Computational Physics Lecture 5

sieversj@ukzn.ac.za

git clone https://github.com/ukzncompphys/lecture5_2018.git

"Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live"

-Martin Golding

Fast Fourier Transform

- How many operations does a DFT take?
- Have an N by N matrix operating on a vector of length N clearly N² operations, right?
- Nope! Otherwise we'd never use them. What's actually going on?
- Note DFT= $\sum f(x) \exp(-2\pi i k x/N) = \sum f_{even}(x) \exp(-2\pi i k (2x)/N) + \sum f_{odd}(x) \exp(-2\pi i k (2x+1)/N)$
- = F_{even} +exp(- $2\pi i k/N$) F_{odd} . Let W_k =exp(- $2\pi i k/N$)
- if k>N/2, then $k^*=k-N/2$ and DFT= $F_{even}+exp(-2\pi i k^*/N+i\pi)F_{odd}=F_{even}-W_kF_{odd}$.

FFT cont'd

- So $F(k)=F_{even}(k)+W_kF_{odd}(k)$ (k<N/2) or $F_{even}(k)-W_kF_{odd}(k)$ (k>=N/2)
- So, can get *all* the frequencies if I have 2 half-length FFTs.
- Well, just do the same thing again. FFT of a single element is itself.
- This algorithm works for arrays whose length is a power of 2
- Popularized by Cooley/Tukey in early computer days. Later found to go back to Gauss in 1805. Changes computational work from n² to nlogn.

Sample FFT

- Routine uses recursion function calls itself. Recursion can be very powerful, but also easy to goof.
- numpy.concatenate will combine arrays - note that they have to be passed in as a tuple, hence the extra set of parenthesis
- Modern FFT routines deal with arbitrary length arrays. Fastest Fourier Transform in the West (FFTW) standard packaged usually used by numpy.

```
from numpy import concatenate, exp, pi, arange, complex
def myfft(vec):
    n=vec.size
    #FFT of length 1 is itself, so quit
    if n==1:
        return vec
    #pull out even and odd parts of the data
    myeven=vec[0::2]
    myodd=vec[1::2]
    nn=n/2;
    j=complex(0,1)
    #get the phase factors
    twid=exp(-2*pi*j*arange(0,nn)/n)
    #get the dfts of the even and odd parts
    eft=myfft(myeven)
    oft=myfft(myodd)
    #Now that we have the partial dfts, combine them with
    #the phase factors to get the full DFT
    myans=concatenate((eft+twid*oft,eft-twid*oft))
    return myans
```

```
>>> import myft
>>> x=numpy.random.randn(32)
>>> xft1=numpy.fft.fft(x)
>>> xft2=myft.myfft(x)
>>> print numpy.sum(numpy.abs(xft1-xft2))
2.33937690259e-13
>>> |
```

In Practice

- Should you write your own FFT code? (no)
- Should you understand what is going on under the hood? (yes)

```
import numpy
import time

n=2**16
x=numpy.random.randn(n)
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_ref=t2-t1
x=numpy.random.randn(n+1) #this is a prime
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus1=t2-t1
x=numpy.random.randn(n+2) #this is has largest factor 331
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus2=t2-t1
x=numpy.random.randn(n+14) #this is has largest factor 23
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus14=t2-t1
print 'Reference time was '.t_ref
print 'Extending by one increased time by a factor of ',t_plus1/t_ref
print 'Extending by two increased time by a factor of ',t_plus2/t_ref
print 'Extending by 14 increased time by a factor of ',t_plus1/t_ref
```

```
[>>> execfile('time_ffts.py')
Reference time was 0.00335788726807
Extending by one increased time by a factor of 2594.13178074
Extending by two increased time by a factor of 5.54963078671
Extending by 14 increased time by a factor of 1.8124112468
```

Convolution Theorem

- Convolution defined to be $conv(y)=f\otimes g==\int f(x)g(y-x)dx$
- $\sum_{x} \sum F(k) \exp(2\pi i k x) \sum_{x} conj(G(k')) \exp(2\pi i k' x) \exp(-2\pi i k' y/N)$
- Reorder sum: $\sum F(k) \operatorname{conj}(G(k')) \exp(-2\pi i k' y/N) \sum_{x} \exp(2\pi i (k+k') x)$
- equals zero unless k'==-k. Cancels one sum, conjugates G
- $f \otimes g = \sum F(k)G(k) \exp(2\pi i k y/N) = ift(dft(f)*dft(g))$
- So, to convolve two functions, multiply their DFTs and take the IFT

Cosmic Rays from Planck Satellite

Convolution Example

```
from numpy import arange,exp,real
from numpy.fft import fft,ifft
from matplotlib import pyplot as plt
def conv(f,g):
    ft1=fft(f)
    ft2=fft(g)
    return real(ifft(ft1*ft2))
x=arange(-10,20,0.1)
f = \exp(-0.5*(x+3)**2/0.5**2)
g=0*x;g[(x>0)&(x<5)]=1
g=g/g.sum()
f=f/f.sum()
h=conv(f,g)
plt.plot(x,f,'b')
plt.plot(x,g,'k')
plt.plot(x,h,'r')
plt.savefig('convolved')
plt.show()
```


2D Fourier Transforms

- Fourier transform defined in 2 dimensions:
- $F(k,l) = \int \int f(x,y) \exp(-ikx) \exp(-ily) dxdy$
- 2D FT's extremely common in image processing.
- JPEGs in fact are based on picking out modes from image FT's.

numpy.fft.fft2

Smoothing Images

- Out-of-focus images are convolutions.
- Can defocus an image by convolving with a blurry kernel
- Let's fuzz out map by a Gaussian.

```
def get fft vec(n):
    vec=numpy.arange(n)
    vec[vec>n/2]=vec[vec>n/2]-n
    return vec
def smooth_map(map,npix,smooth=True):
    nx=map.shape[0]
    ny=map.shape[1]
    xind=get_fft_vec(nx)
    yind=get fft vec(ny)
    #make 2 1-d gaussians of the correct lengths
    sig=npix/numpy.sqrt(8*numpy.log(2))
    xvec=numpy.exp(-0.5*xind**2/sig**2)
    xvec=xvec/xvec.sum()
    yvec=numpy.exp(-0.5*yind**2/sig**2)
    yvec=yvec/yvec.sum()
    #make the 1-d gaussians into 2-d maps using numpy.repeat
    xmat=numpy.repeat([xvec],ny,axis=0).transpose()
    ymat=numpy.repeat([yvec],nx,axis=0)
    #if we didn't mess up, the kernel FT should be strictly real
    kernel=numpy.real(numpy.fft.fft2(xmat*ymat))
    #get the map Fourier transform
    mapft=numpy.fft.fft2(map)
    #multiply/divide by the kernel FT depending on whath we're after
    if smooth:
        mapft=mapft*kernel
    else:
        mapft=mapft/kernel
    #now get back to the convolved map with the inverse FFT
    map smooth=numpy.fft.ifft2(mapft)
    #since numpy gets imaginary parts from roundoff, return the real part
    return numpy.real(map smooth)
```

smooth_map.py


```
ort numpy
m matplotlib import pyplot as plt
ort smooth_map
erkat=plt.imread('meerkat_small.jpg')
bothed_map=numpy.zeros(meerkat.shape)
smoothed_map=numpy.zeros(meerkat.shape)
ix_smooth=3.5
x restore=4
 i in range(3):
 tmp=numpy.squeeze(meerkat[:,:,i])
 tmp_smooth=smooth_map.smooth_map(tmp,npix_smooth)
 smoothed_map[:,:,i]=tmp_smooth
 tmp2=smooth_map.smooth_map(tmp_smooth,npix_restore,False)
 unsmoothed_map[:,:,i]=tmp2
```

Deconvolution

- Well, if I smear out by multiplying FT's, I can unsmear by dividing, right?
- If yes, worth billions and billions of your favo(u)rite currency. Save those fuzzy pictures...
- Maybe. Let's try smoothing image by 3.5 pixels, then unsmoothing by 4.
- What happened?

