

Informatikai rendszer és - alkalmazás-üzemeltető technikus(5 0612 12 02)

Hálózat tervezési, működési dokumentáció 2025. április

Készítette:

Kis Kende Dominik és Nagy Botond Áron

A hálózat szimulációs programban megvalósítva	3
IP cím táblázat	3
Cél és hatókör	4
Hálózati topológia áttekintése	4
Dokumentáció felépítése	5
VLAN (Virtual Local Area Network)	5
2. és 3. rétegbeli redundancia	8
IPv4 és IPv6 címzés	8
Vezeték nélküli hálózat	9
Statisztikus és dinamikus forgalomirányítás	10
Statisztikus és dinamikus címfordítás	10
WAN (Wide Area Network) – Frame Relay	11
VPN (Virtual Private Network)	12
Programozott hálózat konfiguráció (SDN)	13
ACL (Access Control Lists)	14
Hardveres tűzfal eszköz	14
Windows Webkiszolgáló Bemutatása	15
Linux DNS Kiszolgáló Bemutatása	16
Összegzés	16
Privilegizált módot védő titkosított jelszavas védelem	16
SSH(Secure Shell)	17
Konzolos hozzáférést védő jelszó	18
Összefoglalás	18

ESZKÖZ	IP CÍM	ALHÁLÓZATI MASZK	ALAPÉRTELMEZET T ÁTJÁRÓ	NÉV
	10.0.0.1	255.0.0.0	-	IRODA-RT
IRODA-RT	20.0.0.1	255.0.0.0	-	
	192.168.10.1	255.255.255.0	-	
	192.168.50.1	255.255.255.0	-	
	10.0.0.2	255.0.0.0	-	
INTERNET-RT	40.0.0.1	255.0.0.0	-	INTERNET-RT
	192.168.40.1	255.255.255.0	-	
ADMIN-RT	20.0.0.2	255.0.0.0	-	
	30.0.0.1	255.0.0.0	-	ADMIN-RT
	192.168.20.1	255.255.255.0	-	
	192.168.60.1	255.255.255.128	-	
	50.0.0.1	255.0.0.0	-	
	30.0.0.2	255.0.0.0	-	TITKAR-RT
TITKAR-RT	40.0.0.2	255.0.0.0	-	
	192.168.30.1	255.255.255.0	-	
BESZERZES-RT	192.168.70.1	255.255.255.0	-	BESZERZES-RT
	50.0.0.2	255.0.0.0	-	
WIFI-RT	192.168.40.2	255.255.255.0	192.168.40.1	WIFI-RT
	192.168.100.1	255.255.255.0	-	VVIFI-RI
IRODA_R-SW	192.168.10.2	255.255.255.0	192.168.10.1	-
IRODA1-SW	192.168.10.3	255.255.255.0	192.168.10.1	-
IRODA2-SW	192.168.10.4	255.255.255.0	192.168.10.1	-
TFTP-SERVER	192.168.20.2	255.255.255.0	192.168.20.1	-
WEB-SERVER	192.168.20.3	255.255.255.0	192.168.20.1	-
	F411:1:1:16:2/32	-	F411:1:1::16:1	-

LAPTOP1(WLAN)	DHCP-Kliens		192.168.40.2	-
TABLET(WLAN)	DHCP-Kliens		192.168.40.2	-
NOTEBOOK	DHCP-Kliens		192.168.30.1	-
PRINTER(TIT)	DHCP-Kliens		192.168.30.1	-
PC1(TIT)	DHCP-Kliens		192.168.30.1	-
PC2(TIT)	DHCP-Kliens		192.168.30.1	-
ADMIN-LAPTOP	192.168.20.5	255.255.255.0	192.168.20.1	-
ADMIN-PC	192.168.20.4	255.255.255.0	192.168.20.1	-
PC1_1(IR)	192.168.10.10	255.255.255.0	192.168.10.1	-
PC1_2(IR)	192.168.10.20	255.255.255.0	192.168.10.1	-
PC2_1(IR)	192.168.10.11	255.255.255.0	192.168.10.1	-
PC2_2(IR)	192.168.10.21	255.255.255.0	192.168.10.1	-
PC(BSZ)	192.168.70.254	255.255.255.0	192.168.70.1	-
LAPTOP(BSZ)	192.168.70.253	255.255.255.0	192.168.70.1	-
BESZERZES-SW	192.168.70.252	255.255.255.0	192.168.70.1	-
FIREWALL	192.168.50.2	255.255.255.128	-	-
	192.168.50.129	255.255.255.128	-	-

