Assignment 1: Part 1 - Linear Regression

1. Linear Regression with One Variable

Task 1:

calculate_hypothesis.py

iterations = 50

Student ID: 210815867

2. Linear Regression with Multiple Variables

Task 2:

calculate_hypothesis.py

Student ID: 210815867

ml_assgn1_2.py

```
X1 = np.array([1650, 3])
X2 = np.array([3000, 4])
X1_norm = (X1-mean_vec)/std_vec
X2_norm = (X2-mean_vec)/std_vec
print(X1_norm, X1, X2_norm, X2, mean_vec, std_vec)
prediction1 = X1_norm[0][0]*theta_final[1]+X1_norm[0][1]*theta_final[2]+theta_final[0]
prediction2 = X2_norm[0][0]*theta_final[1]+X2_norm[0][1]*theta_final[2]+theta_final[0]
print(prediction1, prediction2)
```

gradient_descent.py

Alpha (α)	Minimum Cost	Theta (θ)
1.0	172570.09522	θ [0] = -4.31524312e+35 θ [1] = -5.39456370e+20 θ [2] = -2.57832468e+20
0.035	2053034617.85059	θ [0] = 340407.47981928 θ [1] = 105419.67289583 θ [2] = -1429.44609862

Area in Square Feet	No. of Bedrooms	Predicted value of house price
1650	3	293708.8702485555
3000	4	472827.7991905983

3. Regularized Linear Regression

Task 3:

calculate_hypothesis.py

Student ID: 210815867

ml_assgn1_3.py

```
# initialise trainable parameters theta, set learning rate alpha, regularization parameter l and number of iterations theta = np.zeros(<u>(6)</u>) alpha = 1.0
l = 0.025
iterations = 200
```

gradient_descent.py

