Homework 2

Jacob Puthipiroj

March 18, 2020

1 A Theory of Extramarital Affairs

(a) The regressors of interest are v1 to v8; however, not necessarily all of them belong in your model. Use these data to build a binary choice model for A. Report all computed results for the model. Compute the marginal effects for the variables you choose. Compare the results you obtain for a probit model to those for a logit model. Are there any substantial differences in the results for the two models?

The specification of the probit model is

$$p = \Phi(\beta_0 + \mathbf{B}x), \ \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

The specification of the logit model is

$$p = \frac{1}{1 + e^{-l}} = \frac{e^l}{1 + e^l}, \ l = \ln\left(\frac{p}{1 - p}\right) = \beta_0 + \mathbf{B}x$$

In both cases, β_0 is the intercept, and we define **Bx** as

$$\mathbf{Bx} = \sum_{i=1}^{6} \beta_{i} v_{i} + \sum_{i=1}^{6} \delta_{i,occ} v_{i,occ} + \sum_{i=1}^{6} \delta_{i,hoc} v_{i,hoc}$$

Thus all variables v_1 through v_6 (rating, age, years, children, religiosity, and education) are thought to be continuous variables, while the occupation of the wife and husband are considered indicator variables, with each δ_i corresponding to each of the 6 occupation categories. The output of the probit regression is available here, and the output of the logit regression here in the appendix. In both the probit and logit model, the same coefficients were considered significant at the $\alpha = 0.05$ level: rating, age, years, religiosity, and the two dummy variables for the occupation of the wife being in a managerial, administrative or business role $\delta_{5,occ}$ and being a professional with an advanced degree, $\delta_{6,occ}$.

The negative signs for β_{rating} and $\beta_{\text{religiosity}}$ make sense: The better one rates [satisfaction of] a marriage, the less reason there is to be involved in an extramarital affair. Similarly, the more religious one is, the less one is less likely to cheat, perhaps due to religious beliefs concerning the (im)morality of infidelity. The negative sign for β_{age} implies that older women cheat less, when controlled for the years of the marriage (both are highly correlated with each other at r=0.8941). β_{years} is positive, perhaps because as a marriage drags on, one is more inclined to look elsewhere for emotional or physical fulfillment, such as an extramarital affair. A final interesting note is that females in managerial and professional careers are more likely to have cheated if they were a student.

The marginal effects of each variable vary at different points, and as such we compute instead the average marginal effects (AME) by calculating the marginal effect for each individual with their observed levels of covariates, which are then averaged across individuals. The AMEs for the variables in the probit model is available here in the appendix. The marginal effets of the logit model were similar, available here in the appendix. There were no substantial differences in the results between the two models. On average, each additional increase in the reported marriage score decreased the probability of cheating by around 13%, each additional year of the female decreased the probability by 1.1%, each additional year of marriage increased the probability by 2%, each additional score of religiosity decreased the probability by 6.8%, being in a managerial, administrative or business occupation increased the probability of extramarital affairs by 18%, and being in a professional career with an advanced degree increased the probability by 19%, both compared to the baseline of being a student.

(b) Continuing the analysis from part a), we now consider the self-reported rating, v1. This is a natural candidate for an ordered choice model, because the simple five-item coding is a censored version of what would be a continuous scale on some subjective satisfaction variable. Analyze this variable using an ordered probit model. What variables appear to explain the response to this survey question? Can you obtain the marginal effects for your model? Report them as well. What do they suggest about the impact of the different independent variables on the reported ratings?

The output for the ordered probit regression is available here. As seen, the only significant predictors (at the $\alpha=0.05$ level) were children, religiosity, and the husband's occupation being in farming, agriculture, semi-skilled, or unskilled labor. β_{children} was negative, suggesting that more children made marriages unhappier, while $\beta_{\text{religiosity}} > 0$ suggests that more religiosity made marriages happier. $\delta_{2,hoc} < 0$, suggesting that wives were less satisfied with their marriage when their husbands were involved in menial labor, compared to when they (the husbands) were students.

