

Input Pipelines

How to build efficient data pipelines with tensorflow.

Masoud Masoumi Moghaddam 1400 Ordibehesht

Overview

- Why input pipeline?
- Image Augmentation
- Keras ImageDataGenerator
- Keras utils.Sequence
- Practice #1: Violence Detection
- tf.data
- tf.data vs keras data generators
- tf.data pipeline
- Boosting cpu performance
 - Parallel software pipeline
 - Parallel transformation
 - Parallel Extraction
 - tf.snapshot

Overview

- Practice #2: Digikala products color classification
 - albumentation
 - Classification Evaluation Metrics
 - transfer learning
 - Tensorboard GradCam plot
 - Tensorboard Confusion matrix
 - Tf.profile
- Boosting Performance on GPU
 - tf.function
 - o XLA
 - MixedPrecision
 - tf.distribute

Why input pipeline?

- Data might not fit into memory.
- Data might require (randomized) pre-processing. We need to do things on the fly (like augmentations).
- Efficiently utilize hardware.
- Decouple loading and pre-processing from distribution.

Input pipeline stages

- 1. Fxtract:
 - Read from memory/storage
 - Parse file format
- 2. Transform:
 - Text vectoriazation
 - Image transformations (albumentation imgaug)
 - Video temporal sampling (Violence detection use-case)
 - Shuffling, batching
- 3. Load
 - Transfer data to the accelerator (GPU/TPU)

Image Augmentation

Image augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of **images** in the dataset.

Source:

- Geometric transformation
 - Flipping
 - Cropping
 - Rotation
 - Translation (shift top, left, ...)
 - Noise Injection
 - 0 ...
- Color space transformation
 - RGB shift
 - Hue Saturation value
 - Channel Shuffle
 - Random Contrast
 - O ...

Benefits

- Better Generalization
- Avoid overfitting

Source
<u>Albumentation</u> repo
<u>Imgaug</u> repo

Keras ImageDataGenerator

How to use ImageDataGenerator?

Data path format

Split to train/val/test

```
pip install split-folders

splitfolders.ratio("input_folder", output="output", seed=1400,
    ratio=(.8, .1, .1))
```

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
    'data/train',
    target_size=(224, 224),
    batch_size=32)
```

Also useful for segmentation. Check this link

tf.keras.utils.Sequence

ImageDataGenerator is not always applicable:

- Working with cube tensors (will be discussed through example).
- Object detection tasks.
- Training Siamese networks.
-

How to use *keras.utils.Sequence*:

- Overwrite __len__ (how many data points exist).
 - steps_per_epoch = np.ceil(len(self.X_path) / float(self.batch_size))
- Overwrite <u>getitem</u> (how to get each item).
 - gets an integer `index`
 - outputs a tuple containing (batch_x, batch_y)
- * Also on epoch end could be used

Let's code

Practice#1: Violence Detection

Practice #1 Violence Detection

3D Tensors

Figure 4. The structure of the Flow Gated Network.

Practice #1 Violence Detection

data/

Path to data

train/Violence/

■ V001.npy — RGB channels + Optical Flow

■ V002.npy

_ ...

Non-Violence/

■ NV001.npy

■ NV002.npy

each time __getitem__ is called:

- video is fetched
- video is sampled (64 frames/300 frames)

operation above is done for one batch

Practice #1: Violence Detection

In this practice we use keras.utils.sequence feed data to keras model which accepts batches of 3d tensors and classifies violence/non violence videos.

Dataset consists of:

- 100 violence videos
- 101 non-violence videos

Click on the image to open notebook in kaggle

tf.data

Keras.utils.Sequence VS tf.data

The keras.utils.Sequence method is convenient, but has three downsides:

- It's slow.
- It lacks fine-grained control.
- It is not well integrated with the rest of Tensorflow.

Keras ImageDataGenerator VS tf.data

ImageDataGenerator vs tf.data:

- *keras.utils.Sequence* is better integratable with non-Tensorflow libraries like *PIL* or *numpy* (*multiple python processes*).
- Tensor operations is better applicable with *tf.data.Dataset (C++ threads)*.

tf.data

- Fast... to keep up with GPUs and TPUs.
- Flexible... to handle diverse data and use cases.
- Easy to use... to democratize machine learning.

Let's design a typical tf.data pipeline

Extraction

```
dataset = tf.data.Dataset.list_files('*/*.jp*g')

dataset = dataset.map(preprocess)
dataset = dataset.shuffle(dataset.cardinality())
dataset = dataset.batch(batch_size=BATCH_SIZE)

....
model = ....
model.fit(dataset, epochs=10)
```

```
tf.data.Dataset.from_tensors([1, 2, 3])
tf.data.TextLineDataset(['1.txt', ...])
tf.data.TFRecordDataset(['file1.tfrecord'])
tf.data.Dataset.from_generator(callable_func)
tf.data.Dataset.list_files('*/*.jpe*g')
```

Transformation and Loading

