

Probability Review

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@cce.rochester.edu

http://www.ece.rochester.edu/~gmateosb/

September 20, 2017

Markov and Chebyshev's inequalities

Markov and Chebyshev's inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Markov's inequality

- ▶ RV X with $\mathbb{E}[|X|] < \infty$, constant a > 0
- ▶ Markov's inequality states $\Rightarrow P(|X| \ge a) \le \frac{\mathbb{E}(|X|)}{a}$

Proof.

▶ $\mathbb{I}\{|X| \ge a\} = 1$ when $|X| \ge a$ and 0 else. Then (figure to the right)

$$a\mathbb{I}\left\{|X|\geq a\right\}\leq |X|$$

▶ Use linearity of expected value

$$a\mathbb{E}(\mathbb{I}\{|X|\geq a\})\leq \mathbb{E}(|X|)$$

▶ Indicator function's expectation = Probability of indicated event

$$aP(|X| \ge a) \le \mathbb{E}(|X|)$$

Chebyshev's inequality

- ▶ RV X with $\mathbb{E}(X) = \mu$ and $\mathbb{E}\left[(X \mu)^2\right] = \sigma^2$, constant k > 0
- ► Chebyshev's inequality states $\Rightarrow P(|X \mu| \ge k) \le \frac{\sigma^2}{k^2}$

Proof.

▶ Markov's inequality for the RV $Z = (X - \mu)^2$ and constant $a = k^2$

$$P((X - \mu)^2 \ge k^2) = P(|Z| \ge k^2) \le \frac{\mathbb{E}[|Z|]}{k^2} = \frac{\mathbb{E}[(X - \mu)^2]}{k^2}$$

▶ Notice that $(X - \mu)^2 \ge k^2$ if and only if $|X - \mu| \ge k$ thus

$$P(|X - \mu| \ge k) \le \frac{\mathbb{E}\left[(X - \mu)^2\right]}{k^2}$$

► Chebyshev's inequality follows from definition of variance

Comments and observations

- ▶ If absolute expected value is finite, i.e., $\mathbb{E}[|X|] < \infty$
 - \Rightarrow Complementary (c)cdf decreases at least like x^{-1} (Markov's)
- ▶ If mean $\mathbb{E}(X)$ and variance $\mathbb{E}\left[(X-\mu)^2\right]$ are finite
 - \Rightarrow Ccdf decreases at least like x^{-2} (Chebyshev's)
- ▶ Most cdfs decrease exponentially (e.g. e^{-x^2} for normal)
 - \Rightarrow Power law bounds $\propto x^{-\alpha}$ are loose but still useful
- ▶ Markov's inequality often derived for nonnegative RV $X \ge 0$
 - \Rightarrow Can drop the absolute value to obtain $P(X \ge a) \le \frac{\mathbb{E}(X)}{a}$
 - \Rightarrow General bound $P(X \ge a) \le \frac{\mathbb{E}(X^r)}{a^r}$ holds for r > 0

Convergence of random variables

Markov and Chebyshev's inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Limits

- ▶ Sequence of RVs $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
 - \Rightarrow Distinguish between random process $X_{\mathbb{N}}$ and realizations $x_{\mathbb{N}}$
- Q1) Say something about X_n for n large? \Rightarrow Not clear, X_n is a RV
- Q2) Say something about x_n for n large? \Rightarrow Certainly, look at $\lim_{n\to\infty} x_n$
- Q3) Say something about $P(X_n \in \mathcal{X})$ for n large? \Rightarrow Yes, $\lim_{n \to \infty} P(X_n \in \mathcal{X})$
 - Translate what we now about regular limits to definitions for RVs
 - ▶ Can start from convergence of sequences: $\lim_{n\to\infty} x_n$
 - ⇒ Sure and almost sure convergence
 - ▶ Or from convergence of probabilities: $\lim_{n\to\infty} P(X_n)$
 - ⇒ Convergence in probability, in mean square and distribution

Convergence of sequences and sure convergence

- ▶ Denote sequence of numbers $x_{\mathbb{N}} = x_1, x_2, \dots, x_n, \dots$
- ▶ **Def:** Sequence $x_{\mathbb{N}}$ converges to the value x if given any $\epsilon > 0$
 - \Rightarrow There exists n_0 such that for all $n > n_0$, $|x_n x| < \epsilon$
- Sequence x_n comes arbitrarily close to its limit $\Rightarrow |x_n x| < \epsilon$
 - \Rightarrow And stays close to its limit for all $n > n_0$
- ▶ Random process (sequence of RVs) $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
 - \Rightarrow Realizations of $X_{\mathbb{N}}$ are sequences $x_{\mathbb{N}}$
- ▶ **Def:** We say $X_{\mathbb{N}}$ converges surely to RV X if
 - $\Rightarrow \lim_{n \to \infty} x_n = x$ for all realizations $x_{\mathbb{N}}$ of $X_{\mathbb{N}}$
- ▶ Said differently, $\lim_{n\to\infty} X_n(s) = X(s)$ for all $s \in S$
- ▶ Not really adequate. Even a (practically unimportant) outcome that happens with vanishingly small probability prevents sure convergence

