Embodied Intelligence in Soft Robots: Strides in Morphological Computation for Control

Lekan Molu

Microsoft Research New York City, NY 10012

Presented by Lekan Molu (Lay-con Mo-lu)

October 31, 2024

Talk Overview

- The principle of morphological computation in nature
 - Morphology: shape, geometry, and mechanical properties.
 - Computation: sensorimotor information transmission among geometrical components.
- Morphology and computation in artificial robots
 - Cosserat Continua and reduced soft robot models.
 - Reductions: Structural Lagrangian properties and control.
- Towards real-time strain regulation and control
 - Simplexity: Hierarchical and fast versatile control with reduced variables.

Morphology and computation

- Morphology: Emergent behaviors of natural organisms from complex sensorimotor nonlinear mechanical feedback from the environment.
 - Shape affecting behavioral response.
 - Geometrical Arrangement of motors such that processing and perception affect computational characteristics.
 - Mechanical properties that allow the engineering of emergent behaviors via adaptive environmental interaction.
- Computation: The information transformation among the system geometrical units, upon environmental perception, that effect morphological changes in shape and material properties.

MC in vertebrates – a case for soft designs

An adult human skeleton $\approxeq 11\%$ of the body mass. $_{\text{©Brittanica}}$

- The arrangement and compliance of body parts, perception, and computation creates emergence of complex interactive behavior
- Soft bodies seem critical to the emergence of adaptive natural behaviors.
- Morphological computation is crucial in the design of robots that execute adaptive natural behavior.

MC in Vertebrates: The Central Pattern Generator

- A neural mechanism (in vertebrates) that generates motor control with minimal parameters.
- CPG: Neurons and synapses couple to generate effective motor activation for rhythmic environmental motion.
 - In Lampreys, only two signals trigger swimming motion, for example!
 - This CPG enables indirect use of brain computational power via nonlinear feedback from stretch receptor neurons on Lamprey's skin.

Simplexity in Morphological Computation

Simplexity in Morphological Computation

- Simplexity: Exploiting structure for effective control.
 - The geometrical tuning of the morphology and neural circuitry in the brain of mammals that simplify the perception and control of complex natural phenomena.
 - Not exactly simplified models or reduced complexity.
 - But rather, sparse connections and finite variables to execute adaptive sensorimotor strategies!
- Example: Saccades (focused eye movements) are controlled by (small) Superior Colliculus in the human brain.
 - Plug: Complex neural circuitry; simple control systems!

Morphing in Invertebrates: Cephalopods

Cuttlefish. ©Monterey Bay Museum

Octopus. © Smithsonian Magazine

The Octopus and Cuttlefish

- No exoskeleton, or spinal cord.
- A muscular hydrostat: transversal, longitudinal, and oblique muscles along richly innervated arms and mechanoreceptors:
 - Allows for bending, stretching, stiffening, and retraction.
 - Diverse compliance across eight arms imply sophisticated motion strategies in the wild!
- Simplexity enhanced by a peripheral nervous system and a central nervous system.

Soft Robot Mechanism in Focus

A continuum soft robot whose mechanics can be well-described with Cosserat rod theory. Reprinted from (Della Santina et al. (2023))

- One dimension is quintessentially longer than the other two.
- Characterized by a central axis with undeformable discs that characterize deformable cross-sectional segments.
- Strain and deformation, via e.g. Cosserat rod theory, enables precise finite-dimensional mathematical models.

A Finite and Reliable Model

- A soft robot's usefulness is informed by control system that melds its body deformation with internal actuators.
- By design, this calls for a high-fidelity model or a delicate balancing of complex morphology and data-driven methods.

- Non-interpretable; non-reliable.
- XContinuous coupled interaction between the material, actuators, and external affordances.

The case for model-based control

- Soft robots are infinite degrees-of-freedom continua i.e., PDEs are the main tools for analysis.
- nonlinear PDE theory is tedious and computationally intensive.
- Notable strides in reduced-order, finite-dimensional mathematical models that induce tractability in continuum models.

Tractable reduced-order models

- Morphoelastic filament theory: Moulton et al. (2020);
 Kaczmarski et al. (2023); Gazzola et al. (2018);
- Generalized Cosserat rod theory: Rubin (2000); Cosserat and Cosserat (1909);
- The constant curvature model: Godage et al. (2011);
- The piecewise constant curvature model: Webster and Jones (2010); Qiu et al. (2023); and
- Ordinary differential equations-based discrete Cosserat model: Renda et al. (2016, 2018).

Model-based control

- The discrete Cosserat model Renda et al. (2018).
 - Restricting possible emergent shapes to a finite-dimensional functional space
 - Space is a curve, X : [0, L], that parameterizes the robot.
 - Essentially take finite nodal points on robot's body → approximate dynamics along the discrete sections by an ordinary differential equations (ODE).
- Control can be realized to arbitrary precision, constrained by discretization space.

Modeling Analysis - Basic Taxonomy

- Strain-parameterized dynamics on a reduced special Euclidean-3 group (SE(3)).
- C-space: $g(X): X \to$ $\mathbb{SE}(3) = \begin{pmatrix} R(X) & p(X) \\ 0^{\top} & 1 \end{pmatrix}.$
- Strain and twist vectors: $\{\eta, \xi\} \in \mathbb{R}^6$.
- Strain field: $\breve{\eta}(X) = g^{-1}\partial g/\partial X$.
- Twist field: $\xi(X) = g^{-1}\partial g/\partial t$.

