

CURSO: 2013-2014

SEGUNDO SEMESTRE

OPENCOURSEWARE UNIVERSIA_UNIVERSIDAD DE LEÓN

MATERIA: DIRECCIÓN FINANCIERA 1

B. T. II: LA DECISIÓN DE INVERSIÓN EN AMBIENTE DE CERTIDUMBRE

TEMA 2. ANÁLISIS DE PROYECTOS PUROS.

- 2.1. FUNDAMENTOS: APLICABILIDAD Y CONSISTENCIA.-
- 2.2. INTERSECCIÓN ÚNICA.-
- 2.3. No hay Intersección.-
- 2.4. INTERSECCIÓN MÚLTIPLE.-

DIRECCIÓN FINANCIERA CASO A CASO

ANÁLISIS DE PROYECTOS CASOS Y SUPUESTOS

- O ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN.
 - «CASO»: INTERSECCIÓN ÚNICA SIMPLE.
 - **«CASO»: NO HAY INTERSECCIÓN.**
 - **«Caso»: Intersección Múltiple.**
- **2** ANÁLISIS DE TRES PROYECTOS PUROS DE INVERSIÓN.
 - **«CASO»: INTERSECCIÓN ÚNICA SIMPLE.**
 - **«CASO»: NO HAY INTERSECCIÓN.**
 - **«Caso»: Intersección Múltiple.**

ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN (PROCEDIMIENTO ABREVIADO)

Paso 0: establecer el intervalo $(0_{r_M}]$; donde $r_M = Valor mínimo (r_G, r_H)$

Paso 1: aplicar el criterio de ordenación siguente: $VAN_G(0) \ge VAN_H(0)$

INTERSECCIÓN ÚNICA SIMPLE: LAS FUNCIONES VAN SE CORTAN EN UN PUNTO EN EL QUE CAMBIA LA ORDENACIÓN

INTERSECCIÓN MÚLTIPLE: LAS FUNCIONES VAN SE CORTAN EN VARIOS PUNTOS EN LOS QUE CAMBIA LA ORDENACIÓN

APLICABILIDAD Y CONSISTENCIA DE LOS MÉTODOS

APLICABILIDAD: un MÉTODO DE DECISIÓN se dice que es APLICABLE cuando es posible su utilización sin ambigüedad para analizar cualquier tipo de Proyecto.

CONSISTENCIA: un MÉTODO DE DECISIÓN se dice que es CONSISTENTE cuando un Proyecto dado se considera deseable al ser evaluado para un determinado tipo de actualización y resulta también deseable cuando es evaluado con una tasa inferior.

TEICHROEW, D.; ROBICHEK, A. y MONTALBANO, M. (1965 a.): «An analysis of criteria for investment and financing under certainty», *Management Science*, 3, pp. 151-179.

TEICHROEW, D.; ROBICHEK, A. y MONTALBANO, M. (1965 b.): «Mathematical analysis of rates of return under uncertainty», *Management Science*, 11, pp. 395-403.

MÉTODO	FORMULACIÓN	Puro	Міхто I	MIXTO II
VALOR ACTUAL NETO VAN	$VAN(k) = Q_0 + \frac{Q_1}{(1+k)} + \frac{Q_2}{(1+k)^2} + \dots + \frac{Q_n}{(1+k)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+k)^j}$	APLICABLE CONSISTENTE	APLICABLE CONSISTENTE	APLICABLE
TIPO INTERNO DE RENDIMIENTO TIR	$TIR = r \Rightarrow VAN(r) = Q_0 + \frac{Q_1}{(1+r)} + \frac{Q_2}{(1+r)^2} + \dots + \frac{Q_n}{(1+r)^n} = \sum_{j=0}^{j=n} \frac{Q_j}{(1+r)^j} = 0$	APLICABLE CONSISTENTE		
RENDIMIENTO DEL CAPITAL INVERTIDO RCI	$S_n(i,k) = 0$	APLICABLE CONSISTENTE	APLICABLE	APLICABLE

