PROBLEM STATEMENT:

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

<u>Prediction:</u> whether the patient has kidney disease or not?

- Domain Selection: Machine Learning
- ➤ Learning Selection: Supervised Learning (Requirement is clear)
- Classification(label is in categorical values)

Information about the given dataset:

Total no.of.rows = 399

Total no.of.columns = 28

➤ I have done preprocessing method in the columns "sg, rbc, pc, pcc, ba ,htn ,dm, cad, appet, pe, ane" (converting nominal data to numerical data using (one hot encoding function)

1.SVM algorithm:

Classification report:

		precision	recall	f1-score	support	
	0	0.96	1.00	0.98	45	
	1	1.00	0.97	0.99	75	
	accuracy			0.98	120	
	macro avg weighted avg	0.98 0.98	0.99 0.98	0.98 0.98	120 120	
	_					

Roc_auc_score:

0.9997037037037036

2.Decision tree algorithm:

Classification report:

	precision	recall	f1-score	support
0	0.89	0.93	0.91	45
	0.96	0.93	0.95	75
accuracy	0.30	0.33	0.93	120
macro avg	0.93	0.93	0.93	120
weighted avg	0.93	0.93	0.93	120

Roc_auc_score:

0.9333333333333333

3.Random Forest Algorithm:

Classification report:

	precision	recall	f1-score	support
0	0.98	0.98	0.98	45
1	0.99	0.99	0.99	75
accuracy			0.98	120
macro avg	0.98	0.98	0.98	120
veighted avg	0.98	0.98	0.98	120

Roc_auc_score:

0.9994074074074075

4.Logistic regression:

Classification report:

	precision	recall	f1-score	support
0	0.98	1.00	0.99	45
1	1.00	0.99	0.99	75
accuracy			0.99	120
macro avg	0.99	0.99	0.99	120
weighted avg	0.99	0.99	0.99	120

Roc_auc_score:

1.0

5.K nearest neighbors algorithm:

Classification report:

support	f1-score	recall	precision	
45	0.94	1.00	0.88	0
75	0.96	0.92	1.00	1
120	0.95			accuracy
120	0.95	0.96	0.94	macro avg
120	0.95	0.95	0.96	weighted avg

Roc_auc_score:

0.999555555555555

Naïve bayes algorithm:

6.complement NB:

Classification report:

	precision	recall	f1-score	support
0	0.79	0.98	0.87	45
1	0.98	0.84	0.91	75
accuracy			0.89	120
macro avg	0.89	0.91	0.89	120
weighted avg	0.91	0.89	0.89	120

Roc_auc_score:

0.9525925925925

7.gaussian NB:

Classification report:

	precision	recall	f1-score	support
0	0.94	1.00	0.97	45
1	1.00	0.96	0.98	75
accuracy			0.97	120
macro avg	0.97	0.98	0.97	120
weighted avg	0.98	0.97	0.98	120

Roc_auc_score:

1.0

8.bernoulli NB:

Classification report:

support	f1-score	recall	precision	
45	0.97	1.00	0.94	0
75	0.98	0.96	1.00	1
120	0.97			accuracy
120	0.97	0.98	0.97	macro avg
120	0.98	0.97	0.98	weighted avg

Roc_auc_score:

1.0

9.multinomial NB:

Classification report:

	precision	recall	f1-score	support
0	0.80	0.98	0.88	45
1	0.98	0.85	0.91	75
accuracy			0.90	120
macro avg	0.89	0.92	0.90	120
weighted avg	0.92	0.90	0.90	120

Roc_auc_score:

0.9525925925925927

10.categorical NB:

Classification report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	150
1	1.00	1.00	1.00	249
accuracy			1.00	399
macro avg	1.00	1.00	1.00	399
weighted avg	1.00	1.00	1.00	399

Roc_auc_score:

1.0

- ➤ Using the above 10 algorithms, we got the best model in logistic regression algorithm (accuracy=0.99,roc_auc value=1.0).so we can proceed to the next phase ((i.e)deployment phase).
- > The best parameters are: {'penalty': 'l2', 'solver': 'lbfgs'}