Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Thank you!

Homotopy realization likely amounts to the shape operator.

[G]iven a "cell complex" presentation of a classical topological space, if we can convert it into both a specification for a HIT and a colimit decomposition of that space that issufficiently "cofibrant", then \int will preserve that colimit and take the space to the HIT.

— Mike Shulman, Brouwer's Fixed Point Theorem in Real-Cohesive HoTT

Homotopy realization (and/or \int) may provide the following relationships.

Classical octahedron	Homotopy realization, e.g. ①
Classical combinatorial manifold M	ſM
Derivative	ар
Leibniz rule for $f,g:M o \mathbb{R}$	Given H-space $(A, *)$, $f, g: X \rightarrow A$, $p: x = x$ y then $ap(f * g)(p) = ap(f)(p) * (ga) \cdot (fb) * ap(g)(p)$. Because in $A \times A$, $(fp, gp) = (fp, refl) \cdot (refl, gp)$
The sphere is not flat, as a pointwise statement	Nontrivial flatness on each face

Connections being "affine", and not (quite) 1-forms	T_{ji} : $T_i = T_j$ being a torsor and not (quite) a group
Space of connections for a given P is contractible.	Two extensions to \mathbb{O}_1

Maurer-Cartan form.	Hmm, consider the trivial connection on $M \times G$ or $G \rightarrow *$.
Gauge transformations acting on connections and maybe functions (YM) of connections.	
The based gauge group acts freely on connections.	

Characteristic classes.	$BS^1 o B^n\mathbb{Z}.$
Chern-Weil theory.	$\mathbb{O} \xrightarrow{T} BS^1 \to B^n \mathbb{Z}.$
Hopf fibration.	$\mathbb{O} \stackrel{?}{ o} EM(\mathbb{Z},1).$
Zeros of $X = Poincare dual of the Euler class.$	