		custo	quantidade
1.	função OrdenaPorInserção(vetor[]:int)		
2.	para j = 2 até tamanho(vetor)		
3.	chave = vetor[j]		
4.	i = j-1		
5.	enquanto i > 0 e vetor[i] > chave		
6.	vetor[i+1] = vetor [i]		
7.	i = i-1		
8.	vetor [i+ 1] = chave		

Resposta:

		custo	quantidade
1.	função OrdenaPorInserção(vetor[]:int)		
2.	para j = 2 até tamanho(vetor)	op1	n
3.	chave = vetor[j]	op2	n-1
4.	i = j-1	op3	n-1
5.	enquanto i > 0 e vetor[i] > chave	op4	$\sum_{j=2}^{n} tj$
6.	vetor[i+1] = vetor [i]	op5	$\sum_{j=2}^{n} (tj-1)$
7.	i = i-1	op6	$\sum_{j=2}^{n} (tj-1)$
8.	vetor [i+ 1] = chave	op7	n-1

Obs.: Considere o termo tj representando o número de vezes da execução do teste do loop interno. Este valor irá variar de acordo com o melhor e o pior caso. Visão inicial dos custos de processamento:

T(n)= n op1 + (n-1) op2 + (n-1) op3 +
$$\sum_{j=2}^{n} tj$$
 op4 + $\sum_{j=2}^{n} (tj-1)$ op5 + $\sum_{j=2}^{n} (tj-1)$ op6 + (n-1) op7

O Melhor caso ocorre quando o vetor está ordenado. Neste caso, para cada valor de j=2, 3, ...,n o teste da chave com o valor i do vetor (vetor[i]>chave) será verdadeiro quando i tem o valor inicial igual j-1. Deste modo conclui-se que $t_j=1$ para j=2, 3, ..., n. Assim os somatórios serão resolvidos como abaixo, para os valores de N e (n-1), sendo que a estimativa do tempo de execução resulta linear em n.

$$\sum_{j=2}^{n} tj = (n-1)$$
 $\sum_{j=2}^{n} (tj-1) = 0$

$$T(n) = n \text{ op1} + (n-1) \text{ op2} + (n-1) \text{ op3} + (n-1) \text{ op4} + (n-1) \text{ op7}$$

$$T(n) = n \text{ op} 1 + n \text{ op} 2 - \text{ op} 2 + n \text{ op} 3 - \text{op} 3 + n \text{ op} 4 - \text{ op} 4 + n \text{ op} 7 - \text{ op} 7$$

$$T(n)= n (op1 + op2 + op3 + op4 + op7) - (op2 + op3 + op4 + op7)$$

O pior caso ocorre quando o vetor estiver ordenado de forma inversa. Neste caso será realizada a comparação do elemento vetor[i] e da chave para todos os elementos do vetor em análise (ou seja, o vetor[1...j-1]), portanto t_j =j para j=2, 3, .., n. Assim temos:

$$\sum_{j=2}^{n} tj = \frac{n(n+1)}{2} - 1 \qquad \qquad \sum_{j=2}^{n} (tj-1) = \frac{n(n+1)}{2} - n$$

Neste caso,

$$\begin{split} &\mathsf{T}(\mathsf{n}) = \mathsf{n} \; \mathsf{op1} + (\mathsf{n}\text{-}1) \; \mathsf{op2} + (\mathsf{n}\text{-}1) \; \mathsf{op3} + \sum_{j=2}^n tj \; \mathsf{op4} + \sum_{j=2}^n (tj-1) \; \mathsf{op5} + \sum_{j=2}^n (tj-1) \; \mathsf{op6} + (\mathsf{n}\text{-}1) \; \mathsf{op7} \\ &\mathsf{T}(\mathsf{n}) = \mathsf{n} \; \mathsf{op1} + \mathsf{n} \; \mathsf{op2} - \mathsf{op2} + \mathsf{n} \; \mathsf{op3} - \mathsf{op3} + \left[\frac{n(n+1)}{2} - 1\right] \; \mathsf{op4} + \left[\frac{n(n+1)}{2} - \mathsf{n}\right] \mathsf{op5} + \left[\frac{n(n+1)}{2} - \mathsf{n}\right] \mathsf{op6} + \mathsf{n} \; \mathsf{op7} - \mathsf{op7} \\ &\mathsf{T}(\mathsf{n}) = \mathsf{n} \; \mathsf{op1} + \mathsf{n} \; \mathsf{op2} - \mathsf{op2} + \mathsf{n} \; \mathsf{op3} - \mathsf{op3} + \left[\frac{n(n+1)}{2} - 1\right] \; \mathsf{op4} + \left[\frac{n(n+1)}{2} - \mathsf{n}\right] \mathsf{op5} + \left[\frac{n(n+1)}{2} - \mathsf{n}\right] \mathsf{op6} + \mathsf{n} \; \mathsf{op7} - \mathsf{op7} \end{split}$$

$$T(n) = \left[\frac{op4}{2} + \frac{op5}{2} + \frac{op6}{2}\right] \quad n^2 + \left[op1 + op2 + op3 + \frac{op4}{2} + \frac{op5}{2} + \frac{op6}{2} + op7\right] \quad n - (op2 + op3 + op4 + op7)$$

A estimativa do tempo de execução é quadrática $T(n) = n^2$