Φροντιστήριο Μέσης Εκπαίδευσης

 $oldsymbol{9}$: Βροκίνη Λαυρεντίου 2 (Πλατεία Γεωργάκη) | $oldsymbol{\varsigma}$: 26610 40414

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΘΕΩΡΙΑ, ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

25 Σεπτεμβρίου 2017

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ

ΚΑΘΗΓΗΤΗΣ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Όρια - Συνέχεια

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ

Έστω μια συνάρτηση f η οποία ορίζεται σε ένα διάστημα της μορφής $(a, +\infty)$. Το όριο της f όταν το x τείνει στο $+\infty$ θα είναι είτε ένας πραγματικός αριθμός είτε ένα από τα $\pm\infty$.

$$\lim_{x \to +\infty} f(x) = \begin{cases} \ell \in \mathbb{R} & \dot{\eta} \\ \pm \infty \end{cases}$$

Ομοίως αν η συνάρτηση ορίζεται σε ένα διάστημα της μορφής $(-\infty,a)$ έχουμε το όριο της όταν το $x\to -\infty$: $\lim_{x\to -\infty} f(x).$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΟΡΙΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΤΟ ΑΠΕΙΡΟ

1. Όριο πολυωνυμικών συναρτήσεων

Έστω $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ ένα πολυώνυμο ν -στού βαθμού. Το όριο του πολυωνύμου όταν $x \to \pm \infty$ ισούται με το όριο του μεγιστοβάθμιου όρου.

$$\lim_{x \to \pm \infty} P(x) = \lim_{x \to \pm \infty} a_{\nu} x^{\nu}$$

2. Όριο ρητής συνάρτησης

Έστω $f(x)=\frac{P(x)}{Q(x)}$ μια ρητή συνάρτηση με $P(x)=a_{\nu}x^{\nu}+a_{\nu-1}x^{\nu-1}+\ldots+a_{1}x+a_{0}$ και $Q(x)=\beta_{\mu}x^{\mu}+\beta_{\mu-1}x^{\mu-1}+\ldots+\beta_{1}x+\beta_{0}$ βαθμών ν και μ αντίστοιχα. Το όριο της συνάρτησης όταν $x\to\pm\infty$ ισούται με

$$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{a_{\nu} x^{\nu}}{\beta_{\mu} x^{\mu}}$$

i. Αν
$$\nu > \mu$$
 τότε $\lim_{x \to +\infty} f(x) = \pm \infty$

i. An
$$\nu>\mu$$
 τότε $\lim_{x\to\pm\infty}f(x)=\pm\infty.$ ii. An $\nu<\mu$ τότε $\lim_{x\to\pm\infty}f(x)=0.$

iii. Αν
$$\nu = \mu$$
 τότε $\lim_{x \to \pm \infty} f(x) = \frac{a_{\nu}}{\beta_{\mu}}$.

3. Όριο εκθετικής - λογαριθμικής για a > 1.

$$\alpha. \lim_{x \to +\infty} a^x = +\infty$$

$$\beta$$
. $\lim_{x \to -\infty} a^x = 0$

$$\gamma. \lim_{x \to 0^+} \log_a x = -\infty$$

$$\delta. \lim_{x \to +\infty} \log_a x = +\infty$$

4. Όριο εκθετικής - λογαριθμικής για 0 < a < 1.

$$a. \lim_{x \to +\infty} a^x = 0$$

$$\beta$$
. $\lim_{x \to -\infty} a^x = +\infty$

$$\gamma$$
. $\lim_{x\to 0^+} \log_a x = +\infty$

$$\gamma. \lim_{x \to 0^+} \log_a x = +\infty$$

$$\delta. \lim_{x \to +\infty} \log_a x = -\infty$$

5. Βασικά όρια

$$\alpha. \lim_{y \to 0^+} e^{\frac{1}{x}} \stackrel{y = \frac{1}{x}}{===} \lim_{y \to +\infty} e^y = +\infty$$

β.
$$\lim_{x\to 0^-} e^{\frac{1}{x}} = \lim_{y\to -\infty} e^y = 0$$

$$\gamma. \lim_{x \to \pm \infty} \eta \mu \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \eta \mu y = 0$$

δ.
$$\lim_{x \to \pm \infty} \sigma \upsilon v \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \sigma \upsilon v y = 1$$

$$\varepsilon. \lim_{x \to \pm \infty} x \eta \mu \frac{1}{x} \xrightarrow{\frac{y = \frac{1}{x}}{x}} \lim_{y \to 0} \frac{\eta \mu y}{y} = 1$$

στ.
$$\lim_{\substack{x\to\pm\infty\\\lambda\eta\varsigma)}}\frac{\eta\mu x}{x}=\lim_{\substack{x\to\pm\infty\\\lambda\eta\varsigma)}}\frac{1}{x}\eta\mu x=0 \quad \text{Μηδενική επί φραγμένη (αποδεικνείεται με κριτήριο παρεμβολίς)}$$

$$\zeta. \lim_{x \to \pm \infty} (x + \eta \mu x) = \lim_{x \to \pm \infty} x \left(1 + \frac{\eta \mu x}{x} \right) = \pm \infty$$

Τα παρακάτω όρια ΔΕΝ υπάρχουν

$$\eta. \lim_{x \to \pm \infty} \eta \mu x$$

$$\theta$$
. $\lim_{x\to\pm\infty} \sigma v x$