Proposta de Avaliação - Matemática 9.º ano

Nome:		N.º:	Turma:	Data:	- 11 - 23	
RESERVADO AO PROFESSOR	-	-	-			log V
Conhecimentos e compreensão de conceitos e procedimentos matemáticos CP (50%)	Resolução de Problemas/ Raciocínio Matemático RP (30%)	Comunicação Matemática CM (20%)		Classificação Final		PE (22)
				O Prof	essor:	
ENCARREGADO DE EDUCAÇÃO	-	Tomei con	hecimento:	=		

Utiliza apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risca aquilo que pretendes que não seja classificado.

Não é permitido o uso de calculadora científica.

Nas questões de escolha múltipla assinala apenas com X a resposta correta.

Apresenta o teu raciocínio de forma legível e claro, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias.

- 1. Qual dos seguintes valores corresponde a uma dízima infinita não periódica?
 - A. $\sqrt{6400}$

B. $\sqrt{6.4}$

c. $\sqrt{0.64}$

- **D**. $\sqrt{64}$
- **2.** Consider o conjunto $A = \left\{ \sqrt[3]{-27}, \sqrt{2}, -\pi, \frac{15}{4}, \frac{1}{17} \right\}$.
 - **2.1.** Escreve os números irracionais que pertencem ao conjunto *A*.
 - **2.2.** Qual dos seguintes conjuntos é igual a $A \cap \mathbb{Z}$?
 - **A.** $\left[\int_{0}^{3} \sqrt{-27}, \frac{15}{4}, \frac{1}{17} \right]$
- **B.** $[] {\sqrt[3]{-27}}$

 $\textbf{C.} \quad \boxed{ } \left\{ \sqrt{2}, -\pi \right\}$

- **D.** $\{\sqrt[3]{-27}, \sqrt{2}\}$
- 3. Considera os seguintes números:

$$\frac{1}{3}$$
, $\left(\frac{1}{3}\right)^2$, $\left(\frac{1}{3}\right)^{-1}$, $\frac{1}{\sqrt{3}}$, $\sqrt{3}$

Completa de modo a obteres afirmações verdadeiras.

- O menor número é _____ e o maior número é _____.
- Se ordenar os números por ordem crescente, a seguir ao número $\frac{1}{\sqrt{3}}$ vem o número _____.

Proposta de Avaliação - Matemática 9.º ano

4. Na figura ao lado estão representados um triângulo retângulo, em que um dos seus lados está contido na reta real, e um arco de circunferência de centro no ponto de abcissa 0 e raio igual ao comprimento da hipotenusa do triângulo. O ponto A é a interseção do arco de circunferência com a reta real.

Qual dos seguintes números racionais é uma aproximação da abcissa do ponto A com um erro inferior a 0,02?

5. Considera a seguinte representação gráfica de um intervalo de números reais.

Qual dos seguintes conjuntos define o intervalo representado?

- $\mathbf{C.} \quad \boxed{} \{x \in \mathbb{R}: x \ge -5 \land x < 10\}$
- **D.** $\{x \in \mathbb{R}: x \ge -5 \lor x \le 10\}$
- **6.** Considera o intervalo $A =]-\infty$, 2] e o conjunto $B = \{x \in \mathbb{R}: -3 \le x < 2\}$.
 - **6.1.** Escreve o conjunto *A* usando uma condição.
 - **6.2.** Qual dos seguintes intervalos é igual a $A \cap B$?
 - **A**. |]-∞, 2[

B.]-3,2[

c. [-3, 2]

- **D**. [-3,2]
- **6.3.** O maior número inteiro que pertence ao conjunto *B* é o______ e um número irracional positivo que pertence ao conjunto A é, por exemplo,

7. Seja n o maior número natural tal que $\left[\frac{109}{100}, 11\right] \cap \left]\sqrt{n}, +\infty\right[$ é um conjunto não vazio.

O valor de n é _____.

8. Para $a \in b$, dois números reais quaisquer não nulos, sendo a < b, preenche os espaços com o símbolo de > ou < de modo a obteres afirmações verdadeiras.

