Linear combinations of solutions

An important definition that pops up throughout mathematics is that of a *linear combination*. At the moment, we are interested in linear combinations of function.

Definition

A **linear combination** of the function y_1, y_2, \ldots, y_n is an expression $c_1y_1 + c_2y_2 + \cdots + c_ny_n$, where c_1, c_2, \ldots, c_n are real numbers.

In other words, a linear combination of functions is a function created from constant *multiples* and *sums* of the functions. What we learn is that the linear combination of solutions for a homogeneous linear differential equation, is again a solution!

Theorem

Suppose y_1, y_2, \dots, y_n are solutions to a homogeneous linear differentiation equation (on an interval I). Then $c_1y_1 + c_2y_2 + \dots + c_ny_n$ is also a solution for the differential equation on I.

Discussion, comments, and examples:

Math45-Module-09-Video-01

WeBWorK module 09 exercises:

• Problems 1

Relevant Wikipedia articles:

• <u>Linear combination</u> (https://en.wikipedia.org/wiki/Linear combination)