Universidad de la República Facultad de Ciencias Económicas y Administración Departamento de Métodos Matemático Cuantitativos

Análisis Multivariado I Primer semestre 2016

Práctico 2

1. Se dispone de 3 indicadores económicos x_1, x_2, x_3 que se miden en 4 paises, con los resultados siguientes:

x_1	x_2	x_3
2	3	-1
1	5	-2
2	2	1
2	3	1

- a) Calcule el vector de medias, la matriz de varianzas y covarianzas, la varianza generalizada, la matriz de correlación y los valores y vectores propios de dicha matriz.
- b) Se construyen los nuevos indicadores

$$y_1 = \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3$$
 $y_2 = x_1 - 0.5x_2 - 0.5x_3$

Calcule el vector de medias para $\mathbf{y} = (y_1, y_2)'$, su matriz de varianzas y covarianzas, la matriz de correlación y la varianza generalizada.

- 2. Recordamos que si \mathbf{x}, \mathbf{y} son vectores aleatorios en \mathbb{R}^p entonces:
 - $\mathbf{E}(\mathbf{x}) = \mu_x$
 - $Var(\mathbf{x}) = \Sigma_{x,x} = \mathbb{E}((\mathbf{x} \mu_x)(\mathbf{x} \mu_x)')$
 - $Cov(\mathbf{x}, \mathbf{y}) = \Sigma_{x,y} = \mathbb{E}((\mathbf{x} \mu_x)(\mathbf{y} \mu_y)')$ siendo $\mathbf{x} \sim (\mu_x, \Sigma_{xx})$ e $\mathbf{y} \sim (\mu_y, \Sigma_{yy})$

Sean \mathbf{x} e \mathbf{y} vectores aleatorios, A y B matrices y c un vector fijo (no aleatorio) real. Pruebe que:

- a) $\mathbb{E}(A\mathbf{x}) = A\mathbb{E}(\mathbf{x})$
- b) $Cov(A\mathbf{x}, B\mathbf{y}) = ACov(\mathbf{x}, \mathbf{y})B'$
- c) $Var(A\mathbf{x}) = AVar(\mathbf{x})A'$
- d) $Cov(\mathbf{x}, \mathbf{y}) = \mathbb{E}(\mathbf{x}\mathbf{y}') \mathbb{E}(\mathbf{x})\mathbb{E}(\mathbf{y})'$
- $e) Var(\mathbf{x} c) = Var(\mathbf{x})$

- 3. Sea $\mathbf{x_1}, \dots, \mathbf{x_n}$ una muestra aleatoria simple proveniente de una variable aleatoria $\mathbf{x} \sim (\mu, \Sigma)$, y $\overline{\mathbf{x}_n} = \frac{1}{n} \sum_{i=1}^n \mathbf{x_i}$ el promedio muestral. Pruebe que:
 - a) $\mathbb{E}(\overline{\mathbf{x}}_n) = \mu$ y $Var(\overline{\mathbf{x}}_n) = \frac{1}{n} \Sigma$
 - b) si $S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x_i} \overline{\mathbf{x}}_n)(\mathbf{x_i} \overline{\mathbf{x}}_n)'$ (matriz de varianzas y covarianzas muestrales), entonces $\mathbb{E}(S) = \frac{n-1}{n} \Sigma$. Dé un estimador insesgado de Σ a partir de S.
- 4. Demuestre que si $\mathbf{Y} = \mathbf{X}\mathbf{A}$ donde $\mathbf{Y} \in \mathcal{M}_{n \times m}$ y $\mathbf{X} \in \mathcal{M}_{n \times p}$, las matrices de covarianzas de \mathbf{Y} y de \mathbf{X} están relacionadas por $\mathbf{S}_y = \mathbf{A}'\mathbf{S}_x\mathbf{A}$.
- 5. Demuestre que para un conjunto de datos

$$\frac{1}{np} \sum_{i=1}^{n} (\mathbf{x_i} - \overline{\mathbf{x}})' S^{-1}(\mathbf{x_i} - \overline{\mathbf{x}}) = 1$$

6. Pruebe que si $\mathbf{y} \sim Mult(n, \mathbf{p})$ con $\mathbf{p} = (p_1, \dots, p_G)'$ entonces

$$\mathbb{E}(\mathbf{y}) = n\mathbf{p}$$
 y $Var(\mathbf{y}) = n(diag(\mathbf{p}) - \mathbf{p}\mathbf{p}')$

7. Se considera la función de densidad dada por

$$f(x,y) = \begin{cases} Kx & \text{si } 0 < x < 1, \ 0 < y < 1 - x \\ 0 & \text{en otro caso} \end{cases}$$

- a) Halle K.
- b) Halle las funciones de densidad marginales, las densidades condicionadas, el vector de medias y la matriz de varianzas-covarianzas.