Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original): A compound of Formula I:

$$R^{10}$$
 $CR^{1}R^{2}$
 $CR^{1}R^{2}$

wherein:

Z is CH, CR³ or N; wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is selected from C_3 - C_8 cycloalkyl, phenyl, and monocyclic Het; wherein said C_3 - C_8 cycloalkyl, phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro,

 $C_1\text{-}C_6 \text{ alkyl}, C_3\text{-}C_6 \text{ alkenyl}, C_3\text{-}C_6 \text{ alkynyl}, \text{-}C_0\text{-}C_6 \text{ alkyl}\text{-}CO_2R^{11},$

 $-C_0-C_6 \text{ alkyl-C(O)SR}^{11}, -C_0-C_6 \text{ alkyl-CONR}^{12} \\ R^{13}, -C_0-C_6 \text{ alkyl-COR}^{14},$

 $-C_0-C_6 \ alkyl-NR^{12}R^{13}, \ -C_0-C_6 \ alkyl-SR^{11}, \ -C_0-C_6 \ alkyl-OR^{11}, \ -C_0-C_6 \ alkyl-SO_3H,$

 $-C_0-C_6 \ alkyl-SO_2NR^{12}R^{13}, \ -C_0-C_6 \ alkyl-SO_2R^{11}, \ -C_0-C_6 \ alkyl-SOR^{14},$

-C₀-C₆ alkyl-OCOR¹⁴, -C₀-C₆ alkyl-OC(O)NR¹²R¹³, -C₀-C₆ alkyl-OC(O)OR¹⁴,

 $-C_0-C_6$ alkyl-NR¹²C(O)OR¹⁴, $-C_0-C_6$ alkyl-NR¹²C(O)NR¹²R¹³, and

-C₀-C₆ alkyl-NR¹²COR¹⁴, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

 W^1 and W^2 are each independently $C_3\text{-}C_8$ cycloalkyl or aryl;

each R¹ and R² is independently selected from H, C₁-C₆ alkyl, -OH, -O-C₁-C₆ alkyl, -SH, and -S-C₁-C₆ alkyl; each R³ is the same or different and is independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, $-C_0-C_6$ alkyl-Het, $-C_0-C_6$ alkyl- C_3-C_7 cycloalkyl, $-C_0-C_6$ alkyl- CO_2R^{11} , $-C_0-C_6$ alkyl-C(O)SR¹¹, $-C_0-C_6$ alkyl-CONR¹²R¹³, $-C_0-C_6$ alkyl-COR¹⁴, -C₀-C₆ alkyl-NR¹²R¹³, -C₀-C₆ alkyl-SR¹¹, -C₀-C₆ alkyl-OR¹¹, -C₀-C₆ alkyl-SO₃H, $-C_0-C_6$ alkyl-SO₂NR¹²R¹³, $-C_0-C_6$ alkyl-SO₂R¹¹, $-C_0-C_6$ alkyl-SOR¹⁴, $-C_0-C_6$ alkyl-OCOR¹⁴, $-C_0-C_6$ alkyl-OC(O)NR¹²R¹³, $-C_0-C_6$ alkyl-OC(O)OR¹⁴, $-C_0-C_6$ alkyl-NR¹²C(O)OR¹⁴, $-C_0-C_6$ alkyl-NR¹²C(O)NR¹²R¹³, and -C₀-C₆ alkyl-NR¹²COR¹⁴, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents; each R⁴ and R⁵ is independently H or C₁-C₄ alkyl; R⁶ and R⁷ are each independently H or C₁-C₄ alkyl; R^8 and R^9 are each independently H or C_1 - C_4 alkyl; R^{10} is selected from H, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; R¹¹ is selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl; each R¹² and each R¹³ are independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹³ and R¹⁴ together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and R¹⁴ is selected from C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;

provided that R^{10} is not H or methyl when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

