Алгоритмы в математике (теория чисел)

Михайлов Максим

5 июня 2022 г.

Оглавление

Лекция 1 3 марта				2
1 Алгебраическое тело				2
Лекция 2 11 марта Лекция 3	18 марта Л	ежция 4	18 марта Левкция 5 29	
марта	Люкция 6	2 июня		11
2 Кватернионы				11

3 марта

1 Алгебраическое тело

Определение. Алгебраическое тело — множество T с бинарными операциями + и \cdot , такими, что:

- 1. (T, 0, +) абелева группа:
 - $\forall \alpha, \beta, \gamma$ $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - $\exists 0 : \alpha + 0 = \alpha = 0 + \alpha$
 - $\forall \alpha \in T \ \exists (-\alpha) : \alpha + (-\alpha) = 0 = (-\alpha) + \alpha$
 - $\star \ \forall \alpha, \beta \in T \quad \alpha + \beta = \beta + \alpha$
- 2. $((T \setminus \{0\}), 1, *)$ группа:
 - $\alpha(\beta\gamma) = (\alpha\beta)\gamma$
 - $\exists 1: \alpha \cdot 1 = \alpha = 1 \cdot \alpha$
 - $\forall \alpha \neq 0 \ \exists \alpha^{-1} : \alpha \alpha^{-1} = 1 = \alpha^{-1} \alpha$
 - \star Если умножение не коммутативно, то T тело, иначе поле.
- 3. Дистрибутивность: $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma, (\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$

Пример. \mathbb{F}_p — поле вычетов по модулю p.

$$\mathbb{F}_p = \{0, 1, 2 \dots p - 1\}$$

Таблица 1.1: Таблицы сложения и умножения в \mathbb{F}_2

Пусть есть поле $\mathbb{F}_k, k = n \cdot m, m \neq 0, n \neq 0$. Т.к. n < k и m < k, то $n \cdot m = 0$. Таким образом, в поле есть делители нуля.

Примечание. Переход от $\mathbb Q$ к $\mathbb R$ — топологическая конструкция, поэтому будем рассматривать переход из $\mathbb Q$ в $\mathbb C$ над рациональными числами.

Определение.
$$\mathbb{C}\cong {}^{K[t]}\!\!/_{(t^2+1)K[t]}$$

$$\begin{array}{c|cccc} \cdot & 1 & i \\ \hline 1 & 1 & i \\ \hline i & i & -1 \\ \end{array}$$

Теорема 1 (Фробениуса). Дано тело T, такое что $T \supset \mathbb{R}$. Тогда:

- 1. Каждый элемент $\mathbb R$ коммутирует с каждым элементом T.
- 2. Каждый элемент T представим как:

$$x = x_0 + x_1 i_1 + x_2 i_2 + \dots + x_n i_n$$

Из этого следует, что выполнено одно из:

- 1. T это \mathbb{R}
- 2. T это \mathbb{C}
- 3. T это \mathbb{K}

Если $i_1, i_2 \dots i_n$ — базис \mathbb{I} , то $\dim \mathbb{I} \in \{0, 1, 3\}$

11 марта

$$\triangleleft \mathbb{I} = \{ z \mid z^2 \in \mathbb{R}, z^2 \le 0 \}$$

Примечание. $\mathbb{R} \cap \mathbb{I} = \{0\}$

Теорема 2. $\mathbb{R} \oplus \mathbb{I} = T$

Лемма 1. Если $z\in\mathbb{I}$, то $\forall \alpha\in\mathbb{R} \ \ \alpha z\in\mathbb{I}$.

Доказательство.

$$(\alpha z)^2 = \alpha^2 z^2 \le 0 \Rightarrow \alpha z \in \mathbb{I}$$

Лемма 2. Если $z\in\mathbb{I}$ и z^{-1} существует, то $z^{-1}\in\mathbb{I}$, где z^{-1} это такой элемент \mathbb{I} , что $zz^{-1}=1$.

