Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks

Authors: David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow (Google)

Presenter: Xingjian Zhang (UMich)

Outline

- Background
- Problem Formulation
- Approach
- Experiment
- Conclusion

Outline

- Background
 - What is "learning to execute program"?
 - o Why GNN?
- Problem Formulation
- Approach
- Experiment
- Conclusion

GNNs are powerful tool for learning SDE tasks

Many applications

- Code completion
- Bug finding
- Program repair
- Learning to execute programs

Inherent graph structure in programs

- parse trees
- data flow graphs
- control flow graphs (see example later)

Learning to execute programs

Produce the output of a program, without actually running the program.

Introduced by Wojciech Zaremba and Ilya Sutskever. Learning to execute, 2014 (applied RNN to this task)

Challenges

- Complex structure of programs
 - contains branch created by "if-else", "while" loop, etc.
- Complex reasoning about program executions
 - hard to predict the discrete branch decisions

Non-trivial for vanilla GNN/RNNs

- GNN good at complex structure, but not sequential reasoning
- RNN good at sequential reasoning, but not complex structure

Example: Control Flow Graph

-	\overline{n}	Source		Tokenization (x_n))	Control flow graph $(n \to n')$	$N_{in}(n)$	$N_{ m out}(n)$
	0	v0 = 23	0	=	v0	23	•	Ø	{1}
	1	v1 = 6	0	= -	v1	6		{0}	$\{2\}$
	2	while v1 > 0:	0	while >	v1	0	<u> </u>	$\{1, 7\}$	$\{3, 8\}$
	3	v1 -= 1	1	_=	v1	1	/	$\{2\}$	$\{4\}$
	4	if v0 % 10 <= 3:	1	if <= %	vO	3	(*)	$\{3\}$	$\{5\}$
	5	v0 += 4	2	+=	vO	4	()	$\{4\}$	$\{6\}$
	6	v0 *= 6	2	*=	vO	6	•	$\{5\}$	{7}
	7	v0 -= 1	1	-=	v0	1	\₹	$\{4, 6\}$	$\{2\}$
	8	<exit></exit>	-	-	-	-	* * * * * * * * * * * * * * * * * * * *	$\{2, 8\}$	{8}

Nodes: individual line statements

Directed edges: possible sequences of execution of statements

Instruction pointer (IP): indicates the next instruction to execute

Example: Control Flow Graph

	n	Source		Tokenizatio	on (x_n))	Control flow graph $(n \to n')$	$N_{in}(n)$	$N_{ m out}(n)$
	0	v0 = 23	0	=	vΟ	23		Ø	{1}
	1	v1 = 6	0	=	v1	6	•	$\{0\}$	$\{2\}$
	2	while v1 > 0:	0	while >	v1	0	<u>,</u>	$\{1, 7\}$	$\{3, 8\}$
	3	v1 -= 1	1	_=	v1	1	/ • \	$\{2\}$	$\{4\}$
	4	if v0 % 10 <= 3:	1	if <= %	v0	3	· · · · · · / } · · · · · · · ·	$\{3\}$	$\{5\}$
	5	v0 += 4	2	+=	v0	4		$\{4\}$	$\{6\}$
	6	v0 *= 6	2	*=	v0	6	• • • • • • • • • • • • • • • • • • • •	$\{5\}$	$\{7\}$
	7	v0 -= 1	1	_=	v0	1		$\{4, 6\}$	$\{2\}$
	8	<exit></exit>	-	_	-	_		$\{2, 8\}$	{8}
-								pport 52	

Each line of a program is represented by a 4-tuple tokenization containing that line's (indentation level, operation, variable, operand), and is associated with a node in the program's statement-level control flow graph.

Notice that branch decisions are always binary. i.e. $|N_{out}(n)| \le 2$.

Outline

- Background
- Problem Formulation
 - What information are available?
 - What restrictions are imposed?
 - o What practical evaluations are considered?
- Approach
- Experiment
- Conclusion

Two variants

- Full program execution
 - Input: Full program
 - Output: some semantic property of the program (e.g. program output)
 - Evaluate the expressiveness and learnability
- Partial program execution
 - Input: Partially masked program
 - Output: Same as above
 - Useful in certain downstream applications

Problem Formulation (ML for Static Analysis)

Access to

- Textual source of the program
- Parse tree of the program
- Any common static analysis results, e.g. control flow graph

No access to

- Compiler (compile-time)
- Interpreter (runtime)
- Dependencies, test suite, etc.
- Any artifacts not readily available for normal static analysis

The settings are similar to standard static analysis.

