Effectivess comparison report

Raphael Rodrigues Campos January 17, 2016

Eu implementei o BROOF usando Extremely Randomized Trees no lugar da RF, gerando o algoritmo que chamei de BERT (Boosted Extremely Randomized Trees).

A própria ERT se sai melhor em alguns datasets do que a RF. Portanto, era de se esperar que a BERT se saísse um pouco melhor que o BROOF, como pode-se verificar no arquivo anexo.

O arquivo anexo possui uma tabela comparando todos os métodos rodados até agora.

Além da implementação do BERT, eu também implementei método de ensemble "Stacked Generalization" descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992.

O método comb1 na tabela é o stacking de 2 níveis para combinação dos métodos LazyNN_RF e BROOF. No nível do zero do stacking foram utilizados os classificadores LazyNN_RF e BROOF para gerar o conjunto de treino do nível 1. No nível 1 foi utilizado uma RF com 200 árvores.

Os resultados apresentados são promissores. Sobretudo quando se trata de métrica microf1, onde tivemos mais ganhos significativos.

Resultados

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Mon Mar 21 09:58:22 2016 Legenda para os métodos:

- BERT: Boosted Extremely Randomized Trees
- LXT: Lazy Extremely Randomized Trees
- RF: Random Forest com 200 árvores
- RF1000: Random Forest com 1000 árvores
- XT: Extremely Randomized Trees com 200 árvores
- XT1000: Extremely Randomized Trees com 1000 árvores
- COMB1: Stacking (Lazy + BROOF)
- COMB2: Stacking (LXT + BERT)
- COMB3: Stacking (Lazy + BROOF + LXT + BERT)
- COMBSOTA: Stacking (KNN + RF + SVM + NB)

V1	V2	20NG	4UNI	ACM	REUTERS90
BERT	microF1	89.13 ± 0.41	84.53 ± 0.9	74.66 ± 0.63	67.23 ± 0.86
	macroF1	88.8 ± 0.52	72.64 ± 1.96	61.83 ± 0.98	29.27 ± 2.26
BROOF	microF1	87.56 ± 0.23	84.42 ± 0.7	73.25 ± 0.69	66.48 ± 0.9
	macroF1	87.06 ± 0.18	73.64 ± 0.95	60.01 ± 0.94	28.76 ± 2.65
COMB1	microF1	89.74 ± 0.57	$\textbf{86.4}\pm\textbf{0.91}$	77.05 ± 0.64	77.99 ± 1.33
	macroF1	89.46 ± 0.61	$\textbf{78.08}\pm\textbf{1.8}$	62.8 ± 0.88	34.12 ± 3.7
COMB2	microF1	90.57 ± 0.48	$\textbf{86.35}\pm\textbf{1.03}$	$\textbf{78.03}\pm\textbf{0.9}$	79.84 ± 1.27
	macroF1	90.35 ± 0.46	$\textbf{77.8}\pm\textbf{1.92}$	64.13 ± 1.31	$\textbf{35.42}\pm\textbf{2.2}$
COMB3	microF1	$\boxed{90.71\pm0.39}$	$\textbf{86.44}\pm\textbf{1.17}$	$\textbf{77.86}\pm\textbf{0.98}$	79.98 ± 1.25
	macroF1	90.49 ± 0.36	$\textbf{78.23}\pm\textbf{1.9}$	63.55 ± 1.09	$\textbf{36.25}\pm\textbf{3.56}$
COMB4	microF1	$\boxed{91.26\pm0.46}$	86.78 ± 1	79.09 ± 0.75	81.94 ± 1.12
	macroF1	91.05 ± 0.45	$\textbf{79.25}\pm\textbf{1.83}$	$\textbf{67.05}\pm\textbf{1.44}$	$\textbf{41.08}\pm\textbf{2.74}$
COMBSOTA	microF1	$\overline{91.35\pm0.37}$	85.76 ± 0.63	$\textbf{79}\pm\textbf{1.02}$	77.47 ± 0.95
	macroF1	91.18 ± 0.37	$\textbf{77.3}\pm\textbf{1.12}$	67.15 ± 0.47	33.62 ± 2.09
KNN	microF1	87.41 ± 0.7	75.02 ± 1.39	70.41 ± 0.81	69.04 ± 0.96
	macroF1	87.11 ± 0.68	60.08 ± 1.12	59.72 ± 0.96	$\textbf{35.35}\pm\textbf{1.43}$
LAZY	microF1	88.22 ± 0.29	82.04 ± 0.83	73.41 ± 0.79	65.72 ± 1.06
	macroF1	87.75 ± 0.35	67.77 ± 1.2	61.56 ± 1.69	26.85 ± 2.92
LXT	microF1	88.49 ± 0.43	82.15 ± 0.81	71.71 ± 0.69	65.82 ± 1.25
	macroF1	88.19 ± 0.39	68.1 ± 1.72	60.32 ± 0.55	28.73 ± 2.95
NB	microF1	88.99 ± 0.54	59.76 ± 1.75	71.79 ± 1.01	64.86 ± 1.59
	macroF1	88.68 ± 0.55	53.96 ± 1.28	57.59 ± 0.51	26.76 ± 1.54
RF1000	microF1	86.49 ± 0.46	81.37 ± 0.85	71.41 ± 0.53	63.88 ± 0.96
	macroF1	85.93 ± 0.49	66.7 ± 1.52	56.78 ± 0.49	24.8 ± 2.29
RF	microF1	84.03 ± 0.39	81.25 ± 1.13	71.06 ± 0.48	63.83 ± 1.13
	macroF1	83.55 ± 0.38	66.9 ± 1.9	56.37 ± 0.58	24.51 ± 1.91
SVM	microF1	$\boxed{90.77\pm0.49}$	83.36 ± 0.93	76.05 ± 0.61	68.08 ± 1.06
	macroF1	90.53 ± 0.48	71.89 ± 2.54	$\textbf{65.69}\pm\textbf{1.14}$	33.02 ± 2.57
SVMTF	microF1	86.41 ± 0.51	79.13 ± 1.34	74.06 ± 0.51	66.58 ± 1.1
	macroF1	86.14 ± 0.52	70.27 ± 2.31	62.63 ± 0.82	31.6 ± 2.53
XT1000	microF1	88.71 ± 0.52	82.61 ± 1	73.53 ± 0.69	64.87 ± 0.95
	macroF1	88.32 ± 0.64	66.55 ± 2.02	59.11 ± 0.83	25.45 ± 2.6
XT	microF1	86.83 ± 0.49	82.49 ± 1.07	73.15 ± 0.68	64.89 ± 1.01
	macroF1	86.49 ± 0.51	66.76 ± 2.12	58.93 ± 0.91	25.36 ± 2.81

Table 1: Comparação entre todos os métodos