JPL-IN-61-CR 80590 1179.

BIOASPEN: SYSTEM FOR TECHNOLOGY DEVELOPMENT

Interim Report

Submitted to

Jet Propulsion Laboratory Pasadena, California

by

Center for Biotechnology Washington University St. Louis, Missouri 63130

February, 1986

(NASA-CR-181086) BICASPEN: SYSTEM FOR
TECHNOLOGY DEVELORMENT Interim Report
(Washington Univ.) 107 p Avail: NTIS HC
CSCL 09B
AC6/MF A01
G3/61 0080590

This report was prepared for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration.

CONTENTS

1.	OBJE(TIVES AND SCOPE 2				
2.	INTRO	DUCTION 5				
3.	SUMMA	RY OF TECHNICAL PROGRESS 9	,			
4.	DETA	LED DESCRIPTION OF TECHNICAL PROGRESS10	ŀ			
	4.1	Installation of ASPEN10	ı			
	4.2	Incorporation of New Models into ASPEN10)			
	4.3	Testing of the Economic Subsection in ASPEN20)			
	4.4	Simulation of the ABE Process20)			
	4.5	Costing of the ABE Process31				
	4.6	Changes to the Basic Flowsheet	;			
5.	REFE	ENCES48	}			
6.	. APPENDIX					
	FO	TRAN Listings of User Files50)			
	Sa	ple Input Data File and Output Report)			

1. OBJECTIVES AND SCOPE

The objective of this project is to develop a realistic Its main benefit is seen as biotechnology assessment tool. providing ECUT and industrial chemical manufacturers with a consistent basis for examining proposed bioroutes to bulk chemicals. The basis of this tool would be currently available technology but would allow asking 'what if' types of questions and thereby ascertain the total potential impact of new technology were it to be developed in either energy conservation or biochemistry (recombinant DNA related types of technology). During the course of these evaluations, the energy requirement of bioprocesses, including upstream processing (raw material preparation), sterilization, media preparation, fermentor (reactor) requirements, and downstream processing, which includes cell-liquid separations, soluteliquid separations, dryers and packaging and various interactions which can occur when 'what if' types of questions are asked, will become more clearly understood and documented. This will be of value to ECUT in deciding which areas of bioprocess technology would most usefully profit from government-sponsored research and yet constitute too high a risk for industry to sponsor alone.

DOE/ECUT is concerned with bulk commodity applications of bioprocesses. Considerably less emphasis should be placed on bioroutes to new pharmaceuticals and small-scale specialty chemicals whose high value-added market potential more than justifies any unit cost of energy. The project directs computer analysis at large scale processing, where even small but significant savings of energy on a unit basis have a broad impact on the

national energy budget.

What is being offered is an accurate tool for consistent analysis of bioprocesses across a spectrum of potential applications. This assessment can yield precise information about where DOE should encourage new research to provide the nation with large scale renewable raw material resources and energy-conservative technology. It opens up a gauge of prospective success for any high technology group wishing to evaluate the results of genetic engineering research.

Industry is too constrained by short-range concerns to undertake the long-range research which will bring the potential of bioprocessing of renewable resources to fruition. Witness the recent abandonment of major synfuels projects by industry when the price of petroleum stabilized. Nevertheless, it is in the national interest that replacement technology be available 10 or 20 years from now. Non-renewable raw materials will dry up inevitably. The potential of bioprocessing to make even non-renewable materials more attractive than conventional processing in the long run is not discounted.

The System for Biotechnology Assessment is a small investment in the future. The cost is greatly transcended by its promise of rapidly screening opportunities and goals for DOE/ECUT. This tool would also serve as a valuable training and screening facility both in academia and industry.

The specific objective is to convert the existing computer program known as DOE-ASPEN to function for bioprocesses. ASPEN was developed successfully to allow assessment of synfuel projects. The changes would add the unit operations peculiar to

bioprocesses and bioseparations, such as fermentation. The data base would be extended to include bacterial and cell properties. The costing routines would be updated and extended. To validate the system the already documented acetone-butanol process would be examined, as well as selected other bioprocesses of interest to ECUT/DOE. It is anticipated that towards the middle of the project a consortium of industrial companies would be formed to continue and refine the development of this tool and to facilitate its transfer to industry. This group should include representatives of both large and small firms.

A second, and unfunded, phase of the project is contemplated to begin in the later stages of the work. This would analyze the potential of developing a single technology assessment tool that can be executed on a user-friendly microcomputer such as an IBM Personal Computer. The downsizing of the large model would have to be done with some attention to the level of confidence attainable with restricted models.

2. INTRODUCTION

The chemical and petroleum processing industry is faced with increasing shortage of raw material and increased costs of production over the next two decades. As petroleum supplies dwindle it will be more and more dependent on renewable resources. The new processes, based on biocatalyzed conversions, hold a high potential of providing an alternative source of raw material and energy for the U.S. chemical industry. Although these processes are not currently competitive with other conventional sources, further research into new catalysts, new routes and improved engineering (reactors and separation processes) for production are increasing their potential.

The question naturally arises as to what processes hold the greatest potential and what areas are most critical in terms of research needs. One would like to concentrate available resources on those concepts which hold the greatest opportunity for improved efficiency and production of alternative fuels for use in energy conversion systems.

At present no form of computer-based bioprocess analysis system exists. There is a need for such a system for the following reasons:

- (1) Bioprocesses are currently perceived as a major opportunity in the chemical and process industries
- (2) Different groups of investigators arrive at different assessments of whether a particular process is economic or not
- (3) Such assessments of bioprocesses are of necessity limited and use different starting assumptions
- (4) DOE/ECUT is faced with information of this type and has few

methods of assessing its worth. It then has to decide which, if any, biotransformations are worth supporting. In particular, it must attempt to identify the weak links within a process, strengthening of which would allow the process to succeed.

A TOOL FOR TECHNOLOGY ASSESSMENT is needed rather than a plant design tool. However, the degree of detail needed in process analysis for a realistic estimate of the worth of a bioprocess is considerable. Part of the problem with the type of analysis available from consulting firms is that it inevitably can only provide answers to within 30-50% accuracy. This degree of doubt is rarely, if ever, made explicit. It is not surprising that industry, knowing these limitations, will be slow to move even on an optimistic forecast. However, recognition of, for example, the advantages of a 2-5% improvement in yield could in many cases be sufficient to persuade a bulk producer to switch to a bioroute for a desired product. The producer therefore needs a sufficiently accurate analysis to enable him to make that decision.

It is anticipated that the models developed will have high comparative accuracy and a high degree of uniformity. They will allow, 1) direct comparison with conventional routes to the same chemicals, and 2) ranking of a range of proposed bioprocesses in order of likely economic return. This will permit ECUT to identify research needs and targets more closely. Absolute accuracy in such models is less necessary and will depend largely on the detail of the simulation.

(5) The system will allow individual companies to ask 'should chemical A be made by a biological route?'. The answer will

depend on who is asking the question, when, and for which location. Each company has its own specific special circumstances that it is usually unwilling to discuss publicly. These may include special feedstock agreements at favorable prices, convenient access to markets or raw material sources: a company may already have byproducts available from one plant that can be utilized in another, or special interest rates and risk factors. Furthermore each variable will be subject to change as the company grows or diversifies and as the external environment changes, e.g. oil prices, and as management attitude to perceived risk changes.

None of the above factors can be influenced directly by ECUT. They can be turned to advantage by providing a technology assessment tool that allows the question to be investigated directly by the end user, with explicit regard to his particular circumstances, but without either the circumstances or the answer being disclosed to outside parties.

(6) Much of the technical thrust for the development of biotechnology has come from small companies consisting of outstanding molecular biologists, etc. Their main interests do not and, at least for now, cannot be in the development of sophisticated economic and technology assessment tools. The proposed technology assessment tool would permit them to identify and exploit relevant research and commercial goals.

Despite the requirements of a mainframe computer, the program would be directly available through timesharing systems over the telephone lines, and hence directly available to smaller companies.

(7) The development of the technology assessment programs would

constitute valuable training for the graduate students concerned. After graduation they would be well placed to transfer this training to an appropriate biotechnology-based industry. The availabilty of the programs would also offer many institutions the opportunity to enhance their educational and training activities in this most valuable component of the nation's future economic well-being.

3. SUMMARY OF TECHNICAL PROGRESS

The public version of ASPEN available through the Argonne National Energy software center was installed in the Chemical Engineering Department VAX 11/750 computer. To examine the idea of BIOASPEN, a test example (the manufacture of acetone, butanol and ethanol through a biological route) was chosen for simulation. Previous reports (1, 2) on the BIOASPEN project have shown the limitations of ASPEN in modeling this process.

To overcome some of the difficulties, modules were written for the acid and enzyme hydrolyzers, the fermentor, and a sterilizer. Information required for these modules was obtained from the literature whenever available. Additional support modules necessary for interfacing with ASPEN were also written. Some of the ASPEN subroutines were themselves altered in order to ensure the correct running of the simulation program. After testing of these additions and changes was completed, the Acetone-Butanol-Ethanol (ABE) Process was simulated.

A new release of ASPEN (which contained the Economic Subsystem) was obtained and installed. This subsection was tested, and numerous changes were made in the FORTRAN code. Capital investment and operating cost studies were performed on the ABE Process. Some alternatives in certain steps of the ABE simulation were investigated in order to elucidate their effects on the overall economics of the process.

4. DETAILED DESCRIPTION OF TECHNICAL PROGRESS

This section describes in detail the progress made in the various aspects of the project to date.

4.1 Installation of ASPEN

The public version of ASPEN was installed in the Chemical Engineering VAX computer. The test examples provided by the Morgantown Energy Center were run through the program. UOSD, the test problem for the solids handling modules, could not be run because of the lack of sufficient documentation. Work was therefore started on the development of a documentation aid for ASPEN programmers, which would give information on the hierarchy of subroutines used in any process module. With the installation of the later version of ASPEN (version 6), this work was discontinued as an on-line documentation aid had been provided with the package.

4.2 Incorporation of New Models into ASPEN

ASPEN, as is, was considered inadequate to model various aspects of the ABE Process (1, 2). It was considered essential to model the acid and enzyme hydrolyzers, and the fermenter. A sterilizer was also incorporated into ASPEN. While the actual FORTRAN code for each of the modules may be found in the Appendix, this subsection provides information on the actual models used in each of these units.

(i) Acid Hydrolysis:

The kinetic model in general use (3, 4, 5, 6 etc.) for the cellulose hydrolysis seems to be the model proposed by Saeman (7):

crystalline cellulose ---> glucose ---> degradation products
 amorphous cellulose ---> glucose ---> degradation products

Chambers (8) proposed a similar model for hemicellulose hydrolysis:

hemicellulose ---> xylose ---> degradation products

The rate constants k_i , follow the Arrhenius rate form:

$$k_i = A_i \exp(-E_i/RT)$$

with the pre-exponential factor A_i being a function of acid concentration as follows:

$$A_i = A_{oi}C^m$$

The kinetic constants used in this work were reported by Bhandari et al (6). They make the assumption that the amorphous cellulose, which is the easiest fraction of cellulose to hydrolyze, is attacked and converted instantaneously to glucose. Therefore, an initial yield of glucose was assumed equal to the amount produced from the amorphous cellulose. They made a number of experimental runs, and produced best-fit equations for cellulose and hemicellulose hydrolysis reaction constants based on corn stover as substrate:

$$k_{1} = 2.7*10^{19}C^{2.74}exp(-45,300/RT)$$

$$k_{2} = 2.01*10^{14}C^{1.86}exp(-32,800/RT)$$

$$k_{3} = (7.64 - 3.68/C)*10^{20}exp(-41,000/RT)$$

$$k_{4} = (4.60 - 1.95/C)*10^{14}exp(-32,000/RT)$$

They also present a table comparing their kinetic constants with those available in the literature for other substrates. Some of this data along with kinetic constants presented by Kwarteng (5) for Aspen wood are shown in Table 4.1, and are incorporated into the user model.

(ii) Enzyme Hydrolysis:

The literature provides a number of models that may be used for the enzymatic hydrolysis of cellulose (9, 10, 11, 12 etc.). Most of them however, are applicable to restricted systems (specified substrates and microorganisms), or require enormous numbers of parameters to be specified. In order to keep the model simple at this time, it was decided to use rate expressions presented by Pietersen et al (12). This model does make a large number of assumptions, but also contains elements of the common observables of enzymatic hydrolysis of cellulosic substrates:

- (1) Cellulose consists of a crystalline and an amorphous region.
- (2) Michaelis-Menten kinetics may be used.
- (3) Reactions are subject to product inhibition.
- (4) The organism grows on glucose, with a Monod growth rate.

The reaction scheme is as follows:

The different rate expressions (in g/liter hr) are:

i) crystalline cellulose to amorphous cellulose

rate = 0.959
$$\left[\frac{[C][E]}{2.14 + [C] + C\frac{1}{46.5[A]}}\right]$$
 g/liter hr

Table 4.1 Comparison of Rate Parameters for Acid Hydrolysis
(Different Substrate Materials)

	Preexp. Factor		Acid Concentration		Activation Energy	
Substrate Material	•10 ⁻¹⁸ (mir	1 ⁻¹) •10 ⁻¹⁴	m _{C1}	m _{C2}	Ect (kcal/g	Ecs
Douglas Fir	17.3	2.38	1.34	1.02	42.9	32.87
Kraft Paper	280	4.9	1.78	0.55	45.1	32.8
Solka Floc	12.2	3.79	1.16	0.69	45.2	32.8
Oak Sawdust	4.4	0.028	1.00	1.80	42.9	30.0
Corn Stover	27.1	2.01	2.74	1.86	45.3	32.8
Aspen	1.45D-3	3.84D-5	1.16	0.57	33.7	21.0

ii) amorphous cellulose to cellobiose

rate = 31.3
$$\left[\frac{[A]^{0.6} [E_{C}]}{30.4 + [A] + 9.74[B]} \right]$$
 g/liter hr

iii) amorphous cellulose to glucose

rate =
$$4.12 \left[\frac{[A] [E_C]}{44.1 + [A] + C_{2.25[G]}} \right]$$
 g/liter hr

iv) cellobiose to glucose

rate = 3.58
$$\left[\frac{[B] [E]}{0.265 + [B] + B} \frac{1}{0.376[G]}\right]^{g/liter}$$
 hr

Here, concentrations are in g/liter and the enzyme concentrations $[E_C]$ and $[E_D]$ are in FPU/ml (filter paper units of cellulase activity) and BU/ml (cellobiase units of β -glucosidase activity). The microorganism used in their study was \underline{T} . Reesei, QM 9414, which is the same as that used in the present model.

(iii) Acetone-Butanol-Ethanol Fermentation:

For an anaerobic fermentation, a balance equation may be written:

 $^{\text{CH}}_{\text{m}}^{\text{O}}_{1}$ + aNH₃ --> $^{\text{CH}}_{\text{p}}^{\text{O}}_{\text{n}}^{\text{N}}_{\text{q}}$ + $^{\text{CH}}_{\text{r}}^{\text{O}}_{\text{s}}^{\text{N}}_{\text{t}}$ + $^{\text{bH}}_{2}^{\text{O}}$ + $^{\text{cCO}}_{2}$ The problem however, is in determining the yield coefficients (a,b,c,y_c,z), and the kinetics of the reaction system.

The reaction kinetics and the yield coefficients depend on the biochemical pathways available to the system. For butyric acid bacteria, these pathways for glucose fermentations are numerous (see Figure 4.1) and complex, involving a large number of intermediate/final compounds. Moreover, the kinetics of each step are not known. An analysis of the pathways however, yields impor-

Figure 4.1 Biochemical Pathway of Glucose Fermentation by Butyric Acid Bacteria

tant information on the yield coefficients. This topic has been addressed in detail by Papoutsakis and his coworkers (13, 14), and they present an overall equation for solvent production as follows:

(2 + a) glucose --->
$$3C_4H_{4p}O_{4n}N_{4q}$$
 + (2a - b - 2k) pyruvic acid + (b - e - f - g - h - j) AcCoA + (2a - 1.75 + d - 2f - 2g - i - 2j) NADH₂ + (b - c - d) FdH₂ + (2a - 29.7 + e) ATP + (e + g - f - h) acetic acid + (f - g) butyric acid + cH₂ + (b + h + 2k) CO_2 + g butanol + (h - i) acetone + i isopropanol + j ethanol + k acetoin

To fully determine the above, the 11 constants a through k have to be determined. Some additional equations are valid for these fermentations, and they are listed below:

$$2a - b - 2k = 0$$

$$b - e - f - g - h - j = 0$$

$$2a - 1.75 + d - 2f - 2g - i - 2j = 0$$

$$b - c - d = 0$$

The above equations are valid because AcCoA, NADH₂, FdH₂ and pyruvic acid do not accumulate in the fermentation broth. These equations have been shown to include the Carbon balance and an available electron balance. Also, the derivation of the overall equation includes the assumption that (i) the ATP yield $Y_{ATP} = 10.5$ g/mol, and (ii) the fraction of carbon in biomass, T = 0.462 + 0.023. The overall equation has been shown (13), based on data available in the literature, to be valid.

A computer survey of the literature produced only one model for the ABE fermentation (15). The results reported were not

reproducible, possibly because of an error in some parameter. Therefore, in the absence of any kinetic model for the fermentation, a yield-based model utilizing the overall equation was used. For the purposes of BIOASPEN at the present time, kinetics are not as important as the knowledge of correct yield values of the products. This is because the yield coefficients have an immediate effect on the economics of the process. Therefore, a Monod growth model of biomass growth and substrate (glucose) utilization was used, with the product formation being linked directly to growth. It should be noted that this model would therefore not show the production of acids (which are intermediate products in the biochemical pathways) prior to solvent formation.

(iv) Sterilization:

Sterile operation in bioprocessing is critically important and may account for a fair proportion of operating costs. Heat sterilization, whether continuous or batch, is also energy intensive. Extensive discussions on sterilization may be found elsewhere (16). A short description of the model equations for the kinetics of thermal death is presented here.

Logarithmic death rates may be represented by:

$$\frac{N}{N}_{O} = \exp(-kt)$$

For bacterial spores, the non-logarithmic death rates that are found may be described by a sequence of reactions, in which the formula becomes:

$$\frac{N}{N_0} = \frac{k_r^2}{k_r^2 - k_s^2} \left[\exp(k_s t) - \frac{k_s}{k_r^2} \exp(-k_r t) \right]$$

The rate constants k, k_r and k_s may be represented by the Arrhenius rate forms:

$$k = A \exp\left[-\frac{\Delta E}{RT}\right]$$

Deindorfer and Humphrey (17) describe equations for batch sterilization. The del factor ∇ is defined as:

$$\nabla_{\text{tot}} = \nabla_{\text{heat}} + \nabla_{\text{hold}} + \nabla_{\text{cool}} = \text{Ln} \frac{N}{N_o} = A \exp\left[-\frac{\Delta E}{RT}\right] dt$$

The time-temperature relationships for heating and cooling depends on the method of heating/cooling, and are shown in Table 4.2.

Depending on the values of the various parameters (such as heat transfer coefficients, temperature of sterilization, flow rates of steam) the steam requirements may be worked out.

For continuous sterilization, one may use the continuous injection method or the continuous plate exchanger. In both cases, extra units are required in addition to the steam, adding to the capital costs. The material balance may be written as:

$$\frac{d^2N}{dX^2} - Pe \frac{dN}{dX} - PeDaN = 0$$

where $N = N/N_0$

Pe = Peclet number = UL/Dz

D_z = axial dispersion coefficient

X = X/L

Da = Reaction number = kL/U

U = average velocity

L = length of the unit

Table 4.2 Temperature-Time Profiles in Batch Sterilization

Type of heat transfer	Temperature-time profile	Parameters		
Steam sparging	$T = T_0 \left(1.0 + \frac{at}{1 + bt} \right)$ hyperbolic	$a = \frac{hs}{MT_0 \rho C_p} \qquad b = \frac{s}{M}$		
Electrical heating	$T = T_0(1.0 + at)$ linear	$a = \frac{q}{MT_0 \rho C_p}$		
Steam (heat exchanger)	$T = T_H(1 + be^{-at})$ exponential	$a = \frac{UA}{Mc} \qquad b = \frac{T_0 - T_H}{T_H}$		
Coolant (heat exchanger	$T = T_{c0}(1 + be^{-at})$ exponential	$a = \frac{wc'}{M\rho C_p} (1 - e^{-UA/wc'})$ $b = \frac{T_0 - T_{c0}}{T_{c0}}$		

where h = enthalpy differences between steam at sparger temperature and raw medium temperature

s = steam mass flow rate

M = initial medium mass

 T_0 = initial medium temperature

q = rate of heat transfer, kcal per unit time

 $U = \text{overall heat-transfer coefficient, kcal/m}^2 \cdot \text{h} \cdot \text{°C}$

 $A = \text{heat-transfer area, } m^2$

 $T_{\rm H}$ = temperature of heat source

w = coolant mass flow rate

c' =coolant specific heat

 T_{c0} = coolant inlet temperature

 ρ = medium density

C, = medium heat capacity

The boundary conditions are:

$$X \longrightarrow 0$$
 $\frac{dN}{dX} + Pe(1 - N) = 0$
 $X \longrightarrow 1$ $\frac{dN}{dX} = 0$

The solution to the differential equation is:

$$|X|_{X=1} = \frac{4y \exp(Pe/2)}{(1 + y)^2 \exp\left[\frac{Pey}{2}\right] - (1 - y)^2 \exp\left[-\frac{Pey}{2}\right]}$$
where $y = \left[1 + 4\frac{Da}{Pe}\right]^{0.5}$

The Peclet numbers may be estimated for fluids flowing in circular pipes at various fluid dynamic conditions. The length requirements may therefore be calculated, or alternatively, with a given length one may calculate $N|_{X=1}$.

