

Agenda

- Overview of Data
- What is Statistics?
- Measures of Data:
 - Central Tendency
 - Measures of Dispersions
 - Five Number Summaries

SJSU SAN JOSÉ STATE UNIVERSITY **Ordered Dataset** Items Purchased C1 C2 C, D A, D Human genome Short reads GGTCTGGATGC CGGTCTGGATGC Customer C1 C2 C3 Time and Items Purchased (t1: A,B) (t2:C,D) (t5:A,E) (t3: A, D) (t4: E) GCGGTCTGGATG GCGGTCTGGAT GGCGGTCTGGAT (t2: A, C) GGCGGTCTGGA Sequential Data TCTATGCGGGCCCC ATCTATGCGGGCC TATCTATGCGGGC TTATCTATGCGGG **Spatial Data** Sequence Data **Time Series Data** Images adopted from various sources.

What is Statistics?

- Statistics is the science of collecting, analyzing, interpreting, presenting, and organizing data.
- It's a way of turning raw numbers into meaningful information that can help us understand patterns, trends, and relationships in various fields such as science, economics, and social sciences.
- There are two main branches of statistics:
 - Descriptive Statistics: summarizing and describing the features of a data set. Common tools include measures of central tendency and measures of variability etc.
 - Inferential Statistics: This involves making predictions or inferences about a population based on a sample of data. Techniques include hypothesis testing, confidence intervals, and regression analysis etc.

Population vs Sample

A set of data points is a sample from a population:

- A population is the entire set of objects or events under study.
 - e.g., population can be hypothetical "all students" or all students in this class.
 - e.g., population can be all the houses in a region
- A sample is a "representative" subset of the objects or events under study. This is needed because it's impossible or intractable to obtain or compute with population data.

11

Sampling

- Sampling is an integral part of machine learning (ML) workflow
 - Sampling from all possible real-world data:
 - to create training data
 - to create splits: training, validation and testing data
 - for monitoring purposes
- Not accessible to all real-world data use a subset of real world data (by sampling) for training model
- Infeasible to process all data available too much time, computing power and money
- Allows to accomplish a task faster and cheaper
 - e.g. Perform a quick experiment with a subset of the data before
 running model on all the entire data

Model deployment and serving

Model deployment and serving

Population

Sample

Machine learning workflow

SJSU SAN JOSÉ STATE UNIVERSITY

Introduction to Statistics – Data Sampling Errors

Selection Bias – Data (samples) are NOT selected in a way that is reflective or representative of the real-world distribution (entire population).

- Coverage Bias Data is not selected in a representative fashion.
- Non-Response Bias Data ends up unrepresentative due to participation gaps in the data collection process.
- Sampling Bias Proper randomization is not used during data collection.

https://developers.google.com/machine-learning/crash-course/fairness/ https://www.qualtrics.com/experience-management/research/selection-bias/

Question

Classify the following as Categorical (nominal or ordinal) or Numerical (discrete or continuous).

- Time in terms of AM or PM.
- Brightness as measured by a light meter.
- Brightness as measured by people's judgments.
- Angles as measured in degrees between 0 and 360.
- Bronze, Silver, and Gold medals as awarded at the Olympics.
- Height above sea level.
- Number of patients in a hospital.
- Military rank.

ຼື ຂອງ ເປັນ ຊົ່ງ ເປັ ເປັນ ເປັນ ເປັນ ຊົ່ງ ເ

19

SJSU SAN JOSÉ STATE UNIVERSITY **Important Measurements of Data** To better understand the data, here are some important measures: Central Tendency $\mu = 0$, $\sigma^2 = 0.2$, $\mu = 0$, $\sigma^2 = 1.0$, $\mu = 0$, $\sigma^2 = 5.0$, $\sigma^2 = 0.2$ Dispersion • Graphic Summaries of Data $\phi^{0.6}_{\mu,\sigma^2}(x)$ • Covariance and Correlation Analysis (later)

Measures of Dispersion

Here are some common measures of central tendency:

- Mean
- Median
- Mode

Mean

- The mean is the arithmetic average of a set of values.
- To find the mean, all the values are summed up and then divided by the # of values.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \qquad \mu = \frac{\sum x}{N}$$

Pros:

sample population

- Simple to calculate.
- Utilizes all data points.

$$\bar{x} = \frac{\sum x}{n} = \frac{22 + 22 + 26 + 24 + 23}{5} = \frac{117}{5} = 23.4$$

Cons:

• Sensitive to outliers (extreme values can skew the mean).

