Throughput vs. IOPS

- Two programs, same disk
- Seek to one sector, read 10,000 sectors of 512 bytes each
 - Time = Tseek + Trotate + Ttransfer * 10000
 - 9 + 4 + 0.02 * 10000 = 213ms
 - 213 ms for 5.12MB at about 24 MB/s
- Read 10,000 random sectors
 - Time = 1000 * (Tseek + Trotate + Ttransfer)
 - 10000 * (9+4+0.02) = 130,020ms or 130s
 - 130,020 ms for 5.12MB at about 0.04 MB/s
- We are "latency limited" or "seek limited"

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
```

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
      array "data" with stride of "stride", using
      using 4x4 loop unrolling.
*/
int test(int elems, int stride) {
  long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
  long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
  long length = elems, limit = length - sx4;
  /* Combine 4 elements at a time */
  for (i = 0; i < limit; i += sx4)
    acc0 = acc0 + data[i];
    acc1 = acc1 + data[i+stride];
    acc2 = acc2 + data[i+sx2];
    acc3 = acc3 + data[i+sx3];
  /* Finish any remaining elements */
  for (; i < length; i++) {
    acc0 = acc0 + data[i];
  return ((acc0 + acc1) + (acc2 + acc3));
```

Call test() with many combinations of elems and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test() again and measure the read throughput (MB/s)

The Memory Mountain

Core i7 Haswell

2.1 GHz

Prefetching

- Algorithms in processors predict access patterns
- Try to pre-fetch memory
 - Based on strides
 - Future: based on contents

Stride Detection $\Delta = 2$ Prefetch Starts

Cache Summary

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

Miss Rate Analysis for Matrix Multiply

Assume:

- Block size = 32B (big enough for four doubles)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > sizeof(a_{ii}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ii}) / B
- Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}

matmult/mm.c</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}
matmult/mm.c</pre>
```

Inner loop: (i,k) A B C † Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}
  matmult/mm.c</pre>
```

Inner loop: (i,k) A B C † Row-wise Row-wise

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
}

matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
  for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
  }
}
matmult/mm.c</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Example: Matrix Multiplication

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)

n

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

Again: n/8 + n = 9n/8 misses

Total misses:

n

Blocked Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
       for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)
                              c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
                                                         matmult/bmm.c
```


Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

First (block) iteration:

- B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)

Afterwards in cache (schematic)

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C</p>

Second (block) iteration:

- Same as first iteration
- $2n/B * B^2/8 = nB/4$

Total misses:

 $nB/4 * (n/B)^2 = n^3/(4B)$

n/B blocks

Blocking Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³
- Suggest largest possible block size B, but limit 3B² < C!</p>
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Cache Summary

- Cache memories can have significant performance impact
- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it's read from memory.

Linking and Loading: Linking

These slides adapted from materials provided by the textbook authors.

Linking and Loading

- Linking
- Loading
- Case study: Library interpositioning

Example C Program

```
int array[2] = {1, 2};
int sum(int *a, int n);
int main(){
   int val = sum(array, 2);
   return val;
}

main.c
```

```
int sum(int *a, int n)
{
   int i, s = 0;

   for (i = 0; i < n; i++) {
      s += a[i];
   }
   return s;
}</pre>
```

Static Linking

- Programs are translated and linked using a compiler driver:
 - linux> gcc -Og -o prog main.c sum.c
 - linux> ./prog

Why Linkers?

- Reason 1: Modularity
 - Program can be written as a collection of smaller source files,
 rather than one monolithic mass.
 - Can build libraries of common functions (more on this later)
 - e.g., Math library, standard C library

Why Linkers? (cont)

- Reason 2: Efficiency
 - Time: Separate compilation
 - Change one source file, compile, and then relink.
 - No need to recompile other source files.
 - Space: Libraries
 - Common functions can be aggregated into a single file...
 - Yet executable files and running memory images contain only code for the functions they actually use.

What Do Linkers Do?

Step 1: Symbol resolution

Programs define and reference symbols (global variables and functions):

```
void swap() {...} /* define symbol swap */
swap(); /* reference symbol swap */
int *xp = &x; /* define symbol xp, reference x */
```

- Symbol definitions are stored in object file (by assembler) in symbol table.
 - Symbol table is an array of structs
 - Each entry includes name, size, and location of symbol.
- During symbol resolution step, the linker associates each symbol reference with exactly one symbol definition.

What Do Linkers Do? (cont)

- Step 2: Relocation
 - Merges separate code and data sections into single sections
 - Relocates symbols from their relative locations in the .o files to their final absolute memory locations in the executable.
 - Updates all references to these symbols to reflect their new positions.

Let's look at these two steps in more detail....

Three Kinds of Object Files (Modules)

Relocatable object file (. o file)

- Contains code and data in a form that can be combined with other relocatable object files to form executable object file.
 - Each . file is produced from exactly one source (. c) file

Executable object file (a.out file)

 Contains code and data in a form that can be copied directly into memory and then executed.

Shared object file (.so file)

- Special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run-time.
- Called Dynamic Link Libraries (DLLs) by Windows