Program logics for ledgers

Orestis Melkonian, Wouter Swierstra, James Chapman

4 May 2025, FMBC @ Hamilton, Canada

Motivation

- Local & modular reasoning for UTxO blockchain ledgers
- Entertain the following analogy with concurrency/PL:

Blockchain		Concurrency Theory
ledgers	\leftrightarrow	computer memory
accounts	\leftrightarrow	memory locations
account balances	\leftrightarrow	data values
smart contracts	\leftrightarrow	programs accessing memory

Approach

Investigate multiple semantics in different systems of increasing complexity

Simple Model

```
module ... (Part: Type) { _: DecEq Part } where
S = Map(Part \rightarrow \mathbb{Z})
record Tx: Type where
  constructor \longrightarrow \langle \_ \rangle_-
  field sender : Part
         value : Z
         receiver : Part
unquoteDecl DecEa-Tx = DERIVE DecEa [ quote Tx . DecEa-Tx ]
L = List Tx
```

Simple Model: Denotational Semantics

```
Domain = S \rightarrow S
record Denotable (A: Type): Type where
 field [ \_ ] : A \rightarrow Domain
instance
 TI : Denotable Tx
 [L]: Denotable L
 [L] \cdot [L] = id
 [L] . [L] (t :: 1) = [1] \circ [t]
comp: \forall x \rightarrow [1 + 1'] x \equiv ([1'] \circ [1]) x
comp {[]} _ = refl
comp \{t :: 1\} x = comp \{1\} ([[t]]x)
```

Simple Model: Operational Semantics

```
data \longrightarrow : L \times S \rightarrow S \rightarrow Type where
   base:
      \varepsilon , s \rightarrow s
   step: let t = A \rightarrow \langle v \rangle B in
      1. [t]s \rightarrow s'
      t :: 1.s \rightarrow s'
```

```
denot⇔oper:
  [1]s \equiv s'
  1. s \rightarrow s'
oper-comp:
  • 1 , s \rightarrow s'
• 1' , s' \rightarrow s''
     1++1', s \rightarrow s''
```

Simple Model: Axiomatic Semantics (Hoare Logic)

```
Assertion = Pred_0 S

\langle - \rangle_- \langle - \rangle: Assertion \rightarrow L \rightarrow Assertion \rightarrow Type

\langle P \rangle 1 \langle O \rangle = P \vdash O \circ 11
```

```
hoare-base :
```

$$\langle P \rangle [] \langle P \rangle$$

hoare-base = id

```
\langle P \circ [ [t] ] \rangle t :: 1 \langle Q \rangle
hoare-step P1Q \{ \_ \} = P1Q
```

Simple Model: Axiomatic Semantics (Hoare Logic)

```
consequence:
• P' \vdash P
• Q \vdash Q'
• \langle P \rangle 1 \langle Q \rangle

\langle P' \rangle 1 \langle Q' \rangle

consequence \vdash P Q \vdash P 1Q
= Q \vdash \circ P 1Q \circ \vdash P
```

```
hoare-step':
  • (P)1(0)
  • (0)1'(R)
     \langle P \rangle 1 + 1' \langle R \rangle
hoare-step' {P}{1}{Q}{1'}{R} PlQ QlR =
  begin P
                 ⊢( P10 )
           O \circ [1] \mapsto \langle OlR \rangle
           R \circ (\llbracket 1' \rrbracket \circ \llbracket 1 \rrbracket) \stackrel{\sim}{=} \langle \operatorname{cong} R \circ \operatorname{comp} \{1\} \{1'\} \rangle
           R \circ [1 + 1'] where open \vdash-Reasoning
```

