Document AM5

Appl. No. 09/677,574

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6: C12N 15/54, 9/12, C12Q 1/68 A1	1	(11) International Publication Number: WO 96/38568
C12N 15/54, 9/12, C12Q 1/68 A1	·1 (
		(43) International Publication Date: 5 December 1996 (05.12.96)
(21) International Application Number: PCT/US96/06 (22) International Filing Date: 14 May 1996 (14.05 (30) Priority Data: 08/455,586 31 May 1995 (31.05.95) (71) Applicant: AMERSHAM LIFE SCIENCE, INC. [US/UZ6111 Miles Road, Cleveland, OH 44128 (US). (72) Inventors: DAVIS, Maria; 12080 Nathaniel Lane, Twinsb OH 44087 (US). MOFFETT, R., Bruce; 3270 Kennr Road, Shaker Heights, OH 44122 (US). FULLER, Cart, 3397 E. Monmouth, Cleveland Heights, OH 44118 (US). (74) Agents: WARBURG, Richard J. et al.; Lyon & Lyon, S	US /US]; burg, more l, W.; S).	(81) Designated States: CA, JP. Published With international search report.
4700, 633 West Fifth Street, Los Angeles, CA 90071-2 (US). (54) Title: THERMOSTABLE DNA POLYMERASES	-2066	

(57) Abstract

An enzymatically active DNA polymerase having between 540 and 582 amino acids having a tyrosine at a position equivalent to position 667 of Taq DNA polymerase, wherein said polymerase lacks 5' to 3' exonuclease activity, and wherein said polymerase has at least 95 % homology in its amino acid sequence to the DNA polymerase of \$(i)(Thermus aquaticus), \$(i)(Thermus flavus) or \$(i)(Thermus thermophilus), and wherein said polymerase forms a single polypeptide band on an SDS PAGE.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	· GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Paso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	· IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SC	
CH	Switzerland	KZ	Kazakhstan	SI	Singapore Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovenia
CM	Cameroon	LK	Sri Lanka	SN	
CN	China	LR	Liberia		Senegal
CS	Czechoslovakia	LT	Lithuania	SZ	Swaziland
CZ	Czech Republic	LU		TD	Chad
DE	Germany	LV	Luxembourg	TG	Togo
DK	Denmark		Latvia	TJ	Tajikistan
EE	Estonia	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
FI	Finland	MG	Madagascar	UG	Uganda
FR		ML	Mali	US	United States of America
	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

ŧ.

1

DESCRIPTION

Thermostable DNA polymerases

Background of the Invention

The present invention relates to novel thermostable DNA polymerases, the genes and vectors encoding them and their use in DNA sequencing.

US Patents 4,889,818 and 5,079,352 describe the isolation and expression of a DNA polymerase known as Taq DNA Polymerase (hereinafter referred to as Taq). It is reported that amino-terminal deletions wherein approximately one-third of the coding sequence is absent have resulted in producing a gene product that is quite active in polymerase assays. Taq is described as being of use in PCR (polymerase chain reaction).

US Patent No. 5,075,216 describes the use of Taq in DNA sequencing.

- International patent application WO 92/06/06188 describes a DNA polymerase having an identical amino acid sequence to Taq except that it lacks the N-terminal 235 amino acids of Taq and its use in sequencing. This DNA polymerase is known as Δ Taq.
- US Patent 4,795,699 describes the use of T7 type
 DNA polymerases (T7) in DNA sequencing. These are of
 great use in DNA sequencing in that they incorporate
 dideoxy nucleoside triphosphates (NTPs) with an
 efficiency comparable to the incorporation of deoxy
- NTPs; other polymerases incorporate dideoxy NTPs far less efficiently which requires comparatively large

quantities of these to be present in sequencing reactions.

At the DOE Contractor-Grantee Workshop (Nov. 13-17, 1994, Santa Fe) and the I. Robert Lehman Symposium (Nov 11-14, 1994, Sonoma), Prof. S. Tabor identified a site in DNA polymerases that can be modified to incorporate dideoxy NTPs more efficiently. He reported that the presence or absence of a single hydroxy group (tyrosine vs. phenylalanine) at a highly conserved position on E. coli, DNA Polymerase I, T7, and Taq makes more than a 1000-fold difference in their ability to discriminate against dideoxy NTPs. (See also European Patent Application 94203433.1 published May 31, 1995, Publication No. 0 655 506 A1 and hereby incorporated by reference herein.)

Summary of the Invention

The present invention provides a DNA polymerase having an amino acid sequence differentiated from Taq in that it lacks the N-terminal 272 amino acids and has the phenylalanine at position 667 (of native Taq) replaced by tyrosine. Preferably, the DNA polymerase has methionine at position 1 (equivalent to position 272 of Taq) (hereinafter referred to as FY2) The full DNA sequence is given as Fig 1 (SEQ. ID. NO. 1). Included within the scope of the present invention are DNA polymerases having substantially identical amino acid sequences to the above which retain thermostability and efficient incorporation of dideoxy NTPs.

By a substantially identical amino acid sequence is meant a sequence which contains 540 to 582 amino acids that may have conservative amino acid changes compared with Taq which do not significantly influence

5 thermostability or nucleotide incorporation, i.e. other than the phenylalanine to tyrosine conversion. Such changes include substitution of like charged amino acids.

changes include substitution of like charged amino acids for one another, or amino acids with small side chains for other small side chains, e.g., ala for val. More drastic changes may be introduced at noncritical regions where little or no effect on polymerase activity is observed by such a change.

The invention also features DNA polymerases that lack between 251 and 293 (preferably 271 or 272) of the N-terminal amino acids of Thermus flavus (Tf1) and have the phenylalanine at position 666 (of native Tf1) replaced by tyrosine; and those that lack between 253 and 295 (preferably 274) of the N-terminal amino acids of Thermus thermophilus (Tth) and have the phenylalanine 20 at position 669 (of native Tth) replaced by tyrosine.

By efficient incorporation of dideoxy NTPs is meant the ability of a polymerase to show little, if any, discrimination in the incorporation of ddNTPs when compared with dNTPs. Suitably efficient discrimination 25 is less than 1:10 and preferably less than 1:5. Such discrimination can be measured by procedures known in the art.

One preferred substantially identical amino acid sequence to that given above is that which contains 562 amino acids having methionine at position 1 and alanine

at position 2 (corresponding to positions 271 and 272 of native Taq) (hereinafter referred to as FY3). A full DNA sequence is given as Fig. 2. This is a preferred DNA polymerase for expression by a gene of the present invention.

The purified DNA polymerases FY2 and FY3 both give a single polypeptide band on SDS polyacrylamide gels, unlike Δ Taq, having either a phenylalanine or tyrosine at position 667 which forms several polypeptide bands of similar size on SDS polyacrylamide gels.

A second preferred substantially identical amino acid sequence is that which lacks 274 of the N-terminal amino acids of Thermus thermophilus having methionine at position 1, and the phenylalanine to tyrosine mutation at position 396 (corresponding to position 669 of native Tth) (hereinafter referred to as FY4). A full DNA sequence is given as Fig. 5 (SEQ. ID. NO. 14).

The present invention also provides a gene encoding a DNA polymerase of the present invention. In order to assist in the expression of the DNA polymerase activity, the modified gene preferably codes for a methionine residue at position 1 of the new DNA polymerase. In addition, in one preferred embodiment of the invention, the modified gene also codes for an alanine at position 25 2 (corresponding to position 272 of native Taq).

In a further aspect, the present invention provides a vector containing the gene encoding the DNA polymerase activity of the present invention, e.g., encoding an amino acid sequence differentiated from native Taq in that it lacks the N-terminal 272 amino acids and has

phenylalanine at position 396 (equivalent to position 667 of Taq) replaced by tyrosine or a substantially identical amino acid sequence thereto.

In a yet further aspect, the present invention

5 provides a host cell comprising a vector containing the gene encoding the DNA polymerase activity of the present invention, e.g., encoding an amino acid sequence differentiated from native Taq in that it lacks the N-terminal 272 amino acids and has phenylalanine at

10 position 396 (equivalent to position 667 of native Taq) replaced by tyrosine or a substantially identical amino acid sequence thereto.

The DNA polymerases of the present invention are preferably in a purified form. By purified form is meant that the DNA polymerase is isolated from a majority of host cell proteins normally associated with it; preferably the polymerase is at least 10% (w/w) of the protein of a preparation, even more preferably it is provided as a homogeneous preparation, e.g., a homogeneous solution. Preferably the DNA polymerase is a single polypeptide on an SDS polyacrylamide gel.

The DNA polymerases of the present invention are suitably used in sequencing, preferably in combination with a pyrophosphatase. Accordingly, the present invention provides a composition which comprises a DNA polymerase of the present invention in combination with a pyrophosphatase, preferably a thermostable pyrophosphatase such as Thermoplasma acidophilum pyrophosphatase. (Schafer, G. and Richter, O.H. (1992) Eur. J. Biochem. 209, 351-355).

The DNA polymerases of the present invention can be constructed using standard techniques. By way of example, mutagenic PCR primers can be designed to incorporate the desired Phe to Tyr amino acid change (FY 5 mutation) in one primer. In our hands these primers also carried restriction sites that are found internally in the sequence of the Taq polymerase gene clone of Delta Taq, pWB253, which was used by us as template DNA. However, the same PCR product can be generated with this 10 primer pair from any clone of Taq or with genomic DNA isolated directly from Thermus aquaticus. The PCR product encoding only part of the gene is then digested with the appropriate restriction enzymes and used as a replacement sequence for the clone of Delta Taq digested 15 with the same restriction enzymes. In our hands the resulting plasmid was designated pWB253Y. The presence of the mutation can be verified by DNA sequencing of the amplified region of the gene.

Further primers can be prepared that encode for a

20 methionine residue at the N-terminus that is not found
at the corresponding position of Taq, the sequence
continuing with amino acid residue 273. These primers
can be used with a suitable plasmid, e.g., pWB253Y DNA,
as a template for amplification and the amplified gene

25 inserted into a vector, e.g., pRE2, to create a gene,
e.g., pRE273Y, encoding the polymerase (FY2). The
entire gene can be verified by DNA sequencing.

Improved expression of the DNA polymerases of the present invention in the pRE2 expression vector was obtained by creating further genes, pREFY2pref (encoding

a protein identical to FY2) and pREFY3 encoding FY3. A mutagenic PCR primer was used to introduce silent codon changes (i.e., the amino acid encoded is not changed) at the amino terminus of the protein which did not affect the sequence of the polypeptide. These changes led to increased production of FY2 polymerase. FY3 was designed to promote increased translation efficiency in vivo. In addition to the silent codon changes introduced in pREFY2pref, a GCT codon was added in the second position (SEQ. ID. NO. 2), as occurs frequently in strongly expressed genes in E. coli. This adds an amino acid to the sequence of FY2, and hence the protein was given its own designation FY3. Both constructs

Silent codon changes such as the following increase protein production in E. coli: substitution of the codon GAG for GAA; substitution of the codon AGG, AGA, CGG or CGA for CGT or CGC;

produce more enzyme than pRE273Y.

20 substitution of the codon CTT, CTC, CTA, TTG or TTA for CTG; substitution of the codon ATA for ATT or ATC; substitution of the codon GGG or GGA for GGT or GGC.

