Universidade Federal da Fronteira Sul Ciência da Computação

GEX101 – Linguagens Formais e Autômatos Prof. Andrei Braga Avaliação 1

Nome:		
Matrícula:		

Questão	Pontos	Nota
1	14	
2	14	
3	14	
4	14	
5	30	
6	14	
Total:	100	

Instruções:

- 1. Data de entrega:
 - (a) Parte 1 (Questões 1 a 4): Até às 21:30 horas do dia 16/04/2021 (sexta-feira).
 - (b) Parte 2 (Questões 5 e 6): Até às 23:55 horas do dia 19/04/2021 (segunda-feira).
- 2. Forma de entrega:
 - (a) Partes 1 e 2: Através do Moodle, deverá ser enviado um arquivo PDF contendo as respostas para as questões.
 - (b) Apenas para a Parte 2 (Questões 5 e 6): Através do link disponibilizado pelo professor, deverá ser enviado também um vídeo onde o estudante explicará as suas respostas. Neste vídeo, o estudante deverá simular uma explicação dada ao professor de forma presencial.
- 3. O plágio e a cola serão tratados de forma rígida: os envolvidos receberão nota zero.

• •

Parte 1

1. (14 pontos) Considere o autômato finito M cujo diagrama de estados é dado na Figura 1.

Figura 1: Diagrama de estados do autômato M

Analise as lacunas da frase a seguir: O autômato M _____ a string ____ , sendo ____ o estado onde o autômato se encontra após ter lido o **quarto** símbolo da string.

A sequência que preenche corretamente as lacunas é

- A. aceita / 111011 / q_2
- B. rejeita / 0100 / $q_{\rm 1}$
- C. aceita / 11100 / q_1
- D. aceita / 101010 / q_0
- E. rejeita / 010101 / q_1
- 2. (14 pontos) Considere o autômato finito M cujo diagrama de estados é dado na Figura 2.

Figura 2: Diagrama de estados do autômato M

O texto que preenche corretamente a lacuna é

- A. comece com ab
- B. termine com a
- C. consista em um ou mais a's seguidos de um ou mais b's
- D. termine com b
- E. consista em um ou mais b's seguidos de um ou mais a's

- 3. (14 pontos) Considere as linguagens L_1 , L_2 e L_3 sobre o alfabeto $\{0,1\}$:
 - $L_1 = \{ w \mid \text{todo } 1 \text{ em } w \text{ \'e imediatamente seguido de pelo menos um } 0 \}$
 - $L_2 = \{ w \mid \text{todo } 0 \text{ em } w \text{ ou } \text{\'e} \text{ imediatamente precedido de um } 1 \text{ ou \'e} \text{ imediatamente seguido de um } 1 \}$ (por exemplo, $1001 \in L_2$, $010 \in L_2$ e $1 \in L_2$)
 - $L_3 = \{ w \mid w \text{ começa com } 0 \text{ ou com } 1 \text{ e consiste em } 0\text{'s e 1's alternados} \}$ (por exemplo, $010 \in L_3$, $10 \in L_3$ e $010101 \in L_3$)

Considere também as expressões regulares E_1 , E_2 e E_3 :

- $E_1 = (\varepsilon + 1)(01)^*(\varepsilon + 0)$
- $E_2 = 0^*(100^*)^*$
- $E_3 = (01 + 10 + 010 + 1)^*$

Analise as seguintes afirmações:

- I. A linguagem L_1 é representada pela expressão regular E_2 .
- II. A linguagem L_2 é representada pela expressão regular E_1 .
- III. A linguagem L_3 é representada pela expressão regular E_3 .
- IV. As expressões regulares E_1 e E_3 representam a mesma linguagem.

Entre as afirmações acima,

- A. I é a única afirmação verdadeira.
- B. II é a única afirmação verdadeira.
- C. I e III são as únicas afirmações verdadeiras.
- D. I, II e III são as únicas afirmações verdadeiras.
- E. I, II, III e IV são todas afirmações verdadeiras.
- 4. (14 pontos) Considere as linguagens L_1 , L_2 , L_3 e L_4 :
 - $L_1 = \{ w \mid w \text{ \'e uma string de 0's e 1's que cont\'em 01 } \}$
 - $L_2 = \{ w \mid w \text{ \'e uma string de 0's e 1's com a quantidade de 0's em } w \text{ sendo diferente de dois } \}$
 - $L_3 = \{ ww \mid w \text{ \'e uma string de 0's e 1's } \}$
 - $L_4 = \{ 0^i 1^j \mid i \neq j \}$

Analise as seguintes afirmações:

- I. A linguagem L_1 não é regular.
- II. A linguagem L_2 é regular.
- III. A linguagem L_3 não é regular.
- IV. A linguagem L_4 é regular.

Entre as afirmações acima,

- A. I e III são as únicas afirmações verdadeiras.
- B. II e IV são as únicas afirmações verdadeiras.
- C. I e IV são as únicas afirmações verdadeiras.
- D. II e III são as únicas afirmações verdadeiras.
- E. II, III e IV são as únicas afirmações verdadeiras.

Parte 2

5. (30 pontos) Foi visto em aula um algoritmo para construir, a partir de um autômato finito não-determinístico, um autômato finito determinístico equivalente. Usando este algoritmo, faça o que é pedido a seguir. Considere o autômato finito não-determinístico M cujo diagrama de estados é dado na Figura 3. Descreva um autômato finito determinístico equivalente a M.

Figura 3: Diagrama de estados do autômato M

6. (14 pontos) Uma aplicação interessante de autômatos finitos é usá-los para buscar palavras em textos. A seguir, consideramos uma versão simplificada desta aplicação.

Suponha que o conteúdo de um documento de texto é representado por uma string w formada por símbolos do alfabeto $\Sigma = \{a, b, \dots, z\}$. Descreva um autômato finito não-determinístico que possa ser usado para determinar se w contém a palavra uffs ou contém < nome >, onde < nome > é o seu primeiro nome escrito com letras minúsculas.