Corollary. Let $\phi = \psi \otimes B$ where $0 \le \psi \in L^{\infty}[-1,0]$ and $0 \le B \in L(F)$ such that B^n is compact for some $n \in \mathbb{N}$. Then the following holds.

(3.10)
$$s(A) \leq \lambda$$
 if and only if $\psi(\epsilon_{\lambda}) \cdot s(B) \leq 1$.

Example 3.10. Let F be a Banach lattice with the Dunford-Pettis property (see Schaefer(1974),Sec.II.9). Take for example F = C(K) or $F = L^1(X, \Sigma, \mu)$. Furthermore define $E = L^1([-1, 0], F)$ as usual and let $\{K(s): s \in [-1, 0]\}$ be a family of positive, irreducible, weakly compact operators on F which is bounded.

If we define $\phi f := \int_{-1}^{0} K(s) f(s) ds$ for all $f \in E$, then (RE) has the form

(3.11)
$$f(t) = \int_{-1}^{0} K(s) f(s+t) ds , t \ge 0 ,$$

$$f_{0} = \psi \in E .$$

By Cor.3.2 (3.11) has a unique solution $f \in L^1([-1,\infty),F)$. For ϕ_{λ} we obtain $\phi_{\lambda} x = \int_{-1}^{0} e^{\lambda S} K(s) x \, ds, \, x \in F$. In this case we have $s(A) \stackrel{\leq}{>} \lambda \quad \text{if and only if} \quad s(\phi_{\lambda}) \stackrel{\leq}{>} 1 \; .$

<u>Proof.</u> By Cor.3.8 it suffices to show that the map $h: \lambda \to s(\phi_{\lambda}) = r(\phi_{\lambda})$ is strictly decreasing and continuous.

With the help of [Schaefer (1966),Thm.III.11.4] and [Schaefer (1974), Thm.II.9.9] it is easy to show that $\phi_{\lambda}^{\ 2}$ is compact and the continuity of h follows by the above remark. It remains to show that h is strictly decreasing.

Assume $s(\phi_{\lambda}) > 0$ for all $\lambda \in \mathbb{R}$. Since ${\phi_{\lambda}}^2$ and ${\phi_{\mu}}^2$ are compact, $s(\phi_{\lambda})$ and $s(\phi_{\mu})$ are eigenvalues of ${\phi_{\lambda}}$ resp. ${\phi_{\mu}}$ with corresponding eigenfunctions x_{λ} resp. x_{μ} . In the same way $s(\phi_{\lambda})$ and $s(\phi_{\mu})$ are eigenvalues of ${\phi_{\lambda}}'$ resp. ${\phi_{\mu}}'$ with corresponding eigenfunctions x_{λ}' resp. x_{μ}' .

For $0 < x \in F$ and $0 < \mu < \lambda$ we obtain,

 $\Phi_{\mu} x = \int_{-1}^{0} e^{\mu s} K(s) x ds = \int_{-1}^{0} e^{(\mu - \lambda) s} e^{\lambda s} K(s) x ds > \int_{-1}^{0} e^{\lambda s} K(s) x ds = \Phi_{\lambda} x$

since K(s) are positive and irreducible operators.

Especially, $\phi_{\mu}x_{\lambda} > \phi_{\lambda}x_{\lambda} = r(\phi_{\lambda})x_{\lambda}$ and by evaluation $\langle \phi_{\mu}x_{\lambda}, x_{\mu}' \rangle > r(\phi_{\lambda})\langle x_{\lambda}, x_{\mu}' \rangle$. Thus $r(\phi_{\mu})\langle x_{\lambda}, x_{\mu}' \rangle > r(\phi_{\lambda})\langle x_{\lambda}, x_{\mu}' \rangle$. Since the operators ϕ_{λ} are irreducible for each λ (due to the irreducibility of K(s)) x_{μ}' is a strictly positive functional on F. Hence $\langle x_{\lambda}, x_{\mu}' \rangle \neq 0$ and thus $r(\phi_{\mu}) > r(\phi_{\lambda})$.