Big Data and Economics

The Empirical Workflow and Clean Code

Kyle Coombs (adapted from Tyler Ransom + Scott Cunningham)
Bates College | EC/DCS 368

Table of contents

- 1. Prologue
- 2. Clean Code
- 3. Principles
- 4. Appendix: FAQ

Prologue

Source: xkcd

Forgot to mention

• Office Hours:

- My office hours are 9am-10am on Tuesdays and 3pm-4pm on Wednesdays
- My office is 276 Pettengill
- I'm also available by appointment on Zoom
- Problem Set 0: due on Sunday, September 17th at 11:59pm

Attribution

- Today's material comes from these sources:
- 1. Clean Code by Tyler Ransom
- 2. Code and Data for the Social Sciences: A Practitioner's Guide, by Gentzkow and Shapiro
- 3. Causal Inference and Research Design by Scott Cunningham
- 4. Jenny Bryan's UseR 2018 keynote address

Also a small contribution from **here** and other sundry internet pages

Jargon

- There is a jargon in this class that won't make sense at first, I'll try to flag it as it comes
 - If I don't flag a term, look it up on ChatGPT
 - If it still doesn't make sense, ask me -- could be I'm using it idiosyncratically
- Here's a few terms:
 - **Local machine:** Your personal (or any) computer that isn't a server accessed via the internet
 - Version Control: Keep track of different iterations of a project/code
 - **Repository:** The location on GitHub of all project files and (commented) file revision history
 - GUI: A Graphical User Interface -- what you're used to pointing and clicking to navigate a computer and execute programs
 - **Command line:** Removes the "graphical" from GUI, instead you type all commands to navigate a computer and execute programs
 - R operates via the Command line, RStudio is a GUI
 - On Mac, this is called Terminal
 - Windows has Powershell, but it Powershell uses quite user-unfriendly commands
 - If you installed Git for Windows, you got Git Bash, which uses Bash (Linux) commands
 - You can also install Windows Subsystem for Linux to run Linux on a Windows machine

Clean Code

Reducing empirical chaos

Sad story

- Once upon a time there was a boy who was writing a job market paper on unemployment insurance during the pandemic
- This boy presented the findings a half dozen times, spoke to the media some, and generally thought he had cool results
- Several people suggested he look at a handful of other outcome series and try changing his analysis unit frequency from monthly to weekly
- He also knew that he needed to restrict his sample to reduce noise

The horror!

- But then after making these changes and re-running his code that took two days, his new sample dropped by 50 percent!
- He was, understandably, terrified.
- The young boy spent a week looking for the fix weeding through six different versions of the .do, .R, .dta, .csv, .sh, .py files with suffixes like _v1 and _test and _test2 and _final_I_swear and _okay_i_lied
- Finally he discovered the phrase:

```
df %>% filter(insample_new=0)
```

instead of

```
df %>% filter(insample_new=1)
```

• The boy was very frustrated and decided to work on these slides while re-running his code.

What is Clean Code?

- Clean Code: Code that is easy to understand, easy to modify, and hence easy to debug
- Clean code saves you and your collaborators time

Why clean code matters: Scientific

- Good science is based on careful observations
- Science progresses through iteratively testing hypotheses and making predictions
- Scientific progress is impeded if
 - mistaken previous results are erroneously given authority
 - previous hypothesis tests are not reproducible
 - previous methods and results are not transparent
- Thus, for science that involves computer code, clean code is a must

Why clean code matters: Personal and

- You will always make a mistake while coding
- What makes good programmers great is their ability to quickly identify and correct mistakes
- Developing a habit of clean coding from the outset of your career will help you more quickly identify and correct mistakes
- It will save you a lot of stress in the long-run
- It will make your collaborative relationships more pleasant

Why clean code is under-produced

• If clean code is so beneficial and important, why isn't there more of it?

- 1. **Competitive pressure** to produce research/products as quickly as possible
- 2. **End user** (journal editor, reviewer, reader, dean) **doesn't care what the code looks like**, just that the product works
- 3. In the moment, clean code **takes longer to produce** while seemingly conferring no benefit

How does one produce clean code? Principles

How does one produce clean code?

- Automation
- Version control
- Organization of data and software files
- Abstraction
- Documentation
- Time / task management
- Test-driven development (unit testing, profiling, refactoring)
- Pair programming

Automation

- Gentzkow & Shapiro's two rules for automation:
- 1. Automate everything that can be automated
- 2. Write a single script that executes all code from beginning to end
- There are two reasons automation is so important
 - Reproducibility (helps with debugging and revisions)
 - Efficiency (having a code base saves you time in the future)
- A single script that shows the sequence of steps taken is the equivalent to "showing your work"

Version control

- We've discussed Git and GitHub in a previous slide deck
- Version control provides a principled way for you to easily undo changes, test out new specifications, and more

File organization

- 1. Separate directories by function
- 2. Separate files into inputs and outputs
- 3. Make directories portable
- To see how professionals do this, check out the source code for R's dplyr package
 - There are separate directories for source code (/src), documentation (/man), code tests
 (/test), data (/data), examples (/vignettes), and more
- When you use version control, it forces you to make directories portable (otherwise a collaborator will not be able to run your code)
 - use **relative** file paths, not absolute file paths

Data organization

- The key idea is to practice relational data base management
- A relational database consists of many smaller data sets
- Each data set is tabular and has a unique, non-missing key
- Data sets "relate" to each other based on these keys
- You can implement these practices in any modern statistical analysis software (R, Stata, SAS, Python, Julia, SQL, ...)
- Gentzkow & Shapiro recommend not merging data sets until as far into your code pipeline as possible

Abstraction

- What is abstraction? It means "reducing the complexity of something by hiding unnecessary details from the user"
- e.g. A dishwasher. All I need to know is how to put dirty dishes into the machine, and which button to press. I don't need to understand how the electrical wiring or plumbing work.
- In programming, abstraction is usually handled with functions
- Abstraction is usually a good thing
- But it can be taken to a harmful extreme: overly abstract code can be "impenetrable" which makes it difficult to modify or debug

Rules for Abstraction

- Gentzkow & Shapiro give three rules for abstraction:
- 1. Abstract to eliminate redundancy
- 2. Abstract to improve clarity
- 3. Otherwise, don't abstract

Abstract to eliminate redundancy

• Sometimes you might find yourself repeating lines of code with small modifications across the lines:

```
names ← c('one','two','three','four','five','one','two','three','four','five','one','two','three','four','five')
#Better
names_short ← c('one','two','three','four','five')
names long \leftarrow c(names short, names short, names short)
#Even better
name repeater ← function(count,names short=c('one','two','three','four','five')) {
    names long \leftarrow rep(names short, times = count)
    return(names_long)
print(names)
   [1] "one"
                "two"
                        "three" "four" "five" "one"
                                                         "two"
                                                                 "three" "four"
## [10] "five"
                "one"
                                "three" "four" "five"
print(names long)
   [1] "one"
                "two"
                         "three" "four" "five" "one"
                                                         "two"
                                                                 "three" "four"
## [10] "five"
                "one"
                        "two"
                                "three" "four" "five"
print(name_repeater(3, names_short=names_short))
    [1] "one"
                                                                 "three" "four"
                "two"
                        "three" "four" "five" "one"
## [10] "five"
                                "three" "four" "five"
                "one"
                        "two"
```

• Now if I need to make further changes to name repeater I can do it once!

More complicated example

```
set.seed(16)
prod1 = rnorm(1, 0, 1) * rnorm(1, 4, 6)
prod2 = rnorm(2, 0, 1)*rnorm(2, 4, 6)
prod3 = rnorm(3, 0, 1) * rnorm(3, 4, 6)
print(prod1)
## [1] 1.547257
print(prod2)
## [1] 11.934479 -1.717951
print(prod3)
## [1] -7.4831177 0.9587218 4.7882622
set.seed(16)
multiply = function(count, mean1=0, sd1=1, mean2=4, sd2=6) {
    prod = rnorm(count, mean1, sd1)*rnorm(count, mean2, sd2)
    return(prod)
prod1=multiply(1)
prod2=multiply(2)
prod3=multiply(3)
print(prod1)
## [1] 1.547257
print(prod2)
```

[1] 11.934479 -1.717951

Note on seeds

- When randomizing in any language, you aren't really randomizing
- You're producing pseudo-random numbers that return in a deterministic ordered list
- If you set the seed, you can reproduce the same "random" numbers
- This is useful for debugging and sharing code
- Use set.seed in R

Neat R functions to help reduce

```
set.seed(16)
list1 = list() # Make an empty list to save output in
for (i in 1:3) { # Indicate number of iterations with "i"
    list1[[i]] = multiply(i) # Save output in list for each iteration
list1
## [[1]]
## [1] 1.547257
## [[2]]
## [1] 11.934479 -1.717951
## [[3]]
## [1] -7.4831177 0.9587218 4.7882622
```

A better way to eliminate this redundancy is to use the map function:

[1] -7.4831177 0.9587218 4.7882622

```
set.seed(16)
map(1:3, multiply)
## [[1]]
## [1] 1.547257
## [[2]]
## [1] 11.934479 -1.717951
## [[3]]
                                                                                                                                  26 / 50
```

Abstract to improve clarity

- Consider the example of obtaining OLS estimates from a vector y and covariate matrix x that already exist on our workspace
- We could code this in two ways:

```
Bhat = (t(X)%*%X)^{(-1)}%*%t(X)%*%y
```

or

```
estimate_ols ← function(yvar, Xmat) {
    Bhat = (t(Xmat)%*%Xmat)^(-1)%*%t(Xmat)%*%yvar
    return(Bhat)
}
estimate_ols(y,X)
```

The second approach is easier to read and understand what the code is doing

Otherwise, don't abstract

- One could argue that the examples on the previous two slides are overly abstract
- OLS is a simple operation that only takes one line of code
- If we're only doing it once in our script, then it may not make sense to use the function version
- Similarly, it may not make sense to use the name_repeater function if I only need to use it to repeat five names three times
- This discussion points out that it can be difficult to know if one has reached the optimal level of abstraction
- As you're starting out programming, I would advise doing almost every inside of a function (i.e. err on the side of over-abstraction when starting out)

Documentation

- 1. Don't write documentation you will not maintain
- 2. Code should be self-documenting
- Generally speaking, commented code is helpful
- However, sometimes it can be harmful if, e.g. code comments contain dynamic information
- It may not be helpful to have to rewrite comments every time you change the code
- Code can be "self-documenting" by leveraging abstraction: function arguments make it easier to understand what is a variable and what is a constant

Documentation in R

- R has excellent built-in documentation called Roxygen2
- These make great documents above functions to increase readability
- Here's an example:

```
#' This is a sample function
#'

#' This function does something amazing.
#'

#' Aparam x A numeric input.
#' aperturn The result of the amazing operation.
#' apexamples
#' amazing_function(5)
amazing_function ← function(x) {
    # function implementation
}
```

Other documentation in R

- R Help System: access using ?function_name
- Package vignettes: access using vignette("vignette_name")
- Cheatsheets: access at Posit Cheatsheets

Time management

- Time management is key to writing clean code
- It is foolish to think that one can write clean code in a strained mental state
- Code written when you are groggy, overly anxious, or distracted will come back to bite you
- Schedule long blocks of time (1.5 hours 3 hours) to work on coding where you eliminate distractions (email, social media, etc.)
- Stop coding when you feel that your focus or energy is dissipating

Task management

- When collaborating on code, it is essential to not use email or Slack threads to discuss coding tasks
- Rather, use a task management system that has dedicated messages for a particular point of discussion (bug in the code, feature to develop, etc.)
- I use GitHub issues for all of my coding projects
- For my personal task management, I use Trello to take all tasks out of my email inbox and put them in Trello's task management system
- GitHub and Trello also have Kanban-style boards where you can easily visually track progress on tasks

Workflow workflow

The Cunningham Empirical Workflow Conjecture

- The cause of most of your errors is **not** due to insufficient knowledge of syntax in your chosen programming language
- The cause of most of your errors is due to a poorly designed **Empirical Workflow**

Empirical Workflow

- A workflow is a fixed set of routines you bind yourself to which when followed identifies the most common errors
 - Think of it as your morning routine: alarm goes off, go to wash up, make your coffee/tea, put pop tart in toaster, contemplate your existence in the universe until **ding**, eat pop tart repeat ad infinitum
- Finding the outlier errors is a different task; empirical workflows catch typical and common errors created by the modal data generating processes
- Empirical workflows follow a checklist

Why do we use checklists?

- I got engaged in July am planning a wedding in Princeton for next July
- I also moved to New England in August and am still unpacking
 - Extra weird I live part-time in MA with my fiance
- I am teaching two upper-level electives
- I am trying to submit several papers to conferences/journals this year
- Each of these tasks gets a checklist:
 - Wedding: ☐ Finalize tent configuration ☐ Pick wedding colors
 - Unpacking: □ Put books on shelves □ Buy dresser
 - ∘ Big Data: ☐ Prep GitHub demo ☐ Create presentations repo
 - Public Economics: ☐ Update solutions for PS1 ☐ Amend 2nd Welfare Theorem slides
 - o etc.

To remember the obvious stuff you keep

- When I stop to think, I know I need to do everything on my checklists
- But then I forget when I move onto the next task
- Programming is the same, except you have an empirical checklist:
- The empirical checklist:
 - Covers the intermediate step between "getting the data" and "analyzing the data"
 - It largely focuses on ensuring data quality for the most common, easy to identify problems
 - It'll make you a better coauthor

Simple data checks

a aluat tha data

- Simple, yet non-negotiable, programming commands and exercises to check for data errors
- "Real eyes realize real lies" --Troy Ave vai some dude from my high school
- Let's look at a dataset with self-reported salaries (and other info) put together by Alison Green
- Note: This is an actively growing dataset -- the timestamps help show that!

```
bp ← read.csv('data/messier_bp.csv')
bp
```

