DOCUMENT RESUME

ED 078 019

TM 002 834

AUTHOR

Murphy, Richard T.

TITLE

Investigation of a Creativity Dimension.

INSTITUTION SPONS AGENCY

Educational Testing Service, Princeton, N.J.

National Science Foundation, Washington, D.C.; Office of Naval Research, Washington, D.C. Personnel and

Training Research Programs Office.

REPORT NO

ETS-RB-73-12

PUB DATE

Feb 73 187p.; Ph.D. Dissertation, Princeton University, New

Jersey

EDRS PRICE

MF-\$0.65 HC-\$6.58

DESCRIPTORS *Academic A

*Academic Achievement; Creative Ability; *Creativity;

*Creativity Research; Creativity Tests; Data Analysis; Doctoral Theses; *Factor Analysis;

*Intelligence Factors; Secondary Grades

ABSTRACT

This thesis provides evidence for the existence of a creativity dimension containing figural and verbal subfactors which is independent of intelligence and marginally related to school achievement. The original data of Wallach and Rogan, as well as the data from the Ward, Cropley and Maslany and Wallach and Wing studies were reanalyzed using Joreskog's Unrestricted Maximum Likelihood Factor Analysis (UMLFA). In addition, three of the Guilford studies and the Getzels and Jackson 1962 study on creativity and intelligence were reanalyzed using the UMLFA technique. These reanalyses provided clear evidence not only for the distinct creativity and intelligence dimensions but also for figural and verbal subfactors in the creativity dimension. The Wallach and Kogan materials were used in an original research study with secondary school students in Brooklyn, New York. The two-factor structure of the creativity dimension was clearly verified, and the creativity measures were related to many more common measures of intelligence than have been reported. The creativity and intelligence measures were related to actual school grades in science, math, English, and social studies. Three factors clearly related to creativity, intelligence, and school achievement were identified. The independence of creativity and intelligence was verified, and a marginal relationship between creativity and school grades was indicated. Multiple regression analyses confirmed the conclusions. (Author/KM)

 ∞

U S DEPARTMENT OF HEALTH.

EDUCATION & WELFARE

NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO
OUCEO EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR CPINIONS
STATEO DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

RB-73-12

INVESTIGATION OF A CREATIVITY DIMENSION

Richard T. Murphy

Prepared in connection with research sponsored by the Personnel and Training Research Programs
Psychological Sciences Division, Office of Naval Research under Contract No. N00014-67-A-0151-0006, Contract Authority Identification Number, NR No. 150-302 and National Science Foundation Grant GB 8023X with Princeton University, Princeton, New Jersey Project on "Mathematical Techniques in Psychology" Principal Investigator: HAROLD GULLIKSEN

This work made use of computer facilities supported by National Science Foundation grants NSF-GJ-34 and NSF-GU-3157

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

Educational Testing Service Princeton, New Jersey February 1973

INVESTIGATION OF A CREATIVITY DIMENSION

Richard T. Murphy

က

≈ 0 0 Prepared in connection with research sponsored by the Personnel and Training Research Programs Psychological Sciences Division, Office of Naval Research under Contract No. N00014-67-A-0151-0006, Contract Authority Identification Number, NR No. 150-302 and National Science Foundation Grant GB 8023X with Princeton University, Princeton, New Jersey Project on "Mathematical Techniques in Psychology" Principal Investigator: HAROLD GULLIKSEN

This work made use of computer facilities supported by National Science Foundation grants NSF-GJ-34 and NSF-GU-3157

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

Educational Testing Service Princeton, New Jersey February 1973

Security Classification	2001 5474 5	• •		
DOCUMENT CONT			and the manager of the state of	
(Security classification of title, body of abstract and indexing	annotation must be	entered when the	ECURITY CLASSIFICATION	
1 ORIGINATING ACTIVITY (Corporate author)		L. L.	Unclassified	
Princeton University, Princeton, New Jers	sey			
(Psychology Department)	_	26. GROUP		
Educational Testing Service, Princeton, N	lew Jersey			
3 REPORT TITLE				
INVESTIGATION OF A CREATIVITY DIMENSION				
TWARDITOWING OF W OWNSTIALL DISTRIBUTION			-	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)				
Technical Report				
5 AUTHOR(S) (First name, middle initial, last name)				
Richard T. Murphy				
• •				
A DEPOST DATE	74. TOTAL NO. C) F PAGES	75. NO. OF REFS	
February 1973	179. TOTAL NO. 6		113	
FEDIUATY 1973	94. ORIGINATOR			
ONR Contract No. N00014-67-A-0151-0006	SW. UNIGINATOR	- HEPURINUN		
		RB-73-12		
6. PROJECT NO. NR No. 150-302		14 / 5		
	9h 07:50 050	DET MOISS /America	other numbers that may be assigned	
c.	this report)	Jan Rolls (Ally	The state of the s	
d.				
a. 10 DISTRIBUTION STATEMENT	1			
10 SIGINIDO HON CIRI EMENT				
Approved for public release; distributio	n unlimited.			
11. SUPPLEMENTARY NOTES	12. SPONSORING			
			ng Research Programs	
		Naval Rese		
	Arlington.	Virginia	22217	
	Arlington,	, Virginia	2221/	

The work in this thesis is a development and extension of the work begun originally by Drs. Nathan Kogan and Karl Jöreskog. Kogan's work in creativity testing and its relationship to intelligence and achievement is the basis for the content of the thesis. Jöreskog's work in the development of factor analytic techniques is the basis for its methodology.

In 1965, Wallach and Kogan (1965a) published the results of their research on creativity in the text <u>Modes of Thinking in Young Children</u>. They studied a group of children with a mean age of 10 years, 8 months using materials on creativity which have come to be referred to in the literature as the Wallach and Kogan tests of creativity. They provided evidence for the existence of a creativity dimension distinct from intelligence.

Since 1965, William Ward (ETS), Cropley and Maslany (University of Saskatchewan), and Wallach and Wing (Duke University) have administered the Wallach and Kogan materials to elementary school children and to college students. They corroborated, with varying degrees of success, the Wallach and Kogan hypothesis.

In this thesis, the original data of Wallach and Kogan, as well as the data from the Ward, Cropley and Maslany, and Wallach and Wing studies are reanalyzed using Joreskög's Unrestricted Maximum Likelihood Factor Analysis (UMLFA). In addition,

(See Continuation sheet)

DD FORM 1473 (PAGE 1)
S/N 0101-807-6801

13. ABSTRACT

Security Classification

3ND PPSO 13152

and the second of the second s

Security Classification LINK B KEY WORDS ROLE ROLE ROLE Creativity Intelligence Achievement Factor Analysis Creativity Tests Productivity Tests Uniqueness Measures **Factors** Structure-of-Intellect Creativity Subfactors Creativity-Intelligence Distinction

DD FORM 1473 (BACK)
(PAGE 2)

Security Classification

DD Form 1473

13. Abstract (Continued)

three of the Guilford studies and the Getzels and Jackson 1962 study on creativity and intelligence have been reanalyzed using the UMLFA technique. These reanalyses provide clear evidence not only for the distinct creativity and intelligence dimensions but also for figural and verbal subfactors in the creativity dimension. In some cases, the previous data were not factor analyzed. In these cases, the UMLFA technique provides clear evidence for subfactors. In cases where the data were previously factor analyzed, the UMLFA technique provides for a clearer interpretation of the data. The difference between this unrestricted maximum likelihood technique and other factor techniques is that this technique is developed on the basis of underlying normally distributed variables and the existence of a likelihood function that is minimized.

In addition to these reanalyses, the Wallach and Kogan materials were used in an original research study with secondary school students from a large high school in Brooklyn, New York. The two-factor structure of the creativity dimension was clearly verified. In addition, the creativity measures were related to many more common measures of intelligence than have been reported in studies thus far. Also, the creativity and intelligence measures were related to actual school grades in science, mathematics, English, and social studies. Three factors clearly related to creativity, intelligence, and school achievement were identified using the UMLFA tech-The figural and verbal subfactors in the creativity dimension were also clearly identified. The independence of the creativity and intelligence dimensions was verified, and a marginal relationship between creativity and school grades was indicated in the factor structure. To further verify this final indication, indices of creativity, intelligence, and school achievement were developed. The school achievement index was then used as the dependent variable in a multiple regression with creativity and intelligence as independent variables. The regression was carried out with each variable alone, with both jointly, and in stepwise progression with intelligence first and creativity second. The conclusions indicated in the factor structure were confirmed in each case.

In summary, then, this thesis provides rather good evidence for the existence of a creativity dimension containing figural and verbal subfactors which is independent from intelligence and marginally related to school achievement. This evidence was obtained by reanalyzing the data from previous studies and by an original research study with high school students.

INVESTIGATION OF A CREATIVITY DIMENSION

bу

Richard T. Murphy

A DISSERTATION

PRESENTED TO THE

FACULTY OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE BY THE

DEPARTMENT OF PSYCHOLOGY

May 1972

ABSTRACT

The work in this thesis is a development and extension of the work begun originally by Drs. Nathan Kogan and Karl Jöreskog. Kogan's work in creativity testing and its relationship to intelligence and achievement is the basis for the content of the thesis. Jöreskog's work in the development of factor analytic techniques is the basis for its methodology.

In 1965, Wallach and Kogan (1965a) published the results of their research on creativity in the text Modes of Thinking in Young Children. They studied a group of children with a mean age of 10 years, 8 months using materials on creativity which have come to be referred to in the literature as the Wallach and Kogan tests of creativity. They provided evidence for the existence of a creativity dimension distinct from intelligence.

Since 1965, William Ward (ETS), Cropley and Maslany (University of Saskatchewan), and Wallach and Wing (Duke University) have administered the Wallach and Kogan materials to elementary school children and to college students. They corroborated, with varying degrees of success, the Wallach and Kogan hypothesis.

In this thesis, the original data of Wallach and Kogan, as well as the data from the Ward, Cropley and Maslany, and Wallach and Wing studies are reanalyzed using Joreskog's Unrestricted Maximum Likelihood Factor Analysis (UMLFA). In addition, three of the Guilford studies and the Getzels and Jackson 1962 study on creativity and intelligence have been reanalyzed using the UMLFA technique. These reanalyses provide clear evidence not only for the distinct creativity and intelligence dimensions but also for figural and verbal subfactors in the creativity dimension. In some cases, the previous

である。 (文文の) (1987年) 1987年 (1987年) (198

data were not factor analyzed. In these cases, the UMLFA technique provides clear evidence for subfactors. In cases where the data were previously factor analyzed, the UMLFA technique provides for a clearer interpretation of the data. The difference between this unrestricted maximum likelihood technique and other factor techniques is that this technique is developed on the basis of underlying normally distributed variables and the existence of a likelihood function that is minimized.

In addition to these reanalyses, the Wallach and Kogan materials were used in an original research study with secondary school students from a large high school in Brooklyn, New York. The two-factor structure of the creativity dimension was clearly verified. In addition, the creativity measures were related to many more common measures of intelligence than have been reported in studies thus far. Also, the creativity and intelligence measures were related to actual school grades in science, mathematics, E alish, and social studies. Three factors clearly related to creativity, elligence, and school achievement were identified using the UMLFA technique. The figural and verbal subfactors in the creativity dimension were also clearly identified. The independence of the creativity and intelligence dimensions was verified, and a marginal relationship between creativity and school grades was indicated in the factor structure. To further verify this final indication, indices of creativity, intelligence, and school achievement were developed. The school achievement index was then used as the dependent variable in a multiple regression with creativity and intelligence as independent variables. The regression was carried out with each variable alone, with both jointly, and in stepwise progression with

intelligence first and creativity second. The conclusions inducated in the factor structure were confirmed in each case.

In summary, then, this thesis provides rather good evidence for the existence of a creativity dimension containing figural and verbal subfactors which is independent from intelligence and marginally related to school achievement. This evidence was obtained by reanalyzing the data from previous studies and by an original research study with high school students.

子子 となるととなっているととなるとなっているのであると

ACKNOWLEDGMENTS

I am pleased to acknowledge the guidance and support received at many stages in the development of this thesis. I am especially indebted to Professor Harold Gulliksen for support throughout the entire conception, development, and completion. I am grateful to Professors Nathan Kogan and Karl Jöreskog for their direction early on in the work and to Professors Joel Cooper and William Hall for directing me through the final stages.

I am also grateful to Mr. James Arbuckle, Mr. Patrick Bateman, Mr. Michael Friendly, Mr. Charass Liberty, and Mr. Michael Shafto for assistance in correcting some of the materials and in developing the necessary computer programs for reducing and analyzing the data.

A note of thanks is also due to the staff of the Princeton Computer Center, especially to Roald Buhler for use of the P-STAT program which was used for all analyses except the maximum likelihood factor analysis.

Mrs. Sara Matlack, Mrs. Ann King, and Mrs. Lola Appel deserve my gratitude for seeing the text and numerous tables through typing and printing. Thanks also to the other members of Educational Testing Service for helping to bring the thesis to term: Mrs. Judith Morgan and Mrs. Fay Richardson for scoring the tests, and Mrs. Laura Lenz, Mrs. Kathy Estep, Mrs. Mary Evelyn Runyon, Mrs. Marie Davis and Mrs. Frances Chaffer for their assistance in typing and proofreading this manuscript.

Finally, I am especially grateful to the faculty and students of

Xaverian High School who cooperated in this research study. I am indebted

to Brother Kyrin Powers, the principal, and Brother Patrick Pennell, the

director of guidance, without whose help the study would have been impossible.

This research was done while the author was an Educational Testing Service Psychometric Fellow. It was supported by Educational Testing Service; by the Personnel and Training Research Program, Psychological Sciences Division, Office of Naval Research, Contract N-00014-67-A-0151-0006, Contract Authority Identification Number, NR 150-302, administered through Princeton University; and by the National Science Foundation, Grant No. GB-8023X, administered through Princeton University, Project on "Mathematical Techniques in Psychology," Harold Gulliksen, Principal Investigator. The wor': made use of computer facilities supported in part by National Science Foundation Grants NSF-GJ-34 and NSF-GU-3157.

FOREWORD

The primary challenge facing the factor theorist in psychology is to identify those underlying factors which explain or at least account for varying amounts of human behavior. To be useful, the factors must be neither too general nor too specific. The history of the development of the intelligence factor seems to indicate that a fruitful way to proceed is to identify an underlying factor that is somewhat general and then to examine its substructure. It was by showing that intelligence was not a unitary factor that Thurstone developed his primary mental abilities. These primary mental abilities have proved useful in studying human behavior, especially behavior related to the process of education. Using school grades as a measure of "success," the primary mental abilities have predicted success rather well.

Measures of success have changed radically in the last decade. Emphasis on grades has decreased. Many courses in college are now offered on a passfail basis. Many high schools are offering expanded programs of elective courses in which motivation and interest are as important prerequisites as intellectual ability. The educational system in general is becoming much more complex, and this complexity is probably a natural outgrowth of advances in psychology and education which have led to a better understanding of the individual differences among children and a better appreciation of the possibilities for a more total development of the student's personality. The recognition of complexity in the individual and the concurrent success in developing devices to identify and measure the many facets of the individual will naturally result in a more complicated model of a student than that

provided by one intelligence measure. Indeed, the inadequacy of a monolithic intelligence as the underlying factor of much of human behavior has long been recognized, and much research has attempted to identify other underlying factors in order to provide a more complete picture.

One area of development that has received much attention during the recent past is that of "creativity." Naturally, there is disagreement about what creativity really is. This should not be surprising. Psychologists have been measuring intelligence for years without knowing what it really is. In fact, L. L. Thurstone presented a paper in 1950 on creative talent in which he pointed out that we may discover how to select people with creative talent before we learn much about the nature of that kind of talent. Nevertheless, even the gross variable of intelligence has been very useful. Knowledge of its substructure has increased its usefulness. Some researchers now believe that there is sufficient evidence for the existence of a creativity dimension, a dimension on which individuals will differ when measured appropriately. In addition, some researchers claim that this dimension will be distinct from intelligence. These claims will be examined in this thesis.

Assuming that it could be done, what value would there be in identifying such a dimension? It may very well be on this dimension that current changes in education have their greatest effects. Since 1957, with the impetus provided by Russia's successful launching of Sputnik I, goals and methods of education in the United States have undergone significant changes. The goal of learning the specific facts in a discipline has been replaced by the goal of learning to understand the structure of the discipline. New methods include independent study, group discussion, field work, and student discovery.

Thus, for more than ten years some schools have been trying to develop a student who differs in several important ways from the pre-1957 student. How is this new student to be evaluated? If new goals have been set and new methods are being used, then perhaps new measuring instruments are needed to evaluate whether the methods are successful and whether the goals are reached. The students profiting from such an education might be more independent, more flexible, more articulate, and more original. The tests involved in creativity testing might be involved with factors underlying such human behaviors. At any rate, the attempt to identify and delineate such a factor seems to be a worthwhile undertaking.

TABLE OF CONTENTS

1.	Surve	ey of the Creativity Testing Research	1
	1.1	Introduction	1
	1.2	J. P. Guilford and the Aptitudes Research Project	1
	1.3	E. Paul Torrance and the Minnesota Tests of Creative Thinking	10
	1.4	The Getzels and Jackson Study	11
	1.5	Summary	16
2.	An A	ssociation Approach to Creativity	18
	2.1	Introduction	18
	2.2	Sarnoff A. Mednick's "The Associative Basis of the Creative Process"	18
	2.3	C. W. Taylor and the Utah Conferences on Creativity	21
	2.4	L. L. Thurstone's "Creative Talent"	22
3.	The	Wallach and Kogan Research: Presented and Reanalyzed	24
	3.1	Introduction	24
	3.2	The Creativity Tests	24
	3.3	The Measures	24
	3.4	Analysis of the Data	25
	3.5	Factor Analyses of the Wallach and Kogan Data	
4.	Re1e	vant Research Since 1965: Presented and Reanalyzed	41
	4.1	Introduction:	41
	4.2	Research with Elementary School Children	41
	4.3	The Cropley Australian Study	49
	4.4	The Cropley and Maslany Canadian Study	54
	4.5	Wallach and Wing's Duke University Study	60
	4.6	Summary	65

5.	Xave	rian High School Sample: Measures and Hypotheses
	5.1	Introduction
	5.2	Design of the Study
	5.3	Instruments and Procedure
	5.4	The Creativity Measures 69
	5.5	The Problem of Student Number 100 72
	5.6	Influence of a Deviant Score on the Correlation Coefficient 75
	5.7	Measures of Ability94
	5.8	Standardized Measures of Achievement
	5.9	School Measures of Achievement
	5.10	Hypotheses100
6.	Xave	rian High School Sample: Reduction and Analysis of the Data
	6.1	Introduction
	6.2	The Creativity Measures103
	6.3	Comparisons of the Data Obtained in Two Studies Using Testing by Mail104
	6.4	Meaningful Substructure
	6.5	Independence of the Creativity and Intelligence Dimensions
	6.6	The NEDT Measures117
	6.7	Creativity and Grades117
	6.8	Analysis by Regression
	6.9	Conclusion141
Bib	liogr	aphy142
Арр	endic	es

and the second s

A STATE THE STATE OF THE STATE

LIST OF TABLES AND FIGURES

The tables and figures throughout the thesis are identified in terms of the section in which they appear. Thus, for example, Table 2.3.4 is the fourth table or figure in section 2.3.

		Page
1.2.1	Guilford Study #8 (1952): UMLFA 2 Factor Solution	. 7
1.2.2	Guilford Study #12 (1955): UMLFA 2 Factor Solution	. 8
1.2.3	Guilford Study #35 (1965): UNLFA 2 Factor Solution	. 9
1.4.1	Getzels and Jackson (1962): Correlation Matrix	. 12
1.4.2	Getzels and Jackson: Thorndike's Solution	. 13
1.4.3	Getzels and Jackson: UMLFA 1 Factor Solution	. 14
1.4.4	Getzels and Jackson: UMLFA 2 Factor Solution	. 15
3.4.1	Wallach and Kogan (1965): Creativity Correlations	. 26
3.4.2	Wallach and Kogan: Intelligence Correlations	. 27
3.4.3	Wallach and Kogan: Creativity-Intelligence Correlations	. 28
3.5.1	Wallach and Kogan Data: Factor Analysis by James Ward	. 30
3.5.2	Wallach and Kogan Data: Factor Analysis by Francis Fee	. 31
3.5.3	Wallach and Kogan Data: UMLFA 2 Factor Solution	. 33
3.5.4	Wallach and Kogan Data: UMLFA 3 Factor Solution	. 34
3.5.5	Wallach and Kogan Data: UMLFA 4 Factor Solution	. 35
3.5.6	Reduced Wallach and Kogan: UMLFA 2 Factor Solution	. 37
3.5.7	Reduced Wallach and Kogan: UMLFA 3 Factor Solution	. 38
3.5.8	Reduced Wallach and Kogan: UMLFA 4 Factor Solution	. 39
4.2.1	William Ward Study 1 (1968): Correlation Matrix	. 42
4.2.2	William Ward Study 2 (1968): Correlation Matrix	. 43
4.2.3	Ward 2: UMLFA 2 Factor Solution (Boys)	. 45

	Ward 2: UMLFA 2 Factor Solution (Girls) 40	
	Ward 2: UMLFA 3 Factor Solution (Boys) 4	
4.2.6	40	
4.3.1	Cropley's Australian Study (1968): Correlations 50	0
4.3.2	Cropley: Factor Analysis 51	1
4.3.3	Cropley: UMLFA 3 Factor Solution 52	2
4.3.4	Cropley: UMLFA 4 Factor Solution 53	3
4.4.1	Cropley and Maslany (1969): Correlation Matrix 56	5
4.4.2	Cropley and Maslany: Factor Analysis 57	7
-4.4.3	Cropley and Maslany: Rotation by Kogan (1971) 58	3
4.4.4	Cropley and Maslany: UMLFA 3 Factor Solution 59)
4.5.1	Wallach and Wing (1969): Correlation Matrix	<u>:</u>
4.5.2	Wallach and Wing: UMLFA 2 Factor Solution	}
4.5.3	Wallach and Wing: UMLFA 3 Factor Solution	
5.4.1	<pre>Xaverian High School Study: Means, S.D.s, Range (N = 140) 71</pre>	
5.5.1	Creativity Correlations (N = 140)	
5.6.1	Scatter Plot: Lines-number vs Patterns-unique (140) 76	
5.6.2	Scatter Plot: Lines-number vs Lines-unique (140)	
5.6.3	Scatter Plot: Uses-unique vs Patterns-unique (140)	
5.6.4	Scatter Plot: Patterns-number vs Patterns-unique (140) 79	
5.6.5	Scatter Plot of Artificial Data 80	
5.6.6	Scatter Plot: Lines-number vs Patterns-unique (139) 82	
5.6.7	Scatter Plot: Lines-number vs Lines-unique (139) 83	
5.6.8	Scatter Plot: Uses-unique vs Patterns-unique (139)	
5.6.9	Scatter Plot: Patterns-number vs Patterns-unique (139) 85	
	Scatter Plot: Correlations (N = 140) vs Correlations (N = 139) 87	

5.6.11	Means, S.D.s, Range (N = 139)	88
5.6.12	Creativity Standard Scores	89
5.6.13	Creativity Correlations (N = 139)	92
5.7.1	Intelligence Data	95
5.8.1	Standard Achievement Data: Means, S.D.s, etc	97
5.9.1	School Grades: Means, S.D.s, Range, etc	99
6.3.1	Comparison of Data from Wallach and Wing Study and Xaverian High School Study	106
6.4.1	Xaverian High School Study: UMLFA 2 Factor Solution-Creativity Data Alone	108
6.4.2	Xaverian Study: UMLFA 3 Factor Solution	109
6.4.3	Xaverian Study: UMLFA 4 Factor Solution	110
6.4.4	Confidence Intervals (99%) for Creativity Correlations	111
6.5.1	Creativity-Ability Correlation Matrix	113
6.5.2	Creativity-Ability Data: UMLFA 2 Factor Solution	114
6.5.3	Creativity-Ability Data: UMLFA 3 Factor Solution	115
6.5.4	Creativity-Ability Data: UMLFA 4 Factor Solution	116
6.7.1	Creativity-Grades Correlation Matrix	118
6.7.2	Creativity-Grades Data: UMLFA 2 Factor Solution	120
6.7.3	Creativity-Grades Data: UMLFA 3 Factor Solution	121
6.7.4	Creativity-Ability-Grades Correlation Matrix	122
6.7.5	C-A-G Data: UMLFA 2 Factor Solution	124
6.7.6	C-A-G Data: UMLFA 3 Factor Solution	125
6.7.7	C-A-G Data: UMLFA 4 Factor Solution	126
6.7.8	C-A-G Data: UMLFA 5 Factor Solution	127
6.7.9	C-A-G Data: UMLFA 6 Factor Solution	128
6.8.1	Creativity, Ability, and Grades Indices	131

6.8.2	Scatter Plot:	Ability vs Grades	134
6.8.3	Scatter Plot:	Creativity vs Grades	135
6.8.4	Scatter Plot:	Ability vs Creativity	136
6.8.5	Regression of	Grades on Intelligence Alone	137
6.8.6	Regression of	Grades on Creativity Alone	138
6.8.7	Regression of	Grades on Intelligence and Creativity Jointly	139
688	Stanuisa Racra	esion. Crados on Intallicance and Creativity	140

CHAPTER 1

SURVEY OF THE CREATIVITY TESTING RESEARCH

1.1 Introduction

It is rather important at the beginning to limit the range of the discussion. Creativity is a very broad area. There are many books and articles which deal with it. Excellent and extensive surveys of the literature can be found in Stein and Heinze, 1960; C. W. Taylor, 1964a; and Stein's recent chapter in the <u>Handbook of Personality Theory and</u>
Research, 1969.

In this thesis, the primary concern will be with testing for creativity. Specifically, the attempt will be made to justify and give a theoretical basis for the particular tests used by Michael Wallach and Nathan Kogan in their research study which was eventually published in the book Modes of Thinking in Young Children (1965a). In order to do this most convincingly, it will be helpful to examine a number of studies that preceded the Wallach and Kogan study.

1.2 J. P. Guilford and the Aptitudes Research Project

On September 3, 1950, Guilford presented his presidential address entitled <u>Creativity</u> to the American Psychological Association. That speech is generally recognized as having signaled the beginning of a new era in the study of creativity. Indeed, it signaled the beginning of Guilford's own research which has spanned two decades and has influenced almost all other researchers in creativity testing. Guilford outlined a plan for a comprehensive assault on the area of creativity using a variety of measuring

devices and the techniques of factor analysis. On December 31, 1969, after aving performed 36 major factor analyses, published 41 technical reports, claimed the identification of some 98 unique abilities, and devised numerous measuring instruments, Guilford and his associates at the Aptitudes Research Project published their final report.

Guilford began his work by attempting to discover hitherto unknown intellectual factors along the line of the Thurstone mental abilities. In his 1950 paper, he had hypothesized that creative thinking would include such factors as sensitivity to problems, ideational fluency, flexibility of set, ideational novelty, synthesizing ability, analyzing ability, reorganizing or redefining ability, span of ideational structure, and evaluating ability. Definitions of these factors can be found in Guilford's general summary of 1969. Guilford devised tests to measure these and various other factors. Eventually, as more and more factors became identified, Guilford began to construct a general theory of factors, the structure-of-intellect theory, which included 120 separate factors. The model for this theory is well known, a three dimensional rectangular parallelepiped with dimensions corresponding to various contents, operations, and products. Greater detail can be found in Guilford's The Nature of Human Intelligence, 1967.

The important consideration for this thesis is whether or not Guilford has succeeded in identifying by his various tests a dimension which can be fairly called creativity and which is distinct from intelligence. Guilford claims that he has. Others (Q. McNemar, 1964; R. L. Thorndike, 1962; Wallach & Kogan, 1965a) claim that he has not. The difficulty lies in the fact that Guilford's factor studies contain numerous variables, numerous tests, and

numerous factors. His theory of creativity has evolved into selecting a certain subset of the 120 factors in his model to account for creative thinking. These include primarily his divergent thinking factors. In studies using these factors, Guilford does not include a measure of general intelligence. Quinn McNemar, in his presidential address to the American Psychological Association in 1964, scored Guilford rather harshly for this omission.

Does the failure to include an IQ test help one learn the extent to which one must go beyond the boundaries of the IQ (this refers to one of the aims that Guilford had set in his 1950 address) to fathom creativity? Apparently the author (Guilford), although willing to predict that the correlations between IQ and the many types of creativity tests "are only moderate or low," was unwilling to include an IQ test for the sake of finding out. However, negation by omission is not very convincing.

R. L. Thorndike (1962) has also attempted to shed some light on this difficulty of identifying a creativity dimension.

We may appropriately ask how well the attribute "creativity" meets these joint criteria of designating a reasonably extensive set of behaviors which (1) have some degree of coherence and (2) can be distinguished from other sets of behaviors.

And more specifically for the domain of testing,

applied the term "abstract intelligence."

In the test domain, as distinct from the life activities domain, the question as to the meaningfulness of a general rubric of "creativity" can be raised somewhat more incisively. We may ask whether there is a variety of different test behaviors that (1) seem reasonably to pertain to the concept of "creativity," (2) are associated so that a person who tends to exhibit one also tends to exhibit the other, and (3) are distinct from other sets of test behaviors such as the set to which we have

Thorndike makes a good analogy to the domain of intelligence to clarify this point further.

The essential points are that although there is a degree of specialization of intellectual functioning, so that two tests within a specific region of content or process correlate more highly than those from different regions, still the correlations across regions are appreciably positive. It is these uniformly positive correlations, whether conceptualized as G, or a second-order factor among the primary factors, or as an overlapping of group factors, that give some substance to the general concept of abstract intelligence and some reasonableness to pooling a set of subtests into a common score.

We may appropriately ask whether there is another broad second-order factor in the test domain, distinct from the traditional G, to which the term "creativity" can be appropriately applied. The existence of such a distinct factor is strongly implied in the publications by Getzels and Jackson and by Torrance, among others, and Guilford and his associates have fairly sharply differentiated between tests of convergent and divergent thinking. How well does this differentiation of two broad cognitive domains hold up in practice?

I have reanalyzed some of the published data to try to get a partial answer to these questions.

In reanalyzing the Guilford data, Thorndike used the following technique. He classified the various factors as "old-line or convergent thinking factors" or as "new-type divergent thinking (i.e., creativity) factors." He then selected the two tests which loaded highest on each of the factors to represent that factor. He then prepared correlation matrices including only these tests. Using this reduced correlation matrix, he determined the average correlation of each test with the other "convergent" tests and with the other "divergent" tests. He used these correlations as indications of the extent to which a test is related to the tests in its own domain and the extent to which it is related to the tests in the other domain.

Thorndike applied this technique to two batteries of the Guilford tests reported in the technical reports of the Aptitudes Research Project. In the

first reanalysis, Thorndike reported an average correlation of .23 among the "convergent" tests, of .14 among the "divergent" tests, and an average correlation of .12 between the two sets of tests. In the second reanalysis, the corresponding correlations were .43, .27, and .24. Wallach and Kogam conclude from this that "the general intelligence procedures are more highly related among themselves than the divergent thinking procedures, and the divergent thinking procedures are almost as strongly related to the general intelligence indicators as the divergent thinking procedures are related among themselves," and that "most of what unites the divergent thinking measures is the variance they have in common with the indicators of general intelligence."

