第2章 数据信息的表示

2.2 选择题

- (1) B (2) A (3) B (4) D (5) A
- (6) A (7) D (8) A (9) A (10) B (11) C

2.4

#	真值	原码	反码	补码		
1	0	0.000	0.000	0.000		
2	-0	1.00···0	1.11•••1			
3	0.10101	0.10101	0.10101	0.10101		
4	-0.10101	1.10101	1.01010	1.01011		
5	0.11111	0.11111	0.11111	0.11111		
6	-0.11111	1.11111	1.00000	1.00001		
7	-0.10000	1.10000	1.01111	1.10000		
8	0.10000	0.10000	0.10000	0.10000		

2.5

补码	真值	补码	真值
[x] = 0.10010	x = 0.10010	$[x] \approx 1.10010$	x = -0.01110
[x] ^३ √=1.11111	x = -0.00001	$[x] \approx 1.00000$	x = -1.00000
[x]*=0.10001	x = 0.10001	$[x]_{i}=1.00001$	x = -0.11111

2.6

解:

输出结果如下:

x = 4294967295 = -1;

u = 2147483648 = -2147483648

- 1) %u 以无符号输出, %d 输出真值
- 2) 在计算机中整数以补码形式表示和存储。
- 3) x=-1,先求-1 的 32 位补码,机器码是 $2^{32}-1=4294967295$ 。所以第一行输出是分别是机器码和真值。
- 4) $u = 2^{31}$ 是一个无符号数,无溢出,由于首位为 1,%u 输出机器码就是 2147483648,%d 输出是真值,将该机器码按补码转换成真值,所以是-2147483648。

2.7

解:

- 1) 16 位无符号数: 0~1111 1111 1111, 即 0~216-1=65535

2.8

解: 8 位补码的表示范围为 $-128\sim127$,模为最高位 x_0 的进位位的权值,所以模为 256。

2.9

解:

- (a) $1100\ 0000\ 1101\ 0100\ 0000\ 0000\ 0000\ 0000 = (C0D40000)_{16}$
- (b) $0100\ 0000\ 0100\ 1001\ 0000\ 1111\ 1101\ 1011 = (40490 FDB)_{16}$
- (c) $0100\ 0111\ 0111\ 1010\ 0000\ 0000\ 0000\ 0000 = (477A0000)_{16}$

2.10

解: 十进制数=296。

2.11

#:
$$f_{max} = 2^{127} \times (2 - 2^{-23})$$
 $f_{min} = -2^{127} \times (2 - 2^{-23})$

2.12

- 解: (1) 有可能,例如 $N_1=2^3\times0.1$, $N_2=2^4\times0.001$,此时 m< n,却有 $N_1>N_2$ 。
- (2)不可能。因为规格化浮点数要求尾数的最高位为非 0 数码,即当尾数的值不为零时,其绝对值应大于或等于 $(1/2)_{10}$,那么 M_1 和 M_2 都必须是 $0.1 \times \times \cdots \times$ 的形式。这时,若 m < n,则一定有 $N_1 < N_2$ 。

2.13

解:

#	阶码	尾码	真值
最大正数	011	0.111111	$2^3 \times (1-2^{-6})$
最小正数	100	0.000001	2-4×2-6
最大负数	100	1.111111	-2 ⁻⁴ ×2 ⁻⁶
最小负数	011	1.000000	-23

2.14

解:

(1) 57/128 = 1111, 0111001000 (2) -69/128 = 0000, 1011101100

2.15

解: 奇校验码: 010110110 偶校验码: 010110111

如果接收方收到的 x=010110100 (只有 1 位出错,最后一个 0 是校验位),如果采用奇校验,接收方计算检错位 G=1,表明数据一定发生了错误。如果采用偶校验,接收方计算检错位 G=0,表明数据高概率正确。

2.16

解:则 $X_1 X_2 X_3 X_4$ 处的比特分别为 <u>1110</u>; $X_5 X_6 X_7 X_8$ 处的比特分别为 <u>1000</u>; $X_9 X_{10} X_{11} X_{12}$ 处的比特分别为 1011; Y_1 和 Y_2 处的字符分别为 I 和 7。

2.18

解: 被检验位有 8 位,设检验位有 r 位,因为 $8+r<=2^{r}-1$ 所以 r=4 具体分组关系如下表:

海明码	H_1	H_2	H_3	H_4	H_5	H_6	H ₇	H_8	H ₉	H ₁₀	H ₁₁	H ₁₂
检错码/位置	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100
映射关系	P ₁	P ₂	0/D ₁	P ₃	1/D ₂	1/D ₃	0/D ₄	P ₄	1/D ₅	1/D ₆	1/D ₇	0/D ₈

海明码为: 110011011110

接收方接收到的海明编码为 110011011111, 只有 D8 位出错

$$G_1 = P_1 \oplus D_1 \oplus D_2 \oplus D_4 \oplus D_5 \oplus D_7 = \mathbf{1} \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$G_2 = P_2 \oplus D_1 \oplus D_3 \oplus D_4 \oplus D_6 \oplus D_7 = \mathbf{1} \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$G_3 = P_3 \oplus D_2 \oplus D_3 \oplus D_4 \oplus D_8 = \mathbf{0} \oplus 1 \oplus 1 \oplus 0 \oplus \mathbf{1} = 1$$

$$G_4 = P_4 \oplus D_5 \oplus D_6 \oplus D_7 \oplus D_8 = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} = \mathbf{1}$$

指错码 $G_4G_3G_2G_1$ =1100=12,如果假设只有一位错,则是海明码 H_{12} 出错,也就是 D_8 出错,将对应位取反即可。

2.19

解: 作模二除法:
$$\frac{M(x) \cdot X^3}{G(x)} = \frac{1001000}{1101} = 1111 + \frac{011}{1101}$$

所以循环码为: 1001<u>011</u>。

若接收到的数据信息 x'=1101,
$$\frac{1101011}{G(x)} = 1000 + \frac{011}{1101}$$
,

将余数 011 继续补零作除法,经过两次运算余数为 001,所以是第 2 位出错,将左侧起第 2 位的取反即可,也可以通过查表法快速定位出错位置。