22.53 Tecnología de Materiales Electrónicos

Inflationary Period 10⁻¹⁰ seconds 10 32 degrees 10²⁷ degrees Transformadores 6000 degrees TME Theory 18 degrees Miguel Aguirre Model Revisión 2 – Ago/2020

1 thousand million years

300 thousand years

3 minutes

The Big Bang

Inductores: ejemplo de diseño

Sobre un núcleo E 30/15/7 de material N27 fabricar un inductor con L=20mH y que pueda trabajar en las siguientes condiciones sin saturarse: Vin=300V, D=0.33333, F=100KHz

1- Calcular el número mínimo de espiras para que el inductor no sature:

$$B_{Max} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{N_{min} A_{min}} = 200mT \ll B_{Sat}$$

$$N_{min} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{200mT A_{min}} = \frac{\frac{1}{2} 300v \, \frac{10\mu s}{3}}{0.2T \, 49. \, 10^{-6} m^2} = 51.02$$

2- Calcular el número de espiras necesario para la inductancia requerida:

$$L = \frac{N^2}{R} = A_L N^2$$
 $N = \sqrt{\frac{L}{A_L}} = \sqrt{\frac{20mH}{1700nH}} = 109$

Magnetic characteristics (per set)

$$\Sigma I/A = 1.12 \text{ mm}^{-1}$$
 $I_e = 67 \text{ mm}$
 $A_e = 60 \text{ mm}^2$
 $A_{min} = 49 \text{ mm}^2$
 $V_e = 4000 \text{ mm}^3$
 $R = \frac{l_e}{\mu_0 \mu_e A_e}$

Approx. weight 22 g/set

Ungapped

Material	A _L value nH	μ _e	P _V W/set
N30	3100 +30/–20%	2760	
N27	1700 +30/-20%	1510	< 0.81 (200 mT, 25 kHz, 100 °C)
N87	1900 +30/–20%	1690	< 2.20 (200 mT, 100 kHz, 100 °C)

Gapped

Material	g mm	A _L value approx. nH	μ_{e}
N27, N87	0.10 ±0.02 0.18 ±0.02 0.34 ±0.02	460 300 195	410 265 175

Dynamic magnetization curves (typical values) (f = 10 kHz, T = 100 °C)

Inductores: ejemplo de diseño

3-Por error la persona de compras consigue el núcleo con Gap de 0.1 mm, calcule el valor de la inductancia resultante:

$$L = A_L N^2 = 460nH * 109^2 = 5.5mH$$

4- Calcule el Bmax con N=109 y núcleo con Gap

$$B_{real} = \frac{1}{2} \frac{\int_0^{T/3} 300v \, dt}{N_{min} A_{min}} = 93.6mT < 200 \text{mT}$$

5- Aprovechando la situación se decide hacer circular por el inductor una corriente continua I_{DC}:

$$B_{Max} = \frac{1}{2} \frac{\int_{t_1}^{t_2} V_{(t)} dt}{NA} + \frac{N I_{DC} A_L}{A_{min}} \qquad I_{DC} \le (200 - 93.6) mT \left(\frac{A_{min}}{NA_L}\right) = 100 mA$$

Ungapped

Material	A _L value nH	μ _e	P _V W/set
N30	3100 +30/–20%	2760	
N27	1700 +30/–20%	1510	< 0.81 (200 mT, 25 kHz, 100 °C)
N87	1900 +30/–20%	1690	< 2.20 (200 mT, 100 kHz, 100 °C)

Gapped

Material	g mm	A _L value approx. nH	μ_{e}
N27,	0.10 ±0.02	460	410
N87	0.18 ±0.02	300	265
	0.34 ± 0.02	195	175

$$V_L = L \frac{di}{dt} \rightarrow \Delta i = \frac{V}{L} \Delta T = \frac{300v}{5.5mH} T/_3 = 183mA$$

Inductores: ejemplo de diseño

6- La máxima sección de cable que puede entrar, considerando un factor de ventana $K_W = 0.55$:

$$S_{Cu} = \frac{A_W K_W}{N} = \frac{90mm^2 * 0.55}{109} = 0.45mm^2$$

7- El valor normalizado más cercano es 0,5mm², por lo que el factor de ventana resultante es:

$$K_W = \frac{S_{Cu} N}{A_W} = \frac{0.5mm^2 * 109}{90mm^2} = 0.61 \text{ [Jugado!]}$$

8- La resistencia del bobinado será:

$$r = \rho l/_S = \rho \frac{l N}{A_{Cu}/_N}$$

$$R_{Cu} = A_R N^2 = 21.10^{-6} \Omega \, 109^2 \approx 0.25 \Omega$$

9- T.H.:

- calcular la densidad de corriente (J A/mm²) con el que trabaja el cable.
- Efecto Skin? -> Calcular la Rcu
- Calcular las pérdidas en Watt

Yoke Material: Stainless spring steel (0.4 mm)

Coil former					Ordering code		
Version	Sections	A _N mm ²	I _N mm	A_R value $\mu\Omega$	Pins		
Horizontal	1	90	56	21	14	B66232B1114T001	
Vertical	1	90	56	21	12	B66232J1112T001	
Yoke (ordering code per piece, 2 are required)					B66232A2010X000		

Horizontal version

Transformadores: ejemplo de diseño

Sobre un núcleo E 30/15/7 de material N27, con Gap=0.1mm, fabricar un transformador que pueda trabajar en las siguientes condiciones sin saturarse: Vin=300V, D=0.3, F=100KHz, Vo=35V

- 1- Calcular el número mínimo de espiras para que el núcleo no sature: Como el primario va a estar en las mismas condiciones que el ejercicio del inductor: $N_{1min} = 51$
- 2- Calcular la Inductancia de Magnetización: $L = A_L N^2 = 460 nH * 51^2 = 1.2 mH$
- 3- Calcular N2: $N_2 = N_1 \frac{V_2}{V_1} = 51 \frac{35v}{300v} = 6$
- 4- Dimensionar los cables: $S_{Cu1} = \frac{A_W/2 K_W}{N_1} = \frac{45mm^2 * 0.4}{51} = 0.353mm^2 \qquad S_{Cu2} = \frac{A_W/2 K_W}{N_2} = \frac{45mm^2 * 0.4}{6} = 3 mm^2$
- 5-¿Efecto Skin? $SD = \frac{66}{\sqrt{F}} = 0.21mm$ Que significa un cable de sección: $\pi \left(\frac{SD}{2}\right)^2 = 0.034 \ mm^2$

El primario debería hacerse con 10 cables en paralelo y el secundario con 88 => ¡Litz o Fleje!

Transformadores: ejemplo de diseño

6- La corriente RMS que puede circular por los bobinados es:

$$i_{RMS1} = J Scu1 = 2 \frac{A}{mm^2} 0.35mm^2 = 0.7 A$$
 $i_{RMS2} = J Scu2 = 2 \frac{A}{mm^2} 3mm^2 = 6 A$

$$i_{RMS2} = J Scu2 = 2 \frac{A}{mm^2} 3mm^2 = 6 A$$

7- Potencia de salida del transformador:

$$P_{OUT} = V_{2rms}i_{2rms} = 10.6v \ 6A = 63.6 \ W$$

8- La resistencia del bobinado será:
$$R_{Cu1} = A_R N_1^2 = 21.10^{-6} \Omega \, 51^2 \approx 0.055 \Omega$$
 $R_{Cu2} = A_R N_2^2 = 21.10^{-6} \Omega \, 6^2 \approx 756 \mu \Omega$

$$R_{Cu2} = A_R N_2^2 = 21.10^{-6} \Omega 6^2 \approx 756 \mu \Omega$$

9-Las pérdidas en el cobre valen:

$$Pcu_1 = 0.055 \Omega \ (0.7A)^2 = 0.027 W$$

$$Pcu_2 = 756\mu\Omega (6A)^2 = 0.027 W$$

10-Pérdidas en el núcleo:

Dél gráfico de la hoja de datos del **material**, las pérdidas normalizadas a 100kHz y 200mT son 1200kW/m³. En la hoja de datos del **núcleo**, el volumen de un juego de dos piezas es de 4000mm³.

$$P_{n\'ucleo} = 1.2 \ 10^6 \ W / m^3 * 4 \ 10^{-9} m^3 \approx 4.8 mW$$

11- Rendimiento:

$$\eta = \frac{63.2 W}{63.2 W + (0.027 + 0.027 + 0.0048) W} = 99.9\%$$

Relative core losses versus frequency (measured on R16 toroids)

