HW3 GUO

Qing Guo 9/12/2019

Problem 3

```
a. Sensory data from five operators
```

```
#install.packages("tibble")
library(tibble)
#install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
url<-"https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
a<-read.table(url,header=T,sep=" ",skip=1,fill=T)</pre>
a1<-filter(a,!is.na(X5))
a2<-filter(a,is.na(X5))
Item<-c()</pre>
for(i in 1:10){Item<-c(Item,rep(i,2))}</pre>
a22<-a2%%select(Item:X4)%%colnames<-`(c("X1", "X2", "X3",'X4','X5'))
a22<-cbind(Item,a22)
a < -rbind(a22,a1)
a%>%arrange(Item)
      Item X1 X2 X3 X4 X5
##
## 1
        1 4.3 4.5 4.0 5.5 3.3
## 2
         1 4.1 5.3 3.4 5.7 4.7
## 3
         1 4.3 4.9 3.3 5.3 4.4
         2 4.9 6.3 4.2 5.5 4.9
## 4
## 5
         2 6.0 5.9 4.7 6.3 4.6
## 6
         2 6.0 5.3 4.5 5.9 4.7
## 7
         3 3.9 3.0 2.8 2.7 1.3
## 8
         3 1.9 3.9 2.6 4.6 2.2
         3 2.4 2.5 2.3 3.1 2.4
## 9
## 10
        4 7.1 7.9 5.9 7.3 6.1
## 11
         4 6.4 7.1 6.9 7.0 6.7
         4 7.4 8.2 6.4 6.8 6.0
## 12
        5 5.8 5.7 5.4 6.2 6.5
## 13
        5 5.8 6.0 6.1 7.0 4.9
## 14
## 15
        5 5.7 6.3 5.4 6.1 5.9
## 16
         6 3.0 1.8 2.1 4.0 1.7
## 17
        6 2.1 3.3 1.1 3.3 2.1
## 18
      6 2.2 2.4 1.7 3.4 1.7
```

```
7 1.3 2.4 0.8 1.2 1.3
## 19
## 20
         7 0.9 3.1 1.1 1.9 1.6
## 21
         7 1.2 1.5 1.2 0.9 0.7
         8 3.0 4.5 4.7 4.9 4.6
## 22
## 23
         8 4.8 4.8 4.7 4.8 4.3
## 24
         8 4.2 4.8 4.5 4.6 3.2
         9 9.0 7.7 6.7 9.0 7.9
## 25
         9 8.9 9.2 8.1 9.1 7.6
## 26
## 27
         9 8.0 8.6 9.0 9.4 8.8
        10 5.4 5.0 3.4 4.9 4.6
## 28
## 29
        10 2.8 5.2 4.1 3.9 5.5
        10 5.0 4.8 3.9 5.5 3.8
## 30
b.Gold Medal performance
url<-"https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
a<-read.table(url,sep=" ",skip=1,fill=T)
a=as.data.frame(a)
a \leftarrow rbind(as.matrix(a[,1:2]),as.matrix(a[,3:4]),as.matrix(a[,5:6]),as.matrix(a[,7:8]))
a_new < -a\% > \% as. data.frame()\% > \% filter(!is.na(V1&V2))\% > \% colnames < -`(c("year", "long_jump"))
summarise_at(a_new, vars(long_jump),list(~n(), ~mean(., na.rm = TRUE), ~median(.,na.rm = TRUE)))
            mean median
      n
## 1 22 310.2873 308.125
summary(lm(long_jump~year,a_new))
## Call:
## lm(formula = long_jump ~ year, data = a_new)
## Residuals:
##
        Min
                  1Q
                       Median
                                     30
                                              Max
## -25.4665 -4.4821 -0.8236
                                 6.3372 24.2246
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 278.05315
                             4.25339 65.372 < 2e-16 ***
## year
                 0.70915
                             0.07801
                                       9.091 1.53e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.02 on 20 degrees of freedom
## Multiple R-squared: 0.8052, Adjusted R-squared: 0.7954
## F-statistic: 82.64 on 1 and 20 DF, p-value: 1.532e-08
c.Brain weight (g) and body weight (kg)
url<-"https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"
a<-read.table(url,sep=" ",skip=1,fill=T)</pre>
a \leftarrow rbind(as.matrix(a[,1:2]), as.matrix(a[,3:4]), as.matrix(a[,5:6]))
a < -a[1:62,]
a <- as.data.frame(a)
colnames(a)<-c("Body WT", "Brain WT")</pre>
```

Body WT Brain WT

##

##	1	3.385	44.50
##	2	0.480	15.50
##	3	1.350	8.10
##	4	465.000	423.00
##	5	36.330	119.50
##	6	27.660	115.00
##	7	14.830	98.20
##	8	1.040	5.50
##	9	4.190	58.00
##	10	0.425	6.40
##	11	0.101	4.00
##	12	0.920	5.70
##	13	1.000	6.60
##	14	0.005	0.10
##	15	0.060	1.00
##	16	3.500	10.80
##	17	2.000	12.30
##	18	1.700	6.30
##	19	2547.000	4603.00
##	20	0.023	0.30
##	21	187.100	419.00
##	22	521.000	655.00
##	23	0.785	3.50
##	24	10.000	115.00
##	25	3.300	25.60
##	26	0.200	5.00
##	27	1.410	17.50
##	28	529.000	680.00
##		207.000	406.00
##	29	85.000	325.00
	30	0.750	12.30
##	31		
##	32	62.000	1320.00
##	33	6654.000	5712.00
##	34	3.500	3.90
##	35	6.800	179.00
##	36	35.000	56.00
##	37	4.050	17.00
##	38	0.120	1.00
##	39	0.023	0.40
##	40	0.010	0.30
##	41	1.400	12.50
##	42	250.000	490.00
##	43	2.500	12.10
##	44	55.500	175.00
##	45	100.000	157.00
##	46	52.160	440.00
##	47	10.550	179.50
##	48	0.550	2.40
##	49	60.000	81.00
##	50	3.600	21.00
##	51	4.288	39.20
##	52	0.280	1.90
##	53	0.075	1.20
##	54	0.122	3.00

```
## 55
         0.048
                   0.33
      192.000
                 180.00
## 56
## 57
         3.000
                 25.00
      160.000
                169.00
## 58
## 59
         0.900
                   2.60
         1.620
                  11.40
## 60
                   2.50
## 61
         0.104
## 62
         4.235
                  50.40
summarise_at(a, vars(c("Body WT","Brain WT")),list(~n(), ~mean(., na.rm = TRUE),~median(.,na.rm = TRUE)
##
     Body WT_n Brain WT_n Body WT_mean Brain WT_mean Body WT_median
## 1
            62
                        62
                                 198.79
                                              283.1344
##
    Brain WT_median
## 1
               17.25
d. Triplicate measurements of tomato yield
library(stringr)
url<-"https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
a<-read.table(url,sep="",skip=1,fill=T,comment.char="")
a <- as.data.frame(a)
d < -c()
for (i in 1:2){
 for (j in 1:3){
    bi_j<-a[i,j]
    bi_j<-unlist(str_split(bi_j,","))</pre>
    bi_j<-as.numeric(bi_j[1:3])
    d<-c(d,bi_j)</pre>
  }
}
b1<-d[1:9]
b2<-d[10:18]
b3<-c(rep(10000,3),rep(20000,3),rep(30000,3))
dataframe<-tibble(b3,b1,b2)
colnames(dataframe)<-c("Number","Ife\\#1","PusaEarlyDwarf")</pre>
dataframe<--as.data.frame(dataframe)</pre>
summarise_at(dataframe, vars(c("Ife\\#1","PusaEarlyDwarf")),list(~n(), ~mean(., na.rm = TRUE),~median(
##
     Ife\\#1_n PusaEarlyDwarf_n Ife\\#1_mean PusaEarlyDwarf_mean
## 1
                                    -18.11111
                                                         -12.02222
##
     Ife\\#1_median PusaEarlyDwarf_median
                -18
t = dataframe %>% group_by(Number) %>%
  summarise_at(vars("Ife\\#1":"PusaEarlyDwarf"), funs(n(), mean(., na.rm = TRUE)))
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## Please use a list of either functions or lambdas:
##
##
     # Simple named list:
##
     list(mean = mean, median = median)
##
     # Auto named with `tibble::lst()`:
##
##
    tibble::lst(mean, median)
##
##
     # Using lambdas
```

```
list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once per session.
t
## # A tibble: 3 x 5
##
     Number `Ife\\#1_n` PusaEarlyDwarf_n `Ife\\#1_mean` PusaEarlyDwarf_mean
##
      <dbl>
                  <int>
                                    <int>
                                                    <dbl>
                                                                         <dbl>
## 1 -30000
                                                    -19.9
                                                                        -14.5
                       3
                                         3
## 2 -20000
                       3
                                         3
                                                    -18.1
                                                                        -12.6
## 3 -10000
                       3
                                                    -16.3
                                                                         -8.93
Praoblem 5
# Path to data
.datapath <- file.path(path.package('swirl'), 'Courses',</pre>
                        'R_Programming_E', 'Looking_at_Data',
                        'plant-data.txt')
# Read in data
plants <- read.csv(.datapath, strip.white=TRUE, na.strings="")</pre>
.cols2rm <- c('Accepted.Symbol', 'Synonym.Symbol')</pre>
plants <- plants[, !(names(plants) %in% .cols2rm)]</pre>
# Make names pretty
names(plants) <- c('Scientific_Name', 'Duration', 'Active_Growth_Period',</pre>
                    'Foliage_Color', 'pH_Min', 'pH_Max',
                    'Precip_Min', 'Precip_Max',
                    'Shade_Tolerance', 'Temp_Min_F')
na_plants<-apply(is.na(plants),1,sum)</pre>
plants<-plants[-which((na plants)>0),]
plants_1<-plants%>%select(c('Scientific_Name','Foliage_Color', 'pH_Min', 'pH_Max'))
plants<-plants_1
plants$PH_Mean<-(plants$pH_Min+plants$pH_Max)/2
plants$Foliage_Color<-factor(plants$Foliage_Color)</pre>
head(plants)
##
         Scientific_Name Foliage_Color pH_Min pH_Max PH_Mean
## 4
          Abies balsamea
                                            4.0
                                  Green
                                                   6.0
                                                          5.00
       Acacia constricta
                                   Green
                                            7.0
                                                   8.5
                                                           7.75
## 14 Acalypha virginica
                                  Green
                                            5.9
                                                   7.0
                                                           6.45
## 17
                                            5.0
                                                   7.8
                                                           6.40
            Acer negundo
                                  Green
## 19
                                                   7.3
                                            4.5
                                                           5.90
             Acer nigrum
                                  Green
## 20 Acer pensylvanicum
                                  Green
                                            4.4
                                                   6.5
                                                           5.45
aggregate(plants$PH_Mean,by=list(plants$Foliage_Color),FUN=mean)
##
          Group.1
## 1
       Dark Green 5.999390
## 2
       Gray-Green 6.370833
## 3
            Green 6.175111
## 4
              Red 6.400000
## 5
       White-Gray 6.444444
```

