Современные асинхронные шины

Луцив Дмитрий Вадимович Кафедра системного программирования СПбГУ

Содержание

- Проблемы параллельных шин
- 2 Внутренняя шина PCI Express, 2003
- ③ Интерфейсные шины USB и Thunderbolt
 - Universal Serial Bus
 - Thunderbolt
 - Современные USB и Thunderbolt

Проблемы параллельных шин

Проблемы параллельных шин 3 / 18

Длины дорожек важны

🜒 1 наносекунда — это много или мало? Нам поможет 🗗 Грейс Хоппер 🗗

Длины дорожек важны

- 🚺 1 наносекунда это много или мало? Нам поможет 🗗 Грейс Хоппер 🗗
- Но длина дорожек на платах сравнима с таким расстоянием. Что же делать?

Длины дорожек важны

- 🚺 1 наносекунда это много или мало? Нам поможет 🗗 Грейс Хоппер 🗗
- Но длина дорожек на платах сравнима с таким расстоянием. Что же делать?
- Выровнять длину!

... и длины дорожек должны быть равны!

- Что нам мешает?
 - Противостояние тактовая частота скорость света
 - «Широкая» шина

... и длины дорожек должны быть равны!

- Что нам мешает?
 - Противостояние тактовая частота скорость света
 - «Широкая» шина
- Решение: снизить разрядность шины, а если нужно передавать больше данных сделать несколько независимых (асинхронных) параллельных шин.

На «узкой» шине выровнять дорожки легче. До сих пор «держатся» параллельными дорожки к ОЗУ, и то с оговорками (RAS/CAS), но об этом позже

Проблемы параллельных шин 5 / 18

Внутренняя шина PCI Express, 2003

PCI Express: Root Complex

- Северный мост трансформироавлся в Root Complex ☐, в современные процессоры обычно встраивается на кристалл, реже — отдельным кристаллом в том же корпусе
- Южный мост «размазался»
- Некоторые традиционно «не периферийные» устройства, например ПЗУ (точнее ППЗУ) доступны через последовательную шину

PCI Express: Полосы, Совместимость разъёмов разной ширины

Разные разъёмы РСІ-Е (+ 1 РСІ) ♂

- Разные версии стандарта разные скорости
- Передача данных пакетами, в зависимости от длины разъёма от 1 до 16 пакетов одновременно
 - Устройства и разъёмы разной длины [обычно] совместимы друг с другом, если их можно соединить механически
 - Короткое устройство будет работать в длинном разъёме

PCI Express: Скорости

Version	Intro- duced	Line code		Transfer rate per lane ^{[i][ii]}	Throughput ^{(f)(iii)}				
					x1	x2	x4	x8	x16
1.0	2003	NRZ	8b/10b	2.5 GT/s	0.250 GB/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s
2.0	2007			5.0 GT/s	0.500 GB/s	1.000 GB/s	2.000 GB/s	4.000 GB/s	8.000 GB/s
3.0	2010		128b/130b	8.0 GT/s	0.985 GB/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s
4.0	2017			16.0 GT/s	1.969 GB/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s
5.0	2019			32.0 GT/s	3.938 GB/s	7.877 GB/s	15.754 GB/s	31.508 GB/s	63.015 GB/s
6.0	2022	PAM-4 FEC	1b/1b FLIT	64.0 GT/s 32.0 GBd	7.563 GB/s	15.125 GB/s	30.250 GB/s	60.500 GB/s	121.000 GB/s
7.0	2025 (planned)			128.0 GT/s 64.0 GBd	15.125 GB/s	30.250 GB/s	60.500 GB/s	121.000 GB/s	242.000 GB/s

Скорости PCI Express по данным Википедии ♂ и Peripheral Component Interconnect Special Interest Group ♂

Mini PCI Express, mSATA и M.2

Mini PCI & Mini PCI-E 🗗

М.2 $\ \ \, \vec{C} \ \ \,$ использует одинаковый электический и сигнальный интерфейсы с mSATA $\ \ \, \vec{C} \ \,$, это типичная практика, и об этом ниже

Интерфейсные шины USB и Thunderbolt

- Universal Serial Bus
- Thunderbolt
- Современные USB и Thunderbolt

Universal Serial Bus

- Используется с середины 1990-х
- Идеи:
 - Универсальность
 - Возможность под/отключения на ходу
 - Механически прочный разъём с мощным питанием
 - Последовательная передача данных (1 линия на 2 контактах и 2 проводах)
 - Изначально не очень высокая скорость: у хорошо настроенного параллельного порта IEEE 1284 (LPT) скорость выше, чем у USB 1.X

Universal Serial Bus

- Используется с середины 1990-х
- Идеи:
 - Универсальность
 - Возможность под/отключения на ходу
 - Механически прочный разъём с мощным питанием
 - Последовательная передача данных (1 линия на 2 контактах и 2 проводах)
 - Изначально не очень высокая скорость: у хорошо настроенного параллельного порта IEEE 1284 (LPT) скорость выше, чем у USB 1.X
- За более, чем 25-летнюю историю:
 - Не смог сохранить простоту 🗗
 - USB 3+ по сравнению с USB 2- дополнился двумя высокоскоростными линиями данных, т.е. стал уже не совсем последовательным □
 - Потеснил или вытеснил почти все «повседневные» цифровые интерфейсы: COM (RS-232), LPT, AT и PS/2, Twain, FireWire...

USB DisplayPotr Alt Mode

USB 3.1+ с разъёмом Type C позволяют инкапсулировать протокол DisplayPort

Thunderbolt 1, 2

- Высокоскоростной интерфейс, появился в 2011
- Использовал разъём Mini DisplayPort и был совместим с протоколом
 DisplayPort на уровне электрических контактов и сигналов
- Мог инкапсулировать DisplayPort или работать в режиме DisplayPort
- Мог даже инкапсулировать PCI Express (через него даже подключали внешние графические адаптеры)
- Версии 1 и 2 отличались скоростями и версиями инкапуслируемых протоколов

Thunderbolt 3

- Использует разъём Туре С
- Практически является расширением USB 3
- Поддерживает параллельную работу двух портов
 [™] (почти как PCI Express lanes), как одного ускоренного (расстояние стандартизовано)

Кто на ком основан?..

USB 3.2 \to Thunderbolt 3 \to USB 4 (ещё быстрее + открытая спецификация инкапсуляции PCI Ecpress) ...Thunderbolt 4, 5

Общая тенденция к тому, что оба протокола унифицируются друг с другом, ускоряются и добавляют больше функциональности

Упражнения и вопросы

Упражнения

 Попытайтесь идентифицировать все компьютерные разъёмы, которые вы можете встретить

Вопросы

- Что такое Root Complex?
- В чём смысл использования последовательных шин расширения?
- Приведите примеры различных протоколов, использующих одинаковые электрические и сигнальные интерфейсы

Вопросы

EDU.DLUCIV.NAME ☐