CoCa: Contrastive Captioners are Image-Text Foundation Models

Определение

Contrastive Captioners - семество нейросетевых моделей, основанных на объединении single-encoder, dual-encoder и encoder-decoder парадигм, использующих при обучении два вида функций потерь: contrastive loss и captioning loss.

Single-encoder models

- Используются для vision и vision-language задач
- Тренируются с CrossEntropy функцией потерь

$$\mathcal{L}_{Cls} = -p(y) \log q_{\theta}(x)$$

p(y) - one-hot или multy-hot закодированные метки изображений

- На выходе модель выдает представления, которые могут быть использованы для image или video understanding задач
- Недостаток: требуют строгой разметки датасета с фиксированным числом классов, что не позволяет обрабатывать произвольную разметку изображений

Dual-encoder models

- В отличие от Single-Encoder моделей может обрабатывать произвольный текст
- Состоит из двух энкодеров, один из которых обрабатывает изображения, второй - текстовые описания этих изображений.
- Энкодеры обучаются совместно, сопоставляя пары текст-изображение с другими парами в батче:

$$\mathcal{L}_{\text{Con}} = -\frac{1}{N} \left(\sum_{i}^{N} \log \frac{\exp(x_{i}^{\top} y_{i}/\sigma)}{\sum_{j=1}^{N} \exp(x_{i}^{\top} y_{j}/\sigma)} + \sum_{i}^{N} \log \frac{\exp(y_{i}^{\top} x_{i}/\sigma)}{\sum_{j=1}^{N} \exp(y_{i}^{\top} x_{j}/\sigma)} \right)$$
image-to-text text-to-image

хі и у□ - нормализованные эмбеддинги фото из і-ой пары и текста из ј-ой пары

 Недостаток: отсутствие компонент для обучения на объединенных парах изображений и текстовых представлений

Encoder-Decoder models

- В отличие от dual-encoder подхода, здесь мы кодируем не весь текст в одно представление, а предсказываем каждый токен текста авторегрессионно
- Ітаде энкодер подает на вход декодеру представления изображений, а тот в свою очередь учится максимизировать условное правдоподобие представления текстового описания изображения:

$$\mathcal{L}_{\text{Cap}} = -\sum_{t=1}^{T} \log P_{\theta}(y_t | y_{< t}, x)$$

- Обучаются с помощью teacher-forcing подхода
- Выдают совместные представления текста и изображения, которые уже могут использоваться для vision-language understanding и image-captioning задач

СоСа Особенности

- Архитектура состоит из трех крупных компонент:
 - 1. Энкодер изображений
 - Унимодальный текстовый декодер
 - 3. Мультимодальный текстовый декодер

СоСа Псевдокод

Algorithm 1 Pseudocode of Contrastive Captioners architecture.

```
# image, text.ids, text.labels, text.mask: paired {image, text} data
# con_query: 1 query token for contrastive embedding
# cap_query: N query tokens for captioning embedding
# cls_token_id: a special cls_token_id in vocabulary
def attentional_pooling(features, query):
  out = multihead_attention(features, query)
  return layer_norm(out)
img_feature = vit_encoder(image) # [batch, seq_len, dim]
con_feature = attentional_pooling(img_feature, con_query) # [batch, 1, dim]
cap_feature = attentional_pooling(img_feature, cap_query) # [batch, N, dim]
ids = concat(text.ids, cls_token_id)
mask = concat(text.mask, zeros_like(cls_token_id)) # unpad cls_token_id
txt_embs = embedding_lookup(ids)
unimodal_out = lm_transformers(txt_embs, mask, cross_attn=None)
multimodal_out = lm_transformers(
    unimodal_out[:, :-1, :], mask, cross_attn=cap_feature)
cls_token_feature = layer_norm(unimodal_out)[:, -1:, :] # [batch, 1, dim]
con_loss = contrastive_loss(con_feature, cls_token_feature)
cap_loss = softmax_cross_entropy_loss(
    multimodal_out, labels=text.labels, mask=text.mask)
```

СоСа Особенности

- В унимодальном декодере текста не применяется cross-attention с эмбеддингами изображений. Этот декодер обучается выдавать унимодальные текстовые эмбеддинги.
- Cross-attention применяется в мультимодальном декодере для обучения декодера выдавать представления объектов вида изображение-текст
- Такой подход с разделением декодера на унимодальный и мультимодальный позволяет архитектуре выдавать как унимодальные, так и мультимодальные эмбеддинги
- Общие потери вычисляются следующим образом:

$$\mathcal{L}_{CoCa} = \lambda_{Con} \cdot \mathcal{L}_{Con} + \lambda_{Cap} \cdot \mathcal{L}_{Cap},$$

где параметры λ являются весами-гиперпараметрами модели для функций потерь

• Компоненты могут использоваться по отдельности для разных типов задач: visual recognition, vision-language alignment, image captioning и multimodal understanding

