Desingularization of branch points of minimal surfaces in $\mathbb{R}^4(II)$

Marina Ville

Abstract

We desingularize a branch point p of a minimal disk $F_0(\mathbb{D})$ in \mathbb{R}^4 through immersions F_t 's which have only transverse double points and are branched covers of the plane tangent to $F_0(\mathbb{D})$ at p. If F_0 is a topological embedding and thus defines a knot in a sphere/cylinder around the branch point, the data of the double points of the F_t 's give us a braid representation of this knot as a product of bands.

1 Introduction

1.1 The purpose

Minimal surfaces in \mathbb{R}^4 are immersed except at branch points, near which the surface is a N-branched covering of the tangent plane at the branch point (for some N > 1). In [Vi 2] we looked at a minimal map $F_0 : \mathbb{D} \longrightarrow \mathbb{R}^4$ with a branch point at the origin and we described how to desingularize F_0 through minimal immersions F_t 's with only transverse double points. However, unlike F_0 these F_t 's were not branched coverings of the disk. We discuss here a desingularization through immersions which are not necessary minimal but which remain N-branched coverings of the disk.

If F_0 is a topological embedding, we recall that the intersection of $F_0(\mathbb{D})$ with a small sphere (equivalently a small cylinder) centered at the branch point defines a knot which has a representation as a N-braid (cf. [S-V] mimicking the construction of [Mi]). In that case, we will use a construction of Rudolph to show how the double points of the immersions F_t 's appear in a

band representation of this braid (i.e. an expression of the braid as a product of conjugates of braid generators and of their inverses).

1.2 The setting

We consider a branched immersion

$$F_0: \mathbb{D} \longrightarrow \mathbb{R}^4 \cong \mathbb{C}^2 \times \mathbb{C}^2$$

$$F_0: z \mapsto (z^N + h_1(z), h_2(z)) \tag{1}$$

where, for $i = 1, 2, h_i : \mathbb{D} \longrightarrow \mathbb{C}$ is a function with $|h_i(z)| = o(|z|^N)$. It is standard (cf. for example [G-O-R]) to introduce a function $w : \mathbb{D} \longrightarrow \mathbb{D}$ such that

$$w(z)^{N} = z^{N} + h_{1}(z) (2)$$

and which verifies

$$w = z + o(|z|)$$
 $z = w + o(|w|)$ (3)

Possibly after restricting ourselves to a smaller disk centered at 0, we reparametrize \mathbb{D} with w so we can rewrite F in terms of w as

$$F_0: w \mapsto (w^N, h(w)) \tag{4}$$

where $h(w) = o(|w|^N)$.

Remark 1. Throughout this paper, we only use the fact that F_0 is a real analytic branched immersion, not that it is minimal. We could probably also do without the real analytic assumption.

1.3 The construction

For λ, μ small complex numbers, we will be considering the immersions

$$F_{\lambda,\mu}: w \mapsto (w^N, h(w) + \lambda w + \mu \bar{w}) \tag{5}$$

possibly adding a small correction term if necessary:

$$F_{\lambda,\mu,\gamma}: w \mapsto (w^N, h(w) + \lambda w + \mu \bar{w} + Re(\gamma w^2))$$
 (6)

where γ is very small compared to λ and μ and is only introduced to give more wiggle room for transversality arguments.

Remark 2. We used immersions similar to (5) in [Vi 1] where we established a connection between the algebraic crossing number of the braid and the normal bundle of the branched disk in an ambient 4-manifold.

The paper is devoted to proving the following:

Theorem 1. For λ , μ generic and small enough, $F_{\lambda,\mu}$ has a finite number of crossing points $m_1, ..., m_n$, all transverse.

Assume that F_0 is a topological embedding and let K be the knot defined by the branch point. If $\frac{\mu}{\lambda}$ is small enough (resp. large enough), the knot K is represented by a N-braid β which is the product of the following pieces:

1.

$$\prod_{2k, \ 2 \le 2k \le N-1} \sigma_{2k}$$
(resp.
$$\prod_{2k, \ 2 < 2k \le N-1} \sigma_{2k}^{-1}$$
)

2.

$$\prod_{2k+1, 1 \le 2k+1 \le N-1} \sigma_{2k+1}$$
(resp.
$$\prod_{2k+1, 1 \le 2k+1 \le N-1} \sigma_{2k+1}^{-1}$$
)

3. for every double point $m_1, ..., m_n$ of $F_{\lambda,\mu}$, one copy of

$$b(m_i)\sigma_{k(m_i)}^{2\epsilon(m_i)}b(m_i)^{-1} \tag{7}$$

where

- $\epsilon(m_i)$ is the sign of the intersection point m_i
- $k(m_i) \in \{1, ..., N-1\}$
- $b(m_i)$ is some element of the braid group B_N .

1.4 Trivial knots

It follows from the expression of the braid that, if $F_{\lambda,\mu}$ is an embedding for $\frac{\lambda}{\mu}$ large enough or small enough, the knot K is trivial. There exist branched minimal disks with corresponding knots which are non trivial but have 4-genus 0, for example 10_{155} (cf. [S-V]). For such a knot, the signed number of double points of the $F_{\lambda,\mu}$ (for $\frac{\lambda}{\mu}$ large enough or small enough) is zero but $F_{\lambda,\mu}$ has necessarily double points.

1.5 Sketch of the paper

We will first establish some properties of the $F_{\lambda,\mu}$'s, for generic λ , μ 's; then we will construct a closed loop Γ in the plane Π_2 generated by the first two coordinates. The braid β considered in Th. 1 will be defined as

$$\beta = \pi_2^{-1}(\Gamma) \cap F_{\lambda,\mu}(\mathbb{D}) \tag{8}$$

for λ, μ small enough and where

$$\pi_2: \mathbb{R}^4 \longrightarrow \Pi_2$$
(9)

is the orthogonal projection.

