LAPORAN TUGAS BESAR III IF2211 Strategi Algoritma

Penerapan String Matching dan Regular Expression dalam Pembuatan ChatGPT Sederhana

Fakhri Muhammad M 13521045

Hosea Nathanael A 13521057

Razzan Daksana Y 13521087

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

2022/2023

Daftar Isi

BAB I : Deskripsi Tugas	3
BAB II : Landasan Teori	4
2.1. Algoritma Knuth-Morris-Pratt	4
2.2. Algoritma Boyer-Moore	4
2.3. Regular Expression	7
BAB III : Analisis Pemecahan Masalah	9
3.1. Pemecahan Masalah	9
3.2. Penerapan Algoritma KMP, BM, dan Regex	9
3.3.1 KMP dan BM	9
3.3.2 Regex	9
3.3. Pemecahan Masalah Setiap Fitur	10
3.4. Analisis Kemungkinan Kasus	10
3.4.1 Kasus Kalkulator	10
3.4.2 Kasus Kalender	11
3.4.3 Kasus Menambah dan Mengurangi Pertanyaan	12
3.4.4 Kasus Normal	12
3.4.5 Kasus yang tidak di handle	13
BAB IV : Implementasi dan Pengujian	14
4.1. Menjalankan Program	14
4.2. Spesifikasi dan Struktur Data, Fungsi, dan Prosedur Program	14
4.2.1 Fungsi dan Prosedur	14
4.3. Tata Cara Penggunaan	22
4.4. Eksperimen	23
4.5. Analisis Hasil Eksperimen	24
BAB V : Kesimpulan dan Saran	24
5.1. Kesimpulan	24
5.2. Saran	24
5.3. Refleksi	25
Daftar Pustaka	26
Lampiran	27

BAB I: Deskripsi Tugas

Dalam tugas besar 3 ini, anda diminta untuk membangun sebuah aplikasi Chat GPT sederhana dengan mengaplikasikan pendekatan QA yang paling sederhana tersebut. Pencarian pertanyaan yang paling mirip dengan pertanyaan yang diberikan pengguna dilakukan dengan algoritma pencocokan string **Knuth-Morris-Pratt (KMP)** dan **Boyer-Moore (BM)**. **Regex** digunakan untuk menentukan format dari pertanyaan (akan dijelaskan lebih lanjut pada bagian fitur aplikasi). **Jika tidak ada** satupun pertanyaan pada database **yang** *exact match* dengan pertanyaan pengguna melalui algoritma KMP ataupun BM, maka gunakan pertanyaan termirip dengan kesamaan setidaknya 90%. Apabila tidak ada pertanyaan yang kemiripannya di atas 90%, maka chatbot akan memberikan maksimum 3 pilihan pertanyaan yang paling mirip untuk dipilih oleh pengguna.

BAB II: Landasan Teori

2.1. Algoritma Knuth-Morris-Pratt

Merupakan algoritma pencocokan *string* dengan urutan *left-to-right*. Pada algoritma ini, jika sebuah ketidakcocokan ditemukan, *pattern* pencocokan akan digeser sebanyak panjang karakter yang sudah dicocokkan dikurang ukuran terbesar *prefix* yang merupakan *suffix* pada *pattern* yang sudah dicocokkan. Contoh:

Gambar 2.1.1 Pencocokan string menggunakan algoritma KMP

Pada gambar 2.1.1 dapat dilihat bahwa terdapat ketidakcocokan pada karakter ke-6, sehingga banyak karakter yang sudah diperiksa adalah 5. Pada *pattern* tersebut, *prefix* yang merupakan *suffix* juga adalah string "ab". Maka ketika ditemukan ketidak cocokan, *pattern* akan digeser sejauh 5 - 3 = 2 kemudian pencocokan dilakukan kembali.

2.2. Algoritma Boyer-Moore

Algoritma Boyer-Moore merupakan algoritma pencocokan *string* dengan teknik *the looking-glass*, yaitu pencocokan dilakukan secara mundur pada *pattern* yang diperiksa, dan *character-jump*. Untuk melakukan pencocokan *string* dengan algoritma ini, diperlukan data posisi paling terakhir (*last occurence*) dari karkater yang ada pada *patern*.

Terdapat 3 kasus yang dapat terjadi ketika ditemukan ketidakcocokan. Kasus pertama, ketika pada teks ditemukan ketidakcocokan, maka *pattern* digeser sehingga karakter yang tidak IF2211 Strategi Algoritma | Tugas Besar 3

cocok tersebut sejajar dengan *last occurence* dari karakter tersebut pada *pattern* kemudian pencocokan kembali dilanjutkan.

Gambar 2.2.1 Kasus pertama ketidakcocokan pada algoritma BM

Kasus kedua adalah ketika terjadi ketidakcocokan pada teks tetapi *last occurence* dari karakter tersebut sudah dilewati, maka *pattern* hanya digeser satu karakter ke kanan dan pencocokan dilakukan kembali.

Gambar 2.2.2 Kasus kedua ketidakcocokan pada algoritma BM

Kasus terakhir adalah ketika kasus pertama dan kedua tidak terpenuhi atau dalam kata lain bahwa ketika ketidakcocokan ditemukan pada teks dan karakter tersebut tidak terdapat pada *pattern*, maka *pattern* digeser sehingga karakter pertama *pattern* berada satu karakter di depan karakter yang tidak cocok tersebut.

Gambar 2.2.3 Kasus ketiga ketidakcocokan pada algoritma BM

2.3. Regular Expression

Regular Expression atau Regex merupakan *string* yang menyatakan pola untuk menyocokkan *string* yang sesuai dengan pola tersebut. Pada algoritma-alogritma sebelumnya, pencocokan hanya dilakukan untuk menemukan *exact match* pada *string*. Dengan menggunakan Regular Expression, kita dapat menemukan *string* pada sebuah teks yang sesuai dengan pola yang diinginkan. Berikut beberapa aturan penulisan pola Regular Expression:

Gambar 2.3.1 Aturan penulisan pola pada Regex

Gambar 2.3.2 Contoh string matching dengan Regex

BAB III: Analisis Pemecahan Masalah

3.1. Pemecahan Masalah

Pada tugas ini, diperlukan sebuah website yang menjadi sarana interaksi pengguna dengan sistem dengan menanyakan pertanyaan. Program ini juga harus dapat menyimpan pembicaraan antara sistem dan pengguna yang dapat diakses kembali di lain waktu. Pertanyaan-pertanyaan yang dapat ditanyakan kepada sistem dapat ditambahkan atau dikurangi oleh pengguna melalui pesan yang disampaikan ke sistem dan ketika pengguna menanyakan pertanyaan yang tidak terdapat exact match dan berada di bawah 90% kecocokan, maka sistem akan menyarankan pertanyaan kepada pengguna, jika lebih dari atau sama dengan 90% maka jawaban dari pertanyaan yang paling sesuai ditampilkan oleh sistem. Selain pertanyaan yang ditambahkan oleh pengguna pada sistem, sistem juga harus dapat menjawab pertanyaan perhitungan sederhana seperti kalkulator dan juga menentukan hari dari tanggal yang diberikan pengguna dengan tidak case sensitive. Program juga harus bisa menyimpan history pembicaraan antara pengguna dengan sistem pada basis data.

3.2. Penerapan Algoritma KMP, BM, dan Regex

3.3.1 KMP dan BM

Algoritma KMP digunakan untuk mencari exact match antara pertanyaan yang diberikan pengguna dan pertanyaan yang ada di database. Jika ditemukan kesamaan persis, maka jawaban yang yang berkorespondensi dengan pertanyaan tersebut di database yang akan di output kepada pengguna. Hal yang sama juga dilakukan pada Algoritma BM jika pengguna memilih pilihan algoritma tersebut.

3.3.2 Regex

Regex digunakan untuk mencari format pertanyaan yang sesuai sehingga program bisa memakai algoritma yang sesuai untuk menghandle kasus tersebut.

Sebagai contoh untuk mengidentifikasi sebuah pertanyaan matematika untuk di handle calculator, regex yang digunakan merupakan seperti ini

$$((hitung|hasil|berapa)?\s*([0-9\+\-*/^\s\(\)\.]+)(=?[\?\s]*))$$

Regex tersebut bisa dipakai untuk menentukan banyak format ekspresi matematika yang mengandung digit, +, -, *, /, ., (, atau) dan mungkin berawalan 'hitung', 'hasil, atau 'berapa' serta memiliki akhiran = atau ?.

