(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-187717

(43)公開日 平成7年(1995)7月25日

(51) Int.Cl.6		識別記号	庁内整理番号	FΙ							技術表示箇所
C 0 3 C	17/34	Α									
B 3 2 B	27/00	101	8413-4F								
	27/18	Α	8413-4F								
B 6 0 J	1/00	Z	7447 – 3D								
C 0 8 J	7/04	Z									
			審査請求	未請求	請求項	の数 2	OL	(全	7	頁)	最終頁に続く
(21)出願番号		特顧平5-328413		(71)世	(71)出願人 000002200						
							ラル硝	•			
(22)出願日		平成5年(1993)12月	山口県宇部市大字沖宇部5253番地					53番地			
				(72)発	明者						
										10	セントラル硝子
							社硝子	研究所	所内		
				(72)発	明者	倉増	春喜				
						三重県	松阪市	大口	订151	10	セントラル硝子
						株式会	社硝子	研究	所内		
				(74) f	、理人	弁理士	: 坂本	栄			

(54) 【発明の名称】 紫外線吸収透明体

(57)【要約】

【目的】光学特性を損なうことなく、紫外線を遮蔽、殊 に400nm 付近で紫外/可視領域の境界を格段にシャープ に遮蔽することができ、密着性、耐薬品性、耐擦傷性等 耐久性に優れる紫外線吸収透明体を得る。

【構成】透明基材の表面に、蛍光増白剤及び殊にインド ール系化合物を少なくとも含む紫外線吸収剤を溶解添加 してなる合成樹脂系プライマーコーティング溶液を塗布 して比較的低温で加熱硬化し紫外線吸収性薄膜を形成し た後、シロキサンプレポリマーが有機溶剤に溶解されて なるシリコーン系ハードコーティング溶液を塗布して加 熱硬化し保護薄膜を形成することで順次被覆して成る紫 外線吸収透明体。並びに合成樹脂系プライマーコーティ ング溶液がアクリル系プライマーコーティング溶液であ る紫外線吸収透明体。

1

【特許請求の範囲】

【請求項1】 透明基材の表面に、蛍光増白剤および紫 外線吸収剤を溶解添加してなる合成樹脂系プライマーコ ーティング溶液を塗布して加熱硬化し紫外線吸収性薄膜 を形成した後、シロキサンプレポリマーが有機溶剤に溶 解されてなるシリコーン系ハードコーティング溶液を塗 布して加熱硬化し保護薄膜を形成することで順次被覆し て成る紫外線吸収透明体において、紫外線吸収剤として 少なくともインドール系化合物を含有して成ることを特 徴とする紫外線吸収透明体。

【讃求項2】 前記合成樹脂系プライマーコーティング 溶液が、アクリル系プライマーコーティング溶液である ことを特徴とする請求項1記載の紫外線吸収透明体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、紫外線吸収性が優れた コーティング膜で被覆した透明体に関するものである。 これらは紫外線遮蔽フィルター的部材として各種窓材、 例えばビルあるいは住宅、車両、船舶、航空機などに有 用な紫外線吸収透明体である。

[0002]

【従来の技術とその問題点】従来から一般にガラス基板 等透明体に紫外線吸収性を付与する処理方法としては、 次の3種類にほぼ大別される。

【0003】先ず、(1) 透明体自体に紫外線吸収性化合 物を混入配合する方法。例えば、ガラス中に金属化合物 を溶融添加する各種ガラス組成物(例えば、特開昭52一 47812 号公報)、あるいは樹脂フイルム中に紫外線吸収 剤を分散添加する各種樹脂フイルム(例えば、実開昭59 ー17925 号公報)等がある。次いで(2) 紫外線吸収性透 明膜を透明体表面に貼り合わせる方法。例えば、紫外線 吸収剤を含有するポリビニールプチラール中間膜等を介 して挟み込んだ合せガラス(例えば、特開昭56-32352 号公報) 等がある。さらに(3) 紫外線吸収性透明膜を透 明体表面に形成する方法。例えば、透明体である基材に スパッタなどの気相成膜法(例えば、特開平4-76083 号公報)あるいはゾルゲルなどの液相成膜法(例えば、 特開平4-97103 号公報) による等があり、知られてい る。

【0004】一方、最近樹脂基材において、増白作用を 40 有する分散型蛍光塗料、例えば2.5ピス(5'ターシヤリ ープチルベンゾオキサゾリル) チオフエンなどを利用 し、高温高圧染色法あるいは常圧キヤリアー法で、紫外 線を少なくとも90%以上カットし、少なくとも80%以上 の可視光線透過率をもつ透明合成樹脂板を得る方法等が 知られている。(例えば、特開昭61-126503号公報)

[0005]

【発明が解決しようとする問題点】前述したように、例 えば前記特開昭52-47812 号公報等あるいは前記実開昭 種生産には向かず、吸収波長が紫外/可視領域の境界 (例えば400nm 付近) に及ぶものはフイルムのくもり等

を発現し易く、コントロールが必ずしも容易であるとは

言い難いものである。

【0006】また、前記特開昭56-32352 号公報に記載 のものは、樹脂フイルム単独の場合より耐薬品性、耐擦 傷性、耐久性、着色あるいはくもりが改善されるもの の、形状対応性が悪く、かなり厚くなって軽量化になり 難いものである。

【0007】さらに、前記特開平4-76083 号公報ある 10 いは前記特開平4-97103 号公報に記載のものは、分解 し易い有機化合物を多量に使用できず、無機化合物が吸 収ベースとなるため、紫外/可視領域の境界(約400nm) まで充分シャープにカットできないし、また成膜に ともなう基板温度の上昇や焼成が不可欠のため、耐熱性 の基板にしか適用できない。さら単純な紫外線吸収剤を 多量に含む有機樹脂コーティング膜のみでは、耐薬品 性、耐擦傷性、耐久性が劣るものとなる。

【0008】さらにまた、前記特開昭61-126503号公報 20 に記載のものは、紫外線吸収剤を用いることなく、紫外 線を吸収遮断し、透明度に優れるものとなるものの、こ とに現実では蛍光が目立ち過ぎ、かつ実用上耐久性もか なり劣るものである。

[0009]

【問題点を解決するための手段】本発明は、従来のかか る問題点に鑑みてなしたものであって、紫外/可視領域 境界をきわめてシャープにカットするため、その境界付 近に吸収を有する蛍光増白剤と紫外線吸収剤とを併用 し、蛍光の防止や紫外線吸収剤の大量使用による着色の 30 防止もできることを見出し、それらを混和して透明基材 表面に対して密着性が良好な合成樹脂系プライマー組成 を調製しコーティング溶液とし、該溶液によるコーティ ング膜は比較的低温で成膜でき、さらにこれをシリコー ン系ハードコーティング膜で保護することで、ことに40 Onm 付近で紫外線をシャープに遮蔽するとともに、外装 用としても使用可能な耐薬品性、耐擦傷性ならびに耐久 性に優れた、有用な紫外線吸収透明体を提供するもので

【0010】すなわち、本発明は、透明基材の表面に、 蛍光増白剤および紫外線吸収剤を溶解添加してなる合成 樹脂系プライマーコーティング溶液を塗布して加熱硬化 し紫外線吸収性薄膜を形成した後、シロキサンプレポリ マーが有機溶剤に溶解されてなるシリコーン系ハードコ ーティング溶液を塗布して加熱硬化し保護薄膜を形成す ることで順次被覆して成る紫外線吸収透明体において、 紫外線吸収剤として少なくともインドール系化合物を含 有して成ることを特徴とする紫外線吸収透明体。

【0011】ならびに、前記合成樹脂系プライマーコー ティング溶液が、アクリル系プライマーコーティング溶 59-17925 号公報等に記載のものは、いずれも少量多品 50 液であることを特徴とする上述した紫外線吸収透明体を それぞれ提供するものである。

【0012】ここで、前述したように、前配蛍光増白剤 としては、紫外領域で吸収し、可視領域で蛍光を発し、 合成樹脂系プライマー、ことにアクリル系プライマーコ ーティング剤に溶融添加が可能であって、かつ強膜が比 較的低温の加熱硬化で変性しなければどのようなもので もよいものであり、しかも適度の耐熱性があり、吸収波 長が紫外/可視領域境界 (例えば、400mm 付近) にある 例えば、UVITEX-OB〔チバガイギー社製、2-(3,5ジ-t-ブチル-2- ヒドロキシフェニル)-5-クロロベンゾトリア 10 ゾール)、あるいはEB-501(三井東圧染料社製) などが 挙げられる。また例えば前記UVITEX一OBの添加量として は0.02~ 0.5wt%程度であって、0.02wt%未満では効果 がなく、0.5 wt%を超えると溶解度の限界に近くなり、 再結晶を析出してくるようになって塗膜欠陥を生じ易く なるし、必要以上の添加は不経済となる。

