Algoritmy – IAL

Ing. Ivana Burgetová, Ph.D.
Ing. Radek Hranický, Ph.D.
prof. Ing. Jan M. Honzík, CSc.
FIT VUT v Brně
2024/25

Obsah

- Organizační informace
- Algoritmy a datové struktury úvod
- □ Složitost algoritmů základní pojmy

□ Klíčové pojmy – abstrakce, datové struktury, funkce, rekurze

Personální zajištění předmětu

- □ Garant:
 - <u>Ing. Ivana Burgetová, Ph.D.</u>
- □ Přednášející:
 - Ing. Ivana Burgetová, Ph.D. úterý 12:00
 - Ing. Radek Hranický, Ph.D. středa 18:00
- Asistenti konzultace k domácím úlohám a k projektu:
 - <u>Ing. Daniel Dolejška</u> DÚ1 a náhradní projekt
 - Ing. Jan Zavřel DÚ2

Informace k předmětu

■ IS VUT

- Všechny termíny půlsemestrální a semestrální zkoušky
- Všechna zadání domácí úkoly a náhradní projekty

Moodle VUT

- Studijní materiály prezentace k přednáškám
- Soubory potřebné pro řešení domácích úloh
- Doplňující materiály ke studiu i k projektům
- Diskuzní fóra

Přednášky

- □ Úterý 12:00 14:50
- ☐ Středa 18:00 20:50

- Přednášky jsou základním zdrojem informací choďte na ně!
- Záznamy: budou zveřejňovány
 - Prosíme, nechoďte na přednášku, pokud nejste zcela FIT.

Bodové hodnocení

- Rozdělení bodů:
 - 2 domácí úlohy (po 10 bodech)
 - projekt s obhajobou pro tým 3-4 studentů (15 bodů) obhajující bude vybrán losem
 - půlsemestrální zkouška (14 bodů)
 - semestrální zkouška (51 bodů, minimum 24 bodů)
- Pro udělení zápočtu je nutné získat minimálně 20 bodů za semestr (tj. 40,8 %)

Doplňující informace

□ Domácí úkoly:

- 6 bodů za základní testy + 4 body za pokročilé testy
- Správná funkčnost na serveru eva.fit.vutbr.cz

□ Projekt:

- Týmový (3-4 studenti), společný s předmětem IFJ
- Body za funkčnost, obhajobu a dokumentaci (5+5+5 bodů)
- Náhradní projekty téma: grafové algoritmy (7+5+3 bodů)

Půlsemestrální zkouška:

Přihlašuje se student v IS VUT. Bez přihlášení nebude přiděleno místo ani připraveno zadání – nelze se zúčastnit!

Terminy

□ Žádost o uznání DÚ: 16. 9. – 29. 9. 2024

□ Přihlašování na projekty: 29. 9. − 4. 10. 2024

□ 1. domácí úloha: 30. 9. – 20. 10. 2024

□ 2. domácí úloha: 21. 10. − 10. 11. 2024

Přihlašování na půlsemestrální zkoušku:

1. 10. – 11. 10. 2024

Půlsemestrální zkouška: 15. 10. a 16. 10. 2024

(v době přednášky, pokud to půjde)

Odevzdání projektu: 4. 12. 2024

□ Obhajoby projektů: 5. 12. – 13. 12. 2024

Studijní zdroje

- **Prezentace k přednáškám** budou postupně dostupné v Moodle VUT
- Mareš, M., Valla, T.: Průvodce labyrintem algoritmů, CZ.NIC, 2017
- Cormen, T.H., Leiserson, Ch.E., Rivest, R.L.: Introduction to Algorithms, Cambridge MIT Press, 2009
- Sedgewick,R.: Algoritmy v C, Addison Wesley 1998. Softpress 2003.

Honzík, J.M.: Studijní opora IAL – již není aktualizovaná a neobsahuje témata nově zařazená do přednášek (např. grafové algoritmy, dynamické programování). Dostupná v Moodle VUT

Odhad časové náročnosti předmětu

- □ 1 kredit = 25-30 hodin práce
- 5 kreditům odpovídá 125-150 hod. studijní práce průměrného studenta, z toho:
- Přednášky 39 hod
- 2 domácí úlohy26 hod
- práce na projektu 35 hod
- průběžné studium20 hod
- příprava na půlsem. a záv. zkoušku 30 hod

Náplň předmětu

Návaznosti předmětu

- Schopnost algoritmizace je klíčová při návrhu a implementaci SW projektů v dalších předmětech i v programátorské praxi.
 Když se občas potkáme s našimi absolventy, často právě předmět Algoritmy
- V dnešní době již máte řadu algoritmů a datových struktur dostupných v knihovnách. Pro výběr nejvhodnějšího algoritmu či datové struktury pro daný účel je však nutné umět jednotlivé alternativy zhodnotit. A pro správné použití datové struktury či algoritmu se porozumění principům určitě hodí.
- Probíraná témata se objevují u státních závěrečných zkoušek:

zpětně hodnotí jako nejpřínosnější z celého studia.

