Prajwal Kammardi Arunachala

3400 N Charles St, 307 Latrobe Hall, Baltimore, MD 21218 Email - pkammar1@jh.edu • Website - prajwalka.github.io

EDUCATION AND TRAINING

Johns Hopkins University, Baltimore, U.S.

Current

Postdoctoral Researcher | Advisor - Dr. Somnath Ghosh

Stanford University, Stanford, U.S.

September 2024

Ph.D. in Civil and Environmental Engineering | Advisor - Dr. Christian Linder

GPA: 4.08/4

Stanford University, Stanford, U.S.

April 2019

M.S. in Civil and Environmental Engineering

GPA: 4.07/4

Indian Institute of Technology Bombay, Mumbai, India

May 2017

B. Tech. (with Honors) in Civil Engineering | Minor in Computer Science Engineering | G

GPA: 9.65/10

RESEARCH EXPERIENCE

Johns Hopkins University, Baltimore, U.S.

Sep'24-Current

Postdoctoral Research | Guide - Dr. Somnath Ghosh

- Working on fatigue behavior modeling of polycrystalline materials like titanium and aluminum alloys
- Developing novel coupled crystal plasticity-phase field models for cyclic loadings
- Utilizing multi-time scaling methods to simulate even high cycle fatigue behavior
- Ensuring the parametric upscaling of these microscale models for large-scale industrial applications

Stanford University, Stanford, U.S.

Apr'19-Sep'24

Doctoral Thesis | Guide - Dr. Christian Linder

- Thesis title "Computational modeling of fracture behavior of rubber-like materials"
- Proposed the first multiscale model for quantitatively capturing the effect of strain-induced crystallization phenomenon on fracture initiation of rubber-like materials
- Developed robust multiscale phase field fracture models for modeling crack propagation in elastomers
- Formulated a novel continuum model accounting for the microscale anisotropic network response
- Integrated the fracture initiation model with the crack propagation model to formulate the first multiscale framework modeling fracture propagation in strain-crystallizing rubbers
- Fabricated samples and performed experiments to study fracture behavior of PDMS rubber
- Validated the models by comparison of simulation predictions with data from various experiments

Indian Institute of Technology Bombay, Mumbai, India

Jul'15-Apr'17

Undergraduate Thesis | Guides - Dr. Amit Das & Dr. Mandar Inamdar

- Thesis title "Mechanical formulations of plates on elastic foundations"
- Developed an extended formulation of the von-Karman theory by accounting for shear deformations
- Incorporated effects of temperature and moisture, and studied effect of different elastic foundations
- Modeled joints and slab-subgrade contact for an improved prediction of the durability of pavements
- Validated the model for different size-thickness ratios with accuracy greater than 95%

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland May'16-Jul'16 Summer Research Internship | Guide - Dr. Ian Smith

- Modeled the folding of an active tensegrity structure as an application to deployable bridges
- Obtained optimum control command for its deployment utilizing a stochastic search algorithm
- Included features like continuous cables and non-conventional boundaries to simulate test conditions
- Performed static, modal and damage detection analysis to verify mechanical stability during deployment

University of New South Wales, Sydney, Australia

May'15-Jul'15

Summer Research Internship | Guides - Dr. Brian Uy & Dr. Vipul Patel

- Modeled the behaviour of axially loaded concrete filled steel tubular using finite element model
- Automated the process by using a Python script to run multiple simulations on Abaqus software
- Developed a code to find the load-strain behaviour by nonlinear inelastic analysis
- Validated the model by comparing with experimental data with an accuracy greater than 98%

JOURNAL PUBLICATIONS

- J.12 **P.K.Arunachala**, S.Abrari Vajari, C.Linder, A multiscale phase field fracture approach for strain-crystallizing rubber-like materials, [*In preparation*]
- J.11 **P.K.Arunachala**, S.Abrari Vajari, C.Linder, A multiscale phase field fracture approach for incompressible rubber-like materials, [*To be submitted*]
- J.10 P.K.Arunachala, S.Abrari Vajari, M.Neuner, J.S.Sim, R.Zhao, C.Linder, A multiscale anisotropic polymer network model coupled with phase field fracture, *International Journal for Numerical Methods* in Engineering 2024,e7488
- J.9 H-C.Wu, S.Nikzad, C.Zhu, H.Yan, Y.Li, W.Niu, J.R.Matthews, J.Xu, N.Matsuhisa, P.K.Arunachala, R.Rastak, C.Linder, Y-Q.Zheng, M.F.Toney, M.He, Z.Bao, Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability, *Nature Communications* 2023:14(1),8382
- J.8 S.Abrari Vajari, M.Neuner, P.K.Arunachala, C.Linder, Investigation of driving forces in a phase field approach to mixed mode fracture of concrete, Computer Methods in Applied Mechanics and Engineering 2023:417,116404
- J.7 P.K.Arunachala, S.Abrari Vajari, M.Neuner, C.Linder, A multiscale phase field fracture approach based on the non-affine microsphere model for rubber-like materials, Computer Methods in Applied Mechanics and Engineering 2023:410,115982
- J.6 Y.Qiu, **P.K.Arunachala**, C.Linder, SenseNet: A physics-informed deep learning model for shape sensing, *Journal of Engineering Mechanics* 2023:149(3),04023002
- J.5 M.Neuner, S.Abrari Vajari, P.K.Arunachala, C.Linder, A better understanding of the mechanics of borehole breakout utilizing a finite strain gradient-enhanced micropolar continuum model, Computers and Geotechnics 2023:153,105064
- J.4 S.Abrari Vajari, M.Neuner, P.K.Arunachala, A.Ziccarelli, G.Deierlein, C.Linder, A thermodynamically consistent finite strain phase field approach to ductile fracture considering multi-axial stress states, Computer Methods in Applied Mechanics and Engineering 2022:400,115467

- J.3 P.K.Arunachala, R.Rastak, C.Linder, Energy based fracture initiation criterion for strain-crystallizing rubber-like materials with pre-existing cracks, *Journal of the Mechanics and Physics of Solids* 2021:157, 104617
- J.2 W.Wang, S.Wang, R.Rastak, Y.Ochiai, S.Niu, Y.Jiang, P.K.Arunachala, Y.Zheng, J.Xu, N.Matsuhisa, X.Yan, S-K.Kwon, M.Miyakawa, Z.Zhang, R.Ning, A.Foudeh, Y.Yun, C.Linder, J.B-H.Tok, Z.Bao, Strain-insensitive intrinsically stretchable transistors and circuits, Nature Electronics 2021:4(2),1-8
- J.1 V.I.Patel, B.Uy, **K.A.Prajwal**, F.Aslani, Confined concrete model of circular, elliptical and octagonal CFST short columns, *Steel and Composite Structures*, *An International Journal* 2016:22(3),497-520

Presentations and Posters

Conference Presentations

- P.16 **P.K.Arunachala**, C.Linder, A multiscale phase field formulation for capturing the fracture behavior of rubber-like materials, *Engineering Mechanics Institute (EMI) Conference*, Chicago, May 2024.
- P.15 **P.K.Arunachala**, W.Xue, M.Neuner, C.Linder, Multiscale phase field mixed formulation for predicting fracture behavior in incompressible rubber-like materials, *U.S. National Congress on Computational Mechanics (USNCCM)*, Albuquerque, July 2023.
- P.14 **P.K.Arunachala**, M.Neuner, C.Linder, Capturing anisotropy in network response in rubber-like materials using a multiscale phase field formulation, *Engineering Mechanics Institute (EMI) Conference*, Georgia Institute of Technology, Atlanta, June 2023.
- P.13 **P.K.Arunachala**, M.Neuner, S.Abrari Vajari, C.Linder, Multiscale phase field approach for modeling fracture behavior in rubber-like materials, *Engineering Mechanics Institute (EMI) Conference*, Johns Hopkins University, Baltimore, June 2022.
- P.12 **P.K.Arunachala**, R.Rastak, C.Linder, Multiscale mechanical model coupled with an energy-based criterion for predicting fracture initiation in strain-crystallizing rubbers, *U.S. National Congress on Computational Mechanics (USNCCM)*, Virtual, July 2021.
- P.11 **P.K.Arunachala**, R.Rastak, C.Linder, Effect of strain-induced crystallization on fracture of rubber-like materials, *Engineering Mechanics Institute (EMI) Conference*, California Institute of Technology, Pasadena, June 2019.

