Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5252]-562

S.E. (Computer Engineering) (First Semester) EXAMINATION, 2017

DIGITAL ELECTRONICS AND LOGIC DESIGN (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

**N.B.:— (i) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6,

Q. 7 or Q. 8.

- (ii) Neat diagrams must be drawn wherever necessary.
- (iii) Assume suitable data, if necessary.
- 1. (a) Design and implement Binary to Gray code converter using logic gate. [6]
 - (b) Explain look ahead carry generator in detail. [4]
 - (c) Draw basic internal structure of Decade counter IC 7490 and explain its operation. [2]

Or

- 2. (a) Implement full adder using 8:1 Multiplexer and draw the diagram. [6]
 - (b) Write a short note on Johnson counter. [4]
 - (c) Convert the following flip-flop

 D-Flip-Flop to T-Flip-Flop

 [2]

P.T.O.

3.	(a)	Design the ASM chart for a 2-bit binary counter having one
		enable line E such that when: [6]
		E = 1 (count enabled) and
		E = 0 (counting is disabled).
	(<i>b</i>)	A combinational Circuit is defined by the following
	(0)	function: [6]
		$F1(A,B,C) = \sum m (0,1,3,7)$
		$F2(A,B,C) = \Sigma m (1,2,5,6)$
		Implement this circuit with PLA.
		Or
4.	(a)	Write VHDL code for full adder using structural style of
		Modeling (Declare half adder as a component) and also draw
		truth table and diagram of full adder. [6]
	<i>(b)</i>	Explain entity declaration for XOR gate [2]
	(<i>c</i>)	A combinational circuit is defined by the function: [4]
		$F1 = \Sigma m(0,1,3,4)$
		Implement this circuit with PAL.
		Or
5.	(a)	Draw and explain the circuit diagram of CMOS Inverter.
		[5]
	<i>(b)</i>	Define the following terms and mention the standard values
		for TTL logic Family: [8]
		1. Noise Margin
		2. Fan Out
		Define the following terms and mention the standard values for TTL logic Family: 1. Noise Margin 2. Fan Out 3. Power Dissipation 4. Propagation Delay.
		4. Propagation Delay.
		Or
6.	(<i>a</i>)	Draw and explain 2-input NAND TTL logic gate with totem
		pole output driver. [7]

	<i>(b)</i>	1. Give the classification of logic family	[6]
		2. Explain the advantage of open collector outp	ut.
7.	(<i>a</i>)	Explain the features of 8051 Microcontroller	[4]
	(<i>b</i>)	What are the different addressing Modes in 8051? Give	e example
		of each.	[6]
	(c)	Explain the following pins of 8051:	[3]
		1. ALE	
		2. XTAL	
		$\overline{\mathbf{E}}\mathbf{A}$.	
		Or	
8.	(<i>a</i>)	Describe different timer modes of 8051 Microcontrol	ler. Draw
		format of TMOD register.	[7]
	(<i>b</i>)	Explain the following instructions with respective to	8051 and
		give example of each :	[6]
		1. PUSH	
		2. MUL	
		3. CPL.	
		1. PUSH 2. MUL 3. CPL.	
			0
		S.	30.
			3.

3

[5252]-562