

Kurs:Mathematik für Anwender/Teil I/51/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \sum

Punkte 332253445103 1 5 5 3 6 64

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Die *leere* Menge.
- 2. Eine reelle Intervallschachtelung.
- 3. Ein *isoliertes* lokales Maximum einer Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 4. Der Differenzenquotient zu einer Funktion $f: \mathbb{R} \to \mathbb{R}$ in einem Punkt $a \in \mathbb{R}$.

- 5. Die *Ableitungsfunktion* zu einer differenzierbaren Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 6. Der von einer Familie von Vektoren v_i , $i \in I$, aus einem K-Vektorraum V aufgespannte Untervektorraum.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über hintereinandergeschaltete stetige Funktionen.
- 2. Der Satz über die Monotonieeigenschaften der trigonometrischen Funktionen.
- 3. Die Dimensionsformel für eine lineare Abbildung

$$\varphi:V\longrightarrow W.$$

Aufgabe * (2 Punkte)

Begründe das Beweisprinzip der vollständigen Induktion.

Aufgabe * (2 Punkte)

Es sei M eine Menge und $a,b\in M$ zwei verschiedene Elemente. Definiere durch eine Fallunterscheidung eine Bijektion von M nach M, die a und b vertauscht, und sonst alle Elemente unverändert lässt.

Aufgabe * (5 Punkte)

Beweise die allgemeine binomische Formel.

Aufgabe * (3 Punkte)

Man finde ein Polynom

$$f = a + bX + cX^2$$

mit $a,b,c\in\mathbb{R}$ derart, dass die folgenden Bedingungen erfüllt werden.

$$f(-1) = 4$$
, $f(1) = 0$, $f(2) = -7$.

Aufgabe * (4 Punkte)

Betrachte die Folge $x_n = (-1)^n$ und x = -1. Welche der Pseudokonvergenzbegriffe (siehe Angeordneter Körper/Folge/Pseudokonvergenz/Pseudo/Definition) treffen zu?

Aufgabe * (4 Punkte)

Beweise den Satz über die Konvergenz der geometrischen Reihe.

Aufgabe * (5 (1+3+1) Punkte)

Wir betrachten die Funktion

$$f(x) = \ln x + \frac{1}{x}$$

auf \mathbb{R}_+ .

- 1. Bestimme die erste und die zweite Ableitung von f.
- 2. Bestimme die lokalen Extrema von f.
- 3. Bestimme das Monotonieverhalten von f.

Aufgabe * (10 Punkte)

Es sei

$$f{:}\left[a,b
ight]\longrightarrow\mathbb{R}$$

eine Riemann-integrierbare Funktion. Zu $n \in \mathbb{N}_+$ sei

$$s_n{:}\left[a,b
ight] \longrightarrow \mathbb{R}$$

diejenige untere Treppenfunktion zu $m{f}$ zur äquidistanten Unterteilung in $m{n}$ gleichlange Intervalle, die auf dem Teilintervall

$$I_j=[a+rac{(j-1)(b-a)}{n},a+rac{j(b-a)}{n}[,\ j=1,\ldots,n,$$

(für j=n sei das Intervall rechtsseitig abgeschlossen) das Infimum von f(x), $x\in I_j$, annimmt. Zeige, dass die Folge der Treppenintegrale zu s_n gegen $\int_a^b f(x)dx$ konvergiert.

Aufgabe * (3 (1+2) Punkte)

Wir betrachten die beiden Funktionen

$$f(x) = x^2 - 1$$

und

$$g(x) = -x^2 + 1.$$

- 1. Bestimme die Schnittpunkte der Graphen von $m{f}$ und $m{g}$
- 2. Die beiden Graphen schließen eine endliche Fläche ein. Bestimme deren Flächeninhalt.

Aufgabe * (1 Punkt)

Beschreibe die Gerade im \mathbb{R}^2 , die durch die beiden Punkte (2,3) und (5,-7) verläuft, in Punktvektorform.

Aufgabe * (5 (3+1+1) Punkte)

In der großen Pause fährt das Süßwarenmobil von Raul Zucchero auf den Schulhof. Gabi kauft einen Schokoriegel, zwei Packungen Brausepulver und drei saure Zungen und zahlt dafür $1,30 \in$ Lucy kauft zwei Schokoriegel, eine Packung Brausepulver und zwei saure Zungen und zahlt dafür $1,60 \in$ Veronika kauft drei Packungen Brausepulver und vier saure Zungen und zahlt dafür einen Euro.

