Stock price Prediction of TCS using LSTM Neural Networks:

```
## import essential libraries
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib
from sklearn.preprocessing import MinMaxScaler
from keras.layers import LSTM,Dense,Dropout
from sklearn.model_selection import TimeSeriesSplit
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.dates as mdates
from sklearn import linear_model
from math import sqrt
from statsmodels.tsa.arima.model import ARIMA
```

Reading data using parse date

As it is timeseries data so we have to read the data by parsing date means making data column as index.

```
## read csv file
df final =
pd.read csv("TCS.csv",na values=['null'],index col='Date',parse dates=
True,infer datetime format=True)
df final.head()
{"summary":"{\n \"name\": \"df_final\",\n \"rows\": 4444,\n
\"fields\": [\n {\n
                          \"column\": \"Date\",\n
                        \"dtype\": \"date\",\n
\"properties\": {\n
                                                        \"min\":
\"2006-04-03 00:00:00\",\n \"max\": \"2024-03-28 00:00:00\",\n
\"num unique values\": 4444,\n
                                     \"samples\": [\n
\"201\overline{4}-08-22\ 00:00:00\",\n
                                   \"2022-04-04 00:00:00\",\n
\"2020-02-19 00:00:00\"\n
                                            \"semantic type\": \"\",\
                                ],\n
        \"description\": \"\"\n
                                            },\n
                                    }\n
                                                    {\n
\"column\": \"Open\",\n \"properties\": {\n
                                                        \"dtype\":
\"number\",\n
                    \"std\": 1124.70733600944,\n
                                                        \"min\":
112.5,\n \"max\": 4217.5,\n \"num_unique_values\": 3168,\n \"samples\": [\n 1935.900024,\n
611.724976,\n
                      306.25\n
                                    ],\n
                                                   \"semantic type\":
```

```
\"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1133.8976099828915,\n \"min\": 116.224998,\n \"max\": 4254.450195,\n
\"num_unique_values\": 3774,\n \"samples\": [\n 257.0,\n 3938.399902,\n 2075.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
n },\n {\n \"column\": \"Low\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1114.3839651768114,\n
\"min\": 104.5,\n \"max\": 4177.0,\n
\"num unique_values\": 3821,\n \"samples\": [\n
2251.100098,\n 754.125,\n
                                                      1249.550049\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
      },\n {\n \"column\": \"Close\",\n \"properties\": {\
n \"dtype\": \"number\",\n \"std\": 1124.1017754542036,\
n \"min\": 111.287498,\n \"max\": 4217.5,\n
\"num_unique_values\": 4281,\n \"samples\": [\n
1748.199951,\n 276.5625,\n 309.237488\n ],\n
1748.199951,\n 276.5625,\n 309.237488\n \"semantic_type\": \"\",\n \"description\": \"\"\n
\"std\":
4217.5,\n \"num_unique_values\": 4366,\n n 499.283508,\n 118.849922,\n
                                                                 \"samptes \
92.85215\n
                                                                    \"samples\": [\
         \"semantic_type\": \"\",\n \"description\": \"\"\n
],\n
        },\n {\n \"column\": \"Volume\",\n \"properties\":
}\n
            \"dtype\": \"number\",\n \"std\":
1030609.1053272161,\n\\"min\": 9598.0,\n
                                                              \"max\":
35573548.0,\n \"num_unique_values\": 4388,\n \"samples\": [\n 52056.0,\n 132170.0,\n 529064.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\
n}","type":"dataframe","variable_name":"df_final"}
df final.shape
(44444, 6)
df final.describe()
{"summary":"{\n \"name\": \"df_final\",\n \"rows\": 8,\n
n },\n {\n \"column\": \"High\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1622.331885813011,\n
```

```
\"min\": 116.224998,\n \"max\": 4413.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1425.6543149270337,\n 1200.75,\n 4
                                               4413.0\n
        \"semantic type\": \"\",\n
                                        \"description\": \"\"\n
      },\n {\n \"column\": \"Low\",\n \"properties\": {\
}\n
        \"dtype\": \"number\",\n \"std\": 1612.9201145130107,\
n
n \"min\": 104.5,\n \"max\": 4413.0,\n
\"num_unique_values\": 8,\n \"samples\": [\n
1396.0706073929298,\n 1178.224976,\n
                                                   4413.0\n
     \"semantic_type\": \"\",\n \"description\": \"\"\n
},\n {\n \"column\": \"Close\",\n \"properties\":
1,\n
}\n
         \"dtype\": \"number\",\n \"std\":
{\n
1617.7202686087749,\n \"min\": 111.287498,\n
                                                       \"max\":
4413.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 1410.645708534104,\n 1190.375,\n 4413.0\n ],\
      \"semantic type\": \"\",\n \"description\": \"\"\n
\"std\":
                                                    \"max\":
4413.0,\n \"num unique values\": 8,\n
                                                \"samples\": [\n
1296.6614509972808,\n 1050.273926,\n
                                                   4413.0\n
           \"semantic_type\": \"\",\n
                                          \"description\": \"\"\n
],\n
      },\n {\n \"column\": \"Volume\",\n
                                                \"properties\":
}\n
{\n \"dtype\": \"number\",\n \"std\":
12467442.469466617,\n\\"min\": 4413.0,\n
                                                   \"max\":
35573548.0,\n \"num unique_values\": 8,\n
                                                   \"samples\":
[\n
           446359.8925900748,\n
                                        184194.0,\n
df final.isnull().values.any()
True
df final.dropna(inplace=True)
df final['Adj Close'].plot()
<Axes: xlabel='Date'>
```


