Cavallaro, Jeffery Math 231b Homework #7

4.12.48

Show that the projection onto a closed subspace F of a Hilbert space H is a compact operator if and only if F is finite-dimensional.

Since F is closed, F is also Hilbert (and separable).

 \implies Assume P_F is compact.

ABC: F is infinite-dimensional.

Assume (\vec{e}_n) is a complete orthonormal sequence in F.

 $\|\vec{e}_k\| = 1$ for all $k \in \mathbb{N}$ and so (\vec{e}_n) is a bounded sequence in H.

Since (\vec{e}_n) is also a sequence in F, $P_F \vec{e}_k = \vec{e}_k$ for all $k \in \mathbb{N}$.

But $(P_F \vec{e_n}) = (\vec{e_n})$ has no convergent subsequence.

CONTRADICTION!

Therefore F is finite-dimensional.

 \iff Assume F is finite-dimensional.

 P_F is onto F and so $\mathcal{R}(P_F) = F$.

So P_F is a finite rank operator on a Hilbert space.

Therefore, P_F is compact.

4.12.49

Show that the operator $T: \ell^2 \to \ell^2$ defined by $T(x_n) = (2^{-n}x_n)$ is compact.

Assume (x_n) is a bounded sequence in ℓ^2 .

$$\exists M > 0 \text{ such that } ||(x_n)||^2 = \sum_{k=1}^{\infty} |x_{n,k}|^2 \le M < \infty.$$

Now, since $\frac{1}{2^k} < 1$ for all $k \in \mathbb{N}$:

$$||T(x_n)||^2 = \sum_{k=1}^{\infty} |2^{-k} x_{n,k}|^2 < \sum_{k=1}^{\infty} |1 \cdot x_{n,k}|^2 = \sum_{k=1}^{\infty} |x_{n,k}|^2 = ||x_n||^2 \le M$$

Thus $(T(x_n))$ is also a bounded sequence in ℓ^2 .

Let $T_N(x_n)$ be defined by:

$$T_N(x_n)_k = \begin{cases} T(x_n)_k, & 1 \le k \le N \\ 0, & otherwise \end{cases}$$

Thus, T_n applies T and then sets all but the first N terms to 0. Note that if $T(x_n) \in \ell^2$ then certainly $T_n(x_n) \in \ell^2$. Furthermore, note that $T_n(x_n)$ is a finite rank operator.

$$||(T_N - T)(x)||^2 = \sum_{k=N+1}^{\infty} |2^{-k}x_{n,k}|^2$$

$$= \sum_{k=N+1}^{\infty} |2^{-2k}| |x_{n,k}|^2$$

$$\leq \sum_{k=N+1}^{\infty} |2^{-2k}| ||(x_n)||^2$$

$$= M \sum_{k=N+1}^{\infty} 2^{-2k}$$

$$< M \sum_{k=N+1}^{\infty} 2^{-k}$$

$$= M \sum_{k=0}^{\infty} 2^{-(k+N+1)}$$

$$= M \sum_{k=0}^{\infty} 2^{-(N+1)} 2^{-k}$$

$$= \frac{M}{2^{N+1}} \sum_{k=0}^{\infty} 2^{-k}$$

$$= \frac{M}{2^{N+1}} (2)$$

$$= \frac{M}{2^{N}}$$

$$\to 0$$

And so $T_n \to T$ as $N \to \infty$. But $T_n \in \mathcal{K}(H)$, which is closed.

Therefore $T \in \mathcal{K}(H)$ and thus T is compact.

4.12.50

Show that a self-adjoint operator T is compact if and only if there exists a sequence of finite-dimensional operators strongly convergent to T.

Assume H is a Hilbert space. Assume T is a self-adjoint operator on H.

 \implies Assume T is compact.

By the spectral theorem for compact, self-adjoint operators:

$$T = \sum_{n=1}^{\infty} \lambda_n P_n$$

where the λ_n are distinct, non-zero eigenvalues of T and each P_n is the projection operator onto a corresponding orthonormal eigenvector for λ_n . Furthermore, $\lambda_n \to 0$.

Let $(\vec{e_n})$ be the corresponding orthonormal eigenvector sequence.

Assume $\vec{x} \in H$:

$$T\vec{x} = \sum_{n=1}^{\infty} \lambda_n \langle \vec{x}, \vec{e}_n \rangle \vec{e}_n$$

Now, define the sequence of finite-rank (and hence compact) operators $(T_n\vec{x})$ where:

$$T_n \vec{x} = \sum_{k=1}^n \lambda_n \langle \vec{x}, \vec{e}_n \rangle \vec{e}_n$$

Since the \vec{e}_k are orthonormal we can apply Parseval:

$$\|(T_n - T)\vec{x}\|^2 = \left\| \sum_{k=n+1}^{\infty} \lambda_k \langle \vec{x}, \vec{e}_k \rangle \vec{e}_k \right\|^2$$

$$= \sum_{k=n+1}^{\infty} |\lambda_k \langle \vec{x}, \vec{e}_k \rangle|^2$$

$$= \sum_{k=n+1}^{\infty} |\lambda_k|^2 |\langle \vec{x}, \vec{e}_k \rangle|^2$$

$$\leq \sum_{k=n+1}^{\infty} |\lambda_k|^2 ||\vec{x}||^2 ||\vec{e}_k||^2$$

$$= \sum_{k=n+1}^{\infty} |\lambda_k|^2 ||\vec{x}||^2 ||\vec{e}_k||^2$$

$$= ||\vec{x}||^2 \sum_{k=n+1}^{\infty} |\lambda_k|^2$$

$$\to 0$$

$$T_n \to T$$
.

 \iff Assume $T_n \to T$ where T_n is finite dimensional.

 T_n is finite-dimensional $\implies T_n$ is compact. Furthermore, $\mathcal{K}(H)$ is a closed subspace of $\mathcal{B}(H)$. Therefore $T \in \mathcal{K}(H)$ and thus T is compact.

4.12.51

Show that the space of all eigenvectors corresponding to a nonzero eigenvalue of a compact operator is finite-dimensional.

Assume A is a compact operator on a Hilbert space H.

Assume λ is an eigenvalue of A such that $\lambda \neq 0$.

ABC: E_{λ} is infinite-dimensional.

Since $E_{\lambda} = \ker(A - \lambda I)$, E_{λ} is a closed subspace of H and is thus also Hilbert (and separable).

So there exists a complete orthonormal sequence (\vec{x}_n) in E_{λ} .

Since A is compact it maps orthonormal sequences to sequences that converge to 0.

And so $A\vec{x}_n \to 0$.

Thus $A\vec{x}_n = \lambda \vec{x}_n \to 0$.

But $\lambda \neq 0$ and so $\vec{x}_n \to 0$.

CONTRADICTION!

Therefore E_{λ} is finite-dimensional.