Homework 2 of Computational Mathematics

Chang, Yung-Hsuan 111652004 Department of Applied Mathematics ${\rm April}\ 1,\ 2024$

Problem 1. Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^3 - x - 1 = 0$ on [1, 2]. Use $p_0 = 1$.

Solution. By Algebra, we have

$$x^{3} - x - 1 = 0$$

$$x^{2} = 1 + \frac{1}{x}$$

$$x = \sqrt{1 + \frac{1}{x}}$$

for x > 0. We want to find the solution to f(x) = x with $f(x) = \sqrt{1 + \frac{1}{x}}$. Then, by calculator,

$$p_1 = \sqrt{2} = 1.414,$$

 $p_2 = 1.307,$
 $p_3 = 1.329,$
 $p_4 = 1.324,$

which is accurate to within 10^{-2} for $x^3 - x - 1 = 0$ on [1, 2].

Problem 2. Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1,4]. Find an approximation to the root with this degree of accuracy.

Solution. Let $f(x) = x^3 + x - 4$. Since $f \in C[1, 4]$ and $f(1) \cdot f(4) = (-2) \cdot 64 < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approaches to a zero p of f with

$$|p_n - p| \le \frac{4 - 1}{2^n}, \quad \text{when } n \ge 1.$$

Then,

$$\frac{3}{2^n} \le 10^{-3} \implies n \ge \log_2(3000) > 11.$$

```
₱ 111652004_CM_HW2_P2.py U X
<sup>1</sup> 111652004_CM_HW2.tex U
HW2 > 🏺 111652004_CM_HW2_P2.py > ...
       end point 1 = 1
       end_point_2 = 4
       tolerance = 0.001
       maximum_number_of_iterations = 50
       p_0 = 2.5
       i = 1
       def f(x):
           return x^{**}3 + x - 4
 10
      FA = f(end_point_1)
       while i <= maximum number of iterations:
           p = end_point_1 + (end_point_2 - end_point_1) / 2
           FP = f(p)
           if (p == 0 or (end_point_2 - end_point_1) / 2 < tolerance):</pre>
                print(f"p = {p} with {i} iterations.")
                exit(0)
           i = i + 1
           if FA * FP > 0:
                end point 1 = p
                FA = FP
                end_point_2 = p
       print(f"Method failed after {maximum_number_of_iterations}.")
                                TERMINAL
PS E:\Eiken\Visual Studio Code Git Sync\CM_HW> & C:/Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe
p = 1.378662109375 with 12 iterations.
```

Using the bisection method, by Python, p = 1.37866.

Problem 3. The following four methods are preposed to compute $21^{1/3}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

a.
$$p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$

b.
$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$$

b.
$$p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$$

c. $p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$
d. $p_n = \sqrt{\frac{21}{p_{n-1}}}$

d.
$$p_n = \sqrt{\frac{21}{p_{n-1}}}$$

Solution. For a, choose $g_1(x) = \frac{20x + \frac{21}{x^2}}{21} = \frac{20x}{21} + \frac{1}{x^2}$. Then $g_1'(x) = \frac{20}{21} - \frac{2}{x^3}$. Hence

$$g_1'(\sqrt[3]{21}) = \frac{20}{21} - \frac{2}{21} \approx 0.86.$$

For b, choose $g_2(x) = x - \frac{x^3 - 21}{3x^2} = \frac{2x}{3} + \frac{7}{x^2}$. Then $g_2'(x) = \frac{2}{3} - \frac{14}{x^3}$. Hence

$$g_2'(\sqrt[3]{21}) = \frac{2}{3} - \frac{1}{3} \approx 0.33.$$

For c, choose $g_3(x) = x - \frac{x^4 - 21x}{x^2 - 21} = \frac{x^3 - x^4}{x^2 - 21}$. Then $g_3'(x) = \frac{-2x^5 + x^4 + 84x^3 - 63x^2}{x^4 - 42x^2 + 441}$. Hence

$$g_3'(\sqrt[3]{21}) \approx 5.7.$$

For d, choose $g_4(x) = \sqrt{\frac{21}{x}}$. Then $g_4'(x) = \frac{-\sqrt{21}}{2x^{\frac{3}{2}}}$. Hence

$$g_4'(\sqrt[3]{21}) = \frac{1}{2}.$$

To sum up, the apparent speed of convergence in order is b, d, a, and c does not converge (the derivative at $\sqrt[3]{21}$ is greater than 1.) **Problem 4.** Use Theorem 2.3 to show that $g(x) = 2^{-x}$ has a unique fixed point on $\left[\frac{1}{3}, 1\right]$. Use fixed-point iteration to find an approximation to the fixed point accurate to within 10^{-4} . Use corollary 2.5 to estimate the number of iterations required to achieve 10^{-4} accuracy, and compare this theoretical estimate the number actually needed.

