FORMAL LANGUAGES AND AUTOMATA, 2025 FALL SEMESTER

Lec 09. Context-free language and Parse trees

Eunjung Kim

DERIVATION

Consider a CFG $G = (V, \Sigma, R, S)$, $u, v, w \in (\Sigma \cup V)^*$ (a string of terminals and nonterminals) and a variable (nonterminal) $A \in V$.

YIELD, DERIVE, DERIVATION

- We say that uAv yields uwv, written uAv ⇒_G uwv, if G has the rule
 A → w; put another way, uwv is obtained by substituting a variable in
 the string uAv by the body of a rule whose head is the said variable.
- We say that u derives v, written $u \Rightarrow_G^* v$. if u = v or there is a sequence u_1, \ldots, u_k for some $k \ge 1$ such that

$$u \Rightarrow_G u_1 \Rightarrow_G \cdots \Rightarrow_G u_k \Rightarrow_G v$$

and the sequence is called a derivation.

We omit the subscript G in \rightarrow_G and \Rightarrow_G if the CFG under consideration is clear in the context.

DERIVATION BY EXAMPLE

We want to describe, as CFG,

- ullet all arithmetic expressions with + and imes
- over the variables of the form $(a \cup b)(a \cup b \cup 0 \cup 1)^*$.

Consider the following CFG $G_{ari} = (\{E, I\}, \{a, b, 0, 1, +, \times, (,)\}, R, E)$, where R consists of the following rules

- \blacksquare $E \rightarrow I$
- $E \rightarrow E + E$
- $E \rightarrow E \times E$
- $E \rightarrow (E)$
- **5** *I* → *a*
- $6 I \rightarrow b$
- **7** *I* → *I*a
- 8 $I \rightarrow Ib$
- 9 I → I0
- $I \rightarrow I1$

CONTEXT-FREE LANGUAGE

For a CFG $G = (V, \Sigma, R, S)$, the language of G, denoted by L(G) is the set of all strings consisting of terminals (only) that have derivations from the start symbol, i.e.

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}.$$

A language is said to be context-free if it is the language of a context-free grammar. A context-free languages is often abbreviated as CFL.

SOME REMARKS ON CFG

- In general, the rule of a grammar has the form u → v with both u and v are strings of terminals and nonterminals.
- A grammar is context-free if the head *u* is a nonterminal (variable) in all the rules; we do not need to consider the context.
- Different restrictions on the grammar define the hierarchy of formal languages.

Class	Languages	Automaton	Rules	Word Problem	Example
type-0	recursively enumerable	Turing machine	no restriction	undecidable	Post's corresp. problem
type-1	context sensitive	linear-bounded TM	$\begin{array}{c} \alpha \to \gamma \\ \alpha \le \gamma \end{array}$	PSPACE- complete	$a^nb^nc^n$
type-2	context free	pushdown automaton	$A ightarrow \gamma$	cubic	a^nb^n
type-3	regular	NFA / DFA	$A \rightarrow a \text{ or}$ $A \rightarrow aB$	linear time	a^*b^*

Figure 1: Chomsky Hierarchy

Figure 1, Lecture note on 15-411: Compiler Design, CMU, 2023

GRAMMAR AND MEANING OF THE LANGUAGE

Let us show that $L(G_{pal})$ is precisely the set of palindromes consisting of 0's and 1's.

- (\rightarrow) We want to show that if $S \Rightarrow^* w$, then w is a palindrome. Induction on the length of derivation.
 - **1** Base: if length at most 1, then $w = \epsilon$, 0 or 1, which is trivially a palindrome.
 - 2 Induction: if the derivation has length n + 1, then it is of the form

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

(or 0 replaced by 1) where $S \Rightarrow^* x$ is a derivation of length n. By I.H. x is a palindrome, and thus 0x0 is.

GRAMMAR AND MEANING OF THE

LANGUAGE

Let us show that $L(G_{pal})$ is precisely the set of palindromes consisting of 0's and 1's.

- (\rightarrow) We want to show that if $S \Rightarrow^* w$, then w is a palindrome. Induction on the length of derivation.
 - **1** Base: if length at most 1, then $w = \epsilon$, 0 or 1, which is trivially a palindrome.
 - 2 Induction: if the derivation has length n + 1, then it is of the form

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

(or 0 replaced by 1) where $S \Rightarrow^* x$ is a derivation of length n. By I.H. x is a palindrome, and thus 0x0 is.