The Discrete Cosserat Model

- $X \in [0, L]$ is divided into N intervals: $[0, L_1], \dots, [L_{N-1}, L_N]$.
- In Renda et al. (2018)'s proposition, the robot's mass divides into N discrete sections $\{\mathcal{M}_n\}_{n=1}^N$;
- Each with constant strain η_n
- Strain field: $\breve{\eta}(X) = g^{-1}\partial g/\partial X$.
- Twist field: $\xi(X) = g^{-1}\partial g/\partial t$.

Dynamic Equations of the Rod-like Arm

$$\underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{M}_{a} J dX\right]}_{M(q)} \ddot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \operatorname{ad}_{J\dot{q}}^{\star} \mathcal{M}_{a} J dX\right]}_{C_{1}(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{D} J \|J\dot{q}\|_{p} dX\right]}_{C_{2}(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{D} J \|J\dot{q}\|_{p} dX\right]}_{D(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{D} J \|J\dot{q}\|_{p} J \|J\dot{q}\|_{p} dX\right]}_{D(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{D} J \|J\dot{q}\|_{p} J \|J\dot{q}\|$$

Structural Properties of Rod-like Robots

$$M(\boldsymbol{q})\ddot{\boldsymbol{q}} + [C_1(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_2(\boldsymbol{q}, \dot{\boldsymbol{q}})] \dot{\boldsymbol{q}} = F(\boldsymbol{q}) + N(\boldsymbol{q}) \operatorname{Ad}_{\boldsymbol{g}_r}^{-1} \mathcal{G} + \tau(\boldsymbol{q}) - D(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}.$$
(2)

Property 1 (Positive definiteness of the Inertia Operator)

The inertia tensor $\mathcal{M}_a(\mathbf{q})$ is symmetric and positive definite. As a result $M(\mathbf{q})$ is symmetric and positive definite.

Proof.

The jacobian, J, is injective by (Renda et al., 2018, equation 20). Thus, property 1 follows from its definition.

Structural Properties of Rod-like Robots

Property 2 (Boundedness of the Mass Matrix)

The mass inertial matrix M(q) is uniformly bounded from below by $m\mathbf{l}$ where m is a positive constant and \mathbf{l} is the identity matrix.

Proof of Property 2.

This is a restatement of the lower boundedness of M(q) for fully actuated n-degrees of freedom manipulators Romero et al. (2014).

Structural Properties of Rod-like Robots

Property 3 (Skew symmetric property)

The matrix $\dot{M}(\mathbf{q}) - 2[C_1(\mathbf{q}, \dot{\mathbf{q}}) + C_2(\mathbf{q}, \dot{\mathbf{q}})]$ is skew-symmetric.

Proof of Property 3.

TL; DR: See proof in Molu and Chen (2024).

Skew-Symmetric Property Proof

By Leibniz's rule, we have

$$\dot{M}(\boldsymbol{q}) = \frac{d}{dt} \left(\int_0^{L_N} J^T \mathcal{M}_a J dX \right) = \int_0^{L_N} \frac{\partial}{\partial t} \left(J^T \mathcal{M}_a J \right) dX$$

$$\triangleq \int_0^{L_N} \left(\dot{J}^T \mathcal{M}_a J + J^T \dot{\mathcal{M}}_a J + J^T \mathcal{M}_a \dot{J} \right) dX. \tag{3}$$

Therefore, $\dot{M}(\boldsymbol{q}) - 2\left[C_1(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_2(\boldsymbol{q}, \dot{\boldsymbol{q}})\right]$ becomes

$$\int_{0}^{L_{N}} \left(\dot{J}^{\top} \mathcal{M}_{a} J + J^{\top} \dot{\mathcal{M}}_{a} J + J^{\top} \mathcal{M}_{a} \dot{J} \right) dX - 2 \int_{0}^{L_{N}} \left(J^{\top} \operatorname{ad}_{J\dot{q}}^{\star} \mathcal{M}_{a} J + J^{\top} \mathcal{M}_{a} \dot{J} \right) dX$$

$$\tag{4}$$

$$\triangleq \int_0^{L_N} \left(\dot{J}^\top \mathcal{M}_{a} J + J^\top \dot{\mathcal{M}}_{a} J - J^\top \mathcal{M}_{a} \dot{J} \right) dX - 2 \int_0^{L_N} J^\top \operatorname{ad}_{J\dot{q}}^{\star} \mathcal{M}_{a} J dX.$$
 (5)

Skew-Symmetric Property Proof

Similarly,
$$-\left[\dot{M}(\boldsymbol{q}) - 2\left[C_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_{2}(\boldsymbol{q}, \dot{\boldsymbol{q}})\right]\right]^{\top} \text{ expands as}$$

$$-\dot{M}^{\top}(\boldsymbol{q}) + 2\left[C_{1}^{\top}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_{2}^{\top}(\boldsymbol{q}, \dot{\boldsymbol{q}})\right] =$$

$$\int_{0}^{L_{N}} dX^{\top} \left(-J^{\top}\mathcal{M}_{a}\dot{J} - J^{\top}\dot{\mathcal{M}}_{a}J - \dot{J}^{\top}\mathcal{M}_{a}J\right) + 2\int_{0}^{L_{N}} dX^{\top} \left(J^{\top}\mathcal{M}_{a}\text{ad}J_{\dot{\boldsymbol{q}}}J + \dot{J}^{\top}\mathcal{M}_{a}J\right)$$

$$\triangleq \int_{0}^{L_{N}} \left(J^{\top}\mathcal{M}_{a}\dot{J} - \dot{J}^{\top}\mathcal{M}_{a}J - J^{\top}\dot{\mathcal{M}}_{a}J\right) dX - 2\int_{0}^{L_{N}} J^{\top}\text{ad}J_{\dot{\boldsymbol{q}}}^{\dagger}\mathcal{M}_{a}JdX$$

$$(6)$$

which satisfies the identity:

$$M(\mathbf{q}) - 2[C_1(\mathbf{q}, \dot{\mathbf{q}}) + C_2(\mathbf{q}, \dot{\mathbf{q}})] = -\left[\dot{M}(\mathbf{q}) - 2[C_1(\mathbf{q}, \dot{\mathbf{q}}) + C_2(\mathbf{q}, \dot{\mathbf{q}})]\right]^{\top}.$$
 (7)

A fortiori, the skew symmetric property follows.

