Bayesian Learning

Lecture 6 - Bayesian regularization

Department of Statistics Stockholm University

Lecture overview

- Non-linear regression
- Regularization priors

Polynomial regression

Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k, \quad \text{for } i = 1, \dots, n.$$
$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where ith row of X is

$$(1, x_i, x_i^2, ..., x_i^k).$$

■ Still linear in β and $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$. Bayes unchanged.

Spline regression

- Polynomials are too global. Need more local basis functions.
- **Truncated quadratic splines with knot locations** $\kappa_1, ..., \kappa_m$:

$$b_j(x) = \begin{cases} (x - \kappa_j)^2 & \text{if } x > \kappa_j \\ 0 & \text{otherwise} \end{cases}$$
$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where ith row of X is

Regularization prior - Ridge

- Too many knots leads to over-fitting.
- Smoothness/shrinkage/regularization prior

$$\beta_i | \sigma^2 \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \frac{\sigma^2}{\lambda}\right)$$

- Larger λ gives smoother fit. Note: $\Omega_0 = \lambda I$ in conjugate prior.
- **Equivalent to penalized likelihood:**

$$-2 \cdot \log p(\boldsymbol{\beta}|\sigma^2, \mathbf{y}, \mathbf{X}) \propto (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

Posterior mean gives ridge regression estimator

$$\tilde{\boldsymbol{\beta}} = \left(\mathbf{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I}\right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Shrinkage toward zero

As
$$\lambda \to \infty, \ \tilde{\boldsymbol{\beta}} \to 0$$

lacksquare When $\mathbf{X}^T\mathbf{X} = I$

$$\tilde{\boldsymbol{\beta}} = \frac{1}{1+\lambda}\hat{\boldsymbol{\beta}}$$

Bayesian spline with regularization prior

Mattias Villani

Bayesian regularization

Regularization prior - Lasso

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{\text{iid}}{\sim} \text{Laplace}\left(0, \frac{\sigma^2}{\lambda}\right)$$

- The Bayesian shrinkage prior is interpretable. Not ad hoc.
- Laplace distribution have heavy tails.
- **Laplace prior**: many β_i close to zero, but some β_i very large.
- Normal distribution have light tails.

Learning the shrinkage

- **Cross-validation** used to determine degree of smoothness, λ .
- Bayesian: λ is **unknown** \Rightarrow **use a prior** for λ !
- Hierarchical setup:

$$\begin{split} \mathbf{y}|\boldsymbol{\beta}, \sigma^2, \mathbf{X} &\sim \textit{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\textit{I}_{\textit{n}}) \\ \boldsymbol{\beta}|\sigma^2, \boldsymbol{\lambda} &\sim \textit{N}\left(0, \sigma^2\lambda^{-1}\textit{I}_{\textit{m}}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2(\nu_0, \sigma_0^2) \\ \boldsymbol{\lambda} &\sim \textit{Inv} - \chi^2(\eta_0, \lambda_0) \end{split}$$

so
$$\Omega_0 = \lambda I_m$$
.

Regression with learned shrinkage

■ The joint posterior of β , σ^2 and λ is

$$\begin{split} \boldsymbol{\beta} | \sigma^2, \lambda, \mathbf{y} &\sim \textit{N}\left(\mu_{\textit{n}}, \Omega_{\textit{n}}^{-1}\right) \\ \sigma^2 | \lambda, \mathbf{y} &\sim \textit{Inv} - \chi^2\left(\nu_{\textit{n}}, \sigma_{\textit{n}}^2\right) \\ \rho(\lambda | \mathbf{y}) &\propto \sqrt{\frac{|\Omega_0|}{|\mathbf{X}^T \mathbf{X} + \Omega_0|}} \left(\frac{\nu_{\textit{n}} \sigma_{\textit{n}}^2}{2}\right)^{-\nu_{\textit{n}}/2} \cdot \rho(\lambda) \end{split}$$

where $\Omega_0 = \lambda I_m$, and $p(\lambda)$ is the prior for λ , and

$$\mu_{n} = (\mathbf{X}^{T}\mathbf{X} + \Omega_{0})^{-1}\mathbf{X}^{T}\mathbf{y}$$

$$\Omega_{n} = \mathbf{X}^{T}\mathbf{X} + \Omega_{0}$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + \mathbf{y}^{T}\mathbf{y} - \mu_{n}^{T}\Omega_{n}\mu_{n}$$

More complexity

■ The location of the knots can be unknown. Joint posterior:

$$p(\boldsymbol{\beta}, \sigma^2, \lambda, \kappa_1, ..., \kappa_m | \mathbf{y}, \mathbf{X})$$

- The marginal posterior for $\kappa_1, ..., \kappa_m$ is a nightmare.
- Simulate from joint posterior by MCMC. Li and Villani (2013).
- The basic spline model can be extended with:
 - ► Heteroscedastic errors (also modelled with a spline)
 - Non-normal errors (student-t or mixture distributions)
 - Autocorrelated/dependent errors (AR process for the errors)