Interpolace funkčních závislostí

$$y = f(x_1, x_2, ..., x_k)$$
 ... teoretická závislost (fyzikální zákon)

- V experimentu měníme hodnotu jedné nebo několika veličin x_i a studujeme závislost veličiny y.
 - např. měníme $x_1 \equiv x$, ostatní x_i bereme jako parametry $(\alpha, \beta, \gamma, ...)$:

$$y = f(x \mid \alpha, \beta, \gamma, ...)$$

- Chceme posoudit platnost závislosti y na x_i z výsledků experimentu.
 - \rightarrow tj. chceme získat odhady parametrů $\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}, ...$
- např. pro N hodnot $x_1, x_2, ... x_N$ jsme naměřili N hodnot $y_1, y_2, ... y_N$

Předpokládáme, že známe funkční závislost *f* a že přesnost nastavení hodnot veličiny *x* je řádově větší, než přesnost měření závisle proměnné *y* (která má obecně pro každý bod jinou dispersi).

Metoda nejmenších čtverců

- Metoda početní interpolace.
- Používá se pro získání odhadů parametrů $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\gamma}, ...)$:
 - 1) Zkonstruujeme veličinu

$$\chi^{2}(\alpha, \beta, \gamma, ...) = \sum_{i=1}^{N} \frac{\left(f(x_{i} \mid \alpha, \beta, \gamma, ...) - y_{i} \right)^{2}}{\sigma_{y_{i}}^{2}}$$

2) Hledáme minimum $\chi^2(\alpha,\beta,\gamma,...)$.

Metoda nejmenších čtverců – přímka procházející počátkem

•
$$y = mx$$

•
$$\chi^{2}(m) = \sum_{i=1}^{N} \frac{(mx_{i} - y_{i})^{2}}{\sigma_{y_{i}}^{2}}$$

• minimalizace χ^2 :

$$\widetilde{m} = \frac{\sum_{i=1}^{N} \frac{y_i x_i}{\sigma_{y_i}^2}}{\sum_{i=1}^{N} \frac{x_i^2}{\sigma_{y_i}^2}}$$

• disperze m: $\sigma_{\widetilde{m}}^2 = \frac{1}{\sum_{i=1}^{N} \frac{x_i^2}{x_i^2}}$

•
$$m = \widetilde{m} \pm \sigma_{\widetilde{m}}$$

• problém: co když neznáme σ_{y_i}

Metoda nejmenších čtverců – přímka procházející počátkem

• Pokud jsou σ_{y_i} neznámé ale stejné, $\sigma_{y_i} = \sigma_y$

... potom
$$\sigma_{\widetilde{m}}^2 = \frac{\sigma_y^2}{\sum_{i=1}^N x_i^2}$$

• Pro neznámou disperzi σ_y pak lze spočítat odhad: $\widetilde{\sigma}_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \widetilde{m}x_i)^2$

ozn. $R_1^2 \equiv \sum_{i=1}^n (y_i - \tilde{m}x_i)^2$... minimální suma čtverců odchylek

- nevychýlený odhad:
$$(\widetilde{\sigma}_y^*)^2 = \frac{R_1^2}{n-1}$$

• Odhad disperze *m* je tedy:

$$\left(\sigma_{\widetilde{m}}^{*}\right)^{2} = \frac{1}{\sum_{i=1}^{N} x_{i}^{2}} \frac{R_{1}^{2}}{n-1}$$

Obecná přímka, obecná lineární regrese

• obecná přímka: $y = \beta_0 + \beta_1 x + \varepsilon$

naměřené hodnoty: $[x_i, y_i]$ i = 1, ..., n

nejistoty závislé veličiny y_i : $\varepsilon_i \in N(0, \sigma)$

• minimalizace χ^2 : $\frac{\partial \chi^2}{\partial \beta_1} = 0$ $\frac{\partial \chi^2}{\partial \beta_2} = 0$

vede na soustavu lineárních rovnic:

 $\beta_0 \sum_{i=1}^{\kappa} \frac{x_i}{\varepsilon_i^2} + \beta_1 \sum_{i=1}^{\kappa} \frac{x_i^2}{\varepsilon_i^2} + \sum_{i=1}^{\kappa} \frac{\varepsilon_i x_i}{\varepsilon_i^2} = \sum_{i=1}^{\kappa} \frac{x_i y_i}{\varepsilon_i^2}$ $\beta_0 \sum_{i} \frac{1}{\varepsilon_i^2} + \beta_1 \sum_{i} \frac{x_i}{\varepsilon_i^2} + \sum_{i} \frac{\varepsilon_i}{\varepsilon_i^2} = \sum_{i} \frac{y_i}{\varepsilon_i^2}$

Jak jsou parametry β_0 a β_1 (ne)závislé? $\rightarrow \text{Cov}(\beta_0, \beta_1)$

• obecná funkční závislost: $y = y(x, \beta_1, ..., \beta_m)$ \leftarrow lineární v parametrech β_i tj.

$$\beta_{1} \sum_{i=1}^{n} f_{1}(x_{i}) f_{1}(x_{i}) + \dots + \beta_{m} \sum_{i=1}^{n} f_{m}(x_{i}) f_{1}(x_{i}) = \sum_{i=1}^{n} f_{1}(x_{i}) y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$n$$

$$\sum_{i=1}^{m} \beta_{k} f_{k}(x)$$

$$\beta_1 \sum_{i=1}^n f_m(x_i) f_m(x_i) + \dots + \beta_m \sum_{i=1}^n f_m(x_i) f_m(x_i) = \sum_{i=1}^n f_m(x_i) y_i$$

Maticové vyjádření

$$y = \sum_{k=1}^{m} \beta_k f_k(x)$$
 Naměřené hodnoty: $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ $y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$oldsymbol{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix}$$

$$y = A\beta$$

Hledané parametry: $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

Matice plánu (konstrukční matice, design matrix):

$$\mathbf{A} = \begin{pmatrix} f_1(x_1) & \cdots & f_m(x_1) \\ \vdots & \ddots & \vdots \\ f_1(x_n) & \cdots & f_m(x_n) \end{pmatrix} \leftarrow \text{matice } m \times n, m \le n$$

$$\frac{\partial}{\partial \boldsymbol{\beta}} \|A\boldsymbol{\beta} - \boldsymbol{y}\|^2 = 0$$
 \rightarrow řešení pro parametry: $\boldsymbol{\beta} = (A^T A)^{-1} A^T \boldsymbol{y} = H \boldsymbol{y}$

Jak jsou parametry (ne)závislé?
$$Cov(\beta_0, \beta_1)$$

$$U_{ij} = Cov(\beta_i, \beta_j)$$

$$V_{ij} = Cov(y_i, y_j)$$

$$U = HVH^T$$

Fitování

- Konstrukce křivky (funkce), která co nejlépe odpovídá naměřeným hodnotám.
 - může podléhat dodatečným podmínkám
- Lineární vs. nelineární regrese

metoda největšího spádu Gaussova-Newtonova metoda algoritmus Levenberg–Marquardt simplex

- Interpolace a vyhlazování (spline)
- Regresní analýza a extrapolace
- Softwarové nástroje
 - Excel, Matlab, Origin, ...
 - gnuplot, Python, R, ...

