Tutorial 08, 16th of June 2025

Optimal Abatement in a static macroeconomy

The Economics of Climate Change

Dr. Sijmen Duineveld

Agenda

Note: Assignment 05 online today, due next week before class

- 1. Ingredients of Integrated Assessment Model (like DICE)
- 2. Simple Environmental Macro Model
 - Social Cost of Carbon
 - Marginal Abatement Costs
- 3. Adding utility function to E-Macro model
- 4. Labor supply in E-Macro model

Integrated Assessment Models: Interaction Economy, GHGs, and Climate

What does each component look like in an Integrated Assessment Model? (For example DICE)

"Economy" can include anything. Also aspects with a non-market valuation (ecosystems, health, et cetera).

Simple Environmental Macro Model

- Gross output is given: Y^{gr}
- Emissions E (flow) cause damages D(E) (strictly convex):

$$Y^{net} = (1 - D(E))Y^{gr}$$

• Abatement α reduces emissions (γ is emission intensity):

$$E = \gamma (1 - a) Y^{gr}$$

Total Abatement costs (strictly convex):

$$TAC = \Gamma(a) (1 - D(E)) Y^{gr}$$

Consumption is net output – abatement costs:

$$C = (1 - \Gamma(a))(1 - D(E))Y^{gr}$$

Social Planner

Social Planner

- Social Planner can directly set all quantities in the economy
- ➤ Not constrained by "selfish behaviour" of agents

Meaning: there are NO implementability constraints

Decentralized Economy (next week)

- Agents optimize their own objective
 - > Implementability constraints
- Government can only indirectly influence behaviour (with policies)

Example Redistribution of income: SP

• Social planner has utilitarian objective: $\max \sum_i \ U(c_i, l_i)$

Where i are the individuals, c is consumption (utility), l is labor supply (disutility!)

- Total budget: $\sum_i c_i = \sum_i w_i l_i$ (total cons. = total labor income + transfer)
- Social Planner can set c_i and l_i directly of each agent, Lagrangian:

$$L = \sum_{i} U(c_i, l_i) + \Lambda \left| \sum_{i} w_i l_i - \sum_{i} c_i \right|$$

FOCs

$$U_{c,i} = \Lambda$$

(Marginal utility of consumption = Shadow price of the budget)

$$-U_{l,i} = \Lambda w_i$$

(-Marginal utility of labor = Shadow price of the budget*wage)

Interpretation? Is this solution "fair"? Who has to work more, those with high or low wage?

Redistribution in Decentralized Economy with Government: Labor tax + Lump Sum transfer

- Households maximize utility of consumption and labour supply $l: \max U(c_i, l_i)$
- Budget constraint:

$$c_i = (1 - \tau)w_i l_i + T$$
 (consumption = net labor income + transfer)

Lagrangian:

$$L = U(c_i, l_i) + \lambda_i [(1 - \tau)w_i l_i + T - c_i]$$

FOCs

$$U_{c,i} = \lambda_i$$

- $U_{l,i} = \lambda_i (1 - \tau) w_i$

Note: shadow price of budget is marg. utility of cons.

• Substitute out λ :

$$-U_{l,i} = (1-\tau)U_{c,i}w_i$$
 (-marg. ut. labor = marg. ut. cons. * net wage)

Labor tax drives a wedge between marg. rate of substitution & gross wage: labor supply is inefficient (distorted)

Simple Environmental Macro Model (static)

Social Planner perspective: all choice variables are freely chosen, but subject to technological and climate constraints

• Total emissions: $E = \gamma (1 - a) Y^{gr}$

Where a is abatement (reduction of emissions), γ emission intensity, Y^{gr} gross output (given)

- Total Abatement Costs (TAC) (strictly convex): $\Gamma(a)(1-D(E))Y^{gr}$
- Objective: maximize consumption (output net of damage & abatement costs)

$$C = (1 - \Gamma(a))(1 - D(E))Y^{gr}$$

• Lagrangian (after subst. out *C*):

$$L = (1 - \Gamma(a))(1 - D(E))Y^{gr} + \mu[E - \gamma(1 - a)Y^{gr}]$$

(I prefer to NOT substitute out E: μ has a useful interpretation. What is μ ?)

