TOPOLOGÍA I. Examen final de febrero

– Grado en Matemáticas. Grupo 2-B. Curso 2013/14 –

Nombre:

- 1. Sea $([0,2],\tau)$ donde $\tau = \{O \subset X : (0,1) \subset O\} \cup \{\emptyset\}$. Hallar el interior y adherencia de A = [0,1]. Probar que A es compacto pero no \overline{A} .
- 2. Probar que cada par de espacios de conjuntos no son homeomorfos (topología usual):
 - (a) \mathbb{N} y \mathbb{Q} .
 - (b) $A = (-1,0) \cup (0,1)$ y $B = (-1,0) \cup (0,1]$.
 - (c) $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ y $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}$.
- 3. Establecer explícitamente un homeomorfismo entre el cilindro $\mathbb{S}^1 \times \mathbb{R}$ y el cono $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, z > 0\}.$
- 4. $((\mathbb{R}, \tau_S) = \text{topología de Sorgenfrey})$ Estudiar la continuidad de $f : (\mathbb{R}, \tau_S) \to (\mathbb{R}, \tau_S)$, f(x) = sen(x). Estudiar cuándo un subconjunto A de (\mathbb{R}, τ_S) es conexo.

Razonar todas las respuestas

Soluciones

- 1. (a) Ya que $[0,1] \supset (0,1)$, el conjunto A es abierto, luego coincide con su interior. Por otro lado, un conjunto $F \subset X$ es cerrado si es X o $(0,1) \subset X F$, es decir, $F \subset X (0,1) = \{0\} \cup [1,2]$. De entre ellos, el único que contiene a A es [0,2], luego $\overline{A} = [0,2]$.
 - (b) Sea $\{O_i : i \in I\}$ un recubrimiento por abiertos de A. Sean O_1 y O_2 los abiertos que contienen al punto 0 y 1, respectivamente. Ya que estos abiertos también contienen a (0,1) (por definición de τ), entonces $A \subset O_1 \cup O_2$, probando que A es compacto.

Para probar que [0,2] no es compacto, tomamos el siguiente recubrimiento por abiertos:

$${O_x = (0,1) \cup \{x\} : x \in \{0\} \cup [1,2].}$$

Si [0,2] fuera compacto, existiría $n \in \mathbb{N}$ tal que

$$[0,2] = \bigcup_{i=1}^{n} ((0,1) \cup \{x_i\}) = (0,1) \cup \{x_1,\ldots,x_n\},\$$

lo cual es imposible.

- 2. (a) \mathbb{N} tiene la topología discreta ya que para todo $n \in \mathbb{N}$, $\{n\} = \mathbb{N} \cap (n-1, n+1)$ es abierto. Pero los puntos de \mathbb{Q} no son abiertos, pues si lo fueran, para $q \in \mathbb{Q}$, existiría $\epsilon > 0$ tal que $q \in \mathbb{Q} \cap (q-\epsilon, q+\epsilon) \subset \{q\}$, es decir, $\{q\} = \mathbb{Q} \cap (q-\epsilon, q+\epsilon)$, que no es cierto.
 - (b) A tiene dos componentes conexas, lo mismo que B, que son justamente la partición que se da: son abiertos en ambos conjuntos y son conexos al ser intervalos. Si fueran homeomorfos, cada componente sería homeomorfa a otra componente del otro espacio. Se ha visto en clase que un intervalo de \mathbb{R} es homeomorfo a otro intervalo de \mathbb{R} si y sólo si es del mismo tipo, es decir, o es abierto, o es cerrado acotado, o es semiabierto (o semicerrado). Por tanto, la componente (0,1] de B tiene que ser homeomorfa a (-1,0) o a (0,1) pero esto no es posible.
 - (c) A es compacto y B no lo es. A es compacto pues es cerrado, ya que $A = f^{-1}((-\infty, 1])$, con $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 + y^2$ y también es acotado, pues $|p| \le 1$ para todo $p \in A$. Sin embargo B no es acotado.
- 3. Se define

$$f: X \to \mathbb{S}^1 \times \mathbb{R}, \ f(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, h(z)\right),$$

donde $h:(0,\infty)\to\mathbb{R}$ es cualquier homeomorfismo. Observad que también se podía haber escrito la última coordenada de f como $h(\sqrt{x^2+y^2})$. La aplicación está bien definida, ya que (x,y) no puede ser (0,0): en tal caso, z=0, por la definición de cono, lo cual es imposible. También $f(x,y,z)\in\mathbb{S}^1\times\mathbb{R}$, ya que las dos primeras coordenadas es un vector de modulo 1.