- 2. (Original): The compound according to claim 1; wherein p is 0 or 1.
- 3. (Currently amended): The compound according to any of claims 1-2 claim $\underline{1}$, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is C_1 - C_4 alkyl or both R^1 and R^2 are C_1 - C_3 alkyl.
- 4. (Currently amended): The compound according to any of claims 1-2 claim 1, wherein R^1 and R^2 are each H, or one of R^1 or R^2 is H and the other of R^1 or R^2 is methyl, ethyl, propyl, butyl, or sec-butyl, or R^1 and R^2 are both methyl or ethyl.
- 5. (Currently amended): The compound according to any of claims 1-4 claim 1, wherein R^{10} is H or C_1 - C_4 alkyl.
- 6. (Currently amended): The compound according to any of claims 1-5 claim 1, wherein Z is CH.
- 7. (Currently amended): The compound according to any of claims 1-6 claim 1, wherein k is 0 or 1.
- 8. (Currently amended): The compound according to any of claims 1-7 claim 1, wherein \mathbb{R}^3 is selected from halo, \mathbb{C}_1 - \mathbb{C}_4 alkyl and \mathbb{C}_1 - \mathbb{C}_4 alkoxy.
- 9. (Currently amended): The compound according to any of claims 1-8 claim 1, wherein n is 2-4.
- 10. (Currently amended): The compound according to any of claims 1-9 claim 1, wherein n is 3.

- 11. (Currently amended): The compound according to any of claims 1-10 claim 1, wherein q is 1.
- 12. (Currently amended): The compound according to any of claims 1-11 claim 1, wherein R^6 , R^7 , R^8 and R^9 are each H.
- 13. (Currently amended): The compound according to any of claims 1-12 claim 1, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from halo, C_1 - C_4 alkoxy and C_1 - C_4 alkyl or Q is substituted pyridyl group containing one C_1 - C_4 alkyl substituent.
- 14. (Currently amended): The compound according to any of claims 1-13 claim 1, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂, or Q is 6-methyl-pyridin-2-yl.
- 15. (Currently amended): The compound according to any of claims 1-14 claim 1, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.
- 16. (Currently amended): The compound according to any of claims 1-15 claim 1, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.
- 17. (Currently amended): The compound according to any of claims 1-16 claim 1, wherein W^1 and W^2 are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.
- 18. (Currently amended): The compound according to any of claims 1-17 claim 1, wherein W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both

fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl.

19. (Original): A compound of Formula II:

$$R^{10}$$
 O $(CR^{1}R^{2})_{p}$ Z O $(CR^{4}R^{5})_{n}$ N $(CR^{8}R^{9})_{q}$ Q Π

wherein:

Z is CH or N;

Q is phenyl or monocyclic Het; wherein said phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- $-C_0$ - $-C_4$ alkyl- $-C_0$ - $-C_0$ -

 $\begin{array}{c} p \text{ is } 0\text{-}4;\\ k \text{ is } 0, 1 \text{ or } 2;\\ n \text{ is } 2\text{-}4;\\ q \text{ is } 0 \text{ or } 1;\\ W^1 \text{ and } W^2 \text{ are each independently } C_3\text{-}C_6 \text{ cycloalkyl or aryl};\\ each \, R^1 \text{ and } R^2 \text{ is independently selected from } H, \, C_1\text{-}C_4 \text{ alkyl, -OH,}\\ \text{-O-C}_1\text{-}C_4 \text{ alkyl, -SH, and -S-C}_1\text{-}C_4 \text{ alkyl;}\\ each \, R^3 \text{ is the same or different and is independently selected from halo,} \end{array}$

cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} ,

-C₀-C₄ alkyl-SO₂NR¹²R¹³, and -C₀-C₄ alkyl-CO₂H, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

R⁶ and R⁷ are each independently H or C₁-C₄ alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is selected from H, C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_6 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R¹² and each R¹³ are independently selected from H, C₁-C₆ alkyl,
-C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹² and R¹³
together with the nitrogen to which they are attached form a 4-7 membered
heterocyclic ring which optionally contains one or more additional heteroatoms
selected from N, O, and S; and

 R^{14} is selected from C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R^{10} is not H or methyl when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

20. (Currently amended): The compound according to claim 1 or 19, wherein R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are each H; at least one of R^1 or R^2 is methyl, ethyl, propyl butyl or sec-butyl or both of R^1 and R^2 are methyl or ethyl; R^{10} is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl; Z is Z is Z in is

- 3; q is 1; k is 0 or 1 and R³ is Cl, Br or methyl; or a pharmaceutically acceptable salt or solvate thereof.
- 21. (Currently amended): The compound according to claim 1 or 19, wherein R⁶, R⁷, R⁸ and R⁹ are each H; R¹ and R² are each independently H or methyl; at least one R⁴ or R⁵ is methyl; R¹⁰ is H or methyl; Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W¹ and W² are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt or solvate thereof.
- 22. (Currently amended): The compound according to claims 1 or 19, selected from:
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid methyl ester;
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid methyl ester;
- (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino}-2-methyl-propoxy}-phenyl)acetic acid;

