Отчет (https://github.com/AndrewPopkov/diploma/tree/master/make_data)

В данной работе была поставленна цель узнать, как коррелируют метрики качества изображения IQM, с метриками построенными на основе оценок людей. Для этого были подсчитанны IQM, которые измеряют следующие показатели качества : яркость, контраст, фокус, резкость и освещенность. Также были получены оценки людей(одного человека) для требуемых изображений.

В качестве иследуемых данных мы взяли данные из набора MIDV-500. В наборе MIDV-500 есть разметка с углами документов и есть отсканированные "эталонные изображения" документов. Мы взяли координаты рамки фото на "эталонном изображении", а потом пересчитали на каждое изображение, затем вырезав из фотографий документов, область с фотографией лица человека. Вырезаные изображения имеют размер от 134 до 493 пикселя в высоту, и от 103 до 407 пикселя в ширину.

Примеры предобработанных изображений

Для подсчета оценки качества изображения, на основе оценок людей мы ипользовали Matcher Quality Values (MQV). Оценить изображение можно было по 5 ти бальной шкале (1 - Очень плохо, 2 - Плохо, 3 - Удолетворительно, 4 - Хорошо, 5 - Очень хорошо). Оценки были полученны с помощью специального интефейса. Затем полученые данные подвергли Z-нормализации и минимаксной

https://github.com/AndrewPopkov/diploma/blob/master/make_data/eval.csv

Пример изображения с оценкой «Очень плохо»

Пример изображения с оценкой «Плохо»

Следующим этапом было подсчет IQM метрик : яркость, контраст, фокус, резкость и освещенность.

Контраст изображения лица можно измерить с помощью следующего уравнения, где μ - среднее значение интенсивности тестового изображения лица I(x, y) размером $N \times M$. [2]

$$C_{RMS} = \sqrt{\frac{\sum_{x=1}^{M} \sum_{y=1}^{N} [I(x, y) - \mu]^{2}}{MN}}$$

Другой метод определения контраста изображения - это мера контраста Майкельсона, где Imin и Imax - минимальные и максимальные значения интенсивности тестового изображения лица I. [3]

$$C_{mic} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Яркость (обозначим его как B1) может быть вычисленна как среднее значение компонента яркости после преобразования его в область HSB (оттенок, насыщенность и яркость).

Чтобы преобразовать цвета RGB (красный, зеленый и синий) в диапазон HSB, каждый компонент сначала нормализуется до диапазона [0, 1]. [4]

$$B_{I} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} [max(r,g,b)]$$

Bezryadinetal предложил другое измерение яркости изображения, где X, Y и Z - трехцветные значения. Чтобы преобразовать цвета RGB в XYZ, каждый компонент сначала нормализуется до диапазона [0–1]. [4]

$$\begin{bmatrix} D \\ E \\ F \end{bmatrix} = \begin{bmatrix} 0.2053 & 0.7125 & 0.4670 \\ 1.8537 & -1.2797 & -0.4429 \\ -0.3655 & 1.0120 & -0.6104 \end{bmatrix} \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$B_2 = \sqrt{D^2 + E^2 + F^2}$$

Фокус изображения лица - это степень размытия изображения лица. Яп и Равендран представили несколько измерений фокуса изображения, таких как L1-норма градиента изображения и энергия Лапласиана. L1-норма изображения определяется как [5]:

$$F_{L_1} = \sum_{x=1}^{M} \sum_{y=1}^{N} |G_{xx}(x, y)| + |G_{yy}(x, y)|$$

Энергия Лапласиана изображения как:

$$F_{EL} = \sum_{x=1}^{M} \sum_{y=1}^{N} [G_{xx}(x,y) + G_{yy}(x,y)]^{2}$$

где G_{xx} и G_{yy} - вторые производные в горизонтальном и вертикальном направлениях, соответственно.

Было использованно несколько способов измерения резкости изображения.

