

2.6.1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Нормы радиационной безопасности (НРБ-99/2009)

Санитарные правила и нормативы СанПин 2.6.1.2523-09

1. Санитарные правила HPБ-99/2009 являются новым изданием <u>HPБ-99</u>, частично переработанным и дополненным.

НРБ-99/2009 подготовлены: ФГУН НИИРГ (д.м.н. И.К. Романович (руководитель), д.б.н. М.И. Балонов, А.Н. Барковский, к.т.н. Г.Я. Брук, к.м.н. Н.М. Вишнякова, к.т.н. Ю.О. Константинов, к.м.н. В.П. Рамзаев, д.б.н. В.С. Репин, к.т.н. И.П. Стамат); Роспотребнадзором (А.А. Горский); Министерством обороны (к.т.н. Э.Ф. Андриевский); Федеральной таможенной службой РФ (И.Н. Банных); Медицинским радиологическим научным центром (д.т.н. В.К. Иванов, д.м.н. А.Ф. Цыб); Российским научным центром «Курчатовский институт» (к.т.н. В.А. Кутьков); Институтом безопасного развития атомной энергии (д.т.н. И.И. Линге); МВД России (Н.В. Обатурова); ФМБА России (к.м.н. В.В. Романов); Государственной корпорацией «Росатом» (к.т.н. А.П. Панфилов); ФГУП ВНИИ железнодорожной гигиены Роспотребнадзора (к.т.н. М.Н. Савкин); ФМБЦ им. А.И. Бурназяна (к.м.н. А.В. Симаков); ВНИИ сельскохозяйственной радиологии и агроэкологии Россельхозакадемии (д.б.н. Е.В. Спирин); ФГУЗ «Федеральный центр гигиены и эпидемиологию) (к.м.н. О.Е. Тутельян); Ростехнадзором (В.Я. Река, Р.Б. Шарафутдинов).

<u>НРБ-99</u> подготовлены рабочей группой РНКРЗ в составе д.м.н. <u>П.В. Рамзаев</u> (руководитель), к.м.н. Е.Б. Антипин, д.б.н. М.И. Балонов, В.Ю. Голиков, д.м.н. <u>В.Я. Голиков</u>, д.м.н. <u>Е.В. Иванов</u>, д.м.н. С.И. Иванов, к.т.н. О.А. Кочетков, д.т.н. <u>Э. М. Крисюк</u> к.ф.-м.н. В.А. Кутьков, д.м.н. А.Н. Либерман, А.П. Панфилов, к.х.н. А.И. Тихонова, д.м.н. А.Ф. Цыб; от Республики Беларусь - И.П. Васильева, д.м.н. Я.Э. Кенигсберг, к.б.н. В.Ф. Миненко, д.м.н. В.И. Тернов.

- 2. Рекомендованы к утверждению Комиссией по санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 25 июня 2009 г. № 1).
- 3. Утверждены и введены в действие постановлением Главного государственного санитарного врача Российской Федерации Г.Г. Онищенко от 7 июля 2009 г. № 47 с 1 сентября 2009 г.
- 4. С момента введения СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)» считать утратившими силу СП 2.6.1.758-99 «Нормы

радиационной безопасности (<u>HPБ-99</u>)», утверждённые Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 2 июля 1999 г.

5. Зарегистрированы в Министерстве юстиции Российской Федерации 14 августа 2009 г., регистрационный номер 14534.

Федеральный закон

«О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999 г. № <u>52-Ф3</u>

(в ред. Федеральных законов от 30.12.2001 № 196-ФЗ, от 10.01.2003 № 15-ФЗ, от 30.06.2003 № 86-ФЗ, от 22.08.2004 № 122-ФЗ, от 09.05.2005 № 45-ФЗ, от 31.12.2005 № 199-ФЗ, от 18.12.2006 № 232-ФЗ, от 29.12.2006 № 258-ФЗ, от 30.12.2006 № 266-ФЗ, от 26.06.2007 № 118-ФЗ, от 08.11.2007 № 258-ФЗ, от 01.12.2007 № 309-ФЗ, от 14.06.2008 № 118-ФЗ)

«Государственные санитарно-эпидемиологические правила и нормативы (далее - санитарные правила) - нормативные правовые акты, устанавливающие санитарно-эпидемиологические требования (в том числе критерии безопасности и (или) безвредности факторов среды обитания для человека, гигиенические и иные нормативы), несоблюдение которых создает угрозу жизни или здоровью человека, а также угрозу возникновения и распространения заболеваний» (статья 1).

«Соблюдение санитарных правил является обязательным для граждан, индивидуальных предпринимателей и юридических лиц» (статья 39).

«За нарушение санитарного законодательства устанавливается дисциплинарная, административная и уголовная ответственность в соответствии с законодательством Российской Федерации» (статья 55).

Федеральный закон «О радиационной безопасности населения» от 09 января 1996 г. № 3-Ф3

(в ред. Федерального закона от 22.06.2004 № 122-ФЗ)

«Радиационная безопасность населения - состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизрующего излучения» (статья Γ).

«Граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на территории Российской Федерации, имеют право на радиационную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на

организм человека ионизирующего излучения выше установленных, норм, правил и нормативов» (статья 22).

Главный государственный санитарный врач Российской Федерации

Постановление 1

07.07.2009 Москва №47

Об утверждении СанПиН 2.6.1.2523-09

В соответствии с Федеральным законом от 30.03.1999 № 52-Ф3 "О санитарно-эпидемиологическом благополучии населения" (Собрание законодательства Российской Федерации, 1999, № 14, ст. 1650; 2002, № 1 (ч. 1), ст. 1; 2003, № 2, ст. 167; № 27 (ч. 1), ст. 2700; 2004, № 35, ст. 3607; 2005, № 19, ст. 1752; 2006, № 1, ст. 10, № 52 (ч. 1) ст. 5498; 2007 № 1 (ч. 1) ст. 21; № 1 (ч. 1) ст. 29; № 27, ст. 3213; № 46, ст. 5554; № 49, ст. 6070; 2008, № 24, ст. 2801; № 29 (ч. 1), ст. 3418; № 30 (ч. 2), ст. 3616; № 44, ст. 4984; № 52 (ч. 1), ст. 6223; 2009, № 1, ст. 17) и постановлением Правительства Российской Федерации от 24.07.2000 № $\underline{554}$ "Об утверждении Положения о государственной санитарно-эпидемиологической службе Российской Федерации и Положения о государственном санитарно-эпидемиологическом нормировании" (Собрание законодательства Российской Федерации, 2000, № 31, ст. 3295, 2004, № 8, ст. 663; № 47, ст. 4666; 2005, № 39, ст. 3953)

ПОСТАНОВЛЯЮ:

- 1. Утвердить санитарные правила СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности (НРБ-99/2009)" (приложение).
 - 2. Ввести в действие СанПиН 2.6.1.2523-09 с 1 сентября 2009 г.
- 3. С момента введения СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности (НРБ-99/2009)" считать утратившими силу СП 2.6.1.758-99 "Нормы радиационной безопасности (<u>НРБ-99</u>)"², утвержденные Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 2 июля 1999 г.

Г.Г. Онищенко

1 - Зарегистрировано в Министерстве юстиции Российской Федерации 14 августа 2009 года, регистрационный номер 14534.

2 - Не нуждается в государственной регистрации Министерством юстиции, поскольку носит нормативно-технический характер и не содержит новых норм права (Письмо Министерства юстиции от 29.07.99 № 6014-ЭР)

Приложение

УТВЕРЖДЕНЫ

постановлением главного государственного

санитарного врача Российской федерации

от 7 июля 2009 г. №47

2.6.1. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Нормы радиационной безопасности (НРБ-99/2009)

Санитарные правила и нормативы

СанПин 2.6.1.2523-09

Содержание

- 1. Область применения
- 2. Общие положения
- 3. Требования к ограничению техногенного облучения в контролируемых условиях
 - 3.1. Нормальные условия эксплуатации источников излучения
 - 3.2. Планируемое повышенное облучение
- 4. Требования к защите от природного облучения в производственных условиях
 - 5. Требования к ограничению облучения населения
 - 5.1. Общие положения
 - 5.2. Ограничение техногенного облучения в нормальных условиях

- 5.3. Ограничение природного облучения
- 5.4. Ограничение медицинского облучения
- <u>6. Требования по ограничению облучения населения в условиях радиационной аварии</u>
 - 7. Требования к контролю за выполнением Норм
 - 8. Значения допустимых уровней радиационного воздействия в нормальных условиях эксплуатации источников ионизирующего излучения
- Приложение 1 к HPБ-99/09 Значения дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала
- Приложение 2 к НРБ-99/09 Значения дозовых коэффициентов, пределов годового поступления с воздухом и пищей и допустимой объемной активности во вдыхаемом воздухе отдельных радионуклидов для критических групп населения*(1)
- Приложение 2а к НРБ-99/09 Значения дозовых коэффициентов *е* (мЗв/Бк) при поступлении радионуклидов в организм взрослых людей с водой и уровни вмешательства УВ (Бк/кг) по содержанию отдельных радионуклидов в питьевой воде
- <u>Приложение 3 к НРБ-99/09 Распределение соединений элементов по типам при ингаляции</u>

Приложение 4 к НРБ-99/09 Минимально значимые удельная активность радионуклидов (МЗУА) и активность радионуклидов в помещении или на рабочем месте (МЗА)

<u>Приложение 5 к НРБ 99/2009 (справочное) Критерии вмешательства на загрязненных территориях</u>

Приложение 6 к НРБ 99/2009 (справочное) Нормативные ссылки

Приложение 7 к НРБ 99/2009 (справочное) Термины и определения

Приложение 8 к НРБ 99/2009 (справочное) Библиографические данные

1. Область применения

1.1. Нормы радиационной безопасности НРБ-99/2009 (далее - Нормы) применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Требования и нормативы, установленные Нормами, являются обязательными для всех юридических и физических лиц, независимо от их подчиненности и формы собственности, в результате деятельности которых возможно облучение людей, а также для администраций субъектов Российской Федерации, местных органов власти, граждан Российской Федерации, иностранных граждан и лиц без гражданства, проживающих на территории Российской Федерации.

- 1.2. Настоящие Нормы устанавливают основные пределы доз, допустимые уровни воздействия ионизирующего излучения по ограничению облучения населения в соответствии с Федеральным законом от 9 января 1996 г. № 3-ФЗ "О радиационной безопасности населения"*.
- * Собрание законодательства Российской Федерации, 1996, № 3, ст. 141; 2004, № 35, ст. 3607; 2008, № 30 (ч.2), ст. 3616
- 1.3. Нормы распространяются на следующие источники ионизирующего излучения:
- техногенные источники за счет нормальной эксплуатации техногенных источников излучения;
 - техногенные источники в результате радиационной аварии;
 - природные источники;
 - медицинские источники.
- 1.4. Требования Норм не распространяются на источники излучения, создающие при любых условиях обращения с ними:
 - индивидуальную годовую эффективную дозу не более 10 мк3в; и
- коллективную эффективную годовую дозу не более 1 чел.-Зв, либо когда при коллективной дозе более 1 чел.-Зв оценка по принципу оптимизации показывает нецелесообразность снижения коллективной дозы;

- индивидуальную годовую эквивалентную дозу в коже не более 50 мЗв и в хрусталике глаза не более 15 мЗв.

Требования Норм не распространяются также на космическое излучение на поверхности Земли и внутреннее облучение человека, создаваемое природным калием, на которые практически невозможно влиять.

2. Общие положения

- 2.1. Для обеспечения радиационной безопасности при нормальной эксплуатации источников излучения необходимо руководствоваться следующими основными принципами:
- не превышение допустимых пределов индивидуальных доз облучения граждан от всех источников излучения (принцип нормирования);
- запрещение всех видов деятельности по использованию источников излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным облучением (принцип обоснования);
- поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника излучения (принцип оптимизации).
- 2.2. Для обоснования расходов на радиационную защиту при реализации принципа оптимизации принимается, что облучение в коллективной эффективной дозе в 1 чел.-Зв приводит к потенциальному ущербу, равному потере примерно 1 чел.-года жизни населения. Величина денежного эквивалента потери 1 чел.-года жизни устанавливается отдельными документами федерального уровня в размере не менее 1 годового душевого национального дохода.
- 2.3. Для наиболее полной оценки вреда, который может быть нанесен здоровью в результате облучения в малых дозах, определяется ущерб, количественно учитывающего как эффекты облучения отдельных органов и тканей тела, отличающиеся радиочувствительностью к ионизирующему излучению, так и всего организма в целом. В соответствии с общепринятой в мире линейной беспороговой теорией зависимости риска стохастических эффектов от дозы, величина риска пропорциональна дозе излучения и связана с дозой через линейные коэффициенты радиационного риска, приведенные в таблице:

Облучаемая группа населения	Коэффициент риска злокачественных новообразований, '10 ⁻² Зв ⁻¹	Коэффициент риска наследственных эффектов, '10 ⁻² 3в ⁻¹	Сумма, ′10 ⁻² Зв ⁻¹
Все население	5,5	0,2	5,7
Взрослые	4,1	0,1	4,2

Усредненная величина коэффициента риска, используемая для установления пределов доз персонала и населения, принята равной $0.05~3\text{ B}^{-1}$.

В условиях нормальной эксплуатации источников ионизирующего излучения пределы доз облучения в течение года устанавливаются исходя из следующих значений индивидуального пожизненного риска:

- для персонала 1,0′10⁻³;
- для населения 5.0′10⁻⁵.

Уровень пренебрежимо малого риска составляет 10⁻⁶.

При обосновании защиты от источников потенциального облучения в течение года принимаются следующие граничные значения обобщенного риска (произведение вероятности события, приводящего к облучению, и вероятности смерти, связанной с облучением):

- персонал 2,0′10⁻⁴, год⁻¹;
- население $1,0'10^{-5}$, год⁻¹.

3. Требования к ограничению техногенного облучения в контролируемых условиях

3.1. Нормальные условия эксплуатации источников излучения

- 3.1.1. Устанавливаются следующие категории облучаемых лиц:
- персонал (группы А и Б);
- все население, включая лиц из персонала вне сферы и условий их производственной деятельности.
 - 3.1.2. Для категорий облучаемых лиц устанавливаются два класса нормативов:
 - основные пределы доз (ПД), приведенные в <u>таблице 3.1</u>;
- допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз: пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и другие;

Для обеспечения условий, при которых радиационное воздействие будет ниже допустимого, с учетом достигнутого в организации уровня радиационной безопасности, администрацией организации дополнительно устанавливаются контрольные уровни (дозы, уровни активности, плотности потоков и др.).

Таблица 3.1

Основные пределы доз

Нормируемые величины*	Пределы доз		
	персонал (группа А)**	Население	

Эффективная доза	20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год	1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год
Эквивалентная доза за год в хрусталике	150 мЗв	15 мЗв
глаза***		
коже***	500 мЗв	50 мЗв
кистях и стопах	500 мЗв	50 мЗв

Примечания:

- * Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.
- ** Основные пределы доз, как и все остальные допустимые уровни воздействия персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.
 - *** Относится к дозе на глубине 300 мг/см².
- **** Относится к среднему по площади в 1 см² значению в базальном слое кожи толщиной 5 мг/см² под покровным слоем толщиной 5 мг/см². На ладонях толщина покровного слоя 40 мг/см². Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см² площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает не превышение предела дозы на хрусталик от бета-частиц.
- 3.1.3. Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

- 3.1.4. Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для населения за период жизни (70 лет) 70 мЗв. Началом периодов считается 1 января 2000 года.
- 3.1.5. Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать пределов доз, установленных в таблице 3.1.

Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

3.1.6. В стандартных условиях монофакторного поступления радионуклидов, определенных в разделе 8 Норм, годовое поступление радионуклидов через органы дыхания и среднегодовая объемная активность их во вдыхаемом воздухе не должны превышать числовых значений ПГП и ДОА, приведенных в Приложениях 1 и 2, где пределы доз взяты равными 20 мЗв в год для персонала и 1 мЗв в год для населения.

В условиях нестандартного поступления радионуклидов величины ПГП и ДОА устанавливаются в соответствии с санитарным законодательством.

3.1.7. Для персонала группы A значения ПГП и ДОА дочерних продуктов изотопов радона (222 Rn и 220 Rn) - 218 Po (RaA); 214 Pb (RaB); 214 Bi (RaC); 212 Pb (ThB); 212 Bi (ThC) в единицах эквивалентной равновесной активности (для ПГП) и эквивалентной равновесной объемной активности (для ДОА) составляют:

ΠΓΠ:
$$0.10\Pi$$
RaA+ 0.52Π RaB+ 0.38Π RaC= 3.0 Mbκ

$$0.91\Pi$$
ThB+ 0.09Π ThC= 0.68 Mbk

ДОА:
$$0.10A_{\text{RaA}}$$
+0.52 A_{RaB} +0.38 A_{RaC} =1200 Бк/

₁3

где Π_i и A_i - годовые поступления и среднегодовые объемные активности в зоне дыхания соответствующих дочерних продуктов изотопов радона.

3.1.8. Для женщин в возрасте до 45 лет, работающих с источниками излучения, вводятся дополнительные ограничения: эквивалентная доза на поверхности нижней части области живота не должна превышать 1 мЗв в месяц, а поступление

радионуклидов в организм за год не должно быть более 1/20 предела годового поступления для персонала.

На период беременности и грудного вскармливания ребенка женщины должны переводиться на работу, не связанную с источниками ионизирующего излучения.

3.1.9. Для студентов и учащихся старше 16 лет, проходящих профессиональное обучение с использованием источников излучения, годовые дозы не должны превышать значений, установленных для персонала группы Б.

3.2. Планируемое повышенное облучение

- 3.2.1. Планируемое повышенное облучение персонала группы А выше установленных пределов доз (см. табл. 3.1.) при предотвращении развития аварии или ликвидации ее последствий может быть разрешено только в случае необходимости спасения людей и (или) предотвращения их облучения. Планируемое повышенное облучение допускается для мужчин, как правило, старше 30 лет лишь при их добровольном письменном согласии, после информирования о возможных дозах облучения и риске для здоровья.
- 3.2.2. Планируемое повышенное облучение в эффективной дозе до 100 мЗв в год и эквивалентных дозах не более двукратных значений, приведенных в табл. 3.1., допускается организациями (структурными подразделениями) федеральных органов исполнительной власти, осуществляющих государственный санитарноэпидемиологический надзор на уровне субъекта Российской Федерации, а облучение в эффективной дозе до 200 мЗв в год и четырехкратных значений эквивалентных доз по табл. 3.1. допускается только федеральными органами исполнительной власти, уполномоченными осуществлять государственный санитарно-эпидемиологический надзор.

Повышенное облучение не допускается:

- для работников, ранее уже облученных в течение года в результате аварии или запланированного повышенного облучения с эффективной дозой 200 мЗв или с эквивалентной дозой, превышающей в четыре раза соответствующие пределы доз, приведенные в табл. 3.1.;
- для лиц, имеющих медицинские противопоказания для работы с источниками излучения.
- 3.2.3. Лица, подвергшиеся облучению в эффективной дозе, превышающей 100 мЗв в течение года, при дальнейшей работе не должны подвергаться облучению в дозе свыше 20 мЗв за год.

Облучение эффективной дозой свыше 200 мЗв в течение года должно рассматриваться как потенциально опасное. Лица, подвергшиеся такому облучению, должны немедленно выводиться из зоны облучения и направляться на медицинское обследование. Последующая работа с источниками излучения этим лицам может быть разрешена только в индивидуальном порядке с учетом их согласия по решению компетентной медицинской комиссии.

3.2.4. Лица, не относящиеся к персоналу, привлекаемые для проведения аварийных и спасательных работ, должны быть оформлены и допущены к работам как персонал группы А.

4. Требования к защите от природного облучения в производственных условиях

- 4.1. Эффективная доза облучения природными источниками излучения всех работников, включая персонал, не должна превышать 5 мЗв в год в производственных условиях (любые профессии и производства).
- 4.2. Средние значения радиационных факторов в течение года, соответствующие при монофакторном воздействии эффективной дозе 5 мЗв за год при продолжительности работы 2000 ч/год, средней скорости дыхания 1,2 м³/ч и радиоактивном равновесии радионуклидов уранового и ториевого рядов в производственной пыли, составляют:
 - мощность эффективной дозы гамма-излучения на рабочем месте 2,5 мкЗв/ч;
 - ЭРОАR_п в воздухе зоны дыхания 310 Бк/м³;
 - ЭРОА $_{\rm Tn}$ в воздухе зоны дыхания 68 Бк/м $^{\rm 3}$;
- удельная активность в производственной пыли урана-238, находящегося в радиоактивном равновесии с членами своего ряда 40/f кБк/кг, где f среднегодовая общая запыленность воздуха в зоне дыхания, мг/м³;
- удельная активность в производственной пыли тория-232, находящегося в радиоактивном равновесии с членами своего ряда, 27/*f*, кБк/кг.

При многофакторном воздействии должно выполняться условие: сумма отношений воздействующих факторов к значениям, приведенным выше, не должна превышать 1.

4.3. Воздействие космических излучений на экипажи самолетов нормируется как природное облучение в производственных условиях по <u>п. 4.1</u>.

5. Требования к ограничению облучения населения

5.1. Общие положения

- 5.1.1. Радиационная безопасность населения достигается путем ограничения воздействия от всех основных видов облучения (п. 1.3). Возможности регулирования разных видов облучения существенно различаются, поэтому регламентация их осуществляется раздельно с применением разных методологических подходов и технических способов.
- 5.1.2. В отношении всех источников облучения населения следует принимать меры как по снижению дозы облучения у отдельных лиц, так и по уменьшению числа лиц, подвергающихся облучению, в соответствии с принципом оптимизации.

5.2. Ограничение техногенного облучения в нормальных условиях

- 5.2.1. Годовая доза облучения населения не должна превышать основные пределы доз (табл. 3.1.). Указанные пределы доз относятся к средней дозе критической группы населения, рассматриваемой как сумма доз внешнего облучения за текущий год и ожидаемой дозы до 70 лет вследствие поступления радионуклидов в организм за текущий год.
- 5.2.2. При воздействии на население нескольких техногенных источников федеральными органами исполнительной власти, уполномоченными осуществлять государственный санитарно-эпидемиологический надзор, устанавливаются величины воздействия для каждого источника с целью соблюдения основных пределов доз, указанных в таблице 3.1.
- 5.2.3. Облучение населения техногенными источниками излучения ограничивается путем обеспечения сохранности источников излучения, контроля технологических процессов и ограничения выброса (сброса) радионуклидов в окружающую среду, а также другими мероприятиями на стадии проектирования, эксплуатации и прекращения использования источников излучения.
- 5.2.4. Допустимые значения содержания радионуклидов в пищевых продуктах, питьевой воде и воздухе, соответствующие пределу дозы техногенного облучения

населения 1 мЗв/год и квотам от этого предела, рассчитываются на основании значений дозовых коэффициентов при поступлении радионуклидов через органы пищеварения с учетом их распределения по компонентам рациона питания и питьевой воде, а также с учетом поступления радионуклидов через органы дыхания и внешнего облучения людей. Значения дозовых коэффициентов для критических групп населения, ДОА и ПГП через органы дыхания и ПГП через органы пищеварения, приведены в Приложении 2.

5.3. Ограничение природного облучения

- 5.3.1. Допустимое значение эффективной дозы, обусловленной суммарным воздействием природных источников излучения, для населения не устанавливается. Снижение облучения населения достигается путем установления системы ограничений на облучение населения от отдельных природных источников излучения.
- 5.3.2. При проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе помещений $\Im POA_{n}+4,6\times \Im POA_{n}$ не превышала $100~\mathrm{Бk/m}^3$, а мощность эффективной дозы гамма-излучения не превышала мощность дозы на открытой местности более чем на $0.2~\mathrm{mk}\mathrm{3b/4}$.
- 5.3.3. В эксплуатируемых жилых и общественных зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых и общественных помещений $3POA_{Rn}+4,6\times 3POA_{Tn}$ не должна превышать $200~\text{Бк/m}^3$. При более высоких значениях объемной активности должны проводиться защитные мероприятия, направленные на снижение поступления радона в воздух помещений и улучшение вентиляции помещений. Защитные мероприятия должны проводиться также, если мощность эффективной дозы гамма-излучения в помещениях превышает мощность дозы на открытой местности более чем на 0,2~mk3в/ч.
- 5.3.4. Эффективная удельная активность ($A_{9\varphi\varphi}$) природных радионуклидов в строительных материалах (щебень, гравий, песок, бутовый и пиленный камень, цементное и кирпичное сырье и пр.), добываемых на их месторождениях или являющихся побочным продуктом промышленности, а также отходы промышленного производства, используемые для изготовления строительных материалов (золы, шлаки и пр.), и готовой продукции не должна превышать:
- для материалов, используемых в строящихся и реконструируемых жилых и общественных зданиях (I класс):

Aэфф=ARa+1,3ATn+0,09AK£370 Бк/кг,

где ARa и ATn - удельные активности 226 Ra и 232 Th, находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов,

AК - удельная активность К-40 (Бк/кг);

- для материалов, используемых в дорожном строительстве в пределах территории населенных пунктов и зон перспективной застройки, а также при возведении производственных сооружений (II класс):

Aэфф£740 Бк/кг;

- для материалов, используемых в дорожном строительстве вне населенных пунктов (III класс):

Aэфф£1500 Бк/кг

При 1,5 кБк/кг<AЭфф£4,0 кБк/кг (IV класс) вопрос об использовании материалов решается в каждом случае отдельно на основании санитарно-эпидемиологического заключения федерального органа исполнительной власти, уполномоченного осуществлять государственный санитарно-эпидемиологический надзор. При AЭфф>4,0 кБк/кг материалы не должны использоваться в строительстве.

Допустимое содержание природных радионуклидов в минеральном сырье и материалах, продукции с их использованием (изделия из керамики и керамогранита, природного и искусственного камня и т.п.), а также требования по обеспечению радиационной безопасности при обращении с ними устанавливаются в санитарных правилах по ограничению облучения населения за счет природных источников излучения.

5.3.5. Предварительная оценка качества питьевой воды по показателям радиационной безопасности может быть дана по удельной суммарной альфа- (A_a) и бета-активности (A_b). При значениях A_a и A_b ниже 0.2 и 1.0 Бк/кг, соответственно, дальнейшие исследования воды не являются обязательными. В случае превышения указанных уровней проводится анализ содержания радионуклидов в воде. Приоритетный перечень определяемых при этом радионуклидов в воде устанавливается в соответствии с санитарным законодательством.

Если при совместном присутствии в воде нескольких природных и техногенных радионуклидов выполняется условие:

База нормативной документации: www.complexdoc.ru

$$\sum_{i} A_{i} / \mathcal{Y}B_{i} \leq 1,$$

где A_i - удельная активность i-го радионуклида в воде, Бк/кг;

 VB_i - соответствующие уровни вмешательства по Приложению 2a, Бк/кг,

то мероприятия по снижению радиоактивности питьевой воды не являются обязательными.

При невыполнении указанного условия защитные мероприятия по снижению содержания радионуклидов в питьевой воде должны осуществляться с учетом принципа оптимизации.

Критическим путем облучения людей за счет ²²²Rn, содержащегося в питьевой воде, является переход радона в воздух помещения и последующее ингаляционное поступление дочерних продуктов радона в организм. Уровень вмешательства для ²²²Rn в питьевой воде составляет 60 Бк/кг. Определение удельной активности ²²²Rn в питьевой воде из подземных источников является обязательным.

При возможном присутствии в воде 3 H, 14 C, 131 I, 210 Pb, 228 Ra и 232 Th (в зонах наблюдения радиационных объектов I и II категории по потенциальной опасности) определение удельной активности этих радионуклидов в воде является обязательным.

Для минеральных и лечебных вод устанавливаются специальные нормативы.

5.3.6. Удельная активность природных радионуклидов в минеральных удобрениях и агрохимикатах не должна превышать:

$$AU+1.5\times ATn£1.0$$
 κδκ/κΓ,

где AU и ATn - удельные активности урана-238 (радия-226) и тория-232 (тория-228), находящихся в радиоактивном равновесии с остальными членами уранового и ториевого рядов, соответственно.

Допустимое содержание 40 К в минеральных удобрениях и агрохимикатах не устанавливается. При обращении с материалами, содержащими 40 К, должны соблюдаться требования по ограничению облучения населения за счет природных источников излучения, установленные в <u>п. 4.1</u> и <u>п. 4.2</u>.

5.4. Ограничение медицинского облучения

5.4.1. Радиационная защита пациентов при медицинском облучении должна быть основана на необходимости получения полезной диагностической

информации и/или терапевтического эффекта от соответствующих медицинских процедур при наименьших возможных уровнях облучения ¹. При этом не устанавливаются пределы доз для пациентов, но применяются принципы обоснования назначения медицинских процедур и оптимизации защиты пациентов.

- 1 Для лучевой терапии это требование относится к здоровым, не намеренно облучаемым органам и тканям.
- 5.4.2. Проведение медицинских процедур, связанных с облучением пациентов, должно быть обосновано путем сопоставления диагностических или терапевтических выгод, которые они приносят, с радиационным ущербом для здоровья, который может причинить облучение, принимая во внимание имеющиеся альтернативные методы, не связанные с медицинским облучением.
- 5.4.3. Перед проведением диагностической или терапевтической процедуры, связанной с облучением женщины детородного возраста, необходимо определить, не является ли она беременной или кормящей матерью. Беременная или кормящая женщина, а также родители детей-пациентов должны быть информированы врачом о пользе планируемой процедуры и о связанном с ней радиационном риске для эмбриона/плода, новорожденных и детей младшего возраста для принятия сознательного решения о проведении процедуры или отказе от нее.
- 5.4.4. При проведении обоснованных медицинских рентгенорадиологических обследований в связи с профессиональной деятельностью или в рамках медикоюридических процедур, а также рентгенорадиологических профилактических медицинских и научных исследований практически здоровых лиц, не получающих прямой пользы для своего здоровья от процедур, связанных с облучением, годовая эффективная доза не должна превышать 1 мЗв.
- 5.4.5. Лица (не персонал рентгенорадиологических отделений), оказывающие помощь в поддержке пациентов (тяжелобольных, детей и др.) при выполнении рентгенорадиологических процедур, не должны подвергаться облучению в дозе, превышающей 5 мЗв в год. Такие же требования предъявляются к радиационной безопасности взрослых лиц, проживающих вместе с пациентами, прошедшими курс радионуклидной терапии или брахитерапии с имплантацией закрытых источников и выписанными из клиники. Для остальных взрослых лиц, а также для детей, контактирующих с пациентами, выписанными из клиники после радионуклидной терапии или брахитерапии, предел дозы составляет 1 мЗв в год.
- 5.4.6. Пациенты, проходящие курс радионуклидной терапии или брахитерапии с имплантацией закрытых источников, могут быть выписаны из клиники при условии, что уровень гамма- и рентгеновского излучения, испускаемого из тела, удовлетворяет требованиям п. 5.4.5. Выписка пациента после терапии радионуклидами, указанными в таблице 5.1, допускается, если введенная или остаточная активность радионуклидов в теле или измеренная мощность дозы в

воздухе вблизи тела пациента ниже соответствующих значений, приведенных в этой таблице. Перед выпиской пациентам следует дать письменные и устные инструкции относительно мер предосторожности, которые они должны принимать с тем, чтобы защитить от облучения членов семьи и других лиц, с которыми они могут вступать в контакт. Такие же требования предъявляются к режиму амбулаторного лечения пациентов.

5.4.7. В случае смерти пациента, проходившего курс радионуклидной терапии или брахитерапии с имплантацией закрытых источников, патологоанатомическое исследование и кремация тела разрешается только после того, как остаточная активность в нем или мощность дозы уменьшится до уровня, удовлетворяющего требованиям п. 5.4.5. В случае смерти пациента, в организме которого находится кардиостимулятор с радионуклидным источником энергии, кремация тела осуществляется только после удаления источника.

Таблина 5.1.

Активность радионуклидов в теле взрослого пациента (ГБк) после радионуклидной терапии или брахитерапии с имплантацией закрытых источников и мощность эквивалентной дозы (мкЗв/ч) на расстоянии 1 м от поверхности тела, при которых разрешается выписка пациента из клиники*

Радионуклид	Период полураспада, сут	Активность в теле, ГБк	Мощность дозы, мкЗв/ч
(125)I**	60,1	4	10
(131)I	8,0	0,4	20
(153)Sm	2,0	9	100
(188)Re	0,7	12	80

^{* -} В случае многократного лечения в течение года активность в теле и мощность дозы в таблице 5.1 должны быть уменьшены в число раз, равное числу курсов лечения за год.

^{** -} В составе имплантантов для брахитерапии предстательной железы.

5.4.8. При планировании и проведении процедур, связанных с облучением ионизирующим излучением, в учреждениях здравоохранения должны определяться и регистрироваться в установленном порядке дозы у всех лиц, подвергающихся медицинскому облучению.

