Projeto e Análise de Algoritmos 2024.2

Caminho Mínimo

Prof. Marcio Costa Santos DCC/UFMG

Problema de Caminho Mínimo entre Dois Vértices

- Considere um grafo com pesos positivos em suas arestas $w_{\mu\nu}$.
- Defina o peso de um caminho como sendo a soma dos pesos das arestas no caminho.
- Problema do Caminho Mínimo de u para v: desejamos determinar um caminho de u para v com menor peso possível.

Ideias para o Algoritmo

- Propriedade Fundamental: Se $< u, v_1, \ldots, v_k, v >$ é um caminho mínimo de u até v, então $< u, v_1, \ldots, v_k >$ é um caminho mínimo de u até v_k .
- Vamos calcular todos os caminhos partindo de v.
- Podemos usar uma busca largura? Talvez não....
- Vamos usar a propriedade fundamental.

Algoritmo de Bellman-Ford

```
para v \in V(G) faça d[v] \leftarrow \infty; \pi[v] \leftarrow v; fim d[s] \leftarrow 0; Algoritmo 1: INICIALIZA(G,s)
```

Algoritmo de Bellman-Ford

```
se d[v] > d[u] + w_{uv} então
\begin{vmatrix} d[v] \leftarrow d[u] + w_{uv}; \\ \pi[v] \leftarrow u; \end{vmatrix}
fim
d[s] \leftarrow 0;
Algoritmo 2: RELAX(u,v)
```

Algoritmo de Bellman-Ford

```
INICIALIZA(G, s);

para i = 1 até |V(G)| faça

| para todo uv \in E(V) faça

| RELAX(u, v);

| fim

fim

Algoritmo 3: BELLMAN-FORD(G,s)
```


Complexidade e Análise

- Matriz de Adjacências: $O(|V(G)|^3) = O(n^3)$.
- Lista de Adjacências: O(|V(G)|.|E(G)|) = O(n.m).

Pesos Negativos

- E se existirem pesos negativos?
- E se tivermos um ciclo (orientado) negativo...O problema faz sentido?
- Podemos modificar o algoritmo para verificar isso?

Adição Algoritmo de Bellman-Ford

```
BELLMAN-FORD(G, s);

para todo uv \in E(G) faça

| se d[v] > d[u] + w_{uv} então

| retorna ERRO;

fim

fim

retorna OK;

Algoritmo 4: VERIFICA(G,s)
```