EECS 495--Introduction to Database Systems Homework Assignment 2 Due: Monday, November 28, 2016

- 1 Prove, or disprove the following inference rules for a relation R with X, Y, Z, W subsets of R.
 - a. $X \to Y$ and $Y \to Z$ imply $X \to YZ$
 - b. $X \to Y$ and $Z \to W$ imply $XZ \to YW$
 - c. $XY \rightarrow Z$ and $Z \rightarrow X$ imply $Z \rightarrow Y$

<u>Note:</u> To prove an inference rule you need to use Armstrong's rules. To disprove a rule it is sufficient to exhibit a relation (extension) which does violate it.

(15 pts)

2. Given the relational schema R(A,B,C,D,E,F,G,H) with F = (ABH \rightarrow C; A \rightarrow DE; BGH \rightarrow F; F \rightarrow ADH; BH \rightarrow GE).

Use the decomposition algorithm to obtain a lossless BCNF schema. Examine the functional dependencies in F for violation of BCF in the order in which they appear above (i.e., consider first ABH \rightarrow C)

(20pts)

3. Consider a database schema R=(A,B) that has only two attributes. Is an instance r of the schema R always in BCNF? If your answer is no explain briefly your reasoning., Otherwise, give a proof that the claim is true.

(15 pts)

4. Consider a relation R with the following set of dependencies $F := \{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB\}$. Obtain at least two canonical covers of F. Use the algorithm given in class.

(15 pts)

5. Consider the relation schema R = (A,B,C,D,E) with the following set of functional dependencies:

$$F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}.$$

- a. Find the candidate keys of R.
- b. Show that the following decomposition of R is a lossless-join decomposition:

$$R_1=(A, B,C)$$
 and $R_2=(A,D,E)$.

(20 pts)

6a. Consider the following interleaved schedule of three transactions (T₁, T₂, T₃)

S;
$$R_2(A) R_1(B) W_2(A) R_2(B) R_3 (A) W_1(B) W_3(A) W_2(B)$$

Construct the precedence graph for this schedule. Is this schedule conflict serializable?

6b. Consider a database with objects X and Y and assume that there are two transactions T_1 and T_2 . T_1 first reads X and Y and then writes X and Y. T_2 reads and writes X and then reads and writes Y. Give an example schedule that is not serializable.

(15 pts)