Write your name here Surname		Other names	
Pearson Edexcel Certificate Pearson Edexcel International GCSE	Centre Number		Candidate Number
Chemistry Unit: KCH0/4CH0 Science (Double Aw Paper: 1C		4SC0	
Thursday 14 May 2015 – Mo Time: 2 hours	orning		Paper Reference KCH0/1C 4CH0/1C KSC0/1C 4SC0/1C
You must have: Calculator, ruler			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⋈. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 4 2 6 7 A 0 1 3 6

Turn over ▶

Ш
پ
m
₹
O
$\overline{}$
\vdash
\subseteq
α
Ш
Ω.
Ш
I
\vdash

0

9

2

က

Group

a

Period

8

က

Helium	20 Ne on 10	Argon	84 Krypton 36	Xenon 54	Radon 86	
	19 Fluorine 9	35.5 Cl Chlorine 17	80 Bromine 35	127 	210 At Astatine 85	
	Oxygen 8	32 Sulfur 16	Selenium	128 Te Tellurium 52	210 Polonium 84	
	Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bismuth 83	
	12 Carbon 6	Si Silicon 14	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead 82	
	11 Boron 5	27 Al Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81	
			65 Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80	
			63.5 Cu Copper 29	Ag Silver 47	Au Gold 79	
			59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
			59 Cobalt 27	103 Rhodium 45	192 r ridium 77	
			56 Fon 26	101 Ruthenium 44	OS Osmium 76	
Hydrogen			55 Mn Manganese 25	99 TC Technetium 43	184 186 W Re Tungsten Rhenium 74 75	
			52 Cr Chromium 24	96 Molybdenum 42	184 W Tungsten 74	
			51 V Vanadium 23	Niobium 41	181 Ta Tantalum 73	
			48 Titanium 22	91 Zr Zirconium 40	179 Hf Hafnium 72	
			Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 AC Actinium 89
	9 Beryllium 4	24 Mg Magnesium 12	Calcium 20	Strontium	137 Barium 56	226 Radium 88
	7 Li Lithium 3	23 Na Sodium 11	39 K Potassium 19	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87
			·			

Key

Relative atomic mass Symbol Name

P 4 4 2 6 7 A 0 2 3 6

2

9

/

Answer ALL questions.

- 1 This question is about the states of matter.
 - (a) The diagram shows the three states of matter for a substance.

gas

Each circle represents a molecule of the substance.

(i) Complete the diagram by drawing six circles to represent molecules in the gas state.

(1)

(ii) Which statement is correct about the movement or arrangement of the molecules of this substance?

(1)

- ☑ A They move randomly in the solid state.
- ☑ B They move randomly in the liquid state.
- ☑ C They are arranged in fixed positions in the liquid state.
- D They are arranged in fixed positions in the gas state.
 - (iii) Which term is used for a solid changing to a liquid?

(1)

- A boiling
- B condensing
- D melting

(b) Some cold water is poured into a conical flask and a bung inserted.

The diagram shows the flask after a few minutes.

(i) What is occurring in the flask?

(1)

- A boiling and condensing
- B condensing and evaporating
- **C** evaporating and freezing
- **D** freezing and melting
 - (ii) Which formula represents a substance that is **not** present in the flask?

(1)

- \boxtimes **A** $H_2O(g)$
- \boxtimes **B** H₂O(I)
- \square C $N_2(g)$
- \square **D** $N_2(I)$

(Total for Question 1 = 5 marks)

- **2** A teacher demonstrates, in a fume cupboard, two experiments to show the movement of particles.
 - (a) In the first experiment she places some liquid bromine at the bottom of a gas jar. She then places another gas jar containing air on top of it, as shown in the diagram.

The diagram shows the apparatus at the start, after a few minutes and at the end of the experiment.

Place crosses (\boxtimes) in **two** boxes to show which statements are correct about this experiment.

