KHODA

다양한 추천 알고리즘을 활용한 책 추천시스템 구현

발표자1: 쿠다 4기 이준혁 발표자2: 쿠다 4기 손형진

목차

1) 주제 선정 배경

3) 추천시스템 알고리즘

3-1) 유사도 지표

3-2) User-based CF

3-3) Item-based CF

3-4) Bayesian Network CF

2) 데이터 EDA

4) 결론 및 제언

왜 이 주제를 골랐냐면...

02 EDA 과정

KHODA

도서 추천 예시

WOULD YOU LIKE to TRY THESE BOOKS?

RATING: 7.9

RATING: 7.7

RATING: 9.1

RATING: 7.7

RATING: 8.0

03 추천 시스템(Recommendation System)

유사도 함수

유사도 함수는 자신과 가장 비슷한 컨텐츠를 찾아줄 때 사용되며 이를 통해 찾은 비슷한 컨텐츠가 사용자에게 추천되어진다.

1) 유클리디안 유사도

$$L_2 = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \cdots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

2) 코사인 유사도

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^{n} A_i \times B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2 \times \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}}$$

	유클리디안 유사도	코사인 유사도
특징	거리를 이용하여 유사도를 계산	각도를 이용하여 유사도 계산
장점	계산하기가 쉽다	1.다양한 차원에도 적용이 가능하다. 2. 스케일이 커도 사용이 가능하다.
단점	분포가 다르거나 범위가 다른 경 우에 상관성이 왜곡될 수 있다	1.상호 상관관계를 가지는 feature(키, 몸무게 등)를 갖는 원소들 간의 유사도를 계산할 때 좋지 못하다. 2.벡터의 크기가 중요한 경우 잘 작동하지 않는다.

유저 기반 추천시스템

- 1. 특정 유저에 대해 비슷한 성향을 가진 다른 유저들을 찾는다.
 - 2. 해당 유저들이 높게 평가한 책들을 추천한다.

1. 모델 Logic

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} \times \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

$$w_{uv} = rac{\sum_{i \in I}{(r_{ui} - ar{r}_u)(r_{vi} - ar{r}_v)}}{\sqrt{\sum{(r_{ui} - ar{r}_u)^2}}\sqrt{\sum{(r_{vi} - ar{r}_v)^2}}}$$

유저간 유사도 측정 (cosine similarity)

유저 u의 책 i에 대한 별점(score) 예측

2. 데이터 전처리

1. books 데이터와 ratings 데이터를 합친 후 평점이 100개 이하인 책들과 평가를 10개 이하로 한 유저들은 drop한다.

```
#찜점이 100개 이하로 있는 책들은 삭제하자!
rare_books = rating_counts[rating_counts['Book-Title'] < 100].index
common_books = df[~df['Book-Title'].isin(rare_books)]

#책 평점을 10개 이하로 남긴 사람을 드립하자
common_books = common_books[common_books["User-ID"].map(common_books["User-ID"].value_counts()) >= 10]
```

2. 모델 훈련 및 평가를 위해 train_set과 test_set으로 나누었다.

```
# common_books를 train_set과 test_set으로 나누기 (User-ID가 균등하게 분포하도록 설정)
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(common_books, stratify=common_books["User-ID"], random_state=42)
```


- 3. 유저 별 평가 경향성 파악
 - 1. 유저 별 평점의 평균값을 구하고,
 - 2. 평가 경향성을 파악하기 위해 평점 편차('작품에 대한 유저의 평점 해당 유저의 평점 평균')을 구한다.

> 모든 책에 대한 각 유저의 평점 편차가 저장된 데이터프레임 더) 평가를하지 않은 책에 대해서는 각 작품별 평균 평점으로 대체

Book-ID	5	18	26	27	28	37	38	39	47	52	
User-ID											
254.0	0.177809	-0.295633	-3.917988	0.009706	-0.17828	0.977788	0.889088	-0.620435	-1.058612	-0.33729	
638.0	0.177809	-0.295633	-3.917988	0.009706	-0.17828	0.977788	0.889088	-0.620435	-1.058612	-0.33729	1000
2766.0	0.177809	-0.295633	-2.000000	0.009706	-0.17828	2.000000	0.889088	-0.620435	-1.058612	-0.33729	.000
4017.0	0.177809	-0.295633	-3.917988	0.009706	-0.17828	0.977788	0.889088	-0.620435	-1.058612	-0.33729	(428)
6242.0	0.177809	-0.295633	-3.917988	0.009706	-0.17828	0.352941	0.889088	-0.620435	-1.058612	-0.33729	***

4. 유저 간 유사도 측정

```
from sklearn.metrics.pairwise import cosine_similarity
cosine = cosine_similarity(final_book)
np.fill_diagonal(cosine, 0)
similarity_between_users = pd.DataFrame(cosine, index=final_book.index)
similarity_between_users.columns = final_book.index
similarity_between_users
```

책에 대한 평점 편차를 바탕으로 유저 간의 유사도를 나타낸 행렬(cosine similarity).