- (R)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[6-methyl-pyridin-2-ylmethyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-fluoro-4-methoxy-benzyl](2,2-diphenylethyl)amino]-2-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-fluoro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-(trifluoromethyl)-4-fluoro-benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2-chlorobenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethylbenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;

- (R)-2-(3-{3-[[2-fluoro-(3-trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[3-trifluoromethyl-4-fluoro-benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (R)-2-(3-{3-[[4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[2-chloro-3,4-dimethoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (*R*)-2-(3-{3-[[3-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid;
- (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)-amino]-methyl-propoxy}-phenyl)-acetic acid;
- 3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-methyl-benzoic acid;
- (3-{3-[[2,2-(bis-(4-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- (3-{3-[[2,2-(bis-(3-fluoro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- rac-(3-{3-[[2-phenyl-2-(o-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)benzyl)-amino]-propoxy}-phenyl)- acetic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-butyric acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-pentanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-hexanoic acid;

- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-4-methyl-pentanoic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid methyl ester;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-ethyl-butyric acid;
- 2-(3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-butoxy}-phenyl)-2-methyl-propionic acid;
- 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid methyl ester;
- 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;
- 2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-benzoic acid;
- (2-bromo-5-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;
- *N*-(2-phenyl-2-cyclopentylethyl)-*N*-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxy)propylamine;
- N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxyphenoxy)propylamine;
- N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-2,2-dimethyl-3-(3-aminopropoxy)phenylpropionic acid;
- (3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid methyl ester;
- (3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-acetic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methyl-propionic acid;
- 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-propionic acid;

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

- 23. (Currently amended): A pharmaceutical composition comprising a compound according to any one of claims 1-22 claim 1 and a pharmaceutically acceptable carrier or diluent.
 - 24. (Cancelled).
- 25. (Original): A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula I-A:

$$(R^3)_k$$
 $(R^3)_k$
 $(CR^1R^2)_p$
 $(CR^4R^5)_n$
 $(CR^8R^9)_q$
 $(CR^8R^9)_q$

I-A

wherein:

Z is CH, CR³ or N; wherein when Z is CH or CR³, k is 0-4 and when Z is N, k is 0-3;

p is 0-8;

n is 2-8;

q is 0 or 1;