The average marginal effects are available here. An interesting finding suggested that for people whose marriages were given a rating of 1, 2, 3 or 4, each additional child was found to increase marriage satisfaction by 0.2%, 0.6%, 1%, and 0.5% respectively. However, when the marriage was rated 5, each additional child was found to decrease marriage satisfaction by 2.4%, creating a negative feedback loop and downward pressure away from the maximum satisfaction score. The opposite pattern was found for religiosity: each additional unit of religiosity decreased marriage satisfaction by 0.5%, 1.2%, 2%, and 1.1% for marriages rated 1, 2, 3 or 4 respectively, but increased satisfaction by 5% for marriages already rated at 5, creating a positive feedback loop. The average marginal effects for husbands having a menial labor occupation followed a similar pattern as that of children: 0.6%, 1.5% and 2.8% for marriages rated 1, 2 or 3 respectively, not significant for marriages rated 4, and -6.6% for marriages rated 5.

This suggests that different independent variables have different marginal effects for the dependent variable being at different levels. Having additional children, or having the husband pick up a menial labor job, for example, acts as a normalizer, and could improve the satisfaction of a failing marriage, but prevents the marriage from achieving the highest satisfaction level. On the other hand, religiosity would seem to be a polarizer, making bad marriages worse, and great marriages better.

2 Incentive Effects in the Demand for Health Care

A note about this dataset: there were several mistakes in some of the data. The indicator variable handdum for example, was miscoded in the year 1987. Ones and zeros were swapped, and if not corrected, would imply that 88% of the participants in 1987 were handicapped, when in reality it was 100 - 88 = 12%. The full list of coding errors are given here.[1]

(a) Begin by fitting a Poisson model to this variable. The exogenous variables are listed in Table F7.1. Determine an appropriate specification for the right-hand side of your model. Report the regression results and the marginal effects.

The specification we have is

$$\mathbf{B}\mathbf{x} = \sum_{i=1}^{4} \beta_i v_i + \sum_{i=1}^{3} \delta_i u_i$$

Where v_i indicate each of the four continuous variables of age, hsat, educ and docvis, and u_i indicate each of the dummy variables handdum, addon, and bluec. The Poisson regression results are available here in the appendix. All variables, save for the constant, were found to be significant. Specifically, the coefficients for age, hsat, educ and bluec were negative, while the coefficients for docvis, handdum, and addon were positive.

The positive signs for β_{docvis} , δ_{handdum} and δ_{addon} are unsurprising. Individuals who have frequent doctor visits in the past 3 months are likely to also frequently visit hospitals in the last calendar year. Handicapped individuals may need to visit hospitals more, as a result of a chronic treatment for said handicap, or a new injury causing patients to become handicapped and require treatment. Finally, those who purchase add-on insurance may expect themselves to be more at risk of requiring healthcare.

The negative signs for β_{hsat} and β_{educ} also make sense. Individuals who are more satisfied with their health are likely healthier, and require fewer hospital visits. More educated individuals may also make wiser health-related decisions, such as in career and lifestyle choices, and visit hospitals less often. The negative sign for δ_{bluec} , however, is surprising, as workplace injuries (which would require hospital visits) should be more commonplace among blue collar workers. Several explanations are possible: Perhaps only physically healthier people would consider blue collar jobs, or, blue collar workers choose to visit hospitals only for the most serious injuries, either out of necessity or because of being desensitized to workplace injuries. $\beta_{\text{age}} < 0$ is similarly surprising. Despite (or because of) having weaker bodies, older people may make lifestyle and professional choices that would limit physical injuries.

The marginal effects are given in the appendix here. Again, the marginal effects of all explanatory variables were significant. On average, being handicapped and being insured by addon insurance increased the expected number of hospital visits by 4% and 5% respectively, and each additional doctor visit in the past 3 months increased expected visits by 0.4%. Each additional year in age and in schooling decreased expected visits by 0.09% and 0.6% respectively. Each additional unit increase of perceived health satisfaction on the 1-10 scale decreased expected visits by 2.5%. Finally, being in a blue-collar job decreased expected visits by 1.4%.

(b) Estimate the model using ordinary least squares and compare your least squares results to the marginal effects computed in part a). What do you find?

The output is given here in the appendix. Unlike in the Poisson regression, the variables addon and bluec were found to be insignificant. In the OLS model with no interaction terms, the coefficient estimates are equivalent to the marginal effects, and can be compared with the AME of the Poisson regression.

Like in the Poisson model, being handicapped had large marginal effects on increasing the expected number of visits, at $\hat{\delta}_{\text{handdum}} = 5.8\%$, comparable to the 4% from the Poisson model. However, the coefficients for being on addon insurance, and in a blue-collar occupation were not significant. Each additional doctor visit in the past 3 months increased expected visits by 1.7%, comparable to the 4% from the Poisson model. The marginal effects for each additional year in age and schooling was -0.15% and -0.5% respectively, compared to -0.09% and 0.6% from the Poisson model. Each additional unit increase of perceived health satisfaction on the 1-10 scale decreased expected visits by 2.4%, similar to 2.5% from the Poisson model.

Overall, the marginal effect estimates the were identical in sign and very similar in magnitude, though δ_{addon} and δ_{bluec} were not significant like they were in the Poisson model.

(c) Is there evidence of overdispersion in the data? Test for overdispersion.

Overdispersion is where variance is greater than would be expected in a Poisson regression. One test for this is to simply run the Poisson regression, and then test using the poisgof command. The output is

```
Deviance goodness-of-fit = 20004.18
Prob > chi2(27322) = 1.0000

Pearson goodness-of-fit = 131234
Prob > chi2(27322) = 0.0000
```

Which suggests the Poisson model to be inappropriate. We can furthermore check for overdispersion by using the nbreg command, given here in the appendix, which fits the data with a negative binomial distribution, and gives a likelihood0-ratio test, with the hypothesis being that the negative binomial distribution is equivalent to a poisson distribution, under $\alpha = 0$. Since the p-value is significant, α is significantly different from 0, so the poisson model is again inappropriate.

3 Appendix

The accompanying code is given as a Jupyter Notebook (in Stata) as well as a .do file.

Probit Model Output

Probit regression	Number of obs	=	6,366
	LR chi2(16)	=	1097.04
	Prob > chi2	=	0.0000
Log likelihood = -3454.0116	Pseudo R2	=	0.1370

A	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
rating	42506	.0183553	-23.16	0.000	4610357	3890843
age	0359131	.0060622	-5.92	0.000	0477948	0240314
years	.0642991	.006468	9.94	0.000	.0516221	.0769761
children	.0086311	.0190523	0.45	0.651	0287107	.045973
religiosity	2235751	.0205278	-10.89	0.000	2638088	1833414
education	001846	.0102593	-0.18	0.857	0219539	.0182618
occupation						
2	.2107086	.2498365	0.84	0.399	2789619	.7003792
3	.3992348	.2461618	1.62	0.105	0832334	.881703
4	.2630816	.2467651	1.07	0.286	2205691	.7467324
5	.6091108	.2495332	2.44	0.015	.1200347	1.098187
6	.6480159	.2792565	2.32	0.020	.1006832	1.195349
husbandocc						
2	.0943557	.1069709	0.88	0.378	1153034	.3040147
3	.1662867	.1171215	1.42	0.156	0632672	.3958406
4	.0766486	.1039138	0.74	0.461	1270187	.280316
5	.0915583	.1049421	0.87	0.383	1141246	.2972411
6	.1029664	.1173516	0.88	0.380	1270385	.3329713
_cons	1.792191	.325053	5.51	0.000	1.155099	2.429283

Probit Model AMEs

Average marginal effects Number of obs = 6,366

Model VCE : OIM

Expression : Pr(A), predict()

dy/dx w.r.t. : rating age years children religiosity education 2.occupation
3.occupation 4.occupation 5.occupation 6.occupation 2.husbandocc

