MVA ENS Cachan Paris Saclay

Prediction for Individual Sequences Notes de Cours

Cours donné par Vianney Perchet Note prises par Adrien Lina

6 mars 2018

Lecture 3: Bandits contextuels 1

Rappels 1.1

Cadre : pour chaque $t \geq 1$,

— le joueur choisit $p_t \in \Delta_K = \{ p \in [0,1]^K : \sum p^{(k)} = 1 \}$

— on observe — son reward $X_t^{(k)}$ "bandit" — $X_t^{(1)},...,X_t^{(K)}$ "info complête" **But**: minimiser le regret $R_T^{(k)} = \sum_{t=1}^T X_t^{(k)} - \sum_{t=1}^T X_t^{(\pi_t)}$

On a vu jusqu'ici comment minimiser le pseudoregret $\max_k \mathbb{E}[R_T^{(k)}]$.

On va maintenant voir comment minimiser $\max_k R_T^{(k)}$.

1.2 EXP3.P

Définition 1.1 (EXP3.P). On choisit chaque bras avec une probabilité :

$$p_t^{(k)} = (1 - \gamma) \frac{e^{\eta \widehat{R_T^{(k)}}}}{\sum\limits_{j=1}^K e^{\eta \widehat{R_T^{(j)}}}} + \frac{\gamma}{K}$$

où

$$\widehat{R_T^{(k)}} = \sum_{s=1}^{t-1} \left(\widehat{X_s^{(k)}} - \widehat{X_s^{(\pi_s)}} \right)$$

$$\widehat{X_t^{(k)}} = X_t^{(j)} \mathbb{1}_{\{k=\pi_t\}} + \beta$$

Théorème 1.1. EXP3P vérifie :

$$R_T \leq T\sqrt{TK\log K} + \sqrt{\frac{TK}{\log K}}\log\left(\frac{1}{\delta}\right)$$

pour $\eta > 0$, $\gamma \in [0,1]$ et $\beta \in [0,1]$ choisis tels que

$$\eta(1+\beta)\frac{K}{\gamma} \le 1$$

Lemme 1.1. *pour* $\beta \in [0, 1]$,

$$\sum_{t=1}^{T} \widehat{X_{t}^{(k)}} > \sum_{t=1}^{T} X_{t}^{(k)} - \frac{\log(1/\delta)}{\beta}$$

Démonstration. On pose $q_t^{(k)} = \frac{e^{\eta R_T^{(k)}}}{\sum\limits_{i=1}^{K} e^{\eta R_T^{(i)}}}$.

D'après la preuve de EXP, on a

$$\max_{k} \sum_{t=1}^{T} \widehat{X_{t}^{(k)}} - \sum_{t=1}^{T} \mathbb{E}_{j \sim q_{t}} \left[\widehat{X_{t}^{(j)}} \right] \leq \frac{\log K}{\eta} + \eta \sum_{t=1}^{T} \mathbb{E}_{j \sim q_{t}} \left[\left(\widehat{X_{t}^{(j)}} \right)^{2} \right]$$
(1)

avec

$$\mathbb{E}_{j \sim q_t} \left[\widehat{X_t^{(j)}} \right] = \sum_{i=1}^K q_t^{(j)} \widehat{X_t^{(j)}}$$

On calcule:

$$\mathbb{E}_{j \sim q_t} \left[\widehat{X_t^{(j)}} \right] = \sum_{j=1}^K q_t^{(j)} \widehat{X_t^{(j)}}$$

$$\leq \frac{1}{1 - \gamma} \sum_{j=1}^K p_t^{(j)} \widehat{X_t^{(j)}}$$

 $\begin{array}{c} \operatorname{car}\, p_t^{(k)} = (1-\gamma)q_t^{(k)} + \frac{\gamma}{K} \text{ et donc } q_t^{(k)} \leq \frac{p_t^{(k)}}{1-\gamma}. \\ \operatorname{Donc} \end{array}$

$$\mathbb{E}_{j \sim q_t} \left[\widehat{X_t^{(j)}} \right] = \sum_{j=1}^K q_t^{(j)} \widehat{X_t^{(j)}}$$

$$\leq \frac{1}{1 - \gamma} \sum_{j=1}^K p_t^{(j)} \frac{X_t^{(j)} \mathbb{1}_{\{k = \pi_t\}} + \beta}{p_t^{(j)}}$$

