Remedial interchange, Contrary-to-duties, and Commutation

Xavier Parent

xavier.parent@uni.lu

ICR

University of Luxembourg

Introduction

- Research idea
 - Can deontic logic be used to capture the normative aspect(s) of dialogues?

Standard ACL approach in MAS

Conversation policies = hard constraints

What I'm after: a more flexible approach

- NorMAS: breach of dialogue rules allowed ...
- ... and dealt with
 - Norm violation: a hot topic in deontic logic
 - No easy answers

Talk overview

- Focus on
 - Logic for conditional obligation (Hansson, ...)
 - Case study (sort of)
 - "Remedial Interchange" (Ervin Goffman)
 - ▶ Norms

Point twofold

- Contrary-to-duty paradox
- Solution using iterated belief change theory

What we get

- Dialogue model based on obligations
 - Rules of turn-taking
 - ► Tailored for a specific application domain

Layout

- CTD and remedial interchange
- Framework
- Example analysis

Contrary-to-duty (CTD)

Weakening the Consequent Factual Detachment

$$\frac{\bigcirc(B/A) \quad \Box(B \to C)}{\bigcirc(C/A)} \text{(WC)} \quad \frac{\bigcirc(B/A) \quad A}{\bigcirc B} \text{(FD)}$$

$$\frac{\bigcirc(B/A)}{\bigcirc B} \qquad A \qquad (FD)$$

Contrary-to-duty (CTD)

Weakening the Consequent Factual Detachment

$$\frac{\bigcirc(B/A) \quad \Box(B \to C)}{\bigcirc(C/A)} \text{(WC)} \quad \frac{\bigcirc(B/A) \quad A}{\bigcirc B} \text{(FD)}$$

$$\frac{\bigcirc(B/A)}{\bigcirc B}$$
 (FD)

CTD paradox

$$\begin{array}{c|c}
 & \Box(B \to A) \\
 & \Box(\neg A \to \neg B) \\
\hline
 & \bigcirc \neg B
\end{array}$$
(WC)
$$\begin{array}{c|c}
 & (B/A) & A \\
\hline
 & B
\end{array}$$
(FD)

Contrary-to-duty (CTD)

Weakening the Consequent Factual Detachment

$$\frac{\bigcirc(B/A) \quad \Box(B \to C)}{\bigcirc(C/A)} \text{(WC)} \quad \frac{\bigcirc(B/A) \quad A}{\bigcirc B} \text{(FD)}$$

$$\frac{\bigcirc(B/A)}{\bigcirc B}$$
 (FD)

CTD paradox

$$\frac{\Box(B \to A)}{\Box(\neg A \to \neg B)} (WC) \qquad \frac{\Box(B/A) \qquad A}{\Box B} (FD)$$

'Gentle murderer' scenario

$$\{\bigcirc \neg k, \Box (k \land g \rightarrow k), \bigcirc (k \land g/k), k\} \vdash \bot$$

Chap. 3 of Relations in Public (1971)

- Social life as norm-governed
- "Territories of the self"
 - Personal space
 - Possessionnal territory
 - ► Etc
- Remedial interchange
 - ▶ Offensive → acceptable
 - Social order

Goffman, Relations in Public, 1971

A: "Can I use your phone to make a local call?"

B: "Sure, go ahead"

A: "That's very good of you"

B: "It's okay"

Goffman, Relations in Public, 1971

remedy A: "Can I use your phone to make a local call?"

relief B: "Sure, go ahead"

appreciation A: "That's very good of you"

minimization B: "It's okay"

Goffman, Relations in Public, 1971

remedy A: "Can I use your phone to make a local call?"

relief B: "Sure, go ahead"

appreciation A: "That's very good of you"

minimization B: "It's okay"

Goffman's suggestion

By making a move, I put the other participant under the *obligation* to make the next one.

