Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 7 aprile 2009

matricola		nome		cognome
corso di laur	ea		anno accademico d	i immatricolazione
Votazione:	T1 E T2 E	E1		
		E2		
		E3		

- \Box (1) Esiste una matrice **A** 4 × 4 il cui polinomio caratteristico ha grado 3?
- \square (2) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$, $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x+z \\ y^2 \\ y+z \end{bmatrix}$. È un'applicazione lineare?
- \square (3) Sia V uno spazio vettoriale e $\{\mathbf{v}_1; \mathbf{v}_2, \mathbf{v}_3\}$ un insieme linearmente indipendente. L'insieme $\{\mathbf{v}_1; 2\mathbf{v}_2; -\mathbf{v}_3\}$ è linearmente indipendente?
- T1) Si diano le seguenti definizioni: (1) applicazione lineare, (2) insieme di vettori linearmente indipendente. Sia $f: V \to W$ un'applicazione lineare iniettiva e sia $\{\mathbf{v}_1; \dots; \mathbf{v}_n\}$ una base di V. Si dimostri che $\{f(\mathbf{v}_1); \dots; f(\mathbf{v}_n)\}$ è un insieme linearmente indipendente di vettori di W.
- T2) Si dia la definizione di prodotto interno in uno spazio vettoriale e si dimostri che, se $(\cdot | \cdot)$ è un prodotto interno su V e si pone $\|\mathbf{v}\| = (\mathbf{v} | \mathbf{v})$, questo definisce una norma su V.
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 5 & \alpha - 5 & 10 & \alpha \\ 6 & 1 & \alpha + 14 & 3 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 5$ si trovi una base ortogonale di $C(\mathbf{A}_5)$. Inoltre si interpreti \mathbf{A}_5 come la matrice completa di un sistema lineare e si trovino tutte le soluzioni del sistema.

- E2) Sia $\mathscr{B} = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$, dove $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$. Si verifichi che \mathscr{B} è una base di \mathbb{C}^3 . Sia $\mathscr{E} = \{\mathbf{e}_1; \mathbf{e}_2; \mathbf{e}_3; \mathbf{e}_4\}$ la base canonica di \mathbb{C}^4 e si consideri l'applicazione lineare $f: \mathbb{C}^3 \to \mathbb{C}^4$ tale che $f(\mathbf{v}_1) = 2\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_4$, $f(\mathbf{v}_2) = \mathbf{e}_2 \mathbf{e}_3$, $f(\mathbf{v}_3) = \mathbf{e}_1 2\mathbf{e}_3 + \mathbf{e}_4$.
 - (1) Si trovi la matrice **B** associata a f rispetto alla base canonica sul dominio e sul codominio.
 - (2) Si calcoli il rango di f.
 - (3) Il vettore $[2 1 \ 0 \ 1]^T$ appartiene all'immagine di f? Se sì, si trovi un vettore $\mathbf{v} \in \mathbb{C}^3$ tale che $f(\mathbf{v}) = [2 1 \ 0 \ 1]^T$.
 - (4) Si trovi una base dello spazio nullo e dell'immagine di f.
- E3) Si consideri la matrice $(\beta \in \mathbb{C})$

$$\mathbf{B}_{\beta} = \begin{bmatrix} \beta & 0 & 1 \\ 0 & 1 & 2 \\ \beta & 0 & 1 \end{bmatrix}.$$

Si dica per quali valori di β la matrice è diagonalizzabile; si determini, quando esiste, una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} . Esiste una base ortogonale di \mathbb{C}^3 formata da autovettori di \mathbf{B}_2 ?