Algolab Graph and BGL Introduction

Chih-Hung Liu, slides from Daniel Wolleb, Petar Ivanov, Andreas Bärtschi

October 10, 2018

- ► (un-) directed
- ► (non-) weighted
- ► (a-) cyclic
- ▶ (dis-) connected

- ► (un-) directed
- ► (non-) weighted
- ► (a-) cyclic
- ▶ (dis-) connected

- ► (un-) directed
- ► (non-) weighted
- ► (a-) cyclic
- ▶ (dis-) connected

- ► (un-) directed
- ► (non-) weighted
- ► (a-) cyclic
- ▶ (dis-) connected

- ► (un-) directed
- ► (non-) weighted
- ► (a-) cyclic
- ▶ (dis-) connected

Complexity-driven programming (not yet a real thing):

- $\Theta(V+E) \text{great! } E < 10^{7...9}$
- $ightharpoonup \Theta(V \cdot \log(V + E)) \mathsf{cool}$
- $ightharpoonup \Theta(V \cdot E)$ maybe ok
- $ightharpoonup \Theta(2^V)$ slow, $V < 20 \dots 40$

General note:

- ! approach $^{\text{Find shortest paths}} \neq \text{algorithm}^{\text{Dijkstra}} \neq \text{implementation}^{\text{with adj.matrix}}$
- ! abstract data type $^{\text{Dictionary}} \neq \text{data structure}^{\text{Red-Black tree}} \neq \text{implementation}^{\text{as in STL}}$

BGL

Boost Graph Library

A generic C++ library of graph data structures and algorithms.

BGL docs – your new best friend:

https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html and also on the judge:

https://judge.inf.ethz.ch/doc/algolab/bgl/boost_1_58_0/libs/graph

Moodle: There's a brief copy & paste manual.

Algolab VM & General: There's a technical instructions page for all things Algolab.

BGL: A generic library

Genericity type	STL	BGL
Algorithm /	Decoupling of algorithms	Decoupling of graph algorithms
Data-Structure In-	and data-structures	and graph representations
teroperability	Key ingredients: iterators	Vertex iterators, edge iterators, adjacency iterators
Parameterization	Element type parameterization	Vertex and edge property multi-parameterization
	parameter ization	Associate <i>multiple</i> properties
		Accessible via property maps
Extensions	through function objects	through a <i>visitor object</i> ,
(not covered		event points and methods
in Algolab)		depend on particular algorithm

BGL: A generic library

Genericity type	STL	BGL
Algorithm /	Decoupling of algorithms	Decoupling of graph algorithms
Data-Structure In-	and data-structures	and graph representations
teroperability	Key ingredients: iterators	Vertex iterators, edge iterators,
		adjacency iterators
Parameterization	Element type	Vertex and edge property
	parameterization	multi-parametrization
		Associate <i>multiple</i> properties
		Accessible via property maps
Extensions	through function objects	through a <i>visitor object</i> ,
(not covered		event points and methods
in Algolab)		depend on particular algorithm

BGL: Graph Representations

Representation	Advantages	Do
Adjacency list	Swiss army knife: Directed/undirected graphs, allow/disallow parallel-edges, efficient insertion, fast adjacency structure exploitation	use this!
Adjacency matrix	Dense graphs	use at your own risk!

Example without any vertex or edge properties:

```
1 // Easy syntax. Parameters:
2 // OutEdgeList type, VertexList type, Directivity
3 typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS> Graph;
4
5 // which is the same as:
6 typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS, boost::no_property, // the graph has no interior vertex properties
8 boost::no_property // the graph has no interior edge properties
9 > Graph;
```

Example without any vertex or edge properties:

```
1 // Easy syntax. Parameters:
2 // OutEdgeList type, VertexList type, Directivity
3 typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS> Graph;
4
5 // which is the same as:
6 typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS,
7 boost::no_property, // the graph has no interior vertex properties
8 boost::no_property // the graph has no interior edge properties
9 > Graph;
```

Defines a *directed* Graph where the vertices are stored in a vector (VertexList vecS) and the outgoing edges in each vertex are stored in a vector (OutEdgeList vecS). (Also see *Useful stuff: Options for adjacency_list, page 44.*)

Example with vertex property and multiple edge properties:

Example with vertex property and multiple edge properties:

Interior properties are stored with the graph. Property Maps allow us to access the interior properties of the graph. Think of these as a mapping (object with operator []). Also see *Useful stuff: Interior property maps, pages 48–49*.

Warm-up: Read a Graph

```
7 typedef boost::adjacency list<vecS, vecS, directedS> Graph;
9 int main()
10 {
      Graph G(4);
11
12
      boost::add_edge(0, 1, G);
13
      boost::add_edge(1, 2, G);
14
15
      boost::add edge(2, 3, G);
      boost::add_edge(3, 0, G);
16
17
      boost::graph_traits<Graph>::edge_iterator ebeg, eend;
18
      for(boost::tie(ebeg, eend) = boost::edges(G); ebeg != eend; ++ebeg){
19
           std::cout << "G contains an edge from " << boost::source(*ebeg, G)
20
                        << "to " << boost::target(*ebeg, G) << std::endl:
21
22
23 }
```

Warm-up: Read a weighted Graph

```
7 typedef boost::adjacency_list<vecS, vecS, directedS, no_property,</pre>
                                         property<edge weight t, int> > Graph;
8
9 typedef boost::property map<Graph, edge weight t>::type WeightMap;
10 typedef Graph::edge_descriptor Edge;
11
12
13 int main()
14 {
15 Graph G(4);
16 WeightMap weights = boost::get(edge_weight, G);
17 bool added:
18 Edge e;
19 boost::tie(e, added) = boost::add_edge(0, 1, G); weights[e]=1;
20 boost::tie(e, added) = boost::add_edge(1, 2, G); weights[e]=3;
21 boost::tie(e, added) = boost::add_edge(2, 3, G); weights[e]=-2;
22 boost::tie(e, added) = boost::add edge(3, 0, G): weights[e]=5;
23
  graph_traits<Graph>::edge_iterator ebeg, eend;
25 for(boost::tie(ebeg, eend) = boost::edges(G); ebeg != eend; ++ebeg)
      std::cout << "Edge (" << boost::source(*ebeg G) << ", " << boost::target(*ebeg, G)
26
                     << ") has weight " << weights[*ebeg] << std::endl;</pre>
27
28 }
```

BGL: Graph Algorithms

Area	Topic	Details
Basics	Distances	Dijkstra shortest paths
		Kruskal minimum spanning tree
	Components	Connected, biconnected &
		strongly connected components
	General Matchings	General unweighted matching
Flows	Maximum Flow	Graph setup (residual graph)
		Edmonds-Karp and Push-Relabel
	Disjoint paths	Vertex- / Edge-disjoint s-t paths
Advanced Flows	Minimum Cut	Maxflow-Mincut Theorem
	Bipartite Matchings	Vertex Cover & Independent Set
	Mincost Maxflow	Bipartite weighted matching & more

BGL: Graph Algorithms

Area	Topic	Details
Basics	Distances	Dijkstra shortest paths
		Kruskal minimum spanning tree
	Components	Connected, biconnected &
		strongly connected components
	General Matchings	General unweighted matching
Flows	Maximum Flow	Graph setup (residual graph)
		Edmonds-Karp and Push-Relabel
	Disjoint paths	Vertex- / Edge-disjoint s-t paths
Advanced Flows	Minimum Cut	Maxflow-Mincut Theorem
	Bipartite Matchings	Vertex Cover & Independent Set
	Mincost Maxflow	Bipartite weighted matching & more

Many more (not in Algolab 2018): planarity testing, sparse matrix ordering, ...

BGL: Graph Algorithms

Area	Topic	Details
Basics	Distances	Dijkstra shortest paths
		Kruskal minimum spanning tree
	Components	Connected, biconnected &
		strongly connected components
	General Matchings	General unweighted matching
Flows	Maximum Flow	Graph setup (residual graph)
		Edmonds-Karp and Push-Relabel
	Disjoint paths	Vertex- / Edge-disjoint s-t paths
Advanced Flows	Minimum Cut	Maxflow-Mincut Theorem
	Bipartite Matchings	Vertex Cover & Independent Set
	Mincost Maxflow	Bipartite weighted matching & more

Many more (not in Algolab 2018): planarity testing, sparse matrix ordering, . . . **Prerequisites**: Graph theory, BFS, DFS, topological sorting, Eulerian tours, Union-Find. . .

