(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 27.06.2001 Bulletin 2001/26
- (21) Application number: 98954727.8
- (22) Date of filing: 18.11.1998

- (51) Int CI.7: **C07K 14/54**, C12P 21/02, C12N 15/24, A61K 38/20
- (86) International application number: PCT/JP98/05186
- (87) International publication number: WO 00/12555 (09.03.2000 Gazette 2000/10)
- (84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE
- (30) Priority: 01.09.1998 JP 24758898 18.11.1998 JP 32791498
- (71) Applicant: Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Okayama-shi, Okayama 700-0907 (JP)
- (72) Inventors:
 - TORIGOE, Kakuji Kurashiki-shi Okayama 710-0133 (JP)
 - TANIAI, Madoka Okayama-shi Okayama 700-0802 (JP)
 - KURIMOTO, Masashi
 Okayama-shi Okayama 700-0011 (JP)
- (74) Representative: Daniels, Jeffrey Nicholas et al Page White & Farrer 54 Doughty Street London WC1N 2LS (GB)

(54) INTERLEUKIN 18-BINDING PROTEIN

(57) The objects of this invention are to provide a substance which suppresses the physiological activities of IL-18 through binding to IL-18, uses of the substance, and a DNA encoding the substance; this invention at-

tains these objects by providing an IL-18-binding protein comprising a specific amino acid sequence, a DNA encoding this protein, and an IL-18-suppressor as well as agent for susceptive diseases containing as an effective ingredient this IL-18-binding protein.

Description

20

35

TECHNICAL FIELD

[0001] This invention relates to a novel cytokine-binding protein, particularly, an interleukin-18-binding protein.

BACKGROUND ART

[0002] Interleukin-18 (hereinafter abbreviated as "IL-18") is a type of cytokine that transduces signals in immune system. As documented in Japanese Patent Kokai Nos. 27,189/96 and 193,098/96 and Haruki Okamura et al., "Nature, "Vol. 378, No. 6552, pp.88-91 (1995), IL-18 was designated "interferon-γ inducing factor (IGIF)" immediately after its discovery; this designation was changed later into "IL-18 (interleukin-18)" in accordance with the proposal in Shimpei Ushio et al., "The Journal of Immunology," Vol.156, pp.4274-4279 (1996). As described in "The Cytokine Handbook," edited by Angus W. Thomson, published by Academic Press Ltd.(1998), pp.465-489, mature IL-18 consists of 157 amino acids and has the activities of inducing the production of interferon-γ (hereinafter abbreviated as "IFN-γ"), which is useful as a physiologically active protein, by immunocompetent cells, as well as of enhancing the cytotoxicity of killer cells and inducing the generation of killer cells. Because of these activities, IL-18 has been deemed useful in various pharmaceuticals, for example, an anti-viral agent, anti-microbial agent, anti-tumor agent, and anti-immunopathic agent. Energetic studies are now in progress to realize these potential uses.

[0003] As mentioned above, IL-18, like other cytokines, is inherently produced and secreted as a substance responsible for signal transduction in immune system. Therefore, excessive amounts of IL-18 may disturb the balance of immune system when over-produced or excessively administered in the body of mammals. Recent studies have demonstrated that patients with autoimmune diseases including rheumatoid arthritis are significantly higher in IL-18 level in their body fluids than healthy humans, as disclosed in Japanese Patent Kokai No.96730/98. This indicates the possibility that IL-18 directly or indirectly relates to the crisis of certain diseases. In this field, as well as for the clarification in physiological activities and practical utilization of IL-18, there is a great demand for earlier clarification and utilization of a substance which suppresses the physiological activities of IL-18.

[0004] In view of the foregoing, the first object of this invention is to provide a substance which is capable of suppressing the physiological activities of IL-18 and applicable to humans and other mammals.

[0005] The second object of this invention is to provide a DNA encoding the substance.

[0006] The third object of this invention is to provide uses of the substance as an IL-18-suppressor.

[0007] The fourth object of this invention is to provide uses of the substance as a pharmaceutical.

DISCLOSURE OF INVENTION

[0008] The present inventors energetically studied to attain the above objects. As a result of theses studies, the inventors found a substance in mammalian body fluids which suppresses the physiological activities of IL-18 through binding to IL-18. The inventors then isolated this substance and investigated for its characteristics and properties. This substance was proved in the nature of a protein, and exhibited the ability of binding to IL-18 and thus suppressing the physiological activities thereof even in the isolated form. Further, this IL-18-binding protein, thus identified, was found to have an efficacy in treatment and prevention of various diseases resulting from augmented immunoreactions such as autoimmune diseases, inflammatory diseases, and allergic diseases, when administered to humans and other mammals.

[0009] Specifically, this invention attains the first object by providing the IL-18-binding protein comprising a part or the whole of the amino acid sequence shown in SEQ ID NO:1 or 2.

[0010] This invention attains the second object by providing a DNA encoding this IL-18-binding protein.

[0011] This invention attains the third object by providing an IL-18-suppressor containing as an effective ingredient this IL-18-binding protein.

[0012] This invention attains the fourth object by providing an agent for susceptive diseases containing as an effective ingredient this IL-18-binding protein.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1. shows peptide maps of the IL-18-binding protein of human origin.

[0014] FIG. 2. shows peptide maps of the IL-18-binding protein of mouse origin.

[0015] FIG. 3. shows a restriction enzyme map of a recombinant DNA comprising a nucleotide sequence encoding the IL-18-binding protein of human origin.

[0016] FIG. 4. shows a restriction enzyme map of a recombinant DNA comprising a nucleotide sequence encoding

the IL-18-binding protein of mouse origin.

[0017] In the figures, the meanings of the symbols are as follows:

EFH18BPH6 cDNA, cDNA comprising a nucleotide sequence encoding the IL-18-binding protein of human origin; EFM18BPH-MK2 cDNA, cDNA comprising a nucleotide sequence encoding the IL-18-binding protein of mouse origin;

 $EF1\alpha P$, elongation factor 1 promotor; Amp, ampicillin-resistant gene; and ori, replication origin.

BEST MODE OF INVENTION

5

10

15

20

25

35

[0018] The following are to explain the best mode of this invention; the protein of this invention is characterized by the property of suppressing the physiological activities of IL-18 through binding to IL-18 and by its specific amino acid sequences. The IL-18-binding protein of this invention, when acting on IL-18, suppresses the representative physiological activity of IL-18, inducing IFN-γ production by immunocompetent cells. Further, the IL-18-binding protein of this invention, when binding to IL-18, may suppress the enhancement of cytotoxicity of killer cells and the induction of killer cell generation by the action of IL-18. The IL-18-binding protein of this invention comprises a part or the whole of the amino acid sequence shown in SEQ ID NO:1 or 2 in the sequence listing; for example, the IL-18-binding protein of human origin comprises as a partial amino acid sequence(s) a part or the whole of the amino acid sequence shown in at least one of SEQ ID NOs:3 to 23, and the IL-18 binding protein of mouse origin comprises as a partial amino acid sequence(s) a part or the whole of the amino acid sequences shown in at least one of SEQ ID NOs:24 to 31. In body fluids such as urine and blood, the IL-18-binding protein of this invention usually exists as a soluble protein, which exhibits, on SDS-polyacrylamide gel electrophoresis, a protein band bearing IL-18-binding ability at a molecular weight of about 40,000 to about 60,000 daltons.

[0019] The IL-18-binding protein of this invention can be obtained from mammalian body fluids and cells by studying them for the above characteristics as criteria. The body fluids include bloods, lymphs, ascites, and urines, and the cells include epidermal cells, endothelial cells, interstitial cells, chondrocytes, monocytes, lymphocytes, neurocytes, and cell lines establishable from these cells. With regard to cost for preparation, it is advantageous to apply recombinant DNA techniques with a DNA encoding the IL-18-binding protein of this invention. DNAs encoding the IL-18-binding protein of this invention can be obtained by screening mammalian genes on the basis of the amino acid sequences shown in SEQ ID NOs:1 to 31. A DNA of human origin encoding the IL-18-binding protein of this invention usually comprises a part or the whole of the nucleotide sequence shown in SEQ ID NO:32, and a DNA of mouse origin usually comprises a part or the whole of the nucleotide sequence shown in SEQ ID NO:33. Mammalian or microbial host cells transformed with such DNAs can produce the IL-18-binding protein of this invention at relatively high yields, when the cells are cultured in a usual manner. The mammalian host cells include, for example, 3T3 cells (ATCC CCL-92), C127I cells (ATCC CRL-1616), CHO-K1 cells (ATCC CCL-61), CV-1 cells (ATCC CCL-70), COS-1 cells (ATCC CRL-1650), HeLa cells (ATCC CCL-2), MOP 8 cells (ATCC CRL-1709), mutant strains from these cells, and other epidermal cells. interstitial cells, and hemopoietic cells of human, monkey, mouse, or hamster origin. The microbial host cells include, for example, bacteria, fungi, and yeasts. Among these host cells, mammalian host cells and yeasts are more advantageous for the production of the IL-18-binding protein in the form of a glycoprotein.

[0020] To prepare the IL-18-binding protein of this invention from the sources as described above, the body fluids or the cellular or microbial cultures can be disrupted if necessary, for example, by sonication, and then subjected to conventional methods to purify physiologically active proteins. The conventional methods include salting-out, dialysis, filtration, concentrating, separatory sedimentation, ion-exchange chromatography, gel filtration chromatography, adsorption chromatography, isoelectric focusing chromatography, hydrophobic chromatography, reversed phase chromatography, affinity chromatography, gel electrophoresis, and isoelectric focusing electrophoresis, which can be applied alone or in combination.

[0021] Immune system inherently functions to protect a living body from foreign noxious substances, but under certain conditions, this function rather causes injurious affections to the living body. In the case of organ transplantation such as grafting skins, kidneys, livers, hearts, bone marrows to mammals, rejection reactions against alloantigens may activate T cells, induce lymphocyte proliferation, and then cause inflammation. While differently in symptoms, similar phenomena can be observed in the case of invasion of exogenous antigens such as allergens that a host recognizes as non-self. In autoimmune diseases, substances that should be recognized as self by a host induce allergic reactions. [0022] Because the IL-18-binding protein of this invention functions as an agent to suppress the physiological activities of IL-18 through binding to IL-18, which is responsible for activation of immune system, the protein of this invention is expected to suppress immunoreactions as described above when administered to humans and other mammals. Therefore, the term "susceptive diseases" as referred to in this invention includes immunopathies resulting from aug-

mented immunoreactions in general, such as rejection reactions and allergic reactions, and the diseases that can be treated or prevented by the direct or indirect action of the IL-18-binding protein of this invention. The susceptive diseases include, for example, the above-mentioned rejection reactions associated with organ transplantation, active chronic hepatitis, atrophic gastritis, autoimmune hemolytic anemia, Basedow's disease, Behcet's syndrome, CRST syndrome, cold agglutination hemolytic anemia, ulcerative colitis, Goodpasture's syndrome, hyperthyroidism, chronic thyroiditis, idiopathic thrombocytopenic purpura, juvenile diabetes, leukopenia, multiple sclerosis, severe myasthenia, paroxysmal cold hemoglobinuria, pernicious anemia, polyarteritis nodosa, multiple myositis, primary biliary cirrhosis, rheumatic fever, rheumatoid arthritis, Hashimoto's disease, Sjögren's syndrome, Crohn's disease, sympathetic ophthalmia, progressive systemic sclerosis, Wegener's granulomatosis, HIV infection, asthma, atopic dermatitis, allergic rhinitis, pollinosis, apitoxin allergy, and other autoimmune, inflammatory, and allergic diseases in general. The IL-18-binding protein of this invention has another efficacy to treat or prevent septic shock resulting from excessively produced or administered IFN-y. In a living body, IL-18 possibly augments Fas-ligand production, and inversely, Fas-ligand possibly induces IL-18 secretion from cells. The IL-18-binding protein is therefore efficacious in treatment and prevention of immunopathies relating to Fas and to Fas-ligand in general. In addition, the IL-18-binding protein of this invention is efficacious in treatment or prevention of hepatic disorders such as viral hepatitis, alcoholic hepatitis, toxic hepatitis, fulminant hepatitis, viral cirrhosis, alcoholic cirrhosis, toxic cirrhosis, biliary cirrhosis, fatty liver, hepatic tumors, and hepatic angiopathies, cholesystopathies or biliary disorders such as cholangitis, cholecystitis, primary sclerosing cholangitis, cholecystic tumors, and biliary tumors, pancreatopathies such as acute pancreatitis, chronic pancreatitis, deficiency in pancreatic functions, pancreatic tumors, and hydrocyst, as well as in alleviation or improvement of symptoms associated with these disorders, for example, inappetence, malaise, fatigue, bellyache, dorsalgia, icterus, fever, hepatic encephalosis, ascites, hemorrhagic determination, and other dyshepatia and hepatargia. In these cases, a medicament(s) capable of activating hepatic functions such as protoporphyrin, thioprine, malotilate, liver hydrolyzates, glycyrrhizin, dichloroacetate diisopropylamine, methylmethionine sulfonium chloride, glutathione, taurine, cyanidanol, interferons, vitamin B1, vitamin B2, vitamin B6, vitamin B12, thioctic acid, hsiao-tz v -ku-t'ang, ta-tz v -ku-t'ang, tz v ku-kuei-chih-t'ang, aspartic acid, glycyrrhiza, methionine, thioprine, and glycyrrhizin can be used in combination. The IL-18-binding protein further additionally has an efficacy to alleviate or prevent disorders in circulatory system such as ischemia, ischemic cardiomyopathy, cerebral ischemia, basilar artery migraine, abnormal vascularnet at the brain base, cerebral apoplexy, aneurysm at the brain base, arteriosclerosis, disorders in vascular endothelium, diabetes, mesenteric angiemphraxis, and superior mesenteric artery syndrome and disorders in nerve system such as Parkinson's disease, spinomuscular amyotrophy, amyotrophic sclerosis at the funiculus lateralis, Alzheimer's disease, dementia, cerebrovascular dementia, AIDS dementia, and encephalomyelitis. As above, the agent for susceptive diseases of this invention, containing the IL-18-biding protein as an effective ingredient, has a variety of uses to treat or prevent the abovementioned susceptive diseases, for example, as an anti-autoimmune agent, anti-inflammatory agent, anti-allergic agent, anti-tumor agent, immunosuppressant, hemopoietic agent, thrombopoietic agent, lenitive agent, antipyretic agent, and agent to improve hepatic functions. The agent for susceptive diseases of this invention is usually prepared in the form of a liquid, suspension, paste, or solid, and contains the IL-18-binding protein of this invention in a content of 0.00001-100%(w/w), preferably, 0.0001-20%(w/w), while the content may vary depending on the form of this agent as well as the types and symptoms of the susceptive diseases to be treated.

15

20

[0023] The agent for susceptive diseases of this invention includes those in the form consisting of the IL-18-binding protein of this invention alone and in the form of a composition comprising this protein and one or more of other physiologically acceptable, for example, adjuvants, extenders, diluents, excipients, stabilizers, antiseptics, immuno-adjuvants, colors, flavors, and if necessary, physiologically active substances. The stabilizers include following examples: proteins such as serum albumen and gelatins; saccharides such as glucose, sucrose, lactose, maltose, trehalose, sorbitol, maltitol, mannitol, and lactitol; and buffers mainly composed of citrates, phosphates, or carbonates. The physiologically active substances usable in combination include following examples: anti-inflammatory agents such as aspirin, flufenamic acid, mefenamic acid, diclofenac, indomethacin, tolmetin, ibuprofen, ketoprofen, phenylbutazone, oxyphenbutazone, anti-inflammatory enzyme preparations, gold preparations, and chloroquine preparations; immunosuppressants such as FK506, cyclophosphamide, azathioprine, methotrexate, cyclosporin A, and adrenal cortical hormones; and further, antagonists against receptors for IL-18 and other cytokines, for example, antibodies including humanized antibodies respectively against interleukin-1-receptor protein, interleukin-2-receptor protein, interleukin-5-receptor protein, interleukin-6-receptor protein, interleukin-8-receptor protein, interleukin-12-receptor protein, and IL-18-receptor protein; antagonists respectively against TNF-α, TNF-β, interleukin-1-receptor, interleukin-5-receptor. interleukin-8-receptor, and IL-18-receptor; and antibodies including humanized antibodies respectively against interleukin-1, interleukin-2, interleukin-5, interleukin-8, interleukin-6, interleukin-8, interleukin-12, and interleukin-18.

[0024] The agent for susceptive diseases of this invention further includes pharmaceutics in the form for a single shot of medication. The pharmaceutics in such form contain the IL-18-binding protein, for example, in a content corresponding to multiples (up to fourfold) or divisor (not less than 1/40) of its single dosage, in a physically united formula suitable for medication. The formulae of such pharmaceutics include extracts, elixirs, capsules, granules, pills, oph-

thalmic ointments, suspensions, emulsions, plasters, suppositories, powders, spirits, tablets, syrups, infusions, decoctions, injections, replacement fluids, tinctures, ophthalmic solutions, troches, ointments, cataplasmas, aromatic waters, liniments, lemonades, fluidextracts, and lotions, and if necessary, nasal drops, nasal sprays, inhalations for lower airway, sustained release preparations for ophthalmic treatment, plastering tablets for tunica mucosa oris, and clysters. The agent for susceptive diseases of this invention can be administered orally and parenterally; both the administrations can effectively treat or prevent the susceptive diseases. The agent of this invention can be administered to patients usually in accordance with the symptom of each patient observed before and/or after treatment, for example, at a dosage for adult humans of about 1 µg/shot to 1 g/shot, usually, about 10 µg/shot to 100 mg/shot, with a frequency of 1 to 4 shot/day or 1 to 5 shot/week over 1 day to half a year through oral route or parenteral route such as intracutaneous, subcutaneous, intramuscular, and intravenous routes.

[0025] The DNAs encoding the IL-18-binding protein of this invention are useful also in so-called "gene therapies." In conventional gene therapies, the DNA of this invention can be inserted into a viral vector such as retroviral vector, adenoviral vector, and adeno-associated-viral vector, or incorporated in a liposome such as cationic polymer and membrane-fused liposome, and in such form, the DNA can be directly injected into patients with diseases susceptive to the IL-18-binding protein. Alternatively, into lymphocytes collected from such patients, the DNA of this invention can be introduced *in vitro*, and the lymphocytes can be autografted to the patients. Thus the DNAs of this invention exhibit a distinguished efficacy in gene therapies for immunopathies such as autoimmune diseases, allergic diseases, and other diseases including liver disorders and nerve system disorders, as well as in suppression of rejection reactions and excessive immunoreactions associated with organ transplantation. General procedures for the gene therapies as above are detailed, for example, in "Jikken-Igaku-Bessatsu, Bio-manual Up Series, Idenshichiryo-no-Kisogijutsu (Basic Techniques for Gene Therapy)," edited by Takashi Shimada, Izumi Saito, and Toshiya Ozawa, published by Yodosha (1996). [0026] The following are to explain the preferred embodiments of this invention in line with Examples, while these Examples can be variously modified by the level of techniques in this field. In view of this, this invention should not be restricted to these Examples only. In following Examples, IL-18-binding ability was judged by percent inhibition as a criteria determinable by the binding assay as follows.

[0027] As effector cells, cells expressing IL-18 receptor abundantly on the surface thereof are prepared by introduction of a DNA encoding IL-18 receptor into CHO-K1 cells (ATCC CRL-9618), derived from Chinese hamster ovary. As an assay medium, RPMI-1640 medium (pH 7.2) containing 0.1%(w/v) sodium azide, 0.1%(v/v) bovine serum albumin, and 100 mM N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid is prepared. In a system for test, 50 μl of a test sample appropriately diluted with the assay medium is admixed with 50 μl of ¹²⁵I-labeled IL-18 appropriately diluted with the assay medium, and shaken at 4°C for 1 hour. This mixture is then admixed with 50 μl of a suspension of the effector cells in the assay medium having a cell density of 1 x 10⁷ cells/ml, and shaken at 4°C for another 1 hour. Thereafter, the resultant suspension of the effector cells is overlaid on 200 μl of a mixture of dibutyl phthalate and dioctyl phthalate (1:1 by volume) poured in 1.5-ml centrifugal tube, and then centrifuged at 4 C for 5 minutes. The supernatant is removed by aspiration. The residual cells are cut out together with the tube, and measured for radio activity by gamma counter ("Type ARC-300," produced by Aloka Co., Ltd.). Further, a system (for non-specific binding) in which 5 μg of non-labeled IL-18 is added together with ¹²⁵I-labeled IL-18 and another system (for total binding) with no test sample are treated similarly as in the test system. The measured radio activities, in the systems for test, total binding, and non-specific binding, are introduced into the following equation to calculate percent inhibition (%).

Percent Inhibition (%) = $\frac{\text{(Total Binding) - (Test)}}{\text{(Total Binding) - (Non-Specific Binding)}} \times 100$

Example 1: IL-18-binding protein of human origin

10

15

20

35

40

45

Example 1-1: Preparation of IL-18-binding protein

[0028] Three liters of human urine was concentrated with a membrane, and dialyzed against 20 mM phosphate buffer (pH 7.0) at 4°C for 20 hours. The dialyzed liquid was collected, and then applied to a column with 230 ml of affinity chromatography gel ("Wheat Germ Lectin Sepharose 6MB," commercialized by Amersham Pharmacia Biotech Co., Ltd.), which had been equilibrated with 20 mM phosphate buffer (pH 7.0), to adsorb the IL-18-binding protein. The column was washed with 20 mM phosphate buffer (pH 7.0), and 20 mM phosphate buffer (pH 7.0) containing 0.5 M N-acetyl-D-glucosamine was then fed to the column while the liquid eluted from the column was fractionated by a prescribed volume.

[0029] The eluted fractions were examined for IL-18-binding ability by the above-described binding assay. Fractions in which IL-18-binding property was observed were pooled and dialyzed against 20 mM phosphate buffer (pH 7.0) at 4°C for 16 hours. The dialyzed liquid was collected, concentrated to a prescribed volume, and then applied to a column with 54 ml of ion-exchange chromatography gel ("TSK-gel DEAE-5PW," produced by TOSO Co., Ltd.), which had been

equilibrated with 20 mM phosphate buffer (pH 7.0). To the column, 20 mM phosphate buffer (pH 7.0) containing sodium chloride was fed at a flow rate of 2 ml/min while the sodium chloride concentration was controlled to increase from 0 to 0.5 M over 100 minutes in a linear gradient manner. A fraction eluted at about 0.2 M sodium chloride was collected. [0030] The above fraction was membrane-concentrated, and then applied to a column with 120 ml of gel-filtration chromatography gel ("HillLoad Superdex 200," Amersham Pharmacia Biotech Co., Ltd.), which had been equilibrated with 20 mM phosphate-beffered saline (hereinafter abbreviated as "PBS"). To the column PBS was fed, and a fraction corresponding to a molecular weight of about 70,000 daltons on this gel filtration chromatography was collected. This newly obtained fraction was applied to a column with 4 ml of reversed phase chromatography gel ("Vydac 214TP54," commercialized by Cypress International, Ltd.), which had been equilibrated with 0.1%(v/v) trifluoroacetic acid. To the column, 0.1%(v/v) trifluoroacetic acid containing acetonitrile was fed while the acetonitrile concentration was controlled to increase from 0 to 90%(v/v) in a linear gradient manner, and the liquid eluted from the column was fractionated by a prescribed volume. The eluted fractions were examined for IL-18-binding ability by the above-described binding assay. In fractions eluted at about 70%(v/v) acetonitrile, IL-18-binding protein of human origin was obtained in a yield of about 3 μg.

[0031] This purified preparation of the IL-18-binding protein was examined for molecular weight by SDS-PAGE in the presence of dithiothreitol. A homogenous protein band bearing IL-18-binding ability was observed at the position of about 40,000 to 60,000 daltons. In addition, the IL-18-binding protein according to this Example was elucidated to be a glycoprotein by the fact that it adsorbed on "Wheat Germ Lectin Sepharose 6MB" of which ligand is wheat germ lectin

Example 1-2: N-terminal amino acid sequence

[0032] A purified preparation of the IL-18-binding protein, obtained by the method in Example 1-1, was dried up by a centrifugal concentrator, treated with 0.1 M Tris-HCl buffer (pH 8.1) containing 8 M urea and 10 mM EDTA under a current of nitrogen gas at 50°C for 30 minutes, and reduced by an appropriate amount of dithiothreitol admixed therewith under a current of nitrogen gas at 50°C for 2 hours. This reaction mixture was admixed with an appropriate amount of monoiodoacetic acid and reacted under dark conditions at ambient temperature for 30 minutes to alkylate the IL-18-binding protein.

[0033] The above-obtained, alkylated product was subjected to SDS-PAGE in the presence of dithiothreitol. A protein corresponding to a molecular weight of about 40,000 to about 60,000 daltons was separated, and transferred to a PDVF membrane. The membrane was subjected to amino acid analysis with protein sequencer ("Type 473A," produced by Applied Biosystems) to determine the N-terminal amino acid sequence. The IL-18-binding protein of this invention according to Example 1-1 was proved to comprise the amino acid sequence shown in SEQ ID NO:3 ("Xaa" means an unidentified amino acid.) as the N-terminal amino acid sequence.

Example 1-3: Peptide mapping

[0034] By the method "in-gel digestion" described in Ulf Hellman et al., "Analytical Biochemistry," Vol.224, pp.451-455 (1995), peptide maps of the IL-18-binding protein were prepared from the IL-18-binding protein which was reduced and alkylated by the method in Example 1-2 and then digested with trypsin or trypsin-pepsin. Further, the trypsin-produced peptide fragments 1 to 8 and trypsin-pepsin-produced peptide fragments 9 to 20 were sequenced. The peptide fragments 1 to 20 were proved to have the amino acid sequences shown in SEQ ID NOs:4 to 23 ("Xaa" means an unidentified amino acid.), respectively. The above-prepared peptide maps are shown in FIG. 1.

Example 1-4: IL-18-suppressive activity

[0035] A test for IL-18-suppressive activity was conducted similarly as in Example 3-3, described below, except for using lymphocytes from a healthy human, recombinant human IL-18, and standard human IFN- γ (Gg02-901-530) obtained from National Institute of Health of U.S.A. as immunocompetent cells, IL-18, and IFN- γ standard, respectively. [0036] The induction of IFN- γ production by the action of human IL-18 was significantly suppressed by the co-existence of the IL-18-binding protein according to Example 1. This indicates that this IL-18-binding protein suppresses the physiological activities of IL-18.

10

15

20

25

35

45

Example 2: DNA encoding IL-18-binding protein of human origin

Example 2-1: DNA encoding IL-18-binding protein of human origin

Example 2-1(a): Nucleotide sequence of DNA encoding IL-18-binding protein of human origin

[0037] Ten nanograms of human liver poly(A)* RNA (product of Clontech) was mixed with 2 µl of 10 x PCR buffer, 2 µl of 25 mM magnesium chloride, 2 µl of 0.1 M dithiothreitol, 1 µl of 25 mM dNTP mix, 1 µl of 200 units/µl reverse transcriptase ("Superscript II," produced by Life-Tech Oriental Co., Ltd.), and 1 µl of 2.5 µM random hexamer, and the total volume was adjusted to 20 µl with sterilized-distilled water. This mixture was placed in a 0.5 ml reaction tube, and incubated sequentially at 42°C for 50 minutes and 70°C for 15 minutes to effect reverse transcriptase reaction. Thus a reaction product containing first strand cDNA was obtained.

