Ecuación empírica de estado de gases ideales <u>Gabriel D'Andrade Furlanetto</u>, Sergio Bernardo Pérez March 8, 2022

1 Datos de Laboratorio

Table 1: Temperatura y presión en el laboratorio

$T_0(^{\circ}C)$	$T_f(^{\circ}C)$	$P_0(\text{mmHg})$	$P_f(\text{mmHg})$
17 ± 0.5	17 ± 0.5	694 ± 1	694 ± 1

2 Objetivos

Comprobar que el aire a presiones y temperaturas normales se comporta como un gás ideal y, por lo tanto, verifica las leyes de Boyle-Mariotte y Gay-Lussac.

3 Ecuaciones Fundamentales

Cuando un gas ideal realiza un proceso isotermo, se verifica que la presión y el volumen son inversamente proporcionales, la ley de Boyle-Mariotte:

$$PV = K_1 \tag{1}$$

Cuando realiza un proceso isobaro, se verifica la temperatura y el volumen son proporcionales, la primera ley de Gay-Lussac:

$$\frac{V}{T} = K_2 \tag{2}$$

Y, finalmente, en un proceso isocoro, la presión y temperatura son proporcionales, o sea, se verifica la segunda ley de Gay-Lussac:

$$\frac{P}{T} = K_3 \tag{3}$$

Que se pueden combinar para forma la ecuación del gas ideal:

$$PV = nRT \tag{4}$$

Donde n es el número de moles, y R=8.314 J/(mol K) es una constante de proporcionalidad, la constante universal de los gases. De esa ecuación, podemos calcular los coeficientes termomecánicos para un gas ideal:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{R} = \frac{1}{T} \tag{5}$$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T = \frac{1}{P} \tag{6}$$

$$\beta = \frac{1}{p} \left(\frac{\partial P}{\partial T} \right)_V = \frac{1}{T} \tag{7}$$

4 Datos Experimentales

Table 2: Datos experimentales

Isote	rma	Isocora		
t = 20.	4 ± 1	$V = 30.0 \pm 0.5 cm^3$		
$V(cm^3)$	P (hPa)	t(°C)	P(hPa)	
30	996	20.4	996	
35	862	29.1	1040	
40	757	40.1	1077	
45	672	49.4	1092	
50	603	59	1115	
55	550			
60	497			
$\Delta V = 0.5 cm^3$	$\Delta P = 1hPa$	$\Delta t = 0.1$	$\Delta P = 1hPa$	

5 Datos para la representación gráfica

Table 3: Datos para las representaciones de la isoterma

$T = 293.4 \pm 0.1 \text{ K}$						
x = P(Pa)		$\Delta y(mol)$		$\Delta z(m^{-3})$		
99600	1.22×10^{-3}	0.020×10^{-3}	33333	556		
86200	1.24×10^{-3}	0.018×10^{-3}	28571	408		
75700	1.24×10^{-3}	0.016×10^{-3}	25000	313		
67200	1.24×10^{-3}	0.014×10^{-3}	22222	247		
60300	1.24×10^{-3}	0.013×10^{-3}	20000	200		
55000	1.24×10^{-3}	0.012×10^{-3}	18182	165		
49700	1.22×10^{-3}	0.010×10^{-3}	16667	139		

Table 4: Datos para la representación gráfica de la isocora

$V = 30 \pm 0.5$					
x = T(K)	y = P (Pa)				
293.4	99600				
302.1	104000				
313.1	107700				
322.4	109200				
332	111500				
	$\Delta y = 100 Pa$				

6 Representación gráfica

7 Ajuste de datos

Para el cálculo, utilizaremos que, en general, para una regresión del tipo y = ax + b, se tiene que:

$$a = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$
(8)

$$b = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$$

$$(9)$$

$$R^{2} = \frac{\left(\sum xy - \sum x \sum y\right)^{2}}{\left(n \sum x^{2} - \left(\sum x\right)^{2}\right)\left(n \sum y^{2} - \left(\sum y\right)^{2}\right)}$$
(10)

Table 5: Datos para el ajuste de $\frac{PV}{RT}$ frente a P

n	$\sum x$	$\sum y$	$\sum x^2$	$\sum y^2$	$\sum xy$
7	493700	8.64E-03	36728110000	1.07E-05	609.3841188

Recta de regresión $\frac{PV}{RT} = a_1P + b_1$:

$$a_1 = -3.96 \times 10^{-11} \frac{mol}{Pa} \tag{11}$$

$$b_1 = 1.24 \times 10^{-3} mol \tag{12}$$

$$R_1^2 = 0.00857 (13)$$

Table 6: Datos para el ajuste de $\frac{1}{V}$ frente a P

n	$\sum x$	$\sum z$	$\sum x^2$	$\sum z^2$	$\sum xz$
5	725900	1.36E-02	257386710000	8.08E-05	4553.016987

Recta de regresión $\frac{1}{V} = a_2 P + b_2$:

$$a_2 = 0.334 \frac{1}{m^3 Pa} \tag{14}$$

$$b_2 = -159 \frac{1}{m^3} \tag{15}$$

$$R_2^2 = 0.00857 (16)$$

Table 7: Datos para el ajuste de P frente a T

\overline{n}	$\sum x$	$\sum y$	$\sum x^2$	$\sum y^2$	$\sum xy$
5	1563	532000	489545.34	56692340000	166585990

