0.1 H6 数学選択

- ③ $(1)E_1$ 上で 0 < f(x) < 1 であるから, $f(x)^n > f(x)^{n+1}$ である.よって $f(x)^{\frac{1}{n+1}} > f(x)^{\frac{1}{n}}$ となるから $\{f(x)^{\frac{1}{n}}\}_{n=1}^{\infty}$ は単調増加.また $\lim_{n\to\infty} f(x)^{\frac{1}{n}} = 1$ である.よって単調収束定理から $\lim_{n\to\infty} \int_{E_1} f(x)^{\frac{1}{n}} dx = \int_{E_1} 1 dx = \mu(E_1)$ となる.
- $(2)E_2$ 上で $1 \le f(x)$ であるから, $f(x) \le f(x)^n$ より $f(x)^{\frac{1}{n}} \le f(x)$ となる。また $\lim_{n \to \infty} f(x)^{\frac{1}{n}} = 1$ である。f(x) は E_2 上可積分であるから, ルベーグの収束定理より $\lim_{n \to \infty} \int_{E_2} f(x)^{\frac{1}{n}} dx = \int_{E_2} \lim_{n \to \infty} f(x)^{\frac{1}{n}} dx = \int_{E_2} 1 dx = \mu(E_2)$ となる。
- (3) \mathbb{R} 上可積分であるから, E_2 上可積分である. また $E_1\cap E_2=\emptyset$ であるから, $\mu(E_1\cup E_2)=\mu(E_1)+\mu(E_2)=\lim_{n\to\infty}\int_{E_1\cup E_2}f(x)^{\frac{1}{n}}dx=\lim_{n\to\infty}\int_{\mathbb{R}}f(x)^{\frac{1}{n}}dx$ となる. $\boxed{4}\ (1)0\ \text{が}\ M\ \text{の内点でないことを示す.内点ならば}\ \varepsilon\ \text{近傍}\ B(0,\varepsilon)\ \text{がとれる.}X\ \text{の基底の各ベクトル}\ v\ k$
- $\boxed{4}$ (1)0 が M の内点でないことを示す.内点ならば ε 近傍 $B(0,\varepsilon)$ がとれる.X の基底の各ベクトル v について $\varepsilon \frac{v}{2\|v\|}$ とすることで, $B(0,\varepsilon)$ の部分集合で X の基底となるものが存在すると分かる.これは $M \neq X$ に矛盾.よって 0 は内点でない.

任意の $v \in M$ について v が内点ならば、v の ε 近傍 $B(v,\varepsilon)$ が存在する. $B(v,\varepsilon) - v = \varepsilon B(0,\varepsilon) \subset M$ となり、0 も内点である.これは矛盾.

(2)X を $L^1([0,1])$ とする. これは Banach 空間である.

 $L^{\infty}([0,1])$ は $L^{1}([0,1])$ の無限次元の部分空間である. $\frac{1}{x} \in L^{1}([0,1])$ であるが, $\frac{1}{x} \notin L^{\infty}([0,1])$ である. したがって真部分空間である. また完備であるから閉集合である. これが (i) の例.

