Homework #2

1. (25 points) Rank the following three functions by order of asymptotic growth.

The order can be: $g_1(n)$, $g_3(n)$, $g_2(n)$, where

$$g_1(n) = (\frac{1}{2})^{n^3}$$

$$g_2(n) = 3^{4\log_3 n} = n^4$$

$$g_3(n) = 5lgn + n^2 lglgn$$

1)
$$g_1(n) \in O(g_2(n))$$
:

Since $g_1(n) < 1$ and $g_3(n) \ge 1$ for $n \ge 2$, we have $g_1(n) \le c \cdot g_2(n) \forall n \ge n_0$ where c = 1 and $n_0 = 2$.

2) $g_3(n) \in O(g_2(n))$:

Let
$$G(n) = g_3(n) - g_2(n) = n^4 - 5lgn - n^2lglgn$$
, we assume $n \ge 3$ then

$$G(n) = n^2(n^2 - \frac{5}{n^2}lgn - lglgn)$$

$$\geq n^2(n^2 - lgn - lgn)(\forall n \geq 3, \frac{5}{n^2} \leq 1 \text{ and } lglgn \leq lgn)$$
$$= n^2(n^2 - 2lgn)$$

$$= n^{-}(n^{-} - 2ign)$$

$$\geq n^{2}(n^{2} - 2n)(\forall n \geq 3, lgn \leq n)$$

$$\geq 0$$

So, we have $g_3(n) \le c \cdot g_2(n) \forall n \ge n_0$, where c = 1 and $n_0 = 3$

2. (25 points) i)
$$f_1(n) \in \Omega((\frac{1}{2})^n)$$
ii) $f_2(n) \in \Theta(n^2 lgn)$ iii) $f_3(n) \in O(lg^3n)$

- a) If statements i) iii) are true, can we conclude that $f_3(n) \in O(f_2(n))$?
- b) If statements i) iii) are true, can we conclude that $f_2(n) \in \Omega(f_1(n))$?

Ans:

Since i) - iii) are true, we can have following statements:

- (1) There exist positive constants c_1 and n_1 such that $0 \le c_1(\frac{1}{2})^n \le f_1(n), \forall n \ge n_1$.
- (2) There exist positive constants a, b and n_2 such that $0 \le an^2 lgn \le f_2(n) \le bn^2 lgn$, $\forall n \ge n_2$.

- (3) There exist positive constant c_3 and n3 such that $0 \le f_3(n) \le c_3(lg^3n), \forall n \ge n_3$.
- a) True. Let $c_{23} = \frac{c^3}{a}$ and $n_{23} = max(1, n_2, n_3)$, from (2) and (3), and we already know that $lg^3n \le n^2 lgn \forall n \ge 1$, we have:

$$0 \leq f_3(n) \leq c_3(lg^3n) \leq c_3 n^{2lg} n = \frac{c_3}{a} a n^2 lg n \leq c_{23} f_2(n), \forall n \geq n_{23}.$$

So we can conclude that $f_3(n) \in O(f_2(n))$.

b) False. Because i) only shows that the lower bound of $f_1(n)$, but we do not know its exact upper bound, we can not say that $f_2(n)$ would be the upper bound of $f_1(n)$ even if $n^2 lgn$ is the upper bound of $(1/2)^n$. It is possible that $f_1(n)$ is the upper bound of $f_2(n)$, for example, $f_1(n) = n^4$ and $f_2(n) = n^2 lgn$. That satisfies statements i) and ii), but it is obvious that $f_1(n) \in \Omega(f_2(n))$.

So we cannot conclude that $f_2(n) \in \Omega(f_1(n))$.

3. (25 points) True or False.

For b), use the limit rule and we get 0, which means $nlg^2n \in O(n^{1.05})$.

For d) and e), the cost function T(n) could be: $T(n) = c_1(\lfloor \log_2 n \rfloor + 1) + c_2\lfloor \log_2 n \rfloor$. d) is true since $T(n) \le c_1(\log_2 n + 1) + c_2\log_2 n = O(n)$, and e) is true since $T(n) \ge c_1\log_2 n + c_2(\log_2 n - 1) = \Omega(n)$.

4. (25 points) Pseudocode Analysis: find the tight upper-and-lower bounds on the asymptotic worst-case running time f(n).

Ans:

Mystery(n)	Cost	Times
1. c ← 1	C1	1

2.	for $i \leftarrow 1$ to n	c ₂	n+1
3.	do for $j \leftarrow i$ to n	C 3	$\sum_{i=n+1}^{1} i$
4.	do for $k \leftarrow n$ down to $\lfloor \frac{n}{2} \rfloor$	C4	$(n - \lfloor \frac{n}{2} \rfloor + 1) \sum_{\substack{i=n+1 \ -1}}^{1} (i)$
5.	do $c \leftarrow c + 1$		1
6.	print c	C 5	$(n-\lfloor \frac{n}{2} \rfloor) \sum_{i=n+1}^{n} (i-1)$
		C 6	1

The procedure Mystery(n) is a 3-level loop, and the worst-case running time is:

$$f(n) = c_1 + c_2(n+1) + c_3 \frac{(n+1)(n+2)}{2} + c_4(n - \lfloor \frac{n}{2} \rfloor + 1) \frac{n(n+1)}{2} + c_5(n - \lfloor \frac{n}{2} \rfloor) \frac{n(n+1)}{2} + c_6$$

Since $\frac{n}{2} - 1 \le \lfloor \frac{n}{2} \rfloor \le \frac{n}{2}$, we have:

$$f(n) \ge c_1 + c_2(n+1) + c_3 \frac{(n+1)(n+2)}{2} + c_4(\frac{n}{2}+1) \frac{n(n+1)}{2} + c_5(\frac{n}{2}) \frac{n(n+1)}{2} + c_6$$

$$= (\frac{c_4}{4} + \frac{c_5}{4})n^3 + (\frac{c_3}{2} + \frac{3c_4}{4} + \frac{c_5}{4})n^2 + (c_2 + \frac{3c_3}{2} + \frac{c_4}{2})n + (c_1 + c_2 + c_6)$$
, and

$$f(n) \le c_1 + c_2(n+1) + c_3 \frac{(n+1)(n+2)}{2} + c_4(\frac{n}{2}+2) \frac{n(n+1)}{2} + c_5(\frac{n}{2}+1) \frac{n(n+1)}{2} + c_6$$

$$= (\frac{c_4}{4} + \frac{c_5}{4})n^3 + (\frac{c_3}{2} + \frac{5c_4}{4} + \frac{3c_5}{4})n^2 + (c_2 + \frac{3c_3}{2} + c_4 + \frac{c_5}{2})n + (c_1 + c_2 + c_6)$$

Then, let $g(n) = n^3$, $a = (\frac{c_4}{4} + \frac{c_5}{4}) + (\frac{c_3}{2} + \frac{3c_4}{4} + \frac{c_5}{4}) + (c_2 + \frac{3c_3}{2} + \frac{c_4}{2}) + (c_1 + c_2 + c_6)$, $b = (\frac{c_4}{4} + \frac{c_5}{4}) + (\frac{c_3}{2} + \frac{5c_4}{4} + \frac{3c_5}{4}) + (c_2 + \frac{3c_3}{2} + c_4 + \frac{c_5}{2}) + (c_1 + c_2 + c_6)$, and $n_0 = 1$. We can conclude that: $0 \le ag(n) \le f(n) \le bg(n)$, $\forall n \ge n_0$. That is $f(n) \in \Theta(g(n))$.