# Homework 3

## **SETUP**

```
In [59]:
         ####SETUP####
         import numpy as np
         import matplotlib.pyplot as plt
         def driver(F='Nan',A='Nan',B='Nan',tol='Nan'):
             # use routines
             f = lambda x: (x-1)*x**2
             a = 0.5
             b = 2
             if F == 'Nan':
                 F=f
             if A == 'Nan':
                 A=a
             if B =='Nan':
                  B=b
             # f = lambda x: np.sin(x)
             \# a = 0.1
             \# b = np.pi+0.1
             if tol == 'Nan':
                  tol = 1e-5
              [astar,ier,count] = bisection(F,A,B,tol)
             print('the approximate root is',astar)
             print('the error message reads:',ier)
             print("The number of iterations is:",count)
             print('f(astar) =', F(astar))
         # define routines
         def bisection(f,a,b,tol):
         # Inputs:
         # f,a,b - function and endpoints of initial interval
         # tol - bisection stops when interval length < tol
         # Returns:
         # astar - approximation of root
         # ier - error message
         # - ier = 1 => Failed
         # - ier = 0 == success
         # first verify there is a root we can find in the interval
             fa = f(a)
             fb = f(b)
             count = 0
             if (fa*fb>0):
                 print("same sign")
                  ier = 1
                  astar = a
                  return [astar, ier,count]
```

```
# verify end points are not a root
    if (fa == 0):
        print("a=0")
        astar = a
        ier =0
        return [astar, ier, count]
    if (fb ==0):
        print("b=0")
        astar = b
        ier = 0
        return [astar, ier, count]
    d = 0.5*(a+b)
    while (abs(d-a)> tol):
        fd = f(d)
        if (fd ==0):
            print("d=0")
            astar = d
            ier = 0
            return [astar, ier,count]
        if (fa*fd<0):</pre>
            b = d
        else:
            a = d
            fa = fd
        print('a =',a)
        print('b=',b)
        d = 0.5*(a+b)
        count = count +1
        \# print('abs(d-a) = ', abs(d-a))
    print('not in loop')
    astar = d
    ier = 0
    return [astar, ier,count]
def fixedptbetter(g,p0,tol=1e-10,max_iter=100):
     approx = [p0]
     for i in range(max_iter):
          p1=g(p0)
          approx.append(p1)
          if abs(p1-p0)<tol:</pre>
                break
          p0=p1
     return approx,p0
def fixedpt(f,x0,tol,Nmax,iterative):
     ''' x0 = initial guess'''
     ''' Nmax = max number of iterations'''
     ''' tol = stopping tolerance'''
     xlist = [x0]
     count = 0
     while (count <Nmax):</pre>
```

```
count = count +1
x1 = f(x0)
xlist.append(x1)
if (abs(x1-x0) <tol):
    if iterative == True:
        return [xlist,count]
    xstar = x1
    ier = 0
    return [xstar,ier]
    x0 = x1
if iterative == True:
    return xlist,count
xstar = x1
ier = 1
return [xstar, ier]</pre>
```

#### 

- 1. Consider the equation  $2x 1 = \sin x$ .
  - (a) Find a closed interval [a, b] on which the equation has a root r, and use the Intermediate Value Theorem to prove that r exists.
  - (b) Prove that r from (a) is the only root of the equation (on all of  $\mathbb{R}$ ).
  - (c) Use the bisestion code from class (or your own) to approximate r to eight correct decimal places. Include the calling script, the resulting final approximation, and the total number of iterations used.

a)-b)



The above is the analytical solutions for the first two parts of question 1.

c)

```
In [5]: f= lambda x: 2*x-1-np.sin(x)
driver(f,-1,1)
```

the approximate root is 0.8878555297851562 the error message reads: 0 The number of iterations is: 17 f(astar) = -9.146867554155058e-06

