

Processamento Digital de Sinais

Sumário

- Enquadramento (no plano de estudos)
- Objectivos
- 3. Programa resumido
- 4. Avaliação
- 5. Bibliografia
- 6. Docentes e Contactos
- 7. Motivação
 - a) Representação de Informação
 - b) Processamento
 - c) Extracção de Características
 - d) Sistemas de Reconhecimento de Padrões

1. Enquadramento

Tecnologias de Informação	Modelação em Ambientes Virtuais	Matemática e Física para Multimédia	Sensores e Actuadores	Matemática e Programação
Modelação e Programação	Matemática para Computação Gráfica	Processamento Digital de Sinais	Computação Física	Raciocínio Probabilístico e Simulação
Sistemas Operativos	Animação em Ambientes Virtuais	Complementar	Comunicações e Processamento de Sinais	Modelação e Simulação de Sistemas Naturais
Sistemas Computacionais Distribuídos	Produção de Conteúdos Multimédia	Redes de Computadores	Codificação de Sinais Multimédia	Inteligência Artificial para Sistemas Autónomos
Sistemas de Bases de Dados	Redes e Serviços de Comunicação Multimédia	Redes de Internet	Processamento de Imagem e Visão	Aprendizagem Automática
Sistemas Multimédia para a Internet	Tecnologias Avançadas de Redes	Opção	Projecto LERCM	

Interacção em Ambientes Virtuais

Segurança em Redes

2. Objectivos

- Descrever sinais no domínio do tempo.
 Compreender as operações de amostragem e digitalização de sinais.
- Compreender a representação de sinais no domínio da frequência usando análise de Fourier e transformada Z.
- Compreender a representação tempo-frequência usando a transformada localizada de Fourier e espectrogramas.
- Descrever sistemas lineares no domínio do tempo e no domínio da frequência.
- Analisar e construir filtros digitais.

3. Programa Resumido

4. Avaliação

■ Nota Final = 0,5 Teórica + 0,5 Prática

Componente teórica (10v)

- □ Obtida em alternativa através de:
 - 1 Exame global (Nota mínima de 9,5 valores)
 - 2 Testes Parciais (notas parciais devem ser iguais ou superiores a 8 valores e a sua média deve ser igual ou superior a 9,5 valores)

Componente prática (10v)

- □ 4 laboratórios (6v)
 - Realizado em grupos de 3 alunos
 - Python + Relatório
- □ Projecto (4v)
 - Realizado em grupos de 3 alunos
 - Python + Relatório

5. Bibliografia (livros)

Ronald W. Sch Mark A. Yoder

- McClellan, Schafer and Yoder, DSP FIRST: A Multimedia Approach. Prentice Hall, Upper Saddle River, New Jersey, 1998. Copyright (c) 1998 Prentice Hall.
- Acetatos da disciplina
- Jorge S. Marques, A. Abrantes, Processamento Digital de Sinais, Documento Interno, 2006.
- Alan V. Oppenheim, Ronald W. Schafer, John R. Buck, Discrete-Time Signal Processing (2nd Edition), Prentice-Hall
- A. V. Oppenheim, A. Willsky, "Signals and Systems", Prentice Hall
- Sophocles J. Orfanidis, Introduction to Signal₇Processing, Prentice-Hall, 1996

6. Docente e Contactos

André Lourenço

email: alourenco@deetc.isel.ipl.pt

Gabinete 15 - Edifício F - ADEETC

Gonçalo Marques

email: gmarques@deetc.isel.pt

Gabinete 10 - Edifício F - ADEETC

Isabel Rodrigues

email: <u>irodrigues@deetc.isel.ipl.pt</u>

Gabinete 29 - Edifício F - ADEETC

- Página WEB da disciplina:
 - Moodle

MOTIVAÇÃO

Conceitos

- Representação de informação: Sinais
- Transformações/ Processamento
 - □ Sistemas
 - □ Projecto de Filtros
 - □ Série e Transformada de Fourier
- Extracção de Características
- Decisão/Classificação

Sinais no contexto Multimédia

- •Em termos latos, um sinal é algo que codifica ou transporta informação
- •Em termos físicos, representa uma corrente ou tensão eléctrica
- Sinais permitem representar informação

M

Exemplo

- Multimédia
 - □MP3 e JPEG

Original Circuit Image

DCT coefficients

- Telecomunicações
 - ComunicaçõesDigitais:
 - □ Códigos de Linha

Economia

- □ Evolução do Psi-20
- Evolução do preço dos combustíveis

EVOLUÇÃO DO PREÇO DO BRENT versus COMBUSTÍVEIS SEM DESFASAMENTO ENTRE COMPRAS E CONSUMO

M

Representação da Informação

- Term Frequency term t_i , document d_i
- Inverse Document Frequency
- TF-IDF

$$tf_{i,j} = \frac{n_{i,j}}{\sum_{k} n_{k,j}}$$

$$idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}$$

$$(tf\text{-}idf)_{i,j}=tf_{i,j}\times idf_i$$

Texto

$$\begin{bmatrix} T_1 & T_2 & \dots & T_t \\ D_1 & w_{11} & w_{21} & \dots & w_{t1} \\ D_2 & w_{12} & w_{22} & \dots & w_{t2} \\ \vdots & \vdots & \vdots & & \vdots \\ D_n & w_{1n} & w_{2n} & \dots & w_{tn} \end{bmatrix}$$

Documentos são vectores

Transformações/ Processamento

Imagem

Transformações/ Processamento

Biomedicina

Extracção de Características Decisão/Classificação

Biometria

utos 👼 Locals 🗐 Threads 🧓 Modules 🖼 Watch 1

Call Stack Breakpoints Output

Immunofluorescence image

GOAL: characterize the average inter-nuclear and radial expression profile of E-cadherin, as model protein.

To validate, in biological terms, a IF quantification tool, a set of E-cadherin germline mutations associated to gastric cancer are used

M

Exemplo: Opto-electrónica Integrated SiC optical filters: An optoelectronic active capacitive coder/decoder model. A numerical simulation

Time periodic linearized state equation according to the simplified block diagram of the state model.

$$\begin{bmatrix} \frac{d\mathbf{v}_1}{d\mathbf{t}} \\ \frac{d\mathbf{v}_2}{d\mathbf{t}} \end{bmatrix} = \begin{bmatrix} \frac{1}{C_1} & 0 \\ 0 & \frac{1}{C_2} \end{bmatrix} \begin{bmatrix} \mathbf{i}_1(\mathbf{t}) \\ \mathbf{i}_2(\mathbf{t}) \end{bmatrix} + \begin{bmatrix} -\frac{1}{R_1C_1} & \frac{1}{R_1C_1} \\ \frac{1}{R_1C_2} & -\frac{1}{R_1C_2} - \frac{1}{R_2C_2} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1(\mathbf{t}) \\ \mathbf{v}_2(\mathbf{t}) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{i}_{1}(t) \\ \mathbf{i}_{2}(t) \end{bmatrix} = \begin{bmatrix} \alpha_{\mathbf{fr}_{1}} & \alpha_{\mathbf{fr}_{2}} & \alpha_{\mathbf{fr}_{3}} & \alpha_{\mathbf{fr}_{4}} & \alpha_{\mathbf{fr}_{5}} \\ \alpha_{bk_{1}} & \alpha_{bk_{2}} & \alpha_{bk_{3}} & \alpha_{bk_{4}} & \alpha_{bk_{5}} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{Bit_{1}} \\ \mathbf{i}_{Bit_{2}} \\ \mathbf{i}_{Bit_{3}} \\ \mathbf{i}_{Bit_{4}} \\ \mathbf{i}_{Bit_{5}} \end{bmatrix}$$
Currents

Currents

Resumo

- O conceito de sinal aparece nas mais variadas áreas tais como:
 - Ciência e tecnologia das Comunicações
 - Circuitos
 - Acústica
 - □ Biomedicina
 - □ Sismologia
 - □ Aeronáutica
 - Geração de energia e sistemas de distribuição
 - □ Processamento da fala
 - □ Controlo de processos químicos
 - □ Processamento de imagem

- A natureza dos sinais e sistemas associados a cada área são completamente diferentes mas têm duas características comuns:
 - 1. Os sinais são funções de uma ou mais variáveis independentes
 - Tipicamente contêm informação sobre o comportamento e natureza dos fenómenos:
 - os sistemas respondem aos sinais de entrada produzindo novos sinais à saída.