4.3 Testing of the Economic Subsection in ASPEN

The new release of ASPEN (version 6) contained the costing modules missing from the previous release. Sample problems were formulated and run on this new system, to verify the smooth running of this subsection. Major problems surfaced during these exercises. These were all corrected, and the changes in the FORTRAN code for each subroutine were listed in a separate subdirectory. The original subroutines were also retained so that a proper account was kept of each change.

4.4 Simulation of the ABE Process

A flowsheet was formulated based on a report by Chem Systems Inc. (18), and ASPEN was used to simulate this. Figure 4.2 shows the broad subsystems in the process. The ABE Process basically

consists of fermentation of sugars to solvents. A biological route to the formation of sugars from the cellulosic components of wood is also incorporated, resulting in the six-part process described below.

(i) Prehydrolysis

Acid hydrolysis under carefully controlled conditions (0.5 percent H₂SO₄, 374 deg. F, 185 psia, 12 secs residence time in a plug flow reactor) causes the conversion of hemicelluloses and amorphous celluloses - which are the cellulosic components of wood - to glucose and xylose. Some of the cellulose is converted to the degradation products, hydroxymethyl 1-2-furfuraldehyde and furfural. Wood chips are slurried in a prehydrolysis slurry tank where they are slurried to 35 percent solids, and conveyed to a plug flow reactor. The product stream is immediately quenched, to reduce the degradation reactions. The solids are separated from this stream and sent to the enzyme hydrolysis section, while the soluble sugars are sent to the fermentation section.

(ii) Enzyme Hydrolysis

The remaining unconverted cellulose (crystalline cellulose) is hydrolyzed enzymatically to glucose in this stage. The enzymes are produced by a mutation of <u>T. Reesei</u>, RUT-C-30. Typical conditions required for this stage are 122 deg. F, a pH of 4.8 and hydrolysis time of 24 hours. Conversions of cellulose to glucose may be as high as 90 mol percent, with terminal glucose concentrations of the order of 5 percent.

The solids from pretreatment are slurried and fed to the enzyme hydrolyzers, which are cone-roof atmospheric tanks with heating coils. The product stream is filtered, with the filtrate

going on to fermentation. The solids, consisting mainly of lignin and unconverted cellulose are burnt as fuel.

(iii) Enzyme Production

A mutation of the <u>T. Reesei</u> fungus, RUT-C-30, produces endogluconase and β-glucosidase, the enzymes required for enzyme hydrolysis. Continuous fermentation at 86 deg. F and a pH of 4.8 is done with ligno-cellulose as a carbon source and corn-steep liquor as nitrogen source. Other nutrient requirements are provided for by adding organic salts. The outlet from the fermentor is centrifuged: the filtrate is sent to the enzyme hydrolysers, while a portion of the solids is recycled to the fermentor and the remainder is recovered as a single cell protein by-product.

(iv) Fermentation

Fermentation of the sugars is done with C. acetobutylicum. Since the microorganism cannot tolerate a butanol concentration greater than 1-3 percent, there is a limit to the initial sugar concentration (6 percent) that may be used. Experiments however, have shown that the yield on this fermentation begins to decrease as the initial sugar concentration is increased beyond 3 percent. Accordingly, the Chem Systems report studied two cases: one maximizing yield, and the other with a 5 percent initial sugar concentration. Since the latter case was shown to be more economical, it was chosen for this study.

A typical yield for this case is 30.6 percent on 90 percent sugar utilization after 48 hours fermentation time. The overall yield is thus 27.54 percent, with a solvent ratio of 61.7 percent butanol, 31.8 percent acetone and 6.5 percent ethanol. Corn is used as a growth medium for C. acetobutylicum culture maintenance,

and ammonium sulfate as the nitrogen source. Calcium carbonate and superphosphate are also required in small amounts.

The fermentation vessels are cone-roof tanks in which the sugar streams from prehydrolysis and enzyme hydrolysis, the nutrient media and the seed inoculum are added during the fill period. CO_2 and H_2 evolved during fermentation is sent to the CO_2 recovery section, and the fermentation beer is sent to a beer well prior to purification.

(v) Purification

In this section, the product stream from fermentation is split into pure acetone, butanol and ethanol. A sequence of distillation columns is used for this purpose. Steam costs in this section are extremely high, mainly because the outlet stream from fermentation is very dilute.

(vi) Carbon Dioxide Recovery

Because the amount of carbon dioxide produced during fermentation is large (as much as $3.3~{\rm ft}^3$ per 1b of sugar consumed), it is economical to recover this as liquefied ${\rm CO}_2$ for sale.

The off-gas is passed through a water scrubber to remove impurities and then compressed. This compressed gas is then passed through activated carbon columns to remove other impurities and is then chilled. The chilled gases then pass to a stripper-condenser system, where the CO_2 is separated from the other gases.

A simulation was carried out using the user modules as described in Section 4.2. Some sample input data files and output reports can be found in the Appendix. The separation of the products from the fermentation broth involves fairly complex distillation column calculations, including azeotropic

calculations. The flowsheet presented by Strobel and Bader (19) uses an improved separation sequence (see Figure 4.3) than that used in the conventional 1950's scheme (here shown in Figure 4.4). In this scheme, the butanol-water azeotrope is separated earlier. A beer column concentrates the broth to near the azeotropic composition and feeds it to a decanter. The butanol-rich phase is fed to a second column, from which a pure butanol stream is withdrawn. The third column does an azeotropic separation, with a butanol-water mixture being recycled back to the decanter. The acetone and ethanol are separated further downstream. The improvements of this process over the conventional one are: (i) the major product, butanol, is removed earlier, resulting in lower flow rates downstream, and (ii) there is one less column required in the overall scheme.

This flowsheet was therefore used for the present simulation. Rigorous calculations however, were not performed for any of the distillation columns; instead, a sequence of splitters and mixers with defined splits (based on the calculations of Strobel and Bader) were used. For the costing exercises, the sizing calculations performed by the same authors were used, as they considered a product stream of a similar flow rate as that produced by the present ABE simulation.

Figures 4.5 through 4.7 show the process flowsheet. Wood chips enter the mill (Figure 4.5), where they are crushed. The crushed wood is slurried in a tank, and then introduced into the acid hydrolyzer at the appropriate conditions. The quench serves to arrest the degradation reactions. After further cooling, the soluble sugars are separated from the crystalline cellulose and

butanol/water remover acetone separator

23. 24.

beer column decanter Butanol stripper

20. 21. 22.

Figure 4.3 Improved Separation Sequence

- 26 -

Figure 4.4 Conventional Separation Scheme

Figure 4.5 Acid Hydrolysis

. 29 -

Figure 4.7 Fermentation

.

lignin, passed through a carbon column for purification purposes, and sent on to the fermentation section.

The unconverted celluloses and lignin from acid hydrolysis is mixed with water, acid and enzyme, and introduced to the first of a train of enzyme hydrolyzers (Figure 4.6). These tanks are maintained at the appropriate conditions, and after a total residence time of about 50 hours, the product stream is filtered in a rotary filter. The filtrate is sent on to the fermentation section after removing the enzyme if desired, and the solids are used as fuel.

In the fermentation section (Figure 4.7) the two streams from the two hydrolysis steps are sterilized by steam injection, and then cooled down to the temperature required for fermentation. The off-gas generated from the fermentors are compressed to facilitate carbon dioxide removal. The liquid product stream is sent to the purification section (see Figure 4.3), and the recycle is fed back into the reflux mixer. A portion of this stream is also purged, so that there is no buildup of biomass.

4.5 Costing of the ABE Process

ASPEN uses cost correlations which were produced by regression on cost data for a large number of equipment classes. Occasionally, the data was divided into groups to obtain a better fit. Extrapolations, whenever required, are based on the correlation variable. There are four modes available for costing:

- (i) Stand-alone
- (ii) Unit Operation (UOS) Reference
- (iii) User Correlation

(iv) User-supplied Cost

For the ABE costing, the stand-alone costing option was used. Thus, all design parameters required by the cost models were specified, as were utility capacities. The calculations of capital investment and operating cost requires the specification of numerous cost parameters, or the use of ASPEN defaults for the same. The defaults were used in most instances. The cost indices used were as follows:

Index	Value
Plant	325.0
Equipment	346.7
Labor	264.9

In addition, the labor rates assumed were \$ 13.75/hr.

Equipment costs for the entire ABE plant are shown in Table 4.3. ASPEN defaults have been used to evaluate these costs, except for the user-specified scale-up and adjustment factors, and in certain cases, the material factor. Table 4.4 shows the installation and utility costs for the base case ABE simulation. As far as equipment costs are concerned, the fermentation section requires the most capital: about 70 percent of the total investment is used here. The costs in this section are large mainly because the fermentation tanks are extremely large, and a large number of them are required to keep the plant in operation on a continuous basis.

The major utility requirements are of cooling water and steam. The largest costs (58 percent of total utility costs) are associated with the cooling water requirements in the fermentation step. Since the heat evolved in this step is of a very low

Table 4.3 Equipment Costs, Base Case ABE Plant (thousand dollars)

EQUIPMENT	NO.	TOTAL PRICE
Acid Hydrolysis:		
Crusher	2	341,4
Slurry pump	2	105.5
Slurry tank	1	43.5
Acid hydrolyzer	î	72.6
Quench tank	i	79.4
Carbon column	1	
	1	51.8
Centrifuge	_	149.6
Pumps	10	65.4
		909.2
Enzyme Hydrolysis:		
Mixing tank	1	33.5
Enzyme hydrolyzers	5	11,539.2
Rotary filter	1	76.6
Pumps	10	65.4
		11,714.7
		11,114.1
Fermentation:		
Sterilizer	1	76.9
Heat exchanger	12	1,090.1
Cooling tank	1	- · · · · · · · · · · · · · · · · · · ·
Fermentor	10	102.4
		69,790.3
Pumps	17	355.0 71,414.7
		71,414.7
Purification:		
Column 1	1	191.0
Column 2	1	145.4
Column 3	1	299.2
Column 4	1	193.4
Column 5		299.2
Column 6	1	299.2
Evaporator	î	4,787.5
Pumps	6	
rumpa	O	20.4
		6,235.3
Carbon dioxide recovery:		
Compressors	2	7,147.8
Pressure vessel	1	261.7
ressure vesser	•	7,409.5
		7,409.5
Storage:		
Solid (yard/building)	1	194.5
Liquid (low pressure tanks)	6	3,428.0
Gas (high pressure tanks)	2	868.4
one (urdu bressare cauve)	-	4,490.4
		4,490.4

Table 4.4(a) Installation Cost Summary, Base Case ABE Simulation (thousand dollars)

SECTION	EQUIP. COST	MATERIAL COST	LABOR COST
ACID HYDROLYSIS	909	679	360
ENZYME HYDROLYSIS	11,715	2,065	1,190
FERMENTATION	71,415	24,092	15,624
PURIFICATION	6,235	1,393	736
CO ₂ RECOVERY	7,410	4,426	1,960
PRODUCT/RAW MATERIAL STORAGE	4,491	1,771	1,071
TESTING LABOR			2,946
CAPITALIZED SPARES		2,403	
TOTAL	102,175	36,829	23,887

Table 4.4(b) Utility Cost Summary for Base Case ABE Simulation (thousand dollars per year)

SECTION	ELECTRICITY	STEAM	WATER	REFRIG.
ACID HYDROLYSIS	207	30,548	644	
ENZYME HYDROLYSIS	53		2,807	
FERMENTATION	114	11,606	107,696	
PURIFICATION	27	5,536	19,439	
CO ₂ RECOVERY				5,112
TOTAL	401	47,690	130,586	5,112

quality (fermentation occurs at 33 degrees C), the water requirements are excessively large; any means of lowering these costs should be investigated. It should be mentioned here that it is probably more economical to set up a cooling tower in an actual plant, so that the water costs are not prohibitively large. This was not done in the current simulation because of the absence of a module for a cooling tower in the ASPEN program.

The capital investment report and the operating cost summary for this case are shown in Tables 4.5 and 4.6, which are taken from the actual ASPEN output report. In Table 4.6, the individual raw material and utility figures are not accurate, though the sum of the two numbers is. This is because some utilities (such as cooling water in the fermentors) were treated as inputs (and hence raw materials) to the system. Obviously, the economics do not change because of this.

All costs calculated for Table 4.6 were based on ASPEN defaults. The hourly rate for operating labor was taken as \$ 13.75, and the number of operaters required per shift was estimated as 15. The depreciation method used was straight-line, with the plant life for tax purposes being taken as 15 years. The net operating cost of roughly \$253 million per year does not take into account the by-product credit accrued because of acetone and ethanol sales. If these are also taken into account, the cost of production of butanol works out to be \$ 0.84/Kg (roughly \$ 2.55 per gallon), as opposed to the September 1985 selling price (20) of \$ 0.79/Kg (about \$ 2.40 per gallon). There is some question as to whether all the by-products (such as acetic acid, butyric acid, acetoin, lignin, carbon-dioxide, etc.) can be sold. If it is

Table 4.5 Capital Investment Report, Base Case

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 12/13/85 PAGE 81 ABE COSTING ECONOMIC EVALUATION SECTION

CAPITAL INVESTMENT REPORT ASPEN METHOD

• PROJECT CONSTRUCTION COSTS	FOR	Lt	CATION,	1985	QUAR'	TER : 1	••
		ERIAL COS					HOUR
PROCESS UNITS UTILITY UNITS RECVNG, SHIPPING & STOR SERVICE BUILDING SERVICE SYST & DISTRBUTN ADDITIONAL DIRECT	\$ 1	38,643,775 (0 11,390,065 7,714,915	5 \$	3,36 1,92	0 0 51,163	1 - 73 24- 140	0 0 4,448
SUBTOTAL	\$ 1	57,748,75	\$	29,17	75,172	2,12	1.831
SITE DEVELOPMENT FREIGHT		1,730,530 3,334,98	5	;	34,045		2,476
TOTAL DIRECT COST		62,814,267		29,20	9,217	2,12	4.307
FIELD INDIRECT		7,886,486	3		2,728	1,292	2,287
FIELD CONSTR COST FIELD CONSTR LAB HRS	\$ 1	70,700,758		50,5	31,945	3,416	5,593
• PROJECT FIXED INVESTMENT F	OR	LOCA	ATION, 1	.985 (QUARTER	R: 1 +	k
TOTAL FIELD CONSTRUCTION COS PROJECT MANAGEMENT COST ENGINEERING & HOME OFFICE CO FEES, PERMITS & INSURANCE ADDITIONAL DEPRECIABLE COST SUBTOTAL - INDIRECTS	IST	•	14,10 28,20 18,80	4,994 9,988		61,121	640
TOTAL DEPRECIABLE (EX. C	ONT.)					82,354	
PROCESS CONTINGENCY PROJECT DEFINITION CONTINGEN TOTAL CONTINGENCY	ICY	•	56,47 28,23	70,868 35,434		84,706	
TOTAL DEPRECIABLE CAPITA	L					67,060	
LAND ROYALTY & EXPENSES ADDITIONAL NON-DEPRECIABLE SUBTOTAL (NON-DEPRECIABLE	COSTS)	•	7,77	0, 194 0 0		7,770,	194
TOTAL FIXED INVESTMENT					_	74.830	

Table 4.6 Annual Operating Cost, Base Case

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 12/13/85 PAGE 82 ABE COSTING ECONOMIC EVALUATION SECTION

ANNUAL OPERATING COST

(1985\$, CAPACITY RATIO: 1.00)

TOTAL RAW MATERIAL			\$	235,892,050
TOTAL UTILITIES				25,377,712
OPERATING LABOR (131490 HR) MAINTENANCE LABOR (1008173 HR) MAINTENANCE MATERIAL	\$	13,862,388 9,324,233		1,807,987
SUB-TOTAL MAINTENANCE				23,186,621
SUPERVISION FRINGE BENEFITS OPERATING SUPPLIES OTHER DIRECT COST				3,134,075 7,521,780 182,416 0
TOTAL DIRECT COST			*	298,242,306
PROPERTY TAX PROPERTY INSURANCE ADMINST. & GENERAL DEPRECIATION (STRAIGHT LINE) TOTAL INDIRECT COST	•	7,770,194 3,108,078 11,383,563 25,900,648		48, 162, 483
GROSS OPERATING COST LESS: BY-PRODUCT CREDIT		•	\$	346,404,789 93,044,428
NET OPERATING COST			\$	253,360,361
SUMMARY: FIXED COST VARIABLE COST TOTAL GROSS OPERATING COST	•	83,995,363 262,409,426	\$	346,404,789
GROSS COST EXCL. DEPRECIATION			\$	320,504,141

assumed that only acetone and ethanol can be sold, the cost of production of butanol is then \$1.21/Kg (or \$3.68 per gallon). It would be reasonable to assume that the cost of production would be somewhere between \$0.84/Kg and \$1.21/Kg, making this method an unattractive way of manufacturing butanol. It should be noted here however, that some major costs (such as cooling water and other utility costs) could conceivably be reduced by some better design concepts (such as energy integration, or the building of a cooling tower, etc.). The cost of production then would be significantly lower.

4.6 Changes to the Basic Flowsheet

Table 4.4 shows that the major utility cost is the cooling water cost in the fermentation section of the plant, and may be as much as 42.5 percent of the annual net operating cost (see Table 4.6). It would therefore be obvious that any changes made to the flowsheet should be geared towards investigating methods of reducing these costs. Before that is done, it would be useful to see why these costs are so large.

One advantage of continuous or semi-continuous processing in the case of ABE fermentations is that butanol, which is an inhibitor of the fermentation, may be continually removed from the product stream. This allows for a recycle of unconverted reactants, and a feed sugar concentration larger than that originally thought possible. There are two negative effects of this, however. The first is a result of the separation scheme, which is distillation in this case. Live steam is added in the first column, thereby bringing temperatures up to levels where

separation of the products from water may occur: this results in further dilution of the recycle stream, and an extra cooling cost because the temperature of this stream (about 100 degrees C) must be brought down to the fermentation temperature (33 degrees C). The second negative effect is that the fermentor sizes have to be increased, because the recycle stream is less concentrated in the sugars than the streams coming from the hydrolysis steps.

One relatively easy way of handling this problem would be to concentrate the recycle stream by evaporating off most of the water. However, this would be too costly in terms of equipment costs as well as high pressure steam requirements. Another way would be to investigate possibilities of having more concentrated feeds to the fermentation section, by altering some operating conditions further upstream. Two schemes were explored, and are explained here.

A. Concentrated Feed to Enzyme Hydrolyzers

Literature surveys have shown that most enzyme hydrolysis studies have been carried out at a maximum initial cellulose concentration of about 8 weight percent. Lee and Fan (21) mention that at above these concentrations, the cellulose fibers form a network which entraps water and renders it less movable, thereby hindering the hydrolysis. Particle sizes in their case was of the order of 0.04 mm, and the substrate involved was Solka Floc. Since the problem seems to be a physical one, and since our simulation is for roughly 2 mm particle sizes, it seems that the problem may not be as acute in this case. Also, the substrate is acid-hydrolyzed wood, and the 'netting' effect would probably not be seen. There has been mention in the literature (22, 23) of

substrate inhibition, but the data is not extensive. In any event, it is a worthwhile exercise to gauge the effect of having higher feed concentrations to the enzyme hydrolysis step on the entire process economics, if only to answer a 'what if' question. If the improvement in the economics was substantial enough, a potential area of research would be identified.

As opposed to the base case of 8 wt % substrate concentration in the inlet to enzyme hydrolysis, a simulation with roughly 26 wt % was done. This had far-reaching effects on the process economics, ranging from different utility costs (because of lower steam requirements for heating during hydrolysis and for sterilization prior to fermentation, and of lower cooling costs during fermentation) to lower equipment costs (because of the lower throughputs). An overall view of the economics can be found in Tables 4.7 and 4.8, which are the capital investment report and the annual operating cost respectively.

B. Two-Stage Acid Hydrolysis

Since there is some question as to whether enzyme hydrolysis can proceed at high inlet substrate concentrations, an alternative is to carry out the hydrolysis in two stages. The amorphous cellulose and hemicellulose fractions could be hydrolyzed as before, and the remaining insoluble crystalline fraction could be hydrolyzed by hydrolysis at other conditions. Care can be taken to ensure the degradation reactions do not proceed beyond tolerable levels. However, the overall yield of the two-step process will not be as good as the combination of acid and enzyme hydrolysis because of some unavoidable product degradation.

