SILICON EPITAXIAL BASE POWER TRANSISTORS

P-N-P transistors in a plastic envelope intended for use in audio output stages and general amplifier and switching applications.

N-P-N complements are BDT91, BDT93 and BDT95.

QUICK REFERENCE DATA

		В	T92	BDT94	BDT96	
Collector-base voltage (open emitter)	-Усво	max.	60	80	100	٧
Collector-emitter voltage (open base)	-VCEO	max.	60	80	100	V
Collector current (d.c.)	-1c	max.		10		Α
Collector current (peak value)	^{−1} CM	max.		20		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		90		W
Junction temperature	Tj	max.	150			οС
D.C. current gain -l _C = 4 A; -V _{CE} = 4 V -l _C = 10 A; -V _{CE} = 4 V	hFE hFE	>	20 to 200 5)	
Transition frequency -IC = 0,5 A; -VCE = 10 V	f _T	>		4		МН

August 1991

619

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Climing values in accordance with the Absolute v	viaximam oys	BC)T92 ·	BDT94	BDT96	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	100	v
Collector-emitter voltage (open base)	-VCEO	max.	60	80	100	V
Emitter-base voltage (open collector)	-VEBO	max.		່ 7່		V
Collector current (d.c.)	-IC	max.		10		Α
Collector current (peak value)	-ICM	max.		20		Α
Base current (d.c.)	-IB	max.		4		Α
Total power dissipation up to T _{mb} = 25 °C	P _{tot}	max.		90		W
Storage temperature	T _{stg}			65 to +1	50	oC
Junction temperature	Τj	max.		150		oC
THERMAL RESISTANCE						
From junction to mounting base	R _{th j-mb}	=		1,4		K/W
From junction to ambient (in free air)	R _{th j-a}	=		70		K/W
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Collector cut-off current	_			• •		
I _E = 0; -V _{CB} = -V _{CBOmax}	−¹CBO −¹CBO	< <		0,1 1		mA mA
$IE = 0; -V_{CB} = -\frac{1}{2}V_{CBOmax}; T_j = 150 ^{\circ}C$ $IB = 0; -V_{CE} = -V_{CEOmax}$	-ICEO	<		0,2		mA
Emitter cut-off current	0_0					
I _C = 0; -V _{EB} = 7 V	-lEBO	<		0,1		mΑ
D.C. current gain (note 1)					_	
-I _C = 4 A; -V _{CE} = 4 V -I _C = 10 A; -V _{CE} = 4 V	pEE pEE	>		20 to 200 5	0	
Base-emitter voltage (notes 1 and 2)	"FE					
-1 _C = 4 A; -V _{CE} = 4 V	-VBE	<		1,6		V
Collector-emitter saturation voltage (note 1)						
$-1_{C} = 4 \text{ A}; -1_{B} = 0.4 \text{ A}$	-V _{CEsat}	<		1		V
$-I_C = 10 A; -I_B = 3,3 A$	-V _{CEsat}	<		3		٧
Transition frequency at f = 1 MHz -I _C = 0,5 A; -V _{CE} = 10 V	f _T	>		4		MHz
Cut-off frequency	_					
-I _C = 0,5 A; -V _{CE} = 10 V	^f hfe	>		20		kHz
D.C. current gain ratio of matched pairs BDT91/92; -1 _C = 3 A; -V _{CE} = 3 V	hFE1/hFE	2 <		2,5		

Notes

620

July 1988

^{1.} Measured under pulse conditions: $t_p \le 300~\mu s$; $\delta \le 2\%$. 2. V_{BE} decreases by about 2,3 mV/K with increasing temperature.

Second-breakdown collector current			
$-V_{CE} = 60 \text{ V; t}_{p} = 0.1 \text{ s}$	-I(SB)	>	1,5 A
Switching times			
(between 10% and 90% levels)			
-I _{Con} = 4 A; -I _{Bon} = + I _{Boff} = 0,4 A		typ.	0,5 μs
Turn-on time	t _{on}	<	1,5 μs
T###:	•	typ.	1 μs
Turn-off time	^t off	_	3 118

Fig. 2 Switching times waveforms.

Fig. 3 Switching times test circuit.

October 1985 621

Fig. 4 Safe Operating Area, $T_{mb} = 25$ °C.

- Region of permissible d.c. operation.
- Permissible extension for repetitive pulse operation.
- (1) P_{tot max} and P_{peak max} lines.
 (2) Second-breakdown limits

622

May 1982

Fig. 5 Power derating curve.

Fig. 6 Pulse power rating chart.

May 1982 623

Fig. 7 S.B. current multiplying factor at the $V_{\mbox{CEOmax}}$ level.

Fig. 8 S.B. voltage multiplying factor at the I_{Cmax} level.

624 May 1982

Fig. 9 Typical d.c. current gain at -V_{CE} = 4 V.

Fig. 10 Typical collector-emitter saturation voltage. T_{mb} = 25 o C.

May 1982

625