Module 4: Statistical inference (I)

Siyue Yang

05/10/2022

Outline

This module we will review

- Basics of probability
- Fundamental concepts in inference

Probability distributions

- In statistics, we try to draw conclusions about a larger population from a sample of observations.
- We use mathematical models to capture probabilistic behavior of a population.
- This behavior is modeled using probability distributions.

Density/Distribution functions

Definition (Cumulative Distribution Function)

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

Density/Distribution functions (cont'd)

Definition (Probability Mass Function)

For a discrete RV, the probability mass function (PMF) is:

$$f_X(x) = P(X = x) \quad \forall x \in \mathbb{R}$$

Definition (Probability Density Function)

For a continuous RV , the probability density function (PDF) is:

$$f_X(x) = \frac{\partial}{\partial t} F(t) \Big|_{t=x}$$

So $F_X(x) = \int_{-\infty}^x f_X(t) dt \forall x \in \mathbb{R}$.

Note that $f_X \ge 0$ for $\forall x$, and thus F_X is an increasing function.

Expectation and Variance

Definition (Expectation)

A measure of central tendancy (a weighted average of the values of X)

$$E[X] = \sum_{x \in S} xP(X = x)$$
 for discrete RV taking values from S

$$E[X] = \int_{-\infty}^{\infty} xf_X(x)dx$$
 for continuous RV

Definition (Variance)

A measure of the spread of a distribution

$$Var(X) = \sum_{x \in S} (x - E[X])^2 P(X = x) \text{ for discrete RV}$$

$$Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f_X(x) dx \text{ for continuous RV}$$

Discreate random variable

A discrete random variable has a countable number of possible values.

Bernoulli and Binomial random variable

- Consider the event of flipping a (possibly unfair) coin.
- $Y \in \{0,1\}$ represents success and failure.
- Suppose we only flip the coin once,
 - We can express P(Y = 1) = p and P(Y = 0) = 1 p
- Bernoulli distribution

$$P(Y = y) = p^{y}(1-p)^{1-y}$$
 for $y = 0, 1$

- If we flip the coin *n* times,
- Binomial distribution

$$P(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}$$
 for $y = 0, 1, \dots, n$

Binomial distributions with different values of n and p

If $Y \sim \text{Binomial}(n, p)$, then E(Y) = np and $SD(Y) = \sqrt{np(1-p)}$.

Figure 1: Binomial distributions with different values of n and p.

How to generate in R?

All common distributions have four functions in R:

- Density dbinom(x, size, prob)
- Distribution function pbinom(q, size, prob)
- Quantile function qbinom(p, size, prob)
- Random generation rbinom(n, size, prob)

Not sure? Using ? with any of the four functions, e.g. ?qbinom

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$P(Y = 2) = {10 \choose 2} (.25)^2 (.75)^8 = 0.282$$

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$P(Y=2) = {10 \choose 2} (.25)^2 (.75)^8 = 0.282$$

R computing:

$$dbinom(2, size = 10, prob = .25)$$

[1] 0.2815676

Geometric random variables

- Suppose we are to perform independent, identical Bernoulli trials until the first success.
- If we wish to model Y, the number of failures before the first success
- Geometric distribution

$$P(Y = y) = (1 - p)^{y} p$$
 for $y = 0, 1, ..., \infty$

Geometric distributions with $p=0.3,\ 0.5$ and 0.7 If $Y\sim \text{Geometric}(p)$, then $E(Y)=\frac{1-p}{p}$ and $SD(Y)=\sqrt{\frac{1-p}{p^2}}$.

Figure 2: Geometric distributions with p = 0.3, 0.5 and 0.7.

Negative binomial random variable

- If we were to carry out multiple independent and identical Bernoulli trails until the r^{th} success occurs.
- Y, the number of failures before the r^{th} success
- Negative binomial distributions

$$P(Y = y) = {y + r - 1 \choose r - 1} (1 - p)^{y} (p)^{r}$$
 for $y = 0, 1, ..., \infty$

• When r = 1, the geometric distribution is a special case of negative binomial distribution.

Negative binomial distributions with different p and r. If $Y \sim NB(r, p)$ then $E(Y) = \frac{r(1-p)}{p}$ and $SD(Y) = \sqrt{\frac{r(1-p)}{p^2}}$.

Figure 3: Negative binomial distributions with different values of p and r.

Hypergeometric random variable

- Bernoulli process assumes the probability of a success remained constant across all trials.
- What if this probability is dynamic?

Hypergeometric random variable

- Bernoulli process assumes the probability of a success remained constant across all trials.
- What if this probability is dynamic?
- Suppose we wanted to select *n* items **without replacement** from a collection of *N* objects, *m* of which are considered successes?
- The probability of selecting a "success" depends on the previous selections.
- Y, the number of successes after n selections
- Hypergeometric random variable

$$P(Y=y) = \frac{\binom{m}{y}\binom{N-m}{n-y}}{\binom{N}{n}} \quad \text{for} \quad y=0,1,\ldots,\min(m,n).$$

Hypergeometric distributions with m, N, and n

Y follows a hypergeometric distribution and we define p=m/N, then E(Y)=np and $SD(Y)=\sqrt{np(1-p)\frac{N-n}{N-1}}$.

Figure 4: Hypergeometric distributions with different values of m, N, and n

Poisson random variable

- In a Poisson process, we are counting the number of events per unit of time or space and the number of events depends only on the length or size of the interval.
- Y, the number of events
- Poisson distribution

$$P(Y = y) = \frac{e^{-\lambda}\lambda^y}{y!}$$
 for $y = 0, 1, ..., \infty$,

where λ is the mean or expected count in the unit of time or space of interest.

Poisson distributions with $\lambda = 0.5, 1$, and 5

$$E(Y) = \lambda$$
 and $SD(Y) = \sqrt{\lambda}$

Continuous random variable

A continuous random variable can take on an uncountably infinite number of values. Given a pdf f(y),

$$P(a \le Y \le b) = \int_a^b f(y) dy$$

Properties:

- $\int_{-\infty}^{\infty} f(y) dy = 1$.
- For any value y, $P(Y = y) = \int_y^y f(y)dy = 0$. $P(y < Y) = P(y \le Y)$.

Exponential random variable

- Suppose we have a Poisson process with rate λ
- To model the wait time Y until the first event
- Exponential distribution

$$f(y) = \lambda e^{-\lambda y}$$
 for $y > 0$,

Exponential distributions with $\lambda = 0.5, 1$, and 5

$$E(Y) = 1/\lambda$$
 and $SD(Y) = 1/\lambda$

Gamma random variable

- Consider a Poisson process.
- *Y*, waiting time before 1 event occurrd, follows an exponential distribution.
- Y, waiting time before r events occurred, follows a gamma distribution.

$$f(y) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$$
 for $y > 0$

• When r = 1, the exponential distribution is a special case of gamma distribution.

Gamma distributions with different values of r and λ

If
$$Y \sim \operatorname{Gamma}(r, \lambda)$$
 then $E(Y) = r/\lambda$ and $SD(Y) = \sqrt{r/\lambda^2}$.

Normal random variable

$$Y \in N(\mu, \sigma^2)$$
, $E(Y) = \mu$ and $SD(Y) = \sigma$.

Beta random variable

We often use beta random variables to model distributions of probabilities bounded below by 0 and above by 1.

$$f(y) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}$$
 for $0 < y < 1$

• If $\alpha = \beta = 1$, it follows a uniform distribution,

$$f(y) = \frac{\Gamma(1)}{\Gamma(1)\Gamma(1)} y^{0} (1 - y)^{0}$$

= 1 for 0 < y < 1.

Beta distributions with different values of α and β

$$Y \sim \operatorname{Beta}(\alpha, \beta)$$
, then $E(Y) = \alpha/(\alpha + \beta)$ and $SD(Y) = \sqrt{\frac{\alpha\beta}{(\alpha+\beta+1)}}$.

Beta distributions with different values of α and β

$$Y \sim \operatorname{Beta}(\alpha, \beta)$$
, then $E(Y) = \alpha/(\alpha + \beta)$ and $SD(Y) = \sqrt{\frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}}$.

Note that when $\alpha=\beta$, distributions are symmetric. The distribution is left-skewed when $\alpha>\beta$ and right-skewed when $\beta>\alpha$.

Distributions used in testing

- χ^2 distribution
- t distribution
- F distribution

Some probability distributions in R

Continuous

- Normal (?rnorm)
- Uniform (?runif)
- Beta (?rbeta)
- Chi-sq (?rchisq)
- Exponential (?rexp)
- t (rt)
- F (?rf)
- Logistic (?rlogis)
- Lognormal (?rlnorm)

Discrete

- Poisson (?rpois)
- Binomial (?rbinom)
- Geometric (?rgeom)
- Negative Binomial (?rnbinom)
- Multinomial (?rmultinom)

Empirical vs. Theoretical CDF

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample.

Theoretical CDF

$$F_X(k) = \Pr(X \leq k)$$

Empirical CDF

$$\hat{F}_n(k) = \frac{\text{number of elements in the sample } \leq k}{n} = \frac{1}{n} \sum_{i=1}^{n} I_{X_i \leq k}$$

where X_1, \ldots, X_n make up some random sample from the underlying distribution.

Probability and inference

Probability and inference

- Probability: Given a data generating process, what are the properties of the outcomes?
- Statistical inference: Given the outcomes, what can we say about the process that generated the data?

Parametric vs. Nonparametric models

• Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)

Parametric vs. Nonparametric models

- ullet Statistical model ${\mathfrak F}$: a set of distributions (or densities or regression functions)
- \bullet Parametric model: a set $\mathfrak F$ that can be parameterized by a finite number of parameters

$$\mathfrak{F} = \{ f(x; \theta) : \theta \in \Theta \}$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ .

ullet e.g. Normal distribution, a 2-parameter model with density as $f(x;\mu,\sigma)$

Parametric vs. Nonparametric models

- ullet Statistical model ${\mathfrak F}$: a set of distributions (or densities or regression functions)
- \bullet Parametric model: a set $\mathfrak F$ that can be parameterized by a finite number of parameters

$$\mathfrak{F} = \{ f(x; \theta) : \theta \in \Theta \}$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ .

- ullet e.g. Normal distribution, a 2-parameter model with density as $f(x;\mu,\sigma)$
- \bullet Nonparametric model: a set $\mathfrak F$ that cannot be parameterized by a finite number of parameters
 - ullet e.g. $\mathfrak{F}_{\mathrm{ALL}} = \{ \ \ \mathsf{all} \ \ \mathrm{CDF}'s \}$ is nonparametric.

Frequentist, Bayesian, Fiducial inference (BFF)

- Frequentist: statistical methods with guaranteed frequency behavior
- Bayesian: statistical methods for using data to update beliefs
- Fiducial: statistical methods based on inverse probability without calling on prior probability distributions

Difference: math details, interpretation, replication

- \bullet Frequentist: modeling collection of distributions $\mathcal{P} = \{P_\xi\}_{\xi \in \Xi}$
 - parameter ξ_0 fixed, data x replicated

- Bayesian: modeling one joint distribution $f(x \mid \xi) \cdot \pi(\xi)$
 - data x_0 fixed, parameter ξ replicated

- Fiducial: modeling data generating algorithm $\mathbf{x} = G(\mathbf{u}, \xi)$
 - data x & parameter ξ linked through DGA, auxiliary variable u replicated

Fundamental concepts in inference

- Point estimation
- Hypothesis testing
- Confidence sets

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
 - Parameter θ : fixed, unknown quantity
 - Point estimator $\hat{\theta}$: depends on data, random variable

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
 - Parameter θ : fixed, unknown quantity
 - Point estimator $\hat{\theta}$: depends on data, random variable

Definition (Point estimator)

Let $X_1, ..., X_n$ be n IID data points from some distribution F. A point estimator $\hat{\theta}_n$ of a parameter θ is some function of $X_1, ..., X_n$:

$$\widehat{\theta}_n = g(X_1, \dots, X_n)$$

- Properties
 - Unbiasedness
 - Consistency
 - Efficiency

Point estimation (cont'd)

Bias

$$\mathsf{bias}\left(\widehat{\theta}_{\textit{n}}\right) = \mathbb{E}_{\theta}\left(\widehat{\theta}_{\textit{n}}\right) - \theta$$

Consistency

$$\widehat{\theta}_n \stackrel{\mathrm{P}}{\longrightarrow} \theta$$

Standard error

$$\mathrm{se} = \mathsf{se} \left(\hat{\theta}_{\mathit{n}} \right) = \sqrt{\mathbb{V} \left(\hat{\theta}_{\mathit{n}} \right)}$$

• Mean square error

$$MSE = \mathbb{E}_{\theta} \left(\widehat{\theta}_{n} - \theta \right)^{2}$$

Confidence sets

Definition (Confidence set)

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(a,b)$ where $a=a(X_1,\ldots,X_n)$ and $b=b(X_1,\ldots,X_n)$ are functions of the data such that

$$\mathbb{P}_{\theta}\left(\theta \in C_{n}\right) \geq 1 - \alpha \quad \forall \theta \in \Theta$$

- If θ is a vector, we use **Confidence sets** instead of **Confidence** intervals.
- In Frequentist, θ is fixed while C_n is random.
 - Confidence interval is not a probability statement about θ .
- In Bayesian, θ is random.
 - Bayesian interval refers to degree-of-belief probabilities.

Hypothesis testing

Definition (Hypothesis testing)

Suppose that we partition the parameter space Θ into two disjoint sets Θ_0 and Θ_1 and that we wish to test

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

We call H_0 the null hypothesis and H_1 the alternative hypothesis.

Hypothesis testing (cont'd)

Let X be a random variable, \mathcal{X} be the range of X. We test a hypothesis by finding the rejection region $R \subset \mathcal{X}$,

$$X \in R \implies \text{reject } H_0$$

 $X \notin R \implies \text{retain (do not reject) } H_0$

Common form of R,

$$R = \{x : T(x) > c\}$$

where T is a test statistic and c is a critical value.

Hypothesis testing (cont'd)

- Type I error: Rejecting H_0 when H_0 is true
- Type II error: Retaining H_0 when H_1 is true

Definition (Power function)

The power function of a test with rejection region R is defined by

$$\beta(\theta) = \mathbb{P}_{\theta}(X \in R).$$

The size of a test is defined to be

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta).$$

A test is said to have level α if its size is less than or equal to α .

Resources

This tutorial is based on

- Havard Biostatistics Summer Pre Course [link]
- "Beyond Multiple Linear Regression" by Paul Roback and Julie Legler [link]
- "Short course on Generalized Fiducial Inference" by Jan Hannig [link]

More resources: - BFF, Bayesian, Fiducial & Frequentist: http://bff-stat.org/about/