Dialogue game rules are soft rather than hard constraints

Logical representation

Normative premisses Integrity constraints (α) (β) (I)**(II)** $\bigcirc(r_1/o)$ $\Box(r_1 \rightarrow o)$ $\bigcirc (r_2/o \wedge r_1)$ $\Box(r_2 \rightarrow (o \land r_1))$ (III) $\bigcirc (a/o \land r_1 \land r_2)$ $\square (a \rightarrow (o \land r_1 \land r_2))$ $\bigcap (m/o \land r_1 \land r_2 \land a) \quad \Box (m \rightarrow (o \land r_1 \land r_2 \land a))$ with o= offence $r_2=$ relief m= minimization r_1 = remedy a= appreciation

Conditional obligation

Preference-based semantics à la Hansson (1969)

$$\mathcal{M} \models \bigcirc(B/A) \Leftrightarrow \min_{\mathcal{M}}(A) \subseteq [B]_{\mathcal{M}}.$$
 (Def \bigcirc)

Intuitively: \mathcal{M} satisfies $\bigcirc(B/A)$ iff in the most perfect worlds, where A holds, B holds too.

$$\bigcirc B$$
 short for $\bigcirc (B/\top)$

Before the violation

$$w_1 : \neg o, \neg r_1, \neg r_2, \neg a, \neg m$$
 $w_2 : o, r_1, r_2, a, m$ $w_3 : o, \neg r_1, \neg r_2, \neg a, \neg m$ $w_4 : o, r_1, \neg r_2, \neg a, \neg m$ $w_5 : o, r_1, r_2, \neg a, \neg m$ $w_6 : o, r_1, r_2, a, \neg m.$

Before the violation

S={
$$\bigcirc \neg o$$
, $\bigcirc (r_1/o)$, $\bigcirc (r_2/o \land r_1)$, $\bigcirc (a/o \land r_1 \land r_2)$, $\bigcirc (m/o \land r_1 \land r_2 \land a)$ } Model \mathcal{M}_1

$$w_1 : \neg o, \neg r_1, \neg r_2, \neg a, \neg m$$
 $w_2 : o, r_1, r_2, a, m$ $w_3 : o, \neg r_1, \neg r_2, \neg a, \neg m$ $w_4 : o, r_1, \neg r_2, \neg a, \neg m$ $w_5 : o, r_1, r_2, \neg a, \neg m$ $w_6 : o, r_1, r_2, a, \neg m.$

more perfect (for all
$$i=3,...,6$$
)
$$\bullet w_2$$

$$\bullet w_1$$

$$\mathcal{M}_1 \models \bigcirc \neg r_1, \mathcal{M}_1 \not\models \bigcirc r_1$$

$$(\mathcal{WC}) \xrightarrow{\bigcirc \neg o} \frac{\Box (r_1 \rightarrow o)}{\Box (\neg o \rightarrow \neg r_1)}$$

$$\frac{\bigcirc(r_1/o)}{\bigcirc r_1}$$

$$(WC) \stackrel{\square(r_1 \to o)}{\underset{----}{\square}} \qquad \frac{\square(r_1 \to o)}{\underset{-----}{\square}(r_0 \to \neg r_1)} \qquad \frac{\bigcirc(r_1/o)}{\bigcirc r_1}$$
 (FD)

$$(WC) \xrightarrow{\bigcirc \neg o} - \frac{\Box(r_1 \rightarrow o)}{\Box(\neg o \rightarrow \neg r_1)} \qquad \frac{\bigcirc(r_1/o)}{\bigcirc r_1} \qquad (FD)$$

An old idea ...

- Both rules allowed
- In case of conflict, (FD) overrides (WC)

$$(WC) \xrightarrow{\bigcirc \neg o} - \frac{\Box(r_1 \rightarrow o)}{\Box(\neg o \rightarrow \neg r_1)} \qquad \frac{\bigcirc(r_1/o)}{\bigcirc r_1} \qquad (FD)$$

An old idea ...

- Both rules allowed
- In case of conflict, (FD) overrides (WC)

... in a new guise

- Iterated belief change theory
- Norm violation triggers a revision.

Natural Revision

 (\mathbf{P}_1) If $w_1 \in \min_{\mathcal{M}}(A)$ then:

$$w_1 \preceq' w_2$$
 for all $w_2 \in W$ and (a)

$$w_2 \preceq' w_1 \text{ iff } w_2 \in \min_{\mathcal{M}}(A)$$
 (b)

 (\mathbf{P}_2) If $w_1, w_2 \not\in \mathsf{min}_{\mathcal{M}}(A)$ then: $w_1 \preceq' w_2$ iff $w_1 \preceq w_2$.