$$\leq \frac{1}{1 - \gamma} (X_t^{\pi_t} + K\beta)$$

De même,

$$\mathbb{E}_{j \sim q_t} \left[\left(\widehat{X_t^{(j)}} \right)^2 \right] \leq \frac{1}{1 - \gamma} \sum_{k=1}^K p_t^{(k)} \left(\widehat{X_t^{(k)}} \right)^2$$
$$\leq \frac{1}{1 - \gamma} \sum_{k=1}^K \widehat{X_t^{(k)}} (1 + \beta)$$

$$\operatorname{car} p_t^{(k)} \widehat{X_t^{(k)}} = X_t^{(k)} \mathbb{1}_{\{k = \pi_t\}} + \beta \leq 1 + \beta$$
 Donc

$$\begin{split} \sum_{t=1}^T \mathbb{E}_{j \sim q_t} \left[\left(\widehat{X_t^{(j)}} \right)^2 \right] &\leq \frac{1+\beta}{1-\gamma} \sum_{t=1}^T \sum_{k=1}^K \widehat{X_t^{(k)}} \\ &\leq \frac{1+\beta}{1-\gamma} \sum_{k=1}^K \sum_{t=1}^T \widehat{X_t^{(k)}} \\ &\leq \frac{(1+\beta)K}{1-\gamma} \max_k \left(\sum_{t=1}^T \widehat{X_t^{(k)}} \right) \end{split}$$

En remplaçant dans (1):

$$\max_k \sum_{t=1}^T \widehat{X_t^{(k)}} - \frac{1}{1-\gamma} \left(\sum_{t=1}^T X_t^{\pi_t} + TK\beta \right) \leq \frac{\log K}{\eta} + \eta \frac{(1+\beta)K}{1-\gamma} \max_k \left(\sum_{t=1}^T \widehat{X_t^{(k)}} \right)$$

i e

$$(1 - \gamma) \max_{k} \left(\sum_{t=1}^{T} \widehat{X_{t}^{(k)}} \right) \leq \sum_{t=1}^{T} X_{t}^{(\pi_{k})} + TK\beta + \frac{1 - \gamma}{\eta} \log K + \underbrace{\eta(1 + \beta)K}_{\leq \gamma \text{ par hypothèse}} \max_{k} \sum_{t=1}^{T} \widehat{X_{t}^{(k)}}$$

Donc

$$(1 - 2\gamma) \max_{k} \left(\sum_{t=1}^{T} \widehat{X_t^{(k)}} \right) \le \sum_{t=1}^{T} X_t^{(\pi_k)} + TK\beta + \frac{1 - \gamma}{\eta} \log K$$

Or d'après le lemme

$$\mathbb{P}\left(\max_{k}\left(\sum_{t=1}^{T}\widehat{X_{t}^{(k)}}\right) \leq \max_{k}\left(\sum_{t=1}^{T}X_{t}^{(k)}\right) - \frac{\log\frac{K}{\delta}}{\beta}\right) = \mathbb{P}\left(\exists k : \sum_{t=1}^{T}\widehat{X_{t}^{(k)}} \leq \sum_{t=1}^{T}X_{t}^{(k)} - \frac{\log\frac{K}{\delta}}{\beta}\right)$$

$$\leq \sum_{k=1}^{K}\mathbb{P}\left(\sum_{t=1}^{T}\widehat{X_{t}^{(k)}} \leq \sum_{t=1}^{T}X_{t}^{(k)} - \frac{\log\frac{K}{\delta}}{\beta}\right)$$

$$\leq \sum_{k=1}^{K}\frac{\delta}{K}$$

$$\leq \delta$$

Donc avec proba au moins $1 - \delta$:

$$(1 - 2\gamma) \max_{k} \left(\sum_{t=1}^{T} \widehat{X_t^{(k)}} \right) \leq \sum_{t=1}^{T} X_t^{(\pi_k)} + TK\beta + \frac{\log K}{\eta}$$

En reorganisant :

$$\begin{split} R_t &= \max_k \sum_{t=1}^T X_t^{(k)} - \sum_{t=1}^T X_t^{(\pi_t)} \leq TK\beta + \frac{\log K}{\eta} + 2\gamma \underbrace{\max_k \left(\sum_{t=1}^T X_t^{(k)}\right)}_{\leq T} + \underbrace{(1-2\gamma)}_{\leq 1} \frac{\log \frac{K}{\delta}}{\beta} \\ &\leq TK\beta + \frac{\log \frac{K}{\delta}}{\beta} + \frac{\log K}{\eta} + 2\gamma T \end{split}$$

On choisit $\gamma = 2\eta K$ de sorte que $\eta(1+\beta)\frac{K}{\gamma} \leq 1$ pour $\beta \in [0,1]$:

$$R_T \le TK\beta + \frac{\log \frac{K}{\delta}}{\beta} + \frac{\log K}{\eta} + 4\eta KT$$

On choisit η tel que : $\frac{\log K}{\eta} = 4\eta KT$, donc $\eta = \frac{1}{2}\sqrt{\frac{\log K}{KT}}$ e On choisit β tel que $TK\beta = \frac{\log K}{\beta}$, donc $\beta = \sqrt{\frac{\log K}{KT}}$. En remplaçant dans la borne :

$$R_T \le \gamma \sqrt{TK \log K} + \sqrt{\frac{TK}{\log K}} \log \frac{1}{\delta}$$

Remarque 1.1. Les algos précédents EXP, EXP3 et EXP3.P dépendent de paramètres η , β et γ qui ont été optimisés en fonction de T.

Les résultats qu'on a vu ne sont donc valabes que pour un horizon T connu à l'avance.

Comment faire pour tout t?

Définition 1.2 (Doubling Trick). À chaque fois que t est une puissance de 2, on redémarre l'algorithme avec $\eta = \sqrt{\frac{\log K}{KT}}$ eb oubliant tout ce qui a été appris.

Théorème 1.2. Avec EXP3 et le doubling Trick, on obtient :

$$\max_{k} \mathbb{E}[R_T^{(k)}] \le 7\sqrt{TK \log K}$$

Remarque 1.2. On a juste perdu un facteur multiplicatif.

Démonstration. Si $2^M \le T < 2^{M+1}$, T inconnu.

Le pseudo-regret de EXP3 + Doubling Trick devient

$$\begin{aligned} \max_k \mathbb{E}[R_T^{(k)}] &= \max_k \mathbb{E}\left[\sum_{t=1}^T X_t^{(k)} - X_t^{(\pi_t)}\right] \\ &\leq \max_k \mathbb{E}\left[\sum_{m=0}^M \sum_{t=2^m}^{2^{m+1}} X_t^{(k)} - X_t^{(\pi_t)}\right] \\ &\leq \sum_{m=0}^M \max_k \mathbb{E}\left[\sum_{t=2^m}^{2^{m+1}} X_t^{(k)} - X_t^{(\pi_t)}\right] \\ &\leq \sum_{m=0}^M 2\sqrt{2^m K \log K} \\ &\leq 2(1+\sqrt{2})\sqrt{2^{M+1} K \log K} \\ &\leq 7\sqrt{TK \log K} \end{aligned}$$

Théorème 1.3. Le doubling trick fonctionne pour n'importe quel algorithme sequentiel en regret $\mathcal{O}(T^a)$ pour le transformer en un algo de $\mathcal{O}(T^a)$ pour tout T.

Remarque 1.3. En pratique, c'est très mauvais. On préfère utiliser des paramètres η_t où T est remplacé par t. Théoriquement, on peut prouver que cela fonctionne, mais c'est plus laborieux.

1.3 Optimalité des algos

On a vu des algos qui ont un regret

- en $\mathcal{O}(\sqrt{T \log K})$ en info complète;
- en $\mathcal{O}(\sqrt{TK\log K})$ en bandit;

Peut-on faire mieux?

Théorème 1.4. En info complète, pour tout algo $R_t \ge const \times \sqrt{T \log K}$. En bandit, pour tout algo $R_t \ge const \times \sqrt{TK}$.

Intuition. — Pour l'info complète :

Considérons un adversaire qui choisit $X_t^{(k)} \sim \text{Ber}(\frac{1}{2})$ iid.

$$\begin{split} \mathbb{E}[\sum_{t=1}^T X_t^{(k)}] &= \frac{T}{2} \\ \mathbb{E}[\max_k \sum_{t=1}^T X_t^{(k)}] &= \mathbb{E}[\max\{K \text{ marches al\'eatoires}\}] \\ &\simeq \frac{T}{2} + \sqrt{T \log K} \end{split}$$

— Pour le bandit :

L'adversaire ne choisit que des $\mathrm{Ber}(\frac{1}{2})$ sauf un bras k^* suivant $\mathrm{Ber}(\frac{1}{2}+\epsilon)$. Ainsi, pour différencier les bras, il faut tirer e^{-2} observations de chaque

En effet, d'après le théorème limite central, après T_i observations d'une variable aléatoire, on peut estimer son espérance avec une erreur de l'ordre de $\frac{1}{\sqrt{T_i}}$.

