

SPIKE

(SBC)

SPIKE: AI SCHEDULING TECHNIQUES FOR HUBBLE SPACE TELESCOPE

Mark D. Johnston

GSFC
13 December 1990

Space Telescope Science Institute • Advance Planning Systems Branch
3700 San Martin Drive Baltimore MD 21218

P-1

Domain

Hubble Space Telescope (HST) observation scheduling

- **HST launched by NASA in April 1990**
- **15 year lifetime, low earth orbit (95m period)**
- **science operations for NASA by Space Telescope Science Institute (STScI)
at Johns Hopkins Univ., Baltimore**
- **HST scheduling is a large problem:**
 - **~10,000-30,000 observations/year to be scheduled**
 - **large number of interacting constraints (~ 10 per observation)**
 - operational
 - resource
 - scientific
 - **enormous range of constraint timescales (seconds to many months)**

P - 3
p. 3

HST Scheduling

- Predictive scheduling is required by design of spacecraft, ground system
 - Pool of observations is intentionally oversubscribed (by about 20%)
 - Primary goal is to maximize scientific efficiency of observatory
 - maximize utilization on highest-priority science
 - maximize quality of data taken
 - Uncertainty is major problem (orbit, availability of guide stars)
 - Spike is a task-oriented scheduler developed by STScI
 - Development started early 1987
 - Current focus: long-range scheduling (one year or more) to resolution of ~days
 - Spike is currently operational and working on flight schedules for period following on-orbit checkout
- Long-term scheduling is on hold pending revision of observing proposals for spherical aberration

Spike Overview

- Spike draws on two major themes in AI research & applications:
 - constraint satisfaction techniques (search, constraint preprocessing)
 - weight-of-evidence combination for uncertainty reasoning
- Several strategies adopted to decompose problem
- Data flow schematic: from observing proposals to command loads

- Spike was designed to support two major modes of use:
 - automatic (offline) scheduling
 - graphical interaction by users, to make scheduling decisions and diagnose scheduling problems

P-5
p. 5

Spike Architecture

- Spike Architecture:
 - low-level constraint representation & propagation
 - higher-level strategic scheduling (search) modules
 - *scheduling decisions (do, undo)*
 - *execution feedback*
 - *constraint modifications*

Constraint Representation & Reasoning

- Temporal constraints and preferences are captured by "suitability functions" based on scheduling expert's assessment:
 - the degree of preference for scheduling A_j at t due to constraint α ,
 - given that A_j, A_k, \dots scheduled at t_j, t_k, \dots , is $S_j^\alpha(t; t_j, t_k, \dots)$
- Suitability functions are defined for constraints and derived for tasks
- Projected to functions of time (only) by taking max over possible scheduling times of related activities
- Combined by multiplication: value of 0 means scheduling forbidden, >0 indicates degree of preference
- Combination is formally identical to weight-of-evidence combination in uncertainty reasoning except for special role of overwhelming evidence against scheduling at certain times ($S = 0$)

P-7
p. 7

Suitability Functions (cont.)

- Task suitabilities are computed by iteration corresponding to:
 - node consistency on network of constraints
 - + implications of cumulative scheduling decisions
- Value of suitability function informs scheduling agent:
 - times excluded due to strict constraints
 - measure of combined degree of preference due to preference constraints
- For computational efficiency, suitability functions in Spike are represented by piecewise-constant functions of time
 - closed under all important operations
 - no discretization of time or suitability values required
i.e. no arbitrary limits on time granularity

Use of Suitability Functions by Scheduling Agent

- Identify unschedulable activities: $S_i(t) = 0$ for all t
 - Measure of optimality of schedule: $\prod_i S_i(t_i)$
 - Measure of potential inherent in partial schedule:

$$\prod_i \max S_i(t) \text{ indicates best that can be achieved}$$
 - use to guide search, i.e. explore most promising alternatives first
 - Explanation: why an activity is unschedulable at t can be determined by examining contributions of constraints to suitability
 - guide backtracking at deadends
 - give users insight into problem cases: Spike provides graphical display of contributions to strict and preference constraints

