Tarea 3. Estadística

Katherin A. Murcia S. y Juan Carlos Rojas V.

```
In [2]: import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
```

Propagting the error through a multi-variable function

Three variables are measured to be $A=12.3\pm0.4$, $B=5.6\pm0.8$ and $C=89.0\pm0.2$. Calculate the mean and ucertatinties of Z when it is related to A, B and C via the relations:

```
In [3]: # Dado que soy un perezoso, dejaré que SymPy haga las derivadas.
a,b,c,un_a,un_b,un_c = sym.symbols("A B C sigma_A sigma_B sigma_C")

A = 12.3 # Medida promedio de A
un_A = 0.4 # Incertidumbre de A
B = 5.6 # Medida promedio de B
un_B = 0.8 # Incertidumbre de B
C = 89.0 # Medida promedio de C
un_C = 0.2 # Incertidumbre de C
```

(i)
$$Z = A + B$$

Calculando la incertidumbre de Z, se tiene que

$$\sigma_Z = \sqrt{\left(rac{\partial Z}{\partial A}
ight)^2 \sigma_A^2 + \left(rac{\partial Z}{\partial B}
ight)^2 \sigma_B^2}$$

Para la derivada parcial de Z con respecto de A está dada por $\frac{\partial Z}{\partial A}=1$. Análogamente para B, se tiene que $\frac{\partial Z}{\partial B}=1$ por tanto:

$$\sigma_Z = \sqrt{\sigma_A^2 + \sigma_B^2}.$$

Se obtiene entonces que para Z=A+B el calculo de Z es:

```
In [4]: un_Z = np.sqrt(un_A**2 + un_B**2) # Incertidumbre de Z
Z = A + B # Medida promedio de Z
Z,un_Z
```

Out[4]: (17.9, np.float64(0.894427190999916))

Se tiene entonces que $\bar{Z}=17.9$ y $\sigma_Z=0.9$.

(ii)
$$Z = A - B$$

Similarmente que para el punto anterior, se tomando las derivadas parciales con respecto a cada variable. Sin embargo, la derivada parcial de Z con respecto de B va a ser -1. Por lo que se tiene que σ_Z está dado por:

$$\sigma_Z = \sqrt{\sigma_A^2 + (-1)^2 \sigma_B^2} = \sqrt{\sigma_A^2 + \sigma_B^2}$$

Por tanto, la incertidumbre va a ser la misma que para el punto anterior. Ahora, para el promedio, se tiene que:

Out[5]: (6.700000000000001, np.float64(0.894427190999916))

Se tiene entonces que $\bar{Z}=6.7$ y $\sigma_Z=0.9$.

(iii)
$$Z=rac{A-B}{A+B}$$

Definiendo la expresión en SymPy:

In [6]:
$$z = (a-b)/(a+b)$$

z

Out[6]:
$$\frac{A-B}{A+B}$$

Tomando la derivada parcial con respecto a A:

In [7]:
$$dzda = sym.diff(z,a)$$

 $dzda$

Out[7]:
$$-\frac{A-B}{(A+B)^2} + \frac{1}{A+B}$$

Tomando la derivada parcial con respecto a B:

Out[8]:
$$-\frac{A-B}{(A+B)^2} - \frac{1}{A+B}$$

La incertidumbre σ_Z es, entonces:

Out[9]:
$$\sqrt{\sigma_A^2 \left(-\frac{A-B}{\left(A+B\right)^2} + \frac{1}{A+B}\right)^2 + \sigma_B^2 \left(-\frac{A-B}{\left(A+B\right)^2} - \frac{1}{A+B}\right)^2}$$

Al calcularla se tiene, entonces que:

Out[10]: np.float64(0.06299266062854407)

Por otro lado, para \bar{Z} se tiene que:

```
In [11]: Z = (A-B)/(A+B)
Z
```

Out[11]: 0.37430167597765374

Por tanto la medida es $ar{Z}=0.37$ y $\sigma_Z=0.06$.

(iv)
$$Z=rac{AB}{C}$$

Se define la expresión simbólica en SymPy:

Out[89]:
$$AB \over C$$

Tomando las derivadas parciales:

In [13]:
$$dzda = sym.diff(z,a)$$
 $dzda$

Out[13]:
$$\frac{B}{C}$$

Out[14]:
$$\frac{A}{C}$$

In [15]:
$$dzdc = sym.diff(z,c)$$

 $dzdc$

Out[15]:
$$-\frac{AB}{C^2}$$

Out[16]:
$$\sqrt{rac{A^2B^2\sigma_C^2}{C^4} + rac{A^2\sigma_B^2}{C^2} + rac{B^2\sigma_A^2}{C^2}}$$

Out[17]: np.float64(0.11340366493873848)

In [18]:
$$Z = A*B/C$$

Out[18]: 0.7739325842696628

Se tiene entonces, que $\bar{Z}=0.7$ y $\sigma_Z=0.1$.

