# Continuous-time filters



Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be



### **Applications and problems**

- Applications
  - Anti-aliasing filters
  - Video and HF filters: hard-disk drives
  - Channel select filters
  - Low-power filters
- Problems:
  - Tuning for high precision: mismatch < 5 %
  - Distortion : THD < -60 dB
  - Low power supply voltages
  - High quality factors : Q > 50?

#### Table of contents

- **♦** Active RC filters
- **♦ MOSFET-C filters**
- GmC filters
- **♦** Comparison

Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993 J. Silva-Martinez, Kluwer 1993, W. Dehaene, JSSC, July 1997, 977-988

#### **Active RC filters**

### Opamps and passive components (R, C)



#### Advantages:

S/N up to 100 dB THD very low < - 90 dB

#### **Disadvantages:**

Opamps:

only for low frequencies Errors on R, C ≈ 20 %

>> tune C's

#### **Table of contents**

- **◆** Active RC filters
- **♦ MOSFET-C filters**
- **♦** GmC filters
- **♦** Comparison

Ref.: Silva-Martinez, Dehaene, ...

#### **MOST** resistors



### **Examples of differential MOST-R's**



partial cancellation of even nonlin

cancellation of even and odd nonlinearities

Ref. Tsividis JSSC Feb.86, 15-30; Ma.94, 166-176

#### From active RC to MOSFET-C filter



Ref. Tsividis JSSC Feb.86, 15-30

## Large R<sub>ON</sub> values at high frequencies

For low-frequency low-pass filter with f-3dB

$$f_{-3dB} = \frac{1}{2\pi R_{on}C} \approx \frac{KP W/L (V_{GS}-V_T)}{2\pi C}$$

For  $f_{-3dB}$  = 4 kHz; KP= 60  $\mu$ A/V<sup>2</sup>;  $V_{GS}$ - $V_{T}$  = 1 V; W = 2  $\mu$ m; C = 10 pF  $R_{on}$ = 4 M $\Omega$ . For matching W = 2  $\mu$ m: L  $\approx$  500  $\mu$ m! The area is 10<sup>-5</sup> cm<sup>2</sup>

For  $C_{ox} = 5.10^{-7} \text{ F/cm}^2 (0.35 \ \mu\text{m}); C_{GS} = 5 \text{ pF};$ High-frequency limit at  $\approx 8 \text{ kHz or f}_T \approx 8 \text{ kHz} !!!!!!$ 

### LC ladder filter



Ref. Banu JSSC Dec.85, 1114-1121

## Fifth-order low-pass filter



# Fifth-order elliptic low-pass filter



Ref. Tsividis JSSC Feb.86, 15-30

## PLL tuning



#### Table of contents

- **◆** Active RC filters
- ◆ MOSFET-C filters
- **♦** GmC filters
  - Transconductors
  - Tuning
- **♦** Comparison

Ref.: Silva-Martinez, Dehaene, ...

### **Some GmC filters**



#### **GmC** filter definition

#### **Opamp**

Operational amplifier



$$A_{v} = \frac{v_{OUT}}{v_{IN}}$$

$$A_v =$$

#### **OTA**

Operational Transconduct. amplifier



$$A_g = \frac{i_{OUT}}{v_{IN}}$$

$$= A_g R_L$$



Adv.: High freq. operation Easy tuning

Disadv.: Distortion

Mismatch errors

Parasitic C's (low Q)

# Simple GmC filters







$$\frac{v_{OUT}}{v_{IN}} = \frac{g_m R}{1 + sRC}$$

# **Simple GmC filters**



$$\frac{v_{OUT}}{v_{IN}} = \frac{g_{m1}}{g_{m2} + sC}$$



### Simple fully-differential GmC filters



# Voltage-mode & current-mode filters



### A differential pair as a transconductor



$$IM_3 = 3HD_3 = \frac{3}{32} U^2$$

$$U = \frac{V_{ld}}{V_{GS} - V_{T}}$$

U is the relative current swing

Max. 
$$V_{idptp} \approx 2 \sqrt{2} (V_{GS} - V_{T})$$

$$IP_3 \approx 3.3 (V_{GS} - V_T)$$

 $HD_3 = -60 \text{ dB for } V_{id} = 1 \text{ V requires } V_{GS} - V_T = 6 \text{ V } !!!$ 

