COSC 290 Discrete Structures

Lecture 9: Error-correcting codes

Prof. Michael Hay Monday, Sep. 18, 2017 Colgate University

Problem Set

Plan for today

- 1. Problem Set
- 2. Error-correcting codes
- 3. A more abstract view of codes

Problem Set 6

Let's go over 3 problems from the problem set. Which three should we do?

Error-correcting codes

Basic setup

- Sender wants to transmit message m ∈ { 0,1}^k
- Message m encoded as a n-bit codeword c ∈ C ⊆ { 0,1}ⁿ
- Codeword c is transmitted over a noisy channel which may corrupt message.
- · Receiver receives c', a (possibly corrupted) n-bit string.
- Reciever decodes c' into message m'

Error detection and correction

Instead of sending k-bit message directly, a larger n-bit codeword is sent.

The goal: design an encoding scheme with these properties...

- Error Correction if a "small" number of bits are corrupted, the receiver correct those bits and recover message m
- Error Detection if a "medium" number of bits are corrupted, the receiver can at least detect corruption (and, say, request retransmission)

Applications

- Digital storage (Reed-Solomon codes and CDs/DVDs)
- Internet
- · Deep-space telecommunications
- Related ideas are used to verify transactions in Bitcoin (blockchain)

Performance measures and Goals

Performance measures:

- Error tolerance: the maximum number of bits that can be corrupted yet receiver can still recover original message.
- Rate: ratio between message length and codeword length, k/n.

Goals: high error tolerance, high rate

Poll: repetition code

A size ℓ repetition code takes message m, and sends ℓ copies of m. How many errors can a size ℓ repetition code tolerate? What is its rate?

- [A) It can tolerate 1 error, and its rate is 1/k
- [B) It can tolerate ℓ errors, and its rate is $1/\emph{k}$
- [C) It can tolerate 1 error, and its rate is $1/\ell$
- [D) It can tolerate ℓ errors, and its rate is $1/\ell$
- [E) It can tolerate ℓ errors, and its rate is k/ℓ

Example: repetition code

A size ℓ repetition code takes message m, and sends ℓ copies of m. Example:

- Suppose $m \in \{0,1\}^2$ and $\ell = 3$.
- If message m= 10 then c= 10 10 10.
- · Suppose the receiver gets c' = 10 10 11,
 - · can the receiver detect an error? how?
 - · correct an error? how?

A more abstract view of codes

1

Error correcting codes: an abstract view

A code is a set $C \subseteq \{0,1\}^n$ where $|C| = 2^k$.

- Encoding: a bijective function encode: {0,1}^k → C maps k-bit messages to codewords in C. Both the sender and receiver know this function.
- Error detection: a function hasError(c') returns True if c' ∉ C and False otherwise.
- Error correction: choose c ∈ C that is closest to c' and then applies the inverse of encode.

Question: if hasError(c') returns False, does this mean no error has occurred?

Example

Here is an example code where \mathcal{C} { 100111, 101010, 010110, 010111 }. Since $|\mathcal{C}|=2^2$, we can use code to send 2-bit messages.

Distance measure for bit strings

Let $x,y \in \{0,1\}^n$ be two n-bit strings. The Hamming distance between x and y, denoted $\Delta(x,y)$, is the number of positions in which x and y differ.

$$\Delta(x, y) := |\{i \in 1, 2, ..., n : x_i \neq y_i\}|$$

Example:

- x = 1000011
- v = 1100001
- $\Delta(x,y)=2$

Poll: minimum distance

Suppose the receiver gets $c' = 10 \cdot 10 \cdot 11$, can the receiver detect an error? If so, can receiver correct the error?

- A) The receiver can never be 100% certain there was an error.
- B) The receiver knows there's an error, but cannot correct it.
- C) The receiver knows there's an error, and would correct it to be 10 01 11.
- D) The receiver knows there's an error, and would correct it to be 10 10 10.
- E) None of the above / more than one of the above.

m c = encode(m) 00 10 01 11 01 10 10 10 10 01 01 11

11

Minimum Distance

The minimum distance of code $\mathcal C$ is the smallest Hamming distance between two distinct codewords in $\mathcal C$.

$$\min \{ \Delta(x, y) : x, y \in C \text{ and } x \neq y \}$$

m	c = encode(m)	

00 10 01 11

01 10 10 10

10 01 01 10

11 01 01 11

13

Theorem: minimum distance and detecting/correcting errors

If the minimum distance of a code ${\cal C}$ is 2t+1, then ${\cal C}$ can detect 2t errors and correct t errors.

Proofs on board

Poll: decoding a message

Consider this code C?

m	c =	encode(m)
00	10	01 11
0:	1 10	10 10
10	01	01 10
1:	1 01	01 11

The minimum distance of code \mathcal{C} is the smallest Hamming distance between two distinct codewords in \mathcal{C} .

What is its minimum distance?

$$\min \left\{ \ \Delta(x,y) : x,y \in \mathcal{C} \ \text{and} \ x \neq y \right\}$$

Broofe on hoar

15