Aula - Computação Gráfica

Visualização Projeção na Prática

Slides para uso pessoal e exclusivo durante o período de aula. Distribuição ou qualquer uso fora do escopo da disciplina é expressamente proibido.

1

Visualização 3D Arbitrária

- · Conhecendo a câmera virtual
- Pode-se especificá-la através de localização e forma
- Localização
 - Posição (um ponto)
 - Look vector e Up vector
- Forma
 - Ângulo de abertura
 - Planos de corte (frontal e traseiro)

2

Visualização 3D Arbitrária

- Achando **u, v** e **w**
 - Nosso Look vector estará ao longo do eixo negativo de ${m w}$
 - O vetor v será normal ao vetor Look e estará no plano formado pelos vetores Look e Up
 - u será mutuamente perpendicular a v e w para formar uma base de sistema de coordenadas da mão direita

Visualização 3D Arbitrária

- Achando **u, v** e **w**
 - Achar **w** é fácil
 - O vetor Look está no negativo de w
 - **w** é um vetor unitário

$$w = \frac{-Look}{\|Look\|}$$

4

Visualização 3D Arbitrária

- Achando *u, v* e *w*
 - Achar **v**
 - Problema: Achar o vetor unitário perpendicular a w
 - - Subtraia a componente ${m w}'$ de Up para obter ${m v}'$ e normalize
 - Para obter ${m w}'$ de Up, escale ${m w}$ pela projeção de Up em ${m w}$

5

Visualização 3D Arbitrária

- Achando **u, v** e **w**
 - Achar u
 - Fazer produto vetorial entre ${m v}$ e ${m w}$

Visualização 3D Arbitrária

- Achando *u, v* e *w*
 - Resumindo

$$w = \frac{-Look}{\|Look\|}$$
$$Up - (Up \cdot w)w$$

 $\overline{\|Up - (Up \cdot w)w\|}$

 $u = v \times w$

 Alternativamente: Calcular w, fazer produto vetorial entre Up e w (ou Look e Up) para achar u, fazer produto vetorial entre w e u para acha v

7

O Volume de Visualização Canônico

- Como transformar um volume de visualização arbitrário para 2D?
 - Volume arbitrário é complexo
 - Reduza para um problema mais simples
 - Volume Canônico de Visualização
- Volume Canônico de Visualização
 - Possui parâmetros (orientação, posição, tamanho, etc.) específicos para facilitar operações de projeção e recorte
 - Antes de transformar objetos de 3D para 2D
 - Transforme todos os objetos da cena para o volume canônico

8

O Volume de Visualização Canônico Paralelo

- Começa na origem
 - Centro do plano frontal de corte (near plane) = (0,0,0)
- Olha ao longo do eixo negativo
 - Look vector = (0,0,-1)
- Up está em y
 - Up vector = (0,1,0)
- Janela de visualização normalizada
 - -1 a 1 na direções x e y
- Planos de corte
 - Frontal z = 0
 - Traseiro z = 1

9(1,1,-1)

- Objetivo
 - Transformar um cena com um volume de visualização arbitrário em um volume canônico
 - Manter a relação entre o volume original e a cena
- · Volume paralelo
 - Precisa de um translação, uma rotação e uma escala

10

Transformação de Normalização

- A transformação 4x4 composta é chamada de transformação de normalização
- A inversa que transforma o canônico em arbitrário é chamada de transformação de visualização
- Lembrar que a câmera é somente um modelo
 - Transformação deve ser aplicada a cada vértice da cena

11

Transformação de Normalização

- Nosso objetivo é fazer os eixos u, v e w do sistema de coordenadas da câmera coincidirem respectivamente com os eixos x, y, e z do sistema de coordenadas do mundo
- Translação
 - Mover a câmera para que o centro do plano de corte frontal esteja na origem
 - Dado uma câmera na posição P_o , o eixo ${m w}$, e as distâncias dos planos de corte frontal, near, e traseiro, far
 - O centro do plano estará em $P_n = P_0$ near*w

- Rotação
 - Precisamos achar a transformação que leve do mundo para a câmera
 - Porém, temos somente os vetores \boldsymbol{u} , \boldsymbol{v} e \boldsymbol{w} descritos no mundo
 - O que nos dá a transformação da câmera para o mundo

$$\begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

- Solução: ache a inversa (transposta no caso da rotação)

$$R_{rot} = \begin{bmatrix} u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z} \end{bmatrix} \xrightarrow{\text{Coordenadas homogeneas}} R_{rot} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

13

Transformação de Normalização

- Escala
 - Queremos x e y entre -1 e 1 e z de 0 a -1
 - O volume já está na origem e apontando para -z
 - Dado a largura width, altura height e as distancias dos planos de corte negre far

14

Transformação de Normalização

- A transformação de normalização do volume paralelo
 - É uma composição de ${\it S_{xyz}}{\it R_{rot}}{\it T_{trans}}$

