회귀분석팀

6팀

심은주 진수정 문병철 이수정 임주은

INDEX

1.다중공선성

2.변수선택법

3.축소 추정

다중공선성이란?

예측변수 X들 간의 선형관계가 존재하는 경우

$$y_i=eta_0+eta_1x_{1i}+\cdots+eta_px_{pi}+arepsilon_i$$
 나머지 X 변수들이 고정되었을 때, x_1 이 1단위 증가하면 y 는 평균적으로 eta_1 만큼 증가함을 의미

개별 변수 해석 시, '다른 변수를 고정한 상태에서 해당 X의 증분'

Uncorrelated한 경우만 가능

정확한 회귀분석을 위해선 다중공선성이 크면 안된다!

• 다중공선성의 판별법

상관계수 플랏

- 절댓값 기준 상관계수가 0.7이상일 경우 다중공선성 의심
- R의 'Corrplot' 패키지 이용

다중공선성의 판별법

VIF(Variance Inflation Factor, 분산팽창인자)

$$VIF = \frac{1}{1-R^2j}, \quad j = 1,...,p$$

 R^{2}_{i} : x_{i} 를 $x_{1} + \cdots + x_{p}$ 으로 회귀식을 적합했을 때, 도출되는 R^{2} 값

- VIF가 1이면, 다중공선성 없음 $(R^2_i = 0)$ 므로)
- VIF가 10이상이면, 심각한 다중공선성 존재

• 변수선택법이란?

후보 변수들 중에서 불필요한 변수들을 제거하여 적절한 변수들의 집합을 찾는 방법

다중공선성이 존재할 때 많이 사용!

- 높은 상관관계를 가지는 변수들 중 일부만을 선택 가능
- 높은 상관관계를 가지는 변수들의 존재를 정당화

변수선택법을 통해 최종 모델에 대한 확신을 얻을 수 있음!

• 변수선택의 척도

수정결정계수 (R_a^2)

벌써 까먹은 건 아니쥐?

$$R_a^2 = \frac{SSR/p}{SST/(n-1)} = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

회귀식의 설명력을 의미

수정결정계수가 더 큰 모델을 사용하자!

• 변수선택의 척도

 $Mallows(C_p)$

$$C_p = \frac{SSE_p}{\hat{\sigma}^2} + (2p - n)$$

p : RM에서 사용한 독립변수 개수

 $\hat{\sigma}^2$: FM의 오차항의 분산의 추정값

n: 관측치의 개수

- 변수를 추가하면 SSE는 무조건 작아지기 때문에, 2p를 패널티로 넣음
- $C_p \approx p$ 일수록 bias가 작은, 좋은 모델
- C_p 값을 이용하여 모델을 비교할 때에는 동일한 독립변수의 전체 집합을 가진 모델일 경우에만 사용 가능

• 변수선택의 종류

변수선택법은 <mark>경험적</mark>인 방법

명확한 답이 존재하는 것이 아니라,

직접 알고리즘에 따라 해당하는 모든 경우를 계산해서 가장 좋은 회귀식을 찾는다!

Best Subset Selection

전진선택법

후진제거법

단계적 선택법

축소 추정 정의 Ridge Lasso ElasticNet

축소 추정이란?

3

각각 개별 베타 추정량을 0으로 수축시키는 방법

불편성을 포기하되, 전체 $MSE(Bias^2 + Variance)$ 를 더 작게 하는 추정량 얻을 수 있다!

둘 다 가질 순 없지…

Ridge Regression (L2 Regularization)

$$\hat{\beta}^{ridge} = \frac{argmin}{\beta} \sum_{i} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- 위의 식을 최소화하는 β값을 가짐
- 앞 부분: SSE, 회귀식이 데이터에 잘 적합하여 SSE를 작게 만드 는 계수 추정치를 찾음
- 뒷 부분: shrinkage penalty로 β 값들이 0에 가까울 수록 작아짐
 - → 이 항이 계수 추정치들을 0으로 축소하는 영향을 가짐

Ridge Regression (L2 Regularization)

$$\hat{\beta}^{ridge} = \frac{argmin}{\beta} \sum_{i} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

조절 모수 λ: SSE항과 패널티항을 조절하는 역할

좋은 λ 값 선택 중요

 λ =0 이면, 패널티 효과가 없어 최소제곱추정치 생성

주로 CV를 통해 튜닝

 $\lambda \to \infty$ 이면, 패널티 효과가 커져 계수 추정치가 0에 가까워짐

 \therefore Ridge regression은 각각의 λ 값에 따라서 다른 추정치 집합들을 만듦

축소 추정 정의 Ridge Lasso ElasticNet

Lasso Regression (L1 Regularization)

$$\hat{\beta}^{lasso} = \frac{argmin}{\beta} \sum_{i} (y_i - x_i^T \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge와 비슷하게 패널티를 주어 계수 추정치들을 0으로 축소하는 방법

- Penalty term이 절댓값으로 들어감
- Ridge와 달리 변수 선택의 효과가 있음

Elastic Net

Lasso와 Ridge를 절충하여 각각의 단점을 보완한 정규화 방법

Ridge part Lasso part

$$L_{enet}(\hat{\beta}) = \frac{\sum_{i} (y_i - x_i^T \beta)^2}{2n} + \lambda \left(\left(\frac{1 - \alpha}{2} \right) \sum_{j} \beta_j^2 + \alpha \sum_{j} |\beta_j| \right)$$

 α 는 Ridge와 Lasso의 가중치로,

 $\alpha=0$ 이면 식은 Ridge가 되고, $\alpha=1$ 이면 Lasso가 됨

Adaptive Lasso Regression

$$\widehat{\beta^*}^{(n)} = \frac{argmin}{\beta} \left\| y - \sum_j x_j \beta_j \right\|^2 + \lambda_n \sum_j \widehat{w}_j |\beta_j|$$

where
$$\widehat{w}_j = \frac{1}{|\widehat{\beta}|^{\gamma}}$$

 $\hat{\beta}$: initial estimate (ex. OLS)

- 계수 추정량이 클수록 작은 가중치를 줌으로써, Sparsity는 유지하되 Bias를 줄일 수 있음
- λ를 적절히 선택한다면, Oracle Properties를 만족하게 됨