

14

$$C_k \equiv M_k^{e_k} \pmod{p_k},$$

15 where

$$M_1 \equiv M \pmod{p_1},$$

$$M_2 \equiv M \pmod{p_2},$$

18 :

$$M_k \equiv M \pmod{p_k},$$

$$20 e_1 \equiv e \pmod{(p_1 - 1)},$$

$$21 e_2 \equiv e \pmod{(p_2 - 1)}, \text{ and}$$

23 :

$$24 e_k \equiv e \pmod{(p_k - 1)},$$

25 where e is a number relatively prime to $(p_1 - 1), (p_2 - 1), \dots, \text{ and } (p_k - 1)$,

26 solving said subtasks to determine results $C_1, C_2 \dots C_k$,

27 combining said results of said subtasks in accordance with a fast recursive combining

28 process to produce said ciphertext word signal C whereby,

$$29 Y_i \equiv Y_{i-1} + [(C_i - Y_{i-1}) (w_i^{-1} \pmod{p_i}) \pmod{p_i}] \cdot w_i \pmod{n}$$

30 $2 \leq i \leq k$, and

$$32 C = Y_k, Y_1 = C_1, \text{ and } w_i = \prod_{j < i} p_j$$

33 whereby processing of a minimal amount of computer instructions is required for said
34 step of encoding.

1 15. (Twice Amended) A method for establishing cryptographic communications that are
2 backwards compatible with preexisting public key infrastructures, comprising the steps of:
3 decoding a ciphertext word C to a message word M , wherein M corresponds to a number
4 representative of a message and wherein,

$$5 \quad 0 \leq M \leq n-1$$

6 wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, k is an integer greater
7 than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, C is a number representative of an

8 encoded form of message word M that is encoded by transforming said message word M to said
9 ciphertext word C whereby,

10 $C \equiv M^e \pmod{n}$,

11 and wherein e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ,

12 said decoding step being performed using a decryption exponent d that is defined by

13 $d \equiv e^{-1} \pmod{(p_1-1)(p_2-1) \dots (p_k-1)}$,

14 said decoding step including the steps of,

15 (i) defining a plurality of k sub-tasks in accordance with

16 $M_1 \equiv C_1^{d_1} \pmod{p_1}$,

17 $M_2 \equiv C_2^{d_2} \pmod{p_2}$,

18 \vdots

19 $M_k \equiv C_k^{d_k} \pmod{p_k}$,

20

21 where

22 $C_1 \equiv C \pmod{p_1}$,

23 $C_2 \equiv C \pmod{p_2}$,

24 \vdots

25 $C_k \equiv C \pmod{p_k}$,

26

27 $d_1 \equiv d \pmod{(p_1 - 1)}$,

28 $d_2 \equiv d \pmod{(p_2 - 1)}$, and

29 \vdots

30 $d_k \equiv d \pmod{(p_k - 1)}$,

31 (ii) solving said sub-tasks to determine results M_1, M_2, \dots, M_k , and

32 (iii) combining said results of said subtasks in accordance with a fast recursive combining
33 process to produce said message word M in accordance with,

34 $Y_i \equiv Y_{i-1} + [(M_i - Y_{i-1}) (w_i^{-1} \pmod{p_i}) \pmod{p_i}] \cdot w_i \pmod{n}$

35 where $2 \leq i \leq k$, and

36 $M = Y_k$, $Y_1 = M_1$, and $w_i = \prod_{j < i} p_j$

37 whereby processing of a minimal amount of computer instructions is required for said
38 step of decoding.

