

PRISM WORLD

सामान्य विज्ञान

Q.1 रिकाम्या जागा भरा.

5

एखाद्या वस्तूतील उष्णता ही त्यातील अणूंच्यागतिज ऊर्जेचे प्रमाण असते.

Ans एखाद्या वस्तूतील उष्णता ही त्यातील अणूंच्या एकूण गतिज ऊर्जेचे प्रमाण असते.

2 वस्तूतील उष्णता मोजण्यासाठी चा उपयोग करतात.

Ans वस्तूतील उष्णता मोजण्यासाठी **कॅलरीमापी** चा उपयोग करतात.

3 तापमान हे वस्तूतील अणूंच्यागतिज ऊर्जेचे प्रमाण असते.

Ans तापमान हे वस्तूतील अणूंच्या सरासरी गतिज ऊर्जेचे प्रमाण असते.

४ उष्णता मोजण्यास हे उपकरण वापरतात.

Ans उष्णता मोजण्यास **कॅलरीमापी** हे उपकरण वापरतात.

5 तापमापी हे उपकरण मोजण्यास वापरतात.

Ans तापमापी हे उपकरण **तापमान** मोजण्यास वापरतात.

Q.2 जोडी जुळवा.

1

	'अ' गट		ब <mark>' गट</mark>
i.	निरोगी मानवी शरीराचे तापमान	પડ	296 K
ii.	पाण्याचा उत्कलन बिंदू	ब.	98.6 °F
		क.	212 °F

Ans

i.	निरोगी मानवी शरीराचे तापमान	98.6 °F
ii.	पाण्याचा उत्कलन बिंदू	212 °F

2

'अ' गट	'ब' गट
i. पाण्याचा गोठण बिंदू	अ38.8°C
ii. पा-याचा गोठण बिंदू	ৰ. 23°C
	क. 0°C

Ans

i. पाण्याचा गोठण बिंदू	0°C
ii. पा-याचा गोठण बिंदू	-38.8°C

3

'अ' गट		'ब' गट	
i.	कक्ष तापमान	अ.	98.6 °F
ii.	पाण्याचा गोठण बिंदू	ৰ.	296 K
		क.	0 °C

Ans	i.	कक्ष तापमान	296 K
	ii.	पाण्याचा गोठण बिंदू	0 °C

Q.3 चूक की बरोबर ते लिहा.

1 पदार्थाचे तापमान ज्यूलमध्ये मोजतात.

Ans चूक - पदार्थाचे तापमान सेल्सियस (°C), फॅरेनहाईट (°F) व केल्व्हीन (K) मध्ये मोजतात.

2 उष्णतेचे एकक ज्यूल आहे.

Ans उष्णतेचे एकक ज्यूल आहे. - बरोबर

3 उष्णता दिल्याने वस्तू आकुंचन पावतात.

Ans चूक - उष्णता दिल्याने वस्तू प्रसरण पावतात.

उष्ण वस्तूच्या अणूंची सरासरी गतिज ऊर्जा थंड वस्तूंच्या अणूंच्या सरासरी गतिज ऊर्जे पेक्षा कमी असते.

Ans चूक - उष्ण वस्तूच्या अणूंची सरासरी गतिज ऊर्जा थंड वस्तूंच्या अणूंच्या सरासरी गतिज ऊर्जे पेक्षा अधिक असते.

उष्णता उष्ण वस्तूकडून थंड वस्तूकडे वाहते.

Ans उष्णता उष्ण वस्तूकडून थंड वस्तूकडे वाहते. - बरोबर

6 स्थायूचे अणू स्वतंत्र असतात.

Ans चूक - स्थायूतील अणू त्यांच्यामधील परस्पर बलाने बांधलेले असतात.

Q.4 गणितीय उदाहरण सोडविणे.

1 A व B या दोन पदार्थांची विशिष्ट उष्माधारकता अनुक्रमे C आणि 2C आहे. जर A व B ला अनुक्रमे Q व 4Q उष्णता पुरवली तर त्यांचा तापमानातील फरक समान आहे. जर A चे वस्तुमान m असेल तर B चे वस्तुमान काढा.

Ans working

$$AQB = m \square \times C \times \Delta T$$

$$4Q = m_B \times 2C \times \Delta T$$

$$\cdot \quad \frac{Q}{} = \frac{4Q}{}$$

$$\begin{array}{cc} \cdots & m \times C & m_B \times 2C \\ \therefore & \frac{1}{m} = \frac{2}{m_B} \end{array}$$

$$m_B = 2m$$

🚊 B चे वस्तुमान 2m असेल

2 आयफेल टॉवरची उंची 15° C वर 324 m असल्यास, व तो टॉवर लोखंडाचा असल्यास, 30° C ला त्याची उंची किती cm ने वाढेल?

Colours of your Dreams

Ans दिलेली माहिती :

मूळ तापमान = T₁ = 15°C

नंतरचे तापमान = T2 = 30°C

आयफेल टॉवरची मूळ उंची = 4 = 324 m

लोखंडाचा एकरेषीय प्रसरणांक = [0.0000115]1/°C

तर.

टॉवरची उंचीतील वाढ

स्थायूंच्या एकरेषीय प्रसरणाच्या सूत्रानुसार,

उंचीतील वाढ = एकरेषीय प्रसरणांक imes मूळउंची imes तापमानातील वाढ

· उंचीतील वाढ

$$= 0.0000115 \times 324 \times (30 - 15)$$

$$= 0.0000115 \times 324 \times 15$$

$$= 0.0000115 \times 4860$$

$$= 0.0558900 \times 100 \text{ cm}$$

$$= 5.589 cm$$

$$= 5.6 cm$$

आयफेल टॉवरची उंची = 5.6 cm ने वाढेल.

8

एक 3 kg वस्तुमानाची वस्तू 600 कॅलरी ऊर्जाप्राप्त करते तेव्हा तिचे तापमान 10 °C पासून 70 °C पर्यंत वाढते. वस्तूच्या पदार्थाचा 3 विशिष्ट उष्मा किती आहे?

वस्तूचे वस्तुमान m = 3 kg = 3000 gm Ans वस्तूने प्राप्त केलेली ऊर्जा = Q = 600 cal सुरूवातीचे तापमान वाढलेले तापमान

तर,

वस्तूच्या पदार्थाचा विशिष्ट उष्मा C = ?

ਸ਼੍ਰਕ Q = m
$$\times$$
 c \times (T₂ - T₁)

$$C = \frac{Q}{m \times (T_2 - T_1)}$$

$$= \frac{600}{3000 \times (70 - 10)}$$

$$= \frac{600}{3000 \times 60}$$

$$= \frac{10}{3000} = \frac{1}{300}$$

$$= 0.0033 \text{ cal } / 90$$

वस्तूच्या पदार्थाचा विशिष्ट उष्मा = 0.0033 cal / (gm °C) आहे.

फॅरेनहाईट एककातील तापमान किती असल्यास ते सेल्सिअस एककातील तापमानाच्या दुप्पट असेल?

फॅरेनहाईट एककातील तापमान = F Ans सेल्सिअस एककातील तापमान = C

$$\therefore$$
 F = 2C ... (I) सूत्र = $\frac{F-32}{9}$ = $\frac{C}{5}$

(I) वरून

$$\frac{2C-32}{9} = \frac{C}{5}$$

C = 160

म्हणजे सेल्सिअसमधील तापमान

फॅरेनहाईटमधील तापमान

= F = 2C

 $= F = 2 \times 160$

फॅरेनहाईट एककातील तापमान 320° असल्यास ते सेल्सिअस एककातील तापमानाच्या दुप्पट असेल?

फरक स्पष्ट करा. Q.5

वायूचे प्रसरण व द्रवाचे प्रसरण.

Ans	वायूचे प्रसरण	द्रवाचे प्रसरण
	वायूचा स्थिरदाब प्रसरणांक $V_2 = V_1 (1 +$	द्रवाचा हानीय प्रसरणांक $V_2 = V_1$ (1 +
	eta Δ T) या सूत्राने काढता.	eta Δ T) या सूत्राने काढता.

शास्त्रीय कारणे लिहा. Q.6

रेल्वेच्या रुळांमध्ये काही ठराविक अंतरावर थोडी फट ठेवली जाते.

Ans i. सळईच्या रूपातील स्थायूंमध्ये उष्णतेमुळे एकरेषीय पसरण होते.

- ii. तापमानातील बदलाप्रमाणे त्यांची लांबी कमी किंवा जास्त होते.
- iii. ही फट ठेवली नाही तर उष्णतेने प्रसरण आलेले रुळ वेडेवाकडे होतील व अपघात होतील.
- iv. म्हणून रेल्वेच्या रुळांमध्ये फट ठेवतात.

गणितीय उदाहरणे सोडविणे. Q.7

एका पूल 20 मिटर लांबीच्या लोखंडी सळ्या पासून बनला आहे 18°C तापमानाला दोन सळ्यांमधील अंत 0.4 सेमी आहे. तर किती तापमानापर्यंत पूल योग्य अकारात असेल?

Ans working

$$\Delta I = I \times I_1 \times (\Delta T)$$

 $0.004 = 0.000115 \times 0.2 \times (T - 18)$

$$\therefore \frac{4 \times 10^6 \times 1.0}{1000 \times 115 \times 2} = T - 18$$

- · 17.4 = T 18
- · 0.4cm = 0.004 m
- T = 35.4

∴ 35.4° सेल्सीअस पर्यंत

2 स्थायू व वायूंमधील अणूंच्या गतीवरून अकृतीच्या सहाय्याने उष्णता व तापमान यातील फरक स्पष्ट करा.

Ans

- i. पदार्थातातील अणू सतत गतिशील असतात त्यांच्या गतिज उर्जेचे एकूण प्रमाण म्हणजे उष्णता होय.
- ii. त्या पदार्थाचे तापमान हे अणूंच्या सरासरी गतिज उर्जेवर अवलंबून असते.
- iii. आकृती मध्ये अ व ब मध्ये उष्णवायू व थंड वायूंच्या अणूंची गती दर्शवली आहे उष्ण वायूतील अणूंचा वेग थंड वायूतील अणूंच्या वेगापेक्षा जास्त आहे. म्हणून उष्ण वायूतील उष्णता जास्त आहे.
- iv. क मध्ये स्थायूचे अणू परस्परांशी त्यांच्यामधील परस्पर बलाने बांधलेली असतात त्यामुळे आपल्या स्थानावरून विस्थापित होत नाहीत परंतु उष्णतेमुळे आपल्या जागेवर आंदोलित होतात. जसजसे तापमान वाढते तसतसा त्यांचा आंदोलनाचा वेग वाढतो. त्यांची गतिज ऊर्जा वाढते.
- v. अ व ब या दोन एकाच पदार्थापासून बनलेल्या दोन वस्तू आहेत. अ चे वस्तूमान ब च्या दुप्पट आहे. दोघांचे तापमान समान आहे. म्हणजेच त्यातील अणुंची सरासरी गतिज ऊर्जा समान आहे.

परंतु अ मधील अणूंची संख्या दुप्पट आहे म्हणून अ ची एकूण गतिज ऊर्जा व मधील अणूंच्या गतिज उर्जेच्या दुप्पट आहे. म्हणजेच अ व ब चे तापमान समान आहे.

परंतु अ मधील उष्णता ब मधील उष्णतेच्या दुप्पट आहे.

Q.8 उत्तरे स्पष्टीकरणासह लिहिणे.

विविध तापमापी – आकृतीसह.

Ans प्रयोगशाळेत वापरली जाणारी तापमापी याच्या सहाय्याने कमितकमी - 10°C ते जास्तीत जास्त 110°C पर्यंत तापमान मोजता i. येते

- ii. ii. वैद्यकीय तापमाणी याचा उपयोग मानवाच्या शरीराचे तापमान मोजण्यासाठी होतो. यावर कमित कमी तापमान 35°C व जास्तीत जास्त 44°C असते कारण निरोगी माणसाच्या शरीराचे तापमान 35°C असते.
- iii. आजकाल वैद्यकीय उपयोगासाठी डिजिटल तापमापी वापरतात. यात अल्कोहो/पारा या ऐवजी संवेदक वापरतात. ... दिवसभरातील कमाल व किमान तापमानाचे मापन करण्यासाठी विशिष्ट प्रकारची तापमापी वापरतात त्यास कमाल-किमान

iv. तापमापी म्हणतात.

12

- 2 निशिगंधाने चहा बनविण्यासाठी चहाचे घटक टाकून भांडे सौरचुलीत ठेवले. शिवानीने तसेच भांडे गॅसवर ठेवले. कोणाचा चहा लवकर तयार होईल व का?
- Ans शिवानीने भांडे गॅसवर ठेवले. त्यामुळे भांड्याला थेट उष्णता मिळते व चहाच्या मिश्रणातील कणांची गतिज ऊर्जा वेगाने वाढते.
 ं चहाचा उत्कलन बिंदू लवकर येतो व चहा जलद तयार होतो.
 निशिगंधाने भांडे सौरचुलीत ठेवले. सौरचुलीत सूर्यिकरणांचे परावर्तन होऊन भांड्याला उष्णता मिळते. ती थेट मिळत नाही म्हणून
 ii. चहाच्या मिश्रणातील कणांची गतिज ऊर्जा कमी वेगाने वाढते. चहाचा उत्कलन बिंदू उशिरा येतो व चहा खूप वेळाने तयार
 होतो. म्हणून शिवानीचा चहा लवकर तयार होईल.
- 3 वैद्यकीय तापमापीचे वर्णन करा. त्यात व प्रयोगशाळेत वापरल्या जाणाऱ्या तापमापीत कोणता फरक असतो?
- Ans वैद्यकीय तापमापी: त्यात एका टोकाला फुगा असलेली काचेची अरुंद नळी असते आणि दुसरे टोक बंद असते. फुगा आणि नळीचा काही भाग पारा किंवा अल्कोहोलने भरलेला असतो. नळीची उरलेली जागा निर्वात असते. तापमापीच्या नळीवर तापमानाची नोंद केलेली असते. वैद्यकीय तापमापी मानवी शरीराचे तापमान मोजण्यासाठी वापरली जाते. निरोगी मानवी शरीराचे तापमान 37 °C असते, त्यामुळे वैद्यकीय तापमापीत सुमारे 35 °C ते 42 °C या दरम्यान तापमान मोजता येते. वैद्यकीय तापमापीचा उपयोग घरीपण करता येतो.

