The Monge Gap: A Regularizer to **Learn All Transport Maps**

Theo Uscidda Marco Cuturi **presenter**: Shen Yuan

中國人民大學 高瓴人工智能学院 Gaoling School of Artificial Intelligence

Background

The Monge Gap

Learning with the Monge Gap

Experiments

Background

Monge and Kantorovich formulation Entropic regularization

The Monge Gap

Learning with the Monge Gap

Experiments

Monge formulation

Given a compact subset $\Omega \subset \mathbb{R}^d$, a continuous cost function $c: \Omega \times \Omega \to \mathbb{R}$ and two probability distributions $\mu, \nu \in \mathcal{P}(\Omega)$, the Monge problem is to find $T: \Omega \to \Omega$ that push-forward μ onto ν , which minimizes the averaged displacement cost:

$$W_c(\mu,
u) := \inf_{T
otin \mu =
u} \int_{\Omega} c(\boldsymbol{x}, T(\boldsymbol{x})) \mathrm{d}\mu(\boldsymbol{x})$$
 (1)

c-OT means any solution to 1 between μ and ν .

Figure 1: Push-forward of measures.

Kantorovich formulation

Figure 2: Comparison of transport maps and generic couplings.

Kantorovich formulation

Figure 2: Comparison of transport maps and generic couplings.

$$W_c(\mu,\nu) := \min_{\pi \in \Pi(\mu,\nu)} \int \int_{\Omega \times \Omega} c(\boldsymbol{x},\boldsymbol{y}) d\pi(\boldsymbol{x},\boldsymbol{y})$$
 (2)

An optimal coupling $\pi^* = (\mathrm{Id}, T^*) \sharp \mu$ always exists.

Entropic regularization

For empirical measures $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{\boldsymbol{x}_i}, \hat{\nu}_n = \frac{1}{n} \sum_{j=1}^n \delta_{\boldsymbol{y}_j}$ and $\varepsilon > 0$, $\boldsymbol{C} = [c(\boldsymbol{x}_i, \boldsymbol{y}_j)]_{ij}$,

$$W_{c,\varepsilon}(\hat{\mu}_n,\hat{\nu}_n) := \min_{\boldsymbol{P} \in U_n} \langle \boldsymbol{P}, \boldsymbol{C} \rangle - \varepsilon H(\boldsymbol{P})$$
(3)

where
$$U_n=\{\boldsymbol{P}\in\mathbb{R}_+^{n\times n},\boldsymbol{P}\boldsymbol{1}_n=\frac{1}{n}\boldsymbol{1}_n,\boldsymbol{P}^T\boldsymbol{1}_n=\frac{1}{n}\boldsymbol{1}_n\}$$
 and $H(\boldsymbol{P})=-\sum_{i,j=1}^n\boldsymbol{P}_{ij}\log(\boldsymbol{P}_{ij}).$

Background

Monge and Kantorovich formulation Entropic regularization

The Monge Gap

Learning with the Monge Gap

Experiments

The Monge Gap

Given a cost c and a reference measure $\rho \in \mathcal{P}$, the Monge gap of a vector field $T: \Omega \to \Omega$ is defined as:

$$\mathcal{M}_{\rho}^{c}(T) := \int_{\Omega} c(\mathbf{x}, T(\mathbf{x})) d\rho(\mathbf{x}) - W_{c}(\rho, T\sharp \rho)$$
 (4)

The Monge Gap

Given a cost c and a reference measure $\rho \in \mathcal{P}$, the Monge gap of a vector field $T: \Omega \to \Omega$ is defined as:

$$\mathcal{M}_{\rho}^{c}(T) := \int_{\Omega} c(\boldsymbol{x}, T(\boldsymbol{x})) d\rho(\boldsymbol{x}) - W_{c}(\rho, T\sharp \rho)$$
(4)

- ▶ For any vector field T, $\mathcal{M}_{\rho}^{c}(T) \geq 0$.
- ► T is a c-OT map between ρ and $T\sharp \rho \Leftrightarrow \mathcal{M}^c_{\rho}(T) = 0$

The Monge Gap

Figure 1. Sketch of the Monge Gap $\mathcal{M}_{\hat{\rho}_n}^1(T)$ instantiated with the euclidean $\cot c(\cdot,\cdot)=\|\cdot-\cdot\|_2$, where $\hat{\rho}_n$ is a discrete measure supported on four points. Because the OT map T^\star between $\hat{\rho}_n$ and $T\sharp\hat{\rho}_n$ does not coincide with T (notably on on points $\mathbf{x}_2,\mathbf{x}_3$), the Monge gap here is positive, and equal to differences in lengths that amount to $(\mathbf{a}+\mathbf{b})/4$ in the plot.