Simple Environmental Macro Model (static)

• Lagrangian:

$$L = (1 - \Gamma(a))(1 - D(E))Y^{gr} + \mu[E - \gamma(1 - a)Y^{gr}]$$

- Choice variable lpha determines the solution, BUT also need to consider effect of lpha on damages D through emissions E
- FOCs w.r.t. E and a:

$$\mu = D'(E)(1 - \Gamma(a))Y^{gr}$$

Interpretation: Shadow price of E = Marg. damage of E (in terms of goods)

$$\mu \gamma Y^{gr} = \Gamma'(a) (1 - D(E)) Y^{gr}$$

Interpretation: Shadow price E x marg. change in emissions (γY^{gr}) (due to a) = Marginal costs of abatement

Solution after simplifying

$$\mu = D'(E)(1 - \Gamma(a))Y^{gr}$$

$$\mu \gamma Y^{gr} = \Gamma'(a)(1 - D(E))Y^{gr}$$

• Simplifying solution (substitute μ out of second equation):

$$\mu\gamma = \Gamma'(a)(1 - D(E))$$

$$\gamma D'(E) (1 - \Gamma(a)) Y^{gr} = \Gamma'(a) (1 - D(E))$$

$$D'(E)(1-\Gamma(a))Y^{gr}=\frac{\Gamma'(a)(1-D(E))}{\gamma}$$

Marginal damage from emissions = Marginal Abatement Costs (MAC)

(MAC = Marginal costs of reducing emissions)

Social Cost of Carbon (here: flow damage only)

SCC = Marginal damage from emissions (usually \$ per ton/CO2 equivalent)

In this simple model:

$$SCC = -\frac{\partial C}{\partial E} = D'(E)(1 - \Gamma(a))Y^{gr}$$

Note 1: the objective, consumption, is already measured in dollars.

- Note 2: SCC is only about marginal effects!
 - Very different from Compensating Variation or Equivalent Variation, which compare welfare at two different points

Marginal Abatement Costs

In general:

- Defintion of Marginal costs: change in costs $\mathcal{C}(Q)$ resulting from changing quantity (Q) with a marginal unit
 - C(Q) is cost function => $MC = \frac{dC}{dQ}$

Definition of Marginal Abatement Costs:

Costs to reduce emissions with one unit:

$$MAC = -\frac{\partial Total\ Abatement\ Costs}{\partial E}$$

Note the minus: costs of abatement = costs of reducing emissions

Marginal Abatement Costs

$$MAC = -\frac{\partial Total\ Abatement\ Costs}{\partial E}$$

- Total abatment costs: $TAC = \Gamma(a)(1 D(E))Y^{gr}$
- Emissions: $E = \gamma (1 a) Y^{gr}$

Two components in our model:

$$\frac{\partial TAC}{\partial E} = \frac{\partial TAC/\partial a}{\partial E/\partial a}$$

 $\frac{\partial TAC}{\partial a}$: marginal costs of abatement effort a

 $\frac{\partial E}{\partial a}$: Marg. change in emissions due to abatement effort a

Marginal Abatement Costs

$$MAC = -\frac{\partial Total\ Abatement\ Costs}{\partial E} = -\frac{\partial TAC/\partial a}{\partial E/\partial a}$$

• Total abatement costs: $TAC = \Gamma(a)(1 - D(E))Y^{gr}$:

$$\frac{\partial TC}{\partial a} = \Gamma'(a) (1 - D(E)) Y^{gr}$$

• Emissions: $E = \gamma (1-a) Y^{gr}$:

$$\frac{\partial E}{\partial a} = -\gamma Y^{gr}$$

Meaning:

$$MAC = -\frac{\partial TC}{\partial E} = -\frac{\partial TC/\partial a}{\partial E/\partial a} = \frac{\Gamma'(a)(1 - D(E))Y^{gr}}{\gamma Y^{gr}}$$

$$MAC = \frac{\Gamma'(\eta)(1-D(E))}{\gamma}$$

Recap of Solution of Simple E-Macro

$$D'(E)(1-\Gamma(a))Y^{gr}=\frac{\Gamma'(a)(1-D(E))}{\gamma}$$

Social Cost of Carbon = Marginal Abatement Costs (MAC)

Environmental Macro Model with utility function(static)

Previous example:

• Objective: maximize consumption (output net of damage & abatement costs)

$$C = (1 - \Gamma(a))(1 - D(E))Y^{gr}$$

Constraint:

$$E = \gamma (1 - a) Y^{gr}$$

Assume now that we want to maximize utility over consumption:

• Objective is to maximize utility: U(C)

Will optimum be different (compared to the previous model which maximized consumption)?

