Lecture 3

Page 60 and 62-67 not anymore required, just 61 (blood flow)

Subcortical systems (Telencephelon)

Basal Ganglia (motor control)

- Caudate nucleus
- Substantia nigra
- Amygdala

_

Limbic System (emotion, memory)

- Cingulate cortex
 - Part of limbic system
- Hippocampus
 - Memory and navigation
- Mammilary bodies
 - o Part of limbic system & involved in circadian
 - rhythms
- Olfactory bulb
 - Smell
- Thalamus
 - Major way station for processing motor and sensory information

- Medial geniculate nucleus
 - Major way station for audition information going into the brain
- Lateral geniculate nucleus
 - Major way station for visual information going into the brain
- Hypothalamus
 - Endocrine system
- Brain stem
 - Pineal body
 - Superior colliculus
 - Inferior colliculus
- Cerebellum
 - Reflexive activity, posture control, timing

Central and peripheral nervous system

- Central nervous system
- Peripheral nervous system
 - Parasympathetic branch (Norepinephrine)
 - Sympathetic branch (Acetylcholine)
- The cranial nerves
 - Terminal
 - Olfactory
 - Optic
 - Oculomotor

- Trochlear
- Trigeminal
- Adbucens
- Facial
- Vestibulocochlear
- Glossopharyngeal
- Vagus
- Accessory
- Hypoglossal
- Blood supply (page 61)

The neuron doctrine

- The gross anatomy of the brain was well understood by 1850.
 However, it was not known whether this anatomy reflected a complex tangle of continuous wires, or some unknown scheme
- Camilo Golgi (1873) developed a revolutionary staining method that revealed individual neurons. He believed that neurons were coupled directly
- Ramon y Cajal (1888) carried out extensive microanatomical analysis and formulated the cell doctrine for neurons
- Charles Sherrington (1897) developed the idea of specialized synapses that transmit signals from one neuron to another

Neurons come in many shapes and sizes

- Purkinjie
- Granule
- Motor
- Pyramidal
- Chandelier
- Spindle
- Stellate
- Tripolar

Cell body & dendrites of a vertebrate neuron

• Dendrites have spines (little bumps)

The resting pontential

- An electrochemical equilibrium
- The resting potential is about -60-70 mv

-	Sodium (Na ⁺)	Potassium (K ⁺)	Chloride (Cl^-)
Inside	Low	High	Low
Outside	High	Low	High

- 1. Open K^+ channels create the resting potential
 - Open K⁺ channel
 - Closed Na⁺ channel
- 2. Some Na⁺ channels open, depolarizing the cell to threshold

- o Open Na+ channel
- Closed K⁺ channel
- 3. At threshold, additional voltage-gated Na⁺ channels open, causing a rapid change of polarity the action potential
- 4. Na⁺ channels are inactivated; gated K⁺ channels open, re-polarizing and even hyper-polarizing the cell (undershoot phase)
 - Inactivated Na6+ channels
 - Open K⁺ channel
- 5. All gated channels close. The cell returns to its resting potential

Neuronal Circuits

- Mammalian neocortex has ~6 layers of neurons (between 1-4mm)
 - Superficial
 - Upper
 - Middle
 - Deep
- Cortex is also organized in columns
- White mater makes connections between areas
 - Several long tracts
 - Short tracts
 - Long projection fibers
- Brain connections influence brain folding

- Wires act as springs pulling areas together to reduce length of wires
- During development they pull together
 - Cortex at the two sides of a gyrus have similar tasks
 - Cortex at opposite sides of sulcus probably don't have related tasks
- Cortical input and output is systematic
 - Layer for is the recipient layer (receives input from the thalamus)
- The brain is hierarchical, parallel network