# Teoría de Autómatas y Lenguajes Formales

# Práctica 2: Automatas Finitos

Raul, Fernandez Escaño

29 de octubre de 2022

## 1. Automata DFA

Se considera un lenguaje L sobre un alfabeto  $\Sigma = \{a,b\}$  que contiene a la cadena a. Construye un automata DFA que reconozca el lenguaje L, rechazando todas aquellas que no sean válidas

**Definición 1.1.** (Automata DFA): Un automata finito determinista es una 5-tupla de  $(K, \Sigma, \delta, s, F)$  que cumple:

K es un conjunto no vacío

 $\Sigma$ es un alfabeto

 $s \in K$  es el estado inicial

 $F \subseteq K$  es un conjunto de estados finales

 $\delta \colon K \times \Sigma \to K$ es la funcion de transición

### Paso 1. (Caracteristicas del automata)

El automata que se ha definido posee las siguientes características:

- 1.  $K = \{q0, q1, q2\}$
- 2.  $\Sigma = \{a, b\}$
- 3. s = q0
- 4.  $F = \{q1\}$
- 5.  $\delta = \{(q0, a, q1), (q0, b, q2), (q1, a, q2), (q1, b, q2), (q2, a, q2), (q2, b, q2)\}$

#### Paso 2. (Representación del automata)

Una vez definido las caracteristica de nuestro automata, se recreara utilizando la herramienta JFLAP, que gracias a su interfaz, se podra apreciar el automata mucho mejor, dando por consiguiente la representacion adjuntada [Figura 1]

### Paso 3. (Automata en Oracle)

Tambien se podrá representar utilizando codificación de Oracle [Figura 2]



Figura 1

Figura 2