Teorētiskais pamatojums:

Šķidri, izkausēti metāli to augstās siltumietilpības un vadītspējas dēļ tiek izmantoti kā siltumnesēji dažādās enerģētiskās iekārtās. Noteiktā veidā iedarbojoties uz elektrovadošu šķidrumu ar ārēju magnētisko lauku, iespējams radīt tādus elektromagnētiskos spēkus, kas nodrošina šķidrā metāla sūknēšanu. Šādu iekārtu sauc par EM sūkni (EMS) un tā galvenā priekšrocība pār mehāniskajiem sūkņiem ir bezkontakta sūknēšana, nodrošinot absolūti hermētisku šķidrā metāla cilpas konstrukciju.

Šajā darbā tiek izmantots cilindrveidīgais rotējošo pastāvīgo magnētu EMS (Attēls 1). Tam ir sekojošas sastāvdaļas: 1) magnētiskais rotors — feromagnētisks viengabalains pamata cilindrs, uz kura pamīšus izvietoti pastāvīgie magnēti; 2) apkārt rotoram izvietots sūkņa kanāls ar nemagnētiskām sienām, pa kuru plūst šķidrais metāls; 3) apkārt kanālam var tikt izvietots tam cieši piegulošs laminēts magnētiskais vads, kas pastiprina lauku šķidrajā metālā.

Sūkņa attīstīto spiediena starpību iespējams iegūt, apskatot cilindrveidīgo rotējoši pastāvīgo magnētu EMS, kurā šķidrais metāls ar elektrovadītspēju σ un ātrumu v plūst pa kanālu, kam augstums – b, platums – 2a. Uz kanālā esošo šķidrā metāla slānīti iedarbojas pastāvīgo magnētu radīts lauks B, kas rotē ar ātrumu v_B . Iegūst formulu:

$$\Delta P_{EM} = \frac{B_{\rm e,0}^2}{2\mu_0} \alpha L \cdot Rm_s \left[1 - \frac{Tanh(\alpha a)}{\alpha a} \right]$$

Kur $B_{\rm e,0}$ – pieliktā magnētiskā lauka indukcija, $\alpha=\pi/\tau$ – viļņu skaitlis, $\tau=2\pi R/n_m$, R – vidējais kanāla rādiuss, n_m – magnētu skaits un slīdes magnētiskais Reinoldsa skaitlis:

$$Rm_{s} = \frac{\mu_{0}\sigma(v_{B} - v_{z})}{\alpha}$$

raksturo magnētiskā lauka konvekcijas un difūzijas attiecību kustīgajā atskaites sistēmā, v_z – šķidrā metāla plūsmas ātrums. Formula sūkņa attīstītajai spiedienu starpībai lietojama, ja $Rm_s < 1$ un attiecība $a/\tau \gg 1$. Ja pēdējais nosacījums neizpildās, tad jāizmanto:

Līdzīgi kā elektriskajās ķēdēs, kur katram elementam ir elektriskā pretestība, arī hidrauliskajās ķēdēs var runāt gan par katra elementa pretestību, gan kopējo ķēdes pretestību. Turbulentu plūsmu gadījumā ķēdes elementu radīto spiediena kritumu var aprēķināt: $\Delta p_k = \zeta \rho v^2/2$

Kur v – vidējais šķidruma ātrums attiecīgajā elementā. $\zeta = \zeta_B + \zeta_L$ ir pretestības koeficients, kas sastāv no divām daļām – berzes pretestības ζ_B un lokālās pretestības ζ_L . Berzes pretestību attiecīgajā elementā var aprēķināt kā pretestību, kas veidotos taisnā caurulē ar tādu pašu garumu L un hidraulisko diametru $D_h = 4S/P$: $\zeta_B = \lambda_h L/D_h$

Kur λ_h - berzes koeficients , ko aprēķina: $\lambda_h = 0.3164 \cdot Re^{-0.25}$. Savukārt, lokālā pretestība rodas ģeometrijas izmaiņas dēļ (virziena, šķērsgriezuma maiņa). Koeficientam ζ_L nav vienas unikālas formulas.

Attēls 1. Rotējošo pastāvīgo magnētu EMS, eksperimenta shēma.

