

# Inteligência Artificial

Redes Neurais Competitivas Mapas Auto-organizáveis

Prof. Paulo Martins Engel





Prof. Paulo Martins Engel

# **Modelos Descritivos**

• A tarefa de geração de um modelo descritivo consiste (em grande parte) em analisar os dados do domínio (entradas) e sugerir uma partição do domínio, de acordo com similaridades observadas nos dados.



- Determinação de uma configuração de centróides de agrupamentos dos dados
- Modelo de agrupamento dos dados

### Sistemas Auto-organizáveis

- Os sistemas auto-organizáveis estão relacionados com aprendizagem nãosupervisionada.
- O objetivo de um algoritmo de aprendizagem não-supervisionada é extrair características significativas dos dados de entrada, sem supervisão externa.
- O algoritmo procura encontrar, de forma autônoma, similaridades entre conjuntos de dados, identificando assim, agrupamentos de dados com características comuns.
- Nos sistemas neurais auto-organizáveis, os *pesos* dos neurônios armazenam as características de um protótipo correspondente a um agrupamento de dados de entrada com características similares.
- O algoritmo de treinamento aplica regras locais de modificação de pesos, ou seja, levando em conta uma vizinhanca em torno do neurônio.
- A estrutura de um sistema auto-organizável pode consistir em apenas uma camada de entrada e uma camada auto-organizável de saída, ou em múltiplas camadas, em que a auto-organização se processa seqüencialmente através das camadas.

2



Prof. Paulo Martins Engel

# Identificação de agrupamentos

- A identificação de agrupamentos é uma tarefa descritiva que procura agrupar dados utilizando a similaridade dos valores de seus atributos como fator de decisão quanto à sua pertinência num entre vários agrupamentos possíveis.
- Este processo utiliza técnicas de aprendizagem não-supervisionada, pois a similaridade entre os atributos é uma característica intrínseca dos dados, não necessitando de um arquivo de treinamento com classes pré-definidas.
- Em geral, a identificação dos agrupamentos intrínsecos dos dados permite a descrição de cada agrupamento através de um padrão protótipo.
- O processo normalmente é iterativo e interativo, necessitando que o usuário modifique parâmetros e reapresente os dados até encontrar uma configuração satisfatória de agrupamentos.
- A ênfase nesta tarefa é a descrição dos dados e não a previsão de como um novo caso será classificado



#### Prof. Paulo Martins Engel

# Avaliação de modelos descritivos

- Questão fundamental: quantos grupos representam mais adequadamente os dados?
- Usualmente, adotam-se métricas estatísticas de qualidade da configuração de agrupamento: média de distâncias intra-grupo e de distâncias inter-grupos.
- A avaliação da qualidade de um modelo descritivo normalmente é problemática se não dispusermos de informação extra (*conhecimento de perícia*).
- A *busca informada* pela melhor configuração é muito mais eficiente.

Dados para agrupamento de subespécies da planta Iris



6

Information

Prof. Paulo Martins Engel

5

# Dados da planta Iris



#### Informática UFRGS

Prof. Paulo Martins Engel

# Modelo de agrupamento para os dados da planta Iris



# Modelo de agrupamento para os dados da planta Iris

Classes de interesse versus classes naturais



Modelos de RN para descoberta de agrupamentos

- Existe uma variedade de modelos de RN que são usados para a tarefa de descoberta de agrupamentos. Todos eles têm em comum algum processo de aprendizagem não supervisionada, auto-organizável.
- Nas redes competitivas, um protótipo de um agrupamento é armazenado como pesos de um neurônio.
- O Mapa Auto-Organizável (SOM, self-organizing map), proposto por T. Kohonen (1982), é uma rede competitiva organizada numa grade bidimensional (ou de outra dimensionalidade) onde existe interação entre neurônios dentro de uma vizinhança.
- Por causa desta característica, a rede SOM além de armazenar os protótipos dos agrupamentos, preserva também a topologia original da distribuição dos agrupamentos no espaço de características.

