The size of a basis

Key fact for this week: all bases for a vector space have the same size.

We use this as the "basis" for answering many pending questions.

Morphing Lemma

Morphing Lemma: Let \mathcal{V} be a vector space. Suppose S is a set of generators for \mathcal{V} , and B is a basis for \mathcal{V} . Then $|B| \leq |S|$.

Before we prove it—what good is this lemma?

Theorem: Any basis for V is a smallest generating set for V.

Proof: Certainly B is a generating set for \mathcal{V} . Let S be a smallest generating set for \mathcal{V} . Then, by the Morphing Lemma, B is no bigger than S, so B is also a smallest generating set.

Theorem: All bases for a vector space \mathcal{V} have the same size.

Proof: They are all smallest generating sets.

Proof of the Morphing Lemma

Morphing Lemma: Let \mathcal{V} be a vector space. Suppose S is a set of generators for \mathcal{V} , and B is a basis for \mathcal{V} . Then $|B| \leq |S|$.

Proof outline: modify S step by step, introducing vectors of B one by one, without increasing the size.

How? Using the Exchange Lemma....

Review of Exchange Lemma

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S. Suppose \mathbf{z} is a vector in Span S such that $A \cup \{\mathbf{z}\}$ is linearly independent.

Then there is a vector $\mathbf{w} \in S - A$ such that

$$\mathsf{Span}\ S = \mathsf{Span}\ \big(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}\big)$$

Proof of the Morphing Lemma

Let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$. Define $S_0 = S$.

Prove by induction on $k \leq n$ that there is a generating set S_k of V that contains $\mathbf{b}_1, \dots, \mathbf{b}_k$ and has size |S|.

Base case: k = 0 is trivial.

To go from S_{k-1} to S_k : use the Exchange Lemma.

$$lacksquare$$
 $A_k = \{\mathbf{b}_1, \dots, \mathbf{b}_{k-1}\}$ and $\mathbf{z} = \mathbf{b}_k$

Exchange Lemma \Rightarrow there is a vector **w** in S_{k-1} such that

$$\mathsf{Span}\; (S_{k-1} \cup \{\mathbf{b}_k\} - \{\mathbf{w}\}) = \mathsf{Span}\; S_{k-1}$$

Set
$$S_k = S_{k-1} \cup \{\mathbf{b}_k\} - \{\mathbf{w}\}.$$

QED

This induction proof is an algorithm.

