### Linear classifiers

Gosia Migut



#### Admin stuff

- Answers (not solutions) to the labs 2 are on Brightspace.
- I like your tips at the end of each lecture. Bring them on!
- Next week exercises to practice for the exam.



#### Learning goals

- Explain logistic regression classifier, including cost function and it's optimization
- Explain the following concept of support vector classifier: margin, support vectors, hinge loss
- Explain approaches to multi-class classification and their problems



#### Reading

- Logistic regression: CS229 Lecture Notes by Andrew Ng <a href="http://cs229.stanford.edu/notes/cs229-notes1.pdf">http://cs229.stanford.edu/notes/cs229-notes1.pdf</a>
- SVM: CS229 Lecture Notes by Andrew Ng <u>http://cs229.stanford.edu/notes/cs229-notes3.pdf</u>
- Multi-class classification: Bishop "Pattern recognition, section 4.1.2 (p.182-184)



#### Recap last lecture

- Discriminative models
- Linear classifier
- Cost function
- Gradient descent



#### Generative vs discriminative models









 Models decision boundary between classes



#### Linear classifier

Find linear function (hyperplane) to separate positive and negative

examples



Which hyperplane is best?



#### Linear classifier

 $\bullet \ h(x) = w^T x + w_0$ 



How to choose w?



#### Cost/Loss function

General idea:

$$J(w) = \sum_{i=1}^{n} cost(h(x_i), y_i)$$

- Examples: least squares, logistic loss, hinge loss, perceptron loss etc.
- Goal: optimize cost function
  - Analytical solution  $\frac{\partial J(w)}{\partial w} = 0$ , if possible
  - Gradient descent



#### Gradient descent

•  $w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$ 





## Logistic regression



#### Logistic regression

• Let's change the form of linear hypotheses  $h(x) = w^T x$  to satisfy  $0 \le h(x) \le 1$ 

$$g(z) = \frac{1}{1 + e^{-z}}$$



- $z = w^T x$
- $\bullet \ h(x) = g(w^T x)$



#### Logistic function

$$\bullet \ \mathbf{h}(x) = \frac{1}{1 + e^{(-w^T x)}}$$

• 
$$0 \le h(x) \le 1$$



• h(x) gives us the probability that our output is 1



#### How to choose parameters w?



- Training set:  $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}) \dots (x^{(n)}, y^{(n)})\}$
- D features:  $\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$ ,  $x_0 = 1$
- $y \in \{0, 1\}$
- $h(x) = \frac{1}{1 + e^{-w^T x}}$
- Define cost function and optimize!



F

- We defined that:  $p(y_1|x) = h_w(x)$
- For a 2 class problem:  $p(y_0|x) = 1 h_w(x)$
- We can rewrite:

• 
$$p(y|x) = \begin{cases} h_w(x) & : y = 1\\ 1 - h_w(x) & : y = 0 \end{cases}$$

 This is discrete probability distribution Bernoulli which takes the value 1 with probability p and the value 0 with probability 1-p



• 
$$p(y|x) = \begin{cases} h_w(x) & : y = 1\\ 1 - h_w(x) & : y = 0 \end{cases}$$

- We can interpret it as:
  - Given x, class y=1 occurs with probability  $h_w(x)^y$
  - Given x, class y=0 occurs with probability  $1 h_w(x)^{1-y}$
- Therefore:  $p(y|x) = h_w(x)^y (1 h_w(x))^{1-y}$



$$p(y|x) = h_w(x)^y (1 - h_w(x))^{1-y}$$

For the entire dataset (assuming samples were drawn independently):

$$p(y|x) = \prod_{i=1}^{n} p(y^{(i)}|x^{(i)}) = \prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 - h_w(x^{(i)}))^{1-y^{(i)}}$$

- We can interpret this as the likelihood of the data given the parameter  $w \to l(w)$
- Maximum likelihood estimator:  $\widehat{w} = \operatorname{argmax}_{w} \log(l(w))$
- Or:  $\widehat{w} = \underset{w}{\operatorname{argm}} in(-\log(l(w)))$



- $J(w) = -\log(l(w))$
- $l(w) = \prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 h_w(x^{(i)}))^{1-y^{(i)}}$
- $J(w) = -\log\left(\prod_{i=1}^{n} h_w(x^{(i)})^{y^{(i)}} (1 h_w(x^{(i)}))^{1-y^{(i)}}\right) =$
- $\sum_{i=1}^{n} -log\left(h_w(x^{(i)})^{y^{(i)}}\right) \log\left((1 h_w(x^{(i)}))^{1-y^{(i)}}\right) =$
- $\sum_{i=1}^{n} -y^{(i)} log(h_w(x^{(i)})) (1-y^{(i)}) log(1-h_w(x^{(i)}))$



