

Ensemble Learning: Bias-Variance Decomposition

Pilsung Kang
School of Industrial Management Engineering
Korea University

Theoretical Backgrounds: Model Space

절단지성

Different model produce different class boundaries or fitted functions

Suppose the data comes from the "additive error" model

$$y = F^*(\mathbf{x}) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

- $\checkmark F^*(\mathbf{x})$ is the target function that we are trying to learn, but do not really know
- ✓ The errors are independent and identically distributed

✓ The average fit over all possible datasets:

$$\bar{F}(\mathbf{x}) = E[\hat{F}_D(\mathbf{x})]$$

• The MSE for a particular data point

$$Err(\mathbf{x}_{0}) = E \left[y - \hat{F}(\mathbf{x}) | \mathbf{x} = \mathbf{x}_{0} \right]^{2}$$

$$= E \left[F^{*}(\mathbf{x}_{0}) + \hat{\mathbf{e}} - \hat{F}(\mathbf{x}_{0}) \right]^{2} \rightarrow \mathbf{E}(\mathbf{A}+\mathbf{B})^{2} = \mathbf{E}(\mathbf{A}^{2}+2\mathbf{A}\mathbf{B}+\mathbf{B}^{2})$$

$$= E \left[F^{*}(\mathbf{x}_{0}) - \hat{F}(\mathbf{x}_{0}) \right]^{2} + \sigma^{2}$$

$$= E \left[F^{*}(\mathbf{x}_{0}) - \hat{F}(\mathbf{x}_{0}) + \bar{F}(\mathbf{x}_{0}) - \hat{F}(\mathbf{x}_{0}) \right]^{2} + \sigma^{2}$$

$$= E \left[F^{*}(\mathbf{x}_{0}) - \hat{F}(\mathbf{x}_{0}) + \bar{F}(\mathbf{x}_{0}) - \hat{F}(\mathbf{x}_{0}) \right]^{2} + \sigma^{2}$$

• The MSE for a particular data point

$$= E \left[F^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) + \bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \right]^2 + \sigma^2$$

√ By the properties of the expectation operator

$$\begin{split} &= \underbrace{E} \Big[F^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) \Big]^2 + E \Big[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \Big]^2 + \sigma^2 \\ &= \underbrace{\left[F^*(\mathbf{x}_0) - \bar{F}(\mathbf{x}_0) \right]^2 + E \Big[\bar{F}(\mathbf{x}_0) - \hat{F}(\mathbf{x}_0) \Big]^2 + \sigma^2}_{\text{Sign}} \end{split}$$

$$= Bias^{2}(\hat{F}(\mathbf{x}_{0})) + Var(\hat{F}(\mathbf{x}_{0})) + \sigma^{2}$$

Bias: प्रख्य प्रायह भमारे न्य

Vor: 모델이 되고를 바뀌갈 때 망간에 엉덩하다 차이가 나는가

- Properties of Bias and Variance
 - ✓ Bias²: the amount by which the average estimator differs from the truth
 - Low bias: on average, we will accurately estimate the function from the dataset
 - High bias implies a poor match
 - √ Variance: spread of the individual estimations around their mean
 - Low variance: estimated function does not change much with different datasets
 - High variance implies a weak match
 - ✓ Irreducible error: the error that was present in the original data
 - ✓ Bias and variance are not independent of each other

• Graphical representation of Bias-Variance decomposition

Graphical representation of Bias-Variance decomposition

X: 啊兹(f(x))

●: 예該 題

🚧 🗸 Lower model complexity: high bias & low variance -

- Logistic regression, LDA, k-NN with large k, etc.
- √ Higher model complexity: low bias & high variance
 - DT, ANN, SVM, k-NN with small k, etc.

Bias-Variance Dilemma

The more complex (flexible) we make the model, the lower the bias but the higher the variance it is subjected to.

Model Complexity (e.g., tree size)

• Bias-Variance example

 D_i : Same Portoset $\mathcal{N}: F^*(\alpha) \cdot F^*(\alpha) \uparrow \mathcal{E}$

Each column is a different model.

Each row is a different dataset of 6 points.

Col 1:

Poor fixed linear model; High bias, zero variance

Col 2:

Slightly better fixed linear model; Lower (but high) bias, zero variance.

Col 3:

Learned cubic model; Low bias, moderate variance.

Col 4:

Var

Learned linear model; Intermediate bias and variance.

V/////X

Bias-Variance example

Purpose of Ensemble

- Goal: Reduce the error through constructing multiple learners to
 - ✓ Reduce the variance: Bagging, Random Forests
 - ✓ Reduce the bias: AdaBoost
 - ✓ Both: Mixture of experts
- Two key questions on the ensemble construction
- ♦ ✓ QI: How to generate individual components of the ensemble systems (base classifiers) to achieve sufficient degree of diversity?
 - ✓ Q2: How to combine the outputs of individual classifiers?

Ensemble Diversity

- Ensemble will have no gain from combining a set of identical models
 - ✓ Need base learners whose fitted functions are adequately different from those of others
 - ✓ Wish models to exhibit a <u>certain element of diversity</u> in their group behavior, though still <u>retaining good</u> performance individually.

Diversity	Implicit	Explicit
Description	Provide different random subset of the training data to each learner	Use some measurement ensuring it is substantially different from the other members
Ensemble Algorithms	Instance: Bagging Variables: Random Subspaces, Rotation Forests Both: Random Forests	Boosting, Negative Correlation Learning La Diversity = Model स्टाटन

Ensemble Diversity

• Independent (implicit) vs. Model guided (explicit) instance selection

> Individual Model on 对于 神经的 外型 如此型

924 对性型

Model on 可以对性型

Model on 可以可以使用

Model on 可以使用

Model o

rt xgboost as xgb # XGBoost의 native API를 사용하는 경우 'objective': 'binary:logistic', 'nthread': 4 # 병렬 처리를 위한 코머 수 설정 train data = xgb.DMatrix(X_train, label=y_train) # scikit-learn API를 사용하는 경우 clf = xgb.XGBClassifier(n_jobs=4) # 병렬 처리를 위한 코머 수 설정

Independent instance selection

Model guided instance selection

BOOSEing 범정和以 > 新年的內型 和中部已登. (e.g. XGBoose)

Why Ensemble?

- Why Ensemble works?
 - √ True functions, estimations, and the expected error

$$y_m(\mathbf{x}) = f(\mathbf{x}) + \epsilon_m(\mathbf{x}). \quad \mathbb{E}_{\mathbf{x}}[\{y_m(\mathbf{x}) - f(\mathbf{x})\}^2] = \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Avg} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_{m}(\mathbf{x})^{2} \right]$$

$$E_{Ensemble} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_{m}(\mathbf{x}) - f(\mathbf{x}) \right\}^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_{m}(\mathbf{x}) \right\}^{2} \right]$$

Why Ensemble?

Why Ensemble works?

✓ Assume that the errors have zero mean and are uncorrelated, 개발 빨리 안 됐어나.

$$\mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})] = 0, \quad \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})\epsilon_l(\mathbf{x})] = 0 \ (m \neq l)$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Ensemble} = \frac{1}{M} E_{Avg}$$

✓ In reality (errors are correlated), by the Cauchy's inequality

$$\left[\sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \leq M \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2 \Rightarrow \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \leq \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2$$
Exercise

 $(aa+by)^2 \leq (a^2+b^2)(a^2+y^2)$ $E_{Ensemble} \leq E_{Avg}$

