Extremal Graph Theory - Financial Risk Assessment

Blake Marterella

Monday 22nd April, 2024

Abstract

Summarizing your report in a short paragraph. Hello World!

Contents

1	Introduction	1
	1.1 Background	
	1.3 Motivation	
2	Main Section	1
3	Conclusion	2

1 Introduction

Briefly introduce the topic.

- 1.1 Background
- 1.2 Why Is This Of Interest?
- 1.3 Motivation

2 Main Section

Relevant definitions, theorems, examples, etc. In between write down your analysis cohesively.

Definition 2.1 State anything not defined in class here.

By ¹ we find inequality You reference or cite by using labels. E.g. By Theorem ?? we find..., or from [Y10] we know...

Itemized list:

- Every nonzero real number has a reciprocal.
- There is a real number with no reciprocal.

Table:

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	Т	Т
Γ	F	F	F	F
F	Т	Т	Т	Т
F	F	T	Γ	T

 $^{^{1}}$ footnote

Equation array:

$$31 = 17 + 14$$

$$17 = 14 + 3$$

$$14 = 4(3) + 2$$

$$3 = 2 + 1$$

Implication sign:

$$x > 2 \Longrightarrow x^2 > 4$$

Other typical symbols include \rightarrow , \equiv , \neg , \wedge , and \vee .

Where appropriate you can put words in **boldface** or *italics*, or <u>underlined</u>. However, different colors like blue should be avoided in a paper (unless it is really necessary).

3 Conclusion

Based on your research, write down what you discovered. In particular, discuss related areas of interest and any potential directions for future investigation.

References

[ANHF11] M. J. Ablowitz, S. D. Nixon, T. P. Horikis, and D. J. Frantzeskakis, *Perturbations of dark solitons*, Proc. R. Soc. A Vol **467** (2011), 2597-2621.

[HN98] N. Hayashi and P. I. Naumkin, Asymptotics for Large Time of Solutions to the Nonlinear Schrödinger and Hartree Equations, American Journal of Mathematics, Vol 120 No.2 (1998) 369-389.

[Y10] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, Philadelphia (2010).

[Author initials and year] Authors, *Title of Book or Paper*, Journal, Volume **Number**, Publisher (Year), page numbers.