Physics Summative Exam

Tristan Simpson

January 6, 2023

Contents

1	Info	ormation	2	
2	Per	sonal Notes	3	
3	Uni	t 1 - Dynamics and Motion (69)	4	
	3.1	Solve for each of the following (50)	4	
		3.1.1 Incline Plane (10)	4	
		3.1.2 Elevator (10)	4	
		3.1.3 Pulleys (10)	4	
		3.1.4 SPWNL (10)	4	
		3.1.5 Projectile Motion 1 or 2 (10)	4	
	3.2	Theory (5)	4	
		3.2.1 What are Newton's Three Laws of Motion? (3)	4	
		3.2.2 What is the difference between uniform and non-uniform		
		motion? (2)	4	
	3.3	Labs (14)	4	
		3.3.1 What is the procedure for the Projectile Motion Lab? (7)	4	
		3.3.2 What is the procedure for the Fletchers Trolley Lab? (7)	4	
4	Unit 2 - Fields (30)			
	4.1	Milikans Oil Drop Experiment (10)	4	
		4.1.1 Draw the diagram for this experiment (5)	4	
		4.1.2 What is the significance of this experiment? (5)	4	
	4.2	Electrostatic Forces (10)	4	
	4.3	Electric Field Intensity (10)	4	
5	Uni	t 3 - Momentum + Energy (69)	4	
	5.1		4	
		5.1.1 2D Momentum (10)	4	
		5.1.2 Inelastic Momentum (10)	4	
		5.1.3 Energy with a Spring (10)	4	
		5.1.4 Energy + Momentum (10)	4	
		5.1.5 Impulses (10)	4	

	5.2	Theory (5)
		5.2.1 Descibe how Banked Curves work (3)
		5.2.2 What are two ways to reduce the force of a collision? (2)
	5.3	Labs (14)
		5.3.1 What is the procedure for the 2D Momentum Lab? (7) . 4
		5.3.2 What is the procedure for the Pith Ball Lab? (7) 4
3	Uni	4 - Light as a Wave
	6.1	Theory (50)
		6.1.1 Explain why an interference pattern appears for a single
		slit (10)
		6.1.2 Explain why an interference pattern appears for a double
		slit (10)
		6.1.3 Draw the intensity diagram for a double and single slit (10)
		6.1.4 Explain how 3D movies work (10)
		6.1.5 Briefly elaborate on each of the following: (10) 4
	6.2	Labs (10)
		6.2.1 What is the procedure for the Young's Double Slit Lab (10)
	6.3	Solve for each of the following (10)
		6.3.1 Double Slit (5)
		6.3.2 Single Slit (5)
7	Uni	5 - Quantum (20 Bonus Marks)
	7.1	Theory
		7.1.1 Descibe Wave-Particle Duality (10)
		7.1.2 Elaborate on one of the following: (10)
3	Ext	a Bonus Marks (20)
	8.1	Momentum + Energy + Kinematics + Forces #1 (10) 5
	8.2	Momentum + Energy + Kinematics + Forces #2 (10) 5

1 Information

The exam will be worth 238 marks total.

The final exam will be on the following topics:

- $\bullet\,$ Unit 1 Dynamics and Motion
- $\bullet~$ Unit 2 Fields
- \bullet Unit 3 Momentum + Energy
- $\bullet\,$ Unit 4 Light as a Wave
- $\bullet\,$ Unit 5 Quantum Bonus

The marks will be distributed as follows:

- Unit 1 Dynamics and Motion (69)
- Unit 2 Fields (30)
- Unit 3 Momentum + Energy (69)
- Unit 4 Light as a Wave (70)
- Unit 5 Quantum (20 Bonus Marks)

Mark Distribution Matrix:

like the one mrs beamer shows in the examples

2 Personal Notes

make a seperate and private git repo for this project 200 marks total 4 units total

3 Unit 1 - Dynamics and Motion (69)

- 3.1 Solve for each of the following (50)
- 3.1.1 Incline Plane (10)
- 3.1.2 Elevator (10)
- 3.1.3 Pulleys (10)
- 3.1.4 SPWNL (10)
- 3.1.5 Projectile Motion 1 or 2 (10)
- 3.2 Theory (5)
- 3.2.1 What are Newton's Three Laws of Motion? (3)
- 3.2.2 What is the difference between uniform and non-uniform motion? (2)
- 3.3 Labs (14)
- 3.3.1 What is the procedure for the Projectile Motion Lab? (7)
- 3.3.2 What is the procedure for the Fletchers Trolley Lab? (7)
- 4 Unit 2 Fields (30)
- 4.1 Milikans Oil Drop Experiment (10)
- 4.1.1 Draw the diagram for this experiment (5)
- 4.1.2 What is the significance of this experiment? (5)
- 4.2 Electrostatic Forces (10)
- 4.3 Electric Field Intensity (10)
- 5 Unit 3 Momentum + Energy (69)
- 5.1 Solve for each of the following (50)
- 5.1.1 2D Momentum (10)
- 5.1.2 Inelastic Momentum (10)
- 5.1.3 Energy with a Spring (10)
- 5.1.4 Energy + Momentum (10)
- 5.1.5 Impulses (10)
- 5.2 Theory (5)
- 5.2.1 Descibe how Banked Curves work (3)
- 5.2.2 What are two ways to reduce the force of a collision? (2)
- 5.3 Labs (14)
- 5.3.1 What is the procedure for the 2D Momentum Lab? (7)
- 5.3.2 What is the procedure for the Pith Ball Lab? (7)
- 6 Unit 4 Light as a Wave

- 2. Polarization
- 3. Red light vs Green light
- 6.2 Labs (10)
- 6.2.1 What is the procedure for the Young's Double Slit Lab (10)
- 6.3 Solve for each of the following (10)
- 6.3.1 Double Slit (5)

make it have some sort of trick with Δx

6.3.2 Single Slit (5)

make it have a trick with Δy

7 Unit 5 - Quantum (20 Bonus Marks)

- 7.1 Theory
- 7.1.1 Descibe Wave-Particle Duality (10)
- 7.1.2 Elaborate on one of the following: (10)
 - 1. Schrödinger's Cat
 - 2. Superposition
 - 3. Heisenberg Uncertainty Principle
- 8 Extra Bonus Marks (20)
- 8.1 Momentum + Energy + Kinematics + Forces #1 (10)
- 8.2 Momentum + Energy + Kinematics + Forces #2 (10)