Database Technology

Topic 5: Functional Dependencies and Normalization

Olaf Hartig

olaf.hartig@liu.se

Motivation

- How can we be sure that the translation of an EER diagram into a relational schema results in a good database design?
- Given a deployed database, how can we be sure that it is well-designed?
- What is a good database design?
 - Informal measures
 - Formal measure: normal forms
 - Definition based on functional dependencies

Informal Measures

Example of Bad Design

- Every tuple contains employee data and department data
- Redundancy
 - Dname and Dmgr_ssn repeated for every employee in a department
- Potential for too many NULL values
 - Employees not in any department need to pad tuples with NULLs
- Update anomalies
 - Deleting the last employee in a department will result in deleting the department
 - Changing the department name or manager requires many tuples to be updated
 - Inserting employees requires checking for consistency of its department name and manager

Informal Measures

- Easy-to-explain meaning for each relation schema
 - Each relation schema should be about only one type of entities or relationships
 - Natural result of good ER design
- Minimal redundant information in tuples
 - Avoids update anomalies
 - Avoids wasted space
- Minimal number of NULL values in tuples
 - Avoids inefficient use of space
 - Avoids costly outer joins
 - Avoids ambiguous interpretation (e.g., unknown vs. does not apply)

Quiz

The above relation schema representing the relationship between employees and the projects which they work on ...

- A. ... is an example of good design
- B. ... does not allow for an employee to work a different number of hours on each project that employee is assigned to
- C. ... uses exactly one tuple to record an employee's name
- D. ... cannot be used in a straightforward manner to record the name and location of a project that has no employees assigned

Foundations of Formal Measures

Functional Dependencies (FDs) – Idea

- Assume that no two actors have the same name
- Each actor has a unique year and city of birth
- Thus, given an actor's name, there is only one possible value for birth year and city
 - name → yearOfBirth
 - name → cityOfBirth

Actor			
name	yearOfBirth	cityOfBirth	
Ben Affleck	1972	Berkeley	
Alan Arkin	1934	New York	
Tommy Lee Jones	1946	San Saba	
John Wells	1957	Alexandria	
Steven Spielberg	1946	Cincinnati	
Daniel Day-Lewis	1957	Greenwich	

- However, given a birth year, we do not have a unique corresponding name or city
 - yearOfBirth → name
 - "yearOfBirth" city
- Cannot tell from the example whether city determines name or birth year

Functional Dependencies (FDs) - Definition

Constraint between two sets of attributes from a relation

Let R be a relational schema with the attributes $A_1, A_2, ..., A_n$ and let X and Y be subsets of $\{A_1, A_2, ..., A_n\}$.

Then, the functional dependency $X \rightarrow Y$ specifies the following constraint on *any* valid relation state r of R.

For *any* two tuples t_1 and t_2 in state r we have that:

if
$$t_1[X] = t_2[X]$$
, then $t_1[Y] = t_2[Y]$.

- where t[X] is the sequence of values that the tuple t has for the attributes in set X
- We say "X determines Y" or "Y depends on X"

Running Example

Consider the following relation schema

R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry)

Functional dependencies?

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

Identifying Functional Dependencies

- Property of the semantics (the meaning) of the attributes
- Recognized and recorded as part of database design
- Given an arbitrary relation state,
 - we cannot determine which FDs hold
 - we can observe that an FD does not hold if there are tuples that violate the FD

Trivial Functional Dependencies

- Some dependencies must always hold
 - {name, yearOfBirth} → {name, yearOfBirth}
 - {name, yearOfBirth} → {name}
 - {name, yearOfBirth} → {yearOfBirth}
- Formally:
 - Let R be a relation schema, and
 - let X and Y be subsets of attributes in R.
 - If Y is a subset of X, then $X \rightarrow Y$ holds trivially.

Implication for FDs

- Let R be a relational schema and let Σ be a set of FDs for R
- **Definition:** Σ is said to logically imply an FD $X \to Y$ if this FD holds in *all instances* of R that satisfy all FDs in Σ
 - Example: Σ = { FD3, FD4 } with FD3: Country → Continent
 and FD4: Continent → ContinentArea

Then, Σ logically implies FD5: Country \rightarrow ContinentArea

- **Definition:** The closure of Σ , denoted by Σ +, is the set of all FDs that are logically implied by Σ
- Clearly, Σ is a subset of Σ +. However, what else is in Σ +?