Simple Model: Separation Logic

```
emp: Assertion
emp m = \forall k \rightarrow m k \equiv \epsilon
_*_: Op<sub>2</sub> Assertion
(P * Q) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \diamond S_2 \rangle \equiv S \times P S_1 \times Q S_2
*\leftrightarrow: P*O\vdash O*P
**\(\sigma\) (S<sub>1</sub>, S<sub>2</sub>, \(\exists\) S<sub>1</sub>, QS<sub>2</sub>) = S<sub>2</sub>, S<sub>1</sub>, \diamond \equiv -\text{comm}\ \{X = S_1\}\{S_2\} \equiv S, QS<sub>2</sub>, PS<sub>1</sub>
* \rightarrow : P * O * R \vdash (P * O) * R
* \rightarrow \{x = s\} (s_1, s_{23}, \equiv s, Ps_1, (s_2, s_3, \equiv s_{23}, Os_2, Rs_3)) =
   (s_1 \diamond s_2), s_3, \diamond \approx -assoc^x \{m_1 = s_1\} \equiv s \equiv s_{23}, (s_1, s_2, \approx -refl, Ps_1, Os_2), Rs_3
\leftarrow * : (P * 0) * R \vdash P * 0 * R
\leftarrow * \{X = S\} (S_{12}, S_{3}, \equiv S, (S_{1}, S_{2}, \equiv S_{12}, PS_{1}, QS_{2}), RS_{3}) =
  s_1, s_2 \diamond s_3, \diamond \approx -assoc^1 \{m_1 = s_1\}\{s_2\} \equiv s \equiv s_{12}, Ps_1, (s_2, s_3, \approx -refl, Os_2, Rs_3)
```

Simple Model: Frame Rule

```
⋄-[]:
  \langle s_1 \diamond s_2 \rangle \equiv s
  \langle [1] s_1 \diamond s_2 \rangle \equiv [1] s
[FRAME]:
  \langle P \rangle 1 \langle Q \rangle
  \langle P*R \rangle 1 \langle O*R \rangle
[FRAME] \{l = l\} PlQ (s_1, s_2, \equiv s, Ps_1, Rs_2) =
   [1]_{S_1}, S_2, \diamond -[]_{\{l=1\}} \equiv S, Plop S_1, RS_2
```

Simple Model: Concurrent Separation Logic

```
◇-interleave:

 1₁ || 1₂ ≡ 1

   • \langle S_1 \diamond S_2 \rangle \equiv S
      \langle [l_1] | s_1 \diamond [l_2] | s_2 \rangle \equiv [l_1] s
[PAR]:

    1₁ || 1₂ ≡ 1

   \bullet \langle P_1 \rangle l_1 \langle O_1 \rangle
   \bullet \langle P_2 \rangle 1_2 \langle Q_2 \rangle
       \langle P_1 * P_2 \rangle 1 \langle Q_1 * Q_2 \rangle
[PAR] \{l_1\} \{l_2\} \{l\} \equiv l Pl_1Q Pl_2Q \{s\} (s_1, s_2, \equiv s, Ps_1, Ps_2) =
   \begin{bmatrix} l_1 \\ s_1 \end{bmatrix}, \begin{bmatrix} l_2 \\ s_2 \end{bmatrix}, \diamond-interleave \equiv l \equiv s, Pl_1QPs_1, Pl_2QPs_2
```

Simple Model: Example derivation (monolithic)

ABCD: Part

Simple Model: Example derivation (modular)

```
\_: \langle A \rightarrow 1\mathbb{Z} * B \rightarrow 0\mathbb{Z} * C \rightarrow 0\mathbb{Z} * D \rightarrow 1\mathbb{Z} \rangle t_{1-4} \langle A \rightarrow 1\mathbb{Z} * B \rightarrow 0\mathbb{Z} * C \rightarrow 0\mathbb{Z} * D \rightarrow 1\mathbb{Z} \rangle
\_ = begin A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle \langle * * * \rangle \rangle
                             (A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}) * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle t_1 - 4 : - \lceil PAR \rceil \text{ auto } H_1 \mid H_2 \rangle + +
                            (A \rightarrow 1\mathbb{Z} * B \rightarrow 0\mathbb{Z}) * C \rightarrow 0\mathbb{Z} * D \rightarrow 1\mathbb{Z} \sim \langle \langle \leftarrow * \rangle \rangle
                            A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z} * C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z}
     where
          H_1: \mathbb{R}(A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}) t_1 :: t_3 :: [] (A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z})
          H_1 = A \rightarrow 1\mathbb{Z} * B \rightarrow 0\mathbb{Z} \sim \langle t_1 : -A \rightarrow B \rangle
                       A \mapsto 0\mathbb{Z} * B \mapsto 1\mathbb{Z} \sim \langle t_3 : - A \hookrightarrow B \rangle
                       A \mapsto 1\mathbb{Z} * B \mapsto 0\mathbb{Z}
          H_2: \mathbb{R} \langle C \mapsto O\mathbb{Z} * D \mapsto 1\mathbb{Z} \rangle t_2 :: t_4 :: [] \langle C \mapsto O\mathbb{Z} * D \mapsto 1\mathbb{Z} \rangle
          H_2 = C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z} \sim \langle t_2 : -C \leftarrow D \rangle
                       C \mapsto 1\mathbb{Z} * D \mapsto 0\mathbb{Z} \sim \langle t_4 : - C \rightarrow D \rangle
                       C \mapsto 0\mathbb{Z} * D \mapsto 1\mathbb{Z}
```

