Design of 1R/1W 8T SRAM Cell

ECE-611 (Memory Design and Testing)

Group - 1

Group Members:

INDRAPRASTHA INSTITUTE *of*INFORMATION TECHNOLOGY **DELHI**

Vansh Singhai (MT23201)

Gangaprasad Horke (MT2321

Khushi Kasbe (MT23174)

Design specifications & understanding:

Given specification:

- Vmin (read port) = 0.81V
- Vmin (write port) = 1.08V when mux 16
- Vmin (write port) = 0.81V when mux 1 with WL Boost Icell = 100uA at wc, 1.08V

Understanding:

- Sizing of write port is determined on the basis of SNM and write functionality.
- Icell needs to be 100uA at worst PVT condition, i.e. SS, Low voltage 1.08V, 125C.
- ❖ Icell determines the sizing of NMOS stack at the read ports, Icell ↑, Read speed ↑.

Challenges

- Eldo commands for various FOM simulations to be done for SNM, Icell, Write Time, Write Margin etc.
- Six sigma qualification of SNM, such that sizing should ensure that the lowest and worst PVT has required
 6-7 sigma margin only.
- Obtaining minimum area bitcell layout to meet design requirements efficiently.
- Designing array structure by flipping and sharing bitcell and routing various shared signals with different metal layers across the array in the minimum area possible.
- Overcoming challenges in creating layouts that meet Design Rule Checks (DRC) and Layout versus
 Schematic (LVS) criteria, ensuring cleanliness and compliance with design standards.
- We encountered challenge in achieving sigma qualification for bitcell figure of merits (FOMs).

Fig 1: Schematic of 8T SRAM cell

KEY POINTS:

- The Read and Write ports are decoupled.
- NMOS stack in Read Port is sized according to Icell.
- More stable and faster cell, suitable for LV operations as retention voltage gets reduced.
 - Additionally the cell can also use ports as 1RW/1R.
- I_Pon is the additional FOM that needs to be taken care to avoid accidental read by SA.

Sizings

Transistor	Sizings (W/L)		Constraint	
Transistor	Initial	Final	Constraint	
Read Port (M7, M8)	0.220/0.085	0.200/0.08	Icell=100uA	
Pull Up (M1,M2)	0.135/0.085	0.135/0.085	Minimum sized device	
Pass Gate (M5,M6)	0.175/0.085	0.170/0.085	Read SNM 6-Sigma Write Functionality	
Pull Down (M3,M4)	0.260/0.085	0.210/0.085	Read SNM 6-Sigma Write Functionality	

Verification Plan, Stimuli and PVT conditions

	FOMs	PROCESS CORNER	STIMULI	PRE SIMULATION VALUE	POST SIMULATION VALUE
Read SNM		FS, 1.08V, 125C	BL, WL = High	_	132.64 mV
		FS, 0.81V, 125C		_	110.16 mV
Cell Current		SS, 1.08V, 125C	RWL, WL = High, Q_Bar = 1	151.78 μΑ	123.88 μΑ
		SS, 0.81V, 125C		105.12 μΑ	97.27 μΑ
Write Margins	WL Write Margin	SF, 0.81V, 125C	BLB=High, BL=Low, WL=High	0.607 V	0.570 V
		SF, 0.81V, -40C		0.61 V	0.565 V
	BL Write Margin	SF, 0.81V, 125C		_	0.530 V
		SF, 0.81V, -40C		_	0.567 V

Verification Plan, Stimuli and PVT conditions

FOMs	PROCESS CORNER	STIMULI	PRE SIMULATION VALUE	POST SIMULATION VALUE
Write Time	SF, 0.81V, -40C	BLB=High, BL=Low,	6.24 ns	12.194 ns
	TT, 0.81V, -40C	WL=High	3.118 ns	10.23 ns
Leakage	FF, 1.08V, 125C	All devices are in	77.35 pA	430 pA
	FF, 0.81V, 25C	OFF state. WL, RWL =0	29.67 pA	81 pA
I_Partial_(ON) (Additional FOM for 8T)	FS, 1.08V, 125C	RWL = High, Q = 1 Q_Bar = 0		2.4008 μΑ

PDF for Icell (Post Layout)

Icell @SS, 1.08V, 125C Six Sigma Qualified

Mean (
$$\mu$$
) = 113.27 μ A SD (σ) = 1.221

$$\mu - 6*(\sigma) = 105.95 \ \mu A > 100 \ \mu A$$

PDF for SNM (Post Layout)

SNM @FS, 0.81V, 125C Six Sigma Qualified

Mean (μ) = 110.16 mV SD (σ) = 17.96

$$\mu/(\sigma) = 6.1336$$

PDF for SNM (Post Layout)

SNM @FS, 1.08V, 125C Six Sigma Qualified

Mean (
$$\mu$$
) = 132.64 mV SD (σ) = 18.88

$$\mu/(\sigma) = 7.025$$

I_Partial_(ON)

- In an scenario when, Q = 1.08 v Q' = 0v
- Ideally, RBL should not discharge, current should be zero when RWL gets high.
- However, due to a voltage bump (blfi gets charged up), both M7 and M8 experience a partial turn-on, represented by I_partial_on.

Bitcell Area:

1.28x3.23 = 4.134 μm²

Layout of 32X32 Array

32x32 Array Area:

46.735x109.175= 5102.2936 μm²

DRC and LVS clean Reports

khushi23174 (edal Applications Pla		i23174)) - RealVNC Viewer	
Open ▼ 🖺			8t_sram_lvs.hvs.report ~Ovsktopicmos65/kvsRunOir
	## C A ## ## ##	LIBRE SYSTEM	66 68 68 68
EPORT FILE NAME: DURCE NAME: JLE FILE: JLE FILE TITLE: REATION TIME: JURENT DIRECTOR SER NAME: ALIBRE VERSION:	/home/k /home/k /home/k CALIBRE Fri Apr	hushi23174/Desktop/cmos65/lvsf hushi23174/Desktop/cmos65/lvsf cmos065 LVS RULES FILE, Commo 19 01:14:26 2024 hushi23174/Desktop/cmos65/lvsf 3174	an techñology kit Team - Ĉrolles, Date: Fri Mar 25 14:29:37 2011 \$ - DRM rev L - CTK rev 5.3.6 RunDir
	ov	ERALL COMPARISON RESULTS	
		CORRECT #	- ,
	••••••	CELL SUMMARY	
Result	Layout 8t_sram_lvs	Source 8t_sram_lvs	
	*************	LVS PARAMETERS	

Conclusions and Future Plans:

Technical conclusions

- Designed and analysed 8T sram cell, design specifications were met.
- Accomplished denser **32x32** SRAM cell array using technique of flipping and sharing.
- We successfully achieved custom layout design using Virtuoso, ensuring precise control over the placement and routing to meet minimum area constraint.

♦ Emphasise on learning from the project

- ❖ We were able to practically implement concepts related to SNM, statistics for VLSI and sram cell design.
- ❖ We utilize Virtuoso for schematic design and layout creation, ensuring LVS and DRC via Calibre.
- Post-layout parasitic extraction is performed using PEX.
- For evaluation FOMs and Monte Carlo simulations were done using Eldo and analyze waveforms with EZwave to validate and optimize our design for given specifications.
- Parasitic extraction degraded FOMs of cell to some extent.

♦ Future plans

- FOMs can be compared with different bitcells (viz. 6T, 8T 2R/W, 10T etc) for application specific analysis.
- ♣ Impact of parasitic extraction can be lowered by having performance oriented design approach.
- ❖ Performance improved 8T sram cell can be employed for IMC applications.

References

- MDT by Dr Anuj Grover.
- Circuit Design Tools: Cadence Design Systems. [Online]. Available: https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-layout-suite.html. [Accessed: April 21, 2024].
- Simulations: "Eldo." Siemens EDA. [Online]. Available: https://eda.sw.siemens.com/en-US/ic/eldo/. [Accessed: March 10, 2024].
- Waveform Viewer: "EZwave." Siemens EDA. [Online]. Available: https://www.eda-solutions.com/products/ezwave/. [Accessed: March 10, 2024].

Work Distribution

Schematic Design, Layout and Array	Sizing and PVT Conditions	FOMs and Simulations
Khushi Kasbe,	Gangaprasad Horke,	Vansh Singhai,
Vansh Singhai	Khushi Kasbe	Gangaprasad Horke