

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики
Кафедра прикладной математики и экономико-математических методов

ЛАБОРАТОРНАЯ РАБОТА

на тему:

" Методы координатной релаксации 3.4.4а- тах"

Подпись:
Дата:

Оглавление

Необходимые формулы	3
Исходные данные	4
Программа:	5
Выходные данные:	6
Оценка точности полученного результата:	7
Вывод	

Необходимые формулы

3.4.4. Методы координатной релаксации
$$\mathbf{A} - \lambda \mathbf{B}$$
, $\mathbf{A} = \mathbf{A}^T$, $\mathbf{B} > 0$ $\mathbf{x}' = \mathbf{x} + \alpha \mathbf{e}_i$ — следующее приближение \mathbf{a}) $\mathbf{a} = \frac{g_i a_{ii} - f_i b_{ii}}{\beta}$ $\mathbf{b} = a_{ii} - \rho b_{ii}$ $\mathbf{c} = f_i - \rho g_i$ \Rightarrow $\mathbf{a} - \text{корень уравнения}$ $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$ $\mathbf{f}' = \mathbf{f} + \alpha \mathbf{A}_{\pi_i}$, $\mathbf{g}' = \mathbf{g} + \alpha \mathbf{B}_{\pi_i}$, $\mathbf{\beta}' = \beta + \alpha (g_i + g_i')$, $\mathbf{\rho}' = \rho + \frac{\alpha^2}{\beta'} \sqrt{b^2 4ac}$

Рисунок 1 - Формулы

Исходные данные

Рисунок 2 – исходные данные

Программа:

Рисунок 3 – реализация

Выходные данные:

m[A]

Собственное число: 2.32275 получено за 11 итераций ,собственный вектор:{0.965945, 0.766907, 0.722513, 0.857647}

Рисунок 4 – решение

S = Eigenvalues@A

собственные числ

{2.32275, 0.796707, 0.638284, 0.242261}

Рисунок 5 – решение встроенной функции

Полученный результат совпадает с встроенной функцией Wolfram Mathematica .

Оценка точности полученного результата:

Рисунок 6 – оценка точности