Skin Lesion Analysis

By Umut Celik Email: umut.celik@cix.csi.cuny.edu

CSC 741 - Digital Image Processing Midterm Project

1. Introduction

The Challenge

- Automated analysis of dermoscopic images is crucial for early skin cancer detection.
- These images present challenges: varying illumination, hair, diverse skin tones, and subtle lesion characteristics.

Project Goal

- To develop an image processing pipeline to:
 - 1. Segment (isolate) skin lesions from dermoscopic images.
 - 2. Extract a comprehensive set of visual features from the segmented lesions.
- Apply fundamental Digital Image Processing techniques to a real-world medical imaging problem.

Dataset

- Source: SIIM-ISIC Melanoma Classification (Kaggle).
- Content: Dermoscopic images (JPEG format) and associated metadata (e.g., labels).

2. Image Processing Pipeline

A multi-step approach to process images and extract meaningful data:

Image Loading & Conversion -> Preprocessing -> Color Space Transformation -> Segmentation -> Feature Extraction

Step 1: Image Loading & Initial Conversion

- Action: Load JPEG images.
- Conversion: Convert from BGR (OpenCV default) to RGB for consistency in processing and display.
 - Files involved: src/data_loader.py

Step 2: Preprocessing

- Grayscale Conversion:
 - o Convert RGB images to grayscale for intensity-based operations.
 - Function: rgb_to_grayscale in src/color_utils.py
- Hair Removal:
 - Technique: Morphological Black-Hat filtering to identify hair structures, followed by inpainting to remove them.
 - Reduces noise and artifacts caused by hair.
 - Function: remove_hair in src/preprocessing.py
- (Illumination Correction):
 - o Concept: Use morphological opening to estimate and correct non-uniform background illumination.
 - Status: Implemented (correct_illumination in src/preprocessing.py), but noted as potentially skipped in some display pipelines for directness to segmentation.

Step 3: Color Space Transformation

- RGB to HSV:
 - o Convert RGB images to Hue, Saturation, Value (HSV) color space.
 - HSV is often more intuitive for color-based feature extraction:
 - H (Hue): Dominant color.
 - S (Saturation): Purity/intensity of color.
 - V (Value): Brightness.
 - Function: rgb_to_hsv in src/color_utils.py
- Ida (Darkness) Channel:
 - \circ Calculate Ida channel defined as $\max(R,G,B)$ $\min(R,G,B)$ per pixel.

- o Represents color spread or darkness in the image
- o Used for darkness-based feature extraction (f19-f28).
- Function: calculate_ida_channel in src/color_utils.py

Step 4: Lesion Segmentation

- Goal: Create a binary mask that accurately isolates the lesion area.
- . Method: Otsu's Thresholding
 - o Applied to the preprocessed (hair-removed) grayscale image.
 - o Automatically determines an optimal threshold value to separate lesion pixels from background.
 - Function: otsu_threshold in src/segmentation.py
- Mask Refinement:
 - Technique: Morphological operations.
 - Opening: Erosion followed by dilation (removes small noise/objects).
 - Closing: Dilation followed by erosion (fills small holes within the lesion).
 - o Improves the quality and contiguity of the mask.
 - Functions: opening, closing in src/morphology.py, utilized by apply_threshold in src/segmentation.py

Step 5: Feature Extraction

Extracted from the segmented lesion area (defined by the refined mask):

Feature Extraction: Intensity Features

- · From Grayscale image:
 - Mean pixel intensity
 - o Standard deviation of pixel intensities
 - Minimum pixel intensity
 - Maximum pixel intensity
 - Module: calculate_intensity_stats in src/feature_extraction.py

Feature Extraction: Color Features (HSV)

- From HSV channels:
 - Hue (H):
 - Mean Hue (using circular mean calculation for angular data)
 - Standard deviation of Hue
 - Saturation (S):
 - Mean Saturation
 - Standard deviation of Saturation
 - Value (V):
 - Mean Value (Brightness)
 - Standard deviation of Value
 - Module: calculate_hsv_stats in src/feature_extraction.py

Feature Extraction: Border Features

- From Grayscale image & mask:
 - o Calculated using morphological gradient on the lesion border.
 - Features include:
 - Mean, Standard Deviation, and Max of border gradient values.
 - Border Irregularity (ratio of border pixels to mask area).
 - Module: calculate_gradient_features in src/border_texture_utils.py

Feature Extraction: Texture Features

- From Grayscale image & mask:
 - o Calculated using Morphological Top-Hat (highlights bright details) and Bottom-Hat (highlights dark details) transforms.
 - Features include:
 - Mean and Standard Deviation of Top-Hat transform values.
 - Mean and Standard Deviation of Bottom-Hat transform values.
 - Texture Contrast Index (sum of Top-Hat and Bottom-Hat means).
 - Module: calculate_texture_features in src/border_texture_utils.py

Feature Extraction: Histograms

· Pixel intensity distributions calculated for:

- o Grayscale channel
- Hue (H) channel
- Saturation (S) channel
- Value (V) channel
- o Ida (Darkness) channel
- · All calculated within the masked lesion area.
- Module: calc_all_histograms in src/histogram_utils.py

Feature Extraction: Advanced Statistical Features (f1-f28)

- Brightness Features (f1-f9) from Value (V) channel:
 - Basic statistics: Mean (f1), Standard Deviation (f2)
 - Higher-order moments: Skewness (f3), Kurtosis (f4)
 - o Information theory: Entropy (f5)
 - Histogram analysis: Average differences (f6), Sum of 10 largest differences (f7)
 - Range ratios: High-to-mid range (f8), Mid-to-low range (f9)
 - Module: calculate_brightness_features in src/feature_extraction.py
- Saturation Features (f10-f18) from Saturation (S) channel:
 - o Similar statistical metrics (f10-f18) applied to Saturation channel
 - Module: calculate_saturation_features in src/feature_extraction.py
- Darkness Features (f19-f28) from Ida channel:
 - o Similar statistical metrics (f19-f27) applied to Ida (Darkness) channel
 - o Additional feature: Bounding box coverage (f28)
 - Module: calculate_darkness_features in src/feature_extraction.py