## 

- 1. Consider the equation  $2x 1 = \sin x$ .
  - (a) Find a closed interval [a, b] on which the equation has a root r, and use the Intermediate Value Theorem to prove that r exists.
  - (b) Prove that r from (a) is the only root of the equation (on all of  $\mathbb{R}$ ).
  - (c) Use the bisestion code from class (or your own) to approximate r to eight correct decimal places. Include the calling script, the resulting final approximation, and the total number of iterations used.

a)

```
In [13]: f21 = lambda x: (x-5)**9
```

```
driver(f21,4.82,5.2,1e-4)
        the approximate root is 5.000073242187501
        the error message reads: 0
        The number of iterations is: 11
        f(astar) = 6.065292655789404e-38
          b)
In [18]: f22 = lambda \ x: \ x^**9-45^*x^**8+900^*x^**7-10500^*x^**6+78750^*x^**5-393750^*x^**4+1312500^*x^**
          driver(f22,4.82,5.2,1e-4)
        a = 5.01
        b = 5.2
        a = 5.105
        b = 5.2
        a = 5.105
        b = 5.1525
        the approximate root is 5.12875
        the error message reads: 0
        The number of iterations is: 3
        f(astar) = 0.0
          c)
```

This is an error where the boundaries a and b drifted away from the interval immediately. This likely happened in the line where F(a)F(d)<0 is calculated. It is likely that F(d)>0 for the expanded version due to the extra subtraction, but that it should not be, ie F(d)<0 for the un-expanded version.

#### 

- 3. (a) Use a theorem from class (Theorem 2.1 from text) to find an upper bound on the number of iterations in the bissection needed to approximate the solution of  $x^3 + x 4 = 0$  lying in the interval [1, 4] with an accuracy of  $10^{-3}$ .
  - (b) Find an approximation of the root using the bisection code from class to this degree of accuracy. How does the number of iterations compare with the upper bound you found in part (a)?

a)

The maximum error in the bisection method will always be half the interval [a,b]. So if you want the max to be  $10^{-3}$ , you need to satisfy  $(a-b)/2^{n+1}$  or in this case  $10^{-3}=3/(2^{n+1})$  so n=12

b)

```
In [19]: f32=lambda x: x**3+x-4 driver(f32,1,4,1e-3)
```

```
a = 1
b = 2.5
a = 1
b = 1.75
a = 1.375
b = 1.75
a = 1.375
b = 1.5625
a = 1.375
b= 1.46875
a = 1.375
b= 1.421875
a = 1.375
b= 1.3984375
a = 1.375
b= 1.38671875
a = 1.375
b= 1.380859375
a = 1.3779296875
b= 1.380859375
a = 1.3779296875
b= 1.37939453125
the approximate root is 1.378662109375
the error message reads: 0
The number of iterations is: 11
f(astar) = -0.0009021193400258198
```

This is a good match to how many iterations I said we would need.

#### 

4. **Definition 1** Suppose  $\{p_n\}_{n=0}^{\infty}$  is a sequence that converges to p with  $p_n \neq p$  for all n. If there exists positive constants  $\lambda$  and  $\alpha$  such that

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then  $\{p_n\}_{n=1}^{\infty}$  converges to p with an order  $\alpha$  and asymptotic error constant  $\lambda$ . If  $\alpha = 1$  and  $\lambda < 1$  then the sequence converges linearly. If  $\alpha = 2$ , the sequence is quadratically convergent.

Which of the following iterations will converge to the indicated fixed point  $x_*$  (provided  $x_0$  is sufficiently close to  $x_*$ )? If it does converge, give the order of convergence; for linear convergence, give the rate of linear convergence.

