بسم الله الرحمن الرحيم BISMILLAH ARRAHMAN ARRAHEEM

Artificial Intelligence (CS-401)

Decision Trees

Dr. Fahad Sherwani (Assistant Professor – FAST NUCES)

PhD in Artificial Intelligence

Universiti Tun Hussein Onn Malaysia

fahad.sherwani@nu.edu.pk

What is a decision tree?

 Decision tree is a graphical representation of all the possible solutions / decisions related to a given problem.

- Decision trees can employed in "classification" and "regression" problems.
- Classification is usually performed using decision trees classifiers.

What is a decision tree?

It is a tree structures classifier

What is a decision tree?

- Data Split
- Decision trees can employed in "classification" and "regression" problems.
- Classification is usually performed using decision trees classifiers.

Am I Hungry	y Have I \$25	Go to Sleep
Yes		
Yes		
No		
Yes		
No		
Yes Have I 25	Am I hungry?	No Go to sleep
Yes	No	
to restaurant	Buy a ham	burger

Example of a Decision Tree

Is it a good weather to play outside?

How to learn such a tree from past experience?

Given the following training examples, will you play in D15?

Divide and conquer:

- split into subsets
- are they pure?(all yes or all no)
- if yes: stop
- if not: repeat

See which subset new data falls into

I raining Examples				
<u>Day</u>	<u>Outlook</u>	Humidity	Wind	P <u>lay</u>
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain D11	Normal	Weak	Yes
Sun	ny D12	Normal	Strong	Yes
Ove	rcast D13	High	Strong	Yes
Ove	rcast D14	Normal	Weak	Yes
Rair		High	Strong	No

High

New data:

D15 Rain

Weak ???


```
Yes ⇔ (Outlook=Overcast) V
(Outlook=Sunny ∧Humidity=Normal)V
(Outlook=Rain ∧Wind=Weak)
```

<u>Day</u>	<u>Outlook</u>	<u>Humid</u>	<u>Wind</u>		→ Dlov
D15	Rain	High	Weak	???	→ Play

Decision Trees are Interpretable

Disjunction of conjunctions of constraints on the attribute values of instances i.e., $(... \land ... \land ...) \lor (... \land ...) \lor ...$

Set of if-then-rules, each branch represents one if-then-rule

- **if-part**: conjunctions of attribute tests on the nodes
- then-part: classification of the branch

Which attribute to split on?

Want to measure "purity" of the split

- more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)
- can't use the probability of "yes" given the set, P("yes" | set):
 - must be symmetric: 4 yes / 0 no as pure as 0 yes / 4 no

Entropy

Entropy tells us how much a set of data is pure/impure For binary classification:

Entropy(S) =
$$H(S) = -p_{\bigoplus} \log_2 p_{\bigoplus} - p_{\bigoplus} \log_2 p_{\bigoplus}$$
 bits $-S \dots$ is a sample training examples

- $-p_{\oplus}$ proportion of positive examples in S
- $-p \ominus$ proportion of negative examples in S
- $-p_{\oplus}/p_{\ominus}$... % of positive/negative examples in S
- impure (3 yes / 3 no): $H(S) = -\frac{\%}{8} \log_2 \frac{\%}{8} - \frac{\%}{8} \log_2 \frac{\%}{8} = 1 \text{ bits}$
- pure set (4 yes / 0 no): $H(S) = -\frac{!}{!} \log_2 \frac{!}{!} - \frac{"}{!} \log_2 \frac{"}{!} = 0 \text{ bits}$

Entropy

Entropy tells us how much a set of data is pure/impure

Information Gain

Entropy measures purity at each node, information gain looks at all nodes together and the expected drop in entropy after split.

Gain(S, A) = expected reduction in entropy due to sorting on A

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} |S| \cdot Entropy(S_v)$$

Maximum Gain(S, A) is selected!

Entropy (Humidity) = $-9/14 \cdot \log_2(9/14) - 5/14 \cdot \log_2(5/14) = 0.94$ Entropy (High) = $-3/7 \cdot \log_2(3/7) - 4/7 \cdot \log_2(4/7) = 0.98$ Entropy (Normal) = $-6/7 \cdot \log_2(6/7) - 1/7 \cdot \log_2(1/7) = 0.59$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} |S| \cdot Entropy(S_v)$$

```
Gain (S, Humidity) = 0.94 - (7/14) \cdot 0.98 - (7/14) \cdot 0.59 = 0.151
```

Day Outlook Humidity Wind Play				
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Entropy (Outlook) =
$$-9/14 \cdot \log_2(9/14) - 5/14 \cdot \log_2(5/14) = 0.94$$

Entropy(Sunny) = $-2/5 \cdot \log_2(2/5) - 3/5 \cdot \log_2(3/5) = 0.97$
Entropy(Overcast) = $-4/4 \cdot \log_2(4/4) - 0/4 \cdot \log_2(0/4) = 0$
Entropy(Rain) = $-3/5 \cdot \log_2(3/5) - 2/5 \cdot \log_2(2/5) = 0.97$