1 16. (Twice Amended) A cryptographic communications system for establishing communications
2 that are backwards compatible with preexisting public key infrastructures, comprising:

3 a communication medium;

4 [an] encoding means coupled to said communication medium and adapted for
5 transforming a transmit message word M to a ciphertext word C and for transmitting said
6 ciphertext word C on said medium, where M corresponds to a number representative of a
7 message, and

8 $0 \leq M \leq n-1$ where n is a composite number of the form

9 $n = p_1 \cdot p_2 \cdot \dots \cdot p_k$,

10 where k is an integer greater than 2 and p_1, p_2, \dots, p_k are distinct random prime numbers,
11 and where C corresponds to a number representative of an enciphered form of said message, and
12 corresponds to

13 $C \equiv M^e \pmod{n}$,

14 where e is a number relatively prime to $(p_1-1), (p_2-1), \dots, (p_k-1)$; and

15 [a] decoding means coupled to said communication medium and adapted for receiving C
16 via said medium and for transforming C to a receive message word M' where M' corresponds to
17 a number representative of a deciphered form of C, said decoding means being operative to
18 perform a decryption process using a decryption exponent d that is defined by

19 $d \equiv e^{-1} \pmod{(p_1-1)(p_2-1)\dots(p_k-1)}$,

20 said decryption process including the steps of

21 (i) defining a plurality of k sub-tasks in accordance with,

22 $C_1 \equiv C \pmod{p_1}$,

23 $C_2 \equiv C \pmod{p_2}$,

24 \vdots

25 $C_k \equiv C \pmod{p_k}$,

26 where,

27 $d_1 \equiv d \pmod{p_1 - 1},$
 28 $d_2 \equiv d \pmod{p_2 - 1},$
 29 \vdots
 30 $d_k \equiv d \pmod{p_k - 1},$
 31
 32 $M_1' \equiv C_1^{d_1} \pmod{p_1},$
 33 $M_2' \equiv C_2^{d_2} \pmod{p_2},$
 34 \vdots
 35 $M_k' \equiv C_k^{d_k} \pmod{p_k}$

(ii) solving said sub-tasks to determine results M_1' , M_2' , ..., M_k' , and

(iii) combining said results of said subtasks by a fast recursive combining process to

38 produce said receive message word M' in accordance with

$$Y_i \equiv Y_{i-1} + [(M_i - Y_{i-1}) (w_i^{-1} \bmod p_i) \bmod p_i] \cdot w_i \bmod n$$

where $2 \leq i \leq k$ and

$$M' = Y_k, Y_1 = M_1, \text{ and } w_i = \prod_{j < i} p_j,$$

[whereby] wherein $M' = M$.

1 17. (Once Amended) A method for establishing cryptographic communications that are
2 backwards compatible with preexisting public key infrastructures, comprising the steps of:
3 encoding a plaintext message word M to a ciphertext word C, wherein M corresponds to
4 a number representative of a message and wherein

$$0 \leq M \leq n-1,$$

wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, k is an integer greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, C is a number representative of an encoded form of message word M, and wherein said encoding step comprises transforming said message word M to said ciphertext word C, whereby

$$C \equiv M^e \pmod{n},$$

and wherein e is a number relatively prime to (p_1-1) , (p_2-1) , ..., and (p_k-1) ; and

12 decoding said ciphertext word C to a receive message word M', said decoding step being
13 performed using a decryption exponent d that is defined by

14 $d \equiv e^{-1} \pmod{((p_1-1)(p_2-1)\dots(p_k-1))}$,

15 said decoding step including the further steps of,

16 defining a plurality of k sub-tasks in accordance with

17 $M_1' \equiv C_1^{d_1} \pmod{p_1}$,

18 $M_2' \equiv C_2^{d_2} \pmod{p_2}$,

19 \vdots

20 $M_k' \equiv C_k^{d_k} \pmod{p_k}$,

21 wherein

22 $C_1 \equiv C \pmod{p_1}$,

23 $C_2 \equiv C \pmod{p_2}$,

24 \vdots

25 $C_k \equiv C \pmod{p_k}$,

26

27 $d_1 \equiv d \pmod{(p_1 - 1)}$,

28 $d_2 \equiv d \pmod{(p_2 - 1)}$, and

29 \vdots

30 $d_k \equiv d \pmod{(p_k - 1)}$,

31 solving said sub-tasks to determine results M_1' , M_2' , ... M_k' , and

32 combining said results of said sub-tasks to produce said receive message word

33 M' , [whereby] wherein $M' = M$.

1 22. (Once Amended) A cryptographic communications system for establishing communications
2 that are backwards compatible with preexisting public key infrastructures, comprising:

3 a communication medium;

4 [an] encoding means coupled to said communication medium and adapted for
5 transforming a transmit message word M to a ciphertext word C and for transmitting said

6 ciphertext word C on said medium, wherein M corresponds to a number representative of a
7 message, and

8 $0 \leq M \leq n-1$, wherein n is a composite number of the form,

9 $n = p_1 \cdot p_2 \cdot \dots \cdot p_k$

10 wherein k is an integer greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime
11 numbers, and wherein said ciphertext word C corresponds to a number representative of an
12 enciphered form of said message and corresponds to

13 $C \equiv M^e \pmod{n}$,

14 wherein e is a number relatively prime to $(p_1-1), (p_2-1), \dots, (p_k-1)$; and

15 [a] decoding means communicatively coupled with said communication medium for
16 receiving said ciphertext word C via said medium, said decoding means being operative to
17 perform a decryption process for transforming said ciphertext word C to a receive message word
18 M' , wherein M' corresponds to a number representative of a deciphered form of C, said
19 decryption process using a decryption exponent d that is defined by

20 $d \equiv e^{-1} \pmod{(p_1-1)(p_2-1) \dots (p_k-1)}$,

21 said decryption process including the steps of

22 defining a plurality of k sub-tasks in accordance with

23 $M_1' \equiv C_1^{d_1} \pmod{p_1}$,

24 $M_2' \equiv C_2^{d_2} \pmod{p_2}$,

25 \vdots

26 $M_k' \equiv C_k^{d_k} \pmod{p_k}$,

27 wherein

28 $C_1 \equiv C \pmod{p_1}$,

29 $C_2 \equiv C \pmod{p_2}$,

30 \vdots

31 $C_k \equiv C \pmod{p_k}$,

33 $d_1 \equiv d \pmod{(p_1 - 1)}$,

34 $d_2 \equiv d \pmod{(p_2 - 1)}$,

1 27. (Once Amended) A method for establishing cryptographic communications that are
2 backwards compatible with preexisting public key infrastructures, comprising the step of:
3 encoding a plaintext message word M to a ciphertext word C, wherein M corresponds to
4 a number representative of a message, and
5 $0 \leq M \leq n-1$,
6 n being a composite number formed from the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, wherein k is an integer
7 greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, and wherein the ciphertext
8 word C is a number representative of an encoded form of message word M, wherein said step of
9 encoding includes the steps of
10 defining a plurality of k sub-tasks in accordance with

defining a plurality of k sub-tasks in accordance with

$$C_1 \equiv M_1^{e_1} \pmod{p_1},$$

$$C_2 \equiv M_2^{e_2} \pmod{p_2},$$

•
•
•

$$C_k \equiv M_k^{e_k} \pmod{p_k},$$

15 where

$$M_1 \equiv M \pmod{p_1},$$

$$M_2 \equiv M \pmod{p_2},$$

11

$$M_k \equiv M \pmod{p_k},$$

20

$$e_1 \equiv e \pmod{p_1 - 1},$$

22 $e_2 \equiv e \pmod{(p_2 - 1)}$, and

1 32. (Once Amended) A cryptographic communications system for establishing
2 communications that are backwards compatible with preexisting public key infrastructures,
3 comprising:

a communication medium;

[an] encoding means coupled to said communication medium and operative to transform a transmit message word M to a ciphertext word C, and to transmit said ciphertext word C on said medium, wherein M corresponds to a number representative of a message, and

$$0 \leq M \leq n-1.$$

9 n being a composite number formed from the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$ wherein k is an integer
10 greater than 2[,] and p_1, p_2, \dots, p_k , are distinct random prime numbers, and wherein the ciphertext
11 word C is a number representative of an encoded form of message word M, said encoding means
12 being operative to transform said transmit message word M to said ciphertext word C by
13 performing an encoding process comprising the steps of

defining a plurality of k sub-tasks in accordance with

$$C_1 \equiv M_1^{e_1} \pmod{p_1},$$

$$C_2 \equiv M_2^{e_2} \pmod{p_2},$$

•

$$C_k \equiv M_k^{e_k} \pmod{p_k},$$

19 where

$$M_1 \equiv M \pmod{p_1},$$

$$M_1 \equiv M \pmod{p_2},$$

20

23 $M_k \equiv M \pmod{p_k}$,
24
25 $e_1 \equiv e \pmod{(p_1 - 1)}$,
26 $e_2 \equiv e \pmod{(p_2 - 1)}$, and
27 :
28 $e_k \equiv e \pmod{(p_k - 1)}$,

29 wherein e is a number relatively prime to $(p_1 - 1)$, $(p_2 - 1)$, ..., and $(p_k - 1)$,
30 solving said sub-tasks to determine results C_1 , C_2 , ... C_k , and
31 combining said results of said sub-tasks to produce said ciphertext word C.

1 37. (Once Amended) A method for establishing cryptographic communications that are
2 backwards compatible with preexisting public key infrastructures, comprising the steps of:
3 decoding a ciphertext word C to a message word M, wherein M corresponds to a number
4 representative of a message and wherein
5 $0 \leq M \leq n-1$
6 wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, k is an integer greater
7 than 2[,] and p_1 , p_2 , ..., p_k are distinct random prime numbers, C is a number representative of an
8 encoded form of message word M that is encoded by transforming said message word M to said
9 ciphertext word C whereby

10 $C \equiv M^e \pmod{n}$,
11 and wherein e is a number relatively prime to $(p_1 - 1)$, $(p_2 - 1)$, ..., and $(p_k - 1)$;
12 said decoding step being performed using a decryption exponent d that is defined by
13 $d \equiv e^{-1} \pmod{(p_1 - 1)(p_2 - 1) \dots (p_k - 1)}$,
14 wherein said step of decoding includes the steps of
15 defining a plurality of k sub-tasks in accordance with

16 $M_1 \equiv C_1^{d_1} \pmod{p_1}$,
17 $M_2 \equiv C_2^{d_2} \pmod{p_2}$,
18 :
19 $M_k \equiv C_k^{d_k} \pmod{p_k}$,

20 wherein
21 $C_1 \equiv C \pmod{p_1}$,
22 $C_2 \equiv C \pmod{p_2}$,
23 ⋮
24 $C_k \equiv C \pmod{p_k}$,
25
26 $d_1 \equiv d \pmod{(p_1 - 1)}$,
27 $d_2 \equiv d \pmod{(p_2 - 1)}$, and
28 ⋮
29 $d_k \equiv d \pmod{(p_k - 1)}$,

30 solving said sub-tasks to determine results M_1, M_2, \dots, M_k , and
31 combining said results of said sub-tasks to produce said message word M .

1 42. (Once Amended) A cryptographic communications system for establishing communications
2 that are backwards compatible with preexisting public key infrastructures, comprising:

3 a communication medium;
4 [a decoding means] communicatively coupled with said communication medium for
5 receiving a ciphertext word C via said medium, and being operative to transform said ciphertext
6 word C to a receive message word M' , wherein a message M corresponds to a number
7 representative of a message and wherein,

8 $0 \leq M \leq n-1$

9 wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, k is an integer greater
10 than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, and wherein said ciphertext word
11 C is a number representative of an encoded form of said message word M that is encoded by
12 transforming M to said ciphertext word C whereby,

13 $C \equiv M^e \pmod{n}$,

14 and wherein e is a number relatively prime to $(p_1-1), (p_2-1), \dots, (p_k-1)$;

15 said decoding means being operative to perform a decryption process using a decryption
16 exponent d that is defined by

