推断拒绝答辩

关键字:特征工程、半监督学习、模型融合

队伍: irootech

队长: 申将伟

单位: 树根互联 AI lab

- 1.数据集介绍
- 2.数据分析和处理
- 3.题目的难点
- 4.模型构建

1.数据集介绍

数据特点:

- 1. 数据的特征没有明确含义,不利于做特征的构建有字段含义的特征不多: id、loan_dt、tag (只有训练集有tag特征)
- 2.维度高,除了有字段含义的特征外,剩余的特征为 f1~f6745

2.数据分析和处理

- 2.1数据探索
- 2.2特征预处理
- 2.3特征提取
- 2.4新特征构建

2.1.1 数据类型

数据类型	int64	float64	string	总计
数量	494	6253	1 (loan_dt)	6748

数据集中的数据类型有三种,分别为int64、float64、string, 其中int64类型的特征数量为494,float64类型的特征数量为 6253, string类型特征为loan_dt,总计6748个特征。

2.1.2 查看样本特征缺失数量的分布

分析:

- 1.n_null统计每个样本缺失的特征数
- 2.根据图像,我们猜想三个数据集源于同一个分布。
- 3.但是通过K-S检验, 发现测试集和验证集的P值高达0.6, 而训练集与验证集的P值远远小于0.05.
- 4. 因此我们需要从其他角度来提高我们猜想的可信度。

三个数据集的n_null特征分布图

2.1.3查看特征的缺失率分布

2.1.4 查看每一维众数的分布

- 1. 提取每一维是否为众数作为 指示特征特征maj
- 2. 统计所有维maj=1的次数为maj_cnt

2.1.5 深度挖掘时间特征的信息

为什么要针对时间这个特征做文章?

- 1. loan dt是为数不多有字段含义的特征之一
- 2. 对于金融风控来说,数据的时间越新,包含的信息越有用
- 3. 时间特征可能隐含了一些规律
- 4. 方便我们从时间维度上去验证训练集与测试集分布的一致性

2.1.6 loan_month

数据集各个月份样本数量占比图

分析:

- 1.数据都分布在1~5月
- 2.三个数据集数量占比分布一致
- 3.loan_month提升学习器区分不同月份数据的能力

2.1.7 loan_date

分析:

- 1.三个数据集分布是相似的, 我们更加确信两个数据集分布一致。
- 2. 提取每个月的第几天这个特征为loan_day, loan date将进一步细粒化数据
- 3. 发现规律:

在月初、月中、月末数据量的分布偏少

2.1.8 loan_week_day

分析:

1.与前面不同的地方在于:

因为计算的是逾期率, 所以只用了有标签数据。

2.逾期率的变化幅度随loan_week_day增大而增大。

注: 红线代表平均逾期率

逾期率随loan_week_day的变化趋势图

问题:

只有训练集tag特征, 需要对测试集的tag进行预测, 而测试集上tag分布未知。

tag的预测概率值分布图

② 2.2 特征预处理

- 1. 将loan_dt转化为loan_month, loan_date和loan_week_day。
- 2. 缺失值处理:填-1,因为数据绝大部分都是正数,所以填一个负数,就能很好把缺失值和正常数据给区分开。
- 3. 将数据划分为离散值和连续值,再分别对离散值做label encoding 和 对连续值做分桶化。
- 4. 对连续值做分桶化,可以利用IV-WOE来选择区分能力最强的分段区间。

2.2.1 划分离散值和连续值

特征的UniqueNum按升序排列

2.3 特征降维

把无字段含义特征中重复率超过95%的特征剔除掉,特征数量从6745维(称为data_raw)下降到4807维, 并称之为data_nodup。

接下来我们使用lightgbm学习器,设置五组不同的参数,来对比降维前后auc分数的表现。

本地验 证集 auc对 比	参数组 合1	参数组 合2	参数组 合3	参数组 合4	参数组合 5
data_ra w	0.6998	0.6119	0.7207	0.7325	0.6699
data_n odup	0.7035	0.6002	0.7137	0.7391	0.6643

注:通过设置多组参数,我们保证了对比的客观性。 降维前后auc分数基本相同

② 2.4 新特征构建

1.指示特征

null_sign:给每一个特征生成一个是否为缺失值的指示变量。

maj:给每一个特征生成一个是否为众数的指示变量。

2.统计特征

n_null:统计每个样本null sign为1的次数

majcnt : 统计maj为1的次数

3.时间特征

Ioan month, Ioan day, Ioan week day

4.特征交叉

比如f1和f2相乘,得到新特征f1*f2

5.tag特征

利用"历史学习器"的信息

	f1	f2	f3
f1	f1*f1	f1*f2	f1*f3
f2		f2*f2	f3*f3
f3			f3*f3

例子: 3个特征做乘法特征交叉

指示特征	描述
null_sign	特征是否缺失
maj	特征是否为众 数

时间特征	描述
loan_month	月份
loan_day	一个月内第 几天
loan_week_da y	一周内第几天

统计特征	描述
n_null	一个样本缺失 的特征总数
nd_null	n_null离散化
maj_cnt	一个样本属于 众数的特征总 数
maj_cntd	maj_cnt离散 化

