Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

	•	

United States Department of Agriculture

Agricultural Research Service

Beltsville Agricultural Research Center

Beltsville, Maryland

STA/STA

National Potato Breeding Report, 1981

Fifty-second Annual Report by Cooperators

This progress report includes tentative results of research not sufficiently complete to justify general release. Such findings, when adequately confirmed, will be released promptly through established channels. Therefore, this report is not intended for publication and should not be referred to in literature citations.

DISCLAIMER

Trade names are used in this publication only to provide specific information. Their use does not constitute a guarantee of the products named and does not signify that they are approved by the U.S. Department of Agriculture to the exclusion of others of suitable composition.

PRECAUTIONS

This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers.

Compiled and Edited
by
Raymon E. Webb
Vegetable Laboratory
Horticultural Science Institute
Beltsville Agricultural Research Center
Beltsville, Maryland

U.S. Department of Agriculture National Agricultural Library Division of Lending Beltsville, Maryland 20705

NATIONAL POTATO COUNCIL

Montbello Office Campus 12075 E. 45th Avenue, Suite 301 Denver, Colorado 80239 (303) 373-5639

DAN W. HALL EXECUTIVE DIRECTOR

March 18, 1982

Dr. Raymond E. Webb, Chief Vegetable Laboratory Horticultural Science Institute USDA Agr. Research Service Northeastern Region Beltsville, Maryland 20705

Dear Dr. Webb:

Congratulations on this publication of your 1981 National Potato Breeding Report. This, your 52nd annual report, provides significant information to libraries, researchers, producers and many others involved in the potato industry.

The National Potato Council, representing all the nation's some 14,000 potato producers, salutes you and the other cooperators who have compiled the information for this report. The practical application of the information provided by these yearly reports assist our nation's potato industry improve it's productivity. In an era of ever increasing production costs, these increases in productivity can make the difference between profitability or failure on our nation's potato farms.

Again, our congratulations to you and the others who have made this report possible.

Sincerely,

Dan W. Hall, Executive Director

National Potato Council

db: HG

TABLE OF CONTENTS

UNITED STATES DEPARTMENT OF AGRICULTURE Beltsville Agricultural Research Center, Beltsville, Maryland, and Chapman and Aroostook Farms, Presque Isle, Maine R. E. Webb, P. Baum, G. W. L. Walter and R. W. Goth, USDA, Beltsville, Maryland, and D. R. Wilson, Presque Isle, Maine	1
<pre>INTERREGIONAL POTATO INTRODUCTION PROJECT (IR-1)</pre>	13
NORTH CENTRAL REGIONAL POTATO TRIALS	15
WESTERN REGIONAL POTATO VARIETY TRIALS	28
POTATO VARIETY EVALUATIONS	36
INTRODUCTION OF NEW VARIETIES	45
ALABAMA	49
CALIFORNIA	53
COLORADO	62
FLORIDA	64
IDAHO AND EASTERN OREGON	72
INDIANA	77
KANSAS	79
LOUISIANA	81

S. S. Leach, R. E. Webb, and D. R. Wilson
MINNESOTA
NEBRASKA
NEW JERSEY
NEW YORK (LONG ISLAND) J. B. Sieczka and R. C. Neese
NEW YORK STATE D. Halseth, C. A. Maatta, C. MacNeil, and M. Reisen
NORTH CAROLINA
NORTH DAKOTA
OHIO
OREGON
TEXAS
VIRGINIA
WASHINGTON
WEST VIRGINIA
WISCONSIN

UNITED STATES DEPARTMENT OF AGRICULTURE BELTSVILLE AGRICULTURAL RESEARCH CENTER (BARC), BELTSVILLE, MARYLAND AND CHAPMAN AND AROOSTOOK FARMS, PRESQUE ISLE, MAINE

Raymon E. Webb, Philip Baum, George W. L. Walter, and Robert W. Goth, BARC and
David R. Wilson, Presque Isle, Maine

BARC

Breeding and Evaluation: Eighty-six selected clones and varieties possessing desirable economic characters were included in the breeding block. Resistance to viruses A, X, Y and leafroll, Verticillium wilt and the golden nematode, high solids contents and processing quality from extended low temperature storage were emphasized in the crossing plan. Five hundred sixty-two parental combinations were successful, and about 310,000 true seed were obtained. Twenty-two seed lines were planted for seedling tuber production, and about 15.000 tubers were harvested for distribution in 1982 (Table 1.) Twenty-two hundred seedlings segregating for resistance to virus Y were inoculated twice with the virus. Eleven hundred sixty-nine seedlings proved resistant, and tubers from them were harvested for field planting in 1982. Approximately 200 clones were screened for resistance to viruses X and Y. Eighty-nine clones resisting infection with race 1 of late blight following 9 weeks' exposure in the field were inoculated with races 1, 2, 3, 4 in the greenhouse. Eleven of these clones with the most promising economic characteristics were included in the 1982 breeding block. Baking trials on promising russet clones further substantiated the favorable qualities of clone B8972-1.

PRESQUE ISLE

Planting began May 11 and was completed June 4. Planting season was relatively favorable. A moderate drought prevailed during July and early August. Excessive rainfall again plagued the harvest (Table 4).

