Modele Markov Ascunse De la Teorie la Aplicații

Alexandru Sorici, Tudor Berariu

Asociația Română pentru Inteligență Artificială

3 noiembrie 2012

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

- Introduction
 - The Model and the Problem
 - The Integrated Approach

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- 2 Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

What is haplotyping and why is it important?

You hopefully know this after the previous three talks. . .

General formalization of haplotyping.

Inputs

- A genotype matrix G.
- The rows of the matrix are taxa / individuals.
- The columns of the matrix are SNP sites / characters.

Outputs

- A haplotype matrix H.
- Pairs of rows in *H* explain the rows of *G*.
- The haplotypes in *H* are biologically plausible.

Our formalization of haplotyping.

Inputs

- A genotype matrix G.
- The rows of the matrix are individuals / taxa.
- The columns of the matrix are SNP sites / characters.
- The problem is directed: one haplotype is known.
- The input is biallelic: there are only two homozygous states (0 and 1) and one heterozygous state (2).

Outputs

- A haplotype matrix H.
- Pairs of rows in *H* explain the rows of *G*.
- The haplotypes in H form a perfect phylogeny.

We can do perfect phylogeny haplotyping efficiently, but . . .

- Data may be missing.
 - This makes the problem NP-complete . . .
 - ...even for very restricted cases.

Solutions:

- Additional assumption like the rich data hypothesis.
- No perfect phylogeny is possible.
 - This can be caused by chromosomal crossing-over effects.
 - This can be caused by incorrect data.
 - This can be caused by multiple mutations at the same sites.

Solutions:

- · Look for phylogenetic networks.
- Correct data.
- Find blocks where a perfect phylogeny is possible.

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- 2 Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

- Partition the site set into overlapping contiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Use dynamic programming for finding the partition.

Genotype matrix no perfect phylogeny

... |- |- ... | ... |

- Partition the site set into overlapping contiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Use dynamic programming for finding the partition.

perfect phylogeny

- Partition the site set into overlapping contiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Use dynamic programming for finding the partition.

A. Sorici, T. Berariu (Al-MAS

- Partition the site set into overlapping contiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Use dynamic programming for finding the partition.

Objective of the integrated approach.

- Partition the site set into noncontiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Compute partition while computing perfect phylogenies.

Objective of the integrated approach.

- Partition the site set into noncontiguous blocks.
- 2 Compute a perfect phylogeny for each block and combine them.
- 3 Compute partition while computing perfect phylogenies.

The formal computational problem.

We are interested in the computational complexity of the function χ_{PP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect phylogeny.
 (We call this a pp-partition.)

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs M are already haplotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

No perfect phylogeny is possible.

Finding pp-partitions of haplotype matrices.

We start with a special case:

- The inputs M are already haplotype matrices.
- The inputs *M* do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

A. Sorici, T. Berariu (Al-MAS

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of haplotype matrices is equivalent to finding optimal graph colorings.

Proof sketch for first direction.

- lacktriangle Let G be a graph.
- 2 Build a matrix with a column for each vertex of G.
- **3** For each edge of G add four rows inducing the submatrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- The submatrix enforces that the columns lie in different perfect phylogenies.

Implications for pp-partitions of haplotype matrices.

Corollary

If $\chi_{PP}(M) = 2$ for a haplotype matrix M, we can find an optimal pp-partition in polynomial time.

Corollary

Computing χ_{PP} for haplotype matrices is

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

Finding pp-partitions of genotype matrices.

Now comes the general case:

- The inputs M are genotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

No perfect phylogeny is possible.

Finding pp-partitions of genotype matrices.

Now comes the general case:

- The inputs M are genotype matrices.
- The inputs M do not allow a perfect phylogeny.
- What is $\chi_{PP}(M)$?

Example

M :	2 1 0 0 0	2 0 0 0 2 1	2 0 0 1 2 0	2 0 1 0 0
------------	-----------------------	----------------------------	----------------------------	-----------------------

Perfect phylogeny Perfect phylogeny $\chi_{PP}(M) = 2$.

Bad news about pp-partitions of haplotype matrices.

Theorem

Finding optimal pp-partition of genotype matrices is at least as hard as finding optimal colorings of 3-uniform hypergraphs.

Proof sketch.

- \bullet Let G be a 3-uniform hypergraph.
- 2 Build a matrix with a column for each vertex of G.
- § For each hyperedge of G add four rows inducing the submatrix $\begin{pmatrix} 2 & 2 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- **4** The submatrix enforces that the three columns do not all lie in the same perfect phylogeny.

Implications for pp-partitions of genotype matrices.

Corollary

Even if we know $\chi_{PP}(M) = 2$ for a genotype matrix M, finding a pp-partition of any fixed size is still

- NP-hard.
- not fixed-parameter tractable, unless P = NP,
- very hard to approximate.

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- 2 Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

Automatic optimal pp-partitioning is hopeless, but

- The hardness results are worst-case results for highly artificial inputs.
- Real biological data might have special properties that make the problem tractable.
- One such property is that perfect phylogenies are often perfect path phylogenies:
 - In HapMap data, in 70% of the blocks where a perfect phylogeny is possible a perfect path phylogeny is also possible.

Example of a perfect path phylogeny.

H :

Genotype matrix

	Α	В	_
	2	2	2
:	0	2	0
	2	0	0
	Λ	2	2

Haplotype matrix

Α	В	C
1	0	0
0	1	1
0	0	0
0	1	0
0	0	0
1	0	0
0	0	0
0	1	1

Perfect path phylogeny

The modified formal computational problem.

We are interested in the computational complexity of the function χ_{PPP} :

- It gets genotype matrices as input.
- It maps them to a number k.
- This number is minimal such that the sites can be covered by k sets, each admitting a perfect path phylogeny.
 (We call this a ppp-partition.)

- Introduction
 - The Model and the Problem
 - The Integrated Approach
- 2 Bad News: Hardness Results
 - Hardness of PP-Partitioning of Haplotype Matrices
 - Hardness of PP-Partitioning of Genotype Matrices
- 3 Good News: Tractability Results
 - Perfect Path Phylogenies
 - Tractability of PPP-Partitioning of Genotype Matrices

Good news about ppp-partitions of genotype matrices.

Theorem

Optimal ppp-partitions of genotype matrices can be computed in polynomial time.

Algorithm

- 1 Build the following partial order:
 - Can one column be above the other in a phylogeny?
 - Can the columns be the two children of the root of a perfect path phylogeny?
- 2 Cover the partial order with as few compatible chain pairs as possible. For this, a maximal matching in a special graph needs to be computed.

► The algorithm in action

Summary

- Finding optimal pp-partitions is intractable.
- It is even intractable to find a pp-partition when just two noncontiguous blocks are known to suffice.
- For perfect path phylogenies, optimal partitions can be computed in polynomial time.

Genotype matrix

	2	2	2	2	2
G :	0	1	2	1	0
	1	0	0	1	2
	0	2	2	0	0

Partial order

Partial order: →

Genotype matrix

	2	2	2	2	2	
G :	0	1	2	1	0	
	1	0	0	1	2	
	0	2	2	0	0	

Partial order

Partial order: →

Compatible as children of root: —

A maximal matching in the matching graph

A maximal matching in the matching graph induces perfect path phylogenies.

