QCD and Monte Carlo event generators

Monte Carlo course seminar - Milan, February 2021

Outline

- Hadron collisions and strong interactions
 - Hadron collisions and strong interactions
 - Renormalization group
 - QCD factorization
- MC and Parton Showers
 - Collinear factorization
 - Final state radiation
 - Initial state radiation
- Hadronization: some basics
 - Large number of colors approximation
 - Hadronization models

Strong interactions

QCD from e^+e^- annihilation

Quantum Chromodynamics (QCD) \rightarrow theory describing the interaction between quarks and gluons (strong interactions)

QCD arises already from e^+e^- annihilation $\to R_0$ ratio

$$R_0 = \frac{\sigma(\gamma^* \to \text{hadrons})}{\sigma(\gamma^* \to \mu^+ \mu^-)} = 3 \sum_f c_f^2$$

- Color factor (3 color for each quark)
- Sum over charges of different flavors
 - Threshold and higher order corrections

Strong interactions

Renormalization group

• Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s(\mu)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{\pi}\right)^{n+1}$$

- Coupling $lpha_s$ evolves with scale μ as given by RGE ightarrow LO behavior driven by eta_0
- $eta_0^{\rm QCD}>0$ \Longrightarrow weakly coupled at large energies, asymptotic freedom
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent!

Strong interactions

Renormalization group

 Running coupling given by Renormalization Group Equation (RGE)

$$\alpha_s(\mu) = \frac{1}{\beta_0 \log\left(\frac{\mu^2}{\Lambda_s^2}\right)}$$

- β_0 LO of the β function, is > 0
- Λ_s , parameter that defines value of the coupling at large scales

QCD is weakly coupled for $\mu >> \Lambda_s \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Factorization theorem

QCD factorization

Separate process PDFs and partonic (hard) interaction

$$\sigma^{F}(p_{1},p_{2}) = \sum_{\alpha,\beta} \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1},\mu_{F}^{2}) * f_{\beta}(x_{2},\mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1},x_{2}p_{2},\alpha_{s}(\mu_{R}^{2}),\mu_{F}^{2})$$

MC Parton showers

Partons in the initial and final state emit radiation. Initial state Radiation (ISR) and Final State Radiation (FSR) model by Monte Carlo (MC) shower algorithms

Shower Monte Carlo programs (HERWIG, PYTHIA)

- Libraries for computing SM and BSM cross sections
- Shower algorithms produce a number of enhanced coloured parton emissions to be added to the hard process
- Hadronization models, underlying event, decays of unstable hadrons, etc

Collinear limit

- QCD emission processes are enhanced in the collinear limit (θ small)
- σ dominated by collinear splittings $q \to qg, g \to gg, g \to q\bar{q}$ (measurement not sensitive to such small scales)

Collinear factorization — The cross section factorizes into the product of a tree-level cross section and a splitting factor out tree level amplitude and splitting

$$|M_{n+1}|^2 d\Phi_{n+1} \Rightarrow |M_n|^2 d\Phi_n \quad \frac{\alpha_S}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\phi}{2\pi}.$$

$$d\Phi_{n} = (2\pi)^{4} \delta^{4} \left(\sum_{i}^{n} k_{i} - q \right) \prod_{i}^{n} \frac{d^{3}k_{i}}{(2\pi)^{3} 2k_{i}^{0}}$$

Kinematics of splitting

Kinematics of splitting given by (t, z, ϕ)

- t: parameter with dimensions of energy that vanish in the collinear limit
 - Virtuality $t=(k+l)^2=k^0l^04\sin^2\left(\frac{\theta}{2}\right)\approx k^0l^0\theta^2\approx z(1-z)E^2\theta^2$
 - Transverse momentum $t = k_{\perp}^2 = I_{\perp}^2 = z^2(1-z)^2E^2\theta^2$
 - Hardness $F^2\theta^2$
- z: fraction of energy of radiated parton $z = \frac{k^0}{k^0 + l^0}$
- \bullet ϕ represents azimuth of the k, l plane

AP splitting functions

Factorization holds for small angles \to small t variable Difference in the splitting \to Altarelli-Parisi splitting functions (singular in $z \to 0, 1$)

$$P_{\rm q,qg}(z) = C_{\rm F} \frac{1+z^2}{1-z}$$

$$P_{\rm g,gg}(z) = C_{\rm A} \left(\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right)$$

$$P_{\rm g,qq}(z) = T_{\rm f}(z^2 + (1-z)^2)$$

$$m$$

$$k+l+m \quad k+l \quad x \quad k$$

$$m$$

$$1$$

We can proceed in an iterative way

$$|M_{n+2}|^2 d\Phi_{n+2} = |M_n|^2 d\Phi_n \frac{\alpha_s(t')}{2\pi} P_{q,qg}(z') \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_s(t)}{2\pi} P_{q,qg}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi}$$

Angles become small, maintaining a strong ordering relation heta' >> heta o 0

Exclusive final state

To describe exclusive final state \rightarrow sum perturbative expansion to all orders in α_s

$$\sigma_0 \alpha_{\rm s}^n \int \frac{dt_1}{t_1} \dots \frac{dt_n}{t_n} \theta(Q^2 > t_1^2 > \dots > t_n^2 > \Lambda_{\rm S}^2) = \sigma_0 \frac{\alpha_{\rm s}^n}{n!} \log^n \left(\frac{Q^2}{\Lambda_{\rm S}^2} \right)$$

Possible if we limit to the most singular terms, in ordered sequence of angles Collinear approximation \longrightarrow Leading log approximation

General structure

Approximated description of a hadronic final state Model a given hard scattering with arbitrary number of enhanced radiations

- Choose hard interaction with specified Born kinematics
- Consider all possible tree-level splittings for each coloured parton
- Assign the variables (t, z, ϕ) at each splitting vertex, t ordered in decreasing way
- At each splitting vertex assign the weight

$$\frac{\alpha_{\rm S}(t)}{2\pi} P_{\rm i,jl}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi}$$

• Each line has a weight known as Sudakov factor

$$\Delta_i(t',t'') = \exp\left[-\sum_{(jl)} \int_{t''}^{t'} \frac{dt}{t} \int_0^1 dz \ \frac{\alpha_S(t)}{2\pi} \ P_{i,jl}(z)\right]$$

Formal representation of a shower

Graphical notation for the representation of a shower

$$S_i(t, E) = \frac{t, E}{t}$$

Ensemble of all possible branchings from parton i at scale t

Forward evolution equation \rightarrow recursive structure

$$S_{i}(t,E) = \Delta_{i}(t,t_{0})S_{i}(t_{0},E) + \sum_{jl} \int_{t_{0}}^{t} \frac{dt'}{t'} \int_{0}^{1} dz \int_{0}^{2\pi} \frac{d\phi}{2\pi} \frac{a_{S}(t')}{2\pi} \Delta_{i}(t',t_{0})S_{j}(t',zE)S_{l}(t',(1-z)E)$$

Probabilistic interpretation

$$\frac{\alpha_{\rm s}(t')}{2\pi}P_{\rm i,jl}(z')\frac{dt'}{t'}dz'\frac{d\phi'}{2\pi}$$

Probability of branching in the infinitesimal volume $\mathit{dt'}\ \mathit{dz}\ \mathit{d\phi}$

$$dP_{br} = \frac{\alpha_{\rm s}(t')}{2\pi} \frac{dt'}{t'} \int_0^1 dz' P_{\rm i,jl}(z') \int_0^{2\pi} \frac{d\phi'}{2\pi}$$

Probability of branching in the interval dt'

$$dP_{nobr} = 1 - dP_{br} = 1 - \frac{\alpha_{\rm s}(t')}{2\pi} \frac{dt'}{t'} \int_0^1 dz' P_{\rm i,jl}(z') \int_0^{2\pi} \frac{d\phi'}{2\pi}$$

Probability of first branching in the infinitesimal volume dt'

$$\Delta_i(t,t') = 1 - dP_{br} = \prod_i^n \left(1 - \frac{\alpha_s(t_i)}{2\pi} \frac{\delta t}{t_i} \int_0^1 dz' \int_0^{2\pi} P_{i,j}(z') \frac{d\phi'}{2\pi} \right)$$

Sudakov form factor

$$dP_{fbr} = \Delta_i(t,t') \frac{\alpha_{\rm s}(t')}{2\pi} P_{\rm i,jl}(z') \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \label{eq:dPfbr}$$

Probability of no-branching in the infinitesimal volume dt' dz $d\phi$

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- ① Set scale t = Q, hard scale of the process.
- 2 Generate random number 0 < r < 1.
- 3 Solve $r = \Delta_i(t, t')$ for t'.
- **4** i) if $t' < t_0$, no further branching and stop shower.
- **5** ii) if $t' \geq t_0$, generate j, l with energies

$$E_j = zE_i$$
 and $E_l = (1-z)E_i$,

following the $P_{i,jl}(z)$ distribution and with azimuth ϕ uniform in the interval $[0,2\pi]$.

the angle of between their momenta is fixed by t'.