Recta de regresión $P = a_3T + b_3$:

$$a_3 = 297.19 \frac{Pa}{K} \tag{17}$$

$$b_3 = 13497Pa (18)$$

$$R_3^2 = 0.960 (19)$$

8 Cálculo de Errores

En general, para regresiones lineales, tenemos dos de error, el estadístico y el instrumental. El primero, se calcula con:

$$\Delta_{est} a = a \sqrt{\frac{R_1^{-2} - 1}{n - 2}}$$
$$\Delta_{est} b = \Delta_{est} a \sqrt{\frac{\sum_i x_i^2}{n}}$$

Y el segundo se calcula con:

$$\Delta_{inst}a = \sqrt{\sum_{j} \left[\frac{n \cdot x_{j} - \sum_{i} x_{i}}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \right]^{2} \cdot \Delta y_{j}^{2}}$$

$$\Delta_{inst}b = \sqrt{\sum_{j} \left[\frac{\sum_{i} x_{i}^{2} - x_{j} \sum_{i} x_{i}}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \right]^{2} \cdot \Delta y_{j}^{2}}$$

Finalmente, se puede calcular el error total por la regla de cuadratura:

$$\Delta a = \sqrt{\Delta_{est} a^2 + \Delta_{inst} a^2} \tag{20}$$

$$\Delta b = \sqrt{\Delta_{est}b^2 + \Delta_{inst}b^2} \tag{21}$$

Entonces, tenemos que:

$$\Delta_{est}a_1 = 1.90 \times 10^{-10} \frac{mol}{Pa}$$

$$\Delta_{esc}a_1 = 3.78 \times 10^{-10} \frac{mol}{Pa}$$

$$\Delta_{est}b_1 = 1.38 \times 10^{-5} mol$$

$$\Delta_{esc}b_1 = 2.50 \times 10^{-5} mol$$

$$\Delta a_1 = 4.23 \times 10^{-10} \frac{mol}{Pa} \tag{22}$$

$$\Delta b_1 = 2.85 \times 10^{-5} mol \tag{23}$$

$$\Delta_{est} a_2 = 0.0035 \frac{1}{m^3 P a}$$

$$\Delta_{esc} a_2 = 0.0094 \frac{1}{m^3 P a}$$

$$\Delta_{est} b_2 = 257 \frac{1}{m^3}$$

$$\Delta_{esc} b_2 = 587 \frac{1}{m^3}$$

$$\Delta a_2 = 0.01 \frac{1}{m^3 P a}$$
(24)

$$\Delta b_2 = 640 \frac{1}{m^3} \tag{25}$$

$$\Delta_{est} a_3 = 35 \frac{T}{Pa}$$

$$\Delta_{esc}a_3 = 3.2418 \frac{T}{Pa}$$

$$\Delta_{est}b_3 = 10951T$$

$$\Delta_{esc}b_3 = 1014T$$

$$\Delta a_3 = 35.1 \frac{1}{m^3 Pa} \tag{26}$$

$$\Delta b_3 = 10951 \frac{1}{m^3} \tag{27}$$

Finalmente, no queremos los coeficientes directamente pero sí n, κ_T a P=100000atm y β a 300K. De esa manera, calculamos primero a n:

$$n = b_1 = 1.24 \times 10^{-3} \text{ mol} \tag{28}$$

Por lo que tenemos, trivialmente, que

$$\Delta n = \Delta b_1 = 0.029 \times 10^{-3} \text{ mol}$$
 (29)

Para κ_T , tenemos que:

$$\kappa_T = V\left(\frac{\partial 1/V}{\partial P}\right) = \frac{1}{a_2 P + b_2} a_2 = 1.00 \times 10^{-5}$$
(30)

$$\Delta \kappa_T = \sqrt{\left(\frac{\partial \kappa_T}{\partial a_2} \Delta a_2\right)^2 + \left(\frac{\partial \kappa_T}{\partial b_2} \Delta b_2\right)^2} = 0.02 \times 10^{-5}$$
 (31)

Finalmente, para β , tendremos que

$$\beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right) = \frac{1}{a_3 T + b_3} a_3 = 2.9 \times 10^{-3} K^{-1}$$
 (32)

$$\Delta\beta = \sqrt{\left(\frac{\partial\beta}{\partial a_3}\Delta a_3\right)^2 + \left(\frac{\partial\beta}{\partial b_3}\Delta b_3\right)^2} = 0.3 \times 10^{-3}$$
 (33)

9 Resultados

$$n = (1.24 \pm 0.03) \times 10^{-3} \text{mol}$$
 (34)

$$\kappa_T = (1.00 \pm 0.02) \times 10^{-5} \text{Pa}^{-1}$$
(35)

$$\beta = (2.9 \pm 0.3) \times 10^{-3} \text{K}^{-1}$$
 (36)

10 Conclusiones

11 Observaciones y sugerencias