Consistency of the Monge Gap

Lemma 3.2(Consistency). Given empirical measures $\hat{\rho}_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$, provided that T is continuous, it almost surely holds

$$\lim_{n \to +\inf} \mathcal{M}^{c}_{\hat{\rho}_{n}}(T) = \mathcal{M}^{c}_{\rho}(T)$$
(5)

Consistency of the Monge Gap

Lemma 3.2(Consistency). Given empirical measures $\hat{\rho}_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}$, provided that T is continuous, it almost surely holds

$$\lim_{n \to +\inf} \mathcal{M}_{\hat{\rho}_n}^c(T) = \mathcal{M}_{\rho}^c(T)$$
 (5)

$$\mathcal{M}_{\rho}^{c}(T) := \int_{\Omega} c(\boldsymbol{x}, T(\boldsymbol{x})) d\rho(\boldsymbol{x}) - W_{c}(\rho, T \sharp \rho)$$

$$\mathcal{M}_{\hat{\rho}n,\varepsilon}^{c}(T) := \frac{1}{n} \sum_{i=1}^{n} c(\boldsymbol{x}_{i}, T(\boldsymbol{x}_{i})) - W_{c,\varepsilon}(\hat{\rho}_{n}, T \sharp \hat{\rho}_{n})$$
(6)

Relation to Cyclical Monotonicity

For any $n \in \mathbb{N}$, any set $\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\} \times \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_n\} \subset \Gamma$ and permutation $\sigma \in \mathcal{S}_n$, a set $\Gamma \subset \Omega \times \Omega$ is *c*-CM(Cyclical Monotonicity) if

$$\sum_{i=1}^{n} c(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \leq \sum_{i=1}^{n} c(\boldsymbol{x}_{i}, \boldsymbol{y}_{\sigma(i)})$$

$$\tag{7}$$

Relation to Cyclical Monotonicity

For any $n \in \mathbb{N}$, any set $\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_n\} \times \{\boldsymbol{y}_1, \dots, \boldsymbol{y}_n\} \subset \Gamma$ and permutation $\sigma \in \mathcal{S}_n$, a set $\Gamma \subset \Omega \times \Omega$ is *c*-CM(Cyclical Monotonicity) if

$$\sum_{i=1}^{n} c(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \leq \sum_{i=1}^{n} c(\boldsymbol{x}_{i}, \boldsymbol{y}_{\sigma(i)})$$

$$(7)$$

With $\boldsymbol{y}_i := T(\boldsymbol{x}_i)$, the Monge gap estimator using permutations is:

$$\mathcal{M}_{\hat{\rho}_n}^c(T) = \frac{1}{n} \sum_{i=1}^n c(\mathbf{x}_i, T(\mathbf{x}_i)) - \min_{\sigma \in \mathcal{S}_n} \frac{1}{n} \sum_{i=1}^n c(\mathbf{x}_i, T(\mathbf{x}_{\sigma(i)}))$$
(8)

The cyclical monotonicity of that set is equivalent to the optimality of *T*.

Properties of the Monge Gap

Proposition 3.3. Let $\mu, \nu \in \mathcal{P}(\Omega)$ such that $\operatorname{Spt}(\mu) \subset \operatorname{Spt}(\rho)$, and a map T s.t. $T\sharp \mu = \nu$. Then $\mathcal{M}_{\rho}^{c}(T) = 0$ implies that T is a c-OT map between μ and ν .