Correlation Analysis


```
test = df final
# Target column
target adj close = pd.DataFrame(test['Adj Close'])
display(test.head())
{"summary":"{\n \"name\": \"display(test\",\n \"rows\": 5,\n
\"2006-04-03 00:00:00\",\n\\"num_unique_values\": 5,\n\\"samples\": [\n\\"2006-
04-04 00:00:00\",\n \"2006-04-10 00:00:00\",\n \"2006-04-05 00:00:00\"\n ],\n \"semantic_type\": \"\",\
                                                                           \"2006-04-10 00:00:00\",\n
n \"description\": \"\"\n }\n
                                                                                                                    },\n {\n
\"column\": \"Open\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.637263738031654,\n \"min\":
235.625,\n
                                              \"max\": 244.375,\n
                                                                                                                    \"num unique values\":
                               \"samples\": [\n 244.375,\n
5,\n
                                                                                                                                                      235.625,\n
                            ],\n \"semantic_type\": \"\",\n
244.0\n
\"High\",\n \"properties\": {\n
                                                                                                                  \"dtype\": \"number\",\n
\"std\": 3.6881316801338864,\n\\"min\": 239.75,\n
\"max\": 250.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 245.975006,\n 239.75,\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"columnation \"columnation \" \"columnation \" \"columnation \"columnation
                                                                           n } n }, n {n } ... 
\"Low\",\n \"properties\": {\n
                                                                                                               \"dtype\": \"number\",\n
\"std\": 3.2020196263452227,\n\\"min\": 235.0,\n
\"max\": 241.90625,\n \"num_unique_values\": 4,\n
```

```
\"samples\": [\n
\ samples\": [\n
240.25\n ],\n
                    241.90625,\n
                                     235.0,\n
                    \"semantic_type\": \"\",\n
\"std\": 3.5176968056226436,\n \"min\": 236.100006,\n
\"max\": 243.481247,\n \"num unique values\": 5,\n
\"samples\": [\n
241.243744\n ],\n
                                236.975006,\n
                    243.481247,\n
                      \"semantic type\": \"\",\n
\"description\": \"\"\n
                      \n },\n {\n \"column\": \"Adj
Close\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 1.913336254105718,\n \"min\": 128.41803,\n
132.4328,\n 128.893967,\n
                     }\n },\n {\n \"column\":
\"description\": \"\"\n
\"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 1066226.4222784953,\n\\"min\": 459912.0,\n
\"max\": 2982344.0,\n\\"num_unique_values\": 5,\n\\"samples\": [\n\\ 553648.0,\n\\ 1666248.0
                                   1666248.0,\n
# selecting Feature Columns
feature columns = ['Open', 'High', 'Low', 'Volume']
```

