

Third Edition



### **Chapter 5**

Probability
Distributions and
Data Modeling

Part 2



Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 1

## **Continuous Probability Distributions**

 A probability density function is a mathematical function that characterizes a continuous random variable.



Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

# **Properties of Continuous Probability Distributions**

- Properties
  - $-f(x) \ge 0$  for all values of x
  - Total area under the density function equals 1.
  - -P(X=x)=0
  - Probabilities are only defined over intervals.
  - $-P(a \le X \le b)$  is the area under the density function between a and b.

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$
 (5.17)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 3

#### **Uniform Distribution**

- The uniform distribution characterizes a continuous random variable for which all outcomes between a minimum (a) and a maximum (b) are equally likely.
- · Density function:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$
 (5.18)

Cumulative distribution function:

$$F(x) = \begin{cases} 0, & \text{if } x < a \\ \frac{x - a}{b - a}, & \text{if } a \le x \le b \\ 1, & \text{if } b < x \end{cases}$$
 (5.19)

• Expected value =  $\frac{(a+b)}{2}$ ; variance =  $\frac{(b-a)^2}{12}$ 

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

## **Example 5.33: Computing Uniform Probabilities**

- Sales revenue for a product varies uniformly each week between \$1000 and \$2000.
- Probability that sales revenue will be less than x = \$1,300.

$$- F(1,300) = \frac{(1,300-1,000)}{(2,000-1,000)} = 0.30$$



• Probability that revenue will be between \$1,500 and \$1,700.

$$-P(1,500 \le X \le 1,700) = P(X \le 1,700) - P(X \le 1,500) = F(1,700) - F(1,500)$$
$$= F(1,700) - F(1,500) = 0.7 - 0.5 = 0.2$$





Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 5

#### **Discrete Uniform Distribution**

- A variation of the uniform distribution is one for which the random variable is restricted to integer values between a and b (also integers); this is called a discrete uniform distribution.
  - Example: roll of a single die. Each of the numbers 1 through 6 have a  $\frac{1}{6}$  probability of occurrence.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

#### **Normal Distribution**

- f(x) is a bell-shaped curve.
- · Characterized by 2 parameters:

 $\mu$  (mean)

 $\sigma$  (standard deviation)

- Properties
  - 1. Symmetric
  - 2. Mean = Median = Mode
  - 3. Range of *X* is unbounded.
  - 4. Empirical rules apply





Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 7

#### **Excel Normal Distribution Function**

- = NORM.DIST(x, mean, standard\_deviation, cumulative).
  - NORM.DIST(x, mean, standard\_deviation, TRUE)
     calculates the cumulative probability.
  - If cumulative is set to FALSE, the function simply calculates the value of the density function f(x), which has little practical application.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

### **Example 5.34 Using the NORM.DIST Function to Compute Normal Probabilities**

- The distribution for customer demand (units per month) is normal with mean = 750 and standard deviation = 100.
- · Find the probability that demand will be:
  - 1. at most 900 units/month
  - 2. exceed 700 units/month
  - 3. be between 700 and 900 units/month



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 9

#### **Example 5.34: Question 1**

- Probability that demand will be at most 900 units, or  $P(X \le 900)$ :
  - = NORM.DIST(900,750,100,TRUE) = 0.9332.



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

### **Example 5.34: Question 2**

- Probability that demand will exceed 700 units, or P(X > 700).
  - -=1-NORM.DIST(700,750,100,TRUE)=1-0.3085=0.6915



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 11

#### **Example 5.34: Question 3**

- Probability that demand will be between 700 and 900, or P(700 < X < 900):
  - = NORM.DIST(900,750,100,TRUE) NORM.DIST(700,750,100,TRUE) = 0.9332 - 0.3085 = 0.6247



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

#### The NORM.INV Function

Suppose that we know the cumulative probability but don't know the value of x. The Excel function

= NORM.INV(probability, mean, stdev)

provides the *x* value for a given cumulative probability.



Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 13

## **Example 5.35: Using the NORM.INV Function**

- What level of demand would be exceeded at most 10% of the time?
- Find x such that F(x) = 0.90:
  - = NORM.INV(0.90,750,100) = 878.155



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

#### **Standard Normal Distribution**

- A standard normal distribution is a normal distribution with a mean of 0 and standard deviation of 1.
  - A standard normal random variable is denoted by Z.
  - The scale along the z-axis represents the number of standard deviations from the mean of zero.
  - The Excel function = NORM.S.DIST(z) finds probabilities for the standard normal distribution.