Almost sure convergence

- ▶ RV X and random process $X_{\mathbb{N}} = X_1, X_2, \dots, X_n, \dots$
- ▶ **Def**: We say $X_{\mathbb{N}}$ converges almost surely to RV X if

$$\mathsf{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$

- \Rightarrow Almost all sequences converge, except for a set of measure 0
- ▶ Almost sure convergence denoted as $\Rightarrow \lim_{n\to\infty} X_n = X$ a.s.
 - \Rightarrow Limit X is a random variable

Example

- $ightharpoonup X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- $ightharpoonup Z_n$ sequence of Bernoulli RVs, parameter p
- ▶ Define $\Rightarrow X_n = X_0 \frac{Z_n}{n}$
- $ightharpoonup \frac{Z_n}{n} o 0$ so $\lim_{n \to \infty} X_n = X_0$ a.s. (also surely)

Almost sure convergence example

- ▶ Consider S = [0,1] and let $P(\cdot)$ be the uniform probability distribution $\Rightarrow P([a,b]) = b a$ for 0 < a < b < 1
- ▶ Define the RVs $X_n(s) = s + s^n$ and X(s) = s
- ▶ For all $s \in [0,1)$ $\Rightarrow s^n \to 0$ as $n \to \infty$, hence $X_n(s) \to s = X(s)$
- For $s = 1 \Rightarrow X_n(1) = 2$ for all n, while X(1) = 1
- ▶ Convergence only occurs on the set [0,1), and P([0,1)) = 1
 - \Rightarrow We say $\lim_{n\to\infty} X_n = X$ a.s.
 - \Rightarrow Once more, note the limit X is a random variable

Convergence in probability

▶ **Def**: We say $X_{\mathbb{N}}$ converges in probability to RV X if for any $\epsilon > 0$

$$\lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$$

- \Rightarrow Prob. of distance $|X_n X|$ becoming smaller than ϵ tends to 1
- Statement is about probabilities, not about realizations (sequences)
 - \Rightarrow Probability converges, realizations $x_{\mathbb{N}}$ may or may not converge
 - ⇒ Limit and prob. interchanged with respect to a.s. convergence

Theorem

Almost sure (a.s.) convergence implies convergence in probability

Proof.

▶ If $\lim_{n\to\infty} X_n = X$ then for any $\epsilon > 0$ there is n_0 such that

$$|X_n - X| < \epsilon$$
 for all $n \ge n_0$

▶ True for all almost all sequences so $P(|X_n - X| < \epsilon) \rightarrow 1$

Convergence in probability example

- ▶ $X_0 \sim \mathcal{N}(0,1)$ (normal, mean 0, variance 1)
- $ightharpoonup Z_n$ sequence of Bernoulli RVs, parameter 1/n
- ▶ Define $\Rightarrow X_n = X_0 Z_n$
- \triangleright X_n converges in probability to X_0 because

$$P(|X_n - X_0| < \epsilon) = P(|Z_n| < \epsilon)$$

$$= 1 - P(Z_n = 1)$$

$$= 1 - \frac{1}{n} \to 1$$

▶ Plot of path x_n up to $n = 10^2$, $n = 10^3$, $n = 10^4$

 \Rightarrow $Z_n = 1$ becomes ever rarer but still happens

Difference between a.s. and in probability

- ► Almost sure convergence implies that almost all sequences converge
- ► Convergence in probability does not imply convergence of sequences
- ▶ Latter example: $X_n = X_0 Z_n$, Z_n is Bernoulli with parameter 1/n
 - ⇒ Showed it converges in probability

$$P(|X_n - X_0| < \epsilon) = 1 - \frac{1}{n} \to 1$$

- \Rightarrow But for almost all sequences, $\lim_{n\to\infty} x_n$ does not exist
- ► Almost sure convergence ⇒ disturbances stop happening
- ► Convergence in prob. ⇒ disturbances happen with vanishing freq.
- ▶ Difference not irrelevant
 - ▶ Interpret Z_n as rate of change in savings
 - ► With a.s. convergence risk is eliminated
 - ▶ With convergence in prob. risk decreases but does not disappear

Mean-square convergence

▶ **Def:** We say $X_{\mathbb{N}}$ converges in mean square to RV X if

$$\lim_{n\to\infty}\mathbb{E}\left[|X_n-X|^2\right]=0$$

⇒ Sometimes (very) easy to check

Theorem

Convergence in mean square implies convergence in probability

Proof.

