ECMT3150: The Econometrics of Financial Markets

2b. Conditional Heteroskedastic Models

Simon Kwok University of Sydney

Semester 2, 2020

Outline

- 1. ARCH/GARCH Model
 - 1.1 Model Estimation
 - 1.2 Model Diagnostics
- 2. Some Extensions
 - 2.1 IGARCH
 - 2.2 GARCH-M
 - 2.3 EGARCH
 - 2.4 TGARCH
 - 2.5 SV

Log-likelihood Function

Data: $\{r_t: t=1,2,\ldots,T\}$. Let $\mathbf{r}=(r_1,\ldots,r_T)'$. Let $\mathcal{F}_{t-1}=\{r_s: s\leq t-1\}$ and let $f_{t|t-1}$ be the conditional density function of r_t given \mathcal{F}_{t-1} .

The joint density function of \mathbf{r} is:

$$f(\mathbf{r}) = \prod_{t=1}^{T} f_{t|t-1}(r_t | \mathcal{F}_{t-1}).$$

E.g.: Assume that ε_t are *iid* N(0,1).

This implies that $r_t | \mathcal{F}_{t-1} \sim N(\mu_t, \sigma_t^2)$.

Define $\theta = (\alpha', \beta')' = (\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_s)'$.

The joint likelihood and log-likelihood functions are:

$$\begin{split} L\left(\boldsymbol{\theta};\mathbf{r}\right) &= \prod_{t=1}^{T} f_{t|t-1}(r_t|\mathcal{F}_{t-1}) = \prod_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{\left(r_t - \mu_t\right)^2}{2\sigma_t^2}\right\}, \\ \ell\left(\boldsymbol{\theta};\mathbf{r}\right) &= \sum_{t=1}^{T} \ell_t\left(\boldsymbol{\theta};r_t\right) = -\frac{T}{2}\log\left(2\pi\right) - \frac{1}{2}\sum_{t=1}^{T}\log(\sigma_t^2) - \frac{1}{2}\sum_{t=1}^{T} \left(\frac{r_t - \mu_t}{\sigma_t}\right)^2. \end{split}$$

Maximum Likelihood Estimation

Q: How to estimate a GARCH model?

- 1. Assume a distribution on the error: e.g., ε_t are i.i.d. N(0,1), so that $a_t | \mathcal{F}_{t-1} \sim N(0, \sigma_t^2)$. Other error distributions may be assumed: e.g., Student-t, generalized error distribution.
- 2. Obtain the log-likelihood $\ell\left(\boldsymbol{\theta};\mathbf{r}\right)$ as a function of parameters $\boldsymbol{\theta}=(\boldsymbol{\alpha}',\boldsymbol{\beta}')'$.
- 3. Define the pre-sample values of a_t^2 and σ_t^2 (when $t \leq 0$). Some options:
 - 3.1 set to zero;
 - 3.2 set to the unconditional variance in (7) of slide 2a;
 - 3.3 set to the mean squared residuals $\frac{1}{T-p-q}\sum_{t=p+q+1}^{T}\hat{a}_t^2$; or
 - 3.4 treat them as additional parameters.
- 4. Maximize $\ell(\theta; \mathbf{r})$ w.r.t. θ and obtain the MLE $\hat{\theta}$.

Maximum Likelihood Estimation

Let θ_0 be the true parameter vector. Under some regularity assumptions, the MLE $\hat{\theta}$ is:

- lacktriangle consistent for $m{ heta}_0$, i.e., $m{\hat{ heta}} \stackrel{a.s.}{\longrightarrow} m{ heta}_0$ as $T \to \infty$.
- asymptotically normal:

$$\sqrt{\mathcal{T}}\left(\boldsymbol{\hat{\theta}}-\boldsymbol{\theta}_{0}\right)\overset{d}{\longrightarrow}\textit{MN}\left(\boldsymbol{0},\mathcal{I}\left(\boldsymbol{\theta}_{0}\right)^{-1}\right)$$

as $T \to \infty$. The limit $\mathcal{I}\left(\theta_0\right)$ is known as the *asymptotic* information matrix: $\mathcal{I}\left(\theta_0\right) := -\lim_{T \to \infty} E\left[\frac{1}{T}\sum_{t=1}^T \frac{\partial^2 \ell_t(\theta_0)}{\partial \theta \partial \theta'}\right]$.