2 The family of immersions

Lemma 1. For generic λ , μ 's, the following is true: if $w_1, w_2 \in \mathbb{D}$ verify $w_1 \neq w_2$ and $F_{\lambda,\mu}(w_1) = F_{\lambda,\mu}(w_2)$, then the two tangent planes $dF_{\lambda,\mu}(w_1)(\mathbb{R}^2)$ and $dF_{\lambda,\mu}(w_2)(\mathbb{R}^2)$ are transverse.

Remark 3. Lemma 1 does not exclude the possibility of triple points (i.e. three disks meeting at a point, every two of them transversally): we will see that later.

Proof. The proof is based on the Transversality Lemma. We introduce

$$\Phi: \mathbb{C} \times \mathbb{C} \times \mathbb{D} \times \mathbb{D} \longrightarrow \mathbb{R}^4 \oplus \mathbb{R}^4$$

$$\Phi(\lambda, \mu, w_1, w_2) = (F_{\lambda, \mu}(w_1), F_{\lambda, \mu}(w_2))$$
(10)

and we check that it is transverse to the diagonal Δ_8 of $\mathbb{R}^4 \oplus \mathbb{R}^4$ for $w_1 \neq w_2$. We derive from the basis (e_1, e_2, e_3, e_4) of \mathbb{R}^4 (in which (4) is written) a basis

$$(e_1^{(1)},...,e_4^{(1)},e_1^{(2)},...,e_4^{(2)})$$

of $\mathbb{R}^4 \oplus \mathbb{R}^4$; thus the diagonal Δ_8 is generated by $(e_1^{(1)} + e_1^{(2)}, ..., e_4^{(1)} + e_4^{(2)})$. A point in the preimage of Δ_8 via Φ is of the form (λ, μ, w_1, w_2) , where $w_2 = \nu w_1$ for a complex number ν verifying

$$\nu^N = 1.$$

We introduce real coordinates by setting

$$\lambda = \lambda_1 + \lambda_2$$
 $w_1 = x_1 + iy_1$ $w_2 = x_2 + iy_2$ (11)

and we compute the following determinant at points $w_1, w_2 = \nu w_1$; the subscripts denote the components in the basis (e_1, e_2, e_3, e_4) :

$$det(\frac{\partial\Phi}{\partial x_1}, \frac{\partial\Phi}{\partial x_2}, \frac{\partial\Phi}{\partial \lambda_1}, \frac{\partial\Phi}{\partial \lambda_2}, e_1^{(1)} + e_1^{(2)}, e_2^{(1)} + e_2^{(2)}, e_3^{(1)} + e_3^{(2)}, e_4^{(1)} + e_4^{(2)}) =$$

$$\begin{vmatrix} (\frac{\partial F}{\partial x_1})_1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ (\frac{\partial F}{\partial x_1})_2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ (\frac{\partial F}{\partial x_1})_3 & 0 & x_1 & -y_1 & 0 & 0 & 1 & 0 \\ (\frac{\partial F}{\partial x_1})_4 & 0 & y_1 & x_1 & 0 & 0 & 0 & 1 \\ 0 & (\frac{\partial F}{\partial x_2})_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & (\frac{\partial F}{\partial x_2})_2 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & (\frac{\partial F}{\partial x_2})_3 & x_2 & -y_2 & 0 & 0 & 1 & 0 \\ 0 & (\frac{\partial F}{\partial x_2})_4 & y_2 & x_2 & 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} (\frac{\partial F}{\partial x_1})_1 & -(\frac{\partial F}{\partial x_2})_1 & 0 & 0 & 0 \\ (\frac{\partial F}{\partial x_1})_1 & -(\frac{\partial F}{\partial x_2})_1 & 0 & 0 & 0 \\ (\frac{\partial F}{\partial x_1})_2 & -(\frac{\partial F}{\partial x_2})_2 & 0 & 0 & 0 \\ (\frac{\partial F}{\partial x_1})_3 & -(\frac{\partial F}{\partial x_2})_3 & x_1 - x_2 & y_2 - y_1 \\ (\frac{\partial F}{\partial x_1})_4 & -(\frac{\partial F}{\partial x_2})_4 & y_1 - y_2 & x_1 - x_2 \end{vmatrix}$$

$$= [(x_1 - x_2)^2 + (y_1 - y_2)^2][-(\frac{\partial F}{\partial x_1})_1(\frac{\partial F}{\partial x_2})_2 + (\frac{\partial F}{\partial x_2})_1(\frac{\partial F}{\partial x_1})_2]$$
$$= |1 - \nu|^2 N^2 |w|^{2N} Im(\nu). \tag{12}$$

Similarly we show

$$det(\frac{\partial\Phi}{\partial x_1}, \frac{\partial\Phi}{\partial y_2}, \frac{\partial\Phi}{\partial \lambda_1}, \frac{\partial\Phi}{\partial \lambda_2}, e_1^{(1)} + e_1^{(2)}, e_2^{(1)} + e_2^{(2)}, e_3^{(1)} + e_3^{(2)}, e_4^{(1)} + e_4^{(2)}) =$$

$$= -|1 - \nu|^2 N^2 |w|^{2N} Re(\nu)$$
(13)

Lemma 1 follows from (12) and (13).

We denote by Π_3 the 3-plane Π_3 generated by the first 3 coordinates; we let

$$\pi_3: \mathbb{R}^4 \longrightarrow \Pi_3 \tag{14}$$

be the orthogonal projection and we show a lemma similar to Lemma 1 for $\pi_3 \circ F_{\lambda,\mu}$:

Lemma 2. For generic λ, μ , the following is true:

if $w_1, w_2 \in \mathbb{D}$ verify $w_1 \neq w_2$ and $(\pi_3 \circ F_{\lambda,\mu})(w_1) = (\pi_3 \circ F_{\lambda,\mu})(w_2)$, then the two tangent planes $\pi_3(dF_{\lambda,\mu}(w_1)(\mathbb{R}^2))$ and $\pi_3(dF_{\lambda,\mu}(w_2)(\mathbb{R}^2))$ are transverse.

Proof. Similarly to above, we introduce the map

$$\Psi: \mathbb{C} \times \mathbb{C} \times \mathbb{D} \times \mathbb{D} \longrightarrow \mathbb{R}^3 \oplus \mathbb{R}^3$$

$$\Psi: (\lambda, \mu, w_1, w_2) \mapsto \left((\pi_3 \circ F_{\lambda, \mu})(w_1), (\pi_3 \circ F_{\lambda, \mu})(w_2) \right)$$
(15)

By truncating the determinants appearing in the proof of Lemma 1, we get

$$det(\frac{\partial \Psi}{\partial x_1}, \frac{\partial \Psi}{\partial x_2}, \frac{\partial \Psi}{\partial \lambda_1}, e_1^{(1)} + e_1^{(2)}, e_2^{(1)} + e_2^{(2)}, e_3^{(1)} + e_3^{(2)}) = (x_1 - x_2)N^2 |w|^{2N-2}$$

$$det(\frac{\partial \Psi}{\partial x_1}, \frac{\partial \Psi}{\partial x_2}, \frac{\partial \Psi}{\partial \lambda_2}, e_1^{(1)} + e_1^{(2)}, e_2^{(1)} + e_2^{(2)}, e_3^{(1)} + e_3^{(2)}) = -(y_1 - y_2)N^2|w|^{2N-2}$$

Hence Ψ is transverse to the diagonal Δ_6 of $\mathbb{R}^3 \oplus \mathbb{R}^3$ and Lemma 2 follows. \square

Next we show that $\pi_3 \circ F_{\lambda,\mu}$ has only a finite number of triple points:

Lemma 3. Let

$$\nu = e^{\frac{2\pi}{N}i} \tag{16}$$

and let k, l be two different integers in $\{1, ..., N-1\}$. For generic λ, μ , there is a finite number of points $w \in \mathbb{D}$ such that

$$Re(\lambda w + \mu \bar{w} + h(w)) = Re(\lambda \nu^k w + \mu \bar{\nu}^k \bar{w} + h(\nu^k w)) = Re(\lambda \nu^l w + \mu \bar{\nu}^l \bar{w} + h(\nu^l w))$$
(17)

Proof. We let

$$\psi: \mathbb{C} \times \mathbb{D} \longrightarrow \mathbb{R}^2$$

$$\psi(\lambda, w) = \left(Re \left[\lambda (1 - \nu^k) w + \mu (1 - \bar{\nu}^k) \bar{w} + h(w) - h(\nu^k w) \right],$$

$$Re \left[\lambda (1 - \nu^l) w + \mu (1 - \bar{\nu}^l) \bar{w} + h(w) - h(\nu^l w) \right] \right).$$

We define

$$(1 - \nu^k)w = w_1^{(k)} + iw_2^{(k)} \qquad (1 - \nu^l)w = w_1^{(l)} + iw_2^{(l)} \tag{18}$$

and compute

$$det(\frac{\partial \psi}{\partial \lambda_1}, \frac{\partial \psi}{\partial \lambda_2}) = \begin{vmatrix} w_1^{(k)} & -w_2^{(k)} \\ w_1^{(l)} & -w_2^{(l)} \end{vmatrix} = Im[(1 - \nu^k)w(1 - \bar{\nu}^l)\bar{w}]$$

$$= |w|^2 \left[\sin(\frac{2\pi}{N}l) - \sin(\frac{2\pi}{N}k) + \sin\left(2\frac{\pi}{N}(k-l)\right) \right]$$

$$= 4|w|^2 \sin(\frac{\pi}{N}l)\sin(\frac{\pi}{N}k)\sin\left(\frac{\pi}{N}(k-l)\right)$$
(19)

which is not zero. We use the Transversality Lemma again and conclude that for a generic λ , $\psi(\lambda, .)$ is transverse to (0, 0), that is, (0, 0) is attained at a finite number of points.

NOTATIONS. We remind the reader that π_2 is the projection onto the plane Π_2 generated by the first two coordinates.

We denote by $W_{\lambda,\mu}$ the set of w's in $\mathbb{D}\setminus\{0\}$ which verify (17) for some k,l and we let

$$X_{\lambda,\mu} = (\pi_2 \circ F_{\lambda,\mu})(W_{\lambda,\mu}) \tag{20}$$

If $D_{\lambda,\mu} \in \mathbb{R}^4$ is the set of double points of $F_{\lambda,\mu}$, we let

$$\mathcal{D}_{\lambda,\mu} = \pi_2(D_{\lambda,\mu}) \tag{21}$$

In the following lemma, we use $F_{\lambda,\mu,\gamma}$ defined in (6); nevertheless we keep the notation $\mathcal{D}_{\lambda,\mu}$ and $X_{\lambda,\mu}$ in order not to burden the notations.

Lemma 4. For generic λ 's, μ 's, γ

$$\mathcal{D}_{\lambda,\mu} \cap X_{\lambda,\mu} = \emptyset$$

In particular $F_{\lambda,\mu}$ does not have triple points (cf. Remark 3).