► From Markov's inequality

$$P(|X_n - X| \ge \epsilon) = P(|X_n - X|^2 \ge \epsilon^2) \le \frac{\mathbb{E}[|X_n - X|^2]}{\epsilon^2}$$

- ▶ If $X_n \to X$ in mean-square sense, $\mathbb{E}\left[|X_n X|^2\right]/\epsilon^2 \to 0$ for all ϵ
- ▶ Almost sure and mean square ⇒ neither one implies the other

Convergence in distribution

- ▶ Consider a random process $X_{\mathbb{N}}$. Cdf of X_n is $F_n(x)$
- ▶ **Def:** We say $X_{\mathbb{N}}$ converges in distribution to RV X with cdf $F_X(x)$ if
 - $\Rightarrow \lim_{n\to\infty} F_n(x) = F_X(x)$ for all x at which $F_X(x)$ is continuous
- \blacktriangleright No claim about individual sequences, just the cdf of X_n
 - ⇒ Weakest form of convergence covered
- ▶ Implied by almost sure, in probability, and mean square convergence

Example

- $Y_n \sim \mathcal{N}(0,1)$
- \triangleright Z_n Bernoulli with parameter p
- ▶ Define $\Rightarrow X_n = \frac{Y_n}{10Z_n/n}$
- $ightharpoonup rac{Z_n}{n} o 0$ so $\lim_{n o \infty} F_n(x)$ "=" $\mathcal{N}(0,1)$

Convergence in distribution (continued)

- \blacktriangleright Individual sequences x_n do not converge in any sense
 - ⇒ It is the distribution that converges

- ▶ As the effect of Z_n/n vanishes pdf of X_n converges to pdf of Y_n
 - \Rightarrow Standard normal $\mathcal{N}(0,1)$

Implications

- ▶ Sure \Rightarrow almost sure \Rightarrow in probability \Rightarrow in distribution
- ▶ Mean square ⇒ in probability ⇒ in distribution
- ▶ In probability ⇒ in distribution

Limit theorems

Markov and Chebyshev's inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Sum of independent identically distributed RVs

- ▶ Independent identically distributed (i.i.d.) RVs $X_1, X_2, ..., X_n, ...$
- ▶ Mean $\mathbb{E}[X_n] = \mu$ and variance $\mathbb{E}[(X_n \mu)^2] = \sigma^2$ for all n
- ▶ Q: What happens with sum $S_N := \sum_{n=1}^N X_n$ as N grows?
- ▶ Expected value of sum is $\mathbb{E}[S_N] = N\mu$ ⇒ Diverges if $\mu \neq 0$
- ▶ Variance is $\mathbb{E}\left[(S_N N\mu)^2\right] = N\sigma^2$
 - \Rightarrow Diverges if $\sigma \neq 0$ (always true unless X_n is a constant, boring)
- ▶ One interesting normalization $\Rightarrow \bar{X}_N := (1/N) \sum_{n=1}^N X_n$
- ▶ Now $\mathbb{E}\left[\bar{X}_{N}\right] = \mu$ and $\operatorname{var}\left[\bar{X}_{N}\right] = \sigma^{2}/N$
 - ⇒ Law of large numbers (weak and strong)
- ▶ Another interesting normalization $\Rightarrow Z_N := \frac{\sum_{n=1}^N X_n N\mu}{\sigma\sqrt{N}}$
- ▶ Now $\mathbb{E}[Z_N] = 0$ and $var[Z_N] = 1$ for all values of N
 - ⇒ Central limit theorem

Law of large numbers

- ▶ Sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean μ
- ▶ Define sample average $\bar{X}_N := (1/N) \sum_{n=1}^N X_n$

Theorem (Weak law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges in prob. to $\mu = \mathbb{E}[X_n]$

$$\lim_{N \to \infty} \mathsf{P}\left(|\bar{X}_N - \mu| < \epsilon\right) = 1, \quad \textit{ for all } \epsilon > 0$$

Theorem (Strong law of large numbers)

Sample average \bar{X}_N of i.i.d. sequence converges a.s. to $\mu = \mathbb{E}\left[X_n\right]$

$$\mathsf{P}\left(\lim_{N\to\infty}\bar{X}_N=\mu\right)=1$$

Strong law implies weak law. Can forget weak law if so wished

Proof of weak law of large numbers

▶ Weak law of large numbers is very simple to prove

Proof.

▶ Variance of \bar{X}_N vanishes for N large

$$\operatorname{var}\left[\bar{X}_{N}\right] = \frac{1}{N^{2}} \sum_{n=1}^{N} \operatorname{var}\left[X_{n}\right] = \frac{\sigma^{2}}{N} \to 0$$

▶ But, what is the variance of \bar{X}_N ?

$$0 \leftarrow \frac{\sigma^2}{N} = \text{var}\left[\bar{X}_{N}\right] = \mathbb{E}\left[(\bar{X}_{N} - \mu)^2\right]$$

- ▶ Then, \bar{X}_N converges to μ in mean-square sense
 - ⇒ Which implies convergence in probability
- ▶ Strong law is a little more challenging. Will not prove it here

Coming full circle

- ▶ Repeated experiment \Rightarrow Sequence of i.i.d. RVs $X_1, X_2, \dots, X_n, \dots$
 - \Rightarrow Consider an event of interest $X \in E$. Ex: coin comes up 'H'
- ▶ Fraction of times $X \in E$ happens in N experiments is

$$\bar{X}_N = \frac{1}{N} \sum_{n=1}^N \mathbb{I} \left\{ X_n \in E \right\}$$

▶ Since the indicators also i.i.d., the strong law asserts that

$$\lim_{N\to\infty} \bar{X}_N = \mathbb{E}\left[\mathbb{I}\left\{X_1 \in E\right\}\right] = \mathsf{P}\left(X_1 \in E\right) \quad a.s.$$

