Algèbre Linéaire

Semestre d'automne 2018

Bronstein Huruguen Tissot

Corrigé 12

Espaces vectoriels: exercice 17

(a) Rappel:

Soit F un espace vectoriel et U un sous-ensemble de F.

 $\forall \alpha, \beta \in \mathbb{R} \,, \ \forall \vec{x} \,, \vec{y} \in U, \ \alpha \vec{x} + \beta \vec{y} \in U \ \Leftrightarrow \ U \text{ est un sev de } F \,.$

Le critère du sev consiste donc à vérifier que

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \vec{x}, \vec{y} \in \mathbf{U}, \ \alpha \vec{x} + \beta \vec{y} \in \mathbf{U}$$

Soient $A, B \in \mathbb{M}(2, \mathbb{R})$, deux matrices fixées et U, V des sev de $\mathbb{M}(2, \mathbb{R})$ et $E = \{Z \in \mathbb{M}(2, \mathbb{R}) \mid \exists X \in U \text{ et } \exists Y \in V \text{ tels que } Z = AX + YB\}$

Pour montrer que E est un sev de $M(2, \mathbb{R})$, on doit vérifier :

 $\forall Z_1, Z_2 \in E, \alpha, \beta \in \mathbb{R}, \ \alpha Z_1 + \beta Z_2 \in E.$

Preuve:

 $\forall Z_1, Z_2 \in E$, ces matrices vérifient la propriété caractéristique de E c'est-à-dire :

$$Z_1 \in E \iff \exists X_1 \in U, \exists Y_1 \in V \text{ tels que } Z_1 = AX_1 + Y_1B$$

$$Z_2 \in E \quad \Leftrightarrow \quad \exists X_2 \in U, \ \exists Y_2 \in V \text{ tels que } Z_2 = AX_2 + Y_2B$$

 $\forall \alpha, \beta \in \mathbb{R}$, on calcule :

$$\alpha Z_1 + \beta Z_2 = \alpha (AX_1 + Y_1B) + \beta (AX_2 + Y_2B) = A(\alpha X_1 + \beta X_2) + (\alpha Y_1 + \beta Y_2)B$$

Par hypothèse:

U est un sev de $\mathbb{M}(2,\mathbb{R})$ \Rightarrow $X = \alpha X_1 + \beta X_2 \in U$

V est un sev de $\mathbb{M}(2,\mathbb{R})$ \Rightarrow $Y = \alpha Y_1 + \beta Y_2 \in V$

On a donc:

 $\forall Z_1, Z_2 \in E \text{ et } \forall \alpha, \beta \in \mathbb{R}, \exists X \in U \text{ et } Y \in V \text{ tels que } \alpha Z_1 + \beta Z_2 = AX + YB.$

 $\alpha Z_1 + \beta Z_2$ vérifie la propriété caractéristique de l'ensemble E, il appartient donc à E.

Le critère est vérifié. On en conclut que E est un sev de $\mathbb{M}(2,\mathbb{R})$.

(b) On pose
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$
$$U = \left\{ X \in \mathbb{M}(2, \mathbb{R}) \mid \exists a, b, t \in \mathbb{R}, X = \begin{pmatrix} a & b \\ t & 0 \end{pmatrix} \right\}$$
$$V = \left\{ Y \in \mathbb{M}(2, \mathbb{R}) \mid \exists c, d \in \mathbb{R}, Y = \begin{pmatrix} c & c \\ 0 & d \end{pmatrix} \right\}$$

Pour déterminer une base on commence par chercher l'expression générale d'un élément de ${\cal E}.$

De l'expression générale, on en déduit une famille maximale de générateurs linéairement indépendants, ce qui permet de déterminer une base et d'en déduire la dimension de E.

 \bullet Expression générale d'un élément de E.

 $\forall Z \in E$:

$$Z = AX + YB = \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) \, \left(\begin{array}{cc} a & b \\ t & 0 \end{array}\right) + \left(\begin{array}{cc} c & c \\ 0 & d \end{array}\right) \, \left(\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right) \, = \, \left(\begin{array}{cc} a+c & b-c \\ a & b \end{array}\right)$$

D'où
$$E = \left\{ Z \in \mathbb{M}(2,\mathbb{R}) \, | \, \left(\begin{array}{cc} a+c & b-c \\ a & b \end{array} \right) \, , \, a\, , b\, , c \in \mathbb{R} \right\}$$

ullet On écrit Z comme une combinaison linéaire de générateurs.

$$\begin{pmatrix} a+c & b-c \\ a & b \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} = a E'_1 + b E'_2 + c E'_3$$

On a donc : $E = [E'_1, E'_2, E'_3]_{sev}$

• E_1' , E_2' , E_3' sont linéairement indépendants car $\alpha\,E_1'+\beta\,E_2'+\gamma\,E_3'=0$

$$\begin{pmatrix} \alpha + \gamma & \beta - \gamma \\ \alpha & \beta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow \alpha = \beta = \gamma = 0$$

• E_1' , E_2' , E_3' est une famille maximale de générateurs linéairement indépendants. (E_1', E_2', E_3') est donc une base de E et dim E = 3.