Крыщук и Дригайло [6] определили меру резкости изображения как :

$$S_1 = \frac{1}{2} \left[\frac{1}{(N-1)M} \sum_{x=1}^{M} \sum_{y=1}^{N-1} |I_{x,y} - I_{x,y+1}| + \frac{1}{(M-1)M} \sum_{x=1}^{M-1} \sum_{y=1}^{N} |I_{x,y} - I_{x+1,y}| \right]$$

Гао [7] определил меру резкости изображения, как:

$$S_2 = \sum_{x=1}^{M-2} \sum_{y=1}^{N-2} G(x,y)$$
 где $G(x,y)$ - значение градиента в точке (x,y) . [7]

Мера резкости по Тененграду определяется как:

$$S_{3} = \sum_{x=1}^{M} \sum_{y=1}^{N} (L_{x} \cdot I_{x}^{2} + L_{y} \cdot I_{y}^{2})$$

$$L_{x}(x,y) = [I(x+1,y) - I(x-1,y)]^{P}$$

$$L_{y}(x,y) = [I(x,y+1) - I(x,y-1)]^{P}$$

где Lx, Ly - веса в горизонтальном и вертикальном направлениях, а I_x , I_y - горизонтальный и вертикальный градиенты, полученные путем применения Sobelfilter. [9]

Адаптивная мера резкости по Тененграду [8] определяется как:

$$S_4 = \sum_{x=1}^{M} \sum_{y=1}^{N} L(x, y) [I_x^2 + I_y^2]$$

 $L(x,y)=[I(x-1,y)+I(x+1,y)-I(x,y-1)-I(x,y+1)]^p$ где L(x,y) - вес, а P - индекс мощности, который может определять степень подавления шума.

Освещенность изображения рассчитывается как взвешенная сумма средней интенсивности освещенности изображения, разделенного на блоки (4 × 4)

$$I_{2} = \sum_{i=1}^{4} \sum_{j=1}^{4} \omega_{ij} \cdot \bar{I}_{ij}$$

$$\bar{I}_{ij} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} I(x, y)$$

где wij - весовой коэффициент каждого блока. Абдель-Мотталебанд Махур определил гауссову маску для добавления веса различным блокам лица. Это приводит к присвоению больших весов блокам в середине изображения и малых весов границам изображения [9].

После того как были подсчитанны все IQM для тестовых изображений, мы подсчитываем IQM для образцовых изображений. Находим у них среднее значение и стандартное отклонение и с их помощью нормализуем моделью Гауса каждый IQM [11] и усредняем его. Объединили объединили метрики качества с помощью среднего и среднего геометрическогою. https://github.com/AndrewPopkov/diploma/blob/master/make_data/normalase_f eature.csv.

Построив корреляции методом Пирсона, мы увидели что наиболее сильно коррелируют геометрически среднее объединение IQM и оценки человека подвергнутые Z-нормализации.

	eval	z_norm	minmax_norm
rms_contrast	0.198511	0.226290	0.145844
michelson_contrast	0.146397	0.148676	0.119957
hbs_brightness	0.142455	0.200446	0.068747
bezryadinetal_brightness	0.139178	0.196594	0.053921
L1_norm	0.411397	0.426311	0.323498
energy_Laplacian	0.417306	0.420187	0.328718
kryszczuk_drygajlo_sharpness	0.006930	0.030467	-0.016606

	eval	z_norm	minmax_norm
gao_sharpness	0.148661	0.205306	0.102097
tenengrad_sharpness	0.306557	0.355375	0.242482
adaptive_tenengrad_sharpness	0.290590	0.309259	0.215849
illumination	0.311888	0.314250	0.279078

Корреляция каждого IQM с оценкой человека(eval), Z-нормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека(minmax_norm), построенная методом Пирсона.