(v)
$$Z = rcsin \left(rac{B}{A}
ight)$$

Out[19]:
$$\operatorname{asin}\left(\frac{B}{A}\right)$$

Tomando la derivada parcial con respecto a A:

Out[20]:
$$-\frac{B}{A^2\sqrt{1-\frac{B^2}{A^2}}}$$

Tomando la derivada parcial con respecto a B:

Out[21]:
$$\dfrac{1}{A\sqrt{1-\dfrac{B^2}{A^2}}}$$

La incertidumbre σ_Z es, entonces:

Out[22]:
$$\sqrt{rac{\sigma_B^2}{A^2\cdot\left(1-rac{B^2}{A^2}
ight)}+rac{B^2\sigma_A^2}{A^4\cdot\left(1-rac{B^2}{A^2}
ight)}}$$

Al calcularla se tiene, entonces que:

Out[23]: np.float64(0.0749198656837616)

Por otro lado, para \bar{Z} se tiene que:

Out[24]: np.float64(0.47269178607772744)

Por tanto la medida es $ar{Z}=0.47$ y $\sigma_Z=0.07$.

(vi)
$$Z=AB^2C^3$$

Out[27]: $2ABC^3$

dzdb

In [27]:

Out[28]: $3AB^2C^2$

$$\text{Out[29]: } \sqrt{9A^2B^4C^4\sigma_C^2 + 4A^2B^2C^6\sigma_B^2 + B^4C^6\sigma_A^2}$$

Out[30]: np.float64(78216357.72884737)

dzdb = sym.diff(z,b)

```
In [33]: Z = A*B**2*C**3
Z
```

Out[33]: 271926282.432

Se tiene entonces, que $ar{Z}=2.7 imes10^9$ y $\sigma_Z=0.8 imes10^9$.

(vii)
$$Z = \ln(ABC)$$

Se define la expresión simbólica en SymPy:

```
In [34]: z = sym.ln(a*b*c)
```

Out[34]: $\log(ABC)$

Tomando las derivadas parciales:

```
Out[35]:
In [36]:
          dzdb = sym.diff(z,b)
          dzdb
Out[36]:
          dzdc = sym.diff(z,c)
In [37]:
          dzdc
Out[37]:
          un_z = sym.sqrt(dzda**2 * un_a**2 + dzdb**2 * un_b**2 + dzdc**2 * un_c**2)
In [38]:
          un z
          \sqrt{rac{\sigma_C^2}{C^2}+rac{\sigma_B^2}{B^2}+rac{\sigma_A^2}{A^2}}
Out[38]:
          un_Z_f = sym.lambdify([a,b,c,un_a,un_b,un_c],un_z)
In [39]:
          un Z = un Z f(A,B,C,un A,un B,un C)
          un Z
          np.float64(0.14652912571933396)
Out[39]:
          Z = np.log(A*B*C)
In [40]:
          np.float64(8.721002229851615)
Out[40]:
          Se tiene entonces, que \bar{Z}=8.7 y \sigma_Z=0.1.
          (viii) Z = \exp(ABC)
          Se define la expresión simbólica en SymPy:
In [48]:
          z = sym.exp(a*b*c)
Out[48]: e^{ABC}
          Tomando las derivadas parciales:
In [49]:
          dzda = sym.diff(z,a)
          dzda
Out[49]: BCe^{ABC}
          dzdb = sym.diff(z,b)
In [50]:
          dzdb
Out[50]: ACe^{ABC}
In [51]:
          dzdc = sym.diff(z,c)
          dzdc
```

```
Out[51]: ABe^{ABC}
 In [54]: un_z = sym.sqrt(dzda**2 * un_a**2 + dzdb**2 * un b**2 + dzdc**2 * un c**2)
 Out[54]: \sqrt{A^2B^2\sigma_C^2e^{2ABC}+A^2C^2\sigma_B^2e^{2ABC}+B^2C^2\sigma_A^2e^{2ABC}}
             Calculando en otro lado (dado que es algo re grande).
             Se tiene entonces, que ar{Z}=0.002	imes10^{2665} y \sigma_Z=2	imes10^{2665}.
             (ix) Z = A + 	an\!\left(rac{B}{C}
ight)
             Se define la expresión simbólica en SymPy:
 In [112... z = a + sym.tan(b/c)]
Out[112]: A + \tan\left(\frac{B}{C}\right)
             Tomando las derivadas parciales:
 In [113...] dzda = sym.diff(z,a)
             dzda
Out[113]: 1
             dzdb = sym.diff(z,b)
 In [114...
Out[114]: \tan^2\left(\frac{B}{C}\right) + 1
 In [115...] dzdc = sym.diff(z,c)
             dzdc
Out[115]:
              -\frac{B\left(	an^2\left(rac{B}{C}
ight)+1
ight)}{2}
 In [116... un_z = sym.sqrt(dzda**2 * un_a**2 + dzdb**2 * un_b**2 + dzdc**2 * un_c**2)
             \sqrt{rac{B^2\sigma_C^2\Big(	an^2\Big(rac{B}{C}\Big)+1\Big)^2}{C^4}+\sigma_A^2+rac{\sigma_B^2\Big(	an^2\Big(rac{B}{C}\Big)+1\Big)^2}{C^2}}
Out[116]:
             un Z f = sym.lambdify([a,b,c,un a,un b,un c],un z)
 In [117...
             un_Z = un_Z_f(A,B,C,un_A,un_B,un_C)
             np.float64(0.40010181300479225)
Out[117]:
 In [118... \ Z = A + np.tan(B/C)]
```

7.

Out[118]: np.float64(12.363004517247631)

Se tiene entonces, que $ar{Z}=12.4$ y $\sigma_Z=0.4$.

(x)
$$Z = 10^{ABC}$$

Se define la expresión simbólica en SymPy:

In [58]:
$$z = 10**(a*b*c)$$

Out[58]: 10^{ABC}

Tomando las derivadas parciales:

Out[59]: $10^{ABC}BC\log{(10)}$

Out[60]: $10^{ABC} AC \log{(10)}$

Out[61]: $10^{ABC}AB\log{(10)}$

$$\texttt{Out[62]:} \quad \sqrt{10^{2ABC}A^2B^2\sigma_C^2\log{(10)}^2 + 10^{2ABC}A^2C^2\sigma_B^2\log{(10)}^2 + 10^{2ABC}B^2C^2\sigma_A^2\log{(10)}^2}$$

Calculando en otro lado (dado que es algo re grande).

Se tiene entonces, que $ar{Z}=0.002 imes10^{6133}$ y $\sigma_Z=4 imes10^{6133}$.

Angular dependence of the reflection coefficient of light

The intensity reflection coefficient, R, for the component of the field parallel to the plane of incidence is

$$R = rac{ an^2(heta_i - heta_t)}{ an^2(heta_i + heta_t)}$$

where θ_i and θ_t are the angles of incidence and transmission, respectively. Calculate R and its associated error if $\theta_i=(45.0\pm0.1)\degree$ and $\theta_t=(34.5\pm0.2)\degree$.

Primero, pasamos todo a radianes:

```
In [64]: theta_i = 45.0 *np.pi/180
                theta t = 34.5 *np.pi/180
                un theta i = 0.1*np.pi/180
                un theta t = 0.2*np.pi/180
                theta i, un theta i, theta t, un theta t
                (0.7853981633974483,
Out[64]:
                0.0017453292519943296,
                 0.6021385919380436,
                 0.003490658503988659)
In [72]: theta i ,theta t ,un theta i ,un theta t = sym.symbols(r"theta i theta t \sigma {\theta
In [75]: R = sym.tan(theta_i_ - theta_t_)**2/(sym.tan(theta_i_ + theta_t_)**2)
Out[75]: \frac{\tan^2(\theta_i - \theta_t)}{\tan^2(\theta_i + \theta_t)}
In [78]: dRdthetai = sym.diff(R,theta i )
\frac{\left(2 \tan ^2\left(\theta_i-\theta_t\right)+2\right) \tan \left(\theta_i-\theta_t\right)}{\tan ^2\left(\theta_i+\theta_t\right)}+\frac{\left(-2 \tan ^2\left(\theta_i+\theta_t\right)-2\right) \tan ^2\left(\theta_i-\theta_t\right)}{\tan ^3\left(\theta_i+\theta_t\right)}
In [79]: dRdthetat = sym.diff(R,theta t )
                dRdthetat
Out[79]: \frac{\left(-2\tan^2\left(\theta_i-\theta_t\right)-2\right)\tan\left(\theta_i-\theta_t\right)}{\tan^2\left(\theta_i+\theta_t\right)} + \frac{\left(-2\tan^2\left(\theta_i+\theta_t\right)-2\right)\tan^2\left(\theta_i-\theta_t\right)}{\tan^3\left(\theta_i+\theta_t\right)}
In [80]: un R = sym.sqrt(dRdthetai**2*un theta i **2 + dRdthetat**2 * un theta t **2)
                un R
                  \left| \sigma_{	heta_i}^2 \left( rac{\left( 2	an^2\left(	heta_i - 	heta_t
ight) + 2
ight)	an\left(	heta_i - 	heta_t
ight)}{	an^2\left(	heta_i + 	heta_t
ight)} + rac{\left( -2	an^2\left(	heta_i + 	heta_t
ight) - 2
ight)	an^2\left(	heta_i - 	heta_t
ight)}{	an^3\left(	heta_i + 	heta_t
ight)} 
ight)^2 
ight.
Out[80]:
               \sqrt{+\sigma_{	heta_t}^2igg(rac{ig(-2	an^2\left(	heta_i-	heta_t
ight)-2ig)	an\left(	heta_i-	heta_t
ight)}{	an^2\left(	heta_i+	heta_t
ight)}+rac{ig(-2	an^2\left(	heta_i+	heta_t
ight)-2ig)	an^2\left(	heta_i-	heta_t
ight)}{	an^3\left(	heta_i+	heta_t
ight)}igg)^2}
               un R f = sym.lambdify([theta i ,theta t ,un theta i ,un theta t ],un R)
In [81]:
In [82]:
               un R f(theta i, theta t, un theta i, un theta t)
               np.float64(9.194664167000746e-05)
Out[82]:
               R f = sym.lambdify([theta i , theta t ], R)
In [83]:
In [84]: R f(theta i, theta t)
               np.float64(0.0011799610805957297)
Out[84]:
               Se obtuvo entonces que R=(117\pm9)	imes10^{-5}
```

Poiseuille's method for determing viscosity

The volume flow rate, $\frac{dV}{dt}$, of fluid flowing smoothly through a horizontal tube of lenght L and radius r is given by Poiseuille's equation:

$$rac{\mathrm{d}V}{\mathrm{d}t} = rac{\pi
ho ghr^4}{8\eta L}$$

where η and ρ are the viscosity and density, respectively, of the fluid, h is the head of pressure across the tube, and g the acceleration due to gravity. In an experiment the graph of the flow rate versus height has a slope measured to 7%, the length is known to 0.5%, and the radius to 8%. What is the fractional preciosion to which the viscosity is known? If more expreimental time is available, should this be devote to (i) collecting more flow-rate data, (ii) measuring the length, or (iii) the radius of the tube?

Calculando la precisión fraccional se tiene que:

$$(4.8) \cdot \frac{dV}{dt} = \frac{1}{8\eta L}$$

$$\frac{\partial}{\partial t} = S.$$

$$\frac{\partial}{\partial t} = \frac{3}{100}$$

Lo cual se traduce numéricamente a:

Out[87]:

```
In [85]: frac_un_slope = 7/100
    frac_un_L = 0.5/100
    frac_un_r = 8/100

In [87]: frac_un_viscosity = np.sqrt(frac_un_slope**2 + frac_un_L**2 +16*frac_un_r**2)
    frac_un_viscosity

np.float64(0.32760494501762333)
```

Por tanto, se puede calcular la viscosidad con una precisión de 32%. Por otro lado, si se tiene más tiempo de experimental, este debe tiempo extra debería estar dedicado a medir mejor el radio del tubo, pues este tiene un mayor "weight" con respecto a las otras variables.

Construct a spreadsheet which has the data from the calculation in Section 4.2.2. Include cells for: (i) the variables (molar volume and the absolute temperature), (ii) the uncertainties, and (iii) the universal gas constant as well as the parameters a and b. Verify the numbers obtained in the worked example. Repeat the calculation for (i) $V_m = (2.000 \pm 0.003) \times 10^{-3} m3 mol^{-1}$ and $T = 400.0 \pm 0.2K$; (ii) $V_m = (5.000 \pm 0.001) \times 10^{-4} m^3 mol^{-1}$ and $T = 500.0 \pm 0.2K$. Repeat the calculations with the same variables for (a) He with $a = 3.457209 \times 10^{-3} m^6 mol^{-2} Pa$, and $b = 2.37 \times 10^{-5} m^3 mol^{-1}$; (b) CO2 with $a = 3.639594 \times 10^{-1} m^6 mol^{-2} Pa$, and $b = 4.267 \times 10^{-5} m^3 mol^{-1}$; and (c) Ar with $a = 1.36282125 \times 10^{-1} m^6 mol^{-2} Pa$, and $b = 3.219 \times 10^{-5} m^3 mol^{-1}$.

ESPECIE	V_m [m^3/mol]	σ_V_m [m^3/mol]	T [K]	σ_T [K]	R [J/molK]	a [Pam^6/mol^2]	b [m^3/mol]	P(V, T + σ_T) [Pa]	P(V+σ_V, T) [Pa]	P [Pa]	σ_P [Pa]
N	0,0002	0,0000003	298	0,2	8,3145	1,41E-01	3,91E-05	1,1892E+07	1,1864E+07	1,188E+07	2E+04
N	2,00E-03	3,00E-06	400	0,2	8,3145	1,41E-01	3,91E-05	1,6617E+06	1,6584E+06	1,661E+06	3E+03
N	5,00E-04	1,00E-07	500	0,2	8,3145	1,41E-01	3,91E-05	8,4608E+06	8,4555E+06	8,457E+06	4E+03
He	0,0002	0,0000003	298	0,2	8,3145	3,46E-03	2,37E-05	1,3977E+07	1,3944E+07	1,397E+07	3E+04
He	2,00E-03	3,00E-06	400	0,2	8,3145	3,46E-03	2,37E-05	1,6828E+06	1,6794E+06	1,682E+06	3E+03
He	5,00E-04	1,00E-07	500	0,2	8,3145	3,46E-03	2,37E-05	8,7179E+06	8,7126E+06	8,714E+06	4E+03
CO2	0,0002	0,0000003	298	0,2	8,3145	0,3639594	0,00004267	6,6601E+06	6,6468E+06	6,65E+06	1E+04
CO2	2,00E-03	3,00E-06	400	0,2	8,3145	0,3639594	0,00004267	1,6090E+06	1,6058E+06	1,608E+06	2E+03
CO2	5,00E-04	1,00E-07	500	0,2	8,3145	0,3639594	0,00004267	7,6381E+06	7,6330E+06	7,634E+06	4E+03
Ar	0,0002	0,0000003	298	0,2	8,3145	1,36E-01	3,22E-05	1,1368E+07	1,1342E+07	1,136E+07	2E+04
Ar	2,00E-03	3,00E-06	400	0,2	8,3145	1,36E-01	3,22E-05	1,6569E+06	1,6536E+06	1,656E+06	3E+03
Ar	5,00E-04	1,00E-07	500	0,2	8,3145	1,36E-01	3,22E-05	8,3450E+06	8,3398E+06	8,341E+06	4E+03

Weighted mean

A group of six students make the following measurements of the speed of light (all $\times 10^{-8}ms^{-1}$): 3.03 ± 0.04 , 2.99 ± 0.03 , 2.99 ± 0.02 , 3.00 ± 0.05 , 3.05 ± 0.04 and 2.97 ± 0.02 . What should the cohort report as their combined result? If another student then reports $c=(3.0\pm0.3)\times10^8ms^{-1}$, is there any change to the cohort's combined measurement? If a further student resports $c=(4.01\pm0.01)\times10^8ms^{-1}$, is there any change to the cohort's combined measurement?

#	С	sigma_c	sigma_c^2
1	3,03E+08	4,00E+06	1,60E+13
2	2,99E+08	3,00E+06	9,00E+12
3	2,99E+08	2,00E+06	4,00E+12
4	3,00E+08	5,00E+06	2,50E+13
5	3,05E+08	4,00E+06	1,60E+13
6	2,97E+08	2,00E+06	4,00E+12
7	3,00E+08	3,00E+07	9,00E+14
8	4,01E+08	1,00E+06	1,00E+12
PROMEDIO		SIGMA_PRO	
(N=6)	3,01E+08	MEDIO	1E+06
PROMEDIO		SIGMA_PRO	
(N=7)	3,00E+08	MEDIO	4E+06
PROMEDIO		SIGMA_PRO	
(N=8)	3,13E+08	MEDIO	4E+06

$$\text{donde } \bar{x} = \frac{\sum_i x_i}{N}, \frac{\partial \bar{x}}{\partial x_i} = \frac{1}{N} \text{ y } \sigma_{\bar{x}} = \frac{1}{N} \sqrt{\sum_i \sigma_{x_i}^2}. \text{ Los cambios provocados por las dos nuevas medidas}$$

