Author Index Volume 40

Abouzeid, A.A. and S. Roy, Modeling random early		Combes, P., F. Dubois and B. Renard, An open	
detection in a differentiated services network	(4) 537	animation tool: application to telecommunica-	
Addie, R.G., T.D. Neame and M. Zukerman,		tion systems	(5) 599
Performance evaluation of a queue fed by a			
Poisson Pareto burst process	(3) 377	da Fonseca, N.L.S., see Pereira, F.M.	(3) 413
Akylidiz, I.F. and H. Rudin, Editorial: Computer		Davies, H., see Baxevanidis, K.	(1) 5
Networks, the Journal, and computer networks,		Derrick, J., see Bordbar, B.	(2) 279
the technology	(4) 475	Devetsikiotis, M. and N. Fonseca, Guest Editorial:	
Arantes, D.S., see Pereira, F.M.	(3) 413	Advances in modeling and engineering of long-	
Avancha, S., V. Korolev, A. Joshi, T. Finin and Y.		range dependent traffic	(3) 317
Yesha, On experiments with a transport proto-		Devetsikiotis, M., see Laskin, N.	(3) 363
col for pervasive computing environments	(4) 515	Dubois, F., see Combes, P.	(5) 599
Awduche, D.O. and B. Jabbari, Internet traffic			, ,
engineering using multi-protocol label switching		Elwalid, A., C. Jin, S. Low and I. Widjaja, MATE:	
(MPLS)	(1) 111	multipath adaptive traffic engineering	(6) 695
		Evans, J., see Filsfils, C.	(1) 131
Banerjee, G. and D. Sidhu, Comparative analysis of			(-)
path computation techniques for MPLS traffic		Femminella, M., see Bianchi, G.	(1) 73
engineering	(1) 149	Figueiredo, D.R., B. Liu, V. Misra and D. Towsley,	(1) /3
Baras, J., see Misra, A.	(4) 557	On the autocorrelation structure of TCP traffic	(3) 339
Baxevanidis, K., H. Davies, I. Foster and F.	(1) 557	Filsfils, C. and J. Evans, Engineering a multiservice	(5) 557
Gagliardi, Grids and research networks as		IP backbone to support tight SLAs	(1) 131
drivers and enablers of future Internet architec-		Finin, T., see Avancha, S.	(4) 515
tures	(1) 5	Fonseca, N., see Devetsikiotis, M.	(3) 317
Benameur, N., S.B. Fredj, S. Oueslati-Boulahia and	(1) 5	Foster, I., see Baxevanidis, K.	(1) 5
J.W. Roberts, Quality of service and flow level		Fouquart, P., see Sanmateu, A.	(1) 181
admission control in the Internet	(1) 57	Fredj, S.B., see Benameur, N.	(1) 57
Bianchi, G., N. Blefari-Melazzi and M. Femminella,	(1)	,	(-)
Per-flow QoS support over a stateless Differ-		Gagliardi, F., see Baxevanidis, K.	(1) 5
entiated Services IP domain	(1) 73	Gotzhein, R., see Schaible, P.	(5) 621
Blanpain, Y. and R. Sivakumar, An incrementally	(-)	Gotzhein, K., See Schaible, I.	(3) 021
deployable approach for achieving fair rate		Harmantzis, F.C., see Laskin, N.	(3) 363
allocations	(4) 499	Hartenstein, H., see Pérez Costa, X.	(1) 191
Blefari-Melazzi, N., see Bianchi, G.	(1) 73	Higashino, T., see Yasumoto, K.	(5) 639
Bordbar, B., J. Derrick and G. Waters, Using UML		Ho, PH. and H.T. Mouftah, Framework of spare	(3) 037
to specify QoS constraints in ODP	(2) 279	capacity re-allocation with S-SLSP for mesh	
Bustos, E., see Sanmateu, A.	(1) 181	WDM networks	(1) 167
		Hwang, WS., see Miao, YB.	(1) 45
Casaca, A. and A.C. Sarma, Guest Editorial:		annual, it bis bee frames, 11-bi	(1) 43
Towards a new Internet architecture	(1) 1	Jabbari, B., see Awduche, D.O.	(1) 111
Christin, N., see Liebeherr, J.	(1) 1	Jelenković, P. and P. Momčilović, Finite buffer	(1) 111
Cidon, I., S. Kutten and R. Soffer, Optimal	(1) 69	queue with generalized processor sharing and	
allocation of electronic content	(2) 205	heavy-tailed input processes	(3) 433
anocation of electronic content	(4) 400	med v v tuned might processes	101700

