

STATISTICAL ERROR

A.E. AKSENTEV_{1,2}, Y.V. SENICHEV₁

- ¹ IKP, Forschungszentrum Jülich, Germany
- ² National Research Nuclear University «MEPhI», Russia

3/3/17

Problem statement

$$N(t) = N_0 \cdot (1 + P \cdot e^{-t/\tau_d} \cdot \sin(\omega \cdot t + \varphi))$$

$$\sigma^{2}[\hat{\omega}] = \frac{\sigma^{2}[\varepsilon]}{\sum_{i} f(t_{i}) \cdot \sigma_{w}^{2}[t]}$$

Two aspects

Goals

- Under what conditions sampling modulation is beneficial
- How much modulation makes sense
- At what point measurement is no longer reasonable

Spread

$$\sum f(t_i) = n_{\varepsilon/zc} \cdot x_{01} \left(\frac{\exp(-\frac{\pi}{\omega \tau_d} n_{zc}) - 1}{\exp(-\frac{\pi}{\omega \tau_d}) - 1} \right)$$

$$t(z) = \tau_d \cdot \ln(\frac{1}{1-z})$$

FI limit (%)	Reached (×τ _d)	SNR@3% error
95	3.0	1.7
90	2.3	3.3
70	1.2	10.0
50	0.7	16.5

Simulation

Modulation: Beam lifetime doesn't matter

Modulation: Beam lifetime does matter