Static Climate Economic Model with utility of consumption: Social Planner solution

- Objective: maximize utility (strictly concave & monotonically increasing) U(C)
- Gross production: Y^{gr}
- Net production after damage: $(1 D(E))Y^{gr}$
- Abatement a reduces emissions (γ is emission intensity): $E = \gamma (1-a) Y^{gr}$
- Abatement costs (total): $\Gamma(a)(1-D(E))Y^{gr}$
- Budget constraint: $C = (1 \Gamma(a))(1 D(E))Y^{gr}$

Lagrangian:

$$L = U(C) + \lambda \left[\left(1 - \Gamma(a) \right) \left(1 - D(E) \right) Y^{gr} - C \right] + \mu \left[E - \gamma (1 - a) Y^{gr} \right]$$

FOCs Social Planner

Lagrangian:

$$L = U(C) + \lambda \left[\left(1 - \Gamma(a) \right) \left(1 - D(E) \right) Y^{gr} - C \right] + \mu \left[E - \gamma (1 - a) Y^{gr} \right]$$

FOCs w.r.t. C, a, and E:

$$U'(C) = \lambda$$
$$\lambda \Gamma'(a) (1 - D(E)) Y^{gr} = \mu \gamma Y^{gr}$$
$$\lambda (1 - \Gamma(a)) D'(E) Y^{gr} = \mu$$

FOCs are different: shadow prices λ and μ are measured in utility units!

• Solution:

$$\mu\gamma = \lambda\Gamma'(a)\big(1-D(E)\big)$$

$$\gamma\lambda\big(1-\Gamma(a)\big)D'(E)Y^{gr} = \lambda\Gamma'(a)\big(1-D(E)\big)$$

$$\big(1-\Gamma(a)\big)D'(E)Y^{gr} = \frac{\Gamma'(a)\big(1-D(E)\big)}{\gamma}$$

$$(SCC = MAC)$$
 Exactly the same as before!

Social Cost of Carbon (static)

- Without utility function: $SCC = -\frac{\partial C}{\partial E}$: marginal damage of emission is change in consumption (in \$/ton CO2))
- More general in static environment:

$$SCC = -\frac{\partial W/\partial E}{\partial W/\partial C}$$

where W is (total) welfare

- $\partial W/\partial E$ (numerator): effect on welfare of a marginal unit of emissions
- $\partial W/\partial C$ (denominator): is the marginal change in welfare due to a change in C
 - This converts welfare units to monetary units (\$)
- Marginal damage of emissions in terms of (discounted) welfare, expressed in monetary unit (\$/ton CO2)

Social Cost of Carbon

In our model: W = U(C)

$$SCC = -\frac{\partial U/\partial E}{\partial U/\partial C}$$

•
$$\frac{\partial U}{\partial E} = \frac{\partial U}{\partial C} \frac{\partial C}{\partial E} = U'(C) \cdot -(1 - \Gamma(\eta))D'(E)Y^{gr} = -\mu$$

•
$$\frac{\partial U}{\partial C} = U'(C) = \lambda$$

$$SCC = -\frac{\partial U/\partial E}{\partial U/\partial C} = \frac{\mu}{\lambda}$$

With
$$L = U(C) + \lambda [(1 - \Gamma(a))(1 - D(E))Y^{gr} - C] + \mu [E - \gamma(1 - a)Y^{gr}]$$

Note: here $\frac{\partial U}{\partial C}$ appears in the numerator and denominator, but in dynamic setting this will change, because $\frac{\partial U}{\partial C}$ will include future damage

Comparison with definition in lecture

• In our static model:

$$SCC = -\frac{\frac{\partial W}{\partial E}}{\frac{\partial W}{\partial C}} = -\frac{\frac{\partial U}{\partial E}}{\frac{\partial U}{\partial C}} = -\frac{\frac{\partial U}{\partial C}}{\frac{\partial U}{\partial C}} \frac{\partial C}{\partial E}$$

