Travail, énergies, puissance et collisions (Chapitres 6 et 7)

Un corps de 4 kg glisse sur un plan incliné faisant un angle de 20° avec l'horizontale. Les forces suivantes sont appliquées sur le corps :

- une force \vec{F} de module F = 80 N entrainant le corps vers le haut (le long du plan incliné),
- la force d'attraction gravitationnelle,
- la réaction normale du plan sur le corps,
- une force de frottement cinétique \vec{F}_f s'opposant au mouvement ($\mu_c = 0.2$).

Calculez:

- (a) le travail de chacune de ces forces si le corps glisse sur une distance de 20 m.
- (b) la puissance moyenne développée par la force \vec{F} pendant ce déplacement sachant que la vitesse initiale du corps était nulle.

$$R\acute{e}p.:$$
 (a) $W(\vec{N})=0$ $J,$ $W(\vec{F})=1600$ $J,$ $W(\vec{F}_f)=-147.49$ J
$$W(\vec{F}_G)=-268.42$$
 $J;$ (b) $P(\vec{F})=973.28$ W .

Trois corps avec masses m_1 , m_2 et m_3 sont arrangés comme dans la figure ci-contre. Le plan incliné est fixe, il forme un angle α avec l'horizontale et n'exerce aucun frottement sur la masse m_2 . Les poulies P_1 et P_2 , sur lesquelles les ficelles glissent, n'exercent aucun frottement. Les ficelles sont sans masse et inextensibles. Dans l'hypothèse que la masse m_3 soit telle qu'elle descend vers le bas, determinez :

- (a) l'expression de l'accélération du corps m_3 ;
- (b) la tension T_1 de la ficelle AB et la tension T_2 de la ficelle CD.

Supposons maintenant que les trois corps soient maintenus à l'arrêt par une corde attachée entre la poulie P_1 et m_2 . A l'instant $t_0 = 0$, la corde est coupée et le système commence à bouger. Determinez l'expression de la vitesse quand le corps m_2 a parcouru une longueur h sur le plan incliné.

$$R\acute{e}p.: (a) \ a = \frac{(m_3 - m_1 - m_2 \sin \alpha)}{(m_1 + m_2 + m_3)} \ g$$

$$T_1 = \frac{m_1 \left[2m_3 + m_2 (1 - \sin \alpha) \right]}{(m_1 + m_2 + m_3)} g, T_2 = \frac{m_3 \left[2m_1 + m_2 (1 + \sin \alpha) \right]}{(m_1 + m_2 + m_3)} g$$

$$v = \sqrt{\frac{2gh(m_3 - m_1 - m_2 \sin \alpha)}{m_1 + m_2 + m_3}}$$

Un cylindre de 3 kg a un rayon de 0.2 m. Il est en rotation autour de son axe à une vitesse angulaire de $40 \ rad/s$.

- (a) Trouvez l'énergie cinétique de rotation du cylindre et la norme de son moment angulaire si celui-ci est un solide de densité uniforme.
- (b) Trouvez l'énergie cinétique de rotation du cylindre et la norme de son moment angulaire si celui-ci est un cylindre creux de faible épaisseur.

$$R\acute{e}p.:$$
 (a) $E_c=48\ J,\ M=2.4\ kg\ m^2/s,$ (b) $E_c=96\ J,\ M=4.8\ kg\ m^2/s.$

Trois corps de masse m_1 , m_2 et m_3 sont disposés sur une surface horizontale sur laquelle ils peuvent glisser sans frottement. A l'instant initial le corps 1 bouge vers la droite à une vitesse constante v_1 tandis que les corps 2 et 3 sont au repos. Le corps 1 frappe d'une façon élastique le corps 2, qui frappe aussi d'une façon élastique le corps 3. Supposant connues les valeurs des masses m_1 et m_3 , determinez la valeur de la masse m_2 qui maximise la vitesse finale du corps 3.

$$R\acute{e}p.: (a) \ m_2 = \sqrt{m_1 \ m_3}.$$