令和 4 年度 プロジェクトデザイン III プロジェクトレポート 情報工学科

電車の分類をしたよ

提出日 令和 99 年 99 月 99 日

指導教員:鷹合 大輔 准教授

氏名 学籍番号 (クラス-名列番号)

野崎 悠度 1936463 (4EP1-68)

奥野 細道 1936119 (4EP4-75)

本プロジェクトでは、機械学習を用いた電車の車両タイプを分類するシステムの開発を行った.

(目的)

世の中には似ているようなものでも、実は同じではないものがある.そのようなものを判断できるようになりたい.

(背景)

電車の車両タイプの種類は、JR の在来線だけでも 100 種類近く存在している。多くの人は電車を見て、電車だと認識することは可能であるが、その電車の車両タイプまでを判断できる人は少ない。電車についての知識がある人は一目見るだけでその電車の車両タイプを判断できるが、大多数の人は似ている電車の車両タイプを判断することが難しい。そのため、だれでも簡単に電車の車両タイプを判断できるシステムの開発を行った。今回は JR 西日本の 17 種類の電車を分類するものと、新幹線の各車両タイプを分類するものの二種類のシステム開発を行った。

(手法)

開発の手順は、まずは画像を集めてデータセットを作成する.次に作成したデータセットと YOLO を用いて学習させ評価を行った.学習データは車両タイプ別に YouTube にアップロードされている動画から電車が写っている場面を切り出した画像を利用した.一つの動画から一種類の車両タイプのデータセットを作成すると、似たような画像が大量に保存されてしまう.複数の動画の任意の場面を連結して一本の動画にするシステムも作成し、様々な場面の電車の画像が保存できるようにした.学習がこれ以上向上しないというところまで学習させ、モデルを作成した.作成したモデルを使ってブラウザ上で電車の車両タイプを分類する WEB アプリも作成した.

(結果)

特に似ている 3 種類の電車以外はだいたい分類することができた.似ている 3 種類は,誤分類が多かった JR 北 (5) JR 東 (33) JR 東海 (11) JR 西 (25) JR 四国 (5) JR 九州 (15)

活動履歴 山田 太郎

期間	活動内容	活動時間 [h]		
4-8月	調査・実験・実装	200		
11-3 月	実験・実装・論文執筆(3章)	160		

活動履歴 鬼 太郎

期間	活動内容	活動時間 [h]
4-8月	調査・実験・実装	200
11-3 月	実験・実装・論文執筆(3 章)	160

活動履歴 目玉野 親父

期間	活動内容	活動時間 [h]
4-8月	調査・実験・実装	200
11-3 月	実験・実装・論文執筆(3章, 2.6.1節)	160

目次

第1章	序論	1
第2章	システム概要	3
2.1	この章で書くこと	3
2.2	ウェーブレット	3
2.3	連続ウェーブレット変換	3
2.	3.1 桃太郎伝説	3
	3.2 順変換	5
	3.3 逆変換	5
2.4		6
	4.1 あああ	6
2.5	だああある	6
2. 2.6	5.1 基本的な考え方	6 6
	6.1 平均符号長	6
第3章	学習データの準備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.1	この章で書くこと	9
3.2	学習データの集め方	9
第4章	車両タイプ判別モデルについて	11
4.1	この章で書くこと	11
第5章	結論	13
参考文献 .		15
付録 A	開発したプログラム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
A.1	セットアップ方法	17
A.2	使い方	17
A.3	ソースコード	17
付録 B	ινινινινι	19
	図目次	
図 2.1:	ツースケール関係	5
図 2.2:	ツースケール関係 aassad	7
図 2.3:	トラがでた	7
	表目次	
表 2.1:	ここに表のタイトルを書きます	4
表 2.2:	言語別の特色....................................	6
表 2.4:	aaa	8
	ソースリスト目次	
11 7 L A 1	. サンプルプロガニ <i>!</i>	17

ii	ソースリスト目次

第1章

序論

(背景)

現在,似ている電車がいっぱいある

(目的)

それぞれがどの車両タイプの電車なのかを判断したいよ画像を読み込ませることで,その画像には何が写っているのか判断するシステムを開発する

(問題点)

画像に写っている電車が何なのかを判断するためには電車の図鑑と画像を見比べて、自分で判断する方法しかない. その車両が何なのか知るために大きな労力が必要であることが問題である.

