Analysis Prelim Solutions

Contents

1	1 Winter 2020	3
	1.1 Problem 1	
	1.2 Problem 2	
	1.3 Problem 3	
	1.4 Problem 4	
	1.5 Problem 6	
	1.6 Problem 7	
	1.7 Problem 8	
	1.8 Problem 9	
	1.9 Problem 10	
2	2 Winter 2019	7
-	2.1 Problem 1	-
	2.2 Problem 2	,
	2.3 Problem 3	•
	2.4 Problem 4	
	2.5 Problem 5	
	2.6 Problem 6	
	2.7 Problem 7 (need to finish)	,
	2.8 Problem 8	
	2.9 Problem 9	
	2.10 Problem 10	
•	3 Summer 2019	13
3	3.1 Problem 1	9
	3.2 Problem 2	9
	3.3 Problem 3	
	3.4 Problem 4	9
	3.5 Problem 5	
	3.6 Problem 6	
	3.7 Problem 7	
	3.8 Problem 8	
	<i>yie 220020</i>	
4	·	18
	4.1 Problem 1	
	4.2 Problem 2	
	4.3 Problem 4	
5	5 Winter 2016	19
	5.1 Problem 1	

6	summer 2016	19
	.1 Problem 1	19
	.2 Problem 2	20
	.3 Problem 3	21
	.4 Problem 4	21
	.5 Problem 5	21
•	Vinter 2015 .1 Problem 1 .2 Problem 2 .3 Problem 6	22
-	Vinter 2010 .1 Problem 1	23 23

1 Winter 2020

1.1 Problem 1

Exercise 1. Let $\mathcal V$ be an inner-product space.

- 1. Let (x_n) be a convergent sequence in \mathcal{V} . Then (x_n) is bounded.
- 2. Let (x_n) and (y_n) be two convergent sequences in \mathcal{V} . Prove that if $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

Solution 1. 1. Let (x_n) be a convergent sequence in \mathcal{V} . In particular, it must be a Cauchy sequence. Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $m, n \geq N$ implies $||x_n - x_m|| < \varepsilon$. Set $M = \max\{||x_1||, \dots ||x_N||\}$. Observe that if $n \geq N$, then we have

$$||x_n|| = ||x_n - x_N + x_N||$$

$$\leq ||x_n - x_N|| + ||x_N||$$

$$< \varepsilon + ||x_N||$$

$$< \varepsilon + M.$$

In particular, we see that $M + \varepsilon$ is an upper bound of (x_n) .

2. Choose $M \in \mathbb{N}$ such that $||y_n|| \leq M$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $n \geq N$ implies

$$||x_n - x|| < \varepsilon/2M$$
 and $||y_n - y|| < \varepsilon/2||x||$.

Then $n \ge N$ implies

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle|$$

$$\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\leq ||x_n - x|| ||y_n|| + ||x|| ||y_n - y||$$

$$\leq ||x_n - x|| M + ||x|| ||y_n - y||$$

$$\leq \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

This implies $\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$.

1.2 Problem 2

Exercise 2. Let \mathcal{V} be a normed linear space and let $\mathcal{W} \subset \mathcal{V}$ be a proper subspace. Prove that $Int(\mathcal{W}) = \emptyset$.

Solution 2. Let $y \in V \setminus W$, let $x \in W$, and let $\varepsilon > 0$. Assume for a contradiction $B_{\varepsilon}(x) \subseteq W$, where

$$B_{\varepsilon}(x) = \{ z \in \mathcal{V} \mid ||z - x|| < \varepsilon \}.$$

Then observe that $x + \frac{\varepsilon}{2\|y\|}y \in B_{\varepsilon}(x) \subseteq \mathcal{W}$. However this implies $y \in \mathcal{W}$, which is a contradiction. Therefore $B_{\varepsilon}(x) \not\subseteq \mathcal{W}$ for any $x \in \mathcal{W}$ and for any $\varepsilon > 0$. In particular, the only open subset of \mathcal{V} which is contained in \mathcal{W} is the empty set.

1.3 Problem 3

Exercise 3. Let $\ell^2(\mathbb{N})$ be the space of square summable sequences and define $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ by

$$T((x_n)) = (x_{n+1} - x_n)$$

for all $(x_n) \in \ell^2(\mathbb{N})$. Prove that T is bounded and find ||T||.

Solution 3. Let $(x_n) \in \ell^2(\mathbb{N})$ such that $||(x_n)|| = \sum_{n=1}^{\infty} |x_n|^2 \le 1$. Then we have

$$||T(x_n)|| = ||(x_{n+1} - x_n)||$$

$$= \sum_{n=1}^{\infty} |x_{n+1} - x_n|^2$$

$$\leq \sum_{n=1}^{\infty} ((|x_{n+1}| + |x_n|)^2)$$

$$= \sum_{n=1}^{\infty} |x_{n+1}|^2 + \sum_{n=1}^{\infty} |x_n|^2 + 2\sum_{n=1}^{\infty} |x_{n+1}||x_n|$$

$$\leq \sum_{n=1}^{\infty} |x_{n+1}|^2 + \sum_{n=1}^{\infty} |x_n|^2 + \sum_{n=1}^{\infty} (|x_{n+1}|^2 + |x_n|^2)$$

$$\leq 4.$$

It follows that T is bounded. In fact, we claim that ||T|| = 4. Indeed, to see this, let $n \in 2\mathbb{N}$ and consider the sequence

$$\mathbf{x}_n = (1/\sqrt{n}, -1/\sqrt{n}, 1/\sqrt{n}, \dots, -1/\sqrt{n}, 1/\sqrt{n}, 0, \dots),$$

where the first n terms are nonzero and every term after the nth term is zero. Then note that

$$T\mathbf{x}_n = (-2/\sqrt{n}, 2/\sqrt{n}, \dots, 2/\sqrt{n}, -2/\sqrt{n}, 0, \dots),$$

where the first n-1 terms are nonzero and every term after the (n-1)th term is zero. Then we have $\|\mathbf{x}_n\| = 1$ and $\|T\mathbf{x}_n\| = 4(n-1)/n$. By taking $n \to \infty$, we obtain a sequence (\mathbf{x}_n) in $\ell^2(\mathbb{N})$ where $\|\mathbf{x}_n\| = 1$ for all $n \in 2\mathbb{N}$ such that the $\|T\mathbf{x}_n\| \to 4$ as $n \to \infty$. It follows that $\|T\| = 4$.

1.4 Problem 4

Exercise 4. Let (X, d) be a compact metric space and let $f: X \to X$ be a continuous function. Suppose that for every $\varepsilon > 0$ there exists $x_{\varepsilon} \in X$ such that $d(x_{\varepsilon}, f(x_{\varepsilon})) < \varepsilon$. Prove that there exists $x \in X$ such that f(x) = x.

Solution 4. Observe that the function $g: X \to \mathbb{R}_{\geq 0}$ given by g(x) = d(x, f(x)) for all $x \in X$ is continuous. Indeed, it is the composite of continuous functions $X \to X \times X \to \mathbb{R}_{\geq 0}$ given by $x \mapsto (x, f(x)) \mapsto d(x, f(x))$ for all $x \in X$. Since X is compact, the continuous function must attain a global minimum. Since for every $\varepsilon > 0$ there exists $x_{\varepsilon} \in X$ such that $d(x_{\varepsilon}, f(x_{\varepsilon})) < \varepsilon$, we see that 0 is the global minimum. Thus there exists an $x \in X$ such that d(x, f(x)) = 0. Since d is positive-definite, this implies x = f(x).

1.5 Problem 6

Exercise 5. Let (X, S) be a measurable space and let (E_n) be a sequence of measurable sets. Prove that the set E consisting of all points $x \in X$ that belong to infinitely many of the sets E_n is measurable.

Solution 5. We claim that

$$E = \bigcap_{N \ge 1} \bigcup_{n \ge N} E_n. \tag{1}$$

Indeed,

$$x \in \bigcap_{k \ge 1} \bigcup_{n \ge k} E_n \iff x \in \bigcup_{n \ge k} E_n \text{ for all } k$$
 $\iff x \in E_{\pi(k)} \text{ for some } \pi(k) \ge k \text{ for all } k$
 $\iff x \in E_{\pi(k)} \text{ for some sequence } (\pi(k)) \text{ of } (k)$
 $\iff x \text{ belongs to infinitely many } E_n$
 $\iff x \in E.$

Now the expression (1) shows that *E* is measurable.