6 For each branched partons set t = t' and start from (2).

General structure

ISR showers are spacelike

$$\begin{split} p_{\pm} &= E \pm p_z & p_{\mathrm{T}} = \sqrt{p_x^2 + p_y^2} \\ E^2 &- p_x^2 - p_y^2 - p_z^2 = m^2 \Rightarrow p_+ p_- = m^2 + p_{\mathrm{T}}^2 \end{split}$$

Consider the splitting between a particle a that splits into b and c

$$p_{-a} = p_{-b} + p_{-c} \Leftrightarrow \frac{m_a^2}{p_{+a}} = \frac{m_b^2 + p_{b\mathrm{T}}^2}{p_{+b}} + \frac{m_c^2 + p_{c\mathrm{T}}^2}{p_{+c}} \Leftrightarrow m_a^2 = \frac{m_b^2}{z} + \frac{m_c^2}{1-z} + \frac{p_{\mathrm{T}}^2}{z(1-z)}$$

$$\text{ISR} \quad m_a \approx 0, m_c \approx 0 \ \Rightarrow m_b^2 \approx -\frac{p_{\mathrm{T}}^2}{1-z}$$

$$\text{FSR} \quad m_b \approx 0, m_c \approx 0 \ \Rightarrow m_a^2 \approx \frac{p_{\mathrm{T}}^2}{z(1-z)}$$

Formal representation

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Forward evolution equation. Great amount of computation time to generate configurations leading to the scattering that we want

Backwards evolution equation

- ullet Moderns MC programs o recursive procedure starting at the large scale rather than the small one
- The blob I at the splitting vertex given by the inclusive splitting kernel P_{jm} , instead of the exclusive one $P_{i,ml}$
- Backwards evolution equation (scale dependent parton density)

$$f_{m}^{(i)}(x,t) = \delta_{im}\delta(1-x)\Delta_{m}(t,t_{0}) + \int_{t_{0}}^{t} \frac{dt'}{t'} \int_{x}^{1} \frac{dz}{z} \sum_{j} f_{j}^{(i)}(z,t') \frac{\alpha_{S}(t')}{2\pi} \hat{P}_{jm}\left(\frac{x}{z}\right) \Delta_{m}(t,t')$$

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- **1** Set scale t = Q, hard scale of the process.
- 2 Generate random number 0 < r < 1
- Solve

$$r = \frac{f_m^{(i)} \Delta_m(t, t')}{f_m^{(i)}(t, x)} \quad \text{for } t'.$$

- lacktriangledown i) if $t' < t_0$, no further branching and stop shower.
- **5** ii) if $t' \geq t_0$, generate j, l with energies

$$E_j = zE_i$$
 and $E_l = (1-z)E_i$,

following the $P_{i,jl}(z)$ distribution and with azimuth ϕ uniform in the interval $[0,2\pi]$.

the angle of between their momenta is fixed by t'.

⑤ For parton j set t = t' and start from (2). For parton l generate a timelike parton shower according to the algorithm shown previously.

19 / 21

Hadronization

Some basics

A parton becomes a measurable hadron through the emission of a partonic shower Large number of color approximation \rightarrow each parton identified by a unique label

Hadronization models

- Lund string model
 - non perturbative production of quarks and antiquarks
 - intermediate gluons are transverse kicks of a continuum medium
- Cluster models
 - preconfinement, assuming subsystems of color singlet partons with universal invariant mass distribution (power suppressed at high masses)
 - gluons are forced to split in quark-antiquark pair

Summary

- LHC processes require factorization in perturbative and non perturbative part
- pQCD applied at high energies
- Monte Carlo shower programs describe non perturbative physics in hadron physics
- Agreement and precision Monte Carlo shower programs

21 / 21