##		STOP.Blood.Pressure.Study		X2		Х3		Χ4	X5
##	1	<na></na>		<na></na>		<na></na>		<na></na>	<na></na>
##	2	pat_id	Month o	of birth	Day	birth	Year b	irth	Race
##	3	1		11		30		1967	White
##	4	2		12		12		1990	Caucasian
##	5	3		5		4		1989	White
##	6	3		3		8		1977	Other
##	7	4		6		14		1963	Black
##	8	5		4		19		1973	Black
##	9	6		1		23		1986	White
##	10	7		11		1		1956	Asian
##	11	8		4		17		1961	Other
##	12	8		12		24		1967	White
##	13	11		9		27		1971	White
##	14	12		5		16		1970	Caucasian
##	15	13		7		18		1963	Black
##	16	14		3		3		1989	Black
##	17	15		12		8		1990	Asian
##	18	16		11		13		1987	WHITE
##	19	17		6		27		1980	WHITE
##	20	19		4		11		1975	Black
##	21	20		2		7		1967	Caucasian

Check factor variables

table(bp\$race,bp\$sex)

```
##
##
             F Female M Male
                   1 0
    Asian
    Black
                   2 1
   Caucasian 0
                   3 0
                         1
   Other
                         1
             0 2 0
   White
    WHITE
                  1 0
                         1
```

Visualize the data

• Go beyond the eyeball and graph the data

```
# Get the first three rows of the data frame (or as many rows as needed)
#Make a density of the heart rate on visit 1:
ggplot(data=bp,aes(x=hr_visit1))+geom_density()
```


Other tricks:

- Check if the data are the right-size
- If you have a panel dataset is 50 states over 20 years, check if there are 1000 observations
- If not, find out why! Maybe there are 1020 because DC is (rightfully) included
- Search for outliers or oddities and work out possible explanations using:
 - Codebooks
 - Intuition
 - Emails to the source/creator of data

Test-driven development (unit testing,

- The only way to know that your code works is to test it!
- Test-driven development (TDD) consists of a suite of tools for writing code that can be automatically tested
- **unit testing** is nearly universally used in professional software development
- Unit testing is to software developers what washing hands is to surgeons

Unit testing

- Unit tests are scripts that check that a piece of code does everything it is supposed to do
- When professionals write code, they also write unit tests for that code at the same time
- If code doesn't pass tests, then bugs are caught on the front end
- Test coverage determines how much of the code base is tested. High coverage rates are a must for unit testing to be useful.
- R's dplyr package shows that all unit tests are passing and that tests cover 88% of the code base
- testthat is a nice step-by-step guide for doing this in R

Assertions

- Assert statements are extremely useful
- They exist in every langage
- In R it is called stopifnot()

```
x ← TRUE
stopifnot(x)

y ← FALSE
stopifnot(y)
```

Error: y is not TRUE

Refactoring

- Refactoring refers to the action of restructuring code without changing its external behavior or functionality. Think of it as "reorganizing"
- Example:

after refactoring becomes

- Nothing changed in the code except the number of characters in the function
- The new version may run faster, is more readable. The output is unchanged.
- Refactoring could also mean reducing the number of input arguments
- Jenny Bryan gave a great talk on refactoring

Profiling

- Profiling refers to checking the resource demands of your code
- How much processing time does your script take? How much memory?
- Clean code should be highly performant: it uses minimal computational resources
- Profiling and refactoring go hand in hand, along with unit testing, to ensure that code is maximally optimized
- Here is an intro guide to profiling in Julia using the atime macro

Pair programming

- An essential part of clean code is reviewing code
- An excellent way to review code is to do so at the time of writing
- Pair programming involves sitting two programmers at one computer
- One programmer does the writing while the other reviews
- This is a great way to spot silly typos and other issues that would extend development time
- It's also a great way to quickly refactor code at the start
- I strongly encourage you to do pair programming on problem sets in this course!
 - (Sometimes I will require it)

Appendix

Textbooks: Smarter people than me

- Cunningham (2021) Causal Inference: The Mixtape (Also, free version on his website)
- Huntington-Klein (2022) The Effect
- Angrist and Pischke (2009) Mostly Harmless Econometrics (MHE)
- → Micrean and Winship 2014 Counterfactuals and Causal Inference (MW)
- Sweigart (2019) Automate The Boring Stuff With Python
- The help documentation associated with your language (no really)
- Jesse Shapiro's "How to Present an Applied Micro Paper"
- Gentzkow and Shapiro's coding practices manual
- Liubica "LJ" Fistovska's language agnostic guide to program ning for economists
- Grant McDermott on Version Control using Github Link
- The help documentation associated with your language (no really)
- All languages: Stack Overflow, Stack Exchange
- Stata-specific (all hail Nick Cox): Statalist
- Cheatsheets: Stata, FStudio, Python
- Me: Sign up for office hours
- Just like learning a real language, no amount of talking today will teach you how to use any program.
 - You have to need to use it (immersion) to learn it.
 - Google is your dictionary.

Next lecture: Hidden Researcher Decisions