

#### **Contents**

NBS SciLifeLab

- Workflow
- RNA extraction
- Read QC
- Alignment QC
- Quantification QC
- Exploratory
- Batch correction
- Spike-Ins

#### Workflow





#### **Experimental design**

NB

SciLifeLab

- Balanced design
- Technical replicates not necessary (Marioni et al., 2008)
- Biological replicates: 6 12 (Schurch et al., 2016)
- ENCODE consortium
- Previous publications
- Power analysis



Busby, Michele A., et al. "Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression." Bioinformatics 29.5 (2013): 656-657

<sup>🔗</sup> Marioni, John C., et al. "RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays." Genome research (2008)

<sup>🔗</sup> Schurch, Nicholas J., et al. "How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?." Rna (2016)

Para Shilin, et al. "RnaSeqSampleSize: real data based sample size estimation for RNA sequencing." BMC bioinformatics 19.1 (2018): 191

#### **RNA** extraction



- Sample processing and storage
- RNA quality/quantity
- RIN values (Strong effect)
- DNAse treatment
- RNA type
- Contamination/Cross-contamination
- Batch effect
- Extraction method bias (GC bias)





Promero, Irene Gallego, et al. "RNA-seq: impact of RNA degradation on transcript quantification." BMC biology 12.1 (2014): 42

**<sup>%</sup>** Kim, Young-Kook, *et al.* "Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells." Molecular cell 46.6 (2012): 893-89500481-9).

#### Library prep



- PolyA selection
- rRNA depletion
- Size selection
- PCR amplification (See section PCR duplicates)
- Stranded (directional) libraries
  - Accurately identify
     sense/antisense transcript
  - Resolve overlapping genes
- Exome capture
- Library normalisation
- Batch effect

#### **Read QC**

NB

SciLifeLab

- Number of reads
- Per base sequence quality
- Per sequence quality score
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence length distribution
- Sequence duplication levels
- Overrepresented sequences
- Adapter content
- Kmer content



https://sequencing.qcfail.com/



# \*\* QCFAIL.com

Articles about common next-generation sequencing problems

# Read QC | PBSQ, PSQS



#### Per base sequence quality



#### Per sequence quality scores



# Read QC | PBSC, PSGC



#### Per base sequence content



#### Per sequence GC content



# Read QC | SDL, AC



#### Sequence duplication level



#### Adapter content



#### **FastQC**





#### **€**FastQC Report

Thu 21 Dec 2017 bad\_sequence.txt

#### Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content



#### **OPER** Per base sequence quality

|    | Quality scores across all bases (Illumina 1.5 encoding) |
|----|---------------------------------------------------------|
| 34 | TTTTTTTTTT                                              |
| 32 | <u>╵┩┩┩┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪┪</u>             |

### **Trimming**



- Trim IF necessary
  - Synthetic bases can be an issue for SNP calling
  - Insert size distribution may be more important for assemblers
- Trim/Clip/Filter reads
- Remove adapter sequences
- Trim reads by quality
- Sliding window trimming
- Filter by min/max read length
  - Remove reads less than ~22nt.
- Demultiplexing/Splitting
- ♣ Cutadapt, fastp, Skewer, Prinseq

#### **Alignment QC**



- Number of reads mapped/unmapped/paired etc
- Uniquely mapped
- Insert size distribution
- Coverage
- Gene body coverage
- Biotype counts / Chromosome counts
- Counts by region: gene/intron/non-genic
- Sequencing saturation
- Strand specificity

♣ STAR (final log file), samtools stats, bamtools stats, QoRTs, RSeQC, Qualimap

# Alignment QC | QoRTs





### Alignment QC | STAR Log



MultiQC can be used to summarise and plot STAR log files.

STAR Alignment Scores



#### BAM QC | samtools



#### samtools stats file.bam

```
SN
       raw total sequences:
                               522095280
SN
       filtered sequences:
SN
       sequences:
                       522095280
SN
       is sorted:
                       1
       1st fragments: 261047640
SN
SN
       last fragments: 261047640
SN
       reads mapped:
                       514139025
SN
       reads mapped and paired:
                                       510035006
SN
       reads unmapped: 7956255
SN
        reads properly paired: 460249078
SN
       reads paired: 522095280
       reads duplicated:
SN
                               60151694
SN
       reads MO0:
                       54098384
SN
       reads QC failed:
SN
       non-primary alignments: 15023188
SN
       total length: 78437013272
SN
        bases mapped: 77238941462
SN
        bases mapped (cigar):
                               74139898333
SN
        bases trimmed: 0
SN
        bases duplicated:
                               9022025650
SN
       mismatches: 1695194781
SN
                       2.286481e-02
       error rate:
SN
       average length: 150
SN
       maximum length: 151
       average quality:
SN
                               37.6
. . .
```

