International Rectifier

IRLR2905ZPbF IRLU2905ZPbF

Features HEXFET® Power MOSFET

- Logic Level
- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	60	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	43	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	
I _{DM}	Pulsed Drain Current ①	240	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.72	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ^②	57	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ®	85	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy (9		mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.38	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) ♡		40	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of International Rectifier. www.irf.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.053		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance		11	13.5	mΩ	V _{GS} = 10V, I _D = 36A ③	
				20	mΩ	V _{GS} = 5.0V, I _D = 30A ③	
				22.5	mΩ	V _{GS} = 4.5V, I _D = 15A ③	
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	٧	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
gfs	Forward Transconductance	25		_	S	$V_{DS} = 25V, I_D = 36A$	
I _{DSS}	Drain-to-Source Leakage Current	_		20	μA	$V_{DS} = 55V, V_{GS} = 0V$	
				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
I _{GSS}	Gate-to-Source Forward Leakage	_		200	nA	V _{GS} = 16V	
	Gate-to-Source Reverse Leakage		_	-200		V _{GS} = -16V	
Q_g	Total Gate Charge		23	35		$I_D = 36A$	
Q_{gs}	Gate-to-Source Charge		8.5		nC	$V_{DS} = 44V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge		12			V _{GS} = 5.0V ③	
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$	
t _r	Rise Time		130			$I_D = 36A$	
t _{d(off)}	Turn-Off Delay Time		24		ns	$R_G = 15 \Omega$	
t _f	Fall Time		33			V _{GS} = 5.0V ③	
L _D	Internal Drain Inductance		4.5			Between lead,	
					nΗ	6mm (0.25in.)	
Ls	Internal Source Inductance		7.5			from package	
						and center of die contact	
C _{iss}	Input Capacitance		1570			$V_{GS} = 0V$	
Coss	Output Capacitance		230			$V_{DS} = 25V$	
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz	
C _{oss}	Output Capacitance		840			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$	
C _{oss}	Output Capacitance		180	_		$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$	
C _{oss} eff.	Effective Output Capacitance		290			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V $\textcircled{4}$	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
IS	Continuous Source Current			42		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			240		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 36A, V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		22	33	ns	$T_J = 25^{\circ}C$, $I_F = 36A$, $V_{DD} = 28V$	
Q _{rr}	Reverse Recovery Charge		14	21	nC	di/dt = 100A/μs ③	
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

International TOR Rectifier

IRLR/U2905ZPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

International TOR Rectifier

IRLR/U2905ZPbF

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av} \text{)} = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ } [1.3 \cdot \text{BV} \cdot Z_{th}] \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

International IOR Rectifier

IRLR/U2905ZPbF

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES: 1.— DIMENSIONING AND TOLERANCING PER ASME Y14.5M—1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].

- DIMENSION DI, ET, L3 & 63 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.

 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. WOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY,
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S		Ŋ				
M B O	MILLIM	ETERS	INC	O T E S		
0	MIN.	MAX.	MIN.	MAX.	E S	
Α	2,18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
ь3	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4,32	-	.170	-	4	
e	2,29	BSC	.090 BSC			
н	9.40	10,41	.370	.410		
L	1,40	1,78	.055	.070		
L1	2,74	BSC	.108	REF.		
L2	0,51	BSC	.020 BSC			
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1,14	1,52	.045	.060	3	
ø	0.	10*	0,	10*		
ø1	0,	15*	0,	15*		
ø2	25*	35*	25*	35.		

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

1 - GATE

- 2.- COLLECTOR
 3.- EMITTER
 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
 1.— DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- △ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0,13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- ▲- LEAD DIMENSION UNCONTROLLED IN L3.
- A- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION; INCHES.

S	DIMENSIONS				
M B O	MILLIMETERS INCHES		O T E S		
0	MIN.	MAX.	MIN.	MAX.	E
Α	2.18	2,39	.086	.094	
A1	0.89	1.14	.035	.045	
ь	0.64	0.89	.025	.035	
b1	0.65	0,79	.025	.031	6
b2	0.76	1,14	.030	.045	
ь3	0,76	1.04	.030	.041	6
b4	4,95	5,46	.195	.215	4
c	0.46	0.61	.018	.024	
c1	0,41	0,56	,016	,022	6
c2	0,46	0.89	.018	.035	
D	5.97	6.22	.235	.245	3
D1	5.21	-	.205	-	4
E	6.35	6.73	.250	.265	3
E1	4.32	-	.170	-	4
e	2.29	BSC	.090 BSC		
L	8.89	9.65	.350	.380	
L1	1,91	2,29	.045	.090	
L2	0.89	1,27	.035	.050	4
L3	1,14	1,52	.045	.060	5
ø1	0*	15*	0,	15*	
ø2	25*	35*	25*	35*	

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN

3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.089mH③ $R_G = 25\Omega$, $I_{AS} = 36A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ③ Pulse width \leq 1.0ms; duty cycle \leq 2%.
- 4 Coss eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
 - Limited by T_{Jmax} , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population. 100% tested to this value in production.
- When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994
- R_θ is measured at T_J approximately 90°C

Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/2010

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRLR2905ZPBF IRLR2905ZTRLPBF IRLR2905ZTRPBF