This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

1	 A radio on a single IC chip, comprising:
2	an antenna section for transmitting and receiving a
3	plurality of high frequency signals, said radio including
4	means for transmitting and receiving said plurality of high
5	frequency signals in a time division duplex mode;
6	a down-conversion section coupled to said antenna
7	section, for down-converting a first high frequency signal
8	of said plurality of high frequency signals to a low
9	intermediate frequency signal;
10	a bandpass filter coupled to said down-conversion
11	section;
12	a discriminator coupled to said bandpass filter;
13	an up-conversion section coupled to said antenna
14	section, for up-converting an information signal to a second
15	high frequency signal of said plurality of high frequency
16	signals, said up-conversion section comprising a portion of
17	said down-conversion section; and
18	a shaping filter coupled to an input of said up-
19	conversion section.

- The radio of Claim 1, wherein said low intermediate
 frequency signal is centered at about 3 MHz.
- 3 3. The radio of Claim 1, wherein said down-conversion section includes a variable controlled oscillator.
- 5 4. The radio of Claim 1, wherein said up-conversion 6 section includes a variable controlled oscillator.
- 5. The radio of Claim 1, wherein said up-conversion section includes a directly modulated variable controlled oscillator.
- 10 6. The radio of Claim 1, wherein said down-conversion section includes an image rejection mixer stage.
- 7. The radio of Claim 1, wherein said shaping filter comprises a Gaussian shaping filter.
- 8. The radio of Claim 1, further comprising a binary frequency shift keying modulation means.

1	9. The ra	dio of Cl	aim 1,	further	comp	rising	autor	natic
2	re-transmission	request	error	correct	ion	means	for	data
3	transfer.							

- 4 10. The radio of Claim 1, further comprising continuous 5 variable slope delta modulation means for voice transfer.
- The radio of Claim 1, wherein said discriminator

 comprises a frequency modulation discriminator.
- 12. The radio of Claim 1, further comprising frequencyhopping means for providing interference immunity.
- 13. The radio of Claim 1, further comprising autotuning
 means for autotuning a plurality of filters and an FM
 discriminator.
- 14. The radio of Claim 1, wherein all active components

 14 are integrated on the single IC chip, and at least one of a

 15 passive loop filter and a passive VCO resonator is located

 16 external to the single IC chip.

low

1	15. A short-range radio on a semiconductor chip,
2	comprising:
3	receiver input means for down-converting a high
4	frequency signal to a low intermediate frequency signal and
5	rejecting an image signal;
6	a bandpass filter coupled to said receiver input means,
7	said bandpass filter tuned to pass said low intermediate
8	frequency signal;
9	a frequency modulated discriminator stage coupled to an
LO	output of said bandpass filter, for information recovery;
11	a variable controlled oscillator coupled to a power
12	amplifier stage for up-conversion, and coupled to said
13	receiver input means for down-conversion, said variable
14	controlled oscillator modulated by an information signal to
15	be transmitted.
16	16. The radio of Claim 15, wherein said variable
17	controlled oscillator includes a phase locked loop.

radio of Claim 15, wherein said

18

19

17. The

intermediate frequency is about 3 MHz.

- 1 18. The radio of Claim 15, wherein said variable controlled oscillator comprises a portion of a frequency synthesizer.
- 19. The radio of Claim 15, wherein said variable controlled oscillator uses bondwires as resonators.

1	20. A radio architecture, comprising:
2	an antenna section for transmitting and receiving a
3	plurality of high frequency signals, said radio architecture
4	including means for transmitting and receiving said plurality
5	of high frequency signals in a time division duplex mode;
6	a down-conversion section coupled to said antenna
7	section, for down-converting a first high frequency signal
8	of said plurality of high frequency signals to a low
9	intermediate frequency signal;
10	a bandpass filter coupled to said down-conversion
11	section;
12	a discriminator coupled to said bandpass filter;
13	an up-conversion section coupled to said antenna
14	section, for up-converting an information signal to a second
15	high frequency signal of said plurality of high frequency
16	signals, said up-conversion section comprising a portion of
17	said down-conversion section; and
18	a shaping filter coupled to an input of said up-

conversion section.

19

1	21. A method of using a short-range radio transceiver
2	on a semiconductor chip, comprising the steps of:
3	modulating said short-range radio transceiver in a time
4	division duplex mode; *-
5	down-converting a received signal from a high frequency
6	to a low intermediate frequency;
7	channel filtering said low intermediate frequency
8	signal;
9	detecting a first information signal from said channel
10	filtered signal;
11	gaussian shaping a second information signal; and
12	up-converting said shaped second information signal to
13	said high frequency.
14	22. The method of Claim 21, wherein said low
15	intermediate frequency is about 3 MHz.

. .