【0013】また、共存せしめる前記紫外線吸収剤とし ては、少なくともインドール系化合物である例えば、BO NASORB-UA3901(オリエント化化学社製)を含有せしめる ば、400nm 付近) に効果があり、他に例えばベンゾフェ ノン系、ベンゾトリアゾール系、ペンゾエート系シアノ アクリレート系あるいはサリシレート系などが挙げら れ、TINUVIN327 (チバガイギー社製) 、NIOSORB100 (共 同薬品社製、2,4 ジヒトロキシベンゾフェノン)、SEESO RB706〔シプロ化成社製、2-(2'-ヒドロキシ-5'-メチル-3'-(3'',4'',5'',6''-テトラヒドロフタルイミジルメ チルフェニル) ベンゾトリアゾール)、SEESORB712 (シ プロ化成社製、2,4-ジ-t- プチルフェニル3'5'- ジ-t-ブチル4'-ヒドロキシベンゾエート〕がある。また例え 30 ば前記BONASORB-UA3901 の添加量としては0.02~ 0.3wt %程度であって、0.02wt%未満では効果がなく、0.3 wt %を超えると黄色がかりはじめ次第に目立ちはじること となり、また例えば前記TINUVIN327、NIOSORB1.00、SE ESORB706や712 の添加量としては0.1 ~ 1.5wt %程度で あって、0.1wt %未満では効果がなく、1.5 wt %を超え ると溶解度の限界に近くなり、再結晶を析出してくるよ うになって塗膜欠陥を生じ易くなるし、必要以上の添加 は不経済となる。

【0014】該蛍光増白剤と該トータル紫外線吸収剤の 40 使用割合としては、重量比率で1:0.5 から1:10程 度、好ましくは1:3~6程度であり、蛍光増白剤が多 くなると蛍光で透視性が悪化し、少な過ぎると所望の紫 外線吸収力が得られない。

【0015】さらにここで、合成樹脂プライマー、こと にアクリルプライマーについては、上記した蛍光増白剤 と該紫外線吸収剤を充分溶解する必要があるため、エチ ルセロソルプなどのエーテルアルコール系溶剤にジアセ トンアルコールなどのケトンアルコール系溶剤やケト ン、エーテルあるいは芳香族系溶剤を組み合わせて透明 50 一法、フローコート法、スピンコート法あるいは印刷法

基材を侵さないように配慮した混合溶剤を用いるとよ い。ことに透明基板がガラス板状体等の場合には、溶解 力があるシクロヘキサノンなどのケトン系溶剤が好まし U1.

【0016】さらにまた、前記合成樹脂としては例え ば、アクリル系樹脂、ウレタン系樹脂、フッ素系樹脂あ るいはポリエステル系樹脂等であり、なかでも前記アク リル系樹脂としては市販の例えば、アクリルレジンとし てダイヤナールBR88や85や80 (三菱レイヨン製) などを 利用して濃度、粘度あるいは膜厚の関係によって調製す ればよく、樹脂分濃度としては1~15wt%程度、蛍光増 白剤と紫外線吸収剤の合計濃度としては0.5 ~ 2 wt %程 度、粘度としては10~500cP 程度、さらに膜厚としては 2 ~8 μ程度が好ましいものである。ことにトップコー トとしては3μ程度であって、合計膜厚としては5~11 μ程度である。

【0017】なお、透明基材がガラス製の場合には、密 着性をより向上せしめるために、シランカップリング剤 等の接着改良剤の利用がよく、例えばOS808A(大八化学 こととし、ことに吸収波長が紫外/可視領域境界(例え 20 社製、シリコーン変性アクリルレジン)などを樹脂分濃 度の1/4~4程度添加するのが好ましく、添加量とし ては1~20wt%程度であり、少な過ぎると効果がなく、 多過ぎると不経済となる。

