Numer indeksu:	
----------------	--

Logika dla informatyków

Egzamin popr	rawkowy (pierwsza część)
	19 lutego 2016
	$\Leftrightarrow q)\Leftrightarrow r$ i $p\Leftrightarrow (q\Leftrightarrow r)$ są równoważne to w prostokąt przeciwnym przypadku wpisz wartościowanie, w którym te
Zadanie 2 (2 punkty). W prostokąty por odpowiednio w koniunkcyjnej oraz dysjunkc	niżej wpisz dwie formuły równoważne formule $(p \Leftrightarrow q) \Leftrightarrow r$, zyjnej postaci normalnej.
CNF	DNF
	$\Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \lor r)) \text{ jest tautologią rachunku}$ ej tautologii w systemie naturalnej dedukcji. W przeciwnym go ta formuła jest fałszywa.
jeśli jest postaci $Q_1x_1Q_nx_n\psi$, gdzie x_i sa $i=1,,n$), a formuła ψ nie zawiera kwa normalnej równoważna formule $\forall z\Big((\forall x \ x$	uła φ logiki I rzędu jest w preneksowej postaci normalnej, ą zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i \in \{\forall, \exists\}$ dla antyfikatorów. Jeśli istnieje formuła w preneksowej postaci $\in X \Rightarrow x \leq z) \Rightarrow x_0 \leq z$, to w prostokąt poniżej wpisz
dowolną taką formułę. W przeciwnym przyp	padku wpisz słowo "NIE".

Zadanie 5 (2 punkty). Różnicę symetryczną $$ zbiorów A i B definiujemy następująco: $A B = (A \backslash B) \cup (B \backslash A)$. Jeśli dla wszystkich zbiorów A, B, C zachodzi równość $A (B \cup C) = (A B) \cup (A C)$ to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 6 (2 punkty). Jeśli inkluzja $\bigcup_{t \in T} (A_t \cap B_t) \supseteq \bigcap_{t \in T} A_t \cup \bigcap_{t \in T} B_t$ zachodzi dla wszystkich zbiorów indeksów T oraz wszystkich indeksowanych rodzin zbiorów $\{A_t\}_{t \in T}$ oraz $\{B_t\}_{t \in T}$, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 7 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor q, \ \neg p \lor r, \ \neg q \lor \neg r, \ p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie
spełniające ten zbiór.
Zadanie 8 (2 punkty). Rozważmy zbiory osób O , kin K i filmów F oraz relacje $Bywa\subseteq O\times K$, $Obejrzal\subseteq O\times F$ i $Wyświetla\subseteq K\times F$ informujące odpowiednio o tym jakie osoby bywają w jakich
kinach, jakie osoby obejrzały jakie filmy oraz jakie kina wyświetlają jakie filmy. W prostokąt poniżej wpisz taką formułę φ , że $\{k{\in}K\mid\varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz kin, które wyświetlają tylko takie (niekoniecznie wszystkie) filmy, które obejrzał Jan Kowalski.
Zadanie 9 (2 punkty). Jeśli istnieje najmniejsza (ze względu na inkluzję \subseteq) relacja równoważności na zbiorze $\{0,1,2\}$, która zawiera parę $\langle 0,2\rangle$, to w prostokąt poniżej wpisz tę relację. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka relacja nie istnieje.

		Nı	ımer indeksu:		
Zadanie 10 (2 punkty). formułę mówiącą, że złoże					poniżej wpisz
Zadanie 11 (2 punkty). pełnij poniższy tekst tak, zbiorów A i B , jeśli ($A \setminus B$, aby otrzym	ać poprawny d			
Dowód. Dowód przeprowad	dzimy wprost.	Rozważmy dow	rolne zbiory A i I	B i załóżmy, że	
Weźmy dowolny element	x ze zbioru		Z definicji sum	ny zbiorów otrzymu	ijemy, że $x \in$
. Z zało	ożenia, że		otrzymujemy,	$\dot{z}e~x$ nale $\dot{z}y$ do zbior	u
co kończy dowód inkluzji			_		
Zadanie 12 (2 punkty). rem $F(f): \mathbb{N} \to [3,4]$, (w prostokąt poniżej wpisz odwrotna nie istnieje.	(F(f))(n) =	$f(n \mod 2, \lfloor \frac{n}{2} \rfloor)$)+2 . Jeśli is	tnieje funkcja odwi	rotna do F to
Zadanie 13 (2 punkty): spełniona jest równość f (σ zbiór \mathcal{F} ma moc nie więk $F: \mathcal{F} \to \mathbb{N}$. Jeśli zbiór \mathcal{F} różnowartościową $G: \mathcal{P}(\mathbb{N})$	$f(a_1) = f(a_2)$. Aszą niż \aleph_0 tema moc co na	Niech ${\cal F}$ oznacz o w prostokąt ijmniej continu	a zbiór wszystk poniżej wpisz d ım, to w prosto	cich stałych funkcji lowolną funkcję róż kąt poniżej wpisz d	z N w N. Jeśli nowartościową owolną funkcję
Zadanie 14 (2 punkty). zbioru o najmniejszej moc				iory w kolejności wą	g ich mocy (od
$\bigcup_{n=1}^{\infty} \mathbb{N}^n, \{1$	$,2,3\}^{\{4,5\}}, \mathcal{P}$	$(\mathbb{R} \times \mathbb{Q}), \ \emptyset^{\mathbb{N}}, \ \mathbb{N}$	\emptyset , $\mathbb{Q}^{\mathbb{N}}$, $\mathcal{P}(\{1, 2,$	$3,4$), $\{1,2\}^{\{3,4,5\}}$	