## Amplifier or transconductor?



#### **Transconductor:**

Wide input range: low distortion

Small gain g<sub>m</sub>

#### Table of contents

- **♦** Active RC filters
- **♦ MOSFET-C filters**
- **♦** GmC filters
  - □ Transconductors
    - use of transconductors
    - local feedback
    - parallel differential pairs
    - others
  - □ Tuning
- **♦** Comparison

### Increasing the IP<sub>3</sub> by feedback



## Increasing the IP<sub>3</sub> by FB and high loop gain



**Additional local FB** 

More FB with opamps

### **Tuneable resistances**



## By tuneable feedback



Ref.Torrance et al CAS Nov.85, 1097-1104

## By nonlinear feedback (input)



Ref. Krummenacher JSSC June 88, 750-758

## By nonlinear feedback (as load)



Ref. Menolfi JSSC July 97, 968-976

## Low-distortion combination: power!



# Reduced distortion by cross-coupling



Ref. Silva-Martinez JSSC July 91,946-955

## **Comparison (simulations)**



#### **Measured THD for transconductor**



## Linear transconductor with opamps



#### Table of contents

- **♦** Active RC filters
- **♦ MOSFET-C filters**
- **♦** GmC filters
  - □ Transconductors
    - use of transconductors
    - local feedback
    - parallel differential pairs
    - others
  - □ Tuning
- ◆ Comparison

# Parallel differential pairs with offset Voltages



# Transfer characteristics of parallel diff. pairs



### Parallel diff.pairs with different transistor sizes



## Paralleling four differential pairs



Input range 160 mV<sub>ptp</sub> (1% THD)

Ref. Tanimoto,.. JSSC July 91, 937-945

# **Dual-input transconductor**



## Parallel diff.pairs with different transistor sizes



#### **Parameters:**

$$\alpha = I_{B2} / I_{B1}$$

$$-v_{id}/2 \quad v = V_{GST1} / V_{GST2}$$

$$V_{GST} = V_{GS} - V_{T}$$

$$n = \alpha v^2$$

Ref. in CMOS: **Nedungadi, CAS** Oct 84, 891-894 Voorman, JSSC Aug.00, 1097-1108 Luh, ESSCIRC 00

# Cross-coupling for linearity and swing



Ref. Luh, USC, ESSCIRC 2000, 72-75

### Multiplier or Amp. with distortion cancellation



#### **Parameters:**

$$\alpha = I_{B2} / I_{B1}$$

$$v = V_{GST1} / V_{GST2}$$

$$V_{GST} = V_{GS} - V_{T}$$

**Ref. Gilbert, JSSC Dec. 68, 365-373** 

# **Cross-coupling and source resistors**



Ref. Prodanov, ESSCIRC 2001, 488-491

# Cross-coupling and source followers



Ref. Van Engelen, JSSC Dec.99, 1753-1764

#### Table of contents

- **♦** Active RC filters
- ♦ MOSFET-C filters
- **♦** GmC filters
  - □ Transconductors
    - use of transconductors
    - local feedback
    - parallel differential pairs
    - others
  - □ Tuning
- ◆ Comparison

# Linearity CMOS amplifier



if 
$$K'_n \frac{W_n}{L_n} = K'_p \frac{W_p}{L_p}$$



$$V_{in} = V_{out} = \frac{V_{DD}}{2}$$

### Linearized transconductors





Ref. Voorman, JSSC, Aug.2000, 1097-1108

# Transconductor for High Frequencies (2 nodes)



Ref. Nauta JSSC Febr.92,142-146

#### Transconductors with linear MOSTs



$$V_{DS1} = R_D I_D \approx 0.2 \text{ V}$$

$$I_{DS1} = \beta_1 V_{DS1} (V_{GS1} - V_T)$$

$$g_{m1} = \beta_1 V_{DS1}$$
 is constant

over wide range!

Alini, JSSC, Dec.92, pp.1905-1915

#### **Alternative solutions**





Larger tuning range Controls  $V_{DS}$   $V_{DSmin} \approx 0$   $V_{tuning}$  down to 0

Smaller tuning range Controls  $V_{GS}$ - $V_{T}$   $V_{GSTmin}$  limited by linearity  $V_{tuning}$  from  $V_{T}$  up

### Pseudodifferential transc. with linear MOSTs



Biasing imposed by previous circuit!

