Towards Explainability in Knowledge Enhanced Neural Networks

Data Science Master Thesis

Riccardo Mazzieri

Supervisor: Luciano Serafini

Co-Supervisor: Alessandro Daniele

September 21, 2021

Outline

- 1 Introduction and motivations
- 2 Knowledge Enhanced Neural Networks (KENN)
- **3 Contributions:** Experiments on collective classification
- 4 Contributions: Extracting explanations from KENN
- 5 Conclusions

Introduction

Deep NNs have several flaws. For example:

- They are **data hungry**:
 - With few data, learning is not possible, even for simple logical reasoning tasks;
 - This motivates **Neural Symbolic Integration (NeSy)**.

Introduction

Deep NNs have several flaws. For example:

- They are **data hungry**:
 - With few data, learning is not possible, even for simple logical reasoning tasks;
 - This motivates **Neural Symbolic Integration (NeSy)**.
- They are black boxes:
 - Predictions are not explainable, might lead to lack of trust in Al applications;
 - This motivates the research field of **Explainable AI (XAI)**.

Knowledge Enhanced Neural Networks

KENN¹ consists in a residual layer designed to improve the predictions of a base NN, by using logical prior knowledge, consisting in a set of FOL formulas \mathcal{K} .

¹Daniele, Alessandro, and Luciano Serafini. "Knowledge enhanced neural networks." Pacific Rim International Conference on Artificial Intelligence. Springer, Cham, 2019.

Basic Terminology

Definition (The Language)

Our language will be a function-free first order language \mathcal{L} , defined by:

- A set of **constants**: $C = \{a_1, \ldots, a_{|C|}\}$;
- A set of **predicates**: $\mathcal{P} = \{P_1, \dots, P_{|\mathcal{P}|}\}$;

Definition (Clause)

A clause c is a formula expressed a disjunction of literals:

$$c := \bigvee_{i=1}^{k} I_i, \quad I_i \neq I_j \quad \forall i \neq j$$

Language Semantic

$$\mathcal{C} = \{a_1, a_2, \ldots, a_n\}$$

$$\mathcal{P} = \{P_1, P_2, P_3\}$$

 $x_i \in \mathbb{R}^m$

Language Semantic

KENN: Intuition

Given the vector of predictions of the NN y, KENN computes the final vector of predictions as follows:

$$y' = y + \sum_{c \in \mathcal{K}} w_c \cdot \delta^c$$

where,

- Each δ^c improves the truth value of c, keeping $\|\delta^c\|_2$ minimal;
- $w_c \in \mathbb{R}$ is the **clause weight**, a learnable parameter that quantifies the importance of clause c.

Citeseer Experiments

- We tested KENN on a Collective Classification task;
- The **Citeseer Dataset** was used: citation network with 4732 citations (edges) between 3312 papers (nodes);
- The task is to predict the topic of each paper (6 possible topics).

- We also provide a comparison with two other NeSy models:
 - Semantic Based Regularization²;
 - Relational Neural Machines³;

²Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

³Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).

- We also provide a comparison with two other NeSy models:
 - Semantic Based Regularization²;
 - Relational Neural Machines³;
- The same base NN and the same base knowledge are used.

²Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

³Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).

- We also provide a comparison with two other NeSy models:
 - Semantic Based Regularization²;
 - Relational Neural Machines³;
- The same base NN and the same base knowledge are used.
- The main evaluation metric is the **relative improvement** over the base NN accuracy;

²Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

³Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).

- We also provide a comparison with two other NeSy models:
 - Semantic Based Regularization²;
 - Relational Neural Machines³;
- The same base NN and the same base knowledge are used.
- The main evaluation metric is the relative improvement over the base NN accuracy;
- Same experiments are performed over different sizes of the training set.

²Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

³Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).

Results

Results

Clause Weights Learning

Explainability

In XAI, two main paradigms for explainability are distinguished:

- Transparency
- Post-hoc explainability

Explainability in KENN

KENN can be considered a partially transparent model:

- A KENN layer will always be based on the prediction of a base NN, which will always be an inherently opaque model;
- On the contrary, everything happening inside the KENN layer is transparent;
- The explanations will only regard the knowledge enforcement stage.

 $\neg \operatorname{Dog}(a) \vee \operatorname{Animal}(a)$

Since the NN was confident that *a* is not an Animal, the truth value for *a* being a dog should decrease.

■ In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;

- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any $\mathcal{C} \subseteq \mathcal{K}$ we might want to know:

- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any $\mathcal{C} \subseteq \mathcal{K}$ we might want to know:
 - if, and where those clauses provided a positive or negative contribution;

- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any $\mathcal{C} \subseteq \mathcal{K}$ we might want to know:
 - if, and where those clauses provided a positive or negative contribution;
 - \blacksquare if and where there is any conflict between the formulas inside $\mathcal{C}.$

Improvement Score

Given $\mathcal{C} \subseteq \mathcal{K}$, the improvement score quantifies the positive (or negative) contribution of \mathcal{C} for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$

Improvement Score

Given $\mathcal{C} \subseteq \mathcal{K}$, the improvement score quantifies the positive (or negative) contribution of C for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$

$$IS(x_1, \mathcal{C}) = -1.2$$
 $IS(x_2, \mathcal{C}) = 5.4$ $IS(x_3, \mathcal{C}) = 1.4$ $IS(x_4, \mathcal{C}) = -3.3$ $IS(x_5, \mathcal{C}) = 0.1$

$$IS(x_2, \mathcal{C}) = 5.4$$

$$IS(x_3, \mathcal{C}) = 1.4$$

$$IS(x_4,\mathcal{C}) = -3.3$$

$$IS(x_5,\mathcal{C})=0.1$$

Improvement Score

Given $\mathcal{C} \subseteq \mathcal{K}$, the improvement score quantifies the positive (or negative) contribution of \mathcal{C} for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$

$$IS(x_1, \mathcal{C}) = -1.2$$
 $IS(x_2, \mathcal{C}) = 5.4$ $IS(x_3, \mathcal{C}) = 1.4$ $IS(x_4, \mathcal{C}) = -3.3$ $IS(x_5, \mathcal{C}) = 0.1$

Disagreement Score

We first define the disagreement vector:

$$DV(x,C) = \sum_{c \in C} |\delta_c| - \left| \sum_{c \in C} \delta_c \right|.$$

Starting from DV(x, C) we can finally define the disagreement score for a specific subset of predicates $\hat{P} \subseteq P$:

$$DS(x,C) = \sum_{i \in \hat{P}} DV(x,C)_i.$$

Conclusions

- Experimental results show that KENN outperforms other NeSy methods for the collective classification task;
- 2 Further experiments show a correlation between the clause weights and the satisfaction of the clause in the training data;
- KENN is inherently a transparent NN layer: explanations can be easily extracted in a understandable and human readable form;
- We proposed two evaluation metrics which can be used for debugging purposes.

Thank you for your attention

Appendix: Clause Enhancer

Appendix: Knowledge Enhancer

Appendix: KENN for relational data

U			
i	Unary		
0	1.3	2.7	
1	1.9	0.4	
2	-3.2	-0.1	
3	2.3	0.1	

T

В		
SX	sy	Binary
0	2	3.1
1	0	4.8
1	2	6.5
2	3	5.6

Appendix: KENN for relational data

Appendix: preactivations vs activations

Example: truth value of a clause

Example: truth value of a clause

Increasing satisfaction of a single clause

Increasing satisfaction of a single clause

$$\delta_s^{w_c}(z_c) = w_c \cdot \operatorname{softmax}(z_c)$$