第七章 卤代烃(1)

主要内容

- 卤代烃的类型和命名
- 卤代烃的亲核取代反应类型
- 亲核取代反应的两种机理——S_N1和S_N2机理, 两种机理在反应动力学和立体化学上的不同之处
- 碳正离子的稳定性及其碳正离子的重排

一. 卤代烷类型和命名

- 1. 卤代烷通式 R-X (X = F, Cl, Br, I)
- 2. 卤代烷的类型 一卤代 二卤代 多卤代

性质特殊

3. 卤代烷的命名

• 普通命名法:

CH₃CH₂CH₂CH₂-Br CH₃CH₂CH-Br CH₃CHCH₂-Br 正丁基溴 仲丁基溴 异丁基溴 n-butyl bromide sec-butyl bromide isobutyl bromide 正溴丁烷 仲溴丁烷 异溴丁烷

CH₃ | CH₃C—Br | CH₃

叔丁基<mark>溴</mark> tert-butyl bromide

叔溴丁烷

CHCI₃

三氯甲烷

氯仿, chloroform

• IUPAC命名法

选取含卤素的最长碳链为主链

$$\begin{array}{c} \mathsf{CH_3CH_2CH}_{\mathsf{C}}\\ \mathsf{I}\\ \mathsf{CH_2Br} \end{array}$$

2-乙基-1-溴丁烷

反-1-氯甲基-4-氯环己烷

(S)-3-甲基-1-溴戊 悰

(R)-2,3-二甲基-3-氯戊烷

二. 卤代烷烃的性质

- 1. 卤代烷烃的物理性质简介
- 物态:一般为液体,高级为固体,少量为气体
- 比重: 一般 d > 1, 一氯代物通常 d < 1。
- 溶解度:不溶于水,易溶于有机溶剂
- 其它: 多卤代物一般不燃烧

2. 卤代烷烃的结构特点

• 卤素对化学键的影响——吸电子的诱导效应

σ电子发生偏移, X起吸电子的诱导 作用, C-X为极性 共价键。

Н	С	N	0	F
2.1	2.5	3.0	3.5	4.0
		Р	S	CI
		2.1	2.5	3.0
	Br			
_	2.8			
ė.	1			
	2.5			

(强) 吸电子基团 (electron withdrawing group)

 $-CCI_3$, $-CF_3$

亲核试剂

带有弧对电子的电中性分子(路易斯碱): H2O,ROH,NH3,PPh3

带有负电荷的负离子 (共轭碱): HO-,RO-,-CN,X-

• α和β位氢有弱酸性

在卤代烷中

3. 卤代烷的亲核取代反应

(S_N反应, Nucleophilic Substitution Reaction)

反应通式

• 与负离子型亲核试剂的反应

(接下页)

(接上页)

• 与分子型亲核试剂的反应

具体反应类型

1. 水解反应

- 1°加NaOH是为了加快反应的进行,使反应完全。
- 2°此反应是制备醇的一种方法。

水解反应的相对活性: RI>RBr>RCl>RF (烷基相同)

2. 醇解反应

- •R-X一般为1°RX, (仲、叔卤代烷与醇钠反应时,主要发生消除反应生成烯烃)。
- •该法是合成不对称醚的常用方法,称为 Williamson (威廉逊)合成法。

合成举例——Williamson 醚合成法

例: 合成甲基叔丁基醚

分析: 醚类化合物可

由亲核取代制得

Williamson 醚合成法

诺贝尔化学奖 获得者(1990)

E. J. Corey (1928 ~)

>甲基叔丁基醚的反合成分析

有两种切断方式

哪一种更有合成意义?

▶合成路线的选择

请注意合成路线的书写表达方式

3. 氰解反应

- 1. 反应后分子中增加一个碳原子,是有机合成中增长碳链的方法之一。
- 2.-CN可进一步转化为 -COOH, -CH₂NH₂等基团。
- 3. 该反应与卤代烷的醇解相似,亦不能使用叔卤烷,否则将主要得到烯烃。

4. 氨解反应

因为生成的伯胺仍是一个亲核试剂,它可以继续与卤代烷作用,生成仲胺或叔胺的混合物,故反应要在过量氨(胺)的存在下进行。

$$RNH_2 + R-X$$
 — R_2NH RX R_3N RX $R_4N^+X^ R_4N^+X^ R_5$ R_5 R_5

5.与AgNO3醇溶液反应

此反应可用于鉴别卤化烷:

