Introduction to Optimization

Lecture 09: Subgradient descent. The proximal-gradient algorithm.

Juan PEYPOUQUET Optimization 2023-2024 1/12

Reminder

A vector $v \in \mathbb{R}^N$ is a subgradient of f a convex function $f : \text{dom}(f) \subset \mathbb{R}^N \to \mathbb{R}$ at the point x if

$$f(y) \ge f(x) + \langle v, y - x \rangle$$

for all $y \in \mathbb{R}^N$.

Proposition

If $f: dom(f) \subset \mathbb{R}^N \to \mathbb{R}$ is convex, for each $x \in int(dom(f))$, there exist $L_x, r_x > 0$ such that

$$|f(z)-f(y)|\leq L_x||z-y||$$

for all $z, y \in B(x, r_x)$. Moreover, $\emptyset \neq \partial f(x) \subseteq \bar{B}(0, L_x)$.

←□ト ←□ト ← 亘ト ← 亘 → へへへ

2/12

The subgradient method

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Proposition

Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and Lipschitz-continuous with constant M $(|f(x) - f(y)| \le M||x - y||)$ with minimizers, and let (x_n) be defined by the subgradient method. Set $\bar{x}_n = \frac{1}{n+1} \sum_{k=0}^n x_k$. Then,

$$\min_{k=1,\ldots,n} \left(f(x_k) - \min(f) \right) \leq f(\bar{x}_n) - \min(f) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Juan PEYPOUQUET Optimization 2023-2024 3 / 12

The subgradient method

 $x_{n+1} = x_n - \alpha v_n$ with $v_n \in \partial f(x_n)$

Proposition

Let $f: \mathbb{R}^N \to \mathbb{R}$ be convex and Lipschitz-continuous with constant M $(|f(x) - f(y)| \le M||x - y||)$ with minimizers, and let (x_n) be defined by the subgradient method. Set $\bar{x}_n = \frac{1}{n+1} \sum_{k=0}^n x_k$. Then,

$$\min_{k=1,\ldots,n} \left(f(x_k) - \min(f) \right) \leq f(\bar{x}_n) - \min(f) \leq \frac{\alpha M^2}{2} + \frac{\operatorname{dist}(x_0, S)^2}{2\alpha(n+1)}.$$

Question

Given $\varepsilon > 0$, after how many iterations can we be sure to have found a point \hat{x} such that $f(\hat{x}) - \min(f) \le \varepsilon$?

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √○⟨○⟩

3/12

Juan PEYPOUQUET Optimization 202

We extend the codomain $\mathbb R$ to $\mathbb R \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb R$

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- \bullet $+\infty + \gamma = +\infty$ for all $\gamma \in \mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

Juan PEYPOUQUET Optimization 2023-2024

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- \bullet $+\infty + \gamma = +\infty$ for all $\gamma \in \mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

The (effective) domain and epigraph of a function $f:\mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is

dom
$$(f) = \{x \in \mathbb{R}^N : f(x) < +\infty\}$$

epi $(f) = \{(x, z) \in \mathbb{R}^{N+1} : f(x) \le z\},$

respectively. We will always assume that $dom(f) \neq \emptyset$.

Juan PEYPOUQUET Optimization 2023-2024 4 / 12

We extend the codomain \mathbb{R} to $\mathbb{R} \cup \{+\infty\}$, with the conventions that $+\infty > \gamma$ for all $\gamma \in \mathbb{R}$, and some algebraic operations are allowed:

- \bullet $+\infty + \gamma = +\infty$ for all $\gamma \in \mathbb{R}$,
- $\gamma(+\infty) = +\infty$ for all $\gamma > 0$, and $0(+\infty) = 0$.

The (effective) domain and epigraph of a function $f:\mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is

dom
$$(f) = \{x \in \mathbb{R}^N : f(x) < +\infty\}$$

epi $(f) = \{(x, z) \in \mathbb{R}^{N+1} : f(x) \le z\},$

respectively. We will always assume that $dom(f) \neq \emptyset$.

