Groups, Analysis, and Geometry Seminars:

Harmonic Analysis of $\mathcal{SU}(2)$

Tim Gou

20th August, 2020

Suppose f is 2π -periodic, complex valued, integrable over $[0, 2\pi)$, then

$$\widehat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$
 (1)

with $n \in \mathbb{Z}$, is the Fourier transform of f. Question: What is e^{inx} ? Why is $n \in \mathbb{Z}$? Answer: e^{inx} is the character of circle group, denoted by \mathbb{T} (i.e. $e^{ix} \in \mathbb{T}$).

A character is a continuous homomorphism from a locally compact Abelian group G to \mathbb{T} : $\chi:G\to\mathbb{T}$ where

$$\chi(gh) = \chi(g)\chi(h) \tag{2}$$

for $g, h \in G$. Let's work out $\chi : \mathbb{R} \to \mathbb{T}$ first, where \mathbb{R} is the group $(\mathbb{R}, +)$. Since $\chi(0) = 1$ (identity to identity) and χ is continuous, then $\exists a > 0$ such that

$$\int_0^a \chi(y) \ dy. \tag{3}$$

Let $\xi = \int_0^a \chi(y) \ dy$, then

$$\chi(x)\xi = \int_0^a \chi(x+y) \ dy = \int_x^{a+x} \chi(t) \ dt$$
 (4)

so

$$\chi(x) = \xi^{-1} \int_{a}^{a+x} \chi(t) dt \tag{5}$$

and

$$\chi'(x) = \xi^{-1} (\chi(a+x) - \chi(x))$$

$$= \xi^{-1} \chi(x) (\chi(a) - 1)$$

$$= c\chi(x).$$
(6)

We have an ODE

$$\chi'(x) = c\chi(x) \tag{7}$$

where solving the equation gives us

$$\chi(x) = e^{cx}. (8)$$