EX-OR 18 EX-NOR properties:- 250 904 8 CHAM

$$+ A \oplus \overline{A} = 1$$

$$9.\overline{A} \oplus \overline{B} = A \oplus B$$
 $2+A=V$

Let
$$n = A$$
, $\overline{n} = A$

$$y=B$$
, $\overline{y}=B$

$$= \frac{\pi y}{A \oplus B}$$

ABBC BD = D

if AOB = C 12.

Tequired to realize the boolean function Y.

$$Y = \overline{\omega} \cdot \overline{Z} (x+y)$$

$$Y = A (x+y)$$

$$Y = Ax + Ay$$

$$Y = \overline{Ax} \cdot \overline{Ay}$$

$$Y = \overline{Ax} \cdot \overline{Ay}$$

9. Identify minimum no. of 2 Hp NOR gates tequired to realize the boolean function Y = C + AB.

(a) 3 (b) 4 (c) 5 (d) None.

$$Y = (c + A)(c + B)$$

$$Y = A + c + B + c$$

NOTE: -

2 level 2 level NAND - NAND

2-livel 2 level

OR - AND NOR-NOR

 $(\bar{g}+\bar{\Lambda})(\theta+\Lambda)$

Y A A

twhat is the minimum no. of NAND & NOR gates to implement the above ckt.

(a) 1,4 (b) 411 (c) 2,4 (d) None

$$f = (\overline{x}, \overline{y}, \overline{y}) = x + \overline{y}$$

$$= (\overline{x} + \overline{y}) + \overline{x}$$

$$= \overline{x} + \overline{y}$$

Gate		Alternate gate	
NANA		Bubbled OR	
NOR		Bubbled AND	
MAND		Bubbled NOR	
		Bubbled NAND	
		84 A 84A =	
man on	CA LES	(8+M)(A+M) =	
	MAND	NOR *	
	(2n-2)	(3n-3)	
P=AB	2	3	
	2.51	1 2 7/2	
f_ = ABC	y HOH	CIA6	
12	1	Tou s	
f3 = ABCDE	8	12	
	-	AMI. 2	
fy= AB	3 (2+1)	2 (3-1) complime	
	**Taplas	exception	
fs = ABCDE	810 (8+2)	10 (12-2)	
	P	To the second	

C MAIN

	NAND (3n-3)	NoR (2n-2)
fy = A+B	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fz = A+B+c	6 35 0)	34-(1)
f3 = A+B+C +D+E		Total ne ci8mintern
1 at 12 = 18	e sixet 2/2 -	So the must be
fy = A+B	2 (3-1) roll on	3 (2+1) 7 compliment exaption
fs = A+B+C	lab 190 (12=3)00	10 (8+2)
+D+E	(6,7), (6,0)	₹ ← → •
	. —	2 > 1
O. Identify	whether the gir	un boolean is a self

Je June function.

is no choto por si

consider for the function of , for is the dual function. if (fd = f) then function of is said to be self dual function.

$$f_{d} = \pi y z + \pi y z + \alpha y z + \alpha y z + \alpha y z$$

$$f_{d} = (\pi + y + z) \cdot (\pi + y + z) \cdot (\pi + y + z) + (\pi + y + z)$$

$$= \pi (0,3,5,6)$$

$$= \Sigma (1,2,4,7) \quad \text{So,} \quad f_{d} = f$$

9. How many self dual functions are passible using 3 bookean variables.

(a) 8 (b) 16 (c) 32 (d) None

Total no. of minterm = $2^n = 2^3 = 8$

so, there must be a exact $2\frac{n}{2} = 8\frac{n}{2} = 4 \pm 1 \text{ terms}$ in a function to be a self-dual.

Mutally exclusive pain for seff dual

 $0 \longleftrightarrow 7$ (0,7), (1,6), (2,5), (3,4) $0 \longleftrightarrow 6$ $0 \longleftrightarrow 6$ 0

so, we have total $2\frac{n}{2} = 2^{n-1}$ pain = m

out of these pain

only 1 can be selected

so , we have 2 choices

for each pain

Total no. of = 2 where in is total pair possible possible 2n-1

(=((2))) n is no of boolean variable

TE:- Netwal tunction is the function which has equal no. of mintums and maxturms.

For function to be a self dual function, it must be a next tral function.