Recap: Graph Traversal and Shortest paths

Graph Traversal with vertices partitioned into three sets: visited, enqueued, unknown

- ▶ BFS closest first, $\mathcal{O}(V+E)$
- ▶ **DFS** furthest first, $\mathcal{O}(V+E)$
- ▶ Dijkstra weighted closest first, $\mathcal{O}(E + V \log V)$ (BGL docs)

Shortest paths with negative weights: Induction on number of edges in subpaths

- **Bellman Ford** shortest paths from a single source, $\mathcal{O}(V \cdot E)$ (BGL docs)
- ▶ Floyd–Warshall all-pairs shortest paths, $\mathcal{O}(V^3)$ (BGL docs)

Both can also be used to detect negative cycles

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- ► Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Connected

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Bi-connected

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Articulation Point

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Undirected Graph:

- Connected vertex pair with a path
- ► Biconnected vertex pair in a cycle
- ► Articulation points vertex disconnecting a component
- ▶ Bridges edge disconnecting a component

Directed Graph:

Strongly Connected

Tutorial problem: statement & example

Input A directed graph G with positive weights on edges and a vertex t, $|V(G)| \leq 10^5, \ |E(G)| \leq 2 \cdot 10^5.$

Definition We call a vertex u universal if all vertices in G can be reached from it.

Output Minimum length of a shortest path $u \to t$ over all universal vertices u. If such a path does not exist, output NO.

Tutorial problem: statement & example

Input A directed graph G with positive weights on edges and a vertex t, $|V(G)| \leq 10^5, \ |E(G)| \leq 2 \cdot 10^5.$

Definition We call a vertex u universal if all vertices in G can be reached from it.

Output Minimum length of a shortest path $u \to t$ over all universal vertices u. If such a path does not exist, output NO.

Tutorial problem: statement & example

Input A directed graph G with positive weights on edges and a vertex t, $|V(G)| \leq 10^5, \ |E(G)| \leq 2 \cdot 10^5.$

Definition We call a vertex u universal if all vertices in G can be reached from it.

Output Minimum length of a shortest path $u \to t$ over all universal vertices u. If such a path does not exist, output NO.

Time's short, so hurry up!

Time's short, so hurry up!

▶ "Check if there is a unique u with no in-edges, if yes output shortest path $u \to t$." (what if there is no such u?)

Time's short, so hurry up!

- ▶ "Check if there is a unique u with no in-edges, if yes output shortest path $u \to t$." (what if there is no such u?)
- ightharpoonup "For each u check with DFS if u reaches all vertices, then..." (**too slow**)

Time's short, so hurry up!

- ▶ "Check if there is a unique u with no in-edges, if yes output shortest path $u \to t$." (what if there is no such u?)
- ▶ "For each u check with DFS if u reaches all vertices, then..." (**too slow**)
- ► Start coding:

```
1 #include <iostream>
2 int main() {
3 // some random algorithm
4 }
```

Time's short, so hurry up!

- ▶ "Check if there is a unique u with no in-edges, if yes output shortest path $u \to t$." (what if there is no such u?)
- ightharpoonup "For each u check with DFS if u reaches all vertices, then..." (too slow)
- ► Start coding:

```
1 #include <iostream>
2 int main() {
3 // some random algorithm
4 }
```

No! Take your time, model the problem, design the algorithm, understand why it should work, ⇒ then code.

- ► Bad question: Why shouldn't it work?

 ("It is correct on all three examples I came up with", etc.)
- ► Good question: Why should it work? ("How would I prove it works?")

Tutorial problem: example

What are the universal vertices?

Tutorial problem: example

What are the universal vertices?

Tutorial problem: example

What are the universal vertices?

 \Rightarrow must be related to some sort of connected component concept in directed graphs!

Strongly connected components:

Strongly connected components:

Strongly connected components:

Strongly connected components:

Is there always a universal vertex?

No!

Let us call a strongly connected component a *minimal component* if it has no in-edges in the strong condensation of the graph (the directed acyclic graph of the strongly connected components).

Let us call a strongly connected component a *minimal component* if it has no in-edges in the strong condensation of the graph (the directed acyclic graph of the strongly connected components).

Fact

If there is more than one minimal component in G, then there is no universal vertex u.

Lemma

If there is exactly one minimal component in G, then its vertices are exactly the universal vertices.

New formulation of the problem:

- 1. If there exists > 1 minimal strongly connected component in G, output NO.
- 2. Output the shortest distance $u \to t$ for best universal vertex u in G.

New formulation of the problem:

- 1. If there exists > 1 minimal strongly connected component in G, output NO.
- 2. Output the shortest distance $u \to t$ for best universal vertex u in G.