1.6 Problem 7

Exercise 6. Let (X, \mathcal{S}, μ) be measure space and let $f: X \to \mathbb{R}$ be an integrable function. Suppose (E_n) is a sequence of members of \mathcal{S} such that $\lim_{n\to\infty} \mu(E_n) = 0$. Prove that

$$\lim_{n\to\infty}\int_X f 1_{E_n} \mathrm{d}\mu = 0$$

Solution 6. Since $\int_X f 1_{E_n} d\mu \le \int_X |f| 1_{E_n} d\mu$ for all $n \in \mathbb{N}$, it suffices to show

$$\lim_{n\to\infty}\int_X|f|1_{E_n}\mathrm{d}\mu=0.$$

In fact, by replacing f with |f| if necessary, we may as well assume f is a nonnegative integrable function. Then $(f1_{E_n})$ is a sequence of integerable functions which converges pointwise a.e. to the zero function since $\lim_{n\to\infty} \mu(E_n) = 0$. Furthermore, the sequence $(f1_{E_n})$ is dominated by the integrable function f. It follows from the dominated convergence theorem that

$$\lim_{n\to\infty}\int_X f1_{E_n}\mathrm{d}\mu=0.$$

1.7 Problem 8

Exercise 7. Let (X, S) be a measurable space and let (μ_n) be a sequence of measures on (X, S) such that $\mu_n(X) = 1$ for all $n \in \mathbb{N}$. Prove that $\lambda \colon S \to [0, \infty]$ defined by

$$\lambda(F) = \sum_{n=1}^{\infty} \frac{\mu_n(F)}{2^n}$$

for all $F \in \mathcal{S}$ is a measure on (X, \mathcal{S}) with $\lambda(X) = 1$.

Solution 7. First note that $\lambda(\emptyset) = 0$ since $\mu_n(\emptyset) = 0$ for all $n \in \mathbb{N}$. Next let (F_k) be a sequence of pairwise disjoint sets in S. Then

$$\lambda \left(\bigcup_{k=1}^{\infty} F_k \right) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n \left(\bigcup_{k=1}^{\infty} F_k \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \sum_{k=1}^{\infty} \mu_n(F_k)$$

$$= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{\mu_n(F_k)}{2^n}$$

$$= \sum_{k=1}^{\infty} \lambda(F_k).$$

It follows that λ is a measure on (X, \mathcal{S}) . For the last part of the problem, we have

$$\lambda(X) = \sum_{n=1}^{\infty} \frac{\mu_n(F)}{2^n}$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^n}$$
$$= \frac{1/2}{1 - 1/2}$$
$$= 1.$$

1.8 Problem 9

Exercise 8. Let $f \in L^2[0,\infty)$ and let $G:(0,\infty) \to \mathbb{R}$ be defined by

$$G(t) = \int_0^\infty \frac{f(x)}{1 + tx} dx.$$

Prove the following:

- 1. $\lim_{t\to\infty} G(t) = 0$;
- 2. *G* is continuous at every point of $(0, \infty)$.

Solution 8. 1. For each $t \in (0, \infty)$, we define $g_t : [0, \infty) \to \mathbb{R}$ by

$$g_t(x) = \frac{1}{1 + tx}$$

for all $x \in [0, \infty)$. Observe that

$$\int_0^\infty |g_t(x)|^2 dx = \int_0^\infty \frac{1}{(1+tx)^2} dx$$

$$= \frac{-1}{t(1+tx)} \Big|_0^\infty$$

$$= 0 + 1/t$$

$$= 1/t.$$

Therefore $g_t \in L^2[0,\infty)$ with $||g_t||_2 = 1/t$. Also, note that $G(t) = \langle f, g_t \rangle$. In particlar, by Cauchy-Schwarz we have

$$|G(t)| = |\langle f, g_t \rangle|$$

$$\leq ||f||_2 ||g_t||$$

$$= ||f||_2 / t.$$

So taking $t \to \infty$ gives us $|G(t)| \to 0$, which implies $\lim_{t \to \infty} G(t) = 0$.

2. Note that G is the composite of the maps $[0,\infty) \to L^2[0,\infty)$, given by $t \mapsto g_t$, with the map $L^2[0,\infty) \to \mathbb{R}$, given by $g \mapsto \langle f,g \rangle$. The latter map is continuous, so to show G is continuous, it suffices to show the former map is continuous. That is, let $t \in (0,\infty)$ and let (t_n) be a sequence in $(0,\infty)$ such that $t_n \to t$ as $n \to \infty$. Then we need to show that $g_{t_n} \to g_t$ as $n \to \infty$. Observe that

$$||g_{t_n} - g_t||_2^2 = \int_0^\infty \left| \frac{1}{1 + t_n x} - \frac{1}{1 + t x} \right|^2 dx$$

$$= \int_0^\infty \left| \frac{(t - t_n) x}{(1 + t x)(1 + t_n x)} \right|^2 dx$$

$$= |t - t_n|^2 \int_0^\infty \frac{x^2}{(1 + t x)^2 (1 + t_n x)^2} dx$$

$$= |t - t_n|^2 \left(\int_0^1 \frac{x^2}{(1 + t x)^2 (1 + t_n x)^2} dx + \int_1^\infty \frac{x^2}{(1 + t x)^2 (1 + t_n x)^2} dx \right)$$

$$\leq |t - t_n|^2 \left(\int_0^1 \frac{x^2}{(1 + t x)^2 (1 + t_n x)^2} dx + \int_1^\infty \frac{x^2}{t t_n x^4} dx \right)$$

$$\leq |t - t_n|^2 \left(\int_0^1 x^2 dx + \frac{1}{t t_n} \int_1^\infty \frac{1}{x^2} dx \right)$$

$$= |t - t_n|^2 \left(\frac{1}{3} + \frac{1}{t t_n} \right).$$

In particular, we see that $g_{t_n} \to g_t$ as $n \to \infty$.

1.9 Problem 10

Exercise 9. Let (X, \mathcal{M}, μ) be a measure space and let $f: X \to [0, \infty)$ be a nonnegative measurable function. Suppose that for every s > 0 we have

$$\int_X e^{sf} \mathrm{d}\mu \le e^{s^2}.$$

Prove that for every t > 0 we have

$$\mu\{f>t\} \le e^{\frac{-t^2}{4}}.$$

Solution 9. Let s > 0 and t > 0. First note that

$$f > t \iff sf > st$$

 $\iff e^{sf} > e^{st}.$

Therefore we have

$$\begin{split} \mu\{f>t\} &= \mu\{e^{sf}>e^{st}\}\\ &\leq \frac{1}{e^{st}}\int_X e^{sf}\mathrm{d}\mu\\ &\leq \frac{1}{e^{st}}e^{s^2}\\ &= e^{s(s-t)}, \end{split}$$

where we applied Chebyshev's inequality to get from the first line to the second line. In particular, setting s = t/2 gives us the desired result.

2 Winter 2019

2.1 Problem 1

Exercise 10. Let \mathcal{X} be a normed linear space and let (x_n) be a sequence in \mathcal{X} . Suppose that every subsequence of (x_n) contains a convergent subsequence with limit $x_0 \in X$. Show that $x_n \to x_0$ as $n \to \infty$.

Solution 10. Assume for a contradiction that $x_n \not\to x_0$. Then there exists $\varepsilon > 0$ and a subsequence $(x_{\pi(n)})$ of (x_n) such that

$$||x_{\pi(n)} - x_0|| \ge \varepsilon \tag{2}$$

for all $n \in \mathbb{N}$. In particular, (2) implies no subsequence of $(x_{\pi(n)})$ can converge to x_0 , which is a contradiction.

2.2 Problem 2

Exercise 11. Let P[0,1] be the collection of all polynomials with indeterminate t on [0,1], namely,

$$P[0,1] = \left\{ \sum_{i=0}^n a_i t^i \mid a_i \in \mathbb{R} \text{ and } n \in \mathbb{N}_0 \right\}.$$

Define d: $P[0,1] \times P[0,1] \rightarrow \mathbb{R}$ by

$$d(p,q) = \int_0^1 |p(t) - q(t)| dt.$$

Prove or disprove: (P[0,1],d) is a complete metric space.

Solution 11. This is false. For each $n \in \mathbb{N}$, define $f_n \in P[0,1]$ by

$$f_n(t) = \sum_{i=0}^n \frac{t^i}{i!}.$$

The sequence (f_n) converges uniformly to e^t on [0,1]. Therefore it converges in the L^1 -norm to e^t (as the measure of [0,1] is finite). In particular, the sequence (f_n) is a Cauchy sequence in P[0,1] which cannot converge to a polynomial. To see why this is the case, note that if it did converge to some polynomial, say p(t), then p(t) and e^t must agree almost everywhere. However since p(t) and e^t are continuous on (0,1), they in fact must agree everywhere. Indeed, if $c \in (0,1)$ such that $p(c) \neq e^c$. Then since $p(t) - e^t$ is continuous, there exists an open neighborhood of c, say

$$B_{\varepsilon}(c) = \{x \in (0,1) \mid |x - c| < \varepsilon\},\$$

such that $p(x) \neq e^x$ for all $x \in B_{\varepsilon}(c)$. However $m(B_{\varepsilon}(c)) = 2\varepsilon \neq 0$, contradicting the fact that p(t) and e^t agree almost everywhere.