CHAPMAN FARM

Approximately 13,000 seedling tubers from 65 selected parental combinations were planted. Eleven hundred twelve clones were selected for 12-hill plantings in 1982. Promising selections from the 60- and 80-hill plantings were advanced to larger seed increases for interregional adaptability evaluations. Tables 2 and 3 indicate the clones and varieties furnished to various cooperators. Several clones, both round whites and russets, including B7805-1, B8833-6, B8934-4, B8943-4, and B8972-1, were on maximum seed increase and in grower trials.

AROOSTOOK FARM

Varietal collections and older breeding lines were grown for maintenance and distribution to cooperators. Yield and disease-resistance trials were done on Aroostook Farm and nearby Silver's Farm. Experimental design for all yield

trials was a randomized block with four replications of 25 seed pieces each. White tuber trials received 150 pounds NPK per acre, and russet types received 180 pounds NPK per acre banded with a two-row planter. Seed spacing for white tuber trials was 9 inches and for russet trials 12 inches. All plantings were done by hand.

Cultural methods and materials for weed, insect, and disease control were according to local recommendations. Rainfall and temperature during the season are given in Table 4. At harvest, all entries were graded and samples hand selected for specific gravity and quality evaluations. Specific gravity was determined by the air-water method. Following specific gravity determinations, selected samples were divided and placed at 50° F, 45° F, and 40° F storage at 90 percent relative humidity.

Samples stored at 50° F and 45° F were processed into chips after 2 months in storage. Samples stored at 40° F were divided into two groups: one group to be reconditioned at 70° F for 1 and 3 weeks prior to frying; and one group to be fried direct from 40° F after 4 months' storage if processing data from the 50° F stored group indicated potential low reducing sugar content buildup at that temperature. Russet samples were also processed into french fries.

Potato chips were made from each sample by cutting the russet tubers in half and taking a 1/16-inch-thick slice from each tuber with a rotary food slicer. Slices were rinsed in water and placed on paper towels to remove excess water. Chips were then fried at 340° F in Primex vegetable shortening until bubbling ceased.

A french fry plug, 3/8 inch in diameter, was cut from each half of the tubers in the sample. After plugs were trimmed, rinsed, and excess water removed, they were fried at 365° F in Primex shortening for 5 minutes.

Each potato chip and french fry was classified after frying into color classes. Chip classes ranged from 1 = very light to 10 = very dark. French classes ranged from 1 = very light to 5 = very dark. Weighted averages were calculated by multiplying the number of chips or fries in each color class by the color class, totaled, and divided by the number of chips or french fries in each sample. Color ratings were made by using the PCII reference color chart 1206-U.

After color classification, each french fry plug was broken open and internal texture classification as 1 = mealy, 2 = intermediate, or 3 = soggy, and a weighted texture index calculated.

SUMMARY

Drought conditions during July to early August reduced yields somewhat (Tables 5-8), and subsequent excessive moisture caused growth cracking in the more susceptible lines, both in the foundation seed plots and the later harvested yield trials. Little second growth (knobs, malformations) was noted in most russet lines. Specific gravities and processing qualities were slightly affected by the excessive moisture in late August and during the

harvest period. The early clone, B6969-2, was named the variety Oceania in 1981. The high solids, golden-nematode-resistant clone B6987-184 was released as the variety Chipbelle, in part, because of its high solids and excellent chipping quality. B7583-6, a late maturing, oblong russet clone with excellent baking quality, was named Russette. Golden-nematode resistant round white clones B7592-1 and B7805-1 and russet clones B8934-4 and B8943-4 are in advanced grower trials. Russet clone B8972-1 is in final seed increase phase prior to release as a variety.

Research beginning in 1977 and culminating in extensive processing trials during 1980 and 1981 indicates the potential for improving processing capability (Table 9) of multipest-resistant germplasm. Indicated clones are part of a group derived from a complex background involving Solanum tuberosum, demissum, chacoense, stoloniferum, and igenum, phureja, vernii, and others.

BARC Table 1. Distribution of first-year seedling tubers and true seed from BARC, 1980.

			Number	
Location	Cooperator	Progeny	Seedling Tubers	True Seed
Domestic:				
California Colorado Maine Minnesota Missouri Nebraska	M. A. Khan J. A. Twomey D. R. Wilson S. S. Leach F. I. Lauer Tom Wagner R. B. O'Keefe	2 74 83 1 57 20 27	12,300 13,000 10,400 2,000 3,500	600 - 500 - 200
North Carolina Foreign: Taiwan	F. L. Haynes, Jr. Min-Nan Chang	95 1	15,100	300 400

BARC Table 2. Distribution of varieties and clones to U.S. cooperators.