Reasoning About FDs

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ (we use XY as a short form for $X \cup Y$)
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These three rules are sound
 - i.e., given a set Σ of FDs, any FD that can be derived by applying these rules repeatedly is in Σ^+
- These three rules are complete
 - i.e., given a set Σ of FDs, by applying these rules repeatedly, we will eventually find every FD that is in Σ ⁺

Reasoning About FDs (cont'd)

- Logical implications can be derived by using inference rules called Armstrong's rules:
 - Reflexivity: If Y is a subset of X, then $X \rightarrow Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ (we use XY as a short form for $X \cup Y$)
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Additional rules can be derived:
 - Decomposition: If X → YZ, then X → Y
 - Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudo-transitivity: If $X \to Y$ and $WY \to Z$, then $WX \to Z$

Recall R(PID, PersonName, Country, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

- Show that we also have FD': PID,Country → NumberVisitsCountry, Continent, ContinentArea, PersonName
 - FD5: Country → ContinentArea (transitive rule with FD3 and FD4)
 - FD6: Country → Continent, ContinentArea (union rule with FD3 and FD5)
 - FD7: PID, Country → PID, Continent, ContinentArea (augmentation of FD6)
 - FD8: PID, Country → Continent, ContinentArea (decomposition of FD7)
 - FD9: PID, Country → PersonName (augmentation + decomposition FD1)
 - Finally, FD' by union rule with FD2, FD8, and FD9

Revisiting Keys

- Given a relation schema R with attributes $A_1, A_2, ..., A_n$ and X a subset of these attributes
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ or, $X \rightarrow \{A_1, A_2, ..., A_n\} \setminus X$
 - Often written as $X \rightarrow R$

• Given a set of FDs, how can we easily test whether $X \rightarrow R$?

Let Σ be a set of FDs over the attributes of a relation R and let X be a subsets of these attributes.

The **attribute closure** of X w.r.t. Σ is the maximum set of attributes functionally determined by X.

- If the attribute closure of X contains all attributes, we have $X \rightarrow R$
- The attribute closure can be computed in polynomial time ...

Computing (Super)Keys

```
function ComputeAttrClosure(X, \Sigma)
begin
    X^{+} := X:
    while \Sigma contains an FD Y \rightarrow Z such that
           (i) Y is a subset of X^+, and
           (ii) Z is not a subset of X^+ do
         X^{+} := X^{+} \cup Z:
    end while
    return X^+;
end
                   Example: Recall R(PID, PersonName, Country, Continent,
                                        ContinentArea, NumberVisitsCountry) with:
                     FD1: PID → PersonName
                     FD2: PID, Country → NumberVisitsCountry
                     FD3: Country → Continent
                     FD4: Continent → ContinentArea
```

• The attribute closure of X = { PID, Country } w.r.t. FD1–FD4 is { PID,

Country, PersonName, NumberVisitsCountry, Continent, ContinentArea }

Revisiting Keys (cont'd)

- Given a relation schema R with attributes $A_1, A_2, ..., A_n$ and X a subset of these attributes
- X is a **superkey** of R if $X \rightarrow \{A_1, A_2, ..., A_n\}$ or, $X \rightarrow \{A_1, A_2, ..., A_n\} \setminus X$
 - Often written as $X \rightarrow R$
 - Can be tested easily by computing the attribute closure of X
- However, not every superkey is a candidate key
- To determine that X is a candidate key of R, we also need to show that no proper subset of X determines R
 - i.e., there does not exist a Y such that $Y \subseteq X$ and $Y \rightarrow R$
- Hence, identifying *all* candidate keys is a matter of testing increasingly smaller subsets of $\{A_1, A_2, ..., A_n\}$

Normal Forms and Normalization

Overview

- 1NF, 2NF, 3NF, BCNF (4NF, 5NF)
- Relation in higher normal form also satisfies the conditions of every lower normal form
- The higher the normal form, the less the redundancy
- 3NF and BCNF are our formal measure of good database design
 - Reduce redundancy
 - Reduce update anomalies
- Normalization: process of turning a set of relations that are in lower normal forms into relations that are in higher normal forms
 - by successively decomposing lower normal form relations

First Normal Form (1NF)

Relational schema is in 1NF if it does not allow for non-atomic values

<u>ID</u>	Name	LivesIn
<u>100</u>	Pettersson	{Stockholm, Linköping}
<u>101</u>	Andersson	{Linköping}
<u>102</u>	Svensson	{Ystad, Hjo, Berlin}

