EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 2	25 Septembre 2020

Veuillez télécharger vos solutions aux exercices à rendre (Exercice 1) sur la page Moodle du cours avant le lundi 5 octobre, 18h.

1 Exercices à rendre

Exercise 1.

Soient A un ensemble constitué de 6 éléments et $R \subset A \times A$ une relation d'équivalence. On suppose que R définit 3 classes d'équivalence sur A. Combien d'éléments R contient-il ? (Il y a plusieurs possibilités, trouvez chacune d'elles et justifiez vos réponses).

2 Exercices supplémentaires

Exercise 2.

Soient A un ensemble et $R \subset A \times A$ une relation d'équivalence. Pour chaque $a \in A$ on définit la classe d'équivalence de a par

$$R_a := \{b \in A \mid (a, b) \in R\} \subset R.$$

Démontrer les assertions suivantes :

- 1. $(a,b) \in R$ si et seulement si $R_a = R_b$.
- 2. $(a,b) \notin R$ si et seulement si $R_a \cap R_b = \emptyset$.

Exercise 3 (Propriété universelle de l'ensemble quotient).

Soient A un ensemble et $R \subset A \times A$ une relation d'équivalence. On dispose d'une application quotient

$$q: A \longrightarrow A/R, \quad a \mapsto R_a.$$

Démontrez l'assertion suivante : si $f \colon A \to B$ est une fonction d'ensembles vérifiant

$$(a, a') \in R \Rightarrow f(a) = f(a')$$

alors il existe une unique application $f_R: A/R \to B$ tel que le diagramme

$$\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow q & \downarrow \\
A/R
\end{array}$$

commute (c'est-à-dire $f = f_R \circ q$).

Exercise 4.

Considérons l'ensemble $A:=\mathbb{Z}\times(\mathbb{Z}\setminus\{0\})$, muni de la relation $R\subset A\times A$ donnée par

$$((a,b),(c,d)) \in R \Leftrightarrow ad = bc.$$

- 1. Vérifiez que R est une relation d'équivalence.
- 2. Montrez que la fonction

$$f \colon A \longrightarrow \mathbb{Q}, \quad (a,b) \mapsto \frac{a}{b}$$

induit une fonction $f_R \colon A/R \longrightarrow \mathbb{Q}$ qui est bijective.

Exercise 5.

Soit A woheadrightarrow B une surjection entre ensembles. Montrer qu'il existe une injection $B \hookrightarrow A$.

Exercise 6.

Quels sont les sous-ensembles E de \mathbb{N} tels que $|E| = |\mathbb{N}|$?