Proof. We pick a very small positive number η (how small it need to be will be clear from the proof below) and given a 7-uple $A = (a, b, c, d, e, \alpha, \beta) \in \mathbb{R}^7$, we define

$$H(A, w) = aRe(w) + bIm(w) + \alpha Re(w^2) + \beta Re(e^{i\eta}w^2) + i[dRe(w) + eIm(w)]$$
(22)

and we define

$$F(A, w) = F(w) + (0, H(A, w)) = (w^{N}, H(A, w) + h(w))$$
(23)

We let j,k,l be three different integers in $\{1,...,N-1\}$ and we define

$$S(A, w) = \left(Re\left(H(A, w) - H(A, e^{\frac{2j\pi}{N}i}w) \right) + Re\left(h(w) - h(e^{\frac{2j\pi}{N}i}w) \right)$$

$$Im\left(H(A, w) - H(A, e^{\frac{2j\pi}{N}i}w) \right) + Im\left(h(w) - h(e^{\frac{2j\pi}{N}i}w) \right),$$

$$Re\left(H(A, e^{\frac{2k\pi}{N}i}w) - H(A, e^{\frac{2l\pi}{N}i}w) \right) + Re\left(h(e^{\frac{2k\pi}{N}i}w) - h(e^{\frac{2l\pi}{N}i}w) \right)$$

We show

Sublemma 1. The map S is transverse to (0,0,0); thus, for a generic A, (0,0,0) is not attained by S(A,.).

Proof. We set $w = re^{i\theta}$ and we compute

$$det(\frac{\partial S}{\partial a}, \frac{\partial S}{\partial b}, \frac{\partial S}{\partial d}) = r^3 \Big(\cos\theta - \cos(\theta + \frac{2j\pi}{N})\Big) \Delta = -2\sin(\frac{j\pi}{N})\sin(\theta + \frac{j\pi}{N})r^3 \Delta$$
$$det(\frac{\partial S}{\partial a}, \frac{\partial S}{\partial b}, \frac{\partial S}{\partial e}) = r^3 \Big(\sin\theta - \sin(\theta + \frac{2j\pi}{N})\Big) \Delta = -2\sin(\frac{j\pi}{N})\cos(\theta + \frac{j\pi}{N})r^3 \Delta$$
where

$$\Delta = \begin{vmatrix} \cos \theta - \cos(\theta + \frac{2j\pi}{N}) & \sin \theta - \sin(\theta + \frac{2j\pi}{N}) \\ \cos(\theta + \frac{2k\pi}{N}) - \cos(\theta + \frac{2l\pi}{N}) & \sin(\theta + \frac{2k\pi}{N}) - \sin(\theta + \frac{2l\pi}{N}) \end{vmatrix}$$

$$= \begin{vmatrix} 2\sin(\theta + \frac{j\pi}{N})\sin(\frac{j\pi}{N}) & 2\cos(\theta + \frac{j\pi}{N})\sin(\frac{j\pi}{N}) \\ -2\sin(\theta + \frac{(k+l)\pi}{N})\sin(\frac{(k-l)\pi}{N}) & 2\cos(\theta + \frac{(k+l)\pi}{N})\sin(\frac{(k-l)\pi}{N}) \end{vmatrix}$$

$$= 4\sin(\frac{\pi}{N}j)\sin(\frac{\pi}{N}(k-l))\sin(\frac{\pi}{N}(j-k-l))$$
(24)

If (24) is zero, then

$$j = k + l \tag{25}$$

We now assume (25) and we compute

$$det(\frac{\partial S}{\partial a}, \frac{\partial S}{\partial \alpha}, \frac{\partial S}{\partial d}) = r^4 \Big(\cos\theta - \cos(\theta + \frac{2j\pi}{N})\Big) \tilde{\Delta} = -2\sin(\frac{j\pi}{N})\sin(\theta + \frac{j\pi}{N})r^4 \tilde{\Delta}$$
$$det(\frac{\partial S}{\partial a}, \frac{\partial S}{\partial \alpha}, \frac{\partial S}{\partial e}) = r^4 \Big(\sin\theta - \sin(\theta + \frac{2j\pi}{N})\Big) \tilde{\Delta} = -2\sin(\frac{j\pi}{N})\cos(\theta + \frac{j\pi}{N})r^4 \tilde{\Delta}$$
where

$$\tilde{\Delta} = \begin{vmatrix}
\cos \theta - \cos(\theta + \frac{2j\pi}{N}) & \cos(2\theta) - \cos(2\theta + \frac{4j\pi}{N}) \\
\cos(\theta + \frac{2k\pi}{N}) - \cos(\theta + \frac{2l\pi}{N}) & \cos(2\theta + \frac{4k\pi}{N}) - \cos(2\theta + \frac{4l\pi}{N})
\end{vmatrix}$$

$$= \begin{vmatrix}
2\sin(\theta + \frac{j\pi}{N})\sin(\frac{j\pi}{N}) & 2\sin(2\theta + \frac{2j\pi}{N})\sin(\frac{2j\pi}{N}) \\
-2\sin(\theta + \frac{j\pi}{N})\sin(\frac{(k-l)\pi}{N}) & -2\sin(2\theta + \frac{2j\pi}{N})\sin(\frac{2(k-l)\pi}{N})
\end{vmatrix}$$

$$= 4\sin(\theta + \frac{j\pi}{N})\sin(2\theta + \frac{2j\pi}{N})\begin{vmatrix}
\sin(\frac{j\pi}{N}) & \sin(\frac{2j\pi}{N}) \\
-\sin(\frac{(k-l)\pi}{N}) & -\sin(\frac{2(k-l)\pi}{N})
\end{vmatrix}$$

$$= -16\sin(\theta + \frac{j\pi}{N})\sin(2\theta + \frac{2j\pi}{N})\sin(\frac{j\pi}{N})\sin(\frac{(k-l)\pi}{N})\sin(\frac{k\pi}{N})\cos(\frac{k\pi}{N}) (26)$$

The product (26) is not zero unless

$$\sin(\theta + \frac{j\pi}{N})\sin(2\theta + \frac{2j\pi}{N}) = 0$$

in which case we redo the above calculations replacing $\frac{\partial}{\partial \alpha}$ by $\frac{\partial}{\partial \beta}$ and get a non-zero determinant. This concludes the proof of Sublemma 1.

