MAST90104: Introduction to Statistical Learning

Week 11 Lab and Workshop

1 Lab

1. **Proportional odds in ordinal regression.** From last week: Suppose that Y_i takes values in the ordered set $\{1, \ldots, J\}$. Using a logit link, our model for $\gamma_{ij} = \mathbb{P}(Y_i \leq j)$ is

$$\gamma_{ij} = \mathtt{logit}^{-1}(\theta_j - \mathbf{x}_i^T \boldsymbol{\beta}).$$

Thinking of γ_{ij} as a function of \mathbf{x}_i , we can rewrite it as $\gamma_i(\mathbf{x}_i) = \mathbb{P}(Y \leq j|\mathbf{x}_i)$.

Recall the odds for an event A are given by $\mathbb{P}(A)/(1-\mathbb{P}(A))$. By relative odds we mean the ratio of two odds. In question ?? below, you will show that the relative odds for $\{Y \leq j | \mathbf{x}_A\}$ and $\{Y \leq j | \mathbf{x}_B\}$ do not depend on j. For this reason, this model is often called the proportional odds model.

New part: This independence of the odds ratio on j can be used to check the suitability of the model. Fit a proportional odds model to the nes96 data, as in lectures. For j=1 and j=2, calculate the difference between the *observed* log odds at income level 1.5 and levels 4, 6, 8, 9.5, ... (the values in the vector inca). Do they look roughly the same?

2. The following program performs a simulation experiment to estimate $\mathbb{E}X$ where the function sim.X() simulates a random value of X.

```
# seed position 1
# set.seed(7)
mu <- rep(0, 6)
for (i in 1:6) {
# seed position 2
# set.seed(7)
X <- rep(0, 1000)
for (j in 1:1000) {
# seed position 3
# set.seed(7)
X[j] <- sim.X
}
mu[i] <- mean(X)
}
spread <- max(mu) - min(mu)
mu.estimate <- mean(mu)</pre>
```

- (a) What is the value of spread used for?
- (b) If we uncomment the command set.seed(7) at seed position 3, then what is spread?
- (c) If we uncomment the command set.seed(7) at seed position 2 (only), then what is spread?
- (d) If we uncomment the command set.seed(7) at seed position 1 (only), then what is spread?
- (e) At which position should we set the seed?
- 3. For $X \sim \text{Poisson}(\lambda)$ let $F(x) = \mathbb{P}(X \leq x)$ and $p(x) = \mathbb{P}(X = x)$. Show that the probability function satisfies

$$p(x+1) = \frac{\lambda}{x+1}p(x).$$

Using this write a function to calculate $p(0), p(1), \dots, p(x)$ and $F(x) = p(0) + p(1) + \dots + p(x)$.

If X is a random variable with non-negative integer values and F(x) is a function in R that returns the cdf F of X, then as discussed in lectures X can be simulated using the following code:

```
F.rand <- function () {
u <- runif(1)
x <- 0
while (F(x) < u) {
x <- x + 1
}
return(x)
}</pre>
```

In the case of the Poisson distribution, this code can be made more efficient by calculating F jrecursively. By using two new variables, p.x and F.x for p(x) and F(x) respectively, modify this program so that instead of using the function F(x) it updates p.x and F.x within the while loop. Your code should have the form where you fill in the question marks:

```
F.rand <- function(lambda) {
u <- runif(1)
x <- 0
p.x <- ?
F.x <- ?
while (F.x < u) {
x <- x + 1
p.x <- ?
F.x <- ?
}
return(x)
}</pre>
```

Your code needs to ensure that at the start of the while loop you always have p.x equal to p(x) and F.x equal to F(x).

Check that your simulation works by choosing a parameter, generating a large number of random variables, using them to estimate the probability mass function, and comparing your estimates to the true values (which you can get using dpois).

4. (a) Here is some code for simulating a discrete random variable Y. What is the probability mass function (pmf) of Y?

```
Y.sim <- function() {
U <- runif(1)
Y <- 1
while (U > 1 - 1/(1+Y)) {
Y <- Y + 1
}
return(Y)
}</pre>
```

Let N be the number of times you go around the while loop when Y.sim() is called. What is $\mathbb{E}N$ and thus what is the expected time taken for this function to run?

(b) Here is some code for simulating a discrete random variable Z. Show that Z has the same pmf as Y

```
Z.sim <- function() {
Z <- ceiling(1/runif(1)) - 1
return(Z)
}</pre>
```

Will this function be faster or slower that Y.sim()?

5. Consider the continuous random variable X with pdf given by:

$$f_X(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2} - \infty < x < \infty.$$

X is said to have a standard logistic distribution. Find the cdf for this random variable. Show how to simulate a rv with this cdf using the inversion method.

6. The double exponential or Laplace distribution has the following density, for some $\lambda > 0$,

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}$$
, for $-\infty < x < \infty$.

Plot the density and the cumulative distribution function, F.

Suppose that A has an exponential distribution with rate λ , and that B is independent of A and takes on values +1 and -1 with equal probability. Show that AB has a Laplace distribution with parameter λ , then write a function to simulate Laplace rv's.

7. The Cauchy distribution with parameter α has pdf

$$f_X(x) = \frac{\alpha}{\pi(\alpha^2 + x^2)} - \infty < x < \infty.$$

Write a program to simulate from the Cauchy distribution using the inversion method.

Now consider using a Cauchy envelope to generate a standard normal random variable using the rejection method. Find the values for α and the scaling constant k that minimise the probability of rejection. Write an R program to implement the algorithm.

Note: this is not a very efficient way of generating normals.

- 8. (a) Construct an acceptance-rejection sampling algorithm to generate a truncated exponential distribution, which has the pdf $p(z) = \frac{e^{-z}}{1-e^{-1}}$, 0 < z < 1.
 - (b) Calculate the mean and variance for the pdf p(z) in (a).
 - (c) Write an R program to implement the algorithm in (a) and use it to generate a sample of 1000 observations. Plot a histogram of the sample. Calculate the sample mean and variance, and compare them with the results in (b).
 - (d) Show that the following algorithm also simulates from the distribution in (a).
 - 1° Generate U from Unif(0,1);
 - 2° If $U > e^{-1}$ then deliver $Z = -\ln(U)$; otherwise go to 1° .
- 9. A random number X is to be generated by the following rejection algorithm
 - 1° Generate two independent Unif(0,1) random numbers U and V.
 - 2° If $U^2 + V^2 \leq 1$, deliver X = U; otherwise return to 1° .
 - (a) Find the cdf and pdf of X. Also find the mean and variance of X. HINT: The integral $\int_0^x \sqrt{1-u^2} du = \frac{1}{2}(\arcsin x + x\sqrt{1-x^2})$.
 - (b) What is the efficiency of the algorithm? Denote by N the number of times that step 1° is to be executed to get one X value. Name the distribution of N. Also write down the mean and standard deviation of N.
 - (c) Write an R program to implement the algorithm. Then generate a sample of 1000 X values, and give it a numeric and a graphic summary.

3

2 Workshop

10. Suppose that $\mathbf{X} = (X_1, \dots, X_k) \sim \text{multinomial}(n, \pi)$ where $\mathbf{\pi} = (\pi_1, \dots, \pi_k)$. Since $X_i \sim \text{bin}(n, \pi_i)$, we have $\mathbb{E}X_i = n\pi_i$ and $\text{Var}\,X_i = n\pi_i(1 - \pi_i)$. Show that for $i \neq j$, $\text{Cov}\,(X_i, X_j) = -n\pi_i\pi_j$.

Hint: just as for the binomial, we can write a multinomial (n, π) as the sum of n independent multinomial $(1, \pi)$ random variables.

Alternative hint: Var(X + Y) = Var X + Var Y + 2Cov(X, Y).

11. Suppose that $(X, Y, Z) \sim \text{multinomial}(n, (p_1, p_2, p_3))$. Show that

$$Y|\{X=x\} \sim \text{binomial}(n-x, p_2/(1-p_1)).$$

Hence obtain $\mathbb{E}(Y|X=x)$.