Homework 4

Mengxiang Jiang CSEN 5336 Analysis of Algorithms

December 1, 2022

Problem 1. Find the prefix function π for the pattern P = "tortoise" for the Knuth-Morris-Pratt Algorithm. Find out the status q at different steps while searching the pattern in the text T = "distortion tortoise tortilla".

Prefix function $\pi[1 \dots m]$:

i	1	2	3	4	5	6	7	8
p[i]	t	О	r	t	О	i	S	е
$\pi[i]$	0	0	0	1	2	0	0	0

Current state values:

From $i = 1 \dots 19$:

1 1 0 111			• + 0																
i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
T[i]	d	i	S	t	О	r	t	i	О	n		t	О	r	t	О	i	\mathbf{S}	е
q[i]	0	0	0	1	2	3	4	1/0	0	0	0	1	2	3	4	5	6	7	80

From i = 20...28:

110111	<i>U</i>	<u> </u>							
i	20	21	22	23	24	25	26	27	28
T[i]		t	О	r	t	i	1	1	a
q[i]	0	1	2	3	4	10	0	0	0

one valid shift at $i = 19 \rightarrow$ shift of i - m = 19 - 8 = 11.

Problem 2. Find the maximum flow in the flow network shown in figure 1. In the flow network s is the source vertex and t is the destination vertex. The capacity of each of the edges are given in the figure.

Figure 1: Flow Network

Augmenting path with f' = 6

No more augmenting paths \rightarrow maximum flow

Problem 3. A linear program is given as follows:

```
Minimize x_1 + x_2 + x_3
subject to:
2x_1 - 6x_2 + 3x_3 \ge 50
3x_1 + 4x_2 - x_3 \ge 40
4x_1 - x_2 + 5x_3 \ge 60
x_1, x_2 \ge 0
```

(a) Express the problem in either standard form or slack form standard form:

Maximize
$$-x_1 - x_2 - x_3' + x_3''$$

 $-2x_1 + 6x_2 - 3x_3' + 3x_3'' \le -50$
 $-3x_1 - 4x_2 + x_3' - x_3'' \le -40$
 $-4x_1 + x_2 - 5x_3' + 5x_3'' \le -60$
 $x_1, x_2, x_3', x_3'' \ge 0$

(b) Solve the problem using a linear programming solver (e.g., linprog in python).

```
1 # Import required libraries
2 import numpy as np
3 from scipy.optimize import linprog
5 # Set the inequality constraints matrix
6 # Note: the inequality constraints must be in the form of <=
7 \text{ A} = \text{np.array}([[-2, 6, -3, 3], [-3, -4, 1, -1], [-4, 1, -5, 5],
      [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
10 # Set the inequality constraints vector
b = np.array([-50, -40, -60, 0, 0, 0])
12
13 # Set the coefficients of the linear objective function vector
14 c = np.array([1, 1, 1, -1])
# Solve linear programming problem
res = linprog(c, A_ub=A, b_ub=b)
19 # Print results
20 print('Optimal value:', round(res.fun, ndigits=2),
'\nx values:', res.x,
'\nNumber of iterations performed:', res.nit,
'\nStatus:', res.message)
```

Listing 1: homework4.py

```
$\text{$python homework4.py}$
2 Optimal value: 21.82
3 x values: [15.45454545 0. 6.36363636 0. ]
4 Number of iterations performed: 3
5 Status: Optimization terminated successfully. (HiGHS Status 7: Optimal)
```

6

Listing 2: execution of homework4.py

- (a) What is the optimum solution? $x_1 + x_2 + x_3 = 21.8181... = \frac{240}{11}$
- (b) What are the values of x_1 , x_2 , and x_3 for this optimum solution? $x_1 = 15.4545... = \frac{170}{11}, \ x_2 = 0, \ x_3 = 6.3636... = \frac{70}{11}$