```
dataset = tf.data.Dataset.list files('*/*.jpe*g')
dataset = dataset.map(preprocess
dataset = dataset.shuffle(dataset.cardinality())
dataset = dataset.batch(batch size=BATCH SIZE)
                                                                      def preprocess(file path):
                                                                         class names = np.array(['daisy', 'dandelion',
iterator = dataset.make one shot iteator()
                                                                                              'roses', 'sunflowers',
                                                                                              'tulips'])
features = iterator.get next()
                                                                         # convert the path to a list of path components
model = \dots
                                                                         parts = tf.strings.split(file path, os.path.sep)
model.fit(dataset, epochs=10)
                                                                         one hot = parts[-2] == class names
                                                                         label = tf.argmax(one hot)
                                                                         img = tf.io.read file(file path)
                                                                         img = tf.image.decode jpeg(img, channels=3)
                                                                         img = tf.image.resize(img, [224, 224])
                                                                         return img, label
```


Boosting CPU performance

GPU

Parallel software Pipeline

Wait

Train 1

Train 3

Train 2

Prefetching next batches of data

```
dataset = tf.data.Dataset.list_files('*/*.jpe*g')
dataset = dataset.map(preprocess)
dataset = dataset.shuffle(dataset.cardinality())
dataset = dataset.batch(batch size=BATCH SIZE)
dataset = dataset.prefetch(buffer_size=X)

model = ....
model.fit(dataset, epochs=10)
```

This allows later elements to be prepared while the current element is being processed.

- This often improves latency and throughput,
- Costs additional memory to store prefetched elements.

Parallel Transformation

Parallel Transformation

```
dataset = tf.data.Dataset.list_files('*/*.jpe*g')

dataset = dataset.map(preprocess, num_parallel_cals=Y)
dataset = dataset.shuffle(dataset.cardinality())//BATCH_SIZE)
dataset = dataset.batch(batch_size=BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=X)
model = ....
model.fit(dataset, epochs=10)
```

```
dataset = ....
options = tf.data.Options()
options.experimental optimizationmap parallelization = True
dataset = dataset.with_options(options)
```


Parallel Extraction

Parallel Extraction

```
dataset = tf.data.Dataset.list_files([**/*.tfrecord*])

dataset = dataset.interleave(TFRecordPreprocess, num_parallel_cals=Z))
dataset = dataset.map(preprocess, num_parallel_cals=Y)
dataset = dataset.shuffle(dataset.cardinality()//BATCH_SIZE)
dataset = dataset.batch(batch_size=BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=X)
Parallel Extraction

model = ....
model.fit(dataset, epochs=10)
```

Parallel Extraction

```
dataset = tf.data.Dataset.list_files([**/*.tfrecord])

dataset = dataset.interleave(TFRecordPreprocess, num_parallel_cals=Z)
dataset = dataset.map(preprocess, num_parallel_cals=Y)
dataset = dataset.shuffle(dataset.cardinality()//BATCH_STZE)
dataset = dataset.batch(batch_size=BATCH_SIZE)
dataset = dataset.prefetch(buffer_size=X)

model = ....
model.fit(dataset, epochs=10)
tf.data.experimental.AUTOTUNE
```

Improve single host performance

- Prefetch: Parallelize the process of fetching data and feeding data to GPU/TPU
- interleave: Parallel data extraction
- Parallel map: Parallel transformation on data

tf.snapshot

Materialize once, use many

Sometimes the input preprocessing stays the same and it's time consuming

You can store the preprocessed data on disk and read it faster next time.

- Experimenting with different model architectures
- Hyperparameter tuning

tf.snapshot

model.fit(train ds, epochs=10)

Available in TF 2.3

tf.data.experimental.snapshot

```
AUTOTUNE = tf.data.experimental.AUTOTUNE

dataset = tf.data.Dataset.TFRecordDataset('*/*.tfrecord')

dataset = dataset.map(expensive_preprocess, num_parallel_cals=AUTOTUNE)

dataset = dataset.snapshot('/path/to/snapshot_dir')

dataset = dataset.map(augment, num_parallel_cals=AUTOTUNE)

dataset = dataset.shuffle(buffer_size=1024)

dataset = dataset.batch(batch_size=BATCH_SIZE)

dataset = dataset.prefetch()

No randomization in
```

No randomization in processes before tf.snapshot. Data would be frozen after tf.snapshot process.

Let's code

Practice#2: Digikala Products Color Classification

Practice #2: Digikala products color classification

In this task, we practice *tf.data* to feed batches of images to a deep model which have to classify images based on their color features.

What we learn in this notebook:

- tf.py_function
- albumentation
- Classification Evaluation Metrics
- transfer learning
- Tensorboard GradCam plot
- Tensorboard Confusion matrix
- Tf.profile

Click on the image to open notebook in kaggle

Boosting performance on accelerators

tf.function

```
def train_step(x, y):
    with tf.GradientTape() as tape:
        logits = model(x, training=True)
        loss_value = loss_fn(y, logits)
    grads = tape.gradient(loss_value, model.trainable_weights)
    optimizer.apply_gradients(zip(grads, model.trainable_weights))
    train_acc_metric.update_state(y, logits)
    return loss_value

def test_step(x, y):
    val_logits = model(x, training=False)
    val acc_metric.update_state(y, val_logits)
```

EagerTensor to Graph Mode

EagerTensor VS Graph Mode

Graph Mode

- Platform independent (could be deployed to python-free servers, phone)
- Graph-based optimizations (Faster speed/Memory efficient)
- Must use tf.Session to see the results.
-

EagerTensor

- Simplifies the model building experience
- Quick iteration without building graphs
- Enables inspection of running models
- Dynamic models with complex flow
- Enables profiling the bottlenecks
- Not as fast as graph mode.

Source: https://b2n.ir/q57431

XLA

TensorFlow > Resources > XLA

XLA: Optimizing Compiler for Machine Learning

XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear algebra that can accelerate TensorFlow models with potentially no source code changes.

The results are improvements in speed and memory usage: e.g. in BERT MLPerf submission using 8 Volta V100 GPUs using XLA has achieved a ~7x performance improvement and ~5x batch size improvement:

```
def.function (it_compile=True)

def train step(x, y):
    with tf.GradientTape() as tape:
        logits = model(x, training=True)
        loss value = loss fn(y, logits)
    grads = tape.gradient(loss value, model.trainable weights)
    optimizer.apply gradients(zip(grads, model.trainable_weights))
    train acc metric.update_state(y, logits)
    return loss_value
```

```
tf.keras.backend.clear_session()
tf.config.optimizer.set_jit(True) # Start with XLA Enabled.
```

Also available for

- <u>JAX</u> (Python+NumPy)
- Julia
- PyTorch
- Elixir

Note: 1st epoch is gonna be slow (compiling in the time of execution)

tensorflow

- https://www.tensorflow.org/xla
- https://www.youtube.com/watch?v=kAOanJczHA0

XLA Performance

Mixed Precision Strategy

Mixed Precision Strategy

Mixed Precision Strategy

More performance!?

Synchronous Training

Multi-GPU Training

- <u>replicas</u> are run in lock-step synchronizing gradients at each step.
- All-reduce: network efficient way to aggregate gradients.

```
strategy = tf.distribute.MirroredStrategy()
strategy = tf.distribute.MirroredStrategy(devices=['gpu:0', 'gpu:1'])
strategy = tf.distribute.MirroredStrategy(
    cross_device_ops=tf.distribute.NcclAllReduce(num_packs=2)
)
with strategy.scope():
    model = tf.keras.applications.ResNet50()
    optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
    model.compile(..., optimizer=optimizer)
    model.fit(train_data, epochs=13)
```


Multi-GPU Performance

Multi-GPU Performance

ResNet50 v1.5 Performance with tf.distribute.MirroredStrategy

source: https://www.youtube.com/watch?v=60vfZW8pepo

Multi-worker Synchronous Training

 Workers are run in lock-step synchronizing gradients at each step.

```
strategy =
tf.distribute.experimental.MultiWorkerMirroredStrategy()
strategy =
tf.distribute.experimental.MultiWorkerMirroredStrategy(
    tf.distribute.experimental.CollectiveCommunicationNCCL
)

os.environ['TF CONFIG'] = json.dumps({
    'cluster': {
        "worker": ["hostl:port", "host2:port", "host3:port"]
    },
    "task": {"type": "worker", "index": 1}
})
```


References

- Many thanks to Alireza Akhavanpour and his insightful slides
- A survey on Image Data Augmentation for Deep Learning
- Albumentation github repository
- imgaug github repository
- How to apply keras ImageDataGenerator into segmentation task?
- Keras how to generate data on the fly
- <u>Violence detection and classification on kaggle violence dataset (use case of keras.utils.sequence)</u>
- <u>Stackoverflow question: tf.data vs keras.utils.sequence performance</u>
- Inside TensorFlow: tf.data + tf.distribute
- Scaling Tensorflow data processing with tf.data (TF Dev Summit '20)
- Kaggle code for image classification on Digikala products (Use case of tf.data)
- Tensorflow docs | tf.function tutorial
- <u>TowardsDataScience</u>: <u>Eager Execution vs. Graph Execution in TensorFlow</u>: <u>Which is Better?</u>
- Tensorflow docs for XLA
- Youtube tensorflow XLA tutorial
- Tensorflow docs | Mixed Precision and how to apply it in custom loop.
- NVIDIA Developer How To Series: Mixed-Precision Training
- Icons from: https://www.flaticon.com/authors/linector

Thank You

If you like the content, consider:

- Voting for <u>my code</u> in Kaggle.com
- 50 Claps for <u>my articles</u> in Medium.com