



INTRO TO QUANTUM COMPUTING

Week 5 Lab

# PROBABILITY AND RANDOM VARIABLES

<insert TA name>

<insert date>

#### PROGRAM FOR TODAY

- Logistics
- Attendance quiz
- Pre-lab zoom feedback
- Questions from last week
- Lab content
- Post-lab zoom feedback





#### LOGISTICS

Piazza is a great resource for content-related questions!

- Post your questions from lecture, lab or homework
- Responses from instructors + TAs and fellow students
- Average response time 15 minutes
- If you don't have access, email student@qubitbyqubit.org





## **CANVAS ATTENDANCE QUIZ**

- Please log into Canvas and answer your lab section's quiz (using the password posted below and in the chat).
  - This is lab number:
  - Passcode:
- How many hours did you spend on last week's homework?
  - Less than 1 hour
  - 1-2 hours
  - 2-3 hours
  - More than 3 hours
  - I didn't do the homework
- This quiz not graded, but counts for your lab attendance!





#### PRE-LAB ZOOM FEEDBACK

On a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content





#### LEARNING OBJECTIVES FOR LAB 5

- Understanding probability for a 6-sided dice
  - Events and normalization
  - Random variables
  - Probability mass function
  - Expectation and variance
- Joint probability for a dice and coin
- Relating probability to quantum computing
  - 1-qubit states and bra-ket notation
  - 2-qubit states and entanglement\*

\*Optional content





Complex numbers (for our purposes) are scalars!





#### Why do we take the transpose of one vector for inner product?

Dimensional consistency!

$$\vec{w} = {3 \choose 2}$$
 and  $\vec{v} = {2 \choose 1}$  Two 2 × 1 vectors

$$\langle \vec{w}, \vec{v} \rangle = (3 \quad 2) {2 \choose 1} = 8$$

$$1 \times 2$$
  $2 \times 1$ 

Inner dimensions match!





$$(3 \quad 2) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 8$$

$$1 \times 2 \quad 2 \times 1$$
Inner dimensions match!





$$\begin{pmatrix} 3 & 2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

$$2 \times 2 \quad 2 \times 1$$

Inner dimensions match!





$$\begin{pmatrix} 3 & 2 \\ -2 & 5 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ 10 \end{pmatrix}$$

$$3 \times 2 \quad 2 \times 1$$
Inner dimensions match!

Taking the transpose for the inner product of vectors lets us use the "inner dimensions match" rule for vector as well as matrix multiplication





#### WHY PROBABILITY?

Quantum mechanics (and therefore, quantum computing) is *inherently* probabilistic





## PROBABILITY AROUND US

Where have you seen probability in your daily lives?





## PROBABILITY FOR A 6-SIDED DICE

| outcome | probability |
|---------|-------------|
| 1       | equal       |
| 2       | equal       |
| 3       | equal       |
| 4       | equal       |
| 5       | equal       |
| 6       | equal       |







#### PROPERTIES OF PROBABILITY

• Non-negativity: The probabilities must be non-negative

• Normalization: The sum of the probabilities of all 6 sides must be 1





## PROBABILITY FOR A 6-SIDED DIE

| outcome | probability |
|---------|-------------|
| 1       | equal       |
| 2       | equal       |
| 3       | equal       |
| 4       | equal       |
| 5       | equal       |
| 6       | equal       |

Let probability of any one outcome by p

$$p + p + p + p + p + p = 1$$
$$p = \frac{1}{6}$$



## PROBABILITY FOR A 6-SIDED DIE

| outcome | probability |
|---------|-------------|
| 1       | 1/6         |
| 2       | 1/6         |
| 3       | 1/6         |
| 4       | 1/6         |
| 5       | 1/6         |
| 6       | 1/6         |

Let probability of any one outcome by p

$$p + p + p + p + p + p = 1$$
$$p = \frac{1}{6}$$



#### **EVENTS**

**Event**: A possible outcome of our experiment (rolling the dice)

| outcome | probability |
|---------|-------------|
| 1       | 1/6         |
| 2       | 1/6         |
| 3       | 1/6         |
| 4       | 1/6         |
| 5       | 1/6         |
| 6       | 1/6         |

• **Event A:** The outcome is 5. What is the probability of event A?

$$\mathbb{P}(A) =$$

• **Event B:** The outcome is more than 1 and less than 5. What is the probability of event B?

$$\mathbb{P}(B) =$$



#### **EVENTS**

**Event**: A possible outcome of our experiment (rolling the dice)

| outcome | probability |
|---------|-------------|
| 1       | 1/6         |
| 2       | 1/6         |
| 3       | 1/6         |
| 4       | 1/6         |
| 5       | 1/6         |
| 6       | 1/6         |

• **Event C:** The outcome is an odd number less than 5. What is the probability of event C?

$$\mathbb{P}(C) =$$

• **Event D:** The outcome is an even number that is not 2. What is the probability of event D?

