Listen, Attend, and Spell Mahshid Alinoori

TABLE OF CONTENTS

Intro

Emergence of end-to-end transcription systems: CTC and seq2seq.

Seq2seq limitation:Only applied to phoneme

sequences

Intro

Model Architecture

Input X:

 Sequence of filter bank spectra features

Output Y:

- sequence of alphanumeric characters + some punctuations
- padded by <sos> and <eos>
- modelled by $P(Y|X) = \pi P(y_i|X,y_{< i})$

Model Architecture

Listener:

- Acoustic model encoder
- Implemented as pyramidal BLSTM
- Pyramidal structure
 concatenates the output of at
 consecutive steps and reduces
 the length of the encoded input
 and computational complexity
- 3 pBLSTMs on the top of the first layer BLSTM

Model Architecture

Attend and Spell:

- Attention-based LSTM transducer
- Outputs the distribution P(y_i|X, y_{<i}) using MLP and softmax on decoder state and context vector
- Decoder state s_i: Output of a 2 layer LSTM and a function of the previous decoder state, the previous context vector and previously generated character
- Context vector c_i: Output of an attention mechanism on decoder state and the listener's output h

Learning Details

Sampling Trick

Not always feeding the ground truth transcription for the next step

DecodingLeft-to-right beam search with an optional dictionary

dictionary

Rescoring Using language model to rescore the beams

Experiments and results

WER: A metric for word Without language level analysis based on model: Levenshtein distance - WER 16.2% and 19% **Dataset:** 3 millions of **Training duration:** Two - Sampling trick: WER Google voice search (2000 14.1% and 16.5% weeks hrs) **Tests:** Clean test and Rescoring with language Data Augmentation: model: noisy test Adding different noise and - WER 12.6% and 14.7% reverberation - Sampling trick: WER Features: 40 dimensional 10.3% and 12% Mel filter bank features

How much would a woodchuck chuck

Considerable Factors

Beam Width:

Significant WER improvement by increasing to 16

Word Recall:

Dependant on word frequency and acoustic uniqueness

Utterance Length:

Longer utterance have higher error rate

Multiple Spelling Variants:

"Call triple a roadside assistance" aaa vs triple a

Conclusion

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik