#### **BE562 Computational Biology: Genomes, Networks, Evolution**

## Sequence Alignment 2

- Alignment Variants
- Affine Gap Penalty
- State Transition Trellis



$$F(i, j) = \max \begin{cases} F(i-1, j-1) \pm 1 \\ F(i-1, j) - 2 \\ F(i, j-1) - 2 \end{cases}$$

F(i,j)

Score of <u>best</u>
alignment between

X<sub>1</sub>,...,X<sub>i</sub>

and

Y<sub>1</sub>,...,Y<sub>i</sub>



$$F(i, j) = \max \begin{cases} F(i-1, j-1) \pm 1 \\ F(i-1, j) - 2 \\ F(i, j-1) - 2 \end{cases}$$

# Fill in Boundary Conditions



$$F(i, j) = \max \begin{cases} F(i-1, j-1) \pm 1 \\ F(i-1, j) - 2 \\ F(i, j-1) - 2 \end{cases}$$

F(N,M)
Score of best global alignment



$$F(i, j) = \max \begin{cases} F(i-1, j-1) \pm 1 \\ F(i-1, j) - 2 \\ F(i, j-1) - 2 \end{cases}$$

F(N,M)
Score of best global alignment

Use *Tracebacks* to get actual alignments:

Store a pointer from F(i,j) to the cell used

#### Alignment Variants

Bounded Alignments

Semi-global Alignment

Local Alignment

### Bounded Sequence Alignment

What if X and Y are very similar?
Assume that #gaps will be small (<k)

This means that if X<sub>i</sub> matches Y<sub>i</sub>, li-jl<k

 $\begin{bmatrix} X_1 \\ Y_1 \end{bmatrix} \begin{bmatrix} X_2 \\ - \end{bmatrix} \begin{bmatrix} X_3 \\ Y_2 \end{bmatrix} \begin{bmatrix} X_4 \\ Y_2 \end{bmatrix} \begin{bmatrix} X_5 \\ Y_4 \end{bmatrix}$ 

Can we use this to speed up alignment?

#### **Bounded Dynamic Programming**



#### **Initialization:**

F(i,0), F(0,j) undefined for i, j > k

#### **Iteration Rule:**

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, & \text{if } j > i - k \\ F(i - 1, j) - d, & \text{if } j < i + k \end{cases}$$

- Sometimes an entire sequence (X) is embedded in another sequence (Y)
- e.g. complete protein domain to a gene

















#### Alignment Variations

Summary of end space scoring procedures:

| Place where spaces are not penalized for | Action                           |
|------------------------------------------|----------------------------------|
| Before 1st sequence                      | Initialize 1st column with zeros |
| After 1st sequence                       | Look for max in last column      |
| Before 2 <sup>nd</sup> sequence          | Initialize 1st row with zeros    |
| After 2 <sup>nd</sup> sequence           | Look for max in last row         |

**Allow** gaps at either end of each sequence

**But this** is still a global alignment i=0

j=0

0

3









3













#### Local Alignment

#### **Smith-Waterman Algorithm**

- Sometimes we just want an alignment between part of X and part of Y
- e.g. conserved protein domain between two complete genes
- This means finding the highest scoring alignment of <u>any</u> subsequences of X & Y

#### A Slightly Easier Problem





What if we want the highest score alignment of any two substrings that start at X<sub>0</sub>,Y<sub>0</sub>

#### A Slightly Easier Problem

















Stop the alignment when what came before had more bad than good

But imagine this hypothetical scenario Is the blue alignment really just as good as the red?



No, because it started at a lower negative to reach 2!



During recursion, rather than going < 0, we reset F to zero!

Start alignment at highest F(i,j) anywhere in matrix – traceback to first zero

$$F(i,j) = \max \begin{cases} 0 \\ F(i-1,j-1) \pm 1 \\ F(i-1,j) - 2 \\ F(i,j-1) - 2 \end{cases}$$

During recursion, rather than going < 0, we reset F to zero!



Initialize first row and column to zeros

Start alignment at highest F(i,j) anywhere in matrix – traceback to first zero

$$F(i, j) = \max \begin{cases} 0 \\ F(i-1, j-1) \pm 1 \\ F(i-1, j) - 2 \\ F(i, j-1) - 2 \end{cases}$$

During recursion, rather than going < 0, we reset F to zero!