Adding Partiality

```
S = Map(Part \rightarrow N)
Domain = S → Maybe S
[T]: Denotable Tx
[T] \cdot [L] t s = M.when (isValidTx t s) ([t]_0 s)
[L]: Denotable L
[L] \cdot [\_] [] s = just s
\llbracket L \rrbracket \cdot \llbracket \_ \rrbracket (t :: 1) = \llbracket t \rrbracket > \Longrightarrow \llbracket 1 \rrbracket
comp: \forall x \rightarrow [1 + 1'] x \equiv ([1] \Rightarrow [1']) x
```

Adding Partiality: Operational Semantics

```
data \longrightarrow : L × S \rightarrow S \rightarrow Type where
  base:
     \varepsilon , s \rightarrow s
   step:
     • IsValidTx t s
     • 1. [t]_0 s \rightarrow s'
        t :: 1, s \rightarrow s'
denot⇔oper:
   [1]s \equiv just s'
  1, s \rightarrow s'
```

Adding Partiality: Lifting Predicates for Hoare Logic

Adding Partiality: Frame Rule

```
◇-[]: ∀ s₁' →
    • [1]s_1 \equiv \text{just } s_1'
    • \langle s_1 \diamond s_2 \rangle \equiv s
       (\langle s_1' \diamond s_2 \rangle \equiv \uparrow \circ [1]) s
[FRAME] : \forall R \rightarrow
    \langle P \rangle 1 \langle Q \rangle
    \langle P*R \rangle 1 \langle Q*R \rangle
```

Adding Partiality: Parallel Rule

```
◇-interleave:
   • (l_1 || l_2 \equiv l)
   • \langle S_1 \diamond S_2 \rangle \equiv S
   • [l_1] s_1 \equiv \text{just } s_1'
   • [1_2] s_2 \equiv \text{just } s_2'
      \exists \lambda s' \rightarrow ([1] s \equiv \text{just } s')
                    \times (\langle s_1' \diamond s_2' \rangle \equiv s')
[PAR]:

    1₁ || 1₂ ≡ 1

   \bullet \langle P_1 \rangle l_1 \langle Q_1 \rangle
   \bullet \langle P_2 \rangle l_2 \langle Q_2 \rangle
       \langle P_1 * P_2 \rangle 1 \langle O_1 * O_2 \rangle
```

Adding Partiality: Example derivation (monolithic)