- ▶ Strong law consistent with our intuitive notion of probability
 - ⇒ Relative frequency of occurrence of an event in many trials
 - ⇒ Justifies simulation-based prob. estimates (e.g. histograms)

Central limit theorem (CLT)

Theorem (Central limit theorem)

Consider a sequence of i.i.d. RVs $X_1, X_2, \ldots, X_n, \ldots$ with mean $\mathbb{E}\left[X_n\right] = \mu$ and variance $\mathbb{E}\left[\left(X_n - \mu\right)^2\right] = \sigma^2$ for all n. Then

$$\lim_{N \to \infty} P\left(\frac{\sum_{n=1}^{N} X_n - N\mu}{\sigma \sqrt{N}} \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

► Former statement implies that for *N* sufficiently large

$$Z_N := rac{\sum_{n=1}^N X_n - N\mu}{\sigma\sqrt{N}} \sim \mathcal{N}(0,1)$$

- $\Rightarrow Z_N$ converges in distribution to a standard normal RV
- \Rightarrow Remarkable universality. Distribution of X_n arbitrary

CLT (continued)

- ► Equivalently can say $\Rightarrow \sum_{n=1}^{N} X_n \sim \mathcal{N}(N\mu, N\sigma^2)$
- ▶ Sum of large number of i.i.d. RVs has a normal distribution
 - ⇒ Cannot take a meaningful limit here
 - \Rightarrow But intuitively, this is what the CLT states

Example

- ▶ Binomial RV X with parameters (n, p)
- ▶ Write as $X = \sum_{i=1}^{n} X_i$ with X_i i.i.d. Bernoulli with parameter p
- ▶ Mean $\mathbb{E}[X_i] = p$ and variance var $[X_i] = p(1-p)$
 - \Rightarrow For sufficiently large $n \Rightarrow X \sim \mathcal{N}(np, np(1-p))$

Conditional probabilities

Markov and Chebyshev's inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Conditional pmf and cdf for discrete RVs

Recall definition of conditional probability for events E and F

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

- ⇒ Change in likelihoods when information is given, renormalization
- ▶ **Def:** Conditional pmf of RV X given Y is (both RVs discrete)

$$p_{X|Y}(x | y) = P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Which we can rewrite as

$$p_{X|Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{XY}(x, y)}{p_Y(y)}$$

- \Rightarrow Pmf for RV X, given parameter y ("Y not random anymore")
- ▶ **Def:** Conditional cdf is (a range of X conditioned on a value of Y)

$$F_{X|Y}(x \mid y) = P(X \le x \mid Y = y) = \sum_{z \le x} p_{X|Y}(z \mid y)$$

Conditional pmf example

- ▶ Consider independent Bernoulli RVs Y and Z, define X = Y + Z
- ▶ Q: Conditional pmf of X given Y? For X = 0, Y = 0

$$p_{X|Y}(X=0 \mid Y=0) = \frac{P(X=0, Y=0)}{P(Y=0)} = \frac{(1-p)^2}{1-p} = 1-p$$

Or, from joint and marginal pmfs (just a matter of definition)

$$p_{X|Y}(X=0 \mid Y=0) = \frac{p_{XY}(0,0)}{p_{Y}(0)} = \frac{(1-p)^{2}}{1-p} = 1-p$$

Can compute the rest analogously

$$p_{X|Y}(0|0) = 1 - p$$
, $p_{X|Y}(1|0) = p$, $p_{X|Y}(2|0) = 0$
 $p_{X|Y}(0|1) = 0$, $p_{X|Y}(1|1) = 1 - p$, $p_{X|Y}(2|1) = p$

Conditioning on sum of Poisson RVs

- ▶ Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2
- ▶ Define X = Y + Z. Q: Conditional pmf of Y given X?

$$p_{Y|X}(Y = y \mid X = x) = \frac{P(Y = y, X = x)}{P(X = x)} = \frac{P(Y = y) P(Z = x - y)}{P(X = x)}$$

▶ Used Y and Z independent. Now recall X is Poisson, $\lambda = \lambda_1 + \lambda_2$

$$p_{Y|X}(Y = y \mid X = x) = \frac{e^{-\lambda_1} \lambda_1^y}{y!} \frac{e^{-\lambda_2} \lambda_2^{x-y}}{(x - y)!} \left[\frac{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^x}{x!} \right]^{-1}$$

$$= \frac{x!}{y!(x - y)!} \frac{\lambda_1^y \lambda_2^{x-y}}{(\lambda_1 + \lambda_2)^x}$$

$$= {x \choose y} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^y \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{x-y}$$

 \Rightarrow Conditioned on X = x, Y is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$

