SERIE N°11

EXERCICE N°1

Écrire l'algorithme d'une fonction qui permet de retourner une valeur approchée de π en utilisant la formule suivante :

$$\pi = 2\sqrt{3} * (1 - \frac{1}{3} * \frac{1}{3^1} + \frac{1}{5} * \frac{1}{3^2} - \frac{1}{7} * \frac{1}{3^3} + \cdots)$$

Le calcul s'arrête quand la valeur absolue de la différence entre deux termes consécutifs devient inférieure ou égale à une erreur epsilon réel donnée en paramètre.

Solution:

Algorithme de la fonction calcul :

Fonction calcul (epsilon : réel) : réel

Début

n ← 1

i ← 0

p ← 1

va ← 1

Répéter

$$n \leftarrow n + 2$$

$$i \leftarrow i + 1$$

$$p \leftarrow p * -1$$

$$va \leftarrow vp + p / (n * puissance (3, i))$$

Jusqu'à (abs (va - vp) ≤ epsilon)

Retourner 2 * racine_carrée (3) * va

Fin

s †alebkoufkouf@gma Tableau de déclaration des objets locaux (TDOL)

Mr Tairb Kout

Objet	Type/Nature
n,p,i	Entier
va , vp	Réel
puissance	Fonction

EXERCICE N°2

Écrire l'algorithme d'une fonction qui permet de retourner une valeur approchée de π en utilisant la formule suivante :

$$\pi = 16 * \left(\frac{1}{5^1} - \frac{1}{3} * \frac{1}{5^3} + \frac{1}{5} * \frac{1}{5^5} - \frac{1}{7} * \frac{1}{5^7} + \cdots\right)$$
$$-4 * \left(\frac{1}{239^1} - \frac{1}{3} * \frac{1}{239^3} + \frac{1}{5} * \frac{1}{239^5} - \frac{1}{7} * \frac{1}{239^7} + \cdots\right)$$

Le calcul s'arrête quand la valeur absolue de la différence entre deux termes consécutifs devient inférieure ou égale à une erreur epsilon réel donnée en paramètre.

Solution:

Algorithme de la fonction machine :

Fonction machine (epsilon : réel) : réel

Début

$$n
eq 1$$
 $p
eq 1$
 $vp1
eq 1/5$
 $vp2
eq 1/239$
 $va
eq 16
eq (1/5)
eq 4
eq (1/239)$

Répéter

 $n
eq n
eq 2$
 $p
eq p
eq -1$
 $vp1
eq vp1
eq p / (puissance (5, n)
eq n)$
 $vp2
eq vp2
eq p / (puissance (239, n)
eq n)$
 $vp
eq va$
 $va
eq 16
eq vp1
eq 4
eq vp2

Jusqu'à (abs (va - vp)
eq epsilon)$

Fin

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
n,p	Entier
va,vp,vp1,vp2	Réel
puissance	Fonction

EXERCICE N°3

Retourner va

En mathématiques, la constante de Brun (B) des nombres premiers jumeaux est la somme de la série des inverses des nombres premiers distants de 2.

$$B = (\frac{1}{3} + \frac{1}{5}) + (\frac{1}{5} + \frac{1}{7}) + (\frac{1}{11} + \frac{1}{13}) + (\frac{1}{17} + \frac{1}{19}) + (\frac{1}{29} + \frac{1}{31}) + \cdots$$

Écrire l'algorithme d'une fonction Brun (epsilon) permettant de calculer, à epsilon prés, une valeur approchée de la constante de Brun définie précédemment (avec epsilon un réel passé en paramètres et dont la valeur est déjà saisie dans le module appelant).

Solution:

Algorithme de la fonction brun : Fonction brun (epsilon : réel) : réel Début k ← 1 ba ← 0 Répéter $k \leftarrow k + 2$ $k \leftarrow k + 2$ Si (premier (k) et premier (k + 2)) alors bp ← ba ba \leftarrow bp + 1 / k + 1 / (k + 2)

Fin si

Jusqu'à (abs (ba - bp) ≤ epsilon)

Retourner ba

Fin

Tableau de déclaration des objets locaux (TDOL)

talebkoutkout@gma

Objet	Type/Nature
k	Entier
ba, bp	Réel

EXERCICE N°4

La suite de fibonacci est définie par :

$$\begin{array}{l} U_0 = 0 \ et \ U_1 = 1 \\ U_n = U_{n-1} + U_{n-2} \ \ \forall \ n \geq 2 \end{array}$$

Le nombre d'or qui est la solution de l'équation $x^2 - x - 1 = 0$ ($\frac{1+\sqrt{5}}{2}$) peut être calculer

à l'aide du rapport $\frac{U_n}{U_{n-1}}$ de la suite de Fibonacci définie si-dessus.

Écrire l'algorithme d'un module qui permet de calculer la valeur approchée du nombre d'or à 10-10 près.

Solution:

Algorithme de la fonction nb_or :

Fonction nb_or (epsilon : réel) : réel

Début

 $n \leftarrow 2$

va ← 1

Répéter

Jusqu'à (abs (va - vp) ≤ epsilon)

Retourner va

Fin

4SI

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
n	Entier
va, vp	Réel
fibonacci	Fonction

EXERCICE N°5

La direction d'une association sportive veut construire un stade formé par une piste d'athlétisme et un terrain de football, tout en cherchant à maximiser la surface de ce dernier.

Le terrain de football est un rectangle de longueur L, de largeur D et de surface S.

La piste d'athlétisme est de longueur P et former par les deux arrêts parallèles du terrain de football (de longueur P *L) et les deux demi-cercles de diamètre P (de longueur P *D), comme le montre le schéma ci-dessous :

Puisque $S = L * D \text{ et } P = 2 * L + \pi * D$

Alors $S = L * (P - 2 * L) / \pi$

Solution:

Algorithme de la fonction loptimal :

Fonction loptimal (p, epsilon : réel) : réel

Début

 $lopt \leftarrow 0$ $sa \leftarrow 0$

Répéter

 $lopt \leftarrow lopt + epsilon$

sp ← sa

sa ← lopt * (p - 2 * lopt) / pi

Jusqu'à (sa ≤ sp) ou (lopt > p / 2)

Retourner lopt - epsilon

Fin

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
pi	Constante = 3.14
lopt, sa, sp	Réel

12

Dans le but de creuser une rivière de langueur **Larg** mètres, d'une rive **A** à une rive **B**, de longueur **Long** mètres, une société de travaux publiques veut déterminer le volume approximatif du sable à enlever.

La forme de la partie enlevée est obtenue par la représentation graphique de la fonction f définie par :

f(x) = -3 * sin(x), comme illustrée ci-dessous :

Écrire l'algorithme d'un module qui permet de calculer une valeur approchée du volume du sable à enlever entre les deux rives A et B pour creuser la rivière, pour un nombre de subdivision N.

Solution:

Algorithme de la fonction calcul:

Fonction calcul (larg, long : réel, n : entier) : réel

Début

s ← 0 h ← larg / n

x ← a

Pour i de 0 à n - 1 faire

 $s \leftarrow s + abs (-3 * sin (x))$

 $x \leftarrow x + h$

Fin pour

Retourner long * h * s

Fin

Tableau de déclaration des objets locaux (TDOL)

Mr Taleb Kout

Objet	Type/Nature
i	Entier
* s,h,x	Réel

Soit f la fonction définie sur [0, 2] par : $f(x) = e^{-x^2}$

On appelle (C) la courbe représentative de f dans un repère orthogonal (o, ī, ĵ) La courbe (C) est sur la figure suivante :

Soit **A** l'intégrale définie par : $\mathbf{A} = \int_0^2 \mathbf{e}^{-\mathbf{x}^2} d\mathbf{x}$

Sachant que l'aire (A) délimité par la courbe représentative (C) de f sur l'intervalle

[0, 2] tend vers une valeur approchée de $\frac{\sqrt{\pi}}{2}$ (c'est-à-dire $\pi \approx 4 * A^2$)

Écrire l'algorithme d'une fonction qui permet de retourner une valeur approchée de π.

Solution:

Algorithme de la fonction calcul:

Fonction calcul (a, b : réel, n : entier) : réel

Début

Pour i de 0 à n - 1 faire

$$s \leftarrow s + exp(-x*x)$$

$$x \leftarrow x + h$$

Fin pour

Retourner 4 * h * s * h * s

Fin

Tableau de déclaration des objets locaux (TDOL)

Mr Taleb Kout

Objet	Type/Nature
i	Entier
* s,h,x	Réel

Lycée Dhouiher Zarzis

La figure ci-contre représente la courbe de la fonction f définie par $f(x) = \frac{1}{x}$ sur l'intervalle $]0, +\infty[$.

les deux droites d'équations x = 1 et x = a, l'axe des abscisses et la courbe f(x), varie selon la valeur de l'abscisse a du point M (la surface hachurée dans la figure 1).

Cette surface sera égale à 1 lorsque la valeur de a est égale au nombre d'Euler e.

1) Ci-dessous une partie d'un algorithme de la fonction surface, qui permet de calculer la surface hachurée en fonction de l'abscisse a du point M et en utilisant la méthode des rectangles à gauche.

Réécrire l'algorithme de la fonction **surface** en complétant les vides par les trois instructions convenables à partir de la liste d'instructions suivante :

$$x \leftarrow 1$$
 $s \leftarrow s + 1/x$ Retourner $s * h$ $s \leftarrow s + \frac{1}{2} * (1/x + 1/(x + h))$ Retourner $s * n * h$

- 2) En faisant appel à la fonction surface, écrire l'algorithme d'une fonction calcul (a,
- n) permettant de déterminer une valeur approchée du nombre d'Euler e, qui correspond à une valeur de la surface proche de 1 avec une précision de 10⁻⁴.
- N.B: On pourra calculer le nombre d'Euler e en variant l'abscisse a par pas de 10-4.

Solution:

1)

```
Algorithme de la fonction surface :
```

Fonction calcul (a : réel, n : entier) : réel

Début

 $s \leftarrow 0$

 $x \leftarrow 1$

 $h \leftarrow (a-1)/n$

Pour i de 0 à n - 1 faire

 $s \leftarrow s + 1 / x$

 $x \leftarrow x + h$

Fin pour

Retourner h * s

Fin

2)

Algorithme de la fonction calcul:

Fonction calcul (n : entier) : réel

Début

a ← 1

Répéter

s ← surface (a, n)

a ← a + 0.0001

Jusqu'à (abs (1 - s) ≤ 0.0001)

Retourner a - 0.0001

Fin

Tableau de déclaration des objets locaux (TDOL)

Mr Tairb Kout

Objet	Type/Nature
a,s	Réel
surface	Fonction

Lycée Dhouiher Zarzis

EXERCICE N°9

Soient les deux fonctions :

- $f(x) = x \text{ avec } x \in IR, g(x) = \cos(x) \text{ avec } x \in IR$
- 1) Écrire l'algorithme d'une fonction calcul (epsilon) permettant de calculer une valeur approchée, à epsilon près, de p tel que cos (p) = p
- 2) Soit le graphique suivant représentant les courbes de deux fonctions f et g et de la

Écrire l'algorithme d'une fonction surface (epsilon) qui permet de calculer une valeur approchée, à epsilon près, de l'aire délimitée par les deux courbes des fonctions f et g, l'axe des ordonnés et la droite x = p (l'aire hachurée dans la figure 1).

Solution:

1)

Algorithme de la fonction calcul:

Fonction calcul (epsilon : réel) : réel

Début

va ← 1

Répéter

vp ← va

va ← cos (vp)

Jusqu'à (abs (va - vp) ≤ epsilon)

Retourner va

Fin

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
va , vp	Réel

```
Algorithme de la fonction surface: OUFROUFC GM3
Fonction surface (epsilon : réel) : réel
Début
     n ← 1
     p ← calcul (epsilon)
     sa \leftarrow calcul\_surface(0, p, n)
     Répéter
        n \leftarrow n + 1
        sp ← sa
        sa ← calcul_surface (0, p, n)
     Jusqu'à (abs (sa - sp) ≤ epsilon)
```

Fin

Retourner sa

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
n	Entier
sa, sp, p	Réel
calcul_surface	Fonction

Algorithme de la fonction calcul_surface :

Fonction calcul_surface (a, p : réel, n : entier) : réel

Début

 $s \leftarrow 0$

x ← a

 $h \leftarrow (p - a) / n$

Pour i de 0 à n - 1 faire

 $x \leftarrow x + h$

Fin pour

Retourner h * s

Fin

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
i	Entier
h,x,s	Réel

EXERCICE N°10

Une manière de calculer l'aire s d'une ellipse définie par son grand axe m et son petit axe n est de calculer par exemple l'aire de la portion d'ellipse dans le quart supérieure droit du plan.

Sachant que l'équation de la portion d'ellipse correspondante est :

$$f(x) = n \sqrt{1 - \frac{x^2}{m^2}}$$

1) Écrire l'algorithme d'un module qui permet de calculer une valeur approchée de cette surface en utilisant la méthode de point milieu avec p sous intervalle.

2) Sachant que l'aire d'une ellipse $s = m * n * \pi$, écrire l'algorithme d'un module qui permet de déterminer une valeur approchée de π à $\epsilon = 10^{-6}$ près dès que $|s1 - s2| < \epsilon$, avec s1 l'aire de l'ellipse calculée avec p sous intervalle et s2 l'aire de l'ellipse calculée avec p + 1 sous intervalle.

ail.c

Solution:

1)

Algorithme de la fonction surface_quart :

Lycée Dhouiher Zarzis

Fonction surface_quart (m, n : réel, p : entier) : réel

Début

```
s \leftarrow 0

h \leftarrow m/p

x \leftarrow h/2
```

Pour i de 0 à p - 1 faire

$$s \leftarrow s + n * racine_carrée (1 - (x * x / (m * m)))$$

 $x \leftarrow x + h$

Fin pour

Retourner h * s

Fin

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
4alabban	Entier
h,x,s	Réel

2)

Algorithme de la fonction surface :

Fonction surface (m, n, epsilon : réel, p : entier) : réel

Début

$$sa \leftarrow 4 * surface_quart (m, n, p)$$

Répéter

 $p \leftarrow p + 1$
 $sp \leftarrow sa$
 $sa \leftarrow 4 * surface_quart (m, n, p)$

Jusqu'à (abs (sa - sp) < epsilon)

Retourner sa / (m * n)

Fin

On considère un segment [AB] de longueur 5 sur lequel on place un point mobile M.

Sur la droite perpendiculaire en B à la droite (AB), on place un point N tel que BN =

2AM et deux autres points O et P de telle sorte que MNOP soit un carré.

Aire du carré MNOP :

$$= MN * MN = (5 - x)^2 + 4x^2$$

$$= x^2 - 10x + 25 + 4x^2$$

$$=5x^2 - 10x + 25$$

Écrire l'algorithme de la fonction aire_min (pas) qui retourne la valeur approchée de x tel que l'aire du carré MNOP soit minimale.

Mr Tairb Kout

Solution:

Algorithme de la fonction aire_min :

Fonction aire_min (pas : réel) : réel

Début

$$x \leftarrow 0$$

aa ← 25

Répéter

$$x \leftarrow x + pas$$

ap ← aa

Jusqu'à (aa \ge ap) ou (x > 5)

Tableau de déclaration des objets locaux (TDOL)

Objet	Type/Nature
x,aa,ap	Réel

Retourner x - pas - mail + alebkoutkout@gma

Fin