

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Latches, Flip-flops - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Latches, Flip-flops - 2

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Latches, Flip-flops 2
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

- D Latch
- D Flip-Flop

- When r = s = 1, $q = \overline{q} = 0$
- If above inputs change to r = s = 0, output is indeterminate

D Latch

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

$$-r$$
 q
 $-s$ \overline{q}

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1				

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0		

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	S	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0				

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1		

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	S	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1	0	1

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1	0	1
1	1				

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1	0	1
1	1	1	0		

- Problem with RS latch:
 - ▶ When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	S	r	а	ā
	<u> </u>	3	'	9	9
0	0	0	0	q_{prev}	q_{prev}
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1	0	1
1	1	1	0	1	0

D Latch

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

clk	d	S	r	а	\overline{a}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\frac{q_{\text{prev}}}{q_{\text{prev}}}$
1	0	0	1	0	1
1	1	1	0	1	0

Symbol:

$$d^{clk}q - \overline{q}$$

D Latch

- Problem with RS latch:
 - When r = s = 1, $q = \overline{q} = 0$
 - If above inputs change to r = s = 0, output is indeterminate

D Latch

clk	d	5	r	q	\overline{q}
0	0	0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	0	q_{prev}	$\overline{q_{prev}}$
1	0	0	1	0	1
1	1	1	0	1	0

Symbol:

$$-\frac{clk}{q}-$$

- Eliminates r = s = 1 case
- Output same as input when clk = 1
- Called transparent or level-sensitive latch

PES UNIVERSITY

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

D Flip-Flop

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

D Flip-Flop

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

D Flip-Flop

- d copied to q at rising edge of clk
- q unchanged at all other times

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

D Flip-Flop

- d copied to q at rising edge of clk
- g unchanged at all other times

At the rising edge of clk:

d	q
0	0

1 1

- Latch Level senstitive (ex: D latch)
- Flip-flop Edge triggered (ex: D flip-flop)

D Flip-Flop

- d copied to q at rising edge of clk
- q unchanged at all other times

Symbol:

Think About It

JK Flip-Flop Example

• At the rising edge of *clk*:

j	k	q	\overline{q}
0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	1
1	0	1	0
1	1	$\overline{q_{prev}}$	q_{prev}

▶ Output toggles when i = k = 1

Think About It

JK Flip-Flop Example

• At the rising edge of *clk*:

j	k	q	\overline{q}
0	0	q_{prev}	$\overline{q_{prev}}$
0	1	0	1
1	0	1	0
1	1	$\overline{q_{prev}}$	q_{prev}

- ▶ Output toggles when i = k = 1
- Construct a JK flip-flop using a D flip-flop and some logic gates

Think About It

D Flip-Flop Chain

• What does the following logic circuit do?

