TURNING NUMBER

Number of orbits in Gauß image

Different homotopy classes in image

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

9

TURNING NUMBER THM.

For a closed curve

$$\int_C \kappa \, ds = k \, 2\pi$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

LENGTH

Sum of edge lengths

$$l(p) = \sum_{i=1}^{n} l_i$$

$$l_1$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

13

LENGTH

Smooth curve

limit of inscribed polygon lengths

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Sum of turning angles

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE GAUB MAP

Edges map to points, vertices map to arcs

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE GAUB MAP

Turning number well-defined for discrete curves

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

17

TURNING NUMBER THEOREM

Closed curve

- the total signed curvature is an integer multiple of 2π .
- proof: sum of exterior angles

$$T_{\kappa} = \sum_{i=1}^{n} \alpha_i = k \, 2\pi$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

STRUCTURE-PRESERVATION

Arbitrary discrete curve of continuous theorem

- total signed curvature obeys
 discrete turning number theorem
- even on a coarse mesh
- can be crucial
 - depending on the application

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

19

CONVERGENCE

Consider refinement sequence

- length of inscribed polygon to length of smooth curve
- discrete measure approaches continuous analogue
- which refinement sequence?
 - depends on discrete operator
 - pathological sequences may exist

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Gradient of length

define discrete curvature

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

23

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

25

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

27

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

29

GRADIENT OF LENGTH

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

MORAL OF THE STORY

Structurepreservation

For an arbitrary (even coarse) discrete curve, the discrete measure of curvature obeys the discrete turning number theorem.

Convergence

In the limit of a refinement sequence, discrete measures of length and curvature agree with continuous measures.

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY