- 9.17 Suppose that X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n are independent random samples from populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively. Show that $\overline{X} \overline{Y}_{1S_4}$ consistent estimator of $\mu_1 \mu_2$.
- 9.18 In Exercise 9.17, suppose that the populations are normally distributed with $\sigma_1^2 = \sigma_2^2 = \sigma_2^2$. Show that

$$\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2 + \sum_{i=1}^{n} (Y_i - \overline{Y})^2}{2n - 2}$$

is a consistent estimator of σ^2 .