

Mitchell E. Daniels, Jr. **School of Business** 

# Advanced Real Estate Analytics for Retail

# **Determining Express Locations**





**Train & validate** 

the model.

accuracy

Algorithm Selected

**Hyperparameter** 

**Tunina** 

Grid Search CV

MAE:

4435 Visits

MAPE:

14.25%

R^2 Score:

0.62

**Maximize CV** 



Ô

**Model predicts** 

consumer visits

for each location

\*

Harshraj Jadeja (hjadeja@purdue.edu), Husam Saleh (hasaleh@purdue.edu), Shubhankar Bhajekar (sbhajeka@purdue.edu), Srinija Srimamilla (ssrimami@purdue.edu), Veda Samhitha Alluri (alluriv@purdue.edu).

Identifying optimal

locations for new

#### **BUSINESS PROBLEM**

Retail Client faces the challenge of expanding its retail footprint in a highly competitive landscape.

stores is critical to ensure success of **Expand** 

**Retail Client** Store **Footprint: Retail Client Express** 

Supercenter and **Collect Real Estate Data** 

**Analyze** 

The goal is to pinpoint potential locations that promise high foot traffic and revenue for Express outlets.

**Competitors Evaluate** 

Retail Client +

Location **Performance** 

### **ANALYTICS PROBLEM**

The project aims to transform raw location-based data into actionable insights by analyzing Store level data (Geospatial + Customer Centric).

Create a model that evaluates the success of any location in terms of customer visits. Make data-driven decisions for opening new Express stores, maximizing market penetration.

Divide data into 3 segments based on radial distance around the store location. Relevant features are applied in each.



**Attribute Radius** 

Competitor

**Nearby Places** 

**Traffic Volume** 

**Road Proximity** 

**County Demographics** 

**Store Reviews** 

•

**Retail Client** 

## Understanding distribution of features across segments.

#### DATA

Dataset is crafted by web-scraping, encompassing key factors, such as traffic volume, proximity to highway, and nearby places (grocery stores, restaurants, medical facilities). It also includes social indicators such as demographic information of the surrounding area. This dataset includes Retail Client stores as well as competitors.



**Geospatial Data** 

Attributes per Store

**Competitor Stores** 









Map of Michigan highlights Retail Client and Competitor stores across all counties to understand the potential for geographic expansion.

# **DEPLOYMENT & LIFE CYCLE MANAGEMENT**

The final model is deployed in a user-friendly dashboard accessible to Retail Client's strategic planning team. This dashboard allows for the input of geographic coordinates, outputting a location score along with detailed statistics & factors influencing the score. The project includes a framework for regular model updates and data refreshes to adapt to changing market dynamics and ensure the model remains relevant and accurate over time.



#### **ACKNOWLEDGEMENTS**

We would like to thank Professor Matthew Lanham, Professor Shoaib Khan and our industry partner for this opportunity, their guidance, and their support on this project.



The project begins with data collection through web scraping with APIs.

**Select Store** 

**Attributes** 

Data preprocessing is then performed to clean and structure the dataset.

to identify trends, patterns, & correlations

**EDA** is conducted

Predictive analytics employed to forecast store visits based on the identified factors.

through a Tableau dashboard with realtime updates.

Deploy model

(API

Web Scrape

**Attributes** 

Identify

Locations



**Data Frame** 

Creation



**Exploratory** 

**Data Analysis** 



**Predictive** 

Modeling

Scoring

Locations