PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - JULY - 2023

UE20MA251 - Linear Algebra and Its Applications

Total Marks: 100.0

1.a.

Solve the following system of equations using Gaussian elimination:

(6.0 Marks)

$$2x + y + 3z = 1$$
, $2x + 6y + 8z = 3$, $6x + 8y + 18z = 5$

Write down the elementary matrices E, F, G associated with the system of 1.b. equations 2u + v + 3w = -1, 4u + v + 7w = 5, -6u - 2v - 12w = -2. Also find the

LU decomposition of A.

(7.0 Marks)

Use the Gauss - Jordan method to find the inverse of:

(7.0 Marks)

1.c.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix},$$

(6.0 Marks)

Find the value(s) of 'h' for which the following set of vector's,

2.a.
$$\left\{\mathbf{v}_1=\begin{bmatrix}1\\0\\0\end{bmatrix},\mathbf{v}_2=\begin{bmatrix}h\\1\\-h\end{bmatrix},\mathbf{v}_3=\begin{bmatrix}1\\2h\\3h+1\end{bmatrix}\right\}$$

Is linearly independent.

Find a basis and the dimension of the subspaces
$$V = \{(a, b, 0): a \text{ and } b \text{ are } real \}$$

2.b. $numbers\}, W = \{(0, b, c): b \text{ and } c \text{ are } real \text{ numbers}\}$ and $V \cap W \text{ in } R^3$.
Geometrically describe the basis of V, W and $V \cap W$. (7.0 Marks)

(7.0 Marks)

If
$$A = \begin{pmatrix} 0 & 1 & 3 \\ -1 & 0 & 1 \\ -1 & 2 & 7 \end{pmatrix}$$
,

- (i) Find the basis for the column space of A. 2.c.
 - (ii) Find the basis for the Row space of A.
 - (iii) Find the basis for the Null space of A.

(iv) Is the vector
$$w = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 is in Row space of A. $(3+1+2+1=7M)$

3.a. Let
$$T: R^3 \to R^3$$
 given by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + y + z \\ x - y + 2z \\ x + 2y - z \end{bmatrix}$, then find Null space of T i.e., N(T). (6.0 Marks)

3.b. What matrix P projects every point in \mathbb{R}^3 onto the line of intersection of the planes x + y + z = 0 and x - z = 0? What are the column space and row space of matrix P.

(7.0 Marks)

3.c.

Consider the linear system $-x_1 + x_2 = 10$, $2x_1 + x_2 = 5$, $x_1 - 2x_2 = 20$. This system is over determined and inconsistent. Find the least approximation to b and the least squares solution \hat{x} to this system and rewrite the linear system as $A\hat{x} = b_1$

(7.0 Marks)

4.a. Find a third column so that the matrix $Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & --- \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & --- \\ \frac{1}{\sqrt{3}} & \frac{-3}{\sqrt{14}} & --- \end{bmatrix}$ is orthogonal.

(5.0 Marks)

4.b. Find the Eigen Value and Eigen vectors of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$

(7.0 Marks)

4.c.	Use Gram Schmidt process to find the orthonormal vectors q_1 , q_2 , q_3 form the gi	ven
	independent vectors $a = (1, 1, 1), b = (0, 1, 1), c = (0, 0, 1),$ and also factorize	
		(8.0 Marks)

For the semi definite matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
, write XA^TX as the sum of two squares.

(6.0 Marks)

5.b. Let
$$Q(x) = x_1^2 + bx_2^2 + 7x_3^2 + 4x_1x_2 + 16x_2x_3 + 8x_1x_3$$
, for what range of numbers b, $Q(x)$ is positive definite. (4.0 Marks)

5.c. Find the SVD of
$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}_{2x3}$$

(10.0 Marks)