Notice that $dom(\lambda f + g) = dom(f) \cap dom(g)$.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

Every continuous function is closed.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- The indicator function of $C \subset \mathbb{R}^N$ ($C \neq \emptyset$) is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$.

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- The indicator function of $C \subset \mathbb{R}^N$ $(C \neq \emptyset)$ is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, $\operatorname{dom}(\iota_C) = C$ and $\operatorname{epi}(\iota_C) = C \times [0, +\infty)$.

Juan PEYPOUQUET

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- The indicator function of $C \subset \mathbb{R}^N$ $(C \neq \emptyset)$ is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, $dom(\iota_C) = C$ and $epi(\iota_C) = C \times [0, +\infty)$.

This function is closed if C is closed, and convex if C is convex.

Juan PEYPOUQUET Optimization 2023-2024 5 /

A function $f : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed if epi(f) is closed.

Examples

- Every continuous function is closed.
- The indicator function of $C \subset \mathbb{R}^N$ $(C \neq \emptyset)$ is $\iota_C : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$, defined as $\iota_C(x) = 0$ if $x \in C$ and $\iota_C(x) = +\infty$ if $x \notin C$. Here, $dom(\iota_C) = C$ and $epi(\iota_C) = C \times [0, +\infty)$.

This function is closed if C is closed, and convex if C is convex.

If
$$f: \mathbb{R}^N \to \mathbb{R}$$
, $\min\{f(x): x \in C\} = \min\{f(x) + \iota_C(x): x \in \mathbb{R}^N\}$.

Juan PEYPOUQUET Optimization 2023-20

Break

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex.

7/12

Juan PEYPOUQUET Optimization 2023-2024

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex. Its subdifferential is given by

$$\partial f_{y}(x) = \partial f(x) + x - y,$$

for each $x \in dom(f)$.

Juan PEYPOUQUET Optimization

Closedness and proximity operator

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $y \in \mathbb{R}^N$, the function

$$f_y(x) = f(x) + \frac{1}{2}||x - y||^2$$

is closed and strongly convex. Its subdifferential is given by

$$\partial f_{y}(x) = \partial f(x) + x - y,$$

for each $x \in dom(f)$. The unique minimizer of f_y is denoted by $prox_f(y)$, and is characterized by

$$y - \operatorname{prox}_f(y) \in \partial f(\operatorname{prox}_f(y)).$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

7/12

Juan PEYPOUQUET Optimization 2023-2024

The proximal method

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and fix $\alpha > 0$. From an initial point $x_0 \in \mathbb{R}^N$, define a sequence inductively by

$$x_{n+1} = \operatorname{prox}_{\alpha f}(x_n).$$

Juan PEYPOUQUET

The proximal method

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and fix $\alpha > 0$. From an initial point $x_0 \in \mathbb{R}^N$, define a sequence inductively by

$$x_{n+1} = \operatorname{prox}_{\alpha f}(x_n).$$

Exercise

If $f: \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is closed and convex, and $S \neq \emptyset$, then x_n converges to a point in S. Moreover,

$$f(x_n) - \min(f) \le \frac{\operatorname{dist}(x_0, S)^2}{2\alpha n}, \qquad n \ge 1.$$

Juan PEYPOUQUET

Optimization

2023-2024

Suppose we want to find the minima of f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is convex and lower-semicontinuous, and $h : \mathbb{R}^N \to \mathbb{R}$ is convex and L-smooth.

Suppose we want to find the minima of f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is convex and lower-semicontinuous, and $h : \mathbb{R}^N \to \mathbb{R}$ is convex and L-smooth.

Example

A typical example in image and signal processing, statistics, ML, is

$$f(x) = \frac{1}{2} ||Ax - b||^2 + \rho ||x||_1$$

for $x \in \mathbb{R}^N$.