Step 1:
$$O(|V| + |E|)$$
 time (DFS)

New formulation of the problem:

- 1. If there exists > 1 minimal strongly connected component in G, output NO.
- 2. Output the shortest distance $u \to t$ for best universal vertex u in G.

```
Step 1: O(|V|+|E|) time (DFS)
Step 2: Dijkstra's algorithm \Omega(|V|) times \Rightarrow \Omega(|V|^2 \log |V|+|V||E|) time! I.e. around |V||E| \approx 10^5 \cdot 2 \cdot 10^5 = 2 \underbrace{0'000'000'000}_{\text{too many zeros}} operations.
```

Another new formulation of the problem:

- 1. We work with the reversed graph G_T , where all the edges of G are reversed.
- 2. If there exists > 1 maximal strongly connected component in G_T , output NO. (maximal component: no out-edge & minimal component: no in-edge)
- 3. Output the shortest distance $t \to u$ for any vertex u in the unique maximal strongly connected component of G_T .

Now we can work only with G_T and one single Dijkstra run! I.e. around $|V|\log |V|+|E|\approx 2\cdot 10^5=200'000$ operations.

How to implement this now? First and foremost, BGL docs:

How to implement this now? First and foremost, BGL docs:

► How to find the strong_components.

How to implement this now? First and foremost, BGL docs:

- ► How to find the strong_components.
- How to check how many maximal components are there? topological_sort? Maybe there is a simple ad hoc solution?

How to implement this now? First and foremost, BGL docs:

- ► How to find the strong_components.
- How to check how many maximal components are there? topological_sort? Maybe there is a simple ad hoc solution?
- ightharpoonup Compute shortest t-u path on G_T with dijkstra_shortest_paths.

Tutorial problem: code – preamble

```
10 // STL includes
11 #include <iostream>
12 #include <vector>
13 #include <algorithm>
14 #include iints>
15 // BGL includes
16 #include <boost/graph/adjacency_list.hpp>
17 #include <boost/graph/strong_components.hpp>
18 #include <boost/graph/dijkstra_shortest_paths.hpp>
```

Tutorial problem: code – typedefs

Tutorial problem: code – reading the input

```
38 void testcase() {
39 // Read and build graph
40 int V, E, t; // 1st line: <vertex_no> <edge no> <target>
41 std::cin >> V >> E >> t:
42 Graph GT(V); // Creates an empty graph on V vertices
43 WeightMap weightmap = boost::get(boost::edge_weight, GT);
44 for (int i = 0; i < E; ++i) {
      int u, v, w; // Each edge: <from> <to> <weight>
45
      std::cin >> u >> v >> w:
46
     Edge e: bool success: // *** We swap u and v to create ***
47
      boost::tie(e, success) = boost::add_edge(v, u, GT); // *** the reversed graph GT! ***
48
      weightmap[e] = w:
49
50 }
```

Tutorial problem: code – strong components

```
50 void testcase() {
51 ...
52 // Store index of the vertices' strong component; index range [0,nscc)
53 std::vector<int> sccmap(V); // Use this vector as exterior property map
54 int nscc = boost::strong_components(GT, // Total number of components
55 boost::make_iterator_property_map(
56 sccmap.begin(), boost::get(boost::vertex_index, GT)));
```

Tutorial problem: code – strong components

```
50 void testcase() {
51 ...
52 // Store index of the vertices' strong component; index range [0,nscc)
53 std::vector<int> sccmap(V); // Use this vector as exterior property map
54 int nscc = boost::strong_components(GT, // Total number of components
55 boost::make_iterator_property_map(
56 sccmap.begin(), boost::get(boost::vertex_index, GT)));
```

Exterior property: strong_components assigns to each vertex the index of its strong component. This is a *property* of the vertex stored *outside* of the graph itself, namely in the vector sccmap. To access the vector, we turn it into an *exterior property map*, i.e., using boost::make_iterator_property_map.

