University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Solutions #10

1. Fixing x and y, we have $4x^2 + y^2 \le z \le 2 - y^2$ (see the picture). The projection into the xy-plane is given by $\{(x,y) \mid 4x^2 + y^2 \le 2 - y^2\} = \{(x,y) \mid 4x^2 + 2y^2 \le 2\}$, an ellipitical disk. This question is easier if we use a change of variables.

Put $x = \frac{r \cos \theta}{\sqrt{2}}$, $y = r \sin \theta$ and z = z. Now

 $\left| \frac{r}{\sqrt{2}} \cos^2 \theta + \frac{r}{\sqrt{2}} \sin^2 \theta \right| = \frac{r}{\sqrt{2}}.$ The volume is $\iiint_B dV = \int_0^1 \int_0^{2\pi} \int_{r^2 (2\cos^2 \theta + \sin^2 \theta)}^{2-r^2 \sin^2 \theta} 1 |Jg| dz d\theta dr =$

$$\begin{split} &\frac{1}{\sqrt{2}} \int_0^1 \int_0^{2\pi} \left(z \, \bigg|_{r^2 (2\cos^2\theta + \sin^2\theta)}^{2-r^2\sin^2\theta} \right) r \, d\theta \, dr = \frac{1}{\sqrt{2}} \int_0^1 \int_0^{2\pi} (2-2r^2) \, r \, d\theta \, dr = \frac{2\pi}{\sqrt{2}} \left[r^2 - \frac{1}{2} r^4 \right]_0^1 \\ &= \frac{2\pi}{\sqrt{2}} \left[1 - \frac{1}{2} \right] = \frac{\pi}{\sqrt{2}}. \end{split}$$

(The volume can also be found directly with $V = \int_{-1}^{1} \int_{-\sqrt{\frac{1-y^2}{2}}}^{\sqrt{\frac{1-y^2}{2}}} \int_{4x^2+y^2}^{2-y^2} 1 \, dz \, dx \, dy$.)

2. (a)
$$r = \csc \theta$$

$$\implies r = \frac{1}{\sin \theta}$$

$$\implies r \sin \theta = 1$$

$$\implies u = 1$$

This is the line y = 1.

(b) $r = 1 - \sqrt{2} \sin \theta$ Now $r = 0 \implies \sqrt{2} \sin \theta = 1 \implies \sin \theta = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}, \frac{3\pi}{4}$. Hence the graph will be tangent to $\theta = \frac{\pi}{4}$ and $\theta = \frac{3\pi}{4}$ at the origin. Checking values we have $\frac{\theta \mid 0 \mid \pi/4 \mid \pi/2 \mid 3\pi/4 \mid \pi \mid 3\pi/2 \mid 2\pi}{r \mid 1 \mid 0 \mid 1 - \sqrt{2} \mid 0 \mid 1 \mid 1 + \sqrt{2} \mid 1}$. We start with $\theta = 0$. On $(0, \frac{\pi}{4})$, there is a positive loop where r decreases from 1 to 0. On $(\frac{\pi}{4}, \frac{3\pi}{4})$, there is a negative loop where r increases from 0 to $\sqrt{2} - 1$ and then decreases 3π

to 0. On $(\frac{3\pi}{4}, 2\pi)$, there is a positive loop where r increases from 0 to $1 + \sqrt{2}$ and then decreases to 1.

(c) $r = -\sin 3\theta$. Now $r = 0 \implies -\sin 3\theta = 0 \implies 3\theta = k\pi, k \in \mathbb{Z} \implies \theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \cdots$. Hence the graph will be tangent to $\theta = 0, \theta = \frac{\pi}{3}$ and $\theta = \frac{2\pi}{3}$ at the origin. Checking values we have $\frac{\theta \mid 0 \mid \pi/6 \mid \pi/3 \mid \pi/2 \mid 2\pi/3 \mid 5\pi/6 \mid \pi}{r \mid 0 \mid -1 \mid 0 \mid 1 \mid 0 \mid -1 \mid 0}$ (There is no need to continue as the loops of the graph will repeat). We start with $\theta = 0$. There are negative loops on $(0, \frac{\pi}{3})$ and on $(\frac{2\pi}{3}, \pi)$ and a positive loop on $(\frac{\pi}{3}, \frac{2\pi}{3})$. In each loop r increases from 0 to 1 and then decreases back to 0.

3. We know that $x^2 + y^2 = 1$ can be described in polars as r = 1. To describe

 $(x-1)^2+y^2=1$ in polars, we put $x=r\cos\theta$ and $y=r\sin\theta$ giving $r^2\cos^2\theta-2r\cos\theta+r^2\sin^2\theta=0$ or $r^2=2r\cos\theta$. If $r\neq 0$, we have $r=2\cos\theta$. The curves meet when $r=1=2\cos\theta\Longrightarrow\cos\theta=\frac{1}{2}\Longrightarrow\theta=\frac{\pi}{3},-\frac{\pi}{3}$. We describe the region by

$$\begin{array}{rcl}
1 & \leq & r & \leq & 2\cos\theta \\
-\frac{\pi}{3} & \leq & \theta & \leq & \frac{\pi}{3}.
\end{array}$$

Now area is given by $\iint_{D} dA = \iint_{D} dx \, dy = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{1}^{2\cos\theta} r \, dr \, d\theta = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left(2\cos^{2}\theta - \frac{1}{2} \right) d\theta = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left(\frac{1}{2} + \cos 2\theta \right) d\theta = \left[\frac{\theta}{2} + \frac{1}{2}\sin 2\theta \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{\pi}{3} + \frac{\sqrt{3}}{2}.$

4. To evaluate this integral we will first change variables to polars giving

5. The area of the region bounded by the polar graph $r = 1 + \cos \theta$ is given by $\iint_{\mathcal{D}} dA =$

$$\int_{0}^{2\pi} \int_{0}^{1+\cos\theta} r \, dr \, d\theta = \int_{0}^{2\pi} \left[\frac{r^{2}}{2} \right]_{0}^{1+\cos\theta} \, d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} (1 + 2\cos\theta + \cos^{2}\theta) \, d\theta =$$

$$\frac{1}{2} \int_{0}^{2\pi} \left(\frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos 2\theta \right) \, d\theta =$$

$$\frac{1}{2} \left[\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta \right]_{0}^{2\pi} = \frac{3\pi}{2}.$$

6. We will set this question up using the spherical polar coordinates: (ρ, θ, ϕ) . The sphere $x^2 + y^2 + z^2 = a^2$ is $\rho = a$ and the sphere $x^2 + y^2 + z^2 = b^2$ is $\rho = b$. If we fix ρ , for $a \le \rho \le b$, R_{ρ} is the rectangle $\begin{cases} 0 \le \theta < 2\pi \\ 0 \le \phi \le \pi \end{cases}$. Now $\int_{S} \frac{dx \, dy \, dz}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = \int_{a}^{b} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\pi$

7. If we fix x and y, we have $0 \le z \le \sqrt{x^2 + y^2}$ and the projection of the region B into the xy-plane is the unit disk, $x^2 + y^2 \le 1$.

Hence
$$\int_{B} z \, dV = \iint_{unit\, disk} \int_{0}^{\sqrt{x^{2}+y^{2}}} z \, dz$$
. After switching to cylindrical polar coordinates, (r, θ, z) , we have $\int_{B} z \, dV = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{r} (z) r \, dz \, dr \, d\theta = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{1} (z^{2} \mid_{0}^{r}) r \, dr \, d\theta = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{1} r^{3} \, dr \, d\theta = \frac{1}{8} \int_{0}^{2\pi} (r^{4} \mid_{0}^{1}) \, d\theta = \frac{1}{8} \int_{0}^{2\pi} d\theta = \frac{1}{8} (2\pi) = \frac{\pi}{4}$.

8. A representation of the region is shown on the left with the face in the yz-plane removed. Fixing y and z, we have $0 \le x \le y^2 + z^2$.

Then the projection into the yz-plane is the region bounded by the parabola $z = y^2$ and the line z = 9. Since $z \le 9$, $y^2 \le 9$, so $-3 \le y \le 3$. The volume is $V = \int_B 1 \, dV = \int_{-3}^3 \int_{y^2}^9 \int_0^{y^2 + z^2} 1 \, dx \, dz \, dy = \int_{y^2}^9 dy = \int_{-3}^3 \left(9y^2 + 243 - y^4 - \frac{y^6}{3}\right) \, dy$

$$\int_{-3}^{3} \int_{y^{2}}^{9} (y^{2} + z^{2}) dz dy = \int_{-3}^{3} \left[y^{2}z + \frac{z^{3}}{3} \right]_{z=y^{2}}^{z=9} dy = \int_{-3}^{3} \left(9y^{2} + 243 - y^{4} - \frac{y^{6}}{3} \right) dy$$

$$\stackrel{even function}{=} 2 \int_{0}^{3} \left(243 + 9y^{2} - y^{4} - \frac{y^{6}}{3} \right) dy = 2 \left[243y + 3y^{3} - \frac{y^{5}}{5} - \frac{y^{7}}{21} \right]_{0}^{3} = \frac{46008}{35}.$$

(You could also have fixed y and considered the cross section R_y . This would have given the same integral as we had above.)

