Hausaufgabe 2

Aufgabe 6

Die Endzustände wurden so gewählt damit die akzeptierenden Läufe von L(A) enthalten sind und die akzeptierenden Läufe von L(B) nicht.

Aufgabe 7

Sei $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ ein DFA mit Sprache $L(\mathcal{A})$. Wir definieren den ε -NFA $\mathcal{B} := (Q', \Sigma', \Delta, q_{-1}, F)$, wobei $Q' := Q \ \dot{\cup} \ \{q_{-1}\}, \ \Sigma' := \Sigma \ \dot{\cup} \ \{\varepsilon\}$ und

$$\Delta := \{ (q, a, q') \mid \delta(q, a) = q' \} \ \dot{\cup} \ \{ (q_{-1}, \varepsilon, f) \mid f \in F \}$$

für $q, q' \in Q$ und $a \in \Sigma$.

Wir zeigen zuerst $L_{\text{suff}}(\mathcal{A}) \subseteq L(\mathcal{B})$.

Sei $w \in L_{\text{suff}}(\mathcal{A})$ gegeben. Seien ferner $m, n \in \mathbb{N}$.

Dann existiert ein $u \in L(\mathcal{A})$ sodass $uw \in L(\mathcal{A})$. Durch $u \in L(\mathcal{A})$ existiert ein Lauf von \mathcal{A} über u; $(r_0, r_1 \cdots r_m)$ sodass $r_0 = q_0$ und $r_m \in F$. Ferner gibt es durch $uw \in L(\mathcal{A})$ eine Zustandsfolge $(x_0, \sigma_1, x_1, \sigma_2 \cdots \sigma_n, x_n)$ sodass $x_0 = r_m, x_n \in F$ und $(\sigma_1, \sigma_2, \cdots \sigma_n) = w$. Nun können wir den Lauf $(q_{-1}, \varepsilon, x_0, \sigma_1, x_1, \sigma_2, x_2, \cdots \sigma_n, x_n)$ in \mathcal{B} angeben. Da beide Automaten die selben Endzustände haben und q_{-1} der Startzustand von \mathcal{B} ist, folgt daraus $w \in L(\mathcal{B})$.

Wir zeigen nun $L(\mathcal{B}) \subseteq L_{\text{suff}}(\mathcal{A})$.

Sei $w \in L(\mathcal{B})$ gegeben. Sei ferner $n \in \mathbb{N}$.

Dann existiert ein Lauf $r := (q_{-1}, \varepsilon, r_0, \sigma_1 \cdots, \sigma_n, r_n)$ in \mathcal{B} mit $(\sigma_1 \cdots \sigma_n) = w$ und $r_0, r_n \in F$. Da F eben die Endzustände von \mathcal{A} sind, gibt es auch ein Wort $u \in L(\mathcal{A})$ sodass der Lauf von \mathcal{A} über u eben an $r_1 \in F$ endet. Nun lässt sich der Lauf von w ohne die ε -Transition $(r_0, \sigma_1, \cdots \sigma_n, r_n)$ einwandfrei an den von u in dem DFA \mathcal{A} anhängen um zu einem Weitern Endzustand von \mathcal{A} zu kommen. Es folgt $uw \in L(\mathcal{A})$ und damit $w \in L_{\text{suff}}(\mathcal{A})$.

Insgesamt gilt also $L(\mathcal{B}) = L_{\text{suff}}(\mathcal{A})$. Aus der Vorlesung ist bekannt, dass alle Sprachen, welche ε -NFA-erkennbar sind auch DFA-erkennbar sind.

Aufgabe 8

a)

b)

Alle läufe von \mathcal{A} auf dem Wort bbba:

 $(q_0, b, q_0, b, q_0, b, q_1, a, q_2)$

 $(q_0, b, q_1, b, q_0, b, q_1, a, q_2)$

c) Die Erreichbarkeitsmengen sind gegeben wie folgt:

$$E(\mathcal{A}, \varepsilon) = \{q_0\}$$
 $E(\mathcal{A}, c) = \{q_1\}$ $E(\mathcal{A}, cb) = \{q_0\}$

$$E(\mathcal{A}, cbb) = \{q_0, q_1\}$$
 $E(\mathcal{A}, cbbc) = \{q_0, q_1\}$ $E(\mathcal{A}, cbbca) = \{q_2\}$

Das Wort cbbca wird akzeptiert, da es einen akzeptierenden Lauf von \mathcal{A} über diesem gibt.

Aufgabe 9

Wir zeigen $(w \in L(\mathcal{A}) \implies ac$ kommt nicht als Infix in w vor) für Wörter w der Länge $n \in \mathbb{N}$.

Sei n=0. Es folgt sofort $w=\varepsilon$. Weiter gilt $\varepsilon\in L(\mathcal{A})$. Ferner kann in w nicht ac als Infix vorkommen. Damit hält die Aussage für n=0.

Sei nun ein beliebig aber festes $n \in \mathbb{N}$ gegeben sodass für jedes Wort w' mit |w'| = n aus $w' \in L(\mathcal{A})$ folgt, dass ac nicht als Infix in w' vorkommt (IV).

Sei dann w = w'x mit $w \in L(\mathcal{A})$ für $w' \in L(\mathcal{A})$ mit |w'| = n und $x \in \Sigma_{\mathcal{A}}$ gegeben. Dann ist |w| = n + 1. Wir unterscheiden 2 Fälle:

Fall 1: Der Lauf von \mathcal{A} auf $w' = (w'_0, \dots, w'_n)$ endet in $q_a \in F_{\mathcal{A}}$.

Dann gilt nach IV dass ac nicht in w' als Infix vorkommt. Jedoch gilt $w'_n = a$.

Es folgt aber $x \neq c$, da sonst durch $\delta_{\mathcal{A}}(q_a, c) = q_{ac}$ und $q_{ac} \notin F_{\mathcal{A}}$ direkt $w'x = w \notin L(\mathcal{A})$ folgen würde. Folglich kann auch in w nicht das Infix ac vorkommen.

Fall 2: Der Lauf von \mathcal{A} auf $w' = (w'_0, \dots, w'_n)$ endet in $q_{\varepsilon} \in F_{\mathcal{A}}$.

Dann gilt nach IV dass ac nicht in w' als Infix vorkommt. Weiter ist $w'_n \neq a$. Damit folgt für $x \in \Sigma_A$, dass w = w'x ebenfalls nicht ac als Infix enthält.

Insgesamt folgt die Behauptung in allen Fällen für n+1. Nach dem Prinzip der vollständigen Induktion gilt nun für alle Wörter $w \in \Sigma_{\mathcal{A}}^*$, dass

 $w \in L(\mathcal{A}) \Longrightarrow ac$ kommt nicht als Infix in w vor

Wir zeigen (ac kommt nicht als Infix in w vor $\Longrightarrow w \in L(\mathcal{A})$) für Wörter w der Länge $n \in \mathbb{N}$.

Sei n = 0. Für jedes Wort w mit |w| = n folgt dann $w = \varepsilon$. Offensichtlich kann ac nicht als Infix in w vorkommen. Weiter ist der Lauf von \mathcal{A} über ε akzeptierend, es folgt also $w \in L(\mathcal{A})$.

Sei nun ein beliebig aber festes $n \in \mathbb{N}$ gegeben sodass für jedes Wort w' mit |w'| = n in welchem nicht ac als Infix vorkommt folgt, dass $w' \in L(A)$ (IV).

Sei dann w=w'x mit sodass ac nicht als Infix in w,w' vorkommt mit $x\in\Sigma_{\mathcal{A}}$ gegeben. Dann ist |w|=n+1. Wir unterscheiden 2 Fälle:

Fall 1: $w'_n = a$.

Da ac nicht in w = w'x als Infix vorkommt folgt sofort $x \neq c$. Durch $w' \in L(\mathcal{A})$ (IV) und $w'_n = a$ folgt, dass der Lauf von \mathcal{A} über w' in q_a endet. Da dann das nächste eingelesene Symbol, $x \neq c$ ist, folgt, dass $w = w'x \in L(\mathcal{A})$.

Fall 2: $w'_n \neq a$.

Da $w' \in L(\mathcal{A})$ nach IV endet der Lauf von \mathcal{A} über w' in q_{ε} . Es gilt für jedes $x \in \Sigma_{\mathcal{A}}$ nun immernoch, dass ac nicht als Infix in w = w'x vorkommt. Weiter gilt $\forall x \in \Sigma_{\mathcal{A}} : \delta_{\mathcal{A}}(q_{\varepsilon}, x) \in F_{\mathcal{A}}$. Folglich ist also $w \in L(\mathcal{A})$.

Insgesamt folgt die Behauptung in allen Fällen für n+1. Nach dem Prinzip der vollständigen Indultion gilt nun für alle Wörter $w \in \Sigma_A^*$, dass

ac kommt nicht als Infix in w vor $\implies w \in L(\mathcal{A})$