M53 - Cours

ESPACE AFFIN

BARYCENTRE REPÈRES

Sous-espace affines

APPLICATION: AFFINES

Convexes

M53 - Cours 1

2 septembre 2015

La définition d'un espace affine

M53 - Cours

ESPACE AFFINE

DÉFINITION

OPÉRATIONS

REMIÈRES PROPRIÉTÉ

BARYCENTRE ET

Sous-espace

APPLICATION

Convexes

DÉFINITION (HEURISTIQUE)

«Un espace affine est un espace vectoriel dont on a oublié l'origine.»

LA DÉFINITION D'UN ESPACE AFFINE

M53 - Cours 1

ESPACE AFFINE DÉFINITION EXEMPLES

Premières proprié

BARYCENTRE I

Sous-espace

APPLICATIONS

Convexes

DÉFINITION

Soit $\vec{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$

$$(A,B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

$$\mathbf{Z} \quad \forall A \in \mathcal{E}, \ \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \ \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \overrightarrow{v} \ (B = A + \overrightarrow{v})$$

LA DIMENSION D'UN ESPACE AFFINE

M53 - Cours

ESPACE AFFINE

Définitio

OPÉRATIONS

EMIÈRES PROPRIÉTÉ

BARYCENTRE ET

Sous-espace

APPLICATION

Convexes

DÉFINITION

L'espace affine \mathcal{E} est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal{E}}$, est de dimension n.

LES ESPACES VECTORIELS

M53 - Cours

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS

REMIÈRES PROPRIÉTÉ

Barycentre et repères

Sous-espace Affines

APPLICATION: AFFINES

Convexes

Tout espace vectoriel $\vec{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

CONVENTION

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

LES DROITES (SOUS-ESPACES) AFFINES

M53 - Cours 1

ESPACE AFFINE

EXEMPLES
ODÉRATIONS

REMIÈRES PROPRIÉTÉ

BARYCENTRE E

Sous-espace

APPLICATION

Convexes

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x, y) \mid x + y = 1\}$ est un espace affine de direction $\vec{\mathcal{E}} = \{(x, y) \mid x + y = 0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

QUESTION

Comment peut-on généraliser cet exemple?

LES SOLUTIONS DES ÉQUATIONS DIFFÉRENTIELS LINÉAIRES

M53 - Cours

ESPACE AFFINE Définition **Exemples** Opérations Premières propriété

Barycentre e repères

Sous-espace affines

APPLICATION AFFINES

Convexes

L'ensemble des solutions S de l'équation différentielle y' + y = sin(x) est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y' + y = 0) via :

$$S \times S \longrightarrow S^*$$

 $(f_1, f_2) \mapsto f_2 - f_1$

QUESTION

Comment peut-on généraliser cet exemple?

VECTORIALISÉ D'UN ESPACE AFFINE

M53 - Cours 1

ESPACE AFFINE
DÉFINITION
EXEMPLES
OPÉRATIONS
PREMIÈRES PROPRIÉTÉS

Barycentre et repères

Sous-espace Affines

APPLICATION: AFFINES

Convexes

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- L'origine de \mathcal{E}_{Ω} est le point Ω .
- Avec l'écriture $\Omega + \vec{v}$, les opérations sont :
 - $\square (\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$

PRODUIT D'ESPACES AFFINES

M53 - Cours

ESPACE AFFINE

EXEMPLES
OPÉRATIONS
PREMIÈRES PROPE

BARYCENTRE E

Sous-espace

APPLICATION:

Convexes

Soient \mathcal{E} et $\overrightarrow{\mathcal{F}}$ deux espaces affines, sur le même corps, de directions respectives $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

On définit la structure d'espace affine *produit* sur $\mathcal{E} \times \mathcal{F}$ de direction $\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{F}}$ par :

$$(\overline{A}, \overline{B})(\overline{C}, \overline{D}) := (\overline{AC}, \overline{BD}).$$

Propriétés calculatoires

M53 - Cours 1

ESPACE AFFINE
DÉFINITION
EXEMPLES

Premières propriéti

BARYCENTRE E

Sous-espace: Affines

APPLICATIONS
AFFINES

Convexes

Soit \mathcal{E} un \mathbb{K} -espace affine de direction $\overrightarrow{\mathcal{E}}$.

- $\blacksquare A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$
- $\blacksquare A, B \in \mathcal{E} \Rightarrow \overrightarrow{AB} = -\overrightarrow{BA}.$
- $\blacksquare A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) \, C \in \mathcal{E}, \, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\overrightarrow{\mathcal{E}} \ agit \ sur \ \mathcal{E}).$
- $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \ (ABCD \ est \ un \ parallélogramme).$
- $(\overline{A + \overrightarrow{v})(B + \overrightarrow{w})} = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}.$
- Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$
 - Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ n'est pas bien définie.

