ANALISIS PERENCANAAN TUBUH BENDUNGAN ANTARA TIPE URUGAN DENGAN ROLLER COMPACTED CONCRETE DAMS (STUDI KASUS: SUNGAI MELANGIT, KAB. BANGLI)

Hasan Wanandi¹, I Gusti Ngurah Diwangkara², Ida Bagus Ngurah Purbawijaya²
¹Alumni Jurusan Teknik Sipil, Fakultas Teknik Universitas Udayana, Denpasar
²Dosen Jurusan Teknik Sipil, Fakultas Teknik Universitas Udayana, Denpasar

Email: ibnpurbawijaya@unud.ac.id

Abstrak: Sungai Melangit di Kabupaten Bangli diharapkan dapat digunakan secara maksimal untuk mengairi lahan pertanian disekitarnya. Pembangunan bendungan berfungsi sebagai penangkap air dan penyimpan air pada musim penghujan. Pada aliran sungai Melangit, telah direncanakan pembuatan bendungan oleh Dinas Pekerjaan Umum dengan menggunakan bendungan tipe urugan tanah. Tujuan penelitian ini adalah membandingkan antara penggunaan bendungan RCC dengan bendungan tipe urugan tanah. Perencanaan bendungan beton dimulai dengan mencari data curah hujan terbaru dan menghitung curah hujan rencana. Curah hujan rencana diperlukan untuk perhitungan banjir rencana. Kemudian banjir rencana yang didapat dibandingkan dengan banjir abnormal (probable maximum flood) dan diambil hasil yang terbesar. Dari data lengkung kapasitas dan neraca inflow-outflow waduk dapat dicari tinggi genangan air yang memenuhi kebutuhan tampungan pada neraca inflow-outflow. Kemudian dicari penelusuran banjir sehingga didapat tinggi puncak bendungan. Bendungan dihitung stabilitasnya dan hasilnya harus memenuhi angka keamanan yang disyaratkan. Setelah dimensi tubuh bendungan didapat, lalu dihitung biaya pembangunannya dan dibandingkan dengan biaya pembangunan bendungan tipe urugan tanah.Dari hasil perbandingan, didapat biaya pembangunan bendungan RCC sebesar Rp 90.236.041.566,00 dan biaya pembangunan bendungan urugan tanah sebesar Rp 104.407.233.539,00. Jadi, bendungan dengan menggunakan RCC lebih ekonomis dibandingkan dengan bendungan tipe urugan.

Kata kunci: bendungan, Roller Compacted Concrete, RCC, perbandingan

ACCELERATION TIME AND COST OPTIMIZATION OF BUILDING PROJECT WITH TIME COST TRADE OFF METHOD (CASE STUDY: DEVELOPMENT OF COW SLAUGHTERHOUSE AND INSTALATION, MAMBAL, DISTRICT)

Abstract: Melangit River in Bangli Subprovince expected to be used to the maximum to irrigate the surrounding farmland. Construction of the dam serves as a water catchment and storage in the rainy season. In Melangit streams, dams planned by the Department of Public Works using earth fill dam. Authors have compared the use of RCC dam with earth fill dam. Rainfall is needed for the calculation of flood. Then the flood were compared with abnormal floods (probable maximum flood) and taken the higest results. From the data capacity of the inflow-outflow grapich balance, the spillway can be searched high puddles that meets the needs of the pitcher on the inflow-outflow balance. Then look for in order to get higher search flood peak dam. Dams stability calculated and the results must meet the required safety factor. Once the dam body dimensions obtained, and then the cost of RCC compared to the cost of earth fill dams. The results obtained RCC dams construction cost of Rp 90,236,041,566.00 and the earth fill dams construction costs of Rp 104,407,233,539.00. Thus, dams using RCC dam are more economical than the earth fill dams.

Keyword: dams, roller compacted concrete dams,.

PENDAHULUAN

Air adalah sumber kehidupan bagi semua makhluk hidup. Provinsi Bali yang memiliki luas wilayah sekitar 5.636,66 km², telah mengalami perkembangan pesat pada semua sektor, antara ekonomi, pariwisata, industri, perdagangan. Kabupaten Bangli merupakan salah satu wilayah di Provinsi Bali yang memiliki keunggulan pada hasil pertanian, namun belum semua potensi produksi pertanian dapat diwujudkan. disebabkan Hal ini belum terkelolanya sumber daya yang tersedia secara maksimal.

Aliran Tukad Melangit merupakan salah satu sumber air yang diharapkan dapat digunakan untuk mengairi lahan pertanian di sepanjang alirannya. Untuk memaksimalkan pemanfaatan air pada aliran Tukad Melangit maka perlu dibangun waduk. Pada aliran Sungai Melangit telah dilakukan perencanaan bendungan oleh Dinas Pekerjaan Umum dengan menggunakan bendungan tipe urugan. Bendungan Jehem dpaat memenuhi kebutuhan irigasi seluas 544 ha, sedangkan sedangkan kebutuhan air domestik dan non domestik yang mampu dipebuhi sebesar 0,20 m3/dt. Bendungan Urugan yang direncanakan oleh Departemen Pekeriaan Umum adalah bendungan urugan tanah homogen dengan inti kedap air. Bendungan yang direncanakan oleh Departemen Pekerjaan Umum menggunakan bendungan urugan tanah homogen dengan inti kedap air. Dalam perencanaan pembuatan bendungan tipe urugan terkadang dijumpai permasalahan sulitnya mencari material setempat, dikarenakan permasalahan sosial budaya maupun lingkungan. Bendungan beton dapat menjadi alternatif apabila bendungan tipe urugan tidak memungkinkan untuk dibuat.

Bendungan beton didesain agar berat sendiri dari bendungan tersebut, mampu menahan beban dan gaya yang bekerja pada bendungan tersebut. Selain bendungan beton bertulang, telah dikembangkan bendungan beton menggunakan metode Roller Compacted Concrete (RCC) atau dikenal dengan Beton Padat Giling. Bendungan RCC merupakan bendungan vang dibangun dengan cara menghamparkan material beton dengan ketebalan tertentu dan kemudian dipadatkan menggunakan alat pemadat. Penghamparan dilakukan berulang-ulang sampai mencapai ketinggian bendungan yang direncanakan.

Pada tugas akhir ini, penulis akan mencoba menganalisa dan membandingkan bendungan tipe mana yang lebih ekonomis antara bendungan urugan atau bendungan beton, dengan menggunakan metode *RCC*, dengan studi kasus Sungai Melangit, Kabupaten Bangli.

Tujuan Penelitian

Penelitian ini memiliki tujuan untuk mendapatkan suatu perbandingan biaya dalam pembuatan bendungan tipe urugan dengan bendungan tipe beton dengan metode *roller compacted concrete*.

TINJAUAN PUSTAKA Pengenalan Bendungan

Bendungan merupakan bangunan yang berfungsi untuk menampung dan menyimpan air dalam jumlah yang cukup besar. Bendungan biasanya dibangun pada daerah cekungan, serta letaknya melintang pada alur sungai (Sosrodarsono, 1989).

Analisa Curah Hujan Rancangan

Dalam merencanakan suatu konstruksi bangunan air terlebih dahulu harus dilakukan analisa hidrologi pada daerah rencana. Analisa hidrologi dilakukan dengan menganalisa data curah hujan. Analisa curah hujan bertujuan untuk mendapatkan debit banjir rencana. Debit banjir rencana selanjutnya digunakan sebagai dasar dalam perencanaan konstruksi bangunan air.

Curah hujan rencana adalah curah hujan tahunan terbesar pada suatu periode ulang tertentu.

$$X = \bar{X} + s.K$$
 (1) Dimana,

X = Nilai varian pengamatan

 \bar{X} = Harga rata-rata sampel

s = Standar deviasi

K = Faktor probabilitas

Perlu kiranya mengetahui besarnya curah hujan maksimum yang mungkin terjadi (*Probable Maximum Precipitation*).

$$Xm = \overline{X} + Km.Sn \tag{2}$$

Dimana,

Xm = Curah hujan maksimum

 \bar{X} = Rata-rata dta hujan harian maksimum

Sn = Standar Deviasi

Km = Variabel statistik

Uji distribusi frekuensi diperlukan untuk menentukan apakah sebaran data hujan untuk menghitung banjir rencana sudah layak digunakan atau belum.