The present invention also provides a method for determining the nucleotide base sequence of a DNA

25 molecule. The method includes providing a DNA molecule annealed with a primer molecule able to hybridize to the DNA molecule; and incubating the annealed molecules in a vessel containing at least one deoxynucleotide triphosphate, and a DNA polymerase of the present

30 invention. Also provided is at least one DNA synthesis

terminating agent which terminates DNA synthesis at a specific nucleotide base. The method further includes separating the DNA products of the incubating reaction according to size, whereby at least a part of the nucleotide base sequence of the DNA molecule can be determined.

In preferred embodiments, the sequencing is performed at a temperature above 50°C, 60°C, or 70°C.

In other preferred embodiments, the DNA polymerase

10 has less than 1000, 250, 100, 50, 10 or even 2 units of
exonuclease activity per mg of polymerase (measured by
standard procedure, see below) and is able to utilize
primers having only 4, 6 or 10 bases; and the
concentration of all four deoxynucleoside triphosphates

15 at the start of the incubating step is sufficient to
allow DNA synthesis to continue until terminated by the
agent, e.g., a ddNTP.

For cycle sequencing, the DNA polymerases of the present invention make it possible to use significantly lower amounts of dideoxynucleotides compared to naturally occurring enzymes. That is, the method involves providing an excess amount of deoxynucleotides to all four dideoxynucleotides in a cycle sequencing reaction, and performing the cycle sequencing reaction.

Preferably, more than 2, 5, 10 or even 100 fold excess of a dNTP is provided to the corresponding ddNTP.

In a related aspect, the invention features a kit or solution for DNA sequencing including a DNA polymerase of the present invention and a reagent

necessary for the sequencing such as dITP, deaza GTP, a

chain terminating agent such as a ddNTP, and a manganese-containing solution or powder and optionally a pyrophosphatase.

In another aspect, the invention features a method for providing a DNA polymerase of the present invention by providing a nucleic acid sequence encoding the modified DNA polymerase, expressing the nucleic acid within a host cell, and purifying the DNA polymerase from the host cell.

10 In another related aspect, the invention features a method for sequencing a strand of DNA essentially as described above with one or more (preferably 2, 3 or 4) deoxyribonucleoside triphosphates, a DNA polymerase of the present invention, and a first chain terminating 15 agent. The DNA polymerase causes the primer to be elongated to form a first series of first DNA products differing in the length of the elongated primer, each first DNA product having a chain terminating agent at its elongated end, and the number of molecules of each 20 first DNA products being approximately the same for substantially all DNA products differing in length by no more than 20 bases. The method also features providing a second chain terminating agent in the hybridized mixture at a concentration different from the first 25 chain terminating agent, wherein the DNA polymerase causes production of a second series of second DNA products differing in the length of the elongated primer, with each second DNA product having the second chain terminating agent at its elongated end. The 30 number of molecules of each second DNA product is

approximately the same for substantially all second DNA products differing in length from each other by from 1 to 20 bases, and is distinctly different from the number of molecules of all the first DNA products having a length differing by no more than 20 bases from that of said second DNA products.

In preferred embodiments, three or four such chain terminating agents can be used to make different products and the sequence reaction is provided with a 10 magnesium ion, or even a manganese or iron ion (e.g., at a concentration between 0.05 and 100 mM, preferably between 1 and 10 mM); and the DNA products are separated according to molecular weight in four or less lanes of a gel.

In another related aspect, the invention features a 15 method for sequencing a nucleic acid by combining an oligonucleotide primer, a nucleic acid to be sequenced, between one and four deoxyribonucleoside triphosphates, a DNA polymerase of the present invention, and at least 20 two chain terminating agents in different amounts, under conditions favoring extension of the oligonucleotide primer to form nucleic acid fragments complementary to the nucleic acid to be sequenced. For example, the chain terminating agent may be a dideoxynucleotide 25 terminator for adenine, guanine, cytosine or thymine. The method further includes separating the nucleic acid fragments by size and determining the nucleic acid sequence. The agents are differentiated from each other by intensity of a label in the primer extension 30 products.

While it is common to use gel electrophoresis to separate DNA products of a DNA sequencing reaction, those in the art will recognize that other methods may also be used. Thus, it is possible to detect each of the different fragments using procedures such as time of flight mass spectrometry, electron microscopy, and single molecule detection methods.

The invention also features an automated DNA sequencing apparatus having a reactor including reagents 10 which provide at least two series of DNA products formed from a single primer and a DNA strand. Each DNA product of a series differs in molecular weight and has a chain terminating agent at one end. The reagents include a DNA polymerase of the present invention. The apparatus 15 includes a separating means for separating the DNA product along one axis of the separator to form a series of bands. It also includes a band reading means for determining the position and intensity of each band after separation along the axis, and a computing means 20 that determines the DNA sequence of the DNA strand solely from the position and intensity of the bands along the axis and not from the wavelength of emission of light from any label that may be present in the separating means.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description of the Preferred Embodiments

The drawings will first briefly be described.

Drawings

Figs 1-4 are the DNA sequences, and corresponding amino acid sequences, of FY2, FY3, and the DNA polymerases of T. flavus and Thermus thermophilus,

5 respectively. Figure 5 is the DNA sequence and corresponding amino acid sequence of FY4.

Examples

The following examples serve to illustrate the DNA polymerases of the present invention and their use in sequencing.

Preparation of FY DNA Polymerases (FY2 and FY3) Bacterial Strains

E. coli strains: MV1190 [Δ(srl - recA) 306::Tn10,
Δ(lac-proAB), thi, supE, F' (traD36 proAB* lacI* lacZ

15 ΔM15)]; DHλ* [gyrA96, recAl, relAl, endAl, thi-1,
hsdR17, supE44, λ*]; M5248 [λ(bio275, cI857, cIII+, N+,
Δ (H1))].

PCR

Reaction conditions based on the procedure of

Barnes (91 Proc. Nat'l. Acad. Sci. 2216-2220, 1994) were
as follows: 20mM Tricine pH8.8, 85mM KOAc, 200mM dNTPs,
10% glycerol, 5% DMSO, 0.5mM each primer, 1.5mM MgOAc,
2.5 U HotTub (Amersham Life Science Inc.), 0.025 U
DeepVent (New England Biolabs), 1-100 ng target DNA per

100ml reaction. Cycling conditions were 94°C 30s, 68°C
10m40s for 8 cycles; then 94°C 30s, 68°C 12m00s for 8
cycles; then 94°C 30s, 68°C 13m20s for 8 cycles; then
94°C 30s, 68°C 14m40s for 8 cycles.

In vitro mutagenesis

Restriction enzyme digestions, plasmid preparations, and other *in vitro* manipulations of DNA were performed using standard protocols (Sambrook et

- 5 al., Molecular Cloning 2nd Ed. Cold Spring Harbor Press, 1989). PCR (see protocol above) was used to introduce a Phe to Tyr amino acid change at codon 667 of native Taq DNA polymerase (which is codon 396 of FY2).
 - Oligonucleotide primer 1 dGCTTGGGCAGAGGATCCGCCGGG (SEQ.
- 10 ID. NO. 3) spans nucleotides 954 to 976 of the coding region of SEQ. ID. NO. 1 including a BamHI restriction site. Mutagenic oligo primer 2 dGGGATGGCTAGCTCCTGGGAGAGGCGGTGGGCCGACATGCCGTAGA GGACCCCGTAGTTGATGG (SEQ. ID. NO. 4) spans nucleotides
- 15 1178 to 1241 including an NheI site and codon 396 of Sequence ID. NO. 1. A clone of exo Taq deleted for the first 235 amino acids, pWB253 encoding DeltaTaq polymerase (Barnes, 112 Gene 29-35, 1992) was used as template DNA. Any clone of Taq polymerase or genomic DNA
- 20 from Thermus aquaticus could also be utilized to amplify the identical PCR product. The PCR product was digested with BamHI and NheI, and this fragment was ligated to BamHI/NheI digested pWB253 plasmid to replace the corresponding fragment to create pWB253Y, encoding
- 25 polymerase FY1. Cells of E. coli strain MV1190 were used for transformation and induction of protein expression, although any host strain carrying a lac repressor could be substituted. DNA sequencing verified the Phe to Tyr change in the coding region.

PCR primer 3 dGGAATTCCATATGGACGATCTGAAGCTCTCC (SEQ. ID. NO. 5) spanning the start codon and containing restriction enzyme sites, was used with PCR primer 4 dGGGGTACCAAGCTTCACTCCTTGGCGGAGAG (SEQ. ID. NO. 6) 5 containing restriction sites and spanning the stop codon (codon 562 of Sequence ID. NO. 1). A methionine start codon and restriction enzyme recognition sequences were added to PCR primer 5 dGGAATTCCATATGCTGGAGAGGCTTGAGTTT (SEQ. ID. NO. 7), which was used with primer 4 above. 10 PCR was performed using the above primer pairs, and plasmid pWB253Y as template. The PCR products were digested with restriction enzymes NdeI and KpnI and ligated to NdeI/KpnI digested vector pRE2 (Reddi et al., 17 Nucleic Acids Research 10,473-10,488, 1989) to make 15 plasmids pRE236Y, encoding FY1 polymerase, and pRE273Y encoding FY2 polymerase, respectively. Cells of E. coli strain DHA* were used for primary transformation with this and all subsequent pRE2 constructions, and strain M5248 (AcI857) was used for protein expression, although 20 any comparable pair of E. coli strains carrying the cl and cI857 alleles could be utilized. Alternatively, any rec cI strain could be induced by chemical agents such as nalidixic acid to produce the polymerase. The sequences of both genes were verified. pRE273Y was found 25 to produce a single polypeptide band on SDS polyacrylamide gels, unlike pRE253Y or pRE236Y. Primer 6 dGGAATTCCATATGCTGGAACGTCTGGAGTTTGGCAGCCTC

Primer 6 dGGAATTCCATATGCTGGAACGTCTGGAGTTTGGCAGCCTC
CTC (SEQ. ID. NO. 8) and primer 4 were used to make a
PCR product introducing silent changes in codon usage of
FY2. The product was digested with Ndel/BamHI and

ligated to a pRE2 construct containing the 3' end of FY2 to create pREFY2pref, encoding FY2 DNA polymerase.

Primer 7 dGGAATTCCATATGGCTCTGGAACGTCTGGAGTTTGGCAGCCTCCTC (SEQ. ID. NO. 9) and primer 4 were used to make a PCR product introducing an additional alanine codon commonly occurring at the second position of highly expressed genes. The NdeI/BamHI digested fragment was used as above to create pREFY3, encoding FY3 DNA polymerase.

Preparation of FY4 DNA Polymerase

10 Bacterial Strains

E. coli strains: DH1 λ^* [gyrA96, recA1, relA1, endA1, thi-1, hsdR17, supE44, λ^*]; M5248 [λ (bio275, cI857, cIII+, N+, Δ (H1))].

PCR

15 Genomic DNA was prepared by standard techniques from Thermus thermophilus. The DNA polymerase gene of Thermus thermophilus is known to reside on a 3 kilobase AlwNI fragment. To enrich for polymerase sequences in some PCR reactions, the genomic DNA was digested prior to PCR with AlwNI, and fragments of approximately 3 kb were selected by agarose gel electrophoresis to be used as template DNA. Reaction conditions were as follows: 10mM Tris pH8.3, 50mM KCl, 800µM dNTPs, 0.001% gelatin, 1.0µM each primer, 1.5mM MgCl₂, 2.5 U Tth, 0.025 U DeepVent (New England Biolabs), per 100µl reaction. Cycling conditions were 94°C 2 min, then 35 cycles of 94°C 30s, 55°C 30s, 72°C 3 min, followed by 72 °C for 7 min.

