SCE-237 Redes de Alto Desempenho

2008

O que é? (no wikipedia)

Network performance refers to the level of <u>quality of service</u> of a telecommunications product [1] as seen by the customer. It should not be seen merely as an attempt to get "more throughput" the network.

The following list gives examples of Network Performance measures for a circuit-switched network and one type of packet-switched network, viz. ATM:

- Circuit-switched networks: In <u>circuit switched</u> networks, network performance is synonymous with the <u>grade of service</u>. The number of rejected calls is a measure of how well the network is performing under heavy traffic loads.[1] Other types of performance measures can include noise, echo and so on.
- ATM: In an Asynchronous Transfer Mode <u>ATM</u> network, performance can be measured by line rate, QoS, data throughput, connect time, stability, technology, modulation technique and modem enhancements.

Quem precisa de Desempenho?

Aplicações com necessidade de QoS

Conteúdo

Objetivos

"Avançar os conhecimentos obtidos pelos alunos em redes de computadores adicionando conceitos fundamentais de tecnologia de alta velocidade e de Qualidade de Serviço principalmente com vistas à transmissão de mídia contínua."

Programa Resumido

"Revisão de redes de computadores. Fast Ethernet, Gigabit Ethernet. Redes ATM. Fibras e Switches. LANs e Backbones de Alta Velocidade. Transmissão de mídia contínua. Serviços de Vídeo-On-Demand. Qualidade de Serviço. Estudo de Casos."

CRITÉRIO DE AVALIAÇÃO

- PROVAS: Serão realizados dois tipos de provas: provinhas serão realizadas todas as aulas, inclusive nas práticas, e valerão 4 pontos no total; uma prova individual será feita, no final do curso, valendo até 6 pontos. As provinhas serão feitas em grupo de 4 alunos, não precisando ser formados grupos fixos. Cada aluno terá A (30%) ou B (70%) ou Zero como avaliação em cada aula e não poderá ter mais que 30% de Zeros durante o curso (será reprovado por falta, caso isso ocorra). 4 das provinhas terão status de projeto e valerão 1 ponto (dentro dos 4 possíveis). Eventualmente estes projetos serão apresentados oralmente.
- AULAS PRÁTICAS: Esperamos realizar pelo menos 2 labs (sobre configuração IP e mobilidade).

Provinha 1 – 05.08.2008 Uma breve visita ao livro do Tanenbaum

Na folha de respostas, escrever os nomes dos 4 participantes, em ordem alfabética:

N. USP	Nome por extenso	email
N. USP	Nome por extenso	email
N. USP	Nome por extenso	email
N. USP	Nome por extenso	email

- Cap1 5 questões sobre protocolos
- Cap2 10 sobre os diversos itens (eu gostaria de saber o que eles sabem sobre fibras, radio, noise, atenuação, interferencia, etc)
- Cap3 3 questões sobre sliding windows
- Cap4 4 questoes sobre aloha, csma e ethernet + 4 questoes sobre protocolos sem fio + 2 questoes sobre switching
- Cap5 6 questoes sobre routing (incluindo AS, OSPF e BGP) + 3 sobre controle de congestionamento + 3 sobre QoS + 4 sobre IP (v4 e v6)
- Cap6 5 questoes sobre TCP, UDP, etc
- Cap7 5 questoes sobre SMTP, HTTP, POP, IMAP, etc
- Cap8 6 questoes sobre segurança (com pelo menos umas 3 sobre algorítmos de criptografia)

Relatório RAD – Visita ao Tanenbaum

Conceitos Básicos do Capítulo 1

MACs disciplinam o uso de um meio, com regras específicas

Meios mais comuns: cobre, ar (rádio), fibra (luz)

Protocolos são regras projetadas para capacitar a comunicação entre processos

Protocolos são Orientados a Conexão ou Connectionless (TCP é orientado a conexão e funciona sobre IP que é connectionless)

Hierarquias de protocolos são montadas. Uma camada oferece servicos para a camada imediatamente superior

Características de projeto: endereçamento, controle de erros e de fluxo, multiplexação, etc

Um link de comunicação pode ser circuit-switched ou packet-switched

Redes bem difundidas: internet, ethernet, ATM, 802.11

Um pouco sobre sinais...

... e sua conexão com a camada física (capítulo 2), QoS (capítulo 5) e multimídia (capítulo 7)

A Base Teórica para a Comunicação de Dados

- Análise de Fourier
- Sinais Limitados pela Largura de Banda
- Taxa de Dados Máxima de um Canal

Sinais Limitados pela Largura de

Um sinal binário e suas amplitudes de média quadrática Fourier.

(b) − (c) Aproximações sucessivas do sinal original.

Sinais Limitados pela Largura de Banda (2)

(d) – (e) Aproximações sucessivas do sinal original.

Sinais Limitados pela Largura de Banda (3)

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Modems

- (a) Um sinal binário
- (b) Modulação por amplitude

- (c) Modulação por frequência
- (d) Modulacao nor face

Baud rate e Bit rate

baud rate = frequencia do sampling

bit rate = baud rate *
 número de bits por sampling

Modems (2)

- (a) QPSK (quadrature phase shift keying 2 bits).
- (b) QAM-16 (quadrature amplitude modulation 4 bits).

Modems (3)

- (a) V.32 para 9600 bps.
- (b) V32 bis para 14,400 bps.

Áudio

(com material extraído de aulas do Rudinei)

- 1 Características do Som.
- 2 Digitalização.
- 3 Compressão de Áudio (no curso de multimídia).

1. Características do Som

1.1 - O quê é som?

- Som é um fenômeno físico produzido por variações (vibrações) na pressão do ar.
 - Cordas de violino, bater palmas, cordas vocais, ...
- Com as variações
 - as moléculas vizinhas vibram no ar criando um variação de pressão no ar à volta.
 - Essa alteração entre altas pressões e baixas pressões propaga-se no ar, em todas as direções, como uma onda (mecânica).

- Som é uma onda mecânica.
 - Possui alguns aspectos, entre eles: amplitude e frequência.

- Amplitude -> Intensidade
 - Está relacionada ao volume do som. Quanto maior a amplitude, mais alto ouvimos o som.

- Amplitude -> Intensidade
 - Medida em decibéis (dB).

Intensidade	Exemplos típicos
0dB	Limite da audição
25dB	Estúdio de gravação
50dB	Escritório
70dB	Conversação típica
90dB	Home audio
120dB	Limiar da dor
140dB	Show de rock

Freqüência

Freqüência determina altura do som (altura ≠ volume).
 Freqüências altas = altura maior = sons agudos.
 Freqüências baixas = altura menor = sons graves.

Categoria	Intervalo de Freqüência
Infra-som	0 - 20 Hz
Som Audível	20 Hz - 20 KHz
Ultra-som	20 KHz - 1GHz
Hipersom	1 GHz - 10 GHz

1.3 – Como ouvimos sons?

- As ondas sonoras atingem o tímpano.
- O tímpano faz os ossos do ouvido médio vibrarem.
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro.
- Quando esses impulsos chegam ao cérebro, "ouvimos" o som!

1.3 – Como ouvimos sons?

 Assim, o ouvido funciona como um sensor ou transdutor que converte sons em estímulos nervosos que podem ser interpretados pelo cérebro.

2. Digitalização

2.1 - Termos-chave

- código (codeword):
 - Representação de uma informação através de uma combinação única de um conjunto de bits.
- sinal analógico:
 - Sinal elétrico cuja amplitude varia com o tempo (time varying).
- codificador:
 - Circuito elétrico responsável por converter sinais analógicos em um formato digital.
- amostragem (sampling):
 - Processo pelo qual amostras da amplitude de um sinal analógico são tomadas em intervalos regulares de tempo. Cada amostra é convertida em um valor digital correspondente (quantização).
- · decodificador:
 - Circuito elétrico responsável por converter amostras digitalizadas em seu correspondente valor analógico.

- Para poder ser utilizado em um computador, o som precisa de duas transformações:
 - Eletrônica: conversão de ondas mecânicas em sinais elétricos.
 - Digital: conversão de sinais elétricos em bits.
- Similarmente ao ouvido, o microfone é um transdutor.
 - Converte as variações de pressão do ar em sinais elétricos usáveis pelos equipamentos de áudio.
 - A saída de um microfone é uma voltagem elétrica analógica que varia no tempo do mesmo modo que as ondas mecânicas do som = Sinal de Áudio

- Freqüência: taxa com que o sinal varia entre valores positivos e negativos. É medida em Hertz (Hz).
- Amplitude: diferença entre os máximos valores positivos e negativos do sinal de áudio. Pode ser expressa observando-se a voltagem (dependente do sistema).

