Part 1

1121 Unit 10 Additional Questions

TRIGCOMP1.tex

1 Consider the following functions:

$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sin(x)$
Use these functions to complete the statements below:

- (a) Domain of f(x) is $(-\infty, 2) \cup (2, \infty)$
- (b) Range of f(x) is $(-\infty, 0) \cup (0, \infty)$
- (c) Domain of g(x) is $(-\infty, \infty)$
- (d) Range of g(x) is $\begin{bmatrix} -1 \\ \end{bmatrix}$
- (e) $f(g(x)) = \frac{1}{\sin(x) 2}$
- (f) Domain of f(g(x)) is $(-\infty, \infty)$
- (g) Range of f(g(x)) is $\begin{bmatrix} -1 \\ -\frac{1}{3} \end{bmatrix}$

TRIGCOMP2.tex

Exercise 2 Consider the following functions:

$$f(x) = \frac{1}{x}$$
, $g(x) = \sin(x)$, and $h(x) = \cos(x)$
Use these functions to complete the statements below:

- (a) Domain of f(x) is $(-\infty, 0) \cup (0, \infty)$
- (b) Range of f(x) is $(-\infty, 0) \cup (0, \infty)$
- (c) Domain of g(x) is $(-\infty)$, ∞
- (d) Range of g(x) is $\begin{bmatrix} -1, \\ 1 \end{bmatrix}$
- (e) Domain of h(x) is $(-\infty)$, ∞
- (f) Range of h(x) is $\begin{bmatrix} -1 \\ \end{bmatrix}$
- (g) $g(h(x)) = |\sin \cos x|$

2

(h) Domain of g(h(x)) is $(-\infty, \infty)$

- (i) Range of g(h(x)) is $\lceil \sin 1 \rceil$, $\lceil \sin 1 \rceil$ Hint: The answer may contain a "non-famous" trigonometric value that can be left in terms of sin.
- (j) $h(g(x)) = \cos \sin x$
- (k) Domain of h(g(x)) is $(-\infty)$,
- (l) Range of h(g(x)) is $\lceil \cos 1 \rceil$, $\lceil 1 \rceil$ Hint: The answer may contain a "non-famous" trigonometric value that can be left in terms of cos.
- (m) $f(h(g(x))) = \boxed{\frac{1}{\cos\sin(x)}}$
- (n) Domain of f(h(g(x))) is $(-\infty)$, ∞
- (o) Range of f(h(g(x))) is 1, $\frac{1}{\cos 1}$.

 Hint: The answer may contain a "non-famous" trigonometric value that can be left in terms of cos.

TRIGCOMP3.tex

Exercise 3 Consider the following functions:

$$f(x) = \frac{1}{x^2 - 1} \text{ and } g(x) = \cos(x)$$

Use these functions to complete the statements below:

- (a) Domain of f(x) is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
- (b) Range of f(x) is $(-\infty, -1] \cup (0, \infty)$
- (c) Domain of g(x) is $(-\infty, \infty)$
- (d) Range of g(x) is $\begin{bmatrix} -1 \\ \end{bmatrix}$

(e)
$$f(g(x)) = \boxed{\frac{1}{(\cos x)^2 - 1}}$$

- (f) Domain of f(g(x)) contains all real numbers except for when x is equal to multiples of $\boxed{\pi}$
- (g) Range of f(g(x)) is $(-\infty)$, -1

TRIGEQ4.tex

Exercise 4 Select all "famous" trigonometric values that satisfy the following equation:

 $2\tan(x) - \sec(x) = 0$

Select All Correct Answers:

- (a) 0
- (b) $\frac{\pi}{6}$ \checkmark
- (c) $\frac{\pi}{4}$
- (d) $\frac{\pi}{3}$
- (e) $\frac{\pi}{2}$
- (f) $\frac{2\pi}{3}$
- (g) $\frac{3\pi}{4}$
- (h) $\frac{5\pi}{6}$ \checkmark
- (i) π
- (j) $\frac{7\pi}{6}$
- $(k) \ \frac{5\pi}{4}$
- (l) $\frac{4\pi}{3}$
- (m) $\frac{3\pi}{2}$
- (n) $\frac{5\pi}{3}$
- (o) $\frac{7\pi}{4}$

$$(p) \ \frac{11\pi}{6}$$

TRIGEQ5.tex

Exercise 5 Select all "famous" trigonometric values that satisfy the following equation:

 $\sin(2x) = -\sin(-x)$

Select All Correct Answers:

- (a) 0 ✓
- (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{4}$
- (d) $\frac{\pi}{3}$ \checkmark
- (e) $\frac{\pi}{2}$
- (f) $\frac{2\pi}{3}$
- (g) $\frac{3\pi}{4}$
- (h) $\frac{5\pi}{6}$
- (i) π
- (j) $\frac{7\pi}{6}$
- $(k) \ \frac{5\pi}{4}$
- (l) $\frac{4\pi}{3}$
- (m) $\frac{3\pi}{2}$
- (n) $\frac{5\pi}{3}$ \checkmark

(o)
$$\frac{7\pi}{4}$$

(p)
$$\frac{11\pi}{6}$$

TRIGWORD1.tex

Exercise 6 The height of the tide in a small beach town is measured along a seawall. Water levels oscillate between 6 feet at low tide and 12 feet at high tide. On a particular day, low tide occurred at 6 AM and high tide occurred at noon. Approximately every 12 hours, the cycle repeats. Find an equation to model the water levels where x represents the time in hours and y represents the height of the tide in feet. Hint: Use midnight (12 AM) as x = 0

- (a) Which periodic function makes the most sense for this model? $(\sin x / \cos x \sqrt{\tan x})$
- (b) What is the Amplitude of the tide?
- (c) What is the Period of the tide? 12 hours.
- (d) What is the b value for this model? $\frac{\pi}{6}$
- (e) What is the vertical shift for this model?
- (f) Write an equation that models the water levels.