In vitro mutagenesis

Restriction enzyme digestions, plasmid preparations, and other in vitro manipulations of DNA were performed using standard protocols (Sambrook et al., 1989). Plasmid pMR1 was constructed to encode an exonuclease-free polymerase, with optimized codons for expression in E. coli at the 5' end. Primer 8 (SEQ. ID. NO. 10) (GGAATTCCATATGCTGGAACGTCTGGAATTCGGCAGCCTC) was used with Primer 9 (SEQ. ID. NO.11)

- 10 (GGGGTACCCTAACCCTTGGCGGAAAGCCAGTC) to create a PCR product from *Tth* genomic DNA, which was digested with restriction enzymes NdeI and KpnI and inserted into plasmid pRE2 (Reddi et al., 1989, <u>Nucleic Acids Research</u> 17, 10473 10488) digested with the same enzymes.
- To create the desired F396Y mutation, two PCR products were made from Tth chromosomal DNA. Primer 8 above was used in combination with Primer 10 (SEQ. ID. NO. 12) (GGGATGGCTAGCTCCTGGGAGAGCCTATGGGCGGACAT GCCGTAGAGGACGCCGTAGTTCACCG) to create a portion of the gene containing the F to Y amino acid change as well as a silent change to create an NheI restriction site.

 Primer 11 (SEQ. ID. NO. 13) (CTAGCTAGCCATCCCCTA CGAAGAAGCGGTGGCCT) was used in combination with primer 9 above to create a portion of the gene from the
- introduced NheI site to the stop codon at the 3' end of the coding sequence. The PCR product of Primers 8 and 10 was digested with NdeI and NheI, and the PCR product of Primers 9 and 11 was digested with NheI and KpnI.

 These were introduced into expression vector pRE2 which

30 was digested with NdeI and KpnI to produce plasmid pMR5.

In addition to the desired changes, pMR5 was found to have a spurious change introduced by PCR, which led to an amino acid substitution, K234R. Plasmid pMR8 was created to eliminate this substitution, by replacing the AflII/BamHI fragment of pMR5 for the corresponding fragment from pMR1. The FY4 polymerase encoded by plasmid pMR8 (SEQ. ID. NO. 14) is given in Figure 5.

Cells of E. coli strain DH1\(\lambda^+\) were used for primary transformation, and strain M5248 (\lambda c1857) was used for protein expression, although any comparable pair of E. coli strains carrying the cI* and cI857 alleles could be utilized. Alternatively, any rec* cI* strain could be induced by chemical agents such as nalidixic acid to produce the polymerase.

15 Protein Sequencing

Determinations of amino terminal protein sequences were performed at the W.M. Keck Foundation, Biotechnology Resource Laboratory, New Haven, Connecticut.

20 Purification of Polymerases

A 1 liter culture of 2X LB (2% Bacto-Tryptone, 1% Bacto-Yeast Extract, 0.5% NaCl) + 0.2% Casamino Acids + 20 mM KPO₄ pH 7.5 + 50 μg/ml Ampicillin was inoculated with a glycerol stock of the appropriate cell strain and grown at 30°C with agitation until cells were in log phase (0.7-1.0 OD₅₉₀). 9 liters of 2X LB + 0.2% Casamino Acids + 20 mM KPO₄ pH 7.5 + 0.05% Mazu Anti-foam was inoculated with 1 liter of log phase cells in 10 liter Microferm Fermentors (New Brunswick Scientific Co.).

30 Cells were grown at 30°C under 15 psi pressure, 350-450

rpm agitation, and an air flow rate of 14,000 cc/min ±1000 cc/min. When the OD₅₉₀ reached 1.5-2.0, the cultures were induced by increasing the temperature to 40-42°C for 90-120 minutes. The cultures were then 5 cooled to < 20°C and the cells harvested by centrifugation in a Sorvall RC-3B centrifuge at 5000 rpm at 4°C for 15-20 minutes. Harvested cells were stored at -80°C.

Frozen cells were broken into small pieces and 10 resuspended in pre-warmed (90-95°C) Lysis Buffer (20 mM Tris pH 8.5, 1 mM EDTA, 10 mM MgCl2, 16 mM (NH4)2SO4, 0.1% Tween 20, 0.1% Nonidet P-40, 1 mM PMSF). Resuspended cells were then heated rapidly to 80°C and incubated at 80°C for 20 minutes with constant stirring. The 15 suspension was then rapidly cooled on ice. The cell debris was removed by centrifugation using a Sorvall GSA rotor at 10,000 rpm for 20 minutes at 4°C. The NaCl concentration of the supernatant was adjusted to 300 mM. The sample was then passed through a diethylaminoethyl 20 cellulose (Whatman DE-52) column that had been previously equilibrated with Buffer A (20 mM Tris pH 8.5, 1 mM EDTA, 0.1% Tween 20, 0.1% Nonidet P-40, 300 mM NaCl, 10% glycerol, 1 mM DTT), and polymerase collected in the flow through. The sample was then diluted to a 25 concentration of NaCl of 100mM and applied to a Heparinsepharose column. The polymerase was eluted from the column with a NaCl gradient (100-500 mM NaCl). The sample was then dialyzed against Buffer B (20 mM Tris pH 8.5, 1 mM EDTA, 0.1% Tween 20, 0.1% Nonidet P-40, 10 mM 30 KCl, 10% glycerol, 1 mM DTT) and further diluted as

needed to lower the conductivity of the sample to the conductivity of Buffer B. The sample was then applied to a diethylaminoethyl (Waters DEAE 15 HR) column and eluted with a 10-500 mM KCl gradient. The polymerase was then diluted with an equal volume of Final Buffer (20 mM Tris pH 8.5, 0.1 mM EDTA, 0.5% Tween 20, 0.5% Nonidet P-40, 100 mM KCl, 50% glycerol, 1 mM DTT) and dialyzed against Final Buffer.

Assay of Exonuclease Activity

- 10 The exonuclease assay was performed by incubating 5 ul (25-150 units) of DNA polymerase with 5 ug of labelled [3H]-pBR322 PCR fragment (1.6x104 cpm/ug DNA) in 100 ul of reaction buffer of 20 mM Tris HCl pH 8.5, 5 mM MgCl₂, 10 mM KCl, for 1 hour at 60 °C. After this time 15 interval, 200 ul of 1:1 ratio of 50 ug/ml salmon sperm DNA with 2 mM EDTA and 20% TCA with 2% sodium pyrophosphate were added into the assay aliquots. The aliquots were put on ice for 10 min and then centrifuged at 12,000g for 10 min. Acid-soluble radioactivity in 200 20 ul of the supernatant was quantitated by liquid scintillation counting. One unit of exonuclease activity was defined as the amount of enzyme that catalyzed the acid solubilization of 10 nmol of total nucleotide in 30 min at 60 °C.
- 25 Utility in DNA Sequencing

 Example 1: DNA Sequencing with FY Polymerases (e.g., FY2 and FY3)

The following components were added to a microcentrifuge vial (0.5 ml): 0.4 pmol M13 DNA (e.g., M13mpl8, 1.0 μ g); 2 μ l Reaction Buffer (260 mM TrisHCl, pH 9.5 65 mM MgCl₂); 2 μ l of labeling nucleotide mixture (1.5 μ M each of dGTP, dCTP and dTTP); 0.5 μ l (5 μ Ci) of [a-33P]dATP (about 2000Ci/mmol); 1 μ l -40 primer (0.5 μ M; 0.5 pmol/ μ l 5'GTTTTCCCAGTCACGAC-3'); 2 μ l of a mixture containing 4 U/ μ l FY polymerase and 6.6 U/ml Thermoplasma acidophilum inorganic pyrophophatase

10 (32 U/μl polymerase and 53 U/ml pyrophosphatase in 20 mM Tris (pH8.5), 100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5% NP-40, 0.5% TWEEN-20 and 50% glycerol, diluted 8 fold in dilution buffer (10 mM Tris-HCl pH8.0, 1 mM 2-mercaptoethanol, 0.5% TWEEN-20, 0.5% NP-40)); and water

15 to a total volume of 17.5 μ l. These components (the labeling reaction) were mixed and the vial was placed in a constant-temperature water bath at 45°C for 5 minutes.

Four vials were labeled A, C, G, and T, and filled with 4 μl of the corresponding termination mix: ddA

20 termination mix (150 μM each dATP, dCTP, dGTP, dTTP, 1.5 μM ddATP); ddT termination mix (150 μM each dATP, dCTP, dGTP, dTTP, 1.5 μM ddTTP); ddC termination mix (150 μM each dATP, dCTP, dGTP, dTTP, 1.5 μM ddCTP); ddG termination mix (150 μM each dATP, dCTP, dGTP, dTTP, 1.5 μM ddCTP); ddG

15 μM ddGTP).

The labeling reaction was divided equally among the four termination vials (4 μ l to each termination reaction vial), and tightly capped.

. The four vials were placed in a constant- \$30\$ temperature water bath at $72\,^{\circ}\text{C}$ for 5 minutes. Then 4 μl

of Stop Solution (95% Formamide 20 mM EDTA, 0.05% Bromophenol Blue, 0.05% Xylene Cyanol FF) added to each vial, and heated briefly to 70°-80°C immediately prior to loading on a sequencing gel (8% acrylamide, 8.3 M urea).

5 Autoradiograms required an 18-36 hour exposure using Kodak XAR-5 film or Amersham Hyperfilm MP. High-quality sequence results with uniform band intensities were obtained. The band intensities were much more uniform than those obtained with similar protocols using Taq DNA polymerase or ΔTaq DNA polymerase.

Example 2: DNA Cycle Sequencing with FY Polymerases The following components were added to a microcentrifuge vial (0.5 ml) which which is suitable for insertion into a thermocycler machine (e.g., Perkin-15 Elmer DNA Thermal Cycler): 0.05 pmol or more M13 DNA (e.g., M13mp18, 0.1 μ g), or 0.1 μ g double-stranded plasmid DNA (e.g., pUC19); 2 μ l Reaction Buffer (260 mM Tris-HCl, pH 9.5 65 mM MgCl₂); 1 μ l 3.0 μ M dGTP; 1 μ l 3.0 μM dTTP; 0.5 μl (5 μCi) of $[\alpha^{-33}\text{P}]$ dATP (about 20 2000Ci/mmol); 1 μ l -40 primer (0.5 μ M; 0.5 pmol/ μ l 5'GTTTTCCCAGTCACGAC-3'); 2 μ l of a mixture containing 4 U/ μ l FY polymerase and 6.6 U/ml Thermoplasma acidophilum inorganic pyrophophatase (32 U/ μ l polymerase and 53 U/ml pyrophosphatase in 20 mM Tris (pH8.5), 100 25 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5% NP-40, 0.5% TWEEN-20 and 50% glycerol, diluted 8 fold in dilution buffer (10 mM Tris-HCl pH8.0, 1 mM 2-mercaptoethanol, 0.5% TWEEN-20, 0.5% NP-40)); and water to a total volume of 17.5 μ 1.

These components (labeling reaction mixture) were mixed and overlaid with 10 \$\mu 1\$ light mineral oil (Amersham). The vial was placed in the thermocycler and 30-100 cycles (more than 60 cycles is unnecessary) from 5 45°C for 1 minute to 95°C for 0.5 minute performed. (Temperatures can be cycled from 55°-95°C, if desired). The temperatures may be adjusted if the melting temperature of the primer/template is significantly higher or lower, but these temperatures work well for most primer-templates combinations. This step can be completed in about 3 minutes per cycle.