Commutation

Model \mathcal{M}_1 (Before the offence)

o=offence r_1 =remedy

$$\operatorname{In} \mathcal{M}_1:$$
 $\bigcirc \neg r_1$
 $\operatorname{not-} \bigcirc r_1$

In
$$\mathcal{M}_1^{\star}o$$
:
 $\bigcirc r_1$
not- $\bigcirc \neg r_1$

Commutation

Model \mathcal{M}_1 (Before the offence)

o=offence r_1 =remedy

$$\begin{array}{ccc} \bullet w_3 \\ \downarrow \\ \mathcal{M}_1^{\star}o \\ \hline \Longrightarrow & \downarrow \\ \bullet w_2 \end{array}$$

In
$$\mathcal{M}_1^{\star}o$$
:
 $\bigcirc r_1$
not- $\bigcirc \neg r_1$

Round 1

Input	In	duced ordering	Perms	Output
0	$\mathcal{M}_1^{\star}o$	$w_2 \prec w_1 \prec w_{i(i \geq 3)}$	1	r_1
$\neg o$	$\mathcal{M}_1^{\star} \neg o$	$w_1 \prec w_2 \prec w_{i(i \geq 3)}$	0	$\bigcirc \neg r_1$

Round 2

o=offence r_1 = remedy

Input sequence	Induced	Perms	Output	
1. o, r_1	$(\mathcal{M}_1^{\star}o)^{\star}r_1$	$w_2 \prec w_1 \prec w_i$	1	r_2
2. $o, \neg r_1$	$(\mathcal{M}_1^{\star}o)^{\star} \neg r_1$	$w_1 \prec w_2 \prec w_i$	2	$\bigcap \neg r_2$
3. $\neg o, r_1$	$(\mathcal{M}_1^{\star} \neg o)^{\star} r_1$	$w_2 \prec w_1 \prec w_i$	1	$\bigcap r_2$
4. $\neg o, \neg r_1$	$(\mathcal{M}_1^{\star} \neg o)^{\star} \neg r_1$	$w_1 \prec w_2 \prec w_i$	0	$\bigcap \neg r_2$

Round 2

o=offence

 r_1 = remedy

Input sequence	Induced	Perms	Output	
1. o, r_1	$(\mathcal{M}_1^{\star}o)^{\star}r_1$	$w_2 \prec w_1 \prec w_i$	1	r_2
3. $\neg o, r_1$	$(\mathcal{M}_1^{\star} \neg o)^{\star} r_1$	$w_2 \prec w_1 \prec w_i$	1	$\bigcirc r_2$

Round 2

o=offence

 r_1 = remedy

Input sequence	Induced ordering		Perms	Output
2. $o, \neg r_1$	$(\mathcal{M}_1^{\star}o)^{\star}\neg r_1$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc eg r_2$
4. $\neg o, \neg r_1$	$ \left (\mathcal{M}_1^{\star} \neg o)^{\star} \neg r_1 \right $	$w_1 \prec w_2 \prec w_i$	0	$\bigcirc \neg r_2$

Round 2

o=offence r_1 = remedy

Input sequence	Induced	Perms	Output	
1. o, r_1	$(\mathcal{M}_1^{\star}o)^{\star}r_1$	$w_2 \prec w_1 \prec w_i$	1	r_2
2. $o, \neg r_1$	$(\mathcal{M}_1^{\star}o)^{\star} \neg r_1$	$w_1 \prec w_2 \prec w_i$	2	$\bigcap \neg r_2$
3. $\neg o, r_1$	$(\mathcal{M}_1^{\star} \neg o)^{\star} r_1$	$w_2 \prec w_1 \prec w_i$	1	$\bigcap r_2$
4. $\neg o, \neg r_1$	$(\mathcal{M}_1^{\star} \neg o)^{\star} \neg r_1$	$w_1 \prec w_2 \prec w_i$	0	$\bigcap \neg r_2$

