(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 April 2002 (11.04.2002)

PCT

(10) International Publication Number WO 02/28182 A1

(51) International Patent Classification?: A01N 43/40, C07D 213/00

(21) International Application Number: PCT/EP01/11353

(22) International Filing Date: 1 October 2001 (01.10.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1937/00

3 October 2000 (03.10.2000) CH

(71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCHAETZER, Jürgen [DE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). RENOLD, Peter [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). CRAIG, Gerald, Wayne [US/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). EBERLE, Martin [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). HALL, Roger, Graham

[GB/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH).

- (74) Agent: BASTIAN, Werner; Syngenta Participations AG, Intellectual Property, P.O. Box, CH-4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHENYLPROPYNYLOXYPYRIDINE HERBICIDES

(57) Abstract: Compounds of formula (I) wherein the substituents R₁, R₂, R₃ and R₄, and the suffixes n and m are as defined in claim 1, and agrochemically acceptable salts and all stereoisomers and tautomers of such compounds are suitable for use as herbicides.

Novel herbicides

The present invention relates to novel, herbicidally active phenylalkynes, to a process for their preparation, to compositions comprising such compounds, and to the use thereof in controlling weeds, especially in crops of useful plants, or in inhibiting plant growth.

Phenylalkynes having herbicidal action are described, for example, in JP-A-11 147 866.

Novel phenylalkynes having herbicidal and growth-inhibiting properties have now been found.

The present invention accordingly relates to compounds of formula I

$$(R_1)_n = \begin{pmatrix} & & & \\$$

wherein

n is 0, 1, 2, 3 or 4;

each R_1 independently of any other(s) is halogen, -CN, -SCN, -SF₅, -NO₂, -NR₅R₆, -CO₂R₇, -CONR₈R₉, -C(R₁₀)=NOR₁₁, -COR₁₂, -OR₁₃, -SR₁₄, -SOR₁₅, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl or C₃-C₆cycloalkyl; or C₁-C₈alkyl, C₂-C₈alkenyl or C₂-C₈alkynyl substituted by one or more halogen, -CN, -NO₂, -NR₁₈R₁₉, -CO₂R₂₀, -CONR₂₁R₂₂, -COR₂₃, -C(R₂₄)=NOR₂₅, -C(S)NR₂₆R₂₇, -C(C₁-C₄alkylthio)=NR₂₈, -OR₂₉, -SR₃₀, -SOR₃₁, -SO₂R₃₂ or C₃-C₆cycloalkyl substituted by one or more halogen, -CN, -NO₂, -NR₁₈R₁₉, -CO₂R₂₀, -CONR₂₁R₂₂, -COR₂₃, -C(R₂₄)=NOR₂₅, -C(S)NR₂₆R₂₇, -C(C₁-C₄alkylthio)=NR₂₈, -SR₃₀, -SOR₃₁, -SO₂R₃₂ or C₃-C₆cycloalkyl substituents; or each R₁ independently of any other(s) is phenyl, which may itself be substituted by one or more halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylthio, C₁-C₄-alkylsulfinyl or C₁-C₄alkylsulfonyl substituents; or

two adjacent R_1 together form a C_1 - C_7 alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or two adjacent R_1 together form a C_2 - C_7 -alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9;

 R_3 and R_4 are each independently of the other hydrogen, halogen, -CN, C_1 - C_4 alkyl or C_1 - C_4 -alkoxy; or

R₃ and R₄ together denote C₂-C₅alkylene;

R₅ is hydrogen or C₁-C₈alkyl;

 R_6 is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl; it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or

 R_5 and R_6 together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_7 is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents:

R₈ is hydrogen or C₁-C₈alkyl;

 R_9 is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more COOH, C_1 - C_8 -alkoxycarbonyl or —CN substituents, or

 R_9 is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_8 and R_9 together denote C_2 - C_5 alkylene;

R₁₀ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{11} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{12} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl;

R₁₃ is hydrogen, C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl; or

 R_{13} is phenyl or phenyl- C_1 - C_6 alkyl, it being possible for the phenyl ring itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂ or -S(O)₂C₁- C_8 alkyl substituents, or

R₁₃ is C₁-C₈alkyl substituted by one or more halogen, -CN or C₁-C₄alkoxy substituents;

 R_{14} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, —CN or C_1 - C_4 alkoxy substituents;

 R_{15} , R_{16} and R_{17} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 -alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{18} is hydrogen or C_1 - C_8 alkyl;

 R_{19} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents; or

R₁₈ and R₁₉ together denote a C₂-C₅alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{20} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents;

R₂₁ is hydrogen or C₁-C₈alkyl;

 R_{22} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents, or

 R_{22} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{21} and R_{22} together denote C_2 - C_5 alkylene;

R₂₃ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₂₄ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{25} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{26} is hydrogen or C_1 - C_8 alkyl;

 R_{27} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents, or

 R_{27} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{26} and R_{27} together denote C_2 - C_5 alkylene;

R₂₈ is hydrogen or C₁-C₈alkyl;

 R_{29} and R_{30} are each independently of the other hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents;

 R_{31} and R_{32} are each independently of the other C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, —CN or C_1 - C_4 alkoxy substituents; m is 0, 1, 2, 3, 4 or 5;

each R_2 independently of any other(s) is halogen, -CN, -SCN, -SF₅, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -CONR₃₉R₄₀, -C(R₄₁)=NOR₄₂, -COR₄₃, -OR₄₄, -SR₄₅, -SOR₄₆, -SO₂R₄₇, OSO₂R₄₈ -N([CO]_pR₄₉)COR₅₀, -N(OR₅₁)COR₅₂, -N(R₅₃)CO₂R₅₄ or -N-phthalimide;

R₃₆ is hydrogen or C₁-C₈alkyl; and

 R_{37} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents; or

R₃₆ and R₃₇ together denote a C₂-C₅alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{38} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyl substituents;

R₃₉ is hydrogen or C₁-C₈alkyl;

R₄₀ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents, or

 R_{40} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{39} and R_{40} together denote C_3 - C_5 alkylene;

R₄₁ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{42} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_6 cycloalkyl;

R₄₄ is hydrogen, C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl; or

 R_{44} is phenyl or phenyl- C_1 - C_6 alkyl, it being possible for the phenyl ring itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂ or -S(O)₂C₁-C₈alkyl substituents, or

 R_{44} is C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{45} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents;

 R_{46} , R_{47} and R_{48} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, —CN or C_1 - C_4 alkoxy substituents; p is 0 or 1;

 R_{49} , R_{50} , R_{51} , R_{52} , R_{53} and R_{54} are each independently of the others hydrogen, C_1 - C_8 alkyl, or phenyl, which may itself be substituted by one or more halogen, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_8 alkylthio, C_1 - C_8 alkylsulfinyl or C_1 - C_8 alkylsulfonyl substituents; or

each R_2 independently of any other(s) is C_1 - C_8 alkyl, or C_1 - C_8 alkyl mono- or poly-substituted by halogen, -CN, -NO₂, -NR₅₅R₅₆, -CO₂R₅₇, -CONR₅₈R₅₉, -COR₆₀, -C(R₆₁)=NOR₆₂, -C(S)NR₆₃R₆₄, -C(C₁-C₄alkylthio)=NR₆₅, -OR₆₆, -SR₆₇, -SOR₆₈, -SO₂R₆₉, -O(SO₂)R₇₀, -N(R₇₁)CO₂R₇₂, -N(R₇₃)COR₇₄ or by C_3 -C₆cycloalkyl; or each R_2 independently of any other(s) is C_2 -C₈alkenyl, or C_2 -C₈alkenyl mono- or poly-substituted by -CN, -NO₂, -CO₂R₇₅, -CONR₇₆R₇₇, -COR₇₈, -C(R₇₉)=NOR₈₀, -C(S)NR₈₁R₈₂, -C(C₁-C₄alkylthio)=NR₈₃ or by C_3 -C₆cycloalkyl; or each R_2 independently of any other(s) is C_2 -C₈alkynyl, or C_2 -C₈alkynyl mono- or poly-substituted by halogen, -CN, -CO₂R₈₄, -CONR₈₅R₈₆, -COR₈₇, -C(R₈₈)=NOR₈₉, -C(S)NR₉₀R₉₁, -C(C₁-C₄alkylthio)=NR₉₂ or by C_3 -C₆cycloalkyl; or

each R_2 independently of any other(s) is C_3 - C_6 cycloalkyl, or C_3 - C_6 cycloalkyl mono- or polysubstituted by halogen, -CN, -CO₂R₉₃, -CONR₉₄R₉₅, -COR₉₆, -C(R₉₇)=NOR₉₈, -C(S)NR₉₉R₁₀₀ or by -C(C₁-C₄alkylthio)=NR₁₀₁; or

two adjacent R_2 together form a C_1 - C_7 alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or two adjacent R_2 together form a C_2 - C_7 -alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9;

R₅₅ is hydrogen or C₁-C₈alkyl;

 R_{56} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents; or

R₅₅ and R₅₆ together denote a C₂-C₅alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{57} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 -

haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₅₈ is hydrogen or C₁-C₈alkyl;

 R_{59} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{59} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{58} and R_{59} together denote C_2 - C_5 alkylene;

R₆₀ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₆₁ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{62} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; and

R₆₃ is hydrogen or C₁-C₈alkyl;

R₆₄ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents; or

 R_{64} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{63} and R_{64} together denote C_2 - C_5 alkylene;

R₆₅ is hydrogen or C₁-C₈alkyl;

 R_{66} and R_{67} are each independently of the other hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, -CN or C_1 - C_4 alkoxy substituents; R_{69} , R_{69} and R_{70} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 -alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, -CN or C_1 - C_4 alkoxy substituents; R_{71} and R_{73} are each independently of the other hydrogen, C_1 - C_8 alkyl or C_1 - C_8 alkyl; R_{72} is C_1 - C_8 alkyl;

R₇₄ is hydrogen or C₁-C₈alkyl;

 R_{75} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₇₆ is hydrogen or C₁-C₈alkyl;

R₇₇ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents; or

 R_{77} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{76} and R_{77} together denote C_2 - C_5 alkylene;

 R_{78} and R_{79} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl;

 R_{80} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{81} is hydrogen or C_1 - C_8 alkyl;

 R_{82} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{82} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{81} and R_{82} together denote C_2 - C_5 alkylene;

R₈₃ is hydrogen or C₁-C₈alkyl;

R₈₄ is hydrogen, C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C₁-C₄alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C₁-C₄alkyl, C₁-C₄-haloalkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl or C₁-C₄alkylsulfonyl substituents;

R₈₅ is hydrogen or C₁-C₈alkyl;

 R_{86} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{86} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{85} and R_{86} together denote C_2 - C_5 alkylene;

R₈₇ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₈₈ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{89} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{90} is hydrogen or C_1 - C_8 alkyl;

 R_{91} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{91} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or

R₉₀ and R₉₁ together denote C₂-C₅alkylene;

R₉₂ is hydrogen or C₁-C₈alkyl;

 R_{93} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents:

R₉₄ is hydrogen or C₁-C₈alkyl;

R₉₅ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents; or

 R_{95} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{94} and R_{95} together denote C_2 - C_5 alkylene;

R₉₆ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₉₇ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{98} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{99} is hydrogen or C_1 - C_8 alkyl;

R₁₀₀ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents; or

 R_{100} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{99} and R_{100} together denote C_2 - C_5 alkylene; and

R₁₀₁ is hydrogen or C₁-C₈alkyl,

and to agrochemically acceptable salts and all stereoisomers and tautomers of the compounds of formula I.

When n is 0, all the free valences on the pyridine ring of the compounds of formula I are substituted by hydrogen. When m is 0, all the free valences on the phenyl ring of the compounds of formula I are substituted by hydrogen.

Examples of substituents that are formed when R_5 and R_6 together or R_{18} and R_{19} together or R_{36} and R_{37} together or R_{55} and R_{56} together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom, are piperidine, morpholine, thiomorpholine and pyrrolidine.

The alkyl groups occurring in the definitions of substituents may be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl, and the pentyl, hexyl, heptyl, octyl, nonyl and decyl isomers.

Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl or 2,2,2-trichloroethyl; preferably trichloromethyl, difluoromethyl, trifluoromethyl or dichlorofluoromethyl.

Alkoxy groups preferably have a chain length of from 1 to 6, especially from 1 to 4, carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy, and the pentyloxy and hexyloxy isomers; preferably methoxy or ethoxy.

Alkoxy, alkenyl, alkynyl, alkoxyalkyl, alkylthio, alkylsulfonyl, alkylsulfinyl, alkylaminoalkoxy, alkoxycarbonyl, alkylcarbonyloxy, alkenylthio, alkenylsulfonyl, alkenylsulfinyl, alkynyl-sulfonyl, alkynylthio and alkynylsulfinyl groups are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be mono- or poly-unsaturated. Alkenyl is to be understood as meaning, for example, vinyl, allyl, methallyl, 1-methylvinyl or but-2-en-1-yl. Alkynyl is, for example, ethynyl, propargyl, but-2-yn-1-yl, 2-methylbutyn-2-yl or but-3-yn-2-yl.

Alkylthio groups preferably have a chain length of from 1 to 4 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl or tert-butylsulfinyl; preferably methylsulfinyl or ethylsulfinyl. Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

Alkoxyalkyl groups preferably have from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, n-propoxymethyl, n-propoxymethyl, isopropoxymethyl or isopropoxyethyl.

Substituents wherein two adjacent R_1 together form a C_1 - C_7 alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or wherein two adjacent R_1 together form a C_2 - C_7 alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9, have, for example, the following structures :

Substituents wherein two adjacent R_2 together form a C_1 - C_7 alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or wherein two adjacent R_2 together form a C_2 - C_7 alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9, have, for example, the following structures:

The invention also includes the salts that the compounds of formula I are able to form preferably with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Suitable salt formers are described, for example, in WO 98/41089.