- Conversão analógico-digital.
 - Sinal de áudio possui duas dimensões:
 voltagem e tempo. As quais serão
 digitalizadas através de dois processos:
 - Amostragem: realiza uma leituras periódicas e instantâneas da voltagem em espaços de tempo uniformes.
 - Quantização: converte os valores analógicos amostrados em valores digitais.
 - Codificador:
 - Filtro digital + ADC (Analog to Digital Converter)

Intervalos de amostragem.

- O quanto deve ser amostrado?
 - Reconstruir exatamente o sinal = infinitas amostras.
 - Poucas amostras = sinal distorcido.

O quanto deve ser amostrado?

- Teorema de Nyquist: "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal". (taxa de Nyquist).
- Ex. Se a frequência mais alta do sinal é de 20KHz, para que a reconstrução seja precisa, a amostragem deve ser realizada a 40KHz, ou 40 Ksps.
 - sps = samples per second.

- Filtros anti-aliasing.
 - Removem as componentes acima da taxa de Nyquist.
- Em sistemas multimídia:
 - A largura de banda do canal é normalmente menor que a largura de banda do sinal.
 - A taxa de amostragem é determinada pelo largura de banda do canal.
 - A taxa de Nyquist será baseada na freqüência mais alta suportada pelo canal.

2.4 - Quantização.

- Processo pelo qual os valores analógicos das amostras tomadas da amplitude do sinal são convertidos em valores digitais.
- Para reconstruir exatamente o sinal:
 - Necessidade de um número infinitos de bits.
 - Usando um número finito de bits:
 - Representa-se cada amostra através de um número correspondente de níveis discretos.

2.4 - Quantização.

1000 1010 0110 0011 0011 0111 1010 0111 0100 0010 0110 1010 1000 0100 0010

2.4 - Quantização.

- Amostragem e Quantização
 - Número de amostras x número de níveis.
 - Compromisso.
 - Como descobrir o número ótimo de bits por amostra?
 - Quantização resulta em distorções.

2.5 - Digitalização.

- Taxas comuns de amostragem:
 - 8.000Hz, 11.025Hz, 22.050Hz e 44.100Hz (CD).
- Números comuns de bits por amostra:
 - 4, 8, 16 e 24.
- Canais de som:
 - 1 (mono), 2 (stereo), 3, 5, 7, ...
- Qualidade de CD:
 - Amostras a 44.100Hz (4,1 KHz), 16 bits por amostra e 2 canais de som (stereo).

2.5 - Digitalização.

- Técnica conhecida como modulação por código de pulso (linear).
 - Pulse Code Modulation PCM. PCM linear.
- Circuito que realiza amostragem e quantização:
 - Conversor analógico-digital (analog to digital converter
 ADC).
 - Caminho inverso: DAC. Usado na reprodução de áudio digital.
- PCM é normalmente implementado em hardware.

2.5 - Digitalização.

- Após a captura
 - os dados amostrados e quantizados devem ser "guardados" em algum formato – mídia de representação.
 - WAV e MP3, por exemplo.

2.6 - Digitalização.

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?

2.6 - Digitalização.

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?
 - 1(segundo) * 44.100 (taxa de amostragem) *2 (16 bits por amostra) * 2 (som estéreo) =176.400 bytes.
 - Necessidade para transmissão: 1,41Mbps!

2.7 - Decodificador

2.7 - Decodificador

2.7 - Decodificador

- Necessidade do filtro passa-baixa:
 - DAC geral um sinal analógico contendo inúmeras componentes de alta freqüência (Fourrier).
 - Para reproduzir o sinal original, usa-se o filtro para "cortar" as altas freqüências do sinal.
- Aplicações multimídia envolvem comunicação full-duplex.
 - Terminal precisa processar informações de entrada (decodificar um sinal) e de saída (codificar um sinal.
 - Codificadores e decodificadores de áudio/vídeo são freqüentemente combinados em uma só unidade: o codec.

Provinha2 - 12.08.2008

Escrever os nomes dos 4 participantes, em ordem alfabética:

N. USP	Nome por extenso	email
N. USP	Nome por extenso	email
N. USP	Nome por extenso	email
N. USP	Nome por extenso	email

Um link de transmissão com capacidade de 1 Mbps vai conduzir áudio com as seguintes características (para cada canal):

- qualidade de CD;
- Estéreo;
- Um canal de controle de 128 Kbps;
- Compressão média de 20/1;

Quantos canais poderão ser multiplexados neste link? Qual a diferença se o link for circuit-switched ou packet-switched? Pode haver problema de congestionamento no link? Explique.