(c) Soit
$$M = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

et l'équation M(ST - MT) = 0 $\forall T \in \mathbb{M}(2, \mathbb{R}), \det T \neq 0.$

On détermine d'abord l'ensemble W des solutions de cette équation.

Puis on montre que $\forall S \in W \Rightarrow S \in E$.

Pour déterminer si l'ensemble des matrices S est un sev, soit on utilise le critère, soit on cherche à mettre en défaut un des axiomes de la définition de l'espace vectoriel.

- $\det M = 0 \Leftrightarrow M$ n'est pas inversible. On ne peut pas simplifier par M.
- Par hypothèse, $\forall T \in \mathbb{M}(2,\mathbb{R})$, $\det T \neq 0 \Leftrightarrow T^{-1}$ existe. Après mise en évidence de T à droite, on peut multiplier par T^{-1} et simpllifier l'équation.

$$\begin{array}{rcl} M(S-M)T & = & 0 \\ M(S-M)TT^{-1} & = & 0 \\ M(S-M) & = & 0 & \Leftrightarrow & MS = M^2 \end{array}$$

La matrice M n'étant pas inversible, on pose : $S = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$. D'où :

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} x - z & y - t \\ -x + z & -y + t \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \Rightarrow$$

$$\begin{cases} x-z = 2 \\ -y+t = -2 \end{cases} \Rightarrow \begin{cases} x = z+2 \\ y = t-2 \end{cases} \forall t, z \in \mathbb{R}$$

On peut écrire l'ensemble W des solutions.

$$W = \left\{ S \in \mathbb{M}(2, \mathbb{R}) \mid S = \begin{pmatrix} z+2 & t-2 \\ z & t \end{pmatrix}, z, t \in \mathbb{R} \right\}$$

•
$$E = \left\{ Z \in \mathbb{M}(2, \mathbb{R}) \mid Z = \begin{pmatrix} a+c & b-c \\ a & b \end{pmatrix}, a, b, c \in \mathbb{R} \right\}$$

$$\forall S \in W, \ S = \left(\begin{array}{cc} z+2 & t-2 \\ z & t \end{array} \right) \Rightarrow S \in E \ : \text{il suffit de poser } c=2.$$

• On remarque que $S \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \ \forall z, t \in \mathbb{R}$

Donc la matrice nulle n'appartient pas à W; cet ensemble ne peut pas être un sev de E.

Espaces vectoriels: exercice 18

(a) Soit l'ensemble
$$W = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(\mathbb{R}) \mid a+d=c-b \right\}$$
.

Pour montrer que W est un sous-espace de $M_2(\mathbb{R})$, on montre que

$$\forall X, Y \in W, \alpha, \beta \in \mathbb{R}, \ \alpha X + \beta Y \in W$$

Preuve:

 $\forall X, Y \in W$, ces matrices vérifient la propriété caractéristique de W c'est-à-dire :

$$X \in W$$
, $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tel que $a + d = c - b$

$$Y \in W$$
, $Y = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ tel que $e + h = g - f$

 $\forall \alpha, \beta \in \mathbb{R}$, on calcule :

$$\alpha X + \beta Y = \alpha \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \beta \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} \alpha a + \beta e & \alpha b + \beta f \\ \alpha c + \beta g & \alpha d + \beta h \end{pmatrix}$$

On applique la propriété caractéristique pour déterminer si cette matrice appartient à W. On calcule :

$$(\alpha a + \beta e) + (\alpha d + \beta h) = \alpha(a + d) + \beta(e + h) =$$

$$= \alpha(c - b) + \beta(g - f) =$$

$$= (\alpha c + \beta g) - (\alpha b + \beta f)$$
(par hypothèse $X, Y \in W$)

 $\alpha X + \beta Y$ vérifie la propriété caractéristique de l'ensemble W, cet élément appartient

donc à W.

Le critère est vérifié. On en conclut que W est un sev de $\mathbb{M}(2,\mathbb{R})$.

(b) On considère le sous-espace vectoriel de $\mathbb{M}_2(\mathbb{R})$ défini par $V = [E_1, E_2, E_3, E_4]_{\text{sev}}$ avec :

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 2 & -3 \\ -1 & 0 \end{pmatrix}.$$

Pour déterminer une base et la dimension de $\,V\,$, il faut chercher une famille maximale de générateurs linéairement indépendants.