Of the alkali metal and alkaline earth metal hydroxides as salt formers, special mention may be made of the hydroxides of lithium, sodium, potassium, magnesium or calcium, but especially those of sodium or potassium.

As examples of amines suitable for the formation of ammonium salts, there come into consideration both ammonia and primary, secondary and tertiary C₁-C₁₈alkylamines, C₁-C₄-hydroxyalkylamines and C₂-C₄alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four isomeric butylamines, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methyl-hexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octadecylamine, ethyl-butylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-heptylamine,

hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, e.g. pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, e.g. anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

Preferred quarternary ammonium bases that are suitable for salt formation correspond, for example, to the formula $[N(R_aR_bR_cR_d)]OH$, wherein R_a , R_b , R_c and R_d are each independently of the others C_1 - C_4 alkyl. Other suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions.

Preferred compounds of formula I are those wherein each R_1 independently of any other(s) is halogen, -CN, -NO₂, -C(R_{10})=NOR₁₁, -OR₁₃, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl or C₂-C₈alkenyl, or C₁-C₈alkyl substituted by one or more halogen or -CN substituents; R_{10} is hydrogen or C₁-C₄alkyl; and R_{11} is C₁-C₈alkyl.

Preference is given also to those compounds of formula I wherein each R_2 independently of any other(s) is halogen, -CN, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -C(R₄₁)=NOR₄₂, -OR₄₄, -SO₂R₄₇, -OSO₂R₄₈, C₁-C₈alkyl, or C₁-C₈alkyl mono- or polysubstituted by halogen, -CN or by -CO₂R₅₇; R₃₆ and R₃₇ are hydrogen; R₃₈ is hydrogen or C₁-C₈alkyl; R₄₁ is hydrogen or C₁-C₄alkyl; and R₄₂ is C₁-C₈alkyl.

In an especially preferred group of compounds of formula I, each R_1 independently of any other(s) is halogen, -CN, -NO₂, -C(R_{10})=NOR₁₁, -OR₁₃, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl or C₂-C₈alkenyl, or C₁-C₈alkyl substituted by one or more -CN substituents;

R₁₀ is hydrogen or C₁-C₄alkyl;

R₁₁ is C₁-C₈alkyl;

each R_2 independently of any other(s) is halogen, -CN, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -C(R₄₁)=NOR₄₂, -OR₄₄, -SO₂R₄₇, -OSO₂R₄₈ or C₁-C₈alkyl, or C₁-C₈alkyl mono- or polysubstituted by -CN or by -CO₂R₅₇;

R₃₆ and R₃₇ are hydrogen;

R₃₈ is hydrogen or C₁-C₈alkyl;

R₄₁ is hydrogen or C₁-C₄alkyl;

R₄₂ is C₁-C₈alkyl; and

 R_3 and R_4 are each independently of the other hydrogen or C_1 - C_4 alkyl.

Also of interest are compounds of formula I wherein R_1 is halogen, -CN, C_1 - C_8 alkyl substituted by -CN, or C_1 - C_8 alkoxy.

Very special preference is given to those compounds of formula I wherein R_2 is halogen, –CN, C_1 - C_8 alkyl substituted by –CN, or C_1 - C_8 alkoxy, at least one of the substituents R_1 and R_2 being especially C_1 - C_8 alkyl substituted by -CN.

Preference is given also to compounds of formula I wherein n is 0, 1 or 2, and m is 0, 1, 2, 3 or 4, n being especially 1 or 2, and m being especially 1 or 2.

Of particular interest are compounds of formula I wherein R_3 and R_4 are hydrogen.

In an outstanding group of compounds of formula I, the group

1 or 2, and R₁ occupying especially the 3- and/or 5-position on the pyridine ring.

Preference is given also to compounds of formula I wherein

m is 1 or 2, and R₂ occupies the 3-position on the phenyl ring.

Special mention may be made also of compounds of formula I, wherein R_1 is hydrogen, fluorine, chlorine, bromine, methoxy, difluoromethoxy, trifluoromethyl or isopropylthio; R_2 is cyanomethyl, chlorine or bromine;

R₃ and R₄ are hydrogen;

n is 1 or 2, and

m is 1.

The compounds of formula I can be prepared by processes known *per se* described, for example, in J. Chem. Soc. Perkin Trans. 1979, pages 2756-2761; Synth. Commun. 1988, 18, pages 1111-1118; J. Org Chem. 1996, 61, pages 4258-4261; and K. Sonogashira, Comprehensive Organic Synthesis 1991, Vol. 3, page 521, for example, by reacting a compound of formula II

wherein R_1 is as defined for formula I, in the presence of a base, with a compound of formula III

$$X_1$$
 R_4 (III),

wherein R_3 and R_4 are as defined for formula I and X_1 is O-tosyl, chlorine, bromine or iodine, to form a compound of formula IV

wherein R₁, R₃ and R₄ are as defined for formula I, and then coupling that compound, in the presence of a palladium catalyst, with a compound of formula V

wherein R_2 is as defined for formula I and A is a leaving group, such as halogen or trifluoromethanesulfonate.

The preparation of the compounds of formula I can be carried out, for example, in accordance with Reaction Schemes 1, 2, 3, 4, 5 and 6. For the individual synthesis schemes, it is generally the case that different R₁ substituents may already be present at the start, or can be introduced in succession, for example by nucleophilic substitution.

According to Reaction Scheme 1, the compounds of formula I can be obtained, for example, from substituted pyridyl propargyl ethers of formula IV.

The propargyl ethers of formula IV can be obtained in advance by alkylation of hydroxypyridines of formula II, which are reacted with acetylene derivatives III in the presence of a base. Such alkylations are standard procedures and can be carried out, for example, analogously to J. Chem. Soc. Perkin Trans. 1979, pages 2756-2761; Synth. Commun. 1988, 18, pages 1111-1118; and J. Org Chem. 1996, 61, pages 4258-4261.

In the next Step, the propargyl ethers of formula IV are coupled with substituted aryls of formula V under typical Sonogashira conditions (K.Sonogashira, Comprehensive Organic Synthesis 1991, Vol. 3, page 521). As catalyst mixtures there come into consideration, for example, tetrakistriphenylphosphinepalladium or bistriphenylphosphinepalladium dichloride together with copper iodide; as bases (for the reductive elimination) there come into consideration preferably amines, for example triethylamine, diethylamine or diisopropylethylamine.

The aryls of formula V preferably carry a leaving group A, wherein A is, for example, halogen (N. Krause *et al.*, J. Org. Chem. 1998, 63, page 8551; and Nakamura, H. *et al.*, Tetrahedron Lett. 2000, 41, page 2185) or trifluoromethanesulfonate (Ritter, K., Synthesis 1993, page 735). As solvents there are customarily used ethers, for example tetra-hydrofuran,

chlorinated hydrocarbons, for example chloroform, or dipolar aprotic solvents, for example dimethylformamide or dimethyl sulfoxide.

Scheme 1

alkylation
$$X_1 = -Br, -I, -OTs$$

$$|| X_1 = -Br, -I, -OTs = || X_2 = -Br, -I, -OTs = || X_3 = -Br, -I, -OTs = || X_4 = -Br, -I, -OTs = || X_5 = -Br, -I, -OTs = || X_6 = -Br, -I, -OTs = || X_7 = -Br, -I, -OTs = || X_8 = -Br, -I, -OTs = || X_8 = -Br, -I, -OTs = || X_8 = -Br, -I, -OTs = -$$

The Pd-catalysed cross-coupling of suitably substituted benzenes of formula V with propargyl alcohols or terminal acetylenes of formula VI is generally known as a Sonogashira reaction (Reaction Scheme 2). That reaction has already been depicted in detail (see above, Scheme 1) and can also be used for the preparation of the phenylpropargyl alcohols of formula VII.

The activation of the alcohol of formula VII is achieved, for example, by tosylation or halogenation. The tosylation of the alcohol of formula VII is a standard reaction and can be carried out, for example, with a sulfonic acid chloride, for example mesyl chloride or paratoluenesulfonic acid chloride (p-TosCl) in the presence of an amine, for example diethylamine, triethylamine or pyridine, in a solvent, e.g. a chlorinated hydrocarbon, for example carbon tetrachloride or methylene chloride, or an amine, for example pyridine. Such

reactions are generally known and are described, for example, in J. Org. Chem. 1997, 62, page 8987; J. Het. Chem. 1995, 32, pages 875-882; and Tetrahedron Lett. 1997, 38, pages 8671-8674.

The halogenation can be carried out analogously to standard procedures. For example, bromination is effected using carbon tetrabromide in the presence of triphenylphosphine (Synthesis 1998, pages 1015-1018) in methylene chloride. Chlorination is effected using mineral acids, for example using concentrated hydrochloric acid (J. Org. Chem. 1955, 20, page 95) or using para-toluenesulfonic acid chloride in the presence of an amine, for example triethylamine, in a solvent, for example methylene chloride (Tetrahedron Lett. 1984, 25, page 2295).

The preparation of the phenyl-propynyloxy-pyridines of formula I can be carried out analogously to Synthesis 1995, pages 707-712; and Tetrahedron Lett. 1994, 35, pages 6405-6408 by means of copper iodide-catalysed alkylation. Suitable solvents are dimethylformamide and acetonitrile; suitable bases are preferably potassium carbonate and 1,8-diazabicylo[5.4.0]-undec-7-ene (DBU).

Scheme 2

Sonogashira:

Compounds of formula I can also be obtained according to other methods (see Scheme 3).

Scheme 3

Phenylacetylene esters of formula X can be obtained by means of Sonogashira coupling from the compounds of formula IX and activated benzene derivatives of formula V. The esters of formula X can then be reduced or reacted with organometal compounds, for example Grignard reagents, to form the alcohols of formula VII.

The reduction can be carried out preferably with hydrides according to standard methods, for example with lithium aluminium hydride or sodium borohydride in a solvent, e.g. an ether, for example diethyl ether, dioxane or tetrahydrofuran, or an alcohol, for example methanol or ethanol. Such reductions are described, for example, in C. Ferri, "Reaktionen der organischen Synthese" 1978, pages 98-102.

Reactions of carboxylic acid esters with Grignard reagents are standard in organic synthesis chemistry and are described in detail, for example, in "Organikum" 1976, pages 617-625. The subsequent etherification of the pyridyl derivatives of formula II to form the compounds of formula I has already been depicted in detail in Scheme 2.

Further methods of preparing the compounds of type I are shown in Scheme 4 (variant of Scheme 3).

Scheme 4

The reaction of phenylacetylenes of formula XI with methyllithium and subsequent reaction with chloroformic acid ethyl ester of formula XII yields the ester of formula Xa, which can be converted to the compounds of type I *via* an alcohol of formula VII in a manner completely analogous to that already shown in Scheme 3 (Tetrahedron. Lett. 1992, 33, page 4495).

The nucleophilic aromatic substitution of the pyridine derivatives of formula XIV, wherein X₂ is halogen (Reaction Scheme 5) can be carried out analogously to known procedures, as described, for example, in J. March, "Advanced Organic Chemistry" 4th Edition, John Wiley & Sons, New York, 1992, pages 641-676. Accordingly the pyridine derivative of formula XIV is reacted with a propargyl alcohol of formula VII in an aprotic solvent, e.g. an amide, for example N,N-dimethylformamide (DMF) or 1-methyl-2-pyrrolidone (NMP), a sulfoxide, for example dimethyl sulfoxide (DMSO), a ketone, for example acetone, or an ether, for example tetrahydrofuran (THF), in the presence of a base, e.g. a carbonate, for example potassium or caesium carbonate, or a metal hydride, for example sodium hydride, at temperatures of from 0°C to 100°C (see also EP-A-0 759 429).

Scheme 5

nucleophilic substitution:

R
$$X_2$$
 X_2
 X_3
 X_4
 X_4
 X_4
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8

Compounds of formula I can also be prepared by first reacting the propargyl alcohols of formula XV with the pyridine derivatives of formula XIV to form compounds of formula XVI and only then in the next synthesis step carrying out a Sonogashira reaction with activated benzene derivatives of formula V (Reaction Scheme 6).

Scheme 6

nucleophilic substitution:

$$R_1$$
 X_2
 X_2
 X_3
 Y_4
 Y_5
 Y_6
 Y_7
 Y_8
 Y_8

Sonogashira coupling

Pd catalyst, Cul

$$R_2$$
 $V: A = halogen, O-SO_2-CF_3$
 R_1
 R_3
 R_4

For the individual reaction steps (Schemes 1 to 6) the following applies:

The reactions to form compounds of formula I are advantageously carried out in aprotic, inert organic solvents. Such solvents are hydrocarbons, such as benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons, such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene, ethers, such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles, such as acetonitrile or propionitrile, or amides, such as N,N-dimethylformamide, diethylformamide or N-methylpyrrolidinone. The reaction temperatures are preferably from -20°C to +120°C. The reactions are generally slightly exothermic and can usually be carried out at room temperature. In order to shorten the reaction time or to initiate the reaction, it is optionally possible to heat the reaction mixture for a short time up to boiling point. The reaction times can also be reduced by the addition of a few drops of base as reaction catalyst. Suitable bases are especially tertiary amines, such as trimethylamine, triethylamine, quinuclidine, 1,4-diazabicyclo[2.2.2]octane, 1,5-diazabicyclo[4.3.0]non-5-ene or 1,5-diazabicyclo[5.4.0]-undec-7-ene. The bases used can, however, also be inorganic bases, such as hydrides, such as

WO 02/28182 PCT/EP01/11353

sodium or calcium hydride, hydroxides, such as sodium or potassium hydroxide, carbonates, such as sodium or potassium carbonate, or hydrogen carbonates, such as potassium or sodium hydrogen carbonate.

- 22 -

The compounds of formula I can be isolated in customary manner by concentration and/or evaporation of the solvent and can be purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons.