सूत्राच्या सहाय्याने द्रवाच्या व वायूच्या प्रसरणांक स्पष्ट करा.

Ans द्रवाचे प्रसरण

द्रवाला निश्चित आकार नसतो परंतु निश्चित आकारमान असते. म्हणून द्रवाचा घनीय द्रवणांक आपल्याला खालील सूत्राने काढता येतो.

$$V_2 = V_1 (1 + \beta \Delta T)$$

 V_1 - आरंभीचे आकारमान V_2 - अंतिम आकारमान ΔT - तापमानातील फरक β - द्रवाचा घनीय प्रसरणांक वायूचे प्रसरण

वायूंना निश्चित आकारही नसतो व निश्चित आकारमानही नसतो.

वायूवरील दाब स्थिर ठेवून वायूचे प्रसरण मोजले जाते. अशा प्रसरणांकास स्थिर दाब प्रसरणांक म्हणतात. तो खालील सूत्राने काढतात.

$$V_2 = V_1 (1 + \beta \Delta T)$$

 V_1 - वायूचे आरंभिचे आकारमान V_2 - वायूचे अंतिम आकारमान ΔT - तापमानातील फरक β - वायूचा स्थिर दाब प्रसरणांक

Q.9 प्रश्नाचे उत्तर विस्तृत स्वरूपात लिहिणे.

कॅलरीमापीची आकृती काढून भागांना नावे द्या. रचना व उपयोग लिहा.

Ans

- i. यात आत व बाहेर अशी दोन भांडी असतात.
 - अ. आतील भांडी तांब्याचे असते त्यात तांब्याचीच ढवळणी असते. ढवळणीचा उपयोग मिश्रण ढवळण्यास होतो.
 - ब. बाहेरील भांडी उष्णतारोधक पदार्थाचे उदा. लाकूड बनलेले असते. बाहेरील भांड्यास आतून उष्णता रोधक पदार्थाचे जाड आवरण असते.
 - उदा. लोकर, कॉर्क, थेमींकॉल
 - यामुळे आतील भांड्यात ठेवलेल्या वस्तूतील उष्णता आतून बाहेर जाऊ शकत नाही तसेच बाहेरील उष्णता आत येऊ शकत नाही
- ii. दोन्ही भांडी झाकता येतील असे त्यावर उष्णतारोधक पदार्थाचेच झाकण असते याला छोटीसी फट असते ज्यामधून तापमापीचा आतील भांड्यातील पदार्थापर्यंत पोहचू शकेल. तसेच भांड्यातील ढवळणीचे टोक बाहेर राहू शकेल.
- iii. कॅलरीमापीतील पदार्थ (उष्ण, थंड, मिश्रण) व कॅल<mark>रीमापी</mark> व ढवळणी यांचे तापमान समान असते.
- iv. कॅलरीमापीतील आतील भांडे व त्यातील पदार्थ वा<mark>तावर</mark>णापासून औष्णिकदृष्ट्या अलिप्त ठेवलेले असल्यामुळे आत ठेवलेल्या पदार्थांचे तापमान समान असते.
- v. उष्णपदार्थाने दिलेली एकूण उष्णता व थंड पदार्थाने ग्रहण केलेली एकूण उष्णता समान असते. अशा पद्धतीने या उपकरणाद्वारे एखाद्या रासायानिक किंवा भौतिक प्रक्रियेत बाहेर पडणा-या किंवा शोषित होणा-या उष्णतेचे
- vi. मापन करता येते.
- vii. म्हणजेच वस्तूतील उष्णता मोजण्यासाठी या उपकरणाचा उपयोग होतो.