Алгоритмы и структуры данных-2

2024-2025 учебный год

SET 7. Домашняя работа

Графы-2. Максимальный поток и паросочетания

февраль-март

	24	25	26	27	28	1	2
	3	4	5	6	7	8	9
ſ	10	11	12	13	14	15	16
Ī	17	18	19	20	21	22	23
	24	25	26	27	28	29	30
	ПН	BT	cp	ЧТ	ПТ	сб	вс

Немного инструкций

Домашняя работа SET 7 содержит Блок P «Задания на разработку» — задачи, связанные с реализацией и применением алгоритмов поиска максимального потока, а также паросочетаний.

Решения заданий Блока Р загружаются в систему CODEFORCES и проходят автоматизированное тестирование. Для загрузки нужно перейти на https://dsahse.contest.codeforces.com и выбрать соответствующее соревнование. Доступ к соревнованию предоставлен по тем же учетным данным, что и к системе Яндекс.Контест.

Домашняя работа SET 7 содержит 6 обязательных задач. Баллы, которые можно получить за их решение, распределены следующим образом:

Блок Р					
P1 P2 P3 P4 P5 P6					
7	8	9	8	8	9

Важные даты

- 1. Домашняя работа SET 7 открыта с 19:00 24 февраля 2025 г.
- 2. Прием решений завершается в 02:00 10 марта 2025 г.

Содержание

Задача Р1.	Кофеиновая катастрофа	1
Задача Р2.	Неделя свиданий	. 3
Задача Р3.	Вечеринка Моники	5
Задача Р4.	Ремонт плитки	7
Задача Р5.	Соковыжималка	9
Задача Рб.	Побег из Central Perk	11

Успехов!

Задача Р1. Кофеиновая катастрофа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Помогите Гантеру спасти Центральную Кофейню от кофеиновой катастрофы! Вам дан ориентированный граф, где:

- Вершины представляют розетки (пронумерованы от 1 до n).
- Дуги представляют провода между розетками.
- Каждая дуга имеет пропускную способность (максимальное количество энергии, которое может пройти по проводу).

Ваша задача — найти максимальный поток энергии, который можно передать от розетки номер 1 (источник) к розетке номер n (приемник, к которой подключена кофе-машина). Найдите этот максимальный поток и Central Perk будет спасен!

Формат входных данных

Первая строка входного файла содержит $n\ (1\leqslant n\leqslant 2500)$ и $m\ (1\leqslant m\leqslant 5000)$ — число вершин и рёбер в графе.

Последующие строки описывают рёбра. Каждое ребро задается тремя числами: начальная вершина ребра, конечная вершина ребра и пропускная способность ребра. Пропускные способности — целые числа, не превосходящие 10^9 .

Формат выходных данных

Выведите величину максимального потока между вершинами 1 и п.

Система оценки

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
0		тесты из условия	_	полная
1	2	$n \leqslant 500, m \leqslant 1000$	0	первая ошибка
2	3	$n \leqslant 500, m \leqslant 2500$	0-1	первая ошибка
3	2	$n \leqslant 2500, m \leqslant 5000$	0–2	первая ошибка

АиСД-2 (2024-2025). SET 7 Россия, Москва, 24 февраля – 10 марта 2025 г.

стандартный ввод	стандартный вывод
4 5	3
1 2 2	
1 3 1	
2 4 2	
2 3 1	
3 4 1	
4 5	2
1 2 2	
1 3 1	
2 4 1	
2 3 1	
3 4 1	

Задача Р2. Неделя свиданий

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Помогите Монике организовать идеальную неделю свиданий! Представьте себе вот такой двудольный граф:

- Одна доля это список парней.
- Другая доля это список девушек.
- Рёбра графа показывают, какие парни и девушки теоретически совместимы (по мнению Моники, конечно).

Ваша задача - найти максимальное паросочетание в этом двудольном графе. То есть, выбрать максимальное количество пар (парень-девушка) так, чтобы каждый парень и каждая девушка были в паре только один раз. Найдите это максимальное количество пар, и Моника будет вам очень благодарна.

Напомним, что <u>двудольным графом</u> называется такой неориентированный граф (V, E), $E \subseteq V \times V$, что его множество вершин V можно разбить на два множества A и B, для которых $\forall (e_1, e_2) \in E$ $e_1 \in A$, $e_2 \in B$ и $A \cup B = V$, $A \cap B = \emptyset$. <u>Паросочетанием</u> в двудольном графе называется любой набор его несмежных рёбер, то есть такой набор $S \subseteq E$, что для любых двух рёбер $e_1 = (u_1, v_1)$, $e_2 = (u_2, v_2)$ из S $u_1 \neq u_2$ и $v_1 \neq v_2$.

