-	1/ 2 1/ 2/11
_	16.2-16.3: Line Integrals
_	Idea: Given a curve c:[a,b] - D C R
_	and a function $f:D\to \mathbb{R}$
_	
_	R CR F
_	IK IK
_	2
_	How does & behave along the curve?
_	// - 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 1 2
_	(What does + contribute?) 1) Piecewise approximation @ C F(c(t)) unrayeled 2) "Unrayel" the approximation 3) Above each tiny interval, you
_	F(c(ti)) Unravel The approximation
_	d(c(+i), c(+;+1)) get a rectangle/height f (left endpoint
	(c(+;)-c(+;+)) 4) Add the approximations of these
_	rectangles
_	<u> </u>
	Definition: The line integral (or path integral) of function f: D = R -> R along curve c parameterized
_	function f: D = R -> R along curve c parameterized
	by ?: [a,b] → D is
	<u> </u>
_	$\int_{\mathcal{L}} f ds = \int_{\mathcal{L}} f(\vec{r}(t)) (\vec{r}'(t)) dt$
_	"integral of f +=a
_	along c w.r.t. arc
	length" are length of
_	D
	Remark: If f(=)=1 for all =, then I lds=\$1="(+) d+=s(=)
	c +20

_

_

- 1

Ex: Compute I f ds for f(x,y)=2+x2y along c, the upper half of the unit circle with positive orientation. (counterclockwise orientation) Solution: 5 (2+x2y) ds c parameterized by 7(+)= < cos(+), sin(+)> for $= \int_{0}^{\pi} (2 + \cos^{2}(4) \sin(4)) \cdot 1 dt$ $= \int_{0}^{\pi} (2 + \cos^{2}(4) \sin(4)) \cdot 1 dt$ $= \int_{0}^{\pi} 2dt + \int_{0}^{\pi} \cos^{2}(4) \sin(4) dt$ $|\vec{r}^{2}(4)| = \sqrt{(-\sin(4))^{2} + (\cos(4))^{2}} = 1$ $= 2[+]^{\pi} - \int u^2 du = 2[\pi - 0] - 3[u^3]^{\pi}_{+=0}$ $=2\pi-\frac{1}{3}[\cos^{3}(4)]_{+0}^{TT}=2\pi-\frac{1}{3}((-1)^{3}-(1)^{3})=2(\pi+\frac{1}{3})$ To measure the "build up" of f-values in one direction Xx, we can use Sfdxx = 5 F(7(+)) |xx (+)| d+ where xx(t) is the xx-component of 7(t), a parameterization of c Ex: Evaluate & y2 dx + & x dy where c is the line segment oriented from (-5, -3) to (0,2). Solution: First parameterize c アイナ= (1-4) く-5,-37 ++くの,2> Note: Parameterizing a segment from A to B: P(H= (1-+)A++B

	6
	Bad news: Antiderivatives of F: R">R don't
	soully imply sons so the answer most be
	"no" for general "scalar line integrals" Sef ds
	no for garetto restau
	Good news: If V is a conservative vector
	Field, then its potential functions act like
	antiderivatives so there is some hope for
	Proposition (Fundamental Theorem of Line Integrals):
	To sie a smooth curve parameterized by
	F(+) on [a,b] and F: R"- R has continuous
	partial derivatives on c, then
	partial derivatives on C, then
	Proof: Using the FTC and the multivariable
	Chain Rule:
	Chain Rule: S VF. d? = S VF (P(+)). P'(+) d+
	by successful by description
	mythingriple = 5 df [F(F(+))] dt
	by FTC = f(F(b) - f(F(a))
	C - C - C - C - C - C - C - C - C - C -
	Ex: Compute SV.d? via the FTLI for V=<3+2xy2, 2x2y> on F(+)=<+, +> for 14+64
_	7= <3+2xy , 2x-y > on (C) - (+) + / 100 1-1-1
_	Chi Sil and a cabachal ac
	Solution: First compute a potential of
_	
	$= \int (3+2xy^2) dx = \frac{8y}{3x+x^2y^2+C(y)}$ $= 3+x^2y^2+C(y) = 2x^2y+C'(y)$
_	1. C'(4) = 0

:. C(y) = D For some constant D $f(x,y) = 3x + x^2y^2 + D$ is a potential for \sqrt{y} for all D. In particular D=0 works and

 $\sqrt{(3x+x^2y^2)}=\sqrt{(7(4))}-F(7(1))=F(4,4)-F(1,1)$

 $=(3.4+4^{2}(4)^{2})-(3.1+1^{2}(1)^{2})$ =(9)