1 Introduction

1.1 Current Environment

• Cause:

- Advances in mobbile devices, easy to use, affordable and powerful
- People can connect to Internet anytime, anywhere
- Popularity of video-sharing websites

• Effect:

- Mobile users demands increasing
- Exponential growth in video traffic
- Explosion in data traffic

• Problems:

- Application requirements
- Multiple Device Types
- Different technologies
- Different User preferences (cost, energy, quality)

• Solution

- Coexistence of multiple technologies
- Deployment of different radio access technologies in overlapping areas
- Accomodate more and more subscribers

• Challenges:

- Offer always best connectivity to the interet for mobile users
- Ne on best availabel radio access network
- Network optimization especially for video traffic
- Provide continuous and smooth video streaming, minimal delay, jitter, and packet loss
- Avoid degredation in video quality and user experience

1.2 What is QoS?

- What is quality?
 - "The totality of characteristics of an entity that bear on its abuility to satisfy states and implied needs" ISO 8402
 - "Degree to which a set of inherent characteristics fulfils requirements" ISO $9000\,$

• What is QoS?

- A subset of overall quality
- "The collective effect of service performance which determine the degree of satisfaction of a user of the service"ITU-T Rec. E.800

2 Service Level Agreement

- Contract between ISP and Client
- ISP gives guarantees for delivery of service
- Service Level Objectives (SLO)
 - Goals needed to be met for service
 - Used to specify QoS desired
- Service Level Guarantees (SLG)
 - Promise to meet SLOs
- Service Level Managements (SLM)
 - Approach of ISP for operation and delivery of services
 - Integrated management of functionalities in SLA life cycle

2.1 Service Level Objectives

- QoS Parameters
 - Instance to represent QoS to customers
 - Different according to type of service
- Generic QoS params required in network service:
 - Availability, Delivery, Latency, Bandwidth, MTBF (Mean Time Between Failures), MTTR (Mean Time to Recover)

2.1.1 QoS Parameters

- Availability
 - % of feasibility of service in every service request
 - key parameter for customers
- Delivery
 - Converse of packet loss
 - % of each service delivered without packet loss
- Latency
 - $-\delta t$ packet to travel from service access point (SAP) to target and back
 - includes transport t and queuing delay
- Bandwidth
 - Used/Available capacity Stated in SLA
- MTBF Mean Time Between Failure
- MTTR Mean Time To Recover
 - Avg. t device/sys takes to recover from failure

2.2 Service Level Guarantees

2.2.1 Customer requirements of QoS

- Focus on user-percieved effects
- Not depend on assumptions of internal net design
- Take into account all aspects of service from cusomers PoV
- Assured to user by ISP
- Described in net-independent terms, creates common lang. understandable by both user and ISP
 - ITU-TG.1010

2.2.2 QoS Offered by the Service Provider

- QoS metrics for web browsing
- Requirements:
 - Mainly influenced by response time (!>5s)
 - Delay < 400ms expected for best effort net traffic
 - Jitter not applicable to HTTP
 - * Little impact on txt/picture web browsing
 - Data rate required b.w. < 30.5kbps
 - Expected loss rate error rate 0 since HTTP is reliable
 - * Error reTX
- QoS Metrics for Video
 - Under diff. codec tech and quality req. diff. req. for net TX
 - VCR quality MPEG-1 stream:
 - * B.W 1.2 1.5 Mbps
 - * Jitter recommended < 100ms for broadcast quality
 - * Residual bit error rate $<10^5$ for broadcast quality stream using compressed format
 - * Loss/Error rates $< 10^5$
 - HDTV quality MPEG-2 video streams:
 - * B.W 40Mbps
 - * Jitter < 50ms for HDTV quality
 - * Residual bit error rate $<10^6$ for HDTV quality stream using compressed format
 - * Loss/Error rate $< 10^6$
 - MPEG-4 video streams:
 - * B.W 28.8 500kbps
 - * Jitter < 150ms due to lower quality req.

- * MPEG-4 has higher comp. rate, : less residual error
- * Loss/Error rate $< 10^5$
- Statement of level of quality actually achieved and delivered to customer
- should be same as offered QoS
 - Determine what was actually achieved to asses level of performance achieved
- Performance figures summarised for specified periods of time

QoS Percieved by Customer

- Statement expressing level of quality exp.
- Perceived QoS Degrees of Satisfaction, not in tech. terms
- Mean Opinion Score (MOS) specified by ITU-T Rec. P.800

2.3 Service Level Management Functions

- SLM categorized into seven functions:
 - SLA creation
 - * Create SLA template for specified services
 - SLA Negotiation
 - * Selecting applicable QoS params. in SLA
 - * Negotiating penalty in case of SLA violation
 - SLA Provisioning
 - * SP configure the network element/topology to provide service
 - SLA Monitoring
 - * SP must verify degree of SLA assurance
 - * Perform surveillance on QoS parameter degredation/violation
 - SLA Maintenance
 - * In case of QoS violation, analyses readon why degredation has occured, which params. degraded
 - * Notifies SLA provisioning to restore service
 - SLA Reporting
 - * Provides performance info to customers, periodically or on-demand
 - SLA Assessment
 - * Demands payments to customers
 - * Accommodates customers with penalty when violation occurs
- SLA provisioning and monitoring most important in net management layer

2.3.1 SLA Monitoruing

- Input
 - QoS Parameters
 - SLA Contract
- SLA Monitoring
- Output
 - Problem Notification
 - Performance

3 Network Performance Metrics

- Network Performance Metric (NPM)
 - Basic metric of performance metric in net management layer
- Four Types:
 - Availability:
 - * % spec. t interval in which sys was available for normal use
 - * What is supposed to be available?
 - · Service, Host, Network
 - * Reported as single monthly figure
 - \cdot 99.99% means service is unavailable for 4 minutes during a month
 - * Test by sending syutable packets, observing answering packets (latency, packet loss)
 - * Metrics:
 - \cdot Connectivity: Physical connectivity of network elements
 - · Functionality: Whether associated sys works well or not
 - Loss:
 - * Fraction of packets list in transit from host to another during specified t.
 - $\ast\,$ Packet transport works on best-effort basis
 - * Moderate level of packet loss not in itself tolerable
 - · Some real-time services can tolerate some losses e.g. VoIP
 - \cdot TCP resends lost packets at slower rate
 - * Metrics:
 - \cdot One way loss
 - · Round Trip (RT) Loss
 - Delay:
 - \ast t taken for pkt to tracel from host to another
 - $* \ RTDelay = Forward Transport delay + Server delay + backward transport delay$

- $* \ \ Forward \ transport \ delay \ often \neq backward transport delay Pingstill most commonly used to mediate the property of the property of$
- * Delay changes as conditions on net. vary
 - \cdot e.g. Server load, traffic load, router load, routing function
- $\ast\,$ For streaming, high delay/jitter (delay variation) can cause degredation on user-perceived QoS
- * Metrics
- · One Way delay
- \cdot RT Delay
- \cdot Jitter
- Utilization:
 - \ast Throughput for link expressed as % of access rate
 - * Throughput:
 - · Rate data is sent through net. (b/s, pkt/s, flows/s)
 - * Metrics:
 - · Capacity
 - \cdot B.W
 - $\cdot \ \, Throughput$