Although this conclusion of Wallach and Kogan may be true, it is not warranted by the Thorndike reanalyses. Average correlations do not indicate the existence of factors. If the existence of factors is the desired conclusion, then the correlation matrix should be factor analyzed. Such factor analyses are presented in the following.

In this thesis, I have reanalyzed three reduced correlation matrices from Guilford's reports numbered 8, 12, and 35. These studies identified factors which Guilford termed divergent and convergent. In study number 8, the three highest loading tests on the Verbal Comprehension factor and the three tests with the highest loadings on the Numerical Facility factor were combined in a correlation matrix with the two highest loading tests on the factors identified as Word Fluency, Associational Fluency, Ideational Fluency, and Originality. One test loaded high on two factors; thus, there are 3 total of thirteen tests. An unrestricted maximum likelihood factor analysis

(UMLFA) was performed on the data. This factor analytic technique is used throughout this thesis. It is a technique originated by D. N. Lawley in 1940 and greatly developed by Karl Jöreskog in the past few years (an explanation of the technique is given in Jöreskog, 1967b). To understand the points made in this section it is sufficient to know that this technique gives the most likely solution for a given number of factors under the assumption of normally distributed underlying traits. The pattern of loadings on the factors indicates the contributions of the factors to the behavior (test scores) being analyzed. The Varimax Rotated solution for two factors is given in Table 1.2.1. While the first factor is largely determined by the assumed convergent tests, test number five has higher loadings than three of the convergent tests and test number seven has the highest loading of all. The negative loading of test number eight could be made positive by simply reversing the scoring. The second factor is determined largely by the Originality and Ideational Fluency tests. While this analysis is not perhaps the most convincing, it seems to permit a more lenient criticism than that of McNemar and Thorndike, i.e., that, although many of the Guilford so-called "divergent" tests do not appear to define a convincing "divergent" factor, some of the tests do appear to define a factor on which the common "convergent" tests (verbal comprehension and numerical facility) load poorly.

Similar analyses were performed on reduced correlation matrices for Guilford's Studies 12 and 35. The adaptive flexibility factor in Study 12 loads poorly on the divergent factor. Otherwise, the divergent and convergent factors are evident. The evidence in Study 35 is not as good. Five

Table 1.2.1
(Guilford, Wilson, and Christensen)
Maximum Likelihood Solution for Two Factors

Study #8 (1952)

Unique Variances								
1	0.697 0.569	0.822 0.705	0.388 0.733	0.520 0.657	0.652 0.649	0.721	0.503	0.684
			Varimax-	Rotated F	actor Mat	rix		
Ide	ational E	luency 1			-0.	072	0.546	
Ori	ginality	1			0.	169	0.387	
Ide	ational E	luency 2			-0.	034	0.782	
0ri	iginality	2			-0.	031	0.692	
Word Fluency 1					0.	580	0.105	
Ass	sociationa	1 Fluency	1		0,	339	0.406	
Wo	rd Fluency	2			0.	689	0.150	
	sociationa (Verbal Co	_			-0.	.544	0.140	
Ve	rbal Compi	cehension	2		0.	656	0.020	
Ve	rbal Compa	cehension	3		0.	538	0.074	
Nur	merical Fa	acility 1			0.	.513	0.064	
Nu	merical Fa	acility 2			0.	.586	0.022	
Nui	merical Fa	acility 3			0.	.592	-0.005	

THE STATES OF THE PROPERTY OF

Table 1.2.2

(Guilford, Berger, and Christensen)

Maximum Likelihood Solution for Two Factors

Study #12 (1955)

Unique Variances								
1	0.433 0.731	0.619 0.568	0.790 0.691	0.840 0.854	0.844 0.797	0.780	0.801	0.853
			Varimax-	Rotated F	actor Mat	rix		
E1a	boration	1	,		0.	723	0.211	
E1a	boration	2			0.	600	0.143	
Ori	ginality	1			0.	375	0.263	
Ada	ptive Fle	xibility	1		-0.	083	0.391	
Ori	ginality	2			0.	329	0.219	
Ide	ational F	luency 1			0.	454	-0.116	
Ide	ational F	luency 2			0.	441	-0.068	
Adaptive Flexibility 2 (Verbal Comprehension 1)					-0.	800	0.384	
Vei	bal Compr	ehension	2		0.	183	0.485	
Nun	merical Fa	cility 1			0.	009	0.657	
Ve	bal Compr	ehension	3		0.	235	0.503	
Nun	merical Fa	cility 2		0.	089	0.372		
Nur	merical Fa	cility 3			0.	091	0.442	

Table 1.2.3
(Hoepfner and Guilford)

Maximum Likelihood Solution for Two Factors

Study #35 (1965)

Unique Variances								
1	0.578 0.494	0.834	0.589 0.358	0.789 0.684	0.627 0.597	0.768 0.504	0.839 0.573	0.634 0.582
			Varimax-	Rotated Fa	ctor Mat	rix		
		DFC 1		0.528	0.	378		
		DFC 2		0.398	0.	.086		
		DFU 1		0.049	0.	639		
		DSC 1		0.354	0.	. 293		
		DFU 2		-0.008	0.	.610		
		DSU 1		0.443	0.	. 189		
		DSC 2		0.171	0	. 362		
		DSU 2		0.463	0	. 390		
		CMI 1		0.488	0	. 517		
		CFC 1		0.569	-0	.026		
		CMU 1		0.781	0	.179		
		CFC 2		0.546	0	.136		
		CMI 2		0.505	0	. 384		
		CSR 1		0.674	0	. 204		
		CMU 2		0.650	0	.063		
		CSR 2		0.608	0	.219		
Ke	y =	Positi	on 1	Posit	ion 2	Po	sition 3	
			vergent nvergent	S = s	igural ymbolic emantic	U I	= classes = units = implica = relatio	

of the divergent subfactors have higher loadings on what appears to be a convergent factor.

To summarize this section, the Guilford studies do provide some evidence for the existence of divergent and convergent factors. The coherence of the divergent factor is not evident. The distinction between the two does not seem evident from the data.

1.3 E. Paul Torrance and the Minnesota Tests of Creative Thinking

E. Paul Torrance and his co-workers adapted a number of the Guilford tests and added a number of their own to form a creativity test battery. The tests are described in an appendix of Torrance's Guiding Creative Talent (1962). Unfortunately, Torrance does not report correlations in his research. Rather, to provide evidence for separate dimensions (intelligence and creativity), he ranks students on the basis of an intelligence score and separately on the basis of a creativity score. This creativity score is determined by summing the scores on the separate creativity tests. This is done without giving intertest correlations to justify such summing. In criticizing the Getzels and Jackson study which used similar tests, McNemar pointed out that although the median intercorrelation among the creativity tests was only .28, the authors went on and used a sum score for most of their analyses. The correlations of the IQ scores with the various subtests is given in column 6 of Table 1.4.1. McNemar found that the sum score correlated .40 with intelligence. I think a similar criticism can be leveled at Torrance. At any rate, Torrance after ranking the students selects the top 20% in each group. Then he eliminates those common to both groups.

Then he compares the remaining groups. This simply involves ignoring too much of the data to allow the final conclusions to be very convincing. He found a significant difference between the two groups, the high IQ group having a mean intelligence of 141.7 and the high creative group a mean IQ of 122.0.

In referring to the work of Torrance, R. L. Thorndike in his 1962 paper, referred to in the previous section, has the following comment to make:

I would very much like to apply this same type of critical (if not creative) analysis to the tests that Torrance has been developing at Minnesota. So far, I have not encountered a set of data that lent themselves to this approach. Though Torrance has expressed commendable concern about rater reliability in appraising the protocols from his tests, I have not encountered the same type of concern about trait reliability, that is, the consistency with which his tests measure some common attribute to which a common designation may legitimately be applied. Though Torrance specifically disavows intending to produce a test to produce a Creativity Quotient that would constitute a characterization of an individual, he often uses a team of his tests as if they did produce one, or at least as if they had enough in common to justify pooling them into a single composite score. I would suggest that a good deal of further study of the behavior domain is needed before this is done.

ئے پ

THE STATE OF THE PROPERTY OF T

1.4 The Getzels and Jackson Study

Getzels and Jackson (1962) administered a creativity battery to 533 students of above average intelligence in a mid-western school. One intelligence measure was obtained from the school, the Stanford-Binet, WISC, or Henmon-Nelson. Their study is one of the most widely known. They verified a number of rather interesting hypotheses relating to creativity and achievement, creativity and self-concept, creativity and conformity, and creativity and teacher preference. Yet, their analysis has come under extremely sharp criticism.

Table 1.4.1

Getzels and Jackson Study

Intercorrelations among Creativity and Intelligence Tests

		Boys (above diagonal) N = 292 Variable Number						
Variable Number	Test	Test 1		3	4	5	6	
1	Word Association		369	344	303	420	378	
2	Uses	371		206	222	175	186	
3	Hidden Shapes	351	197		159	414	366	
4	Fables	320	276	153		220	131	
5	Make-up Problems	488	279	525	269		246	
6	Intelligence Quotient	371	147	303	115	393		

Girls (below diagonal) N = 241

From Creativity and Intelligence by J. W. Getzels and P. W. Jackson. Copyright © 1962 by J. W. Getzels and P. W. Jackson. Reprinted by permission of John Wiley and Sons.

Table 1.4.2
(Table 1 of R. L. Thorndike)

First Factor Loadings of the Getzels and Jackson Creativity Tests and 10

1. Word Association	Boys .69	$\frac{\text{Girls}}{.70}$
2. Uses	.47	.48
3. Hidden Shapes	.58	.60
4. Fables	.41	.42
5. Make-up Problems	.58	.72
6. I.Q.	.52	.50
Average	.54	.57

From "Some Methodological Issues in the Study of Creativity" by R. L. Thorndike in Proceedings of the 1962 Invitational Conference on Testing Problems. Copyright (c) 1963 by Educational Testing Service. All rights reserved.

Table 1.4.3

Getzels and Jackson Study (Boys)

Maximum Likelihood Solution for One Factor

Unrotated Factor Matrix

- 1 0.725
- 2 0.430
- 3 0.559
- 4 0.375
- 5 0.581
- 6 0.506

Unique Variances

1 0.474 0.815 0.687 0.859 0.663 0.744

Table 1.4.4

Getzels and Jackson Study (Boys)

Maximum Likelihood Solution for Two Factors

Unique Variances

1 0.264 0.814 0.0 0.865 0.707 0.769

Varimax-Rotated Factor Matrix

1 0.184 0.838

2 0.128 0.412

3 0.981 0.196

4 0.091 0.356

5 0.338 0.423

6 0.298 0.377

The correlation table for the data in this study is given in Table 1.4.1. For girls, the average correlation among the creativity tests is .32 while the average correlation between the creativity tests and the intelligence test is .27. For boys, the average correlation among the creativity tests is .28, while the average correlation between the creativity tests and intelligence is .26. Wallach and Kogan point out, in addition, that nine of the ten creativity tests are significantly correlated (p less than .05) with the intelligence test. There is scant evidence here for a unified dimension distinct from intelligence.

In reanalyzing the Getzels and Jackson data, R. L. Thorndike makes the following statement:

Getzels and Jackson emphasize the lack of correlation between the traditional intelligence test and the measures that they used to appraise creativity. However, the intercorrelations of the five "creativity" tests were themselves not very high. It is of some interest to extract a first factor from this table of correlations and compare the factor loadings of the several tests. The results are shown in Table 1 (1.4.2). Thus, we see that on the first factor common to these six measures, the factor loadings are all fairly modest and the loading for the conventional intelligence test falls about midway among the "creativity" tests.

In reanalyzing the Getzels and Jackson data using UMLFA, the one and two factor solutions given in Tables 1.4.3 and 1.4.4 were obtained. It is clear from this reanalysis that no single two factor structure corresponding to intelligence and creativity is present in the Getzels and Jackson data.

1.5 Summary

A number of other studies could be described to continue this same kind of analysis, but I think the point should be sufficiently clear. A two factor

structure corresponding to intelligence and creativity has not been convincingly demonstrated in even the most noted studies. In addition, using a sum score for creativity is hardly justified unless the individual measures are adequately correlated. This seems to be the necessary requirement for the data if the researcher is to avoid being deserving of the following criticism of McNemar: "The factor analytic studies indicate either no, or a trivially small, general creativity factor in these tests, yet these self-characterized 'bold, adventurous' reformers do not hesitate to advocate a total score which is nearly devoid of meaning."

CHAPTER 2

AN ASSOCIATION APPROACH TO CREATIVITY

2.1 Introduction

The conclusion reached in the preceding chapter was that the empirical evidence for the existence of a creativity dimension was unconvincing.

Michael Wallach and Nathan Kogan (1965a) suggested concentrating on a less diffuse set of abilities closely related to association in an attempt to get at creativity. These association abilities, they hypothesized, could best be assessed in an atmosphere that was relaxed and game-like. The Guilford tests differed in that they were administered with strict time constraints. Wallach and Kogan devised a set of materials, some original, some adapted from previously used creativity tests. They used these materials in their research study.

Before considering their actual research in Chapter 3, a theoretical basis for their approach to creativity will be presented in Chapter 2.

2.2 Sarnoff A. Mednick's "The Associative Basis of the Creative Process"

In 1962, Mednick published his noted article on the associative basis of the creative process. In it, he defines creative thinking as "... the forming of associative elements into new combinations which either meet specific requirements or are in some way useful. The more mutually remote the elements of the new combination, the more creative the process or solution."

To support this definition, Mednick listed a number of quotes by ostensibly creative people. The quotes are from Ghiselin's The Creative Process (1952).

Einstein suggests that "combinatory play seems to be the essential feature in productive thought."

Poincaré tells of being unable to sleep one night when "ideas rose in crowds; I felt them collide until pairs interlocked so to specie, making a stable combination." Later he states that "to create consists of making new combinations of associative elements which are useful."

Mozart refers to occasions upon which his "ideas flow best and most abundantly."

Dryden describes the production of "a confus'd Mass of Thoughts, tumbling over one another in the Dark."

A. E. Hausman, in his The Name and Nature of Poetry, speaks of a spring of ideas bubbling up within him.

It was based upon considerations such as these that Mednick formulated his theory of creative thinking. Later on (1969), he replied to a letter by R. W. Hood in which he agreed with Hood that it would be advicable to drop the requirement of usefulness from the definition and simply stress the meeting of specific requirements. A survey of the Psychological Abstracts shows that Mednick became more and more interested in research on schizophrenia and less and less on creativity after 1962.

In his 1962 article, Mednick stated a number of hypotheses which are relevant to the Wallach and Kogan research. One such hypothesis was that "the greater the number of associations that an individual has to the requisite elements of a problem, the greater the probability of his reaching a creative solution." Mednick thus considers the ability to generate associations as a necessary condition for creativity. Another hypothesis of Mednick is that "it seems likely that this variable (number of associations) will not be related to speed of creative solution." This supports Wallach

and Kogan's insistence on a game-like setting with no time constraints in testing for creativity.

Mednick decided to try to get at this ability to generate associations by devising his Remote Associates Test (RAT). His idea was to provide stimuli from mutually remote associative clusters and have the subject find a mediating link which combines them. He stressed the point that the mediating link must be strictly associative rather than logical. The following is an example of an item on the RAT. The subject would be presented with the words rat, blue, and cottage. He would be expected to reply "cheese" as a mediating link among the three items.

In 1962, Mednick reported a correlation of .70 between RAT scores and cleativity ratings by design instructors in a college of architecture. With first year psychology graduate students, Mednick found that the Remote Associates Test differentiated between those rated high and low by their instructors on creativity in research. On the other hand, C. W. Taylor (1964a) found that the test did not correlate well with ratings obtained by high school students in a program of research sponsored by the National Science Foundation. At the present time, research seems to exist to support both viewpoints. The difficulty here is that the ratings involved are suspect. Thurstone warned in 1950 that "to make judgments about students as to their originality is so different from the customary academic judgments about scholarship that there is some question whether we can trust available judgments for this kind of study."

TO THE SECOND OF THE SECOND SE

Correlations of approximately .40 between RAT scores and various measures of intelligence have been reported in the literature. Michael Wallach (1970)

cites values of .41, .31, .35, and .48 as reported in studies by M. Mednick, Rainwater, Mendelsohn and Griswold, and Laughlin respectively. Measures of intelligence in these studies included scores on the Miller Analogies Test, Terman's Concept Mastery Test, and several vocabulary tests. These correlations, together with differing conceptions of creativity in Architecture and Science, could account for the results of the rating studies cited. It is simply not possible to justify the validity of a creativity measure by means of an external criterion at present.

2.3 C. W. Taylor and the Utah Conferences on Creativity

C. W. Taylor has published several books on creativity, most of them derived from the proceedings of the conferences on creativity which he has sponsored at Utah. While he provides some support for the association approach to creativity, he probably would consider the approach too narrow. In 1963, Taylor (C. W. Taylor, Smith, & Ghiselin, 1963) tried to determine criteria for creative performance. He concluded that the problem of criteria is very complex, and that no single criteria of performance will be acceptable or adequate for indicating creativity. He does, however, support the hypothesis that productivity is an important ingredient of creativity. In his <u>Creativity: Progress and Potential</u>, (1964a), Taylor stresses the point that creativity is a quality possessed by all people. He states also that "in seeking creative talent, perhaps we are interested in those who have fluent bursts of ideas if at the same time they can validly identify the best of their own ideas."

2.4 L. L. Thurstone's "Creative Talent"

In 1950, Thurstone delivered a paper on creative talent to the Educational Testing Service Conference on Testing. A great deal of the content of that address can be used to provide a theoretical basis for the association approach to creativity. A number of his hypotheses are listed below:

. . . creative talent is qualitatively the same at all levels.

To be extremely intelligent is not the same as to be gifted in creative work. This may be taken as a hypothesis.

. . . it is doubtful whether they (referring to the Quiz Kids) are also fluent in producing ideas.

Although there seems to be some conflict between scholarship (academic achievement) and creative talent, they are probably positively correlated.

- . . . this instruction (referring to instruction in the scientific method) has little to offer in teaching students how to produce ideas. It is this prefocal stage of the process of problem solving that especially needs investigation.
- . . . mere fluency of ideas does not adequately represent creative talent. Fluency in seeing implications may be an important characteristic of creative ability. Some forms of fluency may signify intelligence without implying creative talent.

A hypothesis that should be considered in the experimental study of problem solving is that the moment of insight is often, perhaps always, in relaxed and dispersed attention. A CONTROL OF THE CONT

These statements by Thurstone lend theoretical weight to the association approach to creativity. He stresses the production of ideas as the primary ingredient in creative talent. Granted, it is not the whole story. The question still may be asked: how much of the story is it? Thurstone supports the hypothesis that creativity is distinct from intelligence though positively correlated with it. He thinks that creativity is positively correlated with achievement.

It is worth pointing out that in considering problem solving, Thurstone is concerned with the prefocal stage before logic and deduction take over. It operates best in a relaxed atmosphere. This is support for the game-like and nonevaluative atmosphere in testing. Thurstone adds a seemingly creative person to the list provided by Mednick, Thomas Edison. In his autobiography, Thurstone stresses Edison's tremendous productivity. "For every experimental failure he seemed to produce three more experiments to try." In addition, Edison "seemed to have a startling fluency of ideas which often ranged far from the problem."

In general then, there is much in Thurstone's address to support this approach which concentrates on productivity. Whether it will prove to be so narrow a factor as to account for very little remains to be seen. In fact, it will be shown that the factor tapped by the Wallach and Kogan materials has an interesting and psychologically interpretable substructure.

Thurstone's concluding remarks in his address seem an appropriate way to conclude this chapter:

Experimental studies should be on two major problems, namely, to inquire about the nature of the thinking that leads to a moment of insight, and to investigate empirically how to differentiate creative talent by objective and experimental procedures. It is conceivable that we may discover how to select people with creative talent before we learn much about the nature of that kind of talent.

CHAPTER 3

THE WALLACH AND KOGAN RESEARCH: PRESENTED AND REANALYZED

3.1 Introduction

With the theoretical background presented in the preceding chapter, that is, an approach to creativity strongly grounded in association and the constraint of a nonevaluative setting for obtaining the measures, consider the Wallach and Kogan study (1965a).

3.2 The Creativity Tests

Wallach and Kogan wanted materials that would tap a person's ability to produce associations. They wanted materials that would tap this ability in a variety of ways. They tried very simple tasks involving the naming of things having a certain property (red, round, etc.), the giving of uses for an object (brick, shoe, etc.), the giving of similarities between two different objects (potato and carrot, train and tractor, etc.), and the giving of possible interpretations or meanings for each of a variety of abstract visual patterns and line drawings. In essence, then, there were five tests. They were administered individually and orally to 151 fifth grade children in a New England public school district. The mean age of the students was 10 years, 8 months.

3.3 The Measures

Each item in each test was scored for total number of responses (productivity) and for number of unique responses (uniqueness). The total number was simply a count of the responses. The uniqueness of a response was defined with respect to the sample of children. If a response was

Some and the second of the second second

given by only one child, it was considered unique. In addition, measures of intelligence were obtained using tests from the WISC, SCAT, and STEP batteries. The intelligence tests were group administered.

3.4 Analysis of the Data

For the five creativity tests, the scores on each item were added together to obtain a total productivity score for each test and a total uniqueness score for each test. In order to justify this adding of the scores, Wallach and Kogan presented the necessary interitem correlations and item-test correlations. The complete data are presented in Wallach and Kogan's Modes of Thinking in Young Children (1965a). These procedures will be explained in greater detail when the data for the present research are presented.

In order to justify their claim for a unified dimension distinct from the intelligence dimension, Wallach and Kogan presented the three tables 3.4.1, 3.4.2, and 3.4.3. The average correlation among the creativity measures is .41, among the intelligence measures is .51, and between the intelligence and creativity measures is .09. Forty-three of the 45 correlations in both tables 3.4.1 and 3.4.2 are significant beyond the .05 level. Wallach and Kogan considered this good evidence for a unified dimension independent from the intelligence dimension. They considered the relatively high correlations in the creativity matrix as evidence that the dimension cuts across the verbal and visual stimuli. They did not attempt to extract factors from the data which would have shown this substructure more clearly if it did in fact exist.

3.5 Factor Analyses of the Wallach and Kogan Data

In 1967, James Ward (Manchester University) finally published a factor analysis of the total Wallach and Kogan correlation matrix. He used the

Table 3.4.1

(Wallach and Kogan)

Intercorrelations Among the Ten Creativity Measures

for the Total Sample (N = 151)

	·	. 2	3	4	5	6	7	8	9	10
1.	Instances-uniqueness	08	.41	24	33	32	27	07	35	20
2.	Instances-number		35	45	22	41	27	3 0	33	42
3.	Alternate uses-uniqueness			67	66	70	46	29	44	52
4.	Alternate uses-number				53	74	49	39	39	58
5.	Similarities-uniqueness					71	32	20	49	46
6.	Similarities-number						45	3 8	52	58
7.	Pattern meanings-uniqueness							29	55	50
8.	Pattern meanings-number								25	40
9.	Line meanings-uniqueness									64
10.	Line meanings-number									

Note.--For 149 df, r's of .16 and .21 are significant at the .05 and .01 levels, respectively. Decimal points are omitted.

From Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction by Michael A. Wallach and Nathan Kogan. Copyright © 1965 by Holt, Rinehart, and Winston, Inc. Reprinted by permission of Holt, Rinehart, and Winston, Inc.

Table 3.4.2 $\mbox{(Wallach and Kogan)} \mbox{Intercorrelations Among the Ten Intelligence Measures} \mbox{for the Total Sample } (N = 151) \mbox{}$

		2	3	4	5	6	7	8_	9	10
1.	WISC-vocabulary (V)	18	37	56	3 8	55	53	59	43	种
2.	WISC-picture arrangement (PA))	17	15	16	20	24	24	12	16
3.	WISC-block design (BD)			34	34	51	3 7	3 8	29	26
4.	SCAT-verbal (V)				70	71	71	80	70	77
5.	SCAT-quantitative (Q)					71	65	69	74	77
6.	STEP-mathematics (M)					•	67	73	60	65
7.	STEP-science (S)							76	71	70
8.	STEP-social studies (SS)								71	74
9:	STEP-reading (R)									80
10.	STEP-writing (W)									

Note.--For 149 df, r's of .16 and .21 are significant at the .05 and .01 levels, respectively. Decimal points are omitted.

From Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction by Michael A. Wallach and Nathan Kogan. Copyright (c) 1965 by Holt, Rinehart, and Winston, Inc. Reprinted by permission of Holt, Rinehart, and Winston, Inc.

Table 3.4.3 (Wallach and Kogan) Intercorrelations Between the Ten Creativity and Ten Intelligence Measures for the Total Sample (N = 151)

	WISC V	WISC PA	WISC BD	SCAT V	SCAT Q	STEP M	STEP S	STEP SS	STEP R	STEP W
Instances-uniqueness	11	12	02	01	-11	06	00	05	00	-09
Instances -number	09	17	15	06	07	07	20	17	80	09
Alternate uses-uniqueness	14	11	-01	05	03	12	12	10	07	06
Alternate uses-number	13	09	06	16	13	22	15	18	14	16
Similarities-uniqueness	09	12	-03	09	02	09	07	80	01	01
Similarities-number	19	14	02	22	13	23	17	21	11	14
Pattern meanings-uniqueness	11	01	06	12	13	15	13	12	09	15
Pattern meanings-number	-13	12	-03	-01	00	- 05	01	-04	- 02	05
Line meanings-uniqueness	22	21	11	21	21	17	23	21	17	19
Line meanings-number	03	09	04	11	12	02	07	10	11	10

Note.--For 149 df, r's of .16 and .21 are significant at the .05 and .01 levels, respectively. Decimal points are omitted.

From Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction by Michael A. Wallach and Nathan Kogan. Copyright (2) 1965 by Holt, Rinehart, and Winston, Inc. Reprinted by permission of Holt, Rinehart, and Winston, Inc.

The second second second second is a second to the second second second second second second second second

Promax method of Hendrickson and White (1964). This method of factor analysis includes obtaining a principal components solution rotated to Varimax criterion and then powering the matrix of normalized Varimax loadings to obtain a criterion matrix of optimal simple structure. The original Varimax factors are then rotated to produce the best fit to this "ideal" matrix. The complete solution together with the intercorrelations of the factors is given in Table 3.5.1.

Ward interpreted Factor I as a school attainment factor, II as a creativity factor, III as a number of responses factor, and IV as a weak general factor. In general, his analysis did not shed much light on the substructure of the creativity dimension.

In 1968, Francis Fee (Anterim Education Committee) decided to apply a different factor technique to the Wallach and Kogan data. He used a centroid analysis on the creativity and intelligence correlations separately. He extracted two factors in each case, hypothesized a simple structure matrix on the basis of this analysis, and then factored the entire matrix using Horst's Multiple Group Method (1965). Fee's results are presented in Table 3.5.2.

Factors A and B are first order representations of second order factors. They were rotated to simple structure on the basis of the hypothesized matrix mentioned above. Factors I through IV are first order factors, and they support the substructure hypothesis rather well. Factor I appears to be a "creativity-verbal" factor, and Factor II appears to be a "creativity-visual" factor. The agreement with Ward's analysis is rather minimal. Ward, in a note to the Fee publication, criticizes Fee's use of an hypothesized matrix which really prejudges the final result.

Table 3.5.1

(James Ward)

Factor Structure from Oblique Factorization of Twenty Cognitive Tests

(Wallach and Kogan, 1965a)

2. Instances—number	Test	Factor I	Factor II	Factor III	Factor IV
15. SCATquantitative 0.860 0.098 0.097 0.20 16. STEPmathematics 0.831 0.181 -0.182 0.43 17. STEPscience 0.846 0.167 -0.021 0.41 18. STEPsocial studies 0.887 0.184 -0.099 0.43	1. Instancesuniqueness 2. Instancesnumber 3. Alternate usesuniqueness 4. Alternate usesnumber 5. Similaritiesuniqueness 6. Similaritiesnumber 7. Pattern meaningsuniqueness 8. Pattern meaningsnumber 9. Line meaningsnumber 10. Line meaningsrumber 11. WISC vocabulary 12. WISC picture arrangement 13. WISC block design 14. SCATverbal 15. SCATquantitative 16. STEPmathematics 17. STEPscience 18. STEPsocial studies	-0.056 0.110 0.064 0.175 0.033 0.179 0.148 -0.033 0.220 0.094 0.620 0.182 0.443 0.860 0.860 0.831 0.846 0.887	0.509 0.472 0.836 0.796 0.772 0.869 0.653 0.418 0.717 0.742 0.192 0.164 0.037 0.165 0.098 0.181 0.167 0.184	-0.472 0.487 0.004 0.283 -0.106 0.130 0.200 0.661 0.094 0.418 -0.375 0.001 -0.101 -0.082 0.097 -0.182 -0.021 -0.099	0.312 0.439 0.218 0.200 0.177 0.257 0.099 0.097 0.354 0.164 0.494 0.749 0.651 0.282 0.203 0.439 0.417 0.422 0.176

Intercorrelations of Table Al. Factors

L.000	0.143	-0.031	-0.345
0.143	1.000	0.116	-0.323
0.031	0.116	1.000	0.137
	-0.323	0.137	1.000
	1.000 0.143 0.031 0.345	0.143 1.000 0.031 0.116	0.143 1.000 0.116 0.031 0.116 1.000

Reprinted by permission of the British Journal of Educational Psychology.

Table 3.5.2

(Francis Fee)

Supermatrix of First-Order General Factor Matrix and First-Order Rescaled Simple Structure Factors of Twenty Cognitive Tests

(Wallach and Kogan, 1965a)

				Fac	tor		
	Test	A	В	I	II	III	IV
1.	Instancesuniqueness	420	-045	531	-072	036	-152
2.	Ins ancesnumber	311	053	-044	282	068	000
3.	Alternate usesuniqueness	639	-023	652	011	-019	-056
4.	Alternate usesnumber	592	047	507	084	-021	038
5.	Similaritiesuniqueness	593	-029	668	-038	-012	-079
6.	Similaritiesnumber	641	053	593	058	-022	035
7.	Pattern meaningsuniqueness	. 407	004	050	287	-037	081
8.	Pattern meaningsnumber	298	-078	-077	296	oii	-051
٠9٠	Line meaningsuniqueness	430	108	072	æ68	036	088
10.	Line meaningsnumber	481	-018	087	318	-013	027
11.	WISC vocabulary	050	483	116	-048	076	371
12.	WISC picture arrangement	064	333	028	026	394	-189
	WISC block design	-051	470	-086	022	360	006
14.	SCATverbal	000	706	023	-009	-024	742
15.	SCATquantitative	-052	692	-093	033	-012	727
16.	STEPmathematics	033	667	116	-060	087	540
17.		001	703	-018	017	028	676
18.	STEPsocial studies	013	729	035	013	024	700
19.	STEPreading	-032	693	-026	-002	-052	772
20.	STEPwriting	-039	706	-078	032	-054	796
		1.000		1.000			
	Intercorrelations	-235	1.000	-531	1.000		
				-072	020	1.000	
				-134	025	-501	1.000

Reprinted by permission of the British Journal of Educational Psychology.

This is a good example of the difficulties that arise in the use of factor techniques, especially when different techniques are applied to the same data. Has the imposition of an hypothesized matrix so determined the final structure that almost any set of data will appear to have this structure when subjected to a similar analysis? This is a problem that exists in factor studies, one which is not going to disappear in the near future. Individual preferences will have to be tolerated until some agreement can be worked out among psychologists.

