# Récursivité

Informatique commune - TP nº 5 - Olivier Reynet

## À la fin de ce chapitre, je sais :

- expliquer le principe d'un algorithme récursif
- imaginer une version récursive d'un algorithme
- trouver et coder une condition d'arrêt à la récursivité
- coder des algorithmes à récursivité simple ou multiple en Python
- identifier le type de récursivité d'un algorithme

## A Penser récursivement

## A1. Somme des n premiers carrés

- (a) Coder un algorithme itératif qui calcule la somme des carrés des n premiers entiers,  $S_n = \sum_{k=1}^n k^2$ .
- (b) Coder un algorithme récursif équivalent.
- (c) Modifier le code récursif pour bien visualiser les appels et les renvois de la fonction, c'est à dire la pile d'exécution. Dans le cas de  $S_6$ , l'exécution du code affiche sur la console :

```
1 -----> Called with n = 6
2 ----> Called with n = 5
3 ----> Called with n = 4
4 ---> Called with n = 3
5 --> Called with n = 2
6 -> Called with n = 1
7 Stop condition
8 --> Returning 5
9 ---> Returning 14
10 ----> Returning 30
11 ----> Returning 55
12 -----> Returning 91
```

(d) Coder un algorithme récursif terminal équivalent.

#### **Solution:**

#### Code 1 - De l'itératif au récursif en visualisant la pile d'exécution

```
1 def square_sum(n):
2     acc = 0
3     for k in range(1, n + 1):
```

```
acc += k * k
      return acc
8 def rec_square_sum(n):
      if n == 1:
          return 1
10
11
      else:
12
          return n * n + rec_square_sum(n - 1)
13
14
15 def term_rec_square_sum(n, acc=0):
      if n == 0:
16
17
          return acc
      else:
          return term_rec_square_sum(n - 1, acc + n * n)
19
20
21
22 def call_stack_rec_square_sum(n):
      print('-' * n,"Called with n =",n)
23
      if n == 1:
24
          print("Stop condition")
25
26
      else:
27
          result = n * n + call_stack_rec_square_sum(n - 1)
28
          print('-' * n,"Returning ",result)
29
          return result
31
33 #MAIN PROGRAM
_{34} N = 6
_{35} S = N * (N + 1) * (2 * N + 1) / 6
36 assert square_sum(N) == S
37 assert rec_square_sum(N) == S
38 assert term_rec_square_sum(N) == S
40 print(square sum(N))
41 print(rec_square_sum(N))
42 print(term_rec_square_sum(N))
43 call_stack_rec_square_sum(N)
```

### A2. Inverser la position des éléments d'un tableau

- (a) Coder un algorithme itératif qui inverse la position des éléments d'un tableau : le premier élément échange sa place avec le dernier, le deuxième avec l'avant dernier... On implémentera le tableau à l'aide d'une liste Python.
- (b) Coder un algorithme récursif équivalent à l'algorithme itératif précédent.

# Solution: Code 2 – Inverser la position des éléments d'un tableau 1 from random import randint

```
2
4 def swap(t, i, j):
      t[i], t[j] = t[j], t[i]
5
6
8 def reverse_array(t):
      for i in range(len(t) // 2):
10
           swap(t, i, len(t) - 1 - i)
11
12
13 def rec_reverse_array(t, i, j):
      if i < j:
14
15
           swap(t, i, j)
           rec_reverse_array(t, i + 1, j - 1)
17
19 #MAIN PROGRAM
_{20} N = 8
_{21} M = 100
23 t = [randint(0, M) for _ in range(N)]
24 print(t)
25 reverse_array(t)
26 print(t)
27 rec_reverse_array(t, 0, len(t) - 1)
28 print(t)
29 print(t[::-1]) # simpler !
```

# B Récursivité multiple, direction le moyen âge

Leonardo Fibonacci est un figure illustre des mathématiques du moyen-âge notamment parce qu'il a introduit le système des chiffres indo-arabes en Italie, c'est à dire la numération de position en base dix à la place des chiffres romains. À l'origine, une histoire de lapins : « Quelqu'un a déposé un couple de lapins dans un certain lieu, clos de toutes parts, pour savoir combien de couples seraient issus de cette paire en une année, car il est dans leur nature de générer un autre couple en un seul mois, et qu'ils enfantent dans le second mois après leur naissance. » Peut-on décrire la croissance de la population des lapins?