Four vials were labeled A, C, G, and T, and filled with 4 ml of the corresponding termination mix: ddA termination mix (150 µM each dATP, dCTP, dGTP, dTTP, 1.5 µM ddATP); ddT termination mix (150 µM each dATP, dCTP, dGTP, dTTP, 1.5 µM ddTTP); ddC termination mix (150 µM each dATP, dCTP, dGTP, dTTP, 1.5 µM ddCTP); ddG termination mix (150 µM each dATP, dCTP, dGTP, dTTP, 1.5 µM ddGTP). No additional enzyme is added to the termination vials. The enzyme carried in from the prior (labeling) step is sufficient.

The cycled labeling reaction mixture was divided equally among the four termination vials (4 μ l to each termination reaction vial), and overlaid with 10 μ l of 25 light mineral oil.

The four vials were placed in the thermocycler and 30-200 cycles (more than 60 cycles is unnecessary) performed from 95°C for 15 seconds, 55°C for 30 seconds, and 72°C for 120 seconds. This step was conveniently

completed overnight. Other times and temperatures are also effective.

Six μl of reaction mixture was removed (avoiding oil), 3 μl of Stop Solution (95% Formamide 20 mM EDTA, 0.05% Bromophenol Blue, 0.05% Xylene Cyanol FF) added, and heated briefly to 70°-80°C immediately prior to loading on a sequencing gel. Autoradiograms required an 18-36 hour exposure using Kodak XAR-5 film or Amersham Hyperfilm MP. High-quality sequence results with uniform band intensities were obtained. The band intensities were much more uniform than those obtained with similar protocols using Taq DNA polymerase or ΔTaq DNA polymerase.

Example 3: Sequencing with dGTP analogs to eliminate compression artifacts.

For either of the sequencing methods outlined in examples 1 and 2, 7-Deaza-2'deoxy-GTP can be substituted for dGTP in the labeling and termination mixtures at exactly the same concentration as dGTP. When this substitution is made, secondary structures on the gels are greatly reduced. Similarly, 2'-deoxyinosinetriphosphate can also be substituted for dGTP but its concentration must be 10-fold higher than the corresponding concentration of dGTP. Substitution of dITP for dGTP is even more effective in eliminating compression artifacts than 7-deaza-dGTP.

Example 4: Other Sequencing methods using FY polymerases

FY polymerases have been adapted for use with many other sequencing methods, including the use of

5 fluorescent primers and fluorescent-dideoxy-terminators for sequencing with the ABI 373A DNA sequencing instrument.

Example 5: SDS-Polyacrylamide Gel Electrophoresis

Protein samples were run on a 14 X 16 mm 7.5 or 10% 10 polyacrylamide gel. (Gels were predominantly 10% Polyacrylamide using a 14 X 16 mm Hoefer apparatus. Other sizes, apparatuses, and percentage gels are acceptable. Similar results can also be obtained using the Pharmacia Phast Gel system with SDS, 8-25% gradient 15 gels. Reagent grade and ultrapure grade reagents were used.) The stacking gel consisted of 4% acrylamide (30:0.8, acrylamide: bisacrylamide), 125 mM Tris-HCl pH 6.8, 0.1% Sodium Dodecyl Sulfate (SDS). The resolving gel consisted of 7.5 or 10% acrylamide (30:0.8, 20 acrylamide: bisacrylamide), 375 mM Tris-HCl pH 8.8, 0.1% SDS. Running Buffer consisted of 25 mM Tris, 192 mM Glycine and 0.1% SDS. 1X Sample Buffer consisted of 25 mM Tris-HCl pH 6.8, 0.25% SDS, 10% Glycerol, 0.1M Dithiothreitol, 0.1% Bromophenol Blue, and 1mM EDTA. A 25 1/4 volume of 5X Sample Buffer was added to each sample. Samples were heated in sample buffer to 90-100°C for approximately 5 minutes prior to loading. A 1.5 mm thick gel was run at 50-100 mA constant current for 1-3

hours (until bromophenol blue was close to the bottom of

the gel). The gel was stained with 0.025% Coomassie
Blue R250 in 50% methanol, 10% acetic acid and destained
in 5% methanol, 7% acetic acid solution. A record of
the gel was made by taking a photograph of the gel, by
drying the gel between cellulose film sheets, or by
drying the gel onto filter paper under a vacuum.

Other embodiments are within the following claims.

26

SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:	
	(i)	APPLICANT:	AMERSHAM LIFE SCIENCE
5	(ii)	TITLE OF INVENTION:	THERMOSTABLE DNA POLYMERASES
	(iii)	NUMBER OF SEQUENCES:	14
	(iv)	CORRESPONDENCE ADDRESS	:
10		(A) ADDRESSEE: (B) STREET:	Lyon & Lyon 633 West Fifth Street Suite 4700
		(C) CITY:	Los Angeles
		(D) STATE: (E) COUNTRY:	California U.S.A.
		(F) ZIP:	90071-2066
15	(v)	COMPUTER READABLE FORM	:
		(A) MEDIUM TYPE:	3.5" Diskette, 1.44 Mb storage
		(B) COMPUTER:	IBM Compatible
20		(C) OPERATING SYSTEM	
20		(D) SOFTWARE:	Word Perfect 5.1
	(vi)	CURRENT APPLICATION DATE	TA:
		(A) APPLICATION NUMBER (B) FILING DATE: (C) CLASSIFICATION:	R: To Be Assigned
25	(vii)	PRIOR APPLICATION DATA	

5

27

Prior applications total, including application described below: one

(A) APPLICATION NUMBER: US 08/455,686

(B) FILING DATE:

May 31, 1995

32,327

67-3510

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Warburg, Richard J.

(B) REGISTRATION NUMBER:

(C) REFERENCE/DOCKET NUMBER: 219/304-PCT

10 (ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (213) 489-1600

(B) TELEFAX: (213) 955-0440

(C) TELEX:

(2) INFORMATION FOR SEO ID NO: 1:

(i) SEQUENCE CHARACTERISTICS: 15

(A) LENGTH: 1686 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

20 (ix) FEATURE:

(A) NAME/KEY: FY2

(B) LOCATION: 1...1683

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATG CTG GAG AGG CTT GAG TTT GGC AGC CTC CTC CAC GAG TTC GGC CTT Met Leu Glu Arg Leu Glu Phe Gly Ser Leu Leu His Glu Phe Gly Leu

CTG GAA AGC CCC AAG GCC CTG GAG GCC CCC TGG CCC CCG CCG GAA 96 Leu Glu Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu 20 25

30 GGG GCC TTC GTG GGC TTT GTG CTT TCC CGC AAG GAG CCC ATG TGG GCC 144

	Gly	Ala	Phe 35	Val	Gly	Phe	Val	40	Ser	Arg	Lys	Glu	Pro 45	.Met	Tr	Ala	
5	GAT	CTT Leu 50	CTG Leu	GCC	CTG Leu	GCC Ala	GCC Ala 55	GCC Ala	AGG Arg	GGG	GGC	CGG Arg 60	GTC Val	CAC His	CGG Arg	GCC Ala	192
																CTT Leu 80	240
10	CTC Leu	GCC Ala	AAA Lys	GAC Asp	CTG Leu 85	AGC Ser	GTT Val	CTG Leu	GCC Ala	CTG Leu 90	AGG Arg	GAA Glu	GGC Gly	CTT	GGC Gly 95	CTC Leu	288
												CTC Leu					336
15	AAC Asn	ACC Thr	ACC Thr 115	CCC Pro	GAG Glu	GGG Gly	GTG Val	GCC Ala 120	CGG Arg	CGC Arg	TAC Tyr	GGC Gly	GGG Gly 125	GAG Glu	TGG Trp	ACG Thr	384
20												AGG Arg 140					432
												CTT Leu					480
25												CAC His					528
												TTG Leu					576
30												TTC Phe					624
35						Asn						GAA Glu 220					672
					Leu					Lys		GAG Glu					720

	;	y se.	. 1111	sei	245	i Ala	ı Val	i Lei	ı Glı	1 Ala 250	Let	ı Arg	, Gl	ı Al	25		
5	AT(GTC Val	GAG Glu	Lys 260	ille	CTG Leu	Glr	TAC Tyr	265	r Glu	CTO	C ACC	Lys	CTC Let 270	Ly:	G AGC	816
	ACC	TAC	Ile 275	Asp	Pro	Leu	Pro	GAC Asp 280	Leu	ATC	CAC His	CCC Pro	AGG Arg 285	Thi	GGG Gly	CGC Arg	864
10	CTC	CAC His 290	Inr	CGC	TTC Phe	AAC Asn	CAG Gln 295	Thr	GCC	ACG Thr	GCC	ACG Thr	GGC Gly	AGG Arg	Leu	AGT	912
15	AGC Ser 305	ser	GAT Asp	CCC Pro	AAC Asn	CTC Leu 310	CAG Gln	AAC Asn	ATC Ile	CCC Pro	GTC Val 315	CGC Arg	ACC Thr	CCG	CTT Leu	GGG Gly 320	960
	CAG Gln	AGG Arg	ATC Ile	CGC Arg	CGG Arg 325	GCC Ala	TTC Phe	ATC Ile	Ala	GAG Glu 330	GAG Glu	GGG Gly	TGG Trp	CTA Leu	TTG Leu 335	GTG Val	1008
20	GCC Ala	CTG Leu	GAC Asp	TAT Tyr 340	AGC Ser	CAG Gln	ATA Ile	GAG Glu	CTC Leu 345	AGG Arg	GTG Val	CTG Leu	GCC Ala	CAC His 350	CTC Leu	TCC Ser	1056
	GGC Gly	GAC Asp	GAG Glu 355	AAC Asn	CTG Leu	ATC Ile	CGG Arg	GTC Val 360	TTC Phe	CAG Gln	GAG Glu	GGG Gly	CGG Arg 365	GAC Asp	ATC Ile	CAC His	1104
25	ACG Thr	GAG Glu 370	ACC Thr	GCC Ala	AGC Ser	Trp	ATG Met 375	TTC Phe	GGC Gly	GTC Val	CCC Pro	CGG Arg 380	GAG Glu	GCC Ala	GTG Val	GAC Asp	1152
30	CCC Pro 385	CTG Leu	ATG Met	CGC Arg	CGG Arg	GCG Ala 390	GCC Ala	AAG Lys	ACC Thr	Ile	AAC Asn 395	TAC Tyr	GGG Gly	GTC Val	CTC Leu	TAC Tyr 400	1200
	GGC Gly	ATG Met	TCG Ser	Ala	CAC His 405	CGC Arg	CTC Leu	TCC Ser	Gln	GAG Glu 410	CTA Leu	GCC Ala	ATC Ile	CCT Pro	TAC Tyr 415	GAG Glu	1248
35	GAG Glu	GCC Ala	Gln .	GCC Ala 420	TTC .	ATT (GAG Glu	Arg	TAC Tyr 425	TTT Phe	CAG Gln	AGC Ser	Phe	CCC Pro 430	AAG Lys	GTG Val	1296
	CGG Arg	Ala	TGG : Trp :	ATT (GAG :	AAG 1 Lys :	Thr :	CTG (Leu (GAG (GAG (GGC .	Arg i	AGG Arg A	CGG Arg	GGG Gly	TAC Tyr	1344

