3G Find an Eulerian Path in a Graph

Eulerian Path Problem

Find an Eulerian path in a graph.

Input: A directed graph containing an Eulerian path.

Output: An Eulerian path in this graph.

Formatting

Input: An adjacency list representing a directed graph containing an Eulerian path. **Output:** A space-separated list of integers representing an Eulerian path in the graph.

Constraints

- The number of nodes in the graph will be between 1 and 10⁴.
- The number of edges in the graph will be between 1 and 10^4 .
- All nodes in the graph will be labeled with integers.

Test Cases 🖸

Case 1

Description: The sample dataset is not actually run on your code.

Input:

- 0: 2
- 1: 3
- 2: 1
- 3: 0 4
- 6: 3 7
- 7: 8
- 8: 9
- 9: 6

Output:

6 7 8 9 6 3 0 2 1 3 4

Case 2

Description: The sample dataset is not actually run on your code.

Input:

- 0: 1
- 1: 2
- 2: 3

Output:

0 1 2 3

Case 3

Description: The sample dataset is not actually run on your code.

Input:

- 0: 1
- 1: 25
- 2: 3
- 3: 4
- 4: 1

Output:

0 1 2 3 4 1 5

Case 4

Description: The sample dataset is not actually run on your code.

Input:

- 2: 1 1: 3 4 0
- 3: 1 4 4: 3 1

Output:

2 1 3 1 4 3 4 1 0

Case 5

Description: The sample dataset is not actually run on your code.

Input:

- 0: 1
- 1: 14 17
- 14: 2 3 4
- 2: 1
- 3: 14
- 4: 5
- 5: 14

Output:

0 1 14 3 14 4 5 14 2 1 17

Case 6

Description: The sample dataset is not actually run on your code.

Input:

- 2: 3 5
- 3: 4
- 4: 2
- 5: 6
- 6: 2
- 1: 2 0
- 0: 1

Output:

1 0 1 2 3 4 2 5 6 2

Case 7

Description: A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.