No rejection of CM signals (CMRR = 0 dB)

Ref. Alini, JSSC, Dec.92, pp.1905-1915

### Transconductors with linear MOSTs



#### Table of contents

- **◆** Active RC filters
- **♦ MOSFET-C filters**
- **♦** GmC filters
  - Transconductors
  - Tuning
- **♦** Comparison

Ref.: Silva-Martinez, Dehaene, ...

### **Gm-R-C** versus **Gm-C** filters



### **Gm-R-C** filters



$$f_o \approx \frac{1}{2\pi} \sqrt{\frac{g_{m1}g_{m2}}{C_1C_2}}$$
if  $f_o \ll f_{par}$ 

$$Q \approx \frac{g_{m2}}{g_2 + g_{o2}}$$
if  $g_1 \approx 0$  (cascodes)

Ref. Silva-Martinez JSSC July 91,946-955

# Tunable R to tune Q



# **Tuning systems: transconductance tuning**



# **Tuning systems:** frequency tuning



$$\begin{vmatrix}
I_{ref} = Cf_c V_{ref} \\
I_{ref} = g_m V_{ref}
\end{vmatrix} g_m = Cf_c$$

Ref. Viswanathan, JSSC Aug.82, 775-778 Silva, JSSC Dec. 92, 1843-1853

# Fully-differential tuning system realization



Ref. Chang, JSSC March 1997, 388-397

# Tuning systems: frequency tuning with low f<sub>c</sub>



# Fully-differential frequency tuning system



$$\frac{g_m}{C} = Nf_c$$

Ref. Silva, JSSC Dec. 92, 1843-1853

# **Tuning systems: Q tuning**

#### **Unity-pulse response Biquad:**

H(t) = 
$$\frac{1}{\sqrt{1 - \frac{1}{4Q^2}}} \exp(-\frac{t.BW}{2}) \sin(\sqrt{1 - \frac{1}{4Q^2}} \omega_o t + \theta)$$



# Q tuning with active resistor



# **Comparison of 10.7 MHz filters**

|                               | SC                    | OTA-C                 | Gm-RC                 |
|-------------------------------|-----------------------|-----------------------|-----------------------|
| f <sub>c</sub> (BW = 250 kHz) | 10.7 MHz              | 12.5 MHz              | 10.7 MHz              |
| Order filter                  | 6                     | 4                     | 4                     |
| Vin @ IM3= 1%                 | 0.24 V <sub>RMS</sub> | $0.32~V_{\text{RMS}}$ | 0.71 V <sub>RMS</sub> |
| DR @ IM3= 1%                  | 34 dB                 | 51 dB                 | 68 dB                 |
| Power (± V)                   | 500 mW(± 5)           | 360 mW(± 6)           | 220 mW(± 2.5)         |
| Chip area                     | 2 mm <sup>2</sup>     | 7.8 mm <sup>2</sup>   | 6 mm <sup>2</sup>     |

# Biquad for 7th-order Filter at 50 MHz



#### **Biquad with matched nodes**

Ref. Dehaene JSSC July 97, 977-988

$$f_o = \frac{1}{2\pi} \frac{\sqrt{(\gamma^2 + 1)}}{\gamma} \quad \tau = \frac{C}{g_{m2}^*} \quad \gamma = \frac{g_{m2}}{g_{m1}}$$

# Tuning system for Q: conductance ratio $\gamma$



Ref. Dehaene JSSC July 97, 977-988

# Tuning system for the ratio of time constants



#### Table of contents

- **♦** Active RC filters
- **◆ MOSFET-C filters**
- **♦** GmC filters
- ◆ Comparison

Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993 J. Silva-Martinez, Kluwer 1993, W. Dehaene, JSSC, July 1997, 977-988

### **Signal to Noise + Distortion ratio**



#### Table of contents

- **♦** Active RC filters
- **◆ MOSFET-C filters**
- **♦** GmC filters
- **♦** Comparison

Ref.: Tsividis, Voorman, Integrated Cont.-time filters, IEEE Press 1993 J. Silva-Martinez, Kluwer 1993, W. Dehaene, JSSC, July 1997, 977-988