Darba uzdevumi:

- Izmērīt rotējošu pastāvīgo magnētu EMS maksimālā spiediena (Q = 0) atkarību no magnētu sistēmas rotācijas ātruma ar piedziņas barošanas frekvencēm 5, 10 ... 50 Hz bez magnetvada.
- Izmērīt rotējošu pastāvīgo magnētu EMS maksimālā spiediena (Q = 0) atkarību no magnētu sistēmas rotācijas ātruma ar piedziņas barošanas frekvencēm 5, 10 ... 50 Hz ar magnetvadu
- Veikt analīzi punktos 1 un 2 iegūtajiem rezultātiem:
 - 3.1. Attēls 2: Eksperimentāli iegūtā maksimāla spiediena [bar] (Q = 0) atkarība no frekvences [Hz] ar un bez magnetvada
 - 3.2. Attēls 3: Eksperimentāli iegūtā maksimālā spiediena (Q = 0) atkarība no Rms ar un bez magnetvada
 - 3.3. Zinot EMS ģeometriskos parametrus un Rms vērtības, noteikt ārējā lauka amplitūdu B_{e,0} gadījumā ar un bez magnetvada. Izskaidrot magnetvada ietekmi.
 - 3.4. Izmantojot attēlus 1 un 2, aprakstīt un izskaidrot iegūtos EMS darbības režīmus, analizējot tos teorētiskā apraksta kontekstā.
- Izmērīt rotējošu pastāvīgo magnētu EMS spiediena un caurteces raksturlīknes bez magnetvada pie frekvencēm 10, 20...50 Hz, mainot vārsta pozīcijas no pilnīgi vaļā līdz ciet (vismaz 7 pozīcijas).
- Izmērīt rotējošu pastāvīgo magnētu EMS spiediena un caurteces raksturlīknes ar magnetvadu pie frekvencēm 10, 20...50 Hz, mainot vārsta pozīcijas no pilnīgi vaļā līdz ciet (vismaz 7 pozīcijas).
- Veikt analīzi punktos 4 un 5 iegūtajiem rezultātiem:
 - 6.1. Attēls 4: Eksperimentāli iegūtās spiediena [bar] caurteces [cm³/s] raksturlīknes pie dažādām frekvencēm bez magnetvada.
 - 6.2. Attēls 5: Eksperimentāli iegūtās spiediena caurteces raksturlīknes pie dažādām frekvencēm ar magnetvadu
 - 6.3. Pievienot attēliem 3 un 4 teorētiskās raksturlīknes, izmantojot izteiksmi sūkņa attīstītājam EM spiedienam (50). Izskaidrot atšķirības starp eksperimentālajiem un teorētiskajiem rezultātiem.
 - 6.4. Attēls 6: Spiediena kritums [bar] hidrauliskajā cilpā atkarībā no caurteces [cm³/s] (vārsts pilnīgi
 - 6.5. Izmantojot pielikums 1 un 2, kā arī teorētiskajā aprakstā dotas izteiksmes un skici attēlā 21, novērtēt EMS kanāla hidraulisko pretestību un izveidot attēlu 7. - spiediena zudumi kanālā [bar] atkarība no caurteces [cm³/s]. Novērtēt kanāla hidrauliskās pretestības iespaidu uz EMS attīstīto spiedienu. Pievienot attēliem 3 un 4 raksturlīknes atbilstoši izteiksmei (60).
 - 6.6. Izmantojot attēlus 4 7, aprakstīt un izskaidrot iegūtos EMS un hidrauliskā cilpas darbības režīmus, analizējot tos teorētiskā apraksta kontekstā.
- * papildus uzdevums (atzīmes paaugstināšanai).
 - 7.1. Izrakstīt un iegūt indukcijas vienādojumu magnētiskajam laukam, izmantojot Maksvela vienādojumus un Oma likumu diferenciālā formā.
 - 7.2. Pierādīt, ka kvazistacionārā tuvinājumā izpildās sakarība:

$$f_{EM} = Re[j] \cdot Re[B] = Re\left[\frac{j_0^*B_0}{2}\right]$$
 Kur j, j_0, B, B_0 ir kompleksi skaitļi:
$$j = j_0 e^{i\omega t} \text{ un } B = B_0 e^{i\omega t}$$

$$j = j_0 e^{i\omega t}$$
 un $B = B_0 e^{i\omega t}$

7.3. Atrisināt indukcijas vienādojumu un atrast $B_{i,0}(y)$, izmantojot komplekso pierakstu:

$$\frac{\partial^{2} B_{i}}{\partial v^{2}} + \frac{\partial^{2} B_{i}}{\partial z^{2}} - \mu_{0} \sigma \left[\frac{\partial B_{i}}{\partial t} + v \frac{\partial B_{i}}{\partial t} \right] = \mu_{0} \sigma \left[\frac{\partial B_{e}}{\partial t} + v \frac{\partial B_{e}}{\partial t} \right]$$

Kur:

$$\begin{split} B_e(z,t) &= B_{e,0} \cdot e^{i(\alpha z - \omega t)} \\ B_i(y,z,t) &= B_{i,0}(y) \cdot e^{i(\alpha z - \omega t)} \end{split}$$

Ar robežnosacījumiem:

$$B_{i,0}(y)|_{(y=\pm a)}=0$$

Mērījumu rezultāti un datu apstrāde:

Tabula 1. Darbā izmantoto magnētiskā šķidruma un sūkņa ģeometrisko parametru vērtības [1].

