

Cálculo

Limites - lista de exercícios

1. Considere a função $f:[-2,4] \to \mathbb{R}$ representada pelo gráfico abaixo. Determine os limites laterais e o limite da função para x tendendo a 2.

- 2. Usando limites laterais, calcule $\lim_{x \to 3} f(x)$, onde $f(x) = \begin{cases} x+2, se \ x \le 3 \\ 2x, se \ x > 3 \end{cases}$
- 3. Calcule os limites laterais e o limite da função $f(x) = \begin{cases} x^2 1, & se \ x < 3 \\ 2, & se \ x = 3 \end{cases}$ para x tendendo a 3. $3 x, se \ x > 3$
- 4. O gráfico abaixo mostra a relação entre o volume v e a pressão p, em bar, de um gás (vapor d'água), mantido à temperatura constante. À medida que o gás é comprimido, o volume v decresce até que atinja uma certa pressão p crítica. A partir dessa pressão, o gás assume a forma líquida. Observando a figura abaixo, determine os limites laterais e o limite da função v(p) quando p estiver nas proximidades de 100 bar.

- 5. O gráfico ao lado representa uma função f de [-4,2] em $\mathbb R$. Determine:
 - a) f(-4), f(-1), f(0) e f(2)
 - b) O limite lateral da função, pela esquerda, quando x tende a -1
 - c) O limite lateral da função, pela direita, quando x tende a -1
 - d) O limite da função quando x tende a -1

6. Dada a função $f(x) = \begin{cases} 4 - x^2, se \ x < 1 \\ 2, \quad se \ x = 1 \\ 2 + x^2, se \ x > 1 \end{cases}$ (veja gráfico ao lado)

- b) Calcule os limites laterais e o limite da função quando x tende a 1.
- c) Verifique se a função é contínua em x = 0.
- d) Verifique se a função é contínua em x = 1.

- 7. Esboce o gráfico da função e calcule $\lim_{x\to 2} f(x)$ sendo $f(x) = \begin{cases} 3x, & se \ x \le 2 \\ x^2, & se \ x > 2 \end{cases}$ Verifique a continuidade da função em x = 2.
- 8. Um fazendeiro estabelece o preço da saca de café em função da quantidade de sacas adquiridas pelo comprador por intermédio da equação $P(x) = 50 + \frac{200}{x}$, onde P(x) é o preço em dólares por saca e x é o número de sacas vendidas.
 - a) Quanto deve pagar, por saca, um comprador que adquirir 100 (cem) sacas?
 - b) Quanto deve pagar, por saca, um comprador que adquirir 200 (duzentas) sacas?
 - c) Sabendo que um comprador pagou 54 dólares por saca, quantas sacas comprou?
 - d) O que acontecerá com o preço de cada saca, em uma compra muito grande $(x \to \infty)$?
- 9. O custo de uma ligação telefônica a longa distância noturna do Rio de Janeiro para New York é de 70 centavos de real por minuto ou fração de minuto adicional. A tarifa é modelada por:

$$T(t) = \begin{cases} 0.7 & \text{se } 0 \le t < 1\\ 0.7 + 0.5(t+1) & \text{se } t \ge 1 \end{cases}$$

- a) Estude a continuidade da tarifa em t = 1 minuto.
- b) Determine quanto se deve pagar por uma ligação de 2 minutos e 43 segundos.
- 10. Seja a função definida por $f(x) = \begin{cases} x^2 1, se \ x \le 0 \\ x + 1, se \ x > 0 \end{cases}$
 - a) Calcule $\lim_{x \to -1} f(x)$
 - b) Calcule $\lim_{x\to 2} f(x)$
 - c) Calcule $\lim_{x\to 0} f(x)$
 - d) Verifique se a função f(x) é contínua em x = 0.
 - e) Verifique se a função f(x) é contínua em x = 2.
- 11. Seja $f(x) = \begin{cases} x^2, se \ x < 2 \\ 3, se \ x = 2 \\ 5, se \ x > 2 \end{cases}$
 - a) Esboce o gráfico da função.
 - b) Calcule $\lim_{x\to 2} f(x)$.
 - c) Verifique se a função f(x) é contínua no ponto x = 2.
- 12. Considere a função f definida por $f(x) = \begin{cases} x^2 1, & se \ x < -2 \\ 4, & se \ x = -2 \\ 2x + 7, & se \ x > -2 \end{cases}$