In the lecture discussed SCC in dynamic setting:

$$SCC = \frac{\sum_{t=1}^{T} \Delta C_t \frac{\partial W}{\partial C_t}}{\frac{\partial W}{\partial C_1}}$$

- ΔC_t = monetary loss of *global* consumption at time t, caused by emitting one ton of CO₂ today
- W = social welfare, aggregated over time horizon t = 1, ..., T
- $\frac{\partial W}{\partial c_t}$ = change in social welfare caused by one additional Euro of consumption at time t

Labor supply in E-Macro

- Assume: utility over consumption & labour
 - See Example Redistribution

Production results in emissions => emissions result in damage (negative externality)

No abatement technology => can only reduce emissions by producing less

Use Social Planner

Labor supply in E-Macro

- Additive separate utility from consumption (+) and labour (-): $U(\mathcal{C}, L)$
- Production (concave): $Y^{gr} = F(L)$
- Emissions: $E = \gamma Y^{gr}$
- Net output: $Y^{net} = (1 D(E))Y^{gr}$
- Consumption: $C = Y^{net}$

Lagrangian:

$$G = U(C, L) + \lambda \left[\left(1 - D(E) \right) Y^{gr} - C \right] + \mu \left[E - \gamma Y^{gr} \right] + \varphi \left[F(L) - Y^{gr} \right]$$

Note: choosing L determines everything

What do you expect to happen with optimal labour supply? (compared to no damage from emissions)

Optimization

$$G = U(C, L) + \lambda \left[\left(1 - D(E) \right) Y^{gr} - C \right] + \mu \left[E - \gamma Y^{gr} \right] + \varphi \left[F(L) - Y^{gr} \right]$$

FOCs w.r.t. C, L, E, Y^{gr} :

$$U_C = \lambda$$

Marginal utility cons. = shadow price of consumption (in utility units)

$$-U_L = \varphi F'(L)$$

-Marg. ut. labor = shadow price of gross output (in utility units) * marg. prod. labor

$$\mu = \lambda D'(E)Y^{gr}$$

Shadow price of emissions = marg. damage (in utility units)

$$\varphi = \lambda \big(1 - D(E) \big) - \gamma \mu$$

Shadow price of gross output (in utility units) = λ^* marg. change in cons. — marg. change in emissions* shadow price of emissions

Simplifying

$$G = U(C, L) + \lambda [(1 - D(E))Y^{gr} - C] + \mu [E - \gamma Y^{gr}] + \varphi [F(L) - Y^{gr}]$$

$$-U_L = \varphi F'(L)$$

$$-U_L = [\lambda (1 - D(E)) - \gamma \mu] F'(L)$$

$$-U_L = [\lambda (1 - D(E)) - \gamma \lambda D'(E)Y^{gr}] F'(L)$$

$$-U_L = \lambda [(1 - D(E)) - \gamma D'(E)Y^{gr}] F'(L)$$

-Marg. ut. labour = marg. ut. of cons. * effective marg. prod. labour (net of damage (level), and taking account of marg. damage)

- \Rightarrow Effective marg. productivity of labour goes down when damages are included $\left(1-D(E)\right)-\gamma D'(E)Y^{gr}<1$
- But does not necessarily mean labour supply goes down (see Extra slides)

Extra: Income & Substitution effect with additive separable utility function

Common macroeconomic utility:

$$U(c,l) = \frac{c^{1-\nu} - 1}{1-\nu} - \chi \frac{l^{1+\frac{1}{\varphi}}}{1+\frac{1}{\varphi}}$$

$$U_c = c^{-\nu}$$

$$U_l = -\chi l^{\frac{1}{\varphi}}$$

• Assume
$$c = wl: -\frac{U_l}{U_c} = w => \frac{\chi l^{\frac{1}{\varphi}}}{w^{-\nu} l^{-\nu}} = w =>$$

$$\chi l^{\frac{\nu\varphi+1}{\varphi}} = w^{1-\nu}$$

Note: $\frac{v\varphi+1}{\varphi} > 0$

- $\nu < 1 \Rightarrow \frac{dl}{dw} > 0$: substitution effect dominates
- $\nu > 1 \Rightarrow \frac{\ddot{d}\ddot{l}}{dw} < 0$: income effect dominates
- $\nu = 1$ (log utility) => $\frac{dl}{dw} = 0$: income effect and substitution effect cancel

