Deep Neural Network

Deep L-layer Neural Network

What is a deep neural network

logistic regression

2 hidden layers

"2 layer NN"

1 hidden layer

Deep neural network notation

$$\mathbf{n}^{[l]} = \text{#units in layer } l$$

 $\mathbf{a}^{[l]}$ = activation in layer l

$$\mathbf{a}^{[l]} = \mathbf{g}^{[l]}(\mathbf{z}^{[l]}), \quad \mathbf{w}^{[l]} = \text{weights for } \mathbf{z}^{[l]}$$

$$\mathbf{n}^{[1]} = 5, \, \mathbf{n}^{[2]} = 5, \, \mathbf{n}^{[3]} = 3, \, \mathbf{n}^{[4]} = \mathbf{n}^{[L]} = 1$$
 $\mathbf{n}^{[0]} = \mathbf{n}_x = 3$

Forward propagation in a deep network

Parameters: Wand h

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]T}\mathbf{x} + \mathbf{b}^{[1]} (\mathbf{n}^{[1]}, \mathbf{1})$$

$$(3,1) = (3,2)(2,1)$$

$$(\mathbf{n}^{[1]}, \mathbf{1}) = (\mathbf{n}^{[1]}, \mathbf{n}^{[0]})(\mathbf{n}^{[0]}, \mathbf{1})$$
Assume
$$\mathbf{1} \text{ sample}$$

$$\mathbf{w}^{[1]T}:(\mathbf{n}^{[1]},\mathbf{n}^{[0]})$$

$$\mathbf{z}^{[2]} = \mathbf{w}^{[2]T} \mathbf{a}^{[1]} + \mathbf{b}^{[2]}, \quad \mathbf{w}^{[2]T}:(5,3), \quad (\mathbf{n}^{[2]},\mathbf{n}^{[1]})$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (5,1) \qquad (5,3) \quad (3,1) \qquad (\mathbf{n}^{[2]},1)$$

$$\mathbf{w}^{[3]T}:(4,5)$$
 $\mathbf{w}^{[4]T}:(2,4), \ \mathbf{w}^{[5]T}:(1,2)$

$\mathbf{w}^{[\prime]T}$:有時簡寫 $\mathbf{w}^{[\prime]}$

同矩陣大小(以此記)

$$\mathbf{W}^{[2]T}:(5,3), (\mathbf{n}^{[2]},\mathbf{n}^{[1]})$$

Vectorized implementation

$$\mathbf{Z}^{[1]} = \mathbf{w}^{[1]} \mathbf{x} + \mathbf{b}^{[1]} (\mathbf{n}^{[1]}, \mathbf{1}) (\mathbf{n}^{[1]}, \mathbf{n}^{[0]}) (\mathbf{n}^{[0]}, \mathbf{1})$$

$$\begin{bmatrix} | & | & | \\ \mathbf{Z}^{1} & \mathbf{Z}^{[1](2)} & \ddots & \mathbf{Z}^{[1](m)} \\ | & | & | \end{bmatrix}$$

$$\mathbf{z}^{[1]} = \mathbf{w}^{[1]} \mathbf{x} + \mathbf{b}^{[1]}$$

$$(\mathbf{n}^{[1]}, \mathbf{m}) \quad (\mathbf{n}^{[1]}, \mathbf{n}^{[0]}) \quad (\mathbf{n}^{[0]}, \mathbf{m}) \quad \frac{(\mathbf{n}^{[1]}, 1)}{\downarrow}$$

$$(\mathbf{n}^{[1]}, \mathbf{m})$$

$$\mathbf{Z}^{[l]}, \mathbf{a}^{[l]}:(\mathbf{n}^{[l]}, \mathbf{1})$$
 $\mathbf{Z}^{[l]}, \mathbf{A}^{[l]}:(\mathbf{n}^{[l]}, \mathbf{m})$
 $l = 0 \quad \mathbf{A}^{[0]} = \mathbf{X} = (\mathbf{n}^{[0]}, \mathbf{m})$
 $\mathbf{dZ}^{[l]}, \mathbf{dA}^{[l]}:(\mathbf{n}^{[l]}, \mathbf{m})$

Intuition about deep representation

Circuit theory and deep learing

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural

Network Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Deep Neural

Network

Forward and backward propagation

Backward propagation for layer l

Input
$$\mathbf{da}^{[l]}$$
 cache: $\mathbf{z}^{[l]}$, $\mathbf{a}^{[l-1]}$
Output $\mathbf{da}^{[l-1]}$, $\mathbf{dw}^{[l]}$, $\mathbf{db}^{[l]}$

1 sample

$$dz^{[l]} = da^{[l]} * g^{[l]'}(z^{[l]})$$

$$dw^{[l]} = a^{[l-1]}dz^{[l]T}$$

$$db^{[l]} = dz^{[l]}$$

$$da^{[l-1]} = w^{[l]}dz^{[l]}$$

$$(n^{[l-1]}, n^{[l]}) (n^{[l]}, 1)$$

m samples

$$\begin{split} dZ^{[l]} = dA^{[l]*}g^{[l]'}(Z^{[l]}) \\ dw^{[l]} = \frac{1}{m}A^{[l-1]}dZ^{[l]T} \\ (n^{[l-1]},n^{[l]}) & (n^{[l-1]},m) & (m,n^{[l]}) \\ db^{[l]} = \frac{1}{m}np.sum(dZ^{[l]},axis=1,keepdims=True) \\ dA^{[l-1]} = w^{[l]}dZ^{[l]} \\ (n^{[l-1]},m) & (n^{[l-1]},n^{[l]}) & (n^{[l]},m) \end{split}$$

Summary

Deep Neural

Network

Parameters vs

Hyperparameters

What are hyperparameters?

Parameters: $\mathbf{W}^{[1]}, \mathbf{b}^{[1]}, \mathbf{W}^{[2]}, \mathbf{b}^{[2]}, \mathbf{W}^{[3]}, \mathbf{b}^{[3]}$

```
Hyperparameters: learning rate \alpha
#iterations
#hidden layers L
#hidden units \mathbf{n}^{[1]}, \mathbf{n}^{[2]}, •••
choice of activation function
```

Later: momentum, minibatch size, regularzation, •••

Applied deep learning is a very

empirical process

Vision, Speech, NLP, Ad, Search, Recommendations

Deep Neural

Network

What does this have to do with

the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

"It's like the brain"

- 1. Change alpha
- 2. Change initial condition to others, ex. All zero, can you make it faster
- 3. Reduce layer numbers to two, one layer and redraw the distribution plot

```
1. Turn in 4/18 before class with code,
4. Change A0 by:
import sklearn; import sklearn.datasets
                                                 output, and your comments
# load image dataset: blue/red dots in circles 2. Code should not use global variables
train_X, train_Y = sklearn.datasets.make_circles(n_samples=35, noise=.05)
A0=train_X.T; Y=train_Y.reshape(1,35)
print("np.shape(Y):",np.shape(Y),"np.shape(A0):",np.shape(A0))
for i in range(35):
  if(Y[0][i]<0.5):
    plt.scatter(A0[0][i], A0[1][i],c="blue",marker="o")
  else:
    plt.scatter(A0[0][i], A0[1][i],c="purple",marker="x")
plt.title('x1, x2, y')
plt.show()
```