$$\mathbb{P}(D) =$$

$$\mathbb{P}(S \cup T) = \mathbb{P}(S) + \mathbb{P}(T) - \mathbb{P}(S \cap T)$$





#### RANDOM VARIABLES

X: maps the outcome of the experiment to numbers

if the dice rolls 4 for an experiment, X = 4 for that roll

if the dice rolls 2 for an experiment, X = 2 for that roll

If the dice rolls x for an experiment, X = x for that roll





#### PROBABILITY MASS FUNCTION

X: maps the outcome of the experiment to numbers

>random variable 
$$\mathbb{P}(X=x) = f_X(x) = \begin{cases} 1/6, \text{ if } x = 1\\ 1/6, \text{ if } x = 2\\ 1/6, \text{ if } x = 3\\ 1/6, \text{ if } x = 4\\ 1/6, \text{ if } x = 5\\ 1/6, \text{ if } x = 6 \end{cases}$$
 Probability mass function 
$$\begin{cases} -21 \\ 2000 \text{ The Coding School} \end{cases}$$
 Canvas attendance quiz passcode:





## PROBABILITY MASS FUNCTION







#### **EXPECTATION AND VARIANCE**

- Useful statistics to know about our pmf
- **Expectation:** What is the average value of *X*?

$$\mathbb{E}[X] = \langle X \rangle = \sum_{x} x \cdot \mathbb{P}(X = x)$$

$$\mathbb{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$$

$$\mathbb{E}[X] = \frac{1+2+3+4+5+6}{6} = 3.5$$





#### **EXPECTATION AND VARIANCE**

- Useful statistics to know about our pmf
- **Variance:** How spread out are the different values of *X*?

$$var[X] = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \sum_{x} \left(x - \mathbb{E}(X)\right)^2 \cdot \mathbb{P}(X = x)$$

$$var[X]$$
=  $(1 - 3.5)^2 \cdot \frac{1}{6} + (2 - 3.5)^2 \cdot \frac{1}{6} + (3 - 3.5)^2 \cdot \frac{1}{6} + (4 - 3.5)^2 \cdot \frac{1}{6}$ 
+  $(5 - 3.5)^2 \cdot \frac{1}{6} + (6 - 3.5)^2 \cdot \frac{1}{6} = 2.92$ 





#### PMF FOR AN UNFAIR DIE







#### **EXPECTATION AND VARIANCE**

$$\mathbb{E}[X] = \sum_{x} x \cdot \mathbb{P}(X = x)$$

$$\mathbb{E}[X] = 1 \cdot \frac{1}{10} + 2 \cdot \frac{1}{10} + 3 \cdot \frac{1}{2} + 4 \cdot \frac{1}{10} + 5 \cdot \frac{1}{10} + 6 \cdot \frac{1}{10}$$

$$\mathbb{E}[X] = 3.3$$

$$var[X] = \mathbb{E}[(x - \mathbb{E}[X])^2] = \sum_{x} (x - \mathbb{E}[X])^2 \cdot \mathbb{P}(X = x)$$
$$var[X] = 1.81$$







$$\mathbb{E}[X] = 3.5$$

$$var[X] = 2.92$$



$$\mathbb{E}[X] = 3.3$$
$$var[X] = 1.81$$





# QUESTIONS

Questions about the content discussed so far?





## PROBABILITY OF A DICE AND A COIN

| dice | Н     | Т     |
|------|-------|-------|
| 1    | equal | equal |
| 2    | equal | equal |
| 3    | equal | equal |
| 4    | equal | equal |
| 5    | equal | equal |
| 6    | equal | equal |









## PROBABILITY OF A DICE AND A COIN

| dice | Н    | Т    |
|------|------|------|
| 1    | 1/12 | 1/12 |
| 2    | 1/12 | 1/12 |
| 3    | 1/12 | 1/12 |
| 4    | 1/12 | 1/12 |
| 5    | 1/12 | 1/12 |
| 6    | 1/12 | 1/12 |









#### RANDOM VARIABLES

X: maps outcome of a dice roll to numbers

Y: maps outcome of a coin toss to numbers (H=0, T=1)

if the dice rolls 4 and coin flips to H (i.e. 0) for an experiment, X = 4, Y = 0 for that experiment

$$\mathbb{P}(X = 4, Y = 0) = \mathbb{P}(X = 4) \cdot \mathbb{P}(Y = 0) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}$$





## PROBABILITY OF A DICE AND A COIN

• Event A: The outcome of the dice is an even number, the coin gives H

• Event B: The outcome of the dice is less than 3, the coin gives T





## PMF OF JOINT RANDOM VARIABLE







# QUESTIONS

Questions about the content discussed so far?