Table 4.7 Capital Investment Report, Case A

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 12/13/85 FAGE 80 ABE COSTING ECONOMIC EVALUATION SECTION

CAPITAL INVESTMENT REPORT ASPEN METHOD

* PROJECT CONSTRUCTION COSTS	5 FOR	LO	CATI	DN, 198	5 ดเ	JART	ER : 1 **
		TERIAL COST					
PROCESS UNITS UTILITY UNITS RECVNG , SHIPPING & STOR SERVICE BUILDING SERVICE SYST & DISTRBUTN ADDITIONAL DIRECT	•	73,754,695 0 0 6,091,274 4,125,847	•	13,	197,3 797,5 030,5	361 0 0 511 573 0	0 0 130,728 74,951 0
SUBTOTAL		83,971,816					
SITE DEVELOPMENT FREIGHT		925,468 1,783,512					1,324
TOTAL DIRECT COST		86,680,795					
FIELD INDIRECT		4,331,786		11.	711.6	366	709,810
FIELD CONSTR COST FIELD CONSTR LAB HRS		91,012,581		27,	755,5	519	1,876,621
* PROJECT FIXED INVESTMENT	FOR	LOCA	TION	, 1985	QUAF	RTER	: 1 **
TOTAL FIELD CONSTRUCTION COMPROJECT MANAGEMENT COST ENGINEERING & HOME OFFICE CONFES, PERMITS & INSURANCE ADDITIONAL DEPRECIABLE COST SUBTOTAL - INDIRECTS	OST	6	15	,593,93 ,187,87 ,125,24	2		18,768,100 32,907,057
TOTAL DEPRECIABLE (EX.	CONT.)				\$	1	51,675,157
PROCESS CONTINGENCY PROJECT DEFINITION CONTINGENCY	NCY			,335,03 ,167,51			45,502,547
TOTAL DEPRECIABLE CAPIT	AL				\$		97,177,704
LAND ROYALTY & EXPENSES ADDITIONAL NON-DEPRECIABLE		•	4	, 183, 36	7 0 0		
SUBTOTAL (NON-DEPRECIABLE	COSTS	;)					4,183,367
TOTAL FIXED INVESTMEN	T				\$	2	01,361,071

Table 4.8 Annual Operating Cost, Case A

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 12/13/85 PAGE 81 ABE COSTING ECONOMIC EVALUATION SECTION

ANNUAL OPERATING COST

(1985\$, CAPACITY RATIO: 1.00)

TOTAL RAW MATERIAL		\$ 158,967,229
TOTAL UTILITIES		25,340,827
OPERATING LABOR (131490 HR) MAINTENANCE LABOR (542786 HR) MAINTENANCE MATERIAL	\$ 7,463,321 5,020,040	1,807,987
SUB-TOTAL MAINTENANCE		12,483,360
SUPERVISION FRINGE BENEFITS OPERATING SUPPLIES OTHER DIRECT COST		1,854,262 4,450,228 182,416 0
TOTAL DIRECT COST		\$ 205,760,586
PROPERTY TAX PROPERTY INSURANCE ADMINST. & GENERAL DEPRECIATION (STRAIGHT LINE)	\$ 4,183,367 1,673,347 6,735,035 13,944,555	a
TOTAL INDIRECT COST		 26,536,303
GROSS OPERATING COST LESS: BY-PRODUCT CREDIT		\$ 232,296,889
NET OPERATING COST		\$ 126,292,701
SUMMARY: FIXED COST VARIABLE COST	\$ 47,314,556 184,982,333	
TOTAL GROSS OPERATING COST		\$ 232,296,889
GROSS COST EXCL. DEPRECIATION		\$ 218,352,334

Tables 4.9 and 4.10 present the capital investment report and annual operating cost for this case. Again, there were improvements in the economics. These were substantial when compared to the base case, but not as dramatic when compared to Case A above. An extra cost is introduced because of the steam requirements for the second acid hydrolysis, but this is more than offset by the savings in cooling water requirements in the fermentation stage. The desired product yields were lower in this case.

Table 4.11 compares installation costs and utility costs for each of the three cases. The dramatic improvement in the cost of the fermentation section is not matched by similar improvements in any other section. For Case B, there is a significant reduction in costs when the second hydrolysis section is compared to the previous enzyme hydrolysis costs. Additionally, some real improvements that are not reflected in the costs are that in Case B, an extra species (enzyme) is not being introduced into the system. Therefore, enzyme recovery and production costs would be saved. In terms of \$/Kg, the cost of production of butanol works out to be as follows, assuming all the acetone and ethanol that is produced in each case is sold:

	with by-product credit	without by-product credit
Base Case	0.84	1.21
Case A	0.35	0.81
Case B	0.23	0.83

These costs obviously do not include the effects of certain

Table 4.9 Capital Investment Report, Case B

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ++ PROD VERSION ++ DATE: 12/23/85 PAGE 75 ABE COSTING ECONOMIC EVALUATION SECTION

CAPITAL INVESTMENT REPORT ASPEN METHOD

• PROJECT CONSTRUCTION COST	S FOR	LOC	CATION.	1985	QUAR'	TER : 1	**
		TERIAL COST					
PROCESS UNITS UTILITY UNITS RECVNG , SHIPPING & STOR SERVICE BUILDING SERVICE SYST & DISTRBUTN ADDITIONAL DIRECT	•	62,063,136 0 0 5,147,170 3,486,384	•	11,64	42 ,43 2 0 0 0 18, 9 16	11: 6:	6,722 0 0 0,467
SUBTOTAL		70,696,710		14,00			0,523
SITE DEVELOPMENT FREIGHT		782,030 1,507,086		1	15,385		1,119
TOTAL DIRECT COST	\$	72,985,826		14.04	17,578	1,02	1,642
FIELD INDIRECT		3,792,846		10,2	54,732	62	1,499
FIELD CONSTR COST FIELD CONSTR LAB HRS	\$	76,778,672	\$	24.30	02,311		3,141
• PROJECT FIXED INVESTMENT	FOR	LOCAT	TION, 1	985 0	QUARTE	₹:1 +	•
TOTAL FIELD CONSTRUCTION CO PROJECT MANAGEMENT COST ENGINEERING & HOME OFFICE C FEES, PERMITS & INSURANCE ADDITIONAL DEPRECIABLE COST SUBTOTAL - INDIRECTS	ost	\$	6,47 12,95	75,819 51,637 54,425 0		28,061	. 880
TOTAL DEPRECIABLE (EX.	CONT.)					129,142	
PROCESS CONTINGENCY PROJECT DEFINITION CONTINGE TOTAL CONTINGENCY	NCY	•	25.82 12.91	28.573 4.286		38,742	
TOTAL DEPRECIABLE CAPIT	AL				\$;	167,885	,722
LAND ROYALTY & EXPENSES ADDITIONAL NON-DEPRECIABLE SUBTOTAL (NON-DEPRECIABLE	COSTS	*	3,56	0 0 0		3,567	, 415
TOTAL FIXED INVESTMEN	т					171,453	

Table 4.10 Annual Operating Cost, Case B

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 12/23/85 PAGE 76 ARE COSTING ECONOMIC EVALUATION SECTION

ANNUAL OPERATING COST

(1985*, CAPACITY RATIO: 1.00)

TOTAL RAW MATERIAL			\$ 150,264,848
TOTAL UTILITIES			25,309,404
OPERATING LABOR (131490 HR) MAINTENANCE LABOR (462867 HR) MAINTENANCE MATERIAL	•	- 6,364,434 4,280,898	1,807.987
SUB-TOTAL MAINTENANCE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,645,333
SUPERVISION FRINGE BENEFITS OPERATING SUPPLIES OTHER DIRECT COST			1,634,484 3,922,763 182,416 0
TOTAL DIRECT COST			\$ 194,361,593
PROPERTY TAX PROPERTY INSURANCE ADMINST. & GENERAL DEPRECIATION (STRAIGHT LINE) TOTAL INDIRECT COST	\$	3,567,415 1,426,966 5,936,762 11,891,384	22,822,526
GROSS OPERATING COST LESS: BY-PRODUCT CREDIT		•	\$ 217,184,119 125,530,452
NET OPERATING COST			\$ 91,653,667
SUMMARY: FIXED COST VARIABLE COST	\$	41.015.509 176.168.610	
TOTAL GROSS OPERATING COST			\$ 217,184,119
GROSS COST EXCL. DEPRECIATION			\$ 205,292,735

Table 4.11 (a) Comparison of Installation Costs, Three Cases (thousand dollars)

SECTION	BASE CASE	CASE A	CASE B
ACID HYDROLYSIS	1948	1948	1948
ENZYME HYDROLYSIS*	14,970	11,454	2,155
FERMENTATION	111,131	41,621	36,407
PURIFICATION	8,365	8,365	8,365
CO ₂ RECOVERY	13,796	13,796	13,796
PRODUCT/RAW MATERIAL STORAGE	7,333	7,142	8,843
TESTING LABOR	2,946	1,576	1,333
CAPITALIZED SPARES	2,403	1,051	860
TOTAL	162,892	86,953	73,707

Table 4.11 (b) Comparison of Total Utility Costs, Three Cases (thousand dollars)

SECTION	BASE CASE	CASE A	CASE B
ACID HYDROLYSIS	31,399	31,399	31,399
ENZYME HYDROLYSIS	2,860	173	10,414
FERMENTATION	119,416	45,462	33,557
PURIFICATION	25,002	25,002	25,002
CO ₂ RECOVERY	5,112	5,112	5,112
TOTAL	183,789	107,148	105,484

[•] For Case B, these are costs for the second acid hydrolysis stage

factors such as fermentor contamination. Also, since no standby equipment have been accounted for, costs would be higher.

Taking the selling price to be 0.79/Kg, the target cost of production should be around 0.69/Kg, so that a return of 15 percent is made on investments. It would seem therefore, that both Case A and Case B might be viable candidates for further study. At the present time, both cases have associated difficulties. For Case A, the problem is whether the enzyme hydrolyzers can handle higher substrate concentrations than 8 weight percent. For Case B, the uncertainty is in knowing whether the acid hydrolyzers which have worked in the bench scale will work in the enormous scales envisaged for this simulation.

5. REFERENCES

- 1. 'Bioaspen: System for Technology Assessment', Technical Report submitted to JPL by Center for Biotechnology, Washington University, March, 1985.
- 2. 'Bioaspen: System for Technology Assessment', Technical Report submitted to JPL by Center for Biotechnology, Washington University, July, 1985.
- 3. Thompson, D.R., H.E. Grethlein, I&EC PRD, 18, 166 (1979).
- 4. Church, J.A., D. Wooldridge, IXEC PRD, 20, 371 (1981).
- 5. Kwarteng, I.K., PhD Thesis, Dartmouth College (1983).
- 6. Bhandari, N., D.G. Macdonald, N.N. Bakshi, Biotechnology and Bioengineering, 26, 320 (1984).
- 7. Saeman, J.F., I&EC, 37, 42 (1945).
- 8. Chambers, R.P., Y.Y. Lee, T.A. McCaskey, 3rd Annual Biomass Systems Conference Proceedings, Golden, CO, June 1979.
- 9. Wald, S., C.R. Wilke, H.W. Blanch, Biotechnology and Bioengineering, 27, 221 (1984).
- 10. Fan, L.T., Y-H Lee, Biotechnolgy and Bioengineering, 25, 2707 (1983).
- 11. Carminal, G., J. Lopez-Santin, C. Sola, Biotechnology and Bioengineering, 27, 1282 (1985).
- 12. Peitersen, N., E.W. Roos, Biotechnology and Bioengineering, 21, 997 (1979).
- 13. Papoutsakis, E.T., Biotechnology and Bioengineering, 26, 174 (1984).
- 14. Roos, J.W., J.K. McLaughlin, E.T. Papoutsakis, Biotechnology and Bioengineering, 27, 681 (1985).
- 15. Gray, G.C., D.A. Wallis, Biotechnology and Bioengineering Symposium, 13, 371 (1983).
- 16. Wang, D.I.C, C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey, M.D. Lilly, 'Fermentation and Enzyme Technology', John Wiley, p 138 (1979).
- 17. Deindorfer, F.H., A.E. Humphrey, Applied Microbiology, 7, 256 (1959).
- 18. ChemSystems, Inc., Report submitted to ECUT, September, 1982.

- Strobel, M.K., J.B. Bader, Report No. ORNL/MIT-330, Oak Ridge National Lab, 1981.
- 20. Chemical Marketing Reporter, September, 1985.
- 21. Lee, Y-H, L.T. Fan, Biotechnology and Bioengineering, 24, 2383, (1982).
- 22. Cowling, E.B., Biotechnology and Bioengineering Symposium, 5, 163 (1975).
- 23. VanDyke Jr., B.H., PhD Dissertation, MIT, 1972.

APPENDIX A

FORTRAN Listings of User Files

This appendix contains the listings of the user files created to enable the simulation of the A-B-E Process. There are four subroutines, each written according to the guidelines in the ASPEN manuals. Descriptions of the input parameters are included as comment statements at the beginning of each subroutine. The four subroutines do the following:

NAME	DESCRIPTION
USR001	Enzyme hydrolyzer
USR002	Acid hydrolyzer
USR003	A-B-E Fermentor
USR004	Sterilizer

```
SUBROUTINE USROO1(NSIN,NINFI,SIN1,SIN2,SIN3,SIN4,SINFI,NSOUT,NINFO,SOUT1,SOUT2,SOUT3,SOUT4,
                   SINFO . NSUBS , IDXSUB, ITYPE , NINT , INT
                                                               , NREAL .
     2
                                , NPO
                   REAL , IDS
                                        , NBOPST, NIW
                                                               , NW
     Δ
                         , NSIZE , SIZE)
 CHANGE #1 (10/02/85): Sign corrected on outlet heat stream
        This subroutine is the first version of an enzyme hydrolyzer
C
        Currently (7/12/85) it handles only one input and one output
C
        stream of stream class MIXEDNC. Additionally, some require-
C
        are as follows:
C
        (1) The component lists have to be in the following order:
                  CONVENTIONAL: water
C
C
                  NONCONVEN
                               : crystalline cellulose, amorphous cellu-+
C
                                 lose,cellebiose,glucose and enzyme
C
              Additional components may be added to these lists as
              required.
C
        (2)
             SI units have been used.
C
             Enzyme activity is taken is cellulase (FPU/mL) and
C
              cellobiase (BU/mL), and are the first two elements of the
C
              user-defined component attribute CAUSR1 of NC-component +
C
              ENZYME.
C
        (4)
             Int(1):
                       no. of records to be retained for results pass
C
             Real(1)
        (5)
                        : lower limit for integration (hr)
              Real (2)
                            upper limit for integration (hr)
C
              Real (3)
                            temperature of hydrolyzer (K)
C
                         : pressure of hydrolyzer (Pa)
              Real (4)
             In addition to these 4 spaces for the real vector, space+
C
              must be kept to store profiles for the results pass.
C
              The additional spaces must equal at least 5*(int(1) +
C
              in number.
C
             The dimension of RETN has to be 6+NCC + 37
        The kinetics for this subroutine are taken from: Peitersen &
Ċ
        Ross, B & B, 21, 997 (1979).
        Subroutines called are: GEAR, RPTHDR, USRCPY, FLASH
        IMPLICIT REAL+8 (A-H, 0-Z)
                               .SIN2(1)
                                           ,SIN3(1)
        DIMENSION SIN1(1)
                                                          -SIN4(1)
                   SINFI(1)
                               ,SOUT1(1)
                                           ,SOUT2(1)
                                                          ,SOUT3(1)
                                           , IDXSUB(NSUBS), ITYPE(NSUBS)
                   SOUT4(1)
                               ,SINFO(1)
     3
                               , REAL (NREAL), IDS (2,13)
                                                          , NBOPST (3, NPO) ,
                   INT (NINT)
                   IW(NIW)
                               .W(NW)
                                           , SIZE (NSIZE)
                                                          .WS (68)
                                           , Y (4)
     5
                               , XDUT (100)
                   A(32)
                                                          .RETN(103)
                   IRETN(6)
                               , IMISS , NGBAL , IPASS , IRESTR
        COMMON /USER/ RMISS
                                                                  . ICONVG.
                               , LPMSG , KFLAG , NHSTRY , NRPT
                       LMSG
                       ISIZE
        COMMON /NCOMP/ NCC
                               , NNCC
        COMMON /IDSCC/ IDSCC(2,1)
        COMMON /IDSNCC/ IDSNCC(2.1)
        COMMON /IDXCC/ IDXCC(1)
        COMMON /IDXNCC/ IDXNCC(1)
        COMMON /MW/ XMW(1)
        COMMON /RPTGLB/ IREPFL, ISUB(10)
C
```

- 51 -

```
C
          The next two lines are for GEAR's benefit
          COMMON /GEARLC/ XDUMB(70), IDUMB(84)
          DATA N, TEST1, TEST2, EPS, NWS, NA/4, 1D-10, 1D0, . 1D0, 68, 32/
          DATA KODE, NPKODE, KPHASE, MXIT, ETOL, KRSLT/2, 2, 0, 30, 1D-4, 2/
 C
 C
          Go to 500 for Results pass
 C
          IF (IPASS.EQ.4) GO TO 500
          L = 0
          NOUT = - INT(1)
          TEMP = REAL(3)
          PRES = REAL(4)
 C
 ε
          Store initial values, and convert inlet flowrates (SI) to
 C
          concentrations (g/L)
 C
          HO = SIN1(1) + XMW(1)
          CCO = SIN1(NCC + 10)
          ACO = SIN1(NCC + 11)
          CLO = SIN1(NCC + 12)
          GCO = SIN1(NCC + 13)
          T = 1D3/H0
          Y(1) = CCO+T
          Y(2) = ACO+T
          Y(3) = CLO+T
          Y(4) = GCO*T
 C
 C
         Extract cellulase and cellobiase activities
C
          CLLASE = SIN1(NCC + NNCC + 19)
          CLBASE = SIN1(NCC + NNCC + 20)
 C
 C
          X and XEND are the limits of the integration, passed from the
 C
          input file
 C
          X = REAL(1)
          XEND = REAL(2)
          JFLAG = 0
          IFLAG = 0
 10
          CONTINUE
          IF (IFLAG.EQ.1) GO TO 12
          DO 11 I = 1, N
            IF (Y(I).LE.1D-3) THEN
              TEST1 = 1D0
              TEST2 - ODO
              IFLAG = 1
            END IF
         CONTINUE
 11
 12
          CONTINUE
          CALL GEAR (N. X. XEND, Y. TEST1, TEST2, EPS, NOUT, XOUT, NWS, WS, NA, A.
                    JFLAG, H, NSTEP, IORDER, NDERIV)
          IF (JFLAG) 900,910,20
 20
          GO TO (30,40,10) JFLAG
 C
 C
         Evaluate the reaction rates and derivative values
 C
 30
         CONTINUE
          DO 35 I = 1.N
            IF (Y(I).LE.ID-B) Y(I) = ODO
```

```
35
        CONTINUE
        RATE1 = 0.959 + Y(1) + CLLASE/(2.14 + Y(1) + 46.5 + Y(2))
        RATE2 = 31.3 + Y(2) + *.6 + CLLASE/(30.4 + Y(2) + 9.74 + Y(3))
        RATE3 = 3.58 \pm Y(3) \pm CLBASE/(0.265 \pm Y(3) \pm 0.376 \pm Y(4))
        RATE4 = 4.12*Y(2)*CLLASE/(44.1 + Y(2) + 2.25*Y(4))
        IF (RATE1.LE.1D-8) RATE1 = ODO
        IF (RATE2.LE.1D-8) RATE2 = ODO
        IF (RATE3.LE.1D-8) RATE3 = 0D0
           (RATE4.LE.1D-8) RATE4 = ODO
        WS(1) = - RATE1
        WS(2) = RATE1 - RATE2 - RATE4
        WS(3) = RATE2 - RATE3
        WS(4) = RATE3 + RATE4
        GD TD 10
40
        TYPE +, X, Y
100
        FORMAT (1X,6D13.5,3I7)
C
        Store values for results pass
C
        REAL(5*L + 5) = X
        DO 45 I = 1.4
          IF (Y(I).LE.1D-10) Y(I) = ODO
           J = 5*L + I + 5
          REAL(J) = Y(I)
45
        CONTINUE
        L = L + 1
        GO TO 10
900
        WRITE(NTRMNL, 200), JFLAG
200
        FORMAT(1X, 'INTEGRATION HALTED BECAUSE OF ERROR CONDITION '13)
        GO TO 999
910
        WRITE (NTRMNL, 300)
300
        FORMAT(1X, 'INTEGRATION COMPLETED SUCCESSFULLY')
C
C
        Copy inlet stream into outlet stream
C
        CALL USRCPY(IDS(1.1).1.1.NSIN.NSOUT)
        Copy the results from GEAR into the putlet stream
C
        T = 1DO/T
        S = ODO
        DO 160 1 = 1.4
          Y(I) = Y(I) + T
          SOUT1(NCC + I + 9) = Y(I)
          S = S + Y(I)
160
        CONTINUE
        SOUT1(1) = (CCO + ACO + CLO + GCO + HO - S)/XMW(1)
        N1 = NCC + 1
        SDUT1(N1) = ODO
        DO 170 I = 1.NCC
           SOUT1(N1) = SOUT1(N1) + SOUT1(I)
170
        CONTINUE
        N1 = NCC + 9
        N2 = N1 + NNCC + 1
        SOUT1(N2) = ODO
        DD 180 I = 1.NNCC
          SOUT1(N2) = SOUT1(N2) + SOUT1(N1 + I)
180
        CONTINUE
        SOUT1(NCC + 2) = TEMP
        SOUT1 (NCC + 3) = PRES
```

- 53 -

```
SOUT1 (NCC + NNCC + 11) = TEMP
         SOUT1(NCC + NNCC + 12) = PRES
C
C
         Flash the outlet stream to find energy requirements
C
         CALL FLASH(SOUT1 , NSUBS , IDXSUB, ITYPE , NBOPST, KODE , NPKODE,
                     KPHASE, MXIT , ETOL , TEMP , PRES , GUESS , LMSG , LPMSG , IRESTR, KRSLT , RETN , IRETN , LCFLAG)
     1
         IF (LCFLAG.NE.O) WRITE(NTRMNL,950) LCFLAG
950
         FORMAT(1X, FLASH DID NOT CONVERGE. LCFLAG = 1,11)
         N1 = NCC + NNCC + 9
         SINFO(1) = -((SOUT1(NCC + 1)*SOUT1(NCC + 9)*SOUT1(NCC + 4) +
                      SOUT1(N1 + 1) + SOUT1(N1 + 4)) - (SIN1(NCC + 1) +
                      SIN1(NCC + 9) *SIN1(NCC + 4) + SIN1(N1 + 1) *
                      SIN1(N1 + 4))
         GO TO 999
C
C
         The following is the report writing section
C
500
         CONTINUE
         II = (INT(1) + 1) + 25
         CALL RPTHDR(II.0,3,ISUB)
         WRITE (NRPT, 920)
         WRITE(NRPT, 930), ((IDSNCC(1, I), IDSNCC(2, I)), I=1,4)
920
         FORMAT(/20X, PROFILES (G/L) ARE AS FOLLOWS: 1/)
930
         FORMAT(8X, 'TIME', 9X, 2A4, 6X, 2A4, 6X, 2A4, 6X, 2A4/)
         WRITE(NRPT,940), (REAL(J), J=5,5*(INT(1)+1)+4)
940
         FORMAT (2X,5D14.5)
999
         RETURN
         END
```

