Course Code: CS 220, Course Title: Digital Logic Design <u>Evaluation Rubric</u>

Group Members:

Student No.	Name	Roll No.	Batch
S1	Safia Faiz	CS-58	2020
S2	Syed Muhammad Mubashir Rizvi	CS-71	2020

CRITERIA AND S	CALES				
Criterion 1: To wha	t level has the st	udent understood tl	ne problem? [CPA	1]	
0 - 2		3 - 4		5	
Problem understanding is minimal.		Problem is understo	ood partially	Problem understo	is completely od
Criterion 2: To wha	t extent the stud	ent implemented th	e solution? [CPA 1	l]	
0		1-	-3		4-5
The solution has not implemented	been	The solution is inco	-		tion is complete.
Criterion 3: What le	evel of creativity	is evident in the pro	oposed design? [CP	PA 2]	
0 - 1		2-	-3		4-5
No / Poor design		The design is run o	f the mill	The design is innovative	
Criterion 4: What is	s the student's le	vel of confidence wi	th the Simulation T	Tool Inter	face? [CPA 3]
0	1-2		3-4		5
The student is unfamiliar with the tool	The student is familiar with the visible features of the tool		The student is familiar with the unexposed features of the tool		The student is proficient with the tool
Criterion 5: How we	ell has the studer	nt interconnected th	e circuit componen	ts / hardv	vare resources?
0		1-3		4-5	
Student has no idea h the circuit componen resources		Circuit components / hardware resources are not connected properly		Circuit components / hardware resources are properly connected	
Criterion 6: Answe	er to questions re	elated to the design	(Hardware part)		
0	1-2	3-	4	5	
The student did not answer any question	Few questions were answered	The student answer questions	red most of the	The student answered all the questions	
Criterion 7: Answer	to questions rel	ated to the design (S	Simulation Part)		
0		1-4	5-8		9-10
The student did not answer any question	The student ansoquestions	The student answered a few questions		The student answered most of the questions	

6. TRUTH TABLE

INPUT	PRES	SENT ST	ATE	NE	XT STA	TE	ОИТ	PUT	FF	INPU	JT
Х	Q _{2(t)}	Q _{1(t)}	Q _{0(t)}	Q _{2(t+1)}	Q _{1(t+1)}	Q _{0(t+1)}	Z ₁	Z ₀	D ₂	D ₁	D ₀
0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	1	1	0	0	0	0	1	0	0
0	0	1	0	1	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0	1	1	0	0
0	1	0	0	1	0	0	0	0	1	0	0
0	1	0	1	1	1	0	0	0	1	1	0
0	1	1	0	1	0	0	0	0	1	0	0
0	1	1	1	X	Х	Х	Х	Χ	Х	Х	Х
1	0	0	0	0	0	1	0	0	0	0	1
1	0	0	1	0	1	0	0	0	0	1	0
1	0	1	0	0	1	1	0	0	0	1	1
1	0	1	1	0	1	1	0	0	0	1	1
1	1	0	0	1	0	1	0	0	1	0	1
1	1	0	1	0	1	0	0	0	0	1	0
1	1	1	0	1	0	1	1	0	1	0	1
1	1	1	1	X	X	X	Х	Х	Х	Х	Χ

 Z_{o}

 $\mathbf{Z_1}$

4. STATE TABLE

X	0	1
Α	E , 00	B,00
В	E,00	C,00
С	E , 00	D,00
D	E,01	D,00
E	E , 00	F,00
F	G,00	C,00
G	E,00	F , 10

5. STATE MINIMIZATION

This colour represents the first phase/stage of the state minimization.

This colour represents the second phase/stage of the state minimization.

This colour represents the third phase/stage of the state minimization.

7. K – MAPS & STATE EQUATIONS

Z_1	$\mathbf{Q_1Q_0}$					
		00	01	11	10	
	00					
XQ ₂	01			Х		
	11			Х	1	
	10					

$$Z_1 = x'Q_1Q_0$$

D_2	$\mathbf{Q_1Q_0}$						
		00	01	11	10		
	00	1	1	1	1		
XQ ₂	01	1	1	Х	1		
	11	1		Х	1		
	10						

$$D_2 = x' + Q_2Q_0'$$
 $Q_{2(t+1)} = D_2 = x' + Q_2Q_0$

Z_0	$\mathbf{Q_1Q_0}$					
		00	01	11	10	
	00			1		
XQ ₂	01			Х		
	11			Х		
	10					

$$Z_0 = xQ_2Q_1$$

D_1	Q_1Q_0					
		00	01	11	10	
	00					
XQ ₂	01		1	Х		
	11		1	X		
	10		1	1	1	

$$D_1 = \frac{Q_2Q_0}{Q_2Q_0} + xQ_0 + xQ_2'Q_1$$

$$Q_{1(t+1)} = D_1 = Q_2Q_0 + xQ_0 + xQ_2'Q_1$$

D_0	Q_1Q_0					
		00	01	11	10	
	00					
XQ ₂	01			Х		
	11	1		X	1	
	10	1		1	1	

$$D_0 = xQ_1 + xQ_0'$$

 $Q_{0(t+1)} = D_0 = xQ_1 + xQ_0'$

COMPLEX ENGINEERING PROBLEM (CEP)