#### Cost function

$$J(w) = \sum_{i=1}^{n} -y^{(i)} log(h_w(x^{(i)})) - (1 - y^{(i)}) log(1 - h_w(x^{(i)}))$$

• 
$$Cost(h(x), y) = \begin{cases} -\log(h_w(x^{(i)})) & if \ y = 1 \\ -\log(1 - h_w(x^{(i)})) & if \ y = 0 \end{cases}$$

- If y = 1 and h(x) = 1, Cost = 0
- If  $h_w(x) \to 0$ ,  $Cost \to \infty$
- Captures intuition:
   if prediction is h(x) = 0, but y = 1,
   learning algorithm will be
   penalized by large cost





#### Cost function

• 
$$Cost(h(x), y) = \begin{cases} -\log(h_w(x^{(i)})) & if \ y = 1 \\ -\log(1 - h_w(x^{(i)})) & if \ y = 0 \end{cases}$$

- If y = 0 and h(x) = 0, Cost = 0
- If  $h_w(x) \to 1 \ Cost \to \infty$
- Captures intuition:
   if prediction is h(x) = 1, but y = 0,
   learning algorithm will be
   penalized by large cost





#### How to minimize the $-\log(l(w))$ ?

- No analytical solution for logistic regression.
- Do gradient descent:
- Repeat {

$$w_j := w_j - \alpha \frac{\partial J(w)}{\partial w_j}$$

}

• 
$$\frac{\partial J(w)}{\partial w} = \sum_{i=1}^{n} (y^{(i)} - h(x^{(i)}))x^{(i)}$$

• Where 
$$h(x) = \frac{1}{1 + e^{(-w^T x)}}$$



#### Logistic regression summary

Linear classifier

Models decision boundary
by modelling probability of the classes
by minimizing the logistic loss

•  $h(x) = \frac{1}{1 + e^{(-w^T x)}}$ 





## Multi-class classification



#### Multi-class





#### One-versus-the-rest (one-versus-all)

- Use K-1 binary classifiers
- Separate one class from the rest
- Problem?

Ambigiously classified regions





#### One-versus-one

- Use K(K-1)/2 binary classifiers
- One for each pair of classes
- Take majority vote among classifiers

#### Multi-class classification:





#### One-versus-one

- Use K(K-1)/2 binary classifiers
- One for each pair of classes
- Take majority vote among classifiers
- Problem?

Ambigiously classified regions

#### Multi-class classification:





#### Single k-class discriminant

Comprises of K functions

$$-h_k(x) = w_k^T x + w_{k0}$$

- Assign point x to class  $C_k$  if  $h_k(x) > h_i(x)$
- The decision boundary between class  $C_j$  and  $C_k$  is given by  $y_j(x) = y_k(x)$  and defined as:  $(w_k - w_i)^T x + (w_{k0} - w_{i0}) = 0$

#### Multi-class classification:





# Support vector machine



#### **SVM** classifier

SVM is much more then I will tell you today

- Intuition about
  - the cost function
  - the margin
  - the support vectors



#### Support vector machine intuition





#### Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples



#### Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples



$$x_i$$
 positive  $(y_i = 1)$ :  $w^T x_i + b \ge 1$   
 $x_i$  negative  $(y_i = -1)$ :  $w^T x_i + b \le -1$ 

For support vectors,  $w^T x_i + b = \pm 1$ 

Distance between point and hyperplane:  $\frac{w^T x_i + b}{\|w\|}$ 

The margin is  $\frac{2}{\|w\|}$ 



#### Find the maximum margin hyperplane

Correctly classify all training data:

$$x_i$$
 positive  $(y_i = 1)$ :  $w^T x_i + b \ge 1$   
 $x_i$  negative  $(y_i = -1)$ :  $w^T x_i + b \le -1$ 

• Maximize margin  $\frac{2}{\|w\|}$ 

• 
$$J(W) = \frac{1}{2} ||w||^2$$

•  $\min J(W)$ 



#### Find the maximum margin hyperplane: Hinge loss

- If y = 1, we want  $w^T x \ge 1$  (not just  $w^T x \ge 0$ )
- If y = 0, we want  $w^T x \le -1$  (not just  $w^T x < 0$ )





• 
$$J(w) = \left[\frac{1}{n}\sum_{i=1}^{n} max(0, 1 - y_i(w^Tx_i - b))\right]$$



#### Svm summary

- Find hyperplane that maximizes the *margin* between the positive and negative examples
- Maximize the margin and correctly classify all examples
- Use hinge loss to penalize for errors



#### Summary

- Discriminative linear classifiers
  - Linear decision boundary
  - Models decision boundary
  - Through minimizing the loss/cost function, eg.
    - Logistic loss
    - Hinge loss

