

# **Enhancing Human-in-the-Loop Learning for Binary Sentiment Word Classification**

Belén Martín-Urcelay, Christopher R. Rozell, Matthieu R. Bloch

December 17, 2024



## 1. Background Motivation

How can ML algorithms learn to classify words without exhausting human patience?



Supervised learning: training with labels from humans



## 1. Background Motivation

How can ML algorithms learn to classify words without exhausting human patience?



☐ Could we get **more information** from the human?



## 2. More Information

Queries must be <u>human</u> and <u>mathematically</u> interpretable



Positive word embedding

: Negative word embedding

 $\theta$ : Word Classifier

"Select the example that you find..."

- Query: "... most positive"

- Query: "... most negative"

Hypothesis: Human answers depend on the distance to the ground truth



## 2. More Information Valence vs Distance to θ



$$\mathbb{E}\left[\operatorname{score}(\mathbf{x})|\boldsymbol{\theta}\right] = -1.73(\mathbf{x}^T\boldsymbol{\theta}) + 0.49$$

#### $\theta$ : Ground truth classifier

# **SocialNet** Mean Score **Estimated Score**



 $\mathbb{E}\left[\text{score}(\mathbf{x})|\boldsymbol{\theta}\right] = 6.96(\mathbf{x}^T\boldsymbol{\theta}) - 0.09$ 



x: Word embedding

# 2. More Information Multinomial Logit Model

Queries must be human and mathematically interpretable

"Select and label the most positive/negative word"

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N, \boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_i,\boldsymbol{\theta})\right)}{\sum_{j=1}^N \exp\left(u(\mathbf{x}_j,\boldsymbol{\theta})\right)}$$
Likelihood

- Q1: Most positive

$$u(\mathbf{x}, \boldsymbol{\theta}) = \frac{a}{\sigma} \mathbf{x}^T \boldsymbol{\theta}$$

- Q2: Most negative

$$u(\mathbf{x}, \boldsymbol{\theta}) = -\frac{a}{\sigma} \mathbf{x}^T \boldsymbol{\theta}$$

Select and label the most positive word on this list:

Table, Healthy, Scary



x: Word embedding

 $\theta$ : Ground truth classifier

y: Word label (positive: 1, negative: 0)

u: Utility function (expected valence score)



# 2. More Information Multinomial Logit Model

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N, \boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_i,\boldsymbol{\theta})\right)}{\sum_{j=1}^N \exp\left(u(\mathbf{x}_j,\boldsymbol{\theta})\right)}$$
Likelihoo

How can we get the posterior?  $p_{\boldsymbol{\theta}} = \mathbb{P}\left[\boldsymbol{\theta}|\{\mathbf{x}_t, y_t, q_t, \{\mathbf{x}_j\}_{j=1}^N\}_{t=0}^i\right]$ 

 $\rightarrow$  Approximate  $\theta$  as a multivariate Gaussian

Posterior over  $\theta$ 

x: Word embedding

q: Query u: Utility function (expected valence score)

 $\theta$ : Ground truth classifier

y: Word label

## 2. More Information Update Given Label

$$\mathbb{P}[y=1|\mathbf{x}] = \frac{1}{1+\exp(W(\boldsymbol{\theta}^T\mathbf{x}))}, \text{ with } W \in \mathbb{R}.$$

How do we update the posterior given the label?

Jaakkola and Jordan give a closed form approximation\*

$$\sum_{\text{pos}}^{-1} = \Sigma^{-1} + 2 \frac{\tanh(\xi/2)}{4\xi} W^2 \mathbf{x}_i \mathbf{x}_i^T$$

$$\boldsymbol{\mu}_{\text{pos}} = \boldsymbol{\Sigma}_{\text{pos}} \left[ \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \left( y_i - \frac{1}{2} \right) W \mathbf{x}_i \right]$$

$$\boldsymbol{\xi}^2 = W^2 \mathbf{x}_i^T \boldsymbol{\Sigma}_{\text{pos}} \mathbf{x}_i + W^2 (\mathbf{x}_i^T \boldsymbol{\mu}_{\text{pos}})^2$$

\*Bayesian parameter estimation via variational methods – Jaakkola and Jordan, 2000

x: Word embedding

Prior:  $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

 $\theta$ : Ground truth classifier

y: Word label

Posterior:  $\mathcal{N}(\boldsymbol{\mu}_{\mathrm{pos}}, \boldsymbol{\Sigma}_{\mathrm{pos}})$ 



## 2. More Information Update Given Word

$$\mathbb{P}\left[\mathbf{x}_i|\{\mathbf{x}_j\}_{j=1}^N,\boldsymbol{\theta}\right] = \frac{\exp\left(K\mathbf{x}_i^T\boldsymbol{\theta}\right)}{\sum_{j=1}^N \exp\left(K\mathbf{x}_j^T\boldsymbol{\theta}\right)}$$

How do we update the posterior given the word selected?

$$ELBO(q) = -\operatorname{KL}(q(\boldsymbol{\theta}) || p(\boldsymbol{\theta})) + \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[ K \mathbf{x}_s^T \boldsymbol{\theta} \right] - \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[ \log \sum_{j=1}^{|\mathcal{S}|} \exp \left( K \mathbf{x}_j^T \boldsymbol{\theta} \right) \right]$$

$$\rightarrow KL(q||p) = \frac{1}{2} \left[ \log \frac{|\Sigma_p|}{|\Sigma_q|} - d + (\boldsymbol{\mu_q})^T \Sigma_p^{-1} (\boldsymbol{\mu_q}) + (\boldsymbol{\mu_p})^T \Sigma_p^{-1} (\boldsymbol{\mu_p}) - 2(\boldsymbol{\mu_q})^T \Sigma_p^{-1} (\boldsymbol{\mu_p}) + tr \left\{ \Sigma_p^{-1} \Sigma_q \right\} \right]$$

$$\rightarrow \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[ K \mathbf{x}_s^T \boldsymbol{\theta} \right] = K \mathbf{x}_s^T \boldsymbol{\mu}_q$$

$$\mathbb{E}_{\boldsymbol{\theta} \sim q} \left[ \log \sum_{j=1}^{|\mathcal{S}|} \exp\left(K\mathbf{x}_{j}^{T}\boldsymbol{\theta}\right) \right] \geq \log \sum_{j=1}^{|\mathcal{S}|} \exp\left(K\mathbf{x}_{j}^{T}\boldsymbol{\mu}_{q} + 0.5\mathbf{x}_{j}^{T}\boldsymbol{\Sigma}_{q}\mathbf{x}_{j}\right) \text{ [Braun and McAuliffe, 2007]}$$





# 2. More Information Multinomial Logit Model

$$\mathbb{P}\left[\mathbf{x}_{i}|\{\mathbf{x}_{j}\}_{j=1}^{N},\boldsymbol{\theta}\right] = \frac{\exp\left(u(\mathbf{x}_{i},\boldsymbol{\theta})\right)}{\sum_{j=1}^{N}\exp\left(u(\mathbf{x}_{j},\boldsymbol{\theta})\right)}$$
$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^{T}\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

$$\mathbb{P}\left[y=1|\mathbf{x}\right] = \frac{1}{1+\exp\left(W(\boldsymbol{\theta}^T\mathbf{x})\right)}, \text{ with } W \in \mathbb{R}.$$

**Variational inference** 

Posterior over  $\theta$ 

 $\theta$ : Ground truth classifier

 $\mathbf{x}$ : Word embedding y: Word label (positive: 1, negative: 0)

u: Utility function (expected valence score)



## 2. More Information Experiments

Label:

Label this word:
Healthy



Label + Word:

Select and label the most positive word?
Healthy, table, scary, orange



#### **NRC-VAD Lexicon dataset:**

Each word  $\mathbf{x}$  has a valence score mean  $\mu_{\mathbf{x}}$  and variance  $\sigma_{\mathbf{x}}^2 \to \mathrm{score}$ :  $s_{\mathbf{x}} \sim \mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2)$ 



# 2. More Information Empirical Results







## 2. More Information Theoretical Results

#### **Under Assumptions**

- 1. Word and label selected are independent of the history given the classifier  $p(\mathbf{x}_t, y_t | \boldsymbol{\theta}, q_t, \mathcal{S}_t, \mathcal{F}_{t-1}) = p(\mathbf{x}_t, y_t | \boldsymbol{\theta}, q_t, \mathcal{S}_t)$
- 2. The label only depends on the word it is referring to  $p(y_t|\mathbf{x}_t, q_t, \mathcal{S}_t) = p(y_t|\mathbf{x}_t)$
- 3. An answer always provides some information  $I(\theta; X_t, Y_t | \mathcal{F}_{t-1}) \ge L > 0$

#### Simplified Theorem

The expected stopping time  $T_{\epsilon} = \min\{t : \left| \boldsymbol{\Sigma}_{\boldsymbol{\theta}|\mathcal{F}_t} \right|^{1/d} < \epsilon\}$  is bounded as

$$\frac{d}{2} \frac{\log_2 \frac{2}{\pi e \epsilon}}{\log_2 2|\mathcal{S}|} \le \mathbb{E}[T_{\epsilon}] \le \frac{d}{2L} \log_2 \frac{e^4 d^2}{2\sqrt{2}(d+2)\epsilon} - 1.$$

where  $\mathbf{x} \in \mathbb{R}^d$  and  $\mathcal{S} = \{\mathbf{x}_j\}_{j=1}^{|\mathcal{S}|}$  are the candidate words.