Other Specifications

Bounded execution

- Restrict the model to use fewer steps than are required by the ground truth trace
- Force short-cuts learning
- Motivation: Static analysis requires low latency

Systematic generalization

- Train the model with limited complexity
- Test the model on more complex programs
- Motivation: People write programs to do things that have not been done before
- Motivation: Reduce training cost while preserving performance on complex real-world codebase

Formal Specification & Notations

Given

- c(x): Complexity function
- D: Dataset consisting of pairs (x, y)
 - x: program (code & control flow graph)
 - x_n : n-th line statement of x
 - $N_{in}(n)$: the set of statements that can immediately precede x_n
 - $N_{out}(n)$: the set of statements that can immediately follow x_n
 - $N_{all}(n)$: $N_{in}(n) \cup N_{out}(n)$
 - y: a semantic property of the program (*integer target is used in paper)
 - \blacksquare D_{train} contains examples such that c(x) <= C, D_{test} contains others.

The task follows a standard supervised learning formulation.

Outline

- Background
- Problem Formulation
- Approach
 - Instruction Pointer RNN Models (IP-RNN)
 - Instruction Pointer Attention GNN (IPA-GNN)
 - Standard MPNN (GGNN)
- Experiment
- Conclusion

Instruction Pointer (IP) Modeling without Branch

- Let's start with a special case.
- Consider a classical interpreter to execute straight-line program
 - o maintains a state consisting of the values of all variables in the program
 - maintains an instruction pointer indicating the next statement to execute (always pointing to the next statement)
 - updates the instruction pointer to next statement when a statement is executed (causal structure)
- RNN is a natural choice of architecture
 - Reason: same causal structure

Model 1: Line-by-Line RNN

- ullet At step t of interpretation, $h_t = \mathrm{RNN}ig(h_{t-1}, \mathrm{Embed}ig(x_{n_{t-1}}ig)ig)$
 - o h₊ is the hidden state ("state in interpreter")
 - o n₁ = t is the model's instruction pointer
 - At each step, always increment the IP by 1
 - Correct only for straight-line program

Instruction Pointer (IP) Modeling with Branch

- In general, setting n₊ = t is problematic!
 - Most programs are not straight-line.
- One can define different rules for updating the IP.
 - We call these model variants Instruction Pointer RNNs (IP-RNNs)

Model 2: Trace RNN (Oracle)

- ullet At step t of interpretation, $h_t = \mathrm{RNN}ig(h_{t-1}, \mathrm{Embed}ig(x_{n_{t-1}}ig)ig)$
 - o n₊ is the model's ground truth trace of IP
 - At each step, always points to the next exact statement to execute
 - Correct for all programs

Model 3: Hard IP-RNN

- ullet At step t of interpretation, $h_t = \mathrm{RNN}ig(h_{t-1}, \mathrm{Embed}ig(x_{n_{t-1}}ig)ig)$
 - $|\circ|n_t = N_{ ext{out}}(n_{t-1})|_j$ where $|j| = rg \max \overline{ ext{Dense}(h_t)}$
 - Not differentiable but might be trained by a supervised fashion*
 - More precisely, invalidates fully differentiable end-to-end training
 - The authors did not provide implementation or report experimental results for this model

Summary of IP-RNN

Oracle IP

Sequential IP

Predictive IP w/o gradient

Continuous Relaxation of Discrete Branch Choice

- Consider soft branch decision
 - A distribution over the possible branches (from a particular statement)
- Replace n_t with p_{t,n}
 - \sim At step t, $p_{t,n}$ is a distribution over all statements x_n .
- Replace h_t with h_{t,n}
 - \circ At step t, $h_{t,n}$ models the representation assuming the program is executing statement n.
 - Intuition: we want the model to have a different representation of the program state for possible IPs.

Model 4: IPA-GNN

- State proposal is produced for each possible current statement n
 - \circ IPA-GNN: $a_{t,n} = \overline{\mathrm{RNN}(h_{t-1,n}, \mathrm{Embed}(x_n))}$
 - \circ IP-RNN: $h_t = ext{RNN}ig(h_{t-1}, ext{Embed}ig(x_{n_{t-1}}ig)ig)$ only for statement $ext{n}_{t-1}$
- Consider special case
 - For straight-line code, i.e. $|N_{out}(x_n)| = 1$, $n \rightarrow n'$
 - Simply have $h_{t,n} = a_{t,n}$

However, in general, a lot of potential traces may lead to current statement

Model 4: IPA-GNN

- Soft branch determines how much of the state proposals flow to each next statement
 - \circ When branching between n_1 and n_2

$$b_{t,n,n_1}, b_{t,n,n_2} = \operatorname{softmax} (\operatorname{Dense}(a_{t,n}))$$

Update hidden state from all potential traces

$$h_{t,n} = \sum_{n' \in N_{\text{in}}(n)} p_{t-1,n'} \cdot b_{t,n',n} \cdot a_{t,n}$$

