Table of Contents

第 18 章 分析演算法-Regression 迴歸分析	
18.1 資料準備	1
18.2 機器學習的資料準備	
18.3 迴歸分析數學介紹	6
18.4 迴歸分析繪圖	6
18.5 亂數數據	8
18.6 殘差 residual	9
18.7 使用 SciKit 的 linear_model 函數求線性迴歸	10
18.8 實戰案例-動物大腦和身體的關係	12
18.9 實戰案例-糖尿病	13
18.9.1 繪製出資料	14
18.9.2 將資料存到 Excel 檔案	15
18.9.3 使用迴歸分析找出 BMI 與糖尿病的關係	17

第18章 分析演算法-Regression 迴歸分析

18.1 資料準備

在介紹演算法之前,需要要先了解一般的數據分析的原理和需要準備的資料,要準備的

資料第一件事情要因果關係,在學術文件中的定義是依照自變數引起的依變數的關係,要 留意的是因和果的變化一定要有彼此的連動關係。而大數據界所用的數據內容一定要以下 兩種欄位的因果資料:

- 特徵 Features:因,在統計學稱之文自變數 Independent variable
- 標籤答案 Label: 果,在統計學稱為依變數 dependent vbariable

例如:天氣的濕度值(因,特徵)增加時,下雨的機率(果,標籤答案)就會提高。

而大數據需要有很多剛剛提到的因果關係的資料(Features 和 Label)並且大量就稱為數據集 Dataset,其資料量最少 100 個以上,能到數百或千萬的資料量,所求出的結果會更好,而這樣的數據集,要準備的二個的數據集,兩個數據集的欄位格式都是要一模一樣,並且需要用人工審查其內容的正確性,這兩大類的數據集分別為:

- 訓練用數據集 Training Dataset: 交給電腦透過特定的演算法,來找出特癥 Features 和標籤答案 Label 其中之間的關係,有的時候比較複雜收據他的特徵值多個。
- 測試用數據集 Testing Dataset: 測試用,用來驗證演算法所求出的結果其正確率 為多少。

其資料的筆數大小,通常是 80:20 的比率。接下來就是依照資料的內容分布形式,來挑選合適的演算法了。而大數據分析最重要的就是數據的蒐集,如果收集的數據是錯誤的,不管有什麼樣的演算法都找不到的答案喔!

舉的實際的案例:預測你家附近今天是否會下雨,就只要把過去同一個地點的濕度(特徵Features)和結果是否下雨(標籤答案 Label),的資料記錄下來並用人工的方法一筆一筆的確認是否正確,收集到100筆,然後撥給訓練用數據集 Training Dataset 80筆,剩下20筆的給測試用數據集 Testing Dataset,這樣就完成大數據得資料收集,接下來就能透過演算法來分析依照同一個地點,依照手上的現在或未來的濕度,來預測是否會下雨的機率。

18.2 機器學習的資料準備

在機器學習之中,必須事先收集正確的資料,並提供答案,舉個例子來說: 案例:如何區檸檬和柳丁?

圖1如何區檸檬和柳丁

Feature 特癥值:

我們可以量測他的相關的資訊(專業用詞是 Feature 特癥值): 如: 顏色、甜度、酸度、體積、重量、長度、寬度 等等······

- 1. 但會發現體積和重量因該不是好的特癥值,因為兩者太過相近。
- 2. 甜度和酸度雖然可以找出區別,但會破壞商品和成品的完整性。
- 3. 可以用長度、寬度 外型是否為趨近為圓型, 顏色來說檸檬偏黃色,而柳丁偏橘色。 所以特癥值的挑選,就會影響到結果。

Label 答案:

這個範例的來說,就是「檸檬」和「柳丁」,通常都會用一個數字來代表,如1為柳丁,2為檸檬。

以實際的圖表的方法來看,就把把檸檬和柳丁的長度、寬度用圖表的方法化出來,會看到這特癥值的位置區分,而我們要做的目標就是畫出圖中的綠線的位置,用的方法叫做「演算法」,當然要盡可能的將所有的資料,可以透過這一條綠線做區分,而畫的好壞叫做「機器學習 Machine learning」的過程,而改善準確率的方法叫「數據挖掘 data mining」,而完成之後,就能用這一條綠線來當成判斷點,用來做為未來的新水果的判斷,也就是「人工智慧 Artificial intelligence」。

