DSCI 510 HW5 Final Project Description

Name: Wenyu Yang

USC ID: 2609125538

Proposal:

The topic of my final project is finding the relationship between the percentage of at least one dose, percentage of fully vaccinated, percent of a booster dose, and confirm cases percentage by CA counties. The vaccinations do help decrease the confirmed cases.

Motivation:

The main motivation for me to choose this topic is to provide vaccinations to help decrease the confirmed cases and see which factors receiving 1 dose, completion, and booster will have larger influences on confirmed cases in each CA county. Since not everyone has received the same doses of vaccine, I hope the result of this project may help people to consider the importance of vaccinations and whether to receive booster in the future.

Data Source:

There are three datasets.

1. The counties dataset was web scrapping from Wiki. The link is https://en.wikipedia.org/wiki/List_of_counties_in_California. I scrapped the 58 county names populations and areas and stored them in a single csv file.

	county	population	area
0	Alameda Cou	1,648,556	738
1	Alpine Count	1,235	739
2	Amador Cou	41,259	606
3	Butte County	208,309	1,640
4	Calaveras Co	46,221	1,020
5	Colusa Count	21,917	1,151
6	Contra Costa	1,161,413	720
7	Del Norte Co	28,100	1,008
8	El Dorado Co	193,221	1,712

2. The community_level dataset was collected by an External public API (https://data.cdc.gov/resource/3nnm-4jni.json). I extracted count, date, community level, and case_per_100k from the lastest three weeks and stored them in a single csv file.

	county	date	level	case
0	Alameda County	2/24/22	Low	9.1
1	Alameda County	3/3/22	Medium	7.4
2	Alameda County	3/10/22	Low	6
3	Alameda County	3/24/22	Low	3.8
4	Alameda County	3/17/22	Low	4.1
5	Alameda County	3/31/22	Low	3.1
6	Alameda County	4/7/22	Low	2.3
7	Alpine County	2/24/22	Medium	14.7
8	Alpine County	3/3/22	Low	5.6
9	Alpine County	3/10/22	Low	6.2
10	Alpine County	3/24/22	Low	2.2

3. The vaccinations dataset was collected by External public API(https://data.cdc.gov/resource/8xkx-amqh.json). I extracted county, date, dose_1_numb, completion_number, and booster_number from the lastest 50 days and stored them in a single csv file. For both of the External public API datasets, I used county list which I extracted from web scrapping.

	county	date	dose_1_num	completion_nu	booster_number	population
0	Alameda County	5/9/22	1519822	1374455	848008	1671329
1	Alameda County	5/8/22	1519637	1374312	847627	1671329
2	Alameda County	5/7/22	1519216	1373985	846803	1671329
3	Alameda County	5/6/22	1518927	1373734	846118	1671329
4	Alameda County	5/5/22	1518566	1373471	845552	1671329
5	Alameda County	5/4/22	1518265	1373215	844965	1671329
6	Alameda County	5/3/22	1518028	1373025	844432	1671329
7	Alameda County	5/2/22	1517925	1372960	844223	1671329
8	Alameda County	5/1/22	1517780	1372837	843824	1671329
9	Alameda County	4/30/22	1517368	1372492	842862	1671329
10	Alameda County	4/29/22	1516833	1372132	841914	1671329

How does the whole combined data system work:

Each dataset contains a list of county names (primary key). The counties dataset has the primary key county, the vaccinations dataset also has the county variable, date,

dose_1_numb,completion_number, and booster_number from the lastest 50 days. The community_level dataset also has the county variable, date, level, and case_per_100k. I first contacted three data frames with their common values based on date and county. Then I found out there are empty values (Na) in the data frame, I chose to drop those rows containing NaN and used the rest of the rows to analyze.

For fitting a multiple regression model and single regression models, I only keep the dose_1_numb,completion_number,booster_number, and case to fit models and draw conclusions.