Given A, there is a unique (λ, μ, γ) such that for every w,

$$H(A, w) = \lambda w + \mu \bar{w} + Re(\gamma w^2)$$
(27)

Moreover the map

$$A \mapsto (\lambda, \mu, \gamma)$$

defined by (27) is a surjective submersion. Thus Lemma 4 follows from Sublemma 1.

3 The 1-complex A in Π_2

We derive from Lemma 2 that the set

$$\mathcal{A} = \{ (w_1, w_2) \in \mathbb{D} \times \mathbb{D} / w_1 \neq w_2 \text{ and } \pi_3 \circ F_{\lambda, \mu}(w_1) = \pi_3 \circ F_{\lambda, \mu}(w_2) \}$$
 (28)

is a manifold. If $(w_1, w_2) \in \mathcal{A}$, then

$$w_1^N = w_2^N$$

and we let A be the subset of $\mathbb{D} \subset \Pi_2$ consisting of the w_i^N 's for (w_1, w_2) in \mathcal{A} . Directly by hand or by standard analytic geometry arguments (A is the projection of an analytic set and is of dimension 1, hence it is semi-analytic and so it is stratified, see [Ło]), we derive

Lemma 5. The set A is a 1-submanifold of \mathbb{D} with a finite set of singular points which we denote $\Sigma(A)$.

Moreover we have

Lemma 6. The elements of $\mathcal{D}_{\lambda,\mu}$ (cf. 21) are regular points of A.

Proof. If $p \in \mathcal{D}_{\lambda,\mu}$, there exists $w \in \mathbb{D}$ and a number ν with $\nu^N = 1$, $\nu \neq 1$ such that $p = w^N$ and

$$Re(\lambda w + \mu \bar{w} + h(w)) = Re(\lambda \nu w + \mu \bar{\nu} \bar{w} + h(\nu w))$$
 (29)

It follows from Lemma 4 that in a neighbourhood of p, A identifies with

$$A_{\nu} = \{ w^N / \pi_3(F(w)) = \pi_3(F(\nu w)) \}.$$

By the transversality arguments we have been using, we see that, for λ, μ generic, the set of w's which verify (29) is a 1-submanifold, hence A_{ν} is one too.

4 The loop Γ in \mathbb{D}

We now construct a closed loop Γ in \mathbb{D} . It stays in a small circle around the origin but leaves it to circle around the points of $\mathcal{D}_{\lambda,\mu}$. We require Γ to always meet A transversally. The closed loop Γ splits \mathbb{D} into two connected components, U_0 and U_1 and we require

- the origin 0 and the elements of $\mathcal{D}_{\lambda,\mu}$ are all in U_0
- the points of $X_{\lambda,\mu}$ (cf. 20 for the definition of $X_{\lambda,\mu}$) are all in U_1 : this is possible since $X_{\lambda,\mu}$ and $\mathcal{D}_{\lambda,\mu}$ do not intersect.

We can now consider three knots in cylinders, namely

$$K = F(\mathbb{D}) \cap \pi_2^{-1}(\partial \bar{\mathbb{D}}_2) \quad K_{\lambda,\mu} = F_{\lambda,\mu}(\mathbb{D}) \cap \pi_2^{-1}(\partial \bar{\mathbb{D}}_2) \quad \hat{K}_{\lambda,\mu} = F_{\lambda,\mu}(\mathbb{D}) \cap \pi_2^{-1}(\Gamma)$$
(30)

We claim that they are all isotopic. For K and $K_{\lambda,\mu}$ to be isotopic, it is enough to take λ and μ small enough.

Since there are no double points in $\pi_2^{-1}(U_1)$, the set $M_1 = F_{\lambda,\mu}(\mathbb{D}) \cap \pi_2^{-1}(U_1)$ is a submanifold of \mathbb{R}^4 ; moreover, if $m \in M_1$, a vector T in Π_2 has a unique lift in $T_m M_1$. Thus, if we smoothly deform Γ to $\partial \bar{\mathbb{D}}$, we can lift this deformation into an isotopy between $K_{\lambda,\mu}$ and $\hat{K}_{\lambda,\mu}$.

4.1 Construction of Γ

It is made of three pieces:

4.1.1 The circles Γ_i 's around the points in $\mathcal{D}_{\lambda,\mu}$

We let

$$\mathcal{D}_{\lambda,\mu} = \{p_1, \dots p_n\} \tag{31}$$

The indexing i is chosen so that

$$arg(p_1) \ge arg(p_1) \ge \dots \ge arg(p_n)$$
 (32)

For every i=1,...,n, the point p_i is a regular point of A (cf. Lemma 6) so we can pick a small circle Γ_i in $\mathbb{D} \subset \Pi_2$ centered at p_i and such that

- 1. the disk bounded by Γ_i does not contain any point in $\Sigma(A)$ or a point in $\mathcal{D}_{\lambda,\mu}$ different from p_i
- 2. Γ_i and A meet transversally at two points:

$$\Gamma_i \cap A = \{P_i, Q_i\} \tag{33}$$

4.1.2 The circle C_{ρ} around the origin

We pick a small positive number ρ ; we will indicate below how small we need ρ to be but for the moment we only require

$$\rho < \frac{1}{2}\inf|p_i| \tag{34}$$

and we let C_{ρ} be the circle in \mathbb{D}_2 centered at the origin and of radius ρ .

