AirBnB challenge

Where will a new guest book its first destination?

A Network Tour of Data Science EE-558

Grisard Malo
Pecoraro Cyril
Jaume Guillaume

Motivations

- Goal : Predict the country of a new user's booking
 - Give 5 most likely countries
 - Can include "not booking"

Graded using Normalized Discounted Cumulative Gain

Dataset

- Real data sample from Airbnb from 2010 to 2014
- User information
 - Train set: data includes destination of the user
 - Test set : data does not include destination
- Browser sessions information per user
- Demographic information about countries

Age distribution

Gender

Bookings throughout time

Average time spent per user

Total number of actions per user

From raw data to feature matrix (1)

- Replace all missing data with -1 (age, sessions)
- Created new features from the browser session
 - Number of actions
 - Average time per session
 - Total time per user
- Created new features from user information
 - Date account created
 - Date account first active

From raw data to feature matrix (2)

165 features in total

Evaluation Metric

NDCG score: Normalized Discounted Cumulative Gain

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

$$nDCG_k = \frac{DCG_k}{IDCG_k}$$

Example : [US,FR]
$$DCG = \frac{2^0 - 1}{\log_2(1+1)} + \frac{2^1 - 1}{\log_2(2+1)} = \frac{1}{1.58496} = 0.6309$$

Machine Learning Approach

4 models investigated:

- Random Forest
- Extreme gradient boosting
- 2 Layers Stacking
- Voting: combination of the above

Model 1: Random forest

Best parameters found with **Cross Validation**:

Depth : 16

• Trees: 600

Results:

- Kaggle NDCG = **0.86686**
- Ranking 1000th

Model 2: Extreme gradient boosting

Combines **weak "learners"** into a single **strong learner**, in an iterative fashion. The goal is to learn a model F to predict values in the form y = F(x).

$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma) \qquad \qquad F_{m+1}(x) = F_m(x) + h(x) = y$$

Best parameters found with **Cross Validation**:

- Depth: 7
- learning rate : 0.1

- gamma: 0.7
- estimators: 75

Loss Function : multisoftProb

Model 3: 2 Layers Stacking

- Main idea: counter the unbalanced classes
- Non bookers (50%) / bookers (50%) -> balanced

Voting Model

Goal: Balance individual weaknesses

Combine models:

- Random forest
- Xgboost
- 2-Layers stacking

classifier	class 1	class 2	class 3
classifier 1	w1 * 0.2	w1 * 0.5	w1 * 0.3
classifier 2	w2 * 0.6	w2 * 0.3	w2 * 0.1
classifier 3	w3 * 0.3	w3 * 0.4	w3 * 0.3
weighted average	0.37	0.4	0.23

For each user.

Features importance

Conclusion

- Best model: Simple XGBoost, Kaggle NDCG score of 0.86967.
- Stacking model is not better than XGBoost.

Why? First layer logistic regression F1 scores just above 60%.

Voting model is not better than the XGBoost

Why? Probably because it is composed of models performing less well, not bringing information

Future investigations : improve stacking model

95	↓158	■ Matt	0.86987	7	Thu, 11 Feb 2016 21:05:58	
96	↓72	■ Shi Fan ‡	0.86987	7	Mon, 18 Jan 2016 05:26:28 (-28.4h)
97	↓118	Julien	0.86987	6	Fri, 15 Jan 2016 10:44:54 (-0.5h)	
98	↑87	SingleModel	0.86987	12	Sat, 30 Jan 2016 23:38:58	
-		Malo Grisard	0.86987		Wed, 18 Jan 2017 15:31:50	Post-Deadline
		ne Entry have submitted this entry during the	competition, you woul	d have	been around here on the leade	rboard.
			competition, you woul	d have	been around here on the leade	rboard.
			competition, you woul 0.86986	d have	been around here on the leade Thu, 24 Dec 2015 12:26:02	rboard.
you v	would	have submitted this entry during the	P/2 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 -			rboard.
you v 599	would ↑70	have submitted this entry during the MilapShah	0.86986	3	Thu, 24 Dec 2015 12:26:02	rboard.
you v 599 700	†70 ↓81	have submitted this entry during the MilapShah Kuber@IITB	0.86986 0.86986	3	Thu, 24 Dec 2015 12:26:02 Tue, 15 Dec 2015 05:32:58 (-3.7d)	
you (599 700 701	†70 ↓81 †20	have submitted this entry during the MilapShah Kuber@IITB Swaroop Kallakuri	0.86986 0.86986 0.86986	3 6 2	Thu, 24 Dec 2015 12:26:02 Tue, 15 Dec 2015 05:32:58 (-3.7d) Tue, 15 Dec 2015 18:02:54	

Model 2: Extreme gradient boosting

- "multi:softprob"
 - -same as softmax, but outputs a vector of ndata * nclass, which can be further reshaped to ndata, nclass matrix. The result contains predicted probability of each data point belonging to each class.
- gamma:
 - minimum loss reduction required to make a further partition on a leaf node of the tree. The larger, the more conservative the algorithm will be.
- max_depth:
 maximum depth of a tree, increase this value will make the model more
 complex / likely to be overfitting.