6. Требования по ограничению облучения населения в условиях радиационной аварии

- 6.1. В случае возникновения аварии должны быть приняты практические меры для восстановления контроля над источником излучения и сведения к минимуму доз облучения, количества облученных лиц, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.
- 6.2. При радиационной аварии или обнаружении радиоактивного загрязнения ограничение облучения осуществляется защитными мероприятиями, применимыми, как правило, к окружающей среде и (или) к человеку. Эти мероприятия могут приводить к нарушению нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории. При планировании защитных мероприятий необходимо обеспечивать максимально возможное превышение пользы от снижения дозы облучения над ущербом, связанным с проведением этих мероприятий.

Если предполагаемая доза излучения за короткий срок (2 суток) достигает уровней, при превышении которых возможны детерминированные эффекты (<u>табл.</u> <u>6.1</u>), необходимо срочное вмешательство (меры защиты).

Таблица 6.1

Прогнозируемые уровни облучения, при которых необходимо срочное вмешательство

Орган или ткань	Поглощенная доза в органе или ткани за 2 суток, Гр
Все тело	1

Легкие	6
Кожа	3
Щитовидная железа	5
Хрусталик глаза	2
Гонады	3
Плод	0,1

6.3. При хроническом облучении в течение жизни защитные мероприятия становятся обязательными, если годовые поглощенные дозы превышают значения, приведенные в таблице 6.2. Превышение этих доз приводит к серьезным детерминированным эффектам.

Таблица 6.2

Уровни вмешательства при хроническом облучении

Орган или ткань	Годовая поглощенная доза, Гр
Гонады	0,2
Хрусталик глаза	0,1
Красный костный мозг	0,4

6.4. Уровни вмешательства для временного отселения населения составляют: для начала временного отселения - 30 мЗв в месяц, для окончания временного отселения - 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос об отселении населения на постоянное место жительства.

- 6.5. При проведении противорадиационных вмешательств пределы доз (табл. 3.1.) не применяются. При планировании защитных мероприятий на случай радиационной аварии федеральным органом исполнительной власти, уполномоченным осуществлять государственный санитарно-эпидемиологический надзор, территориальными подразделениями федеральных органов исполнительной власти, осуществляющих государственный санитарно-эпидемиологический надзор, устанавливаются уровни вмешательства (дозы и мощности доз облучения, уровни радиоактивного загрязнения) применительно к конкретному радиационному объекту и условиям его размещения с учетом вероятных типов аварии, сценариев развития аварийной ситуации и складывающейся радиационной обстановки.
- 6.6. При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии. В зоне радиационной аварии проводится контроль радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе изложенных в п.п. 6.1; 6.2; 6.4 принципов и подходов.
- 6.7. Принятие решений о мерах защиты населения в случае крупной радиационной аварии с радиоактивным загрязнением территории проводится на основании сравнения прогнозируемой дозы, предотвращаемой защитным мероприятием, и уровней загрязнения с уровнями А и Б, приведенными в табл. 6.3-6.5.

Таблица 6.3

Критерии для принятия неотложных решений в начальном периоде радиационной аварии

	Предотвращаемая доза за первые 10 суток, мГр			
Меры защиты	на все тело		щитовидная железа, легкие, кожа	
	уровень А	уровень Б	уровень А	уровень Б
Укрытие	5	50	50	500

Йодная профилактика:				
взрослые	-	-	250*	2500*
дети	-	-	100*	1000*
Эвакуация	50	500	500	5000
* - Только для щитовидной железы				

Таблица 6.4

Критерии для принятия решений об отселении и ограничении потребления загрязненных пищевых продуктов

Magaza	Предотвращаемая эффективная доза, мЗв			
Меры защиты	уровень А	уровень Б		
Ограничение потребления	5 за первый год	50 за первый год		
загрязненных пищевых продуктов и питьевой воды	1/год в последующие годы	10/год в последующие годы		
Отосмочно	50 за первый год	500 за первый год		
Отселение	1000 за все время отселения			

Таблица 6.5

Критерии для принятия решений об ограничении потребления загрязненных продуктов питания в первый год после возникновения аварии

Радионуклиды	Удельная активность радионуклида в пищевых продуктах, кБк/кг		
	уровень А	уровень Б	
¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs	1	10	
⁹⁰ Sr	0,1	1,0	
²³⁸ Pu, ²³⁹ Pu, ²⁴¹ Am	0,01	0,1	

Если уровень облучения, предотвращаемого защитным мероприятием, не превосходит уровень A, нет необходимости в выполнении мер защиты, связанных с нарушением нормальной жизнедеятельности населения, а также хозяйственного и социального функционирования территории.

Если предотвращаемое защитным мероприятием облучение превосходит уровень A, но не достигает уровня Б, решение о выполнении мер защиты принимается по принципам обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Если уровень облучения, предотвращаемого защитным мероприятием, достигает и превосходит уровень Б, необходимо выполнение соответствующих мер защиты, даже если они связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории.

6.8. На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально-экономических условий.

7. Требования к контролю за выполнением Норм

7.1. Радиационный контроль является важнейшей частью обеспечения радиационной безопасности и конкретный перечень видов и объем контроля включается в проект радиационного объекта. Он имеет целью определение степени

соблюдения принципов радиационной безопасности и требований нормативов, включая не превышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения, кроме приведенных в п. 1.4 Норм.

7.2. Радиационному контролю подлежат:

- радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов;
- радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде;
- радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения;
- уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.
 - 7.3. Основными контролируемыми параметрами являются:
 - годовая эффективная и эквивалентная дозы (см. табл. 3.1.);
- поступление радионуклидов в организм и их содержание в организме для оценки годового поступления;
- объемная или удельная активность радионуклидов в воздухе, воде, пищевых продуктах, строительных материалах и др.;
- радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей;
 - доза и мощность дозы внешнего облучения;
 - плотность потока частиц и фотонов.

Переход от измеряемых величин к нормируемым определяется методическими указаниями по проведению соответствующих видов радиационного контроля.

7.4. С целью оперативного контроля для всех контролируемых параметров по $\underline{\pi}$. 2.3 устанавливаются контрольные уровни. Значение этих уровней устанавливается

таким образом, чтобы было гарантировано не превышение основных пределов доз и реализация принципа снижения уровней облучения до возможно низкого уровня.

При этом учитывается облучение от всех подлежащих контролю источников излучения, достигнутый уровень защищенности, возможность его дальнейшего снижения с учетом требований принципа оптимизации. Обнаруженное превышение контрольных уровней является основанием для выяснения причин этого превышения и разработки мероприятий по его устранению.

- 7.5. Контроль и учет индивидуальных доз облучения, полученных гражданами при использовании источников ионизирующего излучения, проведении медицинских рентгенорадиологических процедур, а также обусловленных естественным радиационным и техногенно измененным радиационным фоном, осуществляются в рамках единой государственной системы контроля и учета индивидуальных доз облучения (ЕСКИД).
- 7.6. При планировании и проведении мероприятий по обеспечению радиационной безопасности, принятии решений в области обеспечения радиационной безопасности, анализе эффективности указанных мероприятий органами государственной власти, органами местного самоуправления, а также организациями, осуществляющими деятельность с использованием источников ионизирующего излучения, проводится оценка радиационной безопасности по следующим основным показателям:
 - характеристика радиоактивного загрязнения окружающей среды;
- анализ обеспечения мероприятий по радиационной безопасности и выполнения норм, правил и гигиенических нормативов в области радиационной безопасности;
 - вероятность радиационных аварий и их масштаб;
- степень готовности к эффективной ликвидации радиационных аварий и их последствий;
- анализ доз облучения, получаемых отдельными группами населения от всех источников ионизирующего излучения;
- число лиц, подвергшихся облучению выше установленных пределов доз облучения.

8. Значения допустимых уровней радиационного воздействия в

нормальных условиях эксплуатации источников ионизирующего излучения

8.1. Для каждой категории облучаемых лиц значение допустимого уровня радиационного воздействия для данного пути облучения определено таким образом, чтобы при таком уровне воздействия только одного данного фактора облучения в течение года значение дозы равнялось соответствующему годовому пределу (усредненному за пять лет), указанному в таблице 3.1.

В таблицах и приложениях запись вида 1,6-12 означает 1,6′10⁻¹², а $1,6+12-1,6'10^{+12}$.

- 8.2. Значения допустимых уровней для всех путей облучения определены для стандартных условий, которые характеризуются следующими параметрами:
- объемом вдыхаемого воздуха V, с которым радионуклид поступает в организм на протяжении календарного года;
 - временем облучения t в течение календарного года;
- массой питьевой воды M, с которой радионуклид поступает в организм на протяжении календарного года;
 - геометрией внешнего облучения потоками ионизирующего излучения.

Для персонала установлены следующие значения стандартных параметров: $V_{\text{перс}}=2,4'10^3 \text{ м}^3$ в год; $t_{\text{перc}}=1700 \text{ ч в год}$; $M_{\text{перc}}=0$.

Для населения установлены следующие значения стандартных параметров: $t_{\rm Hac}$ =8800 ч в год; $M_{\rm Hac}$ =730 кг в год для взрослых. Годовой объем вдыхаемого воздуха установлен в зависимости от возраста:

Таблица 8.1

Годовой объем вдыхаемого воздуха для разных возрастных групп населения

Возраст, лет	до 1	1-2	2-7	7-12	12-17	Взрослые (старше 17 лет)
V , тыс. 3 в год	1,0	1,9	3,2	5,2	7,3	8,1

- 8.3. Для целей нормирования поступления радионуклидов через органы дыхания в форме радиоактивных аэрозолей их химические соединения разделены на три типа в зависимости от скорости перехода радионуклида из легких в кровь:
- тип "М" (медленно растворимые соединения): при растворении в легких веществ, отнесенных к этому типу, наблюдается компонента активности радионуклида, поступающая в кровь со скоростью 0,0001 сут⁻¹;
- тип "П" (соединения, растворимые с промежуточной скоростью): при растворении в легких веществ, отнесенных к этому типу, основная активность радионуклида поступает в кровь со скоростью $0.005 \, \text{cyr}^{-1}$;
- тип "Б" (быстро растворимые соединения): при растворении в легких веществ, отнесенных к этому типу, основная активность радионуклида поступает в кровь со скоростью 100 сут⁻¹.

Для целей нормирования поступления радионуклидов через органы дыхания в форме радиоактивных газов выделены типы "Г" (Г1-Г3) газов и паров соединений некоторых элементов.

Распределение соединений элементов по типам при ингаляции в производственных условиях приведено в Приложении 3.

- 8.4. Приведенные в <u>Приложениях 1</u> и <u>2</u> значения дозовых коэффициентов, а также величин $\Pi\Gamma\Pi_{\text{перс}}$, $\Pi\Gamma\Pi_{\text{нас}}$, $\mathcal{Q}OA_{\text{перс}}$, $\mathcal{Q}OA_{\text{перс}}$ и для воздуха рассчитаны для аэрозолей с логарифмически нормальным распределением частиц по активности при медианном по активности аэродинамическом диаметре 1 мкм и стандартном геометрическом отклонении, равном 2,5. В расчетах использована модель органов дыхания, рекомендованная публикацией 66 МКР3.
- 8.5. В <u>Приложении 1</u> для персонала для случая поступления радионуклидов с вдыхаемым воздухом приведены значения дозового коэффициента, допустимого годового поступления <u>ПГП_{перс}</u>, допустимой среднегодовой объемной активности <u>ДОА_{перс}</u>. В <u>Приложение 1</u> не входят инертные газы, поскольку они являются источниками внешнего облучения, а также изотопы радона с продуктами их распада (см. разделы 4 и 5). Природные радионуклиды ⁸⁷Rb, ¹¹⁵In, ¹⁴⁴Nd, ¹⁴⁷Sm и ¹⁸⁷Re не включены в таблицу, поскольку они нормируются по их химической токсичности. Из-за химической токсичности урана поступление через органы дыхания его соединений типов Б или П не должно превышать 2,5 мг в сутки и 500 мг в год.

Если химическая форма соединения данного радионуклида неизвестна, то следует использовать данные из Приложения 1 для соединения с наибольшим значением величины дозового коэффициента и, соответственно, наименьшими значениями $\Pi\Gamma\Pi_{\text{перс}}$ и $\mathcal{Q}OA_{\text{перс}}$.

- 8.6. В Приложении 2 для населения приведены:
- а) для случая поступления радионуклидов с вдыхаемым воздухом критическая возрастная группа, а также значения дозового коэффициента и предела годового поступления $\Pi\Gamma\Pi_{\text{Hac}}$ для этой же возрастной группы и типа соединений, для которых допустимая среднегодовая объемная активность $\mathcal{L}OA_{\text{Hac}}$ оказалась наименьшей;
- б) для случая поступления радионуклидов с пищей критическая возрастная группа 1 , группа, значения дозового коэффициента и предела годового поступления $\Pi\Gamma\Pi_{\text{Hac}}$ для этой же группы, где $\Pi\Gamma\Pi_{\text{Hac}}$ наименьшее. Уровни вмешательства для радионуклидов в продуктах питания не приводятся и должны определяться по специальным методическим указаниям с учетом местных особенностей внутреннего и внешнего облучения населения см. п. 5.2.4 для обеспечения не превышения основных пределов доз (табл. 3.1.) в нормальных условиях эксплуатации техногенных источников и критериев таблиц 6.4 и 6.5 при аварийном облучении населения.
- 1 Поступление радионуклидов с пищей не рассматривается у детей в возрасте менее 1 года, поскольку они питаются преимущественно грудным молоком.
- В <u>Приложении 2а</u> для населения приведены значения дозовых коэффициентов и уровни вмешательства при поступлении радионуклидов в организм взрослых людей с питьевой водой.
- 8.7. В таблицах 8.2-8.8 приведены числовые значения среднегодовых допустимых плотностей потоков частиц при внешнем облучении всего тела, кожи и хрусталика глаза лиц из персонала моноэнергетическими электронами (таблицах 8.2-8.3), бета-частицами (табл. 8.4), моноэнергетическими фотонами (табл. 8.5-8.7) и моноэнергетическими нейтронами (табл. 8.8). Значения среднегодовых допустимых плотностей потоков частиц даны для широкого диапазона энергий излучения и двух наиболее вероятных геометрий облучения: изотропного (2р или 4р) поля излучения и падения параллельного пучка излучения на тело спереди (передне-задняя геометрия).
- 8.8. В таблице 8.9 приведены значения допустимого радиоактивного загрязнения поверхностей рабочих помещений и находящегося в них оборудования, кожных покровов, спецодежды, спецобуви и других средств индивидуальной защиты персонала. Для кожных покровов, спецодежды, спецобуви и других средств индивидуальной защиты нормируется общее (снимаемое и неснимаемое) радиоактивное загрязнение. В остальных случаях нормируется только снимаемое загрязнение.

Уровни общего радиоактивного загрязнения кожных покровов определены с учетом проникновения доли радионуклида в кожу и в организм. Расчет проведен в предположении, что общая площадь загрязнения не должна превосходить 300 см².

- 8.9. В <u>таблице 8.10</u> приведены допустимые уровни снимаемого радиоактивного загрязнения поверхности транспортных средств, используемых для перевозки радиоактивных веществ и материалов.
- 8.10. Минимально значимые удельная активность (МЗУА) и активность радионуклидов в помещении или на рабочем месте (МЗА) приведены в Приложении 4.

Таблица 8.2 Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических электронов для лиц из персонала при облучении кожи

Энергия электронов, МэВ	Эквивалентная доза в коже на единичный флюенс, 10^{-10} 3 в \times см 2		Среднегодовая допустимая плотность потока $\mathcal{I}\Pi\Pi_{nepc}$, $\text{cm}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
0,07	0,3	2,2	2700	370
0,10	5,7	16,6	140	50
0,20	5,6	8,3	150	100
0,40	4,3	4,6	190	180
0,70	3,7	3,4	220	240
1,00	3,5	3,1	230	260
2,00	3,2	2,8	260	290

4,00	3,2	2,7	260	300
7,00	3,2	2,7	260	300
10,0	3,2	2,7	260	300

^{* -} ИЗО - изотропное (2р) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.

Таблица 8.3

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических электронов для лиц из персонала при облучении хрусталиков глаз

Энергия электронов, МэВ	Эквивалентная доза в хрусталике на единичный флюенс, 10^{-10} Зв×см ²		Среднегодовая допустимая плотность потока $\mathcal{L}\Pi\Pi_{nepc}$, $\text{cm}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
0,80	0,08	0,45	3100	540
1,00	0,75	3,0	330	80
1,50	1,9	5,2	130	50
2,00	2,2	4,8	110	50
4,00	2,6	3,3	95	75
7,00	2,9	3,1	85	80

10,0	3,0	3,0	80	80			
* - ИЗО - изот	* - ИЗО - изотропное (2p) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.						

Флюенс частиц Φ - отношение dN/da, где dN - количество частиц, падающих на сферу с площадью поперечного сечения da:

$$\Phi = dN/da$$
, M^{-2}

Пломность потока частиц n - отношение $dN/(da \times dt)$, где dN - количество частиц, падающих на сферу с площадью поперечного сечения da за интервал времени dt:

$$n=dN/(da\times dt)$$
, $M^{-2}\times c^{-1}$

Таблица 8.4

Значения эквивалентной дозы и среднегодовые допустимые плотности потока бетачастиц для лиц из персонала при контактном облучении кожи

Средняя энергия бета- спектра, МэВ	Эквивалентная доза в коже на единичный флюенс, 10^{-10} $3\text{в} \times \text{cm}^2$	Среднегодовая допустимая плотность потока $\Pi\Pi_{\text{перс}}$, см ⁻² ×c ⁻¹
0,05	1,0	820
0,07	1,8	450
0,10	2,6	310
0,15	3,4	240
0,20	3,8	215
0,30	4,3	190

0,40	4,5	180
0,50	4,6	180
0,70	4,8	170
1,00	5,0	165
1,50	5,2	160
2,00	5,3	155

Таблица 8.5

Значения эффективной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала при внешнем облучении всего тела

Энергия фотонов, МэВ	Эффективная доза на единичный флюенс, 10 ⁻¹² Зв×см ²		Среднегодовая допустимая плотность потока, $\mathcal{L}\Pi\Pi_{\text{перс}}$, $\text{см}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
1,0-2	0,0201	0,0485	1,63+05	6,77+04
1,5-2	0,0384	0,125	8,73+04	2,62+04
2,0-2	0,0608	0,205	5,41+04	1,62+04
3,0-2	0,103	0,300	3,24+04	1,08+04

4,0-2	0,140	0,338	2,31+04	9,65+03
5,0-2	0,165	0,357	1,99+04	9,12+03
6,0-2	0,186	0,378	1,77+04	8,63+03
8,0-2	0,230	0,440	1,42+04	7,44+03
1,0-1	0,278	0,517	1,18+04	6,33+03
1,5-1	0,419	0,752	7,79+03	4,33+03
2,0-1	0,581	1,00	5,61+03	3,28+03
3,0-1	0,916	1,51	3,54+03	2,17+03
4,0-1	1,26	2,00	2,59+03	1,63+03
5,0-1	1,61	2,47	2,02+03	1,32+03
6,0-1	1,94	2,91	1,69+03	1,12+03
8,0-1	2,59	3,73	1,26+03	8,73+02
1,0	3,21	4,48	1,01+03	7,33+02
2,0	5,84	7,49	5,63+02	4,38+02
4,0	9,97	12,0	3,28+02	2,73+02

6,0	13,6	16,0	2,38+02	2,05+02
8,0	17,3	19,9	1,89+02	1,64+02
10,0	20,8	23,8	1,56+02	1,38+02

^{* -} ИЗО - изотропное (4p) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.

Таблица 8.6

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала при облучении кожи

Энергия фотонов, МэВ	Эквивалентная доза в коже на единичный флюенс, 10 ⁻¹² 3в×см ²		Среднегодовая допустимая плотность потока $\mathcal{L}^{\Pi\Pi}_{\text{перс}}$ $\text{см}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
1,0-2	6,17	7,06	1,31+04	1,16+04
2,0-2	1,66	1,76	4,96+04	4,63+04
3,0-2	0,822	0,880	1,00+05	9,25+04
5,0-2	0,462	0,494	1,81+05	1,63+05
1,0-1	0,549	0,575	1,50+05	1,42+05
1,5-1	0,827	0,851	9,74+04	9,74+04

3,0-1	1,79	1,81	4,53+04	4,53+04
4,0-1	2,38	2,38	3,38+04	3,38+04
5,0-1	2,93	2,93	2,80+04	2,80+04
6,0-1	3,44	3,44	2,40+04	2,40+04
8,0-1	4,39	4,39	1,88+04	1,88+04
1,0	5,23	5,23	1,55+04	1,55+04
2,0	8,61	8,61	9,57+03	9,57+03
4,0	13,6	13,6	6,08+03	6,08+03
6,0	17,9	17,9	4,57+03	4,57+03
8,0	22,3	22,3	3,66+03	3,66+03
10,0	26,4	26,4	3,13+03	3,13+03

^{* -} ИЗО - изотропное (2р) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.

Таблица 8.7

Значения эквивалентной дозы и среднегодовые допустимые плотности потока моноэнергетических фотонов для лиц из персонала при облучении хрусталиков глаз

Энергия фотонов, МэВ	хрусталике і	ятная доза в на единичный 0 ⁻¹² Зв×см ²	Среднегодовая допустимая плотность потока $\mathcal{L}\Pi\Pi_{\text{перс}}$ $\text{см}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
1,0-2	0,669	2,23	3,66+04	1,08+04
1,5-2	0,749	2,06	3,29+04	1,16+04
2,0-2	0,622	1,53	3,97+04	1,60+04
3,0-2	0,375	0,865	6,55+04	2,85+04
4,0-2	0,275	0,571	9,07+04	4,27+04
5,0-2	0,239	0,459	1,03+05	5,33+04
6,0-2	0,234	0,431	1,06+05	5,67+04
8,0-2	0,264	0,476	9,05+04	5,16+04
1,0-1	0,326	0,568	7,26+04	4,34+04
1,5-1	0,545	0,857	4,59+04	2,88+04
2,0-1	0,762	1,16	3,31+04	2,11+04
3,0-1	1,20	1,77	2,09+04	1,39+04

1,59	2,33	1,54+04	1,06+04
2,00	2,86	1,24+04	8,64+03
2,39	3,32	1,04+04	7,34+03
3,10	4,21	7,90+03	5,87+03
3,76	4,96	6,53+03	4,91+03
6,64	7,93	3,68+03	3,09+03
11,1	12,1	2,20+03	2,00+03
15,1	15,6	1,62+03	1,57+03
19,1	19,1	1,29+03	1,29+03
23,0	22,3	1,06+03	1,10+03
	2,00 2,39 3,10 3,76 6,64 11,1 15,1 19,1	2,00 2,86 2,39 3,32 3,10 4,21 3,76 4,96 6,64 7,93 11,1 12,1 15,1 15,6 19,1 19,1	2,00 2,86 1,24+04 2,39 3,32 1,04+04 3,10 4,21 7,90+03 3,76 4,96 6,53+03 6,64 7,93 3,68+03 11,1 12,1 2,20+03 15,1 15,6 1,62+03 19,1 19,1 1,29+03

^{* -} ИЗО - изотропное (4p) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.

Таблица 8.8

Значения эффективной дозы и среднегодовые допустимые плотности потока моноэнергетических нейтронов для лиц из персонала при внешнем облучении всего тела

Энергия нейтронов, МэВ	единичный	явная доза на і флюенс, 10 ⁻¹² в×см ²	Среднегодовая допустимая плотность потока, $\mathcal{A}\Pi\Pi_{\text{перс}}$, $\text{см}^{-2}\times\text{c}^{-1}$	
	*ИЗО	*ПЗ	*ИЗО	*ПЗ
тепловые нейтроны	3,30	7,60	9,90+2	4,30+2
1,0-7	4,13	9,95	7,91+2	3,28+2
1,0-6	5,63	1,38+1	5,80+2	2,37+2
1,0-5	6,44	1,51+1	5,07+2	2,16+2
1,0-4	6,45	1,46+1	5,07+2	2,24+2
1,0-3	6,04	1,42+1	5,41+2	2,30+2
1,0-2	7,70	1,83+1	4,24+2	1,79+2
2,0-2	1,02+1	2,38+1	3,20+2	1,37+2
5,0-2	1,73+1	3,85+1	1,89+2	8,49+1
1,0-1	2,72+1	5,98+1	1,20+2	5,46+1
2,0-1	4,24+1	9,90+1	7,71+1	3,30+1
5,0-1	7,50+1	1,88+2	4,36+1	1,74+1

1,0	1,16+2	2,82+2	2,82+1	1,16+1
1,2	1,30+2	3,10+2	2,51+1	1,05+1
2,0	1,78+2	3,83+2	1,84+1	8,53
3,0	2,20+2	4,32+2	1,49+1	7,56
4,0	2,50+2	4,58+2	1,31+1	7,13
5,0	2,72+2	4,74+2	1,20+1	6,89
6,0	2,82+2	4,83+2	1,16+1	6,76
7,0	2,90+2	4,90+2	1,13+1	6,67
8,0	2,97+2	4,94+2	1,10+1	6,61
10	3,09+2	4,99+2	1,06+1	6,55
14	3,33+2	4,96+2	9,81	6,59
20	3,43+2	4,80+2	9,52	6,81
l .				

^{* -} ИЗО - изотропное (4p) поле излучения, ПЗ - облучение параллельным пучком в передне-задней геометрии.

Таблица 8.9

Допустимые уровни радиоактивного загрязнения поверхностей рабочих помещений и находящегося в них оборудования, кожных покровов, спецодежды, спецобуви и других средств индивидуальной защиты персонала, част/(см²×мин)

Объект загрязнения	Альфа-а нукл	Бета-активные	
	отдельные**	прочие	нуклиды*
Неповрежденная кожа, спецбелье, полотенца, внутренняя поверхность лицевых частей средств индивидуальной защиты	2	2	200***
Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви	5	20	2000
Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования	5	20	2000
Поверхности помещений периодического пребывания персонала и находящегося в них оборудования	50	200	10000
Наружная поверхность дополнительных средств индивидуальной защиты, снимаемых в саншлюзах	50	200	10000

Примечания:

* - Для кожных покровов, спецодежды, спецобуви и других средств индивидуальной защиты нормируется общее (снимаемое и не снимаемое) радиоактивное загрязнение. В остальных случаях нормируется только снимаемое загрязнение.

** - К отдельным относятся альфа-активные нуклиды, среднегодовая допустимая объемная активность которых в воздухе рабочих помещений ДОА<0,3 $\mbox{Бк/м}^3$.

*** - для
$$^{90}\mathrm{Sr}^{+90}\mathrm{Y}$$
-40 част/(см 2 ×мин).

Таблица 8.10

Допустимые уровни снимаемого радиоактивного загрязнения поверхности транспортных средств, используемых для перевозки радиоактивных веществ и материалов, част/(см²×мин)

	Вид загрязнения						
Объект загрязнения		аемое рованное)	Неснимаемое (фиксированное)				
	альфа- активные радионуклиды	бета-активные радионуклиды	*	бета-активные радионуклиды			
Наружная поверхность транспортного средства и охранной тары контейнера	1,0	10	Не регламентируется	200*			
Внутренняя поверхность охранной тары и наружная поверхность транспортного контейнера	1,0	100	Не регламентируется	2000			
	* - для 90 Sr+ 90 Y-40 част/(см 2 ×мин).						

Приложение 1 к НРБ-99/09

Значения дозовых коэффициентов, предела годового поступления с воздухом и допустимой среднегодовой объемной активности в воздухе отдельных радионуклидов для персонала

Радионуклид	Период полураспада	Тип соединения при ингаляции <u>*(2)</u>	Дозовый коэффициент $e^{(\mathrm{воз}\mathrm{д})}_{\mathrm{перс}},$ Зв/Бк	Предел годового поступления <i>ПГП</i> ПЕРС, Бк в год	Допустимая среднегодовая объемная активность ДОАПЕРС, Бк/м ³
		П	1,8-11	1,1+09	4,4+05
Н-3	12,3 лет	Γ2	1,8-15	1,1+13	4,4+09
		ГЗ	1,8-13	1,1+11	4,4+07
Be-7	53,3 сут	П	4,8-11	4,2+08	1,7+05
		М	5,2-11	3,8+08	1,5+05

Do 10	1,60+06 лет	П	9,1-09	2,2+06	8,8+02
Be-10	1,00+00 лет	M	3,2-08	6,3+05	2,5+02
		Γ1	3,2-12	6,2+09	2,5+06
C-11	0,340 час	Γ2	2,2-12	9,1+09	3,6+06
		Г3	1,2-12	1,7+10	6,7+06
		Γ1	5,8-10	3,4+07	1,4+04
C-14	5,73+03 лет	Г2	6,2-12	3,2+09	1,3+06
		Г3	8,0-13	2,5+10	1,0+07
	1,83 час	Б	3,0-11	6,7+08	2,7+05
F-18		П	5,7-11	3,5+08	1,4+05
		M	6,0-11	3,3+08	1,3+05
Na-22	2,60 лет	Б	1,3-09	1,5+07	6,2+03
Na-24	15,0 час	Б	2,9-10	6,9+07	2,8+04
Mg-28	20,9 час	Б	6,4-10	3,1+07	1,3+04
		П	1,2-09	1,7+07	6,7+03

A1 26	7.16.05	Б	1,1-08	1,8+06	7,3+02
Al-26	7,16+05 лет	П	1,8-08	1,1+06	4,4+02
		Б	2,9-11	6,9+08	2,8+05
Si-31	2,62 час	П	7,5-11	2,7+08	1,1+05
		M	8,0-11	2,5+08	1,0+05
	4,50+02 лет	Б	3,2-09	6,3+06	2,5+03
Si-32		П	1,5-08	1,3+06	5,3+02
		M	1,1-07	1,8+05	7,3+01
D 22	14.2 avm	Б	8,0-10	2,5+07	1,0+04
P-32	14,3 сут	П	3,2-09	6,3+06	2,5+03
P-33	25.4 avm	Б	9,6-11	2,1+08	8,3+04
	25,4 сут	П	1,4-09	1,4+07	5,7+03

		Б	5,3-11	3,8+08	1,5+05
	97.4 227	П	1,3-09	1,5+07	6,2+03
S-35	87,4 сут	Γ1	7,0-10	2,9+07	1,1+04
		Γ2	1,1-10	1,8+08	7,3+04
C1 26	2.01+05	Б	3,4-10	5,9+07	2,4+04
Cl-36	3,01+05 лет	П	6,9-09	2,9+06	1,2+03
C1 20	0.620 was	Б	2,7-11	7,4+08	3,0+05
C1-38	0,620 час	П	4,7-11	4,3+08	1,7+05
C1 20	0,927 час	Б	2,7-11	7,4+08	3,0+05
C1-39		П	4,8-11	4,2+08	1,7+05
K-40 <u>*(3)</u>	1,28+09 лет	Б	2,1-09	9,5+06	3,8+03
K-42	12,4 час	Б	1,3-10	1,5+08	6,2+04
K-43	22,6 час	Б	1,5-10	1,3+08	5,3+04
K-44	0,369 час	Б	2,1-11	9,5+08	3,8+05
K-45	0,333 час	Б	1,6-11	1,3+09	5,0+05

Ca-41	1,40+05 лет	П	1,7-10	1,2+08	4,7+04
Ca-45	163 сут	П	2,7-09	7,4+06	3,0+03
Ca-47	4,53 сут	П	1,8-09	1,1+07	4,4+03
Sc-43	3,89 час	M	1,2-10	1,7+08	6,7+04
Sc-44	3,93 час	M	1,9-10	1,1+08	4,2+04
Sc-44m	2,44 сут	M	1,5-09	1,3+07	5,3+03
Sc-46	83,8 сут	M	6,4-09	3,1+06	1,3+03
Sc-47	3,35 сут	M	7,0-10	2,9+07	1,1+04
Sc-48	1,82 сут	M	1,1-09	1,8+07	7,3+03
Sc-49	0,956 час	M	4,1-11	4,9+08	2,0+05
	47,3 лет	Б	6,1-08	3,3+05	1,3+02
Ti-44		П	4,0-08	5,0+05	2,0+02
		M	1,2-07	1,7+05	6,7+01

	2.00	Г	4.6.11	4.2+00	1.7.05
	3,08 час	Б	4,6-11	4,3+08	1,7+05
Ti-45		П	9,1-11	2,2+08	8,8+04
		M	9,6-11	2,1+08	8,3+04
V 47	0,543 час	Б	1,9-11	1,1+09	4,2+05
V-47		П	3,1-11	6,5+08	2,6+05
V / 40	16,2 сут	Б	1,1-09	1,8+07	7,3+03
V-48		П	2,3-09	8,7+06	3,5+03
	330 сут	Б	2,1-11	9,5+08	3,8+05
V-49		П	3,2-11	6,3+08	2,5+05
	23,0 час	Б	1,0-10	2,0+08	8,0+04
Cr-48		П	2,0-10	1,0+08	4,0+04
		M	2,2-10	9,1+07	3,6+04
Cr-49	0,702 час	Б	2,0-11	1,0+09	4,0+05
		П	3,5-11	5,7+08	2,3+05
		М	3,7-11	5,4+08	2,2+05