For the use of the compounds of formula I according to the invention or compositions comprising them, there are suitable any of the methods of application customary in agriculture, such as preemergence application, postemergence application and seed dressing, as well as various methods and techniques, such as the controlled release of active ingredient. In the latter method, the compound is applied in solution to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. Where appropriate, it is possible in addition to apply a coating (coated granules) which allows the active ingredient to be released in metered amounts over a specific period.

The compounds of formula I can be used as herbicides in unmodified form, i.e. as obtained during synthesis, but are preferably formulated in customary manner together with the adjuvants conventionally employed in formulation technology, e.g. into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules and microcapsules. Such formulations are described, for example, in WO 97/34485 on pages 9 to 13. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The formulations, i.e. the compositions, preparations or mixtures comprising the compound of formula I or at least one compound of formula I and generally one or more solid or liquid formulation adjuvants, are prepared in known manner, e.g. by intimately mixing and/or grinding the active ingredients with the formulation adjuvants, e.g. solvents or solid carriers. Surface-active compounds (surfactants) may additionally be used in the preparation of the formulations. Examples of solvents and solid carriers are given, for example, in WO 97/34485 on page 6.

WO 02/28182 PCT/EP01/11353

Depending on the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, in WO 97/34485 on pages 7 and 8. The surfactants customarily employed in formulation technology, which are described *inter alia* in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81, are also suitable for the preparation of the herbicidal compositions according to the invention.

The herbicidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, herbicide, from 1 to 99.9 % by weight, especially from 5 to 99.8 % by weight, of a solid or liquid formulation adjuvant and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products are preferably formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients such as stabilisers, e.g. vegetable oils and epoxidised vegetable oils (epoxidised coconut oil, rape oil or soybean oil), anti-foams, e.g. silicone oil, preservatives, viscosity regulators, binders and tackifiers, as well as fertilisers or other active ingredients.

The compounds of formula I are usually applied to the plants or to the locus thereof at rates of application of from 0.001 to 4 kg/ha, especially from 0.005 to 2 kg/ha. The concentration required to achieve the desired action can be determined by experimentation. It will depend on the type of action, the development stage of the crop plant and of the weed, as well as on the application (locus, time, method) and, in dependence on those parameters, can vary over a wide range.

The compounds of formula I are distinguished by herbicidal and growth-inhibiting properties, which make them suitable for use in crops of useful plants, especially in cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, and for the non-selective control of weeds. Crops will be understood to include also those crops that have been made tolerant to herbicides or classes of herbicides by conventional breeding or genetic engineering methods. The weeds to be controlled may be monocotyledonous as well as dicotyledonous weeds, for example Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus,

Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

The following Examples illustrate the invention further, but do not limit the invention.

Preparation Examples:

Example P1: Preparation of 3,5-dichloro-2-(prop-2-ynyloxy)-pyridine:

1.25 g (0.029 mol) of NaH (55 %) are placed in 30 ml of pentane. After 15 minutes' stirring under nitrogen, the solvent is removed by syringe. 20 ml of absolute THF are then added and 1.65 ml (0.028 mol) of propargyl alcohol are added dropwise over a period of about 5 minutes at a temperature of 0°C. When the addition is complete, the ice-cooling is removed and stirring is continued for a further one hour at a temperature of about 45°C until the evolution of gas has ceased. 4.8 g (0.025 mol) of 2,3,5-trichloropyridine dissolved in 5 ml of THF are then added dropwise, with stirring, at 45°C. Stirring is then carried out for 6 hours at a temperature of 45°C and for 18 hours at a temperature of 20°C, until gas chromatography indicates complete conversion. The reaction mixture is then neutralised cautiously with 1N HCl, a small amount of saturated aqueous sodium chloride is added and extraction with ethyl acetate is carried out a total of three times. The combined organic phases are dried over magnesium sulfate. After filtration and removal of the ethyl acetate by evaporation, 5.0 g of 3,5-dichloro-2-(prop-2-ynyloxy)-pyridine are obtained in the form of a pale yellow oil, which corresponds to a quantitative conversion.

Example P2: Preparation of {3-[3-(3,5-dichloropyridin-2-yloxy)-prop-1-ynyl]-phenyl}-acetonitrile:

486 mg (2.0 mmol) of 3-iodo-1-phenylacetonitrile, 17.1 mg (0.09 mmol) of Cul and 126 mg (0.18 mmol) of Pd(PPh₃)₂Cl₂ are dissolved at 20°C in 10 ml of THF under argon. After 15 minutes' stirring, 0.56 ml (4.0 mmol) of triethylamine is added. A solution of 444 mg (2.2 mmol) of 3,5-dichloro-2-(prop-2-ynyloxy)-pyridine (Example P1) in 3 ml of THF is then added dropwise over a period of 30 minutes. After a further 16 hours' stirring at 20°C, the THF is distilled off, 50 ml of water are added to the residue, and extraction is carried out with a total of about 120 ml of ethyl acetate. After separation of the organic phase, drying over magnesium sulfate and filtration, concentration by evaporation is carried out. The dark residue is purified by chromatography (eluant: ethyl acetate/hexane 1/4). 300 mg of {3-[3-(3,5-dichloropyridin-2-yloxy)-prop-1-ynyl]-phenyl}-acetonitrile are obtained in solid form having a melting point of from 70 to 72°C.

Example P3: Preparation of 5-bromo-2-(prop-2-ynyloxy)-pyridine:

0.54 g (0.011 mol) of NaH (55 %) is suspended in 15 ml of absolute THF under nitrogen.
0.67 ml (0.011 mol) of propargyl alcohol is then added dropwise over a period of about
5 minutes at a temperature of 0°C. When the addition is complete, the ice-cooling is
removed and stirring is carried out for 30 minutes at a temperature of about 20°C until the
evolution of gas has ceased. 2.0 g (0.011 mol) of 5-bromo-2-fluoropyridine dissolved in 5 ml
of THF are then added dropwise at 20-30°C, with stirring and ice-cooling. Stirring is then
carried out for a further 2 hours at room temperature until gas chromatography indicates
complete conversion. The reaction mixture is then cautiously poured into 40 ml of water and
extraction with ethyl acetate is carried out a total of three times. The combined organic
phases are dried over sodium sulfate. After filtration and removal of the ethyl acetate by

evaporation, 2.1 g of 5-bromo-2-(prop-2-ynyloxy)-pyridine are obtained in the form of beige crystals having a melting point of 58-60°C.

Example P4: Preparation of 5-chloro-3-fluoro-2-(prop-2-ynyloxy)-pyridine:

8.0 g (0.167 mol) of NaH (55 %) are suspended in 200 ml of absolute THF under nitrogen. 9.9 ml (0.167 mol) of propargyl alcohol dissolved in 10 ml of absolute THF are then added dropwise over a period of about 10 minutes at a temperature of 0°C. When the addition is complete, the ice-cooling is removed and stirring is carried out at room temperature for 45 minutes until the evolution of gas has ceased. 25 g (0.167 mol) of 5-chloro-2,5-difluoropyridine dissolved in 50 ml of THF are then added dropwise at 20-30°C, with stirring and ice-cooling. Stirring is carried out for a further 3 hours at room temperature until gas chromatography indicates complete conversion. The reaction mixture is then cautiously poured into 250 ml of water and extraction with ethyl acetate is carried out a total of three times. After separation of the organic phase, drying over sodium sulfate and filtration, concentration by evaporation is carried out. The yellow residue is purified by chromatography (eluant: ethyl acetate/hexane 1/4). 19.1 g of 5-chloro-3-fluoro-2-(prop-2-ynyloxy)-pyridine are obtained in the form of a colourless oil.

Example P5: Preparation of 5-chloro-3-methoxy-2-(prop-2-ynyloxy)-pyridine:

1.0 g (5.4 mmol) of 5-chloro-3-fluoro-2-(prop-2-ynyloxy)-pyridine (Example P4) are placed in 15 ml of methanol under nitrogen. 2.0 ml (10.8 mmol) of a 30 % sodium methanolate solution in methanol are then added dropwise over a period of about 5 minutes at room temperature. When the addition is complete, the reaction mixture is heated to reflux and stirred at that temperature for a further 18 hours. The reaction mixture is cooled to room temperature and 30 ml of water are then added cautiously. Extraction with ethyl acetate is then carried out three times. After separation of the organic phase, drying over sodium sulfate and filtration, concentration by evaporation is carried out. The yellowish residue is purified by chromatography (eluant: ethyl acetate/hexane 1/4). 0.65 g of 5-chloro-3-methoxy-

Ĵ.

2-(prop-2-ynyloxy)-pyridine is obtained in the form of colourless crystals having a melting point of 62-64°C.

Example P6: Preparation of {3-[3-(5-bromopyridin-2-yloxy)-prop-1-ynyl]-phenyl}-acetonitrile:

486 mg (2.0 mmol) of 3-iodo-1-phenylacetonitrile, 424 mg (2.0 mmol) of 5-bromo-2-(prop-2-ynyloxy)-pyridine (Example P3) and 80 mg (0.11 mmol) of Pd(PPh₃)₂Cl₂ are dissolved at a temperature of 0°C in a mixture of 10 ml of chloroform and 4 ml of triethylamine under argon. After 15 minutes' stirring, 36 mg (0.19 mmol) of CuI are added. After a further 18 hours' stirring at a temperature of 0°C, the reaction mixture is filtered through a small amount of silica gel. The filtrate is concentrated by evaporation and the dark residue is purified by chromatography (eluant: ethyl acetate/hexane 1/4). 180 mg of {3-[3-(5-bromo-pyridin-2-yloxy)-prop-1-ynyi]-phenyl}-acetonitrile are obtained in solid form having a melting point of 121-123°C.

Example P7: Preparation of 5-chloro-2-[3-(4-chlorophenyl)-prop-2-ynyloxy]-3-methoxy-pyridine:

112 mg (0.47 mmol) of 1-iodo-4-chlorobenzene, 94 mg (0.47 mmol) of 5-chloro-3-methoxy-2-(prop-2-ynyloxy)-pyridine (Example P5) and 34 mg (0.047 mmol) of Pd(PPh₃)₂Cl₂ are dissolved at a temperature of -78°C in a mixture of 5 ml of methanol and 0.335 ml (2.4 mmol) of triethylamine under argon. After 15 minutes' stirring, 27 mg (0.14 mmol) of Cul are added. The reaction mixture is left for 18 hours, with stirring, to warm to room temperature and is then filtered through a small amount of silica gel. The filtrate is concentrated by evaporation and the dark residue is purified by chromatography (eluant:

ethyl acetate/hexane 1/4). 37 mg of 5-chloro-2-[3-(4-chlorophenyl)-prop-2-ynyloxy]-3-methoxypyridine are obtained in solid form having a melting point of 109-110°C.

Table 1: Compounds of formula I

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.001	Н	3-Cl	Н	Н	-
1.002	н	3-CH₂CN	Н ·	Н	oil
1.003	н	3-CH₂CN	CH₃	H	-
1.004	Н	3-CN	Н	Н	~
1.005	3-F	3-CH₂CN	Н	Н	-
1.006	3-CI	3-CH₂CN	Н	Н	-
1.007	5-CI	3-CH₂CN	Н	Н	110-112
1.008	5-Br	3-CH₂CN	н	н	121-123
1.009	3-F, 5-F	3-CH₂CN	Н	Н	-
1.010	3-CI, 5-CI	3-CH₂CN	Н	Н	70-72
1.011	3-F, 5-Cl	3-CH₂CN	Н	Н	64-66
1.012	3-F, 5-Cl	3-CH₂CN	CH₃	Н	-
1.013	3-F, 5-Cl	3-CH₂CN	CH ₃	CH₃	-
1.014	3-OCH ₃ , 5-CF ₃	3-CH₂CN	Н	Н	-
1.015	3-OCH ₃ , 5-F	3-CH₂CN	н	Н	-
1.016	3-OCH ₃ , 5-Cl	3-CH₂CN	Н	Н	93-97
1.017	3-OCH₃, 5-Br	3-CH₂CN	Н	Н	-
1.018	3-OCH ₃ , 5-F	3-CH₂CN	CH ₃	Н	-
1.019	3-OCH ₃ , 5-Cl	3-CH₂CN	CH₃	Н	
1.020	3-OCH ₃ , 5-F	3-CH(CH₃)CN	н	Н	-
1.021	3-OCH ₃ , 5-Cl	3-CH(CH₃)CN	Н	Н	-
1.022	3-OCH₃, 5-CH₃	3-CH₂CN	Н	Н	-

PCT/EP01/11353

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.023	3-OCH ₃ , 5-CH ₃	3-CH(CH ₃)CN	Н	Н	-
1.024	3-OCHF ₂ , 6-CH ₃	3-CH₂CN	Н	Н	32-34
1.025	3-OCHF ₂ , 5-Cl	3-CH₂CN	Н	Н	-
1.026	3-OCHF ₂ , 5-F	3-CH₂CN	Н	Н	-
1.027	3-OCH _{3,}	3-CH₂CN	Н	Н	-
	5-CH=NOCH₃				
1.028	3-OCH ₃ , 5-Cl	4-CI	Н	Н	109-110
1.029	3-OCH ₃ , 5-Cl	3-Cl	Н	Н	79-82
1.030	3-OCH ₃ , 5-Cl	3-Br	Н	Н	82-85
1.031	3-CH ₃ ,	3-CH₂CN	Н	Н	-
	5-NHCOCH₃				
1.032	3-CH ₃ , 5-Cl	3-CH₂CN	Н	Н	-
1.033	3-CH ₃ , 5-F	3-CH₂CN	Н	Н	-
1.034	3-OCH _{3,}	3-CH(CH ₃)CN	Н	H	-
	5-CH=NOCH₃				
1.035	3-OCH₃,	3-CH₂CN	CH₃	Н	-
	5-CH=NOCH₃				
1.036	3-Cl, 5-Cl,	3-CH₂CN	Н	Н	91-93
	6-OCH₃				·
1.037	3-Cl, 5-F,	3-CH₂CN	Н	Н	-
	6-OCH₃				
1.038	3-F, 5-CF₃	3-CH₂CN	н	Н	-
1.039	3-Cl, 5-CF ₃	3-CH₂CN	Н	Н	oil
1.040	3-Br, 5-CF ₃	3-CH₂CN	H	Н	-
1.041	3-F, 5-CF ₃	3-CH(CH ₃)CN	Н	Н	-
1.042	3-Cl, 5-CF ₃	3-CH(CH₃)CN	Н	Н	-
1.043	3-F, 5-CF ₃	3-CH₂CN	CH ₃	Н	-
1.044	3-Cl, 5-CF ₃	3-CH₂CN	CH ₃	Н	-
1.045	3-SCH₃, 5-CI	3-CH₂CN	н	Н	-
1.046	3-SCH₃, 5-F	3-CH₂CN	Н	Н	-
1.047	3-SCH₃	3-CH₂CN	Н	Н	-
1.048	3-S-iso-C₃H ₇	3-CH₂CN	H	Н	oil

