

Special class

Intermediate Dynamic Programming

IPC Div - 2, Day - 2

Speedrun of basic DP

- Given N integers a_1, a_2, ..., a_N, find a subset of elements with maximum sum, but which don't have any two consecutive elements.
- For eg. {a_1, a_3, a_5} is a valid subset but {a_1, a_3, a_4} isn't.
- DP is just a smart exhaustive search
- The technique is in choosing good subproblems and reusing already computed values.
- Prefixes are natural subproblems

$$DP[i] = mas(DP(i-1), A_i + Dr(i-2))$$

$$A_i A_1 \dots A_i = -\frac{1}{10}$$

$$DP[i] = A_1 \qquad A_i A_2$$

$$DP(i) = A_1 \qquad A_i A_2$$

 $DP[i] = max \{ DP[i-1], A_i + DP[i-2] \}$

Final Answer = DP[N]

NP-4ara

Knapsack DP

- There is a shop which has bars of many metals
- Each bar of Gold weighs W_1 Kg and hae a value of Rs. V_1
- Each bar of Silver weighs W_2 Kg and hae a value of Rs. V_2
- There are N such metals
- You have a bag (knapsack) which can carry at most W Kgs
- Find the maximum value that you can steal
- A bar cannot be broken. So you either take it whole, or you don't take it at all
- Infinite bars of each metal

7- s Exact la of each Not

Suppose N = 1?

- Suppose N = 2
- W_1 = 1, V_1 = 100
- W_2 = 1, V_2 = 50
- W = 5

• Suppose N = 2
•
$$W_1 = 5$$
, $V_1 = 100$
• $W_2 = 1$, $V_2 = 50$

W, = 2 V, = 100 W, = 1 V, = 40 W= 5

Liquids instead of metals?

Fractional Knapsack

$$W_1 = 10 \text{ Ms}$$

$$V_1 = 100$$

$$W_2 = 1 \text{ Ms}$$

$$= V_1 = 99$$

$$W_3 = 1 \text{ Ms}$$

0-1 Knapsack

O-1 Knapsack

$$F_{7}(x, ty) = 1$$
 $F_{7}(x, ty) = 1$
 $F_{7}(x, t$

W,- 2 V,-10 m=3 V==20 W = 1.

いっている。

W, V, DP[i][m]= Masi Value I can
Set using font i items. Lut 5 menint 5 m Ty (20) [100]

Unbounded Knapsack

$$DP(i)(m) = 1$$
 $DP(i)(m) = 1$
 $DP(i)(m) = 1$
 $DP(i)(m) = 1$
 $DP(i)(m) = 1$
 $DP(i-1)(m-m_i)$
 $DP(i-1)(m-2m_i)$

3v; + DY(;-1)/m-3m.) d N N = 1 PP (i-1) (m- xm) Bor (Wi) O(NW/mr/(b))

0 hms? DY (;) (~)= < DE(2) (100) JA+DE(2) (100-10) JA+DE(2) (100-10) JA-M(1)(20) - M-M' < M De(i)(m) = ma(\ \De(i-i)(m)

V. \(\De(i) \int m - mi) \]

Valorded Kin De(1)-- 0
)p(w)=ths. DP[m] - mai [V, 1 Dr(in-m],

N2+DP[m-m2], 99 M) Vai De (m-m)

Bounded Knapsack $O(N \times W^{2})$ $O(2^{-})$ 0 (NW-ma(B;)) d(n!) P vs NP O(NW) NP-Hard Thrat Sige.

W = 2100 W < 1000 T ~ p - 1 / ~ 20 -19N+19W1 2N&M>5 (N $O(N^3) \qquad W= 2$ M, M W, , \/ 101 WZ, VZ 774 6 wm, Vm

DP over subsets

Shortest Hamiltonian Path

Number of Hamiltoinan Paths

Shortest Hamiltonian Cycle