10



Prof. Paulo Martins Engel

### Aprendizado do protótipo de um agrupamento

- Um neurônio com aprendizado competitivo pode aprender o protótipo de um agrupamento de vetores de entrada, segundo o procedimento a seguir:
  - 1. Selecionar um vetor de entrada  $\mathbf{x}_i$ , ao acaso, de acordo com a distribuição de probabilidade do agrupamento.
  - 2. Atualizar os pesos por  $\mathbf{w}(n+1) = \mathbf{w}(n) + \alpha (\mathbf{x}(n) \mathbf{w}(n))$
  - **3.** Repetir os passos 1 e 2 para um número de vezes igual ao número de vetores de entrada do agrupamento.
  - 4. Repetir o passo 3 várias vezes.
- Com isso, w se modifica em direção à média dos vetores do agrupamento:

Se 
$$<\Delta w>=0$$
 então  $=$ 

• Deve-se reduzir  $\alpha$  com o tempo, pois uma vez que  $\mathbf{w}$  atingiu a média do agrupamento, ele não deve mais se modificar.





Prof. Paulo Martins Engel

### Exemplo de RNC

- A RNC abaixo é formada por uma camada competitiva com três neurônios compatitivos (*instars*). A camada de entrada apenas distribui o vetor bidimensional de sinais de entrada normalizados.
- A cada apresentação de um vetor de entrada, apenas um instar (o vencedor de índice k) terá saída y<sub>k</sub> = 1. Todos os demais terão saída nula.







# O Mapa Auto-Organizável (SOM)

- Sistema auto-organizável inspirado no córtex cerebral.
- Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências sonoras similares. Existe correlação entre a ordenação da freqüência de entrada e a posição do neurônio no mapa.
- A arquitetura do SOM corresponde à uma rede neural com uma camada competitiva bidimensional ou unidimensional, onde existe *interação lateral* entre os neurônios dentro de uma *vizinhança*.
- Os neurônios competem entre si, através de conexões especiais que implementam reforço central e inibição lateral.
- Através do ajuste de pesos considerando as vizinhanças, se preserva a distribuição de probabilidades (*topologia*) dos vetores de entrada.
- Com isso, unidades físicamente próximas no mapa respondem a classes de vetores de entrada que são próximas entre si.
- Regiões no espaço de entrada com maior densidade de vetores de entrada produzem regiões no mapa envolvendo maior número de neurônios.



Somatotopia: mapeamento das sensações da superfície do corpo na estrutura do cérebro Existem outros mapas sensoriais:

retinotopia, tonotopia

Córtex Somatossensorial primário \







Prof. Paulo Martins Engel

13

# Arquitetura da rede SOM





Prof. Paulo Martins Engel

#### Processamento do SOM

- A rede SOM pode ser modelada de forma contínua, através de um sistema dinâmico, envolvendo conexões realimentadoras para produzir excitação central e inibição lateral, ou de forma discreta, envolvendo um juiz externo, para escolher um neurônio vencedor num processo de competição do tipo "o vencedor leva tudo".
- O processamento da SOM pode ser resumido através do seguinte procedimento de aprendizado não-supervisionado:
  - Apresentar um vetor na entrada da rede
  - Calcular as ativações dos neurônios da camada competitiva
  - Determinar o neurônio vencedor (neurônio mais próximo da entrada)
  - Fase de treinamento:
    - Modificar o vetor de pesos do vencedor e de todos os neurônios dentro de uma vizinhanca do vencedor.
  - Fase de recuperação (recordação) ou atuação:
    - O neurônio vencedor indica o agrupamento ao qual o vetor de entrada pertence.

14

# Atualização dos pesos para vizinhança contínua

Todos neurônios da rede têm seus pesos atualizados por:

$$\mathbf{w}_i(n+1) = \mathbf{w}_i(n) + \eta(n).\pi_{ic}(n).(\mathbf{x}(n) - \mathbf{w}_i(n))$$

Sendo  $\pi_{ic}$  a função de vizinhança gaussiana, centrada no neurônio vencedor de índice "c":

$$\longrightarrow \pi_{ic}(n) = \exp\left(\frac{-d^2_{ic}}{2\sigma^2(n)}\right)$$

A largura da vizinhança deve também decrescer com o tempo:

$$\longrightarrow \quad \sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_2}\right)$$



Tipicamente, escolhe-se  $\sigma_0$  de modo que toda a rede sofra ajustes significativos na fase inicial do aprendizado.

17

### Simulação da rede SOM

- Inicialização aleatória dos pesos normalizados
- A auto-organização da rede pode ser a qualquer tempo visualizada traçando-se linhas no espaço dos pesos entre os vetores de peso que são os vizinhos mais próximos.
- Para melhor visualização, apenas as linhas ortogonais entre vizinhos são traçadas.
- Com a inicialização aleatória normalizada, a rede não está auto-organizada e a figura correspondente é de uma malha de conexões aleatórias de pontos numa circunferência.
- Conforme o treinamento avança, a rede vai se tornando auto-organizada com as conexões entre pesos de neurônios vizinhos correspondendo à distribuição dos vetores de entrada.