o= offence $r_1=$ remedy

 r_2 = relief a= appreciation

Round 3

Input sequence	Induced or	dering	Perm	Output
1. o, r_1, r_2	$((\mathcal{M}_1^{\star}o)^{\star}r_1)^{\star}r_2$	$w_2 \prec w_1 \prec w_i$	1	
2. $o, r_1, \neg r_2$	$ \left ((\mathcal{M}_1^{\star} o)^{\star} r_1)^{\star} \neg r_2 \right $	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
3. $o, \neg r_1, r_2$	$ \left ((\mathcal{M}_1^{\star} o)^{\star} \neg r_1)^{\star} r_2 \right $	$w_2 \prec w_1 \prec w_i$	3	
4. $o, \neg r_1, \neg r_2$	$ \left ((\mathcal{M}_1^{\star} o)^{\star} \neg r_1)^{\star} \neg r_2 \right $	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
5. $\neg o, r_1, r_2$	$ \left ((\mathcal{M}_1^{\star} \neg o)^{\star} r_1)^{\star} r_2 \right $	$w_2 \prec w_1 \prec w_i$	1	
6. $\neg o, r_1, \neg r_2$	$ \left ((\mathcal{M}_1^* \neg o)^* r_1)^* \neg r_2 \right $	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
7. $\neg o, \neg r_1, r_2$	$ \left ((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2 \right $	$w_2 \prec w_1 \prec w_i$	2	
8. $\neg o, \neg r_1, \neg r_2$	$ \left ((\mathcal{M}_1^* \neg o)^* \neg r_1)^* \neg r_2 \right $	$w_1 \prec w_2 \prec w_i$	0	$\bigcirc \neg a$

o= offence $r_1=$ remedy

Round 3

 r_2 = relief α = appreciation

Input sequence	Induced o	Perm	Output	
1. o, r_1, r_2	$((\mathcal{M}_1^{\star}o)^{\star}r_1)^{\star}r_2$	$w_2 \prec w_1 \prec w_i$	1	
3. $o, \neg r_1, r_2$	$((\mathcal{M}_1^{\star}o)^{\star}\neg r_1)^{\star}r_2$	$w_2 \prec w_1 \prec w_i$	3	
5. $\neg o, r_1, r_2$	$((\mathcal{M}_1^* \neg o)^* r_1)^* r_2$	$w_2 \prec w_1 \prec w_i$	1	
7. $\neg o, \neg r_1, r_2$	$((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2$	$w_2 \prec w_1 \prec w_i$	2	

o= offence $r_1=$ remedy

Round 3

 r_2 = relief α = appreciation

Input sequence	Induced or	dering	Perm	Output
2. $o, r_1, \neg r_2$	$((\mathcal{M}_1^{\star}o)^{\star}r_1)^{\star}\neg r_2$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
4. $o, \neg r_1, \neg r_2$	$((\mathcal{M}_1^{\star}o)^{\star}\neg r_1)^{\star}\neg r_2$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
6. $\neg o, r_1, \neg r_2$	$((\mathcal{M}_1^* \neg o)^* r_1)^* \neg r_2$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg a$
8. $\neg o, \neg r_1, \neg r_2$	$((\mathcal{M}_1^* \neg o)^* \neg r_1)^* \neg r_2$	$w_1 \prec w_2 \prec w_i$	0	$\bigcirc \neg a$

Round 4

Revision sequence	Induced ordering	Perm	Output
1. $(((\mathcal{M}_1^{\star}o)^{\star}r_1)^{\star}r_2)^{\star}a$	$w_2 \prec w_1 \prec w_{i(i \geq 3)}$	1	$\bigcirc m$
2. $(((\mathcal{M}_1^* o)^* r_1)^* r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
3. $(((\mathcal{M}_1^* o)^* r_1)^* \neg r_2)^* a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$
4. $(((\mathcal{M}_{1}^{\star}o)^{\star}r_{1})^{\star}\neg r_{2})^{\star}\neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
5. $(((\mathcal{M}_1^* o)^* \neg r_1)^* r_2)^* a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$
6. $(((\mathcal{M}_{1}^{\star}o)^{\star}\neg r_{1})^{\star}r_{2})^{\star}\neg a$	$w_1 \prec w_2 \prec w_i$	4	$\bigcirc \neg m$
7. $(((\mathcal{M}_1^{\star}o)^{\star}\neg r_1)^{\star}\neg r_2)^{\star}a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$
8. $(((\mathcal{M}_1^{\star}o)^{\star}\neg r_1)^{\star}\neg r_2)^{\star}\neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
9. $(((\mathcal{M}_1^* \neg o)^* r_1)^* r_2)^* a$	$w_2 \prec w_1 \prec w_i$	1	$\bigcirc m$
10. $(((\mathcal{M}_1^* \neg o)^* r_1)^* r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
11. $(((\mathcal{M}_1^* \neg o)^* r_1)^* \neg r_2)^* a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$
12. $(((\mathcal{M}_1^* \neg o)^* r_1)^* \neg r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
13. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2)^* a$	$w_2 \prec w_1 \prec w_i$	1	$\bigcirc m$
14. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
15. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* \neg r_2)^* a$	$w_2 \prec w_1 \prec w_i$. 1.	$\bigcirc m$
16. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* \neg r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	0	$\bigcirc \neg m$