- 54 -

```
SUBROUTINE USROOZ(NSIN ,NINFI ,SIN1 ,SIN2 ,SIN3 ,SIN4
                  SINFI ,NSOUT ,NINFO ,SOUT1 ,SOUT2 ,SOUT3 ,SOUT4 ,
                  SINFO , NSUBS , IDXSUB, ITYPE , NINT , INT
                                                           , NREAL ,
                                     , NBOPST, NIW
                  REAL , IDS ,NPO
                                                    . IW
                  ш
                        NSIZE SIZE)
C CHANGE #5: (9/24/85) Avg mol wt. computed for outlet material stream+
 CHANGE #4:(9/24/85) H20 consumption based on total material balance*
C CHANGE #3: (9/20/85) Sign corrected on outlet heat stream
C CHANGE #2:(9/20/85) GLO inserted to keep track of water consumption*
C CHANGE #1:(8/09/85) Kwarteng's kinetic parameters inserted
C
        This subroutine is the first version of an acid hydrolyzer
        Currently (7/11/85) it handles only one input and one output *
C
C
        stream of stream class MIXEDNC. Some additional requirements+
C
        are as follows:
C
C
            The component lists have to be in the following order:
C
                 CONVENTIONAL: water, sulfuric acid, hmf, furfural
C
                 NONCONVEN
                            : crystalline cellulose, amorphous cell
C
                               ulose, cellobiose, glucose, enzyme,
C
                               hemicellulose, xylose and lignin
C
             Additional components may be added to these lists as
C
             required.
             SI units have been used
C
        (2)
C
             Int(1): no. of records to be retained for results pass
        (3)
C
                      id of substrate material
C
                               : Douglas Fir
                       1
C
                       2
                                   Kraft Paper
C
                       3
                                   Solka Floc
C
                                   Oak Sawdust
                                   Corn Stover
C
                                : Kwarteng's kinetic constants
C
        (4)
             Real(1)
                         lower limit of integration (min)
C
             Real (2)
                          upper limit of integration (min)
                        : temperature of hydrolyzer (K)
C
             Real (3)
                        : pressure of hydrolyzer (Pa)
C
             Real (4)
C
        (5)
             In addition to these 4 spaces for the real vector, space*
C
             must be kept to store profiles for the results pass.
C
             The additional spaces must equal at least 7*(int(1) + 1)*
C
             in number.
C
C
        The kinetics for this routine are taken from Bhandari et al,
C
        B & B, 26, 320 (1984)
C
        See also I. K. Kwarteng, PhD Thesis, Dartmouth College (1983) +
C
        Subroutines called: GEAR, USRCPY, FLASH, RPTHDR
C
        IMPLICIT REAL+B(A-H,D-Z)
        DIMENSION SIN1(1)
                           ,SIN2(1)
                                         .SIN3(1)
                                                       .SIN4(1)
                  SINFI(1)
                             •SOUT1(1)
                                        ,50UT2(1)
                                                       ,SOUT3(1)
                  SOUT4(1)
                             ,SINFO(1)
                                         , IDXSUB (NSUBS) , ITYPE (NSUBS)
     2
     3
                  INT(NINT)
                             , REAL (NREAL), IDS (2,13)
                                                      , NBOFST (3, NPO),
                             , W(NW)
     4
                                        SIZE (NSIZE)
                  IW(NIW)
                                                       .WS (6B)
                             , XOUT (100)
                                        .Y(4)
     5
                  A(32)
                                                       .R1KO(6)
                                        ,R2KO(6)
                  R1EXP(6)
                             ,R1AE (6)
                                                       ,R2EXP(6)
                                         .RETN(61)
                  R2AE (6)
                             , INDEX(1)
                                                       .IRETN(6)
        COMMON /USER/ RMISS , IMISS , NGBAL , IPASS , IRESTR , ICONVG,
                      LMSG
                             ,LPMSG ,KFLAG ,NHSTRY ,NRPT
```

- 55 -

```
ISIZE
        COMMON /NCOMP/ NCC
                               , NNCC
        COMMON /IDSCC/ IDSCC(2,1)
        COMMON /IDSNCC/ IDSNCC(2,1)
        COMMON /IDXCC/ IDXCC(1)
        COMMON /IDXNCC/ IDXNCC(1)
        COMMON /MW/ XMW(1)
        COMMON /RPTGLB/ IREPFL, ISUB(10)
        COMMON /STWORK/ IDUM(14), MF, MX, MX1, MX2, MY, MCS, MNC,
                         IDUM1(4), MIM, MIC, MIN, IDUM2(17)
        COMMON /STWKWK/ NCPM, NCPCS, NCPNC, NTRIAL, IDUM3(2), TCALC,
                         PCALC, VCALC, QCALC, BETA, RDUM(21). RESLTS(1)
     1
        COMMON /GEARLC/ XDUMB(70), IDUMB(84)
        EQUIVALENCE (INDEX(1), RESLTS(1))
        DATA KODE, NPKODE, KPHASE, MXIT, ETOL, KRSLT/2, 2, 0, 30, 10-4, 2/
        DATA N, TEST1, TEST2, EPS, NWS, NA, GC/4, 1D-10, 1D0, . 1D0, 68, 32, 1.9872D-3/
        DATA R1KO/1.73D19,2.8D20,1.22D19,4.4D18,2.71D19,1.45D15/
        DATA R2K0/2.38D14.4.9D14.3.79D14.2.8D12.2.01D14.3.84D9/
        DATA R1EXP/1.34,1.78,1.16,1.0,2:74,1.157/
        DATA R2EXP/1.02,0.35,0.69,1.8,1.86,0.569/
        DATA R1AE/42.9,45.1,45.2,42.9,45.3,33.72/
        DATA R2AE/32.87,32.8,32.8,30.0,32.8,20.99/
C
C
        Go to 500 for Results pass
C
        IF (IPASS.EQ.4) GD TD 500
        L = 0
        NOUT = \sim INT(1)
        TEMP = REAL(3)
        PRES = REAL(4)
C
        Find the total mass flow rate
        SUM = ODO
        DO 5 I = 1.NCC
          SUM = SUM + XMW(I) +SIN1(I)
5
        CONTINUE
        DO 6 I = 1.NNCC
          SUM = SUM + SIN1(NCC + 9 + I)
        CONTINUE
6
C
C
        Find weight % of acid
        ACID = 100.+SIN1(2)+XMW(2)/SUM
        I = INT(2)
        GCTEMP = 1./(GC+TEMP)
C
        Evaluate the pre-exponential factors of the reactions
C
        RK1 = R1KO(I) + ACID + R1EXP(I) + DEXP( - R1AE(I) + GCTEMP)
        RK2 = R2KO(I) + ACID + R2EXP(I) + DEXP( - R2AE(I) + GCTEMP)
        IF (I.LE.5) THEN
          RK3 = (7.64 - 3.68/ACID) + 1D20 + DEXP( - 41. + GCTEMP)
           RK4 = (4.60 - 1.95/ACID) + 1D14 + DEXP( - 32. + GCTEMP)
        FLSF
          RK3 = 6.24D13 + ACID + +1.1704 + DEXP( - 27.83 + GCTEMP)
          RK4 = 2.33D12+ACID++0.6876+DEXP( - 27.13+GCTEMP)
        END IF
        WATERF = 1./(XMW(1) + SIN1(1))
C
```

- 56 -

```
C
        Initialize all variables
        CO = SIN1(NCC + 10)*WATERF/162.
        GO = (SIN1(NCC + 11)/162. + SIN1(NCC + 13)/180.) + WATERF
        HMF0 = SIN1(3) +WATERF
        HO = SIN1(NCC + 15)*WATERF/132.
        XO = SINI(NCC + 16) + WATERF/150.
        FO = SIN1(4) + WATERF
        GLO = SIN1(NCC + 13) + WATERF/180.
C
C
        Even though 6 species concern us, there are only 4 independent
C
        ODEs. The other 2 species (xylose and glucose) can be found
C
        from a material balance
C
        Y(1) = C0
        Y(2) = HMF0
        Y(3) = HO
        Y(4) = F0
C
C
        X and XEND are the limits of the integration, passed from the
C
        input file
C
        X = REAL(1)
        XEND = REAL(2)
        JFLAG = 0
        CONTINUE
10
        DO 15 I = 1.N
          IF (Y(I).LE.ODO) Y(I) = ODO
15
        CONTINUE
        CALL GEAR (N.X. XEND, Y. TEST1, TEST2, EPS, NOUT, XOUT, NWS, WS, NA.A.
                   JFLAG, H, NSTEP, IORDER, NDERIV)
        IF (JFLAG) 900,910,20
        GD TD (30,40,10) JFLAG
20
        CONTINUE
30
        DO 35 I = 1.N
          IF (Y(I).LE.ODO) Y(I) = ODO
35
        CONTINUE
С
C
        Evaluate values of the dependent variables (glucose & xylose)
C
        G = GO - (Y(2) - HMFO) - (Y(1) - CO)
        XX = XO - (Y(4) - FO) - (Y(3) - HO)
C
C
        Evaluate the reaction rates and derivative values
        RATE1 = RK1 + Y(1)
        RATE2 = RK2+G
        RATE3 = RK3 + Y(3)
        RATE4 = RK4+XX
        WS(1) = - RATE1
        WS(2) = RATE2
        WS(3) = -RATE3
        WS(4) = RATE4
        GO TO 10
        G = GO - (Y(2) - HMFO) - (Y(1) - CO)
40
        XX = XO - (Y(4) - FO) - (Y(3) - HO)
        WRITE(NTRMNL, 100), X, Y, G, XX
C
        Store values for results pass
C
```

```
REAL(7+L + 5) = X
        REAL(7*L + 6) = 6
        REAL(7+L + 7) = XX
        DO 45 I = 1.4
          J = 7*L + I + 7
          REAL(J) = Y(I)
45
        CONTINUE
        L = L + 1
        GO TO 10
900
        WRITE (NTRMNL, 200), JFLAG
        GD TD 999
910
        WRITE (NTRMNL, 300)
C
C
        Copy inlet stream into outlet stream
C
        CALL USRCPY(IDS(1.1),1,1,NSIN,NSOUT)
C
C
        Copy the results from GEAR into the outlet stream
        WATERF = 1./WATERF
        SOUT1 (NCC + 10) = 162. +Y(1) +WATERF
        SOUT1 (NCC + 11) = 0.
        SOUT1(NCC + 13) = 180.*G*WATERF
        SOUT1 (NCC + 15) = 132. +Y(3) +WATERF
        SOUT1(NCC + 16) = 150.*XX*WATERF
        SOUT1(3) = Y(2) *WATERF
        SOUT1(4) = Y(4) + WATERF
        S1 = 0D0
        S2 = 0D0
        S3 = ODO
        DO 220 I = 1.NCC
          IF (I.EQ.1) GO TO 210
          52 = 52 + SOUT1(I) * XMW(I)
          $3 = $3 + $0011(1)
210
          CONTINUE
          S1 = S1 + SIN1(I) + XMW(I)
220
        CONTINUE
        SST = S2
        I1 = NCC + 9
        DD 250 I = 1,NNCC
          S1 = S1 + SIN1(I + I1)
          S2 = S2 + SOUT1(I + I1)
250
        CONTINUE
        SST = SST + (S1 - S2)
        SOUT1(1) = (S1 - S2)/XMW(1)
        S3 = S3 + SOUT1(1)
        SOUT1(NCC + 9) = SST/S3
        N1 = NCC + 1
        SOUT1(N1) = ODO
        DO 160 I = 1.NCC
          SOUT1(N1) = SOUT1(N1) + SOUT1(I)
160
        CONTINUE
        SOUT1(NCC + 2) = TEMP
        SOUT1(NCC + 3) = PRES
        N1 = NCC + 9
        N2 = N1 + NNCC + 1
        SOUT1(N2) = OD0
        DO 170 I = 1.NNCC
          SOUT1(N2) = SOUT1(N2) + SOUT1(N1 + I)
170
        CONTINUE
```

- 58 -

```
SOUT1(N2 + 1) = TEMP
         SOUT1(N2 + 2) = PRES
C
         Flash the outlet stream to find out energy requirements
C
         CALL FLASH (SOUT1 , NSUBS , IDXSUB, ITYPE , NBOPST, KODE , NPKODE,
                     KPHASE, MXIT , ETOL , TEMP , PRES , GUESS , LMSG , LPMSG , IRESTR, KRSLT , RETN , IRETN , LCFLAG)
     1
     2
         IF (LCFLAG.NE.O) WRITE(NTRMNL,950), LCFLAG
         N1 = NCC + NNCC + 9
         SINFO(1) = -((SOUT1(NCC + 1) + SOUT1(NCC + 9) + SOUT1(NCC + 4) +
                      SOUT1 (N1 + 1) + SOUT1 (N1 + 4)) - (SIN1 (NCC + 1) +
     2
                      SIN1(NCC + 9) *SIN1(NCC + 4) + SIN1(N1 + 1) *
     3
                      SIN1(N1 + 4))
         GO TO 999
C
C
         The following is the report writing section
C
500
         CONTINUE
         II = (INT(1) + 1) + 25
         CALL RPTHDR(II,0,3,ISUB)
         WRITE (NRPT, 920)
         WRITE (NRPT, 930)
         WRITE(NRPT, 940), (REAL(J), J=5,7+(INT(1)+1)+4)
100
         FORMAT(1X, F6. 2, 6D11.3)
         FORMAT(1X, 'INTEGRATION HALTED BECAUSE OF ERROR CONDITION '13)
200
         FORMAT (1X, 'INTEGRATION COMPLETED SUCCESSFULLY')
300
920
         FORMAT(/20X, 'PROFILES (KGMOL/L) ARE AS FOLLOWS: '/)
930
         FORMAT (3X, 'TIME', 3X, 'GCOSE', 6X, 'XLOSE', 5X, 'CCLOSE', 7X,
     1'HMF',6X,'HCLOSE',6X,'FURF'/)
940
        FORMAT (1X, F6. 2, 6D11.3)
950
         FORMAT(1X, 'FLASH DID NOT CONVERGE. LCFLAG = '.I1)
999
         RETURN
         END
```

- 59 -

```
SUBROUTINE USROO3(NSIN ,NINFI ,SIN1 ,SIN2 ,SIN3 ,SIN4 , SINFI ,NSOUT ,NINFO ,SOUT1 ,SOUT2 ,SOUT3 ,SOUT4 ,
                    SINFO , NSUBS , IDXSUB, ITYPE , NINT
                                                        , INT
                                                                 , NREAL ,
     2
                                  NPO
                                                                 . NW
                    REAL , IDS
                                          .NBOPST.NIW
                                                         . IW
                          ,NSIZE ,SIZE)
C
C
         This subroutine is the first version of the ABE fermentor.
C
         Currently (8/05/85) it handles only one input and two output
C
         streams of stream class MIXEDNC. Some additional requirements*
         are as follows:
C
C
  ** Begin Changes ** 8/27/85
C
C
         Real(15): now used to incorporate butanol inhibition
C
         Real(16) - Real(20) are now left available to the user for
C
         whatever requirements may crop up.
C
  ** End Changes **
  ** Begin Changes ** 8/28/85
C
C
         N changed from 11 to 2, since other nine variables depend only
C
         on the first.
C
         yin(11) inserted in dimension statement. Will accommodate the+
C
         initial values
Ç
  ** End Changes **
C
         (1) The component lists have to be in the following order:
C
                   CONVENTIONAL: water, sulfuric acid, hmf, furfural,
C
                                  acetone, butanol, ethanol, acetic acid.
Č
                                  butyric acid, i-propanol, acetoin, carbon*
C
                                  dioxide.hydrogen.hydrochloric acid.
C
                 · NONCONVEN
                                : crystalline cellulose, amorphous cellu-
C
                                  lose, cellebiose, glucose, enzyme, hemi-
C
                                  cellulose, xylose, lignin, biomass.
C
              Additional components may be added to these lists as
C
              required.
C
         (2)
              SI units have been used.
C
              Int(1)-Int(6): codes for products whose yields have been*
C
                               supplied.
                                          Product codes are:
                                     Code
                                                     Product
C
                                      1
                                                     Acetone
C
                                                     But ano 1
                                      2
                                      3
                                                     Ethanol
C
                                                  Acetic acid
C
                                                  Butyric acid
C
                                                  Isopropanol
C
                                                     Acetoin
C
                                                   C-Dioxide
C
                                                     Hydrogen
C
              Int (7)
                             : no. of records to be retained for results
C
                               PASS
C
                             : lower limit for integration (hr)
              Real (1)
                             : upper limit for integration (hr)
C
              Real (2)
C
                            : temperature of hydrolyzer (K)
              Real (3)
C
                            : pressure of hydrolyzer (Pa)
              Real (4)
              Real(5)-(10): values for product yields (mol/100 mol glucose fermented) for 6 the products
C
C
C
                               specified in int(1)-(6)
C
              Real (11)
                             : % carbon recovery in products
C
              Real (12)
                            : mu-max in Monod growth equation
C
              Real (13)
                            : Ks in Monod growth equation
                            : m, the maintenance coefficient
              Real (14)
              In addition to these 14 spaces for the real vector, space
```

ORIGINAL PAGE IS OF POOR QUALITY

```
must be kept to store profiles for the results pass.
              The additional spaces must equal at least 12+(int(7)+1) =
C
              in number.
              The dimension of RETN has to be 6+NCC + 37
        (6)
C
              In the absence of any better method, conversion of xylose
        (7)
              to the products is taken to follow the same yield para- *
C
C
              meters as those estimated for fermentation of glucose.
C
C
        See papers by Papoutsakis et al. B & B, 26, 174 (1984) and
C
        B & B, 27, 681 (1985) for a discussion on the overall equation
C
        used to model the fermentation process.
C
C
        Subroutines called are: GEAR, RPTHDR, USRCPY, FLASH, DGELG
        IMPLICIT REAL+8(A-H,O-Z)
        REAL EPS2
        CHARACTER LID(12) +12
        DIMENSION SIN1(1)
                              ,SIN2(1)
                                           ,SIN3(1)
                                                           ,SIN4(1)
                                           ,SOUT2(1)
                   SINFI(1)
                              ,SOUT1(1)
                                                          ,SOUT3(1)
                                           , IDXSUB (NSUBS), ITYPE (NSUBS) ,
     2
                   SOUT4(1)
                               SINFO(1)
     3
                   INT(NINT)
                               , REAL (NREAL), IDS (2, 13)
                                                          ,NBOPST (3,NPO),
                               ·W(NW)
     4
                   IW(NIW)
                                           ,SIZE (NSIZE)
                                                          .WS (187)
     5
                   A(11,11)
                               , XDUT (100)
                                           ·Y(11)
                                                           , RETN(103)
                   IRETN(6)
                               -AA(11.11)
                                           .B(11)
     6
                                                           .BB(11)
     7
                   CDEFF (10)
                               YIELD(9)
                                           ,AG(242)
                                                          , IVECT (11,9)
     8
                   YIN(11)
                               .IMISS .NGBAL .IPASS .IRESTR .ICONVG.
.LPMSG .KFLAG .NHSTRY .NRPT .NTRMNL.
        COMMON /USER/ RMISS
                       LMSG
                       ISIZE
        COMMON /NCOMP/ NCC
        COMMON /IDSCC/ IDSCC(2,1)
        COMMON /IDSNCC/ IDSNCC(2,1)
        COMMON /IDXCC/ IDXCC(1)
        COMMON /IDXNCC/ IDXNCC(1)
        COMMON /MW/ XMW(1)
        COMMON /RPTGLB/ IREPTL, ISUB(10)
        The next two lines are for GEAR's benefit
        COMMON /GEARLC/ XDUMB(70), IDUMB(84)
        DATA N. TEST1. TEST2. EPS1. NWS. NAG/2. 1D-10. 1D0. 1D0. 187. 242/
        DATA KODE, NPKODE, KPHASE, MXIT, ETOL, KRSLT/2, 2, 0, 30, 1D-4, 2/
        DATA EPS2/1E-15/
        DATA IVECT/7+0,1,-1,8+0,1,13+0,1,5+0,1,-1,1,-1,8+0,1,-1,
                    12+0,1,12+0,1,0,1,5+0,1,0,0,2,0,0,1,8+0/
     1
        DATA LID/'BIOMASS','GLUCOSE','ACETONE','BUTANOL','ETHANOL',
                  'ACETIC ACID', 'BUTYRIC ACID', 'I-PROPANOL',
     1
                  'ACETOIN','C-DIOXIDE','HYDROGEN','ATP'/
        DATA A/1,2,0D0,2,8+0D0,-1,1,0D0,1,10+0D0,-1,9+0D0,1,-1,
     1
                B*ODO,-1,10*ODO,-1,-2,9*ODO,-1,-2,9*ODO,-1,11*ODO,
                -1,9*0D0,-1,-2,8*0D0,-2,9*0D0/
        Go to 600 for Results pass
        IF (IPASS.EQ.4) GO TO 600
        L = 0
        NOUT = -INT(7)
        TEMP = REAL(3)
        PRES = REAL(4)
```

```
C
        Set up the A matrix
        DO 50 J = 1.11
          DO 50 I = 1.11
            AA(I,J) = A(I,J)
50
        CONTINUE
        DD 100 I = 1.6
          K = I + 5
          DO 100 J = 1.11
            A(K,J) = IVECT(J,INT(I))
            AA(K,J) = A(K,J)
100
        CONTINUE
C
        Set up the RHS's of the set of simultaneous eqs.
C
C
        B(1) = 200./(100.-REAL(11)) - 2.
        B(2) = 0.
        B(3) = 0.
        B(4) = 1.75
        B(5) = 0.
        DO 150 I = 1.11
          IF (I.GT.5) THEN
            B(I) = (2.+B(1)) + REAL(I - 1)/100.
          END IF
          BB(I) = B(I)
150
        CONTINUE
C
C
        Solve the set of simultaneous linear equations
C
        CALL DGELG (BB.AA.11.1.EPS2.IER)
        IF (IER.NE.O) TYPE 900, IER
C
C
        Calculate the coefficients of the 9 products & ATP
C
        in the overall equation
C
        DO 250 I = 1,9
          CDEFF(I) = ODO
          DD 200 K = 1.11
            COEFF(I) = COEFF(I) + IVECT(K,I) *BB(K)
200
          CONTINUE
250
        CONTINUE
        COEFF(10) = 2.*BB(1) - 29.7 + BB(5)
        CFGL = 2. + BB(1)
        DENOM = 1./(180.+CFGL)
C
C
        Evaluate the yields (g/g glucose fermented) of
C
        the products
C
        DO 300 I = 1.9
          YIELD(I) = XMW(I + 4) + COEFF(I) + DENOM
          IF (YIELD(I).LE.ODO) YIELD(I) = ODO
300
        CONTINUE
        YBMASS = 295.08+DENDM
        YBMINV = 1D0/YBMASS
C
        Initialize variables for GEAR and convert inlet
C
        flowrates (SI) to concentrations (g/L)
C
        T = 1D3/(SIN1(1) + XMW(1))
```