ABCD: Part

$$\begin{array}{c} t_1 = A \longrightarrow \langle \ 1 \ \rangle \ B; \ t_2 = D \longrightarrow \langle \ 1 \ \rangle \ C; \ t_3 = B \longrightarrow \langle \ 1 \ \rangle \ A; \ t_4 = C \longrightarrow \langle \ 1 \ \rangle \ D \\ t_{1-4} = L \ni \begin{bmatrix} \ t_1 \ , \ t_2 \ , \ t_3 \ , \ t_4 \end{bmatrix} \\ - : \ \langle \ A \mapsto 1 \ast B \mapsto 0 \ast C \mapsto 0 \ast D \mapsto 1 \ \rangle \ t_{1-4} \ \langle \ A \mapsto 1 \ast B \mapsto 0 \ast C \mapsto 0 \ast D \mapsto 1 \ \rangle \\ - = begin \ A \mapsto 1 \ast B \mapsto 0 \quad \ast C \mapsto 0 \ast D \mapsto 1 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 0 \ast B \mapsto 1) \ast C \mapsto 0 \ast D \mapsto 1 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (C \mapsto 0 \ast D \mapsto 1) \ast A \mapsto 0 \ast B \mapsto 1 \sim \langle \ t_2 : - \ [FRAME] \ (A \mapsto 0 \ast B \mapsto 1) \ (C \mapsto D) \ \rangle \\ (C \mapsto 1 \ast D \mapsto 0) \ast A \mapsto 0 \ast B \mapsto 1 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 0 \ast B \mapsto 1) \ast C \mapsto 1 \ast D \mapsto 0 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (C \mapsto 1 \ast D \mapsto 0) \ast A \mapsto 1 \ast B \mapsto 0 \sim \langle \ t_4 : - \ [FRAME] \ (A \mapsto 1 \ast B \mapsto 0) \ (C \rightsquigarrow D) \ \rangle \\ (C \mapsto 0 \ast D \mapsto 1) \ast A \mapsto 1 \ast B \mapsto 0 \sim \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \leftrightarrow \ \rangle \\ (A \mapsto 1 \ast B \mapsto 0) \ast C \mapsto 0 \ast D \mapsto 1 \Longrightarrow \langle \ \ast \to \ \rangle$$

Adding Partiality: Example derivation (modular)

```
\_: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
= begin A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \sim ( * \sim )
                     (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle t_{1-4} :- [PAR] \text{ auto } H_1 H_2 \rangle + +
                     (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                    A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
    where
       H_1: \langle A \mapsto 1 * B \mapsto 0 \rangle t_1 :: t_3 :: [] \langle A \mapsto 1 * B \mapsto 0 \rangle
       H_1 = begin A \rightarrow 1 * B \rightarrow 0 \sim \langle t_1 : - A \rightarrow B \rangle
                              A \mapsto 0 * B \mapsto 1 \sim \langle t_3 : - A \leftarrow B \rangle
                               A \mapsto 1 * B \mapsto 0
       H_2: \langle C \mapsto 0 * D \mapsto 1 \rangle t_2 :: t_4 :: [] \langle C \mapsto 0 * D \mapsto 1 \rangle
       H_2 = begin C \rightarrow 0 * D \rightarrow 1 \sim \langle t_2 : - C \leftarrow D \rangle
                              C \mapsto 1 * D \mapsto 0 \sim \langle t_4 : - C \rightarrow D \rangle
                               C \mapsto 0 * D \mapsto 1
```

UTxO: Barebones Setup

```
S = Map( TxOutputRef → TxOutput )
record IsValidTx (tx: Tx) (utxos: S): Type where
  field
   noDoubleSpending:
      •Unique (outputRefs tx)
    validOutputRefs:
     \forall \lceil ref \in outputRefs \ tx \ \rceil \ (ref \in dutxos)
   preserves Values:
      tx.forge + \sum resolvedInputs (value \circ proj<sub>2</sub>) \equiv \sum (tx.outputs) value
   allInputsValidate:
     \forall [i \in tx .inputs] \top (i .validator txInfo (i .redeemer))
    validateValidHashes:
     \forall [(i, o) \in resolvedInputs] (o.address \equiv i.validator \#)
```

UTxO: Denotational Semantics

```
instance
  [T]: Denotable Tx
  [T] \cdot [L] tx s = M. when (is ValidTx tx s) (s - output Refs tx \cup utxoTx tx)
  [L]: Denotable L
  [L] \cdot [L] \cdot [I]  s = iust s
  [L] . [L] (t :: 1) = [t] > [1]
comp: \forall x \rightarrow [1 + 1'] x \equiv ([1] \Rightarrow [1']) x
comp {[]} _ = refl
comp \{t :: 1\} x \text{ with } [t] x
... | nothing = refl
\dots | just s = comp \{1\} s
```

UTxO: Separation via Disjointness

```
_*_: Op<sub>2</sub> Assertion
(P * 0) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \uplus S_2 \rangle \equiv S \times P S_1 \times O S_2
⊎-[]: ∀ S1' →
   • [1]s_1 \equiv \text{just } s_1'
   • \langle S_1 \uplus S_2 \rangle \equiv S
       (\langle s_1' \uplus s_2 \rangle \equiv \uparrow \circ [1]) s
[FRAME]: \forall R \rightarrow
   • 1. # R
   • (P)1(0)
      \langle P*R \rangle 1 \langle O*R \rangle
```

```
[PAR]:

• l_1 \# P_2

• l_2 \# P_1

• l_1 \| l_2 \equiv l

• \langle P_1 \rangle l_1 \langle Q_1 \rangle

• \langle P_2 \rangle l_2 \langle Q_2 \rangle
```

