ГИБРИДНЫЙ ПОДХОД К РЕШЕНИЮ ЗАДАЧИ ОЦЕНИВАНИЯ ГЕОМЕТРИЧЕСКИХ ИСКАЖЕНИЙ КАДРОВ ВИДЕОПОСЛЕДОВАТЕЛЬНОСТЕЙ

Слынько Ю. В., Лукьянов А. П., Лагуткин В. Н. ОАО МАК "Вымпел"

Особенности алгоритма

Ключевые задачи:

- 1. Работоспособность в широком спектре неблагоприятных условий съемки
- 2. Возможность работы в реальном времени на современных ПК

Особенности реализации:

- 1. Объединение трех основных существующих подходов к решению задачи в один комплексный алгоритм
- 2. Постоянный контроль качества принимаемых решений на всех этапах обработки

Общий вид алгоритма

Оценка сдвига по сжатым кадрам

Выделение окон наибольшей информативности

Определение сдвигов каждого из окон

Объединение информации по каждому из окон

Принципиальная блок-схема алгоритма

Схема работы алгоритма

Выделение информативных окон
Поиск сдвига каждого из окон и оценка ошибок его определения
Вычисление общего вектора трансформации

$$\mathcal{Q} = \arg\min_{Q} \sum_{k=1}^{N} (\vec{\rho}_{k} - \tau_{Q}(\vec{r}_{k})) C_{k}^{-1} (\vec{\rho}_{k} - \tau_{Q}(\vec{r}_{k}))^{T}$$

Определение сдвига

Целевая функция

$$X_{(F^1,F^2)}(dx,dy) = \frac{1}{S(M)} \sum_{(i,j) \in M (dx,dy)} (F^1_{ij} - F^2_{i+dx,j+dy})^2$$

Доверительная области минимума

$$\widetilde{D} = \left\{ dx_i, dy_i : X_{(F^1, F^2)}(dx_i, dy_i) < m_i + B \cdot \sigma_i \right\}$$

$$m_i = \frac{X_{\min}}{N_p} \cdot N_i$$
 $\sigma_i = \frac{X_{\min}}{N_p} \cdot \sqrt{2N_i}$

$$X_{\min} = \min_{(dx,dy) \in D} X_{(F^1,F^2)}(dx,dy)$$

Результаты и выводы

Точность определения сдвига, пиксели	Максимальный сдвиг, % размера кадра	Точность определения угла, °	Максимальный угол, °	Точность определения коэффициента масштабирования, %	Количество кадров (320х240) в секунду	Вероятность сбоя на реальных последовательностях, %	Максимальный размер кадра, обрабатываемый в реальном времени
0.03	50	0.034	10	0.2	715	<0.1	1600x900

Демонстрация работы

Стабилизация изображений