Projekt

TEORIA I METODY OPTYMALIZACJI

Wstępne testy

Non-dominated Sorting Genetic Algorithm ${\bf NSGA}$

Autor:

Adam Krzykała, 235 411 Jakub Filipowicz, 235 324

Termin: środa TP 11:15

Prowadzący: dr inż. Ewa Szlachcic

Spis treści

1	Test funkcji Kursawe	2
2	Test funkcji Fonseca - Fleming	3
3	Test funkcji Schaffera nr 1	4

1 Test funkcji Kursawe

Rysunek 1: Wzór funkcji Kursawe

Funkcję Kursawe testowano w granicach $-5 < x_i < 5$. Ilość stopni swobody: 3 (x_1, x_2, x_3) .

$$ext{Minimize} = egin{cases} f_1\left(oldsymbol{x}
ight) = \sum_{i=1}^2 \left[-10\exp\!\left(-0.2\sqrt{x_i^2+x_{i+1}^2}
ight)
ight] \ f_2\left(oldsymbol{x}
ight) = \sum_{i=1}^3 \left[|x_i|^{0.8}+5\sin\!\left(x_i^3
ight)
ight] \end{cases}$$

Rysunek 2: Funkcja Kursawe

Rysunek 3: 3000 osobników, 10 iteracji

2 Test funkcji Fonseca - Fleming

Rysunek 4: Wzór funkcji Fonseca - Fleming

Funkcję Fonseca - F
Laminga testowano w granicach $-4 < x_i < 4$. Ilość stopni swobody: 4
 (x_1, x_2, x_3, x_4) .

$$ext{Minimize} = egin{cases} f_1\left(oldsymbol{x}
ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i - rac{1}{\sqrt{n}}
ight)^2
ight] \ f_2\left(oldsymbol{x}
ight) = 1 - \exp\left[-\sum_{i=1}^n\left(x_i + rac{1}{\sqrt{n}}
ight)^2
ight] \end{cases}$$

Rysunek 5: Funkcja Fonseca - FLaminga

Rysunek 6: 1000 osobników, 50 iteracji, n=4

Rysunek 7: 1000 osobników, 50 iteracji,
n=2

3 Test funkcji Schaffera nr 1

Rysunek 8: Wzór funkcji Schaffera nr $1\,$

Funkcję Shaffera testowano w granicach $-100 < x_i < 100$. Ilość stopni swobody: 2 (x_1, x_2) .

$$ext{Minimize} = \left\{ egin{aligned} f_1\left(x
ight) = x^2 \ f_2\left(x
ight) = \left(x-2
ight)^2 \end{aligned}
ight.$$

Rysunek 9: Funkcja Shaffera nr 1

Rysunek 10: 2000 osobników, 35 iteracji