WO 02/28182

Comp.	R ₁	R_2	Rз	R ₄	Phys. data
No.					m.p. (°C)
1.049	3-OCH ₃ , 5-CN	3-CH₂CN	Н	Н	•
1.050	3-OCH ₃ , 5-CN	3-CH₂CN	CH ₃	н	-
1.051	3-OCH ₃ , 5-CN	4-Br	H	н	-
1.052	3-OCH ₃ , 5-F	3-CH₂CN	CH ₃	CH₃	-
1.053	3-OCH ₃ , 5-Cl	3-CH₂CN	CH₃	CH₃	-
1.054	Н	3-CH ₂ CN	CH ₃	CH₃	-
1.055	3-OCH _{3,}	3-CI	Н	Н	-
	5-CH=NOCH₃			i	
1.056	3-OCH _{3,}	4-Cl	Н	Н	-
	5-CH=NOCH₃				
1.057	3-Cl, 5-Cl, 6-Cl	3-CH₂CN	Н	Н	-
1.058	3-Cl, 5-Cl, 6-F	3-CH₂CN	Н	н	-
1.059	3-Cl, 5-Cl, 6-F	3-CH ₂ CN	CH ₃	Н	-
1.060	3-OCH ₃ , 5-CI	3-CN	Н	Н	<u>-</u>
1.061	3-OCH ₃ , 5-F	3-CN	н	н	-
1.062	3-OCH ₃ , 5-CF ₃	3-CN	Н	н	-
1.063	3-OCH ₃ , 5-CI	4-Br	Н	н	-
1.064	3-OCH ₃ , 5-F	4-Br	н	н	-
1.065	3-F, 5-Cl	4-Br	Н	н	-
1.066	3-F, 5-Cl	3-CH(CH₃)CN	Н	н	-
1.067	3-F, 5-Cl	3-CH(CH₃)CN	СН₃	н	-
1.068	3-F, 5-Cl	3-CH(CH₃)CN	СН₃	СН₃	-
1.069	3-OCH ₃ , 5-Cl	3-CH(CH₃)CN	CH ₃	н	-
1.070	3-OCH ₃ , 5-Cl	3-CH(CH₃)CN	CH₃	CH₃	
1.071	3-OCH₃, 5-F	3-CH(CH₃)CN	CH₃	` н	-
1.072	3-OCH₃, 5-F	3-CH(CH₃)CN	CH₃	СН₃	-
1.073	3-OCH₃, 5-Cl	3-C(CH ₃) ₂ CN	Н	н	-
1.074	3-OCH₃, 5-F	3-C(CH ₃) ₂ CN	Н	н	-
1.075	3-CF₃	3-CH₂CN	Н	н	-
1.076	3-CF ₃ , 5-Cl	3-CH₂CN	Н	н	-
1.077	3-CF ₃ , 5-F	3-CH₂CN	Н	н	_
1.078	3-OCH₃, 5-CI	3-C(S)NH ₂	Н	н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.079	3-OCH ₃ , 5-F	3-C(S)NH ₂	Н	Н	-
1.080	3-F, 5-Cl	3-C(S)NH ₂	Н	Н	· -
1.081	3-OCH ₃ , 5-Cl	4-NO ₂	Н	н	resin
1.082	3-OCH ₃ , 5-CI	2-CONH ₂	Н	Н	resin
1.083	3-OCH ₃ , 5-CI	4-CO ₂ CH ₃	Н	Н	resin
1.084	3-OCH ₃ , 5-Cl	2-F, 3-F, 4-F, 5-F,	Н	н	solid
		6-F			
1.085	3-OCH ₃ , 5-CI	3-CH ₃ , 4-CH ₃	Н	Н	resin
1.086	3-OCH ₃ , 5-Cl	3-CH ₃ , 5-CH ₃	Н	н	resin
1.087	3-OCH ₃ , 5-CI	2-OCF ₃ , 4-Br	Н	Н	resin
1.088	3-OCH ₃ , 5-Cl	4-F	Н	н	resin
1.089	3-OCH ₃ , 5-Cl	2-F, 4-F	Н	н	resin
1.090	3-OCH₃, 5-CI	3-CH ₃ , 4-F	Н	н	resin
1.091	3-OCH ₃ , 5-CI	2-F, 4-Cl	Н	н	resin
1.092	3-OCH₃, 5-Cl	4-CF₃	Н	н	89-90
1.093	3-OCH ₃ , 5-Cl	4-CO ₂ C ₂ H ₅	Н	н	126-127
1.094	3-OCH ₃ , 5-Cl	Н	Н	Н	solid
1.095	3-OCH ₃ , 5-Cl	2-Cl, 4-Cl	Н	Н	resin
1.096	3-OCH₃, 5-Cl	2-CI, 5-CF ₃	Н	н	resin
1.097	3-OCH ₃ , 5-Cl	2-F, 4-Br	Н	н	resin
1.098	3-OCH₃, 5-Cl	3-CF₃	Н	н	resin
1.099	3-OCH₃, 5-Cl	2-CI	Н	н	resin
1.100	3-OCH₃, 5-Cl	3-F, 4-CH₃	Н	н	resin
1.101	3-OCH ₃ , 5-Cl	3-Cl, 4-F	Н	н	resin
1.102	3-OCH ₃ , 5-Cl	2-CH ₃ , 3-Cl	Н	Н	resiri
1.103	3-OCH ₃ , 5-Cl	2-Cl, 4-CF ₃	Н	Н	resin
1.104	3-OCH ₃ , 5-CI	2-Cl, 4-Br	Н	Н	resin
1.105	3-OCH ₃ , 5-CI	4-CO ₂ C ₂ H ₅	Н	Н	resin
1.106	3-OCH₃, 5-F	3-CF ₃ , 5-CF ₃	Н	н	resin
1.107	3-OCH ₃ , 5-F	2-Cl, 4-Cl, 5-Cl	Н	н	resin
1.108	3-OCH₃, 5-F	2-CH ₃ , 4-Cl	Н	Н	resin
1.109	3-OCH ₃ , 5-F	4-CO ₂ CH ₃	Н	н	resin

Comp.	R ₁	R ₂	Rз	R ₄	Phys. data
No.					m.p. (°C)
1.110	3-OCH ₃ , 5-F	2-F, 4-Cl,	Н	Н	resin
		5-CO ₂ CH₃			
1.111	3-OCH₃, 5-F	5-CO ₂ C ₂ H ₅	Н	Н	resin
1.112	3-OCH₃, 5-F	2-CN, 3-F	Н	н	resin
1.113	3-OCH₃, 5-F	4-NO ₂	Н	н	resin
1.114	3-OCH ₃ , 5-F	3-Cl, 4-CH ₃	Н	Н	resin
1.115	3-OCH ₃ , 5-F	3-Cl, 6-OCH₃	Н	н	resin
1.116	3-OCH ₃ , 5-F	4-CF ₃	Н	н	resin
1.117	3-OCH ₃ , 5-F	2-Cl, 5-Cl	Н	н	resin
1.118	3-CN, 4-CH ₃ ,	3-CH₂CN	Н	н	amorphous
	6-CH₃				
1.119	3-SO₂NH₂	3-CH₂CN	Н	н	solid
1.120	3-OCH ₃ , 5-Cl	2-Cl, 4-F	Н	н	80-82
1.121	3-CN, 5-CN	3-CH₂CN	Н	н	solid
1.122	3-OCH₃, 5-F	3-OCH₃	Н	н	102-104
1.123	3-OCH ₃ , 5-Cl	3-F	Н	н	79-82
1.124	3-OCH ₃ , 5-F	3-Cl	Н	н	solid
1.125	3-OCH ₃ , 5-Cl	3-NO ₂	Н	н	137-139
1.126	3-OCH ₃ , 5-Cl	2-Cl, 3-Cl	Н	н	104-106
1.127	3-F, 5-F	2-Cl, 5-Cl	H	н	resin
1.128	3-F, 5-F	3-Cl, 4-CH ₃	Н	н	resin
1.129	3-F, 5-F	2-Cl, 4-Cl, 5-Cl	Н	н	resin
1.130	3-F, 5-F	4-CH₃	Н	н	resin
1.131	3-F, 5-F	3-OCF₃	Н	н	resin
1.132	3-F, 5-F	3-OCH ₂ C ₆ H ₅	Н	н	resin
1.133	3-F, 5-F	3-CN	Н	н	resin
1.134	3-F, 5-F	3-CF ₃ , 5-CF ₃	Н	н }	resin
1.135	3-F, 5-F	3-F, 4-F	н	н	resin
1.136	6-CF₂CI	3-CH₂CN	Н	н	oil
1.137	3-CN, 6-CH ₃	3-CH₂CN	Н	н	amorphous
1.138	6-CF ₃	3-CH₂CN	Н	н	oil
1.139	3-F, 5-F	2-F, 4-Cl,	Н	н	resin

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
		5-CO ₂ CH ₃			
1.140	3-F, 5-F	$3-CO_2C_2H_5$	Н	Н	resin
1.141	3-OCH ₃ , 5-Cl	3-F, 4-F	Н	Н	resin
1.142	3-F, 5-F	3-F	Н	Н	resin
1.143	3-F, 5-F	3-CI, 6-OCH ₃	Н	Н	resin
1.144	3-F, 5-F	2-CN, 3-F	Н	Н	resin
1.145	3-F, 5-F	4-CF ₃	Н	Н	resin
1.146	3-CO ₂ C ₂ H ₅ ,	3-CH₂CN	Н	Н	oil
	6-CF ₃				
1.147	5-CF ₃	3-CH₂CN	Н	н	oil
1.148	3-NO ₂ , 5-CI	3-CI	Н	н	98-99
1.149	3-F, 5-F	4-NO ₂	Н	н	resin
1.150	3-OCH ₃ , 5-F	3-Br	Н	н	- ·
1.151	3-CF ₃ , 5-F	3-Br	Н	н	-
1.152	3-F, 5-CI	3-Br	Н	н	-
1.153	3-Cl, 5-Cl	3-Br	Н	н	-
1.154	3-F, 5-F	3-Br	Н	Н	-
1.155	3-OCH ₃ , 5-Br	3-Br	Н	н	-
1.156	3-F, 5-Cl	3-OSO ₂ CH ₃	Н	н	-
1.157	3-F, 5-F	3-OSO₂CH₃	\mathbf{H}_{-}	Н	-
1.158	3-Cl, 5-Cl	3-OSO₂CH₃	Н	Н	-
1.159	3-OCH ₃ , 5-CI	3-OSO₂CH₃	Н	н	-
1.160	3-OCH ₃ , 5-Br	3-OSO ₂ CH ₃	Н	Н	-
1.161	3-OCH ₃ , 5-F	3-OSO₂CH₃	Н	н	-
1.162	3-OCH ₃ ,	3-OSO ₂ CH ₃	Н	Н	-
	5-CH=NOCH ₃				
1.163	3-OCH ₃ , 5-Br	3-CI	Н	н	-
1.164	3-OCH ₃ , 5-CF ₃	3-CI	Н	н	-
1.165	3-F, 5-Cl	3-CI	Н	Н	-
1.166	3-F, 5-F	3-CI	Н	н	-
1.167	3-OCH ₃ , 5-F	3-OCH₃	Н	н	-
1.168	3-F, 5-Cl	3-OCH₃	Н	н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.169	3-Cl, 5-Cl	3-OCH₃	Н	Н	-
1.170	3-OCH ₃ , 5-Br	3-OCH₃	Н	Н	-
1.171	3-F, 5-F	3-OCH ₃	Н	Н	-
1.172	3-OCH ₃ , 5-CI	3-OCH₃	Н	Н	-
1.173	3-F, 5-F	3-CH(CH ₃)CN	н	н	-
1.174	3-OCH ₃ , 5-CF ₃	3-CH(CH₃)CN	н	н	-
1.175	3-OCH ₃ , 5-CN	3-Br	Н	Н	-
1.176	3-OCH ₃ , 5-CN	3-OSO₂CH₃	Н	Н	-
1.177	3-OCH ₃ , 5-CN	3-CI	Н	Н	-
1.178	3-OCH ₃ , 5-CN	3-OCH ₃	H	H	-
1.179	3-OCH ₃ , 5-CN	3-1	Н	Н	**
1.180	3-F, 5-Cl	3-1	н	н	-
1.181	3-CI, 5-CI	3-1	н	н	-
1.182	3-OCH ₃ , 5-F	3-1	Н	н	-
1.183	3-OCH ₃ , 5-Cl	3-1	н	н	-
1.184	3-OCH ₃ , 5-Br	3-1	н	н	-
1.185	3-CF ₃ , 5-F	3-1	Н	н	-
1.186	3-OCH ₃ , 5-CF ₃	3-1	Н	н	-
1.187	3-F, 5-F	3-C(S)NH₂	н	н	-
1.188	3-OCH ₃ , 5-CF ₃	3-C(S)NH ₂	Н	н	-
1.189	3-Cl, 5-Cl	3-C(S)NH₂	Н	н	-
1.190	3-OCH ₃ , 5-Br	3-C(S)NH ₂	Н	н	-
1.191	3-OCH ₃ , 5-CN	3-CH ₂ -CCH	н	н	-
1.192	3-F, 5-Cl	3-CH ₂ -CCH	Н	н	-
1.193	3-Cl, 5-Cl	3-CH₂-CCH	Н	н	-
1.194	3-OCH ₃ , 5-F	3-CH ₂ -CCH	Н	н	-
1.195	3-OCH ₃ , 5-Cl	3-CH₂-CCH	Н	н	-
1.196	3-OCH ₃ , 5-Br	3-CH₂-CCH	Н	н	-
1.197	3-CF ₃ , 5-F	3-CH₂-CCH	Н	н	-
1.198	3-OCH ₃ , 5-CF ₃	3-CH₂-CCH	Н	н	-
1.199	3-OCH ₃ ,	3-CH₂-CCH	Н	н	<u>-</u>
	5-CH=NOCH ₃				
	T.			1	

