Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2013/2014 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica I Appello invernale di Metodi Analitici (3-2-14) – Prof. I. FRAGALÀ

COGNOME E NOME N. MATRICOLA

I. ANALISI COMPLESSA.

Si consideri la seguente funzione di variabile complessa:

$$f(z) = \frac{1}{\left(\sin z\right)^3} \,.$$

- (i) Scrivere la parte singolare dello sviluppo in serie di Laurent di f(z) attorno a $z_0 = 0$.
- (ii) Classificare la singolarità $z_0 = 0$.
- (iii) Calcolare l'integrale

$$\int_{C_1(0)} f(z) \, \mathrm{d}z,$$

dove $C_1(0)$ è la circonferenza nel piano complesso centrata in z=0 e di raggio 1, percorsa una volta in senso antiorario.

Soluzione.

(i) Dallo sviluppo di Taylor della funzione sin z attorno a $z_0=0$, otteniamo:

$$f(z) = \frac{1}{\left(z - \frac{1}{6}z^3 + O(z^5)\right)^3} = \frac{1}{z^3 - \frac{1}{2}z^5 + O(z^7)} = \frac{1}{z^3} \frac{1}{1 - \frac{1}{2}z^2 + O(z^4)},$$

da cui, sfruttando il fatto che $\frac{1}{1+x} = 1 - x + O(x^2)$ (in questo caso $x = -\frac{1}{2}z^2 + O(z^4)$),

$$f(z) = \frac{1}{z^3} \left(1 + \frac{1}{2}z^2 + O(z^4) \right) = \frac{1}{z^3} + \frac{1}{2z} + O(z).$$

Deduciamo quindi che la parte singolare dello sviluppo in serie di Laurent di f(z) attorno a $z_0=0$ è

$$\frac{1}{z^3} + \frac{1}{2z}$$
.

- (ii) Grazie allo sviluppo trovato al punto (i), vediamo che $z_0 = 0$ è un polo di ordine 3 per f(z).
- (iii) Sempre grazie al punto (i), abbiamo che $\operatorname{Res}(f,0) = \frac{1}{2}$. Di conseguenza, essendo $z_0 = 0$ l'unica singolarità di f(z) che ricade all'interno di $C_1(0)$,

$$\int_{C_1(0)} f(z) dz = 2\pi i \operatorname{Res}(f, 0) = \pi i.$$

II. ANALISI FUNZIONALE.

- (i) Sia f_k una successione di funzioni in $L^p(\mathbb{R}^+)$, con $p \in [1, +\infty)$. Fornire le definizioni di convergenza di f_k in $L^p(\mathbb{R}^+)$ e di convergenza puntuale di f_k quasi ovunque su \mathbb{R}^+ , e discutere che relazioni vi sono tra questi due tipi di convergenza.
- (ii) Data una successione numerica g_k e una funzione $h \in L^p(\mathbb{R}^+)$ per ogni $p \in [1, \infty]$, sia f_k una successione di funzioni così costruita:

$$f_k(x) = g_k \cdot h(kx) \quad \forall x \in \mathbb{R}^+, \ \forall k \in \mathbb{N}.$$

Sotto le ipotesi

$$h \not\equiv 0$$
, $\lim_{k \to \infty} g_k = +\infty$, $h(kx) = o\left(\frac{1}{g_k}\right) \quad \forall x \in \mathbb{R}^+ \setminus \{0\}$, (1)

si discuta la convergenza di f_k in $L^p(\mathbb{R}^+)$ per ogni $p \in [1, \infty]$.

Soluzione.

- (i) Si veda uno dei testi consigliati o le slides del corso.
- (ii) Osserviamo anzitutto che $f_k(x)$ converge ovunque (tranne al più in x = 0) alla funzione identicamente nulla. Ciò è una banale conseguenza della terza ipotesi nella (1):

$$\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} g_k \cdot h(kx) = \lim_{k \to \infty} \frac{h(kx)}{\frac{1}{g_k}} = \lim_{k \to \infty} \frac{o\left(\frac{1}{g_k}\right)}{\frac{1}{g_k}} = 0 \quad \forall x \in \mathbb{R}^+ \setminus \{0\}.$$

Per valutare la convergenza di f_k a zero in $L^p(\mathbb{R}^+)$, calcoliamone le corrispondenti norme L^p :

$$||f_k||_{L^p(\mathbb{R}^+)}^p = g_k^p \int_0^{+\infty} |h(kx)|^p \, \mathrm{d}x = \left(\frac{g_k}{k^{\frac{1}{p}}}\right)^p \int_0^{+\infty} |h(y)|^p \, \mathrm{d}y = \left(\frac{g_k}{k^{\frac{1}{p}}}\right)^p ||h||_{L^p(\mathbb{R}^+)}^p \quad \forall p \in [1, \infty) \,, \tag{2}$$

$$||f_k||_{L^{\infty}(\mathbb{R}^+)} = g_k ||h(kx)||_{L^{\infty}(\mathbb{R}^+)} = g_k ||h||_{L^{\infty}(\mathbb{R}^+)}.$$
(3)