State	Cooperator	Varieties	Clones
Alabama	J. L. Turner	_	9
Arkansas	J. Stephens	1	_
California	R. Voss	1 1 5	_
	D. Kenfield	5	_
Florida	J. R. Shumaker	12	182
Georgia	C. A. Jaworski	112	19
Illinois	S. C. Trees	20	-
Indiana	R. R. Romanowski	1	-
Maryland	W. Youngman	2 1 9 8	-
Minnesota	S. Robishaw	1	-
Mississippi	B. Graves	9	77
Missouri	T. Wagner	8	25
Nebraska	E. Ball	1	1
New Jersey	M. Henninger	12	202
North Carolina	F. L. Haynes, Jr.	4	6
Ohio	F. Lower	1	-
	J. Homan	1 2 6	-
Oregon	A. R. Mosely	2	1
Pennsylvania	R. Zacharius		-
	E. Pell	13	-
	L. Kuhns	30	-
South Carolina	W. Sitterly	5	8
Virginia	C. Savage, Jr.	6	186
Wisconsin	M. Cipar	1	-

BARC Table 3. Distribution of varieties and clones to foreign cooperators.

		Numbe	r
Country	Cooperator	Varieties	Clones
Argentina	E. Brucher	9	•
Canada	L. Fuller	1	1
	N. S. Wright	1	2
	R. Stark	1	-
India	B. Nagaich	2	1
Indonesia	M. Marvel	11	-
Pakistan	M. Shah	•	8
South Africa	C. Wilkins	10	-
USSR	H. Korsakov	2	-
West Germany	L. Serdewitz	1	-

BARC Table 4. Weekly average maximum and minimum temperature and weekly rainfall, Aroostook Farm, Presque Isle, Maine.

Week	Avg. Temp	perature F	Rainfall
Ending	Min.	Max.	Inches
May 16	67	43	1.26
23	59	34	.48
30	74	54	1.37
June 6	75	48	.81
13	69	43	1.35
20	76	54	.23
27	69	48	2.44
July 4	83	55	-
11	82	56	.94
18	76	51	.19
25	77 77	52 51	.10
Aug. 1 8	77 77	51 57	.81 3.09
15	76	54	.49
22	76 76	50	3.11
29	74	46	.67
Sep. 5	76	51	-
12	68	46	.60
19	66	43	.96
26	56	41	1.57
Oct. 3	54	38	1.63
10	51	36	1.17
17	57	32	-
Total			20.27

Yield, tuber size, distribution, and quality characteristics clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1981. BARC Table 5.

										50°F	45°F direct	40°F - 70°F
			% Tu	% Tuber Size		Distribution				2 mos.	4 mos.	3 weeks
	Akt	%	ł		2-1/4"-	3-1/4"-		Tuber	Sp.	olor3	olor3	Jor3
Pedigree	CWE	MKt	<1-//8" 2	Z-1/4"	3-1/4"	4	^ <u>4"</u>	Katıngı	۵۸°5	Chip FF lex	Chip FF lex	Chip FF lex4
B6969-2	386	88	2	19	51	31	∞	m	72	.6 3.6 2.	.5 3.7	.3 2.9 1
B6987-184	332	98	2	24	61	15	4	2	95	.1 2.3 1.	.8 2.1	.0 1.4 1
B7154-10	345	82	4	22	09	18	11	1	99	.5 2.7 2.	.3 2.8	.4 3.1 2
B7805-1	384	84	က	14	48	38	13	2	75	.7 4.3 2.	.1 4.1	.1 3.9 2
B8091-8	392	83	2	30	54	16	7	2	79	.0 3.6 2.	.0 4.1	.8 3.0 2
B8685-4	376	98	14	42	54	4	ı	2	78	.0 3.0 2.	.6 3.9	.4 2.6 1
B8706-7	370	84	က	13	59	28	13	2	79	.0 2.8 2.	.8 3.6	.7 2.1 1
B8710-16	461	95	က	13	26	32	2	2+	81	.3 2.9 2.	.7 3.9	.3 3.1 2
B8751-6	395	95	2	18	29	15	-	2	71	.1 3.2 2.	.7 3.4	.2 3.4 2
B8887-1	304	83	15	38	51	10	က	-	82	.3 2.2 2.	.4 2.4	.4 1.7 2
B9018-12	365	88	10	32	09	6	\vdash	-1	74	.7 2.4 2.	.0 2.3	.4 2.2 1
89127-6	398	88	2	10	61	30	10	2	74	8.6 3.3 2.2	9.1 4.0 2.2	8.4 2.8 2.1
B9130-24	356	81	19	99	32	2	ı	2	80	.1 3.1 2.	.8 3.7	.2 3.3 2
B9140-4	362	88	11	20	47	က	1	4	81	.7 2.4 2.	.9 3.3	.0 2.3 2
B9140-6	328	95	က	11	29	22	2	2	79	.9 2.8 2.	.6 3.3	.2 2.5 1
Atlantic	416	88	9	19	26	22	9	2+	84	.5 2.4 1.	.3 3.2	.4 1.9 1
Belchip	432	88	2	21	62	17	2	2	83	.8 2.1 4.	.2 2.0	.9 1.8 1
Kennebec	327	9/	4	12	46	42	20	2	74	.6 2.9 4.	.4 3.3	.2 2.4
LSD 5%	52								က			

1 = poor; 5 = outstanding
1.0 omitted.
Chips: 1-7 = satisfactory; FF: 1-3 = satisfactory.
FF & texture: 1-2 = satisfactory.

Yield, tuber size, distribution, and quality characteristics of clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1981. BARC Table 6.