17 $d \equiv e^{-1} \pmod{(p_1-1)(p_2-1)\dots(p_k-1)}$,

18 said decryption process including the steps of
19 defining a plurality of k sub-tasks in accordance with,

20 $M_1' \equiv C_1^{d_1} \pmod{p_1}$,

21 $M_2' \equiv C_2^{d_2} \pmod{p_2}$,

22 \vdots

23 $M_k' \equiv C_k^{d_k} \pmod{p_k}$,

24 wherein,

25 $C_1 \equiv C \pmod{p_1}$,

26 $C_2 \equiv C \pmod{p_2}$,

27 \vdots

28 $C_k \equiv C \pmod{p_k}$,

29

30 $d_1 \equiv d \pmod{(p_1 - 1)}$,

31 $d_2 \equiv d \pmod{(p_2 - 1)}$, and

32 \vdots

33 $d_k \equiv d \pmod{(p_k - 1)}$,

34 solving said sub-tasks to determine results M_1' , M_2' , ... M_k' , and

35 combining said results of said sub-tasks to produce said receive message word

36 M' , whereby $M' = M$

1 47. (Once Amended) A method for generating a digital signature comprising the step of:
2 signing a plaintext message word M to create a signed ciphertext word C , wherein M
3 corresponds to a number representative of a message, and
4 $0 \leq M \leq n-1$,

5 n being a composite number formed from the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, wherein k is an integer
6 greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, and wherein the signed
7 ciphertext word C is a number representative of a signed form of message word M , wherein
8 $C \equiv M^d \pmod{n}$, and

9 wherein said step of signing includes the steps of

10 defining a plurality of k sub-tasks in accordance with

11 $C_1 \equiv M_1^{d_1} \pmod{p_1},$

12 $C_2 \equiv M_2^{d_2} \pmod{p_2},$

13 \vdots

14 $C_k \equiv M_k^{d_k} \pmod{p_k},$

15 where

16 $M_1 \equiv M \pmod{p_1},$

17 $M_2 \equiv M \pmod{p_2},$

18 \vdots

19 $M_k \equiv M \pmod{p_k},$

21 $d_1 \equiv d \pmod{(p_1 - 1)},$

22 $d_2 \equiv d \pmod{(p_2 - 1)}, \text{ and}$

23 \vdots

24 $d_k \equiv d \pmod{(p_k - 1)},$

25 wherein d is defined by

26 $d \equiv e^{-1} \pmod{(p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)}, \text{ and}$

27 e is a number relatively prime to $(p_1 - 1), (p_2 - 1), \dots, \text{ and } (p_k - 1)$,

28 solving said sub-tasks to determine results C_1, C_2, \dots, C_k , and

29 combining said results of said sub-tasks to produce said ciphertext word C.

1 52. (Once Amended) A digital signature generation system comprising:

2 a communication medium;

3 [a] digital signature generating means coupled to said communication medium and

4 operative to transform a transmit message word M to a signed ciphertext word C, and to transmit
5 said signed ciphertext word C on said medium, wherein M corresponds to a number
6 representative of a message, and

7 $0 \leq M \leq n-1,$

8 n being a composite number formed from the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$ wherein k is an integer
9 greater than 2[,] and p_1, p_2, \dots, p_k , are distinct random prime numbers, and wherein the signed
10 ciphertext word C is a number representative of a signed form of said message word M, wherein

11 $C \equiv M^d \pmod{n}$,

12 said digital signature generating means being operative to transform said transmit
13 message word M to said signed ciphertext word C by performing a digital signature generating
14 process comprising the steps of,

