The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260/COMP6360 Data Security Week 5 Workshop – 28th and 29th March 2019

- 1. For polyalphabetic substitution cipher with period d estimate the unicity distance, assuming that all keys are equally likely.
- **2.** Decipher the following ciphertext, which was enciphered using a Vigenere cipher with key ART: YFN GFM IKK IXA T.
- **3.** Decipher the following ciphertext, which was enciphered using a Beaufort cipher with key ART: CDZ ORQ WRH SZA AHP
- **4.** Consider a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose you know with certainty that the plaintext letter J(9) corresponds to the ciphertext letter P(15), that is, $9k \mod 26 = 15$. Break the cipher by solving for k.
- 5. Consider again a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose you know with certainty that the plaintext letter N(13) corresponds to the ciphertext letter N(13), that is, $13k \mod 26 = 13$. Can you break the cipher by solving for k? What about if you also know that the plaintext letter C(2) corresponds to the ciphertext C(6)?
- 6. Consider again a linear substitution cipher that uses the transformation $f(a) = ak \mod 26$. Suppose that you suspect that the plaintext letter N(13) corresponds to the ciphertext letter P(15), that is, $13k \mod 26 = 15$. Can you break the cipher by solving for k?
- 7. Consider the Measure of Roughness $M = \sum_{i=0}^{n-1} (p_i \frac{1}{n})^2$ and consider the alternative versions $M_1 = \sum_{i=0}^{n-1} (p_i \frac{1}{n})$ and $M_2 = \sum_{i=0}^{n-1} |p_i \frac{1}{n}|$. Could each of M1 and M2 be used in place of M? If yes, which one is a better?