• efficient (Cramér-Rao): Among all asymptotically unbiased estimators $\tilde{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}_0$, $\hat{\boldsymbol{\theta}}$ has the smallest variance asymptotically, i.e., $Var\left(\sqrt{T}\tilde{\boldsymbol{\theta}}\right) - Var\left(\sqrt{T}\boldsymbol{\theta}\right)$ is positive definite in the limit as $T \to \infty$.

GARCH Model - Estimation

Q: How to estimate the s.e. of $\hat{\theta}_j$ for $j=1,\ldots,m+s$?

A: Get the inverse of the empirical Hessian matrix evaluated at $\hat{\theta}$:

$$H^{-1}(\hat{\boldsymbol{\theta}}) = \left(-\frac{\partial^2 \ell\left(\hat{\boldsymbol{\theta}}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right)^{-1} = \left(-\sum_{t=1}^T \frac{\partial^2 \ell_t\left(\hat{\boldsymbol{\theta}}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right)^{-1}.$$

Then the s.e. of $\hat{\theta}_j$ is the square root of the *j*th diagonal element of $H^{-1}(\hat{\theta})$.

Under correct model specification and some regularity assumptions, $T \cdot H^{-1}(\hat{\boldsymbol{\theta}}) \stackrel{a.s.}{\longrightarrow} \mathcal{I}(\boldsymbol{\theta}_0)^{-1}$ as $T \to \infty$.

Q: What if the N(0,1) error distribution is wrong?

A: The set of MLE procedures becomes *quasi-maximum likelihood* estimation (QMLE). It gives consistent but inefficient parameter estimate.

Estimators of Asymptotic Variance

Different estimators for $AVar(\hat{\theta}) = \frac{1}{T}\mathcal{I}(\theta_0)^{-1}$ (i.e., asymptotic variance of $\hat{\theta}$):

- 1. Empirical Hessian estimator: $\left(-\frac{\partial^2 \ell(\hat{\theta})}{\partial \theta \partial \theta'}\right)^{-1}$.
- 2. Information matrix estimator: $\left(E\left[-\frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta'}\right]\right)^{-1}$.
- 3. Outer-product-of-the-gradient estimator:

$$\left(\sum_{t=1}^{T} \frac{\partial \ell_t(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta}} \frac{\partial \ell_t(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta}'}\right)^{-1}.$$

4. Sandwich estimator:

$$\left(-\frac{\partial^2 \ell(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right)^{-1} \left(\sum_{t=1}^T \frac{\partial \ell_t(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta}} \frac{\partial \ell_t(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta}'}\right) \left(-\frac{\partial^2 \ell(\boldsymbol{\hat{\theta}})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right)^{-1}.$$

Model Diagnostics

Check whether the standardized residuals $\tilde{a}_t = \frac{\hat{a}_t}{\sigma_t}$ form an iid sequence.

- ▶ Ljung-Box test on \tilde{a}_t detects autocorrelations, which may hint to misspecification of the conditional mean model μ_t .
- ▶ QQ plot and tests of skewness and kurtosis of \tilde{a}_t check the validity of the distributional assumption on ε_t .

IGARCH

- Motivation: During turbulent periods, the volatility process may display persistence (unit-root behaviour), which the stationary GARCH model cannot accommodate.
- ► The *Integrated GARCH* (IGARCH) model relaxes the stationarity restriction by allowing for the presence of unit roots in the AR polynomial associated with (9) of slide 2a, i.e., some roots to the polynomial equation

$$1 - \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) x^i = 0$$

lie on the unit circle.

► E.g.: For IGARCH(1,1), the root $x=\frac{1}{\alpha_1+\beta_1}$ lying on the unit circle means that $\alpha_1+\beta_1=1$, so that the necessary condition for stationarity ((8) of slide 2a) is violated.

GARCH-M

- Motivation: asset returns may depend on its volatility.
 Usually, investors seek a higher rate of returns on assets that display higher volatility.
- ▶ The GARCH-in-mean (GARCH-M) model includes the conditional variance σ_t^2 as additional regressor of r_t . E.g., a GARCH(1,1)-M model is:

$$r_t = \mu + c\sigma_t^2 + a_t,$$

$$a_t = \sigma_t \varepsilon_t,$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2,$$

► The coefficient c is interpreted as the volatility risk premium - the average increase in log-return for a unit increase in conditional variance.

