Groupwork

1. The Metaverse [14 points]

Suppose there is an island where there are exactly two types of people: truth-tellers and liars. A truth-teller always tells the truth, and a liar always lies.

Suppose a logician came across two inhabitants of this island, A and B. She asked A: "are you both truth-tellers?" A answered either yes or no. She stopped to think for a minute but could not determine what A and B were (truth-tellers or liars). She then asked "are you both of the same type?" (Same type means that they are either both truth-tellers or both liars.) A answered either yes or no, and then she knew what A and B were.

What are A and B?

Solution:

В	Q1	Q2	
TT	Yes	Yes	
L	No	No	
TT	Yes	Yes	
L	Yes	No	
	TT L	TT Yes L No TT Yes	

From the table we draw we can see that, for the logician to be uncertain after Q1, A must have answered yes. Else, the logician would have deduced what A and B were if A answered no. For Q2, there are 3 possible options: 2 where A answers yes and 1 where A answers no. Since the logician knew what A and B after this question, A must have answered no. That makes A and B both liars.

2. Majority Rules [10 points]

Consider the ternary logical connective # where #PQR takes on the value that the majority of P,Q and R take on. That is #PQR is true if at least two of P,Q or R is true and is false otherwise. Express #PQR using **only** the symbols: P,Q,R,\wedge,\vee and parenthesis.

Solution:

$$((P \lor Q) \land (P \lor R) \land (Q \lor R))$$

At least 2 of P, Q, R need to be T if and only if #PQR is T. Therefore we can take all the 2-combinations out of 3, and as long as one of them is T, the #PQR is T. This can be proven true by true value table below. And to express it in symbols, it is $(P \lor Q) \land (P \lor R) \land (Q \lor R)$.

P	Q	R	$P \vee Q$	$P \vee R$	$Q \vee R$	$ (P \vee Q) \wedge (P \vee R) $	$ (P \lor Q) \land (P \lor R) \land (Q \lor R) $
\overline{T}	Т	Т	Τ	Т	Τ	T	T
T	T	F	Τ	Τ	Τ	T	${ m T}$
${ m T}$	F	Τ	${ m T}$	${ m T}$	${ m T}$	m T	${ m T}$
${ m T}$	F	F	${ m T}$	${ m T}$	\mathbf{F}	m T	\mathbf{F}
F	T	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	Т	F	${ m T}$	\mathbf{F}	${ m T}$	F	\mathbf{F}
F	F	Τ	F	${ m T}$	${ m T}$	F	\mathbf{F}
F	F	F	\mathbf{F}	F	\mathbf{F}	F	F
P	Q	R	#PQR				
\overline{T}	Т	Т	Τ	_			
T	T	\mathbf{F}	${ m T}$				
T	F	Τ	Τ				
T	F	\mathbf{F}	\mathbf{F}				
F	T	Τ	Τ				
F	T	F	\mathbf{F}				
F	F	Τ	\mathbf{F}				
F	F	F	\mathbf{F}				