100	dose_1_numb	completion_number	booster_number	case
0	1506492.0	1363793.0	819805.0	380000.0
1	1508616.0	1365623.0	824169.0	310000.0
2	1510429.0	1367237.0	828698.0	230000.0
3	26570.0	20998.0	9497.0	550000.0
4	26637.0	21029.0	9546.0	380000.0
124	171742.0	154039.0	87382.0	490000.0
125	171948.0	154258.0	87887.0	400000.0
126	47474.0	42374.0	15437.0	560000.0
127	47539.0	42463.0	15584.0	510000.0
128	47629.0	42537.0	15753.0	610000.0

Analysis performed:

I create **three pie charts** based on three days of data I collected. Among those three pie charts, I can tell as time goes on, the number of low levels increases. On 2022-03-24, medium level = 2%, low level=98%. On 2022-03-31, medium level=0%, low level=100%. On 2022-04-07, medium level=0%, low level=100%. The severity of Covid-19 is decreasing.

I create **a line plot** using the confirmed cases and county as y and x and categorize them by three different dates. Based on the plot shown, We can conclude that as time goes on, overall confirmed cases are decreasing.

I create a pairwise plot between independent variables dose1_num, completion_number, booster_number, and dependent variable case. As the pairwise plot shows, I found that there are

some positive linear relationships between variables. However, there are not enough data to support the conclusion, I need further modeling.

First, I fit a multiple regression model with all variables

dose_1_numb,completion_number,booster_number. All the p-values are extremely large larger than 0.05. I fail to reject the null hypothesis and indicate there is a multiple linear relationships between dose_1_numb,completion_number,booster_number, and case.

						===
Dep. Variable:		case	R-squared:			082
Model:			Adj. R-square	ed:	0.	060
Method:	Least	Squares	F-statistic:		3.	738
Date:	Tue, 10 1	May 2022	Prob (F-stati	stic):	0.0	130
Time:	i i	00:53:27	Log-Likelihoo	d:	-173	1.0
No. Observations:		129	AIC:		34	70.
Df Residuals:		125	BIC:		34	81.
Df Model:		3				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	4.216e+05	1.63e+04	25.858	0.000	3.89e+05	4.54e+05
dose_1_numb	-0.1693	0.223	-0.758	0.450	-0.611	0.273
completion_number	0.2143	0.401	0.534	0.594	-0.580	1.008
booster_number	-0.1222	0.318	-0.385	0.701	-0.751	0.506
Omnibus:		13.237	Durbin-Watson	:	1.	588
Prob(Omnibus):		0.001	Jarque-Bera (JB):	16.	485
Skew:		0.607	Prob(JB):		0.000	263
Kurtosis:		4.262	Cond. No.		2.30e	+06

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.3e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Second, I fit a single regression model between dose_1_number and case. The p-values= 0.001 which is smaller than 0.05. It indicates there is a linear relationship between dose_1_numb and case. However, the R-squared= 0.079 indicates the accuracy of this model = 7.9% which is extremely low. I need further re-build this model to increase accuracy.

		OLS Regre	ssion Resu	ılts			
Dep. Variable	 ::	case	R-squar	ed:		0.079	
Model:		OLS	Adj. R-	squared:		0.072	
Method:		Least Squares	F-stati	stic:		10.92	
Date:	Tu	e, 10 May 2022	Prob (F	-statistic)	:	0.00124	
Time:		00:53:30	Log-Lik	Log-Likelihood:		-1731.2	
No. Observati	lons:	129	AIC:			3466.	
Df Residuals:	•	127	BIC:			3472.	
Of Model:		1					
Covariance Ty	/pe:	nonrobust					
		std err				-	
		1.62e+04					
ose_1_numb	-0.0362	0.011	-3.305	0.001	-0.058	-0.015	
======== nnibus:		13.713	 -Durbin	======== -Watson:	=======	1.580	
rob(Omnibus)	:	0.001	Jarque-	Bera (JB):		16.803	
kew:		0.636	Prob(JE	3):		0.000225	
Kurtosis:		4.227	Cond. N	lo.		1.65e+06	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.65e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Third, I fit a single regression model between completion_number and case. The p-values= 0.002 which is smaller than 0.05. It indicates there is a linear relationship between completion_number and case. However, the R-squared= 0.076 which indicates the accuracy of this model = 7.6% which is extremely low. I need further re-build this model to increase accuracy.

OLS Regression Results						
						===
Dep. Variable:		case	R-squared:		0.	076
Model:		OLS	Adj. R-squar	red:	0.	069
Method:	Least	Squares	F-statistic	•	10	.44
Date:	Tue, 10 N	May 2022	Prob (F-stat	tistic):	0.00	157
Time:	(00:53:32	Log-Likeliho	ood:	-173	1.4
No. Observations:		129	AIC:		34	67.
Df Residuals:		127	BIC:		34	73.
Df Model:		1				
Covariance Type:	no	onrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	4.206e+05	1.62e+04	25.997	0.000	3.89e+05	4.53e+05
completion_number	-0.0408	0.013	-3.231	0.002	-0.066	-0.016
Omnibus:		13.716	Durbin-Watso	on:	1.	=== 570
Prob(Omnibus):		0.001	Jarque-Bera	(JB):	16.	681
Skew:		0.641	Prob(JB):		0.000	239
Kurtosis:		4.209	Cond. No.		1.43e	+06
=============						===

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.43e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Fourth, I fit a single regression model between booster_number and case. The p-values= 0.002 which is smaller than 0.05. It indicates there is a linear relationship between booster_number and case. However, the R-squared= 0.070 indicates the accuracy of this model = 7.0% which is extremely low. I need further re-build this model to increase accuracy.

OLS Regression Results								
Dep. Variable:		case	R-squared:		0.070			
Model:		OLS	Adj. R-squ	ared:		0.063		
Method:	Le	ast Squares	F-statisti	c:		9.584		
Date:	Tue,	10 May 2022	Prob (F-st	atistic):	0	.00242		
Time:		00:53:34	Log-Likeli	hood:	-1731.8			
No. Observation	s:	129	AIC:			3468.		
Df Residuals:		127	BIC:			3473.		
Df Model:		1						
Covariance Type	:	nonrobust						
=======================================								
	coef	std err	t	P> t	[0.025	0.975]		
const								
booster_number	-0.0777	0.025	-3.096	0.002	-0.127	-0.028		
=========								
Omnibus:			Durbin-Wat	son:		1.551		
Prob(Omnibus):		0.001	Jarque-Ber	a (JB):		16.138		
Skew:	0.631 Pr			Prob(JB): 0.00031		000313		
Kurtosis: 4.187 Cond. No. 7.18e+05					18e+05			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.18e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Describe any technical challenges for solving the problem and how you overcame them:

There are two main technical challenges I faced.

- 1. When plotting a pairwise plot, only a histogram shows between case and case variables. Rest plots of the variables did not show.
- 2. There are Na values (empty values) in the data frame. To avoid them during modeling. I need to drop all the rows that contain empty values.
- 3. I need to call the function I wrote in other .py files when extracting data from external API. For example, the get_community_level function in community_level_api.py needs a list of the county as the query. The list of the county can be obtained from get_county() in counties web scraping.py.

Overcame:

- 1. I googled the seaborn official documents and realized maybe the dtypes for variables are not float. I use type() function to check dtype for each variables, and found out that dose_l_numb,completion_number,booster_number are dtype: object. Then, I used. astype() function changed to dtype: float64. Finally, the pairwise plot shows all relationships among all variables.
- 2. I googled the pandas official documents to solve the problem. First, I used. replace() function to replace all 'Na' values into np.nan. Then, I used. dropna() function to drop those rows.
- 3. I googled and found out that I can import the counties_web_scraping.py as a package to use get county() in order to obtain the list of county names.

Conclusion:

Overall, I can conclude that there is a negative relationship between dose_1_number and case. There is a negative relationship between completion_number and case. There is a negative relationship between booster_number and case. It means that the more numbers receiving 1 dose vaccination or completion of vaccination or booster, the lower confirm cases in each county. It also means that no matter if you only receive 1 dose of vaccination or completion of vaccination or booster, the chance of confirming Covid-19 will decrease. The improvement for this project is that the data I collected was not enough to find and perfect a regression model. However, the datasets still confirm my proposal for this project.