					1					500F	450F direct	400F - 700F
	4.144	5	%	% Tuber Size	- 1	Distribution		- 4:1	ć	2 mos.	4 mos.	3 weeks
Pedigree	Owt Cwt	Mkt	<1-7/8" 2-1	1-//8"- 2-1/4"	3-1/4"-	3-1/4"- 4"	>4"	luber Rating ^l	ορ. Gv. ²	Chip FF Tex ⁴	Ch	Chip FF Tex ⁴
B9140-14	387	88	10	36	55	6	2	က	79	.2 2.9	3.6	2.8
B9140-17	334	88	7	24	22	19	2	2	82	.9 3.5	3.8	3,00
B9175-7	451	90	က	6	64	27	7	4	9/	.9 3.2	3.0	3.7
B9192-1	451	90	2	7	09	33	0	2	79	.1 2.1	2.4	2.0
B9224-6	433	83	14	45	47	ω	က	2	79	.3 4.0	3.8	3.7
B9279-9	380	93	7	23	09	16	0	2	75	.1 2.7	3,3	2.1
B9335-17	402	85	16	49	46	2	0	2	74	.4 3.7	4.2	3.4
B9340-13	417	90	9	20	09	50	4	2	9/	.8 2.3	2.8	2.2
B9409-1	429	92	9	30	62	ω	2	2	73	.0 3.1	3.6	2.0
B9423-4	486	82	9	18	49	35	12	က	99	9.9 4.2 2.0	10.0 4.2 2.1	10.0 4.6 2.1
Dakchip	455	88	7	22	09	18	4	2	77	.6 2.9	3.5	2.9
Norchip	414	90	7	36	53	H	က	က	82	.4 2.6	3.1	.0 2.1
Atlantic	444	90	7	18	61	22	က	က	87	.9 2.4	3.4	٥
Katahdin	338	80	က	13	22	32	17	2	74	4	4.2	.6 3.6
1 CD 5%	25								٣			
L3U 3%	3								ר			

3 4 - See footnotes Table 5.

Yield, tuber size, distribution, and quality characteristics of russet clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1981. BARC Table 7.

	AK tt	%	%	Tuber Size		1 1-1		Tuber	Sp.	50 ⁰ F 2 mos. Color ³	450F direct 4 mos. Color ³	400F - 700F 3 weeks Color ³
Pedigree	Cwt	Mkt	<1-7/8"	2-1/4"	3-1/4"	4"	>4"	Rating	Gv. 2	Chip FF Tex⁴	Chip FF Tex ⁴	Chip FF Tex4
B8686-8	272	81	8	25	61	14	11	2	85	.9 2.0 1	.5 2.0	.0 2.0 1
B8833-6	313	84	14	22	40	က	⊣	5+	78	.1 2.6.2	.9 2.6	.9 2.4 2
B8847-5	355	83	7	30	28	12	10	H	72	.7 3.9 2	.1 3.7	.0 4.0 2
B8847-8	359	81	က	13	22	30	16	H	74	8.9 4.4 2.6	9.2 4.0 2.0	10.0 4.5 2.4
B8852-2	331	87	2	22	65	14	ω	2	73	.9 4.2 2	.0 3.9	.5 3.9 2
B8922-10	381	98	ω	34	54	10	2	2	77	.8 3.8 2	.9 4.0	.7 3.9 2
B8937-9	413	87	12	46	20	4	↔	2	72	.0 3.2 2	.7 3.8	.3 2.5 2
B8934-4	326	84	4	24	26	17	11	2	81	.2 2.6 2	.7 2.6	.0 1.8 2
B8943-4	403	87	10	34	09	9	က	2+	79	.0 3.2 2	.6 3.5	.4 2.1 1
B8972-1	389	83	7	53	61	10	4	က	80	.1 2.2 2	.6 2.9	.9 2.7 2
B9137-9	401	98	2	20	89	12	10	2	80	.3 2.4 2	.0 2.6	.5 2.1 1
B9208-4	330	88	7	53	29	12	9	2	78	.6 2.9 2	.1 2.5	.9 2.4 2
BelRus	362	91	ω	38	23	7	က	က	83	.4 2.7 2	.9 2.9	.5 2.4 1
Russette	416	88	4	17	99	18	0	5+	82	.9 3.2 2	.1 3.8	.5 2.9 1
Lemhi	310	99	9	18	62	21	28	2+	87	.8 3.3 2	.6 3.7	.0 2.7 2
Allagash	312	83	4	19	62	19	14	2	69	.3 2.2 2	.2 2.0	.1 1.5 2
Centennial Russet	391	82	വ	20	62	18	7	2	80	.1 3.9 2	.5 4.1	.0 4.6 2
Burbank	450	83	12	45	42	13	2		77	8.0 4.0 2.0	8.6 4.1 2.0	8.2 3.5 1.9
LSD 5%	26								4			

1 2 3 4 - See footnotes Table 5.

Yield, tuber size, distribution, and quality characteristics of russet clones harvested 120 days after planting (late maturity) on Aroostook Farm, 1981. BARC Table 8.

Mkt Cwt 407	% Wkt	<1-7/8" 3	% Tuber Size 1-7/8"- 2 8" 2-1/4" 3	1 1 1 1 1 1	3-19u	3 %	Tuber Rating ¹ 3	Sp. 2 Gv.2		7F 3S. 3Pr ³ Te	30 F direct damps color dip FF Te	F - 70 ⁰ F 3 weeks Color ³ ip FF Te
	94	5	27	29	14	1	က	9/	7.6	2.8 2.2	7.9 3.2 2.0	8.7 3.4 2.0
	90	4	20	29	21	7	2	85	9	5 2.	1 3.3 2,	3 2.2 2.
	71	7	25	26	19	22	2	98	۲.	.0 2.	2 2.6 2.	,7 2.0 2.
	91	8	35	53	13	-	2	73	φ	.3 2.	2 3.1 2.	.2 2.5 2.
	83	14	48	46	9	2	m	73	٣.	.6 2.	1 3.3 2.	5 3.3 1.
	81	7	43	20	7	0	4	85	۲.	.5 2.	3 2.0 1.	0 1.8 1.
	69	7	21	49	56	24	m	78	0	.1 2.	5 2.6 1.	3 1.6 2.
	90	7	37	55	7	2	m	70	۲,	.2 2.	3 2.8 2.	0 1.7 2.
	80	4	33	47	50	16	2	74	<u>.</u>	.0 2.	7 3.6 2.	9 3.4 2.
	59	4	18	20	32	36	က	84		.4 2.	6 3.7 2.	4 2.6 2.
	91	8	52	45	4	2	m	85	6	3 2.	4 2.5 2.	0 1.9 2.
	83	2	16	70	14	ω	က	84	٧.	.0 2.	8 3.8 2.	5 3.2 2.
								,			•	,
414	82	10	42	51	7	9	←	81	ω 	3.8 2.1	8.3 3.6 2.0	7.9 3.1 1.9
							4					
1												

2 3 4 - See footnote Table 5

BARC Table 9. Selected clones showing promise for processing into acceptable chips direct from 4-month storage at $40^{\rm o}~{\rm F.}$

Clone/	Yield CWT/A	Tuber	Spec Gravi	ific ity ²	Chip Colo	
Variety	No. 1s	Rating ¹	1980	1981	1980	1981
B9507-14 B9515-2 B9516-2 B9516-6 B9516-8 B9518-1 B9518-3 B9528-9 B9530-13 B9547-28 Monona Norchip Belchip	525 316 425 347 358 254 406 421 404 450 364 480 466	2 1 4 2 2 3 4 2 1 5 2 2	86 81 93 82 94 82 90 103 84 80 68 86	90 75 93 81 88 85 92 98 96 83 64 83 82	6.2 6.4 7.0 6.0 7.0 5.6 6.8 6.0 6.4 8.2 8.6 8.4	7.0 6.0 6.8 6.0 5.0 6.8 6.0 7.0 7.0 6.4 8.4 9.2 9.0

 $^{^{1\ 2\ 3}}$ - See footnote Table 5

INTER-REGIONAL POTATO INTRODUCTION PROJECT (IR-1)

R. W. Ross and R. E. Hanneman, Jr.

Introduction of New Stocks. One hundred sixty-one accessions were added to the collection. One hundred twenty were true seed introductions of Argentine, Bolivian, Mexican and Peruvian species provided by Solanum taxonomists, J. G. Hawkes or C. M. Ochoa, following recent collecting expeditions.

Preservation and Increase of Stocks. Approximately 90 percent of the introductions contained in the collection are maintained as true seed. Satisfactory seed increases of 173 species introductions and intraspecific hybrids were obtained under glass, fiberglass, or screen. Recently-harvested seed samples of 161 species introductions were packaged for storage in the National Seed Storage Laboratory. Germination percentages of 750 seed lots of 2-20 years of age were determined.

Thirty-two introductions have been placed into meristem culture, 23 of which were heat treated. Eight potato virus S (PVS) and potato virus X (PVX) free lines were found bringing the total number of meristem derived virus free lines to 19. Seventy introductions have been tested serologically for PVS and PVX using the latex agglutination technique. One thousand and forty-six foreign cultivars, species and genetic stocks were tested for potato spindle tuber viroid (PSTV) using polyacrylamide gel electrophoresis, and 146 (14 percent) were found to be infected and have been discarded. Two improved meristem culture media have been developed—one for storage and the other for shoot tip regeneration.

Classification. Solanum taxonomist K. A. Okada spent three weeks examining the seedling progenies of numerous Argentine species collections he provided earlier for authentication of provisional or questionable site classifications. With assistance, 650-700 herbarium speciments were prepared for further study and inclusion in the INTA Balcarce Collection herbarium.

Herbarium speciments of nearly 50 representative Argentine species collections were added to the herbarium here. More than 4,000 herbarium mounts representing specific and interspecific variability of 99 species are now available for taxonomic use.

Distribution of Stocks. Seed and tuber shipments were sent to potato workers in 19 states within this country and to those in 14 other countries. Shipments included 2,263 seed and 1,899 tuber samples of species introductions, and 284 tuber samples of germplasm developed by the cooperative USDA-Wisconsin Genetics and Cytogenetics Project, involving species introductions.

Copies of a listing of 232 species introductions available in the form of tuber families (particularly for the benefit of potato projects without adequate greenhouse facilities) were distributed to more than 200 potato workers. This mailing elicited 23 responses that depleted most of the tuber families offered.

<u>Evaluation of Stocks</u>. The more recent accessions are being steadily evaluated for characters of economic importance thorugh the cooperative efforts of state, federal, and foreign laboratories.

Usefulness of Findings. The major objective of the Inter-Regional Potato Introduction Project is to promote and facilitate the improvement of the commercial potato in the United States by providing a readily available reservoir of useful breeding stocks. Breeders are constantly searching for new sources of superior germplasm and for ways to incorporate desirable new genes into adapted commercial varieties. Accomplishment of the major objective of this program must be measured largely by the success with which new, improved varieties meet the needs of commercial production.

Six new potato varieties, Alasclear, Highlat Russet, Lemhi Russet, Pennrose, Rosa and Rhinered, were released for commercial production in 1980-1981. The number of foreign introductions entering into their pedigrees are six, eleven, seven, twelve, ten and seven, respectively. One hundred fifty-two of the 156 potato varieties developed and released in the United States since 1932 have two or more foreign introductions in their pedigrees. These varieties presently comprise about 65 percent of the annual seed potato production in the United States.

Basic research programs conducted in several states and other countries continue to provide information concerning the potential value and diversity of the <u>Solanum</u> species, and consequently the knowledge necessary for more effective utilization of the IR-1 germplasm collection. During 1981, 38 papers, 30 abstracts, and 17 theses reported the use of <u>Solanum</u> introductions.

Potato Cultivar Trials

The year 1981 was the 31st year that the North Central Trials have been conducted. The trials are now conducted in 14 states and two provinces in Canada, and with the exception of Colorado, all locations reported data for the 1981 trial. The Colorado trial has been lost due to a heavy infestation of psyllids.

Recent Potato Cultivars

Progeny Number	Released	Released by	Release Name	Parentage	
W729R	1980	Wisconsin	Rhinered	W639 X Norchief	

Cooperating States and Provinces

State or Province	Date Planted	Date Harvested	Total Days to Harvest
Alberta	5/13	9/21	132
Manitoba	5/11	9/14	127
Indiana	5/28	10/19	135
Iowa	5/1	8/21	112
Kansas	3/24	7/24	122
Kentucky	4/6	9/14	164
Louisiana	2/24	6/3	100
Michigan	5/7	9/29	146
Minnesota	5/21	8/28	114
Missouri	3/18	8/6	143
Nebraska	5/25	9/17	116
North Dakota	5/13	9/21	132
Ohio	5/8	9/10	126
South Dakota	4/30	9/17	141
Wisconsin	4/30	9/22	146

<u>Soil Type</u>. Soil type ranged from clay loam to sand. The Indiana trial was grown on organic soil on muck land.

Indiana, H. Erickson; Kansas, J. Greig; Louisiana, J. Fontenot; Michigan, R. Chase; Minnesota, F. Lauer; Missouri, V. Lambeth; Nebraska, R. O'Keefe; North Dakota, R. Johansen; Ohio, J. Pisarczyk; South Dakota, P. Prashar; Wisconsin, D. Kichefski, S. Peloquin & J. Schoenemann; USDA - R. Webb; Alaska, C. Dearborn; Alberta, S. Molnar; Manitoba, W. Russell; USDA - Idaho, J. Pavek; Iowa, W. Summers; Colorado, C. Urano; Kentucky, J. Snyder.

Cultural Practices and Chemicals Used. Fertilizers, fungicides, insecticides, vine killers, and herbicides used were based on local conditions. The following insecticides were used: Supracide, 25E, Thiodan, Ambush, Diazinon, Sevin, Monitor, Guthion, Mancozeb, Thimet, Pydrin and Phosphamidon. Fungicides used were: Difolatan, Diathane, M22, M45 and M-200. Herbicides used were Eptam, Sencor, Ambush, Treflan, Lasso, Lorox; and vine killers used were Reglone, Dinoseb, Dinitro. Mechanical means were also used as vine killers. Fertilizers ranged from 100 pounds to 1500 pounds per acre and the analysis varied from location to location. Spacing was generally one foot between hills and 36 inches between rows.

Weather and Growing Conditions. During 1981 the growing season was again early in the northern states and the two Canadian provinces. For this part of the country the season was generally dry during the winter and spring and quite wet during July and August. In Indiana, heavy rains shortly after planting caused local flooding and stressed the young plants. The total precipitation in Indiana was 21 inches for the growing season and the temperature was slightly above normal each month. In Kansas, the rainfall was above average and the temperature below normal. Louisiana had ideal moisture and temperature for the entire growing season. Kentucky rainfall was below average and the temperature was above normal. Missouri had excessive rainfall during the tuberization period.

Entries. Entries were received from Nebraska, Minnesota, Wisconsin, Louisiana and North Dakota. The check cultivars were Norchip, Norland, Red Pontiac and Russet Burbank. Louisiana did not report any data for Wisc. 726 and Wisc. 774R. Nebraska and South Dakota did not report yield, etc. for Wisc. 774R, however they did report maturity. Apparently in South Dakota very few seed pieces of Wisc. 774R germinated.

