tant que $f(e') \neq f(x)$

Contraintes additionnelles de faisabilité

- Intégration de connaissances des utilisateurs
- Attributs non actionnables
 - liste d'attributs dont les valeurs ne peuvent pas être modifiées
- Plages de variation des attributs
 - intervalles de valeurs associées à chaque attribut actionnable
- ullet Extension : graphe de causalité des valeurs d'attributs ${\cal C}$
 - filtrer les candidats qui ne vérifient pas ces contraintes
 - intégration dans la fonction d'optimisation (Mahajan et al, NeurIPS19)

$$dist(e, x) = \sum_{i \in \mathcal{U}} d(e_i, x_i) + \sum_{j \in \mathcal{V}} d(e_j, \mathcal{C}(e_{jp_1}, \dots, e_{jp_m}))$$