Divvy Company Data Analytics Team

Final Report on Divvy Case Study

Presenter: Nguyen Dai Minh

Content

1	Problem Statement	2
2	Data Description	2
3	Data Cleaning and Manipulation	2
4	Analysis Summary	5
5	Visualizations and Key Findings	13
6	Recommendations	13

1 Problem Statement

The primary objective of this report is to generate answers and recommendations to the following question made by the Divvy director of marketing: How do annual members and casual riders use Divvy differently?

2 Data Description

All data is available for public use by divvy corporation and is taken directly from the azure cloud. The dataset is then store locally on my machine as well as google bigquery and google drive. The data is collected from January to March of 2024 and contains the following attributes.

- ride id : unique identifier of user
- ridable type: the type of bikes being used
- started at : start time
- ended at : end time
- start_station_name : start station name
- start_station_id : unique identifier of station
- end_station_name : end station name
- end station id : unique identifier of station
- start lat: start latitude
- start lng: start longitude
- end_lat : end latitude
- end lng: end longitude
- member_casual : membership type

3 Data Cleaning and Manipulation

I will be doing general manipulation and feature engineering in Google sheets and finish cleaning up in Google BigQuery using SQL. Let's start from Google sheets first:

1. Make a copy of January data

ride_id	rideable_type	started_at	ended_at	start_station_na	start_station_id	end_station_nan	end_station_id	start_lat	start_lng	end_lat	end_lng	member_casua
C1D650626C8C	electric_bike	2024-01-12 15:3	2024-01-12 15:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90326738	-87.63473678	41.88917683	-87.63850577	member
EECD38BDB258	electric_bike	2024-01-08 15:4	2024-01-08 15:5	Wells St & Elm S	KA1504000135	Kingsbury St & F	KA1503000043	41.9029365	-87.63444017	41.88917683	-87.63850577	member
F4A9CE78061F	electric_bike	2024-01-27 12:2	2024-01-27 12:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90295133	-87.63447033	41.88917683	-87.63850577	member
0A0D9E15EE50	classic_bike	2024-01-29 16:2	2024-01-29 16:5	Wells St & Rand	TA1305000030	Larrabee St & W	13193	41.884295	-87.633963	41.921822	-87.64414	member
33FFC9805E3E	classic_bike	2024-01-31 5:43	2024-01-31 6:09	Lincoln Ave & W	13253	Kingsbury St & F	KA1503000043	41.948797	-87.675278	41.88917683	-87.63850577	member
C96080812CD2	classic_bike	2024-01-07 11:2	2024-01-07 11:3	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
0EA7CB313D4F	classic_bike	2024-01-05 14:4	2024-01-05 14:	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
EE11F3A3B39C	electric_bike	2024-01-04 18:1	2024-01-04 18:2	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90336812	-87.63486135	41.88917683	-87.63850577	member
63E83DE8E327	classic_bike	2024-01-01 14:4	2024-01-01 14:5	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
8005682869122	electric_bike	2024-01-03 19:3	3 2024-01-03 19:4	Clark St & Ida B	TA1305000009	Kingsbury St & F	KA1503000043	41.8760335	-87.630866	41.88917683	-87.63850577	member
22B85E685AE0I	electric_bike	2024-01-03 7:39	2024-01-03 7:47	Wells St & Elm 9	KA1504000135	Kingsbury St & F	KA1503000043	41.90302617	-87.6346065	41.88917683	-87.63850577	member
133CDC03CA43	classic_bike	2024-01-03 17:0	2024-01-03 17:1	Wells St & Elm S	KA1504000135	Kingsbury St & F	KA1503000043	41.903222	-87.634324	41.88917683	-87.63850577	member
32D57RF928580	alastria bika	2024 04 40 47:0	2024 04 40 47:4	Mollo St & Elm 9	VA1E0400013E	Kingsburg St 9 k	KV4EU3000043	41 00214617	97 62 46 79 92	41 99017693	97 63950577	mombor

- 2. Reformat alignment
- 3. Highlight headers
- 4. Drop all blank feature in latitude and longitude columns as it would affect calculations of new features
- 5. Generate new features including:
 - ride_length: the time the user rode a bike
 - week day: the day bikes were used
 - distance travelled: the distance travelled by the bike
 - day_time: the time of the day in 3 categories: Morning (4-12AM), Afternoon (1-5PM) and Evening (6-3PM)

- 6. Create 6 pivot tables including:
 - SUM and AVERAGE ride length of each type of user
 - Distribution of types of user into each type of bikes
 - Distribution of types of user into day time
 - Distribution of types of user into week day
 - SUM and AVERAGE distance—travelled of each type of user
 - Distribution of user types

After getting a hold of the schema and how the data is structured let's move to Google BigQuery:

1. Combined 3 tables from 3 months into 1 table and remove all null values from columns latitude and longitude as it could mess with calculations

2. Query user by type, months and count

3. Query user by type, months average length ride and sum of length ride

4. Query user by type, months average length distance and sum of length distance

5. Query user by type, bike type and user count

SELECT member_casual, rideable_type, EXTRACT(MONTH FROM started_at) AS month, COUNT(*) AS user_count FROM keen-acolyte-427907-d1.data.Q1New' GRQUP BY member_casual, rideable_type, month ORDER BY member_casual, month;

Row	member_casual ▼	rideable_type ▼	month ▼	user_count ▼
1	casual	classic_bike	1	10344
2	casual	electric_bike	1	14009
3	casual	electric_bike	2	19352
4	casual	classic_bike	2	27611
5	casual	classic_bike	3	39332
6	casual	electric_bike	3	42936
7	member	classic_bike	1	65893
8	member	electric_bike	1	54339
9	member	electric_bike	2	63498

6. Query user by type, month and day of the week

SELECT member_casual, EXTRACT(MONTH FROM started_at) AS month, FORMAT_TIMESTAMP('%A', started_at) AS day, COUNT(*) AS user_count FROM _keen-acolyte-427907-d1.data.Q1New _ GROUP BY member_casual, rideable_type, month, day

ORDER BY member_casual, month, day;						
Row	member_casual ▼	month ▼	day ▼	user_count ▼		
1	casual	1	Friday	1250		
2	casual	1	Friday	1848		
3	casual	1	Monday	1655		
4	casual	1	Monday	2367		
5	casual	1	Saturday	1145		
6	casual	1	Saturday	1369		
7	casual	1	Sunday	1072		
8	casual	1	Sunday	1291		
9	casual	1	Thursday	1711		

Analysis Summary

Now that we have use spreadsheets as well as google bigquery to take a quick look as well as making a few pivot table now we can do our statistical analysis in Python. I am going to import the whole csv file to Kaggle for analysis:

- Document a few first observation Looking at the few first rows, i have a few observations
 - Each rows seem to represent a time where customers uses a Divvv Bike

 - Customer can choose from electric bike or classic bike
 Each rows also have location of start point and endpoint as well as the time
 - · Each rides have an unique id
 - Each station have an unique id

• Create an info table

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 668722 entries, 0 to 668721
Data columns (total 19 columns):
Non-Null Count Dtype
```

- Validate and change a few columns datatypes
- Create description table containing mean, median, quartile,...etc

	start_lat	start_Ing	end_lat	end_Ing	month	ride_length_secs	ride_length_mins	distance_in_kilometers	started_hour
count	668722.000000	668722.000000	668722.000000	668722.000000	668722.000000	668722.000000	668722.000000	668722.000000	668722.000000
mean	41.899286	-87.646908	41.899570	-87.647032	2.234337	791.495584	12.703267	1.890240	13.721573
std	0.047142	0.027405	0.047261	0.027491	0.782206	2259.494942	37.656501	1.734732	4.702697
min	41.648501	-87.844110	41.630000	-87.870000	1.000000	-2617.000000	-43.000000	0.000000	0.000000
25%	41.879569	-87.660984	41.880000	-87.661198	2.000000	289.000000	4.000000	0.824857	10.000000
50%	41.894733	-87.643819	41.895501	-87.643948	2.000000	487.000000	8.000000	1.381710	14.000000
75%	41.928773	-87.630000	41.928887	-87.630000	3.000000	843.000000	14.000000	2.401104	17.000000
max	42.070000	-87.528232	42.080000	-87.460000	3.000000	90562.000000	1509.000000	31.124978	23.000000

• Visuallize the amount of casual and member riders

• Visuallize and calculate the percentage of member and casual riders riding above mean distance

• Visuallize and calculate the percentage of member and casual riders riding above mean ride duration

• Visuallize which month, date of the week member and casual riders prefer

• Visuallize which types of bikes and what hour member and casual riders enjoy riding

• Create a table display top 10 station prefered by member and casual riders and what bikes they used

	rideable_type	member_casual	start_station_name	end_station_name	started_rent(hour)	average_duration_trip
0	classic_bike	member	Lincoln Ave & Addison St	Clark St & Winnemac Ave	9	1481.0
1	classic_bike	casual	McClurg Ct & Ohio St	Clark St & Lincoln Ave	18	1478.0
2	classic_bike	member	Lincoln Ave & Waveland Ave	Lincoln Ave & Roscoe St*	9	1472.0
3	classic_bike	member	DuSable Lake Shore Dr & Monroe St	McClurg Ct & Erie St	16	1467.0
4	classic_bike	member	Aberdeen St & Jackson Blvd	Delano Ct & Roosevelt Rd	18	1462.0
5	classic_bike	member	State St & 33rd St	Shields Ave & 28th Pl	13	1460.0
6	classic_bike	casual	Halsted St & Fulton St	Franklin St & Illinois St	16	1453.0
7	classic_bike	casual	Clark St & Armitage Ave	Sedgwick St & Webster Ave	13	1450.0
8	classic_bike	member	Kingsbury St & Kinzie St	Clark St & Elm St	15	1437.0
9	classic_bike	casual	Delano Ct & Roosevelt Rd	Dearborn St & Van Buren St	15	1429.0

- Dropping blank rows
- Evaluate outliers
- Visuallize correlation of multiple variables

ullet Do hypothesis testing on few findings H_0 : Casual members rides on average for a longer duration or equal than member rides

This is only a summary and few previews of the notebook. Please refer to the Kaggle notebook for a more detail analysis

5 Visualizations and Key Findings

Here are some key findings i manage to found:

- The number of member riders are exponentially higher than casual riders
- Casual riders on average ride for a longer time and longer distance
- More casual riders prefer riding in the afternoon
- Classic bikes are more popular with both riders
- March seems to have most casual and member riders alike
- Casual riders like riding on weekends and member like weekdays

Here is a report visualization build in Power BI:

6 Recommendations

Here are some recommendations based on the aforementioned data:

Seasonal campaigns need to be done in March. By using inbound marketing techniques
that utilize superior content from the benefits obtained from annual members to attract
upgradability from regular members.

- Modified the comfort feature of classic bikes and electric bikes for casual riders so they would be more satisfied as casual are more likely to ride for longer distance and longer period of times than member
- On weekends the number of active users of regular members increases quite a lot compared to normal days. use email marketing to share interesting promos specifically for regular members who often rent and return bicycles at busy stations such as Streeter Dr & Grand Ave, DuSable Lake Shore Dr & Monroe St and DuSable Lake Shore Dr & North Blvd.