- 1. Kann man daraus die Preise rekonstruieren?
- 2. Wie sieht es aus, wenn man weiß, dass die Preise volle positive Centbeträge sind?
- 3. Wie sieht es aus, wenn man weiß, dass die Preise positive Vielfache von Zehn-Cent-Beträgen sind?

Aufgabe * (5 Punkte)

Bestimme die Übergangsmatrizen $M^{\mathfrak u}_{\mathfrak v}$ und $M^{\mathfrak v}_{\mathfrak u}$ für die Standardbasis ${\mathfrak u}$ und die durch die Vektoren

$$v_1=egin{pmatrix}2\3\7\end{pmatrix},\;v_2=egin{pmatrix}1\-3\4\end{pmatrix}\;\mathrm{und}\;v_3=egin{pmatrix}5\6\9\end{pmatrix}$$

gegebene Basis $\mathfrak v$ im $\mathbb R^3$.

Aufgabe * (3 Punkte)

Man gebe ein Beispiel für einen K-Vektorraum V und eine lineare Abbildung $\varphi:V\to V$, die surjektiv, aber nicht injektiv ist.

Aufgabe * (6 (1+1+1+1+2) Punkte)

Wir betrachten Matrizen der Form

$$egin{pmatrix} a & 0 & b \ 0 & c & 0 \ d & 0 & e \end{pmatrix}.$$

1. Berechne

$$egin{pmatrix} a & 0 & b \ 0 & c & 0 \ d & 0 & e \end{pmatrix} \cdot egin{pmatrix} f & 0 & g \ 0 & h & 0 \ i & 0 & j \end{pmatrix}.$$

- 2. Ist die Matrizenmultiplikation für solche Matrizen kommutativ?
- 3. Bestimme die Determinante von $\begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ d & 0 & e \end{pmatrix}$.
- 4. Man gebe eine Matrix der Form

$$\begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ d & 0 & 1 \end{pmatrix}$$

an, die nicht invertierbar ist.

5. Sei

$$\begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ d & 0 & e \end{pmatrix}$$

invertierbar. Ist die Inverse der Matrix ebenfalls von diesem Typ?

Anhang

Es sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in einem angeordneten Körper und es sei $x\in K$.

1. Man sagt, dass die Folge gegen x hypervergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem $\epsilon \in K$, $\epsilon > 0$, und alle $n \in \mathbb{N}$ gilt die Beziehung

$$|x_n-x|\leq \epsilon$$
.

2. Man sagt, dass die Folge gegen x supervergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem $\epsilon \in K$, $\epsilon \geq 0$, gibt es ein $n_0 \in \mathbb{N}$ derart, dass für alle $n \geq n_0$ die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

3. Man sagt, dass die Folge gegen x megavergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein $n_0 \in \mathbb{N}$ derart, dass für alle $n \geq n_0$ und jedes $\epsilon \in K$, $\epsilon > 0$, die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

4. Man sagt, dass die Folge gegen x pseudovergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem $\epsilon \in K$, $\epsilon > 0$, gibt es ein $n \in \mathbb{N}$ derart, dass die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

5. Man sagt, dass die Folge gegen x semivergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem $\epsilon \in K$, $\epsilon > 0$, und jedem $n_0 \in \mathbb{N}$ gibt es ein $n \in \mathbb{N}$, $n \geq n_0$, derart, dass die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

6. Man sagt, dass die Folge gegen x protovergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein $\epsilon \in K$, $\epsilon > 0$, derart, dass für alle $n \in \mathbb{N}$ die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

7. Man sagt, dass die Folge gegen x quasivergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein $\epsilon \in K$, $\epsilon > 0$, und ein $n_0 \in \mathbb{N}$ derart, dass für alle $n \geq n_0$ die Beziehung

$$|x_n-x|\leq \epsilon$$

gilt.

8. Man sagt, dass die Folge gegen x deuterovergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem $\epsilon \in K$, $\epsilon > 0$, gibt es ein $n_0 \in \mathbb{N}$ derart, dass für alle $n \geq n_0$ die Beziehung

$$x_n - x \leq \epsilon$$

gilt.

Zuletzt bearbeitet vor 11 Tagen von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht