

第1章 概率论的基本概念

概率的统计定义

频率 VS 概率

首先引入频率,它描述的是事件发生的频繁程度。

定义: 把含有事件A的随机试验独立重复做n次

记 $f_n(A) = n_A / n;$ 其中 $n_A - -A$ 发生的次数 (频数) n - -- 总试验次数 $f_n(A) - A$ 在这n次试验中发生的频率。

问题: 能否用频率来代替概率?

抛硬市的例子 (抛硬市出现正面的频率)

n越大,频率越稳定

表 1

试验	n=5		n = 50		n = 500	
序号	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$
1	2	0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512
4	5	1.0	25	0.50	253	0.506
5	1	0.2	24	0.48	251	0.502
6	2	0.4	21	0.42	246	0.492
7	4	0.8	18	0.36	244	0.488
8	2	0.4	24	0.48	258	0.516
9	3	0.6	27	0.54	262	0.524
10	3	0.6	31	0.62	247	0.494

抛硬市的例子 (抛硬市出现正面的频率)

表 2

实验者	n	$n_{\mathcal{H}}$	$f_n(\mathcal{H})$			
德·摩根	2048	1061	0.5181			
蒲丰	4040	2048	0.5069			
K·皮尔逊	12000	6019	0.5016			
K·皮尔逊	24000	12012	0.5005			

重要规律

π的小数位的数字对0~9是等可能的

1872年英国人Shix. W将π算到707位

1945年法格逊核对其结果发现数字7太少,

认为其结果不正确,果然只有前527位正确

计算机出现后,计算了π的前100万位小

数,发现各个数字出现的频率相同

2019年谷歌工程师Emma Haruko lwaoli利用云计算资源计算出的34.1万亿位

由于事件发生的频率是它发生的次数与试验次数之比,因此其大小表示了事件发生的频繁程度。频率愈大,事件发生就愈频繁。这意味着事件在一次试验中发生的可能性就愈大,反之亦然。但大量的试验证明,频率具有<mark>随机波动性</mark>,致使频率不能成为概率。同时,大量的试验也证明,频率具有稳定性,因此频率可以揭示概率,其稳定值就是事件在一次试验中发生的概率,从而产生了概率的公理化定义。

概率的公理化定义

设 Ω 是随机试验的样本空间,若对于随机试验的每一个随机事件 A 都有一个实数P(A)与之对应,且 P(A)满足下列三个条件:

$$1^{\circ}$$
 $0 \leq P(A) \leq 1$

$$2^{\circ} P(\Omega) = 1$$

3° 若
$$A_1, A_2, \dots, A_k$$
两两互不相容,则 $P(\bigcup_{i=1}^k A_i) = \sum_{i=1}^k P(A_i)$

$$P(A_1 \cup A_2 \cup ... \cup A_n \cup ...) = P(A_1) + P(A_2) + ... + P(A_n) + ...$$

称P(A)为事件A的概率。

概率的几个重要的性质

(i) $P(\emptyset) = 0$

$$A_n = \emptyset$$
 $(n=1, 2, ...)$ $M = \emptyset$ $A_n = \emptyset$ $A_i A_j = \emptyset, i \neq j \ (i, j = 1, 2, ..., i)$

由可列可加性
$$P(\emptyset) = P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(\emptyset)$$

由非负性 $P(\emptyset) \ge 0$ 故 $P(\emptyset) = 0$

(ii) 有限可加性

互不相容和事件的概率为每个事件的概率之和

$$\Xi A_1, A_2, \dots, A_n$$
 两两互不相容,则 $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$ $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$

♦
$$A_{n+1} = A_{n+2} = ... = \emptyset$$
 P $A_i A_j = \emptyset, i \neq j \ (i, j = 1, 2, ...)$

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) = \sum_{i=1}^{n} P(A_i) + 0 = P(A_1) + P(A_2) + ... + P(A_n)$$

概率的几个重要的性质

性质 3 (减法公式) 设 $A \setminus B$ 是事件且 $A \subset B$,则

$$P(B-A) = P(B) - P(A)$$

证明由于ACB,因此

$$\mathbf{B} = \mathbf{A} \cup (\mathbf{B} - \mathbf{A})$$
, 且 $\mathbf{A}(\mathbf{B} - \mathbf{A}) = \emptyset$