	,	, 0
h_{10}	19.5±0.5	cm
h_{20} (eksperimenta sākumā)	19±0.5	cm
h_{20} (pirms raksturlīkņu uzņemšanas)	19.7±0.5	cm
h_{max}	69±1	cm
P_{atmosf}	101325	Ра
ρ	6400	kg/m^3
σ	$3.46 \cdot 10^6$	S/m

μ	0.0024	$Pa \cdot s$
μ_o	1.257·10 ⁻⁶	H/m
а	25	mm
b	5	mm
R	42	mm
L	0.187	m
α	71.43	m^{-1}

Tabula 2. EMS maksimālā spiediena atkarība no Rm_s , bez magnetvada.

f, Hz	n, apgr./min.	Rm_s	$h_1 \pm 0.1$, cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar
5	137	0.04	21.2	18.4	4671	-377	5048	0.0505
10	274	0.07	23.0	16.8	9907	-1381	11288	0.1129
15	411	0.11	24.5	16.2	14524	-1758	16282	0.1628
20	548	0.15	26.2	14.8	20068	-2637	22705	0.2271
25	685	0.18	27.6	13.8	24910	-3265	28175	0.2817
30	822	0.22	29.2	13.0	30785	-3767	34552	0.3455
35	959	0.26	30.6	11.9	36258	-4458	40716	0.4072
40	1096	0.29	32.0	10.9	42079	-5086	47165	0.4716
45	1233	0.33	33.4	9.8	48289	-5776	54065	0.5407
50	1370	0.37	34.7	8.8	54445	-6404	60849	0.6085

Tabula 3. EMS maksimālā spiediena atkarība no Rm_s , ar magnetvada.

f,Hz	n, apgr./min.	Rm_s	$h_1 \pm 0.1$, cm	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp , bar
0	0	0.00	19.7	19.3	0	0	0	0.000
5	137	0.04	22.3	17.8	7274	-942	8215	0.0822
10	274	0.07	25.1	15.6	15854	-2323	18177	0.1818
15	411	0.11	27.5	13.8	23941	-3453	27394	0.2739
20	548	0.15	29.9	12.4	32837	-4332	37169	0.3717
25	685	0.18	32.5	10.7	43570	-5399	48969	0.4897
30	822	0.22	34.9	8.8	54709	-6592	61301	0.6130
35	959	0.26	37.3	7.2	67306	-7597	74903	0.7490
40	1096	0.29	39.4	6.0	79804	-8350	88155	0.8815
45	1233	0.33	41.4	4.0	93289	-9606	102895	1.0290

Tabula 4. Kļūdu aprēķins EMS maksimālā spiediena atkarībai no Rm_s .

1 abula 4. K	judu apreķii	is eivis ilia	ksimaia spie	ediena atk
	Bez	magnetvad	la	
$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	$\Delta \delta p$, Pa	$\Delta \delta p$, bar	$r_{\!\delta p}$, %
389		399	0.0040	7.90
400		410	0.0041	3.63
411		420	0.0042	2.58
424		433	0.0043	1.91
435	90	444	0.0044	1.58
449	89	458	0.0046	1.32
462		470	0.0047	1.16
476		484	0.0048	1.03
491		499	0.0050	0.92
507		514	0.0051	0.85

	Ar ı	magnetvad	u	
$\Delta\delta p_1$, Pa	$\Delta \delta p_2$, Pa	$\Delta \delta p$, Pa	$\Delta \delta p$, bar	$r_{\!\delta p}$, $\%$
396		405	0.0041	4.94
415		425	0.0042	2.34
434		443	0.0044	1.62
455		464	0.0046	1.25
481	89	489	0.0049	1.00
509	89	517	0.0052	0.84
541		548	0.0055	0.73
573		580	0.0058	0.66
608		614	0.0061	0.60
644		650	0.0065	0.55

Tabula 5. No EMS maksimālā spiediena atkarības no Rm_s iegūtās pieliktā magnētiskā lauka vērtības.

	Bez magnetvada Ar magnetvada 253.7 345.6				
$B_{e,0}$, mT	253.7	345.6			
$\Delta B_{e,0}$, mT	2.6	8.6			
r,%	1.01	2.50			

Attēls 2. EMS attīstītā maksimālā spiediena atkarība no barošanas frekvences.

Attēls 3. EMS attīstītā maksimālā spiediena atkarība no Rm_s .

Tabula 6. EMS raksturlīkņu uzņemšana, bez magnetvada. Stāvoklis 1 atbilst pilnīgi atvērtam vārstam, stāvoklis 8 – vārstam ciet.

