Context-Free Grammars and CKY Algorithm

CS114 Lab 10

Kenneth Lai

March 27, 2020

Review: Regular Languages

► A language is regular iff:

Review: Regular Languages

- A language is regular iff:
 - ▶ It is recognized by a finite state automaton

Review: Regular Languages

- A language is regular iff:
 - ▶ It is recognized by a finite state automaton
 - ▶ It is generated by a regular expression

Natural languages are not regular

▶ Why not?

More powerful than regular languages

- More powerful than regular languages
- Used in specification of natural and programming languages

► A language is context-free iff:

- ▶ A language is context-free iff:
 - ▶ It is recognized by a pushdown automaton

- ▶ A language is context-free iff:
 - ▶ It is recognized by a pushdown automaton
 - ▶ It is generated by a context-free grammar

Phrase structure grammars = context-free grammars

- G = (T, N, S, R)
 - -T is set of terminals
 - N is set of nonterminals
 - For NLP, we usually distinguish out a set P ⊂ N
 of preterminals, which always rewrite as
 terminals
 - S is the start symbol (one of the nonterminals)
 - R is rules/productions of the form $X \to \gamma$, where X is a nonterminal and γ is a sequence of terminals and nonterminals (possibly an empty sequence)
- · A grammar G generates a language L.

Phrase structure grammars = context-free grammars

- ightharpoonup S
 ightarrow aSb
- \triangleright $S \rightarrow \epsilon$

Phrase structure grammars = context-free grammars

Grammar	Lexicon
$S \rightarrow NP VP$	$Det \rightarrow that \mid this \mid the \mid a$
$S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \rightarrow VP$	$Verb ightarrow book \mid include \mid prefer$
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$Proper-Noun ightarrow Houston \mid NWA$
$NP \rightarrow Det Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition \rightarrow from \mid to \mid on \mid near \mid through$
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
PP → Preposition NP Figure 13.1 The & ministure Eng	

Figure 13.1 The \mathcal{L}_1 miniature English grammar and lexicon.

Source

▶ Augment each rule in *R* with a conditional probability

- ▶ Augment each rule in R with a conditional probability
 - $P(\mathsf{LHS} \to \mathsf{RHS}) = P(\mathsf{RHS}|\mathsf{LHS})$

- ▶ Augment each rule in R with a conditional probability
 - ▶ $P(LHS \rightarrow RHS) = P(RHS|LHS)$
- ► The probability of a parse *T* is the product of the probabilities of all of the *n* rules used to generate *T*

- Augment each rule in R with a conditional probability
 - ▶ $P(LHS \rightarrow RHS) = P(RHS|LHS)$
- ► The probability of a parse *T* is the product of the probabilities of all of the *n* rules used to generate *T*

$$P(T) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	meal [.05] money [.05]
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	prefer [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$
$Nominal \rightarrow Noun$	[.75]	me [.15] you [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	NWA [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [.40]$
$\mathit{VP} o \mathit{Verb} \mathit{NP}$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{PP}$	[.10]	on [.20] near [.15]
$\mathit{VP} o \mathit{Verb} \mathit{PP}$	[.15]	through [.05]
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{NP}$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

Figure 14.1 A PCFG that is a probabilistic augmentation of the \mathcal{L}_1 miniature English CFG grammar and lexicon of Fig. ??. These probabilities were made up for pedagogical purposes and are not based on a corpus (since any real corpus would have many more rules, so the true probabilities of each rule would be much smaller).

Source

Chomsky Normal Form

Every rule is of the form

Chomsky Normal Form

- Every rule is of the form
 - $ightharpoonup S
 ightarrow \epsilon$
 - ightharpoonup A
 ightarrow BC
 - ightharpoonup A
 ightarrow a

Chomsky Normal Form

- Every rule is of the form
 - \triangleright $S \rightarrow \epsilon$
 - $A \rightarrow BC$
 - ightharpoonup A
 ightarrow a
- ▶ Where S is the start symbol, A is a nonterminal, B and C are nonterminals (except for S), and a is a terminal

Add a new start symbol

- Add a new start symbol
- ▶ Remove ϵ -rules

- Add a new start symbol
- \triangleright Remove ϵ -rules
- Remove unary rules

- Add a new start symbol
- ▶ Remove ϵ -rules
- ► Remove unary rules
- ▶ Break up rules with more than 3 things on the right hand side

- Add a new start symbol
- ightharpoonup Remove ϵ -rules
- Remove unary rules
- Break up rules with more than 3 things on the right hand side
- Replace terminals with nonterminals and add new rules as needed

