Machine Learning Assignment 3 Aakanksha Darekar 202200733 A1 09

Consider remaining features of the wine data and prepare a prediction model for predicting quality of wine

Dataset:

4	А	В	С	D	Е	F	G	Н	I	J	K	L	M
1	fixed acidi	volatile ac	citric acid	residual s	chlorides	free sulfur	total sulfu	density	pН	sulphates	alcohol	quality	
2	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5	
3	7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5	
4	7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5	
5	11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6	
6	7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5	
7	7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5	
3	7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5	
9	7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7	
0	7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7	
1	7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5	
2	6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	5	
3	7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5	
4	5.6	0.615	0	1.6	0.089	16	59	0.9943	3.58	0.52	9.9	5	
5	7.8	0.61	0.29	1.6	0.114	9	29	0.9974	3.26	1.56	9.1	5	
6	8.9	0.62	0.18	3.8	0.176	52	145	0.9986	3.16	0.88	9.2	5	
7	8.9	0.62	0.19	3.9	0.17	51	148	0.9986	3.17	0.93	9.2	5	
8	8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	7	
9	8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	1.28	9.3	5	
0	7.4	0.59	0.08	4.4	0.086	6	29	0.9974	3.38	0.5	9	4	

Code:

Importing necessary libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE

Load the dataset

Replace 'wine_quality.csv' with your actual file path file_path = 'C:/Users/admin/OneDrive/Desktop/6SEM/ML/winequality_red.csv' data = pd.read csv(file path)

Display the first few rows of the dataset print("Dataset Preview:\n", data.head())

```
# Separating features and target variable
X = data.drop(columns=['quality']) # Features
                           # Target variable
y = data['quality']
# Splitting the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Display dataset split info
print(f"Training set size: {X train.shape[0]}")
print(f"Testing set size: {X test.shape[0]}")
# Apply SMOTE to handle class imbalance
smote = SMOTE(random state=42)
X train balanced, y train balanced = smote.fit resample(X train, y train)
# Display class distribution after applying SMOTE
print("Class distribution after SMOTE:\n", pd.Series(y train balanced).value counts())
# Initialize the Random Forest Classifier
model = RandomForestClassifier(n estimators=100, random state=42)
# Train the model
model.fit(X train balanced, y train balanced)
# Make predictions on the test set
y pred = model.predict(X test)
# Evaluate the model
accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy:.2f}")
# Detailed classification report
print("\nClassification Report:")
print(classification report(y test, y pred, zero division=0))
# Confusion matrix
print("\nConfusion Matrix:")
print(confusion matrix(y test, y pred))
# Feature importance (optional)
feature importances = model.feature importances
feature importance df = pd.DataFrame({
  'Feature': X.columns,
```

```
'Importance': feature importances
}).sort values(by='Importance', ascending=False)
print("\nFeature Importances:")
print(feature importance df)
def plot confusion matrix(y test, y pred, labels=None):
  cm = confusion matrix(y test, y pred, labels=labels)
  disp = ConfusionMatrixDisplay(confusion matrix=cm, display labels=labels)
  disp.plot(cmap='Blues', values format='d')
  plt.title("Confusion Matrix")
  plt.show()
# Call the functions
plot confusion matrix(y test, y pred)
# Plot the distribution of actual vs predicted values
def plot actual vs predicted(y test, y pred):
  plt.figure(figsize=(10, 6))
  sns.histplot(y test, color="blue", label="Actual", kde=True, bins=10, stat="density")
  sns.histplot(y pred, color="orange", label="Predicted", kde=True, bins=10, stat="density")
  plt.title("Actual vs Predicted Distribution")
  plt.xlabel("Quality")
  plt.ylabel("Density")
  plt.legend()
  plt.show()
plot actual vs predicted(y test, y pred)
# Plot feature importance
def plot feature importance(model, feature names):
  feature importances = model.feature importances
  importance df = pd.DataFrame({
     'Feature': feature names,
     'Importance': feature importances
  }).sort values(by='Importance', ascending=False)
  plt.figure(figsize=(10, 6))
  sns.barplot(x="Importance", y="Feature", data=importance_df)
  plt.title("Feature Importance")
  plt.xlabel("Importance")
  plt.ylabel("Feature")
  plt.show()
```

Output:

Da	taset Preview:						
	fixed acidity vol	atile acidity	citric ac	id resi	dual s	ugar chlor	ides
0	7.4	0.70	0.0	Э		1.9 0.	076
1	7.8	0.88	0.0	Э		2.6 0.	098
2	7.8	0.76	0.04	4		2.3 0.	092
3	11.2	0.28	0.5	5		1.9 0.	075
4	7.4	0.70	0.00	9		1.9 0.	076
	free sulfur dioxide	total sulfur	dioxide (density	рН	sulphates	\
0	11.0		34.0	0.9978	3.51	0.56	
1	25.0		67.0	0.9968	3.20	0.68	
2	15.0		54.0	0.9970	3.26	0.65	
3	17.0		60.0	0.9980	3.16	0.58	
4	11.0		34.0	0.9978	3.51	0.56	

	alcohol	quality
0	9.4	5
1	9.8	5
2	9.8	5
3	9.8	6
4	9.4	5

Training set size: 1279 Testing set size: 320

Class distribution after SMOTE:

Name: count, dtype: int64

Accuracy: 0.62

Classification Report:

support	f1-score	recall	precision	
1	0.00	0.00	0.00	3
10	0.21	0.30	0.16	4
130	0.70	0.68	0.72	5
132	0.62	0.58	0.66	6
42	0.60	0.67	0.55	7
5	0.18	0.20	0.17	8
320	0.62			accuracy
320	0.39	0.41	0.38	macro avg
320	0.63	0.62	0.65	weighted avg

Confusion Matrix:

]]	0	1	0	0	0	0]
[0	3	5	2	0	0]
[3	8	89	27	3	0]
	1	7	29	77	16	2]
[0	0	0	11	28	3]
[0	0	0	0	4	1]]

Feature Importances:

		Feature	Importance
1	volatile	acidity	0.128442
10		alcohol	0.126994
9	SI	ulphates	0.126812
4	cl	hlorides	0.108406
6	total sulfur	dioxide	0.107594
8		рН	0.074475
5	free sulfur	dioxide	0.073986
7		density	0.068334
0	fixed	acidity	0.063913
3	residua	al sugar	0.060637
2	cit	ric acid	0.060407