4.1.3 The \mathcal{T}_i 's between C_{ρ} and the Γ_i 's

We pick a point u_i on Γ_i different from P_i, Q_i . For every i, we pick a path L_i between u_i and C_ρ and a small closed tubular neighbourhood \mathcal{T}_i of L_i . We pick the \mathcal{T}_i 's disjoint from one another. Moreover we require for every i that

- 1. \mathcal{T}_i does not contain any point of $\mathcal{D}_{\lambda,\mu}$ or $\Sigma(A)$
- 2. $\mathcal{T}_i \cap C_o \cap A = \emptyset$
- 3. $\mathcal{T}_i \cap \Gamma_i$ does not contain P_i and Q_i
- 4. the boundary $\partial \mathcal{T}_i$ meets A transversally.

4.1.4 Conclusion: the loop Γ and the knot/braid \hat{K}_{λ}

To go along the loop Γ , we start at a point X_0 in C_ρ which does not belong to A. We follow C_ρ counterclockwise; everytime we meet a $\partial \mathcal{T}_i$, we go along it until we meet Γ_i ; then we follow Γ_i till we come to the next component of $\partial \mathcal{T}_i$ which we follow back to C_ρ .

5 The crossing points of \hat{K}_{λ}

We now write \hat{K}_{λ} as a braid β .

We denote by Π_{34} the plane in \mathbb{R}^4 generated by the last two coordinates. If γ is a point of Γ , there are N points $\tilde{\gamma}_1, \tilde{\gamma}_2, ..., \tilde{\gamma}_N$ in Π_{34} such that for all i,

$$(\gamma, \tilde{\gamma}_i) \in \hat{K}_{\lambda}$$

A crossing point $\gamma^{(0)}$ of \hat{K}_{λ} is a point where the $Re(\tilde{\gamma}_{i}^{(0)})$'s take less than N distinct values, i.e. there are two different points $(\gamma^{(0)}, \tilde{\gamma}_{i}^{(0)})$ and $(\gamma^{(0)}, \tilde{\gamma}_{j}^{(0)})$ with the same first three coordinates. In other words, a crossing point occurs when Γ meets A.

To formalize this, we parametrize Γ as

$$\gamma: [0, 2\pi] \longrightarrow \mathbb{D} \tag{35}$$

with $\gamma(\theta_0) = \gamma^{(0)}$. We renumber the *i*'s and we reparametrize the $\tilde{\gamma}_i$'s in a neighbourhood of θ_0 so that

$$Re(\tilde{\gamma}_1(\theta_0)) \ge Re(\tilde{\gamma}_2(\theta_0)) \ge \dots \ge Re(\tilde{\gamma}_k(\theta_0)) = Re(\tilde{\gamma}_{k+1}(\theta_0)) \ge \dots \ge Re(\tilde{\gamma}_N(\theta_0))$$

This gives us the braid generator

$$\sigma_k^{\eta(\gamma_0)} \tag{36}$$

with $\eta(\gamma_0) \in \{-1, +1\}.$

Note that if there are two different integers i, j, with $1 \le i, j \le N-1$ such that

$$Re(\tilde{\gamma}_i(\theta_0)) = Re(\tilde{\gamma}_{i+1}(\theta_0))$$
 and $Re(\tilde{\gamma}_j(\theta_0)) = Re(\tilde{\gamma}_{j+1}(\theta_0))$

then $|i-j| \geq 2$, which implies that the corresponding σ_i^{\pm} and σ_j^{\pm} commute; thus it does not matter in which order we write them in the expression of β . The sign $\eta(\gamma_0)$ of the crossing point in (36) is the sign of

$$[Im(\tilde{\gamma}_{k+1}(\theta_0)) - Im(\tilde{\gamma}_k(\theta_0))][Re(\tilde{\gamma}'_k(\theta_0)) - Re(\tilde{\gamma}'_{k+1}(\theta_0))]$$
(37)

This sign is well-defined: the first factor in (37) is non zero, otherwise we would have a double point of $F_{\lambda,\mu}$ and we have assumed that none of the double points of $F_{\lambda,\mu}$ project to a point in Γ .

Let us see why the second factor of (37) is non-zero. The planes $\pi_3\left(T_{(\gamma(\theta_0),\tilde{\gamma}_k(\theta_0))}F_{\lambda,\mu}(\mathbb{D})\right)$ and $\pi_3\left(T_{(\gamma(\theta_0),\tilde{\gamma}_{k+1}(\theta_0))}F_{\lambda,\mu}(\mathbb{D})\right)$ are transverse (see Lemma 2) so they intersect in a line generated by a vector X which projects to a vector tangent to A. The vector $\left(\gamma'(\theta_0), Re\left(\tilde{\gamma}_k'(\theta_0)\right)\right)$ - resp. $\left(\gamma'(\theta_0), Re\left(\tilde{\gamma}_{k+1}'(\theta_0)\right)\right)$ - completes X in a basis of $\pi_3\left(T_{(\gamma(\theta_0),\gamma_k(\theta_0))}\right)$ - resp. $\pi_3\left(T_{(\gamma(\theta_0),\gamma_{k+1}(\theta_0))}\right)$. It follows that

$$Re(\tilde{\gamma}'_k(\theta_0)) \neq Re(\tilde{\gamma}'_{k+1}(\theta_0))$$

and the sign (37) is well-defined.

We now examine the three types of crossing points.