• On teste d'abord la dépendance ou l'indépendance des 4 matrices.

$$\alpha E_1 + \beta E_2 + \gamma E_3 + \delta E_4 = 0$$

$$\Leftrightarrow \begin{pmatrix} \alpha + 2\delta & \beta - 3\delta \\ \beta + \gamma - \delta & -\alpha + \gamma \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} \alpha + 2\delta & = & 0 \\ \beta - 3\delta & = & 0 \\ \beta + \gamma - \delta & = & 0 \\ -\alpha + \gamma & = & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} \alpha & = & -2\delta \\ \beta & = & 3\delta \\ \beta & = & -\gamma + \delta \\ \alpha & = & \gamma \end{pmatrix}$$

$$\begin{cases} \alpha & = & -2\delta \\ \beta & = & 3\delta \\ \beta & = & 3\delta \\ \beta & = & 3\delta \end{cases}$$

$$3\delta & = & 2\delta + \delta \\ \gamma & = & -2\delta \end{cases} \Leftrightarrow \begin{cases} \alpha & = & -2\delta \\ \beta & = & 3\delta \\ 0\delta & = & 0 \end{cases} : \delta \text{ est quelconque}$$

$$\gamma & = & -2\delta$$

Le système possède une infinité de solutions non triviales : $(\alpha, \beta, \gamma, \delta) = (-2\delta, 3\delta, \delta, -2\delta)$.

Les quatre matrices E_1 , E_2 , E_3 , E_4 sont donc linéairement dépendantes.

Par exemple en posant $\delta=1$: $(\alpha,\beta,\gamma,\delta)=(-2,3,1,-2)$, on peut écrire E_4 comme combinaison linéaire des trois autres matrices: $-2E_4=-2E_1+3E_2+E_3$.

 \bullet On teste la dépendance ou l'indépendance de trois matrices $E_1\,,E_2\,,E_3.$

$$\alpha E_1 + \beta E_2 + \gamma E_3 = 0$$

$$\begin{pmatrix} \alpha & \beta \\ \beta + \gamma & -\alpha + \gamma \end{pmatrix} \qquad \Leftrightarrow \qquad \alpha = \beta = \gamma = 0 \quad \text{unique solution}$$

Les trois matrices E_1 , E_2 , E_3 sont donc linéairement indépendantes et c'est le plus grand ensemble.

Ainsi $\mathcal{B}(E_1, E_2, E_3)$ est une base de V car :

- ces matrices sont linéairement indépendantes;
- \bullet par définition de V, elle sont génératrices.

La dimension de V est donc trois : $\dim V = 3$.

Expression générale d'une matrice appartenant à V:

$$M \in V \iff \exists \alpha, \beta, \gamma \in \mathbb{R} \text{ tels que}$$

$$M = \alpha E_1 + \beta E_2 + \gamma E_3 \quad \Leftrightarrow \quad M = \begin{pmatrix} \alpha & \beta \\ \beta + \gamma & -\alpha + \gamma \end{pmatrix}$$

- (c) Pour montrer que V=W , on montre la double inclusion : $V\subset W$ et $W\subset V$. Preuve :
 - $V \subset W$: évident car on vérifie facilement que les générateurs E_1, E_2, E_3 de V appartiennent à W.

•
$$W \subset V : \forall X \in W, X = \begin{pmatrix} a & b \\ c & -a - b + c \end{pmatrix}$$

$$X \in V$$
 si et seulement si $\begin{pmatrix} \alpha & \beta \\ \beta + \gamma & -\alpha + \gamma \end{pmatrix}$ c'est-à-dire

$$\begin{cases} \alpha &=& a\\ \beta &=& b\\ \beta+\gamma &=& c\\ -\alpha+\gamma &=& -a-b+c \end{cases} \Leftrightarrow \begin{cases} \alpha &=& a\\ \beta &=& b\\ \gamma &=& c-b\\ -\alpha+\gamma &=& -a-b+c \end{cases} : \text{est v\'erifi\'ee}$$

Ainsi V = W.

(d) On note U le sous-espace vectoriel de $\mathbb{M}_2(\mathbb{R})$ engendré par les matrices S et T suivantes :

$$S = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, T = \begin{pmatrix} 1 & 0 \\ 1 & 4 \end{pmatrix}$$

Pour déterminer une base de $U \cap W$, on cherche l'expression générale d'une matrice appartenant de cet ensemble.

On commence par déterminer l'expression générale d'une matrice de U, puis on lui applique la propriété caractéristique de W.

• On observe que les matrices S et T sont linéairement indépendantes car $S \neq kT\,, k \in \mathbb{R}$.

Par définition de U, elles sont génératrices de cet ensemble. Donc S et T forment une base de $U: \mathcal{B}(S,T)$.

•
$$X \in U \quad \Leftrightarrow \quad X = \alpha S + \beta T = \begin{pmatrix} \alpha + \beta & 0 \\ 4\alpha + \beta & \alpha + 4\beta \end{pmatrix} \quad \alpha, \beta \in \mathbb{R}$$

• Pour exprimer que X appartient à W, il suffit d'imposer à X la propriété des matrices de W, c'est-à-dire :

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in W \quad \Leftrightarrow \quad a + d = c - b$$

$$X = \begin{pmatrix} \alpha + \beta & 0 \\ 4\alpha + \beta & \alpha + 4\beta \end{pmatrix} \in U \quad \Leftrightarrow \quad \alpha + \beta + \alpha + 4\beta = 4\alpha + \beta - 0$$

$$\Leftrightarrow \quad \alpha = 2\beta$$

D'où:

$$X \in U \cap W \quad \Leftrightarrow \quad X = \begin{pmatrix} 3\beta & 0 \\ 9\beta & 6\beta \end{pmatrix} = \beta \begin{pmatrix} 3 & 0 \\ 9 & 6 \end{pmatrix}, \quad \beta \in \mathbb{R}$$

• On pose : $R = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$

Alors $U \cap W = [R]_{sev}$.