Доказательство.

$$z^{2}(z^{-1})^{2} = \underbrace{zz}_{<0} z^{-1}z^{-1} = 1 \Rightarrow z^{-1}z^{-1} < 0 \Rightarrow z^{-1} \in \mathbb{I}$$

Лемма 3. Всякий элемент x из T представим единственным образом в виде:

$$x \stackrel{!}{=} a + z, \quad a \in \mathbb{R}, z \in \mathbb{I}$$

Доказательство. $\forall x \in T, \{x^0, x, x^2 \dots x^{n+1}\}$ — линейно зависимые, т.к. пространство размерности n+1, а элементов n+2. Тогда по определению линейной зависимости $\exists \{\alpha_i\}_{i=0}^{n+1} \subset \mathbb{R}$, такие что:

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_{n+1} x^{n+1} = 0$$

Тогда x является корнем многочлена вида x-a=0 и тогда x=a, либо x является корнем многочлена вида $x^2+2\alpha x+\beta=0$ и тогда x можно представить в виде a+z.

Покажем единственность. Пусть x=a+y и x=b+z, где $a,b\in\mathbb{R},\ y,z\in\mathbb{I}.$

$$a + y - b - z = 0$$

$$a + y - b = z$$

$$\underbrace{(a - b)^{2} + 2(a - b)y + \underbrace{y^{2}}_{\in \mathbb{R}}}_{\in \mathbb{R}} = \underbrace{z^{2}}_{\in \mathbb{R}}$$

$$2(a - b)y = 0$$

Таким образом, либо a=b, а следовательно y=z, либо $y=0 \implies x \in \mathbb{R} \implies z=0$ \square

Лемма 4. Пусть $u,v\in\mathbb{I}, a,b\in\mathbb{R}.$ Тогда $uv+vu=\xi\in\mathbb{R}$ и $au+bv=\eta\in\mathbb{I}.$

Доказательство. Положим, что $\{1, u, v\}$ линейно зависим, т.е. $\exists \alpha, \beta, \gamma : \alpha + \beta u + \gamma v = 0$.

Положим, что $\{1, u, v\}$ линейно независим.

$$\eta^{2} = (\beta + z)^{2} = (au + bv)^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(uv + vu)$$
$$(\beta + z)^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(\alpha + y)$$
$$\beta^{2} + 2\beta z + z^{2} = a^{2}u^{2} + b^{2}v^{2} + ab(\alpha + y)$$
$$2\beta z = ab(\alpha + y)$$

Если z = 0, то $\{1, u, v\}$ линейно зависим ($\beta = au + bv$) — противоречие.

$$\triangleleft z \neq 0, z = \frac{ab}{2\beta}y$$

$$au + bv = \beta + \frac{ab}{2\beta}y$$

$$a'u + b'v = \beta' + \frac{a'b'}{2\beta'}y$$

$$(a - a')u + (b - b')v = (\beta - \beta') + \left(\frac{ab}{2\beta} - \frac{a'b'}{2\beta'}\right)y$$

Тогда мы можем выбором a и b занулить $\frac{ab}{2\beta}-\frac{a'b'}{2\beta'}$, поэтому $\{1,u,v\}$ линейно зависимы. Не дописано

Лемма 5.

- $u, v \in \mathbb{I}$
- $u^2 = -1$
- $v^2 = -1$
- $w = u \cdot v$

Тогда:

$$u^2 = v^2 = w^2 = -1$$

$$uv = -vu = w$$

$$vw = -wv = u$$

$$wu = -uw = v$$

Доказательство. Дома.

Лекция 3

18 марта

Пример (split complex number). Это не тело.

Числа представимы в виде z=a+bj, есть дополнение $z^*=a-bj$ и тогда $zz^*=a^2-b^2$. Изотропные элементы $e_1=\frac{1+j}{2}$ и $e_2=\frac{1-j}{2}$ образуют базис в этих числах. Кроме того, $e_1e_1^*=e_2e_2^*=0$

Таблица 3.1: Таблица Кэли

$$\begin{array}{c|cccc} & 1 & j \\ \hline 1 & 1 & j \\ \hline j & j & 1 \\ \hline \end{array}$$

Пример. $\mathbb{R}[t]/_{t^2\mathbb{R}[t]}, z=a+bd$

Лемма 6. Пусть $u^2=-1, v^2=-1, w=uv$. Тогда $w=uv\in \mathbb{I}, w^2=-1, uv=-vu=\omega, v\omega=-\omega v=u$ и т.д.