2 width	0	0	0	$\lceil u_x$	u_{v}	u_z	07 [1	. 0	0	$-P_{nr}$]
0	2 height	0	0	v_x	v_y	v_z	0 0	1	0	$-P_{ny}^{nx}$
0	0	1 far-near	U)	$\begin{bmatrix} w_x \\ 0 \end{bmatrix}$	w_y	W_z	0 0	0	1	$ \begin{bmatrix} -P_{nx} \\ -P_{ny} \\ -P_{nz} \\ 1 \end{bmatrix} $
Λ	Λ	0	1	- 0	U	U	13 -0	. 0	0	

Recorte

- Antes de projetar para 2D
 - Os objetos fora do volume de visualização são eliminados
 - Esse passo é feito mais facilmente no volume canônico
 - Objetos interceptando os planos
 - Devem ser cortados parcialmente

16

Projetar para 2D

- Como projetar um objeto para 2D?
 - Se quer projetar um ponto (x, y, z) basta eliminar z e ficar com (x,y)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ 1 \end{bmatrix}$$

17

O Volume de Visualização Canônico Perspectivo

- Começa na origem
- posição = (0,0,0)
- Olha ao longo do eixo negativo
 - Look vector = (0,0,-1)
- Up está em y
- Up vector = (0,1,0)
- Janela de visualização determinada pelo plano de corte traseiro - -1 a 1 na direções x e y
- Planos de corte

 - Frontal z = c = -near/far (explicado de posteriormente)
 - Traseiro z = -1

- Translação e Rotação
 - Similar ao volume paralelo
 - Translação é mais fácil, pois é direto da posição da câmera
 - Rotação é a mesma

$$T_{trans} = \begin{bmatrix} 1 & 0 & 0 & -P_{0x} \\ 0 & 1 & 0 & -P_{0y} \\ 0 & 0 & 1 & -P_{0z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{rot} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Após esses passos temos

19

Transformação de Normalização

- Escala
 - Deve ser feita para colocar o plano de corte traseiro em
 - z = -1 e com x e y indo de -1 a 1
 - $-\,$ Em z é parecida com a do volume paralelo
 - Contudo, plano frontal não vai para z = 0
 - Passos
 - Ache a largura e altura do plano de corte traseiro (far plane)
 - Use os ângulos de abertura θ_w e θ_h e a distância do plano
 - Monte a matriz de escala **S**_{xyz} apropriada

2

20

Transformação de Normalização

- Escala
 - Objetivo: Escalar para as linhas pontilhadas
 - Escale ao longo de z
 - Pontos em far devem ir para -1
 - Então, $S_z = 1/far$

21

- Escala
 - Escale ao longo de x
 - Dividir pelo tamanho do volume na direção x
 - Usando o ângulo de abertura em x, θ_{w} ache a largura do plano traseiro

22

Transformação de Normalização

- Escala
 - Escale ao longo de x
 - Divida pelo tamanho do volume na direção x
 - Usando o ângulo de abertura em $\textbf{\textit{x}}, \theta_{\textbf{\textit{w}}}$ ache a largura do plano traseiro

$$\frac{L}{far} = \tan\left(\frac{\theta_w}{2}\right) \to L = far \tan\left(\frac{\theta_w}{2}\right)$$

$$S_x = \frac{1}{far \tan\left(\frac{\theta_w}{2}\right)}$$

$$far$$

23

Transformação de Normalização

- Escala
 - Escale ao longo de y
 - Análogo a x
 - Usando o ângulo de abertura em $\emph{\textbf{y}}, \theta_{h}$,ache a altura do plano traseiro

$$S_y = \frac{1}{far \tan\left(\frac{\theta_h}{2}\right)}$$

- Finalmente, monte a matriz

- A transformação de normalização do volume perspectivo
 - Até agora, tem a mesma forma do volume paralelo

$$S_{xyz}R_{rot}T_{trans} = \begin{bmatrix} \frac{1}{far \tan{\left(\frac{\theta_{w}}{2}\right)}} & 0 & 0 & 0 \\ 0 & \frac{1}{far \tan{\left(\frac{\theta_{h}}{2}\right)}} & 0 & 0 \\ 0 & \frac{1}{far \tan{\left(\frac{\theta_{h}}{2}\right)}} & 0 & 0 \\ 0 & 0 & \frac{1}{far} & 0 \end{bmatrix} \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -P_{0x} \\ 0 & 1 & 0 & -P_{0y} \\ 0 & 0 & 1 & -P_{0z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

25

25

Perspectiva e Projeção

- Agora temos o volume canônico perspectivo
- Projetar esse volume para 2D é mais difícil do que no paralelo
- Vamos tornar o problema mais simples
 - Preservando a profundidade relativa
 - Transformação de perspectiva-para-paralelo, M_{pp}

26

Perspectiva e Projeção

- A transformação perspectiva final será uma composição
 - $-M_{pp}S_{xyz}R_{rot}T_{trans}$
- Passo a passo
 - Vamos acompanhar o ponto P_{n} , centro do plano frontal $P_n = P_0 near*w$
 - Ele será movido para sua nova posição
 - $P_n' = S_{xyz} R_{rot} T_{trans} P_n$
 - No eixo negativo, digamos:
 - $P_n' = \begin{pmatrix} 0 & 0 & c \end{pmatrix}$
 - Qual é o valor de *c*?