(2)

- ☑ A All the air particles in the upper gas jar stay there.
- **B** Bromine and air react to form bromine oxide.
- ☑ C Bromine has a darker colour than air.
- **D** Bromine vapour diffuses upwards.
- **E** Liquid bromine sublimes during the experiment.
- F The concentration of bromine in the lower gas jar does not change.

(b) In the second experiment, she soaks two pieces of cotton wool in different liquids and places them at opposite ends of a glass tube. She immediately seals the tube with bungs. The diagram shows the apparatus at the start of the experiment. cotton wool cotton wool soaked in soaked in ammonia solution concentrated hydrochloric acid В C During the experiment a white ring appears in the tube. (i) State whether the white ring appears at A, B or C. (1) (ii) Explain your choice. (2) (Total for Question 2 = 5 marks)

3	Magnesium is an element in Group 2 of the Periodic Table.	
	When magnesium burns in air it forms magnesium oxide.	
1	(a) Describe two observations made when magnesium burns in air.	(2)
1.		
	(b) Magnesium oxide is	(1)
	■ A an acidic oxide formed from a metal	
	■ B an acidic oxide formed from a non-metal	
	☑ C a basic oxide formed from a metal	
	■ D a basic oxide formed from a non-metal	
	(c) Some magnesium oxide is tested with damp litmus paper.	
	(i) State the final colour of the litmus paper.	(4)
		(1)
	(ii) Identify the ion responsible for this colour.	
		(1)
	(Total for Question 3 = 5 ma	arks)

- 4 A student adds dilute sulfuric acid to a beaker containing calcium chloride solution. He obtains a mixture containing a precipitate of calcium sulfate in a solution of hydrochloric acid.
 - (a) Complete the equation for this reaction by inserting state symbols.

(1)

$$\mathsf{CaCl}_2(.....) \ + \ \mathsf{H}_2\mathsf{SO}_4(.....) \ \to \ \mathsf{CaSO}_4(.....) \ + \ 2\mathsf{HCl}(.....)$$

(b) The student uses this apparatus to separate the mixture into a residue and a filtrate.

Draw a diagram to show how he should assemble the apparatus for the filtration.

(2)

(c)	The student carries out a flame test on the filtrate he obtains and observes a brick-red colour.	
	(i) Identify the ion responsible for this colour.	(1)
	(ii) Suggest why this ion is present in the filtrate.	(1)
(d)	The student tests the filtrate for chloride ions by adding silver nitrate solution.	
	(i) State what he would observe in this test.	(1)
	(ii) State the name of the substance responsible for this observation.	(1)
	(iii) He reads in a textbook that dilute nitric acid should be added before the silver solution in the test.	nitrate
	Suggest why the student does not need to add dilute nitric acid in the test.	(1)
(e)	The calcium sulfate residue he obtains is impure because it contains some hydroch	nloric acid.
	Describe how he can obtain a pure dry sample of calcium sulfate from this residue	(2)
	/T-4-15 O	
	(Total for Question 4 = 10 ma	rks)

5 The table shows the displayed formulae of six organic compounds, P, Q, R, S, T and U.

P

Q

R

$$C = C$$

S

T

U

(a) (i) What is the molecular formula of compound S?

(1)

(ii) What is the empirical formula of compound T?

(1)

(b) (i) Give the letters of two compounds that belong to the homologous series of alkenes.

and

(1)

(ii) The general formula of this homologous series is

(1)

 \blacksquare A C_nH_{2n-2}

 \square **C** $C_n + H_{2n}$

(c)	Wh	nich of these convers	ions is an example of an addition reaction?	(1)
X	A	compound P \rightarrow co	ompound Q	
X	В	compound Q \rightarrow co	ompound T	
X	C	compound R $ ightarrow$ co	ompound Q	
X	D	compound R $ ightarrow$ co	ompound U	
(d)		•	show the displayed formula and name of the isomer of	
	cor	npound T.		(2)
	Dis	played formula		
	Na	me		

(e) The equation represents a reaction between compound P and bromine.

$$\begin{array}{c} H \\ | \\ H - C - H + Br - Br \rightarrow \\ | \\ H \end{array} + H - Br$$

(i) Complete the equation to show the displayed formula of the organic product.