5.0.5 On the circle C_{ρ}

We first investigate the crossing points of the braid

$$w \mapsto (w^N, \lambda w) \quad \text{(resp.} \quad w \mapsto (w^N, \mu \bar{w}))$$
 (38)

Without loss of generality, we assume that λ and μ are real so the crossing points of the braids are given by

$$\cos\frac{2\pi}{N}(\theta+k) = \cos\frac{2\pi}{N}(\theta+l) \tag{39}$$

for $k, l \in \{1, ..., N-1\}$ and $\theta \in [\zeta, 1+\zeta]$, where ζ is a small positive number which we introduce to avoid crossing points at the endpoints of the interval. We get two values of θ for (39), namely

$$\theta_1 = \frac{1}{2}, \quad \theta_2 = 1.$$

The integers k, l appearing in (39) verify k + l = N - 1 (resp. k + l = N - 2) for θ_1 (resp. θ_2). The corresponding values for $\cos \frac{2\pi}{N}(\theta + k)$ are

the
$$\cos(2s+1)\frac{\pi}{N}$$
's with $0 \le 2s \le N-2$

(resp. the
$$\cos(2s+2)\frac{\pi}{N}$$
's with $0 \le 2s \le N-3$)

Thus the $\cos \frac{2\pi}{N}(\theta+k)$'s go through the values of $\cos \frac{\pi}{N}m$ with $1 \leq m \leq N-1$. We conclude: the crossing points above θ_1 (resp. θ_2) correspond to the braid generators $\sigma_{2k+1}^{\pm 1}$, $1 \leq 2k+1 \leq N-1$ (resp. $\sigma_{2k}^{\pm 1}$, $1 \leq 2k \leq N-1$).

It follows from (37) that a crossing point (θ_1, θ_2) of $w \mapsto (w^N, \lambda w)$ (resp. $w \mapsto (w^N, \mu \bar{w})$) is of the same sign as

$$(\sin \theta_1 - \sin \theta_2)^2$$
 (resp. $-(\sin \theta_1 - \sin \theta_2)^2$)

hence they are all positive (resp. all negative).

Unlike for the braids (38) the crossing points of β on C_{ρ} will not all occur above the same two points of C_{ρ} ; however, if ρ is small enough and $\frac{\lambda}{\mu}$ is large enough or small enough, the pieces in β corresponding to the crossing points of C_{ρ} are given by the braids (38): if that is, the crossing points of \hat{K} on C_{ρ} translate into the two pieces of β described in 1. and 2. of Th. 1.

5.0.6 On Γ_i

We recall that m_i is the double point of $F_{\lambda,\mu}$ which projects to the center of Γ_i . There exist $w_1, w_2 \in \mathbb{D}$, $w_1 \neq w_2$ with

$$F_{\lambda,\mu}(w_1) = F_{\lambda,\mu}(w_2) = m_i.$$

We pick a neighbourhood V_1 of w_1 (resp. V_2 of w_2) in \mathbb{D} . We know that $\pi_3(F_{\lambda,\mu}(V_1))$ and $\pi_3(F_{\lambda,\mu}(V_2))$ intersect transversally; the curve $\pi_3(F_{\lambda,\mu}(V_1)) \cap \pi_3(F_{\lambda,\mu}(V_2))$ projects to A on Π_2 . We also know that Γ_i meets A exactly at two points P_i, Q_i (cf. §4.1.1): the preimages of P_i and Q_i on $\pi_3(F_{\lambda,\mu}(V_1)) \cap \pi_3(F_{\lambda,\mu}(V_2))$ give us two braid generators σ_k^{\pm} (with the same k).

We know from Lemma 4 that these are the only braid generators corresponding to the crossing points P_i and Q_i ; to get a complete picture of the braid above Γ_i , we just need to figure out the sign of each of the two σ_k^{\pm} 's:

Lemma 7. Let Q be one of the crossing points of β on the circle Γ_i . Let $m_i \in \mathbb{R}^4$ be the double point of $F_{\lambda,\mu}$ which projects to p_i . The sign of the crossing point Q is equal to the sign of the double point m_i as a double point of $F_{\lambda,\mu}$.

Proof. We let T_0 and T_1 be the two tangent planes to $F_{\lambda,\mu}(\mathbb{D})$ at m_i and we construct positive bases of \mathbb{R}^4 , T_0 and T_1 .

Since the planes T_0 and T_1 intersect transversally, the planes $\pi_3(T_0)$ and $\pi_3(T_1)$ also intersect transversally. We let U be a vector in Π_3 generating $\pi_3(T_0) \cap \pi_3(T_1)$; since $\pi_2 \circ F_{\lambda,\mu}(w) = w^N$, $\pi_2 \circ F_{\lambda,\mu}$ is a local immersion outside of 0 and U projects to a non-zero vector u in Π_2 which is tangent to A.

We let v be a vector tangent to Γ at Q oriented in the direction of Γ ; possibly after changing u in -u, (u, v) is a positive basis of Π_2 (we remind the reader that we have assumed that A and Γ meet transversally).

Because $\pi_2 \circ F_{\lambda,\mu}$ is a local immersion outside of 0, there exists a unique $u_i \in P_i$ and a unique $v_i \in P_i$ with

$$\pi_2(u_i) = u \quad \pi_2(v_i) = v$$

Moreover $\pi_2 \circ F_{\lambda}$ preserves the orientation, hence the basis (u_0, v_0) (resp. (u_1, v_1)) is a positive basis of T_0 (resp. T_1).

