

CSC3100 Data Structures Lecture 24: Graph shortest path, topological sort

Yixiang Fang
School of Data Science (SDS)
The Chinese University of Hong Kong, Shenzhen

- Shortest path problem
 - Graphs with non-negative weights
 - · Single-Source Shortest Path: Dijkstra's algorithm
 - · All-Pair Shortest Path: Floyd's algorithm
 - Graphs with negative weights
 - Bellman-Ford algorithm
- Topological sort

Negative-weight edges

Negative-weight edges may form negative-weight cycles

If such cycles are reachable from the source, then $\delta(s, v)$ is not properly defined!

• Keep going around the cycle, and get $w(s, v) = -\infty$ for all v on the cycle

Is Dijkstra's algorithm still applicable for graphs with negative weights?

 Dijkstra's algorithm cannot handle a graph that has negative weights but no negative cycles

How to handle a graph that has negative weights but no negative cycles?

Bellman-Ford algorithm

- Single-source shortest path problem
 - Computes $\delta(s, v)$ and p[v] for all $v \in V$
- Allows negative edge weights can detect negative cycles
 - Returns TRUE if no negative-weight cycles are reachable from the source s
 - Returns FALSE otherwise => no solution exists

Bellman-Ford algorithm (cont'd)

▶ Idea:

- Each edge is relaxed |V|-1 times by making |V|-1 passes over the whole edge set
- Any path will contain at most |V|-1 edges


```
For each edge (u, v), do relaxation:

If d[v] > d[u] + w(u, v)

\Rightarrow d[v] = d[u] + w(u, v)
```

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

BELLMAN-FORD(V, E, w, s)

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Edge order: (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

Detecting negative cycles (perform extra test after |V|-1 iterations)

- for each edge (u, v) ∈ E
- **do if** d[v] > d[u] + w(u, v)
- then return FALSE
- return TRUE

Look at edge (s, b):

$$d[b] = -1$$

 $d[s] + w(s, b) = -4$

$$\Rightarrow$$
 d[b] > d[s] + w(s, b)

BELLMAN-FORD(V, E, w, s)

```
1. INITIALIZE-SINGLE-SOURCE(V, s) \longleftrightarrow \Theta(|V|)

2. for i \leftarrow 1 to |V| - 1 \longleftrightarrow O(|V|)

3. do for each edge (u, v) \in E \longleftrightarrow O(|E|) \longleftrightarrow O(|E|)

4. do RELAX(u, v, w)

5. for each edge (u, v) \in E \longleftrightarrow O(|E|)

6. do if d[v] > d[u] + w(u, v)

7. then return FALSE
```

Running time: O(|V||E|)

return TRUE

Key points of BELLMAN-FORD

- After |V|-1 iterations, d values will not be updated or can't be lower any more, and d values store the measure of the shortest path
 - Why? How to prove its correctness?

Shortest path properties

Upper-bound property

- We always have $d[v] \ge \delta(s, v)$ for all v
- The estimate never goes up relaxation only lowers the estimate

Shortest path properties

Convergence property

If $s \sim u \rightarrow v$ is a shortest path, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times after relaxing (u, v)

- If $d[v] > \delta(s, v) \Rightarrow$ after relaxation: d[v] = d[u] + w(u, v) d[v] = 5 + 2 = 7
- Otherwise, the value remains unchanged, because it must have been the shortest path value

Shortest path properties

Path relaxation property

Let $p=\langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from $s=v_0$ to v_k

If we relax, in order, (v_0, v_1) , (v_1, v_2) , . . . , (v_{k-1}, v_k) , even intermixed with other relaxations, then $d[v_k] = \delta(s, v_k)$

Correctness of Belman-Ford algorithm

- ▶ **Theorem:** Show that $d[v] = \delta(s, v)$, for every v, after |V| 1 passes
- Case 1: G does not contain negative cycles which are reachable from s
 - Assume that the shortest path from s to v is $p = \langle v_0, v_1, \dots, v_k \rangle$, where $s = v_0$ and $v = v_k$, $k \le |V|-1$
 - Use mathematical induction on the number of passes i to show that:

$$d[v_i] = \delta(s, v_i), i=0,1,...,k$$

Correctness of Belman-Ford algorithm

Base case: i=0, $d[v_0] = \delta(s, v_0) = \delta(s, s) = 0$

Inductive hypothesis: $d[v_{i-1}] = \delta(s, v_{i-1})$

Inductive step: $d[v_i] = \delta(s, v_i)$

After relaxing (v_{i-1}, v_i) (convergence property): $d[v_i] \le d[v_{i-1}] + w = \delta(s, v_{i-1}) + w = \delta(s, v_i)$

From the upper bound property: $d[v_i] \ge \delta(s, v_i)$

Therefore, $d[v_i] = \delta(s, v_i)$

Correctness of Belman-Ford algorithm

 Case 2: G contains a negative cycle which is reachable from s

Proof by
Contradiction:
suppose the

suppose the algorithm returns a solution

After relaxing (v_{i-1}, v_i) : $dist[v_i] \le dist[v_{i-1}] + w(v_{i-1}, v_i)$

$$\implies \sum_{i=1}^{k} dist[v_i] \le \sum_{i=1}^{k} dist[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

$$\implies \sum_{i=1}^{k} w(v_{i-1}, v_i) \ge 0 \left(\sum_{i=1}^{k} dist[v_i] = \sum_{i=1}^{k} dist[v_{i-1}] \right)$$

- An ordering of all vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears after v_i in the ordering
- If there is no path between v_i and v_j , then any order between them is fine
- Applications: job scheduling, logistics planning, course selection, etc.

- Topological ordering is not possible if there is a cycle in the graph
- A DAG has at least one topological ordering
- A simple algorithm
 - Compute the indegree of all vertices from the adjacency information of the graph
 - Find any vertex with no incoming edges
 - Print this vertex, and remove it, and its edges
 - Apply this strategy to the rest of the graph

/* Assume that the graph is already read into an adjacency list and that the indegrees are computed and placed in an array */

```
void topsort () {
     for (int counter = 0; counter < numVertex; counter++) {
          Vertex v = FindNewVertexOfInDegreeZero (); //check all vertices
          if (v == null) {
                Error("Cycle Found"); return;
          v.topNum = counter;
          for each Vertex w adjacent to v
                w.indegree--;
                     Running time is O(|V|^2)
```


- ▶ An improved algorithm: O(|E|+|V|) time
 - Keep all the unassigned vertices of indegree 0 in a queue
 - While queue is not empty,
 - Remove a vertex in the queue
 - Decrease the indegrees of all adjacent vertices
 - If the indegree of an adjacent vertex is 0, enqueue the vertex

	Indegree Before Dequeue #						
Vertex	1	2	3	4	5	6	7
v_1	0	0	0	0	0	0	0
v_2	1	0	0	0	0	0	0
v_3	2	1	1	1	0	0	0
v_4	3	2	1	0	0	0	0
<i>v</i> ₅	1	1	0	0	0	0	0
<i>v</i> ₆	3	3	3	3	2	1	0
v_7	2	2	2	1	0	0	0
Enqueue	v_1	v_2	<i>v</i> ₅	v_4	v_3, v_7		v_6
Dequeue	v_1	v_2	<i>v</i> ₅	v_4	<i>v</i> ₃	v_7	v_6

Compute the topological sort of this graph

One topological sort result: A, B, C, D, E, F, H, G

Recommended reading

- Reading this week
 - Textbook Chapters 24-25
- Next lecture
 - Some data structures in Java JDK