Selain itu regex juga dipakai pada file calculator.ts untuk mengidentifikasi format digit yang memiliki titik (.) dan yang tidak memiliki titik. Hal ini dipakai lebih lanjut untuk mengevaluasi persamaan matematika di calculator.ts

3.3. Pemecahan Masalah Setiap Fitur

Untuk membentuk *website* ini, digunakan Next js dan Chakra UI untuk mengimplementasikan *Frontend* dan Node.js pada *Backend*. Penyimpanan data pertanyaan dan *history* diimplementasikan menggunakan basis data dengan DBMS MySQL. Pencocokan pertanyaan pada *input* pengguna menggunakan algoritma KMP, BM, dan Regex, dilakukan pada keseluruhan *input* pengguna dan dilakukan pada *Backend*.

3.4. Analisis Kemungkinan Kasus

Pada tugas besar ini terdapat beberapa permasalahan yang harus diidentifikasi dan diatasi. Akan dibahas kemungkinan-kemungkinan kasus permasalahan tersebut.

3.4.1 Kasus Kalkulator

a. Kasus validasi pertanyaan kalkulator yang valid
 Program menerima pertanyaan untuk kalkulator dengan berbagai format, seperti contohnya:

Pertanyaan	Jawaban
Berapa 1+3-4 = ???	The answer is 0
1+3-4	The answer is 0
hITUNG 1 + 4 * 4 = ?????????	The answer is 17

b. Kasus validasi ekspresi matematika yang valid

Program akan mengidentifikasi ekspresi matematika yang valid, dan untuk kebanyakan bisa juga mengirim pesan error yang sesuai. Sebagai contoh:

Pertanyaan	Jawaban
2/5+5	The answer is 5.4
.5+.5+5.	The answer is 6
1+()+3	Math expression is invalid: Parenthesis without number

Program kami juga menerima nilai float dan mengidentifikasi apakah ada nomor dengan dua tanda titik

c. Kasus perhitungan Matematika yang tidak valid
Program akan mengidentifikasi operasi matematika yang tidak valid, sebagai contoh

Pertanyaan	Jawaban
5/0	Math expression is invalid: Parenthesis without number

3.4.2 Kasus Kalender

a. Kasus validasi pertanyaan kalendar yang valid
 Program menerima pertanyaan untuk kalender dengan berbagai format, seperti contohnya:

Pertanyaan	Jawaban
5/5/2023	Tanggal 5/5/2023 adalah hari Jumat
05/5/2023	Tanggal 5/5/2023 adalah hari Jumat

IF2211 Strategi Algoritma | Tugas Besar 3

hari apa 05/5/2023	Tanggal 5/5/2023 adalah hari Jumat

Kasus validasi tanggal kalender yang valid Program akan mengidentifikasi tanggal yang valid seperti berikut

Pertanyaan	Jawaban
1/1/10000	Tanggal 1/1/10000 adalah hari Sabtu
32/1/10000	Date is invalid: Invalid day
1/1/1500	Date is invalid: Only consider Gregorian calendar after 15 October 1582

Program tidak menerima tanggal sebelum 15 oktober 1582 karena pada tanggal tersebut kalender gregorian dimulai. Program juga tidak menerima tanggal dengan tahun lebih dari 5 digit

3.4.3 Kasus Menambah dan Mengurangi Pertanyaan

Kasus menambah dan mengurangi pertanyaan dari database cukup simpel untuk validasi nya, yaitu semua masukan dari user yang mengikuti pola berikut

Kasus	Pola
Menambah Pertanyaan	Tambahkan pertanyan xxx dengan jawaban yyy
Mengurangi Pertanyaan	Hapus pertanyaan xxx

3.4.4 Kasus Normal

Jika masukan user tidak memenuhi semua pola diatas, maka akan langsung dicek ke database apakah ada pertanyaan yang sesuai atau dengan similarity lebih dari 90 persen. Jika tidak ada maka akan menampilkan tiga pertanyaan dengan similarity tertinggi

3.4.5 Kasus yang tidak di handle

- a. Kasus unary operator tidak di handle pada program kalkulator yang kami buat sehingga ekspresi matematika "-1-1" akan dikira ekspresi matematika yang tidak valid
- b. Kasus dalam bentuk "DD/MM/YYYY" akan secara default dianggap sebagai tanggal sehingga jika ingin mengkalkulasi nilai 40/12/2003 perlu menambah kata 'hitung' diawal masukan

BAB IV : Implementasi dan Pengujian

4.1. Menjalankan Program

Untuk memulai program, pastikan berada pada *root directory* dari *repository* kemudian gunakan *command* **npm i** untuk instalasi keperluan program dan gunakan **npm run dev** pada terminal untuk memulai programnya. Pastikan sudah memiliki Node.js sebelum memulai program.

4.2. Spesifikasi dan Struktur Data, Fungsi, dan Prosedur Program

4.2.1 Fungsi dan Prosedur

1. BM

ВМ		
String matching dengan algoritma Boyer-Moore		
Input	Output	
Text : String Pattern : String	Index karakter pertama pada string yang sudah cocok dengan pattern, -1 jika tidak ditemukan	

2. computeLastOccurrence

computeLastOccurrence		
Membuat map yang menyimpan data kemunculan terakhir dari sebuah karakter		
Input	Output	
Pattern : string	Map <string, number=""> yang menyimpan kemunculan terakhir suatu karakter pada pattern</string,>	

3. KMP

КМР				
String	matching	dengan	algoritma	Knuth-Morris-Pratt

Input	Output
Text : String Pattern : String	Mengembalikan indeks pertama dari pattern di text, -1 jika tidak ditemukan

4. levenshetain_distance

levenshetain_distance		
String matching dengan algoritma levenshtein		
Input	Output	
s : String t : String	Mengembalikan levenshtein distance dari pencocokan string	

5. similarityScore

similarityScorre		
Menentukan tingkat kesamaan string dengan pattern		
Input	Output	
•	Output	

6. dateQuestionHandler

dateQuestionHandler		
Memproses pertanyaan tentang tanggal dari pengguna		
Input	Output	
Text : String	Mengembalikan hari dari tanggal yang diberikan	

7. validateDate

validateDate						
	Memvalidasi	input	tanggal	yang	diberikan	

Input	Output
Date : number[]	Mengembalikan boolean valid atau tidak dan pesannya

8. gaussAlgorithm

gaussAlgorithm		
Menentukan hari dari tanggal yang telah diberikan		
Input	Output	
-	Output	

9. op

ор		
Melakukan penghitungan pada dua angka dan operatornya		
Input	Output	
A : number	Mengembalikan hasil operasi	

10. inputPrecendence

inputPrecedence		
Menentukan prioritas operator		
Input	Output	
C : string	Mengembalikan nilai prioritas operator	

11. stackPrecedence

stackPrecedence		
Menentukan prioritas operator pada stack		
Input	Output	

C : string	Mengembalikan nilai prioritas operator
------------	--

12. processInfix

processInfix		
Memproses input string yang diberikan untuk sesuai dengan ketentuan operasi matematika		
Input	Output	

13. infixToPostfix

infixToPostfix		
Memproses perhitungan dengan implementasi stack		
Input	Output	
Exp : string	Mengembalikan stack perhitungan	

14. evaluatePostfix

evaluatePostfix	
Memproses per	rhitungan pada stack
Input	Output
Exp : string	Mengembalikan hasil perhitungan matematika

15. isDot

		isI	Oot		
Menentukan apakah	n seb	uah	karakter	merupakan	titik
Input				Output	

Mengembalikan true jika c merupakan titik dan false jika tidak

16. isDigitWithDot

isDigitWithDot	
Menentukan apakah sti	ring merupakan angka desimal
Input	Output
C : string	Mengembalikan true jika c merupakan string angka desimal

17. isOperator

is	sOperator
Menentukan apakah	karakter sebuah operator
Input	Output
C : string	Mengembalikan true jika c adalah operator dan false jika tidak

18. isParenthesis

isP	arenthesis
Menentukan apaka	h karakter tanda kurung
Input	Output
C : string	Mengembalikan true jika c adalah tanda kurung dan false jika tidak

19. isDigit

		isDiq	git		
Menentukan	apakah	string	merupakan	sebuah	angka

Input	Output
C : string	Mengembalikan true jika string adalah angka dan false jika tidak

20. isNumber

	isDigit
Menentukan apakah	n string merupakan angka
Input	Output
C : string	Mengembalikan true jika string adalah angka dan false jika tidak