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.200	3-OCH ₃ , 5-CN	3-CH ₂ -CH=CH ₂	Н	Н	-
1.201	3-F, 5-Cl	3-CH ₂ -CH=CH ₂	Н	н	-
1.202	3-CI, 5-CI	3-CH ₂ -CH=CH ₂	Н	н	-
1.203	3-OCH ₃ , 5-F	3-CH ₂ -CH=CH ₂	Н	н	-
1.204	3-OCH ₃ , 5-Cl	3-CH ₂ -CH=CH ₂	Н	н	-
1.205	3-OCH₃, 5-Br	3-CH ₂ -CH=CH ₂	Н	н	-
1.206	3-CF ₃ , 5-F	3-CH ₂ -CH=CH ₂	Н	н	-
1.207	3-OCH ₃ , 5-CF ₃	3-CH ₂ -CH=CH ₂	Н	н	~
1.208	3-OCH ₃ , 5-CH ₃	3-CH ₂ -CH=CH ₂	н	н	-
1.209	3-OCH ₃ ,	3-CH ₂ -CH=CH ₂	Н	н	-
	5-CH=NOCH ₃			ľ	
1.210	3-CI, 5-CI	4-Br	Н	н	-
1.211	3-OCH ₃ , 5-Br	4-Br	Н	н	-
1.212	3-CF ₃ , 5-F	4-Br	Н	н	-
1.213	3-OCH ₃ , 5-CF ₃	4-Br	Н	н	-
1.214	3-OCH ₃ , 5-CH ₃	4-Br	Н	н	- ·
1.215	3-OCH ₃ ,	4-Br	Н	н	-
	5-CH=NOCH₃				
1.216	3-OCH ₃ , 5-CN	4-CI	Н	н	~
1.217	3-F, 5-Cl	4-CI	Н	н	-
1.218	3-Cl, 5-Cl	4-CI	Н	Н	-
1.219	3-OCH₃, 5-F	4-Cl	Н	н	-
1.220	3-OCH₃, 5-Br	4-Cl	Н	н	-
1.221	3-CF ₃ , 5-F	4-CI	Н	н	-
1.222	3-OCH ₃ , 5-CF ₃	4-Cl	Н	н	-
1.223	3-OCH ₃ , 5-CH ₃	4-Cl	н	н	-
1.224	3-Cl, 5-Cl	3-Cl	н	н	-
1.225	3-CF ₃ , 5-F	3-CI	Н	н	-
1.226	3-OCH ₃ , 5-CH ₃	3-Cl	н	Н	-
1.227	3-OCH ₃ , 5-CN	4-CH₂CN	Н	н	-
1.228	3-F, 5-Cl	4-CH₂CN	Н	Н	-
1.229	3-CI, 5-CI	4-CH₂CN	н	н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.230	3-OCH ₃ , 5-F	4-CH₂CN	Н	Н	•
1.231	3-OCH ₃ , 5-Cl	4-CH₂CN	Н	н	-
1.232	3-OCH ₃ , 5-Br	4-CH₂CN	н	н	-
1.233	3-CF ₃ , 5-F	4-CH₂CN	Н	н	-
1.234	3-OCH ₃ , 5-CF ₃	4-CH₂CN	Н	н	-
1.235	3-OCH ₃ , 5-CH ₃	4-CH₂CN	Н	Н	-
1.236	3-OCH ₃ ,	4-CH₂CN	н	н	-
	5-CH=NOCH₃				
1.237	3-OCH ₃ , 5-CN	з-СНО	н	н	-
1.238	3-F, 5-CI	3-CHO	Н	Н	-
1.239	3-Cl, 5-Cl	3-CHO	н	н	-
1.240	3-OCH₃, 5-F	3-СНО	н	н	-
1.241	3-OCH ₃ , 5-Cl	з-СНО	н	н	-
1.242	3-OCH₃, 5-Br	3-СНО	н	н	-
1.243	3-CF ₃ , 5-F	3-СНО	Н	н∤	-
1.244	3-OCH ₃ , 5-CF ₃	з-СНО	н	н]	-
1.245	3-OCH ₃ , 5-CH ₃	з-ÇНО	н	н	-
1.246	3-OCH₃,	3-CHO	н	н	-
	5-CH=NOCH ₃			-	
1.247	3-OCH ₃ , 5-CN	3-CH ₂ OH	н	н	-
1.248	3-F, 5-Cl	3-CH₂OH	Н	н	-
1.249	3-Cl, 5-Cl	3-CH₂OH	н	н]	-
1.250	3-OCH ₃ , 5-F	3-CH ₂ OH	н	н	-
1.251	3-OCH ₃ , 5-Cl	3-CH ₂ OH	·H	Н	-
1.252	3-OCH ₃ , 5-Br	3-CH₂OH	Н	н	<u>-</u> ·
1.253	3-CF ₃ , 5-F	3-CH ₂ OH	Н	н	-
1.254	3-OCH ₃ , 5-CF ₃	3-CH₂OH	Н	н {	-
1.255	3-OCH₃, 5-CH₃	3-CH₂OH	Н	н	-
1.256	3-OCH₃,	3-CH₂OH	Н	н	-
	5-CH=NOCH₃				
1.257	3-NO ₂ , 6-Cl	3-CH₂CN	Н	н	-
1.258	3-NO ₂ , 6-CF ₃	3-CH₂CN	Н	н	-

,*

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.259	3-NO ₂ , 6-OCH ₃	3-CH₂CN	Н	Н	-
1.260	3-NO ₂ , 5-OCH ₃	3-CH₂CN	Н	Н	-
1.261	3-F, 5-OCH₃	3-CH₂CN	Н	Н	-
1.262	3-Cl, 5-OCH₃	3-CH₂CN	Н	Н	-
1.263	3-OCH ₃ ,5-OCH ₃	3-CH₂CN	Н	Н	-
1.264	3-F, 5-OC ₆ H ₅	3-CH₂CN	Н	Н	-
1.265	3-Cl, 5-OC ₆ H₅	3-CH₂CN	Н	Н	-
1.266	3-F,5-OCH ₂ C ₆ H ₅	3-CH₂CN	Н	н	-
1.267	3-CI,	3-CH₂CN	Н	н	-
	5-OCH₂C ₆ H ₅				
1.268	3-OCH₃,	3-CH₂CN	Н	н	-
	5-OCH₂C ₆ H ₅				
1.269	3-OCH ₃ , 5-CN	3-CH(OCH ₃)CN	Н	н	-
1.270	3-F, 5-Cl	3-CH(OCH ₃)CN	Н	н	-
1.271	3-CI, 5-CI	3-CH(OCH ₃)CN	Н	н	-
1.272	3-OCH ₃ , 5-F	3-CH(OCH ₃)CN	Н	н	-
1.273	3-OCH ₃ , 5-CI	3-CH(OCH ₃)CN	Н	н	-
1.274	3-OCH ₃ , 5-Br	3-CH(OCH ₃)CN	Н	н	-
1.275	3-CF ₃ , 5-F	3-CH(OCH ₃)CN	Н	н	-
1.276	3-OCH ₃ , 5-CF ₃	3-CH(OCH ₃)CN	H	н	- ,
1.277	3-OCH ₃ , 5-CH ₃	3-CH(OCH ₃)CN	Н	н	-
1.278	3-OCH ₃ ,	3-CH(OCH ₃)CN	Н	н	-
	5-CH=NOCH₃				
1.279	3-OCH ₃ , 5-CN	3-CH(OCH ₃) ₂	Н	н	-
1.280	3-F, 5-Cl	3-CH(OCH ₃) ₂	Н	н	-
1.281	3-CI, 5-CI	3-CH(OCH ₃) ₂	Н	Н	-
1.282	3-OCH₃, 5-F	$3-CH(OCH_3)_2$	Н	н	-
1.283	3-OCH ₃ , 5-Cl	$3-CH(OCH_3)_2$	Н	н	-
1.284	3-OCH ₃ , 5-Br	3-CH(OCH ₃) ₂	Н	н	-
1.285	3-CF ₃ , 5-F	3-CH(OCH ₃) ₂	Н	Н	-
1.286	3-OCH ₃ , 5-CF ₃	3-CH(OCH ₃) ₂	Н	н	-
1.287	3-OCH ₃ , 5-CH ₃	3-CH(OCH ₃) ₂	Н	Н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.288	3-OCH ₃ ,	3-CH(OCH ₃) ₂	Н	Н	-
	5-CH=NOCH₃				
1.289	3-OCH ₃ , 5-CN	3-CH₂Br	Н	Н	-
1.290	3-F, 5-Cl	3-CH₂Br	Н	Н	-
1.291	3-CI, 5-CI	3-CH₂Br	Н	Н	-
1.292	3-OCH ₃ , 5-F	3-CH₂Br	Н	Н	-
1.293	3-OCH ₃ , 5-CI	3-CH₂Br	Н	Н	~
1.294	3-OCH ₃ , 5-Br	3-CH₂Br	Н	Н	-
1.295	3-CF ₃ , 5-F	3-CH₂Br	Н	Н	-
1.296	3-OCH ₃ , 5-CF ₃	3-CH₂Br	Н	Н	-
1.297	3-OCH ₃ , 5-CH ₃	3-CH₂Br	Н	Н	-
1.298	3-OCH ₃ ,	3-CH₂Br	Н	H	-
	5-CH=NOCH₃				
1.299	3-OCH ₃ , 5-CN	3-CH ₂ CONH ₂	Н	Н	-
1.300	3-F, 5-Cl	3-CH ₂ CONH ₂	н	Н	-
1.301	3-Cl, 5-Cl	3-CH ₂ CONH ₂	Н	Н	-
1.302	3-OCH ₃ , 5-F	3-CH ₂ CONH ₂	Н	Н	-
1.303	3-OCH ₃ , 5-CI	3-CH ₂ CONH ₂	Н	Н	-
1.304	3-OCH ₃ , 5-Br	3-CH ₂ CONH ₂	Н	Н	-
1.305	3-CF ₃ , 5-F	3-CH ₂ CONH ₂	Н	Н	-
1.306	3-OCH ₃ , 5-CF ₃	3-CH ₂ CONH ₂	Н	Н	-
1.307	3-OCH ₃ , 5-CH ₃	3-CH ₂ CONH ₂	Н	Н	-
1.308	3-OCH ₃ ,	3-CH ₂ CONH ₂	Н	Н	-
	5-CH=NOCH₃				
1.309	3-F, 5-F	3-CH ₂ CN	CH₃	CH ₃	-
1.310	3-Cl, 5-Cl	3-CH₂CN	CH₃	CH ₃	-
1.311	3-OCH ₃ , 5-Br	3-CH₂CN	CH₃	CH ₃	-
1.312	3-OCH ₃ , 5-CH ₃	3-CH₂CN	. CH₃	CH₃	-
1.313	3-F, 5-F	3-CH₂CN	(CI	H ₂) ₂	-
1.314	3-F, 5-Cl	3-CH₂CN	(C	H ₂) ₂	-
1.315	3-OCH ₃ , 5-F	3-CH₂CN	(C	H ₂) ₂	-
1.316	3-OCH ₃ , 5-Cl	3-CH₂CN	(C	H ₂) ₂	-

WO 02/28182 PCT/EP01/11353

- 39 -

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
1.317	3-F, 5-F	3-CH₂CN	(Ch	H ₂) ₄	_
1.318	3-F, 5-Cl	3-CH₂CN	(Ch	H ₂) ₄	-
1.319	3-OCH ₃ , 5-F	3-CH₂CN	(CH	H ₂) ₄	-
1.320	3-OCH ₃ , 5-Cl	3-CH₂CN	(CH	H ₂) ₄	-
1.321	3-F, 5-F	3-CH(CH ₃)CN	(CH	H ₂) ₂	-
1.322	3-F, 5-Cl	3-CH(CH ₃)CN	(CH	H ₂) ₂	-
1.323	3-OCH ₃ , 5-F	3-CH(CH ₃)CN	(CH	H ₂) ₂	-
1.324	3-OCH ₃ , 5-CN	3-CH=NOCH ₃	Н	н	-
1.325	3-F, 5-Cl	3-CH=NOCH ₃	Н	н	-
1.326	3-Cl, 5-Cl	3-CH=NOCH ₃	Н	н	-
1.327	3-OCH ₃ , 5-F	3-CH=NOCH₃	Н	н	-
1.328	3-OCH ₃ , 5-Cl	3-CH=NOCH ₃	Н	н	-
1.329	3-OCH ₃ , 5-Br	3-CH=NOCH ₃	Н	н	•
1.330	3-CF ₃ , 5-F	3-CH=NOCH ₃	Н	н	-
1.331	3-OCH ₃ , 5-CF ₃	3-CH=NOCH ₃	Н	н	-
1.332	3-OCH ₃ , 5-CH ₃	3-CH=NOCH ₃	Н	н	•
1.333	3-OCH ₃ ,	3-CH=NOCH ₃	н н		-
	5-CH=NOCH ₃				

.