o= offence r_1 = remedy r_2 = relief a= appreciation m= minimization

Round 4

Revision sequence	Induced ordering	Perm	Output	
1. $(((\mathcal{M}_1^* o)^* r_1)^* r_2)^{**} a$	$w_2 \prec w_1 \prec w_{i(i \geq 3)}$	1	$\bigcirc m$	
3. $(((\mathcal{M}_1^* o)^* r_1)^* \neg r_2)^{*} a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$	
5. $(((\mathcal{M}_1^* o)^* \neg r_1)^* r_2)^* a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$	
7. $(((\mathcal{M}_1^* o)^* \neg r_1)^* \neg r_2)^{**} a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$	
9. $(((\mathcal{M}_1^* \neg o)^* r_1)^* r_2)^* a$	$w_2 \prec w_1 \prec w_i$	1	$\bigcirc m$	
11. $(((\mathcal{M}_1^* \neg o)^* r_1)^* \neg r_2)^{*} a$	$w_2 \prec w_1 \prec w_i$	3	$\bigcirc m$	
13. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2)^{*} a$	$w_2 \prec w_1 \prec w_i$	1	$\bigcirc m$	
15. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* \neg r_2)^{*} a$	$w_2 \prec w_1 \prec w_i $	• 4 • •		

o= offence r_1 = remedy r_2 = relief a= appreciation m= minimization

Round 4

Revision sequence	Induced ordering	Perm	Output
2. $(((\mathcal{M}_{1}^{*}o)^{*}r_{1})^{*}r_{2})^{*} \neg a$	$w_1 \prec w_2 \prec w_{i(i \geq 3)}$	2	$\bigcirc \neg m$
4. $(((\mathcal{M}_{1}^{*}o)^{*}r_{1})^{*}\neg r_{2})^{*} \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
6. $(((\mathcal{M}_1^* o)^* \neg r_1)^* r_2)^{*} \neg a$	$w_1 \prec w_2 \prec w_i$	4	$\bigcirc \neg m$
8. $(((\mathcal{M}_1^* o)^* \neg r_1)^* \neg r_2)$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
10. $(((\mathcal{M}_1^* \neg o)^* r_1)^* r_2)^{*} \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
12. $(((\mathcal{M}_{1}^{*} \neg o)^{*}r_{1})^{*} \neg r_{2})^{*} \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
14. $(((\mathcal{M}_1^* \neg o)^* \neg r_1)^* r_2)^* \neg a$	$w_1 \prec w_2 \prec w_i$	2	$\bigcirc \neg m$
16 $(((M^* \neg a)^* \neg r_1)^* \neg r_2)^* \rightarrow a$	201 - 200 - 200:	0	

o= offence r_1 = remedy r_2 = relief a= appreciation m= minimization

Conclusion

- Main contribution
 - Dialogue model based on obligations
 - Rules of turn-taking

Related research

Hulstijn and Maudet 2003, 'Uptake and conditional obligations'

Problems with my account

- Request: Consequent Before the Antecedent
- Drowning problem revise too much

Consequent Before the Antecedent

$$\{\bigcirc NN \neg o, \bigcirc (Nr_3/NNo), \square (Nr_3 \rightarrow NNo)\}$$

For $\mathfrak{M}^{\otimes m}\phi$, read "the model obtained from \mathfrak{M} once the happening of ϕ has been anticipated at moment m"