MC Takeaways: Simplexity

 Simplexity: Reliance on a few parameters to model an infinite-DoF system:

$$M(q)\ddot{q} + [C_1(q,\dot{q}) + C_2(q,\dot{q})]\dot{q} = F(q) + N(q)\operatorname{Ad}_{\mathbf{g}_r}^{-1}\mathcal{G} + \tau(q) - D(q,\dot{q})\dot{q}.$$

- Simplexity: From PDE to ODE, i.e. inifinite-dimensional analysis (Continuum PDE) to finite-dimensional ODE!
- Computation of deformation is possible at finite nodal points.

- Proposal: A globally asymptotically stabilizing proportional-derivative (PD) controller for a rod-like soft arm.
 - Regarding the generalized torque $\tau(\boldsymbol{q})$ as a control input, $u(\boldsymbol{q}, \dot{\boldsymbol{q}})$, feedback laws are sufficient for attaining a desired soft body configuration.

Theorem 1 (Cable-driven Actuation)

For positive definite diagonal matrix gains K_D and K_p , without gravity/buoyancy compensation, the control law

$$u(\mathbf{q}, \dot{\mathbf{q}}) = -K_{p}\tilde{\mathbf{q}} - K_{D}\dot{\mathbf{q}} - F(\mathbf{q}) \tag{8}$$

under a cable-driven actuation globally asymptotically stabilizes system (2), where $\tilde{q}(t) = q(t) - q^d$ is the joint error vector for a desired equilibrium point q^d .

Corollary 2 (Fluid-driven actuation)

If the robot is operated without cables, and is driven with a dense medium such as pressurized air or water, then the term $F(\mathbf{q})=0$ so that the control law $u(\mathbf{q},\dot{\mathbf{q}})=-K_{p}\tilde{\mathbf{q}}-K_{D}\dot{\mathbf{q}}$ globally asymptotically stabilizes the system.

Proof.

Proofs in Section V of Molu and Chen (2024).

- Tip load in the +y direction in the robot's base frame.
- Poisson ratio: 0.45; $\mathcal{M} = \rho[I_x, I_y, I_z, A, A, A]$ with $\rho = 2,000 kgm^{-3}$ following Renda et al. (2018).
- $A = \pi r^2;$ $D = -\rho_w \nu^T \nu \breve{D} \nu / |\nu|.$
- X ∈ [0, L] discretized into 41 segments for each experiment.

Cable-driven, strain twist setpoint terrestrial control.

Fluid-actuated, strain twist setpoint terrestrial control

Fluid-actuated, strain twist setpoint underwater control

Cable-driven, strain twist setpoint regulation.

Cable-based position control with a small tip load, 0.2N.

Terrestrial position control.

Exploiting Mechanical Nonlinearity for Feedback!

This page is left blank intentionally.

Hierarchical Dynamics and Control

- Reaching steps towards the real-time strain control of multiphysics, multiscale continuum soft robots.
- Separate subdynamics aided by a perturbing time-scale separation parameter.
- Respective stabilizing nonlinear backstepping controllers.
- Stability of the interconnected singularly perturbed. system.
- Fast numerical results on a single arm of the Octopus robot arm.

Layered control architecture

 Essentially a layered multirate control scheme (Matni et al. (2024)) of the various interconnected physics components of a soft robot prototype.

Framework: Singularly Perturbed Dynamics

A standard two-time-scale singularly perturbed system:

$$\dot{\mathbf{z}}_1 = \mathbf{f}(\mathbf{z}_1, \mathbf{z}_2, \epsilon, \mathbf{u}_s, t), \ \mathbf{z}_1(t_0) = \mathbf{z}_1(0), \ \mathbf{z}_1 \in \mathbb{R}^{6N},$$
 (9a)

$$\epsilon \dot{\mathbf{z}}_2 = \mathbf{g}(\mathbf{z}_1, \mathbf{z}_2, \epsilon, \mathbf{u}_f, t), \ \mathbf{z}_2(t_0) = \mathbf{z}_2(0), \ \mathbf{z}_2 \in \mathbb{R}^{6N}$$
 (9b)

- f and g are $C^n(n \gg 0)$ differentiable functions of their arguments;
- \bullet $\epsilon > 0$ denotes all small parameters to be ignored.
- ullet u_s is the slow sub-dynamics' control law, and
- $m{u}_f$ is the fast sub-dynamics' controller.

Framework: Slow Dynamics Extraction

Assumption 1 (Real and distinct root)

Equation (9) has the unique and distinct root $\mathbf{z}_2 = \phi(\mathbf{z}_1, t)$ (for a sufficiently smooth ϕ) so that

$$0 = \mathbf{g}(\mathbf{z}_1, \phi(\mathbf{z}_1, t), 0, 0, t) \triangleq \bar{\mathbf{g}}(\mathbf{z}_1, 0, t), \ \mathbf{z}_1(t_0) = \mathbf{z}_1(0).$$
 (10)

The slow subsystem therefore becomes

$$\dot{\mathbf{z}}_1 = \mathbf{f}(\mathbf{z}_1, \phi(\mathbf{z}_1, t), 0, \mathbf{u}_s, t) \triangleq \mathbf{f}_s(\mathbf{z}_1, \mathbf{u}_s, t). \tag{11}$$

Framework: Slow Dynamics Extraction

- Assumption: the fast feedback law is asymptotically stable;
 - It does not modify the open-loop equilibrium manifold of the fast dynamics.
- With $\epsilon = 0$ we have,

$$\dot{\mathbf{z}}_1 = \mathbf{f}(\mathbf{z}_1, \mathbf{z}_2, 0, \mathbf{u}_s, t), \ \mathbf{z}_1(t_0) = \mathbf{z}_1(0),$$
 (12a)

$$0 = \mathbf{g}(\mathbf{z}_1, \mathbf{z}_2, 0, 0, t). \tag{12b}$$

Framework: Fast Dynamics Extraction

Introduce the time scale $T=t/\epsilon$, and write the deviation of \mathbf{z}_2 from its isolated equilibrium manifold, $\phi(\mathbf{z}_1,t)$ as $\tilde{\mathbf{z}}_2=\mathbf{z}_2-\phi(\mathbf{z}_1,t)$. Then, (9) becomes

$$\frac{d\mathbf{z}_1}{dT} = \epsilon \mathbf{f}(\mathbf{z}_1, \tilde{\mathbf{z}}_2 + \phi(\mathbf{z}_1, t), \epsilon, \mathbf{u}_s, t), \tag{13a}$$

$$\frac{d\tilde{z}_2}{dT} = \epsilon \frac{dz_2}{dt} - \epsilon \frac{\partial \phi}{\partial z_1} \dot{z}_1, \tag{13b}$$

$$= \mathbf{g}(\mathbf{z}_1, \tilde{\mathbf{z}}_2 + \phi(\mathbf{z}_1, t), \epsilon, \mathbf{u}_f, t) - \epsilon \frac{\partial \phi(\mathbf{z}_1, t)}{\partial \mathbf{z}_1} \dot{\mathbf{z}}_1.$$
 (13c)

Framework for singularly perturbed dynamics

Setting $\epsilon=0$, we obtain the algebraic equation

$$\frac{d\tilde{\mathbf{z}}_2}{dT} = \mathbf{g}(\mathbf{z}_1, \tilde{\mathbf{z}}_2 + \phi(\mathbf{z}_1, t), 0, \mathbf{u}_f, t)$$
(14)

with z_1 frozen to its initial values.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

Decomposition of SoRo Rod Dynamics

This page is left blank intentionally

Decomposition of SoRo Rod Dynamics

- $\mathcal{M}_i^{\text{core}}$: composite mass distribution as a result of microsolid i's barycenter motion;
- $\mathcal{M}^{\text{pert}}$: motions relative to $\mathcal{M}_{i}^{\text{core}}$, considered as a perturbation;
- $\mathcal{M} = \mathcal{M}^{\mathsf{pert}} \cup \mathcal{M}^{\mathsf{core}}$.
- Introduce the transformation: $[q, \dot{q}] = [q, z]$, rewrite (2):

$$\textit{M}(\textit{\textbf{q}})\dot{\textit{\textbf{z}}} + \left[\textit{\textbf{C}}_{1}(\textit{\textbf{q}},\textit{\textbf{z}}) + \textit{\textbf{C}}_{2}(\textit{\textbf{q}},\textit{\textbf{z}}) + \textit{\textbf{D}}(\textit{\textbf{q}},\textit{\textbf{z}})\right]\textit{\textbf{z}} - \textit{\textbf{F}}(\textit{\textbf{q}}) - \textit{\textbf{N}}(\textit{\textbf{q}})\mathsf{Ad}_{\textit{\textbf{g}}_{r}}^{-1}\mathcal{G} = \tau(\textit{\textbf{q}})$$

Dynamics separation

Suppose that $\pmb{M}^p = \int_{L_{\min}^p}^{L_{\max}^p} \pmb{J}^{\top} \pmb{\mathcal{M}}^{pert} \pmb{J} dX$, and $\pmb{M}^c = \int_{L_{\min}^c}^{L_{\max}^c} \pmb{J}^{\top} \mathcal{M}^{core} \pmb{J} dX$, then,

$$M(q) = (M^{c} + M^{p})(q), N = (N^{c} + N^{p})(q),$$
 (15a)

$$F(q) = (F^c + F^p)(q), \quad D(q) = (D^c + D^p)(q)$$
 (15b)

$$\mathbf{C}_1(\mathbf{q},\dot{\mathbf{q}}) = (\mathbf{C}_1^c + \mathbf{C}_1^p)(\mathbf{q},\dot{\mathbf{q}}), \tag{15c}$$

$$\mathbf{C}_2(\mathbf{q},\dot{\mathbf{q}}) = (\mathbf{C}_2^c + \mathbf{C}_2^p)(\mathbf{q},\dot{\mathbf{q}}). \tag{15d}$$

Dynamics Separation

Furthermore, let

$$\mathbf{M} = \underbrace{\begin{bmatrix} \mathbf{\mathcal{H}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{M}^{c}(\mathbf{q})} + \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{\mathcal{H}}_{slow}^{fast} \\ \mathbf{\mathcal{H}}_{slow}^{fast} \top & \mathbf{\mathcal{H}}_{slow} \end{bmatrix}}_{\mathbf{M}^{p}(\mathbf{q})}, \tag{16}$$

where $\mathcal{H}_{\text{slow}}^{\text{fast}}$ denotes the decomposed mass of the perturbed sections of the robot relative to the core sections.

- Let robot's state, $\mathbf{x} = [\mathbf{q}^\top, \mathbf{z}^\top]^\top$ decompose as $\mathbf{q} = [\mathbf{q}_{\text{fast}}^\top, \mathbf{q}_{\text{slow}}^\top]^\top$ and $\mathbf{z} = [\mathbf{z}_{\text{fast}}^\top, \mathbf{z}_{\text{slow}}^\top]^\top$,
- Define $\bar{\mathbf{M}}^p = \mathbf{M}^p/\epsilon$, and let $\mathbf{u} = [\mathbf{u}_{\text{fast}}^\top, \mathbf{u}_{\text{slow}}^\top]^\top$ be the applied torque.

SoRo Dynamics Separation

$$(\mathbf{M}^c + \epsilon \bar{\mathbf{M}}^p) \dot{\mathbf{z}} = \mathbf{s} + \mathbf{u}, \tag{17}$$

where

$$s = \begin{bmatrix} s_{\text{fast}} \\ s_{\text{slow}} \end{bmatrix} = \begin{bmatrix} F^c + N^c A d_{g_r}^{-1} \mathcal{G} - [C_1^c + C_2^c + D^c] z_{\text{fast}} \\ F^\rho + N^\rho A d_{g_r}^{-1} \mathcal{G} - [C_1^\rho + C_2^\rho + D^\rho] z_{\text{slow}} \end{bmatrix}.$$
(18)

• Since \mathcal{H}_{fast} is invertible, let

$$\bar{\mathbf{M}}^{p} = \begin{bmatrix} \bar{\mathbf{M}}_{11}^{p} & \bar{\mathbf{M}}_{12}^{p} \\ \bar{\mathbf{M}}_{21}^{p} & \bar{\mathbf{M}}_{22}^{p} \end{bmatrix} \text{ and } \Delta = \begin{bmatrix} 0 & 0 \\ \bar{\mathbf{M}}_{21}^{p} \mathcal{H}_{\text{fast}}^{-1} & 0 \end{bmatrix}. \tag{19}$$

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

SoRo Dynamics Separation

Premultiplying both sides by $I - \epsilon Delta$, it can be verified that

$$\begin{bmatrix} \boldsymbol{\mathcal{H}}_{\mathsf{fast}} & \bar{\boldsymbol{M}}_{12}^{P} \\ 0 & \bar{\boldsymbol{M}}_{22}^{P} \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{z}}_{\mathsf{fast}} \\ \epsilon \dot{\boldsymbol{z}}_{\mathsf{slow}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{s}_{\mathsf{fast}} \\ \boldsymbol{s}_{\mathsf{slow}} - \epsilon \bar{\boldsymbol{M}}_{21}^{P} \boldsymbol{\mathcal{H}}_{\mathsf{fast}}^{-1} \boldsymbol{s}_{\mathsf{fast}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{u}_{\mathsf{fast}} \\ \boldsymbol{u}_{\mathsf{slow}} - \epsilon \bar{\boldsymbol{M}}_{21}^{P} \boldsymbol{\mathcal{H}}_{\mathsf{fast}}^{-1} \boldsymbol{u}_{\mathsf{fast}} \end{bmatrix}$$
(20)

which is in the standard singularly perturbed form (9).

SoRo Fast Subsystem Extraction

- On the fast time scale $T=t/\epsilon$, with $dT/dt=1/\epsilon$.
 - Dynamics: $\dot{\mathbf{z}}_{\text{fast}} = \frac{d\mathbf{z}_{\text{fast}}}{dt} \equiv \frac{1}{\epsilon} \frac{d\mathbf{z}_{\text{fast}}}{dT} \triangleq \frac{1}{\epsilon} \mathbf{z}'_{\text{fast}}$; and
 - \bullet $\epsilon \dot{\mathbf{z}}_{\mathsf{slow}} = \mathbf{z}'_{\mathsf{slow}}.$

Fast subdynamics:

$$\mathbf{z}_{\mathsf{fast}}' = \epsilon \mathcal{H}_{\mathsf{fast}}^{-1} (\mathbf{s}_{\mathsf{fast}} + \mathbf{u}_{\mathsf{fast}}) - \mathcal{H}_{\mathsf{fast}}^{-1} \mathcal{H}_{\mathsf{slow}}^{\mathsf{fast}} \mathbf{z}_{\mathsf{slow}}', \tag{21a}$$

$$\mathbf{z}'_{\mathsf{slow}} = \mathcal{H}_{\mathsf{slow}}^{-1}(\mathbf{s}_{\mathsf{slow}} - \mathbf{u}_{\mathsf{slow}}) - \mathcal{H}_{\mathsf{fast}}^{-1}(\mathbf{s}_{\mathsf{fast}} - \mathbf{u}_{\mathsf{fast}})$$
 (21b)

where the slow variables are frozen on this fast time scale.

SoRo Slow Subsystem Extraction

• We let $\epsilon \to 0$ in (20), so that what is left, i.e.,

$$\dot{\mathbf{z}}_{\mathsf{slow}} = \mathcal{H}_{\mathsf{slow}}^{-1}(\mathbf{s}_{\mathsf{slow}} + \mathbf{u}_{\mathsf{slow}})$$
 (22)

constitutes the system's slow dynamics; where the fast components are frozen on this slow time scale.

Outline
Morphological Computation
Finite Models for Infinite-DoF Morphology
Singular Perturbation Theory: Overview
Hierarchical Decomposition of Dynamics
References

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

This page is left blank intentionally

Control of the Fast Strain Subdynamics

- ullet Consider the transformation: $egin{bmatrix} m{ heta} \\ m{\phi} \end{bmatrix} = egin{bmatrix} m{q}_{\mathsf{fast}} \\ m{z}_{\mathsf{fast}} \end{bmatrix}$ so that
 - $oldsymbol{ heta}' = \epsilon oldsymbol{z}_{\mathsf{fast}} \stackrel{\triangle}{=} oldsymbol{
 u} := \mathsf{A} \; \mathsf{virtual} \; \mathsf{input}.$
- Let $\{ \boldsymbol{q}_{\mathsf{fast}}^d, \dot{\boldsymbol{q}}_{\mathsf{fast}}^d \} = \{ \boldsymbol{\xi}_1^d, \dots, \boldsymbol{\xi}_{n_{\xi}}^d, \boldsymbol{\eta}_1^d, \dots, \boldsymbol{\eta}_{n_{\xi}}^d \}_{\mathsf{fast}}$ be the desired joint space configuration for the fast subsystem.

Theorem 3 (Molu (2024))

The control law

$$oldsymbol{u}_{fpos} = oldsymbol{q}_{fast}^d(t_f) - oldsymbol{q}_{fast}(t_f) + oldsymbol{q}_{fast}'^d(t_f)$$

is sufficient to guarantee an exponential stability of the origin of $\theta' = \nu$ such that for all $t_f \geq 0$, $\mathbf{q}_{fast}(t_f) \in S$ for a compact set $S \subset \mathbb{R}^{6N}$. That is, $\mathbf{q}_{fast}(t_f)$ remains bounded as $t_f \to \infty$.

Control of the Fast Strain Subdynamics

Proof Sketch 1 (Proof of Theorem 3)

$$e_1 = \theta - q_{fast}^d, \implies e_1' = \theta' - q_{fast}'^d \triangleq \nu - q_{fast}'^d.$$
 (23)

Choose
$$\mathbf{V}_1(\mathbf{e}_1) = \frac{1}{2} \mathbf{e}_1^{\top} \mathbf{K}_p \mathbf{e}_1$$
 (24)

Then,
$$\mathbf{V}_1' = \mathbf{e}_1^{\top} \mathbf{K}_p \mathbf{e}_1' = \mathbf{e}_1^{\top} \mathbf{K}_p (\nu - \mathbf{q}_{fast}'^d).$$
 (25)

For
$$\nu = q_{fast}^{\prime d} - e_1$$
, $V_1' = -e_1 K_p e_1 \le 2V_1$.

Stability Analysis of the Fast Velocity Subdynamics

Theorem 4 (Molu (2024))

Under the tracking error $\mathbf{e}_2 = \phi - \nu$ and matrices $(\mathbf{K}_p, \mathbf{K}_q) = (\mathbf{K}_p^\top, \mathbf{K}_q^\top) > 0$, the control input

$$\mathbf{u}_{fvel} = \frac{1}{\epsilon} \mathcal{H}_{fast} [\mathbf{q}_{fast}^{"d} + \mathbf{e}_1 - 2\mathbf{e}_2 - \mathbf{K}_q^{\top} (\mathbf{K}_q \mathbf{K}_q^{\top})^{-1} \mathbf{K}_p \mathbf{e}_1]$$

$$+ \frac{1}{\epsilon} \mathcal{H}_{slow}^{fast} \mathbf{z}_{slow}^{\prime} - \mathbf{s}_{fast}$$
(26)

exponentially stabilizes the fast subdynamics (21).

Stability Analysis of Fast Velocity Subdynamics

Proof Sketch 2 (Sketch Proof of Theorem 4)

Recall from the position dynamics controller:

$$e_1' = \theta' - q_{fast}'^d \triangleq z_{fast} - q_{fast}'^d + (\nu - \nu)$$
 (27a)

$$= (\phi - \nu) + (\nu - \mathbf{q}_{fast}^{\prime d}) \triangleq \mathbf{e}_2 - \mathbf{e}_1. \tag{27b}$$

It follows that

$$\mathbf{e}_{2}' = \phi' - \nu' = \mathbf{z}_{fast}' + \mathbf{e}_{1}' - \mathbf{q}_{fast}''^{d}$$

$$= \mathcal{H}_{fast}^{-1} \left[\epsilon \mathbf{u}_{fast} + \epsilon \mathbf{s}_{fast} - \mathcal{H}_{slow}^{fast} \mathbf{z}_{slow}' \right] + (\mathbf{e}_{2} - \mathbf{e}_{1}) - \mathbf{q}_{fast}''^{d}.$$
(28)

Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 3 (Sketch Proof of Theorem 4)

For diagonal matrices K_p , K_q with positive damping, let us choose the Lyapunov candidate function

$$\textbf{\textit{V}}_2(\textbf{\textit{e}}_1,\textbf{\textit{e}}_2) = \textbf{\textit{V}}_1 + \frac{1}{2}\textbf{\textit{e}}_2^{\top}\textbf{\textit{K}}_q\textbf{\textit{e}}_2 = \frac{1}{2}[\textbf{\textit{e}}_1 \ \textbf{\textit{e}}_2]\begin{bmatrix} \textbf{\textit{K}}_p & \textbf{\textit{0}} \\ \textbf{\textit{0}} & \textbf{\textit{K}}_q \end{bmatrix}\begin{bmatrix} \textbf{\textit{e}}_1 \\ \textbf{\textit{e}}_2 \end{bmatrix}.$$

If $ilde{m{q}}_{fast} = m{q}_{fast}^d - m{q}_{fast}^d$ and $ilde{m{q}}_{fast}' = m{q}_{fast}' - m{q}_{fast}'^d$, then the controller

$$egin{align*} oldsymbol{u}_{\mathit{fvel}} &= rac{1}{\epsilon} oldsymbol{\mathcal{H}}_{\mathit{fast}} [oldsymbol{q}_{\mathit{fast}}^{\prime\prime\prime d} - oldsymbol{ ilde{q}}_{\mathit{fast}} - 2oldsymbol{ ilde{q}}_{\mathit{fast}}^{\prime} - oldsymbol{K}_{\mathit{q}}^{ op} (oldsymbol{K}_{\mathit{q}} oldsymbol{K}_{\mathit{q}}^{ op})^{-1} oldsymbol{K}_{\mathit{p}} oldsymbol{ ilde{q}}_{\mathit{fast}}] \ &+ rac{1}{\epsilon} oldsymbol{\mathcal{H}}_{\mathit{slow}}^{\mathit{fast}} oldsymbol{z}_{\mathit{slow}}^{\prime} - oldsymbol{s}_{\mathit{fast}}, \end{split}$$

exponentially stabilizes the system;

Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 4 (Sketch Proof of Theorem 4)

since it can be verified that

$$V_2' = \mathbf{e}_1^{\top} \mathbf{K}_p (\mathbf{e}_2 - \mathbf{e}_1)$$
$$- \mathbf{e}_2^{\top} \mathbf{K}_q \left(\mathbf{e}_2 - \mathbf{K}_q^{\top} (\mathbf{K}_q \mathbf{K}_q^{\top})^{-1} \mathbf{K}_p \mathbf{e}_1 \right)$$
(29a)

$$= -\boldsymbol{e}_1^{\top} \boldsymbol{K}_p \boldsymbol{e}_1 - \boldsymbol{e}_2^{\top} \boldsymbol{K}_q \boldsymbol{e}_2 \tag{29b}$$

$$\triangleq -2\mathbf{V}_2 \le 0. \tag{29c}$$

Stability analysis of the slow subdynamics

Set
$$e_3 = z_{\text{slow}} - \nu$$
 so that $\dot{e}_3 = \dot{z}_{\text{slow}} - \dot{\nu}$. Then,

$$\dot{\boldsymbol{e}}_3 = \dot{\boldsymbol{z}}_{\mathsf{slow}} - \ddot{\boldsymbol{q}}_{\mathsf{fast}}^d + (\boldsymbol{e}_2 - \boldsymbol{e}_1), \tag{30a}$$

$$= \mathcal{H}_{\mathsf{slow}}^{-1}(\mathbf{s}_{\mathsf{slow}} + \mathbf{u}_{\mathsf{slow}}) - \ddot{\mathbf{q}}_{\mathsf{fast}}^d + (\mathbf{e}_2 - \mathbf{e}_1). \tag{30b}$$

Theorem 5

The control law

$$\boldsymbol{u}_{slow} = \mathcal{H}_{slow}(\boldsymbol{e}_1 - \boldsymbol{e}_2 - \boldsymbol{e}_3 + \ddot{\boldsymbol{q}}_{fast}^d) - \boldsymbol{s}_{slow}$$
 (31)

exponentially stabilizes the slow subdynamics.

Stability analysis of the slow subdynamics

Proof.

Consider the Lyapunov function candidate

$$\mathbf{V}_3(\mathbf{e}_3) = \frac{1}{2} \mathbf{e}_3^{\top} \mathbf{K}_r \mathbf{e}_3 \text{ where } \mathbf{K}_r = \mathbf{K}_r^{\top} > 0.$$
 (32)

It follows that

$$\dot{\mathbf{V}}_3(\mathbf{e}_3) = \mathbf{e}_3^{\top} \mathbf{K}_r \dot{\mathbf{e}}_3 \tag{33a}$$

$$= \mathbf{e}_{3}^{\top} \mathbf{K}_{r} \left[\mathbf{\mathcal{H}}_{\text{slow}}^{-1} (\mathbf{s}_{\text{slow}} + \mathbf{u}_{\text{slow}}) - \ddot{\mathbf{q}}_{\text{fast}}^{d} + \mathbf{e}_{2} - \mathbf{e}_{1} \right]. \tag{33b}$$

Substituting u_{slow} in (31), it can be verified that

$$\dot{\boldsymbol{V}}_{3}(\boldsymbol{e}_{3}) = \boldsymbol{e}_{3}^{\top} \boldsymbol{K}_{r} \boldsymbol{e}_{3} \triangleq -2 \boldsymbol{V}_{3}(\boldsymbol{e}_{3}) \leq 0. \tag{34}$$

Hence, the controller (31) stabilizes the slow subsystem.

Stability of the singularly perturbed interconnected system

Let $\varepsilon=(0,1)$ and consider the composite Lyapunov function candidate $\Sigma(\mathbf{z}_{\mathrm{fast}},\mathbf{z}_{\mathrm{slow}})$ as a weighted combination of \mathbf{V}_2 and \mathbf{V}_3 i.e.,

$$\Sigma(\mathbf{z}_{\mathsf{fast}}, \mathbf{z}_{\mathsf{slow}}) = (1 - \varepsilon)\mathbf{V}_2(\mathbf{z}_{\mathsf{fast}}) + \varepsilon \mathbf{V}_3(\mathbf{z}_{\mathsf{slow}}), \, 0 < \varepsilon < 1. \tag{35}$$

It follows that.

$$\dot{\boldsymbol{\Sigma}}(\boldsymbol{z}_{\text{fast}}, \boldsymbol{z}_{\text{slow}}) = (1 - \varepsilon)[\boldsymbol{e}_{1}^{\top} \boldsymbol{K}_{p} \dot{\boldsymbol{e}}_{1} + \boldsymbol{e}_{2}^{\top} \boldsymbol{K}_{q} \dot{\boldsymbol{e}}_{2}] + \varepsilon \boldsymbol{e}_{3}^{\top} \boldsymbol{K}_{r} \dot{\boldsymbol{e}}_{3},$$

$$= -2(\boldsymbol{V}_{2} + \boldsymbol{V}_{3}) + 2\varepsilon \boldsymbol{V}_{2} \leq 0 \tag{36}$$

which is clearly negative definite for any $\varepsilon \in (0,1)$. Therefore, we conclude that the origin of the singularly perturbed system is asymptotically stable under the control laws.

$$\mathbf{u}(\mathbf{z}_{\text{fast}}, \mathbf{z}_{\text{slow}}) = (1 - \varepsilon)\mathbf{u}_{\text{fast}} + \varepsilon \mathbf{u}_{\text{slow}}.$$
 (37)

Asynchronous, time-separated control

Ten discretized PCS sections: 6 fast, 4 slow subsections. $\mathcal{F}_p^{\gamma} = 10 \text{ N}$, with $K_p = 10$, $K_d = 2.0$ for $\eta^d = [0, 0, 0, 1, 0.5, 0]^{\top}$ and $\xi^d = 0_{6 \times 1}$.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

Five-axes control

Time Response Comparison with Non-hierarchical Controller

Pieces			Runtime (mins)		
Tota	l Fast	Slov	v Hierarchical	Single-layer PD control (hours)	
			SPT		
			(mins)		
6	4	2	18.01	51.46	
8	5	3	30.87	68.29	
10	7	3	32.39	107.43	

Table: Time to Reach Steady State.

References I

- Cosimo Della Santina, Christian Duriez, and Daniela Rus. Model-based control of soft robots: A survey of the state of the art and open challenges. *IEEE Control Systems Magazine*, 43(3):30–65, 2023. doi: 10.1109/MCS.2023.3253419.
- Derek E Moulton, Thomas Lessinnes, and Alain Goriely. Morphoelastic Rods III: Differential Growth and Curvature Generation in Elastic Filaments. *Journal of the Mechanics and Physics of Solids*, 142:104022, 2020.
- Bartosz Kaczmarski, Alain Goriely, Ellen Kuhl, and Derek E Moulton. A Simulation Tool for Physics-informed Control of Biomimetic Soft Robotic Arms. *IEEE Robotics and Automation Letters*, 2023.
- Mattia Gazzola, LH Dudte, AG McCormick, and Lakshminarayanan Mahadevan. Forward and inverse problems in the mechanics of soft filaments. Royal Society open science, 5(6):171628, 2018.
- M. B. Rubin. Cosserat Theories: Shells, Rods, and Points. Springer-Science+Business Medis, B.V., 2000.
- Eugène Maurice Pierre Cosserat and François Cosserat. Théorie des corps déformables. A. Hermann et fils, 1909.
- Isuru S Godage, David T Branson, Emanuele Guglielmino, Gustavo A Medrano-Cerda, and Darwin G Caldwell. Shape function-based kinematics and dynamics for variable length continuum robotic arms. In 2011 IEEE International Conference on Robotics and Automation, pages 452-457. IEEE, 2011.
- Robert J. III Webster and Bryan A. Jones. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–1683, 2010.
- Ke Qiu, Jingyu Zhang, Danying Sun, Rong Xiong, Haojian Lu, and Yue Wang. An efficient multi-solution solver for the inverse kinematics of 3-section constant-curvature robots. arXiv preprint arXiv:2305.01458, 2023.
- Federico Renda, Vito Cacucciolo, Jorge Dias, and Lakmal Seneviratne. Discrete cosserat approach for soft robot dynamics: A new piece-wise constant strain model with torsion and shears. IEEE International Conference on Intelligent Robots and Systems, 2016-Novem:5495–5502, 2016. ISSN 21530866.

References II

- Federico Renda, Frédéric Boyer, Jorge Dias, and Lakmal Seneviratne. Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics. 34(6):1518–1533. 2018.
- José Guadalupe Romero, Romeo Ortega, and Ioannis Sarras. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control, 60(3):818–823, 2014.
- Lekan Molu and Shaoru Chen. Lagrangian Properties and Control of Soft Robots Modeled with Discrete Cosserat Rods. In IEEE International Conference on Decision and Control, Milan, Italy, IEEE, 2024.
- Nikolai Matni, Aaron D Ames, and John C Doyle. A quantitative framework for layered multirate control: Toward a theory of control architecture. IEEE Control Systems Magazine, 44(3):52–94, 2024.
- Lekan Molu. Fast Whole-Body Strain Regulation in Continuum Robots. (submitted to) American Control Conference, 2024.