> 【0018】 さらにまた、上述したように調製された前 記紫外線吸収性合成樹脂プライマー、ことに前記紫外線 吸収性アクリルプライマーは、均一膜厚となるように、 例えばディッピング法、スプレー法、フローコート法、 スピンコート法あるいは印刷法等で塗布し被膜とし、例 えば約80℃程度以上で約1時間程度加熱乾燥するもので あり、加熱不足であれば、シリコーン系ハードコートで ある保護膜にプライマー成分が溶出して例えばくもりあ るいはクラック等を発現し易く、また加熱が過多になる と、シリコーン系ハードコートである保護膜の密着性が 悪化することになる。

【0019】また、前記シリコーン系ハードコーティン グ溶液としては、基本的にはオルガノアルコキシシラン を加水分解して得られるシロキサンプレポリマーのアル コール溶液をベースとしたものが好ましく、例えば本出 願人が既に提案した特開昭62-220531号公報に記載の被 **種用組成物のようなコロイダルシリカを含むものが耐擦** 傷性にも優れより好ましい。なお市販品では例えば、ト スガード510(東芝シリコーン製) あるいはSiコート2 (大八化学製) などが利用できる。

【0020】さらに、塗布環境としては、例えば温度約 15~25℃程度、湿度約40~50RE%程度、さらにクリーン 度10,000以下程度が塗膜欠陥の防止の点で好ましい。ま た塗布法としては、前記紫外線吸収性合成樹脂プライマ ー、ことに紫外線吸収性アクリルプライマーと同様に、 均一膜厚となるような、例えばディッピング法、スプレ

などが利用できる。 膜厚としては約 $2\sim5$ μ 程度が好ま しく、薄いと表面保護膜効果がなくなり、厚いと加熱乾 燥硬化時にクラックを発現し易くなるものである。さら に加熱乾燥硬化には約80℃程度以上の温度がよく、こと に透明基板がガラス板状体等の場合は約150℃程度で、 約2時間程度の処理が表面硬度を高める上で好ましい。

【0021】なお、上記した紫外線吸収性アクリル系プ ライマーあるいはシリコーン系ハードコーティング溶液 の塗布性能を改善するため、フロー改良剤あるいはレオ ロジーコントロール剤などを適宜添加してもよいことは 10 言うまでもない。

【0022】さらにまた、前記透明基材としては、例え ば約80℃程度以上の耐熱性を有するものであればよいも のであり、好ましくは無機ガラス、あるいはPC、PMMA、 PETなどの樹脂ガラスなどであり、無機質または有機質 を問わず、ことに形状等に特に限定されるものではなく 各種形状に、また大きさあるいは構成のもの、例えば曲 げ板ガラスとしてはもちろん、各種強化ガラスや強度ア ップガラス、平板や単板で使用できるとともに、複層ガ ラスあるいは合せガラスとしても適用できることは言う 20 までもない。

[0023]

【作用】前述したとおり、本発明によれば、蛍光増白剤 と紫外線吸収剤とを共存せしめるプライマー溶液とする なかでとくに紫外線吸収剤としてインドール系化合物を 少なくとも含有するものとする、添加量を低減できて特 異な構成でなる紫外線遮蔽性に優れるコーティング膜な らびに充分な保護膜で被覆した透明体であるので、蛍光 増白剤の蛍光を紫外線吸収剤で吸収させ目立たない被膜 として比較的低温で成膜でき、しかもその表面がハード 30 コートとなり、ことに400nm 付近において吸収力をアッ プできて紫外/可視領域の境界を透明で際立った着色を することなく格段にシャープにカットすることができ、 密着性、耐薬品性、耐擦傷性あるいは耐久性に優れた、 外装用としても使用可能な、有用な紫外線遮蔽ウィンド ウ等になり得る透明な紫外線吸収透明体を、簡単なコー ティング処理によって容易にかつ安価に得ることができ る。

[0024]

【実施例】以下、実施例により本発明を具体的に説明す 40 る。ただし本発明は係る実施例に限定されるものではな ۲٧.

【0025】 (紫外線吸収性アクリル系プライマーの調 製) 〔ガラス塗布用〕

攪拌機および循環器つきの丸底フラスコに溶媒となるシ クロヘキサノン、プロピレングリコールモノメチルエー テルをはり込み、常温で攪拌しながらアクリルレジンと してダイヤナールBR-88またはBR-85 (いずれも三菱レ イヨン製)を投入する。さらに攪拌を続けながら蛍光増 白剤としてUVITEX-0B(チバガイギー製)、紫外線吸収 50 0回転後の \triangle H(ヘーズ)値(%)。

剤としてBONASORB-UA3901 (オリエント化学製)、また はTINUVIN327 (チバガイギー製) またはVIOSORB100 (共 同薬品製)またはSEESORB706(シプロ化成製)やSEESOR B712 (シプロ化成製) を適宜添加し、オイルパスで約30 分程度かけて約95℃程度に昇温後、約30分程度保持して 完全に溶解させる。次いで加温を止め、常温まで低下し てからシリコーン変成アクリル樹脂OS-808Aを添加し攪 拌溶解してガラス塗布用の紫外線吸収性アクリル系プラ イマーを得た。

【0026】該紫外線吸収性アクリル系プライマー溶液 は、透明で固形分約8~11%程度、粘度約200~350cP (25℃) 程度であった。

(紫外線吸収性アクリル系プライマーの調製) 〔樹脂塗 布用〕

攪拌機および循環器つきの丸底フラスコに溶媒となるシ クロヘキサノン、ジアセトンアルコール、プロピレング リコールモノメチルエーテルをはり込み、常温で攪拌し ながらアクリルBR-85レジン(三菱レイヨン製)を投入 する。さらに攪拌を続けながら蛍光増白剤UVITEX-OB (チパガイギー製)、紫外線吸収剤BONASORB-UA3901 (オリエント化学製) やTINUVIN327 (チパガイギー製) を添加し、オイルバスで約30分程度かけて約95℃程度に 昇温後、約30分程度保持して完全に溶解させて樹脂塗布 用の紫外線吸収性アクリル系プライマーを得た。

【0027】該紫外線吸収性アクリル系プライマー溶液 は、透明で固形分約2%程度、粘度約35cP(25℃)程度 であった。

(シリコーン系ハードコーティング溶液の調製) 攪拌機 および循環器つきの 500ml丸底フラスコにメチルトリエ トキシシラン100gと3ーグリシドキシプロピルトリメト キシシラン10g をはり込み、無水フタル酸0.04g を添 加、湯浴で約40℃程度に加温し溶解させ、その後、弱塩 基性コロイダルシリカ水溶液スノーテックスC(日産化 学製、平均粒径約15μm程度、SiO2含有量約20%程度) 100gを添加し、約40℃程度で約5日程度反応を行い、GP C (トーソー製、ULC802A) による数平均分子量約1100 程度、固形分約29%程度の組成物を得た。これに145gの イソプロピルアルコールを添加し、分画分子量1000の限 外濾過器 (日本ミリポア製) で濃縮し、GPC による数平 均分子量約1200程度、固形分約20%の組成物を得た。該 組成物に硬化触媒としてジシアンジアミドを約0.1 部程 度添加してシリコーン系ハードコーティング溶液を得

【0028】(性能評価法)

紫外線吸収性:紫外/可視分光光度計で吸収スペクトル パターンを測定。

屋外の自然太陽光下で目視観察。(気に 蛍光性: なる発光、くもりがない。)

表面硬度: ASTM D1044に準拠、摩耗輪CS-10F 、50

【0029】密着性: JIS K5400 に準拠、碁盤目 (1㎜口)テープ剥離残数を/100で表示。

酸 ----25wt% H₂SO₄ 点滴テス 耐薬品性: トで24hr。

【0030】塩基---- 5wt% NaOH 点滴テスト

溶剤---100 %エタノール 点滴テストで4hr。

耐候性: JIS D0205 に準拠、サンシャインカーボ ンウェザーメーターで目視異常(膜クラック、剥離、顕 著な黄変) がみられるまでの時間。

【0031】実施例1

大きさ約300mm x300mm 、厚さ約3mm のクリア・フロー トガラス基板を中性洗剤、水すすぎ、アルコールで順次 洗浄し、乾燥した後、アセトンで払拭し被膜用ガラス基 板とした。

【0032】該被覆用ガラス基板の片面をフイルムマス キングし、上記した調製済のガラス塗布用紫外線吸収性 アクリル系プライマー溶液に浸漬し、約0.1cm /sec 程 度のスピードで引き上げ、約120 ℃程度で約0.5 時間程 度乾燥し、膜厚約6μ程度の紫外線吸収膜を形成した。