Ę

```
GLUC = SIN1 (NCC + 13)
        XYL = SIN1(NCC + 16)
         Y(1) = SIN1(NCC + 18) + T
        Y(2) = (GLUC + XYL) + T
        DO 325 I = 1.11
          IF (I.GE.3) THEN
             12 = 1 + 2
             Y(I) = SIN1(I2) + XMW(I2)
           END IF
           YIN(I) = Y(I)
325
        CONTINUE
C
C
        X and XEND are the limits of the integration, passed from the
C
        input file
C
        X = REAL(1)
        XEND = REAL(2)
        JFLAG = 0
        CALL GEAR (N.X. XEND.Y. TEST1. TEST2. EPS1. NOUT. XOUT. NWS. WS. NAG. AG.
350
                   JFLAG, H, NSTEP, I DRDER, NDERIV)
        IF (JFLAG) 500,550,400
400
        GO TO (425,450,350) JFLAG
С
C
        Evaluate the reaction rates and derivative values
C
425
        CONTINUE
        DELBMS = YBMINV*(Y(1) - YIN(1))
        DO 430 I = N + 1.11
          Y(I) = YIN(I) + DELBMS*YIELD(I - 2)
430
        CONTINUE
        DD 440 I = 1.11
           IF (DABS(Y(I)).LE.1D-6) Y(I) = ODO
440
        CONTINUE
        BRATE = REAL(12) + Y(1) + Y(2) / (REAL(13) + Y(2) + REAL(15) + Y(4))
        BRATE=(1.-Y(4)/REAL(15))+REAL(12)+Y(1)+Y(2)/(REAL(13)+Y(2))
        WS(1) = BRATE
        WS(2) = -BRATE+YBMINV - REAL(14)+Y(1)
        GO TO 350
450
        CONTINUE
C
C
        Store values for results pass
C
        DELBMS = YBMINV+(Y(1) - YIN(1))
        DO 460 I = 3.11
          Y(I) = YIN(I) + DELBMS*YIELD(I - 2)
460
        CONTINUE
        TYPE +.X.Y
        REAL(12*L + 21) = X
        DO 475 I = 1.11
           J = 12*L + I + 21
          IF (DABS(Y(I)).LE.1D-6) Y(I) = ODO
          REAL(J) = Y(I)
475
        CONTINUE
        L = L + 1
        GO TO 350
500
        TYPE 910, JFLAG
        GO TO 999
550
        TYPE 920
        Copy inlet stream into outlet streams
```

```
C
        CALL USRCPY(IDS(1,1),1,1,NSIN,NSDUT)
        CALL USRCPY(IDS(1,1),1,2,NSIN,NSOUT)
C
C
        Copy the results from GEAR into the first (gaseous)
C
        outlet stream
C
        T = 1DO/T
        SOUT1(12) = Y(10) *T/XMW(12)
        SOUT1(13) = Y(11) + T/XMW(13)
        S1 = ODO
        52 = 000
        DO 560 I = 1.NCC
           IF (I.LE.11.DR.I.GE.14) SOUT1(I) = ODO
           S1 = S1 + SOUT1(I)
           52 = 52 + SOUT1(I) + XMW(I)
560
        CONTINUE
        SOUT1(NCC + 1) = S1
        SOUT1(NCC + 2) = TEMP
        SOUT1(NCC + 3) = PRES
        SOUT1(NCC + 9) = S2/S1
        N1 = NCC + 9
        DO 570 I = N1 + 1.N1 + NNCC + 1
          SOUT1(I) = ODO
570
        CONTINUE
        SOUT1(N1 + NNCC + 2) = TEMP
        SOUT1(N1 + NNCC + 3) = PRES
C
C
        Flash the first outlet stream
C
        CALL FLASH (SOUT1 , NSUBS , IDXSUB, ITYPE , NBOPST, KODE , NPKODE,
                    KPHASE, MXIT , ETOL , TEMP , PRES , GUESS , LMSG , LPMSG , IRESTR, KRSLT , RETN , IRETN , LCFLAG)
        IF (LCFLAG.NE.O) TYPE 905, LCFLAG
C
C
        Copy the results from GEAR into the second outlet stream
        S1 = 0D0
        S2 = 0D0
        DO 580 I = 1, 11
           IF (I.GE.5) SOUT2(I) = T*Y(I - 2)/XMW(I)
           S1 = S1 + SOUT2(I)
           52 = 52 + SOUT2(I) * XMW(I)
580
        CONTINUE
        DO 585 I = 13,NCC
          S1 = S1 + SOUT2(I)
          52 = 52 + SOUT2(I) + XMW(I)
585
        CONTINUE
        SOUT2(NCC + 1) = S1
        SOUT2(NCC + 2) = TEMP
        SOUT2(NCC + 3) = PRES
        SOUT2(NCC + 9) = S2/S1
        N1 = NCC + 13
        FRAC = GLUC/(GLUC + XYL)
        SDUT2(N1) = FRAC+Y(2)+T
        SOUT2(N1 + 3) = (1. - FRAC) *Y(2) *T
        SOUT2(N1 + 5) = Y(1) *T
        S = ODO
        N1 = NCC + 9
        DO 590 I = 1.NNCC
```

- 64 -

```
S = S + SDUT2(N1 + I)
590
         CONTINUE
         SDUT2(N1 + NNCC + 1) = 5
         SOUT2(N1 + NNCC + 2) = TEMP
         SOUT2(N1 + NNCC + 3) = PRES
C
         Flash the outlet stream and find energy requirements
         CALL FLASH (SOUT2 , NSUBS , IDXSUB, ITYPE , NBOPST, KODE , NPKODE,
                     KPHASE, MXIT , ETOL , TEMP , PRES , GUESS , LMSG , LPMSG , IRESTR, KRSLT , RETN , IRETN , LCFLAG)
     2
         IF (LCFLAG.NE.O) TYPE 905, LCFLAG
         N1 = NCC + NNCC + 9
         SINFO(1) = - (SOUT1(NCC + 1) *SOUT1(NCC + 9) *SOUT1(NCC + 4) +
                     SOUT2(NCC + 1) + SOUT2(NCC + 9) + SOUT2(NCC + 4) +
     2
                     SOUT2(N1 + 1) * SOUT2(N1 + 4) - (SIN1(NCC + 1) *
                     SIN1(NCC + 9) *SIN1(NCC + 4) + SIN1(N1 + 1) *
     3
                     SIN1(N1 + 4))
         GO TO 999
C
         The following is the report writing section
C
600
         CONTINUE
         J = (INT(7) + 1)/5
         IF ((5*J).NE.(INT(7) + 1)) J = J + 1
         II = 14*J + 27
         CALL RPTHDR(II,0,3,ISUB)
         CBM = 3D0
         CFGM = - CFGL
         WRITE(NRPT, 940), LID(2), CFGM, LID(1), CBM, YBMASS, (LID(I),
                          COEFF (1-2), YIELD (1-2), I = 3,11), LID(12),
     2
                          COEFF (10)
         WRITE (NRPT, 950)
         DD 700 I = 1.J
           I1 = (I - 1) + 60 + 21
           I2 = I1 + 48
           IF (I2.GE.NREAL) I2 = NREAL
           WRITE(NRPT, 960), (REAL(K1), K1 = I1, I2, 12)
           DO 650 K = 1.9
             I1 = I1 + 1
             I2 = I2 + 1
           · IF (I2.GE.NREAL) I2 = NREAL
             WRITE(NRPT, 970), LID(K), (REAL(K2), K2 = I1, I2, 12)
650
           CONTINUE
700
         CONTINUE
         I1 = 21
         I2 = 12 + INT(7) + 21
         DD 750 1 = 1,12
           WRITE(NTRMNL, +), (REAL(J), J=11, 12, 12)
           I1 = I1 + 1
           12 = 12 + 1
750
         CONTINUE
900
         FORMAT(1X, 'WARNING IN DGELG. IER =', 13/)
905
        FORMAT(1X. FLASH DID NOT CONVERGE. LCFLAG = '.I1)
910
         FORMAT(1X, 'INTEGRATION HALTED BECAUSE OF ERROR CONDITION ', 13)
920
         FORMAT(1X, 'INTEGRATION COMPLETED SUCCESSFULLY')
930
        FORMAT (1X, F6, 2, 2X, 11D12, 3)
940
         FORMAT(1X, 'THE OVERALL FERMENTATION REACTION IS : '//5X.
```

- 65 -

1'SPECIES',20X,'CDEFF',14X,'YIELD (G/G GLUCOSE)'/5X,A12,10X,

```
SUBROUTINE USRO04 (NSIN , NINFI , SIN1 , SIN2 , SIN3 , SIN4 SINFI ,NSOUT ,NINFO ,SOUT1 ,SOUT2 ,SOUT3 ,SOUT4
                    SINFO , NSUBS , IDXSUB, ITYPE , NINT , INT
                                                                .NREAL .
     2
     3
                    REAL , IDS
                                         , NBOPST, NIW
                                 , NPO
                                                                 , NW
                          ,NSIZE ,SIZE)
C+
C
C
         This subroutine is the first version of an continuous steri-
C
         lizer. Currently (9/03/85) it handles only one input and one •
C
         output stream of stream class MIXEDNC, and one of that infor-
C
         mation stream of class HEAT. Some additional requirements are*
C
         as follows:
C
C
         (1)
              SI units have been used.
C
         (2)
              Real(1)
                            preexponential factor, microorganism death+
C
                             rate, X 1D-25 (/s)
              Real (2)
                            activation energy for death rate (J/kgmol) *
C
              Real (3)
                             temperature of sterilizer (K)
C
              Real (4)
                             pressure of sterilizer (Pa)
C
              Real (5)
                             diameter of sterilizer (m)
C
              Real (6)
                             diffusion coefficient (m++2/s)
              Real (7)
                             required sterility level
C
              Real (8)
                             viscosity of fluid (kg/m s)
C
              Real (9)
                             error tolerance
C
              Real (10)
                             number to be subtracted from guesstimate
C
                             of the solution of the nonlinear equation *
C
         (3)
             Int (1)
                             maximum number of iterations for nonlinear+
C
                             search
C
         (4)
              The dimension of RETN has to be 6+NCC + 37
C
        Subroutines called are: USRNLE, USRCPY, FLASH
C
        Refer to any standard biotechnology textbook for the design
        equation for continuous sterilizers.
        IMPLICIT REAL+8(A-H, O-Z)
        REAL EPS
        DIMENSION SIN1(1)
                               .SIN2(1)
                                                            ,SIN4(1)
                                            .SIN3(1)
                   SINFI(1)
     1
                               ,SOUT1(1)
                                            ,SOUT2(1)
                                                            ,SOUT3(1)
     2
                   SOUT4(1)
                               .SINFO(1)
                                            , IDXSUB(NSUBS), ITYPE(NSUBS)
     3
                   INT(NINT)
                               , REAL (NREAL) , IDS (2, 13)
                                                            ,NBOPST (3,NPO),
     4
                   IW(NIW)
                               .W(NW)
                                            SIZE (NSIZE)
                                                            , RETN (103)
     5
                   IRETN(6)
        COMMON /USER/ RMISS
                                        , NGBAL
                               , IMISS
                                                , IPASS , IRESTR
                                                                   , ICONVG,
                        LMSG
                               , LPMSG , KFLAG , NHSTRY , NRPT
                                                                    . NTRMNI .
                        ISIZE
        COMMON /NCOMP/ NCC
                               - NNCC
        COMMON /IDSCC/ IDSCC(2,1)
        COMMON /IDSNCC/ IDSNCC(2,1)
        COMMON /IDXCC/ IDXCC(1)
        COMMON /IDXNCC/ IDXNCC(1)
        COMMON /MW/ XMW(1)
        COMMON /RPTGLB/ IREPFL, ISUB(10)
        DATA KODE, NPKODE, KPHASE, MXIT, ETOL, KRSLT/2, 2, 0, 30, 1D-4, 2/
        DATA PI.GC/3.1415926.8314.3/
        Go to 400 for results pass
        IF (IPASS.EQ.4) GO TO 500
        MAXIT = INT(1)
```

```
EPS = REAL(9)
        TEMP = REAL(3)
        PRES = REAL(4)
        DIA = REAL(5)
C
        Evaluate fluid velocity, death rate
C
        VFLOW = SIN1(NCC + 1) + SIN1(NCC + 9) / SIN1(NCC + 8) +
                 SIN1(NCC + NNCC + 10)/SIN1(NCC + NNCC + 17)
        VEL = VFLOW/(FI+DIA++2./4.)
        C1 = REAL(2)/(GC+TEMP)
        IF (C1.LE.50.) THEN
          RK = REAL(1) + (DEXP(-C1) + 1D25)
        ELSE
          RK = 1928.75 + REAL(1) + DEXP(-C1 + 50.)
        END IF
        TYPE +, VEL, RK, DELTA
C
        Evaluate the Reynolds number & dispersion coefficient
C
        REYNLD = DIA+VEL+SIN1(NCC + B)/REAL(B)
        IF (REYNLD.LE.2100.) THEN
          DISP = REAL(6) + (VEL+DIA) + +2./(192. + REAL(6))
        ELSE
          FRICTF = 0.0791/(REYNLD++.25)
          DISP = 3.57+VEL+DIA+DSQRT(FRICTF)
        END IF
        DELTA = DSQRT(1. + 4.*RK*DISP/(VEL**2.))
        RSL = REAL(7)
C
        Evaluate the initial guess to the solution of the nle
C
        XST = DLOG(RSL+((1. + DELTA)++2.)/(4.+DELTA))
        XST = 2.*XST/(1. - DELTA) - REAL(10)
C
        Solve the nonlinear equation
C
        CALL USRNLE(X,F,DERF,XST,EPS,MAXIT,IER,DELTA,RSL)
        GO TO (40,30,20), IER + 1
20
        WRITE(NTRMNL,900),X,F
        TYPE 900, X,F
        GO TO 50
        WRITE(NTRMNL, 910), X, F
30
        TYPE 910, X, F
        GD TD 50
40
        WRITE(NTRMNL, 920), X,F
        TYPE 920, X,F
50
        CONTINUE
C
        Calculate the lengths with/without dispersion
C
        RLENG1 = X+DISP/VEL
        RLENG2 = -DLOG(REAL(7))*VEL/RK
C
        Copy inlet stream into outlet stream
C
        CALL USRCPY(IDS(1.1).1.1.NSIN.NSOUT)
        SOUT1(NCC + 2) = TEMP
        SDUT1(NCC + 3) = PRES
        SOUT1 (NCC + NNCC + 11) = TEMP
```

```
SOUT1 (NCC + NNCC + 12) = PRES
C
         Flash the outlet stream to find energy requirements
C
         CALL FLASH (SOUT1 , NSUBS , IDXSUB, ITYPE , NBOPST, KODE , NPKODE,
                     KPHASE, MXIT , ETOL , TEMP , PRES , GUESC , LMSG , LPMSG , IRESTR. KRSLT , RETN , IRETN , LCFLAG)
         IF (LCFLAG.NE.O) WRITE(NTRMNL, 950) LCFLAG
         N2 = NCC + NNCC + 9
C
        Calculate energy requirements
c
         SINFO(1) = -(SOUT1(NCC + 1)*SOUT1(NCC + 9)*SOUT1(NCC + 4) +
                      SOUT1(N2 + 1) + SOUT1(N2 + 4)) - (SIN1(NCC + 1) +
                      SIN1 (NCC + 9) +SIN1 (NCC + 4) + SIN1 (N2 + 1) +
     2
                      SIN1(N2 + 4)))
        GO TO 999
C
C
        The following is the report writing section
С
500
        CONTINUE
        WRITE(NRPT, 925), (REAL(K), K=1,8)
        WRITE(NRPT, 930), RK, VEL, REYNLD, DISP, X, RLENG1, RLENG2
900
        FORMAT(1X, DERIV = 0. X, F VALUES ))',2D14.5)
        FORMAT(1X,'EXCEEDED MAXIT. X,F VALUES >>',2D14.5)
FORMAT(1X,'CONVERGED. X,F VALUES >>',2D14.5)
710
920
925
        FORMAT (/20X, 'KO FOR SPORE DEATH RATE =',5X,D14.5,' /SEC',
     1/20X, DELTA E FOR SPORE DEATH RATE ='.D14.5.' J/KGMOL'./20X
     2, 'TEMPERATURE OF STERILIZER =',3X,D14.5,' K',/20X, 'PRESSURE
     3 OF STERILIZER =',6x,D14.5.' PA',/20x,'DIAMETER OF STERILIZ
     4ER =',6X,D14.5,' M',/20X,'DIFFUSION COEFFICIENT'=',7X,D14.5
     5,' SQ M/SEC',/20X,'REQUIRED STERILITY LEVEL =',4X,D14.5,/20
     6X, 'VISCOSITY OF FLUID =',10X,D14.5,' KG/M SEC')
930
        FORMAT (/20X, 'SPORE DEATH RATE = ',12X,D14.5,' PER SEC',/2
     10x, 'FLUID VELOCITY IN STERILIZER = ',D14.5,' M/SEC',/20x,'R
     2EYNOLDS NUMBER = ',13X,D14.5,/20X,'DISPERSION COEFFICIENT =
     3 ',6X,D14.5,' M*+2/S',/20X,'PECLET NUMBER = ',15X,D14.5,/20
     4x, LENGTH OF THE STERILIZER = 1,4x, D14.5, M WITH DISP1/20X
     5. LENGTH OF THE STERILIZER = '.4X.D14.5.' M W/OUT DISP')
940
        FORMAT(20X, 'DISPERSION CODE = 1, 13X, 12, /20X, 'CODE = 1 => D
     11SPERSION PRESENT, CODE = 2 IF ABSENT')
950
        FORMAT(1X, FLASH DID NOT CONVERGE. LCFLAG = 1.11)
999
        RETURN
        END
```

- 69 -

APPENDIX B

Sample Input Data File and Output Report

This appendix contains a sample input data file and output report from an ASPEN simulation. The two files for the acid hydrolysis simulations are presented here; similar files exist for the other sections.

