

GT20L16S1Y 标准汉字字库芯片

简要说明 BRIEF

- GB2312 字符集 (6763 汉字): 15x16 点阵
- ASCII 符集 (6 套): 5x7~8x16 点阵
- 排置方式: 竖置横排
- 总线接口: SPI 串行总线
- 芯片形式: SOT23-6 封装

VER 4.0I_B

2012-1

版本修订记录

版本号	修改内容	日期	备注
V1.0	1. 15*16 点汉字算法部分	2010-7	
	2. 8X16 点国标扩展字符	2010-7	
	3. 8X16 点国标扩展字符起始地址	2010-7	
V4.0I _B	4、修改字型样张	2012-1	

1 概述

GT20L16S1Y是一款内含15X16点阵的汉字库芯片,支持GB2312国标简体汉字(含有国家信标委合法授权)、ASCI1字符。排列格式为竖置横排。用户通过字符内码,利用本手册提供的方法计算出该字符点阵在芯片中的地址,可从该地址连续读出字符点阵信息。

1.1 芯片特点

● 数据总线: SPI 串行总线接口

● 点阵排列方式:字节竖置横排

● 时钟频率: 30MHz(max.) @3.3V

● 工作电压: 2.2V~3.6V

● 电流:

工作电流: 8mA 待机电流: 8uA

● 封装: SOT23-6

● 尺寸 SOT23-6: 2.9mmX1.6 mm x1.10mm

● 工作温度: -20℃~70℃

1.2 引脚描述

SOT23-6	名称	I/O	描述		
1	SCLK	I	串行时钟输入(Serial clock input)		
2	GND		地(Ground)		
3	CS#	I	片选输入(Chip enable input)		
4	VCC		电源(+ 3.3V Power Supply)		
5	SO	0	串行数据输出 (Serial data output)		
6	SI		串行数据输入 (Serial data input)		

串行数据输出(SO): 该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。

串行数据输入(SI):该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。

串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(CS#): 所有串行数据传输开始于CS#下降沿, CS#在传输期间必须保持为低电平, 在两条指令之间保持为高电平。

1.3 芯片内容

GT20L16S1Y 字库内容

	等宽字符				不等宽字符			
字符集 字符数		5X7 5X10	7X8	8X16	8X16 粗体	15X16	16点 Arial	16点 Times
ASC II 字符		96	96	96	96		96	96
CD2242	汉字					6763+376		
GB2312	扩展字符					126		

字型样张

15X16 点 GB2312 汉字

(<用汉字找高通>> 啊阿埃挨哎唉哀能。
阿塔艾碍爱险较高。
協議以前
問題
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可
可</p

5x7点 ASCII 字符

!"#\$%&"()*+,-./012345 6789:;<=>?@ABCDEFGHIJ KLMNOPQRSTUVWXYZ[\]^_ \abcdef9hijklmnop9rst

8x16 点 ASCII 字符

!"#¥%&"()*+,-./0 123456789:;<=>?@

16 点阵不等宽 ASCII 方头

!''#\$%&'()*+,-./012 3456789:;<=>?@

8x16 点国标扩展字符

!"#Y%&"()x+,-./0 123456789:;<=>?0

7x8 点 ASCII 字符

"#\$%%'()+,-./0 123456789:; <=>?@ ABCDEFGHIJKLMNOP QRSTUVWXYZ[\]^_

8x16 点 ASCII 粗体字符

!"#\$%&'()*+,-./012345 9:;<=>?@ABCDEFGHIJKLM ijklmnopqrstuvwxyz{¦}

16 点阵不等宽 ASCII 白正

!"#\$%&'()*+,-./012 3456789:,<=>?@A

1.4 HOST CPU 主机 SPI 接口电路示意图

SPI 与主机接口电路连接可以参考下图。

HOST CPU 主机 SPI 接口电路示意图

2 封装尺寸

SOT23-6 Package

θ	T	е	E1	E	D	A3	A2	Al	Α	OTMEON	CVMBOI
0	0.30	(1.40	2.60	2.72	0.55	1.00	0.04	_	MIN	MI
	-	0.95BSC	1.60	2.80	2.92	0.65	1.10	0.07	-	MON	LLIMET
8°	0.60	3	1.80	3.00	3.12	0.75	1.20	0.10	1.30	MAX	ETER

SOT23-6 封装

3 字库调用方法

3.1 汉字点阵排列格式

每个汉字在芯片中是以汉字点阵字模的形式存储的,每个点用一个二进制位表示,存 1 的点,当显示时可以在屏幕上显示亮点,存 0 的点,则在屏幕上不显示。点阵排列格式为竖置横排:即一个字节的高位表示下面的点,低位表示上面的点(如果用户按 16bit 总线宽度读取点阵数据,请注意高低字节的顺序),排满一行后再排下一行。这样把点阵信息用来直接在显示器上按上述规则显示,则将出现对应的汉字。

3.1.1 15X16 点汉字排列格式

15X16 点汉字的信息需要 32 个字节(BYTE 0 – BYTE 31)来表示。该 15X16 点汉字的点阵数据是竖置横排的,其具体排列结构如下图:

3.1.2 5X7 点 ASCII 字符排列格式

5X7 点 ASCII 的信息需要 8 个字节(BYTE 0 – BYTE7)来表示。该 ASCII 点阵数据是竖置横排的, 其具体排列结构如下图:

3.1.3 7X8 点 ASCII 字符排列格式

7X8 点 ASCII 的信息需要 8 个字节(BYTE 0 – BYTE7)来表示。该 ASCII 点阵数据是竖置横排的, 其具体排列结构如下图:

3.1.4 8X16 点字符排列格式

适用于此种排列格式的字体有:

8X16 点 ASCII 字符

8X16 点 ASCII 粗体字符

8X16 点国标扩展字符

8X16 点字符信息需要 16 个字节(BYTE 0 – BYTE15)来表示。该点阵数据是竖置横排的,其具体排列结构如下图:

3.1.5 16 点阵不等宽 ASCII 方头(Arial)、白正(TimesNewRoman)字符排列格式

16 点阵不等宽字符的信息需要 34 个字节(BYTE 0 - BYTE33)来表示。

■ 存储格式

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-33 存放竖置横排点阵数据。具体格式见下图:

点阵	宽度数据	ASCII点阵数据				
BYTE 0	BYTE 1	BYTE 2		BYTE 33		
B7 B6 B5 B4 B3 B2 B1 B0	B7 B6 B5 B4 B3 B2 B1 B0	B7 B6 B5 B4 B3 B2 B1 B0		B7 B6 B5 B4 B3 B2 B1 B0		

■ 存储结构

不等宽字符的点阵存储宽度是以 BYTE 为单位取整的,根据不同字符宽度会出现相应的空白区。根 BYTE0~ BYTE1 所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

例如: ASCII 方头字符 B

0-33BYTE 的点阵数据是: 00 0C 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63

63 63 63 63 67 3E 1C 00 00 00 00 00

其中:

BYTE0~ BYTE1: 00 0C 为 ASCII 方头字符 B 的点阵宽度数据, 即: 12 位宽度。字符后

面有 4 位空白区,可以在排版下一个字时考虑到这一点,将下一个字的起始位置前移。

BYTE2-33: 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63 63 63 63 63 67 3E 1C

00 00 00 00 00 为 ASCII 方头字符 B 的点阵数据。