由概率的有限可加性,得

$$P(B) = P(A) + P(B-A)$$

即

$$P(B-A) = P(B) - P(A)$$

再由概率的非负性知, $P(B-A) \ge 0$,即 $P(A) \le P(B)$ 。

问题: 如果A和B没有包含关系,事件之差的概率怎么求解?

$$P(A-B) = P(A) - P(AB)$$

证明: 因为

$$A - B = A\overline{B} = A(\Omega - B) = A\Omega - AB = A - AB$$

所以
$$P(A-B) = P(A-AB)$$

又因为
$$AB \subset A$$

所以
$$P(A-AB) = P(A) - P(AB)$$

故
$$P(A-B) = P(A) - P(AB)$$

概率的几个重要的性质(4)

性质4 对于任一事件A, $P(A) \le 1$

证明:因为 $A \subset S$,并由性质3得:

 $P(A) \le P(S) = 1$

概率的几个重要的性质(5)

性质5(逆事件的概率) 对于任一事件A, 有 $P(\bar{A})=1-P(A)$

证明: $\Box A \cup \overline{A} = S$, $\Box A \overline{A} = \emptyset$, 由可列可加性, 得

 $1=P(S) = P(A \cup \overline{A}) = P(A) + P(\overline{A})$

概率的几个重要的性质 (6)

(6) 加法公式

对任意事件A, B,有 $P(A \cup B) = P(A) + P(B) - P(AB)$

因
$$A \cup B = A \cup (B - AB)$$
 且 $A(B - AB) = \emptyset$ $AB \subset B$

$$P(A \cup B) = P(A) + P(B - AB) = P(A) + P(B) - P(AB)$$

文氏图重叠部分概率需被减去1次

推广至多个事件

设 A_1, A_2, A_3 是任意三个事件,则

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

对任意事件 A_1, A_2, \ldots, A_n ,采用归纳法得

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n)$$

1.4 古典概率

设随机试验的样本空间 $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$, n 为有限的正整数,且每个基本事件 $\{\omega_i\}$ (i = 1 , 2 , ..., n)发生的可能性相同,则称这种随机试验为古典概型,或称等可能概型。

条件: (1) 有限性 样本中只含有限个基本事件

(2) 等可能性 每个基本事件发生的可能性相同

古典概率的计算公式为:

$$P(A) = \frac{\#A}{\#\Omega} = \frac{\text{事件A中包含的基本事件数}}{\text{样本空间}\Omega中包含的基本事件数}$$

重点: 1. 样本空间是什么?

2. 事件A如何表述?

中学排列组合知识回顾:

加法原理 (分类计数)

若完成一件事可有n类办法,其中,在第一类办法中有 m_1 种不同的方法,在第二类办法中有 m_2 种不同的方法,……,在第n类办法中有 m_n 种不同的方法

完成这件事的方法共有 $N=m_1+m_2+m_2+...+m_n$

乘法原理 (分步计数)

若完成一件事需分解成n个步骤,其中,做第一步有 m_1 种不同的方法,做第二步有 m_2 种不同的方法,……,做第n步有 m_n 种不同的方法

完成这件事的方法共有 $N=m_1\times m_2\times m_3\times ...\times m_n$

中学排列组合知识回顾:

排列 (Arrangement)

从n个不同元素里每次取m个不同元素的排列(记次序)

$$A_n^m = n \cdot (n-1) \cdot (n-2) \cdot \cdots (n-m+1) = \frac{n!}{(n-m)!}$$

重复排列: 从n个不同元素里每次取允许重复的m个元素的排列

$$n^{m}$$

组合 (Combination)

从n个不同元素中选出m个元素构成一组,所有不同组合的个数

$$\binom{n}{m} = C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!} \qquad (n \ge m)$$

基本模型

(一) 质点入盒模型: n个可辨的盒子内放入m个球

每盒最多一球:球可辨: A_n^m

球不可辨: C_n^m

每盒球数不限: 球可辨: n^m 注意区分底数和指数

球不可辨: C_{n+m-1}^m

例: 2封信投入3个信箱,几种投法?

例: n元函数 $y = f(x_1, x_2, ..., x_n)$ 求r阶偏导数,不同混合偏导数有多少个?

