PRUEBA 4.0._5.0.: TEMA 4. EXTENSIONES EN EL ANÁLISIS DE PROYECTOS DE INVERSIÓN_TEMA 5. ANÁLISIS DE SENSIBILIDAD. Nombre: CALIFICACIÓN: 1. EXPLIQUE EL PROCESO: «MERCADO FINANCIERO_EMPRESA_MERCADO DE INVERSIÓN»; CON UN GRÁFICO DE FLUJOS. 2. ¿Qué queremos decir con: «Alternativas Incompletas»?. <u>Proponga un Ejemplo y alguna Solución</u>.

PRUEBA 4.0. 5.0.: TEMA 4	Examples on the pr	Assis rara pp Dp asspana	ne Incomparán Tr		on Consumer en an
PRUEBA 4.U. 5.U.: LEMA 4	4. EXTENSIONES EN EL	ANALISIS DE PROYECTOS	S DE INVERSION - LI	EMA 5. ANALISIS I	DE SENSIBILIDAD.

3.	SEÑALE CON (☑) LA O PCIÓN ELEGIDA <u>Añadir la respuesta correcta</u> en su caso	LÍNEA» LA «CORRESPONDENCIA». razón por la que se hace la propuesta concreta (tachando lo que no proced
	ALTERNATIVAS INCOMPLETAS	MÉTODO: REDUCIR LA DURACIÓN DE LOS PROYECTO HASTA COINCIDIR CON LA MÍNIM
	HOMOGEINIZACIÓN DE LA DURACIÓN	☐ VARIACIÓN: FLUJO NETO DE CAJA; COSTE DE CAPITAL; TIPO DE REINVERSIÓN; RIESG
	Análisis de Sensibilidad	☐ AÑADIR AL PROYECTO DE INVERSIÓN CON UN DESEMBOLSO INICIAL MENOR UNA «INVERSIÓN COMPLEMENTARIA» IGUAL A LA DIFERENCIA ENTRE AMBOS
	HOMOGEINIZACIÓN DEL DESEMBOLSO INICIAL	☐ FLUJO MONETARIO INICIAL (AÑO 0) COINCIDENTE EN AMBOS PROYECTOS
	FLUJO MONETARIO FINAL (AÑO N) COINCIDENTE EN AMBOS PROYECTOS	MÉTODO: EXTENDER LA DURACIÓN DE LOS PROYECTOS HASTA COINCIDIR CON LA MÁXIMA

4. DEMUESTRE LA «VERACIDAD» O LA «FALSEDAD» DE LA SIGUIENTE PROPOSICIÓN:

"EN EL CASO DE «ALTERNATIVAS INCOMPLETAS» NO ES NECESARIO CALCULAR EL VAN DE LA «INVERSIÓN COMPLEMENTARIA»; CUANDO EL COSTE DE CAPITAL Y EL TIPO DE REINVERSIÓN COINCIDEN EN VALOR: k=1"

- COSTE DE CAPITAL: k
- TIPO DE REINVERSIÓN: ï

SOLUCIÓN:

1. EXPLIQUE EL PROCESO: «MERCADO FINANCIERO_EMPRESA_MERCADO DE INVERSIÓN»; CON UN GRÁFICO DE FLUJOS. ESQUEMA CONCEPTUAL

MERCADO FINANCIERO					EMPRESA	MERCADO DE INVERSIÓN				
	CAPITAL FINANCIADO CAPITAL REINVERTIDO						CAPITAL INVERTIDO			
Año	SALDO	MOVIMIENTO	INTERESES A PAGAR	SALDO	MOVIMIENTO	INTERESES A COBRAR	TOTAL		FLUJO NETO DE CAJA	SALDO MOVIMIENTO RENDIMIENTO DEL CAPITAL INVERTIDO (RCI)
	1								\rightarrow	(RCI)
0	Q_0						Q_0		Q_0	$oxed{Q_0}$
1							$Q_{\rm l}$		$Q_{\rm l}$	
2							Q_2		Q_2	
:							:			
•										
n –	1						Q_{n-1}		Q_{n-1}	
n							X	VALOR FINAL NETO	Q_n	

El Proceso de Tomar la Decisión de Inversión Financiación tiene varias Etapas¹.

- Etapa 1ª: en el momento de tomar la decisión (período cero) la Empresa obtiene en el Mercado financiero los recursos (propios o ajenos) que necesita, el Flujo Neto de Caja: Q_0 ; que utiliza para realizar el Proyecto que desea en el Mercado de inversión (por el mismo importe: Q_0).
- **Etapa 2^a:** en los períodos siguientes, desde el uno, hasta el penúltimo; el Proyecto proporciona Flujos Netos de Caja: Q_i (j = 1, 2, ..., n 1); que pueden ser: positivos, negativos o nulos.
 - \triangleright Cuando Q_j es positivo (los cobros superan a los pagos en ese período), la Empresa acude al Mercado financiero para reducir la deuda (principal, intereses a pagar) o para reinvertir (recuperando posteriormente lo reinvertido junto con los intereses a cobrar generados).
 - \triangleright Cuando Q_j es negativo (los pagos superan a los cobros), la Empresa acude al Mercado financiero para solicitar nuevos fondos (lo que aumenta la deuda, y los intereses a pagar); salvo que tuviera fondos reinvertidos y los pudiera recuperar junto con los intereses a cobrar.
 - \triangleright Cuando Q_j es nulo, el Rendimiento del Capital Invertido se acumula al valor de la inversión y los intereses a pagar en ese período se acumulan a la deuda pendiente; salvo que tuviera fondos reinvertidos y los pudiera recuperar junto con los intereses a cobrar.

