

PESU Center for Information Security, Forensics and Cyber Resilience

Welcome to

PES University

Ring Road Campus, Bengaluru

10 June 2020

PESU Center for Information Security, Forensics and Cyber Resilience

APPLIED CRYPTOGRAPHY

Lecture 4

Classical cryptography

Most of them not in use nowadays

- Used historically
- Practically computed and solved by hand
- Most of it was "the art of writing or solving codes"
 - Letter coding
 - Number coding
 - Mixed coding

Letter coding

• If TAP is coded as SZO then how is freeze coded

Number Coding

• If P A I N T is coded as 74128 and E X C E L is coded as 93596, then how would you encode A C C E P T?

• If 'tee see pee' means 'drink fruit juice' 'see kee mee' means 'juice is sweet' and 'fee ree mee' means 'he is intelligent' which world means 'sweet'?

A practical cryptosystem should satisfy

Each encryption function e_k and each decryption function d_k should be efficiently computable.

An opponent, upon seeing the ciphertext string y, should be unable to determine the key k that was used, or the plaintext string x

Classical cipher

- The classical algorithms are those invented pre-computer up until around the 1950's.
- Mainly
 - Substitution ciphers
 - Transposition cipher
 - Combined

Substitution cipher

- Encrypt the plaintext by swapping each letter or symbol in the plaintext by a different symbol as directed by the key.
- Monoalphabetic cipher
- Polyalphabetic cipher
- polygraphic cipher

 If cook is called butler, butler is called manager, manager is called teacher, teacher is called clerk and finally clerk is called principal, who will teach in class

Monoalphabetic substitution cipher

- Simple substitution cipher
- Fixed substitution over the entire message
- Example:
 - Caesar cipher

- Simple monoalphabetic substitution cipher
- Substitute one letter for another

 A in plaintext is replace with D in ciphertext, B in plaintext is replaced with E in ciphertext

Caesar cipher example

- Plaintext "begin the attack now"
- Key: Shift index by 3
- Cipher: Caesar cipher

solution

В	Ε	G	I	N	Т	Н	Ε	Α	Т	T	Α	С	K	N	0	W
Ε	Н	J	L	Q	W	K	Н	D	W	W	D	F	N	Q	R	Z

• Ciphertext: EHJLQWKHDWWDFNQRZ

Polyalphabetic substitution cipher

- Cipher alphabet for the plain alphabet may be different at different places during the encryption process.
 - Examples:
 - Playfair cipher
 - Vigenere cipher

Playfair cipher

- Encrypting and Decrypting:
- Plaintext encrypted two letters at a time:
 - STEP1: if a pair is a repeated letter, insert a filler like 'X', eg. "balloon" encrypts as "ba lx lo on"
 - STEP2: If both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - STEP3: if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - STEP4: otherwise each letter is replaced by the one in its row in the column of the other letter of the pair

- Plain text = classical ciphers are easily breakable.
- Key = ENCRYPT
- Cipher system = playfair

E	N	С	R	Y
P	T	Α	В	D
F	G	Н	I/J	K
L	M	0	Q	S
U	V	W	X	Z

- Two letters at a time
 - Plaintext: "tell him about me"

• Step1: if a pair is a repeated letter, insert a filler

Step2-step4

Vigenere Cipher

- Idea: Uses Caesar's cipher with various shifts, in order to hide the distribution of the letters.
- A key defines the shift used in each letter in the text
- A key word is repeated as many times as required to become the same length

Example1:

Plain text: I attack

Key: 2 3 4

Ciphertext: KDXVDGM

Example 2:

Plain text: I attack

Key: exam

Ciphertext: NYRGFAL

L	Α	T	T	Α	С	K
2	3	4	2	3	4	2
K	D	X	V	D	G	M

L	Α	Т	Т	Α	С	K
E	X	Α	M	E	X	Α
N	Υ	R	G	F	Α	L

Polygraphic substitution cipher

- Works on multiple letters at the same time
 - Hill cipher

- Depends on the concept $m.m^{-1}=1$
- I is the identity

• If
$$M = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

• Then
$$M^{-1}$$
= 0.2 0.2 0 -0.2 0.3 1 0.2 -0.3 0

To encrypt plaintext using matrix M

- Plaintext='abc'
- Key = matrix M
- Cipher = Hill cipher considering a=1, b=2, c=3
- Encryption achieved my multiplying matrix M by values of plaintext grouped 3 letters at a time

Ciphertext C=
$$\begin{bmatrix} 3 & 0 & 2 & 0 & 4 \\ 2 & 0 & -2 & . & 1 & = & -4 \\ 0 & 1 & 1 & 2 & 3 \end{bmatrix}$$

Decryption achieved by multiplying ciphertext with inverse of the matrix

Plaintext=
$$M^{-1}$$
. $C = \begin{bmatrix} 0.2 & 0.2 & 0 \\ -0.2 & 0.3 & 1 \\ 0.2 & -0.3 & 0 \end{bmatrix}$

Next Class

Mandatory reading for the next class

https://ieeexplore.ieee.org/document/8686758

S Rajashree

Computer Science and Engineering

PES University, Bengaluru

PESU Center for Information Security, Forensics and Cyber Resilience

PESU Center for Internet of Things