Evaluate testing data (binary-class) - Lasso

EVE W.

2020-07-20

Contents

U. Load Data				
1. Scores				2
1.1 Scores per Class				2
1.2 Average score				3
2. Important Features				4
Note: The two differences between Lasso and Tree-based methods are:				
 Lasso has its own inherent feature selection process. Lasso's vimp will be based on how many times the feature exist in all runs. Regression coefficients be presented for binary outcomes 	effic	ien	ts ma	у
## user input				
<pre>project_home <- "~/EVE/examples"</pre>				
<pre>project_name <- "lasso_binary_outCV_test"</pre>				

0. Load Data

```
## Error : $ operator is invalid for atomic vectors
## 199 of samples were used
## 100 of full features
## 4 runs, each run contains 3 CVs.
## Labels:
##
## 0 1
## 50 149
run with lasso.r.
```

1. Scores

1.1 Scores per Class

Prevalidation scores during RFE

Confusion Matrix

confusion matrix at feature size = 100
sum across 4 seeds

Reference
Prediction 0 1
0 198 5
1 2 591

1.2 Average score

Prevalidation scores during RFE

2. Important Features

distribution across 4 seed x 3 CV

of times a feature is selected by lasso (alpha= 1)

```
## [1] "there are 38 unique features used from the 100 feature set" ## summary of numer of features used in 4 seeds and 3 CVs
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.00 14.75 16.50 16.08 17.25 18.00
```

[1] "there are 37 NA values in vimp after summation within seeds; they are imputed with the smallest

Top feature, by the user provided list

[1] "there are 37 NA values in vimp after summation within seeds; they are imputed with the smallest
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution across all 38 features

Average (across seeds) of worsen statistics from NextDoor analysis (summed across all CVs per seed)

Top feature, by the worsen statistic from NextDoor analysis

[1] "there are 37 NA values in vimp after summation within seeds; they are imputed with the smallest
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution across all 38 features

Top feature, by usage frequency

Heatmap of top 20 important features

