

CG-Anem-1v1

Модульный термоанемометр

Техническая информация

1 Основные особенности

Функциональные:

- Универсальное подключение по I2C
- Измерение скорости воздушного потока
- Измерение температуры окружающей среды
- Интеллектуальная система самодиагностики
- Передача данных в физических величинах (а не условных единицах)
- Точная заводская калибровка
- Возможность перевода датчика в режим глубокого сна
- Компактные размеры
- Большой диапазон рабочих температур
- Защита от превышения входного напряжения

Электрические:

- Напряжение питания:
 - при покупке до 01.06.22 4.6 В
 - при покупке после 01.06.22 3.3 В
- Максимальный ток потребления на скорости потока:
 - до 5.5 м/с не более 150 мА
 - до 10.5 м/с не более 250мА
 - до 25 м/с не более 450мА

Технические:

- Размеры модуля 79мм х 20мм х 7мм
- Вес модуля 12 г
- Диапазон рабочих температур от -20°C до +40°C

2 Описание

CG-Anem – универсальный модуль термоанемометра. В качестве чувствительных элементов в модуле используются NTC-

термисторы, применяемые в широком диапазоне промышленных устройств.

Устройство поддерживает измерение и расчет скорости и температуры воздушного потока с использованием трех различных диапазонов нагрева, в зависимости от скорости потока.

Измерение температуры, алгоритмы расчета и передача данных по I2C с частотой работы шины до 200 кГц реализованы на установленном на плате микроконтроллере Atmega8. В целях повышения энергоэффективности модуль может быть переведен в режим глубокого сна. Обеспечена возможность получать по I2C текущее состояние устройства, что позволяет выявить ошибки при эксплуатации.

Оглавление

1 Основные особенности	1
2 Описание	1
3 Характеристики устройства	3
3.1 Технические	3
3.2 Метрологические	3
4 Информационное взаимодействие	4
4.1 Карта регистров	4
4.2 Описание регистров	4
4.2.1 Версия прошивки	4
4.2.2 Идентификатор устройства	5
4.2.3 Статусный регистр	5
4.2.4 Температура холодного щупа с АЦП	6
4.2.5 Температура горячего щупа с АЦП	6
4.2.6 Скорость потока	6
4.2.7 Уровень входного напряжения	6
4.2.8 Мощность нагрева	6
4.2.9 Температура холодного щупа	6
4.2.10 Температура горячего щупа	6
4.2.11 Разница температур горячего и холодного щупов	6
4.2.12 Адрес устройства	6
4.2.13 Абсолютный максимум скорости потока воздуха	7
4.2.14 Абсолютный минимум скорости потока воздуха	7
4.2.15 Сброс абсолютных минимумов и максимумов	7
5 Разъем подключения	7
6.Спящий режим	7
7 Чертеж модуля	8
8 Дополнительные ресурсы	8
О Попопнительные условия	Ω

3 Характеристики устройства

3.1 Технические

Попомотп		Размер-		
Параметр	не менее	рабочее	не более	ность
Напряжение питания	4.5 (3.2)	4.6 (3.3)	4.7 (3.4)	В
Максимальный ток потребления	-	50	210	мА
Рабочий температурный диапазон	-20	+20	+40	ů
Рабочий диапазон влажности	0	60	98	%
Время прогрева сенсора	10	-	15	сек

Таблица 1 (технические характеристики)

3.2 Метрологические

Расчет скорости потока выполняется путем преобразования разности температур горячего и холодного концов термоанемометра. Для расчета температуры окружающего воздуха применяется уравнение Стейнхарта — Харта:

$$\frac{1}{T} = A + B * \ln(R) + C * \ln(R)^3$$

Где Т – температура в кельвинах

R – сопротивление терморезистора

А,В,С – коэффициенты Харта

Попомотп		Размер-			
Параметр	не менее рабочее		не более	ность	
Измеряемый диапазон скоростей воздушного потока	0.1	-	25	м/с	
Измеряемый диапазон температур	-20	-	+100	°C	
Максимальная погрешность измерения скорости потока	-	-	0.3 ± 10%	м/с	
Максимальная погрешность измерения температуры	-	-	±1	°C	
Разрешение скорости потока	-	0.1	-	м/с	
Разрешение температуры	-	0.1	-	°C	

Таблица 2 (метрологические характеристики)

Август 2022 CG002-0 3/8

4 Информационное взаимодействие

4.1 Карта регистров

Обмен данными (настройка и передача измеренных значений) осуществляется по интерфейсу I2C на скорости до 200 кГц. При этом датчик работает в режиме Slave с адресом по умолчанию 0x11.

