2 xyz 空間において次のような 3 つの互いに合同な長方形 L_1 , L_2 , L_3 を考える .

 L_1 は xy 平面に含まれ, $P_1(a,b,0)$, $Q_1(-a,b,0)$, $R_1(-a,-b,0)$, $S_1(a,-b,0)$ を 頂点とする.

 L_2 は yz 平面に含まれ, $P_2(0,a,b)$, $Q_2(0,-a,b)$, $R_2(0,-a,-b)$, $S_2(0,a,-b)$ を 頂点とする.

 L_3 は zx 平面に含まれ, $P_3(b,0,a)$, $Q_3(b,0,-a)$, $R_3(-b,0,-a)$, $S_3(-b,0,a)$ を 頂点とする.

ここで a > b > c とする.このとき次の問に答えよ.

- (1) $\triangle P_1 P_2 P_3$ の面積, および $\triangle P_1 P_2 P_3$ と原点 O との距離を求めよ.
- (2) 四面体 $OP_1P_2P_3$ および四面体 $OP_1P_2S_2$ の体積をそれぞれ求めよ.
- (3) L_1 , L_2 , L_3 の 12 頂点から 3 点を選び三角形をつくる.このとき $\triangle P_1P_2P_3$ または $\triangle P_1P_2S_2$ と合同な三角形が 20 個えられる.これらの三角形で囲まれる二十面体を D とする. $0<\theta<\frac{\pi}{4}$ なる θ に対して

$$a = \cos \theta, \quad b = \sin \theta$$

とおくとき D の体積 V を $t = \tan \theta$ の関数 V(t) として表せ .

(4) 0 < t < 1 において V(t) は最大値をとることを示し、そのとき t の値を求めよ.

