## Lista de Exercícios Unidade 3

1. Demonstre, por indução, as seguintes identidades:

a) 
$$1.2 + 2.3 + \ldots + n.(n+1) = \frac{n(n+1)(n+2)}{3}$$
;

b) 
$$1^3 + 2^3 + \ldots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
;

c) 
$$1.2^0 + 2.2^1 + 3.2^2 + \dots + n.2^{n-1} = 1 + (n-1)2^n$$
;

d) 
$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)^2\cdots\left(1+\frac{1}{n-1}\right)^{n-1}=\frac{n^{n-1}}{(n-1)!};$$

e) 
$$1.1! + 2.2! + 3.3! + \cdots + n.n! = (n+1)! - 1.$$

- 2. Demonstre, por indução, as seguintes desigualdades:
  - a)  $2^n > n$ , onde n é um número natural arbitrário;

b) 
$$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \le \frac{1}{\sqrt{3n+1}}$$
, para qualquer  $n \in \mathbb{N}$ .

- 3. Considere a sequência  $(x_n)$  correspondente ao método de Newton para calcular  $\sqrt{2}$ , ou seja, a sequência definida por  $x_1 = 1$ ,  $x_{n+1} = \frac{1}{2} \left( x_n + \frac{2}{x_n} \right)$ .
  - a) Mostre que  $1 \le x_n \le \frac{3}{2}$ , para todo n.
  - b) Mostre que  $x_{n+1} \sqrt{2} = \frac{1}{2x_n} (x_n \sqrt{2})^2$ , para todo n.

(Isto explica porque o erro no cálculo de  $\sqrt{2}$  cai tão rapidamente no Método de Newton.)

- 4. Prove que, para qualquer número natural n:
  - a)  $n^3 + (n+1)^3 + (n+2)^3$  é divisível por 9;
  - b)  $3^{2n+2} + 8n 9$  é divisível por 16;

- c)  $4^n + 15n 1$  é divisível por 9;
- d)  $11^{n+2} + 12^{2n+1}$  é divisível por 133;
- e)  $2^{3^n} + 1$  é divisível por  $3^{n+1}$ .
- 5. Um plano está dividido em regiões por várias retas. Prove que é possível colorir essas regiões com duas cores de modo que quaisquer duas regiões adjacentes tenham cores diferentes (dizemos que duas regiões são *adjacentes* se elas tiverem pelo menos um segmento de reta em comum).
- 6. (O queijo de Steiner) Seja  $q_n$  o número de regiões determinadas no espaço tridimensional por n planos (equivalentemente, o maior número de partes em que um queijo pode ser dividido por n cortes planos).
  - a) Explique por que  $q_{n+1}=q_n+p_n$ , para todo  $n\in\mathbb{N}$ , onde  $p_n$  é o número máximo de regiões em que n retas dividem o plano.
  - b) Mostre que  $q_n = \frac{n^3 + 5n + 6}{6}$ , para todo  $n \in \mathbb{N}$
- 7. Considere uma linha poligonal formada por 2 semiretas e por n segmentos de reta. A figura ilustra a situação para n=2. Encontre uma fórmula para o número máximo de regiões determinadas pela linha poligonal e demonstre que sua fórmula está correta.



- 8. No problema da Torre de Hanoi, suponha que se deseja passar n discos de uma haste extrema para outra, mas que não seja permitido passar diretamente um disco de um extremo para o outro (isto é, todo movimento deve ter origem ou destino na haste central). Assim, por exemplo, para passar um único disco são necessários dois movimentos (o primeiro para levá-lo à haste central e o segundo para levá-lo da haste central ao outro extremo).
  - a) Verifique que são necessários no mínimo 8 movimentos para transferir 2 discos.

- b) Sendo  $h_n$  o número de movimentos necessários para n discos, expresse  $h_{n+1}$  em termos de  $h_n$ .
- c) Moste que o número mínimo de movimentos para transferir n discos é  $h_n=3^n-1,$  para todo  $n\in\mathbb{N}.$