Calibration de modèle pour le véhicule autonome

Clara CARLIER

15 septembre 2020

Plan

Introduction

- 1 Introduction
- 2 Les données
 - Scénario et contexte
 - Les paramètres
 - Les données réelles
 - Les données simulées
- 3 Modèle de substitution
 - Quantités d'intérêt
 - Forêts aléatoires
 - Réseaux de neurones
- 4 Inférence des paramètres
 - Évaluation de l'inférence
 - Méthode ABC : Monte Carlo séquentiel
- 5 Conclusion

Introduction

O

Présentation du sujet

- Expansion et évolution du monte de l'automobile : véhicules autonomes
 - grande quantité de capteurs embarqués
- Fiabilité et validation des véhicules : réglementations multiples et strictes
 - réalisation d'un grand nombre de tests
- Logiciel développé par Renault pour simuler les données nécessaires à la validation
 - ⇒ Création de bases de données simulées gigantesques

Encore faut-il prouver que les simulations retranscrivent bien la réalité...

Les données

- Véhicule lancé face à un obstacle à une vitesse donnée :
 - 10, 20, 30, 40 ou 50 km/h
- Intérêt : vérifier le comportement de la voiture face à un arrêt d'urgence

Les données :

Introduction

Scénario et contexte

- 10 expériences **réelles** : 2 par vitesse initiale
- 500 expériences simulées : similaires aux réelles, 100 par vitesse initiale
- 2 paramètres pour chaque expérience simulée : EgoSpeed et Overlap
 - inconnus pour les expériences réelles

Paramètre EgoSpeed

Introduction

Les paramètres

Vitesse initiale de l'expérience : répartition clairement uniforme

FIGURE - Histogramme du paramètre EgoSpeed

Paramètre Overlap

Décalage de la voiture selon l'axe du milieu :

FIGURE - Présentation du paramètre latéral Overlap

Paramètre Overlap

Introduction

Les paramètres

Répartition à peu près uniforme

FIGURE - Histogrammes représentant le paramètre Overlap avant et après mapping

Données brutes

- la position (non représentée ici), la vitesse et l'accélération du véhicule
- la distance restante avec l'obstacle (Bumper Distance) et le temps avant collision (TTC)
- Mauvaise synchronisation, accélérations trop bruitées et valeurs aberrantes pour le TTC

FIGURE – Représentation graphique des variables d'intérêt des données réelles avant modification et synchronisation

Données finales

- Synchronisation des données selon l'accélération
- Filtrage de l'accélération avec le filtre de Butterworth 1
- Découpage du TTC² sur la zone qui nous intéresse
- Découpage de la fin des expériences

FIGURE - Représentation graphique des variables d'intérêt des données réelles après modification et synchronisation

^{1.} utilisé par les organismes de certification

^{2.} TTC = Bumper Distance / speed x

Données brutes

- Courbes non similaires à celles des données réelles → conserver uniquement la fin des simulations
- La synchronisation semble correcte
- Accélération pas trop bruitée
- Valeurs aberrantes pour le TTC également

FIGURE - Représentation graphique des variables d'intérêt des données simulées avant modification et synchronisation

Données finales

FIGURE – Représentation graphique des variables d'intérêt des données simulées après modification et synchronisation

Les courbes sont maintenant très similaires à celles des données réelles.

Superposition des données réelles et simulées

FIGURE – Représentation graphique des données réelles et simulées après modification et synchronisation

Modèle de substitution

Objectif

- Permet d'estimer la vraisemblance du modèle lors de l'étape d'inférence
- Construire un modèle de substitution à partir des simulations
- Prédire la position, la vitesse, l'accélération, la bumper distance et le ttc à partir d'EgoSpeed et d'Overlap
 - ▶ Utilisation de forêts aléatoires puis de réseaux de neurones

Quantités d'intérêt

On souhaite minimiser:

- Erreur quadratique moyenne globale
- Erreur quadratique moyenne de la position au dernier pas de temps
- La quantité Q définie par :

$$Q = 0.5 \times ||s||_{q_1} + ||a||_{q_2}$$
 (1)

avec : s le vecteur vitesse et a le vecteur accélération

$$||x||_{q_1} = ||x||_1 + ||x||_2 + 0.5 \times ||x||_{+\infty}$$

$$||y||_{q_2} = ||y||_1 + ||y||_2 + ||y||_{+\infty}$$

► On a fait varier **le nombre d'arbres** B dans la forêt :

FIGURE – Évolution des quantités d'intérêt pour différents paramètres B

Introduction

Forêts aléatoires

Forêts aléatoires : résultats obtenus

▶ Résultats obtenus pour B = 91 :

données	RMSE position x	quantité Q	RMSE globale	
train	0.0874	1.8151	0.0431	
test	0.0893	3.6361	0.0903	

TABLE - Quantités d'intérêts obtenues à l'aide d'une forêt aléatoire

Introduction

Forêts aléatoires

Comparaison de deux réseaux de neurones

▶ Résultats obtenus avec un **premier réseau** de 300 neurones par couche :

nb. epochs	données	RMSE pos. <i>x</i>	Q	RMSE glob.
300	train	1.2274	31.5462	0.6803
300	test	1.2394	34.3152	0.7056
400	train	0.7068	35.0264	0.5097
400	test	0.7062	37.1387	0.5394

▶ Résultats obtenus avec un **deuxième réseau** avec 500 epochs :

nb. epochs	données	RMSE pos. x	Q	RMSE glob.
500 epochs	train	0.6958	14.5039	0.3796
300 epochs	test	0.7196	14.7249	0.3981