<u>ID</u>	<u>LivesIn</u>
<u>100</u>	<u>Stockholm</u>
<u>100</u>	Linköping
<u>101</u>	Linköping
<u>102</u>	<u>Ystad</u>
<u>102</u>	<u>Hjo</u>
<u> 102</u>	<u>Berlin</u>

 $R1_{\scriptscriptstyle 1NF}$

<u>ID</u>	Name
<u>100</u>	Pettersson
<u>101</u>	Andersson
<u> 102</u>	Svensson

Preliminaries for Next Definitions

- 2NF, 3NF, and BCNF are defined in terms of FDs, candidate keys, and (non)prime attributes
 - **Prime attribute**: every attribute that is part of some candidate key
 - Non-prime attribute: every attribute that is not prime

Second Normal Form (2NF)

Relation schema R is in 2NF if it is in 1NF and it does not have any non-prime attributes that are functionally dependent on a part of a candidate key

R_{non2NF}

<u>EmpID</u>	<u>Dept</u>	Work%	EmpName
<u>100</u>	<u>Dev</u>	50	Baker
<u>100</u>	<u>Support</u>	50	Baker
<u>200</u>	<u>Dev</u>	80	Miller

FD1: EmpID → EmpName

FD2: { EmpID, Dept } → { Work%, EmpName }

- Why do we want to avoid such a functional dependency in R?
 - Part of a candidate key can have repeated values
 - Then, so will have the non-prime attributes that depend on the part
 - Hence, redundancy and, thus, waste of space and update anomalies

Decomposition into 2NF

- Let $X \to Y$ be the FD that violates 2NF in a relation schema R
- Create a new relation schema R1 with the attributes in X and in Y
- Remove attributes Y from R to form another new relation schema R2
- New relational database schema consists now of R1 and R2

R_{non2NF}

<u>EmpID</u>	<u>Dept</u>	Work%	EmpName
<u>100</u>	<u>Dev</u>	50	Baker
<u>100</u>	Support	50	Baker
<u> 200</u>	<u>Dev</u>	80	Miller

FD1: EmpID → EmpName

FD2: { EmpID, Dept } → { Work%, EmpName }

 $R1_{2NF}$

<u>EmpID</u>	EmpName
<u>100</u>	Baker
<u>200</u>	Miller

with FD1

R2_{2NF}

<u>EmpID</u>	<u>Dept</u>	Work%
<u>100</u>	<u>Dev</u>	50
<u>100</u>	Support	50
<u>200</u>	<u>Dev</u>	80

with FD3: {EmpID, Dept} → {Work%}

Third Normal Form (3NF)

Relation schema R is in 3NF if it is in 1NF and it does not have any non-prime attributes that are functionally dependent on a set of attributes that is not a superkey

R_{non3NF}

<u>ID</u>	Name	Zip	City
<u>100</u>	Andersson	58214	Linköping
<u> 101</u>	Björk	10223	Stockholm
<u>102</u>	Carlsson	58214	Linköping

- Why do we want to avoid such a functional dependency in R?
 - Set of attributes that is not a candidate key can have repeated values
 - Then, so will have the non-prime attributes that depend on it
 - Hence, redundancy and, thus, waste of space and update anomalies

Decomposition into 3NF

- Let $X \to Y$ be the FD that violates 3NF in a relation schema R
- Create a new relation schema R1 with the attributes in X and in Y
- Remove attributes Y from R to form another new relation schema R2
- New relational database schema consists now of R1 and R2

R_{non3NF}

<u>ID</u>	Name	Zip	City
<u>100</u>	Andersson	58214	Linköping
<u>101</u>	Björk	10223	Stockholm
<u>102</u>	Carlsson	58214	Linköping

FD1: Zip → City

FD2: ID → { Name, Zip, City }

 $R1_{3NF}$

<u> Zip</u>	City
<u>58214</u>	Linköping
<u>10223</u>	Stockholm

with FD1

R2_{3NF}

<u>ID</u>	Name	Zip
<u>100</u>	Andersson	58214
<u>101</u>	Björk	10223
<u>102</u>	Carlsson	58214

with FD3: ID → {Name, ZIP}

Boyce-Codd Normal Form (BCNF)

■ Relation schema R is in BCNF if it is in 1NF and for every FD $X \rightarrow Y$ on R we have that X is a superkey

- Example
 - Let $R(\underline{A},\underline{B},C,D)$ be a relation schema with $AB \to CD$ and $C \to B$
 - AB is a candidate key, and so is AC!
 - R is in 3NF (D is the only non-prime attribute and AB is a cand. key)
 - R is not in BCNF (because C is not a candidate key)