Conditional pdf and cdf for continuous RVs

▶ **Def:** Conditional pdf of RV X given Y is (both RVs continuous)

$$f_{X|Y}(x \mid y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$$

- ▶ For motivation, define intervals $\Delta x = [x, x+dx]$ and $\Delta y = [y, y+dy]$
 - \Rightarrow Approximate conditional probability P $(X \in \Delta x \mid Y \in \Delta y)$ as

$$P(X \in \Delta x \mid Y \in \Delta y) = \frac{P(X \in \Delta x, Y \in \Delta y)}{P(Y \in \Delta y)} \approx \frac{f_{XY}(x, y) dx dy}{f_{Y}(y) dy}$$

From definition of conditional pdf it follows

$$P(X \in \Delta x \mid Y \in \Delta y) \approx f_{X|Y}(x \mid y) dx$$

- ⇒ What we would expect of a density
- ▶ **Def:** Conditional cdf is $\Rightarrow F_{X|Y}(x) = \int_{-\infty}^{x} f_{X|Y}(u \mid y) du$

Communications channel example

- ► Random message (RV) Y, transmit signal y (realization of Y)
- ▶ Received signal is x = y + z (z realization of random noise)
 - ⇒ Model communication system as a relation between RVs

$$X = Y + Z$$

- \Rightarrow Model additive noise as $Z \sim \mathcal{N}(0, \sigma^2)$ independent of Y
- ▶ Q: Conditional pdf of X given Y? Try the definition

$$f_{X|Y}(x | y) = \frac{f_{XY}(x, y)}{f_{Y}(y)} = \frac{?}{f_{Y}(y)}$$

- \Rightarrow Problem is we don't know $f_{XY}(x,y)$. Have to calculate
- ▶ Computing conditional probs. typically easier than computing joints

Communications channel example (continued)

- ▶ If Y = y is given, then "Y not random anymore"
 - ⇒ It is still random in reality, we are thinking of it as given
- ▶ If Y were not random, say Y = y with y given then X = y + Z⇒ Cdf of X given Y = y now easy (use Y and Z independent)

$$P(X \le x | Y = y) = P(y + Z \le x | Y = y) = P(Z \le x - y)$$

▶ But since Z is normal with zero mean and variance σ^2

$$P(X \le x \mid Y = \mathbf{y}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x-\mathbf{y}} e^{-z^2/2\sigma^2} dz$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-(z-\mathbf{y})^2/2\sigma^2} dz$$

 \Rightarrow X given Y = y is normal with mean y and variance σ^2

Digital communications channel

- Conditioning is a common tool to compute probabilities
- ► Message 1 (w.p. p) \Rightarrow Transmit Y = 1
- ▶ Message 2 (w.p. q) \Rightarrow Transmit Y = -1
- ▶ Received signal $\Rightarrow X = Y + Z$

- ▶ Decoding rule $\Rightarrow \hat{Y} = 1$ if $X \ge 0$, $\hat{Y} = -1$ if X < 0
 - ⇒ Errors: to the left of 0 and to the right

• Q: What is the probability of error, $P_e := P(\hat{Y} \neq Y)$?

Output pdf

From communications channel example we know

$$\Rightarrow$$
 If $Y = 1$ then $X \mid Y = 1 \sim \mathcal{N}(1, \sigma^2)$. Conditional pdf is

$$f_{X|Y}(x|1) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-1)^2/2\sigma^2}$$

 \Rightarrow If Y = -1 then $X \mid Y = -1 \sim \mathcal{N}(-1, \sigma^2)$. Conditional pdf is

$$f_{X|Y}(x \mid -1) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x+1)^2/2\sigma^2}$$

Probability of error

• Write probability of error by conditioning on $Y=\pm 1$ (total probability)

$$P_{e} = P(\hat{Y} \neq Y \mid Y = 1) P(Y = 1) + P(\hat{Y} \neq Y \mid Y = -1) P(Y = -1)$$

$$= P(\hat{Y} = -1 \mid Y = 1) p + P(\hat{Y} = 1 \mid Y = -1) q$$

► According to the decision rule

$$P_e = P(X < 0 \mid Y = 1) p + P(X \ge 0 \mid Y = -1) q$$

▶ But *X* given *Y* is normally distributed, then

$$P_{e} = \frac{p}{\sqrt{2\pi}\sigma} \int_{-\infty}^{0} e^{-(x-1)^{2}/2\sigma^{2}} dx + \frac{q}{\sqrt{2\pi}\sigma} \int_{0}^{\infty} e^{-(x+1)^{2}/2\sigma^{2}} dx$$

Conditional expectation

Markov and Chebyshev's inequalities

Convergence of random variables

Limit theorems

Conditional probabilities

Conditional expectation

Definition of conditional expectation

 \triangleright **Def:** For continuous RVs X, Y, conditional expectation is

$$\mathbb{E}\left[X\mid Y=y\right]=\int_{-\infty}^{\infty}x\,f_{X\mid Y}(x\mid y)\,dx$$