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 15

## **Example 5.36: Computing Probabilities** with the Standard Normal Distribution

- Verify the empirical rules using Excel.
- Example: The probability within one standard deviation of the mean is P(-1 < Z < 1) is found by the formula =NORM.S.DIST(1) NORM.S.DIST(-1)
  - =0.84134-0.15866
  - =0.6827
  - $\sim 68\%$

| 1  | A                             | В       | C | D  | E | F       | G       | Н           |
|----|-------------------------------|---------|---|----|---|---------|---------|-------------|
| 1  | Standard Normal Probabilities |         |   |    |   |         |         |             |
| 2  |                               |         |   |    |   |         |         |             |
| 3  | Z                             | F(z)    |   | a  | b | F(a)    | F(b)    | F(b) - F(a) |
| 4  | -3                            | 0.00135 |   | -1 | 1 | 0.15866 | 0.84134 | 0.6827      |
| 5  | -2                            | 0.02275 |   | -2 | 2 | 0.02275 | 0.97725 | 0.9545      |
| 6  | -1                            | 0.15866 |   | -3 | 3 | 0.00135 | 0.99865 | 0.9973      |
| 7  | 0                             | 0.50000 |   |    |   |         |         |             |
| 8  | 1                             | 0.84134 |   |    |   |         |         |             |
| 9  | 2                             | 0.97725 |   |    |   |         |         |             |
| 10 | 3                             | 0.99865 |   |    |   |         |         |             |



Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

## **Using Standard Normal Distribution Tables**

Table 1 of Appendix A



| Z    | .00    | .01    | .02    | .03    | .04    | .05    | .06    | .07    | .08    | .09    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| -3.9 | .00005 | .00005 | .00004 | .00004 | .00004 | .00004 | .00004 | .00004 | .00003 | .00003 |
| -3.8 | .00007 | .00007 | .00007 | .00006 | .00006 | .00006 | .00006 | .00005 | .00005 | .00005 |
| -3.7 | .00011 | .00010 | .00010 | .00010 | .00009 | .00009 | .00008 | .00008 | .00008 | .0000  |
| -3.6 | .00016 | .00015 | .00015 | .00014 | .00014 | .00013 | .00013 | .00012 | .00012 | .00011 |
| -3.5 | .00023 | .00022 | .00022 | .00021 | .00020 | .00019 | .00019 | .00018 | .00017 | .00017 |
| -3.4 | .00034 | .00032 | .00031 | .00030 | .00029 | .00028 | .00027 | .00026 | .00025 | .00024 |
| -3.3 | .00048 | .00047 | .00045 | .00043 | .00042 | .00040 | .00039 | .00038 | .00036 | .00038 |

• We may compute probabilities for any normal random variable X having a mean  $\mu$  and standard deviation  $\sigma$  by converting it to a standard normal random variable Z:

$$z = \frac{x - \mu}{\sigma} \tag{5.22}$$

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 17

### **Example 5.37: Computing Probabilities** with Standard Normal Tables

- From Example 5.34, what is the probability that demand will be at least 900 units/month?
- $z = \frac{(900 750)}{100} = 1.50$
- Using Table 1 in Appendix A, we find:

$$P(X < 900) = P(Z < 1.50) = 0.93319$$

| z   | .00   |
|-----|-------|
| 0.0 | .5000 |
| 0.1 | .5398 |
| 0.2 | .5793 |
| 0.3 | .6179 |
| 0.4 | .6554 |
| 0.5 | .6915 |
| 0.6 | .7257 |
| 0.7 | .7580 |
| 8.0 | .7881 |
| 0.9 | .8159 |
| 1.0 | .8413 |
| 1.1 | .8643 |
| 1.2 | .8849 |
| 1.3 | .9032 |
| 1.4 | .9192 |
| 1.5 | .9332 |

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

### **Exponential Distribution**

- Models the time between randomly occurring events
- Density function:

$$f(x) = \lambda e^{-\lambda x}, \text{ for } x \ge 0$$
 (5.23)

· Cumulative distribution function:

$$F(x) = 1 - e^{-\lambda x}, \text{ for } x \ge 0$$
 (5.24)

• Mean  $= \mu = \frac{1}{\lambda}$ 

If the number of events occurring during an interval of time has a Poisson distribution, then the time between events is exponentially distributed.



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 19

## **Excel Exponential Distribution Function**

= EXPON.DIST(x, lambda, cumulative)

As with other Excel probability distribution functions, cumulative is either TRUE or FALSE, with TRUE providing the cumulative distribution function.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

#### **Example 5.38: Using the Exponential Distribution**

- The mean time to failure of a critical engine component is  $\mu = 8,000$ hours. What is the probability of failing before 5000 hours?
  - $-P(X < x) = \text{EXPON.DIST}(x, lambda, cumulative})$

$$- \lambda = \frac{1}{8000}$$

 $-P(X < 5000) = \text{EXPON.DIST} \left(5000, \frac{1}{8000}, \text{TRUE}\right)$ 

=0.4647



Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

### **Data Modeling and Distribution Fitting**

- Using sample data may limit our ability to predict uncertain events that may occur because potential values outside the range of the sample data are not included.
- A better approach is to identify the underlying probability distribution from which sample data come by "fitting" a theoretical distribution to the data and verifying the goodness of fit statistically.
  - Examine a histogram for clues about the distribution's shape.
  - Look at summary statistics such as the mean, median, standard deviation, coefficient of variation, and skewness.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

# **Example 5.39: Analyzing Airline Passenger Data**

Sample data on passenger demand for 25 flights



 The histogram shows a relatively symmetric distribution. The mean, median, and mode are all similar, although there is moderate skewness. A normal distribution is not unreasonable.



Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 23

## **Example 5.40: Analyzing Airport Service Times**

Sample data on service times for 812 passengers at an airport's ticketing counter



 It appears to be exponential, but there is a difference between the mean and standard deviation, suggesting that it might be some other distribution.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved