

Photovoltaic Modules Analysis

"Screening delle diverse tipologie di impianti per individuare il modello più adatto alle esigenze degli imprenditori."

Scenario

Gli studi degli ultimi anni, riguardanti i cambiamenti climatici, hanno messo in luce le molteplici problematiche legate allo sfruttamento delle fonti di energia non rinnovabili.

Il contesto odierno ha aperto le porte a nuove sfide, il cui obiettivo primario è la salvaguardia del nostro ecosistema.

Nazioni e imprese hanno già da tempo iniziato a plasmare uno scenario che favorisse l'utilizzo e la produzione di nuove tecnologie impiegate per generare nuove fonti di energia pulita.

Nel nostro studio ci siamo occupati in particolare dell'energia solare, evidenziando alcuni degli aspetti più interessanti degli impianti fotovoltaici. Questo perché, secondo la nostra analisi di mercato, quella fotovoltaica risulta la tecnologia preponderante nel settore delle rinnovabili.

Scenario

1 KW = 1.000 W

1 MW = 10.000 W

1 GW = 10^9 W

Crescita della produzione globale

La capacità energetica ricavata da tutte le installazioni fotovoltaiche realizzate nel mondo dal 2000 al 2018, misurata in GW.

Fonte: www.solarpowereurope.org

1.709

Somma dei consumi fatturati negli ultimi 12 mesi

Fabbisogno familiare medio.

Totale di KW/h per sostenere i consumi energetici di una famiglia.

Un DB facile da consultare

Ottenere un DB che contenga il più alto numero di pannelli disponibili nel mondo, per poterlo interrogare rapidamente, risparmiando sui lunghi tempi di ricerca.

2 Uno screening rapido

In base alle diverse esigenze (di imprenditori e privati) il DB realizzato ha l'obiettivo di individuare in tempi rapidi il modello che più si adatta alle necessità del consumatore. Partendo semplicemente da una variabile, ossia l'area del lotto a disposizione del consumatore.

Fase di scraping

Dal sito: https://it.enfsolar.com/

Ricavando:

- Modello
- Dimensioni
- Potenza in Watt
- Tipologia
- Costo
- Paese
- Produttore
- URL
- ID

Analisi e interrogazione

Import del dataset su SQLite per l'interrogazione dei dati e l'applicazione di alcune formule per ricavare gli indici utili al nostro scopo.

Messa in qualità del dato ed export

Pulizia dei dati con Open Refine ed esportazione del dataset in formato CSV.

Tab_1: (id, modello, tipologia, potenza_min_watt, potenza_max_watt, altezza_mm, larghezza_mm, costo_per_wp)

modello	id	url	tipologia	otenza_mir ^	potenza_max	dimensioni	altezza_mm	arghezza_mm	spessore_mm	costo_per_wp	region
Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
ED95-100-1	62017	https://it.en	Policristallino	95.00	105.00	1000x670x	1000.00	670.00	30.00	0.249	Cina
Ruike Stand	121716	https://it.en	Film sottile	95.00	110.00	1200x600x	1200.00	600.00	6.88	0.222	U.S.A.
SKT95-105	83072	https://it.en	Monocristall	95.00	105.00	870x665x3	870.00	665.00	30.00	0.157	Cina
LW95-110-3	53677	https://it.en	Monocristall	95.00	110.00	1199x493x	1199.00	493.00	35.00	0.258	Cina
Poly 95-100	104996	https://it.en	Policristallino	95.00	100.00	1000x670x	1000.00	670.00	30.00	0.205	Cina
SKT95-105P	83072	https://it.en	Policristallino	95.00	105.00	1000x665x	1000.00	665.00	30.00	0.157	Cina

...

948 rows

© Caso di studio

L'imprenditore Mario Rossi ha deciso di investire nel campo del fotovoltaico avendo a disposizione un lotto da 1.000mq e un budget di € 30.000. Ha inoltre scoperto che le tipologie "Monocristallino", grazie alla loro composizione silicea, hanno una durata media maggiore. Vorrebbe quindi poter valutare un ventaglio di proposte in linea con le sue disponibilità.