Как мы видим tenengrad_sharpness, L1_norm, illumination, hbs_brightness наиболее сильно коррелируют с оценкой человека из всех IQM.

	eval	z_norm	minmax_norm
contrast	0.199830	0.216778	0.154316
brightness	0.141941	0.200103	0.061869
focus	0.416472	0.425146	0.327790
sharpness	0.290997	0.345578	0.212078
illumination	0.311888	0.314250	0.279078

Корреляция каждого усредненного IQM с оценкой человека(eval), Z-нормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека($minmax_norm$), построенная методом Пирсона.

	eval	z_norm	minmax_norm
mean	0.291350	0.332328	0.206322
geo_mean	0.365986	0.406124	0.262491

Корреляция mean(среднее значение IQM) и geo_mean(среднее геметрическое значение) IQM с оценкой человека(eval), Z-нормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека(minmax_norm), построенная методом Пирсона.

name	merge_result	eval	z_norm	minmax_norm
KA12_01.tif	0.8930060098304053	2.0	-	-
HA05_15.tif	0.48557648287959004	3.0	0.709422	0.666667
TA07_06.tif	0.3930823233808276	3.0	-	-
HS02_20.tif	0.2805334376560061	1.0	-1.136330	0.000000
KS08_30.tif	0.029915488473249544	1.0	-	-

Фотографии из 5 разных квантилей среднего геметрического значения **IQM** и оценки к ним.

name	rms_contrast	eval	z_norm	minmax_norm
CS02_12.tif	1	2	-0.0185675	0.333333
CS03_03.tif	0.878137	2	-0.123275	0.333333
TS04_15.tif	0.697671	3	1.05926	0.666667
KA02_09.tif	0.439068	2	-0.0185675	0.333333
PA02_25.tif	5.68123e-06	1	-1.13633	0

Фотографии из 5 разных квантилей rms_contrast IQM и оценки к ним.

name	michelson_contrast	eval	z_norm	minmax_norm
CS06_30.tif	1	2	-0.205183	0.333333
PS06_12.tif	0.588476	1	-1.37047	0
CA01_25.tif	0.433805	3	0.921666	0.5
KA01_02.tif	0.146004	1	-1.08138	0
KS01_08.tif	0.00232722	1	-1.08138	0

Фотографии из 5 разных квантилей michelson_contrast IQM и оценки к ним.

name	hbs_brightness	eval	z_norm	minmax_norm
PA04_20.tif	0.999999	2	-0.181351	0.333333
HA01_03.tif	0.71555	3	0.921666	0.5
KS06_15.tif	0.537868	1	-1.37047	0
KA05_14.tif	0.240874	2	-0.52489	0.333333
PA02_08.tif	1.86641e-08	1	-1.13633	0

Фотографии из 5 разных квантилей hbs_brightness IQM и оценки к ним

name	bezryadinetal_bright ness	eval	z_norm	minmax_norm
HS03_29.tif	0.999999	3	1.20193	0.666667
HS02_14.tif	0.826668	1	-1.13633	0
KA01_05.tif	0.635119	2	-0.0798555	0.25
PA05_30.tif	0.323799	3	0.709422	0.666667
PA02_08.tif	6.47485e-07	1	-1.13633	0

Фотографии из 5 разных квантилей bezryadinetal_brightness IQM и оценки к ним.

name	L1_norm	eval	z_norm	minmax_norm
CS02_05.tif	0.334077	2	-0.0185675	0.333333
KA06_27.tif	0.0521585	2	-0.205183	0.333333
TA01_13.tif	0.0363613	2	-0.0798555	0.25
CA05_18.tif	0.0277469	1	-1.7592	0
PA02_08.tif	0.0101575	1	-1.13633	0

Фотографии из 5 разных квантилей L1_norm IQM и оценки к ним.

name	energy_Laplacian	eval	z_norm	minmax_norm
TA02_02.tif	0.362423	4	2.21696	1
TA03_09.tif	0.0484282	2	-0.123275	0.333333
KS01_05.tif	0.0333654	1	-1.08138	0
HS02_15.tif	0.0251931	1	-1.13633	0
PA02_08.tif	0.0146448	1	-1.13633	0

Фотографии из 5 разных квантилей energy_Laplacian IQM и оценки к ним.

name	kryszczuk_drygajlo_sha rpness	eval	z_norm	minmax_norm
KS02_16.tif	1	1	-1.13633	0
HA02_03.tif	0.586947	3	1.0992	0.666667
TA03_10.tif	0.311778	3	1.20193	0.666667
HA07_17.tif	0.0995601	2	-0.129034	0.5

name	kryszczuk_drygajlo_sha rpness	eval	z_norm	minmax_norm
PS05_08.tif	4.1984e-25	1	-1.7592	0