(1)

(ii) State the name of this organic product.

(1)

(iii) State the condition used in this reaction.

(1)

(iv) What term is used for this type of reaction?

(1)

- **A** addition
- B hydration
- C neutralisation
- **D** substitution

THE CALCUIAGE THE EHIDIFICAL POLITICIA OF 132A.		
(i) Calculate the empirical formula of 152a.		(3)
(ii) The relative formula mass of 152a is 66 What is its molecular formula?	empirical formula	(1)
	molecular formula	
	(Total for Question 5 = 1	5 marks)

6 The diagram shows a typical fractionating column used to separate crude oil into fractions.

(a) The diagram shows the names of some of the fractions.

State the name of fraction A and the name of fraction F.

(2)

fraction A

fraction F

(b) Most compounds in crude oil are hydrocarbons.

State the meaning of the term ${\bf hydrocarbons}.$

(2)

16

(c)	Describe how the boiling point, colour and viscosity of the fuel oil fraction differ from those of the gasoline fraction.	(3)
(d)) Some fuel oil undergoes catalytic cracking. This involves the conversion of long-chain alkanes into alkenes and short-chain alkanes.	
	(i) A temperature of about 650°C is used in this process.	
	Identify a catalyst that is used.	(1)
	(ii) The alkane tridecane can be cracked to produce octane and two different alke	enes.
	Complete the equation to show the formulae of the two alkenes.	(2)
	$C_{13}H_{28} \rightarrow C_8H_{18} + \dots + \dots + \dots$	

(e)	When hydrocarbons undergo incomplete combustion, a poisonous gas can form.	
	(i) State the condition that causes incomplete combustion.	(1)
	(ii) Identify the poisonous gas.	(1)
	(iii) Explain why this gas is poisonous.	(1)
(f)	Another problem with using hydrocarbon fuels is the formation of substances that cause an environmental problem. This sequence of equations shows how one of these substances forms.	
	$S + O_2 \rightarrow SO_2$	
	$2SO_2 + O_2 \rightarrow 2SO_3$	
	$SO_3 + H_2O \rightarrow H_2SO_4$	
	(i) State the name of the product of each of these reactions.	(2)
		(2)
SO ₂		
SO ₃		
H_2SO_4		
	(ii) Describe one environmental problem caused by the H ₂ SO ₄ formed.	(2)
	(Total for Question 6 = 17 ma	ırks)
	(10441101 Q463410110 - 17 1110	

The formation of poly(ethene) can be represented as

$$\begin{array}{cccc}
 & H & H & \\
 & | & | & \\
 & C = C & \longrightarrow & \begin{bmatrix}
 & H & H \\
 & | & | \\
 & C - C \\
 & | & | \\
 & H & H
\end{bmatrix}_{n}$$

(a) What is the name of this type of reaction?

(1)

- **A** addition
- B decomposition
- **D** substitution
- (b) Which of these is a correct description of a monomer?

(1)

- A a molecule used to make a polymer
- **B** a molecule with only single bonds
- **C** an atom in a polymer
- **D** a repeat unit in a polymer
- (c) This compound is used to make a polymer.

(i) State the name of this compound.

(1)

(ii) Draw the structure of the repeat unit of the polymer formed from this compound.

(2)

(d) This is part of the structure of another polymer.

Draw the displayed formula of the monomer used to make this polymer.

(1)

(e) Many polymers do not biodegrade when they are thrown away.

(i)	State the	meaning	of the	term	biode	earad	e
('')	otate tire .		0			-9	_

(2)

(ii) What property of these polymers prevents them from biodegrading?

(1)

(Total for Question 7 = 9 marks)

8	A student carries out a titration to find the concentration of some dilute sulfuric	acid.				
	She is given					
	 a supply of the dilute sulfuric acid sodium hydroxide solution of concentration 0.150 mol/dm³ apparatus suitable for carrying out a titration 					
	phenolphthalein indicator					
	She uses this method to do the titration.					
	step 1 add 25.0 cm ³ of the sodium hydroxide solution to a conical flask					
	step 2 add 3 drops of phenolphthalein indicator to the conical flask					
	step 3 fill a burette with the sulfuric acid					
	step 4 add the sulfuric acid to the conical flask until the phenolphthalein in changes colour	dicator just				
	(a) Name the piece of apparatus that the student should use to add the sodium solution in step 1.					
		(1)				
	(b) What is the colour change of the phenolphthalein indicator in step 4?	(4)				
	A colourless to pink	(1)				
	■ B pink to colourless					
	C red to yellow					
	D yellow to red					
	(c) Why is it better to use phenolphthalein indicator rather than universal indicator	tor in				
	this titration?					
		(1)				

(d) The diagram shows the burette readings in one titration.

Use the readings to complete the table, entering all values to the nearest 0.05 cm³.

(3)

burette reading in cm³ after adding acid	
burette reading in cm³ before adding acid	
volume of acid added in cm³	

(e) The student repeats the experiment using the same sodium hydroxide solution but another solution of sulfuric acid of a different concentration.

The table shows her results.

burette reading in cm³ after adding acid	27.65	27.80	27.75	27.40
burette reading in cm³ before adding acid	0.50	1.50	1.00	1.00
volume of acid added in cm ³	27.15	26.30	26.75	26.40
titration results to be used (✓)				

The average (mean) volume of acid should be calculated using only concordant results. Concordant results are those volumes that differ from each other by 0.20 cm³ or less.

- (i) Identify the concordant results by placing ticks (✓) in the table where appropriate.
- (ii) Use your ticked results to calculate the average volume of acid added. (2)

average volume of acid =cm³

(f)	The student uses a similar method to find the concentration of a solution of
	phosphoric acid (H ₃ PO ₄).

The equation for the reaction is

$$3 \text{NaOH} + \text{H}_{3} \text{PO}_{4} \rightarrow \text{Na}_{3} \text{PO}_{4} + 3 \text{H}_{2} \text{O}$$

The table shows her results.

volume of sodium hydroxide solution added to conical flask	25.0 cm ³
concentration of sodium hydroxide solution	0.180 mol/dm ³
average volume of phosphoric acid solution added from burette	28.30 cm ³

(i)	Calculate the amount, in moles	, of NaOH in	25.0 cm ³	of the sodium	hydroxide so	olution.
						(2)

amount of
$$H_3PO_4 =$$
mol

(1)

- **9** This question is about bonding, structures and properties.
 - (a) The box gives four types of structure.

			atana da la la alla alla di
giant covalent	giant ionic	giant metallic	simple molecular

The table shows some properties of four substances, A, B, C and D.

Complete the table by giving the correct type of structure for each substance.

You may use each structure once, more than once or not at all.

(4)

Substance	Electrical c	onductivity	Melting	Type of stylisting
Substance	of the solid	of the liquid	point	Type of structure
А	poor	poor	low	
В	poor	poor	high	
С	good	good	high	
D	poor	good	high	

(b) Magnesium chloride (MgCl₂) is an ionic compound.

The diagram shows the electronic configurations of atoms of magnesium and chlorine.

(i) Describe how magnesium atoms and chlorine atoms form magnesium ions and chloride ions.

(3)

(ii) Draw a diagram to represent the electronic configurations of each of the ions in magnesium chloride.

Show the charge on each ion.

(3)

(c) A molecule of	carbon dioxide conta	ins double covalent	bonds.	
	diagram, using dots a s in a molecule of car		the arrangement of the	2
	O	C	0	
				(2)
(d) Indium is a me	tal in Group 3 of the	Periodic Table.		
(i) Describe th	ne structure and bond	ding in indium.		(3)
(ii) Explain wh	y indium is malleable	2.		(2)
		(Tota	al for Question 9 = 17	marks)

10 A student investigates the rate of decomposition of hydrogen peroxide solution.

The diagram shows the apparatus he uses in his experiments.

The equation for the decomposition is

$$2H_{2}O_{2} \rightarrow 2H_{2}O + O_{2}$$

(a) The student keeps the amount, in moles, of $\rm H_2O_2$ in the solution constant at the start of each experiment.

State two properties of the solution that he should keep the same to ensure that the amount of $\rm H_2O_2$ is the same in each experiment.

(2)

1.....

2 ..

30

(b) The student carries out the experiment five times.

He uses a different solid in each experiment to see how effective each solid is as a catalyst in the decomposition.

He removes the bung, adds a small amount of one of the solids and quickly replaces the bung.

He records the time taken to collect 100 cm³ of oxygen in the syringe.

Solid	Time to collect 100 cm ³ of oxygen, in seconds			
А	76			
В	no oxygen collected			
С	35			
D	11			
Е	54			

(i)	Which	solid	does	not	seem	to	act	as	a	catal	yst	?
-----	-------	-------	------	-----	------	----	-----	----	---	-------	-----	---

(1)

(ii) Which solid is the most effective catalyst?

(1)

(c) In the first experiment the student added 1 g of solid A.

Describe what he could do with the contents of the conical flask at the end of the experiment to show that A was a catalyst, and not a reactant.

(2)

(d) The student repeats the experiment using the same apparatus, but this time he records the volume of oxygen collected at intervals of 20 seconds.

The table shows his results for two new solids F and G.

Time in seconds	Volume of oxygen collected in cm ³				
Time in seconds	solid F	solid G			
0	0	0			
20	69	36			
40	89	58			
60	98	74			
80	100	86			
100	100	96			
120	100	100			

(i) The grid shows the results plotted for solid F.

On the grid, plot the results for solid G.

Draw a curve of best fit.

(3)

	(Total for Question 10 = 12 ma	arks)
	than with solid G?	(1)
(iii)	How do the curves on the graph show that the reaction is faster with solid F	
		(2)
	Show on your graph how you obtained your answer.	(0)
(11)	Use your graph to estimate the volume of oxygen collected after 70 seconds for solid G.	

11 A manufacturer investigates some reactions that produce hydrogen.

The table shows three possible reversible reactions that he could use. The enthalpy changes are also shown.

Reaction	Equation	Δ <i>H</i> in kJ/mol
1	$CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4H_2(g)$	+165
2	$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$	-41
3	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$	-206

(a) (i)	For reaction 1, prediction	t whether	the pressure	should b	oe low o	or high	to give	e the
	greatest yield of pro-	ducts.						

(1)

(ii) Give a reason for your choice	(ii)	Give a	reason	for	vour	choic
------------------------------------	------	--------	--------	-----	------	-------

(1)

(b) (i) For reaction 1, predict whether the temperature should be low or high to give the greatest yield of products.

(1)

(ii) Give a reason for your choice.

(1)

(c) For reaction 2, suggest why changing the temperature will have less effect on the yield of products than in reactions 1 and 3.	
	(1)
(d) (i) For reaction 3, predict the effect on the rate of the forward reaction of	
increasing the pressure, without changing the temperature.	(1)
(ii) Explain your prediction in terms of the particle collision theory.	(2)
(e) The manufacturer makes a batch of ethanoic acid from methanol and carbon musing this reaction.	onoxide
CH₃OH + CO → CH₃COOH	
He starts with 64kg of methanol.	
Calculate the maximum mass of ethanoic acid he could obtain.	
	(3)
maximum mass of ethanoic acid =	kg
(Total for Question 11 = 11 i	marks)
TOTAL FOR DARER 420 A	A A DV C
TOTAL FOR PAPER = 120 N	1ARKS