 $\mathcal{B} = (R)$ est une base de $U \cap W$ et dim $(U \cap W) = 1$.

• $B \in U \cap W \quad \Leftrightarrow \quad B = \beta R = \begin{pmatrix} \beta & 0 \\ 3\beta & 2\beta \end{pmatrix}$

Par hypothèse : $\det B = 2 \Leftrightarrow 2\beta^2 = 2 \Leftrightarrow \beta = \pm 1$

D'où les deux solutions : $B = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$ et $B' = \begin{pmatrix} -1 & 0 \\ -3 & -2 \end{pmatrix}$

Ainsi

$$B = 1 \cdot R = (1) =$$
 composante de B par rapport à la base $\mathcal{B}(R)$

$$B' = -1 \cdot R = (-1) = \text{composante de } B' \text{ par rapport à la base } \mathcal{B}(R)$$

Espaces vectoriels: exercice 19

(a) $V_a = \{p(x) \in P_3 \mid p(a) = 0\}$ est un sous-espace vectoriel de de $P_3[x]$.

Preuve du critère :

 $\forall p, q \in V_a, \forall \lambda, \mu \in \mathbb{R}$, il faut montrer que $\lambda p + \mu q \in V_a$, c'est-à-dire que le polynôme $(\lambda p + \mu q)$ évalué en a est nul.

$$\begin{array}{lll} \left(\lambda\,p + \mu\,q\right)(a) &=& \left(\lambda\,p\right)(a) + \left(\mu\,q\right)(a) & \text{définition de l'addition dans } P_3 \\ &=& \lambda\,p(a) + \mu\,q(a) & \text{définition de l'amplification dans } P_3 \\ &=& \lambda\,0 + \mu\,0 \qquad p(a) = q(a) = 0 & \text{car} \quad p\,,\,q \in V_a \\ &=& 0 \end{array}$$

 $(\lambda p + \mu q)(a) = 0$, $(\lambda p + \mu q) \in V_a$, V_a est un sev de P_3 .

La dimension de $W=[\,p\,,\;q\,,\;r\,,\;s\,]_{sev}$ est le nombre d'éléments d'une base de W.

(b) Soit $W=[\,p\,,\,q\,,\,r\,,\,s\,]_{sev}$ où $p=x^3-3x^2+2x\,,\,\,q=x^3-x^2-4x+4\,,\,\,r=x^2+2x$ et $s=5x-2\,.$ Une base de W est constituée de polynômes générateurs de W linéairement indépendants.

Par définition de W, les polynômes p, q, r, s sont des générateurs de W, il faut donc tester leur indépendance linéaire.

Dépendance linéaire des quatre générateurs de W.

Essayons d'exprimer, par exemple, le polynôme q (le plus "gros") comme combinaison linéaire des polynômes p, r et s.

Attention! Cette méthode est efficace, mais dangereuse :

- elle est efficace car si on peut exprimer $\,q\,$ comme combinaison linéaire de $\,p\,,\,\,r\,$ et $\,s\,,\,$ on peut conclure que $\,p\,,\,\,q\,,\,\,r\,,\,\,s\,$ sont linéairement dépendants,
- elle est dangereuse car si on ne peut pas exprimer q comme combinaison linéaire de p, r et s, on ne peut rien conclure sur la dépendance linéaire de ces quatre polynômes.

Le polynôme q est combinaison linéaire de p, r et s si et seulement si

$$\exists \alpha, \beta, \gamma \in \mathbb{R}$$
 tel que $q = \alpha p + \beta r + \gamma s$.

$$\Leftrightarrow x^3 - x^2 - 4x + 4 = \alpha (x^3 - 3x^2 + 2x) + \beta (x^2 + 2x) + \gamma (5x - 2)$$

$$\Rightarrow x^3 - x^2 - 4x + 4 = \alpha x^3 + (-3\alpha + \beta) x^2 + (2\alpha + 2\beta + 5\gamma) x - 2\gamma$$

$$\Leftrightarrow \begin{cases} \alpha = 1 \\ -3\alpha + \beta = -1 \\ 2\alpha + 2\beta + 5\gamma = -4 \\ -2\gamma = 4 \end{cases} \Leftrightarrow \begin{cases} \alpha = 1 \\ \beta = 2 \\ \gamma = -2 \end{cases}$$

q = p + 2r - 2s. Les quatres générateurs de W sont linéairement dépendants.

Base et dimension de W.

Le polynôme q est combinaison linéaire de p, r et s.

Donc
$$W = [p, q, r, s]_{sev} = [p, r, s]_{sev}$$

Ces trois générateurs forment une base de W si et seulement si ils sont linéairement indépendants.

$$\alpha p + \beta r + \gamma s \equiv 0 \quad \Leftrightarrow \quad \alpha (x^3 - 3x^2 + 2x) + \beta (x^2 + 2x) + \gamma (5x - 2) \equiv 0$$

$$\Leftrightarrow \quad \alpha x^3 + (-3\alpha + \beta) x^2 + (2\alpha + 2\beta + 5\gamma) x - 2\gamma \equiv 0$$

$$\Leftrightarrow \quad \begin{cases} \alpha = 0 \\ -3\alpha + \beta = 0 \\ 2\alpha + 2\beta + 5\gamma = 0 \\ -2\gamma = 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

Ces trois générateurs sont linéairement indépendants,

$$B = (p, r, s)$$
 est une base de W , dim $W = 3$.

(c) On veut déterminer une base de $U=V_1\cap W$. On commence par chercher l'expression générale des polynômes de $U=V_1\cap W$. On en déduit des générateurs de U, puis une base de U.

Base de U.

On détermine l'expression générale des polynômes de U.

Soit $u \in U = V_1 \cap W$.

•
$$u \in W$$
 \Leftrightarrow $\exists a, b, c \in \mathbb{R}$ tel que $u = a p + b r + c s$

$$u = a (x^3 - 3x^2 + 2x) + b (x^2 + 2x) + c (5x - 2).$$

•
$$u \in V_1 \Leftrightarrow u(1) = 0 \Leftrightarrow 3b + 3c = 0 \Leftrightarrow c = -b$$
.
D'où $u \in U \Leftrightarrow \exists a, b \in \mathbb{R}$ tel que $u = ap + br - bs$,
 $u = ap + b(r - s) = a(x^3 - 3x^2 + 2x) + b(x^2 - 3x + 2)$.

Les deux polynômes p et r-s sont donc des générateurs de U, de plus ils sont linéairement indépendants (non colinéaires), ils forment donc une base de U: $B_u = (p, r-s)$ est une base du sous-espace vectoriel U.

(d) Le polynôme $u = -2x^3 + 4x^2 + 2x - 4$ est élément de U si et seulement si il est combinaison linéaire des polynômes de la base B_u de U.

$$u = a p + b (r - s) \Leftrightarrow u = a (x^{3} - 3x^{2} + 2x) + b (x^{2} - 3x + 2)$$

$$\Leftrightarrow -2x^{3} + 4x^{2} + 2x - 4 = a x^{3} + (-3a + b) x^{2} + (2a - 3b) x + 2b$$

$$\Leftrightarrow \begin{cases} a = -2 \\ -3a + b = 4 \\ 2a - 3b = 2 \end{cases} \Leftrightarrow \begin{cases} a = -2 \\ b = -2 \end{cases}$$

D'où
$$u = -2p - 2(r - s) = \begin{pmatrix} -2 \\ -2 \end{pmatrix}_{B_{rr}}$$
.

(e) L'idée est de déterminer une base de $V_1 \cap V_2$ et de la comparer à la base B_u . On cherche donc l'expression générale des polynômes de $V_1 \cap V_2$.

Base de $V_1 \cap V_2$

Les polynômes de $V_1 \cap V_2$ sont des éléments de P_3 qui s'annulent en x=1 et x=2 .

Ils sont donc de la forme v(x) = (x-1)(x-2)(ax+b), $a, b \in \mathbb{R}$.

$$\Leftrightarrow v(x) = a(x^3 - 3x^2 + 2x) + b(x^2 - 3x + 2)$$

Les deux polynômes $x^3 - 3x^2 + 2x$ et $x^2 - 3x + 2$ sont donc des générateurs de $V_1 \cap V_2$, ils sont linéairement indépendants (non colinéaires), ils forment une base de $V_1 \cap V_2$.

De plus, $x^3 - 3x^2 + 2x = p$ et $x^2 - 3x + 2 = r - s$, il s'agit des vecteurs de la base B_u .

La base B_u de $V_1 \cap W$ est aussi une base de $V_1 \cap V_2$:

$$V_1 \cap W = V_1 \cap V_2$$
.

Espaces vectoriels: exercice 20

(a) On utilise le critère pour montrer que $F = \{s(x) \in P_3 \mid s'(-1) = 0\}$ est un sev de P_3 .

Preuve du critère :

 $\forall \alpha, \beta \in \mathbb{R}$, $\forall s(x), r(x) \in F$, on doit vérifier que $p(x) = \alpha s(x) + \beta r(x) \in F$ c'est-à-dire que le polynôme p(x) évalué en -1 est nul.

