Xu Christian Note: 13/20 (score total : 13/20)

+283/1/28+

QCM THLR 4

1X	
	10
1.5	
sieur plus pas p incor	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases et que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plus réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les rectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +283/1/xx+···+283/2/xx+.
Q.2	Le langage $\{ \heartsuit^n \mid \forall n \in \mathbb{N} \}$ est
	☐ fini ☐ vide 🌉 rationnel (!) ☐ non reconnaissable par automate fini
Q.3	Le langage $\{ \mathbb{R}^n \mathbb{R}^n \mid \forall n \in \mathbb{N} \}$ est
	☐ fini ☐ vide ﷺ rationnel ☐ non reconnaissable par automate fini
Q.4	Un automate fini qui a des transitions spontanées
Γ	\square n'accepte pas ε \boxtimes n'est pas déterministe \square est déterministe $@$ accepte ε
^ -	
Q.5 [Un langage quelconque] peut avoir une intersection non vide avec son complémentaire
	est toujours inclus (⊆) dans un langage rationnel
[□ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ n'est pas nécessairement dénombrable
Q.6	Si un automate de n états accepte a^n , alors il accepte
	\square $a^n a^m$ avec $m \in \mathbb{N}^*$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$ \square a^{n+1}
Q.7	
Q.7	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$
Q.8	$a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$ Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si : L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ L_1, L_2 sont rationnels L_2 est rationnel
Q.8	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
Q.7 Q.8 dont	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 \square $Det(T(Det(T(Det(\mathcal{A})))))$ 2/2

 \Box $T(Det(T(Det(\mathscr{A}))))$ \Box $T(Det(T(Det(T(\mathcal{A})))))$

 \square $Det(T(Det(T(\mathscr{A}))))$

Fin de l'épreuve.

2/2