Deadline: 10/15 23:59

Problem E. Another Inversion Counting

Time limit 2000 ms Memory limit 256MB

Problem Description

You are given a sequence of N integers a_1, a_2, \ldots, a_N and an integer K. You need to construct a new sequence S by repeating the original sequence K times with rotations applied.

Specifically, for each i from 1 to K:

- Rotate the original sequence by moving the first $(i-1) \mod N$ elements to the end.
- Append this rotated sequence to S.

For example, if the original sequence is a = [1, 2, 3] and K = 3, the sequence S is constructed as follows:

- Rotate by 0 positions: [1, 2, 3]
- Rotate by 1 positions: [2, 3, 1]
- Rotate by 2 positions: [3, 1, 2]

The final sequence S = [1, 2, 3, 2, 3, 1, 3, 1, 2].

Your task is to calculate the number of inversion pairs in the sequence S.

An inversion pair is a pair of indices (i, j) such that $1 \le i < j \le N \times K$ and $S_i > S_j$.

Input format

The first line contains two integers N and K $(1 \le N \le 2 \times 10^5, 1 \le K \le 10^{16})$ — the length of the sequence and the number of times it is repeated with rotations.

The second line contains N integers a_1, a_2, \ldots, a_N $(1 \le a_i \le 10^9)$ — the elements of the sequence.

Output format

Output a single integer — the number of inversion pairs in the final sequence S, the answer need to modulo 998244353.

Subtask score

Subtask	Score	Additional Constraints
1	5	$N \times K \le 5000$
2	15	$N \times K \le 2 \times 10^5$
3	20	$N \le 2 \times 10^5, K \le 500$
4	25	a_i is distinct
5	35	No constraints

Sample Input 2

3 5 1 2 3

Sample Output 2

36