	27,7 сут	Б	2,1-11	9,5+08	3,8+05
Cr-51		П	3,1-11	6,5+08	2,6+05
		M	3,6-11	5,6+08	2,2+05
Mn 51	0,770 час	Б	2,4-11	8,3+08	3,3+05
Mn-51		П	4,3-11	4,7+08	1,9+05
Mn 52	5,59 сут	Б	9,9-10	2,0+07	8,1+03
Mn-52		П	1,4-09	1,4+07	5,7+03
Ma 52m	0,352 час	Б	2,0-11	1,0+09	4,0+05
Mn-52m		П	3,0-11	6,7+08	2,7+05
Mr. 52	3,70+06 лет	Б	2,9-11	6,9+08	2,8+05
Mn-53		П	5,2-11	3,8+08	1,5+05
M. 54	312 сут	Б	8,7-10	2,3+07	9,2+03
Mn-54		П	1,5-09	1,3+07	5,3+03
	2,58 час	Б	6,9-11	2,9+08	1,2+05
Mn-56		П	1,3-10	1,5+08	6,2+04

Fe-52	8,28 час	Б	4,1-10	4,9+07	2,0+04
re-32		П	6,3-10	3,2+07	1,3+04
Ea 55	2,70 лет	Б	7,7-10	2,6+07	1,0+04
Fe-55		П	3,7-10	5,4+07	2,2+04
E. 50	44,5 сут	Б	2,2-09	9,1+06	3,6+03
Fe-59		П	3,5-09	5,7+06	2,3+03
F- (0	1,00+05 лет	Б	2,8-07	7,1+04	2,9+01
Fe-60		П	1,3-07	1,5+05	6,2+01
Co 55	17,5 час	П	5,1-10	3,9+07	1,6+04
Co-55		М	5,5-10	3,6+07	1,5+04
Co 56	78,7 сут	П	4,6-09	4,3+06	1,7+03
Co-56		М	6,3-09	3,2+06	1,3+03
Co. 57	271 сут	П	5,2-10	3,8+07	1,5+04
Co-57		M	9,4-10	2,1+07	8,5+03

	70,8 сут	П	1,5-09	1,3+07	5,3+03
Co-58		M	2.0-09	1 0+07	4,0+03
		141	2,0 0)	1,0 107	1,0 + 03
Co-58m	9,15 час	П	1,3-11	1,5+09	6,2+05
C0-38III		M	2,0-09 1,0+07 1,3-11 1,5+09 1,6-11 1,3+09 9,6-09 2,1+06 2,9-08 6,9+05 1,1-12 1,8+10 1,3-12 1,5+10 4,8-11 4,2+08 5,1-11 3,9+08 2,1-11 9,5+08 2,2-11 9,1+08 5,1-10 3,9+07 8,6-10 2,3+07	1,3+09	5,0+05
Co. (0)	5,27 лет	П	9,6-09	2,1+06	8,3+02
Co-60		M	2,9-08	6,9+05	2,8+02
Co (Om	0,174 час	П	1,1-12	1,8+10	7,3+06
Co-60m		M	1,3-12	1,5+10	6,2+06
C- (1	1,65 час	П	4,8-11	4,2+08	1,7+05
Co-61		M	5,1-11	3,9+08	1,6+05
Co. (2m)	0,232 час	П	2,1-11	9,5+08	3,8+05
Co-62m		M	2,2-11	9,1+08	3,6+05
	6,10 сут	Б	5,1-10	3,9+07	1,6+04
Ni-56		П	8,6-10	2,3+07	9,3+03
		Γ	1,2-09	1,7+07	6,7+03

	1,50 сут	Б	2,8-10	7,1+07	2,9+04
	1,50 Cy1		2,0 10	7,1 107	2,5 101
Ni-57		П	5,1-10	3,9+07	1,6+04
		Γ	5,6-10	3,6+07	1,4+04
	7,50+04 лет	Б	1,8-10	1,1+08	4,4+04
Ni-59		П	1,3-10	1,5+08	6,2+04
		Γ	8,3-10	2,4+07	9,6+03
	96,0 лет	Б	4,4-10	4,5+07	1,8+04
Ni-63		П	4,4-10	4,5+07	1,8+04
		Γ	2,0-09	1,0+07	4,0+03
	2,52 час	Б	4,4-11	4,5+08	1,8+05
Ni-65		П	8,7-11	2,3+08	9,2+04
		Γ	3,6-10	5,6+07	2,2+04
	2,27 сут	Б	4,5-10	4,4+07	1,8+04
Ni-66		П	1,6-09	1,3+07	5,0+03
		Γ	1,6-09	1,3+07	5,0+03

	0,387 час	Б	2,4-11	8,3+08	3,3+05
Cu-60		П	3,5-11	5,7+08	2,3+05
		M	3,6-11	5,6+08	2,2+05
	3,41 час	Б	4,0-11	5,0+08	2,0+05
Cu-61		П	7,6-11	2,6+08	1,1+05
		M	8,0-11	2,5+08	1,0+05
	12,7 час	Б	3,8-11	5,3+08	2,1+05
Cu-64		П	1,1-10	1,8+08	7,3+04
Cu-61		M	1,2-10	1,7+08	6,7+04
	2,58 сут	Б	1,1-10	1,8+08	7,3+04
Cu-67		П	5,2-10	3,8+07	1,5+04
		M	5,8-10	3,4+07	1,4+04
Zn-62	9,26 час	М	4,7-10	4,3+07	1,7+04
Zn-63	0,635 час	М	3,8-11	5,3+08	2,1+05
Zn-65	244 сут	M	2,9-09	6,9+06	2,8+03

Zn-69	0,950 час	М	2,8-11	7,1+08	2,9+05
Zn-69m	13,8 час	M	2,6-10	7,7+07	3,1+04
Zn-71m	3,92 час	M	1,6-10	1,3+08	5,0+04
Zn-72	1,94 сут	M	1,2-09	1,7+07	6,7+03
Ga-65	0,253 час	Б	1,2-11	1,7+09	6,7+05
Ga-03		П	1,8-11	1,1+09	4,4+05
Ga-66	9,40 час	Б	2,7-10	7,4+07	3,0+04
Ga-00		П	2,6-10 7,7+07 1,6-10 1,3+08 1,2-09 1,7+07 1,2-11 1,7+09 1,8-11 1,1+09	1,7+04	
Ga-67	3,26 сут	Б	6,8-11	2,9+08	1,2+05
Ga-67		П	2,3-10	8,7+07	3,5+04
Go 69	1,13 час	Б	2,8-11	7,1+08	2,9+05
Ga-68		П	5,1-11	3,9+08	1,6+05
Ga-70	0,353 час	Б	9,3-12	2,2+09	8,6+05
Ua-70		П	1,6-11	1,3+09	5,0+05

G 72	14,1 час	Б	3,1-10	6,5+07	2,6+04
Ga-72		П	5,5-10	3,6+07	1,5+04
Ga-73	4,91 час	Б	5,8-11	3,4+08	1,4+05
Ga-73		П	1,5-10	1,3+08	5,3+04
Ge-66	2,27 час	Б	5,7-11	3,5+08	1,4+05
Ge-00		П	9,2-11	2,2+08	8,7+04
Co. 67	0,312 час	Б	1,6-11	1,3+09	5,0+05
Ge-67		П	2,6-11	7,7+08	3,1+05
Ge-68	288 сут	Б	5,4-10	3,7+07	1,5+04
Ge-08		П	1,3-08	1,5+06	6,2+02
Go 60	1,63 сут	Б	1,4-10	1,4+08	5,7+04
Ge-69		П	2,9-10	6,9+07	2,8+04
Go 71	11,8 сут	Б	5,0-12	4,0+09	1,6+06
Ge-71		П	1,0-11	2,0+09	8,0+05

G 75	1,38 час	Б	1,6-11	1,3+09	5,0+05
Ge-75		П	3,7-11	5,4+08	2,2+05
C 277	11,3 час	Б	1,5-10	1,3+08	5,3+04
Ge-77		П	3,6-10	5,6+07	2,2+04
Go 79	1,45 час	Б	4,8-11	4,2+08	1,7+05
Ge-78		П	9,7-11	2,1+08	8,2+04
As-69	0,253 час	П	2,2-11	9,1+08	3,6+05
As-70	0,876 час	П	7,2-11	2,8+08	1,1+05
As-71	2,70 сут	П	4,0-10	5,0+07	2,0+04
As-72	1,08 сут	П	9,2-10	2,2+07	8,7+03
As-73	80,3 сут	П	9,3-10	2,2+07	8,6+03
As-74	17,8 сут	П	2,1-09	9,5+06	3,8+03
As-76	1,10 сут	П	7,4-10	2,7+07	1,1+04
As-77	1,62 сут	П	3,8-10	5,3+07	2,1+04
As-78	1,51 час	П	9,2-11	2,2+08	8,7+04

S . 70	0,683 час	Б	4,5-11	4,4+08	1,8+05
Se-70		П	7,3-11	2,7+08	1,1+05
Se-73	7,15 час	Б	8,6-11	2,3+08	9,3+04
SE-73		П	1,6-10	1,3+08	5,0+04
Se-73m	0,650 час	Б	9,9-12	2,0+09	8,1+05
Se-/3III		П 1,8-11 1,1+09	4,4+05		
Se-75	120 сут	Б	1,0-09	2,0+07	8,0+03
Se-/3		П	1,4-09	1,4+07	5,7+03
So 70	6,50+04 лет	Б	1,2-09	1,7+07	6,7+03
Se-79		П	2,9-09	6,9+06	2,8+03
Co 91	0,308 час	Б	8,6-12	2,3+09	9,3+05
Se-81	П 7,3-11 2,7+08 7,15 час Б 8,6-11 2,3+08 П 1,6-10 1,3+08 П 1,6-10 1,3+08 П 1,8-11 1,1+09 120 сут Б 1,0-09 2,0+07 5 П 1,4-09 1,4+07 9 П 2,9-09 6,9+06 1 0,308 час Б 8,6-12 2,3+09 П 1,5-11 1,3+09 п 0,954 час Б 1,7-11 1,2+09	1,3+09	5,3+05		
Co 01	0,954 час	Б	1,7-11	1,2+09	4,7+05
Se-81m		П	4,7-11	4,3+08	1,7+05

Se-83	0,375 час	Б	1,9-11	1,1+09	4,2+05
36-83		П	3,3-11	6,1+08	2,4+05
Br-74	0,422 час	Б	2,8-11	7,1+08	2,9+05
DI-/4		П	4,1-11	4,9+08	2,0+05
Dr. 74m	0,691 час	Б	4,2-11	4,8+08	1,9+05
Br-74m		П 6,5-11 3,1+08 час Б 3,1-11 6,5+08	1,2+05		
Dr. 75	1,63 час	Б	3,1-11	6,5+08	2,6+05
Br-75		П	3,3-11 6,1+08 2,8-11 7,1+08 4,1-11 4,9+08 4,2-11 4,8+08 6,5-11 3,1+08	3,6+08	1,5+05
Dr. 76	16,2 час	Б	2,6-10	7,7+07	3,1+04
Br-76		П	4,2-10	4,8+07	1,9+04
Dr. 77	2,33 сут	Б	6,7-11	3,0+08	1,2+05
Br-77		с Б 4,2-11 4,8+08 П 6,5-11 3,1+08 В 3,1-11 6,5+08 П 5,5-11 3,6+08 В 2,6-10 7,7+07 П 4,2-10 4,8+07 П 6,7-11 3,0+08 П 8,7-11 2,3+08	9,2+04		
Dr 90	0,290 час	Б	6,3-12	3,2+09	1,3+06
Br-80		П	2,8-11 7 4,1-11 4 4,2-11 4 6,5-11 3 3,1-11 6 5,5-11 3 2,6-10 7 4,2-10 4 6,7-11 3 8,7-11 2	2,0+09	8,0+05

Br-80m	4,42 час	Б	3,5-11	5,7+08	2,3+05
DI-00III		П	7,6-11	2,6+08	1,1+05
D., 92	1,47 сут	Б	3,7-10	5,4+07	2,2+04
Br-82		П	6,4-10	3,1+07	1,3+04
Dr. 92	2,39 час	Б	1,7-11	1,2+09	4,7+05
Вг-83		П	4,8-11	4,2+08	1,7+05
Dr. 94	0,530 час	Б	2,3-11	8,7+08	3,5+05
Br-84		П	3,9-11	5,1+08	2,1+05
Rb-79	0,382 час	Б	1,7-11	1,2+09	4,7+05
Rb-81	4,58 час	Б	3,7-11	5,4+08	2,2+05
Rb-81m	0,533 час	Б	7,3-12	2,7+09	1,1+06
Rb-82m	6,20 час	Б	1,2-10	1,7+08	6,7+04
Rb-83	86,2 сут	Б	7,1-10	2,8+07	1,1+04
Rb-84	32,8 сут	Б	1,1-09	1,8+07	7,3+03
Rb-86	18,6 сут	Б	9,6-10	2,1+07	8,3+03

Rb-88	0,297 час	Б	1,7-11	1,2+09	4,7+05
Rb-89	0,253 час	Б	1,4-11	1,4+09	5,7+05
C., 90	1,67 час	Б	7,6-11	2,6+08	1,1+05
Sr-80		M	1,4-10	1,4+08	5,7+04
C., 01	0,425 час	Б	2,2-11	9,1+08	3,6+05
Sr-81		M	3,8-11	5,3+08	2,1+05
G., 92	25,0 сут	Б	2,2-09	9,1+06	3,6+03
Sr-82		M	1,0-08	2,0+06	8,0+02
G., 92	1,35 сут	Б	1,7-10	1,2+08	4,7+04
Sr-83		M	3,4-10	5,9+07	2,4+04
C., 05	64,8 сут	Б	3,9-10	5,1+07	2,1+04
Sr-85		М	7,7-10	2,6+07	1,0+04
Cr 05	1,16 час	Б	3,1-12	6,5+09	2,6+06
Sr-85m		M	4,5-12	4,4+09	1,8+06

G 07	2,80 час	Б	1,2-11	1,7+09	6,7+05
Sr-87m		M	2,2-11	9,1+08	3,6+05
Sr-89	50,5 сут	Б	1,0-09	2,0+07	8,0+03
31-09		M	7,5-09	2,7+06	1,1+03
Sr-90	29,1 лет	Б	2,4-08	8,3+05	3,3+02
31-90		M	1,5-07	1,3+05	5,3+01
Sr-91	9,50 час	Б	1,7-10	1,2+08	4,7+04
51-91		M	4,1-10	4,9+07	2,0+04
Sr. 02	2,71 час	Б	1,1-10	1,8+08	7,3+04
Sr-92		M	1,0-09 2,0+07 7,5-09 2,7+06 2,4-08 8,3+05 1,5-07 1,3+05 1,7-10 1,2+08 4,1-10 4,9+07	8,7+07	3,5+04
V 96	14,7 час	П	4,8-10	4,2+07	1,7+04
Y-86		M	4,9-10	4,1+07	1,6+04
Y-86m	0,800 час	П	2,9-11	6,9+08	2,8+05
1-00111		M	3,0-11	6,7+08	2,7+05

Y-87	3,35 сут	П	3,8-10	5,3+07	2,1+04
1-8/		M	4,0-10	5,0+07	2,0+04
Y-88	107 сут	П	3,9-09	5,1+06	2,1+03
1-00		M	4,1-09	4,9+06	2,0+03
Y-90	2,67 сут	П	1,4-09	1,4+07	5,7+03
1-90		M	1,5-09	1,3+07	5,3+03
V 00m	3,19 час	П	9,6-11	2,1+08	8,3+04
Y-90m		M	1,0-10	2,0+08	8,0+04
V 01	58,5 сут	П	6,7-09	3,0+06	1,2+03
Y-91		M	8,4-09	2,4+06	9,5+02
V 01	0,828 час	П	1,0-11	2,0+09	8,0+05
Y-91m		M	1,1-11	1,8+09	7,3+05
V 02	3,54 час	П	1,9-10	1,1+08	4,2+04
Y-92		М	2,0-10	1,0+08	4,0+04

Y-93	10,1 час	П	4,1-10	4,9+07	2,0+04
1-93		M	4,3-10	4,7+07	1,9+04
Y-94	0,318 час	П	2,8-11	7,1+08	2,9+05
		M	2,9-11	6,9+08	2,8+05
Y-95	0,178 час	П	1,6-11	1,3+09	5,0+05
		M	1,7-11	1,2+09	4,7+05
Zr-86	16,5 час	Б	3,0-10	6,7+07	2,7+04
		П	4,3-10	4,7+07	1,9+04
		M	4,5-10	4,4+07	1,8+04
Zr-88	83,4 сут	Б	3,5-09	5,7+06	2,3+03
		П	2,5-09	8,0+06	3,2+03
		M	3,3-09	6,1+06	2,4+03
Zr-89	3,27 сут	Б	3,1-10	6,5+07	2,6+04
		П	5,3-10	3,8+07	1,5+04
		M	5,5-10	3,6+07	1,5+04

Zr-93	1,53+06 лет	Б	2,5-08	8,0+05	3,2+02
		П	9,6-09	2,1+06	8,3+02
		M	3,1-09	6,5+06	2,6+03
Zr-95	64,0 сут	Б	2,5-09	8,0+06	3,2+03
		П	4,5-09	4,4+06	1,8+03
		M	5,5-09	3,6+06	1,5+03
Zr-97	16,9 час	Б	4,2-10	4,8+07	1,9+04
		П	9,4-10	2,1+07	8,5+03
		M	1,0-09	2,0+07	8,0+03
Nb-88	0,238 час	П	2,9-11	6,9+08	2,8+05
		M	3,0-11	6,7+08	2,7+05
Nb-89	2,03 час	П	1,2-10	1,7+08	6,7+04
		М	1,3-10	1,5+08	6,2+04
Nb-89	1,10 час	П	7,1-11	2,8+08	1,1+05
		M	7,4-11	2,7+08	1,1+05

Nb-90	14,6 час	П	6,6-10	3,0+07	1,2+04
		M	6,9-10	2,9+07	1,2+04
Nb-93m	13,6 лет	П	4,6-10	4,3+07	1,7+04
		M	1,6-09	1,3+07	5,0+03
Nb-94	2,03+04 лет	П	1,0-08	2,0+06	8,0+02
		M	4,5-08	4,4+05	1,8+02
Nb-95	35,1 сут	П	1,4-09	1,4+07	5,7+03
		M	1,6-09	1,3+07	5,0+03
Nb-95m	3,61 сут	П	7,6-10	2,6+07	1,1+04
		M	8,5-10	2,4+07	9,4+03
Nb-96	23,3 час	П	6,5-10	3,1+07	1,2+04
		M	6,8-10	2,9+07	1,2+04
Nb-97	1,20 час	П	4,4-11	4,5+08	1,8+05
		M	4,7-11	4,3+08	1,7+05

Nb-98	0,858 час	П	5,9-11	3,4+08	1,4+05
		M	6,1-11	3,3+08	1,3+05
Mo-90	5,67 час	Б	1,7-10	1,2+08	4,7+04
		M	3,7-10	5,4+07	2,2+04
Mo-93	3,50+03 лет	Б	1,0-09	2,0+07	8,0+03
		M	2,2-09	9,1+06	3,6+03
Mo-93m	6,85 час	Б	1,0-10	2,0+08	8,0+04
		M	1,8-10	1,1+08	4,4+04
Mo-99	2,75 сут	Б	2,3-10	8,7+07	3,5+04
		M	9,7-10	2,1+07	8,2+03
Mo-101	0,244 час	Б	1,5-11	1,3+09	5,3+05
		M	2,7-11	7,4+08	3,0+05
Тс-93	2,75 час	Б	3,4-11	5,9+08	2,4+05
		П	3,6-11	5,6+08	2,2+05

Tc-93m	0,725 час	Б	1,5-11	1,3+09	5,3+05
		П	1,7-11	1,2+09	4,7+05
Tc-94	4,88 час	Б	1,2-10	1,7+08	6,7+04
		П	1,3-10	1,5+08	6,2+04
Tc-94m	0,867 час	Б	4,3-11	4,7+08	1,9+05
		П	4,9-11	4,1+08	1,6+05
Tc-95	20,0 час	Б	1,0-10	2,0+08	8,0+04
		П	1,0-10	2,0+08	8,0+04
Tc-95m	61,0 сут	Б	3,1-10	6,5+07	2,6+04
		П	8,7-10	2,3+07	9,2+03
Тс-96	4,28 сут	Б	6,0-10	3,3+07	1,3+04
		П	7,1-10	2,8+07	1,1+04
Tc-96m	0,858 час	Б	6,5-12	3,1+09	1,2+06
		П	7,7-12	2,6+09	1,0+06

Тс-97	2,60+06 лет	Б	4,5-11	4,4+08	1,8+05
		П	2,1-10	9,5+07	3,8+04
Tc-97m	87,0 сут	Б	2,8-10	7,1+07	2,9+04
		П	3,1-09	6,5+06	2,6+03
Тс-98	4,20+06 лет	Б	1,0-09	2,0+07	8,0+03
		П	8,1-09	2,5+06	9,9+02
Тс-99	2,13+05 лет	Б	2,9-10	6,9+07	2,8+04
		П	3,9-09	5,1+06	2,1+03
Tc-99m	6,02 час	Б	1,2-11	1,7+09	6,7+05
		П	1,9-11	1,1+09	4,2+05
Tc-101	0,237 час	Б	8,7-12	2,3+09	9,2+05
		П	1,3-11	1,5+09	6,2+05
Tc-104	0,303 час	Б	2,4-11	8,3+08	3,3+05
		П	3,0-11	6,7+08	2,7+05

Ru-94	0,863 час	Б	2,7-11	7,4+08	3,0+05
		П	4,4-11	4,5+08	1,8+05
		М	4,6-11	4,3+08	1,7+05
		Γ	5,6-11	3,6+08	1,4+05
Ru-97	2,90 сут	Б	6,7-11	3,0+08	1,2+05
		П	1,1-10	1,8+08	7,3+04
		M	1,1-10	1,8+08	7,3+04
		Γ	1,2-10	1,7+08	6,7+04
Ru-103	39,3 сут	Б	4,9-10	4,1+07	1,6+04
		П	2,3-09	8,7+06	3,5+03
		M	2,8-09	7,1+06	2,9+03
		Γ	1,1-09	1,8+07	7,3+03

Ru-105	4,44 час	Б	7,1-11	2,8+08	1,1+05
		П	1,7-10	1,2+08	4,7+04
		M	1,8-10	1,1+08	4,4+04
		Γ	1,8-10	1,1+08	4,4+04
Ru-106	1,01 лет	Б	8,0-09	2,5+06	1,0+03
		П	2,6-08	7,7+05	3,1+02
		M	6,2-08	3,2+05	1,3+02
		Γ	1,8-08	1,1+06	4,4+02
Rh-99	16,0 сут	Б	3,3-10	6,1+07	2,4+04
		П	7,3-10	2,7+07	1,1+04
		M	8,3-10	2,4+07	9,6+03
Rh-99m	4,70 час	Б	3,0-11	6,7+08	2,7+05
		П	4,1-11	4,9+08	2,0+05
		М	4,3-11	4,7+08	1,9+05

Rh-100	20,8 час	Б	2,8-10	7,1+07	2,9+04
		П	3,6-10	5,6+07	2,2+04
		M	3,7-10	5,4+07	2,2+04
Rh-101	3,20 лет	Б	1,4-09	1,4+07	5,7+03
		П	2,2-09	9,1+06	3,6+03
		M	5,0-09	4,0+06	1,6+03
Rh-101m	4,34 сут	Б	1,0-10	2,0+08	8,0+04
		П	2,0-10	1,0+08	4,0+04
		M	2,1-10	9,5+07	3,8+04
Rh-102	2,90 лет	Б	7,3-09	2,7+06	1,1+03
		П	6,5-09	3,1+06	1,2+03
		M	1,6-08	1,3+06	5,0+02
Rh-102m	207 сут	Б	1,5-09	1,3+07	5,3+03
		П	3,8-09	5,3+06	2,1+03
		M	6,7-09	3,0+06	1,2+03

Rh-103m	0,935 час	Б	8,6-13	2,3+10	9,3+06
		П	2,3-12	8,7+09	3,5+06
		M	2,5-12	8,0+09	3,2+06
Rh-105	1,47 сут	Б	8,7-11	2,3+08	9,2+04
		П	3,1-10	6,5+07	2,6+04
		M	3,4-10	5,9+07	2,4+04
Rh-106m	2,20 час	Б	7,0-11	2,9+08	1,1+05
		П	1,1-10	1,8+08	7,3+04
		М	1,2-10	1,7+08	6,7+04
Rh-107	0,362 час	Б	9,6-12	2,1+09	8,3+05
		П	1,7-11	1,2+09	4,7+05
		M	1,7-11	1,2+09	4,7+05
Pd-100	3,63 сут	Б	4,9-10	4,1+07	1,6+04
		П	7,9-10	2,5+07	1,0+04
		М	8,3-10	2,4+07	9,6+03

Pd-101	8,27 час	Б	4,2-11	4,8+08	1,9+05
		П	6,2-11	3,2+08	1,3+05
		M	6,4-11	3,1+08	1,3+05
Pd-103	17,0 сут	Б	9,0-11	2,2+08	8,9+04
		П	3,5-10	5,7+07	2,3+04
		M	4,0-10	5,0+07	2,0+04
Pd-107	6,50+06 лет	Б	2,6-11	7,7+08	3,1+05
		П	8,0-11	2,5+08	1,0+05
		M	5,5-10	3,6+07	1,5+04
Pd-109	13,4 час	Б	1,2-10	1,7+08	6,7+04
		П	3,4-10	5,9+07	2,4+04
		M	3,6-10	5,6+07	2,2+04
Ag-102	0,215 час	Б	1,4-11	1,4+09	5,7+05
		П	1,8-11	1,1+09	4,4+05
		М	1,9-11	1,1+09	4,2+05

Ag-103	1,09 час	Б	1,6-11	1,3+09	5,0+05
		П	2,7-11	7,4+08	3,0+05
		M	2,8-11	7,1+08	2,9+05
Ag-104	1,15 час	Б	3,0-11	6,7+08	2,7+05
		П	3,9-11	5,1+08	2,1+05
		M	4,0-11	5,0+08	2,0+05
Ag-104m	0,558 час	Б	1,7-11	1,2+09	4,7+05
		П	2,6-11	7,7+08	3,1+05
		М	2,7-11	7,4+08	3,0+05
Ag-105	41,0 сут	Б	5,4-10	3,7+07	1,5+04
		П	6,9-10	2,9+07	1,2+04
		M	7,8-10	2,6+07	1,0+04
Ag-106	0,399 час	Б	9,8-12	2,0+09	8,2+05
		П	1,6-11	1,3+09	5,0+05
		М	1,6-11	1,3+09	5,0+05

Ag-106m	8,41 сут	Б	1,1-09	1,8+07	7,3+03
		П	1,1-09	1,8+07	7,3+03
		M	1,1-09	1,8+07	7,3+03
Ag-108m	1,27+02 лет	Б	6,1-09	3,3+06	1,3+03
		П	7,0-09	2,9+06	1,1+03
		M	3,5-08	5,7+05	2,3+02
Ag-110m	250 сут	Б	5,5-09	3,6+06	1,5+03
		П	7,2-09	2,8+06	1,1+03
		M	1,2-08	1,7+06	6,7+02
Ag-111	7,45 сут	Б	4,1-10	4,9+07	2,0+04
		П	1,5-09	1,3+07	5,3+03
		M	1,7-09	1,2+07	4,7+03
Ag-112	3,12 час	Б	8,2-11	2,4+08	9,8+04
		П	1,7-10	1,2+08	4,7+04
		М	1,8-10	1,1+08	4,4+04

Ag-115	0,333 час	Б	1,6-11	1,3+09	5,0+05
		П	2,8-11	7,1+08	2,9+05
		M	3,0-11	6,7+08	2,7+05
Cd-104	0,961 час	Б	2,7-11	7,4+08	3,0+05
		П	3,6-11	5,6+08	2,2+05
		M	3,7-11	5,4+08	2,2+05
Cd-107	6,49 час	Б	2,3-11	8,7+08	3,5+05
		П	8,1-11	2,5+08	9,9+04
		M	8,7-11	2,3+08	9,2+04
Cd-109	1,27 лет	Б	8,1-09	2,5+06	9,9+02
		П	6,2-09	3,2+06	1,3+03
		M	5,8-09	3,4+06	1,4+03
Cd-113	9,30+15 лет	Б	1,2-07	1,7+05	6,7+01
		П	5,3-08	3,8+05	1,5+02
		М	2,5-08	8,0+05	3,2+02

	1		Γ		
Cd-113m	13,6 лет	Б	1,1-07	1,8+05	7,3+01
		П	5,0-08	4,0+05	1,6+02
		M	3,0-08	6,7+05	2,7+02
Cd-115	2,23 сут	Б	3,7-10	5,4+07	2,2+04
		П	9,7-10	2,1+07	8,2+03
		M	1,1-09	1,8+07	7,3+03
Cd-115m	44,6 сут	Б	5,3-09	3,8+06	1,5+03
		П	5,9-09	3,4+06	1,4+03
		M	7,3-09	2,7+06	1,1+03
Cd-117	2,49 час	Б	7,3-11	2,7+08	1,1+05
		П	1,6-10	1,3+08	5,0+04
		M	1,7-10	1,2+08	4,7+04
Cd-117m	3,36 час	Б	1,0-10	2,0+08	8,0+04
		П	2,0-10	1,0+08	4,0+04
		M	2,1-10	9,5+07	3,8+04

ln-109	4,20 час	Б	3,2-11	6,3+08	2,5+05
		П	4,4-11	4,5+08	1,8+05
ln-110	4,90 час	Б	1,2-10	1,7+08	6,7+04
		П	1,4-10	1,4+08	5,7+04
ln-110	1,15 час	Б	3,1-11	6,5+08	2,6+05
		П	5,0-11	4,0+08	1,6+05
ln-111	2,83 сут	Б	1,3-10	1,5+08	6,2+04
		П	2,3-10	8,7+07	3,5+04
ln-112	0,240 час	Б	5,0-12	4,0+09	1,6+06
		П	7,8-12	2,6+09	1,0+06
ln-113m	1,66 час	Б	1,0-11	2,0+09	8,0+05
		П	2,0-11	1,0+09	4,0+05
ln-114m	49,5 сут	Б	9,3-09	2,2+06	8,6+02
		П	5,9-09	3,4+06	1,4+03

ln-115m	4,49 час	Б	2,5-11	8,0+08	3,2+05
		П	6,0-11	3,3+08	1,3+05
ln-116m	0,902 час	Б	3,0-11	6,7+08	2,7+05
		П	4,8-11	4,2+08	1,7+05
ln-117	0,730 час	Б	1,6-11	1,3+09	5,0+05
		П	3,0-11	6,7+08	2,7+05
ln-117m	1,94 час	Б	3,1-11	6,5+08	2,6+05
		П	7,3-11	2,7+08	1,1+05
ln-119m	0,300 час	Б	1,1-11	1,8+09	7,3+05
		П	1,8-11	1,1+09	4,4+05
Sn-110	4,00 час	Б	1,1-10	1,8+08	7,3+04
		П	1,6-10	1,3+08	5,0+04
Sn-111	0,588 час	Б	8,3-12	2,4+09	9,6+05
		П	1,4-11	1,4+09	5,7+05

Sn-113	115 сут	Б	5,4-10	3,7+07	1,5+04
		П	2,5-09	8,0+06	3,2+03
Sn-117m	13,6 сут	Б	2,9-10	6,9+07	2,8+04
		П	2,3-09	8,7+06	3,5+03
Sn-119m	293 сут	Б	2,9-10	6,9+07	2,8+04
		П	2,0-09	1,0+07	4,0+03
Sn-121	1,13 сут	Б	6,4-11	3,1+08	1,3+05
		П	2,2-10	9,1+07	3,6+04
Sn-121m	55,0 лет	Б	8,0-10	2,5+07	1,0+04
		П	4,2-09	4,8+06	1,9+03
Sn-123	129 сут	Б	1,2-09	1,7+07	6,7+03
		П	7,7-09	2,6+06	1,0+03
Sn-123m	0,668 час	Б	1,4-11	1,4+09	5,7+05
		П	2,8-11	7,1+08	2,9+05

Sn-125	9,64 сут	Б	9,2-10	2,2+07	8,7+03
		П	3,0-09	6,7+06	2,7+03
Sn-126	1,00+05 лет	Б	1,1-08	1,8+06	7,3+02
		П	2,7-08	7,4+05	3,0+02
Sn-127	2,10 час	Б	6,9-11	2,9+08	1,2+05
		П	1,3-10	1,5+08	6,2+04
Sn-128	0,985 час	Б	5,4-11	3,7+08	1,5+05
		П	9,6-11	2,1+08	8,3+04
Sb-115	0,530 час	Б	9,2-12	2,2+09	8,7+05
		П	1,4-11	1,4+09	5,7+05
Sb-116	0,263 час	Б	9,9-12	2,0+09	8,1+05
		П	1,4-11	1,4+09	5,7+05
Sb-116m	1,00 час	Б	3,5-11	5,7+08	2,3+05
		П	5,0-11	4,0+08	1,6+05

Sb-117	2,80 час	Б	9,3-12	2,2+09	8,6+05
		П	1,7-11	1,2+09	4,7+05
Sb-118m	5,00 час	Б	1,0-10	2,0+08	8,0+04
		П	1,3-10	1,5+08	6,2+04
Sb-119	1,59 сут	Б	2,5-11	8,0+08	3,2+05
		П	3,7-11	5,4+08	2,2+05
Sb-120	5,76 сут	Б	5,9-10	3,4+07	1,4+04
		П	1,0-09	2,0+07	8,0+03
Sb-120	0,265 час	Б	4,9-12	4,1+09	1,6+06
		П	7,4-12	2,7+09	1,1+06
Sb-122	2,70 сут	Б	3,9-10	5,1+07	2,1+04
		П	1,0-09	2,0+07	8,0+03
Sb-124	60,2 сут	Б	1,3-09	1,5+07	6,2+03
		П	6,1-09	3,3+06	1,3+03

Sb-124m	0,337 час	Б	3,0-12	6,7+09	2,7+06
		П	5,5-12	3,6+09	1,5+06
Sb-125	2,77 лет	Б	1,4-09	1,4+07	5,7+03
		П	4,5-09	4,4+06	1,8+03
Sb-126	12,4 сут	Б	1,1-09	1,8+07	7,3+03
		П	2,7-09	7,4+06	3,0+03
Sb-126m	0,317 час	Б	1,3-11	1,5+09	6,2+05
		П	2,0-11	1,0+09	4,0+05
Sb-127	3,85 сут	Б	4,6-10	4,3+07	1,7+04
		П	1,6-09	1,3+07	5,0+03
Sb-128	9,01 час	Б	2,5-10	8,0+07	3,2+04
		П	4,2-10	4,8+07	1,9+04
Sb-128	0,173 час	Б	1,1-11	1,8+09	7,3+05
		П	1,5-11	1,3+09	5,3+05

Sb-129	4,32 час	Б	1,1-10	1,8+08	7,3+04
		П	2,4-10	8,3+07	3,3+04
Sb-130	0,667 час	Б	3,5-11	5,7+08	2,3+05
		П	5,4-11	3,7+08	1,5+05
Sb-131	0,383 час	Б	3,7-11	5,4+08	2,2+05
		П	5,2-11	3,8+08	1,5+05
Te-116	2,49 час	Б	6,3-11	3,2+08	1,3+05
		П	1,1-10	1,8+08	7,3+04
		Γ	8,7-11	2,3+08	9,2+04
Te-121	17,0 сут	Б	2,5-10	8,0+07	3,2+04
		П	3,9-10	5,1+07	2,1+04
		Γ	5,1-10	3,9+07	1,6+04
Te-121m	154 сут	Б	1,8-09	1,1+07	4,4+03
		П	4,2-09	4,8+06	1,9+03
		Γ	5,5-09	3,6+06	1,5+03

Te-123	1,00+13 лет	Б	4,0-09	5,0+06	2,0+03
		П	2,6-09	7,7+06	3,1+03
		Γ	1,2-08	1,7+06	6,7+02
Te-123m	120 сут	Б	9,7-10	2,1+07	8,2+03
		П	3,9-09	5,1+06	2,1+03
		Γ	2,9-09	6,9+06	2,8+03
Te-125m	58,0 сут	Б	5,1-10	3,9+07	1,6+04
		П	3,3-09	6,1+06	2,4+03
		Γ	1,5-09	1,3+07	5,3+03
Te-127	9,35 час	Б	4,2-11	4,8+08	1,9+05
		П	1,2-10	1,7+08	6,7+04
		Γ	7,7-11	2,6+08	1,0+05
Te-127m	109 сут	Б	1,6-09	1,3+07	5,0+03
		П	7,2-09	2,8+06	1,1+03
		Γ	4,6-09	4,3+06	1,7+03

Te-129	1,16 час	Б	1,7-11	1,2+09	4,7+05
		П	3,8-11	5,3+08	2,1+05
		Γ	3,7-11	5,4+08	2,2+05
Te-129m	33,6 сут	Б	1,3-09	1,5+07	6,2+03
		П	6,3-09	3,2+06	1,3+03
		Γ	3,7-09	5,4+06	2,2+03
Te-131	0,417 час	Б	2,3-11	8,7+08	3,5+05
		П	3,8-11	5,3+08	2,1+05
		Γ	6,8-11	2,9+08	1,2+05
Te-131m	1,25 сут	Б	8,7-10	2,3+07	9,2+03
		П	1,1-09	1,8+07	7,3+03
		Γ	2,4-09	8,3+06	3,3+03
Te-132	3,26 сут	Б	1,8-09	1,1+07	4,4+03
		П	2,2-09	9,1+06	3,6+03
		Γ	5,1-09	3,9+06	1,6+03

Te-133	0,207 час	Б	2,0-11	1,0+09	4,0+05
		П	2,7-11	7,4+08	3,0+05
		Γ	5,6-11	3,6+08	1,4+05
Te-133m	0,923 час	Б	8,4-11	2,4+08	9,5+04
		П	1,2-10	1,7+08	6,7+04
		Γ	2,2-10	9,1+07	3,6+04
Te-134	0,696 час	Б	5,0-11	4,0+08	1,6+05
		П	7,1-11	2,8+08	1,1+05
		Γ	8,4-11	2,4+08	9,5+04
I-120	1,35 час	Б	1,0-10	2,0+08	8,0+04
		Г1	3,0-10	6,7+07	2,7+04
		Γ2	2,0-10	1,0+08	4,0+04
I-120m	0,883 час	Б	8,7-11	2,3+08	9,2+04
		Г1	1,8-10	1,1+08	4,4+04
		Γ2	1,0-10	2,0+08	8,0+04

I-121	2,12 час	Б	2,8-11	7,1+08	2,9+05
					·
		Γ1	8,6-11	2,3+08	9,3+04
		Γ2	5,6-11	3,6+08	1,4+05
I-123	13,2 час	Б	7,6-11	2,6+08	1,1+05
		Γ1	2,1-10	9,5+07	3,8+04
		Γ2	1,5-10	1,3+08	5,3+04
I-124	4,18 сут	Б	4,5-09	4,4+06	1,8+03
		Γ1	1,2-08	1,7+06	6,7+02
		Г2	9,2-09	2,2+06	8,7+02
I-125	60,1 сут	Б	5,3-09	3,8+06	1,5+03
		Г1	1,4-08	1,4+06	5,7+02
		Γ2	1,1-08	1,8+06	7,3+02
I-126	13,0 сут	Б	1,0-08	2,0+06	8,0+02
		Γ1	2,6-08	7,7+05	3,1+02
		Γ2	2,0-08	1,0+06	4,0+02

I-128	0,416 час	Б	1,4-11	1,4+09	5,7+05
		Γ1	6,5-11	3,1+08	1,2+05
		Г2	1,3-11	1,5+09	6,2+05
I-129	1,57+07 лет	Б	3,7-08	5,4+05	2,2+02
		Γ1	9,6-08	2,1+05	8,3+01
		Г2	7,4-08	2,7+05	1,1+02
I-130	12,4 час	Б	6,9-10	2,9+07	1,2+04
		Γ1	1,9-09	1,1+07	4,2+03
		Г2	1,4-09	1,4+07	5,7+03
I-131	8,04 сут	Б	7,6-09	2,6+06	1,1+03
		Γ1	2,0-08	1,0+06	4,0+02
		Г2	1,5-08	1,3+06	5,3+02
I-132	2,30 час	Б	9,6-11	2,1+08	8,3+04
		Γ1	3,1-10	6,5+07	2,6+04
		Γ2	1,9-10	1,1+08	4,2+04

I-132m	1,39 час	Б	8,1-11	2,5+08	9,9+04
		Γ1	2,7-10	7,4+07	3,0+04
		Γ2	1,6-10	1,3+08	5,0+04
I-133	20,8 час	Б	1,5-09	1,3+07	5,3+03
		Γ1	4,0-09	5,0+06	2,0+03
		Г2	3,1-09	6,5+06	2,6+03
I-134	0,876 час	Б	4,8-11	4,2+08	1,7+05
		Γ1	1,5-10	1,3+08	5,3+04
		Г2	5,0-11	4,0+08	1,6+05
I-135	6,61 час	Б	3,3-10	6,1+07	2,4+04
		Γ1	9,2-10	2,2+07	8,7+03
		Γ2	6,8-10	2,9+07	1,2+04
Cs-125	0,750 час	Б	1,3-11	1,5+09	6,2+05
Cs-127	6,25 час	Б	2,2-11	9,1+08	3,6+05
Cs-129	1,34 сут	Б	4,5-11	4,4+08	1,8+05

Cs-130	0,498 час	Б	8,4-12	2,4+09	9,5+05
Cs-131	9,69 сут	Б	2,8-11	7,1+08	2,9+05
Cs-132	6,48 сут	Б	2,4-10	8,3+07	3,3+04
Cs-134	2,06 лет	Б	6,8-09	2,9+06	1,2+03
Cs-134m	2,90 час	Б	1,5-11	1,3+09	5,3+05
Cs-135	2,30+06 лет	Б	7,1-10	2,8+07	1,1+04
Cs-135m	0,883 час	Б	1,3-11	1,5+09	6,2+05
Cs-136	13,1 сут	Б	1,3-09	1,5+07	6,2+03
Cs-137	30,0 лет	Б	4,8-09	4,2+06	1,7+03
Cs-138	0,536 час	Б	2,6-11	7,7+08	3,1+05
Ba-126	1,61 час	Б	7,8-11	2,6+08	1,0+05
Ba-128	2,43 сут	Б	8,0-10	2,5+07	1,0+04
Ba-131	11,8 сут	Б	2,3-10	8,7+07	3,5+04
Ba-131m	0,243 час	Б	4,1-12	4,9+09	2,0+06
Ba-133	10,7 лет	Б	1,5-09	1,3+07	5,3+03

Ba-133m	1,62 сут	Б	1,9-10	1,1+08	4,2+04
Ba-135m	1,20 сут	Б	1,5-10	1,3+08	5,3+04
Ba-139	1,38 час	Б	3,5-11	5,7+08	2,3+05
Ba-140	12,7 сут	Б	1,0-09	2,0+07	8,0+03
Ba-141	0,305 час	Б	2,2-11	9,1+08	3,6+05
Ba-142	0,177 час	Б	1,6-11	1,3+09	5,0+05
La-131	0,983 час	Б	1,4-11	1,4+09	5,7+05
		П	2,3-11	8,7+08	3,5+05
La-132	4,80 час	Б	1,1-10	1,8+08	7,3+04
		П	1,7-10	1,2+08	4,7+04
La-135	19,5 час	Б	1,1-11	1,8+09	7,3+05
		П	1,5-11	1,3+09	5,3+05
La-137	6,00+04 лет	Б	8,6-09	2,3+06	9,3+02
		П	3,4-09	5,9+06	2,4+03

La-138	1,35+11 лет	Б	1,5-07	1,3+05	5,3+01
		П	6,1-08	3,3+05	1,3+02
La-140	1,68 сут	Б	6,0-10	3,3+07	1,3+04
		П	1,1-09	1,8+07	7,3+03
La-141	3,93 час	Б	6,7-11	3,0+08	1,2+05
		П	1,5-10	1,3+08	5,3+04
La-142	1,54 час	Б	5,6-11	3,6+08	1,4+05
		П	9,3-11	2,2+08	8,6+04
La-143	0,237 час	Б	1,2-11	1,7+09	6,7+05
		П	2,2-11	9,1+08	3,6+05
Ce-134	3,00 сут	П	1,3-09	1,5+07	6,2+03
		М	1,3-09	1,5+07	6,2+03
Ce-135	17,6 час	П	4,9-10	4,1+07	1,6+04
		М	5,1-10	3,9+07	1,6+04

	I				
Ce-137	9,00 час	П	1,0-11	2,0+09	8,0+05
		M	1,1-11	1,8+09	7,3+05
Ce-137m	1,43 сут	П	4,0-10	5,0+07	2,0+04
		M	4,3-10	4,7+07	1,9+04
Ce-139	138 сут	П	1,6-09	1,3+07	5,0+03
		M	1,8-09	1,1+07	4,4+03
Ce-141	32,5 сут	П	3,1-09	6,5+06	2,6+03
		M	3,6-09	5,6+06	2,2+03
Ce-143	1,38 сут	П	7,4-10	2,7+07	1,1+04
		M	8,1-10	2,5+07	9,9+03
Ce-144	284 сут	П	3,4-08	5,9+05	2,4+02
		М	4,9-08	4,1+05	1,6+02
Pr-136	0,218 час	П	1,4-11	1,4+09	5,7+05
		M	1,5-11	1,3+09	5,3+05

Pr-137	1,28 час	П	2,1-11	9,5+08	3,8+05
		M	2,2-11	9,1+08	3,6+05
Pr-138m	2,10 час	П	7,6-11	2,6+08	1,1+05
		M	7,9-11	2,5+08	1,0+05
Рг-139	4,51 час	П	1,9-11	1,1+09	4,2+05
		M	2,0-11	1,0+09	4,0+05
Pr-142	19,1 час	П	5,3-10	3,8+07	1,5+04
		M	5,6-10	3,6+07	1,4+04
Pr-142m	0,243 час	П	6,7-12	3,0+09	1,2+06
		M	7,1-12	2,8+09	1,1+06
Рг-143	13,6 сут	П	2,1-09	9,5+06	3,8+03
		M	2,3-09	8,7+06	3,5+03
Рг-144	0,288 час	П	1,8-11	1,1+09	4,4+05
		M	1,9-11	1,1+09	4,2+05

Pr-145	5,98 час	П	1,6-10	1,3+08	5,0+04
		М	1,7-10	1,2+08	4,7+04
Pr-147	0,227 час	П	1,8-11	1,1+09	4,4+05
		M	1,9-11	1,1+09	4,2+05
Nd-136	0,844 час	П	5,3-11	3,8+08	1,5+05
		M	5,6-11	3,6+08	1,4+05
Nd-138	5,04 час	П	2,4-10	8,3+07	3,3+04
		M	2,6-10	7,7+07	3,1+04
Nd-139	0,495 час	П	1,0-11	2,0+09	8,0+05
		M	1,1-11	1,8+09	7,3+05
Nd-139m	5,50 час	П	1,5-10	1,3+08	5,3+04
		М	1,6-10	1,3+08	5,0+04
Nd-141	2,49 час	П	5,1-12	3,9+09	1,6+06
		М	5,3-12	3,8+09	1,5+06

Nd-147	11,0 сут	П	2,0-09	1,0+07	4,0+03
		М	2,3-09	8,7+06	3,5+03
Nd-149	1,73 час	П	8,5-11	2,4+08	9,4+04
		M	9,0-11	2,2+08	8,9+04
Nd-151	0,207 час	П	1,7-11	1,2+09	4,7+05
		M	1,8-11	1,1+09	4,4+05
Pm-141	0,348 час	П	1,5-11	1,3+09	5,3+05
		M	1,6-11	1,3+09	5,0+05
Pm-143	265 сут	П	1,4-09	1,4+07	5,7+03
		M	1,3-09	1,5+07	6,2+03
Pm-144	363 сут	П	7,8-09	2,6+06	1,0+03
		М	7,0-09	2,9+06	1,1+03
Pm-145	17,7 лет	П	3,4-09	5,9+06	2,4+03
		М	2,1-09	9,5+06	3,8+03

Pm-146	5,53 лет	П	1,9-08	1,1+06	4,2+02
		M	1,6-08	1,3+06	5,0+02
Pm-147	2,62 лет	П	4,7-09	4,3+06	1,7+03
		M	4,6-09	4,3+06	1,7+03
Pm-148	5,37 сут	П	2,0-09	1,0+07	4,0+03
		M	2,1-09	9,5+06	3,8+03
Pm-148m	41,3 сут	П	4,9-09	4,1+06	1,6+03
		M	5,4-09	3,7+06	1,5+03
Pm-149	2,21 сут	П	6,6-10	3,0+07	1,2+04
		M	7,2-10	2,8+07	1,1+04
Pm-150	2,68 час	П	1,3-10	1,5+08	6,2+04
		M	1,4-10	1,4+08	5,7+04
Pm-151	1,18 сут	П	4,2-10	4,8+07	1,9+04
		М	4,5-10	4,4+07	1,8+04
Sm-141	0,170 час	П	1,6-11	1,3+09	5,0+05

Sm-141m	0,377 час	П	3,4-11	5,9+08	2,4+05
Sm-142	1,21 час	П	7,4-11	2,7+08	1,1+05
Sm-145	340 сут	П	1,5-09	1,3+07	5,3+03
Sm-146	1,03+08 лет	П	9,9-06	2,0+03	8,1-01
Sm-151	90,0 лет	П	3,7-09	5,4+06	2,2+03
Sm-153	1,95 сут	П	6,1-10	3,3+07	1,3+04
Sm-155	0,368 час	П	1,7-11	1,2+09	4,7+05
Sm-156	9,40 час	П	2,1-10	9,5+07	3,8+04
Eu-145	5,94 сут	П	5,6-10	3,6+07	1,4+04
Eu-146	4,61 сут	П	8,2-10	2,4+07	9,8+03
Eu-147	24,0 сут	П	1,0-09	2,0+07	8,0+03
Eu-148	54,5 сут	П	2,7-09	7,4+06	3,0+03
Eu-149	93,1 сут	П	2,7-10	7,4+07	3,0+04
Eu-150	34,2 лет	П	5,0-08	4,0+05	1,6+02
Eu-150	12,6 час	П	1,9-10	1,1+08	4,2+04

	1				
Eu-152	13,3 лет	П	3,9-08	5,1+05	2,1+02
Eu-152m	9,32 час	П	2,2-10	9,1+07	3,6+04
Eu-154	8,80 лет	П	5,0-08	4,0+05	1,6+02
Eu-155	4,96 лет	П	6,5-09	3,1+06	1,2+03
Eu-156	15,2 сут	П	3,3-09	6,1+06	2,4+03
Eu-157	15,1 час	П	3,2-10	6,3+07	2,5+04
Eu-158	0,765 час	П	4,8-11	4,2+08	1,7+05
Gd-145	0,382 час	Б	1,5-11	1,3+09	5,3+05
		П	2,1-11	9,5+08	3,8+05
Gd-146	48,3 сут	Б	4,4-09	4,5+06	1,8+03
		П	6,0-09	3,3+06	1,3+03
Gd-147	1,59 сут	Б	2,7-10	7,4+07	3,0+04
		П	4,1-10	4,9+07	2,0+04
Gd-148	93,0 лет	Б	2,5-05	8,0+02	3,2-01
		П	1,1-05	1,8+03	7,3-01

	I				
Gd-149	9,40 сут	Б	2,6-10	7,7+07	3,1+04
		П	7,0-10	2,9+07	1,1+04
Gd-151	120 сут	Б	7,8-10	2,6+07	1,0+04
		П	8,1-10	2,5+07	9,9+03
Gd-152	1,08+14 лет	Б	1,9-05	1,1+03	4,2-01
		П	7,4-06	2,7+03	1,1
Gd-153	242 сут	Б	2,1-09	9,5+06	3,8+03
		П	1,9-09	1,1+07	4,2+03
Gd-159	18,6 час	Б	1,1-10	1,8+08	7,3+04
		П	2,7-10	7,4+07	3,0+04
Tb-147	1,65 час	П	7,9-11	2,5+08	1,0+05
Tb-149	4,15 час	П	4,3-09	4,7+06	1,9+03
Tb-150	3,27 час	П	1,1-10	1,8+08	7,3+04
Tb-151	17,6 час	П	2,3-10	8,7+07	3,5+04
Tb-153	2,34 сут	П	2,0-10	1,0+08	4,0+04

Tb-154	21,4 час	П	3,8-10	5,3+07	2,1+04
Tb-155	5,32 сут	П	2,1-10	9,5+07	3,8+04
Tb-156	5,34 сут	П	1,2-09	1,7+07	6,7+03
Tb-156m	1,02 сут	П	2,0-10	1,0+08	4,0+04
Tb-156m	5,00 час	П	9,2-11	2,2+08	8,7+04
Tb-157	1,50+02 лет	П	1,1-09	1,8+07	7,3+03
Tb-158	1,50+02 лет	П	4,3-08	4,7+05	1,9+02
Tb-160	72,3 сут	П	6,6-09	3,0+06	1,2+03
Tb-161	6,91 сут	П	1,2-09	1,7+07	6,7+03
Dy-155	10,0 час	П	8,0-11	2,5+08	1,0+05
Dy-157	8,10 час	П	3,2-11	6,3+08	2,5+05
Dy-159	144 сут	П	3,5-10	5,7+07	2,3+04
Dy-165	2,33 час	П	6,1-11	3,3+08	1,3+05
Dy-166	3,40 сут	П	1,8-09	1,1+07	4,4+03
Но-155	0,800 час	П	2,0-11	1,0+09	4,0+05

Ho-157	0,210 час	П	4,5-12	4,4+09	1,8+06
Но-159	0,550 час	П	6,3-12	3,2+09	1,3+06
Ho-161	2,50 час	П	6,3-12	3,2+09	1,3+06
Ho-162	0,250 час	П	2,9-12	6,9+09	2,8+06
Ho-162m	1,13 час	П	2,2-11	9,1+08	3,6+05
Ho-164	0,483 час	П	8,6-12	2,3+09	9,3+05
Ho-164m	0,625 час	П	1,2-11	1,7+09	6,7+05
Ho-166	1,12 сут	П	6,6-10	3,0+07	1,2+04
Ho-166m	1,20+03 лет	П	1,1-07	1,8+05	7,3+01
Но-167	3,10 час	П	7,1-11	2,8+08	1,1+05
Er-161	3,24 час	П	5,1-11	3,9+08	1,6+05
Ег-165	10,4 час	П	8,3-12	2,4+09	9,6+05
Er-169	9,30 сут	П	9,8-10	2,0+07	8,2+03
Er-171	7,52 час	П	2,2-10	9,1+07	3,6+04
Er-172	2,05 сут	П	1,1-09	1,8+07	7,3+03

Tm-162	0,362 час	П	1,6-11	1,3+09	5,0+05
Tm-166	7,70 час	П	1,8-10	1,1+08	4,4+04
Tm-167	9,24 сут	П	1,1-09	1,8+07	7,3+03
Tm-170	129 сут	П	6,6-09	3,0+06	1,2+03
Tm-171	1,92 лет	П	1,3-09	1,5+07	6,2+03
Tm-172	2,65 сут	П	1,1-09	1,8+07	7,3+03
Tm-173	8,24 час	П	1,8-10	1,1+08	4,4+04
Tm-175	0,253 час	П	1,9-11	1,1+09	4,2+05
Yb-162	0,315 час	П	1,4-11	1,4+09	5,7+05
		M	1,4-11	1,4+09	5,7+05
Yb-166	2,36 сут	П	7,2-10	2,8+07	1,1+04
		M	7,6-10	2,6+07	1,1+04
Yb-167	0,292 час	П	6,5-12	3,1+09	1,2+06
		М	6,9-12	2,9+09	1,2+06

Yb-169	32,0 сут	П	2,4-09	8,3+06	3,3+03
		M	2,8-09	7,1+06	2,9+03
Yb-175	4,19 сут	П	6,3-10	3,2+07	1,3+04
		M	7,0-10	2,9+07	1,1+04
Yb-177	1,90 час	П	6,4-11	3,1+08	1,3+05
		M	6,9-11	2,9+08	1,2+05
Yb-178	1,23 час	П	7,1-11	2,8+08	1,1+05
		M	7,6-11	2,6+08	1,1+05
Lu-169	1,42 сут	П	3,5-10	5,7+07	2,3+04
		M	3,8-10	5,3+07	2,1+04
Lu-170	2,00 сут	П	6,4-10	3,1+07	1,3+04
		M	6,7-10	3,0+07	1,2+04
Lu-171	8,22 сут	П	7,6-10	2,6+07	1,1+04
		М	8,3-10	2,4+07	9,6+03

Lu-172	6,70 сут	П	1,4-09	1,4+07	5,7+03
		M	1,5-09	1,3+07	5,3+03
Lu-173	1,37 лет	П	2,0-09	1,0+07	4,0+03
		M	2,3-09	8,7+06	3,5+03
Lu-174	3,31 лет	П	4,0-09	5,0+06	2,0+03
		М	3,9-09	5,1+06	2,1+03
Lu-174m	142 сут	П	3,4-09	5,9+06	2,4+03
		М	3,8-09	5,3+06	2,1+03
Lu-176	3,60+10 лет	П	6,6-08	3,0+05	1,2+02
		M	5,2-08	3,8+05	1,5+02
Lu-176m	3,68 час	П	1,1-10	1,8+08	7,3+04
		М	1,2-10	1,7+08	6,7+04
Lu-177	6,71 сут	П	1,0-09	2,0+07	8,0+03
		М	1,1-09	1,8+07	7,3+03

Lu-177m	161 сут	П	1,2-08	1,7+06	6,7+02
		M	1,5-08	1,3+06	5,3+02
Lu-178	0,473 час	П	2,5-11	8,0+08	3,2+05
		M	2,6-11	7,7+08	3,1+05
Lu-178m	0,378 час	П	3,3-11	6,1+08	2,4+05
		M	3,5-11	5,7+08	2,3+05
Lu-179	4,59 час	П	1,1-10	1,8+08	7,3+04
		M	1,2-10	1,7+08	6,7+04
Hf-170	16,0 час	Б	1,7-10	1,2+08	4,7+04
		П	3,2-10	6,3+07	2,5+04
Hf-172	1,87 лет	Б	3,2-08	6,3+05	2,5+02
		П	1,9-08	1,1+06	4,2+02
Hf-173	24,0 час	Б	7,9-11	2,5+08	1,0+05
		П	1,6-10	1,3+08	5,0+04

Hf-175	70,0 сут	Б	7,2-10	2,8+07	1,1+04
		П	1,1-09	1,8+07	7,3+03
Hf-177m	0,856 час	Б	4,7-11	4,3+08	1,7+05
		П	9,2-11	2,2+08	8,7+04
Hf-178m	31,0 лет	Б	2,6-07	7,7+04	3,1+01
		П	1,1-07	1,8+05	7,3+01
Hf-179m	25,1 сут	Б	1,1-09	1,8+07	7,3+03
		П	3,6-09	5,6+06	2,2+03
Hf-180m	5,50 час	Б	6,4-11	3,1+08	1,3+05
		П	1,4-10	1,4+08	5,7+04
Hf-181	42,4 сут	Б	1,4-09	1,4+07	5,7+03
		П	4,7-09	4,3+06	1,7+03
Hf-182	9,00+06 лет	Б	3,0-07	6,7+04	2,7+01
		П	1,2-07	1,7+05	6,7+01

Hf-182m	1,02 час	Б	2,3-11	8,7+08	3,5+05
		П	4,7-11	4,3+08	1,7+05
Hf-183	1,07 час	Б	2,6-11	7,7+08	3,1+05
		П	5,8-11	3,4+08	1,4+05
Hf-184	4,12 час	Б	1,3-10	1,5+08	6,2+04
		П	3,3-10	6,1+07	2,4+04
Ta-172	0,613 час	П	3,4-11	5,9+08	2,4+05
		M	3,6-11	5,6+08	2,2+05
Ta-173	3,65 час	П	1,1-10	1,8+08	7,3+04
		M	1,2-10	1,7+08	6,7+04
Ta-174	1,20 час	П	4,2-11	4,8+08	1,9+05
		М	4,4-11	4,5+08	1,8+05
Ta-175	10,5 час	П	1,3-10	1,5+08	6,2+04
		M	1,4-10	1,4+08	5,7+04

Ta-176	8,08 час	П	2,0-10	1,0+08	4,0+04
		М	2,1-10	9,5+07	3,8+04
Ta-177	2,36 сут	П	9,3-11	2,2+08	8,6+04
		M	1,0-10	2,0+08	8,0+04
Ta-178	2,20 час	П	6,6-11	3,0+08	1,2+05
		M	6,9-11	2,9+08	1,2+05
Ta-179	1,82 лет	П	2,0-10	1,0+08	4,0+04
		M	5,2-10	3,8+07	1,5+04
Ta-180	1,00+13 лет	П	6,0-09	3,3+06	1,3+03
		M	2,4-08	8,3+05	3,3+02
Ta-180m	8,10 час	П	4,4-11	4,5+08	1,8+05
		M	4,7-11	4,3+08	1,7+05
Ta-182	115 сут	П	7,2-09	2,8+06	1,1+03
		М	9,7-09	2,1+06	8,2+02

	1			Γ	
Ta-182m	0,264 час	П	2,1-11	9,5+08	3,8+05
		M	2,2-11	9,1+08	3,6+05
Ta-183	5,10 сут	П	1,8-09	1,1+07	4,4+03
		M	2,0-09	1,0+07	4,0+03
Ta-184	8,70 час	П	4,1-10	4,9+07	2,0+04
		M	4,4-10	4,5+07	1,8+04
Ta-185	0,816 час	П	4,6-11	4,3+08	1,7+05
		M	4,9-11	4,1+08	1,6+05
Ta-186	0,175 час	П	1,8-11	1,1+09	4,4+05
		M	1,9-11	1,1+09	4,2+05
W-176	2,30 час	Б	4,4-11	4,5+08	1,8+05
W-177	2,25 час	Б	2,6-11	7,7+08	3,1+05
W-178	21,7 сут	Б	7,6-11	2,6+08	1,1+05
W-179	0,625 час	Б	9,9-13	2,0+10	8,1+06
W-181	121 сут	Б	2,8-11	7,1+08	2,9+05

W-185	75,1 сут	Б	1,4-10	1,4+08	5,7+04
W-187	23,9 час	Б	2,0-10	1,0+08	4,0+04
W-188	69,4 сут	Б	5,9-10	3,4+07	1,4+04
Re-177	0,233 час	Б	1,0-11	2,0+09	8,0+05
		П	1,4-11	1,4+09	5,7+05
Re-178	0,220 час	Б	1,1-11	1,8+09	7,3+05
		П	1,5-11	1,3+09	5,3+05
Re-181	20,0 час	Б	1,9-10	1,1+08	4,2+04
		П	2,5-10	8,0+07	3,2+04
Re-182	2,67 сут	Б	6,8-10	2,9+07	1,2+04
		П	1,3-09	1,5+07	6,2+03
Re-182	12,7 час	Б	1,5-10	1,3+08	5,3+04
		П	2,0-10	1,0+08	4,0+04
Re-184	38,0 сут	Б	4,6-10	4,3+07	1,7+04
		П	1,8-09	1,1+07	4,4+03

Re-184m	165 сут	Б	6,1-10	3,3+07	1,3+04
		П	6,1-09	3,3+06	1,3+03
Re-186	3,78 сут	Б	5,3-10	3,8+07	1,5+04
		П	1,1-09	1,8+07	7,3+03
Re-186m	2,00+05 лет	Б	8,5-10	2,4+07	9,4+03
		П	1,1-08	1,8+06	7,3+02
Re-188	17,0 час	Б	4,7-10	4,3+07	1,7+04
		П	5,5-10	3,6+07	1,5+04
Re-188m	0,310 час	Б	1,0-11	2,0+09	8,0+05
		П	1,4-11	1,4+09	5,7+05
Re-189	1,01 сут	Б	2,7-10	7,4+07	3,0+04
		П	4,3-10	4,7+07	1,9+04
Os-180	0,366 час	Б	8,8-12	2,3+09	9,1+05
		П	1,4-11	1,4+09	5,7+05
		M	1,5-11	1,3+09	5,3+05

Os-181	1,75 час	Б	3,6-11	5,6+08	2,2+05
		П	6,3-11	3,2+08	1,3+05
		M	6,6-11	3,0+08	1,2+05
Os-182	22,0 час	Б	1,9-10	1,1+08	4,2+04
		П	3,7-10	5,4+07	2,2+04
		M	3,9-10	5,1+07	2,1+04
Os-185	94,0 сут	Б	1,1-09	1,8+07	7,3+03
		П	1,2-09	1,7+07	6,7+03
		M	1,5-09	1,3+07	5,3+03
Os-189m	6,00 час	Б	2,7-12	7,4+09	3,0+06
		П	5,1-12	3,9+09	1,6+06
		M	5,4-12	3,7+09	1,5+06
Os-191	15,4 сут	Б	2,5-10	8,0+07	3,2+04
		П	1,5-09	1,3+07	5,3+03
		M	1,8-09	1,1+07	4,4+03