- 27. Datové a řídicí struktury imperativních programovacích jazyků
- 28. Vyhledávání a řazení
- 30. Hodnocení složitosti algoritmů (paměťová a časová složitost, asymptotická časová složitost, určování časové složitosti)
- https://www.fit.vut.cz/fit/info/rd/2020/rd39-201217.pdf

Témata přednášek

- 1. Organizační informace. Úvod do algoritmů. Asymptotická časová složitost.
- 2. **Abstraktní datový typ** a jeho specifikace. Specifikace, implementace a použití **ADT seznam**.
- 3. Specifikace, implementace a použití ADT **zásobník, fronta**, vyhledávací tabulka, pole, graf, binární strom.
- 4. ADT **binární strom**, algoritmy nad binárním stromem.
- 5. **Vyhledávání**, sekvenční, v poli, binární vyhledávání, binární vyhledávací stromy.
- 6. AVL strom, vyhledávání v tabulkách s rozptýlenými položkami, stromy s více klíči ve vrcholech.
- 7. **Řazení,** principy, bez přesunu, s vícenásobným klíčem. Metody řazení polí.
- 8. Metody řazení polí.
- 9. Vyhledávání v textu.
- 10. Techniky řešení problémů, rekurze, dynamické programování.
- 11. Grafové algoritmy, tvorba dokázaných programů.

Učební cíle a kompetence – specifické

- Seznámit se základními principy složitosti algoritmů
- Seznámit se se základními abstraktními datovými typy a strukturami, naučit se je implementovat a používat
- Seznámit se s vyhledávacími metodami, naučit se je implementovat a používat
- Seznámit se s řadicími metodami, naučit se je implementovat a používat
- Naučit se rekurzivní a nerekurzivní zápisy základních algoritmů
- Naučit se porozumět principům a analyzovat algoritmy vyhledávání a řazení.
- Seznámit se s metodami pro vyhledávání v textu
- Seznámit se se základy dynamického programování
- Seznámit se se základními grafovými algoritmy

Učební cíle a kompetence – generické

- Naučit se základům týmové práce při tvorbě malého projektu
- Naučit se základům tvorby dokumentace projektu
- Naučit se základům prezentace projektu a obhajobě dosažených výsledků
- Seznámit se se základy anglické terminologie v oblasti algoritmizace

Obsah

- Organizační informace
- Algoritmy a datové struktury úvod
- Složitost algoritmů základní pojmy
- Opakování abstrakce, datové struktury, funkce, rekurze

- Počítače používáme pro řešení nejrůznějších problémů:
 - Problém obchodního cestujícího
 - Problém nalezení nejkratší cesty
 - Hledání nejdelšího společného podřetězce
 - Vyhledávání a řazení
- Počítač potřebuje návod, jak daný problém vyřešit: algoritmus

Algoritmus:

- konečná, uspořádaná množina úplně definovaných pravidel pro vyřešení nějakého problému
- posloupnost výpočetních kroků, které transformují vstup na výstup
- nástroj pro řešení dobře specifikovaného výpočetního problému (specifikovaného pomocí vztahů mezi vstupy a výstupy)
- správnost algoritmu pro libovolný vstup skončí s korektním výstupem
- vlastnosti: konečnost, obecnost, determinovanost, resultativnost, elementárnost
- Popis algoritmu vs. implementace algoritmu

THE FRIENDSHIP ALGORITHM

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO, "

- Datové struktury:
 - Způsob uložení a organizace dat za účelem umožnění přístupu k datům a jejich modifikaci
 - Usnadňují řešení problémů
- Programovací techniky:
 - Rozděl a panuj (divide and conquer)
 - Dynamické programování
 - Hledání s návratem (backtracking)
- Složitost algoritmů
- Možnosti paralelizace

Proč datové struktury?

- Datové struktury statické x dynamické (pole x seznam, binární vyhledávací strom)
- □ Různé datové struktury mají své výhody i nevýhody:
 - Doba přístupu k jednotlivým položkám se liší
 - Zachování uspořádanosti prvků při vkládání nových dat je různě náročné
 - Rušení prvků nemusí být vždy jednoduché
- Pro různé aplikace jsou vhodné různé datové struktury

- Úloha: dvojice prvků se zadaným součtem
 - Vstup: uspořádaná posloupnost prvků a číslo s
 - Výstup: dvojice prvků (ne nutně různých), jejichž součet je s
 - **■** Příklad:
 - Posloupnost prvků:

1 3 6 6 8 9 10

- □ Číslo *s*: 12
- □ Výstup: dvojice 3 a 9, 6 a 6

■ Řešení č. 1 – hrubou silou

- Sečteme všechny dvojice $x_i + x_j$
- Počet dvojic, které musíme sečíst: n^2

- Řešení č. 2 využití binárního vyhledávání:
 - Myšlenka: pokud zvolíme nějaké x_i , víme, že $x_j = s x_i$ a můžeme x_i zkusit vyhledat
 - Postupně zkoušíme všechna x_i a vyhledáváme k nim x_i
 - Vyhledávat můžeme metodou binárního vyhledávání (půlení intervalu), nalezne prvek nejpozději po log₂ n krocích
 - Celkově tedy provedeme n.log₂ n kroků

1 3 6 6 8 9 10

- Pozn: Kolikrát lze rozpůlit interval?
 - Kolikrát mohu dané číslo *n* dělit dvěma?
 - $y \approx log_2 n$

■ Řešení č. 3 – metoda dvou jezdců

- Použijeme dva indexy levý (*i* začíná na 1. pozici a pohybuje se doprava) a pravý (j pohybuje se doleva).
- Pravým indexem vyhledáváme dvojici k aktuálnímu prvku x_{i.}
- Vyhledávat budeme sekvenčně od konce pole, pokud je součet větší, pohybujeme se doleva, pokud je součet menší, posuneme se k dalšímu prvku (x_{i+1}) .
- Pokud se posuneme k prvku x_{i+1} , pak prvek x_j se může nacházet na pozici, kde jsme skončili předchozí vyhledávání nebo vlevo od ní.
- Provedeme maximálně n kroků

1 3 6 6 8 9 10

- Jeden problém mnoho různých řešení
- Každé řešení (algoritmus) má své výhody a nevýhody
- Pokud dokážeme zhodnotit vlastnosti jednotlivých řešení, můžeme vybrat to, které je v našem případě nejvhodnější.

Jak popsat algoritmus?

- Přirozeným jazykem:
 - nejpřirozenější, ale nejméně přesný způsob.
- Pseudokódem:
 - zlatý střed
 - "Programovací jazyk, který si nikdy nestěžuje na syntaktické chyby."
- Programovacím jazykem:
 - přesné, ale obtížné na zápis a pochopení.

17. a 18. 9. 2024 28

Algoritmus vs. heuristika

- Správnost algoritmu:
 - algoritmus musí vést ke správnému výsledku pro libovolný vstup
 - někdy je nalezení takového postupu problematické.
- Problém obchodního cestujícího (TSP zjednodušeně):
 - Vstup: množina měst spojených silnicemi o daných délkách
 - Výstup: Nejkratší cesta procházející všemi městy a vracející se do výchozího města

Algoritmus vs. Heuristika - TSP

Řešení č. 1: Použití nejbližšího souseda:

Algoritmus vs. Heuristika - TSP

- Řešené č. 2: Spojování nejbližších párů:
 - Udržujeme řetězce vrcholů a v každé iteraci spojíme 2 nejbližší řetězce.
 - Vstup č. 1:

■ Vstup č. 2

Algoritmus vs. heuristika

TSP – příklad problému pro jehož korektní vyřešení potřebujeme prověřit všechny možnosti – řešení hrubou silou – neúnosně zdlouhavé!

Heuristika:

- Postup, který nedává vždy přesné řešení problému.
- Ve většině případů dává dostatečně přesné řešení v rozumném čase.
- Nezaručuje nalezení přesného řešení.
- Použijeme tehdy, pokud pro daný problém neexistuje přesný algoritmus, nebo jeho použití je neekonomické.

