

TEAM ID:

18238

COLLEGE NAME:

MAHARAJA AGRASEN INSTITUTE

OF TECHNOLOGY

OLD TEAM ID:

17129

CAR NO.

45

ENDURANCE SCORE:

323.8

TOTAL SCORE:

734.6

AWARDS:

- 1) SUSPENSION AND TRACTION RUNNERS UP
- 2) GO GREEN AWARD WINNER

LESSONS LEARNT

VEHICLE PERFORMANCE IN MAIN EVENT :

- CVT Overheating During the endurance, the cvt got overheated due to which there was an appreciable loss of acceleration.
- Damage of rear kill switch The ATV toppled in the endurance due to which the rear kill switch broke and stopped working.
- Shear of the Ball joint- The ball joint stud got sheared because of the sudden change in cross section produced due to its machining and the arm got separated from the upright.
- Rotational mass was high resulting in higher acceleration time.

BREAK DOWN / FAILURES :

- Rack bending- The rack got bended from the point of end of the rack casing.
- Pedal deformation The brake pedal got deformed due to the improper analysis
- Hub failure- The hub got sheared during the testing because one of the disc bolt fell off and the disc got hit with the hub.
- Upright failure- The mounting point of the lower ball joint at the upright got sheared during testing.

LESSONS LEARNT

AGGREGATES

- Reduction of the overall weight of the vehicle: carbon fibre driven shafts; overall chassis weight decreased; lesser gearbox weight by optimising gears.
- Sudden change in cross section should be avoided.
- Increase the length of the rack casing to minimize the chance of bending.
- Use of steel sleeves in Aluminium components.

> ROLL CAGE

- Bending strength of AISI 4130 is high; therefore for the same strength thinner cross section can be used.
- Use of CNC bending (availability of standard dies) for accurate bend angles.
- TIG welding to be used for higher strength.

SPECS COMPARISON - OLD VS PROPOSED

DIMENSIONS								
	LENGTH	WIDTH	TRACK WIDTH		WHEEL	GROUND		2542
PROPERTIES			FRONT	REAR	BASE	CLEARANCE	FRONT	REAR
Old chassis	70 "	29.6"	53"	44"	57"	12"	22x7x10	22x7x10
New chassis	67"	33.2"	52"	46"	55"	13"	21x7x10	21x7x10

PERFORMANCE SPECS					
MAX SPEED (kmph)	MAX ACC.	STOPPING DISTANCE	GRADABILITY (%)		
52	5.7m/s ²	7 m	65		
50	5.9m/s ²	7 m	71		

WEIGHT					
KERB (kg)	FAW/RAW				
145	45/55				
130	45/55				

ROLL CAGE DESIGN PROCESS & ERGONOMICS

:52° *≻***Viewing angle**

:57.33° >Steering Inclination Angle :8 "

above thighs

SUSPENSION

> Steering wheel height

Distance b/w RRH and pedals :41.05"

:4.24° with Driver's Seat inclination

vertical

Brake Pedal Angle :51.49°

	FRONT	SIDE	ROLLOVER	REAR
FORCES (N)	16000	8000	10000	12000

COMPUTER AIDED ENGINEERING

PROPERTIES	YIELD STRENGTH	UTS	ELONGATION
AISI 4130	619	731	25%

Selection Criteria: Maximise inertia & Minimise cross sectional area

Meshing size : 2mm Proposed FOS : 2.7

Max Deformation: 2.64mm

Type of Mesh : Tetrahedron

Bending Strength: 576Nm

of Primary

IMPACTS	FRONT	SIDE	ROLLOVER	REAR
Stress(N/mm^2)	170	214	265	280
Deformation(mm)	1.12	1.76	2.15	2.64
FOS	3.64	2.89	2.33	2.21

Advantages

Beam method used for spaceframe chassis

- Choosing solver- Ansys
- <u>Constraints</u> Suspension points, Rulebook
- <u>Chemical Composition</u>: Mn(.5) Cr(0.8) Si(.2) S(.04) P(.035) C(.30). Weldability of 4130 is good, and the alloy may be welded using any commercial method

Front Impact

Rear Impact

Roll Over

Side Impact

SUSPENSION

	FRONT	REAR
TYPE OF SUSPENSION	A-ARM	H-ARM
CG HEIGHT	20"	
GROUND CLEARANCE	13"	11.5"
ROLL CENTRE	13.77"	5.9"
MOTION RATIO	0.58	0.7
CAMBER (At kerb weight)	0.00°	0.00°
CAMBER (bump/droop)	-6°/1.9°	-3.2°/1.3°
CASTER ANGLE	5.47°	-
KINGPIN	7.21°	-
SCRUB RADIUS	3.74°	-
TOE IN/OUT	0.0°	0.0°
SPRUNG MASS	54kg	66kg
UNSPRUNG MASS	9kg	11kg
NATURAL FREQUENCY	1.16hz	1.8hz
SPRING STIFFNESS	8.9N/mm	13.7N/mm
BUMP/DROOP	6.8"/3.2"	6.1"/2.3"
RIDE RATE	2.96N/mm	6.5N/mm

FORCES MATERIAL ARMS AISI 4130 UPRIGHTS AISI 7075

The 2018 model comes with:

- Increased motion ratio facilitating a better ride quality.
- Addition of Anti-Squat angle in the rear geometry for better performance.
- Introduction of anti-roll bar for better turning characteristics.

