

LATEX workshop

February 27, 2020

Arjan Wildhagen February 27, 2020 ATEX workshop

What is LATEX

- TEX invented by Donald Knuth in 1977
 - /'tεx/ or /'tεk/, from the word τέχνη meaning art or craft, root of technical
- Extended to Lambert in 1984
 - /la'tεx/ or /lei'tεk/

LATEX> Mord

LATEX uses dynamic programming to minimize spacing.

Microsoft Word	₽1EX
hey hey hey	hey hey
hey	hey hey
stupidbitch	stupidbitch

Arjan Wildhagen February 27, 2020 ATEX workshop

LATEX> Mord

LATEX uses dynamic programming to minimize spacing.

Microsoft Word

hey hey hey hey stupidbitch

PTEX

hey hey hey hey stupidbitch

Pros: Cons

Arjan Wildhagen February 27, 2020 LATEX workshop

Pros: Cons

Beautiful typesetting

Arjan Wildhagen February 27, 2020 LATEX workshop

Pros:

Cons

- Beautiful typesetting
- Mathematical support

Arjan Wildhagen

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)
- Very robust

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)
- Very robust

Cons

Maybe difficult to get into

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)
- Very robust

- Maybe difficult to get into
- Very customizable, but how do you do it?

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)
- Very robust

- Maybe difficult to get into
- Very customizable, but how do you do it?
- Frustrating placements or creations

Pros:

- Beautiful typesetting
- Mathematical support
- Very customizable
- Lots of (academic) support
- Easy footnotes, references, indices, etc.
- Tex file holds all info of document (given that packages are available)
- Very robust

- Maybe difficult to get into
- Very customizable, but how do you do it?
- Frustrating placements or creations
- Sometimes very hard to get specific layout

5 Levels of LATEX understanding

Beginner

How to MEX

- Beginner
- Intermediate

- Beginner
- Intermediate
- Advanced

- Beginner
- Intermediate
- Advanced
- Expert

- Beginner
- Intermediate
- Advanced
- Expert
- Godlike Dark side of LATEX

Levels of LATEX

- Beginner
- Intermediate
- Advanced
- Expert
- Godlike Dark side of LATEX

Where to LATEX?

UI's

Linux

- TeXLive
- Gummi
- Kile
- Latexila

Windows

- MikTex
- TexnicCenter
- WinEdt
- TexStudio (works on all platforms)

MacOS

- MacTex
- TexShop
- Texnicle
- Archimedes

Where to MEX?

Files

Filename extensions

- .tex standard TEX file
- .bib bibliography file
- .bst bibliography formatting file
- .cls class file
- .sty style file
- And more...

E CognAC

Hello world!

Our first LATEX document!

```
\documentclass{article}
\begin{document}
Hello World!
\end{document}
```

```
Hello World!
```


Hello world!

Many different options! (proc, book, report, slides, beamer, etc.)

Our first LATEX ment!

\documentclass{article} \begin{document} Hello World! \end{document}

Hello World!

Hello world!

Our first LATEX ocument!

\docimentclass{article}
\begin{document}
Hello World!
\end{document}

Hello World!

Reserved characters

LATEX has some characters reserved where typing them evokes a functionality

These chars are: # \$ % ^ & _ { } ^ \

Packages

Packages can be treated as libraries in other programming languages (e.g. Java or Python). They can be invoked by typing the usepackage command, and possible parameters:

\usepackage[parameters]{package_name}

Packages

Packages can be treated as libraries in other programming languages (e.g. Java or Python). They can be invoked by typing the usepackage command, and possible parameters:

```
\usepackage[parameters]{package_name}
```

Hint: You can concatenate multiple packages if they do not need a parameter. E.g.:

```
\usepackage{package_name1, package_name2, ...}
```


Packages

Useful packages:

- amsmath, amssymb, amsthm, mathtools, xfrac
- caption, float, graphicx, tikz
- comment, enumerate, geometry, hyperref, verbatim
- array, babel, hyperref, listings, xcolor
- many many more (to be found at the CTAN website)

Some more basics

Chapters/sections have a level of appereance. Parts and chapters are usually only used in books

Command	Level
\part	-1
\chapter	0
\section	1
\subsection	2
\subsubsection	3
\paragraph	4
\subparagraph	5

If the number in front of the section/paragraph is unwanted, a * can be added after the command to remove this enumeration.

 $\label{eq:section} $$\operatorname{example} \to 1 \ Example $$\operatorname{example} \to Example $$$

Spacing

(Horizontal) spacing is defined with multiple commands, and a generic one. Basic lengths are points (pt), millimeter (mm), centimeter (cm), inch (in), height of an x in current font (ex) and width of an x in current font (em). From small to large:

Command	space
\!	-³∕₁8 em
	3∕ ₁₈ em
\> or \:	⁴⁄₁8 em
\;	⁵⁄18 em
∖enspace	½ em
∖quad	1 em
\qquad	2 em
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

The command \linespread $\{\dots\}$ changes the whitespace between lines in the document. \linespread $\{1\}$ is standard, \linespread $\{1.6\}$ is doubled whitespace.

Font sizes

Font sizes of the whole document can be changed as a parameter of the documentclass command, e.g.

