

Customer Segmentation

Unsupervised machine learning in Python

Context

- Company leadership
- Other staff whose goals will be affected by the project
- Customers

Purpose

Understanding customer behavior:

- Attract and retain customers
- Target coupons and sales
- Increase web traffic and sales

Past trends may not indicate future trends

 Additional variables outside the scope of this project

Stakeholders

Problem Statement:

Grouping customers based on personal attributes and purchasing history can help companies understand their customers and aid in targeted marketing and other key business decisions.

About the data:

"Customer personality analysis" by Dr. Omar Romero-Hernandez, uploaded by Akash Patel
Csv file containing 2240 observations with 29 variables:

Purchases

Discounts

Shopping habits

ID

Year_Birth

Education

Marital_Status

Income

Kidhome

Teenhome

Dt_customer: date enrolled

Recency: last purchase

Complain: 1=yes/2=no

Spent in the past 2 years:

MntWines: on wine

MntFruits: on fruit

MntMeatProducts: meat

MntFishProducts: fish

MntSweetProducts: sweets

MntGoldProds: gold

Customer participated in:

NumDealsPurchases: total discount purchases

AcceptedCmp1: 1st

campaign

AcceptedCmp2: 2nd

campaign

AcceptedCmp3: 3rd

AcceptedCmp4: 4th

AcceptedCmp5: 5th

Response: last campaign

Location of purchases:

NumWebPurchases NumCatalogPurchases

NumStorePurchases

NumWebVisitsMonth

Data Wrangling

Exploratory Data Analysis

Single

Exploratory Data Analysis

Exploratory Data Analysis

Key findings

Univariate analysis

Examining rows with missing values show no significant different compared with other rows.

Univariate distribution

The distribution of each variable is fairly uniform with many features heavily right skewed.

Distribution

Right skewed features suggest many customers purchase or participate minimally or not at all and less customers purchase or participate at higher levels.

Outliers

There are 3 customers whose birth years before 1940, all of which are around 1900.

Bivariate analysis

No two variables appear to be so highly correlated as to either create cause for excitement or concern in modeling.

Correlation matrix

High correlations seem to be between total purchases and in store purchases, total spent and wine purchases, and number of purchases and total spent.

Machine Learning Algorithms

Refining Models

8	K-Means
38	Optics
2	Agglomerative
1	DBSCAN
2	GMM

Overall best number of clusters

2

Model Metrics

Model name	Cluster #	Other hyperparameters	Silhouette score
Agglomerative	2	Complete linkage, euclidean metric	0.522831
	2	Average linkage, euclidean metric	0.522831
	2	Average linkage, manhattan metric	0.522831
	2	Single linkage, manhattan metric	0.522831
	3	Single linkage, manhattan metric	0.476398
	2	Single linkage, cosine metric	0.446398
K-Means	2	Lloyd algorithm	0.474022
	2	Elkan algorithm	0.474022
	3	Lloyd algorithm	0.282738
	3	Elkan algorithm	0.282738
	5	Lloyd algorithm	0.062095

Model Metrics

Model name	Cluster #	Other hyperparameters	Silhouette score
GMM	2	Tied covariance	0.456527
	2	Full covariance	0.401546
	3	Tied covariance	0.287145
	3	Full covariance	0.1668
DBSCAN		epsilon=10, p=2	0.446398
		epsilon=10, p=1	0.446398
		epsilon=8, p=2	0.443647
		epsilon=9, p=2	0.438544
Optics	3	p=2	-0.317792
	2	p=2	-0.320906
	3	p=1	-0.345548

Visualizing Clusters

Conclusions from Clusters

Recommendations

For cluster 0:

the group that has thus-far been purchasing less items:

The company may want to examine this group to see whether they can increase sales within this set of their customers.

For cluster 1:

the group that tends to purchase more items:

The company may want to target this group when they are having sales or are pushing any initiatives toward customers who are more reliable buyers.

Additional Thoughts and Future Research

Thanks and Credits

 Special thanks to Silvia Seceleanu for her guidance and support.

Credit to Springboard for curriculum and project ideas.

Slide template designed by Slidesgo school.

