Mathematics for Deep Learning: The Value of Information Theory

Roman V. Belavkin¹ Panos Pardalos² Jose Principe³

¹Faculty of Science and Technology, Middlesex University, London NW4 4BT, UK

²Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595, Gainesville, FL 32611-6595, USA

³Department of Electrical & Computer Engineering, University of Florida, P.O. Box 116130, Gainesville, FL 32611-6130, USA

August 26, 2022 ACDL 2022

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Table: BTC/USD prices S(t)

Date	Price(t)	
2019-01-01	3963.1	
2019-01-02	4048.8	
2019-01-03	3924.3	
2019-01-04	3954.9	
2019-01-05	3911.9	
2019-01-06	4168.4	
2019-01-07	4113.9	

Table: BTC/USD prices S(t)

Date	Price(t)	Price(t+1)
2019-01-01	3963.1	4048.8
2019-01-02	4048.8	3924.3
2019-01-03	3924.3	3954.9
2019-01-04	3954.9	3911.9
2019-01-05	3911.9	4168.4
2019-01-06	4168.4	4113.9
2019-01-07	4113.9	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	
2019-01-02	0.021	
2019-01-03	-0.031	
2019-01-04	0.008	
2019-01-05	-0.011	
2019-01-06	0.064	
2019-01-07	-0.013	

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	
2019-01-03	-0.031	
2019-01-04	0.008	
2019-01-05	-0.011	
2019-01-06	0.064	
2019-01-07	-0.013	

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	
2019-01-03	-0.031	
2019-01-04	0.008	
2019-01-05	-0.011	
2019-01-06	0.064	
2019-01-07	-0.013	

Normal Q-Q Plot

Theoretical Quantiles

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	-0.031
2019-01-03	-0.031	0.008
2019-01-04	0.008	-0.011
2019-01-05	-0.011	0.064
2019-01-06	0.064	-0.013
2019-01-07	-0.013	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	-0.031
2019-01-03	-0.031	0.008
2019-01-04	0.008	-0.011
2019-01-05	-0.011	0.064
2019-01-06	0.064	-0.013
2019-01-07	-0.013	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	-0.031
2019-01-03	-0.031	0.008
2019-01-04	0.008	-0.011
2019-01-05	-0.011	0.064
2019-01-06	0.064	-0.013
2019-01-07	-0.013	?

Predict r(t+1) from r(t):

$$f\left(r(t)\right) = y \approx r(t+1)$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

					-1
	Date	r(t-2)	r(t-1)	r(t)	r(t+1)
İ	2019-01-06	-0.031	0.008	-0.011	0.064
ı	2019-01-07	0.008	-0.011	0.064	-0.013
ı	2019-01-08	-0.011	0.064	-0.013	-0.0034
	2019-01-09	0.064	-0.013	-0.0034	-0.004

Predict r(t+1) from n lags of r(t):

$$f(r(t-n),\ldots,r(t))=y\approx r(t+1)$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t-2)	r(t-1)	r(t)	r(t+1)
2019-01-06	-0.031	0.008	-0.011	0.064
2019-01-07	0.008	-0.011	0.064	-0.013 -
2019-01-08	-0.011	0.064	-0.013	-0.0034
2019-01-09	0.064	-0.013	-0.0034	-0.004

Predict r(t+1) from n lags of r(t) for m symbols:

$$f\left(\begin{array}{ccc} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{array}\right) = y \approx r(t+1)$$

e.g. symbols: BTC/USD, ETH/USD, IOT/BTC, etc

$$f\left(\begin{array}{ccc} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{array}\right) = y \approx r(t+1) \left(\begin{array}{c} 0.0 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.4 \end{array}\right)$$

$$f\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right) = y \approx \underbrace{x}_{\text{response}}$$

predictors

$$f\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right) = y \approx \underbrace{x}_{\text{response}} \stackrel{\text{\tiny 0.1}}{\underset{\text{\tiny -0.2}}{}{}_{-0.2}}$$

• Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]$).

$$f\underbrace{\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right)}_{\text{predictors}} = y \approx \underbrace{x}_{\text{response}} \left(\begin{array}{c} 0.1 \\ 0.0 \\ -0.2 \\ -0.3 \\ -0.4 \end{array}\right)$$

- \bullet Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]).$
- Models: linear regression, partial-least squares, neural net.

$$f\underbrace{\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right)}_{\text{predictors}} = y \approx \underbrace{x}_{\text{response}} \begin{bmatrix} & \text{0.1} \\ & \text{0.0} \\ & -\text{0.2} \\ & -\text{0.3} \\ & -\text{0.4} \end{bmatrix}$$

- Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]$).
- Models: linear regression, partial-least squares, neural net.
- Root mean-square error

$$\mathsf{RMSE} = \sqrt{\mathbb{E}\{|x - y|^2\}}$$

$$f\underbrace{\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right)}_{\text{predictors}} = y \approx \underbrace{x}_{\text{response}} \overset{\text{\tiny 0.1}}{\underset{\text{\tiny -0.2}}{\text{\tiny -0.2}}}}_{\text{\tiny -0.4}}$$

- Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]$).
- Models: linear regression, partial-least squares, neural net.
- Root mean-square error

$$RMSE = \sqrt{\mathbb{E}\{|x-y|^2\}}, \qquad R^2 = 1 - RMSE^2/\sigma_x^2$$

$$f\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right) = y \approx \underbrace{x}_{\substack{\text{response} \\ -0.2 \\ \text{response}}}^{0.1} \xrightarrow[-0.3]{}_{-0.4}$$

- Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]$).
- Models: linear regression, partial-least squares, neural net.
- Root mean-square error

$$\mathsf{RMSE} = \sqrt{\mathbb{E}\{|x-y|^2\}}\,, \qquad R^2 = 1 - \mathsf{RMSE}^2/\sigma_x^2$$

• Is RMSE = .035 a good result? ($R^2 \approx .05$)

$$f\underbrace{\left(\begin{array}{ccc} z_{11} & \cdots & z_{1n} \\ \vdots & \ddots & \vdots \\ z_{m1} & \cdots & z_{mn} \end{array}\right)}_{\text{predictors}} = y \approx \underbrace{x}_{\text{response}} \begin{bmatrix} & \text{0.1} \\ & \text{0.0} \\ & -\text{0.2} \\ & -\text{0.3} \\ & -\text{0.4} \end{bmatrix}$$

- Use $n \in [2:20]$ lags and $m \in [1:5]$ symbols (i.e. $m \times n \in [2:100]$).
- Models: linear regression, partial-least squares, neural net.
- Root mean-square error

$$\mathsf{RMSE} = \sqrt{\mathbb{E}\{|x-y|^2\}}\,, \qquad R^2 = 1 - \mathsf{RMSE}^2/\sigma_x^2$$

- Is RMSE = .035 a good result? ($R^2 \approx .05$)
- What is the smallest possible RMSE here?

Evaluation of RMSE

Table: BTC/USD prices S(t)

Date	Price(t)	Price(t+1)
2019-01-01	3963.1	4048.8
2019-01-02	4048.8	3924.3
2019-01-03	3924.3	3954.9
2019-01-04	3954.9	3911.9
2019-01-05	3911.9	4168.4
2019-01-06	4168.4	4113.9
2019-01-07	4113.9	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	r(t+1)
2019-01-02	0.021	-0.031
2019-01-03	-0.031	0.008
2019-01-04	0.008	-0.011
2019-01-05	-0.011	0.064
2019-01-06	0.064	-0.013
2019-01-07	-0.013	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

	Date	r(t)	sign $r(t+1)$
ĺ	2019-01-02	0.021	-1
	2019-01-03	-0.031	1
	2019-01-04	0.008	-1
	2019-01-05	-0.011	1
	2019-01-06	0.064	-1
	2019-01-07	-0.013	?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} u(x_1, y_1) & u(x_1, y_2) \\ u(x_2, y_1) & u(x_2, y_2) \end{bmatrix}$$

Table: log-returns
$$r(t) = \log \frac{S(t+1)}{S(t)}$$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.001	-1
	-0.011	1
		-1
		7
2019-01-05 2019-01-06 2019-01-07	-0.011 0.064 -0.013	1 -1 ?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} TP(++) & FN(+-) \\ FP(-+) & TN(--) \end{bmatrix}$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \operatorname{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Questions:

Is Accuracy = .53 a good result?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t)	sign $r(t+1)$
2019-01-02	0.021	-1
2019-01-03	-0.031	1
2019-01-04	0.008	-1
2019-01-05	-0.011	1
2019-01-06	0.064	-1
2019-01-07	-0.013	?