[0038] This reaction product was admixed with 2.5-fold volumes of ethanol and 2 μl of 3 M sodium acetate, and allowed to stand at -20°C for 2 hours to precipitate the cDNA. The precipitate was collected, washed with 75%(v/v) ethanol in water, dissolved in sterilized-distilled water, admixed with 0.5 μl of 2.5 units/μl DNA polymerase ("Cloned Pfu polymerase," product of Stratagene), 10 μl of its specific buffer, and 1 μl of 25 mM dNTP mix, and further admixed with the oligonucleotide shown by 5'-ACNCCNGTNWSNCA-3' as a sense primer, chemically synthesized on the basis of the amino acid sequence of SEQ ID NO:3, and the oligonucleotide shown by 5'-TGNGCNARNACNACRTG-3' as an antisense primer, chemically synthesized on the basis of the amino acid sequence of SEQ ID NO:8, both in a volume of 10 μM, and the total volume was adjusted to 100 μl with sterilized-distilled water. This mixture was incubated under 40 cycles of the sequential conditions at 94°C, 40°C, and 72°C for 1 minute each to effect PCR.

[0039] A portion of the PCR product was collected and then electrophoresed on 1%(w/v) agarose gel to separate DNA fragments, and the DNA fragments were transferred to a nylon membrane and fixed thereon with 0.4 N sodium hydroxide. The membrane was washed with 2 x SSC, dried in air, immersed in prehybridization solution containing 6 x SSPE, 5 x Denhardt's solution, 0.5%(w/v) SDS, and 100 μ g/ml denatured salmon sperm DNA, and incubated at 65°C for 3 hours. A probe was prepared by chemical synthesis of the oligonucleotide shown by 5'-GGRCANGGRTCYTT-3', based on the amino acid sequence shown in SEQ ID NO:3, and isotope-labeling thereof with [γ -32P]ATP by T4 polynucleotide kinase. To the pre-hybridization solution in which the above nylon membrane had been immersed, 1 pmol of the probe was added, and the nylon membrane was incubated at 40°C for another 20 hours to effect hybridization. The nylon membrane was washed with 6 x SSC and subjected to autoradiography in a usual manner. A specific hybridization signal by the probe was observed. This showed that the above PCR product contained the objective DNA fragment.

[0040] To the remaining part of the above PCR product, 1 ng of a plasmid vector ("pCR-Script Cam SK(+)," produced by Stratagene) was added, and the DNA fragment of the PCR product was inserted into the vector with a DNA ligation kit ("DNA Ligation Kit, Version 2," produced by Takara Shuzo Co., Ltd.). With a portion of the reaction mixture collected, an *Escherichia coli* strain ("XL1-Blue MRF' Kan," produced by Stratagene) was transformed. The transformant was inoculated in LB medium (pH 7.5) containing 30 μg/ml chloramphenicol and cultured at 37°C for 18 hours. The cells were collected from the culture. The plasmid DNA was collected from the cells in a usual manner, and analyzed by dideoxy method. This plasmid DNA comprised the nucleotide sequence shown in SEQ ID NO:34 as the sequence of the DNA fragment produced by PCR. The amino acid sequence encoded by this nucleotide sequence, aligned therewith, were compared with the partial amino acid sequences determined in Examples 1-2 to 1-3, shown in SEQ ID NO:3 to 23. These partial amino acid sequences were completely or partly included by the amino acid sequence aligned in SEQ ID NO:34. This suggested that the nucleotide sequence shown in SEQ ID NO:34 encodes at least a part of the IL-18-binding protein of human origin.

Example 2-1(b): Nucleotide sequence encoding IL-18-binding protein of human origin

45

[0041] Ten nanograms of human liver poly(A)* RNA (product of Clontech) was subjected to 5'RACE, a modified method of PCR, with a commercially available 5'RACE kit ("5'RACE System, Version 2.0," product of GIBCO BRL). First, reverse transcriptase reaction was effected on the above RNA with the oligonucleotide shown by 5'-GGTCACT-TCCAATGCTGGACA-3' as a primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:34, and to the 5'-terminal of the first strand cDNA synthesized thereby, C-tail was added by the action of terminal deoxynucleotidyl transferase. Then, PCR was effected on this first strand cDNA with the oligonucleotide shown by 5'-GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG-3' as a sense primer, included by the above kit, and the oligonucleotide shown by 5'-GTCCTTTGTGCTTCTAACTGA-3' as an antisense primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:34. A portion of the product of this 5'RACE was collected, and electrophoresed in a usual manner on 1%(w/v) agarose. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in

SEQ ID NO:35. The sequence from the 160th to 216th nucleotides of this sequence completely matched with the sequence from the 1st to 57th nucleotides of the nucleotide sequence shown in SEQ ID NO:34, determined in Example 2-1(a). This suggested that the nucleotide sequence shown in SEQ ID NO:35 overlaps with the nucleotide sequence shown in SEQ ID NO:34, encoding at least a part of the IL-18-binding protein of human origin, and comprises the 5'-upstream region of SEQ ID NO:34.

Example 2-1(c): Nucleotide sequence encoding IL-18-binding protein of human origin

10

25

50

[0042] Ten nanograms of human liver poly(A)* RNA was subjected to 3'RACE, a modified method of PCR, in accordance with "PCR Jikken Manual (Manual for PCR Experiments)," translated by Takashi Saito, published by HBJ Press (1991), 25-33. First, reverse transcriptase reaction was effected on the above RNA with the oligonucleotide shown by 5'-GACTCGAGTCGACATCGA(T)₁₇-3' as a primer. Then, PCR was effected on the first strand cDNA synthesized thereby with the oligonucleotide shown by 5'-TTCTCCTGTGTGCTCGTGGA-3' as a sense primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:34, determined in Example 2-1(a), and the oligonucleotide shown by 5'-GACTCGAGTCGACATCG-3' as an antisense primer. A portion of the product of this 3'RACE was collected and electrophoresed in a usual manner on 1%(w/v) agarose. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:36. The sequence from the 1st to 60th nucleotides of this sequence completely matched with the sequence from the 352nd to 411st nucleotides of the nucleotide sequence shown in SEQ ID NO:34, determined in Example 2-1(a). This suggested that the nucleotide sequence shown in SEQ ID NO:36 overlaps with the nucleotide sequence shown in SEQ ID NO:34, encoding at least a part of the IL-18-binding protein of human origin, and comprises the 3'-downstream region of SEQ ID NO:34.

[0043] As described above, in Examples 2-1(a) to 2-1(c), the nucleotide sequences shown in SEQ ID NOs:34 to 36 were determined as ones partially encoding the IL-18-binding protein of human origin and overlapping one another. In view of the overlapping sequences, these three nucleotide sequences would be derived from one contiguous nucleotide sequence, which is shown in SEQ ID NO:37.

Example 2-1(d): Nucleotide sequence of DNA encoding human-derived IL-18-binding protein

[0044] In accordance with the method in Example 2-1(a), reverse transcriptase reaction was effected on human liver poly(A)⁺ RNA, and then PCR was effected similarly as in Example 2-1(a) except for using as a sense primer the oligonucleotide shown by 5'-TGTGTGACTGGAGAGAGAGAGAC-3', chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:37, and as an antisense primer the oligonucleotide shown by 5'-TACAGGCAGTCAG-GGACTGTTCACTCCAG-3', chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:
 35 37. A portion of the PCR product was collected, and electrophoresed in a usual manner on 1%(w/v) agarose gel. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:37. This supported that the nucleotide sequences shown in SEQ ID NO:37.

[0045] The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO:37, aligned therewith, are compared with the partial amino acid sequences shown in SEQ ID NOs:4 to 23, determined in Example 1-3. These partial sequences were all included by the amino acid sequence aligned in SEQ ID NO:37 in the region from the 1st to 164th amino acids. In addition, the N-terminal amino acid sequence determined in Example 1-2, shown in SEQ ID NO:3, well matched with the amino acid sequence aligned in SEQ ID NO:37 in the region from the 1st to 22nd amino acids. These facts suggested that the nucleotide sequence shown in SEQ ID NO:37 can encode the IL-18-binding protein of human origin by the region from the 160th to 651st nucleotides and that this IL-18-binding protein may has, as its whole sequence, the sequence from the 1st to 164th amino acids of the amino acid sequence aligned with this nucleotide sequence. Thus suggested amino acid sequence of the IL-18-binding protein of human origin and the nucleotide sequence encoding this are shown in SEQ ID NOs:1 and 32 separately.

Example 2-2: Production of IL-18-binding protein of human origin by transformant

Example 2-2(a): Preparation of recombinant DNA

[0046] A DNA capable of encoding the IL-18-binding protein of human origin, obtained by the method in Example 2-1(d), was placed in a 0.5-ml reaction tube in an amount of 1 ng, and to this tube, 10 μl of 10 x PCR buffer, 1 μl of 25 mM dNTP mix, and 2.5 units/μl DNA polymerase ("Cloned Pfu polymerase," produced by Stratagene) were added. Appropriate amounts of the oligonucleotide shown by 5'-CTCGAGGCCACCATGACCATGAGACACAAC-3' as a sense

primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:32, and the oligonucleotide shown by 5'-GCGGCCGCTCATTAGTGATGGTGATGGTGATGACCCTGCTGCTGTGGACT-3' as an antisense
primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:32, were further added
to the above tube, and the total volume was adjusted to 100 μl with sterilized-distilled water. PCR was effected by
incubating this mixture under 3 cycles of the sequential conditions at 94°C for 1 minute, at 42°C for 2 minutes, and at
72°C for 3 minutes and then 35 cycles of the sequential conditions at 94°C for 1 minute, at 60°C for 2 minutes, and
72°C for 3 minutes. The PCR product was analyzed and manipulated similarly as in Example 2-1(a); the PCR product
was confirmed to contain the objective DNA fragment, and a plasmid vector inserted with this DNA fragment was
obtained. This plasmid DNA comprised the nucleotide sequence shown in SEQ ID NO:32, confirmed by sequencing
similarly as in Example 2-1(a).

[0047] The restriction enzymes XAoI and NotI were allowed to react in a usual manner on the above plasmid DNA to produce a DNA fragment. This DNA fragment was mixed with the plasmid vector "pEF-BOS", prepared similarly as in S. Mizushima et al., "Nucleic Acid Research," Vol.17, No.18, p.5332 (1990) and digested with XhoI and NotI, at their proportion of 100 ng to 10 ng, and the DNA fragment was inserted into the plasmid vector with a DNA ligation kit ("DNA Ligation Kit, Version 2," produced by Takara Shuzo Co., Ltd.). Similarly as in Example 2-1(a), the Escherichia coli strain was transformed with this ligation product. From the resultant transformant, the recombinant DNA was collected, and named "pEFH18BPH6." This recombinant DNA was analyzed in a usual manner. As shown in FIG. 3, in the recombinant DNA "pEFH18BPH6," the cDNA "EFH18BPH6 cDNA" comprising the nucleotide sequence shown in SEQ ID NO:32, capable of encoding the IL-18-binding protein of human origin, was located on the downstream of the elongation factor 1 promotor "EF1αP."

Example 2-2(b): Production of IL-18-binding protein of human origin by transformant

[0048] The Escherichia coli strain transformed with the recombinant DNA "pEFH18BPH6" in Example 2-2(a) was inoculated in LB broth (pH 7.2) containing 100 μg/ml ampicillin, and cultured at 37°C under aerobic conditions by agitation. From the resultant culture, the plasmid DNA was collected in a usual manner to obtain the recombinant DNA "pEFH18BPH6". Twenty micrograms of this recombinant DNA was introduced by electroporation into 1 x 10⁷ cells of COS-1 (ATCC CRL-1650), a fibroblastic cell line derived from African green monkey kidney, which had been proliferated in a usual manner. Thus a transformant introduced with the DNA of this invention was obtained.

[0049] A medium ("ASF104," product of Ajinomoto) was placed in flat-bottomed culture flasks. The above-obtained transformant was inoculated into the medium at a ratio of 1 x 10⁵ cells/ml, and cultured in a 5% CO₂ incubator at 37°C for 3 days. The culture supernatant was collected from the resultant culture, and applied to a column with affinity chromatography gel ("Ni-NTA," product of QIAGEN). PBS containing 20 mM imidazole was fed to the column to remove non-adsorbed fraction, and then PBS containing 250 mM imidazole was fed while the liquid eluted from the column was fractionated by a prescribed volume. These fractions were examined for IL-18-binding ability by the above-described binding assay. Fractions with IL-18-binding ability were pooled. Thus an aqueous solution of purified IL-18-binding protein was obtained in a volume of about 2 ml. This solution contained about 10 µg/ml protein. After this solution was treated similarly as in Example 1-2, the N-terminal amino acid sequence was analyzed. The elucidated sequence was identical with the amino acid sequence shown in SEQ ID NO:3. As a control, procedures similar to this Example were conducted by using the plasmid vector "pEF-BOS" in place of the recombinant DNA "pEFH18BPH6." No IL-18-binding protein was observed. These results supported that the IL-18-binding protein of human origin usually has the amino acid sequence shown in SEQ ID NO:3.

