Théorème de Heine

Théorème

Toute fonction à valeurs dans \mathbb{K} , qui est **continue sur un segment** de \mathbb{R} , y est **uniformément continue**.

Preuve

Soit $(a,b) \in \mathbb{R}^2$ tel que a < b et $f : [a,b] \to \mathbb{K}$ une fonction continue sur le segment [a,b].

Montrons que f est uniformément continue sur le segment [a, b] en raisonnant par l'absurde.

On suppose que f n'est pas uniformément continue ce qui se traduit par :

$$\exists \varepsilon > 0, \forall \delta > 0, \exists (x, y) \in [a, b]^2, |x - y| \le \delta \text{ et } |f(x) - f(y)| > \varepsilon.$$

Pour cet $\varepsilon > 0$, on peut en déduire, en particulier que :

$$\forall n \in \mathbb{N}^*, \exists (x_n, y_n) \in [a, b]^2, |x_n - y_n| \leq \frac{1}{n} \text{ et } |f(x_n) - f(y_n)| > \varepsilon.$$

— Comme la suite (x_n) est à valeurs dans le segment [a, b], elle est bornée. D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire une suite $(x_{\phi(n)})$, avec ϕ application strictement croissante de \mathbb{N}^* dans \mathbb{N}^* , qui converge vers $c \in [a, b]$ ce qui implique

$$\left| x_{\phi(n)} - c \right| \xrightarrow[n \to +\infty]{} 0.$$

— Par inégalité triangulaire vérifiée par |. | (valeur absolue ou module), on a successivement

$$\forall n \in \mathbb{N}^*, |y_{\phi(n)} - c| \le |y_{\phi(n)} - x_{\phi(n)}| + |x_{\phi(n)} - c|.$$

$$\forall n \in \mathbb{N}^*, \left| y_{\phi(n)} - c \right| \le \frac{1}{\phi(n)} + \left| x_{\phi(n)} - c \right|$$

et enfin, par théorème d'encadrement:

$$|y_{\phi(n)} - c| \underset{n \to +\infty}{\longrightarrow} 0$$

Par conséquent, la suite $(y_{\phi(n)})$ converge aussi vers $c \in [a, b]$.

— Comme f est continue sur [a, b], elle l'est en c. Par caractérisation séquentielle de la continuité de f en c, on en déduit que les suites $(f(x_{\phi(n)}))$ et $(f(y_{\phi(n)}))$ convergent toutes deux vers f(c) donc que la suite $(f(x_{\phi(n)}) - f(y_{\phi(n)}))$ converge vers 0. Ainsi, $|f(x_{\phi(n)}) - f(y_{\phi(n)})| \underset{n \to +\infty}{\longrightarrow} 0$ ce qui est incompatible avec les inégalités

$$\forall n \in \mathbb{N}^*, \left| f\left(x_{\phi(n)}\right) - f\left(y_{\phi(n)}\right) \right| > \varepsilon.$$

Conclusion: l'hypothèse initiale est fausse donc f est uniformément continue sur [a,b].

1

Approximation uniforme des fonctions continues par morceaux

Théorème

Soit f une fonction continue par morceaux sur le segment [a, b], à valeurs dans \mathbb{K} .

Alors, pour tout $\varepsilon > 0$, il existe une fonction $\varphi : [a, b] \longrightarrow \mathbb{K}$ en escalier sur le segment [a, b] telle que

$$\sup_{t \in [a,b]} |f(t) - \varphi(t)| \leqslant \varepsilon.$$

Preuve

Soit $(a, b) \in \mathbb{R}^2$ tel que a < b et $f : [a, b] \to \mathbb{K}$ une fonction continue par morceaux sur le segment [a, b]. Soit $\varepsilon > 0$.

Montrons l'existence de $\varphi:[a,b]\longrightarrow \mathbb{K}$ en escalier sur le segment [a,b] telle que $\sup_{t\in[a,b]}|f(t)-\varphi(t)|\leqslant \varepsilon.$

 \square Cas particulier où f est continue sur le segment [a,b].

Dans ce cas, d'après le théorème de Heine, f est uniformément continue sur le segment [a, b].

Il existe donc un réel $\delta > 0$ tel que, pour tout $(x, y) \in [a, b]^2$, $|x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \varepsilon$ (*).

On note n un entier $n \in \mathbb{N}^*$ tel que $\frac{b-a}{n} \leq \delta$ (fixé dans la suite).

On crée alors une subdivision $(a_i)_{i \in [0,n]}$ du segment [a,b] en posant, pour tout $i \in [0,n]$, $a_i = a + i \frac{b-a}{n}$.

On considère enfin la fonction φ , en escalier sur le segment [a,b], définie par :

$$\forall i \in [1, n], \forall x \in [a_{i-1}, a_i], \varphi(x) = f(a_{i-1}) \text{ et } \varphi(b) = f(b).$$

 $\underline{\text{Montrons que}} \sup_{t \in [a,b]} |f(t) - \varphi(t)| \leqslant \varepsilon.$

Pour tout $t \in [a, b[$, il existe $i \in [1, n]]$ tel que $t \in [a_{i-1}, a_i[$ donc $|t - a_{i-1}| \le a_i - a_{i-1} \le \frac{b-a}{n} \le \delta$.

Par continuité uniforme de f, avec (*), on a : $|f(t)-\varphi(t)|=|f(t)-f\left(a_{i-1}\right)|\leq \varepsilon$. Ainsi,

$$\forall t \in [a, b], |f(t) - \varphi(t)| \le \varepsilon$$

(car l'inégalité est triviale pour t = b).

Comme la fonction $t \mapsto |f(t) - \varphi(t)|$ est par ε sur le segment [a,b], elle admet une borne supérieure qui vérifie $\sup_{t \in [a,b]} |f(t) - \varphi(t)| \le \varepsilon$ (en cas d'existence, la borne supérieure est le plus petit des majorants).

 $\underline{\mathbf{Conclusion}} \ : \mathrm{il} \ \mathrm{existe} \ \varphi : [a,b] \longrightarrow \mathbb{K} \ \mathrm{en} \ \mathrm{escalier} \ \mathrm{sur} \ \mathrm{le} \ \mathrm{segment} \ [a,b] \ \mathrm{telle} \ \mathrm{que} \ \sup_{t \in [a,b]} |f(t) - \varphi(t)| \leqslant \varepsilon.$

 \square Cas général où f est continue par morceaux sur le segment [a,b].

On note $(a_i)_{i\in \llbracket 0,n\rrbracket}$ une subdivision du segment [a,b] adaptée à la fonction f.

Soit $i \in [1, n]$.

Par définition, la restriction $f_{[a_{i-1},a_i]}$ est prolongeable en une fonction continue sur $[a_{i-1},a_i]$.

D'après le point précédent, il existe donc une fonction en escalier $\varphi_i:[a_{i-1},a_i]\longrightarrow \mathbb{K}$ tel que

$$\forall t \in]a_{i-1}, a_i[, |f(t) - \varphi_i(t)| \leq \varepsilon.$$

On définit alors une fonction en escalier φ sur [a,b] en posant :

$$\forall i \in [1, n], \forall t \in]a_{i-1}, a_i[, \varphi(t) = \varphi_i(t)]$$

$$\forall i \in [0, n], \varphi(a_i) = f(a_i)$$

Par construction, cette fonction φ vérifie

$$\forall t \in [a, b], |f(t) - \varphi(t)| \leq \varepsilon$$

et on conclut, comme dans le cas précédent, que $\sup_{t \in [a,b]} |f(t) - \varphi(t)| \leq \varepsilon$.

 $\underline{\textbf{Conclusion}} \, : \text{il existe} \, \varphi : [a,b] \longrightarrow \mathbb{K} \, \text{en escalier sur le segment} \, [a,b] \, \text{telle que} \, \sup_{t \in [a,b]} |f(t) - \varphi(t)| \leqslant \varepsilon.$

Remarque: vocabulaire et notation

Dans ce résultat, la fonction φ dépend du réel $\varepsilon > 0$ fixé.

Si on applique ce résultat avec $\varepsilon = \frac{1}{n+1}$ pour tout $n \in \mathbb{N}$, on en déduit l'existence d'une suite de fonctions (φ_n) en escalier sur le segment [a,b] tel que $\forall n \in \mathbb{N}$, $\sup_{t \in [a,b]} |f(t) - \varphi_n(t)| \leq \frac{1}{n+1}$. Ainsi

$$\sup_{t \in [a,b]} |f(t) - \varphi_n(t)| \underset{n \to +\infty}{\longrightarrow} 0$$

ce que l'on note plus simplement, en anticipant sur ce qui sera vu en MPI,

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

et on dit que la suite de fonctions (φ_n) en escalier sur [a,b] converge uniformément vers f sur [a,b] ou encore que f est limite uniforme de la suite de fonctions (φ_n) en escalier sur [a,b].

Intégrale sur un segment des fonctions continues par morceaux

Théorème

Soit $f:[a,b] \longrightarrow \mathbb{K}$ une fonction continue par morceaux sur [a,b].

Soit (φ_n) une suite de fonctions en escalier sur [a,b] à valeurs dans $\mathbb K$ telle que

$$||f - \varphi_n||_{\infty} = \sup_{t \in [a,b]} |f(t) - \varphi_n(t)| \underset{n \to +\infty}{\longrightarrow} 0$$

autrement dit qui converge uniformément vers f sur [a, b].

Alors, la suite $\left(\int_{[a,b]} \varphi_n\right)$ converge et sa limite est indépendante du choix de la suite (φ_n) . Cette limite est appelée intégrale de f sur [a,b].

