CMOS 模拟集成电路原理 第五周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年10月12日

目录

1	作业		1	
2	系统	性失调	2	
3	随机	性失调	2	
4	电路	搭建	3	
5	系统	性失调验证	3	
6	随机	性失调验证	4	
7	CMI	RR 验证	5	
List of Figures				
	1	作业电路	2	
	2	扫描 pMOS 长宽比电路	3	
	3	扫描 pMOS 长宽比 MDE 设置	3	
	4	OTA (未进行单位增益缓冲) 各管状态以及电流大小	4	
	5	单位增益负反馈电路	4	
	6	系统性失调转换到输入端为 $97\mu V$	4	
	7	蒙特卡洛仿真	5	
	8	OTA 共模增益	5	
	9	OTA 差分增益	5	

1 作业内容

对一偏置电流为 100uA 的五管 OTA,共模电压为 0.9V,设计晶体管的尺寸,1. 使其在单位 增益负反馈时系统性失调小于 0.1mV;

- 2. 使其随机性失调的标准差 (std) 小于 1mV;
- 3. 使其共模抑制比大于 50dB。

图 1: 作业电路

2 系统性失调

分析 ΔV_{out} :

$$\Delta V_{out} = R_{eq,pmos} * \Delta I_B$$

$$R_{eq,pmos} = \frac{\Delta I_{ds}}{\Delta V_{ds}} = \lambda_p I_{ds,p}$$

$$\Delta I_B = \lambda_n \Delta V_{ds,n} I$$

因此,需要降低 λ ,一般来说,沟道越长, λ 越小。所以需要尽量增大沟道长度L。

3 随机性失调

需要使得 $V_{gs} - V_t$ 尽量小,因此同样电流下,W/L 更大。而之前一节已经确定需要增大 L ,因此 W 也需要更大。

4 电路搭建

对于已经给定的偏置电流 $100\mu A$ 可以确定各个晶体管通过的电流大小,通过预估 pMOS 与 nMOS 的阈值电压,设置各个晶体管的长宽比。长宽比的设置可以通过 Aether 自带的 DC 扫描 计算得到,以 pMOS 为例,搭建电路如 图 2 ,将参数输入到 MDE 的设置中,如 图 3,得到电流扫描的图像,读取对应电流下的长宽比 k 即可。

图 2: 扫描 pMOS 长宽比电路

图 3: 扫描 pMOS 长宽比 MDE 设置

根据上述方法,预估好关键电压后,确定 OTA 的各个晶体管尺寸,对差分输入为 0V 时进行 OP 仿真,电流满足需求,如 **图 4** 。

5 系统性失调验证

进一步,通过 cds_thru 连接成单位增益负反馈电路,如图 $\mathbf{5}$,对其输出进行 DC 仿真,其 V_{in} 与原有值的偏离即为系统性失调。经过仿真,如图 $\mathbf{6}$,为 $97\mu V$,满足要求。

图 4: OTA (未进行单位增益缓冲) 各管状态以及电流大小

图 5: 单位增益负反馈电路

图 6: 系统性失调转换到输入端为 $97\mu V$

6 随机性失调验证

将模型切换到专用的蒙特卡洛模型,并恢复为差分电路。在 DC 仿真下对输入电压进行 400 次随机测试,可以保证最坏在 2σ 范围外,如 $\mathbf{87}$,可以得到 $2\sigma < 800\mu$,满足要求。

图 7: 蒙特卡洛仿真

7 CMRR 验证

根据公式 CMRR = $A_{v,d}/A_{v,c}$,分别对共模输入和差分信号造成的增益进行 AC 仿真,分别如 图 8,图 9,可得 $A_{v,d}=250, A_{v,d}=0.13$,那么 CMRR = 250/0.13=1923 ,转换为分贝数, $10 \times \log 1923=75.616DB$,满足要求。

图 8: OTA 共模增益

图 9: OTA 差分增益