Electric Vehicle Single-Charge Range Prediction

for EV makers and adopters

by Konstantin Shashkov
BABDS242
GSB at HSE
Moscow
2025

Problem formulation:

from technical specs of an EV predict its driving range on a single charge

use case examples

EV producers

Task

For a market research department to assess the performance of a new model concept agains competitors.

Conventional Solution

Order evaluation of performance from the technical department

With our Service

Quickly prototype new concepts with instant results on their range performance based on technical and user specs.

EV fleet users (e.g. Taxi companies)

Task

Decide on the type of cars to include in the fleet. Compare different car configurations in terms of performance.

Conventional Solution

Research the market for specific models matching their requirements and assess their performance.

With our Service

Estimate the approximate performance of the car with necessary specs to evaluate the fleet structure before exploring specific options.

The Data

EDA & Feature Selection

8	range_km	478	non-null	int64

Size: 470 records after preprocessing

The Model

ANN design

Input Layer: 15 neurons (after one-hot encoding)

Hidden Architecture: 2-layer feedforward network

Hidden Layer 1: 32 neurons with ReLU activation + Dropout (0.2)

Hidden Layer 2: 16 neurons with ReLU activation + Dropout (0.15)

Output Layer: 1 neuron with linear activation (regression output)

Note: the dataset is fairly small — 470 records, meaning that a deep heavy-weight network is excessive given tightly limited computational resources

Regression-Specific Design

- Linear output activation: allows unbounded continuous predictions
- Single output neuron: predicts one continuous value (range_km)
- Mean Squared Error loss function: assessing deviation from the real target value

Evaluation Metric:

- Mean Absolute Error: easy to interpret
- Mean Absolute Percentage Error: percentage error compared to target size

The Prototype

links & demo

GitHub repository:

https://github.com/kshashkov/ ev_range_prediction

Prototype on GitHub pages:

https://kshashkov.github.io/ ev_range_prediction/application/

Electric Vehicle Range Predictor

AI-Powered Range Estimation Using Neural Networks

Fast Charge Port

CCS