Homework II AM 411021348 Khulan; Dhanini
Question 1 Management paint of the contract of
a) $\lim_{n \to \infty} a_n + 1 = \lim_{n \to \infty} \frac{(-1)^{n+1} x^{n+1}/(n+1)^2}{(n+1)^2}$
a) $\lim_{n\to\infty} \frac{ a_n+1 }{ a_n } = \lim_{n\to\infty} \frac{(-1)^{n+1}}{(-1)^n} \frac{\chi^{n+1}}{\chi^n} \frac{(n+1)^2}{(n+1)^2}$
$\frac{1}{1+2\alpha} \left \frac{-\alpha \cdot n^2}{(n+1)^2} \right = \alpha $
For convergence 1x1<
=) Radius of convergence is R=1 and the point of convergence is (-1,1).
b) Siven the series $\sum_{n=1}^{\infty} \frac{e^n \cdot x^n}{n}$
Applying the concep of the vortio test ins in part (A);
$\left \lim_{n\to\infty}\left \frac{a_{n+1}}{a_{n}}\right =\lim_{n\to\infty}\left \frac{e^{n+1}\cdot x^{n+1}/(n+1)}{e^{n}\cdot x^{n}/n}\right $
= im e.x. n = e.1x 1>0 1+1 = 1x 4 1x 4 le. There R. 1.
170 111 151 L /p. Theretor Radio
For convergence, e. 1x1 <1 1x1 < 1/e. Therefor Radius of convergence is R= 1/e and the internal of convergence is (-te; te).
vonvergence. 15. (-le ; le).

Question?

Siven $f(x) = \frac{x}{1-4x^2}$, using the geometric series

Homework II AM HIO21348

pormula: L = 2 u°, where /u/ L1

In this case, $y = 4x^2$ so |u| < 1 where

 $|4x^2| \le |$ which simplifies to $|x| \le \frac{1}{2}$ We use the geometric series formular to represent $\frac{1}{1-4x^2}$ as: $\frac{1}{1-4x^2} = \frac{1}{n=0} (4x^2)^n$

 $= \sum_{n=0}^{\infty} f(x) = \sum_{n=0}^{\infty} (\mu x^2)^n$

 $= \sum_{n=0}^{\infty} \chi \cdot (\mu \chi^2)^n = \sum_{n=0}^{\infty} \mu^n \chi^{2n+1}$

Thus the power series representation for f(x) is $\frac{2}{n=0}u^n x^{2n+1}$ and the internal of

convergence is - 2 < x < 2

Question 3

given function
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 differential nting with respect to x'

$$= \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!}$$

$$=) \ \epsilon'(x) = \frac{2^{\alpha} x^{n-1}}{n=1} \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{n=1}^{\infty} \frac{\chi^n}{n!} = \sum_{n=1}^{\infty} \frac{\chi^n$$

Satisfies the disperential equation hence f(x)

is sure of the series to the const

We know from the previous part plate

Question 4 a) Sum of the series & not not The geometric series sum is $\frac{z}{x} = \frac{1}{x-x}$ then differentiating both side with respect to x: $\frac{d}{dx}\left(\frac{z^{\infty}x^{n}}{z^{-\infty}}\right) = \frac{d}{dx}\frac{1}{1-x^{-\infty}}$ Then the left side becomes. herefore, the profiles the sea of the seasons The right side is: $\frac{d}{dx} = \frac{1}{1-x^2}$ Thus $\sum_{n=1}^{\infty} nx^{n-1} = 1$ $\frac{1}{1-x^2}$ b) Sum of the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ We know from the previous part (a) that $\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}, \forall |x| < 1$

Substitute = $x = \frac{1}{2}$

$$\frac{\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{x}{(1-x)^2} \left| x = \frac{1}{2} \right|$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{(1-\frac{1}{2})^2} = \frac{1}{(\frac{1}{2})^2} = \frac{1}{2} = \frac{1}{2} \times 4 = 2.$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 2$$

6) Sum of the series
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

We know from a) that:

$$\sum_{n=1}^{\infty} n^{2}x^{n} = x dx (\frac{x}{(1-x)^{2}}), \forall |x|<1$$

Differentiate
$$x$$
: let $f(x) = x$

$$(1-x^2)$$

Then
$$p'(x) = d \left(\frac{1}{(1-x)^2}\right)$$

Using the quotient Rule:

$$F'(x_0) = \frac{(1-x)^2 \cdot [1-x \cdot \lambda (1-x)(-1)]}{(1-x)^4}$$

Numerator;
$$(1-x)^2 + 2x(1-x) = 1-2x-x+2x-2x^2$$

= $1-x^2$

Thus:
$$p'(x) = \frac{1-x^2}{(1-x)^4}$$

$$\sum_{n=1}^{\infty} n^{2} x^{n} = x \cdot 1 - x^{2} = \frac{x(1-x^{2})}{(1-x)^{4}}$$

$$(1-x)^{4} \qquad (1-x)^{4}$$

$$\frac{\sum_{n=1}^{\infty} \int_{2^{n}}^{1} = \frac{\chi(1-\chi^{2})}{(1-\chi)^{4}} \int_{2^{\infty}}^{\infty} \frac{1}{2}$$

$$\frac{2^{n}}{n=1} = \frac{1}{2^{n}} = \frac{1}{2} \left(\frac{1-(1)^{2}}{(1-\frac{1}{2})^{4}} - \frac{1}{2} \left(\frac{1-\frac{1}{4}}{(1-\frac{1}{2})^{4}} - \frac{1}{2} \frac{1}{2} \right) + \frac{1}{2} \frac{1$$

$$\sum_{n=1}^{\infty} n^2 x^n = 6.$$