- Add a new start symbol
- ightharpoonup Remove ϵ -rules
- ► Remove unary rules
- ▶ Break up rules with more than 3 things on the right hand side
- Replace terminals with nonterminals and add new rules as needed
 - We can modify CKY algorithm to handle unary rules

▶ Bottom-up

- ▶ Bottom-up
 - ► CKY algorithm

- ▶ Bottom-up
 - CKY algorithm
- ► Top-down

- ▶ Bottom-up
 - CKY algorithm
- ► Top-down
 - ► Earley algorithm

▶ Given tables *table* and *back*:

- ▶ Given tables *table* and *back*:
 - ► Base case

- Given tables table and back:
 - Base case
 - ightharpoonup Fill in *table* cells [i,i+1] with all possible nonterminals that can generate that word

- Given tables table and back:
 - Base case
 - ightharpoonup Fill in *table* cells [i,i+1] with all possible nonterminals that can generate that word
 - ► Recursive case

- Given tables table and back:
 - Base case
 - Fill in table cells [i, i + 1] with all possible nonterminals that can generate that word
 - Recursive case
 - ▶ In *table*, if $A \to BC$ and B is in cell [i,j] and C is in cell [j,k], fill in cell [i,k] with A

CKY Algorithm

- Given tables table and back:
 - Base case
 - ▶ Fill in table cells [i, i + 1] with all possible nonterminals that can generate that word
 - Recursive case
 - ▶ In table, if $A \rightarrow BC$ and B is in cell [i,j] and C is in cell [j,k], fill in cell [i,k] with A
 - ▶ In back, fill in cell [i, k] with backpointers (e.g. A: j, B, C)

- Given tables table and back:
 - Base case
 - ▶ Fill in table cells [i, i + 1] with all possible nonterminals that can generate that word, and their probabilities
 - Recursive case
 - ▶ In table, if $A \to BC$ and B is in cell [i,j] and C is in cell [j,k], and $table[i,j,A] < P(A \to BC) \times table[i,j,B] \times table[j,k,C]$, fill in cell [i,k] with A: $P(A \to BC) \times table[i,j,B] \times table[j,k,C]$
 - ▶ In back, fill in cell [i, k] with backpointers (e.g. A: j, B, C)

	book		that	flight	
table:					
		book	that	flight	
	back:				

		book	that	fligh	it
	No	oun: .10			
table:					
		book	that	flight	
					7
	back:				

▶ Noun \rightarrow book [.10]

		book	that	fligh	t
		un: .10 erb: .30			
table:					
		book	that	flight	
	back:				

▶ Verb \rightarrow book [.30]

		book	that	flight	į.
		un: .10 erb: .30			
table:					
			Det: .10		
		book	that	flight	
	back:				
					-

▶ Det \rightarrow that [.10]

		book	that	flight	t .
		oun: .10 erb: .30			
table:					
			Det: .10		
				Noun:	.30
		book	that	flight	
	back:				
					-

► Noun → flight [.30]

Unary rules

- ▶ Unary rules
 - ▶ In table, if $A \rightarrow B$ and B is in cell [i, i+1], fill in cell [i, i+1] with $A: P(A \rightarrow B) \times table[i, i+1, B]$

- Unary rules
 - ▶ In table, if $A \rightarrow B$ and B is in cell [i, i+1], fill in cell [i, i+1] with $A: P(A \rightarrow B) \times table[i, i+1, B]$
 - ▶ In back, fill in cell [i, i + 1] with backpointers (e.g. A: B)

		book	that	flight	:
		un: .10			
		rb: $.30$ $75 \times .10 = .075$			
	Nomman	13 × .10 = .013			
table:					
			Det: .10		
				Noun:	.30
		book	that	flight	
		Nominal: Noun]
	back:				
					-
					-

► Nominal → Noun [.75]

		book	that	flight	į.
		un: .10			
		rb: .30			
		$75 \times .10 = .075$.075 = .01125			
table:	NF13 X	.075 = .01125			
			Det: .10		
		_		Noun:	.30
		book	that	flight	
		Nominal: Noun NP: Nominal			
	back:				
					1

ightharpoonup NP o Nominal [.15]

	l	book	that	flight	į.
table:	Ve Nominal: .7 NP: .15 ×	un: .10 rb: .30 75 × .10 = .075 .075 = .01125 × .30 = .105			
			Det: .10		
				Noun:	.30
		book	that	flight	
	back:	Nominal: Noun NP: Nominal VP: Verb			
	!				