In the research to be presented, an unrestricted maximum likelihood factor analysis (UMLFA) technique developed by Karl Jöreskog (1966) is used. This method extracts factors in such a way as to give a maximum likelihood best fit to the correlations. The factors do not account in turn for maximum variance as is the case in the principal components technique. Neither is the fit to the given correlations the best least squares fit. A one factor solution in a maximum likelihood technique would be that particular matrix which has the maximum likelihood of reproducing the original given correlations under the assumption of a single normally distributed latent trait that accounts for the original behavior. The method also includes a chi-square test of goodness of fit which is dependent on the size of the sample under study and the data's deviation from a multivariate normal distribution. A more complete description of the UMLFA technique is presented in Jöreskog (1967b). In order to evaluate the usefulness of this technique, I have applied it to the Wallach and Kogan matrix. I will also apply it to the data for several other studies to be presented in the next chapter. Tables 3.5.3, 3.5.4, and 3.5.5 contain the two, three, and four factor solutions

Table 3.5.3

(Wallach and Kogan)

Maximum Likelihood Solution for Two Factors

-				Latent	Roots				_
0.8	2 11.440				1.424 0.648		1.22; 0.499	1.028 0.416	
			υ	nique V	ariance	s		,	
0.8		0.349 0.824			0.218			0.591 0.307	0.509 0.246
		٧	arimax-	Rotated	Factor	Matrix			
2. Instead. 3. Alter 4. Alter 5. Simil 6. Simil 7. Patte 8. Patte 9. Line 10. Line 11. WISC 12. WISC 13. WISC 14. SCAT- 15. SCAT- 16. STEP- 17. STEP-	-quantitat: -mathematic -science -social streading	er -uniquen -number niquenen s-uniquen s-uniquen uniquenen number rangemen gn	ness ss leness er		0.465 0.807 0.796 0.743 0.873 0.566 0.430 0.698 0.106 0.137 -0.004 0.076 0.023 0.080 0.091				

Table 3.5.4

(Wallach and Kogan)

Maximum Likelihood Solution for Three Factors

					Latent	Roots				
1	24.344	11.938 0.941	2.707 0.828		1.750 0.723			1.301		
				U	nique V	ariance	s			
1	0.779 0.491	0.769 0.920	0.349		0.433	_	0.644			_
			v	arimax-	Rotated	Factor	Matrix		_	
23 34 55 66 77 88 99 100 111 122 133 144 157 168 179 188	. Instan . Altern . Altern . Simila . Simila . Patter . Patter . Line m . Line m . WISC v . WISC p . WISC b . SCAT STEP STEP	quantita mathemat science social s reading	beruniquenumber uniquene number gsuniqueuniqueunique rrangeme ign tive ics	ess queness per ness	-0.051 0.178 0.033 0.606 0.211	0.475 0.779 0.796 0.705 0.847 0.588 0.472 0.623 0.747 0.038 0.038 0.086 0.086 0.084 0.084 0.084	0.265 0.223 -0.056 -0.162 0.039 -0.126 0.373 0.148 0.223 0.037 -0.202 0.184 0.057 0.126			

Table 3.5.5

(Wallach and Kogan)

Maximum Likelihood Solution for Four Factors

					Uniqu	e Varia	nces			· · · · · · · · · · · · · · · · · · ·	
	1	0.746 0.480	0.767 0.904	0.344 0.767	0.269 0.235	0.435 0.277	0.201 0.307	0.602		_	0.380 0.166
				Var	imax-Ro	stated F	actor M	latrix	<u>.</u>		
2. I. 3. A. 4. A. 5. S. 6. S. 7. P. 8. P. 9. L. 11. W. 12. W. 13. W. 14. S. 15. S. 17. S. 18. S. 19.	nstan ltern ltern imila imila atter atter ine m ISC v ISC p ISC b CAT TEP TEP TEP	ces-unices-nurate uses ate use and ate uses at uses a	mber s-uniques -uniques -number ngs-uni ngs-num -unique -numbes ry arranges sign ative tics studies	deness er ness iqueness nber eness r	0.090 -0.019 -0.079 0.078 0.008	0.026 0.127 -0.003 0.131 0.092 -0.039 0.155 0.035 0.202 0.415 0.868 0.827 0.801 0.820 0.879	0.842 0.693 0.859 0.539 0.469 0.510 0.693 0.036 0.091 -0.045 0.074 0.052 0.065 0.076 0.055	0.242 0.076 -0.148 0.193 0.105			

using the UMLFA technique. Note that the amount of unique variance in each variable after the factors have been extracted is reported. This information can be used to determine how much of the variance is accounted for by the factors. It also indicates the commonality of the variance being accounted for.

For two factors, the creativity-intelligence distinction is quite clearly indicated. Note, however, that measures 1, 2, 11, 12, and 13 have high unique variances. This means that they do not share much in common with the tests loading high on the two extracted factors. When a third factor is extracted, it is pretty much determined by these variables. A fourth factor is difficult to interpret. The reason for not arriving at a fairly simple structure is that the tests involved do not really form a fairly simple structure. Or perhaps, a fairer way to state the difficulty would be that the presence of 1, 2, 11, 12, and 13 in the battery provide enough additional variation to keep the creativity substructure from appearing. In order to test this hypothesis, I deleted variables 1, 2, 11, 12, and 13 from the battery and submitted the remaining 15 variables to UMLFA. The results were very clear. Solutions for two, three, and four factors are given in Tables 3.5.6, 3.5.7, and 3.5.8. When two factors are extracted the intelligence-creativity distinction is clear. When a third factor is extracted, it clearly shows the division of the creativity factor into a "creativity-verbal" factor (variables 1-4) and a "creativity-visual" factor (variables 5-8). This is a good justification for deleting the Names Test from the creativity battery which has been done in several studies.

Lee Shulman (1.966) in a review of their work, has criticized Wallach and Kogan for generalizing their results to all young children. They tested

Table 3.5.6

(Wallach and Kogan Reduced)

Maximum Likelihood Solution for Two Factors

	Latent Roots												
1	20.446 0.724	11.136 0.639	2.033 0.589		1.376 0.425	1.272	1.224	0.956	0.914	0.764			
				Unique	e Varian	ces							
1	0.348 0.368		0.209	_ •		0.672	0.514	0.604	0.240	0.301			
			Varin	ax-Rota	ated Fac	tor Mat	rix						
	Alternate Similari Similari Pattern I Pattern I Line mea Line mea SCATqua STEPma STEPsc STEPres STEPwrite STEP	e uses tiesun tiesnu meanings meanings ningsu ningsn rbal antitati thematic ience cial stu ading	number iquenes mberuniquenumbe niquenes umber ve s	s eness r	0.121 0.019 0.126 -0.004 -0.042 0.103 0.054 0.182 0.867 0.835 0.786 0.819 0.870 0.843 0.879	0.803 0.880 0.750 0.427 0.563 0.695 0.602 0.094 0.041 0.119 0.087 0.101 0.031	•						

Table 3.5.7

(Wallach and Kogan Reduced)

Maximum Likelihood Solution for Three Factors

					Latent 1	Roots				
1	21.759 0.758	13.187	2.725 0.648	1.692 0.612	1.450 0.534	1.384	1.302	1.121	0.999	0.839
				Un	ique Va	riances				
1	0.359 0.324	0.366 0.321	0.163 0.226		0.777	0,606	0.261	0.472	0.239	0.287
			Va	rimax-R	otated	Factor	Matrix			
	Alternate Alternate Similari Similari Pattern Pattern Line meas SCATve SCATque STEPma STEPsc STEPsc STEPre STEPre	e usesretiesunitiesnurmeaningsurmingsnurmingsnurmingsnurmingsnurmingsnurmingsnurmitativenatics thematics ience cial studading	number iqueness nberuniquenumber niquenes umber ve	eness	0.131 0.001 -0.048 0.097 0.037 0.172 0.867 0.834 0.796 0.819 0.872 0.840	0.699 0.820 0.713 0.239 0.308 0.331 0.312 0.095 -0.037 0.194	0.385 0.293 0.405 0.538 0.793 0.633 0.034 0.125 -0.075 0.031 0.009 0.126			

The state of the s

Table 3.5.8

(Wallach and Kogan Reduced)

Maximum Likelihood Solution for Four Factors

		·	v. 777 - v . i.	Uniqu	e Varia	nces				
1	0.266 0.329		• -	0.381 0.257	0.717 0.181	0.582	0.372	0.0	0.231	0.288
			Var	imax-Ro	tated F	actor N	Matrix			
Alterna Similar Similar Pattern Line me Line me SCATQ STEPm STEPs	uantitat nathemati science social st reading	number uniquene number gsuniq gsnum -uniquer -number tive	ess queness per	0.021 0.105 0.130 0.189 0.100 0.376 0.426 0.889 0.042 0.090 0.014 0.083 0.035 0.046 0.054	0.031 0.138 0.005 -0.043 0.042 0.042 0.155 0.868 0.832 0.793 0.817 0.874	0.793 0.886 0.734 0.407 0.478 0.608 0.431 0.083 0.009 0.129 0.064 0.093	0.009 -0.067 -0.212 0.324 0.197 0.275 -0.024 -0.082 0.110 -0.160 -0.075 -0.127 0.171			•

only 151 children at age 10 years 8 months. Shulman suggested that a more appropriate title for their book would have been "Modes of Thinking in Fifth Grade Children." This is a valid criticism. If creativity measures are to be relevant to education, as Wallach and Kogan claim they may be, then they must be studied at a variety of age levels and under different testing conditions. What will correspond to a game-like atmosphere in studies of college and high school students? Over what range of intelligence will the results be reproducible? Since 1965, a number of studies nave attempted to replicate the Wallach and Kogan results at various age levels. Results of these studies will be considered in the following chapter.

ないいできまっていまっている

CHAPTER 4

RELEVANT RESEARCH SINCE 1965: PRESENTED AND REANALYZED

4.1 Introduction

A few research studies using the Wallach and Kogan materials have been carried out in the last few years. The materials used in each study were not exactly the same. William Ward (Educational Testing Service) has used the materials in studies with elementary school students. Ward has also begun to study a possible quality measure to be obtained from the responses. Cropley and Maslany (University of Saskatchewan) have administered the materials to two different groups of university students. Wallach and Wing (Duke University) have administered the materials to the freshman class at Duke. Conditions for administering the materials have included individual administration, group administration, and administration by mail. The results of these studies are rather consistent.

4.2 Research with Elementary School Children

William Ward (1968a) has administered the Wallach and Kogan materials to two groups of children ranging in age from five to eight years. He deleted the similarities test from his materials with these young children. In one group, an intelligence measure was derived from the Block Design and Object Assembly subtests of the WISC battery. Intelligence measures for the second group were derived from two forms of the Peabody Picture Vocabulary Test. Ward's correlation tables are given in Tables 4.2.1 and 4.2.2.

The results in group 1 (34 boys; mean age 8 years, 2 months) are clear. The average correlation among the creativity measures is .63. Only one

Table 4.2.1 (W. C. Ward) Creativity Intercorrelations and Correlations with IQ, Study 1 (N = 34)

	Measure	1_	2	3	4_	5	6	7
1.	Instances-uniqueness	-	.44	.72	.92	•39	.54	08
2.	Uses-uniqueness		-	.50	.42	.94	.52	11
3.	Patterns-uniqueness			-	.76	.53	.98	03
4.	Instances-fluency				-	•39	.80	07
5.	Uses-fluency					-	•54	17
6.	Patterns-fluency						-	11
7.	IQ					•		-

Note.--For 32 df, r's of .34 and .44 are significant at the .05 and .01 levels, respectively.

Reprinted by permission of the Society for Research in Child Development, Inc.

Table 4.2.2

(W. C. Ward)

Creativity Intercorrelations and Correlations with IQ

Study 2

	·	<u> </u>						
	Measure	1	2	3	4	_5	6	7
1.	Instances-unique		•55	.04	.89	.66	01	38
2.	Uses-unique	50		.05	.60	•95	.05	- .35
3.	Patterns-unique	.22	.13		.13	.08	.84	.41
4.	Instances-fluency	•92	.52	.21		.72	.13	34
5.	Uses-fluency	.43	.85	01	.50		.07	27
6.	Patterns-fluency	.30	.30	.82	•35	.13		.29
7.	IQ	03	.20	12	01	.12	.04	

Note.--Males to right and above diagonal, N=41; females to left and below diagonal, N=46.

For 39 df, r's of .30 and .39 are significant at the .05 and .01 levels, respectively. For 44 df, r's of .29 and .37 are significant at the .05 and .01 levels, respectively.

Reprinted by permission of the Society for Research in Child Development, Inc.

intelligence measure was used. The average correlation between the intelligence measure and the creativity measures was -.10. The tests had been administered at a summer camp, individually, and in a relaxed atmosphere.

In Ward's second study (41 boys; 46 girls; mean age 5 years, 9 months) the creativity-intelligence distinction was not corroborated. In fact, the creativity dimension itself was not determined by the data. The main difficulty in this study was that the Patterns Tests correlated very low with the other tests. Ward mentions that the number of bizarre responses was large and that the figural materials are probably not appropriate for children this young. This seems to be a reasonable explanation for the data.

In applying the UMLFA technique to Ward's Study 2 data, a two factor solution shows that the hypothesized structure is not present. In fact, one would be hard pressed to account for the structure that UMLFA identifies by a psychological explanation. Table 4.2.3 gives the UMLFA Two Factor Solution for the 41 boys. Table 4.2.4 gives the UMLFA Two Factor Solution for the 46 girls. A three factor solution for the 41 boys is given in Table 4.2.5. It shows that the data break down into a uses factor, a patterns factor, and an instances factor. Neither an intelligence factor nor a uniqueness factor appears.

In the case of Study 1, the .98 correlation between the uniqueness and productivity measures on the patterns test probably accounts for the fact that the matrix is not positive definite. That is to say, it appears that variable 6 is a linear combination of variables 1 through 5. Thus, all of its variance can be accounted for in terms of these 5 preceding variables. The UMLFA program uses the inverse of the unique variance of each variable in its

Table 4.2.3

(W. C. Ward)

Maximum Likelihood Solution for Two Factors

Study #2 (41 Boys)

		-	Unique Var	iances			
1	0.321	0.602	0.0	0.329	0.0	0.140	1.218
		Varima	x-Rotated I	Factor Mat	rix		
Inst	ances-unique		0.659		-0.032		
Uses	-unique		0.949		-0.053		
Patt	erns-unique		0.108		0.994		
Inst	ances-fluency		0.722		0.052		
Uses	s-fluency		1.000		-0.029		
Pati	terns-fluency		0.094		0.835		
IQ			-0.257		0.441		

Table 4.2.4

(W. C. Ward)

Maximum Likelihood Solution for Two Factors

Study 2 (46 Girls)

			Unique Va	riances			
1	0.136	0.711	0.0	0.023	0.725	0.295	0.985
		Varima	x-Rotated	Factor Mat	rix		
Inst	ances-unique		0.145		0.918		
Uses	-unique		0.087		0.531		
Patt	erns-unique		0.997		0.082		
Inst	ances-fluency		0.130		0.980		
Uses	-fluency		-0.053		G.522		
Patt	erns-fluency		0.803		0.246		
IQ			-0.121		0.010		

Table 4.2.5

(W. C. Ward)

Maximum Likelihood Solution for Three Tactors

Study #2 (41 Boys)

_			Unique Va	riances			
1	0.046	0.0	0.247	0.6	0.105	0.0	1.037
		Varin	ax-Rotated	Factor Mat	rix		
Inst	ances-unique		0.900	0.126	0.148	}	
Uses	-unique		0.389	0.122	0.913	}	
Patt	erns-unique		0.075	0.826	-0.000	1	
Inst	ances-fluency		0.977	C.165	0.131	,	
Uses	s-fluency		0.416	-0.037	0.759)	
Patt	erns-fluency		0.175	0.977	0.123	}	
IQ			-0.045	0.020	0.236	•	

Table 4.2.6

(W. C. Ward)

Maximum Likelihood Solution for Two Factors

Study :	#1
---------	----

			Unique Varia	nces		
1	0.129	0.113	0.348	0.028	0.0	0.971
		Varimax-	Rotated Facto	or Matrix		
Instan	ces-unique		0.189	0.9)14	
Uses-u	mique		0.902	0.2	271	
Patter	ns-unique		0.379	0.7	713	
Instan	ces-fluency		0.176	0.9	70	
Uses-f	luency		0.974	0.2	225	
IQ			-0.165	-0.0)40	

iterative procedure. If one variable is a linear combination of the other variables, the maximum likelihood technique can not be used directly. This is not entirely prohibitive, however. One can eliminate the dependent variable and use the UMLFA technique on the remaining variables. This was done, and the UMLFA Two Factor Solution for the reduced correlation matrix is given in Table 4.2.6. The creativity-intelligence distinction is not clear in this case.

To summarize, the studies of Ward gave partial support to the Wallach and Kogan hypotheses. There were difficulties, however, in working with very young children.

4.3 The Cropley Australian Study

In 1968, A. J. Cropley reported his first study using the Wallach and Kogan materials. Cropley tested 124 first year university students, all male, with a mean age of 18 years, 4 months. The study was done in Australia with the tests group administered but having no imposed time limits. In addition, five intelligence tests devised by the Australian Council for Educational Research were administered. The results are given in Table 4.3.1.

In general, the results support the Wallach and Kogan hypothesis of a dimension distinct from intelligence, but the evidence is not a convincing as that in the Wallach and Kogan study itself. Notice particularly the erratic correlations of the Names Test with the other creativity tests in the battery. Cropley presented a factor analysis of his correlation data. It is reproduced in Table 4.3.2. Unfortunately, Cropley used a

A de la capación de desperantes de la secono dela secono de la secono dela secono de la secono del secono de la secono de la secono dela secono de la secono de l

Table 4.3.1

(A. J. Cropley)

Means, Standard Deviations and Intercorrelations for All Variables

	,	,	2	-	u	7	ſ	α	d	0,	ָרָ -	O.L	ג	ካኒ	٠ ۲
Variable	7	u	`	+		,	-		`	3	1	4	}	;	1
Mean S.D.	45.4 19.6	なされた。	20.9 12.2	19.8 8.70	20.4 9.47	2.26 2.85	2.15 2.51	1.59	4.89	4.20	17.0 4.48	.41.8 4.64	39.0 10.6	27.4	20.3
Fluency Scores: 1. Names 2. Uses 5. Similarities 4. Pattern Meanings 5. Line Meanings	•	- 16†1	241 363	148 421 314 -	136 452 429 741	610 470 148 -014	233 595 160 088 241	209 447 607 283 266	-017 253 180 611 381	135 390 199 446 632	-057 072 028 084 119	-062 058 067 090	-125 002 014 086 084	-055 019 019 017 087	-007 001 017 059 114
Uniqueness scores: 6. Names 7. Uses 8. Similarities 9. Pattern Meanings 10. Line Meanings				٠		1	533	- 111 501	080 307 212	278 457 315 469	015 219 027 204 192	-096 109 047 148 191	-011 117 058 082 044	064 152 097 094 025	090 141 111 002
Intelligence Scores: 11. AL (verbal) 12. AQ (numerical) 13. Vocabulary 14. Speed of Comprehension 15. Level of Comprehension	g g											9 '	575 305	562 388 736	482 319 636 867

-50-

Note.--Decimal points omitted. With df = 122, critical values of the correlation coefficient are .227 (p < .01), and .175 (p < .05).

Reprinted by permission of the British Journal of Educational Psychology.

Table 4.3.2

Cropley's Principal Axis Factor Loadings
 (Decimal points omitted.)

			Factor		
Variables	Ι	II	111	ΛĪ	$^{\mathrm{h}^2}$
					_
Fluency Scores:	,	,,,	(Ç	ŗ
I. Names	369	-366	-520	6/0-	24/
	731	-362	-211	-062	713
3. Similarities	588	-289	104	-594	793
	979	-202	587	-193	841
5. Line Meanings	069	-174	977	-042	707
Uniqueness Scores:					
6. Names	472	-272	-685	164	792
	636	-100	-385	401	723
	617	-227	-200	-295	559
9. Pattern Meanings	557	-031	4 39	299	594
	299	-171	237.	457	739
Intelligence Scores:					
	413	069	200	212	692
12. AQ (numerical)	315	538	108	231	454
	332	755	090-	-161	602
14. Speed of Comprehension	376	810	-176	-184	862
15. Level of Comprehension	369	744	-176	-220	892
Sums of squares	4.32	3.13	1.85	1.18	10.48
% total variance	28.80	20.87	12.33	7.87	69.87
% common variance	41.22	29.87	17.65	11.26	100.00

Reprinted by permission of the British Journal of Educational Psychology.

(3)	
ERIC	
Full Text Provided by ERIC	

					•		-5	52-													
	0.565																				
	0.623																				
	0.652																				
	0.507		ΙΧ																		
UNIQUE VARIANCES	0.308		FACTOR MATRIX																		
UNIQUE	0.304	0.223	VARIMAX-ROTATED F		0.610	0.640	0.274	600.0	0.156		0.831	0.671	0.504	0.085	0.331		0.039	-0.031	-0.024	0.063	0.071
	0.195	0.041	VARIMAX		0.087	0.441	0.387	968.0	0.813		-0.033	0.165	0.296	0.597	0.570		0.101	0.106	0.041	-0.034	000.0-
	0.775	0.425			-0.095	-0.011	0.012	0.048	0.104		0.011	0.125	0.076	0.115	0.028		0.589	0.411	0.757	926.0	0.879
	0.611 0.396	0.641 0.819		FLUENCY SCORES:	Names	Uses	Similarities	Pattern Meanings	Line Meanings	Uniqueness Scores:	Names	Vses	Similarities	Pattern Meanings	Line Meanings	INTELLIGENCE SCORES:	AL (verbal)	AQ (numerical)	Vocabulary	Speed of Compre.	Level of Compre.
	0.	0.		FLUENCY	1. Na	2. Us	3. SI	4. Pa	5. Li	Uniquer	6. Na	7. Us	8. S ₁	9. Pa	10. L	INTELL	11. AI	12. AC	13. Vc	14. S	15. Le

Table 4.3.3.: Cropley's Australian Study, (UMLFA 3 Factor Solution)

						-	53-											
	0.492																	
	0.511																	
	0.665																	
50	0.259	MATRIX												•				
UNIQUE VARIANCES	0.323	VARIMAX-ROTATED FACTOR MATRIX		- 0.152	0.266	0.053	- 0.136	0.097		0.205	0.667	0.232	0.234	0.465		0.240	0.217	0.002
UNIQU	0.393	RIMAX-ROTA		0.755	0.619	0.295	0.077	0.171		0.795	0.502	0.442	0.008	0.202		- 0.054	- 0.116	- 0.037
	0.0	VA		-0.123	-0.014	0.003	0.025	0.093		0.011	0.156	0.080	0.123	0.044		0.609	0.429	0.761
	0.819			0.073	0.415	0.302	0.987	0.748		-0.048	0.138	0.282	0.647	0.499		0.107	960.0	0.071
	0.373		ES:			ities	Pattern Meanings	anings	CORES:			rities	Pattern Meanings	anings	INTELLIGENCE SCORES:	rbal)	AQ (numerical)	lary
	0.386		FLUENCY ?)RES:	Names	Uses	Similarities		Line Meanings	UNIQUENESS SCORES:	Names	Uses	Similarities	Patter	Line Meanings	TLIGENCE	AL (verbal)		Vocabulary
			FLUE	1.	2.	'n	4.	5.	DINI	9	7.	80	9.	10.	INT	11.	12.	13.

Table 4.3.4: Cropley's Australian Study, (UMLFA 4 Factor Solution)

The second of th

-0.055- 0.106

0.973 0.873

Speed of Compre. Level of Compre.

13. 14. 15.

0.116 0.082

0.014 -0.022

principal components factor analysis and did not rotate the solution. thus retains a general factor in spite of the fact that the intercorrelations between the creativity and intelligence tests are very small in comparison with the correlations within each domain. His second and third factors are bipolar and not very amenable to interpretation in the domain of human abilities. I have performed an unrestricted maximum likelihood factor analysis of Cropley's correlation matrix with a Varimax rotation. The solution for three factors is given in Table 4.3.3. The first factor is clearly an intelligence factor. Factors II and III are creativity factors; II is the "visual" factor, and III resembles the "verbal" factor with some difficulty caused by the Names test. Cropley did not seem to be aware of the substructure in the tests, or at least, he does not refer to it. I present the four factor solution for completeness sake in Table 4.3.4. The interesting finding here is that on the first factor, the "creativity-visual" factor, the Names test loads ver poorly whereas the Uses and Similarities tests have moderate loadings. In the present research study, I have followed the lead of Wallach and Wing and deleted the Names test.

4.4 The Cropley and Maslany Canadian Study

In 1969, Cropley and G. W. Maslany (University of Saskatchewan) administered the Wallach and Kogan materials to 207 Canadian university students, of both sexes, and having a mean age of 20 years, 3 months. In this study, the authors administered the tests in an informal group atmosphere. Students were allowed to smoke, drink coffee, and move about the room. No time limits were imposed. Total times ranged from 1 hour 15 minutes to 6 hours 30 minutes (median was 3 hours). In addition, Cropley and Maslany administered six tests

from the Primary Mental Abilities battery. In scoring the creativity items, the authors did not score for number and uniqueness. Instead, they scored for originality, the latter being defined in terms of statistical uncommonness. Scores ranged from 0 for a response occurring on more than 15% of the protocols to a maximum of 4 for a truly unique response. This, it seems to me, is a reasonable approach. However, it still entails calculating all of the percentages of each response. I found this to be an extremely tedious and often difficult task as will be explained in the consideration of scoring the materials in the present research. Therefore, it would have been helpful if Cropley and Maslany had continued to use the more or less current system of scoring. If the high correlations between uniqueness scores and number scores could be verified in a few more studies with the concurrent absence of any separate number and uniqueness factors, I think it could be shown that the uniqueness score could simply be ignored. Theoretically this may sound somewhat damaging as the ordinary concept of creativity seems to imply this certain cleverness that should show up in responses that are unique. Nevertheless, the empirical evidence seems to show that it adds little to what is already provided by the productivity measures.

The correlation matrix for the Cropley and Maslany study is reproduced in Table 4.4.1. Their factor analysis is reproduced in Table 4.4.2. As in the previous study, it allows for rather poor psychological interpretation. Realizing this, Kogan, in 1971, refactored the Cropley and Maslany correlation matrix using the Promax method of Hendrickson and White (1964). I include it in Table 4.4.3 for comparison with the unrestricted maximum likelihood solution which is given for three factors in Table 4.4.4. The UMLFA

engeligheren en standare ingeligheren. Sobbarradere ak tim det mit der ben men

Table 4.4.1

(Cropley and Maslany)

Means, Standard Deviations, and Intercorrelations

for All Variables (N = 207)

Var	iable	1	2	3	4	55	6	7	8		10	11
Mear	ı	40.8	43.4	28.1	70.0	48.7	28.1	21.7	13.7	21.2	11.0	38.6
S.D.	,	28.3	23.8	20.6	32.5	25.5	7.47	4.69	3.88	3.42	3.42	10.5
1.	Names	•	625	402	321	267	168	084	155	142	157	093
2.	Uses		-	690	474	366	140	119	070	189	107	200
3.	Similarities			-	456	425	038	043	- 065	086	-033	137
4.	Pattern meaning	s			-	742	- 026	027	017	082	-047	164
5.	Line meanings					-	- 070	-027	- 015	027	006	075
6.	Verbal meaning						-	206	263 .	461	126	164
7.	Number facility							-	280	409	291	330
8.	Letter series								-	368	362	220
9.	Word groupings									-	166	217
10.	Number series			•							-	289
11.	Spatial relation	ns								•		-

Note.--For 205. df, r's of .14 and .18 are significant at the .05 and .01 levels, respectively. Decimal points omitted in correlation coefficients.

Table 4.4.2

Cropley and Maslany's Principal Axis Factor Loadings

		(All decimal points om	decimal points omitted in factor loadings.)	ngs.)	c
	VARIABLES		FACTORS	•	h ²
		H	II	III	
-	No mon	673	-101	252	530
• •	The second secon	792	-203	180	702
, ,		1 899	_378 _378	124	605
ำ	SIMITALICIES		2:2	- 200	705
4.	Pattern Meanings	685	1441	202	
ď	Line Meanings	604	-476	-262	099
, ,	Wooning	305	508	559	199
	Verbar meaning	776	5.27	-191	481
`	Number Facility	44C	. 4/0	1 0	107
α	Tatter Series	307	599	80T-	403
;	House Courses	127	566	314	605
,	Word Grouping	1 1) L	4 4 7	22
10.	Number Series	276	505	-455	900
11.	Spatial Relations	416	365	-440	200
			,	7	•
Sums	Sums of Squares	3.10	2.26	7.0-1	6.43
Tota	Total Variance (%)	28.2	20.5	9.73	58.4
Com	۵.	48.2	35.1	16.8	100.0

Table 4.4.3

Kogan's Promax Rotation of Cropley and Maslany's Principal

Axis Solution (1969)

Variables		Factors	
	I	II	III
Names	627	-068	350
Uses	810	-049	272
Similarities	801	-147	111
Pattern Meanings	803	123	248
Line Meanings	752	128	341
Verbal Meaning	-007	-035	815
Number Facility	-036	602	219
Letter Series	-082	549	288
Word Grouping	056	235	663
Number Series	-066	·743	-053
Spatial Relations	128	694	-6 81

Note: All decimal points are omitted.

	Factor Co	orrelations	<u> </u>
	I	II	III
I	1.000	0.124	0.068
II	0.124	1.000	0.286
III	0.068	0.286	1.000

Table 4.4.4

(Cropley and Maslany)

Maximum Likelihood Solution for Three Factors

				τ	Jnique V	ariance	s			
1	0. <i>59</i> 9 0.804	0.0	0.474	0.272	0.222	0.743	0.674	0.661	0.567	0.807
			V	arimax-	-Rotated	Factor	Matrix	:		
				1		0.152				
				2		0.173				
				2 3 4 5 6		0.312				
				4		0.780				
				5		0.851				
						-0.081				
				7 8		-0.005				
						0.008				
				9		0.038				
				10		-0.030				
			•	11	0.124	0.101	0.415			

technique captures the substructure of the creativity dimension very nicely.

Factor 1 appears to be a "creativity-verbal" factor, II a "creativity-visual" factor, and III an intelligence factor.

4.5 Wallach and Wing's Duke University Study

In 1969, Michael Wallach and Cliff Wing published the results of a study they conducted using the Wallach and Kogan materials but deleting the Names Test. Wallach and Wing mailed the creativity materials to the entering class at Duke University and invited the students to participate in the research study. About 40% of the students (302 men, 201 women) agreed to participate. They used the Scholastic Aptitude Tests as their intelligence measures.

Before examining the correlation matrix from their study, it would be appropriate to consider several important points that Wallach and Wing stress. In defending the use of both uniqueness scores and productivity scores (Maslany and Cropley, in their Canadian Study, combined these into one), Wallach and Wing reason as follows:

Recall that we wished to compare the psychological implications of ideational output and ideational uniqueness, since the two cognitive characteristics suggested different underlying mechanisms. Hence, an approach was needed that would maximize the potential separation between the two. By defining uniqueness in terms of the number of fully unique responses, we provided as much of an opportunity as possible for the uniqueness count to diverge from the measure of total number of ideas produced.