Tutorial problem: code – maximal SCCs

```
56 void testcase() {
57 . . . .
58 // Find universal strong component (if any)
59 // Why does this approach work? Exercise.
60 std::vector<bool> is max(nscc. true):
61 EdgeIt ebeg, eend;
62 // Iterate over all edges.
63 for (boost::tie(ebeg, eend) = boost::edges(GT); ebeg != eend; ++ebeg) {
64 // ebeg is an iterator, *ebeg is a descriptor.
      Vertex u = boost::source(*ebeg, GT), v = boost::target(*ebeg, GT);
65
      if (sccmap[u] != sccmap[v]) is max[sccmap[u]] = false;
66
      // this edge (u,v) in GT implies that component sccmap[u] is not minimal in G
67
69 int max count = std::count(is max.begin(), is max.end(), true);
70 if (max_count != 1) {
      std::cout << "NO" << std::endl:
72 return;
73 }
```

Tutorial problem: code – Dijkstra

```
73 void testcase() {
74
75 // Compute shortest t-u path in GT
76 std::vector<int> distmap(V); // We must use at least one of these
77 std::vector<Vertex> predmap(V); // vectors as an exterior property map.
78 boost::dijkstra shortest paths(GT, t,
79 predecessor_map(boost::make_iterator_property_map( // named parameters
80 predmap.begin(), boost::get(boost::vertex_index, GT))).
81 distance map(boost::make iterator property map( // concatenated by .
82 distmap.begin(), boost::get(boost::vertex_index, GT))));
83 int res = std::numeric limits<int>::max():
84 for (int u = 0; u < V; ++u)
      // Minimum of distances to 'maximal' universal vertices
  if (is max[sccmap[u]])
          res = std::min(res, distmap[u]):
87
std::cout << res << std::endl:</pre>
89 }
```

Tutorial problem: code – main

```
94 // Main function looping over the testcases
95 int main() {
96 std::ios_base::sync_with_stdio(false);
97 int T; std::cin >> T; // First input line: Number of testcases.
98 while(T--) testcase();
99 }
```

Recap: Minimum spanning trees

For a connected graph G=(V,E), a minimum spanning tree of G is a subgraph of G connecting all vertices in V with the minimum sum of edge weights.

Intermediate step of Kruskal's algorithm to compute a Minimum Spanning Tree.

Minimum spanning tree implementations

We need to provide an edge vector to Kruskal's algorithm for storing MST edges.

Kruskal's algorithm

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.

- ightharpoonup G = (V, E)
- $M \subseteq E \text{ is a matching if and only if no two} \\ \text{edges of } M \text{ are adjacent}.$

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.
- ► In an unweighted graph, a maximum matching is a matching of maximum cardinality.

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.
- ► In an unweighted graph, a maximum matching is a matching of maximum cardinality.

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.
- ► In an unweighted graph, a maximum matching is a matching of maximum cardinality.

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.
- ► In an unweighted graph, a maximum matching is a matching of maximum cardinality.
- In a weighted graph, a maximum matching is a matching such that the weight sum over the included edges is maximum.

- ightharpoonup G = (V, E)
- $ightharpoonup M\subseteq E$ is a matching if and only if no two edges of M are adjacent.
- ► In an unweighted graph, a maximum matching is a matching of maximum cardinality.
- ► In a weighted graph, a maximum matching is a matching such that the weight sum over the included edges is maximum.
- BGL does not provide weighted matching algorithms.

Maximum matching: invoking algorithm

```
1 // Compute Matching
2 std::vector<Vertex> matemap(V);
3 // Use the vector as an Exterior Property Map: Vertex -> Matched mate
4 boost::edmonds maximum cardinality matching(G, boost::make iterator property map(
5 matemap.begin(), boost::get(boost::vertex_index, G)));
7 // Look at the matching
8 // Matching size
9 int matchingsize = boost::matching size(G, boost::make iterator property map(
no matemap.begin(), boost::get(boost::vertex_index, G)));
12 // unmatched vertices get the NULL VERTEX as mate.
13 const Vertex NULL_VERTEX = boost::graph_traits<Graph>::null_vertex();
14 for (int i = 0; i < V; ++i) {
       if (matemap[i] != NULL_VERTEX && i < matemap[i]) {</pre>
16
```

Setup: BGL installation

▶ Pre-installed in ETH computer rooms and the Algolab Virtualbox Image. Most likely also already installed on your system if you installed CGAL last week.

Setup: BGL installation

- ▶ Pre-installed in ETH computer rooms and the Algolab Virtualbox Image.
 Most likely also already installed on your system if you installed CGAL last week.
- On "standard" Linux distributions try getting a package from the repository. On macOS package from Homebrew.