【0033】次いで、該紫外線吸収膜付ガラス基板を上 記した調製済のシリコーン系ハードコーティング溶液に 浸漬し、約1cm/sec 程度のスピードで引き上げ、約12 0 ℃程度で約0.5 時間程度、約150 ℃程度で約0.5 時間 程度乾燥硬化し、膜厚約3 μ程度の保護膜を形成した。

【0034】得られた紫外線吸収透明体である紫外線遮 蔽ガラス基板を上記した性能評価法に従って評価した。 その結果、図1に示すように、波長400nm 以下では透過 率2%以下で紫外線を遮蔽するものであって、ことに40 Onm 付近において紫外/可視領域の境界を着色なく充分 な透視性で格段にシャープにカットでき、気になる発光 発現ならびにくもりもなく防げ、表面硬度もテーパテス ト後のヘーズ値(△H)が5と耐擦傷性も優れ、耐候性 も3000時間以上で目視異常がなく、耐薬品性も異常な く、優れた耐久性を有する紫外線吸収透明体であった。

【0035】実施例2~5

実施例1と同様なガラス基板に、表1に示すようなプラ イマー溶液を用い、かつ実施例1と同様な成膜で、表1 のような紫外線吸収膜を形成した。

【0036】次いで、該紫外線吸収膜付ガラス基板を市 40 販のシリコーン系ハードコーティング溶液であるトスガ ート510 (東芝シリコーン製) に浸漬し、約1cm/sec のスピードで引き上げ、約120 ℃で約3時間程度乾燥硬 化し、膜厚約3μ程度の保護膜を形成した。

【0037】得られた紫外線吸収透明体である紫外線遮 蔽ガラス基板を実施例1と同様に評価した。実施例1と 同様に所期の優れた紫外線吸収透明体であった。

実施例6

厚さ約50μのPET フイルムを、表1に示した樹脂塗布用 紫外線吸収性アクリル系プライマー溶液に浸漬し、約0. 50 ものの、波長350nm 付近を中心とした範囲の紫外線カッ

1cm /sec 程度のスピードで引き上げ、約120℃程度で 約0.5 時間程度乾燥し、膜厚約5 μ程度の紫外線吸収膜 を形成した。

【0038】次いで、該紫外線吸収膜付フイルムを上記 した調製済のシリコーン系ハードコーティング溶液に浸 潰し、約1cm/sec 程度のスピードで引き上げ、約120 ℃程度で約0.5 時間程度、約150 ℃程度で約0.5 時間程 度乾燥硬化し、膜厚約3μ程度の保護膜を形成した。

【0039】得られた紫外線吸収透明体である紫外線遮 10 蔽フイルムを実施例1と同様に評価した。実施例1と同 様に所期の優れた紫外線吸収透明体であった。

比較例1

た。

表1に示すように紫外線吸収剤TINUVIN327(チバガイギ 一製)で調製した紫外線吸収性アクリル系プライマーを 用いた以外は実施例1と同様にして紫外線吸収性ガラス 基板を得た。

【0040】得られた該紫外線吸収性ガラス基板につい ては、外観上は良好であるが、吸収性は到底波長400nm に届かぬもので、耐候性も1000時間程度のものであり、 20 到底所期の紫外線吸収透明体とは言い難いものであっ

【0041】比較例2

表1に示すように蛍光増白剤UVITEX-OB(チパガイギー 製)で調製した紫外線吸収性アクリル系プライマーを用 いた以外は実施例1と同様にして紫外線吸収性ガラス基 板を得た。

【0042】得られた該紫外線吸収性ガラス基板につい ては、外観上はわずかしか青色蛍光を感じないが、図1 に示すように、波長400mm 付近をカットするもののそれ までの紫外線の範囲での紫外線カットができておらず、 耐候性は300 時間程度のものであり、到底所期の紫外線 吸収透明体とは言い難いものであった。

【0043】比較例3

表1に示すように蛍光増白剤UVITEXーOB(チパガイギー 製)と紫外線吸収剤TINUVIN327(チパガイギー製)で調 製した紫外線吸収性プライマーを用いた以外は実施例1 と同様にして紫外線吸収性ガラス基板を得た。

【0044】得られた該紫外線吸収性ガラス基板につい ては、外観上は室内側および屋外側ともにほぼ無着色で 透明であるものの、400nm 付近のカットが不十分で、耐 候性も1000時間程度のものであり、到底所期の紫外線吸 収透明体とは言い難いものであった。