圖 2 檸檬和柳丁長度和寬度的關係圖和本程式執行結果

接下來還有兩個專有名詞:

Training 訓練和 Testing 測試,繼續以剛剛的檸檬和柳丁為例子,其實他們都是先用相同的資料,其內容都一模一樣,通常都是用同一個檔案,然後按照 7:3 的比例來做 Training 訓練和 Testing 測試的資料,如下圖所示:

- A欄位是種類,1是柳丁,2是檸檬
- B欄位是寬度 width
- C欄位是長度 height

	Α	В	С
1	1	9	9.4
2	1	9.2	9.2
3	1	9.6	9.2
4	1	7.5	9.2
5	1	6.7	7.1
6	1	9.2 9.6 7.5 6.7	7.4
7	1	7.1	7.5
8	1	7.8	8
9	1	7.2	7
10	1	7.5	8.1
11	1	7.6	7.8
12	1	7.1	7.9
13	1	7.1	7.6
14	1	7.3	7.3
15	1	7.2	7.8
16	1	6.8	7.4
17	1	7.1	7.5
18	1	7.6	8.2
19	1	7.2	7.2
20	2	7.2	10.3
21	2	7.3	10.5
22	2	7.2	9.2
23	2	7.3	10.2
24	2	7.3	9.7
25	2	7.3	10.1
26	2	5.8	8.7
27	2	6	8.2
28	2	7.1 7.8 7.2 7.5 7.6 7.1 7.1 7.3 7.2 6.8 7.1 7.6 7.2 7.3 7.3 7.3 7.3 5.8 6 6 5.9	7.5
29	2	5.9	8
30	2	6	8.4
31	2	6.1	8.5
32	2	6.3	7.7
33	2	5.9	8.1
34	2	6.5	8.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 33 34 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.1 6.3 5.9 6.5 6.1	9.2 9.2 7.1 7.4 7.5 8 7 8.1 7.8 7.6 7.3 7.8 7.4 7.5 8.2 7.2 10.3 10.5 9.2 10.2 9.7 10.1 8.7 8.2 7.5 8.2 7.6 8.2 7.6 8.2 7.6 8.2 9.7 10.1 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7

圖3檸檬和柳丁長度和寬度的訓練和測試資料

範例程式: plot01.py

- 1. import matplotlib.pyplot as plt# 繪圖函示庫
- 2. #繪製(黃)色 x 標記
- 3. plt.plot([9,9.2,9.6,7.5,6.7,7], [9.4,9.2,9.2,9.2,7.1,7.4], 'yx')
- 4. #繪製(綠)色 x 標記
- 5. plt.plot([7.2,7.3,7.2,7.3,7.2,7.3,7.3], [10.3,10.5,9.2,10.2,9.7,10.1,10.1], 'gx')
- 6. plt.plot([6.5,9.0], [7.8,12.5], 'b--')

#繪製黑色虛線

7. plt.ylabel('H cm')

設定顯示 Y 文字

8. plt.xlabel('W cm')

設定顯示 X 文字

9. plt.legend(('Orange','Lemons'),loc='upper right')

#繪製圖表

10. plt.show()

#繪製圖表

18.3 迴歸分析數學介紹

迴歸分析(英語: Regression Analysis)是一種統計學上解析數據的方法,目的在於了解兩個或多個變數之間是否相關,並建立數學模型用來以便觀察特定變數來預測研究者感興趣的變數。更具體的來說,迴歸分析可以協助瞭解只有一個自變量,因變換的變化量。

迴歸分析根據自變數之多寡,可分為以下二種:

- 1. 簡單迴歸分析(simple regression analysis): 用一個自變數 來解釋一個依變數之迴歸分析。
- 2. 複迴歸分析(multiple regression analysis): 用二個或二個 以上自變數來解釋一個 依變數之迴歸分析。