Grazie ai dettagli forniti (dimensione lotto), attraverso delle semplice formule abbiamo aggiunto nuove colonne e fornito maggiori dettagli a ciascun record della tabella. Il risultato finale è una tabella che, oltre ai valori ottenuti dallo scraping, presenta:

(area_mq, num_pannelli, resa_min_watt, resa_max_watt, resa_min_kw, resa_max_kw, costo_per_pannello, costo_complessivo)

area_mq	pannelli	resa_min_watt	resa_max_watt	resa_min_kilowatt	resa_max_kilowatt	cost_pannello	total_cost
Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
0.67	1493.0	141835.0	156765.0	141.835	156.765	23.655	35316.915
0.72	1389.0	131955.0	152790.0	131.955	152.79	21.09	29294.01
0.57855	1728.0	164160.0	181440.0	164.16	181.44	14.915	25773.12
0.591107	1692.0	160740.0	186120.0	160.74	186.12	24.51	41470.92
0.67	1493.0	141835.0	149300.0	141.835	149.3	19.475	29076.175
0.665	1504.0	142880.0	157920.0	142.88	157.92	14.915	22432.16

© Caso di studio

A questo punto, per rispondere alla domanda di Mario Rossi, basterà interrogare il nostro nuovo DB con una query SQL.

select * from tab_finale where total_cost <= 30000 and tipologia = "Monocristallino" order by total_cost desc

id		modello	tipologia	url		region	peso	peso potenza_min		potenza_ma	x costo_per_w	p area_mq	
1	76664	INE M345Wp-370Wp	Monocristallino	https://it.en	fsolar.com/pv/pan	el-datashe	Cina	22.5 kg	345.0	0	370.00	0.169	1.94432
2	82115	Half cell NS380-400S6-144	Monocristallino	https://it.enf	fsolar.com/pv/pan	el-datashe	Cina	23 kg	380.0	0	400.00	0.158	2.012016
3	14479	JUST Half-Cut Mono(144) 380-410W	Monocristallino	https://it.en/	fsolar.com/pv/pan	el-datashe	Cina	22.5 kg	380.0	0	410.00	0.157	2.012016
4	2436	ESPSC 280W-315W	Monocristallino	https://it.enf	fsolar.com/pv/pan	el-datashe	Cina	17.75 kg	280.0	0	315.00	0.173	1.6335
5	125028	ASP M6-36 Series 165W-180W	Monocristallino	https://it.enf	fsolar.com/pv/pan	el-datashe	Germania	10.8 kg	165.0	0	180.00	0.178	0.9916
6	53458	HS-M-72-PID 340-385W	Monocristallino	https://it.en/	fsolar.com/pv/pan	el-datashe	Cina	21 kg	340.0	0	385.00	0.169	1.940352
7	20781	DC340-360M-72	Monocristallino	ht pannelli	resa_min_watt	resa_max_v	watt res	a_min_kilo	watt	resa_ma	x_kilowatt	cost_pannello	total_cost
				514.0	177330.0	190180.0	177	.33		190.18		58.305	29968.77

_	parmetti	resa_iiiii_wacc	icaa_iiiax_wacc	resa_iiiii_kitowatt	resa_max_kitowacc	cost_parificito	totat_cost
	514.0	177330.0	190180.0	177.33	190.18	58.305	29968.77
	497.0	188860.0	198800.0	188.86	198.8	60.04	29839.88
	497.0	188860.0	203770.0	188.86	203.77	59.66	29651.02
	612.0	171360.0	192780.0	171.36	192.78	48.44	29645.28
	1008.0	166320.0	181440.0	166.32	181.44	29.37	29604.96
	515.0	175100.0	198275.0	175.1	198.275	57.46	29591.9
	515.0	175100.0	185400.0	175.1	185.4	57.46	29591.9

- Attualmente il modello riesce a calcolare alcuni indici (es. Numero di pannelli installabili su un lotto) considerando esclusivamente una superficie piana. Un lotto che si presenta su una superficie scoscesa o su una collina avrebbe bisogno di ulteriori calcoli per poter definire precisamente il numero di pannelli installabili.
- Il modello ha bisogno di ulteriori aggiornamenti per definire la geolocalizzazione del lotto, sulla base di questo dato sarà possible ricavare il giusto orientamento dei pannelli rispetto al sole (azimut) e la loro inclinazione (tilt) per capire qual è la migliore esposizione per garantire la massima resa.
- Il modello non considera alcuni fattori importanti, come il livello di dispersione energetica, la presenza dei generatori, che sottraggono spazio ai pannelli, la zona d'ombra creata dall'inclinazione dei pannelli.

Possibili sviluppi

Il concetto di irraggiamento solare è fondamentale in questo settore, a partire da tale dato è possibile stabilire con maggiore precisione il ritorno economico sull'investimento.

Calcolare l'irraggiamento è possibile grazie al geocoding: https://re.jrc.ec.europa.eu/pvg_to_ols/it/tools.html#MR

Sarebbe utile creare una mappa per osservare con precisione le caratteristiche della superficie su cui andranno installati i pannelli. Il modello andrebbe completato inserendo, oltre al costo complessivo dei pannelli, anche i costi di installazione, gestione e manutenzione previsti. In questo modo sarà possibile ottenere il ROI, avendo già calcolato la resa per pannello.

Thank You