Produsul vectorial şi produsul mixt

Problema 3.1. Determinați $\mathbf{a} \times \mathbf{b}$ dacă $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ și $\mathbf{b} = 7\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$.

Problema 3.2. Se dau vectorii $\mathbf{a}(3, -1, -2)$ și $\mathbf{b}(1, 2, -1)$. Să se calculeze:

$$\mathbf{a} \times \mathbf{b}$$
, $(2\mathbf{a} + \mathbf{b}) \times \mathbf{b}$, $(2\mathbf{a} + \mathbf{b}) \times (2\mathbf{a} - \mathbf{b})$.

Problema 3.3. Determinați distanțele dintre laturile paralele ale paralelogramului construit pe vectorii $\overrightarrow{AB}(6,0,2)$ și $\overrightarrow{AC}(1.5,2,1)$.

Problema 3.4. Determinați vectorul \mathbf{p} , știind că el este perpendicular pe vectorii $\mathbf{a}(2,3,-1)$ și $\mathbf{b}(1,-1,3)$ și verifică ecuația

$$\mathbf{p} \cdot (2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}) = 51.$$

Problema 3.5. Se dau punctele A(1,2,0), B(3,0,-3) și C(5,2,6). Să se calculeze aria triunghiului ABC.

Problema 3.6. Se dau punctele A(1,-1,2), B(5,-6,2) și C(1,3,-1). Determinați lungimea înălțimii triunghiului ABC, coborâte din vârful B pe latura AC a triunghiului.

Problema 3.7. Se dau vectorii $\mathbf{a}(2, -3, 1)$, $\mathbf{b}(-3, 1, 2)$ şi $\mathbf{c}(1, 2, 3)$. Să se calculeze $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ şi $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.

Problema 3.8. Fie ABCD un patrulater convex. Demonstrați că dacă diagonala AC înjumătățește diagonala BD, atunci triunghiurile ACB și ACD au arii egale.

Problema 3.9. Fie P şi Q mijloacele laturilor neparalele BC şi AD ale unui trapez ABCD. Demonstrați că triunghiurile APD şi CQB au aceeași arie.

Problema 3.10. Vectorii \mathbf{a}, \mathbf{b} și \mathbf{c} sunt vectorii de poziție ai vârfurilor unui triunghi ABC relativ la un punct O. Determinați aria triunghiului ABC în funcție de acești vectori.

Problema 3.11. Stabiliți dacă tripletul de vectori {a, b, c} este drept sau stâng, dacă

$$a = i + j$$
, $b = i - j$, $c = k$.

Problema 3.12. Demonstrați că punctele A(1,2,-1), B(0,1,5), C(-1,2,1) și D(2,1,3) sunt situate într-un același plan.

Problema 3.13. Determinați volumul tetraedrului care are vârfurile în punctele A(2,-1,1), B(5,5,4), C(3,2,-1) și D(4,1,3).

Problema 3.14. Un tetraedru de volum 5 are ca trei dintre vârfuri punctele A(2,1,-1), B(3,0,1) şi C(2,-1,3). Al patrulea vârf, D, este situat pe axa Oy. Determinați coordonatele punctului D.

Problema 3.15. Se dau trei vectori $\mathbf{a}(8,4,1)$, $\mathbf{b}(2,2,1)$ şi $\mathbf{c}(1,1,1)$. Să se determine vectorul \mathbf{d} , de lungime 1, care formează cu vectorii \mathbf{a} şi \mathbf{b} unghiuri egale, este perpendicular pe vectorul \mathbf{c} şi este orientat în aşa fel încât tripletele de vectori $\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ şi $\{\mathbf{a},\mathbf{b},\mathbf{d}\}$ au aceeaşi orientare (sunt ambele drepte sau ambele stângi).

Problema 3.16. Se dau doi vectori $\mathbf{a}(11, 10, 2)$ şi $\mathbf{b}(4, 0, 3)$. Să se găsească un vector unitar \mathbf{c} , ortogonal la vectorii \mathbf{a} și \mathbf{b} , astfel încât tripletul de vectori $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ să fie drept.

Problema 3.17. Fie ABC un triunghi și fie E și F mijloacele laturilor AB, respectiv AC. Prin C se duce o paralelă la AB care întâlnește BE în P. Demonstrați că

Aria
$$\triangle FEP = \text{Aria } \triangle FCE = \frac{1}{4} \triangle ABC.$$

Problema 3.18. Fie ABCD un patrulater convex plan. Demonstrați că

Aria
$$ABCD = \frac{1}{2} \left\| \overrightarrow{AC} \times \overrightarrow{BD} \right\|$$
.

Problema 3.19. Fie ABCD un patrulater convex plan astfel încât

$$\overrightarrow{AB} = \mathbf{b}, \ \overrightarrow{AD} = \mathbf{d}, \ \overrightarrow{AC} = m\mathbf{b} + p\mathbf{d},$$

unde m și p sunt două numere reale. Demonstrați că aria patrulaterului este dată de formula

Aria
$$ABCD = \frac{1}{2}|m+p| \cdot ||\mathbf{b} \times \mathbf{d}||.$$

Problema 3.20. Fie ABCD un patrulater convex plan astfel încât $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$ și $\overrightarrow{CD} = \mathbf{c}$, atunci aria patrulaterului este dată de formula

Aria
$$ABCD = \frac{1}{2} \|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} - \mathbf{c} \times \mathbf{a}\|.$$

Problema 3.21. Determinați ariile triunghiurilor cu vârfurile în punctele de coordonate:

- (a) (0,0,0), (1,2,3) şi (2,-1,4);
- (b) (1,0,0),(0,1,0) şi (1,1,1);
- (c) (-1,2,3),(2,-1,-1) si (1,1,-1);
- (d) (a,0,0), (0,b,0) şi (0,0,c).

Problema 3.22. Determinați volumele tetraedrelor cu vârfurile în punctele de coordonate:

- (a) (0,0,0), (1,1,-1), (1,-1,1) si (-1,1,1);
- (b) (-1,0,1), (2,-1,0), (3,2,5) şi (1,2,1).

Problema 3.23. Demonstrați că volumul tetraedrului cu vârfurile în punctele de coordonate (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_2) și (x_4, y_4, z_4) este egal cu valoarea absolută a numărului

$$\frac{1}{6} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix}.$$

Problema 3.24. Demonstrați că volumul tetraedrului ale căror vârfuri au vectorii de poziție $\mathbf{a}, \mathbf{b}, \mathbf{c}$ și \mathbf{d} este dat de formula

 $Vol = \frac{1}{6} \left| (\mathbf{b}, \mathbf{c}, \mathbf{d}) + (\mathbf{c}, \mathbf{a}, \mathbf{d}) + (\mathbf{a}, \mathbf{b}, \mathbf{d}) - (\mathbf{a}.\mathbf{b}, \mathbf{c}) \right|.$

Deduceți, de aici, un criteriu pentru coplanaritatea punctelor cu vectorii de poziție a, b, c și d.