This seems to be a reasonable theory, and one which can be checked by extracting factors. All of the preceding analyses, and those which will be presented in the following, seem to indicate rather clearly that the number-uniqueness structure is not nearly as important as the verbal-visual structure. Wallach and Wing seem to ignore this point. In extracting four factors from the

two substructures, verbal and visual, break lown into uses, similarities, lines, and patterns factors with no evidence of number and uniqueness factors.

Unfortunately, Wallach and Wing do not report the complete correlation matrix for their tests. They state that the correlations between uniqueness and number on a single test would be subject to artifactual inflation. It would have been interesting to see if that was the case. At any rate, in order to perform a factor analysis of these data, I assumed that the correlation between the number and the uniqueness on any subtest would be at least as high as the correlation between the number on that subtest and the uniqueness on a different subtest. This would seem to be a fair compromise, and, if anything, an underestimate of the actual correlation. Of course, the greater this correlation, the better will be the chances of finding the substructure that has been hypothesized. Thus, for the correlation between number of uses and uniqueness of uses I used the correlation between number of uses and uniqueness of patterns; for similarities, I used patterns; for patterns, I used lines; and, finally, for lines, I used patterns. The correlation cable is reproduced in Table 4.5.1 with the added correlations underlined. Wallach and Wing reported a correlation of .380 between SAT-V and SAT-M. The two and three factor solutions are given in Tables 4.5.2 and 4.5.3. Even though Wallach and Wing have only the two intelligence measures, the structure is quite clear. The fact that there are eight creativity measures and only two intelligence measures results in the creativity substructure appearing first. In the two factor solution, the first factor is the "creativity-verbal" factor, the second is the "creativity-figural" factor. In the three factor

Table 4.5.1

(Wallach and Wing)

Correlations and Intercorrelations of Creativity

and Intelligence Variables

	Variable	1	2	3	4	5	6	7_	8	9	10
1.	Uses-fluency		<u>55</u>	71	48	59	55	57	46	08	-02
2.	Uses-unique	•	•	54	51	<i>3</i> 7	43	36	3 8	08	05
3.	Similarities-fluency				<u>58</u>	6 8	·58	67	52	03	-03
4.	Similarities-unique					43	49	36	3 7	03	- 03
5.	Patterns-fluency						<u>66</u>	79	66	03	-07
6.	ratterns-unique							63	70	05	-03
7.	Line Meanings-fluency								<u>63</u>	08	-05
8.	Line Meanings-unique									09	-03
9.	SAT-Verbal										38
10.	SAT-Mathematical						_				

Note.--For 501 df, r's of .09 and .12 are significant at the .05 and .01 levels, respectively. Decimal points are omitted.

From The Talented Student by M. Wallach and C. Wing. New York: Holt, Rinehart, and Winston, 1969.

066.0

166°0

644.0

0.237

0.414

ERIC

*Full Text Provided by ERIC

0.191											
(• 523	MATAXX	rc							•		
26 û	FACTOR MAT	563 5									
474.0	VARLMAX-ROTATED	10 212	0.049								-6.097
0.376	VARLMA	0 730	0.721	0.754	0.690	0.430	0.536	11, 452	0.423	0.077	320.0
4-		•	- ~	m	a	2	9	7	œ	σ	10

Table 4.5.2: Wallach and Wing (UMLFA 2 Factor Solution)

0.737									-(54-	•	
0.429												
0.443							-					
0.235												
0.414												
0.190												
0.519	×	7			-	-						
9.25R	PACTOR MATRIX	503 5					0.307					
0.479	VARYHAX-ROTATED	16 3			-0.037	-0.017	-0.059	0.004	0.032	6.041	r.751	0.509
0.370	VARIMA	0					0.844	•	0.830		•	-0.061
•			-	7	m	=	S	9	7	œ	σ.	10

Table 4.5.3: Wallarh and Wing (UMLFA 3 Factor Solution)

structure, the intelligence factor appears. The evidence for a uniqueness-productivity substructure is weak, certainly much weaker than the verbal-figural substructure.

4.6 Summary

These studies provide rather good evidence for the intelligence-creativity distinction using the Wallach and Kogan measures as the measures of creativity. In addition, the evidence for the interpretable substructure appears to be fairly good. In the research study to be reported in the next chapter, the use of the materials with a high school sample will be tested. The creativity measures will also be related to many more intelligence and achievement measures than have been reported in the literature thus far.

CHAPTER 5

XAVERIAN HIGH SCHOOL SAMPLE: MEASURES AND HYPOTHESES

5.1 <u>Introduction</u>

The studies reviewed in the preceding chapters provide rather strong evidence that the measures obtained with the Wallach and Kogan materials are coherent, have a meaningful substructure, and are independent of at least some common measures of intelligence. The materials have been used with children between the ages of four and eleven. They have been used with college students under two different testing conditions: a relaxed group condition in the Cropley and Maslany studies, and testing by mail in the Wallach and Wing study.

In the present research study, the Wallach and Kogan waterials were administered to a group of high school sophomores in an attempt to extend their use to the middle age level. In addition, many mc reasure of intelligence and achievement have been added to those reported in previous studies.

5.2 Design of the Study

A variety of factors entered into the choice of the sample to be used in this research study. One of the main considerations was to use students between the ages of 11 and 18 in order to extend the use of the creativity materials. In addition, it was desirable to obtain intelligence information on the students. It was felt that such information would be readily available at the secondary school level. Accordingly, the principal at Xaverian High School in Brooklyn, New York, was contacted by the researcher and clearance

to test students at any level in the school was obtained. The testing was to be carried out during the summer or fall of 1969. It was decided that the class which would begin its junior year in September, 1969 would be the most appropriate group to test for they would take the Preliminary Scholastic Aptitude Test at the beginning of their junior year, the National Merit Scholarship Qualifying Test in March, and the college board examination (SAT) at the end of the junior year. As a result, a good deal of intelligence information could be gathered.

The next consideration was whether to administer the tests in school or to mail them to the students. It would be difficult to convince high school students in a classroom setting that they were to relax and not be concerned about the evaluative aspects of the testing. Nathan Kogan, in some recent unpublished research, found this to be the case. Therefore, the students were tested by mail. It was hoped that this would also allow the students more freedom in deciding whether or not to participate in the study. This freedom to participate probably accounts for the fact that those students who did participate filled out the materials seriously. Obscene, vulgar, and bizarre responses were virtually nonexistent.

Once the decision to test by mail was made, it was decided that a summer testing would be more apt to keep the students from sharing responses.

Xaverian High School's student body comes from a large geographical region in New York City. The summer mailing was about as good a control over sharing responses as could be attained.

Thus, the original design of the study was to test during the summe. of 1969 as many of the Xaverian High School sophomores as would volunteer to

participate in the study. If a sufficient number agreed to participate, the intelligence measures would be obtained at a later date from the school.

5.3 Instruments and Procedure

In August of 1969, the Wallach and Kogan materials were mailed to the homes of the 371 sophomores. The students were informed that, with the principal's permission, they were being asked to participate in a research study of some new educational materials. They were assured that their responses would be kert strictly confidential. In addition, they were told that the researcher would visit the school during the course of the year to explain the research further and to invite them to continue their participation. Subsequently, this was done. The students were asked to return the materials by August 31st. One hundred forty students returned the materials completed and volunteered to participate in the research study.

During the next few months it became evident that the scoring of the 140 tests would be a rather formidable task. It was decided to select a random sample of 40 students for a preliminary analysis. Using these 40 students and the Preliminary Scholastic Aptitude Test administered in October 1969, a preliminary analysis was performed and reported in the Minor Research Report A Validation of the Creativity-Intelligence Distinction in High School Sophomores (June 1970). The preliminary analysis was encouraging, and the decision was made to analyze the data of all 140 students and to gather other available intelligence and achievement information. The actual measures used in the total study will be described in the following sections.

5.4 The Creativity Measures

The actual materials sent to the high school students are reproduced in Appendix 1. The items are taken from the original Wallach and Kogan materials (1965a) and comprise four tests: a Uses Test, a Similarities Test, a Pattern Meanings Test, and a Line Meanings Test. Each test contains three items.

Two scores are obtained for each item, a productivity score and a uniqueness score. The productivity score is simply the number of distinct responses given for an item. A unique response is one that is given by only one subject in the sample. The uniqueness score for an item is the number of unique responses given for that item. While the productivity score is obtained easily, the uniqueness score presents a number of difficulties. The actual procedure used in this study for the productivity scores was to reproduce two sets of the student materials and have independent scorers score them. Disagreements were resolved by the author usually in favor of the higher score. Since the students were directed to give distinct responses, this seemed to be a reasonable approach. Unique scores were determined by the author with assistance from several students in psychology. In general, the following principles outlined by Wallach and Wing in The Talented Student were used in the scoring:

- (1) Different terms which have the same meaning are considered to be the same. For example, "toy" and "plaything" are categorized as the same use for a shoe.
- (2) Singular and plural responses are considered to be the same in the case of the verbal items. For instance, "line garbage can" and "line garbage cans" are categorized as the same use

for a newspaper. In the case of the visual items, on the other hand, singular and plural responses are not considered to be the same because different images are involved: the student envisions a different percept in each case.

- (3) Such phrases as "part of," "piece of," or "article of," are treated as irrelevant when they refer to a collective concept. For example, "piece of string" and "string" are categorized as the same response for the second item in the line meanings task. The aforementioned kind of phrases are retained as meaningful, however, when they refer to a discrete concept, because different images are envisioned. For instance, "part of a racetrack" and "racetrack" are categorized as different responses for the second item in the pattern meanings task.
- (4) References to the position of the viewer are treated as irrelevant. For instance, "upside-down vase" and "vase" are classified as the same response for the third item in the line meanings task.
- (5) Qualifiers representing varying degrees of endorsement are considered to be the same. For example, in relation to similarities between a potato and a carrot, the following responses are taken as equivalent: "always peeled," "usually peeled," "often peeled," "normally peeled," "sometimes peeled," and "peeled." Analogously, qualifiers representing varying degrees of nonendorsement are considered

ID of HIGHEST SCORING STUDENT	353	001	100	001	100	L100	100	100	100	001	100	100	100	100	100	100	100	100	00	00	.55	00	00	00
II S(ī	[]	I	1	1	1	L	1	[]	I		I	I	I	H	I	L	I	L1	I	17	H	L1	L
нісн	90.00	44.00	32.00	99.00	76.00	46.00	52.00	48.00	31.00	46.00	33.00	90.09	18,00	17.00	12.00	84.00	49.00	32.00	14.00	9.00	15.00	31,00	21.00	37.00
LOW	3.00	1.00	1,00	1.00	0.0	0.0	0.0	1.00	0.0	0.0	0.0	1,00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
s.D.	13.27	5.79	5.49	8.75	7.07	4.61	5.81	5.57	4.63	4.73	4.12	5.61	2.03	1.78	1.49	7.18	4.38	3.05	1.57	1.31	1,53	2.89	2.54	3.37
VARIANCE	1.76.08	33.48	30.13	76.52	50.02	21.26	33,71	31,05	21.42	22.34	17.01	31.51	4.13	3.17	2,22	51,58	19,17	9.32	2.47	1.72	2,35	8.37	6.47	11.38
MEAN	15.66	8.13	7.30	6.42	6.05	4.27	7.81	6.94	5.86	6.47	5.22	5.82	0.76	0.72	0.67	1.84	1.44	1.52	0.67	0.55	0.62	1.04	1.53	1.43
LABEL	NUSES1	NUSES2	NUSES 3	NPAT1	NPAT2	NPAT3	NSIMI	NSIM2	NS IM3	NLINI	NLIN2	NLIN3	UUS ES 1	UUSES2	UUSES3	UPAT1	UPAT2	UPAT3	USIMI	USIM2	USIM3	UL INI	ULIN2	ULIN3
	Н	7	ന	4	ۍ	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54

Table 5.4.1: Creativity Scores (N=140)

to be the same. For instance, the following responses are taken as equivalent similarities for train and tractor; "never colored white," "seldom colored white," and "not colored white."

The means, standard deviations, high and low scores, and the identifying number of the students obtaining the highest scores are listed in Table 5.4.1 for each of the 12 items. The reason for including the student with the highest score will be apparent from the discussion in the next section.

5.5 The Problem of Student Number 100

After the raw creativity scores were obtained, the correlation matrix shown in Table 5.5.1 was computed. These correlations were sufficiently high to indicate good item-item interrelationships and to justify adding the items on a given subtest together. In order that each item would contribute equally to total scores, all item scores were standardized with a mean of zero and a standard deviation of one. When these standardized scores were examined, it was immediately evident that the scores of student number 100 were extremely deviant. It can be seen from Table 5.4.1 that student number 100 scored highest on 22 of the 24 creativity measures. In reexamining the original test for student number 100, it was foun, that his scores were correct. They were simply very deviant. The actual standard scores for this student were more than four standard deviations from the mean on every measure and more than nine standard deviations on ten of the measures. Since the sample size is 140, the effect of stadent number 100's scores on the entire data is not immediately evident.

6		UPAT3	# O	# C	26	92	69	70	09	78	73	96	72	72	1 9	06	88	9 9	69	61	36	80	72	60 60
17	UP AT 2		39 88	80 C	9 6	76	99	65	24	78	67	8	70	74	63	⊅ 6	100	89	72	2 6	33	90	71	83
9		CPATI	39	9 17	2 G	# 60	69	6 8	25	16	63	82	74	78	69	100	76	90	74	9	32	8	69	92
5	esasoo		45	72	2 8	6.6	89	67	5\$	23	. 51	63	1 9	7 9	100	9	65	6 4	† 9	<u>၁</u>	4 6	63	55	65
10	ā	UUSES2.	447	35.6	۲, د	67	61	61	47	23	23	69	62	100	ф 9	78	74	72	65	8	5 6	71	22	73
13	UUSEST	Ď	11	53	- 0	, 1 9	63	57	4.5	26	20	69	100	62	61	74	70	72	99	8	37	65	24	70
12	90	NLIN3	47	26	O 5	6	16	76	67	A5	80	100	69	69	63	85	36	98	74	61	38	78	75	91
-	NLI NZ	~	36	51	φ κ	79	99	62	79	83	100	80	20	23	51	63	67	73	62	64	35	72	34	74
9	~	NLIN1	38	47	# v	30	68	70	79	100	83	82	26	23	23	16	78	78	99	25	33	78	73	61.
0	NS IN 3	_	5. 5.	62	1 9	72	75	83	100	79	9	29	6.5	47	52	52	24	9	99	72	65	58	57	62
ဆ	~	NSI M2	50 68 68	6 8	76	. 6	88	10C	83	2	62.	76	57	61	67	66	65	70	78	83	59	68	6.	74
7	NSIH 1	-	6.0	11	74		00:	82	75	89	99	76	63	61	89	69	99	69	86	75	9	70	62	75
9		NPAT3	2 C	8	6 C	16.	, =	81	72	76	79	90	79	67	63	38	æ	92	72	67	42	82	72	88
r.	NPAT2	_	45 5.0	S	9 6	5	, , -	73	79	8	78	88	69	7.1	89	06	65	91	72	63	38	87	75	88
. 3	- -	NPAT1	43	20	100		7.	16	5	36	7 14	0	7	75	72	ç	92	92	76	3	36	8	7.	12
m	NUSES3		62	100	ያ ራ	L N E O	7.	8	25	; - =		9.0	. E.	S.	72	9#	3	54	α.		7 7	u 7	5	20
۸.	M	USES 2	456	7	61	70	, v		<u>ب</u> س	2			. 5	7	2	S.	5.5	9	2	3 6	. E	8	0	57
**	NUSES1	Z	100	62	9 t	ດ ະ ສ =	ď	, fi	, C	. . .	, v.	2 4	7.1	3		39	66	37	, F	37	000	76		. 39
***	TageT		K18 FS1	MI-STS3	NP4T1	NPATZ	7 1 1 1 2	C#107	1 K L U X	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×1 1 1 2 2	K1 1 %	133551	000000	HIGES	T T V d LI	UPATZ	119173	INT X 1	CMTOIL		FNT.TH	CRITI	OLIN3
POSTTION	_	۸,	۰۰۰	4 M	3	so v	۰,	- α	o o	`¢	2 🗜	: 2	4 (* - (;	7.5	<u> </u>		12	φ.	2	2 5			3 6	5 6

Table 5.5.1: Correlations of the Creativity Scores (N = 140)

;

24		ULIN3	39	57	Š	45	88	88	75	74	62	19	74	91	70	73	65	65	83	£	73	65	38	æ	75	100
23	ULIN2		32	ტ #	ני	7	75	72	62	59	57	73	34	75	34	55	55	69	71	72	62	51	33	76	100	7.
22		ULINI	37	52	47	8,	87	82	70	6,9	59	β¢	72	3	65	71	63	8	90	85	76	57	38	100	16	86
21	USIR3		30	35	77	36	38	42	9.	59	65	33	32	33	37	26	9#	32	33	36	68	9	100	38	33	38
20		USINZ	37	53	5,8	η9	63	67	75	.83	7.5	.25	617	9	æ #	α \$	9	90	26	6.3	70	100	. 68	57	51	65
19	USIM1		52	63	58	٠ ٦٥	72	72	86.	78	99	99	62	74	66	65	#9	74	72	69	100	70	68	92	. 62	73
	LABEL	•	Profest	RUSESP	£848113	. woar	SPAT2	NPATS	LWISA	NSTYZ	YC EN 3	11.11	NLIV2	NI.TH3	008551	1.115 1.52	1105FS3	"IPAT1	110112	HPAT 3	USINI	13 I.M.2	USING	ULINI	ULIN2	OLIN3
POSITION			~	7	m	3	ur.	Ŀ	~	œ	6	ç		12	13	7	15	15	17	1 3	19	20	21	22	23	54

Table 5.5.1 (cont'd)

In order to determine whether or not the scores in question would inordinately distort the results of this study, several factors were considered. First of all, it is desirable to justify adding the scores on individual items together in order to obtain total scores on subtests. High interitem correlations are ordinarily used as evidence for the reasonableness of this process. In addition, the substructure of the creativity dimension would be determined by factor analyzing the correlation matrix. Therefore, the correlations are the primary data to be analyzed in this research study. What effect rould one student's scores have on the correlation coefficients in the study? The answer to this question was used to justify the decision to delete student number 100's scores from the data before proceeding. Nevertheless, in Appendix 2, a two factor UMLFA solution for N = 140 is presented for comparison.

5.6 Influence of a Deviant Score on the Correlation Coefficien+

There is no absolutely agreed upon criterion for deleting a deviant score from a set of data. However, there are ways of assessing its effects. In this section, three approaches will be considered to justify deleting student number 100% scores from the data before proceeding:

- (1) Consideration of the scatter plots of the data
- (2) Consideration of the variance in the data
- (3) Consideration of the changes in the correlation coefficients when #100 is deleted.
- (1) The scatter plots for several measures are given in Figures 5.6.1 through 5.6.4. Each scatter plot resembles a case in which many scoles are

3.944	• •	• • •	• • •	••	• •	••	• • •	•••	•••	• •	• •	• • •	• • •	• • •	• •	• • •	• • •	•	• •	 •
260.01												-						* * * .	* * * * * *	 38893574453**

Figure 5.6.1 (N=140)

THE COURSE BY THE SHARE SECURITY OF SELECTIONS OF SHARE STUDIES OF SHARE AS A COURSE OF SHARE AS A CONTROL OF SHARE SHAR

3.844 -++++++++++	••••			••••		• • • •	•••	• • • •
1.876 		٠.	0		*	٠	•	
-u-u-u-u-u-u-u-u-u-u-u-u-u-u-u-u-u-u-u			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	•	22 2 * * * * * * * * * * * * * * * * *	* *

Ţ.,

. .

Figure 5.6.2 (N=140)

. , ,;*

and the second of the second s

				•••••				•••••	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				•	·			• •	\sim
2								.\	,)
6 8 2 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9				•					•
7				• •					• •
7	••••			•					•
2 # 2 # 2 # 2 # 4 # 2 # 4 # 4 # 4 # 4 #				• (• •
7	* • • • • • • • • • • • • • • • • • • •			• •					•
2				•					*
2 ** 2 ** 4 ** 4 ** 4 ** 4 ** 4 ** 4 **	•			• •					• ;
23 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• • • • • •			• •	٠		•		•
2 * * 2 * * * * * * * * * * * * * * * *	••••		•	•					•*
2 * * 2 * * 6 3995 7 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2 * * 6 3995 7 2	•••			• 1					•
2 * 2 * * 5 * * 6 * 5 * 6 * 6 * 6 * 6 * 6 * 6	• • •		•	• •					• •
2 * 2 * 5 2 * 5 * 5 6 379 35 5 2 * 6 9 379 35 9 2 * 6 9 379 39 39 48 48 26 5	• •			•	•				•
7 * * 2 * * 4 * 2 * * 4 * 4 * 5 * 4 * 4 * 5 * 4 * 4 * 5 * 5	•			•					• •
2 ** 2 ** 7 93-35 2 2 ** 7 93-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 95-34-34-4 2 ** 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		••	•	•	•				•
7	•			• (• (
2 * 2 * 2 * 2 * 2 * 4 * 2 * 4 * 4 * 4 *									• •
2 ** 2 ** 2 ** 4 ** 2 ** 4 ** 2 ** 4 ** 2 ** 4 ** 4 ** 2 ** 4	•	•	•	•				•	•
2	••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•		*
2 # 2 # 6 37 # 3 # 2 # 4	• (• '					•
7			•	· •				:	•, •
7	•	•		•					•
7	•			•					*
6 37°35 7 2 * * * * * * * * * * * * * * * * * *	•	•	•	•		•			•
2 * 2 * * 2 * * 5 * 5 * 5 * 5 * 5 * 5 *	•			•					•
+2	• •			• (•
+2 + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + 2 + + 2 + + 2 + + 2 + + 2 + + 2 + + 2 + 4 + 2 + 4 + 4	•			• •					• •
+2 +	•			•					•
+2 + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + + 2 + + 2 + + 2 +	•			•					•
+2 +			ē	•					•
+2 +				•					•
+2 +	•						٠		•
+2 + + 2 + + + + + + + + + + + + + + +	•			• (•	•
+2				· •					• •
+2				•					•
2	٠		•	•					•
6 3735 5 2 % & # # # # / 9373444 2 % * * * * * * * * * * * * * * * * * *	•			•					•
/ 93×3×3×4× 2× + -/ 956 2* * 	# # # # Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	4		•					•
4/956 24 4 4+*********************************	. 93×3×3×4×	ŀ		• (• (
**************************************	1 956 2* +			• •					• •
	**************************************	•	• 6	•	5.643	•••••	**************************************	••••••	+ 5

A THE SECOND SEC

Figure 5.6.3 (N=140)

Ž.
N. a m
N. an
N
N
Ž.
N m
N
N m
* * * * * * * * * * * * * * * * * * *
7. * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *
Ci i i m
* * * * * * * * * * * * * * * * * * *

2 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2
m

ERIC Full Text Provided by ERIC

And the state of t

close to the origin and one score is large. In order to demonstrate the effect of a deviant score on data like this, consider the following case. Suppose that four students score as follows on two items: (1, 1), (1, 2), (2, 1), and (2, 2). The mean score on each item would be 1.50, the standard deviation would be .58 and the correlation is zero. Now, if a fifth student scored (10, 10), the mean would become 3.20 and the standard deviation 3.83. The correlation coefficient would become .98. That such a large change occurs is probably not surprising since the one student in only five would seem rather critical. Now, assume that instead of one student receiving each of the (1, 1), (1, 2), (2, 1), and (2, 2) scores, 50 students receive each of those scores, thus raising the N involved to 200 students. What would be the effect of one student receiving a score of (10, 10) on the two items? For N = 200, the mean, standard deviation, and correlation coefficient would still be 1.50, .58, and 0.0, respectively. With N = 201, the mean would be 1.54 and the standard deviation .78. At face value these changes may seem rather small. Nevertheless, the correlation coefficient would now be .59. For an N of 201, this value is significantly different from zero. Yet it is a spurious value. A scatterplot of these data would look like Figure 5.6.5.

ことの 春日の日本のでは、これのの日本の本の本のは、日本の日本の

Fis,. 5.6.5

The scatterplots given in Figures 5.6.1 through 5.6.4 indicate that the data in this research are similar to that given in this example. The scatterplots with student number 100 deleted are given in Figures 5.6.6 through 5.6.9.

(2) Harold Gulliksen (Theory of Mental Tests, 1950) and Quinn McNemar (Psychological Statistics, 1962) give the following equation relating the correlation between two variables in a curtailed sample with the correlation of the two variables in the uncurtailed sample and the standard deviations in both samples:

$$R_{xy} = \sqrt{\frac{\sum_{xy} \left(\frac{SD_x}{sd_y}\right)}{1 - r_{xy}^2 + r_{xy}^2 \left(\frac{SD_x}{sd_x}\right)^2}}$$

where R = correlation with uncurtailed range,

r xy = Correlation with curtailed range,

 SD_{x} = standard deviation with uncurtailed range,

sd = standard deviation with curtailed range.

It is evident from this formula that the ratio of the standard deviations is an important factor in accounting for the change in a correlation coefficient when the range of the variables is curtailed. Ordinarily, the deletion of a single score will not cause a very large change in the ratio of the standard deviations. In the data at hand, however, the deletion of the scores of student number 100 causes rather large changes in the ratio of the standard deviations (see for example NPAT1 for N = 140 and N = 139). This provides further justification for deleting number 100's scores from the analysis.

Secretary of the contraction and appropriate and the second contraction of the second contractio

16 0.933 2.166
m •

Figure 5.6.6 (N=139)

THE REPORT OF THE PROPERTY OF

	4.23	4.13	4.03	3,92	3.82	3.62	3.52	3.41.	3.37	3.11	3.00	06.2	2.80	200	63	2.39	29	2.18	8 C C	200	2 2 2 2 2	. 67	1.57	1.47	36	٥,٠	6.0	86	.85	.75	65	3	.34	. 24	 	2 6	.17	.27	.39	ع. ع.	-0.08 -0.08	. 79	.89			
4.631		•	•	•	• •	•	•	•	• •	• (, ,•	•	• •	• •	•	•	•	•	•		•	• •	•	•	•	• 4	,- - -		•	•	+	• •	. •		•	•	• •	61	+	٠ •		•	9- +	A. 631		
4.015					•											•	,	•																										•••	4.015	•
3.398			•	k																			•	•										•		•			٠.					3,398		
2.782													•							4	•					4	,											•						+ • • • • • • • • • • • • • • • • • • •	2.782	
2.166	•				*		•	•			•							4	•			• • • • • • • • • • • • • • • • • • • •				•	*							٠			•	, ,					,	2.166		1201
1.549		•	•	•	. •	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •		•	•	• •	• .	• •	•	•,	•		•	••	•	• (•	• •	•	•	•	• •	•	• •	•	1.549	7 6 7 3 0
0.933				٠	•					•													•	* .		*		7	•								*						•	0.933		74
0.316											•							•	•			************				ø	*			*	*		* *	į		*2	•	4	Z #2		*	•	•		0.316	
-0.300																					,	•								*			*	•			• •	21	* 7 7	* 6 2 *	*** * ** 2	4	# # # # # # # # # # # # # # # # # # #	-0.300		
-0.917	•																	•				•									*		•	* *	,	ä	•	; ; ;	•	3 7 2 4	•			•	-0.917	``.
-1.533	+ 66	•	• 6	82.	72 +				21 +		• c. c	• •	+ 52	59	. 62		. •	• «	. 66	. 88		57 +				16 +	9		רני	• +	. 25			# • m		. 7.	۲. نا د	• •		ec.	•	• •		-1.533		
C	4.23	• =		m	m m	m ı	, r		m	m	en c		2	<u>ر</u>	~ (, ,	,,	,	-	1,1		- ·		7		-	7.	c (. C	c		ਰ (c (e c	ے	6	ر. ا	- 6		8	-0 -5	-0.5	000	5.5			

2.166

0.933

ENCE TOTALIN (DORR) VRS. TOTALIN.

Figure 5.6.7 (N=139)

いいかい かいこう こうかん こうしょ かいかいかんかん かんかん しゅうかん しゅうかん

a destinava e de meste a della desta della desta della della

3.386 4.071 4.756 5.440	,,,,,,,,,,,,,,,,,,,,,,,		•	•			:			•	•	*			•	•	•	•	•	•	•	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•	• •	•	•			-		. *		•	-		•				•			
2.017 2.701	.+++	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• (• •	• •	•		•	•	•	•	• •	• •	• •	•	•	•	• •		•.	•	•	•	•	• •	•	•	•	•	****
1.332	*****									•		. '	•	•				•							•							•	•	•		2 H	*					*	4					•	•••••
4PS. TOTUUS. 0.647 -0.038		•	•									-				*	,	•		•	•	•	-										عد			*	* * * * *		*	*	•	3		3		3* *		4 2 * * *	******
TOTUPAT(DOWN) WE -0.732	••••		. CO. 3	3.40	3.90	3.70	W. F.O. +		, 2 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	3.30	3.20	3.10 +	3,00	2.90	2.40	2. 14 .2	2.5n +	2.50	2.En .	2.30	2.20		2.00		. C.	• 07 · F	,	• CO (T	CM	1.20	1.10 +	1.39 .2	4 2 2 2	• •	•	0.50 .3	3.EO	7•	** + 01.0		6.01	-0.22.6 +3	•	-0.47 +8 53		4 / 0/ 0-	: .	°.	•

the state of the second second

2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *
20 2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Figure 5.6.9 (N=13~)

(3) Finally, what in fact is the effect of deleting the scores of student number 100 from these data? A set of means, standard deviations, high and low scores, and the number of the student scoring highest is given in Table 5.6.11 for N = 139. Note that the change is standard deviation is quite significant in the sense explained above. In addition, the distribution of students receiving the highest scores on the various items is more reasonable. A set of the new standard scores for N = 139 is given in Table 5.6.12. No scores are grossly deviant in this instance.

The correlation matrix for N = 139 is given in Table 5.6.13. By comparing Table 5.5.1 with Table 5.6.12, it can be seen that the correlations have decreased markedly. The graph of the correlations given in Figure 5.6.10 shows this clearly. Confidence intervals were also computed for the 276 correlations in each table. For N = 140, every correlation is significantly different from zero at the .01 level. For N = 139, 220 correlations are significant in each table. For N = 140, every correlation is significantly different from zero at the .05 and .01 levels. For N = 139, 220 correlations are significant at the .01 level and 251 at the .05 level. It was decided therefore that the correlations for N = 139 should be used in the remainder of the study. These data should be weaker than the data for N = 140 in the sense of giving positive evidence for the coherence of the creativity dimension. In the case of the factor analysis for the identification of substructure, the data for N = 139 will probably be better. Uniformly high correlations due to one student's scores might mask the underlying structure in the data. However, for comparison, a factor analysis is presented in Appendix 2 for N = 140.

こうかい こうてん かいのきょうてい はないない ないかい かんしゅうしゅう かんしゅうしょう しゅうしょ しゅうしょ

718. 5.6.10

大きな ままな いまれている

	••	
LABEL OF PIRST HIGH SC.	1355 1355 1355 1355 1355 1355 1355 1355)))
HIGH	90.0000 235.0000 235.0000 23.0000 31.0000 47.0000 47.0000 6.0000 6.0000 13.0000 142.0000 142.0000 142.0000	+ + + + + + + + + + + + + + + + + + + +
LOW)))
LABEL OF FIRST LOW SCORE	100488888888888888888888888888888888888) : }
STANDARD DEVIATION	12. 23. 23. 23. 23. 23. 23. 23. 23. 23. 2	,) , , ,
Z 6: Z	15. 42. 42. 42. 42. 42. 42. 42. 42. 42. 42	•
BRD LABEL OF N FIRST BAD CASE	000000000000000000000000000000000000000	,
MISS LPBEL OF N PIRST MISSING		
	cooccooccooccooccoo	•
¥ . 2005		
•	σ	
PER TH COL GOOD NUM	11. 13.3 223 - 225 224 - 225 225 - 225 227 - 225 228 - 225 237 - 225 2	

Table 5.6.11

THE THE PERSON OF THE PERSON O

When he the wife the wife the the the the the the the test of the

0.00			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		・トーー ベナフトーの いのきのいめ こうりつのいつのとりょうに	80 7
10		ーードナトトーのべんきゅうかくさりのいつのトトナルの	00000000000000000000000000000000000000
25		- ペナフトーのべんしゅうじゅうけつじゅつのへつかん	00000000000000000000000000000000000000
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		・ コントー ろくりゅうりょう カーション・カーション	8878545778787878787878787878787878787878
25		・ トトー の ふ の ー の い ク ー タ ト の の つ の ト ク カ い の	887854647384778640W34 76786484888478640W34 76786488888888888888888888888888888888
23		トーのぐのこのじゅうさいい このたりさんに	80 276 276 276 276 276 276 276 276 276 276
23.0		- の な の - の む の - さ り ひ ひ つ の ト り さん の :	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23		のい りゃんい クーナト じゅつのんしょうに	
2.0		ひょうしゅう じゅうしゅう こうしょうしょう	CCCCCCCCCCC
25		ひょうしょく こうりゅうしゅう	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
23		こうりょうしゅう こうりゅうしょう	80 20 20 20 20 20 20 20 20 20 20 20 20 20
23. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25		こうきょうしゅう こうしょうしょう	80 70 20 20 20 20 20 20 20 20 20 20 20 20 20
200		このチャトのこうのととさんの	80 7m 2+c 77 2 8 + 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20		こうさつい こうかんしょうに	80 7m 2+ c 77 2 0 - 7
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		こうちょうしゅうしょうりょう	86 34 54 54 54 54 54 54 54 54 54 54 54 54 54
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		こうこうりゅうしょうに	863454546 4534546466 453454666 6446666666666
22.20 23.20 24.11 25.20 25		このこうのうりょうに	863W2444444466666666666666666666666666666
22. 22. 23. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25		3 A 2 M P P P 1 A M C 1 A 1	8634545 4534546 453456
20000000000000000000000000000000000000			00 34 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
33		@ ~ ~ > : ^ @ :	2000 2000 2000 2000 2000 2000
10.38 10.38		~ ~ + · ~ C ·	04.0 04.0 04.0 06.0 06.0
10.42 10.42 10.42 10.43 10		P = 10 E	1.22 1.46 1.86
23.4		⇒ • ∧ • ⊂ •	1.46 0.18
24		10 CC 1	0.18
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		œ	
23 2		•	. 67
20. 20. 20. 20. 20. 20. 20. 20. 20. 20.		•	n.58 .
25.0		~	0.75
23. 4. 5. 4. 5. 4. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	10.0°	•	0.16
55. 10.38 1.0.38 1.0.37 1.0.38 1.0.38 1.0.38 1.0.39 1.0	0.38	€	1.18
25	-0.72	m	1.87
23		m	7.44
73	,	~ :	0.59
2. 1		~	. 90°
24	00°0	•	1.03
27	٠ ١ ١	- (98
75. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	27.07	ъ,	D. 63
10.45 10.45		.	0.00
10.12	20.30	•) . 3¢
53	0.12	~	0.24
53	1.30	ヘ.	97.
53 -0.30 -0.42 -0.34 -0.55 31 -0.72 -0.66 -0.48 -0.48 50 -0.48 -0.48 -0.48	. ve ov	•	0.90
31 -0.72 -0.66 -0.48 -0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	. 06.30	•	0.75
15 -0.48 -0.48 -0.48 -0.8	-0.72	m	3.32
18 -0.72 -0.18 -0.14 -0.2		_	7.76
	-0.72	_	200
		. .	

-	œ	TOTULIN	~	0 m	. 6.	9	•	າ ແ	0 4) C:	3	es v	_ 0	0 C	: •	ø	•	ഗ		- 0	9	·C	m	mu	0 4	9	S)	• :	20 r	1 (7)	ω.	m (กเก	∞ ∞	-	-	m c	, ,	- ທ	m	m	∞ •	00	-
	7	HI SHI CI	8	オル・ジー	• =	*	# :	+ C	v =	•	c.	* :	* *	* -		* =	~		•	- 4	-	-	_	- :	* -	-	• 🗢	-	m =	•	-	~ 6		~~1	= 1	~	?,	•	- C1	₹		*		7
e long o comment and a second or	•	To The a T	~	66°0-	1 1	3	د د	3 3		9 37		50	٠. ن	7 ~	: u	, 3	~	S	+ 1	~ 0	3	9.0	9.0	9.0	> ~		, at	3	۰ د د	1 0	•	0.3		. C	2.7	\circ	ဖ င	: v	e w	6	. 6	انت	S	3
		TOTIUS	•	-C-38		(· 88	-(° 38	-0-72	7 C	- C-	n. 12	-0-30	-0.72	-0.72		97.0	-0.72	1.22	-0.72	-0.72	#0°0	0,55	-0-30	0.30	-0.72	-0.72	-0.72	-0.30	٠٠. د . ع	21.0	-0.30	0.12	-0.73	-0.72	٥. 12	1.31	÷0.0	\n\ \cdot\	0,55	-0.72	\$ c . 0 -	4.26	96.0	1.83
to the second section to the second	3	TOTNLTN	-	€5°0−.		2	0.5	c		_ m	S	0	ਤ। ਨ	~ ~	* c	- ~	S	100	٠,	ے ۔۔	•		-	4:	-	- C	-	0.7	\sim	• •		0.3	₽		C.	C	2 مع	• (7 3		9	3	~	₩
ر يمون داري داري داري داري داري داري داري داري	m	TO IN STR	-	-0.74 0.00	ء د	· 6.	~	0:	٥,	J (J			3	رة 1	9 6	ה	•	Ñ	σ,	ci (7 3	•	9	m	ŏι	- "	2 @	0	ō٠	Á) -	8	œ =	2	'n	ς.	ທູເ	7,	~ 3	. =		۰.	٦.	
المناهي (الهناء (في دين الداد والمناهدية)	8	TOTUPAT	m	000	ء ه د د	ى ت	3		ان ان	()	-	S	: ٢	٠,٠	- (- (۳. د د		0.2	Ç.	ω (C •		٠ :	0	•	۵ د د	۵ د د	- 6	0.7	3:			ر. د	3°	. +	. L	٠	* 6		5 7		, ~	۲.	٠.	e.
iai) produjus final iai o ce extensión a obrasect	-	TOTNIS	(4)	26-0-	- 1		0.5	Φ.	•	س د		7	:3	-	ກ (:: .	ی وی د	֭֓֞֜֜֝֜֜֜֜֝֓֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֡֓֡֓֜֜֜֡֓֡֡֡֡֡֡	9.0	r.	ç	- c		. C	~	æ	~ u	9 9	. 6	ω.	- ′	~ ທ	_	œ:	? =	7	*	-	9	. ·	• •	- =	9	?	~
		LABTL	1.128	100	1,36 1,36	1.138	1142	L143	1146	1154	1.00 8.00	1159	1,160	10 (77) 14)	£168	L171	1177	1179	131	L183	1386	1,190	1391	1201	L202	1202 1306	1,267	1215	L216	1217	1222	L223	L226	1334	1232	1235	L237	1240	1241	***	1253	.1254	1255	. 1258
ERI *Full Text Provided	NOITISO		7.	25		y v	9 (57	58	6 G	69	6.0	63	79	10 ·	99) d	69	70	74	, t	2,5	. 75	92	77	2 2		8	83	80 0	* un	88	87	0 0	66	91	33	£6	⊅ ¥ 6	2 6	9 6	66	66	100

ITION		-	r	~	3	ហ		. 1	, ` cc
	LABEL	TOTAMS	TOTHEAT	FOTNSIA	TOTNEIN	TOTUES	TOTUPAT	TOTUSIA	TOTOL
164	2772	ñ. 43	-0° F2	.35					
~	1287	2.13	0.0	, י ר			•	S# 0-	2. c1
m :	1282	-C. 45	0.41	-0.24	0.73	0 / V		87°C-	-0.11
•	L288	-1.16	-0° 67			\	•	0.03	0.75
'n	L289	-0.30	-C. 86	-0.50			99.11	8 at	-0.15
v.	1291	-6.97	-0.93	-0-0-		7.0	06.0-	8 th *U =	-0.37
_	1292	-0.8¢	-0.71			 	6 °0-	-0°54	- · · 67
œ	1293	0.13	-0.20	- C + C -		77°u-	-:	8 † . 0 –	-0.61
•	1795	1.62	70.0			-u- 38	∪€ •0-	-0.1¢	-0 39
	1298	80.0		2 : c		1.73	1.03	-0.21	0.10
_	1299	5 7 6	000	20.01		۳.0-	D. 54	-0.21	0.41
•	1300	0 - 0 -	67.0	6/ 0/		-0.72	(i. 55	=∵•¢8	95.0
_	L301	10.00	- 2 4 0 -	;		-0.38	24.0-	0.13	-0-39
_	1303	20,0	70.0	•		-0.38	-0-#1	-0.21	. 68-0-
	1304	10.1-		ء د		- n 3G	-C + 1	r. 13	-0.18
	1306	05.0		•		-0.72	-0°#5	θħ•υ-	76-0-
_	1308	00.0-	9	64.0-		-0.72	-0.65	-0-48	, c
_	L311	0	:			6.12	0.30	-0.48	
_	1314		0 ° ° °	-0- -0-0-		-0.72	-r. 42	0 10	0.10
_	132,1	C 1 . C -	40			-0.30	0.31	0.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	1322	-0.53	0.0	200		-(. 38	-0.43	87.0-	-0-67
	1330	90.0-	Ö	2.0		ິ 55	n. 31	3 · C	90.0-
	1331	.0-	20.0	o :		-0.72	06.0	-0.14	-0.89
	1338	-0.73	, ,			-0.72	0° 19	-(1, 21	0.97
	1345	-0.67				-0.72	06°G-	8 t ° U -	-0-33
	1.349	-0.56	-			-0-72	99-0-	-C. 48	-0.61
	L150	3.02	3,03	- C		7/ · i-	1.02	⇒ ° ¢	٠.
	1351	-0.93	18.0-			- 39 - 39	2° 48	2.23	•
	L352	1, 32	3	2.50			35°01	87°0-	39
	1353	2, 15	-0.93	0.17		- 0	3° 00°	6,37	•
	L354	3,87	2.85	2,03			ار ارون	0.20	99
	1356	-1.18	-0.65	-0.67			2.96	~	٠.
	1357	2,15			•	2/ -0-	06 °0 =	٦,	۳
	L358	92 0-	-0.05		,	#0 °0-	0.3.		7
	T360	-0.20		* a		- Cr 75	0.30		w
	1363	-0.82				87.0-	0° u2	**	m
	T364	-0.0-	2,53		- -	-0-72	06.0	₹.	'n.
	L374	n9 °0-	-0.39	6.58		7.00	7.7	8 a	0.50
	1379	0.22	0.85	#0°0			8.0		m.
•				•	•	•	1.90	7	Ξ.

	18,		UPAT3	20	36	† †	99	67	78	¥ .	2	2 2	2		, r	, c	, c	2 6	1 C	20	100		7,5	9 6	7) c	51
	17	UPAT2		6	. 6	35	57	7	53	5	, ×	; ;	- # > #	7		9	v د	7.	20	100	97	, c		- - -		0 v	36
	16		UPAT1	28	3 6	7 7	73	61	61	8	E (, K	0 3	8	37	21	1.	37	100	87	9		9 6	2 -			# CD
	15	vuses3		32	2	67	07	34	27	97	5	36	7	22	23	28	27	100	37	17	22) # M	α • ٣		15	<u> </u>	200
	14	Ð	UDSES2	29	89	41	16	16	18	22	5α	6	€ 60	11	7	13	100	27	16	ø	18	20	σ	י יר	v	•	. L
	13	UUSES1	0	11	07	0 7	19	21	13	31	22	10	6	15	56	100	£	28	21	6	28	53	17	23	7	13	11
	12	D	NLIN3	36	36	91	99	99	74	53	56	58	67	71	100	5 6	7	23	37	35	23	37	30	24	חח	5	69
ų	=	NLI N2		22	29	33	† 9	68	67	9#	4	52	73	100	71	15	17	22	38	43	26	36	21	22	200	76	61
	20		NLIN1	21	54	30	π9	99	99	4	97	20	100	73	67	6	80	4	0 7	3	917	30	18	16	65	20	20
	6	NS I H 3		29	£	24	20	53	9	67	79	100	50	25	58	19	19	36	36	31	£ 7	53	5 9	9	42	39	51
	€		NSI H2	0.4	52	61	57	677	65	73	100	۲.	46	4	56	22	7. 7.	* 5	7 t	25	40	- 9	72	75	36	30	51
	7	NSIM 1		52	α 3	65	L 7	077	52	100	79	67	4 1	9#	. 23	31	22	9 7	32	19	36	74	63	5,	35	33	20
	9		N PA TO	29	33	S .	78	75	100	55	65	9	99	67	74	-	æ	27	61	23	78	37	07	30	911	45	68
	5	NPAT2		32	39	25	.	100	7	0	Š	53	99	68	99	21	16	Ě	6	7	67	53	30	,5¢	52	S	23
	#		NPATI	31	37	54	00L	æ (78	47	7	20	79	79	99	£ :	16	C = 1	73	57	99	29	33	ຂ	47	47	21
	m	NUSP 53		56	72	100	5.0	52	C 1	65	61	2	<u>۾</u>	33	1 2	알	= ,	67	ਤ : ਤ :	32	3	∞ ₹ .	46	37	30	28	83 133
	63		NUS ES 2	9	00	72	/b	6 f	39	89	25	3	5	5.7	36	S :	: ع	5.5	36	18	34	C*	32	23	2,	22	56
	•	NUSEST		100	69	55.	- (32	29	. 55	0 1	29	21	2.2	96	71	52	32	28	6 (67		24	21		7	20
٠	×	LABEL		NUSES 1	NUSES2	ESASAN	LIVAN	Z F K d N	RPATS	E FIGURE	NSINZ	NSIKS	LATIN	MLIEZ	NETNS	UUSEST	0.055.52	UNSESS	UPATI	UPATZ	2. V. 2	LEISO	USIEZ	USTES	TLIN1	WLIN2	OLINA
;	POSTTION				2	T) &	.	'n	0 1	~ (x 0 (o (<u>0</u>	F (21	~ :	# ;	<u>.</u>	• :	- ;	e ç	<u> </u>	2	21	22	23	54

The second of th

Table 5.6.13

A SOLD CONTROLL OF THE SOLD OF

SEST USINT USINT ULINT USING U	TTTON		<u>~</u>	20.	8	22	8	24	
DSIN2 ULIN1 10 124 21 15 14 15 23 23 23 23 23 23 23 23 23 23 23 23 23		LABEL	USINI		USIMB		OLIN2	•	
SEST 41 24 21 15 2 2 23 21 2 2 25 25 2 48 46 37 30 2 4 2 2 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				E				ULIN3	
25.52 42 32 23 21 22 24 37 30 22 33 21 22 34 37 30 22 48 37 30 22 48 37 30 22 48 37 37 40 30 30 46 42 37 37 40 30 46 42 37 37 40 30 46 42 37 37 40 30 46 42 37 37 40 30 46 42 37 37 40 30 24 44 44 47 22 34 37 37 37 37 37 37 37 37 37 37 37 37 37		5:5	4.1	24	21	15	1	20	
29.533		100	42	32	23	21	22	96	
ANT? 29 33 20 47 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		55.5	43	46	37	30	23	38	
ANT2		TAG	29	33	20	117	47	57	
ATT 40 30 46 4 4 51 11 11 11 11 11 11 11 11 11 11 11 11		AT	59	30	24	22	50	53	
SIRY		TKC	37	Ç	33	91	45	6.9	
5TH 2 61 77 54 36 3 3 5 1 1 1 1 1 2 2 5 4 7 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		TI	74	63	56	3,	33	50	
5183 53 64 60 42 3 5182 36 21 22 54 7 5183 37 30 24 46 46 51851 29 17 23 4 11 51851 29 17 23 4 11 51851 29 37 16 2 51851 29 37 16 2 51851 29 25 26 39 4 51852 62 71 39 2 5185 71 30 2 5185 7		11.	61	77	54	36	30	51	
LINY 30 18 16 65 5 54 7 36 21 22 54 7 37 21 46 55 55 54 7 35 21 22 54 7 55 54 7 36 55 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 55 54 7 55 54 7 55 54 7 55 54 7 55 54 7 55 55 54 7 55 55 55 55 55 55 55 55 55 55 55 55 5		11.	53	9	9	42	200	51	
IN2 36 21 22 54 7 36 21 22 54 41 41 41 41 41 41 41 41 41 41 41 41 41		217	30	د	.16	65	53	5,0	
FEST 29 17 23 44 44 44 44 45 55 55 55 55 55 55 55 55		I.N	36	21	22	54	16	. 19	
ATS 29 17 23 4 1 2 25 20 3 20 3 20 3 20 3 3 3 3 3 3 3 3 3 3 3		213	37	Š	7α	=======================================	Ę	69	
TESS 34 38 37 16 2 34 34 34 35 15 2 34 34 34 35 34 34 34 34 34 34 34 34 34 34 34 34 34		SES	29	17	23	=	13	17	
ATT 2 34 38 37 16 2 ATT 2 18 12 12 48 3 ATT 3 22 26 20 39 4 SIN 100 62 71 39 2 SIN 39 22 19 18 51 10 SIN 39 22 25 100 5 SIN 28 29 26 100 5 SIN 39 22 25 100 5 SIN 39 29 26 100 5		Ui G.	. 20	6	S	9	۵	13	
ATT 2 28 13 31 2 3 2 1 2 1 2 4 8 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_	37.5	ž	38	37	16	22	20	
ATT 12 18 12 12 46 3 15 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15		TH	23	28	<u>*</u>	1.0	32	43	
SIN1 100 62 71 39 2 SIN1 100 62 71 39 2 SIN3 71 78 109 25 11 SIN1 39 22 25 100 5 SIN2 28 19 18 51 10		TY	13	12	12	C 77	35	35	
SIN1 100 62 71 39 2 SIR2 62 100 78 22 1 SIN3 71 78 109 25 1 SIN2 28 22 25 100 5 SIN2 28 39 24 25 100 5 SIN2 28 39 24 35 100		TY	22	25	20	33	42	51	
IIR2 62 100 78 22 1 IIR3 71 78 100 25 1 IIR1 39 22 25 100 5 IIR2 28 19 18 51 10		SIR	0	62	71	33	28	28	
IN1 39 22 25 100 5 IN1 39 22 25 100 5 IN2 28 19 18 51 10 IN3 28 38 26 35 10		115	62	100	78	22	19	38	
IN1 39 22 25 100 5 IV2 28 19 18 51 10 IV3 38 38 36 36 36 36		ELS	71	78	C	25	138	26	
1142 . 28 19 18 51 10 1143 38 38 38 38 38 38		H	<u>ښ</u>	22	25	100	51	35	
1 3C 3C 3C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	. 28	19	23	51	100	5	
th CC 07 UC 07 TUTO		HH	38	38	26	35	6 7	100	

5.7 Measures of Ability

In addition to the measures of creativity described above, a number of intelligence measures were also obtained for the students involved in the study. Although a number of the intelligence measures are probably rather closely related, it was decided to simply use all of the information that could reasonably be gathered for the sample. In the Duke Study, Wallach and Wing's aim (The Talented Student, p. 29) was to obtain a single best estimate of each student's general intelligence. In this study, however, using the factor analytic technique, it is better to retain the measures in their pure state and let the analysis identify the structure. A rather good supply of intelligence information was available at the school. The National Educational Development Tests (NEDT) and the National Merit Scholarship Qualifying Test (NMSQT) have been distinguished from other measures as standardized measures of achievement. If this is not reasonable, the factor analysis will indicate it.

Since these measures were obtained from the school, there are a moderate number of missing scores. Some students were absent on days that particular tests were administered; some students withdrew from the school during the course of this study. In every case, the attempt was made to use as much of the available information as possible. The means, standard deviations, high and low scores, and the actual number of scores available for each variable are given in Table 5.7.1. In the analysis, the scores of student number 100 were deleted. The name of each variable is identified below by giving the name of the test score used, the date on which the test was administered, and the acronym used in the computer programs to identify the variable.

TO THE RESIDENCE OF THE PROPERTY OF THE PROPER

HIGH SCORE	71.0000 75.0000 727.0000 766.0000 760.0000 148.0000
LOW SCORE	22.0000 29.0000 253.0000 289.0000 310.0000 91.0000
ST. DEV.	10.7697 11.1060 112.0039 120.0749 108.1296 115.7856
MEAN	47.5385 50.8846 505.3357 528.4028 511.5247 562.3069 121.6457 119.3985
ai N	130 134 134 101 101 133
INTELLIGENCE MEASURE	PSATY PSATM SATW1 SATW1 SATW2 SATW2 CTMM HBNMIQ

Table 5.7.1: Intelligence Measures

- 1) May 1967: HENMIQ Henmon-Nelson IQ Test
- 2) Oct. 1969: PSATV Preliminary Scholastic Aptitude Test (Verbal)
- 3) Oct. 1969: PSATM Preliminary Scholastic Aptitude Test (Math)
- 4) May 1970: CTMM California Test of Mental Maturity
- 5) May 1970: SATV1 Scholastic Aptitude Test (Verbal)
- 6) May 1970: SATM1 Scholastic Aptitude Test (Math)
- 7) Nov. 1970: SATV2 Scholastic Aptitude Test (Verbal)
- 8) Nov. 1970: SATM2 Scholastic Aptitude Test (Math)

These tests are commonly used intelligence and aptitude tests, and descriptions of them can be found in many standard texts on testing.

5.8 Standardized Measures of Achievement

In addition to the measures described in section 5.7, measures on the NEDT and the NMSQT were available for most of the students in the study.

The name of each variable is identified below by giving the name of the test score used, the date on which the test was administered, and the acronym used in the computer programs to identify the variables.

South and the second of the

- 1) Mar. 1968: ENG1 NEDT (English Usage)
- 2) Mar. 1968: MATH1 NEDT (Mathematics Usage)
- 3) Mar. 1968: SOCST1 NEDT (Social Studies Reading)
- 4) Mar. 1968: NATSC1 NEDT (Natural Science Reading)
- 5) Mar. 1968: WORDU1 NEDT (Word Usage)
- 6) Feb. 1969: ENG2 NEDT (English Usage)
- 7) Feb. 1969: MATH2 NEDT (Mathematics Usage)
- 8) Feb. 1969: SOCST2 NEDT (Social Studies Reading)

HIGH SCORE	28.0000 33.0000 32.0000 32.0000 34.0000 34.0000 31.0000
LOW SCORE	9
ST. DEV.	4.1706 5.6794 5.6794 6.2933 6.2933 6.6741 6.6741
MEAN	17.4701 20.1492 19.6940 22.7388 17.6544 21.0662 20.9044 23.9265 19.5597 22.3459
zi	1334 1334 1336 1336 1336 134
STANDARD ACHIEVEMENT TEST	ENG1 MATH1 SOCST1 WATSC1 WO PDU1 ENG2 MATH2 SOCST2 WATSC2 WORDU2 ENG3 MATH3 SSTNSC3

Table 5.8.1: Standard Achievement Measures

- 9) Feb. 1969: NATSC2 NEDT (Natural Science Reading)
- 10) Feb. 1969: WORDU2 NEDT (Word Usage)
- 11) Mar. 1970: ENG3 NMSQT (English Usage)
- 12) Mar. 1970: MATH3 NMSQT (Mathematics Usage)
- 13) Mar. 1970: SSTNSC3 NMSQT (Social Studies and Natural Science Reading)
- 14) Mar. 1970: WORDU3 NMSQT (Word Usage)

Descriptive material on these tests can be found in standardized texts on testing. Means, standard deviations, high and low scores, and the number of actual scores available for each variable are given in Table 5.8.1.

5.9 School Measures of Achievement

In addition to the measures of creativity, intelligence, and standard achievement, an attempt was made to obtain student grades. After examining the curriculum and student schedules, it was decided that useful information could be provided by comparing student grades in English, mathematics, science, and social studies. These grades were available for substantial numbers of students. In addition, the student's overall average for grades 9, 10, and 11 was available and used. This average is a three year cumulative average computed by the school for all academic subjects taken by the student. While this measure is in large part determined by the subjects listed above, it is not necessarily totally determined by them. The extent of determination should come out in the analysis of the data. The name of each variable is identified below by giving the name of the course, the grade when appropriate, and the acronym used in the computer programs.

HIGH SCORE	99.0000 99.0000 99.0000 99.0000 97.0000 98.0000 97.0000
LOW SCORE	68.0000 62.0000 57.0000 53.0000 53.0000 65.0000 71.0000 70.0000
ST. DEV.	7.0106 6.2732 7.9810 10.4564 11.2221 8.3055 9.6579 6.4687 7.7407 6.6583
HEAN	87.4532 86.2734 86.8389 33.3633 81.2446 79.8839 82.9643 82.7391 86.2536 81.4234 84.1591
×I	
SUBJECT	ENGGR10 ENGGR11 MATHGR11 MATHGR10 MATHGR10 MATHGR10 B10L9 SCGR10 WORHIST USHIST

Table 5.9.1: Measures of School Achievement

- 1) GRADE 9: ENGGR9 English Crade 9
- 2) GRADE 10: ENGGR10 English Grade 10
- 3) GRADE 11: ENGGR11 English Grade 11
- 4) GRADE 9: MATHGR9 Mathematics Grade 9
- 5) GRADE 10: MATHGR10 Mathematics Grade 10
- 6) GRADE 11: MATHGR11 Mathematics Grade 11
- 7) GRADE 9: BIOL9 Biology (usually Grade 9)
- 8) GRADE 10: SCGR10 Chamistry, Physics, or Earth Science
- 9) WORGEOG World Geography (various grades)
- 10) WORHIST World History (various grades)
- 11) USHIST United States History (various grades)
- 12) AVER Cumulative three year average

The means, standard deviations, high and low scores, and the number of actual scores available for each variable are given in Table 5.9.1.

This summarizes the measures that were actually obtained for the students in the study.

5.10 Hypotheses

Although the various hypotheses to be tested in this study have been indicated in several previous sections, they will be restated here for reference.

I. There exists an identifiable and measurable dimension of human behavior fairly called creativity. This hypothesis can be verified by demonstrating that a set of measures can be obtained which have high interitem correlations and item-test correlations. The measures should be reliable. This would be good verification that "something" has been measured. To demonstrate that

the "something" is creativity is more difficult. In this study, the justification is not statistical but theoretical (Chapter 2). It is, of course, assumed that writing down many ideas corresponds to having many ideas, and it is this behavior that is the criterion for the measures. High scores indicate fluency and uniqueness in generating "ideas" related to uses of things, similarities between things, and meanings of patterns and line drawings.

II. The dimension of creativity is independent of the common dimension of intelligence. This hypothesis should be verified by first verifying the existence of the intelligence dimension by suitable measures. Then, if the two dimensions are independent, they should be relatively uncorrelated. In this study, in addition to examining the average correlations, the correlations will be factor analyzed. If creativity and intelligence form independent dimensions, the factor analysis will yield relatively independent factors underlying the data.

III. The dimension of creativity has a meaningful substructure. This hypothesis will be verified by showing that the creativity data yield a two-fold factor structure that can be related to the verbal and visual stimuli in the materials. The extent of relationship can be determined by an oblique transformation of the underlying factors. In addition, examination of the factor structure of the creativity and intelligence data may provide serendipitous conclusions, for example relationships between the two creativity factors and the mathematics and verbal factors of intelligence. An arbitrary hypothesis that the creativity factors are less independent of the verbal intelligence factor than the mathematical factor can be verified by examining the factor structure in some detail.

IV. The dimensions of creativity and school achievement are not independent. This hypothesis can be verified by checking the significance of the correlations between creativity and school achievement with intelligence held constant. Without a single measure of achievement, it may fairly be expected that the factor study will provide evidence for differential relationships of creativity to school grades. At any rate, examination of the factor structure for all the variables in the study may provide sufficient evidence for a conclusion to be drawn about the relationship between creativity and achievement. One of the disputed conclusions of Getzels and Jackson was that creativity does influence grades apart from intelligence.

To summarize, there, the creativity measures will be examined alone, then together with ability only, then together with achievement only, and finally, with intelligence and achievement together.

CHAPTER 6

XAVERIAN HIGH SCHOOL SAMPLE: REDUCTION AND ANALYSIS OF THE DATA

6.1 Introduction

In this chapter, the data will be examined for evidence to confirm or deny the hypotheses of Chapter 5. There is no single way to present evidence that will be acceptable to every reader. In this case, the data will be analyzed using the UMLFA program as it was used in examining the data presented in Chapter 4.

6.2 The Creativity Measures

According to the theory of Wallach and Kogam, the creativity measures should cohere. In order to show that they do, the interitem correlations are presented in Table 5.6.13. It can be seen that the evidence for the internal consistency of each task is good, i.e., a person generating many ideas on one item of a given task also tends to generate many ideas on the other items of the task. Correlations from Table 5.6.13 are regrouped below to make this point clear.

CORRELATIONS AMONG PRODUCTIVITY SCORES ON EACH OF THE FOUR TASKS

Item		Pattern		Line
Pairs	Uses	Meanings	<u>Similarities</u>	Meanings
				1
1 vs. 2	.596	.813	. 795	, .732
1 vs. 3	.563	.777	.674	.674
2 vs. 3	.718	.748	.788	.710

Similarly, the correlations in Table 5.6.13 present fair evidence for the consistency of the uniqueness tasks, i.e., the person who generates many

unique ideas on one item of a given task also tends to do so on the other items of that task. The correlations among the uniqueness scores for the four tasks are regrouped below for clarity. With the exception of the uniqueness scores

CORRELATIONS AMONG UNIQUENESS SCORES ON EACH OF THE FOUR TASKS

Item Pairs	Uses	Pattern <u>Meanings</u>	Similarities	Line <u>Meanings</u>
1 vs. 2	.133	.475	.621	.506
1 vs. 3	.280	.603	. 70 7	.349
2 vs. 3	.270	.457	.777	.493

for Uses, the item-item correlations are sufficiently high to justify adding the scores of the items to obtain the best measure for each subtest. Accordingly, the standard scores for each item were added to provide eight test scores. Since there were only three items to a test, the correlations of the items with the test sum will necessarily be high. In addition, the reliability for a single test cannot reasonably be calculated with only three items in a subtest. However, using all 24 measures of creativity together, a split-half reliability seems to be a meaningful statistic to report. Using every other measure and the Spearman-Brown correction formula, the reliability of the 24 measures considered as a single test is .91. Thus, the measures do appear to cohere and to identify a distinct domain.

6.3 Comparisons of the Data Obtained in Two Studies Using Testing by Mail

One of the misgivings involved in using the testing by mail technique is the lack of control that one has over the subjects. One student may spend several hours on the tests while another may spend only several minutes.