Analisa Banjir Rancangan

Debit banjir rancangan adalah salah satu besaran rancangan untuk suatu rencana pembuatan bangunan air atau bangunan yang keberadaannya dipengaruhi oleh karakteristik aliran banjir. Debit banjir rancangan dihitung dengan menggunakan metode Nakayasu.

$$Q_{p} = \frac{C.A.R}{3.6(0.3T_{p} + T_{0.3})}$$
 (3)

Dimana,

Qp = Debit puncak banjir A = Luas daerah irigasi

Tp = Tenggang waktu dari permulaan hujan sampai puncak banjir (jam)

T0,3 = Waktu yang diperlukan oleh penurunan debit puncak sampai menjadi 30% dari debit puncak (jam)

C = Koefisien pengaliran

Gambar 1 Hidrograf satuan sintetik Nakayasu (Sumber: Sri Harto, 1993)

Penelusuran Banjir

Penelusuran banjir bertujuan untuk mendapatkan elevasi muka air saat terjadinya banjir. Sehingga dapat dihitung ketinggian puncak bendungan agar air tidak melimpas melewati puncak bendungan.

$$I - O = \frac{ds}{dt} \tag{4}$$

Dimana,

I = Debit Inflow
O = Debit Outflow

ds = besarny tampungan dalam bagian memanjang alur sungai

dt = Periode penelusuran

Dari persamaan kontinuitas di atas, dapat dibuat grafik hubungan antara debit masuk dan debit keluar, serta tinggi air maksimum sehingga dapat ditentukan tinggi bendungan sebagai berikut:

Dimana,

HWL = *High Water Level* Freeboard = Tinggi jagaan

Analisa Gaya-gaya Vertikal

Gaya-gaya vertikal merupakan gaya yang terjadi akibat dari berat sendiri bendungan.

Gambar 2 Gaya-gaya vertikal pada tubuh bendungan (Sumber: Soedibyo, 2003)

Untuk mencari titik tangkap gaya ke arah vertikal dan horisontal, jarak b dan a dicari momen terhadap titik A. Untuk memudahkan kontrol perhitungan dibuat secara tabel.

Analisa Gaya-gaya Horizontal

Gaya-gaya horizontal yang terjadi pada tubuh bendungan adalah sebagai berikut:

1) Gaya hidrostatik

Gaya hidrostatik merupakan gaya horizontal akibat air pada kondisi statis.

$$H_{s} = \frac{1}{2} \cdot h_3^2 \cdot \gamma \ air \tag{6}$$

Dimana,

Hs = Gaya hidrostatik

h₃ = Tinggi air pada bendungan

 γ_{air} = Berat jenis air

2) Gaya hidrodinamik

Gaya hidrodinamik merupakan gaya horizontal akibat air pada kondisi dinamis.

$$H_d = C_d \quad \gamma \quad \text{air.} k_1 \cdot h_4^{\frac{1}{2}}$$
 (7) Dimana,

Hs = Gaya hidrostatik

h₃ = Tinggi air pada bendungan

 $\gamma_{air} = Berat jenis air$

k = Koefisien gempa

Gambar 3 Gaya-gaya horizontal pada tubuh bendungan (Sumber: Soedibyo, 2003)

(5)

Stabilitas Bendungan

Setelah dihitung gaya-gaya yang terjadi pada tubuh bendungan maka harus dihitung stabilitas bendungan agar aman terhadap bahaya guling, geser dan penurunan.

1) Aman terhadap guling

Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila memenuhi persyaratan berikut:

$$Sf = \frac{\sum M_{Av}}{\sum M_{Ah}} \ge 1,50 \tag{8}$$

Dimana,

 \sum Mav = Jumlah momen vertikal di titik A

 \sum May = Jumlah momen horizontal di titik A

2) Aman terhadap geser

Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila memenuhi persyaratan berikut:

$$Sf = \frac{c \sum V + tan\phi A}{\sum H} \ge 1$$
 (9)

Dimana.

= Kohesi tanah

 $\sum V = \text{Jumlah gaya-gaya vertikal}$

 ϕ = Sudut geser tanah

A = Luas dasar pondasi

 $\Sigma H = Jumlah gaya-gaya horisontal$

3) Aman terhadap penurunan

Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila memenuhi persyaratan

berikut:

$$\sigma_{maks} = \frac{\sum V_t}{B.L} \left(1 + \frac{6.e}{B} \right) \le \left(\sigma_t \right)$$
 (10)
Dimana,

σmaks = tegangan maksimum tanah

yang timbul

= Gaya vertikal total \bar{B} = Lebar pondasi L = Panjang pondasi = eksentrisitas = tegangan tanah ijin σt

METODE PENELITIAN

Langakah penelitian dilakukan dengan mengumpulkan data sekunder yaitu data curah hujan harian maksimum tahunan. Analisa yang pertama dilakukan yaitu analisa hidrologi untuk mencari debit banjir rencana yang akan digunakan dalam menghitung penulusaran banjir. Tinggi bendungan didapat dari muka air banjir ditambah dengan tinggi jagaan. Selanjutnya menganalisa gaya-gaya yang terjadi pada tubuh bendungan dan

di periksa stabilitasnya. Setelah bendungan aman terhadap guling, geser, dan penurunan kemudian biaya dalam pembuatan tubuh dihitung bendungan. Biaya yang didapat dalam pembuatan bendungan compacted roller concrete dibandingkan biaya pembuatan dengan bendungan urugan.

