CSE 125 Lab 2: Finite State Machines

Date: 04/21/2020

Name: Zhongming Liao, Chuanshi Zhu

Lab Group: 20

I. Regular Expression Checker

a) FSM

Figure 1. main running of FSM

Figure 2. signal comparing of FSM

b) 7 clock cycles screenshot

Figure 3. 7 clock cycles for input ABCDD

c) Synthesis result

Figure 4. Synthesis result

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	8.551 ns	Worst Hold Slack (WHS):	0.134 ns	Worst Pulse Width Slack (WPWS):	9.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	16	Total Number of Endpoints:	16	Total Number of Endpoints:	9

Figure 5. Design Timing summary

Name	Waveform	Period (ns)	Frequency (MHz)
clk	{0.000 10.000}	20.000	50.000

Figure 6. clock summary

As we see, the Design Timing summary, WNS =
$$8.551$$
ns, so FMAX = $1/(T - WNS) = 1/(20$ ns -8.551 ns) = 0.08734×10^9 Hz FMAX = 87.34 MHz

II. Timing

a) Identify the critical path

The critical paths:

G1->R1->G2->G4->R2

G1->R1->G3->G4->R2

b) Maximum clock rate

Max clock period = min delay in gates + min delay in clock pulse + setup time

=
$$3*70ps + 2*30ps + 2*35ps + 40ps$$

= $415ps$
max clk freq = $1/period = 1/415ps = $2.4 \times 10^9 Hz$
= $2.4GHz$$

c) Register hold times

The register hold times couldn't be violated, since
Propagation min delay + Clk-to-Q min delay > Hold Time;
each register input is previous gate output, and propagation
min delay + Clk-to-Q min delay is bigger than hold time delay
which 30ps + 70ps > 35ps