	1				
Os-191m	13,0 час	Б	2,6-11	7,7+08	3,1+05
		П	1,3-10	1,5+08	6,2+04
		M	1,5-10	1,3+08	5,3+04
Os-193	1,25 сут	Б	1,7-10	1,2+08	4,7+04
		П	4,7-10	4,3+07	1,7+04
		M	5,1-10	3,9+07	1,6+04
Os-194	6,00 лет	Б	1,1-08	1,8+06	7,3+02
		П	2,0-08	1,0+06	4,0+02
		M	7,9-08	2,5+05	1,0+02
lr-182	0,250 час	Б	1,5-11	1,3+09	5,3+05
		П	2,4-11	8,3+08	3,3+05
		M	2,5-11	8,0+08	3,2+05
lr-184	3,02 час	Б	6,7-11	3,0+08	1,2+05
		П	1,1-10	1,8+08	7,3+04
		М	1,2-10	1,7+08	6,7+04

lr-185	14,0 час	Б	8,8-11	2,3+08	9,1+04
		П	1,8-10	1,1+08	4,4+04
		M	1,9-10	1,1+08	4,2+04
lr-186	15,8 час	Б	1,8-10	1,1+08	4,4+04
		П	3,2-10	6,3+07	2,5+04
		М	3,3-10	6,1+07	2,4+04
lr-186	1,75 час	Б	2,5-11	8,0+08	3,2+05
		П	4,3-11	4,7+08	1,9+05
		М	4,5-11	4,4+08	1,8+05
lr-187	10,5 час	Б	4,0-11	5,0+08	2,0+05
		П	7,5-11	2,7+08	1,1+05
		M	7,9-11	2,5+08	1,0+05
lr-188	1,73 сут	Б	2,6-10	7,7+07	3,1+04
		П	4,1-10	4,9+07	2,0+04
		М	4,3-10	4,7+07	1,9+04

			T		
lr-189	13,3 сут	Б	1,1-10	1,8+08	7,3+04
		П	4,8-10	4,2+07	1,7+04
		M	5,5-10	3,6+07	1,5+04
lr-190	12,1 сут	Б	7,9-10	2,5+07	1,0+04
		П	2,0-09	1,0+07	4,0+03
		M	2,3-09	8,7+06	3,5+03
lr-190m	3,10 час	Б	5,3-11	3,8+08	1,5+05
		П	8,3-11	2,4+08	9,6+04
		M	8,6-11	2,3+08	9,3+04
lr-190m	1,20 час	Б	3,7-12	5,4+09	2,2+06
		П	9,0-12	2,2+09	8,9+05
		M	1,0-11	2,0+09	8,0+05
lr-192	74,0 сут	Б	1,8-09	1,1+07	4,4+03
		П	4,9-09	4,1+06	1,6+03
		М	6,2-09	3,2+06	1,3+03

	1		Γ	ı	<u> </u>
lr-192m	2,41+02 лет	Б	4,8-09	4,2+06	1,7+03
		П	5,4-09	3,7+06	1,5+03
		M	3,6-08	5,6+05	2,2+02
lr-193m	11,9 сут	Б	1,0-10	2,0+08	8,0+04
		П	1,0-09	2,0+07	8,0+03
		M	1,2-09	1,7+07	6,7+03
lr-194	19,1 час	Б	2,2-10	9,1+07	3,6+04
		П	5,3-10	3,8+07	1,5+04
		M	5,6-10	3,6+07	1,4+04
lr-194m	171 сут	Б	5,4-09	3,7+06	1,5+03
		П	8,5-09	2,4+06	9,4+02
		M	1,2-08	1,7+06	6,7+02
lr-195	2,50 час	Б	2,6-11	7,7+08	3,1+05
		П	6,7-11	3,0+08	1,2+05
		М	7,2-11	2,8+08	1,1+05

lr-195m	3,80 час	Б	6,5-11	3,1+08	1,2+05
		П	1,6-10	1,3+08	5,0+04
		M	1,7-10	1,2+08	4,7+04
Pt-186	2,00 час	Б	3,6-11	5,6+08	2,2+05
Pt-188	10,2 сут	Б	4,3-10	4,7+07	1,9+04
Pt-189	10,9 час	Б	4,1-11	4,9+08	2,0+05
Pt-191	2,80 сут	Б	1,1-10	1,8+08	7,3+04
Pt-193	50,0 лет	Б	2,1-11	9,5+08	3,8+05
Pt-193m	4,33 сут	Б	1,3-10	1,5+08	6,2+04
Pt-195m	4,02 сут	Б	1,9-10	1,1+08	4,2+04
Pt-197	18,3 час	Б	9,1-11	2,2+08	8,8+04
Pt-197m	1,57 час	Б	2,5-11	8,0+08	3,2+05
Pt-199	0,513 час	Б	1,3-11	1,5+09	6,2+05
Pt-200	12,5 час	Б	2,4-10	8,3+07	3,3+04

Au-193	17,6 час	Б	3,9-11	5,1+08	2,1+05
		П	1,1-10	1,8+08	7,3+04
		M	1,2-10	1,7+08	6,7+04
Au-194	1,64 сут	Б	1,5-10	1,3+08	5,3+04
		П	2,4-10	8,3+07	3,3+04
		М	2,5-10	8,0+07	3,2+04
Au-195	183 сут	Б	7,1-11	2,8+08	1,1+05
		П	1,0-09	2,0+07	8,0+03
		М	1,6-09	1,3+07	5,0+03
Au-198	2,69 сут	Б	2,3-10	8,7+07	3,5+04
		П	7,6-10	2,6+07	1,1+04
		M	8,4-10	2,4+07	9,5+03
Au-198m	2,30 сут	Б	3,4-10	5,9+07	2,4+04
		П	1,7-09	1,2+07	4,7+03
		M	1,9-09	1,1+07	4,2+03

Au-199	3,14 сут	Б	1,1-10	1,8+08	7,3+04
		П	6,8-10	2,9+07	1,2+04
		M	7,5-10	2,7+07	1,1+04
Au-200	0,807 час	Б	1,7-11	1,2+09	4,7+05
		П	3,5-11	5,7+08	2,3+05
		M	3,6-11	5,6+08	2,2+05
Au-200m	18,7 час	Б	3,2-10	6,3+07	2,5+04
		П	6,9-10	2,9+07	1,2+04
		M	7,3-10	2,7+07	1,1+04
Au-201	0,440 час	Б	9,2-12	2,2+09	8,7+05
		П	1,7-11	1,2+09	4,7+05
		M	1,8-11	1,1+09	4,4+05
Hg-193	3,50 час	Б (ор)	2,6-11	7,7+08	3,1+05
		Б (но)	2,8-11	7,1+08	2,9+05
		П (но)	7,5-11	2,7+08	1,1+05

		Γ	1,1-09	1,8+07	7,3+03
Hg-193m	11,1 час	Б (ор)	1,1-10	1,8+08	7,3+04
		Б (но)	1,2-10	1,7+08	6,7+04
		П (но)	2,6-10	7,7+07	3,1+04
		Γ	3,1-09	6,5+06	2,6+03
Hg-194	2,60+02 лет	Б (ор)	1,5-08	1,3+06	5,3+02
		Б (но)	1,3-08	1,5+06	6,2+02
		П (но)	7,8-09	2,6+06	1,0+03
		Γ	4,0-08	5,0+05	2,0+02
Hg-195	9,90 час	Б (ор)	2,4-11	8,3+08	3,3+05
		Б (но)	2,7-11	7,4+08	3,0+05
		П (но)	7,2-11	2,8+08	1,1+05
		Γ	1,4-09	1,4+07	5,7+03
Hg-195m	1,73 сут	Б (ор)	1,3-10	1,5+08	6,2+04
		Б (но)	1,5-10	1,3+08	5,3+04

				T	
		П (но)	5,1-10	3,9+07	1,6+04
		Γ	8,2-09	2,4+06	9,8+02
Hg-197	2,67 сут	Б (ор)	5,0-11	4,0+08	1,6+05
		Б (но)	6,0-11	3,3+08	1,3+05
		П (но)	2,9-10	6,9+07	2,8+04
		Γ	4,4-09	4,5+06	1,8+03
Hg-197m	23,8 час	Б (ор)	1,0-10	2,0+08	8,0+04
		Б (но)	1,2-10	1,7+08	6,7+04
		П (но)	5,1-10	3,9+07	1,6+04
		Γ	5,8-09	3,4+06	1,4+03
Hg-199m	0,710 час	Б (ор)	1,6-11	1,3+09	5,0+05
		Б (но)	1,6-11	1,3+09	5,0+05
		П но)	3,3-11	6,1+08	2,4+05
		Γ	1,8-10	1,1+08	4,4+04
Hg-203	46,6 сут	Б (ор)	5,7-10	3,5+07	1,4+04

		Б (но)	4,7-10	4,3+07	1,7+04
		П (но)	2,3-09	8,7+06	3,5+03
		Γ	7,0-09	2,9+06	1,1+03
TI-194	0,550 час	Б	4,8-12	4,2+09	1,7+06
TI-194m	0,546 час	Б	2,0-11	1,0+09	4,0+05
TI-195	1,16 час	Б	1,6-11	1,3+09	5,0+05
TI-197	2,84 час	Б	1,5-11	1,3+09	5,3+05
TI-198	5,30 час	Б	6,6-11	3,0+08	1,2+05
TI-198m	1,87 час	Б	4,0-11	5,0+08	2,0+05
TI-199	7,42 час	Б	2,0-11	1,0+09	4,0+05
TI-200	1,09 сут	Б	1,4-10	1,4+08	5,7+04
TI-201	3,04 сут	Б	4,7-11	4,3+08	1,7+05
TI-202	12,2 сут	Б	2,0-10	1,0+08	4,0+04
TI-204	3,78 лет	Б	4,4-10	4,5+07	1,8+04
Pb-195m	0,263 час	Б	1,7-11	1,2+09	4,7+05

Pb-198	2,40 час	Б	4,7-11	4,3+08	1,7+05
Pb-199	1,50 час	Б	2,6-11	7,7+08	3,1+05
Pb-200	21,5 час	Б	1,5-10	1,3+08	5,3+04
Pb-201	9,40 час	Б	6,5-11	3,1+08	1,2+05
Pb-202	3,00+05 лет	Б	1,1-08	1,8+06	7,3+02
Pb-202m	3,62 час	Б	6,7-11	3,0+08	1,2+05
Pb-203	2,17 сут	Б	9,1-11	2,2+08	8,8+04
Pb-205	1,43+07 лет	Б	3,4-10	5,9+07	2,4+04
Pb-209	3,25 час	Б	1,8-11	1,1+09	4,4+05
Pb-210	22,3 лет	Б	8,9-07	2,2+04	9,0
Pb-211	0,601 час	Б	3,9-09	5,1+06	2,1+03
Pb-212	10,6 час	Б	1,9-08	1,1+06	4,2+02
Pb-214	0,447 час	Б	2,9-09	6,9+06	2,8+03
Bi-200	0,606 час	Б	2,4-11	8,3+08	3,3+05
		П	3,4-11	5,9+08	2,4+05

Bi-201	1,80 час	Б	4,7-11	4,3+08	1,7+05
		П	7,0-11	2,9+08	1,1+05
Bi-202	1,67 час	Б	4,6-11	4,3+08	1,7+05
		П	5,8-11	3,4+08	1,4+05
Bi-203	11,8 час	Б	2,0-10	1,0+08	4,0+04
		П	2,8-10	7,1+07	2,9+04
Bi-205	15,3 сут	Б	4,0-10	5,0+07	2,0+04
		П	9,2-10	2,2+07	8,7+03
Bi-206	6,24 сут	Б	7,9-10	2,5+07	1,0+04
		П	1,7-09	1,2+07	4,7+03
Bi-207	38,0 лет	Б	5,2-10	3,8+07	1,5+04
		П	5,2-09	3,8+06	1,5+03
Bi-210	5,01 сут	Б	1,1-09	1,8+07	7,3+03
		П	8,4-08	2,4+05	9,5+01
Bi-210m	3,00+06 лет	Б	4,5-08	4,4+05	1,8+02

		П	3,1-06	6,5+03	2,6
Bi-212	1,01 час	Б	9,3-09	2,2+06	8,6+02
		П	3,0-08	6,7+05	2,7+02
Bi-213	0,761 час	Б	1,1-08	1,8+06	7,3+02
		П	2,9-08	6,9+05	2,8+02
Bi-214	0,332 час	Б	7,2-09	2,8+06	1,1+03
		П	1,4-08	1,4+06	5,7+02
Po-203	0,612 час	Б	2,5-11	8,0+08	3,2+05
		П	3,6-11	5,6+08	2,2+05
Po-205	1,80 час	Б	3,5-11	5,7+08	2,3+05
		П	6,4-11	3,1+08	1,3+05
Po-207	5,83 час	Б	6,3-11	3,2+08	1,3+05
		П	8,4-11	2,4+08	9,5+04
Po-210	138 сут	Б	6,0-07	3,3+04	1,3+01
		П	3,0-06	6,7+03	2,7

At-207	1,80 час	Б	3,5-10	5,7+07	2,3+04
		П	2,1-09	9,5+06	3,8+03
At-211	7,21 час	Б	1,6-08	1,3+06	5,0+02
		П	9,8-08	2,0+05	8,2+01
Fr-222	0,240 час	Б	1,4-08	1,4+06	5,7+02
Fr-223	0,363 час	Б	9,1-10	2,2+07	8,8+03
Ra-223	11,4 сут	П	6,9-06	2,9+03	1,2
Ra-224	3,66 сут	П	2,9-06	6,9+03	2,8
Ra-225	14,8 сут	П	5,8-06	3,4+03	1,4
Ra-226	1,60+03 лет	П	3,2-06	6,3+03	2,5
Ra-227	0,703 час	П	2,8-10	7,1+07	2,9+04
Ra-228	5,75 лет	П	2,6-06	7,7+03	3,1
Ac-224	2,90 час	Б	1,1-08	1,8+06	7,3+02
		П	1,0-07	2,0+05	8,0+01
		М	1,2-07	1,7+05	6,7+01

Ac-225	10,0 сут	Б	8,7-07	2,3+04	9,2
		П	6,9-06	2,9+03	1,2
		M	7,9-06	2,5+03	1,0
Ac-226	1,21 сут	Б	9,5-08	2,1+05	8,4+01
		П	1,1-06	1,8+04	7,3
		M	1,2-06	1,7+04	6,7
Ac-227	21,8 лет	Б	5,4-04	3,7+01	1,5-02
		П	2,1-04	9,5+01	3,8-02
		M	6,6-05	3,0+02	1,2-01
Ac-228	6,13 час	Б	2,5-08	8,0+05	3,2+02
		П	1,6-08	1,3+06	5,0+02
		M	1,4-08	1,4+06	5,7+02
Th-226	0,515 час	П	5,5-08	3,6+05	1,5+02
		М	5,9-08	3,4+05	1,4+02
Th-227	18,7 сут	П	7,8-06	2,6+03	1,0

			Γ	Г	
		M	9,6-06	2,1+03	8,3-01
Th-228	1,91 лет	П	3,1-05	6,5+02	2,6-01
		M	3,9-05	5,1+02	2,1-01
Th-229	7,34+03 лет	П	9,9-05	2,0+02	8,1-02
		M	6,5-05	3,1+02	1,2-01
Th-230	7,70+04 лет	П	4,0-05	5,0+02	2,0-01
		M	1,3-05	1,5+03	6,2-01
Th-231	1,06 сут	П	2,9-10	6,9+07	2,8+04
		M	3,2-10	6,3+07	2,5+04
Th-232	1,40+10 лет	П	4,2-05	4,8+02	1,9-01
		M	2,3-05	8,7+02	3,5-01
Th-234	24,1 сут	П	6,3-09	3,2+06	1,3+03
		М	7,3-09	2,7+06	1,1+03
Pa-227	0,638 час	П	7,0-08	2,9+05	1,1+02
		М	7,6-08	2,6+05	1,1+02

				T	
Pa-228	22,0 час	П	5,9-08	3,4+05	1,4+02
		M	6,9-08	2,9+05	1,2+02
Pa-230	17,4 сут	П	5,6-07	3,6+04	1,4+01
		M	7,1-07	2,8+04	1,1+01
Pa-231	3,27+04 лет	П	1,3-04	1,5+02	6,2-02
		M	3,2-05	6,3+02	2,5-01
Pa-232	1,31 сут	П	9,5-09	2,1+06	8,4+02
		M	3,2-09	6,3+06	2,5+03
Pa-233	27,0 сут	П	3,1-09	6,5+06	2,6+03
		M	3,7-09	5,4+06	2,2+03
Pa-234	6,70 час	П	3,8-10	5,3+07	2,1+04
		M	4,0-10	5,0+07	2,0+04
U-230	20,8 сут	Б	3,6-07	5,6+04	2,2+01
		П	1,2-05	1,7+03	6,7-01
		М	1,5-05	1,3+03	5,3-01

U-231	4,20 сут	Б	8,3-11	2,4+08	9,6+04
		П	3,4-10	5,9+07	2,4+04
		M	3,7-10	5,4+07	2,2+04
U-232	72,0 лет	Б	4,0-06	5,0+03	2,0
		П	7,2-06	2,8+03	1,1
		M	3,5-05	5,7+02	2,3-01
U-233	1,58+05 лет	Б	5,7-07	3,5+04	1,4+01
		П	3,2-06	6,3+03	2,5
		M	8,7-06	2,3+03	9,2-01
U-234	2,44+05 лет	Б	5,5-07	3,6+04	1,5+01
		П	3,1-06	6,5+03	2,6
		M	8,5-06	2,4+03	9,4-01
U-235	7,04+08 лет	Б	5,1-07	2,7+04*(4)	1,1+01 <u>*(3)</u>
		П	2,8-06	7,1+03	2,9
		M	7,7-06	2,6+03	1,0

U-236	2,34+07 лет	Б	5,2-07	3,8+04	1,5+01
		П	2,9-06	6,9+03	2,8
		M	7,9-06	2,5+03	1,0
U-237	6,75 сут	Б	1,9-10	1,1+08	4,2+04
		П	1,6-09	1,3+07	5,0+03
		M	1,8-09	1,1+07	4,4+03
U-238	4,47+09 лет	Б	4,9-07	6,0+03*(3)	2,4 <u>*(3)</u>
		П	2,6-06	6,0+03*(3)	2,4 <u>*(3)</u>
		M	7,3-06	2,7+03	1,1
U-239	0,392 час	Б	1,1-11	1,8+09	7,3+05
		П	2,3-11	8,7+08	3,5+05
		M	2,4-11	8,3+08	3,3+05
U-240	14,1 час	Б	2,1-10	9,5+07	3,8+04
		П	5,3-10	3,8+07	1,5+04
		М	5,7-10	3,5+07	1,4+04

Np-232	0,245 час	П	4,7-11	4,3+08	1,7+05
Np-233	0,603 час	П	1,7-12	1,2+10	4,7+06
Np-234	4,40 сут	П	5,4-10	3,7+07	1,5+04
Np-235	1,08 лет	П	4,0-10	5,0+07	2,0+04
Np-236	1,15+05 лет	П	3,0-06	6,7+03	2,7
Np-236	22,5 час	П	5,0-09	4,0+06	1,6+03
Np-237	2,14+06 лет	П	2,1-05	9,5+02	3,8-01
Np-238	2,12 сут	П	2,0-09	1,0+07	4,0+03
Np-239	2,36 сут	П	9,0-10	2,2+07	8,9+03
Np-240	1,08 час	П	8,7-11	2,3+08	9,2+04
Pu-234	8,80 час	П	1,9-08	1,1+06	4,2+02
		M	2,2-08	9,1+05	3,6+02
Pu-235	0,422 час	П	1,5-12	1,3+10	5,3+06
		М	1,6-12	1,2+10	5,0+06
Pu-236	2,85 лет	П	1,8-05	1,1+03	4,4-01

	T I			I	
		M	9,6-06	2,1+03	8,3-01
Pu-237	45,3 сут	П	3,3-10	6,1+07	2,4+04
		M	3,6-10	5,6+07	2,2+04
Pu-238	87,7 лет	П	4,3-05	8,9+01*(1)	3,7-02 <u>*(1)</u>
		M	1,5-05	1,3+03	5,3-01
Pu-239	2,41+04 лет	П	4,7-05	7,8+01 <u>*(1)</u>	3,2-02 <u>*(1)</u>
		M	1,5-05	1,3+03	5,3-01
Pu-240	6,54+03 лет	П	4,7-05	7,8+01 <u>*(1)</u>	3,2-02 <u>*(1)</u>
		M	1,5-05	1,3+03	5,3-01
Pu-241	14,4 лет	П	8,5-07	4,1+03*(1)	1,7 <u>*(1)</u>
		M	1,6-07	1,3+05	5,0+01
Pu-242	3,76+05 лет	П	4,4-05	7,4+01 <u>*(1)</u>	3,1-02 <u>*(1)</u>
		М	1,4-05	1,4+03	5,7-01
Pu-243	4,95 час	П	8,2-11	1,6+08 <u>*(1)</u>	6,8+04 <u>*(1)</u>
		М	8,5-11	2,0+08*(1)	8,5+04 <u>*(1)</u>

Pu-244	8,26+07 лет	П	4,4-05	1,5+02 <u>*(1)</u>	6,3-02 <u>*(1)</u>
		M	1,3-05	1,5+03	6,2-01
Pu-245	10,5 час	П	4,5-10	4,4+07	1,8+04
		M	4,8-10	4,2+07	1,7+04
Pu-246	10,9 сут	П	7,0-09	2,9+06	1,1+03
		M	7,6-09	2,6+06	1,1+03
Am-237	1,22 час	П	2,5-11	8,0+08	3,2+05
Am-238	1,63 час	П	8,5-11	2,4+08	9,4+04
Am-239	11,9 час	П	2,2-10	9,1+07	3,6+04
Am-240	2,12 сут	П	4,4-10	4,5+07	1,8+04
Am-241	4,32+02 лет	П	3,9-05	5,1+02	2,1-01
Am-242	16,0 час	П	1,6-08	1,3+06	5,0+02
Am-242m	1,52+02 лет	П	3,5-05	5,7+02	2,3-01
Am-243	7,38+03 лет	П	3,9-05	5,1+02	2,1-01
Am-244	10,1 час	П	1,9-09	1,1+07	4,2+03

Am-244m	0,433 час	П	7,9-11	2,5+08	1,0+05
Am-245	2,05 час	П	5,3-11	3,8+08	1,5+05
Am-246	0,650 час	П	6,8-11	2,9+08	1,2+05
Am-246m	0,417 час	П	2,3-11	8,7+08	3,5+05
Cm-238	2,40 час	П	4,1-09	4,9+06	2,0+03
Cm-240	27,0 сут	П	2,9-06	6,9+03	2,8
Cm-241	32,8 сут	П	3,4-08	5,9+05	2,4+02
Cm-242	163 сут	П	4,8-06	4,2+03	1,7
Cm-243	28,5 лет	П	2,9-05	6,9+02	2,8-01
Cm-244	18,1 лет	П	2,5-05	8,0+02	3,2-01
Cm-245	8,50+03 лет	П	4,0-05	5,0+02	2,0-01
Cm-246	4,73+03 лет	П	4,0-05	5,0+02	2,0-01
Cm-247	1,56+07 лет	П	3,6-05	5,6+02	2,2-01
Cm-248	3,39+05 лет	П	1,4-04	1,4+02	5,7-02
Cm-249	1,07 час	П	3,2-11	6,3+08	2,5+05

Cm-250	6,90+03 лет	П	7,9-04	2,5+01	1,0-02
Bk-245	4,94 сут	П	2,0-09	1,0+07	4,0+03
Вкк-246	1,83 сут	П	3,4-10	5,9+07	2,4+04
Bk-247	1,38+03 лет	П	6,5-05	3,1+02	1,2-01
Bk-249	320 сут	П	1,5-07	1,3+05	5,3+01
Bk-250	3,22 час	П	9,6-10	2,1+07	8,3+03
Cf-244	0,323 час	П	1,3-08	1,5+06	6,2+02
Cf-246	1,49 сут	П	4,2-07	4,8+04	1,9+01
Cf-248	334 сут	П	8,2-06	2,4+03	9,8-01
Cf-249	3,50+02 лет	П	6,6-05	3,0+02	1,2-01
Cf-250	13,1 лет	П	3,2-05	6,3+02	2,5-01
Cf-251	8,98+02 лет	П	6,7-05	3,0+02	1,2-01
Cf-252	2,64 лет	П	1,8-05	1,1+03	4,4-01
Cf-253	17,8 сут	П	1,2-06	1,7+04	6,7
Cf-254	60,5 сут	П	3,7-05	5,4+02	2,2-01

Es-250	2,10 час	П	5,9-10	3,4+07	1,4+04
Es-251	1,38 сут	П	2,0-09	1,0+07	4,0+03
Es-253	20,5 сут	П	2,5-06	8,0+03	3,2
Es-254	276 сут	П	8,0-06	2,5+03	1,0
Es-254m	1,64 сут	П	4,4-07	4,5+04	1,8+01
Fm-252	22,7 час	П	3,0-07	6,7+04	2,7+01
Fm-253	3,00 сут	П	3,7-07	5,4+04	2,2+01
Fm-254	3,24 час	П	5,6-08	3,6+05	1,4+02
Fm-255	20,1 час	П	2,5-07	8,0+04	3,2+01
Fm-257	101 сут	П	6,6-06	3,0+03	1,2
Md-257	5,20 час	П	2,3-08	8,7+05	3,5+02
Md-258	55,0 сут	П	5,5-06	3,6+03	1,5

^{*(1)} - Сохранены значения $\Pi \Gamma \Pi_{\text{перс}}$ и $\mathcal{L}OA_{\text{перс}}$, приведенные в НРБ-76/87, в связи с достигнутым уровнем безопасности на предприятиях России. Эти значения ниже, чем значения, полученные с использованием дозовых коэффициентов из данного приложения.

^{*(2) -} Классификация соединений приведена в Приложении П-3.

^{*(3)} - При поступлении изотопа 40 К дополнительно к природной смеси изотопов калия.

*(4) - Соответствует годовому пределу поступления урана, равного 500 мг в год и величина которого определяется химической токсичностью соединений урана.

Приложение 2 к НРБ-99/09

Значения дозовых коэффициентов, пределов годового поступления с воздухом и пищей и допустимой объемной активности во вдыхаемом воздухе отдельных радионуклидов для критических групп населения *(1)

	пулканта подурасната		Поступление с воздухом						Поступление с		
Радио- нуклид РН		Критич групп кі	a <u>*(2)</u>	Дозовый коэффициент $e^{(\text{возд})}_{\text{нас}},$ Зв/Бк	Предел годового поступления <i>ПГП^(возд)нас</i> , Бк в год	Допусти- мая среднего- довая объемная актив- ность ДОА _{нас} , Бк/м ³	Критич группа кг	a <u>*(1)</u>	Дозовый коэффицие е ^(пища) нас Зв/Бк		
1	2	3	4	5	6	7	8	9	10		
Н-3	12,3 лет		#2	2,7-10	3,7+6	1,9+3	*(3)	#2	4,8-11		
							*(4)	#2	1,2-10		

Be-7	53,3 сут	#4	9,6-11	1,0+7	2,0+3		#2	1,3-10
Be-10	1,60+6 лет	#6	3,5-8	2,9+4	3,5		#2	8,0-9
C-14	5,73+3 лет	#5	2,5-9	4,0+5	5,5+1		#2	1,6-9
Na-22	2,60 лет	#2	7,3-9	1,4+5	7,2+1		#2	1,5-8
Na-24	15.0 час	#2	1,8-9	5,6+5	2,9+2		#2	2,1-8
Al-26	7,16+5 лет	#6	2,0-8	5,0+4	6,2		#2	2,1-8
Si-32	4,50+2 лет	#6	1,1-7	9,1+3	1,1		#2	4,1-9
P-32	14,3 сут	#5	4,0-9	2,5+5	3,4+1		#2	1,9-8
P-33	25,4 сут	#5	1,9-9	5,3+5	7,2+1		#2	1,8-9
S-35	87,4 сут	#5	1,8-9	5,6+5	7,6+1	<u>*(5)</u>	#2	8,7-10
						*(6)	#2	5,4-9
C1-36	3,01+5 лет	#5	8,8-9	1,1+5	1,6+1		#2	6,3-9
K-40 *(7)	1,28+9 лет	#2	1,7-8	5,9+4	3,1 + 1		#2	4,2-8
Ca-41	1,40+5 лет	#5	3,3-10	3,0+6	4,2+2		#5	5,0-10
Ca-45	163 сут	#5	4,6-9	2,2+5	3,0+1		#2	4,9-9

Ca-47	4,53 сут	#5	2,6-9	3,8+5	5,3+1	#2	9,3-9
Sc-44m	2,44 сут	#2	8,4-9	1,2+5	6,3+1	#2	1,6-8
Sc-46	83,8 сут	#5	8,4-9	1,2+5	1,6+1	#2	7,9-9
Sc-47	3,35 сут	#5	9,2-10	1,1+6	1,5+2	#2	3,9-9
Sc-48	1,82 сут	#2	5,9-9	1,7+5	8,9+1	#2	9,3-9
Ti-44	47,3 лет	#6	1,2-7	8,3+3	1,0	#2	3,1-8
V-48	16,2 сут	#4	4,3-9	2,3+5	4,5+1	#2	1,1-8
V-49	330 сут	#2	2,1-10	4,8+6	2,5+3	#2	1,4-10
Cr-51	27,7 сут	#2	2,1-10	4,8+6	2,5+3	#2	2,3-10
Mn-52	5,59 сут	#2	6,8-9	1,5+5	7,7+1	#2	8,8-9
Mn-53	3,70+6 лет	#2	3,4-10	2,9+6	1,5+3	#2	2,2-10
Mn-54	312 сут	#5	1,9-9	5,3+5	7,2+1	#2	3,1-9
Mn-56	2,58 час	#2	7,8-10	1,3+6	6,8+2	#2	1,7-9
Fe-55	2,70 лет	#4	6,2-10	1,6+6	3,1+2	#2	2,4-9
Fe-59	44,5 сут	#5	4,6-9	2,2+5	3,0+1	#2	1,3-8

Fe-60	1,00+5 лет	#6	1,4-7	7,1+3	8,8-1	#5	2,3-7
Co-56	78,7 сут	#5	5,8-9	1,7+5	2,4+1	#2	1,5-8
Co-57	271 сут	#5	6,7-10	1,5+6	2,0+2	#2	1,6-9
Co-58	70,8 сут	#5	2,0-9	5,0+5	6,8+1	#2	4,4-9
Co-60	5,27 лет	#5	1,2-8	8,3+4	1,1+1	#2	2,7-8
Ni-56	6,10 сут	#5	1,1-9	9.1+5	1,2+2	#2	4.0-9
Ni-57	1,50 сут	#2	2,8-9	3,6+5	1,9+2	#2	4,9-9
Ni-59	7,50+4 лет	#2	6,2-10	1,6+6	8,5+2	#2	3,4-10
Ni-63	96,0 лет	#6	4,8-10	2,1+6	2,6+2	#2	8,4-10
Ni-66	2,27 сут	#2	9,4-9	1,1+5	5,6+1	#2	2,2-8
Cu-67	2,58 сут	#5	7,7-10	1,3+6	1,8+2	#2	2,4-9
Zn-65	244 сут	#5	1,9-9	5,3+5	7,2+1	#2	1,6-8
Zn-72	1,94 сут	#2	6,5-9	1,5+5	8,1+1	#2	8,6-9
Ga-67	3,26 сут	#5	3,0-10	3,3+6	4,6+2	#2	1,2-9
Ge-68	288 сут	#5	1,6-8	6,3+4	8.6	#2	8,0-9

Ge-69	1,63 сут	#2	1,4-9	7,1+5	3,8+2	#2	1,3-9
Ge-71	11,8 сут	#2	8,6-11	1,2+7	6,1+3	#2	7,8-11
As-71	2,70 сут	#5	5,0-10	2,0+6	2,7+2	#2	2,8-9
As-72	1,08 сут	#2	5,7-9	1,8+5	9,2+1	#2	1,2-8
As-73	80,3 сут	#5	1,2-9	8,3+5	1,1+2	#2	1,9-9
As-74	17,8 сут	#5	2,6-9	3,8+5	5,3+1	#2	8,2-9
As-76	1,10 сут	#2	4,6-9	2,2+5	1,1+2	#2	1,1-8
As-77	1,62 сут	#5	5,0-10	2,0+6	2,7+2	#2	2,9-9
Se-75	120 сут	#4	2,5-9	4,0+5	7,7+1	#2	1,3-8
Se-79	6,50+4 лет	#4	5,6-9	1,8+5	3,4+1	#2	2,8-8
Br-77	2,33 сут	#2	5,1-10	2,0+6	1,0+3	#2	4,4-10
Br-82	1,47 сут	#5	7,9-10	1,3+6	1,7+2	#2	2,6-9
Rb-83	86,2 сут	#2	3,8-9	2,6+5	1,4+2	#2	8,4-9
Rb-84	32,8 сут	#2	6,4-9	1,6+5	8,2+1	#2	1,4-8
Rb-86	18,7 сут	#2	7,7-9	1,3+5	6,8+1	#2	2,0-8

