치환권(permutation group)

	Review)
Deb 8.3	집합 A의 Permutation 은 A에서 A로의 일대일이며 위로인 함수.
	나 같은 걸로는 기도 된다 (2→2) [Sigma]
E× 8.4	(sigma) ([5]
	5 5
	* 7 [[au]
	〈대칭균 S. >
Def	Sn 을 [n]= [1,2,…,n]의 모든 치환의 집합이라 함.
Thm 8.5	Sn 은 치환의 곱셈 아래서 균을 이름.
(98)	· 결합법칙 (f•91·h = f•(g•h)
	→ 함수가 현합병칙을 만족하기 때문에 O.K
	·행동원 id: [n] - [n]
	인 행동원이 존재한다.
	·떡원 치환 ơ에 대하여 역항수 ơ 은 ơ의 병향을 반대로 하는 치환.
	$(f^{\sigma}f^{-1})(n) = n (f^{-1}\sigma)(n) = n.$
Def	Sn 을 non 대한 Symmetric group.
	* S _n 의 원2 갯수? N!
Thm	n개 원소 가지는 집합 A 에 대해 SA를 A의 모든 치환들 군이라 하자.
	그러면 군으로 Sn ~ SA

```
Dn 이 정 n 각형의 대칭들(회전. 반사)의 집합이라 하면 n+h dihedral group
      Def
            → 교환법칙 성립 X
           · f (H)
           f: A→B & 함수이고 H⊆A
  Def 8.14
           → f[H]:= ff(a) | a∈H  를 f 아래서 H의 상
 Corol 8.15 G와 G'은 군이라 하고.
           Ø:G = G'이 일대일함수, 준동형사상
           → Ø[G] 눈 G'의 부분군.
           \rightarrow G \simeq \emptyset[G]
           · Cayley Theorem
           모든 군은 지환군 (Sn의 부분군)에 동형
Thm 8.16
            Ø: G + SG
      (189)
                                           承 증명해야 하는 것들
               x 1 1x: 4+9
                      g→ 29 라고 정의하자.

    잘 정의되었는가? → 2 € Sq?

                                             ① λα: 일대일 함수
                                             2 λ<sub>α</sub>: भड़थ छे
                                             2. Ø가 운동형 사상인가?
                            Ø가 준동형
                                            3. Ø가 일대일함수인가?
                            Ø 가 일대일함수
```

· orbits

EX 9.3

193 92 Orbits. Cycles, and the alternating group

$$\operatorname{orb}_{\sigma}\left(\mathbf{a}\right)\coloneqq\left\{ a,\,\sigma\left(\mathbf{a}\right),\,\sigma^{2}\left(\mathbf{a}\right),\,\cdots\right\}$$
 $\operatorname{orb}_{\sigma}\left(\mathbf{a}\right)$ $\overset{\circ}{=}$ \mathbf{a} $\overset{\circ}{=}$ $\overset{\circ}{=}$

ord
$$_{\Gamma}(1) = \{1, 3, 6, 1, 3, 6, \dots \} = orb_{\Gamma}(3) = orb_{\sigma}(6)$$

ord $_{\Gamma}(2) = \{2, 8\} = ord_{\Gamma}(8)$

$$ord_{r}(4) = \{4,7,5\} = orb_{r}(7) = ord_{r}(5)$$

EX
$$T = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 4 & 1 & 5 & 2 & 7 \end{pmatrix}$$

orb_T (I) = $\{1, 3, 4, 1, 3, 4, \dots \}$ = orb_T(3) = orb_T(4)

orb_T (2) = $\{2, 6, 2, 6, \dots \}$ = ord_T(6)

orb_T (5) = $\{5\}$

orb_T (7) = $\{7\}$

CC+21Al $\{1, 3, 4\}, \{2, 6\}, \{5\}, \{7\}\}$ 레도는 4% .

 $\rightarrow 2$ 각 원소가 모두 나타나며, 한번색만 나타방.

 $\rightarrow 2$ 각 원소가 모두 나타나며, 한번색만 나타방.

 $\rightarrow 2$ 한 음 $= 3$.

Pet I 최한 $T \in S_0$ of 두 원소 이성을 포함하는 레도가 하나 뿐일 때 $T \in 2$ 한 시한 (cycle)

EX $T = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1, 3) : \frac{2}{2}$ 한지한 아니다.

 $\pi T = \frac{1}{2} = \frac{3}{4} = \frac{3}{4} = \frac{1}{4} = \frac{$

• 치환을 순환치환들의 곱으로 표현 = (1, 3, 6) (2, 8) (4, 7, 5) 이 순환치환들은 dīsjoint.

/ 자기자신으로 개변 쓸 필요없음. 선서 바뀌어도 성관 X [1 2 3 4 5 6 7 | 5 4 3 7 6 2] = (2.5.7)(3.4)

Ex

(Ex)

Thm 9.8	오든 지환 TGS 은 서로 소인 순환치환들의 꿈으로 나타낼 수 있다.
(p 6)	B1, B2, ···, B, 毫 ▽의 레드라 혀지.
	$\mathcal{M}_{\lambda}(x) = \begin{cases} \sigma(x) & x \in \mathcal{B}_{\lambda} \ \ell \ \beta \neq \\ x & x \notin \mathcal{B}_{\lambda} \ \ell \ \beta \neq \end{cases}$
	' α κ ε β _λ υ 39
	Truth : Au 는 순환지환
	A4 + 43 1
	$Claim$) $\sigma = A_1 A_2 \cdots A_r$
	$(\rho b) \mathcal{M}_1 \mathcal{M}_2 \cdots \mathcal{M}_T(x) = \sigma(x)$