Доказательство.

$$\langle (uv)(vu) = -vu = 1 \Rightarrow vu = (uv)^{-1}$$

$$\mathbb{R} \ni uv + vu = uv + (uv)^{-1} \in \mathbb{I} \implies uv - vu = 0 \implies uv = -vu$$

Теорема 3.

•
$$\mathbb{I} = \{0\} \implies T = \mathbb{R}$$

•
$$\mathbb{I} = \{x\}$$

18 марта

Пример (split complex number). Это не тело.

Числа представимы в виде z=a+bj, есть дополнение $z^*=a-bj$ и тогда $zz^*=a^2-b^2$. Изотропные элементы $e_1=\frac{1+j}{2}$ и $e_2=\frac{1-j}{2}$ образуют базис в этих числах. Кроме того, $e_1e_1^*=e_2e_2^*=0$

Таблица 4.1: Таблица Кэли

$$\begin{array}{c|cccc} & 1 & j \\ \hline 1 & 1 & j \\ \hline j & j & 1 \end{array}$$

Пример. $\mathbb{R}[t]/_{t^2\mathbb{R}[t]}, z=a+bd$

Лемма 7. Пусть $u^2=-1, v^2=-1, w=uv$. Тогда $w=uv\in \mathbb{I}, w^2=-1, uv=-vu=\omega, v\omega=-\omega v=u$ и т.д.

Доказательство.

Теорема 4.

•
$$\mathbb{I} = \{0\} \implies T \cong \mathbb{R}$$

•
$$\mathbb{I} = \{x\}, i := \frac{x}{\sqrt{-x^2}}, i^2 = -1 \implies T \cong \mathbb{C}$$

- $\mathbb{I} = \{x, y\}, i \coloneqq \frac{x}{\sqrt{-x^2}}, iy \eqqcolon b + z, j_0 \coloneqq iy b = z, j = \frac{j_0}{\sqrt{-j_0^2}} \implies \exists k = ij \implies q = \alpha + i\beta + j\gamma + k\delta \implies T \cong \mathbb{K}$
- $\{i, j, k, m\} \in \mathbb{I}$.

Тогда пусть im=a+x, jm=b+y, km=c+z, где $a,b,c\in\mathbb{R}, x,y,z\in\mathbb{I}$. Рассмотрим $l_0=m+ai+bj+ck\in\mathbb{I}$, при этом $l_0\neq 0$ и $il_0,jl_0,kl_0\in\mathbb{I}$. Тогда il=-li,jl=-lj,kl=-lk.

29 марта

Лемма 8. –
$$u^2 =$$
 ???

Доказательство.

$$\mathbb{R}\ni uv+vu\in\mathbb{I}$$

Мы доказывали, что ????

Мы доказывали, что $z \in \mathbb{I} \Rightarrow z^{-1} \in \mathbb{I}$

По другой лемме $ab \in \mathbb{R}, \ u,v \in \mathbb{I} \Rightarrow au + bv \in \mathbb{I}$

Тогда uv + vu = 0 и uv = -vu.

Остальная часть лекции рассказана повторно на пятой лекции.

Лекция 6. 2 июня стр. 11 из 14

Лекция 6

2 июня

2 Кватернионы

Будем обозначать $q=q_0+\tilde{q}$, где q_0 — вещественная часть, а \tilde{q} — мнимая. Также можно неформально говорить, что $q_0\in\mathbb{R}$, а $\tilde{q}\in\mathbb{R}^3$.