The implicit assumption seems to be that a student will work at some pace determined by himself. He will stop on an item when his fund of ideas is more or less depleted. Naturally there is a trade-off between the amount of time a student will spend and the number of ideas he will generate. Probably he could go on generating for days, but the output would be so slow that the effort would be painful. At the other extreme, a student may try to speed through the entire set of materials in fifteen minutes. Since he need not take the test at all, it would seem that the volunteer would give enough time to do a reasonable job and yet not so much time as to be terribly inconvenienced. This, it seems to me, is a possible explanation for the rather surprising agreement found between the means and standard deviations in the Wallach and Wing Study and the Xaverian High School Study. Although the researcher cannot control the testing conditions, there is a rather natural control built in. In addition, one is tempted to hypothesize that a cognitive ability to generate ideas on these simple tasks not only exists in the population, but that it exists with a somewhat stable mean and variance. This is a serendipitous result which of course may simply be an accident. At any rate, the means and standard deviations for the two groups are given in Table 6.3.1 for consideration.

6.4 Meaningful Substructure

In spite of the seeming triviality of these Wallach and Kogan tasks, they seem not only to define a meaningful dimension, but this dimension appears to possess a meaningful substructure similar to the verbal and mathematical substructure of intelligence measures. This substructure can be most clearly

THE PARTY OF THE P

Table 6.3.1

Productivity Measures

Wallach and Wing Study Xaverian High School Study

•		Standard		Standard
•	Means	Deviation	Means	<u>Deviation</u>
Uses	28.07	16.81	30.27	19.7 0
Pattern Meanings	15.63	10.98	15.27	9.80
Similarities	19.35	11.15	19.82	11.80
Line Meanings	16.29	9.65	16.64	8.91

Uniqueness Measures

Wallach and Wing Study Xaverian High School Study

	Means	Standard Deviation	Means	Standard Deviation
Uses	2.21	4.09	1.84	2.56
Pattern Meanings	·5 ·1 9	5.84	3.74	4.17
Similarities	1.02	1.94	1.71	3.61
Line Meanings	2.96	3.99	3.42	3.86

demonstrated by performing the unrestricted maximum likelihood factor analysis as was done in the studies reanalyzed in Chapter 4. Two, three, and four factor solutions will be presented. The two factor solution clearly shows the underlying figural and verbal dimensions. The three and four factor solutions show that the measures break down according to single tests and do not seem to possess a uniqueness factor independent of the productivity factor. Since the uniqueness scores are very time consuming to obtain, this could be a rather important conclusion. The two factor structure is given in Table 6.4.1. As was pointed out in Chapter 4, this is the best two factor solution in the sense that of all two factor solutions this solution has the highest probability of reproducing the correlation matrix under the assumption of two normally distributed latent traits. The result is quite clear. The figural items and the verbal items have differential loadings on the two factors. Of course, since this is an orthogonal solution, the relatively high loadings of the verbal items on the figural factor and of the figural items on the verbal factor indicate that the two factors are correlated. Using a promax transformation, the correlation between the two factors can be shown to be .334. The three factor solution in Table 6.4.2 shows that the figural factor breaks down first into the line meanings and the pattern meanings. The four factor solution in Table 6.4.3 shows that the two factors will break down along meaning lines, i.e., the four subtests, and there does not appear to be a distinct uniqueness factor. This corroborates the point made in the reanalyses of Chapter 4.

In order to obtain total scores on the various subtests, all the measures were transformed to standard scores. That is to say, for each of the 139

THE STATE OF THE S

	0.422		-108-
	0.329		-
	0.213 0.427		
	0.231 0.569		
	0.202 0.554	R MATRIX	
UNIQUE VARIANCES	0.220	ATED FACTO	
UNIQUE	0.231 0.922 0.506	VARIMAX-ROTATED FACTOR MATRIX	
	0.473 0.880 0.640	Λ	0.454 0.511 0.613 0.281 0.286 0.384 0.827 0.205 0.205 0.249 0.202 0.202 0.773 0.773 0.229 0.175
	0.661 0.372 0.657		0.212 0.388 0.388 0.830 0.851 0.292 0.732 0.756 0.126 0.126 0.021 0.655 0.094 0.574
	0.749 0.373 0.446		NUSES1 NUSES3 NUSES3 NUSES3 NPAT1 NPAT2 NPAT3 NSIM3 NLIN1 NLIN2 NLIN3 UUSES3 UPAT1 UPAT1 UPAT3 UPAT3 UPAT3 UPAT3 UPAT3 UPAT3 UPAT1 UPAT3
			, 10 0 8 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.4.1: Creativity Data, (UMLFA 2 Factor Solution)

			-109-
	0.385		·
	0.296 0.387		
	0.223		
	0.259		•
	0.198 0.537	MATRIX	
UNIQUE VARIANCES	0.227	VARIMAX-ROTATED FACTOR MATRIX	
UNIQUE	0.234 0.621 0.482	IMAX-ROTAT	0.652 0.818 0.723 0.270 0.251 0.199 0.342 0.342 0.342 0.093 0.186 0.614 0.513 0.123 0.123 0.123 0.0123 0.0240 0.032 0.084
	0.245 0.738 0.622	VAR	0.191 0.199 0.348 0.152 0.123 0.294 0.662 0.166 0.178 0.079 0.079 0.079 0.091 0.091 0.214 0.304
	0.253 0.364 0.631		0.153 0.196 0.333 0.819 0.822 0.822 0.410 0.766 0.788 0.082 0.048 0.162 0.048 0.165 0.165 0.165 0.165 0.595
	0.515 0.351 0.334		NUSES1 NUSES2 NUSES3 NUSES3 NPAT1 NPAT3 NS IM1 NS IM2 NS IM3 NL IN3 UUSES1 UUSES2 UUSES3
	1		11 10 11 11 11 11 11 11 11 11 12 13 14 13 14 15 16 17 18 18 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19

Table 6.4.2.: Creativity Data, (UMLFA3 Factor Solution)

Longing Control of the control of th

0.358		-110
0.304		
0.214 0.413		
0.254		·
0.201 0.395	MATRIX	
0.213	-ROTATED FACTOR MATRIX	0.142 0.143 0.343 0.726 0.722 0.182 0.357 0.360 0.017 0.644 0.173 0.644 0.173 0.644 0.173
0.168 0.555 0.482	VARIMAX-ROTA	0.640 0.852 0.680 0.202 0.204 0.169 0.325 0.205 0.058 0.067 0.067 0.077 0.089
0.265 0.753 0.416	VAJ	0.198 0.193 0.183 0.183 0.148 0.316 0.58 0.130 0.130 0.138 0.138 0.138 0.138 0.138 0.123 0.123 0.018 0.018
0.194 0.350 0.614		0.086 0.115 0.114 0.374 0.450 0.450 0.294 0.201 0.550 0.051 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072
0.524 0.088 0.328		NUSES1 NUSES2 NUSES3 NUSES3 NUSES3 NPAT1 NPAT2 NPAT2 NSIM1 NSIM2 NLINI NLINI UNSES1 UUSES1 UUSES3 UPAT1 UPAT2 USIM3 ULINI USIM3 ULINI USIM3
		1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.4.3: Creativity Data, (UMLFA 4 Factor Solution)

UNIQUE VARIANCES

		********	****	****	*****	******	*****	•
100	BOW VAR	COL VAR	£.	F1		P (T)	99% CONTIDENCE	INTERVAL
•	TOTAL OF	TOTARS	n.5n316	6.81	•	0.0000	0.32135	649
•	F 10 11 CH		w	9,25	137		۳.	737
٠ ،	AT ON TOT	100000	0.53146	10.	137	6.006.0	ECHD.	746
• •	W T T Y T C T	211107	CC00000	5.18	137.	0.0000	C	5.57144
٠.	•	かん はい この か	8042	15,85	137	•	.7116	6v3
, er	フトング・ロー		·	8.83	137	•	·uu3	724
•	0 11 11 C E	012tCt	. [15, 47	137	•	.7(.20	262
۰ ،	201101	T KUN LOL		4.55	137		157	535
سم .	TOTING	# TO OF		6.02	137	6.000.0	0.26713	417
. 2	5111100	WI INCOM	~	3, 13	137	•	٠.	1.53
•	中ではいました	いいいしい	3	, w.	137	•	. 25u1	ろうは
•	4 4011-04	丁 していひん	Œ	19.72	137		-	740
۳ (TOTIED A	MISNICE	4	σ	137		r.26721	417
ដ	平(つていか)丁	TOTALTE	v	R. 63	137	G0000°3	0.4737	7
ď	TOTIPAT	70700		u.23	137		•	~
٠,	サイン・コー じゅ	TOTALIS	=	5.91	137		\sim	C
	すしいいいし	でくない ししょ	•	4.63	117		_	500120
۳ ،	TOTOT	Minter C.		13.60	137		œ	a.
a	またいいとこと	TOTALIN	4.1	4.01	137	•	6.11572	2505
ĸ	101101	107113	•	a.73	137	•	۲.	۲
· v		TOTIPAT	"	_	137	•	•	c 2 4 5
-		TOTKIIS	•	٣.	137	٠.	0.13913	D.52724
2	TOTULIN	TOTIPAT	-	•	137	•	0.57410	ب
m	TOTHE TH	がよびいいいい	0.56171	•	13.7	٦.	٣.	4016
् दा	STILL OF	WII'M TOT	æ	6	137	0.0000	•	1025
v	とうけいして	TOT1115	4.4	8	117	٦.	\sim	9667
œ	villict .	TATUTOT	Œ	8.92	137	0.0000	C. 44A72 -	0.7273n
7	TOTOL	DTIJCI	3782		137	٠٠٠٠	0.17577	6075

Table 6.4.4: Confidence (99%) Intervals for the Creativity Correlations

ERIC Full Text Provided by ERIC

scores for a particular item, that score was subtracted from the mean, and the difference was divided by the standard deviation of the scores. The result is a score distribution with a mean of 0 and a standard deviation of 1. Then the three standard scores for each task were added to obtain a score for that task. Thus, the final result is a set of eight creativity scores: four productivity scores, and four uniqueness scores. The correlations among these, together with 99% confidence intervals, are given in Table 6.4.4.

6.5 Independence of the Creativity and Intelligence Dimensions

Using the eight creativity measures and the eight ability measures described in Chapter 5, an unrestricted maximum likelihood factor analysis was performed on the correlations of these 16 measures. The correlation matrix is given in Table 6.5.1. The results for 2, 3, and 4 factors are given in Table 6.5.2, 6.5.3, and 6.5.4. The two factor solution gives rather clear evidence for the independence of the creativity and intelligence dimensions as defined by these tests and in this particular sample. The three factor solution shows two intelligence and one creativity factor, the intelligence factor having broken down into a verbal and a mathematical factor. The four factor result gives the clear four factor structure that one would expect from these measures. The first and fourth factors are verbal and mathematical ability factors, the second factor is a figural "creativity" factor, and the third factor is a verbal "creativity" factor. The correlations between the "creativity" factors and between the verbal and mathematical ability factors are .473 and .115 respectively.

		•			-113 • • • •			~ ~	
16		Benato	-101			77	97	S 60	100
. 15	CTAR	***	71	. 15 e	. <u>t</u> 6	15	63	67 76	400 400 400
14		SATH2	5 0.	- m -	. 6 g	7	87 70	91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13	SATV2	•		» - v) # Q	0 7 8	91	100	72 76 69
12	V 2	Satri	15	0 2 4	. 16.	18 .	88 71	100	67 68 88
11	SATVI	••	ω 3 1		ָרָ בּירָ רָבְּירָ	. 0	100	71	700
9	••	PSATH	11		15	, , ,	100	. 888 70	63 60
6	PSATV	_	ω = '	962	- سٰ د	100	72	76 92	67 70 11
&	Ä	NITOTOL	, 35 70	8 1 8 1	24 6 1	8 0°.		. 180	15.
	. KISU	ici.	45 37	32	38 26	100 280 180	757	27.2	<u> </u>
•	TOT	UPAT	8 55 55	ເກັບ ເກັບ	100		v 5 -	- <u>0</u> =	~ ~ ~ ~
S	rotuus	TOTUPA	80 36	46 26	100 34	8 # 1 8 # 1	٠ 5 .	4 0 R	n — ∞ m
#	TO	LOENLIN	. a. a.	900	26 59	32 81	φ 'n 4	7 2 7	. 425
٣	NSIM	ioj.	6.22	100	2 2 3 3 3	56	51 71		. 56 - 5
7	TOTNS	TOTNPAT	50			37	* = *	÷	- v.E 6
,	SUKTOL	101	100	0 7 0 2 0 0	0 S 8 &	<u> ಇ. ಟ</u> ಬ ಬ		α [. [- - - - - -
	TO		SUNTOT	TOTALER	TOTUE	TOTUSIN	PSATK PSATK	SATV1	SATAZ SATEZ CIRR HEXRIQ

Table 6.5.1: Creativity-Ability Correlation Matrix

A CONTROLL OF THE SECOND SECON

			-114-
	0.369		
	0.119		
	0.427		
	0.801		
NCES	0.285 0.431	VARIMAX-ROTATED FACTOR MATRIX	
UNIQUE VARIANCES	0.833 0.340	OTATED FAC	` -
Nn.	0.311 0.374	VARIMAX-R	
	0.522		0.550 0.965 0.685 0.685 0.406 0.845 0.757 0.146 0.007 0.007 0.007
	0.068		0.095 -0.034 0.098 0.048 0.018 0.116 0.938 0.781 0.940 0.953 0.750
	0.688 0.117		TOTINUS TOTINEAT TOTINSTM TOTINIS TOTIUS TOTIUS TOTIUS TOTIUS TOTIUS TOTIUS TOTIUS SATMI SATMI SATMI SATMI SATMI CTMM HENMIQ
			4 4 3 2 2 1 1 1 1 1 2 8 4 4 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.5.2: Creativity-Ability Data (UMLFA 2 Factor Solution)

NCES
VARIA
UNIQUE

	ĺ						-	11	5-								
0.171																	
0.109																	
0.428																	
0.777	×	· •															
0.272	VARIMAX-ROTATED PACTOR MATRIX																
0.826 0.346	ROTATED FA														•		
0.313 0.092	VARIMAX-	0.013	0.052	0.115	0.036	-0.052	-0.018	0.210	0.043	0.092	0.584	0.056	0.624	0.067	0.657	0.131	0.092
0.522		0.551	0.963	0.679	0.827	0.411	0.853	0.417	0.755	0.008	0.117	0.014	0.181	0.04B	0.042	0.172	-0.070
0.067		0.087	-0.050	0.067	-0.052	0.052	0.017	0.071	0.006	0.940	0.688	0.947	0.718	0.961	0.689	0.780	0.740
0.689		TOTNUS	TOTNPAT	TOTNSIM	TOTULIN	TOTUUS	TOTUPAT	TOTUSIM	TOTULIN	PSATV	PSATM	SATVI	SATM1	SATV2	SATM2	CIM	HENMIQ
		1	7	m	4	ሊነ	ပ	7	∞	6	10	11	12	13	14	15	16

Table 6.5.3: Creativity-Ability Data (UMLFA 3 Factor Solution)

・ 「こう」、 こうこうこう 、 まつけてきまっていまた。 ままくまいますのできるとのできるとのできるとのできるとのできるというできるというできるというできるというできるというできるというできるという 「「「「」」、 こうこうこう 「「」」、 こうこうこう 「「」」、 こうこうこう 「「」」、 こうこうこう 「「」」、 こうこうこう 「「」」、 こうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこうこう 「「」」、 こうこうこうこう 「「」」、 こうこうこうこう 「」」、 こうこうこうこう 「」」、 こうこうこうこう 「」」、 こうこうこうこう 「」」、 こうこうこうこう 「」」、 こうこうこうこう 「」」、 こうこうこうこうこうこう 「」、 こうこうこうこうこうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこうこうこうこう 「」、 こうこうこうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこう 「」、 こうこうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこうこう 「」、 こうこうこう 「」、 こうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこうこう 「」、 こうこう 「」 こうこう 「

			-116-
	0.169		
	0.108		
	0.461		 .
	0.672	K	·
ANCES	0.252	TOR MATRIX	
UNIQUE VARIANCES	0.281	VARIMAX-ROTATED FACTOR MATRIX	0.046 0.046 0.121 0.038 0.220 0.047 0.047 0.041 0.048 0.048
Þ	0.330	VARIMAX-1	0.884 0.235 0.514 0.179 0.198 0.027 0.027 0.063 0.083
	0.429		0.311 0.955 0.536 0.798 0.179 0.277 0.717 0.081 0.022 0.021 0.025 0.132
	0.030		0.075 0.069 0.069 0.037 0.087 0.941 0.946 0.733 0.736 0.736
	0.115 0.102		TOTNUS TOTNEIN TOTNUS TOTUDAT TOTUDAT TOTUDIN PSATW PSATW SATWI SATWI SATWI SATWI SATWI SATWI SATWI CTEMMI
			10 9 10 11 11 11 12 14 14 15

Table 6.5.4: Creativity-Ability Data (UMLFA 4 Factor Solution)

in a specific the destroyer of the telephology of the second of the commonwhater of the common of th

6.6 The NEDT Measures

In every analysis, the NEDT measures loaded high on the ability factor.

No standard achievement factor was ever obtained. This will be clear when
the correlation matrix of all variables is factored.

6.7 Creativity and Grades

One of the hypotheses was that the creativity dimension and the grades dimension were moderately correlated. The correlation matrix for grades and creativity variables is given in Table 6.7.1. An UMLFA of the creativity and grades correlations was performed. The results for two and three factors are given in Tables 6.7.2 and 6.7.3. The results indicate quite independent grades and creativity factors.

To provide some evidence, however, for the relationship between creativity and grades, a comprehensive 35 variable correlation matrix (Table 6.7.4) was analyzed. This matrix included the eight creativity measures, the eight ability measures used above, the NEDT measures, and nine of the grades.

Several of the variables were deleted to make the correlation matrix positive definite. The factor structures for 2, 3, 4, 5, and 6 factors are given in Tables 6.7.5 through 6.7.9. The two factor solution seems to indicate a moderate degree of relationship between creativity and grades. The first factor can be interpreted as an ability factor with high grade loadings in addition. The second factor can be interpreted as the creativity factor with some moderate grade loadings. To clarify the data, consider the three factor solution. The intelligence, creativity, and grades factor are clearly distinguished. A promax transformation to simple structure would give the correlations between the factors, an indication of their interrelatedness. The factor correlations

		-	8	m	#	ហ	9	7	Φ	c	0	
	Label	TOTHUS	NEOL	NISN	E.	roruns	TOT	OTUSIM	ì	Eligg R9		
		ror	TOTUPAT	10.T	TOTALIN	COL	TOTUPAT	TOLCI	ULIN	EN	enggr 10	
Ţ.	11 31-1-0	100	20	62	0 \$	80	45	45	35	6	6	
٠,	2027	20	100	63	30	36	. 98	37	10	m	50	
۳ ۱	OTACT	62	63	100	09	9 17	45		26	<u>ი</u>		
) =	11-) S	80	9	100	5 6	59		81	ഹ		
t u	437.00) C	36	9#	26	100	34		5¢	ø	-5	
۱ ۷	3011-0) 3	98	ສຸ	50	34	100			10	22	
) L	1 4 1 1 1 C	. 4 . C	37	76	32.	38	5 6		38	m	ഗ	
- a	11111	2 7	70	56	81	74	61		100	13	18	
ο σ	さいことが	σ	•	. 6	ഗ	Ó	10	.ო	13	100	20	
٥ ر		· 0	20	. 8	16	-5	. 22	10	18	70	100	
<u>-</u>		at	17	E	15	=	24	\$	1	6 8	70	
- 2	ロジコをへ	1.0	: £	19	5	Φ	19	7	17	69	†9	•
۳ ب			19	19	16	. 	21	14	14	71	70	
2	-	15	23	20	22	9	23	17	21	62	68	
Ñ	BIOI	16	13	20	18	_	7	6.	20	90	70	
u	1000	. 14	20	19	17	5	2¢	15	9	29	63	
_	CABOO	7	2 5	8	ω `.	র †	6	พ	12	79	69	
α	IS	6 1	7	7	7	m	13	Φ	15	75	9/	
.0	USHTS	10	10	. 11	12	=	17	ß	7	65	67	
9	AVER	10	22	21	20	. Φ	5 2	.12	2.0	\$	83	
2) ,		,	-		:	•					

Table 6.7.1: Creativity-Grades Correlation Matrix

	•		12	13	7	15	16	17	6 .	19	20	
	ENGG	GGR11	HATH	HGR 10		BIOL9	HOF	HORGEOG	USHI	ILST		
		N	Mathgr9	HATE	HGR 11	S(SCGR 10	HOF	RHIST		AVER	
_	OFXU	7	12	14				7.	6	10	, 16	
~ ~	OTMP	17	1	19	23		20	3	7	20	22	
m	OTYSI	13	16	19				œ	14	11	. 21	
a	HIRE	15	15	16	22	18	17	œ		12	20	
'n	TOTOL	=	ဖ	.	9		2	ವ	m	\$	ω	
ø	OTUPA	24	19			1	24	6	13	17	25	
7	TUS		2				15	S	ထ	ທີ	.12	
α	OTULI	10	17			20	18	12	15	+	, 20	
6	55%3	68	69			80	29	79	75	. 65	\$18 8	
0	N 338 1	70	† 9			70	63	69	92	67	8 3	
=	MGGR1	100	9			68	09	67	71	6 8	8 0	
2	7.16	09	100			73	75	89	63	. 55	83	
<u></u>	LTH	63	, 75	100	73	73	11	65	99	61	† 8	
3	HGP	63	76			63	74	. 63	69	65	85	
กั	BIOI	69	73			100	68	80	79	99	86	
9	9.0	9	75			89	100	29	63	9	81	
7	03 5%	29	• 68			80	29	100	11	6 8	82	
<u></u>	RHIS	7.1	63			79	63	11	100	80	30	
6	SIKSO	89	55			99	\$9	89	80 /	100	78	
0	AV	80	83			98	81	85	84	78	100	
									•			

Table 6.7.1 (cont'd)

Company of the second of the s

0.314		-120-
0.276		
0.464	·	
0.840 0.299		
0.262 0.345	ATRIX	
0.849 0.256	D FACTOR P	
0.331 0.272	VARIMAX-ROTATED FACTOR MATRIX	·
0.563 0.295	VARI	0.526 0.980 0.652 0.815 0.388 0.852 0.727 0.120 0.120 0.137 0.181 0.084 0.159 0.055
0.036 0.309		0.074 0.065 0.107 0.068 0.018 0.018 0.052 0.0851 0.851 0.851 0.828 0.828 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829 0.829
0.718 0.366		TOTNUS TOTNUST TOTNUST TOTUUS
		10 9 10 11 11 11 11 11 11 11 11 12 13

UNIQUE VARIANCES

Table 6.7.2: Creativity-Ability Data (UMLFA 2 Factor Solution)

0.308					-1	L 21-	-												
0.272																			•
0.503																			
0.726																			
0.257									•										
0.290	MATRIX						•		-										
0.353	ED FACTOR MATRIX																		
0.450	VARIMAX-ROTATI	0.892	0.231 0.517	0.191	0.824	0.205	0.173	090.0	-0.028	0.040	0.052	0.043	0.041	0.097	0.057	0.036	0.039	0.037	0.054
0.0	VAR	990.0	0.069	0.075	0.011	0.115	0.09	0.850	0.817	0.788	0.826	0.829	0.836	0.858	0.795	0.836	0.844	0.783	0.988
0.110		0.301	0.970	0.778	0.176	0.829	0.677	-0.043	0.156	0.108	0.078	0.125	0.166	0.053	0.139	-0.024	0.005	.0.037	0.147
		TOTNUS	TOTNPAT	TOTNLIN	TOTUS	TOTUPAT	MI SOLOT	ENGGR9	ENGGR10	ENGCR11	MATHGR9	MATIIGR10	MATHGR11	BIOL9	SCGR10	WORGEOG	WORHIST	USHIST	AVER
			ı 0 1	n 4	יטי	υ	~	∞ c	ע ג	1 F	12	i —	7 -	1 1	3 2	1.	ά -	10	50

Table 6.7.3: Creativity-Grades Data (UMLFA 3 Factor Solution)

the state of the state of the

UNIQUE VARIANCES

<u></u>		Ξ	<u>.</u>	<u> </u>	0	6	9	_	.	m	0	#	-	Ŋ	<u></u>	N	S	و	-	0	Ċ	70	0	7	~	,	7	=	~	,	6 0	0	_		•	60 (_
		HATH	~	_	-		•	_	•		φ	Œ	. •		7	œ	9	'n	9	10	w	7	S	œ	S	φ.	ø	9	œ	9	#	7	7	9	:1	SO :	•
11	ENG1		€	7	7	0	7	0	m	~	•	89	16	65	75	65	69	62	100	67	70	89	7.	73	99	5	67	75	28	84	0	20	54	36	26	25	8 0
16		BRANTO	7	-10	S	-10	m	8	œ	-7	7	9	72	28	69	Š	†9	100	62	26	9	61	7	25	5. 8.	9	5	70	æ	42	33	30	#	53	39	33	30
15	S H	#	17	13	26	12	∞	13	19	-	2	63	. 19	67	16	ij	100	₽ 9	69	65	63	74	67	69	99	65	99	73	20	ž	47	9 4	55	47	26	# # ·	4
4		SA TH2	9	S	=	m	-	~	8	7	67	87	2	9	72	100	29	24	65	85	25	9	23	63	82	20	65	79	25	47	9	23	69	9	47	25	36
13	SATV2	U)	=	_	8	-	S	\$	co (~	67	2	5	5	100	72	9/	69	75	71	73	69	83	68	2	77	72	90	₽9	26	54	S	23	28	99	63	29
12	v)	SATHI	15	11	25	*	9	16	27	œ	92	88	7	9	73	2	6 7	28	65	85	59	7	9	61	80	21	67	65	25	55	46	57	73	63	2	23	E #
=	SATV1	S	®	7	7	7	#	#	12	0	68	67	0 2 4	7	91	20	79	72	9/	7	19	11	98	69	89	80	75	83	1 9	62	28	6#	63	49	1 9	63	28
10	S	PSATH	16	=	21	ហ	9	12	21	_	22	100	67	88 ·	2	87	63	9	68	1/8	28	9	29	9	\$	23	69	65	2	လ	# 3	5. 0	67	23	47	64	0
•	PSATV	Ď,	80	7	œ	9-	^	Ŋ	7		100	72	60	96	92	29	5	7	11	69	74	73	78	65	6 8	75	77	87	62	3	54	t 7	61	47	63	29	26
œ	ă	HIT	35	70	26	81	70	61	38	00 -	-	-	0	8	7	7	15	- 7	~	m	-	7	-1	σ	m	7	5	-5	.	8	=	17	‡	21	20	12	3
7	RIS	rotulin	45	37	9/	32	38	~	100	38	_	7	12	23	6 0	&	19	6 0	m	13	F	\$	7	∞	#	œ	_	m	m	Ŋ		⇒	*	11	6	S.	ın
ø	TOTUSIA	PAT	45	98	s S	29	34	100	56	6	rc:	12	⇒ ,	9	#	~	1 3	8	0	-	4	2	7	10	=	-5	<u>۔</u>	ñ	2	22	34	1	21	23	70	σ,	11
ĸ	roruus	TOTUBAT	80	36	9¥	56	100	34	38	5 #	_	9	a	ø	S	-	∞	m	N	16	0	-	ا د	12	œ	œ	=	ñ	9	7	#	9	*	9	7	#	3
2	TOT	LIN	07	80	90	100	26	59	32	.	۹	ທ	3	=	-	m	12	<u>۔</u>	c	σ	8	2	-	=	#	-1	æ	<u>-</u> -	'n	16	15	*	16	22	18	&	12
m	SIM	TOFNLIN	62	63		9	9#		<u> 1</u> 6		φ	7	-	25	6 0	=	5 6	S	7	19	ø	4		18	16	=	6	,	σ.	1 8	13	16	19		20		=
~	TOT	716	20	1 00	-	90	36	85	37		# 	-		7	_	S	13	01-	7	10	6-	œ	-13	-	=		-10	6	m	5 0	17	*	19	23	13	#	0
•	SDI	TOTERP	00	•	29	0#	80	45	52	32	ထ	16	œ	15	=	2	17		®	21	9	7	~	73	13			7	0	σ	‡	12	*	5	16	7	9
	TOTNUS		-																																		
	LABEL		ENUS	E KON	MISN	TOTNLIN	TUUS	UPAT	TOTUSIA	DLIN	SATV	PSATH	ATVI	ATM1	SATV2	ATH2	CTHH	ENHIO	ENG1	MATHI	CST1	NATSCI	RDU4	ENG2	HATH2	CST2	TSC2	3003	GSB9	3510	GR 11	HGR9	Gato	GR 11	BIOL9	PORGEOG	HIST
%	H		10	TOT	TCT	TOT	70	TOT	TOT	TOT	تم	Δi	(r	w	Ŋ	S	-	ΉE		7:	20	~	0,3		XC	S	Z	9	Z A	(S. 22.	SNO	MAT	MATH	MATH	Ċ	HOR	as
POS IT ION			-	~	m	3	S	φ	7	∞	σ	<u>۽</u>	=	7	13	\$	15	16	1	4	4	ý S	24	22	23	24	52	56	27	28	2	30	<u></u>	35	33	34	33
_																																					

Table 6.7.4: Creativity-Intelligence-Grades Correlation Matrix

35	USHIST		10	2	=	12	#	17	S	7	20	9	χ. Β.	*) (υ . Σ .	ָר אַ מי	9 0) a	פר	1 4	5	42	36	4	26	₩	51	65	67	20 t	S,	6	ŝ	9 9	9 6	2
34	0.5	WORGEOS	7	4		∞	#	σ	S	13	20	64	69	53	9	7 :	# C	א ני מי	7 0	0 0	20	53	23	53	9	22	61	79	69	67	9	e 5	9	080	5 3	
33	810I8	HOR	16		20		7	\$	σ	70	63	47	9	. 5	9 5	÷ ;	2 0	ر د د	0 0	ς γ α	2 4	23	8	55	63	9	09	80	20	89	73	73	63	00	2 5	0
32	ici	3811	15	23	20	22	9	23	17	21	47	29	6 7	63	80 9	9	÷ (2 2	۵ : ۲	# = = = = = = = = = = = = = = = = = = =	† ¢	30	9	26	8 7	Ç	せせ	62	89	63	16	73	90	63	5 0	C P
31	THSR10	HATHGE	7	19	19	16	3	77	#	=	5	6 3	63	73	29	69	22	- i	₹	C 9	\$ 4	יט ד ב	9	70	22	29	22	7	70	63	~	2	73	73	65	-
30	HA THO	GB9	12	Ę	16	15	ع	-6	=	12	47	29	6#	57	52	29	912	90	20	5 6	n f		0 3	, <u>r</u>	6 7	8	t 3	69	79	9	90	75	16	73	89	Ş
53	111	HATHGR	7	17	13	5	.	7 2		5	24	# 3	28	\$	54	9	47	e :	0	æ ,	າ ວິນ	3 5	7 4	t 1	3	5	26	ន9	20	100	60	63	63	89	67	89
28	ENGGR11	1R 10	6	20	8	9	: ;	22	יט ו	. 6	24	20	62	22	26	47	2	42	æ ;	5	7 4	0 4	ָ ט ני	2 2	5 5	0	53	70	100	20	1 9	70	89	70	69	67
27	enggr9	ENGGR 10	6	· C	•	. 6	, (٠ <u></u>	. ~	. E	62	51	79	25	1 79	25	20	t 3	28	62	ب س ت	ň	? o		3 6	1 1	63	100	70	89	69	7	62	80	79	65
92	ENG	HORDU2	7	6	٠,	- [) "		?	87	65	89	65	90	†9	73	20	75	1 9	72	7 .	5	0 2	7 0	5 5	100	63	23	26	E	55	ココ	09	61	21
25	NATSC2	EC M	7	-10		2 œ) e	• •	> r	٠,٠	7.	69	75	67	72	9	99	61	67	67	28	- (2 G	70	9 7	2 5	72	4	67	25	8	29	0	09	22	£ 3
24	NAT	SOC 572	σ	۰ ۵	÷		. (ם ו	7 0	٥	٦,	. 6	80	57	11	59	65	9	61	61	89	0 ;	. ;	-	2 6	2 5	, ₂	62	92	200	67	55	8 7	63	1 9	26
23	THZ	200	۲,	2 =	. 4	<u> </u>	; (20 2	• •	<u>0</u> ~) e	2 2	8 9	6	2	82	99	28	99	82	54	99	8,	79	25	2 0	C 4	9	9 4	7	. 5	2	26	55	23	5
22	Ž.	ENG2	5		- 7	£ ;	_ (7	<u> </u>	œ a	, 4	3 6	9 6		89	63	69	25	73	29	29	65	9	8	2 5	* (2 4	9	Š	3	9	. 6	2 4	. 60	53	36
21	HORDU1 .	, pu	,) ¥	2 4	.	-	ن ا	.	7 -) ā	• O) d	9 4) e	2	67	7	74	29	75	7	100	99	, 20 c	ς (D 6	- 4	D 4	2 4		ر د د) C	, m	23	42
20	M ON	NATSC1	. •	- 6	o į	_;	<u> </u>	- ;	2 ;	= (٦ -	מ ע) F		- 69	, C	74	<u>.</u>	89	32	70	100	7	65	9 8	2 ;	- ;	\	, d) u	ב ב ב	ב א ה	γ α 2 ε	2 4	28	6 7
19	socsT1	EAN	•		, ·	۰ م	œ		3	-	7 6	÷ 0	0 0	r. C	2,5	7 17	. "	9	70	57	100	70	75	29	3 C	89	n n		2 0 2	V V	7 6	r a	0 &) d) (F)	47
**	LABEL			TOTAGS	TOTNERT	TOTNSIN	TOTALIN	TOTUES	Totubat	TOTUSIN	FOTOLIN	PSATE	PSATE	24.74	SATE	CHERO	301 KO	CHANGE	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SOCST	MATSC1	WORDU	ENG 5	NATH2	SOUSTS	NATSC2	ZOUKOM	ENGGR9	O MOSMA	ENGUENT	TATHGRY		1 4 5 5 7 5 5	STATE	9
HOLLISO			,	-		m	æ	S	9	7	&	6	9	Ξ;	7.5	<u> </u>	<u>*</u>	<u>.</u>		8	6	50	23	22	23	7¢	25	50	27	87				, c) 4 4	35

		٠														•		•	-12	24-	•																				
												•																													
	0.350	0.326	0.542																													,									
	0.147	0.375	0.566																					•							٠										
	0.409	0.313	0.494										•																							•					
	0.781	0.335	0.460															,	*,				,	••																	
ANCES	0.362	0.451	0.159		MATRIX								٠																												
UNIQUE VARIANCES	0.831	0.338	0.33/	0.596	FACTOR																								•												
-	0.307	0.375	0.319	0.492	Varimax-rotated							•																	•	•	•										
.	0.499	0.128	0.361	0.434	VAR	0.557	0.918	0.700	0.832	0.409	0.798	0.457	0.769	-0.047	0.152	-0.036	0.218	0.001	0.097	0.142	-0.122	-0.031	0.168	707.0	460.0	-0.1//	0.124	0.051	270	71.0-	0110	0.000	0.250	0.225	0.266	0.274	0.337	0.221	_•	0.175	
	0.158	0.295	0.423	0.524		0.089	-0.021	0.106	-0.016	0.037	0.032	0.104	0.024	0.922	0.792	0.941	0.811	0.934	0.784	0.801	0.731	0.815	0.812	0.784	0.815	0.854	0.743	0.793	0.024	0.0	016.0	07/50	.0.662	0.619	0.622	0.723	0.602	0.719	0.702	0.611	
·	0.682	0.113	0.239	0.402		TOTNUS	TOTNPAT	TOTINSIM	TOTALIA	SULLING	TOTUPAT	TOTUSIM	TOTULIN	PSATV	PSATM	SATV1	SATML	SATV2	SATM2	CININ	HENNIO	ENGI	MATHI	SOCST1	NATSCI	RORDUL		ZILVM	SOCST2	NATSC2	WOF.DU2	ENGGR9	ENGGR10	ENGGR11	MATHCRO	VATURE	Section 1	FIAIRIGKLI	KTOTO KTOTOCKI	NORGEOG HSHTST	101100
	٠					1	2	· C	7	ľ	2	7	- ∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	. 29	ક	3 6	7.6	25 25	3,5	ָאָ אָרָ אָ	,

Table 6.7.5: Creativity-Grade -- Intelligence (UMLFA 2 Factor Solution)

											•	•						-	12	5																					
	0.362	0.00	0.230																																						
	0.123	75.0	0.40																																						
	0.439	197.0	T96*0																		•										•										
	0.810	0.329	0.311																					••																	
ANCES	0.278	0.400	0.110	YTOTAL	VIUIU																																				
UNIQUE VARIANCES	0.832	0.323	0.43										•																•	•											
S	0.317	0.575	0.318	WABTWAY DOTATED	FRA-ROIALE	0.063	0.081	860.0	0.102	-0.004	0.100	. 0°065	901.0	0.335	0.490	0.358	0.504	0.384	0.521	0.315	0.161	0.321	0.619	0.240	0.412	0.174	0.399	0.548	0.414	0.392	0.292	0.705	0.690	0.626	0.834	0.779	0.794	0.706	0.700	0.614	
	0.528	0.110	0.51	TAAN	VAK	0.549	0.963	0.678	0.815	0.408	0.843	0.425	0.740	0.011	0.131	0.015	0.194	0.047	0.058	0.181	-0.049	0.00	0.106	-0.045	0.106	-0.077	0.130	0.054	0.047	90.0	0.048	0.014	0.170	0.146	0.106	0.158	0.193	0.118	0:021	0.087	•
	090.0	905.0	0.429	0,70		0.057	-0.086	0.054	-0.087	0.039	-0.030	0.073	-0.040	0.875	0.617	0.885	0.632	0.861	0.592	0.738	0.751	0.753	0.570	0.770	0.699	0.898	0.628	0.587	0.713	0.705	0.891	0.437	.0.367	•	0.236	0.381	0.234	0.428	0.412	0.357	•
	0.692	0.088	0.158	777	•	TOTNUS	TOTNPAT	MISNICI	TOTALIN	TOTUUS	TOTUPAT	TOTUSIM	TOTULIN	PSATV	PSATM	SATV1	SATMI	SATV2	SATM2	CINE	HENMIO	ENG1	MATH1	SOCST1	NATSCI	WORDUI	ENG2	MATIZ.	SOCST2	NATSC2	WORDU2	ENGGR9	ENGGR10	ENGGR11	MATHGRO	MATHEDIO	MATTIGATO	MALIIGKI I P TOTO	ATOT G	WORSEOG	USHIST
						7	7	ı m	7	· rV	9	7	∞	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	56	?					34	2

Table 6.7.6: Creativity-Grades-Intelligence (UMLFA 3 Factor Solution)

Section of the sectio

:

						l														-1	.26	-																			
			•																																						
	!	0.134	•	0.253																																					
		0:122	0.346	0.362																																					
		0.431	0.177	0.322																																					
		0.768	0.326	0.235																					••																
0000	VARLAGCES	0.266	0.402	0.099		MATRIX						•																													
Tarn moth	UNIQUE VAKI	0.834	0.326	0.557	- 1	ED FACTOR MATRIX	0.049	0.082	0.062	0.124	-0.006	0.132	-0.027	0.137	0.314	0.241	0.358	0.267	0.365	•	•	0.113	0.264	0.421	0.243	0.364	0.217	0.350	0.347	0.433	0.319	0.316	0.758	0.710	0.703	0.735	0.664	•	•	•	
-		0.314	0.101	90000	0.230	VARIMAX-ROTATED	0.064	0.008	0.105	-0.023	0.017	-0.054	0.209	-0.029	0.207	0.683	0.168	0.671	4		0.234	G	?	0.603	0.121	0.251	0.027	?	0.605	T.	0.315	0.102	0.131	0.155	0.036	0.395	0.449	0.409	0.071		ŏ
		0.523	0.109	0 105	1	VAR	0.546	0.962	0.679	0.814	0.406	0.845	0.429	0.740	0.009	0.136	0.011	0.201	0.043	0.062	0.179	-0.051	0.001	0.107	-0.048	0.106	-0.081	0.125	0.055	-0.054	-0.072	-0.052	900.0	0.167	0.142	0.106	0.158	0.195	0.110	0.013	0.083
	130.0	0.00T	0.037	0 287	0.50		0.046	-0.084	0.043	-0.084	0.031	-0.021	0.056	-0.037	0.858	0.568	0.870	0.583	0.844	0.535	0.718	0.736	0.731	0.521	0.760	0.679	0.902	0.603	0.538	0.697	0.676	0.887	•	.0.349	0.351	0.202	0.342	0.202	0.410	•	0.348
	607.0	0.693	0.000	0.216	0.52		TOTING	TOTNPAT	TOTINSIM	TOTNLIN	TOTUUS	TOTUPAT	TOTUSIM	TOTULIN	PSATV	PSATM	SATV1	SATML	SATV2	SATM2	CINM	HENNIO	ENGI	MATH1	SOCST1	NATSCI	WORDU1	ENG2	MATH2	SOCST2	NATSC2	WORDU2	ENGGR9	ENGGR10	ENGGR11	MATHGR9	MATHGR10	MATHGRII	B1019	MORGEOG	UCHISE
Uvided by E	ERIC C						1	2	n	7	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	. 29	8	31	32	33	**	35

Table 6.7.7: Creativity-Grades-Intelligence, (UMLFA 4 Factor Solution)

																	•	-1	27-	-																				
	0.136	•	0.253																																					
	0.122	•	0.362																		•																			
	0.452	•	0.310																																					
	0.678	•	0.233																				•	••																
NCES	0.251	0.400	0.094		MATRIX	0.851	0.196	•	0.144	•	0.161	•	•	0.034	960.0	0.029	C.044	0.034	0.027	0.079	0.061	0.035	0.159	0.024	-0.007	-0.075	0.087	0.095	0.094	0.076	-0.064	0.039	-0.054	0.004	0.049	0.021	0.023	0.070	0.011	0.010
TQUE VARIANCES	0.254	0.328	0.332	2,5	FACTOR	0.058	0.062	0.063	0.110	0.005	0.114	-0.022	0.124	0.314	•	0.359	0.263	0.364	0.255	0.267	0.117	0.266	•	0.245	•	•	•	0.350	•	•	•	0.759	0.706	•	•	0.661	0.679	•	0.758	•
NI)	0.324	960.0	0.295	0.257	VARIMAX-ROTATED	0.024	0.059	0.113	0.025	-0.034	-0.009	0.206	0.019	0.212	0.687	0.174	0.691	0.215	0.747	0.247	0.199	0.268	0.599	0.122	0.265	0.034	0.265	0.603	0.125	0.307	0.110	0.129	0.175	0.047	0.397	0.461	0.423	0.074	0.123	0.016
	0.431	0.109	0.222	0.190	VARI	0.351	•	0.559	0.798	0.208	0.843	0.304	0.720	-0.015	0.079	-0.011	0.155	0.021	0.017	0.143	-0.086	-0.028	0.040	-0.069	0.092	-0.072	0.092	0000-	-0.089	-0.113	-0.048	-0.003	0.187	0.153	0.085	0.143	0.182	660.0	0.014	0.087
	0.035	0.091	0.430	0.286		0.046	-0.071	0.044	-0.075	0.031	-0.008	0.053	-0.030	0.856	0.564	0.868	0.580	0.843	0.529	0.716	0.732	0.728	0.516	0.758	0.677	0.904	0.601	0.532	0.693	0.670	0.888	0.416	.0.350	0.353	0.200	0.340	0.201	0.409	0.392	0.348
	0.146	0.087	0.124	0.214		TOTNUS	TOTUPAT	TOTINSTM	TOTALIA	TOTUIS	TOTUPAT	MISITOT	TOTUTIN	PSATV	FSATM	SATVI	SATM	SATV2	SATM2	CTNM	HENMIO	ENGI	MATHI	SOCSTI	NATSCI	WORDUI	ENG2	MATIZ	SOCST2	NATSC2	WORDU2	ENGGRO	OLACCIA	FNGCR11	THEORY	WATUCO10	FAIRGALO	MATHGRI I	67018	WORGEOG Jenist
						-	۱ ۵	4 ec	າ ≺	י יי	٧ ٠	,	- α	9	10] [12		14	12		17	8	6	20	21	22	23	24	25	26	27	200	2 0	3 6	3 5	70	32	3 3	¥ አ

Table 6.7.8: Creativity-Grades-Intelligence (UMLFA 5 Factor Solution)

The second secon

**

the second and the same of the second and the secon

	0.13/	0.254														-∙1	28	-						•														
	0.110	0.363																																				
	0.447	0.295																•																				
	0.672	0.237		0.025	0.058	0.105	0.025	-0.032	-0.008	0.205	0.023	0.217	•	•	•	0.225	•	0.247	•	•	0.595		0.253	•	0.264	•	0.128	0.302	•	0.132	•	•	0.394	0.459		o	Image: Control of the	0.022
IANCES	0.249	0.100	MATRIX	0.852	7	0.493	0.146	0.835	0.163	0.432	0.118	0.030	0.098	0.026	0.044	0.025	0.026	0.078	0.061	0.037	0.160	0.025	-0.004	-0.076	0.088	960.0	0.093	0.078	990.0-	0.040	-0.051	900.0	0.048	0.025	0.017	0.00	0.012	900.0
UNIQUE VARIANCES	0.257	0.314	ATED FACTOR	0.059	0.061	0.061	0.108	900.0	0.114	-0.022	0.122	0.317	0.242	0.362	0.265	0.372	0.257	0.268	0.118	0.259	0.423	0.244	0.357	0.215	0.345	0.347	•	•	•	•	0.709	•	•	•	•	0.783	•	0.712
	0.324	0.293	VARIMAX-ROTAT	0.044	0.005	-0.087	0.009	0.034	-0.055	-0.064	0.077	0.133	-0.032	0.064	-0.007	0.349	0.079	0.012	-0.029	-0.064	-0.039	-0.059	-0.236	-0.023	-0.059	-0.025	-0.007	-0.089	0.078	-0.035	-0.109	-0.045	0.045	-0.153	0.208	-0.000	-0.021	0.121
	0.419 0.0	0.221	VAR	0.349	0.956	0.559	0.798	0.206	0.842	0.303	0.719	-0.015	0.079	-0.011	0.155	0.022	0.015	0.144	-0.085	-0.026	0.041	-0.068	0.095	-0.071	0.093	0.001	-0.089	-0.112	-0.049	-0.003	0.188	0.151	0.087	0.144	0.181	0.101	0.014	0.086
	0.035	0.419		0.044	690.0-	0.053	-0.074	0.027	-0.010	0.054	-0.035	0.851	0.561	0.863	0.574	0.830	0.515	0.720	0.735	0.740	0.521	0.764	0.701	0.906	0.611	0.538	0.694	0.683	0.8/8	0.416	0.351	0.341	0.203	0.344	0.174	0.419	•	0.334
	0.145 0.086	0.120 0.187		1 TOTNUS	2 TO'INPAT	3 TOTNSIM	4 TOTNLIN		6 TOTUPAT	7 TOTUSIM	8 TOTULIN	9 PSATV	10 PSATM	11 SATV.	12 SATM1	13 SATV2	14 SATM2	15 CTNM	16 HENNIO	17 ENGI	18 MATH1	19 SOCST1	20 NATSC1	21 WORDUI	22 ENG2	23 MATH 2	03	25 NATSC2	26 WORDU2	27 ENGGR9	28 ENGGR10			Z			MON	
													. •	. •	. •		. •		• •	- 1	v 7	• •	- 1		- 1	• •	- 7	- •	- •	. •	• •	4	• 1	· •	· • ·		• •	-,

Table 6.7.9: Creativity-Grades-Intelligence (UMLFA 6 Factor Solution)

can also be found by the new ACOVS (Analysis of Covariance Structure) approach of Jöreskog. The promax rotation gives correlations between intelligence and creativity of .005, between intelligence and grades of .457, and between grades and creativity of .247. The four factor solution shows the breakdown of the intelligence factor into verbal and mathematical components; the five factor solution shows the breakdown of the creativity factor into figural and verbal components. Further solutions show the creativity factors further dividing into Uses and Similarities factors.

These data clearly show that the creativity items define a dimension, that the creativity dimension is independent of intelligence, and that the intelligence and creativity dimensions are independently related to the grades dimension, the intelligence being more closely related which, of course, was expected.

6.8 Analysis by Regression

In addition to the analysis presented thus far, these data can also be examined using a regression technique. The existence of the three dimensions of creativity, intelligence, and school achievement has been demonstrated by the factor analysis. In the regression, eight variables will be used to define each as listed below:

Creativity	Intelligence	School Achievement
Uses-number	PSAT Verbal	English Grade 9
Patterns-number	PSAT Mathematical	English Grade 10
Similarities-number	SAT Verbal 1	English Grade 11
Lines-number	SAT Mathematical 1	Mathematics Grade 9
Uses-uniqueness	SAT Verbal 2	Mathematics Grade 10
Patterns-uniqueness	SAT Mathematical 2	Mathematics Grade 11
Similarities-uniqueness	CTMM	Biology Grade 9
Lines-uniqueness	Henmon-Nelson	Science Grade 10

All scores were standardized with a mean of zero and a variance of one in order to give equal weight to each score. Total scores were then obtained by adding the individual scores in each dimension. A set of total scores for N = 139 is given in Table 6.8.1.

Using the achievement measures as criterion measures, the intelligence and creativity measures were entered into the regression equation, first alone, then together. The scatterplots of grades and intelligence, grades and creativity, and creativity and intelligence are given in Figures 6.8.2 through 6.8.4.

The regression tables are given in Tables 6.8.5 through 6.8.8. It can be seen in Table 6.8.5 that the intelligence measures are correlated .69 with the grades, thus accounting for approximately 48 per cent of the variance in the achievement measures. The F value is obviously significant at the .001 level. Table 6.8.6 shows that the creativity measures alone are correlated .220 with the grades and account for approximately 5 per cent of the variance; the F value is significant at the .01 level. Table 6.8.7 shows that the two sets of measures together account for approximately 50 per cent of the variance in the achievement measures. The fact that the partial correlations are almost identical with the zero order correlations indicates the independence of the independent variables. Finally, a stepwise regression was included to show the significance of adding the creativity measures to the equation after the intelligence measures had already been used as an independent variable. It can be seen in Table 6.8.8 that the amount of additional variance accounted for is significant at the .05 level.

This seems to be fairly convincing evidence for the independent effect of creativity on achievement at least in this sample using these measures.

	INTELL		
-	CRSA	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
ATA	13641	1001 1001 1001 1001 1001 1001 1001 100	
INFUT D			

Table 6.8.1: Creativity, Intelligence, and Grades Indices (N = 139)

TO THE POST OF THE

***PAG? 1 OF PILE HELNALL

GRADES

INFUL DATE	TA			394de##	2 OF FILE	HELNALL
OSITION		-	7	m		
	13611	CREA	INTELL	GRADES		
51	L128	C. 83	-0.32	(,53		
25	13.00	89°0-	ر. د. ور	0.85		
, e	21.1		200	. 20		
5.5	1139	-0-10	-0.36	-0.25		
981	L142	-1.40	(, 17	0.72		
20	11.15	05.3	r.82	0.60		
10, v 10, v	1146	-0°37	ن• 3و ار	0.22		
60	1155	3,52	2 C	70.27		
61	1158	04.0-	-6.62	× 61 61 61 61 61 61 61 61 61 61 61 61 61		
62	1159	-0. CB	65.0	E 1		
ლ ;	1166	-0.72	64.9	1.18		
3 1	1166	-1.23	-(.42	-0.62		
6 0 66 J	1.171	90,01		# C • O		
67	1173	· ·	• • • • • • • • • • • • • • • • • • • •	87.0-		
68	1177	57.0-	05.0	-0.70		
69	L179	6,12	-0.22	, e		
70	1181	-0.82	-1.42			
71	1143	0.07	c. 03	-1.37		
72	1186	-1.11	-c. a)	-1.19		
	1169	E 5 5 1	- 2¢	0.97		
7 4	1 100) C	2 °	ວີ. ຕຸ		
7.0	1.201) (°	87.0	m 0		
7.	1232	06.0-	50.00	7 a a		
78	1205	68.0-	. 25	0.77		
79	1206	0.52	0.67	0.27		
00	1207	-0.56	-1.26	-0.92		
81	1215	-0.66	0.55	0.76		
6 6 2 6	1216	90.0	٠. 66 د. 66	96*3		
ຕິສ	777	75.27	08.0	1.28		
, sc	1,222	000	0.0	-C-7-		•
98	L223	6 7 6	6. 16	0 4 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6		
87	1226	-0.68	1.61	1,12		
88	1229	0.23	68.3-	11.41		
. 68	1,31	96 ∙∩-	0.67	-0.61		
06	1237	0.46	1.03	24.0		
L 5	1235	ů. 79	1.73	1.60		
N 6	1237	-0.13	75.0	6 m . 0 .		
7 :	0577	7.84	2,09	1.24		
* o	1 272 1	5 C	1,13	# 0 0		
96	1250	89.0	1.74	7 **		
97	1253	-0.63	0.92	1.27		
96	1254	1.01	-0.65	-0.51		
66	1.255		-1.55	-1.79		
20	1258	0.72	6.41	0.82		

Table 6.8.1 (cont'd)

## PAGE																																			•					
•	m	GRADES		•			•		٦.	٠.	٠.	٠.	٠.	•••	79	~	٦.	•••	•••	٦	-	3	"	o.	w	v.	0.22	61	-	-3	~	4	۰	•	~	0	m	4	6	S
	7	IRTELL	£.7-	-0.31	v =	Č	-0°3¢	, <u>, , , , , , , , , , , , , , , , , , </u>	~	C. 24	<u>, -</u>	(1.29	. 11 11	÷	-1.51	ŗ.	1.87	0.17	¢•19	5.24	(57	-(.58	1.66	ٿ	-1.39	1.50	-0.27	c • 0		-6.74	C•27	1.61	-C • 22	69•0	0.63	0.01	-0.31	0.23	0000	-1.13
	-	CREA	0,40	0.67	0.20	10.0	36.0-	-0.84	e∵.n-	0.62	0.45	-6.37	-0.24	-6.78	-0.15	-6.72	-C. 64	-0.17	-0.12	1.32	-0.54	0.27	-6.67	C.03	-0.30	n6 •0−	0.68	3.0	-0.95	3,59	္ ၁ ၁	3.97	-0.95	1.86	-0.61	-0.32	-1.10	0.93	-0.52	0.10
DATA		LABRI	1272																																					
INPUT DA	POSITION		101	-				•	-	0	•	•	~	•	-	-	•	•	•	••	N	2	~	N	∙	~	CJ (ヘ.	N 1	∙	~	~ 4	•	~		-	~	-	~~

Table 6.8.1 (cont'd)

SOURCE SO

3 OF PILE HEAMALL

Figure 6.8.2: Regression of Grades on Intelligence

Figure 6.8.3: Regression of Grades on Creativity

ž,

THE STATE OF THE S

Figure 6.8.4: Regression of Creativity on Intelligence

								PARTIAL CORR	0.6936	
								T OF FEIGHTS	11.2698	
						VALUE	127.01	STD. PRROR OF HTS.	0.0616	
						MEAN	0.0038	STAND. REIGHTS	0.6936	
•						705	3	RAW	. 6938	
ND DESALL	ES)				alallum :	SUE OF	0.5192 0.5192 1.0004	Inter	0.6936	
S CORALL AND	3 (GRADES)	-0.000	0.4311 0.6936	0.5189	ANALYSIS OF VARIANCE FOR THE MULTIPLE LINEAS REGRESSION	D.F.	137 138	S. D.	1.0000	1.0002
MULTIPLE REGELSSION USING FILES	IS NUMBER				LYSIS OF VAI	ILATION	PESSION OF TOTAL	HEAN	-0.0001	-0.0002
E REGEESSTO	DEPENDENT VARIABLE	r 1S	MULTIPLE E SOUARE * MULTIPLE R *	NAT =	ANA	SOURCE OF WARIATION	DUE TO REGREESION	LABEL	INTELL	GRADZS
MULTIPLE	DEPENDENT	INTEFCEPT IS	RULTIPLE	DETERMINANT		SOI	DUE TO RIDENTED	VARIABLE	8	m

Table 6.8.5: Regression of Grades on Intelligence Alone

and the second of the second o

•			•		•	1.0002	-0.0002	GRADES	e
0.219	2.6346	0.0833	0.2196	0.2195	0.2196	1.0005	-0.0002	CRZA	-
PARTIAI COR!	T OF MEIGHTS	STD. ERROR OF STS.	STAND.	BYB	## ## ## ## ## ## ## ## ## ## ## ## ##	S. D.	HEAN	LABEL	VARILBLE
		4 3 00 1 0 4 0	0.0482	2	0.0482 0.9522 1.0004	137 138	DEVILTION ABOOT REGRESSION TOTAL	ABOOT BEG	DUE TO REGRESSIG DEVILTION ABOOT
		~	20 X X	3	SUM OF	D.F.	WARIA-TON	SOURCE OF VA	. sou
					S MULTIPLE	ANALYSIS OF WARIANCE FOR THE LINEAR REGRESSION	ALYSIS OF VAR LINEAR	7 3 3 1	
						0.9518		H 64.25	DETERMINANT
	•					0.0482 0.2196		S SOURCE =	MULTIPLE S SOURS
				•		-0.6602		IS	INTERCEPT
					(SE	3 (GRADES	DEPENDENT VARIABLE IS NURBER	VARIABLE	DEPESSENT
					IND DESALL	S CORALL AND	SION USING FILES	REGPISSI	MULITPLE REGPTS

Table 6.8.6: Regression of Grades on Creativity Alone

RULTIPLE	REGRESSION	MULTIPLE REGRESSION USING PILES	S CORFLL AND	AND DESALL					
DEPENDENT	DEPENDENT VARIABLE IS NUMBER	IS NUMBER	3 (GR)	GRADES)					
INTERCEPT IS	15		-0,0001						-
HULTIPLE R SQUARE HULTIPLE R =	R SQUARE =		0.5065 0.7074						
DETERBINANT	NT .		0.4927						
	2.N.P.1	LYSIS OF VAR LINEAR	NALYSIS OF VARIANCE FOR THE MULTIPLE LINEAR REGRESSION	HE MULTIPLE					
Bos	SOURCE OF WARIATION	IATION	D. P.	SUR OF	/08	HEAN 138	PALUE		
DUE TO REGRESSION DEVIATION ABOUT N	DUE TO REGRESSIONDEVIATION ABOUT REGRESSION TOTAL	EGRESSION TOTAL	136 138	0.4998 1.0004		2503	68.12		
ATRITA	138 71	R R Ri Ri	S. D.	THIER	BAR BEIGHTS	STAND. WEIGHTS	STD. ZRROR OF WIS.	T OF	PANTIÁL CORR
, -a	CRZA	-0.0002	1.0005	0.2196 0.6936	0.1401	0.1402	0.0610	2,2966 11,0958	0.1932 . 0.6893
m	GRADES	-0.0002	1.0002						
\$0KZ		•							
ZOX.	NURBER OF ERR	ORS DURING	CRRORS DURING THIS RUN WAS	•					

Table 6.8.7: Regression of Grades on Intelligence and Creativity Jointly

CONTRIBUTION WEASURE OF. TO R-SO. COLLINEARITY 0.0000 0.0138	3 0.0	y Creativity	
	. 0.0	y Creativity	
RIBUTION -	E	>	
CONT	-0.0373	followed b	-
T STATISTICS WITH 136.0.F.	2,2966	Intelligence followed by Creativity	
ERROR OF WT.	0.0610	Regression -	
REGRESSION WEIGHTS -0.0001	0.1401	1 1	
SYANDARD REG. WEIGHT TABLES	0.1932	Table 6.8.8: Stepwise	
7447 VAP	VAR(2)		
	REG. WE CONCONITANT VARIABLES VAR(1)	CONCONTANT VAPTABL VAR(1) VAR(3) VAR(2) VAR(2)	CONCONTTANT VAPTABLES VAR(1) VAR(1) VAR(2) VAR(2) Table

ERIC Full Text Provided by ERIC

6.9 Conclusion

The results of this chapter confirm the hypotheses listed at the end of Chapter 5. In this sample of high school students, the Wallach and Kogan materials provide a set of measures which are coherent. The factor analysis of the correlations among these measures gives good evidence for the figural and verbal subfactors hypothesized to be components of the creativity dimension.

The creativity measures were shown to be independent of the common measures of intelligence used in this school. In addition, the creativity measures were shown to be related to school grades. Indices of creativity, intelligence, and achievement were developed. Multiple regression of school grades on intelligence and creativity confirmed this conclusion of a relationship between creativity and grades.

There are many more areas to investigate in these data than have been included in this thesis. More detailed relationships between the subfactors of creativity and specific grades seem worth examining further. The factor analyses indicate a number of worthwhile avenues of research. If such research is continued, it seems not unlikely that it will suggest reliable ways of changing the educational system into one which is much more responsive to complex human behavior.

Bibliography

- Anastasi, A., & Schaefer, C. Note on the concepts of creativity and intelligence. Journal of Creative Behavior, 1971, 5, 113-116.
- Anderson, H. H. Creativity and its cultivation. New York: Harper and Row, 1959.
- Anderson, H. H. (Ed.) <u>Creativity in childhood and adolescence</u>. Palo Alto: Science and Behavior Books, 1965.
- Aschner, M. J., & Bish, C. E. (Eds.) <u>Productive thinking in education</u>.

 Washington, D. C.: National Education Association, 1965.
- Baird, L. The achievements of bright and average students. Educational and Psychological Measurement, 1968, 28, 891-899.
- Barron, F. The measurement of creativity. In D. Whitla (Ed.), <u>Handbook of Measurement in Psychology and Education</u>. Reading, Mass.: Addison-Wesley, 1968. Pp. 348-366.
- Boersma, F. J., & O'Bryan, K. An investigation of the relationship between creativity and intelligence under two conditions of testing. <u>Journal</u> of Personality, 1968, 36, 341-348.
- Casey, J. P. An experimental study on creativity and the solving of social problems. Ann Arbor: University Microfilms, 1963.
- Cattell, R. B. The scientific analysis of personality. London: Penguin Books, 1965.
- Cattell, R. B., & Butcher, H. J. The prediction of achievement and creativity.

 New York: Bobbs-Merrill, 1968.