Setup: BGL installation

- Pre-installed in ETH computer rooms and the Algolab Virtualbox Image.
 Most likely also already installed on your system if you installed CGAL last week.
- ➤ On "standard" Linux distributions try getting a package from the repository. On macOS package from Homebrew.
- Comments on the versions:
 - 1.61: This version is recommended (current Ubuntu LTS, Algolab VM).
 - 1.55+: These versions have Mincost-maxflow, should be fine.
- See the technical instructions page for more details.

Setup: BGL without installing

- BGL is a Header-only library.
- Download recent version from: http://www.boost.org/users/download/.
- ▶ Just unpack the .tar.bz2 file, no installation required, see Section 3 here: http: //www.boost.org/doc/libs/1_58_0/more/getting_started/unix-variants.html.

Setup: BGL without installing

- BGL is a Header-only library.
- ▶ Download recent version from: http://www.boost.org/users/download/.
- ▶ Just unpack the .tar.bz2 file, no installation required, see Section 3 here: http: //www.boost.org/doc/libs/1_58_0/more/getting_started/unix-variants.html.
- ➤ To build using this version of boost use this command: g++ -03 -std=c++11 -I path/to/boost_1_61_0 test.cpp -o test

Setup: BGL without installing

- BGL is a Header-only library.
- ▶ Download recent version from: http://www.boost.org/users/download/.
- ▶ Just unpack the .tar.bz2 file, no installation required, see Section 3 here: http: //www.boost.org/doc/libs/1_58_0/more/getting_started/unix-variants.html.
- ➤ To build using this version of boost use this command: g++ -03 -std=c++11 -I path/to/boost_1_61_0 test.cpp -o test
- Explanation: The '-l' flag tells the compiler to include all the files from this directory, so that it can find header files like 'boost/graph/adjacency_list.hpp'

Setup: compilation problems

Error messages can be terrible.

Setup: compilation problems

Error messages can be terrible.

- ► Consider re-compiling the code after every line after it is first written. This will help to identify the problem quickly.
- Especially after the typedefs, and again after building the graph, before you do anything else!

Setup: compilation problems

Error messages can be terrible.

- ► Consider re-compiling the code after every line after it is first written. This will help to identify the problem quickly.
- Especially after the typedefs, and again after building the graph, before you do anything else!
- ► There will be confusing typedefs, nested types, iterators etc. Come up with a naming pattern and stick to it.

Setup: runtime problems

Setup: runtime problems

- ▶ Isolate the smallest possible example where the program misbehaves.
- Watch out for invalidated iterators.
- ▶ Print a graph and see if it looks as expected. In particular, check if the number of vertices didn't increase due to mistakes in your edge insertion.

Setup: Problem of the week

As usual, on Monday. Don't miss it! Be advised it doesn't have to be BGL. Anything already covered in the course can be used.

Conclusion

BGL THE BOOST GRAPH LIBRARY

Useful stuff: Algolab BGL documentation

For more information please have a look at the following provided files:

Tutorial slides A PDF of today's tutorial. Homework: Section Useful stuff.

Copy & paste A PDF manual containing code snippets and some detailed explana-

tions of the concepts presented in all BGL tutorials.

Tutorial problem Code and Input file of today's tutorial problem.

Code snippets Self contained code demonstrating many useful code snippets.

Some of it can also be found in the rest of this Section.

Useful stuff: Options for adjacency_list

adjacency_list is the class you almost always need.

Useful stuff: Options for adjacency_list

adjacency_list is the class you almost always need.

```
1 // Graph Type, OutEdgeList Type, VertexList Type, (un)directedS
typedef adjacency list<vecS, vecS, undirectedS,</pre>
3 no property,
                              // nested vertex properties
4 property<edge_weight_t, int> // nested edge properties
5 >
                                  Graph;
   OutEdgeList (1st vecS) — for each vertex, adjacency list kept in a vector.
                Choosing setS instead disallows parallel edges.
     VertexList (2nd vecS) — a list of all edges is kept in a vector. Use this!
     Directivity directedS — directed graph.
                Other choices: undirectedS (undirected graph).
                Rarely needed: bidirectionalS (efficient access to incoming edges)
```

Useful stuff: Building a graph

```
1 Graph G(n);  // Constructs empty graph with n vertices
2 ...
3 Edge e;
4 bool success;
5 tie(e, success) = add_edge(u, v, G);
```

Useful stuff: Building a graph

```
1 Graph G(n);  // Constructs empty graph with n vertices
2 ...
3 Edge e;
4 bool success;
5 tie(e, success) = add_edge(u, v, G);
```

- ► Adds edge from u to v in G.
- ► Caveat: if u or v don't exist in the graph, G is automatically extended.