8.1.
$$a + 6 \dots b + 6$$

8.2.
$$-a$$
 $-b$

8.3.
$$a-1$$
 $b-1$

9. Determina:

9.1.
$$A \cap B$$
 e $A \cup B$, sendo $A =]-3,-1]$ e $B =]-1, 5].$

9.2.
$$A \cap B$$
 e $A \cup B$, sendo $A = \{x \in \mathbb{R} : x \ge 3,14\}$ e $B = \{x \in \mathbb{R} : 0 < x < \pi\}$.

- **9.3.** C na forma de intervalo, sendo $C = \{x \in \mathbb{R}: x \ge \sqrt{13} \ \lor x < \sqrt{13} \}$.
- **10.** Resolve, em \mathbb{R} , a seguinte inequação: $-\left(x-\frac{1}{4}\right) \ge \frac{x-5}{2}$

Apresenta o conjunto-solução sob a forma de intervalo de números reais.

11. A Alexandra foi à papelaria comprar 4 cadernos e 3 pastas de arquivo, com apenas 20 euros na sua carteira. Cada caderno é mais barato 1,30 euros do que cada pasta de arquivo.

Entre que valores pode variar o preço de cada pasta de arquivo, de modo que a Alexandra possa comprar o pretendido com o dinheiro que levava na carteira?

Mostra como chegaste à tua resposta.

12. A tabela seguinte representa a relação entre o número de lados (n) e a amplitude (a), em graus, de cada ângulo externo de polígonos regulares.

Número de lados (n)	3	4	5	
Amplitude (a) de cada ângulo externo em graus	120°	90°	72°	

- **12.1.** Justifica que o número de lados de um polígono regular é inversamente proporcional à amplitude de cada ângulo externo.
- **12.2.** Indica a constante de proporcionalidade inversa e o que representa no contexto da situação.
- 12.3. Como se designa, quanto ao número de lados, um polígono regular cuja amplitude de cada ângulo externo é 45°?Mostra como chegaste à tua resposta.
- **12.4.** A expressão que pode traduzir a relação entre o número de lados (n) de um polígono regular **em função** da amplitude (a) de cada ângulo externo é ______.
- **13.** Na figura estão representadas, em referencial cartesiano, a função afim f, a função de proporcionalidade inversa g e o trapézio retângulo [OBCD].

Sabe-se que:

• a função g é definida pela expressão $g(x) = \frac{12}{x}$;

- ullet os gráficos das funções f e g intersetam-se no ponto C, de abcissa 3;
- o ponto 0 é a origem do referencial e o ponto B pertence ao eixo das abcissas;
- *D* é ponto de interseção do gráfico da função *f* com o eixo das ordenadas;
- a área do trapézio [OBCD] é 9.
- **13.1.** Mostra que $\overline{OD} = 2$.
- **13.2.** Determina uma expressão algébrica que defina a função f. Apresenta a expressão na forma f(x) = ax + b, sendo $a \in b$ número reais.

*** FIM ***

Item	1.	2.1.	2.2.	3.	4.	5.	6.1.	6.2.	6.3.	7.	8.	9.1.	9.2.	9.3.	10.	11.	12.1.	12.2.	12.3.	12.4.	13.1.	13.2.
Cotação	4	4	4	4	4	4	3	4	4	4	4	6	6	3	6	7	4	5	4	4	7	5
Domínio	СР	СР	СР	RP	СР	СМ	СМ	СР	СР	RP	RP	СР	СР	СР	СР	RP	СМ	СМ	RP	СМ	RP	СР