									GCC Ala	1392
5		GTG Val							ATG Met 480	1440
		GTC Val							AAG Lys	1488
10		TTC Phe								1536
15		GAC Asp								1584
		CGG Arg 530								1632
20		CTG Leu				Glu				1680
	GAG Glu	TGA								1686

- (2) INFORMATION FOR SEQ ID NO: 2:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 30 (ix) FEATURE:
 - (A) NAME/KEY: FY3
 - (B) LOCATION: 1...1686
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATG GCT CTG GAA CGT CTG GAG TTT GGC AGC CTC CTC CAC GAG TTC GGC 48

	Met 1	: Ala	a Lei	1 Gl u	Arg 5	Lev	ı Glu	Phe	e Gly	/ Ser	: Le	u Lev	His	5 . Gl	1 Phe 15	e Gly	
5	CT1 Lev	CTC	GAP Glu	AGC Ser 20	CCC Pro	AAG Lys	GCC Ala	CTC	GAG Glu 25	GAC Glu	GCC Ala	C CCC	TGC Tr	Pro 30	CCC Pro	G CCG Pro	96
	GAA Glu	GGG Gly	GCC Ala 35	TTC Phe	Val	GGC	TTI Phe	Val	CTI Leu	TCC Ser	CGC	AAG Lys	GAG Glu 45	CCC Pro	ATO Met	TGG Trp	144
10	GCC Ala	GAT Asp 50	CTT Leu	CTG Leu	GCC Ala	CTG	GCC Ala 55	GCC	GCC Ala	AGG Arg	GGG	GGC Gly 60	CGG A rg	GTC Val	CAC	CGG Arg	192
	GCC Ala 65	Pro	GAG Glu	CCT Pro	TAT Tyr	AAA Lys 70	GCC Ala	CTC Leu	AGG Arg	GAC Asp	CTG Leu 75	AAG Lys	GAG Glu	GCG Ala	CGG Arg	GGG Gly 80	240
15	CTT Leu	CTC Leu	GCC Ala	AAA Lys	GAC Asp 85	CTG Leu	AGC Ser	GTT Val	CTG Leu	GCC Ala 90	CTG Leu	AGG Arg	GAA Glu	GGC Gly	CTT Leu 95	GGC Gly	288
20	CTC Leu	CCG Pro	CCC Pro	GGC Gly 100	GAC Asp	GAC Asp	CCC Pro	ATG Met	CTC Leu 105	CTC Leu	GCC Ala	TAC Tyr	CTC Leu	CTG Leu 110	GAC Asp	CCT Pro	336
	TCC Ser	AAC Asn	ACC Thr 115	ACC Thr	CCC Pro	GAG Glu	GGG Gly	GTG Val 120	GCC Ala	CGG Arg	CGC Arg	TAC Tyr	GGC Gly 125	GGG Gly	GAG Glu	TGG Trp	384
25	ACG Thr	GAG Glu 130	GAG Glu	GCG Ala	GGG Gly	GAG Glu	CGG Arg 135	GCC Ala	GCC Ala	CTT Leu	TCC Ser	GAG Glu 140	AGG Arg	CTC Leu	TTC Phe	GCC Ala	432
	AAC Asn 145	CTG Leu	TGG Trp	GGG Gly	AGG Arg	CTT Leu 150	GAG Glu	GGG Gly	GAG Glu	GAG Glu	AGG Arg 155	CTC Leu	CTT Leu	TGG Trp	CTT Leu	TAC Tyr 160	480
30	CGG Arg	GAG Glu	GTG Val	Glu	AGG Arg 165	CCC Pro	CTT Leu	TCC Ser	Ala	GTC Val 170	CTG Leu	GCC Ala	CAC His	ATG Met	GAG Glu 175	GCC Ala	528
35	ACG Thr	GGG Gly	GTG Val	CGC Arg 180	CTG Leu	GAC Asp	GTG Val	Ala	TAT Tyr 185	CTC Leu	AGG Arg	GCC A la	Leu	TCC Ser 190	CTG Leu	GAG Glu	576
	GTG Val	GCC Ala	GAG Glu 195	GAG Glu	ATC Ile	GCC Ala	Arg	CTC Leu 200	GAG Glu	GCC Ala	GAG Glu	GTC Val	TTC Phe 205	CGC Arg	CTG Leu	GCC Ala	624
	GGC	CAC	CCC	TTC .	AAC	CTC	AAC	TCC	CGG	GAÇ	CAG	CTG	GAA .	AGG	GTC	CTC	67 2

		21	U				219	5				22	0			l Leu	
5	TT Pho 22	e As	C GA	G CT	A GGG	G CTT / Let 230	Pro	GCC Ala	ATO	C GGG	2 AA 7 Ly: 23:	s Th	G GA	G AA u Ly	G AC s Th	C GGC r Gly 240	
	AA(Lys	G CG	C TCC	Thi	Ser 245	: Ala	GCC Ala	GTC Val	CTC	GA0 1 Glu 250	ı Ala	CT(C CG	G GA	G GC u Ala 25	C CAC a His 5	768
10	Pro	TATO	GTC Val	GA0 Glu 260	Lys	ATC Ile	Leu	G CAG	TAC Tyr 265	Arg	GAC Glu	CTC	ACC Thi	2 AA0	Lev	J AAG 1 Lys	816
	AGC Ser	The	TAC Tyr 275	ITe	Vab	Pro	TTG	Pro 280	Asp	CTC Leu	Ile	CAC His	Pro 285	Arg	ACC Thr	GGC Gly	864
15	CGC	Lev 290	His	ACC	CGC Arg	TTC Phe	AAC Asn 295	Gln	ACG Thr	GCC Ala	ACG	GCC Ala 300	ACG	GGC	AGG Arg	CTA Leu	912
2,0	AGT Ser 305	AGC Ser	TCC Ser	GAT Asp	CCC Pro	AAC Asn 310	CTC Leu	CAG Gln	AAC Asn	ATC Ile	CCC Pro 315	GTC Val	CGC Arg	ACC	CCG Pro	Leu 320	960
	GGG Gly	CAG Gln	AGG Arg	ATC Ile	CGC Arg 325	CGG Arg	GCC Ala	TTC Phe	ATC Ile	GCC Ala 330	GAG Glu	GAG Glu	GGG Gly	TGG Trp	CTA Leu 335	TTG Leu	1008
25	GTG Val	GCC Ala	CTG Leu	GAC Asp 340	TAT Tyr	AGC Ser	CAG Gln	ATA Ile	GAG Glu 345	CTC Leu	AGG Arg	GTG Val	CTG Leu	GCC Ala 350	CAC His	CTC Leu	1056
	TCC Ser	GGC Gly	GAC Asp 355	GAG Glu	AAC Asn	CTG Leu	ATC Ile	CGG Arg 360	GTC Val	TTC Phe	CAG Gln	GAG Glu	GGG Gly 365	CGG Arg	GAC Asp	ATC Ile	1104
30	CAC His	ACG Thr 370	GAG Glu	ACC Thr	GCC Ala	AGC Ser	TGG Trp 375	ATG Met	TTC Phe	GGC Gly	GTC Val	CCC Pro 380	CGG Arg	GAG Glu	GCC Ala	GTG Val	1152
3.5	GAC Asp 385	CCC Pro	CTG Leu	ATG Met	Arg .	CGG (Arg /	GCG Ala	GCC . Ala :	AAG Lys	Thr	ATC Ile 395	AAC Asn	TAC Tyr	Gly	Val	CTC Leu 400	1200
÷	TAC Tyr	GGC Gly	ATG Met	Ser .	GCC Ala : 405	CAC (age Arg	CTC :	Ser	CAG (Gln (410	GAG Glu	CTA (GCC Ala	Ile	CCT Pro 415	TAC Tyr	1248

	GA0	GAC Glu	G GCC	CAG Glr 420	r ATa	Phe	ATT	GAC	425	туз	TTT Phe	CAG Gln	AGC Ser	TTC Phe 430	Pro	C AAG Lys	129
5	val	Arg	435	Trp	Ile	Glu	Lys	440	Leu	Glu	Glu	Gly	Arg 445	Arg	Arg	GGG Gly	
	TAC	GTG Val 450	GIU	ACC Thr	CTC	TTC	GGC Gly 455	Arg	Arg	CGC	TAC Tyr	GTG Val 460	CCA Pro	GAC Asp	CTA Leu	GAG Glu	1392
10	465	Arg	vai	ьуѕ	ser	Val 470	Arg	Glu	Ala	Ala	Glu 475	Arg	Met	Ala	Phe	480	1440
15	Met	PIO	AST	GIN	485	Thr	Ala	Ala	Asp	Leu 490	ATG Met	Lys	Leu	Ala	Met 495	Val	1488
	nåä	Leu	Pne	500	Arg	Leu	Glu	Glu	Met 505	Gly	GCC Ala	Arg	Met	Leu 510	Leu	Gln	1536
20	GTC Val	CAC His	GAC Asp 515	GAG Glu	CTG Leu	GTC Val	CTC Leu	GAG Glu 520	GCC Ala	CCA Pro	AAA Lys	Glu	AGG Arg 525	GCG Ala	GAG Glu	GCC Ala	1584
	Val	GCC Ala 530	CGG Arg	CTG Leu	GCC Ala	Lys	GAG Glu 535	GTC Val	ATG Met	GAG Glu	GGG Gly	GTG Val 540	TAT Tyr	CCC Pro	CTG Leu	GCC Ala	1632
25	GTG Val 545	CCC Pro	CTG Leu	GAG Glu	val (GAG Glu 550	GTG Val	GGG Gly	ATA Ile	Gly	GAG Glu 555	GAC '	TGG (CTC Leu	Ser.	GCC Ala 560	1680
	AAG (TGA +														1689

30 (2) INFORMATION FOR SEQ ID NO: 3:

35

(i) SEQUENCE CHARACTERISTICS:

(D) TOPOLOGY: linear	(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	23 base pairs nucleic acid single linear
(2) Toronogr: Timear	(27	10101001:	Tillear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

WO 96/38568

25

34

(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: GGGATGGCTA GCTCCTGGGA GAGGCGGTGG GCCGACATGC CGTAGAGGAC CCCGTAGTTG ATGG	23
(A) LENGTH: 64 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: GGGATGGCTA GCTCCTGGGA GAGGCGGTGG GCCGACATGC CGTAGAGGAC	
5 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: GGGATGGCTA GCTCCTGGGA GAGGCGGTGG GCCGACATGC CGTAGAGGAC	
GGGATGGCTA GCTCCTGGGA GAGGCGGTGG GCCGACATGC CGTAGAGGAC	
GGGATGGCTA GCTCCTGGGA GAGGCGGTGG GCCGACATGC CGTAGAGGAC 10 CCCGTAGTTG ATGG	
	50 64
(2) INFORMATION FOR SEQ ID NO: 5:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 31 base pairs (B) TYPE: nucleic acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
GGAATTCCAT ATGGACGATC TGAAGCTCTC C	31
(2) INFORMATION FOR SEQ ID NO: 6:	
20 (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

