Física Geral I • FIS0703

Aula prática 02 03/10/2016

04/10/2016

Números complexos

Determine as representações polares, i.e. a forma $\rho e^{i\theta}$, dos números complexos $z_1=1+2i$ e $z_2=iz_1$.

Números complexos

Um amigo propõe pagar-lhe 10 cêntimos em troca de i^i euro. Devia aceitar?

1. Dados os vectores $\mathbf{A} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ e $\mathbf{B} = 3\hat{\imath} - 2\hat{\jmath} - \hat{k}$ qual deverá ser o vector \mathbf{D} tal que $\mathbf{A} + \mathbf{B} + \mathbf{D} = 0$?

2. Calcule o ângulo entre os vetores $\mathbf{A} = \hat{\imath} + \hat{\jmath} + \hat{k}$ e $\mathbf{B} = \hat{\imath} + \hat{\jmath}$.

3. Dados os vectores $\mathbf{A} = p\hat{\imath} + \hat{\jmath} + \hat{k}$ e $\mathbf{B} = \hat{\imath} - 2p\hat{\jmath} + \hat{k}$, para que valores de p são os vectores \mathbf{A} e \mathbf{B} perpendiculares entre si?

4. Diga se os dois vectores $\mathbf{A} = 15\hat{\imath} - 10\hat{\jmath} + 30\hat{k}$ e $\mathbf{B} = 4\hat{\imath} + 2\hat{\jmath} - \hat{k}$ são perpendiculares entre si.

5. Determine um vector unitário perpendicular ao plano definido por $\mathbf{A} = 6\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ e $\mathbf{B} = 4\hat{\imath} + 3\hat{\jmath} - \hat{k}$.

6. Os vectores \mathbf{A} e \mathbf{B} , de módulos A e B, respectivamente, fazem um ângulo θ entre si. Considerando as componentes de \mathbf{A} e \mathbf{B} ao longo de um sistema de eixos ortogonais, mostre que o módulo do vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$ é dado por $R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$.

7. Dados os vectores $\mathbf{A} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$ e $\mathbf{B} = \hat{\imath} - \hat{\jmath} + 2\hat{k}$, escreva \mathbf{A} como uma soma de dois vetores componentes $\mathbf{A}_{||}$ e \mathbf{A}_{\perp} , onde $\mathbf{A}_{||}$ é paralelo a \mathbf{B} e \mathbf{A}_{\perp} é perpendicular a \mathbf{B} .

Movimento oscilatório

1. A posição duma partícula é dada pela expressão $x(t) = 4.0\cos(3.0\pi t + \pi)$, onde x é em metros e t em segundos. Determine (a) a frequência e (b) o período do movimento, (c) a amplitude, (d) a constante de fase inicial, e (e) a posição da partícula em t = 0.25 s.