CS & IT

ENGINEERING

Discrete maths
Graph theory

Lecture No. 3

SATISH YADAV SIR

TOPICS TO BE COVERED

01 Complete Graph

. . .

02 Cycle graph

. . .

03 Wheel graph

. . .

04 Bipartite graph

...

05 Line graph

Complete Graph
$$(kn)(n \ge 1)$$

or $(n-1)$
 $(n-1$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$$

$$n.(n-1)=2e.$$

$$e=n(n-1)$$

3.
$$\delta(s) = \frac{2e}{\eta} = \Delta(s) = \eta - 1$$

Regular Graph:
$$\left(\delta(G) = 2e = \Delta(G)\right)$$

Degrees of all vertices are same.

Degrees of all vertices are k.

K-regular

Graph.

All Kn are regular Graph.

-> all veaulav Graphs are Kn (false)

Types of graph 6(6) = 25 = 4(6) = 2

all vertices in Cn

4. all en are regular Graph. all regular Graphs are not Cn.

$$\sum d(vi) = 2e$$
 $n = 2e$
 $n = e$

Cn -> n = e. if Graph is having n = e then it is cycle Graph.

(True) [ase]

All Cn are Repular Graph (7) all regular Graphs are Cycle Graph.

B

Connect

$$n=5$$
 W_{5} $Corner$ $Corne$

$$e(w_n) = 2n - 2$$

= $2(n-1)$

if Gishaving
$$e=2(n-1)$$
 then Giswn. (false)
 $n=5$ $e=2(n-1)$ and $n=5$ $e=2(n-1)$

$$n = 5$$
 $e = 2(n-1)$
 $= 2(4)$
 $= 8$

edges
$$\rightarrow$$
 present

$$G + G = Kn$$
.
 $e(G) + e(G) = n(n-1)$
 $e(G) = n(n-1) - e(G)$

$$G \Rightarrow 3$$
, 1, 1. Total vertices
$$C \Rightarrow 3$$
, 2, 2, 1
$$C \Rightarrow 3$$

$$T)$$
 $e(c) + e(c) = u(v-1)$

n-1-d1, n-1-d2, n-1-d3,...n-1-dn.

$$\theta(0) = 56 e(\overline{0}) = 80 n = 7$$

$$n(n-1) = 2 + 2$$
.

$$e(G) + e(G) = n(n-1)$$
 $e + e = n(n-1)$
 $\frac{2}{2}$

$$2e = \frac{n(n-1)}{2}$$

$$e = n(n-1)$$
4.

$$\begin{cases} \frac{r}{4} & \text{or} & \frac{r-1}{4} \\ \end{cases}$$

$$\frac{n-0}{4} \quad \text{or} \quad \frac{n-1}{4}$$

$$n \equiv 0$$
 or $1 \pmod{4}$

a, b are having some remainder when divides by n.

2.
$$Q \equiv b \pmod{0}$$
 $O \equiv 4 \pmod{4}$

$$\frac{a-b}{1} \in \mathbb{Z}, \quad \frac{1-5}{4} = -\frac{1}{4}$$

Pw

173

