#### AMES REAL ESTATE

# Ames, IA real estate data analysis

Presented by Cristina Sahoo



#### **Problem Statement**

The Ames housing dataset contains detailed information about homes that were sold between 2006 and 2010, along with their sale price. Our real estate agents want to be able to advise their selling clients on the best sale price for their home. This project aims to analyze the Ames housing dataset and create a model that predicts the sale price of a home.

#### Data source:

https://www.kaggle.com/prevek18/ames-housing-dataset

## Why is this important?

As was shown by the 2008 financial crisis, it is essential for the economy that the amount of a bank's real estate lending matches the actual value of the real estate. Getting a good estimate of the price of a house is hard even for the most seasoned real estate agents.

# Select appropriate features to predict the sale price of a home



A positive correlation is a relationship between two variables in which both variables move in the same direction.

A negative correlation is a relationship between two variables in which one variable increases as the other decreases, and vice versa





#### Normalize the target variable

The target (saleprice) is right/positive skewed.

By applying the natural log to the values of the saleprice column, we get a distribution that is closer to normal. By doing this, we can improve our model.





#### Evaluate the model

Train score 0.8552046088188228 Test score 0.8879463265423998 Baseline 0.8060271761299932

| 16 | kitchen_qual   | 0.051063  |
|----|----------------|-----------|
| 17 | fireplaces     | 0.041384  |
| 32 | condition_1_5  | 0.035164  |
| 13 | full_bath      | 0.022798  |
| 14 | bedroom_abvgr  | 0.022689  |
| 22 | paved_drive    | 0.021415  |
| 21 | garage_cond    | 0.020858  |
| 12 | gr_liv_area    | 0.000149  |
| 11 | 1st_flr_sf     | 0.000059  |
| 27 | bsmt_sf        | 0.000042  |
| 10 | total_bsmt_sf  | 0.000022  |
|    | lot_area       | 0.000003  |
| 9  | bsmt_unf_sf    | -0.000020 |
| 19 | garage_area    | -0.000035 |
| 24 | quality        | -0.000426 |
| 23 | age            | -0.001200 |
| 4  | year_remod/add | -0.007287 |



#### Conclusions

For 1 point increase in the quality of the kitchen, holding all other features constant, we can expect, on average, a 5% increase in the price of a home.

If the home has a fireplace, the increase in the price is estimated at about 4%.

For 1 year increase in the age of a home, we can expect a decrease of about 0.12% in the price.

## Next steps:

Further evaluate and tune the model for a more accurate prediction. Consider adding/engineering more features.

Additional research is needed into specific neighborhoods and other factors that influenced home prices, such as the market crash in 2008.

#### Resources:

https://www.opendoor.com/w/blog/factors-that-influence-home-value

https://peltarion.com/knowledge-center/documentation/tutorials/predict-real-estate-prices

https://www.kaggle.com/jepsds/feature-selection-using-selectkbest? utm\_campaign=News&utm\_medium=Community&utm\_source=DataCamp. com

# Questions...