	GGG	GTACCAA GCTTCACTCO	C TTGGCGGAGA G	31
	(2)	INFORMATION FOR	SEQ ID NO: 7:	
		(i) SEQUENCE CH	ARACTERISTICS:	•
5		(A) LENGT (B) TYPE: (C) STRAN (D) TOPOL		
		(xi) SEQUENCE DE	SCRIPTION: SEQ ID	NO: 7:
	GGAZ	TTCCAT ATGCTGGAGA	GGCTTGAGTT T	31
10	(2)	INFORMATION FOR	SEQ ID NO: 8:	
		(i) SEQUENCE CHA	ARACTERISTICS:	
15		(A) LENGTY (B) TYPE: (C) STRANI (D) TOPOLO	nucleic DEDNESS: single	pairs acid
		(xi) SEQUENCE DES	SCRIPTION: SEQ ID	NO: 8:
	GGAA	TTCCAT ATGCTGGAAC	GTCTGGAGTT TGGCAG	CCTC CTC 43
	(2)	INFORMATION FOR S	SEQ ID NO: 9:	
		(i) SEQUENCE CHA	RACTERISTICS:	
20		(A) LENGTH (B) TYPE: (C) STRAND (D) TOPOLO	46 base nucleic sEDNESS: single GGY: linear	
25		(xi) SEQUENCE	DESCRIPTION: SEQ	ID NO: 9:

WO 96/38568

	GGA	HITCC	TA TA	GCTCTGG AACGTCT	GGA GTTTGGCAGC CTCCTC	46
	(2)	INF	ORMATI	ON FOR SEQ ID N	0: 10:	
		(i)	SEQU			
5			(A) (B) (C) (D)	LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	40 base pairs nucleic acid single linear	
		(xi)	SEQU	ENCE DESCRIPTION	N: SEQ ID NO: 10:	•
	GGAA	TTCC	AT ATG	CTGGAAC GTCTGGAA	ATT CGGCAGCCTC	40
10	(2)	INFO	RMATI	ON FOR SEQ ID NO): 11:	
		(i)	SEQUI	ENCE CHARACTERIS	TICS:	•
15				LENGTH: TYPE: STRANDEDNESS: TOPOLOGY:	32 base pairs nucleic acid single linear	
		(xi)	SEQUE	ENCE DESCRIPTION	: SEQ ID NO: 11:	a.
	GGGG	TACCC	T AACC	CCTTGGC GGAAAGCC	AG TC	32
	(2)	INFO	RMATIC	N FOR SEQ ID NO	: 12:	
		(i)	SEQUE	NCE CHARACTERIST	FICS:	
20			(A) (B) (C) (D)	TYPE: STRANDEDNESS:	64 base pairs nucleic acid single linear	
	(xi)	SEQUE	NCE DESCRIPTION:	SEQ ID NO: 12:	
5	GGGAT	'GGCTA	A GCTC	CTGGGA GAGCCTATG	G GCGGACATGC CGTAGAGGAC	50

64

	GCCG	TAGT	rc acco	;							64
	(2)	INF	ORMATIO	N FOR S	EQ ID 1	1 0 :	13:				
		(i)	SEQUE	NCE CHA	RACTER	STICS:					
5				LENGTH TYPE: STRANDI	EDNESS:	nuc sin					
		(xi)	SEQUE	NCE DES	CRIPTIC	N: SEQ	ID NO): 13	:		
	CTAG	TAGO	C ATCC	CCTACG A	AAGAAGO	GGT GG	CCT				35
10	(2)	INFO	RMATIO	N FOR SE	Q ID N	o: :	14:	•			
		(i)	SEQUE	NCE CHAF	RACTERI	STICS:					*
15			(B) (C)	LENGTH: TYPE: STRANDE	DNESS:	nucl	6 base leic a gle ear		ទ		
	(ix)	FEATUR	RE:							
				IAME/KEY OCATION		1683					
		(xi)	SEQUE	NCE DES	CRIPTIO	ON: SEÇ	ID N	0: 14	:		
20	ATG CT Met Le 1	G GAA u Glu	CGT CTG Arg Leu 5	GAA TTC Glu Phe	GGC AGC Gly Ser	CTC CTC Leu Leu 10	CAC GA His Gl	AG TTC Lu Phe	GGC Gly 15	CTC Leu	48
25	CTG GA	G GCC u Ala	CCC GCC Pro Ala 20	CCC CTG Pro Leu	GAG GAG Glu Glu 25	GCC CCC Ala Pro	TGG CO	C CCG TO Pro	CCG Pro	GAA Glu	96 .
	GGG GC	C TTC a Phe 35	GTG GGC Val Gly	TTC GTC Phe Val	Leu Ser	CGC CCC Arg Pro	Glu Pr	o Met	TGG Trp	GCG Ala	144

	Gl	u L	eu L	ys I	lla 1	.TG Leu	Ala	Ala 55	C TO	C A	gg o	SP (GGC Gly	Arg	GT(G CA	AC C	gg rg	GCA Ala	192
5	GC Al 65	A Gi	AC C	CC I	TG (ца	GGG Gly 70	CT/	A AA	G G/	AC C	eu I	AAG Lys 75	GAG Glu	GTC Val	C CG	G G	GC ly	CTC Leu 80	240
	CT	C G(CC A	AG G Ys A	AC C sp L 8	TC eu 5	GCC Ala	GTC Val	TT Le	G GC u Al	C T a S	er A	AGG Arg	GAG Glu	GGG Gly	CT Le	A Gi u Ai	ą	CTC Leu	288
10	GT(J CC	C G(. 7 . 7.	AC G sp A	ac (CCC Pro	ATG Met	Le	C CT Le 10	u A.	CC T	AC Yr	CTC Leu	CTG Leu	GA: Asj	Pr	C :0	TCC Ser	336
15	AAC	AC Th	C AC	_ F	CC G.	AG (GG Gly	GTG Val	GCC Ala 120	a Ar	G CO	CT.	AC yr	GGG Gly	GGG Gly 125	GA0	G TG	G P	ACG Thr	384
	GAG Glu	GA Asj	5 YT	C GO a Al	C CA	AC (ırg	GCC Ala 135	CTC	CT	C TC	G G	lu i	AGG Arg 140	CTC Leu	CAT His	CG Ar	g i	AAC Asn	432
20	CTC Leu 145	CT:	L AA	G CG B Ar	G CI	u G	AG lu 50	GGG Gly	GAG Glu	GAC Glu	AA Ly	G CT S Le	eu I	CTT	TGG Trp	CTC Leu	TA:	rI	CAC His	480
	GAG Glu	GT0 Val	GA:	A AA 1 Ly	G CC s Pr 16	οь	TC '	TCC Ser	CGG Arg	GTC Val	CT Le	u Al	CC C	AC I	ATG Met	GAG Glu	GCC Ala	1	ACC Thr	528
25	GGG Gly	GTA Val	CGC Arg	CT Le	u As	C G	TG (GCC Ala	TAC Tyr	CTT Leu 185	Gli	G GC	C C	TT :	er 1	CTG Leu 190	GAG Glu	C	TT	576
30	GCG Ala	GAG Glu	GA0 Glu 195	. 116	C CG	C CC	gc c	eu (GAG Glu 200	GAG Glu	GA0	GT Va	C T	he A	GC 1	rTG Seu	GCG Ala	G	GC ly	624
	CAC His	CCC Pro 210	TTC	AAC Asr	CTC	AA As	n S	CC (er 1	cgg Arg	GAC Asp	CAG Gln	CTC Let	3 G2 1 G3 22	lu A	.gg g rg V	TG al	CTC Leu	T:	TT he	672
35	GAC Asp 225	GAG Glu	CTT Leu	AGG Arg	CTI Leu	CC Pr 23	O A	CC 1	rrg Leu	GGG Gly	AAG Lys	ACC Thr 235	: G]	AA A	AG A ys T	CA hr	GGC Gly	A/ L) 24	/S	720
	CGC Arg	TCC Ser	ACC Thr	AGC Ser	GCC Ala 245	GC Al	G G a V	TG C	TG eu	GAG Glu	GCC Ala 250	CTA Leu	CG Ar	ig G	AG G lu A	la :	CAC His	CC	CC CO	768
0 1	ATC (FTG	GAG	AAG	ATC	CT	C C	AG C	AC	CGG	GAG	CTC	AC	C A	AG C	TC I	AAG	ΑA	ıC	816

	11	.e V	al G	lu L 2	ys I] 60	e Le	u Gl	n Hi	s Ar	g Gl: 5	u Le	u Th	r Lys	27		s Asn	
5	AC Th	C T	AC G Yr Va 2	11 7	AC CC	C CT	C CCI	A AG Se 28	r Let	C GTO	C CAC l His	C CCC	AGG Arg 285	Th	G GG r Gl	C CGC y Arg	864
	CT Le	C CA u Hi 25	.5 11	C CC	GC TT	C AA	C CAC n Glr 295	1 Thi	G GCC	ACC Thr	GCC Ala	Thr 300	Gly	AGG	CT Le	T AGT u Ser	912
10	AG Se:	2 36	C GA	C CC	C AA	C CTC n Let 310	ı Gln	AAC Asr	ATC	CCC Pro	GTC Val 315	Arg	ACC Thr	Pro	TTO Le	G GGC u Gly 320	960
	CA(3 AG 1 Ar	G AT g Il	C CG e Ar	C CGG G Arg 32!	1 ATS	TTC Phe	GTG Val	GCC Ala	GAG Glu 330	Ala	GGT Gly	TGG Trp	GCG Ala	Let 335	G GTG 1 Val	1008
15	GCC Ala	CT Le	u Aa	С ТА р Ту 34	r Ser	CAG Gln	ATA Ile	GAG Glu	CTC Leu 345	CGC Arg	GTC Val	CTC Leu	GCC Ala	CAC His 350	CTC	TCC Ser	1056
20	GGG Gly	As ₁	G GA: 9 Gl: 35!	u Abi	c cro	ATC	AGG Arg	GTC Val 360	TTC Phe	CAG Gln	GAG Glu	GGG Gly	AAG Lys 365	GAC Asp	ATC	CAC	1104
	ACC Thr	Glr 370	i ini	GC/ Ala	A AGC	TGG	ATG Met 375	TTC Phe	GGC Gly	GTC Val	CCC Pro	CCG Pro 380	GAG Glu	GCC Ala	GTG Val	GAC Asp	1152
25	CCC Pro 385	CTC	ATC Met	G CGC	C CGG J Arg	GCG Ala 390	GCC Ala	AAG Lys	ACG Thr	GTG Val	AAC Asn 395	TAC Tyr	GGC Gly	GTC Val	CTC Leu	TAC Tyr 400	1200
	GGC	ATG Met	Ser	GCC Ala	CAT His 405	AGG Arg	CTC Leu	TCC Ser	CAG Gln	GAG Glu 410	CTA Leu	GCC Ala	ATC (Pro	TAC Tyr 415	GAA Glu	1248
30	GAA Glu	GCG Ala	GTG Val	GCC Ala 420	Pne	ATA Ile	GAG Glu	CGC Arg	TAC Tyr 425	TTC Phe	CAA . Gln	AGC Ser	Phe 1	CCC . Pro . 130	AAG Lys	GTG Val	1296
35	CGG Arg	GCC Ala	TGG Trp 435	ATA Ile	GAA Glu	AAG Lys	ACC Thr	CTG Leu 440	GAG (GAG (GGG .	Arg :	AAG (Lys <i>1</i> 445	egg (GGC Gly	TAC Tyr	1344
	GTG Val	GAA Glu 450	ACC Thr	CTC Leu	TTC Phe	Gly	AGA A Arg A	AGG Arg	CGC (rac (Iyr 1	Val 1	CCC (Pro)	GAC C	CTC /	AAC Asn	GCC Ala	1392
10	CGG Arg	GTG Val	AAG Lys	AGC Ser	GTC Val	AGG Arg	GAG (GCC Ala	GCG (Ala (SAG (Slu <i>l</i>	CGC A	ATG (Met A	SCC T	TC I	AAC Asn	ATG Met	1440