Solution. We know that $g \in C\left[\frac{1}{3},1\right]$ and $g(x) \in [0.5,0.9637] \subseteq \left[\frac{1}{3},1\right]$ for all $x \in \left[\frac{1}{3},1\right]$. Then g has at least a fixed point in [a,b]. Moreover, g'(x) exists on $\left(\frac{1}{3},1\right)$. Choose k=0.7. Then

$$\left| \frac{\mathrm{d}}{\mathrm{d}x} 2^{-x} \right| = \ln 2 \cdot 2^{-x}$$

$$< \ln 2 \cdot 2^{-0}$$

$$= \ln 2$$

$$< k$$

for all $x \in (0, \infty)$. Hence, g'(x) exists on $\left(\frac{1}{3}, 1\right)$ and a positive 0 < k < 1 exsits with $|g'(x)| \le k$ for all $x \in \left(\frac{1}{3}, 1\right)$. Then there exists exactly one fixed point in $\left[\frac{1}{3}, 1\right]$. It is known the assumption of Theorem 2.4 holds, i.e., g'(x) exists on $\left(\frac{1}{3}, 1\right)$ and a positive 0 < k < 1 exsits with $|g'(x)| \le k$ for all $x \in \left(\frac{1}{3}, 1\right)$. By Corollary 2.5,

$$|p_n - p| \le 0.7^n \max\{0.6 - \frac{1}{3}, 1 - 0.6\}.$$

Then,

$$0.7^n \max\{0.6 - \frac{1}{3}, 1 - 0.6\} \le 10^{-4} \implies n > 23.$$

```
¹₂x 111652004_CM_HW2.tex U

₱ 111652004_CM_HW2_P4.py U X

HW2 > ♥ 111652004_CM_HW2_P4.py > ...
  1 p_0 = 0.6
       tolerance = 0.0001
       maximum_number_of_iterations = 50
       def g(x):
           return 0.5**x
       while i <= maximum_number_of_iterations:</pre>
            p = g(p_0)
            if abs(p - p_0) < tolerance:</pre>
                print(f"p = \{p\} with \{i\} iterations.")
                exit(0)
            i = i + 1
            p_0 = p
       print(f"Method failed after {maximum_number_of_iterations}.")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS GITLENS COMMENTS
PS \ E: \ Eiken\ Visual \ Studio \ Code \ Git \ Sync\ Mw \ \& \ C: \ Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe
p = 0.6412138835623649 with 9 iterations.
```

By Python, the number of iteration actually needed is 9, which is smaller due to my overestimation for error. \Box

Problem 5. Let A be a given positive constant and $g(x) = 2x - Ax^2$.

- a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is $p = \frac{1}{A}$, so the inverse of a number can be found using only multiplications and subtractions.
- b. Find an interval about $\frac{1}{A}$ for which fixed-point iteration converges, provided p_0 is in that interval.

Solution.

a. Suppose that fixed-point iteration converges to a nonzero limit, say p. We want to show that $p = \frac{1}{A}$. For the sake of contradiction, suppose $p \neq \frac{1}{A}$. Then, by the definition of convergence, we have

$$p = 2p - Ap^2.$$

By the fact that p is nonzero, we further have

$$1 = 2 - Ap$$

which implies Ap = 1, a contradiction.

b. We have $g(x) = 2x - Ax^2$ with $g \in C\left[\frac{2}{3A}, \frac{4}{3A}\right]$ and then

$$g(x) = -A\left(x + \frac{1}{A}\right)^2 + \frac{1}{A}$$
$$\leq -A \cdot \left(\frac{1}{3A}\right)^2 + \frac{1}{A}$$
$$= \frac{1}{A} - \frac{1}{9A}$$
$$= \frac{8}{9A}.$$