Group.1 x

6 Yellow-Green 5.937500

aggregate(plants\$PH Mean,by=list(plants\$Foliage Color),FUN=sd)

```
Dark Green 0.5560272
## 1
## 2
      Gray-Green 0.6387686
           Green 0.5250715
## 3
## 4
             Red 0.9836158
## 5
      White-Gray 0.7380059
## 6 Yellow-Green 0.6043428
plants.anova<-aov(plants$PH_Mean~plants$Foliage_Color,data=plants)</pre>
F1<-summary(plants.anova)
F1
##
                        Df Sum Sq Mean Sq F value Pr(>F)
## plants$Foliage Color 5 5.23 1.0452 3.613 0.00308 **
                       807 233.48 0.2893
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
plants$Foliage_Color<-plants$Foliage_Color%>%as.factor()%>%as.numeric()
F2<-lm(plants$PH_Mean~plants$Foliage_Color,data=plants)
F2<-summary(F2)
F2
##
## Call:
## lm(formula = plants$PH_Mean ~ plants$Foliage_Color, data = plants)
##
## Residuals:
       Min
                 1Q
                     Median
## -1.93924 -0.36441 -0.01441 0.33559 2.03559
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                   0.06858 88.792
                        6.08959
                                                     <2e-16 ***
## plants$Foliage_Color 0.02494
                                   0.02297
                                             1.086
                                                      0.278
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5421 on 811 degrees of freedom
## Multiple R-squared: 0.001451, Adjusted R-squared: 0.0002202
## F-statistic: 1.179 on 1 and 811 DF, p-value: 0.2779
```