▶ **Def:** For discrete RVs X, Y, conditional expectation is

$$\mathbb{E}\left[X\mid Y=y\right]=\sum_{x}x\,p_{X\mid Y}(x\mid y)$$

- ▶ Defined for given $y \Rightarrow \mathbb{E}\left[X \mid Y = y\right]$ is a number \Rightarrow All possible values y of $Y \Rightarrow$ random variable $\mathbb{E}\left[X \mid Y\right]$
- ▶ $\mathbb{E}\left[X \mid Y\right]$ a function of the RV Y, hence itself a RV ⇒ $\mathbb{E}\left[X \mid Y = y\right]$ value associated with outcome Y = y
- ▶ If X and Y independent, then $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$

Conditional expectation example

- ▶ Consider independent Bernoulli RVs Y and Z, define X = Y + Z
- ▶ Q: What is $\mathbb{E}[X \mid Y = 0]$? Recall we found the conditional pmf

$$p_{X|Y}(0|0) = 1 - p$$
, $p_{X|Y}(1|0) = p$, $p_{X|Y}(2|0) = 0$
 $p_{X|Y}(0|1) = 0$, $p_{X|Y}(1|1) = 1 - p$, $p_{X|Y}(2|1) = p$

▶ Use definition of conditional expectation for discrete RVs

$$\mathbb{E}\left[X\mid Y=0\right] = \sum_{x} x \, p_{X\mid Y}(x|0)$$
$$= 0 \times (1-p) + 1 \times p + 2 \times 0 = p$$

Iterated expectations

- ▶ If $\mathbb{E}\left[X \mid Y\right]$ is a RV, can compute expected value $\mathbb{E}_{Y}\left[\mathbb{E}_{X}\left[X \mid Y\right]\right]$ Subindices clarify innermost expectation is w.r.t. X, outermost w.r.t. Y
- ▶ Q: What is $\mathbb{E}_Y \left[\mathbb{E}_X \left[X \mid Y \right] \right]$? Not surprisingly $\Rightarrow \mathbb{E} \left[X \right] = \mathbb{E}_Y \left[\mathbb{E}_X \left[X \mid Y \right] \right]$
- ▶ Show for discrete RVs (write integrals for continuous)

$$\mathbb{E}_{Y} \left[\mathbb{E}_{X} \left[X \mid Y \right] \right] = \sum_{y} \mathbb{E}_{X} \left[X \mid Y = y \right] \rho_{Y}(y) = \sum_{y} \left[\sum_{x} x \rho_{X|Y}(x|y) \right] \rho_{Y}(y)$$

$$= \sum_{x} x \left[\sum_{y} \rho_{X|Y}(x|y) \rho_{Y}(y) \right] = \sum_{x} x \left[\sum_{y} \rho_{XY}(x,y) \right]$$

$$= \sum_{x} x \rho_{X}(x) = \mathbb{E}[X]$$

Offers a useful method to compute expected values

$$\begin{array}{ll} \Rightarrow \text{ Condition on } Y = y & \Rightarrow X \mid Y = y \\ \Rightarrow \text{ Compute expected value over } X \text{ for given } y & \Rightarrow \mathbb{E}_X \left[X \mid Y = y \right] \\ \Rightarrow \text{ Compute expected value over all values } y \text{ of } Y & \Rightarrow \mathbb{E}_Y \left[\mathbb{E}_X \left[X \mid Y \right] \right] \end{array}$$

Iterated expectations example

- Consider a probability class in some university
 - \Rightarrow Seniors get an A=4 w.p. 0.5, B=3 w.p. 0.5
 - \Rightarrow Juniors get a B=3 w.p. 0.6, C=2 w.p. 0.4
 - \Rightarrow An exchange student is a senior w.p. 0.7, and a junior w.p. 0.3
- \triangleright Q: Expectation of X = exchange student's grade?
- Start by conditioning on standing

$$\mathbb{E}\left[X \mid \mathsf{Senior}\right] = 0.5 \times 4 + 0.5 \times 3 = 3.5$$

$$\mathbb{E}\left[X \mid \mathsf{Junior}\right] = 0.6 \times 3 + 0.4 \times 2 = 2.6$$

Now sum over standing's probability

$$\mathbb{E}[X] = \mathbb{E}[X \mid \text{Senior}] P(\text{Senior}) + \mathbb{E}[X \mid \text{Junior}] P(\text{Junior})$$

$$= 3.5 \times 0.7 + 2.6 \times 0.3 = 3.23$$

Conditioning on sum of Poisson RVs

- ▶ Consider independent Poisson RVs Y and Z, parameters λ_1 and λ_2
- ▶ Define X = Y + Z. What is $\mathbb{E}[Y | X = x]$?
 - \Rightarrow We found $Y \mid X = x$ is binomial $(x, \lambda_1/(\lambda_1 + \lambda_2))$, hence

$$\mathbb{E}\left[Y\,\big|\,X=x\right] = \frac{x\lambda_1}{\lambda_1 + \lambda_2}$$

