	Secondo Modello In questo notebook sono usati i dataset su cui è stata operata la fase preliminare di preparazione dei dati, la divisione in base alla regione e la selezione delle feature. È costruita una foresta. È impiegato un algoritmo per fare tuning dell'iperparametro n_estimators: ossia il numero di alberi della foresta. Per fare tuning parametri si fa uso di un dataset di validation: si mantiene l'iperparametro che produce il minimo errore su validation.						
In [1]:	<pre>import pandas</pre>						
In [2]:	<pre># local file paths dir_name = 'selezione' region_names = np.array(['A', 'B', 'C']) region_ids = np.array(['1286', '2061', '3101']) fp_Xtrain = [] fp_Xval = [] fp_Xtest = [] fp_ytrain = []</pre>						
	<pre>fp_yval = [] fp_ytest = [] for i in range(3): fp_Xtrain.append(dir_name + f'/X_train{region_names[i]}.csv') fp_Xval .append(dir_name + f'/X_val{ region_names[i]}.csv') fp_Xtest .append(dir_name + f'/X_test{ region_names[i]}.csv') fp_ytrain.append(dir_name + f'/y_train{region_names[i]}.csv') fp_yval .append(dir_name + f'/y_val{ region_names[i]}.csv') fp_ytest .append(dir_name + f'/y_test{ region_names[i]}.csv') Leggo i dati su cui è stata fatta la selezione delle feature.</pre>						
In [3]:	<pre># Lettura dei dati X_train = [] X_val = [] X_test = [] y_train = [] y_val = [] y_test = [] for i in range(3): X_train.append(pd.read_csv(fp_Xtrain[i], low_memory=False)) X_val .append(pd.read_csv(fp_Xval [i], low_memory=False))</pre>						
	<pre>X_val .append(pd.read_csv(fp_xval [i], low_memory=False)) X_test .append(pd.read_csv(fp_ytrain[i], low_memory=False)) y_train.append(pd.read_csv(fp_yval [i], low_memory=False)) y_val .append(pd.read_csv(fp_yval [i], low_memory=False)) y_test .append(pd.read_csv(fp_ytest [i], low_memory=False)) X_train = np.array(X_train, dtype=object) X_val = np.array(X_val, dtype=object) y_train = np.array(X_test, dtype=object) y_train = np.array(y_train, dtype=object) y_val = np.array(y_val, dtype=object) y_test = np.array(y_test, dtype=object)</pre>						
In [4]:	<pre>for i in range print(f'X_ print(f'X_ print(f'X_ if y: print(print(print(print(print(print()</pre>	<pre>def dimensionality(y=False): for i in range(3): print(f'X_train{region_names[i]}: {X_train[i].shape}') print(f'X_val{region_names[i]}: {X_val [i].shape}') print(f'X_test{region_names[i]}: {X_test [i].shape}') if y: print(f'y_train{region_names[i]}: {y_train[i].shape}') print(f'y_val{region_names[i]}: {y_val [i].shape}') print(f'y_test{region_names[i]}: {y_test [i].shape}') print(f'y_test{region_names[i]}: {y_test [i].shape}') print(f'y_test{region_names[i]}: {y_test [i].shape}') print(f'y_test{region_names[i]}: {y_test [i].shape}')</pre>					
In [5]:	<pre>X_trainA: (26819, 55) X_valA: (9006, 55) X_testA: (9085, 55) y_trainA: (26819, 1) y_valA: (9006, 1) y_testA: (9085, 1) X_trainB: (8119, 32) X_valB: (2658, 32) X_testB: (2606, 32) y_trainB: (8119, 1)</pre>						
	<pre>Y_clading. (013), 1, Y_valB: (2658, 1) Y_testB: (2606, 1) X_trainC: (64771, 3 X_valC: (21908, 3 Y_trainC: (64771, 1 Y_valC: (21908, 1 Y_testC: (21876, 1)</pre> Variabili Globali	(3) (3) (3) (3) ()					