Decomposition into BCNF

- Let $X \to Y$ be the FD that violates BCNF in a relation schema R
- Create a new relation schema R1 with the attributes in X and in Y
- Remove attributes Y from R to form another new relation schema R2
- New relational database schema consists now of R1 and R2
- We may have to find a new primary key for R1 and for R2

Example

- Let $R(\underline{A},\underline{B},C,D)$ be a relation schema with $AB \to CD$ and $C \to B$
- AB is a candidate key, and so is AC!
- *R* is in 3NF (*D* is the only non-prime attribute and AB is a cand. key)
- R is not in BCNF (because C is not a candidate key)
- By using $C \rightarrow B$, we decompose R into $R1(\underline{C},B)$ with $C \rightarrow B$ and $R2(\underline{A},\underline{C},D)$ with $AC \rightarrow D$

Example

Recall R(PID, Country, PersonName, Continent, ContinentArea, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

2NF: Non-prime attributes must not be functionally dependent on a part of a candidate key.

- Is R in 2NF?
 - No, non-prime attribute PersonName depends on PID (part of a candidate key)
 - Decompose R into R1(PID, PersonName) and R2(PID, Country, Continent, ContinentArea, NumberVisitsCountry)
 - R1 is in 2NF, but R2 is not because non-prime attributes Continent and ContinentArea depend on a part of a candidate key (Country)
 - Decompose R2 into R2X(<u>Country</u>, Continent, ContinentArea) and R2Y(<u>PID</u>, <u>Country</u>, NumberVisitsCountry)
 - Now, with R1, R2X, and R2Y we have decomposed R into 2NF relations

Now we have R1(PID, PersonName),

R2X(Country, Continent, ContinentArea), and

R2Y(PID, Country, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

- Are R1, R2X, and R2Y in 3NF, respectively?
 - R1 and R2Y are
 - R2X is not because of FD4
 - Decompose R2X into R2XA(<u>Country</u>, Continent) and R2XB(<u>Continent</u>, ContinentArea)
 - Now, with R1, R2XA, R2XB, and R2Y we have 3NF relations only

3NF: Non-prime attributes must not be functionally dependent on a set of attributes that is not a superkey.

Now we have R1(PID, PersonName),

R2XA(Country, Continent),

R2XB(Continent, ContinentArea), and

R2Y(PID, Country, NumberVisitsCountry) with:

FD1: PID → PersonName

FD2: PID, Country → NumberVisitsCountry

FD3: Country → Continent

FD4: Continent → ContinentArea

BCNF: For every FD $X \rightarrow Y$ it holds that X is a superkey of the relation that the FD is associated with.

- Are R1, R2XA, R2XB, and R2Y in BCNF, respectively?
 - Yes.

Desirable Properties of Normalization

Desirable Properties

- Keep all the attributes from the initial schema
- Non-additive join property (also called lossless join property)
 - It must be possible that if we join the smaller relations produced by normalization, then we recover the initial relation without generating spurious tuples
 - Our normalization procedure has this property
- Example for a decomposition that does not have the property
 - Consider R(Student, Assignment, Mark)
 - Decomposition into R1(Student, Mark) and R2(Assignment, Mark)
 - There are instances of R for which joining their decomposed R1 and R2 (by R1.Mark=R2.Mark) result in another instance of R containing additional ("spurious") tuples that were not in the initial instance of R

Desirable Properties (cont'd)

- Dependency preservation: Each FD of the initial schema is preserved as an FD of at least one of the smaller relations produced by normalization
- Example: Consider R(Proj, Dept, Div) with FD1: Proj → Dept

FD2: Dept → Div

FD3: Proj → Div

- *R* is not in BCNF (why?)
- Two alternative decompositions into BCNF relations:

D1: R1(Proj, Dept) with FD1 and R2(Dept, Div) with FD2

D2: R1(Proj, Dept) with FD1 and R3(Proj, Div) with FD3

(Notice that, by our normalization approach, we would not do D2 because FD3 does not violate the BCNF condition)

- *D2* does not preserve *FD2*! D1 does because in *D1* it can be reconstructed by applying the transitivity rule to *FD1* and *FD3*.
- Our normalization procedure can guarantee dependency preservation only up to 3NF (that is, there are some cases in which the normalization into BCNF is not dependency preserving); same holds for any other procedure