Para hallar la inversa, o lo hacemos probando la sobreyectividad, o se define directamente. En el primer caso, dado $(a, b, c) \in \mathbb{S}^1 \times \mathbb{R}$, si f(x, y, z) = (a, b, c), entonces h(z) = c, luego $z = h^{-1}(c)$, por la biyectividad de h. Entonces queda

$$\frac{x}{\sqrt{x^2 + y^2}} = a, \ \frac{y}{\sqrt{x^2 + y^2}} = b.$$

Pero por la definición del cono, $z = \sqrt{x^2 + y^2}$, luego el sistema anterior es

$$\frac{x}{h^{-1}(c)} = a, \ \frac{y}{h^{-1}(c)} = b.$$

Se concluye que $x = h^{-1}(c)a$, $y = h^{-1}(c)b$. Definimos

$$g: \mathbb{S}^1 \times \mathbb{R} \to X, \ g(x, y, z) = (h^{-1}(z)x, h^{-1}(z)y, h^{-1}(z)).$$

La prueba de que $g\circ f$ y $f\circ g$ son las identidades en X y $\mathbb{S}^1\times \mathbb{R}$ es inmediata.

La aplicación f es continua. Consideramos $p_i : \mathbb{R}^3 \to \mathbb{R}$ las proyecciones. Entonces f es continua si y sólo si $p_i' \circ f : X \to \mathbb{R}$ son continuas con $p_i' = p_{i|\mathbb{S}^1 \times \mathbb{R}}$. Tenemos

$$p_1' \circ f = \frac{q_1}{\sqrt{q_1^2 + q_2^2}}, \ p_2' \circ f = \frac{q_2}{\sqrt{q_1^2 + q_2^2}}, \ p_3' \circ f = h \circ q_3,$$

donde $q_i = p_{i|X}$.

Del mismo modo, se hace para g:

$$q_1 \circ g = (h^{-1} \circ p_3')p_1', \ q_2 \circ g = (h^{-1} \circ p_3')p_2', \ q_3 \circ g = h^{-1} \circ p_3'.$$

4. (a) Una base de entornos de x es $\beta_x = \{[x, x+r) : r > 0\}$. La aplicación es continua en x si para todo $\epsilon > 0$, existe r > 0 tal que si $y \in [x, x+r)$, entonces $\operatorname{sen}(y) \in [\operatorname{sen}(x), \operatorname{sen}(x) + \epsilon)$, es decir, $\operatorname{sen}(x) \leq \operatorname{sen}(y) < \operatorname{sen}(x) + \epsilon$. En particular, tiene que ser no decreciente en x: con esto queremos decir, que existe $\delta > 0$ tal que " $x \leq y, y \in [x, x+\delta) \Rightarrow \operatorname{sen}(x) \leq \operatorname{sen}(y)$ ". El recíproco también es cierto, es decir, si f es no decreciente en x, entonces es continua en x. Para ello, dado $\epsilon > 0$, por la continuidad de la función seno considerando la topología usual, existe r > 0 tal que $f((x-r,x+r)) \subset (\operatorname{sen}(x) - \epsilon, \operatorname{sen}(x) + \epsilon)$. Como la función es no decreciente en x, sabemos que existe $\delta > 0$ con la propiedad anterior. Tomando $\eta = \min\{r, \delta\}$, si $y \in [x, x+\eta)$, $\operatorname{sen}(y) \in [\operatorname{sen}(x), \operatorname{sen}(x) + \eta)$.

(b) Probamos que si A es conexo, tiene que ser un intervalo. Si no, existen $a < c < b, a, b \in A$ y $c \notin A$, y se tendría una partición por abiertos

$$A = (A \cap (-\infty, c)) \cup (A \cap (c, \infty)).$$

El conjunto $(-\infty, c)$ es abierto y lo mismo (c, ∞) :

$$(-\infty, c) = \bigcup_{n \in \mathbb{N}} [c - n, c), \ (c, \infty) = \bigcup_{n \in \mathbb{N}} (c, c + n).$$

Por otro lado, un conjunto de la forma [a,b) es abierto, por estar en la base, y también es cerrado, ya que $\mathbb{R} - [a,b) = (-\infty,a) \cup [b,\infty)$ y cada uno de estos es abierto:

$$(-\infty, a) = \bigcup_{n \in \mathbb{N}} [a - n, a), \ [b, \infty) = \bigcup_{n \in \mathbb{N}} [b, b + n).$$

Por tanto, si un intervalo contiene a un intervalo del tipo [a, b), no puede ser conexo. Por tanto, los únicos intervalos que satisfacen esta propiedad (y por tanto, los únicos conexos) son los puntos $\{x\} = [x, x]$.