Normalizing the data

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
feature minmax transform data =
scaler.fit transform(test[feature columns])
feature minmax transform = pd.DataFrame(columns=feature columns,
data=feature minmax transform data, index=test.index)
feature minmax transform.head()
{"summary":"{\n \"name\": \"feature_minmax_transform\",\n \"rows\":
\"properties\": {\n
                       \"dtype\": \"date\",\n \"min\":
\"2006-04-03 00:00:00\",\n \"max\": \"2024-03-28 00:00:00\",\n
                            \"samples\": [\n
\"2016-02-05 00:00:00\",\n
\"num unique values\": 4413,\n
\"201<del>6</del>-03-14_00:00:00\",\n
                         ],\n \"semantic_type\": \"\",\
\"2022-05-26 00:00:00\"\n
n \"description\": \"\"\n
                               }\n
                                       },\n
                                              {\n
\"column\": \"Open\",\n \"properties\": {\n
                                                 \"dtype\":
\"number\",\n \"std\": 0.2739847347160633,\n
                                                  \"min\":
0.0,\n \"max\": 1.0,\n \"num unique values\": 3168,\n
                 0.4441900180267966,\n
\"samples\": [\n
0.1216138796589525,\n
                           0.04719853836784409\n
                                                     ],\n
```

```
\"semantic type\": \"\",\n \"description\": \"\"\n
    \"dtype\": \"number\",\n \"std\": 0.2740057768738416,\n
\"min\": 0.0,\n \"max\": 0.99999999999998,\n
\"num unique values\": 3774,\n \"samples\": [\n
0.034018207153649976,\n 0.9236266085206961,\n
1.0,\n \"num unique values\": 3821,\n \"samples\": [\n
0.5270964022099448,\n 0.15951503990178023,\n
\"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 0.02897903931726414,\n \"min\": 0.0,\n \"max\":
           \"num unique values\": 4388,\n
                                          \"samples\": [\n
\"semantic type\": \"\",\n
n}","type":"dataframe","variable name":"feature minmax transform"}
display(feature_minmax_transform.head())
print('Shape of features : ', feature_minmax_transform.shape)
print('Shape of target : ', target_adj_close.shape)
# Shift target array because we want to predict the n + 1 day value
target adj close = target adj close.shift(-1)
validation y = target adj close[-90:-1]
target adj close = target adj close[:-90]
# Taking last 90 rows of data to be validation set
validation X = feature minmax transform[-90:-1]
feature minmax transform = feature minmax transform[:-90]
display(validation X.tail())
display(validation y.tail())
print("\n -----After process----- \n")
print('Shape of features : ', feature_minmax_transform.shape)
print('Shape of target : ', target adj close.shape)
display(target_adj_close.tail())
{"summary":"{\n \"name\": \"display(target adj close\",\n \"rows\":
5,\n \"fields\": [\n \"column\": \"Date\",\n
                   \"dtype\": \"date\",\n \"min\":
\"properties\": {\n
\"2006-04-03 00:00:00\",\n\\"max\": \"2006-04-10 00:00:00\",\n\\"num_unique_values\": 5,\n\\"samples\": [\n\\"2006-
```

