

Sensorimotor coding for native and non native phoneme perception: An fMRI study

Tzuyi Tseng

▶ To cite this version:

Tzuyi Tseng. Sensorimotor coding for native and non native phoneme perception: An fMRI study. 2025. hal-05291011

HAL Id: hal-05291011 https://hal.science/view/index/docid/5291011

Submitted on 30 Sep 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tzuyi Tseng, Ph.D.

Ph.D. in Neuroscience, Université Lumière Lyon 2, France, 2025 **MA in Linguistics**, National Chengchi University, Taiwan, 2020

Cognitive-neurolinguistics, Cross-linguistic comparison, Speech processing, Language learning, fMRI, MVPA

tzuyitseng.github.io

tzuyitseng.neuroling@gmail.com

2026

2021

Sensorimotor coding for native and non-native phoneme perception: An fMRI study

| Talk at LingLunch, Université Paris Cité | 25.09.2025 |

Tzuyi Tseng, Ph.D.

Collaborators:

Tzuyi Tseng¹, Simon Thibault², Jennifer Krzonowski¹, Mélanie Canault¹³, **Alice C. Roy**^{1*}, **Claudio Brozzoli**^{4*}, **Véronique Boulenger**^{1*}. (In preparation). Decoding articulatory phonetic features: somatotopic and sensorimotor representations in native and non-native phoneme perception.

¹ CNRS, Université Lyon 2, Dynamique du Langage, Lyon, France

² Moss Rehabilitation Research Institute, Thomas Jefferson University, Elkins Park, PA, USA

³ Institut des Sciences et Techniques de la Réadaptation, Université Claude Bernard Lyon 1, Lyon, France

⁴ ImpAct Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France

^{*} equal contribution

Sensorimotor foundation in speech perception

Embodied Theory of Cognition

(Barsalou 2008; Fischer & Zwaan 2008)

Sensorimotor regions

Sensorimotor processing

(Pulvermüller & Fadiga, 2010; Rauschecker & Scott, 2009; Schomers & Pulvermüller, 2016 Schwartz et al., 2008, 2012)

The role of the motor system in phoneme perception

(adapted from Tseng et al. under review. Neurobiology of Language.)

Motor activity during intact native phoneme perception

Speech vs non-speech

fMRI

PMC

- Wilson et al., 2004
- Du et al., 2014

fMRI

IFG

- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

TMS

PreCG

- Fadiga et al., 2002
- Roy et al., 2008
- Möttönen & Watkins, 2009
- D'Ausilio et al., 2014

fMRI

- Pulvermüller et al., 2006
- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

fMRI

PostCG

- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

Motor activity during intact native phoneme perception

- Speech vs non-speech
- Articulatory phonetic features
 - Fadiga et al. (2002): Italian trill /r/(((
 - Pulvermüller et al. (2006): dental alveolar /t/ & bilabials /p/

Somatotopy

Perception

(adapted from Pulvermüller et al., 2006)

fMRI

PMC

- Wilson et al., 2004
- Du et al., 2014

fMRI

IFG

- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

TMS

PreCG

- Fadiga et al., 2002
- Roy et al., 2008
- Möttönen & Watkins, 2009
- D'Ausilio et al., 2014

fMRI

- Pulvermüller et al., 2006
- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

fMRI

PostCG

- Du et al., 2014
- Correia et al., 2015
- Archila-Meléndez et al., 2018

Motor activity during noisy native phoneme perception

- Decoding speech in noisy condition
 - D'Ausilio et al. (2009): dental alveolar /t/ & bilabials /p/ | Somatotopy
 - Degraded but identifiable speech (Du et al., 2014; Osnes et al., 2011)

TMS

PMC

- Meister et al., 2007
- Sato et al., 2009
- Murakami et al., 2015

fMRI

- Callan et al., 2010
- Osnes et al., 2011
- Du et al., 2014

TMS

IFG

- Murakami et al., 2015 fMRI
- Callan et al., 2010

TMS

PreCG

- D'Ausilio et al., 2009, 2012
- Nuttal et al., 2016, 2017 fMRI
- Callan et al., 2010
- Du et al., 2014
- Evans & Davis, 2015

Degraded native phonemes & Non-native phonemes

Would listening to non-native phonemes induce similar motor activity?