- (\leftarrow) We want to show that if w is a palindrome, then $S \Rightarrow^* w$. Induction on |w|.
 - Base: $|w| \le 1$, then $S \Rightarrow w$ by a single application of one of the rules $S \rightarrow \epsilon |0|1$.
 - 2 Induction: if w is a palindrome of length ≥ 2 , it is of the form 0x0 or 1x1 for some palindrome x. By I.H., $S \Rightarrow^* x$. Therefore,

$$S \Rightarrow 0S0 \Rightarrow^* 0x0 = w$$

GRAMMAR AND DERIVATION

Consider CFG G with the following rules.

- ullet $S \rightarrow XSX \mid R$
- $R \rightarrow aTb \mid bTa$
- ullet $T o XTX \mid X \mid \epsilon$
- $X \rightarrow a \mid b$
- Variables? Terminals? Start Variable?
- 2 $T \Rightarrow^* T$?
- $T \Rightarrow^* XXX?$
- 4 $XXX \Rightarrow^* aba$?
- $B \Rightarrow^* \epsilon$?
- **6** S ⇒* abaababbaaba?

GRAMMAR AND MEANING OF THE

Consider CFG G with the following rules. Describe the language L(G) in plain English.

- lacksquare $S o aSb \mid aA \mid bB$
- $\mathbf{2} \ A \rightarrow aA \mid \epsilon$

LANGUAGE

 $oldsymbol{B} B o bB \mid \epsilon$

DESIGNING A CONTEXT-FREE GRAMMAR

- 2 $L = \{0^n 1^n : n \ge 1\} \cup \{0^n 1^n : n \ge 1\}.$
- $L = \{a^i b^j : i > j\}.$
- **4** $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}.$
- **5** $L = \{ \text{the set of all well-formed parentheses} \}.$
- **6** $L = \{$ all strings with the same number of 0's and 1's $\}$.

How to design CFG

The design of CFG requires some ingenuity. Some useful tips here.

- Many CFLs are the union of simpler CFLs.
- It is convenient to think of a variable as something that represents a set of strings; those which can be derived from that variable.
- A CFG for a regular language is easy to construct.
- Sometimes you use some nice combinatorial property of the language.

 $L = \{0^n 1^n : n \ge 1\}.$

$$L = \{0^n 1^n : n \ge 1\} \cup \{1^n 0^n : n \ge 1\}.$$

 $L = \{a^i b^j : i > j\}.$

 $L = \{a^i b^j c^k : i \neq j \text{ or } j \neq k\}.$

 $L = \{ \text{the set of all well-formed parentheses} \}.$

$L = \{ \text{THE SAME } \# \text{ of O's AND 1's} \}.$

LEFTMOST/RIGHTMOST DERIVATION

DEFINITION

A derivation is a <u>leftmost derivation</u> if a production rule is applied to the leftmost variable in each step. A rightmost derivation is defined similarly.

Example: a leftmost derivation of the string " $a \times (a + b00)$ " in the CFG G_{ari}

$$\blacksquare E \rightarrow I \mid E + E \mid E \times E \mid (E)$$

$$[2] I \rightarrow a | b | Ia | Ib | I0 | I1$$

GRAPHIC REPRESENTATION OF THE DERIVATION

Figure 5.6. Hopcroft et. al. 2006

PARSE TREE

DEFINITION

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. A parse tree for the grammar G is a (rooted) tree satisfying the following.

- I Each internal node is labelled by a variable in *V*.
- **2** Each leaf is labelled by a member of $V \cup \Sigma \cup \{\epsilon\}$. If a leaf is labelled by ϵ , it is the only child of its parent.
- If an internal node is labelled by A, and its children are labelled by

$$X_1, \ldots, X_k$$

when read from the left to right, then there is a rule $A \to X_1 \cdots X_k$ in R.

YIELD OF A PARSE TREE

DEFINITION

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. The <u>yield</u> of a parse tree is a string in $(V \cup \Sigma \cup \{\epsilon\})^*$ obtained by concatenating the labels on the leaves of the parse tree from left to right.

Figure 5.5, Hopcroft et. al. 2006

EQUIVALENCE OF PARSE TREE AND DERIVATION

THEOREM

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. The following are equivalent.

- $S \Rightarrow^* w$ (i.e. $w \in L(G)$).
- There is a parse tree with root S and yield w.
- $S \Rightarrow_{lm}^* w$.
- $S \Rightarrow_{rm}^* W$.