2.3 Problem 3

Exercise 12. Let (X,d) be a metric space with the property that there are $A \subseteq X$ and $\varepsilon > 0$ such that A is uncountable for any dictinct elements $a,b \in A$ we have $d(a,b) \ge \varepsilon$. Show that X is not separable.

Solution 12. Assume for a contradiction that X is separable. Choose a countable dense subset of X, say $Y \subseteq X$. For each $a \in A$, we choose $y_a \in Y$ such that $d(a, y_a) < \varepsilon/2$. Observe that this gives rise to a function $y_{(-)} \colon A \to Y$, given by

$$y_{(-)}(a) = y_a$$

for all $a \in A$. We claim that $y_{(-)}$ is injective. Indeed, if $y_a = y_b$ for some distinct pair $a, b \in A$, then we have

$$d(a,b) \le d(a,y_a) + d(y_b,b)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

which is a contradiction. Thus $y_{(-)}$ is an injective function, which contradicts the fact that A is uncountable. Thus X is separable.

2.4 Problem 4

Exercise 13. Recall the distance betwen two subsets A and B of a metric space (X, d) is defined as

$$d(A,B) = \inf_{(a,b)\in A\times B} d(a,b).$$

Show that if both *A* and *B* are compact, then there exists $x \in A$ and $y \in B$ such that

$$d(x,y) = d(A,B).$$

Solution 13. The function d: $A \times B \to \mathbb{R}_{\geq 0}$ is continuous, so if A and B are both compact, then $A \times B$ is compact, which implies d attains a minimum, say at $(x,y) \in A \times B$. Thus for any $(a,b) \in A \times B$, we have $d(x,y) \leq d(a,b)$. This implies

$$d(A, B) \le d(x, y) \le d(A, B).$$

Therefore d(x, y) = d(A, B).

2.5 Problem 5

Exercise 14. Let \mathcal{H} be a Hilbert space and let T be a nonzero linear operator on \mathcal{H} such that $T^2 = T$. Show that the following are equivalent:

- 1. *T* is an orthogonal projection.
- 2. ||T|| = 1.
- 3. $\ker T = (\operatorname{im} T)^{\perp}$.

Solution 14. We first show 1 implies 2. Let $x \in \mathcal{H}$ such that $||x|| \leq 1$. Then we have

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle x, T^2x \rangle$$

$$= ||x||^2$$

$$= 1.$$

Thus T is bounded with $||T|| \le 1$. To see that ||T|| = 1, we just choose a $Ty \in \text{im } T$ such that ||Ty|| = 1 (this can be done since im $T \ne 0$). Then

$$||T(Ty)|| = ||T^2y||$$
$$= ||Ty||$$
$$= 1.$$

Thus ||T|| = 1.

Now we show 2 implies 3. Let $x \in \ker T$. Then for all $Ty \in \operatorname{im} T$, we have

$$\langle x, Ty \rangle = \langle x, T^2 y \rangle$$
$$=$$

2.6 Problem 6

Exercise 15.

- 1. State the monotone convergence theorem and the dominated convergence theorem.
- 2. Show that

$$\lim_{n \to \infty} \int_0^\infty \frac{e^{-x}}{1 + (x/n)^2} dx = 1.$$

Solution 15. 1. The monotone convergence theorem is:

Theorem 2.1. (MCT) Let (X, \mathcal{M}, μ) be a measure space and let $(f_n: X \to [0, \infty])$ be an increasing sequence of nonnegative measurable functions which converges pointwise to a nonnegative function $f: X \to [0, \infty]$. Then

$$\lim_{n\to\infty}\int_X f_n \mathrm{d}\mu = \int_X f \mathrm{d}\mu.$$

The dominated convergence theorem is:

Theorem 2.2. (DCT) Let (X, \mathcal{M}, μ) be a measure space and let $g: X \to [0, \infty]$ be a nonnegative integrable function. Suppose $(f_n: X \to \mathbb{R})$ is a sequence of integrable functions such that

- 1. (f_n) converges pointwise to $f: X \to \mathbb{R}$.
- 2. $|f_n| \leq g$ pointwise for all $n \in \mathbb{N}$.

Then

$$\lim_{n\to\infty}\int_X f_n\mathrm{d}\mu=\int_X f\mathrm{d}\mu.$$

2. For each $n \in \mathbb{N}$ set $f_n = e^{-x}/(1 + (x/n)^2)$. Note that (f_n) is an increasing sequence. Indeed, if m < n, then $(x/m)^2 > (x/n)^2$ for each $x \in \mathbb{R}_{>0}$, which implies

$$\frac{e^{-x}}{1 + (x/n)^2} > \frac{e^{-x}}{1 + (x/m)^2}$$

for each $x \in \mathbb{R}_{>0}$.

Next observe that (f_n) converges pointwise to e^{-x} . Indeed, for each $x \in \mathbb{R}_{>0}$, we have

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(\frac{e^{-x}}{1 + (x/n)^2} \right)$$
$$= e^{-x} \lim_{n \to \infty} \left(\frac{1}{1 + (x/n)^2} \right)$$
$$= e^{-x}.$$

In particular, since (f_n) is increasing and converges pointwise to e^{-x} , it follows from MCT that

$$\lim_{n \to \infty} \int_0^\infty \frac{e^{-x}}{1 + (x/n)^2} dx = \int_0^\infty \lim_{n \to \infty} \frac{e^{-x}}{1 + (x/n)^2} dx$$
$$= \int_0^\infty e^{-x} dx$$
$$= e^{-x} \Big|_0^\infty$$
$$= 1.$$

2.7 Problem 7 (need to finish)

Exercise 16. Let $E \subseteq \mathbb{R}$ have finite Lebesgue measure and let $f: E \to \mathbb{R}$ be a measurable function such that that f(x) > 0 for a.e. $x \in E$. Show that if (E_n) is a sequence of subsets of E such that

$$\lim_{n\to\infty}\int_{E_n}f\mathrm{d}x=0,$$

then $\lim_{n\to\infty} \mathbf{m}(E_n) = 0$.

Solution 16. If m(E) = 0, then clearly $m(E_n) = 0$ for all $n \in \mathbb{N}$, which implies the result, so assume $m(E) \neq 0$. Assume for a contradiction that $\lim_{n\to\infty} m(E_n) \neq 0$. Then there exists $\varepsilon > 0$ and a subsequence $(E_{\pi(n)})$ of (E_n) such that $m(E_{\pi(n)}) \geq \varepsilon$ for all $n \in \mathbb{N}$. By replacing (E_n) with the subsequence $(E_{\pi(n)})$ if necessary, we may as well assume that $m(E_n) \geq \varepsilon$ for all $n \in \mathbb{N}$.

Let $A = \{f > 0\}$ and for each $k \in \mathbb{N}$ let $A_k = \{f \ge 1/k\}$. Then observe that

$$A = \bigcup_{k=1}^{\infty} A_k.$$

Since $m(A) = m(E) \neq 0$, there must exist some k such that $m(A_k) \neq 0$. Indeed, if $m(A_k) = 0$ for all k, then

$$0 \neq m(A)$$

$$= m \left(\bigcup_{k=1}^{\infty} A_k \right)$$

$$\leq \sum_{k=1}^{\infty} m(A_k)$$

$$= 0$$

would give us a contradiction. In particular, we can choose a c > 0 such that the set $C = \{f \ge c\}$ has nonzero measure. Now observe that for each $n \in \mathbb{N}$, we have

$$\int_{E_n} f d\mu = \int_{E_n \cap C} f d\mu + \int_{E_n \cap C^c} f d\mu$$

$$\geq cm(E_n \cap C)$$

$$= cm(E_n) + cm(C) - cm(E_n \cup C)$$

$$\geq c\varepsilon + cm(C) - cm(E_n \cup C)$$

$$\int_{E_n} f d\mu \ge \int_{E_n \cap C} f d\mu$$

$$\ge cm(E_n \cap C)$$

$$= cm(E_n) + cm(C) - cm(E_n \cup C)$$

$$\ge c\varepsilon + cm(C) - cm(E_n \cup C)$$

So choose k such that $m(A_k) \neq 0$. Then observe that for each n we have

$$\int_{E_n} f dx \ge \frac{1}{k} \int_{E_n \cap A_k} dx$$
$$= \frac{1}{k} m(E_n \cap A_k).$$

$$m(E_n) = m(E_n \cap A)$$

$$= m \left(E_n \cap \left(\bigcup_{k=1}^{\infty} A_k \right) \right)$$

$$= m \left(\bigcup_{k=1}^{\infty} (E_n \cap A_k) \right)$$

$$\leq \sum_{k=1}^{\infty} m(E_n \cap A_k)$$

In particular, taking $n \to \infty$ implies $\frac{1}{k} m(E_n \cap A_k) \to 0$. However note that

$$\frac{1}{k}m(E_n \cap A_k) = \frac{1}{k}(m(E_n) + m(A_k) - m(E_n \cup A_k))$$
$$= \frac{1}{k}m(E_n) + \frac{1}{k}m(A_k) - \frac{1}{k}m(E_n \cup A_k).$$

Thus as $n \to \infty$, we have

$$\lim_{n\to\infty} \mathsf{m}(E_n) = 0$$

$$0 = \frac{1}{k}\mathsf{m}(A_k) + \lim_{n\to\infty} \left(\frac{1}{k}\mathsf{m}(E_n) - \frac{1}{k}\mathsf{m}(E_n \cup A_k)\right)$$

We have

$$\int_{E_n} f d\mu \ge \int_{E_n \cap A} f d\mu
\ge cm(E_n \cap A)
= cm(E_n) + cm(A) - cm(E_n \cap A)
\ge c\varepsilon + cm(A) - cm(E_n \cap A)
\ge c\varepsilon + cm(E_n \cap A) - cm(E_n \cap A)
= c\varepsilon,$$

where we needed to use the fact that *E* has finite measure in order to get the third line from the second line. Thus as $n \to \infty$, we have

$$0 = \lim_{n \to \infty} m(E_n \cap A)$$

$$= \lim_{n \to \infty} m(E_n) + \lim_{n \to \infty} m(A) - \lim_{n \to \infty} m(A \cup E_n)$$

$$= \lim_{n \to \infty} m(E_n) + m(A) - \lim_{n \to \infty} m(A \cup E_n)$$

$$\geq \varepsilon + m(A) - \lim_{n \to \infty} m(A \cup E_n)$$

$$\lim_{n \to \infty} cm(E_n \cap A) = 0.$$

2.8 Problem 8

Exercise 17. Is there a measurable function $f: [0,1] \to \mathbb{R}$ such that both of the identities

$$\int_0^1 |f(x) - \sin(2\pi x)|^2 dx = \frac{1}{9} \quad \text{and} \quad \int_0^1 |f(x) - \cos(2\pi x)|^2 dx = \frac{1}{9}$$

hold? Justify your answer.

Solution 17. No. Indeed, assume for a contradiction that such a function did exist. First note that that f must be L^2 -integrable since

$$||f||_2 = ||f - \sin(2\pi x) + \sin(2\pi x)||_2$$

$$\leq ||f - \sin(2\pi x)||_2 + ||\sin(2\pi x)||_2$$

$$= \frac{1}{9} + \frac{1}{2}$$

$$= \frac{11}{18}.$$

Next, we calculate

$$\|\cos(2\pi x) - \sin(2\pi x)\|_{2} = \int_{0}^{1} |\cos(2\pi x) - \sin(2\pi x)|^{2} dx$$

$$= \int_{0}^{1/8} (\cos(2\pi x) - \sin(2\pi x))^{2} dx + \int_{1/8}^{5/8} (\sin(2\pi x) - \cos(2\pi x))^{2} dx + \int_{5/8}^{1} (\cos(2\pi x) - \sin(2\pi x))^{2} dx$$

$$= \int_{0}^{1} (\cos(2\pi x) - \sin(2\pi x))^{2} dx$$

$$= \int_{0}^{1} \left(\cos^{2}(2\pi x) dx + \sin^{2}(2\pi x)\right) dx - 2 \int_{0}^{1} \cos(2\pi x) \sin(2\pi x) dx$$

$$= 1 - 2 \int_{0}^{1} \cos(2\pi x) \sin(2\pi x) dx$$

$$= 1.$$

However this is a contradiction since

$$\|\cos(2\pi x) - \sin(2\pi x)\|_{2} = \|\cos(2\pi x) - f + f - \sin(2\pi x)\|_{2}$$

$$\leq \|\cos(2\pi x) - f\|_{2} + \|f - \sin(2\pi x)\|_{2}$$

$$= \frac{1}{9} + \frac{1}{9}$$

$$= \frac{2}{9}.$$

2.9 Problem 9

Exercise 18. Suppose $f:(0,\infty)\to\mathbb{R}$ is bounded and measurable, so that $\lim_{x\to\infty}|xf(x)|=0$. Show that

$$\lim_{n\to\infty} \int_0^1 n\sqrt{x} f(nx) \mathrm{d}x = 0.$$

Solution 18. By taking absolute values if necessary, we may assume that f is nonnegative. Choose $M \in \mathbb{N}$ such that $f \leq M$. Let $\varepsilon > 0$ and choose $N_{\varepsilon} \in \mathbb{N}$ such that $x \geq N_{\varepsilon}$ implies $xf(x) < \varepsilon$. Then for $n \geq N$ implies

$$\int_{0}^{1} n\sqrt{x} f(nx) dx = \int_{0}^{1} \frac{1}{\sqrt{x}} nx f(nx) dx$$

$$= \int_{0}^{N/n} \frac{1}{\sqrt{x}} nx f(nx) dx + \int_{N/n}^{1} \frac{1}{\sqrt{x}} nx f(nx) dx$$

$$< Mn \int_{0}^{N/n} \sqrt{x} dx + \varepsilon \int_{N/n}^{1} \frac{1}{\sqrt{x}} dx$$

$$= Mn \left(\frac{2}{3} x^{3/2} \Big|_{0}^{N/n} \right) + 2\varepsilon \left(x^{1/2} \Big|_{N/n}^{1} \right)$$

$$= \frac{2}{3} MN^{3/2} n^{-1/2} + 2\varepsilon (1 - \sqrt{N/n}).$$

In particular taking $n \to \infty$ gives us

$$\lim_{n\to\infty}\int_0^1 n\sqrt{x}f(nx)\mathrm{d}x < 2\varepsilon.$$

Finally taking $\varepsilon \to 0$ gives us

$$\lim_{n\to\infty} \int_0^1 n\sqrt{x} f(nx) \mathrm{d}x = 0.$$

2.10 Problem 10

Exercise 19. Let (X, \mathcal{M}, μ) be a measure space and let (A_n) be a sequence of \mathcal{M} -measurable sets. Assume that $\sum_n \mu(A_n) < 0$. Show that $\mu(\limsup A_n) = 0$.

Solution 19. Note that the sequence

$$\left(\bigcup_{n\geq N}A_n\right)_{N\in\mathbb{N}}$$

is a descending sequence in *N*. This together with the fact that

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n)$$

$$< \infty$$

implies

$$\mu\left(\limsup A_n\right) = \mu\left(\bigcap_{N=1}^{\infty} \left(\bigcup_{n\geq N} A_n\right)\right)$$

$$= \lim_{N\to\infty} \mu\left(\bigcup_{n\geq N} A_n\right)$$

$$\leq \lim_{N\to\infty} \sum_{n=N}^{\infty} \mu(E_n)$$

$$= 0,$$

where the last equality follows since $\sum_{n=1}^{\infty} \mu(E_n) < \infty$.

3 Summer 2019

3.1 Problem 1

Exercise 20. Let (X, d) be a metric space and let $A, B \subseteq X$. Prove or disprove the following statements:

- 1. If *A* and *B* are dense in *X*, then $A \cap B$ is also dense in *X*.
- 2. If *A* and *B* are open and dense in *X*, then $A \cap B$ is also open and dense in *X*.

Solution 20. 1. This is false. For instance, consider $(X, d) = (\mathbb{R}, |\cdot|)$, $A = \mathbb{Q}$, and $B = \mathbb{R} \setminus \mathbb{Q}$. Then both A and B are dense in \mathbb{R} , but $A \cap B = \emptyset$, which is not dense in \mathbb{R} .

2. This is true. First note that $A \cap B$ is open since it is the intersection of two open sets, so we just need to show that it is dense in X. Let U be a nonempty open subset of X. Since A is an open dense subset of X, we see that $A \cap U$ is a nonempty open subset of X. Since B dense in X, we see that $B \cap A \cap U$ is nonempty.

3.2 Problem 2

Exercise 21. Let \mathcal{H} be a Hilbert space and let $\mathcal{K} \subseteq \mathcal{H}$ be a closed subspace. Then $\mathcal{K} = \mathcal{K}^{\perp \perp}$.

Solution 21. Let $x \in \mathcal{K}$. Then for any $y \in \mathcal{K}^{\perp}$, we have $\langle x, y \rangle = 0$. In particular, this implies $x \in \mathcal{K}^{\perp \perp}$. Thus $\mathcal{K} \subseteq \mathcal{K}^{\perp \perp}$. For the reverse direction, let $x \in \mathcal{K}^{\perp \perp}$. Then we have, in particular, $\langle x, x - P_{\mathcal{K}} x \rangle = 0$. This implies $\|x\|^2 = \langle x, P_{\mathcal{K}} x \rangle = \|P_{\mathcal{K}} x\|^2$, which implies $x = P_{\mathcal{K}} x \in \mathcal{K}$.

3.3 Problem 3

Exercise 22. Let $(x_n) \in l^{\infty}(\mathbb{N})$ be a bounded sequence. Define for each $k \in \mathbb{N}$ the simple function

$$S_k((x_n)) = \sum_{n=1}^k x_n \chi_{[2^{-n}, 2^{1-n}]}$$

Prove the following:

- 1. For each fixed $(x_n) \in l^{\infty}(\mathbb{N})$, the sequence $(S_k((x_n)))_{k \in \mathbb{N}}$ converges in $L^2[0,1]$.
- 2. Let $T: l^{\infty}(\mathbb{N}) \to L^2[0,1]$ be defined by

$$T((x_n)) = \lim_{k \to \infty} S_k((x_n)),$$

where the limit is the L^2 -limit. Prove that T is bounded and find ||T||.

Solution 22. 1. Let $(x_n) \in \ell^{\infty}(\mathbb{N})$. Let M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that $2^{-N} < \varepsilon/M^2$. Then $m \ge k \ge N$ implies

$$||S_{m}((x_{n})) - S_{k}((x_{n}))||_{2} = \int_{0}^{1} \left| \sum_{n=k+1}^{m} x_{n} \chi_{[2^{-n}, 2^{1-n}]} \right|^{2} dx$$

$$= \int_{0}^{1} \sum_{n=k+1}^{m} |x_{n}|^{2} \chi_{[2^{-n}, 2^{1-n}]} dx$$

$$\leq \int_{0}^{1} \sum_{n=k+1}^{m} M^{2} \chi_{[2^{-n}, 2^{1-n}]} dx$$

$$= M^{2} \int_{0}^{1} \sum_{n=k+1}^{m} \chi_{[2^{-n}, 2^{1-n}]} dx$$

$$= M^{2} \int_{0}^{1} \chi_{[2^{-m}, 2^{-k}]} dx$$

$$\leq M^{2} 2^{-k}.$$

$$\leq M^{2} 2^{-N}$$

$$\leq M^{2} \frac{\varepsilon}{M^{2}}$$

$$= \varepsilon$$

This implies $(S_k((x_n)))_{k\in\mathbb{N}}$ is a Cauchy sequence in $L^2[0,1]$. In particular, it must converge since $L^2[0,1]$ is complete.

2. Let $(x_n) \in \ell^{\infty}(\mathbb{N})$ such that $|x_n| \leq 1$ for all $n \in \mathbb{N}$. Then

$$||T((x_n))||_2 = \left\| \sum_{n=1}^{\infty} x_n \chi_{[2^{-n}, 2^{1-n}]} \right\|_2$$

$$= \int_0^1 \sum_{n=1}^{\infty} |x_n|^2 \chi_{[2^{-n}, 2^{1-n}]} dx$$

$$\leq \int_0^1 \sum_{n=1}^{\infty} \chi_{[2^{-n}, 2^{1-n}]} dx$$

$$= \int_0^1 \chi_{[0,1]} dx$$

$$= 1.$$

This implies T is bounded with $||T|| \le 1$. In fact, we claim that ||T|| = 1. Indeed, we just take the constant sequence $(x_n) = (1)$. Then clearly in this case we have

$$||T((1))||_{2} = \int_{0}^{1} \sum_{n=1}^{\infty} \chi_{[2^{-n}, 2^{1-n}]} dx$$
$$= \int_{0}^{1} \chi_{[0,1]} dx$$
$$= 1.$$

3.4 Problem 4

Exercise 23. Let X, Y be normed linear spaces. A linear operator $T: X \to Y$ is called **compact** if for each bounded sequence (x_n) in X, the sequence (Tx_n) in Y contains a convergent subsequence.

- 1. Show that if $T: X \to Y$ is compact, then it is bounded.
- 2. Assume *Y* is a Banach space and $(T_n: X \to Y)$ is a sequence of compact linear operators that converges uniformly to a linear operator $T: X \to Y$, namely $||T_n T|| \to 0$ as $n \to \infty$. Show that *T* is also compact.

Solution 23. 1. Assume for a contradiction that T is not bounded. Then for each $n \in \mathbb{N}$ there exists $x_n \in X$ such that $||x_n|| \le 1$ and $||Tx_n|| \ge n$. The sequence (x_n) is bounded, and since T is compact, the sequence (Tx_n) must contain a convergent subequence, say $(Tx_{\pi(n)})$. However, $(Tx_{\pi(n)})$ cannot be convergent since $||Tx_{\pi(n)}|| \ge \pi(n)$ for all $n \in \mathbb{N}$ implies

$$\lim_{n\to\infty} \|Tx_{\pi(n)}\| = \infty.$$

Indeed, if $Tx_{\pi(n)} \to y$ for some $y \in Y$, then we must have

$$\lim_{n\to\infty} \|Tx_{\pi(n)}\| = \|y\| \neq \infty.$$

2. Let (x_k) be a bounded sequence in X. Assume for a contradiction that (Tx_k) does not contain a convergent subsequence in Y. Then there exists an $\varepsilon > 0$ such that for all subsequences $(Tx_{\pi(k)})$ of (Tx_k) there exists a subsequence $(Tx_{\rho(k)})$ of $(Tx_{\pi(k)})$ such that

$$||Tx_{\rho(k)} - Tx_{\rho(m)}|| \ge \varepsilon$$

for all $k, m \in \mathbb{N}$. Another way of phrasing this is that for each $k \in \mathbb{N}$, there exists an m > k such that

$$||Tx_{\pi(k)} - Tx_{\pi(m)}|| \ge \varepsilon.$$

We fix such an ε and will derive a contradiction.

Now, choose M > 0 such that $||x_k|| \le M$ for all $k \in \mathbb{N}$. Also, choose $n \in \mathbb{N}$ such that

$$||T_n-T||<\frac{\varepsilon}{3M}.$$

Since T_n is compact and (x_k) is bounded, the sequence $(T_n x_k)$ contains a convergent subsequence, say $(T_n x_{\pi(k)})$. In particular, the sequence $(T_n x_{\pi(k)})$ is Cauchy, and so we can choose a $K \in \mathbb{N}$ such that $m, k \geq K$ implies

$$||T_nx_{\pi(k)}-T_nx_{\pi(m)}||<\frac{\varepsilon}{3}.$$

Then $m, k \ge K$ implies

$$||Tx_{\pi(k)} - Tx_{\pi(m)}|| = ||Tx_{\pi(k)} - T_n x_{\pi(k)} + T_n x_{\pi(k)} - T_n x_{\pi(m)} + T_n x_{\pi(m)} - Tx_{\pi(m)}||$$

$$\leq ||Tx_{\pi(k)} - T_n x_{\pi(k)}|| + ||T_n x_{\pi(k)} - T_n x_{\pi(m)}|| + ||T_n x_{\pi(m)} - Tx_{\pi(m)}||$$

$$\leq ||T - T_n|| ||x_{\pi(k)}|| + ||T_n x_{\pi(k)} - T_n x_{\pi(m)}|| + ||T_n - T|| ||x_{\pi(m)}||$$

$$< \frac{\varepsilon}{3M} \cdot M + \frac{\varepsilon}{3} + \frac{\varepsilon}{3M} \cdot M$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

This is a contradiction as ε was chosen in a such way that so that we can find a subsequence $(Tx_{\rho(k)})$ of $(Tx_{\pi(k)})$ such that

$$||Tx_{\rho(k)} - Tx_{\rho(m)}|| \ge \varepsilon$$

for all $k, m \in \mathbb{N}$. However, there can be no such subsequence since, as we've just shown, we have

$$||Tx_{\pi(k)} - Tx_{\pi(m)}|| < \varepsilon$$

for all $k, m \geq K$.