P-9

p. 9

Spike Screen Example

Advantages of Suitability Function Framework

- Uniform means for simultaneously representing strict (yes/no) and preference constraints
- Framework can represent naturally:
 - trade-offs among preferences
 - uncertainty in predicted scheduling conditions (e.g. high risk \Rightarrow low suitability)
 - implications of scheduling decisions as they are made
 - implications of task execution as schedule is implemented
- Identify inconsistent constraints & unschedulable activities as soon as feasible
- No times excluded unless in violation of strict constraints or a consequence of prior scheduling decisions
- No bias about future scheduling decisions
- Generally declarative representation \Rightarrow easy to modify

P-11
p. 11

Limiting Search & Constraint Propagation

Techniques used by Spike:

- Demand-driven constraint propagation
 - i.e. only upon reference to quantities which require constraint consistency
- Time: schedule from coarser to finer time resolution -
 - Formulate constraints to capture essential behavior at relevant timescales
 - Segment scheduling period into sub-intervals, commit, then decompose
- Path consistency -
For some types of binary constraints it is possible to perform path-consistency before scheduling
 - dramatically speeds constraint propagation during scheduling search
 - identify path-inconsistent constraints before scheduling starts
 - drawback: reduced explanatory capabilities

Limiting Search (cont.)

- **Activity clustering -**

Sequence activities into clusters to commit as single entities, considering:

- absolute time constraints
- binary relative time constraints in path-consistent form
- heuristics for ordering preferences
(e.g. constraint strictness, minimize state change overhead times)
- collapse partially-redundant constraints to their conjunctions
- pull activity constraints up to cluster level and save

Path Consistency + Activity Clustering ⇒

> order of magnitude reduction in size of problem

P-13
p. 13

Scheduling Search

Several methods provided: all use same underlying constraint representation/propagation mechanism:

- Greedy algorithms
- Backtracking search
- Stochastic ("Neural network")
- Repair methods

Preliminary investigation of re-scheduling algorithms conducted (i.e. where schedule stability is an important goal)

Stochastic Search

- Developed in collaboration with H.-M. Adorf of Space Telescope - European Coordinating Facility
- Motivated by Hopfield discrete neural network model
(but can be formulated as backtracking search using network only for bookkeeping)
- Discretize time: network element represents decision to schedule an activity in a time interval
- Network biases and connections derived directly from suitability functions

P-15
p. 15

Stochastic Search (cont.)

- Couple to additional networks representing
 - constraint that activity must be scheduled sometime
 - resource (capacity) constraints
- Approach is well-suited for satisficing search where optimization is desired but infeasible
- Interesting characteristics of search:
 - backtracking from deadends and extending partial assignments are simultaneous competing processes
 - tends to maximize overall degree of preference represented by suitability functions
 - i.e. schedules tend towards optimal
 - permits temporary constraint inconsistencies but will not terminate until there are none
 - may not converge (stop and restart)
- By far most effective search strategy in Spike to date
- Performance demonstrated to be adequate for large-scale HST problem

Neural Network Search Timings

P-17

Repair Methods

- Recent work is concentrating on repair methods
 - analysis of neural network operation has isolated several heuristics that explain its success, e.g. min-conflicts
 - theoretical analysis of model problems has identified other heuristics that further improve search performance
- Repair heuristics can be applied in framework that preserves performance of neural network but adds flexibility
- Ideal for reactive re-scheduling
- Machine-learning techniques are being applied to repair methods to “learn” best strategies

Implementation

- CommonLisp, old Flavors, conversion to CLOS just completed
- CommonWindows for user I/F
- Developed and operated on TI Explorer Lisp machines

- Unix port of core system & user I/F completed December 1989 (using X-windows based CommonWindows); plan for operations migration to Sparcstations over next year

P-19

p. 19

Status

- Spike is in operational use at STScl for scheduling the period following HST instrument checkout and calibration
 - long-term scheduling has been delayed by optics problems
 - Spike is being used for scheduling feasibility checking on shorter timescales
- Use on other problems has been demonstrated:
 - Spike now running at UC Berkeley for scheduling NASA's Extreme Ultraviolet Explorer ('92)
 - MIT plans to use Spike for scheduling X-ray Timing Explorer mission ('94)
- Ongoing work at STScl on performance improvements, repair & rescheduling, short-term scheduling, portable version