Problem 1: Counter

จงสร้าง Counter ที่มีสัญญาณเข้าเป็น clock (**clk**) 1 ตัว, และ สัญญาณ input **reset** และมี output เป็น A, B และ C ซึ่งมี output ดังต่อไปนี้

โดยกำหนดให้ เมื่อreset = 1 ค่าจะเริ่มต้นที่ CBA = 000, (reset เป็น synchronous) เมื่อนำค่า reset = 0, CBA จะเปลี่ยนเป็น 010, 100, 001,011,110,101,111 แล้ววนมาที่ 000 ตามลำดับ

ตัวอย่าง Testcase อยู่ใน template_01.dig

ข้อมูลนำเข้า

- Input: reset
- Clock: clk

ข้อมูลส่งออก

• Output: A, B, และ C

ชุดข้อมูลทดสอบ

• ตัวอย่างชุดข้อมูลทดสอบมีอยู่ใน template_01.dig

คะแนน

คะแนนเต็ม 100 คะแนน โดยมีจาก Grader 90 คะแนน และ ถ้าถูกต้องทุก Case ภายใน 2 ช.ม. จะได้อีก 10 คะแนน

Problem 2: Square Root

สร้างวงจรหารากที่สองของinput โดยให้ input เป็นเลข A 16 บิต, input 1 บิต และมี output sqrt 8 บิตเป็นค่ารากที่สองของ A ที่เป็นจำนวนเต็ม มากที่สุดที่น้อยกว่าค่ารากที่สองของ A (ตัวอย่างเช่น A = 10, sqrt = 3)

วงจรจะเริ่มทำงานเมื่อมีการเปลี่ยน **input** จาก 0 เป็น 1 ระหว่างการทำงานให้ **busy** เป็น 1 และเมื่อคำนวณเสร็จสิ้นแล้วให้แสดงค่ารากที่สองใน **sqrt** และให้ค่า**busy** กลับเป็น 0

หมายเหตุ 1 : ช่วงระหว่างคำนวณอยู่ไม่ต้องสนใจสัญญาณ **input** และให้แสดงค่ารากที่สองของ **A** ค้างไว้จนกว่าจะมีการเปลี่ยน start จาก 0 เป็น 1 ใหม่ จึงสามารถเปลี่ยนค่าได้

พมายเทตุ 2 : input A มีค่าตั้งแต่ 0 เป็นต้นไป และจะไม่เปลี่ยนแปลงในช่วงที่ busy เป็น 1

หมายเหตุ 3: ตัวตรวจจะรอสัญญาณไม่เกิน 80 cycles (ดังตัวอย่างใน template_02.dig)

คะแนน

- 50 คะแนนสำหรับคำตอบที่ถูกต้อง ในกรณี A < 6400
- 20 คะแนนสำหรับคำตอบที่ถูกต้อง ในกรณี 6400 <= A < 12800
- 20 คะแนนสำหรับคำตอบที่ถูกต้อง ในกรณี A >= 12800

Hint 1: สามารถใช้ อุปกรณ์ Multiply หรือ Division ซึ่งอยู่ใน Arithmetic ได้

Hint 2: It is easier to get full score on the problem 3 more than this one. But 50 is easy.

Note from the instructor There are many methods for finding square root, fast. If you are adventurous, you can start with Newton-Raphson, but if you start doing research, you will go down in a blackhole of numerical method and a lot of magic. For this problem, there is a not so hard way to get a full credit. Here is another hint. Hardware works in parallels, you can have as many comparators and multipliers you would like (Grader should be able to accept 1Mbytes now.....)

ตัวอย่าง Testcase อยู่ใน template_02.dig

ข้อมูลนำเข้า

• Input: **A** ขนาด 16 Bit

• Input: **input** ขนาด 1 Bit

• Clock: **clk**

ข้อมูลส่งออก

• Output: sqrt ขนาด 8 Bit

• Output: busy ขนาด 1 Bit

ชุดข้อมูลทดสอบ

ตัวอย่างชุดข้อมูลทดสอบมีอยู่ใน template 02.dig

คะแนน

คะแนนเต็ม 100 คะแนน โดยมีจาก Grader 90 คะแนน และ ถ้าถูกต้องทุก Case ภายใน 90 นาที จะได้อีก 10 คะแนน

Problem 3: Second Largest

จงสร้างวงจรหาค่าที่มากที่สุดลำดับที่สอง โดยสมมุติสามารถรับค่าได้ผ่านทาง input เป็นเลขฐานสอง A 16 บิต, input 1 บิต reset 1 บิต และ มี output เป็นเลขฐานสอง second 16 บิตเป็นค่าที่มากที่สุดอันดับที่สองตั้งแต่โปรแกรมเริ่มทำงาน

เมื่อ **input** มีค่าเปลี่ยนจาก 0 เป็น 1ให้เก็บค่าจาก **A** เมื่อมี input เข้าเกินสองตัวให้แสดงผลค่าที่มากที่สุขอันดับที่สองในลำดับตัวเลขที่เข้ามาใน second ในระยะเวลาไม่เกิน 1 clock cycle ที่ ผลลัพท์ของ **input** มีค่าเปลี่ยนจาก 0 ถ้า **reset** เป็น 1 จะทำการเริ่มต้นวงจรใหม่และวงจรจะ ทำงานก็ต่อเมื่อ **reset** เป็น 0

หมายเหตุ 1: จะรับประกันว่า reset จะเป็น 1 อย่างน้อย 1 cycle เมื่อเริ่มโปรแกรม

หมายเหตุ 2: ตัวตรวจจะรอสัญญาณไม่เกิน 1000 cycles ต่อการรับค่าเพิ่มหนึ่งค่า (ดังตัวอย่างใน template_03.dig)

ข้อมูลนำเข้า

• input: **A** ขนาด 16 Bit

• input: **input** ขนาด 1 Bit

• input: **reset** ขนาด 1 Bit

• Clock: clk

ข้อมูลส่งออก

• output: second ขนาด 16 Bit

ชุดข้อมูลทดสอบ

ตัวอย่างชุดข้อมูลทดสอบมีอยู่ใน template 03.dig

คะแนน

คะแนนเต็ม 100 คะแนน โดยมีจาก Grader 90 คะแนน และ ถ้าถูกต้องทุก Case ภายใน 2 ช.ม. จะได้อีก 10 คะแนน