SEPT. 6/17

APPLIED ANAL.

Chapter 1 - Introduction

1.1 Definitions and Terminology

Equation 2x+3=0, x= unknown number

y = Function of x

Find y: $y = e^{2x^3}$ is a solution

How do you know $y = e^{2x^3}$ is a solution of $dy/dx = 6x^2y$?

How do you know x = -3/2 is a solution of 2x + 3 = 0?

LHS: 2x + 3: 2(-3/2) + 3 = 0RHS: 0 = LHS, ... Yes, its a solution of the DE

This: $d\theta dz = e^{2x^3} \cdot 6x^2$ RHS: $6x^2g = 6x^2e^{2x^3}$ LHS, .. yes, its a solution of

Differential Equation (DE): the equation containing the derivatives of one or more dependent variables w.r.t. one or more independent variables,

Example (1) doldx = cosx (0) - 1st - linear y = antiderivative of cosx y = Scoszdz = Sinx (2) $\frac{d^2y}{dx^2} + 3y = 0$ (0) - 2nd - linear

$$\frac{(3)}{2t} \frac{2u}{2t} = h^2 \left(\frac{2^2u}{2x^2} + \frac{2^2u}{2y^2} \right) \qquad (P) - 2nd - 1inear$$

$$\frac{2u}{2t} = \frac{du}{dt}$$

(4)
$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + Li = E\omega \cos(\omega k)$$
 (0)-2nd-linear

Where L, R, E, E, w are constants

$$\frac{d^2V}{dx^2} + \frac{d^2V}{dy^2} = 0 \qquad (p) - 2nd - linear$$

(6)
$$\frac{d^3x}{dy^3} + x \frac{dx}{dy} - 4xy = 0$$
 (0) - 3rd - non-1:neor $\frac{dy^3}{dy} = \frac{1}{2}$ $\frac{dy}{dy} = \frac{1}{2}$

$$\frac{(7) d^2y}{dx^2} + 7\left(\frac{dy}{dx}\right)^3 - 8y = \emptyset \qquad (0) - 2^{Rd} - non-linear$$

(8)
$$\frac{d^2y}{dx^2} + \frac{d^2x}{dt^2} = x$$
 (0) - 2nd - linear (9" - x" = x)

Class: Fication

Partial (two or more independent variables)

- (2) by order: the highest order of the derivative
- (3) by linearity: the dependent variable y and all its derivatives are of the First degree

$$\begin{bmatrix} 2x+3=0 & + \text{ linear} \\ 2x^2-3x+5=0 & + \text{ non-linear} \end{bmatrix}$$

Solution: Functions that satisfy the DE.

Applied Anal

Domain of the fractions fourtions must be an interval

Example: Domain of y = 1/x as a Function

is $(-\infty, 0) \cup (0, \infty)$

If y = 1/x is a Solution of a DE, then the domain of the Solution will be either $(-\infty, 0)$ or $(0, \infty)$

Example: Ver: Fy that $y = \sqrt{x}$ is a solution of idy/dx = $x/2y^3$.

And Find the domain of the solution.

Solution: LHS $d3/dz = d/dx \sqrt{x} = \frac{1}{2}x^{-1/2}$ RHS $\frac{x}{2}y^3 = \frac{x}{2}(\sqrt{x})^3 = \frac{x}{2}(\sqrt{x})^2 = \frac{1}{2}x^{-1/2}$ Domain of the solution: $(0, +\infty)$ $2(\sqrt{x})^2\sqrt{x}$ 2 4 = LHS

Solution Curve: The graph of a solution

Ex. $y = x^2$ is a solution of dy/dx = 2xThe solution curve of $y = x^2$ is the graph of the Function $y = x^2$

Explicit Solution: Can be written as y = f(x)

Implicit Solution: A Solution that is an implicit Function (usually defined by a relation $G(x,y) = \emptyset$)

$$E_{\times}$$
, $y = -x$, $x + y = 0$

(explicit)

(implicit)

Ex. Y is an implicit Function of
$$x$$
 defined by $y^2 + x = e^{xy} + \cos y$.

Ex. Verify that, For -1
$$4 \times 41$$
, the relation $x^2 + y^2 = 1 = 0$ is an implicit Solution of $dy = -x$

Solution: (impricit differentiation)

$$\rightarrow d/dx x^2 + d/dxy^2 - d/dx 1 = 0$$

$$2z + d/dz(y^2) - 0 = 0$$

$$\frac{\partial y}{\partial x} = -\lambda x$$

Chain Rule:

$$\frac{d}{dx} \mathcal{F}(u)$$

$$= \frac{d \mathcal{F}(u)}{du} \cdot \frac{du}{dx}$$

How many solutions can a DE have?

(a) None: e.g.
$$\left(\frac{dg}{dx}\right)^2 + 1 = 0$$

(b) Unique:

(b) Unique:

(c) In most cases, there are infinitely many Solutions

```
Example: Solve dy dx = 2x
 Solution: 9 - anti-derivatives of 2x
       9 = Saxdx = x2+c
   C=0; y=x2
   C=1; y=x2+1
   C = 100; y = x^2 + 100
   C= -5; 4 = x2 + 5
     ··· (:nf:n:te many)
    y = x2 + C - a family of Solutions of one
                 arb:trary parameter
    Ex. Verify that For each pair of constants
         C, and Cz, | y = C, cos4x + Cz S:n 4x
         is a solution of y" + 1by = 0
     (- 2-parameter Family of Solutions)
    Solution: LHS = 5" + 16 g
     = (C, Cos 4 x + Cz 5: n 42) " + 16((c, Cos 42) + (Cz 5: n 42))
     1/ SURGER
     = (-4C, S.n 4x+ 4Cz Cos 4x) + 16 (C, Cos 4x + Cz Sn 4x)
     = -16 C, Cos 4x - 16 Ces: n4x + 16 (c, Cos 4x + Cz 5: n4x)
```

Particular Solution: a solution OF a DE that is Free arbitrary process Parameter

Ex. Ver: Fy that $y = (x^2/4 + c)^2$ is a 1-parameter Fam: ly of Solutions

of dy = xy'/z and y = x''/z is dx

a particular Salution.

= 0 = RHS

Solution: LHS =
$$dy/dx = d(dx (x^2/4+c)^2$$

= $2 \cdot (x^2/4+c) - 2x/4 = x(x^2/4+c)$
RHS = $xy^2 = x [(x^2/4+c)^2]^{\frac{1}{2}}$
= $x (x^2/4+c)$

$$C = 0$$
, $y = (x^2/4 + 0)^2 = (x^2)^2 = x^4$

is a particular solution.