## MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernández

# CLASE 24/02/2021

# MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

### Mezclas

#### **Ejemplo**

Un tanque contiene 2000 litros de una solución que consta de 200 kg de sal disueltos en agua. Se bombea agua pura hacia el tanque a razón 10 L/s y la mezcla se extrae a la misma razón. ¿Cuánto tiempo pasará antes que queden solamente 20 kg de sal en el tanque?



x = cantidad de sal en el tanque (kg)

$$t = tiempo(s)$$

$$\frac{dx}{dt} = C_{e}f_{e} - C_{s}f_{s}$$

Para calcular  $C_s$ 

$$f_e = f_s$$

volumen constante

$$C_s = rac{Cantidad\ de\ soluto\ en\ el\ tanque}{Volumen\ total}$$

$$C_s = \frac{x kg}{2000 L}$$

$$\frac{dx}{dt} = E - S$$

$$\frac{dx}{dt} = C_e f_e - C_s f_s$$

$$\frac{dx}{dt} = (0)(10) - \frac{x}{2000} \frac{x}{2000}$$

$$\frac{dx}{dt} = -\frac{1}{2000}$$

 $C_{S} = \frac{x \ kg}{2000 L}$ 

$$\frac{dx}{dt} = E - S$$

$$\frac{dx}{dt} = C_e f_e - C_s f_s$$

$$\frac{dx}{dt} = 0 \cdot 10 - \frac{x Kg}{2000 E} \left( 10 \frac{E}{s} \right)$$

$$\frac{dx}{dt} = -\frac{x}{200}$$

$$\frac{dx}{dt} = -\frac{1}{200} dt$$

$$\int \frac{dx}{x} = \int -\frac{dt}{200}$$

$$\ln|x| = -\frac{t}{200} + c_1$$

$$e^{\ln|x|} = e^{-\frac{t}{200} + c_1}$$

$$x = Ce^{-\frac{t}{200}}$$

$$f_e = 10 \frac{L}{s}$$

$$C_e = \frac{0kg}{L}$$

$$V = 2000L$$

$$x(0) = 200Kg$$

$$f_{S} = 10\frac{L}{S}$$

$$C_{S} = \frac{x \ kg}{2000 \ L}$$



$$Para x(0) = 200 kg$$

$$200 = Ce^{0^{\Lambda}}$$

$$C = 200$$

$$x(t) = 200e^{-\frac{t}{200}}$$

Condiciones Iniciales
$$t, \chi$$

$$Rang x(0) = 200 kg$$



$$x(t) = 200e^{-\frac{t}{200}}$$

$$Para x = 20kg \quad t = 20 = 200e^{-\frac{t}{200}}$$

$$\frac{20}{200} = e^{-\frac{t}{200}}$$

$$\ln\left(\frac{1}{10}\right) = \ln\left(e^{-\frac{t}{200}}\right)$$

$$t = \ln\left(\frac{1}{10}\right) (-200)$$

Pasarán aproximadamente 460.5172 segundos para que queden 20 kg de sal en el tanque

$$t \approx 460.5170 s$$
  
 $t \approx 460.52 seg$ 

#### **Ejemplo**

Un tanque de 400 galones contiene inicialmente 100 gal de salmuera, la cual consta a su vez de 50 libras de sal. Entra salmuera, cuya concentración es de 1 lb de sal por galón a razón de 5 gal/s y la salmuera bien mezclada en el tanque se derrama a razón de 3 gal/s. ?Qué cantidad de sal contendrá el tanque cuando este lleno de salmuera?



x = cantidad de sal en el tanque (lb)t = tiempo (s)

$$\frac{dx}{dt} = E - S$$

Para encontrar  $C_s$ 

$$f_e \neq f_s$$

volumen variable

$$C_S = \frac{Cantidad\ de\ sal\ en\ el\ tanque}{Volumen\ inicial + (f_e - f_S)t}$$

$$\star C_s = \frac{x}{100 + (5 - 3)t} = \frac{x(b)}{(100 + 2t)gat}$$



$$C_s = \frac{x \ b}{(100 + 2t)gal}$$

$$\frac{dx}{dt} = E - S$$

$$\frac{dx}{dt} = C_e f_e - C_s f_s$$

$$\frac{dx}{dt} = \left(1 \frac{lb}{gat}\right) \left(5 \frac{gat}{s}\right) - \left(\frac{x \ lb}{100 + 2t \ gat}\right) \left(3 \frac{gat}{s}\right)$$

$$\frac{dx}{dt} + \frac{3}{100 + 2t} x = 5 \rightarrow lineal \ en \ x$$

$$F.I. = e^{\int \frac{3}{100 + 2t} dt} = e^{\frac{3}{2} \ln|100 + 2t|}$$

$$F.I. = (100 + 2t)^{\frac{3}{2}}$$

$$\overline{al} \quad Q(t) = 5$$

$$(100 + 2t)^{\frac{3}{2}}x = \int 5(100 + 2t)^{\frac{3}{2}}dt$$

$$(100 + 2t)^{\frac{3}{2}}x = (100 + 2t)^{\frac{5}{2}} + C$$

$$(100 + 2t)^{\frac{3}{2}}x = (100 + 2t)^{\frac{5}{2}} + C$$



$$x = (100 + 2t) + C(100 + 2t)^{-\frac{3}{2}}$$
Condiciones Iniciales
$$Para \ x(0) = 50lb$$

$$50 = (100 + 2(0)) + C(100 + 2(0))^{-\frac{3}{2}}$$

$$C = -50,000$$

$$x(t) = (100 + 2t) - 50,000(100 + 2t)^{-\frac{3}{2}}$$

?Qué cantidad de sal contendrá el tanque t = 150s x = ? leus de Sulmary? cuando este lleno de salmuera?

$$t = 150s \quad x = ?$$

$$x(150) = (100 + 2(150)) - 50,000(100 + 2(150))^{-\frac{3}{2}}$$
$$x(150) = 393.75lb$$

Cuando el tanque esté lleno tendrá 393.75 lb de sal