Conclusion sur le modèle de substitution

- Résultats peu satisfaisants avec les réseaux de neurones
- Avec les forêts aléatoires : meilleures valeurs d'un facteur 10

FIGURE - Illustration des prédictions réalisées avec le modèle de forêt aléatoire

Introduction

Réseaux de neurones

Inférence des paramètres

Objectif, mise en œuvre et prior (1/2)

- Construire un modèle à partir des données réelles (position, vitesse, accélération, bumper distance et ttc) afin d'inférer les paramètres EgoSpeed et Overlap qui sont inconnus
- Par le théorème de Bayes, pour une réalisation y, le posterior est donné par :

$$P(\theta|Y=y) \propto P(Y=y|\theta)P(\theta)$$
 (2)

- \blacksquare $\theta = (EgoSpeed, Overlap)^T$ et Y les données expérimentales
- $P(Y = y | \theta)$ la vraisemblance obtenue par le modèle de substitution
- $P(\theta)$ le prior, on prend des lois normales
- Appliquer la méthode expérience par expérience en inférant les paramètres deux à deux :

Prior: EgoSpeed $\sim \mathcal{N}(30, \sigma_{es})$ et Overlap $\sim \mathcal{N}(0, \sigma_{o})$

Appliquer la méthode de manière globale en inférant les 20 paramètres : **Prior**: EgoSpeed $\sim \mathcal{N}(\{10, 20, 30, 40, 50\}, \sigma_{es})$ Overlap $\sim \mathcal{N}(\mathbf{0}, \sigma_o)$

Introduction

Évaluation de l'inférence et valeurs naïves

- La vraie valeur des paramètres inconnue : comment vérifier que l'inférence est correcte ou non?
 - ⇒ Chercher la simulation la plus ressemblante à chaque expérience réelle puis comparer les paramètres inférés à ceux sélectionnés
- Choix de la simulation la plus proche en minimisant :

$$\min_{k=1,\dots,500} \left(\frac{1}{n} \sum_{i=1}^{n} \left((a_{x,k}^{simu})_i - (a_{x,l}^{real})_i \right)^2 \right)^{1/2}$$
 (3)

- $\mathbf{a}_{\mathbf{x},\mathbf{k}}^{simu}$ vecteur correspondant à l'accélération selon le premier axe de la $k^{i\text{ème}}$ expérience simulée
- de même pour $a_{x,l}^{real}$ mais de la $l^{i\text{ème}}$ expérience réelle
- Avec valeurs naïves (10, 10, 20, 20, 30, 30, 40, 40, 50, 50) pour EgoSpeed et (0,0,0,0,0,0,0,0,0) pour Overlap: 0.6116 et 0.0661

Introduction

Évaluation de l'inférence

Méthode ABC - Monte Carlo séquentiel : théorie

➤ Avantage : permet d'inférer le posterior bien que la vraisemblance soit difficile ou coûteuse à évaluer

Algorithme:

- **i** Echantillonner un paramètre θ^* selon le prior $P(\theta)$
- 2 Simuler une base de données y^* à l'aide d'une fonction qui associe à θ des données de la même dimension que les données observées y_0 (avec le modèle de substitution)
- Comparer les données simulées y^* avec les données expérimentales y_0 en utilisant une distance d et un seuil de tolérance ε
- ▶ Méthode ABC : transforme itérativement le prior en posterior en propageant les paramètres échantillonnés à travers une série de distributions

Résultats obtenus avec le Monte Carlo séquentiel

Résultats obtenus en inférant expérience par expérience :

EgoSpeed			Overlap			tps. d'exéc.
σ prior	RMSE	σ post.	σ prior	RMSE	σ post.	ips. d exec.
0.5	14.1176	0.3446	0.03	0.0661	0.0302	37 min
0.05	14.2417	0.0499	0.01	0.0660	0.0100	29 min

Résultats obtenus en inférant de manière globale :

EgoSpeed			Overlap			tps. d'exéc.
σ prior	RMSE	σ post.	σ prior	RMSE	σ post.	ips. u exec.
0.05	0.6116	0.0499	0.05	0.0654	0.0499	3min 20sec

Introduction

Conclusion

Conclusion

- Étape de calibrage des données : importante et longue
- Pour le modèle de substitution : très satisfaits des forêts aléatoires, réseaux de neurones un peu décevant mais...
- Pour l'inférence : résultats plutôt positifs, petit bémol sur les méthodes ABC

Perspectives et améliorations :

Les données

- Tester différents calibrages des données
- Passer plus de temps sur les réseaux de neurones pour améliorer la précision du modèle de substitution
- Inférence meilleure si le modèle de substitution est plus précis?
- Inférence faite sans ajout d'erreur : permettrait de modéliser l'erreur du simulateur et ainsi réduire l'écart-type des posterior

Bilan : ce que j'ai fait

Introduction

- Modification et synchronisation des données réelles et simulées
- Construction d'un modèle de substitution à l'aide de différentes méthodes déjà implémentées :
 - Forêts aléatoires (scikit.learn)
 - Réseau de neurones simple (keras)
 - Réseau de neurones convolutionnel un peu plus complexe (keras)
- Inférence des paramètres à l'aide de plusieurs méthodes déjà implémentées :
 - Étape de Metropolis-Hastings adaptatif (PyMC3)
 - Algorithme de Monte Carlo séquentiel (PyMC3)