(a) (10 points) 
$$x_{n+1} = -16 + 6x_n + \frac{12}{x_n}, x_* = 2$$

(b) (10 points) 
$$x_{n+1} = \frac{2}{3}x_n + \frac{1}{x_n^2}$$
,  $x_* = 3^{1/3}$ 

(c) (10 points) 
$$x_{n+1} = \frac{12}{1+x_n}, x_* = 3$$

| ω) | $x_{n+1} = bx_n + \frac{12}{x_n} - 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $g(x) = 6x + \frac{1}{2} - 16$ $g'(x) = 6 - \frac{12}{2} \sin[x - 5, x + 5]$ $g''(x) = \frac{24}{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50 | 1   Xm   Xm   - X*   - 2   1 m   Chril - g'(x*) -> from later not as class 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | g(x*)=6-3=3 50 not linear as 1g(x*)] \$\pm\$ 1 \\ \line \length \tag{\tag{1}} \\ \length \tag{1} \\ \length \t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $\lim_{n\to\infty} \frac{ x_{n+1}-x^* }{ x_n-x^* ^2} = \lim_{n\to\infty} \frac{ x_{n+1} }{ x_n ^2} = \lim_{n\to\infty} \frac{ x_n-x^* }{ x_n ^2} = \lim_{n\to\infty} \frac{ x_n-x^* }{ x_n-x^* } = \lim_$ |
| 6) | $g(x) = \frac{2}{3}x + \frac{1}{x^{2}}$ $g(x) = \frac{2}{3} - \frac{2}{x^{3}} e_{n+1} - g(x^{2})e_{n} + \frac{1}{2}g'(x^{2})e_{n}^{2}$ $g''(x) = \frac{6}{x^{4}} \qquad  g'(x)  \leq  o_{n}[3^{1/3} - 5, 3^{1/3} + 5]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | 50 lim kn1 - g'(x*)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | So check < = 2  ein   ent   = 1   g  (xx) = 3   3   = 3 /3 <    so quatratically convergent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | $g(x) = \frac{12}{1+x}, g'(x) = \frac{-12}{(1+x)^2}, g'(x) = \frac{2+}{(1+x)^3}$ $[g'(x)] \le 1 \text{ on } [3-5]^{3+5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | 50 nove len1 = g(x*) = 34 ,0   g(x)   5   70   70   70   70   70   70   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Su lineur convergence with rate 3/4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### 

5. All the roots of the scalar equation

$$x - 4\sin(2x) - 3 = 0,$$

are to be determined with at least 10 accurate digits<sup>1</sup>.

- (a) Plot  $f(x) = x 4\sin(2x) 3$  (using your Python toolbox). All the zero crossings should be in the plot. How many are there?
- (b) Write a program or use the code from class to compute the roots using the fixed point iteration

$$x_{n+1} = -\sin(2x_n) + 5x_n/4 - 3/4.$$

Use a stopping criterium that gives an answer with ten correct digits. (*Hint: you may have to change the error used in determing the stopping criterion.*) Find, empirically which of the roots that can be found with the above iteration. Give a theoretical explanation.

a)

Out[71]: [<matplotlib.lines.Line2D at 0x2869f3c42d0>]



There are 6 crossing points.

b)

```
In [70]: f52 = lambda x: -np.sin(2*x)+5*x/4-3/4
fixedptguesses = [-1,0,1,3,4,6]
for guess in fixedptguesses:
    p0,iter =fixedpt(f52,guess,1e-10,100,False)
    print('xstar=',p0)
    print('fstar =',f51(p0))
    print(iter)
```

```
xstar= -11691525728.540548
fstar = -11691525732.37378
1
xstar= -0.5444424007083105
fstar = 7.476996799482549e-11
0
xstar= -0.544442400663504
fstar = -4.6556536403841164e-11
0
xstar= 3.1618264865119454
fstar = 2.7974245142559084e-10
0
xstar= 3.1618264865177657
fstar = 2.390390108075735e-10
0
xstar= 13142416243.285658
fstar = 13142416242.218386
```

The above code makes it clear that for the points  $P_0=-0.54442400663504$  and  $P_0=3.1618264865119454$  the iteration method works. For the other 4 points, no guess will result in the correct output as the slope at F(x)=0 is too high, therefore the requirement  $G'(x)\leq 1$  is not valid.

```
In [ ]:
```