Uraian di atas dapat dirangkum dalam suatu kerangka penelitian yang dapat dilihat pada Gambar 4.

Gambar 4 Kerangka penelitian

HASIL DAN PEMBAHASAN

Data Penunjang

Data sekunder meliputi data curah hujan dan data topografi daerah aliran sungai.

Tabel 1 Data Curah Hujan Harian Maksimum Tahunan

	Curah Hujan Harian Maksimum					
Tahun	St. Bangli	St. Sidembunut	St. Susut			
1999	225.00	201.00	190.00			
2000	124.00	121.00	121.00			
2001	133.00	143.00	109.50			
2002	134.00	141.00	101.00			
2003	101.00	91.00	130.00			
2004	65.00	158.00	122.00			
2005	154.00	140.00	65.00			
2006	98.00	170.00	45.00			
2007	153.00	154.00	86.00			
2008	178.00	151.00	81.00			
2009	75.00	112.00	131.00			
2010	175.00	195.00	207.00			
2011	75.00	90.00	69.00			
2012	75.00	105.00	104.00			
2013	125.00	157.00	62.00			

Sumber: Badan Meteorologi dan Geofisika 2013

Gambar 4 Gambar topografi daerah aliran sungai

Perhitungan Curah Hujan Rencana

Perhitungan curah hujan rencana dihitung dengan menggunakan distribusi Log Normal, Gumbel, dan Log-Pearson Tipe III. Hasil perhitungan curah hujan rancangan dengan nilai terbesar yang akan digunakan pada perhitungan selanjutnya.

Tabel 2 Curah Hujan Rancangan Dengan Metode Log Normal, Gumbel, dan Log-Pearson Tipe III

No.	T. 1. T	R _{emonga} (mm/hari)					
	Kala Ulang (Tr)	Log Normal	Gumbel	Log Person III			
1	2	121.780	120.598	117.215			
2	5	149.534	157.720	147.572			
3	10	166.469	182.298	168.579			
4	25	185.006	213.353	197.001			
5	50	200.948	236.391	219.544			
6	100	214.727	259.258	243.311			
7	200	228.224	282.043	268.484			
8	1000	258.697	334.821	333.890			

Curah hujan maksimum yang mungkin terjadi dihitung sebagai berikut:

$$Xm = \overline{X} + Km.Sn$$

= 125,39 + 14,22 . 37,575
= 659,820 mm

Faktor reduksi luas didapat 95% dan Fixed time interval adjustment didapat 100%,

Pada perhitungan diatas didapat curah hujan rancangan terbesar pada perhitungan probable maximum precipitation sebesar 629,963 mm yang selanjutnya akan dipakai dalam perhitungan.

Perhitungan Banjir Rencana

Dalam perhitungan banjir rencana dipakai metode nakayasu. Perhitungan hidrograf banjir selanjutnya dihitung untuk beberapa periode ulang 2th, 5th, 10th, 25th, 50th, 100th, 200th, 1000th, dan PMP. Hasil perhitungan selanjutnya disajikan dalam grafik berikut:

Gambar 5 Gambar grafik hidrograf Nakayasu

Perhitungan Banjir Rencana

Penelusuran banjir dihitung untuk mendapatkan tinggi muka air banjir sehinga tinggi bendungan dapat dicari. Perhitungan penelusuran banjir akan menghasilkan grafik hubungan antara debit dan waktu.

Gambar 6 gambar grafik hubungan waktu dengan debit

Dari grafik didapat debit 480,384 m3/dt dengan ketinggian air diatas mercu pelimpah sebesar 6,626 m. Maka elvasi muka air banjir didapat +537,626 m.

Dari hasil yang didapat diatas maka dapat dihitung elevasi mercu bendungan sebagai berikut:

Elevasi Puncak Bendungan

= HWL + freeboard

=531+6,626+2,4

 $= +540,026 \text{ m} \approx +540 \text{ m}$

Perhitungan Gaya Vertikal dan Horizontal Pada Bendungan

Dari perhitungan sebelumnya didapat data untuk menghitung stabilitas bendungan sebagai berikut.

o crimen.	
Elevasi puncak bendungan	= + 540,0 m
Elevasi muka air banjir rencana	= + 537,6 m
Elevasi mercu pelimpah	= + 531,0 m
Elevasi tampungan mati	= +513,5 m
Elevasi dasar bendungan	= +503,5 m
Elevasi hilir bendungan	= +503,5 m
Elevasi dasar pondasi	= +461,4 m
Tinggi puncak bendungan	= 36,5 m
Lebar puncak bendungan	= 9 m
Kemiringan hilir bendungan	= 1:0,7
Lebar dasar bendungan	= 54,65 m

Gambar 7 gambar gaya-gaya yang terjadi pada tubuh bendungan

Selanjutnya perhitungan gaya-gaya vertikal dan horizontal akan disajikan dalam tabel 3 dan tabel 4.

Tabel 3 Perhitungan Gaya-gaya Vertikal

No	Berat	Luas	γ	Berat	Lengan X	Lengan Y	Momen X	Momen Y
	sendiri	(m2)	(t/m3)	(ton)	A (m)	A (m)	A(tm)	A (m)
1	w1	707.40	2.40	1697.76	50.15	39.30	85145.89	66721.97
2	w2	1488.64	2.40	3572.74	30.43	21.74	108734.79	77667.71
3	w3	89.36	1.44	128.68	23.82	35.07	3065.50	4512.25
4	w4	443.10	1.44	638.06	10.50	31.55	6699.67	20130.92
5	w5	220.50	1.61	355.01	7.00	14.00	2485.04	4970.07
6	Uplift	3233.21	1.00	-3233.21	32.73	18.26	-105816.38	-59036.84
			∑ V=	3159.03	3159.03 $\sum Mv = 100314.50$			

Tabel 4 Perhitungan Gaya-gaya Horizontal

No	Tekanan	Luas	γ	Berat	Lengan	Momen
	Tanah	(m2)	(t/m3)	(ton)	A (m)	A (tm)
1	Ea1	2904.74	1	2904.74	25.41	73799.87
2	Ed1	1.02	1	1.02	25.41	25.88
3	Ea2	25.00	1.3	32.50	45.43	1476.58
4	Ea3	33.30	1.3	43.29	31.55	1365.80
5	Ea4	74.13	1.44	106.74	28.03	2992.38
6	Ea5	24.70	1.3	32.11	10.50	337.16
7	Ea6	109.97	1.44	158.35	10.50	1662.70
8	Ea7	54.46	1.61	87.69	7.00	613.80
9	Ep1	-668.48	1.44	-962.62	35.07	-33755.74
10	Ep2	-901.23	1.44	-1297.78	10.50	-13626.67
11	Ep3	-892.71	1.61	-1437.27	7.00	-10060.87
12	Gempa	1054.10		1054.10	36.39	38361.60
		,	∑ H =	722.88	$\sum Mh =$	63192.48

Stabilitas Bendungan

Setelah dihitung gaya-gaya yang terjadi pada tubuh bendungan maka harus dihitung stabilitas bendungan agar aman terhadap bahaya guling, geser dan penurunan.

1) Aman terhadap guling

Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila memenuhi persyaratan berikut:

Sf=
$$\frac{\sum M_{Av}}{\sum M_{Ah}} \ge 1,50$$

Sf= $\frac{100314,5}{63192,48} \ge 1,50$

 $Sf = 1,587 \ge 1,50$

Bendungan aman terhadap bahaya guling.

2) Aman terhadap geser

Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila memenuhi persyaratan berikut:

$$Sf = \frac{c \sum V + tan\phi A}{\sum H} \ge 1$$

$$Sf = \frac{(0,447.1847,21 + (6392 - 233,21)tan37,17}{722,88} \ge 1$$

 $Sf = 1.0138 \ge 1$

Bendungan aman terhadap bahaya geser.

3) Aman terhadap penurunan Suatu bendungan beton berdasar berat sendiri dinyatakan aman terhadap guling apabila

memenuhi persyaratan berikut:

$$\sigma_{maks} = \frac{\sum V_t}{B.L} \left(1 + \frac{6.e}{B} \right) \le \left(\sigma_t \right)$$

$$\sigma_{maks} = \frac{3159.03}{54.65.1} \left(1 + \frac{6.9.595}{54.65} \right) \le 140.989 \text{t/m}^2$$

$$\sigma_{maks} = 85.907 \text{ t/m}^2 \le 140.989 \text{ t/m}^2$$

Bendungan aman terhadap bahaya penurunan.

Rencana Anggaran Biaya

Setelah bendungan dihitung stabilitasnya dan aman terhadap bahaya guling, geser dan penurunan maka dapat dihitung rencana anggaran biaya dalam pembuatan tubuh bendungan. Dari dimensi bendungan yang diperoleh didapat anggaran sebagai berikut:

Tabel 5 Rencana Anggaran Biaya Bendungan **RCC**

No.	Uraian Pekerjaan	Satuan	Volume	Harga Satuan		Total Harga	
1	Galian Tanah Biasa	m ³	33,141.00	Rp	16,923.19	Rp	560,851,467.41
2	Galian Tanah Keras	m ³	159,446.95	Rp	32,399.58	Rp	5,166,014,079.41
3	Timbunan tanah	m ³	16,731.00	Rp	51,479.28	Rp	861,299,875.51
4	RCC	m ³	98,271.80	Rp	648,781.04	Rp	63,756,880,770.46
5	Spillway dan Kolam Peredam En ergi	m ³	2,883.24	Rp	4,053,675.33	Rp	11,687,718,868.08
		Tota	al Harga	Rp	82,032,765,060.86		
		PPN	10%	Rp	8,203,276,506.09		
		Tota	al Harga+PPN	Rp	90,236,041,566.95		

Setelah didapat biaya bendungan dengan roller compacted menggunakan concrete dibandingkan kemudian dengan biaya menggunakan bendungan urugan tanah yang telah dikonversi menggunakan harga tahun 2013.

Tabel 5 Perbandingan RAB Antara Bendungan RCC Dengan Bendugan Urugan

_		,			
No.	Uraian Pekerjaan		RCCD	Bend	ungan Urugan Tanah
1	Galian Tanah	Rp	6,588,165,422.32	Rp	30,991,255,765.29
2	Tubuh Bendungan	Rp	63,756,880,770.46	Rp	49,801,346,458.52
3	Spillway dan Kolam Peredam Energi	Rp	11,687,718,868.08	Rp	14,123,064,630.14
	Total Harga	Rp	82,032,765,060.86	Rp	94,915,666,853.96
	PPN 10%	Rp	8,203,276,506.09	Rp	9,491,566,685.40
	Total Harga + PPN	Rp	90,236,041,566.95	Rp	104,407,233,539.35

KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil analisa pada studi ini didapat anggaran biaya pembuatan bendungan RCC dengan nilai Rp 90.236.041.566,00 dan dengan bendungan urugan nilai 104.407.233.539,00. Jadi perbedaan harga antara bendungan tipe urugan dengan bendungan RCC sebesar Rp 14.171.191.972,00. Harga tersebut telah dikonversi menggunakan standar harga satuan barang atau jasa provinsi Bali. Dengan menggunakan teknologi Roller Compacted Concrete dalam pembuatan tubuh bendungan akan lebih ekonomis. Sehingga dapat mengurangi biaya dalam pembuatan tubuh bendungan.

Saran

Material dalam pembuatan campuran beton RCC mungkin akan sulit didapatkan di daerah lokasi pekerjaan. Material RCC dapat didatangkan dari *quarry*. Penempatan batch pencampur apabila semakin dekat dengan lokasi pekerjaan akan mengurangi biaya dalam pengangkutan material.

UCAPAN TERIMA KASIH

Ucapan terima kasih disampaikan kepada orangtua penulis yang jasanya tidak mungkin terlupakan serta seluruh rekan-rekan mahasiswa Teknik Sipil angkatan 2009 yang telah membantu pelaksanaan penelitian ini.

DAFTAR PUSTAKA

Departemen Permukiman dan Prasarana Wilayah. 2002. Tata Cara Pelaksanaan Beton Padat Giling (BPG).

Ir. Soedibyo. 2003. Teknik Bendungan. Pradnya Paramita: Jakarta.

Takeda, Kensaku dan DR. Suyono Sosrodarsono. 2002. Bendungan Type Urugan. Pradnya Paramita: Jakarta.

Triatmojo, Bambang, 2006. Hidrologi Terapan. Beta Offset: Yogyakarta.

United States Department of Interior. 1987. Design of Small Dams.

Redana, I wayan. 2010. Teknik Pondasi. Udayana University Press: Bali.

Limantara, Lily Montarcih. 2010. Hidrologi Praktis. Lubuk Agung: Bandung.