BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI HYDERABADCAMPUS INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout Part-II

Date: 01/08/2016

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CE G551

Course Title : DYNAMICS OF STRUCTURES

Instructor-in-charge : Dr. Mohan S C

Scope and Objective of the Course:

Natural phenomena and man made events usually impose forces of time-dependent variability on various civil engineering structures and consideration of these are essential to design a structure resistant to these type of forces. Hence, this course is focused on analysis of structures, subjected to dynamic loads such as buildings, bridges, tanks, industrial structures, tall chimneys, highway infrastructure etc subjected to earthquake excitations.

At the end of the course, students will be able to understand and analyse the behaviour of structures under dynamic loading. They willbe able to design a structure which is resistant to dynamic loading such as seismic, wind, vehicle induced vibration etc. Hence, this course will be useful for students desirous of designing structures resistant to time dependent forces such as seismic, wind, vehicle induced vibrations etc.

❖ Text Book (TB):

1. Chopra, Anil K. "Dynamics of Structures: Theory and applications to earthquake engineering", Pearson Edu., 4th edition, 2012.

A Reference Books (RB):

- 1. R.W. Clough and J. Penzien, "Dynamics of Structures", Second edition, McGraw Hill International edition, 1993.
- 2. M. Mukhopadhyay, "Structural Dynamics: Vibrations & Systems" Ane's Student Edition, 2010.
- 3. Mario Paz, "Structural Dynamics Theory and Computation", Van Nostrand, 1985.
- 4. J.L.Humar, "Dynamics of Structures", Prentice Hall India Ltd., 1990.
- 5. L. Meirovitch, "Elements of Vibration Analysis", 2nd Ed., McGraw-Hill, 1986.
- 6. Daniel J. Inman, "Engineering Vibration", Prentice Hall of India Ltd., 2001.
- 7. Singiresu S. Rao, "Mechanical Vibrations" Pearson Education.2010.
- 8. Roy R Craig, Jr., "Structural Dynamics", John Wiley & sons, 1981.
- 9. J. M. Biggs, "Introduction to Structural Dynamics", McGraw-Hill, 1964.
- 10. N.C. Nigam, "Introduction to Random Vibration", MIT Cambridge, 1983.
- 11. L. Fryba, "Dynamics of Railway Bridges", Thomas Telford, 1996.
- 12. E. Siniu and R.H. Scanlan, "Wind effects on structures: fundamentals and applications to design", John wiley and sons, 1997.
- 13. P.Agarwal, and M. Shrikhande, "Earthquake resistant design of structures", Prentice-Hall India. 2006.
- 14. Patrick Paultre. "Dynamics of Structures" Wiley, Reprint 2013.

& Course Plan

**	Course Plan			T					
Lec.	Learning	Topics to be covered	Ref.	Teaching					
No.	Objective			Mode					
I.	Introduction to Dynamics of Structures								
1	Importance of the	Introduction and Scope of dynamic analysis of structures; origins of	TB	PPT/BB					
	course	vibration theory and experiment; review of earlier concepts:							
		d'Alembert's principle, equations of motion.							
2-3	Fundamentals of	Elements of a structural system: springs, mass; Springs in parallel	TB	PPT / BB					
	Dynamics of	and series; methods to formulate equations of motion: Newton's							
	Structures	equation of motion.							
II.	Single Degree of Freedom (S.D.O.F) System(Discrete Mass Systems)								
4-5	Free vibration	Formulation (equation of motion) and solution of undamped and	TB	PPT / BB					
	analysis	damped free vibration analysis of S.D.O.F system.							
6-8	Forced vibration	Formulation (equation of motion) and solution of undamped and	TB	PPT / BB					
	analysis	damped forced vibration analysis of S.D.O.F system.							
9-11	General dynamic	Evaluation of Response for SDOF system for general dynamic	TB	PPT / BB					
	load analysis	loading like periodic, step, impulse etc.							
III.	Multi Degree of Freedom (M.D.O.F) Systems								
12-15	Analysis of	Development of equation of motion and solution for Multi degree of	TB	PPT / BB					
12 13	MDOF	freedom systems.(Free and Forced)	1D	III T / DD					
16-18	Modal analysis of	Evaluation of natural frequencies, modeshapes, orthogonality	ТВ	PPT / BB					
10-16	MDOF systems	conditions and modal combination rules.	110						
19-22	Dynamic Analysis	Response history analysis under support excited vibration; Response							
19-22									
	under support excited vibration	spectram analysis, modal combination rules using absolute sum,							
22.26		SRSS and CQC method.	TTD.	PPE / PP					
23-26	Numerical	Approximate methods for obtaining natural frequencies and mode	TB	PPT / BB					
	evaluation for	shapes; Reyleigh-Ritz method; Time history analysis; Central							
	MDOF systems	Difference method; Newmark beta method; average and linear							
	acceleration method.								
IV.		bration of Continuous Systems	•	T					
27-28	Derivation of	Equations of motion; undamped free vibration; forced response.	TB	PPT/BB					
	equation of								
	motion								
29-30	Application for	Vibration of bars and beam, modal analysis; bars (axial vibrations),	TB	PPT/BB					
	continuous	beams.							
	systems								
V.	Modeling and Dyna	mic Analysis							
31-35	Dynamic analysis	Modelling and Dynamic analysis of beam, frame, bridge, multi-	RB-2	PPT/ BB					
	using FEM	story building, water tank, etc.							
36-37	Vibration isolation	Vibration absorber and tuned mass damper;							
VI.	Random Vibration	* ′							
38-40	Random vibration	Introduction of random vibration; stochastic processes; Stochastic	RB-	PPT/BB					
		response of SDOF systems;	10						
VII.	Frequency Domain	Analysis of Structures		l					
41-42	Frequency	Response of Multi-degree systems in frequency domain.	Note/	PPT/BB					
	domain analysis	Response of Multi-degree systems in frequency domain.	RB-14	111/00					
	domain anarysis	<u> </u>	<u> </u>						

& Evaluation Scheme:

EC	Evaluation	Duration	Weightag	Date, Time	Nature of
No.	Component		e	& Venue	Component
1.	Test I	60 Min	15%	8/9, 10.0011 AM	CB
2.	Test II	60 Min	15%	25/10, 10.0011 AM	CB
3.	Laboratory /		20%		OB
	Assignments				
4.	Term Paper/ Projects		20%		OB
5.	Compre Exam.	180 Min	30%	08/12 FN	OB

- * Chamber Consultation Hour: Will be announced in class
- **Notice**: Notices will be displayed on Department of Civil Engg. notice board only.

Instructor-in-Charge CE G551