西安交通大学

姓名:张晓宇、白柯渊 班级:自动化2101

日期: 2023年11月13日

自动控制原理实验 第一次实验报告

1 预习报告

1.1 预习报告——张晓宇

	Pf.		Afo Hfo	1, Rg, = 2+10" k	
**		- > o=]	1,20.24 3	02 Rg. 210	okn.
OR	12 = 500 k A =	KJ2 ≥ 7.	:1 =) G15)=	\$(0.25+1)(5+1)	7.9
® R	iz = 100/m = A	1. => 7. =	0-13 => GIS) =	5(0.25+1)2	15
				\$10-25t1×0.1501)	42
了不是. A.	越大外上宣传越	A.			
大小道. T.	141.86.411.4	i A	1		-
}- @: si	2:50k/L ⇒ K	2:10	G(5) = 10	1+1)(0-51+1)	
9 R	1 = 500 ka =	ka = 12	G (5) = Trod	11)(05)+1)	
(3) P	iz = 10kn =>	k.:50	G15) = 560	15+11 (0.75+1)	

1.2 预习报告——白柯渊

课程:		实验日期:	第 页(共 页) 年 月 日
专业班号	组别	交报告日期:	年 月 日
生 名	学号	报告退发:	(订正、重做)
1组者		 教师审批签字:	
实验名称	10		
(粮完)	(1) = 10 (20) = 0272 5+ 62	+7,15+540 , 00	7z co.2
1临界4段:	((5)	0.45+5+/0 = 5+	250
7/20	R(3) - 0:0453+	0.45+5+10 3+	1/05+255+250
个机天	R(S) = 0127253+(0	0.43+3+10 3+	72>0.2
b E 1 2 2	元· 我注付的影响	ละ	
FO 17143	, 养玩稳定性	· 对放 差 。	
K 越 大	人,系统粮剩	は松羊	
丁松力	K, 2000	- 270	
丁赵力	K, 2000000	1.3/0	
丁赵力	K, 27904NNI	-3/0	
丁松力	K, 27001111		
丁松力	K, 25001201		
丁 赵 7	K, 4909AN		
7.松力	K, 2904001		
7.松力	K, 2904001		
7.松力	K. 250422		
7. 越力	K., \$904NA		
7. 赵力	K., 49049NI		
T 越 ?	K., \$904NA		1441 × 46

2 实验内容

2.1 实验一、线性系统时域特性分析

- 1. 已知系统的模拟电路,在 NI ELVIS II 教学实验板上,利用运算放大器、电阻、电容自行搭建二阶模拟闭环系统。阶跃信号由实验板模拟量输出口 AOO 输出,接到二阶系统输入端。将二阶系统的输入端与输出端分别接实验板模拟量输入接口 AIO(+)与 AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。搭建模拟电路时,应当注意:运算放大器的 Vcc 与 Vee 分别接实验板+15V 与-15V,正输入端 IN+应接实验板的 GROUND 端。
- 2. 写出下面二阶系统 6 组参数的开环传递函数,测量并记录每组参数的阶跃响应曲线,标出各组曲线的超调量 M_p 、峰值时间 t_p 、调整时间 $t_s(\Delta=2/\Delta=5)$ 的测量值,与理论值进行比较。将 156 组曲线进行对比分析。
 - 1) $\omega_n = 1$ 不变,取 $\zeta = 0.2$

$$R_i = 200k\Omega, R_f = 500k\Omega, C_f = 5\mu F, R_0 = 500k\Omega, C_0 = 2\mu F$$

2)
$$\omega_n = 1$$
 不变,取 $\zeta = 0.5$

$$R_i = 200k\Omega, R_f = 200k\Omega, C_f = 5\mu F, R_0 = 500k\Omega, C_0 = 2\mu F$$

$$\omega_n = 1$$
 不变,取 $\zeta = 1$

$$R_i = 200k\,\Omega, R_f = 100k\,\Omega, C_f = 5\mu F, R_0 = 500k\,\Omega, C_0 = 2\mu F$$

4)
$$\omega_n = 1$$
 不变,取 $\zeta = 0$

$$R_i = 200k\Omega, R_f = \infty, C_f = 5\mu F, R_0 = 500k\Omega, C_0 = 2\mu F$$

5)
$$\zeta = 0.2$$
 不变,取 $\omega_n = 0.5$

$$R_i = 800k\Omega, R_f = 1M\Omega, C_f = 5\mu F, R_0 = 500k\Omega, C_0 = 2\mu F$$

6)
$$\zeta = 0.2$$
 不变,取 $\omega_n = 2$

$$R_i = 50k\Omega, R_f = 250k\Omega, C_f = 5\mu F, R_0 = 500k\Omega, C_0 = 2\mu F$$