Par hypothèse :
$$s(x) \in F \Leftrightarrow s'(-1) = 0$$

 $r(x) \in F \Leftrightarrow r'(-1) = 0$

Or:

$$p'(x) = \alpha s'(x) + \beta r'(x), \text{ \'où}$$

$$p'(-1) = \alpha s'(-1) + \beta r'(-1) = \alpha 0 + \beta 0 = 0$$

$$\text{donc } \alpha s(x) + \beta r(x) \in F$$

Le critère est vérifié. On en conclut que F est un sev de l'ensemble P_3 .

(b) On considère les deux sous-espaces vectoriels de P_3 suivants : $U = \{p(x) \in P_3 \mid p(x) = ax^2 + 2bx \text{ et } p'(-1) = 0\}$ et $V = [2x^2 - 6, x + 2]_{sev}$. Pour déterminer une base de

$$W = \{r(x) \in P_3 \mid \exists p(x) \in U, \exists q(x) \in V \text{ tels que } r(x) = p(x) + x q(x)\}$$

on cherche d'abord l'expression générale des polynômes de U et V.

• On détermine l'expression générale d'un polynôme de l'ensemble $U = \{p(x) \in P_3 \mid p(x) = ax^2 + 2bx \text{ et } p'(-1) = 0\}$

Un polynôme p(x) appartient à U si et seulement si :

$$p(x) = ax^2 + 2bx$$
 et $p'(-1) = 0$

Or
$$p'(x) = 2ax + 2b$$
 et donc $p'(-1) = -2a + 2b = 0$

Ainsi

$$p(x) \in U \Leftrightarrow p(x) = ax^2 + 2bx \text{ et } a = b \Leftrightarrow p(x) = a(x^2 + 2x), \ a \in \mathbb{R}$$

• On détermine l'expression générale d'un polynôme de l'ensemble $V = [2x^2 - 6, x + 2]_{\text{sev}}$

Il est évident que les deux générateurs de V sont linéairement indépendants, ils forment une base de V.

Donc un polynôme q(x) appartient à V si et seulement si :

$$q(x) = \alpha (2x^2 - 6) + \beta (x + 2), \ \alpha, \beta \in \mathbb{R}$$

On détermine maintenant l'expression générale des polynômes de W, on en déduit des générateurs puis une base de W.

• On détermine l'expression générale d'un polynôme de l'ensemble $W = \{r(x) \in P_3 \mid \exists \ p(x) \in U, \ \exists \ q(x) \in V \text{ tels que } r(x) = p(x) + x \ q(x)\}$

$$r(x) \in W \Leftrightarrow r(x) = a(x^2 + 2x) + x \left(\alpha \left(2x^2 - 6\right) + \beta \left(x + 2\right)\right), \ a, \alpha, \beta \in \mathbb{R}$$

$$\Leftrightarrow r(x) = a(x^2 + 2x) + \alpha \left(2x^3 - 6x\right) + \beta \left(x^2 + 2x\right)$$

$$\Leftrightarrow r(x) = \alpha 2 \left(x^3 - 3x\right) + \left(a + \beta\right) \left(x^2 + 2x\right)$$

$$\Leftrightarrow r(x) = \delta \left(x^3 - 3x\right) + \lambda \left(x^2 + 2x\right), \ \delta, \lambda \in \mathbb{R}$$

• Les deux polynômes $s_1(x) = x^3 - 3x$ et $s_2(x) = x^2 + 2x$ sont donc des générateurs de W, de plus ils sont linéairement indépendants (non colinéaires), ils forment donc une base de W:

 $B = (s_1(x), s_2(x))$ est une base du sous-espace vectoriel W. La dimension est le nombre de vecteurs de la base, donc dim W = 2.

(c) Le polynôme $t(x) = -7x^3 - x^2 + 19x$ est élément de W si et seulement si il est combinaison linéaire des polynômes de la base B de W.

On doit donc montrer qu'il existe $a, b \in \mathbb{R}$ tels que $t(x) = a s_1(x) + b s_2(x)$.

$$t(x) = a s_1(x) + b s_2(x) \Leftrightarrow t(x) = a (x^3 - 3x) + b (x^2 + 2x)$$

$$\Leftrightarrow -7x^3 - x^2 + 19x = a x^3 + b x^2 + (-3a + 2b) x$$

$$\Leftrightarrow \begin{cases} -7 = a \\ -1 = b \\ 19 = -3a + 2b \end{cases} \Leftrightarrow \begin{cases} a = -7 \\ b = -1 \end{cases}$$

D'où:

$$t(x) = -7 s_1(x) - s_2(x) = \begin{pmatrix} -7 \\ -1 \end{pmatrix}_B$$
: composantes de $t(x)$ par rapport à la base B .

(d) • Pour montrer que $W \subset F$, on montre que tout polynôme de W a la propriété caractéristique de F.

$$W \subset F \Leftrightarrow \forall r(x) \in W, r(x) \in F$$

Or:

$$r(x) \in W \Leftrightarrow r(x) = a (x^3 - 3x) + b (x^2 + 2x), \ a, b \in \mathbb{R}$$

Il faut vérifier si r'(-1) = 0. On calcule :

$$r'(x) = a(3x^2 - 3) + b(2x + 2)$$
 et alors $r'(-1) = a(3 - 3) + b(-2 + 2) = 0$
donc $r(x) \in F$.

• Il faut chercher une base B' de F puis la comparer avec celle de W. On détermine donc l'expression générale d'un polynôme de F et on en déduit une base.

$$F = \{ s(x) \in P_3 \mid s'(-1) = 0 \}.$$

$$s(x) \in P_3 \iff s(x) = a x^3 + b x^2 + c x + d \quad a, b, c, d \in \mathbb{R}$$

$$s'(x) = 3a x^2 + 2b x + c$$

et on a la condition : $s'(-1) = 3a - 2b + c = 0 \Leftrightarrow c = -3a + 2b$

Ainsi:

$$s(x) \in P_3 \iff s(x) = a x^3 + b x^2 + (-3a + 2b) x + d$$

 $s(x) = a (x^3 - 3x) + b (x^2 + 2x) + d 1$

Les trois polynômes $s_1(x) = x^3 - 3x$, $s_2(x) = x^2 + 2x$ et $s_3(x) = 1$ sont donc des générateurs de F, de plus ils sont linéairement indépendants (évident!), ils forment donc une base B' de F.

La base B' est obtenue en complétant la base B avec le polynôme $s_3(x) = 1$.

Espaces vectoriels: exercice 21 (facultatif)

Utiliser le critère du sous-espace vectoriel.

Soit E un espace vectoriel et W un sous-ensemble de E.

 $\forall \alpha, \beta \in \mathbb{R}, \ \forall \vec{x}, \vec{y} \in W, \ \alpha \vec{x} + \beta \vec{y} \in W \iff W \text{ est un sev de } E.$

Le critère du sev consiste donc à vérifier que

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \vec{x}, \vec{y} \in \mathbf{W}, \ \alpha \vec{x} + \beta \vec{y} \in \mathbf{W}$$

Preuve du critère :

 $\forall \alpha, \beta \in \mathbb{R}, \ \forall \vec{w_1}, \vec{w_2} \in F + G$, on doit vérifier qu'il existe $\vec{u} \in F$ et $\vec{v} \in G$ tels que $\alpha \vec{w_1} + \beta \vec{w_2} = \vec{u} + \vec{v}$.

Par hypothèse :

$$\vec{w}_1 \in F + G \quad \Leftrightarrow \quad \exists \vec{u}_1 \in F, \ \vec{v}_1 \in G \text{ tel que } \vec{w}_1 = \vec{u}_1 + \vec{v}_1$$

$$\vec{w}_2 \in F + G \quad \Leftrightarrow \quad \exists \vec{u}_2 \in F, \ \vec{v}_2 \in G \text{ tel que } \vec{w}_2 = \vec{u}_2 + \vec{v}_2$$

$$\forall \alpha, \beta \in \mathbb{R}, \ \alpha \vec{w_1} + \beta \vec{w_2} = \alpha(\vec{u_1} + \vec{v_1}) + \beta(\vec{u_2} + \vec{v_2}) = (\alpha \vec{u_1} + \beta \vec{u_2}) + (\alpha \vec{v_1} + \beta \vec{v_2})$$

On pose:
$$\vec{u} = \alpha \vec{u}_1 + \beta \vec{u}_2$$
 et $\vec{v} = \alpha \vec{v}_1 + \beta \vec{v}_2$

Alors : $\vec{u} \in F$ car par hypothèse F est un sev de E

et : $\vec{v} \in G$ car par hypothèse G est un sev de E

Ainsi : $\forall \alpha, \beta \in \mathbb{R}$, $\exists \vec{u} \in F$ et $\exists \vec{v} \in G$ tels que $\alpha \vec{w_1} + \beta \vec{w_2} = \vec{u} + \vec{v}$.

Donc $\alpha \vec{w}_1 + \beta \vec{w}_2 \in F + G$.

Le critère est vérifié.

On en conclut que U + V est un sev de l'ensemble E.

Dessiner quelques cas.

- F est une droite d passant par O de vecteur directeur \vec{a} . G est une droite g passant par O de vecteur directeur \vec{b} . Alors F + G est le plan α passant par O et de vecteurs directeurs \vec{a} et \vec{b} .
- F est une droite d passant par O de vecteur directeur \vec{a} . G est un plan α passant par O.

On suppose $F \not\subset G$, alors F + G est l'espace.

Si $F \subset G$, alors F + G = G.

Utiliser les définitions.

$$F + G = \{ \vec{w} \in E \mid \vec{w} = \vec{u} + \vec{v}, \ \vec{u} \in F, \ \vec{v} \in G \}$$

$$\vec{x} \in [\vec{c}_1, \dots, \vec{c}_n]_{sev} \Leftrightarrow \vec{x} = \alpha_1 \vec{c}_1 + \dots + \alpha_n \vec{c}_n, \ \alpha_i \in \mathbb{R}$$

Soit $\vec{w} \in F + G$ donc $\vec{w} = \vec{u} + \vec{v}$ où $\vec{u} \in F$ et $\vec{v} \in G$.