RCI

ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN PROCEDIMIENTO ABREVIADO

Paso 0:establecer el intervalo: $(0, r_M]$; donde: $r_M = Valor \, minimo \, (r_G, r_H)$

Paso 1: aplicar el criterio de ordenación siguiente: $VAN_G(0) \ge VAN_H(0)$

Paso 2: calcular el Rendimiento del Capital Invertido (RCI): r_G , r_H

Paso 3:calcular la primera derivada del VAN del Proyecto "diferencia": $VAN_D'(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_j}{(1+x)^{j+1}}$

Paso 4: establecer la Regla de decisión: "Sí . . . , entonces".

$$VAN_D(x) \neq 0$$
 $\begin{cases} r_G \leq r_H \implies \text{Intersección única simple} \\ r_G > r_H \implies \text{No hay intersección} \end{cases}$ \bigcirc

$$VAN_D(x) = 0$$
 $\begin{cases} r_G \le r_H \implies \text{Intersección múltiple} \\ r_G > r_H \implies \text{Intersección múltiple} \end{cases}$ \bullet

INTERSECCIÓN ÚNICA SIMPLE

INTERSECCIÓN ÚNICA SIMPLE

La <u>CONDICIÓN NECESARIA</u> para que EXISTA INTERSECCIÓN ÚNICA SIMPLE entre las FUNCIONES VAN de DOS Proyectos Puros de Inversión: «G» y «H»; en el intervalo:

$$(0, r_M]$$
; $donde: r_M = Valor \, mínimo \, (r_G, r_H) = r_G$

Donde: r_M = menor de las TIR de ambos Proyectos.

Es que: el TIR de «G» sea MENOR O IGUAL que el TIR de «H».

$$r_G \leq r_H$$

La <u>CONDICIÓN SUFICIENTE</u> es que el TIR de «G» sea MENOR O IGUAL que el TIR de «H».

Y que la PRIMERA DERIVADA del VAN del «PROYECTO DIFERENCIA» NO se anule en el intervalo.

$$r_G \leq r_H$$

$$VAN_D(x) \neq 0, \forall x \in (0, r_M]$$

_	Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	VAN(0)	RCI
5	UNO	-100	20	30	40	50	40	0,128257
1	DOS	-100	50	40	30	10	30	0,144888
	UNO - DOS	0	-30	-10	10	40	10	0,091414
	Derivada	-30	-20	30	160	-140	-68,5355	0,719274

Paso 0: establecer el intervalo: $(0, r_M]$; donde: $r_M = Valor \, minimo \, (r_G, r_H)$

$$\begin{cases} r_G = 0.128257 \\ r_H = 0.144888 \end{cases} \Rightarrow Intervalo = (0, r_M]; donde: r_M = Valor \, mínimo \, (r_G, r_H) = r_G = 0.128257$$

Paso 1: aplicar el criterio de ordenación siguiente: $VAN_G(0) \ge VAN_H(0)$

$$VAN_G(0) = -100 + 20 + 30 + 40 + 50 = 40$$

 $VAN_H(0) = -100 + 50 + 40 + 30 + 10 = 30$

Comprobaremos que la PRIMERA DERIVADA DEL VAN del PROYECTO DIFERENCIA NO se anula en el <u>intervalo de estudio</u>:

$$VAN_{G}(0) \ge VAN_{H}(0)$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \bullet Q_{j}}{(1+x)^{j+1}} \longrightarrow VAN_{D}(x) \ne 0$$

	Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	VAN(0)	RCI
G	UNO	-100	20	30	40	50	40	0,128257
	DOS	-100	50	40	30	10	30	0,144888
	UNO - DOS	0	-30	-10	10	40	10	0,091414
_	Derivada	-30	-20	30	160	-140	-68,5355	0,719274

$$VAN_{D}(x) = -\frac{30}{(1+x)} - \frac{10}{(1+x)^{2}} + \frac{40}{(1+x)^{3}} + \frac{40}{(1+x)^{4}}$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}} \qquad VAN_{D}(x) = \frac{30}{(1+x)^{2}} + \frac{20}{(1+x)^{3}} - \frac{30}{(1+x)^{4}} - \frac{160}{(1+x)^{5}}$$

