Devoir maison 19

Vous traiterez au choix l'un des deux problèmes suivants, le second étant plus difficile que le premier.

▶ Problème 1 : formule de Taylor-Lagrange et méthode de Newton

Partie I. Formule de Taylor-Lagrange à l'ordre 2.

Soit f une fonction de classe \mathscr{C}^2 sur un segment [a, b], et soit $c \in]a, b[$.

1. Soit $x \in]a, b[$ fixé différent de c. Pour $\lambda \in \mathbb{R}$, on définit une fonction ψ sur [a, b] par

$$\psi: t \mapsto f(t) - f(c) - (t - c)f'(c) - \lambda(t - c)^2.$$

- a. Justifier que ψ est deux fois dérivable sur]a, b[, et pour $t \in$]a, b[, calculer $\psi'(t)$ et $\psi''(t)$.
- b. Déterminer la valeur à donner à λ pour que $\psi(x) = \psi(c)$.
- c. En appliquant deux fois le théorème de Rolle, justifier qu'il existe θ_x compris strictement entre c et x tel que

$$f(x) = f(c) + (x - c)f'(c) + \frac{(x - c)^2}{2}f''(\theta_x).$$

Partie II. Méthode de Newton

Dans cette partie, $f:[a,b]\to \mathbf{R}$ est une fonction de classe \mathscr{C}^2 , telle que :

 \blacktriangleright f est convexe

$$\blacktriangleright \ \forall x \in [a, b], f'(x) < 0$$

►
$$f(a) > 0$$
 et $f(b) < 0$.

- 2. Justifier qu'il existe un unique $c \in]a, b[$ tel que f(c) = 0.
- 3. Soit $u \in [a, b]$. Donner l'équation de la tangente à \mathcal{C}_f en u, et déterminer, en fonction de u, l'absicsse de son point d'intersection avec l'axe des abscisses.

Dans la suite, on note $g: \begin{vmatrix} [a,b] & \longrightarrow & \mathbf{R} \\ x & \longmapsto & x - \frac{f(x)}{f'(x)} \end{vmatrix}$. Soit $x_0 \in]a,b[$ tel que $f(x_0) > 0$, et soit $(x_n)_{\in \mathbf{N}}$ la suite dont le premier terme est x_0 et telle que pour tout $n \in \mathbf{N}$,

Soit $x_0 \in]a, b[$ tel que $f(x_0) > 0$, et soit $(x_n)_{\in \mathbb{N}}$ la suite dont le premier terme est x_0 et telle que pour tout $n \in \mathbb{N}$, $x_{n+1} = g(x_n)$.

- **4.** Prouver que la suite (x_n) est croissante et majorée par c.
- **5.** Montrer que (x_n) converge vers c.
- 6. Justifier que $m = \min_{t \in [a,b]} |f'(t)|$ et $M = \max_{t \in [a,b]} |f''(t)|$ sont bien définis et strictement positifs.
- 7. Montrer que pour tout $n \in \mathbb{N}$ tel que $x_n \neq c$, il existe θ_n strictement compris entre c et x_n tel que

$$f(x_n) = (x_n - c)f'(x_n) - \frac{(x_n - c)^2}{2}f''(\theta_n).$$

- 8. En déduire que pour tout $n \in \mathbb{N}$, $|x_{n+1} c| \le \frac{M}{2m}(x_n c)^2$.
- 9. Justifier qu'il existe $n_0 \in \mathbb{N}$ tel que $|x_{n_0} c| \leq \frac{m}{M}$ et prouver alors que pour tout $n \geq n_0$,

$$|x_n - c| \le \frac{2m}{M} \frac{1}{2^{2^{n-n_0}}}.$$

10. Montrer alors que pour tout $q \in]0, 1[$, $|x_n - c| = o(q^n)$.

Autrement dit, (x_n) converge vers c plus vite que toute suite géométrique. Donc très rapidement!

▶ Problème 2 : une caractérisation des fonctions polynomiales

1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^{∞} sur \mathbb{R} . Montrer que f est polynomiale si et seulement si

$$\exists n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ f^{(n)}(x) = 0.$$

Le but de ce devoir est de prouver un théorème relativement récent, prouvé en 1954 par les deux mathématiciens catalans Ferran Sunyer i Balaguer et Ernest Corominas i Vigneaux, dont l'énoncé est le suivant :

Soit
$$f : \mathbf{R} \to \mathbf{R}$$
 une fonction de classe \mathscr{C}^{∞} telle que $: \forall x \in \mathbf{R}, \exists n \in \mathbf{N}, f^{(n)}(x) = 0$. Alors f est polynomiale.

Vous aurez compris que la différence avec la question 1 est dans l'ordre des quantificateurs, et que le n peut ici dépendre de x.

- ▶ Dans toute la suite, on considère f une fonction de classe \mathscr{C}^{∞} sur un segment [a, b], avec a < b, et telle que $\forall x \in [a, b], \exists n \in \mathbb{N}, f^{(n)}(x) = 0$.
- ▶ Pour $k \in \mathbb{N}$, on note alors $\mathcal{Z}_k = \{x \in [a,b] \mid f^{(k)}(x) = 0\}$ et on note $\mathcal{U}_k = [a,b] \setminus \mathcal{Z}_k$.
- ▶ Dans tout le sujet, vous pourrez utiliser librement le fait qu'un intervalle I est ouvert si et seulement si pour tout $x \in I$, il existe $\varepsilon > 0$ tel que $|x \varepsilon, x + \varepsilon| \subset I$.