Zadanie 15 (2 punkty). W zbiog $f \leq g \iff \forall n \ f(n) \leq g(n)$.	rze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} definiujemy porządek \preceq wzorem
Niech $f_i(n) = \begin{cases} 1 & \text{dla } n = i \\ 0 & \text{dla } n \neq i \end{cases}$ odpowiednio najmniejszym i najwie odpowiedni element nie istnieje.	i niech $X=\{f_i\mid i\in\mathbb{N}\}$. Wpisz w prostokąty poniżej funkcje będące ększym elementem zbioru X w tym porządku lub słowo "NIE", jeśli
$\min X$	$\max X$
	my funkcję $f: \mathbb{R} \to \mathbb{R}$ zdefiniowaną wzorem $f(x) = \sin(x)$. W pro- obrazy i przeciwobrazy podanych zbiorów w odwzorowaniu f .
f[[1,3]] =	f[[-5,4]] =
$f^{-1}[[1,3]] =$	$f^{-1}[[-5,4]] =$
Zadanie 17 (2 punkty). W pros	tokącie poniżej narysuj wszystkie podziały zbioru $\{0,1,2\}$
7 1 : 10 (0 14) W	
Zadanie 18 (2 punkty). W prost ków regularnych.	tokąt poniżej wpisz przykład trzech parami nieizomorficznych porząd-
	tokąt poniżej wpisz przykład trzech parami nieizomorficznych porząd-
	tokąt poniżej wpisz przykład trzech parami nieizomorficznych porząd-
ków regularnych. Zadanie 19 (2 punkty). Jeśli po kłym porządkiem na liczbach natu	tokąt poniżej wpisz przykład trzech parami nieizomorficznych porząd-rządki $\langle \{0,1\} \times \{2,3,4\}, \leq_{lex} \rangle$ i $\langle \{0,1,2,3,4,5\}, \leq \rangle$, gdzie \leq jest zwyralnych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izo-iwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie
Zadanie 19 (2 punkty). Jeśli po kłym porządkiem na liczbach natu morfizm tych porządków. W przec	rządki $\langle \{0,1\} \times \{2,3,4\}, \leq_{lex} \rangle$ i $\langle \{0,1,2,3,4,5\}, \leq \rangle$, gdzie \leq jest zwyralnych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izo-
Zadanie 19 (2 punkty). Jeśli po kłym porządkiem na liczbach natu morfizm tych porządków. W przec	rządki $\langle \{0,1\} \times \{2,3,4\}, \leq_{lex} \rangle$ i $\langle \{0,1,2,3,4,5\}, \leq \rangle$, gdzie \leq jest zwyralnych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izo-
Zadanie 19 (2 punkty). Jeśli po kłym porządkiem na liczbach natu morfizm tych porządków. W przec istnieje. Zadanie 20 (2 punkty). W tym natomiast x, y i z są zmiennymi.	rządki $\langle \{0,1\} \times \{2,3,4\}, \leq_{lex} \rangle$ i $\langle \{0,1,2,3,4,5\}, \leq \rangle$, gdzie \leq jest zwyralnych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izo-
Zadanie 19 (2 punkty). Jeśli po kłym porządkiem na liczbach natu morfizm tych porządków. W przec istnieje. Zadanie 20 (2 punkty). W tym natomiast x, y i z są zmiennymi. unifikowalne, wpisz najogólniejsze	rządki $\langle \{0,1\} \times \{2,3,4\}, \leq_{lex} \rangle$ i $\langle \{0,1,2,3,4,5\}, \leq \rangle$, gdzie \leq jest zwyralnych, są izomorficzne, to w prostokąt poniżej wpisz dowolny izoiwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie zadaniu f i g są symbolami funkcyjnymi, a jest symbolem stałej, W prostokąty obok tych spośród podanych par termów, które są