Since most of the components in the simulation unconventional (e.g. lignin, sugars, etc.), the ASPEN data banks do not contain information on them. Consequently, in the data file the input values for various parameters such molecular weights, specific heat coefficients, etc., are defined in the PROP-DATA section. The property streams in the simulation are defined to have two substreams - one MIXED (which is of same type as the streams in other process simulators), and other NCPSD. The latter substream is used to represent the flow nonconventional solids which have the particle size distribution attribute. The remainder of the input data file is similar to data files for other process simulators; if a detailed explanation is required, the interested reader is referred to the ASPEN User Manual. The output report is self-explanatory, shows the material and energy balances around each unit, and the status of each stream in the flowsheet.

```
NFW
        'THE ABE PROCESS'
TITLE
DESCRIPTION
             'ACID HYDROLYSIS'
IN-UNITS SI
DUT-UNITS SI
HISTORY MSG-LEVEL STREAMS = 6
PROPERTIES SYSOP4 GLOBAL
            CCLOSE / ACLOSE / CLBOSE / GCOSE /ENZYME /WATER H2D /&
COMPONENTS
            HCLOSE / XYLOSE / LIGNIN / H2SO4 HCL / HMF C5H402 /&
            FURFURAL C5H402
            ENZYME CAUSR1 /CCLOSE /ACLOSE /CLBOSE /GCOSE /HCLOSE /&
ATTR-COMPS
            XYLOSE / LIGNIN
COMP-NAMES
           CCLOSE CRYSTALLINE-CELLULOSE / ACLOSE AMORPHOUS-CELLULOSE /
            CLBOSE CELLOBIOSE / GCOSE GLUCOSE / HCLOSE HEMICELLULOSE
NC-PROPS CCLOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS ACLOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS CLBOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS GCOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS ENZYME ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS HCLOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-PROPS XYLOSE ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
NC-FROPS LIGNIN ENTHALPY ENTHLUSR / DENSITY DNSTYUSR
PROF-DATA
    PROP-LIST
                ENTUA
                                  DNSUA
    PVAL CCLOSE 85.0 2301.2 0 0 0 / 705.45 0 0 0
    PVAL ACLOSE 85.0 2301.2 0 0 0 /
                                     705.45 0 0 0 0
    PVAL CLBOSE 85.0 2301.2 0 0 0 /
                                    705.45 0 0 0 0
    PVAL GCOSE 85.0 2301.2 0 0 0 /
                                     705.45 0 0 0 0
    PVAL HCLDSE 85.0 2301.2 0 0 0 /
                                     705.45 0 0 0 0
    PVAL XYLOSE 85.0 2301.2 0 0 0 / 705.45 0 0 0
    PVAL LIGNIN 85.0 2301.2 0 0 0 / 705.45 0 0 0
    PVAL ENZYME 1.C 0.0 0 0 0 /
                                       1000 0 0 0 0
    PROP-LIST
                   DHFORM / DGFORM
    PVAL FURFURAL
                  -2.092D8 / -1.255D8
                   -2.092D8 / -1.255D8
    PVAL HMF
    PROP-LIST
                  MW
    PVAL HMF
                 126.0
    PVAL
         H2S04
                  98.08
DEF-STREAMS MIXNCPSD ALL
DEF-SUBS-ATTR PSD PSD
               INTERVALS 10
               SIZE-LIMITS 0/.0002/.0004/.0006/.0008/.001/&
                          .002/.003/.01/.02/.05
DEF-STREAMS HEAT OHTR QONCH QACHYD QCOOLR
DEF-STREAMS WORK SHAFT1
FLOWSHEET
    BLOCK
          CRUSHER
                   IN = 1
                                       OUT = 2
    BLOCK
          PUMP1
                    IN = 2
                                       DUT = 3
                                                    SHAFT 1
   BLOCK
          SLRYTNK
                    IN = 3 4
                                       DUT = 6
                                       OUT = 78
   BLOCK
          ACIDIN
                    IN = 67
    BLOCK
          HEATER1
                    IN = 7B
                                       DUT = 7C
                                                    QHTR
   BLOCK
          ACIDHYD
                    IN = 7C
                                       DUT = 8
                                                    QACHYD
   BLOCK
          FICTSEP
                    IN = B
                                       OUT = 8A 8B
   PLOCK
          QUENCH
                    IN = 88
                                       DUT = 9 10
                                                    RONCH
   BLOCK
          COOLER
                    IN = 10
                                       OUT = 10A
                                                    QCOOLR
                                       OUT = 11 12
   BLOCK
          CENFUG1
                   IN = 10A
   BLOCK
          CENFUG2
                   IN = 12
                                      DUT = 13 14
   BLOCK
          CENFUG3
                   IN = 11 13
                                      DUT = 15
          C-COLMN IN = 15
   BLOCK
                                      DUT = 16 17
```

- 71 -

STREAM 1

```
SUBSTREAM
                   MIXED TEMP = 300.15 PRES = 1.01305
         MASS-FLOW
                    WATER 45.47
                   NCPSD TEMP = 300.15 PRES = 1.013D5
         SUBSTREAM
                   LIGNIN 7.88 / HCLOSE 10.71 /&
         MASS-FLOW
                    ACLOSE 7.24 / CCLOSE 19.64
         SURS-ATTR
                   FSD FRAC = 0 0 0 0 0 0 0 0 .5 .5
STREAM
         SUBSTREAM MIXED TEMP = 826.9415 PRES = 1.406
         MASS-FLOW
                   WATER 38.95
STREAM
         SUBSTREAM MIXED TEMP = 759.375 PRES = 1.4D6
         MASS-FLOW H2504 1.9587
BLOCK
      CRUSHER CRUSH
       FARAM 0.001 0 2
       BWI NCPSD 50
       PUMP1 PUMP
PARAM PRES = 1.4D6 TYPE = 2
BLOCK
BLOCK
       SLRYTNK MIXER
BLOCK
       ACIDIN MIXER
       HEATER1 HEATER
BLOCK
       PARAM TEMP = 468.15 PRES = 1.4D6
BLOCK
      ACIDHYD USER
       DESCRIPTION 'ACID HYDROLYZER'
       SUBROUTINE USR002 USR002
       PARAM NINT = 2 NREAL = 46
       INT 5 6
REAL 0.0 0.25 468.15 1.4D6
      FICTSEP SEP
BLOCK
       FRAC SUBS = MIXED STRM = 8A COMP = H2SO4 FRAC = 1.0
BLOCK
      QUENCH FLASH2
       PARAM TEMP = 373.15 PRES = 1.013D5
       FRAC NCPSD 0.0
      COOLER HEATER
BLOCK
       PARAM TEMP = 306.15 PRES = 1.013D5
BLOCK
      CENFUG1 CFUGE
       DIAMETER DIA = 1.0 RPS = 100
       CAKE-PROPS SPRES = 1D10 MRES = 1D10
       RATIOS RL:R = .74 RC:R = .8 H:R = 1.0
BLOCK
      CENFUG2 SEP
       FRAC SUBS=NCPSD STRM=13 COMP=CLBOSE GCOSE ENZYME XYLOSE&
           FRAC = 1.0 1.0 1.0 1.0
BLOCK
      CENFUG3 MIXER
BLOCK
      C-COLMN SEP
       FRAC SUBS = MIXED STRM = 16 COMP = H2SD4 HMF FURFURAL&
            FRAC = 1.0 1.0 1.0
STREAM-REPORT
    STANDARD OPTIONS = ALL MASS-FLOW
```

- 72 -

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE II THE ABE PROCESS TABLE OF CONTENTS

FLOW	SHEET SECTION.			1
	FLOWSHEET COM	VNECTIVITY	BY STREAMS	1
	FLOWSHEET COM	NECTIVITY	BY BLOCKS	1
	COMPUTATIONAL	L SEQUENCE.		1
			CE	
PHYS	ICAL PROPERTIE	ES SECTION.		3
			••••••	
			TIES	
			••••••	-
	- · · · · · · · · · · · · · · · · · · ·			•••
INIT	DEFEATIONS B	DEN SECTIO	N	6
0.41	CRUSHER	(CRUSH):	CRUSHER	
	PUMP	(PUMP):	PUMP1	
	MIXER	(MIXER):	SLRYTNK	
	MIXER	(MIXER):		
	- '		ACIDIN	
	GENERAL-HEAT		HEATER1	
	USER-MODEL	(USER):	ACIDHYD	-
	SEFARATOR	(SEP):	FICTSEP	
	FLASH: 2-OUTL		QUENCH	
	GENERAL-HEAT		COOLER	
	CENTRIFUGE	(CFUGE):	CENFUG1	
	SEPARATOR	(SEP):	CENFUG2	17
	MIXER	(MIXER):	CENFUG3	20
	SEPARATUR	(SEP):	C-COLMN	21
STRE	AM SECTION			25
	DESCRIPTION (OF STREAM C	LASS MIXNCPSD	25
	DESCRIPTION O	OF STREAM C	LASS HEAT	25
	DESCRIPTION O	OF STREAM C	LASS WORK	25
	SUBSTREAM ATT	TR PSD TYPE	: PSD	25
			••••••	
			R	
	SHAF Ilaaaaa			3/

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE THE ABE PROCESS FLOWSHEET SECTION

FLOWSHEET CONNECTIVITY BY STREAMS

STREAM	SOURCE	DEST	STREAM	SOURCE	DEST
2	CRUSHER	PUMP1	3	PUMP1	SLRYTNK
SHAFT1	PUMP1		6	SLRYTNK	ACIDIN
7B	ACIDIN	HEATER1	7C	HEATER1	ACIDHYD
QHTR	HEATER1		8	ACIDHYD	FICTSEP
QACHYD	ACIDHYD		BA	FICTSEP	
88	FICTSEP	QUENCH	9 :	QUENCH	
10	QUENCH	COOLER	QQNCH	QUENCH	
10A	COOLER	CENFUG1	QCOOLR	COOLER	
11	CENFUG1	CENFUG3	12	CENFUG1	CENFUG2
13	CENFUG2	CENFUG3	14	CENFUG2	
15	CENFUG3	C-COLMN	16	C-COLMN	
17	C-COLMN		1		CRUSHER
4		SLRYTNK	7		ACIDIN

FLOWSHEET CONNECTIVITY BY BLOCKS

BLOCK	INLETS	OUTLETS
CRUSHER	1	2
PUMP1	2	3 SHAFT1
SLRYTNK	3 4	6
ACIDIN	6 7	7B
HEATER1	7B	7C QHTR
ACIDHYD	7C	8 QACHYD
FICTSEP	8	8A 8B
QUENCH	88	9 10 QQNCH
COOLER	10	10A QCOOLR
CENFUGI	10A	11 12
CENFUG2	12	13 14
CENFUG3	11 13	15
C-COLMN	15	16 17

COMPUTATIONAL SEQUENCE

SEQUENCE USED WAS:

CRUSHER PUMP1 SLRYTNK ACIDIN HEATER1 ACIDHYD FICTSEP QUENCH COOLER CENFUG1 CENFUG2 CENFUG3 C-COLMN

DVERALL FLOWSHEET BALANCE

*** !	1ASS AND ENERGY BAL	ANCE +++	
	IN	DUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS	(KMOL/SEC)		
WATER	4.68609	4.60542	0.172165E-01
H2S04	0.199704E-01	0.199704E-01	0.00000E+00
HMF	0.00000E+00	0.886747E-02	-1.00000
FURFURAL	0.00000E+00	0.800251E-02	-1.00000
SUBTOTAL (KMOL/SEC)	4.70607	4.64226	0.135588E-01
(KG/SEC)	86.3787	86.8115	-0.498507E-02

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 2 THE ABE PROCESS FLOWSHEET SECTION

OVERALL FLOWSHEET BALANCE	(CONTINUED)		
NON-CONVENTIONAL COMPO	DNENTS (KG/SEC)		
CCLOSE	19.6400	17.7014	0.987066E-01
ACLOSE	7.24000	0.00000E+00	1.00000
CLBOSE	0.00000E+00	0.00000E+00	0.000000E+00
GCOSE	0.00000E+00	8.60230	-1.00000
ENZYME	0.00000E+00	0.00000E+00	0.00000E+00
HCLOSE	10.7100	0.854619	0.920204
XYLOSE	0.00000E+00	9.99892	-1.00000
LIGNIN	7.88000	7.88000	-0.281782E-16
SUBTOTAL (KG/SEC)	45.4700	45.0372	0.951752E-02
TOTAL BALANCE			
MASS (KG/SEC)	131.849	131.849	-0.29 3345E-09
ENTHALPY(WATT)	-0.117860E+10	-0.117864E+10	0.407567E-04

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 6
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

CRUSHER

(CRUSH): CRUSHER

INLET = 1

OUTLET = 2

PROPERTY OPTION SET SYSOP4

++* MAS	S AND ENERGY BAL	ANCE ***	
	IN	OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS (K	10L/SEC)		
WATER	2.52401	2.52401	0.000000E+00
H2SO4	0.00000E+00	0.00000E+00	0.000000E+00
HMF	0.00000E+00	0.00000E+00	0.000000E+00
FURFURAL	0.000000E+00	0.000000E+00	0.00000E+00
SUBTOTAL (KMOL/SEC)	2.52401	2.52401	0.000000E+00
(KG/SEC)	45.4700	45.4700	0.00000E+00
NON-CONVENTIONAL COMPONENTS	S (KG/SEC)		
CCLOSE	19.6400	19.6400	-0.226115E-16
ACLOSE	7.24000	7.24000	-0.306691E-16
CLEOSE	0.00000E+00	0.000000E+00	0.000000E+00
GCOSE	0.000000E+00	0.000000E+00	0.000000E+00
ENZYME	0.000000E+00	0.000000E+00	0.000000E+00
HCLOSE	10.7100	10.7100	-0.207325E-16
XYLOSE	0.000000E+00	0.000000E+00	0.000000E+00
LIGNIN	7.88000	7.88000	-0.281782E-16
SUBTOTAL (KG/SEC)	45.4700	45.4700	-0.195333E-16
TOTAL BALANCE			
MASS (KG/SEC)	90.9400	90.9400	0.000000E+00
ENTHALPY (WATT)	-0.694385E+09	-0.694385E+09	-0.214595E-16

*** INPUT DATA ***

OPERATING MODE: O = PRIMARY, 1 = SECONDARY

CRUSHER TYPE: 1 = GYRATORY/JAW, 2 = SINGLE ROLL

3 = MULTIPLE ROLL, 4 = CAGE MILL

2
DIAMETER OF SOLIDS DUTLET , METER

BOND WORK INDEX FOR SUBSTREAM NCPSD

50.0000

*** RESULTS ***

POWER REQUIREMENT , WATT

PARTICLE DIAMETER WHICH IS

LARGER THAN 80% OF INLET MASS METER

O.038000

PARTICLE DIAMETER WHICH IS

LARGER THAN 80% OF DUTLET MASS METER

O.00086186

PUMP (FUMP): FUMP1
INLET = 2 OUTLET = 3
PROPERTY OPTION SET SYSOP4

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 7
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

PUMP

(PUMP): PUMP1 (CONTINUED)

*** MA	SS AND ENERGY BAI IN	LANCE +++ DUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS ((MOL/SEC)		
WATER	2.52401	2.52401	0.00000E+00
H2504	0.00000E+00	0.00000E+00	0.00000E+00
HMF	0.000000E+00	0.000000E+00	0.000000E+00
FURFURAL	0.00000E+00	0.000000E+00	0.000000E+00
SUBTOTAL (KMOL/SEC)	2.52401	2.52401	0.000000E+00
(KG/SEC)	45.4700	45.4700	0.000000E+00
NON-CONVENTIONAL COMPONENT	TS (KG/SEC)		
CCLOSE	19.6400	19.6400	0.00000E+00
ACLOSE	7.24000	7.24000	0.00000E+00
CLBOSE	0.000000E+00	0.000000E+00	0.000000E+00
GCOSE	0.00000E+00	0.000000E+00	0.000000E+00
ENZYME	0.00000E+00	0.00000E+00	0.000000E+00
HCLOSE	10.7100	10.7100	0.000000E+00
XYLOSE	0.00000E+00	0.00000E+00	0.000000E+00
LIGNIN	7.88000	7.88000	0.000000E+00
SUBTOTAL (KG/SEC) TOTAL BALANCE	45.4700	45.4700	0.000000E+00
MASS (KG/SEC)	90.9400	90.9400	0.00000E+00
ENTHALPY (WATT)	-0.694385E+09	-0.694385E+09	0.695742E-08

*** INPUT DATA ***

TYPE OF PUMP: 1=CENTRIFUGAL PUMP;

2, SLURRY PUMP; 3, FOSITIVE DISPLACEMENT PUMP

REQUIRED EXIT PRESSURE ,N/SQM 1,400,000.

PUMP EFFICIENCY , MISSING DRIVER EFFICIENCY , 1.00000

SOLID FLOW RATE ,KG/SEC MISSING

*** RESULTS ***

TYPE OF PUMP, (CAL)

VOLUMETRIC FLOW RATE CUM/SEC

DELTA PRESSURE N/SQM

FLUID FOWER REQUIREMENTWATT

BRAKE FOWER REQUIREMENTWATT

ELECTRICITY REQUIREMENT WATT

PUMP EFFICIENCY (CAL)

2
0.053706

69.748.6

107.305.

107.305.

MIXER (MIXER): SLRYTNK
INLET STREAM(S): 3
OUTLET STREAM: 6
PROPERTY OPTION SET SYSOP4

- 77 -

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** FROD VERSION ** DATE: 11/11/85 PAGE 6 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

MIXER

(MIXER): SLRYTNK (CONTINUED)

*** MASS	S AND ENERGY BAI IN	LANCE +++ OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS (K)	10L/SEC)	00,	WEENITAE DIFF.
WATER	4.68609	4.68609	0.000000E+00
H2S04	0.000000E+00	0.00000E+00	0.000000E+00
HMF	0.000000E+00	0.00000E+00	0.00000E+00
FURFURAL .	0.000000E+00	0.00000E+00	0.00000E+00
SUBTOTAL (KMOL/SEC)	4.68609	4.68609	0.00000E+00
(KG/SEC)	84.4200	84.4200	0.00000E+00
NON-CONVENTIONAL COMPONENTS	G (KG/SEC)		
CCLOSE	19.6400	19.6400	0.00000E+00
ACLOSE	7.24000	7.24000	0.00000E+00
CLBOSE	0.000000E+00	0.00000E+00	0.000000E+00
GCOSE	0.000000E+00	0.00000E+00	0.00000E+00
ENZYME	0.000000E+00	0.00000E+00	0.00000E+00
HCLOSE	10.7100	10.7100	0.00000E+00
XYLOSE	0.000000E+00	0.00000E+00	0.000000E+00
LIGNIN	7.88000	7.88000	0.00000E+00
SUBTOTAL (KG/SEC)	45.4700	45.4700	0.00000E+00
TOTAL BALANCE			
MASS (KG/SEC)	129.890	129.890	0.000000E+00
ENTHALPY(WATT)	-0.117691E+10	-0.117692E+10	0.197368E-05

*** INPUT DATA ***

OUTLET PRESSURE ,N/SQM
TYPE OF FLASH - TWO PHASE
MAXIMUM NUMBER OF ITERATIONS IN FLASH
CONVERGENCE TOLERANCE FOR FLASH

MISSING

0.000100000

MIXER (MIXER): ACIDIN
INLET STREAM(S): 6 7
OUTLET STREAM: 7B
PROPERTY OPTION SET SYSOP4

*** MASS AND ENERGY BALANCE ***

	IN	OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS	(KMOL/SEC)		
WATER	4.68609	4.68609	0.000000E+00
H2S04	0.199704E-01	0.199704E-01	0.00000E+00
HMF	0.000000E+00	0.00000E+00	0.00000E+00
FURFURAL	0.000000E+00	0.00000E+00	0.00000E+00
SUBTOTAL (KMOL/SEC)	4.70607	4.70607	0.00000E+00
(KG/SEC)	86.3787	86.3787	0.00000F+00

- 78 -

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

MIXER	(MIXER):	ACIDIN	(CONTINUED)		
NON-CONVEN.	TIONAL CO	MPONENTS	(KG/SEC)		
CCLOSE			19.6400	19.6400	0.000000E+00
ACLOSE			7.24000	7.24000	0.000000E+00
CLBOSE			0.000000E+00	0.00000E+00	0.00000E+00
GCOSE			0.000000E+00	0.000000E+00	0.00000E+00
ENZYME			0.000000E+00	0.00000E+00	0.00000E+00
HCLOSE			10.7100	10.7100	0.00000E+00
XYLOSE			0.000000E+00	0.000000E+00	0.000000E+00
LIGNIN			7.88000	7.88000	0.000000E+00
SUBTOTAL (K	S/SEC)		45.4700	45.4700	0.00000E+00
TOTAL BALA	NCE				
MASS (KG.	/SEC)		131.849	131.849	0.000000E+00
ENTHALP	Y (WATT) -	-0.117849E+10	-0.117849E+10	-0.132360E-07

*** INFUT DATA ***

DUTLET PRESSURE . N/SQM TYPE OF FLASH - TWO PHASE MISSING

MAXIMUM NUMBER OF ITERATIONS IN FLASH CONVERGENCE TOLERANCE FOR FLASH

30 0.000100000

GENERAL-HEAT (HEATER): HEATER1

INPUT STREAM: 7B

DUTPUT STREAM: 7C

QHTR

PROPERTY OPTION SET SYSOP4

*** MASS AND ENERGY BALANCE IN DUT RELATIVE DIFF. CONVENTIONAL COMPONENTS (KMOL/SEC) WATER 4.68609 4.68609 0.000000E+00 H2S04 0.199704E-01 0.199704E-01 0.000000E+00 HMF 0.00000E+00 0.000000E+00 0.000000E+00 FURFURAL 0.000000E+00 0.000000E+00 0.000000E+00 SUBTOTAL (KMOL/SEC) 4.70607 4.70607 0.000000E+00 86.3787 (KG/SEC) 86.3787 0.000000E+00 NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 19.6400 19.6400 0.000000E+00 7.24000 ACLOSE 7.24000 0.000000E+00 CLBOSE 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 GCOSE 0.000000E+00 ENZYME 0.000000E+00 0.000000E+00 0.000000E+00 HCLOSE 10.7100 10.7100 0.000000E+00 0.000000E+00 XYLOSE 0.000000E+00 0.000000E+00 LIGNIN 7.88000 7.88000 0.000000E+00 SUBTOTAL (KG/SEC) 45.4700 45.4700 0.000000E+00 TOTAL BALANCE MASS (KG/SEC 131.849 131.849 0.00000E+00 ENTHALPY (WATT -0.117849E+10 -0.117849E+10 0.252886E-16

- 79 -

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 10
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

468.15

30

0.14000E+07

0.10000E-03

GENERAL-HEAT (HEATER): HEATER1 (CONTINUED)

*** INPUT DATA ***

TWO PHASE TP FLASH
SPECIFIED TEMPERATURE K
SPECIFIED PRESSURE N/SQM
MAXIMUM ITERATION NO.
CONVERGENCE TOLERANCE
TP FLASH, NO INITIAL GUESSES ARE REQUIRED.

*** RESULTS ***

 OUTPUT TEMPERATURE
 K
 468.15

 OUTPUT PRESSURE
 N/SQM
 0.14000E+07

 HEAT DUTY
 WATT
 0.11547E+09

 VAPOR FRACTION
 1.0000

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I)
WATER 0.97576 0.97977 0.97576 0.97831
H2SQ4 0.42436E-02 0.25775E-04 0.42436E-02 165.06

USER-MODEL (USER): ACIDHYD ACID HYDROLYZER INFUT STREAMS 7C OUTFUT STREAMS 8 QACHYD

PROPERTY OPTION SET SYSOP4

*** MASS AND ENERGY BALANCE ***

TTT 110	133 HIAD EMENOI DH	THISC AND	
	IN	OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS	(KMOL/SEC)		
WATER	4.68609	4.60542	0.172165E-01
H2S04	0.199704E-01	0.199704E-01	0.000000E+00
HMF	0.00000E+00	0.886747E-02	-1.00000
FURFURAL	0.00000E+00	0.800251E-02	-1.00000
SUBTOTAL (KMOL/SEC)	4.70607	4.64226	0.135588E-01
(KG/SEC)	86.3787	86.8115	-0.498507E-02
NON-CONVENTIONAL COMPONEN	NTS (KG/SEC)		
CCLOSE	19.6400	17.7014	0.987066E-01
ACLOSE	7.24000	0.000000E+00	1.00000
CLBOSE	0.000000E+00	0.00000E+00	0.000000E+00
GCOSE	0.000000E+00	8.60230	-1.00000
ENZYME	0.000000E+00	0.00000E+00	0.00000E+00
HCLOSE	10.7100	0.854619	0.920204
XYLOSE	0.000000E+00	9.99 89 2	-1.00000
LIGNIN	7.88000	7.88000	0.000000E+00
SURTOTAL (KG/SEC)	45.4700	45.0372	0.951752E-02
TOTAL BALANCE			
MASS (KG/SEC)	131.849	131.849	0.00000E+00
ENTHALPY (WATT)	-0.106302E+10	-0.106302E+10	0.000000E+00

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 11 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

USER-MODEL (USER): ACIDHYD (CONTINUED)

PROFILES (KGMOL/L) ARE AS FOLLOWS:

TIME	GCOSE	XLOSE	CCLOSE	HMF	HCLOSE	FURF
0.00	0.5290-03	0.0000+00	0.1440-02	0.00000+00	0.761D-03	0.0000+00
0.05					0.580D-03	
0.10	0.547D-03	0.588D-03	0.138D-02	0.412D-04	0.3500-03	0.230D-04
0.15	0.554D-03	0.7050-03	0.1350-02	0.622D-04	0.2110-03	0.446D-04
0.20	0.560D-03	0.765D-03	0.132D-02	0.835D-04	0.128D-03	0.690D-04
0.25	0.566D-03	0.7900-03	0.1290-02	0.1050-03	0.7670-04	0.948D-04

SEPARATOR (SEP): FICTSEP INPUT STREAM - 8 OUTPUT STREAMS - BA

98 PROPERTY OPTION SET SYSOP4

*** MASS AND ENERGY BALANCE ***

	IN	OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS	(KMOL/SEC)		
WATER	4.60542	4.60542	0.00000E+00
H2504	0.199704E-01	0.199704E-01	0.00000E+00
HMF	0.886747E-02	0.886747E-02	0.00000E+00
FURFURAL	0.800251E-02	0.800251E-02	0.000000E+00

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 12 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION SEPARATOR (SEP): FICTSEP (CONTINUED) NON-CONVENTIONAL COMPONENTS (KG/SEC) 0.000000E+00 CCLOSE 17.7014 17.7014 ACLOSE 0.00000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 CLBOSE 0.000000E+00 GCOSE 8.60230 8.60230 0.000000E+00 ENZYME 0.000000E+00 0.000000E+00 0.00000E+00 HCLOSE 0.000000E+00 0.854619 0.854619 XYLOSE 9.99892 9.99892 0.000000E+00 7.88000 0.000000E+00 LIGNIN 7.88000 TOTAL BALANCE MASS (KG/SEC) 131.849 131.849 0.000000E+00 ENTHALPY (WATT -0.104762E+10 0.242617E-05) -0.104763E+10 *** INPUT DATA *** FLASH SFECS FOR STREAM BA TEMPERATURE (K MISSING PRESSURE (N/SQM MISSING VAPOR FRACTION MISSING PHASE CODE 2 TEMP ESTIMATE (K MISSING PRES ESTIMATE (N/SQM MISSING MAX. NO. ITERATIONS 25 CONVERGENCE TOL. 0.000100000 FLASH SPECS FOR STREAM BB TEMPERATURE (K MISSING PRESSURE (N/SQM MISSING VAFOR FRACTION MISSING PHASE CODE 2 TEMP ESTIMATE (K MISSING PRES ESTIMATE (N/SQM MISSING) MAX. NO. ITERATIONS 25 CONVERGENCE TOL. 0.000100000 FRACTION OF FEED SUBSTREAM= MIXED STREAM= BA FRACTION= CPT= H2SO4 1.00000 *** RESULTS ***

2,541.72

HEAT DUTY (WATT

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 13 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): FICTSEP (CONTINUED)

COMPONENT = WATER

STREAM SUBSTREAM SPLIT FRACTION
8B MIXED 1.00000

COMPONENT = H2SO4

STREAM SUBSTREAM SPLIT FRACTION
8A MIXED 1.00000

COMPONENT = HMF

STREAM SUBSTREAM SPLIT FRACTION
BB MIXED 1.00000

COMPONENT = FURFURAL

STREAM SUBSTREAM SPLIT FRACTION
BB MIXED 1.00000

COMPONENT = CCLOSE

STREAM SUBSTREAM SPLIT FRACTION
8B NCPSD 1.00000

COMPONENT = ACLOSE

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = CLBOSE

STREAM SUBSTREAM SPLIT FRACTION

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** FROD VERSION ** DATE: 11/11/85 PAGE 14 THE ARE PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): FICTSEP (CONTINUED)

COMPONENT = GCOSE

SUBSTREAM SPLIT FRACTION STREAM NCPSD 1.00000

COMPONENT = ENZYME

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = HCLOSE

STREAM SUBSTREAM SPLIT FRACTION NCPSD 1.00000

COMPONENT = XYLOSE

STREAM SUBSTREAM SPLIT FRACTION NCPSD 1.00000

COMPONENT = LIGNIN

SPLIT FRACTION STREAM SUBSTREAM RR NCPSD 1.00000

FLASH: 2-DUTL (FLASH2): QUENCH

INPUT STREAM(S): 88

OUTPUT STREAM(S): 9 10 QQNCH

PROPERTY OPTION SET SYSOP4

(KG/SEC)

*** MASS AND ENERGY BALANCE *** DUT

84.8528

RELATIVE DIFF. IN CONVENTIONAL COMPONENTS (KMOL/SEC) 4.60542 WATER 4.60542 0.895404E-10 H2S04 0.000000E+00 0.000000E+00 0.000000E+00 0.886747E-02 HMF 0.886747E-02 -0.244441E-07 **FURFURAL** 0.800251E-02 0.800251E-02 -0.244441E-07 0.240189E-16 SUBTOTAL (KMOL/SEC) 4.62229 4.62229

84.8528

-0.455814E-09

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 15 THE ABE PROCESS UNIT OFERATIONS BLOCK SECTION

FLASH: 2-OUTL (FLASH2): QUENCH (CONTINUED) NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 17.7014 17.7014 0.000000E+00 ACLOSE 0.00000E+00 0.00000E+00 0.00000E+00 CLBOSE 0.000000E+00 0.00000E+00 0.00000E+00 GCOSE B.60230 B.60230 0.00000E+00 ENZYME 0.00000E+00 0.00000E+00 0.000000E+00 HCLOSE 0.854619 0.854619 0:000000E+00 XYLOSE 9.99892 9.99892 0.00000E+00 LIGNIN 7.88000 7.88000 0.000000E+00 SUBTOTAL (KG/SEC) 45.0372 45.0372 0.00000E+00 TOTAL BALANCE MASS (KG/SEC) 129.890 129.890 -0.297768E-09 ENTHALPY (WATT -0.104587E+10 -0.104587E+10 -0.569903E-16

INPUT DATA +++

PHASE TP FLASH TWO SPECIFIED TEMPERATURE K 373.15 SPECIFIED PRESSURE N/SQM 0.10130E+06 MAXIMUM ITERATION NO. 30 CONVERGENCE TOLERANÇE 0.10000E-03 NO INITIAL GUESSES ARE REQUIRED. LIQUID ENTRAINMENT 0.00000E+00 SOLID SPLIT FRACTIONS:

SUBSTREAM NO. = 1 MIXED SUBSTREAM, NO SOLID SPLITS.

SUBSTREAM NO. = 2 VAPOR: 0.00000E+00 LIQUID: 0.10000E+31

*** RESULTS ***

OUTPUT TEMPERATURE K 373.15 OUTPUT PRESSURE N/SQM 0.10130E+06 HEAT DUTY WATT -0.20338E+09 VAPOR FRACTION 0.66936E-01

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) WATER 0.99635 0.99982 0.94799 0.94816 HMF 0.19184E-02 0.94794E-04 0.27339E-01 288.39 FURFURAL 0.8554BE-04 0.17313E-02 0.24672E-01 288.39

GENERAL-HEAT (HEATER): COOLER

INPUT STREAM: 10

DUTPUT STREAM: 10A QCOOLR

PROPERTY OPTION SET SYSOP4

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** FROD VERSION ** DATE: 11/11/85 FAGE 16
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

GENERAL-HEAT (HEATER): COOLER (CONTINUED)

*** MASS	AND ENERGY BAL	ANCE +++	
	IN	OUT	RELATIVE DIFF.
CONVENTIONAL COMPONENTS (KM	IOL/SEC)		
WATER	4.31211	4.31211	0.000000E+00
H2S04	0.000000E+00	0.000000E+00	0.000000E+00
HMF	0.408837E-03:	0.408837E-03	0.000000E+00
FURFURAL	0.368957E-03	0.368957E-03	0.000000E+00
SUBTOTAL (KMOL/SEC)	4.31289	4.31289	0.000000E+00
(KG/SEC)	77.7697	77.7697	0.00000E+00
NON-CONVENTIONAL COMPONENTS	(KG/SEC)		
CCLOSE	17.7014	17.7014	0.00000E+00
ACLOSE	0.000000E+00	0.000000E+00	0.000000E+00
CLBOSE	0.000000E+00	0.00000E+00	0.000000E+00
GCOSE	8.60230	8.60230	0.000000E+00
ENZYME	0.000000E+00	0.000000E+00	0.00000E+00
HCLOSE	0.854619	0.854619	0.00000E+00
XYLOSE	9.99892	9.99892	0.000000E+00
LIGNIN	7.88000	7.88000	0.00000E+00
SUBTOTAL (KG/SEC)	45.0372	45.0372	0.00000E+00
TOTAL BALANCE			
MASS (KG/SEC)	122.807	122.807	0.00000E+00
ENTHALPY (WATT)	-0.117575E+10	-0.117575E+10	0.00000E+00

+++ INPUT DATA +++

TWO PHASE TP FLASH

SPECIFIED TEMPERATURE K 306.15

SPECIFIED PRESSURE N/SQM 0.10130E+06

MAXIMUM ITERATION NO. 30

CONVERGENCE TOLERANCE 0.10000E-03

TP FLASH, NO INITIAL GUESSES ARE REQUIRED.

*** RESULTS ***

 OUTPUT TEMPERATURE
 K
 306.15

 OUTPUT PRESSURE
 N/SQM
 0.10130E+06

 HEAT DUTY
 WATT
 -0.30551E+08

 VAPOR FRACTION
 0.00000E+00

V-L PHASE EQUILIBRIUM :

COMP F(I) X(I) Y(I) K(I) WATER 0.99982 0.99982 0.33780 0.42790E-01 HMF 0.94794E-04 0.94794E-04 0.34808 465.05 **FURFURAL** 0.85548E-04 0.85548E-04 0.31412 465.05

CENTRIFUGE (CFUGE): CENFUG1

INLET = 10A DUTLET = 11 12

PROPERTY OFTION SET SYSOF4

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 17 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

CENTRIFUGE (CFUGE): CENFUG1 (CONTINUED)

*** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. CONVENTIONAL COMPONENTS (KMOL/SEC) 0.00000E+00 WATER 4.31211 4.31211 H2S04 0.000000E+00 0.00000E+00 0.000000E+00 HMF 0.408837E-03 0.408837E-03 0.000000E+00 **FURFURAL** 0.368957E-03 0.000000E+00 0.368957E-03 SUBTOTAL (KMOL/SEC) 4.31289 4.31289 0.000000E+00 (KG/SEC) 77.7697 77.7697 -0.228413E-16 NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 17.7014 17.7014 0.000000E+00 ACLOSE 0.00000E+00 0.00000E+00 0.000000E+00 CLBOSE 0.00000E+00 0.00000E+00 0.00000E+00 GCOSE 8.60230 8.60230 0.00000E+00 **ENZYME** 0.00000E+00 0.000000E+00 0.00000E+00 **HCLOSE** 0.854619 0.854619 0.00000E+00 XYLOSE 9.99892 9.99892 0.00000E+00 7.88000 7.88000 LIGNIN 0.00000E+00 SUBTOTAL (KG/SEC 0.00000E+00 45.0372 45.0372 TOTAL BALANCE MASS (KG/SEC) 122.807 122.807 -0.144646E-16 ENTHALPY (WATT -0.120630E+10 -0.120630E+10 0.247055E-16

+++ INPUT DATA +++.

RATIO RADIUS OF LIQ TO RADIUS OF BOW ,	0.74000
RATIO-RADIUS OF CAKE TO RADIUS OF BOW .	0.80000
RATIO OF HEIGHT TO RADIUS OF BOW ,	1.00000
CAKE RESISTANCE .	0.100000+11
FILTER MEDIUM RESISTANCE .	0.100000+11
MOISTURE CONTENT ,	MISSING
POROSITY OF CAKE ,	0.45000
PARTICLE SPHERICITY ,	0.75000
AVERAGE PARTICLE DIAMETER , METER	MISSING
SURFACE TENSION , N/M	0.096065
AVERAGE SOLID DENSITY .KG/CUM	705.450
DRY SOLIDS FEED MASS FLOW RATE , KG/SEC	45.0372

+++ RESULTS +++

CALCULATED PARTICLE DIAMETER ,METER 0.00081084
RESULTED MOISTURE CONTENT , 0.0025968
SELECTED BOW RADIUS , 1.00000
REVOLUTIONS PER SECOND ,HZ 100.000
BASKET HEIGHT ,METER 1.00000

SEPARATOR (SEP): CENFUG2 INPUT STREAM - 12 OUTPUT STREAMS - 13 14 PROPERTY OPTION SET SYSOP4

- 87 -

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 18 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): CENFUG2 (CONTINUED)

*** MASS AND ENERGY BALANCE IN DUT RELATIVE DIFF. CONVENTIONAL COMPONENTS (KMOL/SEC) 0.000000E+00 WATER 0.648464E-02 0.648464E-02 H2S04 0.000000E+00 0.000000E+00 0.000000E+00 HMF 0.614817E-06 0.614817E-06 0.000000E+00 **FURFURAL** 0.554846E-06 0.554846E-06 0.000000E+00 NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 17.7014 17.7014 0.000000E+00 ACLOSE 0.000000E+00 0.000000E+00 0.000000E+00 CLBOSE 0.000000E+00 0.000000E+00 0.000000E+00 GCOSE B.60230 0.000000E+00 8.60230 ENZYME 0.00000E+00 0.000000E+00 0.000000E+00 HCLOSE 0.854619 0.854619 0.000000E+00 0.00000E+00 XYLOSE 9.99892 9.99892 LIGNIN 7.88000 7.88000 0.000000E+00 TOTAL BALANCE MASS (KG/SEC) .0.00000E+00 45.1542 45.1542 ENTHALPY (WATT 0.298713E+08 0.298713E+08 -0.623556E-16

*** INPUT DATA ***

FLASH SPECS FOR STREAM 13	
TEMPERATURE (K)	MISSING
PRESSURE (N/SQM)	MISSING
VAPOR FRACTION	MISSING
PHASE CODE	2
TEMP ESTIMATE (K)	MISSING
PRES ESTIMATE (N/SQM)	MISSING
MAX. NO. ITERATIONS	25
CONVERGENCE TOL.	0.000100000
FLASH SPECS FOR STREAM 14	
TEMPERATURE (K)	MISSING
PRESSURE (N/SQM)	MISSING
VAPOR FRACTION	MISSING
PHASE CODE	2
TEMP ESTIMATE (K)	MISSING
PRES ESTIMATE (N/SQM)	MISSING
MAX. NO. ITERATIONS	25
CONVERGENCE TOL.	0.000100000

M.E.T.C / VAX ASFEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 19
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

SEFARATOR (SEF): CENFUG2 (CONTINUED)

FRACTION OF FEED SUBSTREAM= NCPSD

STREAM= 13 CPT= CLBOSE FRACTION= 1.00000 1.00000

ENZYME 1.00000 XYLOSE 1.00000

+++ RESULTS +++

HEAT DUTY (WATT) -0.186265-08

COMPONENT = WATER

STREAM SUBSTREAM SPLIT FRACTION
14 MIXED 1.00000

COMPONENT = H2SO4

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = HMF

STREAM SUBSTREAM SPLIT FRACTION
14 MIXED 1.00000

COMPONENT = FURFURAL

STREAM SUBSTREAM SPLIT FRACTION
14 MIXED 1.00000

COMPONENT = CCLOSE

STREAM SUBSTREAM SPLIT FRACTION
14 NCPSD 1.00000

COMPONENT = ACLOSE

STREAM SUBSTREAM SPLIT FRACTION

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 20 THE ABE. PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): CENFUG2 (CONTINUED)

COMPONENT = CLBOSE

SPLIT FRACTION STREAM SUBSTREAM

COMPONENT = GCOSE

STREAM SUBSTREAM SPLIT FRACTION NCPSD 1.00000

COMPONENT = ENZYME

SUBSTREAM SPLIT FRACTION STREAM

COMPONENT = HCLOSE

SPLIT FRACTION STREAM SUBSTREAM 14 NCPSD 1.00000

COMPONENT = XYLOSE

SPLIT FRACTION STREAM SUBSTREAM 1.00000 NCPSD 13

COMPONENT = LIGNIN

STREAM SUBSTREAM SPLIT FRACTION . 1.00000

NCPSD

MIXER (MIXER): CENFUG3

INLET STREAM(S): 11 13

OUTLET STREAM: 15 PROPERTY OPTION SET SYSOP4 M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 21
THE ABE PROCESS
UNIT OPERATIONS BLOCK SECTION

MIXER

(MIXER): CENFUG3 (CONTINUED)

*** MASS AND ENERGY BALANCE *** RELATIVE DIFF. IN OUT CONVENTIONAL COMPONENTS (KMOL/SEC) 4.30563 WATER 4.30563 0.000000E+00 H2S04 0.000000E+00 0.00000E+00 0.000000E+00 HMF 0.408222E-03 0.40B222E-03 0.000000E+00 **FURFURAL** 0.368402E-03 0.00000E+00 0.368402E-03 SUBTOTAL (KMOL/SEC) 4.30640 4.30640 0.000000E+00 (KG/SEC) 77.6527 77.6527 0.000000E+00 NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 0.000000E+00 0.000000E+00 0.000000E+00 ACLOSE 0.000000E+00 0.00000E+00 0.00000E+00 CLBOSE 0.00000E+00 0.00000E+00 0.00000E+00 GCOSE B. 60230 8.60230 0.00000E+00 ENZYME 0.00000E+00 0.00000E+00 0.000000E+00 HCLOSE 0.000000E+00 0.000000E+00 0.000000E+00 XYLOSE 9.99892 9.99892 0.000000E+00 LIGNIN 0.00000E+00 0.000000E+00 0.000000E+00 SUBTOTAL (KG/SEC) 18.6012 0.00000E+00 18.6012 TOTAL BALANCE MASS (KG/SEC) 96.2539 96.2539 0.000000E+00 ENTHALPY (WATT -0.122307E+10 -0.122307E+10 -0.341137E-15

*** INPUT DATA ***

OUTLET PRESSURE ,N/SQM
TYPE OF FLASH - TWO PHASE
MAXIMUM NUMBER OF ITERATIONS IN FLASH
CONVERGENCE TOLERANCE FOR FLASH

MISSING

30

SEPARATOR (SEP): C-COLMN INPUT STREAM - 15 OUTPUT STREAMS - 16 17

PROPERTY OPTION SET SYSOP4

*** MASS AND ENERGY BALANCE ***

IN OUT RELATIVE DIFF. CONVENTIONAL COMPONENTS (KMOL/SEC) WATER 4.30563 4.30563 0.000000E+00 0.000000E+00 H2S04 0.000000E+00 0.000000E+00 HMF 0.408222E-03 0.40B222E-03 0.00000E+00 **FURFURAL** 0.368402E-03 0.368402E-03 0.00000E+00

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 22 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION **SEPARATOR** (SEP): C-COLMN (CONTINUED) NON-CONVENTIONAL COMPONENTS (KG/SEC) CCLOSE 0.000000E+00 0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 ACLOSE 0.000000E+00 CLBOSE 0.00000E+00 0.00000E+00 0.000000E+00 GCOSE 8.60230 0.000000E+00 8.60230 0.000000E+00 , 0.000000E+00 0.000000E+00 ENZYME **HCLOSE** 0.000000E+00 0.000000E+00 0.000000E+00 XYLOSE 9.99892 9.99892 0.000000E+00 LIGNIN 0.00000E+00 0.000000E+00 0.000000E+00 TOTAL BALANCE MASS (KG/SEC) 96.2539 96.2539 0.000000E+00 ENTHALPY (WATT -0.122307E+10 0.353066E-04 -0.122311E+10 INPUT DATA *** FLASH SPECS FOR STREAM 16 TEMPERATURE (K MISSING PRESSURE (N/SQM MISSING VAPOR FRACTION MISSING PHASE CODE 2 TEMP ESTIMATE (K MISSING PRES ESTIMATE (N/SQM MISSING MAX. NO. ITERATIONS 25 0.000100000 CONVERGENCE TOL. FLASH SPECS FOR STREAM 17 TEMPERATURE (K MISSING PRESSURE (N/SQM MISSING VAPOR FRACTION MISSING PHASE CODE 2 TEMP ESTIMATE (K MISSING PRES ESTIMATE (N/SQM MISSING MAX. NO. ITERATIONS 25 0.000100000 CONVERGENCE TOL. FRACTION OF FEED SUBSTREAM= MIXED STREAM= 16 CPT= H2S04 FRACTION= 1.00000 1.00000 HMF **FURFURAL** 1.00000

- 92 -

43,183.8

RESULTS

HEAT DUTY (WATT

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 23 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): C-COLMN (CONTINUED)