3.5 Problem 5

Exercise 24. Let (X,d) be a compact metric space and let $f: X \to X$ be a continuous function.

1. Prove that the set

$$f(X) = \{ f(x) \mid x \in X \}$$

is compact.

2. Assume, in addition, that $f: X \to X$ is an isometry of (X, d) (that is, d(f(x), f(y)) = d(x, y) for all $x, y \in X$). Prove that f is surjective.

Solution 24. 1. We shall a prove a more general result. Suppose X and Y are topological space and suppose $f\colon X\to Y$ is a surjective continuous function. We will show that if X is compact, then Y is compact. In other words, the image of a compact set under a continuous function is compact. Let $\{V_j\}_{j\in J}$ be an open covering of Y. Then $\{f^{-1}(V_j)\}_{j\in J}$ is an open covering of X. Since X is compact, there exists a finite subcovering of $\{f^{-1}(V_j)\}_{j\in J}$ say $\{f^{-1}(V_{j_1}),\ldots,f^{-1}(V_{j_n})\}$. We claim that $\{V_{j_1},\ldots,V_{j_n}\}$ is a finite subcovering of $\{V_j\}_{j\in J}$. Indeed, it suffices to show that

$$Y = \bigcup_{k=1}^{n} V_{j_k}.$$
 (3)

Indeed, this follows from the fact that f is surjective: if $y \in Y$, then we choose $x \in X$ such that f(x) = y, then since $\{f^{-1}(V_{j_1}), \ldots, f^{-1}(V_{j_n})\}$ is an open covering of X, we see that $x \in f^{-1}(V_{j_k})$ for some k, and this implies $y \in V_{j_k}$. So $Y \subseteq \bigcup_{k=1}^n V_{j_k}$, and since the reverse inclusion is trivial, we have (3).

2. Let $x \in X$ and let $d = \inf\{d(f(y), x) \mid y \in X\}$. We will first show that d = 0. Assume for a contradiction that d > 0. Then observe that for all $n \in \mathbb{N}$, we have

$$d(f^n(x), x) \ge d$$
.

In particular, since f is an isometry, this implies

$$d(f^n(x), f^m(x)) > d$$

for all $n, m \in \mathbb{N}$. In particular, the sequence $(f^n(x))$ has no convergent subsequence since the distance between any two terms in the sequence is always greater than d. This contradicts the fact that f(X) is compact. Therefore d = 0.

Now let $g: X \to \mathbb{R}_{>0}$ be the function given by

$$g(y) = d(f(y), x)$$

for all $y \in X$. Note that g is continuous since it is the composite of the continuous function $X \to X \times X$, given by $y \mapsto (f(x), f(y))$, with the continuous function $X \times X \to \mathbb{R}_{\geq 0}$, given by $(x, y) \mapsto d(x, y)$. Therefore it attains a minimum value, say at $x_0 \in X$. In particular, we have $d(f(x_0), x) = 0$, which implies $f(x_0) = x$. Thus f is surjective.

3.6 Problem 6

Exercise 25.

- 1. State (without proof) the monotone convergence theorem and the dominated convergence theorem.
- 2. Evaluate (with justification) the limit

$$\lim_{n\to\infty}\int_1^\infty \frac{1}{(1+x/n)^n} \mathrm{d}x$$

Solution 25. 1. The monotone convergence theorem is:

Theorem 3.1. (MCT) Let (X, \mathcal{M}, μ) be a measure space and let $(f_n: X \to [0, \infty])$ be an increasing sequence of nonnegative measurable functions which converges pointwise to a nonnegative function $f: X \to [0, \infty]$. Then

$$\lim_{n\to\infty}\int_X f_n \mathrm{d}\mu = \int_X f \mathrm{d}\mu.$$

The dominated convergence theorem is:

Theorem 3.2. (DCT) Let (X, \mathcal{M}, μ) be a measure space and let $g: X \to [0, \infty]$ be a nonnegative integrable function. Suppose $(f_n: X \to \mathbb{R})$ is a sequence of integrable functions such that

- 1. (f_n) converges pointwise to $f: X \to \mathbb{R}$.
- 2. $|f_n| \leq g$ pointwise for all $n \in \mathbb{N}$.

Then

$$\lim_{n\to\infty}\int_X f_n \mathrm{d}\mu = \int_X f \mathrm{d}\mu.$$

2. For each $n \in \mathbb{N}$ set $f_n = (1 + x/n)^{-n}$. Note that (f_n) is a decreasing sequence of nonnegative integrable functions each of which converges pointwise to e^{-x} . Indeed, if $m \le n$, then we have

$$(1+x/n)^{-n} \le (1+x/m)^{-m} \iff \log((1+x/n)^{-n}) \le \log((1+x/m)^{-m})$$

$$\iff -n\log((1+x/n)) \le -m\log((1+x/m))$$

$$\iff n\log((1+x/n)) \ge m\log((1+x/m))$$

where the last inequality follows from the fact that

$$n \log((1+x/n))\Big|_{x=0} = n$$

$$\geq m$$

$$= m \log((1+x/m))\Big|_{x=0}$$

and from the fact that

$$\frac{d}{dx} (n \log((1+x/n))) = \frac{1}{1+x/n}$$

$$\geq \frac{1}{1+x/m}$$

$$= \frac{d}{dx} (m \log((1+x/m)))$$

for all $x \ge 0$. Since

$$\int_{1}^{\infty} f_{2} dx = \int_{1}^{\infty} \frac{1}{(1+x/2)^{2}} dx$$
$$= -\frac{2}{1+x/2} \Big|_{1}^{\infty}$$
$$= \frac{4}{3'}$$

it follows from the decreasing version of MCT that

$$\lim_{n \to \infty} \int_{1}^{\infty} \frac{1}{(1+x/n)^{n}} dx = \int_{1}^{\infty} e^{-x} dx$$
$$= -e^{-x} \Big|_{1}^{\infty}$$
$$= 1/e.$$

3.7 Problem 7

Exercise 26. Let (X, \mathcal{S}, μ) be a measure space. Suppose that $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions which converges pointwise to $f \colon X \to \mathbb{R}$. Prove that f is measurable.

Solution 26. The standard trick here is to first prove that sup f_n and inf f_n are measurable. For sup f_n , we have

$$\{\sup f_n > c\} = \bigcup_{n=1}^{\infty} \{f_n > c\}$$

for all $c \in \mathbb{R}$. It follows that sup f_n is measurable. For inf f_n , we have

$$\{\inf f_n < c\} = \bigcup_{n=1}^{\infty} \{f_n < c\}$$

for all $c \in \mathbb{R}$. Next we have

$$\limsup f_n = \inf_{N \ge 1} \sup_{n \ge N} f_n$$
 and $\liminf f_n = \sup_{N \ge 1} \inf_{n \ge N} f_n$,

and so $\limsup f_n$ and $\liminf f_n$ are both measurable. Finally, since $\lim f_n = f$, we have

$$\limsup f_n = f = \liminf f_n.$$

Thus *f* is measurable.

3.8 Problem 8

Exercise 27. Let (X, \mathcal{S}, μ) be a measure space. Suppose that $(f_n \colon X \to \mathbb{R})$ is a sequence of measurable functions, and there is a nonegative integrable function $f \colon X \to [0, \infty)$ such that $|f_n| \le f$ for every $n \in \mathbb{N}$. Prove that

$$\limsup \int_X f_n d\mu \le \int_X \limsup f_n d\mu.$$

Solution 27. Observe that $(f - f_n)$ is a sequence of nonegative measurable functions. Thus by Fatou's Lemma, we have

$$\int_X g d\mu - \int_X \limsup f_n d\mu = \int_X (g - \limsup f_n) d\mu$$

$$\leq \liminf \int_X (g - f_n) d\mu$$

$$= \int_X g d\mu - \limsup \int f_n d\mu.$$

Subtracting $\int_X g d\mu$ from both sides and negating both sides gives us the desired inequality.

4 Summer 2018

4.1 Problem 1

Exercise 28. Let (a_n) be a sequence of real numbers such that $a_n \to 0$. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} a_n = 0. \tag{4}$$

Solution 28. Let $\varepsilon > 0$ and choose $N_{\varepsilon} \in \mathbb{N}$ such that $n \geq N_{\varepsilon}$ implies $-\varepsilon < a_n < \varepsilon$. Then for all $k \in \mathbb{N}$, we have

$$\frac{1}{N_{\varepsilon}+k}\sum_{n=1}^{N_{\varepsilon}}a_{n}-\frac{k\varepsilon}{N_{\varepsilon}+k}\leq\frac{1}{N_{\varepsilon}+k}\sum_{n=1}^{N_{\varepsilon}+k}a_{n}\leq\frac{1}{N_{\varepsilon}+k}\sum_{n=1}^{N_{\varepsilon}}a_{n}+\frac{k\varepsilon}{N_{\varepsilon}+k}$$
(5)

Taking $k \to \infty$ in (5) gives us

$$-\varepsilon \leq \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} a_n \leq \varepsilon$$

Since $\varepsilon > 0$ was arbitrary it follows that (4) holds.

4.2 Problem 2

Exercise 29. Let X be a normed linear subspace and $\emptyset \neq Y \subseteq X$ be a subset with the property that $X \setminus Y$ is a linear subspace. Show that Y is dense in X.

Solution 29. Since $Y \neq \emptyset$ we see that $X \setminus Y$ is a proper subspace of X. It follows that $\text{int}(X \setminus Y) = \emptyset$ (see winter 2020 problem 2), or equivalently, Y is dense in X.

4.3 Problem 4

Exercise 30. Let \mathcal{H} be a Hilbert space and let \mathcal{K}_1 and \mathcal{K}_2 be two closed linear subspaces of \mathcal{H} . Denote P_1 and P_2 to be the orthogonal projections onto \mathcal{K}_1 and \mathcal{K}_2 respectively. Show that $\|P_1 - P_2\| \leq 1$.

Solution 30. Let $x \in \mathcal{H}$. We have

$$\begin{aligned} \|(P_{1} - P_{2})(x)\|^{2} &= \|P_{1}x - P_{2}x\|^{2} \\ &= \|P_{1}(P_{1}x - P_{2}x)\|^{2} + \|P_{1}x - P_{2}x - P_{1}(P_{1}x - P_{2}x)\|^{2} \\ &= \|P_{1}x - P_{1}P_{2}x\|^{2} + \|P_{1}P_{2}x - P_{2}x\|^{2} \\ &= \|P_{1}(x - P_{2}x)\|^{2} + \|P_{2}x\|^{2} - \|P_{1}P_{2}x\|^{2} \\ &\leq \|x - P_{2}x\|^{2} + \|P_{2}x\|^{2} - \|P_{1}P_{2}x\|^{2} \\ &= \|x\|^{2} - \|P_{1}P_{2}x\|^{2} \\ &\leq \|x\|^{2}. \end{aligned}$$

It follows that $||P_1 - P_2|| \le 1$.

5 Winter 2016

5.1 Problem 1

Exercise 31. Evaluate the following series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \tag{6}$$

Solution 31. The series converges by the alternating series test. Recall the Mclaurin expansion for log(1-x) is given by

$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + \cdots$$

with radius of convergence r = 1. Since the series (6) converges, we find that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log 2.$$

6 Summer 2016

6.1 Problem 1

Exercise 32. Let $f_n: [0,1] \to \mathbb{R}$ be defined by

$$f_n(x) = \frac{x^n}{1 + x^n}$$

for every $n \in \mathbb{N}$.

- 1. Prove or disprove: (f_n) converges uniformly on [0,1].
- 2. Show that

$$\lim_{n\to\infty}\int_0^1 f_n(x)\mathrm{d}x = 0.$$

Solution 32. 1. First note that (f_n) converges pointwise to the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1/2 & \text{if } x = 1 \\ 0 & \text{if } x \in [0, 1). \end{cases}$$

Indeed, if $x \in [0,1)$, then

$$0 \le \lim_{n \to \infty} \left(\frac{x^n}{1 + x^n} \right)$$

$$\le \lim_{n \to \infty} x^n$$

$$= 0,$$

which implies

$$\lim_{n\to\infty}\left(\frac{x^n}{1+x^n}\right)=0.$$

If x = 1, then

$$\lim_{n \to \infty} \left(\frac{1^n}{1 + 1^n} \right) = \lim_{n \to \infty} \left(\frac{1}{2} \right)$$
$$= \frac{1}{2}.$$

So if (f_n) converges uniformly, then it must converge uniformly to f. However each f_n is a continuous function, whereas f is not continuous. This is a contradiction.

2. As noted in part 1, (f_n) converges pointwise to f. Also the sequence (f_n) is dominated by the integrable constant function 1. Indeed, for any $x \in [0,1]$, we have

$$f_n(x) = \frac{x^n}{1+x^n} \le x^n \le 1.$$

Thus by the dominated convergence theorem, we have

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx = \int_0^1 f(x)dx$$
$$= 0,$$

where the last equality holds since f = 0 almost everywhere.

6.2 Problem 2

Exercise 33. Let $X = \{(x_n) \subseteq \mathbb{R} \mid x_n \neq 0 \text{ for finitely many } n \in \mathbb{N}\}$ and consider the metric d: $X \times X \to \mathbb{R}$ defined by

$$d(\mathbf{x},\mathbf{y}) = \sup_{n \in \mathbb{N}} |x_n - y_n|$$

for all $\mathbf{x} = (x_n)$ and $\mathbf{y} = (y_n)$ in X. Prove or disprove: (X, d) is a complete metric space.

Solution 33. It is not a complete metric space. To see why, consider the sequence (\mathbf{x}^n) in X where

$$\mathbf{x}_n = (1, 1/2, 1/3, \dots, 1/n, 0, 0, \dots).$$

First we claim that (\mathbf{x}_n) is a Cauchy sequence. It is clearly a sequence in X since for each $n \in \mathbb{N}$ only finitely many components in \mathbf{x}_n is nonzero. Let us now show that it is Cauchy. Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Then $n \ge m \ge N$ implies

$$d(\mathbf{x}_m, \mathbf{x}_n) = \frac{1}{m}$$

$$\leq \frac{1}{N}$$

$$\leq \varepsilon.$$

It follows that (\mathbf{x}_n) is a Cauchy sequence in X.

However note that (\mathbf{x}_n) cannot converge to an element in X. To see why, assume for a contradiction that $\mathbf{x}_n \to \mathbf{x} = (x_n)$ where $\mathbf{x} \in X$. Then only finitely many x_n 's are nonzero. In particular, we can choose $N \in \mathbb{N}$ so that $x_N = 0$. Then $n \ge N$ implies

$$d(\mathbf{x},\mathbf{x}_n)\geq \frac{1}{N}.$$

This contradicts our assumption that $x_n \to x$.

6.3 Problem 3

Exercise 34. Let (X, d) be a metric space and let (x_n) be a convergent sequence in X which converges to $x_0 \in X$. Show that

$$K = \{x_n \mid n \in \mathbb{N} \cup \{0\}\}\$$

is a compact set.

Solution 34. It suffices to show that every sequence in K has a convergent subsequence with a limit in K. Let $(x_{\pi(n)})$ be a sequence in K. Here, π is viewed as a function from $\mathbb{N} \to \mathbb{N}$, which is not necessarily increasing. If for some $k \in \mathbb{N}$ we have $\pi(n) = k$ infinitely many $n \in \mathbb{N}$, then we can view the constant sequence $(x_k)_{n \in \mathbb{N}}$ with k fixed as a subsequence of $(x_{\pi(n)})$. So assume we can't do this. We construct a subsequence of $(x_{\pi(n)})$ as follows. First, we start with any $n_1 \in \mathbb{N}$ and we set $\rho(1) = \pi(1)$. Next, we choose $n_2 \in \mathbb{N}$ such that $\pi(n_2) > \pi(n_1)$ and we set $\rho(2) = \pi(n_2)$. Note that we can do this since, otherwise the function π takes a value less than or equal to $\pi(n_1)$ infinitely many times. We proceed inductively: at the kth step, we choose $n_{k+1} \in \mathbb{N}$ such that $\pi(n_{k+1}) > \pi(n_k)$ and we set $\rho(k+1) = \pi(n_{k+1})$. Thus we have constructed a function $\rho: \mathbb{N} \to \mathbb{N}$ which is strictly increasing. In particular, $(x_{\rho(n)})$ is both a subsequence of $(x_{\pi(n)})$ and of (x_n) . Since $(x_{\rho(n)})$ is a subsequence of (x_n) , it must converge to x_n also. Thus $(x_{\rho(n)})$ is a convergent subsequence of $(x_{\pi(n)})$.

6.4 Problem 4

Exercise 35. Let *X* be a normed linear space and let *T*, *S* be two different bounded linear operators on *X* such that $T^2 = T$, $S^2 = S$, and TS = ST. Show that $||T - S|| \ge 1$.

Solution 35. Since $T^2 = T$, $S^2 = S$, and TS = ST, we have $(T - S)^3 = T - S$. Therefore for any $x \in X$, we have

$$||(T - S)x|| = ||(T - S)^3 x||$$

$$\leq ||T - S|| ||(T - S)^2 x||$$

$$\leq ||T - S||^2 ||(T - S)x||.$$

It follows that $||T - S||^2 \ge 1$, which implies $||T - S|| \ge 1$. Note that we also have $||T + S|| \ge 1$. Indeed, for any $x \in X$, we have

$$||(T - S)x|| = ||Tx - Sx||$$

$$= ||T^2x - S^2x||$$

$$= ||(T^2 - S^2)x||$$

$$= ||(T + S)(T - S)x||$$

$$\leq ||T + S|| ||(T - S)x||$$

It follows at once that $||T + S|| \ge 1$.

6.5 Problem 5

Exercise 36. Let \mathcal{H} be a Hilbert space and let (x_n) be a sequence of elements in \mathcal{H} that satisfies the following two conditions:

1. There exists M > 0 such that $||x_n|| \le M$

Solution 36.

7 Winter 2015

7.1 Problem 1

Exercise 37. For $n \in \mathbb{N}$, let $f_n(x) = \frac{nx}{1+n^2x^2}$. Show that $f_n \to 0$ in $L^1([0,1])$ while $f_n \not\to 0$ in $L^\infty([0,1])$.

Solution 37. For each $n \in \mathbb{N}$, we have

$$||f_n||_1 = \int_0^1 |f_n(x)| dx$$

$$= \int_0^1 \frac{nx}{1 + n^2 x^2} dx$$

$$= \frac{1}{2n} \int_1^{1+n^2} \frac{1}{u} du \qquad u = 1 + n^2 x^2$$

$$= \frac{1}{2n} \ln(1 + n^2).$$

Thus, by L'Hospital's rule, we see that

$$\lim_{n \to \infty} ||f_n||_1 = \lim_{n \to \infty} \left(\frac{1}{2n} \ln(1 + n^2) \right)$$
$$= \lim_{n \to \infty} \left(\frac{1}{2} \frac{2n}{1 + n^2} \right)$$
$$= 0.$$

Thus $||f_n||_1 \to 0$ as $n \to \infty$ which implies $f_n \to 0$ in $L^1([0,1])$ as $n \to \infty$. On the other hand, for each $n \in \mathbb{N}$, observe that

$$||f_n||_{\infty} = \sup_{x \in [0,1]} \left(\frac{nx}{1 + n^2 x^2} \right)$$

 $\geq \frac{1}{1+1}$
 $= 1/2$,

where the inequality follows from setting x = 1/n.

7.2 Problem 2

Exercise 38. Let $f: (-1,1) \to \mathbb{R}$ be convex, that is,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

for all $x, y \in (-1, 1)$ and $t \in [0, 1]$. Show that f is continuous but not necessarily differentiable.

7.3 Problem 6

Exercise 39. Let \mathcal{H} be a Hilbert space over \mathbb{R} and let $T \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ be a bounded linear operator such that

$$\langle Tx, x \rangle \ge ||x||^2$$

for all $x \in \mathcal{H}$. Show that the equation Tx = y has a unique solution for every $y \in \mathcal{H}$ and it satisfies $||x|| \le ||y||$.

Solution 38. We first show *T* is injective. Let $x \in \ker T$. Then observe that

$$0 = \langle 0, x \rangle$$
$$= \langle Tx, x \rangle$$
$$\geq ||x||^2$$

implies x = 0. Thus T is injective.

Next we show im *T* is closed. First observe that for each $x \in \mathcal{H}$,

$$||x||^2 \le \langle Tx, x \rangle$$

$$\le ||Tx|| ||x||$$

implies $||x|| \le ||Tx||$. Now let (Tx_n) is a Cauchy sequence in im T. Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $m, n \ge N$ implies $||Tx_n - Tx_m|| < \varepsilon$. Then $m, n \ge N$ implies

$$\varepsilon > ||Tx_n - Tx_m||$$

= $||T(x_n - x_m)||$
\geq ||x_n - x_m||.

In particular, we see that (x_n) is a Cauchy sequence. Let $x \in \mathcal{H}$ such that $x_n \to x$. Then it follows that $Tx_n \to Tx$ since T is continuous. Thus im T is closed.

Finally we show that *T* is surjective. Observe that

$$\operatorname{im} T = \overline{\operatorname{im} T} = (\ker T^*)^{\perp}.$$

Thus to show that im $T = \mathcal{H}$, we just need to show that ker $T^* = 0$, that is, that T^* is injective. However the same proof which showed T is injective also shows T^* is injective. Indeed, let $x \in \ker T^*$, then

$$0 = \langle x, 0 \rangle$$

$$= \langle x, T^* x \rangle$$

$$= \langle Tx, x \rangle$$

$$\geq ||x||^2$$

implies x = 0. Thus T^* is injective, which implies T is surjective.

Thus since *T* is a bijection, there is a unique $x \in \mathcal{H}$ such that Tx = y. Futhermore, we have

$$||y|| = ||Tx||$$
$$\geq ||x||,$$

as shown above.

8 Winter 2010

8.1 Problem 1

Exercise 40. Prove the following two statements that look similar but are different.

- 1. $E \subseteq \mathbb{R}$ is bounded and $f : \mathbb{R} \to \mathbb{R}$ is continuous implies f(E) is bounded.
- **2.** $E \subseteq \mathbb{R}$ is bounded and $f: E \to \mathbb{R}$ is uniformly continuous implies f(E) is bounded.

Find a counterexample for the following false statement: $E \subseteq \mathbb{R}$ is bounded and $f: E \to \mathbb{R}$ is continuous implies f(E) is bounded.

Solution 39. 1. Choose M > 0 such that $E \subseteq [-M, M]$. Since f is continuous, the image of a compact set is a compact set. In particular, f([-M, M]) is compact. By the Heine-Borel theorem, f([-M, M]) is closed and bounded. In particular, f(E) is bounded.

2. We want to show that f can be extended to a continuous function $\widetilde{f} \colon \overline{E} \to \mathbb{R}$. We define \widetilde{f} as follows: let $x \in \overline{E}$. Choose a sequence (x_n) in E such that $x_n \to x$. Then we define

$$\widetilde{f}(x) = \lim_{n \to \infty} f(x_n). \tag{7}$$

We need to make sure that this definition makes since. First, note that $(f(x_n))$ is a Cauchy sequence. Indeed, let $\varepsilon > 0$. Choose $\delta > 0$ such that $|y - z| < \delta$ implies

$$|f(y) - f(z)| < \varepsilon$$

for all $y, z \in E$. Next, we use the fact that (x_n) is a Cauchy sequence to choose $N \in \mathbb{N}$ such that $n, m \geq N$ implies

$$|x_n-x_m|<\delta.$$

Then $n, m \ge N$ implies

$$|f(x_n) - f(x_m)| < \varepsilon.$$

Thus $(f(x_n))$ is a Cauchy sequence, so the limit in (7) makes since. Finally we note that \widetilde{f} extends f since f is continuous

Now \overline{E} is a closed and bounded subset of \mathbb{R} , so by the Heine-Borel theorem, it must be compact. Therefore $\widetilde{f}(\overline{E})$ is compact, and again by the Heine-Borel theorem, $\widetilde{f}(\overline{E})$ is closed and bounded. In particular, f(E) is bounded.

Now let us counterexample to the last statement. Consider the function f(x) = 1/x defined on the interval E = (0,1). Even though E is bounded and f is continuous on E, we see that f(E) is not bounded since

$$\lim_{n \to \infty} f(1/n) = \lim_{n \to \infty} \frac{1}{1/n}$$
$$= \lim_{n \to \infty} n$$
$$= \infty$$

Exercise 41. Let (X, d_X) be a compact metric space and let (Y, d_Y) be a (not necessarily complete) metric space.

- 1. Prove that for any continuous bijection $f: X \to Y$, the inverse function $f^{-1}: Y \to X$ is also continuous.
- 2. Find an example that shows (1) is not true in general if *X* is not compact.

Solution 40. 1. It suffices to show that f is a closed mapping (takes closed sets to closed sets). Let $E \subseteq X$ be a closed set. Since X is compact, E must also be compact. Since f is continuous, $f(E) \subseteq Y$ is also compact. Now since Y is Hausdorff, this implies f(E) is closed.

2. Let (X,d) be the set of real numbers equipped with the discrete metric: that is $X=\mathbb{R}$ as sets and

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$. In particular, X is discrete and not compact. Then the identity function $f: X \to \mathbb{R}$, given by f(x) = x, is continuous (since any function out of a discrete space is continuous). However the inverse function is not continuous ($\{x\} \subseteq X$ is open in X, but $\{f(x)\}$ is not open in \mathbb{R}).