## 2. More Information Theoretical Results

#### Simplified Theorem

The expected stopping time  $T_{\epsilon} = \min\{t : \left| \boldsymbol{\Sigma}_{\boldsymbol{\theta}|\mathcal{F}_t} \right|^{1/d} < \epsilon\}$  is bounded as

$$\frac{d}{2} \frac{\log_2 \frac{2}{\pi e \epsilon}}{\log_2 2|\mathcal{S}|} \le \mathbb{E}[T_{\epsilon}] \le \frac{d}{2L} \log_2 \frac{e^4 d^2}{2\sqrt{2}(d+2)\epsilon} - 1.$$

where  $\mathbf{x} \in \mathbb{R}^d$  and  $\mathcal{S} = \{\mathbf{x}_j\}_{j=1}^{|\mathcal{S}|}$  are the candidate words.

- $\checkmark$  The number of question to ask the human to reach uncertainty  $<\epsilon$  is on the order of  $\log 1/\epsilon$
- $\checkmark$  Related to the error  $MSE_t = trace(\Sigma_{\theta|\mathcal{F}_t}) \ge d|\Sigma_{\theta|\mathcal{F}_t}|^{1/d}$
- ✓ The more words in the list, the faster the error decays





### 2. More Information Motivation

How can ML algorithms learn to classify words without exhausting human patience?



- ✓ Could we get more information from the human?
- ☐ Could we get the information **faster**?



# 3. Faster Active Learning Heuristic

- Instead of showing the humans a random list of words, could we select them in a smart way?

| Example | $P[+ x,\theta=1]$ | $P[+ x,\theta=2]$ |
|---------|-------------------|-------------------|
| $x_1$   | 0.99              | 0.99              |
| $x_2$   | 0.99              | 0.01              |
| $x_3$   | 0.5               | 0.5               |



#### **Heuristic in AL:**

$$\operatorname{argmax}_{\mathbf{x}} H \left( \mathbb{E}_{\boldsymbol{\theta}} \left[ f_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right) - \mathbb{E}_{\boldsymbol{\theta}} \left[ H \left( f_{\boldsymbol{\theta}}(\mathbf{x}) \right) \right]$$

- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise



### 3. Faster Active Word Selection

#### **Heuristic:**

$$S = \operatorname{argmax}_{S \in \{\mathcal{X}\}^k} H\left(\mathbb{E}_{\boldsymbol{\theta}}\left[\mathbf{x}_i, y_i \mid q, \boldsymbol{\theta}, \mathcal{S}\right]\right) - \mathbb{E}_{\boldsymbol{\theta}}\left[H\left(\mathbf{x}_i, y_i \mid q, \boldsymbol{\theta}, \mathcal{S}\right)\right]$$

- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise

<u>Problem:</u> There exist combinatorically many sets  $\binom{|\mathcal{X}|}{|\mathcal{S}|}$  to maximize over

Our Approach: Greedily select one word at a time

If  $|\mathcal{X}| = 3500$  and  $|\mathcal{S}| = 4$ :  $\binom{|\mathcal{X}|}{|\mathcal{S}|} \sim 10^{15}$ Galaxies  $\sim 10^{12}$ If each computation 1ms,  $t \sim 31,7000$  years



## 3. Faster Results



## 4. Summary

- 1. We introduce a novel human response model.
- 2. We speed up learning in sentiment classification
  - By combining label requests with word selection.
  - By <u>active</u> query selection.
- 3. We validate our approach
  - Theoretically: Bounds for expected stopping time.
  - Empirically: Experiments with human data.



# **Enhancing Human-in-the-Loop Learning for Binary Sentiment Word Classification**

Belén Martín-Urcelay, Christopher R. Rozell, Matthieu R. Bloch

December 17, 2024



## 3. Faster Active Learning Heuristic



| Example | $P[+ x,\theta=1]$ | $P[+ x,\theta=2]$ |
|---------|-------------------|-------------------|
| $x_1$   | 0.99              | 0.99              |
| $x_2$   | 0.99              | 0.01              |
| $x_3$   | 0.5               | 0.5               |

$$x_1 \to H(0.99) - [0.5 (H(0.99) + H(0.99))] = 0.02 - 0.02 = 0$$
  
 $x_2 \to H(0.5) - [0.5 (H(0.01) + H(0.99))] = 1 - 0.02 = 0.98$   
 $x_3 \to H(0.5) - [0.5 (H(0.5) + H(0.5))] = 1 - 1 = 0$ 

#### Heuristic in AL:

$$\operatorname{argmax}_{\mathbf{x}} H \left( \mathbb{E}_{\boldsymbol{\theta}} \left[ f_{\boldsymbol{\theta}}(\mathbf{x}) \right] \right) - \mathbb{E}_{\boldsymbol{\theta}} \left[ H \left( f_{\boldsymbol{\theta}}(\mathbf{x}) \right) \right]$$

- → Maximize uncertainty of the expected output
- → Minimize uncertainty due to noise

Slide 21 of 19

Georgia
Tech