RJEŠENJA

- 1. (*Zadatak nosi ukupno 7 bodova*.) U nekom sustavu javljaju se prekidi P3 u 0 ms, P2 u 1 ms i oba prekida P1 i P4 istovremeno u 3 ms. Prioritet prekida određen je brojem (P4 ima najveći prioritet). Obrada svakog prekida traje po 2 ms. Grafički prikazati aktivnosti procesora u glavnom programu (GP), procedurama za obradu prekida (Pi) te procedurama za prihvat prekida (PP) i povratak iz prekida (PiP) i to:
 - a) (1) u idealnom slučaju

b) (2) bez sklopa za prihvat prekida, bez programske potpore i obrada uz zabranjeno prekidanje uz trajanje prihvata prekida (PP) od 1 ms te trajanja povratka iz prekida (PiP) od 0,5 ms

c) (2) **sa sklopom za prihvat prekida** uz trajanje prihvata prekida od 0,5 ms (PP) te trajanje povratka iz prekida od 0,5 ms (PiP)

d) (2) Navesti sve registre **sklopa za prihvat prekida** i njihov sadržaj kao i stanje na sustavskom stogu u trenutku 2ms:

vrijeme	K_Z	T_P	sustavski stog
t < 0	0000	0000	_
t = 0	0010	0000	_
	0000	0010	00000,reg[0]
t = 1	0100	0010	00000,reg[0]
t = 2	0100	0010	00000,reg[0]

2. (Zadatak nosi ukupno 6 bodova.) (0,5) (Zaokružiti točne odgovore.) U sustavu sa sklopom za prihvat prekida prioritet prekida određuje **prekidna** rutina / procesor / sklop za prihvat prekida / jezgra OS-a / pristupni sklop, a za vrijeme obrade prekida prekidanje je / nije omogućeno. (0,5) Prekidna rutina na svom početku prvo pohrani kontekst (0,5) Sklop s neposrednim pristupom spremniku ima sljedeća 4 registra (dovoljno je navesti samo kratice) _____ PR, RS, AR i BR (0,5) Koje registre sadrži sklop za prihvat prekida? K Z i T P (kontrolne zastavive i tekući prioritet) (0,5) Navesti strukture podataka koje koristi prekidna rutina za obradu prekida prema prioritetima u sustavu bez sklopa za prihvat prekida T P, K Z i KON[N] (tekući prioritet, kontrolne zastavice i prostor za pohranu konteksta) (0,5) Što je hipervizor? Upravljač virtualnim strojevima (0,5) Jedan od uvjeta koji mora zadovoljavati algoritam međusobnog isključivanja je i da dretva koja zastane u kritičnom odsječku ne smije spriječiti drugu dretvu da uđe u kritični odsječak? DA / NE (0,5) Ako se pozove j fja Postavi BSEM(i) kada je semafor neprolazan i u redu BSEM(i) je jedna dretva tada će se dogoditi sljedeće dretva iz reda BSEM(i) premjestiti u red Pripravne D (1) Ulazak u jezgru zbiva se kada se dogodi <u>prekid</u> i tada se poziva j_fja_ (1) Za ispravnu sinkronizaciju tri potrošača i jednog proizvođača preko ograničenog međuspremnika potrebno je 2 opća semafora i 1 binarna semafora. 3. (3) Navedeni program će slovo A ispisati 2 puta, slovo B 2 puta i slovo C 6 puta. #include <stdio.h> int main(){ fork(); if (fork() == 0) { printf("A\n"); if $(fork() != 0) printf("B\n");$ printf("C\n"); return 0; } 4. (4) U promatranom trenutku stanje sustava je sljedeće: dretva 1 je aktivna; dretve 2, 3 i 4 su u redu općeg semafora S (dretva 2 je prva u redu, a dretva 4 zadnja) te dretve 5, 6 i 7 su u redu pripravnih dretvi (dretva 5 je prva u redu, a dretva 7 je zadnja). Svi redovi organizirani su po redu prispijeća (FIFO). Ako tada dretva 1 pozove jezgrinu funkciju PostaviOSem(S), kako će izgledati struktura podataka jezgre nakon poziva? red Aktivna_D: ___5 red OSEM[1]: ____3, 4 red Pripravne _D: _____6, 7, 1, 2_____ OSEM[1].v = 0

```
      Prije poziva PostaviOSem(S):
      Međurezultati:
      Poslije poziva PostaviBSem(S):

      Aktivna_D: 1
      -
      -
      Aktivna_D: 5

      Red Pripravne_D: 5, 6, 7
      5, 6, 7, 1
      5, 6, 7, 1, 2
      Red Pripravne_D: 6, 7, 1, 2

      Red OSEM[S]: 2, 3, 4
      2,3, 4
      3, 4
      Red OSEM[S]: 3, 4 i OSEM[S].v=0
```