迴歸模型亦可視其函數之型態區分為線性(linear) 與非線性(nonlinear)兩種。

- Y=a+bX 為 一線性模式
- Y=a+ X^b 則為非線性模式。

給一個隨機樣本 $(Y_i, X_{i1},, X_{ip})$, i=1,...,n ,一個線性回歸模型假設回歸子 Y_i 和回歸量 $X_{i1}, ..., X_{ip}$ 之間的關係是除了 X 的影響以外,還有其他的變數存在。我們加入一個誤差項 ε_i (也是一個隨機變量)來捕獲除了 $X_{i1}, ..., X_{ip}$ 之外任何對 Y_i 的影響。所以一個多變量線性回歸模型表示為以下的形式:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip} + \varepsilon_i$$

i=1,....,n

線性回歸作為條件預期模型的簡單線性回歸,可以表示為:

E(
$$Y_i \mid X_i = X_i$$
)= α + β X_i

18.4 迴歸分析繪圖

為了瞭解取得資料和數學公式的關係,將資料透過程式的方法繪製出來是最好的 表現方法,為了達到這目的,首先請安裝繪圖函示庫,請透過以下指令安裝

pytho 2.x 請使用

\$ pip install matplotlib

pytho 3.x 請使用

6 柯博文老師 www.powenko.com

\$ pip3 install matplotlib

matplotlib 是非常好用的會 Python 圖表繪製的函示庫,以下的程式,是將剛剛求出的答 案繪製出來,方便讓各位知道彼此之間的關係。

假設手上的擁有的大數據,油價對民眾交通習慣的影響為例子,看到當油價得價價格, 會影響到大眾交通工具的乘坐人數。例如油價為現行的價格[1,2,3,4]倍數時,大眾交通工具 的乘坐人數就會有[0,0.3,0.6,0.9] 的比例增加。首先第一步驟是先把手上的資料,先透過 matplotlib 圖片繪製圖的方式顯示出來。

範例程式 02 plot dot.py

1. import matplotlib.pyplot as plt

2. plt.plot([1,2,3,4], [0,0.3,0.6,0.9], 'gx') #在x=1,y=0四個位置繪製(g)色x標記

4. plt.axis([0, 5, 0, 1])

5. plt.ylabel('Y')

6. plt.xlabel('X')

7. plt.show()

#繪圖函示庫

3. plt.plot([1,2,3,4], [0,0.3,0.6,0.9], 'r--') #繪製(r)紅色- 標記也就是線(趨勢線)

#圖表大小範圍, 寬度由0到5,高度由0到1

設定顯示 Y 文字

設定顯示 X 文字

#繪製圖表

圖4執行結果

所以當然符合 Y=0.3*X-0.3 計算式的情況。

而在剛剛的範例程式中,有畫出一條直線(趨勢線),那要如何畫出?我們是用 plt.plot([1,2,3,4], [0,0.3,0.6,0.9], 'r--') #在x=1,y=0四個位置繪製(r)紅色-標記也就是線 當然也可以改成

plt.plot([1,4], [0,0.9], 'r--')

#在 x=1,y=0 二個位置繪製(r)紅色-標記也就是線

所化出來的線,也會是一樣的。

18.5 亂數數據

在本章節之中,將會介紹的實際的資料表現型態,正常來說資料絕對不會乖乖的在坐落 在線上,一定會小顆的誤差。然後好的回歸分析是要要想盡辦法讓畫出來的線,平均的若 在每一個點的最短路徑之中。

