MATEMÀTIQUES II DELS GRAUS DE BIOLOGIA I BIOQUÍMICA. TAULES DE CONTRASTOS D'HIPÒTESI MÉS USUALS I: UNA MOSTRA

En aquest document recollim els contrastos d'hipòtesis paramètrics més usuals per a una mostra que es poden portar a terme "a mà." Per a cada contrast donam: les condicions, l'estadístic de contrast, la regió crítica, l'interval de confiança i el p-valor.

En la definició dels l'estadístics hem emprat la notacions següents:

- Z: Distribució normal estàndard N(0,1).
- t_n : Distribució t de Student amb n graus de llibertat.
- χ_n^2 : Distribució khi-quadrat amb n graus de llibertat.
- X_{α} : Indica l' α -quantil de la variable aleatòria X, és a dir (si X és contínua, que és sempre el cas en aquest document), el valor on la funció de distribució de X val α : $P(X \leq X_{\alpha}) = \alpha$.

Recordau la traducció als quantils de les propietats de simetria de Z i t:

- Simetria de la normal: $z_{\alpha} = -z_{1-\alpha}$.
- Simetria de la t de Student: $t_{n,\alpha} = -t_{n,1-\alpha}$.

Els contrastos paramètrics amb R els estudiam a la lliçó 23 del manual.

Tipus de contrast i condicions							
Hipòtesi nul·la	Condicions	Mostra	Hipòtesi al- ternativa	Cas			
$H_0: \mu = \mu_0$	Població normal o n gran. σ coneguda.	n observacions independents.	$H_1: \mu \neq \mu_0$	I			
			$H_1: \mu < \mu_0$	II			
			$H_1: \mu > \mu_0$	III			
	Població normal. σ desconeguda.	n observacions independents.	$H_1: \mu \neq \mu_0$	IV			
			$H_1: \mu < \mu_0$	V			
			$H_1: \mu > \mu_0$	VI			
	Població qualsevol. σ desconeguda. n gran.	n observacions independents.	$H_1: \mu \neq \mu_0$	VII			
			$H_1: \mu < \mu_0$	VIII			
			$H_1: \mu > \mu_0$	IX			
$H_0: p = p_0$	Població Bernoulli. $n \ge 100, \ n\widehat{p} \ge 10, \ n(1-\widehat{p}) \ge 10$	n observacions independents.	$H_1: p \neq p_0$	X			
			$H_1: p < p_0$	XI			
			$H_1: p > p_0$	XII			
$H_0: \sigma^2 = \sigma_0^2$	Població Normal. μ desconeguda	$n \ { m observacions} \ { m independents}.$	$H_1: \sigma^2 \neq \sigma_0^2$	XIII			
			$H_1: \sigma^2 < \sigma_0^2$	XIV			
			$H_1: \sigma^2 > \sigma_0^2$	XV			

Detalls del test						
Cas	Estadístic	Regió crítica	Interval confiança	p-valor		
I	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$	$\{Z{\leqslant}{-}z_{1-\frac{\alpha}{2}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left] \overline{X} - z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \right[$	$2P(Z\geqslant z)$		
II	V ·-	$\{Z \leqslant z_{\alpha}\}$	$\left]-\infty, \overline{X}-z_{lpha}\cdotrac{\sigma}{\sqrt{n}} ight[$	$P(Z \leqslant z)$		
III	és $N(0,1)$	$\{Z\geqslant z_{1-\alpha}\}$	$\overline{X} - z_{1-\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty$	$P(Z\geqslant z)$		
IV	$T = \frac{\overline{X} - \mu_0}{\frac{\tilde{S}}{\sqrt{n}}}$	$ \qquad \qquad \{T {\leqslant} -t_{n-1,1-\frac{\alpha}{2}}\} {\cup} \{T {\geqslant} t_{n-1,1-\frac{\alpha}{2}}\} $	$\left\ \overline{X} - t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\tilde{S}}{\sqrt{n}}, \overline{X} + t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{\tilde{S}}{\sqrt{n}}\right\ $	$2P(t_{n-1} \geqslant T)$		
V		$\{T \leqslant t_{n-1,\alpha}\}$	$\left]-\infty,\overline{X}-t_{n-1,\alpha}\cdot\frac{\overline{S}}{\sqrt{n}}\right[$	$P(t_{n-1} \leqslant T)$		
VI	és t_{n-1}	$\{T\geqslant t_{n-1,1-\alpha}\}$	$\overline{X} - t_{n-1,1-\alpha} \cdot \frac{\tilde{S}}{\sqrt{n}}, \infty$	$P(t_{n-1}\geqslant T)$		
VII	$Z = \frac{\overline{X} - \mu_0}{\frac{\tilde{S}}{\sqrt{n}}}$	$\{Z{\leqslant}{-z_{1-\frac{\alpha}{2}}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left]\overline{X} - z_{1-\frac{\alpha}{2}} \cdot \frac{\tilde{S}}{\sqrt{n}}, \overline{X} + z_{1-\frac{\alpha}{2}} \cdot \frac{\tilde{S}}{\sqrt{n}}\right[$	$2P(Z\geqslant z)$		
VIII	és aprox.	$\{Z \leqslant z_{\alpha}\}$	$\left]-\infty,\overline{X}-z_{lpha}\cdotrac{ ilde{S}}{\sqrt{n}} ight[$	$P(Z \leqslant z)$		
IX	N(0, 1)	$\{Z\geqslant z_{1-\alpha}\}$	$\left] \overline{X} - z_{1-lpha} \cdot rac{ ilde{S}}{\sqrt{n}}, \infty ight[$	$P(Z\geqslant z)$		
X	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\{Z{\leqslant}z_{\frac{\alpha}{2}}\}{\cup}\{Z{\geqslant}z_{1-\frac{\alpha}{2}}\}$	$\left[\ \right]\widehat{p}+z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}},\widehat{p}+z_{1-\frac{\alpha}{2}}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\left[\ \right.$	$2P(Z\geqslant z)$		
XI	$ \oint_{0}^{\infty} \frac{\sqrt{\frac{p_0(1-p_0)}{n}}}{n} $ és $N(0,1)$	$\{Z \leqslant z_{\alpha}\}$	$\left[-\infty,\widehat{p}-z_{lpha}\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}} ight[$	$P(Z \leqslant z)$		
XII	05 11 (0, 1)	$\{Z\geqslant z_{1-lpha}\}$	$\widehat{p}-z_{1-lpha}\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}},\infty$	$P(Z\geqslant z)$		
XIII ¹	$\chi^2 = \frac{(n-1)\tilde{S}^2}{\sigma_2^2}$	$\{\chi^2 \le \chi^2_{n-1,\frac{\alpha}{2}}\} \cup \{\chi^2 \ge \chi^2_{n-1,1-\frac{\alpha}{2}}\}$	$\left] \frac{(n-1)\bar{S}^2}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{(n-1)\bar{S}^2}{\chi^2_{n-1,\frac{\alpha}{2}}} \right[$	$2\min\{P(\chi_{n-1}^2 \leqslant \chi^2),$ $P(\chi_{n-1}^2 \geqslant \chi^2)$		
XIV	$\text{és }\chi^2_{n-1}$	$\{\chi^2 \leqslant \chi^2_{n-1,\alpha}\}$	$\left]0,\frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,\alpha}}\right[$	$P(\chi_{n-1}^2 \leqslant \chi^2)$		
XV		$\{\chi^2 \geqslant \chi^2_{n-1,1-\alpha}\}$	$\left[\frac{(n-1)\tilde{S}^2}{\chi^2_{n-1,1-\alpha}},\infty\right[$	$P(\chi_{n-1}^2 \geqslant \chi^2)$		

¹En aquest cas (**XIII**), si μ és coneguda, es pot emprar l'estadístic $\chi^2 = \frac{\sum\limits_{i=1}^n (X_i - \mu)^2}{\sigma_0^2}$, que tendrà distribució χ_n^2 .