1. (Original) A compound of the general formula:

wherein X and X' are independently O or S;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, n-propyl, isopropyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₂-C₄)alkenyl, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, hydroxy, amino, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, (C_2-C_4) alkenyl, (C_3-C_4) alkenylalkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type (- OCHR 9 CHR 10 O-) form a ring with the phenyl carbons to which they are attached; wherein R^9 and R^{10} are independently: H, halo, (C_1-C_3) alkyl, (C_2-C_3) alkenyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, benzoyloxy (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, halo (C_1-C_3) alkyl, hydroxy (C_1-C_3) alkyl, hydroxy

 $C_3) alkyl, carboxy, carboxy(C_1-C_3) alkyl, (C_1-C_3) alkoxycarbonyl(C_1-C_3) alkyl, (C_1-C_3) alkylcarbonyl(C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarbonyloxy (-OC(O)NHR^g), aminocarbonyloxy(C_1-C_3) alkyl, pentafluorophenyloxycarbonyl, pentafluorophenyloxycarbonyl(C_1-C_3) alkyl, pentafluorophenyloxy(C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_5) trisubstituted-siloxy(C_1-C_3) alkyl (-(CH_2)_n SiOR^d R^e R^g); wherein n=1-3, R^e and R^d represent straight or branched hydrocarbon chains of the indicated length, R^g represent H or straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^e, R^f, and R^g are independent of one another;$

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when either R^9 or R^{10} are halo, (C_1-C_3) alkyl, (C_1-C_3) alkoxy (C_1-C_3) alkyl, or benzoyloxy (C_1-C_3) alkyl, or
- when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-),

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

2. (original) The compound of claim 1, wherein: X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl;

cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, halo (F, Cl, Br, I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type ($-OCHR^9CHR^{10}O$ -) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C_1-C_3)alkyl, formyl, formyl(C_1-C_3)alkyl, cyano, cyano(C_1-C_3)alkyl, carboxy, carboxy(C_1-C_3)alkyl, amino(C_1-C_3)alkyl, (C_1-C_3)alkyl, aminocarbonyloxy(C_1-C_3)alkyl, aminocarbonyloxy(C_1-C_3)alkyl, aminocarbonyloxy(C_1-C_3)alkyl, arylsulfonyloxy(C_1-C_3)alkyl, (C_1-C_3)alkyl, (C_1-C_3)alkyl, arylsulfonyloxy(C_1-C_3)alkyl, or (C_1-C_3)thio(C_1-C_3)alkyl, (C_1-C_3)alkyl ($-(CH_2)_n$ SiOR^dR^eR^e); wherein n=1-3, R^e and R^d represent straight or branched hydrocarbon chains of the indicated length, R^e represents (C_1-C_3)alkyl or aryl optionally substituted with halo or (C_1-C_3)alkyl, and R^e, R^e, R^e, R^e, R^e, R^e, and R^e are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-).

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12.

3. (original) The compound of claim 2: X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro; or
- (b) substituted or unsubstituted 2-pyridyl, 3-pyridyl, or 4-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl, cyano, or nitro;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-6;

R³ is H, methyl, ethyl, or cyano;

 R^4 , R^7 , and R^8 are independently: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl, cyano, or nitro; and

 R^5 and R^6 are independently: H, (C_1-C_4) alkyl, halo (F,Cl,Br,I), C_1-C_4 haloalkyl, (C_1-C_4) alkoxy, hydroxy, amino, cyano, nitro, or together as a linkage of the type $(-OCHR^9CHR^{10}O-)$ form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo (C_1-C_3) alkyl, formyl, formyl (C_1-C_3) alkyl, cyano, cyano (C_1-C_3) alkyl, carboxy, carboxy (C_1-C_3) alkyl, amino (C_1-C_3) alkyl, (C_1-C_3) alkyl, aminocarbonyloxy $(-OC(O)NHR^8)$, aminocarbonyloxy (C_1-C_3) alkyl, pentafluorophenyloxycarbonyl (C_1-C_3) alkyl, p-toluenesulfonyloxy (C_1-C_3) alkyl, arylsulfonyloxy (C_1-C_3) alkyl, (C_1-C_3) alkyl, or (C_1-C_3) alkyl, or (C_1-C_3) alkyl, (C_1-C_3) alkyl $(-(CH_2)_nSiOR^4R^8)$; wherein n=1-3, R^c and R^d represent straight or branched hydrocarbon chains of the indicated length, R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^c , R^f , and R^g are independent of one another;

provided that

- i when R⁹ and R¹⁰ are both H, or
- ii when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-).

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R⁵ and R⁶ together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached, and R⁹ and R¹⁰ are not both H,

then R¹ and R² are (C₁-C₄) straight or branched alkyl, and R³ is H or methyl.

4. (original) The compound of claim 3: X and X' are O;

Y is:

- (a) substituted or unsubstituted phenyl wherein the substitutents are independently 1-5 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl; or
- (b) substituted or unsubstituted 3-pyridyl, wherein the substitutents are independently 1-4 H, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, halo (F, Cl, Br, I), (C₁-C₄)haloalkyl;

 R^1 and R^2 are independently: H; cyano; cyano-substituted or unsubstituted (C_1 - C_7) branched or straight-chain alkyl; cyano-substituted or unsubstituted (C_2 - C_7) branched or straight-chain alkenyl; cyano-substituted or unsubstituted (C_3 - C_7) branched or straight-chain alkenylalkyl; or together the valences of R^1 and R^2 form a (C_1 - C_7) cyano-substituted or unsubstituted alkylidene group ($R^aR^bC=$) wherein the sum of non-substituent carbons in R^a and R^b is 0-3;

R³ is methyl:

 R^4 , R^7 , and R^8 are independently selected from: H, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, halo (F, Cl, Br, I), (C_1-C_4) haloalkyl; and

 R^5 and R^6 are independently: H, (C_1 - C_4)alkyl, halo (F, Cl, Br, I), C_1 - C_4 haloalkyl, (C_1 - C_4)alkoxy, or together as a linkage of the type ($-OCHR^9CHR^{10}O$ -) form a ring with the phenyl carbons to which they are attached; wherein R^9 or R^{10} is H, and the alternate R^9 or R^{10} is: H, halo(C_1 - C_2)alkyl, formyl, cyano(C_1 - C_2)alkyl, carboxy, amino(C_1 - C_2)alkyl, oximo (-CH=NOH), (C_1 - C_3)carboxamido ($-C(O)NR^eR^f$), (C_1 - C_2)semicarbazido ($-C=NNHC(O)NR^eR^f$), aminocarbonyloxy ($-OC(O)NHR^g$), pentafluorophenyloxycarbonyl, p-toluenesulfonyloxy(C_1 - C_3)alkyl, methylthio(C_1 - C_2)alkyl, methylsulfoxido(C_1 - C_2)alkyl, methylsulfonyl(C_1 - C_2)alkyl, or (C_1 - C_3)trisubstituted-siloxy(C_1 - C_3)alkyl ($-(CH_2)_nSiOR^dR^eR^g$); wherein n=1-3, R^d represents a straight or branched hydrocarbon chain of the indicated length, R^e , R^f represent H or straight or branched hydrocarbon chains of the indicated length,

 R^g represents (C_1-C_3) alkyl or aryl optionally substituted with halo or (C_1-C_3) alkyl, and R^c , R^d , R^e , R^f , and R^g are independent of one another;

provided that

- i) when R⁹ and R¹⁰ are both H, or
- ii) when R⁵ and R⁶ do not together form a linkage of the type (-OCHR⁹CHR¹⁰O-).

then the number of carbon atoms, excluding those of cyano substitution, for either or both of groups R^1 or R^2 is greater than 4, and the number of carbon atoms, excluding those of cyano substitution, for the sum of groups R^1 , R^2 , and R^3 is 10, 11, or 12; and

when R⁵ and R⁶ together as a linkage of the type (-OCHR⁹CHR¹⁰O-) form a ring with the phenyl carbons to which they are attached, and R⁹ and R¹⁰ are not both H,

then R1 and R2 are methyl.

- 5. (original) The compound of claim 4 selected from the group consisting of:
- a) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-hydroxymethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- b) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(tert-butyl-dimethyl-silanyloxymethyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,
- c) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid,
- d) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methyl ester,
- e) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-semicarbazidomethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- f) Phenyl-carbamic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- $g) \qquad 3,5\text{-Dimethyl-benzoic acid N'-}[3\text{-}(2\text{-amino-ethyl})\text{-}5\text{-methyl-}2,3\text{-}dihydrobenzo}[1,4]\\ dioxine-6\text{-}carbonyl]\text{-}N\text{-}tert\text{-}butyl\text{-}hydrazide},$

- h) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid pentafluorophenyl ester,
- i) 7-[N'-tert-Butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxine-2-carboxylic acid methylamide,
- j) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-formyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- k) Toluene-4-sulfonic acid 7-[N'-tert-butyl-N'-(3,5-dimethyl-benzoyl)-hydrazinocarbonyl]-8-methyl-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl ester,
- l) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-[3-(hydroxyimino-methyl)-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl]-hydrazide,
- m) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-cyanomethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- n) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(5-methyl-3-methylsulfanylmethyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- o) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-methanesulfonylmethyl-5-methyl-2,3-dihydro-benzo[1,4]dioxine-6-carbonyl)-hydrazide,
- p) 3,5-Dimethyl-benzoic acid N-tert-butyl-N'-(3-fluoromethyl-5-methyl-2,3-dihydrobenzo[1,4]dioxine-6-carbonyl)-hydrazide,
- q) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
 - r) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- s) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,
- t) 3,5-Dimethoxy-4-methyl-benzoic acid-N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
 - u) 2-Methoxy-nicotinic acid N-(1-tert-butyl-heptyl)-N'-(4-ethyl-benzoyl)-hydrazide,
- v) 3,5-Dimethyl-benzoic acid N-(1-tert-butyl-3,4,4-trimethyl-pent-2-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide,

- $\label{eq:control_state} \textbf{x)} \qquad \textbf{3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pentyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide, and}$
 - y) 3,5-Dimethyl-benzoic acid N-(1-butyl-2,2-dimethyl-pent-4-enyl)-N'-(3-methoxy-2-methyl-benzoyl)-hydrazide.

6. - 17. (Canceled)