降维特征	描述
data_nodup	4807维无字 段含义特征

交叉特征	描述	
cross feature	前100维特 征两两相乘	

tag特征	描述
tag	指示样本是 否通过

3.本道题的难点

- 1.由于只有部分数据有标签,在本地做交叉验证时,生成的验证集合线上的验证集分布不一致。
- 2. 数据字段含义特征太少,不利于特征工程构建。
- 3.想要利用训练集中有60000多条unlabel数据,需要使用半监督学习方法。
- 4.预测验证集和测试集上的tag特征。

4. 模型构建

- 4.1 模型选择
- 4.2 主要基础模型 (用于模型融合)
- 4.3 模型融合

4.1.1 线性模型的表现巨差

- 1. 尝试逻辑回归和SVM,其中线性核的SVM的线上AUC成绩不超过0.6。
- 2. 我认为原因有两点:
- 一是"喂"给线性学习的数据存在离散值,没有对离散值做one-hot编码;
- 二是 对非线性数据,没法直接用线性分类器来划分,除非对特征做一些非线性的转化,比如特征做平方。

4.1.2 树相关的模型表现最好

学习器	Random Forest	GDBT	XGBoost	LightGBM
参数	n_estimators: 200, max_depth: -1, n_jobs: 8	n_estimators: 200, max_depth: 3, learning_rate: 0.1	num_boost_round: 200, max_depth: 5, learning_rate: 0.05, n_jobs: 8	num_boost_round: 200, max_depth: 5, learning_rate: 0.05, max_bin: 200, n_jobs: 8
训练速度(训练 33465条有标签 数据,使用所有 原始特征+少量 构建的特征)	20.64 s	1509.91 s	62.89 s	31.93 s
训练效果(线上 最好AUC分数)	0.5082	0.5288	0.7181	0.7035
原理	Bagging	Boosting	Boosting	Boosting

主要树学习器性能比较

4.2.1 单模型 (蓝色表格表示)

gbc_pred0819				
数据集	loan_month, n_null, tag	loan_day,	nodup ,	
学习器	单个GDBT			
线上验证集AUC	0.819			

	lgb_pred0819		
特征集	loan_month, loan_day, loan_week_day, nodup, n_null, tag, cross feature		
学习器	单个lightGBM		
线上验证AUC	0.819		

xgb_pred_330_08242				
数据集	取"特征大集合"中特征重要性分数 前 330 的特征			
学习器	单个xgboost			
线上验证集AUC	0.8242			

注: nodup, tag, loan_month, loan_day, loan_week_day, null_sign, majcnt, cross_feature 为"特征大集合"

粗搜索

精搜索

semi_pred1				
数据集	loan_month, loan_day, nodup, n_null, tag (33465条有标签数据+6653个负例 (unlabel数据)+1997个正例 (unlabel数据))			
学习器	单个xgboost			
线上 <mark>测试</mark> 集AUC	0.8200左右			

结合了"历史模型"的区分能力与现有数据的信息量 AR KGB

 $Score_com = (1-a)*Score_AR + a*Score_KGB$

4.2.3 多个同种类学习器融合(绿色表格表示)

lgb_pred_en_8079					
数据集	loan_month,	loan_day,	nodup,	n_null,	
	tag				
学习器	20个lightGBM				
线上验证	0.8079				
集AUC					

xgb_pred0829				
特征集	loan_month, loan_day, nodup, n_null			
学习器	36个xgboost 做参数扰动,再做blending			
线上验证集	0.8296			
AUC				

xgbtest1_pred_083046				
特征集	loan_month, loan_day, nodup, n_null			
学习器	36个xgboost 做参数扰动,根据mic matrix 绘制热力图,挑选相关度较低的模型融合, 如图7所示。			
线上验证 集AUC	0.8305			

-1.00

- 0.96

- 0.92

- 0.88

- 0.84

- 0.80

模型的结合策略:

4.3.1 学习法: Stacking (模型的多层叠加)

4.3.2 平均法: 多个模型预测结果的线性组合

stacking-k folds

平均法

一般注意两个点:

- 1)模型本身的素质要尽可能好,即AUC分数应该尽可能高;
- 2)模型之间的相关度不宜过大

注: MIC是一个用于衡量两个序列相关程度的指标

- 0.90

- 0.75

- 0.60

- 0 45

融合步骤 Step1 (三个臭 皮匠顶个诸葛 亮)	计算公式 Test1 = (3*xgb_pred0829.prob + gbc_pred0819.prob + lgb_pred_en_8079.prob + lgb_pred_0819.prob + lgb_pred_080971.prob)	说明 使用上述的预测结果,做线性组合,给予auc高的模型更多的权重。 Test1是在验证集上得分最高的组合。	测试集AUC 0.82399
Step2 (同一个 "平台")	Test1 = (3*xgb_pred0829.prob.rank() + gbc_pred0819.prob.rank()+ lgb_pred_en_8079.prob.rank()+ lgb_pred_0819.prob.rank() + lgb_pred_080971.prob.rank())	在Step1的基础上, 使用排序融合, 使 得所有的预测结果 都能在同一个"平 台"上进行融合。	0.8253
Step3("优中选 优")	Test2 = (test1_pred.prob.rank() + gbc_pred0819.prob.rank() + lgb_pred_0819.prob.rank() + xgb_pred_330_08242.prob.rank() + semi_pred2.prob.rank())	Test2把Test1与其他得分比较高的模型做融合,融合的方式有别于Test1,使用的融合Rankaverage。	0.8260

感谢各位评委和选手的聆听!