Pretraining

Zero-shot, frozen-feature or finetuning

СоСа Особенности

- Благодаря разделенному декодеру, модель может эффективно вычислять Contrastive и Captioning loss при обучении и таким образом обучать сразу две отдельные модели за один проход
- Однако СоСа модели при этом могут обучаться только end-to-end полностью с нуля
- СоСа архитектуры могут использоваться для zero-shot задач, но с некоторой информацией об обучающей выборке (Zero-Shot Transfer with Locked-image text Tuning)
- CoCa хорошо показывает себя во frozen-feature evaluation. В таких методах у архитектуры обучается только attention poolers

Model	Layers	MLP	Params	n_{uni}	n_{multi}	MLP	Params	Hidden	Heads	Total Params
CoCa-Base	12	3072	86M	12	12	3072	297M	768	12	383M
CoCa-Large	24	4096	303M	12	12	4096	484M	1024	16	787M
CoCa	40	6144	1B	18	18	5632	1.1B	1408	16	2.1B
		2 0								

Text Decoder

Image / Text

Image Encoder

Table 1: Size variants of CoCa. Both image encoder and text decoder are Transformers [19, 39].

(a) Finetuned ImageNet Top-1 Accuracy.

(b) Zero-Shot ImageNet Top-1 Accuracy.

Эксперименты. Training setup

- СоСа модель обучалась с нуля за один этап как на данных изображениетекст, собранных с веб-ресурсов, так и на размеченных изображениях, обрабатывая все метки как обычный текст
- Датасеты: JFT-3B с именами меток в качестве парных текстов, ALIGN с зашумленными текстовыми описаниями
- Батч: 65536 пар изображение-текст, половина из JFT, половина из ALIGN
- Обучение длилось 500 тысяч шагов, что соответствует примерно 5 эпохам на JFT и 10 эпохам на ALIGN
- Cap_ λ = 2.0, Con_ λ = 1.0

Решение простых image classification задач происходит с помощью энкодера с подстановкой attentional poolers и cross-entropy loss на его выходе

Model	ImageNet	Model	K-400	K-600	K-700	Moments-in-Time
ALIGN [13]	88.6	ViViT [53]	84.8	84.3	_	38.0
Florence [14]	90.1	MoViNet [54]	81.5	84.8	79.4	40.2
MetaPseudoLabels [51]	90.2	VATT [55]	82.1	83.6	_	41.1
CoAtNet [10]	90.9	Florence [14]	86.8	88.0	_	_
ViT-G [21]	90.5	MaskFeat [56]	87.0	88.3	80.4	
+ Model Soups [52]	90.9	CoVeR [11]	87.2	87.9	78.5	46.1
CoCa (frozen) CoCa (finetuned)	90.6 91.0	CoCa (frozen) CoCa (finetuned)	88.0 88.9	88.5 89.4	81.1 82.7	47.4 49.0

Table 2: Image classification and video action recognition with frozen encoder or finetuned encoder.

Добавляем унимодальный декодер - решаем crossmodal alignment задачи

	Flickr30K (1K test set)						MSCOCO (5K test set)					
	In	$age \rightarrow '$	Text	Te	$xt \rightarrow In$	nage	In	nage → '	Text	Te	$xt \rightarrow Im$	age
Model	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
CLIP [12]	88.0	98.7	99.4	68.7	90.6	95.2	58.4	81.5	88.1	37.8	62.4	72.2
ALIGN [13]	88.6	98.7	99.7	75.7	93.8	96.8	58.6	83.0	89.7	45.6	69.8	78.6
FLAVA [35]	67.7	94.0	-	65.2	89.4	=	42.7	76.8	_	38.4	67.5	-
FILIP [61]	89.8	99.2	99.8	75.0	93.4	96.3	61.3	84.3	90.4	45.9	70.6	79.3
Florence [14]	90.9	99.1	-	76.7	93.6	-	64.7	85.9	-	47.2	71.4	-
CoCa-Base	89.8	98.8	99.8	76.8	93.7	96.8	63.8	84.7	90.7	47.5	72.4	80.9
CoCa-Large	91.4	99.2	99.9	79.0	95.1	97.4	65.4	85.6	91.4	50.1	73.8	81.8
CoCa	92.5	99.5	99.9	80.4	95.7	97.7	66.3	86.2	91.8	51.2	74.2	82.0

Table 3: Zero-shot image-text retrieval results on Flickr30K [62] and MSCOCO [63] datasets.

Model	ImageNet	ImageNet-A	ImageNet-R	ImageNet-V2	ImageNet-Sketch	ObjectNet	Average
CLIP [12]	76.2	77.2	88.9	70.1	60.2	72.3	74.3
ALIGN [13]	76.4	75.8	92.2	70.1	64.8	72.2	74.5
FILIP [61]	78.3	-	-	-	-	-	_
Florence [14]	83.7	-	-	-	-	-	5 1
LiT [32]	84.5	79.4	93.9	78.7		81.1	-
BASIC [33]	85.7	85.6	95.7	80.6	76.1	78.9	83.7
CoCa-Base	82.6	76.4	93.2	76.5	71.7	71.6	78.7
CoCa-Large	84.8	85.7	95.6	79.6	75.7	78.6	83.3AK
CoCa	86.3	90.2	96.5	80.7	77.6	82.7	85.7

Table 4: Zero-shot image classification results on ImageNet [9], ImageNet-A [64], ImageNet-R [65], ImageNet-V2 [66], ImageNet-Sketch [67] and ObjectNet [68].

visual entailment

- Two woman are holding packages.
- The sisters are hugging goodbye while holding to go packages after just eating lunch.
- The men are fighting outside a deli.

- Entailment
- Neutral
- Contradiction

Premise Hypothesis Answer

visual reasoning

(a) What number of cylin- (b) What color is the other things?

Predicted: 2

ders are small purple object that is the same things or yellow rubber shape as the large brown *matte thing?*

Predicted: Brown

После добавления мультимодального декодера модель начинает решать multimodal understanding задачи: visual question answering, visual entailment, visual reasoning

	MSR-VTT Full							
	To	$ext \rightarrow Vi$	deo	Vi	$deo \rightarrow T$	ext		
Method	R@1	R@5	R@10	R@1	ideo → Te R@5 69.7 71.2 73.3 73.5 73.4	R@10		
CLIP [69]	21.4	41.1	50.4	40.3	69.7	79.2		
Socratic Models [70]	-	-	-	44.7	71.2	80.0		
CLIP [69] (subset)	23.3	44.2	53.6	43.3	73.3	81.8		
Socratic Models [70] (subset)	-	-	-	46.9	73.5	81.3		
CoCa (subset)	30.0	52.4	61.6	49.9	73.4	81.4		

Table 5: Zero-shot Video-Text Retrieval on MSR-VTT Full test set.

	V	QA	SNL	I-VE	NLVR2		
Model	test-dev	test-std	dev	test	dev	test-p	
UNITER [26]	73.8	74.0	79.4	79.4	79.1	80.0	
VinVL [27]	76.6	76.6	-	-	82.7	84.0	
CLIP-Vil [73]	76.5	76.7	80.6	80.2	-	=	
ALBEF [36]	75.8	76.0	80.8	80.9	82.6	83.1	
BLIP [37]	78.3	78.3	-	-	82.2	82.2	
OFA [17]	79.9	80.0	90.3 [†]	90.2	_	=	
VLMo [30]	79.9	80.0	_	-	85.6	86.9	
SimVLM [16]	80.0	80.3	86.2	86.3	84.5	85.2	
Florence [14]	80.2	80.4	-	-	_	-	
METER [74]	80.3	80.5	-	-	-	- 1	
CoCa	82.3	82.3	87.0	87.1	86.1	87.0	

Table 6: Multimodal understanding results comparing vision-language pretraining methods. †OFA uses both image and text premises as inputs while other models utilize the image only.

Image Captioning

a hand holding a san francisco 49ers football

a row of cannons with the eiffel tower in the background

a white van with a license plate that says we love flynn

a person sitting on a wooden bridge holding an umbrella

a truck is reflected in the side mirror of a car

					5 Parties			
				-	Val	lid	Test	
	B@4	M	C	S	C	S	C	S
CLIP-ViL [73]	40.2	29.7	134.2	23.8	_	_	_	_
BLIP [37]	40.4	-	136.7	-	113.2	14.8	-	-
VinVL[27]	41.0	31.1	140.9	25.4	105.1	14.4	103.7	14.4
SimVLM [16]	40.6	33.7	143.3	25.4	112.2	-	110.3	14.5
LEMON [80]	41.5	30.8	139.1	24.1	117.3	15.0	114.3	14.9
$LEMON_{SCST}$ [80] [†]	42.6	31.4	145.5	25.5	-	-	-	-
OFA [17] [†]	43.5	31.9	149.6	26.1	-	-	-	-
CoCa	40.9	33.9	143.6	24.7	122.4	15.5	120.6	15.5

NoCaps

MSCOCO

Table 7: Image captioning results on MSCOCO and NoCaps (B@4: BLEU@4, M: METEOR, C:

CIDEr, S: SPICE). †Models finetuned with CIDEr optimization.

Эффективность использования СоСа компонент по отдельности

- СоСа модели, тренирующиеся на captioning loss выдают примерно такие же результаты как и обычный image энкодер, обученный с помощью CrossEntropy, что означает, что generative обучение включает в себя и обучение задаче классификации, вследствии чего CoCa модели не требуют предобученного image энкодера.
- Эксперименты показали, что captioning loss улучшают качество на VQA и zero-shot multimodal alignment задачах, при том, что в отличие от contrastive моделей CoCa не требует дополнительных слияний представлений для этих задач

Вывод

 СоСа представляет собой универсальную архитектуру, способную помимо image captioning решать большое количество down-stream задач на уровне топовых моделей, а в большинстве задач даже обгоняя их по качеству.