UTxO: Example transaction graph

A B C D : Address $t_{1-4} = L \ni [t_1, t_2, t_3, t_4]$

UTxO: Example derivation (monolithic)

```
\_: \langle t_{00} \mapsto 1 \text{ at } A * t_{01} \mapsto 1 \text{ at } D \rangle t_{1-4} \langle t_{30} \mapsto 1 \text{ at } A * t_{40} \mapsto 1 \text{ at } D \rangle
_ = begin t<sub>00</sub> \mapsto 1 at A * t<sub>01</sub> \mapsto 1 at D \sim( t<sub>1</sub> :- [FRAME] (t<sub>01</sub> \mapsto 1 at D) t<sub>1</sub> \sharp ... >
                     t_{10} \rightarrow 1 at B * t_{01} \rightarrow 1 at D \sim \langle \langle * \leftrightarrow \rangle \rangle
                     t_{01} \mapsto 1 at D * t_{10} \mapsto 1 at B \sim \langle t_2 : - [FRAME] (t_{10} \mapsto 1 \text{ at B}) t_2 \# \cdots \rangle
                     t_{20} \rightarrow 1 at C * t_{10} \rightarrow 1 at B \sim ((**)
                     t_{10} \rightarrow 1 at B * t_{20} \rightarrow 1 at C ~ (t_3 :- [FRAME] (t_{20} \rightarrow 1 \text{ at C}) t_3 \# \cdots)
                     t_{30} \mapsto 1 at A * t_{20} \mapsto 1 at C \sim \langle \langle * \leftrightarrow \rangle \rangle
                     t_{20} \rightarrow 1 at C * t_{30} \rightarrow 1 at A \sim ( t_4 := \lceil FRAME \rceil (t_{30} \rightarrow 1 at A) t_4 \not= \cdots)
                     t_{40} \mapsto 1 at D * t_{30} \mapsto 1 at A \sim ( * \leftrightarrow )
                     t_{30} \mapsto 1 at A * t_{40} \mapsto 1 at D
    where postulate t_1 \# : [t_1] \# (t_{01} \rightarrow 1 \text{ at D})
                                         t_2 \sharp : \lceil t_2 \rceil \sharp (t_{10} \mapsto 1 \text{ at B})
                                         t_3 # : [t_3] # (t_{20} \rightarrow 1 \text{ at C})
                                         t_4 \sharp : \lceil t_4 \rceil \sharp (t_{30} \mapsto 1 \text{ at A})
```

UTxO: Example derivation (modular)

```
\_: \langle t_{00} \mapsto 1 \text{ at A} * t_{01} \mapsto 1 \text{ at D} \rangle t_{1-4} \langle t_{30} \mapsto 1 \text{ at A} * t_{40} \mapsto 1 \text{ at D} \rangle
_{-} = begin t_{00} \mapsto 1 at A * t_{01} \mapsto 1 at D \sim \langle t_{1-4} : - \lceil PAR \rceil \cdots auto H_1 H_2 \rangle + +
                     t_{30} \rightarrow 1 at A * t_{40} \rightarrow 1 at D
   where
       H_1: \langle t_{00} \rightarrow 1 \text{ at } A \rangle t_1 :: t_3 :: [] \langle t_{30} \rightarrow 1 \text{ at } A \rangle
       H_1 = begin t_{00} \rightarrow 1 at A \sim \langle t_1 : - \dots \rangle
                               t_{10} \rightarrow 1 at B \sim \langle t_3 :- \dots \rangle
                               t<sub>30</sub> → 1 at A
       H_2: \langle t_{01} \mapsto 1 \text{ at } D \rangle t_2 :: t_4 :: [] \langle t_{40} \mapsto 1 \text{ at } D \rangle
       H_2 = begin t_{01} \rightarrow 1 \text{ at } D \sim \langle t_2 : - \dots \rangle
                               t_{20} \rightarrow 1 at C \sim \langle t_4 :- \cdots \rangle
                               t_{AB} \mapsto 1 at D
```