透過以下的程式能就會產生出 30 個,連續的資料每一筆資料差為 0.1,也就是說到時候產生出來的資料範圍在[1.0,1.1,1.2,........3.7,3.8,3.9]之間。

import numpy as np
X = 1+np.arange(30)/10

接下來透過亂數,來產生出30個在這個簡單迴歸附近的的資料,也就是常態分位數。

取亂數:

numpy.random.uniform(low=0.0, high=1.0, size=(30,))

low:最小值high:最大值size:數量

範例程式 04_plot_dots_not_onTheLine.py

1.	import matplotlib.pyplot as plt	#繪圖函示庫
2.	import numpy as np	
3.	plt.plot([1,2,3,4], [0,0.3,0.6,0.9], 'gx')	# 綠色 x 的點
4.	plt.plot([1,2,3,4], [0,0.3,0.6,0.9], 'r')	#紅色色虛線
5.	X = 1+np.arange(30)/10	
6.	delta = np.random.uniform(low=-0.1,high=0.1, size=(30,))	#取亂數
7.	Y=0.3*X- 0.3 + delta	#帶入公式
8.	plt.plot(y1,y2,'bo')	#藍色的圓點
9.	plt.ylabel('Y')	# 設定顯示 Y 文字
10.	plt.xlabel('X')	# 設定顯示 X 文字
11.	plt.show()	#繪製圖表

執行結果

圖5執行結果

18.6 殘差 residual

好的迴歸分析結果,取決於利用線性回歸計算出趨勢線的位置和斜率,和實際統計資料之間的誤差,延續上一個程式,本章節將計算實際和誤差的差異,也就是預測的線段,和實際距離的差異,透過取絕對值的方法,把全部相減出來的距離值相加,求得出的總殘差平方和。

並且除與所有的數量,這就是殘差 residual,如果這個答案趨近於零,就代表這個迴歸分析發出來的答案是非常符合實際的資料。

範例程式 05_rsidual.py

1.		#匯入函數,同上一個範例
2.	#產生亂數	
3.	X = 1+np.arange(30)/10	#30 個矩陣[1,1.1,1.2,1.3,]
4.	delta = np.random.uniform(low=-0.1,high=0.1, size	=(30,)) #產生30個亂數在0.1~-0.1
5.	Y=0.3*X- 0.3 + delta	# 產生 30 個點
6.		#繪圖,同上一個範例
7.	#計算殘差	
8.	sum1=0.0	
9.	i=0	
10.	for X1 in X:	#取每一個實際值

- 11. Y1 = 0.3 * X1 0.3
- 12. Y2 = 0.3 * X1 0.3 + delta[i]
- 13. sum1=sum1+abs(Y1-Y2)

14. i=i+1

15. print("殘差",sum1/30)

#顯示列印殘差

#計算相差和累計

16.

執行結果

殘差值 0.055321144869560496

這個程式的前半段的透過程式產生 30 個亂數點。後半段的部分透過回歸分析的線段,來計算每一個點跟這條線之間的距離,然後把全部之間的距離,用絕對值相加起來全部,就是發差。

當然各位發現了這一個殘差並不是數字零,所以我們回歸分析之中,最重要的就是想辦法讓這個數字和線段趨近到零。這樣的意思是說找出的條線就是最符合所有的點,也能此線描述的趨勢和走向。

18.7 使用 SciKit 的 linear model 函數求線性迴歸

SciKit 是一個相當好用的科學函式庫,裡面提供了非常多的演算法,這樣可以幫助非數學、物理、統計學相關科系的程式設計者,很快地進入大數據分析的一個電腦函式庫,程式設計者只要知道在哪個情況下要使用哪一個演算法,只要把數據資料帶入,就能求出結果。

安裝的方法如下:

pip install sklearn

本章將把剛剛的資料,透過簡單線性迴歸函式庫,來求得出答案。首先顯把資料透過,收 先透過以下的方法,新增線性迴歸計算式類別。

from sklearn import linear_model

body_reg = linear_model.LinearRegression()

#新增線性迴歸計算式類別

送入訓練資料。

body_reg.fit(x_values, y_values)

預測取得預測結果。

y_test_predict= body_reg.predict(x_text)

