PROBLEM SET NO. 5 - ISAAC VIVIANO

I affirm that I have adhered to the Honor Code in this assignment. Isaac Viviano

1. Solutions:

PROBLEM 1:

(b)

Proposition 1.1.

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ . \tag{1}$$

Proof. From integration by parts, we have

$$\int x^2 \cos x \, dx = 2x \cos x + (x^2 - 2) \sin x + C$$

Let $f:[0,1]\to\mathbb{R}$ be the 1-periodic extension of $f(t)=(\pi t)^2$. As $f\in\mathcal{PC}_1(\mathbb{R};\mathbb{R})$, its real Fourier series converges pointwise:

$$\frac{1}{2}(f(t+) + f(t-)) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi nt) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt), \text{ for all } t \in \mathbb{R}$$

where

$$a_n := 2 \int_0^1 f(t) \cos(2\pi i n t) dt$$
$$b_n := 2 \int_0^1 f(t) \sin(2\pi i n t) dt$$

Compute:

$$(n > 0) \quad a_n = 2 \int_0^1 f(t) \cos(2\pi nt) dt$$

$$= 2 \int_0^1 (\pi t)^2 \cos(2\pi nt) dt \quad (\text{substitute } u = 2\pi nt)$$

$$= \frac{1}{4\pi n^3} \int_0^{2\pi n} u^2 \cos u du$$

$$= \frac{1}{4\pi n^3} (2u \cos u + (u^2 - 2) \sin u) \Big|_0^{2\pi n}$$

$$= \frac{1}{4\pi n^3} (4\pi n \cdot \underbrace{\cos(2\pi n)}_{=1} + ((2\pi n)^2 - 2) \cdot \underbrace{\sin(2\pi n)}_{=0} - (2 \cdot 0 \cos 0 - 2 \sin 0))$$

$$= \frac{1}{4\pi n^3} \cdot 4\pi n$$

$$= \frac{1}{n^2}$$

$$(n = 0) \quad a_0 = 2 \int_0^1 (\pi t)^2 \cos(2\pi 0t) dt$$

$$= 2 \int_0^1 \pi^2 t^2 dt$$

$$= \frac{2\pi^2 t^3}{3} \Big|_0^1$$

$$= \frac{2\pi^2}{3}$$

Thus,

$$\frac{1}{2}(f(t+)+f(t-)) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos(2\pi nt) + \sum_{n=1}^{\infty} b_n \sin(2\pi nt)$$

Note that at 0,

$$f(t+) = 0$$

$$f(t-) = \pi^{2}$$

$$\frac{1}{2}(f(t+) + f(t-)) = \frac{\pi^{2}}{2}$$

So,

$$\frac{\pi^2}{2} = \frac{1}{2}(f(0+) + f(0-))$$

$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{1}{n^2} \underbrace{\cos(2\pi n0)}_{=1} + \sum_{n=1}^{\infty} b_n \underbrace{\sin(2\pi n0)}_{=0}$$

$$= \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{1}{n^2}$$

So,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{2} - \frac{\pi^2}{3} = \frac{\pi^2}{6}$$

Proposition 1.2.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12} \tag{2}$$

Proof. Let $f: \left[\frac{-1}{2}, \frac{1}{2}\right] \to \mathbb{R}$ be the 1-periodic extension of $f(t) = (\pi t)^2$. Since $f \in \mathcal{C}^1_1(\mathbb{R}; \mathbb{R})$, its real Fourier series converges pointwise:

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi nt)$$
, for all $t \in \mathbb{R}$

Note that since f is even, $b_n = 0$ for all n. Compute:

for
$$n > 0$$
, $a_n = 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) \cos(2\pi nt) dt$

$$= 4 \int_{0}^{\frac{1}{2}} f(t) \cos(2\pi nt) dt \quad (f, \cos \text{ even})$$

$$= 4 \int_{0}^{\frac{1}{2}} (\pi t)^2 \cos(2\pi nt) dt$$

$$= \frac{1}{2\pi n^3} (2u \cos u + (u^2 - 2) \sin u) \Big|_{0}^{\pi n}$$

$$= \frac{1}{2\pi n^3} (2\pi n \cdot \cos(\pi n) + ((\pi n)^2 - 2) \cdot \sin(\pi n) - (2 \cdot 0 \cdot \cos 0 - 2 \sin 0))$$

$$= \frac{1}{2\pi n^3} \cdot 2\pi n (-1)^n$$

$$= \frac{(-1)^n}{n^2}$$
for $n = 0$, $a_0 = 2 \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) \cos(2\pi 0t) dt$

$$= 4 \int_{0}^{\frac{1}{2}} (\pi t)^2 dt$$

$$= \frac{4\pi^2 t^3}{3} \Big|_{0}^{\frac{1}{2}}$$

$$= \frac{\pi^2}{6}$$

Thus,

$$f(t) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(2\pi nt)$$

So,

$$0 = f(0)$$

$$= \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(2\pi n 0)$$

$$= \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

So.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$$

Problem 2:

Theorem 1.1 (Cauchy-Schwarz inequality). Let $(V, \langle ., \rangle)$ be a \mathbb{C} -IP space. Then, for each $x, y \in V$, one has

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| , \tag{3}$$

with equality if and only if x and y are linearly dependent.

Proof. We show that the inequality of (3) holds if x and y are linearly independent. Then, we show that equality holds if and only if x and y are linearly dependent.

Let $x, y \in V$ be two linearly independent vectors. Since $y \neq 0$, $\langle y, y \rangle \neq 0$. Define

$$\lambda := \frac{\langle y, x \rangle}{\|y\|^2}$$
$$\bar{\lambda} := \frac{\langle x, y \rangle}{\|y\|^2}$$

Using repeated applications of linearity in the second entry and conjugate symmetry, compute:

$$\begin{split} \|x - \lambda y\|^2 &= \langle x - \lambda y, x - \lambda y \rangle \\ &= \langle x - \lambda y, x \rangle - \lambda \langle x - \lambda y, y \rangle \\ &= \overline{\langle x, x - \lambda y \rangle} - \lambda \overline{\langle y, x - \lambda y \rangle} \\ &= \overline{\langle x, x \rangle} - \lambda \overline{\langle x, y \rangle} - \lambda \overline{\langle y, x \rangle} - \lambda \overline{\langle y, y \rangle}) \\ &= \overline{\langle x, x \rangle} - \overline{\lambda} \cdot \overline{\langle x, y \rangle} - \lambda \overline{\langle y, x \rangle} + \lambda \cdot \overline{\lambda} \cdot \overline{\langle y, y \rangle} \\ &= \langle x, x \rangle - \overline{\lambda} \cdot \overline{\langle x, y \rangle} - \lambda \overline{\langle y, x \rangle} + |\lambda|^2 \langle y, y \rangle \\ &= \|x\|^2 - \frac{\langle x, y \overline{\langle x, y \rangle} - \lambda \overline{\langle y, x \rangle} + |\lambda|^2 \langle y, y \rangle}{\|y\|^2} + \frac{|\langle x, y \rangle|^2}{\|y\|^2} \\ &= \|x\|^2 - 2 \frac{|\langle x, y \rangle|^2}{\|y\|^2} + \frac{|\langle x, y \rangle|^2}{\|y\|^2} \\ &= \|x\|^2 - \frac{|\langle x, y \rangle|^2}{\|y\|^2} \end{split}$$

Since $0 \le ||x - \lambda y||^2$,

$$\frac{|\langle x, y \rangle|^2}{\|y\|^2} \leqslant \|x\|^2 \iff |\langle x, y \rangle|^2 \leqslant \|x\|^2 \|y\|^2$$

Since $\sqrt{\ }$ is monotonic, we have

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Let $x, y \in V$ be two linearly dependent vectors with $x = \lambda y$. Then,

$$|\langle x, y \rangle| = |\langle x, \lambda x \rangle|$$

$$= |\lambda \langle x, x \rangle|$$

$$= |\lambda| \cdot |\underbrace{\|x\|}_{\geqslant 0} \|x\||$$

$$= |\lambda| \cdot \|x\| \|x\|$$

$$= \|x\| \|\lambda x\|$$

$$= \|x\| \|y\|$$

Suppose $|\langle x, y \rangle| = ||x|| \cdot ||y||$. If y = 0, then, x and y are trivially linearly dependent. Otherwise, let $\lambda := \frac{\langle y, x \rangle}{||y||^2}$, and continue the prior computation:

$$||x - \lambda y||^2 = ||x||^2 - \frac{|\langle x, y \rangle|^2}{||y||^2}$$

$$= ||x||^2 - \frac{(||x|| ||y||)^2}{||y||^2}$$

$$= ||x||^2 - ||x||^2$$

$$= 0$$

By the positive definiteness of the induced norm (Problem 3),

$$x - \lambda y = 0 \iff x = \lambda y$$

showing that x and y are linearly dependent.

PROBLEM 3:

Proposition 1.3. Let $(V, \langle ., . \rangle)$ be a \mathbb{C} -IP space. Then,

$$||x|| := \sqrt{\langle x, x \rangle}$$
, for $x \in V$. (4)

defines a norm on V.

Proof. We show that $\| \cdot \|$ satisfies the three norm axioms:

(N-1) Positive definiteness:

By the positive definiteness of inner products, we have

$$0 = x$$

$$\iff 0 = \langle x, x \rangle$$

$$\iff 0 = \sqrt{\langle x, x \rangle} = ||x||$$

(N-2) Positive homogeneity: For every $x \in V$ and $\lambda \in \mathbb{C}$,

$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle}$$

$$= \sqrt{\lambda \langle \lambda x, x \rangle}$$

$$= \sqrt{\lambda \overline{\langle x, \lambda x \rangle}}$$

$$= \sqrt{\lambda (\overline{\lambda \langle x, x \rangle})}$$

$$= \sqrt{\lambda \cdot \overline{\lambda} \cdot \langle x, x \rangle}$$

$$= \sqrt{|\lambda|^2 \langle x, x \rangle}$$

$$= |\lambda| \|x\|$$

(N-3) Triangle inequality: For every $x, y \in V$, one has

Problem 4:

(a) For $n \in \mathbb{N}$, let $f_n := \sqrt{g_n}$ where $g_n : [0, 1] \to \mathbb{R}$ is given by

$$g_n(x) = \begin{cases} 4n^2x & , \ 0 \le x \le \frac{1}{2n} \ , \\ 4n^2(\frac{1}{n} - x) & , \ \frac{1}{2n} \le x \le \frac{1}{n} \ , \\ 0 & , \ \frac{1}{n} \le x \le 1 \ , \end{cases}$$

Proposition 1.4. $f_n \to 0$ point-wise as $n \to \infty$

Proof. Fix $x \in [0,1]$ and consider two cases. If x = 0, then, for all $n \in \mathbb{N}$,

$$f_n(x) = \sqrt{g_n(x)} = \sqrt{4n^2x} = 0$$

So, $f_n(0) \to 0$. If x > 0, there exists $N \in \mathbb{N}$ such that $\frac{1}{N} < x$. For all $n \ge N$,

$$\frac{1}{n} \leqslant \frac{1}{N} < x$$

so,

$$|f_n(x)| = \left|\sqrt{g_n(x)}\right| = \left|\sqrt{0}\right| = 0$$

Therefore, $f_n(x) \to 0$ for all $x \in [0,1]$, so $f_n \to 0$ pointwise.

Proposition 1.5. For all $n \in \mathbb{N}$, $||f_n|| = 1$

Proof. f_n does not converge to 0 in the L^2 norm:

$$||f_n||_2^2 = \langle f_n, f_n \rangle_2$$

$$= \int_0^1 \overline{f_n(t)} f_n(t) dt$$

$$= \int_0^1 f_n(t) f_n(t) dt$$

$$= \int_0^1 \left(\sqrt{g_n(t)} \right)^2 dt$$

$$= \int_0^1 g_n(t) dt$$

$$= 1$$

where the integral of g_n was computed geometrically from its graph:

Since
$$||f_n||_2^2 = 1$$
, $||f_n||_2 = 1$ for all n .

(b) Given $n \in \mathbb{N}$, write n in dyadic form,

$$n = 2^j + k (5)$$

for $j \in \mathbb{N}_0$ and $0 \le k \le 2^j - 1$; note that both j and k in this decomposition are unique! Define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = f_{2^j+k}(x) := \begin{cases} 1 & \text{, if } x \in \left[\frac{k}{2^j}, \frac{k+1}{2^j}\right], \\ 0 & \text{, otherwise}. \end{cases}$$

Proposition 1.6. $||f_n||_2 \to 0$ as $n \to \infty$

Proof.

Lemma 1.2. $j \to \infty$ as $n \to \infty$

Proof. Let M > 0 be given and pick N such that for all $n \ge N$,

$$n \geqslant 2^{M+1}$$

if

$$\frac{n}{2} = \frac{2^j + k}{2} \leqslant \frac{2^j + 2^j}{2} = 2^j$$

Therefore,

$$j = \log_2(2^j)$$

$$\geqslant \log_2\left(\frac{n}{2}\right) \text{ (log is monotonic)}$$

$$\geqslant \log_2\left(\frac{2^{M+1}}{2}\right)$$

$$= \log_2(2^M)$$

$$= M$$

for $n = 2^{j} + k$,

$$||f_n||_2^2 = \int_0^1 \overline{f_n(t)} f_n(t) dt$$

$$= \int_0^1 f_n(t) f_n(t) dt$$

$$= \int_{\frac{k}{2^j}}^{\frac{k+1}{2^j}} 1 dt$$

$$= \frac{1}{2^j}$$

Therefore, $f_n \to 0$ in the L^2 sense as $j \to \infty$. As $j \to \infty$ with n, $||f_n||_2 \to 0$

Г

Proposition 1.7. For all $x \in [0,1]$, $f_n(x)$ does not converge.

Proof. Fix $x \in [0,1]$. To show that $f_n(x)$ does not converge, we show that it is not a Cauchy sequence. This follows from the statement: for all $N \in \mathbb{N}$, there exist $n, m \ge N$ such that

$$|f_n(x) - f_m(x)| = 1$$

Let $N \in \mathbb{N}$ be arbitrary and break into two cases: if x = 0, define

$$j_n = N$$

$$k_n = 0$$

$$j_m = N$$

$$k_m = 1$$

$$n = 2^{j_n} + k_n = 2^N \geqslant N$$

$$m = 2^{j_m} + k_m = 2^N + 1 \geqslant N$$

We have

$$0 \in \left[0, \frac{1}{2^N}\right]$$

so, $f_n(0) = 1$, but

$$0 \notin \left[\frac{1}{2^N}, \frac{2}{2^N}\right]$$

so $f_m(0) = 0$. Thus,

$$|f_n(x) - f_m(x)| = 1$$

For the second case, we take x > 0. Using the Archimedean law consider an N satisfying $1 < 2^N x$.

Let $j_n = N$ and

$$K_n = \{k \in \mathbb{N} : k < 2^N x\}$$

Since $1 \in K_n$ and K_n is a set of integers bounded by $2^N x$, let $k_n = \max K_n$. $1 \in K_n$ implies that $k_n \ge 1 \ge 0$.

Suppose $k_n = 2^N$. Since $k_n \leq 2^N x$, x = 1. If $k \in K_n$, then $k \in \mathbb{N}$ and $k < 2^N$. So, $k \leq 2^N - 1$. This contradicts that k_n is an upper bound. Therefore, $k_n \neq 2^N$. Since $k \leq 2^N$, $k < 2^N$. Now, $k \in K_n$ implies $k \in \mathbb{N}$ so $k \leq 2^N - 1$. This shows that

$$n = 2^{j_n} + k$$

is in dyadic form with

$$n \geqslant 2^N \geqslant N$$

There $k \in K_n$ such that $k+1 \ge 2^N x$. Otherwise, for all $l \in K_n$, $l+1 < 2^N x$. But, then, $l+1 \in K_n$, contradicting that K_n is bounded and nonempty. Thus, $k_n \ge k \ge 2^N x - 1$. So,

$$k_n \leqslant 2^{j_n} x \leqslant k_n + 1$$

which implies

$$x \in \left[\frac{k_n}{2^{j_n}}, \frac{k_n + 1}{2^{j_n}}\right] \iff f_n(x) = 1$$

Let $j_m = 2N$ and let $k_m = k_n - 1$. We still have $k_m \le 2^N - 2 \le 2^{2N} - 1 = 2^{j_m} - 1$. Thus,

$$m = 2^{j_m} + k_m$$

is in dyadic form with

$$m \geqslant 2^{2N} \geqslant N$$

We have

$$x \geqslant \frac{k_n}{2^N} = \frac{k_m + 1}{2^N} > \frac{k_m + 1}{2^N}$$

so,

$$x \notin \left[\frac{k_m}{2^{j_m}}, \frac{k_m + 1}{2^{j_m}}\right] \iff f_m(x) = 0$$

Therefore,

$$|f_n(x) - f_m(x)| = |1 - 0| = 1$$