25

Median

- The median is the middle value in a dataset when the values are arranged in ascending or descending order.
- To find the median:

22 22 **23** 24 26

- Arrange data in order.
- Find the middle position: n+1/2.
- For even # of data, the median is the average of the two middle numbers.

Pros:

22 22 **23 24** 26 27

- Not affected by outliers.
- Represents the midpoint effectively.
- $Median = \frac{23 + 24}{2} = \frac{47}{2} = 23.5$

Cons:

• Does not utilize all data points (only the middle one).

Mode

- The mode is the most frequently occurring value in a dataset.
- A dataset may have one mode (unimodal), more than one mode (bimodal or multimodal), or no mode if no value repeats.

Pros:

22 22 **23 24** 26 27

What is the mode?

- Can be used with categorical data.
- Represents the most common value.

Cons:

• Might not be unique (or may not exist).

27

SJSU SAN JOSÉ STATE UNIVERSITY

Summary of Mean, Median & Mode

• Mean (algebraic measure) (sample vs. population):

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

sample vs population

weighted mean

- Median: middle value (odd # of values) or average of the middle 2 values (otherwise)
- Mode: Value that occurs most frequently in the data

bimodal

- trimodal

Mean vs Median vs Mode

Comparison of common averages of values { 1, 2, 2, 3, 4, 7, 9 }

Type	Description	Example	Result 4	
Arithmetic mean	Sum of values of a data set divided by number of values	(1+2+2+3+4+7+9) / 7		
Median	Middle value separating the greater and lesser halves of a data set	1, 2, 2, 3 , 4, 7, 9	3	
Mode	Most frequent value in a data set	1, 2, 2, 3, 4, 7, 9	2	

- Mean is best for datasets without outliers and symmetric distributions.
- Median is useful for skewed distributions or when outliers are present.
- Mode is ideal for categorical data or when you're interested in the most common value.

29

SJSU SAN JOSÉ STATE UNIVERSITY

Questions

- Is income positively or negatively skewed?
- For categorical variables, which makes the most sense: mean, median or mode? Why?

33

SJSU SAN JOSÉ STATE UNIVERSITY

Example: Anscombe's Data

• The following four data sets comprise the Anscombe's Quartet; all four sets of data have identical simple summary statistics.

	Dataset I		Dataset II		Data	set III	Dataset IV	
	X	у	Х	У	Х	у	Х	У
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99.00	82.51	99.00	82.51	99.00	82.51	99.00	82.51
Avg:	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
Std:	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

Practical Applications of Mean, Median and Mode

- Business:
 - Mean is used to determine average sales.
 - Median income to gauge typical earnings.
 - Mode for the most common product sold.
- Healthcare:
 - Median survival time in clinical trials provides a clear central measure unaffected by outliers.
- Education:
 - Mode can show the most common score in a test, indicating the most frequent performance level.

STEED STEED

37

Measurements of Dispersion

- Dispersion refers to the variations of items among themselves or around an average
- Greater variation → More Dispersion
- Measurements of dispersion is useful for:
 - Determine the reliability of mean etc
 - Compare variability of 2 or more data sets
 - Facilitate the use of other statistical measures

39

39

Measures of Dispersion

Here are some common measures of dispersion:

- Range
- Variance or Standard Deviation
- Interquartile Range (IQR)
- Coefficient of Variation

Range

- The range is the simplest measure of dispersion.
- It is the difference between the highest and lowest values in a dataset.

Range = (maximum data value) - (minimum data value)

- Pros:
 - Easy to calculate and understand.
 - Provides a quick sense of the data spread.

22, 22, 26, 24

· Cons:

- range = (maximum value) (minimum value) = 26 22 = 4.0
- Sensitive to outliers.
- Does not provide information about the distribution of data.

41

Variance and Standard Deviation

- Variance measures the average squared deviation from the mean.
- Standard deviation is the square root of variance.
- It provides an overall sense of how spread out the values are.

$$c = \sqrt{\frac{\sum (x - \overline{x})^2}{\sum (x - \overline{x})^2}}$$
 sample standard deviation population standard deviation $\sigma = \sqrt{\frac{\sum (x - \mu)^2}{\sum (x - \mu)^2}}$

- · Pros:
 - Uses all data points.
- population standard deviation $\sigma = \sqrt{\frac{\sum (x \mu)^2}{N}}$
 - $\Sigma x^2 = 2220$

 $\Sigma x = 94$

22, 22, 26, 24

- Provides a comprehensive measure of variability.
- $s = \sqrt{\frac{n(\Sigma x^2) (\Sigma x)^2}{n(n-1)}} = \sqrt{\frac{4(2220) (94)^2}{4(4-1)}} = \sqrt{\frac{44}{12}} = 1.9$

- Cons:
 - Units are squared (for variance), which may be difficult to interpret.
 - Sensitive to outliers.