(現在の手法)

現在の画像分類では、画像に写っているのが、人や車、犬など、大まかな分類しかすることができない.この方法では電車の車両タイプが何かを判断することができない.

第2章

システム概要

2.1 この章で書くこと

- 概要図
- モデルについて
- サーバ関連について
- もしかしたらあんまり書くことないかも

実行結果などは verbatim でもよいが、卒論用に verbatimx 環境というのを用意したので使うとよい (ページにまたがってもよいし、TFX の命令が使える).

```
$ gcc test.c ↓
$ ./a.out ↓
(*_*)

#1 Hello, World
#2 Hello, World
#3 Hello, World

$ CCTL+Cをタイプ
```

2.2 ウェーブレット

2.3 連続ウェーブレット変換

第 2.2 節をみてね.

2.3.1 桃太郎伝説

表 2.1: ここに表のタイトルを書きます

恐竜名	必殺技
アンキロサウルス	000000000000000000000000000000000000000
パキケファロサウルス	00000000000000000
アロサウルス	00000000000

- やまにのぼる
- せんたくにいく
- ねる

2.3.2 順変換

2.3.3 逆変換

まず「算術符号」の基本的な考え方について説明する.算術符号は記号列,もしくは文字列全体をひとつの符号語にする方法であり,1960 年代に P.Elias によって提案された.

算術符号は、記号列を実数 0 と 1 の間の区間を用いて表す。たとえば、記号は a,b,c の 3 種類があり、出現確率をそれぞれ P(a)=0.2、P(b)=0.6、P(c)=0.2 とする。算術符号は、区間を記号の出現確率に比例した

図 2.1: ツースケール関係

小区間に分割して行くことで符号化を行う.それでは例として,記号列 abbbc を符号化してみる.式 (2.1) をみてね、。

$$S = \sum_{n=0}^{N} n^2 \tag{2.1}$$

2.4 だだだだ

2.4.1 あああ

2.5 だああああ

2.5.1 基本的な考え方

まず「算術符号」の基本的な考え方について説明する [?]. 算術符号は記号列, もしくは文字列全体をひとつの符号語にする方法であり, 1960 年代に P.Elias によって提案された.

算術符号は,記号列を実数 0 と 1 の間の区間を用いて表す. たとえば,記号は a,b,c の 3 種類があり,出現確率をそれぞれ P(a)=0.2,P(b)=0.6,P(c)=0.2 とする.算術符号は,区間を記号の出現確率に比例した小区間に分割して行くことで符号化を行う. ここからは節 2.3.3 を参照してください。それでは例として,記号列 abbbc を符号化してみる.

2.6 算術符号化

sdssddsfsdds

図 2.2 に●●●を示す.

表 2.2: 言語別の特色

言語	特色
MySQL	あああああああああああああああああああああ
Oracle	よっとっとっとっとっとっとっとっとっとっとっとっとっとっとっ
SQL Server	ううううううううううううううう

2.6.1 平均符号長

表??に〇〇〇を示す。リスト A.2 に〇〇〇を示す。

2.6 算術符号化 7

図 2.2: ツースケール関係 aassad

図 2.3: トラがでた

ベクトル \boldsymbol{x} とただの x_0

$$1+1 \cdots 5 h b-! \tag{2.2}$$

第2章 システム概要

表 2.4: aaa

第3章

学習データの準備

3.1 この章で書くこと

- django の件
- 電車が映っている場面だけ画像で保存
- データセットを作成(識別・分類)
- アノテーションについて

•

3.2 学習データの集め方

第4章

車両タイプ判別モデルについて

4.1 この章で書くこと

- yoloとは
- 学習の実行
- 性能評価
- 作成したモデルの使い方
- 出力されるものについて

第5章

結論

あわれといふも、なかなか疎かなり.されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり.あなかしこ、あなかしこ、あれといふも、なかなか疎かなり.されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり.あなかしこ、あなかしこ。あわれといふも、なかなか疎かなり.されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり.あなかしこ、あなかしこ。あわれといふも、なかなか疎かなり.されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり.あなかしこ、あなかしこ。あわれといふも、なかなか疎かなり.されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり.あなかしこ、あなかしこ。あわれといふも、なかなか疎かなり。されば、人間の儚き事は、老少不定のさかいなれば、誰の人も早く後生の一大事を心にかけて、阿弥陀仏を深く頼み参らせて、念仏申すべきものなり。あなかしこ、あなかしこ