Формат входных данных

В первой строке записаны два целых числа n и m ($1 \leqslant n, m \leqslant 250$), где n — число вершин в множестве A, а m — число вершин в B.

Далее следуют n строк с описаниями рёбер — i-я вершина из A описана в (i+1)-й строке файла. Каждая из этих строк содержит номера вершин из B, соединённых с i-й вершиной A. Гарантируется, что в графе нет кратных ребер. Вершины в A и B нумеруются независимо (с единицы). Список завершается числом 0.

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число l — количество рёбер в максимальном паросочетании. Далее следуют l строк, в каждой из которых должны быть два целых числа u_i и v_i — концы рёбер паросочетания в A и B соотвественно.

АиСД-2 (2024-2025). SET 7 Россия, Москва, 24 февраля — 10 марта 2025 г.

Система оценки

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
0	_	тесты из условия	_	полная
1	2	$n, m \leqslant 15$	0	первая ошибка
2	6	_	0–1	первая ошибка

стандартный ввод	стандартный вывод
2 2	2
1 2 0	1 1
2 0	2 2

Задача РЗ. Вечеринка Моники

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

Моника решила устроить вечеринку-квиз в своей квартире и хочет разбить друзей на пары для участия в интеллектуальных соревнованиях. Но у каждого персонажа есть свои предпочтения и ограничения. Помогите Монике и решите эту простую задачу.

Дано n друзей, задающих вершины неориентированного графа, m связей дружбы, задающих ребра графа, пропускная способность которых равна 1, и k запросов Моники. Вершина задается в формате строки, состоящей из маленьких латинских букв, длиной не более 10 символов. Для каждого запроса найдите величину максимального потока из одной вершины в другую. Вот и всё.

Формат входных данных

В первой строке входного файла вводится 3 целых числа: $n\ (1\leqslant n\leqslant 5\cdot 10^5),\ m\ (0\leqslant m\leqslant 5\cdot 10^5)$ и $k\ (0\leqslant k\leqslant 1000).$

Далее следует m строк, в каждой из которых через пробел записаны имена 2-ух вершин, что означает, что из одной вершины в другую есть ребро.

Далее следует k запросов в том же виде, в котором задаются ребра. Запрос означает, что нужно вывести величину максимального потока из одной вершины в другую. Ответ на каждый запрос нужно выводить в отдельной строке. Гарантируется, что на вход поступает не более 2 запросов, при которых величина максимального потока положительна.

Формат выходных данных

Выведите ответ на поставленную задачу в указанном в условии формате.

АиСД-2 (2024-2025). SET 7 Россия, Москва, 24 февраля — 10 марта 2025 г.

Система оценки

Группа	Баллы	Доп. ограничения	Необх. группы	Комментарий
		n, m		
0	0	_		Тесты из условия.
1	1	$n \le 100, m \le 5000$	0	
2	1	$n \leqslant 1000, m \leqslant 5 \cdot 10^5$	0 - 1	
3	2	$n \leqslant 10^4, m \leqslant 5 \cdot 10^5$	0 - 2	
4	3	$n \leqslant 10^5, m \leqslant 5 \cdot 10^5$	0 - 3	
5	2	$n \le 5 \cdot 10^5, m \le 5 \cdot 10^5$	0 - 4	

стандартный ввод	стандартный вывод
7 11 1	2
smity grepik	
dop grepik	
smity rojer	
rojer dop	
dop jack	
sanek jack	
dop sanek	
hello sanek	
hello grepik	
dop hello	
rojer jack	
smity sanek	

Задача Р4. Ремонт плитки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В этой задаче все просто: Моника решила сделать ремонт в своем доме, начав с обновления плитки на полу. Нанятый подрядчик предъявил особые условия: замостить две соседние свободные клетки плиткой-доминошкой (1x2) стоит а долларов, а вот замостить одну свободную клетку плиткой-квадратиком (1x1) стоит b долларов.

Ваша задача - определить, какую минимальную сумму денег нужно потратить, чтобы полностью покрыть весь пол, используя оптимальное сочетание плиток-доминошек и плиток-квадратиков. Учтите, что плитки-доминошки можно класть как горизонтально, так и вертикально. Помогите Монике не сойти с ума от экономии и определите, какая минимальная сумма денег нужна, чтобы покрыть плитками весь пол.

Формат входных данных

Первая строка входного файла содержит 4 целых числа $n, m, a, b \ (1 \le n, m \le 100, |a| \le 1\,000, |b| \le 1\,000)$. Каждая из последующих n строк содержит по m символов: символ «.» (точка) обозначает занятую клетку поля, а символ «*» (звёздочка) — свободную.

Формат выходных данных

В выходной файл выведите одно число — минимальную сумму денег, имея которую можно замостить свободные клетки поля (и только их).