Initialize first row and column to zeros

Smith-Waterman is guaranteed to find the highest scoring alignment between *any* substring of X and *any* substring of Y\*

(\*Must have E[score of random seqs]<0)



During recursion, rather than going < 0, we reset F to zero!

What about the next highest scoring subsequence alignment?



During recursion, rather than going < 0, we reset F to zero!

But how do we avoid this trivial solution?



During recursion, rather than going < 0, we reset F to zero!

But how do we avoid this trivial solution?

Zero out found alignments





Local



Stretches of similarity

No end-gap penalty

#### Initialization to zero

F(i - 1, j) - d \*  
F(i, j - 1) - d  
F(i - 1, j - 1) + 
$$s(x_i, y_j)$$

**Top left** 

$$\begin{aligned} &F(i-1,\,j)-d\\ &F(i,\,j-1)-d\\ &F(i-1,\,j-1)+s(x_i,\,y_j) \end{aligned}$$

**Termination** 

**Bottom right** 

**Anywhere** 

**Bottom row** or right column

#### Exercise for You

- Often gaps come in bunches
- The probability of getting 10 gaps in a row is higher than 10 different 1 gap events
- Solution: Affine Gap Penalty
- g(n) is penalty for gap of length n:

$$g(n)=(-d)-(n-1)e$$
Gap-open penalty (d) Gap-extension penalty (e)

What is the new update rule for F(i,j)?

#### Key Idea

To compute optimal alignment, at position (i, j), need to "remember" both best score if gap is open AND if gap is not open

E.g. Two scenarios for X<sub>i</sub> aligned to gap



# Getting to (i+1,j+1) from (i,j)

Still three ways that an alignment of (i,j) or (i+1,j+1) can end



But now it matters which way (i,j) ended to score (i+1,j+1)

# Getting to (i+1,j+1) from (i,j)

Still three ways that an alignment of (i,j) or (i+1,j+1) can end



But now it matters which way (i,j) ended to score (i+1,j+1)

# Getting to (i+1,j+1) from (i,j)

Still three ways that an alignment of (i,j) or (i+1,j+1) can end



But now it matters which way (i,j) ended to score (i+1,j+1)

## **Update Rule**

#### Define 3 Update Quantities

M(i,j) – best score up to (i,j) with  $x_i$  aligned to  $y_i$   $I_x(i,j)$  – best score up to (i,j) with  $x_i$  aligned to gap  $I_y(i,j)$  – best score up to (i,j) with  $y_i$  aligned to gap

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_y(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_y(i,j-1) - e \end{cases}$$

# Expanding the F Matrix



#### Finite State Machine



Any given alignment is a series of state transitions through this state machine



And we can score an alignment by scoring transitions





#### But how do we find the best alignment?



Define  $I_{x,k}$   $I_{y,k}$  as score of best alignment to *position* K ending in state  $I_y$   $I_k$ 



## Optimality Substructure Revisted

Define  $I_{x,k}$   $I_{y,k}$  as score of best alignment to *position* K ending in state  $I_y$   $I_k$ 



## Optimality Substructure Revisted

Define  $I_{x,k}$   $I_{y,k}$  as score of best alignment to *position* K ending in state  $I_y$   $I_k$ 



**K-1** 

### Optimality Substructure Revisted

Define  $I_{x,k}$   $I_{y,k}$  as score of best alignment to *position* K ending in state  $I_y$   $I_k$ 



#### Finite State Machine

#### **Trellis**

$$M_{k} = \max \begin{cases} M_{k-1} + s(x, y) \\ I_{x,k-1} + s(x, y) \\ I_{y,k-1} + s(x, y) \end{cases}$$

$$I_{x,k} = \max \begin{cases} M_{k-1} - d \\ I_{x,k-1} - e \end{cases}$$

$$I_{y,k} = \max \begin{cases} M_{k-1} - d \\ I_{y,k-1} - e \end{cases}$$

#### **F** Matrix

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j) \\ I_x(i-1, j) + s(x_i, y_j) \\ I_y(i, j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i, j) = \max \begin{cases} M(i-1, j) - d \\ I_x(i-1, j) - e \end{cases}$$

$$I_y(i, j) = \max \begin{cases} M(i, j-1) - d \\ I_y(i, j-1) - e \end{cases}$$

Equivalent ways of looking at the same problem. Parameterized over different spaces: (i,j) vs (k)

