QuickSort vs MergeSort

Gurpreet Singh

14 April, 2017

Comparision of Quicksort and Mergesort

Quicksort has $O(n^2)$ worst-case runtime and $O(n\log n)$ average case runtime. However, it's superior to merge sort in many scenarios because many factors influence an algorithm's runtime, and, when taking them all together, quicksort wins out.

In particular, the often-quoted runtime of sorting algorithms refers to the number of comparisons or the number of swaps necessary to perform to sort the data. This is indeed a good measure of performance, especially since it's independent of the underlying hardware design. However, other things – such as locality of reference (i.e. do we read lots of elements which are probably in cache?) – also play an important role on current hardware. Quicksort in particular requires little additional space and exhibits good cache locality, and this makes it faster than merge sort in many cases.

In addition, it's very easy to avoid quicksort's worst-case run time of O(n2) almost entirely by using an appropriate choice of the pivot – such as picking it at random (this is an excellent strategy).

In practice, many modern implementations of quicksort (in particular lib-stdc++'s std::sort) are actually introsort, whose theoretical worst-case is O(nlogn), same as merge sort. It achieves this by limiting the recursion depth, and switching to a different algorithm (heapsort) once it exceeds logn.

Results

Comparision Table for Quicksort vs Mergesort

	$n = 10^2$	$n = 10^3$	$n = 10^4$	$n = 10^5$	$n = 10^6$
Average running time of	$5.76\mu s$	$82.432 \mu s$	1.086431 ms	13.79606 ms	163.201154ms
QuickSort					
Average running time of	$12.3 \mu s$	$178.59 \mu s$	1.99737ms	24.15282ms	293.733225ms
MergeSort					
Average number of com-	644.946	11002.594	155504.578	2017616.713	2523452.18
parisons in QuickSort					
Average number of com-	542.25	8708.132	120452.184	1536355.955	2114345.23
parisons in MergeSort					
No of times MergeSort	992	1000	1000	1000	1000
had lesser no of compar-					
isons than QuickSort					

Table 1: MergeSort and QuickSort Analysis

Quicksort

Time Ranges for Quicksort

Mergesort

Time Ranges for Mergesort

Help taken in building the latex file from [1] and [2]

References

- [1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The $\slash\hspace{-0.4em}TEX$ Companion. Addison-Wesley, Reading, Massachusetts, 1993.
- [2] Donald Knuth. Knuth: Computers and typesetting.