```
\"column\": \"Open\",\n \"properties\": {\n
                                               \"dtype\":
\"number\",\n\\"std\": 0.0008860569398371863,\n\\\"min\":
0.029993909866017056,\n \"max\": 0.03212545676004872,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.03212545676004872,\n 0.029993909866017056,\n
0.03203410475030451\n
                        ],\n \"semantic type\": \"\",\n
\"description\": \"\"\n
                        }\n },\n {\n \"column\":
\"High\",\n \"properties\": {\n
                                   \"dtype\": \"number\",\n
                                \"min\":
\"std\": 0.0008912351321062925,\n
                   \"max\": 0.03232666073779164,\n
0.02984975348599908,\n
                       \"samples\": [\n
0.02984975348599908,\n
\"num unique values\": 5,\n
0.03135402299857003,\n
0.031209031855885243\n
                        ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n
                        }\n },\n {\n \"column\":
\"Low\",\n\ \"properties\": {\n\ \"dtype\": \"number\",\n\ \"std\": 0.0007862540518956933,\n\ \"min\":
\"num_unique_values\": 4,\n \"samples\": [\n 0.03374002455494168,\n 0.03204419889502763,\n
\"std\": 0.02998053990848866,\n\\"min\": 0.012662091809261906,\
       \"max\": 0.08358874646938824,\n \"num_unique_values\":
n
         \"samples\": [\n
                               0.01529779453632119,\n
n }\n ]\n}","type":"dataframe"}
Shape of features: (4413, 4)
Shape of target: (4413, 1)
{"summary":"{\n \"name\": \"display(target adj close\",\n \"rows\":
5,\n \"fields\": [\n \"column\": \"Date\",\n
                    \"dtype\": \"date\",\n \"min\":
\"properties\": {\n
\"2024-03-20 00:00:00\",\n\\"num unique values\": 5.\n\\"samples\": [\n\\"2024-
                            \"samples\": [\n
\"num unique values\": 5,\n
                                                  \"2024-
03-21 00:00:00\",\n
                        \"2024-03-27 00:00:00\",\n
                        ],\n \"semantic_type\": \"\",\
\"2024-03-22 00:00:00\"\n
       \"description\": \"\"\n }\n
                                     },\n {\n
\"column\": \"Open\",\n \"properties\": {\n
                                               \"dtype\":
\"number\",\n \"std\": 0.011725399840693478,\n
                                                  \"min\":
0.921912290133983,\n\\"max\": 0.943605359317905,\n
\"num_unique_values\": 5,\n \"samples\": [\n
\"semantic type\": \"\",\n
\"High\",\n \"properties\": {\n \"dtype\": \"number\",\n
```

```
\"std\": 0.01228443852238587,\n\\"max\": 0.9428619314455349,\n\\"num_unique_values\": 5,\n
\"dtype\": \"number\",\n \"std\": 0.01433844477603234,\n
\"num_unique_values\": 5,\n
0.9439779246163201\"
                                \"max\": 0.9468385512584409,\n
                              \"samples\": [\n
                          0.9144383177409454,\n
                        ],\n \"semantic_type\": \"\",\n
0.9211786372007368\n
\"description\": \"\"\n
                        }\n },\n {\n \"column\":
\"Volume\",\n \"properties\": {\n \"dtype\": \"number\",\n
\"std\": 0.002528162313880879,\n \"min\":
\"num unique values\": 5,\n
                         \"samples\": [\n
0.0017389238259529667,\n
0.001555760819593999,\n
0.007488706963090433\n
                         ],\n \"semantic_type\": \"\",\n
                        }\n }\n ]\n}","type":"dataframe"}
\"description\": \"\"\n
{"summary":"{\n \"name\": \"display(target_adj_close\",\n \"rows\":
5,\n \"fields\": [\n \\"column\\": \\"Date\\\",\n
                    \"dtype\": \"date\",\n \"min\":
\"properties\": {\n
\"2024-03-20 00:00:00\",\n
\"num_unique_values\": 5,\n \"samples\": [\n \"2024-
03-21 00:00:00\",\n
                         \"2024-03-27 00:00:00\",\n
\"2024-03-22 00:00:00\"\n ],\n
                                      \"semantic type\": \"\",\
n \"description\": \"\"n }\n
                                      },\n {\n
\"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 50.776624672989826,\n
\"min\": 3837.5,\n\\"max\": 3974.050049,\n
\"num unique values\": 5,\n \"samples\": [\n
3913.100098,\n
n ],\n 3883.550049,\n
\"semantic_type\": \"\",\n
                                          3877.100098\
----After process-----
Shape of features: (4323, 4)
Shape of target: (4323, 1)
{"summary":"{\n \"name\": \"display(target_adj_close\",\n \"rows\":
5,\n \"fields\": [\n \\\\"\column\": \"Date\",\n
\"properties\": {\n \"dtype\": \"date\",\n \"min\":
\"2023-11-07 00:00:00\",\n
\"num_unique_values\": 5,\n \"samples\": [\n \"2023-
11-08 00:00:00\",\n \"2023-11-13 00:00:00\",\n \"2023-11-09 00:00:00\"\n ],\n \"semantic_type\": \"\",\
       \"description\": \"\"\n }\n
                                       },\n
                                              {\n
```

