Proof for LU decomposition (with row pivoting)

Let $m \in \mathbb{N}$. As above, let $P_{ik_i} \in \mathbb{R}^{m \times m}$ be the permutation matrix which results from interchanging the i-th and k_i -th column $(k_i \geq i)$ of the identity matrix in $\mathbb{R}^{m \times m}$. Further for $\ell_j := (0, \dots, 0, \ell_{j+1, j}, \dots, \ell_{m, j})^\top \in \mathbb{R}^m$ and the j-th unit vector $e_j \in \mathbb{R}^m$, let $L_j := I + \ell_j e_j^\top \in \mathbb{R}^{m \times m}$. Then show that for all $1 \leq j < i \leq k_i \leq m$ we have

$$P_{ik_i}L_j = \widehat{L}_j P_{ik_i}$$

where $\widehat{L}_j := I + (P_{ik_i}\ell_j)e_i^{\top}$.

Solution:

We find

$$\begin{split} P_{ik_{i}}L_{j} &= P_{ik_{i}}\left(I + \ell_{j}e_{j}^{\top}\right) \\ &= P_{ik_{i}} + P_{ik_{i}}\ell_{j}e_{j}^{\top} \\ &= P_{ik_{i}} + P_{ik_{i}}\ell_{j}e_{j}^{\top}P_{ik_{i}}^{\top}P_{ik_{i}} \\ &= (I + P_{ik_{i}}\ell_{j}e_{j}^{\top}P_{ik_{i}}^{\top})P_{ik_{i}} \\ &= (I + P_{ik_{i}}\ell_{j}(P_{ik_{i}}e_{j})^{\top})P_{ik_{i}} \\ &= (I + P_{ik_{i}}\ell_{j}e_{j}^{\top})P_{ik_{i}}. \end{split}$$

Since $j < i \le k_i$ we find that $P_{ik_i}e_j = e_j$, since only zeroes are swapped.