参考文献

- [1] V.D. Vaughen and T.S. Wilkinson, "System considerations for multispectral image compression designs," IEEE Signal Process. Mag., vol.12, no.1, pp. 19-31, Jan. 1995.
- [2] A. Said and W. Pearlman, "An image multiresolution representation for lossless and lossy compression," IEEE Trans. Image Process., vol.5, no.9, pp.1303-1310, Sept. 1996.
- [3] 小野文孝, "静止画符号化の新国際標準方式(JPEG2000)の概要," 映像情報メディア学会誌, vol.54, no.2, pp.164-171, Feb. 2000.
- [4] D. Tretter and C.A. Bouman, "Optimum transform for multispectral and multilayer image coding," IEEE Trans. Image Process., vol.4, no.3, pp.296-308, March 1995.
- [5] F. Amato, C. Galdi and G. Poggi, "Embedded zerotree wavelet coding on multispectral images," IEEE Proc. ICIP 97, vol.1, pp.612-615, 1997.
- [6] B.R. Epstein, R. Hingorani, J.M. Shapiro and M. Czigler, "Multispectral KLT-wavelet data compression for Landsat thematic mapper images," Proc. Data Compression Conf., IEEE Computer Society Press, pp.200-205, 1992.
- [7] J.M. Shapiro, S.A. Martucci, and M. Czigler, "Comparison of multispectral Landsat imagery using the embedded zerotree wavelet(EZW) algorithm," DLPO at Image Compress. Appli. & Innovation Workshop, pp.105-113, March 1994.
- [8] J.A. Saghri, A.G. Tescher, and J.T. Reagan, "Practical transform coding of multspectral imagery," IEEE Signal Process. Mag., vol.12, no.1, pp.32-43, Jan. 1995.
- [9] J. Lee, "Optimized quadtree for Karhunen-Loeve transform in multispectral image coding," IEEE Trans. Image Process., vol.8, no.4, pp.453-461, April 1999.
- [10] B. Brower, B. Gandhi, D. Couwenhouven and C. Smith, "ADPCM for advanced LANDSAT downlink applications," in Proc. 27th Asilomar Conf. Signals, Systems and Computers, Nov. 1993.
- [11] N.D. Memom, K. Sayood and S.S. Magliveras. ,"Lossless compression of multispectral image data," IEEE Trans. Geosci. and Remote Sensing., vol.32, no.2, pp.282-289, March 1994.
- [12] S. Gupta and A. Gersho, "Feature predictive vector quantization of multispectral images," IEEE Trans. Geosci. and Remote Sensing., vol.30, no.3, pp.491-501, May 1992.
- [13] K. Irie and R. Kishimoto, "A study on perfect reconstructive subband coding," IEEE Trans. Circuits Syst. Video Technol., vol.1, no.1, pp.42-48, March 1991.
- [14] 小松 邦紀, 瀬崎 薫, 安田 靖彦, "濃淡画像の可逆的なサブバンド符号化法", 信学論(D-II), vol.J78-D-II, no.3, pp.429-436, March 1995.
- [15] A.R. Calderbank, I. Daubechies, W. Sweldens and B. Yeo, "Lossless image compression using integer to integer wavelet transforms," IEEE Proc. ICIP 97, vol.1, pp.596-599, 1997.
- [16] F.A.M.L. Bruekers and A.W.M.V.D. Enden, "New networks for perfect inversion and perfect reconstruction," IEEE J. Sel. Areas Commun., vol.10, no.1, pp.130-137, Jan. 1992.
- [17] 小松 邦紀, 瀬崎 薫, "可逆的離散コサイン変換とその画像情報圧縮への応用," 信学技報, vol.IE97-83, pp.1-6, Nov. 1997.
- [18] K. Komatsu and K. Sezaki, "Design for lossless block transforms and filter banks for image coding," IEICE Trans. Fundamentals, vol.E82-A, no.8, pp.1656-1664, Aug. 2000.
- [19] 福間 慎治, 岩橋 雅宏, 神林 紀嘉, "可逆的色変換を用いた色彩画像の可逆符号化," 信学論(D-II),