Etapa 3ª: finalmente, en el último período el Flujo Neto de Caja: Q_n ; puede ser: positivo o negativo.

- \mathcal{Q}_j es positivo (y su valor no es mayor que la suma del Capital Invertido y el Rendimiento del Capital Invertido; en caso contrario, estaríamos frente a un Proyecto mixto) la Empresa destinará los fondos obtenido a cancelar su deuda en el Mercado financiero; si tenía fondos reinvertidos de períodos anteriores es el momento en que los retira junto con los intereses a cobrar; el resultado de la operación será el siguiente:
 - ✓ Si el Flujo Neto de Caja (positivo) sumado al valor de los fondos reinvertidos y los intereses cobrados, superan el valor de la deuda pendiente y los intereses a pagar, el Valor Final Neto será positivo (la inversión es rentable).
 - ✓ En caso contrario, el Valor Final Neto será negativo (la inversión no es rentable).
- \triangleright Cuando Q_j es negativo, la Empresa acude al Mercado financiero para solicitar nuevos fondos que coloca en el Mercado de inversión; si tenía fondos reinvertidos de períodos anteriores es el momento en que los retira junto con los intereses a su favor; el resultado de la operación será el siguiente:
 - Si los fondos reinvertidos junto con los intereses cobrados son suficientes para cubrir esta nueva solicitud de fondos y cancelar la deuda anterior (si existiera) junto con los intereses a pagar; entonces el Valor Final Neto será positivo (la inversión es rentable).

La Figura (Esquema Conceptual) recoge el Proceso de tomar la Decisión de Inversión_Financiación; relacionando el Mercado Financiero, el Mercado de Inversión y la Empresa. Por tanto, debemos tener en cuenta las posibilidades de **reinversión** al considerar el Sistema de Financiación del Proyecto, en la medida en que esta posibilidad (Reinversión) altera el VALOR FINAL NETO cuando la Tasa de Reinversión no coincide con el Coste de Capital; invalidando el Método VAN tradicional y obligándonos a analizar el Sistema de Financiación adoptado porque proporciona resultados diferentes.

FANJUL, J. L. y CASTAÑO, F. J. (2006): Dirección Financiera. Caso a Caso, Thomson-Civitas, Aranzadi, Navarra.

2. ¿QUÉ QUEREMOS DECIR CON: «ALTERNATIVAS INCOMPLETAS»?. PROPONGA UN EJEMPLO Y ALGUNA SOLUCIÓN.

«ALTERNATIVAS INCOMPLETAS»: Análisis de Proyectos de Inversión que tienen distinto Desembolso Inicial y / o diferente Duración.

EJEMPLO Y SOLUCIÓN:

Coste de Capital: k = 4 %Tipo de Reinversión: $\ddot{l} = 2 \%$

- ♣ AÑADIR AL PROYECTO DE MENOR <u>DESEMBOLSO</u> UNA «INVERSIÓN COMPLEMENTARIA».
- ESTABLECER LA MISMA <u>DURACIÓN</u>: <u>EXTENDER</u> HASTA EL MÍNIMO CÓMÚN MÚLTIPLO, <u>MANTENIENDO</u> LOS MISMOS FLUJOS NETOS DE CAJA.

$$VAN_{A+C}(k=0.04; i=0.02) = \frac{(-80)*(1.04)^6 + (40)*(1.02)^5 + (60)*(1.02)^4 + (-20)*(1.04)^6 + (20)*(1.02)^6}{(1.04)^6}$$

$$VAN_B(k=0.04; \ddot{\textbf{i}}=0.02) = \frac{(-100)*(1.04)^6+(30)*(1.02)^5+(40)*(1.02)^4+(60)*(1.02)^3}{(1.04)^6}$$

3. SEÑALE CON (Z) LA OPCIÓN ELEGIDA Y UNA CON UNA LINEA LA CORRESPONDENCIA.

Añadir la respuesta correcta en su caso con ☑ y explicar la razón por la que se hace la propuesta concreta (tachando lo que no proceda)

Respuesta correcta.

4. DEMUESTRE LA «VERACIDAD» O LA «FALSEDAD» DE LA SIGUIENTE PROPOSICIÓN:

"EN EL CASO DE «ALTERNATIVAS INCOMPLETAS» NO ES NECESARIO CALCULAR EL VAN DE LA «INVERSIÓN COMPLEMENTARIA»; CUANDO EL COSTE DE CAPITAL Y EL TIPO DE REINVERSIÓN COINCIDEN EN VALOR: k = i"

$$VAN_C(k = \ddot{i}) = \frac{[-(A-B)]*(1+k)^N + (A-B)*(1+\ddot{i})^N}{(1+k)^N} = 0$$