Gain (S, Outlook)= $0.94 - (5/14) \cdot 0.97 - (4/14) \cdot 0 - (5/14) \cdot 97 = 0.247$

Day	Outlook	Humidity	Wind	<u>Play</u>
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

Entropy (Wind) =
$$-9/14 \cdot \log_2(9/14) - 5/14 \cdot \log_2(5/14) = 0.94$$

Entropy (Weak) = $-6/8 \cdot \log_2(6/8) - 2/8 \cdot \log_2(2/8) = 0.81$
Entropy (Strong) = $-3/6 \cdot \log_2(3/6) - 3/6 \cdot \log_2(3/6) = 1$

Gain (S, Wind) =
$$0.94 - (8/14) \cdot 0.81 - (6/14) \cdot 1 = 0.048$$

Day Outlook Humidity Wind Play					
D1	Sunny	High	Weak	No	
D2	Sunny	High	Strong	No	
D3	Overcast	High	Weak	Yes	
D4	Rain	High	Weak	Yes	
D5	Rain	Normal	Weak	Yes	
D6	Rain	Normal	Strong N	lo	
D7	Overcast	Normal	Strong Y	es	
D8	Sunny	High	Weak	No	
D9	Sunny	Normal	Weak	Yes	
D10	Rain	Normal	Weak	Yes	
D11 Sunny Normal Strong Yes			es		
D12	Overcast	High	Strong	Yes	
D13	Overcast	Normal	Weak	Yes	
D14	Rain	High	Strong	No	

The attribute with the largest Information Gain (Outlook 0.247) is selected as the decision node.

Nodes with zero Entropy (e.g., Overcast) does not need splitting

Entropy (Humidity) =
$$-2/5 \cdot \log_2(2/5) - 3/5 \cdot \log_2(3/5) = 0.97$$

Entropy (High) = $-0/3 \cdot \log_2(0/3) - 3/3 \cdot \log_2(3/3) = 0$
Entropy (Normal) = $-2/2 \cdot \log_2(2/2) - 0/2 \cdot \log_2(0/2) = 0$
Gain (S, Humidity) = $0.97 - (3/5) \cdot 0 - (2/5) \cdot 0 = 0.97$

Entropy (Wind) =
$$-2/5 \cdot \log_2(2/5) - 3/5 \cdot \log_2(3/5) = 0.97$$

Entropy (Weak) = $-1/3 \cdot \log_2(1/3) - 2/3 \cdot \log_2(2/3) = 0.92$
Entropy (Strong) = $-1/2 \cdot \log_2(1/2) - 1/2 \cdot \log_2(1/2) = 1$
Gain (S, Wind) = $0.97 - (3/5) \cdot 0.97 - (2/5) \cdot 1 = -0.012$

→ Humidity has the highest gain (0.97)

Entropy(Humidity) =
$$-3/5 \cdot \log_2(3/5) - 2/5 \cdot \log_2(2/5) = 0.97$$

Entropy(High) = $-1/2 \cdot \log_2(1/2) - 1/2 \cdot \log_2(1/2) = 1$
Entropy(Normal) = $-2/3 \cdot \log_2(2/3) - 1/3 \cdot \log_2(1/3) = 0.92$
Gain(S, Humidity) = $0.97 - (2/5) \cdot 1 - (3/5) \cdot 0.92 = 0.018$

Day (<u> Outlook</u>	<u>Humid</u>	Wind
D4	Rain	High	Weak
D5	Rain	Normal	Weak
D6	Rain	Normal	Strong
D 10	Rain	Normal	Weak
D14	Rain	High	Strong

Entropy(Wind) =
$$-3/5 \cdot \log_2(3/5) - 2/5 \cdot \log_2(2/5) = 0.97$$

Entropy(Weak) = $-3/3 \cdot \log_2(3/3) - 0/3 \cdot \log_2(0/3) = 0$
Entropy(Strong) = $-0/2 \cdot \log_2(0/2) - 2/2 \cdot \log_2(2/2) = 0$
Gain(S, Wind) = $0.97 - (3/5) \cdot 0 - (2/5) \cdot 0 = 0.97$

Day Outlook Humid			Wind
D4	Rain	High	Weak
D5	Rain	Normal	Weak
D6	Rain	Normal	Strong
D 10	Rain	Normal	Weak
D14	Rain	High	Strong

Decision Rule:

```
Yes ⇔ (Outlook=Overcast) V
(Outlook=Sunny ∧Humidity=Normal)V
(Outlook=Rain ∧Wind=Weak)
```

What is good about Decision Trees

- Interpretable: humans can understand decisions
- Easily handles irrelevant attributes (G=0)
- Very compact: # nodes << D after pruning
- Very fast at testing time: O(Depth)

Limitations for Decision Trees

- Greedy (may not find best tree).
- Instances are represented by attribute/value pairs(e., Outlook: sunny, Wind: strong), but what if we have discrete input values.
- The target function has discrete output values (e.g., Yes, No), thus we cannot have continues number output values.
- The training data may contain errors, or missing attributes
- Uncertainty in the data (e.g., suppose we have two exact days/features, one with "yes" and one with "no". → no classifier can help in such totally Uncertain data.