Un des bras est tiré moins de $\frac{T}{K}$ fois. Si c'est le bras k^* , on ne pourra se rendre compte que c'est le meilleur (normalement à partir de $\frac{T}{K} \leq \epsilon^{-2}$). On aura tiré les autres bras au moins $T - \frac{T}{K} = (1 - \frac{1}{K})T$ fois. On a donc un regret pour $\epsilon = \sqrt{\frac{T}{K}}$ de $(1 - \frac{1}{K})T\epsilon \approx (1 - \frac{1}{K})\sqrt{TK}$.

1.4 Online learning with expertise

On a plusieurs algorithmes / experts qui nous proposent des avis à chaque temps t. On veut se rapprocher de la performance du meilleur expert.

Définition 1.3 (Online learning with expertise).

Cadre: à chaque temps t,

- N expertes proposent des prévisions $\xi_t^{(i)} \in \mathcal{A}$ pour i = 1, ..., N;
- On fait notre prévision $\pi_t \in A$ et l'adversaire choisit une fonction de gain $g_t: \mathcal{A} \to [0,1]$;
- Le joueur observe
 - g_t en info complète; $g_t(\pi_t)$ en bandit.

But : minimiser le regret par rapport au experts :

$$R_T = \max_{k} \sum_{t=1}^{T} g_t(\xi_t^{(k)}) - g_t(\pi_t)$$

Remarque 1.4. Si $\mathcal{A} = \{1, ..., N\}$ et $\xi_t^{(i)} = i$ et $g_t(i) = X_t^{(i)}$, on retrouve le cardre de bandit traditionnel. Cependant, ce cadre est plus riche : on peut par exemple considérer des ensemble \mathcal{A} continus.

Remarque 1.5. en appliquant les algos précédants en considérant es experts come des bras avec $X_t^{(k)} = g_t(\xi_t^{(k)})$, les algos précédants sont valables ici. — En info complète, $R_T \leq \sqrt{T \log N}$.

- En bandit, $\hat{R}_T \leq \sqrt{TN \log N}$.

Le but est d'avoir de meilleurs résultats ici.

1.4.1 Info complète avec gains exp-concaves

L'idée est la suivante : on a une suite $y_1,...,y_T$ choisit par un adversaire à prévoir, $y_i \in \mathcal{Y} = \mathbb{R}^d$. À chaque temps t, chaque expert essaye de prévoir y_t avec $\xi_t^{(i)} \in \mathbb{R}^d$ et l'adversaire révèle les gains $g_t(\xi) = g(\xi, y_t)$ qui augmente quand ξ et y_t sont proches.

Exemple 1.1. On peut avoir $g_t(\xi, y_t) = -||\xi - y_t||^2$.

Définition 1.4 (Exp-concavité). g est η -exp-concave $si \ \forall y \in \mathcal{Y}, \xi \mapsto e^{\eta g(\xi,y)}$ est concave.

Remarque 1.6. L'exp-concavité est plus forte que la concavité en le premier argument.

Exemple 1.2. Quelques expamples de fonctions exp-concaves :

 $-g: (\xi, y) \in [0, 1]^2 \mapsto -(\xi - y)^2 \text{ est } (\frac{1}{2}) \text{-exp-concave.}$ En effet, en notant $G_y: \xi \mapsto g(\xi, y)$, et en prennant $y \in [0, 1]$, on a :

$$G_{y}''(\xi) = (4\eta^{2}(\xi - y)^{2} - 2\eta)e^{-\eta(\xi - y)^{2}}$$

Donc

$$G_y''(\xi) \le 0 \Leftrightarrow 4\eta^2 (\xi - y)^2 - 2\eta \le 0$$

$$\Leftarrow 2\eta \underbrace{(\xi - y)^2}_{\le 1} \le 1$$

$$\Leftarrow \eta \le \frac{1}{2}$$

- De même, $g:(\xi,y)\in[0,1]^{d\times d}\mapsto -||\xi-y||^2$ est $(\frac{1}{2})$ -exp-concave.
- Le gain induit par l'entropie relative est 1-exp-concave :

$$g: (\xi, y) \in [0, 1]^2 \mapsto -y \log \left(\frac{y}{\xi}\right) - (1 - y) \log \left(\frac{1 - y}{1 - \xi}\right)$$