In [6]:	<pre># Nomi delle regio region_ids = np. # Riduzione del da C_PERC = 2/5 C_IND = 2 # Percentuale per #SUB_PERC = [1/100 #SUB_PERC = [1/ SUB_PERC = [1/ </pre>	array(['1286', '20 taset C il sottoinsieme si 0, 1/100, 1/1000] (3, 1, 1/3]	ı cui costruire # A: 100, B: # A: 8000, B:	100, C: 10 8000, C: 800	00; Test medio	~ 1 ora	
		nero di insta oria, la gestione del da ina su cui è eseguito il	taset C risulta com notebook non è ir	plicata in quato ir	ncorre spesso in err	ori a run-time di cateoria noria richiesta per lavorare sull'intero	
	È dunque inevitabile dover ridurre l'insieme con un numero di righe il cui calcolo è supportato, cioè circa il 40% del dataset. Il dataset per la terza regione (regionidcounty : 3101) è riscalato su 2/5 delle osservazioni per Train, Validation e Test. L'operazione introduce dunque una forte approssimazione per questa regione, che per limiti tecnici è però inevitabile. for X, y in zip([X_train, X_val, X_test], [y_train, y_val, y_test]): X[C_IND], y[C_IND] = resample(
In [8]:	dimensionality(y=T X_trainA: (26819, 5 X_valA: (9006, 55 X_testA: (9085, 55 y_trainA: (26819, 1 y_valA: (9006, 1) y_testA: (9085, 1) X_trainB: (8119, 32 X_valB: (2658, 32 X_testB: (2606, 32	(5) (1) (2) (3) (4)					
	y_trainB: (8119, 1) y_valB: (2658, 1) y_testB: (2606, 1) X_trainC: (25908, 3 X_valC: (8763, 33 X_testC: (8750, 33 y_trainC: (25908, 1 y_valC: (8763, 1) y_testC: (8750, 1)	(3) (3) (3) (3)					
	su cui far girare gli algori corretto funzionamento Nella versione finale gli a for i in range(3): print(f'Region print(int(len(sto notebook hanno u itmi; questo per facilita del processo. algoritmi useranno la t	n costo computazi are la fase di creazi otalità delle instanz b') ERC[i]))	onale elevato, per one e di testing e	r questo è definito ottenere risultati v	un sottoinsieme dei dataset originali erosimili in tempi utili a verificare il	
	Region A 26819 9006 Region B 8119 2658 Region C 25908 8763	x_va1 [1]) *50b_11					
In [10]:	<pre>X_train_sub = [] y_train_sub = [] X_val_sub = [] y_val_sub = [] for i in range(3): Xt_sub, yt_sub = resample(X_train[i], y_train[i], n_samples = int(SUB_PERC[i]*len(X_train[i]))) Xv_sub, yv_sub = resample(X_val [i], y_val [i], n_samples = int(SUB_PERC[i]*len(X_val[i]))) X_train_sub.append(Xt_sub) y_train_sub.append(yt_sub)</pre>						
In [12]:	y_train_sub.ap X_val_sub .ap y_val_sub .ap y_val_sub .ap def dimensionality for i in range print(f'X_ print(f'X_ if y: print(<pre>pend(yt_sub) pend(Xv_sub) pend(yv_sub) _sub(y=False):</pre>	<pre>mes[i]}: {X_v ion_names[i]}:</pre>	<pre>al_sub [i].sh {y_train_sub[i</pre>	ape}')].shape}')		
In [13]:	dimensionality_sub X_train_subA: (2681 X_val_subA: (9006 y_train_subA: (9006 X_train_subA: (9006 X_train_subB: (2658 y_train_subB: (8119	9, 55) 5, 55) 9, 1) 5, 1)					
	•	8, 33) 8, 33) 8, 1) 9, 1) • Random attraverso il parametro	n_estimators.	Per studiare l'and		e produce due grafici che illustrano e di <i>Train</i> che per quello di <i>Validation</i> .	
In [14]:	<pre>plt.rcParams.updat def get_bias_var_m y_pred = m return { 'bias' 'var':</pre>	e({'font.size': 3	_pred))**2).mea	n(),\	, i insieme	e di <i>Train</i> che per quello di <i>Validation</i> .	
In [16]:	<pre># Costruzione RandomForestRegressor def RandomForestRegressor_validation(X_train, y_train, X_val, y_val, verbose=False, debug=False, file_name = ' def get_rf_reg(estimator): dt = RandomForestRegressor(</pre>						
	<pre>def bias_var_mse(X, y, model): stats = get_bias_var_mse(X, y, model) return stats['bias'],\</pre>						
	<pre>best = (np.argmin(stats[n]) * RF_STEP) + RF_START print (f'Punteggio finale: {stats[n][-1]} ({RF_END}) alberi') print (f'Best {n}: {min_}') print (f'Best number of Trees: {best}') print() fig, ax = plt.subplots(figsize=(len(stats['mse'])/2, 10)) ax.tick_params(axis='both', which='major', labelsize=25) ax.tick_params(axis='both', which='minor', labelsize=15) ax.plot(range(RF_START, RF_END+1, RF_STEP), stats['mse'], 'o-', label='MSE')</pre>						
	<pre>ax.plot(range(RF_START, RF_END+1, RF_STEP), stats['mse'], 'o-', label='MSE') ax.plot(range(RF_START, RF_END+1, RF_STEP), stats['bias'], 'o-', label='BIAS') ax.plot(range(RF_START, RF_END+1, RF_STEP), stats['var'], 'o-', label='VARIANCE') ax.set_title(f"{name} MSE, BIAS, VARIANCE on different Forest Tree Number", fontsize=15) ax.set_xlabel("Number of Trees used", fontsize=15) ax.grid() ax.legend(prop={'size': 12}) if file_name != '': fig.savefig('images/' + file_name + '_RandomForestRegressor' + name + '.jpg') y_train = y_train.values.ravel() y_val = y_val .values.ravel()</pre>						
	<pre>y_val = y_val .values.ravel() first = True info = [] train_stats = { 'bias' : [], 'var' : [], 'mse' : [] } val_stats = {</pre>						
	<pre>'bias' : [], 'var' : [], 'mse' : [] } for estimator in range(RF_START, RF_END+1, RF_STEP): if debug: print(f'{estimator}/{RF_END}') model = get_rf_reg(estimator) trn_bias, trn_var, trn_mse = bias_var_mse(X_train, y_train, model)</pre>						
	<pre>trn_blas, trn_var, trn_mse = blas_var_mse(X_train, y_train, model) val_blas, val_var, val_mse = blas_var_mse(X_val, y_val, model) train_stats['blas'].append(trn_blas) train_stats['war'].append(trn_war)) val_stats['mse'].append(val_blas) val_stats['var'].append(val_var)) val_stats['mse'].append(val_mse)) info.append(f'Estimators: {estimator}' +\</pre>						
	<pre>if (\lambda (Train Blas: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</pre>						
In [17]:	<pre>plot_mse(train_stats, "Train") plot_mse(val_stats, "Validation") return best_model</pre>						
In [18]:	<pre>X_val_sub [index], y_val_sub [index], verbose = verbose, debug = debug, file_name = file_name) rf_model = [] Prima Regione 1286</pre>						
In [19]:	<pre>%%time rf_model.append(get_rf(0, verbose = False, debug = False#, #file_name = 'Proval')) Train: TUNING DEL MASSIMO NUMERO DI ALBERI NELLA FORESTA</pre>						
	Punteggio finale: 0.011273320418721063 (1000) alberi Best mse: 0.011270233531289177 Best number of Trees: 750 Punteggio finale: 0.006751486653928585 (1000) alberi Best bias: 0.006751477646661825 Best number of Trees: 200 Punteggio finale: 0.004521833764792367 (1000) alberi Best var: 0.00451873332566147 Best number of Trees: 750 Validation: TUNING DEL MASSIMO NUMERO DI ALBERI NELLA FORESTA						
	Punteggio finale: 0.03028440003450135 (1000) alberi Best mse: 0.03028271773920329 Best number of Trees: 850 Punteggio finale: 0.029518041993858414 (1000) alberi Best bias: 0.029517623040668423 Best number of Trees: 100 Punteggio finale: 0.0007663580406430065 (1000) alberi Best var: 0.0007647761846840253 Best number of Trees: 850						
	0.011 0.010	rain MSE, BIAS, VA	RIANCE on diffe	erent Forest Tre	ee Number		
	0.009				→ MSE → BIAS → VARIANC	E	
	0.006		.00 60 Number of Trees		00 100	00	
	0.030 Valid	dation MSE, BIAS,	VARIANCE on d	ifferent Forest	Tree Number		
	0.020				→ MSE → BIAS → VARIANC	E	
	0.005		.00 60 Number of Trees		00 100	00	
In [20]:	<pre>Seconda Regione 2061 %%time rf_model.append(get_rf(1, verbose = False, debug = False#, #file_name = 'Prova2')) Train: TUNING DEL MASSIMO NUMERO DI ALBERI NELLA FORESTA</pre> Puntaggio finale: 0.012578312287415128 (1000) alberi						
	Punteggio finale: 0.012578312287415128 (1000) alberi Best mse: 0.012561191124724912 Best number of Trees: 200 Punteggio finale: 0.007518784142778679 (1000) alberi Best bias: 0.007518749134942226 Best number of Trees: 200 Punteggio finale: 0.005059528144636468 (1000) alberi Best var: 0.005042441989782701 Best number of Trees: 200 Validation: TUNING DEL MASSIMO NUMERO DI ALBERI NELLA FORESTA						
	Punteggio finale: 0 Best mse: 0.0276595 Best number of Tree Punteggio finale: 0 Best bias: 0.026722 Best number of Tree Punteggio finale: 0 Best var: 0.0009371 Best number of Tree	0.0276821652490204 661486424258 es: 700 0.0267223730133922 2210819404763 es: 50 0.0009597922356282 592565283578	45 (1000) alber 22 (1000) alber	ri			
	0.013 Ti 0.012 0.011	rain MSE, BIAS, VA	RIANCE on diffe	erent Forest Tre	ee Number		
	0.010				→ MSE → BIAS → VARIANC	E	
	0.007		.00 60 Number of Trees		00 100	00	
	0.025 0.020	dation MSE, BIAS,			Tree Number		
	0.015				→ MSE → BIAS → VARIANC	E	
	0.005				00 100	00	
In [21]:	<pre>Number of Trees used *%time rf_model.append(get_rf(2, verbose = False, debug = False#, #file_name = 'Prova3'))</pre>						
	Train: TUNING DEL MASSIMO NUMERO DI ALBERI NELLA FORESTA Punteggio finale: 0.0186288124583239 (1000) alberi Best mse: 0.01861892215180235 Best number of Trees: 200 Punteggio finale: 0.01077061873541698 (1000) alberi Best bias: 0.010770557924095961 Best number of Trees: 50 Punteggio finale: 0.007858193722906867 (1000) alberi Best var: 0.007848278741787144 Best number of Trees: 200						
	Best var: 0.007848278741787144						
	Best var: 0.0008258 Best number of Tree Wall time: 1h 1min	387941221248 es: 900			ee Number		
	0.016				→ MSE → BIAS → VARIANC	E	
	0.012						
	0.020		Number of Trees	s used	Tree Number		
	0.015				→ MSE → BIAS → VARIANC	E	
	0.005	200	.00	00	00	00	
	rf_model [RandomForestRegres RandomForestRegres RandomForestRegres Analisi dei risulta I grafici delle tre regioni	esor(n_estimators= esor(n_estimators= esor(n_estimators= esti esor(n_estimators=	850, n_jobs=-1) 700, n_jobs=-1) 750, n_jobs=-1) ndamento: sia nel	y used Train che nel Vali		sua decomposizione in $bias^2$ e	
	variance sembra rimaner varianza e dunque anche avrebbe senso provare a significativa. Statistiche per le def print_stats(X, for i in range	re constante con legge e l'errore quadratico m umentare il numero di tre regioni su y, models): (3):	rissime oscillazioni edio tendono a de alberi per verificar Train, Validat	. Il bias rimane co crescere lentamer re se l'errore conti ion e Test	stante (soglia della nte. Se l'andamento nua comunque a d	predizione banale) mentre la o dovesse rimanere quello evidenziato escrescere seppur in maniera non	
In [24]:	<pre>print(f'{region_names[i]}: {get_bias_var_mse(X[i], y[i].values.ravel(), models[i])}')</pre>						
In [25]:	print_all_stats(rf_model) Train A: {'bias': 0.006929732943730186, 'var': 0.0028278623503827423, 'mse': 0.009757595294112896} B: {'bias': 0.007538416011279123, 'var': 0.0032002626832870144, 'mse': 0.010738678694566144} C: {'bias': 0.011106016247280014, 'var': 0.005308688929980173, 'mse': 0.016414705177260284}						
	B: {'bias': 0.01959 C: {'bias': 0.02216 Test A: {'bias': 0.02862	<pre>: {'bias': 0.027264824537540325, 'var': 0.0007294856161013914, 'mse': 0.027994310153641653} : {'bias': 0.01959553796901554, 'var': 0.0009463747722312617, 'mse': 0.020541912741246834} : {'bias': 0.022164960473785994, 'var': 0.0008393265986282246, 'mse': 0.02300428707241416} est : {'bias': 0.028625443424184153, 'var': 0.0006180639354800561, 'mse': 0.02924350735966414}</pre>					
	B: {'bias': 0.024092737323504886, 'var': 0.0009170424882830598, 'mse': 0.02500977981178793} C: {'bias': 0.033486378306030073, 'var': 0.0008326610732036911, 'mse': 0.03431903937923365} Ho cottenuto un errore minore rispetto al modello del notebook precendente, ma che rimane comunque troppo alto e che non si molto dalla predizione banale. Importanza delle feature Analizzo il ranking delle feature delle tre foreste def feature_importance(X, rf, reg_name, file_name=''):						
In [26]:	<pre>def feature_importance(X, rf, reg_name, file_name=''): print(f'{reg_name} FEATURE IMPORTANCES') print(list(X.columns[np.argsort(rf.feature_importances_)[::-1]])) print() fig, ax = plt.subplots(figsize=(len(rf.feature_importances_)/2,10)) ax.tick_params(axis='x', which='major', labelsize=15) ax.tick_params(axis='x', which='minor', labelsize=20) ax.tick_params(axis='y', which='major', labelsize=25) ax.tick_params(axis='y', which='minor', labelsize=30) ax.bar(range(0, X.shape[1]), rf.feature_importances_) ax.set_title(f'Feature_Importances {reg_name}')</pre>						
In [27]:	<pre>ax.bar(range(0 ax.set_title(f ax.set_xticks(ax.set_xtickla ax.grid() if file_name ! fig.savefi def get_feature_im if file_name =</pre>	<pre>, X.shape[1]), rf 'Feature Important range(X.shape[1])) bels(X.columns, rd = '': g('images/' + file portance(index, file = '':</pre>	<pre>feature_import ces {reg_name}' otation=90) e_name + '_Rand ile_name=''):</pre>	ances_)	sor_FeatureImpo	ortance.jpg')	
In [28]:	<pre>if file_name = file_name feature_import X_train[in rf_model[i region_nam</pre>	<pre>= '': = region_ids[index ance(dex], ndex], es[index], = file_name</pre>	_				

0.04 0.03 0.02 0.01 0.00 period_mean_price-neighborhood_mean_price-living_area_prop-tax_ratio-tax_prop-buildingqualitytypeid_na_flag-unitcnt_na_flag-assessmentyear_2015.0finishedsquarefeet12
fireplacecnt
latitude
losizesquarefeet
rawcensustractandblock
regionidcity yearbuilt structuretaxvaluedollarcnt-taxvaluedollarcnt regionidzip roomcnt unitcnt propertylandusetypeid_261.0 buildingqualitytypeid -calculatedbathnbr-calculatedfinishedsquarefeet heatingorsystemtypeid_24.0 int_transactiondate propertycountylandusecode_122 propertycountylandusecode_34 propertylandusetypeid_263.0 propertylandusetypeid_264.0 landtaxvaluedollarcnt In [29]: get_feature_importance(1) B FEATURE IMPORTANCES ['structuretaxvaluedollarcnt', 'tax_prop', 'longitude', 'latitude', 'int_transactiondate', 'tax_ratio', 'lotsiz esquarefeet', 'living_area_prop', 'taxamount', 'neighborhood_mean_price', 'calculatedfinishedsquarefeet', 'land taxvaluedollarcnt', 'taxvaluedollarcnt', 'yearbuilt', 'period_mean_price', 'finishedsquarefeet12', 'rawcensustr actandblock', 'roomcnt', 'regionidzip', 'bedroomcnt', 'regionidcity', 'bathroomcnt', 'calculatedbathnbr', 'fire placecnt', 'propertylandusetypeid_265.0', 'assessmentyear_2015.0', 'propertylandusetypeid_261.0', 'poolcnt_1.0', 'propertylandusetypeid_275.0', 'propertylandusetypeid_266.0', 'propertylandusetypeid_246.0', 'unitcnt'] Feature Importances B 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 tax_ratio tax_prop_ latitude unitcnt neighborhood_mean_price yearbuilt structuretaxvaluedollarcnt