DIGITAL LOGIC DESIGN - CS-220

SUBMITTED BY:

SAFIA FAIZ - CS-20058 SYED MUHAMMAD MUBASHIR RIZVI - CS-20071

SUBMITTED TO:

MS. ANITA ALI

PROBLEM DESCRIPTION

A sequential combination door lock of a building opens it only when correct password (combination) is entered by the authorized user. Each door has two authorized users who can unlock the door with their secret combination without revealing the same to other.

You are required to design a state machine for the combination door lock.

COMBINATION PAIR

Since our roll numbers are 58 and 71, adding them together resulted with the least significant digit as "9", so we were assigned the last (4th) combination which is **"1110" and "0101".**

FINITE STATE MACHINE DESIGN PROCEDURE

1. MACHINE, FLIP FLOP AND IC SELECTION

MACHINE SELECTION:

We chose to work on "MEALY MACHINE MODEL" due to the following facts:

- It is faster as compared to Moore Machine, as we receive our output as soon as we give our input to the machine, but only in that specific CLK cycle and correct code.
- Less number of states are formed; hence it results in a smaller number of gates, i.e less hardware to be used (cost-effective).

> FLIP FLOP SELECTION:

We chose to work on "DELAY FLIP FLOP (D-FF)" because:

- The state equation of it is very simple which is " $\mathbf{D} = \mathbf{Q}_{t+1}$ " (i.e same as the next state).
- It has a single input i.e design process becomes easier which also makes it simpler to use.

> IC SELECTION:

In our hardware we have used:

- 1. One 7411 because we had 3-three input variables in our equations of Z_0 , Z_1 and D_1 .
- 2. Two 7408 because there were 5-two input variables in our equations of D_2 , D_1 and D_0 .
- 3. One 7432 because we had to OR all the AND-ed outputs together, and we only needed 4 OR gates (i.e 1 IC).
- 4. One 7404 because we needed a NOT gate to invert the input (i.e x).
- 5. Two 7474 the D-FFs ICs, in which we took 1D of both ICs and 2D of the first D-FF only, as we needed only 3 D-FFs in our circuit, the OR-ed outputs from IC no. 7432 is given input here at 1D of both the circuits and 2D of the first IC, and also used the 1Q of both the ICs and 2Q of the first IC and their complement as the inputs for the circuit.

2. STATE DIAGRAM

> WHAT PRINCIPLE DOES THIS MACHINE WORK ON?

This machine works on the principle of an "OVERLAPPING MACHINE MODEL", where even if the correct code has been entered, it does not relapse back to the initial state, i.e the previous bits are still significant and will be considered by this machine.

POSSIBLE OUTCOMES:

There are **THREE** possible outcomes that can be yield from this machine, which are mentioned below:

- 1. When an invalid or an incorrect code is entered: **00**
- 2. When 1110 is found: **01** (our second bulb will glow)
- 3. When 0101 is found: 10 (our first bulb will glow)

DIAGRAM:

3. STATE ASSIGNMENT

8. LOGIC DIAGRAM

LOGICAL/REALISTIC ASSUMPTION OF THE FSM:

This FSM is designed for a safe lock door which is accessed quite rarely in the building (we assumed it to be a money safe place). Both the authorized users know that this FSM (or door lock) also considers the bits which were previously entered by them. As they rarely visit the room, they can also perhaps forget their passcode too, to which they can randomly add zeros and ones (assuming they know what they are giving as input, for e.g; IS:0001001110) and then identify their passcode. Also, if not used for 24 hrs, the door lock shuts off and when it turns back on, it resets itself to its initial (empty) state. Though, there's a vague possibility if both the users tried entering their codes after the other, they might overlap, for example if "1110" is entered, then there's no need to enter "0" from "0101" and the same applies for the other code as well, but this shortcoming will be overcome soon.

SIMULATION OF THE FINITE STATE MACHINE:

THE COMPLETE CIRCUIT (USING GATES):

THE COMPLETE CIRCUIT (USING ICS):

WHEN 1110 IS ENTERED:

WHEN 0101 IS ENTERED:

