3) границя функції f(x) в точці x_0 рівна значенню функції в цій точці x_0 , тобто

$$\lim_{x \to x_0} f(x) = f(x_0). \tag{5.2}$$

Точка x_0 , в якій не виконується хоча б одна з умов неперервності функції y = f(x), називається **точкою розриву функції**. Якщо в точці x_0 існують скінчені границі $f(x_0 - 0)$ і $f(x_0 + 0)$, такі, що $f(x_0 - 0) \neq f(x_0 + 0)$, то x_0 називається **неусувною точкою розриву першого роду**. Зокрема, якщо $f(x_0 - 0) = f(x_0 + 0) \neq f(x_0)$, то x_0 є **усувною точкою розриву першого роду**. Якщо ж хоча б одна з односторонніх границь $f(x_0 - 0)$ або $f(x_0 + 0)$ не існує або дорівнює нескінченності, точку x_0 називають **точкою розриву** другого роду.

Функція, неперервна у всіх точках деякої області, називається **непе**рервною в цій області.

6. ДИФЕРЕНЦІАЛЬНЕ ЧИСЛЕННЯ ФУНКЦІЙ ОДНІЄЇ ЗМІННОЇ

6.1. Похідна

Похідною функції y = f(x) в точці x називається границя

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x},\tag{6.1}$$

де $\triangle x$ – приріст аргументу, а $\triangle y = f(x + \triangle x) - f(x)$ – приріст функції.

Якщо ця границя ϵ скінченою, то функція f(x) називається **диференці-йовною** в точці x; при цьому вона ϵ обов'язково і неперервною в цій точці.

Похідну позначають y' або f'(x), або $\frac{dy}{dx}$, або $\frac{df(x)}{dx}$.

6.1.1. Основні правила диференціювання

Якщо C – стала величина, а u = u(x) і v = v(x) – деякі диференційовні функції від x, то справедливі наступні правила диференціювання:

- 1) C' = 0, x' = 1;
- 2) $(C_1u \pm C_2v)' = (C_1u)' \pm (C_2v)' = C_1u' \pm C_2v';$
- 3) (uv)' = u'v' + uv';

4)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \left(\frac{C}{v}\right)' = -\frac{Cv'}{v^2};$$

5) якщо y = f(u), u = u(x), тобто y = f(u(x)) – складена функція, то

$$y'_x = y'_u u'_x$$
, aso $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$;

6) якщо для функції y=f(x) існує обернена функція $x=\varphi(y),$ то $y_x'=\frac{1}{x_y'};$

7) якщо функцію задано параметрично
$$\left\{\begin{array}{ll} x=\varphi(t),\\ y=\psi(t), \end{array}\right.$$
 то $y_x'=\frac{y_t'}{x_t'};$

- 8) якщо функцію задано в неявній формі F(x,y) = 0, то для знаходження похідної dy/dx = y' потрібно продиференціювати за змінною x обидві частини рівняння $F(x,y)=\bar{0}$, вважаючи y функцією від x: dF(x,y)/dx=0. З цього рівняння знаходимо y';
- 9) нехай задано показниково-степеневу функцію виду $y = u^v$. Прологарифмуємо її за основою e: $\ln y = v \ln u$. Після диференціювання обох частин рівності дістанемо

$$\frac{y'}{y} = v' \ln u + v \frac{u'}{u}.$$

Звідси

$$y' = vu^{v-1}u' + u^v \ln u \cdot v'.$$

6.1.2. Таблиця похідних

1.
$$(u^{a})' = au^{a-1}u'$$
.
2. $(\sqrt[n]{u^{m}})' = \frac{mu'}{n\sqrt[n]{u^{m-n}}}$.
3. $(a^{u})' = a^{u} \ln a \cdot u'$.
4. $(\log_{a} u)' = \frac{u'}{u \ln a}$.

$$a(a^u)' = a^u \ln a \cdot u'.$$
 4. $(\log_a u)' = \frac{u'}{u \ln a}.$

5.
$$(\ln u)' = \frac{u'}{u}$$
. **6**. $(\sin u)' = \cos u \cdot u'$.

7.
$$(\cos u)' = -\sin u \cdot u'$$
. 8. $(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$.

7.
$$(\cos u)' = -\sin u \cdot u'$$
.
8. $(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$.
9. $(\operatorname{ctg} u)' = -\frac{u'}{\sin^2 u}$.
10. $(\arcsin u)' = \frac{u'}{\sqrt{1 - u^2}}$.
11. $(\operatorname{arccos} u)' = -\frac{u'}{\sqrt{1 - u^2}}$.
12. $(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$.

1.
$$(\arccos u)' = -\frac{u'}{\sqrt{1-u^2}}$$
. 12. $(\arctan u)' = \frac{u'}{1+u^2}$.

13.
$$(\operatorname{arcctg} u)' = -\frac{u'}{1+u^2}$$
. **14**. $(\operatorname{sh} u)' = \operatorname{ch} u \cdot u'$.

15.
$$(\operatorname{ch} u)' = \operatorname{sh} u \cdot u'$$
. **16**. $(\operatorname{th} u)' = \frac{u'}{\operatorname{ch}^2 u}$.

17.
$$(\operatorname{cth} u)' = -\frac{u'}{\operatorname{sh}^2 u}$$
.

6.1.3. Похідні вищих порядків

Похідна y' = f'(x) від функції y = f(x) називається похідною першого порядку і являє собою деяку нову функцію, яка теж може мати похідну. Тоді похідна від похідної першого порядку (y')' називається **похі**дною другого порядку від функції y = f(x) і позначається y'' = (y')',

$$f''(x) = (f'(x))'$$
 або $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right).$

Аналогічно визначається **похідна третього порядку**: y''' = (y'')', f'''(x) = (f''(x))' або $\frac{d^3y}{dx^3} = \frac{d}{dx}\left(\frac{d^2y}{dx^2}\right).$

Першу похідну від похідної (n-1)-го порядку $(y^{(n-1)})'$ називають похідною n-го порядку: $y^{(n)}=(y^{(n-1)})', \ f^{(n)}(x)=(f^{(n-1)}(x))'$ або $\frac{d^ny}{dx^n}=\frac{d}{dx}\left(\frac{d^{n-1}y}{dx^{n-1}}\right)$.

Якщо функції u=u(x) і v=v(x) мають похідні до n-го порядку включно, то справедлива формула Лейбніца

$$(uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \dots + uv^{(n)}.$$
 (6.2)

Нехай функція y = f(x) задана неявно рівністю F(x,y) = 0. Диференціюючи цю рівність за змінною x і розв'язуючи одержане рівняння відносно y', знаходимо першу похідну. Щоб знайти другу похідну, потрібно продиференціювати по x першу похідну і в одержане співвідношення підставити її значення. Продовжуючи диференціювання, можна знайти одна за одною послідовно похідні будь-якого порядку.

Для функцій заданих параметрично $\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases}$ похідні можна знайти за формулами

$$\frac{dy}{dx} = y'_x = \frac{y'_t}{x'_t}; \quad \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)'_t \frac{1}{x'_t} = \frac{(y'_x)'_t}{x'_t}; \quad \dots \quad \frac{d^ny}{dx^n} = \left(\frac{d^{n-1}y}{dx^{n-1}}\right)'_t \frac{1}{x'_t}.$$

6.2. Диференціал

Диференціалом функції y = f(x) називається головна частина її приросту, лінійна відносно приросту аргументу Δx

$$dy = f'(x)\Delta x. (6.3)$$

Диференціал dy називають також **диференціалом першого порядку**. Оскільки $dx = \Delta x$, то формулу (6.3) можна записати так:

$$dy = f'(x)dx. (6.4)$$

При досить малих значеннях Δx справджується наближена рівність $\Delta y \approx dy$. Звідси дістаємо формулу для наближеного обчислення значення функції

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x.$$
 (6.5)

6.2.1. Основні властивості диференціала

- 1) dC = 0, C = const;
- 2) $d(C_1u \pm C_2v) = d(C_1u) \pm d(C_2v) = C_1du \pm C_2dv;$
- 3) d(uv) = udv + vdu;

4)
$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}, d\left(\frac{C}{v}\right) = -\frac{C}{v^2}dv;$$

5) якщо $y=f(u),\ u=u(x),\$ тобто y=f(u(x)) — складена функція, причому функції f(u),u(x) диференційовні в точках u і x. Тоді існує похідна $y_x'=y_u'u_x',$ а отже, і диференціал

$$dy = y'_x dx = y'_u u'_x dx = y'_u du (6.6)$$

6.2.2. Диференціали вищих порядків

Диференціалом другого порядку, називається диференціал від першого диференціала:

$$d^2y = d(dy).$$

Оскільки dx не залежить від x, то при диференціюванні першого диференціала dx можна винести за знак похідної, тому

$$d^{2}y = d(dy) = d(f'(x)dx) = (f'(x)dx)'_{x}dx = f''(x)dxdx = f''(x)dx^{2}.$$
 (6.7)

Тут dx розглядається як один символ, тому $(dx)^n = dx^n$.

Диференціалом третього порядку d^3y , називається диференціал від другого диференціала:

$$d^{3}y = d(d^{2}y) = d(f''(x)dx^{2}) = f'''(x)dx^{3}.$$
 (6.8)

Диференціалом n-го порядку $d^n y$, називається диференціал від диференціала (n-1)-го порядку:

$$d^{n}y = d(d^{n-1}y) = f^{(n)}(x)dx^{n}.$$
(6.9)