1. Cél és hatókör

Ez a dokumentáció a Rubicon BT vállalat hálózati infrastruktúrájának tervezését és konfigurációját tartalmazza. A célunk egy megbízható, biztonságos, és bővíthető hálózati környezet kialakítása, amely képes támogatni a vállalat napi működését, az alkalmazottak munkavégzését, valamint a különböző üzleti folyamatokat. A dokumentációban szereplő konfigurációk és beállítások biztosítják a megfelelő adatátvitelt, figyeltünk arra, hogy az elvárásoknak megfelelően tartalmazzon a hálózat terhelés elosztást, hiba esetén is működőképes maradjon a hálózat, mivel több útvonal létezik a telephelyek között és a biztonságra, miközben a jövőbeli bővítések is figyelembevételre kerülnek.

2. Hálózati topológia áttekintése

A hálózat egy hierarchikus architektúrára épül, amely három fő rétegre tagolódik: a core, az aggregation és az access rétegre. Az access réteg biztosítja a végpontok, mint a munkaállomások, nyomtatók és Wi-Fi eszközök kapcsolódását. Az aggregation réteg közvetíti az adatforgalmat a helyi eszközök és a központi routerek között. A core réteg biztosítja a nagy

sebességű adatátvitelt és a redundáns kapcsolatokat a külső hálózatokkal, valamint az internetkapcsolatokhoz való elérést.

A hálózati infrastruktúra a következőket tartalmazza:

- <u>VLAN-ok:</u> A forgalom elkülönítése és az alkalmazottak közötti kommunikáció optimalizálása érdekében több különböző VLAN-t használunk.
- <u>Redundáns útvonalak:</u> A hálózat hibamentes működése érdekében a
 és 3. rétegbeli redundanciát biztosítjuk a megfelelő routing protokollokkal és eszközökkel.
- <u>IPv4 és IPv6 címzés:</u> A hálózat mindkét címzési formát használja az eszközök és szolgáltatások megfelelő azonosítása érdekében.
- <u>Vezeték nélküli hálózat:</u> A felhasználók mobilitásának és rugalmasságának támogatására biztonságos Wi-Fi hozzáférési pontok kerültek telepítésre.
- <u>VPN és WAN kapcsolatok:</u> A távoli telephelyek közötti kapcsolatok biztosítása érdekében VPN és WAN technológiák kerültek implementálásra.
- <u>Tűzfal és ACL szabályok:</u> A hálózat védelmét tűzfalak és hozzáférési vezérlő listák (ACL) biztosítják, amelyek szabályozzák a bejövő és kimenő forgalmat.
- Statikus és dinamikus címfodítás: A címfordítás lehetővé teszi a belső hálózaton található IP-címek átalakítását, hogy azok elérhetőek legyenek az interneten vagy egy másik hálózaton keresztül.
- Statikus és dinamikus forgalomirányítás: A statikus és dinamikus forgalomirányítás (routing) kétféleképpen segít a hálózati forgalom célba juttatásában, de más-más módon működnek.

3. Dokumentáció felépítése

A dokumentáció az alábbiakban részletezi a hálózati infrastruktúra minden fontos aspektusát, beleértve a VLAN konfigurációkat, a redundanciát, az IP címzést, a vezeték nélküli hálózat beállításait, valamint a biztonsági intézkedéseket és a tűzfalak kezelését. A cél, hogy minden hálózati elem és konfiguráció világos és könnyen érthető módon legyen bemutatva a későbbi karbantartás, hibaelhárítás és bővítés érdekében.

4. VLAN (Virtual Local Area Network)

Célja és előnyei

A VLAN-ok lehetővé teszik a hálózaton belüli logikai szegmentálást, ami biztosítja az adatok elkülönítését, a hálózati forgalom hatékony kezelését, valamint a biztonság növelését. A VLAN-ok használata segít csökkenteni a broadcast forgalmat, növeli a hálózati teljesítményt, és lehetővé teszi a hálózati erőforrások jobb elosztását. A VLAN-ok alkalmazásával különböző csoportokat hozhatunk létre, amelyek függetlenek egymástól, még ha ugyanazon fizikai eszközön osztoznak is.

Használt VLAN-ok

A következő VLAN-ok kerültek kialakításra a vállalati hálózaton belül, figyelembe véve az egyes osztályok és alkalmazások igényeit:

• VLAN 10 - Munkaállomások (HR, Iroda1)

o IP tartomány: 192.168.10.0/24

o Eszközök: HR osztály munkaállomásai

o Cél: A HR osztály számára biztosít egy dedikált hálózati szegmenst, elkerülve a más osztályokkal való kommunikációt.

• VLAN 20 - Munkaállomások (Pénzügy, Iroda2)

o IP tartomány: 192.168.20.0/24

o Eszközök: Pénzügy osztály munkaállomásai, fájlszerverek

o Cél: A pénzügyi osztály számára biztosított hálózati szegmens, amely elszigeteli az érzékeny adatokat.

VLAN Routing (Inter-VLAN Routing)

A VLAN-ok közötti kommunikációt a Layer 3 Switch vagy Router végzi. Az alábbi konfiguráció biztosítja az egyes VLAN-ok közötti adatforgalmat:

 A routingot Router on a Stick konfigurációval oldottuk meg, amely egyetlen fizikai interfészen biztosítja az inter-VLAN routingot.

VLAN Security

A VLAN-ok biztonságos használatához a következő intézkedéseket alkalmazzuk:

 Port security: Csak engedélyezett eszközök csatlakozhatnak a különböző VLAN-okhoz.

• DHCP snooping: Megakadályozza, hogy nem megbízható DHCP szerverek osztogassanak IP-címeket a hálózaton.

VLAN tagolás

A VLAN-ok megfelelő működéséhez a következő VLAN tagolást használjuk az eszközök közötti kommunikációban:

- IEEE 802.1Q VLAN tagolás: A hálózati eszközök közötti forgalom esetén a VLAN azonosítókat 802.1Q tag-ek formájában adunk hozzá a kerethez.
- Az access portok a megfelelő VLAN-hoz tartoznak, míg az uplink portok trunk portok, amelyek több VLAN-t is képesek továbbítani.

VLAN hibakeresés és karbantartás

A VLAN-ok hibáinak elhárításához az alábbi eszközöket és parancsokat alkalmazzuk:

- Ping teszt a VLAN IP címek közötti elérhetőség ellenőrzésére.
- VLAN konfigurációk lekérdezése: show vlan brief és show running-config parancsok a VLAN beállítások megtekintésére.

5. 2. és 3. rétegbeli redundancia

Részletes magyarázat:

A redundancia célja, több útvonal biztosításával, hogy a hálózati eszközök hibája esetén is legyen folyamatos működés. A redundanciát két szinten érhetjük el:

- 2. rétegbeli redundancia (STP): A hurokmentes hálózati kapcsolatot biztosítja, amely megakadályozza az adatcsomagok végtelen körforgását.
- 3. rétegbeli redundancia (HSRP): A forgalmat több router között elosztja, így ha egy router meghibásodik, a másik átveszi a forgalmat.

Példa:

- STP (Spanning Tree Protocol) a hurokmentes kapcsolatokért.
- HSRP (Hot Standby Router Protocol), hogy biztosítsuk a hálózati kapcsolat folyamatosságát.

6. IPv4 és IPv6 címzés

Részletes magyarázat:

Az IPv4 és IPv6 címzés biztosítja, hogy a hálózati eszközök megfelelő címekkel legyenek ellátva. Az IPv4 címek 32 bit hosszúak, míg az IPv6 címek 128 bit hosszúak, ami az IPv4 címek kimerítését követően jelentkezett.

Példa:

- IPv4 címzés: Az IPv4 címeket a belső hálózatban használjuk az egyszerűsége miatt.
- IPv6 címzés: Az IPv6-t az új generációs címzéshez használjuk. Mivel az IPv6 címek sokkal nagyobb címtartományt biztosítanak, segítenek a jövőbeli bővítésben.

7. Vezeték nélküli hálózat

Részletes magyarázat:

A Wi-Fi hálózat célja a felhasználók mobilitásának biztosítása. A vezeték nélküli hozzáférés biztosítása mellett a biztonságra is oda kell figyelni, például WPA2-PS titkosítással, hogy megvédjük a hálózatot a potenciális támadásoktól.

Példa:

SSID: "Rubicon-Net" (WPA2-PS titkosítással)

8. Statisztikus és dinamikus forgalomirányítás

Részletes magyarázat:

A forgalomirányítás lehet statikus vagy dinamikus. A statikus útvonalakat manuálisan konfiguráljuk, míg a dinamikus forgalomirányítást az útválasztási protokollok (pl. OSPF) végzik automatikusan.

Példa:

Statikus útvonal konfigurációja:

Ez a konfiguráció azt jelenti, hogy minden hálózatra irányuló forgalom a router IP-címén keresztül fog elérni.

• Dinamikus forgalomirányítás (OSPF):

Az OSPF lehetővé teszi az útvonalak dinamikus frissítését és alkalmazását a hálózaton.

```
router ospf 1
log-adjacency-changes
network 20.0.0.0 0.255.255.255 area 0
network 30.0.0.0 0.255.255.255 area 0
network 192.168.20.0 0.0.0.255 area 0
network 50.0.0.0 0.255.255.255 area 0
```

9. Statisztikus és dinamikus címfordítás (NAT)

Részletes magyarázat:

A NAT (Network Address Translation) célja, hogy a magánhálózati címeket külső, nyilvános címekre cserélje. A NAT lehet statikus (fix) vagy dinamikus (változó).

Példa:

Statikus NAT:

ip nat inside source static 192.168.20.3 200.10.10.254

• Dinamikus NAT: A belső hálózaton lévő eszközök egyetlen külső IP-címet használnak, amely a NAT fordításon keresztül érhető el.

A hálózati címfordítás biztonság szempontjából is fontos, hogy a hálózat belső IP címe, pl. WEB-Server kívülről rejtve maradjon.

ip nat pool CLOUD 200.20.20.253 200.20.20.254 netmask 255.255.255.0 ip nat inside source list 1 pool CLOUD

access-list 1 permit 192.168.50.0 0.0.0.127

10. WAN (Wide Area Network) - Frame Relay

Részletes magyarázat:

A Frame Relay egy régebbi, de még mindig széles körben használt csomagkapcsolt WAN technológia. Ez biztosítja a távoli irodák közötti adatkapcsolatot dedikált vonalakon vagy megosztott linkeken keresztül. A Frame Relay PVC-ket (Permanent Virtual Circuits) alkalmaz a különböző helyek közötti adatátvitelhez. A Permanent Virtual Circuit (PVC) egy hálózaton keresztül létrehozott virtuális kapcsolat, amely állandó és dedikált adatátviteli útvonalat biztosít két végpont között anélkül, hogy gyakori beállítási és lebontási folyamatokra lenne szükség. Ezen a technológián keresztül az adatokat csomagokban küldik a hálózaton, és a routerek használják a DLCI (Data Link Connection Identifier) címzést a megfelelő célállomások azonosítására. A Data Link Connection Identifier (DLCI) egy egyedi azonosító, amelyet a Frame Relay hálózatokban használnak egy adott virtuális áramkör azonosítására két csomópont között. Ez egy 10 bites szám, amelyet az adatkeretek hálózaton keresztüli továbbítására használnak, és helyi jelentőségű, vagyis csak azon a hivatkozáson van értelme, ahol használják.

Példa Frame Relay WAN kapcsolatra két router között:

Az R1 és R2 routerek egy Frame Relay kapcsolaton keresztül kommunikálnak.


```
interface Serial0/0/0
bandwidth 128
 ip address 20.0.0.2 255.0.0.0
encapsulation frame-relay
 frame-relay interface-dlci 101
 clock rate 2000000
interface Serial0/0/1
bandwidth 128
 ip address 30.0.0.1 255.0.0.0
encapsulation frame-relay
 frame-relay interface-dlci 102
 clock rate 128000
interface Serial0/1/0
bandwidth 128
 ip address 50.0.0.1 255.0.0.0
encapsulation frame-relay
 frame-relay interface-dlci 103
 clock rate 2000000
```

11. VPN (Virtual Private Network)

Részletes magyarázat:

A VPN-ek lehetővé teszik a távoli hozzáférést a vállalati hálózathoz titkosított csatornán keresztül, így biztonságos kapcsolatot kínálnak.

Ez a beállítás biztosítja a távoli hozzáférést a vállalati hálózathoz SSL-alapú VPN-en keresztül.


```
interface: Serial0/1/0
      Crypto map tag: TGMAP, local addr 10.1.1.2
     protected vrf: (none)
     local ident (addr/mask/prot/port):
   (192.168.10.0/255.255.255.0/0/0)
     remote ident (addr/mask/prot/port):
   (192.168.20.0/255.255.255.0/0/0)
     current_peer 20.1.1.2 port 500
      PERMIT, flags={origin_is_acl,}
     #pkts encaps: 6, #pkts encrypt: 6, #pkts digest: 0
     #pkts decaps: 7, #pkts decrypt: 7, #pkts verify: 0
     #pkts compressed: 0, #pkts decompressed: 0
     #pkts not compressed: 0, #pkts compr. failed: 0
     #pkts not decompressed: 0, #pkts decompress failed: 0
     #send errors 0, #recv errors 0
       local crypto endpt.: 10.1.1.2, remote crypto endpt.:20.1.1.2
       path mtu 1500, ip mtu 1500, ip mtu idb Serial0/1/0
       current outbound spi: 0x0(0)
       inbound esp sas:
    --More--
 Ctrl+F6 to exit CLI focus
                                                     Copy
                                                                 Paste
Top
```

12. Programozott hálózat konfiguráció (SDN)

Részletes magyarázat:

Az SDN (Software-Defined Networking) lehetővé teszi a hálózatok központi vezérlését és automatizálását. Az SDN használatával könnyen módosítható a hálózati infrastruktúra a programozott eszközök segítségével.


```
{
    "hostname": "TITKAR-RT",
    "commands": [
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "TITKAR-RT>",
    "dhcp_pools": [
    {
        "name": "LAN_POOL",
        "network": "192.168.30.0",
        "subnet_mask": "255.255.255.0",
        "default_gateway": "192.168.30.1",
        "dns_servers": ["8.8.8.8", "8.8.4.4"],
        "lease_time": "24h",
        "excluded_addresses": ["192.168.30.1", "192.168.30.100-192.168.30.110"]
}

"dhcp_bindings": [
        "mac_address": "00:1A:2B:3C:4D:5E",
        "ip_address": "192.168.30.50",
        "lease_expiration": "2025-02-07 12:00:00"
}

"dhcp_statistics": {
        "total_leases": 50,
        "active_leases": 54,
        "available_addresses": 5,
        "declined_addresses": 0
}
```

13. ACL (Access Control Lists)

Részletes magyarázat:

Az ACL-ek hozzáférési listák, amelyek lehetővé teszik a forgalom szabályozását a hálózaton. Szűrhetjük a forgalmat IP-címek, protokollok, portok vagy egyéb kritériumok alapján.

```
access-list 100 deny udp 192.168.70.0 0.0.0.255 host 192.168.20.2 eq tftp access-list 100 permit ip any any
interface GigabitEthernet0/0
```

```
ip address 192.168.70.1 255.255.255.0 ip access-group 100 out
```

14. Hardveres tűzfal eszköz

Részletes magyarázat:

A hardveres tűzfal biztosítja a hálózat védelmét, szűrve a bejövő és kimenő adatforgalmat, és biztosítva, hogy csak a jogosult forgalom érje el a védett hálózati erőforrásokat.