Имя регистра	Адрес	Размер (бит)	Наименование		Размер- ность
FACTORY	0x00 -0x03	24	<зарезервировано>	R	-
VERSION	0x04	8	Версия прошивки	R	-
WHO_I_AM	0x05	8	Идентификатор устройства	R	-
STATUS	0x06	8	Статус устройства	R/W	-
WIND	0x07-0x08	16	Скорость потока	R	0,1*м/с
ADC_COLD	0x09-0x0A	16	Показания АЦП холодного щупа	R	-
ADC_HOT	0x0B-0x0C	16	Показания АЦП горячего щупа	R	-
SUPPLY_V	0x0D	8	Уровень входного напряжения	R	0,1*B
PWR_WT	0x0E	8	Мощность нагрева	-	0,1*Вт
TEMP_COLD	0x10-0x11	16	Температура холодного щупа	R	0,1*°C
TEMP_HOT	0x12-0x13	16	Температура горячего щупа	R	0,1*°C
dT	0x14-0x15	16	Разница температур горячего и холодного щупов	R	0,1*°C
ADDRESS	0x20	8	Адрес устройства	R/W	-
WIND_MAX	0x21-0x22	16	Абсолютный максимум скорости потока (доступна с версии 1.0)	R	0,1*м/с
WIND_MIN	0x23-0x24	16	Абсолютный минимум скорости потока (доступна с версии 1.0)	R	0,1*м/с
RESET_WIND	0x25	8	Сброс минимумов и максимумов (доступна с версии 1.0)	W	-

Таблица 3 (карта регистров информационного взаимодействия)

4.2 Описание регистров.

Последовательность байтов в регистрах стандартная. Сначала старший, затем младший.

4.2.1 Версия прошивки

[адрес: 0х04, размер: 8 бит, доступ: R]

Регистр хранения текущей версии прошивки. Используется для контроля и своевременного обновления ПО.

4.2.2 Идентификатор устройства

[адрес: 0х05, размер: 8 бит, доступ: R]

Содержит идентификатор модуля. По умолчанию идентификатором является адрес устройства

4.2.3 Статусный регистр

[адрес: 0x06, размер: 8 бит, доступ: R/W]

Содержит сведения о работе модуля.

Bits	7	6	5	4	3	2	1	0	
	STITR	STIT	STWDT	-	-	-	STOV	STUP	STATUS
Read/write	R	R	W/R	-	-	-	R	R	
Initial value	0	0	0	0	0	0	0	0	

— Bit 7 – STITR (STATUS INCORRECT TARING RANGE)

Если выставлена 1 - ошибка объема тарировки: количество выборок температур и скоростей потока не равно друг другу (в любом из диапазонов)

— Bit 6 – STIT (STATUS INCORRECT TARING)

Если выставлена 1 - некорректная тарировка: последовательность выборки скоростей потоков должна быть строго возрастающей, последовательность выборки температур должна быть строго убывающей

— Bit 5 – STWDT (STATUS WATCHDOG TIMER)

Если выставлена 1 – сторожевой таймер включен, иначе – выключен. Значение данного бита хранится в памяти EEPROM.

— Bits 4..2 Res: Зарезервировано

— Bit 1 – STOV (STATUS OVERVOLTAGE)

Если выставлена 1 - превышение входного напряжения: Входное напряжение превосходит предельно допустимое напряжение работы анемометра. При данном условии нагреватель не должен быть включен

— Bit 0 – STUP (STATUS UNSTEADY PROCESS)

Если выставлена 1 - переходной процесс: dT (разность температур горячего и холодного щупов) между соседними измерениями изменяется на величину больше допустимой (0,2 °C)

4.2.4 Температура холодного щупа с АЦП

[адрес: 0х09, размер: 16 бит, доступ: R]

Измеренные данные с холодного датчика, напрямую с АЦП, без обработки

4.2.5 Температура горячего щупа с АЦП

[адрес: 0х0В, размер: 16 бит, доступ: R]

Измеренные данные с нагреваемого датчика, напрямую с АЦП, без обработки

4.2.6 Скорость потока

[адрес: 0х07, размер: 16 бит, доступ: R]

Содержит измеренное и преобразованное значение скорости воздушного потока в м/с. Частота обновления – 1с.

4.2.7 Уровень входного напряжения

[адрес: 0x0D, размер: 8 бит, доступ: R]

Данный регистр используется для контроля уровня питающего модуль напряжения.

4.2.8 Мощность нагрева

[адрес: 0x0Е, размер: 8 бит, доступ: R]

Регистр содержит текущую мощность нагрева в Ваттах, которая подается на горячий щуп анемометра

4.2.9 Температура холодного щупа

[адрес: 0х10, размер: 16 бит, доступ: R]

Содержит измеренную температуру окружающего воздуха в градусах Цельсия.

4.2.10 Температура горячего щупа

[адрес: 0x12, размер: 16 бит, доступ: R]

Содержит измеренную температуру нагреваемого щупа в градусах Цельсия.

4.2.11 Разница температур горячего и холодного щупов

[адрес: 0х14, размер: 16 бит, доступ: R]

Содержит измеренную разницу температур между нагреваемым щупом и холодным щупом в градусах Цельсия.

4.2.12 Адрес устройства

[адрес: 0x20, размер: 8 бит, доступ: R/W]

Содержит адрес устройства (НЕХ)

4.2.13 Абсолютный максимум скорости потока воздуха

[адрес: 0x21, размер: 16 бит, доступ: R]

Содержит абсолютный максимум скорости потока воздуха с момента включения анемометра. Доступен с версии 1.0.

4.2.14 Абсолютный минимум скорости потока воздуха

[адрес: 0х23, размер: 16 бит, доступ: R]

Содержит абсолютный минимум скорости потока воздуха с момента включения анемометра. Доступен с версии 1.0.

4.2.15 Сброс абсолютных минимумов и максимумов

[адрес: 0x25, размер: 8 бит, доступ: W]

Производит сброс показаний абсолютных максимумов и минимумов при вводе числа, отличного от нуля. Доступен с версии 1.0.

5 Разъем подключения

Цоколевка разъема указана в таблице.

Контакт	Название	Назначение
1	VCC	Цепь питания датчика
2	GND	Общий вывод
3	I2C-SCL	Линия тактирования интерфейса I2C
4	I2C-SDA	Линия данных интерфейса I2C
5	SLEEP	Линия перевода в спящий режим

Таблица 4 (цоколевка разъема подключения)

6.Спящий режим

Для перевода модуля в спящий режим, необходимо подать высокий уровень на вывод SLEEP (пин 5). Для вывода модуля из спящего режима необходимо установить низкий уровень на линии т.е. опустить линию в 0 или оставить SLEEP не подключённым. Для стандартной работы модуля — выход можно оставить не подключённым.

7 Чертеж модуля

8 Дополнительные ресурсы

Контактная информация и сведения по работе с модулем представлены в приведенной ниже таблице.

Описание	Ссылка
Сайт производителя	http://climateguard.ru/
Библиотека для работы с модулем	https://github.com/climateguard/CG-Anem
Сообщество в Telegram	https://t.me/climateguard_community

Таблица 5 (полезные ресурсы)

9. Дополнительные условия

Часть платы с термисторами модуля могут быть покрыты влагоотталкивающим лаком на этапе производства (по дополнительному требованию) для обеспечения влагозащиты модуля.