15 defining a plurality of k sub-tasks in accordance with,

16 $C_1 \equiv M_1^{d_1} \pmod{p_1}$,

17 $C_2 \equiv M_2^{d_2} \pmod{p_2}$,

18 \vdots

19 $C_k \equiv M_k^{d_k} \pmod{p_k}$,

20 where,

21 $M_1 \equiv M \pmod{p_1}$,

22 $M_2 \equiv M \pmod{p_2}$,

23 \vdots

24 $M_k \equiv M \pmod{p_k}$,

25

26 $d_1 \equiv d \pmod{(p_1 - 1)}$,

27 $d_2 \equiv d \pmod{(p_2 - 1)}$, and

28 \vdots

29 $d_k \equiv d \pmod{(p_k - 1)}$,

30 wherein d is defined by,

31 $d \equiv e^{-1} \pmod{(p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)}$, and

32 e is a number relatively prime to $(p_1 - 1), (p_2 - 1), \dots$, and $(p_k - 1)$,

33 solving said sub-tasks to determine results C_1, C_2, \dots, C_k , and

34 combining said results of said sub-tasks to produce said signed ciphertext word C.

1 57. (Once Amended) A digital signature process comprising the steps of:
2 signing a plaintext message word M to create a signed ciphertext word C, wherein M
3 corresponds to a number representative of a message and wherein

4 $0 \leq M \leq n-1$

5 wherein n is a composite number formed by the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$, k is an integer
6 greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime numbers, C is a number
7 representative of a signed form of message word M, and wherein said encoding step
8 comprises transforming said message word M to said ciphertext word C whereby,

9 $C \equiv M^d \pmod{n}$,

10 wherein d is defined by

11 $d \equiv e^{-1} \pmod{(p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)}$, and

12 e is a number relatively prime to $(p_1 - 1), (p_2 - 1), \dots, (p_k - 1)$; and

13 verifying said ciphertext word C to a receive message word M' by performing the steps
14 of,

15 defining a plurality of k sub-tasks in accordance with

16 $M_1' \equiv C_1^{e_1} \pmod{p_1}$,

17 $M_2' \equiv C_2^{e_2} \pmod{p_2}$,

18 ⋮

19 $M_k' \equiv C_k^{e_k} \pmod{p_k}$,

20 wherein

21 $C_1 \equiv C \pmod{p_1}$,

22 $C_2 \equiv C \pmod{p_2}$,

23 ⋮

24 $C_k \equiv C \pmod{p_k}$,

25

26 $e_1 \equiv e \pmod{(p_1 - 1)}$,

27 $e_2 \equiv e \pmod{(p_2 - 1)}$, and

28 ⋮

29 $e_k \equiv e \pmod{(p_k - 1)}$,

30 solving said sub-tasks to determine results M_1' , M_2' , ..., M_k' , and
31 combining said results of said sub-tasks to produce said receive message word
32 M' , whereby $M' = M$.

1 62. (Once Amended) A digital signature system comprising:
2 a communication medium;
3 [a] digital signature generating means coupled to said communication medium and
4 adapted for transforming a message word M to a signed ciphertext word C and for transmitting
5 said signed ciphertext word C on said medium, wherein M corresponds to a number
6 representative of a message, and
7 $0 \leq M \leq n-1$, wherein n is a composite number of the form
8 $n = p_1 \cdot p_2 \cdot \dots \cdot p_k$,
9 wherein k is an integer greater than 2[,] and p_1, p_2, \dots, p_k are distinct random prime
10 numbers, and wherein said signed ciphertext word C corresponds to a number representative of a
11 signed form of said message word M and corresponds to
12 $C \equiv M^d \pmod{n}$,
13 wherein d is defined by
14 $d \equiv e^{-1} \pmod{(p_1 - 1) \cdot (p_2 - 1) \cdot \dots \cdot (p_k - 1)}$, and
15 e is a number relatively prime to $(p_1 - 1), (p_2 - 1), \dots$, and $(p_k - 1)$; and
16 [a] digital signature verification means communicatively coupled with said
17 communication medium for receiving said signed ciphertext word C via said medium, and being
18 operative to verify said signed ciphertext word C by performing the steps of,
19 defining a plurality of k sub-tasks in accordance with
20 $M_1' \equiv C_1^{e_1} \pmod{p_1}$,
21 $M_2' \equiv C_2^{e_2} \pmod{p_2}$,
22 \vdots
23 $M_k' \equiv C_k^{e_k} \pmod{p_k}$,
24 wherein
25 $C_1 \equiv C \pmod{p_1}$,