Hence $g(x) \in \left[\frac{2}{3A}, \frac{4}{3A}\right]$ for all $x \in \left[\frac{2}{3A}, \frac{4}{3A}\right]$. In addition, g'(x) = 2 - 2Ax exists on $\left(\frac{2}{3A}, \frac{4}{3A}\right)$. Then $|g'(x)| < \frac{2}{3}$ for all $x \in \left(\frac{2}{3A}, \frac{4}{3A}\right)$. By the fix-point theorem, the sequence defined by

$$p_n = g(g_{n-1}), \quad n \ge 1$$

converges to the unique fixed point $\frac{1}{A}$ in $\left[\frac{2}{3A}, \frac{4}{3A}\right]$.

Problem 6. Show that if A is any positive number, then the sequence defined by

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \text{ for } n \ge 1,$$

converges to \sqrt{A} whenever $x_0 > 0$.

Solution. Let A > 0. Let $x_0 > 0$. Let $k \in \mathbb{N}$. Suppose $x_k > 0$. Then $x_{k+1} = \frac{1}{2}x_k + \frac{A}{2x_k} > 0$. Thus $x_k > 0$ for all $k \in \mathbb{N}$. By the AM-GM inequality, we have

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}} \ge \sqrt{A} \tag{6.1}$$

for all $n \in \mathbb{N}$, and the equation does not hold provided that $x_{n-1} = \sqrt{A}$. We now separate three cases for the initial x_0 . First, suppose that $x_0 = \sqrt{A}$. Then it is obvious that $x_k = \sqrt{A}$ for all $k \in \mathbb{N}$. Hence $x_k \to \sqrt{A}$ as $k \to \infty$. We now deal with $x_0 \neq \sqrt{A}$. Suppose $x_0 \neq \sqrt{A}$. Then by (6.1), $x_k > \sqrt{A}$ for all $k \in \mathbb{N}$. Thus

$$x_{k+1} - x_k = \frac{1}{2}x_k + \frac{A}{2x_k} - x_k$$
$$= \frac{A}{2x_k} - \frac{1}{2}x_k$$
$$= \frac{1}{2x_k} \left(A - x_k^2\right)$$
$$< 0$$

for all $k \in \mathbb{N}$, which implies that $\{x_n\}$ is decreasing. Since $\{x_n\}$ is bounded and monotone, by the monotone convergence theorem, $\{x_n\}$ converges. Say the limit is L. Then by the recursive relation, $L = \frac{1}{2}L + \frac{A}{2L}$, which implies $L = \pm \sqrt{A}$. Since $\{x_n\} \subseteq [\sqrt{A}, \infty)$, the limit is \sqrt{A} .

Problem 7. Let $f(x) = -x^3 - \cos x$. With $p_0 = -1$ and $p_1 = 0$, find p_3 .

a. Use the Secant method.

b. Use the method of False Position.

Solution.

a. By the algorithm of the secant method, we have the formula

$$p_n = p_{n-1} - f(p_{n-1}) \cdot \frac{p_{n-1} - p_{n-2}}{f(p_{n-1}) - f(p_{n-2})}.$$

Thus, by calculator,

$$p_2 = 0 - f(0) \cdot \frac{0 - (-1)}{f(0) - f(-1)}$$

$$= \frac{1}{-1 - (1 - \cos(-1))}$$

$$= \frac{1}{-2 + \cos(-1)}$$

$$\approx -0.685,$$

and

$$p_3 = -0.685 - f(-0.685) \cdot \frac{-0.685 - 0}{f(-0.685) - f(0)}$$
$$\approx -1.252.$$

b. We first check that f(-1) and f(0) has different sign. By calculator,

$$f(-1) \approx 0.45$$

and

$$f(0) = -1.$$

By the algorithm of the false position, we have the formula

$$p_n = p_{n-1} - f(p_{n-1}) \cdot \frac{p_{n-1} - p_{n-2}}{f(p_{n-1}) - f(p_{n-2})}.$$

Thus, by calculator,

$$p_2 = 0 - f(0) \cdot \frac{0 - (-1)}{f(0) - f(-1)}$$

$$= \frac{1}{-1 - (1 - \cos(-1))}$$

$$= \frac{1}{-2 + \cos(-1)}$$

$$\approx -0.685.$$

By calculator, $f(p_2) \approx -0.453$. Hence the endpoints become -0.685 and 0. By calculator,

$$p_3 = 0 - f(0) \cdot \frac{0 - (-0.685)}{f(0) - f(-0.685)}$$
$$\approx -0.841.$$

Problem 8. Problems involving the amount of money required to pay off a mortgage over a fixed period of time involve the formula

$$A = \frac{P}{i} \left(1 - (1+i)^{-n} \right),\,$$

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a 30-year home mortgage in the amount of \$135,000 is needed and that the borrower can afford house payments of at most \$1000 per month. What is the maximal interest rate the borrower can afford to pay?

Solution. Using the information, we have

$$A = 135000, \quad P = 1000, \quad \text{and} \quad n = 360,$$

and we aim to solve for i in the following equation

$$f(i) = 0 (8.1)$$

with $f(i) = 135000i - 1000 (1 - (1+i)^{-360})$. We use the bisection method with Python to solve (8.1). By calculator, we have

$$f(0.001) \approx -167.2$$

and

$$f(0.01) \approx 377.8.$$

Since f is continuous, by the intermediate value theroem, there is a solution to f(i) = 0 in (0.001, 0.01). By Python, we have that the solution (month interest) to (8.1) is approximately 0.675%.

```
⊳ ৺ য় Ⅲ …
111652004_CM_HW2.tex M

₱ 111652004_CM_HW2_P8.py U X

HW2 > ♥ 111652004_CM_HW2_P8.py > ...
   1 def f(i):
           return 135000*i-1000*(1-(1+i)**(-360))
       a = 0.001
       b = 0.01
      TOL = 0.0000000001
     # Set the maximum number of iterations
 12 N 0 = 500
      FA = f(a)
       for n in range(N_0):
            i = a + (b - a) / 2
           FI = f(i)
            if FI == 0 or (b - a) / 2 < TOL:
                 print(f"The solution is approximately i_{n + 1} = \{i\}.")
                exit(1)
            if FA * FI > 0:
                 FA = FI
                b = i
                FB = FI
       print(f"The bisection method failed after {N_0} times.")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS GITLENS COMMENTS
PS E:\Eiken\Visual Studio Code Git Sync\CM_HW> & C:/Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe The solution is approximately i_24 = 0.006749917447566986.
```

Problem 9.

- a. Show that for any positive integer k, the sequence defined by $p_n = \frac{1}{n^k}$ converges linearly to p = 0.
- b. Show that the sequence $p_n = 10^{-2^n}$ converges quadratically to 0.

Solution.

a. Let $k \in \mathbb{N}$. It is clear that $\frac{1}{n^k} \to 0$ as $n \to \infty$. Choose $\alpha = 1$. Then

$$\lim_{n \to \infty} \frac{\left| \frac{1}{(n+1)^k} - 0 \right|}{\left| \frac{1}{n^k} - 0 \right|^1} = \left(\lim_{n \to \infty} \frac{n}{n+1} \right)^k$$
$$= 1.$$

Hence the sequence is lienarly convergent.

b. It is clear that $10^{-2^n} \to 0$ as $n \to \infty$. Choose $\alpha = 2$. Then

$$\lim_{n \to \infty} \frac{\left| 10^{-2^{n+1}} - 0 \right|}{\left| 10^{-2^n} - 0 \right|^2} = \lim_{n \to \infty} 10^{-2^{n+1} + 2^{n+1}}$$
$$= 1.$$

Since the asymptotic error constant is $\lambda = 1$, the sequence is quadratically convergent.

Problem 10.

a. The following sequences are linearly convergent. Generate the first five terms of the sequence $\{\hat{p_n}\}$ using Aitken's Δ^2 method.

$$p_0 = 0.5, \quad p_n = \cos(p_{n-1}), \quad n \ge 1$$

b. Use Steffensen's method to find, to an accuracy of 10^{-4} , the root of $x^3 - x - 1 = 0$ that lies in [1, 2].

Solution.

a. Aitken's Δ^2 method requires the first 7 terms of $\{p_n\}$. By calculator, we have the table:

n	p_n
0	0.5
1	0.877583
2	0.639012
3	0.802685
4	0.694778
5	0.768196
6	0.719165

The sequence $\{\hat{p}_n\}$ generated by Aitken's Δ^2 method is defined by the following formula:

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}.$$

By calculator, we have

n	\hat{p}_n
0	0.731385
1	0.736087
2	0.737653
3	0.738469
4	0.738798

b. Using the result in Problem 1, we look for the solution to $x = \sqrt{1 + \frac{1}{x}}$ in [1,2] with $p_0 = 1.3$. By Python, the solution is approximately 1.32472.

```
₱ 111652004_CM_HW2_10b.py U X

111652004_CM_HW2.tex M
HW2 > 🌵 111652004_CM_HW2_10b.py > ...
   1 import math
       def g(p):
      return math.sqrt(1 + 1 / p)
        p_0 = 1.3
  10 TOL = 0.0001
  12 # Set the maximum number of iteration
  13 N_0 = 500
  15 for i in range(N_0):
           p_1 = g(p_0)
           p_2 = g(p_1)
             p = p_0 - (p_1 - p_0) ** 2 / (p_2 - 2 * p_1 + p_0)
             if abs(p - p_0) < TOL:
                 print(f"The solution calculated by Steffensen's method is
                 approximately {p}.")
                 exit(0)
             p_0 = p
        print(f"Steffensen's method failed after {N_0} times.")
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS GITLENS COMMENTS
• PS E:\Eiken\Visual Studio Code Git Sync\CM_HW> & C:/Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe The solution calculated by Steffensen's method is approximately 1.3247179572514045.
```

Problem 11. Given a polynomial $P(x) = x^3 - 5x^2 + 8x - 6$, do the following:

- a. Evaluate P(2), P'(2), P(4), and P'(4) by Horner's method.
- b. Find the root of P(x) with error less than 0.00001 between [2,4] by using the Newton method with initial point $x_0 = 2$ and $x_0 = 4$. Determine which initial point may lead to the root.
- c. Deflate P(x) into a quadartic polynomial by using the results in (b) and find the complex roots of P(x).
- d. Perform one step of Müller's Method starting from initial (0, P(0)), (1, P(1)) and (2, P(2)).
- e. Implement a MATLAB a code of Müller's Method to find the complex root within error less than 0.00001 and compare with the answer you find in (c).

Solution.

a. We first evaluate P(2) and P'(2). The table appears as follows:

	Coefficient of x^3	Coefficient of x^2	Coefficient of x	Constant term
$x_0 = 2$	$a_3 = 1$	$a_2 = -5$	$a_1 = 8$	$a_0 = -6$
		$b_3x_0=2$	$b_2 x_0 = -6$	$b_1 x_0 = 4$
	$b_3 = 1$	$b_2 = -3$	$b_1 = 2$	$b_0 = -2$

Hence

$$P(x) = (x-2)(x^2 - 3x + 2) - 2.$$

We can therefore evaluate P(2) = -2 and $P'(2) = x^2 - 3x + 2\big|_{x=2} = 0$. We now evaluate P(4) and P'(4). The table appears as follows:

	Coefficient of x^3	Coefficient of x^2	Coefficient of x	Constant term
$x_0 = 4$	$a_3 = 1$	$a_2 = -5$	$a_1 = 8$	$a_0 = -6$
		$b_3x_0=4$	$b_2 x_0 = -4$	$b_1 x_0 = 16$
	$b_3 = 1$	$b_2 = -1$	$b_1 = 4$	$b_0 = 10$

Hence

$$P(x) = (x-4)(x^2 - x + 4) + 10.$$

We can therefore evaluate P(4) = 10 and $P'(4) = x^2 - x + 4\big|_{x=4} = 16$.

^aProf. Wu says that we can use Python as well.

b. Since P'(2) = 0, $x_0 = 2$ can't lead to the root. So we use $x_0 = 4$ only. By Python, the root is approximately 3.00002.

```
111652004_CM_HW2.tex M

₱ 111652004_CM_HW2_P11b.py U X
HW2 > # 111652004_CM_HW2_P11b.py > ...
       def f(x):
            return x ** 3 - 5 * x ** 2 + 8 * x - 6
       x_0 = 4
       TOL = 0.00001
       N_0 = 500
       for i in range(N_0):
           x = x_0 - f(x_0) / 16
           if abs(x - x_0) < TOL:
                print(f"The root of P(x) calculated by Newton's method is
                approixmately {x}.")
                exit(0)
           x_0 = x
       print(f"Newton's method failed after {N_0} iterations.")
          OUTPUT DEBUG CONSOLE TERMINAL
PS E:\Eiken\Visual Studio Code Git Sync\CM_HW> & C:/Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe
The root of P(x) calculated by Newton's method is approixmately 3.0000213667260756.
```

c. By the approximation, we first guess that x = 3 is a solution to P(x) = 0. Indeed, P(3) = 0. Using the synthetic division, we have

	Coefficient of x^3	Coefficient of x^2	Coefficient of x	Constant term
$x_0 = 3$	$a_3 = 1$	$a_2 = -5$	$a_1 = 8$	$a_0 = -6$
		$b_3x_0=3$	$b_2 x_0 = -6$	$b_1 x_0 = 6$
	$b_3 = 1$	$b_2 = -2$	$b_1 = 2$	$b_0 = 0$

which suggests that $P(x) = (x-3)(x^2-2x+2)$. By the quadratic formula, the complex solutions are $1 \pm i$.

d. We have $p_0 = 0$, $p_1 = 1$, and $p_2 = 2$. Set

$$h_1 = 1 - 0 = 1,$$

$$h_2 = 2 - 1 = 1,$$

$$\delta_1 = \frac{P(1) - P(0)}{1} = 4,$$

$$\delta_2 = \frac{P(2) - P(1)}{1} = 0,$$

$$d = \frac{0 - 4}{1 + 1} = -2.$$

Then

$$b = 0 + 1 \cdot (-2) = -2,$$

$$D = \sqrt{(-2)^2 - 4 \cdot P(2) \cdot (-2)} = 2\sqrt{3}i.$$

Since
$$|b-D| > |b+D|$$
, set $E = b-D = -2 - 2\sqrt{3}i$. Then $h = -2 \cdot \frac{P(2)}{E} = \frac{2}{-1 - \sqrt{3}i} = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$. Thus $p = 2 + \frac{-1}{2} + \frac{\sqrt{3}}{2}i = \frac{3}{2} + \frac{\sqrt{3}}{2}i$.

e. By Python, the root is approximately 1.000000 + 1.000000i.

```
D ~ th □ ...
111652004_CM_HW2.tex M
                       111652004_CM_HW2_P11e.py U X
HW2 > ♦ 111652004_CM_HW2_P11e.py > ...
  1 def P(x):
          return x ** 3 - 5 * x ** 2 + 8 * x - 6
  5 p_0 = 0; p_1 = 1; p_2 = 2
     # Set tolerance
  8 TOL = 0.00001
     N 0 = 500
 13 h_1 = p_1 - p_0; h_2 = p_2 - p_1
 14 delta_1 = (P(p_1) - P(p_0)) / h_1; delta_2 = (P(p_2) - P(p_1)) / h_2
      d = (delta_2 - delta_1) / (h_2 + h_1)
      for i in range(N 0):
          b = delta_2 + h_2 * d
          D = (b ** 2 - 4 * P(p_2) * d) ** 0.5
          if abs(b - D) < abs(b + D):
             E = b + D
              E = b - D
          h = -2 * P(p_2) / E
          p = p_2 + h
          if abs(h) < TOL:
              print(f"The solution calculated by Muller's method is
              approximately {p}.")
              exit(0)
          p_0 = p_1; p_1 = p_2; p_2 = p
          h_1 = p_1 - p_0; h_2 = p_2 - p_1
          delta_1 = (P(p_1) - P(p_0)) / h_1; delta_2 = (P(p_2) - P(p_1)) / h_2
          d = (delta_2 - delta_1) / (h_2 + h_1)
      print(f"Muller's method failed after {N_0} iterations.")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS GITLENS COMMENTS
```

• PS E:\Eiken\Visual Studio Code Git Sync\CM_HW> & C:/Users/yungh/AppData/Local/Microsoft/WindowsApps/python3.11.exe The solution calculated by Muller's method is approximately (1.000000000019976+0.999999999082199j).