Пространство кватернионов \mathbb{K} в неком смысле изоморфно \mathbb{R}^4 . В этом пространстве можно выделить подпространство мнимых кватернионов, изоморфное \mathbb{R}^3 . Распишем \tilde{q} :

$$q = q_0 + q_1 i + q_2 j + q_3 k$$

Операция сложения работает "поэлементно":

$$p + q = (p_0 + q_0) + (\tilde{p} + \tilde{q}) = (p_0 + q_0) + (p_1 + q_1)i + (p_2 + q_2)j + (p_3 + q_3)k$$

Умножение более интересно и определяется следующими правилами:

$$ij = k = -ji$$

$$jk = i = -kj$$

$$ki = j = -ik$$

$$i^2 = j^2 = k^2 = ijk = -1$$

Тогда умножение в явном виде:

$$(p_{0} + p_{1}i + p_{2}j + p_{3}k)(q_{0} + q_{1}i + q_{2}j + q_{3}k) = p_{0}q_{0} - \langle \tilde{p}, \tilde{q} \rangle + p_{0}\tilde{q} + q_{0}\tilde{p} + [\tilde{p} \times \tilde{q}]$$
$$[p \times q] := \det \begin{vmatrix} i & j & k \\ p_{1} & p_{2} & p_{3} \\ q_{1} & q_{2} & q_{3} \end{vmatrix}$$

Лекция 6. 2 июня стр. 12 из 14

Нейтральные элементы:

• По сложению: $0 = 0 + \tilde{0}$

• По умножению: $1 = 1 + \tilde{0}$

Определение. Сопряженным к кватерниону $q=q_0+\tilde{q}$ называется кватернион:

$$q^* = q_0 - \tilde{q}$$

Определение (норма кватерниона).

$$||q|| = qq^* \quad |q| = \sqrt{||q||} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

Определение.

$$q^{-1} = \frac{q^*}{\|q\|}$$

Определение (единичная сфера).

$$S = \{ q \in \mathbb{K} \mid ||q|| = |q| = 1 \}$$

Примечание. Если |q| = 1, то $q^{-1} = q^*$

Свойства.

1.
$$(q^*)^* = (q_0 - \tilde{q})^* = q_0 + \tilde{q} = q$$

2.
$$q + q^* = 2q_0 -$$
 "след"

3.
$$(pq)^* = q^*p^*$$

4.
$$qq^* = (q_0 + \tilde{q})(q_0 - \tilde{q}) = q_0^2 - \tilde{q}\tilde{q} = q_0^2 - [\tilde{q} \times \tilde{q}] + \langle \tilde{q}, \tilde{q} \rangle = q^*q = ||q|| = ||q^*||$$

5.
$$||pq|| = (pq)(pq)^* = (pq)(q^*p^*) = p(qq^*)p^* = p||q||p^* = ||q||pp^* = ||q|||p|| = ||p||||q||$$

6. ||q|| = 1 — единичный кватернион.

 $\sphericalangle q \in \mathbb{K}$ такое, что $\|q\|=1$, т.е. $q_0^2+| ilde{q}|_{\mathbb{R}^3}^2=1$

$$\exists \varphi \in \mathbb{R} : \begin{cases} \cos^2 \varphi = q_0^2 \\ \sin^2 \varphi = |\tilde{q}|_{\mathbb{R}^3}^2 \end{cases}$$

$$\exists ! \varphi \in [0, \pi] : \begin{cases} \cos^2 \varphi = q_0^2 \\ \sin^2 \varphi = |\tilde{q}|_{\mathbb{R}^3}^2 \end{cases}$$

Лекция 6. 2 июня стр. 13 из 14

Очевидно, не любой кватернион так можно представить. Поэтому $\sphericalangle \tilde{u} = \frac{\tilde{q}}{|\tilde{q}|}$. Тогда:

$$q = q_0 + |\tilde{q}| \cdot \tilde{u} = \cos \varphi + \tilde{u} \sin \varphi$$

$$\sphericalangle \mathcal{L}(v) \quad \mathcal{L} : \mathbb{K} \times \mathbb{R}^3 \to \mathbb{K} \quad \mathcal{L}_q(v) = q\tilde{v}q^*$$