```
\"column\": \"Adj Close\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 30.180627479919625,\n \"min\": 3331.699951,\n \"max\": 3399.300049,\n \"num_unique_values\": 5,\n \"samples\": [\n 3348.25,\n 3399.300049,\n \"332.800049\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n ]\n]","type":"dataframe"}
```

Train test Split using Timeseriessplit

```
ts split= TimeSeriesSplit(n splits=10)
for train_index, test_index in
ts_split.split(feature_minmax_transform):
        X train, X test = feature minmax transform[:len(train index)],
feature_minmax_transform[len(train index): (len(train index)
+len(test index))]
        y_train, y_test =
target adj close[:len(train index)].values.ravel(),
target adj close[len(train index): (len(train index)
+len(test index))].values.ravel()
X train.shape
(3930, 4)
X test.shape
(393, 4)
y train.shape
(3930,)
y test.shape
(393,)
def validate result(model, model name):
    predicted = model.predict(validation X)
    RSME score = np.sqrt(mean squared error(validation y, predicted))
    print('RMSE: ', RSME_score)
    R2 score = r2 score(validation y, predicted)
    print('R2 score: ', R2 score)
    plt.plot(validation y.index, predicted, 'r', label='Predict')
    plt.plot(validation y.index, validation y,'b', label='Actual')
    plt.ylabel('Price')
    plt.gca().xaxis.set major formatter(mdates.DateFormatter('%Y-%m-
```

```
%d'))
   plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
   plt.title(model_name + ' Predict vs Actual')
   plt.legend(loc='upper right')
   plt.show()
```

Benchmark Model

Decision_Tree_Regressor

```
from sklearn.tree import DecisionTreeRegressor

dt = DecisionTreeRegressor(random_state=0)

benchmark_dt=dt.fit(X_train, y_train)

validate_result(benchmark_dt, 'Decision Tree Regression')

RMSE: 283.43805863878754
R2 score: -0.7198385243711785
```

Decision Tree Regression Predict vs Actual

XG_Boost_Regressor

XGBoost Regression Predict vs Actual

Time_Series_Arima_model

```
# Preprocess features (assuming 'Open', 'High', 'Low', 'Volume' are
your features)
features = df_final[['Open', 'High', 'Low', 'Volume']]
target = df_final['Adj Close']

# Scale features
```

```
scaler = MinMaxScaler(feature range=(0, 1))
feature scaled = scaler.fit transform(features)
# Initialize TimeSeriesSplit
tscv = TimeSeriesSplit(n splits=10)
# Placeholder for model predictions and actual values
predictions = []
actuals = []
# Cross-validation for time series data
for train index, test index in tscv.split(feature scaled):
    X train, X test = feature scaled[train index],
feature scaled[test index]
    y train, y test = target[train index], target[test index]
    # Fit ARIMA model (you can replace this with any other model)
    model = ARIMA(y_train, order=(5,1,0))
    model fit = model.fit()
    # Forecast
    forecast = model fit.get forecast(steps=len(test index))
    predictions.append(forecast.predicted mean)
    actuals.append(y test)
# Flatten the list of predictions and actuals
predictions = [item for sublist in predictions for item in sublist]
actuals = [item for sublist in actuals for item in sublist]
# Calculate RMSE over all predictions
rmse = sqrt(mean squared error(actuals, predictions))
print('Overall Test RMSE: %.3f' % rmse)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/
tsa model.py:473: ValueWarning: A date index has been provided, but it
has no associated frequency information and so will be ignored when
e.g. forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
```

```
results will be given with an integer index beginning at `start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
```

```
return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freg)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
  return get prediction index(
```

```
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: ValueWarning: No supported index is available. Prediction
results will be given with an integer index beginning at `start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
```

.py:836: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception. return get prediction index(/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:836: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. return get prediction index(/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:836: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception. return get prediction index(/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting. self. init dates(dates, freq) /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:836: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`. return get prediction index(/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model .py:836: FutureWarning: No supported index is available. In the next

