Signal Definition

EE228 - Common Signals

Unit Step	$u(t) = \begin{cases} 0, t < 0 \\ 1, t > 0 \end{cases}, \text{ undefined for } t = 0.$ Heaviside unit step: $u(0) = 0.5$	
Unit Ramp	$r(t) = \begin{cases} 0, t < 0 \\ t, t >= 0 \end{cases}$	
Signum (sign of argument)	$sgn(t) = \begin{cases} +1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$	1 t
Rectangle or pulse	$rect(t) = \begin{cases} 1, t < 0.5 \\ 0, & else \end{cases}$, width = 1	1 ds 0.5 t
Rectangle or pulse	$rect\left(\frac{t-\beta}{\alpha}\right) = \begin{cases} 1, \beta - (\alpha/2) < t < \beta + (\alpha/2) \\ 0, else \end{cases},$ width $= \alpha$	1
Triangle	$tri(t) = \begin{cases} 1 - t , & t < 1 \\ 0, & else \end{cases}, \text{ width } = 2$	1 ,

Sinc	$sinc(t) = sin(\pi t) / \pi t$ $sinc(t) = 0, t = \pm 1, \pm 2, \pm 3, (zero crossings)$ $sinc(0) = 1$	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Impulse	$\delta(t) = \begin{cases} 0, & t \neq 0 \\ \infty, & t = 0 \end{cases}$ Area = 1	,
Weighted Impulse	$A S(t) = \begin{cases} 0, & t \neq 0 \\ \infty, & t = 0 \end{cases} Area = A$	(A)

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \mathcal{R}\mathcal{E}\left\{e^{j\theta}\right\} = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \mathcal{I}\mathcal{M}\left\{e^{j\theta}\right\} = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

FS: Coefficients Relationship:

Fourier Series Coefficients Related

Exponential Fourier Series Coefficient Symmetry

FS: Finding Fourier Coefficients:

Finding Exponential Fourier Series Coefficients: a_k, b_k

Find the Exponential Fourier Series Coefficients for a Square Wave Signal

Exponential Fourier Coefficients

Exponential Fourier Series

FS: Shortcut (Signal Symmetrys)

Odd Symmetry

Half-Wave Symmetry

Half-Wave Symmetry

Half-Wave Symmetry can also be **hidden** by a DC Offset

Signal Symmetries

 $a_k = \frac{2}{T} \int_0^T x_p(t) \cos(2\pi k f_0 t) dt \qquad b_k = \frac{2}{T} \int_0^T x_p(t) \sin(2\pi k f_0 t) dt$

• x_p(t) has Even Symmetry: $a_k = -\int_0^{\infty} x_p(t) \cos(2\pi k f_0 t) dt$ • $\mathbf{x_p(t)}$ has Odd Symmetry:

 $b_k = \frac{1}{T} \int_0^{\infty} x_p(t) \sin(2\pi k f_0 t) dt$

Signal Symmetries

• x_p(t) has Half-Wave Symmetry:

$$\begin{split} a_k &= \frac{4}{T} \int_0^{T/2} x_\mu(t) \cos(2\pi k f_0 t) dt \qquad k = odd \\ \\ b_k &= \frac{4}{T} \int_0^{T/2} x_\mu(t) \sin(2\pi k f_0 t) dt \qquad k = odd \end{split}$$

Signal Symmetries

• x_p(t) has Even <u>and</u> Half-Wave Symmetry: $a_k = \frac{8}{T} \int_0^{T/4} x_p(t) \cos(2\pi k f_0 t) dt \quad k = odd$

• x_p(t) has Odd <u>and</u> Half-Wave Symmetry: $b_k = \frac{8}{T} \int_0^{T/4} x_p(t) \sin(2\pi k f_0 t) dt$ k = odd

te: You can not use the half-wave symmetry integrals above if the half-wave symmetry is "hidden" (i.e. if there is a DC offset).

-The k_{over} = 0 result for the Fourier Coefficients DOES apply for k ≥ 2 if there is

What Symmetries Does It Have?