4.husbandocc 5.husbandocc 6.husbandocc

		 Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
rating	1302394	.0049252	-26.44	0.000	1398926	1205863
age	0110039	.0018444	-5.97	0.000	0146188	0073889
years	.0197014	.0019401	10.15	0.000	.0158989	.0235039
children	.0026446	.0058375	0.45	0.651	0087967	.0140859
religiosity	068504	.0061325	-11.17	0.000	0805234	0564845
education	0005656	.0031434	-0.18	0.857	0067266	.0055954
1						
occupation						
2	.056928	.0634788	0.90	0.370	0674882	.1813441
3	.1136303	.0624022	1.82	0.069	0086757	.2359363
4	.072174	.06255	1.15	0.249	0504218	.1947697
5 l	.1818514	.0639968	2.84	0.004	.0564201	.3072828
6 I	.1949477	.0768603	2.54	0.011	.0443043	.345591
1						
husbandocc						
2	.0283895	.0317009	0.90	0.370	0337431	.0905221
3	.0508015	.0352348	1.44	0.149	0182575	.1198605
4	.0229711	.0307046	0.75	0.454	0372087	.083151
5 l	.0275308	.0310522	0.89	0.375	0333304	.088392
6 I	.0310389	.0350368	0.89	0.376	037632	.0997098

Logit Model Output

Logistic regression	Number of obs	=	6,366
	LR chi2(16)	=	1092.71
	Prob > chi2	=	0.0000
Log likelihood = -3456.1733	Pseudo R2	=	0.1365

Α	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
rating	7102283	.0314818	-22.56	0.000	7719314	6485252
age	0612789	.0103231	-5.94	0.000	0815117	041046
years	.107976	.0109772	9.84	0.000	.0864611	.1294909
children	.0156448	.0320509	0.49	0.625	0471737	.0784634
religiosity	3753863	.0348686	-10.77	0.000	4437274	3070451
education	0017253	.017398	-0.10	0.921	0358247	.032374
occupation						
2	.3902386	.4475507	0.87	0.383	4869446	1.267422
3	.7026792	.4414598	1.59	0.111	1625661	1.567925
4	.4713969	.4425232	1.07	0.287	3959326	1.338726
5	1.054197	.4466347	2.36	0.018	.1788096	1.929585
6	1.108015	.4942125	2.24	0.025	.1393766	2.076654
husbandocc						
2	.170447	.1860868	0.92	0.360	1942766	.5351705
3	. 2841727	.2021606	1.41	0.160	1120548	.6804002
4	.1428406	.1810041	0.79	0.430	211921	.4976022
5	.1723288	.1826377	0.94	0.345	1856345	.5302921
6	.1827633 	.203652	0.90	0.369	2163872	.5819138
_cons	2.970755	.5722101	5.19	0.000	1.849244	4.092266

Logit Model AMEs

Average marginal effects Number of obs = 6,366

Model VCE : OIM

Expression : Pr(A), predict()

dy/dx w.r.t. : rating age years children religiosity education 2.occupation 3.occupation 4.occupation 5.occupation 6.occupation 2.husbandocc

4.husbandocc 5.husbandocc 6.husbandocc

	 dy/dx	Delta-method Std. Err.	=	P> z	[95% Conf.	Interval]
rating age years children religiosity education	0111336 .0196178 .0028425 0682027	.0048629 .0018588 .001944 .005823 .0061495 .003161	-26.54 -5.99 10.09 0.49 -11.09 -0.10	0.000 0.000 0.000 0.625 0.000 0.921	1385703 0147768 .0158077 0085704 0802556 0065089	1195079 0074904 .023428 .0142553 0561499 .0058819
occupation 2 3 4 5 6	.0612388 .1168366 .0751529 .185137 .1960177	.065116 .0640436 .0642053 .0655919 .0785268	0.94 1.82 1.17 2.82 2.50	0.347 0.068 0.242 0.005 0.013	0663862 0086865 0506871 .0565792 .0421081	.1888639 .2423598 .200993 .3136947 .3499274
husbandocc 2 3 4 5 6	.0302712 .0513025 .0252634 .030614 .0325179	.0324327 .0358087 .0314419 .0317795 .0358017	0.93 1.43 0.80 0.96 0.91	0.351 0.152 0.422 0.335 0.364	0332957 0188812 0363616 0316727 0376522	.0938381 .1214862 .0868885 .0929006 .102688