9. The region D is the parallelogram bounded by 2x - y = 0, 2x - y = 6, x - 2y = 0and x-2y=-2. We will use a change of variable. Put u=2x-y and v=x-2y so that

 D^* is the rectangle $\begin{cases} 0 \le u \le 6 \\ -2 < v < 0 \end{cases}$. Solving for x and y we get $x = g_1(u,v) = \frac{2}{3}u - \frac{1}{3}v$ and $y = g_2(u, v) = \frac{1}{3}u - \frac{2}{3}v$. Differenting we have Dg = $\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix} \text{ so } Jg = \det(Dg) = \det\begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{pmatrix} = -\frac{1}{3}.$ $\text{Now} \qquad \iint_D e^{3x} \, dx \, dy \qquad = \qquad \iint_{D^*} e^{2u-v} |Jg| \, dv \, du \qquad =$

 $\frac{1}{3} \int_{0}^{6} \int_{0}^{0} e^{2u} e^{-v} dv du = -\frac{1}{3} \int_{0}^{6} e^{2u} \left(e^{-v} \Big|_{-2}^{0} \right) du - \frac{1}{3} (1 - e^{2}) \int_{0}^{6} e^{2u} du$ $-\frac{1}{6}(1-e^2)\left(e^{2u}\Big|_0^6\right) = \frac{1}{6}\left(e^2-1\right)\left(e^{12}-1\right).$

10. The region D is the region to the right of the y-axis bounded by $y = \frac{3}{x}$, $y = -\frac{3}{x}$

 $x^2 - y^2 = 1$ and $x^2 - y^2 = 9$. We will use a change of variable. Put u = xy and $v = x^2 - y^2$ so that D^* is the rectangle $\begin{cases} -3 \le u \le 3 \\ 1 \le v \le 9 \end{cases}$. Since we do not need to solve for x and y, it is easier here to compute $\frac{\partial(u,v)}{\partial(x,y)} = \det\begin{pmatrix} y & x \\ 2x & -2y \end{pmatrix} = -2(x^2 + y^2)$ giving Jg, the Jacobian we want, as $Jg = \frac{\partial(x,y)}{\partial(y,y)} =$

 $\frac{-1}{2(x^2+y^2)}$. Now $\int_{D} (x^2+y^2) \cos(xy) dx dy = \int_{D_*} (x^2+y^2) \cos(xy) dx dy$ $y^2 \cos(xy) |Jg| dv du = \frac{1}{2} \int_{-\pi}^{\pi} \int_{-\pi}^{9} \cos u \, dv \, du =$

 $4 \int_{-3}^{3} \cos u \, du = 4 \left(\sin u \, \Big|_{-3}^{3} \right) = 8 \sin 3.$

11. The region B is bounded by $0 \le x + y + z \le 9$, $1 \le x + 2y \le 4$ and $2 \le y - 3z \le 6$. We will use a change of variable. Put u = x + y + z, v = x + 2y and w = y - 3z so that B^* is the rectangular box $\begin{cases} 0 \le u \le 9 \\ 1 \le v \le 4 \end{cases}$. Since u = x + y + z we do not need to solve $2 \le w \le 6$

for x, y and z. The substitutions are linear so it is sufficient to compute $\frac{\partial(u,v,w)}{\partial(x,y,z)} =$

$$\det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & -3 \end{pmatrix} = -2. \text{ Hence } Jg = \frac{\partial(x, y, z)}{\partial(u, v, w)} = -\frac{1}{2}. \text{ Now } \int_{B} \sqrt{x + y + z} \, dV = \frac{\partial(x, y, z)}{\partial(u, v, w)} = -\frac{1}{2}.$$

$$\int_{B^*} \sqrt{u} |Jg| \, du \, dv \, dw = \frac{1}{2} \int_0^9 \int_1^4 \int_2^6 \sqrt{u} \, dw \, dv \, du = 6 \int_0^9 \sqrt{u} \, du = 4 \, \left(\left. u^{3/2} \right|_0^9 \right) = 108.$$

12. A representation of the region is shown on the left with the elliptical top face at z=1 removed. If we fix $z, -1 \le z \le 1$, then R_z is the

ellipse $\frac{x^2}{2} + \frac{y^2}{8} = z^2 + 1$. We will use a change of variable. Put $x = \sqrt{2}r\cos\theta$, $y = \sqrt{8}r\sin\theta$, and z = z. Now $Dg = \begin{pmatrix} \sqrt{2}\cos\theta & \sqrt{2}r\sin\theta & 0\\ \sqrt{8}\sin\theta & \sqrt{8}r\cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ and $Jg = \det Dg = 4r\cos^2\theta + 4r\sin^2\theta = 4r$. Now the volume is $V = \frac{1}{2}$

$$\int_{B} 1 \, dV = \int_{B^*} |Jg| \, dr \, d\theta \, dz = 4 \int_{-1}^{1} \int_{0}^{2\pi} \int_{0}^{\sqrt{z^2+1}} r \, dr \, d\theta \, dz = 2 \int_{-1}^{1} \int_{0}^{2\pi} (z^2+1) \, d\theta \, dz = 4\pi \int_{-1}^{1} (z^2+1) \, dz = 4\pi \left[\frac{z^3}{3} + z \right]_{-1}^{1} = (4\pi) \left(\frac{8}{3} \right) = \frac{32\pi}{3}.$$

This is the last solution set for MATB41H3 F for this year!

Good luck with your exams, enjoy the break and all the best for the New Year. E.