Graph	X(G)	Matching Numbes	Line Covering Number	Vestix Covering	Independent setnumber	% (G)	K(G)	Circuit Rank (E-V+1)	Total no of Edges
k _n	n n	[물]	[<u>n</u>]	m-1	1 .	N-1	n-1	$n \frac{(n-1)}{2} - n + 1$	n(n-1) 2
Km,n	2 ·	min (m,n)	max(m,n)	min(m,n)	max (m,n)	max(m,n)	min (m,n)	mn-(m+n)+1	3m n2
Cn(423)	n-2[<u>ร</u>]+2					2	2_	t, ,	n
Wn (1774)	n-2[n]+4		<u> </u>	[n+1]	$\lfloor \frac{n-1}{2} \rfloor$	3	, 3	m-1	2(n-1)
				RI	ME		•		
Star graph	2	1_	n-1	1	n-1	1	1	0	n-1
			Graph The	Mathematics My Short Notes GATE, IES					

3asics

- i) Graph, Nullgraph, Trivial Paralleledges, Multigraph, Simple graph, Regular, Complete, Cyclegraph, wheel graph, Bipartite, Complete Bipartile
- ii) I deg(vi) = 2/E/
- S(G) = <u>a|E|</u> = ∆(G)
- iv) |E(G)|+|E(G)|=|E(Kn)|
- V) Havel-Hakimi Result
 - i) 5 t1, t2 -- ts d1, d2 -- dn
- 11) to 1, to 1, -- to 1, di, de ... dn Sequence(i) is graphic iff Sequence (ii) is graphic
- vi) planazgraph
 - $\rightarrow \frac{1}{2} \deg(R_i) = 2|E|$ Where Ri= ith Region
- -> Eulers Formula 1VI+IRI= 1E1+2) (This is for Connected planar) Suppose of graph G is planas with 'K' Connected components then 1V1+1R) = 1E1+(K+1)

- Vii) Kustowskis Theden A graph G'is not planas iff G Contains a Subgraph homeomorphic to K3,3(or) K5
- VIII) Isomolphism G=G' if there is a function f. VG) such that i) f is a bijection and ii) for each pair of vertices u and v of G, Eu, v} EE(G)

iff {f(w), f(v)} (E E (G')

Note1: Two simple graphs are Isomorphic iff their Complements are Isomorphic with each other

Notes of G=G' then following Conditions must hold

- i) 1V(G) = 1V(G') 1
- (i) |E(G) = |E(G')|
- iii) degree seg in G = deg sez in G
- iv) Circuit length in G = Circuit

Chromatic Number

- i) X(G)
- ii) Four color Theorem Every planar graph is for Colorable
- iii) Welch-powel's algorithm

Matching

-> deg(v)=1 tvEG in M

-> maximal, maximum

-> perfect matching: deg(v)=1 \veG, in M

-> No of perfect matching in Kan = an!

→ km,n has perfect amatching iff m=n

-> No of perfect matching in Cn = 2

Connectivity: of there are K Connected Components $(n-K) \leq E(G) \leq \frac{(n-K)(n-K+1)}{n-K+1}$

· Cut vertix, Cut edge, properties

Hamiltonian, Eulesian

- i) properties
- ii) Dirac's Theorem
- iii) Ove's Theorem.

Discrete Matte Short notes of Graph Theory

· Made Easy Szinivascheekati681@) gmail- Com

(please send mail if any thing found wrong

> In km,n top perfect matching exist iff m=n

time Covering: CCE, deg(v)>1 + vEG in G then 'C' is called line Covering

- -> A line Covering exist iff G has no isolated vertix
- → A line covering of ni vertices graph has at least [1] redges

Matching Number + Line Covering Number = Total no of vertices

KEV, if every edge of G incident with Yestex Covering: a vertice in 'k', then k' is vertix Covering

if no two vertices of s are adjacent Independent set: SEV, then 's' is independent set.

Vestix Covering Number + Independent Set No = Total no of vestices