Inverse trig functions

11/21/2011

Remember: $f^{-1}(x)$ is the inverse function of f(x) if

$$y = f(x)$$
 implies $f^{-1}(y) = x$.

For inverse functions to the trigonometric functions, there are two notations:

f(x)	$f^{-1}(x)$
$\sin(x)$	$\sin^{-1}(x) = \arcsin(x)$
cos(x)	$\cos^{-1}(x) = \arccos(x)$
tan(x)	$\tan^{-1}(x) = \arctan(x)$
sec(x)	$\sec^{-1}(x) = \operatorname{arcsec}(x)$
csc(x)	$\csc^{-1}(x) = \operatorname{arccsc}(x)$
$\cot(x)$	$\cot^{-1}(x) = \operatorname{arccot}(x)$

In general:

arc___(-) takes in a ratio and spits out an angle:

$$cos(\theta) = a/c$$
 so $arccos(a/c) = \theta$

$$\sin(\theta) = b/c$$
 so $\arcsin(b/c) = \theta$

$$tan(\theta) = b/a$$
 so $arctan(b/a) = \theta$

There are lots of points we know on these functions...

Examples:

- 1. Since $\sin(\pi/2) = 1$, we have $\arcsin(1) = \pi/2$
- 2. Since $cos(\pi/2) = 0$, we have $arccos(0) = \pi/2$
- 3. arccos(1) =
- 4. $\arcsin(\sqrt{2}/2) =$
- 5. arctan(1) =

$y = \sin(x)$

Domain/range

$$y = \sin(x)$$
$$y = \arcsin(x)$$

Domain: $-1 \le x \le 1$

Domain/range

$y = \arcsin(x)$

Domain: $-1 \le x \le 1$

Domain/range

 $y = \arcsin(x)$

Domain: $-1 \le x \le 1$

Range: $-\pi/2 \le y \le \pi/2$

$y = \cos(x)$

Domain/range

$$y = \cos(x)$$
$$y = \arccos(x)$$

Domain: $-1 \le x \le 1$

Domain/range

$y = \arccos(x)$

Domain: $-1 \le x \le 1$

Domain/range

$y = \arccos(x)$

Domain: $-1 \le x \le 1$

Range: $0 \le y \le \pi$

$y = \tan(x)$

Domain/range

Domain: $-\infty \le x \le \infty$

Domain/range

$y = \arctan(x)$

Domain: $-\infty \le x \le \infty$

Domain/range

$y = \arctan(x)$

Domain: $-\infty \le x \le \infty$

Range: $-\pi/2 < y < \pi/2$

$y = \sec(x)$

Domain/range

$$y = \sec(x)$$
$$y = \operatorname{arcsec}(x)$$

Domain: $x \le -1$ and $1 \le x$

Domain/range

$y = \operatorname{arcsec}(x)$

Domain: $x \le -1$ and $1 \le x$

Domain/range

$y = \operatorname{arcsec}(x)$

Domain: $x \le -1$ and $1 \le x$

Range: $0 \le y \le \pi$

$y = \csc(x)$

Domain/range

$$y = \csc(x)$$
$$y = \arccos(x)$$

Domain: $x \le -1$ and $1 \le x$

Domain/range

$y = \operatorname{arccsc}(x)$ $\pi/2$ $-\pi/2$

Domain: $x \le -1$ and $1 \le x$

Domain/range

$y = \operatorname{arccsc}(x)$

Domain: $x \le -1$ and $1 \le x$

Range: $-\pi/2 \le y \le \pi/2$

$y = \cot(x)$

Domain/range

$$y = \cot(x)$$
$$y = \operatorname{arccot}(x)$$

Domain: $-\infty \le x \le \infty$

Domain/range

$y = \operatorname{arccot}(x)$

Domain: $-\infty \le x \le \infty$

Domain/range

$y = \operatorname{arccot}(x)$

Domain: $-\infty \le x \le \infty$

Range: $0 < y < \pi$

Derivatives

Use implicit differentiation (just like ln(x)).

Q. Let $y = \arcsin(x)$. What is $\frac{dy}{dx}$?

If
$$y = \arcsin(x)$$
 then $x = \sin(y)$.

Take $\frac{d}{dx}$ of both sides of $x = \sin(y)$:

LHS:
$$\frac{d}{dx}x = 1$$
 RHS: $\frac{d}{dx}\sin(y) = \cos(y)\frac{dy}{dx} = \cos(\arcsin(x))\frac{dy}{dx}$

So

$$\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))}.$$

Simplifying cos(arcsin(x))

Call $\arcsin(x) = \theta$.

$$\sin(\theta) = x$$

$$\frac{1}{\sqrt{1 - x^2}}$$

So
$$\cos(\arcsin(x)) = \sqrt{1-x^2}$$

So
$$\frac{d}{dx}\arcsin(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}.$$

Calculate $\frac{d}{dx} \arctan(x)$.

- 1. Rewrite $y = \arctan(x)$ as $x = \tan(y)$.
- 2. Use implicit differentiation and solve for $\frac{dy}{dx}$.
- 3. Your answer will have sec(arctan(x)) in it. Simplify this expression using

Recall: In general, if $y = f^{-1}(x)$, then x = f(y).

So
$$1=f'(y)\frac{dy}{dx}=f'\left(f^{-1}(x)\right)$$
, and so
$$\boxed{\frac{d}{dx}f^{-1}(x)=\frac{1}{f'(f(x))}}$$

f(x)	f'(x)	<i>f</i> (<i>x</i>)	f'(x)
cos(x)	$-\sin(x)$	arctan(x)	$-\frac{1}{\sin(\arccos(x))}$
sec(x)	sec(x) tan(x)	arcsec(x)	$\frac{1}{\sec(\arccos(x))\tan(\arccos(x))}$
csc(x)	$-\csc(x)\cot(x)$	arccsc(x)	$-\frac{1}{\csc(\arccos(x))\cot(\arccos(x))}$
$\cot(x)$	$-\csc^2(x)$	$\operatorname{arccot}(x)$	$-\frac{1}{\Big(\csc(\operatorname{arccot}(x))\Big)^2}$

To simplify, use the triangles

More examples

Since
$$\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$$
, we know

1.
$$\frac{d}{dx}$$
 arctan(ln(x)) =

$$2. \int \frac{1}{1+x^2} dx =$$

$$3. \int \frac{1}{(1+x)\sqrt{x}} dx =$$