5. (*Zadatak nosi ukupno 3 boda*.) Sustav zadataka je zadan u obliku lanca: $\mathbb{Z}_1 \to \mathbb{Z}_2 \to \mathbb{Z}_3 \to \mathbb{Z}_4 \to \mathbb{Z}_5 \to \mathbb{Z}_6 \to \mathbb{Z}_7 \to \mathbb{Z}_8$, a zadaci imaju domene (D) i kodomene (K) smještene u memorijske lokacije M_1 , M_2 , M_3 , M_4 , i M_5 prema tablici:

	Z 1	Z2	Z3	Z 4	Z 5	Z 6	Z 7	Z8
M1			K		K	D		
M2	D	K						K
M3		D	D	D,K			K	
M4	K		D		D	K		
M5							D	D

d) (2) Skicirati maksimalno paralelni sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu.

- e) (0,5) Za sinkronizaciju maksimalno paralelnog sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu potrebno je __7__ općih semafora.
- f) (0,5) Zadaci 3 i 8 su zavisni / nezavisni (zaokružiti).
- 6. (3) (*Postupak navesti na košuljici*.) U jednoprocesorskom računalu pokrenut je sustav dretvi *D1*, *D2* i *D3* s prioritetima 1, 2 i 3, tim redom. Najviši prioritet je 3. Svi zadaci koje obavljaju dretve su istog oblika *Dx*. Red pripravnih dretvi i red semafora su prioritetni. Aktivna je dretva koja je prva u redu pripravnih (nema posebnog reda aktivnih dretvi). Prije pokretanja sustava dretvi semafor S je bio neprolazan. Nakon nekog vremena sve dretve se nađu u redu semafora S. Ako se tada pozove procedura PostaviBSEM(S) na zaslonu će se ispisati do završetka rada svih dretvi (važan je i redoslijed ispisa):

Red semafora	BSEM.v	Red pripravnih	P	Z
321	0	-		
21	0	3a	3	
1	0	3b2a		3
31	0	2a	2	
1	0	3a2b	3	
-	0	3b2b1a		3
3	0	2b1a		2
32	0	1a	1	
2	0	3a1b	3	
-	0	3b2a1b (3 završava)		3
-	0	2a1b	2	
-	1	2b1b (2 završava)		2
-	1	1b (1 završava)		1

7. (4) Neki problem riješen je s pomoću četiri dretve: jednom ulaznom dretvom, dvije radne dretve i jednom izlaznom dretvom. Ulazna dretva dobavlja podatke preko globalne varijable *ulaz* te podatke proslijeđuje radnim dretvama na obradu. Radna dretva rezultat zapisuje u globalnu varijablu *izlaz* koju na kraju izlazna dretva

pohranjuje. Sinkronizirati dretve binarnim semaforima, tj. nadopuniti prikazani kod **isključivo jezgrinim funkcijama** ČekajBSem(i) i PostaviBSem(j) ('i' i 'j' zamjeniti brojevima) te navesti početne vrijednosti semafora.

```
podatak ulaz, izlaz; //globalno
                              dretva radna(){
                                                                dretva izlazna(){
dretva ulazna() {
                                podatak a;
                                                                  podatak a;
 podatak a;
                                while(1){
                                                                  while(1){
 while(1){
                                  a = obradi_podatak(ulaz);
                                                                   a = izlaz;
   a = dohvati podatak();
                                  izlaz = a;
                                                                    pohrani(a);
   ulaz = a;
                                }
                                                                  }
 }
                               }
                              dretva radna(){
                                                                dretva izlazna() {
dretva ulazna(){
 podatak a;
                                podatak a;
                                                                  podatak a;
  while(1){
                                while(1){
                                                                  while(1){
                                   ČekajBSEM(2);
                                                                     ČekajBSEM(4);
    a =dohvati podatak();
                                   a =obradi podatak(ulaz);
                                                                     a = izlaz;
    ČekajBSEM(1);
                                   PostaviBSEM(1);
                                                                     PostaviBSEM(3);
    ulaz = a;
                                   ČekajBSEM(3);
                                                                     pohrani(a);
    PostaviBSEM(2);
                                   izlaz = a;
                                                                  }
  }
                                   PostaviBSEM(4);
```

Semafori njihove i početne vrijednosti: BSEM(2).v=BSEM(4).v= 0, a BSEM(1).v=BSEM(3).v=1