DÉFINITION DU BARYCENTRE

M53 - Cours 1

Espace affine

Barycentre et repères Barycentre

Sous-espace

AFFINES

APPLICATIONS AFFINES

CONVEYES

DÉFINITION-PROPOSITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i.$$

$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \ldots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

DÉFINITION DE L'ISOBARYCENTRE

M53 - Cours

Espace affine

BARYCENTRE ET REPÈRES Barycentre Propriétés Repère

Sous-espace Affines

APPLICATIONS

Convexes

DÉFINITION

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{k}$, ou à 1).

Propriétés des barycentres

M53 - Cours 1

Espace affin

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS REPÈRE

Sous-espace Affines

APPLICATION AFFINES

Convexes

- Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

Associativité du barycentre

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace Affines

APPLICATIONS

CONVEYE

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

Soit une partition $I = J_1 \sqcup \cdots \sqcup J_r$, telle que $\nu_k := \sum_{i \in J_k} \mu_i \neq 0$ pour chaque $k \in \{1, \ldots, r\}$.

On note G_k le barycentre de $\{(A_i, \mu_i)\}_{i \in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Définition d'un repère

M53 - Cours 1

Espace affin

BARYCENTR REPÈRES Barycentre Propriétés

Sous-espac

APPLICATION

AFFINES

Soit (A_0, \ldots, A_n) un (n+1)-uplet de l'espace affine \mathcal{E} .

DÉFINITION-PROPOSITION

On dit que (A_0, \ldots, A_n) est un repère affine de \mathcal{E} s'il satisfait une des conditions équivalentes :

- $(\overrightarrow{A_0A_1},\ldots,\overrightarrow{A_0A_n})$ est une base de $\overrightarrow{\mathcal{E}}$.
- 2 Pour tout point B de \mathcal{E} il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=1}^n \mu_i A_i$.

COORDONNÉES AFFINES

M53 - Cours 1

ESPACE AFFIN

BARYCENTRE ET REPÈRES BARYCENTRE PROPRIÉTÉS

Sous-espace affines

APPLICATION:

Convexe

Soit $\mathcal{A} = (A_0, \ldots, A_n)$ un repère affine de \mathcal{E} .

DÉFINITION

Pour $B \in \mathcal{E}$, on dit que $(x_1, \dots, x_n)_{\underline{\mathcal{A}}}$ sont les coordonnées cartésiennes de B dans le repère A, si $\overline{A_0B} = \sum_{i=1}^n x_i \overline{A_0A_i}$.

DÉFINITION

Pour $B \in \mathcal{E}$, on dit que $[\mu_0, \dots, \mu_n]_{\mathcal{A}}$ sont les coordonnées barycentriques de B dans le repère \mathcal{A} , si $\sum_{i=0}^n \mu_i = 1$ et $B = \sum_{i=0}^n \mu_i A_i$.

La relation entre ces deux systèmes de coordonnées est : $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n x_i$.

DÉFINITION D'UN SOUS-ESPACE AFFINE

M53 - Cours 1

ESPACE AFFINE

BARYCENTRE ET

SOUS-ESPACES

AFFINES Définition

EXEMPLES

Propriém

APPLICATION

Convexes

Soit \mathcal{E} un espace affine.

DÉFINITION-PROPOSITION

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- If $\vec{\mathcal{F}}$ let $\vec{\mathcal{F}}$.
- $\exists (\forall) \Omega \in \mathcal{F}, \mathcal{F} \text{ est un sous-espace vectoriel de } \mathcal{E}_{\Omega}.$
- \mathfrak{F} est stable par barycentres.

Un sous-espace affine $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$ est un espace affine de direction $\overrightarrow{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overrightarrow{AB}$.

Sous-espaces affines et dimensions

M53 - Cours 1

Espace affine

Barycentre et repères

AFFINES
DÉFINITION
EXEMPLES
PROPRIÉTÉS

APPLICATION

Convexes

Soit \mathcal{E} un espace affine de dimension n.

- Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Soient A et B deux points distincts de \mathcal{E} . On note AB ou $\langle A, B \rangle$ la droite affine qui passe par A et B.

LES SOUS-ESPACES AFFINES D'UN ESPACE VECTORIEL

M53 - Cours 1

ESPACE AFFIN

Barycentre e repères

SOUS-ESPACE AFFINES DÉFINITION EXEMPLES

APPLICATION

CONVEXES

Soient $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$ deux espaces vectoriels, et $\vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}})$ une application linéaire.

Alors pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \vec{\mathcal{F}}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sous-espace affine de $\vec{\mathcal{E}}$ de direction Ker $\vec{\phi}$.

- En particulier, en prenant $\vec{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\vec{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\vec{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

LES SOUS-ESPACES AFFINES D'UN ESPACE VECTORIEL

M53 - Cours

ESPACE AFFINE

Barycentre et

SOUS-ESPACES
AFFINES
DÉFINITION
EXEMPLES

APPLICATION

CONVEXES

Soient $\overrightarrow{\mathcal{E}}$ un espace vectoriel et \mathcal{F} un sous-espace affine de $\overrightarrow{\mathcal{E}}$.

- $\blacksquare \mathcal{F}$ est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- \blacksquare Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Parallélisme

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

SOUS-ESPACES AFFINES DÉFINITION EXEMPLES

Application

CONVEYES

DÉFINITION

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : «disjoints» \Rightarrow «parallèles».

Proposition

- Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Intersection de sous-espaces affines

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espaces

DÉFINITION

Propriér

Annexa

APPLICATION AFFINES

CONVEYE

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- vide, ou
- un sous-espace affine de direction $\vec{\mathcal{F}} \cap \vec{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G},$

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Sous-espace engendré

M53 - Cours 1

Espace affin

Barycentre et repères

Sous-espace affines

DÉFINITION

Propriété

Application

Convexes

DÉFINITION-PROPOSITION

Soit \mathcal{A} un sous-ensemble non vide d'un espace affine \mathcal{E} . Le sous-espace affine $\langle \mathcal{A} \rangle$ engendré par \mathcal{A} est défini par une des conditions équivalentes :

- 1 $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- 2 $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3 $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- $4 \forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle \text{ est le sous-espace vectoriel engendré par } \mathcal{A} \text{ dans } \mathcal{E}_{\Omega}.$

ESPACE AFFINE

Barycentre et repères

Sous-espace

AFFINES

EXEMPLES

Propriéti

APPLICATION

Convexes

Proposition

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines du même espace affine, et $\langle \mathcal{F}, \mathcal{G} \rangle$ le sous-espace affine enqendré par $\mathcal{F} \cup \mathcal{G}$.

■ Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et

$$\dim \left\langle \mathcal{F}, \mathcal{G} \right. \right\rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right).$$

■ Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \underline{\mathcal{F}}, \underline{\mathcal{G}} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right) + 1.$$

FAMILLES AFFINEMENT LIBRES ET GÉNÉRATRICES

M53 - Cours

ESPACE AFFIN

Barycentre et repères

Sous-espace

AFFINES

DÉFINITION

Propriér

APPLICATION

CONVEXES

Soit \mathcal{F} un sous-espace affine d'un espace affine \mathcal{E} .

DÉFINITION

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

DÉFINITION

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $\langle A_0, \ldots, A_k \rangle = k$.

CARACTÉRISATION D'UN REPÈRE

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace affines

AFFINES DÉFINITION

EXEMPLES

APPLICATION: AFFINES

Convexes

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

Le (k+1)-uplet (A_0, \ldots, A_k) est un repère affine pour \mathcal{F} si il satisfait une des trois conditions équivalentes :

- $\{A_0,\ldots,A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- $\{A_0,\ldots,A_k\}$ est une famille libre maximale de \mathcal{F} .

DÉFINITION D'UNE APPLICATION AFFINE

M53 - Cours

Soient \mathcal{E} et \mathcal{F} deux espaces affines dirigés respectivement par $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

DÉFINITION-PROPOSITION

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- $\exists \vec{\phi} \in \mathcal{L}(\vec{\mathcal{E}}, \vec{\mathcal{F}}) \ telle \ que \ \forall A, B \in \mathcal{E},$

$$\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)}.$$

(L'application $\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)

 ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=1}^n \mu_i = 1$

$$\phi(\sum_{i=1}^{n} \mu_i A_i) = \sum_{i=1}^{n} \mu_i \phi(A_i).$$

L'ensemble des applications affines de $\vec{\mathcal{E}}$ dans $\vec{\mathcal{F}}$ est noté $\mathrm{Aff}\left(\vec{\mathcal{E}},\vec{\mathcal{F}}\right)$.