Ordered Probit Model

Ordered probit regression	Number of obs	=	6,366
	LR chi2(15)	=	236.49
	Prob > chi2	=	0.0000
Log likelihood = -7808.2421	Pseudo R2	=	0.0149

rating	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	0047552	.0047154	-1.01	0.313	0139971	.0044867
years	0070395	.0050613	-1.39	0.164	0169594	.0028804
children	0632364	.0153484	-4.12	0.000	0933187	0331541
religiosity	.1310093	.0161123	8.13	0.000	.0994298	.1625888
education	.0140007	.0081484	1.72	0.086	0019699	.0299713
1						
occupation						
2	1317628	.1824797	-0.72	0.470	4894165	.2258909
3	2022679	.1794037	-1.13	0.260	5538926	.1493568
4	0632041	.1798682	-0.35	0.725	4157393	.2893311
5 l	1434889	.1826641	-0.79	0.432	5015038	.2145261
6 I	2022114	.2097835	-0.96	0.335	6133796	.2089568
1						
husbandocc						
2	1708474	.0822583	-2.08	0.038	3320708	0096241
3	1705628	.0907884	-1.88	0.060	3485048	.0073792
4	0981205	.0797453	-1.23	0.219	2544184	.0581774
5 l	0671601	.0806878	-0.83	0.405	2253052	.090985
6 I	.0409246	.0912108	0.45	0.654	1378452	.2196944
+						
/cut1	-2.221501	.2388776			-2.689692	-1.753309
/cut2	-1.522325	.2363926			-1.985646	-1.059004
/cut3	7805359	.2356443			-1.24239	3186815
/cut4	.1906019	.2355468			2710615	.6522652

Ordered Probit Model AMEs

```
Average marginal effects
                                     Number of obs =
                                                        6,366
Model VCE
        : OIM
dy/dx w.r.t. : children religiosity 2.husbandocc
1._predict : Pr(rating==1), predict(pr outcome(1))
2._predict : Pr(rating==2), predict(pr outcome(2))
3._predict : Pr(rating==3), predict(pr outcome(3))
4._predict : Pr(rating==4), predict(pr outcome(4))
5._predict : Pr(rating==5), predict(pr outcome(5))
______
          Delta-method
          | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
   _predict |
                                            .0011844
             .0023971
                      .0006187
        1 |
                                3.87 0.000
                                                       .0036098
        2 | .0059013 .0014541 4.06 0.000
                                            .0030514 .0087513
                                            .0053953
        3 | .0103042 .0025046 4.11 0.000
                                                       .015213
             .0055807
                               4.05 0.000
        4 |
                      .001379
                                              .002878
                                                       .0082835
        5 | -.0241833 .0058533
                              -4.13 0.000
                                             -.0356555 -.0127111
religiosity |
   _predict |
        1 | -.0049661 .0007522 -6.60 0.000 -.0064403 -.0034919
        2 | -.012226 .0015932 -7.67 0.000 -.0153486 -.0091034
        3 | -.0213475 .0026396 -8.09 0.000
                                             -.026521
                                                      -.0161741
                               -7.65 0.000
        4 | -.0115618 .0015105
                                             -.0145223
                                                     -.0086013
                                                      .0620359
        5 | .0501015 .0060891 8.23 0.000
                                             .0381671
1.husbandocc | (base outcome)
2.husbandocc |
   _predict |
        1 |
                                2.31 0.021
             .0063213 .0027402
                                             .0009505
                                                       .011692
                                             .001865
        2 |
            .0157578 .0070883
                                2.22 0.026
                                                       .0296506
        3 | .0278462 .013252 2.10 0.036
                                             .0018728
                                                     .0538196
        4 | .0156119
                     .009041
                               1.73 0.084
                                             -.0021083
                                                       .033332
                      .031859
                               -2.06 0.040
        5 | -.0655371
                                             -.1279795
                                                      -.0030947
       ______
```

Note: dy/dx for factor levels is the discrete change from the base level.

