Table 2.1 Summary of methods for the solution of ordinary differential equations. The second-mid third-order Runge-Kutta methods are low-storage variants; $h = \Delta t$		
	Order	Formulae
Forward	1	$\phi_{n+1} = \phi_n + hF(\phi_n)$
Backward	1	$\phi_{n+1} = \phi_n + hF(\phi_{n+1})$
Asselin leapfrog	1	$\frac{\phi_{n+1} = \overline{\phi_{n-1}} + 2hF(\phi_n),}{\overline{\phi_n} = \phi_n + \gamma(\overline{\phi_{n-1}} - 2\phi_n + \phi_{n+1})}$
Leapfrog	2	$\phi_{n+1} = \phi_{n-1} + 2hF(\phi_n)$
Adams- Bashforth	2	$\phi_{n+1} = \phi_n + \frac{h}{2} [3F(\phi_n) - F(\phi_{n-1})]$
Trapezoidal	2	$\phi_{n+1} = \phi_n + \frac{h}{2} \left[F(\phi_{n+1}) + F(\phi_n) \right]$
Runge-Kutta (2-step explicit)	2	$q_1 = hF(\phi_n), \phi_1 = \phi_n + q_1,$ $q_2 = hF(\phi_1) - q_1, \ \phi_{n+1} = \phi_1 + q_2/2$
Magazenkov	2	$\phi_n = \phi_{n-2} + 2hF(\phi_{n-1})$ $\phi_{n+1} = \phi_n + \frac{h}{2} [3F(\phi_n) - F(\phi_{n-1})]$
Leapfrog- trapezoidal	2	$\phi_1 = \phi_{n-1} + 2hF(\phi_n),$ $\phi_{n+1} = \phi_n + \frac{h}{2} [F(\phi_1) + F(\phi_n)]$
Adams- Bashforth	3	$\phi_{n+1} = \phi_n + \frac{h}{12} \left[23F(\phi_n) - 16F(\phi_{n-1}) + 5F(\phi_{n-2}) \right]$
Adams- Moulton	3	$\phi_{n+1} = \phi_n + \frac{h}{12} \left[5F(\phi_{n+1}) + 8F(\phi_n) - F(\phi_{n-1}) \right]$
Adams-Bashforth-Moulton predictor corrector	3	$\phi_1 = \phi_n + \frac{h}{2} [3F(\phi_n) - F(\phi_{n-1})],$ $\phi_{n+1} = \phi_n + \frac{h}{12} [5F(\phi_1) + 8F(\phi_n) - F(\phi_{n-1})]$
Runge-Kutta (3-step explicit)	3	$q_1 = hF(\phi_n), \qquad \phi_1 = \phi_n + q_1/3,$ $q_2 = hF(\phi_1) - 5q_1/9, \qquad \phi_2 = \phi_1 + 15q_2/16,$ $q_3 = hF(\phi_2) - 153q_2/128, \ \phi_{n+1} = \phi_2 + 8q_3/15$

Runge-Kutta (4-step explicit) $q_1 = hF(\phi_n), q_2 = hF(\phi_n + q_1/2),$ $q_3 = hF(\phi_n + q_2/2), q_4 = hF(\phi_n + q_3),$ $\phi_{n+1} = \phi_n + (q_1 + 2q_2 + 2q_3 + q_4)/6$