#### INTERLUDE: BRA-KET NOTATION

Bra-ket notation and vector notation:

$$\vec{0} = |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$\vec{0}^{\dagger} = |0\rangle^{\dagger} = \langle 0| = (1 \quad 0)$$

$$\vec{1} = |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\vec{1}^{\dagger} = |1\rangle^{\dagger} = \langle 1| = (0 \quad 1)$$
bra row vector set column vector

Inner product notation:

Let 
$$\overrightarrow{w} = |0\rangle$$
. We want to find  $\langle \overrightarrow{w}, \overrightarrow{w} \rangle$   
 $\langle \overrightarrow{w}, \overrightarrow{w} \rangle = \overrightarrow{w}^{\dagger} \overrightarrow{w}$   
 $= |0\rangle^{\dagger} |0\rangle = \langle 0|0\rangle$   
 $= (1 \quad 0) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$ 





# 1-QUBIT STATES

Qubit state:  $|\psi\rangle$ 

| outcome                       | probability |
|-------------------------------|-------------|
| $ 0\rangle$ or $\binom{1}{0}$ | equal       |
| $ 1\rangle$ or $\binom{0}{1}$ | equal       |





### 1-QUBIT STATES

Qubit state:  $|\psi\rangle$ 

| outcome                       | probability |
|-------------------------------|-------------|
| $ 0\rangle$ or $\binom{1}{0}$ | 1/2         |
| $ 1\rangle$ or $\binom{0}{1}$ | 1/2         |



$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\alpha|^2 = |\beta|^2 = \frac{1}{2}$$





## 1-QUBIT STATES

Why do we care about  $|\alpha|^2$  and  $|\beta|^2$ ?

Remember normalization!

$$\langle \psi | \psi \rangle = 1$$





## 1-QUBIT STATES

Qubit state:  $|\psi\rangle$ 

| outcome                       | probability |
|-------------------------------|-------------|
| $ 0\rangle$ or $\binom{1}{0}$ | 4/5         |
| $ 1\rangle$ or $\binom{0}{1}$ | 1/5         |

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
$$|\alpha|^2 = \frac{4}{5}, |\beta|^2 = \frac{1}{5}$$





#### **IMPORTANT TAKEAWAYS**

Random variable → Possible outcomes of the experiment

Probability mass function → Probabilities of the different outcomes

• Independent events -> Probabilities multiply

Bra → row vector; ket → column vector

Qubit states are represented with probability amplitudes





# **QUESTIONS?**

Questions about the content discussed so far?





#### POST-LAB ZOOM FEEDBACK

**After this lab,** on a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content





## **OPTIONAL CONTENT**





# **TWO-QUBIT STATES**

2-qubit state:  $|\psi\rangle$ 

| qubit 2<br>qubit 1 | 0>    | 1>    |
|--------------------|-------|-------|
| 0>                 | equal | equal |
| 1>                 | equal | equal |





## TWO-QUBIT STATES

2-qubit state:  $|\psi\rangle$ 

| qubit 2<br>qubit 1 | 0>  | 1>  |
|--------------------|-----|-----|
| 0>                 | 1/4 | 1/4 |
| 1>                 | 1/4 | 1/4 |

$$|\psi\rangle$$

$$= \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

$$|\alpha|^2 = |\beta|^2 = |\gamma|^2 = |\delta|^2 = \frac{1}{4}$$

$$|\alpha|^2 = |\beta|^2 = |\gamma|^2 = |\delta|^2 = \frac{1}{4}$$





#### **MEASUREMENT PROBABILITY FOR 2-QUBIT STATE**

$$|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

$$|\alpha|^2 = |\beta|^2 = |\gamma|^2 = |\delta|^2 = \frac{1}{4}$$







### A LOADED TWO QUBIT STATE

2-qubit state:  $|\psi\rangle$ 

| qubit 2<br>qubit 1 | 0>  | 1>  |
|--------------------|-----|-----|
| 0>                 | 1/2 | 0   |
| 1>                 | 0   | 1/2 |

$$|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

**Entanglement!** 





## THE 2-QUBIT ENTANGLED STATE

$$|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$







# **EXTRA PROBLEMS**





#### **MORE INNER PRODUCTS**

Inner product examples:

Let 
$$\vec{w} = |0\rangle$$
 and  $\vec{v} = |1\rangle$ . We want to find  $\langle \vec{w}, \vec{v} \rangle$   
 $\langle \vec{w}, \vec{v} \rangle = \vec{w}^{\dagger} \vec{v}$   
 $= |0\rangle^{\dagger} |1\rangle = \langle 0|1\rangle$   
 $= (1 \quad 0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$ 

Let 
$$\vec{w} = |1\rangle$$
 and  $\vec{v} = |0\rangle$ . We want to find  $\langle \vec{w}, \vec{v} \rangle$   
 $\langle \vec{w}, \vec{v} \rangle = \vec{w}^{\dagger} \vec{v}$   
 $= |1\rangle^{\dagger} |0\rangle = \langle 1|0\rangle$   
 $= (0 \quad 1) {1 \choose 0} = 0$ 



