1. A rule of thumb (derived by Einstein) is that the diffusion coefficient for a globular molecule satisfies $D \approx M^{-1/3}$ where M is the molecular weight. Determine how well this relationship holds for the substances listed in Table 1 by plotting D and M on a log-log plot.

Substance	Molecular Weight	$D(\mathrm{cm}^2/\mathrm{s})$
hydrogen	1	4.5×10^{-5}
oxygen	32	2.1×10^{-5}
carbon dioxide	48	1.92×10^{-5}
glucose	192	6.60×10^{-6}
insulin	5,734	2.10×10^{-6}
Cytochrome c	13,370	1.14×10^{-6}
Myoglobin	16,900	5.1×10^{-7}
Serum albumin	$66,\!500$	6.03×10^{-7}
hemoglobin	$64,\!500$	6.9×10^{-7}
Catalase	$247,\!500$	4.1×10^{-7}
Urease	482,700	3.46×10^{-7}
Fibrinogen	330,000	1.97×10^{-7}
Myosin	524,800	1.05×10^{-7}
Tobacco mosaic virus	40,590,000	5.3×10^{-8}

2. The cross-sectional area of the small intestine varies periodically in space and time due to peristaltic motion of the gut muscles. Suppose that at position x (where x = length along the small intestine) the area can be described by

$$A(x,t) = \frac{a}{2}[2 + \cos(x - vt)],$$

where v is a constant.

- (a) Write an equation of balance for c(x,t), the concentration of digested material at location x.
- (b) Suppose there is a constant flux of material throughout the intestine from the stomach (that is, $\mathbf{J}(x,t)=1$) and that material is absorbed from the gut into the bloodstream at a rate proportional to its concentration for every unit area of intestinal wall. Give the appropriate balance equation.
- (c) Show that even if $\mathbf{J}(x,t) = 0$ and $\sigma(x,t) = 0$, the concentration c(x,t) appears to change.
- 3. Using $\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}$, verify that $\int_{-\infty}^{\infty} p(x,t) dx = 1$ for all time, where p(x,t) is given by

$$p(x,t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

4. Numerically simulate a random walk with $\alpha = 0.25$. Estimate the variance for this process as a function of time and compare this estimate with the theoretically derived variance for this process.

- 5. Suppose a particle moves to the right with probability α and to the left with probability β and stays put with probability $1 \alpha \beta$. Following the arguments from class, formulate this as a discrete random walk process and determine
 - (a) The limiting partial differential equation.

- (b) The mean and the variance for the process using the limiting partial differential equation.
- (c) Numerically simulate this random walk with $\alpha = 0.1, \beta = 0.2$. Estimate the mean and variance for this process as a function of time and compare these with the mean and the variance derived directly from the partial differential equation.
- (d) Write the limiting differential equation in conservation form, and identify the flux terms.
- 6. Suppose that particles in discrete boxes of size Δx leave box j to box $j \pm 1$ at the rate $\lambda_j/(\Delta x)^2$, where $\lambda_j = \lambda(j\Delta x)$ for some smooth function $\lambda(x)$. Derive the limiting diffusion equation, written in conservation form. Identify the different flux terms.
- 7. Suppose that particles in discrete boxes of size Δx leave box j to box $j \pm 1$ at the rate $\lambda_{j\pm 1}/(\Delta x)^2$, where $\lambda_j = \lambda(j\Delta x)$ for some smooth function $\lambda(x)$. Derive the limiting diffusion equation, written in conservation form. Identify the different flux terms.