This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1-67. (Canceled).
- 68. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a heating mode and a cooling mode</u>, the method comprising:

providing an interior air heat exchanger;

providing an exterior, subterranean heat exchanger,

providing charging the system with a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi so that the refrigerant has a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.

- (Previously Presented) The method of claim 68, further comprising providing an R-410A refrigerant.
- 70. (Currently Amended) The method of claim 68, further comprising providing a polyolester oil for use in conjunction with a in the direct expansion system comprising providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi.
- 71. (Currently Amended) The method of claim 68, further comprising providing a single piston metering device in the heating mode, with the following a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches
*0 to 50 feet (denth of borehole below compressor unit)

1.50.041
20.049
2.5
3

3.50.063
40.065
4.5
50.071
*51 to 175 feet (depth of borehole below compressor unit)
1.50.039
2
2.5
30.056
3.5
4
4.5
50.067
*176 to 300 feet (depth of borehole below compressor unit)
1.50.037
20.044
2.5
30.053
3.5
40.059
4.5
50.064

72. (Currently Amended) The method of claim 68, further comprising providing, in the cooling mode, a self-adjusting thermostatic expansion valve which is located proximate to the interior air handler heat exchanger and is sized at 140%, plus or minus 10% of 100%, of the a maximum compressor tonnage design capacity in the cooling mode;

providing a single piston metering device situated proximate to the interior air handler heat exchanger in the cooling mode, with the following a pin restrictor (Aeroquip type) sizing as

follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Cooling Tonnage Design - Pin Restrictor Size in Inches

*0 to 50 feet (height of interior air handler above the compressor unit)

rection and manuales according
0.058
0.070
0.077
0.085
0.093
0.099
0.100
0.112

73. (Currently Amended) The method of claim 68, further comprising providing a in which charging of the refrigerant system further includes obtaining in the cooling mode until the a peak operational efficiency in the cooling mode with a is reached and the superheat is within the of approximately 10 to 25 degrees F, degree F range, the head pressure is within the 305 to 405 PSI range, the liquid a head pressure is within the in the heating mode of approximately 195 to 275 PSI range, which is similar to the head pressure range in the heating mode, the a suction pressure is within the in the cooling mode of approximately 80 to 160 PSI range, and the a suction/vapor temperature is within the of approximately 37 degree to 55 degree degrees F. temperature range.

74-78. (Canceled).

79. (Currently Amended) A direct expansion geothermal heat exchange system <u>having a</u> heating mode and a cooling mode, the system comprising;

an interior air heat exchanger;

an exterior, subterranean heat exchanger; and

- a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi disposed in the system and sufficiently charged to have a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi.
- (Currently Amended) The system of claim 79, further comprising in which the refrigerant comprises an R-410A refrigerant.
- 81. (Currently Amended) The system of claim 79, further comprising a polyolester oil for use in conjunction with a in the direct expansion system comprising providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi
- 82. (Currently Amended) The system of claim 79, further comprising a single piston metering device in the heating mode, with the following a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

 Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches

 *0 to 50 feet (depth of borehole below compressor unit)

1.5	0.041
2	0.049
2.5	0.055
3	0.059
3.5	0.063
4	0.065
4.5	0.068
5	0.071

*51 to 175 feet (depth of borehol	e below compressor unit)
1.5	0.039
2	0.047
2.5	0.052
3	0.056
3.5	0.060
4	0.062
4.5	0.065
5	0.067
*176 to 300 feet (depth of boreho	ole below compressor unit)
1.5	0.037
2	0.044
2.5	0.050
3	0.053
3.5	0.057
4	0.059
4.5	

83. (Currently Amended) The system of claim 79, further comprising, in the cooling mode, a self-adjusting thermostatic expansion valve which is located proximate to the interior air handler heat exchanger and is sized at 140%, plus or minus 10% of 100%, of the a maximum compressor tonnage design capacity in the cooling mode;

providing a single piston metering device situated proximate to the interior air handler heat exchanger in the cooling mode, with the following a pin restrictor (Aeroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Cooling Tonnage Design - Pin Restrictor Size in Inches

*0 to 50 feet (height of interior air handler above the compressor unit)

2	 	 	 	 	 	 	 	 	 0.0	70
2.5	 	 	 ٠.	 	 	 	 	 	 0.0	77
3	 	 	 	 	 	 ٠.	 	 	 0.0	85
3.5	 	 	 	 	 	 	 	 	 0.0	93
4	 	 	 	 	 	 	 	 	 0.0	99
4.5	 	 	 	 	 	 	 	 	 0.1	00
5	 	 	 	 	 	 	 	 	 0.1	12

84. (Currently Amended) The system of claim 68 79, further comprising charging the refrigerant system with the refrigerant to obtain in the cooling mode until the a peak operational efficiency in the cooling mode with a is reached and the superheat is within the of approximately 10 to 25 degrees F, degree F range, the head pressure is within the 305 to 405 PSI range, the liquid a head pressure is within the in the heating mode of approximately 195 to 275 PSI range, which is similar to the head pressure range in the heating mode, the a suction pressure is within the in the cooling mode of approximately 80 to 160 PSI range, and the a suction/vapor temperature is within the of approximately 37 degree to 55 degree degrees F, temperature range.

85. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the method comprising:

providing an R-410A refrigerant; and

providing a single piston metering device in the heating mode, with the following a pin restrictor (Acroquip type) sizing as follows, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches
*0 to 50 feet (depth of borehole below compressor unit)

1.5	 0.041
2	 0.049
2.5	 0.055
3	 0.059
3.5	 0.063
4	 0.065
4.5	 0.068
5	 0.071

*51 to	o 175	feet	(depth o	of	borehole	below	compressor	unit)
--------	-------	------	----------	----	----------	-------	------------	-------

1.50.039
2
2.5
30.056
3.50.060
40.062
4.5
50.067

*176 to 300	feet (depth o	f borehole below	compressor unit)
-------------	---------------	------------------	-----------------	---

1.5	 	 0.03
2	 	 0.044

2.5	0.050
3	0.053
3.5	0.057
4	0.059
4.5	0.061
5	0.064

86. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the method comprising: providing an R-410A refrigerant; and

providing a charging of the refrigerant system with the refrigerant to obtain in the cooling mode until the a peak operational efficiency in the cooling mode with a is reached and the superheat is within the of approximately 10 to 25 degrees F, degree F range, the head pressure is within the 305 to 405 PSI range, the liquid a head pressure is within the in the heating mode of approximately 195 to 275 PSI range, which is similar to the head pressure range in the heating mode, the a suction pressure is within the in the cooling mode of approximately 80 to 160 PSI range, and the a suction/vapor temperature is within the of approximately 37 degree to 55 degree degrees F, temperature range.

87. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the method comprising:

providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi; and

providing a single piston metering device in the heating mode, with the following a pin restrictor (Aeroquip type) sizing, based on central hole bore size in inches, utilized, plus or minus a maximum of two (2) one thousandths of an inch (0.001) central hole bore size, within the following depth ranges:

Maximum Heating Tonnage Design.......Pin Restrictor Central Bore Hole Size in Inches
*0 to 50 feet (depth of borehole below compressor unit)

1.5	0.041
2	0.049
2.5	0.055
3	0.059
3.5	0.063
4	0.065
4.5	0.068
5	0.071

*51	to '	175	feet	(depth	of bore	ehole	below	comp	ressor	unit)

	(шер от останото оста	
1.5		0.039
2		0.047
2.5		0.052
3		0.056
3.5		0.060
4		0.062
4.5		0.065
5		0.067

^{*176} to 300 feet (depth of borehole below compressor unit)

1.5......0.037

2	 ٠.	٠.		 			 		 			 						 .().(04	14
2.5.	 			 											٠.	 		().(0.5	50
3	 			 			 					 						 .().(05	53
3.5.	 			 												 		().(0.5	57
4	 		٠.	 			 		 								٠.	 .().(0.5	59
4.5.	 			 												 		().(06	51
5	 			 			 		 									 ٠.).(06	54

88. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the method comprising:

providing a refrigerant with heating/cooling operational working pressures between 80 psi and 405 psi; and

providing a charging of the refrigerant system in the cooling mode until the with the refrigerant to obtain a peak operational efficiency in the cooling mode with a is reached and the superheat is within the of approximately 10 to 25 degrees F, degree F range, the head pressure is within the 305 to 405 PSI range, the liquid a head pressure is within the in the heating mode of approximately 195 to 275 PSI range, which is similar to the head pressure range in the heating mode, the a suction pressure is within the in the cooling mode of approximately 80 to 160 PSI range, and the a suction/vapor temperature is within the of approximately 37 degree to 55 degree degrees F, temperature range.

89. (Currently Amended) A method of designing a direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the method comprising: providing an interior air heat exchanger;

providing an exterior, subterranean heat exchanger, the exterior heat exchanger including heat exchange tubing, at least a portion of the heat exchange tubing having a subterranean depth of approximately 100-300 feet; and

providing charging the system with an R-410A refrigerant until the refrigerant has a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi;

utilizing the R-410A refrigerant in the refrigerant heat exchange tubing of a direct expansion geothermal heat change system wherein the refrigerant heat exchange tubing extends to denths of approximately 100-300 feet below the surface.

90. (Currently Amended) A direct expansion geothermal heat exchange system <u>having a cooling mode and a heating mode</u>, the <u>system</u> comprising:

an interior air heat exchanger;

an exterior, subterranean heat exchanger, the exterior heat exchanger including heat exchange tubing, at least a portion of the heat exchange tubing having a subterranean depth of approximately 100-300 feet; and

an R-410A refrigerant disposed in the system, the R-410A refrigerant having a charge sufficient to obtain a head pressure in the cooling mode of approximately 305-405 psi, and a suction pressure in the heating mode of approximately 80-160 psi; and

refrigerant heat-exchange-tubing-positioned-approximately-100-300 feet below-the surface.