Determination of Critical Micelle Concentration by Conductivity

Teng-Jui Lin

Department of Chemical Engineering, University of Washington

Surface and Colloid Science

Micelle formation changes physical properties

Micelle formation

Physical property of SDS at 25 °C

• CMC = critical micelle concentration

CMC can be determined using conductivity measurements

• Conductivity $\kappa[\mu\mathrm{S/cm}]$ increases linearly with concentration $C[\mathrm{M}]$

$$\kappa = \kappa_0 + k_\kappa C$$

• Equivalent conductivity $\Lambda[\mathrm{S~cm^2/mol}]$

$$\Lambda = rac{\kappa}{C}$$

• Equivalent conductivity decreases linearly with square root of concentration

$$\Lambda = \Lambda_0 - k_\Lambda \sqrt{C}$$

CMC decreases with alkyl chain length: Klevens equation

• Klevens equation: increasing alykl chain length n decreases CMC

 $\log \text{CMC} = A - Bn$

Surfactants of interest

Surfactant	Chemical Formula	Number of alkyl chains n	Surfactant classification	lonic classification
SDS	$\mathrm{CH_{3}(CH_{2})_{11}OSO_{3}Na^{+}}$	7 12	Sodium alkyl sulfates	* Anionic
DTAB	$ m CH_{3}(CH_{2})_{11}N^{+}(CH_{3})_{3}Br^{-}$	12	Alkyl trimethyl ammonium bromides	Cationic
HTAB	$ m CH_{3}(CH_{2})_{15}N^{+}(CH_{3})_{3}Br^{-}$	16	Alkyl trimethyl ammonium bromides	Cationic
ОТАВ	$ m CH_{3}(CH_{2})_{17}N^{+}(CH_{3})_{3}Br^{-}$	18	Alkyl trimethyl ammonium bromides	Cationic

Experimental procedure

- Calibrate conductivity meter
- Wait 2 min for the *system* to equilibrate before recording the conductivity measurement
 - The equipment reading may have stabilized, but the system might not have reached equilibrium

