Problem A:

Hva er maks-lengden til en sti $s \sim t$?

Problem B:

Finnes $s \sim t$ med lengde minst k?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Problem A:

Hva er maks-lengden til en sti $s \leadsto t$?

Problem B:

Finnes $s \sim t \mod \text{lengde minst } k$?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Tenk selv	0:30
Jobb sammen	1:30
Observasjoner	
Løsningsforslag	
Refleksjon	1:00

Problem A:

Hva er maks-lengden til en sti $s \leadsto t$?

Problem B:

Finnes $s \leadsto t$ med lengde minst k?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Problem A:

Hva er maks-lengden til en sti $s \leadsto t$?

Problem B:

Finnes $s \sim t \mod \text{lengde minst } k$?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Problem A:

Hva er maks-lengden til en sti $s \sim t$?

Problem B:

Finnes $s \sim t \mod \text{lengde minst } k$?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Tenk selv 0:30 Jobb sammen 1:30 Observasjoner

Løsningsforslag Refleksjon 1:00

Løsningsskisse

 $A \in \mathbf{P} \implies B \in \mathbf{P}$:

Finn maks-lengde; k eller mer?

 $A \in \textbf{P} \iff B \in \textbf{P} :$

Binærsøk med k i området $0 \dots |\mathbf{E}|$.

Finn k som gir ja, der k+1 gir nei.

Problem A:

Hva er maks-lengden til en sti $s \rightsquigarrow t$?

Problem B:

Finnes $s \sim t \mod \text{lengde minst } k$?

Vis at $A \in \mathbf{P} \iff B \in \mathbf{P}$.

Enkle stier; uvektet graf.

Tenk selv 0:30 Jobb sammen 1:30 Observasjoner Løsningsforslag

Refleksjon 1:00

Løsningsskisse

 $A \in \mathbf{P} \implies B \in \mathbf{P}$:

Finn maks-lengde; k eller mer?

 $A \in \mathbf{P} \iff B \in \mathbf{P}$:

Binærsøk med k i området $0 \dots |\mathbf{E}|$.

Finn k som gir ja, der k+1 gir nei.

Hva tenkte og gjorde du? Hvorfor? Hva fungerte? Glemte du noe? Hva skjønner du nå? Hva skjønner du fortsatt ikke? Hva vil du huske på eller gjøre annerledes senere? Hvordan kan du forbedre deg? Hvor kan du sette inn ekstra innsats?

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er **NP**-komplett.

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er ${\bf NP\text{-}}{\bf komplett}.$

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

Tenk selv	0:30
Jobb sammen	1:30
Observasjoner	
Løsningsforslag	
Refleksjon	1:00

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er NP-komplett.

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er **NP**-komplett.

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

Tenk selv 0:30 Jobb sammen 1:30 Observasjoner

Løsningsforslag Refleksjon

1:00

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er **NP**-komplett.

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

1:00

Tenk selv 0:30 Jobb sammen 1:30 Observasjoner Løsningsforslag

Refleksjon

Løsningsskisse

For eksempel reduser fra CLIQUE, og la G_1 være en klikk av gitt størrelse.

En graf G_1 er delgrafisomorf til graf G_2 hvis G_1 er isomorf til en delgraf av G_2 .

Vis at å avgjøre delgrafisomorfi er **NP**-komplett.

Uformelt: Grafer er isomorfe om de er like når man ser bort fra nodenavn.

Tenk selv 0:30 Jobb sammen 1:30 Observasjoner Løsningsforslag

Refleksjon 1:00

Løsningsskisse

For eksempel reduser fra CLIQUE, og la G_1 være en klikk av gitt størrelse.

Hva tenkte og gjorde du? Hvorfor? Hva fungerte? Glemte du noe? Hva skjønner du nå? Hva skjønner du fortsatt ikke? Hva vil du huske på eller gjøre annerledes senere? Hvordan kan du forbedre deg? Hvor kan du sette inn ekstra innsats?