Hone V. Dolov hounds for a naturals of success		Number C. I Sanisa W Smaldens and A Waiss	
Jiang, Y., Delay bounds for a network of guaran-	(6) 692	Nuzman, C., I. Saniee, W. Sweldens and A. Weiss,	
teed rate servers with FIFO aggregation	(6) 683 (4) 577	A compound model for TCP connection arrivals	(2) 210
Jiang, Y., see Tham, CK.	(4) 577	for LAN and WAN applications	(3) 319
Jin, C., see Elwalid, A.	(6) 695		
Joshi, A., see Avancha, S.	(4) 515	Ott, T., see Misra, A.	(4) 557
		Oueslati-Boulahia, S., see Benameur, N.	(1) 57
Karam, M.J. and F.A. Tobagi, Analysis of delay and			
delay jitter of voice traffic in the Internet	(6) 711	Paint, F., see Sanmateu, A.	(1) 181
Korolev, V., see Avancha, S.	(4) 515	Pereira, F.M., N.L.S. da Fonseca and D.S. Arantes,	
Krieger, U.R., see Markovitch, N.M.	(2) 459	On the performance of generalized processor	
Krunz, M. and I. Matta, Analytical investigation of		sharing servers under long-range dependent	
the bias effect in variance-type estimators for		traffic	(3) 413
inference of long-range dependence	(2) 445	Pérez Costa, X. and H. Hartenstein, A simulation	
Kung, H.T., see Wang, S.Y.	(2) 257	study on the performance of Mobile IPv6 in a	
Kutten, S., see Cidon, I.	(2) 205	WLAN-based cellular network	(1) 191
	(=) ===	Wall Coulou Continue Notice	(-)
Lambadaris, I., see Laskin, N.	(3) 363	Renard, B., see Combes, P.	(5) 599
Laskin, N., I. Lambadaris, F.C. Harmantzis and M.		Roberts, J.W., see Benameur, N.	(1) 57
Devetsikiotis, Fractional Lévy motion and its		Roy, S., see Abouzeid, A.A.	(4) 537
application to network traffic modeling	(3) 363	Rudin, H., see Akylidiz, I.F.	(4) 475
Liebeherr, J. and N. Christin, Rate allocation and			
buffer management for differentiated services	(1) 89	Saniee, I., see Nuzman, C.	(3) 319
Lin, C., see Shan, Z.	(2) 235	Sanmateu, A., F. Paint, L. Morand, S. Tessier, P.	
Liu, B., see Figueiredo, D.R.	(3) 339	Fouquart, A. Sollund and E. Bustos, Seamless	
Logrippo, L., see Stepien, B.	(5) 665	mobility across IP networks using Mobile IP	(1) 181
Low, S., see Elwalid, A.	(6) 695	Sarma, A.C., see Casaca, A.	(1) 1
	,	Schaible, P. and R. Gotzhein, View-based animation	(-) -
Mannersalo, P. and I. Norros, A most probable path		of communication protocols in design and in	
approach to queueing systems with general		operation	(5) 621
Gaussian input	(3) 399	Selçuk, A.A. and D. Sidhu, Probabilistic optimiza-	(3) 021
Marinescu, D.C., see Shan, Z.	3 6	tion techniques for multicast key management	(2) 219
	(2) 235	Shan, Z., C. Lin, D.C. Marinescu and Y. Yang,	(2) 219
Markovitch, N.M. and U.R. Krieger, The estima-		Modeling and performance analysis of QoS-	
tion of heavy-tailed probability density func-	(2) 450		(2) 225
tions, their mixtures and quantiles	(2) 459	aware load balancing of Web-server clusters	(2) 235
Matta, I., see Krunz, M.	(2) 445	Shieh, CK., see Miao, YB.	(1) 45
Miao, YB., WS. Hwang and CK. Shieh, A		Sidhu, D., see Banerjee, G.	(1) 149
transparent deployment method of RSVP-aware		Sidhu, D., see Selçuk, A.A.	(2) 219
applications on UNIX	(1) 45	Sivakumar, R., see Blanpain, Y.	(4) 499
Mir, N.F., An efficient switching fabric for next-		Soffer, R., see Cidon, I.	(2) 205
generation large-scale computer networking	(2) 305	Sollund, A., see Sanmateu, A.	(1) 181
Misra, A., T. Ott and J. Baras, Predicting bottle-		Stepien, B. and L. Logrippo, Graphic visualization	
neck bandwidth sharing by generalized TCP		and animation of LOTOS execution traces	(5) 665
flows	(4) 557	Sweldens, W., see Nuzman, C.	(3) 319
Misra, V., see Figueiredo, D.R.	(3) 339		
Momčilović, P., see Jelenković, P.	(3) 433	Tessier, S., see Sanmateu, A.	(1) 181
Morand, L., see Sanmateu, A.	(1) 181	Tham, CK., Q. Yao and Y. Jiang, Achieving	
Mouftah, H.T., see Ho, PH.	(1) 167	differentiated services through multi-class prob-	
		abilistic priority scheduling	(4) 577
Nakata, A., see Yasumoto, K.	(5) 639	Tham, CK., see Ngin, HT.	(6) 727
Neame, T.D., see Addie, R.G.	(3) 377	Tobagi, F., see Noureddine, W.	(1) 19
Ngin, HT. and CK. Tham, A control-theoretical	(3) 311	Tobagi, F.A., see Karam, M.J.	(6) 711
approach for achieving fair bandwidth alloca-		Towsley, D., see Figueiredo, D.R.	(3) 339
tions in core-stateless networks	(6) 727	Tsaoussidis, V. and C. Zhang, TCP-Real: receiver-	(0) 00)
Norros, I., see Mannersalo, P.	(3) 399	oriented congestion control	(4) 477
Noureddine, W. and F. Tobagi, Improving the	(3) 399	Turner, K.J., Editorial: Protocol animation	(5) 595
performance of interactive TCP applications		amate, and, administration	(5) 535
using service differentiation	(1) 19	Umedu, T., see Yasumoto, K.	(5) 639