Invited Talks, Seminars, and Review Meetings

- P.10 **P.K.Arunachala**, C.Linder, A multiscale phase field formulation for capturing fracture behavior of rubber-like materials, *Robert J. Melosh Medal Competition*, Duke University, Durham, October 2024.
- P.9 **P.K.Arunachala**, C.Linder, [Poster] Computational modeling of fracture behavior of polymers, Stanford-IIT Bombay Workshop on Sustainability, Stanford University, Stanford, July 2024.
- P.8 **P.K.Arunachala**, C.Linder, Multiscale framework for fracture modeling in rubber-like materials, Rising Stars in Computational & Data Sciences, Oden Institute, Austin, May 2024.
- P.7 **P.K.Arunachala**, S.Abrari Vajari, M.Neuner, C.Linder, A multiscale fracture model for rubber-like materials, *School of Sustainability Research Review*, Stanford University, Stanford, May 2023.
- P.6 **P.K.Arunachala**, S.Abrari Vajari, M.Neuner, C.Linder, Non-affine multiscale fracture model for rubber-like materials, *Berkeley/Stanford Computational Mechanics Festival (CompFest)*, Stanford University, Stanford, December 2022.
- P.5 P.K.Arunachala, S.Abrari Vajari, M.Neuner, C.Linder, [Poster] A multiscale fracture model using phase field approach, Blume/SURI Affiliate and Alumni Meeting, Stanford University, Stanford, October 2022.

- P.4 **P.K.Arunachala**, S.Abrari Vajari, M.Neuner, C.Linder, [Poster] A multiscale fracture model using phase field approach, PSAAP III Annual Review, University of Colorado, Boulder, September 2022.
- P.3 **P.K.Arunachala**, M.Neuner, S.Abrari Vajari, C.Linder, Multiscale fracture model for rubber-like polymers, *CEE Summer Student Speaker Series*, Stanford University, Stanford, July 2022.
- P.2 **P.K.Arunachala**, S.Abrari Vajari, M.Neuner, C.Linder, Embedded Finite Element Method in MOOSE for modeling crack propagation, *PSAAP III Annual Review*, Virtual, September 2021.
- P.1 P.K.Arunachala, R.Rastak, C.Linder, Energy criterion for fracture initiation in strain-crystallizing rubbers, *Berkeley/Stanford Computational Mechanics Festival (CompFest)*, Virtual, August 2020.

Honors and Awards

Juan C. Simo Best Thesis Award

2024

Awarded by Mechanics & Computation Division, Dept. of Mechanical Engineering, Stanford University

Finalist, Robert J. Melosh Medal Competition

2024

Annual competition for best paper on finite element analysis by Duke University

Rising Stars in Computational & Data Sciences

2024

• Selected for the prestigious workshop at the Oden Institute of Computational Engineering and Sciences, The University of Texas at Austin

Runner-up, Modeling Inelastic and Multiscale Behavior (MIMB) Competition

2023

• Annual student paper competition at Engineering Mechanics Institute (EMI) Conference

Travel Awards for U.S. National Congress on Computational Mechanics

2021,2023

Leavell Fellowship at Stanford University

2020-2022

Stanford School of Engineering Graduate Fellowship

2017

Institute Silver Medal, Vidyasagar Nehra and Prof. Madhav Kulkarni Gold Medals 2017

• Awarded for graduating from IIT Bombay as Civil department topper of the batch with Honors

S.C.Mehrotra Prize, Institute Academic Prize

2014-2016

• Awarded consecutively for three and two years respectively for academic excellence at IIT Bombay

National Talent Search (NTS) Scholarship

2009-201

• Recepient of the venerated National level merit scholarship awarded by the National Council of Education Research and Training, Government of India

Kishore Vaigyanik Protsahan Yojana (KVPY) Scholarship

2013

Selected for the prestigious National Program of Fellowship in Basic Sciences awarded by the Department of Science and Technology, Government of India

Karnataka Common Entrance Test (KCET)

2013

• Topped the state engineering entrance examination among 100,000 students

Mentoring Experiences

Graduate Student Mentor, Stanford University & Johns Hopkins University Sep'22-Current

• Mentoring junior Ph.D. students of my research groups in their initial academic and research phases

Undergraduate Student Mentor, IIT Bombay

Apr'16-Mar'17

- Selected as a part of a 24 member group under the Department Academic Mentorship Program
- Mentored a group of 6 sophomores in their academic and co-curricular pursuits
- Part of the ideation team of the Department Open House to increase student-teacher interaction
- Contributed to online course blogs to assist decisions of future batch students while selecting courses

