3-11 相容关系

相容关系

相容关系是另一种常见关系,如朋友关系、同学关系等。

一、定义:给定集合X上的关系r,若r是自反的、对称的,则称 r 是X上的相容关系。

例子: X 是由一些英文单词构成的集合。

X={fly, any, able, key, book, pump, fit},

X上关系r:

 $r=\{<\alpha,\beta>|\alpha\in X,\beta\in X$ 且α与β含有相同字母}

相容关系

r的有向图:

有自反、

对称性,但

不传递。

相容关系简化图及矩阵

二、简化图和简化矩阵

图的简化: (1)不画环;

(2)两条对称边用一条无向直线代替。

 x_1 =fly, x_2 = any, x_3 = able, x_4 =key, x_5 =book, x_6 = pump, x_7 = fit,

 $X=\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\},$

r的简化图及简化矩阵为:

\mathbf{x}_{6}	0
------------------	---

\mathbf{X}_{2}	1					
\mathbf{X}_3	1	1				
X ₄	1	1	1			
X ₅	0	0	1	1		
$\overline{\mathbf{x}_6}$	0	0	0	0	0	
X ₇	1	0	0	0	0	0
	\mathbf{x}_1	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$	\mathbf{x}_{5}	\mathbf{x}_6

相容类

三. 相容类及最大相容类

相容类定义:设r是集合X上的相容关系, $C\subseteq X$,如果对于C中任意两个元素 x,y 都有<x,y> \in r,则称C是r的一个相容类。

\mathbf{x}_2	1					
X ₃	1	1				
X ₄	1	1	1			
X ₅	0	0	1	1		
X_6	0	0	0	0	0	
X ₇	1	0	0	0	0	0
	x ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄	X ₅	X ₆

 $\{x_1,x_2\},\{x_3,x_4\},\{x_1,x_2,x_3\},\{x_2,x_3,x_4\},\{x_1,x_2,x_4\},$ 等都是相容类。 上述相容类中,有些相容类间有真包含关系。

最大相容类

最大相容类定义:设r是集合X上的相容关系,C是r的一个相容类,如果C不能被其它相容类所真包含,则称C是一个最大相容类,记作C_r。

也可以说,C是一个相容类,如果C中加入任意一个X中的其它元素,就不再是相容类,则C就是一个最大相容类。

最大相容类

X_2	1					
X_3	1	1				
X ₄	1	1	1			
X ₅	0	0	1	1		
X_6	0	0	0	0	0	
X ₇	1	0	0	0	0	0
	x ₁	\mathbf{x}_2	\mathbf{x}_3	X_4	X ₅	X ₆

 $\{x_1,x_2,x_3,x_4\}$, $\{x_3,x_4,x_5\}$, $\{x_1,x_7\}$, $\{x_6\}$ 都是最大相容类。

最大相容类

从简化图找最大相容类:

- 找最大的完全多边形。
- 在相容关系简化图中,每个最大完全多边形的结点集合构成一个最大相容类。

完全多边形: 在多边形中, 任意两个结点之间均相联结。

)

完全覆盖

四、完全覆盖:

定义: r 是X上的相容关系,由 r 的所有最大相容类为元素构成的集合,称之为 x 的完全覆盖。记作 $C_r(x)$ 。例如:

 $C_{r}(X) = \{\{x_{1}, x_{2}, x_{3}, x_{4}\}, \{x_{3}, x_{4}, x_{5}\}, \{x_{1}, x_{7}\}, \{x_{6}\}\}\}$ $C_{r}(X) = \{\{x_{1}, x_{2}, x_{5}\}, \{x_{2}, x_{3}, x_{5}\}, \{x_{3}, x_{4}, x_{5}\}, \{x_{1}, x_{4}, x_{5}\}\}$

相容关系定理

定理 给定集合X上的一个覆盖 $A=\{A_1, A_2, ..., A_n\}$,由它确定的关系 $R=A_1^2 \cup A_2^2 \cup ... \cup A_n^2$,其中 $A_i^2 = A_i \times A_i$ (i=1,2,...,n) 是 X 上的一个相容关系。证明:

- 1) 证R自反: 任取 a∈X,因为A是X的覆盖,必存在正整数 n≥i > 0, 使得 a∈A_i, 而 <a,a>∈A_i×A_i,又A_i×A_i⊆R,于是有 <a,a>∈R,即R 是自反的。
- 2) 证R对称: 任取 a,b∈X,设<a,b>∈R,必存在正整数 n≥i>0 ,使得 <a,b>∈A_i×A_i,于是<b,a>∈A_i×A_i,又A_i×A_i⊆R,所以有 <b,a>∈ R,即R是对称的。

课堂练习

练习: 给定X上相容关系r',如图所示, 求r'的最大相容类。

 $\{x_1, x_2, x_5\}, \{x_2, x_3, x_5\},$ $\{x_3, x_4, x_5\}, \{x_1, x_4, x_5\}$