Formulé mathématiquement de nos jours, cela revient à étudier la suite  $(u_n)_{n\in\mathbb{N}}$  telle que  $u_0=0$ ,  $u_1=1$  et  $u_{n+2}=u_{n+1}+u_n$ . Cette suite s'appelle la suite de Fibonacci.

- B1. Coder une fonction récursive dont le prototype est  $rec_fib(n)$  où n est un paramètre de type int et qui renvoie le terme  $u_n$  de la suite de Fibonacci.
- B2. Modifier le code précédent pour visualiser la pile d'exécution comme dans l'exercice précédent.
- B3. Peut-on calculer  $u_{1200}$ ? Pourquoi?
- B4. Peut-on calculer  $u_{42}$  en un temps raisonnable? Pourquoi?
- B5. Coder une fonction itérative dont le prototype est ite\_fib(n) où n est un paramètre de type int et qui renvoie le terme  $u_n$  de la suite de Fibonacci.

- B6. Coder une fonction récursive terminale dont le prototype est term\_rec\_fib(n, u0=0, u1=1) où n est un paramètre de type int, u0 et u1 des paramètres optionnels de type int et qui renvoie le terme  $u_n$  de la suite de Fibonacci.
- B7. Comparer les temps d'exécution de ces différentes fonctions et analyser les résultats.

**Solution :** La première formulation récursive est inefficace car elle fait des appels récursifs redondants : certaines de  $u_n$  valeurs sont calculées plusieurs fois. Par exemple pour  $u_6$ ,  $u_2$  est calculé cinq fois, ce qui est inutile.

La version itérative tout comme la version récursive terminale ne font pas de calculs redondants, c'est pourquoi elles sont plus rapides. La version itérative ne fait pas d'appels de fonction c'est pourquoi elle est plus rapide.

#### Code 3 - Fibonacci à gogo

```
1 import time
2
3
4 def rec_fib(n):
      if n == 0:
5
          return 0
6
      elif n == 1:
7
          return 1
8
      else:
9
           return rec_fib(n - 1) + rec_fib(n - 2)
10
11
12
13 def call_stack_rec_fib(n):
      print('-' * n, "Called with n =", n)
14
      if n == 0:
15
           print("Stop condition")
16
           return 0
17
      elif n == 1:
18
           print("Stop condition")
19
           return 1
20
      else:
21
           result = call_stack_rec_fib(n - 1) + call_stack_rec_fib(n - 2)
22
           print('-' * n, "Returning --> ", result)
23
           return result
24
25
26
27 def term_rec_fib(n, u0=0, u1=1):
       if n == 0:
28
           return u0
29
      elif n == 1:
30
           return u1
31
32
      else:
           return term_rec_fib(n - 1, u1, u0 + u1)
33
34
35
36 def call_stack_term_rec_fib(n, u0=0, u1=1):
      print('-' * n, "Called with n = ", n)
37
      if n == 0:
38
           print("Stop condition")
```

```
40
           return u0
      elif n == 1:
41
           print("Stop condition")
42
           return u1
43
      else:
44
           result = call_stack_term_rec_fib(n - 1, u1, u0 + u1)
45
           print('-' * n, "Returning --> ", result)
46
           return result
47
48
49
50 def ite fib(n):
      u0 = 0
51
      u1 = 1
52
      if n == 0: return u0
53
      if n == 1: return u1
      while n > 1:
55
          u0, u1 = u1, u0 + u1
56
           n = n - 1
57
      return u1
58
59
60
61 def for_fib(n):
62
      u0 = 0
      u1 = 1
63
      if n == 0: return u0
64
      if n == 1: return u1
65
      for i in range(2, n + 1):
66
           u0, u1 = u1, u0 + u1
67
      return u1
68
69
70
71 def fibonacci_timing():
      N_MAX = 36
72
      results = []
73
      for i in range(N_MAX):
74
           results.append([])
75
           for method in [term_rec_fib, ite_fib, rec_fib, for_fib]:
76
               tic = time.perf_counter()
77
               method(i)
78
               toc = time.perf_counter()
79
               results[i].append(toc - tic)
           print("#", i, "-> ", results)
81
82
      term_rec = [results[i][0] for i in range(N_MAX)]
83
      ite = [results[i][1] for i in range(N_MAX)]
84
      rec = [results[i][2] for i in range(N_MAX)]
85
      forfib = [results[i][3] for i in range(N_MAX)]
86
87
      from matplotlib import pyplot as plt
88
89
      plt.figure()
90
      # plt.plot(rec, color='cyan', label='Multiple recursive')
91
      plt.plot(term_rec, color='blue', label='Terminal recursive')
92
      plt.plot(ite, '--', color='black', label='Iterative')
93
      plt.plot(forfib, '--', color='orange', label='For loop')
```

```
plt.xlabel('n', fontsize=18)
       plt.ylabel('time', fontsize=16)
       plt.legend()
97
       plt.show()
98
99
100
101 #MAIN PROGRAM
103 fibonacci = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946,
                 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578]
104
105 print(len(fibonacci))
106 for i in range(len(fibonacci)):
       assert rec_fib(i) == fibonacci[i]
       assert term_rec_fib(i) == fibonacci[i]
       assert ite_fib(i) == fibonacci[i]
       assert for_fib(i) == fibonacci[i]
110
111
112 call_stack_rec_fib(6) # to see redundant calls of u_(n-p)
113 # rec_fib(42) # very long
114 # rec_fib(1200) # RecursionError: maximum recursion depth exceeded in comparison
115 call_stack_term_rec_fib(6)
116 fibonacci_timing()
```





# C Où l'on voyage en mathématiques

Contrairement à ce que pourrait laissait penser le titre du jeu, les tours de Hanoï n'ont rien à voir avec le Vietnam mais tout avec le mathématicien Édouard Lucas (1842-1891). Il s'agit un jeu de réflexion qui consiste à déplacer les étages de largeurs différentes d'une tour de départ vers une tour objectif en passant par une tour auxiliaire en un minimum de coups tout en respectant les règles suivantes :

- 1. ne déplacer qu'un seul étage à la fois, celui du sommet d'une tour,
- 2. déplacer un étage vers une autre tour uniquement :
  - (a) si la tour de destination est vide,
  - (b) ou si le dernier étage de la tour de destination est plus grand que lui.

Toute configuration initiale du jeu respecte cette dernière règle. Par exemple, une configuration de départ peut être :

La configuration finale correspondante est :

On modélise les tours par des listes qu'on nommera start, aux et target. Si une liste est vide, cela signifie que la tour ne comporte pas d'étages. Un élément de type int d'une liste représente la largeur d'un étage d'une tour. Naturellement, si on respecte les règles, les listes doivent toujours apparaître comme des listes décroissantes.

La configuration initiale décrite ci-dessus peut être modélisée ainsi :

```
start=[4,3,2,1]
aux = []
target =[]
```

et la configuration finale:

```
start=[]
aux = []
target =[4,3,2,1]
```

Le programme principal ainsi qu'une méthode pour afficher les tours correctement sur la console sont fournis.

#### Code 4 – Code de départ pour les tours d'Hanoi

```
1 global start, aux, target
2 start = []
3 aux = []
```

```
4 target = []
7 def draw_stage(k, tower, size):
      if k <= len(tower): # there is something to draw</pre>
          wm = 2 * tower[k - 1] + 1
          dec = size - wm // 2
10
          stage = " " * dec + "*" * wm + " " * dec
11
12
          stage = (" " * size + "|" + " " * size)
      return stage
15
17 def show_game():
      global start, aux, target
      size = max(max(start) if start else 0, max(aux) if aux else 0, max(target) if
          target else 0)
      print()
      pole = (" " * size + " |" + " " * size)
21
      print("
                  ", pole * 3)
22
      for k in range(size, 0, -1):
          s = draw_stage(k, start, size)
          a = draw_stage(k, aux, size)
          t = draw_stage(k, target, size)
          print("#", k, " : ", s, a, t)
27
28
29
30 def init_game(n):
      global start, aux, target
      # TODO: INIT global start, aux and target
33
34
35
36 def move_from_a_to_b(from_a, to_b):
      # TODO : show_game(), move disc from a to b, show_game()
      pass
41 def hanoi(n, s, a, t):
      # TODO : do not forget stop condition !
      pass
44
46 # MAIN PROGRAM
_{47} n = 4
48 init_game(n)
49 print(start, aux, target)
50 show_game()
51 hanoi(n, start, aux, target)
52 show_game()
```

- C1. Compléter la fonction init\_game afin de créer une configuration initiale pour le jeu. Cette fonction initialise les variables globales start, aux et target. Pour n = 4, on obtient la configuration initiale représentée plus haut, c'est à dire qu'il y a quatre étages sur la tour de départ.
- C2. Coder la fonction move\_from\_a\_to\_b qui déplace le disque présent sur le dessus de la tour a vers la tour b.

C3. Coder la fonction récursive hanoi afin de résoudre le jeu. Ne pas oublier la condition d'arrêt. On peut formuler cet algorithme en français comme suit :

Déplacer n-1 étages de la tour de départ vers la tour auxiliaire, puis déplacer l'étage restant (le plus grand) de la tour de départ vers la tour objectif, puis déplacer les n-1 (plus petits) étages de la tour auxiliaire vers la tour objectif.

- C4. Cet algorithme est-il à récursivité simple ou multiple?
- C5. On s'intéresse au nombre minimal de coups qu'il est nécessaire de jouer pour gagner.  $(u_n)_{n \in \mathbb{N}^*}$  représente ce nombre minimal de coups qu'il faut pour transférer n étages sur la tour objectif.
  - (a) Trouver les valeurs de  $u_n$  pour n = 1, 2 et 3.
  - (b) Inférer de ces résultats une définition de la suite  $(u_n)_{n\in\mathbb{N}^*}$  sous la forme d'une suite récurrente linéaire d'ordre un, c'est à dire  $u_{n+1} = \alpha u_n + \beta$ .
  - (c) Donner une définition explicite de  $(u_n)_{n \in \mathbb{N}^*}$ .
  - (d) Combien de coups faut-il au minimum pour transférer *n* disques?
- C6. À l'aide de la question précédente, vérifier que l'algorithme récursif joue un minimum de coups. Dans but, on pourra se servir d'une variable globale moves initialisée à zéro et incrémentée à chaque déplacement d'un étage.

R Une variable globale est déclarée tout au début du fichier en Python. On peut alors lire cette variable dans tout le fichier. Pour modifier sa valeur dans une fonction, il est nécessaire de déclarer global moves au début de la fonction en question <sup>a</sup>. Par exemple :

```
def move_from_a_to_b(a,b):
    global moves
    ...
```

C7. L'ordinateur peut-il résoudre le jeu pour une tour de 64 étages<sup>2</sup>?

**Solution :** Si un déplacement s'effectue en une microseconde, cela demanderait aujourd'hui plusieurs centaines de milliers d'années à un ordinateur standard...

**Solution :** On peut écrire  $u_{n+1} = 2u_n + 1$  ce qui donne, après étude de la suite, une forme explicite  $u_n = 2^n - 1$ .

#### Code 5 - Tour de Hanoi

```
1 import time
2
3 global moves
4
```

a. Sous-entendu, si on ne modifie pas la valeur mais qu'on ne fait que la lire, on n'a pas besoin de cette déclaration. Mais c'est tout de même une bonne pratique de signaler l'usage d'une variable globale dans toutes les fonctions.

<sup>1.</sup> Si vous n'avez pas encore vu ces suites en mathématiques, expliciter directement  $u_n = f(n)$ .