Лемма 9. $\forall v \in \mathbb{R}^3 \ |v| = |\mathcal{L}_q(v)|$ при |q| = 1

Доказательство. Фиксируем $v \in \mathbb{R}^3, q \in \mathbb{K}$ такой, что $\|q\| = 1.$

$$\|\mathcal{L}_q(v)\| = \|q\tilde{v}q^*\| = \|q\| \cdot \|\tilde{v}\| \cdot \|q^*\| = \|\tilde{v}\| = \|v\|_{\mathbb{R}^3}$$

Лемма 10. $\forall q \in \mathbb{K} : ||q|| = 1 \ \forall \alpha \in \mathbb{R} \ \mathcal{L}_q(\alpha p + s) = \alpha \mathcal{L}_q(p) + \mathcal{L}_q(s)$

Доказательство.

$$\mathcal{L}_q(\alpha p + s) = q(\alpha p + s)q^* = \alpha q p q^* + q s q^* = \alpha \mathcal{L}_q(p) + \mathcal{L}_q(s)$$

Лемма 11. $\forall \alpha \in \mathbb{R} \setminus \{0\} \ \forall q \in \mathbb{K} : \|q\| = 1 \ |\alpha \tilde{q}| = |\mathcal{L}_q(\alpha \tilde{q})|$

Доказательство. С помощью расписывания определения через координаты:

$$\mathcal{L}_q(v) = (q_0^2 - |\tilde{q}|^2)v + 2\langle \tilde{v}, \tilde{q} \rangle \tilde{v} - 2[\tilde{q} \times \tilde{v}]$$

$$\mathcal{L}_q(\alpha \tilde{q}) = \alpha \mathcal{L}_q(\tilde{q}) = \alpha ((q_0^2 - |\tilde{q}|^2)\tilde{q} + 2\langle \tilde{q}, \tilde{q} \rangle \tilde{q} - 2q_0[\tilde{q} \times \tilde{q}]) = \alpha (q_0^2 + |\tilde{q}|^2)\tilde{q} = \alpha \tilde{q}$$

Теорема 5. $\lhd q \in \mathbb{K}: |q|=1$. Тогда q можно представить как $q=\cos\varphi+\tilde{u}\sin\varphi$. Кроме того, $\mathcal{L}_q(v)=q\tilde{v}q^*=q\tilde{v}q^{-1}$.

Тогда действие \mathcal{L}_q на \mathbb{R}^3 — поворот на угол 2φ относительно оси u.

Доказательство. Зафиксируем $v \in \mathbb{R}^3$. Разложим v как $v = \vec{a} + \vec{b}$, где $\vec{a} \parallel \vec{u}$, а $\vec{n} \perp \vec{u}$

$$\mathcal{L}_{q}(v) = \mathcal{L}_{q}(\vec{a} + \vec{n}) = \mathcal{L}_{q}(\vec{a}) + \mathcal{L}_{q}(\vec{n})$$

$$\mathcal{L}_{q}(\vec{a}) \stackrel{\exists K \in \mathbb{R}: a = k\tilde{q}}{=} \vec{a}$$

$$\mathcal{L}_q(\vec{n}) = (q_0^2 - |\tilde{q}|^2)\vec{n} + 2\langle \vec{n}, \vec{q} \rangle \vec{n} - 2q_0[\tilde{n} \times \vec{q}]$$

Лекция 6. 2 июня стр. 14 из 14

$$= (q_0^2 - |\tilde{q}|^2)\vec{n} - 2q_0[\tilde{n} \times \vec{q}]$$

$$= (\cos^2 \varphi - \sin^2 \varphi)\vec{n} + 2\cos \varphi \cdot \sin \varphi \underbrace{[\tilde{u} \times \vec{n}]}_{\vec{n}_{\perp}}$$

$$= \cos 2\varphi \vec{n} + \sin 2\varphi \vec{n}_{\perp}$$

$$|\vec{n}_{\perp}| = |[\tilde{u} \times \vec{n}]| = |\tilde{u}| \cdot |\vec{n}| \cdot \sin \frac{\pi}{2} = |\vec{n}|$$

Не дописано