\documentclass[12pt]{article}. Different fonts are possible, search for the correct package on Google. Sizing fonts from small to large (assuming the original fontsize is 11pt):

Command	size
\tiny	6 pt
\scriptsize	8 pt
\footnotesize	9 pt
∖small	10 pt
\normalsize	10.95 pt

Command	size
∖large	12 pt
\Large	14.4 pt
∖LARGE	17.28 pt
\huge	20.74
\Huge	24.88

Important distinction

Groups/Switches

Defines something until the group is ended, or for the whole document

\centering is a switch {\centering} creates a local scope/group, or with \bgroup \centering \egroup

vs **Environment**

Only applies to the code written in between the $\left\{\right\}$ and $\left\{\right\}$

\begin{centering}... \end{centering} is an environment

Not every switch can be transformed into an environment, and vice versa!

Almost there

So, now lets dive into some examples

Tables

Tables are one of the most frustrating things most users experience, but you are not alone!

Use https://www.tablesgenerator.com/ to help you out a lot.

There are many environments that help with tables:

tabular, tabular*, tabularx, tabulary, array, . . .

In essence a table is easily defined with:

At *nr* of coumns and specs you can define columns and their text alignment. {I c r} means 3 columns, the first is left aligned, the second is centered, the third one is right aligned.

Tables

We can also specify borders and merge cells.

```
\begin{tabular}{c||1|r}
\hline
\multirow{2}{*}{Merged cell!} & Well & hello\\
    & there & \multicolumn{1}{c|}{General} \\
\cline{2-3}
\multicolumn{2}{c|}{Merged cell!} & Kenobi
\end{tabular}
```

↓ produces ↓

Merged cell! Well hello there General Merged cell! Kenobi

Lists

To simply list a couple of items, the following should be good (you can also change the symbol):

```
\begin{itemize}
  \item Nr.1
  \item[\textendash] Nr.2
  \item[$\lambda$] Nr.3
  \end{itemize}
```

- Nr.1
- Nr.2
- λ Nr.3

Lists

Or use the enumerate package to help you with ordering lists:

```
\begin{enumerate}[a)]
  \item Nr.1
  \item Nr.2
  \item[$\eta$] Nr.3
  \end{enumerate}
```

- a) Nr.1
- b) Nr.2
- η Nr.3

Figures

Using figures is best with the graphicx package. The standard creation of a figure is as follows:

```
\begin{figure}[floats]
  \centering
  \includegraphics →
  →[parameters]{filepath}
  \caption{Caption}
  \label{fig:my_fig}
  \end{figure}
```


Figure: Baby Camel

Floats

Determine where you want your figure (or rather floating object) to be, if the compiler is not doing a good job at it (LATEX) automatically determines the best position). There are multiple floats available:

- Place the object (approximately) at this point
- Place the object at the top of the page
- b Place the object at the bottom of the page
- Place the object on a special page for floating objects only
- Override internal parameters
- Place the object precisely at this point (same as !ht)

Labeling

Create easy references to everything with a label. These references are dynamic, meaning that it will always refer to that specific label. This works for any floating object (*Note: The label command appears after the caption command!*)

```
Creating a label:
  \label{fig:my_label}

Creating a reference:
  \ref{fig:my_label}
```

Hint: Use the hyperref package to be able to click on the references and jump to the right object.

Math mode

Math mode allows multiple symbols, and all text is always in italics. Enter and leave math mode with $\$, and create highlighted equations with $\$, or with $\$ [... $\$]. Example:

$$[\sum_{n=0}^{\int_{n^2}dfrac{1}{n^2}}$$

= $\frac{\pi^2}{6}$

Produces

$$\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Math mode

The equation or align environment also allow highlighted equations, and the align environment also supports vertical alignment of specific characters (e.g. =):

```
\begin{align}
f(x) &= x\cdot y\\
&= y\cdot x
\end{align}
```

Which produces:

$$f(x) = x \cdot y \tag{1}$$

$$= y \cdot x$$
 (2)

Error handeling

Some basic errors and what they mean:

Undefined control	Used a command that does not exist
sequence	
Underfull hbox	LATEX can't fill the whole line, usually to be ignored
Overfull hbox	LATEX tries to fit too much on 1 line, can also be ignored usually
Too many }'s	There are too many \(\right\)'s in the document
Runaway argu- ment	There are too little \(\)'s in the document
Missing \$ inserted	Either you used a command that should be in math mode, or math mode is never closed.

Useful commands

Here are some useful commands!

- $\backslash [length] \rightarrow new line (no given length gives default height)$
- ullet \newpage o Creates a new page
- $\% \rightarrow$ Comments one line of code
- \newcommand{\comment}[2]{#2} → with the comment package this allows to easily comment multiple lines (add this before the start of the document)
- \usepackage[a4paper, margin=3cm]{geometry} \rightarrow Creating a bigger space on a page to work with

What now?

Use http://detexify.kirelabs.org/classify.html to help finding symbols

Practise! As is with programming, 80% is knowing how to search Google and extract information from Stack Overflow

These slides, as the workshop file, can be found on my Github account where also (in the very near future) tutorials can be found for each level of understanding \mbox{ETEX} .