Non-native phoneme perception

Theoretical model:

- The Speech Learning Model (SLM; Flege, 1995)
- The Perceptual Assimilation Model (PAM; Best, 1994; Best et al., 2001)

Non-native phonemes can be assimilated into a native phoneme category.

Non-native phoneme perception

Neurolinguistic model:

The forward and inverse internal models by Callan et al. (2004):
 non-native phoneme identification

Auditory signals vs. Predicted articulatory representations

Non-native phoneme perception

Neurolinguistic model:

The forward and inverse internal models by Callan et al. (2004)

Non-native > Native

Inconclusive & insufficient findings in phoneme perception

- Absent motor activity (e.g. Arsenault & Buchsbaum, 2015 Szenkovits et al., 2012)
- Observed activity only in degraded condition (e.g. D'Ausilio et al., 2012; Osnes et al., 2011)

• Equal activation for different places of articulation (e.g. Arsenault & Buchsbaum, 2016; Cheung et al., 2016)

Somatotopy

• Limited studies (no somatotopy) for non-native phonemes

embodied representations?

fMRI

PMC

- Wilson & Iacoboni, 2004
- Callan et al., 2004, 2014

fMRI

IFG

Callan et al., 2003, 2004

TMS

PreCG

- Schmitz et al., 2019 fMRI
- Callan et al., 2014

fMRI

PostCG

Callan et al., 2004

Research Aims & Questions

Aims

Sensorimotor representations for native and non-native phoneme perception under both intact and degraded perceptual conditions

Questions

- 1. Are the phonetic features specifically encoded in the sensorimotor regions?
- 2. Are perceived phonemes somatotopically represented in the motor cortex?

Methods

- Univariate regression analysis: brain activation X behavioral phoneme categorization
- Multivariate pattern analyses (MVPA):
 - 1. Representational similarity analysis (RSA): encoding of phonetic features
 - 2. Cross-modal classification: decoding of articulatory phonetic features

Methodology: Participants, Task & Procedure

A behavioral + fMRI study intact (clear) $(17 \text{ females; age} = 24.45 \pm 3.12 \text{ yrs})$ degraded (noisy) Healthy right-handed monolingual French native adult speakers Inclusion RUN1 RUN2 RUN6 Localizer RUN3 **Anatomy** MRI continuous sequence 75% 70% baseline fixation (48s) 1st trial fixation (500/750ms) stimulus (1500ms) response (< 1500ms) «Est-ce une consonne du français ou d'une langue étrangère? » 2 Alternative /papapa **Forced Choice Task** fixation (4500ms) silent TRs 2nd trial fixation (500/750ms) acquisition TRs $TR = 1500 m_S$ 48 trials in total per RUN

Methodology: Stimuli

Behavioral results

Mixed-effects ANOVA

Language (native vs. non-native)

Noise (intact vs. noisy)

Consonant (labials, dentals, laminal fricatives vs. dorsal fricatives)

Main effect

- Native > Non-native → Language***
- Intact > Noisy → Noise**
- Laminal Fricative /ş/ → Consonant***

Interactions

- /\$/ > /\$/ \rightarrow Language x Consonant **
- /p/ → Consonant x Noise**
- /p^h/ > /p/ → Language x Consonant x Noise***

- Fricatives /ʃ/-/ş/: PAM (Best 1994; Best et al. 2001)
- Plosive /p/: shorter voice-onset-time (VOT)

fMRI univariate analysis

Languago	Native		
Language	Non-native		
Noise	Intact		
	Noisy		

fMRI univariate results

Language or Noise effect?