Proposta de teste de avaliação - Matemática 8

Proposta de resolução

- 1. Resposta: B.
- **2.1.** $\{ \sqrt{2}, -\pi \}$
- 2.2. Resposta: B.
- **3.** O menor número é $\left(\frac{1}{3}\right)^2$ e o maior número é $\left(\frac{1}{3}\right)^{-1}$. Se ordenar os números por ordem crescente, a seguir ao número $\frac{1}{\sqrt{3}}$ vem $\sqrt{3}$.
- **4.** A abcissa de $A ext{ \'e} \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10}$. $\left| \sqrt{10} 3 \right| = 0.16227 \dots ; \left| \sqrt{10} \frac{16}{5} \right| = 0.03772 \dots ; \left| \sqrt{10} \frac{15}{16} \right| = 0.02522 \dots ; \left| \sqrt{10} \frac{22}{7} \right| = 0.01942 \dots$ Resposta: **D**.
- 5. Resposta: C.
- **6.1.** $A =]-\infty, 2] = \{x \in \mathbb{R}: x \le 2\}$
- 6.2. Resposta: C.
- **6.3.** O maior número inteiro que pertence ao conjunto B é o **1** e um número irracional positivo que pertence ao conjunto A é, por exemplo, $\sqrt{3}$.
- 7. $\sqrt{n} < 11 \Leftrightarrow n < 11^2 \Leftrightarrow n < 121$ O valor de $n \in 120$.
- **8.1.** a + 6 < b + 6
- **8.2.** -a > -b
- **8.3.** a 1 < b 1
- **8.4.** 7a < 7b
- **9.1.** $A \cap B = \emptyset$ e $A \cup B = [-3, 5]$
- **9.2.** $A \cap B = [3,14 ; \pi[e A \cup B =]0, +\infty[$
- **9.3.** $C =]-\infty, +\infty[$

5

10.
$$-\left(x - \frac{1}{4}\right) \ge \frac{x - 5}{2} \Leftrightarrow -x + \frac{1}{4} \ge \frac{x - 5}{2} \Leftrightarrow -4x + 1 \ge 2x - 10$$

 $\Leftrightarrow -6x \ge -11 \Leftrightarrow 6x \le 11 \Leftrightarrow x \le \frac{11}{6}$
 $S = \left[-\infty, \frac{11}{6}\right]$

11. Preço de uma pasta de arquivo, em euros: *x*

Preço de um caderno, em euros: x - 1,3

$$4(x-1,3) + 3x \le 20 \land x - 1,3 > 0 \Leftrightarrow 4x - 5,2 + 3x \le 20 \land x > 1,3$$

$$\Leftrightarrow 4x + 3x \le 20 + 5.2 \land x > 1.3 \Leftrightarrow 7x \le 25.2 \land x > 1.3$$

$$\Leftrightarrow x \le \frac{25,2}{7} \land x > 1,3 \Leftrightarrow x \le 3,6 \land x > 1,3$$

O preço de cada pasta de arquivo pode variar entre 1,30 € e 3,60 €, podendo ser 3,60 €.

12.1. O número de lados de um polígono regular é inversamente proporcional à amplitude de cada ângulo externo, porque o produto entre o número de lados e a amplitude é constante.

$$3 \times 120^{\circ} = 360^{\circ}$$
, $4 \times 90^{\circ} = 360^{\circ}$, $5 \times 72^{\circ} = 360^{\circ}$, ...

- **12.2.** A constante de proporcionalidade inversa é **360**° e representa a soma das amplitudes dos ângulos externos de um polígono.
- **12.3.** $\frac{360^{\circ}}{45^{\circ}} = 8.$

O polígono é um octógono.

- **12.4.** A expressão que pode traduzir a relação entre o número de lados (n) de um polígono regular **em** função da amplitude (a) de cada ângulo externo é $n = \frac{360}{a}$.
- **13.1.** $\overline{BC} = g(3) = \frac{12}{3} = 4; \quad \overline{OB} = 3$ $\frac{(\overline{BC} + \overline{OD}) \times \overline{OB}}{2} = 9 \Leftrightarrow \frac{(4 + \overline{OD}) \times 3}{2} = 9 \Leftrightarrow 12 + 3\overline{OD} = 18 \Leftrightarrow 3\overline{OD} = 18 12$ $\Leftrightarrow \overline{OD} = \frac{6}{3} \Leftrightarrow \overline{OD} = 2$
- **13.2.** Sabendo que o ponto C tem coordenadas (3,4), o ponto D tem coordenadas (0,2) e pertencem ao gráfico da função f, tem-se que:

$$a = \frac{2-4}{0-3} = \frac{2}{3}$$
; $b = 2$

Assim,
$$f(x) = \frac{2}{3}x + 2$$
.

A equipa:

Maria Augusta Ferreira Neves

João de Sá Duarte

José Martins

Pedro Rocha Almeida