2.2 实验一记录图表

图 2-1 组 1 超调量 M_p 、峰值时间 t_p

图 2-2 组 1 调整时间 $t_s - \Delta = 2$

图 2-3 组 1 调整时间 $t_s - \Delta = 5$

图 2-4 组 2 超调量 M_p 、峰值时间 t_p

图 2-5 组 2 调整时间 $t_s-\Delta=2$

图 2-6 组 2 调整时间 $t_s - \Delta = 5$

图 2-7 组 3 调整时间 $t_s - \Delta = 2$

图 2-8 组 3 调整时间 $t_s-\Delta=5$

图 2-9 组 4 超调量 M_p 、峰值时间 t_p

图 2-10 组 5 超调量 M_p 、峰值时间 t_p

图 2-11 组 5 调整时间 $t_s-\Delta=2$

图 2-12 组 5 调整时间 $t_s-\Delta=5$

图 2-13 组 6 超调量 M_p 、峰值时间 t_p

图 2-14 组 6 调整时间 $t_s-\Delta=2$

图 2-15 组 6 调整时间 $t_s - \Delta = 5$

2.3 实验二、线性系统稳定性分析

- 1. 利用劳斯判据,分析三阶系统开环比例系数K与时间常数T对稳定性的影响,判别开环比例系数与时间常数的稳定范围。
- 2. 已知系统的模拟电路,在 NI ELVIS II 教学实验板上,利用运算放大器、电阻、电容自行搭建三阶模拟闭环系统。阶跃信号由实验板模拟量输出口 AOO 输出,接到二阶系统输入端。将二阶系统的输入端与输出端分别接实验板模拟量输入接口 AIO(+)与 AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。搭建模拟电路时,应当注意:运算放大器的 Vcc 与 Vee 分别接实验板+15V 与-15V,正输入端 IN+应接实验板的 GROUND 端。
- 3. 在时间常数不变条件下,改变开环比例系数 \mathbf{K} 。三阶系统的阻容参数如下: $R_{f2}=500k\,\Omega, C_{f2}=1\mu F, R_{i1}=100k\,\Omega, C_{f1}=1\mu F, R_0=500k\,\Omega, C_0=2\mu F$ 求取开环比例系数 \mathbf{K} 的稳定范围,选取三组不同 \mathbf{K} 值,分别使三阶系统处于稳定、临界稳定、不稳定状态,写出对应的系统开环传递函数,记录曲线。
- 4. 在开环比例系数不变的条件下,改变时间常数。阻容参数如下: $R_{f1}=100k\,\Omega, C_{f2}=2\mu F, R_{i1}=10k\,\Omega, C_{f1}=2\mu F, R_0=500k\,\Omega, C_0=2\mu F$ 写出下面三组参数的系统开环传递函数,记录曲线,进行对比分析。
 - 1) $R_{i2} = 500k\Omega, R_{f2} = 500k\Omega$

- 2) $R_{i2} = 100k \Omega, R_{f2} = 100k O$
- 3) $R_{i2} = 50k\Omega, R_{f2} = 50k\Omega$

2.4 实验二记录图表

图 2-16 K 变化、 $R_{i2} = 10k\Omega$ 、系统不稳定状态

图 2-17 K 变化、 $R_{i2} = 41k\Omega$ 、系统临界稳定状态

图 2-18 K 变化、 $R_{i2} = 100k\Omega$ 、系统稳定状态

图 2-19 T变化、 $R_{i2} = R_{f2} = 500k\Omega$ 、系统不稳定状态

图 2-20 T 变化、 $R_{i2} = R_{f2} = 100k\Omega$ 、系统临界稳定状态

图 2-21 T 变化、 $R_{i2} = R_{f2} = 50k\Omega$ 、系统稳定状态

3 理论与实验数据对比

3.1 实验一

表 3-1 二阶系统理论计算与实验数据对比

组别	类型	理论计算	实验数据
	超调量/%	52.66	47.40
1	峰值时间/s	3.21	3.13
	调整时间(2/5)/s	20/15	17.14/10.86
	超调量/%	16.30	14.36
2	峰值时间/s	3.63	3.56
	调整时间(2/5)/s	8/6	5.95/5.31
	超调量/%	0	0
3	峰值时间/s	无	无
	调整时间(2/5)/s	5.84/4.75	5.38/4.54
	超调量/%	100	84.58
4	峰值时间/s	3.14	3.25
	调整时间(2/5)/s	无	无
	超调量/%	52.66	47.86
5	峰值时间/s	6.41	6.38
	调整时间(2/5)/s	40/30	33.57/21.56
	超调量/%	52.66	47.31
6	峰值时间/s	1.60	1.62
	调整时间(2/5)/s	10/7.5	8.09/5.29

3.2 实验二

两组六个独立实验开环传递函数见预习报告。

4 实验总结

通过本次实验,掌握了测试系统响应曲线的模拟实验方法,对比研究了二阶系统的特征参量对阶跃响应瞬态指标的影响,验证了理论计算。

通过对典型三阶系统的模拟实验,研究了开环比例系数与时间常数对系统稳定性的影响。