Ainsi par hypothèse:

$$\vec{u} \in [\vec{a}_1, \dots, \vec{a}_n]_{sev} \iff \vec{u} = \alpha_1 \vec{a}_1 + \dots + \alpha_n \vec{a}_n, \ \alpha_i \in \mathbb{R}, \ i = 1, \dots, n$$

 $\vec{v} \in [\vec{b}_1, \dots, \vec{b}_m]_{sev} \iff \vec{v} = \beta_1 \vec{b}_1 + \dots + \beta_m \vec{b}_m, \ \beta_i \in \mathbb{R}, \ j = 1, \dots, m$

D'où:

$$\vec{w} = \vec{u} + \vec{v} = \alpha_1 \, \vec{a}_1 + \, \dots \, + \, \alpha_n \, \vec{a}_n + \, \beta_1 \, \vec{b}_1 + \, \dots \, + \, \beta_m \, \vec{b}_m \, \Leftrightarrow \, \vec{w} \in [\vec{a}_1, \, \dots, \, \vec{a}_n, \, \vec{b}_1, \, \dots, \, \vec{b}_m]_{sev}$$

Donc:
$$F + G = [\vec{a}_1, ..., \vec{a}_n, \vec{b}_1, ..., \vec{b}_m]_{sev}$$
.

Utiliser les définitions.

Exprimer \vec{w} comme un vecteur de G+H, c'est-à-dire

$$\vec{w} \in G + H \iff \vec{w} = \vec{u} + \vec{v} \text{ avec } \vec{u} \in G, \vec{v} \in H$$

$$\vec{w} \in G + H \text{ donc } \vec{w} = \vec{u} + \vec{v}$$

Or

G est le plan d'équation cartésienne y+z=0, d'où

$$\vec{u} \in G \Leftrightarrow \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ -u_2 \end{pmatrix}, u_1, u_2 \in \mathbb{R}$$

H est le plan d'équation cartésienne x - y = 0, d'où

$$\vec{v} \in G \Leftrightarrow \vec{v} = \begin{pmatrix} v_1 \\ v_1 \\ v_3 \end{pmatrix}, \ v_1, \ v_3 \in \mathbb{R}$$

D'où:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ -u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_1 \\ v_3 \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_1 \\ -u_2 + v_3 \end{pmatrix} \Leftrightarrow \begin{cases} 1 = u_1 + v_1 \\ 1 = u_2 + v_1 \\ 1 = -u_2 + v_3 \end{cases}$$

On obtient:

$$\begin{cases} u_1 = 1 - v_1 \\ u_2 = 1 - v_1 \\ v_3 = 2 - v_1 \end{cases} \Rightarrow \vec{u} = \begin{pmatrix} 1 - v_1 \\ 1 - v_1 \\ -1 + v_1 \end{pmatrix} \quad \text{et} \quad \vec{v} = \begin{pmatrix} v_1 \\ v_1 \\ 2 - v_1 \end{pmatrix}, \quad \text{pour tout } v_1 \in \mathbb{R}$$

Ainsi $\vec{w} \in G + H$ et sa décomposition n'est pas unique.

$$\vec{w} \in G + F \text{ donc } \vec{w} = \vec{u} + \vec{v}$$

Or

G est le plan d'équation cartésienne y+z=0, d'où

$$\vec{u} \in G \Leftrightarrow \vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ -u_2 \end{pmatrix}, u_1, u_2 \in \mathbb{R}$$

F est la droite d'équations paramétriques : $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $k \in \mathbb{R}$

$$\vec{v} \in F \Leftrightarrow \vec{v} = \begin{pmatrix} 2k \\ -k \\ 3k \end{pmatrix}, k \in \mathbb{R}$$

D'où:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ -u_2 \end{pmatrix} + \begin{pmatrix} 2k \\ -k \\ 3k \end{pmatrix} = \begin{pmatrix} u_1 + 2k \\ u_2 - k \\ -u_2 + 3k \end{pmatrix} \iff \begin{cases} 1 = u_1 + 2k \\ 1 = u_2 - k \\ 1 = -u_2 + 3k \end{cases}$$

On obtient:

$$\begin{cases} u_1 = -1 \\ u_2 = 2 \\ k = 1 \end{cases} \Rightarrow \vec{u} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} \quad \text{et} \quad \vec{v} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \quad \text{pour tout } v_1 \in \mathbb{R}$$

Ainsi $\vec{w} \in G + F$ et sa décomposition est unique.

On remarque que quelque soit
$$\vec{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, le système
$$\begin{cases} a = u_1 + 2k \\ b = u_2 - k \\ c = -u_2 + 3k \end{cases}$$
possède toujours une solution unique.