Background

Monge and Kantorovich formulation Entropic regularization

The Monge Gap

Learning with the Monge Gap

Experiments

Using directly the Monge gap as a regularizer

Given a loss function defined through a divergence Δ , a regularization weight $\lambda_{\rm MG}>0$ is introduced:

$$\min_{\theta \in \mathbb{R}^p} \mathcal{L}(\theta) := \Delta(T_{\theta} \sharp \mu, \nu) + \lambda_{\text{MG}} \mathcal{M}^c_{\rho}(T_{\theta})$$
(9)

Gradient of Monge Gap

According to the Danskin (1967) Theorems, $\mathcal{M}^c_{\hat{\rho}_n,\varepsilon}$ is differentiable and its gradient reads:

$$\nabla_{\theta} \mathcal{M}^{c}_{\hat{\rho}n,\varepsilon}(T_{\theta}) = \sum_{i,j=1}^{n} (\frac{1}{n} \delta_{ij} - \boldsymbol{P}^{\varepsilon}_{ij}) \nabla_{\theta} c(\boldsymbol{x}_{i}, T_{\theta}(\boldsymbol{x}_{j}))$$
(10)

Gradient of Monge Gap

According to the Danskin (1967) Theorems, $\mathcal{M}^c_{\hat{\rho}_n,\varepsilon}$ is differentiable and its gradient reads:

$$\nabla_{\theta} \mathcal{M}^{c}_{\hat{\rho}_{n},\varepsilon}(T_{\theta}) = \sum_{i,j=1}^{n} (\frac{1}{n} \delta_{ij} - \boldsymbol{P}^{\varepsilon}_{ij}) \nabla_{\theta} c(\boldsymbol{x}_{i}, T_{\theta}(\boldsymbol{x}_{j}))$$

$$\tag{10}$$

Since $\mathbf{P}^{\varepsilon} \in U_n$, $\forall i, j, 0 \leq \mathbf{P}_{ij}^{\varepsilon} \leq 1/n$, so:

$$\begin{cases}
(1/n)\delta_{ij} - \mathbf{P}_{ij}^{\varepsilon} \ge 0 & \text{if } i = j \\
(1/n)\delta_{ij} - \mathbf{P}_{ij}^{\varepsilon} \le 0 & \text{if } i \ne j
\end{cases}$$
(11)

Handling Costs with Structure

For cost $c(\mathbf{x}, \mathbf{y}) = h(\mathbf{x} - \mathbf{y})$ with h strictly convex, the map has structure, as a known functional depending on h^* applied to the gradient a dual potential. A parametrized vector field F_{θ} is introduced to model directly the dual potential gradient $\nabla \psi^*$:

$$T_{\theta}: \boldsymbol{x} \mapsto \boldsymbol{x} - \nabla h^* \circ F_{\theta}(\boldsymbol{x})$$
 (12)

The final loss function

The regularizer penalizes the asymmetry of $\operatorname{Jax}_{\boldsymbol{x}} F$ for $\boldsymbol{x} \sim \rho$:

$$C_{\rho}(F) = \mathbb{E}_{X \sim \rho} \left[\| \mathbf{Jac}_X F - \mathbf{Jac}_X^T F \|_2^2 \right]$$
 (13)

$$\min_{\theta \in \mathbb{R}^p} \mathcal{L}(\theta) := \Delta((I_d - \nabla h^* \circ F_\theta) \sharp \mu, \nu) + \lambda_{\mathrm{MG}} \mathcal{M}^c_\rho(I_d - \nabla h^* \circ F_\theta) + \lambda_{\mathrm{cons}} \mathcal{C}_\rho(F_\theta) \quad \text{(14)}$$

The selection of the regularization weights $(\lambda_{MG}, \lambda_{cons})$

Figure 5. Heatmap showing the influence of the Monge gap \mathcal{M}_{μ}^2 and the conservative regularizer \mathcal{C}_{μ}^2 , when learning the Monge map for the ℓ_2^2 cost between Korotin et al. (2021) benchmark pair of dimension d=32. For each pair of regularization weights $(\lambda_{\rm MG}, \lambda_{\rm cons})$ on a regular grid. we report the unexplained variance $\mathcal{L}_2^{\rm UV}(\hat{T})$ provided by the the estimated map \hat{T} .