範例程式 05-Regression.py

1.	import pandas as pd	#匯入 pandas 模型
2.	from sklearn import linear_model	#匯入線性模型
3.	import matplotlib.pyplot as plt	#匯入繪圖
4.	#準備訓練和測試的資料	
5.	x_values =pd.DataFrame([0,1,2])	
6.	y_values =pd.DataFrame([0,0.3,0.6])	
7.	x_text =pd.DataFrame([-1,3,5])	
8.		
9.	body_reg = linear_model.LinearRegression()	#指定線性迴歸
10.	body_reg.fit(x_values, y_values)	#訓練
11.		
12.	y_test_predict= body_reg.predict(x_text)	# 預測
13.	<pre>print(" body_reg.predict(x_text)",y_test_predict)</pre>	#列印
14.		
15.	#顯示圖形	
16.	plt.scatter(x_values, y_values)	#畫出原本的資料
17.	plt.scatter(x_text, y_test_predict, color='red')	#畫出預測的資料
18.	plt.plot(x_text,y_test_predict, color='blue')	#發出線性迴歸的線
19.	plt.show()	#顯示

執行結果:

body_reg.predict(x_text) [[-0.3]

[0.9]

[1.5]]

圖6執行結果

在這個程式之中,可以看到只要把要預測的數據資料,送入到 body_reg.fit(x_values, y_values)經過訓練之後,就能透過 body_reg.predict(x_text) 找出所預測出的答案,

所以在程式最後,透過圖形的方法把「訓練」「預測」「迴歸分析線段」顯示出來,會發現本 程式完全的就是在這一條線上面,這也就是最棒的答案和情況。

18.8 實戰案例-動物大腦和身體的關係

在這個章節將使用真正的醫學資料,來做做迴歸統計。這次的數據中,包含記錄動物的體 重和他大腦的重量,我們將透過以下的程式,實際的統計出自然界動物的體重和大腦之間 的關係。

範例程式:06_BrainBody.py

- 1. import pandas as pd
- 2. from sklearn import linear_model
- 3. import matplotlib.pyplot as plt
- #繪圖函示庫
- #繪圖函示庫

4. #資料處理

5. dataframe = pd.read_fwf('brain_body.txt') # 讀取 txt 的數據
6. x_values = dataframe[['Brain']] # 大腦的數據
7. y_values = dataframe[['Body']] # 身體的數據
8. #模型和訓練
9. body_reg = linear_model.LinearRegression() #使用線性迴歸模型
10. body_reg.fit(x_values, y_values) #訓練
11. #圖形化
12. plt.scatter(x_values, y_values)
13. plt.plot(x_values, body_reg.predict(x_values))
14. plt.show()

執行結果

圖7執行結果

18.9 實戰案例-糖尿病

在這一個章節,將用另外一個醫學數據範例,來探討回歸分析的在糖尿病上的醫學研究,這個糖尿病數據資料來源是由,scikit-learn 函示庫中還附帶一些開發練習時的數據集,還有很多有趣的一些訓練資料,有機會會在後面的介紹和使用, 請看以下的列表。

Python

• load boston:波士頓房價數據集。

• load_iris:鳶尾花數據集。

• load_diabetes:糖尿病數據集。

• load_digits:手寫 OCR 數字圖片數據集。

load_linnerud: linnerud 數據集。load wine: 葡萄酒數據集。

• load breast cancer:威斯康辛州乳腺癌據集。

本章節將會使用 scikit-learn 糖尿病數據集,這是一個糖尿病的數據集,主要包括 442 筆數據,10 個屬性值,分別是:

- Age(年龄)
- Sex(性別)
- Body mass index(體質指數 BMI)
- Average Blood Pressure(平均血壓)
- S1~S6 血液中各種疾病級數指標

而結果的部分為:

• Target 為一年後患疾病的指標數

18.9.1 繪製出資料

首先將透過以下的程式將資料下載取得,並透過圖形化可以清楚的瞭解這個糖尿病的數 據的樣貌,

範例程式 07-diabets.py

1 import matplotlib pyplot as plt

٠.	import matpiotiib.pypiot as pit		
2.	import numpy as np	#矩陣函示庫	
3.	from sklearn import datasets, linear_model	#線性迴歸函示庫	
4.	#取得糖尿病的數據		
5.	diabetes = datasets.load_diabetes()	#取得糖尿病的數據	
6.	#取得		
7.	diabetes_X = diabetes.data[:, np.newaxis, 2]	#只取第三個特徵值 BMI	
8.	# 切分特徵值 BMI		
9.	diabetes_X_train = diabetes_X[:-20]	# 切割 0 到最後 20 筆特徵給訓練用	