Predict sign of r(t+1) from r(t):

$$f(r(t)) = y \approx \text{sign}[r(t+1)]$$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Questions:

Is Accuracy = .53 a good result? What is the highest possible accuracy here?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

١	Date	r(t-1)	r(t)	sign r(t+1)
ĺ	2019-01-06	0.008	-0.011	1
ı	2019-01-07	-0.011	0.064	-1
١	2019-01-08	0.064	-0.013	-1
İ	2019-01-09	-0.013	-0.0034	-1

Predict sign r(t+1) from n lags:

$$f(r(t-n),...,r(t)) =$$

 $y \approx \text{sign}[r(t+1)]$

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Questions:

Is Accuracy = .53 a good result? What is the highest possible accuracy here?

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t-1)	r(t)	sign r(t+1)
2019-01-06	0.008	-0.011	1
2019-01-07	-0.011	0.064	-1
2019-01-08	0.064	-0.013	-1
2019-01-09	-0.013	-0.0034	-1

Predict sign r(t+1) from n lags of m symbols (e.g. BTC/USD, ETH/USD, IOT/BTC):

Utility u(x,y) is a 2×2 matrix (confusion matrix):

$$f\left(\begin{array}{ccc} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{array}\right) = y \approx \operatorname{sign}[r(t+1)] \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Questions:

$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

Is Accuracy = .53 a good result? What is the highest possible accuracy here?

Evaluation of Accuracy

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Claude Shannon

$$I_{xy} = \sum_{(x,y)} \left[\ln \frac{P(x \mid y)}{P(x)} \right] P(x,y)$$

(Shannon, 1948)

Claude Shannon

$$I_{xy} = \sum_{(x,y)} \left[\ln \frac{P(x \mid y)}{P(x)} \right] P(x,y)$$

(Shannon, 1948)

Ruslan Stratonovich

Claude Shannon

$$I_{xy} = \sum_{(x,y)} \left[\ln \frac{P(x \mid y)}{P(x)} \right] P(x,y)$$

(Shannon, 1948)

(Stratonovich, 1965, 1975, 2020):

Ruslan Stratonovich

Claude Shannon

(Shannon, 1948)

(Stratonovich, 1965, 1975, 2020):

Ruslan Stratonovich

 Belavkin (2013). Optimal measures and Markov transition kernels. Journal of Global Optimization, Vol. 55 (387–416).

Claude Shannon

$$I_{xy} = \sum_{(x,y)} \left[\ln \frac{P(x \mid y)}{P(x)} \right] P(x,y)$$

(Shannon, 1948)

(Stratonovich, 1965, 1975, 2020):

Ruslan Stratonovich

- Belavkin (2013). Optimal measures and Markov transition kernels. Journal of Global Optimization, Vol. 55 (387–416).
- Belavkin (2018). Relation Between the Kantorovich-Wasserstein Metric and the Kullback-Leibler Divergence. Information Geometry and Its Applications, Springer.
 Roman Belavkin Mathematics for Deep Learning: Vol August 26, 2022 10 / 58

Motivating Example

Introduction to the Value of Information Theory Measures of Information

Definitions of the Value of Information Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Definition (Hartley Information)

$$H := \ln |X|$$

Definition (Hartley Information)

$$H := \ln |X|$$

Definition (Boltzmann Information)

$$H_P(X) := -\sum_{X} [\ln P(X)] P(X)$$

Definition (Hartley Information)

$$H := \ln |X|$$

Definition (Boltzmann Information)

$$H_P(X) := -\sum_{X} [\ln P(X)] P(X) \le \ln |X|$$

Definition (Hartley Information)

$$H := \ln |X|$$

Definition (Boltzmann Information)

$$H_P(X) := -\sum_{X} [\ln P(X)] P(X) \le \ln |X|$$

Definition (Shannon Information)

$$I(X,Y) := H(X) - H(X \mid Y)$$

Definition (Hartley Information)

$$H := \ln |X|$$

Definition (Boltzmann Information)

$$H_P(X) := -\sum_{X} [\ln P(X)] P(X) \le \ln |X|$$

Definition (Shannon Information)

$$I(X,Y) := H(X) - H(X \mid Y) \le H(X)$$

• Surprise: $-\ln P(x)$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$
$$= \sum_{X \neq Y} \left[\ln \frac{w(x,y)}{q(x) p(y)} \right] P(x,y)$$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$
$$= \sum_{X \times Y} \left[\ln \frac{w(x,y)}{q(x) p(y)} \right] P(x,y)$$

Entropy as self-information:

$$I(X, X) = H(X)$$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$
$$= \sum_{X \times Y} \left[\ln \frac{w(x,y)}{q(x) p(y)} \right] P(x,y)$$

• Entropy as self-information:

$$I(X,X) = H(X)$$

• Information upper bound:

$$0 \le I(X, Y) \le \min[H(X), H(Y)]$$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\}\$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$
$$= \sum_{X \times Y} \left[\ln \frac{w(x,y)}{q(x) p(y)} \right] P(x,y)$$

• Entropy as self-information:

$$I(X,X) = H(X)$$

Information upper bound:

$$0 \le I(X, Y) \le \min[H(X), H(Y)]$$

• Kullback-Leibler divergence: $KL[p,q] := \mathbb{E}_p\{\ln(p/q)\}$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\} = r(X) - KL[p, r/r(X)]$$

• Shannon (1948)'s mutual information between x and y:

$$I(X,Y) := H(X) - H(X \mid Y)$$
$$= \sum_{X \times Y} \left[\ln \frac{w(x,y)}{q(x) p(y)} \right] P(x,y)$$

• Entropy as self-information:

$$I(X,X) = H(X)$$

Information upper bound:

$$0 \le I(X, Y) \le \min[H(X), H(Y)]$$

• Kullback-Leibler divergence: $KL[p,q] := \mathbb{E}_p\{\ln(p/q)\}$

- Surprise: $-\ln P(x)$
- Entropy is expected surprise

$$H(X) := \mathbb{E}_P\{-\ln P(x)\} = r(X) - KL[p, r/r(X)]$$

• Shannon (1948)'s mutual information between x and y:

$$\begin{split} I(X,Y) &:= H(X) - H(X \mid Y) \\ &= \sum_{X \times Y} \left[\ln \frac{w(x,y)}{q(x) \, p(y)} \right] \, P(x,y) = KL[w,q \otimes p] \end{split}$$

• Entropy as self-information:

$$I(X,X) = H(X)$$

Information upper bound:

$$0 \le I(X, Y) \le \min[H(X), H(Y)]$$

• Kullback-Leibler divergence: $KL[p,q] := \mathbb{E}_p\{\ln(p/q)\}$

• The set of all probability measures

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \, , \, \mathbb{E}_p\{1\} = 1 \}$$

 ω_3

• The set of all probability measures

measures
$$\mathcal{P}(\Omega):=\{p:p\geq 0\,,\;\mathbb{E}_p\{1\}=1\}$$

 ω_3

The set of all probability measures

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p\{1\} = 1 \}$$

• $\mathbb{E}_p\{f\} := \langle f, p \rangle$ is linear

The set of all probability measures

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p \{ 1 \} = 1 \}$$

- $\mathbb{E}_p\{f\} := \langle f, p \rangle$ is linear
- $\mathbb{E}_p\{\ln(p/q)\} =: KL[p,q]$ is convex

The set of all probability measures

$$\mathcal{P}(\Omega) := \{ p : p \ge 0 \,, \, \mathbb{E}_p \{ 1 \} = 1 \}$$

- $\mathbb{E}_p\{f\} := \langle f, p \rangle$ is linear
- $\mathbb{E}_p\{\ln(p/q)\} =: KL[p,q]$ is
- $\nabla_p KL[p,q] = \ln \frac{p}{q} = \beta f$:

$$p(\beta) = e^{\beta f - \Gamma(\beta)} q$$

Introduction to the Value of Information Theory

Definitions of the Value of Information

- \bullet $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

- \bullet $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

- \bullet $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

u

$$x = f^{-1}(z) \qquad \mathbb{E}_{P(x)}\{\max_{y(x)} u(x, y)\} =: U(\infty)$$

$$P(x) \qquad \max_{y} \mathbb{E}_{P(x)} \{ u(x, y) \} =: U(0)$$

- $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

u

$$\mathbb{E}_{P(x)}\{\max_{y(x)} u(x,y)\} =: U(\infty)$$

$$=: U(I)$$

$$P(x)$$

$$\max_{x} \mathbb{E}_{P(x)}\{u(x,y)\} =: U(0)$$

- $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- ullet x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

•

$$x = f^{-1}(z)$$

$$\mathbb{E}_{P(x)}\{\max_{y(x)} u(x, y)\} =: U(\infty)$$

$$=: U(I)$$

$$P(x)$$

$$\max_{x} \mathbb{E}_{P(x)}\{u(x, y)\} =: U(0)$$

Definition (Value of Information (Stratonovich, 1965))

$$V(I) := U(I) - U(0)$$

- $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

•

$$\begin{split} x &= f^{-1}(z) & \mathbb{E}_{P(x)} \{ \max_{y(x)} u(x,y) \} =: U(\infty) \\ x &\in f^{-1}(z) & \max_{z(x): \ln |Z| \leq I} \mathbb{E}_{P(z)} \big[\max_{y(z)} \mathbb{E}_{P(x|z)} \{ u(x,y) \mid z \} \big] =: U(I) \\ P(x) & \max_{y} \mathbb{E}_{P(x)} \{ u(x,y) \} =: U(0) \end{split}$$

Definition (Value of Information (Stratonovich, 1965))

$$V(I) := U(I) - U(0)$$

Example: Mean-Square Minimization

Example: Mean-Square Minimization

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

ullet Find $y \in X$ minimizing

$$\mathbb{E}_P\{c(x,y)\} = \sum_x c(x,y) P(x)$$

Example: Mean-Square Minimization

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

 $\bullet \ \ \mathsf{Find} \ y \in X \ \mathsf{minimizing}$

$$\mathbb{E}_P\{c(x,y)\} = \sum_x c(x,y) P(x)$$

ullet Optimal \hat{y} is defined by

$$\sum_{x} \frac{\partial}{\partial y} c(x, \hat{y}) P(x) = 0$$

•
$$P(x)$$
, $c: X \times X \to \mathbb{R}$

ullet Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

• Optimal \hat{y} is defined by

$$\sum_{x} \frac{\partial}{\partial y} \frac{1}{2} (x - y)^2 P(x) = 0$$

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

ullet Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\sum_{x} (x - \hat{y}) P(x) = 0$$

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

• Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \sum_{x} x P(x)$$

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

 $\bullet \ \ \mathsf{Find} \ y \in X \ \mathsf{minimizing}$

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

- P(x), $c: X \times X \to \mathbb{R}$
- $\bullet \ \ \mathsf{Find} \ y \in X \ \mathsf{minimizing}$

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

k-Means clustering

• Let us partition X into k=3 subsets X_1 , X_2 , X_3

- \bullet $P(x), c: X \times X \to \mathbb{R}$
- ullet Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

- Let us partition X into k=3 subsets X_1 , X_2 , X_3
- This corresponds to some mapping z(x) $(z: X \to \{z_1, z_2, z_3\})$

$$\bullet$$
 $P(x), c: X \times X \to \mathbb{R}$

ullet Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

- Let us partition X into k=3 subsets X_1 , X_2 , X_3
- ullet This corresponds to some mapping z(x) $(z:X
 ightarrow \{z_1,z_2,z_3\})$
- Find y_1 , y_2 , y_3 minimizing

$$\sum \mathbb{E}_{P(x|z)}\{c(x,y)\mid z\}\,P(z)$$

- \bullet $P(x), c: X \times X \to \mathbb{R}$
- Find $y \in X$ minimizing

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

• Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

- Let us partition X into k=3 subsets X_1, X_2, X_3
- This corresponds to some mapping z(x) $(z: X \to \{z_1, z_2, z_3\})$
- Find y_1 , y_2 , y_3 minimizing

$$\sum_{\text{man B\~{E}lavkin}} \mathbb{E}_{P(x|z)} \left\{ \frac{1}{2} (x-y)^2 \mid z \right\} P(z) \,, \qquad \hat{y}(z) = \sum_{x_{\text{August 26, 2022}}} x \, P(x|z)$$

- \bullet $P(x), c: X \times X \to \mathbb{R}$
- $\bullet \ \, \mathsf{Find} \,\, y \in X \,\, \mathsf{minimizing}$

$$\mathbb{E}_{P}\{c(x,y)\} = \sum_{x} \frac{1}{2} (x-y)^{2} P(x)$$

ullet Optimal \hat{y} is defined by

$$\hat{y} = \mathbb{E}\{x\}$$

- Let us partition X into k=3 subsets X_1 , X_2 , X_3
- ullet This corresponds to some mapping z(x) $(z:X o \{z_1,z_2,z_3\})$
- Find y_1 , y_2 , y_3 minimizing

$$\sum_{z} \mathbb{E}_{P(x|z)} \left\{ \frac{1}{2} (x - y)^{2} \mid z \right\} P(z), \qquad \hat{y}(z) = \mathbb{E} \{ x \mid z \}$$

Value of Information (Hartley)

- $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- \bullet x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

•

$$x = f^{-1}(z) \qquad \mathbb{E}_{P(x)} \{ \max_{y(x)} u(x, y) \} =: U(\infty)$$

$$x \in f^{-1}(z) \quad \max_{z(x): \ln |Z| \le \mathbf{I}} \mathbb{E}_{P(z)} \left[\max_{y(z)} \mathbb{E}_{P(x|z)} \{ u(x, y) \mid z \} \right] =: U(\mathbf{I})$$

$$P(x) \qquad \max_{y} \mathbb{E}_{P(x)} \{ u(x, y) \} =: U(\mathbf{0})$$

Definition (Value of Information (Stratonovich, 1965))

$$V(I) := U(I) - U(0)$$

Roman Belavkin

Value of Information (Shannon)

- $(\Omega, \mathcal{A}, P), x, y, z : \Omega \to \mathbb{R}$
- ullet x desired response (hidden), y model response, z data.
- u(x,y) utility (or cost c=-u).

•

$$x = f^{-1}(z) \qquad \mathbb{E}_{P(x)} \{ \max_{y(x)} u(x, y) \} =: U(\infty)$$

$$P(x \mid z) \qquad \max_{P(y\mid x): I(X,Y) \le I} \mathbb{E}_{P(x,y)} \{ u(x,y) \mid z \} =: U(I)$$

$$P(x) \qquad \max_{y} \mathbb{E}_{P(x)} \{ u(x,y) \} =: U(0)$$

Definition (Value of Information (Stratonovich, 1965))

$$V(I) := U(I) - U(0)$$

Roman Belavkin

Motivating Example

Introduction to the Value of Information Theory

Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Optimal learning

Maximize performance

s.t. information $\leq \lambda$

Optimal learning

Minimize information

s.t. performance $\geq v$

Vol as Conditional Extremum

• Linear programming problem U(I):

maximize
$$\mathbb{E}_{P(y|x)}\{u(x,y)\}$$
 subject to $I(X,Y) \leq I$

Maximize performance

s.t. information $\leq I$

Roman Belaykin

Vol as Conditional Extremum

• Linear programming problem U(I):

$$\text{maximize} \quad \mathbb{E}_{P(y|x)}\{u(x,y)\} \quad \text{subject to} \quad I(X,Y) \leq I$$

 \bullet The inverse convex programming problem $\emph{\textbf{I}}(U)$:

$$\text{minimize} \quad I(X,Y) \quad \text{subject to} \quad \mathbb{E}_{P(y|x)}\{u(x,y)\} \geq U$$

Minimize information

s.t. performance $\geq V$

Solution

• Lagrange function

$$K(p, \beta) = \mathbb{E}_p\{\ln(p/q)\} + \beta[U - \mathbb{E}_p\{u\}]$$

Solution

Lagrange function

$$K(p, \beta) = \mathbb{E}_p\{\ln(p/q)\} + \beta[U - \mathbb{E}_p\{u\}]$$

• Necessary and sufficient conditions $\nabla K(p, \beta) = 0$:

$$\nabla_p K(p, \boldsymbol{\beta}) = \ln(p/q) + 1 - \boldsymbol{\beta}U = 0$$

$$\nabla_{\boldsymbol{\beta}} K(p, \boldsymbol{\beta}) = U - \mathbb{E}_p\{u\} = 0$$

Solution

Lagrange function

$$K(p, \beta) = \mathbb{E}_p\{\ln(p/q)\} + \beta[U - \mathbb{E}_p\{u\}]$$

• Necessary and sufficient conditions $\nabla K(p, \beta) = 0$:

$$\nabla_p K(p, \boldsymbol{\beta}) = \ln(p/q) + 1 - \boldsymbol{\beta}U = 0$$

$$\nabla_{\boldsymbol{\beta}} K(p, \boldsymbol{\beta}) = U - \mathbb{E}_p \{u\} = 0$$

Optimal solutions:

$$p(\beta) = e^{\beta u - \Psi(\beta)} q$$
, $\mathbb{E}_{p(\beta)} \{u\} = U \quad \left(\mathbb{E}_p \{ \ln(p/q) = I \} \right)$

Lagrange function

$$K(p, \beta) = \mathbb{E}_p\{\ln(p/q)\} + \beta[U - \mathbb{E}_p\{u\}]$$

• Necessary and sufficient conditions $\nabla K(p, \beta) = 0$:

$$\nabla_p K(p, \boldsymbol{\beta}) = \ln(p/q) + 1 - \boldsymbol{\beta}U = 0$$

$$\nabla_{\boldsymbol{\beta}} K(p, \boldsymbol{\beta}) = U - \mathbb{E}_p \{u\} = 0$$

Optimal solutions:

$$p(\beta) = e^{\beta u - \Psi(\beta)} q, \qquad \mathbb{E}_{p(\beta)} \{u\} = U \quad \left(\mathbb{E}_p \{ \ln(p/q) = I \} \right)$$

• Optimal inverse temperature β :

$$\beta = \frac{dI(U)}{dU}$$
 or $\beta^{-1} = \frac{dU(I)}{dI}$

• Maximize $\mathbb{E}_p\{u\}$

• Maximize $\mathbb{E}_p\{u\}$

$$U(I) := \sup \{ \mathbb{E}_p \{ u \} : I(p,q) \le I \}$$

• Minimize I(p,q):

$$I(U) := \inf\{I(p,q) : \mathbb{E}_p\{u\} \ge U\}$$

• Maximize $\mathbb{E}_p\{u\}$

$$U(I) := \sup \{ \mathbb{E}_p \{ u \} : I(p,q) \le I \}$$

• Minimize I(p,q):

$$I(U) := \inf\{I(p,q) : \mathbb{E}_p\{u\} \ge U\}$$

• $\nabla_p KL[p,q] = \ln \frac{p}{q} = \beta f$:

$$p(\beta) = e^{\beta f - \Gamma(\beta)} q$$

 ω_3

 ω_2

• Maximize $\mathbb{E}_p\{u\}$

$$U(I) := \sup \{ \mathbb{E}_p \{ u \} : I(p,q) \le I \}$$

• Minimize I(p,q):

$$I(U) := \inf\{I(p,q) : \mathbb{E}_p\{u\} \ge U\}$$

• $\nabla_p KL[p,q] = \ln \frac{p}{q} = \beta f$:

$$p(\beta) = e^{\beta f - \Gamma(\beta)} q$$

 Generalizations for arbitrary I(p,q) (Belavkin, 2013)

 ω_2

• Maximize $\mathbb{E}_p\{u\}$

$$U(I) := \sup \{ \mathbb{E}_p \{ u \} : I(p, q) \le I \}$$

• Minimize I(p,q):

$$I(U) := \inf\{I(p,q) : \mathbb{E}_p\{u\} \ge U\}$$

• $\nabla_p KL[p,q] = \ln \frac{p}{q} = \beta f$:

$$p(\beta) = e^{\beta f - \Gamma(\beta)} q$$

- Generalizations for arbitrary I(p,q) (Belavkin, 2013)
- $\mathcal{P}(X \otimes Y)$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

• Use the cumulant generating function

$$\Gamma(\beta) = \sum_{x} \gamma(x, \beta) P(x)$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

• The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

• Use the cumulant generating function

$$\Gamma(\beta) = \sum_{x} \gamma(x, \beta) P(x)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma(\beta)}{d\beta}, \qquad I(\beta) = \beta\Gamma'(\beta) - \Gamma(\beta)$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

Use the cumulant generating function

$$\Gamma(\beta) = \sum_{x} \gamma(x, \beta) P(x)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma(\beta)}{d\beta}, \qquad I(\beta) = \beta\Gamma'(\beta) - \Gamma(\beta)$$

• $\beta^{-1} = U'(I)$ is called *temperature*.

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(\beta,x)}$$

• The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

Use the cumulant generating function

$$\Gamma(\beta) = \sum_{x} \gamma(x, \beta) P(x)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma(\beta)}{d\beta}, \qquad I(\beta) = \beta\Gamma'(\beta) - \Gamma(\beta)$$

- $\beta^{-1} = U'(I)$ is called *temperature*.
- Note that $Q(y) = \sum_{x} P(y \mid x) P(x)$

Roman Belavkin

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x \mid y) = P(x)e^{\beta u(x,y) - \gamma(\beta,x)}$$

• The law of total probability gives two equations:

$$\sum_{x} e^{\beta u(x,y) - \gamma(\beta,x)} P(x) = 1, \qquad \sum_{y} e^{\beta u(x,y)} Q(y) = e^{\gamma(\beta,x)}$$

Use the cumulant generating function

$$\Gamma(\beta) = \sum_{x} \gamma(x, \beta) P(x)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma(\beta)}{d\beta}, \qquad I(\beta) = \beta\Gamma'(\beta) - \Gamma(\beta)$$

- $\beta^{-1} = U'(I)$ is called *temperature*.
- Note that $Q(y) = \sum_{x} P(y \mid x) P(x)$

Roman Belavkin

Computation of Vol

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y)-\gamma(x,\beta)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(x,\beta)}$$

• If $T(\cdot) = \sum_{x} e^{\beta u(x,y)}(\cdot)$ is invertible, then

$$T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y)-\gamma(x,\beta)}$$

• If $T(\cdot) = \sum_{x} e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

• The conditional cumulant generating function is

$$\Gamma_0(\beta) = \sum_x \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(x,\beta)}$$

• If $T(\cdot) = \sum_{x} e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

• The conditional cumulant generating function is

$$\Gamma_0(\beta) = \sum_x \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma_0(\beta)}{d\beta}, \qquad I(\beta) = H(X) - \underbrace{\left[\Gamma_0(\beta) - \beta\Gamma_0'(\beta)\right]}_{H(X|Y)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(x,\beta)}$$

• If $T(\cdot) = \sum_x e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

• The conditional cumulant generating function is

$$\Gamma_0(\beta) = \sum_x \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma_0(\beta)}{d\beta}, \qquad I(\beta) = H(X) - [\Gamma_0(\beta) - \beta\Gamma_0'(\beta)]$$

$$e^{-\gamma_0(\beta,x)} = e^{-\Gamma_0(\beta)}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x,y) = P(x)Q(y)e^{\beta u(x,y) - \gamma(x,\beta)}$$

• If $T(\cdot) = \sum_x e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

The conditional cumulant generating function is

$$\Gamma_0(\beta) = \sum_x \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma_0(\beta)}{d\beta}, \qquad I(\beta) = H(X) - [\Gamma_0(\beta) - \beta\Gamma_0'(\beta)]$$

$$e^{-\gamma_0(\boldsymbol{\beta},x)} = e^{-\Gamma_0(\boldsymbol{\beta})} \iff T(1) = \sum_x e^{\boldsymbol{\beta} u(x,y)} = e^{\Gamma_0(\boldsymbol{\beta})}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x \mid y) = P(x)e^{\beta u(x,y) - \gamma(x,\beta)}$$

• If $T(\cdot) = \sum_x e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

• The conditional cumulant generating function is

$$\Gamma_0(\beta) = \sum_x \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma_0(\beta)}{d\beta}, \qquad I(\beta) = H(X) - [\Gamma_0(\beta) - \beta\Gamma_0'(\beta)]$$

$$e^{-\gamma_0(\boldsymbol{\beta},x)} = e^{-\Gamma_0(\boldsymbol{\beta})} \iff T(1) = \sum_x e^{\boldsymbol{\beta} u(x,y)} = e^{\Gamma_0(\boldsymbol{\beta})}$$

• Solutions to V(I) are optimal joint probabilities of the form:

$$P(x \mid y) = e^{\beta u(x,y) - \Gamma_0(\beta)}$$

• If $T(\cdot) = \sum_x e^{\beta u(x,y)}(\cdot)$ is invertible, then $T(e^{-\gamma(\beta,x)} P(x)) = 1 \iff e^{-\gamma(\beta,x)} P(x) = T^{-1}(1) =: e^{-\gamma_0(\beta,x)}$

$$\Gamma_0(\beta) = \sum \gamma_0(\beta, x) P(x) = \Gamma(\beta) + H(X)$$

• Find U(I) from

$$U(\beta) = \frac{d\Gamma_0(\beta)}{d\beta}, \qquad I(\beta) = H(X) - [\Gamma_0(\beta) - \beta\Gamma_0'(\beta)]$$

$$e^{-\gamma_0(\boldsymbol{\beta},x)} = e^{-\Gamma_0(\boldsymbol{\beta})} \iff T(1) = \sum_x e^{\boldsymbol{\beta} u(x,y)} = e^{\Gamma_0(\boldsymbol{\beta})}$$

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{\mathbf{x}} [\ln P(\mathbf{x})] P(\mathbf{x})$$

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\boldsymbol{\beta}^{-1}) := -\boldsymbol{\beta}^{-1}\Gamma(\boldsymbol{\beta})$$

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\boldsymbol{\beta}^{-1}) := -\boldsymbol{\beta}^{-1}\Gamma(\boldsymbol{\beta})$$
 $F^*(\lambda) = \inf[\boldsymbol{\beta}^{-1}\lambda - F(\boldsymbol{\beta}^{-1})]$

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\beta^{-1}) := -\beta^{-1}\Gamma(\beta) \qquad F^*(\lambda) = \inf[\beta^{-1}\lambda - F(\beta^{-1})]$$
$$F'(\beta^{-1}) = \lambda$$

Roman Belaykin

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\beta^{-1}) := -\beta^{-1}\Gamma(\beta) \qquad F^*(\lambda) = \inf[\beta^{-1}\lambda - F(\beta^{-1})]$$
$$F'(\beta^{-1}) = \lambda \qquad F^{*\prime}(\lambda) = \beta^{-1}$$

Roman Belaykin

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\beta^{-1}) := -\beta^{-1}\Gamma(\beta) \qquad F^*(\lambda) = \inf[\beta^{-1}\lambda - F(\beta^{-1})]$$

$$F'(\beta^{-1}) = \lambda = \beta\Gamma'(\beta) - \Gamma(\beta) \qquad F^{*'}(\lambda) = \beta^{-1}$$

Roman Belaykin

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_X [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\beta^{-1}) := -\beta^{-1}\Gamma(\beta) \qquad F^*(\lambda) = \inf[\beta^{-1}\lambda - F(\beta^{-1})]$$
$$F'(\beta^{-1}) = \lambda = \underbrace{\beta\Gamma'(\beta) - \Gamma(\beta)}_{-H} \qquad F^{*\prime}(\lambda) = \beta^{-1}$$

Roman Belavkin

Entropy of Gibbs state

$$P(z \mid x) = \frac{e^{\beta u(x,z)}}{Z(\beta)}$$

 β is inverse temperature (i.e. β^{-1} is temperature, $Z(\beta)$ is the partition function $(\Gamma(\beta) = \ln Z(\beta)$ — the cumulant gen. f-n).

$$H_P(X) := -\sum_{x} [\ln P(x)] P(x) = \Gamma(\beta) - \beta \Gamma'(\beta)$$

Free energy and entropy

$$F(\beta^{-1}) := -\beta^{-1}\Gamma(\beta) \qquad F^*(\lambda) = \inf_{V(\lambda) = \max[\mathbb{E}_P\{u\}: D[p,q] \le \lambda]} F'(\beta^{-1}) = \lambda = \underbrace{\beta\Gamma'(\beta) - \Gamma(\beta)}_{V(\lambda) = \min[\beta^{-1}\lambda - F(\beta^{-1})]} F^{*\prime}(\lambda) = \beta^{-1}$$

Roman Belavkin — H Mathematics for Deep Learning: Vol

26 / 58

Examples

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case

The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u(x_1, y_1) & u(x_1, y_2) \\ u(x_2, y_1) & u(x_2, y_2) \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

• For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta u(x,y)}\|^T P(x) e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} e^{\beta u_{11}} & e^{\beta u_{21}} \\ e^{\beta u_{12}} & e^{\beta u_{22}} \end{bmatrix} \begin{bmatrix} p e^{-\gamma(\beta, x_1)} \\ (1-p) e^{-\gamma(\beta, x_2)} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

• For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta u(x,y)}\|^T P(x) e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} p e^{-\gamma(\beta, x_1)} \\ (1-p) e^{-\gamma(\beta, x_2)} \end{bmatrix} = \frac{1}{\det \|e^{\beta u}\|^T} \begin{bmatrix} e^{\beta u_{22}} & -e^{\beta u_{21}} \\ -e^{\beta u_{12}} & e^{\beta u_{11}} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

• For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta u(x,y)}\|^T P(x) e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} e^{-\gamma_0(\beta,x_1)} \\ e^{-\gamma_0(\beta,x_2)} \end{bmatrix} = \begin{bmatrix} \frac{e^{\beta u_{22}} - e^{\beta u_{21}}}{e^{\beta (u_{11}+u_{22})} - e^{\beta (u_{12}+u_{21})}} \\ \frac{e^{\beta u_{11}} - e^{\beta u_{12}}}{e^{\beta (u_{11}+u_{22})} - e^{\beta (u_{12}+u_{21})}} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

 \bullet For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta\,u(x,y)}\|^T P(x)\,e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} e^{-\gamma_0(\beta, x_1)} \\ e^{-\gamma_0(\beta, x_2)} \end{bmatrix} = \begin{bmatrix} e^{-\beta c_1} \frac{\sinh(\beta d_2)}{\sinh[\beta (d_1 + d_2)]} \\ e^{-\beta c_2} \frac{\sinh(\beta d_1)}{\sinh[\beta (d_1 + d_2)]} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c+d & c-d \\ c-d & c+d \end{bmatrix}$$

• For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta u(x,y)}\|^T P(x) e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} e^{-\gamma_0(\beta, x_1)} \\ e^{-\gamma_0(\beta, x_2)} \end{bmatrix} = \begin{bmatrix} e^{-\beta c_1} \frac{\sinh(\beta d_2)}{\sinh[\beta (d_1 + d_2)]} \\ e^{-\beta c_2} \frac{\sinh(\beta d_1)}{\sinh[\beta (d_1 + d_2)]} \end{bmatrix}$$

This gives

$$\Gamma_0(\beta) = \beta c + \ln \left[2 \cosh(\beta d) \right]$$

$$U(\beta) = c + d \tanh(\beta d)$$

$$I(\beta) = H(X) - \left[\ln \left[2 \cosh(\beta d) \right] - \beta d \tanh(\beta d) \right]$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c+d & c-d \\ c-d & c+d \end{bmatrix}$$

 \bullet For $P(x) \in \{p, 1-p\}$ the equation $\|e^{\beta\,u(x,y)}\|^T P(x)\,e^{-\gamma(\beta,x)} = 1$ is

$$\begin{bmatrix} e^{-\gamma_0(\beta, x_1)} \\ e^{-\gamma_0(\beta, x_2)} \end{bmatrix} = \begin{bmatrix} e^{-\beta c_1} \frac{\sinh(\beta d_2)}{\sinh[\beta (d_1 + d_2)]} \\ e^{-\beta c_2} \frac{\sinh(\beta d_1)}{\sinh[\beta (d_1 + d_2)]} \end{bmatrix}$$

This gives

$$\Gamma_0(\beta) = \beta c + \ln \left[2 \cosh(\beta d) \right]$$

$$U(\beta) = c + d \tanh(\beta d)$$

$$I(\beta) = H(X) - \left[\ln \left[2 \cosh(\beta d) \right] - \beta d \tanh(\beta d) \right]$$

Explicit dependency

$$I(U) = H_2[p] - H_2\left[\frac{1}{2} + \frac{1}{2}\frac{U-c}{d}\right]$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u : X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

$$\begin{bmatrix} e^{\beta u_{11}} & e^{\beta u_{12}} \\ e^{\beta u_{21}} & e^{\beta u_{22}} \end{bmatrix} \begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} e^{\gamma(\beta,x_1)} \\ e^{\gamma(\beta,x_2)} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$$

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \frac{1}{\det \|e^{\beta u}\|} \begin{bmatrix} e^{\beta u_{22}} & -e^{\beta u_{12}} \\ -e^{\beta u_{21}} & e^{\beta u_{11}} \end{bmatrix} \begin{bmatrix} e^{\gamma(\beta,x_1)} \\ e^{\gamma(\beta,x_2)} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

• For $Q(y) \in \{q, 1-q\}$ the equation $\|e^{\beta u(x,y)}\|Q(y) = e^{\gamma(\beta,x)}$ is

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

• Note that $Q(y) \to P(x)$ as $\beta \to \infty$.

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

- Note that $Q(y) \to P(x)$ as $\beta \to \infty$.
- One can check that $Q(y_1) + Q(y_2) = 1$.

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c_1 + d_1 & c_1 - d_1 \\ c_2 - d_2 & c_2 + d_2 \end{bmatrix}$$

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

- Note that $Q(y) \to P(x)$ as $\beta \to \infty$.
- One can check that $Q(y_1) + Q(y_2) = 1$.
- $\exists \beta_0 \geq 0$ such that $Q(y_1) < 0$ or $Q(y_2) < 0$ for $\beta \in [0, \beta_0)$:

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c+d & c-d \\ c-d & c+d \end{bmatrix}$$

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

- Note that $Q(y) \to P(x)$ as $\beta \to \infty$.
- One can check that $Q(y_1) + Q(y_2) = 1$.
- $\exists \beta_0 \geq 0$ such that $Q(y_1) < 0$ or $Q(y_2) < 0$ for $\beta \in [0, \beta_0)$:

$$\beta_0 = \frac{1}{2d} \left| \ln \left(\frac{p}{1-p} \right) \right|$$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c+d & c-d \\ c-d & c+d \end{bmatrix}$$

• For $Q(y) \in \{q, 1-q\}$ the equation $\|e^{\beta u(x,y)}\|Q(y) = e^{\gamma(\beta,x)}$ is

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

- Note that $Q(y) \to P(x)$ as $\beta \to \infty$.
- One can check that $Q(y_1) + Q(y_2) = 1$.
- $\exists \beta_0 \geq 0$ such that $Q(y_1) < 0$ or $Q(y_2) < 0$ for $\beta \in [0, \beta_0)$:

$$\beta_0 = \frac{1}{2d} \left| \ln \left(\frac{p}{1-p} \right) \right|$$

• $I(\beta_0) = 0$ and $U(\beta_0) = c + d|2p - 1|$

• Let $X \times Y = \{x_1, x_2\} \times \{y_1, y_2\}$ and $u: X \times Y \to \mathbb{R}$:

$$\begin{bmatrix} c+d & c-d \\ c-d & c+d \end{bmatrix}$$

• For $Q(y) \in \{q, 1-q\}$ the equation $\|e^{\beta u(x,y)}\|Q(y) = e^{\gamma(\beta,x)}$ is

$$\begin{bmatrix} q \\ 1-q \end{bmatrix} = \begin{bmatrix} \frac{p}{1-e^{-2\beta d_2}} + \frac{1-p}{1-e^{2\beta d_1}} \\ \frac{1-p}{1-e^{-2\beta d_1}} + \frac{p}{1-e^{2\beta d_2}} \end{bmatrix}$$

- Note that $Q(y) \to P(x)$ as $\beta \to \infty$.
- One can check that $Q(y_1) + Q(y_2) = 1$.
- $\exists \beta_0 \geq 0$ such that $Q(y_1) < 0$ or $Q(y_2) < 0$ for $\beta \in [0, \beta_0)$:

$$\beta_0 = \frac{1}{2d} \left| \ln \left(\frac{p}{1-p} \right) \right|$$

• $I(\beta_0) = 0$ and $U(\beta_0) = c + d|2p - 1| = U(I = 0)$.

Examples

The Mean-Square Case

• Let $u(x,y) = -\frac{1}{2}|x-y|^2$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

$$\Gamma_0(\beta) = \ln \int_{-\infty}^{\infty} e^{-\beta \frac{1}{2}|x-y|^2} dx = \frac{1}{2} \ln \frac{2\pi}{\beta}$$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

.

$$\Gamma_0(\beta) = \ln \int_{-\infty}^{\infty} e^{-\beta \frac{1}{2}|x-y|^2} dx = \frac{1}{2} \ln \frac{2\pi}{\beta}$$
$$U(\beta) = \Gamma_0'(\beta) = -\frac{1}{2\beta}$$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

$$\Gamma_0(\beta) = \ln \int_{-\infty}^{\infty} e^{-\beta \frac{1}{2} |x-y|^2} dx = \frac{1}{2} \ln \frac{2\pi}{\beta}$$

$$U(\beta) = \Gamma_0'(\beta) = -\frac{1}{2\beta}$$

$$I(\beta) = H(X) - [\Gamma_0(\beta) - \beta \Gamma_0'(\beta)] = H(X) - \frac{1}{2} \ln \frac{2\pi e}{\beta}$$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

.

$$\Gamma_{0}(\beta) = \ln \int_{-\infty}^{\infty} e^{-\beta \frac{1}{2}|x-y|^{2}} dx = \frac{1}{2} \ln \frac{2\pi}{\beta}$$

$$U(\beta) = \Gamma'_{0}(\beta) = -\frac{1}{2\beta}$$

$$I(\beta) = H(X) - [\Gamma_{0}(\beta) - \beta \Gamma'_{0}(\beta)] = H(X) - \frac{1}{2} \ln \frac{2\pi e}{\beta}$$

$$U(I) = -\frac{1}{4\pi e} e^{2[H(X) - I]}$$

- Let $u(x,y) = -\frac{1}{2}|x-y|^2$
- Optimal transition kernels are Gaussian

$$p(x \mid y) = e^{-\beta \frac{1}{2}|x-y|^2 - \Gamma_0(\beta)}$$

.

$$\Gamma_{0}(\beta) = \ln \int_{-\infty}^{\infty} e^{-\beta \frac{1}{2} |x-y|^{2}} dx = \frac{1}{2} \ln \frac{2\pi}{\beta}$$

$$U(\beta) = \Gamma'_{0}(\beta) = -\frac{1}{2\beta}$$

$$I(\beta) = H(X) - [\Gamma_{0}(\beta) - \beta \Gamma'_{0}(\beta)] = H(X) - \frac{1}{2} \ln \frac{2\pi e}{\beta}$$

$$U(I) = -\frac{1}{4\pi e} e^{2[H(X) - I]}$$

$$V(I) = U(I) - U(0) = \frac{1}{4\pi e} e^{2H(X)} \left(1 - e^{-2I}\right)$$

Minimum RMSE

• Using U(I) for $u(x,y) = -\frac{1}{2}|x-y|^2$:

$$RMSE(I) = \sqrt{-2U(I)} = \frac{1}{\sqrt{2\pi e}} e^{H(X)-I}$$

Minimum RMSE

• Using U(I) for $u(x,y) = -\frac{1}{2}|x-y|^2$:

$$\mathrm{RMSE}(I) = \sqrt{-2U(I)} = \frac{1}{\sqrt{2\pi\,e}}\,e^{H(X)-I}$$

 \bullet For $x \sim \mathcal{N}(\mu, \sigma_x^2)$ we have $H(X) = \frac{1}{2} \ln(2\pi\,e\sigma_x^2)$

$$RMSE(I) = \sigma_x e^{-I}$$

Minimum RMSE

• Using U(I) for $u(x,y) = -\frac{1}{2}|x-y|^2$:

$$\mathsf{RMSE}(I) = \sqrt{-2U(I)} = \frac{1}{\sqrt{2\pi\,e}}\,e^{H(X)-I}$$

 \bullet For $x \sim \mathcal{N}(\mu, \sigma_x^2)$ we have $H(X) = \frac{1}{2} \ln(2\pi\,e\sigma_x^2)$

$$RMSE(I) = \sigma_x e^{-I}, \qquad R^2(I) = 1 - e^{-2I}$$

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

Applications

Evaluation of Model Performance

Example: RMSE in Time-Series Prediction

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t-2)	r(t-1)	r(t)	r(t+1)
2019-01-06	-0.031	0.008	-0.011	0.064
2019-01-07	0.008	-0.011	0.064	-0.013
2019-01-08	-0.011	0.064	-0.013	-0.0034
2019-01-09	0.064	-0.013	-0.0034	-0.004

0.0 0.0 -0.1 -0.1-0.2 -0.2-0.3 -0.3-0.4 -0.4Sep 01 2019 2019 2019 2020 2020 2020

Predict r(t+1) from n lags of r(t)

for m symbols (e.g. BTC/USD, ETH/USD,

IOT/BTC):

$$f\left(\begin{array}{ccc} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{array}\right) = y \approx r(t+1)$$

Optimal RMSE using Vol:

BTC / USD log-returns

$$RMSE(I) = \sigma_x e^{-I}$$

$$R^2(I) = 1 - e^{-2I}$$

2019-01-02 / 2021-01-11

Example: Accuracy in Time-Series Prediction

Table: log-returns $r(t) = \log \frac{S(t+1)}{S(t)}$

Date	r(t-1)	r(t)	sign r(t+1)
2019-01-06	0.008	-0.011	1
2019-01-07	-0.011	0.064	-1
2019-01-08	0.064	-0.013	-1
2019-01-09	-0.013	-0.0034	-1

Predict sign r(t+1) from n lags of m symbols (e.g. BTC/USD, ETH/USD, IOT/BTC):

binary utility as idenity matrix:

$$f\begin{pmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1} & \cdots & r_{mn} \end{pmatrix} = y \approx \operatorname{sign}[r(t+1)] \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Estimation of Mutual Information

Table: log-returns
$$r(t) = \log \frac{S(t+1)}{S(t)}$$

Date	r(t-2)	r(t-1)	r(t)	r(t + 1)
2019-01-06	-0.031	0.008	-0.011	0.064
2019-01-07	0.008	-0.011	0.064	-0.013
2019-01-08	-0.011	0.064	-0.013	-0.0034
2019-01-09	0.064	-0.013	-0.0034	-0.004

 $\bullet \mbox{ Mutual information } I(X,Y) \leq I(X,Z) \mbox{ between response } x \mbox{ and predictors } z.$

Estimation of Mutual Information

Table: log-returns
$$r(t) = \log \frac{S(t+1)}{S(t)}$$

Date	r(t-2)	r(t-1)	r(t)	r(t+1)
2019-01-06	-0.031	0.008	-0.011	0.064
2019-01-07	0.008	-0.011	0.064	-0.013
2019-01-08	-0.011	0.064	-0.013	-0.0034
2019-01-09	0.064	-0.013	-0.0034	-0.004

- Mutual information $I(X,Y) \leq I(X,Z)$ between response x and predictors z.
- Here we use Gaussian formula:

$$I_G(X,Z) = \frac{1}{2} \left[\ln \det K_z + \ln \det K_x - \ln \det K_{z \oplus x} \right]$$

where K_i are covariance matrices.

Estimation of Mutual Information

Table: log-returns
$$r(t) = \log \frac{S(t+1)}{S(t)}$$

Date	r(t-2)	r(t-1)	r(t)	r(t+1)
2019-01-06	-0.031	0.008	-0.011	0.064
2019-01-07	0.008	-0.011	0.064	-0.013
2019-01-08	-0.011	0.064	-0.013	-0.0034
2019-01-09	0.064	-0.013	-0.0034	-0.004

- Mutual information $I(X,Y) \leq I(X,Z)$ between response x and predictors z.
- Here we use Gaussian formula:

$$I_G(X,Z) = \frac{1}{2} \left[\ln \det K_z + \ln \det K_x - \ln \det K_{z \oplus x} \right] \le I(X,Z)$$

where K_i are covariance matrices.

This is sufficient for linear models.

Mutual Information in Training and Testing Sets

- $n \in [2:20]$ lags.
- $m \in [1:5]$ symbols (btc/usd, eth/usd, dai/btc, xrp/btc, iot/btc).
- Training / testing sets 100 / 25 days.

Evaluation of RMSE

Evaluation of Accuracy

Other Measures of Model Performance

• Correlation between between prediction y and desired response x:

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$$

Other Measures of Model Performance

• Correlation between between prediction y and desired response x:

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_x \sigma_y}$$

• In the context of day trading, we can estimate daily *Mean Rate of* Return (MRR):

$$MRR := e^{\mathbb{E}\{\operatorname{sign}(y)\operatorname{sign}(x)|x|\}} - 1$$

Evaluation of Correlations and MRRs

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance

Optimal control of mutation rate

• EPSRC Sandpit 'Math of Life' (July, 2009):

• EPSRC Sandpit 'Math of Life' (July, 2009):

• Three year project (2010–13)

• EPSRC Sandpit 'Math of Life' (July, 2009):

- Three year project (2010–13)
- Followed by two BBSRC project.

• EPSRC Sandpit 'Math of Life' (July, 2009):

- Three year project (2010–13)
- Followed by two BBSRC project.

Middlesex University: Roman Belavkin

• EPSRC Sandpit 'Math of Life' (July, 2009):

- Three year project (2010–13)
- Followed by two BBSRC project.

Middlesex University: Roman Belavkin

University of Warwick: John Aston

EPSRC Sandpit 'Math of Life' (July, 2009):

- Three year project (2010–13)
- Followed by two BBSRC project.

Middlesex University: Roman Belavkin University of Warwick: John Aston

University of Keele: Alastair Channon & Elizabeth Aston

EPSRC Sandpit 'Math of Life' (July, 2009):

- Three year project (2010–13)
- Followed by two BBSRC project.

Middlesex University: Roman Belavkin University of Warwick: John Aston

University of Keele: Alastair Channon & Elizabeth Aston

University of Manchester: Chris Knight, Rok Krašovec & Danna

Gifford

Optimal Mutation Operator

ullet Optimal solutions achieving V(I) have exponential form, such as:

$$P_{\beta}(b \mid a) = \frac{e^{-\beta d(a,b)}}{\sum_{z} e^{-\beta d(a,b)}}$$

Optimal Mutation Operator

ullet Optimal solutions achieving V(I) have exponential form, such as:

$$P_{\beta}(b \mid a) = \frac{e^{-\beta d(a,b)}}{\sum_{z} e^{-\beta d(a,b)}}$$

 β is called *inverse temperature*, and it is the Lagrange multiplier related to the information constraint:

$$I\{a,b\} \leq I$$

Optimal Mutation Operator

ullet Optimal solutions achieving V(I) have exponential form, such as:

$$P_{\beta}(b \mid a) = \frac{e^{-\beta d(a,b)}}{\sum_{z} e^{-\beta d(a,b)}}$$

 β is called *inverse temperature*, and it is the Lagrange multiplier related to the information constraint:

$$I\{a,b\} \leq I$$

• The temperature β^{-1} is the slope of V(I):

$$\beta^{-1} = \frac{dV(I)}{dI}$$

Special Case: Hamming Space

Example (Hamming metric)

DNA sequences of length l and alphabet $\{1,\ldots,\alpha\}$ are elements of Hamming space $\mathcal{H}_{\alpha}^{l} := \{1, \dots, \alpha\}^{l}$ with Hamming metric

$$d_H(a,b) = ||a - b||_H = l - \sum_{i=1}^{l} \delta_{a_i}(b_i)$$

Special Case: Hamming Space

Example (Hamming metric)

DNA sequences of length l and alphabet $\{1,\ldots,\alpha\}$ are elements of Hamming space $\mathcal{H}^l_\alpha:=\{1,\ldots,\alpha\}^l$ with Hamming metric

$$d_H(a,b) = ||a - b||_H = l - \sum_{i=1}^{l} \delta_{a_i}(b_i)$$

Solution

$$P_{\beta}(b \mid a) = \frac{e^{-\beta \|a - b\|_{H}}}{[1 + (\alpha - 1)e^{-\beta}]^{l}} = \prod_{i=1}^{l} \frac{e^{-\beta (1 - \delta_{a_{i}}(b_{i}))}}{1 + (\alpha - 1)e^{-\beta}}$$

The constraint $\mathbb{E}\{r\} \leq v$ on $r = \|a - b\|_H$ defines $\beta = \ln\left(\mu^{-1} - 1\right) + \ln(\alpha - 1)$, where $\mu = v/l$ is the mutation rate.

Optimal mutation rate control functions in \mathcal{H}_4^{10}

Optimal mutation rate control functions in \mathcal{H}_4^{10}

Expected Fitness in Time

Evolution of Fitness in Information

Fitness Variance and Expectation

Mutation Rate Control in E. coli

• Used strains of Escherichia coli K-12 MG1665

Mutation Rate Control in E. coli

- Used strains of Escherichia coli K-12 MG1665
- ullet Fluctuation test using media $50 \mu \mathrm{g/ml}$ of Rifamipicin

Mutation Rate Control in E. coli

- Used strains of Escherichia coli K-12 MG1665
- ullet Fluctuation test using media $50 \mu \mathrm{g/ml}$ of Rifamipicin
- Estimated mutation rates μ in *E.coli* strains grown in Davis minimal medium with different amount of glucose.

• Strong relationship between μ and density of cells (p < .0001).

- Strong relationship between μ and density of cells (p < .0001).
- No such relationship in the *luxS* quorum sensing mutant (p = .0234).

- Strong relationship between μ and density of cells (p < .0001).
- No such relationship in the luxS quorum sensing mutant (p = .0234).

Krašovec, R., Belavkin, R., Aston, J., Channon, A., Aston, E., Rash, B., Kadirvel, M., Forbes. S., Knight, C. G. (2014, April). Mutation-rate-plasticity in rifampicin resistance depends on Escherichia coli cell-cell interactions. *Nature Communications*, Vol. 5 (3742).

Plastic mutation rates in bacteria (Krašovec et al., 2017)

rifampicin (triangles)

Plastic mutation rates in bacteria (Krašovec et al., 2017)

- rifampicin (triangles)
- nalidixic acid in E.coli (dark circles) and in P. aeruginosa (light circles)

Plastic mutation rates in yeast (Krašovec et al., 2017)

hygromycin B (squares) in S. cerevisiae

Plastic mutation rates in yeast (Krašovec et al., 2017)

- hygromycin B (squares) in S. cerevisiae
- 5-FOA (diamonds)

Plastic rates in all domains of life (Krašovec et al., 2017)

>70 years of published data (1943-2016), 67studies, 26 species.

• Presented basic ideas of the value of information theory.

- Presented basic ideas of the value of information theory.
- Used the binary and the mean-square cases to derive formulae for the minimum RMSE and the maximum accuracy of a model as function of information.

- Presented basic ideas of the value of information theory.
- Used the binary and the mean-square cases to derive formulae for the minimum RMSE and the maximum accuracy of a model as function of information.
- Vol gives additional tools to evaluate model performance.

- Presented basic ideas of the value of information theory.
- Used the binary and the mean-square cases to derive formulae for the minimum RMSE and the maximum accuracy of a model as function of information.
- Vol gives additional tools to evaluate model performance.
- The theory provides some deep insights into random phenomena, learning and decisions under uncertainty.

- Presented basic ideas of the value of information theory.
- Used the binary and the mean-square cases to derive formulae for the minimum RMSE and the maximum accuracy of a model as function of information.
- Vol gives additional tools to evaluate model performance.
- The theory provides some deep insights into random phenomena, learning and decisions under uncertainty.
- Control of parameters (mutation rates, learning rates, annealing schedule, exploration-exploitation balance, etc).

References

Motivating Example

Introduction to the Value of Information Theory
Measures of Information
Definitions of the Value of Information
Solution to Vol

Examples

The Binary Case
The Mean-Square Case

Applications

Evaluation of Model Performance Optimal control of mutation rate

- Belavkin, R. V. (2013). Optimal measures and Markov transition kernels. Journal of Global Optimization, 55, 387–416.
- Belavkin, R. V. (2018). Relation between the Kantorovich-Wasserstein metric and the Kullback-Leibler divergence. In N. Ay, P. Gibilisco, & F. Matúš (Eds.), *Information geometry and its applications* (pp. 363–373). Springer International Publishing.
- Krašovec, R., Belavkin, R. V., Aston, J. A. D., Channon, A., Aston, E., Rash, B. M., . . . Knight, C. G. (2014, April). Mutation rate plasticity in rifampicin resistance depends on escherichia coli cell-cell interactions. *Nature Communications*, *5*(3742).
- Krašovec, R., Richards, H., Gifford, D. R., Hatcher, C., Faulkner, K. J., Belavkin, R. V., ... Knight, C. G. (2017). Spontaneous mutation rate is a plastic trait associated with population density across domains of life. *PLoS Biology*, *15*(8).
- Shannon, C. E. (1948, July and October). A mathematical theory of communication. *Bell System Technical Journal*, *27*, 379–423 and 623–656.
- Stratonovich, R. L. (1965). On value of information. *Izvestiya of USSR*Roman Belavkin Mathematics for Deep Learning: Vol August 26, 2022 58 / 58

- Academy of Sciences, Technical Cybernetics, 5, 3–12. (In Russian) Stratonovich, R. L. (1975). Theory of information. Moscow, USSR:
 - Sovetskoe Radio. (In Russian)
- Stratonovich, R. L. (2020). *Theory of information and its value* (R. V. Belavkin, P. M. Pardalos, & J. C. Principe, Eds.). Springer.