5-1. 유사도가 가장 높은 15명의 유저 추출

```
def find n neighbors(df, n):
    order = np.argsort(df.values, axis=1)
     df = df.apply(lambda x: pd.Series(x.sort_values(ascending=False).iloc[:n].index.
                                        index=['top{}'.format(i) for i in range(1, n+1)]), axis=1)
    return df
# 가장 가까운 유저 top 15
sim user 15 u = find n neighbors(similarity between users, 15)
sim_user_15_u
                                                                 top8
liser-ID
 254.0
 6380
 2766.0
                                        882290 1657580
                                                       93047.0 182459.0 133706.0 269566.0 102702.0 263325.0
 4017.0
                                       217318.0 144531.0 113519.0 165758.0
 6242.0
                                               85426.0
                                                       98263.0
```

5-2. 평점 예측

```
avg_user = Mean.loc[Mean['User-ID'] == user, 'Book-Rating'].values[0] # user가 주는 평균 별점 index = f.index.values.squeeze().tolist() # user와 뮤사도가 높은 유저들 corr = similarity_between_users.loc(user, index] # user와 index의 뮤사도 fin = pd.concat([f,corr], axis=1) fin.columns = ['adg_score', 'correlation'] # fin에는 책에 대한 경향성과 뮤저에 대한 뮤사도가 저장되어 있다 fin['score'] = fin.apply(lambda x:x['adg_score'] * x['correlation'], axis=1) nume = fin['score'].sum() # 수식의 문자 deno = fin['correlation'].sum() # 수식의 문모 final_score = avg_user + (nume/deno) return final_score
```

```
# User-ID = 254.0 , Book-ID = 52 인 경우의 score 출력해보기
score = user_book_score(254.0, 52)
print('score (User {}, Book {}) is '.format(254.0, 52) , score)
score (User 254.0, Book 52) is 8.486239324172299
```

5-3. 모델 평가

> RMSE(평균제곱근오차)를 비교했을 때, 기존의 평균 평점을 기반으로 새로운 책을 예측했을 때의 오 차는 (1.51)이었으나, 유저 기반 별점 예측을 통한 오차를 구했을 땐 (1.45)로 유의미한 차이를 보였다.

6. 책 추천

YOUR FAVORITE BOOKS

RATING: 10.0

RATING: 10.0

RATING: 10.0

RATING: 9.0

RATING: 8.9

RATING: 8.9

RATING: 8.9

RATING: 8.8

RATING: 8.7

아이템 기반 추천시스템

- 1.사용자들의 상품에 매긴 평가 패턴을 바탕으로 아이템 간의 유사도를 계산한다.
- 2. 사용자의 특정 아이템에 대한 예측 평점을 계산하여 유사한 제품을 추천한다.

1-1. 데이터 전처리

- ✓ 결측값 제거하고 데이터 프레임의 인덱스 재설정
- ✓ 필요 없는 열 삭제
- ✓ Book-Rating이 0인 행 삭제(구매는 했지만 평점을 남기지 않은 사람)
- ✓ Book-Title열의 각 항목에서 특수 문자 및 밑줄 제거하고 공백 정리

1-2. 데이터 전처리

```
def item_based(bookTitle):
   bookTitle = str(bookTitle)

if bookTitle in df["Book-Title"].values:
    rating_count = pd.DataFrame(df["Book-Title"].value_counts())
    rare_books = rating_count[rating_count["Book-Title"] <= 200].index
    common_books = df[~df["Book-Title"].isin(rare_books)]</pre>
```

✓ 각 책의 평가횟수를 계산하고 200개 이상의 평가를 받은 책은 'common_books'로, 200개 이하 평가를 받은 책은 'rare_books'로 분류

2. 'rare_books'인 경우의 책 추천

```
if bookTitle in rare_books:
# 희귀 도서일 경우, 인기 있는 책 5권을 추천하고 시각화
popular_books = rating_count[rating_count["Book-Title"] > 200].index
popular_recommendations = pd.Series(popular_books).sample(5).values
print("No Recommendations for this Book ও \( \mathrew{#}\) ")
print("YOU MAY TRY THESE POPULAR BOOKS: \( \mathrew{#}\) ")
for i, popular_book in enumerate(popular_recommendations):
    print("{}. {}".format(i + 1, popular_book))
```

- ✓ rare_books는 평점이 적은 책이므로 다른 도서와의 유사도를 계산하는 데 사용할 수 있는 충분한 데이터가 없을 가능성이 높아 Item based CF 진행 불가
- ✓ 입력된 책이 'rare_books' 범주에 속하는 경우, 가장 유명한 책 5개 추천

3-1. 'common books' 인 경우의 추천

```
else:
    common_books_pivot = common_books.pivot_table(index=["User-ID"], columns=["Book-Title"], values="Book-Rating")
    title = common_books_pivot[bookTitle]

# 코사인 유사도 계산
    cosine_sim = cosine_similarity(common_books_pivot.T.fillna(0))
    sim_scores = list(enumerate(cosine_sim))
```

- ✓ common books인 경우 Item-based CF 진행
- ✓ 사용자와 책 제목을 각각 행과 열로 가지는 pivot table 생성
- ✓ pivot table의 코사인 유사도를 계산

3-2. 'common books' 인 경우의 추천

```
# 입력된 책과의 유사도를 기준으로 추천 도서 정렬
sim scores = sorted(sim scores, key=lambda x: x[1][bookTitle], reverse=True)
sim scores = sim scores[1:6] # 인력된 책 자체를 제외하고 상위 5개 추천
book indices = [i[0] for i in sim scores]
recommendation df = common books pivot.columns[book indices]
less_rating = []
for i in recommendation df:
   if df[df["Book-Title"] == i]["Book-Rating"].mean() < 5:
       less rating.append(i)
if len(recommendation_df) - len(less_rating) > 5:
   recommendation df = recommendation df[~recommendation df.isin(less rating)]
recommendation df = recommendation df[0:5]
```

- ✔ 입력된 책과의 유사도를 기준으로 추천 도서 정렬
- ✓ 평균 평점이 5 미만인 책은 추천 목록에서 제외
- ✓ 추천 목록에서 입력된 책 자체를 제외하고 상위 5개의 책 추천

4. 추천 책 시각화

WOULD YOU LIKE to TRY THESE BOOKS?

RATING: 7.9

RATING: 7.7

RATING: 9.1

RATING: 7.7

RATING: 8.0

✔ 유사도가 가장 높고 좋은 평점을 가진 상위 5권의 책을 선택하여 표지 이미지와 평균 평점 시각화

03-4 Bayesian Network Collaborative Filtering

1. 모델 Logic

알고리즘:Naive-Bayes

Clustering = CLT, Bootstraping

1. 모델 Logic

나이브 베이지안을 사용하기에 여러가지 문제가 많았다. 데이터에 책 구매자가 사지않은 데이터 즉, 보고 지나친 데이터가 존재하지 않았다. 그렇기에 사용자가 봤을 만한 책 데이터를 예상해야하는데 이를 군집화를 통해 찾아보려고 했다. 여러가지 군집화 방법이 존재하지만 다른 팀원들이 이미 군집화를 진행하였기에 다른 방법을 한번 찾아보았다.

1. 모델 Logic

CLT: Central Limit Theorem

중심극한정리: i.i.d. 확률변수 X1, X2의 표본평균의 분포는 정규분포에 수렴한다.

i.i.d.:independent and identically distribution

1)independent(독립적이고), 2)identically distribution(같은 확률분포를)

여기서 역으로 생각해 표본평균들이 정규분포로 근사화 된다면 동일한 분포에서 왔다고 할 수 있지 않을까?

03-4 Bayesian Network Collaborative Filtering

2. 군집 개수 정하고 샘플링 진행

• 군집의 개수는 임의대로 4개로 정하였다.

```
mem_mass -[]
   X 0, X 1= train test split(merge encoding data sum 0, test size = 0.5, random state = random state[i])
   X 0 0, X 0 1 = train test split(X 0, test size = 0.5, random state = random state[i])
   X 1 0, X 1 1 = train test split(X 1, test size = 0.5, random state = random state[i])
a 0 = np.array(X 0 0)
a 1 = np.array(X 0 1)
a 2 = np.array(X 1 0)
a 3 = np.array(X 1 1)
result = np.vstack((a 0, a 1,a 2,a 3))
for i in range(4):
   storige = []
   data = result[j]
   for k in range(1000):
        storige.append(sum(np.random.choice(data, size=len(data), replace = True))/len(data))
   n test = stats.normaltest(storige)
   list n test = list(n test)
   list n test.append(i)
   new list.append(list n test)
new list 1.append(new list)
```

Bayesian Network Collaborative Filtering

3. 데이터셋 선택

p_value가 0.5보다 작은 데이터 셋은 날리고 전체 p_value가 가장낮은 데이터셋 선택

	0	1	2	3
1	[12.849174206583179,	[2.106179715821261,	[2.21264167936149,	[7.497128744286188,
	0.0016212025289418963, 0]	0.348858159936335, 1]	0.3307736945570026, 2]	0.02355153283405207, 3]
5	[2.3835433958059786,	[1.738009996322555,	[2.0614250324789194,	[1.9793381315466805,
	0.3036827530713745, 0]	0.41936861426529715, 1]	0.3567526779131605, 2]	0.37169967881624666, 3]
54	[3.178982047518598,	[6.3125246850048375,	[2.379551013442231,	[2.3363421148036063,
	0.2040294314440981, 0]	0.0425846106848836, 1]	0.3042895673623093, 2]	0.3109351039955705, 3]
61	[2.7502955952048938,	[5.410277028151129,	[2.280541436924878,	[4.511514005579627,
	0.25280222948007747, 0]	0.06686106200696586, 1]	0.3197324526209274, 2]	0.10479418421258108, 3]
67	[4.451683139973877,	[1.437467453359877,	[3.5237904443205803,	[0.011446607562276733,
	0.10797651059684384, 0]	0.48736900776093794, 1]	0.17171910937060308, 2]	0.9942930431209833, 3]
79	[9.562395835430168, 0.00838594727334575, 0]	[7.461303037190769, 0.023977209149097102, 1]	[7.124851735785665, 0.02836991949367284, 2]	[2.0878937726415923, 0.35206238593402445, 3]

03-4 Bayesian Network Collaborative Filtering

4. 모델링

def NB(User id):

군집을 만든 후 해당 군집에 존재하는 책들은 보았지만 구매하지 않았다 라고 판단

```
a = filtered data.loc[int(User id),:]['Book-Author encoded']
       a unique = a.unique()
       for i in range(len(a_unique)):
           print(f"{User id}가 읽은 책의 저자:{a unique[i]}")
           b = filtered data[filtered_data['Book-Author_encoded'] == a_unique[i]]
           prob = ((pd.DataFrame(a,value counts()),loc(a unique(i),:1(01)/len(a))/(((pd.DataFrame(a,value counts()),lo
           print(f"위 저자의 책을 읽을 NB확률(prob)")
 1 NB(276746)
276746가 읽은 책의 저자:8
위 저자의 책을 읽을 NB확률0.991217370090266
276746가 있은 책의 저자・9
위 저자의 책을 읽을 NB확률0.8493723849372385
276746가 읽은 책의 저자:10
위 저자의 책을 읽을 NB확률0.9858267716535433
276746가 읽은 책의 저자:11
위 저자의 책을 읽을 NB확률0.3571428571428571
276746가 읽은 책의 저자:12
위 저자의 책을 읽을 NB확률0.4929577464788732
```

5. 문제점

Collaborative Filtering recommendation system

※ 결론 및 내용정리

	User-based CF	Item-based CF	Bayesian Network CF
특징	User의 유사도 기반 추천	Item의 유사도 기반 추천	Bayesian을 활용한 추천
장점	직관적인 해석 가능, 아이템 데이터에 대한 상세 정보 없이도 추천 제공 가능	Coverage가 높음(사용자가 아이템 하나면 평가해 도 추천 가능)	확률을 통해 설명함으로 결과의 설명력이 높음
단점	사용자-아이템 데이터가 희소한 경우 정확한 추천 이 어려움	과거 아이템에 의존해 추천하기 때문에 새로운 아이템(ex: 신간)이 추천되기 어려움	모든 사건이 독립이라는 나이브한 가정을 가지고 있음
한계	Codestart 문제가 문제 -총본한 데이터가 없다면 좋은 추천이 어려움 -유저에 대한 기록이나 새로운 아이템에 대한 정보기	첫 모델 학습 시 시간과 연산량이 많이 소요	