#繪圖函示庫

10. diabetes_X_test = diabetes_X[-20:] # 切割最後 20 筆特徵給訓練用
11. # 切分答案
12. diabetes_y_train = diabetes.target[:-20] # 切割 0 到最後 20 筆答案給訓練用
13. diabetes_y_test = diabetes.target[-20:] # 切割最後 20 筆答案給訓練用
14. #繪圖
15. plt.scatter(diabetes_X_test, diabetes_y_test, color='black') #畫出黑點
16. plt.show() #顯示繪圖

執行結果

圖8執行結果

請留意這裡的 X 軸數據是只用 Body mass index(體質指數 BMI)。

18.9.2 將資料存到 Excel 檔案

這個糖尿病數據的特徵值只有 10 種之多,為了讓各位了解實際數字的樣子和範圍,在本章節將透過 pandas 函式庫,將所取得的數值儲存在 Excel 表之中,這樣的話方便觀看這一個醫學數據的內容。

範例程式 06-RegressionDiabetesLoad.py

import matplotlib.pyplot as plt # 繪圖函示庫
 import numpy as np # 矩陣函示庫
 from sklearn import datasets, linear_model # 線性迴歸函示庫

```
4. #取得糖尿病的數據
5. diabetes = datasets.load diabetes()
6. print("diabetes.data.shape=",diabetes.data.shape)
                                                           # 輸出 (442, 10)
print("dir(diabetes)",dir(diabetes))
                                       # 輸出['DESCR', 'data', 'feature_names', 'target']
8. print("diabetes.target.shape=",diabetes.target.shape)
                                                           # 輸出 (442,)
9. try:
10. print("diabetes.feature_names=",diabetes.feature_names)
                                                                #顯示特徵值名稱
11. except:
12. print("No diabetes.feature_names=")
                                                           # Excel 函示庫
13. import xlsxwriter
14. import pandas as pd
                                                           # pandas 函示庫
15. #轉換資料型態
16. try:
17. df = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
18. except:
19. df = pd.DataFrame(diabetes.data, columns= ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4',
   's5', 's6'])
20. print(df.head())
                                                         #顯示前五筆資料
21.
22. df.to_csv("diabetes.csv", sep='\t')
                                                         #儲存到 CSV
23.
24. writer = pd.ExcelWriter('diabetes.xlsx', engine='xlsxwriter') # 儲存到 Excel
25. df.to_excel(writer, sheet_name='Sheet1')
26. writer.save()
27.
```