	465	i				470					475	5				480	
	Pro	GTC Val	Gln	GGC	ACC Thr 485	Ala	GCC	GAC Asp	CTC Leu	ATO Met	Lys	CTC Leu	GCC Ala	ATG Met	GTG Val 495	AAG Lys	1488
5	CTC Leu	TTC Phe	CCC Pro	CGC Arg 500	CTC Leu	CGG Arg	GAG Glu	ATG Met	GGG Gly 505	GCC	CGC	ATG Met	CTC Leu	CTC Leu 510	Gln	GTC Val	1536
10	CAC His	GAC Asp	GAG Glu 515	CTC Leu	CTC Leu	CTG Leu	GAG Glu	GCC Ala 520	CCC Pro	CAA Gla	GCG Ala	CGG	GCC Ala 525	GAG Glu	GAG Glu	GTG Val	1584
	GCG Ala	GCT Ala 530	TTG Leu	GCC Ala	AAG Lys	GAG Glu	GCC Ala 535	ATG Met	GAG Glu	AAG Lys	GCC Ala	TAT Tyr 540	CCC Pro	CTC Leu	GCC Ala	GTG Val	1632
15	CCC Pro 545	CTG Leu	GAG Glu	GTG Val	GAG Glu	GTG Val 550	GGG Gly	ATG Met	GGG Gly	GAG Glu	GAC Asp 555	TGG Trp	CTT Leu	TCC Ser	GCC Ala	AAG Lys 560	1680
	GGT Gly	TAG *															1686

Claims

- 1. An enzymatically active DNA polymerase having between 540 and 582 amino acids having a tyrosine at a position equivalent to position 667 of Tag DNA
- 5 polymerase, wherein said polymerase lacks 5' to 3'
 exonuclease activity, and wherein said polymerase has at
 least 95% homology in its amino acid sequence to the DNA
 polymerase of Thermus aquaticus, Thermus flavus or
 Thermus thermophilus, and wherein said polymerase forms
 10 a single polypeptide band or an SDS polyacrylamide gel.
 - 2. The polymerase of claim 1 wherein the amino acid sequence of said polymerase includes less than 3 conservative amino acid changes compared to one said DNA polymerase of said named <u>Thermus</u> species.
- 3. The polymerase of claim 1 wherein the amino acid sequence of said polymerase includes less than 3 additional amino acids compared to one said DNA polymerase of said named <u>Thermus</u> species at its Nterminus.
- 20 4. The polymerase of claim 1 selected from the group consisting of FY2, FY3 and FY4.
 - Purified nucleic acid encoding the DNA polymerase of any of claims 1-4.

- 6. Method for sequencing DNA comprising the step of generating chain terminated fragments from the DNA template to be sequenced with a DNA polymerase of any of claims 1-4 in the presence of at least one chain terminating agent and one or more nucleotide triphosphates, and determining the sequence of said DNA from the sizes of said fragments.
 - 7. Kit for sequencing DNA comprising a DNA polymerase of any of claims 1-4 and a pyrophosphatase.
- 8. The kit of claim 7 wherein said pyrophosphatase is thermostable.

â< ââ?

TP CHETHOREADTE.

9. Apparatus for DNA sequencing having a reactor comprising a DNA polymerase of any of claims 1-4 and a band separator.

Scg P 293 R ctg gcc gag E ctg ഗ aag K acg gag ggc gtg ctt R Cac A A A A A 990 399 899 R gtg V acc ggc acc gtt 999 999 Agc aag K ctc ပ္တဲ့ agc S tgg ^ acg ctg gag gag ည္သ gcc A cgc R acg T tac 421/141 ctc ttc 511/171 511/171 gcc cac A H H A H H A C E 601/231 691/231 691/231 781/261 atc cg c 61/2 aag K 151/ ctg L 241/ ctc _ct31/ gac agg R ctg gag 222 aag K cac H gag E ctc ctt gag E ctc Agc cgg R ctc Stcc gct cgc R 999 6 gtg 262 R tgg ™ gcg tac ctt Stcc gcc cta atc I ggc acc gag acc A gcc atc I ctt gag E ಬ್ಬಿ acg cgc R 200 ctc _ gcc 200 gag gac cac H agg R gtc agg R gcc A ಬ್ಬ ctt L gcc gac gag E cgg R ctg L gcc gaa E gac gag E tac ctg L tcc gag E ggc bog_ ftt tat Y acg ttg ggc 200 ctt cag 0 ctg L p P 99c G Pct tgg M tgg W gcc gac gtc 22 gag E gag ctt agg R cgg R gcc gac Stcc ggc 999 ctc ctc Stcc gcc att I ctt 9gc 9 aac N agc S tac gag 1/1
atg ctg
M/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1
1/1/1

gcg gcc gag E atg M ctt tat gtg aac N gag gag cgg R atg M Sg Sg agg R gag gag ggc a 1411/471 gag gcg gcc g E A A C ctg L <u>9</u> agg R acc⊤ gtg ಬ್ಬ aag K Stc agc S aag K gcc ca H tgg W 1111/371 acc gcc agc 1 T A S V 1201/401 ggc atg tcg g G M S Z 1291/431 aag gtg cgg g K V R Z 1381/461 tac ಬ್ಬ ದ್ದಿ gtc tac 999 cag 0 tac ttt F cgc R aac N tac 1351/451 acc ctc ttc c

^cig. 18

3/12 990 g A gtg tt_ cac H S S S aag K gcc 9gc gcc A ctg 999 agg R gtg 990 acc ದ್ದ acg atc I ပ္တင္ရ gag E 999 G 999 gcc A aag K ctc L gcc A agc S ಬ್ಬ tgg W acg ctg gag gag acg Agc gcc ctg [ctg Tac gcc Sgc acg cgg R Cag D gcc gac acc⊤ aac gag ftc aag K tac aaa K aac gcc atg M gtc . 030 cag (Agc ್ಕ್ S H gag E Rgc 9cc //201 // tt1 331/ gac D gat D ggg G ctg L gag agc S gtc ctc ctt gag E ctt gaa E gcc A ctc cgg R Stcc gct Rgc gtg Sgc R 999 G gcg A tac Y £33 ctt Stcc gcc cta atc I 9gc gag E gcc gcc A ctt atc I ಬ್ಬ gag acg T ₂₆2 ಬ್ಬ aag K ctc Agc ಬ್ಬ cac H gag E gac agg R gag ctg ctc_ 299 agg R gag tt gcc gag E aag K gac gag ctc gag gcc A cac H gag cgc R agg R ಬ್ಬಿ 999 G gtg V agc S gtg V aaa K gag E tac Y tcc S ggc ctg L gag psg P ttt ggc cag 0 tat Y 200 acg T ctt ttg L ftt ggc Gcct Pcct ccg P tgg W gac tgg ⊮ gcc gtc 200 gat gtg gag E ctc gag ctt agg R cgg R gcc gac tcc ttc ಬ್ಬ ggc 999 ctc ctc tcc S gcc agc cgt R gcc gcc ctt 9gc G agg R tat Y aac N agc S tac agt gaa 999 G 293 R 99c tac Y gag gcc ctc acc T Sgc gag aac N Stcc 1/1 atg gct M A 91/31 ccg ccg P P P 181/61 cgg gtc 271/91 ctg agr 631/

cag Q gtg aac N ctc 20C tac Y Fttc atg M 999 Rgc Pct ggc cag 0 acc T agc S tt F aag K gtg aag K 1291/431 ccc aag gtg agc S tac Y 999 cag 0 Sgc gcc tac aac N

ig. 2B

gtg 939 gac tgg ₩ ctt gct L U 262 gac Stcg gtg gag gcc A 29g 8 ದ್ದ 999 gac ctt ¥gg M ctg ctg_ Sgc tgg W gcg A cag O atc I gcc ggt tgg M gag Cag O gag Ctc gag gag Agc gcg υţţ rac Y god P agg R atg M cag 800 262 262 ggc aac N ပ္ပြည gac D ggo gcc ಬ್ಬ 241/8 K 331/ 331/ E E L 421/ 511/ tac rac T tac ctg gag gcc A aag K aag K gg_ 202 gcc cgg R act gag gag gag E 939 6 agg R 999 gtg ctc L tac atc I cgg R gag gcc 999 tac ctt atc I rtt_ ttg L ctg L 990 ttc tgg ™ ggc ეგ გ tgg W aag K s S gac ctc ggc gtg gcg gtg gtg 200 ಬ್ಬ tac cac H gag go d aag K 999 a L SgC R gac tac ეე ე aga K gtt 200 gag aag K tac Y gac ctc gat 222 gcc aag K gaa 999 tcg cac H act T agc S gaa E aag K gcg A gag ಬ್ಬ cag Q cac H gga 390 gcc ctc cgg R gac ttc gtg Pct tt F ggc cgc R gac D cac H 999 6 gcc aag K cag gag agc S ttt ctg gcc ctc gcg Stcc acc gtc cag 0 atc I gaa E cgg R gtg acc gcc A gcc A aag K 541/181 tac cgg Y R 6 631/211 ggg agc c 721/24 tcc cgg a 5 R K 311/271 /121 | gcc | A |/151 | atc 451/ cgc 361/

gcc aaa K acg T ctc gag E gtc V 9cg A gcc Sa H 999 aag 🗸 gcc cgg R gcc c99 R 999 acg gtg acc T agc. tat Y gag 933 A GCC aag K Ctc Agc ttc ctg gag E 3 ್ಟ್ ctg gag acg A GC A aac N ეგ _ ပ္သင္တ acg cgg R cag (2ga R∕ga cct tac Y ದ್ದ Ft Tt aag K tac Y aac N Sgc Rgc gac gac 1591/531 atc ctg cag t I L 0 1681/561 acc cgc ttc a T R F N 1771/591 gcc cgg atg cag cgc atc c 0 R I 1861/621 gtc 99c 9 933 gag gag g ctc tcc (1921) [411/47] ttg gag E PCt PCt gag SgC cac H S T ggc 200 gtg ctg ctg L gac ctc ctg Stcc 999 gcc ಗ್ಗ cag O 990 gtg ctg L د99 8 Pct gtt Stcc 230 ctg ggc acc gtc ggc ctc Agc tt_ gtg gag ಬ್ಬ acc T cgg R Rgc ttc gcc 552 gag gac Sa H aag K gtg aag K gcg ttt F gcc A ပ္တံြ ដ្ឋ tgg ™ gcg ggg gag a A G E F 1291/431 gag gtg gag a E V E K 1561/521 ctg cga gag g L R E E A cgg gtg ctc R V L ctg gtc cac 1921/641 acc gcc agc T A S 2011/671 ggc atg tcc G M S S 2101/701 1471/491 gac gat gag E ctg gag gcc gcc ctg tac cag Q tac Y tac Y gag Stcc ctg L gag 200 aac gac acc rtt L ctc cag 0 ctg L ctg L ದ್ದ ttg L cac H tgg W tgg W gcc gac gtg V 222 gac gtc atc 1 999 gag tt Lt Cag O cgc R gcc gac tcc gac gac 999 ctg ctc Stcc gct ata I ctg L agc S agg R aac N cgc R aac N agc S tac Y gtg V tac tcc S 999 6 1441/481
1441/481
1531/511
1531/511
1631/511
1731/51
1731/571
1630 agg ctt t
1630 agg ctg t
1630 1801/601 949 99c 199 6 E 6 W 1891/631 ttt cag 949 6 F 0 E 6 1171/391 C99 c9t t R R Y 1261/421 99a 9aa 9 G E E 1351/451 9ac 9t9 ç D V ¢

Fig. 31

atg M ttg L tgg ™ t ttg gcc aag gag gtc atg gc L A K E V M E 2491/831 g gag tag 999 6 ಬ್ಬ Sgc ttc ctt_ agg R cgg R tat Y gac ctc r gtc gcc gcc acc ctc ttc g T L F G 2251/751 CCG gtc cag g 2341/781 cag gtg cac g cag gtg cac g 2431/811 ccc ctg cag g

Fig. 3C

CTG TAC ACC GCG CTC CTC L L L L CTC E E E A A TGC CGG R GAG E E GCC A GCC A TAC Y TAC Y AAG KAG CCCG CCCG AAG CAC GAC D GAG E AGG GGC GGC CTC L L CTC CTC GCC A 200 LTG 999 GAC CTC L L A A AAG E'AG ACC ATC I EAG E GAC D Y AC AAG: AAG K ACC T CTC 7GG ATC I GTC V CTC ATC I Ë, ည္ဟမ္ AAC N GAC D CTC L GAC BCC AA GGCC GGC GGC GGC R GAA GTG V GGC G X AG GAG GAG CTG V P CA 6.AG E GGC GCAC H CTC GAG E AAG K 999 CTG L GAG E ಬ್ದ CGC R PAC TAC ACC T 222 GTA V 88 SA H 38. R CTC AAC N OVC D CTC GAC GAA E E E GCC A A CTC AAG K CCC GAC CTC CGG R GAG E TTT F F GGC GGC A AAG K K CAC H CTC S S CTG CTG CTG CTG CTG CTG A A A A CTC CTC CTC CTC CTC A A CTC CTC GT6 V N N CTC R GCC A GCA CAG Q CTG L L GTC V GAG E 57 EAA E GAG E GTG V . . ACC T GCC A GCC A GCC GTC V CGC R 252 GTC V 71 |-CGC R 646 666 677 677 677 677 677 7721 7721 7721 7721 7721 7731 7 1/1 ATG 91/: 91/: 181, K K K K 6AG GAG 361/ GAC 751/ V 631/ 6A6 F 721/ CTC L CTC CTT

646 K K 666 666 677 CTC CTC CTC CTC CTG CTG CTG CCC CAA ACC CAA ACC CAA ACC CAA ACC CCAA ACC CCC CCCAA ACC CCC N N SAG AAG CGC CGC BAC DGCC E" 666 GCA6 QTTC F STC V 666 6 6TG V 557 CF 757 GAG E 262 AGG TCC S GCC A A A GAG E 9 P GCC ATC I ACC 98° CTC L E GAG 6AG 28. CTT ATC I GGC G ACC GTC V ည္တမ္မ ATC I GAG E CCC P ACG 7 7 7 7 7 7 7 7 7 CTC A A GCC CCG CGG R AAG F TTT F F GCC A ಬ್ಬ GAG E TGG W ATG M CAC H GAA A A CTC GAG E CAC ATC I ATA I AGC S 700 S GCC A GTG V бТб V CAG CGG R GTC V ¥₩ A GCA GAG E AGG R CTC CAG AGC S ACC 1471/491 CAG CTG GAA Q L E 1561,521 | 1661,521 | 1661,521 | 1651,521 | 1651,531 | 1651,531 | 1741,531 | 1741,531 | 1831,611 | . ¥ 676 V CCC . ™ 6CC A gAC D gAC D GCC A CTC L GAG E CAG Q CGG R A A GGG S S 666 666 666 CTC CTT CTT S S S V AGC S TTG L AAG CTA L GGG AAG K TAC AAC N AGC S TAC AGT S GCG A 999 GAG GCC A CTC L L YAC ACC CT7 GAG E GAG E GTG V AAC SAAC AGG R GGT GCT CAG CGG R 999 GAC ۲ CGC R AAG K GGG A A TTC 1441/481 66C CAC CCC 766C CAC CCC 76C 76C CCC 76C 76C ACA 66C AAG CCC 74C ACA 67C ACA 1081/361
TTG GCC TCG
TTG GCC TCG
11/1/391
GGG GTG GCG
G V A
1261/421
CGC CTC GAG
R C E
1351/451
GTA CGG CTG
TY
1351/451
GTA CGG CTG

A A CGC CGC R R GAG E

ig. 40

66C 6 6CC 6CC V V CTC CGG R R CAC H ₹ A GCC A A AGG 666 6 CGC R 6TA V 6GC 6 ACC ACG T GAG E . 13 900 P A A A CCC CTT ACC TTG §° EAG E ACC CTC L A A BGCC 282 ACG T . 99~ ¥_N GAG E ËL AAG K 8± AAG NAC N 266 866 GTC V 999 61/2 600 151/ 151/ 241/ 131/ 1 CTC CTC D GAC AGG R CTG L GAG E 22 AAG A SE SE GCC A GAG E E GGC GGC 6AG E GTC V 57 CTT L GAG E E CTC L GAG E GCG CGG R CTC 70G S 296 296 R R AGG GTG V CGC R ₹¥ 2<u>7</u>2 בב ר 28 28 ATC I E_ ၁၉၂ ACC GCC A CTC CTC ATC I GAG E ಜ್ಜ ACG T Sec 557 900 A ,004 GAG E GAC D AGG R ޱ 266 R AAG K GAG E E A A B G C C ಜ್ಞ GAC CAC H H GAA 90G A CTC L 31/11 121/41 121/41 121/41 121/41 121/41 121/71 121/71 121/71 121/71 131/71 131/71 131/71 131/72 GAG E CCC P ACG T 7TC 666C 6 CCC CCC GTG V £ 166 37 TGG W GCC A A GAC D STG V 22 GAC D CTC GAG E CAG 0 R R GCG GAC D gAC D 999 CTC E__ S CTA X AG 999 TAC Y AAC N 9CC A 999 Y GAG E 1/1 ATG M 91/7 CCG CCG P 181/ 181/ V V AGG

GCG A GCC A E E A CTC L CTC AAC CTC L GCC A ₽₩ ည္ဟမ္ 266 866 AAG A R AGG AGG R ACC GTC V 8 SAAG S S TTC F EAA X AG ATA I GAG E R R GCC AGG R AAC N AGA R ACC T 66A 6

Fig. 5B

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 96/06906

I PC 6	C12N15/54 C12N9/12 C12Q1/	68	
According	to International Patent Classification (IPC) or to both national cla	exification and IPC	
	S SEARCHED		
IPC 6	documentation searched (classification system followed by classific C12N C12Q	cation symbols)	
	tion searched other than minimum documentation to the extent th		
	data base consulted during the international search (name of data b	ase and, where practical, search terms used)	· · · · · · · · · · · · · · · · · · ·
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	WO,A,92 06188 (BARNES WAYNE M) 1 1992 cited in the application see the whole document	L6 April	1-9
A	WO,A,91 09944 (CETUS CORP) 11 Ju	aly 1991	1-9
A	WO,A,94 05797 (KISELEV VSEVOLOD EVGENII (RU); KORPELA TIMO (FI)) 1994 see the whole document		1-9
	see the whole document	-/	
<u> </u>	ner documents are listed in the continuation of box C.	X Patent family members are listed in	in annex.
	regories of cited documents :	"I later document published after the inte or priority date and not in conflict wi	th the application but
E' earlier of	ered to be of particular relevance document but published on or after the international late	cited to understand the principle or th invention "X" document of particular relevance; the cannot be considered novel or cannot	claimed invention be considered to
which in citation 'O' docume	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) set referring to an oral disclosure, use, exhibition or	involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in- document is combined with one or ma-	claimed invention ventive step when the ore other such docu-
"P" docume later th	neans int published prior to the international filing date but ian the priority date claimed	ments, such combination being obvious in the art. *&* document member of the same patent	
Date of the a	actual completion of the international search	Date of mailing of the international sec	arch report
1	August 1996	0 9. 08. 96	
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	· Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hornig, H	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int tional Application No PUT/US 96/06906

C (Corre	DOCUMENTS CONSTRUCTOR TO	PUT/US 96/06906
Category	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Gitation of document, with indication, where appropriate, of the relevant passages	In the second second
	created of meeting with murcauch, where appropriate, of the relevant passages	Relevant to claim No.
A .	EUR. J. BIOCHEM. (1992), 209(1), 351-5 CODEN: EJBCAI;ISSN: 0014-2956, 1992, XP000578012 RICHTER, OLIVER MATTHIAS H. ET AL: "Cloning and sequencing of the gene for the cytoplasmic inorganic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum" cited in the application see the whole document	1-9
A	WO.A.90 12111 (HARVARD COLLEGE) 18 October 1990 see the whole document	. 1-9
P,X	EP,A,0 655 506 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE, USA) 31 May 1995 cited in the application see page 6, line 15 - line 17; claims 1-52	1,6,9
P,X	NATURE, vol. 376, 31 August 1995, MACMILLAN JOURNALS LTD., LONDON,UK, pages 796-797, XP002009831 M.A. REEVE AND C.W. FULLER: "A novel thermostable polymerase for DNA sequencing" see the whole document	1-9
,x	AMERSHAM LIFE SCIENCE, EDITORIAL COMMENTS, vol. 22, no. 2, July 1995, pages 29-36, XP002009832 S.B. SAMOLS ET AL.: "Thermo Sequenase; a new thermostable DNA polymerase for DNA sequencing" see the whole document	1-9
P.A	PROC. NATL. ACAD. SCI. U. S. A. (1995), 92(14), 6339-43 CODEN: PNASA6;ISSN: 0027-8424, 3 July 1995, XP002009833 TABOR, STANLEY ET AL: "A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides" see the whole document	1-9
	·	

INTERNATIONAL SEARCH REPORT

information on patent family members

Intr fonal Application No PUI/US 96/06906

 	,		PC1/03	90/00900
Patent document cited in search report	Publication date	Patent mem	family ber(s)	Publication date
WO-A-9206188	16-04-92	AU-B- DE-T- EP-A- JP-T-	8906091 553264 0553264 6502303	28-04-92 28-04-94 04-08-93 17-03-94
WO-A-9109944	11-07-91	US-A- AU-B- CA-A- EP-A- US-A- US-A- US-A- AU-B- AU-B- CA-A- EP-A- JP-T- WO-A-	5322770 656315 7244491 2071213 0506889 5505105 5407800 5310652 5466591 6329694 646430 7176491 2071196 0596825 5504887 9109950	21-06-94 02-02-95 24-07-91 23-06-91 07-10-92 05-08-93 18-04-95 10-05-94 14-11-95 01-09-94 24-07-91 23-06-91 07-10-92 29-07-93 11-07-91
WO-A-9405797	17-03-94	FI-A- AU-B-	923911 4960893	02-03-94 29-03-94
WO-A-9012111	18-10-90	AU-B- AU-B- EP-A- JP-T- LT-A- US-A-	638246 5438290 0467953 4506002 1519 5498523	24-06-93 05-11-90 29-01-92 22-10-92 26-06-95 12-03-96
EP-A-0655506	31-05-95	AU-B- DE-U- DE-U- DE-T- ES-T- WO-A-	4193396 29513622 29513639 655506 2072238 9612042	06-05-96 19-10-95 19-10-95 28-09-95 16-07-95 25-04-96