- ▶ Now use iterated expectations to obtain $\mathbb{E}[Y]$
 - \Rightarrow Recall X is Poisson with parameter $\lambda = \lambda_1 + \lambda_2$

$$\mathbb{E}[Y] = \sum_{x=0}^{\infty} \mathbb{E}[Y \mid X = x] p_X(x) = \sum_{x=0}^{\infty} \frac{x\lambda_1}{\lambda_1 + \lambda_2} p_X(x)$$
$$= \frac{\lambda_1}{\lambda_1 + \lambda_2} \mathbb{E}[X] = \frac{\lambda_1}{\lambda_1 + \lambda_2} (\lambda_1 + \lambda_2) = \lambda_1$$

▶ Of course, since Y is Poisson with parameter λ_1

Conditioning to compute expectations

- ► As with probabilities conditioning is useful to compute expectations
 - ⇒ Spreads difficulty into simpler problems (divide and conquer)

Example

- \triangleright A baseball player scores X_i runs per game
 - \Rightarrow Expected runs are $\mathbb{E}[X_i] = \mathbb{E}[X]$ independently of game
- ▶ Player plays N games in the season. N is random (playoffs, injuries?)
 - \Rightarrow Expected value of number of games is $\mathbb{E}[N]$
- ▶ What is the expected number of runs in the season? $\Rightarrow \mathbb{E}\left[\sum_{i=1}^{N} X_i\right]$
- \blacktriangleright Both N and X_i are random, and here also assumed independent
 - \Rightarrow The sum $\sum_{i=1}^{N} X_i$ is known as compound RV

Sum of random number of random quantities

Step 1: Condition on N = n then

$$\left[\sum_{i=1}^{N} X_i \mid N = n\right] = \sum_{i=1}^{n} X_i$$

Step 2: Compute expected value w.r.t. X_i , use N and the X_i independent

$$\mathbb{E}_{X_i}\left[\sum_{i=1}^N X_i \mid N=n\right] = \mathbb{E}_{X_i}\left[\sum_{i=1}^n X_i \mid N=n\right] = \mathbb{E}_{X_i}\left[\sum_{i=1}^n X_i\right] = n\mathbb{E}\left[X\right]$$

 \Rightarrow Third equality possible because n is a number (not a RV)

Step 3: Compute expected value w.r.t. values n of N

$$\mathbb{E}_{N}\left[\mathbb{E}_{X_{i}}\left[\sum_{i=1}^{N}X_{i}\mid N\right]\right] = \mathbb{E}_{N}\left[N\mathbb{E}\left[X\right]\right] = \mathbb{E}\left[N\right]\mathbb{E}\left[X\right]$$

Yielding result
$$\Rightarrow \mathbb{E}\left[\sum_{i=1}^{N} X_i\right] = \mathbb{E}\left[N\right] \mathbb{E}\left[X\right]$$

Expectation of geometric RV

Ex: Suppose X is a geometric RV with parameter p

- ▶ Calculate $\mathbb{E}[X]$ by conditioning on $Y = \mathbb{I}\{\text{"first trial is a success"}\}$
 - \Rightarrow If Y=1, then clearly $\mathbb{E}\left[X\mid Y=1\right]=1$
 - \Rightarrow If Y=0, independence of trials yields $\mathbb{E}\left[X \mid Y=0\right]=1+\mathbb{E}\left[X\right]$
- Use iterated expectations

$$\mathbb{E}[X] = \mathbb{E}[X \mid Y = 1] P(Y = 1) + \mathbb{E}[X \mid Y = 0] P(Y = 0)$$
$$= 1 \times p + (1 + \mathbb{E}[X]) \times (1 - p)$$

▶ Solving for $\mathbb{E}[X]$ yields

$$\mathbb{E}\left[X\right] = \frac{1}{p}$$

- ► Here, direct approach is straightforward (geometric series, derivative)
 - ⇒ Oftentimes simplifications can be major

The trapped miner example

- ▶ A miner is trapped in a mine containing three doors
- ▶ At all times $n \ge 1$ while still trapped
 - ▶ The miner chooses a door $D_n = j$, j = 1, 2, 3
 - ightharpoonup Choice of door D_n made independently of prior choices
 - ▶ Equally likely to pick either door, i.e., $P(D_n = j) = 1/3$
- ► Each door leads to a tunnel, but only one leads to safety
 - ▶ Door 1: the miner reaches safety after two hours of travel
 - ▶ Door 2: the miner returns back after three hours of travel
 - ▶ Door 3: the miner returns back after five hours of travel
- ▶ Let X denote the total time traveled till the miner reaches safety
- ▶ Q: What is $\mathbb{E}[X]$?