Useful stuff: Building a graph

```
1 Graph G(n);  // Constructs empty graph with n vertices
2 ...
3 Edge e;
4 bool success;
5 tie(e, success) = add_edge(u, v, G);
```

- Adds edge from u to v in G.
- Caveat: if u or v don't exist in the graph, G is automatically extended.
- Returns an (Edge, bool) pair. First coordinate is an edge descriptor. If parallel edges are allowed, second coordinate is always true. Otherwise it is false in case of a failure (when the edge is a duplicate).

Useful stuff: Removing vertices and edges, Clearing a graph

Dangerous: Deletions of single vertices and edges.

Takes time, invalidates descriptors and iterators, might behave counterintuitively. Consult the docs. Not recommended.

```
remove_edge(u, v, G);
remove_edge(e, G);
clear_vertex(u, G);
clear_out_edges(u, G);
remove_vertex(u, G);
```

Useful stuff: Removing vertices and edges, Clearing a graph

Dangerous: Deletions of single vertices and edges.

Takes time, invalidates descriptors and iterators, might behave counterintuitively. Consult the docs. Not recommended.

```
remove_edge(u, v, G);
remove_edge(e, G);
clear_vertex(u, G);
clear_out_edges(u, G);
remove_vertex(u, G);
```

OK: Clearing a graph once it is no longer needed.

```
1 G.clear(); // Removes all edges and vertices.
2 G = Graph(n); // Destroys old graph; creates a new one with n vertices.
```

Useful stuff: Iterators

```
1 // Iterating over vertices
2 for (u = 0; u < num_vertices(G); ++u) {
3 ...
4 // Iterating over edges
5 EdgeIt eit, eend;
6 for (tie(eit, eend) = edges(G); eit != eend; ++eit) {
7 // eit is EdgeIterator, *eit is EdgeDescriptor}
8 Vertex u = source(*eit, G), v = target(*eit, G);
9 ...</pre>
```

- edges(G) returns a pair of iterators which define a range of all edges.
- For undirected graphs each edge is visited once, with some orientation.

Useful stuff: Iterators

```
1 // Iterating over vertices
2 for (u = 0; u < num_vertices(G); ++u) {
3 ...
4 // Iterating over edges
5 EdgeIt eit, eend;
6 for (tie(eit, eend) = edges(G); eit != eend; ++eit) {
7 // eit is EdgeIterator, *eit is EdgeDescriptor}
8 Vertex u = source(*eit, G), v = target(*eit, G);
9 ...</pre>
```

- edges(G) returns a pair of iterators which define a range of all edges.
- For undirected graphs each edge is visited once, with some orientation.

```
10 // Iterating over outgoing edges
11 OutEdgeIt oeit, oeend;
12 for (tie(oeit, oeend) = out_edges(u, G); oeit != oeend; ++oeit) {
13 Vertex v = target(*oeit, G);
14 ...
```

▶ source(*eit, G) is guaranteed to be u, even in an undirected graph.

Useful stuff: Interior property maps – vertices

Think of a **property map** as a map (i.e., object with operator []) indexed by vertices or edges. Property maps of vertices could be simulated with a vector, but maps of edges are very convenient.

Useful stuff: Interior property maps – vertices

Think of a **property map** as a map (i.e., object with operator []) indexed by vertices or edges. Property maps of vertices could be simulated with a vector, but maps of edges are very convenient.

- ▶ namemap is just a handle (pointer), copying it costs $\mathcal{O}(1)$.
- vertex_name_t is a predefined tag. It is purely conventional (you can create property<vertex_name_t, int> and store distances), but algorithms use them as default choices if not instructed otherwise.

Useful stuff: Interior property maps – edges

weightmap is used by many algorithms (Prim, Dijkstra, Kruskal, ...) as default choice for the edge weight.

Useful stuff: Predefined properties

Some *predefined* vertex and edge properties:

- vertex_name_t
- vertex_distance_t
- vertex_color_t
- vertex_degree_t
- edge_name_t
- edge_weight_t
- edge_weight2_t

Do not be misled into, e.g., thinking that vertex_degree_t will automatically keep track of the degree for you.