叔卤代烷 烯丙位卤代烃 苄卤

硝酸银

醇

室温下立即生成沉淀

仲卤代烷

硝酸银

醇

室温下需反应一段时间 才能生成沉淀

伯卤代烷

硝酸银

醇

需加热才能生成沉淀

亲核取代反应存在两种反应机理

		动力学证据 反应速率	立体化学证据 对手性底物, 产物的立体化学	重排现象	反应类型
]	[∞[RX][Nu [©]]	构型翻转	无	双分子机理 bimolecular mechanism S _N 2
Ι	Ι	∞[RX]	消旋化	有	单分子机理 unimolecular mechanism S _N 1

双分子亲核取代反应机理 (bimolecular mechanism) ——S_N2机理

▶ 旧键的解离与新键的形成同时进行(一步机理)

动力学特点:反应速率 = k[RX][Nu] (双分子反应) 构型翻转

S_N2 机理:

- a. 双分子反应 (二级反应), 反应速率 = k[RX][Nu-]
- b. 一步反应
- c. 手性底物反应时发生构型转换 - 瓦尔登转换
- d. 卤代烷发生反应的难易程度: 伯卤>仲卤>叔卤
- e. 没有重排现象

构型转换型反应

单分子亲核取代反应机理 (unimolecular mechanism) -- S_N1机理

▶ C-X 键先解离, 再与亲核试剂成键 (二步机理)

➤ 反应经过碳正 离子中间体。 ➤ 第一步应为决

速步骤

S_N1 机理:

- a. 单分子反应(一级反应),反应速率 = k[RX]
- b. 二步反应
- c. 手性底物反应时得到外消旋体的混合物
- d. 卤代烷发生反应的难易程度: 叔卤>仲卤>伯卤
- e. 有重排现象

> 消旋型反应

叔卤代烷

5. 碳正离子 (Carbocation, Carbonium ion)

•碳正离子:一类碳上只带有六个电子的活泼中间体

▶碳正离子一般无法分离得到,可通过实验方法捕获:

(CH₃)₃CF + SbF₅ → (CH₃)₃CSbF₆ 超酸 可通过核磁共振观察到

- 碳正离子的相对稳定次序: 3° > 2° > 1° > CH₃
- 》烷基对碳正离子的稳定作用——给电子的诱导效应

稳定性 R-CH > RCH₂

(通过单键传递的) 给电子诱导效应

烷基充当给电子基作用

(electron releasing group)

超共轭解释

σ-p 超共轭

σ - p 超共轭使电荷更分散,有利于体系的稳定

> π键对碳正离子的稳定作用

烯丙基碳正离子

苄基碳正离子

(共轭) 给电子

> p轨道对碳正离子的稳定作用

$$RO$$
— CH $=$ RO — CH R' R' R' P — CH R' R' R' R' R'

>一些使碳正离子不稳定的因素

(诱导) 吸电 子效应

(共轭) 吸电 子效应

π-p共轭

• 碳正离子的重排性

迁移动力: 生成更稳定的正碳离子

其它形式的碳正离子的重排

$$H_3CH_2C$$
 — CH_2 ← CH_2 CH_2

扩环、解除小环张力

6. 写出下列反应的机理

希望通过这些例子,学习并基本掌握反应机理的表达方法

▶ 溴乙烷与NaOH的反应(S_N2机理)

► 叔丁基溴在80%EtOH水溶液中的水解反应(S_N1机理)

写出反应机理解释下列主要反应产物的形成

$$H_3C - C - CH_2Br$$
 C_2H_5OH C_2H_5OH C_2H_5OH C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3 C_2H_5 C_3 C_2H_5 C_3 C_3 C_4 C_5 C_5

本次课小结

- >卤代烃的类型和命名(掌握)
- >卤代烷烃的亲核取代反应,各种取代产物的类型(熟记)
- ▶亲核取代反应的两种机理——S_N1和S_N2机理(掌握两种机理的表达方式,掌握两种机理在反应动力学和立体化学上的不同之处)
- >正碳离子的稳定性及其正碳离子的重排(掌握)