Main effect of Language: Non-native in the right Pre-CG

Pre-CG

Both auditory and motor activity are engaged in phoneme categorization

Motor → Language

Auditory → Noise

Consistent with previous studies: Callan et al., 2010; Du et al., 2014; Evans & Davis, 2015; Wilson & Iacoboni, 2006

Main effect of Noise: Intact in the bilateral STG/S

fMRI univariate regression analyses

The functional role of sensorimotor regions in phoneme categorization?

fMRI univariate results: whole-brain regression analyses

Better native phoneme categorization, higher right PreCG activation

PreCG → Native

IFG → Degraded native/Non-native

Better non-native phoneme categorization, higher left IFG activation

• Better **degraded** phoneme categorization, higher **left IFG** activation

Consistent with previous studies: Callan et al. 2010; Du et al. 2017

fMRI multivariate pattern analysis (MVPA)

Questions

- 1. Are the phonetic features specifically encoded in the sensorimotor regions?
- 2. Are perceived phonemes somatotopically represented in the motor cortex?

MVPA Question – Searchlight Representational Similarity Analyses (RSA)

1. Are the phonetic features specifically encoded in the sensorimotor regions?

Searchlight RSA Methods

1. Are the phonetic features specifically encoded in the sensorimotor regions?

Predicted model: language

Native noisy native intact intact noisy non-native native b t [R b t [R b t t s x b t t s x intact native Native noisy native intact non-native noisy non-native similarity

Observed matrix

Searchlight RSA Methods

1. Are the phonetic features specifically encoded in the sensorimotor regions?

Language

These regions similarly encode phonemes with the same place of articulation.

These regions similarly encode phonemes with the same manner of articulation.

Aspiration

Voicing

Voiceless

1. Are the phonetic features specifically encoded in the sensorimotor regions?

Phoneme categorization relies on phonetic features encoded in the sensorimotor regions, both within and across languages.

Voicing

- Arsenault & Buchsbaum 2015 LH: Insula, STG
- Correia et al. 2015 RH: STS

Manner of articulation

- Arsenault & Buchsbaum 2015 RH: IFG, SMG, STG
- Correia et al. 2015 Bilateral postCG RH: SMG, INS

Place of articulation

- Zheng et al. 2025 LH: HG, STG RH: preCG
- Archila-Meléndez et al. 2018 RH: motor region, insula, frontal areas
- Arsenault & Buchsbaum 2015 **Bilateral STG** LH: postCG, IFG
- Correia et al. 2015 Bilateral postCG, STS/G
 - RH: preCG, IFG, INS

Cross-modal classification analysis

2. Somatotopy during perception in the motor cortex?

Using neural patterns of articulatory movement to decode those of perception

Cross-modal classification analysis

within-modal decoding

cross-modal decoding

Data

Training & Testing

Lips vs Tongue

Leave-one-RUN-out cross-validation

RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	
	Testing					
Training Testing						
Testing	Training					

one-sample t-test

support vector machines

(SVM, Misaki et al., 2010. NeuroImage.)

Cross-modal decoding results

2. Somatotopy during perception in the motor cortex?

Somatotopically organized motor patterns in the right precentral gyrus when perceiving degraded native phonemes

- Embodied articulatory representations in the motor cortex (Dmitrieva et al. 2024; Pulvermüller et al. 2006)
- Enhanced motor activity under challenging perceptual conditions

(Callan et al. 2010; Du et al. 2014; Evans & Davis 2015; Osnes et al. 2011)

Take-home messages on phonetic coding in sensorimotor regions

- 1. Are the phonetic features specifically encoded in the sensorimotor regions?
- 2. Are perceived phonemes somatotopically represented in the motor cortex?

Sensorimotor representations
of **phonetic features**spanning
both within and across native
and non-native languages

Somatotopically organized articulatory representations during phoneme perception

underlying sensorimotor representations in phoneme perception