Abstract UTxO: Setup

```
S = Bag( TxOutput )
record IsValidTx (tx: Tx) (utxos: S): Type where
 field
   validOutputRefs:
     stxoTx tx cs utxos
   preservesValues:
     tx.forge + \sum (tx.inputs) (value \circ outputRef) \equiv \sum (tx.outputs) value
   allInputsValidate:
     \forall [i \in tx .inputs] T (i .validator txInfo (i .redeemer))
   validateValidHashes:
     \forall [i \in tx . inputs ] (i . outputRef . address \equiv i . validator #)
```

Abstract UTxO: Denotational Semantics

```
instance
  [T] : Denotable Tx
  [T] . [_] tx s = M.when (isValidTx tx s) (s - stxoTx tx \cup utxoTx tx)

[L] : Denotable L
  [L] . [_] [] s = just s
  [L] . [_] (t :: l) = [[ t ] >\Rightarrow [ l ]
```

Abstract UTxO: Monoidal Separation once again

```
_*_: Op<sub>2</sub> Assertion
 (P * 0) S = \exists \lambda S_1 \rightarrow \exists \lambda S_2 \rightarrow \langle S_1 \diamond S_2 \rangle \equiv S \times P S_1 \times O S_2
*\leftrightarrow : P * O \vdash O * P
*** \{X = S\} \{S_1, S_2, \exists S, PS_1, QS_2\} = S_2, S_1, \diamondsuit \equiv -\text{comm} \{S = S\} \{S_1\} \{S_2\} \equiv S, QS_2, PS_1
* \rightarrow : P * O * R \vdash (P * O) * R
* \rightarrow \{X = S\} (S_1, S_{23}, \equiv S, PS_1, (S_2, S_3, \equiv S_{23}, OS_2, RS_3)) =
        let \equiv S_{12} = 0 \approx -aSSOC^{r} \{S_{1} = S_{1}\}\{S_{23}\}\{S_{1}\}\{S_{2}\}\{S_{3}\} \equiv S_{23} \text{ in}
          (s_1 \diamond s_2), s_3, \equiv s_{12}, (s_1, s_2, \approx -\text{refl} \{x = s_1 \cup s_2\}, Ps_1, Os_2), Rs_3
\leftarrow * : (P * 0) * R \vdash P * 0 * R
4 \times \{X = S\} (S_{12}, S_{3}, \equiv S, (S_{1}, S_{2}, \equiv S_{12}, PS_{1}, OS_{2}), RS_{3}) = 4 \times \{X = S\} (S_{12}, S_{3}, \equiv S, (S_{1}, S_{2}, \equiv S_{12}, PS_{1}, OS_{2}), RS_{3}) = 4 \times \{X = S\} (S_{12}, S_{23}, \equiv S, (S_{13}, S_{23
         let \equiv S_{23} = 0 \approx -aSSOC^{1} \{S_{12} = S_{12} \} \{S_{3} \} \{S_{1} \} \{S_{2} \} \equiv S_{12}  in
         s_1, s_2 \diamond s_3, \equiv s_{23}, Ps_1, (s_2, s_3, \approx -\text{refl} \{x = s_2 \cup s_3\}, Os_2, Rs_3)
```

Abstract UTxO: Separation Logic Rules

```
[FRAME] : \forall R \rightarrow \\ \langle P \rangle 1 \langle Q \rangle \\ \hline \langle P * R \rangle 1 \langle Q * R \rangle
```

```
[PAR]:

• l_1 \parallel l_2 \equiv l

• \langle P_1 \rangle l_1 \langle Q_1 \rangle

• \langle P_2 \rangle l_2 \langle Q_2 \rangle

\langle P_1 * P_2 \rangle l \langle Q_1 * Q_2 \rangle
```