執行結果

	_										
A1	~										
	A	B	C	D hm:	E hn	- F	е s2	н s3		s5	s6
1		age	sex	bmi	bp	s1	SZ	\$3	s4	SO	SO
2	0	0.038076	0.05068	0.061696	0.021872	-0.04422	-0.03482	-0.0434	-0.00259	0.019908	-0.01765
3	1	-0.00188	-0.04464	-0.05147	-0.02633	-0.00845	-0.01916	0.074412	-0.03949	-0.06833	-0.0922
4	2	0.085299	0.05068	0.044451	-0.00567	-0.0456	-0.03419	-0.03236	-0.00259	0.002864	-0.02593
5	3	-0.08906	-0.04464	-0.0116	-0.03666	0.012191	0.024991	-0.03604	0.034309	0.022692	-0.00936
6	4	0.005383	-0.04464	-0.03638	0.021872	0.003935	0.015596	0.008142	-0.00259	-0.03199	-0.04664
7	5	-0.0927	-0.04464	-0.0407	-0.01944	-0.06899	-0.07929	0.041277	-0.07639	-0.04118	-0.09635
8	6	-0.04547	0.05068	-0.04716	-0.016	-0.0401	-0.0248	0.000779	-0.03949	-0.06291	-0.03836
9	7	0.063504	0.05068	-0.00189	0.06663	0.09062	0.108914	0.022869	0.017703	-0.03582	0.003064
10	8	0.041708	0.05068	0.061696	-0.0401	-0.01395	0.006202	-0.02867	-0.00259	-0.01496	0.011349
11	9	-0.0709	-0.04464	0.039062	-0.03321	-0.01258	-0.03451	-0.02499	-0.00259	0.067736	-0.0135
12	10	-0.09633	-0.04464	-0.08381	0.008101	-0.10339	-0.09056	-0.01395	-0.07639	-0.06291	-0.03421
13	11	0.027178	0.05068	0.017506	-0.03321	-0.00707	0.045972	-0.06549	0.07121	-0.09643	-0.05907
14	12	0.016281	-0.04464	-0.02884	-0.00911	-0.00432	-0.00977	0.044958	-0.03949	-0.03075	-0.0425
15	13	0.005383	0.05068	-0.00189	0.008101	-0.00432	-0.01572	-0.0029	-0.00259	0.038393	-0.0135
16	14	0.045341	-0.04464	-0.02561	-0.01256	0.017694	-6.1E-05	0.081775	-0.03949	-0.03199	-0.07564
17	15	-0.05274	0.05068	-0.01806	0.080401	0.089244	0.107662	-0.03972	0.108111	0.036056	-0.0425
18	16	-0.00551	-0.04464	0.042296	0.049415	0.024574	-0.02386	0.074412	-0.03949	0.05228	0.027917
19	17	0.070769	0.05068	0.012117	0.056301	0.034206	0.049416	-0.03972	0.034309	0.027368	-0.00108
20	18	-0.03821	-0.04464	-0.01052	-0.03666	-0.03734	-0.01948	-0.02867	-0.00259	-0.01812	-0.01765

圖 9 執行結果,儲存到 Excel

18.9.3 使用迴歸分析找出 BMI 與糖尿病的關係

在章節中將透過線性迴歸性的方法,將 BMI 與結果彼此的關係,找出其關聯性,並且預測出相關的結果。

範例程式 09-LinearRegression-diabetes.py

1.	import matplotlib.pyplot as plt	#繪圖函示庫				
2.	import numpy as np	#矩陣函示庫				
3.	from sklearn import datasets, linear_model	#線性迴歸函示庫				
4.	#取得糖尿病的數據					
5.	diabetes = datasets.load_diabetes()	#取得糖尿病的數據				
6.	#取特徵值 BMI					
7.	diabetes_X = diabetes.data[:, np.newaxis, 2]	#只取第三個特徵值 BMI				
8.	# 切分特徵值 BMI					
9.	diabetes_X_train = diabetes_X[:-20]	# 切割0到最後20筆特徵給訓練用				
10.	diabetes_X_test = diabetes_X[-20:]	# 切割最後 20 筆特徵給訓練用				
11.	# 切分答案					
12.	diabetes_y_train = diabetes.target[:-20]	#切割0到最後20筆答案給訓練用				
13.	diabetes_y_test = diabetes.target[-20:]	# 切割最後 20 筆答案給訓練用				
14.	#研究計算					
15.	regr = linear_model.LinearRegression()	#建立線性迴歸				
16.	<pre>regr.fit(diabetes_X_train, diabetes_y_train)</pre>	#訓練				
17.	<pre>print('Coefficients: \n', regr.coef_)</pre>	#係數				
18.	#均方誤差					
19.	print("Mean squared error: %.2f"					
20.). % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))					
21.	1. #顯示方差分數:1是完美預測					
22.	print('Variance score: %.2f' % regr.score(diab	petes_X_test, diabetes_y_test))				

Python

23. #繪圖

24. plt.scatter(diabetes_X_test, diabetes_y_test, color='black') #畫出測試黑點

25. plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',

26. linewidth=3)

#畫出測試預測的線性迴歸

27. plt.xticks(())

28. plt.yticks(())

29. plt.show()

#顯示

執行結果:

Coefficients: [938.23786125]

Mean squared error: 2548.07

Variance score: 0.47

圖 10 執行結果