CADENCE INNOVUS

WORK FLOW

PREREQUISITE

- Netlist post synthesis
- Constraint file post synthesis
- Library files (slow.lib, fast.lib)
- LEF file

Goto File → Import Design

Check on "Auto Assign"

Add the netlist file for the design

	Design Import	×
┌ Netlist:		
Verilog		
_	counter_netlist.v	
	Top Cell: ● Auto Assign ○ By User:	
○ OA		
Library:		
Cell:		
View:		
Technology/Physical Librarie	s:	
○ OA		
Reference Libraries:		
Abstract View Names:		
Layout View Names:		
LEF Files	/cad/FOUNDRY/digital/180nm/dig/lef/all.lef	
Floorplan		
IO Assignment File:		
Power		
Power Nets:		
Ground Nets:		
CPF File:		₽
Analysis Configuration		
MMMC View Definition File		
MIMIMIC VIEW DETINITION FIRE	Create Analysis Configuration	
	Create Analysis Configuration	
<u>O</u> K <u>S</u> a	ve <u>L</u> oad <u>C</u> ancel <u>H</u> elj	

Add LEF file from/CAD/FOUNDRY/180NM/dig/lef/all.lef

Specify the Power Nets as "vdd" and Ground Nets as "vss"

1. Customize "MMMC objects" and "Analysis views" by clicking on "Create Analysis Configuration"

- Library Sets
- RC Corners
- Delay Corners
- Constraint Modes
- Analysis Views
- Setup Analysis Views
- Hold Analysis
 Views

- 1. In MMMC browser double click on library sets -> Give a name 'min_timing' -> Browse and take fast.lib -> Add and press Ok. Similarly do for 'max_timing' and choose slow.lib.
- 2. In RC corner -> Double click. Give some name 'rccorner' and choose 'captable' from "..../cad/foundry/180nm/dig/captable/*.tbl"
- 3. In Delay corner -> Double click and choose 'min_delay', choose library set 'min_timing'. Similarly do for 'max_delay', choose 'max_timing'.
- 4. Double click constraint mode -> Give some name 'constraints'. Browse and take .sdc file
- 5. Double click DC Analysis views. Type 'best_case' and choose 'min_delay' from the drop down list. Similarly type 'worst_case' and choose 'max_delay'
- 6. In Setup, double click and choose worst case. In Hold, double click and choose best case.

Now the Innovus GUI will look like this

Go to floorplan. Specify Floorplan - > Set Aspect ratio to 1 and put all 'Core to Die Boundary" to 2.5 and click Ok.

Go to Power -> Power planning -> Add ring -> Nets – VDD VSS (type it). For power we use the top most metal layer (top & bottom choose Metal 5, left & right choose Metal 6). Make all width to 0.7, spacing 0.2 and Offset to 0.5. Click Ok.

Again go to Power -> Power Planning -> Add Stripes -> Nets - vdd vss(type it) -> Choose Metal 6, Vertical and set width to 0.7 and space to 0.2. Click 'Set-to-set to 5. Set Start to 1 and Stop to 0 at the bottom(First and

Go to Route -> Special route -> Nets — vdd vss (type it) and press Ok Uncheck all except 'Follow Pins' in SRoute

Go to tools -> Set mode -> Specify analysis mode -> in that enable OCV and CPPR

Go to tools -> Set mode ->
Mode setup -> Click on
Placement and enable I/O pins
and press Ok

Now go to Place -> Standard Cell -> Click Ok.

1. View Post Standard Cell Placement. See that standard cell for 'count_reg[1]' is placed.

2. Go to timing -> report timing, choose pre CTS and do for both setup and hold one by one.
A timing report named folder gets generated.
Check for values of setup and hold slack whether they are positive or not.

Do Clock Tree Synthesis (CTS)

EDit Create Non Default Rules _ 🗆 X Non Default Rule Name: 2w2s Copy Rule From: default **Layer Setting** Via Cell List Width Spacing Generated/Standard ViaRules minCut Fixed/Custom Layer Metal1(1) 0.23 0.23 Via12(1) 1 V12_1x2_HV_N V12_1x2_HV_S Metal2(2) 0.28 Via23(2) 1 0.28 V12_2x1_HV_E Metal3(3) 0.28 0.28 Via34(3) 1 V12_2x1_HV_W V12_HV Metal4(4) 0.28 0.28 Via45(4) 1 V12_VH Metal5(5) 0.28 0.28 Via56(5) 1 V12_VV Metal6(6) 0.44 0.46 V23_1x2_VH_N V23_1x2_VH_S Apply to All layers V23_2x1_VH_E V23_2x1_VH_W V23_HV V23_VH Delete Delete Add... Add... Use Hard Spacing OK <u>A</u>pply Close Help

2. Write a CTS script file with following content and save it as 'ccopt.spec'

```
create_route_type -name clkroute -non_default_rule 2w2s -bottom_preferred_layer Metal5 -top_preferred_layer Metal6 set_ccopt_property route_type clkroute -net_type trunk set_ccopt_property route_type clkroute -net_type leaf
```

```
##Specify Buffers Inverters and Clock Gating set_ccopt_property buffer_cells {CLKBUFX2 CLKBUFX4} set_ccopt_property inverter_cells {CLKINVX2 CLKINVX4} set_ccopt_property clock_gating_cells TLATNTSCA*
```

##Generate the ccopt file and source it create_ccopt_clock_tree_spec -file ccopt.spec

In the terminal >source ccopt.spec ****RUN CTS**** >ccopt_design -cts

****SAVEDESIGN*****
>saveDesign
DBS/cts.enc1

Go to Place -> Nano route -> Route (both global and detailed routing done in this step).
 Enable Optimize via and Optimize wire and Click Ok

1. Go to Place ->
Physical cell ->
Add Fillers ->
Click on Select > Add all of the
filler cells ->
Close -> Ok

2. Check 'Do DRC' and 'Fit Gap'

1. Go to Timing -> Extract RC -> Check the boxes 'Save SPF to' & 'Save SPEF to' and press Ok

2. Finally, Go to File -> Save -> Netlist -> Ok.

3. File -> Save Design -> Enable Innovus and type filename.enc and click Ok

Select File-Save-GDS/OASIS.