Obsah

- Organizační informace
- Algoritmy a datové struktury úvod
- □ Složitost algoritmů základní pojmy
- Opakování abstrakce, datové struktury, funkce, rekurze

Hodnocení algoritmů

- Potřebujeme zvolit kritéria, podle nichž budeme hodnotit jednotlivé algoritmy nezávisle na použitém programovacím jazyce nebo stroji.
- Nejčastější kritéria časové a paměťové nároky
- Reálná doba běhu programu se může lišit pro různé stroje, různé sady vstupních dat atd.
- Využití tzv. časové a prostorové složitosti algoritmů:
 - způsob vyjádření vlastností algoritmu nezávisle na technických podrobnostech.
 - popis chování algoritmu pomocí jednoduchých matematických funkcí.

Časová složitost algoritmů

- Odvozena od počtu tzv. elementárních operací
- Elementární operace: sčítání, násobení, porovnání, skoky, atd.
- Časová složitost řádový počet provedených operací v závislosti na velikosti vstupu (nejhorší případ)
- Velikost vstupu příklady:
 - Počet prvků pole, které řadíme.
 - Větší z čísel, jejichž největšího společného dělitele počítáme.
- Určení elementárních operací využití teoretických modelů strojů (např. Random Access Machine – RAM)

Časová složitost – příklad

- Algoritmy pro součty různých číselných řad
- Vstup algoritmů: číslo n

Algoritmus Součet1:

```
    for i ← (1, n):
    for j ← (1, n):
    s ← s + j
    return s
```

Počet elementárních kroků: $c_1 \cdot n^2 + c_2$ Zjednodušeně: n^2

Algoritmus Součet2:

```
    while n ≥ 1:
    s ← s + n
    n ← n / 2
    return s
```

Počet elementárních kroků: $c_3 \cdot log_2 n + c_2$ Zjednodušeně: $log_2 n$

Zásadní vliv má počet provedených součtů, příp. dělení.

Časová složitost

Určení časové složitosti:

- Zhodnotíme, jak měřit velikost vstupu.
- Určíme maximální možný počet elementárních kroků algoritmu provedených pro vstup o velikosti n.
- 3. Ve výsledné formuli ponecháme pouze nejrychleji rostoucí člen, ostatní zanedbáme.
- 4. Seškrtáme multiplikativní konstanty.

Průměrná časová složitost:

- Použijeme, pokud pro různé vstupy stejné velikosti vykoná algoritmus různý počet kroků.
- Aritmetický průměr časových nároků přes všechny vstupy dané velikosti.

Asymptotická časová složitost

- Nejčastěji používané hodnotící kritérium
- Chování algoritmu popíšeme porovnáním s jistou funkcí
- Pro n jdoucí k nekonečnu se chování algoritmu blíží této funkci
- Používají se tři různé složitosti:
 - O Omikron (velké O, O, big O) horní hranice chování
 - Ω Omega dolní hranice chování
 - Θ Théta třída chování

Složitost Omikron

- Složitost Omikron (nebo také Big O, O) vyjadřuje horní hranici časového chování algoritmu.
- □ *Omikron* (g(n)) označuje množinu funkcí f(n), pro které platí: $\{f(n): \exists (c > 0, n_0 > 0) \text{ takové, že } \forall n \geq n_0 \text{ platí } [0 \leq f(n) \leq c.g(n)]\}$ kde c a n_0 jsou určité vhodné kladné konstanty.
- Zápis $f(n) \in Omikron(g(n))$, nebo O(g(n)), označuje, že funkce f(n) je rostoucí maximálně tak rychle jako funkce g(n).
- Dostatečně velký násobek funkce g(n) shora omezuje funkci f(n) pro dostatečně velké n.

Složitost Omega

- Složitost Omega (g(n)) (nebo také Ω) vyjadřuje dolní hranici časového chování algoritmu.
- Omega (g(n)) označuje množinu funkcí f(n), pro které platí: $\{f(n): \exists (c > 0, n_0 > 0) \ takové, že \ \forall \ n \ge n_0 \ platí \ [0 \le c.g(n) \le f(n)]\}$ kde c a n_0 jsou určité vhodné kladné konstanty.
- Zápis $f(n) \in Omega(g(n))$, nebo $\Omega(g(n))$, označuje, že funkce f(n) je rostoucí minimálně tak rychle jako funkce g(n).
- Funkce g(n) je dolní hranicí množiny všech funkcí, určených zápisem Omega(g(n)) nebo $\Omega(g(n))$.

