Problem Set 2

15-859 Information Theory and Applications in TCS

Name: Shashank Singh

Email: sss1@andrew.cmu.edu Due: Thursday, February 28, 2013

Problem 1

(a) i. $p[\hat{X} \neq X]$ is minimized when g(Y) = Y, in which case $p[\hat{X} \neq X] = p[Y \neq X] = 1 - \frac{1}{2^{n/2}}$. $H(X \mid Y) = n/2$ and, for $\mathcal{X} = \text{Dom } X$, $\log_2 |\mathcal{X}| = n$, so, the weak Fano's Inequality gives

$$p[\hat{X} \neq X] \ge \frac{H(X \mid Y) - 1}{\log_2(|\mathcal{X}|)} = \boxed{\frac{n-2}{2n}}.$$

ii. Note that $p[X = Y] = \alpha + (1 - \alpha) \frac{1}{2^n}$, since X = Y whenever X = 0. $p[\hat{X} \neq X]$ is minimized when g(Y) = Y, in which case $p[\hat{X} \neq X] = p[Y \neq X] = (1 - \alpha)(1 - \frac{1}{2^n})$.

Let Z be an indicator random variable with Z = 0 if Y was sampled from the first distribution (Y = X) and Z = 1 otherwise (Y = 0). Then,

$$H(X | Y) = H(X | Y, Z) + H(Z)$$

= $\alpha H(X | Y, Z = 0) + (1 - \alpha)H(X | Y, Z = 0) + h(\alpha)$
= $\alpha \cdot 0 + (1 - \alpha)n + h(\alpha) = (1 - \alpha)n + h(\alpha)$

(where h denotes the binary entropy function) and, for $\mathcal{X} = \text{Dom}(X)$, $\log_2(|\mathcal{X}|) = n$, using the weakened form of Fano's Inequality,

$$p[\hat{X} \neq X] \ge \frac{H(X \mid Y) - 1}{\log_2(|\mathcal{X}|)} = \boxed{\frac{(1 - \alpha)n + h(\alpha) - 1}{n}}.$$

(b) Define $E = \Delta(X,Y)$, the Hamming distance of X and Y. By definition of θ_i , $H(E) = \sum_{i=1}^n \theta_i \log_2\left(\frac{1}{\theta_i}\right)$. For $i \in \{1,\ldots,n\}$, $H(X \mid Y, E=i)$ is maximized when X is distributed uniformly among the $\binom{n}{i}$ strings $Z \in \{0,1\}^n$ with $\Delta(Y,Z) = i$, so $H(X \mid Y, E=i) \leq \log_2\binom{n}{i}$. Since E is a function of X and Y, $H(E \mid X,Y) = 0$. Thus, as in the proof of Fano's Inequality,

$$H(X|Y) \leq H(E) + H(X|E,Y) = \sum_{i=1}^{n} \theta_i \log_2 \left(\frac{1}{\theta_i}\right) + \sum_{i=1}^{n} \theta_i \cdot H(X|Y,E=i)$$

$$\leq \sum_{i=1}^{n} \theta_i \log_2 \left(\frac{1}{\theta_i}\right) + \sum_{i=1}^{n} \theta_i \log_2 \binom{n}{i}$$

$$\leq \sum_{i=1}^{n} \theta_i \left(\log_2 \left(\frac{1}{\theta_i}\right) + \log_2 \binom{n}{i}\right)$$

$$\leq \sum_{i=1}^{n} \theta_i \log_2 \left(\binom{n}{i} \frac{1}{\theta_i}\right). \quad \blacksquare$$

Problem 2

(a) Since $p(0) = p(1) = \frac{1}{2}$,

$$\begin{split} I(B;Y) &= \sum_{b \in \{0,1\}} \sum_{y \in \mathcal{Y}} p(b,y) \log_2 \left(\frac{p(b,y)}{p(b)p(y)} \right) \\ &= \sum_{b \in \{0,1\}} \sum_{y \in \mathcal{Y}} p(y \mid b) p(b) \log_2 \left(\frac{p(y \mid b)}{p(y)} \right) \\ &= \sum_{b \in \{0,1\}} \sum_{y \in \mathcal{Y}} p(y \mid b) p(b) \log_2 \left(\frac{p(y \mid b)}{p(y \mid 1) p(1) + p(y \mid 0) p(0)} \right) \\ &= \frac{1}{2} \sum_{b \in \{0,1\}} \sum_{y \in \mathcal{Y}} p(y \mid b) \log_2 \left(\frac{2p(y \mid b)}{p(y \mid 1) + p(y \mid 0)} \right). \quad \blacksquare \end{split}$$

(b) If, for some $y \in \mathcal{Y}$, $p(y \mid 0) > p(y \mid 1)$, then the probability of an error in decoding y is

$$p(\text{error} \mid y) = p(1 \mid y) = \frac{p(y \mid 1)p(1)}{p(y)} \le \frac{p(y \mid 1)}{p(y)} = \frac{\sqrt{p(y \mid 1)^2}}{p(y)} \le \frac{\sqrt{p(y \mid 1)p(y \mid 0)}}{p(y)}.$$

Similarly, if $p(y \mid 0) \le p(y \mid 1)$, $p(\text{error} \mid y) \le \frac{\sqrt{p(y \mid 1)p(y \mid 0)}}{p(y)}$. Thus,

$$p(\text{error}) = \sum_{y \in \mathcal{Y}} p(\text{error} \mid y) p(y) \le \sum_{y \in \mathcal{Y}} \frac{\sqrt{p(y \mid 1)p(y \mid 0)}}{p(y)} p(y) = \sum_{y \in \mathcal{Y}} \sqrt{p(y \mid 1)p(y \mid 0)}. \quad \blacksquare$$

(c) Let $\rho: C \times C \to \mathbb{N}$ denote the Hamming metric. $\rho(\underline{c}, \underline{c}_0) > 0$ if and only if $\underline{c} \neq \underline{c}_0$, so that

$$p(\underline{c} \neq \underline{c}_0) = \sum_{\underline{d} \in C} p(\underline{c} = \underline{d}) = \sum_{j=1}^n d_j \cdot p(\rho(\underline{c}, \underline{c}_0) = j) = \sum_{j=1}^n d_j \cdot Z(W)^j,$$

since the bits are assumed to be independent.

Problem 3

For notational convenience, we define $\beta := 2^{-n(I(\underline{X};\underline{Y}) + 3\epsilon}$.

(a) Since we have already shown that $p[(\underline{X},\underline{Y}) \in A_{\epsilon}^n] \to 1$ as $n \to \infty$ and the joint probability of two events whose probabilities approach 1 also approaches 1 as $n \to \infty$, it suffices to show that

$$p\left[\left|\Delta(\underline{X},\underline{Y}) - \mathbb{E}\left[\Delta(\underline{X},\underline{Y})\right]\right| < \epsilon\right] \to 1$$

as $n \to \infty$. Since $\Delta(\underline{X}, \underline{Y})$ is an average over n draws from the joint distribution of $(\underline{X}, \underline{Y})$, this is immediate from the Law of Large Numbers.

(b) By definition of $A_{\epsilon,\Delta}^n$ and the Triangle Inequality,

$$-\log_2\left(\frac{p(\underline{x})p(\underline{y})}{p(\underline{x},\underline{y})}\right) = \log_2 p(\underline{x},\underline{y}) - \log_2 p(\underline{x}) - \log_2 p(\underline{y})$$

$$\leq n(H(\underline{X},\underline{Y}) - H(\underline{Y}) - H(\underline{Y}) + 3\epsilon) = n(I(\underline{X};\underline{Y}) + 3\epsilon),$$

so that $\frac{p(\underline{x})p(\underline{y})}{p(\underline{x},\underline{y})} \geq \beta$. Then, by definition of Conditional Probability,

$$p(\underline{y}) = p(\underline{y} \mid \underline{x}) \frac{p(\underline{x})p(\underline{y})}{p(\underline{x}, y)} \ge p(\underline{y} \mid \underline{x})\beta. \quad \blacksquare$$

(c) By definition of $A_{\epsilon,\Delta}^n$ and the fact that $\mathbb{E}\left[\Delta(\underline{X},\underline{Y})\right] \leq D$,

$$\mathbb{E}\left[\Delta(\underline{X},g(f(\underline{X})))\,|\,(\underline{X},g(f(\underline{X})))\in A^n_{\epsilon,\Delta}\right]\leq \mathbb{E}\left[\Delta(\underline{X},\underline{Y})\right]+\epsilon\leq D+\epsilon.$$

Then, conditioning on whether $g(f(\underline{X})) \in A_{\epsilon,\Delta}^n$ gives

$$\mathbb{E}\left[\Delta(\underline{X},g(f(\underline{X})))\right] = \mathbb{E}\left[\Delta(\underline{X},g(f(\underline{X}))) \mid (\underline{X},g(f(\underline{X}))) \in A^n_{\epsilon,\Delta}\right] (1-p_0)$$

$$+ \mathbb{E}\left[\Delta(\underline{X},g(f(\underline{X}))) \mid (\underline{X},g(f(\underline{X}))) \notin A^n_{\epsilon,\Delta}\right] p_0$$

$$\leq \mathbb{E}\left[\Delta(\underline{X},g(f(\underline{X}))) \mid (\underline{X},g(f(\underline{X}))) \in A^n_{\epsilon,\Delta}\right] + d_{max}p_0$$

$$\leq D + \epsilon + d_{max}p_0. \quad \blacksquare$$

(d) $\forall \underline{x} \in \mathcal{X}, \ (\underline{x}, f(\underline{x})) \notin A^n_{\epsilon, \Delta}$ if and only if none of the 2^{nR} values y in the code book \mathcal{C} satisfies $(\underline{x}, y) \in A^n_{\epsilon, \Delta}$, which occurs with probability

$$p\left[(\underline{X},f(\underline{X}))\in A^n_{\epsilon,\Delta}\,|\,\underline{X}=\underline{x}\right] = \left[1-p\left[A(\underline{x},\underline{y})=1\right]\right]^{2^{nR}} = \left[1-\sum_y p(\underline{y})A(\underline{x},\underline{y})\right]^{2^{nR}}.$$

Thus, conditioning on the value of X,

$$p_0 = \sum_{\underline{x}} p(\underline{x}) p\left[(\underline{X}, \underline{Y}) \in A^n_{\epsilon, \Delta} \mid \underline{X} = \underline{x} \right] = \sum_{\underline{x}} p(\underline{x}) \left[1 - \sum_{\underline{y}} p(\underline{y}) A(\underline{x}, \underline{y}) \right]^{2^{nR}}. \quad \blacksquare$$

(e) By definition of A and the inequality derived in part (b), $\forall \underline{x} \in \mathcal{X}$,

$$\sum_{\underline{y}} p(\underline{y}) A(\underline{x}, \underline{y}) = \sum_{\underline{y}: (\underline{x}, \underline{y}) \in A^n_{\epsilon, \Delta}} p(\underline{y}) \ge \sum_{\underline{y}: (\underline{x}, \underline{y}) \in A^n_{\epsilon, \Delta}} \beta p(\underline{y} \, | \, \underline{x}) = \beta \sum_{\underline{y}} p(\underline{y} \, | \, \underline{x}) \cdot A(\underline{x}, \underline{y}).$$

It then follows immediately from the result of part (d) that

$$p_0 \le \sum_{\underline{x}} p(\underline{x}) \left(1 - \beta \sum_{\underline{y}} p(\underline{y} \,|\, \underline{x}) \cdot A(\underline{x}, \underline{y}) \right)^{2^{nR}}.$$

(f) By part (e) and the given inequality,

$$p_{0} \leq \sum_{\underline{x}} p(\underline{x}) \left(1 - \sum_{\underline{y}} p(\underline{y} \mid \underline{x}) \cdot A(\underline{x}, \underline{y}) + e^{-\beta \cdot 2^{nR}} \right)$$

$$\leq \sum_{\underline{x}} p(\underline{x}) \left(1 - \sum_{\underline{y}} p(\underline{y} \mid \underline{x}) \cdot A(\underline{x}, \underline{y}) + e^{-2^{n(I(X;Y) + 3\epsilon - R)}} \right).$$

Since $R > I(X;Y) + 3\epsilon$, $e^{-2^{n(R-I(X;Y)+3\epsilon)}} \to 0$ as $n \to \infty$. $\sum_{\underline{y}} p(\underline{y} \mid \underline{x}) \cdot A(\underline{x},\underline{y})$ is the probabilty that $\exists y \in \mathcal{C}$ with $(\underline{x},\underline{y}) \in A^n_{\epsilon,\Delta}$, which approaches 1 for all $x \in \mathcal{X}$. Thus, the upper bound on p_0 approaches 0 as $n \to \infty$, so that, for sufficiently large $n, p_0 \le \epsilon$.

- (g) By part (f), $\forall \epsilon > 0$, by choosing an appropriate conditional distribution for y given x, we can have $R \in (R^*, R^* + 3\epsilon)$, and expected distortion at most $D + \epsilon + d_{max}\epsilon$, so that, for sufficiently long messages, $R \to R^*$ and distortion approaches D.
- (h) For a single bit, $p(X \neq Y) = D$, so that

$$I(X;Y) = H(X) - H(X|Y) = H(X) - H(X \neq Y) = h(p) - h(D).$$

Thus, the uniform distribution achieves rate h(p) - h(D), so that the optimal rate $R^* \le h(p) - h(D)$.

Problem 4

- (a) I didn't quite understand this question. Doesn't the existence of linear, capacity-achieving codes (such as Arikan's construction) immediately prove the result for all channels?
- (b) i. This can be shown by induction on m, by repeatedly choosing random binary vectors of dimension k and computing the probability distribution of the dimension of their span (since rank(M) = k if and only if M has k linearly independent rows).
 - ii. Erasing |J| bits from Gx is equivalent to removing the corresponding |J| rows from G (creating a matrix $H \in \{0,1\}^{(n-|J|)\times k}$). Then, a decoding error occurs precisely when $\operatorname{rank}(H) < k$, which, by part i., occurs with probability $2^{k-(n-|J|)} = 2^{k-n+|J|}$.
 - iii. Since k = Rn and $|J| = \alpha n$, by the result of part ii.,

$$\mathbb{E}_{G \in \{0,1\}^{n \times k}} \left[P_{\text{err}}(G) \right] \le 2^{k-n+|J|} = 2^{Rn-n+\alpha n} = 2^{(R-(1-\alpha))n} \to 0$$

exponentially as $n \to \infty$, since $R - (1 - \alpha) < 0$.

iv. By part iii., $\forall \varepsilon > 0$, for sufficiently large k, length-k messages can be sent at rate $R < 1 - \alpha$ according to a random linear code with expected probability of a decoding failure

$$\mathop{\mathbb{E}}_{G \in \{0,1\}^{n \times k}} \left[P_{\operatorname{err}}(G) \right] < \varepsilon$$

(where n = k/R). It follows that $\exists G \in \{0,1\}^{n \times k}$ with $P_{\text{err}}(G) < \varepsilon$, so that a message encoded by G can be decoded correctly with probability $1 - \varepsilon$.