Pattern Recognition and Image Analysis

Задача сопровождения объектов на видео: одиночный объект. (Single Object Tracking)

Single Object Tracking

Обновление

Набор данных

Basketball IV, OCC, DEF, OPR, BC

Biker SV, OCC, MB, FM, OPR, OV, LR

Bird1 DEF, FM, OV

BlurBody SV, DEF, MB, FM, IPR

BlurCar2 SV, MB, FM

Bolt OCC, DEF, IPR, OPR

Box IV, SV, OCC, MB, IV, SV, MB, FM, IPR, OPR, OV, BC, LR

Car1 BC, LR

Car4 IV, SV

CarDark IV, BC

Object Tracking Benchmark 2015

Методы

Single Object Tracking

SiamFC

Backbone (AlexNet)

				Activation size		
Layer	Support	Chan. map	Stride	for exemplar	for search	chans.
				127×127	255×255	$\times 3$
conv1	11×11	96×3	2	59×59	123×123	$\times 96$
pool1	3×3		2	29×29	61×61	$\times 96$
conv2	5×5	256×48	1	25×25	57×57	$\times 256$
pool2	3×3		2	12×12	28×28	$\times 256$
conv3	3×3	384×256	1	10×10	26×26	$\times 192$
conv4	3×3	384×192	1	8×8	24×24	$\times 192$
conv5	3×3	256×192	1	6×6	22×22	$\times 128$

Preprocessing Images

$$s(w+2p) \times s(h+2p) = A = 127^{2}$$
$$p = \frac{(w+h)}{4}$$

Labelling

https://arxiv.org/pdf/1606.09549.pdf

Loss Function

$$BCE = -w_n[y_n \log \sigma(x_n) + (1 - y_n) \log(1 - \sigma(x_n))]$$

 \mathcal{X}_n - элемент карты корреляции

 y_n - метка класса (1 — Positive, 0 - Negative)

 w_n - вес элемента карты корреляции

 σ - Sigmoid

Дополнительно метрики:

- Accuracy
- ROC AUC

Спасибо за внимание!