Predicting Life Satisfaction

Team Cross Validated

Presenters:

Xinda Li x556li@uwaterloo.ca

Ting Wei Zhang tw4zhang@uwaterloo.ca

Agenda

RESULT

Data

- ▶ 271 variables
 - ▶ 8 explicitly categorical (Country, Citizenship, etc.)
 - ► ~14 implicit categorical (Employment relation, source of income, etc.)
 - ► The rest are ordinal or numeric

Preprocessing

- Feature engineering
 - ► Happiness ratio: happiness/average happiness by country
- One-hot encoding all categorical variables (including implicit ones)
- Normalization
- Imputing missing values
 - ► Consider all .a, .b, .c as missing values
 - ▶ Using min value for LR, RF and CatBoost
 - Special missing value for XGBoost
- Selecting top 350 variables using Extremely Random Tree

XGBoost

- Gradient Boosting algorithm developed in 2014 by Tianqi Chen
- Winning multiple Kaggle competitions
- ▶ 2nd order gradient
- Extra regularization parameters
- Not fast (despite of the optimization and parallelization)

CatBoost

- Another gradient boosting algorithm
- Categorical features support
- Less parameters to tune
- Faster than XGBoost

Stacking

- ► Level 1: XGBoost, CatBoost, Logistic Regression, Random Forest
- ► Level 2: XGBoost

Tuning

- Split train/test/online data
 - > 30% of labeled data as test set
 - ► Test and online sets are approximately same size
- ► Tuning individual learners, then stack them together ⊗
 - ► Highly correlated models
- ► Tuning everything at same time ©

Result

- Using the whole training set
- Final AUC 0.89173
- Ranked #3 on private leaderboard

