### Grado en Ingeniería Informática



Computabilidad y Algoritmia Curso 2024-2025

### Hoja de problemas

### Tema 1: Alfabetos, cadenas y lenguajes

- 1. Si  $A \subseteq B$ , ¿es siempre cierto que A = B?
- 2. Explique la diferencia entre los siguientes conceptos:
  - a)  $\epsilon$  y  $\alpha$
  - **b**)  $a y \{a\}$
  - c)  $\emptyset$  y  $\{\emptyset\}$
  - *d*)  $\{\emptyset\}$  y  $\epsilon$
  - *e*)  $\emptyset$  y  $\{\epsilon\}$
- 3. Considérese el alfabeto  $\Sigma = \{a, b\}$ 
  - a) ¿Cuantas cadenas de longitud 3 pueden formarse en ese alfabeto?
  - b) ¿Y de longitud 4?.
  - c) El número de cadenas que pueden formarse de una longitud n ¿es un número finito o infinito?
  - d) El número de cadenas de longitud arbitraria que pueden formarse en ese alfabeto ¿es un número finito o infinito?
  - e) Si le dan una cadena sobre ese alfabeto ( $w \in \Sigma^*$ ) ¿Cómo puede obtener una cadena diferente de mayor longitud?
- 4. Indicar si las siguientes afirmaciones son verdaderas o falsas:
  - ullet  $\Sigma$  puede ser un conjunto vacío.
  - Si un alfabeto tiene infinitos símbolos, todos los lenguajes de cadenas sobre ese alfabeto serán también infinitos.
  - $\{0,1\}$  es un lenguaje.
  - $\blacksquare$  El número de sublenguajes de  $\Sigma^*$  es infinito no numerable.
- 5. Para todo lenguaje L, ¿qué es  $L \cdot \emptyset$ ?

## Universidad de La Laguna

### Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2024-2025

- 6. Sea  $\Sigma = \{1\}$ , ¿se puede decir que para todo número natural n hay alguna cadena  $w \in \Sigma^*$  para la cual |w| = n? Si w es una cadena de  $\Sigma^*$  para la cual |w| = n, ¿es única? ¿Qué ocurriría si  $\Sigma = \{1, 2\}$ ?
- 7. Para una cadena w, ¿se puede decir que  $|w^{i+j}| = |w^i| + |w^j|$ ? Encontrar una expresión para  $|w^{i+j}|$  en términos de i, j y |w|.
- 8. Definir las nociones de *sufijo* y *sufijo* propio de una cadena sobre un alfabeto.
- 9. Obtener todos los prefijos, sufijos y subcadenas de la cadena w=sol sobre el alfabeto español.
- 10. Demostrar que  $(wy)^I = y^I w^I$ .
- 11. Sean  $L_1=\{el,mi\}$  y  $L_2=\{casa,libro,ordenador\}$ , lenguajes sobre el alfabeto español. Obtener  $L_1\cdot L_2,\,L_1\cdot L_1,\,L_1\cdot L_2\cdot L_2.$
- 12. Sea  $L=\{\varepsilon,a\}$ . Obtener  $L^n$  para n=0,1,2,3. ¿Cuántos elementos tiene  $L^n$  para un n arbitrario? ¿Cuáles son las cadenas de  $L^n$  para un n arbitrario?
- 13. Sean  $L_1 = \{\varepsilon, ab\}$  y  $L_2 = \{cd\}$ , ¿cuántas cadenas hay en  $L_1^n L_2$  para un n arbitrario?
- 14. Sean  $L_1 = \{\varepsilon\}$ ,  $L_2 = \{aa, ab, bb\}$ ,  $L_3 = \{\varepsilon, aa, ab\}$  y  $L_4 = \emptyset$ . Obtener  $L_1 \cup L_2$ ,  $L_1 \cup L_3$ ,  $L_1 \cup L_4$ ,  $L_4 \cup L_4$ ,  $L_1 \cap L_2$ ,  $L_2 \cap L_3$ ,  $L_1 \cap L_4$ ,  $L_3 \cap L_4$ . Suponer que L es un lenguaje cualquiera. Obtener  $L \cup L_4$  y  $L \cap L_4$ .
- 15. ¿Bajo qué condiciones  $L^* = L^+$ ?
- 16. Obsérvese que para todo lenguaje L se tiene que  $\varepsilon \in L^*$ . ¿Cuándo  $\varepsilon \in L^+$ ?
- 17. Sean A y B dos lenguajes sobre  $\Sigma$ . Demostrar que  $\overline{A \cap B} = \overline{A} \cup \overline{B}$  y que  $\overline{A \cup B} = \overline{A} \cap \overline{B}$ .
- 18. Obtener los lenguajes A, B, y C, tales que  $A(B-C) \neq AB-AC$
- 19. Demostrar que para los lenguajes A y B,  $(A \cup B)^* = (A^*B^*)^*$ .
- 20. Demostrar que  $(L^*)^* = L^*$ ,  $(L^*)^+ = L^*$  y  $(L^+)^* = L^*$ .
- 21. Sea  $\Sigma=\{a,b,c\}$  y sea  $L=\{c^ixc^j\mid i,j\geq 0\}$ , donde x se restringe a  $x=\varepsilon$ , x=aw o x=wb para algún  $w\in\Sigma$ . ¿Se cumple que  $L=\Sigma^*$ ?

# Universidad de La Laguna

#### Grado en Ingeniería Informática

Computabilidad y Algoritmia Curso 2024-2025

- 22. Una cadena es *palíndroma* si se lee igual de izquierda a derecha que de derecha a izquierda. Por ejemplo, la palabra *reconocer* es palíndroma y también lo es la frase *Adán no calla con nada*. Dar una definición recursiva de una cadena palíndroma. Obsérvese que la cadena vacía es palíndroma.
- 23. Cadenas exentas de cuadrados y excentas de cubos (Ejercicio 1.8 del libro "Teoría de Autómatas y Lenguajes Formales"). Sea  $\Sigma$  un alfabeto. Una cadena  $w \in \Sigma^*$  se dice que está exenta de cuadrados si w no es de la forma  $uv^2x$  para las subcadenas u, v y x, donde  $x \neq \epsilon$ . La definición de cadena exenta de cubos es similar.

Utilice el alfabeto  $\Sigma=\{a,b\}$  para poner 5 ejemplos de cadenas no exentas de cuadrados y 5 exentas de cubos.