【0045】比較例4

表1に示すように紫外線吸収剤BONASORB327 (チバガイ ギー製)で調製した紫外線吸収性プライマーを用いた以 外は実施例1と同様にして紫外線吸収性ガラス基板を得 た。

【0046】得られた該紫外線吸収性ガラス基板につい ては、外観上はわずかに黄味を感じる程度で透明である

10

トが不十分であり、耐候性も約500 時間程度のものであ り、到底所期の紫外線吸収透明体とは言い難いものであ った。

* [0047] 【表1】

	アクリルレジン (wt%)	蛍光増白剤 (wt%)	紫外線吸収剂 (wt%)	溶線 (w t %)	接着改良剂 (wt%)	固形分 (%)	粘度 (cp)	プライマー 腕厚 (μ)
実施例 1	(a) 5	(ъ) 0, 1	(c) 0. 1 (c') 0. 5	(d) 42.0 (d') 42.3	(e) 10	9	250	6 トップは3
2	(a) 5	(ъ) 0. 2	(c) 0.05 (c') 1.0	(d) 42.0 (d') 41.55	(e) 10	9	260	7 トップは3
3	(a) 4	(ъ) О. З	(c) 0.05 (c'') 1.5	(d) 40.0 (d') 39.15	(e) 15	10	230	5 トップは3
4	(a) 6	(ъ) О. 4	(c) 0. 2 (c''') 1. 2	(d) 44.0 (d') 43.4	(e) 5	8	300	5 トップは3
5	(a) 4	(b) 0. 1	(c) 0.05 (c') 0.3 (c''') 0.2	(d) 42.0 (d') 43.35	(e) 1 0	8	200	4 トップは3
6	(a') 7	(ъ) О. 1	(c) 0. 1 (c') 0. 5	(d) 6. 0 (d') 60. 3 (d") 22. 0	(e) 2	11	3 5 0	・ 7 トップは3
比較何1	(a) 5		(c') 0.5	(d) 42.0 (d') 42.5	(e) 10	9	2 4 0	5 トップは3
2	(a) 5	(ъ) 0. 1	-	(d) 42.0 (d') 42.9	(e) 10	9	2 4 0	5トップは3
3	(a) 5	(ъ) 0. 1	(c') 0.5	(d) 42.0 (d') 42.9	(e) 10	9	250	5 トップは3
4	(a) 5		(c) 0. 1	(d) 42.0 (d') 42.9	(e) 10	9	240	5 トップは3

【0048】表中は、(a) ダイヤナールBR88、 (a') ダイヤナールBR85 (共に、三菱レイヨン 製)。(b) UVITEX-OB (チパガイギー製)、 (c) BONASORB-UA3901 (オリエント化 学製)、(c') TINUVIN327 (チバガイギー (c''')SEESORB706 (シプロ化成製)、 (c'''') SEESORB712 (シプロ化成製)。 (d) シクロヘキサノン、(d') プロピレングリコー ルモノメチルエーテル、(d'') ジアセトンアルコー ル。(e) シリコーン変成アクリルレジン:OS80 8A (大八化学製) を各々示す。

[0049]

【発明の効果】以上前述したように、本発明によれば、

光学特性を損なうことなく、透明でしかも紫外線を遮 蔵、ことに400nm 付近において紫外/可視領域の境界を 格段にシャープに紫外線を遮蔽することができ、密着 性、耐薬品性、耐擦傷性あるいは耐久性に優れ、外装用 としても使用可能となり、しかも種々の機能性を付与し 製)、($c^{\prime\prime}$) V I O S O R B 1 0 0 (共同薬品製)、 30 得ることができる、ビルあるいは住宅、車両等、種々の 分野に広く採用できる有用な紫外線吸収透明体を容易に かつ安価に提供できるものである。

【図面の簡単な説明】

【図1】本発明の実施例1の紫外線吸収透明体、通常の ガラス基板(フロートガラス3㎜厚)および比較例1~ 4の紫外線吸収性ガラス基板における、紫外/可視分光 曲線での透過率を示す。

フロントページの続き

(51) Int. Cl. 6	識別記号 庁内整理番号	Fl	技術表示箇所
C 0 9 B 57/00	Y		O
C 0 9 D 5/00	PPF		
5/32	PRB		
C 0 9 K 3/00	1 0 4		