The trapped miner example (continued)

- ▶ Calculate $\mathbb{E}[X]$ by conditioning on first door choice D_1
 - \Rightarrow If $D_1=1$, then 2 hours and out, i.e., $\mathbb{E}\left[X \mid D_1=1\right]=2$
 - \Rightarrow If $D_1 = 2$, door choices independent so $\mathbb{E}\left[X \mid D_1 = 2\right] = 3 + \mathbb{E}\left[X\right]$
 - \Rightarrow Likewise for $D_1=3$, we have $\mathbb{E}\left[X\mid D_1=3\right]=5+\mathbb{E}\left[X\right]$
- ▶ Use iterated expectations

$$\mathbb{E}[X] = \sum_{j=1}^{3} \mathbb{E}[X \mid D_{1} = j] P(D_{1} = j) = \frac{1}{3} \sum_{j=1}^{3} \mathbb{E}[X \mid D_{1} = j]$$
$$= \frac{2+3+\mathbb{E}[X]+5+\mathbb{E}[X]}{3} = \frac{10+2\mathbb{E}[X]}{3}$$

▶ Solving for $\mathbb{E}[X]$ yields

$$\mathbb{E}[X] = 10$$

► You will solve it again using compound RVs in the homework

Conditional variance formula

▶ **Def:** The conditional variance of X given Y = y is

$$var[X|Y = y] = \mathbb{E}\left[(X - \mathbb{E}\left[X \mid Y = y\right])^2 \mid Y = y \right]$$
$$= \mathbb{E}\left[X^2 \mid Y = y \right] - (\mathbb{E}\left[X \mid Y = y\right])^2$$

- \Rightarrow var [X|Y] a function of RV Y, value for Y = y is var [X|Y = y]
- ▶ Calculate var [X] by conditioning on Y = y. Quick guesses?
 - $\Rightarrow \operatorname{var}[X] \neq \mathbb{E}_Y[\operatorname{var}_X(X \mid Y)]$
 - $\Rightarrow \operatorname{\mathsf{var}}[X] \neq \operatorname{\mathsf{var}}_Y[\mathbb{E}_X(X \mid Y)]$
- ▶ Neither. Following conditional variance formula is the correct way

$$var[X] = \mathbb{E}_Y[var_X(X \mid Y)] + var_Y[\mathbb{E}_X(X \mid Y)]$$

Conditional variance formula (continued)

Proof.

▶ Start from the first summand, use linearity, iterated expectations

$$\begin{split} \mathbb{E}_{Y}[\mathsf{var}_{X}(X \mid Y)] &= \mathbb{E}_{Y} \left[\mathbb{E}_{X}(X^{2} \mid Y) - (\mathbb{E}_{X}(X \mid Y))^{2} \right] \\ &= \mathbb{E}_{Y} \left[\mathbb{E}_{X}(X^{2} \mid Y) \right] - \mathbb{E}_{Y} \left[(\mathbb{E}_{X}(X \mid Y))^{2} \right] \\ &= \mathbb{E} \left[X^{2} \right] - \mathbb{E}_{Y} \left[(\mathbb{E}_{X}(X \mid Y))^{2} \right] \end{split}$$

▶ For the second term use variance definition, iterated expectations

$$\operatorname{var}_{Y}[\mathbb{E}_{X}(X \mid Y)] = \mathbb{E}_{Y} \left[(\mathbb{E}_{X}(X \mid Y))^{2} \right] - (\mathbb{E}_{Y}[\mathbb{E}_{X}(X \mid Y)])^{2}$$
$$= \mathbb{E}_{Y} \left[(\mathbb{E}_{X}(X \mid Y))^{2} \right] - (\mathbb{E}[X])^{2}$$

Summing up both terms yields (blue terms cancel)

$$\mathbb{E}_{Y}[\operatorname{var}_{X}(X \mid Y)] + \operatorname{var}_{Y}[\mathbb{E}_{X}(X \mid Y)] = \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2} = \operatorname{var}[X]$$

Variance of a compound RV

- ▶ Let $X_1, X_2,...$ be i.i.d. RVs with $\mathbb{E}[X_1] = \mu$ and $\text{var}[X_1] = \sigma^2$
- \triangleright Let N be a nonnegative integer-valued RV independent of the X_i
- ▶ Consider the compound RV $S = \sum_{i=1}^{N} X_i$. What is var [S]?
- ▶ The conditional variance formula is useful here
- ▶ Earlier, we found $\mathbb{E}[S|N] = N\mu$. What about var [S|N = n]?

$$\operatorname{var}\left[\sum_{i=1}^{N} X_{i} | N = n\right] = \operatorname{var}\left[\sum_{i=1}^{n} X_{i} | N = n\right] = \operatorname{var}\left[\sum_{i=1}^{n} X_{i}\right] = n\sigma^{2}$$

- \Rightarrow var $[S|N] = N\sigma^2$. Used independence of N and the i.i.d. X_i
- ▶ The conditional variance formula is $var[S] = \mathbb{E}[N\sigma^2] + var[N\mu]$

Yielding result
$$\Rightarrow \operatorname{var}\left[\sum_{i=1}^{N} X_{i}\right] = \mathbb{E}\left[N\right] \sigma^{2} + \operatorname{var}\left[N\right] \mu^{2}$$

Glossary

- Markov's inequality
- Chebyshev's inequality
- ► Limit of a sequence
- ► Almost sure convergence
- Convergence in probability
- ► Mean-square convergence
- Convergence in distribution
- ► I.i.d. random variables
- Sample average
- Centering and scaling

- ► Law of large numbers
- Central limit theorem
- Conditional distribution
- Communication channel
- ► Probability of error
- Conditional expectation
- Iterated expectations
- Expectations by conditioning
- Compound random variable
- ► Conditional variance