Geometría diferencial, 2024-25.

Hoja 1

Nombre: Gonzalo Ortega Carpintero

Ejercicio 1

Sean $A \subset \mathbb{R}^n$ abierto y $f:A \to \mathbb{R}^n$ continua. El grafo de f se define como

$$\Gamma_f := \{ (x, f(x)) : x \in A \} \subset \mathbb{R}^{n+1}.$$

La función $\psi: \Gamma_f \to \mathbb{R}^n$, definida como $\psi(x, f(x)) = x$, es una función continua, puesto que es la función proyección, biyectiva y con inversa continua ya que $\psi^{-1}(x) = (x, f(x))$ es continua puesto que f es continua. Tomando entonces entornos abiertos $U_i \in \Gamma_f$ con $\cup U_i = \Gamma_f$ podemos construir el atlas $\mathcal{A} = \{(U_i, \psi)\}$ para ver que Γ_f admite una estructura diferencial.

Ejercicio 2

Sean los conjuntos $U_i = \{x_i \neq 0\} \in \mathbb{R}^n \text{ y } \bar{U}_i = \pi(U_i) \text{ con } \pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n \text{ la aplicación cociente, y las aplicaciones } \phi_i :$

- 1.
- 2.
- 3.
- 4.
- **5**.