Number System, Boolean algebra, Logic Gates
Question 1: What is the binary equivalent of the decimal number (368) ₁₀ A. 101110000 B. 110110000 C. 111010000 D. 111100000
Question 2: The decimal equivalent of hex number 1A53 is A. 6793 B. 6739 C. 6973 D. 6379
Question 3: (734) ₈ = (???) ₁₆ A. C 1 D B. D C 1 C. 1 C D D. 1 D C
Question 4: The hexadecimal number 'A0' has the decimal value equivalent to A. 80 B. 256 C. 100 D. 160
Question 5: The decimal equivalent of Binary number 11010 is A. 26 B. 36 C. 16 D. 23
Question 6: The number 140 in octal is equivalent to A. (96)10 B. (86)10 C. (90)10 D. none of these

Question 7: Convert decimal 153 to octal. Equivalent in octal will be

Sunbeam Institute of Information Technology, Pune

A. (431) ₈
B. (331) ₈
C. (231) ₈
D. none of these
Question 8: The decimal equivalent of (1100)2 is
A. 12
B. 16
C. 18
D. 20
Question 9: The binary equivalent of (FA)16 is
A. 1010 1111
B. 1111 1010
C. 10110011
D. none of these
Question 10: The result of adding hexadecimal number A6 to 3A is
A. DD
B. E0
C. F0
D. EF
Question 11: 7BF ₁₆ =
A. 0111 1011 1110
B. 0111 1011 1111
C. 0111 1011 0111 D. 0111 1011 0011
D. 0111 1011 0011
Question 12: The hexadecimal number (3E8) ₁₆ is equal to decimal number
A. 1000
B. 982
C. 768
D. 323
Question 13: The output of a logic gate is 1 when all its inputs are at logic 0. the gate is either
A. a NAND or an EX-OR
B. an OR or an EX-NOR

Sunbeam Institute of Information Technology, Pune

C. an AND or an EX-OR
D. a NOR or an EX-NOR
Question 14: How many AND gates are required to realize Y = CD+EF+G A. 4 B. 5
C. 3
D. 2
Question 15: The number 1000_2 is equivalent to decimal number A. one thousand B. eight
C. four
D. sixteen
Question 16: In binary numbers, shifting the binary point one place to the right. A. multiplies by 2 B. divides by 2
C. decreases by 10
D. increases by 10
Question 17: The binary addition 1 + 1 + 1 gives A. 111 B. 10 C. 110 D. 11
Question 18: A binary number with 4 bits is called a A. Bit B. Bytes C. Nibble D. None of these
Question 19: The NAND gate output will be low if the two inputs are
A. 00
B. 01
C. 10
D. 11

Sunbeam Institute of Information Technology, Pune

Question 20: The simplification of the Boolean expression is

$$(\overline{\overline{A}}\overline{B}\overline{\overline{C}})+(\overline{A}\overline{\overline{B}}\overline{\overline{C}})$$

A. 0

B. 1

C. A

D. BC

Question 21: Karnaugh map is used for the purpose of

A. Reducing the electronic circuits used.

- B. To map the given Boolean logic function.
- C. To minimize the terms in a Boolean expression.
- D. To maximize the terms of a given a Boolean expression.

Question 22: Convert the following SOP expression to an equivalent POS expression.

$$ABC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + \overline{A}\overline{B}C$$

$$A (\overline{A} + \overline{B} + \overline{C})(\underline{A} + B + \overline{C})(\overline{A} + B + C)$$

$$B = (A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})$$

$$C.~(\overline{A}+\overline{B}+\overline{C})(A+\overline{B}+C)(A+\overline{B}+C)$$

D.
$$(A + B + C)(\overline{A} + B + \overline{C})(A + \overline{B} + C)$$

Question 23: If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output?

- A. 1
- B. 2
- C. 7
- D. 8

Question 24: The simplification of the Boolean expression (ABC)+(ABC) is

- A. 0
- B. 1
- C. A
- D. ABC

Question 25: The Boolean expression $\overline{A}.B + A.\overline{B} + A.B$ is equivalent to

- A.A + B
- $_{\rm B.}$ $\overline{\rm A.B}$
- A+B
- D. A.B

Question 26: When simplified with Boolean Algebra (x + y)(x + z) simplifies to

- A. x
- B. x + x(y + z)
- C. x(1 + yz)
- D. x + yz

Question 27: -8 is equal to signed binary number

- A. 10001000
- B. 00001000
- C. 10000000
- D. 11000000

Question 28: When an input signal A=11001 is applied to a NOT gate serially, its output signal is

- A. 00111
- B. 00110
- C. 10101
- D. 11001

Question 29: What is the minimum number of two-input NAND gates used to perform the function of two input OR gate

- A. 1
- B. 2
- C. 3
- D. 4

Question 30: The simplest equation which implements the K-map shown below is:

	C'	С
A'B'	0	0
A'Β	1	1
AB	1	1
AB'	0	1

- A. X = AC + B
- B. X = AC'
- C. X = ABC + ABC' + AB'C
- D. X = AB + AB'

Question 31: Which gate is best used as a basic comparator?

- A. NOR
- B. OR
- C. Exclusive-OR
- D. AND

Question 32: Looping on a K-map always results in the elimination of:

- A. variables within the loop that appear only in their complemented form
- B. variables that remain unchanged within the loop
- C. Variables within the loop that appear in both complemented and uncomplemented form.
- D. Variables within the loop that appear only in their uncomplemented form.