We let (e_1, e_2, e_3, e_4) be an orthonormal positive basis of \mathbb{R}^4 with e_1, e_2 in Π_2 and we define another positive basis of \mathbb{R}^4 by

$$\mathcal{B} = (u, v, e_3, e_4). \tag{40}$$

We write the coordinates in \mathcal{B} of the vectors in the bases base vectors of T_0 and T_1 , namely

$$u_0 = (1, 0, \alpha, \gamma)$$
 $v_0 = (0, 1, \beta, \delta)$
 $u_1 = (1, 0, \alpha, \gamma')$ $v_1 = (0, 1, \beta', \delta')$

and we compute the determinant

$$det(u_0, v_0, u_1, v_1) = \begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \alpha & \beta & \alpha & \beta' \\ \gamma & \delta & \gamma' & \delta' \end{vmatrix} = -(\beta - \beta')(\gamma - \gamma')$$
(41)

We now recover from (41) the sign of the crossing points of the braid given by (37).

For i=0,1, we let V_i be a small disk in $F_{\lambda,\mu}(\mathbb{D})$ tangent to T_i . We denote again the two strands which meet at the crossing point by the coordinates in $\mathbb{C} \oplus \mathbb{C}$: $(\gamma(\theta), \tilde{\gamma}_k(\theta))$ and $(\gamma(\theta), \tilde{\gamma}_{k+1}(\theta))$. Locally, one is the lift of Γ to V_0 and the other one is the lift of Γ to V_1 .

Since the v_i 's both project to v, we derive that v_0 (resp. v_1) is the vector tangent to $F_{\lambda,\mu} \cap \pi_2^{-1}(\Gamma)$ above Q on V_0 (resp. V_1). Hence

$$Re(\tilde{\gamma}'_k(\theta_0)) - Re(\tilde{\gamma}'_{k+1}(\theta_0))$$

has the same sign as $\beta - \beta'$.

We now use the fact that Q belongs to A. Since p_i is a regular point of A, A is parametrized near q_i by

$$a: t \mapsto q_i + tu + o(t^2) \tag{42}$$

Since (u, v) is a positive basis of Π_2 and v is tangent to Γ at Q, the point Q is on the side of the positive t's in (42). The lift of A to V_0 (resp. V_1) is parametrized by

$$\tilde{a}_0(t) = m_i + tu_0 + o(t^2)$$
 $\tilde{a}_1(t) = m_i + tu_1 + o(t^2)$ (43)

Thus, if we have taken Γ_i small enough, $Im(\tilde{\gamma}_k(\theta_0)) - Im(\tilde{\gamma}_{k+1}(\theta_0))$ is of the same sign as $(u_0)_4 - (u_1)_4 = \gamma - \gamma'$.

Thus the circle Γ_i contributes $\sigma_k^{2\epsilon(q_i)}$ to the braid.

5.0.7 On $\partial \mathcal{T}_i$

We proceed as in [Ru 1].

If \mathcal{T}_i is a small enough neighbourhood, the map $F_{\lambda,\mu}: F_{\lambda,\mu}^{-1}(\mathcal{T}_i) \longrightarrow \mathcal{T}_i$ is a covering, hence $F_{\lambda,\mu}^{-1}(\mathcal{T}_i)$ is a disjoint union of N copies of $L_i \times [-\eta, +\eta]$ for a small $\eta > 0$.

If q_0 is a point in $L_i \cap A$, there are two points q_1 and q_2 close to q_0 in $\mathcal{T}_i \cap A$, one in each component of \mathcal{T}_i . If the k-th and (k+1)-th leaf of $\pi_3 \circ F_{\lambda,\mu}(\mathbb{D})$ coincide above q_0 , the same is true for q_1 and q_2 . Hence q_1 and q_2 each give us a braid generator σ_k^{\pm} for β .

These two σ_k^{\pm} 's have opposite signs. Indeed, if we look at formula (37), the factors $Im(\tilde{\gamma}_{k+1}(\theta_0)) - Im(\tilde{\gamma}_k(\theta_0))$ take the same sign for both q_1 and q_2 , whereas the factors $Re(\tilde{\gamma}'_k(\theta_0)) - Re(\tilde{\gamma}'_{k+1}(\theta_0))$ take opposite signs.

Putting all the $\sigma_k^{\pm 1}$'s together, we get an element $b_i \in B_N$ such that the piece of the braid which consists in going along \mathcal{T}_i , around Γ_i and back along \mathcal{T}_i can be written as

$$b_i \sigma_{k(i)}^{2\epsilon(Q)} b_i^{-1} \tag{44}$$

where k(i) is an integer in $\{1,...,N-1\}$ and $\epsilon(Q)$ is the sign of the crossing point.

We get the terms in the braid of Th. 1 3 and the proof of Th. 1 is completed.

References

[G-O-R] R. D. Gulliver II, R. Osserman, H. L. Royden A Theory of Branched Immersions of Surfaces, Amer. Jour. of Maths, Vol. 95, No. 4 (1973), pp. 750-812

- [Ło] S. Łojasiewicz, Sur la géométrie semi- et sous-analytique, Ann. de l'Institut Fourier, 43(5) 1993, 1575-1595.
- [Mi] J. Milnor, Singular points of complex hypersurfaces, Ann. of mathematics studies, PUP (1969).
- [Ru 1] L. Rudolph, Algebraic functions and closed braids, Topology 22(2) (1983) 191-202 and arxiv.org/pdf/math/0411316
- [Ru 2] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helvetici 58 (1983) 001-037
- [S-V] M. Soret, M.Ville, Singularity Knots of Minimal Surfaces in R⁴, Jour. of Knot theory and its ramifications, 20 (4), (2011), 513-546.
- [Vi 1] M. Ville, Branched immersions and braids, Geom. Dedicata, 140(1), 2009, 145-162.
- [Vi 2] M. Ville, Desingularization of branch points of minimal disks in \mathbb{R}^4 , http://arxiv.org/pdf/1412.0589

Marina. Ville@lmpt.univ-tours.fr

LMPT, Université de Tours UFR Sciences et Techniques Parc de Grandmont 37200 Tours, FRANCE