26 $C_2 \equiv C \pmod{p_2}$,

27 ⋮
28 $C_k \equiv C \pmod{p_k}$,

29
30 $e_1 \equiv e \pmod{(p_1 - 1)}$,
31 $e_2 \equiv e \pmod{(p_2 - 1)}$,
32 ⋮
33 $e_k \equiv e \pmod{(p_k - 1)}$,

34 solving said sub-tasks to determine results M'_1 , M'_2 , ..., M'_k , and
35 combining said results of said sub-tasks to produce said receive message word M'
36 [whereby] wherein $M' = M$.

1 67. (New) A method as recited in claim 14 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 68. (New) A method as recited in claim 14 wherein each of said distinct random prime
2 number has the same number of bits.

1 69. (New) A method as recited in claim 15 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 70. (New) A method as recited in claim 15 wherein each of said distinct random prime
2 number has the same number of bits.

1 71. (New) A cryptographic communications system as recited in claim 16 wherein said step
2 of solving said sub-tasks includes processing each of said sub-tasks by an associated one of a
3 plurality of exponentiator units operating substantially simultaneously.

1 72. (New) A cryptographic communications system as recited in claim 16 wherein each of
2 said distinct random prime number has the same number of bits.

1 73. (New) A method as recited in claim 17 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 74. (New) A method as recited in claim 17 wherein each of said distinct random prime
2 number has the same number of bits.

1 75. (New) A cryptographic communications system as recited in claim 22 wherein said step
2 of solving said sub-tasks includes processing each of said sub-tasks by an associated one of a
3 plurality of exponentiator units operating substantially simultaneously.

~~D~~ 1 76. (New) A cryptographic communications system as recited in claim 22 wherein each of
2 said distinct random prime number has the same number of bits.

~~H~~ 1 77. (New) A method as recited in claim 27 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 78. (New) A method as recited in claim 27 wherein each of said distinct random prime
2 number has the same number of bits.

1 79. (New) A cryptographic communications system as recited in claim 32 wherein said step
2 of solving said sub-tasks includes processing each of said sub-tasks by an associated one of a
3 plurality of exponentiator units operating substantially simultaneously.

1 80. (New) A cryptographic communications system as recited in claim 32 wherein each of
2 said distinct random prime number has the same number of bits.

1 81. (New) A method as recited in claim 37 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 82. (New) A method as recited in claim 37 wherein each of said distinct random prime
2 number has the same number of bits.

1 83. (New) A cryptographic communications system as recited in claim 42 wherein said step
2 of solving said sub-tasks includes processing each of said sub-tasks by an associated one of a
3 plurality of exponentiator units operating substantially simultaneously.

1 84. (New) A cryptographic communications system as recited in claim 42 wherein each of
2 said distinct random prime number has the same number of bits.

1 85. (New) A method as recited in claim 47 wherein said step of solving said sub-tasks
2 includes processing each of said sub-tasks by an associated one of a plurality of exponentiator
3 units operating substantially simultaneously.

1 86. (New) A method as recited in claim 47 wherein each of said distinct random prime
2 number has the same number of bits.

1 87. (New) A digital signature generation system as recited in claim 52 wherein said step of
2 solving said sub-tasks includes processing each of said sub-tasks by an associated one of a
3 plurality of exponentiator units operating substantially simultaneously.

1 88. (New) A digital signature generation system as recited in claim 52 wherein each of said
2 distinct random prime number has the same number of bits.

1 89. (New) A digital signature process as recited in claim 57 wherein said step of solving said
2 sub-tasks includes processing each of said sub-tasks by an associated one of a plurality of
3 exponentiator units operating substantially simultaneously.