RW-Solver マニュアル

産業技術総合研究所

2019年2月8日

目次

1	RW-Solver の実行時オプション	1
2	RW-Solver 実行環境の構築	2
2.1	RW-Solver が使用するソフトウェア	2
2.2	ソフトウェアパッケージのインストール	2
3	RW-Solver ビルド環境の構築	2
3.1	パッケージのインストール	2
3.2	OPAM の設定	3
3.3	RW-Solver のビルド	3

1 RW-Solver の実行時オプション

RW-Solver の実行時オプションについて説明します.

オプション	説明
-xs (x-scale)	水平方向の拡大率を指定します.
	指定できる値の範囲は 0.1 から 10.0 までです
-ys (y-scale)	垂直方向の拡大率を指定します
-t $\{ pdf \mid svg \}$	ダイヤグラムの出力形式を指定します.既定値は pdf です
-o $\langle \text{filename} \rangle$	ダイヤグラムのファイル名を指定します
-1z $\langle basename \rangle$	Z3 の入出力ファイルを残します. ファイルの基幹名を指定します.
	拡張子 .z3in, .z3out が自動的に付与されます
$-rz$ $\langle filename \rangle$	Z3 の出力 .z3out ファイルを再利用してダイヤグラムを生成します.
-so	計算のみ行い結果を出力しません. 計算時間を測定する際に使用します
-ptn	ダイヤグラムにトラック番号を表示します
sovler $\langle solver-name \rangle$	使用する SMT-Solver を指定します
help	オプション一覧を表示します

2 RW-Solver 実行環境の構築

Linux 用 RW-Solver の実行バイナリファイル rwsolver を実行するための環境構築について説明します. 対象とするプラットフォームは Ubuntu です. Microsoft Windows 10 環境の人は Windows Subsystem for Linux を使用してください.

2.1 RW-Solver が使用するソフトウェア

RW-Solver が依存するソフトウェアは次のものです:

ソフトウェア	説明
Z3	SMT Solver
Cairo	グラフィックスライブラリ.ダイヤグラムを描画するために使用する

加えて、これらのソフトウェアが依存するソフトウェアパッケージをインストールする必要があります.

2.2 ソフトウェアパッケージのインストール

Ubuntu の場合, Cairo はすでにインストールされているので, Z3 をインストールするだけで済みます. Z3 のインストールは apt-get で可能です.

\$ sudo apt-get install z3

3 RW-Solver ビルド環境の構築

RW-Solver をソースコードからビルドする環境の構築について説明します.

3.1 パッケージのインストール

以下のパッケージをインストールします:

- m4
- autoconf
- git
- aspcud
- \bullet libgtk2.0-dev
- opam
- z3

\$ sudo apt-get install m4 autoconf git aspcud libgtk2.0-dev opam z3

3.2 OPAM の設定

https://opam.ocaml.org/参照.

OPAM を初期化します:

\$ opam init

環境変数を設定します:

\$ eval 'opam config env'

OCaml のバージョンを 4.03.0 に切り替えます:

\$ opam switch 4.03.0

再び環境変数を設定します:

\$ eval 'opam config env'

OCaml の Cairo バインディングライブラリをインストールします:

\$ opam install cairo

3.3 RW-Solver のビルド

ソースコードのあるディレクトリにおいて make を実行します:

\$ make