Numerical Calculations

NumPy and SciPy

NumPy and SciPy are core libraries for scientific computing in Python, referred to as *The SciPy Stack*

NumPy package provides a high-performance multidimensional array object, and tools for working with these arrays

SciPy package extends the functionality of Numpy with a substantial set of useful algorithms for statistics, linear algebra, optimization, ...

NumPy and SciPy

The SciPy stack is not shipped with Python by default

You need to install the packages manually.

It can be installed using Python's standard pip package manager

\$ pip install --user numpy scipy matplotlib

On windows, you can instead install WinPython

- It is a free Python distribution including scientific packages
- Download from https://winpython.github.io/

NumPy and SciPy

Importing the NumPy module

• The standard approach is to use a simple import statement:

```
>>> import numpy
```

The recommended convention to import numpy is:

```
>>> import numpy as np
```

This statement will allow you to access NumPy objects using np.X instead of numpy.X

The central feature of NumPy is the array object class

- Similar to lists in Python
- Every element of an array must be of the same type (typically numeric)
- Operations with large amounts of numeric data are very fast and generally much more efficient than lists

```
>>> import numpy as np
>>> a = np.array([0, 1, 2, 3])
>>> a
array([0, 1, 2, 3])
```

Manual construction of arrays

• 1-D:

```
>>> a = np.array([0, 1, 2, 3])
>>> a
array([0, 1, 2, 3])
>>> a.ndim
1
>>> a.shape
(4,)
>>> len(a)
4
```

Manual construction of arrays

° 2-D, 3-D, ...

Functions for creating arrays

Evenly spaced:

```
>>> a = np.arange(10) # 0 .. n-1 (!)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = np.arange(1, 9, 2) # start, end (exclusive), step
>>> b
array([1, 3, 5, 7])
```

By number of points:

```
>>> c = np.linspace(0, 1, 6) # start, end, num-points
>>> c
array([ 0. ,  0.2,  0.4,  0.6,  0.8,  1. ])
>>> d = np.linspace(0, 1, 5, endpoint=False)
>>> d
array([ 0. ,  0.2,  0.4,  0.6,  0.8])
```

Functions for creating arrays

Common arrays:

```
>>> a = np.ones((3, 3)) # reminder: (3, 3) is a tuple
>>> a
array([[ 1., 1., 1.],
  [ 1., 1., 1.],
     [ 1., 1., 1.]])
>>> b = np.zeros((2, 2))
>>> b
array([[ 0., 0.],
     [ 0., 0.]])
>>> c = np.eye(3)
>>> c
array([[ 1., 0., 0.],
 [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> d = np.diag(np.array([1, 2, 3, 4]))
>>> d
array([[1, 0, 0, 0],
    [0, 2, 0, 0],
      [0, 0, 3, 0],
      [0, 0, 0, 4]])
```

Functions for creating arrays

Random numbers:

```
>>> a = np.random.rand(4)  # uniform in [0, 1]
>>> a
array([ 0.95799151,  0.142222247,  0.08777354,  0.51887998])
>>> b = np.random.randn(4)  # Gaussian
>>> b
array([ 0.37544699, -0.11425369, -0.47616538,  1.79664113])
>>> np.random.seed(1234)  # Setting the random seed
```

Array element type

- NumPy arrays comprise elements of a single data type
- The type object is accessible through the .dtype attribute
- NumPy auto-detects the data-type from the input

```
>>> a = np.array([1, 2, 3])
>>> a.dtype
dtype('int64')
>>> b = np.array([1., 2., 3.])
>>> b.dtype
dtype('float64')
```

Array element type

You can explicitly specify which data-type you want:

```
>>> c = np.array([1, 2, 3], dtype=float)
>>> c.dtype
dtype('float64')
```

The default data type is floating point:

```
>>> a = np.ones((3, 3))
>>> a.dtype
dtype('float64')
```

Indexing

 The items of an array can be accessed and assigned to the same way as other Python sequences:

```
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0], a[2], a[-1]
(0, 2, 9)
```

Indexing

• For multidimensional arrays, indexes are tuples of integers:

Slicing

• Arrays, like other Python sequences can also be sliced:

```
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[2:9:3] # [start:end:step]
array([2, 5, 8])
```

 All three slice components are not required: by default, start is 0, end is the last and step is 1:

```
>>> a[1:3]
array([1, 2])
>>> a[::2]
array([0, 2, 4, 6, 8])
>>> a[3:]
array([3, 4, 5, 6, 7, 8, 9])
```

Basic operations

With scalars:

```
>>> a = np.array([1, 2, 3, 4])

>>> a + 1

array([2, 3, 4, 5])

>>> 2**a

array([ 2, 4, 8, 16])
```

All arithmetic operates elementwise:

```
>>> b = np.ones(4) + 1
>>> a - b
array([-1., 0., 1., 2.])
>>> a * b
array([ 2., 4., 6., 8.])
```

Other operations

Comparisons

```
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> a == b
array([False, True, False, True], dtype=bool)
>>> a > b
array([False, False, True, False], dtype=bool)
```

Other operations

Array-wise comparisons:

```
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> c = np.array([1, 2, 3, 4])
>>> np.array_equal(a, b)
False
>>> np.array_equal(a, c)
True
```

Other operations

Transposition:

NumPy supplies methods for working with polynomials.

- We save the coefficients of a polynomial in an array
- For example: $x^3 + 4x^2 2x + 3$

```
>>> p = np.array([1, 4, -2, 3])
```

Evaluation and root fining:

```
>>> np.polyval(p, [1, 2, 3])
array([6, 23, 60])
>>> np.roots(p)
array([-4.57974010+0.j , 0.28987005+0.75566815j, 0.28987005-0.75566815j])
```

NumPy supplies methods for working with polynomials.

- We save the coefficients of a polynomial in an array
- For example: $x^3 + 4x^2 2x + 3$

```
>>> p = np.array([1, 4, -2, 3])
```

Integration and derivation:

```
>>> np.polyint(p)
array([ 0.25 ,  1.33333333, -1. ,  3. ,  0. ])
>>> np.polyder(p)
array([ 3, 8, -2 ])
```

NumPy supplies methods for working with polynomials.

- We save the coefficients of a polynomial in an array
- For example: $x^3 + 4x^2 2x + 3$

```
>>> p = np.array([1, 4, -2, 3])
```

Addition and subtraction:

```
>>> q = np.array([2, 7]) # 2x + 7
>>> np.polyadd(p, q) # addition
array([1, 4, 0, 10])
>>> np.polysub(p, q) # subtraction
array([1, 4, -4, -4])
```

NumPy supplies methods for working with polynomials.

- We save the coefficients of a polynomial in an array
- For example: $x^3 + 4x^2 2x + 3$

```
>>> p = np.array([1, 4, -2, 3])
```

Multiplication and division

```
>>> q = np.array([2, 7]) # 2x + 7
>>> np.polymul(p, q) # multiplication
array([2, 15, 24, -8, 21])
>>> np.polydiv(p, q) # division
(array([0.5, 0.25, -1.875]), array([16.125]))
```

Numerical integration is the approximate computation of an integral using numerical techniques

SciPy provides a number of integration routines. A general purpose tool to solve integrals of the kind:

$$I = \int_{a}^{b} f(x) dx$$

• It is provided by the quad() function of the scipy.integrate module

Suppose we want to evaluate the integral

$$I = \int_0^{2\pi} e^{-x} \sin(x) \, dx$$

```
>>> import numpy as np
>>> import scipy.integrate as si
>>> f = lambda x: np.exp(-x) * np.sin(x)
>>> I = si.quad(f, 0, 2 * np.pi)
>>> print(I)
(0.49906627863414593, 6.023731631928322e-15)
```

Infinite bound integral:

$$I = \int_0^\infty e^{-x} \sin(x) \, dx$$

```
>>> import numpy as np
>>> import scipy.integrate as si
>>> f = lambda x: np.exp(-x) * np.sin(x)
>>> I = si.quad(f, 0, np.inf)
>>> print(I)
(0.500000000000000000, 1.4875911931534648e-08)
```

Case Study

• Plot f(x) = 2x and its integral

```
import numpy as np
import scipy.integrate as si
import matplotlib.pyplot as plt
f = lambda x: 2*x
g = lambda x: si.quad(f, 0, x)[0]
x = np.linspace(-3,3,1000)
yf = f(x)
yg = np.array([g(i) for i in x])
plt.plot(x,yf)
plt.plot(x,yg)
plt.legend(['f(x)=2x', 'f(x)=x**2'])
plt.xlabel('x')
plt.ylabel('y=f(x)')
plt.show()
```

Case Study

• Plot f(x) = 2x and its integral

Finding determinant

• It is provided by the **det**() function of the **scipy.linalg** module

Matrix inversion

• It is provided by the inv() function of the scipy.linalg module

Solving linear system

• It is provided by the **solve()** function of the **scipy.linalg** module

Example

Suppose it is desired to solve the following simultaneous equations:

$$x + 3y + 5z = 10$$

 $2x + 5y + z = 8$
 $2x + 3y + 8z = 3$

We could find the solution vector using a matrix inverse:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 5 & 1 \\ 2 & 3 & 8 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 8 \\ 3 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} -232 \\ 129 \\ 19 \end{bmatrix} = \begin{bmatrix} -9.28 \\ 5.16 \\ 0.76 \end{bmatrix}$$

Solving linear system

It is provided by the solve() function of the scipy.linalg module

```
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.array([[1, 2], [3, 4]])
>>> A
array([[1, 2],
      [3, 4]])
>>> b = np.array([[5], [6]])
>>> b
array([[5],
      [6]])
>>> np.linalg.solve(A, b) # fast
array([[-4.],
      [ 4.5]])
>>> A.dot(np.linalg.solve(A, b)) - b # check
array([[ 0.],
      [0.]]
```