《第17章 量子物理学基础》

钯 5.0eV

钨 4.5 eV

(A) 钨. (B) 钯. (C) 铯. (D) 铍.

今要制造能在可见光(频率范围为 3.9×10^{14} Hz— 7.5×10^{14} Hz)下工作的光电管,在这些

1. 以下一些材料的逸出功为 铍 3.9 eV

铯 1.9 eV

一 选择题

材料中应选

	[]
 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的(A) 动量相同. (B) 能量相同. (C) 速度相同. (D) 动能相同. 答案: (A) 	r	1
 3. 关于不确定关系 Δp_xΔx ≥ ħ (ħ = h/(2π), 有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: 	[]
(A) (1), (2). (B) (2), (4). (C) (3), (4). (D) (4), (1).	[]
4. 已知粒子在一维矩形无限深势阱中运动,其波函数为: $\psi(x) = \frac{1}{\sqrt{a}} \cdot \cos \frac{3\pi x}{2a} , (-a \leqslant x \leqslant a)$ 那么粒子在 $x = 5a/6$ 处出现的概率密度为 (A) $1/(2a)$. (B) $1/a$. (C) $1/\sqrt{2a}$. (D) $1/\sqrt{a}$.		
(C) $1/\sqrt{2a}$. (D) $1/\sqrt{a}$.	[]
5. 氢原子中处于 2p 状态的电子,描述其量子态的四个量子数 (n, l, m_l, m_l) (A) $(2, 2, 1, -\frac{1}{2})$. (B) $(2, 0, 0, \frac{1}{2})$. (C) $(2, 1, -1, -\frac{1}{2})$. (D) $(2, 0, 1, \frac{1}{2})$.		
(c) $(2, 1, -1, -\frac{1}{2})$. (D) $(2, 0, 1, \frac{1}{2})$.	[]
二填空题		
1. 光子波长为λ,则其能量=; 动量的大小 =; 质型	量=	_ ·
2. 康普顿散射中,当散射光子与入射光子方向成夹角φ= 小得最多;当φ= 时,散射光子的频率与入射光子相同.	寸,散射光子的	频率
3. 被激发到 $n=3$ 的状态的氢原子气体发出的辐射中,有条可见光	允谱线和	
		1

条非可见光谱线.

4	设描述微观粒子运动的波函数为 Ψ (\vec{r} t	١.
┱.		Ι, ι	,

则 $\Psi\Psi^*$ 表示		;
$\Psi(\vec{r},t)$ 须满足的条件是		;
其归一化条件是		·
5. 多电子原子中,电子的排列遵循	原理和	原理

三 计算题

1. 用辐射高温计测得炼钢炉口的辐射出射度为 22.8 W·cm $^{-2}$,试求炉内温度. (斯特藩常量 σ = 5.67×10 $^{-8}$ W/(m 2 ·K 4))

2. 波长为 λ 的单色光照射某金属 M 表面发生光电效应,发射的光电子(电荷绝对值为 e,质量为 m)经狭缝 S 后垂直进入磁感应强度为 \bar{B} 的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为 R. 求

- (1) 金属材料的逸出功 A;
- (2) 遏止电势差 Ua.

- 3. α 粒子在磁感应强度为 B=0.025 T 的均匀磁场中沿半径为 R=0.83 cm 的圆形轨道运动.
 - (1) 试计算其德布罗意波长.
- (2) 若使质量 m=0.1 g 的小球以与 α 粒子相同的速率运动. 则其波长为多少? (α 粒子的质量 m_{α} =6.64×10⁻²⁷ kg,普朗克常量 h =6.63×10⁻³⁴ J·s,基本电荷 e =1.60×10⁻¹⁹ C)

4. 光子的波长为 $\lambda=3000$ Å,如果确定此波长的精确度 $\Delta\lambda/\lambda=10^{-6}$,试求此光子位置的不确定量.
5. 已知电子具有内禀的自旋磁矩 $\mu_{\rm m}=0.928\times 10^{-23}$ J/T . 如果采用下述经典模型: 电子是一均匀带电的球壳,半径为 R ,总电量为 e ,以角速度 ω 绕过其中心的直径旋转,已知电子的半径不大于 10^{-18} m ,按此估算,电子要具有上述磁矩值,相应的"赤道"线速度应多大?由此判断经典模型是否合理.
四 研讨题 1. 人体也向外发出热辐射,为什么在黑暗中还是看不见人?
2. 用可见光能产生康普顿效应吗? 能观察到吗?
3.[CCBP 练习题] 说明电子的双缝干涉原理。通过一次产生大量随机数,说明大量电子通过 双缝所产生的干涉图样。再用动画演示电子逐个通过双缝时所形成的干涉图样。