COUNTDOWN TIMER DOCUMENTATION

1.PROJECT OVERVIEW:

The Countdown Timer Project is a simple application that allows users to set a time duration and track the countdown until it reaches zero. The project involves UI/UX design (Figma), System Flow & Architecture (Draw.io), and Version Control (GitHub/Git).

2.TOOL USED:

Figma \rightarrow UI/UX design for the countdown timer interface.

Draw.io → Flowcharts, system design, and logic representation.

Git/GitHub → Version control and project collaboration.

3.UI/UX DESIGN (Figma tool):

1.KEY FEATURES:

Screen 1: Timer Setup

- **Time Picker**: Users can select hours, minutes, and seconds using scrolling pickers.
- Quick Presets: Three circular buttons allow setting predefined times (e.g., 10 minutes).
- **Start Button**: A large, prominent button to initiate the countdown.

Screen 2: Active Timer

- **Circular Progress Display**: Shows remaining time in a bold, central position.
- **Alarm Indicator**: Displays the expected completion time (e.g., 2:35 pm).
- Control Buttons:

Pause: Temporarily stop the timer.

Delete: Cancel the countdown.

Minimal Navigation Bar: Small icons for menu and settings.

2. UI/UX Design Considerations:

- Color Scheme: Soft pink/red palette for a calm and modern look.
- **Typography**: Bold numbers for visibility, smaller labels for clarity.
- User Experience:
 - Large buttons for easy touch interaction.
 - Minimal distractions with a clean background.
 - Logical navigation with swipe/toolbar options.

4. Deliverables from Figma:

- Figma File containing:
 - Timer setup screen.
 - Active countdown screen.
- **Exported Assets**: Buttons, icons, and timer graphics for development.

4.FLOW & LOGIC DESIGN (draw.io Tool):

Step 1: Create a Flowchart for the countdown timer logic.

Start \rightarrow Gather requirements \rightarrow Desgin the layout (Countdown Timer) \rightarrow webpage layout \rightarrow Timer display \rightarrow color, theme and icons of a design \rightarrow Input Time \rightarrow Implementation \rightarrow Develop UI/UX design \rightarrow Clickable prototype \rightarrow Execution \rightarrow Timer \rightarrow To check whether it is working or not? \rightarrow Testing \rightarrow Check (Time > 0?) \rightarrow Continue \rightarrow Else Show "Time's Up" \rightarrow End.

Step 2: Save diagrams as .drawio and export to .png/.pdf.

5.VERSION CONTROL (Git & GitHub):

- 1. git config –global user.name "<GitHub user name>"
- 2. git config -global user.email "<GitHub email>"
- 3. Create a new repository on GitHub
- 4. Connect local project to GitHub

git remote add origin <Repository URL>

5. Add files:

git add README.md

6. Initialize Git in your project folder:

git init

7. Commit files:

git commit -m "First commit"

8. Adding files:

git add.

9. Commit file again:

git commit -m "First file is added"

10. Main Branch:

git branch -M main

11. Push files to GitHub:

git push -u origin main

- 12. Creating branches:
 - i. Checkout for old branch and move to new branch:

git checkout -b <new branch-name>

ii. Pushing files to new branch:

git push -u origin
branch-name>

6. Conclusion:

This project demonstrates the **complete workflow** of software development:

- **Design (Figma)** ensures a user-friendly interface.
- Flow & Logic (Draw.io) ensures proper planning and understanding of execution.
- Version Control (GitHub) ensures project tracking, backup, and collaboration.