- a) Calcule os limites laterais e o limite da função quando x tende a -2.
- b) Verifique se a função f é contínua no ponto x=-2.
- 13. Seja T = f(t) a temperatura de uma peça t minutos depois de retirada de um forno industrial. A figura abaixo mostra a curva da temperatura em função tempo para a peça, onde r é a temperatura ambiente.

- b) Qual é o significado físico de $\lim_{t\to 0^+} f(t)$?
- c) Calcule $\lim_{t\to\infty} f(t)$?
- d) Qual é o significado físico de $\lim_{t\to\infty} f(t)$?

- 14. Supõe-se que a população de uma determinada comunidade suburbana, daqui a t anos, será de $P(t) = 20 \frac{6}{t+1}$ milhares. O que acontecerá com a população, com o passar do tempo?
- 15. Para estudar a velocidade na qual os animais aprendem, um estudante de psicologia executou um experimento no qual um rato era enviado repetidamente através de um labirinto de laboratório. Suponha que o tempo requerido pelo rato para atravessar o labirinto na enésima tentativa era de aproximadamente $f(n) = 3 + \frac{12}{n}$ minutos. De acordo com a função f, o que acontecerá com o tempo requerido pelo rato para atravessar o labirinto à medida que o número de tentativas aumenta? Será o rato um dia capaz de atravessar o labirinto em menos de 3 minutos?

Calcule os limites das funções seguintes:

16.
$$\lim_{x \to 2} \frac{x^2 + 7x - 10}{x - 2}$$

17.
$$\lim_{x \to 2} x^2$$

18.
$$\lim_{x \to -3} 2x + 5$$

19.
$$\lim_{x \to -2} \frac{x^2 - 1}{2x}$$

20.
$$\lim_{x \to -2} \frac{\frac{3x+1}{2-x}}{}$$

21.
$$\lim_{x \to 3} (x^2 + 4x)$$

22.
$$\lim_{x \to 1} \frac{x^2 - 6x + 5}{x - 1}$$

23.
$$\lim_{x\to 6} \frac{4}{x-6}$$

24.
$$\lim_{x\to 0} \frac{x+5}{x}$$

$$25. \lim_{x \to 0} \left(2x + \frac{1}{x^2} \right)$$

26.
$$\lim_{x \to \infty} x^4$$

27.
$$\lim_{x \to -\infty} \frac{\frac{1}{x^4}}{$$

28.
$$\lim_{x \to \infty} (2x^5 + 3x^2 + 6)$$

29.
$$\lim_{x \to \infty} \frac{5x^4 - 3x^2 + 1}{5x^2 + 2x - 1}$$

30.
$$\lim_{x \to -\infty} \frac{\frac{5x^4 - 3x^2 + 1}{5x^2 + 2x - 1}}{$$

31.
$$\lim_{x \to \infty} \frac{\frac{25x-2}{16x-3}}{$$

32.
$$\lim_{x \to -\infty} \frac{\frac{25x-2}{16x-3}}{x}$$

33.
$$\lim_{x \to 0} \frac{x^2 - 3x}{x}$$

34.
$$\lim_{x \to \infty} (-x^4 + x^2)$$

35.
$$\lim_{x \to \infty} \frac{8x^2 - 1}{2x^2 + x}$$

36.
$$\lim_{x \to \infty} \frac{x-1}{x^2-3}$$

37.
$$\lim_{x \to \infty} \frac{2x^6 + 8x^4 - 4x}{x^5 - 6x^3 + 1}$$

38.
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$$

39.
$$\lim_{x \to 2} \frac{x-2}{x}$$

40.
$$\lim_{x \to 3} \frac{5x^2 - 2x + 1}{6x - 7}$$

41.
$$\lim_{x \to 1} (x^2 - 3x + 1)$$

42.
$$\lim_{x \to 5} \sqrt[3]{3x^2 - 4x + 9}$$

43.
$$\lim_{x \to \infty} \frac{8x^4 + 10x^3 - 5x}{2x^6 + x^4 + 12x^4}$$

44.
$$\lim_{x \to \infty} \frac{10x^3 - 6x^2 + 18x}{2x^4 + 3x^3 + 4x}$$

45.
$$\lim_{x \to -5} \frac{x+5}{x^2-25}$$

46.
$$\lim_{x \to -4} \frac{x+4}{x^2-16}$$

47.
$$\lim_{x \to -4} \frac{x^2 + x - 12}{x + 4}$$

48.
$$\lim_{x \to -5} \frac{x^2 + 2x - 15}{x + 5}$$

49.
$$\lim_{x \to 2} \frac{4x - 8}{x^2 - 5x + 6}$$

50.
$$\lim_{x \to -4} \frac{x^2 - 16}{2(x+4)}$$

51.
$$\lim_{x \to -\infty} \frac{5x^8 + 6x^2 + 8}{5x^5 + 7x^3 + 2x}$$

52.
$$\lim_{x \to 1} \frac{8x^6 + 3x^3 - 5x^2 - 3}{x^2 - 1}$$

53.
$$\lim_{x \to 0} \left(20 - \frac{9}{18x^3 + 2x} \right)$$

54.
$$\lim_{x \to -4} \frac{6x - 18}{x^2 - 5x + 6}$$

55.
$$\lim_{x \to 5} \frac{x^2 - 25}{6x - 30}$$

56.
$$\lim_{x \to 5} \frac{x^2 + 2x - 35}{x^2 - 10x + 25}$$

57.
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4}$$

58.
$$\lim_{x \to \infty} \frac{x^5 + 3x - 6}{x - 4}$$

59.
$$\lim_{x \to -\infty} \frac{x^5 + 12x - 2}{x - 4}$$

$$60. \lim_{x \to 2} \frac{x^2 - 3x + 2}{2x - 4}$$

61.
$$\lim_{x \to 3} \frac{6x - 18}{x^2 - 5x + 6}$$

62.
$$\lim_{x \to 4} \frac{x^2 - 16}{-2x + 8}$$

63.
$$\lim_{x \to 5} \frac{x^3 - 25x}{x(x - 5)}$$

64.
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$$

65.
$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{x - 1}$$

66.
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$

67.
$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{x - 2}$$

68.
$$\lim_{x \to \infty} \frac{\frac{5x^3 + 3x^3 - 6}{15x^5 + 8x^3 + 4x}}{x \to \infty}$$

69.
$$\lim_{x \to -1} (4x^3 + 2x^2 + x + 2)$$

70.
$$\lim_{x \to 2} \frac{x^2 - 16}{8 - 2x}$$

71.
$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4}$$

72.
$$\lim_{x\to 2} \frac{x^2-7x+10}{x-2}$$

73.
$$\lim_{X \to -3} \frac{x^2 + 2x - 3}{2x + 6}$$

74.
$$\lim_{x \to 1} \frac{3x^4 + x^3 - 5x^2 + 2x}{x^2 - x}$$

75.
$$\lim_{x \to 0} \frac{3x^4 + x^3 - 5x^2 + 2x}{x^2 - x}$$

76.
$$\lim_{x \to \infty} \frac{3x^4 + x^3 - 5x^2 + 2x}{x^2 - x}$$

77.
$$\lim_{x \to -\infty} \frac{3x^4 + x^3 - 5x^2 + 2x}{x^2 - x}$$

78.
$$\lim_{x \to -\infty} \frac{3x^5 + x^3 - 5x^2 + 2x}{x^2 - x}$$

79.
$$\lim_{x \to 2} \frac{x^3 - 2x^2}{3x - 6}$$