<sup>2.</sup> La tour de 64 étages fait l'objet du «Les Brahmes tombent! » dans le livre d'Édouard Lucas intitulé *Récréations mathéma*tiques. À lire en ligne ici.

```
5 global start, aux, target
6 start = []
7 aux = []
8 target = []
11 def draw_stage(k, tower, size):
      if k <= len(tower): # there is something to draw</pre>
12
13
          wm = 2 * tower[k - 1] + 1
14
          dec = size - wm // 2
          stage = " " * dec + "*" * wm + " " * dec
15
      else:
16
          stage = (" " * size + "|" + " " * size)
17
      return stage
18
19
20
21 def show_game():
      global start, aux, target
22
      size = max(max(start) if start else 0, max(aux) if aux else 0, max(target)
23
          if target else 0)
      print()
24
      # pole = (" " * size + "|" + " " * size)
25
      # print(f" {pole * 3}")
26
      pole = (" " * size + " |" + " " * size)
27
               ", pole * 3)
      print("
28
      for k in range(size, 0, -1):
29
          s = draw_stage(k, start, size)
30
          a = draw_stage(k, aux, size)
          t = draw_stage(k, target, size)
          print("#", k, " : ", s, a, t)
33
          # print(f"#{k} : {s}{a}{t}")
34
35
36
37 def init_game(n):
      global start, aux, target
38
39
      start = [i \text{ for } i \text{ in } range(n, 0, -1)]
      aux = []
40
      target = []
41
42
43
44 def move_from_a_to_b(from_a, to_b):
      global moves # mandatory because moves is modified below
      show_game()
46
      to_b.append(from_a.pop())
47
      moves += 1
48
      show_game()
49
50
52 def hanoi(n, s, a, t):
      if n == 1:
53
          move_from_a_to_b(s, t)
54
      else:
55
          hanoi(n - 1, s, t, a)
56
          move_from_a_to_b(s, t)
57
          hanoi(n - 1, a, s, t)
```

```
59
61 # MAIN PROGRAM
62 \text{ moves} = 0
63 n = 5
64 init_game(n)
65 print(start, aux, target)
66 show_game()
67 hanoi(n, start, aux, target)
68 show_game()
70 print(moves)
71
72 # for i in range(1, 23):
        moves = 0
74 #
        init_game(i)
        hanoi(i, start, aux, target)
75 #
        ui = 2 ** i - 1
76 #
77 #
        assert ui == moves
_{79} # n = 30
80 # init_game(n)
81 # tic = time.process_time()
82 # hanoi(n, start, aux, target)
83 # print(time.process_time() - tic) # 3 minutes environ sans affichage
      évidememnt
```

# D Diviser pour régner

D1. L'algorithme 1 permet de calculer  $a^n$ . Combien de fois l'instruction de la ligne 4 est-elle exécutée?

```
Solution : n fois. On a donc une complexité en O(n).
```

D2. L'algorithme 2 permet de calculer plus rapidement  $a^n$ . Si n est pair, combien d'appels récursifs seront nécessaires pour effectuer le calcul? Combien de fois la multiplication de la ligne 6 sera-t-elle effectuée?

**Solution :** La condition d'arrêt est atteinte au bout de k appels récursifs, lorsque  $\frac{n}{2^k} = 1$ , c'est à dire  $k = \log_2 n$ . Le calcul effectue donc  $\log_2 n$  appels récursifs et autant de fois la multiplication de la ligne 6. La complexité est donc en  $O(\log n)$ .

D3. Coder l'algorithme d'exponentiation rapide.

D4. Écrire une version récursive de l'algorithme de recherche dichotomique (cf. algorithme 3).

## **Algorithme 1** Exponentiation naïve $a^n$

```
1: Fonction EXP_NAIVE(a,n)

2: api \leftarrow 1

3: pour i de 0 à n - 1 répéter

4: api \leftarrow api \times a

5: renvoyer api
```

## **Algorithme 2** Exponentiation rapide $a^n$

```
1: Fonction EXP_RAPIDE(a,n)
       si n = 0 alors
                                                                                                  ▶ Condition d'arrêt
2:
3:
          renvoyer 1
       sinon si n est pair alors
4:
           p \leftarrow \text{EXP\_RAPIDE}(a, n//2)
                                                                                                      ▶ Appel récursif
5:
          renvoyer p \times p
6:
7:
       sinon
8:
          p \leftarrow \text{EXP\_RAPIDE}(a, (n-1)//2)
                                                                                                      ▶ Appel récursif
9:
           renvoyer p \times p \times a
```

# Algorithme 3 Recherche récursive d'un élément par dichotomie dans un tableau trié

```
1: Fonction REC_DICH(t, g, d, elem)
                                                                                     ▶ Condition d'arrêt
2:
      si g > d alors
          renvoyer l'élément n'a pas été trouvé
3:
      sinon
4:
          m \leftarrow (g+d)//2
                                                                                               ▶ Diviser
5:
          si t[m] = elem alors
6:
             renvoyer m
7:
8:
          sinon si elem < t[m] alors
             REC_DICH(t, g, m-1, elem)
                                                                                             ⊳ résoudre
9:
10:
          sinon
                                                                                             ⊳ résoudre
             REC_DICH(t, m+1, d, elem)
11:
```