PREDICTION OF THE CAR ACCIDENT SEVERITY FOR THE CITY OF SEATTLE

SILVIYA NINOVA

BACKGROUND INFORMATION

- I.35 million people died in car accidents, according to the World Health Organization;
- Main cause of death for people 5-29 years;
- 8th leading cause of death globally;
- Thousands of people suffering from injuries of car accidents.

An efficient prevention is desperately needed to save lives on the road.

THIS PROJECT

- Goal?
 - Predict the severity of an accident and distinguish between property-damage and injury collisions.
- How?
 - Using supervised machine learning algorithms.
- Why?
 - So as to avoid accidents, in which people get injured.
 - Help the local authorities to:
 - warn the local population about high-risk conditions;
 - prepare a strategy for road—accident prevention.

DATASET

- Dataset on all collisions for the city of Seattle in the period 2004-2020, provided by the Seattle Police Department.
- Readily available online on the Seattle GeoData.
- The original dataset contains 194673 records and 37 features.
- Irrelevant or similar features were removed.
- All records with missing/incomplete information were discarded.
- The final dataset contains 142198 records and 21 features.

PREDICTION MODELS

- Supervised machine learning models.
- Three binary classification techniques were tested:
 - Decision Tree
 - Random Forest
 - Extreme Gradient Boosting
- The data was corrected for imbalance.

PREDICTION FEATURES

- The features used for the predictive model are separated into groups:
 - Time period;
 - Weather and road conditions;
 - Road segment and street illumination;
 - Participants in the accident;
 - Collision type;
 - Reckless driving.

TIME PERIOD (I)

- Slightly more collisions of Class II happen during rush hour and less during the night.
- In proportion more injury collisions happen during the week than during the weekend.

TIME PERIOD (II)

- In proportion more injury collisions happen during summer months.
- The total number of collisions per year does not follow a linear progression, but has a more complex pattern.

WEATHER AND ROAD CONDITIONS

- Most collisions happen at good weather and road conditions.
- No condition is found to predominantly cause collisions of Class I or II.

ROAD SEGMENT AND STREET ILLUMINATION

- 2/3 of Class I collisions happen on the block; for Class II it is only I/2 of them.
- Most accidents happen during the day with small differences between the two classes.

PARTICIPANTS IN THE ACCIDENT

- The injury collisions are higher in proportion with:
 - more than 3 people involved;
 - I or more than 2 cars involved.

COLLISION TYPE

- Most Class I collisions happen:
 - with parked cars;
 - at angle/rear-end/sideswipe.
- Most Class II collisions happen:
 - at angles/rear-end;
 - with pedestrians/cyclists.

RECKLESS DRIVING

CLASSIFICATION MODELS

- Accuracy estimated as the area under the ROC curve.
 - Best value 0.70 for XGBoost.
- All three classification models give similar results.

FEATURE IMPORTANCE

- Accuracy estimated as the area under the ROC curve.
 - Best value 0.70 for XGBoost.
- All three classification models give similar results.

CONCLUSIONS, RECOMMENDATIONS, FUTURE WORK

- The model has a good accuracy, but may need to be improved.
- The most important feature is the collision type, which provides a classification in hindsight.
- Recommended preventive measures following the data analysis:
 - Supervise the observance of safety distance on the most affected road segments;
 - Control the visibility of right-of-way road signs;
 - Increase the safety of pedestrians and cyclists;
 - Control/Improve the state, illumination and visibility of the zebra crossings and cycling paths.
- Future work includes improving the predictibility of the model by adding feaures on:
 - Traffic congestion and two-vehicle collisions;
 - Availability of cycling paths and visibility of cyclists.