Total and U.S. No. 1 Yield. Red Pontiac was again the highest yielding entry for both Total and U.S. No. 1 yield. Red Pontiac has been a check cultivar in the North Central Regional Potato Trials since the trial was initiated in 1950 and with the exception of one or two years, it has consistently been the top yielding entry. Other high yielding entries in 1981 were Neb. 219.73-3, Minn. 8777 and Wisc. 774R.

Kentucky and Wisconsin reported the highest yields and Iowa reported the lowest yields. Total and U.S. No. 1 yields are found in North Central Regional Tables 1 and 2.

Percent U.S. No. 1. Iowa, Kansas, Louisiana and Nebraska reported the lowest percent U.S. No. 1 and Missouri and Minnesota produced the highest percent U.S. No. 1. Russet Burbank and Minn. 9781 produced the lowest percent U.S. No. 1 (North Central Regional Table 3).

Maturity

Norland and ND146-4R were the earliest maturing entries in trial. The latest maturing entries were Neb. Al29.69-1 and Russet Burbank. Comparable to Norchip in maturity were Minn. 9781, Neb. 7.67-1, ND119-3 and ND55-7. Maturity is found in North Central Regional Table 4.

Percent Total Solids. Percent total solids are found in North Central Regional Table 5. The highest total solids entries were Minn. 10162, Minn. 9781 and Norchip. Other high solid entries were Russet Burbank and Wisc. 726. Norland and Red Pontiac produced the lowest percent total solids. Highest total solids were reported by Alberta, Manitoba and North Dakota.

Scab Reaction. Minnesota and Kansas reported the highest incidence of scab. Scab reactions are found in North Central Regional Table 6.

Summary of Grade Defects. A high incidence of scab and growth cracks was found in Neb. A219.70-3. Russet Burbank again had serious second growth. Certain advanced breedling lines are starred (*) to point out certain external and internal grade defects (North Central Regional Table 7).

Chip Quality. Along with Norchip, lines ND146-4R, Minn. 10162, Wisc. 726 and ND55-7 appeared to have the best chip quality. Agtron and PCII color chart readings are found in North Central Regional Table 8.

Early Blight Readings. Early blight readings are found in North Central Regional Table 9. It appears that the late maturing entries had the most early blight resistance.

Overall Merit Ratings. Merit ratings are presented for 1979, 1980 and 1981. In 1981, Neb. Al29.69-1 received the highest merit rating followed by ND146-4R. In 1979 these two selections were reversed as ND146-4R was first and Neb. Al29.69-1 was second. For all three years, Wisc. 726 has been rated in the top five.

Cultivar or Selection	1979	1980	1981
Neb. 129.69-1		25	35
ND146-4R	24	28	32
Minn. 8777			29
Wisc. 726	29	23	29
ND55-7			19

1/ MERIT RATINGS

Rating	Points
1	5
2	4
3	3
4	2
5	1

North Central Regional Table 1. Total Yield (Cwt/Acre) - 1981.

Cultivar or Selection	Alb.	Manit.	Ind.	Iowa	Iowa Kansas	Kent.	Ľa.	Mich.	Minn. Mo.	- 1	Neb.	N.D.	Ohio	S.D.	Wisc.	Average
Early to Medium Early																
ND146-4R	325	233	299	140	98	355	197	347	259	297	190	253		156	437	258.0
Norland	266	208	284	146	119	305	141	334	263	191	231	205	298	212	443	243.1
Medium to Late																
Neb. Al29.69-1	341	237	396	95	190	502	185	322	264	267	246	236	351	312	554	299.9
Neb. A219.70-3	444	31.3	441	136	230	605	238	584	330	196	336	333		218	541	357.2
Neb. 7.67-1	451	235	311	110	169	326	149	273	273	224	243	245		285	515	276.4
Minn. 9781	287	164	165	71	129	446	149	230	266	148	86	219	245	247	452	221.1
Minn. 8777	329	304	410	122	212	989	195	545	360	250	226	260		185	724	348.7
Minn. 10162	333	233	276	112	167	552	179	193	240	143	194	256		203	430	257.1
Wisc. 726	317	257	301	98	175	463	1	306	352	197	258	241	366	241	206	291.3
Wisc. 774R	310	230	318	151	180	454	1	458	350	163	1	221		!	561	304.4
La. 7196	157	229	290	142	173	652	183	372	321	216	214	203		142	613	281.6
La. 31-124	223	164	242	122	155	453	235	364	275	189	92	250	333	165	510	251.7
ND119-3	321	167	268	74	86	243	132	229	232	154	163	225		231	361	210.1
ND55-7	231	269	224	107	143	344	217	283	343	233	285	317	340	298	437	271.4
Red Pontiac	557	295	447	162	231	481	231	650	458	354	268	298	432	350	770	398.9
Russet Burbank	432	249	238	126	177	714	154	411	387	227	210	239	385	240	604	319.5
Norchip	342	246	270	126	153	496	246	382	325	286	289	262	330	243	448	.296.3
Average	333	237	305	1.20	165	472	189	370	312	220	222	251	339	233	524	287.5

U.S. No. Yield (Cwt/Acre) - 1981. North Central Regional Table 2.