BRAKING

System

Disc Size

Brake caliper pistons

Brake caliper pad

Bleeding Method

Brake fluid

BRAKING CIRCUIT

Inboard at rear and outboard circuit in front

MC Bore size x stroke 5/8in x 1.12in ,3/4in x 1.12in

Coefficient of friction for road

Brake torque required per wheel (bore*stroke)

6in-front, 8in-rear

Stopping Distance

0.99in² x2 (area*count)

2.00in², 0.3in

(area*thickness)

DOT 4

Pump And Hold Method

Force required by caliper cylinder

Weight Transfer at 40kmph to

Static Rolling Radius for Tyre

0kmph

Pedal Force

Pedal Travel

Front brake disc

Pedal and MC mount

Rear brake disc

BRAKES PARAMETERS

70:30

10.5in

205.12Nm

0.8

7_m

300N

14000N

50_{mm}

STEERING

STEERING SYSTEM					
	2017	2018			
Oversteer	-0.024 deg/g	-0.027 deg/g			
Ackerman	51.27%	75.23%			
Steering Angle (Inside)	46.85°	52.23°			
Steering Angle (Outside)	34.98°	33.72°			
Turning Circle Radius	2m	1.75m			

Front mounted steering arm.

 Planned better manoeuvring characteristics enhancing the

THIS TIME:

performance.

STEERING COLUMN				
Туре	Non-			
	Collapsible			
Power	No			
Assist				

Decreased steering effort for the driver.

STEERING GEARS					
	2017	2018			
Drive	Cen	itral			
Rack Travel (end to end)	90mm	82mm			
Pinion Turns (lock to lock)	0.5 rev	0.5 rev			
Steering Ratio	180 mm/rev	164 mm/rev			
IBJ Centre Distance	380 mm	344 mm			
OBJ Centre Distance	1082 mm	1130 mm			
Length of Tie Rod	385 mm	417 mm			

STEERING WHEEL						
Diameter	254 mm	254 mm				
Torque	35 Nm	26.1 Nm				

POWER TRAIN

MAX POWER	MAX TORQUE	OUTPUT RATIOS	ACCELERATION	GRADABILITY	TYRE SIZE
9.975 HP	19.6Nm	HIGH- 24.85 LOW- 7.1	5.9m/s ²	70.7%	F – 21x7x10" R – 21x7x10"

Power Train Layout

Engine → CVT → Gearbox → Wheels

Exploded Assembly of Gearbox

Input Shaft

Output Gear

Output Shaft

- Custom Integrated Gearbox With Gaged CVT- About 2.5 kg reduced by integrating the gearbox
- Engine and Gearbox coupled using a CVT with a V-Belt
- NVH considerations Engine and Gearbox Mounted on same member; Engine mounted on cast nylon bushes to curb the vibrations.

GEARBOX DATA							
GEAR RATIO	7.10						
NO. OF REDUCTION STAGES	TWO						
MODULE I STAGE	2mm						
MODULE II STAGE	2.25mm						
GEAR AND SHAFT MATERIAL	SAE 9310- Gear SAE 4340- Shaft						
CASING MATERIAL	AL7075-T6						

Stage 1

COST AND WEIGHT ANALYSIS

PROJECT PLAN

DFMEA

Detection

RPN

RECOMMENDED

ACTION(S)

Servicing of the

m/c

ACTION TAKEN

RPN

Installing Preventive

maintenance measures

84

CURRENT

DESIGN

CONTROL

POTENTIAL

CAUSE(S)/MECHA

NISM(S) OF

FAILURE

POTENTIAL

FAILURE

MODE

mechanism

Electronics fail

CNC

Motor will not

work or work

improperly

EFEFECT ON

SYSTEM

SYSTEMS

Roll cage	Structural damage	Bending of the members	8	Impact with o	ther	2	Proper analysis for forces	2	32	Keeping high fos for high structural rigidity	Adding a bra the bent m to cease bendir	ember the	8	2	1	16
Gear box	Crack development in gears	Failure of powertrain working	5	Improper hardening of gears		4	Adequate face width of the gears	2	40	Keeping high fos as it is a critical component	Increasiing t width		5	2	1	10
Brake disc	Deformation of disc	Brake failure	9	Low heat discipation loosening of bolts	1;	2	Designing of disc for proper heat discipation	2	36	Heat analysis of brake disc	Improving design for heat dissip	better	9	1	1	9
Hub design	Shear of hub	Loss of control	9	Sudden chang cross section	(6	3	Given fillet radius in the design	4	108		Giving a solution of the diviner of	ounting bearing	9	2	2	36
Upright	Shear of steering arm	Steering control lost	8	Selection of w steering poin unidentified for experience	nts; orces	5	Proper analysis for forces	2	80	Increase thickness of steering arm at the juntion of arm and upright	Integratin steering are uprigh	n with	8	2	2	32
PFMEA																
PROCE	SS	RE MODE	ATTEMATI	ECT ON YSTEM	SEVERITY		ENTIAL CAUS ECHANISMS FAILURE	244 10 20 10 10 10 10	OCCURRENCE	PREVENTIVE ACTION	DETECTION	RPN	RECOMMENDED ACTION(S)		D	
WELDIN	Insuff weldin	icient g current	Weak	weld	9	Less p	penetration		5	Sufficient currer during welding f proper penetrat	for 3	135	Proper display of cur values and testing th weld penetration at various current value		ie	
Failure of the		Interf		7		rect module rect tooth pr	ofile	4	Oiling of the machine; use of cutting fluid	3	84		of CNC g ases acc		bing	

Failure of connections 4

DESIGN VALIDATION PLAN

	Description	Acceptance Criteria	Responsibility	Test Resource	Report	Remarks
1	Weld Test	Welded joint remains intact	Ankit	UTM	The weld didn't show any kind of failure	Success
2	Spring Stiffness Test	Must confirm to the required specs	Vishal	υтм	The dampers showed the required specs	Success
3	Krake Lest	The vehicle should stop within the calculated distance	Akshit	Driver slams on the brake when buggy is running at top speed	The ATV stopped within the required distance.	Success
4	Straight Line Stability	Vehicle with no obstruction should not deviate from a straight line while steering is at neutral condition	Anmol	Manual Observation	Test Successfully performed	Success

Viraat

Rahul

Measuring Tape

Bump Steer Gauge

Turning Radius Test | Should be equal to the calculated value

bump

6

Bump Steer Test

The steering wheel must continue to be in neutral condition before and after

The turning radius is equal to the

calculated value

Negligible Bump Steer

Success

Success

TEAM COMPOSITION & WORKSHOP FACILITIES MANUFATURING FACILITIES AT COLLEGE

LATHE MACHINE- WIDTH OF BED:-260mm, SPINDLE

BORE:-35, CHUCK DIAMETER:-160mm SPEED RANGE:-40-1800 rpm GUIDE

TIG WELDING- CURRENT RANGE:-10-200A, VOLTAGE RANGE: 220-230V, SHIELDING GAS:-Ar

TESTING FACILITIES

UTM- MAX. APPLIED FORCE:-300KN, MAX. PISTON STROKE:-200mm. FORCE RANGE:-2-100% TEST SPACE

TENSILE:550mm PARKINSON'S GEAR TESTER- MAX. DIAMETER OF

GEAR-200m, MAX. HELLIX ANGLE- up to 30, MAX. THICKNESS OF GEAR-30mm,

40mm/sec

MANUFATURING FACILITIES OUTSIDE COLLEGE

CNC- MAX. HEIGHT-350mm, MAX. LENGTH-450mm ,MAX. DIAMETER-365mm,

SPINDLE SPEED-150-2500rpm MOTOR POWER-4kw

HYDRAULIC PRESS- MOTOR POWER-2.2W, BEND SPEED-

8mm/sec BENDING LENGTH-1250mm, MAX. STROKE-100mm

APPROACH SPEED-6mm/sec, RETURN SPEED-

Akshit (Marketing)

Vasu (Finance)

Department

heads

Mayank Pant

(Design)

Old members

Mrinal Gupta

(Power Train)

Rahul

(Steering)

Shivam

(Braking)

Raghvind

(Suspension)

Ankit

(Fabrication)

Ayush

Neelesh

Members

Arpit

Jatin

Nikhil

Anmol

Hiren

Abhinay

Tejasva

Vishal

Shri Harsh

Mayan

Sidharth

Vinayak

Viraat

Asad

Ajay

Design

Welding

Work Allocation

Designing ,Rule

book

Analyzing

Ergonomics

Manufacturing

CVT Tuning

Calculations

Axle making

Arm designing

Hub Designing

Rotor Design

Market Survey

Rack and Pinion

Design

Pedal Assembly Design

Jigs and Fixtures

hunting

Sponsor

Account

handling Mr. Rakesh Chander Saini (Faculty Advisor)