# Asymptotic notation and analysis (mit 6.042J)

- Leave out lower-order terms
- Leave out the coefficient in the leading term
- example 5n^3+4n+3 = O(n^3) 
  ~(tilde notation) 等价无穷小量 如 f(x)~g(x)就是  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

# **Summary**

- O means <=</li>
- o means <</li>
- Ω means >=
- $\omega$  means >
- Θ means =
- 不用在归纳证明中使用渐进符号,不然会证明一些疯狂的东西

# Why use it

Because running time is too precise and depends on particular machines.

# **O** notation

#### **DEFINITION**

Let f(n) and g(n) be functions from positive integers to positive reals. We say f = O(g) (which means that "f grows no faster than g") if there is a constant c > 0 such that  $f(n) \le c \cdot g(n)$ .

• f(n) = O(n):  $f(n) \le c \bullet n$  for some constant c and large n. • i.e.  $\exists c, \exists N > 0$  s.t.  $\forall n > N$ , we have  $f(n) \le c \bullet n$ .

### **General definition**

- f(n) = O(g(n)): for some constant c,  $f(n) \le c \cdot g(n)$ , when n is sufficiently large.
  - i.e.  $\exists c$ ,  $\exists N$  s.t.  $\forall n > N$ , we have  $f(n) \leq c \bullet g(n)$ .

#### FOR CALCULATE

 $f(\mathbf{x}) = \mathsf{O}(\mathsf{g}(\mathbf{x})) \text{ if } \lim_{x \to \infty} \frac{f(x)}{g(x)} < \infty(finite)$  and it can be represent as  $f(\mathbf{x}) <= \mathsf{)}(\mathsf{g}(\mathbf{x}))$ ,  $f(\mathbf{x})$  is  $\mathsf{O}(\mathsf{g}(\mathbf{x}))$ , and  $f(x) \in O(g(x))$  Be careful to write things on the right side, or you will write some wrong thing that technically fit the defination



Don't use f(x) >= O(g(x)), it is meaningless, we have another symbol  $\Omega$ 

## $\Omega$ notation

### **General definition**

- $f(n) = \Omega(g(n))$ :  $f(n) \ge c \cdot g(n)$  for some constant c and large n.
  - i.e.  $\exists c$ ,  $\exists N$  s.t.  $\forall n > N$ , we have  $f(n) \geq c \bullet g(n)$ .

### For calculate

$$\begin{split} &\mathsf{f}(\mathsf{x}) = \Omega(\mathsf{g}(\mathsf{x})) \; \mathsf{if} \; \lim_{x \to \infty} |\frac{f(x)}{g(x)}| > 0 \\ &\mathsf{f}(\mathsf{x}) = \mathsf{O}(\mathsf{g}(\mathsf{x})) \; \mathsf{is} \; \mathsf{equal} \; \mathsf{to} \; \mathsf{g}(\mathsf{x}) = \Omega(\mathsf{f}(\mathsf{x})) \end{split}$$

## **⊕** notation

## **General definition**

•  $f(n)=\Theta(g(n))$ : f(n)=O(g(n)) and  $f(n)=\Omega(g(n))$ • i.e.  $c_1\cdot g(n)\leq f(n)\leq c_2\cdot g(n)$  for two constants  $c_1$  and  $c_2$  and large n.

## For calculate

f(x) = 
$$\Theta(g(x))$$
 if  $\lim_{x \to \infty} |rac{f(x)}{g(x)}| > 0$  and  $< \infty$  , $\Omega$  and O both true