Use the state of the	S	tāvoklis 8 –	varstam ciet.								
					,	10 Hz	T	T	T	T	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$H_1 \pm 0.1$, cm	$H_2 \pm 0.1$, cm	Q , cm³/s	$h_1 \pm 0.1, cm$	h_2 ± 0.1 , cm	δp_1 , Pa	δp_2 , Pa	бр, Ра	δp, bar	δp_{teor} , bar
3 19.9 19.3 24.0 21.1 19.0 4389 439 4829 0.0483 0.1087	1	20.0	19.3	25.9	20.9	19.2	3828	-314	4142	0.0414	0.1079
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	20.0	19.4	24.0	20.9	19.1	3828	-377	4205	0.0420	0.1087
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	19.9	19.3	24.0	21.1	19.0	4389	-439	4829	0.0483	0.1087
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	19.8	19.3	21.9	21.2	19.0	4671	-439	5110	0.0511	0.1095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	19.6	19.3	17.0	21.7	18.8	6094	-565	6659	0.0666	0.1114
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	19.3	19.1	13.8	22.0	18.6	6959	-691	7650	0.0765	0.1126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	19.2	18.8	19.6	22.6	18.4	8716	-816	9532	0.0953	0.1104
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	19.0	18.7	17.0	22.8	18.3	9309	-879	10188	0.1019	0.1114
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						20 Hz					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							8716	-1632	10348	0.1035	0.2190
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	20.4	18.5	42.7	22.5	17.0	8421	-1695	10116	0.1012	0.2194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	20.2	18.5	40.4	22.8	17.0	9309	-1695	11005	0.1100	0.2203
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	19.8	18.5	35.3	23.1	16.9	10207	-1758	11965	0.1197	0.2223
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	19.4	18.5	29.4	24.1	16.6	13269	-1946	15215	0.1522	0.2246
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	18.9	18.4	21.9	24.8	16.5	15477	-2009	17486	0.1749	0.2276
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	18.6	18.2	19.6	25.5	16.3	17743	-2135	19878	0.1988	0.2285
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	18.4	18.0	19.6	26.0	16.0	19398	-2323	21721	0.2172	0.2285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						30 Hz					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$H_1 \pm 0.1, cm$	$H_2 \pm 0.1, cm$	Q , cm^3/s	$h_1 \pm 0.1, cm$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	21.0	17.9	54.5	24.2	15.0	13581	-2951	16532	0.1653	0.3329
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	20.9	17.9	53.6	24.4	14.9	14209	-3014	17222	0.1722	0.3332
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	20.8	17.9	52.7	24.6	14.8	14841	-3076	17917	0.1792	0.3336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	21.0	17.9	54.5	25.1	15.0	16441	-2951	19392	0.1939	0.3329
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	19.2	17.9	35.3	26.6	14.5	21425	-3265	24690	0.2469	0.3404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	18.5	17.9	24.0	27.6	14.4	24910	-3328	28238	0.2824	0.3448
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	17.9	17.6	17.0	28.4	14.2	27799	-3453	31253	0.3125	0.3476
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	17.8	17.5	17.0	29.0	13.8	30029	-3704	33733	0.3373	0.3476
stāvoklis $\pm 0.1, cm$ $\delta \rho_1, Pd$ $\delta \rho_2, Pd$ $\delta \rho_1, Pd$						40 Hz					
1 21.7 17.4 64.2 26.2 12.8 20068 -4332 24400 0.2440 0.4471 2 21.4 17.4 61.9 26.4 12.8 20744 -4332 25076 0.2508 0.4480 3 21 17.4 58.7 26.9 12.8 22456 -4332 26788 0.2679 0.4493 4 19.8 17.4 47.9 27.9 13.4 25983 -3955 29938 0.2994 0.4535 5 18.3 17.4 29.4 31 12.4 37884 -4583 42468 0.4247 0.4608 6 17.6 17 24.0 31.1 12.2 38295 -4709 43004 0.4300 0.4629 7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637							δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
3 21 17.4 58.7 26.9 12.8 22456 -4332 26788 0.2679 0.4493 4 19.8 17.4 47.9 27.9 13.4 25983 -3955 29938 0.2994 0.4535 5 18.3 17.4 29.4 31 12.4 37884 -4583 42468 0.4247 0.4608 6 17.6 17 24.0 31.1 12.2 38295 -4709 43004 0.4300 0.4629 7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637							20068	-4332	24400	0.2440	0.4471
4 19.8 17.4 47.9 27.9 13.4 25983 -3955 29938 0.2994 0.4535 5 18.3 17.4 29.4 31 12.4 37884 -4583 42468 0.4247 0.4608 6 17.6 17 24.0 31.1 12.2 38295 -4709 43004 0.4300 0.4629 7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637	2	21.4	17.4	61.9	26.4	12.8	20744	-4332	25076	0.2508	0.4480
5 18.3 17.4 29.4 31 12.4 37884 -4583 42468 0.4247 0.4608 6 17.6 17 24.0 31.1 12.2 38295 -4709 43004 0.4300 0.4629 7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637	3	21	17.4	58.7	26.9	12.8	22456	-4332	26788	0.2679	0.4493
6 17.6 17 24.0 31.1 12.2 38295 -4709 43004 0.4300 0.4629 7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637	4	19.8	17.4	47.9	27.9	13.4	25983	-3955	29938	0.2994	0.4535
7 17.4 16.9 21.9 31.6 12.1 40378 -4772 45150 0.4515 0.4637	5	18.3	17.4	29.4	31	12.4	37884	-4583	42468	0.4247	0.4608
	6	17.6	17	24.0	31.1	12.2	38295	-4709	43004	0.4300	0.4629
8 17.3 16.9 19.6 32 11.9 42079 -4897 46977 0.4698 0.4646	7	17.4	16.9	21.9	31.6	12.1	40378	-4772	45150	0.4515	0.4637
	8	17.3	16.9	19.6	32	11.9	42079	-4897	46977	0.4698	0.4646