Symmetry Seen in Spectrum

Other Symmetries in Spectrum

Example: Trapezoidal Signal

$$\begin{split} b_0 &= \frac{R}{T} \int_0^T x \ x_t(t) \sin(2\pi h f_0 t) dt \quad k = odd \\ h_1 &= \frac{1}{k} x_t \cos(2\pi h f_0 t) dt - \frac{1}{k} \cos(2\pi h f_0 t) dt - \frac{1}{k} \cos(2\pi h f_0 t) \\ &= \left[\frac{1}{k} \cos(2\pi h f_0 t) - \frac{2\pi h}{2\pi} \cos(2\pi h f_0 t) - \frac{1}{k} x_t^2 \right] \left[-\frac{1}{k} \cos(2\pi h f_0 t) - \frac{2\pi h}{2\pi} \cos(2\pi h f_0 t) - \frac{1}{k} \sin(2\pi h f_0 t) - \frac{1}{k} \cos(2\pi h f_0 t) - \frac{1}{k} \cos$$

FS: properties

Properties of Fourier Series

Symmetries:			
If x(t) real:	$x(t) = x^*(t)$	\iff	$X_n = X_{-n}^*$ Symme
If $x(t)$ even sym :	x(t) = x(-t)	\iff	$X_n = X_{-n}$ Real
If $x(t)$ odd sym:	x(t) = -x(-t)	\iff	$X_n = -X_{-n}$ trage
If % wave sym:	x(t) = -x(t + T/2)	\iff	$X_n = 0$ for n ev
Even part of x(r):	x(t)+x(-t)	\iff	$RE\{X_n\}$
Odd part of x(r):	$\frac{x(t)-x(-t)}{2}$	\iff	$jIM\{X_n\}$
Linearity:	ax(t) + by(t)	\iff	$aX_n + bY_n$
Time Reversal:	x(-t)	\iff	X_n^*
Time Shift:	$\mathbf{r}(t=t_{r})$		$V = -i2\pi n t_0/T$

FS: POWER

Power in Harmonic Signals

Power in Harmonic Signals

$$\begin{split} P &= \left[c_0^2 + 0.5 \sum_{k=1}^{\infty} c_k^{-2}\right] & \text{Polar} \\ &= \left[a_0^2 + 0.5 \sum_{k=1}^{\infty} \left(a_k^2 + b_k^{-2}\right)\right] \text{ Trigonometric} \\ &= \sum_{k=0}^{\infty} |X[k]|^2 = |X[0]|^2 + 2 \sum_{k=1}^{\infty} |X[k]|^2 \\ &= \text{Exponential } (2\text{-sided}) \end{split}$$

Power in Few Harmonics

The Power in a subset of the harmonic frequencies in a signal can also be found using the Exponential Fourier Coefficients of those harmonics:

FS: GIBBS EFFECT

Gibbs Effect

FS: System Function

$$x(t) = \sum_{k} c_k \cos(2\pi k f_0 t + \theta_k)$$

What is H(f)?

H(f) = |H(f)|
$$\angle$$
H(f)
Magnitude Scale Factor (Gain) Phase Shift (Time Shift)
y (t)= \sum_{s} |H(kf₀)| c_k cos(2π kf_st + θ_k + \angle H(kf₀))

Fourier Series Concepts

- Any (almost) periodic signal can be represented by a combination of harmonically-related (f=kf₀, k integer) sinusoids (sin / cos / e^{j2-st})

 - Requirements: x(t) absolutely integrable, finite # of finite discontinuities, finite # max/mins
- Reconstruction from Fourier Series will be imperfect at discontinuities (overshoot)

FT: Integral Definition Fourier Series \rightarrow Fourier Transform

$X_p(t) = \sum_{k=-\infty}^{\infty} X[k]e^{j2\pi k f_0 t}$ $X[k] = \frac{1}{T} \int_{-T/2}^{T/2} x_p(t)e^{-j2\pi i f_0 t} dt$

What IS the Fourier Transform?

Like the Fourier Series:

• It is a	description
of a signal	
 Tells us how present in a 	v much of what frequencies are a signal
 It is a 	valued function
X(f)	$= X(f) \angle X(f) = X(f) e^{+j\angle X(f)}$

What IS the Fourier Transform?

Unlike the Fourier Series:

of frequency X(f) Not a collection of particular, discrete, harmonically related frequencies X[kf₀]
 Uses ALL frequencies to recreate signal

 Represents signals

Symmetries in Fourier Spectrum

Signal Symmetries

Existence of Fourier Transforms

- A non-periodic signal x(t) can be represented by a unique Fourier Transform IF:
- 1. x(t) is "absolutely integrable"
- $\int_{-\infty}^{\infty} |x(t)| dt < \infty \quad \text{Integral over ALL time } t$ 2. x(t) has a finite number of maxima &
- x(t) has a finite number of <u>finite</u> discontinuities.

