第十八届全国青少年信息学奥林匹克联赛初赛

(提高组 C 语言试题)

竞赛时间: 2012年10月13日14:30~16:30

选手注意:

- 试题纸共有10页,答题纸共有2页,满分100分。请在答题纸上作答,写在试题纸上一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料
- 一、单项选择题(共10题,每题1.5分,共计15分;每题有且仅有一个正确选项)
- 1. 目前计算机芯片(集成电路)制造的主要原料是(),它是一种可以在沙子中提炼出的物质。
- B. 铜 C. 锗
- D. 铝
- 2. () 是主要用于显示网页服务器或者文件系统的 HTML 文件的内容,并让用户与这些文件交互 的一种软件。
 - A. 资源管理器 B. 浏览器 C. 电子邮件

- D. 编译器

- 3. 目前个人电脑的()市场占有率最靠前的厂商包括 Intel、AMD 等公司。
 - A. 显示器
- B. CPU C. 內存
- D. 鼠标
- 4. 无论是 TCP/IP 模型还是 OSI 模型,都可以视为网络的分层模型,每个网络协议都会被归入某一层中。 如果用现实生活中的例子来比喻这些"层",以下最恰当的是()。
 - A. 中国公司的经理与波兰公司的经理交互商业文件

第4层	中国公司经理		波兰公司经理
	† †		↑ ↓
第3层	中国公司经理秘书	;	波兰公司经理秘书
	↑ ↓		↑ ↓
第2层	中国公司翻译		波兰公司翻译
	↑ ↓		↑ ↓
第1层	中国邮递员	← →	波兰邮递员

B. 军队发布命令

第4层		司令						
		· +						
第3层	军长1				军长2			
		†				1	,	
第2层	师	师长1 师长2			师长3 师长4			≲ 4
	+ +			ļ	,	ŀ		
第1层	团长1	团长2	团长3	团长4	团长5	团长6	团长7	团长8

C. 国际会议中,每个人都与他国地位对等的人直接进行会谈

第4层	英国女王	<	瑞典国王
第3层	英国首相	* - >	瑞典首相
第2层	英国外交大臣	< ->	瑞典外交大臣
第1层	英国驻瑞典大使	← →	瑞典驻英国大使

	第4层	奥运会	
		†	
	 第3层	全运会	
		1	
	第2层	省运会	
		†	
	 第1层	市运会	
6.		: 国宾夕法尼亚大学的	B. 陷入死循环 D. 排序时间退化为平方级 的 ENIAC 属于 () 计算机。 C. 集成电路 D. 超大规模集成电路
7.	A. 系统分配的栈	空间溢出	的层数过多,会因为()引发错误。 B. 系统分配的堆空间溢出 D. 系统分配的链表空间溢出
		地址总线是32位,	寻址的内存空间大小,例如地址总线为 16 位,其最大的可寻址则理论上最大可寻址的内存空间为()。 C. 1GB D. 4GB
	以下不属于 3G(A. GSM	第三代移动通信技	术)标准的是()。 DMA C.CDMA2000 D.WCDMA
些	原理移植于新兴的	工程技术中。以下	术发展道路。人们研究生物体的结构、功能和工作原理,并将这 关于仿生学的叙述,错误的是() B. 由研究蜘蛛网,发明因特网

C. 由研究海豚,发明声纳 D. 由研究电鱼,发明伏特电池

二、不定项选择题(共10题,每题1.5分,共计15分;每题有一个或多个正确选项,多选或少选均不 得分)

1. 如果对于所有规模为 n 的输入,一个算法均恰好进行()次运算,我们可以说该算法的时间复

A. 2^{n+1} B. 3^n C. $n*2^n$ D. 2^{2n}

2. 从顶点 A。出发,对有向图 ()进行广度优先搜索 (BFS)时,一种可能的遍历顺序是 A_0, A_1, A_2, A_3, A_4 .

