Aula 13 Sistemas Operacionais I

Gerenciamento de Memória - Parte 2

Prof. Julio Cezar Estrella jcezar@icmc.usp.br

Material adaptado de

Sarita Mazzini Bruschi

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Gerenciamento de Memória

- Hierarquia de Memória
- Alocação particionada estática e dinâmica
- Gerenciamento dos espaços
- Swapping
- Memória virtual
 - Paginação e Segmentação

- Programas maiores que a memória eram divididos em pedaços menores chamados overlays;
 - Programador era responsável por definir as áreas de overlay;
 - <u>Vantagem</u>: expansão da memória principal;
 - <u>Desvantagem</u>: custo muito alto;

- Sistema operacional passou a ser responsável por dividir o programa em overlays;
- Sistema operacional realiza o chaveamento desses pedaços entre a memória principal e o disco;
- Década de 60: ATLAS → primeiro sistema com MV (Universidade Manchester - Reino Unido);
- 1972: sistema comercial: IBM System/370;

- Com MV existe a sensação de se ter mais memória principal do que realmente se tem;
- O hardware muitas vezes implementa funções da gerência de memória virtual:
 - SO deve considerar características da arquitetura;

- Espaço de Endereçamento Virtual de um processo é formado por todos os endereços virtuais que esse processo pode gerar;
- Espaço de Endereçamento Físico de um processo é formado por todos os endereços físicos/reais aceitos pela memória principal (RAM);

- Um processo em Memória Virtual faz referência a endereços virtuais (lógicos) e não a endereços reais (físicos) de memória RAM;
- No momento da execução de uma instrução, o endereço virtual é traduzido para um endereço real, pois a CPU manipula apenas endereços reais da memória RAM
 - Necessidade de um MAPEAMENTO

 MMU: Realiza mapeamento dos endereços lógicos (usados pelos processos) para endereços físicos;

- Endereços Virtuais formam o espaço de endereçamento virtual;
- Mapeamento entre endereços reais e virtuais é realizado pela MMU;
- Técnicas de MV:
 - Paginação:
- Blocos de tamanho fixo chamados de **páginas**;
- SO mantém uma lista de todas as páginas;
- O espaço de endereçamento virtual é dividido em páginas virtuais;
 - Segmentação:
- Blocos de tamanho arbitrário chamados **segmentos**;
- SO mantém uma lista de todos os segmentos;
- O espaço de endereçamento virtual é dividido em segmentos virtuais;

- Memória Principal e Memória Secundária são organizadas em páginas de mesmo tamanho;
- Página é a unidade básica para transferência de informação;
- <u>Tabela de páginas</u>: responsável por armazenar informações sobre as páginas virtuais:
 - argumento de entrada → número da página virtual;
 - argumento de saída (resultado) -> número da página real (ou moldura de página - page frame);

- Exemplo:
 - Páginas de 4Kb
 - 4096 bytes/endereços (0-4095);
 - 64Kb de espaço virtual;
 - 32Kb de espaço real;
 - Temos:
 - 16 páginas virtuais;
 - 8 páginas reais;

Espaço Virtual X Tamanho da Página

Espaço de Endereçamen to Virtual	Tamanho da página	Número de páginas	Número de entradas nas tabela de páginas
2 ³² endereços	512 bytes	2 ²³	2 ²³
2 ³² endereços	4 kbytes	2 ²⁰	2 ²⁰
264 endereços	4 kbytes	2 ⁵²	2 ⁵²
2 ⁶⁴ endereços	64 kbytes	2 ⁴⁸	2 ⁴⁸

- Problemas:
 - Fragmentação interna;
 - Definição do tamanho das páginas;
 - Geralmente a MMU que define e não o SO;
 - Páginas maiores: leitura mais eficiente, tabela menor, mas maior fragmentação interna;
 - Páginas menores: leitura menos eficiente, tabela maior, mas menor fragmentação interna;
 - Tamanhos possíveis entre 512 bytes a 64 KB;
- Mapa de bits ou uma lista encadeada com as páginas livres;

Conversão Endereço Virtual → Endereço Real

- Mapeamento da MMU
 - Operação interna de uma MMU com 16 páginas de 4Kb;
 - Endereço virtual de 16 bits: 4 bits para nº de páginas e 12 bits para deslocamento;
 - Com 4 bits é possível ter 16 páginas virtuais (2⁴);
 - Com 12 bits para deslocamento é possível endereçar os 4096 bytes;

- Mapeamento da MMU
 - Número da página virtual é usado como índice;
 - Se página está na memória RAM, então o nº da página real (110) é copiado para os três bits mais significativos do endereço de saída (real), juntamente com o deslocamento sem alteração;
 - Endereço real com 15 bits é enviado à memória;

