iMath Phần mềm Tao đề ngẫu nhiên

ĐỀ ÔN TẬP Môn thi: Toán Thời gian: phút Mã đề: 009

PHÂN I. Câu trắc nghiêm nhiều phương án lưa chon.

Câu 1. Đổi số đo của góc –345° sang radian ta được kết quả bằng

A.
$$-\frac{7\pi}{4}$$

B.
$$-\frac{73\pi}{36}$$
.

C.
$$-\frac{67\pi}{36}$$

D.
$$-\frac{23\pi}{12}$$
.

A. $-\frac{1}{4}$. B. $-\frac{13\pi}{36}$. C. $-\frac{67\pi}{36}$. Lời giải. Áp dụng công thức chuyển đổi: $-345^{\circ} = \frac{-345.\pi}{180} = -\frac{23\pi}{12}$. Chọn đáp án D. Chọn đáp án D.

Câu 2. Tính $\cot \frac{25\pi}{3}$.

A.
$$\frac{\sqrt{3}}{3}$$
.

B.
$$\sqrt{3}$$
.

C.
$$\frac{1}{2}$$
. Lời giải.

D.
$$\frac{\sqrt{3}}{2}$$
.

Chọn đáp án A.

Câu 3. Cho x là góc lương giác. Tìm khẳng đinh đúng trong các khẳng đinh sau.

A.
$$cos(\pi - x) = cos x$$
.

B.
$$\cos(\pi - x) = -\cos x$$
.

C.
$$tan(\pi + x) = -tan x$$

$$\mathbf{D.} \, \sin(\pi + x) = \sin x \, .$$

Lời giải.

 $cos(\pi - x) = -cos x$ là khẳng đinh đúng.

Chon đáp án B.

Câu 4. Cho b là góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau.

$$\mathbf{A.} \ \tan 2b = \frac{\tan b}{1 - 2\tan^2 b} \ .$$

B.
$$\cos 2b = 2\sin^2 b - 1$$
.

C.
$$\sin 2b = \sin b + \cos b$$
.

$$\mathbf{D.} \cos 2b = \cos^2 b - \sin^2 b \ .$$

Lời giải.

 $\cos 2b = \cos^2 b - \sin^2 b$ là khẳng định đúng. Chon đáp án D.

Câu 5. Cho a, b là các góc lượng giác. Tìm khẳng định đúng trong các khẳng định sau. **A.** $\sin a \cos b = \frac{1}{2} [\sin(a+b) - \sin(a-b)]$. **B.** $\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$.

A.
$$\sin a \cos b = \frac{1}{2} [\sin(a+b) - \sin(a-b)]$$

B.
$$\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$$
.

C.
$$\sin a \sin b = -\frac{1}{2}[\cos(a-b) - \cos(a+b)]$$
. D. $\cos a \cos b = \frac{1}{2}[\cos(a+b) - \cos(a-b)]$.

D.
$$\cos a \cos b = \frac{1}{2} [\cos(a+b) - \cos(a-b)]$$

 $\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)]$ là khẳng định đúng. Chọn đáp án B.

Câu 6. Cho $\sin \alpha = \frac{2}{3} \text{ với } \alpha \in \left(-\frac{3\pi}{2}; -\pi\right)$. Tính $\sin \left(\alpha + \frac{2\pi}{3}\right)$.

A.
$$-\frac{\sqrt{15}}{6} - \frac{1}{3}$$
.

B.
$$-\frac{1}{3} + \frac{\sqrt{15}}{6}$$

A.
$$-\frac{\sqrt{15}}{6} - \frac{1}{3}$$
. **B.** $-\frac{1}{3} + \frac{\sqrt{15}}{6}$. **C.** $\frac{\sqrt{5}}{6} + \frac{\sqrt{3}}{3}$. **D.** $\frac{2}{3} - \frac{\sqrt{5}}{3}$.

D.
$$\frac{2}{3} - \frac{\sqrt{5}}{3}$$

Vì $\alpha \in \left(-\frac{3\pi}{2}; -\pi\right)$ nên $\cos \alpha < 0$.

$$\cos \alpha = -\sqrt{1 - \frac{4}{9}} = -\frac{\sqrt{5}}{3}.$$

$$\sin \left(\alpha + \frac{2\pi}{3}\right) = \sin \alpha \cos(\frac{2\pi}{3}) + \cos \alpha \sin(\frac{2\pi}{3}) = \frac{2}{3}.(-\frac{1}{2}) + (-\frac{\sqrt{5}}{3}).(\frac{\sqrt{3}}{2}) = -\frac{\sqrt{15}}{6} - \frac{1}{3}.$$
Chon đáp án A.

Câu 7. Tìm tập xác định của hàm số $y = \tan(3x - 5\pi)$.

A.
$$D = \mathbb{R} \setminus \{ \frac{11}{6}\pi + k \frac{1}{3}\pi \}$$
.
B. $D = \mathbb{R} \setminus \{ 1\pi + k \frac{1}{3}\pi \}$.
C. $D = \mathbb{R} \setminus \{ 2\pi + k \frac{1}{3}\pi \}$.
D. $D = \mathbb{R} \setminus \{ \frac{11}{3}\pi + k \frac{1}{3}\pi \}$.
Lòi giải.

Chọn đáp án A.

Câu 8. Nghiệm của phương trình
$$\cos\left(3x + \frac{\pi}{6}\right) = \sin\left(-2x + \frac{7\pi}{6}\right)$$
 là

A. $x = -\frac{\pi}{15} + k2\pi, x = \frac{5\pi}{6} + k2\pi(k \in \mathbb{Z})$.

B. $x = -\frac{5\pi}{6} + k2\pi, x = \frac{\pi}{10} + k\frac{2\pi}{5}(k \in \mathbb{Z})$.

C. $x = -\frac{\pi}{15} + k2\pi, x = \frac{5\pi}{6} + k\frac{2\pi}{5}(k \in \mathbb{Z})$.

D. $x = -\frac{5\pi}{6} + k\frac{\pi}{5}, x = \frac{\pi}{10} + k\pi(k \in \mathbb{Z})$.

Lời giải.

$$\cos\left(3x + \frac{\pi}{6}\right) = \sin\left(-2x + \frac{7\pi}{6}\right) \Leftrightarrow \cos\left(3x + \frac{\pi}{6}\right) = \cos\left(2x - \frac{2\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{6} = 2x - \frac{2\pi}{3} + k2\pi \\ \frac{\pi}{6} = 2x - \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{6} = 2x - \frac{2\pi}{3} + k2\pi \\ 3x + \frac{\pi}{6} = -2x + \frac{2\pi}{3} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{5\pi}{6} + k2\pi \\ 5x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{5\pi}{6} + k2\pi \\ x = \frac{\pi}{10} + k\frac{2\pi}{5} \end{bmatrix}, k \in \mathbb{Z}$$

Chọn đáp án B.

PHẨN II. Câu trắc nghiệm đúng sai.

Câu 1. Cho $\sin \alpha = \frac{1}{2}$, $\alpha \in \left(2\pi; \frac{5\pi}{2}\right)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
$\mathbf{a)} \ \cos \alpha = \frac{\sqrt{3}}{2} \ .$	X	
$\mathbf{b)} \sin 2\alpha = \frac{\sqrt{3}}{2} \ .$	X	
$\mathbf{c}) \cos 2\alpha = -\frac{1}{2} .$		X
$\mathbf{d)} \sin\left(\alpha - \frac{\pi}{3}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2} .$		X

Lời giải.

a) Khẳng định đã cho là khẳng định đúng.

Vì
$$\alpha \in \left(2\pi; \frac{5\pi}{2}\right)$$
 nên $\cos \alpha > 0$.

$$\cos \alpha = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}.$$

b) Khẳng định đã cho là khẳng định đúng.

$$\sin 2\alpha = 2\sin \alpha \cos \alpha = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}.$$

c) Khẳng định đã cho là khẳng định sai.

$$\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2.\frac{1}{4} = \frac{1}{2}$$

d) Khẳng định đã cho là khẳng định sai.

$$\sin\left(\alpha - \frac{\pi}{3}\right) = \sin\alpha\cos(-\frac{\pi}{3}) + \cos\alpha\sin(-\frac{\pi}{3}) = \frac{1}{2}.(\frac{1}{2}) + \frac{\sqrt{3}}{2}.(-\frac{\sqrt{3}}{2}) = -\frac{1}{2}.$$

Chọn đáp án a đúng | b đúng | c sai | d sai.

Câu 2. Cho hàm số $y = 1 - 6\cos(2x)$. Xét tính đúng-sai của các khẳng định sau.

Phát biểu	Ð	S
a) Tập xác định của hàm số là $D=\mathbb{R}$.	X	
b) Hàm số đã cho là hàm số lẻ.		X
c) Tập giá trị của hàm số đã cho là $T = [-6; 0]$.		X
d) Đồ thị cắt trục tung tại điểm có tung độ bằng −5.	X	

Lời giải.

a) Khẳng đinh đã cho là khẳng đinh đúng.

Tập xác đinh của hàm số là $D = \mathbb{R}$.

b) Khẳng đinh đã cho là khẳng đinh sai.

Ta có: Với mọi $x \in \mathbb{R}$ thì $-x \in \mathbb{R}$.

 $f(-x) = 1 - 6\cos(2x) = 1 - 6\cos(2x)$. Vây hàm số $y = 1 - 6\cos(2x)$ là hàm số chẵn.

c) Khẳng đinh đã cho là khẳng đinh sai.

Ta có: $-5 \le 1 - 6\cos(2x) \le -5$ nên tập giá trị là [-5, -5]

d) Khẳng định đã cho là khẳng định đúng.

Cho $x = 0 \Rightarrow y = -5$. Suy ra đồ thị cắt trục tung tại điểm có tung độ bằng -5.

Chọn đáp án a đúng | b sai | c sai | d đúng

PHẨN III. Câu trắc nghiêm trả lời ngắn.

Câu 1. Một bánh xe của một loại xe có bán kính 59 cm và quay được 8 vòng trong 3 giây. Tính độ dài quãng đường (theo đơn vị mét) xe đi được trong 2 giây (kết quả làm tròn đến hàng phần mười).

Lời giải.

Một giây bánh xe quay được số vòng là: $\frac{8}{3}$. Một vòng quay ứng với quãng đường là $2\pi.0$, $6 = 1, 2\pi$.

Sau 2 giây quãng đường đi được là: $\frac{8}{3}$.2.1, $2\pi = 20$, 1:

Câu 2. Số nghiệm thuộc khoảng $(-4\pi; 4\pi)$ của phương trình tan $(x + \pi) = -1$ là

$$\tan\left(x+\pi\right)=-1 \Leftrightarrow x+\pi=-\frac{\pi}{4}+k\pi \Leftrightarrow x=-\frac{5\pi}{4}+k\pi, k\in\mathbb{Z}.$$

Do
$$x \in (-4\pi; 4\pi)$$
 nên $-4\pi < -\frac{5\pi}{4} + k\pi < 4\pi \Rightarrow -\frac{11}{4} < k < \frac{21}{4}$.

Có 8 số k thỏa mãn nên phương trình có 8 nghiệm