Zero-Shot Egocentric Video Action Recognition

Team Name-Random 1

Team Members- Abhilash Rajendra Sarwade, Shifali Agrahari, Gautam Singha

Introduction

- Egocentric video action recognition is important where understanding actions from a first-person perspective is crucial.
- Zero-shot learning (ZSL) offers a promising solution, but it faces limitations in handling complex, dynamic, and egocentric scenarios.
- Applications Virtual reality and augmented reality, Security and surveillance, Sports analytics, Human-computer interaction and so on.

Related Works

Works related to Zero shot ego-centric action recognition

- Use of external knowledge
- Integrating human gaze into attention
- GCN for zero shot learning

Methodology

Dataset Preparation

Dataset

EGTEA GAZE +

■ 28 hours (de-identified) of seven meal-preparation activities from 86 unique sessions performed by 32 subjects.

 Activities: Continental Breakfast, Pizza, Bacon and Eggs, Greek Salad, Pasta Salad, Turkey Sandwich and Cheese Burger.

R-Split Dataset

■ Splitting Dataset- R-split (Recipe Split). 6121 training video clips and 1464 test video clips.

■ 65 seen (eg.- cut tomato, open cabinet) and 16 unseen (eg.- cut bell_pepper, put bread) classes.

Data preparation: RGB frames and optical flow extracted from each video.

RGB Frames and Optical Flow

Min et al 2021

Feature Extraction

- Pre-trained convolutional model- I3D network having gaze attention for image feature extraction.
- Network structure modified to ignore optical flow due to high computational time.
- Last fully connected layer removed to get 1024 features.

Gaze Estimation

"crack eggs"

13D Feature Visualization

Semantic Embedding of Class Labels

GloVe semantics

Semantic Embedding of Class Labels

- CLIP semantics
- Clip backbone model = ViT- B/32
- Prompt
- "a video of an object is {action label}"

Experiments

1st Model Classifier Neural Network

Set Up

- Training Data- 65 label
- Zeroshot Datase(test Data) 16 label
- PyTorch 2.1.0 Version
- Label Embedding

Clip (512 size vector) Vit-B/32

GloVe (300 size vector)

Gaze Attention I3D feature extraction (1024 size vector)

Classifier Based Method

- For training Dataset- 3416 clip
- For validation Dataset 1230 clip
- Epoch 125
- Batch size 128
- Loss function
- BCEWithLogitsLoss, CrossEntropyLoss()
- Optimizer Adam
- Learning rate 0.00005

Training based True Label

Classifier Architecture

Classifier Based Method

Training based True Label

Projected Visual Features

Zero-Shot Classification Network

Zero Shot Architecture

Semantic Embeddings

Semantic Embedding of Class Labels

GloVe semantics

CLIP semantics

Zero Shot Architecture (Training)

Convolve

Semantic Embeddings

Semantic Adjacency Matrix

GloVe semantics

CLIP semantics

Zero Shot Architecture (Training)

Input Video

Zero Shot Architecture (Testing)

Projected Semantic Embeddings

Projected Visual Embeddings

Results (Confusion Matrix)

- 30

- 20

GloVe semantics (20.87%)

CLIP semantics (22.63%)

- 20

10

Accuracy Comparison with Baseline paper for unseen data

Class (R split)	Cookbook prior	Ours (clip)	Ours(Glove)
cut bell pepper	23.28%	20.01%	36.32%
cut onion	8.05%	53.13%	23.05%
put bread	25.89%	17.43%	25.82%
put cup	14.17%	11.02%	25.01%
put lettuce	41.75%	7.87%	10.23%
put onion	10.26%	0.00%	4.51%
put plate	29.41%	12.34%	6.30%
put pot	28.05%	19.67%	4.53%

put tomato	3.17%	0.00%	5.73%
take bowl	18.00%	23.81	22.61%
take egg	0.98%	12.14%	19.05%
take onion	17.22%	0.00%	2.30%
take pan	17.98%	21.23%	33.04%
take pot	7.26%	15.09%	14.82%
take tomato	3.07%	24.29	9.08%
wash pot	13.95%	88.78%	88.23%

Results comparison with Baseline

Paper	Zero shot	Dataset	Accuracy
Using external knowledge	Yes	EGTEA	18.08%
Integrating Human Gaze into Attention	No	EGTEA	62.84%
GCN	Yes	Epic- Kitchens	
Classifier(Our)	No	EGTEA Gaze+	58.9%
MLP (with Glove)	Yes	EGTEA Gaze+	20.87%
MLP (with CLIP)	Yes	EGTEA Gaze+	22.63%

Conclusion/Limitation

- Multiple action label instances not considered (NR- Split)
- Pre-trained I3D model used (Gaze attention)
- Optical flows not used as an input to gaze attention I3D
- Could not employ GCN (Simple Neural Network used instead)
- Classifier network and zero-shot network not trained simultaneously.

Future Work

Generation of Optical flows

Employing GCN

Simultaneous training of Classifier network and zero-shot network.

THANK YOU