例: n个球随机放入N个盒 ($N \ge n$) 中, 每个盒子最多一球的概率?

面安電子科技大學 XIDIAN UNIVERSITY

例 将 n 只球随机地放入 N (N \geq n)个盒子中,试求每个盒子中至多有 1 只球的概率 (设盒子的容量不限)。

解 样本空间Ω={将 n 只球放入 N 个盒子中的不同放法}, # Ω=N × N × ... × N = N n
事件A={每个盒子中至多放一只球}, # A= N (N -1)...[N - (n -1)]
故所求的概率为

$$p = \frac{N(N-1)\cdots(N-n+1)}{N^n}$$

事实上,有许多问题和本例具有相同的数学模型。例如,假设每人的生日在一年365 天中任一天是等可能的,即概率都等于1/365,那么随机选取 n(n≤365)个人,他们的生日各不相同的概率为

$$p = \frac{365 \cdot 364 \cdot \dots \cdot (365 - n + 1)}{365^n}$$

质点入盒模型概括了很多古典概率的问题

透过现象抓实质!

质点	盒子	问题	
人	365天 (或12个月)	N个人的生日问题	
人	每周7天	工作的分布问题 (安排问题)	
人	房间	分房问题	
信	邮筒	投信问题	
骰子	骰子的6个点 (6个盒子)	投骰子问题	
硬币	硬币的正反面(2个盒子)	投硬币问题	
旅客	下车车站	旅客下车问题	
粒子	相空间中的小区域 (空间格子)	统计物理中的Maxwell-Boltzmann统计模型	
••••	••••	••••	

例(生日问题):一个班有m个人,不计2月29日出生的(假定一年365天),问至少有两人同一天生日的概率?

解: 设事件 Ā: m个人生日各不相同

事件
$$\bar{A}$$
 的概率为 $P(\bar{A}) = \frac{k}{n} = \frac{A_{365}^m}{365^m}$

$$P(A) = 1 - \frac{A_{365}^m}{365^m}$$

当 m≥50时,至少有两个人生日相同的概率超过0.9

基本模型

(二) 摸球模型:从n个可辨的球中一个一个地从中取出m个球

无放回: 球计序: A_n^m

球不计序: C_n^m

有放回: 球计序: n^m

球不计序: C_{n+m-1}^m

例1 有 1500件产品,其中有 400 件是次品。从中任取 200 件,求恰有90件次品的概率。

N件产品,D件次品,任取n件,恰有k件次品的概率

$$P(A) = \frac{C_D^k C_{N-D}^{n-k}}{C_N^n}$$

超几何分布的 概率公式

计件抽样检验中的一个重要公式

例2 袋中有 a 只白球, b 只红球, 依次在袋中取 1 只球,分别: (1)做放回抽样; (2)做不放回抽样。求第 k 次取到白球(记为事件 B)的概率。

解 (1) 放回抽样的情况下,显然有 $P(A) = \frac{a}{a+b}$

(2) 不放回抽样的情况:

样本空间 Ω ={将 a + b只球放在a + b个位置上的不同放法}, # Ω =(a + b)! 事件A={第 k 次取到白球}, # A=a(a + b-1)!

当事件 A发生时,第 i 人取的应是白球,可以在 a 只白球中任取 1 只,有 a种取法,其余被取的 k -1 只球可以是剩下的 a + b -1 只球中的任意 k -1 只,共有(a + b-1)(a + b -2)...[(a + b -1-(k -1) +1)]种取法),从而所求的概率为

$$P(A) = \frac{a(a+b-1)!}{(a+b)!} = \frac{a}{a+b}$$

值得注意的是:一是 P (A)与 k无关,即 尽管取球的先后顺序不同,各人取到白球的概率是一样的,这就是著名的"抽签原则";二是在放回抽样的情况下与在不放回抽样的情况下, P (A)是一样的。

例3 某接待站在某一周曾接待 12 次来访,已知所有这 12 次接待都是在周二和周四进行的,问是否可以推断接待时间是有规定的?

解

假设接待站的接待时间没有规定,而各来访者在一周任一天去接待站是等可能的,那么12次接待来访者都是在周二、周四的概率为

 $2^{12}/7^{12} = 0.00000003$

现在,概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性

实际推断原理

概率很小的事件在一次试验中几乎是不发生的