- $C^0([0,1])$ を [0,1] 上の連続関数全体とすればこれは,無限次元の部分空間である. $\{x^n\}$ は X の収束列であ
- り, $C^0([0,1])$ の数列であるが,極限は $f(x)= egin{cases} 0 & (0 \leq x < 1) \\ 1 & (x=1) \end{cases}$ であり, $C^0([0,1])$ には属さない.これが (ii) の例.
- (3) すべての F_n が内点をもたないとする. $x_1 \in X \setminus F_1$ を任意にとる. このとき開集合であるから $\operatorname{Cl}(B(x_1,\delta_1)) \subset X \setminus F_1$ となる δ_1 をとれる. (Cl で閉包をあらわす.) $x_1 \in F_a$ となる a が存在する. a=2 としても一般性を失わない. $x_1 \in F_2$ であるが, F_2 は内点をもたないため, $B(x_1,\delta_1) \cap X \setminus F_2 \neq \emptyset$ である. よって $x_2 \in B(x_1,\delta_1) \cap X \setminus F_2$ となる x_2 がとれる. $0 < \delta_2 < \frac{\delta_1 d(x_1,x_2)}{2}$ をみたし, $\operatorname{Cl}(B(x_2,\delta_2)) \subset X \setminus F_2$ となる δ_2 がとれる. δ_2 の定め方から, $B(x_2,\delta_2) \subset B(x_1,\delta_1)$ である. これを繰り返して点列 $\{x_n\}$ と数列 $\{\delta_n\}$ を得る. $n \geq m$ に対して $\|x_n x_m\| \leq \delta_m \leq \frac{\delta_1}{2^m} \to 0 \pmod{n}$ であるから $\{x_n\}$ は Cauchy 列である. X は完備であるから $\{x_n\}$ は収束する. $x_* = \lim_{n \to \infty} x_n$ とする. $x_* \in F_N$ なる N が存在する. $\operatorname{Cl}(B(x_N,\delta_N)) \subset X \setminus F_N$ であり, $\{x_n\}_{n=N}^\infty$ は閉集合 $\operatorname{Cl}(B(x_N,\delta_N))$ の収束点列であるから, $x_* \in \operatorname{Cl}(B(x_N,\delta_N)) \subset X \setminus F_N$ となる. これは矛盾.
- ⑥ (1) 斉次式であることから可約であれば、 $x^2+xy+y^2=(x-ay)(x-by)$ $(a,b\in F)$ とできる. $x^2+xy+y^2=x^2-(a+b)xy+abx^2$ となるから、a+b=-1,ab=1 より $a^2+a+1=0$ をみたす。また $b=a^2$ である。よって可約であれば $x^2+xy+y^2=(x-\varepsilon y)(x-\varepsilon^2 y)$ となる ε が存在して $\varepsilon^2+\varepsilon+1=0$ を満たす。 逆に $\varepsilon^2+\varepsilon+1=0$ をみたす $\varepsilon\in F$ が存在すれば、可約である。

 $\mathrm{ch} F \neq 3$ のとき. $\varepsilon \neq 1$ である. $\varphi \colon F^2 \to F^2; (x,y) \mapsto (x-\varepsilon y,x-\varepsilon^2 y)$ とする. φ は加法群として準同型である. $x-\varepsilon y=0=x-\varepsilon^2 y$ となるとき, $\varepsilon \neq 1$ より y=0,x=0 となる. よって φ は単射であるから, 全単射である. 任意の $a\in F^\times$ に対して uv=a なら $u=av^{-1}$ である. したがって uv=a となる (u,v) の組は |F|-1 個である. a=0 なら u=0 または v=0 であるから 2|F|-1 個である. φ が全単射であるから, これが求める解の個数.

 $\mathrm{ch} F = 3$ のとき. $\varepsilon = 1$ より $x^2 + xy + y^2 = (x - y)^2 = a$ である. よって a = 0 なら解は $\left\{ (x, x) \in F^2 \mid x \in F \right\}$ より |F| 個である. $a \neq 0$ なら二乗して a になる数が存在するとき, $\mathrm{ch} F \neq 2$ より解は 2 個あるから 2|F| 個で

ある. 存在しないなら0個である.

(2)F の位数を q とする.既約であるから $\mathrm{ch}F \neq 3$ である.すなわち $3 \nmid q$ である.また $3 \mid q-1$ なら乗法群 は巡回群であるから,位数 3 の元 ε が存在する.このとき $\varepsilon^3-1=0$ であり, $\varepsilon \neq 1$ であるから $\varepsilon^2+\varepsilon+1=0$ である.これは既約性に矛盾.よって $3 \nmid q-1$ である.

a=0 のとき、解 $(x,y)\neq (0,0)$ を持つと仮定する、対称性から $y\neq 0$ としてよい、 $x=\varepsilon y$ を満たす $\varepsilon\in F$ が存在する、このとき $\varepsilon^2+\varepsilon+1=0$ となり、既約性に矛盾、したがって解は 1 個である、

 $a \neq 0$ のとき、 $\varepsilon^2 + \varepsilon + 1$ をみたす ε を F に添加した拡大体 $K := F(\varepsilon)$ を考える。 $\varepsilon^q = \varepsilon^2$ である。K は F 上の 2 次元ベクトル空間であるから、任意の $z \in K$ は $z = \alpha - \varepsilon \beta$ ($\alpha, \beta \in F$)と一意にあらわせる。 $z^{q+1} = zz^q = (\alpha - \varepsilon \beta)(\alpha - \varepsilon^2 \beta) = \alpha^2 + \alpha \beta + \beta^2$ である。したがって $\phi \colon K^\times \to F^\times; z \mapsto z^{q+1}$ は群準同型である。 $K^\times = \langle g \rangle$ となる g が存在する。 $z \in \ker \phi$ について $z^k = z$ なる $z^k \in \mathbb{C}$ が存在する。 $z^k \in \mathbb{C}$ が存在する。 $z^k \in \mathbb{C}$ がって $z^k \in \mathbb{C}$ が存在する。したがって $z^k \in \mathbb{C}$ が存在する。したがって $z^k \in \mathbb{C}$ である。これをみたす $z^k \in \mathbb{C}$ は $z^k \in \mathbb{C}$ である。よって $z^k \in \mathbb{C}$ である。とう に対して $z^k \in \mathbb{C}$ の元は $z^k \in \mathbb{C}$ である。

(3) 単射にならない a を考える. f(x) = f(y) かつ $x \neq y$ とする. $x^3 + ax = y^3 + ay$ より $(x-y)(x^2 + xy + y^2) = -a(x-y)$ であるから $x^2 + xy + y^2 = -a$ である.

 $3 \mid (q+1)$ のとき、すなわち $x^2 + xy + y^2$ が既約なとき、 $a \neq 0$ なら $x^2 + xy + y^2 = -a$ を満たす (x,y) は q+1 個あるから、 $x \neq y$ となる解も存在する.よって単射でない.a=0 なら解は (0,0) のみであるから 単射.

 $3 \mid q$ のとき,(1) から a=0 あるいは二乗して -a になる数が存在しないときに単射,それ以外は単射でない.

 $3\mid (q-1)$ のとき,a=0 なら単射でない. $a\neq 0$ で単射な a が存在すると仮定する.解の個数が q-1 であり,(0,0) は解でないから解は (x,x) $(x\in F^{\times})$ である.すなわち $x^2+x^2+x^2=-a$ より $x^2=-3^{-1}a$ $(x\in F^{\times})$ である.二次方程式であるから解は重複を含めて 2 個.よって $q-1=|F^{\times}|\leq 2$ である. $3\mid (q-1)$ よりこれを満たす $q\geq 2$ は存在しない.したがって $a\neq 0$ なら単射でない.

7 帰納法でとく. n=1 は明らか. n-1 以下で成立すると仮定する. H_{n-1} を n-1 次正方行列ですべての主小行列式が非零な行列な行列とする. 下三角行列 P_{n-1} と上三角行列 Q_{n-1} を用いて $H_{n-1}=P_{n-1}Q_{n-1}$ とできる. $0 \neq \det H_{n-1} = \det P_{n-1} \det Q_{n-1}$ であるから, $\det P_{n-1} \neq 0$ である.

$$H_n = \begin{pmatrix} H_{n-1} & a \\ b^T & c \end{pmatrix} = \begin{pmatrix} P_{n-1} & 0 \\ b^T Q_{n-1}^{-1} & 1 \end{pmatrix} \begin{pmatrix} Q_{n-1} & P_{n-1}^{-1} a \\ 0 & c - b^T Q_{n-1}^{-1} P_{n-1}^{-1} a \end{pmatrix} = P_n Q_n$$

とすれば、 P_n は下三角行列であり、 Q_n は上三角行列である.