COMPONENT = WATER

STREAM SUBSTREAM SPLIT FRACTION

7 MIXED 1.00000

COMPONENT = H2SO4

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = HMF

STREAM SUBSTREAM SPLIT FRACTION

6 MIXED 1.00000

COMPONENT = FURFURAL

STREAM SUBSTREAM SPLIT FRACTION

6 MIXED 1.00000

COMPONENT = CCLOSE

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = ACLOSE

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = CLBOSE

STREAM SUBSTREAM SPLIT FRACTION

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/83 PAGE 24 THE ABE PROCESS UNIT OPERATIONS BLOCK SECTION

SEPARATOR (SEP): C-COLMN (CONTINUED)

COMPONENT = GCOSE

STREAM SUBSTREAM SPLIT FRACTION
17 NCPSD 1.00000

17 NCFSD

COMPONENT = ENZYME STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = HCLOSE

STREAM SUBSTREAM SPLIT FRACTION

COMPONENT = XYLOSE

STREAM SUBSTREAM SPLIT FRACTION
17 NCPSD 1.00000

COMPONENT = LIGNIN

STREAM SUBSTREAM SPLIT FRACTION

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 25 THE ABE PROCESS STREAM SECTION

DESCRIPTION OF STREAM CLASS MIXNCPSD

STREAM CLASS : MIXNCFSD

SUBSTREAMS: MIXED NCPSD SUBSTRM CLASS: MIXED NCPSD SUBSTRM ATTR: PSD

DESCRIPTION OF STREAM CLASS HEAT

STREAM CLASS : HEAT STREAM ATTR : HEAT

DESCRIPTION OF STREAM CLASS WORK

STREAM CLASS: WORK STREAM ATTR: WORK

SUBSTREAM ATTR PSD TYPE: PSD

INTERVAL	LOWER LIM	IT	UPPER LIM	IT
1	0.0	METER	.20000-03	METER
2	.20000-03	METER	.40000-03	METER
3	.40000-03	METER	E0-00004.	METER
4	.60000-03	METER	.B0000-03	METER
5	.B0000-03	METER	0.0010	METER
6	0.0010	METER	0.0020	METER
7	0.0020	METER	0.0030	METER
8	0.0030	METER	0.0100	METER
9	0.0100	METER	0.0200	METER
10	0.0200	METER	0.0500	METER

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 26 THE ABE PROCESS STREAM SECTION

2 3 6 7B 7C

STREAM ID FROM : TO : CLASS:	2 CRUSHER PUMP1 MIXNCPSD	3 PUMP1 SLRYTNK MIXNCPSD	6 SLRYTNK ACIDIN MIXNCPSD	7B ACIDIN HEATER1 MIXNCPSD	7C HEATERI ACIDHYD MIXNCPSD
SUBSTREAM: MIXED	STRUCTURE	: CONVENT	TONAL		
WATER KG/SEC	45.4700	45.4700		B4.4200	B4.4200
H2SO4 KG/SEC	0.0	0.0	0.0	1.9587	1.9587
HMF KG/SEC	0.0	0.0	0.0	0.0	0.0
FURFURAL KG/SEC	0.0				
TOTAL KG/SEC	45.4700	0.0	0.0	0.0	0.0
TEMP K	300.1500	45.4700 300.3159	84.4200 468.2418	86.3787 467.5981	86.3787 468.1500
PRES N/SQM					
ENTHALPY J/KG			-14000+07		
VFRAC	15962+0B- 0.0				
LFRAC		0.0	0.3233	0.3288	1.0000
ENTROPY J/KG-K	1.0000	1.0000	0.6766	0.6711	0.0
	-9267.7535-				-
DENSITY KG/CUM	846.6394	846.6829	21.0611	21.8864	7.0786
AVG MW	18.0150	18.0150	18.0150	18.3547	18.3547
SUBSTREAM: NCPSD	STRUCTURE	: NON CON	VENT I ONAL		
CCLOSE KG/SEC	19.6400	19.6400	19.6400	19.6400	19.6400
ACLOSE KG/SEC	7.2400	7.2400	7.2400	7.2400	7.2400
CLBOSE KG/SEC	0.0	0.0	0.0	0.0	0.0
GCOSE KG/SEC	0.0	0.0	0.0	0.0	0.0
ENZYME KG/SEC	0.0	0.0	0.0	0.0	0.0
HCLOSE KG/SEC	10.7100	10.7100	10.7100	10.7100	10.7100
XYLOSE KG/SEC	0.0	0.0	0.0	0.0	0.0
LIGNIN KG/SEC	7.8800	7.8800	7.8800	7.8800	7.8800
TOTAL KG/SEC	45.4700				
	300.1500	45.4700 300.3159	45.4700	45.4700	45.4700
			468.2418	467.5981	468.1500
PRES N/SQM	.10130+06		.14000+07	.14000+07	
ENTHALPY J/KG		.69117+06	.10776+07	.10761+07	.10774+07
VFRAC	0.0	0.0	0.0	0.0	0.0
LFRAC	0.0	0.0	0.0	0.0	0.0
DENSITY KG/CUM	705.4500	705.4500	705.4500	705.4500	705.4500
AVG MW	1.0000	1.0000	1.0000	1.0000	1.0000
COMPONENT ATTRIBUTES:					
ENZYME CAUSR1					
ELEM1	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM2	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM3	MISSING	MISSING	MISSING	MISSING	Missing
ELEM4	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM5	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM6	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM7	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM8	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM9	MISSING	MISSING	MISSING	MISSING	MISSING
ELEM10	MISSING	MISSING	MISSING	MISSING	MISSING
SUBSTREAM ATTRIBUTES:					
PSD					

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 27
THE ABE PROCESS
STREAM SECTION

2 3 6 78 7C (CONTINUED)

STREAM ID	2	3	6	7B	7C
FRAC1	0.3289	0.3289	0.3289	0.3289	0.3289
FRAC2	0.1451	0.1451	0.1451	0.1451	0.1451
FRAC3	0.1266	0.1266	0.1266	0.1266	. 0.1266
FRAC4	0.1205	0.1205	0.1205	0.1205	0.1205
FRAC5	0.2542	0.2542	0.2542	0.2542	0.2542
FRAC6	0.0244	0.0244	0.0244	0.0244	0.0244
FRAC7	0.0	0.0	0.0	0.0	0.0
FRACB	0.0	0.0	0.0	0.0	0.0
FRAC9	0.0	0.0	0.0	0.0	0.0
FRAC10	0.0	0.0	0.0	0.0	0.0

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 28 THE ABE PROCESS STREAM SECTION

8 8A 8B 7 10

STREAM I FROM : TD :	D	8 ACIDHYD FICTSEP	BA FICTSEP	9B FICTSEP QUENCH	9 QUENCH	10 QUENCH COOLER
CLASS:		MIXNCPSD	MIXNCPSD	MIXNCPSD	MIXNCFSD	MIXNCPSD
SUBSTREA	M: MIXED	STRUCTURE	: CONVENT	IONAI		
WATER	KG/SEC	82.7665	0.0	82.9665	5.2838	77.6826
H2504	KG/SEC	1.9587	1.9587	0.0	0.0	0.0
HMF	KG/SEC	1.1173	0.0	1.1173	1.0657	0.0515
FURFURAL		0.7688	0.0	0.7688	0.7334	0.0313
TOTAL	KG/SEC	86.8114	1.9587	84.8527	7.0830	77.7696
TEMP	K	468.1500	468.1500	468.1500	373, 1500	373.1500
PRES	N/SQM			.14000+07		
ENTHALPY		12627+08-				
VFRAC		1.0000	1.0000	1.0000	1.0000	0.0
LFRAC		0.0	0.0	0.0	0.0	1.0000
ENTROPY	J/KG-K	-2775.3276		-2852.24 5 8-		
DENSITY	KG/CUM	7.2163	35.9698		0.7548	800.0021
AVG MW		18.7002	78.0800	18.3573	22.8932	18.0319
				1010070	2270702	
SUBSTREAM		STRUCTURE		VENTIONAL		
CCLOSE	KG/SEC	17.7014	0.0	17.7014	0.0	17.7014
ACLOSE	KG/SEC	0.0	0.0	0.0	0.0	0.0
CLROSE	KG/SEC	0.0	0.0	0.0	0.0	0.0
GCDSE	KG/SEC	B.6022	0.0	B.6022	0.0	8.6022
ENZYME	KG/SEC	0.0	0.0	0.0	0.0	0.0
HCLOSE	KG/SEC	0.8546	0.0	0.8546	0.0	0.8546
XYLOSE	KG/SEC	9.9989	0.0	9.9989	0.0	7.9989
LIGNIN	KG/SEC	7.8800	0.0	7.8800	0.0	7.8800
TOTAL	KG/SEC	45.0372	0.0	45.0372	0.0	45.0372
TEMP	K	468.1500	MISSING	468.1500	MISSING	373.1500
PRES	N/SQM			.14000+07		.10130+06
ENTHALPY	J/KG	.10774+07		.10774+07	MISSING	.85878+06
VFRAC		0.0	MISSING	0.0	MISSING	0.0
LFRAC	V5 (5) M	0.0	MISSING	0.0	MISSING	0.0
DENSITY AVG MW	KG/CUM	MISSING	MISSING	705.4500	MISSING	705.4500
	. ATTDIBUTED.	1.0000	1.0000	1.0000	MISSING	1.0000
ENZYME	T ATTRIBUTES: CAUSR1					
ELEM1	CHOSKI	MISCING	MICCING	MICCING	MICCINE	MICCINE
ELEM2		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM3		MISSING MISSING	MISSING	MISSING	MISSING	MISSING
ELEM4				· · · · · -	MISSING	MISSING
ELEMS		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM6		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM7		MISSING			MISSING	MISSING
ELEMB		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM9		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM10		MISSING	MISSING	MISSING	MISSING	MISSING
	1 ATTRIBUTES:	MISSING	MISSING	MISSING	MISSING	MISSING
PSD	HIINIBUIES:					

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 FAGE 29 THE ABE PROCESS STREAM SECTION

8 8A 8B 9 10 (CONTINUED)

STREAM ID	8	8A	8B	9	10
FRAC1	0.3289	0.3289	0 .3289	0.3289	0.3289
FRAC2	0.1451	0.1451	0.1451	0.1451	0.1451
FRAC3	0.1266	0.1266	0.1266	0.1266	0.1266
FRAC4	0.1205	0.1205	0.1205	0.1205	0.1205
FRAC5	0.2542	0.2542	0.2542	0.2542	0.2542
FRAC6	0.0244	0.0244	0.0244	0.0244	0.0244
FRAC7	0.0	0.0	0.0	0.0	0.0
FRAC8	0.0	0.0	0.0	0.0	0.0
FRAC9	0.0	0.0	0.0	0.0	0.0
FRAC10	0.0	0.0	0.0	0.0	0.0

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 30 THE ABE PROCESS STREAM SECTION

10A 11 12 13 14

STREAM ID	l	10A COOLER	11 CENFUG1	12 CENFUG1	13 CENFUG2	14 CENFUG2
TO:		CENFUG1	CENFUG3	CENFUG2	CENFUG3	
CLASS:		MIXNCPSD	MIXNCPSD	MIXNCPSD	MIXNCPSD	MIXNCPSD
OCHOO!						
SUBSTREAM	: MIXED	STRUCTURE	: CONVENT	CONAL		
WATER	KG/SEC	77.6826	77.5658	0.1168	0.0	0.1168
H2S04	KG/SEC	0.0	0.0	0.0	0.0	0.0
HMF	KG/SEC	0.0515	0.0514	.77467-04	0.0	.77467-04
FURFURAL	KG/SEC	0.0354	0.0353	.53310-04	0.0	.53310-04
TOTAL	KG/SEC	77.7696	77.6527	0.1169	0.0	0.1169
TEMP	K	306.1500	306.1500	306.1500	MISSING	306.1500
PRES	N/SQM	.10130+06	.10130+06	.10130+06	.10130+06	.10130+06
ENTHALPY	J/KG	15919+08-	.15919+08-	15919+0B	MISSING-	15919+0B
VFRAC		0.0	0.0	0.0	MISSING	0.0
LFRAC		1.0000	1.0000	1.0000	MISSING	1.0000
ENTROPY	J/KG-K	-9170.5223-	9170.5223-	-9170.5223	MISSING-	-9170.5223
DENSITY	KG/CUM	843.4797	843.4797	843.4797	MISSING	843.4797
AVE MW		18.0319	18.0319	18.0319	MISSING	18.0319
SUBSTREAM		STRUCTURE		PENTIONAL		
	KG/SEC	17.7014	0.0	17.7014	0.0	17.7014
	KG/SEC	0.0	0.0	0.0	0.0	0.0
	KG/SEC	0.0	0.0	0.0	0.0	0.0
GCOSE	KG/SEC	8.6022	0.0	8.6022	8.6022	0.0
ENZYME	KG/SEC	0.0	0.0	0.0	0.0	0.0
HCLOSE	KG/SEC	0.8546	0.0	0.8546	0.0	0.8546
XYLOSE	KG/SEC	9.9989	0.0	9.9989	9.9989	0.0
LIGNIN	KG/SEC	7.8800	0.0	7.8800	0.0	7.8800
TOTAL	KG/SEC	45.0372	0.0	45.0372	18.6012	26.4360
TEMP	K	306.1500	MISSING	306.1500	306.1500	306.1500
PRES	N/SQM	.10130+06	.10130+06			.10130+06
ENTHALPY	J/KG	.70460+06	MISSING	.70460+06	.70460+06	.70460+06
VFRAC		0.0	MISSING	0.0	0.0	0.0
LFRAC		0.0	MISSING	0.0	0.0	0.0
	KG/CUM	705.4500	MISSING	705.4500	705.4500	705.4500
AVG MW		1.0000	1.0000	1.0000	1.0000	1.0000
	ATTRIBUTES:					
	CAUSR1					
ELEM1		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM2		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM3		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM4		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM5		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM6		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM7		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM8		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM9		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM10		MISSING	MISSING	MISSING	MISSING	MISSING
	ATTRIBUTES:					
PSD						

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 31 THE ABE PROCESS STREAM SECTION

10A 11 12 13 14 (CONTINUED)

STREAM ID	10A	11	12	13	14
FRAC1	0.3289	MISSING	0.3289	0.3289	0.3289
FRAC2	0.1451	MISSING	0.1451	0.1451	0.1451
FRAC3	0.1266	MISSING	0.1266	0.1266	0.1266
FRAC4	0.1205	MISSING	0.1205	0.1205	0.1205
FRAC5	0.2542	MISSING	0.2542	0.2542	0.2542
FRAC6	0.0244	MISSING	0.0244	0.0244	0.0244
FRAC7	0.0	MISSING	0.0	0.0	0.0
FRACB	0.0	MISSING	0.0	0.0	0.0
FRAC9	0.0	MISSING	0.0	0.0	0.0
FRAC10	0.0	MISSING	0.0	0.0	0.0

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 32 THE ABE PROCESS STREAM SECTION

15 16 17 1 4

STREAM I	D	15 CENFUG3	16 C-COLMN	17 C-COLMN	1	4
TO : CLASS:		C-COLMN MIXNCPSD	MIXNCPSD	MIXNCPSD	CRUSHER MIXNCPSD	SLRYTNK MIXNCFSD
SUBSTREA	M: MIXED	STRUCTURE	: CONVENT			
WATER	KG/SEC	77.5658	0.0	77.5658	45.4700	3B.9500
H2S04	KG/SEC	0.0	0.0	0.0	0.0	0.0
HMF	KG/SEC	0.0514	0.0514	0.0	0.0	0.0
FURFURAL		0.0353	0.0353	0.0	0.0	0.0
TOTAL	KG/SEC	77.6527	0.0868	77.5658	45.4700	38.9500
TEMP	K	306.1500	306.1500	306.1500	300.1500	826.9415
PRES	N/SQM				.10130+06	
ENTHALPY	J/KG	15919+08-	· 23134+07·		15962+08-	.12391+08
VFRAC		0.0	0.0	0.0	0.0	1.0000
LFRAC		1.0000	1.0000	1.0000	1.0000	0.0
ENTROPY	J/KG-K	-9170.5223-	· 349 0.7728·	-9178.5314-	-9267.7535-	1674.5832
DENSITY	KG/CUM ·	843.4797	1162.9854	843.2512	846.6394	3.7048
AVG MW		18.0319	111.8070	18.0150	18.0150	18.0150
SUBSTREAL	M: NCPSD	STRUCTURE	: NON CON	ZENTIONAL		
CCLOSE	KG/SEC	0.0	0.0	0.0	19.6400	0.0
ACLOSE	KG/SEC	0.0	0.0	0.0	7.2400	0.0
CLBOSE	KG/SEC	0.0	0.0	0.0	0.0	0.0
GCOSE	KG/SEC	8.6022	0.0	8.6022	0.0	0.0
ENZYME	KG/SEC	0.0	0.0	0.0	0.0	0.0
HCLOSE	KG/SEC	0.0	0.0	0.0	10.7100	0.0
XYLOSE	KG/SEC	9.9989	0.0	9.9989	0.0	0.0
LIGNIN	KG/SEC	0.0	0.0	0.0	7.8800	0.0
TOTAL	KG/SEC	18.6012	0.0	18.6012	45.4700	0.0
TEMP	K	306.1500	MISSING	306.1500	300.1500	MISSING
PRES	N/S@M	.10130+06	.10130+06	.10130+06	.10130+06	MISSING
ENTHALPY	J/KG	.70460+06	MISSING	.70460+06	.69079+06	MISSING
VFRAC		0.0	MISSING	0.0	0.0	MISSING
LFRAC		0.0	MISSING	0.0	0.0	MISSING
DENSITY	KG/CUM	705.4500	MISSING	705.4500	705.4500	MISSING
AVB MW		1.0000	1.0000	1.0000	1.0000	1.0000
COMPONENT	ATTRIBUTES:					
ENZYME	CAUSR1					
ELEM1		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM2		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM3		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM4		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM5		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM6		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM7		MISSING	MISSING	MISSING	MISSING	MISSING
ELEMB		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM9		MISSING	MISSING	MISSING	MISSING	MISSING
ELEM10		MISSING	MISSING	MISSING	MISSING	MISSING
SUBSTREAM	1 ATTRIBUTES:					
PSD						

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 33 THE ABE PROCESS STREAM SECTION

15 16 17 1 4 (CONTINUED)

STREAM ID	15	16	17	1	4
FRAC1	0.3289	0.3289	0.3289	0.0	MISSING
FRAC2	0.1451	0.1451	0.1451	0.0	MISSING
FRAC3	0.1266	0.1266	0.1266	0.0	MISSING
FRAC4	0.1205	0.1205	0.1205	0.0	MISSING
FRAC5	0.2542	0.2542	0.2542	0.0	MISSING
FRAC6	0.0244	0.0244	0.0244	0.0	MISSING
FRAC7	0.0	0.0	0.0	0.0	MISSING
FRACB	0.0	0.0	0.0	0.0	MISSING
FRAC9	0.0	0.0	0.0	0.5000	MISSING
FRAC10	0.0	0.0	0.0	0.5000	MISSING

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 34 THE ABE PROCESS STREAM SECTION

```
STREAM ID
FROM :
TO
                          ACIDIN
CLASS:
                         MIXNCPSD
                         STRUCTURE: CONVENTIONAL
SUBSTREAM: MIXED
WATER
          KG/SEC
                            0.0
H2S04
          KG/SEC
                            1.9587
HMF
          KG/SEC
                            0.0
FURFURAL KG/SEC
                            0.0
TOTAL
          KG/SEC
                            1.9587
TEMP
                         759.3750
PRES
          N/SQM
                         .14000+07
ENTHALPY J/KG
                        -.80399+06
VFRAC
                            1.0000
LFRAC
                            0.0
ENTROPY
          J/KG-K
                         158.1272
DENSITY
         KG/CUM
                           21.7546
AVG MW
                           98.0800
SUBSTREAM: NCPSD
                         STRUCTURE: NON CONVENTIONAL
CCLOSE
         KG/SEC
                           0.0
ACLOSE
         KG/SEC
                           0.0
CLBOSE
         KG/SEC
                           0.0
GCOSE
         KG/SEC
                           0.0
ENZYME
         KG/SEC
                           0.0
HCLOSE
         KG/SEC
                           0.0
XYLOSE
         KG/SEC
                           0.0
LIGNIN
         KG/SEC
                           0.0
TOTAL
         KG/SEC
                           0.0
TEMP
                          MISSING
PRES
         N/SQM
                          MISSING
ENTHALPY J/KB
                          MISSING
VFRAC
                          MISSING
LFRAC
                          MISSING
AVG MW
                           1.0000
COMPONENT ATTRIBUTES:
ENZYME
         CAUSR1
ELEM1
                          MISSING
ELEM2
                          MISSING
ELEM3
                          MISSING
ELEM4
                          MISSING
ELEM5
                          MISSING
ELEM6
                          MISSING
ELEM7
                          MISSING
ELEM8
                          MISSING
ELEM9
                          MISSING
ELEM10
                          MISSING
SUBSTREAM ATTRIBUTES:
PSD
```

MISSING

7

FRAC1

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 36
THE ABE PROCESS
STREAM SECTION

QHTR QACHYD QQNCH QCOOLR

QCOOLR STREAM ID QHTR QACHYD QQNCH QUENCH COOLER HEATER1 ACIDHYD FROM : TO : HEAT HEAT HEAT HEAT CLASS:

STREAM ATTRIBUTES:

HEAT

Q WATT -.11547+09-.15400+0B .2033B+09 .30551+0B

M.E.T.C / VAX ASPEN SYSTEM RELEASE 6 ** PROD VERSION ** DATE: 11/11/85 PAGE 37
THE ABE PROCESS
STREAM SECTION

SHAFT1

STREAM ID

SHAFT1

FROM:

PUMP1

TO : CLASS:

WORK

STREAM ATTRIBUTES:

WORK

WATT.

-10731+06