

Introduction

COT 4210 Discrete Structures II

Summer 2025

Department of Computer Science

Dr. Steinberg

What is the course all about? (0.1 Sipser Textbook)

- We will be diving into the world of <u>theory of computation</u>. There are three components.
 - Automata Theory
 - Why are they important and useful?
 - Computability Theory
 - Why are some problems just not solvable?
 - Complexity Theory
 - What makes some problems computationally hard and others easy?
- They all linked to the question: What are the fundamental capabilities and limitations of computers?

University of Central Florida – COT4210

Review of Mathematical Essentials

0.2 Sipser Textbook

Sets Given elements x and y, and sets A and B

Containment

- $x \in A A$ contains x.
- x ∉ A A doesn't contain x.
- $A = \{x, y\}$ A contains only x and y.
- $A = \{x \mid x \in \mathbb{N}, x > 50\}$ A contains the natural numbers higher than 50.

Operators

- $A \cup B$ union
- $A \cap B$ intersection
- \overline{A} complement

Subsets

- $A \subseteq B$ A is a subset of B.
 - $\forall x \in A, x \in B$
- $A \subseteq B$ A is a proper subset of $B \subset A$.
 - $\forall x \in A, x \in B \text{ and } A \neq B$.
- The power set of A is the set of all subsets of A.

Common sets

- \mathbb{Z} the set of all integers
- N the set of all natural numbers
- \varnothing or ϕ the empty set

Sequences

- Sequences
 - Like ordered sets
 - Finite sequences are called *k*-tuples
 - 2-tuples are also known as ordered pairs
- Cartesian products of sets:
 - $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$
 - Can take it of any number of sets
 - $A \times A = A^2$, $A \times A \times A = A^3$, etc.

Functions

- Functions
 - Map a domain onto a range
 - *n*-ary functions take *n* arguments
 - $f: D \rightarrow R$
 - $abs: \mathbb{Z} \to \mathbb{N}$
 - add: $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- A function is...
 - One-to-one (an injection) if it maps every element of the range from at most one element of the domain
 - Onto (a surjection) if it maps every element of the range from at least one element of the domain
 - A bijection if every element of the range is mapped by exactly one element of the domain

Relations

- A predicate or property is a function with range {TRUE, FALSE}
- A property with a domain of *n*-tuples *A*^{*n*} is an *n*-ary relation
- Binary relations are common, and like binary functions, we use infix notations for them
- Let R be a binary relation on A^2 . R is:
 - Reflexive if $\forall x \in A, x R x$
 - Symmetric if $x R y \rightarrow y R x$
 - Transitive if $(x R y, y R z) \rightarrow x R z$
 - An equivalence relation if it is reflexive, symmetric and transitive

University of Central Florida – COT4210

Graphs: Undirected Graphs

- An undirected graph is a collection of nodes (or vertices) and edges that connect them
 - The degree of a node is the number of edges that connect to that node
 - Edges are unique you can't have two edges between the same pair of nodes
 - Edges can also be labeled

Graphs: Subgraphs

- An undirected graph is a collection of nodes (or vertices) and edges that connect them
 - The degree of a node is the number of edges that connect to that node
 - Edges are unique you can't have two edges between the same pair of nodes
 - Nodes can have self-loops
 - Edges can also be labeled
- A graph G is a subgraph of graph H if it has a subset of H's nodes and all the related edges

Graphs: Paths

- A *path* is a sequence of nodes connected by edges
 - A simple path doesn't repeat any nodes
 - A graph is connected if every two nodes have a path

Graphs: Cycles

- A path is a sequence of nodes connected by edges
 - A simple path doesn't repeat any nodes
 - A graph is connected if every two nodes have a path
 - A path is a cycle if it starts and ends on the same node
 - A simple cycle contains at least three nodes and repeats only the first/last

Graphs: Trees

- A path is a sequence of nodes connected by edges
 - A simple path doesn't repeat any nodes
 - A graph is connected if every two nodes have a path
 - A path is a cycle if it starts and ends on the same node
 - A simple cycle contains at least three nodes and repeats only the first/last
 - A graph is a tree if it is connected and has no simple cycles

Graphs: Directed Graphs

- A directed graph is a graph with arrows instead of lines
 - Edges between nodes i and j are ordered pairs (i, j)
 - Directed paths are paths that follow the direction of the edges
 - A directed graph is strongly connected if every pair of nodes has a directed path
 - Nodes can have self-loops

Directed Graphs and Binary Relations

Consider the relation "beats"

beats	Scissors	Paper	Rock
Scissors	FALSE	TRUE	FALSE
Paper	FALSE	FALSE	TRUE
Rock	TRUE	FALSE	FALSE

Strings

- An alphabet is a non-empty, finite set of symbols
 - The symbols Σ and Γ are used to denote an alphabet. We will see this throughout the course.
- A string over an alphabet is a finite sequence of symbols from that alphabet
- Strings have *length*, like any sequence; the empty string ϵ is the string with length 0
- A language is a set of strings over a given alphabet
- Do not confound the empty language with the empty string

Strings cont.

Given strings S, T, U and V, we write:

- *S_i* to denote the *i*th symbol in *S*
- ST to denote the concatenation of S and T
- S^R to denote the reverse of S

We also say...

- S is a substring of V if $\exists T, U \ni TSU = V$
 - …and a proper substring if S ≠ V
- S is a *prefix* of V if $\exists T \ni ST = V$
 - …and a proper prefix if S ≠ V
- S is a suffix of V if $\exists T \ni TS = V$
 - …and a proper suffix if S ≠ V

Proofs 0.3-0.4 Sipser Textbook

Definitions, Theorems, and Proofs

- Definitions describe the mathematical objects and ideas we want to work with
- Statements or assertions are things we say about mathematics; they can be true or false
- Proofs are unassailable logical demonstrations that statements are true
- Theorems are statements that have been proven true
- Lemmas are theorems that are only any good for proving other theorems
- Corollaries are follow-on theorems that are easy to prove once you prove their parent theorems

University of Central Florida - COT4210

How To Prove Something

- 1. Understand the statement
- 2. Convince *yourself* of whether it is true or false
- 3. Work out its implications until you have a general sense of why it is true or false
 - "Warm fuzzy feelings" don't prove anything but they can help you get ready to prove something
- 4. Break down any sub-cases you will need to prove
 - After this you may need to cycle back to step 2
- 5. Get started

Sipser Textbook Proof Note

The book uses a highly narrative proof format. There are of course other valid techniques and we are going to observe two of them.

Quasi-Narrative Format

Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

We can show this by showing $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

- 1. Suppose $x \in \overline{A \cup B}$.
- 2. Then by definition of complement, $x \notin A \cup B$.
- 3. Then by definition of union, $x \notin A$ and $x \notin B$.
- 4. Then by def. of complement, $x \in \overline{A}$ and $x \in \overline{B}$.
- 5. Then by definition of intersection, $x \in \overline{A} \cap \overline{B}$.
- 6. We have shown that if $x \in \overline{A \cup B}$, $x \in \overline{A} \cap \overline{B}$.
- 7. Hence by definition of subset, $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Now suppose $x \in \overline{A} \cap \overline{B}$.

- 1. Then by def. of intersection, $x \in \overline{A}$ and $x \in \overline{B}$.
- 2. Then by def. of complement, $x \notin A$ and $x \notin B$.
- 3. Then by definition of union, $x \notin A \cup B$.
- 4. Then by definition of complement, $x \in \overline{A \cup B}$.
- 5. We have shown that if $x \in \overline{A} \cap \overline{B}$, $x \in \overline{A \cup B}$.
- 6. Hence by definition of subset, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.
- 7. We have shown that $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$ and $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.
- 8. Hence by set equality, $\overline{A \cup B} = \overline{A} \cap \overline{B}$, QED.

Two-Column Format

Prove $\overline{A \cup B} = \overline{A} \cap \overline{B}$

1. STS
$$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$$
, $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ set equality

complement

intersection

intersection

union

2-5

subset

2. Let
$$x \in \overline{A \cup B}$$

$$3. \therefore x \notin A \cup B$$

4.
$$\therefore x \in \overline{A}, x \in \overline{B}$$

5.
$$\therefore x \in \overline{A} \cap \overline{B}$$

6.
$$x \in \overline{A \cup B} \Rightarrow x \in \overline{A} \cap \overline{B}$$

7.
$$\therefore \overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$$

8. Let
$$x \in \overline{A} \cap \overline{B}$$

9.
$$\therefore x \in \overline{A}, x \in \overline{B}$$

10.
$$\therefore x \notin A, x \notin B$$

11.
$$\therefore x \notin A \cup B$$

12.
$$\therefore x \in \overline{A \cup B}$$

13.
$$x \in \overline{A} \cap \overline{B} \Rightarrow x \in \overline{A \cup B}$$

14.
$$\therefore \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$$

15.
$$\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}, \overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$$

$$16. \ \therefore \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Types of Proofs

Direct Argument

Construction

 Prove something exists by showing how to make it

Contradiction

 Prove something is true by showing it can't be false

Weak Induction

- Show that a statement is true for the case of 0
- Show that if it's true for the case of i,
 then it's true for the case of i + 1

Strong Induction

- Show that a statement is true for the case of 0
- Show that *if* it's true for all of the cases
 i, *then* it's true for the case of *i*

Acknowledgement

Some Notes and content come from Dr. Gerber, Dr. Hughes, and Mr. Guha's COT4210 class and the Sipser Textbook, *Introduction to the Theory of Computation*, 3rd ed., 2013