Discrete Structures

Rule of Inference

Rule of Inference

Rules of inference are logical principles that allow you to derive new statements (conclusions) from existing statements (premises) in a valid and structured way. They act like tools or shortcuts in reasoning, ensuring that if the premises are true, then the conclusion is also true.

Definition - Rule of Inference of Prop. Logic

An argument in propositional logic is a sequence of propositions. All but the final proposition in the argument are called premises and the final proposition is called the conclusion. An argument is valid if the truth of all its premises implies that the conclusion is true.

TABLE 1 Rules of Inference.				
Rule of Inference	Tautology	Name		
$ \begin{array}{c} p \\ p \to q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens		
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens		
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism		
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism		
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition		
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification		
$ \begin{array}{c} p\\ q\\ \therefore \overline{p \wedge q} \end{array} $	$((p) \land (q)) \to (p \land q)$	Conjunction		
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution		

State which rule of inference is the basis of the following argument: "It is below freezing now. Therefore, it is either below freezing or raining now."

Solution: Let p be the proposition "It is below freezing now" and \dot{q} the proposition "It is raining now." Then this argument is of the form

$$\therefore \frac{p}{p \vee q}$$

This is an argument that uses the addition rule.

State which rule of inference is the basis of the following argument: "It is below freezing and raining now. Therefore, it is below freezing now."

Solution: Let *p* be the proposition "It is below freezing now," and let *q* be the proposition "It is raining now." This argument is of the form

$$\frac{p \wedge q}{p}$$

This argument uses the simplification rule.

State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a barbecue tomorrow.

Solution: Let p be the proposition "It is raining today," let q be the proposition "We will not have a barbecue today," and let r be the proposition "We will have a barbecue tomorrow." Then this argument is of the form

$$p \to q$$

$$q \to r$$

$$p \to r$$

Hence, this argument is a hypothetical syllogism.

Show that the premises "It is not sunny this afternoon and it is colder than yesterday," "We will go swimming only if it is sunny," "If we do not go swimming, then we will take a canoe trip," and "If we take a canoe trip, then we will be home by sunset" lead to the conclusion "We will be home by sunset."

Show that the premises "It is not sunny this afternoon and it is colder than yesterday," "We will go swimming only if it is sunny," "If we do not go swimming, then we will take a canoe trip," and "If we take a canoe trip, then we will be home by sunset" lead to the conclusion "We will be home by sunset."

Solution: Let p be the proposition "It is sunny this afternoon," q the proposition "It is colder than yesterday," r the proposition "We will go swimming," s the proposition "We will take a canoe trip," and t the proposition "We will be home by sunset." Then the premises become $\neg p \land q, r \rightarrow p, \neg r \rightarrow s$, and $s \rightarrow t$. The conclusion is simply t. We need to give a valid argument with premises $\neg p \land q, r \rightarrow p, \neg r \rightarrow s$, and $s \rightarrow t$ and conclusion t.

We construct an argument to show that our premises lead to the desired conclusion as follows.

Step	Reason
1. $\neg p \land q$	Premise
2. ¬p	Simplification using (1)
3. $r \rightarrow p$	Premise
4. ¬r	Modus tollens using (2) and (3)
5. $\neg r \rightarrow s$	Premise
6. s	Modus ponens using (4) and (5)
7. $s \rightarrow t$	Premise
8. t	Modus ponens using (6) and (7)

Note that we could have used a truth table to show that whenever each of the four hypotheses is true, the conclusion is also true. However, because we are working with five propositional variables, p, q, r, s, and t, such a truth table would have 32 rows.

Show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."

Solution: Let p be the proposition "You send me an e-mail message," q the proposition "I will finish writing the program," r the proposition "I will go to sleep early," and s the proposition "I will wake up feeling refreshed." Then the premises are $p \to q$, $\neg p \to r$, and $r \to s$. The desired conclusion is $\neg q \to s$. We need to give a valid argument with premises $p \to q$, $\neg p \to r$, and $r \to s$ and conclusion $\neg q \to s$.

This argument form shows that the premises lead to the desired conclusion.

Step	Reason
1. $p \rightarrow q$	Premise
2. $\neg q \rightarrow \neg p$	Contrapositive of (1)
3. $\neg p \rightarrow r$	Premise
4. $\neg q \rightarrow r$	Hypothetical syllogism using (2) and (3)
5. $r \rightarrow s$	Premise
6. $\neg q \rightarrow s$	Hypothetical syllogism using (4) and (5)

Rules of Inference for Quantified Statements

TABLE 2 Rules of Inference for Quantified Statements.			
Rule of Inference	Name		
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation		
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization		
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation		
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization		

Show that the premises "A student in this class has not read the book," and "Everyone in this class passed the first exam" imply the conclusion "Someone who passed the first exam has not read the book."

Show that the premises "A student in this class has not read the book," and "Everyone in this class passed the first exam" imply the conclusion "Someone who passed the first exam has not read the book."

Solution: Let C(x) be "x is in this class," B(x) be "x has read the book," and P(x) be "x passed the first exam." The premises are $\exists x (C(x) \land \neg B(x))$ and $\forall x (C(x) \rightarrow P(x))$. The conclusion is $\exists x (P(x) \land \neg B(x))$. These steps can be used to establish the conclusion from the premises.

Step	Reason	
1. $\exists x (C(x) \land \neg B(x))$	Premise	
2. $C(a) \wedge \neg B(a)$	Existential instantiation from (1)	
3. <i>C</i> (<i>a</i>)	Simplification from (2)	
4. $\forall x (C(x) \rightarrow P(x))$	Premise	
5. $C(a) \rightarrow P(a)$	Universal instantiation from (4)	
6. <i>P</i> (<i>a</i>)	Modus ponens from (3) and (5)	
7. $\neg B(a)$	Simplification from (2)	
8. $P(a) \wedge \neg B(a)$	Conjunction from (6) and (7)	
9. $\exists x (P(x) \land \neg B(x))$	Existential generalization from (8)	▲