2-3 Дерево

Представляет собой структуру данных, которая является сбалансированным деревом поиска, удовлетворяющее двум условиям:

- Все листья будут на одной глубине, значения будут храниться в листьях
- У всех вершин число исходящих ребер $deq_v \in \{0, 2, 3\}$

Также мы в каждом поддереве будем хранить максимум, а детей будем хранить упорядоченными по величине максимума.

Операции на дереве: поиск Спуск будем делать рекурсивно. Поскольку мы хранили максимум, то мы среди детей находим первое число, большее x, спускаемся в соответствующего сына.

Операции на дереве: добавление Если степень предка после добавления стала равна 4, то создадим два сына размеров 2 и 2, и рекурсивно рассмотрим отца. Если дошли до корня, то создадим новый корень степени 2.

Операции на дереве: удаление Рассмотрим ситуации, которые могли возникать при удалении. Заметим, что у вершины есть отец, дедушка, дядя, брат (предок, другой сын прапредка, прапредок, другой сын предка).

Если у вершины было 2 брата, то после ее удаления ничего менять не надо.

Если у вершины был 1 брат, то нарушается инвариант на степени. Посмотрим на детей дяди. Если их было 3, то можно перераспределить 3+1 как 2+2, и инвариант не нарушится. Если же там было 2 ребенка, то склеимся в одну вершину степени 3, и уменьшим степень предка на 1. Рекурсивно запустим процесс балансировки от него.

Оптимальное дерево поиска Обозначим число детей за d. Тогда операции работают за $d \cdot \log_d n$. Найдем точку минимума: $(d \cdot \log_d n)' = \ln n \cdot \frac{\ln d - 1}{\ln^2 d}$. Нулевой корень производной при d = e. Таким образом, 2-3 дерево достаточно близко к оптимальному.

B+ **дерево** Зафиксируем константу T. Все значения опять храним в листьях. У вершин (кроме корня) степень от T до $2 \cdot T - 1.$ $2 \le deg_{root} \le 2 \cdot T - 1$

Обычно T делают достаточно большим, чтобы дерево работало во внешней памяти.

Операции: вставка Если у вершины степень стала 2T, то мы можем разделить ее на две вершины, подвесить их к предку, и рекурсивно запустить процесс у предка.

Операции: удаление Плохая ситуация при удалении — степень предка стала равна T-1. Посмотрим на соседних братьев. Если один из них по степени больше T, то мы можем позаимствовать у него крайнего сына, чем починим свою степень. Если же у обоих братьев степень T, то мы можем смерджить себя с братом, после чего рекурсивно продолжить процесс в предке, потому что у предка степень уменьшилась на 1.

Почему B+, **а не** B? В начале стоит сказать, что B-дерево обладает схожей структурой, но разрешает хранение значений не только в листьях. Его глубина не более чем на 1 меньше, чем у соответствующего ему B+-дерева. Но при этом элементы B+-дерева можно поддерживать в двусвязном списке, что удобно, а также можно итерироваться во внешней памяти.