Sr-82	25,0 сут	#	<u>+</u> 2	4,0-8	2,5+4	1,3+1	#2	4,1-8
Sr-83	1,35 сут	#	<u>+</u> 2	1,9-9	5,3+5	2,8+2	#2	2,7-9
Sr-85	64,8 сут	#	! 5	8,8-10	1,1+6	1,6+2	#2	3,1-9
Sr-89	50,5 сут	#	! 5	7,3-9	1,4+5	1,9+1	#2	1,8-8
Sr-90	29,1 лет	#	! 5	5,0-8	2,0+4	2,7	#5	8,0-8
Y-87	3,35 сут	#	<u>+</u> 2	2,2-9	4,5+5	2,4+2	#2	3,2-9
Y-88	107 сут	#	±5	5,4-9	1,9+5	2,5+1	#2	6,0-9
Y-90	2,67 сут	#	<u>+</u> 2	8,8-9	1,1+5	6,0+1	#2	2,0-8
Y-91	58,5 сут	#	! 5	1,0-8	1,0+5	1,4+1	#2	1,8-8
Zr-88	83,4 сут	#	! 5	3,0-9	3,3+5	4,6+1	#2	2,0-9
Zr-89	3,27 сут	#	<u>+</u> 2	2,8-9	3,6+5	1,9+2	#2	4,5-9
Zr-93	1,53+6 лет	#	<u>+</u> 6	1,0-8	1,0+5	1,2+1	#6	1,1-9
Zr-95	64,0 сут	#	±5	5,9-9	1,7+5	2,3+1	#2	5,6-9
Nb-93m	13,6 лет	#	<u>+</u> 2	2,4-9	4,2+5	2,2+2	#2	9,1-10
Nb-94	2,03+4 лет	#	±5	1,3-8	7,7+4	1,1+1	#2	9,7-9

Nb-95	35,1 сут	#5	1,9-9	5,3+5	7,2+1	#2	3,2-9
Nb-95m	3,61 сут	#5	1,0-9	1,0+6	1,4+2	#2	4,1-9
Mo-93	3,50+3 лет	#5	6,6-10	1,5+6	2,1+2	#2	6,9-9
Mo-99	2,75 сут	#2	4,4-9	2,3+5	1,2+2	#2	3,5-9
Tc-95m	61,0 сут	#5	1,1-9	9,1+5	1,2+2	#2	2,8-9
Тс-96	4,28 сут	#2	3,9-9	2,6+5	1,3+2	#2	5,1-9
Tc-97	2,60+6 лет	#5	2,8-10	3,6+6	4,9+2	#2	4,9-10
Tc-97m	87,0 сут	#5	4,1-9	2,4+5	3,3+1	#2	4,1-9
Tc-98	4,20+6 лет	#5	1,0-8	1,0+5	1,4+1	#2	1,2-8
Тс-99	2,13+5 лет	#5	5,0-9	2,0+5	2,7+1	#2	4,8-9
Ru-97	2,90 сут	#2	6,1-10	1,6+6	8,6+2	#2	8,5-10
Ru-103	39,3 сут	#5	3,0-9	3,3+5	4,6+1	#2	4,6-9
Ru-106	1,01 лет	#6	2,8-8	3,6+4	4,4	#2	4,9-8
Rh-99	16,0 сут	#5	1,1-9	9,1+5	1,2+2	#2	2,9-9
Rh-101	3,20 лет	#5	6,2-9	1,6+5	2,2+1	#2	2,8-9

Rh-101m	4,34 сут	#5	2,7-10	3,7+6	5,1+2	#2	1,2-9
Rh-102	2,90 лет	#5	2,0-8	5,0+4	6,8	#2	1,0-8
Rh-102m	207 сут	#5	8,2-9	1,2+5	1,7+1	#2	7,4-9
Rh-105	1,47 сут	#5	4,5-10	2,2+6	3,0+2	#2	2.7-9
Pd-100	3,63 сут	#4	1,5-9	6,7+5	1,3+2	#2	5.2-9
Pd-103	17,0 сут	#5	5,3-10	1,9+6	2,6+2	#2	1.4-9
Pd-107	6,50+6 лет	#6	5,9-10	1,7+6	2,1+2	#2	2,8-10
Ag-105	41,0 сут	#4	1,3-9	7,7+5	1,5+2	#2	2,5-9
Ag-106m	8,41 сут	#2	5,8-9	1,7+5	9,1+1	#2	6,9-9
Ag-108m	1,27+2 лет	#5	8,6-9	1,2+5	1,6+1	#2	1,1-8
Ag-110m	250 сут	#5	9,2-9	1,1+5	1,5+1	#2	1,4-8
Ag-111	7,45 сут	#5	1,9-9	5,3+5	7,2+1	#2	9,3-9
Cd-109	1,27 лет	#4	1,4-8	7,1+4	1,4+1	#2	9,5-9
Cd-113m	13,6 лет	#6	1,1-7	9,1+3	1,1	#2	5,6-8
Cd-115	2,23 сут	#2	5,1-9	2,0+5	1,0+2	#2	9,7-9

Cd-115m 44,6 cyr #5 8,9-9 1,1+5 1,5+1 #2 1,9-8 In-111 2,83 cyr #2 1,2-9 8,3+5 4,4+2 #2 1,7-9 In-114m 49,5 cyr #2 7,7-8 1,3+4 6,8 #2 3,1-8 Sn-113 115 cyr #5 3,2-9 3,1+5 4,3+1 #2 5,0-9 Sn-117m 13,6 cyr #5 3,1-9 3,2+5 4,4+1 #2 5,0-9 Sn-119m 293 cyr #5 2,6-9 3,8+5 5,3+1 #2 2,5-9 Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121 1,13 cyr #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-121 5,0 ner #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sb-119								
In-114m 49,5 cyr #2 7,7-8 1,3+4 6,8 #2 3,1-8 Sn-113 115 cyr #5 3,2-9 3,1+5 4,3+1 #2 5,0-9 Sn-117m 13,6 cyr #5 3,1-9 3,2+5 4,4+1 #2 5,0-9 Sn-119m 293 cyr #5 2,6-9 3,8+5 5,3+1 #2 2,5-9 Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121m 55,0 ner #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 ner #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Cd-115m	44,6 сут	#5	8,9-9	1,1+5	1,5+1	#2	1,9-8
Sn-113 115 cyr #5 3,2-9 3,1+5 4,3+1 #2 5,0-9 Sn-117m 13,6 cyr #5 3,1-9 3,2+5 4,4+1 #2 5,0-9 Sn-119m 293 cyr #5 2,6-9 3,8+5 5,3+1 #2 2,5-9 Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121m 55,0 лет #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8 <	In-111	2,83 сут	#2	1,2-9	8,3+5	4,4+2	#2	1,7-9
Sn-117m 13,6 cyr #5 3,1-9 3,2+5 4,4+1 #2 5,0-9 Sn-119m 293 cyr #5 2,6-9 3,8+5 5,3+1 #2 2,5-9 Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121m 55,0 лет #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	In-114m	49,5 сут	#2	7,7-8	1,3+4	6,8	#2	3,1-8
Sn-119m 293 cyr #5 2,6-9 3,8+5 5,3+1 #2 2,5-9 Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121m 55,0 лет #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-113	115 сут	#5	3,2-9	3,1+5	4,3+1	#2	5,0-9
Sn-121 1,13 cyr #5 2,9-10 3,4+6 4,7+2 #2 1,7-9 Sn-121m 55,0 πer #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-117m	13,6 сут	#5	3,1-9	3,2+5	4,4+1	#2	5,0-9
Sn-121m 55,0 лет #5 5,5-9 1,8+5 2,5+1 #2 2,7-9 Sn-123 129 сут #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 сут #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 сут #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 сут #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 сут #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-119m	293 сут	#5	2,6-9	3,8+5	5,3+1	#2	2,5-9
Sn-123 129 cyr #5 9,5-9 1,1+5 1,4+1 #2 1,6-8 Sn-125 9,64 cyr #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-121	1,13 сут	#5	2,9-10	3,4+6	4,7+2	#2	1,7-9
Sn-125 9,64 сут #2 1,5-8 6,7+4 3,5+1 #2 2,2-8 Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 сут #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 сут #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 сут #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-121m	55,0 лет	#5	5,5-9	1,8+5	2,5+1	#2	2,7-9
Sn-126 1,00+5 лет #5 3,3-8 3,0+4 4,2 #2 3,0-8 Sb-119 1,59 сут #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 сут #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 сут #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-123	129 сут	#5	9,5-9	1,1+5	1,4+1	#2	1,6-8
Sb-119 1,59 cyr #2 2,8-10 3,6+6 1,9+3 #2 5,8-10 Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-125	9,64 сут	#2	1,5-8	6,7+4	3,5+1	#2	2,2-8
Sb-120 5,76 cyr #2 5,0-9 2,0+5 1,1+2 #2 6,0-9 Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sn-126	1,00+5 лет	#5	3,3-8	3,0+4	4,2	#2	3,0-8
Sb-122 2,70 cyr #2 5,7-9 1,8+5 9,2+1 #2 1,2-8	Sb-119	1,59 сут	#2	2,8-10	3,6+6	1,9+3	#2	5,8-10
	Sb-120	5,76 сут	#2	5,0-9	2,0+5	1,1+2	#2	6,0-9
Sb-124 60,2 cyr #5 7,7-9 1,3+5 1,8+1 #2 1,6-8	Sb-122	2,70 сут	#2	5,7-9	1,8+5	9,2+1	#2	1,2-8
	Sb-124	60,2 сут	#5	7,7-9	1,3+5	1,8+1	#2	1,6-8

Sb-125	2,77 лет	#5	5,8-9	1,7+5	2,4+1	#2	6,1-9
Sb-126	12,4 сут	#4	5,1-9	2,0+5	3,8+1	#2	1,4-8
Sb-127	3,85 сут	#5	2,1-9	4,8+5	6,5+1	#2	1,2-8
Te-121	17,0 сут	#2	1,9-9	5,3+5	2,8+2	#2	2,0-9
Te-121m	154 сут	#5	5,1-9	2,0+5	2,7+1	#2	1,2-8
Te-123m	120 сут	#5	5,0-9	2,0+5	2,7+1	#2	8,8-9
Te-125m	58,0 сут	#5	4,3-9	2,3+5	3,2+1	#2	6,3-9
Te-127m	109 сут	#5	9,2-9	1,1+5	1,5+1	#2	1,8-8
Te-129m	33,6 сут	#5	8,0-9	1,3+5	1,7+1	#2	2,4-8
Te-131m	1,25 сут	#2	5,8-9	1,7+5	9,1+1	#2	1,4-8
Te-132	3,26 сут	#2	1,3-8	7,7+4	4,0+1	#2	3,0-8
I-124	4,18 сут	#2	4,5-8	2,2+4	1,2+1	#2	1,1-7
I-125	60,1 сут	#4	1,1-8	9,1+4	1,7+1	#2	5,7-8
I-126	13,0 сут	#2	8,3-8	1,2+4	6,3	#2	2,1-7
I-129	1,57+7 лет	#4	6,7-8	1,5+4	2,9	#4	1,9-7

I-131	8,04 сут	#2	7,2-8	1,4+4	7,3	#2	1,8-7
Cs-129	1,34 сут	#2	2,8-10	3,6+6	1,9+3	#2	3,0-10
Cs-131	9,69 сут	#2	1,7-10	5,9+6	3,1+3	#2	2,9-10
Cs-132	6,48 сут	#2	1,2-9	8,3+5	4,4+2	#2	1,8-9
Cs-134	2,06 лет	#6	6,6-9	1,5+5	1,9+1	#6	1,9-8
Cs-135	2,30+6 лет	#6	6,9-10	1,4+6	1,8+2	#6	2,0-9
Cs-136	13,1 сут	#4	2,0-9	5,0+5	9,6+1	#2	9,5-9
Cs-137	30,0 лет	#6	4,6-9	2,2+5	2,7+1	#6	1,3-8
Ba-128	2,43 сут	#2	7,8-9	1,3+5	6,7+1	#2	1,7-8
Ba-131	11, 8сут	#5	9,7-10	1,0+6	1,4+2	#2	2,6-9
Ba-133	10,7 лет	#5	5.5-9	1,8+5	2,5+1	#5	7.3-9
Ba-133m	1,62 сут	#2	2,2-9	4,5+5	2,4+2	#2	3,6-9
Ba-135m	1,20 сут	#2	1,8-9	5,6+5	2,9+2	#2	2,9-9
Ba-140	12,7 сут	#5	6,2-9	1,6+5	2,2+1	#2	1,8-8
La-137	6,00+4 лет	#6	8,7-9	1,1+5	1,4+1	#2	4,5-10

La-140	1,68 сут	#2	6,3-9	1,6+5	8,4+1	#2	1,3-8
Ce-134	3,00 сут	#2	7,6-9	1,3+5	6,9+1	#2	1,8-8
Ce-137m	1,43 сут	#2	2,2-9	4,5+5	2,4+2	#2	3,9-9
Ce-139	138 сут	#5	2,1-9	4,8+5	6,5+1	#2	1.6-9
Ce-141	32,5 сут	#5	4,1-9	2,4+5	3,3+1	#2	5,1-9
Ce-143	1,38 сут	#2	3,9-9	2,6+5	1,3+2	#2	8,0-9
Ce-144	284 сут	#2	1,6-7	6,3+3	3,3	#2	3,9-8
Pr-143	13,6 сут	#5	3,0-9	3,3+5	4,6+1	#2	8,7-9
Nd-147	11,0 сут	#5	3,0-9	3,3+5	4,6+1	#2	7,8-9
Pm-143	265 сут	#5	1,7-9	5,9+5	8,1+1	#2	1,2-9
Pm-144	363 сут	#5	9,3-9	1,1+5	1,5+1	#2	4,7-9
Pm-145	17,7 лет	#6	3,6-9	2,8+5	3,4+1	#2	6,8-10
Pm-146	5,53 лет	#6	2,1-8	4,8+4	5,9	#2	5,1-9
Pm-147	2,62 лет	#5	5,8-9	1,7+5	2,4+1	#2	1,9-9
Pm-148	5,37 сут	#2	1,1-8	9,1+4	4,8+1	#2	1,9-8

Pm-148m	41,3 сут	#5	7,1-9	1,4+5	1,9+1	#2	1,0-8
Pm-149	2,21 сут	#2	3,6-9	2,8+5	1,5+2	#2	7,4-9
Pm-151	1,18 сут	#2	2,6-9	3,8+5	2,0+2	#2	5,1-9
Sm-145	340 сут	#5	1,9-9	5,3+5	7,2+1	#2	1,4-9
Sm-146	1,03+8 лет	#6	1,1-5	9,1+1	1,1-2	#2	1,5-7
Sm-151	90,0 лет	#6	4,0-9	2,5+5	3,1+1	#2	6,4-10
Sm-153	1,95 сут	#5	7,9-10	1,3+6	1,7+2	#2	5,4-9
Eu-145	5,94 сут	#2	2,9-9	3,4+5	1,8+2	#2	3,7-9
Eu-146	4,61 сут	#2	4,4-9	2,3+5	1,2+2	#2	6,2-9
Eu-147	24,0 сут	#5	1,3-9	7,7+5	1,1+2	#2	2,5-9
Eu-148	54,5 сут	#4	4,6-9	2,2+5	4,2+1	#2	6,0-9
Eu-149	93,1 сут	#5	3,5-10	2,9+6	3,9+2	#2	6,3-10
Eu-150	34,2 лет	#6	5,3-8	1,9+4	2,3	#2	5,7-9
Eu-152	13,3 лет	#6	4,2-8	2,4+4	2,9	#2	7,4-9
Eu-154	8,80 лет	#6	5,3-8	1,9+4	2,3	#2	1,2-8

Eu-155 4,96 лет #6 6,9-9 1,4+5 1,8+1 #2 2,2-9 Eu-156 15,2 сут #5 4,2-9 2,4+5 3,3+1 #2 1,5-8 Gd-146 48,3 сут #5 7,9-9 1,3+5 1,7+1 #2 6,0-9 Gd-147 1,59 сут #2 2,2-9 4,5+5 2,4+2 #2 3,2-9 Gd-148 93,0 лет #6 2,6-5 3,8+1 4,7-3 #2 1,6-7 Gd-149 9,40 сут #5 9,2-10 1,1+6 1,5+2 #2 2,7-9 Gd-151 120 сут #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-153 2,34 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-156m <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
Gd-146 48,3 cyr #5 7,9-9 1,3+5 1,7+1 #2 6,0-9 Gd-147 1,59 cyr #2 2,2-9 4,5+5 2,4+2 #2 3,2-9 Gd-148 93,0 лет #6 2,6-5 3,8+1 4,7-3 #2 1,6-7 Gd-149 9,40 cyr #5 9,2-10 1,1+6 1,5+2 #2 2,7-9 Gd-151 120 cyr #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 cyr #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 cyr #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 cyr #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 cyr #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-156m 1,02 cyr #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 <td>Eu-155</td> <td>4,96 лет</td> <td>#6</td> <td>6,9-9</td> <td>1,4+5</td> <td>1,8+1</td> <td>#2</td> <td>2,2-9</td>	Eu-155	4,96 лет	#6	6,9-9	1,4+5	1,8+1	#2	2,2-9
Gd-147 1,59 cyr #2 2,2-9 4,5+5 2,4+2 #2 3,2-9 Gd-148 93,0 лет #6 2,6-5 3,8+1 4,7-3 #2 1,6-7 Gd-149 9,40 cyr #5 9,2-10 1,1+6 1,5+2 #2 2,7-9 Gd-151 120 cyr #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 cyr #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 cyr #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 cyr #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 cyr #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 cyr #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Eu-156	15,2 сут	#5	4,2-9	2,4+5	3,3+1	#2	1,5-8
Gd-148 93,0 лет #6 2,6-5 3,8+1 4,7-3 #2 1,6-7 Gd-149 9,40 сут #5 9,2-10 1,1+6 1,5+2 #2 2,7-9 Gd-151 120 сут #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 сут #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-146	48,3 сут	#5	7,9-9	1,3+5	1,7+1	#2	6,0-9
Gd-149 9,40 сут #5 9,2-10 1,1+6 1,5+2 #2 2,7-9 Gd-151 120 сут #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 сут #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-147	1,59 сут	#2	2,2-9	4,5+5	2,4+2	#2	3,2-9
Gd-151 120 сут #2 4,9-9 2,0+5 1,1+2 #2 1,3-9 Gd-153 242 сут #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-148	93,0 лет	#6	2,6-5	3,8+1	4,7-3	#2	1,6-7
Gd-153 242 сут #2 1,2-8 8,3+4 4,4+1 #2 1,8-9 Tb-153 2,34 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-149	9,40 сут	#5	9,2-10	1,1+6	1,5+2	#2	2,7-9
Tb-153 2,34 сут #2 1,0-9 1,0+6 5,3+2 #2 1,5-9 Tb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Tb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Tb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Tb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Tb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-151	120 сут	#2	4,9-9	2,0+5	1,1+2	#2	1,3-9
Тb-155 5,32 сут #5 2,7-10 3,7+6 5,1+2 #2 1,3-9 Тb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Тb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Тb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Тb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Gd-153	242 сут	#2	1,2-8	8,3+4	4,4+1	#2	1,8-9
Тb-156 5,34 сут #5 1,5-9 6,7+5 9,1+1 #2 6,3-9 Тb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Тb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Тb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Tb-153	2,34 сут	#2	1,0-9	1,0+6	5,3+2	#2	1,5-9
Тb-156m 1,02 сут #5 2,7-10 3,7+6 5,1+2 #2 1,0-9 Тb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Тb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Tb-155	5,32 сут	#5	2,7-10	3,7+6	5,1+2	#2	1,3-9
Тb-157 1,50+2 лет #6 1,2-9 8,3+5 1,0+2 #2 2,2-10 Тb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Tb-156	5,34 сут	#5	1,5-9	6,7+5	9,1+1	#2	6,3-9
Тb-158 1,50+2 лет #6 4,6-8 2,2+4 2,7 #2 5,9-9	Tb-156m	1,02 сут	#5	2,7-10	3,7+6	5,1+2	#2	1,0-9
	Tb-157	1,50+2 лет	#6	1,2-9	8,3+5	1,0+2	#2	2,2-10
Tb-160 72,3 cyr #5 8,6-9 1,2+5 1,6+1 #2 1,0-8	Tb-158	1,50+2 лет	#6	4,6-8	2,2+4	2,7	#2	5,9-9
	Tb-160	72,3 сут	#5	8,6-9	1,2+5	1,6+1	#2	1,0-8

Tb-161	6,91 сут	#5	1,6-9	6,3+5	8,6+1	#2	5,3-9
Dy-159	144 сут	#2	1,7-9	5,9+5	3,1+2	#2	6,4-10
Dy-166	3,40 сут	#5	2,3-9	4,3+5	6,0+1	#2	1,2-8
Но-166	1,12 сут	#2	4,0-9	2,5+5	1,3+2	#2	1,0-8
Ho-166m	1,20+3 лет	#6	1,2-7	8,3+3	1,0	#2	9,3-9
Er-169	9,30 сут	#5	1,3-9	7,7+5	1,1+2	#2	2,8-9
Er-172	2,05 сут	#5	1,4-9	7,1+5	9,8+1	#2	6,8-9
Tm-167	9,24 сут	#5	1,4-9	7,1+5	9,8+1	#2	3,9-9
Tm-170	129 сут	#5	8,5-9	1,2+5	1,6+1	#2	9,8-9
Tm-171	1,92 лет	#5	1,6-9	6,3+5	8,6+1	#2	7,8-10
Tm-172	2,65 сут	#2	5,8-9	1,7+5	9,1+1	#2	1.2-8
Yb-166	2,36 сут	#2	3,7-9	2,7+5	1,4+2	#2	5,4-9
Yb-169	32,0 сут	#5	3,7-9	2,7+5	3,7+1	#2	4,6-9
Yb-175	4,19 сут	#5	9,2-10	1,1+6	1,5+2	#2	3,2-9
Lu-169	1,42 сут	#2	1,9-9	5,3+5	2,8+2	#2	2,4-9

Lu-170	2,00 сут	#2	3,5-9	2,9+5	1,5+2	#2	5,2-9
Lu-171	8,22 сут	#5	1,1-9	9,1+5	1,2+2	#2	4,0-9
Lu-172	6,70 сут	#5	2,0-9	5,0+5	6,8+1	#2	7,0-9
Lu-173	1,37 лет	#5	2,9-9	3,4+5	4,7+1	#2	1,6-9
Lu-174	3,31 лет	#5	4,9-9	2,0+5	2,8+1	#2	1,7-9
Lu-174m	142 сут	#5	5,0-9	2,0+5	2,7+1	#2	3,8-9
Lu-177	6,71 сут	#5	1,5-9	6,7+5	9,1+1	#2	3,9-9
Lu-177m	161 сут	#5	2,0-8	5,0+4	6,8	#2	1,1-8
Hf-172	1,87 лет	#6	3,2-8	3,1+4	3,9	#2	6,1-9
Hf-175	70,0 сут	#5	1,4-9	7,1+5	9,8+1	#2	2,4-9
Hf-178m	31,0 лет	#6	2,6-7	3,8+3	4,7-1	#2	1,9-8
Hf-179m	25,1 сут	#5	4,8-9	2,1+5	2,9+1	#2	7,8-9
Hf-181	42,4 сут	#5	6,3-9	1,6+5	2,2+1	#2	7,4-9
Hf-182	9,00+6 лет	#6	3,1-7	3,2+3	4,0-1	#2	7,9-9
Ta-177	2,36 сут	#2	5,0-10	2,0+6	1,1+3	#2	6,9-10

Ta-179	1,82 лет	#5	6,4-10	1,6+6	2,1+2	#2	4,1-10
Ta-182	115 сут	#5	1,3-8	7,7+4	1,1+1	#2	9,4-9
Ta-183	5,10 сут	#5	2,7-9	3,7+5	5,1+1	#2	9,3-9
W-178	21,7 сут	#2	5,4-10	1,9+6	9,7+2	#2	1,4-9
W-181	121 сут	#2	1,9-10	5,3+6	2,8+3	#2	4,7-10
W-185	75,1 сут	#2	1,0-9	1,0+6	5,3+2	#2	3,3-9
W-188	69,4 сут	#2	5,0-9	2,0+5	1,1+2	#2	1,5-8
Re-182	2,67 сут	#2	6,3-9	1,6+5	8,4+1	#2	8,9-9
Re-184	38,0 сут	#5	2,4-9	4,2+5	5,7+1	#2	5,6-9
Re-184m	165 сут	#5	8,1-9	1,2+5	1,7+1	#2	9,8-9
Re-186	3,78 сут	#2	5,7-9	1,8+5	9,2+1	#2	1,1-8
Re-186m	2,00+5 лет	#5	1,4-8	7,1+4	9,8	#2	1,6-8
Re-189	1,01 сут	#2	2,6-9	3,8+5	2,0+2	#2	6,2-9
Os-185	94,0 сут	#5	1,9-9	5,3+5	7,2+1	#2	2,6-9
Os-191	15,4 сут	#5	2,3-9	4,3+5	6,0+1	#2	4,1-9

Os-193	1,25 сут	#2	2,7-9	3,7+5	1,9+2	#2	6,0-9
Os-194	6,00 лет	#6	8,5-8	1,2+4	1,5	#2	1,7-8
Ir-188	1,73 сут	#2	2,2-9	4,5+5	2,4+2	#2	3,3-9
Ir-189	13,3 сут	#5	7,3-10	1,4+6	1,9+2	#2	1,7-9
Ir-190	12,1 сут	#5	3,0-9	3,3+5	4,6+1	#2	7,1-9
Ir-192	74,0 сут	#5	8,1-9	1,2+5	1,7+1	#2	8,7-9
Ir-192m	2,41+2 лет	#6	3,9-8	2,6+4	3,2	#2	1,4-9
Ir-193m	11,9 сут	#5	1,6-9	6,3+5	8,6+1	#2	2,0-9
Ir-194m	171 сут	#5	1,5-8	6,7+4	9,1	#2	1,1-8
Pt-188	10,2 сут	#2	2,7-9	3,7+5	1,9+2	#2	4,5-9
Pt-191	2,80 сут	#2	7,9-10	1,3+6	6,7+2	#2	2,1-9
Pt-193	50,0 лет	#2	1,6-10	6,3+6	3,3+3	#2	2,4-10
Pt-193m	4,33 сут	#2	1,0-9	1,0+6	5,3+2	#2	3,4-9
Pt-195m	4,02 сут	#2	1,5-9	6.7+5	3,5+2	#2	4,6-9
Au-194	1,65 сут	#2	1,4-9	7,1+5	3,8+2	#2	2,2-9

Au-195	183 сут		#5	2,1-9	4,8+5	6,5+1	#2	1,7-9
Au-198	2,69 сут		#2	4,4-9	2,3+5	1,2+2	#2	7,2-9
Au-198m	2,30 сут		#5	2,5-9	4,0+5	5,5+1	#2	8,5-9
Au-199	3,14 сут		#5	1,0-9	1,0+6	1,4+2	#2	3,1-9
Hg-194	2,60+2 лет	*(8)	#6	1,4-8	7,1+4	8,8	#2	1,2-7
		*(9)	#6	1,3-8	7,7+4	9,5	#2	3,6-9
Hg-195m	1,73 сут	<u>*(7)</u>	#2	9,7-10	1,0+6	5,4+2	#2	2,8-9
		*(8)	#2	2,6-9	3,8+5	2,0+2	#2	3,8-9
Hg-197	2,67 сут	<u>*(7)</u>	#2	4,0-10	2,5+6	1,3+3	#2	1,2-9
		*(8)	#5	3,8-10	2,6+6	3,6+2	#2	1,6-9
Hg-203	46,6 сут	<u>*(7)</u>	#2	3,7-9	2,7+5	1,4+2	#2	1,1-8
		*(8)	#5	3,0-9	3,3+5	4,6+1	#2	3,6-9
T1-200	1,09 сут		#2	8,7-10	1,1+6	6,0+2	#2	9,1-10
T1-201	3,04 сут		#2	3,3-10	3,0+6	1,6+3	#2	5,5-10
T1-202	12,2 сут		#2	1,2-9	8,3+5	4,4+2	#2	2,1-9

T1-204	3,78 лет	#2	3,3-9	3,0+5	1,6+2	#2	8,5-9
Pb-202	3,00+5 лет	#5	8,7-9	1,1+5	1,6+1	#5	2,7-8
Pb-203	2,17 сут	#2	1,0-9	1,0+6	5,3+2	#2	1,3-9
Pb-205	1,43+7 лет	#5	2,9-10	3,4+6	4,7+2	#2	9,9-10
Pb-210	22,3 лет	#5	1,3-6	7,7+2	1,1-1	#2	3,6-6
Bi-205	15,3 сут	#5	1,2-9	8,3+5	1,1+2	#2	4,5-9
Bi-206	6,24 сут	#5	2,1-9	4,8+5	6,5+1	#2	1,0-8
Bi-207	38,0 лет	#5	6,5-9	1,5+5	2,1+1	#2	7,1-9
Bi-210	5,01 сут	#5	1,1-7	9,1+3	1,2	#2	9,7-9
Bi-210m	3,00+6 лет	#5	4,1-6	2,4+2	3,3-2	#2	9,1-8
Po-210	138 сут	#5	4,0-6	2,5+2	3,4-2	#2	8,8-6
Ra-223	11,4 сут	#5	9,4-6	1,1+2	1,5-2	#2	1,1-6
Ra-224	3,66 сут	#5	3,7-6	2,7+2	3,7-2	#2	6,6-7
Ra-225	14,8 сут	#5	7,9-6	1,3+2	1,7-2	#2	1,2-6
Ra-226	1,60+3 лет	#5	4,5-6	2,2+2	3,0-2	#5	1,5-6

Ra-228	5,75 лет	#5	4,4-6	2,3+2	3,1-2	#5	5,3-6
Ac-225	10,0 сут	#5	1,1-5	9,1+1	1,2-2	#2	1,8-7
Ac-226	1,21 сут	#5	1,6-6	6,3+2	8,6-2	#2	7,6-8
Ac-227	21,8 лет	#6	5,5-4	1,8	2,2-4	#2	3,1-6
Th-227	18,7 сут	#5	1,3-5	7,7+1	1,1-2	#2	7,0-8
Th-228	1,91 лет	#5	4,7-5	2,1+1	2,9-3	#2	3,7-7
Th-229	7,34+3 лет	#6	7,1-5	1,4+1	1,7-3	#2	1,0-6
Th-230	7,70+4 лет	#6	1,4-5	7,1 + 1	8,8-3	#2	4,1-7
Th-231	1,06 сут	#2	1,7-9	5,9+5	3,1+2	#2	2,5-9
Th-232	1,40+10 лет	#6	2,5-5	4,0+1	4,9-3	#2	4,5-7
Th-234	24,1 сут	#5	9,1-9	1,1+5	1,5+1	#2	2,5-8
Pa-230	17,4 сут	#5	9,6-7	1,0+3	1,4-1	#2	5,7-9
Pa-231	3,27+4 лет	#6	1,4-4	7,1	8,8-4	#2	1,3-6
Pa-232	1,31 сут	#6	1,0-8	1,0+5	1,2+1	#2	4,2-9
Pa-233	27,0 сут	#5	4,9-9	2,0+5	2,8+1	#2	6,2-9

U-230	20,8 сут	#5	1,7-5	5,9+1	8,1-3	#2	3,0-7
U-231	4,20 сут	#5	4,6-10	2,2+6	3,0+2	#2	2,0-9
U-232	72,0 лет	#5	1,0-5	1,0+2	1,4-2	#5	6,4-7
U-233	1,58+5 лет	#5	4,3-6	2,3+2	3,2-2	#2	1,4-7
U-234	2,44+5 лет	#5	4,2-6	2,4+2	3,3-2	#2	1,3-7
U-235	7,04+8 лет	#5	3,7-6	2,7+2	3,7-2	#2	1,3-7
U-236	2,34+7 лет	#5	3,9-6	2,6+2	3,5-2	#2	1,3-7
U-237	6,75 сут	#5	2,1-9	4,8+5	6,5+1	#2	5,4-9
U-238	4,47+9 лет	#5	3,4-6	2,9+2	4,0-2	#2	1,2-7
Np-234	4,40 сут	#2	3,0-9	3,3+5	1,8+2	#2	4,4-9
Np-235	1,08 лет	#5	5,1-10	2,0+6	2,7+2	#2	4,1-10
Np-236	1,15+5 лет	#6	3,2-6	3,1+2	3,9-2	#5	1,8-8
Np-237	2,14+6 лет	#6	2,3-5	4,3+1	5,4-3	#2	2,1-7
Np-238	2,12 сут	#6	2,1-9	4,8+5	5,9+1	#2	6,2-9
Np-239	2,36 сут	#5	1,2-9	8,3+5	1,1+2	#2	5,7-9

Pu-236	2,85 лет	#6	2,0-5	5,0+1	6,2-3	#2	2,2-7
Pu-237	45,3 сут	#5	4,3-10	2,3+6	3,2+2	#2	6,9-10
Pu-238	87,7 лет	#6	4,6-5	2,2+1	2,7-3	#2	4,0-7
Pu-239	2,41+4 лет	#6	5,0-5	2,0+1	2,5-3	#2	4,2-7
Pu-240	6,54+3 лет	#6	5,0-5	2,0+1	2,5-3	#2	4,2-7
Pu-241	14,4 лет	#6	9,0-7	1,1+3	1,4-1	#6	4,8-9
Pu-242	3,76+5 лет	#6	4,8-5	2,1+1	2,6-3	#2	4,0-7
Pu-244	8,26+7 лет	#6	4,7-5	2,1+1	2,6-3	#2	4,1-7
Pu-246	10,9 сут	#5	9,1-9	1,1+5	1,5+1	#2	2,3-8
Am-240	2,12 сут	#2	2,2-9	4,5+5	2,4+2	#2	3,3-9
Am-241	4,32+2 лет	#6	4,2-5	2,4+1	2,9-3	#2	3,7-7
Am-242m	1,52+2 лет	#6	3,7-5	2,7+1	3,3-3	#2	3,0-7
Am-243	7,38+3 лет	#6	4,1-5	2,4+1	3,0-3	#2	3,7-7
Cm-240	27,0 сут	#5	3,8-6	2,6+2	3,6-2	#2	4,8-8
Cm-241	32,8 сут	#5	4,4-8	2,3+4	3,1	#2	5,7-9

Cm-243 28,5 лет #6 3,1-5 3,2+1 4,0-3 #2 3, Cm-244 18,1 лет #6 2,7-5 3,7+1 4,6-3 #2 2, Cm-245 8,50+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-246 4,73+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-247 1,56+7 лет #6 3,9-5 2,6+1 3,2-3 #2 3, Cm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1, Cm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8, Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3, Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,								
Cm-244 18,1 лет #6 2,7-5 3,7+1 4,6-3 #2 2,7 Cm-245 8,50+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-246 4,73+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-247 1,56+7 лет #6 3,9-5 2,6+1 3,2-3 #2 3, Cm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1, Cm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8, Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3, Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,	Cm-242	163 сут	#5	6,4-6	1,6+2	2,1-2	#2	7,6-8
Cm-245 8,50+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-246 4,73+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-247 1,56+7 лет #6 3,9-5 2,6+1 3,2-3 #2 3, Cm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1, Cm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8, Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3, Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,	Cm-243	28,5 лет	#6	3,1-5	3,2+1	4,0-3	#2	3,3-7
Сm-246 4,73+3 лет #6 4,2-5 2,4+1 2,9-3 #2 3, Cm-247 1,56+7 лет #6 3,9-5 2,6+1 3,2-3 #2 3, Cm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1, Cm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8, Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3, Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,9	Cm-244	18,1 лет	#6	2,7-5	3,7+1	4,6-3	#2	2,9-7
Сm-247 1,56+7 лет #6 3,9-5 2,6+1 3,2-3 #2 3, Сm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1, Сm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8, Вk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3, Вk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Вk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,	Cm-245	8,50+3 лет	#6	4,2-5	2,4+1	2,9-3	#2	3,7-7
Cm-248 3,39+5 лет #6 1,5-4 6,7 8,2-4 #2 1,5-4 Cm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8,5-4 Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3,5-4 Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2,6-9 Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,6-1	Cm-246	4,73+3 лет	#6	4,2-5	2,4+1	2,9-3	#2	3,7-7
Сm-250 6,90+3 лет #6 8,4-4 1,2 1,5-4 #2 8,5 Вk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3,5 Вk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2,6 Вk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет Вк-247 1,38+3 лет #6 8,9-5 1,4+1 1,8-3 #2 8,5 Вк-247 1,38+3 лет Вк-247 1,38+3 л	Cm-247	1,56+7 лет	#6	3,9-5	2,6+1	3,2-3	#2	3,5-7
Bk-245 4,94 сут #5 2,6-9 3,8+5 5,3+1 #2 3,9 Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2,0 Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,0	Cm-248	3,39+5 лет	#6	1,5-4	6,7	8,2-4	#2	1,4-6
Bk-246 1,83 сут #2 1,7-9 5,9+5 3,1+2 #2 2, Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,	Cm-250	6,90+3 лет	#6	8,4-4	1,2	1,5-4	#2	8,2-6
Bk-247 1,38+3 лет #6 6,9-5 1,4+1 1,8-3 #2 8,	Bk-245	4,94 сут	#5	2,6-9	3,8+5	5,3+1	#2	3,9-9
	Bk-246	1,83 сут	#2	1,7-9	5,9+5	3,1+2	#2	2,6-9
Bk-249 320 cyr #6 1,6-7 6,3+3 7,7-1 #2 2,9	Bk-247	1,38+3 лет	#6	6,9-5	1,4+1	1,8-3	#2	8,6-7
	Bk-249	320 сут	#6	1,6-7	6,3+3	7,7-1	#2	2,9-9
Cf-246 1,49 cyr #5 5,7-7 1,8+3 2,4-1 #2 2,4-1	Cf-246	1,49 сут	#5	5,7-7	1,8+3	2,4-1	#2	2,4-8
Cf-248 334 cyr #5 1,0-5 1,0+2 1,4-2 #2 1,6	Cf-248	334 сут	#5	1,0-5	1,0+2	1,4-2	#2	1,6-7
Сf-249 3,50+2 лет #6 7,0-5 1,4+1 1,8-3 #2 8,	Cf-249	3,50+2 лет	#6	7,0-5	1,4+1	1,8-3	#2	8,7-7

Cf-250	13,1 лет	#6	3,4-5	2,9+1	3,6-3	#2	5,5-7
Cf-251	8,98+2 лет	#6	7,1-5	1,4+1	1,7-3	#2	8,8-7
Cf-252	2,64 лет	#3	5,6-5	1,8+1	5,6-3	#2	5,1-7
Cf-253	17,8 сут	#5	1,7-6	5,9+2	8,1-2	#2	1,1-8
Cf-254	60,5 сут	#4	7,0-5	1,4+1	2,7-3	#2	2,6-6
Es-251	1,38 сут	#5	2,6-9	3,8+5	5,3+1	#2	1,2-9
Es-253	20,5 сут	#5	3,4-6	2,9+2	4,0-2	#2	4,5-8
Es-254	276 сут	#5	1,0-5	1,0+2	1,4-2	#2	1,6-7
Es-254m	1,64 сут	#5	5,9-7	1,7+3	2,3-1	#2	3,0-8
Fm-253	3,00 сут	#5	5,0-7	2,0+3	2,7-1	#2	6,7-9
Fm-257	101 сут	#5	8,8-6	1,1+2	1,6-2	#2	1,1-7
Md-258	55,0 сут	#5	7,3-6	1,4+2	1,9-2	#2	8,9-8

^{*(1) -} За исключением случаев, отмеченных особо, регламентированные значения относятся ко всем возможным соединениям радионуклидов, поступающим в организм с воздухом, пищей и водой.

^{*(2)} - Обозначение критических групп: #1 - новорожденные дети до 1 года; #2 - дети в возрасте 1-2 года; #3 - дети в возрасте 2-7 лет; #4 - дети в возрасте 7-12 лет; #5 - дети в возрасте 12-17 лет; #6 - взрослые (старше 17 лет).

^{*(3) -} Неорганические соединения трития.

Приложение 2а к НРБ-99/09

Значения дозовых коэффициентов е (мЗв/Бк) при поступлении радионуклидов в организм взрослых людей с водой и уровни вмешательства УВ (Бк/кг) по содержанию отдельных радионуклидов в питьевой воде

Нуклид	е, мЗв/Бк	УВ, Бк/кг	Нуклид	е, мЗв/Бк	УВ, Бк/кг
1	2	3	4	5	6
H-3	1,8-8	7600	Тс-97	6,8-8	2000
Be-7	2,8-8	4900	Tc-97m	5,5-7	250

^{*(4) -} Органические соединения трития.

^{*(5) -} Неорганические соединения серы.

^{*(6) -} Органические соединения серы.

^{*(7)} - При поступлении изотопа 40 К дополнительно к природной смеси изотопов калия.

^{*(8) -} Органические соединения ртути.

^{*(9) -} Неорганические соединения ртути.

C-14	5,8-7	240	Тс-99	6,4-7	210
Na-22	3,2-6	43	Ru-97	1,5-7	910
P-32	2,4-6	57	Ru-103	7,3-7	190
P-33	2,4-7	570	Ru-106	7,0-6	20
S-35	7,7-7	178	Rh-105	3,7-7	370
Cl-36	9,3-7	150	Pd-103	1,9-7	720
Ca-45	7,1-7	190	Ag-105	4,7-7	290
Ca-47	1,6-6	86	Ag-110m	2,8-6	49
Sc-46	1,5-6	91	Ag-111	1,3-6	110
Sc-47	5,4-7	250	Cd-109	2,0-6	69
Sc-48	1,7-6	81	Cd-115	1,4-6	98
V-48	2,0-6	69	Cd-115m	3,3-6	42
Cr-51	3,8-8	3600	In-111	2,9-7	470
Mn-51	9,3-8	1500	In-114m	4,1-6	33
Mn-52	1,8-6	76	Sn-113	7,3-7	190

3,0-8	4600	Sn-125	3,1-6	44
7,1-7	193	Sb-122	1,7-6	81
3,3-7	420	Sb-124	2,5-6	55
1,8-6	76	Sb-125	1,1-6	120
2,5-6	55	Te-123m	1,6-6	86
2,1-7	650	Te-127	1,7-7	810
7,4-7	190	Te-127m	2,3-6	60
3,4-6	40	Te-129	6,3-8	2100
6,3-8	2200	Te-129m	3,0-6	46
1,5-7	910	Te-131	8,7-8	1600
3,9-6	35	Te-131m	1,9-6	72
1,2-8	11400	Te-132	3,8-6	36
2,6-7	530	I-123	2,1-7	650
1,3-6	110	I-125	1,5-5	9,1
1,6-6	86	I-126	2,9-5	4,7
	7,1-7 3,3-7 1,8-6 2,5-6 2,1-7 7,4-7 3,4-6 6,3-8 1,5-7 3,9-6 1,2-8 2,6-7	7,1-7 193 3,3-7 420 1,8-6 76 2,5-6 55 2,1-7 650 7,4-7 190 3,4-6 40 6,3-8 2200 1,5-7 910 3,9-6 35 1,2-8 11400 2,6-7 530 1,3-6 110	7,1-7 193 Sb-122 3,3-7 420 Sb-124 1,8-6 76 Sb-125 2,5-6 55 Te-123m 2,1-7 650 Te-127 7,4-7 190 Te-127m 3,4-6 40 Te-129 6,3-8 2200 Te-129m 1,5-7 910 Te-131 3,9-6 35 Te-131m 1,2-8 11400 Te-132 2,6-7 530 I-123 1,3-6 110 I-125	7,1-7 193 Sb-122 1,7-6 3,3-7 420 Sb-124 2,5-6 1,8-6 76 Sb-125 1,1-6 2,5-6 55 Te-123m 1,6-6 2,1-7 650 Te-127 1,7-7 7,4-7 190 Te-127m 2,3-6 3,4-6 40 Te-129 6,3-8 6,3-8 2200 Te-129m 3,0-6 1,5-7 910 Te-131 8,7-8 3,9-6 35 Te-131m 1,9-6 1,2-8 11400 Te-132 3,8-6 2,6-7 530 I-123 2,1-7 1,3-6 110 I-125 1,5-5

As-77	4,0-7	340	I-129	1,1-4	1,3
Se-75	2,6-6	53	I-130	2,0-6	69
Br-82	5,4-7	250	I-131	2,2-5	6,2
Rb-86	2,8-6	49	Cs-129	6,0-8	2300
Sr-85	5,6-7	240	Cs-131	5,8-8	2400
Sr-89	2,6-6	53	Cs-132	5,0-7	270
Sr-90	2,8-5	4,9	Cs-134	1,9-5	7,2
Y-90	2,7-6	51	Cs-135	2,0-6	69
Y-91	2,4-6	57	Cs-136	3,0-6	46
Zr-93	1,1-6	120	Cs-137	1,3-5	11
Zr-95	9,5-7	140	Cs-138	9,2-8	1500
Nb-93m	1,2-7	1100	Ba-131	4,5-7	300
Nb-94	1,7-6	81	Ba-140	2,6-6	53
Nb-95	5,8-7	240	La-140	2,0-6	69
Mo-93	3,1-6	44	Ce-139	2,6-7	530

Mo-99	6,0-7	220	Ce-141	7,1-7	190
Tc-96	1,1-6	120	Ce-143	1,1-6	120
Ce-144	5,2-6	26	Th-231	3,4-7	400
Pr-143	1,2-6	110	Th-232	2,3-4	0,60
Nd-147	1,1-6	120	Th-234	3,4-6	40
Pm-147	2,6-7	530	U-230	5,6-5	2,5
Pm-149	9,9-7	140	U-231	2,8-7	490
Sm-151	9,8-8	1400	U-232	3,3-4	0,42
Sm-153	7,4-7	190	U-233	5,1-5	2,7
Eu-152	1,4-6	98	U-234	4,9-5	2,8
Eu-154	2,0-6	69	U-235	4,7-5	2,9
Eu-155	3,2-7	430	U-236	4,7-5	2,9
Gd-153	2,7-7	510	U-237	7,6-7	180
Tb-160	1,6-6	86	U-238	4,5-5	3,0
Er-169	3,7-7	370	Pa-230	9,2-7	150

Tm-171	1,1-7	1200	Pa-231	7,1-4	0,19
Yb-175	4,4-7	310	Pa-233	8,7-7	160
Ta-182	1,5-6	91	Np-237	1,1-4	1,3
W-181	7,6-8	1800	Np-239	8,0-7	170
W-185	4,4-7	310	Pu-236	8,7-5	1,6
Re-186	1,5-6	91	Pu-237	1,0-7	1400
Os-185	5,1-7	270	Pu-238	2,3-4	0,60
Os-191	5,7-7	240	Pu-239	2,5-4	0,55
Os-193	8,1-7	170	Pu-240	2,5-4	0,55
Ir-190	1,2-6	110	Pu-241	4,8-6	29
Ir-192	1,4-6	98	Pu-242	2,4-4	0,57
Pt-191	3,4-7	400	Pu-244	2,4-4	0,57
Pt-193m	4,5-7	300	Am-241	2,0-4	0,69
Au-198	1,0-6	140	Am-242	3,0-7	460
Au-199	4,4-7	310	Am-242m	1,9-4	0,72

Hg-197	2,3-7	600	Am-243	2,0-4	0,69
Hg-203	1,9-6	72	Cm-242	1,0-5	14
Tl-200	2,0-7	690	Cm-243	1,5-4	0,91
Tl-201	9,5-8	1400	Cm-244	1,2-4	1,1
T1-202	4,5-7	300	Cm-245	2,1-4	0,65
T1-204	1,2-6	110	Cm-246	2,1-4	0,65
Pb-203	2,4-7	570	Cm-247	1,9-4	0,72
Pb-210	6,9-4	0,20	Cm-248	7,7-4	0,18
Bi-206	1,9-6	72	Bk-249	5,7-7	240
Bi-207	1,3-6	110	Cf-246	3,3-6	42
Bi-210	1,3-6	110	Cf-248	2,8-5	4,9
Po-210	1,2-3	0,11	Cf-249	3,5-4	0,39
Ra-223	1,0-4	1,4	Cf-250	1,6-4	0,86
Ra-224	6,5-5	2,1	Cf-251	3,6-4	0,38
Ra-225	9,9-5	1,4	Cf-252	9,0-5	1,5

Ra-226	2,8-4	0,49	Cf-253	1,4-6	98
Ra-228	6,9-4	0,20	Cf-254	4,0-4	0,34
Th-227	8,8-6	16	Es-253	6,1-6	22
Th-228	7,2-5	1,9	Es-254	2,8-5	4,9
Th-229	4,9-4	0,28	Es-254m	4,2-6	33
Th-230	2,1-4	0,65			

Приложение 3 к НРБ-99/09

Распределение соединений элементов по типам при ингаляции

Элемент	Символ	Тип	Химические соединения
1	2	3	4
Тритий	Т	Γ1	Пары тритированной воды
		Γ2	Газообразный тритий
		Г3	Третированный металл

	_		
Бериллий	Be	M	Оксиды, галогениды, нитраты
		П	Иные соединения
Углерод	С	Γ1	Элементарный углерод
		Г2	Диоксид углерода (СО2)
		Г3	Оксид углерода (СО)
Фтор	F	M	Соединения с лантаноидами
		Б	Соединения с H, Li, Na, K, Rb, Cs, Fr
		П	Иные соединения
Натрий	Na	Б	Все соединения
Магний	Mg	П	Оксиды, гидроксиды, карбиды, галогениды, нитраты
		Б	Иные соединения
Алюминий	Al	П	Оксиды, гидроксиды, карбиды, галогениды, нитраты, металл
		Б	Иные соединения
Кремний	Si	M	Алюмосиликаты (стекло)

	Γ		
		П	Оксиды, гидроксиды, карбиды, нитраты
		Б	Иные соединения
Фосфор	P	П	Фосфаты Zn ^{2+,} Sn ²⁺ , Mg ²⁺ , Fe ³⁺ , Bi ³⁺ и лантаноидов
		Б	Иные соединения
Cepa	S	П	Сера в элементарной форме сульфиды Sr, Ba, Ge, Sn, Pb, As, Sb, Bi, Ag, Cu, Au, Zn, Cd, Hg, Mo, W сульфаты Ca, Sr, Ba, Ra, As, Sb, Bi
		Б	Иные соединения
		Γ1	Сульфид углерода (CS ₂)
		Г2	Диоксид серы (SO ₂)
Хлор	Cl	Б	Соединения с H, Li, Na, K, Rb, Cs, Fr
		П	Иные соединения
Калий	K	Б	Все соединения
Кальций	Ca	П	Все соединения
Скандий	Sc	M	Все соединения
Титан	Ti	M	SrTiO ₃

		П	Оксиды, гидроксиды, карбиды, галогениды, нитраты
		Б	Иные соединения
Ванадий	V	П	Оксиды, гидроксиды, карбиды, галогениды
		Б	Иные соединения
Хром	Cr	M	Оксиды, гидроксиды
		П	Галогениды, нитраты
		Б	Иные соединения
Марганец	Mn	П	Оксиды, гидроксиды, галогениды, нитраты
		Б	Иные соединения
Железо	Fe	П	Оксиды, гидроксиды, галогениды
		Б	Иные соединения
Кобальт	Со	M	Оксиды, гидроксиды, галогениды, нитраты
		П	Иные соединения
Никель	Ni	П	Оксиды, гидроксиды, карбиды
		Б	Иные соединения

		Γ	Газообразный Ni(CO)4
Медь	Cu	M	Оксиды, гидроксиды
		П	Сульфиды, галогениды, нитраты
		Б	Иные неорганические соединения
Цинк	Zn	M	Все соединения
Галлий	Ga	П	Оксиды, гидроксиды, карбиды, галогениды, нитраты
		Б	Иные соединения
Германий	Ge	П	Оксиды, сульфиды, галогениды
		Б	Иные соединения
Мышьяк	As	П	Все соединения
Селен	Se	П	Селен в элементарной форме
		Б	Иные неорганические соединения
Бром	Br	Б	Соединения с H, Li, Na, K, Rb, Cs, Fr
		П	Иные соединения
Рубидий	Rb	Б	Все соединения

Стронций	Sr	М	SrTiO ₃
		Б	Иные соединения
Иттрий	Y	M	Оксиды, гидроксиды
		П	Иные соединения
Цирконий	Zr	M	Карбид
		П	Оксиды, гидроксиды, галогениды, нитраты
		Б	Иные соединения
Ниобий	Nb	M	Оксиды, гидроксиды
		П	Иные соединения
Молибден	Mo	M	Оксиды, гидроксиды, MoS ₂
		Б	Иные соединения
Технеций	Тс	П	Оксиды, гидроксиды, галогениды, нитраты
		Б	Иные соединения
Рутений	Ru	M	Оксиды, гидроксиды, металл
		П	Галогениды

		Б	T. D.O.
		Γ	Тетраоксид рутения RuO4
Родий	Rh	M	Оксиды, гидроксиды
		П	Галогениды
		Б	Иные соединения
Палладий	Pd	M	Оксиды, гидроксиды
		П	Галогениды, нитраты
		Б	Иные соединения
Серебро	Ag	M	Оксиды, гидроксиды
		П	Нитраты, сульфиды
		Б	Иные соединения
Кадмий	Cd	M	Оксиды, гидроксиды
		П	Сульфиды, галогениды, нитраты
		Б	Иные соединения
Индий	In	П	Оксиды, гидроксиды, галогениды, нитраты
		Б	Иные соединения

Олово	Sn	П	Оксиды, гидроксиды, сульфиды, галогениды, нитраты, фосфат
		Б	Иные соединения
Сурьма	Sb	П	Оксиды, гидроксиды, галогениды, сульфиды, сульфаты, нитраты
		Б	Иные соединения
Теллур	Те	П	Оксиды, гидроксиды, нитраты
		Б	Иные соединения
		Γ	Пары теллура
Иод	I	Б	Все соединения
		Γ1	Элементарный иод
		Γ2	Метилиод СН3І
Цезий	Cs	Б	Все соединения
Барий	Ba	Б	Все соединения
Лантан	La	П	Оксиды, гидроксиды
		Б	Иные соединения

Церий	Ce	M	Оксиды, гидроксиды, фториды
		П	Иные соединения
Празеодим	Pr	M	Оксиды, гидроксиды, карбиды, ториды
		П	Иные соединения
Неодим	Nd	M	Оксиды, гидроксиды, карбиды, фториды
		П	Иные соединения
Прометий	Pm	M	Оксиды, гидроксиды, карбиды, фториды
		П	Иные соединения
Самарий	Sm	П	Все соединения
Европий	Eu	П	Все соединения
Гадолиний	Gd	П	Труднорастворимые соединения, оксиды, гидроксиды, фториды
		Б	Иные соединения
Тербий	Tb	П	Все соединения
Диспозий	Dy	П	Все соединения
Гольмий	Но	П	Все соединения

Эрбий	Er	П	Все соединения	
Тулий	Tm	П	Все соединения	
Иттербий	Yb	M	Оксиды, гидроксиды, фториды	
		П	Иные соединения	
Лютеций	Lu	M	Оксиды, гидроксиды, фториды	
		П	Иные соединения	
Гафний	Hf	П	Оксиды, гидроксиды, карбиды, галогениды, нитраты	
		Б	Иные соединения	
Тантал	Та	M	Элементарный тантал, оксиды, гидроксиды, галогениды, карбиды, нитраты, нитриды	
		П	Иные соединения	
Вольфрам	W	Б	Все соединения	
Рений	Re	П	Оксиды, гидроксиды, галогениды, нитраты	
		Б	Иные соединения	
Осмий	Os	М	Оксиды, гидроксиды	

	Г	T	
		П	Галогениды, нитраты
		Б	Иные соединения
Ирридий	Ir	M	Оксиды, гидроксиды
		П	Галогениды, нитраты, элементарный ирридий
		Б	Иные соединения
Платина	Pt	Б	Все соединения
Золото	Au	M	Оксиды, гидроксиды
		П	Галогениды, нитраты
		Б	Иные соединения
Ртуть	Hg	П (но)	Оксиды, гидроксиды, галогениды, нитраты, сульфиды
		Б (но)	Сульфаты
		Б (ор)	Все органические соединения
		Γ	Пары ртути
Таллий	Tl	Б	Все соединения
Свинец	Pb	Б	Все соединения

Висмут	Bi	Б	Нитраты	
		П	Иные соединения	
Полоний	Po	П	Оксиды, гидроксиды, нитраты	
		Б	Иные соединения	
Астат	At	Б	Соединения с H, Li, Na, K, Rb, Cs, Fr	
		П	Иные соединения	
Франций	Fr	Б	Все соединения	
Радий	Ra	П	Все соединения	
Актиний	Ac	M	Оксиды, гидроксиды	
		П	Галогениды, нитраты	
		Б	Иные соединения	
Торий	Th	M	Оксиды, гидроксиды	
		П	Иные соединения	
Протактиний	Pa	M	Оксиды, гидроксиды	
		П	Иные соединения	

Уран	U	Б	UF ₆ , UO ₂ F ₂ , UO ₂ (NO ₃) ₂
		П	UO3, UF4, UCl4
		M	UO ₂ , U ₃ O ₈
Нептуний	Np	П	Все соединения
Плутоний	Pu	M	Оксиды, гидроксиды
		П	Иные соединения кроме хелатов
Америций	Am	П	Все соединения
Кюрий	Cm	П	Все соединения
Берклий	Bk	П	Все соединения
Калифорний	Cf	M	Оксиды, гидроксиды
		П	Иные соединения
Эйнштейний	Es	П	Все соединения
Фермий	Fm	П	Все соединения

Приложение 4 к НРБ-99/09

Минимально значимые удельная активность радионуклидов (МЗУА) и активность радионуклидов в помещении или на рабочем месте (МЗА)

Нуклид	МЗУА, Бк/г	МЗА, Бк
1	2	3
H-3	1 E+06	1 E+09
Be-7	1 E+03	1 E+07
C-14	1 E+04	1 E+07
O-15	1 E+02	1 E+09
F-18	1 E+01	1 E+06
Na-22	1 E+01	1 E+06
Na-24	1 E+01	1 E+05

Si-31	1 E+03	1 E+06
P-32	1 E+03	1 E+05
P-33	1 E+05	1 E+08
S-35	1 E+05	1 E+08
C1-36	1 E+04	1 E+06
C1-38	1 E+01	1 E+05
Ar-37	1 E+06	1 E+08
Ar-41	1 E+02	1 E+09
K-40	1 E+02	1 E+06
K-42	1 E+02	1 E+06
K-43	1 E+01	1 E+06
Ca-45	1 E+04	1 E+07
Ca-47	1 E+01	1 E+06
Sc-46	1 E+01	1 E+06
Sc-47	1 E+02	1 E+06

Sc-48	1 E+01	1 E+05
V-48	1 E+01	1 E+05
Cr-51	1 E+03	1 E+07
Mn-51	1 E+01	1 E+05
Mn-52	1 E+01	1 E+05
Mn-52m	1 E+01	1 E+05
Mn-53	1 E+04	1 E+09
Mn-54	1 E+01	1 E+06
Mn-56	1 E+01	1 E+05
Fe-52	1 E+01	1 E+06
Fe-55	1 E+04	1 E+06
Fe-59	1 E+01	1 E+06
Co-55	1 E+01	1 E+06
Co-56	1 E+01	1 E+05
Co-57	1 E+02	1 E+06

Co-58	1 E+01	1 E+06
Co-58m	1 E+04	1 E+07
Co-60	1 E+01	1 E+05
Co-60m	1 E+03	1 E+06
Co-61	1 E+02	1 E+06
Co-62m	1 E+01	1 E+05
Ni-59	1 E+04	1 E+08
Ni-63	1 E+05	1 E+08
Ni-65	1 E+01	1 E+06
Cu-64	1 E+02	1 E+06
Zn-65	1 E+01	1 E+06
Zn-69	1 E+04	1 E+06
Zn-69m	1 E+02	1 E+06
Ga-72	1 E+01	1 E+05
Ge-71	1 E+04	1 E+08

As-73	1 E+03	1 E+07
As-74	1 E+01	1 E+06
As-76	1 E+02	1 E+05
As-77	1 E+03	1 E+06
Se-75	1 E+02	1 E+06
Br-82	1 E+01	1 E+06
Kr-74	1 E+02	1 E+09
Kr-76	1 E+02	1 E+09
Kr-77	1 E+02	1 E+09
Kr-79	1 E+03	1 E+05
Kr-81	1 E+04	1 E+07
Kr-83m	1 E+05	1 E+12
Kr-85	1 E+05	1 E+04
Kr-85m	1 E+03	1 E+10
Kr-87	1 E+02	1 E+09

1 E+02	1 E+09
1 E+02	1 E+05
1 E+02	1 E+06
1 E+02	1 E+07
1 E+02	1 E+06
1 E+03	1 E+06
1 E+02	1 E+04
1 E+01	1 E+05
1 E+01	1 E+06
1 E+03	1 E+05
1 E+03	1 E+06
1 E+02	1 E+06
1 E+02	1 E+05
1 E+02	1 E+05
1 E+03	1 E+07
	1 E+02 1 E+02 1 E+02 1 E+02 1 E+03 1 E+01 1 E+01 1 E+03 1 E+03 1 E+03 1 E+02 1 E+02

Zr-95	1 E+01	1 E+06
Zr-97*	1 E+01	1 E+05
Nb-93m	1 E+04	1 E+07
Nb-94	1 E+01	1 E+06
Nb-95	1 E+01	1 E+06
Nb-97	1 E+01	1 E+06
Nb-98	1 E+01	1 E+05
Mo-90	1 E+01	1 E+06
Mo-93	1 E+03	1 E+08
Mo-99	1 E+02	1 E+06
Mo-101	1 E+01	1 E+06
Тс-96	1 E+01	1 E+06
Tc-96m	1 E+03	1 E+07
Tc-97	1 E+03	1 E+08
Tc-97m	1 E+03	1 E+07

Тс-99	1 E+04	1 E+07
Tc-99m	1 E+02	1 E+07
Ru-97	1 E+02	1 E+07
Ru-103	1 E+02	1 E+06
Ru-105	1 E+01	1 E+06
Ru-106*	1 E+02	1 E+05
Rh-103m	1 E+04	1 E+08
Rh-105	1 E+02	1 E+07
Pd-103	1 E+03	1 E+08
Pd-109	1 E+03	1E+06
Ag-105	1 E+02	1 E+06
Ag-110m	1 E+01	1 E+06
Ag-111	1 E+03	1 E+06
Cd-109	1 E+04	1 E+06
Cd-115	1 E+02	1 E+06

Cd-115m	1 E+03	1 E+06
In-111	1 E+02	1 E+06
In-113m	1 E+02	1 E+06
In-114m	1 E+02	1 E+06
In-115m	1 E+02	1 E+06
Sn-113	1 E+03	1 E+07
Sn-125	1 E+02	1 E+05
Sb-122	1 E+02	1 E+04
Sb-124	1 E+01	1 E+06
Sb-125	1 E+02	1 E+06
Te-123m	1 E+02	1 E+07
Te-125m	1 E+03	1 E+07
Te-127	1 E+03	1 E+06
Te-127m	1 E+03	1 E+07
Te-129	1 E+02	1 E+06

Te-129m	1 E+03	1 E+06
Te-131	1 E+02	1 E+05
Te-131m	1 E+01	1 E+06
Te-132	1 E+02	1 E+07
Te-133	1 E+01	1 E+05
Te-133m	1 E+01	1 E+05
Te-134	1 E+01	1 E+06
I-123	1 E+02	1 E+07
I-125	1 E+03	1 E+06
I-126	1 E+02	1 E+06
I-129	1 E+02	1 E+05
I-130	1 E+01	1 E+06
I-131	1 E+02	1 E+06
I-132	1 E+01	1 E+05
I-133	1 E+01	1 E+06

I-134	1 E+01	1 E+05
I-135	1 E+01	1 E+06
Xe131m	1 E+04	1 E+04
Xe-133	1 E+03	1 E+04
Xe-135	1 E+03	1 E+10
Cs-129	1 E+02	1 E+05
Cs-131	1 E+03	1 E+06
Cs-132	1 E+01	1 E+05
Cs-134m	1 E+03	1 E+05
Cs-134	1 E+01	1 E+04
Cs-135	1 E+04	1 E+07
Cs-136	1 E+01	1 E+05
Cs-137*	1 E+01	1 E+04
Cs-138	1 E+01	1 E+04
Ba-131	1 E+02	1 E+06

Ba-133	1 E+01	1 E+05
Ba-140*	1 E+01	1 E+05
La-140	1 E+01	1 E+05
Ce-139	1 E+02	1 E+06
Ce-141	1 E+02	1 E+07
Ce-143	1 E+02	1 E+06
Ce-144*	1 E+02	1 E+05
Pr-142	1 E+02	1 E+05
Pr-143	1 E+04	1 E+06
Nd-147	1 E+02	1 E+06
Nd-149	1 E+02	1 E+06
Pm-147	1 E+04	1 E+07
Pm-149	1 E+03	1 E+06
Sm-151	1 E+04	1 E+08
Sm-153	1 E+02	1 E+06