► VP → Verb [.35]

	ı	book	that	flight	
		un: .10			
	Ve	rb: .30			
	Nominal: .7	$75 \times .10 = .075$			
	NP: .15 ×	.075 = .01125			
table:	VP: .35	\times .30 = .105			
	S: .05 × .	105 = .00525			
'			Det: .10		
		L		Noun: .	30
		book	that	flight	
		Nominal: Noun			
		NP: Nominal			
	, ,	VP: Verb			
	back:	S: VP			

► S → VP [.05]

► Nominal → Noun [.75]

ightharpoonup NP o Nominal [.15]

► NP → Det Nominal [.20]

	1	book	that	flight	
		un: .10			
	Ve	erb: .30			
	Nominal: .	$75 \times .10 = .075$		VP: .20 × .30 × .0	045 = .00027
	NP: .15 ×	.075 = .01125			
table:	VP: .35	\times .30 = .105			
	S: .05 × .	.105 = .00525			
			Det: .10	NP: .20 × .10 × .	225 = .0045
				Noun: .	30
				Nominal: .75 ×	.30 = .225
				NP: .15 × .225	= .03375
		book	that	flight	
		Nominal: Noun			
		NP: Nominal		VP: 1 Verb NP	
	, ,	VP: Verb			
	back:	S: VP			
				NP: 2 Det Nominal	
				Nominal: Noun	
				NP: Nominal	

▶ VP → Verb NP [.20]

	I	book	that	flight	
		un: .10 rb: .30			
	Nominal: .	$75 \times .10 = .075$		VP: .20 × .30 × .0	045 = .00027
	NP: .15 ×	.075 = .01125		S: .05 × .00027	= .0000135
table:	VP: .35	\times .30 = .105			
	S: .05 × .	105 = .00525			
			Det: .10	NP: .20 × .10 × .	225 = .0045
		•		Noun:	30
				Nominal: .75 ×	.30 = .225
				NP: .15 × .225	= .03375
		book	that	flight	
		Nominal: Noun			
		NP: Nominal		VP: 1 Verb NP	
	back:	VP: Verb		S: VP	
	Dack.	S: VP			
		<u>, </u>		NP: 2 Det Nominal	
				Nominal: Noun	
				NP: Nominal	

► S → VP [.05]

	book	that	flight
back:	Nominal: Noun NP: Nominal VP: Verb S: VP		VP: 1 Verb NP S: VP
			NP: 2 Det Nominal
			Nominal: Noun NP: Nominal

	book	that	flight
back:	Nominal: Noun NP: Nominal VP: Verb S: VP		VP: 1 Verb NP S: VP
			NP: 2 Det Nominal
			Nominal: Noun NP: Nominal

	book	that	flight
back:	Nominal: Noun		
	NP: Nominal		VP: 1 Verb NP
	VP: Verb		S: VP
	S: VP		
			NP: 2 Det Nominal
			Nominal: Noun
			NP: Nominal
			S
			VP
			Verb NP

Verb

ÑΡ

Det

Nominal

Noun

Fill in a chart with dotted rules

- ▶ Fill in a chart with dotted rules
 - Predictor
 - If the nonterminal after the dot is not a preterminal (POS tag), add a state for each possible expansion of the nonterminal

- ▶ Fill in a chart with dotted rules
 - Predictor
 - If the nonterminal after the dot is not a preterminal (POS tag), add a state for each possible expansion of the nonterminal
 - Scanner
 - If the nonterminal after the dot is a preterminal (POS tag), read the next word in the input and, if the word can be tagged as that tag, add a state to the next position in the chart

- Fill in a chart with dotted rules
 - Predictor
 - If the nonterminal after the dot is not a preterminal (POS tag), add a state for each possible expansion of the nonterminal
 - Scanner
 - If the nonterminal after the dot is a preterminal (POS tag), read the next word in the input and, if the word can be tagged as that tag, add a state to the next position in the chart
 - Completer
 - If the dot is at the end of the rule, add states corresponding to previous states that were "looking" for the rule to be completed, and advancing the dot

► Finite state automaton with stack

- ► Finite state automaton with stack
 - ▶ Infinite memory that can only be used last in, first out

- ▶ Finite state automaton with stack
 - ▶ Infinite memory that can only be used last in, first out
- Equivalent to CFGs

- ► Finite state automaton with stack
 - ▶ Infinite memory that can only be used last in, first out
- Equivalent to CFGs
- ► For more information, see theory of computation book

Natural languages are not context-free

▶ Why not?