

	UZUPEŁNIA ZDAJĄCY	
KOD PESEL		wioicaa
		miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Cześć I

DATA: 13 czerwca 2016 r.

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

MINI D1 1D 162

MIN-R1_**I**P-163

UZUPEŁNIA ZDAJĄCY WYBRANE: (środowisko) (kompilator) (program użytkowy)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. Rekurencja

Rozważ następujący algorytm zapisany w postaci rekurencyjnej funkcji F:

Specyfikacja:

Dane:

n − liczba całkowita dodatnia

Algorytm:

F(n)

Jeżeli *n*=1 lub *n*=2

$$s \leftarrow n$$

w przeciwnym razie

$$s \leftarrow n * \mathbf{F}(n-2)$$

$$s \leftarrow s*(n+1)$$

wynikiem jest s

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę – podaj wartości funkcji dla *n*=1, 2, 3, 4, 5, 6.

n	F(n)
1	
2	
3	
4	
5	
6	

Wypisz ciąg wywołań funkcji F(n) dla n=11.

Przykład:

Dla n=3 ciąg wywołań ma postać F(3), F(1).

.....

Zadanie 1.3. (0-1)

 $Podaj\ wynik\ działania\ algorytmu-zaznacz\ prawidłową\ odpowiedź.$

Algorytm obliczy wartość:

a)
$$\frac{(n+1)(n+2)}{2}$$

- b) (*n*+1)!
- c) $n^{\frac{n}{2}}$

Zadanie 2. Dziwny porządek

Na planecie X obowiązuje dziwny porządek wśród liczb całkowitych dodatnich. Każda liczba parzysta jest mniejsza od każdej liczby nieparzystej. Relację mniejszości, obowiązującą na planecie X, oznaczamy symbolem "<". Tak więc zachodzą np. następujące nierówności $2 \ll 3$, $2 \ll 1$, $8 \ll 5$. Ponadto wśród liczb parzystych panuje normalny porządek, taki jak u nas na Ziemi, tzn. $2 \ll 4 \ll 6 \ll 8 \ll \cdots$. Natomiast wśród liczb nieparzystych jest na odwrót – największą liczbą jest 1, tzn. ... $\ll 5 \ll 3 \ll 1$.

Przykład:

Poniżej wypisane są liczby 1, 2, 3, 4, 5,6 w kolejności od najmniejszej do największej (zgodnie z porządkiem obowiązującym na planecie X).

$$2 \ll 4 \ll 6 \ll 5 \ll 3 \ll 1$$

Wśród tych liczb najmniejszą na planecie X jest 2, a największą jest 1.

Zadanie 2.1. (0-1)

Uporządkuj poniższy zbiór liczb w rosnącej kolejności wg porządku obowiązującego na planecie X.

Odpowiedź:

Zadanie 2.2. (0-1)

Uzupełnij poniższy zbiór o dwa elementy, tak by jego **najmniejszym** elementem (wg porządku obowiązującego na planecie X) była liczba 10.

Zadanie 2.3. (0-4)

Zaproponuj algorytm, który dla danego skończonego zbioru liczb całkowitych dodatnich wyznacza element **największy** wg porządku obowiązującego na planecie X. Algorytm zapisz w postaci pseudokodu albo w wybranym języku programowania.

Specyfikacja:

Dane:

liczba całkowita dodatnia n tablica liczb całkowitych dodatnich A[1], A[2],...,A[n]

Wynik:

 $\mathbf{największa}$ liczba (wg porządku obowiązującego na planecie X) spośród liczb w tablicy A

Algorytm:

Zadanie 3. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

W każdym zadaniu cząstkowym punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

W językach programowania: Pascal, C++, Java tablica jest strukturą danych,

1.	która ma maksymalnie 256 elementów.	P	F
2.	w której można przechowywać tylko liczby.	P	F
3.	w której możemy się odwoływać do poszczególnych elementów za pomocą indeksów.	P	F

Zadanie 3.2. (0-1)

Suma 200₁₀+10₂ jest równa

1.	21010	P	F
2.	3128	P	F
3.	CA ₁₆	P	F

Miejsce na obliczenia.

Zadanie 3.3. (0-1)

Jednym z podstawowych pojęć w informatyce jest algorytm. Każdy algorytm powinien spełniać własność:

1.	dowolnego porządku operacji, tzn. działania wykonywane w algorytmie można wykonać w dowolnej kolejności.	P	F
2.	skończonej liczby operacji, tzn. algorytm można zapisać w postaci skończonego ciągu instrukcji lub operacji.	P	F
3.	jednoznaczności operacji , tzn. algorytm może zawierać tylko takie operacje, których działanie jest jednoznacznie określone.	P	F

Zadanie 3.4. (0-1)

Grafika wektorowa

1.	pozwala skalować obraz bez utraty jego jakości.	P	F
2.	używa figur geometrycznych do przechowywania informacji o obrazie.	P	F
3.	jest powszechnie stosowana do zapisu zdjęć w tabletach, aparatach fotograficznych i telefonach komórkowych.	P	F

BRUDNOPIS (nie podlega ocenie)