Computational Fracture Mechanics (CEE 306), Stanford University

Spring 2024

Instructor-in-charge

- Instructed a class of 14 students as the primary instructor of the course
- Restructured course content, prepared lectures, modified assignments, and refined custom projects
- Mentored students in performing the complex fracture simulations for their projects
- Quality of instruction received mean 4.5/5 and median 5/5 among 12 end-term course evaluations

Solid Mechanics (CEE 291), Stanford University

Autumn 2019,2020,2023

Teaching Assistant | Instructor - Dr. Christian Linder

- Provided guest lectures on thermodynamics laws, FEM, plasticity modeling, 3D mathematical concepts
- Redesigned the course tutorial lectures and formulated programming examples to help students better understand Julia language for completing their programming tasks
- Provided many off-hour one-on-one help sessions, especially during the Covid-19 lockdown, to assist students with their conceptual difficulties
- Teaching effectiveness received mean 4.36/5 and median 4.5/5 among 14 end-term evaluations in 2019

Computational Fracture Mechanics (CEE 306), Stanford University

Spring 2021

Teaching Assistant | Instructor - Dr. Christian Linder

- Assisted the instructor in rebasing the finite element framework for the course from the deal.ii-based in-house code to the open-source library MOOSE by restructuring the programming assignments
- Developed tutorial lectures and led office hour discussions to aid students with conceptual understanding
- Designed default course projects involving fracture simulations with structured deliverables
- Mentored student groups in understanding, implementing and performing simulations for their projects
- Teaching effectiveness received mean 4.57/5 and median 5/5 among 7 end-term course evaluations

Continuum Mechanics (CEE 312/ME 338), Stanford University

Spring 2020

Teaching Assistant | Instructor - Dr. Christian Linder

- Adapted the teaching technique for facilitating a seamless course experience for students during the Covid-19 lockdown while holding virtual tutorial lectures and office hours
- Revamped the course tutorial lectures to ensure easy and comprehensive understanding of the deal.ii-based in-house code for finite element implementations during assignments

Engineering Mechanics (CE 101), IIT Bombay

Spring 2015,2017

 $Teaching\ Assistant\ |\ Instructors\ -\ Dr.\ Arghadeep\ Laskar,\ Dr.\ D.M.\ Dewaiker$

- Led the tutorial sections for helping students with solving problems and clarifying conceptual questions
- Initiated the formation of a Facebook group for informal interactions and additional material sharing
- Provided off-hour group help sessions to aid students with their conceptual questions

U.S. Association for Computational Mechanics (USACM) Student Chapter

2023-2024

Member-at-Large, Student Leadership Board

- Selected as a part of the inaugural 10 member team across U.S. to launch and shape its future goals
- Part of the planning and execution team of Student Meet and Greet socializing event at the U.S. National Congress on Computational Mechanics (USNCCM) 2023 for increasing the outreach
- Initiated the Computational Mechanics Student Mentorship Program (CMSMP) to help students in the field get proper guidance regarding career and graduate journeys
- Actively reached out to various R1 and R2 universities, and successfully matched 42 mentee-mentor pairs, with more than 35% of them belonging to underrepresented minority groups
- \bullet Program experience was rated 5/5 by 7 out of 9 mentees who submitted the annual feedback form

Stanford Hindu Students Association

2019-2021

President/Financial Officer, Student Leadership Board

- Worked with the Office of Student Engagement and Office for Religious & Spiritual Life at Stanford to foster a sense of belonging to the Hindu community through spiritual events and celebrating festivals
- Organized events ensuring inclusivity to all students by even collaborating with other religious groups
- Led a team of 8 members in planning, collaborating with four other Stanford student groups, incentivizing, procuring funding and executing the virtual *Stanford Diwali 2020* celebrations during the pandemic
- Integral part of the 8-10 member organizing leaderships of the *Stanford Diwali 2019 & 2021* events, each attended by 1000+ people from the Stanford community
- Participated in the interfaith celebrations during the *Stanford Interfaith Harmony Week 2019*, aimed at exchanging traditions and working towards collaborative multifaith events

Academic Volunteering

- Peer-reviewer for Journal of the Mechanics and Physics of Solids and International Journal for Numerical Methods in Engineering
- Volunteered during the U.S. National Congress on Computational Mechanics (USNCCM) 2023
- Part of the organizing research lab of the Berkeley/Stanford Computational Mechanics Festival (CompFest) 2018 & 2022, and helped with the execution and technical support during the meet