Система оценки

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
0	_	тесты из условия	_	полная
1	2	небольшие тесты	0	первая ошибка
2	6	_	0–1	первая ошибка

стандартный ввод	стандартный вывод
2 3 3 2	5
.**	
.*.	

АиСД-2 (2024-2025). SET 7 Россия, Москва, 24 февраля – 10 марта 2025 г.

Замечание		
Свободные доминошка— г	клетки игрового поля— это двудольный граф (представьте себе шахматное поле), юкрытие ребра. Найдите максимальное паросочетание.	

Задача Р5. Соковыжималка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Росс Геллер недавно купил себе новую соковыжималку. Теперь по утрам он и его друзья пьют свежевыжатый фруктовый сок. А это, между прочим, очень полезно!

Недавно они поняли, что можно пить сок, выжатый не только из одного вида фруктов, как, например, апельсиновый, но и различные смеси, например, виноградно-яблочный.

В семье Росса все очень любят сок, поэтому могут утром выпить не один стакан, причем разных видов сока. Например, его жена Кэрол очень любит грейпфрутовый и апельсиновый соки. Росс, как наиболее технически грамотный человек, каждое утро занимается приготовлением соков.

Опишем подробнее, как работает соковыжималка. В нее загружаются фрукты, они проходят отжим в центрифуге, обезвоженная мякоть сбрасывается в отдельный резервуар, а сок попадает в специальную емкость.

Основная проблема состоит в том, что эту емкость иногда приходится мыть. Например, если после приготовления апельсинового сока, необходимо приготовить яблочный, то емкость надо мыть, иначе получится апельсиново-яблочный сок.

Более формально, пусть сок A состоит из компонентов a_1, \ldots, a_n , а сок B — из компонентов b_1, \ldots, b_m . Сок B можно готовить после сока A, если любой из компонентов a_i является компонентом b_j (т.е. $\exists j: b_j = a_i$). В противном случае емкость для сока надо помыть.

Росс не очень любит мыть посуду, поэтому хочет мыть емкость как можно меньшее число раз. Помогите ему.

Формат входных данных

Первая строка входного файла содержит количество N различных соков, которые требуется приготовить ($1 \le N \le 300$).

Каждая из последующих N строк описывает один из соков. Описание сока состоит из числа k его компонент ($1 \le k \le 300$) и списка этих компонентов.

Каждый из компонентов сока описывается словом длиной до 30 символов и состоящим из прописных букв латинского алфавита. Повторяющиеся компоненты внутри одного списка и среди разных списков различаются.

Гарантируется, что компоненты внутри одного списка различны.

Формат выходных данных

В выходной файл выведите минимальное количество раз, которое Россу придется помыть емкость для сока. Учитывайте при этом, что емкость для сока надо помыть и после приготовления последней порции сока.

Система оценки

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
0	_	тесты из условия	_	полная
1	2	$M \leqslant 100$	0	первая ошибка
2	6	_	0-1	первая ошибка

стандартный вывод	
2	
3	

Задача Рб. Побег из Central Perk

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Джои и Чендлер застряли в Central Perk. На помощь пришла Рейчел и решила проложить Джои и Чендлер дорогу до выхода, но запуталась в сложном устройстве кофейни.

В Central Perk n помещений, пронумерованных числами от 1 до n и соединенных служебными проходами. Выход из кофейни находится в комнате с номером h. Изначально Джои и Чендлер находятся в одной и той же комнате, но поскольку они не хотят толкаться, они должны двигаться по непересекающимся по коридорам маршрутам к комнате h. Если два таких пути существуют, то Рейчел должна выкрикнуть в консоль «YES», иначе «NO». Помогите ей.

Формат входных данных

В первой строке файла записаны четыре целых числа -n, m, a и h (количество комнат, количество служебных проходов, номер начальной комнаты и номер комнаты с выходом).

В следующих m строках записаны пары чисел. Пара чисел (x,y) означает, что есть служебный проход с комнаты x до комнаты y (из-за особенностей Нью-Йорка и архитектуры кофейни односторонние).

Ограничения: $2 \le n \le 10^5, 0 \le m \le 10^5, a \ne h$.

Формат выходных данных

Если существует решение, то выведите YES и на двух отдельных строчках сначала путь для Джои (т.к. дам нужно пропускать вперед), затем путь для Чендлер. Если решения не существует, выведите NO. Если решений несколько, выведите любое.

Система оценки

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
0		тесты из условия	_	полная
1	3	$n, m \leqslant 5000$	0	первая ошибка
2	6	_	0-1	первая ошибка

АиСД-2 (2024-2025). SET 7 Россия, Москва, 24 февраля – 10 марта 2025 г.

стандартный ввод	стандартный вывод	
3 3 1 3	YES	
1 2	1 3	
1 3	1 2 3	
2 3		