Wang, S.Y. and H.T. Kung, A new methodology for easily constructing extensible and high-fidelity		Yao, Q., see Tham, CK. Yasumoto, K., T. Umedu, H. Yamaguchi, A. Nakata	(4) 577
TCP/IP network simulators	(2) 257	and T. Higashino, Protocol animation based on	
Waters, G., see Bordbar, B.	(2) 279	event-driven visualization scenarios in real-time	
Weiss, A., see Nuzman, C.	(3) 319	LOTOS	(5)639
Widjaja, I., see Elwalid, A.	(6) 695	Yesha, Y., see Avancha, S.	(4) 515
Yamaguchi, H., see Yasumoto, K.	(5) 639	Zhang, C., see Tsaoussidis, V.	(4) 477
Yang, Y., see Shan, Z.	(2) 235	Zukerman, M., see Addie, R.G.	(3) 377

Computer Networks 40 (2002) 747-748

COMPUTER NETWORKS

www.elsevier.com/locate/comnet

Subject Index Volume 40

Admission control, 57, 73 Advanced network applications, 5 Aggregate scheduling, 683 Animation, 599, 621 Architecture, 181 Asynchronous routing algorithm, 695

Bluetooth, 515 Bootstrap, 459 Buffer management, 89

CDPD, 515 CentaurusComm, 515 Collaborations, 621 Communication protocol, 621 Compiler, 639 Computational viewpoint, 279 Congestion avoidance, 557 Congestion control, 477 Core-stateless fair queueing, 727 Core-stateless QoS, 499

Delay bounds, 577, 683 Design of switches and routers, 305 Differentiated services, 131, 537, 577, 683 Diffsery, 727

ECN, 557 Elastic traffic, 57 E-LOTOS, 639 Empirical analysis, 515

Fair bandwidth allocation, 727
Finite buffer fluid flow, 433
Flow aggregation, 683
Flow aware networking, 57
Formal description techniques, 665
Fractal queueing theory, 363
Fractal traffic, 413
FTP, 45
Funding policy, 5

PII: S1389-1286(02)00403-6

2.5G, 181
Gaussian processes, 399
Generalized processor sharing, 399
GMPLS, 111
Graphic animation, 665
Group key management, 219
Guaranteed QoS, 73
Guaranteed rate scheduling, 683

Handoffs, 191 Hardware design of Internet, 305 Heavy-tailed distributions, 319, 363, 459 High quantile, 459 Hurst parameter estimation, 445

IEEE 802.11b, 515
IGP convergence, 131
Incremental deployability, 499
Infinite-server queue, 319
Interconnection networks, 305
Internet performance optimization, 111
IPv6, 191

Language of temporal ordering specifications, 665 Load balancing, 235 Long-range dependence, 319, 339, 433 LOTOS, 639, 665

Measurements, 73
Message sequence charts, 665
Mobile IP, 181, 191
Mobile/wireless networks, 477
Mobility, 181
Most probable paths, 399
MPλS, 111
MPLS, 111, 131, 149
MSC, 599, 621, 665
Multicast security, 219
Multi-constrained path, 149
Multipath routing, 695
Multi-way synchronization, 639

Network, 257 Network modeling, 537 Network multiplexer, 433 Network planning, 167 Network quality of service, 499 Network security, 219 Network traffic characterization, 339 ns-2, 191

Object constraint language, 279 Open distributed processing, 279 Optical networks, 167 Optimal routing, 695

Packet scheduling, 577
Pareto distribution, 377
Path computation, 149
PDB, 73
Performance analysis, 235, 537
Performance evaluation, 73, 191, 305
PHB, 73
Power law, 319
Priority queues, 399
Probing, 73
Protocol animation, 639
Protocols, 599
Prototyping, 599
Pseudo self-similarity, 445

QoS, 149 Quality of service, 57, 89, 279, 577 Queues, 557

Rainbow fair queueing, 727
Random early detection, 537
RAPI, 45
Rate fairness, 499
Real-time protocols, 477
Real-time systems, 639
RED, 557
Regular variation, 319
Research networks, 5
Ring-based architecture, 167
RLR, 45
Routing, 111
RSVP, 45
RTP, 45

Scalability, 73 Scaling, 363 Scheduling, 89, 413 SDL, 599, 621 SDL patterns, 621 Self-similar traffic, 413 Self-similarity, 363 Service curves, 89 Service differentiation, 19, 89 Service validation, 599 Simulation, 191, 257 Spare capacity, 167 Specification, 279 Stateless and distributed procedures, 73 Stochastic high-level Petri net, 235 Streaming traffic, 57 Structural risk minimization method, 459 Survivability, 167 System design, 599

Tail index, 459
TCP, 477, 537, 557
TCP applications, 19
TCP-friendly protocols, 477
TCP mechanisms, 339
TCP-state based differentiation, 19
Telecommunications software engineering, 665
Test-bed implementation, 73
Throughput, 557
Traffic engineering, 111, 131, 149, 695
Traffic modeling, 377
Transport protocols, 515

UDP, 537 UML, 599 Unified modelling language, 279 User-perceived performance, 19

Variance time plot, 445 Visualisation, 621

Web quality of service, 235 Web-server cluster, 235 Wireless networks, 515 WLAN, 181