3. Results & Visualizations

This section showcases outputs from processing sample images. (Assume images are in a local img/ directory for this markdown)

Pipeline Stages Visualization

- Illustrates key steps in processing an image.
- Example (ISIC_0015719.jpg):
 - Original RGB
 - Grayscale Conversion
 - o HSV (Hue Channel shown)
 - o Hair Removed (Grayscale)
 - After Hair Removal (Illumination Correction typically skipped for this view)
 - Final Binary Mask (from Otsu's thresholding)

Full Pipeline Stages for: ISIC_0015719.jpg

Feature Summaries

- Textual and visual representation of extracted intensity and color features.
- Example (ISIC_0015719.jpg):

Intensity Features for ISIC_0015719.jpg

Grayscale Intensity:
 Mean: 186.8315
 Std: 10.0121

HSV Channels:
 Hue (H):
 Mean: 0.0000
 Std: 0.0000
 Saturation (S):
 Mean: 0.0000
 Std: 0.0000
 Value (V):
 Mean: 0.0000
 Std: 0.0000

Fig 2: Intensity and HSV Color Features for ISIC_0015719.jpg (generated by src/intensity_features_display.py or similar)

Channel Histograms (Masked Region)

- Visualizes pixel distribution for different channels within the segmented lesion.
- Example (ISIC_0015719.jpg): Shows histograms for Grayscale, Hue, Saturation, and Value.

Fig 3: Channel Histograms for ISIC_0015719.jpg (generated by $src/masked_histogram_display.py$ or $src/full_pipeline_display.py$)

Advanced Features Visualization (f1-f28)

- Visualizes the newly implemented advanced features including the Ida channel.
- Example (ISIC_0015719.jpg): Shows Value (V), Saturation (S), and Ida channels along with segmentation and corresponding histograms.

Advanced Features Visualization (f1-f28) - ISIC 0015719

Advanced Features (f1-f28)

More Examples:

ISIC_0052212.jpg

ISIC_1132496.jpg

Advanced Features Visualization (f1-f28) - ISIC_1132496

Advanced Features (f1-f28)

: bbox coverage ratio (f28)

100

0.2

4. Code Structure & Key Modules

The project is organized into several Python modules within the src/ directory:

- color_utils.py: Color space conversions, Ida channel calculation.
- preprocessing.py: Hair removal, illumination correction.
- segmentation.py: Thresholding methods, mask application.
- morphology.py: Morphological operations (opening, closing).
- histogram_utils.py: Masked histogram calculations, advanced statistical functions.
- feature_extraction.py: Core logic for calculating features (intensity, color, advanced f1-f28).
- border_texture_utils.py: Calculates border and texture specific features.
- data_loader.py: Handles image and metadata loading.
- batch_processor.py: Enables processing of multiple images.
- advanced_features_display.py: Visualizes advanced features (f1-f28).

Display Scripts: Numerous scripts like full_pipeline_display.py , all_features_display.py , intensity_features_display.py , etc., allow visualization of different pipeline stages and extracted features.

5. Challenges & Learnings

- Segmentation Accuracy: Achieving perfect lesion segmentation is challenging due to image variability (hair, bubbles, skin lines, low contrast). Otsu's method provides a good baseline, and morphological cleanup helps significantly.
- Feature Relevance: Understanding how different features (intensity, color, texture, border) capture various aspects of lesion appearance.
- Pipeline Integration: Ensuring each step correctly feeds into the next and that data formats are consistent.
- Modularity: Structuring the code into reusable functions and modules (e.g., for color conversion, preprocessing, feature calculation) was key for development
 and testing.

6. Conclusion & Future Work

Achievements

- Successfully implemented an end-to-end image processing pipeline for skin lesion analysis.
- Developed modules for key DIP tasks: preprocessing, segmentation, and feature extraction.
- Extracted a comprehensive set of features:

- o Intensity (Grayscale statistics)
- Color (HSV channel statistics)
- Border (Gradient-based metrics)
- Texture (Top-hat/Bottom-hat based metrics)
- Advanced Statistical Features (f1-f28):
 - Brightness Features (Value channel analysis)
 - Saturation Features (Saturation channel analysis)
 - Darkness Features (Ida channel analysis)
- Created comprehensive visualization tools to inspect pipeline stages and results.
- Implemented batch processing capabilities for analyzing multiple images.

Future Work

- Advanced Segmentation: Explore more robust segmentation techniques (e.g., active contours, watershed, machine learning-based segmentation).
- / Implemented PRD Feature Set (f1-f28):
 - ✓ Introduced the "Ida (Darkness)" channel.
 - Implemented the specific Brightness (f1-f9), Saturation (f10-f18), and Darkness (f19-f28) features involving higher-order statistics (skewness, kurtosis), entropy, etc., as outlined in the project's PRD.
- Feature Analysis: Evaluate the discriminative power of each feature for melanoma detection, particularly the newly implemented advanced features.
- Machine Learning Integration: Use the extracted features to train classification models (e.g., SVM, Random Forest, Neural Networks) to predict lesion malignancy.
- Quantitative Evaluation: If detailed ground truth masks become available, perform quantitative evaluation of segmentation accuracy (e.g., Dice coefficient, Jaccard index).
- Expanded Dataset Processing: Utilize the batch_processor.py to analyze a larger subset of the dataset and generate comprehensive feature statistics.

Thank You & Questions?