House Price Prediction

```
In [1]: import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        plt.style.use(['ggplot'])
        from sklearn.linear_model import LinearRegression
```

Read the file

```
In [2]:
        file_path='C:\\Users\\Dayakar\\Desktop\\DS Assigments\\internship 27\\archive
        house data=pd.read csv(file path)
        house_data
```

Out[2]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.(
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.(
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131	3.0
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813	2.0
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350	2.0
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388	2.0
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076	2.0

21613 rows × 21 columns

1

In [3]: house_data.size

Out[3]: 453873

In [4]: house_data.shape

Out[4]: (21613, 21)

```
In [5]: house_data.columns
Out[5]: Index(['id', 'date', 'price', 'bedrooms', 'bathrooms', 'sqft_living',
                  'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',
'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',
                  'lat', 'long', 'sqft_living15', 'sqft_lot15'],
                dtype='object')
In [6]: house_data.dtypes
Out[6]: id
                               int64
                              object
         date
         price
                             float64
         bedrooms
                               int64
         bathrooms
                             float64
         sqft living
                               int64
         sqft_lot
                               int64
                             float64
         floors
         waterfront
                               int64
         view
                               int64
         condition
                               int64
                               int64
         grade
         sqft_above
                               int64
         sqft_basement
                               int64
         yr_built
                               int64
         yr_renovated
                               int64
         zipcode
                               int64
         lat
                             float64
                             float64
         long
         sqft_living15
                               int64
         sqft_lot15
                               int64
         dtype: object
```

In [7]: house_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21613 non-null	int64
1	date	21613 non-null	object
2	price	21613 non-null	float64
3	bedrooms	21613 non-null	int64
4	bathrooms	21613 non-null	float64
5	sqft_living	21613 non-null	int64
6	sqft_lot	21613 non-null	int64
7	floors	21613 non-null	float64
8	waterfront	21613 non-null	int64
9	view	21613 non-null	int64
10	condition	21613 non-null	int64
11	grade	21613 non-null	int64
12	sqft_above	21613 non-null	int64
13	sqft_basement	21613 non-null	int64
14	yr_built	21613 non-null	int64
15	yr_renovated	21613 non-null	int64
16	zipcode	21613 non-null	int64
17	lat	21613 non-null	float64
18	long	21613 non-null	float64
19	sqft_living15	21613 non-null	int64
20	sqft_lot15	21613 non-null	int64
dtype	es: float64(5),	int64(15), object	:t(1)
memor	ry usage: 3.5+ N	1B	

In [8]: |house_data.isnull().sum()

```
Out[8]: id
                           0
         date
                           0
                           0
         price
         bedrooms
                           0
                           0
         bathrooms
         sqft_living
                           0
         sqft_lot
                           0
         floors
                           0
         waterfront
                           0
         view
                           0
                           0
         condition
         grade
                           0
         sqft_above
                           0
         sqft_basement
                           0
         yr_built
                           0
         yr_renovated
                           0
         zipcode
                           0
         lat
                           0
                           0
         long
         sqft_living15
                           0
         sqft_lot15
                           0
```

dtype: int64

In [9]: house_data.describe()

Out[9]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	216
mean	4.580302e+09	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e+04	
std	2.876566e+09	3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	
min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	
25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	
1							•

In [10]: house_data.drop("id",axis=1,inplace=True)

In [11]: house_data.head(5)

Out[11]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
0	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	
1	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	
2	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	
3	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	
4	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	
4									

In [12]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
house_data["date"]=le.fit_transform(house_data["date"])
house_data['date'].dtype

Out[12]: dtype('int32')

In [13]: house_data.head()

Out[13]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition
0	164	221900.0	3	1.00	1180	5650	1.0	0	0	3
1	220	538000.0	3	2.25	2570	7242	2.0	0	0	3
2	290	180000.0	2	1.00	770	10000	1.0	0	0	3
3	220	604000.0	4	3.00	1960	5000	1.0	0	0	5
4	283	510000.0	3	2.00	1680	8080	1.0	0	0	3
4										•

Exploratory Data Analysis

count the number of houses with unique floor values.

In [14]: house_data['floors'].value_counts().to_frame()
Out[14]:

count
count

floors						
1.0	10680					
2.0	8241					
1.5	1910					
3.0	613					
2.5	161					
3.5	8					

In [15]: house_data.hist(bins=50,figsize=(15,15))
plt.show()

determine whether houses with a waterfront view or without a waterfront view have more price outliers.

```
In [18]: sns.boxplot(data=house_data,x=house_data['waterfront'],y=house_data['price'])
```

Out[18]: <Axes: xlabel='waterfront', ylabel='price'>

determine if the feature sqft_above is negatively or positively correlated_

with price.

In [19]: sns.regplot(data=house_data,x=house_data['sqft_above'],y=house_data['price'])

Out[19]: <Axes: xlabel='sqft_above', ylabel='price'>


```
In [20]: sns.boxplot(data=house_data,x=house_data['sqft_basement'],y=house_data['price']
Out[20]: <Axes: xlabel='sqft_basement', ylabel='price'>
```


In [21]: sns.barplot(data=house_data,x=house_data['floors'],y=house_data['price'])

Out[21]: <Axes: xlabel='floors', ylabel='price'>

In [22]: sns.histplot(data=house_data, x=house_data['grade'],y=house_data['price'])

Out[22]: <Axes: xlabel='grade', ylabel='price'>

In [23]: sns.barplot(data=house_data,x=house_data['grade'],y=house_data['price'])

Out[23]: <Axes: xlabel='grade', ylabel='price'>


```
In [24]: corr_matrix = house_data.corr()
    fig, ax = plt.subplots(figsize=(15, 10))
    ax = sns.heatmap(corr_matrix,
    annot=True,
    linewidths=0.5,
    fmt=".2f",
    cmap="YlGnBu");
    bottom, top = ax.get_ylim()
    ax.set_ylim(bottom + 0.5, top- 0.5)
```

Out[24]: (20.5, -0.5)

In [27]: house_data.skew()

	_	• •
Out[27]:	price bedrooms bathrooms sqft_living sqft_lot floors waterfront view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15	0.147286 4.024069 1.974300 0.511108 1.471555 13.060019 0.616177 11.385108 3.395750 1.032805 0.771103 1.446664 1.577965 -0.469805 4.549493 0.405661 -0.485270 0.885053 1.108181 9.506743
	dtype: float64	

In [28]:

Divide the Data into Train and Test

from sklearn.model_selection import train_test_split

```
X=np.array(house_data.drop(columns="price"))
         y=np.array(house data.drop(columns='price'))
         space=house_data["sqft_living"]
         price=house data["price"]
         X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25, random_state=
In [29]:
         from sklearn.metrics import r2_score,mean_absolute_error
         model3=LinearRegression()
         model3.fit(X_train,y_train)
         y pred3=model3.predict(X test)
         print(f'R2 Score is : {r2 score(y test,y pred3)}')
         print(f'Mae is : {mean_absolute_error(y_test,y_pred3)}')
         R2 Score is: 1.0
         Mae is: 1.145764819987371e-12
In [30]:
         plt.scatter(X_train, y_train, color='red')
         plt.plot(X_train, y_train, color='blue')
         plt.title("visualization--")
         plt.xlabel('space')
         plt.ylabel('price')
         plt.show()
```



```
In [31]: plt.scatter(X_test, y_test, label='Actual data',color='blue')
    plt.plot(X_test, y_test, color='red')
    plt.title("visualization")
    plt.xlabel('space')
    plt.ylabel('price')
    plt.show()
```