Dato che per ipotesi $h \not\equiv 0$, dalla (3) segue che f_k non converge in $L^{\infty}(\mathbb{R}^+)$. Invece, dalla (2) deduciamo che f_k converge in $L^p(\mathbb{R}^+)$ per $p \in [1, \infty)$ se e solo se

$$g_k = o\left(k^{\frac{1}{p}}\right).$$

III. SERIE/TRASFORMATA DI FOURIER.

Si consideri la trasformata di Fourier $\mathcal{F}(f)$ come operatore lineare e continuo da $L^1(\mathbb{R})$ a $L^{\infty}(\mathbb{R})$.

- (i) Dimostrare che la norma dell'operatore \mathcal{F} è minore o uguale a 1.
- (ii) Calcolare, per ogni $n \in \mathbb{N}$, la trasformata di Fourier della funzione

$$f_n(x) = n \chi_{\left[0, \frac{1}{n}\right]}(x) \cos x.$$

(iii) Dedurre dal punto (ii) che la norma dell'operatore \mathcal{F} è uguale a 1 ed è realizzata da ogni f_n .

Soluzione.

(i) Il fatto che la norma operatoriale di \mathcal{F} sia minore o uguale a 1 è un'immediata conseguenza dalla seguente disuguaglianza:

$$|\mathcal{F}(f)(\xi)| = \left| \int_{\mathbb{R}} e^{-i\xi x} f(x) \, \mathrm{d}x \right| \le \int_{\mathbb{R}} \left| e^{-i\xi x} f(x) \right| \, \mathrm{d}x = \int_{\mathbb{R}} \left| f(x) \right| \, \mathrm{d}x = \|f\|_1 \quad \forall \xi \in \mathbb{R} \,, \, \forall f \in L^1(\mathbb{R}) \,,$$

da cui

$$\|\mathcal{F}(f)\|_{\infty} \le \|f\|_{1} \quad \forall f \in L^{1}(\mathbb{R}), \tag{4}$$

ovvero

$$\|\mathcal{F}\| = \sup_{f \in L^1(\mathbb{R}), f \not\equiv 0} \frac{\|\mathcal{F}(f)\|_{\infty}}{\|f\|_1} \le 1.$$
 (5)

(ii) Abbiamo:

$$\mathcal{F}(f_n)(\xi) = \frac{n}{2} \int_{\mathbb{R}} e^{-i\xi x} \chi_{\left[0,\frac{1}{n}\right]}(x) \left(e^{ix} + e^{-ix}\right) dx = \frac{n}{2} \left(\mathcal{F}\left(\chi_{\left[0,\frac{1}{n}\right]}\right) (\xi - 1) + \mathcal{F}\left(\chi_{\left[0,\frac{1}{n}\right]}\right) (\xi + 1)\right) \\
= i\frac{n}{2} \left(\frac{e^{-i\frac{(\xi - 1)}{n}} - 1}{\xi - 1} + \frac{e^{-i\frac{(\xi + 1)}{n}} - 1}{\xi + 1}\right).$$
(6)

(iii) Dalla (6) in particolare otteniamo:

$$\|\mathcal{F}(f_n)\|_{\infty} \ge |\mathcal{F}(f_n)(0)| = \frac{n}{2} \left| e^{-\frac{i}{n}} - e^{\frac{i}{n}} \right| = n \sin\left(\frac{1}{n}\right).$$

Allo stesso tempo,

$$||f_n||_1 = n \int_0^{\frac{1}{n}} \cos x \, \mathrm{d}x = n \sin\left(\frac{1}{n}\right).$$

Queste ultime due relazioni, unitamente alla (4), implicano che

$$\|\mathcal{F}(f_n)\|_{\infty} = \|f_n\|_{1}$$
,

da cui, ricordando la (5), possiamo concludere che la norma operatoriale di \mathcal{F} vale esattamente 1 ed è realizzata da ciascuna f_n .

Più in generale, è facile vedere come $\|\mathcal{F}\|$ sia realizzata da una qualsiasi funzione $f \not\equiv 0$ non negativa. Infatti per una tale f vale la disuguaglianza

$$\|\mathcal{F}(f)\|_{\infty} \ge |\mathcal{F}(f)(0)| = \left| \int_{\mathbb{R}} f(x) \, dx \right| = \int_{\mathbb{R}} f(x) \, dx = \|f\|_{1}$$

che assieme alla (5) implica che necessariamente $\|\mathcal{F}(f)\|_{\infty} = \|f\|_{1}$, ovvero f realizza la norma di \mathcal{F} .