• minimize
$$\max_{\tilde{x} \in \mathbb{R}^2} f_k(\tilde{x})$$

where
$$f_k(\tilde{x}) = \frac{1}{2}(\tilde{x} - y_k)^T P_k(\tilde{x} - y_k) + r_k$$
 with

$$P_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \ P_2 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \ P_3 = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}, \ y_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ y_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \ y_1 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \ r_1 = 0, \ r_2 = 1, \ r_3 = -1$$

- Since the objective function above is not differentiable, the Newton's method cannot be applied directly.
- This problem can be transformed into an equivalent problem:

minimize
$$w$$
 $\tilde{x} \in \mathbb{R}^2, w \in \mathbb{R}$
subject to $f_1(\tilde{x}) - w \leq 0$
 $f_2(\tilde{x}) - w \leq 0$
 $f_3(\tilde{x}) - w \leq 0$

• To solve this problem, we will apply the barrier method.

• Let
$$x = \begin{bmatrix} \tilde{x} \\ w \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
. Then we use the log barrier $\varphi(x)$ to rewrite the problem.

• Initial point
$$x^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$$
 and $t = 1$.

- Newton step $\Delta x_{nt} = -(\nabla^2 f(x))^{-1} \nabla f(x) \rightarrow \Delta x_{nt}^{(l)}$
- Newton decrement $\lambda(x) = (-\nabla f(x)^T \Delta x_{nt})^{1/2} \rightarrow \lambda^{(l)}(x)$
- Backtracking line search along search direction using $\beta=0.7$ starting from s=1 until $x^{(l)}+s\Delta x_{nt}^{(l)}\in \operatorname{dom} f$ (Note: $t^+\coloneqq\beta t$)
- Continue the backtracking line search until $f(x+s\Delta x_{nt}^{(l)}) \leq lpha s\lambda ig(x^{(l)}ig)^2$, where lpha=0.1
- Update $x^{(l+1)} = x^{(l)} + s\Delta x_{nt}^{(l)}$
- If $\lambda(x)^2/2 < \epsilon_{inner}$, then break the Newton interation.
- Updating $t^+ \coloneqq \mu t$. If $\frac{m}{t} < \epsilon_{outer}$, then break the loop.