

기초 Matlab 교육

여성공학인재 양성(WE-UP)

https://kr.mathworks.com

기초 Matlab 교육

• Matlab 소개

• Matlab 실습

Matlab 소개

Matlab: MATrix LABoratory

- 하이레벨 언어
- 매우 쉬운 프로그램 환경
 - 문법과 디버깅이 쉬움
- 행렬연산을 간단하게 할 수 있음
- 데이터 분석 및 데이터 시각화에 유용
- 인터프리터 언어 (C++ 등: 컴파일 언어)
- 타입이나 크기를 선언할 필요가 없음

Matlab 설치

• 학교이메일로 가입하고 인증 받아서 설치 가능

https://kr.mathworks.com/products/matlab/whatsnew.html

Matlab 기본 화면

m 파일 에디터/디버거

- 함수나 스트립트를 확장자 m (*.m)으로 저장
- 커맨드창에 m파일명을 입력하여 실행함

기본 기호

%	주석 (comment)
%%	Section divider
:	벡터나 행렬 제어
()	벡터나 행렬, 다항식의 항
[]	벡터, 행렬, 다항식
	벡터나 행렬의 항끼리 (element-wise) 계산시
	상위 디렉토리
	계속 명령문 입력
,	행렬에서 열 구분
;	행렬에서 행 구분 혹은, 수식 끝에서 사용 시에는 화면(command windows)에 출력을 방지
,	전치 (transpose)
'text'	문자열

기본 키워드 (1/2)

help doc lookfor	명령창에 표시되는 함수 도움말 도움말 브라우저 내 함수 도움말 문서 페이지 모든 도움말 항목의 키워드 검색
clc	명령창 지우기
ctrl+c	강제 종료
save	작업 공간 변수를 파일에 저장 save filename %workspace 내의 모든 변수 저장 save myVariables A B C % myVariables.mat으로 변수 A B C 저장
load	파일의 변수를 작업 공간(Workspace)으로 로드 load myVariables
clear	작업 공간에서 항목을 제거하여 시스템 메모리 늘리기 clear A B C %변수이름
close	Figure 제거
end	코드 블록을 종료하거나 마지막 배열 인덱스를 표시함

기본 키워드 (2/2)

size	배열 크기			
	[r,c]=size(A)			
	r=size(A,1), c=size(A,2)			
length	장 큰 배열 차원의 길이			
ans	가장 최근에 얻은 답			
pi	τ %원의 원주와 지름의 비율			
inf	무한대			
NaN	숫자가 아님(Not-a-Number)			
i,j	허수 단위(Imaginary Unit)			

수식 기호

```
= 변수 할당 %변수명(variable) = 수식(expression)
%변수명은 영문으로 시작
%대소문자 다르게 처리 즉, A, a 다른 변수
```

+	더하기	+.	항끼리 더하기	
-	빼기		항끼리 빼기	
*	곱하기	.*	항끼리 곱하기	
٨	거듭제곱	.^	각 항의 거듭제곱	
/	오른쪽 나누기 xA=b; x=b/A=bA ⁻¹	./	항끼리 나누기	
\ ₩	왼쪽 나누기 Ax=b; x=A\b=A ⁻¹ b	.\ .₩	왼쪽배열 나누기	

기본 수학 함수와 삼각함수

수학 함수				
abs(x)	x의 절댓값을 계산			
sqrt(x)	x의 근호값을 계산			
round(x)	x를 가까운 정수로 반올림			
ceil(x)	x를 가까운 큰 정수로 올림			
floor(x)	x를 가까운 작은 정수로 내림			
sign(x) x가 0보다 작으면 -1, 0이면 0. 0보다 크면				
rem(x,y)	x/y의 나머지를 계산			
exp(x)	e^x를 계산			
imag(x)	복소수의 허수부(Imaginary Part)			
real(x)	복소수의 실수부			
log(x)	자연 로그(Natural Logarithm)			
log10(x)	상용 로그(밑 10)			
conj(x) 켤레 복소수(Complex Conjugate)				

삼각함수				
sin(x)	sin(x) 계산			
cos(x)	cos(x) 계산			
tan(x)	tan(x) 계산			
asin(x)	1/sin(x) 계산			
acos(x)	1/cos(x) 계산			
atan(x)	1/tan(x) 계산			
atan2(x,y)	1/tan(y/x) 계산			

