Дата: 30.11.2022

Клас: 8-Б

Тема: Степінь із цілим показником та його властивості

Мета уроку: домогтися, щоб учні засвоїли поняття степеня з цілим показником, виробляти вміння застосовувати означення степеня з цілим від'ємним показником у перетворенні степеня на дріб і навпаки; відпрацьовувати навички застосування властивостей степеня з цілим показником для обчислення значень числових виразів і перетворення виразів зі змінними; розвивати пам'ять, увагу; виховувати культуру математичного запису.

Хід уроку

• У 7 класі ви вивчали степінь із натуральним показником. За означенням для n>1, де $n\in N$, $a^n=\underbrace{a\ldots a}_{n\text{ possin}}$.

Під час розв'язування задач з хімії та фізики, ви, ймовірно, вже зустрічалися зі степенями, показниками яких є нуль або від'ємне ціле число. Сьогодні ви ближче познайомитеся з поняттями степеня з від'ємним цілим показником та степеня із нульовим показником.

1. Означення степеня з цілим від'ємним показником.

Для будь-якого числа a, яке не дорівнює нулю, і натурального числа n $a^{-n} = \frac{1}{a^n}$.

Наприклад,
$$2^{-4} = \frac{1}{2^4} = \frac{1}{16}$$
; $(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9}$; $\left(\frac{1}{3}\right)^{-4} = \frac{1}{\left(\frac{1}{3}\right)^4} = 3^4 = 81$;

$$(0,2)^{-1} = \frac{1}{0,2} = \frac{10}{2} = 5$$
.

2. Означення степеня з нульовим показником.

Для будь-якого числа a, яке не дорівнює нулю, $a^0 = 1$.

Наприклад,
$$8^0 = 1$$
, $(-15)^0 = 1$; $\left(-\frac{8}{9}\right)^0 = 1$; $\pi^0 = 1$.

Зверніть увагу на те, що вираз 0^n , якщо ціле n менше за нуль або дорівнює йому, не має змісту.

3. Властивості степеня з цілим показником.

Для будь-якого $a \neq 0$ та будь-яких цілих m і n виконуються рівності

$$a^m \cdot a^n = a^{m+n}$$
;

$$(a^m)^n = a^{mn}$$
;

$$a^{m}: a^{n} = a^{m-n}$$
.

Для будь-яких $a \neq 0$ і $b \neq 0$ та будь-якого цілого n виконуються рівності $(ab)^n = a^n b^n$;

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

Для натуральних m і n усі ці властивості було доведено в 7 класі.

Щоб довести властивості для цілих показників m і n, потрібно розглянути випадки, якщо m і n — цілі від'ємні; один із показників степеня m і n від'ємний, а другий додатний; один або обидва показники дорівнюють нулю.

4. Приклади застосування означення степеня з цілим показником.

Приклад 1. Знайдіть значення виразу

$$\left(-\frac{1}{5}\right)^{-1} \cdot 10^{-1} + 3^0 - \left(-3\right)^2 + \left(\frac{3}{4}\right)^{-2} \cdot \left(-1,5\right)^{-3}$$
.

Розв'язання

$$\left(-\frac{1}{5}\right)^{-1} \cdot 10^{-1} + 3^0 - \left(-3\right)^2 + \left(\frac{3}{4}\right)^{-2} \cdot \left(-\frac{2}{3}\right)^{-3} =$$

$$=-5\cdot\frac{1}{10}+1-9+\left(\frac{4}{3}\right)^2\cdot\left(-\frac{3}{2}\right)^3=-\frac{1}{2}-8-\frac{16\cdot27}{6\cdot8}=-8\frac{1}{2}-6=-14\frac{1}{2}.$$

Відповідь: $-14\frac{1}{2}$.

Приклад 2. Подайте у вигляді дробу вираз $xy^{-4} + x^{-4}y$.

Розв'язання

$$xy^{-4} + xy^{-4} = \frac{x}{y^4} + \frac{y}{x^4} = \frac{x^5 + y^5}{x^4 y^4}$$
.

Відповідь: $\frac{x^5 + y^5}{x^4 v^4}$.

5. Приклади застосування властивостей степеня з цілим показником.

Приклад 1. Спростіть вираз $\frac{25 p^{-6} k^3}{7}$: $\frac{15k^{-4}}{r^6}$.

Розв'язання

$$\frac{25 p^{-6} k^3}{7} : \frac{15 k^{-4}}{p^6} = \frac{25 p^{-6} k^3 \cdot p^6}{7 \cdot 15 k^{-4}} = \frac{5 k^7}{21} .$$

Відповідь: $\frac{5k^7}{21}$.

Домашня робота

Параграф 9 опрацювати

 N_{273} , 277(1,2,5,6), N_{285} (1,2,4,5)

273. Запишіть степінь із цілим від'ємним показником у вигляді дробу:

- 1) b^{-3} ; 2) 7^{-1} ; 3) 2^{-7} ; 4) t^{-6} ; 5) $(3m)^{-2}$; 6) $(c-d)^{-7}$.

277. Обчисліть:

- 1) 2^{-3} ;
- 2) $(-1)^{-6}$;
- 5) $\left(\frac{1}{8}\right)^{-2}$; 6) $\left(-\frac{2}{3}\right)^{-3}$;

285. Знайдіть значення виразу:

- 1) $-64 \cdot 4^{-4}$:
- 2) $36 \cdot (-27)^{-1}$;
- 4) $-3\frac{1}{6} \cdot \left(-\frac{1}{6}\right)^{-1}$; 5) $5^{-2} 10^{-1}$;