Фотографии из 5 разных квантилей kryszczuk_drygajlo_sharpness IQM и оценки к ним.

name	gao_sharpness	eval	z_norm	minmax_norm
HA04_14.tif	0.99995	3	1.05926	0.666667
HA04_20.tif	0.234999	1	-1.42196	0
CA05_05.tif	0.0646373	4	1.94373	1
CS06_19.tif	0.0183841	3	0.960102	0.666667
PA02_08.tif	3.33802e-06	1	-1.13633	0

Фотографии из 5 разных квантилей gao_sharpness IQM и оценки к ним.

name	tenengrad_sharpness	eval	z_norm	minmax_norm
PS02_14.tif	1	2	-0.0185675	0.333333
TS03_16.tif	0.731359	1	-1.44848	0
CA07_10.tif	0.297557	3	1.12444	1
HS04_12.tif	0.00810666	1	-1.42196	0
PS06_07.tif	0	1	-1.37047	0

Фотографии из 5 разных квантилей tenengrad_sharpnesst IQM и оценки к ним.

name	adaptive_tenengrad_sha rpness	eval	z_norm	minmax_norm
CS01_26.tif	0.99996	2	-0.0798555	0.25
CA02_24.tif	0.378096	3	1.0992	0.666667
CS03_15.tif	0.122343	1	-1.44848	0
PS04_19.tif	0.016338	1	-1.42196	0
PS05_08.tif	5.35992e-65	1	-1.7592	0

Фотографии из 5 разных квантилей adaptive_tenengrad_sharpness IQM и оценки к ним.

name	illumination	eval	z_norm	minmax_norm
CA03_20.tif	1	3	1.20193	0.666667
CA01_10.tif	0.840162	2	-0.0798555	0.25
HS04_08.tif	0.663674	1	-1.42196	0
CA02_27.tif	0.393365	3	1.0992	0.666667
PA02_08.tif	2.89497e-05	1	-1.13633	0

Фотографии из 5 разных квантилей illumination IQM и оценки к ним.

Список литературы

- https://github.com/AndrewPopkov/diploma/blob/master/make_data/ eval.csv
- 2. Gao, X., Li, S.Z., Liu, R., Zhang, P.: 'Standardization of face image sample quality'. Int. Conf. on Biometrics (ICB), Seoul, Korea, 2007
- 3. Bex, P.J., Makous, W.: 'Spatial frequency, phase, and the contrast of natural images', J. Opt. Soc. Am. A, 2002, 19, (6), pp. 1096–1106
- 4. Bezryadin, S., Bourov, P., Ilinih, D.: 'Brightness calculation in digital image processing'. Int. Symp. on Technologies for Digital Fulfillment, Las Vegas, NV, USA, 2007
- 5. Yap, P.-T., Raveendran, P.: 'Image focus measure based on Chebyshev moments', IEE Proc. Vis. Image Signal Process., 2004, 151, (2), pp. 128–136
- 6. Kryszczuk, K., Drygajlo, A.: 'On combining evidence for reliability estimation in face verification'. European Signal Processing Conf. (EUSIPCO), Florence, Italy, 2006
- 7. Gao, X., Li, S.Z., Liu, R., Zhang, P.: 'Standardization of face image sample quality'. Int. Conf. on Biometrics (ICB), Seoul, Korea, 2007
- 8. Yao, Y., Abidi, B.R., Kalka, N.D., Schmid, N.A., Abidi, M.A.: 'Improving long range and high magnification face recognition: database acquisition, evaluation, and enhancement', Comput. Vis. Image Underst., 2008, 111, pp. 111–125
- 9. Abdel-Mottaleb, M., Mahoor, M.: 'Application notes algorithms for assessing the quality of facial images', IEEE Comput. Intell. Mag., 2007, 2, pp. 10–17
- 10. https://github.com/AndrewPopkov/diploma/blob/master/make_data/ normalase feature.csv
- 11. https://github.com/AndrewPopkov/diploma/blob/master/make_data/ merge_feature.csv