Cahier des charges pour projet concept. créative & libre en électro

Conception d'un Robot télécommandé en LEGO

Membres du groupe:

- Schellenbaum Mathieu L3 informatique
- Chibani Rayane L3 informatique

Enseignant encadrant: Urban Jean-Philippe

Table des matières

I. Objectifs du projet	2
II. Etapes du projet	2
III. Délais	2
IV. Défis du projet	2
V. Logiciels	2
VI. Equipements	2
VII. Liste des pièces utilisées	3
VIII. Liste des pièces imprimées	4
IX. Branchement	4
X Sources	5

I. Objectifs du projet

Conception d'un robot DIY Biped en pièces de LEGO et contrôlé par un Joystick à distance.

II. Etapes du projet

- 1. Concevoir et construire le robot en pièces de LEGO
- Concevoir et construire les deux circuits Arduino : l'un pour le robot et l'autre pour la télécommande
- 3. Implémentation des codes en C++ sous Arduino IDE
- 4. Tests et améliorations du projet
- 5. Préparation à la soutenance en décembre

III. Délais

Le projet est prévu pour s'étaler sur 11 semaines.

IV. Défis du projet

Établir la liaison série sans fil avec l'environnement d'Arduino pour envoyer les commandes sans utiliser un module Bluetooth (BT HC06 par exemple)

V. Logiciels

- Tinkercad : logiciel de modélisation 3d (.stl)
- LEGO Digital Designer : création de modèles Lego virtuelles (.ldr)
- Ultimaker Cura : logiciel libre de découpe pour impression 3D

VI. Equipements

- Arduino UNO
- Arduino NANO
- ServomotorS SG90
- LoRa (Long Range) Grove E5
- Batterie 9v
- BreadBoard
- BreadBoard, Mini Size
- Fils connecteurs mâle femelle/mâle mâle/femelle femelle
- Câble usb-a usb-b
- Joystick
- Capteur sonore GT1146
- Mini motor driver
- TT Gear Motor

VII. Liste des pièces utilisées

Noms des pièces:

- A. Frame, 5x7-module
- B. Double bevel gear, 36-tooth
- C. Bevel gear, 12-tooth
- D. Beam, 9-module
- E. Beam, 5-module
- F. Beam, 3-module
- G. Angular beam, 3x5 module
- H. Bushing, 1-module
- I. Axle, 8-module
- J. Angular block 2, 180°
- K. Double cross block, 3-module
- L. Beam with cross hole, 2-module
- M. Axle with stop, 4-module
- N. Beam, 3-module
- O. Axle, 2-module
- P. Connector peg with friction/axle, 2-module
- Q. Connector peg with axle, 2-module
- R. Tube, 2-module
- S. Connector peg with bushing, 3-module
- T. Connector peg with friction, 3-module
- U. Connector peg with friction, 2-module
- V. Axle connector with axle hole
- W. Angular block 1, 0°

VIII. Liste des pièces imprimées

Nom de la pièce : Coupling_Shaft_3D_print_blogs

Nom de la pièce : Axle connector with axle hole

IX. Branchement

X. Sources

Najafi, F. (2020, août 26). BiPed Robot | LEGO®-compatible walking Robot. Tart Robotics. https://www.tartrobotics.com/blogs/all/biped-robot

Najafi, F. (2020b, septembre 26). *How to Build LEGO®-compatible Rescue Robot*. Tart Robotics. https://www.tartrobotics.com/blogs/all/rescue-robot

ElectroCodeur - Overview. (s. d.). GitHub. https://github.com/electrocodeur

Grove - Wio-E5 | Seeed Studio Wiki. (2024, 25 juillet).

ElectroCodeur. (2021, 28 juin). Communication sans fil avec les modules NRF24l01 | ARDUINO # 29 [Vidéo]. YouTube. https://www.youtube.com/watch?v=1Rq5_bIeP6o

Parascolaire Électronique et Programmation. (2021, 25 juin). *Arduino Tutorial 100 : Codage du*LORA Chat v.1.0 [Vidéo]. YouTube. https://www.youtube.com/watch?v=DdPGuY0zbSs