

▼ Import and depending

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import matplotlib.pyplot as mpl
6 from sklearn.model_selection import train_test_split
7 from sklearn.linear_model import LogisticRegression
8 from sklearn.linear_model import LinearRegression
9
10 from sklearn.metrics import accuracy_score

Data Collection & Processing

1 #load data
2 Titanic_data = pd.read_csv('/content/tested.csv')

1 # printing the first 5 rows of the dataframe
2
3 Titanic_data.head()
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q	11.
1	893	1	3	Wilkes, Mrs. James (Ellen	female	47.0	1	0	363272	7.0000	NaN	S	

1 #num of row and column

2 Titanic_data.shape

(413, 12)

1 Titanic_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 413 entries, 0 to 412

Data	columns (tota	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	413 non-null	int64
1	Survived	413 non-null	int64
2	Pclass	413 non-null	int64
3	Name	413 non-null	object
4	Sex	413 non-null	object
5	Age	328 non-null	float64
6	SibSp	413 non-null	int64
7	Parch	413 non-null	int64
8	Ticket	413 non-null	object
9	Fare	412 non-null	float64
10	Cabin	89 non-null	object
11	Embarked	413 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)
	20		

memory usage: 38.8+ KB

1 # check the number of missing values in each column

2 Titanic_data.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	85
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	324
Embarked	0
dtype: int64	

Handling missing value

1

- 1 # replacing the missing values in "Age" column with mean value
- 2 Titanic_data['Age'].fillna(Titanic_data['Age'].mean(), inplace=True)
- 1 Titanic_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 413 entries, 0 to 412 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	413 non-null	int64
1	Survived	413 non-null	int64
2	Pclass	413 non-null	int64
3	Name	413 non-null	object
4	Sex	413 non-null	object
5	Age	413 non-null	float64
6	SibSp	413 non-null	int64
7	Parch	413 non-null	int64
8	Ticket	413 non-null	object
9	Fare	412 non-null	float64

```
10 Cabin
                     89 non-null
                                     object
    11 Embarked
                     413 non-null
                                     object
   dtypes: float64(2), int64(5), object(5)
   memory usage: 38.8+ KB
1 # finding the mode value of "Embarked" column
2 print(Titanic_data['Embarked'].mode())
    0 S
   Name: Embarked, dtype: object
1 print(Titanic_data['Embarked'].mode()[0])
   S
1 Titanic_data.isnull().sum()
   PassengerId
   Survived
   Pclass
                    0
   Name
                    0
   Sex
   Age
                    0
                    0
   SibSp
   Parch
                    0
   Ticket
                    0
                    1
   Fare
   Cabin
                  324
   Embarked
   dtype: int64
```

▼ Data Analysis

1 Titanic_data.describe()

count	413.000000	413.000000	413.000000	413.000000	413.000000	413.000000	412.000000		
mean	1102.358354	0.365617	2.263923	30.342988	0.435835	0.389831	35.274970		
std	120.344741	0.482187	0.842201	12.666215	0.875156	0.983156	55.071904		
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000		
25%	1000.000000	0.000000	1.000000	23.000000	0.000000	0.000000	7.895800		
50%	1103.000000	0.000000	3.000000	30.342988	0.000000	0.000000	14.454200		
75%	1206.000000	1.000000	3.000000	36.000000	1.000000	0.000000	31.500000		
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200		
# finding the number of people survived and not survived Titanic_data["Survived"].value_counts()									

```
1 Embarked = Titanic_data['Embarked'].unique()
```

2 for Embarkeds in Embarked:

Name: Survived, dtype: int64

print("->",Embarkeds)

-> Q

-> S

-> C

Data Visualization

```
1 sns.set()
```

```
1 import matplotlib.pyplot as plt
2
3
1 sns.histplot(data = Titanic_data, x = "Age", hue = "Survived", multiple = "stack",)
2 ax.set_title("Histogram for Age with Survival")
3 ax.set_xlabel("Age")
4 ax.set_ylabel("Number of passengers")
5 ax.legend(title = "Legends", labels = ["Survived", "Not survived"])
6 mpl.plot()

[]
120
Survived
0
100
```



```
1 embarked_counts = Titanic_data['Embarked'].value_counts()
2 mpl.figure(figsize=(8, 8))
3 mpl.pie(embarked_counts, labels=embarked_counts.index, autopct='%1.1f%%', colors=['#66b3ff', '#99ff99', '#ff9999'])
4 mpl.title("Distribution of Passengers by Embarked")
5 mpl.legend(["Q", "S", "C"])
6 mpl.show()
```

Distribution of Passengers by Embarked

```
1 # making a count plot for "Survived" column
2 sns.countplot(x='Survived', data=Titanic_data)
3
```

