BUCKET BRIGADE DELAY LINE FOR ANALOGUE SIGNALS

The TDA 1022 is a MOS monolithic integrated circuit, generally intended to delay analogue signals (e.g. delay time = $512/2 \, f_{\phi}$).

It can be used with clock frequencies in the range 5 kHz to 500 kHz.

The device contains 512 stages, so the input signal can be delayed from 51,2 ms to $0.512 \ \mathrm{ms}$.

Applications in which the device can be used:

- variation of fixed delays of analogue signals, vox control, equalizing speech delay in public address systems;
- in electronic organs and other musical instruments for vibrato and chorus effects;
- reverberation effects;
- variable compression and expansion of speech in tape-recorders;
- in communication systems for speech scrambling and time scale conversion.

QUICK REFERENCE DATA				
Supply voltage (pin 9)	$v_{ m DD}$	nom.	-15	V
Clock frequency	$\mathrm{f}_{\dot{\phi}}$	5	to 500	kHz
Number of stages			512	
Signal delay range	$t_{ m d}$	51,2 to	0,512	ms
Signal frequency range	f_S	0 (d.c.) to 45	kHz
Input voltage at pin 5 (peak-to-peak value)	V _{5-16(p-p)}	typ.	7	V
Line attenuation	· · · · · · · · · · · · · · · · · · ·	typ.	4	dB^{-1})

PACKAGE OUTLINE plastic 16-lead dual in-line (see general section).

 $^{^{\}mathrm{l}}$) See note 1 on page 4.

T III

 $-20 \text{ to } + 85 \text{ }^{\circ}\text{C}$

Tamb

RATINGS	Limiting values	in accordance wit	h the Absolute	Maximum System	(IEC 134)
---------	-----------------	-------------------	----------------	----------------	-----------

Voltages	(see	note)
----------	------	-------

Operating ambient temperature

Voltages (see note)			
Supply voltage	V9-16	0 to -20	V
Clock input, data input, output voltage and V_{1316}		0 to -18	V
Current			
Output current	I ₈ ; I ₁₂	0 to 5	mA
Temperatures			
Storage temperature	$T_{ m stg}$	-40 to +150	$^{\rm o}{ m C}$

Note

Though MOS integrated circuits incorporate protection against electrostatic discharge, they can nevertheless be damaged by accidental over-voltages.

To be totally safe, it is desirable to take handling precautions into account.

CHARACTERISTICS at
$$T_{amb}$$
 = -20 to +55 ^{o}C ; V_{DD} = -15 V; $V_{\phi 1}$ = $V_{\phi 2}$ = -15 V; V_{13-16} = -14 V; R_{L} = 47 k Ω (unless otherwise specified)

10 10 . E					
Supply voltage range	$v_{ m DD}$		-10 to -18	V	1)
Supply current	. 19	typ.	0,3	mA	
Clock frequency	$f_{\phi 1}$; $f_{\phi 2}$		5 to 500	kHz	2)
Clock pulse width	$t_{\phi 1}$; $t_{\phi 2}$	≤	0,5T		3)
Clock pulse rise time	$t_{\phi lr}$; $t_{\phi 2r}$	typ.	0,05T		3)
fall time	$t_{\phi 1f}$; $t_{\phi 2f}$	typ.	0,05T		3)
Clock pulse voltage levels; HIGH	$V_{\phi 1H}$; $V_{\phi 2H}$		0 to -1,5	V	
LOW	$V_{\phi 1L}; V_{\phi 2L}$	typ.	-15 -10 to -18	V V	$\frac{1}{1}$)
Signal input voltage at 1% output voltage distortion (r.m.s. value)	· V _{s(rms)}	typ.	2,5	V	
Signal frequency	fo	C	(d.c.) to 45	kHz	

 $^{^{1})}$ It is recommended that V13-16 = V_{ϕ} 1L + 1 V = V_{ϕ} 2L + 1 V; VDD more negative than V_{oL}.

²⁾ In theory the clock frequency must be higher than twice the highest signal frequency; in practice $f_S \le 0.3 f_{\phi}$ to 0.5 f_{ϕ} is recommended, depending on the characteristics of the output filter.

³⁾ T = period time = $1/f_{\dot{\phi}}$. The data on fall and rise times are given to eliminate overlap between the two clock pulses. To be independent of these rise and fall times a clock generator with simple gating can be used. See also pages 5 and 8.

CHARACTERISTICS (continued)

Attenuation from input to output $f_{\phi} = 40 \text{ kHz}$: $f_{S} = 1 \text{ kHz}$		typ.	. 4 7	dB dB	1)
Change in output at f_S = 1 kHz: $V_S(rms)$ = 1 V when f_ϕ varies from 5 to 100 kHz		typ.	0,5 1	dB dB	
when $f_{\acute{O}}$ varies from 100 to 300 kHz $^{\circ}$		typ.	0,5 1	dB dB	
D.C. voltage shift when $f_{\hat{\mathcal{Q}}}$ varies from 5 to 300 kHz		<	0,5	V	
Noise output voltage (r.m.s. value) f _o = 100 kHz (weighted by "A" curve)	$v_{ m N(rms)}$	typ.	0, 25	mV	
Signal-to-noise ratio at max. output voltage	S/N	typ.	74	dB	
Load resistance	$R_{\mathbf{L}}$	> typ.	10 47	kΩ kΩ	1)

 $^{^{1})}$ Attenuation can be reduced to typ. 2,5 dB if load resistor is replaced by a current source of 100 to 400 $\mu A.$

III

***) Can be replaced by a current source of 100 to 400 µA (see also note 1 on page 4). $\ensuremath{^{\circ}}\xspace$) Adjust d.c. voltage for class-A operation (=5 V). ***) Clock input voltage amplitude: $V_{\rm CL}$ = -15 V.

Ш

*

Clock oscillator and driver circuit with elimination of overlap (for max.6 x TDA 1022)

 $\begin{array}{ll} V_{DD} = 0 \\ V_{SS} = -15 \text{ V} \\ f_{\phi} = 15 \text{ kHz} \end{array}$

166

June 1976

₩.

APPLICATION INFORMATION (continued)

Conditions for the graph above:

$$\begin{array}{l} {\rm VDD} = -15 \; {\rm V} \\ {\rm V13-16} = -14 \; {\rm V} \\ {\rm V}_{\phi \rm H} = 0 \; {\rm V} \\ {\rm f}_{\phi} = 40 \; {\rm kHz} \\ {\rm R} \; {\rm L} = 47 \; {\rm k} \; \Omega \end{array}$$

Conditions for the left-hand graph:

VDD = -15 V
V13-16 = -14 V
V
$$\phi$$
H = 0 V
 f_{ϕ} = 40 kHz
 f_{s} = 1 kHz
 R_{L} = 47 k Ω

Conditions for the graph above:

$$V_{DD} = -15 \text{ V}$$

 $V_{13-16} = -14 \text{ V}$
 $V_{\phi} = 0 \text{ to } -15 \text{ V}$

Conditions for the left-hand graph:

$$f_S = 1 \text{ kHz}$$

 $V_S = -5,2 \text{ V}$

$$v_S = -3, 2 \text{ V}$$

$$V_{DD} = -15 \text{ V}$$

$$V_{13-16} = -14 V$$

$$V_{\phi} = 0 \text{ to } -15 \text{ V}$$

 $f_{\phi} = 40 \text{ kHz}$

0 -1

111

168

V_{s (rms)} (V)

October 1975