Abstract UTxO: Example transaction graph

A B C D : Address $t_{1-4} = L \ni [t_1, t_2, t_3, t_4]$

Abstract UTxO: Example derivation (monolithic)

```
\_: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
= begin A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \sim ( * \sim )
                    (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim (t_1 :- [FRAME] (C \mapsto 0 * D \mapsto 1) (A \sim B))
                    (A \mapsto 0 * B \mapsto 1) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle * \leftrightarrow \rangle \rangle
                    (C \mapsto 0 * D \mapsto 1) * A \mapsto 0 * B \mapsto 1 \sim (t_2 :- [FRAME] (A \mapsto 0 * B \mapsto 1) (C \leftarrow D))
                    (C \mapsto 1 * D \mapsto 0) * A \mapsto 0 * B \mapsto 1 \sim \langle * * \leftrightarrow \rangle
                    (A \mapsto 0 * B \mapsto 1) * C \mapsto 1 * D \mapsto 0 \sim (t_3 := [FRAME] (C \mapsto 1 * D \mapsto 0) (A \leftarrow B)
                    (A \mapsto 1 * B \mapsto 0) * C \mapsto 1 * D \mapsto 0 \sim ( * \leftrightarrow )
                    (C \mapsto 1 * D \mapsto 0) * A \mapsto 1 * B \mapsto 0 \sim (t_4 :- [FRAME] (A \mapsto 1 * B \mapsto 0) (C \rightarrow D))
                    (C \mapsto 0 * D \mapsto 1) * A \mapsto 1 * B \mapsto 0 \sim ( * \leftrightarrow )
                    (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                    A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
```

Abstract UTxO: Example derivation (modular)

```
\_: \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle t_{1-4} \langle A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 \rangle
\_ = begin A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1 ~ \langle \langle \rangle * \rangle
                      (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle t_1 - 4 : - \lceil PAR \rceil \text{ auto } H_1 \mid H_2 \rangle + +
                     (A \mapsto 1 * B \mapsto 0) * C \mapsto 0 * D \mapsto 1 \sim \langle \langle \leftarrow * \rangle
                     A \mapsto 1 * B \mapsto 0 * C \mapsto 0 * D \mapsto 1
    where
       H_1: \mathbb{R}(A \mapsto 1 * B \mapsto 0) t_1 :: t_3 :: [] (A \mapsto 1 * B \mapsto 0)
       H_1 = A \rightarrow 1 * B \rightarrow 0 \sim \langle t_1 : -A \rightarrow B \rangle
                  A \mapsto 0 * B \mapsto 1 \sim \langle t_3 : - A \leftarrow B \rangle
                  A \mapsto 1 * B \mapsto 0
       H_2: \mathbb{R} \langle C \mapsto 0 * D \mapsto 1 \rangle t_2 :: t_4 :: [] \langle C \mapsto 0 * D \mapsto 1 \rangle
       H_2 = C \rightarrow 0 * D \rightarrow 1 \sim \langle t_2 : - C \leftarrow D \rangle
                  C \mapsto 1 * D \mapsto 0 \sim \langle t_4 : -C \rightarrow D \rangle
                  C \mapsto 0 * D \mapsto 1 \blacksquare
```

Sound Abstraction: States and Validity

```
absS: \mathbb{C}.S \rightarrow A.S
```

$$\texttt{absVT}: \texttt{C.IsValidTx} \ t \ s \to \exists \ \lambda \ \hat{t} \to \texttt{A.IsValidTx} \ \hat{t} \ (\texttt{absS} \ s)$$

 $\texttt{absVL}: \texttt{C.ValidLedger} \ s \ \textit{1} \rightarrow \texttt{A} \ \lambda \ \hat{\textit{1}} \rightarrow \texttt{A.ValidLedger} \ (\texttt{absS} \ s) \ \hat{\textit{1}}$

Sound Abstraction: Denotations Coincide

Sound Abstraction

```
soundness: \forall (vl: C.ValidLedger s l) \rightarrow A \langle P \rangle absL vl \langle Q \rangle
C \langle P \circ absS \rangle l \langle Q \circ absS \rangle
```

Future Work

- Deeper compositionality (i.e. monoidally exploit the values in the bag)
 - ightarrow will require further abstraction of split/merge transactions
- Go beyond the monetary values (states, transaction data)
 - \rightarrow leads to more practical verification of smart contracts
- Generalise to multiple separation views, aka zooming levels
- Generically grow such separation logics, i.e. "Separation Logics à la carte"

Conclusion

Agda as a design guide, rather than merely a verification tool of existing systems.

