Entwicklung eines autonomen Systems zur Bilderkennung mithilfe Neuronaler Netze auf dedizierter Hardware

Kolloqiuim - Bachelorarbeit

Manuel Barkey

Reutlingen, 29.01.2020

Motivation

motiviere mich

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegungen

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegungen

Neuronale Netze

- was: NN lernt in gr Datenmenge Zusammenhänge und kann diese generalisieren so das es sie auch für neue daten anwenden kann
- wie: input daten mit zugehörigen outputs (hier gelabelte bilder) in Modell, dieses lernt iterativ die zusammenhänge

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegungen

Verwendete Hardware

- Raspberry Pi 4
- Intels Neural Compute Stick 2
- Raspberry Pi Camera Modul mit IR Cut Funktion

NCS2 und Myriad Chip

Funktionsweise

schnelle NN berechnungen

Anwendungen

- für edge systeme
- vgl zu cloud basierten nns

OpenVino

Open Vino Toolkit Developement Workflow

- in Tensorflow, Caffe, rainierte Modelle
- Asymchrone Inferenz möglich

Künstliche Neuronale Netze

Hardware

Training des Modells

Sammeln und aufbereiten der Daten Auswahl und Training des Modells Evaluierung des Trainings

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Datenset

Augmentierung

CNNs

Objekterkennung

Tensorflow ObjDet Api

Loss und map

auf validation set

inferenz

auf test set

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegunger

Inferenz

- Integration des fertig trainierten Netzes in die Applikation
- Logik: Bewegungselder, Bild speichern, zweiter prozess inferiert
- Server-Client-Verbindung
- Infrarot Modus

Realworld Ergebnisse

hier inferierte bilder von endergebnis

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegungen

Zusammenfassung und Ausblick

- wie geeignet ist ncs2 für nn
- weitere Anwendungsmögl
- erweiterungsmögl der bisherigen arbeit

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen Bewegungsprofil Lageregelkreis

Koordinierte Bewegunger

Einfaches Streckenmodell

Einfaches Streckenmodell für die prinzipiellen Zusammenhänge

- Kein Getriebe
- Starre Welle
- $ightharpoonup J_G = J_M + J_L$

Für die folgenden Überlegungen gilt $M_L = 0$.

Bezeichung: $\ddot{\varphi} = \dot{\Omega} = \alpha$

Drehmomentvorgabe

Drehmomentvorgabe

Drehmomentvorgabe

Positionsvorgabe

Gegeben:

Startposition
$$\varphi(t_0) = \varphi_0$$
 Zielposition $\varphi(t_0 + T_Z) = \varphi_Z$

Gesucht:

Bewegungsprofil: $\Omega(t)$ so dass die Zielposition φ_Z erreicht wird

Mögliche Vorgaben/Randbedingungen:

- ▶ Vorgegebene Grenzwerte Ω_{max} , α_{max} , M_{max}
- ▶ Randwerte $\Omega(t_0)$, $\Omega(t_0 + T_Z)$, $\alpha(t_0)$, $\alpha(t_0 + T_Z)$
- Dauer des Positioniervorgangs
 - T_Z vorgegeben
 - ► T_Z frei

Varianten der Positionierung

Absolutes Positionieren

Die Zielposition bezieht sich immer auf den gleichen Referenzwert.

Relatives Positionieren

Die Zielposition bezieht sich immer auf die aktuelle Position.

Problem: Aufgrund begrenzter Genauigkeit pflanzen sich Fehler fort.

Beispiel:

Geberauflösung 1024 Striche / Umdr. Relatives Positionieren um jeweils 10 grad

Varianten der Positionierung

Absolutes Positionieren

Die Zielposition bezieht sich immer auf den gleichen Referenzwert.

Relatives Positionieren

Die Zielposition bezieht sich immer auf die aktuelle Position.

Problem: Aufgrund begrenzter Genauigkeit pflanzen sich Fehler fort.

Beispiel:

Geberauflösung 1024 Striche / Umdr. Relatives Positionieren um jeweils 10 grad

Abhilfe: Korrektur durch Resteverwaltung

Künstliche Neuronale Netze

Hardware

Training des Modells

Applikation

Zusammenfassung und Ausblick

Positionieren von Einzelachsen

Koordinierte Bewegungen Master–Slave–Anwendungen Interpolierte Bewegungen

Aufgabenstellung

Synchronisation der Bewegung mehrerer Achsen:

- Eine Masterachse
- Eine oder mehrere Slaveachsen

Aufgabenstellung

Synchronisation der Bewegung mehrerer Achsen:

- Eine Masterachse
- Eine oder mehrere Slaveachsen

 φ_2 , $\Omega_2 = f(\varphi_1)$, $f(\Omega_1)$ $\varphi_2 = K\varphi_1$ Winkelsynchronlauf $\Omega_2 = K\Omega_1$ Drehzahlsynchronlauf

 $\varphi_2 = f(\varphi_1)$ Kurvenscheibe

Masterachse kann auch durch Virtuellen Master ersetzt werden

Drehzahlsynchronlauf

Beispiel: Fliegende Säge

- Master fährt mit konstanter Drehzahl
- Slave
 - Ist im Stillstand in der Position X₀
 - Beschleunigt auf die Masterdrehzahl
 - Fährt mit der Masterdrehzahl
 - 4. Fährt zur Position X₀
- Weitere unsynchronisierte Achsen
 - Vorschub der Säge von Position Y₀ nach Y₁
 - Antrieb der Säge

Beispiel Applikationsdaten

Band		Säge	
Geschwindigkeit:	20m/min	Vorschubgeschwindigkeit:	10m/min
Breite:	20cm	Beschleunigung X (Slave):	5m/s²
Länge:	1m	Beschleunigung Y:	6m/s ²

Interpolierte Bewegungen

Aufgabenstellung

Verfahren einer beliebigen durch die Anwendung vorgegebenen Bahn in der Ebene / im Raum

- Aufteilung der Bewegung in der Ebene / im Raum auf die einzelnen Achsen
- Zerlegung der Bahn in Stützstellen zu diskreten Zeitpunkten
- Interpolation zwischen den Stützstellen

Typische Anwendungsfelder

- Robotik
- Werkzeugmaschinen

Darstellung einer zweidimensionalen Bahn

Implizite Darstellung

Beispiel: Kreis

$$0 = F(X, Y)$$
 $X^2 + Y^2 = 1$

$$X^2 + Y^2 = 1$$

Explizite Darstellung

Beispiel: Kreis

$$X = F_1(Y)$$

$$X = \sqrt{1 - Y^2}$$

$$Y = F_2(X)$$

$$Y = \sqrt{1 - X^2}$$

Parametrische Darstellung Beispiel: Kreis

$$X = F_1(u)$$

$$X = \sin u$$

$$Z = F_2(u)$$

$$Z = \cos u$$

Beispiel: Kurve

$$X = u \sin u$$

$$Y = u \cos u$$

Übergang zwischen den Teilstücken des interpolierten Bewegungsprofils

Standardverfahren

Satzübergänge ohne Genauhalt

⇒ Eckenverrundung aufgrund der Maschinendynamik / der Schleppfehler

Übergang zwischen den Teilstücken des interpolierten Bewegungsprofils

Standardverfahren

Satzübergänge ohne Genauhalt

⇒ Eckenverrundung aufgrund der Maschinendynamik / der Schleppfehler

1. Standardverfahren (Fortsetzung)

Beispiel: Geradeninterpolation zwischen drei Punkten

Die gesamte Bahn setzt sich aus einzelnen *R–R–*Segmenten zusammen

Übergang zwischen den Teilstücken des interpolierten Bewegungsprofils

2. Übergang mit Look-Ahead

Forsetzung Beispiel: Geradeninterpolation zwischen drei Punkten

- Keine R-R Bewegungen mehr
- Geringere Geschwindigkeitsänderungen