En los extremos del intervalo la PRIMERA DERIVADA DEL VAN del PROYECTO DIFERENCIA toma VALORES DEL MISMO SIGNO (negativo):

$$VAN_{D}^{'}(0) = -140$$

 $VAN_{D}^{'}(0,128257) = -68,535591$

Derivada -30 -20

Aplica la REGLA DE LOS SIGNOS a la función: $VAN_D^{'} = \frac{30}{(1+x)^2} + \frac{20}{(1+x)^3} - \frac{30}{(1+x)^4} - \frac{160}{(1+x)^5}$ Con el cambio de variable: $y = \frac{1}{1+x}$

$$y = \frac{1}{1+x}$$

$$16 \cdot y^{3} + 3 \cdot y^{2} - 2 \cdot y - 3 = 0 \Rightarrow y = 0,581641 \rightarrow x = \frac{1 - y}{y} = 0,71927380$$

TEOREMA DE BOLZANO: por tomar VALORES DEL MISMO SIGNO EN LOS EXTREMOS del intervalo el NÚMERO DE RAÍCES ES CERO O CIFRA PAR.

REGLA DE LOS SIGNOS DE HARRIOT-DESCARTES: el NÚMERO MÁXIMO DE RAÍCES POSITIVAS viene dado por el NÚMERO DE CAMBIOS DE SIGNO; cuando es menor la diferencia entre el número de variaciones de signo y el número de raíces positivas es un número par.

Existe un cambio de signo; lo que nos indica que como máximo tenemos una raíz positiva (raíz = 0,71927380 > 0,128257); por lo tanto, LA RAÍZ QUE EXISTE ESTÁ FUERA DEL INTERVALO. Consecuentemente NO EXISTE RAÍCES EN EL INTERVALO de estudio.

PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA NO se anula en el intervalo:

$$VAN_{D}(x) \neq 0$$

Repetimos

G	
Ă	

Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	VAN(0)	RCI
UNO	-100	20	30	40	50	40	0,128257
DOS	-100	50	40	30	10	30	0,144888
UNO - DOS	0	-30	-10	10	40	10	0,091414
Derivada	-30	-20	30	160	-140	-68,5355	0,719274

$$VAN_G(0) = -100 + 20 + 30 + 40 + 50 = 40$$

$$VAN_{H}(0) = -100 + 50 + 40 + 30 + 10 = 30$$

$$X_{n} = \left\{ \frac{|Q_{0}|}{\sum_{j=1}^{j=n} Q_{j}} \right\}^{-\frac{\sum_{j=1}^{j=n} Q_{j}}{\sum_{j=1}^{j=n} j \bullet Q_{j}}} -1$$

$$X_{n}^{G} = \left\{ \frac{|-100|}{140} \right\}^{-\frac{140}{400}} -1 = 0,124980$$

$$X_{n}^{H} = \left\{ \frac{|-100|}{130} \right\}^{-\frac{130}{260}} -1 = 0,140175$$

$$X_n^G = \left\{ \frac{\left| -100 \right|}{140} \right\}^{-\frac{140}{400}} - 1 = 0,124980$$

$$X_n^H = \left\{ \frac{\left| -100 \right|}{130} \right\}^{-\frac{130}{260}} - 1 = 0,140175$$

Comprobaremos que la PRIMERA DERIVADA de la Función VAN del PROYECTO DIFERENCIA NO se anula en el intervalo de estudio:

 $(0, r_M]$; $donde: r_M = Valor mínimo(r_G, r_H) = r_G$

$$VAN_{G}(0) \ge VAN_{H}(0)$$

$$VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \bullet Q_{j}}{(1+x)^{j+1}} \longrightarrow VAN_{D}(x) \ne 0$$