taxamount int_transactiondate assessmentyear_2015.0 poolcnt_1.0 propertylandusetypeid_275.0 bathrooment calculatedbathnbr calculatedfinishedsquarefeet finishedsquarefeet12 longitude lotsizesquarefeet rawcensustractandblock taxvaluedollarcnt landtaxvaluedollarcnt period_mean_price living_area_prop propertylandusetypeid_265.0 propertylandusetypeid_266.0 bedroomcnt fireplacecnt regionidzip roomcnt propertylandusetypeid_246.0 propertylandusetypeid_261.0 regionidcity In [30]: get_feature_importance(2) ['tax_ratio', 'structuretaxvaluedollarcnt', 'int_transactiondate', 'neighborhood_mean_price', 'yearbuilt', 'tax_prop', 'longitude', 'lotsizesquarefeet', 'latitude', 'living_area_prop', 'taxamount', 'calculatedfinishedsquarefeet', 'landtaxvaluedollarcnt', 'finishedsquarefeet12', 'taxvaluedollarcnt', 'regionidzip', 'rawcensustractand block', 'period_mean_price', 'regionidcity', 'bedroomcnt', 'buildingqualitytypeid', 'calculatedbathnbr', 'bathroomcnt', 'heatingorsystemtypeid_7.0', 'assessmentyear_2015.0', 'propertylandusetypeid_246.0', 'propertyzoningdesc_LAR1', 'propertycountylandusecode_0101', 'unitcnt', 'propertycountylandusecode_0100', 'heatingorsystemtypeid_2.0', 'propertycountylandusecode_rare', 'propertyzoningdesc_rare'] Feature Importances C 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 tax_prop-assessmentyear_2015.0-heatingorsystemtypeid_2.0-heatingorsystemtypeid_7.0-propertycountylandusecode_0100tax_ratiounitcnt -yearbuilt latitude landtaxvaluedollarcnt -taxamount structuretaxvaluedollarcnt taxvaluedollarcnt period_mean_price neighborhood_mean_price calculatedbathnbr calculated finished square feet. longitude int_transactiondate propertycountylandusecode_rare - propertylandusetypeid_246.0 bathrooment buildingqualitytypeid finishedsquarefeet12 regionidzip living_area_prop bedroomcnt lotsizesquarefeet rawcensustractandblock regionidcity propertycountylandusecode_0101 propertyzoningdesc_LAR1 propertyzoningdesc_rare La distribuzione d'importanza è ben distribuita, seppur spicchino comumque le feature inerenti alle tasse che probabilmente considerano fattori multipli. Le feature aggiunte in fase di preparazione hanno un'importanza rilevante.

A FEATURE IMPORTANCES
['tax_ratio', 'tax_prop', 'structuretaxvaluedollarcnt', 'latitude', 'int_transactiondate', 'longitude', 'yearbu ilt', 'living_area_prop', 'taxamount', 'lotsizesquarefeet', 'landtaxvaluedollarcnt', 'finishedsquarefeet12', 'c alculatedfinishedsquarefeet', 'neighborhood_mean_price', 'taxvaluedollarcnt', 'period_mean_price', 'regionidzi p', 'regionidcity', 'rawcensustractandblock', 'roomcnt', 'bedroomcnt', 'bathroomcnt', 'calculatedbathnbr', 'fir eplacecnt', 'assessmentyear_2015.0', 'poolcnt_1.0', 'heatingorsystemtypeid_24.0', 'propertycountylandusecode_3 4', 'heatingorsystemtypeid_6.0', 'propertylandusetypeid_246.0', 'propertylandusetypeid_247.0', 'unitcnt', 'prop ertycountylandusecode_rare', 'propertycountylandusecode_122', 'propertylandusetypeid_266.0', 'propertylandusetypeid_261.0', 'unitcnt_na_flag', 'heatingorsystemtypeid_18.0', 'propertylandusetypeid_260.0', 'propertylandusetypeid_248.0', 'heatingorsystemtypeid_7.0', 'heatingorsystemtypeid_13.0', 'heatingorsystemtypeid_10.0', 'propertylandusetypeid_263.0', 'heatingorsystemtypeid_10.0', 'heatingorsystemtypeid_11.0', 'propertylandusetypeid_269.0', 'heatingorsystemtypeid_12.0', 'propertylandusetypeid_265.0', 'buildingqualitytypeid_na_flag', 'propertylandusetypeid_31.0', 'propertylandusetypeid_267.0', 'propertyco untylandusecode_0100']

Feature Importances A

A FEATURE IMPORTANCES

0.07

0.06

0.05