Quelques exemples de fonction qui ne sont pas η -exp-concave pour $\eta > 0$:

- $\begin{array}{ll} & g: (\xi,y) \mapsto -|\xi-y| \\ & g: (\xi,y) \mapsto \langle \xi,y \rangle \end{array}$

Définition 1.5 (EXP). On assigne le poids

$$P_t^{(k)} = \frac{e^{\eta R_{t-1}^{(i)}}}{\sum_{j=1}^{K} e^{\eta R_{t-1}^{(j)}}}$$

à chacun des experts i = 1, ..., N et on choisit

$$\pi_t = \mathbb{E}_{j \sim p_t}[\xi_t^{(j)}] = \sum_{j=1}^N p_t^{(j)} \xi_t^{(j)}$$

où

$$R_t^{(i)} = \sum_{s=1}^{t-1} g_s(\xi_s^{(i)}) - g_s(\pi_s)$$

Théorème 1.5. Si

- $-\mathcal{A}$ est convexe;
- $-g_t(\xi) = g(\xi, y_t);$

-g est η-exp-convexe, η > 0. Alors EXP utilisé avec le paramètre a un regret $R_T \leq \frac{\log N}{\eta}$.

$$\emph{D\'{e}monstration}.$$
 (C'est presque la même que celle de EXP) On note $W_t^{(i)} = e^{\eta \sum\limits_{s=1}^{t-1} g_s(\xi_s^{(i)})}$ et $W_t = \sum_{i=1}^{N} W_t^{(i)}.$ On majore et on minore W_t :

$$W_{t} = \sum_{i=1}^{N} W_{t}^{(i)}$$

$$= \sum_{i=1}^{N} W_{t-1}^{(i)} e^{\eta g_{t}(\xi_{t}^{(i)})}$$

$$= W_{t-1} \sum_{i=1}^{N} \underbrace{\frac{W_{t-1}^{(i)}}{W_{t-1}}}_{p_{t}^{(i)}} e^{\eta g_{t}(\xi_{t}^{(i)})}$$

$$= W_{t-1} \sum_{i=1}^{N} p_{t}^{(i)} e^{\eta g_{t}(\xi_{t}^{(i)})}$$

$$\leq W_{t-1} \exp\left(\eta g\left(\sum_{i=1}^{N} p_{t}^{(i)} \xi_{t}^{(i)}, y_{t}\right)\right)$$

$$= W_{t-1} \exp(\eta g_{t}(\pi_{t}))$$

Par induction, et comme $W_0 = N$, on a : $W_t \leq N \exp\left(\eta \sum_{t=1}^{T} g_t(\pi_t)\right)$ On minore W_t :

$$W_t = \sum_{t=1}^{T} W_t^{(i)} \ge \max_i e^{\eta \sum_{t=1}^{T} g_t(\xi_t^{(i)})} = e^{\eta \max_i \sum_{t=1}^{T} g_t(\xi_t^{(i)})}$$

En combinant et en prenant le log, on a : $R_t = \max_i \sum_{t=1}^T g_t(\xi_t^{(i)}) - g_t(\pi_t) \le$

Bandit avec experts

Les experts $\xi_t^{(i)} \in \{1,...,K\}$ pour i=1,...,N et les gains $g_t(\xi) = X_t^{(i)}$. Appliquer maintenant EXP3 sur les experts donne un regret en $\sqrt{TN\log N}$. On peut faire mieux si N > K car on n'utilise pas le fait que quand on choisit le bras $\pi_t \in \{1,...,K\}$ on observe la performace de tous les experts tels qu

 $\xi_t^{(i)} = \pi_t.$

Définition 1.6 (EXP4). A l'instant t:

- Observer les avis d'experts $\xi_t^{(i)} \in \{1, ..., K\}$ Choisir l'action $\pi_t = \xi_t^{(i)}$ avec proba $q_t^{(i)}$ Observer le gain $X_t^{(\pi_t)}$
- Estimer le gain de chacun des bras : $\widehat{X_t^{(k)}} = \frac{X_t^{(k)}-1}{p_t^{(k)}} \mathbb{1}_{\{k=\pi_t\}}$
- Mettre à jour les proba des experts

$$\widehat{R_{t-1}} = \sum_{s-1}^{t-1} \widehat{X_t^{(k)}} - \widehat{X_t^{(\pi_s)}}$$

Théorème 1.6. Le pseudoregret par rapport au meilleur expert

$$R_t = \max_i \mathbb{E}[]$$