Application de la distance de Levenshtein aux mots : MAMAN et MOMENT

Nous avons construit la matrice des coutes et la matrice M ($m \times n$) avec \underline{m} égale a la taille de MAMA+1 et \underline{n} égale a la taille de MOMENT+1.

La Matrice M

On initialise la première ligne de la matrice avec [0 ..., m-1, m] et la première colonne avec [0, ..., n-1, n].

On calcule les éléments M [i, j] selon la méthode suivante :

		M	A	M	A	N
	0	1	2	3	4	5
M	1	0	1	2	3	4
О	2	1	1	2	3	4
M	3	2	2	1	2	3
Е	4	3	3	2	2	3
N	5	4	4	3	3	2
Т	6	5	5	4	4	3

Le résultat est donné pas l'élément M [m, n]. Donc la distance de Levenshtein est égale a 3

La Matrice des coutes

Pour construire la matrice des couts, on vérifie si les éléments [i, j] sont identique, on met 0 sinon.

	M	A	M	Α	N
M	<u>0</u>	1	<u>0</u>	1	1
О	1	1	1	1	1
M	<u>0</u>	1	<u>0</u>	1	1
Е	1	1	1	1	1
N	1	1	1	1	<u>0</u>
Т	1	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>