Chapter 12.3c Inference

Jim Albert and Monika Hu

Chapter 12 Bayesian Multiple Regression and Logistic Models

Inference using MCMC

- ▶ Fitting a logistic model with a single explanatory variable and a conditional means prior on β .
- Once the prior on the regression coefficients is defined, it is straightforward to simulate from the Bayesian logistic model by MCMC and the JAGS software.

The JAGS script

► The first step is writing a JAGS script defining the logistic regression model including the prior.

```
modelString <-"
model {
## sampling
for (i in 1:N){
   y[i] ~ dbern(p[i])
   logit(p[i]) <- beta0 + beta1*x[i]</pre>
## priors
beta1 <- (logit(p1) - logit(p2)) / (x1 - x2)
beta0 \leftarrow logit(p1) - beta1 * x1
p1 ~ dbeta(a1, b1)
p2 ~ dbeta(a2, b2)
```

Comments on JAGS script

- ▶ In the sampling section of the script, the loop goes from 1 to N, where N is the number of observations.
- ▶ One uses dbern() to denote the Bernoulli response.
- The logit() function is written for establishing this linear relationship.
- ▶ In the prior section, one expresses beta0 and beta1 in terms of p1, p2, x1, and x2. One also assigns Beta priors to p1 and p2 using the dbeta() function.

Define the data and prior parameters

- ▶ In the R script , a list the_data contains the vector of binary labor participation status values, the vector of family incomes (in \$1000), and the number of observations.
- It also contains the shape parameters for the Beta priors on p_1^* and p_2^* and the values of the two incomes, x_1^* and x_2^* .

Generate samples from the posterior distribution

- ► The run.jags() function generates posterior samples by the MCMC algorithm.
- ► The script below runs one MCMC chain with an adaption period of 1000 iterations, a burn-in period of 5000 iterations and an additional set of 5000 iterations to be collected.
- ▶ By specifying monitor = c("beta0", "beta1"), one collects values of the regression coefficients.

MCMC diagnostics and summarization

- One applies several diagnostic procedures to check if the simulations appear to converge to the posterior distribution.
- ▶ Figures on the next slide display MCMC diagnostic plots for the regression parameters β_0 and β_1 .
- From viewing these graphs, it appears that there is a small amount of autocorrelation in the simulated draws and the draws appear to have converged to the posterior distributions.

MCMC diagnostics plots

Posterior Summaries

- ▶ By use of the print() function, posterior summaries are displayed for the regression parameters.
- From the output, one sees that the posterior 90% interval estimate for the regression slope is (-0.0143, 0.0029).
- ► There is a negative relationship between family income and labor participation – wives from families with larger income (exclusive of the wife's income) tend not to work. But this relationship does not appear to be strong since the value 0 is included in the 90% interval estimate.

Learning about probabilities

- One difficulty in interpreting a logistic regression model is that the linear component $\beta_0 + \beta_1 x$ is on the logit scale.
- ▶ It is easier to understand when one expresses the fitted model in terms of the probability of participation p_i:

$$p_i = \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)}.$$

It is straightforward to simulate the posterior distribution of the probability p_i for fixed x_i . If $(\beta_0^{(s)}, \beta_1^{(s)})$ represents a simulated draw from the posterior of β then $p_i^{(s)}$ is a simulated draw from the posterior of p_i .

Back to Example

- ▶ This process was used to obtain simulated samples from the posterior distribution of the probability p_i for the income variable values 10, 20, ..., 70.
- Figure on the next slide displays posterior medians and 90% interval estimates of the probabilities p_i are displayed
- The takeaway message from this figure is that the probability of labor participation is close to one-half and this probability slightly decreases as the family income increases.

Posterior interval estimates for probability of participation

Prediction

- ▶ A related problem is to predict the fraction of labor participation for a sample of n women with a specific family income.
- ▶ If \tilde{y}_i represents the number of women who work among a sample of n with family income x_i , one is interested in the posterior predictive distribution of \tilde{y}_i/n .
- ▶ One represents this predictive density of \tilde{y}_i as

$$f(\tilde{Y}_i = \tilde{y}_i \mid y) = \int \pi(\beta \mid y) f(\tilde{y}_i, \beta) d\beta,$$

where $\pi(\beta \mid y)$ is the posterior density of $\beta = (\beta_0, \beta_1)$ and $f(\tilde{y}_i, \beta)$ is the Binomial sampling density.

Simulating the predictive density

- Suppose that one focuses value x_i^* and one wishes to consider a future sample of n=50. The simulated draws from the posterior distribution of β are stored in a matrix post.
- ▶ For each of the simulated parameter draws, one computes the probability of labor participation $p^{(s)}$.
- ▶ Given those probability values, one simulates Binomial samples where the probability of successes are given by the simulated $\{p^{(s)}\}$, and by dividing \tilde{y} by n, one obtains simulated proportions.
- ► Each group of simulated draws from the predictive distribution of the labor proportion is summarized by the median, 5th, and 95th percentiles.

R Script

- ▶ The function prediction_interval() obtains the quantiles of the prediction distribution of \tilde{y}/n for a fixed income level
- ► The sapply() function computes these predictive quantities for a range of income levels.

Figure of Prediction Intervals

- Figure graphs the predictive median and interval bounds against the income variable.
- Note that one is much more certain about the probability of labor participation than the fraction of labor participation in a future sample of 50.