					50 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	$H_2 \pm 0.1$, cm	Q , cm³/s	$h_1 \pm 0.1, cm$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	22.5	17	72.6	27.9	11.2	25983	-5337	31319	0.3132	0.5619
2	22.2	17	70.6	28.1	11.1	26705	-5399	32104	0.3210	0.5627
3	21.9	16.8	69.9	28.6	11	28537	-5462	33999	0.3400	0.5630
4	20.6	16.8	60.3	29.1	12	30406	-4834	35241	0.3524	0.5667
5	18.6	16.8	41.5	32.2	10.9	42942	-5525	48467	0.4847	0.5741
6	17.8	16.8	31.0	33.2	11	47377	-5462	52839	0.5284	0.5782
7	17.3	16.6	25.9	33.7	10.9	49675	-5525	55200	0.5520	0.5802
8	16.9	16.4	21.9	34.8	10.5	54936	-5776	60712	0.6071	0.5818

Tabula 7. EMS raksturlīkņu uzņemšana, ar magnetvadu. Stāvoklis 1 atbilst pilnīgi atvērtam vārstam, stāvoklis 8 - vārstam ciet.

_		varstann eiet.			10 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1, cm$	$H_2 \pm 0.1$, cm	Q , cm^3/s	$h_1 \pm 0.1, cm$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
4	19.6	18.5	32.5	22.0	17.6	6959	-1318	8278	0.0828	0.1955
5	19.2	18.3	29.4	22.7	17.9	9012	-1130	10142	0.1014	0.1978
6	18.9	18.5	19.6	23.5	16.9	11419	-1758	13177	0.1318	0.2049
7	18.7	18.4	17.0	24.4	16.5	14209	-2009	16218	0.1622	0.2068
8	18.5	18.1	19.6	25.0	16.1	16119	-2260	18379	0.1838	0.2049
					20 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	$H_2 \pm 0.1$, cm	Q , cm^3/s	$h_1 \pm 0.1$, cm	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	20.7	18.0	50.9	23.6	15.4	11725	-2700	14424	0.1442	0.4012
2	20.7	17.9	51.8	23.9	15.3	12648	-2762	15410	0.1541	0.4005
3	20.3	17.8	48.9	24.6	15.2	14841	-2825	17666	0.1767	0.4026
4	19.8	17.7	44.9	25.4	14.8	17416	-3076	20492	0.2049	0.4056
5	19.1	17.7	36.6	26.5	14.5	21084	-3265	24348	0.2435	0.4116
6	18.3	17.6	25.9	28.0	13.9	26343	-3641	29985	0.2998	0.4194
7	17.9	17.5	19.6	29.1	13.3	30406	-4018	34424	0.3442	0.4240
8	17.6	17.4	13.8	29.9	12.8	33480	-4332	37813	0.3781	0.4281
					30 Hz					
Vārsta stāvoklis	$H_1 \\ \pm 0.1, cm$	$H_2 \pm 0.1, cm$	Q , cm³/s	$h_1 \\ \pm 0.1, cm$	$egin{array}{c} h_2 \ \pm \ 0.1, cm \end{array}$	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	21.9	17.2	67.1	26.9	11.6	22456	-5086	27542	0.2754	0.6085
2	21.6	17.1	65.7	27.3	11.7	23850	-5023	28873	0.2887	0.6096
3	21.1	17.0	62.7	27.9	11.5	25983	-5148	31131	0.3113	0.6117
4	21.0	16.9	62.7	29.1	11.2	30406	-5337	35743	0.3574	0.6117
5	18.8	16.9	42.7	31.1	10.8	38295	-5588	43883	0.4388	0.6263
6	17.6	16.8	27.7	32.5	10.6	44250	-5713	49964	0.4996	0.6372
7	16.8	16.7	9.8	33.7	10.3	49675	-5902	55577	0.5558	0.6502
8	16.4	16.4	0.0	35.0	9.5	55924	-6404	62328	0.6233	0.6573

