The R package trioClasses for definition of the class FamilyExperiment, an extension of SummarizedExperiment, for use in trio based analyses of genetic data.

Samuel G. Younkin

March 14, 2013

1 Packages & Data

```
> library("trioClasses")
> data("sample")
> data("8q24-european-all.sm")
```

2 SummarizedExperiment

3 Pedigree

> ped <- PedClass(ped.DF)

4 FamilyExperiment

```
> (ste <- FamilyExperiment(se, pedigree = ped))

class: FamilyExperiment
dim: 8951 960
exptData(0):
assays(1): geno
rownames(8951): chr8:129296000 chr8:129296113 ...
    chr8:130354703 chr8:130354790
rowData values names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
    H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
    H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):</pre>
```

5 Methods

5.1 ScanTrio

```
class: FamilyExperiment
dim: 6397 960
exptData(0):
assays(1): geno
rownames(6397): chr8:129296113 chr8:129296185 ...
  chr8:130354703 chr8:130354790
rowData values names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
  H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
 H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):
> system.time(scan.trio <- ScanTrio(object = ste.rare,
     window = window, block = range(rowData(ste.rare))))
  user system elapsed
16.497
        0.232 16.753
> scan.trio
DataFrame with 99 rows and 7 columns
           lr minor.in major.in minor.out major.out mendel.in
    <numeric> <integer> <integer> <integer> <integer> <integer>
     1.103716
                     58
                               59
                                        5390
                                                  5955
1
2
     1.258080
                     46
                               58
                                        5402
                                                  5956
                                                                0
3
    1.689351
                     42
                               57
                                        5406
                                                  5957
                                                               0
4
    3.504761
                     41
                               62
                                        5407
                                                  5952
                                                                0
                     42
                                                                0
5
     1.111341
                               51
                                        5406
                                                  5963
6
    1.000482
                     73
                               81
                                        5375
                                                  5933
                                                                0
7
    1.040295
                     47
                               49
                                        5401
                                                  5965
                                                                0
8
    2.234714
                     75
                               67
                                        5373
                                                  5947
                                                                0
9
    10.418485
                     36
                               62
                                        5412
                                                  5952
                                                                0
91
    1.516825
                     63
                               59
                                        5385
                                                  5955
                                                               0
                     72
                                        5376
                                                                0
92
    2.014642
                               65
                                                  5949
93
     1.147383
                     44
                               54
                                        5404
                                                  5960
94
     1.493045
                     49
                               45
                                        5399
                                                  5969
                                                                0
95
     1.000654
                     62
                               68
                                        5386
                                                  5946
                     49
                               72
                                                                0
96
     3.395825
                                        5399
                                                  5942
97
                     34
                               51
                                                                0
     2.668222
                                        5414
                                                  5963
98
     1.317561
                     53
                               67
                                        5395
                                                  5947
                                                                0
99
     1.000407
                     71
                               78
                                        5377
                                                  5936
                                                                0
    mendel.out
     <integer>
```

> (ste.rare <- ste[!(MAF(ste) >= 0.01 | is.na(MAF(ste)))])

```
0
1
2
         0
3
4
         0
5
6
         0
7
8
         0
9
         0
        ...
91
92
         0
93
         0
         0
94
         0
95
96
         0
97
         0
98
         0
99
```

> save(scan.trio, file = "./../data/scan-trio.RData")

5.2 Holger-style Genotype Matrix

Coercion to matrix for trio

```
> geno <- as(ste, "matrix")
> aTDT(geno[, 1:5])
```

Or apply the aTDT method to the Family Experiment directly.

```
> aTDT(ste[1:5])
```

A Count of Transmission of Variants (TransCount())

A.1 Window

```
> window <- gr[100] + 10000
> window2 <- gr[100] + 1000
> block <- range(rowData(ste))
> TransCount(ste, window)
```

A.2 Not in window, but in block

> TransCount(ste, setdiff(block, window))

A.3 In the whole block

> TransCount(ste, block)

A.4 In both windows

> TransCount(ste, GRangesList(window, window2))

A.5 Not "In both windows," but in block

B Count of Transmission of Rare Variants (TransCount())

- B.1 In both windows
- B.2 Not "In both windows," but in block

C Classes

C.1 SnpMatrix, DataFrame, GRanges

The four key ingredients are the SNP matrix, the pedigree information as a DataFrame, position of the SNPs given by a GRanges object, and covariate data given as a DataFrame.

```
> sm
> ped.DF
> gr
```

C.2 SummarizedExperiment

We combine three of the key ingredients when we create the SummarizedExperiment object.

C.3 FamilyExperiment

Now, we include the pedigree information as an object of class PedClass. We keep PedClass independent of FamilyExperiment for flexibility.

```
> ped <- PedClass(ped.DF)
> ste <- FamilyExperiment(se, pedigree = ped)</pre>
```

Here is the show method.

> ste

And now we verify that it is indeed an extension of SummarizedExperiment.

```
> getClass("FamilyExperiment")
```

C.4 PedClass

Now we investigate the pedigree slot of the FamilyExperiment object.

```
> class(pedigree(ste))
> getClass("PedClass")
> pedigree(ste)
```

C.5 geno accessor

```
> class(geno(ste))
> getClass("SnpMatrix")
> geno(ste)
```

C.6 RowData

> rowData(ste)

C.7 ColData

D Validity