```
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:473: ValueWarning: A date index has been provided, but it has no
associated frequency information and so will be ignored when e.g.
forecasting.
  self. init dates(dates, freq)
Overall Test RMSE: 360.757
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/
tsa model.py:836: ValueWarning: No supported index is available.
Prediction results will be given with an integer index beginning at
`start`.
  return get prediction index(
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa model
.py:836: FutureWarning: No supported index is available. In the next
version, calling this method in a model without a supported index will
result in an exception.
  return get prediction index(
# Plot the predicted vs actual values
plt.figure(figsize=(12,6))
plt.plot(actuals, label='Actual')
plt.plot(predictions, label='Predicted', color='red')
plt.legend()
plt.show()
```


Process the data for LSTM

```
X_train =np.array(X_train)
X_test =np.array(X_test)

X_tr_t = X_train.reshape(X_train.shape[0], 1, X_train.shape[1])
X_tst_t = X_test.reshape(X_test.shape[0], 1, X_test.shape[1])
```

Model building: LSTM

```
from keras.models import Sequential
from keras.layers import Dense
import keras.backend as K
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
from keras.models import load model
from keras.layers import LSTM
K.clear session()
model lstm = Sequential()
model lstm.add(LSTM(16, input shape=(1, X train.shape[1]),
activation='relu', return sequences=False))
model lstm.add(Dense(1))
model lstm.compile(loss='mean squared error', optimizer='adam')
early stop = EarlyStopping(monitor='loss', patience=5, verbose=1)
history_model_lstm = model_lstm.fit(X_tr_t, y_train, epochs=200,
batch size=8, verbose=1, shuffle=False, callbacks=[early_stop])
```

Epoch 1/200	
502/502 [=========] - 6s 5ms/	step - loss:
2094184.8750	
Epoch 2/200 502/502 [=============] - 4s 7ms/	sten - loss:
2048436.7500	step - 1033.
Epoch 3/200	
502/502 [==========] - 4s 8ms/	step - loss:
1992790.2500	
Epoch 4/200	
502/502 [====================================	step - loss:
1925644.1250 Epoch 5/200	
502/502 [=============] - 2s 4ms/	sten - loss:
1849066.7500	5 cop
Epoch 6/200	
502/502 [=========] - 2s 5ms/	step - loss:
1765117.5000	
Epoch 7/200 502/502 [====================================	ston loss.
1675649.0000	step - toss:
Epoch 8/200	
502/502 [====================================	step - loss:
1582312.3750	
Epoch 9/200	_
502/502 [=========] - 2s 4ms/	step - loss:
1486581.3750 Epoch 10/200	
502/502 [=============] - 1s 3ms/	sten - loss
1389788.7500	эсер созз.
Epoch 11/200	
502/502 [=========] - 1s 2ms/	step - loss:
1293147.8750	
Epoch 12/200 502/502 [=============] - 1s 2ms/	ston loss.
1197767.8750	step - toss:
Epoch 13/200	
502/502 [============] - 1s 2ms/	step - loss:
1104655.6250	
Epoch 14/200	
502/502 [===========] - 1s 2ms/ 1014707.1250	step - loss:
Epoch 15/200	
502/502 [====================================	step - loss:
928689.6250	.,,
Epoch 16/200	
502/502 [====================================	step - loss:
847213.0000 Fnech 17/200	
Epoch 17/200 502/502 [=============] - 1s 3ms/	sten - loss:
302/302 [] - 13 3III5/	3 CCP - CO33 I

770691.9375
Epoch 18/200
502/502 [====================================
699302.3125
Epoch 19/200 502/502 [====================================
632913.6875
Epoch 20/200
502/502 [====================================
571017.8750
Epoch 21/200
502/502 [===========] - 1s 2ms/step - loss:
512729.9375
Epoch 22/200
502/502 [====================================
456975.6562
Epoch 23/200 502/502 [====================================
402935.5000
Epoch 24/200
502/502 [====================================
350563,6562
Epoch 25/200
502/502 [=============] - 2s 4ms/step - loss:
300683.1250
Epoch 26/200
502/502 [====================================
254455.3750 Facility 27 (200)
Epoch 27/200
502/502 [====================================
Epoch 28/200
502/502 [====================================
175928.6719
Epoch 29/200
502/502 [====================================
143985.2500
Epoch 30/200
502/502 [============] - 1s 2ms/step - loss:
116678.7188
Epoch 31/200 502/502 [====================================
93653.0312
Epoch 32/200
502/502 [====================================
74508.3438
Epoch 33/200
502/502 [====================================
58846.7188
Epoch 34/200

502/502 [====================================	
Epoch 35/200	
502/502 [====================================	
Epoch 36/200 [=============] - 2s 3ms/step - loss:	
28601.0117	
Epoch 37/200 [===================================	
22632.6172	
Epoch 38/200 [===================================	
18070.5801 Epoch 39/200	
502/502 [=============] - 1s 2ms/step - loss:	
14608.6709 Epoch 40/200	
502/502 [====================================	
Epoch 41/200	
502/502 [====================================	
Epoch 42/200	
502/502 [====================================	
Epoch 43/200 502/502 [====================================	
7115.4697	
Epoch 44/200 [===================================	
6028.5142 Epoch 45/200	
502/502 [=============] - 2s 3ms/step - loss:	
5087.1914 Epoch 46/200	
502/502 [====================================	
Epoch 47/200	
502/502 [====================================	
Epoch 48/200	
502/502 [============] - 1s 3ms/step - loss: 3049.0271	
Epoch 49/200 502/502 [====================================	
2638.2642	
Epoch 50/200 502/502 [====================================	
2338.9436	

F L F1 (200
Epoch 51/200
502/502 [====================================
2120.9207
Epoch 52/200
502/502 [====================================
1956.1094
Epoch 53/200
502/502 [====================================
1824.1105
Epoch 54/200
502/502 [====================================
1712.3961
Epoch 55/200
502/502 [====================================
1614.2424
Epoch 56/200
502/502 [====================================
1526.5024
Epoch 57/200
502/502 [====================================
1447.9760
Epoch 58/200
502/502 [====================================
1378.3101
Epoch 59/200
502/502 [====================================
1317.3724
Epoch 60/200
502/502 [====================================
1264.9468
Epoch 61/200
502/502 [====================================
·
1220.6526
Epoch 62/200
502/502 [====================================
1183.9562
Epoch 63/200
502/502 [====================================
1154.1979
Epoch 64/200
502/502 [====================================
1130.6658
Epoch 65/200
502/502 [====================================
1112.6184
Epoch 66/200
502/502 [====================================
1099.3127
Epoch 67/200
502/502 [====================================

```
1090.0347
Epoch 68/200
1084.1229
Epoch 69/200
1080.9624
Epoch 70/200
1080.0026
Epoch 71/200
1080.7570
Epoch 72/200
502/502 [======
        1082.7998
Epoch 73/200
1085.7689
Epoch 74/200
1089.3593
Epoch 75/200
1093.3225
Epoch 75: early stopping
```

Evaluation of Model

Predictions made by LSTM

```
score_lstm= model_lstm.evaluate(X_tst_t, y_test, batch_size=1)
```

LSTM's Prediction Visual

```
## Plot to visualize the accuracy
plt.plot(y_test, label='True')
plt.plot(y_pred_test_LSTM, label='LSTM')
plt.title("LSTM's_Prediction")
plt.xlabel('Observation')
plt.ylabel('INR_Scaled')
plt.legend()
plt.show()
```


Converting Prediction data

In this step I have made the prediction of test data and will convert the dataframe to csv so that we can see the price difference between actual and predicted price.

```
col1 = pd.DataFrame(y_test, columns=['True'])

col2 = pd.DataFrame(y_pred_test_LSTM, columns=['LSTM_prediction'])

col3 = pd.DataFrame(history_model_lstm.history['loss'],
    columns=['Loss_LSTM'])
    results = pd.concat([col1, col2, col3], axis=1)
    results.to_excel('PredictionResults_LSTM_NonShift.xlsx')
```

Conclusion

It is impossible to get a model that can 99% predict the price without any error, there are too many factors can affect the stock prices. So, we cannot hope there is a perfect model, but the general trend of predicted price is in line with the actual data, so the trader could have an indicator to reference, and makes trading decision by himself.

Further, we can improve the model's accuracy by increasing the epochs, trying out different activation functions or even change the model's structure. As exact