18



Prof. Paulo Martins Engel

# Mapeamento do Espaço de Entrada

• A organização do mapa é visualizada pela imagem dos pesos no espaço de característica, assinalando os vizinhos mais próximos.



Informática UFRGS

Prof. Paulo Martins Engel

#### Rede SOM treinada

• Entradas: os quatro vetores de um espaço de Hamming bidimensional







Distribuição triangular na entrada:

Distribuição circular na entrada:





#### SOM unidimensional



# Simulação do SOM

- A simulação discreta do SOM é composta das seguintes etapas:
  - 1. Inicializar os pesos da rede aleatoriamente e os parâmetros  $\eta$ ,  $\sigma$  e  $n_{max}$ . Inicializar a variável de tempo discreto n = 1.
  - 2. Apresentar, aleatoriamente, um vetor de entrada do arquivo de treinamento e calcular a ativação de todos os neurônios da rede.
  - 3. Determinar o neurônio vencedor, de índice c.
  - 4. Calcular o fator de vizinhança ( $\pi_{ic}$ ) para cada neurônio i da rede, em função da sua distância em relação ao neurônio c,  $d_{ic}$ .
  - 5. Atualizar os pesos de todos os neurônios da rede, levando em conta o seu fator de vizinhança.
  - 6. Incrementar n e atualizar os parâmetros  $\eta$  e  $\sigma$ .
  - 7. Voltar para 2 enquanto  $n \le n_{max}$ .

22



Prof. Paulo Martins Engel

### Entradas: nomes de animais e seus atributos

|             | pombo | galinha | pato | ganso | couja | falcão | águia | raposa | cão | lobo | gato | tigre | leão | cavalo | zebra | vaca |
|-------------|-------|---------|------|-------|-------|--------|-------|--------|-----|------|------|-------|------|--------|-------|------|
| é pequeno   | 1     | 1       | 1    | 1     | 1     | 1      | 0     | 0      | 0   | 0    | 1    | 0     | 0    | 0      | 0     | 0    |
| é médio     | 0     | 0       | 0    | 0     | 0     | 0      | 1     | 1      | 1   | 1    | 0    | 0     | 0    | 0      | 0     | 0    |
| é grande    | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 0      | 0   | 0    | 0    | 1     | 1    | 1      | 1     | 1    |
| tem 2 patas | 1     | 1       | 1    | 1     | 1     | 1      | 1     | 0      | 0   | 0    | 0    | 0     | 0    | 0      | 0     | 0    |
| tem 4 patas | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 1      | 1   | 1    | 1    | 1     | 1    | 1      | 1     | 1    |
| tem pelos   | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 1      | 1   | 1    | 1    | 1     | 1    | 1      | 1     | 1    |
| tem cascos  | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 0      | 0   | 0    | 0    | 0     | 0    | 1      | 1     | 1    |
| tem crina   | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 0      | 0   | 1    | 0    | 0     | 1    | 1      | 1     | 0    |
| tem penas   | 1     | 1       | 1    | 1     | 1     | 1      | 1     | 0      | 0   | 0    | 0    | 0     | 0    | 0      | 0     | 0    |
| caça        | 0     | 0       | 0    | 0     | 1     | 1      | 1     | 1      | 0   | 1    | 1    | 1     | 1    | 0      | 0     | 0    |
| corre       | 0     | 0       | 0    | 0     | 0     | 0      | 0     | 0      | 1   | 1    | 0    | 1     | 1    | 1      | 1     | 0    |
| voa         | 1     | 0       | 0    | 1     | 1     | 1      | 1     | 0      | 0   | 0    | 0    | 0     | 0    | 0      | 0     | 0    |
| nada        | 0     | 0       | 1    | 1     | 0     | 0      | 0     | 0      | 0   | 0    | 0    | 0     | 0    | 0      | 0     | 0    |



Prof. Paulo Martins Engel

# Visualização por rotulação

- Podemos visualizar um mapa de características rotulando cada neurônio pelo padrão de teste que excita este neurônio de maneira máxima (*melhor estímulo*).
- A rotulação produz uma partição da grade de neurônios (10 x 10) evidenciando uma hierarquia de domínios aninhados.



23