					40 Hz					
Vārsta stāvoklis	H_1 ± 0.1 , cm	H_2 ± 0.1 , cm	Q , cm^3/s	$h_1 \pm 0.1, cm$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	23.3	16.1	83.0	29.9	8.2	33480	-7220	40701	0.4070	0.8160
2	23.3	15.9	84.2	30.3	8.4	35057	-7095	42152	0.4215	0.8152
3	22.6	16.1	78.9	30.9	8.5	37475	-7032	44507	0.4451	0.8190
4	20.7	16.2	65.7	32.2	9	42942	-6718	49660	0.4966	0.8287
5	18.6	16.0	49.9	35.6	8	58951	-7346	66296	0.6630	0.8401
6	16.4	16.0	19.6	37.7	7.5	70344	-7660	78004	0.7800	0.8622
7	15.9	15.8	9.8	38.6	7.2	75653	-7848	83501	0.8350	0.8693
8	15.8	15.6	13.8	39.5	6.8	81252	-8099	89351	0.8935	0.8663
					50 Hz					
Vārsta stāvoklis	$H_1 \pm 0.1$, cm	$H_2 \pm 0.1$, cm	Q , cm^3/s	$h_1 \pm 0.1, cm$	$h_2 \pm 0.1$, cm	δp_1 , Pa	δp_2 , Pa	δр, Ра	δp, bar	δp_{teor} , bar
1	24.8	15.0	96.9	33.1	5.7	46924	-8790	55713	0.5571	1.0251
2	24.9	15.5	94.9	33.3	5.6	47832	-8853	56684	0.5668	1.0265
3	25.2	15.4	96.9	33.8	6.2	50141	-8476	58617	0.5862	1.0251
5	18.3	15.5	51.8	39.5	5.5	81252	-8915	90167	0.9017	1.0579
6	16.0	15.5	21.9	41.3	5.7	93430	-8790	102220	1.0222	1.0796
7	15.5	15.2	17.0	42	5.5	98564	-8915	107479	1.0748	1.0832
8	15.0	14.9	9.8	43.1	4.8	107144	-9355	116499	1.1650	1.0884

Tabula 8. Kļūdu aprēķins EMS raksturlīknēm.

		В	ez magnetva	da			A	Ar magnetvac	lu	
					10 Hz					
Vārsta stāvoklis	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2, Pa$	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta \delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar
1	2.6	387	89	397	0.0040					
2	2.8	387	89	397	0.0040					
3	2.8	388	89	398	0.0040					
4	3.1	389	89	399	0.0040	2.1	394	89	404	0.0040
5	4.0	392	89	402	0.0040	2.3	398	89	408	0.0041
6	4.9	394	89	404	0.0040	3.5	404	89	413	0.0041
7	3.5	398	89	407	0.0041	4.0	410	89	420	0.0042
8	4.0	399	89	409	0.0041	3.5	414	89	424	0.0042
	•	•	•	•	20 Hz		•		•	
Vārsta stāvoklis	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2, Pa$	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm^3/s	$\Delta\delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar
1	1.5	398	89	407	0.0041	1.3	404	89	414	0.0041
2	1.6	397	89	407	0.0041	1.3	407	89	416	0.0042
3	1.7	399	89	409	0.0041	1.4	412	89	421	0.0042
4	1.9	401	89	411	0.0041	1.5	417	89	427	0.0043
5	2.3	408	89	417	0.0042	1.8	426	89	435	0.0044
6	3.1	413	89	422	0.0042	2.6	438	89	447	0.0045
7	3.5	418	89	428	0.0043	3.5	448	89	457	0.0046
8	3.5	422	89	431	0.0043	4.9	455	89	464	0.0046