Složitost Théta

- Složitost Theta (g(n)) (nebo Θ(g(n))) vyjadřuje třídu chování algoritmu ohraničuje funkci f(n) z obou stran (časové chování shodné jako funkce g(n).)
- Theta (g(n)) označuje množinu funkcí f(n), pro které platí: $\{f(n): \exists (c_1 > 0, c_2 > 0, n_0 > 0) \ takové, že \ \forall \ n \geq n_0 \ platí \ [0 \leq c_1.g(n) \leq f(n) \leq c_2.g(n)]\}$, kde c_1 , c_2 a n_0 jsou určité vhodné kladné konstanty.
- Zápis $f(n) \in Theta(g(n))$, nebo $\Theta(g(n))$ označuje, že funkce f(n) roste tak rychle jako funkce g(n).
- Nejpřesnější popis chování algoritmu není možné ji vždy přesně stanovit

Vliv řádu algoritmu a kardinality úlohy

Počet prvků	33 n	46 n log n	13 n²	3.4 n ³	2 ⁿ
10	0,000 33 s	0,015 s	0,001 3 s	0,003 4 s	0,001 s
100	0,003 3 s	0,03 s	0,13 s	3,4 s	4.10 ¹⁴ stol.
1 000	0,033 s	0,45 s	13 s	94 hod	
10 000	0,33 s	6,1 s	22 min	39 dní	
100 000	3,3 s	1,3 min	1,5 dne	108 roků	
Maximální velikost n pro čas					
1 s	30 000	2 000	280	67	20
1 min	1 800 000	82 000	2 200	260	26

Vliv řádu a konstanty

	CRAY – 1 Fortran	TRS-80 Basic	
Počet prvků	3 n ³	19 500 000 n	
10	3 x10 ⁻⁶ s	200 x10 ⁻³ s	
100	3 x10 ⁻³ s	2 s	
1 000	3 s	20 s	
2 500	50 s	50 s	
10 000	49 min	3,2 min	
1 000 000	95 let	5,4 hod	

Typické časové složitosti

- Θ(1) označení algoritmů s konstantní časovou složitostí
- Θ(log(n)) označení algoritmů s logaritmickou časovou složitostí:
 - Základ logaritmu není podstatný.
 - Např. rychlé vyhledávací algoritmy
- Θ(n) označení algoritmů s lineární časovou složitostí
 - Např. běžné vyhledávací algoritmy
- Θ(n.log(n)) označení algoritmů nazvané linearitmické
 - Např. rychlé řadicí algoritmy
- Θ(n²) označení algoritmů s kvadratickou časovou složitostí
 - Algoritmy sestavené z dvojnásobného počítaného cyklu do n.
 - Např. jednoduché řadicí algoritmy (např. bubble-sort)

Typické časové složitosti

- Θ(n³) označení algoritmů s kubickou časovou složitostí
 - Algoritmy s touto složitostí jsou prakticky použitelné pouze pro málo rozsáhlé problémy.
 - Kdykoli se *n* zdvojnásobí, čas zpracování je osminásobný.
- Θ(kⁿ) označení algoritmů s exponenciální časovou složitostí (k je přirozené číslo)
 - pro k = 2 binomická časová složitost
 - Existuje několik prakticky použitelných algoritmů s touto složitostí.
 - Často se označují jako algoritmy pracující s "hrubou silou" (angl. brute-force algorithms).
 - Kdykoli se *n* zdvojnásobí je čas řešení kvadrátem.

Prostorová složitost

- Měří paměťové nároky algoritmu
- Kolik nejvíce elementárních paměťových buněk algoritmus použije.
- Elementární paměťová buňka: proměnná typu integer, float, byte apod.
- Vyjádříme ji jako funkci f(n) v závislosti na velikosti vstupu n.

Pomocná paměť:

- extra paměť, kterou algoritmus využije, pokud nepočítáme velikost vstupu.
- umožní lépe rozlišit paměťové nároky algoritmů, jejichž prostorová složitost je stejná.

