

A1 / \			
Aluno(a):			
muno(a).			

Segunda avaliação (Valor: 10,0)

1. [Valor:	$^{2,0]}$	Marque	(V))erdadeiro	ou ((F)al	.so ¹	
------	--------	-----------	--------	-----	------------	------	-------	------------------	--

- (a) \square V \square F O problema de verificar se um número x pertence a um conjunto de n números está em P.
- (b) \square V \square F Se P \neq NP então nenhum problema NP pode ser resolvido em tempo polinomial.
- (c) \square V \square F Se P \neq NP então nenhum problema NP-Completo pode ser resolvido em tempo polinomial.
- (d) \square V \square F O problema de verificar se uma fórmula booleana é satisfazível pertencente à classe NP.
- (e) \square V \square F Se há um algoritmo que resolve o problema de Subset Sum em $O(n^{100})$, então P = NP.
- (f) \square V \square F Suponha que $X \in \mathbb{NP}$ e existe um algoritmo que resolve X em $O(\lg n)$, então $\mathbb{P} = \mathbb{NP}$.
- (g) \square V \square F Se P=NP, então nenhum problema demanda tempo exponencial para ser resolvido.
- (h) □ V □ F Se um problema X é NP-Completo, então existe um algoritmo de tempo polinomial não-determinístico que resolve X.
- 2. [Valor: 1,0] Sabe-se que 3-SAT é Nompleto e que existe um algoritmo de tempo polinomial para o problema 2-SAT. Se assumirmos que $P \neq NP$, extão é possível termos 3-SAT \leq_p 2-SAT? Justifique.
- 3. [Valor: 2,0] Explique o que é redução em tempo polinomial. Apresente um exemplo de como podemos usá-la para mostrar que um problema X é NP-Completo (preferencialmente use o exemplo do seu trabalho).
- 4. [Valor: 2,5] Considere o seguinte problema de seleção de atividades. "Dado um conjunto de n atividades $S = \{a_1, \ldots, a_n\}$ que requerem o uso de um recurso comum e, os tempos de início e término de cada atividade $[s_i, f_i)$, selecionar o maior conjunto possível de atividades mutuamente compatíveis, isto é, atividades a_i e a_j tais que $s_i \geq f_j$ ou $s_j \geq f_i$."
 - (a) [Valor: 1,0] Mostre que o problema possui subestrutura ótima.
 - (b) [Valor: 1,5] Apresente um algoritmo guloso para o problema e argumente se o algoritmo apresentado está correto ou não.
- 5. [Valor: 2,5] Considere o problema de corte de hastes definido a seguir. "Dada uma haste de tamanho n e uma tabela de preços p_i , para $1 \le i \le n$, determinar a receita máxima r_n obtida após cortar a haste e vender os pedaços." O algoritmo a seguir faz uso da subestrutura ótima do problema (assumindo que $r_0 = 0$), isto é, $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$.

```
Cut-Rod(p,n)
1 if n == 0
2    return 0
3 q = -\infty
4 for i = 1 to n
5    q = max(q, p[i] + Cut-Rod(p,n-i))
6 return q
```

- (a) [Valor: 1,5] Agora, considere uma modificação do problema de corte de hastes no qual, além de um preço p_i cada corte incorre em um custo fixo c. A receita associada à solução agora é a soma dos preços das peças menos os custos da execução dos cortes. Escreva um algoritmo que usa a técnica de programação dinâmica para este novo problema.
- (b) [Valor: 1,0] Mostre que a seguinte estratégia gulosa nem sempre determina uma maneira ótima de se fazer cortes em hastes. Defina a densidade de uma haste de comprimento i como sendo p_i/i , isto é, seu valor por polegadas. A estratégia gulosa (para uma haste de tamanho n) corta um pedaço de tamanho i ($1 \le i \le n$), com a densidade máxima. Então, continua-se aplicando a estratégia gulosa no pedaço restante de tamanho n-i.

Boa Prova!!!

 $^{^{1}}$ Quando não estiver explicitamente especificado em qual máquina, considere máquina determinística.

Aluno(a)		
Allinotal	•	