Preuve

 \square Convergence de la suite $\left(\int_{[a,b]} \varphi_n\right)$

Par hypothèse $||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$ donc, il existe un rang n_0 tel que $\forall n \in \mathbb{N}, n \geq n_0 \Rightarrow ||f - \varphi_n||_{\infty} \leq 1$.

Par inégalité triangulaire sur la norme $\| \cdot \|_{\infty}$, on en déduit que :

$$\forall n \in \mathbb{N}, n \ge n_0, \|\varphi_n\|_{\infty} \le \|f\|_{\infty} + \|f - \varphi_n\|_{\infty} \le \|f\|_{\infty} + 1$$

puis, par inégalité triangulaire et croissance de l'intégrale sur un segment d'une fonction en escalier :

$$\forall n \in \mathbb{N}, n \ge n_0, \left| \int_{[a,b]} \varphi_n \right| \leqslant \int_{[a,b]} |\varphi_n| \leqslant \int_{[a,b]} (\|f\|_{\infty} + 1)$$

Ainsi, la suite $\left(\int_{[a,b]} \varphi_n\right)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{K} est bornée. D'après le théorème de Bolzano-Weierstrass, elle admet donc une suite extraite $\left(\int_{[a,b]} \varphi_{\alpha(n)}\right)$ convergente. On note $l\in\mathbb{K}$ la limite de cette suite.

Soit $n \in \mathbb{N}$.

En utilisant la linéarité, l'inégalité triangulaire et la croissance de l'intégrale sur un segment d'une fonction en escalier, on trouve successivement

$$\int_{[a,b]} \varphi_n - \int_{[a,b]} \varphi_{\alpha(n)} = \int_{[a,b]} (\varphi_n - \varphi_{\alpha(n)})$$

$$\left| \int_{[a,b]} \varphi_n - \int_{[a,b]} \varphi_{\alpha(n)} \right| \leqslant \int_{[a,b]} \left| \varphi_n - \varphi_{\alpha(n)} \right| \leq \int_{[a,b]} \left\| \varphi_n - \varphi_{\alpha(n)} \right\|_{\infty} \leq (b-a) \left\| \varphi_n - \varphi_{\alpha(n)} \right\|_{\infty}$$

avec, par inégalité triangulaire sur la norme,

$$\|\varphi_n - \varphi_{\alpha(n)}\|_{\infty} \le \|\varphi_n - f\|_{\infty} + \|f - \varphi_{\alpha(n)}\|_{\infty}$$

donc

$$\left| \int_{[a,b]} \varphi_n - \int_{[a,b]} \varphi_{\alpha(n)} \right| \le (b-a) \left(\|f - \varphi_n\|_{\infty} + \|f - \varphi_{\alpha(n)}\|_{\infty} \right)$$

Comme $(b-a) (\|f-\varphi_n\|_{\infty} + \|f-\varphi_{\alpha(n)}\|_{\infty}) \xrightarrow[n \to +\infty]{} 0$ par hypothèse, on obtient par théorème d'encadrement que

$$\int_{[a,b]} \varphi_n - \int_{[a,b]} \varphi_{\alpha(n)} \underset{n \to +\infty}{\longrightarrow} 0$$

puis, comme $\int_{[a,b]} \varphi_{\alpha(n)} \xrightarrow[n \to +\infty]{} l$, que

$$\int_{[a,b]} \varphi_n \underset{n \to +\infty}{\longrightarrow} l.$$

Conclusion: la suite $\left(\int_{[a,b]} \varphi_n\right)$ converge.

 \square Limite de la suite $\left(\int_{[a,b]} \varphi_n\right)$ indépendante du choix de la suite (φ_n) .

On considère ici une autre suite $(\psi_n)_{n\in\mathbb{N}}$ de fonctions en escalier sur [a,b] telle que $||f-\psi_n||_{\infty} \longrightarrow_{n\to+\infty} 0$.

Avec des arguments du même type que ci-dessus, on a :

$$\left| \int_{[a,b]} \varphi_n - \int_{[a,b]} \psi_n \right| = \left| \int_{[a,b]} (\varphi_n - \psi_n) \right| \le (b-a) \|\varphi_n - \psi_n\|_{\infty} \le (b-a) (\|f - \varphi_n\|_{\infty} + \|f - \psi_n\|_{\infty})$$

puis

$$\left| \int_{[a,b]} \varphi_n - \int_{[a,b]} \psi_n \right| \underset{n \to +\infty}{\longrightarrow} 0$$

et enfin, puisque les deux suites d'intégrales convergent,

$$\lim_{n \to +\infty} \int_{[a,b]} \varphi_n = \lim_{n \to +\infty} \int_{[a,b]} \psi_n.$$

Conclusion : la limite de $\left(\int_{[a,b]} \varphi_n\right)$ ne dépend pas de la suite de fonctions en escalier $(\varphi_n)_{n\in\mathbb{N}}$ qui approche uniformément f sur [a,b].