벡터 연산 - 기본벡터구문

• : (콜론)을 사용하여 증가나 감소하는 벡터를 쉽게 제어함

x = [2 2*pi sqrt(2) 3]	2, 2*pi, sqrt(2), 3의 4개의 항을 갖는 행벡터 x를 생성
x = first:last	first에서 시작하여 1씩 증가하고 last로 끝나는 행백 터 x를 생성
x = first:increment:last	first에서 시작하여 increment씩 증가하고 last로 끝나 는 행백터 x를 생성
x = linspace(first, last, n)	first에서 시작하여 last로 끝나고 항을 n개 갖는 행백 터 x를 생성
x = logspace(first, last, n)	10^first에서 시작하여 10^last로 끝나고 항을 n개 갖 는 행백터 x를 생성

배열 생성 함수

[]	빈 배열 생성		
zeros	모두 0으로 구성된 배열 생성		
ones 모두 1로 구성된 배열 생성			
eye 단위 행렬(Identity Matrix)			
magic(n)	마방진(Magic Square): 행과 열의 합계가 동일하고 1 ~ n^2 범 위의 정수로 생성된 nxn 행렬을 생성		
rand 구간 (0,1)에 균일하게 분포된 난수 생성			
randn	정규분포된 난수 생성		
inv	역행렬(Matrix Inverse)		
det	행렬식(Matrix Determinant)		
eig 고유값(Eigenvalue)과 고유벡터(Eigenvector)			

그래픽 함수

plot	plot(xdata, ydata, 'color_linestyle_marker') xdata와 ydata의 크기가 일치해야 함			
figure	새로운 그림창을 생성			
legend	gend('문자열1' <u>,</u> '문자열2',)			
title	title('그래프의 제목')			
xlabel	xlabel('X축 이름')			
ylabel	ylabel('Y축 이름')			
subplot	subplot(MNI) or subplot(M,N,I) M: 행의 개수, N: 열의 개수, I: 순서			
axis	axis([x1,x2,y1,y2])			
xlim	xlim([x1,x2]) : x축 제한			
ylim	ylim([y1,y2]) : y축 제한			

논리연산,관계연산

&	and	==	같은
	or	~=	같지 않은
~	not	>	큰
xor	xor	<	작은
		>=	크거나 같은
		<=	작거나 같은

반복문

Fixed repetition: for loop

for **expression**statements
end

• Indefinite repetition : while loop

while logical_expression statements end

• Single decision: if/else construct

```
if logical_expression
    block #1 statements
else
    default statements
end
```

Multiple options: if/elseif/else construct

```
if logical_expression #1
    block #1 statements
elseif logical_expression #2
    block #2 statements
else
    default statements
end
```

Multiple options with multiple tags: switch construct

```
switch switch_expression
case case_expression_list #1
block #1
otherwise
default block
end
```

Matlab 실습

변수 생성

a =

1

>> c=a+b

c =

3

d =

0.5403

x =

3.1416

y =

3.0000 + 4.0000i

벡터 생성

>> t=[1 2 3 4 5]

>> t=0:0.1:1

t =

t =

1 2 3 4 5

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

>> t=1:5

t =

1 2 3 4 5

벡터화와 그래프 그리기

```
>> y=sin(2*pi*t);
                                                  Figure 1
                                                                                               \times
>> plot(t,y)
                                                              🔍 🔍 🥎 🐌 🐙 🔏 📲
                                                                          y=sin(t)
>> t=0:0.01:1;
                                                      0.8
>> y=sin(2*pi*t);
                                                      0.6
>> plot(t,y) %혹은 플롯탭을 이용하여
                                                      0.4
플롯해보기
                                                      0.2
            플롯
                                변수
                                           보기
                                                     -0.2
= sample
                                                     -0.4
₽D
                                                     -0.6
                               여러 계열...
₩ v1
                        plot
                                                      8.0-
>> xlabel('t')
                                                               0.2
                                                                   0.3
                                                                       0.4
                                                                                    0.7
                                                                                        8.0
                                                                                            0.9
                                                                            0.5
                                                                                0.6
>> ylabel('y')
```

>> title('y=sin(t)')

행렬 생성

함수 검색 범주 MATLAB 🗎 언어 기본 사항 🗁 수학 🗎 기초 수학 🛅 선형 대수 廥 난수 생성 fx rand 균일하게 분포된 난수 fx randn 정규분포된 난수 fx randi 균일하게 분포된 정수형 의사 난수 fx randperm 난수 생성 제어 ∫x rng fx RandStream Random number stream fx get (RandStream) 난수 스트림(Random Stream) 속성 ✔ 설치된 모든 제품

B =

0.9058 0.9134

행렬 연산1

>> A=[1 2;3 4]

A =

1 2

3 4

>> B=[1 1;2 2]

B =

1 1

2 2

>> C=A+2

C =

3 4

5 6

>> D=A-B

D =

0 1

1 2

행렬 연산2

>> A

A =

1 2

3 4

>> B

B =

1 1

2 2

>> C=A*B

C =

5 5

11 11

>> D=A.*B

D =

1 2

6 8

행렬 연산3

>> C=eig(A) >> A A = C = 1 2 3 4 -0.3723 >> B=inv(A) 5.3723 B = -2.0000 1.0000 >> D=svd(A) 1.5000 -0.5000 >> A*B D = ans = 1.0000 0 5.4650 0.0000 0.3660 1.0000

$$\begin{aligned}
 x_1 + 2x_2 &= 1 \\
 3x_1 + 4x_2 &= 3
 \end{aligned}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

여립방정식 풀기

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

3 4 0.0000

1

1.0000

3

0.0000

doc

• help

GUIDE

https://kr.mathworks.com/help/matlab/creating_guis/about-the-simple-guide-guiexample.html

	☑ 인스펙터: matlab.ui.control.UIControl			_	×	
•	2 ↓ • • • •					
	HandleVisibility		on		*	^
	HorizontalAlignment		center		*	
+	InnerPosition		[9.8 10.714 30.2 3.64	13]		
	Interruptible		✓ On			
	KeyPressFcn	Æ,			ø	
	KeyReleaseFcn	Æ,			ø	
	ListboxTop		1.0		ø	
	Max		1.0		ø	
	Min		0.0		0	
+	OuterPosition		[9.8 10.714 30.2 3.64	13]		
+	Position		[9.8 10.714 30.2 3.64	13]		
	SliderStep		[1x2 double array]		ø	
	String				ø	
	Style		text		•	
	Tag		text2		0	
	TooltipString				0	
	UlContextMenu		<none></none>		•	
	Units		characters		•	
	UserData				ø	
	Value		0.0		0	
	Visible		☑ On			V

Code 생성 후 추가1

```
function ******_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ***** (see VARARGIN)

% Choose default command line output for *****
handles.output = hObject;
handles.avg1 = 0;
handles.std1 = 1;
handles.avg2 = 0;
handles.std2 = 1.5;
```

Code 생성 후 추가2

```
function edit1_Callback(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata    reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit1 as text
%         str2double(get(hObject,'String')) returns contents of edit1 as a double
handles.avg1=str2double(get(hObject,'String'));
guidata(hObject,handles);
```

Code 생성 후 추가3

```
function pushbutton1 Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
x = -5:.1:5;
norm1 = normpdf(x,handles.avg1,handles.std1);
norm2 = normpdf(x,handles.avg2,handles.std2);
plot(handles.axes1,x,norm1)
hold on
plot(handles.axes1,x,norm2)
title('comparison of two normal distributions')
legend('1: left','2: right')
hold off
```


앱 패키징 공유

Matlab!

- 하이레벨 언어
 - 행렬연산을 간단하게 할 수 있음
 - 데이터 분석 및 데이터 시각화에 유용
- 매우 쉬운 프로그램 환경
 - 문법과 디버깅이 쉬움
- 다양한 APP

• <u>junhee.park@ewha.ac.kr</u>

- Matlab
 - https://kr.mathworks.com
- Matlab 아카데미아
 - https://kr.mathworks.com/academia.html?s tid=gn acad
- 코세라 강의
 - https://www.coursera.org/learn/matlab
- MATLAB Tutorials 유투브 강의
 - https://www.youtube.com/playlist?list=ELOcluKMFq2wc