Sorting algorithms

William Hendrix

Outline

- Brief review: InsertionSort, BubbleSort, SelectionSort, HeapSort, MergeSort
- Quicksort
- Comparison-based sorting
- Non-comparison-based sorting methods

Review: quadratic sorting algorithms

- Three main quadratic sorting algorithms
- BubbleSort
 - Swap adjacent values that are out of order $\Theta(n)$ time
 - Continue until no swaps are made $\Omega(1)$ to O(n) iterations
 - Best/worst case complexity: $\Omega(n)/O(n^2)$
- InsertionSort
 - Insert each element into correct position $\Theta(n)$ elements
 - Shift sorted elements in order to make a space $\Omega(1)$ to O(n) time
 - Best/worst case complexity: $\Omega(n)/O(n^2)$
- SelectionSort
 - Find min in unsorted portion of array $\Theta(n)$ time
 - Swap to beginning and repeat $\Theta(n)$ iterations
 - Best/worst case complexity: $\Theta(n^2)/\Theta(n^2)$

Linearithmic sorting algorithms

- HeapSort
 - Application of appropriate data structure to SelectionSort
 - Organize data in heap (usually max heap) $\Theta(n)$
 - Extract max, swap to end $\Theta(\lg n)$
 - Repeat until sorted $\Theta(n)$ iterations
 - Best/Worst case: $\Theta(n \lg n)/\Theta(n \lg n)$
- MergeSort
 - Application of divide-and-conquer strategy
 - Split array in two $\Theta(1)$
 - Recursively call MergeSort on two halves 2T(n/2)
 - Merge arrays $\Theta(n)$
 - Best/Worst case: $\Theta(n \lg n)/\Theta(n \lg n)$, by MT

QuickSort

- Alternative divide-and-conquer algorithm for sorting
- Splits dataset according to *value*, not *position*
 - "Small half": less than some value
 - "Large half": larger than some value
 - *Pivot*: the value used to split the dataset
- Pseudocode
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side
 - 3. Insert pivot where two "halves" meet
 - 4. Recursively sort each "half"
 - Base case: arrays with o or 1 elements are sorted

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element

75	5	55	88	78	42	18	93
/ 0	0	00		, ,	ı .—	-0	70

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side
 - 3. Swap pivot with element where left and right meet

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side
 - 3. Swap pivot with element where left and right meet
 - 4. Recurse on both sides

- Apply QuickSort to the array below:
 - 1. Select pivot
 - Naïve strategy: pick first element
 - 2. Start at left and right ends of array
 - Swap values larger than pivot to the RHS of array
 - Swap values smaller than pivot to LHS of array
 - Equal values can go on either side
 - 3. Swap pivot with element where left and right meet
 - 4. Recurse on both sides

QuickSort complexity

- 1. Choose pivot
 - Different strategies
- 2. Swap elements
 - Everything left of pivot is <, right of pivot >
- 3. Recurse on both sides
- Step 1: $\Theta(1)$
- Step 2: Θ(n)
- Recursion
 - Depends on pivot!
 - Best case: $2T(n/2) \Rightarrow \Omega(n \lg n)$
 - Worst case: $T(n-1) \Rightarrow O(n^2)$

Average case complexity

- Steps 1 & 2: $\Theta(n)$
- Recursion tree

Complexity

- Total complexity: $\Theta(nh)$
- Where is the pivot?

- 50% chance to be in middle 50%
- Reduces "big" side to 3/4 $h = \log_{4/3}(n)$
- If other pivots do nothing: $h = 2\log_{4/3}(n) \Rightarrow \Theta(n \lg n)$

Analysis of QuickSort

- Once the two halves are sorted, entire array is sorted
 - Can use tail recursion
- Pivot might not divide dataset exactly in half
- Pivot value impacts runtime
- Pivot selection strategies
 - First/last
 - Simple
 - · Bad on sorted or constant data
 - Median-of-three
 - Choose median of first, last, and middle
 - Partitions sorted data well
 - Random
 - Always average case, unless constant values
 - Median
 - Overhead of calculating is too high: $\Theta(n)$
- Constant data can be fixed by splitting array into <, =, and >
 - Code is more complex

Important sorting features

- Time complexity
- In-place
 - Needs no additional space
- Stable
 - Elements with equal value keep relative order
- Example: a=3 b=2 c=2 d=3 \Longrightarrow b c a d

Algorithm	Best case	Worst case	In- place?	Stable?		
BubbleSort	$\Omega(n)$	$O(n^2)$	Y	Y		
InsertionSort	$\Omega(n)$	$O(n^2)$	Y	Y	Fastest for small input	
SelectionSort	$\Omega(n^2)$	$O(n^2)$	Y	Y	Sman mput	
HeapSort	$\Omega(n \lg n)$	$O(n \lg n)$	Y	N	Generally	
MergeSort	$\Omega(n \lg n)$	$O(n \lg n)$	N*	Y	considered	
QuickSort	$\Omega(n \lg n)$	$O(n^2)$	Y	N*	the fastest	

^{*} Possible, but difficult

Comparison-based sorting algorithms

- Sorting algorithms that operate by comparing pairs of elements
 - BubbleSort, SelectionSort, InsertionSort, HeapSort, MergeSort, QuickSort
 - All $O(n^2)$ or $O(n \lg n)$
- Is there a faster sorting algorithm?
 - No!
 - At least not comparison-based

CBS algorithm lower-bound

- Array of size n has n! total permutations
 - Correct algorithm must perform different swaps in every case
- Each comparison: up to 3 outcomes

$$- <, >, =$$

• # of outcomes after *k* swaps:

Comparisons	Picture	Count
0		1
1	QQQ	3
2		9
•••	/	•••
k		3^k

• # comparisons to distinguish n! outcomes: $\log_3(n!) = \Theta(n \lg n)$

Coming up

- Final sorting algorithms
- Graphs
- **Project 1** will be due Oct. 18
- Homework 7 (posted tonight) will be due Oct 22
- Recommended readings: Sections 5.1 and 5.2
- **Practice problems:** 4-2, 4-18, 4-29 (p. 139)