1 Definiciones primeras

Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{C} de los números complejos. Denotemos con End(V) al conjunto de las aplicaciones lineales

$$f: V \to V$$
.

Si fijamos una base (e_i) en V, entonces f viene determinado por una matriz cuadrada (a_{ij}) definida por la condición

$$f(e_i) = \sum_j a_{ij} e_j.$$

Si la aplicación lineal f admite inversa f^{-1} , se dice que es un isomorfismo lineal de V. Este hecho equivale a que su determinante $\det(f) = \det(a_{ij})$ sea no nulo. El conjunto de todos los isomorfismos lineales de V forma un grupo, con la composición de aplicaciones, y es denotado por Aut(V).

Sea ${\cal G}$ un grupo finito. Una representación de ${\cal G}$ en V es un homomorfismo de grupos

$$\rho : G \to Gl(V)$$

$$\rho(gh) = \rho(g) \circ \rho(h).$$

Para simplificar la notación, escribiremos

$$\rho(q)(v) = qv, \ q \in G, v \in V.$$

y diremos que el \mathbb{C} -espacio vectorial V es un G-espacio. El orden de G suele denotarse por |G| mientras que la dimensión de V como \mathbb{C} -espacio vectorial es llamada el **grado de la representación** ρ .

Ejemplo. Una representación de grado 1 de un grupo G es un morfismo

$$\rho: G \to GL(\mathbb{C}) = Aut(\mathbb{C}) = \mathbb{C}^*$$

en el grupo multiplicativo de los números complejos no nulos. Como |G|=n, todo elemento $g\in G$ satistace $g^n=1$ y por ser ρ homomorfismo $1=\rho(g^n)=\rho(g)^n$, con lo que $\rho(g)$ ha de ser una raíz enésima de la unidad. En particular su módulo es $|\rho(g)|=1$. De esta forma ρ es, de hecho, un morfismo

$$\rho: G \to S^1$$

en el grupo multiplicativo de la circunferencia unidad $S^1 = \{e^{i\alpha}, \alpha \in \mathbb{R}\}.$

Como ejemplo concreto podemos tomar $G = \mathbb{Z}/3\mathbb{Z}$ y $\rho: G \to S^1$ dada por $\rho(\overline{1}) = e^{2\pi i/3}$. Entonces $\rho(\overline{2}) = e^{4\pi i/3}$ y $\rho(\overline{3}) = 1$.

Ejemplo. Consideremos el grupo \mathbb{Q} generado por dos elementos i, j que cumplen $i^2 = j^2 = -1, ij = -ij$. Lamando ij = k, se comprueba fácilmente que $k^2 = -1$ y que el producto de dos elementos del conjunto $\{i, j, k\}$ viene dado por

$$ij = k, jk = i, ki = j$$

 $ji = -k, kj = -i, ik = -j.$

Con ello $\mathbb Q$ está formado por los elementos

$$\mathbb{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$$

Definimos una representación de grado 2,

$$\rho: \mathbb{Q} \to Aut(\mathbb{C}^2)$$

por

$$\rho(i) = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \ \rho(j) = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array} \right).$$

Para comprobar que ρ es en efecto un morfismo de grupos basta ver que respecta las relaciones dadas entre los generadores de \mathbb{Q} :

$$\rho(i)^2 = \rho(j)^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ \rho(i)\rho(j) = -\rho(j)\rho(i),$$

lo cual es una comprobación inmediata.

Definición. Denotemos con $\mathbb{C}G$ al espacio vectorial generado sobre \mathbb{C} por los elementos de G. Esto es, los elementos de $\mathbb{C}G$ son las expresiones formales

$$\sum_{g_i \in G} \lambda_i g_i, \text{ con } \lambda_i \in \mathbb{C}.$$

Podemos definir una acción de G sobre $\mathbb{C}G$ de forma natural:

$$g\left(\sum_{g_i \in G} \lambda_i g_i\right) = \sum_{g_i \in G} \lambda_i g g_i$$

que constituye la llamada representación regular de G.

El siguiente enunciado es de fácil demostración.

Proposition 1 Denotemos con V^G al subespacio de V fijo por la acción de G:

$$V^G = \{ v \in V : qv = v, \ \forall q \in G \}.$$

Para cualquier $v \in V$, se tiene

$$w = \sum_{g_i \in V} g_i v \in V^G$$

y la aplicación $\pi: V \to V$ definida por

$$\pi(v) = \frac{1}{|G|} \sum_{g_i \in V} g_i v, \ v \in V$$

es tal que $\pi|_{V^G}=Id$. En consecuencia $\pi^2=Id$, y la expresión $v=\pi(v)+(v-\pi(v))$ permite escirbir $V=\operatorname{Im}\pi\oplus\ker\pi=V^G\oplus\ker\pi$.

La actuación de G en V induce de forma natural una actuación de G sobre su espacio dual V^* como sigue. Si

$$f:V\to\mathbb{C}$$

es una forma lineal, para cada $g \in G$ definimos g^*f como la forma lineal sobre V tal que

$$g^*f(v) = f(g^{-1}v), \ \forall v \in V.$$

De igual forma, si W es otro G—espacio y

$$f:V\to W$$

es un morfismo de $\mathbb{C}-$ espacios, para cada $g\in G$ se define la aplicación lineal g^*f por

$$g^*f(v) = gf\left(g^{-1}v\right).$$

Es una simple comprobación que

$$h^*(q^*f) = (hq)^* f, \ \forall h, q \in G,$$

con lo que se tiene definida una actuación de G en $Hom_{\mathbb{C}}(V,W)$.

Definición. Dada $f \in Hom_{\mathbb{C}}(V, W)$ se define su suma de Poincaré como

$$F = \sum_{g \in G} g^* f.$$

Para todo $h \in G$ se cumple que $h^*F = F$. En efecto

$$h^*F = \sum_{g \in G} h^*g^*f = \sum_{g \in G} (hg)^*f = \sum_{g \in G} g^*f$$

ya que hG = G. Así $F(v) = h^*F(v) = hF(h^{-1}v)$. Tomando $g = h^{-1}$, se tiene

$$F(gv) = gF(v), \ \forall g \in G.$$

Esto nos conduce a la siguiente definición.

Definición. Un homomorfismo $F \in Hom_{\mathbb{C}}(V, W)$ es un homomorfismo de G-espacios si cumple

$$F(gv) = gF(v), \ \forall v \in V, \ \forall g \in G.$$

El conjunto de los homomorfismos de G-espacios es denotado por $Hom_G(V, W)$, y es claro que es el subespacio de $Hom_{\mathbb{C}}(V, W)$ estable por la acción de G:

$$Hom_G(V, W) = Hom_{\mathbb{C}}(V, W)^G$$

Definición. Sean V y W dos \mathbb{C} —espacios vectoriales de dimensiones n y m respectivamente. Se define el producto tensorial $V \otimes_{\mathbb{C}} W$ como el \mathbb{C} —espacio vectorial generado por el conjunto $\{v \otimes w : v \in V, w \in W\}$, donde los símbolos $v \otimes w$ satisfacen las condiciones siguientes

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$
$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$
$$\lambda(v \otimes w) = \lambda v \otimes w = v \otimes \lambda w, \ \lambda \in \mathbb{C}.$$

Sean ahora $\{v_1,...,v_n\}$ y $\{w_1,...,w_n\}$ bases de V y W respectivamente. Si $v=\sum_i \lambda_i v_i \in V$ y $w=\sum_j \mu_j w_j \in W$, las propiedades anteriores permiten escribir $v\otimes w=\sum_{i,j} \lambda_i \mu_j \ (v_i\otimes w_j)$. En consecuencia una base de $V\otimes_{\mathbb{C}} W$ es el conjunto

$$\{v_i \otimes w_j\}, \ (1 \le i \le n, 1 \le j \le m).$$

Si además V y W son G-espacios, entonces $V\otimes W$ es también un G-espacio de forma natural

$$g(v \otimes w) = gv \otimes gw, \ \forall g \in G.$$

Esta represenatción de G recibe el nombre de $producto\ tensorial$ de las representaciones dadas.

Proposition 2 Conservando las notaciones anteriores, sea V^* el espacio dual de V. Existe un isomorfismo de G-espacios

$$\Psi: V^* \otimes_{\mathbb{C}} W \to Hom_{\mathbb{C}}(V, W)$$

definido por

$$\Psi(v_i^* \otimes w_i)(v) = v_i^*(v)w_i, \ v \in V$$

donde $\{v_1^*, ..., v_n^*\}$ es la base dual de la base dada en V.

Proof. Ψ es una aplicación lineal entre \mathbb{C} -espacios de dimensión nm, basta por tanto ver que es inyectiva. Si $\Psi(\sum_{i,j} \lambda_{ij} v_i^* \otimes w_j) = 0$, entonces

$$\sum_{i,j} \lambda_{ij} v_i^* \otimes w_j \ (v_h) = \sum_j \lambda_{hj} w_j = 0,$$

con lo que por ser el conjunto $\{w_j\}$ una base de W se concluye que $\lambda_{hj}=0$. Por último, es una simple comprobación que si al elemento $v_i^*\otimes w_j$ le corresponde la aplicación lineal $T\in Hom_{\mathbb{C}}(V,W)$, entonces al elemento $g^*v_i^*\otimes gw_j$ le corresponde g^*T .

2 Subrepresentaciones, representaciones irreducibles.

Sea $\rho:G\to GL(V)$ una representación lineal y sea W un subespacio de V. Si W es estable para la acción de G, esto es, si

$$qW \subset W, \ \forall q \in G,$$

entonces ρ define por restricción una representación $\rho': G \to GL(W)$.

Si W' es otro subespacio del mismo, se dice que V es suma directa de W y W' si todo $v \in V$ se puede expresar de la forma $v = w + w', w \in W, w' \in W'$ y $W \cap W' = 0$. Se escribe entonces $V = W \oplus W'$ y se dice que W' es un suplementario de W en V. La aplicación p que hace corresponder a cada vector $v \in V$ su componente w en W es llamada proyector de V sobre W asociado a la descomposición $V = W \oplus W'$; en consecuencia p verifica las condiciones $\operatorname{Im}(p) = W$ y p(w) = w si $w \in W$. Recíprocamente culquier aplicación lineal p que verifique estas condiciones, cumple $p^2 = p$. La expresión v = p(v) + v - p(v) para todo $v \in V$, da una descripción explícita de la suma $V = W + \ker(p)$. Fácilmente se comprueba que $W \cap \ker(p) = 0$, con lo que $V = W \oplus \ker(p)$. Se establece así una correspondencia biyectiva entre los proyectores de V sobre W y los suplementarios de W en V.

Theorem 3 Sea $\rho: G \to Aut(V)$ una representación lineal de G en V, y sea W un subespacio vectorial estable por G. Existe un subespacio suplementario W' de W en V que también es estable por G.

Proof. Sea p cualquier proyector de V sobre W. Consideremos la suma de Poincaré P de p:

$$P(v) = \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}v).$$

Se cumple que P es también un proyector de V sobre W. En efecto, como W es estable por G, la expresión para P dice que $\operatorname{Im}(P) \subset W$. Además si $w \in W$, como también $g^{-1}w \in W$, se tiene $gp(g^{-1}w) = gg^{-1}w = w$, lo que implica que P(w) = w y en consecuencia $P^2 = Id$ y P es un proyector sobre W.

Por ser P una suma de Poincaré, se cumple $P(gv) = gP(v), \forall g \in G$, con ello $\ker(P)$ es estable por G. Como $V = W \oplus \ker(P)$ se conluye el enunciado.

El siguiente resultado nos será de utilidad posteriormente.

Lemma 4 (Schur) Sea $f: V \to V'$ una aplicación lineal entre G-espacios irreducibles. Entonces o bien f=0 o bien f es un isomorfismo; además en este caso f es una homotecia.

Proof. Como $\ker(f)$ es un subespacio G-estable de V o bien $\ker(f) = V$, lo que significa que f = 0, o bien $\ker(f) = 0$. En este caso la condición f(gv) = gf(v) $(v \in V)$ implica que $\operatorname{Im}(f)$ es también un subespacio G-invariante de V', con lo que $\operatorname{Im}(f) = V'$. Sobre los números complejos f ha de tener algún valor propio λ ello supone que $f - \lambda Id$ tiene núcleo no nulo, con lo que por lo anterior $f - \lambda Id$ es el morfismo nulo y por tanto $f = \lambda Id$.

Corollary 5 Toda representación irreducible V de un grupo abeliano es de grado 1.

Proof. Sea g un elemento de G y considermos la aplicación lineal que induce $g:V\to V$. Puesto que para todo $h\in G$ se cumple que gh=hg, se tiene que g es un morfismo de G-espacios, con ello g es una homotecia. Así la representación de G en V convierte a G en un grupo de homotecias. Puesto que una homotecia deja invariante cualquier subespacio, si V es irreducible ha de ser de dimensión 1. \blacksquare