Home work 1: let
$$V = \{(x,y) \mid y = k,x + k_1 x^2 + k_1 x^3, k_2, k_3 \in \mathbb{R} \}$$

 $V_1 + V_2 = \{(x_1 + x_2), y_1 + y_2\}$
 $y_1 + y_2 = \{(x_1 + x_2), y_3 + k_3 x_2 + k_1 x_2 + k_2 x_2 \}$
 $= \{(x_1 + x_2) + k_1 (x_1^2 + x_2^2) + k_2 (x_1^3 + x_2^2) \}$
if V is a subspace of \mathbb{R}^2 ,
 $V_1 + V_2 = \{(x_1 + x_2) + k_1 (x_1 + x_2)^2 + k_2 (x_1 + x_2)^2 \}$
but V is not identically equal to V .
So the V is not a subspace of \mathbb{R}^2 .

Hame wook 2:

answer: Let
$$W_1 = \alpha_1 V_1 + b_1 V_2$$
 $W_2 = \alpha_2 V_1 + b_2 V_2$, $W_1, W_2 \in W$
 $W_1 + W_2 = (\alpha_1 + \alpha_1) V_1 + (b_1 + b_2) V_2 \in W$
 $W_1 = d\alpha_1 V_1 + db_1 V_2 \in W$ (Le GF)

 $GR = GR$

Thus, W is a subspace of R^2

Home work 3:

omswer: let
$$B, \in W_2$$
, $B, \in \mathbb{R}^{n \times m}$, $\det(B,) \neq 0$
: $\det(B,) \neq 0 \Rightarrow B, \neq 0$
: We in not a subspace of $\mathbb{R}^{n \times m}$.