Работа 1.1.1

Докладчик: Ефремов Леонид Дмитриевич

Физтех-школа: ФАКТ

Группа: Б03-403

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Цель работы: померить удельное сопротивление проволоки и вы числить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, от резок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Удельное сопротивление материала проволоки круглого сечения, изготовленной из однородного материала и имеющей всюду одинаковую толщину, может быть определено по формуле:

$$\rho = \frac{R_{\pi p}}{l} \frac{\pi d^2}{4},$$

(1)

где Rпр- сопротивление измеряемого отрезка проволоки, I - его длина, d - диаметр проволоки. Таким образом, для определения удельного сопротивления материала проволоки следует измерить длину, диаметр и величину электрического сопротивления проволоки.

При этом необходимо учесть, что при изготовлении проволоки не удается строго выдержать постоянным ее диаметр. Он немного меняет ем по длине, причем случайным образом. Поэтому в формулу (1) надо подставлять среднее по длине проволоки значение диаметра и учитывать в дальнейшем соответствующую случайную погрешность этого значения.

Рис. 1. Схемы для измерения сопротивления при помощи амперметра и вольтметра

В первом случае вольтметр правильно измеряет падение напряжения на концах проволоки, а амперметр измеряет не величину прошедшего через проволоку тока, а сумму токов, проходящих через проволоку и через вольтметр. Поэтому

$$R_{\rm np1} = \frac{V_{\rm a}}{I_{\rm a}} = R_{\rm np} \frac{R_V}{R_{\rm np} + R_V}$$
 (2)

Во втором случае амперметр измеряет силу тока, проходящего че рез проволоку, но вольтметр измеряет суммарное падение напряжения на проволоке и на амперметре. В этом случае

$$R_{\pi p2} = \frac{V_6}{I_6} = R_{\pi p} + R_A \tag{3}$$

Формулы (2) и (3) удобно несколько преобразовать. Для схемы (а):

$$R_{\rm np} = R_{\rm np1} \frac{R_V}{R_V - R_{\rm np1}} = \frac{R_{\rm np1}}{1 - (R_{\rm np1}/R_V)} \approx R_{\rm np1} \left(1 + \frac{R_{\rm np1}}{R_V} \right) \tag{4}$$

Для схемы (б)

$$R_{\rm np} = R_{\rm np2} \left(1 - \frac{R_A}{R_{\rm np2}} \right)$$

(5)

Установка: Лабораторный блок питания, вольтметр, амперметр, нихромовая проволка, реостат, проводники. Элементы соединены в соответствии схемы (a).

Измерения:

Номер измерения	1	2	3	4	5	6	7	8
Диаметр проволоки, м	им 0.36	0.36	0.37	0.37	0.37	0.36	0.37	0.36

Таблица 1: Измерение диаметра проволоки микрометром

Номер измерения	1	2	3	4	5	6	7	8
Диаметр проволоки, мм	0.3	0.4	0.3	0.4	0.4	0.4	0.3	0.4

Таблица 2: Измерение диаметра проволоки штангенциркулем

Система прибора	магнитно-электрическая	
Класс точности	0.2	
Шкала	линейная, 150 делений	
Предел измерений	600 мВ	300 мВ
Цена деления	4 мВ	2 мВ
Погрешность при считывании со	± 2 мВ	± 1 мВ
шкалы		
Внутреннее сопротивление	$R_V=4$ к $ m Om$	$R_V=2$ кОм
Максимальная погрешность согласно	± 2.4 мВ	± 1.4 мВ
классу точности		

 Таблица 3: Характеристики вольтметра в зависимости от положения переключателя пределов измерения

Система прибора	цифровая
Предел измерений	2 A
Внутреннее сопротивление	$R_A=1.2\;$ к O м
Разрядность дисплея	5 ед.
Погрешность измерений	± k мA, где k - единица младшего отображае-
	мого разряда

Таблица 4: Характеристики амперметра

Номер измерения	1	2	3	4	5	6	7	8	9
Длина проволоки, см					50 ± 0.0	05			
V_B , мВ	284	320	360	400	436	472	516	556	584
I_A , MA	56.22	62.67	70.73	78.43	85.96	92.20	100.70	108.57	114.07
Длина проволоки, см					30 ± 0.0	05			
V_B , мВ	152	196	240	288	328	384	436		
I_A , MA	48.981	63.77	78.12	93.35	107.49	124.60	142.49		
Длина проволоки, см					20 ± 0.0	05			
V_B , мВ	102	122	140	162	182	200	212	228	254
I_A , MA	49.532	59.13	68.30	78.83	88.27	97.77	103.03	110.90	123.63

Таблица 5: Зависимость V_B от I_A для разных длин проволоки

Длина проволоки, см	R, Ом
50 ± 0.05	5.0975
30 ± 0.05	3.0673
20 ± 0.05	2.0618

Таблица 6: Измерение сопротивления проволоки с помощью моста постоянного тока

Погрешности и средние значения:

Средняя толщина проволки:

$$\langle d
angle = rac{1}{n} \sum_{i=1}^n d_i pprox extstyle{0,37} ext{ mm}$$

Случайная ошибка при измерении проволки:

$$\sigma_{ ext{c.п}} = \sqrt{rac{1}{n(n-1)}\sum_{i=1}^{n}\left(d_i-\langle d
angle
ight)^2}pprox$$
0,13 мм

Для расчета площади сечения будем использовать более точные показатели штангенциркуля:

$${
m S}=rac{\pi d^2}{4}pprox_{1,075*10^-7~m^2}$$

График зависимости напряжения от силы тока:

Погрешности измерения напряжения и силы тока:

Найдем среднее значение сопротивления для проводника:

$$R_{\rm cp} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

Случайную погрешность сопротивления найдем как косвенную погрешность наименьших квадратов (т.к. мы использовали данный метод для построения апроксимирующей прямой) по формуле:

$$\sigma_{\text{случ}} = \sqrt{\frac{1}{n-1} \left(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \langle R \rangle^2 \right)}.$$

Систематическую погрешность найдем как частные производные за значения выбрав наибольшие измерения:

$$\sigma_{\text{chct}} = \langle R \rangle \sqrt{\left(\frac{\sigma_V}{V max}\right)^2 + \left(\frac{\sigma_I}{I max}\right)^2}$$

Полную погрешность вычислим по формуле:

$$\sigma_{\text{полн}} = \sqrt{\left(\sigma_{\text{случ}}\right)^2 + \left(\sigma_{\text{сист}}\right)^2}$$

Кроме того, оценим относительную погрешность опыта, а также измерим значение нашего сопротивления на мосту Р4833. Для удобства занесем полученные данные в итоговую таблицу:

L cm	R Om	случ. погр.Оm	сист. погр. От	полн. погр. От	точность %	R мост Om
20	2.054	0.004	0.008	0.009	0,4	2.0618 +/- 0.0001
30	3.062	0.012	0.014	0.018	0.58	3.0673 +/- 0.0001
50	5.128	0.018	0.018	0.025	0.48	5.0975 +/- 0.0001

Расчет удельного сопротивления проволки:

Удельное сопротивление будем рассчитывать по формуле (1), а погрешность удельного сопротивления найдем как:

$$\sigma_{
ho} =
ho \sqrt{(rac{\sigma_l}{l})^2 + (rac{2\sigma_d}{d})^2 + (rac{\sigma_R}{R})^2}$$

L cm	R 10^-6 Om*m	погр. 10^-6 От*т
20	1.104	0.149
30	1.097	0.148
50	1,103	0.149

Среднее по трем: (1.101 +/- 0,149) * 10^-6 От *т

Точность: 13%

Вывод:

В данной работе удалось рассчитать значение удельного сопротивления проволки с точностью 13 %. Сравниваем с табличными значениями. В справочнике (Физические величины. М. Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при 20 °С значения в зависимости от массового содержания компонент сплава меняются от 0,97 * 10-6 Ом*м до 1, 12 *10-6 Ом*м. Полученные значения соответсвуют данному интервалу.