Juan PEYPOUQUET

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$x_{n+1} = \operatorname{Argmin} \left\{ g(x) + h(x_n) + \langle \nabla h(x_n), x - x_n \rangle + \frac{1}{2\gamma} ||x - x_n||^2 \right\}$$

Juan PEYPOUQUET Optimization 2023-2024 10 / 12

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$x_{n+1} = \operatorname{Argmin} \left\{ g(x) + h(x_n) + \langle \nabla h(x_n), x - x_n \rangle + \frac{1}{2\gamma} \|x - x_n\|^2 \right\}$$
$$= \operatorname{Argmin} \left\{ g(x) + \frac{1}{2\gamma} \|x - (x_n - \gamma \nabla h(x_n))\|^2 \right\}.$$

4□ ト 4 昼 ト 4 差 ト ■ 9 4 ℃

Juan PEYPOUQUET Optimization 2023-2024 10 / 12

The proximal-gradient method consists in applying proximal iterations while linearizing the smooth function:

$$x_{n+1} = \operatorname{Argmin} \left\{ g(x) + h(x_n) + \langle \nabla h(x_n), x - x_n \rangle + \frac{1}{2\gamma} \|x - x_n\|^2 \right\}$$
$$= \operatorname{Argmin} \left\{ g(x) + \frac{1}{2\gamma} \|x - (x_n - \gamma \nabla h(x_n))\|^2 \right\}.$$

This subproblem has a unique solution characterized by

$$0 \in \partial g(x_{n+1}) + \nabla h(x_n) + \frac{1}{\gamma}(x_{n+1} - x_n).$$

Juan PEYPOUQUET Optimization 2023-2024 10 / 12

Note that

$$0 \in \partial g(x_{n+1}) + \nabla h(x_n) + \frac{1}{\gamma}(x_{n+1} - x_n)$$

is equivalent to

$$x_{n+1} + \gamma \partial g(x_{n+1}) \ni x_n - \gamma \nabla h(x_n).$$

11 / 12

Juan PEYPOUQUET Optimization 2023-2024

Note that

$$0 \in \partial g(x_{n+1}) + \nabla h(x_n) + \frac{1}{\gamma}(x_{n+1} - x_n)$$

is equivalent to

$$x_{n+1} + \gamma \partial g(x_{n+1}) \ni x_n - \gamma \nabla h(x_n).$$

In turn, this can be rewritten as

$$x_{n+1} = (I + \gamma \partial g)^{-1} (I - \gamma \nabla h) x_n,$$

where we identify a gradient subiteration with respect to h, and then a proximal subiteration with respect to g.

- 4 ロ ト 4 昼 ト 4 重 ト 4 重 ・ 夕 Q ()

Juan PEYPOUQUET Optimization 2023-2024 11 / 12

Note that

$$0 \in \partial g(x_{n+1}) + \nabla h(x_n) + \frac{1}{\gamma}(x_{n+1} - x_n)$$

is equivalent to

$$x_{n+1} + \gamma \partial g(x_{n+1}) \ni x_n - \gamma \nabla h(x_n).$$

In turn, this can be rewritten as

$$x_{n+1} = (I + \gamma \partial g)^{-1} (I - \gamma \nabla h) x_n,$$

where we identify a gradient subiteration with respect to h, and then a proximal subiteration with respect to g. It is a splitting method.

 Juan PEYPOUQUET
 Optimization
 2023-2024
 11 / 12

Convergence of proximal-gradient sequences

Theorem

Let f = g + h, where $g : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ is convex and lower-semicontinuous, and $h : \mathbb{R}^N \to \mathbb{R}$ is convex and L-smooth. Take $\gamma \in (0, 2/L)$ and define (x_n) by

$$x_{n+1} = (I + \gamma \partial g)^{-1} (I - \gamma \nabla h) x_n, \qquad n \ge 0.$$

Then, x_n converges to a minimizer of f, and there is C > 0 such that

$$f(x_n) - \min(f) \le \frac{dist(x_0, \operatorname{Argmin}(f))^2}{2\gamma n}, \qquad n \ge 1.$$

Moreover, $\lim_{n\to\infty} n(f(x_n) - \min(f)) = 0.$

4日ト4団ト4ミト4ミト ミ かなの

 Juan PEYPOUQUET
 Optimization
 2023-2024
 12 / 12