Partie I. Quelques résultats préparatoires

- 2. Soit $([a_n, b_n])_{n \in \mathbb{N}}$ une suite décroissante (au sens de l'inclusion) de segments non vides de \mathbb{R} . Montrer que $\bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset$ (ce résultat est appelé le théorème des segments emboîtés).
- 3. Soient I, J deux intervalles ouverts de [a, b] avec $I \cap J \neq \emptyset$. On suppose qu'il existe deux polynômes P et Q tels que $\forall x \in I, f(x) = P(x)$ et $\forall x \in J, f(x) = Q(x)$. Montrer que P = Q.
- **4.** Soit $x \in]a, b[$. On suppose qu'il existe un intervalle ouvert $I \subset [a, b]$, contenant x, et tel que la restriction de f à I soit polynomiale.
 - a. Montrer que la réunion J_x de tous les intervalles ouverts inclus dans [a,b], contenant x, et sur lesquels f coïncide avec un polynôme est encore un intervalle ouvert inclus dans [a,b], contenant x, et sur lequel f coïncide avec un polynôme. On note alors $\alpha = \inf J_x$ et $\beta = \sup J_x$, et on pose $I_x = [\alpha, \beta]$ (qui est donc l'adhérence de J_x).
 - b. Montrer que sur I_x , f coïncide avec un polynôme.
 - c. Montrer que si I est un intervalle inclus dans [a,b], contenant x, et sur lequel f coïncide avec un polynôme, alors $I \subset I_x$.
- **5.** Soit $k \in \mathbb{N}$. Montrer que pour tout $x \in \mathcal{U}_k$, il existe $\varepsilon > 0$ tel que $[a, b] \cap]x \varepsilon, x + \varepsilon [\subset \mathcal{U}_k]$.

Partie II. Preuve du théorème dans un cas particulier

Dans toute cette partie, on suppose que sur tout intervalle I inclus dans \mathcal{U}_0 , il existe $P \in \mathbf{R}[X]$ tel que pour tout $x \in I$, f(x) = P(x).

On souhaite alors prouver que sous cette hypothèse, f est polynomiale sur [a, b].

Le cas où $\mathcal{U}_0 = \emptyset$ (c'est-à-dire $\mathcal{Z}_0 = [a, b]$) est trivial, puisqu'alors f est la fonction nulle.

On supposera donc dans la suite $\mathcal{U}_0 \neq \emptyset$. Soit alors $x \in \mathcal{U}_0$, et soit $I_x = [\alpha, \beta]$ l'intervalle défini dans la question 4.

- **6.** On suppose dans cette question que pour tout $\varepsilon > 0$, $\mathscr{Z}_0 \cap (]\alpha \varepsilon, \alpha + \varepsilon[\setminus \{\alpha\}) \neq \emptyset$.
 - a. Montrer qu'il existe une suite (u_n) d'éléments de $\mathscr{Z}_0 \setminus \{\alpha\}$ telle que $u_n \xrightarrow[n \to +\infty]{} \alpha$. En déduire que $f(\alpha) = 0$.
 - **b.** En notant que $f(u_n) = f'(\alpha)(x u_n) + o(\alpha u_n)$, prouver que $f'(\alpha) = 0$.

- **c.** Montrer que pour tout $k \in \mathbb{N}$, $f^{(k)}(\alpha) = 0$.
- **d.** En déduire que f est nulle sur $[\alpha, \beta]$ et aboutir à une contradiction.
- 7. Dans cette question, on suppose que $a < \alpha$.
 - **a.** Justifier qu'il existe $\alpha' \in]a, \alpha[$ tel que $]\alpha', \alpha[\subset \mathcal{U}_0,$ et que la restriction de f à $]\alpha', \alpha[$ est polynomiale.
 - b. Montrer que f coïncide avec un polynôme sur $]\alpha', \beta]$ (on pourra utiliser une formule de Taylor), et aboutir à une contradiction.

La question précédente prouve donc que $\alpha = a$, et on prouverait de même que $\beta = b$, si bien que $I_x = [a, b]$, et donc f est polynomiale sur [a, b].

Partie III. Fin de la preuve du théorème de Sunyer-Corominas

Dans cette partie, on raisonne par l'absurde et on suppose que f n'est pas polynomiale sur [a, b].

- 8. Justifier qu'il existe un segment S_0 inclus dans \mathcal{U}_0 , non vide et non réduit à un point, tel que $f_{|S_0}$ ne soit pas polynomiale.
- 9. En notant que f' satisfait aux mêmes hypothèses que f, montrer qu'il existe un segment S_1 , inclus dans $S_0 \cap \mathcal{U}_1$ tel que $f'_{|S_1}$ ne soit pas polynomiale.
- 10. À l'aide du théorème des segments emboîtés, montrer que $\bigcap_{n\in\mathbb{N}}\mathcal{U}_n\neq\emptyset$ et terminer la preuve du théorème de Sunyer-Corominas, dont l'énoncé figure au début du sujet.