

count num of subArr with sum = goal

Sum of subArr <= goal --> goal + (goal-1) + (goal - 2) ...

Sum of SubArr = 2, 1, 0 ...

Sum of SubArr <= (goal - 1) ==> 2 - 1 = 1

1, 0,

goal = 5

- (1). sum of all subArr \leq goal $--> \sqrt{5}$, $\frac{4}{5}$, $\frac{3}{5}$, $\frac{2}{5}$, $\frac{1}{5}$
- (2). sum of all subArr <= goal 1 --> 5 1 = $\frac{4}{3}$, $\frac{2}{2}$, $\frac{1}{1}$, $\frac{0}{2}$ final subArr count with sum = goal ==> (1) - (2)

why not recursion, as f(x) is not function of x it is some constant

$$f(x) = f(constant) - f(constant-1)$$

count of all subArr with sum <= target value

ans = (window len) = ei - si + 1

goal = 2

sumWindow > targetValue

1.
$$tar = goal$$

final ans
$$= 1 - 2$$

aquire --> everyTime

Release --> while(windowSum > targetValue)

record Ans --> everyTime

1 2

221122112

count subArr with exactly k odd integer = (count subArr with <= k) - (count subArr with <= k - 1)

$$k = 2$$

$$k - 1 = 1$$

$$5$$

$$4$$

$$2$$

$$2$$

$$3$$

$$4$$

$$2$$

$$3$$

$$4$$

$$2$$

$$3$$

$$4$$

$$2$$

$$4$$

$$2$$

$$3$$

$$4$$

$$2$$

$$3$$

$$4$$

$$2$$

$$4$$

$$2$$

$$3$$

$$4$$

$$4$$

$$5$$

$$7$$

$$8$$
exactly k distinct integer = (count subArr <= k - 1)