System Architecture Documentation

Project Title: Voice Tutor AI — Real-Time Agentic Chatbot

Problem Statement:

Build a real-time agentic chatbot with:

- LangGraph/Agno for orchestration
- STT, VAD, TTS modules
- LLM APIs (OpenAI, Anthropic)
- Scalable architecture, efficient memory/state management, and multi-user support

Submitted by: Akleema Fatima

Date: 10/07/2025

Team member - One

1. Solution Overview

Our project, Voice Tutor AI - Multi User Edition, is a real-time, agentic chatbot built with LangChain's LangGraph, integrated with offline speech capabilities, and capable of supporting multiple users simultaneously. It is designed to be extensible, memory-efficient, and deployable in both CLI and GUI environments.

It empowers users to interact naturally via voice or text, with per-user memory, and leverages intelligent tool usage through LangChain Agents, orchestrated using LangGraph and Runnable interfaces.

2. How It Meets the Problem Statement

Requirement	Our Implementation
LangGraph / Agno	LangGraph used for orchestrating state transitions using Runnable agents
STT (Speech-to-Text)	Implemented using Vosk (offline, real-time microphone input)
VAD (Voice Activity Detection)	Simulated with Vosk's built-in real-time silence detection (low-latency)
TTS (Text-to-Speech)	Integrated using pyttsx3 (offline, fast response)
LLM APIs	Using Groq (Qwen) ; compatible with OpenAl or Anthropic (swappable backends)
Scalable Architecture	UserManager dynamically spawns isolated agent/memory instances per user
Efficient Memory / State Management	ConversationBufferMemory scoped per user; LangGraph's Runnable for orchestration
Multi-User Support	Fully supports add, remove, switch, and per-user context history

12 3. Architecture Diagram (Text View)

```
CLI / GUI Interface (Future)
- User types or speaks input

    Option to add/remove/switch users

                 UserManager
- Manages multiple users
- Maintains session state per user

    Tracks conversation count

            Per-User AgentExecutor
 - LangChain Agent created per user
- Includes memory, tools, and prompt template
    | LangGraph (Runnable) + LLM (Groq/Qwen)
    | + Tool Calling Agent via LangChain
                Tool Suite (LangChain)
- WikipediaQueryRun (factual data)
- ArxivQueryRun (research papers)
- TavilySearchResults (real-time search)
        Voice Interface Components (Offline)
- Vosk (Speech-to-Text)
   • Real-time mic input
   • Transcribes spoken queries
- pyttsx3 (Text-to-Speech)
   • Converts bot replies into voice
    · Fully offline, thread-safe
```

4. System Components

A. LangGraph-Orchestrated Agent

- Built via Runnable interface to enable state-machine-based control
- Returns chat_history in state dict
- Easy to expand to complex conversational graphs

B. Voice Pipeline

- STT: Real-time transcription via Vosk with 16kHz sampling
- **VAD**: Real-time detection via waveform acceptance (AcceptWaveform)
- TTS: pyttsx3 reads cleaned LLM output asynchronously in a thread

C. LLM Integration

- **Groq (qwen-qwq-32b)** as current LLM (faster inference)
- Easily swappable with OpenAl (gpt-4o) or Anthropic (claude-3) via LangChain interface
- Prompt-template driven behavior, including memory injection

D. Multi-User Management

- Each user has:
 - A unique ConversationBufferMemory
 - Independent AgentExecutor
 - Usage tracking (conversation count)
- Commands:

5. Tools Used

Category	Tool/Library	Role
Orchestration	LangGraph, Runnable	Agent flow
LLM + Tools	LangChain + ChatGroq	Q&A, tool calls
STT	Vosk	Real-time voice-to-text
TTS	pyttsx3	Text-to-speech
Web Retrieval Tools	Wikipedia, Arxiv, Tavily	Enriched information
Memory Management	ConversationBufferMemory	Per-user context
Config & Env	python-dotenv	API key injection

6. Conversation Lifecycle

1. User Login

o CLI prompts for user switch, creation, or input mode

2. Voice/Text Input

Vosk records and transcribes OR user types manually

3. Agent Execution

o LangChain agent processes prompt using memory and tool APIs

4. Response Handling

o Response is parsed, cleaned, and truncated

5. Speech Output

Final response is played aloud using pyttsx3

7. Security and Offline Support

Aspect	Design Approach
Audio Privacy	No external STT/TTS API; Vosk and pyttsx3 run locally
API Safety	.env file used to store all keys
Multi-user Isolation	Session data and memory not shared

8. Deployment Instructions

Requirements:

- Python 3.11+
- vosk, sounddevice, langchain, pyttsx3, groq, python-dotenv
- Vosk model (downloaded and stored locally)

Run Command:

researchbot.ipynb

9. Future Enhancements

Feature	Description
Streamlit / Web UI	Friendly multi-user GUI
ChromaDB + RAG	Offline educational data retrieval
WebRTC Mic Input	Browser-based STT
LangGraph Full Graph	Complex, reactive state transitions
Whisper / Silero STT	Optional alternate STT backend
Claude / GPT-4o LLM	Swap-in for higher quality responses

10. Conclusion

This system provides a **real-time**, **modular**, **agentic Al assistant** that supports **voice-first learning** with **multi-user memory**, **tool augmentation**, and **scalable orchestration**. It aligns closely with the hackathon problem statement and offers a strong base for further development into a full-fledged Al tutor or customer assistant.