### BAM QC | bamtools



bamtools stats file.bam

```
Stats for BAM file(s):
*************
Total reads:
                 537118468
Mapped reads:
                              (98.5187\%)
              529162213
Forward strand: 270376825
                              (50.3384\%)
Reverse strand:
                266741643
                              (49.6616%)
Failed QC:
                 0 (0%)
Duplicates:
                 61425418
                              (11.4361\%)
Paired-end reads: 537118468
                              (100\%)
'Proper-pairs':
                 465991264
                              (86.7576\%)
Both pairs mapped: 524501668
                              (97.651\%)
Read 1:
                 268374707
Read 2:
                 268743761
Singletons:
                              (0.867694\%)
                 4660545
```

### **Alignment QC | Features**



#### QoRTs was run on all samples and summarised using MultiQC.

**QoRTs: Alignment Locations** 



# Alignment QC







#### Gene body coverage



# **Alignment QC**



#### **Insert size**



#### **Saturation curve**



### **MultiQC**





### **Quantification | PCR duplicates**



- Ignore for RNA-Seq data
- Computational deduplication (Don't!)
- Use PCR-free library-prep kits
- Use UMIs



<sup>9</sup> Fu, Yu, et al. "Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers." BMC genomics 19.1 (2018): 531

Parekh, Swati, et al. "The impact of amplification on differential expression analyses by RNA-seq." Scientific reports 6 (2016): 25533

<sup>🔗</sup> Klepikova, Anna V., et al. "Effect of method of deduplication on estimation of differential gene expression using RNA-seq." Peer J 5 (2017): e3091

## **Quantification QC**



| ENSG00000000003<br>ENSG000000000005                     | 140<br>0       | 242            | 188<br>0        | 143<br>0       | 287<br>0        | 344<br>0        | 438<br>0         | 280<br>0                | 253<br>0                |
|---------------------------------------------------------|----------------|----------------|-----------------|----------------|-----------------|-----------------|------------------|-------------------------|-------------------------|
| ENSG00000000419<br>ENSG000000000457<br>ENSG000000000460 | 69<br>56<br>33 | 98<br>75<br>27 | 77<br>104<br>23 | 55<br>79<br>19 | 52<br>157<br>27 | 94<br>205<br>42 | 116<br>183<br>69 | 79<br><b>1</b> 78<br>44 | 69<br><b>1</b> 53<br>40 |
| ENSG00000000430<br>ENSG000000000938<br>ENSG000000000971 | 7<br>545       | 38<br>878      | 13<br>694       | 17<br>636      | 35<br>647       | 76<br>216       | 53<br>492        | 37<br>798               | 24<br>323               |
| ENSG00000001036                                         | 79             | 154            | 74              | 80             | 128             | 167             | 220              | 147                     | 72                      |

 Pairwise correlation between samples must be high (>0.9)



Count QC using RNASeqComp





### **Exploratory | Heatmap**



- Remove lowly expressed genes
- Transform raw counts to VST, VOOM, RLOG, TPM etc
- Sample-sample distance/correlation clustering heatmap





## **Exploratory | MDS**



- 121T10571\_12
- 134\_T6443\_11
- 153\_ST132\_13
- 24\_TD9169\_08
- 29\_T1942\_08
- 61\_T1538\_07
- TD11549\_17\_0
- TD11558\_17\_L

#### **Batch correction**



Estimate variation explained by variables (PVCA)



- Find confounding effects as surrogate variables (SVA)
- Model known batches in the LM/GLM model
- Correct known batches (ComBat)(Harsh!)
- Interactively evaluate batch effects and correction (BatchQC)

SVA, PVCA, BatchQC

### Spike-In



- Add synthetic RNA into samples as control
- Usually added before library prep
- Useful for
  - Estimating sensitivity
  - Estimating accuracy
  - Detecting biases
  - Normalisation
  - Absolute quantification
  - Comparing datasets
- ERCC RNA Spike-In Mix/Exiqon Small RNA Spike-In



#### **Summary**



- Sound experimental design to avoid confounding
- Plan carefully about lib prep, sequencing etc based on experimental objective
- Biological replicates may be more important than paired-end reads or long reads
- Discard low quality bases, reads, genes and samples
- Verify that tools and methods align with data assumptions
- Experiment with multiple pipelines and tools
- QC! QC everything at every step