Existence of Fourier Transforms

However, some signals that don't meet these strict requirements still have valid Fourier Transforms. (Ex: x(t)=u(t) is not abs. integrable ∫→∞

- F.T. of an "absolutely integrable" signal
- F.T. of a "not absolutely integrable" signal
 , if it does not grow exponentially (e+at).
- F.T. of a signal that grows exponentially or

FT AND FS Relationship:

Methods of Computing Fourier ransforms and Inverse Transforms

1. Converting known exponential Fourier Series coefficients of a periodic signal version $x_p(t)$ $X_p[k] \Longrightarrow X(f) = T X_p[k]_{kf0 \longrightarrow f}$ Fourier Transform of Fourier Series of A <u>Periodic Signal</u> $X_p(t)$ Fourier Transform of A <u>Non-periodic Signal</u> X(t) made up of 1 Period of the periodic signal $x_p(t)$

FT: Properties

Duality: Similarity Theorem

Then FT{ X(t)} = x(-f)For functions with Even Symmetry in x(t): x(t+t) = x(-t) X(t+f) = X(-t)

So FT{ X(t)} = x(f)

Time / Frequency Scaling

There is a coupled and inverse relationship ("duality") between the width of a signal representation in the Time Domain vs. the FT Frequency Domain

 $\begin{array}{ccc} \text{Time Scaling} & x(\alpha t) & \xrightarrow{FT} & \frac{1}{|\alpha|} X(f/\alpha) \end{array}$ $\underset{lmFT}{\longleftarrow} X(\beta f) \stackrel{\text{Frequency}}{\underset{\text{Property}}{\longleftarrow}}$

Time / Frequency Scaling

An extension of this concept is the Time/Frequency Limit Theorem: A signal can <u>not</u> have <u>BOTH</u> a finite time duration ("time-limited") <u>AND</u> a finite lengti frequency spectrum ("band-limited"). A signal can be either "time-limited" or "band-limited",...or neither,... Finite in time

FT: ENERGY

Energy in Non-Periodic Signals We can compute the energy in an aperiodic signal from the time-domain waveform itself:

Total Energy = $\int_{-\infty}^{\infty} x^2(t)dt =$ _ OR from its Fourier Transform frequency spectrum: And we should get the same answer!!
"Parseval's Theorem"

---FT: input a sinusoid

System Response to Periodic Input Signals

From the Fourier Series, we saw that:

LT: Definition

Limitations of the Fourier Transform

Fourier Transform is a number of interesting signals	fo
 Fourier Transform does not converge for the 	m
2. Fourier System Analysis: Y(f)=X(f)H(f)	
only allows us to determine the	
of,	
- Only solve Differential Equations with no IC's	

Two Forms of the Laplace Transform

Unilateral Laplace transform

$$\mathcal{L}[x(t)] = X(s) = \int_0^\infty x(t)e^{-st}dt$$

For Causal Systems....and Causal Input Signals

Bilateral Laplace transform:

$$\mathcal{L}[x(t)] = X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$
 For *Non-Causal* Systems....or *Non-Causal* Input Signals

Region of Convergence (ROC)

For the Laplace Transform to exist, the Transform integral must converge, limiting the values of s (or $\sigma)$ that we can use to only those for which:

$$\int_{-\infty}^{+\infty} |x(t)e^{-\sigma t}u(t)| dt < \infty \quad \text{(absolutely integrable)}$$

- Choosing σ too small could make it too weak to force convergence Choosing negative values for σ would take a converging function and make it go to + ∞ (f)

How do we choose and specify the allowed range of σ ??

Methods of Computing Laplace Transforms

- 1. Using the integral Transform definitions $X(s) = \int_{0^{-}}^{\infty} x(t)e^{-tt}dt$
- Converting known Fourier Transforms for causal signals: $X(f)\Rightarrow X(s)$ a) Drop any $\delta(f\pm f_0)$'s in the Fourier Transform b) Change $\jmath 2\pi f \Rightarrow s$ $(\jmath \omega \Rightarrow s)$
- 3. Using known Laplace Transform pairs (from Tables) and modifications from L.T. <u>Properties</u>

Region of Convergence (ROC)

The ROC of a unilateral Laplace transform (causal signal) is a right side half-plane.