Obsah

- Organizační informace
- Algoritmy a datové struktury úvod
- Složitost algoritmů základní pojmy
- □ Opakování abstrakce, datové struktury, funkce, rekurze

Abstrakce

- Obecně: myšlenkový proces zanedbávající odlišnosti a zvláštnosti a zjišťující obecné, podstatné vlastnosti a vztahy
- □ V informatice: odděluje účel entity od její implementace:
 - Zdůrazňujeme smysl entity
 - Potlačujeme způsob a detaily implementace (nepotřebujeme vědět, jak to funguje uvnitř)
 - Nástroj pro zvládnutí komplexnosti řešených problémů
 - Nástroje abstrakce: funkce, třídy, abstraktní datové typy, atd.
 - Často využíváme několik úrovní abstrakce

THE ABSTRACT-O-METER

Datové typy a struktury

Datové typy:

- Jednoduché bool, char, int, float, ...
- Strukturované pole, struktura, unie, ...
- Datové struktury složeny z komponent jiného typu:
 - Homogenní x heterogenní
 - Statické x dynamické
 - Komponentou strukturovaného typu může být jiný dříve definovaný strukturovaný typ – možnost tvorby hierarchických a rekurzivních struktur.
 - Průchod algoritmus, který postupně projde (a stejným způsobem zpracuje) všechny prvky homogenní datové struktury.

Statické proměnné (struktury)

- Dostávají jméno při deklaraci.
- Prostor jimi zaujímaný se vyhradí (alokuje) v době překladu.
- K obsahu těchto proměnných se dostáváme prostřednictvím jejich jména.
- Je-li struktura statická, nemění se za běhu programu ani počet ani uspořádání jejich komponent.
- Příkladem statické struktury je pole nebo záznam.

Dynamické proměnné (struktury)

- Vznikají i zanikají v době běhu programu.
- Nemohou mít jméno (identifikátor).
- K obsahu dynamických proměnných (struktur) se dostáváme prostřednictvím ukazatele.
- Počet i uspořádání komponent dynamických struktur se za běhu programu mění.
- Funkce malloc() a free()

Dynamické proměnné (struktury)

- K tvorbě dynamické struktury je vhodné (nutné) použít datového typu struktura (záznam). Její heterogennost umožňuje, aby dynamický prvek obsahoval vedle vlastní hodnoty také ukazatel(e).
- Příkladem dynamické struktury je seznam nebo strom.

Dynamické proměnné (struktury)

- Kdy je použijeme?
 - Pokud předem nevíme, kolik prvků daného typu budeme potřebovat uložit.
- Jak zajistit to, abychom měli ukazatel na každý vložený prvek?
 - Nemůžeme předem určit, kolik ukazatelů budeme potřebovat a "pojmenovat" všechny ukazatele.
 - V každém nově vloženém prvku si zajistíme prostor pro uložení ukazatele na následníka (následníky).

Operace malloc()

- Vrací hodnotu "ukazující" na paměťový prostor v paměťové oblasti vyhrazené pro tento účel (hromada, halda, angl. heap).
- Velikost prostoru je třeba určit parametrem této funkce, obvykle pomocí operátoru sizeof().
- Vždy je potřeba otestovat návratovou hodnotu
- Vrácený ukazatel je vhodné přetypovat na ukazatel na datový typ, s nímž je ukazatel svázán.
- NULL je ukazatelová konstanta s hodnotou vyjadřující, že ukazatel neukazuje na žádnou proměnnou (strukturu). Tuto konstantu lze přiřadit ukazateli libovolného typu.

Operace free (ptr)

- Ruší použitelnost dynamické proměnné (struktury), na kterou ukazuje ukazatel ptr. Po této operaci je hodnota ukazatele nedefinovaná.
- Pokud se paměť, kterou zaujímá zrušená proměnná (struktura), vrátí do vyhrazené paměťové oblasti, říkáme, že DPP pracuje s regenerací. V jiném případě jde o mechanismus bez regenerace (v praxi sotva použitelné).
- S pamětí je potřeba dobře hospodařit:
 - Ke každé operaci malloc() patří i operace free()
 - Nesmíme ztratit ukazatel na dynamicky vytvořenou proměnnou!

Funkce

- Důležitý nástroj pro zvyšování abstrakce.
- Má formu uzavřeného podprogramu v místě volání funkce se generuje skok do podprogramu, po provedení funkce se řízení vrací zpět za skok do podprogramu.
- Rozlišujeme deklaraci funkce, definici funkce a volání funkce
- Parametry funkce:
 - Předávání odkazem nebo hodnotou
 - Představují interface, kterým je funkce připojena k programu.
 - Pozor na vedlejší efekt.
- Pozn: procedura = funkce, která nevrací žádnou hodnotu.

Rekurze

- Metoda definování určitého objektu pomocí sebe sama
- Umožňuje definovat nekonečnou množinu objektů konečným popisem
- Rekurzivní struktura dat (lineární seznam)
- Rekurzivní struktura algoritmu
- Rekurzivní volání funkce funkce je volána v těle sebe samé