30 Hz											
Vārsta stāvoklis	ΔQ , cm^3/s	$\Delta\delta p_1$, Pa	$\Delta \delta p_2$, Pa	$\Delta \delta p, Pa$	$\Delta \delta p$, bar	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	
1	1.2	409	89	418	0.0042	1.0	429	89	438	0.0044	
2	1.3	410	89	420	0.0042	1.0	432	89	441	0.0044	
3	1.3	412	89	421	0.0042	1.1	437	89	446	0.0045	
4	1.2	415	89	425	0.0042	1.1	448	89	457	0.0046	
5	1.9	427	89	436	0.0044	1.6	467	89	475	0.0048	
6	2.8	435	89	444	0.0044	2.4	481	89	489	0.0049	
7	4.0	442	89	451	0.0045	6.9	495	89	503	0.0050	
8	4.0	447	89	456	0.0046	13.8	510	89	518	0.0052	
40 Hz											
Vārsta stāvoklis	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta \delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	
1	1.1	424	89	433	0.0043	0.8	455	89	464	0.0046	
2	1.1	425	89	434	0.0043	0.8	459	89	468	0.0047	
3	1.2	429	89	438	0.0044	0.9	465	89	473	0.0047	
4	1.4	437	89	446	0.0045	1.0	478	89	486	0.0049	
5	2.3	466	89	474	0.0047	1.4	518	89	525	0.0053	
6	2.8	467	89	475	0.0048	3.5	547	89	554	0.0055	
7	3.1	472	89	480	0.0048	6.9	560	89	567	0.0057	
8	3.5	476	89	484	0.0048	4.9	575	89	581	0.0058	
					50 Hz						
Vārsta stāvoklis	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta\delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	ΔQ , cm^3/s	$\Delta \delta p_1$, Pa	$\Delta \delta p_2$, Pa	Δδρ, Ρα	$\Delta \delta p$, bar	
1	0.9	437	89	446	0.0045	0.7	488	89	496	0.0050	
2	1.0	439	89	448	0.0045	0.7	490	89	498	0.0050	
3	1.0	443	89	452	0.0045	0.7	496	89	504	0.0050	
4	1.1	448	89	457	0.0046						
5	1.6	478	89	486	0.0049	1.3	575	89	581	0.0058	
6	2.2	489	89	497	0.0050	3.1	606	89	613	0.0061	
7	2.6	495	89	503	0.0050	4.0	620	89	626	0.0063	
8	3.1	508	89	515	0.0052	6.9	642	89	648	0.0065	

Attēls 4. EMS spiediena – caurteces raksturlīknes bez magnetvada.

Attēls 5. EMS spiediena – caurteces raksturlīknes ar magnetvadu.

Attēls 6. Spiediena kritums EMS hidrauliskajā cilpā atkarībā no caurteces (vārsts pilnībā atvērts).

Tabula 9. Aprēķins spiediena zudumi kanālā atkarībā no caurteces.

Q , cm^3/s	Re	ζ _{in/out}	v _{in/out} ,m/s	ζ_{dif}	ζ_{konf}	v _{dif/konf} ,m/s	ζ_{30}	ζ_{42}	v _{30/42} , m/s	δp ,Pa	δp , bar
10	889	0.058	0.014	3.853	1.991	0.020	0.219	0.269	0.040	10	0.00010
20	1778	0.049	0.028	3.566	1.720	0.040	0.196	0.235	0.080	36	0.00036
30	2667	0.044	0.042	3.405	1.573	0.060	0.183	0.218	0.120	76	0.00076
40	3556	0.041	0.057	3.290	1.471	0.080	0.175	0.207	0.160	130	0.00130
50	4444	0.039	0.071	3.200	1.393	0.100	0.170	0.199	0.200	195	0.00195
60	5333	0.037	0.085	3.127	1.331	0.120	0.165	0.193	0.240	273	0.00273
70	6222	0.036	0.099	3.064	1.278	0.140	0.162	0.188	0.280	362	0.00362
80	7111	0.034	0.113	3.010	1.233	0.160	0.159	0.184	0.320	463	0.00463
90	8000	0.033	0.127	2.962	1.194	0.180	0.156	0.180	0.360	574	0.00574
100	8889	0.033	0.141	2.920	1.159	0.200	0.154	0.177	0.400	695	0.00695

Attēls 7. Spiediena zudumi EMS kanālā atkarībā no caurteces.

Aprēķinu piemēri:

1) Ideālas gāzes manometra spiediens (5 Hz mērījumam bez magnetvada):

$$\delta p_1 = \left(\frac{p_A}{h_{max} - h_1} + \rho g\right) (h_1 - h_0)$$

$$= \left(\frac{101325 \cdot 100}{69 - 21.2} + 6400 \cdot 9.81\right) (21.2 - 19.5) = 4671 Pa$$

2) Atmosfēriskā manometra spiediens (5 Hz mērījumam bez magnetvada):

$$\delta p_2 = \rho g(h_2 - h_{20}^2) = 6400 \cdot 9.81(18.4 - 19) = -377 \, Pa$$

3) EMS attīstītais spiediens (5 Hz mērījumam bez magnetvada):

$$\delta p = \delta p_1 - \delta p_2 = 4671 + 377 = 5054 \, Pa$$

$$\delta p = \delta p_1 - \delta p_2 = 4671 + 377 = 5054 \, Pa$$
Magnētiskais Reinoldsa skaitlis (5 Hz mērījumam):
$$Rm_s = \frac{\mu_0 \sigma v_B}{\alpha} = \frac{\mu_0 \sigma}{\alpha} \frac{\pi R}{30} \frac{1370}{50} f = \frac{\mu_0 \sigma}{\alpha} \frac{\pi R}{30} \frac{1370}{50} 5 = 0.04$$

