Empirical inference of Underlying Condition Probabilities Using Synthea-Generated Synthetic Health Data Team TeMa

Dr. Michael D. Teter miketeter@yahoo.com

Dr. Christopher E. Marks cemarks@alum.mit.edu

Challenge Category: II (Novel Uses of Synthea Generated Data)

Background

Problem Motivation

- Simulation is often used to investigate complicated phenomena for which analytic determination of outcome probabilities is intractable.
- Synthea is built in a way that makes it well-suited for this purpose.
 - It inputs conditional probabilities that can be validated.
 - Its outputs are the result of tailorable combinations of these input probabilities.

Our Task

 Use Synthea-generated data to investigate relationships between a patient's pathology and a given set of symptoms and severities.

Our Methods (1 of 2)

Empirical Bayes

- Canonical Bayesian analysis
- Using empirical distributions in Synthea data, no need to enumerate a complicated tree.

Our Methods (2 of 2)

Bayesian Network

- Graph-based machine learning method.
- We decide which variables are related.
- More versatile than the strictly empirical model.

Example Outputs

<u>Patient</u>

- 5 years old
- Female
- Fever

Validation

- Internal Validation through code testing
- External Validation through comparison with existing tools.
- A useful method for validating Synthea!

External validation: comparison with WebMD

WebMD	Synthea Bayes
Bacterial Pneumonia	Viral sinusitis (disorder)
Middle Ear Infection	Acute bronchitis (disorder)
Viral Pneumonia	Acute viral pharyngitis (disorder)
Influenza (Flu) Child	Streptococcal sore throat (disorder)
Strep Throat	Sinusitis (disorder)

Summary & Next Steps

- Our approach can be extended to account for demographics, encounter types, patient location, patient history, etc.
- Compare results to known distributions as a way of validating Synthea.
- Identify areas where Synthea can be improved.
 - Standardization!
- Look for real-world applications.
 - Rare pathologies?