Aprendizado de Máquina e Reconhecimento de Padrões (UTFPR/CPGEI) - Lista de Exercícios 3

Tópicos: Classificadores Lineares.

- 1. No espaço 2-D, têm-se duas classes equiprováveis com médias $\mathbf{m}_1 = [0, 0]^T$ e $\mathbf{m}_2 = [1,5, 1,5]^T$ e matrizes de covariância $\mathbf{S}_1 = \mathbf{S}_2 = 0,2\mathbf{I}$, sendo I uma matriz identidade 2×2 .
 - a) Gere e plote um conjunto de dados X₁, contendo 200 exemplos por classe (400 no total), a ser utilizado como conjunto de treinamento (utilize o valor 10 como 'seed' e a função randn Matlab). Gere um segundo conjunto de dados X₂ contendo 200 exemplos por classe para ser utilizado como conjunto de teste (utilize o valor 100 como 'seed' e a função randn Matlab).
 - b) Com base em X_1 , gere seis classificadores do tipo SVM para separar as duas classes, variando C = 0,1,0,2,0,5,1,2,20. Utilize o algoritmo de Platt (SMO2.m) e tol = 0,001.
 - I. Calcule os erros de classificação dos conjuntos de treino e teste.
 - II. Conte o número de vetores suporte.
 - III. Calcule o valor da margem (2/||w||).
 - IV. Plote o classificador em conjunto com as margens. Comente os resultados obtidos nas etapas anteriores. Qual a influência do parâmetro C?
- 2. Considere um problema de duas classes, bidimensional, com os seguintes parâmetros das classes (distribuição Gaussiana):

$$\mu_{1} = [0, 2]^{T}$$

$$\Sigma_{1} = \begin{bmatrix} 4 & 1.8 \\ 1.8 & 1 \end{bmatrix}$$

$$\mu_{2} = [0, 0]^{T}$$

$$\Sigma_{2} = \begin{bmatrix} 4 & 1.8 \\ 1.8 & 1 \end{bmatrix}$$

- i. Gere os dados das duas classes e plote os resultados, considerando 1500 exemplos por classe e um conjunto \mathbf{X} para treinamento e \mathbf{X}_{test} para teste.
- ii. Classifique os exemplos de X_{test} utilizando a regra de decisão Bayesiana.
- iii. Crie um modelo com base em Logistic Regression Classifier utilizando o conjunto \mathbf{X} e avalie o desempenho desse classificador no conjunto \mathbf{X}_{test} .
- iv. Comente e compare os resultados obtidos em ii e iii.
- v. Repita e compare os passos de i a iv, considerando agora:

$$\Sigma_2 = \left[\begin{array}{cc} 4 & -1.8 \\ -1.8 & 1 \end{array} \right]$$

vi. Repita a análise para a Logistic Regression, considerando agora regularização com diferentes valores de lambda (definidos por você). Qual o efeito da regularização, comparando o desempenho de treinamento e teste?