Public-Key Encryption Theory

Yu Zhang

Harbin Institute of Technology

Cryptography, Autumn, 2020

Outline

- 1 Definitions and Securities of Public-Key Encryption
- 2 Trapdoor Permutations

3 Security Against Chosen-Ciphertext Attacks

4 Public-Key Encryption from TDP in ROM

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Limitations of Private-Key Cryptography

- The key-distribution need physically meeting.
- The number of keys for U users is $\Theta(U^2)$.
- Secure communication in open system:

Solutions that are based on private-key cryptography are not sufficient to deal with the problem of secure communication in open systems where parties cannot physically meet, or where parties have transient interactions.

Needham-Schroeder Protocol for Symmetric Key

- Key Distribution Center (KDC) as Trusted Third Party (TTP), which has the shared key with Alice, and with Bob, respectively.
- $E_{Bob}(k)$ is a **ticket** to access Bob, k is **session key**.
- Used in MIT's Kerberos protocol (in Windows).

Strength:

- each one stores one key
- no updates

Weakness:

single-point-of-failure

Merkle Puzzles (Key Exchange W/O TTP)

Alice prepares 2^{32} puzzles Puzzle_i, and sends to Bob.

$$\mathsf{Puzzle}_i \leftarrow \mathsf{Enc}_{(0^{96}||p_i)}(\mathsf{"Puzzle} \ \#"x_i||k_i),$$

where Enc is 128-bit, $p_i \leftarrow \{0,1\}^{32}$ and $x_i, k_i \leftarrow \{0,1\}^{128}$.

Bob chooses Puzzle $_j$ randomly, guesses p_j in 2^{32} time, obtains x_j, k_j and sends x_j to Alice.

Alice lookups puzzle with x_j , and uses k_j as secret key.

■ Adversary needs 2^{32+32} time.

Better Gap?

Quadratic gap is best possible if we treat cipher as a black box oracle.

Public-Key Revolution

- In 1976, Whitfield Diffie and Martin Hellman published "New Directions in Cryptography".
- **Asymmetric** or **public-key** encryption schemes:
 - Public key as the encryption key.
 - Private key as the decryption key.
- Public-key primitives:
 - Public-key encryption.
 - Digital signatures. (non-repudiation)
 - Interactive key exchange.

Strength:

- Key distribution over public channels.
- Reduce the need to store many keys.
- Enable security in open system.
- **Weakness**: 2 or 3 orders of magnitude slower than private-key encryptions, active attack on public key distribution.

Definitions

- **Key-generation** algorithm: $(pk, sk) \leftarrow \text{Gen}$, key length $\geq n$.
- Plaintext space \mathcal{M} is associated with pk.
- **Encryption** algorithm: $c \leftarrow \mathsf{Enc}_{pk}(m)$.
- **Decryption** algorithm: $m := \mathsf{Dec}_{sk}(c)$, or outputs \bot .
- Requirement: $\Pr[\mathsf{Dec}_{sk}(\mathsf{Enc}_{pk}(m)) = m] \ge 1 \mathsf{negl}(n)$.

Security against Eavesdroppers = CPA

The eavesdropping indistinguishability experiment PubK^{eav}_{A,Π}(n):

- 2 \mathcal{A} is given input \mathbf{pk} and so oracle access to $\mathsf{Enc}_{\mathbf{pk}}(\cdot)$, outputs m_0, m_1 of the same length.
- 3 $b \leftarrow \{0,1\}$. $c \leftarrow \mathsf{Enc}_{pk}(m_b)$ (challenge) is given to \mathcal{A} .
- **4** \mathcal{A} continues to have access to $Enc_{\mathbf{pk}}(\cdot)$ and outputs b'.
- **5** If b' = b, \mathcal{A} succeeded $\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1$, otherwise 0.

Definition 1

 Π is **CPA-secure** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PubK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Security Properties of Public-Key Encryption

Symmetric ciphers are possible to encrypt a 32-bit message and obtain a 32-bit ciphertext (e.g. with the one time pad). Can the same be done with a public-key system?

Theorem 2

Q: Would a deterministic public-key encryption scheme be secure in the presence of an eavesdropper?

Proposition 3

Q: If Π is secure in the presence of an eavesdropper, is Π also CPA-secure? and is it secure for multiple encryptions?

Proposition 4

Q: is perfectly-secret public-key encryption possible?

Construction of Hybrid Encryption

To speed up the encryption, use private-key encryption Π' (data-encapsulation mechanism, DEM) in tandem with public-key encryption Π (key-encapsulation mechanism, KEM).

Construction 5

 $\Pi^{\mathsf{h}\mathsf{y}} = (\mathsf{Gen}^{\mathsf{h}\mathsf{y}}, \mathsf{Enc}^{\mathsf{h}\mathsf{y}}, \mathsf{Dec}^{\mathsf{h}\mathsf{y}})$:

- Gen^{hy}: $(pk, sk) \leftarrow \text{Gen}(1^n)$.
- Enc^{hy}: pk and m.
 - 1 $k \leftarrow \{0,1\}^n$.
 - 2 $c_1 \leftarrow \mathsf{Enc}_{pk}(k)$, $c_2 \leftarrow \mathsf{Enc}'_k(m)$.
- Dec^{hy}: sk and $\langle c_1, c_2 \rangle$.
 - 1 $k := \mathsf{Dec}_{sk}(c_1)$.
 - $2 m := \mathsf{Dec}'_k(c_2).$

Q: is hybrid encryption a public-key enc. or private-key enc. ?

Security of Hybrid Encryption

Theorem 6

If Π is a CPA-secure public-key encryption scheme and Π' is a private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, then $\Pi^{\rm hy}$ is a CPA-secure public-key encryption scheme.

$$\langle pk, \operatorname{Enc}_{pk}(k), \operatorname{Enc}_k'(m_0) \rangle \overset{\text{(by transitivity)}}{\longleftarrow} \langle pk, \operatorname{Enc}_{pk}(k), \operatorname{Enc}_k'(m_1) \rangle$$

$$\downarrow \text{(by security of Π)} \qquad \text{(by security of Π)}$$

$$\langle pk, \operatorname{Enc}_{pk}(0^n), \operatorname{Enc}_k'(m_0) \rangle \overset{\longleftarrow}{\longleftarrow} \langle pk, \operatorname{Enc}_{pk}(0^n), \operatorname{Enc}_k'(m_1) \rangle$$

$$\stackrel{\text{(by security of Π')}}{\longleftarrow} \langle pk, \operatorname{Enc}_{pk}(0^n), \operatorname{Enc}_k'(m_1) \rangle$$

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Overview

Trapdoor function: is easy to compute, yet difficult to find its inverse without special info., the "trapdoor". (One Way Function with the "trapdoor")

A public-key encryption scheme can be constructed from any trapdoor permutation. ("Theory and Applications of Trapdoor Functions", [Yao, 1982])

Families of Functions

Definition 7

 $\Pi = (\mathsf{Gen}, \mathsf{Samp}, f)$ is a **family of functions** if:

- **1** Parameter-generation algorithm: $I \leftarrow \text{Gen}(1^n)$.
- **2** sampling algorithm: $x \leftarrow \mathsf{Samp}(I)$.
- **3** The deterministic **evaluation** algorithm: $y := f_I(x)$.

Definition of Families of Trapdoor Permutations

A tuple of polynomial-time algorithms $\Pi = (\mathsf{Gen}, \mathsf{Samp}, f, \mathsf{Inv})$ is a family of trapdoor permutations (TDP) if:

- **parameter generation** algorithm Gen, on input 1^n , outputs (I, td) with $|I| \geq n$. (I, td) defines a set $\mathcal{D}_I = \mathcal{D}_{\mathsf{td}}$.
- Gen_I outputs only I. (Gen_I, Samp, f) is OWP.
- deterministic **inverting algorithm** Inv. $\forall (I, \mathsf{td})$ and $\forall x \in \mathcal{D}_I$,

$$Inv_{td}(f_I(x)) = x.$$

Deterministic polynomial-time algorithm hc is a **hard-core predicate** of Π if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathcal{A}(I, f_I(x)) = \mathsf{hc}_I(x)] \le \frac{1}{2} + \mathsf{negl}(n).$$

Examples

Let f with $< I, \mathrm{td} >$ be a TDP. Which of the following f' is also a TDP?

$$f'(x) = f(x) ||000$$

$$f'(x) = f(x) \| \mathsf{td}$$

$$f'(x||x') = f(x)||f(x')||$$

$$f'(x) = f(x) \oplus I$$

$$f'(x) = \begin{cases} f(x) & \text{if } x[0,1,2,3] \neq 1010 \\ x & \text{otherwise} \end{cases}$$

Public-key Encryption Schemes from TDPs

Construction 8

- Gen: $(I, td) \leftarrow \widehat{Gen}$ output **public key** I and **private key** td.
- Enc: on input I and $m \in \{0,1\}$, choose a random $x \leftarrow \mathcal{D}_I$ and output $\langle f_I(x), \operatorname{hc}_I(x) \oplus m \rangle$.
- Dec: on input td and $\langle y, m' \rangle$, compute $x := f_I^{-1}(y)$ and output $\operatorname{hc}_I(x) \oplus m'$.

Theorem 9

If $\widehat{\Pi}=(\widehat{Gen},f)$ is TDP, and hc is HCP for $\widehat{\Pi}$, then Construction Π is CPA-secure.

Is the following scheme is secure?

$$Enc_I(m) = f_I(m), Dec_{td}(c) = f_I^{-1}(c).$$

Proof

Idea: $hc_I(x)$ is pseudorandom. Reduce \mathcal{A}_{hc} for hc to \mathcal{A} for Π .

$$\begin{split} \Pr[\mathcal{A}_{\mathsf{hc}}(I,f_I(x)) = \mathsf{hc}_I(x)] = \\ \frac{1}{2} \cdot (\Pr[b' = b | z = \mathsf{hc}_I(x)] + \Pr[b' \neq b | z \neq \mathsf{hc}_I(x)]). \end{split}$$

Proof (Cont.)

$$\Pr[b'=b|z=\mathsf{hc}_I(x)]=\Pr[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n)=1]=\varepsilon(n).$$

If $z \neq hc_I(x)$, $m' = m_b \oplus \overline{hc}_I(x) = m_{\overline{b}} \oplus hc_I(x)$, which means $m_{\overline{b}}$ is encrypted.

$$\Pr[b' = b | z \neq \mathsf{hc}_I(x)] = \Pr[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 0] = 1 - \varepsilon(n).$$

$$\Pr[b' \neq b | z \neq \mathsf{hc}_I(x)] = \varepsilon(n).$$

$$\Pr[\mathcal{A}_{\mathsf{hc}}(I, f_I(x)) = \mathsf{hc}_I(x)] = \frac{1}{2} \cdot (\varepsilon(n) + \varepsilon(n)) = \varepsilon(n).$$

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Scenarios of CCA in Public-Key Setting

- **1** An adversary \mathcal{A} observes the ciphertext c sent by \mathcal{S} to \mathcal{R} .
- 2 \mathcal{A} send c' to \mathcal{R} in the name of \mathcal{S} or its own.
- 3 \mathcal{A} infer m from the decryption of c' to m'.

Scenarios

- login to on-line bank with the password: trial-and-error, learn info from the feedback of bank.
- reply an e-mail with the quotation of decrypted text.
- malleability of ciphertexts: e.g. doubling others' bids at an auction.

Definition of Security Against CCA/CCA2

The CCA/CCA2 indistinguishability experiment PubK^{cca}_{A,Π}(n):

- 2 \mathcal{A} is given input pk and oracle access to $Dec_{sk}(\cdot)$, outputs m_0, m_1 of the same length.
- 3 $b \leftarrow \{0,1\}$. $c \leftarrow \mathsf{Enc}_{pk}(m_b)$ is given to \mathcal{A} .
- 4 A have access to $\mathrm{Dec}_{sk}(\cdot)$ except for c in $\mathbf{CCA2^1}$ and outputs b'.
- **5** If b' = b, \mathcal{A} succeeded PrivK $_{\mathcal{A},\Pi}^{\mathsf{cca}} = 1$, otherwise 0.

Definition 10

 Π has **CCA/CCA2-secure** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PubK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

¹CCA is also called Lunchtime attacks; CCA2 is also called Adaptive CCA.

Examples

Let (Gen, E, D) be CCA-secure on message space $\{0, 1\}^{128}$. Which of the following is also CCA-secure?

$$E'(pk, m) = (E(pk, m), 0^{128})$$

$$D'(sk, (c_1, c_2)) = \begin{cases} D(sk, c_1) & \text{if } c_2 = 0^{128} \\ \bot & \text{otherwise} \end{cases}$$

■
$$E'(pk, m) = (E(pk, m), E(pk, 0^{128}))$$

 $D'(sk, (c_1, c_2)) = D(sk, c_1)$

State of the Art on CCA2-secure Encryption

- Zero-Knowledge Proof: complex, and impractical. (e.g., Dolev-Dwork-Naor)
- Random Oracle model: efficient, but not realistic (to consider CRHF as RO). (e.g., RSA-OAEP and Fujisaki-Okamoto)
- DDH(Decisional Diffie-Hellman assumption) and UOWHF(Universal One-Way Hashs Function): x2 expansion in size, but security proved w/o RO or ZKP (e.g., Cramer-Shoup system).

CCA2-secure implies Plaintext-aware: an adversary cannot produce a valid ciphertext without "knowing" the plaintext.

Open problem

Constructing a CCA2-secure scheme based on RSA problem as efficient as "Textbook RSA".

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

3 Security Against Chosen-Ciphertext Attacks

4 Public-Key Encryption from TDP in ROM

Random Oracle Model (ROM) – Overview

- Random oracle (RO): a truly random function *H* answers every possible query with a random response.
 - **Consistent**: If *H* ever outputs *y* for an input *x* "on-the-fly", then it always outputs the same answer given the same input.
 - No one "knows" the entire function *H*.
- Random oracle model (ROM): the existence of a public RO.
- **Methodology**: for constructing proven security in ROM.
 - 1 a scheme is designed and proven secure in ROM.
 - 2 Instantiate H with a hash function \hat{H} , such as SHA-1.
- No one seriously claims that a random oracle exists.²

With ROM, it is easy to achieve proven security, while keeping the efficiency by appropriate instantiation.

²There exists schemes that are proven secure in ROM but are insecure no matter how the random oracle is instantiated.

Simple Illustrations of ROM

An RO maps n_1 -bit inputs to n_2 -bit outputs.

- An RO as an OWF, experiment:
 - \blacksquare A random function H is chosen
 - 2 A random $x \in \{0,1\}^{n_1}$ is chosen, and y := H(x) is evaluated
 - **3** \mathcal{A} is given y, and succeeds if it outputs x': H(x') = y
- An RO as a CRHF, experiment:
 - \blacksquare A random function H is chosen
 - 2 A succeeds if it outputs x, x' with H(x) = H(x') but $x \neq x'$
- Constructing a PRF from an RO: $n_1 = 2n$, $n_2 = n$. $F_k(x) \stackrel{\text{def}}{=} H(k||x), \quad |k| = |x| = n$.

Security Against CPA

Idea: PubK CPA = PrivK + (Secret Key = TDP + RO)

Construction 11

- lacksquare Gen: pk = I, sk = td
- Enc: $r \leftarrow \{0,1\}^*$, output $\langle c_1 = f_I(r), c_2 = H(r) \oplus m \rangle$
- Dec: $r := f_{\mathsf{td}}^{-1}(c_1)$, output $H(r) \oplus c_2$

Theorem 12

If f is TPD and H is RO, Construction is CPA-secure.

H can not be replaced by PRG, since the partial info on r may be leaked by c_1 .

CCA-secure based on Private Key Encryption

Idea: PubK CCA = PrivK CCA + (Secret Key = TPD + RO).

Construction 13

- $\blacksquare \Pi'$ is PrivK
- Gen: pk = I, sk = td.
- Enc: $k := H(r), r \leftarrow D_I$, output $\langle c_1 = f_I(r), c_2 = \operatorname{Enc}'_k(m) \rangle$.
- Dec: $r := f_{\mathsf{td}}^{-1}(c_1)$, k := H(r), output $\mathsf{Dec}_k'(c_2)$.

Theorem 14

If f is TDP, Π' is CCA-secure, and H is RO, Construction is CCA-secure.

CCA-secure based on TPD in ROM

Idea: PubK CCA = TDP + 2 RO (one for enc, one for mac)

Construction 15

- Gen: pk = I, sk = td
- Enc: $r \leftarrow D_I$, output $\langle c_1 = f_I(r), c_2 = H(r) \oplus m, c_3 = G(c_2 || m) \rangle$
- Dec: $r:=f_{\mathsf{td}}^{-1}(c_1)$, $m:=H(r)\oplus c_2$. If $G(c_2\|m)=c_3$ output m, otherwise \bot

Theorem 16

If f is TDP, G, H are ROs, Construction is CCA-secure.

Private Key Encryption vs. Public Key Encryption

	Private Key	Public Key
Secret Key	both parties	receiver
Weakest Attack	Eav	CPA
Probabilistic	CPA/CCA	always
Assumption against CPA	OWF	TDP
Assumption against CCA	OWF	TDP+RO
Efficiency	fast	slow

Key Size Comparison

NIST recommends the **key lengths** (in bits) with comparable security. NIST deems a 112-bit effective key length acceptable for security until the year 2030, but recommends 128-bit or higher key lengths for applications where security is required beyond then.

AES	RSA (N) /DH (p)	ECC (order q)
56	512	112
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	512