Interquartile Range (IQR)

- Interquartile range is the range of the middle 50% of data.
- It is the difference between the third quartile (Q3) and the first quartile (Q1).

Interquartile range (or IQR) $= Q_3 - Q_1$

Pros:

- Not affected by outliers.
- Provides a measure of spread for the central portion of the data.

Cons:

- Does not use all data points.
- Requires data to be ordered.

43

Measures of Dispersion – Variance Threshold

Variance threshold – a baseline feature selection method

- Compute the variance of each feature in the dataset.
- Set a threshold value for the variance
 - Remove the features with variance below the threshold (low variability)
 - Retain the features with variance above the threshold for further analysis or modeling
- A feature with higher variance indicates that the data points are more diverse and less clustered around the mean → carries more information or exhibits greater variability
- Conversely, a feature with lower variance indicates that the data points are closer to the mean, indicating less variability and potentially less informative content

Variance Threshold Example

Consider a dataset with the following features: **Age**, **Height**, **Weight**, and **Income**. Use the variance threshold method to select features with a variance above a threshold of 10.

- Compute the variance of each feature:
 - Age: Variance = 10.5
 - Height: Variance = 2.1
 - Weight: Variance = 15.2
 - Income: Variance = 4.8
- Features with variance < 10 (Height and Income) → low variability.
- Remove the features with low variance (Height and Income) from the dataset

รี่เรเพิร์โรบพิรี

45

Empirical (or 68-95-99.7) Rule for Data

• For data that's symmetric or has a bell-shape distribution, the empirical rule applies:

Chebyshev's Theorem

For datasets without with bell-shaped distributions, Chebyshev's theorem can be used:

- At least 3/4 (or 75%) of all values lie within 2 standard deviations of the mean.
- At least 8/9 (or 89%) of all values lie within 3 standard deviations of the mean.
- However, results from Chebyshev's theorem are only approximate.

47

Example

Given a dataset with a mean of 100 and a standard deviation of 15, what can we conclude?

- If data distribution is bell shaped, we can apply the empirical rule:
 - 1 std dev → 68% of data points is between 85 and 115
 - 2 std devs → 95% of data points is between 70 and 130
 - 32 std devs → 99.7% of data points is between 55 and 145
- Otherwise, use the Chebyshev's Theorem:
 - At least 3/4 (or 75%) of data points are within 2 std devs of the mean (between 70 and 130)
 - At least 8/9 (or 89%) of data points are within 3 std devs of the mean (between 55 and 145).

SJSU SAN JOSÉ STATE UNIVERSITY

Z-Score

Z score a measure of position which tells us how many standard deviations the original observation falls away from the mean and in which direction.

- It has no units of measurement.
- Z scores for "usual" data points should be between -2 and 2.

Sample Population $Z = \frac{X - \overline{X}}{S} \quad \text{or} \quad Z = \frac{X - \mu}{\sigma}$

Z score has various applications:

- Z score standardization
- Outlier detection

Usual values: $-2 \le z \text{ score } \le 2$ Unusual values: z score < -2 or z score > 2

49

SJSU SAN JOSÉ STATE UNIVERSITY

Example: Z Score

Suppose heights of this class students approximately bell shaped and symmetrical with mean 65" and std. dev. 1.7".

- What is the z score of a student who is (a) 70" tall, (b) 63" tall?
- Find what is the height of a student with a z score of 1.5?

5-Number Summaries

- Quartiles: data is divided into four equal parts
- 5-Number Summary: Minimum, Q1(25th percentile), Median, Q3(75th percentile), Maximum
- Interquartile Range (IQR): difference between upper and lower quartile Q3 Q1
- Outliers: we can find outliers using IQR \rightarrow [Q1 1. 5 * IQR, Q3 + 1. 5 * IQR]

51

Example: Five Number Summary and Boxplot

• Given the dataset as shown:

Table 3-5 Sorted Counts of Chocolate Chips in Chips Ahoy (Regular) Cookies									kies	
	19	19	20	20	20	20	22	22	22	22
	23	23	23	23	23	23	23	24	24	24
	24	24	25	25	25	25	25	25	25	26
	26	26	26	26	26	27	27	28	28	30

• The Five-Number Summary is as follows:

