## **CoverSheet**

# ProjectTitle: Maize leaf disease classification using deep convolutional neural networks

|   | ID        | Name                        | Grade |
|---|-----------|-----------------------------|-------|
| 1 | 202000498 | عبدالرحمن احمد سنوسي حافظ   |       |
| 2 | 202000557 | عصام احمد محمود بشير        |       |
| 3 | 202000248 | حازم طارق رجب محمد          |       |
| 4 | 201900481 | علاء الدين عبدالله محمد حسن |       |
| 5 | 20150017  | احمد اشرف احمد ابو هيبة     |       |
| 6 | 202000566 | على خالد على                |       |

# **Paper Details**

- Paper 's Name: Maize leaf disease classification using deep convolutional neural networks.
- paper's link: https://link.springer.com/article/10.1007/s00521-019-04228-3
- Author's Name: Ramar Ahila Priyadharshini, Selvaraj Arivazhagan, Annamalai Mirnalini.
- Publication Date: 17 May 2019
- The implemented algorithm: convolutional neural networks.

With three hidden layers and two convolutional process and two Maxpooling and 2 stride.

.....

## Paper's Dataset details

- The dataset used : Plant Village dataset.
- Dataset link: https://github.com/spMohanty/PlantVillage-Dataset
- Table 1 Details of maize leaf images in Plant Village dataset

| Class No. of images  |      |
|----------------------|------|
| Common rust          | 1192 |
| Gray leaf spot       | 513  |
| Northern leaf blight | 985  |
| Healthy              | 1162 |

\_\_\_\_\_

# Experimental results and discussion:

The proposed CNN model is applied to maize leaf disease recognition problem. The experimentation is carried out using Plant Village dataset. The dataset consists of four different classes. Among them, one class consists of:

A: Common rust

**B:** Gray leaf spot

C: Northern leaf blight

D: Healthy.

### **Classification accuracy using modified LetNet architecture**

| Train-test ratio (%) | Classification accuracy (%) |             |
|----------------------|-----------------------------|-------------|
|                      | 500 epochs                  | 1000 epochs |
| 50-50                | 84.91                       | 85.85       |
| 75–25                | 86.53                       | 87.46       |
| 80–20                | 88.06                       | 89.20       |

# <u>Table 4</u> <u>Classwise classification accuracy using modified LetNet architecture</u>

| Train-test ratio (%) | Classes        | Class wise classification | Average classification |
|----------------------|----------------|---------------------------|------------------------|
| 50–50                | Common rust    | 96.69                     | 85.85                  |
|                      |                |                           |                        |
|                      | Gray leaf spot | 57.48                     |                        |

|       | Northern leaf blight | 90.57 |       |
|-------|----------------------|-------|-------|
|       | Healthy              | 98.36 |       |
| 75–25 | Common rust          | 98.32 | 87.46 |
|       | Gray leaf spot       | 60.86 |       |
|       | Northern leaf blight | 92.01 |       |
|       | Healthy              | 98.69 |       |
| 80–20 | Common rust          | 99.49 | 89.20 |
|       | Gray leaf spot       | 64.48 |       |
|       | Northern leaf blight | 93.77 |       |
|       | Healthy              | 99.06 |       |

#### From Table 4,

it is observed that, when comparing the overall performance of all four classes, the class gray leaf spot showed less accuracy which affects the overall accuracy of the maize disease classification model. This is due to class imbalance of the class gray leaf spot which has comparatively less number of images. To make the dataset as a balanced one, we have performed data augmentation using horizontal flip for the class gray leaf spot. So, this class now contains 1026 images (513 original? 513 horizontal flip). From Table 3, it is evident that the classification accuracy is high for 1000 epochs. So, further experimentation is carried out with the balanced dataset for 1000 epochs. The performance measure with the balanced dataset for 1000 epochs using different train and test ratios is depicted in Table 5.

<u>Table 5</u>
Performance measure for the balanced dataset

| Train-test ratio (%) | Classes              | Class wise classification | Average classification |
|----------------------|----------------------|---------------------------|------------------------|
| 50–50                | Common rust          | 99.04                     | 91.97                  |
|                      | Gray leaf spot       | 74.67                     |                        |
|                      | Northern leaf blight | 94.99                     |                        |
|                      | Healthy              | 99.21                     |                        |
| 75–25                | Common rust          | 99.53                     | 94.66                  |

|       | Gray leaf spot       | 81.78 |       |
|-------|----------------------|-------|-------|
|       | Northern leaf blight | 97.82 |       |
|       | Healthy              | 99.53 |       |
| 80–20 | Common rust          | 99.87 | 95.57 |
|       | Gray leaf spot       | 84.58 |       |
|       | Northern leaf blight | 98.14 |       |
|       | Healthy              | 99.70 |       |

From Table 5, it is observed that classification accuracy is improved for the balanced dataset. So far, the experimentation is done using the depth and the kernel size as mentioned in Table 1. For improving the classification accuracy, once again the proposed architecture is modified by varying the depth and kernel size. Huge hike in depth value leads to over-fitting. Thus, the depths are varied slightly. The performance measure for the balanced dataset with different kernel sizes and depths is shown in Table 6. From Table 6, it is clear that kernel size 3 9 3 outperforms the other kernel sizes irrespective of the variation in the depth. Also slight increase in the depth gives more accurate results.

<u>Table 6</u>
<u>Performance measure for the balanced dataset with different depths</u>
and kernel sizes

| Train-test ratio (%) | Classwise classification accuracy (%) |               |               |                    |               |               |
|----------------------|---------------------------------------|---------------|---------------|--------------------|---------------|---------------|
|                      | Depth: C1@6,C2@16                     |               |               | Depth: C1@10,C2@20 |               |               |
|                      | Kernel: 3 × 3                         | Kernel: 5 × 5 | Kernel: 7 × 7 | Kernel: 3 × 3      | Kernel: 5 × 5 | Kernel: 7 × 7 |
| 50–50                | 92.71                                 | 91.97         | 90.91         | 94.19              | 93.21         | 92.22         |
| 75-25                | 95.44                                 | 94.66         | 93.02         | 96.83              | 95.99         | 94.68         |
| 80-20                | 96.81                                 | 95.57         | 94.15         | 97.89              | 96.75         | 95.26         |

# **Project Description Document**

### **General Information on the selected dataset:**

Name of dataset: Corn or Maize Leaf Disease Dataset.

#### Dataset's Link:

https://www.kaggle.com/datasets/smaranjitghose/corn-or-maize-leaf-disease-dataset

The total number of samples in dataset: 4188.

### The dimension of images:

(256, 256, 3) 1323

(768, 1024, 3) 8

(1200, 675, 3) 7

(2448, 3264, 3) 7

(900, 1200, 3) 5

(1024, 650, 3) 1

(640, 360, 3)

(371, 788, 3) 1

(200, 250, 3) 1

(378, 420, 3)

Number of classes: 4.

Their labels: ['Blight', 'Common\_Rust', 'Gray\_Leaf\_Spot', 'Healthy'].

### **Implementation details:**

Ratio used for training: 80%,

Number of images: 3350.

-----

Ratio used for vlidation: 10,%

### Number of images: 418.

-----

Ratio used for testing: .1, Number of images: 420.

------

## **Block Diagram:**