3. 如果一个栈初始时为空,且当前栈中的元素从栈顶到栈底依次为 a,b,c(如右图所示),另有元素 d 已经出栈,则可能的入栈顺序是()。

A. a, b, c, d

B. b, a, c, d

C. a, c, b, d

D. d, a, b, c

4. 在计算机显示器所使用的 RGB 颜色模型中, ()属于三原色之一。

B. 蓝色

C. 10

D. 15

5. 一棵二叉树一共有 19 个节点,其叶子节点可能有()个。

В. 9

C. 紫色

D. 绿色

栈底

6. 已知带权有向图 G 上的所有权值均为正整数,记顶点 u 到顶点 v 的最短路径的权值为 d(u,v)。若 v_1, v_2, v_3, v_4, v_5 是图 G 上的顶点,且它们之间两两都存路径可达,则以下说法正确的有 ()。

A. v, 到 v, 的最短路径可能包含一个环

- B. $d(v_1, v_2) = d(v_2, v_1)$
- C. $d(v_1, v_3) \le d(v_1, v_2) + d(v_2, v_3)$
- D. 如果 $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5$ 是 v_1 到 v_5 的一条最短路径,那么 $v_2 \rightarrow v_3 \rightarrow v_4$ 是 v_2 到 v_4 的一 条最短路径

7. 逻辑异或(⊕)是一种二元运算,其真值表如下所示。

a	ь	$a \oplus b$
False	False	False
False	True	True
True	False	True
True	True	Flase

以下关于逻辑异或的性质,正确的有()。

- A. 交換律: $a \oplus b = b \oplus a$
- B. 结合律: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- C. 关于逻辑与的分配律: $a \oplus (b \wedge c) = (a \oplus b) \wedge (a \oplus c)$
- D. 关于逻辑或的分配律: $a \oplus (b \lor c) = (a \oplus b) \lor (a \oplus c)$
- 8. 十进制下的无限循环小数(不包括循环节内的数字均为 0 成均为 9 的平凡情况),在二进制下有可能是()。
 - A. 无限循环小数(不包括循环节内的数字均为0或均为9的平凡情)
 - B. 无限不循环小数
- C. 有限小数

- D. 整数
- 9. () 是目前互联网上常用的 E-mail 服务协议。
 - A. HTTP
- B. FTP
- C. POP3
- D. SMTP
- 10. 以下关于计算复杂度的说法中,正确的有()。
 - A. 如果一个问题不存在多项式时间的算法,那它一定是 NP 类问题
 - B. 如果一个问题不存在多项式时间的算法,那它一定不是 P 类问题
 - C. 如果一个问题不存在多项式空间的算法,那它一定是 NP 类问题
 - D. 如果一个问题不存在多项式空间的算法,那它一定不是 P 类问题
- 三、问题求解(共2题,每题5分,共计10分)


```
三、阅读程序写结果。(共4题,每题8分,共计32分)
1.
#include <stdio.h>
int n, i, temp, sum, a[100];
int main()
{
   scanf("%d", &n);
   for(i=1;i \le n;i++)
       scanf("%d", &a[i]);
   for(i=1;i \le n-1;i++)
        if(a[i] > a[i+1])
        {
           temp = a[i];
           a[i] = a[i+1];
           a[i+1] = temp;
        }
   for(i=n;i>=2;i--)
        if(a[i] < a[i-1])
        {
           temp = a[i];
           a[i] = a[i-1];
           a[i-1] = temp;
       }
   sum = 0;
   for(i=2;i \le n-1;i++)
       sum += a[i];
   printf("%d\n", sum/(n-2));
   return 0;
}
输入:
```