Q is selected from C_3 - C_8 cycloalkyl, phenyl, and monocyclic Het; wherein said C_3 - C_8 cycloalkyl, phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_6 alkyl- CO_2R^{11} , $-C_0$ - C_6 alkyl- $C(O)SR^{11}$, $-C_0$ - C_6 alkyl- $CONR^{12}R^{13}$, $-C_0$ - C_6 alkyl- COR^{14} , $-C_0$ - C_6 alkyl- $COR^{12}R^{13}$, $-C_0$ - C_6 alkyl- COR^{14} , $-C_0$ - C_6 alkyl- $COR^{12}R^{13}$, $-C_0$ - C_6 alkyl- COR^{14} , $-C_0$ - C_6 alkyl- $COR^{12}R^{13}$, $-C_0$ - C_6 alkyl- COR^{14} ,

```
-C_0-C_6 alkyl-OCOR<sup>14</sup>, -C_0-C_6 alkyl-OC(O)NR<sup>12</sup>R<sup>13</sup>, -C_0-C_6 alkyl-OC(O)OR<sup>14</sup>,
-C_0-C_6 alkyl-NR<sup>12</sup>C(O)OR<sup>14</sup>, -C_0-C_6 alkyl-NR<sup>12</sup>C(O)NR<sup>12</sup>R<sup>13</sup>, and
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>COR<sup>14</sup>, where said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
substituted by one or more halo substituents;
              W<sup>1</sup> and W<sup>2</sup> are each independently C<sub>3</sub>-C<sub>8</sub> cycloalkyl or aryl;
             each R<sup>1</sup> and R<sup>2</sup> is independently selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, -OH,
-O-C<sub>1</sub>-C<sub>6</sub> alkyl, -SH, and -S-C<sub>1</sub>-C<sub>6</sub> alkyl;
              each R<sup>3</sup> is the same or different and is independently selected from halo,
cyano, nitro, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar,
-C_0-C_6 alkyl-Het, -C_0-C_6 alkyl-C_3-C_7 cycloalkyl, -C_0-C_6 alkyl-C_2R^{11},
-C<sub>0</sub>-C<sub>6</sub> alkyl-C(0)SR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-CONR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-COR<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OR<sup>11</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-SO<sub>3</sub>H,
-C_0-C_6 alkyl-SO<sub>2</sub>NR<sup>12</sup>R<sup>13</sup>, -C_0-C_6 alkyl-SO<sub>2</sub>R<sup>11</sup>, -C_0-C_6 alkyl-SOR<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-OCOR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)NR<sup>12</sup>R<sup>13</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-OC(O)OR<sup>14</sup>,
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)OR<sup>14</sup>, -C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>C(O)NR<sup>12</sup>R<sup>13</sup>, and
-C<sub>0</sub>-C<sub>6</sub> alkyl-NR<sup>12</sup>COR<sup>14</sup>, wherein said C<sub>1</sub>-C<sub>6</sub> alkyl is optionally unsubstituted or
substituted by one or more halo substituents;
             each R<sup>4</sup> and R<sup>5</sup> is independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
             R<sup>6</sup> and R<sup>7</sup> are each independently H or C<sub>1</sub>-C<sub>4</sub> alkyl;
             R<sup>8</sup> and R<sup>9</sup> are each independently H or C<sub>1</sub>-C<sub>4</sub> alkyl:
             R^{10} is selected from H, C_1-C_8 alkyl, C_3-C_8 alkenyl, C_3-C_8 alkynyl,
-C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
             R<sup>11</sup> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl,
-C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
             each R<sup>12</sup> and each R<sup>13</sup> are independently selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl,
C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl, -C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and
-C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl, or R<sup>13</sup> and R<sup>14</sup> together with the nitrogen to which they
are attached form a 4-7 membered heterocyclic ring which optionally contains one or
more additional heteroatoms selected from N, O, and S; and
             R<sup>14</sup> is selected from C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkynyl,
-C<sub>0</sub>-C<sub>6</sub> alkyl-Ar, -C<sub>0</sub>-C<sub>6</sub> alkyl-Het and -C<sub>0</sub>-C<sub>6</sub> alkyl-C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
```

provided that R¹⁰ is not H when p is 1 and R¹ and R² are each H, k is 0, n is 3 and each R⁴ and R⁵ are H, q is 1 and R⁸ and R⁹ are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R⁶ and R⁷ are each H, W¹ is unsubstituted phenyl and W² is unsubstituted phenyl or unsubstituted cyclohexyl; or a pharmaceutically acceptable salt or solvate thereof.

- 26. (Original): The method according to claim 25, wherein p is 0 or 1 and q is 1.
- 27. (Currently amended): The method according to any of claims 25-26 claim 25, wherein R⁶, R⁷, R⁸ and R⁹ are each H.
- 28. (Currently amended): The method according to any of claims 25-27 claim 25, wherein Z is CH.
- 29. (Currently amended): The method according to any of claims 25-28 claim 25, wherein k is 0 or 1.
- 30. (Currently amended): The method according to any of claims 25-29 claim 25, wherein R^3 is selected from halo, C_1 - C_4 alkyl and C_1 - C_4 alkoxy.
- 31. (Currently amended): The method according to any of claims 25-30 claim 25, wherein n is 3.
- 32. (Currently amended): The method according to any of claims 25-31 claim 25, wherein R^{10} is H or C_1 - C_4 alkyl.
- 33. (Currently amended): The method according to any of claims 25-32 claim $\underline{25}$, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from halo, C_1 - C_4 alkoxy and C_1 - C_4 alkyl or Q is substituted pyridyl group containing one C_1 - C_4 alkyl substituent.

- 34. (Currently amended): The method according to any-of claims 25-33 claim 25, wherein Q is a substituted phenyl group containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂, or Q is 6-methyl-pyridin-2-yl.
- 35. (Currently amended): The method according to any of claims 25-34 claim 25, wherein Q is a 2-chloro-3-(trifluoromethyl)phenyl group.
- 36. (Currently amended): The method according to any of claims 25-35 claim 25, wherein W^1 and W^2 are each aryl or one of W^1 or W^2 is aryl and the other of W^1 or W^2 is cyclopentyl.
- 37. (Currently amended): The method according to any of claims 25-36 claim 25, wherein W^1 and W^2 are each independently selected from unsubstituted cyclopentyl, unsubstituted phenyl and mono-substituted phenyl, where the phenyl is substituted by halo.
- 38. (Currently amended): The compound according to any of claims 25-37 claim 25, wherein W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl.
- 39. (Original): A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula II-A:

wherein:

Z is CH or N;

Q is phenyl or monocyclic Het; wherein said phenyl and monocyclic Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1 - C_6 alkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, $-C_0$ - C_4 alkyl- CO_2R^{11} , $-C_0$ - C_4 alkyl- $C(O)SR^{11}$, $-C_0$ - C_4 alkyl- $CONR^{12}R^{13}$, $-C_0$ - C_4 alkyl- $CONR^{12}R^{13}$, $-C_0$ - C_4 alkyl- COR^{14} , $-C_0$ - C_4 alkyl- $COCOR^{14}$, where said C_1 - C_6 alkyl is optionally unsubstituted or substituted by one or more halo substituents,

p is 0-4;

k is 0, 1 or 2;

n is 2-4;

q is 0 or 1;

 W^1 and W^2 are each independently $C_3\text{-}C_6$ cycloalkyl or aryl;

each R¹ and R² is independently selected from H, C₁-C₄ alkyl, -OH,

-O-C₁-C₄ alkyl, -SH, and -S-C₁-C₄ alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl- $NR^{12}R^{13}$, $-C_0$ - C_4 alkyl- OR^{11} ,

-C₀-C₄ alkyl-SO₂NR¹²R¹³, and -C₀-C₄ alkyl-CO₂H, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

each R⁴ and R⁵ is independently H or C₁-C₄ alkyl;

R⁶ and R⁷ are each independently H or C₁-C₄ alkyl;

R⁸ and R⁹ are each independently H or C₁-C₄ alkyl;

 R^{10} is selected from H, C_1 - C_6 alkyl, $-C_0$ - C_4 alkyl-Ar, $-C_0$ - C_4 alkyl-Het and $-C_0$ - C_4 alkyl- C_3 - C_6 cycloalkyl;

 R^{11} is selected from H, C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

each R^{12} and each R^{13} are independently selected from H, C_1 - C_6 alkyl, C_0 - C_4 alkyl-Ar, C_0 - C_4 alkyl-Het and C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl, or R^{12} and R^{13} together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S; and

 R^{14} is selected from C_1 - C_6 alkyl, - C_0 - C_4 alkyl-Ar, - C_0 - C_4 alkyl-Het and - C_0 - C_4 alkyl- C_3 - C_7 cycloalkyl;

provided that R^{10} is not H when p is 1 and R^1 and R^2 are each H, k is 0, n is 3 and each R^4 and R^5 are H, q is 1 and R^8 and R^9 are each H, Q is unsubstituted phenyl or 4-methoxyphenyl or 2-chloro-3-trifluoromethyl-phenyl, R^6 and R^7 are each H, W^1 is unsubstituted phenyl and W^2 is unsubstituted phenyl or unsubstituted cyclohexyl;

or a pharmaceutically acceptable salt or solvate thereof.

- 40. (Currently amended): The method according to claim 25 or 39, wherein R^4 , R^5 , R^6 , R^7 , R^8 and R^9 are each H; at least one of R^1 or R^2 is methyl, ethyl, propyl butyl or sec-butyl or both of R^1 and R^2 are methyl or ethyl; R^{10} is H or methyl; Q is 2-chloro-3-(trifluoromethyl)phenyl; W^1 and W^2 are both unsubstituted phenyl, or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is cyclopentyl, or W^1 and W^2 are both fluoro-substituted phenyl or one of W^1 or W^2 is unsubstituted phenyl and the other of W^1 or W^2 is chloro-substituted phenyl; Z is CH; P is 0, 1 or 2; P is 3; P is 1; P is 0 or 1 and P is P is 0, 1 or 2; P is 3; P is 1; P is 0 or 1 and P is P is 0, 1 or 2; P is 3; P is 1; P is 0 or 1 and P is CI, P is or methyl; or a pharmaceutically acceptable salt or solvate thereof.
- 41. (Currently amended): The method according to claim 25 or 39, wherein R^6 , R^7 , R^8 and R^9 are each H; R^1 and R^2 are each independently H or methyl; at least one R^4 or R^5 is methyl; R^{10} is H or methyl; Q is a substituted phenyl group

containing one, two, or three substituents selected from -F, -Cl, -CF₃, -OCH₃, and -CH(CH₃)₂; W^1 and W^2 are unsubstituted phenyl; Z is CH; p is 1; n is 3; q is 1; and k is 0; or a pharmaceutically acceptable salt or solvate thereof.

42. (Currently amended): The method according to claim 25 or 39 comprising administering a compound selected from:

R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-2methyl-propoxy}-phenyl)acetic acid; (R)-2- $(3-\{3-\{2-chloro-3-acid\})$ (trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-1-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3methyl-propoxy}-phenyl)acetic acid; (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; 3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]-propoxy}-4-methyl-benzoic acid; 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2diphenylethyl-amino]-propoxy}-phenyl)-propionic acid; (3-{3-[[2,2-(bis-(3-fluorophenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid hydrochloride salt; rac-(3-{3-[[2-phenyl-2-(o-chloro-phenyl)-ethyl]-(2-chloro-3-(trifluoromethyl)-benzyl)-amino]-propoxy}-phenyl)- acetic acid hydrochloride salt; (3-chloro-4-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]propoxy}-phenyl)-acetic acid methyl ester; (R)-2-(3-{3-[[2,4-dimethoxybenzyl](2,2diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[4methoxybenzyl](2,2-diphenylethyl)amino]-3-methyl-propoxy}-phenyl)acetic acid; (R)-2-(3-{3-[[2-fluoro-4-methoxybenzyl](2,2-diphenylethyl)amino]-3-methylpropoxy}-phenyl)acetic acid; (3-{(R)-[(2,2-diphenyl-ethyl)-(4-isopropyl-benzyl)amino]-methyl-propoxy}-phenyl)-acetic acid; and 2-(3-{3-[(2-chloro-3trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-2-methylpropionic acid hydrochloride salt; and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

43. (Currently amended): The method according to claim 25 or 39, wherein said LXR mediated disease or condition is cardiovascular disease.

- 44. (Currently amended): The method according to claim 25 or 39, wherein said LXR mediated disease or condition is atherosclerosis.
- 45. (Currently amended): The method according to claim 25 or 39, wherein said LXR mediated disease or condition is inflammation.
- 46. (Currently amended): A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of a compound according to any of claims 1-22 claim 1.
- 47. (Currently amended): A method for inhibiting cholesterol absorption, said method comprising administering a therapeutically effective amount of a compound according to any of claims 1-22 claim 1.

48-55 (Cancelled).

56. (Currently amended): A compound according to any one of claims 1-22 claim 1 wherein at least one of R⁴, R⁵, R⁶, R⁷, R⁸ or R⁹ is defined as follows:

wherein at least one R^4 or R^5 is C_1 - C_4 alkyl; or at least one of R^6 of R^7 is C_1 - C_4 alkyl; or both of R^8 or R^9 are independently C_1 - C_4 alkyl.

- 57. (Currently amended): A compound according to any one of claims 1-22 claim 1 wherein at least one R^4 or R^5 is methyl.
- 58. (Currently amended): A compound according to any one of claims 1-22 claim 1 wherein:

any one of R^4 or R^5 is not H or any one of R^6 or R^7 is not H or R^8 and R^9 are each C_1 - C_4 alkyl when Z is CH or CR³ and k is 0-4 or Z is N and k is 0-3; p is 0-8; n is 2-8; q is 0 or 1;

Q is selected from optionally unsubstituted or substituted C_3 - C_8 cycloalkyl, phenyl and mono-cyclic Het;

 W^1 and W^2 are each independently optionally unsubstituted or substituted $C_3\text{-}C_8$ cycloalkyl or aryl;

each R^1 and R^2 is independently selected from H, C_1 - C_6 alkyl, -OH, -O- C_1 - C_6 alkyl, -SH, and -S- C_1 - C_6 alkyl;

each R^3 is the same or different and is independently selected from halo, cyano, nitro, $-\text{CONR}^{12}R^{13}$, $-\text{COR}^{14}$, $-\text{SR}^{11}$, $-\text{SO}_2R^{11}$, $-\text{SOR}^{14}$, $-\text{OCOR}^{14}$ and optionally unsubstituted or substituted C_1 - C_6 alkyl, C_3 - C_6 alkenyl, 5-6 membered-Het, $-\text{C}_0$ - C_6 alkyl- $-\text{CO}_2R^{11}$, or $-\text{C}_0$ - $-\text{C}_6$ alkyl- $-\text{NR}^{12}R^{13}$.