Eu-152	1 E+01	1 E+06
Eu-152m	1 E+02	1 E+06
Eu-154	1 E+01	1 E+06
Eu-155	1 E+02	1 E+07
Gd-153	1 E+02	1 E+07
Gd-159	1 E+03	1 E+06
Tb-160	1 E+01	1 E+06
Dy-165	1 E+03	1 E+06
Dy-166	1 E+03	1 E+06
Но-166	1 E+03	1 E+05
Er-169	1 E+04	1 E+07
Er-171	1 E+02	1 E+06
Tm-170	1 E+03	1 E+06
Tm-171	1 E+04	1 E+08
Yb-175	1 E+03	1 E+07

Lu-177	1 E+03	1 E+07
Hf-181	1 E+01	1 E+06
Ta-182	1 E+01	1 E+04
W-181	1 E+03	1 E+07
W-185	1 E+04	1 E+07
W-187	1 E+02	1 E+06
Re-186	1 E+03	1 E+06
Re-188	1 E+02	1 E+05
Os-185	1 E+01	1 E+06
Os-191	1 E+02	1 E+07
Os-191m	1 E+03	1 E+07
Os-193	1 E+02	1 E+06
Ir-190	1 E+01	1 E+06
Ir-192	1 E+01	1 E+04
Ir-194	1 E+02	1 E+05

Pt-191	1 E+02	1 E+06
Pt-193m	1 E+03	1 E+07
Pt-197	1 E+03	1 E+06
Pt-197m	1 E+02	1 E+06
Au-198	1 E+02	1 E+06
Au-199	1 E+02	1 E+06
Hg-197	1 E+02	1 E+07
Hg-197m	1 E+02	1 E+06
Hg-203	1 E+02	1 E+05
T1-200	1 E+01	1 E+06
Tl-201	1 E+02	1 E+06
T1-202	1 E+02	1 E+06
T1-204	1 E+04	1 E+04
Pb-203	1 E+02	1 E+06
Pb-210*	1 E+01	1 E+04

Pb-212*	1 E+01	1 E+05
Bi-206	1 E+01	1 E+05
Bi-207	1 E+01	1 E+06
Bi-210	1 E+03	1 E+06
Bi-212*	1 E+01	1 E+05
Po-203	1 E+01	1 E+06
Po-205	1 E+01	1 E+06
Po-207	1 E+01	1 E+06
Po-210	1 E+01	1 E+04
At-211	1 E+03	1 E+07
Rn-220*	1 E+04	1 E+07
Rn-222*	1 E+01	1 E+08
Ra-223*	1 E+02	1 E+05
Ra-224*	1 E+01	1 E+05
Ra-225	1 E+02	1 E+05

Ra-226*	1 E+01	1 E+04
Ra-227	1 E+02	1 E+06
Ra-228*	1 E+01	1 E+05
Ac-228	1 E+01	1 E+06
Th-226*	1 E+03	1 E+07
Th-227	1 E+01	1 E+04
Th-228*	1 E+00	1 E+04
Th-229*	1 E+00	1 E+03
Th-230	1 E+00	1 E+04
Th-231	1 E+03	1 E+07
Th-232*	1 E+00	1 E+03
Тh-природный (включая Th-232)*	1 E+00	1 E+03
Th-234*	1 E+03	1 E+05
Pa-230	1 E+01	1 E+06
Pa-231	1 E+00	1 E+03

Pa-233	1 E+02	1 E+07
U-230*	1 E+01	1 E+05
U-231	1 E+02	1 E+07
U-232*	1 E+00	1 E+03
U-233	1 E+01	1 E+04
U-234	1 E+01	1 E+04
U-235*	1 E+01	1 E+04
U-236	1 E+01	1 E+04
U-237	1 E+02	1 E+06
U-238*	1 E+01	1 E+04
U-природный	1 E+00	1 E+03
U-239	1 E+02	1 E+06
U-240	1 E+03	1 E+07
U-240	1 E+01	1 E+06
Np-237*	1 E+00	1 E+03

1 E+02	1 E+07
1 E+01	1 E+06
1 E+02	1 E+07
1 E+02	1 E+07
1 E+01	1 E+04
1 E+03	1 E+07
1 E+00	1 E+04
1 E +00	1 E+04
1 E+00	1 E+03
1 E+02	1 E+05
1 E+00	1 E+04
1 E+03	1 E+07
1 E+00	1 E+04
1 E+00	1 E+04
1 E+03	1 E+06
	1 E+01 1 E+02 1 E+02 1 E+01 1 E+03 1 E+00 1 E+00

Am-242m*	1 E+00	1 E+04
Am243*	1 E+00	1 E+03
Cm-242	1 E+02	1 E+05
Cm-243	1 E+00	1 E+04
Cm-244	1 E+01	1 E+04
Cm-245	1 E+00	1 E+03
Cm-246	1 E+00	1 E+03
Cm-247	1 E+00	1 E+04
Cm-248	1 E+00	1 E+03
Bk-249	1 E+03	1 E+06
Cf-246	1 E+03	1 E+06
Cf-248	1 E+01	1 E+04
Cf-249	1 E+00	1 E+03
Cf-250	1 E+01	1 E+04
Cf-251	1 E+00	1 E+03

1 E+01	1 E+04
1 E+02	1 E+05
1 E+00	1 E+03
1 E+02	1 E+05
1 E+01	1 E+04
1 E+02	1 E+06
1 E+04	1 E+07
1 E+03	1 E+06
	1 E+02 1 E+00 1 E+02 1 E+01 1 E+02 1 E+04

Примечание:

* - Перечисленные ниже материнские радионуклиды приведены в условиях их равновесия с дочерними:

Sr-90 Y-90
 Zr-93 Nb-93m
 Zr-97 Nb-97
 Ru-106 Rh-106
 Cs-137 Ba-137m

Ba-140	La-140
Ce-134	La-134
Ce-144	Pr-144
Pb-210	Bi-210, Po-210
Pb-212	Bi-212, Tl-208 (0,36), Po-212 (0,64)
Bi-212	Tl-208 (0,36), Po-212 (0,64)
Rn-220	Po-216
Rn-222	Po-218, Pb-214, Bi-214, Po-214
Ra-223	Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224	Rn-220, Po-216, Po-212 (0,64), Pb-212, Bi-212, Tl-208 (0,36)
Ra-226	Rn-222, Po-210, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210
Ra-228	Ac-228
Th-226	Ra-222, Rn-218, Po-214
Th-228	Ra-224, Po-212, Rn-220 (0,64) Po-216, Pb-212, Bi-212, Tl-208 (0,36)
Th-229	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209

Th-232	Ra-228, Bi-212, Ac-228, Tl-208, Th-228, Ra-224, Rn-220, Po-216, Pb-212 (0,36), Po-212 (0,64)
Th-природный	Ra-228, Bi-212, Ac-228, Tl-208, Th-228, Ra-224, Rn-220, Po-216, Pb-212 (0,36), Po-212 (0,64)
Th-234	Pa-234m
U-230	Th-226, Ra-222, Rn-218, Po-214
U-232	Th-228, (0,36), Ra-224, Po-212, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0,64)
U-235	Th-231
U-238	Th-234, Pa-234m
U-природный	Th-234, Pb-214, Pa-234m, Bi-214, U-234, Th-230, Ra-226, Rn-222, Po-218, Po-214, Pb-210, Bi-210, Po-210
U-240	Np-240m
Np-237	Pa-233
Am-242m	Am-242
Am-243	Np-239

При уровнях активности радионуклидов, меньше приведенных в таблице и условии применения МЗУА и МЗА одновременно, эффективная индивидуальная годовая доза облучения лиц из персонала и населения не превысит 10 мкЗв и в аварийных случаях 1 мЗв, а коллективная эффективная доза - 1 чел.-Зв при любых условиях использования.

Эквивалентная доза на кожу не превысит 50 мЗв/год.

Природные радионуклиды оценивались при их попадании в потребительские товары из техногенных источников (например, Ra-226, Po-210) или по их химической токсичности (для тория, урана и др.).

Если присутствует несколько нуклидов, то сумма отношений активности к их табличным значениям не должна превышать единицу. Приведенные в таблице радионуклиды в зависимости от минимально значимой суммарной активности (МЗА) делятся на 4 группы радиационной опасности:

A -
$$1'10^3$$
 Бк;
Б - $1'10^4$ и $1'10^5$ Бк;
В - $1'10^6$ и $1'10^7$ Бк;
 Γ - $1'10^8$ и $1'10^9$ Бк, а также Kr-83m, Kr-85m и Xe-135m.

Приложение 5 к НРБ 99/2009 (справочное)

Критерии вмешательства на загрязненных территориях

- 1. Защита населения на территориях, подвергшихся радиоактивному загрязнению, осуществляется путем вмешательства на основе принципов безопасности при вмешательстве (п. 6.2 настоящих правил). При любых восстановительных действиях необходимо обеспечить не превышение уровня пороговых детерминированных эффектов у населения.
- 2. Числовые значения критериев вмешательства для территорий, загрязненных в результате радиационных аварий, и вмешательства при обнаружении локальных радиоактивных загрязнений («последствий прежней деятельности») различаются.
- 3. Критерии вмешательства на территориях, загрязненных в результате радиационных аварий.

- 3.1. На разных стадиях аварии вмешательство регулируется зонированием загрязненных территорий, основанным на величине годовой эффективной дозы, которая может быть получена жителями в отсутствии мер радиационной защиты. Под годовой дозой здесь понимается эффективная доза, средняя у жителей населенного пункта за текущий год, обусловленная искусственными радионуклидами, поступившими в окружающую среду в результате радиационной аварии.
- 3.2. На территории, где годовая эффективная доза не превышает 1 мЗв, производится обычный контроль радиоактивного загрязнения объектов окружающей среды и сельскохозяйственной продукции, по результатам которого оценивается доза облучения населения. Проживание и хозяйственная деятельность населения на этой территории по радиационному фактору не ограничивается. Эта территория не относится к зонам радиоактивного загрязнения. При величине годовой дозы более 1 мЗв загрязненные территории по характеру необходимого контроля обстановки и защитных мероприятий подразделяются на зоны.
- 3.3. Зонирование на ранней и промежуточной стадиях радиационной аварии определяется п. 6.4 настоящего документа.
 - 3.4. Зонирование на восстановительной стадии радиационной аварии.
- 3.4.1. Зона радиационного контроля от 1 до 5 мЗв. В этой зоне помимо мониторинга радиоактивности объектов окружающей среды, сельскохозяйственной продукции и доз внешнего и внутреннего облучения населения и его критических групп осуществляются меры по снижению доз на основе принципа оптимизации и другие необходимые активные меры защиты населения.
- 3.4.2. Зона ограниченного проживания населения от 5 до 20 мЗв. В этой зоне осуществляются те же меры мониторинга и защиты населения, что и в зоне радиационного контроля. Добровольный въезд на указанную территорию для постоянного проживания не ограничивается. Лицам, въезжающим на указанную территорию для постоянного проживания, разъясняется риск ущербу здоровья, обусловленный воздействием радиации.
- 3.4.3. Зона отселения от 20 до 50 мЗв. Въезд на указанную территорию для постоянного проживания не разрешен. В этой зоне запрещается постоянное проживание лиц репродуктивного возраста и детей. Здесь осуществляются радиационный мониторинг людей и объектов внешней среды, а также необходимые меры радиационной и медицинской защиты.

- 4. Критерии вмешательства при обнаружении локальных радиоактивных загрязнений.
- 4.1. Уровень исследования от 0,01 до 0,3 мЗв/год. Это такой уровень радиационного воздействия источника на население, при достижении которого требуется выполнить исследование источника с целью уточнения оценки величины годовой эффективной дозы и определения величины дозы, ожидаемой за 70 лет.
- 4.2. Уровень вмешательства более 0,3 мЗв/год. Это такой уровень радиационного воздействия, при превышении которого требуется проведение защитных мероприятий с целью ограничения облучения населения. Масштабы и характер мероприятий определяются с учетом интенсивности радиационного воздействия на население по величине ожидаемой коллективной эффективной дозы за 70 лет.
- 4.3. Решение о необходимости, а также о характере, объеме и очередности защитных мероприятий принимается территориальными подразделениями Федеральных органов исполнительной власти, уполномоченных осуществлять государственный санитарно-эпидемиологический надзор с учетом следующих основных условий:
- местонахождения загрязненных участков (жилая зона: дворовые участки, дороги и подъездные пути, жилые здания, сельскохозяйственные угодья, садовые и приусадебные участки и пр.; промышленная зона: территория предприятия, здания промышленного и административного назначения, места для сбора отходов и пр.);
 - площади загрязненных участков;
- возможного проведения на участке загрязнения работ, действий (процессов), которые могут привести к увеличению уровней радиационного воздействия на население;
- мощности дозы гамма-излучения, обусловленной радиоактивным загрязнением;
- изменения мощности дозы гамма-излучения на различной глубине от поверхности почвы (при загрязнении территории).

Приложение 6 к НРБ 99/2009 (справочное)

Нормативные ссылки

В настоящих санитарных правилах нашли отражение следующие нормативные документы:

- · Федеральный закон Российской Федерации от 30 марта 1999 г. № $\underline{52-\Phi3}$ «О санитарно-эпидемиологическом благополучии (в ред. Федеральных законов от 30.12.2001 № $196-\Phi3$, от 10.01.2003 № $15-\Phi3$, от 30.06.2003 № $86-\Phi3$, от 22.08.2004 № $122-\Phi3$, от 09.05.2005 № $45-\Phi3$, от 31.12.2005 № $199-\Phi3$, от 18.12.2006 № $232-\Phi3$, от 29.12.2006 № $258-\Phi3$, от 30.12.2006 № $266-\Phi3$, от 26.06.2007 № $18-\Phi3$, от 08.11.2007 № $258-\Phi3$, от 01.12.2007 № $209-\Phi3$, от 14.06.2008 № $118-\Phi3$);
- · Федеральный закон Российской Федерации от 09 января 1996 г. № $3-\Phi 3$ «О радиационной безопасности населения» (в ред. Федерального закона от 22.08.2004 № 122- $\Phi 3$).
- · Федеральный закон Российской Федерации от 21 ноября 1995 г. № <u>170-Ф3</u> «Об использовании атомной энергии» (в ред. Федеральных законов от 10.02.1997 г. №28-Ф3; от 10.07. 2001 г. №94-Ф3; от 28.03.2002 г. №33-Ф3; от 11.11.2003 г. № 140-Ф3; от 22.08.2004 № 122-Ф3);
- · Федеральный закон Российской Федерации от 10 января 2002 года № 7-ФЗ «Об охране окружающей среды» (в ред. Федеральных законов от 22.08.2004 № 122-ФЗ, от 29.12.2004 № 199-ФЗ, от 09.05.2005 № 45-ФЗ, от 31.12.2005 № 199-ФЗ, от 18.12.2006 № 232-ФЗ, от 05.02.2007 № 13-ФЗ, от 26.06.2007 № 118-ФЗ, от 24.06.2008 № 93-ФЗ, от 14.07.2008 № 118-ФЗ);
- · Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасного обращения с источниками излучения. Разработаны совместно: Агентством по ядерной энергии Организации экономического сотрудничества и развития (АЯЭ/ОЭСР); Всемирной организацией здравоохранения (ВОЗ); Международной организацией труда (МОТ); Международным агентством по атомной энергии (МАГАТЭ); Панамериканской организацией здравоохранения (ПОЗ); Продовольственной и сельскохозяйственной организацией Объединенных Наций (ФАО). Серия изданий по безопасности № 115. Международное агентство по атомной энергии. Вена, 1997.

Приложение 7 к НРБ 99/2009 (справочное)

Термины и определения

Применительно к настоящим санитарным правилам приняты следующие термины и определения.

- 1. **Авария радиационная** потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которая могла привести или привела к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды.
- 2. **Активность (A)** мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:

$$A = \frac{dN}{dt},$$

где dN - ожидаемое число спонтанных ядерных превращений из данного энергетического состояния, происходящих за промежуток времени dt. Единицей активности является беккерель (Бк). Использовавшаяся ранее внесистемная единица активности кюри (Ки) составляет $3.7'10^{10}$ Бк.

3. **Активность минимально значимая (МЗА)** - активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов исполнительной власти, уполномоченных осуществлять государственный санитарно-эпидемиологический надзор, на использование этого источника, если при этом также превышено значение минимально значимой удельной активности.

- 4. **Активность минимально** значимая удельная (МЗУА) удельная активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов исполнительной власти, уполномоченных осуществлять государственный санитарно-эпидемиологический надзор, на использование этого источника, если при этом также превышено значение минимально значимой активности.
- 5. **Активность удельная (объемная)** отношение активности A радионуклида в веществе к массе m (объему V) вещества:

$$A_m = \frac{A}{m}$$
,

$$A_{\mathbf{v}} = \frac{A}{v}$$

Единица удельной активности - беккерель на килограмм, Бк/кг. Единица объемной активности - беккерель на метр кубический, $Бк/м^3$.

6. Активность эквивалентная равновесная объемная (ЭРОА) дочерних продуктов изотопов радона - 222 Rn и 220 Rn - взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона- 218 Po (RaA); 214 Pb (RaB); 214 Bi (RaC); 212 Pb (ThB); 212 Bi (ThC) соответственно:

$$(\Im POA)_{R_{A}} = 0.10 A_{R_{AA}} + 0.52 A_{R_{AB}} + 0.38 A_{R_{AC}}$$

$$(\Im POA)_{Th} = 0.91A_{ThB} + 0.09A_{ThC}$$

где Ai - объемные активности дочерних продуктов изотопов радона.

- 7. **Вещество радиоактивное** вещество в любом агрегатном состоянии, содержащее радионуклиды с активностью, на которые распространяются требования настоящих санитарных правил.
- 8. Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы (W_R) используемые в радиационной защите множители поглощенной дозы, учитывающие относительную эффективность различных видов излучения в индуцировании биологических эффектов

Фотоны любых энергий	1
Электроны и мюоны любых энергий	1
Нейтроны с энергией менее 10 кэB	5
от 10 до 100 кэВ	10
от 100 кэВ до 2 МэВ	20
от 2 до 20 МэВ	10
более 20 МэВ	5

Протоны с энергией более 2 МэВ, кроме протонов	
отдачи	
Альфа-частицы, осколки деления, тяжелые ядра	20

Примечание. Все значения относятся к излучению, падающему на тело, а в случае внутреннего облучения - испускаемому при ядерном превращении.

9. Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы (WT) - множители эквивалентной дозы в органах и тканях, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации:

Гонады	0,20
Костный мозг (красный)	0,12
Толстый кишечник	0,12
Легкие	0,12
Желудок	0,12
Мочевой пузырь	0,05
Грудная железа	0,05

Печень	0,05
Пищевод	0,05
Щитовидная железа	0,05
Кожа	0,01
Клетки костных поверхностей	0,01
Остальное	0,051

¹ При расчетах учитывать, что «Остальное» включает надпочечники, головной мозг, экстраторокальный отдел органов дыхания, тонкий кишечник, почки, мышечную ткань, поджелудочную железу, селезенку, вилочковую железу и матку. В тех исключительных случаях, когда один из перечисленных органов или тканей получает эквивалентную дозу, превышающую самую большую дозу, полученную любым из двенадцати органов или тканей, для которых определены взвешивающие коэффициенты, следует приписать этому органу или ткани взвешивающий коэффициент, равный 0,025, а оставшимся органам или тканям из рубрики «Остальное» приписать суммарный коэффициент, равный 0,025.

- 10. Вмешательство деятельность, направленная на снижение вероятности, либо дозы, либо неблагоприятных последствий облучения населения при радиационных авариях, при обнаружении радиоактивных загрязнений объектов окружающей среды или повышенных уровней природного облучения на территориях, в зданиях и сооружениях.
- 11. Группа критическая группа лиц из населения (не менее 10 чел.), однородная по одному или нескольким признакам полу, возрасту, социальным или профессиональным условиям, месту проживания, рациону питания, которая подвергается наибольшему радиационному воздействию по данному пути облучения от данного источника излучения.

База нормативной документации: www.complexdoc.ru

- 12. Дезактивация удаление радиоактивного загрязнения с какой-либо поверхности или из какой-либо среды, или его снижение.
- 13. Доза поглощенная (*D*) величина энергии ионизирующего излучения, переданная веществу

$$D = \frac{d\overline{e}}{dm},$$

где

 $d\bar{e}$ - средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме,

dm - масса вещества в этом объеме.

Энергия может быть усреднена по любому определенному объему, и в этом случае средняя доза будет равна полной энергии, переданной объему, деленной на массу этого объема. В единицах СИ поглощенная доза измеряется в джоулях, деленных на килограмм (Дж′кг-1), и имеет специальное название - грей (Гр). Использовавшаяся ранее внесистемная единица рад равна 0,01 Гр.

14. Доза в органе или ткани (DT) - средняя поглощенная доза в определенном органе или ткани человеческого тела:

$$D_T = \left(\frac{1}{m_T}\right) \cdot \int_{m_T} D \times dm,$$

где m_T - масса органа или ткани,

D - поглощенная доза в элементе массы dm.

База нормативной документации: www.complexdoc.ru

15. Доза эквивалентная ($H_{T,R}$) - поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения, W_R :

$$H_{T,R} = W_R \times D_{T,R}$$

где $D_{T,R}$ - средняя поглощенная доза в органе или ткани T,

 W_R - взвешивающий коэффициент для излучения R.

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения:

$$H_T = \sum_R H_{T,R}$$

Единицей эквивалентной дозы является зиверт (Зв).

16. Доза эффективная (*E*) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:

$$E = \sum_{T} W_{T} \times H_{T},$$

где H_T - эквивалентная доза в органе или ткани T,

 W_T - взвешивающий коэффициент для органа или ткани T.

Единица эффективной дозы - зиверт (Зв).

17. Доза эквивалентная (HT(t)) или эффективная (E(t)), ожидаемая при внутреннем облучении - доза за время t, прошедшее после поступления радиоактивных веществ в организм:

$$H_T(\tau) = \int_{t_0}^{t_0+\tau} H_T(t) dt,$$

$$E(\tau) = \sum_{T} W_{T} \times H_{T}(\tau),$$

где t0 - момент поступления,

 $H_T(t)$ - мощность эквивалентной дозы к моменту времени t в органе или ткани T.

Когда t не определено, то его следует принять равным 50 годам для взрослых и (70 - t0) - для детей.

- 18. Доза эффективная (эквивалентная) годовая сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год. Единица годовой эффективной дозы зиверт (3в).
- 19. Доза эффективная коллективная мера коллективного риска возникновения стохастических эффектов облучения; она равна сумме индивидуальных эффективных доз. Единица эффективной коллективной дозы человеко-зиверт (чел.-Зв).
- 20. Доза предотвращаемая прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.

- 21. Загрязнение радиоактивное присутствие радиоактивных веществ на поверхности, внутри материала, в воздухе, в теле человека или в другом месте, в количестве, превышающем уровни, установленные настоящими санитарными правилами.
- 22. Загрязнение поверхности не снимаемое (фиксированное) радиоактивные вещества, которые не переносятся при контакте на другие предметы и не удаляются при дезактивации.
- 23. Загрязнение поверхности снимаемое (нефиксированное) радиоактивные вещества, которые переносятся при контакте на другие предметы и удаляются при дезактивации.
- 24. Зона наблюдения территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль.
- 25. Зона радиационной аварии территория, на которой установлен факт радиационной аварии.
- 26. Захоронение отходов радиоактивных безопасное размещение радиоактивных отходов без намерения последующего их извлечения.
- 27. Источник ионизирующего излучения (в рамках данного документа источник излучения) радиоактивное вещество или устройство, испускающее или способное испускать ионизирующее излучение, на которые распространяется действие настоящих санитарных правил.
- 28. **Источник излучения природный** источник ионизирующего излучения природного происхождения, на который распространяется действие настоящих санитарных правил.
- 29. **Источник излучения техногенный** источник ионизирующего излучения, специально созданный для его полезного применения или являющийся побочным продуктом этой деятельности.
- 30. Источник радионуклидный закрытый источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан.
- 31. **Источник радионуклидный открытый** источник излучения, при использовании которого возможно поступление содержащихся в нем радионуклидов в окружающую среду.

- 32. **Контроль радиационный** получение информации о радиационной обстановке в организации, окружающей среде и об уровнях облучения людей (включает в себя дозиметрический и радиометрический контроль).
- 33. Место рабочее место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения.
- 34. **Мощность дозы -** доза излучения за единицу времени (секунду, минуту, час).
- 35. **Население** все лица, включая персонал вне работы с источниками ионизирующего излучения.
 - 36. Облучение воздействие на человека ионизирующего излучения.
 - 37. Облучение аварийное облучение в результате радиационной аварии.
- 38. **Облучение медицинское** облучение ионизирующим излучением, которому подвергаются:
- а) пациенты при прохождении ими диагностических или терапевтических медицинских процедур;
- б) лица (за исключением медицинского персонала), которые сознательно и добровольно помогают в уходе за пациентами в больнице или дома;
- в) лица, проходящие медицинские обследования в связи с профессиональной деятельностью или в рамках медико-юридических процедур; и
- г) лица, участвующие в медицинских профилактических обследованиях и медико-биологических исследованиях.
- 39. Облучение планируемое повышенное планируемое облучение персонала в дозах, превышающих установленные основные пределы доз, с целью предупреждения развития радиационной аварии или ограничения ее последствий.
- 40. **Облучение потенциальное** облучение, которого нельзя ожидать с абсолютной уверенностью, но которое может иметь место в результате аварии с источником, либо события или последовательности событий гипотетического характера, включая отказы оборудования и ошибки во время эксплуатации.
- 41. Облучение природное облучение, которое обусловлено природными источниками излучения.

- 42. Облучение производственное облучение работников от всех техногенных и природных источников ионизирующего излучения в процессе производственной деятельности.
- 43. Облучение профессиональное облучение персонала в процессе его работы с техногенными источниками ионизирующего излучения.
- 44. **Облучение техногенное** облучение от техногенных источников как в нормальных, так и в аварийных условиях, за исключением медицинского облучения пациентов.
- 45. **Обращение с отходами радиоактивными** все виды деятельности, связанные со сбором, транспортированием, переработкой, хранением и захоронением радиоактивных отходов.
- 46. **Объект радиационный** физический объект (сооружение, здание, огороженный комплекс зданий), где осуществляется обращение с техногенными источниками ионизирующего излучения.
- 47. **Отходы радиоактивные** не предназначенные для дальнейшего использования вещества в любом агрегатном состоянии, в которых содержание радионуклидов превышает уровни, установленные настоящими санитарными правилами.
- 48. **Персонал** лица, работающие с техногенными источниками излучения (группа A) или работающие на радиационном объекте или на территории его санитарно-защитной зоны и находящиеся в сфере воздействия техногенных источников (группа Б).
- 49. Предел дозы (ПД) значение эффективной или эквивалентной дозы техногенного облучения населения и персонала за счет нормальной эксплуатации радиационного объекта, которое не должно превышаться. Соблюдение предела годовой дозы предотвращает возникновение детерминированных эффектов, а вероятность стохастических эффектов сохраняется при этом на приемлемом уровне.
- 50. **Предел годового поступления (ПГП)** уровень поступления данного радионуклида в организм в течение года, который при монофакторном воздействии приводит к облучению условного человека ожидаемой дозой, равной соответствующему пределу годовой дозы.
- 51. Радиационная безопасность населения состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения.

- 52. Работа с источником ионизирующего излучения все виды обращения с источником излучения на рабочем месте, включая радиационный контроль.
- 53. Работа с радиоактивными веществами все виды обращения с радиоактивными веществами на рабочем месте, включая радиационный контроль.
- 54. Риск радиационный вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения.
- 55. Санитарно-защитная зона территория вокруг радиационного объекта, за пределами которой уровень облучения населения за счет нормальной эксплуатации радиационного объекта не превышает установленную для него квоту.
- 56. Средство индивидуальной защиты техническое средство, носимое человеком и используемое для предотвращения или уменьшения воздействия на человека вредных и/или опасных факторов, а также для защиты от загрязнения.
- 57. **Уровень вмешательства (УВ)** уровень радиационного фактора, при превышении которого следует проводить определенные защитные мероприятия.
- 58. Уровень контрольный значение контролируемой величины дозы, мощности дозы, радиоактивного загрязнения и т. д., устанавливаемое для оперативного радиационного контроля с целью закрепления достигнутого уровня радиационной безопасности, обеспечения дальнейшего снижения облучения персонала и населения, радиоактивного загрязнения окружающей среды.
- 59. Устройство (источник), генерирующее ионизирующее излучение электрофизическое устройство (рентгеновский аппарат, ускоритель, генератор и т. д.), в котором ионизирующее излучение возникает за счет изменения скорости заряженных частиц, их аннигиляции или ядерных реакций.
- 60. Эффекты облучения детерминированные клинически выявляемые вредные биологические эффекты, вызванные ионизирующим излучением, в отношении которых предполагается существование порога, ниже которого эффект отсутствует, а выше тяжесть эффекта зависит от дозы.
- 61. Эффекты облучения стохастические вредные биологические эффекты, вызванные ионизирующим излучением, не имеющие дозового порога возникновения, вероятность возникновения которых пропорциональна дозе и для которых тяжесть проявления не зависит от дозы.

Приложение 8 к НРБ 99/2009 (справочное)

Библиографические данные

- 1. Пределы поступления радионуклидов для работающих с ионизирующим излучением: Публикация 30 МКРЗ. ч. 1: Пер. с англ. М.: Энергоатомиздат, 1982.
- 2. Пределы поступления радионуклидов для работающих с ионизирующим излучением: Публикация 30 МКРЗ. ч. 2: Пер. с англ. М.: Энергоатомиздат, 1983.
- 3. Пределы поступления радионуклидов для работающих с ионизирующим излучением: Публикация 30 МКРЗ. ч. 3: Пер. с англ. М.: Энергоатомиздат, 1984.
- 4. Схема распада радионуклидов. Энергия и интенсивность излучения: Публикация 38 МКРЗ. в 2-х ч.: Пер. с англ. М.: Энергоатомиздат, 1987.
- 5. Риск заболевания раком легких в связи с облучением дочерними продуктами распада радона внутри помещений: Публикация 50 МКРЗ: Пер. с англ. М.: Энергоатомиздат, 1992.
- 6. Данные для использования при защите от внешнего излучения. Защита пациента в ядерной медицине: Публикации 51, 52 МКРЗ: Пер. с англ. М.: Энергоатомиздат, 1993.
- 7. ICRP Publication 54. Individual Monitoring for Intakes of Radionuclides by Workers: Design and Interpretation. Annals of the ICRP, v.19, № 1-3, 1988.
- 8. Publ. 55/Ann. ICRP. Optimization and decision-making in radiological protection. 1989-20, № 1 P.1182-1188.
- 9. ICRP Publication 59. The Biological Basis for Dose Limitation in the Skin. Annals of the ICRP, v. 22, № 2, 1992.
- 10. Радиационная безопасность. Рекомендации МКРЗ 1990 г. Пределы годового поступления радионуклидов в организм работающих, основанные на рекомендациях 1990 г. Публ. 60, ч. 1, 61 МКРЗ: Пер. с англ. М.: Энергоатомиздат, 1994.

- 11. Радиационная безопасность. Рекомендации МКРЗ 1990 г. Публ. 60, ч. 2 МКРЗ: Пер. с англ. М.: Энергоатомиздат, 1994.
- 12. ICRP Publication 62. Radiological Protection in Biomedical Research. Annals of the ICRP, v.22, № 3,1992.
- 13. ICRP Publication 63. Principles for Intervention for Protection of the Public in a Radiological Emergency. Annals of the ICRP, v.22, № 4, 1993.
- 14. ICRP Publication 65. Protection Against Radon-222 at Home and at Work. Annals of the ICRP, v.23, № 2, 1994.
- 15. ICRP Publication 66. Human respiratory Tract Model for Radiological Protection. Annals of the ICRP, v. 24, № 1-3, 1994.
- 16. ICRP Publication 68. Dose coefficients for intakes of radionuclides by workers. Annals of the ICRP, v. 24, № 4, 1994.
- 17. ICRP Publication 74. Conversion Coefficients for use in Radiological Protection against External Radiation. Annals of the ICRP, v. 26, № 3/4, 1996.
- 18. ICRP Publication 103. Recommendations of the UCRP. Annals of the ICRP, v. 37/2-4, 2007.
- 19. International Basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Viena: IAEA, (Safety series, 115), 1997.
- 20. Guidelines for Drinking-water Quality. Third Edition. V. 1. Recommendation World Health Organization. Geneva, 2004.
- 21. Conversion Coefficients for use in Radiological Protection Against Externac Radiation. ICRU Report 57 August 1998.

Текст документа соответствует оригиналу.