ESTADÍSTICA I (2013-2014)

Grado en Matemáticas / Doble grado Ing. Informática/Matemáticas Examen final, 18 de enero de 2014

Nombre:			
Grupo:			

1. Se desea comparar la concentración observada de tiol (mM) en el lisado sanguíneo de dos grupos de voluntarios, siendo el primer grupo "normal" (X) y padeciendo el segundo grupo de artritis reumatoide (Y). Para ello se analizan los datos con R de la siguiente manera

```
> X = c(1.84, 1.92, 1.94, 1.92, 1.85, 1.91, 2.07)
> Y = c(2.81, 4.06, 3.62, 3.27, 3.40, 3.76)
> t.test(X,Y,alternative="two.sided",mu=0,paired=FALSE,var.equal=FALSE)
```

Welch Two Sample t-test

data: X and Y t = -8.759, df = 5.263, p-value = 0.0002473 alternative hypothesis: true difference in means is not equal to 0 sample estimates: mean of x mean of y 1.921429 3.486667

- a) (1 punto) ¿Qué contraste se está haciendo? Especificar las hipótesis necesarias para garantizar la validez del método empleado. ¿Qué conclusiones se obtienen acerca del contraste?
- b) (1 punto) Calcular un intervalo de confianza al 95 % para la diferencia de concentraciones medias de tiol entre los dos grupos. ¿Qué relación hay entre este intervalo y el contraste de (a)?
- **2.** Sea

$$f(x; \theta) = \theta x^{\theta - 1}, \quad 0 < x < 1, \quad \theta > 0,$$

la función de densidad de una v.a. X con distribución beta de parámetros θ y 1.

a) (1.5 puntos) Consideremos el contraste de hipótesis

$$H_0: \ \theta = 1$$

 $H_1: \ \theta = 2.$

Dada una muestra X_1 de tamaño n=1 de X, determina la región de rechazo del test más potente con nivel de significación α . Para $\alpha=0.05$ calcula la función de potencia de ese test. Indicación: si $X \sim \text{beta}(\theta,1)$, entonces $Y=-\log(X)$ sigue una distribución exponencial de parámetro θ , es decir, la densidad de Y es $g(y)=\theta e^{-\theta y}, y>0$.

b) (1.5 puntos) A nivel de significación α , ¿cuál sería la región de rechazo del test de razón de verosimilitudes para el siguiente contraste?:

$$H_0: \quad \theta = 1$$

 $H_1: \quad \theta \neq 1$

Empleando la tabla de la χ^2 , ¿hay evidencia para rechazar H_0 a nivel $\alpha=0.05$ si, para una muestra de tamaño n=50, hemos obtenido $\sum_{i=1}^{50} \log(x_i) = -19.342$?

3. Sea $\beta > 0$ un número conocido. Sea x_1, \ldots, x_n una muestra de una variable aleatoria X con distribución Weibull de función de densidad

$$f(x;\theta) = \theta \beta x^{\beta-1} e^{-\theta x^{\beta}}, \quad x > 0, \quad \theta > 0.$$

- a) (0.5 puntos) Calcular el estimador de θ por el método de los momentos.
- b) (1 punto) Calcular el estimador de máxima verosimilitud (e.m.v.) de θ .
- c) (1 punto) Determinar la cantidad de información de Fisher $I(\theta)$.
- d) (2 puntos) Estudiar la consistencia y la normalidad asintótica del e.m.v. determinado en (b).
- e) (0.5 puntos) Define el concepto de estimador eficiente. Estudia la eficiencia del e.m.v. de θ determinado en (b).

Indicación: Para cualquier entero positivo m, $\mathbb{E}(X^m) = \frac{1}{\theta^{m/\beta}}\Gamma\left(1 + \frac{m}{\beta}\right)$, donde $\Gamma(t) = \int_0^\infty x^{t-1}e^{-x}dx$ es la función gamma, y $\Gamma(n) = (n-1)!$ si n es un entero positivo.