a standard Normal distribution (mean=0, stdev=1).

```
import matplotlib
 import time
                                 1 # Prepare input A0 and Labelling output Y
import numpy as np
                                 2 \times 1 = [0.4, 1.2, 1.1, 1.9, 1.8, 1.5, 2.6, 2.2, 3.3, 3.0, 4.1, 4.2, 5.6, 0.7, 0.7]
 import matplotlib.pyplot as plt
                                 3 x2=[4.1,1.5,4.8,0.7,2.2,3.8,1.8,4.8,1.0,4.3,1.8,3.1,6.0,5.9,7.0]
%matplotlib inline
                                   n0=2;n1=3;n2=4;n3=1;m=35
                                 5 A0=np.array([x1,x2])
alpha=0.01
                                   Y= np.concatenate((y0,y1),axis=None).reshape(1,35)
                                   print("np.shape(Y):",np.shape(Y),"np.shape(A0):",np.shape(A0),
                                         "A0[0][0]:",A0[0][0],"A0[0][1]:",A0[0][1],"Y",Y[0][0:3])
                                   plt.scatter(A0[0][0:13], A0[1][0:13], marker="o")
                                   plt.scatter(A0[0][13:35], A0[1][13:35], marker="x")
                                   plt.title('x1, x2, y')
    # Initialization
                                12 plt.show()
    np.random.seed(1)
    WT1=np.random.randn(n1,n0)*0.01;b1=np.random.randn(n1,1)
    WT2=np.random.randn(n2,n1)*0.01;b2=np.random.randn(n2,1)
                                                                                      21
    WT3=np.random.randn(n3,n2)*0.01;b3=np.random.randn(n3,1)
```

```
# Initialization
np.random.seed(1)
WT1=np.random.randn(n1,n0)*0.01;b1=np.random.randn(n1,1)
WT2=np.random.randn(n2,n1)*0.01;b2=np.random.randn(n2,1)
WT3=np.random.randn(n3,n2)*0.01;b3=np.random.randn(n3,1)
```

```
def forwardfunc():
    global A0,A1,A2,A3,WT1,WT2,WT3,b1,b2,b3
    Z1=np.dot(WT1,A0)+b1;
    A1=(np.exp(Z1)-np.exp(-Z1))/(np.exp(Z1)+np.exp(-Z1))
    Z2=np.dot(WT2,A1)+b2;
    A2=(np.exp(Z2)-np.exp(-Z2))/(np.exp(Z2)+np.exp(-Z2))
    Z3=np.dot(WT3,A2)+b3;
    A3=1/(1+np.exp(-Z3))
```

```
def backwardprop():
        global Y,A3,A2,A1,A0,dA2,dA1,dZ3,dZ2,dZ1,
        dWT3,dWT2,dWT1,db3,db2,db1
       dZ3=A3-Y #dZ3 comes from dA3 and dA3/dZ3
 5
        dA3=-Y/A3+(1-Y)/(1-A3)
        dZ3=dA3*(A3*(1-A3))
 6
        dWT3=1/m*np.dot(dZ3,A2.T)
 8
        db3=1/m*np.sum(dZ3,axis=1,keepdims=True)
        dA2=np.dot(WT3.T,dZ3)
 9
10
        dZ2=dA2*(1-A2**2)
11
        dWT2=1/m*np.dot(dZ2,A1.T)
        db2=1/m*np.sum(dZ2,axis=1,keepdims=True)
12
13
        dA1=np.dot(WT2.T,dZ2)
14
        dZ1=dA1*(1-A1**2)
15
        dWT1=1/m*np.dot(dZ1,A0.T)
16
        db1=1/m*np.sum(dZ1,axis=1,keepdims=True)
```

```
itera=0
   cost = 100
   while (cost > 0.05): #0.05, 0.2
       forwardfunc()
 4
        cost=-1/m*np.sum((Y*np.log(A3)+(1-Y)*np.log(1-A3)),axis=1,keepdims=True)
 5
        if(itera%10000==0):
 6
            print("itera ", itera, "cost ", cost)
 8
        backwardprop()
        WT3=WT3-alpha*dWT3; b3=b3-alpha*db3; WT2=WT2-alpha*dWT2; b2=b2-alpha*db2
 9
        WT1=WT1-alpha*dWT1; b1=b1-alpha*db1
10
11
        itera=itera+1
   print("np.shape(Y)",np.shape(Y), "np.shape(A3)",np.shape(A3))
```

```
itera 0 cost [[0.65971979]]
itera 10000 cost [[0.65971121]]
itera 20000 cost [[0.65970933]]
itera 20000 cost [[0.65970933]]
```

```
# Inference
        A0 = np.zeros((n0,1600))#[xx1, xx2][xy1,xy2]
        for i in range (40):
            for j in range(40):
 4
 5
                A0[0][i*39+j]=i*0.2
 6
                A0[1][i*39+j]=j*0.2
        forwardfunc()
 8
        print("A3 ",A3)
 9
        plt.scatter(A0[0][0:2], A0[1][0:2],c="red",marker=".")
        plt.scatter(A0[0][2], A0[1][2],c="green",marker=".")
10
11
        for i in range (40):
            for j in range(40):
12
13
                if(A3[0][i*39+j]>0.5):
14
                    plt.scatter(A0[0][i*39+j],
15
                     A0[1][i*39+j],c="red",marker=".")
16
                else:
17
                    plt.scatter(A0[0][i*39+j],
18
                     A0[1][i*39+j],c="green",marker=".")
```

```
A0=np.array([x1,x2])
19
        forwardfunc()
20
        for i in range(m):
21
            if(A3[0][i]<0.5):
22
                plt.scatter(A0[0][i], A0[1][i],c="blue",marker="o")
23
24
            else:
25
                plt.scatter(A0[0][i], A0[1][i],c="purple",marker="x")
        plt.title('xx, xy, y')
26
27
        plt.show()
```