5) Pieliktā magnētiskā lauka vērtība bez magnetvada:

$$B_{e,0} = \sqrt{\frac{2\mu_0}{\alpha L(1 - Tanh(\alpha a)/(\alpha a))} \frac{d\delta p}{dRm_s}}$$

$$= \sqrt{\frac{2\mu_0}{\alpha L(1 - Tanh(\alpha a)/(\alpha a))} 160955} = 253.7 mT$$

Caurtece 10 Hz mērījumam bez magnetvada vārsta stāvoklī "1":

$$Q = K(H_1 - H_2) = 0.00031(20 - 19.3)/100 = 25.9 cm^3/s$$

7) Teorētiskais sūkņa attīstītais spiediens 10 Hz mērījumam bez magnetvada vārsta stāvoklī "1":

$$\begin{split} \delta p_{teor} &= \frac{B_{e,0}^2}{2\mu_0} \alpha L \left(1 - \frac{Tanh(\alpha a)}{\alpha a} \right) Rm_{s} \\ &= \frac{B_{e,0}^2}{2\mu_0} \alpha L \left(1 - \frac{Tanh(\alpha a)}{\alpha a} \right) \frac{\mu_0 \sigma}{\alpha} \left(v_B - \frac{Q}{2ab} \right) = 0.1079 \; bar \end{split}$$

Secinājumi:

Laboratorijas darbā tika izmērīta rotējošu pastāvīgo magnētu EMS maksimālā spiediena atkarība no magnētu sistēmas rotācijas ātruma, kā arī uzņemtas spiediena — caurteces raksturlīknes. Abos gadījumos mērījumi veikti gan bez magnētiskā vada, gan pievienojot to sūkņa kanālam.

Attēlā 2 parādīti rezultāti maksimālā spiediena atkarībai no magnētu sistēmas rotācijas ātruma (sūkņa piedziņas barošanas frekvences). Atkarība maksimālajam spiedienam no magnētiskā Reinoldsa skaitļa (Attēls 3) kvalitatīvi ir identiska atkarībai no barošanas frekvences, jo Rm_s un barošanas frekvence ir viens otram proporcionāli lielumi, ja sūkņa kanālā nav caurteces. Novērojams, ka, lietojot magnetvadu, EMS spēj attīstīt lielāku spiedienu. Tas skaidrojams ar to, ka, pieliekot sūkņa kanālam feromagnētisku vadu, tiek pastiprināts uz sūkņa rotora esošo pastāvīgo magnētu radītais lauks. Šo skaidrojumu apstiprina Tabulā 5 veiktais aprēķins. Redzams, ka gadījumā bez magnetvada atkarība ir lineāra, savukārt, pieliekot sūkņa kanālam magnētisko vadu rodas novirze no lineāras sakarības. Šis efekts rodas dēļ tā, ka mainīgā magnētiskā lauka inducētās strāvas šķidrajā metālā pašas neizbēgami rada savu inducēto magnētisko lauku, kam ir demagnetizējošs efekts.

Attēlos 4 un 5 uzskatāmi attēlotas EMS spiediena — caurteces raksturlīknes pie dažādām barošanas frekvencēm. Secināms, ka lielāks sūkņa rotācijas ātrums un magnetvada esamība palielina EMS attīstīto spiedienu pie konkrētas caurteces vērtības, kā arī ļauj iegūt lielākas caurteces vērtības. Tabulās 6 un 7 dots salīdzinājums eksperimentāli noteiktajām raksturlīknēm ar teorētiski aprēķinātajām. Redzams, ka tās apmēram sakrīt tikai aizvērta vārsta gadījumā (minimāla caurtece). Augot caurteces vērtībai eksperimentāli spiediena kritums samazinās ātrāk kā teorētiskā aprēķina gadījumā. Šī nesakritība skaidrojama ar hidraulisko pretestību. Hidrauliskā pretestība sūkņa kanāla aprēķināta Tabulā 9. Apskatot Attēlus 6 un 7 uzskatāmi redzams, ka spiediena zudumi EMS kanālā katrai caurteces vērtībai ir apmēram par kārtu mazāki kā sūkņa attīstītais spiediens, bet ar to, diemžēl, nepietiek, lai izskaidrotu EMS eksperimentālo un teorētisko spiediena — caurteces raksturlīkņu nesakritību. Sakritību varētu panākt, ja tiktu aprēķināts hidrauliskās pretestības radītie spiediena zudumi visā šķidrā metāla cilpā, nevis tikai EMS kanālā.

Izmantotā literatūra:

1. https://en.wikipedia.org/wiki/Galinstan