LPP – Locality Preserving Projections

Agenda

- 1) Face recognition: Previous works of great gaints demonstrate that face recognition can be significantly improved in low-dimensional **linear**-subspace.
- 2) Firstly to say, face is high-dimensional data, in terms of Computer Vision, so we have to reduce the dimensions.

How do we reduce the dimensions ??

So we tie-up with mathematics, specifically "Statistics"

Since our great "Gaints" has said that face resides on "Linear Sub-space"

Researchers Concentrated on reducing techniques which are linear-subspace manifold.

Such as:

PCA (Principal Component Analysis)
And
LDA(Linear Discriminant Analysis)

And many improvements and variants of those.

But !!!!!

Recent researches has shown that, face images resides on "**non-linear**" manifold.

So, if face image lie in non-linear manifold, then our PCA and LDA methods does'nt give us the under lying structure.

So we have to concentrate on non-linear methods.

But Problem is Non-Linear methods are computationally expensive.

To evaluate-map test data remains unclear

So, What we need is common sense, means, with the complexity of linear computation we need the efficiency (working) of non-linear manifold

So here's a method LPP- Locality Preserving Projections

Locality Preseving Projections

Objective Function:

LPP is obtained by finding the optimal linear approximations to the eigen-functions of the Laplace Beltrami operator

$$\min_{\mathbf{y}} \sum_{ij} (y_i - y_j)^2 S_{ij}$$

Objective Function Simplification

$$\frac{1}{2} \sum_{ij} (y_i - y_j)^2 S_{ij}$$

$$= \sum_{ij} (\mathbf{w}^T \mathbf{x}_i - \mathbf{w}^T \mathbf{x}_j)^2 S_{ij}$$

$$= \sum_{i} \mathbf{w}^T \mathbf{x}_i D_{ii} \mathbf{w}^T \mathbf{x}_i - \sum_{ij} \mathbf{w}^T \mathbf{x}_i S_{ij} \mathbf{w}^T \mathbf{x}_j \quad \mathbf{k}$$

$$= \mathbf{w}^T X (D - S) X^T \mathbf{w}$$

$$= \mathbf{w}^T X L X^T \mathbf{w}$$

We Impose Constraint

$$\mathbf{y}^T D \mathbf{y} = 1$$
$$\Rightarrow \mathbf{w}^T X D X^T \mathbf{w} = 1$$

Minimises

The transformation function that minimises the objective function is given by the minimum eigen value solution to generalise the eigen value problem

$$XLX^T \mathbf{w} = \lambda XDX^T \mathbf{w}$$

Advantages

- 1) LPP is linear but has similar properties as LLE (non-linear)
- 2) LPP is defined everywhere, where as nonlinear methods are defined only on the test data.
- 3)Overcomes all the disadvantages of linear methods such as PCA and LDA.

Did we answer ??

Why LPP?
What LPP is?
How it is applicable to our domain Face Recognition?

Commitments

Detailed Explaination of Formaulas Algorithm Example Problem Results