$$\mathcal{L}_{2}^{\mathrm{UV}}(\hat{T}) := 100 \frac{\mathbb{E}_{\mu}[\|\hat{T}(X) - T^{*}(X)\|^{2}]}{\mathrm{Var}_{\nu}(X)}$$
 (15)

Background

Monge and Kantorovich formulation Entropic regularization

The Monge Gap

Learning with the Monge Gap

Experiments

Experiments

Figure 2. Fitting of transport maps between synthetic measures μ , ν in dimension d=2, with the same fitting loss $\Delta=W_{2,\varepsilon}$ but Monge gap, M_{μ}^{0} instantiated with various costs c. We also fit an MLP without Monge gap, minimizing only the fitting loss. For $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_{2}$, we use the method for generic costs §4.1, directly parameterizing T_{0} as an MLP and using $\Delta_{\mathrm{MG}} = 5$. For $c(\mathbf{x}, \mathbf{y}) = \frac{1}{1.5} \|\mathbf{x} - \mathbf{y}\|_{1.5}^{1.5}$ and $c(\mathbf{x}, \mathbf{y}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$, since they have the form $c(\mathbf{x}, \mathbf{y}) = h(\mathbf{x} - \mathbf{y})$ with h strictly convex and kwown Legendre transform h^* , we use the method for costs with structure §4.2. Accordingly, we parameterize $T_{\theta} = I_{d} - \nabla h^* \circ F_{\theta}$ with an MLP F_{θ} and penalize lack of conservativity with C_{u} . Moreover, we use $\lambda_{\mathrm{MG}} = 1$ and $\lambda_{\mathrm{cons}} = 0$ and $\lambda_{0} = 0$.

Experiments

Figure 3. Fitting of a transport map \hat{T} to predict the responses of cells populations to cancer treatments, on 4i and scRNA datasets, providing respectively 34 and 9 treatment responses. For each profiling technology and each treatment, we compare the predictions of a MLP trained with Monge gap $\mathcal{M}_{\mu}^2(F)$ + conservative regularizer C_{μ} to those provided by a vanilla MLP (trained without regularization), and a gradient-ICNN learned via the neural dual formulation (Makkuva et al., 2020). We measure predictive performance using the Sinkhorn divergence between a batch of unseen (test) treated cells and a batch of unseen control cells mapped with \hat{T} , see§ 6.4 and Appendix B.5 for details. Each scatter plot displays points $z_i = (x_i, y_i)$ where y_i is the divergence obtained by our method and x_i that of the other baseline, on all treatments. A point below the diagonal y = x refers to an experiment in which our methods outperforms the baseline. To each treatment, we assign a color and plot 5 runs, along with their mean (the brighter point).

Experiments

Figure 4. Fitting of transport maps betwen synthetic measures on the 2-sphere. In both cases, we parameterize the map as $T_\theta = F_\theta/\|F_\theta\|_2$ betwee F_θ is an MLP, and we use $\Delta = W_{G_\theta^2,\Phi}$ so fitting loss. On the upper plot, we do not use any regularizer while on the lower plot we regularize with the Monge gap instantiated for the geodesic cost $(K, y) = \arccos(X, Y)$ and $(X, y) = \arccos(X, Y)$ and $(X, Y) = \max(X, Y)$.

Figure 6. Performances of Monge gap-based learning and baselines on estimating the ground-truth maps between each pair of Gaussian mixtures μ,ν in dimension $d\in \{2, 3, \dots, 256\}$ of the Korotin et al. (2021) benchmark. We report both Sinkhorn divergence $S_{d_2,\kappa}(\tilde{T}^n_{F}\mu,\nu)$ and the unexplained variance $\mathcal{L}^{\mathrm{UV}}_2(\tilde{T})$ averaged over 5 fittings.

Background

Monge and Kantorovich formulation Entropic regularization

The Monge Gap

Learning with the Monge Gap

Experiments

- ► This paper provides a new strategy to train optimal transport maps.
- ▶ The regularizer adapts to any cost c, but requires defining a reference measure ρ .