21. isLeftParenthesis

isLef	tParenthesis
_	rakter merupakan tanda buka rung
Input	Output

${\bf 22.}\ is Right Parenthesis$

isRig	ntParenthesis
l -	rakter merupakan tanda tutup rung
Input	Output

23. addQnAHandler

add	QnAHandler
	nambahan set pertanyaan dan ari pengguna
Input	Output

24. deleteQnAHandler

dele	teQnAHandler
Memproses string penghapusan set pertanyaan dan jawaban dari pengguna	
Input	Output

25. bracketMatcher

bracketMatcher		
Memproses input tanda kurung sehingga selalu berpasangan		
Input	Output	
text : string	Mengembalikan true jika penggunaan kurung sudah sesuai dan false jika tidak	

26. mathQuestionHandler

mathQuestionHandler		
Memproses string perhitungan ekspresi matematika		
Input	Output	

27. deleteQnA

deleteQnA		
Menghapus set pertanyaan	dan jawaban pada basis data	
Input	Output	
Id_reference : number	-	

28. addQnA

addQnA		
Menambahkan set pertanyaan	dan jawaban pada basis data	
Input	Output	
newQuestion : string newAnswer : string	_	

29. mathQuestionHandler

mathQuestionHandler		
Prosesor utama input pengguna untuk menentukan jawaban dari sistem		
Input	Output	
Pattern : string isKMP : boolean	Jawaban dari pertanyaan, pesan sukses atau gagal penambahan atau penghapusan pertanyaan	

4.3. Tata Cara Penggunaan

Pada laman ini ditampilkan laman utama, pengguna dapat menekan tombol New Chat untuk membuka satu sesi *chat* untuk menggunakan program

Pengguna dapat mengubah ataupun menghapus sesi chat dengan menekan tombol trash dan pencil. Dengan menekan satu sesi *chat* pengguna akan ditampilkan untuk menggunakan program yang penulis buat. Lalu masukkan text ke dalam input box dan

pengguna dapat menekan tombol enter pada keyboard ataupun tombol pesawat untuk mengirim pertanyaan ke program, pengguna juga dapat mengubah toggle algoritma yaitu terletak di sebelah kiri input box.

4.4. Eksperimen

4.5.1. Penambahan pertanyaan

4.5.2. Penghapusan pertanyaan

4.5.5. Kalkulator

IF2211 Strategi Algoritma | Tugas Besar 3

4.5.6. Penentuan hari

4.5. Analisis Hasil Eksperimen

BAB V: Kesimpulan dan Saran

5.1. Kesimpulan

Dapat disimpulkan bahwa implementasi program pembicaraan antara pengguna dengan sistem dapat diterapkan dengan penggunaan algoritma Knuth-Morris-Pratt, Boyer-Moore, dan Regular Expression menggunakan aplikasi berbasis *web*. Dengan algoritma KMP, BM, dan RE, *input* pertanyaan dan perintah lainnya dari pengguna dapat dicocokan sehingga sistem dapat menemukan jawaban yang sesuai. Interaksi dari pengguna dengan sistem juga dapat diimplementasikan menggunakan *web* dan basis data untuk ditampilkan dan disimpan.

5.2. Saran

Penulis menyarankan untuk pengembang selanjutnya untuk kode yang dibuat pada program ini dikembangkan dari sisi modularitas, strategi, penampilan dan kerapihannya. Penulis juga menyarankan untuk eksplorasi dan juga pemanfaatan waktu yang baik pada pengembangan program.

5.3. Refleksi

Penulis merasa dengan adanya tugas ini, penulis dapat mempelajari dan memperdalam pengetahuannya tentang algoritma *string matching* dan juga *web development*. Tugas ini juga membantu penulis untuk mengeksplorasi dan berhasil mengimplementasikan teori yang telah dipelajari pada permasalahan yang sebenarnya.

Daftar Pustaka

- 1. Spesifikasi Tugas Besar 3 Strategi Algoritma
- 2. Bahan Kuliah IF2211 Strategi Algoritma Pencocokan String (String/Pattern Matching)
- 3. Bahan Kuliah IF2211 Strategi Algoritma Pencocokan String dengan Regular Expression
- 4. Wagner Fisher Algorithm
- 5. Menentukan hari pada tanggal

Lampiran

Link Repository GitHub: https://github.com/razzanYoni/tubes3 13521045.git

Link deployment: https://tubes3-13521045.vercel.app/

Link Video: https://youtu.be/iigJfOSzfbU