こうてきくいとものできる人はいてなられていたということのあれているのであるとのではないないというにはない

Christensen, P. R., Guilford, J. P., & Wilson, R. C. Relations of creative responses to working time and instructions. <u>Journal of Experimental</u>
Psychology, 1957, 53, 82-88.

- Cohen, J. Multiple regression as a general data-analytic system. <u>Psychological</u>
 Bulletin, 1968, 70, 426-443.
- Cronbach, L. J. Review of J. W. Getzels and P. W. Jackson, <u>Creativity and intelligence</u>. <u>American Journal of Sociology</u>, 1962, 68, 278-279.
- Cronbach, L. J. Intelligence? Creativity? A parsimonious reinterpretation of the Wallach-Kogan data. American Education: Research Journal, 1968, 5, 491-511.
- Cropley, A. J. Creativity and intelligence. <u>British Journal of Educational</u>
 Psychology, 1966, 36, 259-266.
- Cropley, A. J. Creativity. London: Longmans, 1967.
- Cropley, A. J. A note on the Wallach-Kogan tests o' creativity. <u>British</u>

 <u>Journal of Educational Psychology</u>, 1968, 38, 197-200.
- Cropley, A. J. A five year longitudinal study of the validity of creativity tests. Developmental Psychology, 1972, 6, 119-124.
- Cropley, A. J., & Clapson, L. G. Long term test-retest reliability of creativity tests. <u>British Journal of Educational Psychology</u>, 1971, 41, 206-208.
- Cropley, A. J., & Feuring, E. Training creativity in young children.

 Developmental Psychology, 1971, 4, 105.
- Cropley, A. J., & Maslany, G. W. Reliability and factorial validity of the Wallach-Kogan creativity tests. <u>British Journal of Psychology</u>, 1969, 60, 395-398.
- Crutchfield, R. S., Jr. Creative thinking in children: Its teaching and testing. In <u>Intelligence: Perspectives 1965</u>. New York: Harcourt, Brace, & World, 1966.
- Dahlstrom, W. G. Personality. Annual Review of Psychology, 1970, 21, 1-48.

- DeMille, R., & Merrifield, R. Creativity and intelligence. Educational and Psychological Measurement, 1962, 22, 803-808.
- Edwards, M. P., & Tyler, L. E. Intelligence, creativity, and achievement in a nonselective public junior high school. <u>Journal of Educational</u>

 <u>Psychology</u>, 1965, 56, 96-99.
- Fee, F. An alternative to Ward's factor analysis of Wallach and Kogan's "creativity" correlations. British Journal of Educational Psychology, 1968, 38, 319-321.
- Feldman, D. H. Faulty construct—ion: A review of Wallach and Wing's The talented student: A validation of the creativity—intelligence distinction. Contemporary Psychology, 1970, 15(1), 3-4.
- Getzels, J. W., & Jackson, P. W. <u>Creativity and intelligence</u>. New York: Wiley, 1962.
- Ghiselin, B. The creative process. Los Angeles: University of California Press, 1952.
- Golann, S. E. Psychological study of creativity. <u>Psychological Bulletin</u>, 1963, 60, 548-565.
- Gowan, J. C., Demos G. D., & Torrance, E. P. <u>Creativity: Its educational</u> implications. New York: Wiley, 1967.
- Guilford, J. P. Creativity. American Psychologist, 1950, 5, 444-454.
- Guilford, J. P. Some new looks at the nature of creative processes. In

 N. Frederiksen and H. Gulliksen (Eds.), Contributions to mathematical

 psychology. New York: Holt, Rinehart and Winston, 1964. Pp. 161-176.
- Guilford, J. P. The nature of human intelligence. New York: McGraw-Hill, 1967.

- Guilford, J. P. <u>Intelligence</u>, creativity, and their educational implications.

 San Diego: Knapp, 1968.
- Guilford, J. P. A general summary of twenty years of research on aptitudes of high-level personnel. Final Report Psychological Laboratory, Los Angeles: University of Southern California, 1969.
- Guilford, J. P. Creativity: Retrospect and prospect. <u>Journal of Creative</u>

 <u>Behavior</u>, 1970, <u>4</u>, 149-168.
- Guilford, J. P. Some misconceptions regarding measurement of creative talents. <u>Journal of Creative Behavior</u>, 1971, <u>5</u>, 77-87.
- Guilford, J. P. Thurstone's primary mental abilities and structure-of-intellect abilities. Psychological Bulletin, 1972, 77, 129-143.
- Guilford, J. P., & Christensen, P. R. <u>A factor-analytic study of verbal</u>

 fluency. Report Psychological Laboratory, No. 17. Los Angeles:

 University of Southern California, 1956.
- Guilford, J. P., & Hoepfner, R. Comparisons of varimax rotations with rotations to theoretical targets. Educational and Psychological Measurement, 1969, 29, 3-22.
- Guilford, J. P., & Hoepfner, R. The analysis of intelligence. New York:

 McGraw-Hill, 1971.
- Guilford, J. P., Merrifield, P. R., & Cox, A. B. <u>Creative thinking in children</u>

 at the junior high school levels. Report Psychological Laboratory, No. 26.

 Los Angeles: University of Southern California, 1961.
- Guilford, J. P., Wilson, R. C., & Christensen, P. R. <u>A factor analytic study</u>
 of creative thinking. II. <u>Administration of tests and analysis of</u>
 results. Report Psychological Laboratory, No. 8. Los Angeles: University
 of Southern California, 1952.

- Guilford, J. P., Wilson, R. C., Christensen, P. R., & Lewis, D. J. A factor

 analytic study of creative thinking. I. Hypotheses and description of

 tests. Report Psychological Laboratory, No. 4. Los Angeles: University

 of Southern California, 1951.
- Gulliksen, H. Theory of mental tests. New York: Wiley, 1950.
- Hendrickson, A. E., & White, P. O. Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 1964, 17, 65-70.
- Holland, J. L. Some limitations of teacher ratings as predictors of creativity. Journal of Educational Psychology, 1959, 50, 219-222.
- Holland, J. L. Creative and academic performance among talented adolescents.

 <u>Journal of Educational Psychology</u>, 1961, <u>52</u>, 136-137.
- Holland, J. L., & Baird, L. C. The preconscious activity scale: The development and validation of an originality measure. <u>Journal of Creative Behavior</u>, 1968, 2, 214-223.
- Holland, J. L., & Richards, J. M., Jr. Academic and nonacademic accomplishment: Correlated or uncorrelated? <u>Journal of Educational Psychology</u>, 1965, 56, 165-174.
- Holland, J. L., & Richards, J. M., Jr. The many faces of talent: A reply to Werts. <u>Journal of Educational Psychology</u>, 1967, <u>58</u>, 205-209.
- Horst, I <u>Factor analysis of data matrices</u>. New York: Holt, Rinehart & Winston, 1965.
- Jackson, P. W., & Messick, S. The person, the product, and the response:

 Conceptual problems in the assessment of creativity. <u>Journal of Personality</u>, 1965, <u>33</u>, 309-329.

The second of th

- Jöreskog, K. G. Testing a simple structure hypothesis in factor analysis.

 Psychometrika, 1966, 31, 165-178.
- Jöreskog, K. G. UMLFA: A computer program for unrestricted maximum likelihood factor analysis. Research Memorandum 66-20 (revised). Princeton, N. J.: Lducational Testing Service, 1967. (a)
- JBreskog, K. G. Some contributions to maximum likelihood factor analysis.

 <u>Psychometrika</u>, 1967, <u>32</u>, 443-482. (b)
- JBreskog, K. G. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 1969, 34, 183-202.
- Jöreskog, K. G. A general method for analysis of covariance structures.

 <u>Biometrika</u>, 1970, <u>57</u>, 239-251.
- Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, 23(1), 87-200.
- Kettner, N. W., Guilford, J. P., & Christensen, P. R. A factor-analytic study across the domains of reasoning, creativity, and evaluation.

 Psychological Monographs, 1959, 73(479).
- Kagan, J. (Ed.) Creativity and learning. Boston: Houghton Mifflin, 1967.
- Kogan, N. A clarification of Cropley and Maslany's analysis of the Wallach and Kogan creativity tests. <u>British Journal of Psychology</u>, 1971, 62, 113-117.
- Kogan, N., & Pankove, E. Creative ability over a five year span. Research
 Bulletin 71-57. Princeton, N. J.: Educational Testing Service, 1971.

7

Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, Section A, 1940, 60, 64-82.

- Lawley, D. N. Further investigations in factor estimation. Proceedings of the Royal Society of Edinburgh, Section A, 1942, 61, 176-185.
- Lawley, D., & Maxwell, A. Factor analysis as a statistical method. London: Butterworths, 1963.
- Lord, F. A study of speed factors in tests and academic grades. <u>Psychometrika</u>, 1956, 21, 31-49.
- Maltzman, I. On the training of originality. <u>Psychological Review</u>, 1960, 67, 229-242.
- Marsh, R. W. A statistical re-analysis of Getzels and Jackson's data.

 British Journal of Educational Psychology, 1964, 34, 91-93.
- McNemar, Q. Psychological statistics. New York: Wiley, 1962.
- McNemar, Q. Lost: Our intelligence? Why? American Psychologist, 1964, 19, 871-882.
- Mednick, M. T., & Andrews, F. M. Creative thinking and level of intelligence.

 <u>Journal of Creative Behavior</u>, 1967, <u>1</u>, 428-431.
- Mednick, S. A. The associative basis of the creative process. <u>Psychological</u>
 <u>Review</u>, 1962, 69, 220-232.
- Nicholls, J. G. Review of Wallach, M. A. and Wing, C. W., Jr., The talented student: A validation of the creativity-intelligence distinction.

 <u>Journal of Genetic Psychology</u>, 1970, 117, 277-279.
- Shulman, L. S. Review of Wallach and Kogan's Modes of thinking in young children. American Educational Research Journal, 1966, 3(4), 305-309.
- Skager, R. W., Schultz, C. B., & Klein, S. P. Quality and quantity of accomplishments as measures of creativity. <u>Journal of Educational Psychology</u>, 1965, <u>56</u>, 31-39.

其衛 沙蒙公

- Stein, M. I. Creativity. In E. F. Borgotta and W. W. Lambert (Eds.),

 Handbook of personality theory and research. Chicago: Rand McNally,

 1969. Pp. 900-942.
- Stein, M. I., & Heinze, S. J. <u>Creativity and the individual: Summaries</u>
 of selected literature in psychology and psychiatry. Glencoe, Ill.:
 Free Press, 1960.
- Taylor, C. W. A factorial study of fluency in writing. <u>Psychometrika</u>, 1947, 12, 239-262.
- Taylor, C. W. (Ed.) <u>Creativity: Progress and potential</u>. New York: McGraw-Hill, 1964. (a)
- Taylor, C. W. (Ed.) <u>Widening horizons in creativity</u>. New York: Wiley, 1964. (b)
- Taylor, C. W., & Barron, F. (Eds.) Scientific creativity: Its recognition and development. New York: Wiley, 1963.
- Taylor, C. W., Smith, W. R., & Ghiselin, B. The creative and other contributions of one sample of research scientists. In C. W. Taylor and F. Barron (Eds.), Scientific creativity: Its recognition and development. New York: Wiley, 1963. Pp. 53-76.
- Taylor, C. W., & Williams, F. E. (Eds.) <u>Instructional media and creativity</u>.

 New York: Wiley, 1966.
- Thorndike, R. L. Some methodological issues in the study of creativity.

 In <u>Proceedings of the 1962 Invitational Conference on Testing Problems</u>.

 Princeton, N. J.: Educational Testing Service, 1963. Pp. 40-54.
- Thurstone, L. L. <u>The vectors of mind</u>. Chicago: University of Chicago Press, 1935.
- Thurstone, L. L. Primarv mental abilities. <u>Psychometric Monograph</u>, <u>No. 1</u>, 1938.

- Thurstone, L. L. A factor analysis study of perception. <u>Psychometric</u>

 <u>Monograph</u>, <u>No. 4</u>, 1944.
- Thurstone, L. L. <u>Multiple factor analysis</u>. Chicago: University of Chicago Press, 1947.
- Thurstone, L. L. Creative talent. In <u>Proceedings of the 1950 Invitational</u>

 <u>Conference on Testing Problems</u>. Princeton, N. J.: Educational Testing

 Service, 1951.
- Thurstone, L. L., & Thurstone, T. G. Factorial studies of intelligence.

 Psychometric Monograph, No. 2. Chicago: University of Chicago Press,

 1941.
- Torrance, E. P. <u>Guiding creative talent</u>. Englewood Cliffs, N. J.: Prentice-Hall, 1962.
- Torrance, E. P. Education and the creative potential. Minneapolis: University of Minnesota Press, 1963.
- Torrance, E. P. Examples and rationales of test tasks for assessing creative abilities. Journal of Creative Behavior, 1968, 2, 165-178.
- Treffinger, D. J., Renzulli, J. S., & Feldhusen, J. F. Problems in the assessment of creative thinking. <u>Journal of Creative Behavior</u>, 1971, 5, 104-112.
- Vernon, P. E. Effects of administration and scoring on divergent thinking tests. British Journal of Educational Psychology, 1971, 41, 245-257.
- Wallach, M. A. Creativity and the expression of possibilities. In J. Kagan (Ed.), Creativity and learning. Boston: Houghton Mifflin, 1967.

- Wallach, M. A. Creativity. In P. H. Mussen (Ed.), <u>Carmichael's Manual of</u>

 <u>Child Psychology</u>. Vol. I. (3rd ed.) New York: Wiley, 1970. Pp. 1273-1365.
- Wallach, M., & Kogan, N. Modes of thinking in young children. New York:
 Holt, Rinehart, and Winston, Inc., 1965. (a)
- Wallach, M., & Kogan, N. A new look at the creativity-intelligence distinction.

 Journal of Personality, 1965, 33, 348-369. (b)
- Wallach, M., & Wing, C. The talented student. New York: Holt, Rinehart, and Winston, 1969.
- Ward, J. An oblique factorization of Wallach and Kogan's "creativity" correlations. British Journal of Educational Psychology, 1967, 37, 380-382.
- Ward, W. C. Creativity in young children. Child Development, 1968, 39(3), 737-754. (a)
- Ward, W. C. Rate and uniqueness in children's creative responding. Research

 Bulletin 68-36. Princeton, N. J.: Educational Testing Service, 1968. (b)
- Ward, W. C. Convergent and divergent measurement of creativity in children.

 Research Bulletin 71-40. Princeton, N. J.: Educational Testing

 Service, 1971.
- Werts, C. E. The many faces of intelligence. <u>Journal of Educational</u>
 Psychology, 1967, 58, 198-204.
- Williams, T. M., & Fleming, J. W. Methodological study of the relationship between associative fluency and intelligence. <u>Developmental Psychology</u>, 1969, 1(2), 155-162.
- Wilson, R. C., Guilford, J. P., Christensen, P. R., & Lewis, D. J. A factor-analytic study of creative thinking abilities. Psychometrika, 1954, 19, 297-311.

- Wing, C. W., Jr., & Wallach, M. A. College admissions and the psychology of talent. New York: Holt, Rinehart, and Winston, 1971.
- Wodtke, K. H. Some data on the reliability and validity of creativity tests at the elementary school level. Educational and Psychological Measurement, 1964, 24, 399-408.
- Wolfle, D. (Ed.) The discovery of talent. Cambridge: Harvard University Press, 1969.
- Young, G. Maximum likelihood estimation and factor analysis. Psychometrika, 1941, $\underline{6}$, 49-53.

APFENDIX 1

TEST MATERIALS

,这种是一个人的,我们也是有一种的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的

EDUCATIONAL TESTING SERVICE

PRINCETON, N.J. 08540

Area Code 609 921 - 9000 CABLE-EDUCTESTSVC

Division of Psychologycal Studies

August, 1969

Dear Student of Kaverian High School:

With Brother Kyrin Power's permission, I am inviting you to participate in a research study of some new educational materials. I have explained the nature of the materials to Brother Kyrin Powers. They are neither personality tests nor academic tests.

If you decide to fill out and return these materials, you will then be part of this study. Your responses will be kept strictly confidential by those involved in researching these materials. Some time during the coming school year, I will meet with you at Xaverian High School to explain to you what we are doing with these materials and to invite you to participate further in the research study.

After you have had a chance to look over the instructions and materials, decide whether or not you want to participate in this study. If you do, fill out the booklet and return it by August 31st. If you do not, simply return the booklet as is.

I hope you decide to participate in this study. I look forward to meeting you later in the year.

Sincerely yours,

Richard T. Murphy

Princeton University and Educational Testing Service

Richard T. Murphy

RTM/lic

Enclosures

				#	
Name					
	Last	First		Middle	
Address					
	Number	St	reet		
	City	S	tate		Zip
Birthdate		Age			
			Years	Months	

Directions: If you desire to participate in this study, complete the information asked for in the following pages. Use as much paper as you need. Add your own if necessary.

When you have finished, simply return the materials in the envelope provided.

Part I

On each of the following three rages will appear the name of a familiar object. We would like you to write down all the different ways you can think of in which the object might be used. Do not hesitate to write down whatever ways you can think of in which the object might be used as long as they are possible uses for the object that is named. Use both sides and any additional paper you may want.

-157-

-3-

1. a newspaper

):

2. an automobile tire--either the tube or the outer tire

-5-

3. a shoe

Part II

On each of the following three pages will appear a pattern of a particular sort. We would like you to write down all the different things you can think of that each complete pattern might suggest. You can turn the pattern around any way you like. Do not hesitate to write down whatever things you can think of, as long as they are possible things that the pattern might suggest. Use as much paper as you please.

-159-

-7-

1.

2.

-9-

3.

Part III

On each of the following three pages will appear the names of two objects. We would like you to write down all the different ways you can think of in which the two objects might be alike. Do not hesitate to write down whatever ways you can think of in which the two objects might be alike, as long as they are possible similarities between the objects. Use as much paper as you please.

-11-

1. a potato and a carrot

-12-

2. a train and a tractor

-13-

3. a grocery store and a restaurant

Part IV

On each of the following three pages will appear a continuous line of a particular sort. We would like you to write down all the different things you can think of that each complete line might suggest. You can turn the line around any way you like. Do not hesitate to write down whatever things you can think of, as long as they are possible things that the line might suggest. Use as much paper as you please.

ļ.

-16-

2.

-17-

3.

APPENDIX 2

CREATIVITY DATA: UMLFA TWO FACTOR SOLUTION (N=140)

CREATIVITY DATA (N=140)

UMLFA TWO FACTOR SOLUTION

UNIQUE VARIANCES											
.669	.471	. 429	.039	.078	.119	.141	.107	.266	.266	.391	.138
. 451	.406	. 434	.071	.089	.118	.258	.308	.498	.156	.403	.110
1	.268	.5	09								
2	.433		84								
3	.312	.6	88								
4	.898		93		•						
5	.875	.396									
6	.783	.517									
7	.481	.792									
8	.474	.817									
9	. 352	.781									
10	.752	.410									
11	.643		.442								
12	.800		.471								
13	.638	.376									
14	.687		. 350								
15	.545		.519			-					
16 17	.918	.294									
17 18	.914 .865	.275									
19	.551	.367 .662									
20	.383		⁷³⁸								
21	.112		700								
22	.849		350								
23	.678		370								
24	.851		108								

With the scores of student number one hundred included, the factor structure is still quite clear.

ONR DISTRIBUTION LIST

for Contract N00014-67-A-0151-0006, NR 150-302

NAVY

- 4 Dr. Marshall J. Farr
 Director, Personnel and Training
 Research Programs
 Office of Naval Research
 Arlington, VA 22217
- 1 Director ONR Branch Office 495 Summer Street Boston, MA 02210
- 1 Director ONR Branch Office 1030 East Green Street Pasadena, CA 91101
- 1 Director ONR Branch Office 536 South Clark Street Chicago, IL 60605
- 1 Office of Naval Research Area Office 207 West 24th Street New York, NY 10011
- 1 Office of Naval Research Area Office 1076 Mission Street San Francisco, CA 94103
- 6 Director Naval Research Laboratory Code 2627 Washington, DC 20390
- 12 Defense Documentation Center Cameron Station, Building 5 5010 Duke Street Alexandria, VA 22314
- 1 Chairman
 Behavioral Science Department
 Naval Command and Management Division
 U. S. Naval Academy
 Luce Hall
 Annapolis, MD 21402
- 1 Chief of Naval Technical Training Naval Air Station Memphis (75) Millington, TN 38054

ATTN: Dr. G. D. Mayo

1 Chief of Naval Training Naval Air Station Pensacola, FL 32508

ATTN: CAPT Allen E. McMichael

1 Chief
Bureau of Medicine and Surgery
Code 513
Washington, DC 20390

- 1 Chief
 Bureau of Medicine and Surgery
 Research Division (Code 713)
 Department of the Navy
 Washington, DC 20390
- 1 Commander Submarine Development Group Two Fleet Post Office New York, NY 09501
- 1 Commanding Officer Naval Medical Neuropsychiatric Research Unit San Diego, CA 92152
- 1 Commanding Officer Naval Personnel and Training Research Laboratory San Diego, CA 92152
- 1 Head, Personnel Measurement Staff Capital Area Personnel Service Office Ballston Tower #2, Room 1204 801 N. Randolph Street Arlington, VA 22203
- 1 Program Coordinator
 Bureau of Medicine and Surgery (Code 71G)
 Department of the Navy
 Washington, DC 20390
- 1 Research Director, Code 06
 Research and Evaluation Department
 U. S. Naval Examining Center
 Building 2711 Green Bay Area
 Great Lakes, IL 60088

ATTN: C. S. Winiewicz

1 Superintendent Naval Postgraduate School Monterey, CA 93940

ATTN: Library (Code 21.4)

- 1 Technical Director
 Naval Personnel Research and
 Development Laboratory
 Washington Navy Yard
 Building 200
 Washington, DC 20390
- l Technical Director Personnel Research Division Bureau of Naval Personnel Washington, DC 20370
- 1 Technical Library (Pers-11B) Bureau of Naval Personnel Department of the Navy Washington, DC 20360
- 1 Technical Library Naval Ship Systems Command National Center Building 3 Room 3 S-08 Washington, DC 20360

4

- 1 Technical Reference Library Naval Medical Research Institute National Naval Medical Center Bethesda, MD 20014
- 1 COL George Caridakis
 Director, Office of Manpower Utilization
 Headquarters, Marine Corps (AOlH)
 MCB
 Quantico, VA 22134
- 1 Special Assistant for Research and Studies OASN (M&RA) The Pentagon, Room 4E794 Washington, DC 20350
- 1 Mr. George N. Graine Naval Ship Systems Command (SHIPS 03H) Department of the Navy Washington, DC 20360
- 1 CDR Richard L. Martin, USN COMFAIRMIRAMAR F-14 NAS Miramar, C.. 92145
- 1 Mr. Lee Miller (AIR 413E) Naval Air Systems Command 5600 Columbia Pike Falls Church, VA ^2042
- 1 Dr. James J. Regen Code 55 Naval Training Device Center Orlando, FL 32813
- 1 Dr. A. L. Slafkosky Scientific Advisor (Code Ax) Commandant of the Marine Corps Washington, DC 20380
- 1 LCDR Charles J. Theisen, Jr., MSC, USN CSOT Naval Air Developmen: Center Warminster, PA 18974

ARMY

- 1 Behavioral Sciences Division
 Office of Chief of Research and Development
 Department of the Army
 Washington, DC 20310
- 1 U. S. Army Behavior and Systems
 Research Laboratory
 Rosslyn Commonwealth Building, Room 239
 J.300 Wilson Boulevard
 Arlington, VA 22209
- 1 Director of Research U. S. Army Armor Human Research Unit ATTN: Library Building 2422 Morade Street Fort Knox, KY 40121
- 1 COMMANDANT U. S. Army Adjutant General School Fort Benjamin Harrison, IN 46216

ATTN: ATSAG-EA

- 1 Commanding Officer ATTN: LTC Montgomery USACDC - PASA Ft. Benjamin Harrison, IN 46249
- 1 Director
 Behavioral Sciences Laboratory
 U. S. Army Research Institute of
 Environmental Medicine
 Natick, MA 01760
- 1 Commandant
 United States Army Infantry School
 ATTN: ATSIN-H
 Fort Benning, GA 31905
- 1 U. S. Army Research Institute Room 239 Commonwealth Building 1300 Wilson Boulevard Arlington, VA 22209

ATTN: Dr. R. Dusek

1 Mr. Edmund Fuchs BESRL Commonwealth Building, Room 239 1320 Wilson Boulevard Arlington, VA 22209

AIR FORCE

- 1 Dr. Robert A. Bottenberg AFHRL/PHS Lackland AFB Texas 78236
- 1 AFHRL (TR/Dr. G. A. Eckstrand) Wright-Patterson Air Force Base Ohio 45433
- 1 AFHRL (TRT/Dr. Ross L. Morgan) Wright-Patterson Air Force Base Ohio 45433
- 1 AFHRL'MD 701 Prince Street Room 20. Alexandria, VA 22314
- 1 AFOSR (NL) 1400 Wilson Boulevard Arlington, VA 22209
- 1 COMMANDANT
 USAF School of Aerospace Medicine
 ATTN: Aeromedical Library (SCL-4)
 Brooks AFB. TX 78235
- 1 Personnel Research Division AFHRL Lackland Air Force Base San Autonio, TX 78236
- 1 Headquarters, U. S. Air Force
 Chief, Personnel Research and Analysis
 Division (AF/IPXY)
 Washington, DC 20330
- 1 Research and Analysis Division AF/DPXYR Room 4C200 Washington, DC 20330

1 CAPT Jack Thorpe USAF Dept. of Psychology Bowling Green State University Bowling Green, OH 43403

DOD

1 Mr. Joseph J. Cowan, Chief Psychological Research Branch (P-1) U. S. Coast Guard Headquarters 400 Seventh Street, SW Washington, DC 20590

OTHER GOVERNMENT

- 1 Dr. Alvin E. Goins, Chief Personality and Cognition Research Section Behavioral Sciences Research Branch National Institute of Mental Health 5600 Fishers Lane Rockville, MD 20852
- 1 Dr. Andrew R. Molnar Computer Innovation in Education Section Office of Computing Activities National Science Foundation Washington, DC 20550
- 1 Dr. Lorraine D. Eyde
 Bureau of Intergovernmental Personnel
 Programs
 Room 2519
 U. S. Civil Service Commission
 1900 E. Street, NW
 / Washington, DC 20415
- 1 Office of Computer Information Center for Computer Sciences and Technology National Bureau of Standards Washington, DC 20234

MISCELLANEOUS

- 1 Dr. scarvia Anderson
 Executive Director for Sprcial Development
 Educational Testing Service
 Princeton, NJ 08540
- 1 Professor John Annett The Open University Waltonteale, BLETCHLEY Lucks, ENGLAND
- 1 Dr. Richard C. Atkinson Department of Psychology Stanford University Stanford, CA 94305
- 1 Dr. Bernard M. Bass University of Rochester Management Research Center Rochester, NY 14627
- 1 Dr Kenneth E. Clark University of Rochester college of Arts and Sciences Piver Campus Station Rochester, NY 14627
- 1 Dr. Rene / Dawis
 Department of Psychology
 324 711iott Hall
 Univ rsity of Minnesota
 Minreapolis, MN 55455

- 1 Dr. Robert Dubin Graduate School of Administration University of California Irvine, ^A 92664
- 1 Dr. Marvin D. Dunnette University of Minnesota Department of Psychology Elliott Hall Minneapolis, MN 55455
- 1 ERIC
 Processing and Reference Facility
 4833 Rugby Avenue
 Bethesda, MD 20014
- 1 Dr. Victor Fields Department of Psychology Montgomery College Rockville, MD 20850
- 1 Mr. Paul P. Foley
 Naval Personnel Research and Development
 Laboratory
 Washington Navy Yard
 Washington, DC 20390
- 1 Dr. Robert Claser Learning Research and Development Center University of Pittsburgh Pittsburgh, PA 15213
- 1 Dr. Albert S. Glickman American Institutes for Research 8555 Sixteenth Street Silver Spring, MD 20910
- 1 Dr. Bert Green
 Department of Psychology
 Johns Hopkins University
 Baltimore, MD 21218
- 1 Dr. Duncan N. Hansen Center for Computer-Assisted Instruction Florida State University Tallahassee, FL 32306
- 1 Dr. Richard S. Hatch Decision Systems Associates, Inc. 11428 Rockville Pike Rockville, MD 20852
- J Dr. M. D. Havron Hums Sciences Research, Inc. Westgate Industrial Park 7710 Old Springhouse Road McLean, VA 22101
- 1 Human Resources Research Organization Division #3 Post Office Box 5787 Presidio of Monterey, CA 93940
- 1 Human Resources Research Organization Division #4, Infantry Post Office Box 2086 Fort Benning, GA 31905
- Human Resources Research Organization
 Division #5, A_r Defense
 Post Office Box 6057
 Fort Bliss, TX 79916
- 1 Library
 *NumERRO Division Number 6
 ?. O. Box 428
 Fort Rucker, AL 36360

- 1 Dr. Norman J. Johnson
 Associate Professor of Social Policy
 School of Urban and Public Affairs
 Carnegie-Mellon University
 Pittsburgh, PA 15213
- 1 Dr. Roger A. Kaufman Graduate School of Human Behavior U. S. International University 8655 E. Pomerada Road San Diego, CA 92106
- 1 Dr. Frederic M. Lord Educational Testing Service Princeton, NJ 08540
- 1 Dr. E. J. McCormick
 Department of Psychological Sciences
 Purdue University
 Lafayette, IN 47907
- 1 Dr. Robert R. Mackie Human Factors Research, Inc. Santa Barbara Research Park 6780 Cortona Drive Goleta, CA 93017
- 1 Mr. Luigi Petrullo 2431 North Edgewood Street Arlington, VA 22207
- 1 Dr. Robert D. Pritchard Assistant Professor of Psychology Purdua University Lafayette, IN 47907
- 1 Psychological Abstracts American Psychological Association 1200 Seventeenth Street, NW Washington, DC 20036
- 1 Dr. Diane M. Ramsey-Klee R-K Research & System Design 3947 Ridgemont Drive Malibu, CA 90265
- Dr. Joseph W. Rigmey
 Behavioral Technology Laboratories
 University of Southern California
 3717 South Grand
 Los Angeles, CA 90007
- 1 Dr. Leonard L. Rosenbaum, Chairman Department of Psychology Montgomery College Rockville, MD 20850
- 1 Dr. George E. Rowland Rowland and Company, Inc. Post Office Box 61 Haddonfield, NJ 08033
- 1 Dr. Benjamin Schneider Department of Psychology University of Maryland College Park, MD 20742
- 1 D. Robert J. Seidel
 "uman Resources Research Organization
 300 N. Washington Street
 Alexandria, VA 22314

- 1 Dr. Arthur I. Siegel Applied Psychological Services Science Center 404 East Lancaster Avenue Wayne, PA 19087
- 1 Dr. Henry Solomon George Washington University Department of Economics Washington, DC 20006
- 1 Dr. David Weiss University of Minnesota Department of Psychology Elliott Hall Minneapolis, MN 55455
- 1 Mr. Edmond Marks 109 Grange Building Pennsylvania State University University Park, PA 16802
- 1 LCOL Austin W. Kibler, Director Human Resources Research Office ARPA 1400 Wilson Boulevard Arlington, VA 22209
- 1 Century Research Corporation 4113 Lee Highway Arlington, VA 22207