1. (24%) Let A, B, C be finite sets. Find each of the following: Mark the following statement TRUE or FALSE

(每小題直接圈選T/F即可)

(a) T F
$$P(A \cup B) = P(A) \cup P(B)$$

(e) T F
$$\emptyset \subseteq \{\emptyset\}$$

(b) T F If
$$A \cup C = B \cup C$$
, then $A = B$

(f) T F
$$\emptyset \subseteq \{\emptyset\}$$

(c) T F If
$$A \cap C = B \cap C$$
, then $A = B$

(g) T F
$$\{\emptyset\} \subseteq \{\emptyset, \{\{\emptyset\}\}\}\}$$

(d) T F IF
$$A - C = B - C$$
, then $A = B$

(h) T F
$$\{\{\emptyset\}\}\subseteq \{\{\emptyset\},\{\emptyset\}\}\}$$

2. (18%) Determine which relationship, ⊆, =, or ⊇, is true for the pair of sets.(每小題圈選一個最適合答案即可)

(a)
$$[\subseteq = \supseteq]$$
 A \cap (B \cup C),

$$(A \cap B) \cup C$$
.

(b)
$$[\subseteq = \supseteq] A - (B - C) \cup B$$
,

$$A \cup (B-A)$$
.

(c)
$$[\subseteq = \supseteq]$$
 A – (B \cup C),

$$(A-B) \cap (A-C)$$
.

(d)
$$\lceil \subseteq = \supseteq \rceil$$
 $(A - B) - (C - B)$,

$$A-C$$
.

(e)
$$[\subseteq = \supseteq]$$
 {a,c,c,e,,e},

(f)
$$[\subseteq = \supseteq]$$
 A – $(B \cup C)$,

$$(A-B)-C$$
).

3. (15%) Let $f: B \to C$ and $g: A \to B$ be functions. Mark the following statement TRUE or FALSE. (直接圈選T/F即可)

- (a) T F If $\mathbf{f}_{\circ} \mathbf{g}$ is one-to-one, so is \mathbf{f}_{\bullet}
- (d) TF If f_{\circ} g is onto, so is g.
- (b) T F If f_{\circ} g is one-to-one, so is g.
- (e) T F If f_{\circ} g is bijection, so are g and f.
- (c) T F If f_{\circ} g is onto, so is f.

4. (21%) Determine whether each of these **sets** is **C**ountable(可數) or **U**ncountable(不可數).

(圈選C/U即可,註Q:有理數;R:實數)

R

- (a) CU
- (b) C U **Q**
- (c) C U the set of all Java programs
- (d) C U (2,5)
- (e) C U the set $S=\{a+b\pi \mid a,b \in \mathbf{Q}\}\$
- (f) C Uthe set of integers divisible by 3 but not by 7
- (g) C U A–B, where A is an Uncountable set and B is a Countable set.

5. (10%) Let $f, g: \mathbf{R} \to \mathbf{R}$, where $g(x)=1-x+x^2$ and f(x)=ax+b. If $(\mathbf{g} \circ \mathbf{f})(x)=9x^2-9x+3$, determine a, b.

6. (10%)Suppose A = $\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$ and C = $\begin{bmatrix} 2 & 1 \\ 0 & 6 \end{bmatrix}$. Find a matrix B such that AB = C or prove that no such matrix exists.

7. (10%)Show that if A, B, and C are sets, then A–(B \cup C)=(A –B) \cap (A –C) using a membership table.

離散數學第二次小考

- 1.
- (a) F
- (b) F
- (c) F
- (d) F
- (e) T
- (f) T
- (g) F
- (h) F
- 2.
- (a) ⊆
- (b) =
- (c) =
- (d) ⊆
- (e) =
- (f) =
- 3.
- (a) F
- (b) T
- (c) T
- (d) F
- (e) F
- 4.
- (a) U
- (b) C
- (c) C
- (d) U
- (e) C
- (f) C
- (g) U

5.

$$g(f(x)) = 1 - (ax + b) + (ax + b)^2 = a^2x^2 + 2abx - ax + b^2 - b + 1 = 9x^2 - 9x + 3$$

$$a^2x^2 = 9x^2$$

 $a = \pm 3$

$$b^2 - b + 1 = 3$$

(b - 2)(b + 1) = 0

$$b = 2, -1$$

$$2abx - ax = -9x$$

6.

$$\begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 0 & 6 \end{bmatrix}$$

$$B = \frac{1}{4 \times 3 - (-5) \times (-2)} \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & -13 \\ -2 & 8 \end{bmatrix}$$

7.

А	В	С	A-(B∪C)	(A-B)∩(A-C)
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	1	1
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	0	0