Table 2: Compounds of formula I

	·	<u> </u>			
Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data.
No.					m.p. (°C)
2.001	2-Cl, 6-F	3-CI	Н	Н	-
2.002	2-CI, 6-F	4-CI	Н	н	-
2.003	2-CI, 6-F	3-CH₂CN	Н	н	-
2.004	2-CI, 6-F	3-OSO₂CH₃	Н	н	-
2.005	2-CI, 6-CI	3-CI	Н	н	-
2.006	2-CI, 6-CI	4-Cl	Н	. Н	-
2.007	2-CI, 6-CI	3-CH₂CN	Н	н	85-86
2.008	2-Cl, 6-Cl	3-OSO₂CH₃	Н	н	~
2.009	2-Cl, 6-Br	3-CI	Н	н	-
2.010	2-Cl, 6-Br	4-CI	Н	н	-
2.011	2-CI, 6-Br	3-CH₂CN	Н	Н	resin
2.012	2-CI, 6-Br	3-OSO₂CH₃	Н	Н	-
2.013	2-F, 6-CH₃	3-CI	Н	Н	-
2.014	2-Cl, 6-CH ₃	3-CI	Н	Н	-
2.015	2-F, 6-CH ₃	3-CH ₂ CN	Н	Н	-
2.016	2-Cl, 6-CH₃	3-CH ₂ CN	Н	н	-
2.017	2-F, 6-OCH ₃	3-CH₂CN	Н	н	-
2.018	2-Cl, 6-OCH ₃	3-CH₂CN	Н	н	-
2.019	2-F	3-CI	Н	· H	-
2.020	2-F	3-CH₂CN	Н	H	-
2.021	2-Cl	3-CI	Н	н	-
2.022	2-Cl	3-CH₂CN	Н	н	oil
2.023	2-Br	3-Cl	Н	Н	-
2.024	2-Br	3-CH₂CN	Н	Н	resin
2.025	2-CF ₃	3-CH₂CN	Н	Н	-
2.026	2-CH₂OH	3-CH₂CN	Н	н	solid

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data.
No.					m.p. (°C)
2.027	2-NO ₂ , 6-OCH ₃	3-Cl	Н	Н	-
2.028	2-NO ₂ , 6-OCH ₃	4-CI	Н	Н	-
2.029	2-NO ₂ , 6-OCH ₃	3-CH₂CN	Н	Н	-
2.030	2-NO ₂ , 6-OCH ₃	3-OSO₂CH₃	Н	Н	-
2.031	2-NO ₂ , 6-CH ₃	4-Cl	Н	Н	-
2.032	2-NO ₂ , 6-CH ₃	3-CH₂CN	Н	Н	oil
2.033	2-F, 6-CF ₃	3-CI	Н	Н	-
2.034	2-F, 6-CF ₃	4-Cl	Н	Н	-
2.035	2-F, 6-CF ₃	3-CH₂CN	Н	Н	-
2.036	2-F, 6-CF ₃	3-OSO ₂ CH ₃	Н	Н	-
2.037	2-Cl, 6-CF ₃	3-CI	Н	Н	-
2.038	2-Cl, 6-CF ₃	4-CI	Н	Н	
2.039	2-Cl, 6-CF ₃	3-CH₂CN	Н	Н	-
2.040	2-Cl, 6-CF ₃	3-OSO ₂ CH _{3.}	Н	Н	-
2.041	2-CF ₃ , 6-CH ₃	3-CH ₂ CN	Н	Н	-
2.042	2-CF ₃ , 6-OCH ₃	3-CH ₂ CN	Н	Н	
2.043	2-CF ₃ , 6-CF ₃	3-CH₂CN	Н	Н	-
2.044	2-CO ₂ C ₂ H ₅ , 5-Cl	3-CH₂CN	Н	Н	solid
2.045	2-Cl, 6-F	3-Cl	CH₃	Н	-
2.046	2-Cl, 6-F	4-Cl	CH ₃	Н	-
2.047	2-Cl, 6-F	3-CH₂CN	CH₃	Н	-
2.048	2-Cl, 6-F	3-OSO ₂ CH ₃	CH₃	Н	-
2.049	2-Cl, 6-Cl	3-CI	CH₃	Н	-
2.050	2-Cl, 6-Cl	4-Ci	CH₃	Н	
2.051	2-Cl, 6-Cl	3-CH₂CN	CH ₃	Н	-
2.052	2-Cl, 6-Cl	3-OSO ₂ CH ₃	CH₃	Н	-
2.053	2-Cl, 6-Br	3-CI	CH₃	Н	-
2.054	2-Cl, 6-Br	4-CI	CH₃	Н	-
2.055	2-Cl, 6-Br	3-CH₂CN	CH₃	Н	-
2.056	2-Cl, 6-Br	3-OSO ₂ CH ₃	CH₃	Н	-
2.057	2-F, 6-CH ₃	3-CI	CH₃	Н	-
2.058	2-CI, 6-CH ₃	3-Cl .	CH₃	Н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data.
No.					m.p. (°C)
2.059	2-F, 6-CH ₃	3-CH₂CN	CH₃	Н	-
2.060	2-Cl, 6-CH₃	3-CH ₂ CN	CH ₃	Н	-
2.061	2-F, 6-OCH₃	3-CH ₂ CN	CH ₃	Н	-
2.062	2-Cl, 6-OCH₃	3-CH ₂ CN	CH ₃	Н	-
2.063	2-F	3-CI	CH ₃	н	-
2.064	2-F	3-CH₂CN	CH ₃	Н	-
2.065	2-CI	3-CI	CH₃	Н	-
2.066	2-Cl	3-CH₂CN	CH ₃	Н	-
2.067	2-Br	3-CI	CH₃	Н	-
2.068	2-Br	3-CH ₂ CN	CH₃	Н	-
2.069	2-CF ₃	3-CH₂CN	CH₃	Н	-
2.070	2-CH ₂ OH	3-CH₂CN	CH₃	Н	-
2.071	2-NO ₂ , 6-OCH ₃	3-CI	CH₃	Н	-
2.072	2-NO ₂ , 6-OCH ₃	4-Cl	CH ₃	Н	-
2.073	2-NO ₂ , 6-OCH ₃	3-CH₂CN	CH₃	Н	-
2.074	2-NO ₂ , 6-OCH ₃	3-OSO ₂ CH ₃	CH₃	Н	-
2.075	2-NO ₂ , 6-CH ₃	4-CI	CH ₃	Н	-
2.076	2-NO ₂ , 6-CH ₃	3-CH₂CN	CH ₃	Н	-
2.077	2-F, 6-CF ₃	3-Cl	CH ₃	Н	<u>-</u>
2.078	2-F, 6-CF ₃	4-CI	CH₃	Н	-
2.079	2-F, 6-CF ₃	3-CH₂CN	CH₃	Н	-
2.080	2-F, 6-CF ₃	3-OSO₂CH₃	CH ₃	Н	-
2.081	2-Cl, 6-CF₃	3-Cl	CH ₃	Н	-
2.082	2-Cl, 6-CF ₃	4-CI	CH₃	Н	-
2.083	2-CI, 6-CF ₃	3-CH₂CN	CH₃	Н	-
2.084	2-Cl, 6-CF ₃	3-OSO ₂ CH ₃	CH₃	Н	-
2.085	2-CF ₃ , 6-CH ₃	3-CH₂CN	CH₃	Н	-
2.086	2-CF ₃ , 6-OCH ₃	3-CH₂CN	CH₃	Н	-
2.087	2-CF ₃ , 6-CF ₃	3-CH₂CN	CH ₃	Н	-
2.088	2-CO ₂ C ₂ H ₅ , 5-Cl	3-CH₂CN	CH ₃	Н	-
2.089	4-F, 6-F	3-CH₂CN	Н	Н	-
2.090	4-Cl, 6-F	3-CH₂CN	Н	Н	-

Comp.	R ₁	R ₂	R ₃	R₄	Phys. data.
No.					m.p. (°C)
2.091	4-Cl, 6-Cl	3-CH₂CN	Н	Н	-
2.092	4-Cl, 6-Br	3-CH₂CN	н	Н	-
2.093	4-F, 6-CH ₃	3-CH₂CN	Н	-	-
2.094	4-Cl, 6-CH₃	3-CH₂CN	Н	-	-
2.095	4-F, 6-OCH ₃	3-CH₂CN	H	-	-
2.096	4-Cl, 6-OCH ₃	3-CH₂CN	н	-	-
2.097	4-NO ₂ , 6-OCH ₃	3-CH₂CN	н	-	-
2.098	4-NO ₂ , 6-CH ₃	3-CH₂CN	Н	-	-
2.099	4-F, 6-CF ₃	3-CH₂CN	Н	-	-
2.100	4-Cl, 6-CF ₃	3-CH₂CN	Н	-	-
2.101	4-CF ₃ , 6-CH ₃	3-CH₂CN	Н	-	_
2.102	4-CF ₃ , 6-OCH ₃	3-CH₂CN	н	-	-
2.103	4-CF ₃ , 6-CF ₃	3-CH ₂ CN	н	-	-
2.104	2-Cl, 6-piperidyl	3-CH ₂ CN	Н	•	resin

Table 3: Compounds of formula I

Comp.	R ₁	R ₂	R ₃	R_4	Phys. data
No.					m.p. (°C)
3.001	2-F	3-Cl	Н	Н	-
3.002	2-Cl	3-Cl	Н	Н	-
3.003	2-Br	3-Cl	Н	Н	-
3.004	2-F	3-CH₂CN	Н	Н	-
3.005	2-CI	3-CH₂CN	Н	Н	-
3.006	2-Br	3-CH₂CN	Н	Н	-
3.007	3-F	3-Cl	Н	Н	-
3.008	3-CI	3-Cl	Н	Н	-
3.009	3-Br	3-Cl	Н	Н	-
1	1				•

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
3.010	3-F	3-CH₂CN	Н	Н	-
3.011	3-CI	3-CH₂CN	Н	Н	-
3.012	3-Br	3-CH₂CN	Н	Н	-
3.013	2-CF ₃	3-CH₂CN	Н	н	oil
3.014	3-CF ₃	3-CH₂CN	Н	Н	-
3.015	3-CF₂Cl	3-CH₂CN	Н	Н	-
3.016	3-F	3-CH(CH₃)CN	Н	Н	-
3.017	3-CI	3-CH(CH₃)CN	Н	Н	_
3.018	3-Br	3-CH(CH₃)CN	Н	Н	-
3.019	3-F	CH(OCH₃)CN	Н	Н	_
3.020	3-Cl	CH(OCH₃)CN	Н	н	ļ -
3.021	3-Br	CH(OCH₃)CN	Н	Н	-
3.022	3-F	3-OSO₂CH₃	Н	Н	-
3.023	3-CI	3-OSO₂CH₃	Н	Н	-
3.024	3-Br	3-OSO₂CH₃	Н	Н	_
3.025	3-F	CH(OCH ₃) ₂	Н	Н	-
3.026	3-CI	CH(OCH ₃) ₂	Н	Н	-
3.027	3-Br	CH(OCH ₃) ₂	Н	Н	_
3.028	2-F, 5-F	3-CH₂CN	Н	Н	-
3.029	2-CI, 5-F	3-CH₂CN	Н	Н	-
3.030	3-F	4-Cl	Н	Н	-
3.031	3-CI	4-Cl	Н	Н	-
3.032	3-Br	4-Cl	Н	Н	-
3.033	2-CH ₃ , 5-F	3-CH₂CN	Н	Н	-
3.034	2-CH ₃ , 5-Cl	3-CH₂CN	Н	Н	-
3.035	2-CH ₃ , 5-Br	3-CH₂CN	Н	Н	-
3.036	2-F	3-Cl	CH ₃	Н	-
3.037	2-Cl	3-Cl	CH ₃	Н	-
3.038	2-Br	3-Cl	CH ₃	Н	-
3.039	2-F	3-CH₂CN	CH ₃	H	_
3.040	2-Cl	3-CH₂CN	CH ₃	Н	-
3.041	2-Br	3-CH₂CN	CH₃	Н	-

Comp.	R ₁	R ₂	R ₃	R ₄	Phys. data
No.					m.p. (°C)
3.042	3-F	3-CI	CH₃	Н	•
3.043	3-CI	3-CI	CH ₃	Н	-
3.044	3-Br	3-CI	CH ₃	Н	-
3.045	3-F	3-CH₂CN	CH ₃	Н	-
3.046	3-CI	3-CH₂CN	CH ₃	Н	-
3.047	3-Br	3-CH₂CN	CH ₃	Н	-
3.048	2-CF₃	3-CH₂CN	CH ₃	Н	-
3.049	3-CF₃	3-CH₂CN	CH₃	Н	-
3.050	3-CF₂CI	3-CH₂CN	CH ₃	Н	-
3.051	3-F	3-CH(CH₃)CN	CH ₃	Н	-
3.052	3-CI	3-CH(CH₃)CN	CH₃	Ή	-
3.053	3-Br	3-CH(CH ₃)CN	CH₃	Н	-
3.054	3-F	CH(OCH₃)CN	CH ₃	Н	<u>.</u>
3.055	3-Cl	CH(OCH₃)CN	CH₃	Н	-
3.056	3-Br	CH(OCH₃)CN	CH₃	Н	-
3.057	3-F	OSO₂CH₃	CH₃	Н	-
3.058	3-CI	OSO ₂ CH ₃	CH₃	Н	-
3.059	3-Br	OSO ₂ CH ₃	CH₃	Н	-
3.060	3-F	$CH(OCH_3)_2$	CH₃	Н	-
3.061	3-CI	CH(OCH ₃) ₂	СН₃	Н	- [
3.062	3-Br	CH(OCH ₃) ₂	СН₃	Н	-
3.063	2-F, 5-F	3-CH₂CN	CH₃	Н	-
3.064	2-Cl, 5-F	3-CH₂CN	CH_3	Н	-
3.065	3-F	4-CI	CH₃	Н	-
3.066	3-CI	4-CI	СН₃	Н	-
3.067	3-Br	4-CI	CH ₃	H	-
3.068	2-CH ₃ , 5-F	3-CH₂CN	CH₃	Н	-
3.069	2-CH ₃ , 5-CI	3-CH₂CN	СН₃	Н	-
3.070	2-CH₃, 5-Br	3-CH₂CN	CH₃	H	-

Biological Examples

Example B1: Herbicidal action before emergence of the plants (pre-emergence action)

WO 02/28182 PCT/EP01/11353

Monocotyledonous and dicotyledonous test plants are sown in standard soil in pots. Immediately after sowing, an aqueous suspension of the test compounds (prepared from a wettable powder (Example F3, b) according to WO 97/34485) or an emulsion of the test compounds (prepared from an emulsifiable concentrate (Example F1, c) according to WO 97/34485) is applied by spraying at an optimum rate of application (500 litres of water/ha). The test plants are then cultivated in a greenhouse under optimum conditions.