P₀ é movido para a origem
 P_n é rotacionado para –near*z
 A escala em x e y não afetam
 A escala em z
 Move P_n para (-near/far)*z
 Então c= -near/far

28

Perspectiva e Projeção

- Note que o plano traseiro

 Já está com o tamanho correto
 Já esta na posição correta

 O plano frontal foi parar em

 -near/far

 Precisamos transformar o plano frontal

 Para z = 0
- Linhas passando pela origem
 - $-\,$ Dever se tornar paralelas a ${\it z}$

29

Perspectiva e Projeção

30

- Não existe cisalhamento nessa transformação
 - Então A e B são zero
- Podemos achar C e D usando dois pontos conhecidos
 - $(0,0,-1,1)^T = M_{pp}(0,0,-1,1)^T$
 - $(0,0,0,1)^T = M_{pp}(0,0,-n,1)^T$
 - Em que, n = -c = near/far
- Resolvendo
 - -C + D = -1
 - => D = C 1 => D = 1/(1-n) 1 => D = n/(1-n)
 - -Cn + D = 0
 - $\begin{array}{c} \mathsf{C} n + \mathsf{D} = \mathsf{O} \\ \bullet \ \ \, = \ \ \, \mathsf{C} n + \mathsf{C} \mathsf{1} = \mathsf{0} = \ \ \, \mathsf{C} = \mathsf{1}/(\mathsf{1} n) \left[\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1 n} & \frac{n}{1 n} \\ 0 & 0 & -1 & 0 \end{matrix} \right] \end{array}$

31

Perspectiva e Projeção

- Após a aplicação da transformação perspectiva
 - Será necessário dividir por w
 - Isso resulta em
 - $x' = -\frac{x}{z} \qquad y' = -\frac{y}{z}$
 - E uma transformação não linear em z: $z' = \frac{c-z}{z(1+c)} \label{eq:z'}$

$$z' = \frac{c - z}{}$$

(0, 0, -1)

32

Perspectiva e Projeção

- Exemplos práticas
 - Quanto mais próximo do plano frontal um objeto está
 - Mais ele é escalado preservando as distâncias relativas em ${\it z}$
 - Linhas paralelas

Exemplos práticas

34

Perspectiva e Projeção

• Transformação perspectiva causa compressão do z

- Quanto mais próximos do plano de corte traseiro

Homogeneização

• Mais o z fica comprimido

· Vamos olhar um caso geral

$$M_{pp} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1+c} & \frac{-c}{1+c} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} x \\ \frac{y-c}{1+c} \\ 1-z \end{bmatrix} \rightarrow \begin{bmatrix} -x/z \\ -y/z \\ \frac{c-z}{z+zc} \\ 1 \end{bmatrix}$$

Analisando o novo valor de z, z' = \frac{c-z}{z(1+c)}
 Se mantivermos c constante em -0.1

• E plotarmos um gráfico

35

Perspectiva e Projeção

- Transformação perspectiva causa compressão do z
 - Pode-se ver uma compressão dos valores próximos do plano de corte traseiro
 - Pode causar problemas para determinar o objeto visível

- Pode ser tentador colocar
 - O plano frontal de corte em zero
 - O plano traseiro de corte no infinito
- Porém, c = -near/far tende a zero em qualquer dos dois casos
 - Isso resulta em:

$$z' = \frac{c-z}{(z-z*c)} = -\frac{z}{z} = -1$$

- · Se todos os planos caírem na mesma distância
 - Não teremos como identificar quem está na frente de quem

37

37

Transformação de Normalização Completa

- A transformação de normalização completa
 - Transforma do volume perspectivo
 - Para um volume canônico paralelo

- Após a transformação é necessário homogeneizar
 - Dividir por w
- Agora, assim como no volume paralelo
 - Basta eliminar a coordenada z

38

Transformação Window-to-Viewport

- O último passo é redimensionar os objetos
 - Para atender ao tamanho do viewport

Resumo da Visualização	
 Para todos os pontos da cena Aplique as transformações de modelagem Aplique as transformações da câmera Transformar no volume canônico Projete para o filme (2D) 	
 Redimensione a janela de visualização para o viewport Mapeie as cores dos pontos (x, y) da janela para os pixels (u, v) do viewport 	
 Alguns passos foram omitidos e serão vistos em aulas futuras Recorte Determinação da superfície visível 	
Visualização em OpenGL	
• Em OpenGL	
 A matriz ModelView engloba Transformações de modelagem do mundo Transformação da câmera Rotação e Translação 	
 A matriz <i>Projection</i> engloba Escala Perspectiva para paralela 	
41	
Perguntas ?????	
42	