15. Windows Web Kiszolgáló Bemutatása

A Windows Web Kiszolgáló egy olyan szerver, amely az interneten vagy helyi hálózaton keresztül weboldalak, alkalmazások és egyéb webes tartalmak kiszolgálására szolgál. Az egyik legelterjedtebb webkiszolgáló szoftver a Microsoft Internet Information Services (IIS), amely beépített eszközként található meg a Windows Server operációs rendszerekben.

- - ×

16. Linux DNS Kiszolgáló Bemutatása

A Linux DNS Kiszolgáló feladata, hogy feloldja a domain neveket IP-címekre, és lehetővé tegye az internetes vagy helyi hálózaton belüli kommunikációt a domain nevek használatával.

A legnépszerűbb DNS szerver szoftver Linux alatt a BIND (Berkeley Internet Name Domain), amely egy nyílt forráskódú DNS szerver implementáció.

Ennek a segítségével nem IP címet kell megadni a kívánt oldal eléréséhez, hanem a nevét. Pl.: 8.8.8.8 - Google.com

17. Összegzés

A két különböző operációs rendszer, Windows Server és Linux, más-más módszerekkel biztosítja a webes és DNS szolgáltatásokat, de mindkettő széles körben alkalmazható a vállalati és otthoni hálózatokban.

18. Egyéb, a hálózat biztonságát szolgáló megoldások

18.1 Privilegizált módot védő titkosított jelszó

Forgalomirányítókon, hálózati kapcsolókon állítottunk, hogy védjük az eszközöket az illetéktelen hozzáféréstől, konfigurálástól.

ADMIN-RT>ena Password:

A titkosított jelszó a forgalomirányító futó konfigurációjában sem jelenik meg

enable secret 5 \$1\$mERr\$i9tQCJtBOF3XAq2lumzon1

18.2. SSH(Secure Shell)

Ez egy nyilvános kulcsú titkosítás, egy távoli számítógép hitelesítésére. Titkosítja kettő munkaállomás között a kommunikációs csatornát, biztonságosabb mint a telnet. Ennek a segítségével távolról is elérhetünk egy konfigurálni kívánt eszközt, anélkül hogy közvetlenül fizikailag csatlakozzunk konzol kábel segítségével. Ezt az IRODA_R-SW kapcsolóra állítottuk.

18.3. Konzolos hozzáférést védő jelszó

Az IRODA_R_SW kapcsolón ha a rendszergazdán kívül akarna valaki más konfigurálni, ehhez nem lesz hozzáférése.

19. Összefoglalás

A dokumentációban bemutatott hálózati konfigurációk és megoldások az általánosan alkalmazott best practice-eket és iparági szabványokat követik. A különböző technológiai szintek és protokollok, mint a VLAN, a NAT, a forgalomirányítás, az IPv4/IPv6 címzés, a redundancia biztosítása és a VPN-ek kialakítása lehetővé teszik a hálózati rendszer skálázhatóságát és biztonságát.

A dokumentáció célja, hogy átfogó képet adjon a hálózati infrastruktúra tervezéséről és implementálásáról, figyelembe véve a jövőbeli bővítéseket és a különböző technológiai változások alkalmazkodását. A beállítások és megoldásokat úgy alakítottuk ki, hogy könnyen karbantarthatók legyenek, valamint a lehetséges problémák gyors diagnosztizálása érdekében minden fontos konfigurációs lépés és hibaelhárítási módszer dokumentálásra került.

A dokumentáció további kiegészítéseként fontos, hogy a hálózati adminisztrátorok és fejlesztők rendszeres időközönként végezzenek auditálásokat és frissítéseket a biztonság és a teljesítmény fenntartása érdekében. A hálózati konfigurációk rendszeres felülvizsgálata és tesztelése segíti a problémák előrejelzését és megelőzését.