Proyecto	Q_0	Q ₁	Q_2	Q_3	Q_4	VAN(0)	RCI
UNO	-100	20	30	40	50	40	0,128257
DOS	-100	50	40	30	10	30	0,144888
UNO - DOS	0	-30	-10	10	40	10	0,091414

$$VAN_{D}(x) = -\frac{30}{(1+x)} - \frac{10}{(1+x)^{2}} + \frac{10}{(1+x)^{3}} + \frac{40}{(1+x)^{4}} VAN_{D}(x) = \sum_{j=1}^{j=n} \frac{(-j) \cdot Q_{j}}{(1+x)^{j+1}}$$

$$VAN_{D}(x) = \frac{30}{(1+x)^{2}} + \frac{20}{(1+x)^{3}} - \frac{30}{(1+x)^{4}} - \frac{160}{(1+x)^{5}}$$

En los extremos del intervalo, la PRIMERA DERIVADA del VAN del Proyecto "diferencia" toma valores negativos:

$$VAN_{D}(0) = -140 \Leftrightarrow VAN_{D}(0,128257) = -68,535591$$

Aplicando la Regla de los Signos de Harriot_ Descartes a la función: VAN_D ; con el cambio de variable: $y = \frac{1}{1-1}$

$$y = \frac{1}{1+x}$$

$$16 \cdot y^3 + 3 \cdot y^2 - 2 \cdot y - 3 = 0 \Rightarrow y = 0,581641 \rightarrow x = \frac{1 - y}{y} = 0,71927380$$

Teorema de Bolzano: por tomar valores del mismo signo en los extremos del intervalo el número de raíces es cero o cifra par.

Regla de los Signos de Harriot_Descartes: el número máximo de raíces positivas viene dado por el número de cambios de signo; cuando es menor la diferencia entre el número de variaciones de signo y el número de raíces positivas es un número par. En nuestro caso, existe un cambio de signo; lo que indica que como máximo tenemos una raíz positiva (raíz = 0,71927380> 0,128257); por lo tanto, LA RAÍZ QUE EXISTE ESTÁ FUERA DEL INTERVALO.

Consecuentemente, no existen raíces en el intervalo de estudio.

La PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA NO se anula en el intervalo de estudio:

Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	VAN(0)	RCI
UNO	-100	20	30	40	50	40	0,128257
DOS	-100	50	40	30	10	30	0,144888
UNO - DOS	0	-30	-10	10	40	10	0,091414

$$VAN_D(x) = -\frac{30}{(1+x)} - \frac{10}{(1+x)^2} + \frac{10}{(1+x)^3} + \frac{40}{(1+x)^4}$$

$$VAN_D(x) = \frac{30}{(1+x)^2} + \frac{20}{(1+x)^3} - \frac{30}{(1+x)^4} - \frac{160}{(1+x)^5}$$

La PRIMERA DERIVADA del VAN del PROYECTO DIFERENCIA NO se anula en el intervalo de estudio.

Proyecto	Q_0	Q_1	Q_2	Q_3	Q_4	VAN(0)	RCI
UNO	-100	20	30	40	50	40	0,128257
DOS	-100	50	40	30	10	30	0,144888
UNO - DOS	0	-30	-10	10	40	10	0,091414

INTERSECCIÓN ÚNICA SIMPLE

0,091414

0,144888

0,128257

Tipo de actualización

Tipo de actualización

ANÁLISIS DE DOS PROYECTOS PUROS DE INVERSIÓN

VNO HAY INTERSECCIÓN: LA ORDENACIÓN ES COINCIDENTE

✓ INTERSECCIÓN ÚNICA SIMPLE: LAS FUNCIONES VAN SE CORTAN

EN UN PUNTO EN EL QUE CAMBIA LA ORDENACIÓN

✓ INTERSECCIÓN MÚLTIPLE: LAS FUNCIONES VAN SE CORTAN EN VARIOS PUNTOS EN LOS QUE

CAMBIA LA ORDENACIÓN

OPENCOURSEWARE UNIVERSIA_UNIVERSIDAD DE LEÓN

F(RCI, k)

Intersección

Múltiple

José Luis Fanjul Suárez / Isabel Feito Ruíz / Rocío Fanjul Coya

Análisis de

Proyectos Puros

(2)

Análisis de Proyectos de

Inversión Financiación