Update IPA (probability distribution of IP)

$$p_{t,n} = \sum_{n' \in N_{\text{in}}(n)} p_{t-1,n'} \cdot b_{t,n',n}$$

Intuition of IPA-GNN

- 1. Execute: generate state proposal
- 2. Branch: generate soft branch decision (and update IPA)
- 3. Aggregate: generate new hidden states by weighted sum from 1 and 2

Model 5: Gated GNN (GGNN)

	IPA-GNN (Ours)	NoControl	NoExecute	GGNN
$h_{0,n}$	=0	= 0	$= \text{Embed}(x_n)$	$= \text{Embed}(x_n)$
$a_{t,n}^{(1)}$	$= \text{RNN}(h_{t-1,n}, \text{Embed}(x_n))$	$= \text{RNN}(h_{t-1,n}, \text{Embed}(x_n))$	$=h_{t-1,n}$	$=h_{t-1,n}$
$a_{t,n}^{(1)} \ a_{t,n}^{(2)} \ a_{t,n,n'}^{(2)}$	$= p_{t-1,n'} \cdot b_{t,n',n} \cdot a_{t,n}^{(1)}$	$= 1 \cdot a_{t,n}^{(1)}$	$= p_{t-1,n'} \cdot b_{t,n',n} \cdot \operatorname{Dense}(a_{t,n}^{(1)})$	$= 1 \cdot \text{Dense}(a_{t,n}^{(1)})$
$ ilde{ ilde{h}}_{t,n}$	$= \sum a_{t,n,n'}^{(2)}$	$= \sum a_{t,n,n'}^{(2)}$	$= \sum a_{t,n,n'}^{(2)}$	$= \sum a_{t,n,n'}^{(2)}$
	$n' \in N_{\text{in}}(n)$	$n' \in N_{\mathrm{all}}(n)$	$n' \in N_{\mathrm{in}}(n)$	$n' {\in} N_{ m all}(n)$
$h_{t,n}$	$=\tilde{h}_t$	$=\tilde{h}_t$	$= \operatorname{GRU}(h_{t-1,n}, \tilde{h}_{t,n})$	$= \operatorname{GRU}(h_{t-1,n}, \tilde{h}_{t,n})$

- IPA-GNN shares similar computational structure with message passing neural nets (MPNN) like GGNN.
- IPA-GNN has two extra mechanisms
 - Modeling of execution (RNN)
 - Modeling of controlling (p and b)
- 3 baselines: NoControl, NoExecute, GGNN (NoControlNoExecute)

Summary

Predictive IP w/o gradient

IPA-GNN is closely related to both IP-RNNs and GGNN (MPNN)

Sequential IP

- Continuous relaxation of IP-RNNs
- Adaptation of MPNNs on sequential reasoning

MPNN

Outline

- Background
- Problem Formulation
- Approach
- Experiment
 - Experiment settings
 - Evaluation Criteria
 - Results
- Conclusion

Dataset

- x: Python codes
- Statements include
 - variable assignments (v0, ..., v9)
 - o multi-digit arithmetic
 - while loops
 - if-else statements
- y: integer target
 - o v0 mod 1000
- Complex nesting is allowed
- Use program (lines) length as complexity measure
 - \circ c(x) := len(x)
- Train test split forces systematic generalization
 - Train: 5M len(x) <= 10 Test: 4.5k len(x) \in {20, 30, ..., 100}
- Partial execution
 - mask out 1 non-control statement uniformly at random

Other specifications

- Use a two-layer LSTM as the underlying RNN cell for the RNN and IPA-GNN models
- Hparams
 - o batch size: 32
 - hidden dimension: $H \in \{200, 300\}$

At low complexity, the Line-by-Line RNN model performs almost as well as the IPA-GNN.

As complexity increases, the performance of all baseline models drops off faster than that of the IPA-GNN.

Despite using the ground truth control flow, the Trace RNN does not perform as well as the IPA-GNN on long programs.

NoExecute significantly outperforms NoControl, indicating the importance of instruction pointer attention for the IPA-GNN model.

Visualization of IPA p_{t,n}

- Learns to frequently produce discrete branch decisions.
- Learns to short-circuit execution

 Attends only to the path relevant to the program's result.

Visualization of IPA p_{t,n}

- Learns to frequently produce discrete branch decisions.
- Learns to short-circuit execution

 Attends to the while-loop body only once rather than 7 times.

Outline

- Background
- Problem Formulation
- Approach
- Experiment
- Conclusion

Takeaways

- Learning-to-execute is a challenging ML task for static analysis.
- The authors proposed a new architecture IPA-GNN for this task, inspired by both RNNs and GNNs.
 - Continuous relaxation of IP-RNNs
 - Adaptation of MPNNs on sequential reasoning
- The key components of IPA-GNN is the modeling of Instruction Pointer Attention.
- The proposed method shows systematic generalization (on longer programs).

Thank you for listening!