Aprendizaje Automático: Trabajo práctico 0

PAttern Recongition and MAchine Learning Group (PARMA-Group)

22 de febrero de 2022

Fecha de entrega: Domingo 13 de Marzo del 2021.

Entrega: Un archivo .zip con el código fuente LaTeX o Lyx, el pdf, y un jupyter en Pytorch, debidamente documentado, con una función definida por ejercicio. A través del TEC-digital.

1. Implementación del algoritmo K-vecinos mas cercanos

El algoritmo de K-vecinos mas cercanos es un algoritmo de aprendizaje automatico supervisado muy popular por su simplicidad. Dado un conjunto de datos representado matricialmente en la matrix $X_{\text{train}} \in \mathbb{R}^{N \times D}$ y un arreglo de etiquetas $\overrightarrow{t} \in \mathbb{R}^N$:

$$X_{ ext{train}} = egin{bmatrix} - & \overrightarrow{x'}_1 & - \ & dots \ - & \overrightarrow{x'}_{N_{ ext{train}}} & - \end{bmatrix} \qquad \overrightarrow{t'} = egin{bmatrix} t_1 \ dots \ t_{N_{ ext{train}}} \end{bmatrix}$$

Para cada dato $\overrightarrow{x}_i^{(\text{test})} \in X_{\text{test}}$ en un conjunto de datos de prueba o evaluacion $X_{\text{test}} \in \mathbb{R}^{N_{\text{test}} \times D}$:

$$X_{\text{test}} = \begin{bmatrix} - & \overrightarrow{x}_1 & - \\ & \vdots & \\ - & \overrightarrow{x}_N & - \end{bmatrix}$$

se crea un conjunto de datos X_{KNN} con los K vecinos mas cercanos de la observacion \overrightarrow{x}_j en el conjunto de datos X_{train} , donde cada observacion $\overrightarrow{x}_i \in X_{\text{KNN}}$ cumple que:

$$X_{\text{KNN}} = \arg\min_{K \min j} \left(d \left(\overrightarrow{x}_{i}^{(\text{test})} - \overrightarrow{x}_{j} \right) \right)$$

Luego de tomar los K vecinos mas cercanos de la observacion $\overrightarrow{x}_i^{(\text{test})}$ se realiza una votacion segun las etiquetas correspondientes $t_i^{(\text{test})}$, y se toma como estimacion de la etiqueta \widetilde{t}_i la etiqueta mas votada.

- 1. **(50 puntos)** Implemente el algoritmo de K-vecinos mas cercanos con la posibilidad de usar la distancia euclidiana y la de Manhattan en la funcion $d(\overrightarrow{x}_i \overrightarrow{x}_j)$.
 - a) Realice la implementacion de forma completamente matricial, para cada observacion $\overrightarrow{x}_i^{\text{(test)}}$ evaluate_k_nearest_neighbors_observation(data_training, labels_training, test_observation, K = 7, is_euclidian = True) (**No use ciclos** *for*).
 - 1) Para ello use funcionalidades de *pytorch* como repeat, mode, sort, etc.
 - 2) is_euclidian indica si se usara la distancia Euclidiana o la de Manhattan de lo contrario. K corresponde a la cantidad de vecinos a evaluar
 - b) (10 puntos) Para todo el conjunto de datos X_{test} implemente la funcion $evaluate_k_nearest_neighbors_test_dataset(data_training, labels_training, test_dataset, <math>K = 3$, $is_euclidian = True$), la cual utilice la funcion previamente construida $evaluate_k_nearest_neighbors_observation$ para calcular el arreglo de estimaciones \overrightarrow{t} para todos los datos en X_{test} .
 - c) (10 puntos) Implemente la funcion calcular_tasa_aciertos la cual tome un arreglo de estimaciones \overrightarrow{t} y un arreglo de etiquetas $\overrightarrow{x}_i^{\text{(test)}}$ y calcule la tasa de aciertos definida como $\frac{c}{N}$ donde c es la cantidad de estimaciones correctas. (No use ciclos for).
- 2. **(5 puntos)** Para un conjunto de datos de N=4000 (2000 observaciones por clase) genere un conjunto de datos con medias $\mu_1=[12,12]^T$, $\mu_2=[15,15]^T$, y desviaciones estandar $\sigma_1=[3,3]^T$, $\sigma_2=[2,2]^T$. Grafique los datos y muestre las figuras.
- 3. Compruebe y compare para las dos distancias implementadas, usando el dataset anterior, y K=7:
 - a) (5 puntos) La tasa de aciertos, definida como $\frac{c}{N}$ donde c es la cantidad de estimaciones correctas, usando el mismo conjunto de datos X_{train} como conjunto de prueba X_{test} . Documente los resultados y

- comentelos. Puede probar otros valores de medias que faciliten la separabilidad de los datos para facilitar la explicacion.
- b) (20 puntos) Usando las funciones de particion de datos del paquete *sklearn* necesarias, implemente la particion de datos del conjunto de datos original X para crear las particiones $X_{\rm train}$ y $X_{\rm test}$. Cree 10 particiones distintas, para ejecutar 10 veces el algoritmo. Use N=4000 (2000 observaciones por clase).
 - 1) Utilice 70% de los datos para entrenamiento y el resto para prueba.
 - 2) Calcule la tasa de aciertos para las 2 configuraciones (distancia ℓ_1 y ℓ_2) probadas, usando X_{train} para entrenamiento y X_{test} para prueba. Reporte los resultados en una tabla, junto con su media y desviacion estandar y comentelos.
 - 3) Calcule ademas el tiempo de ejecucion por corrida para cada configuracion. Reporte los resultados en una tabla, junto con su media y desviacion estandar y comentelos. Cual distancia resulto mas eficiente? Hay algun costo en cuanto a la tasa de aciertos? Explique el porque de la diferencia en la tasa de aciertos, si la hay.