Terminal Falling Velocity of a Sand Grain

1)Important Info's: -

- → The first stop for polluted water entering a water work is normally a large tank, where large particles are left to settle. More generally, gravity settling is an economical method of separating particles.
- →If the fluid in the tank is moving at a controlled low velocity, the particles can be sorted in separate containers according to the time it takes for them to reach the bottom.
- →This application simulates a spherical sand grain falling in water. The grain accelerates from standstill and rapidly reaches its terminal velocity.

2)Physics and Equations: -

→The fluid flow is described by the Navier—Stokes equations

$$\rho \frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot \mathbf{\eta} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) + \rho \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{F}$$
$$\nabla \cdot \mathbf{u} = 0$$

- ρ denotes the density (kg/m³),
- u the velocity (m/s),
- η the viscosity (Ns/m²),
- p the pressure (Pa).
- The fluid is water with a viscosity **of1.51·10**⁻³ **Ns/m2 and density of 1000 kg/m³.**
- → This means that the volume force density F is given by:

$$F_r = 0$$
, $F_z = -\rho (a+g)$

- a (m/s²) is the acceleration of the grain
- $g = 9.81 \text{ m/s}^2$ is the acceleration due to gravity.

→The ODE that describes the force balance is:

$$m\ddot{x} = F_g + F_z$$

- m (kg) denotes the mass of the particle, x (m)
 the position of the particle,
- F_q (N)the gravitational force,
- F_z the z-component of the force that the water exerts on the sand grain

$$F_g = -\rho_{grain}V_{grain}g$$

- $V_{grain}(m^3)$ is the volume of the sand grain
- ρ_{grain} (kg/m³) its density.

$$F_z = 2\pi \int_{S} r\mathbf{n} \cdot [-pI + \eta(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)]dS$$

- r (m) is the radial coordinate
- n is the normal vector on the surface of the grain.
- The initial values for position and velocities are $\mathbf{u}_0 = \mathbf{v}_0 = \mathbf{x}_0 = \mathbf{x}_0 = \mathbf{0}$;

3) Boundary Conditions: -

- \rightarrow At the sphere's surface, the fluid velocity relative the sphere is zero, that is $\mathbf{u} = \mathbf{0}$ —a situation described by the no slip wall condition.
- \rightarrow At the inlet of the fluid domain the velocity equals the falling velocity: $\mathbf{u} = (0, \mathbf{x})$.
- → At the outer boundary of the water domain, the normal velocity and the tangential shear stress both vanish, which means that a symmetry condition applies.
- →Furthermore, a neutral condition,
- $n \cdot [-pI + \eta (\nabla u + (\nabla u) T)] = 0$, describes the outlet, and an axial symmetry condition models the symmetry axis at r = 0.

3)Results: -

→ Velocity (Surface & Streamline) Plot:

→ Pressure plots: -

→ Velocity 3D Plots: -

→ F_z, F_g and F_z+F_g vs Time graph: -

→ Grain Speed vs Time graph: -

