H18T3A3

Es sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$(y_1, y_2) \mapsto (y_1^2 - y_1(y_2 + 1) - 2, -2y_2)^T.$$

- a) Bestimme die Gleichgewichtspunkte von y' = f(y).
- b) Seien $c = (c_1, c_2) \in \mathbb{R}^2$ und $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}^2$ mit $\tilde{f}(y_1, y_2) := f(y_1 + c_1, y_2 + c_2)$. Zeige, dass y eine asymptotisch stabile Lösung von y' = f(y) genau dann ist, wenn $\tilde{y} = y - c$ eine asymptotisch stabile Lösung von $\tilde{y}' = \tilde{f}(\tilde{y})$ ist.
- c) Überprüfe, ob die Gleichgewichtspunkte aus a) asymptotisch stabile Lösungen sind.

Zu a):

Die Gleichgewichtspunkte sind gegeben durch die Nullstellen von f. Es gilt für $y = (y_1, y_2) \in \mathbb{R}^2$:

$$f(y) = 0 \Leftrightarrow (y_1^2 - y_1(y_2 + 1) - 2 = 0) \land -2y_2 = 0$$

$$\Leftrightarrow y_2 = 0 \land (y_1^2 - y_1 - 2 = (y_1 + 1)(y_1 - 2) = 0)$$

$$\Leftrightarrow y \in \{(-1, 0); (2, 0)\}.$$

Also sind (-1,0), (2,0) die Gleichgewichtspunkte von f.

Zu b):

Wir bemerken zunächst, dass für Funktionen $\begin{pmatrix} \lambda_1(t) \\ \lambda_2(t) \end{pmatrix} = \lambda : I \to \mathbb{R}^2$ und $\tilde{\lambda}: I \to \mathbb{R}^2$ gilt:

$$\tilde{\lambda}'(t) = \tilde{f}(\tilde{\lambda}(t)) \Leftrightarrow \begin{pmatrix} \lambda_1(t) \\ \lambda_2(t) \end{pmatrix}' = \begin{pmatrix} \lambda_1(t) - c_1 \\ \lambda_2(t) - c_2 \end{pmatrix}' = f(\tilde{\lambda}(t) + c_1, \tilde{\lambda}(t) + c_2) = f(\lambda(t))$$

$$\Leftrightarrow \lambda'(t) = f(\lambda(t))$$

Genau dann ist λ also Lösung von y' = f(y), wenn $\tilde{\lambda}$ Lösung von $\tilde{y}' = f(\tilde{y})$ ist. Wir stellen weiter fest, dass f offensichtlich stetig differenzierbar und damit insbesondere lokal Lipschitzstetig ist. Es gibt also zu jedem Anfangswertproblem

$$y' = f(y), \quad y(\tau) = \xi \tag{1}$$

mit $\tau \in \mathbb{R}, \xi \in \mathbb{R}^2$ eine eindeutige maximale Lösung $\mu_{(\tau,\xi)}: I_{(\tau,\xi)} \to \mathbb{R}^2$ mit einem offenen Intervall $I_{(\tau,\xi)}$, das τ enthält. Nach der obigen Bemerkung ist damit $\tilde{\mu}_{(\tau,\xi-c)}: I_{(\tau,\xi)} \to \mathbb{R}^2$ die eindeutige maximale Lösung zu $t \mapsto \mu_{(\tau,\xi)}(t) - c$

$$\tilde{y}' = \tilde{f}(\tilde{y}), \quad \tilde{y}(\tau) = \xi - c$$
 (2)

Für a < 0 ist nun $y :]a, \infty[\to \mathbb{R}^2$ eine asymptotisch stabile Lösung der autonomen Differentialgleichung y' = f(y), wenn es ...

1. ... für alle $\varepsilon > 0, \tau > a$ ein $\delta > 0$ gibt, sodass

$$I_{(\tau,\xi)} \supseteq [\tau, \infty[\text{ und } ||\mu_{(\tau,\xi)}(t) - y(t)|| < \varepsilon$$

für alle $\xi \in \mathbb{R}^2$ mit $||\xi - y(\tau)|| < \delta, \ t \ge \tau$ gilt und außerdem

2. ... ein $\eta > 0$ gibt, sodass

$$I_{(\tau,\xi)} \supseteq [\tau, \infty[\quad \text{und} \quad \lim_{t \to \infty} ||\mu_{(\tau,\xi)}(t) - y(t)|| = 0$$

für alle $\xi \in \mathbb{R}^2$ mit $||\xi - y(\tau)|| < \eta$ ist.

Dann und nur dann, gibt es aber auch für jedes $\varepsilon > 0, \tau > 0$ ein $\delta > 0$

$$I_{(\tau,\xi)} \supseteq [\tau, \infty[$$
 und $|\tilde{\mu}_{(\tau,\xi-c)} - \tilde{y}| = |(\mu_{(0,\xi)}(t) - c) - (y-c)| = |\mu_{(0,\xi)} - y| < \varepsilon$

für alle $|\xi - c - \tilde{y}| = |\xi - y| < \delta$ und $t \ge \tau$, und ein $\eta > 0$, sodass

$$I_{(\tau,\xi)} \supseteq [\tau, \infty[$$
 und $\lim_{t \to \infty} ||\tilde{\mu}_{(\tau,\xi)}(t) - \tilde{y}(t)|| = \lim_{t \to \infty} ||\mu_{(\tau,\xi)}(t) - y(t)|| = 0$

für alle $\xi \in \mathbb{R}^2$ mit $||\xi - y(\tau)|| < \eta$ ist. auch weil die Intervalle, auf denen $\mu_{(\tau,\xi)}$ und $\tilde{\mu}_{(\tau,\xi)}$ definiert sind, übereinstimmen. Damit folgt die Behauptung.

Zu c):

Mittels Linearisieren stellen wir (für die offensichtlich stetig differenzierbare) Funktion f fest:

$$(Jf)(y_1, y_2) = \begin{pmatrix} 2y_1 - y_2 - 1 & -y_1 \\ 0 & -2 \end{pmatrix}$$

Damit ist

$$(Jf)(-1,0) = \begin{pmatrix} -3 & 1\\ 0 & -2 \end{pmatrix}$$
 sowie $(Jf)(2,0) = \begin{pmatrix} 3 & 2\\ 0 & -2 \end{pmatrix}$

Die Realteile der beiden Eigenwerte -3, -2 von (Jf)(-1,0) sind damit alle negativ und (-1,0) damit eine asymptotisch stabile Ruhelage.

Der Realteil des Eigenwerts 3 von (Jf)(2,0) ist damit positiv und (2,0) damit keine asymptotisch stabile Ruhelage.