<Axes: xlabel='Survived', ylabel='count'>

1 #count num of male and female
2 Titanic_data['Sex'].value_counts()

male 262 female 151

Name: Sex, dtype: int64

1 # making a count plot for "SEX" column
2 sns.countplot(x='Sex', data=Titanic_data)
3

<Axes: xlabel='Sex', ylabel='count'>

^{1 #} making a count plot for "Pclass" column
2 sns.countplot(x='Pclass', data=Titanic_data)

<Axes: xlabel='Pclass', ylabel='count'>

1 sns.countplot(x='Pclass', hue='Survived', data=Titanic_data)

<Axes: xlabel='Pclass', ylabel='count'>


```
1 fig = plt.figure(figsize =(10, 7))
2 plt.hist(x = [Titanic_data[Titanic_data['Survived']==1]['Age'], Titanic_data[Titanic_data['Survived']==0]['Age']], stacked=True, color = ['
3 plt.title('Age Histogram with Survival')
4 plt.xlabel('Age')
5 plt.ylabel('No of passengers')
6 plt.legend()
```

Age Histogram with Survival


```
1 fig = plt.figure(figsize =(10, 7))
2 plt.hist(x = [Titanic_data[Titanic_data['Survived']==1]['Fare'], Titanic_data[Titanic_data['Survived']==0]['Fare']], stacked=True, color =
3 plt.title('Fare Histogram with Survival')
4 plt.xlabel('Fare')
5 plt.ylabel('No of passengers')
6 plt.legend()
7
```

<matplotlib.legend.Legend at 0x7be5efe71210>

▼ Separating features & Target

```
1 Titanic_data['Sex'].value_counts()
    male
    female
               151
    Name: Sex, dtype: int64
1 Titanic_data['Embarked'].value_counts()
    S
          267
    C
          101
          45
    Q
    Name: Embarked, dtype: int64
1 # converting categorical Columns
\label{eq:continuous} 2 \; Titanic\_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}, \; inplace=True) \\
1 Titanic_data.dtypes
                        int64
    PassengerId
    Survived
                        int64
    Pclass
                        int64
    Name
                       object
    Sex
                        int64
                      float64
    SibSp
                        int64
                       int64
    Parch
    Ticket
                       object
    Fare
                      float64
                      object
    Cabin
    Embarked
                        int64
    dtype: object
1 Titanic_data['Age'] = Titanic_data['Age'].astype(int)
2 Titanic_data['Fare'] = Titanic_data['Fare'].fillna(0)
3 Titanic_data['Fare'] = Titanic_data['Fare'].astype(int)
4
5
1 Titanic_data.head()
```

```
1 data = Titanic_data.drop(['PassengerId','Name','Cabin','Ticket'], axis =1, inplace=True)
2
                                          James (Ellen 1 4/
                                  3
                                                                 1
                                                                          0 363272
                                                                                                          υ
1 Titanic_data.head
                                      Survived Pclass Sex Age SibSp Parch Fare Embarked
    <bound method NDFrame.head of</pre>
                            0
                                               0
   1
               1
                       3
                                47
                                               a
                                                     7
                                                               9
                            1
                                        1
                                                     9
   2
               0
                       2
                            0
                                62
                                        0
                                               a
                                                               2
   3
               0
                       3
                            0
                                27
                                        0
                                               0
                                                     8
                                                               0
   4
               1
                       3
                                22
                                                    12
                                                               0
                           1
                                        1
                                               1
   408
               0
                       3
                            0
                                30
                                        0
                                               0
                                                    8
                                                               0
   409
               1
                       1
                                39
                                                   108
                                                               1
                            1
   410
                                        0
                                                               0
               0
                       3
                            0
                                38
                                               0
                                                     7
   411
               0
                       3
                            0
                                30
                                        0
                                               0
                                                     8
                                                               0
   [413 rows x 8 columns]>
1
1 Train = Titanic_data.drop(['Survived'], axis=1)
2 Test = Titanic_data.iloc[:,1]
3 x_train, x_test, y_train, y_test = train_test_split(Train, Test, test_size = 0.2, random_state = 1)
1 print(X.shape, X_train.shape, X_test.shape)
    (413, 8) (330, 8) (83, 8)
```

Model Training

Logistic Regression

```
1 try:
2    float("E52")
3 except ValueError:
4    print("The string 'E52' cannot be converted to a float.")
        The string 'E52' cannot be converted to a float.

1 LR = LogisticRegression(solver='liblinear', max_iter=200)
2 LR.fit(x_train, y_train)
3 y_pred = LR.predict(x_test)
4 LRAcc = accuracy_score(y_pred,y_test)
5 print('Logistic regression accuracy: {:.2f}%'.format(LRAcc*100))
        Logistic regression accuracy: 96.39%
```