ALGORITMOS E ESTRUTURAS DE DADOS II

Ordenação Externa Karina Valdivia Delgado

Ordenação externa

- Processo de ordenação de arquivos muito grandes, cujo índice não cabe na memória principal. Faremos a ordenação com auxílio de algum dispositivo de memória externa.
- O objetivo é ordenar os registros com o menor número de acessos ao disco (operações de leitura ou escrita em disco)

- Ordena os registros usando intercalação de N caminhos (vias/fontes) balanceados.
- A quantidade de fontes está relacionada com a quantidade de HDs externos que tenho disponível.
- No caso de usar apenas um HD, a quantidade de fontes está relacionada com a quantidade de arquivos que serão usados.

- Fases:
 - Distribuição de blocos de registros ordenados (corridas) por N caminhos balanceados
 - Intercalação das corridas geradas dos N caminhos até que uma corrida seja obtida

Fase 1: Distribuição de blocos de registros ordenados (corridas) por N caminhos balanceados

- caminhos(fontes) 2 ou seja vamos usar 2 conjuntos de 2 arquivos temporários
- blocos ordenados (corridas) de tamanho 4, ou seja, estamos fazendo a suposição que temos capacidade para ordenar em memória principal apenas 4 registros.

Arquivo 1

Arquivo 2

Fase 2: Intercalação das corridas geradas dos N caminhos até que uma corrida seja obtida

Primeira intercalação: são gerados blocos de tamanho 8

Obs: Não existe um separador físico entre as corridas, mas como sabemos qual o tamanho de cada bloco, sabemos quando o bloco acaba.

Fase 2: Intercalação das corridas geradas dos N caminhos até que uma corrida seja obtida

Segunda intercalação: são gerados blocos de tamanho 16
Arquivo 1 3 4 6 7 8 11 12 15 29 35 42 45 55 65 76

Fase 2: Intercalação das corridas geradas dos N caminhos até que uma corrida seja obtida

Terceira intercalação: são gerados blocos de tamanho 32 Arquivo 3

Arquivo 4

Segmentos de tamanho variável

Primeira estratégia de otimização: aproveitar a eventual ordenação entre os blocos

- Segunda estratégia de otimização: gerar segmentos ordenados maiores na fase de distribuição
- Para isso, será utilizada uma fila de prioridades representada como um heap

Arq 1: 6

Arq 1: 63

Arq 1: 637

Arq 1: 6 3 7 11

Arq 1: 6 3 7 11 12

Arq 1: 6 3 7 11 12 15

Arq 1: 6 3 7 11 12 15 29

Arq 1: 6 3 7 11 12 15 29 35

Arq 1: 6 3 7 11 12 15 29 35 42

Arq 1: 6 3 7 11 12 15 29 35 42 45

Arq 1: 6 3 7 11 12 15 29 35 42 45 55

Arq 1: 6 3 7 11 12 15 29 35 42 45 55

Arq 2:

8<55, se eu insiro 8 no arquivo 1, perderia a ordenação dos meus elementos e o bloco teria que terminar aqui em 55. Porém, existem ainda outros elementos que poderiam entrar no meu bloco e que estão no heap (65,76,89). Então vamos colocar uma marcação de novo bloco para 8, será 8*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65

Arq 2:

8<55, se eu insiro 8 no arquivo 1, perderia a ordenação dos meus elementos e o bloco teria que terminar aqui em 55. Porém, existem ainda outros elementos que poderiam entrar no meu bloco e que estão no heap (65,76,89). Então vamos colocar uma marcação de novo bloco para 8, será 8*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76

Arq 2:

4<65, **e**ntão vamos colocar uma marcação de novo bloco para 4, será 4*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2:

22<76, então vamos colocar uma marcação de novo bloco para 22, será 22*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2: 4*

24<89, então vamos colocar uma marcação de novo bloco para 24, será 24*

Note que todas as chaves no heap são do bloco *=> ao retirar 4* ele deverá ir para o arquivo 2

Continua ...

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2: 4* 8* 22* 23* 24* 45* 76*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88*

48<76, então vamos colocar uma marcação de novo bloco para 48, será 48**

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89*

78<88, então vamos colocar uma marcação de novo bloco para 78, será 78**

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

32<89, então vamos colocar uma marcação de novo bloco para 32, será 32**

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1**

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

1<99, então vamos colocar uma marcação de novo bloco para 1, será 1**

Note que todas as chaves no heap são do bloco **=> ao retirar 1** ela deverá ir para o arquivo 1

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1** 2***

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1** 2**20**

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1** 2**20**30**

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1**2**20**30**32**

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99*

16<30, então vamos colocar uma marcação de novo bloco para 16, será 16***

Acabaram as chaves do arquivo original => esvaziar o heap

Arq 1: 6 3 7 11 12 15 29 35 42 45 55 65 76 89 1**2**20**30**32**48**78**

Arq 2: 4* 8* 22* 23* 24* 45* 76* 88* 89* 99* 16***

No lugar de gerar 8 blocos ordenados usando a abordagem original, foram gerados apenas 4 blocos ordenados.