8

```
40 70 50 70 20 40 10 30
输出: _____
2.
#include <stdio.h>
int n, i, ans;
int gcd(int a, int b)
   if (a % b==0)
       return b;
   else return gcd(b, a % b);
}
int main()
{
   scanf("%d", &n);
   ans = 0;
   for (i=1 ; i \le n; i++)
        if (\gcd(n, i) = i)
            ans++;
   printf("%d\n", ans);
   return 0;
}
输入: 120
输出: _____
3.
#include<stdio.h>
const int SIZE =20;
int data[20];
int n, i, h, ans;
void merge()
   data[h-1] = data[h-1] + data[h];
   h---;
   ans++;
}
int main()
```

```
{
   scanf("%d", &n);
   h = 1;
   data[h] = 1;
   ans = 0;
   for (i=2; i \le n; i++)
       h++;
       data[h] = 1;
       while (h>1 && data[h]==data[h-1])
           merge();
   }
   printf("%d\n", ans);
   return 0;
}
(1)
输入: 8
输出: _____ (4分)
(2)
输入: 2012
输出: _____ (4分)
4.
#include <stdio.h>
#include <string.h>
int left[20], right[20], father[20];
char s1[20], s2[20], s3[20];
int n, ans, tmpLen;
void calc(int x, int dep)
    ans = ans + dep*(s1[x]-'A'+1);
    if(left[x])=0) calc(left[x], dep+1);
    if(right[x])=0) calc(right[x], dep+1);
}
void check(int x)
{
    if(left[x])=0) check(left[x]);
    tmpLen = strlen(s3);
```

```
s3[tmpLen] = s1[x];
    s3[tmpLen+1] = '\0';
    if(right[x])=0) check(right[x]);
}
void dfs(int x, int th)
    if(th == n)
        s3[0] = ' \0';
        check(0);
        if(strcmp(s2, s3) == 0)
            ans = 0;
            calc(0, 1);
            printf("%d\n", ans);
        }
        return ;
    if (left[x] == -1 \&\& right[x] == -1)
    {
        left[x] = th;
        father[th] = x;
        dfs(th, th+1);
        father[th] = -1;
        left[x] = -1;
    }
    if(right[x] = -1)
        right[x] = th;
        father[th] = x;
        dfs(th, th+1);
        father[th] = -1;
        right[x] = -1;
    }
    if (father[x] >= 0)
        dfs(father[x], th);
}
```

```
{
   scanf("%s", s1);
   scanf("%s", s2);
   n = strlen(s1);
   memset(left, -1, sizeof(left));
   memset(right, -1, sizeof(right));
   memset(father, -1, sizeof(father));
   dfs(0, 1);
}
输入:
ABCDEF
BCAEDF
输出:
五、完善程序(第1题第2空3分,其余每空2.5分,共计28分)
1. (排列数)输入两个正整数 n, m(1 \le n \le 20, 1 \le m \le n), 在1 \sim n 中任取 m 个数,按字典序从小到
大输出所有这样的排列。例如
输入: 3 2
输出: 12
     1 3
     2 1
     2 3
     3 1
     3 2
#include <stdio.h>
#include <string.h>
#define SIZE=25
int data[SIZE], used[SIZE];
int n, m, i, j, k;
int flag;
int main()
{
   scanf("%d%d", &n, &m);
   memset(used, 0, sizeof(used));
   for(i=1;i<=m;i++)
```

```
{
   data[i]=i;
   used[i]=1;
}
f1ag=1;
while(flag==1)
   for(i=1;i<=m-1;i++) printf("%d ", data[i]);
   printf("%d\n", data[m]);
   flag= ① ;
   for(i=m;i>=1;i--)
           ②;
        for(j=data[i]+1; j<=n; j++)
           if(!used[j])
               used[j]=1;
               data[i]= ③ ;
               flag=1;
               break;
        if(flag=1)
            for (k=i+1; k \le m; k++)
               for (j=1; j \le 4); j++)
                if(!used[j])
                {
                    data[k]=j;
                   used[j]=1;
                   break;
                ⑤ ;
return 0;
```

2. (新壳栈)小 Z 设计了一种新的数据结构"新壳栈"。首先,它和传统的栈一样支持压入、弹出操作。 此外,其栈顶的前 c 个元素是它的壳,支持翻转操作。其中, c>2 是一个固定的正整数,表示壳的厚度。 小 Z 还希望,每次操作,无论是压入、弹出还是翻转,都仅用与 c 无关的常数时间完成。聪明的你能帮助她编程实现"新壳栈"吗?

程序期望的实现效果如以下两表所示。其中,输入的第一行是正整数 c, 之后每行输入都是一条指令。另外,如遇弹出操作时栈为空,或翻转操作时栈中元素不足 c 个, 应当输出相应的错误信息。

指令	涵义
1[空格]e	在栈顶压入元素 e
2	弹出(并输出)栈顶元素
3	翻转栈顶的前 c 个元素
0	退出

表 1: 指令的涵义

输入	输出	栈中的元素 (左为栈底,右为栈顶)	说明
3			输入正整数 c
1 1		1	压入元素 1
1 2		1 2	压入元素 2
1 3		1 2 3	压入元素 3
1 4		1 2 3 4	压入元素 4
3		1 4 3 2	翻转栈顶的前 c 个元素
1 5		1 4 3 2 5	压入元素 5
3		1 4 <u>5 2 3</u>	翻转栈顶的前 c 个元素
2	3	1 4 5 2	弹出栈顶元素 3
2	2	1 4 5	弹出栈顶元素 2
2	5	1 4	弹出栈顶元素 5
3	错误信息	1 4	由于栈中元素不足 c 个,无法翻转,故操作失败,输出错误信息
2	4	1	弹出栈顶元素 4
2	1	空	弹出栈顶元素 1
2	错误信息	空	由于栈中元素不足 c 个,无法翻转,故操作失败,输出错误信息
0		空	退出

表 2: 输入输出样例

#include <stdio.h>

#define NSIZE = 100000

#define CSIZE = 1000

int n, c, r, tail, head, s[NSIZE], q[CSIZE], direction, empty;

//数组 s 模拟一个栈, n 为栈的元素个数

//数组q模拟一个循环队列,tail 为队尾的下标, head 为队头的下标

int previous(int k)

```
{
   if (direction==1)
       return ((k+c-2) \% c) + 1;
   else
      return (k \% c) + 1;
}
int next(int k)
   if (direction = 1)
   else
      return ((k+c-2) \% c)+1;
}
void push()
   int element;
   scanf("%d", &element);
   if (next(head) == tail)
       n++;
       tail = next(tail);
   if (empty ==1)
       empty = 0;
   else
       head = next(head);
     \underline{3} = element;
}
void pop()
{
   if (empty == 1)
       printf("Error: the stack is empty!\n");
       return ;
   if (tail = head)
       empty = 1;
   else
       head = previous(head);
       if (n > 0)
```

```
{
            tail = previous(tail);
            \underline{\quad \quad } = s[n];
            n--;
        }
   }
void reverse()
    int temp;
    if (<u>6</u> == tail )
        direction = 1 - direction;
        temp = head;
        head = tail;
        tail = temp;
    }
    else
      printf("Error:less than %d elements in the stack!\n", c);
int main()
    scanf("%d", &c);
    n = 0;
    tail = 1;
    head = 1;
    empty = 1;
    direction = 1;
    do {
        scanf("%d",&r);
        switch (r) {
            case 1 : push(); break;
            case 2 : pop();break;
            case 3 : reverse();break;
        }
    } while (r != 0);
    return 0;
}
```

第十八届全国青少年信息学奥林匹克联赛初赛

提高组参考答案

一、单项选择题(共10题,每题1.5分,共计15分)

1	2	3	4	5	6	7	8	9	10
A	В	В	A	D	A	A	D	A	В

二、不定项选择题(共10题,每题1.5分,共计15分,多选或少选均不得分)

1	2	3	4	5
A	AD	AD	BD	ABC
6	7	8	9	10
CD	AB	A	CD	BD

- 三、问题求解(共2题,每题5分,共计10分)
- 1. 256
- 2. 5536
- 四、阅读程序写结果(共4题,每题8分,其中第3题的2个小题各4分,共计32分)
- 1. 41
- 2. 16
- 3. (1)7 (4分)
 - (2) 2004 (4分)
- 4. 55

五、完善程序(第1题第2空3分,其余每空2.5分,共计28分)以下各程序填空可能还有一些等价的写法,各省赛区可请本省专家审定和上机验证,可以不上报 CCF NOI 科学委员会检查。

		Pascal 语言	C++语言	C 语言				
1	(1)	fa.	0					
(2	2	used[data[i]] := false	used[data[i]] = false	used[data[i]] = 0				
	3	ė.	j					
	4	n						
	(5)	break						
2 1	1	next := (k mod c) + 1	return (k % c) + 1					
	2	s[n] := q[tail] $s[n] = q[tail]$						
	3	q[head]						
	4	q[head]						
	(5)	q[tail]						
	6	next (head)						

其中, Pascal 语言和 C++语言中的 false 可以用 0 代替: 第2 题第1 空中的圆括号可以省略。