After a test duration of 4 weeks, the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action). Ratings of from 1 to 4 (especially from 1 to 3) indicate good to very good herbicidal action.

Test plants: Setaria, Panicum, Digitaria, Amaranthus, Stellaria, Veronica.

Table B1: Rate of application: 1000 g a.i./ha

Comp. No.	Setaria	Panicum	Digitaria	Amaran- thus	Stellaria	Veronica
1.011	6	1	1	1	1	1
1.008	7	1	1	1	4	1
1.016	4	2	1	1	1	1
1.007	5	1	1	1	1	7
1.009	-	-	1	2	3	-
1.015	7	2	2	1	1	4
1.017	5	2	2	1	1	2
1.022	-	2	-	1	2	1
1.024	1	-	-	1	1	1
1.025	1	1	2	1	1	1
1.047	1	2	1	1	1	4
1.094	-	-	-	3	1	1

The same results are obtained when the compounds of formula I are formulated according to the other Examples analogously to WO 97/34485.

WO 02/28182 PCT/EP01/11353

- 47 -

Example B2: Post-emergence herbicidal action

Monocotyledonous and dicotyledonous test plants are sown in standard soil in pots, and at the 2- to 3-leaf stage are sprayed with an aqueous suspension of the test compounds (prepared from a wettable powder (Example F3, b) according to WO 97/34485) or with an emulsion of the test compounds (prepared from an emulsifiable concentrate (Example F1, c) according to WO 97/34485) at an optimum rate of application of 500 litres of water/ha). The test plants are then grown on in the greenhouse under optimum conditions.

After a test duration of 2 to 3 weeks, the test is evaluated in accordance with a scale of nine ratings (1 = total damage, 9 = no action). Ratings of from 1 to 4 (especially from 1 to 3) indicate good to very good herbicidal action.

Test plants: Panicum, Euphorbia, Sida, Amaranthus, Chenopodium, Stellaria, Veronica.

Table B2: Rate of application: 1000 g a.i./ha

Comp.	Pani-	Euphorbia	Sida	Amaran-	Cheno-	Stellaria	Veronica
No.	cum	İ		thus	podium		
1.011	2	2	2	2	1	2	2
1.008	7	2	3	1	1	4	2
1.016	2	1	2	1	1	1	1
1.007	2	2	4	1	1	6	1
1.009	2	1	2	1	1	2	2
1.015	1	1	3	1	1	1	2
1.017	4	1	2	2	1	1	2
1.022	6	2	3	3	3	4	3
1.024	-	2	2	1	1	1	3
1.025	-	2	3	2	7	4	4
1.047	4	1	3	2	1	1	3
1.094	2	1	2	1	3 .	2	3

In the above Tables B1 and B2, " - " indicates that there are no data for the corresponding indication.

The same results are obtained when the compounds of formula I are formulated according to the other Examples analogously to WO 97/34485.

What is claimed is:

1. A compound of formula I

$$(R_1)_n \qquad (I),$$

$$(R_1)_n \qquad (I),$$

wherein

n is 0, 1, 2, 3 or 4;

each R₁ independently of any other(s) is halogen, -CN, -SCN, -SF₅, -NO₂, -NR₅R₆, -CO₂R₇, -CONR₈R₉, -C(R₁₀)=NOR₁₁, -COR₁₂, -OR₁₃, -SR₁₄, -SOR₁₅, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl, C₂-C₈alkenyl, C₂-C₈alkynyl or C₃-C₆cycloalkyl; or C₁-C₈alkyl, C₂-C₈alkenyl or C₂-C₈alkynyl substituted by one or more halogen, -CN, -NO₂, -NR₁₈R₁₉, -CO₂R₂₀, -CONR₂₁R₂₂, -COR₂₃, -C(R₂₄)=NOR₂₅, -C(S)NR₂₆R₂₇, -C(C₁-C₄alkylthio)=NR₂₈, -OR₂₉, -SR₃₀, -SOR₃₁, -SO₂R₃₂ or C₃-C₆cycloalkyl substituents; or

each R_1 is C_3 - C_6 cycloalkyl substituted by one or more halogen, -CN, -NO₂, -NR₁₈R₁₉, -CO₂R₂₀, -CONR₂₁R₂₂, -COR₂₃, -C(R₂₄)=NOR₂₅, -C(S)NR₂₆R₂₇, -C(C₁-C₄alkylthio)=NR₂₈, -SR₃₀, -SOR₃₁, -SO₂R₃₂ or C₃-C₆cycloalkyl substituents; or

each R_1 independently of any other(s) is phenyl, which may itself be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or

two adjacent R_1 together form a C_1 - C_7 alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or two adjacent R_1 together form a C_2 - C_7 -alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C_1 - C_6 alkyl, the total number of ring atoms being at least 5 and a maximum of 9;

R₃ and R₄ are each independently of the other hydrogen, halogen, -CN, C₁-C₄alkyl or C₁-C₄-alkoxy; or

R₃ and R₄ together denote C₂-C₅alkylene;

R₅ is hydrogen or C₁-C₈alkyl;

 R_6 is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl; it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 -

haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or

 R_5 and R_6 together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_7 is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₈ is hydrogen or C₁-C₈alkyl;

 R_9 is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more COOH, C_1 - C_8 -alkoxycarbonyl or —CN substituents, or

 R_9 is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_8 and R_9 together denote C_2 - C_5 alkylene;

R₁₀ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{11} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_6 haloalkyl or C_3 - C_6 haloalkyl or C_3 - C_6 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkyl,

R₁₃ is hydrogen, C₁-C₈alkyl, C₃-C₈alkenyl or C₃-C₈alkynyl; or

 R_{13} is phenyl or phenyl- C_1 - C_6 alkyl, it being possible for the phenyl ring itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂ or -S(O)₂C₁- C_8 alkyl substituents, or

 R_{13} is C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{14} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents;

 R_{15} , R_{16} and R_{17} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 -alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{18} is hydrogen or C_1 - C_8 alkyl;

 R_{19} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents; or

 R_{18} and R_{19} together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{20} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents;

R₂₁ is hydrogen or C₁-C₈alkyl;

R₂₂ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more COOH, C₁-C₈-alkoxycarbonyl or -CN substituents, or

 R_{22} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{21} and R_{22} together denote C_2 - C_5 alkylene;

R₂₃ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₂₄ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{25} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{26} is hydrogen or C_1 - C_8 alkyl;

 R_{27} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents, or

 R_{27} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{26} and R_{27} together denote C_2 - C_5 alkylene;

R₂₈ is hydrogen or C₁-C₈alkyl;

 R_{29} and R_{30} are each independently of the other hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, -CN or C_1 - C_4 alkoxy substituents:

 R_{31} and R_{32} are each independently of the other C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; m is 0, 1, 2, 3, 4 or 5;

each R_2 independently of any other(s) is halogen, -CN, -SCN, -SF₅, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -CONR₃₉R₄₀, -C(R₄₁)=NOR₄₂, -COR₄₃, -OR₄₄, -SR₄₅, -SOR₄₆, -SO₂R₄₇, OSO₂R₄₈ -N([CO]_pR₄₉)COR₅₀, -N(OR₅₁)COR₅₂, -N(R₅₃)CO₂R₅₄ or -N-phthalimide;

R₃₆ is hydrogen or C₁-C₈alkyl; and

 R_{37} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, - C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfinyl substituents; or

 R_{36} and R_{37} together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{38} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₃₉ is hydrogen or C₁-C₈alkyl;

 R_{40} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or —CN substituents, or

 R_{40} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{39} and R_{40} together denote C_3 - C_5 alkylene;

R₄₁ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 $R_{42} \text{ is hydrogen, } C_1-C_8 \text{alkyl, } C_3-C_8 \text{alkenyl, } C_3-C_8 \text{alkynyl, } C_1-C_4 \text{haloalkyl or } C_3-C_6 \text{haloalkenyl; } C_8 \text{alkynyl, } C_8 \text{haloalkenyl; } C_8 \text{alkynyl, } C_8 \text{haloalkenyl; } C_8 \text{haloalkenyl; } C_8 \text{haloalkenyl; } C_8 \text{haloalkylor } C_8 \text{haloalkenyl; } C_8 \text{$

R₄₃ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₄₄ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl; or

 R_{44} is phenyl or phenyl- C_1 - C_6 alkyl, it being possible for the phenyl ring itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂ or -S(O)₂C₁- C_8 alkyl substituents, or

 R_{44} is C_1 - C_8 alkyl substituted by one or more halogen, -CN or C_1 - C_4 alkoxy substituents; R_{45} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, -CN or C_1 - C_4 alkoxy substituents;

 R_{46} , R_{47} and R_{48} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, —CN or C_1 - C_4 alkoxy substituents; p is 0 or 1;

 R_{49} , R_{50} , R_{51} , R_{52} , R_{53} and R_{54} are each independently of the others hydrogen, C_1 - C_8 alkyl, or phenyl, which may itself be substituted by one or more halogen, C_1 - C_8 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_8 alkylthio, C_1 - C_8 alkylsulfinyl or C_1 - C_8 alkylsulfonyl substituents; or

each R_2 independently of any other(s) is C_1 - C_8 alkyl, or C_1 - C_8 alkyl mono- or poly-substituted by halogen, -CN, -NO₂, -NR₅₅R₅₆, -CO₂R₅₇, -CONR₅₈R₅₉, -COR₆₀, -C(R₆₁)=NOR₆₂, -C(S)NR₆₃R₆₄, -C(C₁-C₄alkylthio)=NR₆₅, -OR₆₆, -SR₆₇, -SOR₆₈, -SO₂R₆₉, -O(SO₂)R₇₀, -N(R₇₁)CO₂R₇₂, -N(R₇₃)COR₇₄ or by C₃-C₆cycloalkyl; or

each R_2 independently of any other(s) is C_2 - C_8 alkenyl, or C_2 - C_8 alkenyl mono- or polysubstituted by -CN, -NO₂, -CO₂R₇₅, -CONR₇₆R₇₇, -COR₇₈, -C(R₇₉)=NOR₈₀, -C(S)NR₈₁R₈₂, -C(C₁-C₄alkylthio)=NR₈₃ or by C₃-C₆cycloalkyl; or

each R_2 independently of any other(s) is C_2 - C_8 alkynyl, or C_2 - C_8 alkynyl mono- or polysubstituted by halogen, -CN, -CO₂R₈₄, -CONR₈₅R₈₆, -COR₈₇, -C(R₈₈)=NOR₈₉, -C(S)NR₉₀R₉₁, -C(C₁-C₄alkylthio)=NR₉₂ or by C₃-C₆cycloalkyl; or

each R_2 independently of any other(s) is C_3 - C_6 cycloalkyl, or C_3 - C_6 cycloalkyl mono- or polysubstituted by halogen, -CN, -CO₂R₉₃, -CONR₉₄R₉₅, -COR₉₆, -C(R₉₇)=NOR₉₈, -C(S)NR₉₉R₁₀₀ or by -C(C₁-C₄alkylthio)=NR₁₀₁; or

two adjacent R₂ together form a C₁-C₇alkylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C₁-C₆alkyl, the total number of ring atoms being at least 5 and a maximum of 9; or two adjacent R₂ together form a C₂-C₇-alkenylene bridge, which may be interrupted by 1 or 2 non-adjacent oxygen atoms and may be substituted by C₁-C₆alkyl, the total number of ring atoms being at least 5 and a maximum of 9;

R₅₅ is hydrogen or C₁-C₈alkyl;

R₅₆ is hydrogen, C₁-C₈alkyl, C₃-C₈alkenyl, C₃-C₈alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C₁-C₄alkyl, C₁-C₄alkoxy, -CN, -NO₂, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl or C₁-C₄alkylsulfinyl or C₁-C₄alkylsulfinyl substituents; or

 R_{55} and R_{56} together denote a C_2 - C_5 alkylene chain, which may be interrupted by an oxygen or sulfur atom;

 R_{57} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, or C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₅₈ is hydrogen or C₁-C₈alkyl;

 R_{59} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{59} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{58} and R_{59} together denote C_2 - C_5 alkylene;

 R_{60} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl; R_{61} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl;

 R_{62} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; and

R₆₃ is hydrogen or C₁-C₈alkyl;

 R_{64} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{84} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{83} and R_{84} together denote C_2 - C_5 alkylene;

R₆₅ is hydrogen or C₁-C₈alkyl;

 R_{66} and R_{67} are each independently of the other hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 -alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{68} , R_{69} and R_{70} are each independently of the others C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 -alkynyl, or C_1 - C_8 alkyl substituted by one or more halogen, –CN or C_1 - C_4 alkoxy substituents; R_{71} and R_{73} are each independently of the other hydrogen, C_1 - C_8 alkyl or C_1 - C_8 alkoxy; R_{72} is C_1 - C_8 alkyl;