ESPACE AFFINE

Barycentre et repères

Sous-espaces Affines

Applications

AFFINES

DÉFINITION

EXEMPLES

Convexes

EXEMPLES D'APPLICATIONS AFFINES

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espace affines

APPLICATION

AFFINES

EXEMPLES
PROPRIÉTÉS

CONVEXE:

- 1 Les applications constantes sont affines, de partie vectorielle 0.
- 2 Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- Is Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4 Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- Soient $\vec{\mathcal{E}}$ et $\vec{\mathcal{F}}$ deux espaces vectoriels. Les applications affines sont toutes de la forme $\vec{x} \mapsto \vec{\phi}(\vec{x}) + \vec{v} = T_{\vec{v}} \circ \vec{\phi}(\vec{x})$, où $\vec{\phi}$ est linéaire.

Premières propriétés

M53 - Cours 1

ESPACE AFFINI

Barycentre et repères

Sous-espaces affines

APPLICATION

AFFINES

EXEMPLES

Propriétés GA

CONVEXES

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$ et $\psi \in Aff(\mathcal{F}, \mathcal{G})$, alors $\psi \circ \phi \in Aff(\mathcal{E}, \mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Les images directes et inverses de sous-espaces affines par une application affine sont des sous-espaces affines ou vides. Ainsi les images de trois points alignés sont alignées.

PROPOSITION

Pour donner une application affine il suffit de donner :

- 1 la partie linéaire et l'image d'un point,
- 2 ou l'image d'un repère.

LES TRANSLATIONS

M53 - Cours 1

Espace affine

Barycentre e repères

Sous-espaces Affines

Application

APPLICATIO AFFINES

DÉFINITION EXEMPLES

Propriété GA

Convexes

DÉFINITION

Une application affine de \mathcal{E} est dite translation si elle est de la forme $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ avec $\overrightarrow{v} \in \overrightarrow{E}$.

- 1 Une translation qui fixe un point est l'identité.
- 2 Une application $\phi \in \text{Aff}(\mathcal{E})$ est une translation ssi sa partie linéaire est $\text{Id} \in \mathcal{L}(\mathcal{E})$.
- 3 $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

HOMOTHÉTIES AFFINES

M53 - Cours 1

ESPACE AFFINE

Barycentre et repères

Sous-espaces affines

Application

AFFINES
DÉFINITION
EXEMPLES

Exemples
Propriétés
GA

CONVEXES

DÉFINITION

Une application affine de \mathcal{E} est dite homothétie affine de rapport λ et de centre $\Omega \in \mathcal{E}$ si elle est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ .

- 1 Une homothétie qui fixe deux points est l'identité.
- 2 Une application affine est une homothétie affine différente de l'identité ssi sa partie vectorielle est une homothétie vectorielle différente de l'identité.
- I La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - 1 Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - 2 Une translation, si $\lambda \mu = 1$.
- Soit $\phi \in Aut(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

LES POINTS FIXES

M53 - Cours 1

Espace affine

Barycentre et repères

Sous-espace affines

A PRI ICATION

APPLICATIO

DÉFINITIO

EXEMPLES

Propriéré

Propriété GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin Sp(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- I si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2 si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe un unique $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}_1$ tel que $T_{\overrightarrow{v}} \circ \phi$ possède un point fixe. Par ailleurs $T_{\overrightarrow{v}} \circ \phi = \phi \circ T_{\overrightarrow{v}}$.

LE GROUPE AFFINE

M53 - Cours 1

ESPACE AFFIN

Barycentre et repères

Sous-espac.

APPLICATIONS

APPLICATION

DÉFINITION EXEMPLES

Propriétés GA

Convexes

Proposition

Soit $\phi \in \text{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $\overrightarrow{\phi}^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

DÉFINITION D'UN CONVEXE

M53 - Cours 1

ESPACE AFFINE

Barycentre e repères

Sous-espaces Affines

APPLICATIONS

Convexe

DÉFINITION PROPRIÉTÉS

Enveloppe convexi

DÉFINITION

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

DÉFINITION

On dit que \mathcal{C} est un ensemble *convexe*, si pour tous deux points $A, B \in \mathcal{C}$ le segment [AB] est entièrement contenu dans \mathcal{C} .

PROPOSITION

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

PROPRIÉTÉS

- 1 L'intersection d'ensembles convexes est convexe.
- L'ensemble vide et les ensembles à un point sont convexes.
- Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.

ENVELOPPE CONVEXE

M53 - Cours 1

Espace affini

Barycentre et repères

Sous-espaces Affines

APPLICATIONS

AFFINES

Convexe

Définition Propriétés

ENVELOPPE CONVEXI

DÉFINITION-PROPOSITION

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- 1 Le plus petit convexe contenant A.
- 2 L'intersection de tous les convexes contenant A.
- 3 L'ensemble de barycentres de points de A de poids positifs.

Ainsi par exemple le segment [AB] est l'enveloppe convexe de $\{A, B\}$.