LT: Properties

Time Scaling

$$LT_1\left\{\chi(\alpha t)\right\} = \int_0^{\pi} \chi(\alpha t) e^{-t} dt$$
Charge variables for $\lambda v(t)$ by λv . Under the equation k_0 is the set of the set λv and λv . Let $LT_1\left\{\chi(\alpha t)\right\} = \int_0^{\pi} \chi(\lambda) e^{-(kx)t} d\lambda/dt$, $\alpha > 0$

$$= \frac{1}{\alpha} \int_0^{\pi} \chi(\lambda) e^{-(kx)t} d\lambda = \chi(y(\lambda))$$

$$LT_1\left\{\chi(\alpha t)\right\} = \frac{1}{\alpha} L^{\chi}(\lambda) e^{-(kx)t} d\lambda = \chi(y(\lambda))$$

Time Reversal

$$LT_1\left\{x(-t)\right\} = \int_0^t x(-t)w(-t)e^{-t}dt \qquad \text{if any is example to the parties of the parties o$$

Time Shift Property

S Domain Shift: The S Domain "Dual" of the Time-Shift Property

Convolution Property

The most important property of the LAPLACE TRANSFORM for System Analysis:

 $x(t)*h(t) \stackrel{LT}{\longleftarrow}$

The CONVOLUTION of two causal Functions in the Time Domain... He Time Domain... (Product of Complex Functions) (Product of Somplex Functions) (Product of Somplex Functions)

Can use the 1-sided LTs Only IF both x(t) and h(t) are

LT: Transfer Function - poles and zeros

H(s) is a "rational function"

It is a

" rational function" if the order of the denominator polynomial (N) is $\underline{\text{equal to or greater}}$ $\underline{\text{than}}$ the order of the numerator polynomial (M) $N \geq M$

" rational function" if the order of the denominator polynomial (N) is greater than the order of the numerator polynomial (M) N > M

Poles in the S Plane

Stability Requirements

Stability and the ROC of H(s)

The Region of Convergence for a System Function H(s) can not include any ______. The ROC of a right-sided time function (incl. Causal) takes the form of $\Re e\{s\} = \sigma > \sigma_0$. ROC is to the right of some of The ROC of a Causal System [causal h(t)] is For a Stable, Causal System, the ROC must

LT: Partial Fraction Expansion

Partial Fraction Expansion:

Special Cases:

Repeated Roots (Poles)
 The coefficients of these pole terms are determined by multiplication of H(s) only by the highest power of the repeated pole term, and evaluating at the pole value.

$$\begin{split} H(t)\big(s+p_t\big)^2 &= \frac{N(t)\big(s+p_t\big)^2}{(s+p_t)(s+p_t)^2} = \frac{K_1\big(s+p_t\big)^2}{(s+p_t)^2} + \frac{A_1\big(s+p_t\big)^2}{(s+p_t)^2} + \frac{A_1\big(s+p_t\big)^2}{(s+p_t)^2} \\ &= \frac{N(t)}{(s+p_t)^2} \Big|_{s=p_t} &= \frac{N(t)}{(s+p_t)^2} \Big|_{s=p_t} = \frac{K_1\big(s^2p_t^2\big)^2}{(s+p_t)^2} \Big|_{s=p_t} + A_t + A_1\big(s^2p_t^2\big)^2\Big|_{s=p_t} \\ &= H_1\big(s^2p_t^2\big)^2\Big|_{s=p_t} = A_t + A_2\big(s^2p_t^2\big)^2\Big|_{s=p_t} + A_t + A_2\big(s^2p_t^2\big)^2\Big|_{s=p_t} \end{split}$$

Partial Fraction Expansion:

Special Cases:

 Repeated Roots (Poles)
 The coefficients for decreasing powers of the repeate term are determined from derivatives of the previous function, again evaluated at the pole value. $\frac{d}{ds} \left[H(s) \left(s + p_2 \right)^2 \right]_{s \leftarrow p_2} = \frac{d}{ds} \left[\frac{N(s)}{\left(s + p_1 \right)} \right]$ $= \frac{d}{ds} \left[\frac{K_1(s+p_1)^2}{(s+p_1)} \right] + \frac{d}{ds} A_b + \frac{d}{ds} \left[A_s(s+p_2) \right]_{second}$ $= \left[\frac{2K_1\left(s\cdot\frac{\partial p_1}{\partial s}\right)^4}{\left(s+p_1\right)} - \frac{K_1\left(s\cdot\frac{\partial p_2}{\partial s}\right)^4}{\left(s+p_1\right)^2}\right]_{s=-p_1} + 0 + A_1$ $\frac{d}{ds} \left[H(s)(s+p_2)^2 \right]_{s=p_1} = A_1$

al Fraction Expansion:

ated Roots (Poles)
e root appears "k" times, the general expression
coefficient of the descending powers of the pole
is are given by: $\frac{1}{n!} \frac{d^n}{ds^n} \left[H(s) \left(s + p_2 \right)^k \right]_{s = -p}$: k-n = the power (exponent) of the pole in the partial fraction term that goes with A,

Inverse Laplace Transform

Non-"Strictly Proper" Rational Functions:

Inverse Laplace Transform

Functions with Time Shifts (e-as):