R₇₄ is hydrogen or C₁-C₈alkyl;

 R_{75} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, - C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₇₆ is hydrogen or C₁-C₈alkyl;

R₇₇ is hydrogen or C₁-C₈alkyl, or C₁-C₈alkyl substituted by one or more -COOH, C₁-C₈-alkoxycarbonyl or -CN substituents; or

 R_{77} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{76} and R_{77} together denote C_2 - C_5 alkylene;

 R_{78} and R_{79} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl or C_3 - C_6 cycloalkyl;

 R_{80} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{81} is hydrogen or C_1 - C_8 alkyl;

 R_{82} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

'n

 R_{82} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{81} and R_{82} together denote C_2 - C_5 alkylene;

R₈₃ is hydrogen or C₁-C₈alkyl;

 R_{84} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents:

R₈₅ is hydrogen or C₁-C₈alkyl;

 R_{86} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{86} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{85} and R_{86} together denote C_2 - C_5 alkylene;

R₈₇ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₈₈ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{89} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{90} is hydrogen or C_1 - C_8 alkyl;

 R_{91} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{91} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{90} and R_{91} together denote C_2 - C_5 alkylene;

R₉₂ is hydrogen or C₁-C₈alkyl;

 R_{93} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl or C_3 - C_8 alkynyl, each of which may be mono- or poly-substituted by one or more halogen, C_1 - C_4 alkoxy or phenyl substituents, it being possible for phenyl itself to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents;

R₉₄ is hydrogen or C₁-C₈alkyl;

 R_{95} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{95} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 -alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{94} and R_{95} together denote C_2 - C_5 alkylene;

R₉₆ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

R₉₇ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl or C₃-C₆cycloalkyl;

 R_{98} is hydrogen, C_1 - C_8 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, C_1 - C_4 haloalkyl or C_3 - C_6 haloalkenyl; R_{99} is hydrogen or C_1 - C_8 alkyl;

 R_{100} is hydrogen or C_1 - C_8 alkyl, or C_1 - C_8 alkyl substituted by one or more -COOH, C_1 - C_8 -alkoxycarbonyl or -CN substituents; or

 R_{100} is C_3 - C_8 alkenyl, C_3 - C_8 alkynyl, phenyl or benzyl, it being possible for phenyl and benzyl themselves to be substituted by one or more halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, -NO₂, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl substituents; or R_{99} and R_{100} together denote C_2 - C_5 alkylene; and

R₁₀₁ is hydrogen or C₁-C₈alkyl,

and an agrochemically acceptable salt or a stereoisomer or tautomer of a compound of formula I.

2. A process for the preparation of a compound of formula I according to claim 1, wherein a compound of formula II

wherein R_1 is as defined for formula I, is reacted in the presence of a base with a compound of formula III

$$X_1$$
 R_4
(III),

wherein R_3 and R_4 are as defined for formula I and X_1 is O-tosyl, chlorine, bromine or iodine, to form a compound of formula IV

wherein R_1 , R_3 and R_4 are as defined for formula I, and that compound is then coupled, in the presence of a palladium catalyst, with a compound of formula V

wherein R_2 is as defined for formula I and A is halogen or trifluoromethanesulfonate.

- 3. A herbicidal and plant-growth-inhibiting composition that comprises a herbicidally effective amount of a compound of formula I on an inert carrier.
- 4. A method of controlling undesired plant growth, which comprises applying a herbicidally effective amount of a compound of formula I or a composition comprising that compound to the plants or to the locus thereof.
- 5. A method of inhibiting plant growth, which comprises applying a herbicidally effective amount of a compound of formula I or a composition comprising that compound to the plants or to the locus thereof.
 - 6. A compound according to claim 1, wherein each R_1 independently of any other(s) is halogen, -CN, -NO₂, -C(R_{10})=NOR₁₁, -OR₁₃, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl or C₂-C₈alkenyl, or C₁-C₈alkyl substituted by one or more halogen or -CN substituents; R_{10} is hydrogen or C₁-C₄alkyl; and R_{11} is C₁-C₈alkyl.
 - 7. A compound according to claim 1, wherein each R_2 independently of any other(s) is halogen, -CN, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -C(R₄₁)=NOR₄₂, -OR₄₄, -SO₂R₄₇, -OSO₂R₄₈, C₁-C₈alkyl, or C₁-C₈alkyl mono- or polysubstituted by halogen, -CN or by -CO₂R₅₇; R₃₆ and R₃₇ are hydrogen; R₃₈ is hydrogen or C₁-C₈alkyl;

ï

 R_{41} is hydrogen or C_1 - C_4 alkyl; and R_{42} is C_1 - C_8 alkyl.

8. A compound according to claim 1, wherein

each R_1 independently of any other(s) is halogen, -CN, -NO₂, -C(R_{10})=NOR₁₁, -OR₁₃, -SO₂R₁₆, -OSO₂R₁₇, C₁-C₈alkyl or C₂-C₈alkenyl, or C₁-C₈alkyl substituted by one or more -CN;

R₁₀ is hydrogen or C₁-C₄alkyl;

R₁₁ is C₁-C₈alkyl;

each R_2 independently of any other(s) is halogen, -CN, -NO₂, -NR₃₆R₃₇, -CO₂R₃₈, -C(R₄₁)=NOR₄₂, -OR₄₄, -SO₂R₄₇, -OSO₂R₄₈ or C₁-C₈alkyl, or C₁-C₈alkyl mono- or polysubstituted by -CN or by -CO₂R₅₇;

R₃₆ and R₃₇ are hydrogen;

R₃₈ is hydrogen or C₁-C₈alkyl;

R₄₁ is hydrogen or C₁-C₄alkyl;

R₄₂ is C₁-C₈alkyl; and

 R_3 and R_4 are each independently of the other hydrogen or $C_1\text{-}C_4$ alkyl.

9. A compound according to claim 1, wherein

R₁ is halogen, -CN, C₁-C₈alkyl substituted by --CN, or C₁-C₈alkoxy.

10. A compound according to claim 1, wherein

R₂ is halogen, -CN, C₁-C₈alkyl substituted by -CN, or C₁-C₈alkoxy.

Inter nal Application No PCTTEP 01/11353

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER A01N43/40 C07D213/00		
According to	o International Patent Classification (IPC) or to both national classifica	tion and IPC	
	SEARCHED		
	ocumentation searched (classification system followed by classification A01N C07D	n symbols)	
Documental	ion searched other than minimum documentation to the extent that su	ich documents are included in the fields se	erched
Electronic d	ata base consulted during the International search (name of data bas	e and, where practical, search terms used)
CHEM A	BS Data, BIOSIS, WPI Data, PAJ, EPO-	Internal	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
P,X	WO 01 55066 A (EBERLE MARTIN ;ZEL MARTIN (CH); EHRLER JUERG (CH); C GERALD) 2 August 2001 (2001-08-02 the whole document	RAIG	1-10
X	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 11, 30 September 1999 (1999-09-30) & JP 11 147866 A (SANKYO CO LTD), 2 June 1999 (1999-06-02) cited in the application abstract		1-10
Х	US 4 959 361 A (WALSER ARMIN) 25 September 1990 (1990-09-25) the whole document	/	1
X Furt	her documents are listed in the continuation of box C.	X Patent family members are fisted	in annex.
° Special ca	stegories of cited documents:	*T* later document published after the inte	rnational filing date
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the International	or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot	the application but eory underlying the laimed invention
"L" docume which citation "O" docume	ent which may throw doubts on priority claim(s) or is clied to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	involve an inventive step when the do 'Y' document of particular relevance; the cannot be considered to involve an indocument is combined with one or moments, such combination being obvior	cument is taken alone laimed invention ventive step when the ore other such docu-
'P' docume	means ent published prior to the international filing date but an the priority date claimed	in the art. *&* document member of the same patent	
Date of the	adual completion of the international search	Date of mailing of the international sea	
1	9 December 2001	28/12/2001	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	1.7
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bertrand, F	

Interr, al Application No
PC7/EP 01/11353

0.10	-N POOLINGING CONCINCING TO BE BELLEVILLE	FC1/EF 01/11353
C.(Continua Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Catogory 7	Onation of occurrent, with undeation, where appropriate, of the relevant passages	nelevani o Gaini No.
X	EP 0 381 375 A (ICI PLC ;ICI PHARMA (FR)) 8 August 1990 (1990-08-08) page 7, line 4 - line 9	1
X	EP 0 375 457 A (ICI PLC ;ICI PHARMA (FR)) 27 June 1990 (1990-06-27) examples 10,11	1
X	EP 0 375 404 A (ICI PLC ;ICI PHARMA (FR)) 27 June 1990 (1990-06-27) claims 15,36	1
X	EP 0 375 368 A (ICI PLC ;ICI PHARMA (FR)) 27 June 1990 (1990-06-27) table 4	1
X	EP 0 351 194 A (ICI PLC ;ICI PHARMA (FR)) 17 January 1990 (1990-01-17) example 8	1
	_ 	
i		
	·	
'		

rmation on patent family members

Interq al Application No PCT/EP 01/11353

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
	<u> </u>	A11		L
WO 0155066 A	02-08-2001	WO WO	2680701 A 0155066 A2	07-08-2001 02-08-2001
JP 11147866 A	02-06-1999	NONE		
US 4959361 A	25-09-1990	ATU CA CCS DE DE DE DE DE DE DE DE DE DE DE DE DE	109148 T 2698988 A 1327570 A1 1034722 A ,B 8808332 A2 3850866 D1 3850866 T2 704088 A 0320992 A2 2056889 T3 885820 A ,B, 50823 A2 63762 B1 1197484 A 1989214 C 7025762 B 613 A	15-08-1994 29-06-1989 08-03-1994 16-08-1989 12-10-1990 01-09-1994 08-12-1994 19-06-1989 21-06-1989 16-10-1994 19-06-1989 28-03-1990 14-06-1995 09-08-1989 08-11-1995 27-03-1995
		LT MC MX NO NZ PT RU RU YU ZA	800 A 1999 A 14229 A 885597 A ,B, 227341 A 89250 A ,B 2071962 C1 2094436 C1 228088 A1 8809116 A	27-02-1995 26-01-1990 01-09-1993 19-06-1989 29-01-1992 29-12-1989 20-01-1997 27-10-1997 30-06-1990 30-08-1989
EP 0381375 A	08-08-1990	AT AU CA DE DK EP ES GR IE JP NZ US US ZA	82286 T 626977 B2 4859690 A 2007654 A1 69000438 D1 69000438 T2 381375 T3 0381375 A1 2053095 T3 3006324 T3 62558 B 3197471 A 232094 A 5089495 A 5283245 A 9000264 A	15-11-1992 13-08-1992 02-08-1990 30-07-1990 17-12-1992 25-03-1993 25-01-1993 08-08-1990 16-07-1994 21-06-1993 08-02-1995 28-08-1991 25-06-1992 18-02-1992 01-02-1994 31-10-1990
EP 0375457 A	27-06-1990	AT AU CA DE DE DK EP ES	102935 T 622965 B2 2006095 A1 68913940 D1 68913940 T2 665089 A 0375457 A2 2063149 T3	15-04-1994 30-04-1992 23-06-1990 21-04-1994 14-07-1994 24-06-1990 27-06-1990 01-01-1995

ormation on patent family members

Interq al Application No PCT/EP 01/11353

					FCI/EF	01/11555
	Patent document bited in search report		Publication date		Patent family member(s)	Publication date
1	EP 0375457	Α		HU IE IL JP NO NZ PT US US ZA	52494 A2 63211 B 92580 A 3135976 A 895087 A 231666 A 92701 A 5098932 A 5219881 A 8909688 A	28-07-1990 05-04-1995 12-04-1994 10-06-1991 25-06-1990 29-01-1992 29-06-1990 24-03-1992 15-06-1993 29-08-1990
	EP 0375404	Α	27-06-1990	AT AU CA DE DE DK EP ES HU IE IL JP NO NZ PT US US US	101395 T 624663 B2 4619889 A 2006377 A1 68913022 D1 68913022 T2 654589 A 0375404 A2 2062051 T3 52767 A2 63047 B 92556 A 3135975 A 895086 A 231665 A 92699 A ,B 5403859 A 5098930 A 5234950 A 8909687 A	15-02-1994 18-06-1992 28-06-1990 23-06-1990 24-03-1994 11-05-1994 24-06-1990 27-06-1990 16-12-1994 28-08-1990 22-03-1995 12-04-1994 10-06-1991 25-06-1990 25-02-1992 29-06-1990 04-04-1995 24-03-1992 10-08-1993 29-08-1990
	EP 0375368		27-06-1990	AU AU CA DE DE EP JP NZ US US ZA	636320 B2 4713089 A 2006094 A1 68923860 D1 68923860 T2 0375368 A2 3135936 A 231735 A 5132328 A 5214069 A 8909588 A	29-04-1993 28-06-1990 23-06-1990 21-09-1995 15-02-1996 27-06-1990 10-06-1991 28-04-1992 21-07-1992 25-05-1993 29-08-1990
	EP 0351194	Α	17-01-1990	AT AU DE DE DK EP ES FI IE JP NO NZ PT	107294 T 618610 B2 3801489 A 68916119 D1 68916119 T2 346089 A 0351194 A2 2055791 T3 893381 A 63681 B1 2076864 A 892823 A 229761 A 91123 A ,B	15-07-1994 02-01-1992 18-01-1990 21-07-1994 22-09-1994 13-01-1990 01-09-1994 13-01-1990 31-05-1995 16-03-1990 15-01-1990 25-10-1991 08-02-1990

Formation on patent family members

Inter; nal Application No
PC1/cP 01/11353

1992 1993 1990
1992 1993 1990