Example 3: IL-18-binding protein of mouse origin

15

20

25

Example 3-1: Preparation of IL-18-binding protein

[0050] Corynebacterium parvum (ATCC 11827) was heated at 60°C for 1 hour. The dead cells thus obtained were injected with needles into 600 heads of 8-week-old, female CD-1 mice at a dose of 1 mg/head through intraperitoneal routes. The mice were housed in a usual manner for 7 days, and then injected with purified Escherichia coli lipopoly-saccharide through intravenous routes at a dose of 1 µg/head. Two hours later, the blood was collected from the mice's hearts, and by usual manipulation, 200 ml of serum was obtained from the blood. The serum was subjected to purification by the method in Example 1-1. Thus a purified preparation of the IL-18-binding protein of mouse origin was obtained in a yield of about 3 µg.

[0051] This purified preparation was examined for molecular weight by SDS-PAGE in the presence of dithiothreitol. A homogenous protein band bearing IL-18-binding ability was observed at the position of about 40,000 to 60,000 daltons. In addition, the IL-18-binding protein according to this Example was elucidated to be a glycoprotein by the fact

that it adsorbed on "Wheat Germ Lectin Sepharose 6MB" of which ligand is wheat germ lectin.

Example 3-2: Peptide mapping

10

20

30

35

[0052] Similarly as in Example 1-3, peptide maps were prepared from a purified preparation of the IL-18-binding protein, obtained by the method in Example 3-1, and amino acid sequences were analyzed on the trypsin-produced peptide fragments 1 to 5 and trypsin-pepsin-produced peptide fragments 6 to 8. The peptide fragments 1 to 8 were proved to have the amino acid sequences shown in SEQ ID NOs:24 to 31 ("Xaa" means an unidentified amino acid.), respectively. The above-prepared peptide maps are shown in FIG. 2.

Example 3-3: IL-18-suppressive activity

[0053] Spleens were extracted from 14-week-old, female C3H/HeJ mice, and dispersed. After the adherent cells were removed, the spleen cells were suspended to use as immunocompetent cells in RPMI-1640 medium (pH 7.4) supplemented with 10%(v/v) fetal calf serum. The spleen cell suspension and $2.5\,\mu\text{g/ml}$ concanavalin A were distributed to microplates at $0.15\,\text{ml}$ and $0.05\,\text{ml}$ per well. To each well, the above medium containing $25\,\text{ng/ml}$ recombinant mouse IL-18 and a purified preparation of the IL-18-binding protein, prepared by the method in Example 3-1, at a content excessive to the IL-18, was added in a volume of $0.05\,\text{ml/well}$. The microplates were incubated in a $5\%\,\text{CO}_2$ incubator at 37°C for 24 hours. After the culture, $0.1\,\text{ml}$ portion of each culture supernatant was collected, and measured for IFN- γ production by conventional enzyme-immunoassay. As controls, systems with no IL-18-binding protein or no mouse IL-18 were treated similarly as above. The measured values of IFN- γ were converted into international units (IU) with reference to the standard mouse IFN- γ (Gg02-901-533) obtained from National Institute of Health, U.S.A., as an IFN- γ standard.

[0054] IFN-γ produced in the control with no IL-18-binding protein was about 600 IU/ml, and that in the other control, with no mouse IL-18, was 0 IU/ml. In the test system with IL-18-binding protein, IFN-γ was produced only about 60 IU/ml. These results indicated that the IL-18-binding protein according to Example 3 suppresses the physiological activities of IL-18.

Example 4: DNA encoding IL-18-binding protein of mouse origin

Example 4-1: DNA encoding IL-18-binding protein of mouse origin

Example 4-1(a): Nucleotide sequence of DNA encoding IL-18-binding protein of mouse origin

[0055] Corynebacterium parvum (ATCC 11827) was heated at 60°C for 1 hour. The dead cells thus obtained were injected with needles into 8-week-old, female CD-1 mice at a dose of 1 mg/head through intraperitoneal routes. The mice were housed in a usual manner for 7 days, and then injected with purified *Escherichia coli* lipopolysaccharide through intravenous routes at a dose of 1 μg/head. Two hours later, the mice were slaughtered by dislocating each tibia, and the livers were extracted. Three grams by wet weight of the livers were immersed in 20 ml of a liquid (pH 7.0) consisting of 6 M guanidine isothiocyanato, 10 mM sodium citrate, and 0.5%(w/v) SDS, and disrupted with a homogenizer. In 35-ml centrifugal tubes, 0.1 M EDTA (pH 7.5) containing 5.7 M cesium chloride was poured in a volume of 25 ml/tube, and the cell disruptant was overlaid thereon at 10 ml/tube and then ultracentrifuged at 25,000 rpm for 20 hours at 20°C. The RNA fraction was collected, placed in a 15-ml centrifugal tube, and admixed with an equal volume of chloroform-isobutanol (4:1 by volume). The mixture was shaken for 5 minutes and centrifuged at 10,000 rpm for 10 minutes at 4°C, and the resultant liquid layer was collected. The liquid layer was admixed with 2.5-fold volumes of ethanol and allowed to stand at -20°C for 2 hours to precipitate total RNA. The precipitate was collected, washed with 75%(v/v) ethanol in water, and dissolved in 0.5 ml of sterilized-distilled water.

[0056] Reverse transcriptase reaction was effected similarly as in Example 2-1(a) on this total RNA, and PCR was effected on this reaction product containing first strand cDNA similarly as in Example 2-1(a) except for using as a sense primer the oligonucleotide shown by 5'-GCNGTNCCNACNAA-3', chemically synthesized on the basis of the amino acid sequence shown in SEQ ID NO:27, and as an antisense primer the oligonucleotide shown by 5'-GTYTTNARNC-CRTC-3', chemically synthesized on the basis of the amino acid sequence shown in SEQ ID NO:30. A probe was prepared from the oligonucleotide shown by 5'-SWNGTRTGNCCYTCYTT-3', chemically synthesized on the basis of the amino acid sequence shown in SEQ ID NO:24. By using this probe and by the procedure according to Example 2, the above PCR product was confirmed to contain the objective DNA fragment. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:38. The amino acid sequence aligned in SEQ ID NO:38 was compared with the partial amino acid sequences shown in SEQ ID NOs: 24 to 31, determined in Example 3-2. These partial amino acid sequences were completely or partly included by the

amino acid sequence aligned in SEQ ID NO:38. This suggested that the nucleotide sequence shown in SEQ ID NO: 38 encodes at least a part of the IL-18-binding protein of mouse origin.

Example 4-1(b): Nucleotide sequence of DNA encoding IL-18-binding protein of mouse origin

[0057] Total RNA was collected similarly as in Example 4-1(a) from female CD-1 mice treated with the dead cells of Corynebacterium parvum and lipopolysaccharide, and 1 µg of the total RNA was subjected to 5'RACE, a modified method of PCR, with a commercially available 5'RACE kit ("5'RACE System, Version 2.0," product of GIBCO BRL). First, reverse transcriptase reaction was effected on the above total RNA with the oligonucleotide shown by 5'-TGCAG-GCAGTACAGGACAAGG-3' as a primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:38, and to the 5'-terminal of the first strand cDNA synthesized thereby, C-tail was added by the action of terminal deoxynucleotidyl transferase. Then, PCR was effected on this first strand cDNA with the oligonucleotide shown by 5'-GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIGG3' as a sense primer, included by the kit, and the oligonucleotide shown by 5'-GTGCTGGGTACTGCTTAGTTG-3' as an antisense primer. A portion of this 5'RACE product was collected, and electrophoresed in a usual manner on 1%(w/v) agarose gel. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:39. The sequence from the 307th to 336th nucleotides of this sequence completely matched with the sequence of the 1st to 30th nucleotides of the sequence shown in SEQ ID NO:38, determined in Example 4-1(a). This suggested that the nucleotide sequence shown in SEQ ID NO:39 overlaps with the nucleotide sequence shown in SEQ ID NO:38, encoding at least a part of the IL-18-binding protein of mouse origin, and comprises the 5'-upstream region of SEQ ID NO:38.

Example 4-1(c): Nucleotide sequence of DNA encoding IL-18-binding protein of mouse origin

15

20

45

[0058] Total RNA was collected similarly as in Example 4-1(a) from female CD-1 mice treated with the dead cells of *Corynebacterium parvum* and lipopolysaccharide, and 1 μg of the total RNA was subjected to 3'RACE, a modified method of PCR, in accordance with the methods described in "PCR Jikken Manual (Manual for PCR Experiments)," translated by Takashi Saito, published by HBJ Press (1991), pp.25-33. First, reverse transcriptase reaction was effected on the above total RNA with the oligonucleotide shown by 5'-GACTCGAGTCGACATCGA(T)₁₇-3' as a primer. Then, PCR was effected on the first strand cDNA synthesized thereby with the oligonucleotide shown by 5'-GACTCT-GGACAAGTGGCC-3' as a sense primer, chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:38, determined in Example 4-1(a), and the oligonucleotide shown by 5'-GACTCGAGTCGACATCG-3' as an antisense primer. A portion of this 3'RACE product was collected, and electrophoresed in a usual manner on 1% (w/v) agarose gel. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:40. The sequence from the 1st to 63rd nucleotides of this sequence completely matched with the sequence of the 289th to 351st nucleotides of the sequence shown in SEQ ID NO:38, determined in Example 4-1(a). This suggested that the nucleotide sequence shown in SEQ ID NO:40 overlaps with the nucleotide sequence shown in SEQ ID NO:38, encoding at least a part of the IL-18-binding protein of mouse origin, and comprises the 3'-downstream region of SEQ ID NO:38.

[0059] As described above, in Examples 4-1(a) to 4-1(c), the nucleotide sequences shown in SEQ ID NOs:38 to 40 were determined as ones partially encoding the IL-18-binding protein of mouse origin and overlapping one another. In view of the overlapping sequences, these three nucleotide sequences would be derived from one contiguous nucleotide sequence, which is shown in SEQ ID NO:41.

Example 4-1(d): Nucleotide sequence of DNA encoding IL-18-binding protein of mouse origin

[0060] Total RNA was collected similarly as in Example 4-1(a) from female CD-1 mice treated with the dead cells of *Corynebacterium parvum* and lipopolysaccharide. After reverse transcriptase reaction was effected on this total RNA, PCR was effected similarly as in Example 4-1(c) except for using the oligonucleotide shown by 5'-CTGAGCCTTA-GAGCTCCAAG-3' as a sense primer and the oligonucleotide shown by 5'-GTGAAGCTTGAGTTTGAGGTTC-3' as an antisense primer, both chemically synthesized on the basis of the nucleotide sequence shown in SEQ ID NO:41. A portion of this PCR product was collected, and electrophoresed in a usual manner on 1%(w/v) agarose gel. Specific amplification of a DNA fragment was observed. This DNA fragment was sequenced similarly as in Example 2-1(a). This fragment comprised the nucleotide sequence shown in SEQ ID NO:41. This supported that the nucleotide sequences shown in SEQ ID NO:38 to 40, determined in Examples 4-1(a) to 4-1(c), are partial sequences of the contiguous nucleotide sequence shown in SEQ ID NO:41.

[0061] The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO:41, aligned therewith, are compared with the partial amino acid sequences shown in SEQ ID NOs:24 to 31, determined in Example 3-2.

These partial sequences were all included by the amino acid sequence aligned in SEQ ID NO:41 in the region from the 1st to 165th amino acids. In addition, the amino acid sequence of the IL-18-binding protein of human origin shown in SEQ ID NO:1 exhibited about 61% homology with the amino acid sequence aligned in SEQ ID NO:41 in the region from the 1st to 165th amino acids. These facts suggested that the nucleotide sequence shown in SEQ ID NO:41 can encode the IL-18-binding protein of mouse origin by the region from the 235th to 729th nucleotides and that this IL-18-binding protein may have, as its whole sequence, the sequence from the first to 165th amino acids of the amino acid sequence aligned with this nucleotide sequence. The amino acid sequence thus suggested as that of the IL-18-binding protein of mouse origin and the nucleotide sequence encoding this are shown in SEQ ID NOs:2 and 33 separately.

Example 4-2: Production of IL-18-binding protein of mouse origin by transformant

Example 4-2(a): Preparation of recombinant DNA

10

25

30

35

15 [0062] A DNA capable of encoding the IL-18-binding protein of mouse origin, obtained by the method in Example 4-1(d), was placed in a 0.5-ml reaction tube in an amount of 1 ng, and this DNA was treated similarly as in Example 2-2(a) except for using the oligonucleotide shown by 5'-CTCGACGCCACCATGACCATGAGACACTGC-3' as a sense primer and the oligonucleotide shown by 5'-GCGGCCGCTCATTAGTGATGGTGATGGTGATGTGCAACCCCT-GGGCCTGC-3' as an antisense primer, both on the basis of the nucleotide sequence shown in SEQ ID NO:33. Similarly as in Example 4-1(a), the PCR product was confirmed to contain the objective DNA fragment, and a plasmid vector inserted with this DNA fragment was obtained. This plasmid DNA was sequenced similarly as in Example 2-1(a). The plasmid DNA comprised the nucleotide sequence shown in SEQ ID NO:33.

[0063] DNA insertion was effected from the above-obtained plasmid DNA into the plasmid vector "pEF-BOS" similarly as in Example 2-2(a). Thus obtained recombinant DNA was named "pEFM18BPH-MK2." This recombinant DNA was analyzed in a usual manner. As shown FIG. 4., in the recombinant DNA "pEFM18BPH-MK2," the cDNA "EFM18BPH-MK2 cDNA" comprising the nucleotide sequence shown in SEQ ID NO:33, capable of encoding the IL-18-binding protein of mouse origin, was located on the downstream of the elongation factor 1 promotor "EFIαP."

Example 4-2(b): Production of IL-18-binding protein of mouse origin by transformant

[0064] From the culture of the *Escherichia coil* strain transformed with the recombinant DNA "pEFM18BPH-MK2" in Example 4-2, the plasmid DNA was collected in a usual manner to obtain the recombinant DNA "pEFM18BPH-MK2." Twenty micrograms of this recombinant DNA was introduced into COS-1 cells (ATCC CRL-1650) similarly as in Example 2-2(b). Thus a transformant introduced with the DNA of this invention was obtained.

[0065] Similarly as in Example 2-2(b), the above transformant was cultured, and the culture supernatant was collected and fractionated through a column with affinity chromatography gel ("Ni-NTA," product of QIAGEN). Fractions in which IL-18-binding protein was observed were collected and pooled. Thus an aqueous solution of purified IL-18-binding protein was obtained in a volume of about 2 ml from 1 x 10⁷ cells of the transformant. This solution contained about 1 µg/ml protein. After this solution was treated according to Example 1-2, the N-terminal amino acid sequence was analyzed. The elucidated sequence was identical with the amino acid sequence shown in SEQ ID NO:2. As a control, procedures similar to this Example were conducted by using the plasmid vector "pEF-BOS" in place of the recombinant DNA "pEFH18BPH6." No IL-18-binding protein was observed. These results supported that the IL-18-binding protein of mouse origin usually has the amino acid sequence shown in SEQ ID NO:2 and can be encoded by the nucleotide sequence shown in SEQ ID NO:33.

[55 [0066] The following are to explain the agent for susceptive disease containing the IL-18-binding protein of this invention as an effective ingredient.

Example 5: Solution

[0067] A purified preparation of the IL-18-binding protein, obtained by the method in Example 1-1 or 2-2, was dissolved to give a concentration of 1 mg/ml in physiological saline containing as a stabilizer 1%(w/v) pulverized crystalline trehalose ("Trehaose," commercialized by Hayashibara Shoji, Inc.) free from pyrogen. These solutions were made germ free in a usual manner. Thus two types of solutions were obtained.

[0068] These products, having excellent stability, are useful as an injection, ophthalmic solution, collunarium, etc. to treat or prevent the susceptive diseases including autoimmune diseases, inflammatory diseases, and altergic diseases.

Example 6: Dried infection

[0069] A purified preparation of the IL-18-binding protein, obtained by the method in Example 1-1 or 2-2, was dissolved at a ratio of 100 mg to 100 ml in physiological saline containing as a stabilizer 1%(w/v) sucrose free from pyrogen. These solutions were made germ free in a usual manner, distributed by 1 ml into vials, and lyophilized, and the vials were sealed.

[0070] These products, having excellent stability, are useful as a dried injection to treat or prevent the susceptive diseases including autoimmune diseases, inflammatory diseases, and allergic diseases.

10 Example 7: Ointment

[0071] Carboxyvinyl polymer ("Hi-Bis Wako," produced by Wako Pure Chemical Co., Ltd.) and pulverized crystalline trehalose ("Trehaose," commercialized by Hayashibara Shoji, Inc.) free from pyrogen were dissolved in sterilized-distilled water to give the respective concentrations of 1.4%(w/w) and 2.0%(w/w). This solution was mixed to a homogeneity with a purified preparation of the IL-18-binding protein, obtained by the method in Example 1-1 or 2-2, and then adjusted to pH 7.2. Thus 2 types of paste containing about 1 mg/g IL-18-binding protein were obtained.

[0072] These products, having excellent spreadability and stability, are useful as an ointment to treat or prevent the susceptive diseases including autoimmune diseases, inflammatory diseases, and allergic diseases.

20 Example 8: Tablets

30

35

40

45

50

55

[0073] Pulverized anhydrous maltose ("Finetose," commercialized by Hayashibara Shoji, Inc.) free from pyrogen was mixed to homogeneity with a purified preparation of IL-18-binding protein, obtained by the method in Example 1-1 or 1-2, and Lumin as a cell activator. These mixtures were tableted in a usual manner so that two types of tablets, each piece (about 200 mg) containing about 1 mg of the IL-18-binding protein and about 1 mg of Lumin (produced by Nihon Kanko Shikiso Co., Ltd.), were obtained.

[0074] These products, having excellent ingestibility and stability as well as cell-activating activity, are useful as tablets to treat or prevent the susceptive diseases including autoimmune diseases, inflammatory diseases, and allergic diseases.

Experiment: Acute Toxicity Test

[0075] A purified preparations of the IL-18-binding protein, obtained by the method in Example 1-1, 2-2, 3-1, or 4-2 was administered orally, intraperitoneally, or intravenously to five-week-old ddy mice (body weight of 20 to 25 g) in a usual manner. These purified preparations of the IL-18-binding protein had LD50 of about 1 mg/mouse-body-weight or higher, through any administration route. This indicates that it is safe to incorporate the IL-18-binding protein of this invention into pharmaceuticals to be administered to humans and other mammals.

INDUSTRIAL APPLICABILITY

[0076] As described above, this invention is established on the basis of the finding of a novel protein which binds to IL-18. The protein of this invention suppresses the physiological activities of IL-18, which is responsible for activation of immune system, in humans and other mammals, and this protein exhibits a distinguished efficacy in alleviating rejection reactions associated with organ transplantation and in treating and preventing various diseases resulting from augmented immunoreactions.

13

SEQUENCE LISTING

5	(1)	INF	ORMA	TION	FOR	SEQ	ID	NO:	1							
			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:						
10				(A)	LEN	GTE:	164	ani	no a	cids						
				(B)	TYP	E: a	mino	aci	d							
				(D)	TOP	OLOG	Y: 1	inea	r							
15			(Xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 1				
20	Thr	Pro	Val	Ser	Gln	Thr	Thr	Thr	Ala	Ala	Thr	Ala	Ser	Val	Arg	Ser
	1				5					10					15	
	Thr	Lys	Asp	Pro	Cys	Pro	Ser	Gln	Pro	Pro	Val	Phe	Pro	Ala	Ala	Lys
25				20					25					30		
	Gln	Cys	Pro	Ala	Leu	Glu	Val	Thr	Trp	Pro	Glu	Val	Glu	Val	Pro	Leu
			35					40					45			
30	Asn	Gly	Thr	Leu	Ser	Leu	Ser	Cys	Val	Ala	Cys	Ser	Arg	Phe	Pro	Asn
		50					55					60				
35 .	Phe	Ser	Ile	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	Ile	G1u	His	Leu
	65					70					75					80
	Pro	Gly	Arg	Leu	Trp	Glu	Gly	Ser	Thr	Ser	Arg	Glu	Arg	Gly	Ser	Thr
40					85					90					95	
	Gly	Thr	Gln	Leu	Cys	Lys	Ala	Leu	Val	Leu	Glu	Gln	Leu	Thr	Pro	Ala
45				100					105					110		
45	Leu	His	Ser	Thr	Asn	Phe	Ser	Cys	Val	Leu	Val	Asp	Pro	Glu	Gln	Val
			115					120					125			
50	Val	Gln	Arg	His	Val	Val	Leu	Ala	Gln	Leu	Trp	Ala	Gly	Leu	Arg	Ala
		130					135					140				
	Thr	Leu	Pro	Pro	Thr	G1n	Glu	Ala	Leu	Pro	Ser	Ser	His	Ser	Ser	Pro
. · · · · · · · · · · · · · · · · · · ·	145					150					155					160

Gln Gln Gln Gly

	(2)	INF	ORMA	TION	FOR	SEQ	ID i	NO: :	2							
10			(i)	SEQU	ENCE	CHA	RACT	ERIS	rics	:						
				(A)	LEN	GTH:	165	anii	no a	cids						
				(B)	TYP	E: aı	nino	acie	d							
15				(D)	TOP	OLOG'	Y: 1:	inea	r							
		1	(Xi)	SEQ	UENC	E DE	SCRII	PTIO	N: S	EQ II	D NO	: 2				
20																
20	Thr	Ser	Ala	Pro	Gln	Thr	Thr	Ala	Thr	Val	Leu	Thr	Gly	Ser	Ser	Lys
	1				5					10					15	
25	Asp	Pro	Cys	Ser	Ser	Trp	Ser	Pro	Ala	Val	Pro	Thr	Lys	Gln	Tyr	Pro
				20					25					30		
	Ala	Leu	Asp	Val	Ile	Trp	Pro	Glu	Lys	G1u	Val	Pro	Leu	Asn	Gly	Thr
30			35				٠	40					45			
•	Leu	Thr	Leu	Ser	Cys	Thr	Ala	Cys	Ser	Arg	Phe	Pro	Tyr	Phe	Ser	Ile
35		50					. 55 .					60				
	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	Ile	Glu	His	Leu	Pro	Gly	Arg
	65					70					75					80
40	Leu	Lys	Glu	Gly	His	Thr	Ser	Arg	G1u	His	Arg	Asn	Thr	Ser	Thr	Trp
					85					90					95	
	Leu	His	Arg	Ala	Leu	Val	Leu	Glu	Glu	Leu	Ser	Pro	Thr	Leu	Arg	Ser
15				100					105					110		
	Thr	Asn	Phe	Ser	Cys	Leu	Phe	Val	Asp	Pro	Gly	Gln	Val	Ala	Gln	Tyr
50			115					120					125			
	His	Ile	Ile	Leu	Ala	Gln	Leu	Trp	Asp	Gly	Leu	Lys	Thr	Ala	Pro	Ser
		130					135					140				
55	Pro		Gln	G1u	Thr	Leu	Ser	Ser	His	Ser	Pro	Val	Ser	Arg	Ser	Ala

	145	150	155	160
5	Gly Pro Gly	Val Ala		
v		165		
10				
	(3) INFORMAT	ION FOR SEQ ID NO	: 3	
	(i) SI	EQUENCE CHARACTER	ISTICS:	
15	((A) LENGTH: 22 am	ino acids	
	((B) TYPE: amino a	cid	
20		(D) TOPOLOGY: lin	ear	
	(ii) <i>l</i>	MOLECULE TYPE: N-	terminal fragment	
	(Xi) S	SEQUENCE DESCRIPT	ION: SEQ ID NO: 3	
25				
	Thr Pro Val S	Ser Gln Xaa Xaa X	aa Ala Ala Xaa Ala Xaa	a Val Arg Xaa
30	1	5	10	15
	Xaa Lys Asp F	Pro Cys Pro		
		20		
35		•••		
40		ON FOR SEQ ID NO		
40		EQUENCE CHARACTER		
		(A) LENGTH: 9 amin		
45		(B) TYPE: amino ac		
		(D) TOPOLOGY: line		
		OLECULE TYPE: in		
50	(Xi) S	SEQUENCE DESCRIPT	ION: SEQ ID NO: 4	
	01 0 01 0			
55		Sly Thr Gln Leu C	ys Lys	
	1	5		

	(5) INFORMATION FOR SEQ ID NO: 5
5	(i) SEQUENCE CHARACTERISTICS:
Ů	(A) LENGTH: 11 amino acids
	(B) TYPE: amino acid
10	
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
15	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5
	01 4 01 0 75 01 75 01 1 0 1
20	Glu Arg Gly Ser Thr Gly Thr Gln Leu Cys Lys
20	1 5 10
25	(6) INFORMATION FOR SEQ ID NO: 6
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 8 amino acids
	(B) TYPE: amino acid
25	(D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: internal fragment
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6
40	
	Leu Trp Glu Gly Ser Thr Ser Arg
	1 5
45	
	(7) INFORMATION FOR SEQ ID NO: 7
50	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 15 amino acids

		(B) TYPE: amino	acid	
		(D) TOPOLOGY: 1:	inear	
5	(ii)	MOLECULE TYPE: 1	N-terminal fragment	
•	(Xi)	SEQUENCE DESCRI	PTION: SEQ ID NO: 7	
10				
	Thr Pro Val	Ser Gln Xaa Xaa	Xaa Ala Ala Xaa Ala	. Xaa Val Arg
	1	5	10	15
15	<u>-</u>	·		10
20	(8) INFORMA	TION FOR SEQ ID 1	io: 8	
20	(i)	SEQUENCE CHARACTE	ERISTICS:	
		(A) LENGTH: 23 a	umino acids	
25		(B) TYPE: amino	acid	
		(D) TOPOLOGY: 1	near	
·	(ii)	MOLECULE TYPE: i	internal fragment	
30	(Xi)	SEQUENCE DESCRIF	TION: SEQ ID NO: 8	
35	His Val Val	Leu Ala Gln Leu	Trp Ala Gly Leu Arg	Ala Xaa Leu Pro
	1	5	10	15
•	Xaa Xaa Gln	Glu Ala Leu Pro		
40		20		
45				
45	(9) INFORMA	TION FOR SEQ ID N	iO: 9	
,	(i)	SEQUENCE CHARACTE		
50		(A) LENGTH: 10 a		
		(B) TYPE: amino		
		(D) TOPOLOGY: 1i	•	
55	(ii)	MOLECULE TYPE: i	nternal fragment	

(Xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:	Q
(41)	ODGODIOD	DECOURTE FIGURE	ODG	10	110.	u

	Ala Leu Val Leu Glu Gln Leu Xaa Xaa Ala 1 5 10
10	
15	(10) INFORMATION FOR SEQ ID NO: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 amino acids
	(B) TYPE: amino acid
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
25	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10
	Ala Leu Val Leu Glu Gln Leu Thr Pro Ala Leu His Xaa Xaa Xaa Phe
30	1 5 10 15
	Xaa Xaa Val Leu Val Asp Pro Glu Gln Val Val Gln Arg
35	20 25
	(11) INCODUATION COD COO ID NO. 11
40	(11) INFORMATION FOR SEQ ID NO: 11 (i) SEQUENCE CHARACTERISTICS:
·	(A) LENGTH: 12 amino acids
45	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
50	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11
55	Gln Cys Pro Ala Xaa Glu Val Thr Trp Xaa Glu Val

	1	5	10
5			
	(12) INFO	RMATION FOR SEQ ID	NO: 12
10	(i) SEQUENCE CHARACT	ERISTICS:
		(A) LENGTH: 7 as	nino acids
		(B) TYPE: amino	acid
15		(D) TOPOLOGY: 1	inear
	(i	i) MOLECULE TYPE:	internal fragment
20	(X	i) SEQUENCE DESCRIE	PTION: SEQ ID NO: 12
	Trp Glu G	ly Ser Thr Ser Arg	
25	1	5	
30		RMATION FOR SEQ ID SEQUENCE CHARACTE	
	_ .	(A) LENGTH: 6 am	
35		(B) TYPE: amino	
		(D) TOPOLOGY: 1i	
40	(ii	i) MOLECULE TYPE: i	nternal fragment
	(Xi	i) sequence descrip	TION: SEQ ID NO: 13
45	Leu Val As	sp Pro Glu Gln	
	1	5	
50			
	(14) INFOR	RMATION FOR SEQ ID	NO: 14
55 .		SEQUENCE CHARACTE	

	(A) LENGTH: 7 amino acids
5	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
10	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14
. 15	Ile Glu His Leu Pro Gly Arg
	1 5
20	
	(15) INFORMATION FOR SEQ ID NO: 15
•	(i) SEQUENCE CHARACTERISTICS:
25	(A) LENGTH: 4 amino acids
	(B) TYPE: amino acid
30	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
•	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15
35	·
	His Val Val Leu
40	1
40	
45	(16) INFORMATION FOR SEQ ID NO: 16
10	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 7 amino acids
50	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
55	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16

	Glu Gln Leu Thr Pro Ala Leu
5	1 5
10	(17) INFORMATION FOR SEQ ID NO: 17
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 8 amino acids
75	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: internal fragment
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17
25	Ile Glu His Leu Pro Gly Arg Leu
	1 5
30	·
	(18) INFORMATION FOR SEQ ID NO: 18
35	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 6 amino acids
	(B) TYPE: amino acid
40	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
45	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18
	Tun You Lou Clu Y Cla
50	Tyr Xaa Leu Gly Xaa Gly
	1 5

	(19) INFORMATION FOR SEQ ID NO: 19
_	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 4 amino acids
	(B) TYPE: amino acid
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: internal fragment
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19
15	
	Phe Pro Asn Phe
. 20	1
	(AA) ANTIANULTUN TOT OTO AT AT A
25	(20) INFORMATION FOR SEQ ID NO: 20
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 8 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: internal fragment (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20
	(AI) SEQUENCE DESCRIPTION: SEQ ID NO: 20
40	Tyr Xaa Leu Gly Xaa Gly Xaa Phe
	1 5
4 5	
	(21) INFORMATION FOR SEQ ID NO: 21
50	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 7 amino acids
	(B) TYPE: amino acid
55	(D) TOPOLOGY: linear

	(ii)	MOLECULE TYPE: i	nternal fr	agment	
_	(Xi)	SEQUENCE DESCRIP	TION: SEQ	ID NO:	21
	Glu Val Thr	Xaa Xaa Glu Val			
10	1	5			
15					
	(22) INFORM	ATION FOR SEQ ID	NO: 22		
	(i)	SEQUENCE CHARACTE	RISTICS:		
20		(A) LENGTH: 8 am	ino acids		
		(B) TYPE: amino	acid		
		(D) TOPOLOGY: li	near		
25	(ii)	MOLECULE TYPE: in	nternal fra	agment	
·	(Xi)	SEQUENCE DESCRIP	rion: seq	ID NO:	22
30					
	Tyr Xaa Leu	Gly Xaa Gly Xaa (?he		
	1	5			
35		6 (C.)			
	(00) INDODA	ATION FOR SEQ ID I	۷ ۸. 99		
40		SEQUENCE CHARACTE			
		(A) LENGTH: 11 as			
		(B) TYPE: amino a			
45		(D) TOPOLOGY: 1in			
	(ii)	MOLECULE TYPE: in		agment	
		SEQUENCE DESCRIP		_	23
50	\/			.	-
	Xaa Xaa Val	Ala Xaa Xaa Arg I	Phe Pro Asi	n Phe	
55	1	5	10		

	(24) INFORM	ATION FOR SEQ ID NO:	24
5	(i)	SEQUENCE CHARACTERIS	TICS:
		(A) LENGTH: 8 amino	acids
		(B) TYPE: amino aci	d
10		(D) TOPOLOGY: linea	r
	(ii)	MOLECULE TYPE: inte	rnal fragment
15	(Xi)	SEQUENCE DESCRIPTION	N: SEQ ID NO: 24
	Leu Lys Glu	Gly His Thr Ser Arg	
20	1	5	
25			
		ATION FOR SEQ ID NO:	
	(i) S	SEQUENCE CHARACTERIS	
30		(A) LENGTH: 11 amin	
		(B) TYPE: amino acid	
35	44.5	(D) TOPOLOGY: linear	
30		MOLECULE TYPE: inte	_
•	(Xi)	SEQUENCE DESCRIPTION	N: SEQ ID NO: 25
40	01 m: k	V	7 - 77 - 4
		Xaa Thr Ser Thr Trp	
	1	5	10
45			
•	(OC) INDODU	TION FOR SEQ ID NO:	96
50		EQUENCE CHARACTERIST	
	(1) 8	• • • • • • • • • • • • • • • • • • • •	
		(A) LENGTH: 10 amino	o acids

		(B) TYPE: amino	acid
5		(D) TOPOLOGY: 1	inear
	(ii) MOLECULE TYPE:	internal fragment
	(Xi) SEQUENCE DESCRI	PTION: SEQ ID NO: 26
10			
	Glu His Ar	g Xaa Thr Ser Thr	Xaa Leu His
. 15	1	5	10
20		MATION FOR SEQ ID	
	(i)	SEQUENCE CHARACTI	
25		(A) LENGTH: 13 a	
		(B) TYPE: amino	
		(D) TOPOLOGY: 1:	
30) MOLECULE TYPE:	_
	(λ1,) SEQUENCE DESCRIE	PTION: SEQ ID NO: 27
35	Xaa Xaa Xa	a Xaa Xaa Xaa Xaa	Xaa Ala Val Pro Thr Lys
	1	5	10
40			
40			
	(28) INFOR	MATION FOR SEQ ID	NO: 28
45	(i)	SEQUENCE CHARACTE	CRISTICS:
		(A) LENGTH: 12 a	mino acids
		(B) TYPE: amino	acid
50		(D) TOPOLOGY: 1i	near
	(ii)	MOLECULE TYPE: i	nternal fragment
55	(Xi)	SEQUENCE DESCRIE	TION: SEQ ID NO: 28

	Ala Leu Val	Leu Glu Glu	Leu Ser Pro	Thr Leu Arg
	1	5		10
5				
				•
10	(29) INFORM	ATION FOR SEQ	ID NO: 29	
	(i) (SEQUENCE CHAR	ACTERISTICS:	}
		(A) LENGTH:	7 amino acid	ls
15		(B) TYPE: am:	ino acid	
		(D) TOPOLOGY	: linear	
20	(ii)	MOLECULE TYPI	E: internal	fragment
	(Xi)	SEQUENCE DESC	CRIPTION: SE	Q ID NO: 29
·				
25	lle Glu His	Leu Pro Gly A	\ rg	
	1	5		
30				
30				
	(30) INFORMA	ATION FOR SEQ	ID NO: 30	
35	(i) S	SEQUENCE CHARA		
		(A) LENGTH: 6	amino acid	S
		(B) TYPE: ami		
40		(D) TOPOLOGY:		
		MOLECULE TYPE		
45	(Xi)	SEQUENCE DESC	CRIPTION: SE	Q ID NO: 30
	Xaa Asp Gly			
50	1	5		
55	/01\ riman	MION BOD OFF	ID 110 0:	
	(31) INFORMA	TION FOR SEQ	ID NO: 31	

	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 4 amino acids
	(B) TYPE: amino acid
	(D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: internal fragment
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31
15	His Ile Ile Leu
	1
20	
ne .	(32) INFORMATION FOR SEQ ID NO: 32
?5	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 492 base pairs
30	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double
	(D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: cDNA to mRNA
	(vi) ORIGINAL SOURCE:
10	(A) ORGANISM: human
	(B) TISSUE TYPE: liver
	(ix) FEATURE:
1 5	(A) NAME/KEY: mat peptide
	(B) LOCATION: 1492
	(C) IDENTIFICATION METHOD: E
50	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32
	ACA CCT GTC TCG CAG ACC ACC ACA GCT GCC ACT GCC TCA GTT AGA AGC 48
55	Thr Pro Val Ser Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser
	int the set out the the the site and the the out set set at the set

	1				5					10					15		
_	ACA	AAG	GAC	CCC	TGC	CCC	TCC	CAG	CCC	CCA	GTG	TTC	CCA	GCA	GCT	AAG	96
5	Thr	Lys	Asp	Pro	Cys	Pro	Ser	Gln	Pro	Pro	Val	Phe	Pro	Ala	Ala	Lys	
				20					25					30			
10	CAG	TGT	CCA	GCA	TTG	GAA	GTG	ACC	TGG	CCA	GAG	GTG	GAA	GTG	CCA	CTG	144
	Gln	Cys	Pro	Ala	Leu	Glu	Val	Thr	Trp	Pro	Glu	Val	Glu	Val	Pro	Leu	
			35					40					45				
15	AAT	GGA	ACG	CTG	AGC	TTA	TCC	TGT	GTG	GCC	TGC	AGC	CGC	TTC	CCC	AAC	192
	Asn	Gly	Thr	Leu	Ser	Leu	Ser	Cys	Val	Ala	Cys	Ser	Arg	Phe	Pro	Asn	
20	•	50					55					60					
	TTC	AGC	ATC	CTC	TAC	TGG	CTG	GGC	AAT	GGT	TCC	TTC	ATT	GAG	CAC	CTC	240
	Phe	Ser	Ile	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	lle	Glu	His	Leu	
25	65					70					75					80	
	CCA	GGC	CGA	CTG	TGG	GAG	GGG	AGC	ACC	AGC	CGG	GAA	CGT	GGG	AGC	ACA	288
	Pro	G1y	Arg	Leu	Trp	Glu	Gly	Ser	Thr	Ser	Arg	Glu	Arg	Gly	Ser	Thr	
30					85					90					95		
	GGT	ACG	CAG	CTG	TGC	AAG	GCC	TTG	GTG	CTG	GAG	CAG	CTG	ACC	CCT	GCC	336
35	Gly	Thr	G1n	Leu	Cys	Lys	Ala	Leu	Val	Leu	Glu	Gln	Leu	Thr	Pro	Ala	
				100					105					110			
				ACC													384
40	Leu	His	Ser	Thr	Asn	Phe	Ser	Cys	Val	Leu	Val	Asp	Pro	Glu	Gln	Val	
			115					120					125				
45	GTC	CAG	CGT	CAC	GTC	GTC	CTG	GCC	CAG	CTC	TGG	GCT	GGG	CTG	AGG	GCA	432
	Val	Gln	Arg	His	Val	Val	Leu	Ala	G1n	Leu	Trp	Ala	Gly	Leu	Arg	Ala	
		130					135					140					
50	ACC	TTG	CCC	CCC	ACC	CAA	GAA	GCC	CTG	CCC	TCC	AGC	CAC	AGC	AGT	CCA	480
	Thr	Leu	Pro	Pro	Thr	Gln	Glu	Ala	Leu	Pro	Ser	Ser	His	Ser	Ser	Pro	
	145					150					155					160	
55	CAG	CAG	CAG	GGT													492

Gln Gln Gln Gly

	(33) INFORM	IATION FOR SEQ I	D NO: 33		
10	(i)	SEQUENCE CHARAC	TERISTICS:		
		(A) LENGTH: 49	5 base pairs		
15		(B) TYPE: nucle	eic acid		
,,		(C) STRANDEDNE	SS: double		
		(D) TOPOLOGY:	linear		
20	(ii)	MOLECULE TYPE:	cDNA to mRNA		
	(vi)	ORIGINAL SOURCE	E:		
		(A) ORGANISM:	nouse		
25		(B) TISSUE TYPE	E: liver		
	(ix)	FEATURE:			
30		(A) NAME/KEY: 1			
		(B) LOCATION:			
	4	(C) IDENTIFICATION			
35	(Xi)	SEQUENCE DESCR	IPTION: SEQ ID	NO: 33	•
	ልቦል ተቦተ ርቦል	CCT CAG ACA AC	፣ ር ርር ልርተ ርተር 1	ITA ACT GGA AGC 1	CA AAA 48
40				Leu Thr Gly Ser S	
	1	5	10	,	15
				CCA ACT AAG CAG T	
45				Pro Thr Lys Gln T	
	,	20	25	30	
50	GCA CTG GAT	GTG ATT TGG CCA	A GAA AAA GAA (GTG CCA CTG AAT G	GGA ACT 144
	Ala Leu Asp	Val Ile Trp Pro	o Glu Lys Glu V	/al Pro Leu Asn G	Sly Thr
	35		40	45	
55	ርፕር ልርር ፕፕር	ተርጉ ተርተ ልሮተ ርርና	ר דכר גכר רכר ז	TTC	CC ATC 109

	Leu	Thr	Leu	Ser	Cys	Thr	Ala	Cys	Ser	Arg	Phe	Pro	Tyr	Phe	Ser	He	
5		50					55					60					
	CTC	TAC	TGG	CTG	GGC	AAT	GGT	TCC	TTC	ATT	GAG	CAC	CTT	CCA	GGC	CCG	240
	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	lle	Glu	His	Leu	Pro	Gly	Arg	
10	65					70					75					80	
	CTG	AAG	GAG	GGC	CAC	ACA	AGT	CGC	GAG	CAC	AGG	AAC	ACA	AGC	ACC	TGG	288
15	Leu	Lys	Glu	Gly	His	Thr	Ser	Arg	Glu	His	Arg	Asn	Thr	Ser	Thr	Trp	
	•				85					90					95		
	CTG	CAC	AGG	GCC	TTG	GTG	CTG	GAA	GAA	CTG	AGC	ccc	ACC	CTA	CGA	AGT	336
20	Leu	His	Årg	Ala	Leu	Val	Leu	Glu	Glu	Leu	Ser	Pro	Thr	Leu	Arg	Ser	
				100					105					110			
25	ACC	AAC	TTC	TCC	TGT	TTG	TTT	GTG	GAT	CCT	GGA	CAA	GTG	GCC	CAG	TAT	384
25	Thr	Asn	Phe	Ser	Cys	Leu	Phe	Val	Asp	Pro	Gly	Gln	Val	Ala	Gln	Tyr	
			115					120					125				
30							CTC										432
	His		lle	Leu	Ala	Gln	Leu	Trp	Asp	Gly	Leu	Lys	Thr	Ala	Pro	Ser	
		130					135					140					
35	CCT																. 480
	Pro	Ser	Gln	Glu	Thr		Ser	Ser	His	Ser		Val	Ser	Arg	Ser		
40	145	001	000	0/7/7	001	150					155					160	
	GGC																495
	Gly	PTO	GIÀ	181													
45					165	•											
	•																
50	(34)	T MIC	UDII Y	ተ ፤ በአነ	מתו	ern	מז	NO.	94								
•	(34)						ACTE										
		(. •			411			re							
55							411 clei			. 3							
				. /	1 11 12	. 114											

				(C)	STR	ANDE	DNES	S: d	oubl	е							
5	•			(D)	TOP	OLOG"	Y: 1	inea	r								
			(ii)	MOL.	ECUL	E TY	PE:	cDNA	to	nRNA							
			(vi)	ORI	GINA	L SO	URCE	:									
10				(A)	ORG	ANIS	4: h	uman									
				(B)	TIS	SUE '	TYPE	: li	ver								
15	•		(Xi)	SEQ	UENC	E DES	SCRII	OITS	N: SI	EQ II	D NO	: 34					
		CCT															48
20		Pro	Val	Ser		Thr	Thr	Thr	Ala		Thr	Ala	Ser	Val	_	Ser	
	1				5					10			•••		15		
25		AAG															96
	int	Lys	ASP		Cys	Pro	5er	GIN		PTO	Val	rne	Pro		Ala	Lys	
	CYC	TGT	UC I	20 CCA	TTC	CAA	CTC	ACC.	25 TGC	CC#	GAG	CTC	CAA	30	₩.	CTC	1.4.4
30		Cys															144
	01.	. 0,0	35		200	V1.		40			014	,	45	,,,,		Deu	
35	ÄAT	GGA	ACG	CTG	AGC	TTA	TCC	TGT	GTG	GCC	TGC	AGC		TTC	CCC	AAC	192
	Asn	Gly	Thr	Leu	Ser	Leu	Ser	Cys	Val	Ala	Cys	Ser	Arg	Phe	Pro	Asn	
		50					55					60					
40	TTC	AGC	ATC	CTC	TAC	TGG	CTG	GGC	AAT	GGT	TCC	TTC	ATT	GAG	CAC	CTC	240
	Phe	Ser	Ile	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	lle	Glu	His	Leu	
45	- 65					70					75					80	
	CCA	GGC	CGA	CTG	TGG	GAG	GGG	AGC	ACC	AGC	CGG	GAA	CGT	GGG	AGC	ACA	288
	Pro	Gly	Arg	Leu	Trp	Glu	Gly	Ser	Thr	Ser	Arg	Glu	Arg	Gly	Ser	Thr	
50					85					90					95		
	GGT	ACG	CAG	CTG	TGC	AAG	GCC	TTG	GTG	CTG	GAG	CAG	CTG	ACC	CCT	CCC	336
55	Gly	Thr	Gln		Cys	Lys	Ala	Leu		Leu	Glu	Gln	Leu	Thr	Pro	Ala	
-				100					105					110			

	CTG CAC AGC ACC AAC TTC TCC TGT GTG CTC GTG GAC CCT GAA CAG GTT 38	34
5	Leu His Ser Thr Asn Phe Ser Cys Val Leu Val Asp Pro Glu Gln Val	
	115 120 125	
	GTC CAG CGT CAC GTC GTC CTG GCC CAG	. 1
10	Val Gln Arg His Val Val Leu Ala Gln	
	130 135	
15		
15		
	(35) INFORMATION FOR SEQ ID NO: 35	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 216 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: human	
35	(B) TISSUE TYPE: liver	
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35	
40	TGTGTGACTG GAGAAGAGGA CGTTGTCACA GATAAAGAGC CAGGCTCACC AGCTCCTGAC	0
	GCATGCATC ATG ACC ATG AGA CAC AAC TGG ACA CCA GAC CTC AGC CCT TTG 11	.1
45	Met Thr Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu	
	1 5 10	
	TGG GTC CTG CTC CTG TGT GCC CAC GTC GTC ACT CTC CTG GTC AGA GCC 15	9
50	Trp Val Leu Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala	
	15 20 25 30	
55	ACA CCT GTC TCG CAG ACC ACC ACA GCT GCC ACT GCC TCA GTT AGA AGC 20	17
	Thr Pro Val Ser Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser	

	35	40	45	
5	ACA AAG GAC			216
	Thr Lys Asp			
10				
	(36) INFORMATION FOR SEQ I	D NO: 36		
15	(i) SEQUENCE CHARAC	TERISTICS:		
	(A) LENGTH: 23	4 base pairs		
	(B) TYPE: nucl	eic acid		
20	(C) STRANDEDNE	SS: double		
	(D) TOPOLOGY:	linear		
	(ii) MOLECULE TYPE:	cDNA to mRNA		
25	(vi) ORIGINAL SOURC	E:		
	(A) ORGANISM:	human		
30	(B) TISSUE TYP			
	(Xi) SEQUENCE DESCR	IPTION: SEQ ID NO	: 36	
	TTC TCC TGT GTG CTC GTG GA	C CCT GAA CAG GTT	CTC CAG CGT- CAC- CTC	48
35	Phe Ser Cys Val Leu Val As			40
	1 5	10	15	
40	GTC CTG GCC CAG CTC TGG GC			96
	Val Leu Ala Gln Leu Trp Al	a Gly Leu Arg Ala	Thr Leu Pro Pro Thr	
	20	25	30	
45	CAA GAA GCC CTG CCC TCC AC	GC CAC AGC AGT CCA	CAG CAG CAG GGT	141
	Gln Glu Ala Leu Pro Ser Se	r His Ser Ser Pro	Gln Gln Gln Gly	
50	35	40	45	
	TAAGACTCAG CACAGGGCCA GCAC	GCAGCAC AACCTTGACC	AGAGCTTGGG TCCTACCTGT	201
	CTACCTGGAG TGAACAGTCC CTGA	ICTGCCT GTA		234
55				

	(37) INFORMATION FOR SEQ ID NO: 37	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 744 base pairs	
	(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: cDNA to mRNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: human	
20	(B) TISSUE TYPE: liver	
	(ix) FEATURE:	
	(A) NAME/KEY: mat peptide	
25	(B) LOCATION: 160651	
	(C) IDENTIFICATION METHOD: E	
30	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37	
	TGTGTGACTG GAGAAGAGGA CGTTGTCACA GATAAAGAGC CAGGCTCACC AGCTCCTGAC	60
35	GCATGCATC ATG ACC ATG AGA CAC AAC TGG ACA CCA GAC CTC AGC CCT TTG 1	11
	Met Thr Met Arg His Asn Trp Thr Pro Asp Leu Ser Pro Leu	
40	-30 -25 -20	
		59
	Trp Val Leu Leu Cys Ala His Val Val Thr Leu Leu Val Arg Ala	
45	-15 -10 -5	
		07
50	Thr Pro Val Ser Gln Thr Thr Ala Ala Thr Ala Ser Val Arg Ser	
	1 5 10 15	
		55
E E	Thr Lys Asp Pro Cys Pro Ser Gln Pro Pro Val Phe Pro Ala Ala Lys	

				20					25					30			
5	CAG	TGT	CCA	GCA	TTG	GAA	GTG	ACC	TGG	CCA	GAG	GTG	GAA	GTG	CCA	CTG	303
v	-G1n	Cys	Pro	Ala	Leu	Glu	Val	Thr	Trp	Pro	Glu	Val	Glu	Val	Pro	Leu	
			35					40					45				
10	AAT	GGA	ACG	CTG	AGC	TTA	TCC	TGT	GTG	GCC	TGC	AGC	CGC	TTC	CCC	AAC	351
	Asn	Gly	Thr	Leu	Ser	Leu	Ser	Cys	Val	Ala	Cys	Ser	Arg	Phe	Pro	Asn	
		50					55					60					
15	TTC	AGC	ATC	CTC	TAC	TGG	CTG	GGC	AAT	GGT	TCC	TTC	ATT	GAG	CAC	CTC	399
	Phe	Ser	Ile	Leu	Tyr	Trp	Leu	Gly	Asn	Gly	Ser	Phe	Ile	Glu	His	Leu	
20	65					70					75					80	
	CCA	GGC	CGA	CTG	TGG	GAG	GGG	AGC	ACC	AGC	CGG	GAA	CGT	GGG	AGC	ACA	447
	Pro	Gly	Arg	Leu	Trp	Glu	Gly	Ser	Thr	Ser	Arg	G1u	Arg	Gly	Ser	Thr	
25					85					90					95		
	GGT	ACG	CAG	CTG	TGC	AAG	GCC	TTG	GTG	CTG	GAG	CAG	CTG	ACC	CCT	GCC	495
30	Gly	Thr	Gln	Leu	Cys	Lys	Ala	Leu	Val	Leu	Glu	Gln	Leu	Thr	Pro	Ala	
				100					105					110			
	CTG	CAC	AGC	ACC	AAC	TTC	TCC	TGT	GTG	CTC	GTG	GAC	CCT	GAA	CAG	GTT	543
35	Leu	His	Ser	Thr	Asn	Phe	Ser	Cys	Val	Leu	Val	Asp	Pro	Glu	Gln	Val	
	٠		115					120					125				
	GTC	CAG	CGT	CAC	GTC	GTC	CTG	GCC	CAG	CTC	TGG	GCT	GGG	CTG	AGG	GCA	591
40	Val	Gln	Arg	His	Val	Val	Leu	Ala	Gln	Leu	Trp	Ala	Gly	Leu	Arg	Ala	
		130					135					140					
45				CCC										-			639
	Thr	Leu	Pro	Pro	Thr		Glu	Ala	Leu	Pro		Ser	His	Ser	Ser	Pro	
	145					150					155					160	
50	CAG	CAG	CAG	GGT	TAAC	GACTO	CAG (CACAC	GGCC	CA GO	CAGC	\GCA(C AAC	CCTT	GACC		691
		Gln															
55	AGAC	GCTT(GGG 1	rcct/	ICCT(et C	FACC:	rgga(G TG/	AACA(TCC	CTG/	ACTG(CCT (GTA		744

	(38) IN	FURM	ATIO	n fu	k se	g ib	NO:	38								
5			(i)	SEQU	ENCE	CHA	RACT	ERIS	TICS	:							
	,			(A)	LEN	GTH:	351	bas	e pa	irs							
				(B)	TYP	E: n	ucle	ic a	cid								
10				(C)	STR	ANDE	DNES	S: d	oubl	е							
				(D)	TOP	OLOG	Y: 1	inea	r								
45			(ii)	MOL	ECUL	E TY	PE:	cDNA	to	DRNA							
15	•		(vi)	ORI	GINA	L SO	URCE	:									
				(Å)	ORG	ANIS	M: m	ouse									
20				(B)	TIS	SUE '	TYPE	: li	ver								
			(Xi)	SEQ	UENC	E DE	SCRI	PT I O	N: S	EQ II	0N C	: 38					
25	GCA	GTC	CCA	ACT	AAG	CAG	TAC	CCA	GCA	CTG	GAT	GTG	ATT	TGG	CCA	GAA	48
	Ala	Val	Pro	Thr	Lys	Gln	Tyr	Pro	Ala	Leu	Asp	Val	Ile	Trp	Pro	G1u	
30	1				5					10					15		
		GAA															96
	·Lys	Glu	Val		Leu	Asn	Gly	Thr		Thr	Leu	Ser	Cys		Ala	Cys	
35		000	550	20					25	=10	500			30			
		CCC															144
40	Ser	Arg		Pro	ıyr	rne	Ser		Leu	lyr	Irp	Leu		Asn	Gly	Ser	
	ተተ ሶ	ል ፖ ጥ	35	CYC	ሶ ተተ	CCA	ccc	40	<u> </u>	110	CIC	ccc	45	101	LOTO	000	100
		ATT															192
45	rne	11e 50	GIU	nis	Leu	FIU	55	MIR	Leu	LyS	GIU		uis	ınr	ser	Arg	
	CAC	CAC	ACC	A A C	A C A	ነርር ነ		TCC	ርፕር	CYC	YCC.	60	ተተ ሶ	ርተር	ር ተ	CLI	040
50																	240
	65	His	urR	noll	1111	70	THE	ırþ	Deu	1112	75	utg	Leu	igī	reu		
		CTG	የርሶ	የ	ACC		CCI	ACT	A/Y	717		ፐርሶ	ፐርጥ	ም ር	ጉ ጉጉ	80 CTC	288
	UNI	OIG	$\alpha \sigma \sigma$	\sim	1100	OIU.	A011	1141	IIV	11111	110	100	LUI	110	111	UIU	7.00

	Glu Leu Ser Pro Thr Leu Arg Ser Thr Asn Phe Ser Cys Leu Phe Val								
5	85 90 95								
	GAT CCT GGA CAA GTG GCC CAG TAT CAC ATC ATT CTG GCC CAG CTC TGG	336							
	Asp Pro Gly Gln Val Ala Gln Tyr His Ile Ile Leu Ala Gln Leu Trp								
10	100 105 110								
	GAT GGG TTG AAG ACA	351							
	Asp Gly Leu Lys Thr								
15	115								
20									
	(39) INFORMATION FOR SEQ ID NO: 39								
	(i) SEQUENCE CHARACTERISTICS:								
25	(A) LENGTH: 336 base pairs								
	(B) TYPE: nucleic acid								
	(C) STRANDEDNESS: double								
30	(D) TOPOLOGY: linear								
	(ii) MOLECULE TYPE: cDNA to mRNA								
35	(vi) ORIGINAL SOURCE:								
	(A) ORGANISM: mouse	•							
	(B) TISSUE TYPE: liver								
40	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39								
	CTGAGCCTTA GAGCTCCAAG AAGCTATTCG GGGCTTAGGA GCCAGAAGCT GACTGCTGCC	60							
45	TECCCTTCCC AGAAGGAGGC TEGCAAGCTE GCAAACGGAC TETTECTTCC CAGAGGAAGT	120							
	CACAGACACC AGACTTGCTT GCAAGTCATC ATG ACC ATG AGA CAC TGC TGG ACA	174							
50	Met Thr Met Arg His Cys Trp Thr								
	1 5								
	GCA GGC CCC AGT TCT TGG TGG GTC CTG CTT TTG TAT GTC CAT GTC ATT	222							
55	Ala Gly Pro Ser Ser Trp Trp Val Leu Leu Leu Tyr Val His Val Ile								

10	15	20	
TTG GCC AGA GCC	ACA TCT GCA CCT CA	G ACA ACT GCC ACT	GTC TTA ACT 270
Leu Ala Arg Ala	Thr Ser Ala Pro Gl	n Thr Thr Ala Thr	Val Leu Thr
25	30	35	40
GGA AGC TCA AAA	GAC CCA TGC TCT TC	C TGG TCT CCA GCA	GTC CCA ACT 318
Gly Ser Ser Lys	Asp Pro Cys Ser Se	r Trp Ser Pro Ala	Val Pro Thr
	45	50	55
AAG CAG TAC CCA	GCA CTG		336
Lys Gln Tyr Pro	Ala Leu		
60			
·			
(40) INFORMATION	FOR SEQ ID NO: 40		
	_	airs	
•			
		le	
		-DN4	
		MKNA	
·			
		2FA ID NA. 4A	
(VI) 2D40	ENCE DESCRIPTION:	ope in un: 40	
CAT CCT CCA CAA	ርፕር ርՐሶ ቦልር ፕልፕ ቦል!	ጉ ልጥር ልጥሮ ርጥር ርርር	· ሶልር ቦፕሮ ፕሮር - 40
			15
711 VVV 114 11110	0-1 000 100 00		0.0101.000 30
	TTG GCC AGA GCC Leu Ala Arg Ala 25 GGA AGC TCA AAA Gly Ser Ser Lys AAG CAG TAC CCA Lys Gln Tyr Pro 60 (40) INFORMATION (i) SEQUE (A) (B) (C) (D) (ii) MOLE (vi) ORIG (A) (B) (Xi) SEQU GAT CCT GGA CAA Asp Pro Gly Gln 1	TTG GCC AGA GCC ACA TCT GCA CCT CAL Leu Ala Arg Ala Thr Ser Ala Pro G1 25 30 GGA AGC TCA AAA GAC CCA TGC TCT TCC Gly Ser Ser Lys Asp Pro Cys Ser Ser 45 AAG CAG TAC CCA GCA CTG Lys Gln Tyr Pro Ala Leu 60 (40) INFORMATION FOR SEQ ID NO: 40 (i) SEQUENCE CHARACTERISTICS (A) LENGTH: 253 base pro (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to (vi) ORIGINAL SOURCE: (A) ORGANISM: mouse (B) TISSUE TYPE: liver (Xi) SEQUENCE DESCRIPTION: SE	TTG GCC AGA GCC ACA TCT GCA CCT CAG ACA ACT GCC ACT Leu Ala Arg Ala Thr Ser Ala Pro Gln Thr Thr Ala Thr 25 30 35 GGA AGC TCA AAA GAC CCA TGC TCT TCC TGG TCT CCA GCA Gly Ser Ser Lys Asp Pro Cys Ser Ser Trp Ser Pro Ala 45 50 AAG CAG TAC CCA GCA CTG Lys Gln Tyr Pro Ala Leu 60 (40) INFORMATION FOR SEQ ID NO: 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 253 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA (vi) ORIGINAL SOURCE: (A) ORGANISM: mouse (B) TISSUE TYPE: liver (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40 GAT CCT GGA CAA GTG GCC CAG TAT CAC ATC ATT CTG GCC Asp Pro Gly Gln Val Ala Gln Tyr His Ile Ile Leu Ala

	20	25	30
	CAC AGC CCA GTA T	OC AGA TOA GOA GGO COA GGG	GTT GCA TAAAGCCAAC 145
5	His Ser Pro Val S	er Arg Ser Ala Gly Pro Gly	Val Ala
	35	40	45
10	CACACCATGA CCTTGA	CCAG AGCCTGGCTC TCATCTACCT	GGAGGGTGGA GTCTACACCA 205
	TAGGCTGTGA TTGCCT	ITCT GCTGCTGAAC CTCAAACTCA	AGCTTCAC 253
15			
	(41) INFORMATION	FOR SEQ ID NO: 41	
20	(i) SEQUENO	CE CHARACTERISTICS:	
	(A) L	ENGTH: 847 base pairs	
	(B) T	PE: nucleic acid	
25	(C) S	TRANDEDNESS: double	
	(D) TO	OPOLOGY: linear	
30	(ii) MOLEC	JLE TYPE: cDNA to mRNA	
30	(vi) ORIGI	NAL SOURCE:	
		RGANISM: mouse	
35		SSUE TYPE: liver	
	(ix) FEATU		
		ME/KEY: mat peptide	
40		OCATION: 235729	
		DENTIFICATION METHOD: E	
45	(X1) SEQUE	ICE DESCRIPTION: SEQ ID NO	: 41
	OTC4000TT4 C400TC		CCC1C11CCT C1CTCCTCCC
		CAAG AAGCTATTCG GGGCTTAGGA	• •
50		CCTT GCAAGTCATC ATG ACC ATG	
	CACAGACACE AGACTIC		
55		get inf me	t Arg His Cys Trp Thr
			-25

	GCA	GGC	∞	AGT	TCT	TGG	TGG	GTC	CTG	CTT	TTG	TAT	GTC	CAT	GTC	ATT	222
5	Ala	Gly	Pro	Ser	Ser	Trp	Trp	Val	Leu	Leu	Leu	Tyr	Val	His	Val	Ile	
•	-20					-15					-10					-5	
,	TTG	GCC	AGA	GCC	ACA	TCT	GCA	CCT	CAG	ACA	ACT	GCC	ACT	GTC	TTA	ACT	270
10	Leu	Ala	Arg	Ala	Thr	Ser	Ala	Pro	Gln	Thr	Thr	Ala	Thr	Val	Leu	Thr	
					1				5					10			
	GGA	AGC	TCA	AAA	GAC	CCA	TGC	TCT	TCC	TGG	TCT	CCA	GCA	GTC	CCA	ACT	318
15	Gly	Ser	Ser	Lys	Asp	Pro	Cys	Ser	Ser	Trp	Ser	Pro	Ala	Val	Pro	Thr	
			15					20					25				
20	AAG	CAG	TAC	CCA	GCA	CTG	GAT	GTG	ATT	TGG	CCA	GAA	AAA	GAA	GTG	CCA	366
	Lys	Gln	Tyr	Pro	Ala	Leu	Asp	Val	Ile	Trp	Pro	Glu	Lys	Glu	Val	Pro	
		30					35					40					
25	CTG	AAT	GGA	ACT	CTG	ACC	TTG	TCC	TGT	ACT	GCC	TGC	AGC	CGC	TTC	ccc	414
	Leu	Asn	Gly	Thr	Leu	Thr	Leu	Ser	Cys	Thr	Ala	Cys	Ser	Arg	Phe	Pro	
,	45					50					55					60	
30	TAC	TTC	AGC	ATC	CTC	TAC	TGG	CTG	GGC	AAT	GGT	TCC	TTC	ATT	GAG	CAC	462
	Tyr	Phe	Ser	He	Leu	Tyr	Trp	Leu	Gly		Gly	Ser	Phe			His	
35					65					70					. 75		
	CTT																510
	Leu	Pro	Gly		Leu	Lys	Glu	Gly		Thr	Ser	Arg	Glu		Arg	Asn	
40				80		010	100	200	85	0.00	000		•	90			
					CTG												558
45	Thr	Ser		Trp	Leu	His	Arg		Leu	Val	Leu	Glu		Leu	Ser	Pro	
40		00.1	95	100	100		mmo	100	m0m	##A	TV TV	000	105	00m	001	011	202
					ACC												606
50	Thr		Arg	Ser	Thr	ASN		Ser	Cys	Leu	Pne		ASp	Pro	Gly	Gin	
	000	110	010		010	100	115	OTO	000	010	010	120	040	000	mm^	440	05.4
					CAC												654
55	val	Ala	gin	iyr	His	TTE	He	Leu	via	GTD	ren	ırp	ASP	GIÀ	Leu	Lys	

		125	130	135	140
			- '		
5				ACC CTC TCT AGC CA	,,,,
		Thr Ala Pro S	er Pro Ser Gln Glu	Thr Leu Ser Ser Hi	s Ser Pro Val
			145	150	155
10		TOC AGA TOA G	CA GGC CCA GGG GTT	GCA TAAAGCCAAC CAC	ACCATGA 749
		Ser Arg Ser A	la Gly Pro Gly Val	Ala	
		1	60	165	
15		CCTTGACCAG AG	OCTGGCTC TCATCTACC	T GGAGGGTGGA GTCTAC	ACCA TAGGCTGTGA 809
		TTGCCTTTCT GC	TGCTGAAC CTCAAACTC	A AGCTTCAC	847
20					
20	Cla	ims			
25	1.	An interleukin-18-binding 1 or 2.	g protein comprising a pa	rt or the whole of the amin	o acid sequence shown in SEQ ID NO:
25	2.	The interleukin-18-bindi shown in any one of SE		ich comprises a part or the	he whole of the amino acid sequence
30	3.		ng protein of claim 1 or polyacrylamide gel electr		cular weight of about 40,000 to about
	4.	The interleukin-18-binding	ng protein of claim 1, 2, c	or 3, which is obtainable fr	om a mammalian body fluid.
	5.	A DNA encoding the inte	erleukin-18-binding protei	in of any one of claims 1 t	o 4.
35	6.		•	•	ID NO:32 or 33, a nucleotide sequence mentary to said nucleotide sequence.
40	7.	An interleukin-18-suppre claims 1 to 4.	essor containing as an eff	ective ingredient the inter	leukin-18-binding protein of any one o
	8.	An agent for susceptive one of claims 1 to 4.	diseases containing as	an effective ingredient the	e interleukin-18-binding protein of any
45	9.	The agent for susceptive	e diseases of claim 8 as a	an anti-immunopathic age	nt.

(Note) The chromatogram A is the peptide map obtained after trypsin digestion, and the chromatogram B is that obtained after trypsin-pepsin digestion. The numerals 1 to 20 indicate the eluted positions of the peptide fragments 1 to 20 which were analyzed for amino acid sequence.

FIG. 1.

(Note) The chromatogram A is the peptide map obtained after trypsin digestion, and the chromatogram B is that obtained after trypsin-pepsin digestion. The numerals 1 to 8 indicate the eluted positions of the peptide fragments 1 to 8 which were analyzed for amino acid sequence.

FIG. 2.

FIG. 3.

FIG. 4.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/05186

A CLASS	A CLASSIFICATION OF SUBJECT MATTER Int.Cl C07K14/54, C12P21/02, C12N15/24, A61K38/20								
According to	According to International Patent Classification (IPC) or to both national classification and IPC								
	S SEARCHED								
Minimum d Int.	ocumentation searched (classification system followed C1 C07K14/54, C12P21/02, C12P	by classification symbols) N15/24, A61K38/20							
	ion searched other than minimum documentation to the								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/GeneSeq, Genbank/EMBL/DDBJ/GeneSeq, WPI (DIALOG), BIOSIS (DIALOG)									
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap		Relevant to claim No.						
A	Mark D. Adams et al., "Initiagene diversity and expression million nucleotides of cDNA se Vol. 377, No. 6547 suppl. p.	patterns based upon 83 quence", Nature (1995)	1-9						
A	Ushio Shimpei et al, "Cloning IFN-gamma-inducing factor, exp coli, and studies on the biol protein", Journal of Immunolo No. 11 p.4274-4279	pression in Escherichia ogic activities of the	1-9						
Further documents are listed in the continuation of Box C. Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance: E' earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered above or cannot be co									
	nailing address of the ISAV anese Patent Office	Authorized officer							
Facsimile N	ło.	Telephone No.	•						

Form PCT/ISA/210 (second sheet) (July 1992)