Particle spectrograph

Wave operator and propagator

Source constraints	traints	
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}==0$	3
$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == \partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha} t^{\chi\beta} + \partial_{\chi}\partial^{\beta} t^{\alpha\chi} + \partial_{\chi}\partial^{\chi} t^{\beta\alpha}$	
$\sigma_1^{\#2}\alpha\beta==0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
$\sigma_1^{\#1}\alpha\beta=0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	3
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial_{\delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon}_{\delta} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial_{\epsilon} \partial_{\epsilon} \sigma^{\alpha \delta}{}_{\delta} == 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	
	$4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\delta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\delta\beta} +$	
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\delta\alpha} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha X \beta} + 3 \eta^{\alpha X} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}_{\delta} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{eta\delta}$	
$\sigma_2^{\#1}\alpha\beta=0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi \delta}_{\chi} = =$	5
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi \delta}{}_{\chi} + 3 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha})$	
Total constra	Total constraints/gauge generators:	34

Ladratic (free) action $= \int_{\partial f} \int_{\partial g} \int_{$

							_							
0	0	0	0	0	0	0	$ au_{1}^{\#2}$	0	0	0	0	0	0	C
0	0	0	0	0	0	0	$ au_{1}^{\#1}{}_{lpha}^{}$	0	0	0	0	0	0	_
0	0	0	0	0	0	0	$\sigma_{1}^{\#2}{}_{lpha}$ ι	0	0	0	0	0	0	
0	0	0	0	0	0	0	$\sigma_{1}^{\#_{1}}{}_{lpha}$ c	0	0	0	0	0	0	_
0	0	0	0	0	0	0	$ au_1^{\#1}_{+} lpha eta \ \epsilon$	0	0	0	0	0	0	c
0	0	0	0	0	0	0	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	0	0	0	0	0	0	c
0	0	0	0	0	0	0	$\sigma_{1}^{\#1}{}_{lphaeta}$ (0	0	0	0	0	0	c
$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{#2} + \alpha$		$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$_{\tau}$ #2 + α

 $f_{0}^{\#1}$

 $\begin{array}{c} \omega_{0}^{\#1} + \\ f_{0}^{\#1} + \\ f_{0}^{\#2} + \\ \omega_{0}^{\#1} + \\ \end{array}$

0 0

Massive and massless spectra

Quadratic pole
Pole residue:
$$\frac{1}{\lambda} > 0$$
Polarisations: 2

(No massive particles)

Unitarity conditions