

Internet of Things:

Desafios de Segurança e Privacidade

O que é a loT?

A Internet of Things (IoT) é uma rede de dispositivos mecânicos e digitais que comunicam entre si trocando informação e dados úteis, sem que seja necessário intervenções humanas.

Exemplos

- ☐ Uma pessoa estar numa determinada divisão da casa e a luz apagar-se quando a pessoa sai dela;
- Um frigorífico encomendar os alimentos que estão em falta;
- Um frigorífico sugerir o que podes cozinhar tendo em consideração os alimentos que nele existem;
- Receber uma notificação no telemóvel caso deixes a porta de casa aberta.

O objetivo da IoT é automatizar e tornar a vida dos seres humanos mais confortável.

Escola de Engenharia

Internet of Things - number of connected devices worldwide 2015-2025

Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions)

Principais tecnologias da IoT

- Electronic Product Code (EPC);
- ☐ Short-Range Wireless Technologies:
 - □ NFC, WiFI, Bluetooth, ZigBee, 6LoWPAN e Ultra WideBand;
- Wireless Sensor Network;
- Cloud Computing;
- **⊒** 1Pv6;
- Artificial Intelligence.

O que se pode esperar no futuro da IoT?

- Mais sensores;
- Mais Machine Learning;
- Segurança reforçada;
- A privacidade dos dados se torne uma prioridade.

Importância da Segurança e Privacidade

Áreas críticas onde a IoT é utilizada:

- Saúde;
- Localização;
- Sistemas Bancários;
- ☐ Infraestruturas (e-health, e-banking system e smart buildings).

Se os dados referentes a estas áreas forem de alguma forma comprometidos a privacidade do utilizador é afetada.

Arquitetura da IoT

A loT possui apenas de uma arquitetura genérica composta por 4 camadas:

- □ Camada de Percepção;
- □ Camada de Rede;
- Camada de Aplicação;
- Camada de Middleware.

Por não se tratar de uma arquitetura padronizada as diferentes camadas da IoT tornaram-se vulneráveis a diferentes tipos de ataques como por exemplo acessos não autorizados e vírus.

Principais Desafios

"Security by design is a mandatory prerequisite to securing the IoT macrocosm, the Dyn attack was just a practice run"

— James Scott, Sr. Fellow, Institute for Critical Infrastructure Technology

Camadas da IoT que podem ser afectadas

Camada de Percepção

Dispositivos colocados em espaços públicos facilmente atacados fisicamente.

Ataques de natureza invasiva podem pôr a nossa privacidade em causa (eavesdropping attack).

Camada de Rede/Middleware

- Ataques com objetivo de invalidar o sistema e destruir as comunicações entre dispositivos de receção e de envio.
- Exemplos destes ataques:DoS (Denial of Service).Mirai Botnet.

Camada de Aplicação

- Uso do protocolo CoAP (Constrained Application Protocol).
- Dependência da DTLS (Data Transport Layer Security) o que constitui um problema devido à sua falta de aperfeiçoamento.
- Perigo de fragmentação de mensagens e, consequentemente, perda de informação.

Encriptação

Para a mesma força de segurança:

ECC vs RSA

- 160-bits por chave vs 1024-bits por chave
- melhor performance
- menos complexidade computacional
- várias variantes

Standard equation for the elliptic curve:

E:
$$y^2 = x^3 + ax + b$$

E where
$$a = -1 e b = 1$$

Basic Operation	Average # of Cycles	Running Time
Addition	957	0.422 μs
Shifting (2 * k)	941	0.415 μs
Multiplication ($k * k_2$)	1,861	0.821 μs
Inversion	15,300	6.750 μs

Algoritmo de Montgomery Ladder

Quantum Secure Communication System

Tempo máximo de deteção: 150µs (mínimo 20µs).

A um ritmo de transmissão de 10 Mbit/s, seria de 1500 bits de informação, o equivalente a 187.5 caracteres.