16 参考文献

- vol.J81-D-II, no.11, pp.2680-2684, Nov. 1998.
- [20] T. Nakachi, T. Fujii, and J. Suzuki,"A unified coding algorithm of lossless and near-lossless color image compression," IEICE Trans. Fundamentals, vol.E83-A, no.2, pp. 301-310, Feb. 2000.
- [21] 仲地 孝之, 藤井 竜也, "可逆 KL 変換を用いた病理顕微鏡画像符号化法の研究," 2000 信学総大, D16-13, March 2000.
- [22] 鷹合 大輔, 武部 幹, "可逆 WT・KLT を用いるマルチスペクトル画像の情報圧縮," 信学論 (A), vol.J84-A, no.3, pp.1-11, March 2001.
- [23] 尾上 守夫, "画像処理ハンドブック," 昭晃堂, pp.554-561, 1987.
- [24] 鷹合 大輔, 武部 幹, "マルチスペクトル画像のバンド間・バンド内相関除去による可逆情報圧縮," 第 15 回 DSP シンポジウム講演論文集, pp.475-48, Nov. 2000.
- [25] 鷹合 大輔, 武部 幹, "ウェーブレット変換を用いたマルチスペクトル画像の情報圧縮符号化法の研究," 平成 10 年度金沢工大卒業論文, 1998.
- [26] 酒井 幸市, "デジタル画像処理入門," コロナ社,1997.
- [27] 榊原 進, "ウェーブレットビギナーズガイド," 電機大出版局, 1995.
- [28] 武部 幹, "情報圧縮、通信と回路理論," 信学技報, IT97-40, July 1997.
- [29] Gilbert Strang and Troung Nguyen, "Wavelet and filter banks,' 'Wellesly Cambridge Press, 1996.
- [30] 貴家 仁志, "よくわかるディジタル画像処理," CQ 出版社, 1996.
- [31] "金沢の暮らし", http://www.kanazawa-it.ac.jp
- [32] 山田 太郎, "金沢の一人暮らし", トンチンカン出版, 2016.

付録 A

開発したプログラム

A.1 セットアップ方法

にプログラムの使い方,セットアップ方法などを書きましょう.ここにプログラここにプログラムの使い方,セットアップ方法などを書きましょう.ムの使い方,セットアップ方法などを書きましょう.ここにプログラムの使い方,セットアップ方法などを書きましょう.

```
$ sudo apt-get install python3-pip # PIP コマンドの導入
$ echo "Hello WOrld"
Hello WOrld
```

にプログラムの使い方、セットアップ方法などを書きましょう。ここにプログラここにプログラムの使い方、セットアップ方法などを書きましょう。ムの使い方、セットアップ方法などを書きましょう。ここにプログラムの使い方、セットアップ方法などを書きましょう。

A.2 使い方

ここにプログラムの使い方、セットアップ方法などを書きましょう。ここにプログラムの使い方、セットアップ方法などを書きましょう。ここにプログラここにプログラムの使い方、セットアップ方法などを書きましょう。ムの使い方、セットアップ方法などを書きましょう。ここにプログラムの使い方、セットアップ方法などを書きましょう。ここにプログラムの使い方、セットアップ方法などを書きましょう。

A.3 ソースコード

リスト A.1: サンプルプログラム

```
1 #include<stdio.h>
2 int main(){
3 return 0; // ウギャー!
4 }
```

リスト A.2: スパゲッティソース

```
1 #! /usr/local/bin/ruby -Ks
2 # numbers.rb
3 print "正の整数値を表す文字列を入力してください。正の整数値を表す文字列を入力してください。\n"
4 while true
    print ">"
    line = gets.chomp # 改行コードを切り捨てる
6
    break if line.empty?
8
    begin
      v = Integer(line) # 文字列を整数化する
10
    rescue
     puts "変換できません。"
11
12
     next
13
    end
    printf ("2進法:%b\n",v)
14
```

```
15 printf ("8進法:%o\n",v)
16 printf ("10進法:%d\n",v)
17 printf ("16進法:%x\n",v)
18 end
19 puts "Bye."
```

付録 B

しいしいしいしい