EGARCH

- Motivation: asset volatility may exhibit asymmetric effect.
- ► The exponential GARCH (EGARCH) model:
 - ▶ specifies the dynamics of the log volatility process $\ln(\sigma_t^2)$ to ensure positive σ_t^2 ;
 - ▶ allows for asymmetric effect of a past standardized shock ε_{t-1} on log volatility $\ln(\sigma_t^2)$, captured by the asymmetry function:

$$\begin{split} g(\varepsilon_t) &= \theta \varepsilon_t + \gamma \left[|\varepsilon_t| - E(|\varepsilon_t|) \right] \\ &= \begin{cases} (\theta + \gamma)\varepsilon_t - \gamma E(|\varepsilon_t|) & \text{if } \varepsilon_t \geq 0, \\ (\theta - \gamma)\varepsilon_t - \gamma E(|\varepsilon_t|) & \text{if } \varepsilon_t < 0. \end{cases} \end{split}$$

► E.g., EGARCH(1,1):

$$\begin{split} r_t &= \mu_t + a_t, \quad a_t = \sigma_t \varepsilon_t, \\ \ln(\sigma_t^2) &= \omega + \alpha \ln(\sigma_{t-1}^2) + g(\varepsilon_{t-1}) \\ &= \omega + \alpha \ln(\sigma_{t-1}^2) + \theta \varepsilon_{t-1} + \gamma \left[|\varepsilon_{t-1}| - E(|\varepsilon_{t-1}|) \right]. \end{split}$$

TGARCH

- Motivation: asset volatility may be governed by different dynamics depending on the value of the past return shocks.
- ▶ Define the indicator $1_A = 1$ if A is true, and $1_A = 0$ otherwise.
- ▶ The threshold GARCH (TGARCH) model assumes different marginal impact of past squared shocks a_{t-i}^2 on σ_t^2 , depending on the values of a_{t-i}^2 . E.g., TGARCH(1,1):

$$\begin{array}{rcl} r_t & = & \mu_t + a_t, & a_t = \sigma_t \varepsilon_t, \\ \sigma_t^2 & = & \alpha_0 + (\alpha_1 + \gamma_1 \mathbf{1}_{\{a_{t-1} < 0\}}) a_{t-1}^2 + \beta_1 \sigma_{t-1}^2 \\ & = & \left\{ \begin{array}{ccc} \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2 & \text{if } a_{t-1} \geq 0, \\ \alpha_0 + (\alpha_1 + \gamma_1) a_{t-1}^2 + \beta_1 \sigma_{t-1}^2 & \text{if } a_{t-1} < 0. \end{array} \right. \end{array}$$

 $\mathsf{TGARCH}(m,s)$:

$$\begin{array}{rcl} r_t & = & \mu_t + a_t, & a_t = \sigma_t \varepsilon_t, \\ \sigma_t^2 & = & \alpha_0 + \sum_{i=1}^s (\alpha_i + \gamma_i \mathbf{1}_{\{a_{t-i} < 0\}}) a_{t-i}^2 + \sum_{i=1}^m \beta_i \sigma_{t-i}^2. \end{array}$$

Stochastic Volatility Model

- Motivation: conditional variance may be driven by an independent random source different from the return innovations.
- Define the stochastic volatility (SV) model:

$$r_t = \mu_t + a_t, \quad a_t = \sigma_t \varepsilon_t,$$

$$\ln(\sigma_t^2) = \alpha_0 + \alpha_1 \ln(\sigma_{t-1}^2) + \dots + \alpha_m \ln(\sigma_{t-m}^2) + v_t,$$

where ε_t are iid(0,1), v_t are $iid(0,\sigma_v^2)$, and $\{\varepsilon_t\}$ and $\{v_t\}$ are independent.

- Stationarity condition: the roots of the AR polynomial equation $1 \sum_{i=1}^{m} \alpha_i x^i = 0$ lie outside the unit circle.
- Compared to GARCH-type models, the separate random source in SV model adds more flexibility to the volatility dynamics.

Long Memory Stochastic Volatility Model

We may introduce long memory to an SV model:

$$egin{array}{lcl} r_t &=& \mu_t + \mathsf{a}_t, & \mathsf{a}_t = \sigma_t arepsilon_t, \ & \ln(\sigma_t^2) &=& lpha_0 + u_t, \ & (1-L)^d u_t &=& \eta_t, \end{array}$$

where ε_t are iid(0,1), η_t are $iid(0,\sigma_\eta^2)$, $\{\varepsilon_t\}$ and $\{\eta_t\}$ are independent, and $d \in (0,0.5)$.

The fractional differencing leads to long-range positive dependence of u_t , with its ACF decaying hyperbolically with lag order $(\rho_j \sim j^{2d-1} \text{ as } j \to \infty)$.