Deconvolution

- smoothing lowers high-frequency signal
- unsmoothing must raise it back up.
- if there's any noise, it gets amplified by unsmoothing.
- If I smooth, then write to jpg, I round to nearest integer. Equivalent to adding noise.
- So, think those fuzzy license plates in google maps are safe?

More FT asides

- What is the Fourier transform of a slope?
- What is the (expected) Fourier transform of random noise?
- We will be looking at plots that show the amplitude of the Fourier transforms against wavelength. The variance of the FT is called the power spectrum, and is fundamental in many areas of electronics, physics, astronomy...

Windowing

- Jumps around edges cause high frequency power in FFTs. This is a bad thing.
- Standard solution: multiply by a window that goes to zero (or some very small value) at edges.
- There are many possible windows, depending on what you want to do: Hamming, Hanning, cos... 28 listed on wikipedia page.
- If I multiply by window in real space, what have I done in Fourier space?

Window in Real Space

Use cos window that goes to zero on edges w/derivative zero.

If I take a piece of noisy data from a smooth long-term signal, smooth part may look like similar to a line.

What does FT look like?


```
import numpy
from matplotlib import pyplot as plt
plt.ion();

x=numpy.arange(1024);
x=x-1.0*x.mean();x=x/x[-1]
y1=0.01*numpy.random.randn(x.size)
y2=y1+x
window=0.5*(1+numpy.cos(x*numpy.pi))
y3=y2*window
plt.clf();plt.plot(x,y1);plt.plot(x,y2);plt.plot(x,y3)
plt.plot(x,window);plt.savefig('raw_data.png')

y1ft=numpy.fft.rfft(y1)
y2ft=numpy.fft.rfft(y2)
```

Effects of Adding Slope

- Even though we know long-term signal is smooth, by taking piece we raise noise level in FT. This is a bad thing.
- Why does the FT look like a line in log-log space?

Adding Window

- Multiplying the data with a slope by the window makes the high-frequency power drop back down.
 This is usually considered a good thing.
- Low frequency power is still large that's real, we do have a slope in our data.
- What am I doing with that normfac thing?

Parceval's theorem: FT is a unitary rotation, so length before/after must be the same. Windowing removes power, so scale back up by average amount of windowing loss.


```
window=0.5*(1+numpy.cos(x*numpy.pi))
y3=y2*window
#why am I doing this normfac thing?
normfac=numpy.sqrt(numpy.mean(window**2))
y3ft=numpy.fft.rfft(y3)
plt.plot(numpy.abs(y3ft/normfac));
plt.savefig('window_log.png')
```

Tutorial Problems (final version Wed.)

- Write a function that will shift an array by an arbitrary amount using a convolution (yes, I know there are easier ways to do this). The function should take 2 arguments an array, and an amount by which to shift the array. Plot a gaussian that started in the centre of the array shifted by half the array length. (10)
- The correlation function $f \not = g$ is $\int f(x)g(x+y)$. Through a similar proof, one can show $f \not = ift(dft(f)*conj(dft(g)))$. Write a routine to take the correlation function of two arrays. Plot the correlation function of a Gaussian with itself. (10)
- Using the results of part I and part 2, write a routine to take the correlation function of a Gaussian (shifted by an arbitrary amount) with itself. How does the correlation function depend on the shift? Does this surprise you? (10)
- The circulant (wrap-around) nature of the dft can sometimes be problematic. Write a routine to take the convolution of two arrays *without* any danger of wrapping around. You may wish to add zeros to the end of the input arrays. (10)

Tutorial Bonus Problem

• You have a sample code that calculates an FFT of an array whose length is a power of 2. Using that routine as a guideline, write an FFT routine that works on an array whose length is a power of 3 (e.g. 9, 27, 81). Verify that it gives the same answer as numpy.fft.fft (10)