Prompt:

Given a set of points $P = \{p_1, ..., p_n\} \in \mathbb{R}^d$, an integer k such that $1 \le k \le n$, and the optimum radius $O(\Delta)$. Design a polynomial time algorithm that finds at most k balls of radius $O(\Delta)$ centered at k points and covering all of the points.

Algorithm:

```
\begin{split} \operatorname{FindSetA}(P, \ \operatorname{O}(\Delta)) \colon \\ \operatorname{Let} \ \operatorname{set} \ S &= \varnothing \\ \operatorname{Let} \ \operatorname{radius} \ \Delta \ \operatorname{be} \ 2 \ \ast \operatorname{O}(\Delta) \\ \operatorname{While} \ P &\neq \varnothing \ \operatorname{\mathbf{do}} \\ \operatorname{Let} \ \operatorname{point} \ p \ \operatorname{be} \ \operatorname{arbitrary} \ p \in P \\ S &= S \cup p \\ \operatorname{For} \ \operatorname{each} \ \operatorname{point} \ u \in P \ \operatorname{\mathbf{do}} \\ \operatorname{If} \ \operatorname{distance}(p \ , \ u) \leq \Delta \ \operatorname{then} \\ P &= P \setminus u \\ \operatorname{EndIf} \\ \operatorname{EndFor} \\ \operatorname{EndWhile} \\ \operatorname{Return} \ S \end{split}
```

Claim:

The algorithm terminates in polynomial time.

Proof:

The algorithm has two nested loops. Both loops iterate over the set P that is monotonically decreasing on each iteration. Thus, the algorithm terminates in $O(n^2)$.

Claim:

Given a set of points P such that |P| = n and the optimum radius $O(\Delta)$ to enclose all P in k balls, the algorithm returns a set of points S of size $|S| = h \le k$ centered at h of the points and covering all of the points.

Proof:

The proof of the claim follows directly. Let O denote the optimum set of points such that all $p \in P$ are within $O(\Delta)$ radius from some point $o \in O$ and |O| = k. Let S denote the set of points returned by the algorithm at termination. Consider a point $s \in S$ such that $s \in O$. Then, a radius about s of $O(\Delta)$ is sufficient to enclose every point $p \in P$ that would also be enclosed by some point

 $o \in O$. Obviously, if every point $s \in S$ were a point $o \in O$ we would be done. Now consider the case where point $s \in S$ but $s \notin O$. Let $\Delta = 2 * O(\Delta)$. Consider the effect doubling $O(\Delta)$ has on the points enclosed within a radius Δ from s. Suppose s is $O(\Delta)$ away from the nearest $o \in O$. Then, the furthest distance another point q could be from s and still be within $O(\Delta)$ of o would be Δ . Therefore, s with radius Δ encloses every point in P that is also enclosed by o with radius $O(\Delta)$. It follows then, that at most k points in S with radius Δ will be enough to enclose every point in P just as k points in O with radius $O(\Delta)$ were enough to enlose every point in P.

Prompt:

Assume we no longer know $O(\Delta)$ but we know that $O(\Delta)$ is in the interval [1, R]. Design an n log(R) polynomial time algorithm to find k balls of radius $O(\Delta)$.

Algorithm:

```
FindSetB(P, k):

Let \Delta = 1

While |S| > k do

Let S = FindSetA(P, \Delta)

\Delta = \Delta * 2

Return S
```

Claim:

The algorithm terminates in $n^2 \log(R)$ polynomial time.

Proof:

We know FindSetA terminates in n^2 . Since |S| decreases and Δ doubles on every iteration, we know the runtime will be in $O(n^2 \log(R))$. \square

Claim:

Given a set P containing n points and an integer k such that $1 \le k \le n$, the algorithm returns a set S of at most k points such that all the points in P are within at most $c * O(\Delta)$ radius, where c is some constant, from a point in S.

Proof:

Since the algorithm terminates, we know that $|S| \leq k$. We therefore show that Δ is within a constant c of $O(\Delta)$. We know that if $\Delta < O(\Delta)$ then |S| > k and we know from part a that if $\Delta > 2 * O(\Delta)$ that $|S| \leq k$. Because we double Δ on each iteration, the largest Δ could be is $\Delta < 4 * O(\Delta)$. However, as shown, no iteration where Δ is larger than that will execute. Thus, $|S| \leq k$ and Δ is bounded by $O(\Delta) <= \Delta < 4 * O(\Delta)$. \square