KhaziyevMA 01112024-160721

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.74f_{\scriptscriptstyle \rm B}$:

```
s_{11} = -0.225 + 0.194i. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 33 Om
- 2) 76 Om
- 3) 88 O_M
- 4) 39 O_M

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=106~\mathrm{Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=3.9~\Gamma\Gamma$ ц и $f_{\rm B}=12.7~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.2 + j0;
- 3 использован *наикратчайший* отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

- 1) 0.8 дБ
- 2) 0.4 дБ
- 3) 1.2 дБ
- 4) 0.2 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.203 мм и с волновым сопротивлением 58 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 49 Ом;
- 3 толщиной 0.406 мм и с волновым сопротивлением 67 Ом;
- 4 толщиной 0.508 мм и с волновым сопротивлением 85 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Даны значения s-параметров:

Fr	req	s_{11}		s_{21}		s_{12}		s_{22}	
G.	Hz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2	2.4	0.477	-160.9	11.602	80.0	0.041	51.2	0.289	-85.5

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 2 на частоте 2.4 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T меньше 61 Ом;
- 2 θ_Π меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте $8.4~\Gamma\Gamma$ ц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

0.45 - 0.89i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 21.8 cm
- 2) 21.3 cm
- 3) 11.6 см
- 4) 17.9 cm