More in the source code

Useful stuff: Custom properties

Can be defined if you want to keep additional info associated with edges.

```
namespace boost {
2 enum edge_info_t { edge_info = 219 }; // A unique ID.
3 BOOST INSTALL PROPERTY(edge, info);
4 }
5 struct EdgeInfo {
6 . . .
7 }:
8 . . .
9 typedef adjacency_list<vecS, vecS, directedS,</pre>
10 no_property,
property<edge_info_t, EdgeInfo> > Graph;
12 typedef property_map<Graph, edge_info_t>::type InfoMap;
13 . . . .
14 InfoMap infomap = get(edge_info, G);
15 infomap[e] = ...
```

Useful stuff: Named parameters I

Using named parameters is a way to pass parameters (usually property maps) to functions (BGL algorithms) which is useful in two cases:

Useful stuff: Named parameters I

Using named parameters is a way to pass parameters (usually property maps) to functions (BGL algorithms) which is useful in two cases:

1. Many algorithms have a long list of parameters. Without named parameters, all of these must be provided in the correct order, even if only some are actually needed:

```
1 // Prim non-named parameters example
2 prim_minimum_spanning_tree(G, startvertex,
3 make_iterator_property_map(predmap.begin(), get(vertex_index, G)),
4 make_iterator_property_map(distmap.begin(), get(vertex_index, G)),
5 get(edge_weight,G), get(vertex_index,G), default_dijkstra_visitor());
6 // Prim named parameters:
7 // PredecessorMap must be provided, all other parameters optional
8 prim_minimum_spanning_tree(G,
9 make_iterator_property_map(predmap.begin(), get(vertex_index, G)),
10 root_vertex(startvertex));
```

For e.g. Dijkstra calling the non-named parameter version is even worse!

Useful stuff: Named parameters II

Using named parameters is a way to pass parameters (usually property maps) to functions (BGL algorithms) which is useful in two cases:

2. Some algorithms can record additional information to exterior property maps if provided by named parameters.

```
1 // Kruskal standard example
2 kruskal_minimum_spanning_tree(G, back_inserter(mst));
3 // Kruskal recording Union-Find information
4 vector<int> rankmap(num_vertices(G)); // used by Union-Find
5 vector<Vertex> predmap(num_vertices(G)); // in Union-Find, not the MST!
6 kruskal_minimum_spanning_tree(G, back_inserter(mst),
7 rank_map(make_iterator_property_map(
8 rankmap.begin(), get(vertex_index, G))). // concatenate with .
9 predecessor_map(make_iterator_property_map(
10 predmap.begin(), get(vertex_index, G)));
Always concatenate named parameters by a .
```

Do not pass them as separate parameters (i.e. separated by a ,).

Be careful when you deviate from the provided instructions, in particular if...

Be careful when you deviate from the provided instructions, in particular if...

1. ...you use a pointer type as a property map (see e.g. here):

Buggy for Dijkstra calls in combination with Strong components header.

```
1 // What we teach (and what works):
2 dijkstra_shortest_paths(G, 0, distance_map(
3 make_iterator_property_map(dist.begin(), get(vertex_index, G))));
4 // Using a pointer type (works most of the time):
5 dijkstra_shortest_paths(G, 0, distance_map(&dist[0]));
```

Be careful when you deviate from the provided instructions, in particular if...

...you use a pointer type as a property map (see e.g. here):
 Buggy for Dijkstra calls in combination with Strong components header.

```
1 // What we teach (and what works):
2 dijkstra_shortest_paths(G, 0, distance_map(
3 make_iterator_property_map(dist.begin(), get(vertex_index, G))));
4 // Using a pointer type (works most of the time):
5 dijkstra_shortest_paths(G, 0, distance_map(&dist[0]));
```

2. ...you use bundled properties instead of nested properties:

Not well documented in the BGL examples; Buggy for MinCost flows.

Be careful when you deviate from the provided instructions, in particular if...

...you use a pointer type as a property map (see e.g. here):
 Buggy for Dijkstra calls in combination with Strong components header.

```
1 // What we teach (and what works):
2 dijkstra_shortest_paths(G, 0, distance_map(
3 make_iterator_property_map(dist.begin(), get(vertex_index, G))));
4 // Using a pointer type (works most of the time):
5 dijkstra_shortest_paths(G, 0, distance_map(&dist[0]));
```

- 2. ...you use bundled properties instead of nested properties:

 Not well documented in the BGL examples; Buggy for MinCost flows.
- 3. ...you use named parameters for flow algorithms: Buggy for MinCost flows. Stick to the non-named versions, provide all property maps in correct order.