Poisson Model

Poisson regression	Number of obs	=	27,308
	LR chi2(7)	=	2123.85
	Prob > chi2	=	0.0000
Log likelihood = -12362.865	Pseudo R2	=	0.0791

hospvis	 -+-	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age hsat	 	0071362 186052	.0015424	-4.63 -26.60	0.000	0101592 1997616	0041132 1723424
educ	1	045944	.0084623	-5.43	0.000	0625299	0293582
docvis	1	.0306762	.0011552	26.55	0.000	.028412	.0329404
1.handdum	1	.2691112	.0439668	6.12	0.000	.1829378	.3552846
1.addon	1	.3218622	.1077161	2.99	0.003	.1107425	.5329819
1.bluec	1	1103086	.0405875	-2.72	0.007	1898586	0307585
_cons	I	1971156	.1345566	-1.46	0.143	4608416	.0666105

Poisson Model AMEs

Average marginal effects Number of obs = 27,308

Model VCE : OIM

Expression : Predicted number of events, predict()

dy/dx w.r.t. : age hsat educ docvis 1.handdum 1.addon 1.bluec

		Delta-method	L			
I.	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
age	0009865	.0002138	-4.61	0.000	0014056	0005674
hsat	0257194	.0010537	-24.41	0.000	0277846	0236543
educ	0063512	.0011744	-5.41	0.000	0086529	0040495
docvis	.0042406	.000174	24.38	0.000	.0038996	.0045816
1.handdum	.0403667	.0071613	5.64	0.000	.0263309	.0544026
1.addon	.0521476	.0202966	2.57	0.010	.012367	.0919282
1.bluec	0148143	.0052965	-2.80	0.005	0251954	0044333

OLS Regression

Source	I	SS	df	MS		Number		=	27,308
Model	-+- 	489.306593	7	69.900941	.9	F(7, 27 Prob >	-	=	91.40 0.0000
Residual	1	20877.8454	27,300	.76475624	2	R-squar		=	0.0229
Total		21367.152	27,307	.78247892	25	Adj R-s Root MS	-	=	0.0226 .8745
hospvis	 -+-	Coef.	Std. Err.	t 	P>	 t 	[95% C	onf.	Interval]
age	İ	0015269	.0005016	-3.04	0.	002 -	.002510	01	0005436
hsat		0240788	.0026008	-9.26	0.	000 -	.029176	65	0189811
educ		0049511	.0024185	-2.05	0.	041 -	.009693	16	0002106
docvis	1	.0170985	.0010107	16.92	0.	000	.015117	75	.0190795
1.handdum		.0580785	.0183262	3.17	0.	002	.022158	32	.0939988
1.addon		.0443904	.0390841	1.14	0.	256 -	.032216	64	.1209971
1.bluec		0159247	.0128963	-1.23	0.	217 -	.041202	21	.0093527
_cons	1	.3663938	.0439651	8.33	0.	000	.2802	22	.4525676

References

[1] Regina T Riphahn, Achim Wambach, and Andreas Million. Incentive effects in the demand for health care: a bivariate panel count data estimation. *Journal of applied econometrics*, 18(4):387–405, 2003.

Negative Binomial Model

Negative binomial regressi Dispersion = mean Log likelihood = -10037.8	34		LR chi2 Prob > Pseudo	chi2	= = =	676.70 0.0000 0.0326
hospvis Coef.	Std. Err.			2 70	Conf.	Interval]
age 006069 hsat 2193225 handdum .4574462 _cons 4580444		-2.75 -21.93 6.46 -3.64	0.006 0.000 0.000 0.000	0103 2389 .3187 7047	9206 7007	0017417 1997244 .5961916 2113414
/lnalpha 1.896108	.0403598			1.817	7004	1.975212
alpha 6.659923	.2687934			6.153	3396 	7.208146

References

LR test of alpha=0: chibar2(01) = 5175.62

[1] Regina T Riphahn, Achim Wambach, and Andreas Million. Incentive effects in the demand for health care: a bivariate panel count data estimation. *Journal of applied econometrics*, 18(4):387–405, 2003.

Prob >= chibar2 = 0.000