Average		209.5				303.7		149.6			247.3		232.2	205.9			337.8	224.8	238.6	234.4
Wisc.		339	392		499	514	476	374	999	378	476	472	268	457	303	336	71.5	519	434	466
s.D.		136	191		254	207	260	196	163	180	223	1	114	147	205	252	314	183	225	203
Ohio		247	265		319	359	286	98	430	263	307	221	235	266	200	282	371	204	234	270
Z D		233	178		298	296	217	130	233	226	162	186	183	213	195	273	255	131	204	207
Neb.		120	172		184	200	174	54	164	79	167	1	163	26	103	222	197	64	206	145
Mo.		289	188		264	193	220	144	245	140	194	156	205	184	151	228	351	223	282	215
Minn.		219	244		234	319	253	239	346	223	339	322	297	261	204	295	440	354	303	288
Mich.		286	300		292	579	236	123	524	152	291	413	327	336	188	222	599	300	332	324
La.		130	92		150	125	43	9/	106	109	1	1	119	165	63	143	131	38	144	108
Kent.		302	276		437	551	290	388	260	502	421	381	554	394	207	285	404	678	391	413
Iowa Kansas		61	74		147	168	124	23	167	85	138	112	91	80	21	69	199	65	109	104
Iowa		68	111		44	92	45	13	63	35	09	70	09	74	39	59	85	35	69	09
Ind.		238	231		358	424	266	126	357	239	264	287	261	216	214	161	402	202	222	263
Manit. Ind.		204	192		213	248	207	115	285	187	225	201	207	133	131	184	260	184	215	200
Alb.		271	228		275	280	375	145	258	212	195	223	66	106	236	175	344	192	209	225
Cultivar or Selection	Early to Medium Early	ND146-4R	Norland	Medium to Late	Neb. Al29.69-1	Neb. A219.70-3	Neb. 7.67-1	Minn. 9781	Minn. 8777	Minn. 10162	Wisc. 726	Wisc. 774R	La. 7196	La. 31-124	ND119-3	ND55-7	Red Pontiac	Russet Burbank	Norchip	Average

Average Percent U.S. No. 1 over 2" Diameter - 1981. North Central Regional Table 3.

Cultivar or Selection	Alb.	Manit. Ind.	Ind.	Iowa	Iowa Kansas	Kent.	La.	Mich.	Mich. Minn.	Mo.	Neb.	N.D.	Ohio s	S.D.	Wisc.	Average
Early to Medium Early																
ND146-4R	83	88	80	47	62	85	99	82	85	97	63	92	87 8	87	78	78.8
Norland	98	95	81	92	62	91	54	06	94	86	75	87		90	88	•
Medium to Late																
Neb. Al29.69-1	80	90	90	43	77	87	71	91	89	66		84		31	90	•
Neb. A219.70-3	63	79	96	99	73	91	53	66	26	59		89		95	95	
Neb. 7.67-1	83	88	85	42	73	89	29	98	26	86		89		91	92	
Minn. 9781	20	70	9/	20	18	87	51	53	90	26		59		79	83	
Minn. 8777	78	94	87	50	79	88	54	96	96	98		90		38	92	
Minn. 10162	63	80	87	30	51	91	19	79	93	86	41	88	3 9/	88	88	74.3
Wisc. 726	61	88	88	19	79	91	1	92	96	66		29		92	94	
Wisc. 774R	72	87	90	48	62	84	1	06	92	96		84			84	
La. 7196	63	90	06	44	53	85	65	88	93	95		90		31	93	
La. 31-124	47	81	89	09	52	87	70	91	92	97		85		39	06	
ND119-3	74	78	80	52	52	85	48	82	88	86		87		89	84	
ND55-7	92	89	72	52	48	83	99	78	98	98		98		35	77	
Red Pontiac	62	88	90	52	98	84	57	92	96	66		98		90	93	
Russet Burbank	44	74	82	23	37	92	25	73	92	88		55		9/	98	
Norchip	61	88	82	55	71	79	29	87	93	66		78		92	97	
														1	,	I I
Average	29	84	82	49	61	87	26	82	92	98	64	82	3 6/	87	88	77.9

Maturity Classification $\frac{1}{}$ - 1981. North Central Regional Table 4.

.D. Wisc. Average		1.0 1.	.0 1.0 1.5		5.0 4.	5.0 3.	2.0 2.	3.0 2.	4.0 3.	.0 4.0 3.4	4.0 3.	3.0 3.	5.0 3.	3.0 3.	3.0 2.	3.0 2.	5.0 3.	4.0 4.	3.0 2.	
Ohio s		0.	.0 1		0.	0.	0.	0	0.	.0 4	0.	0.	0.	0.	0.	0.	0.	0.	0.	
N.D.		<u>ه</u>	2.1 1		o.	0.	0.	9.	5.	4.0 3	5.	۲.	0.	ω.	o.	۳.	4.	<u>ه</u>	٦.	
Neb.		1.0	1.0		•	•	•	•	•	3.0	•	•	•	•	•	•	•	•	•	
$\frac{2}{\text{Minn. Mo.}}$		•	1.5		•		•	•	•	3.0	•	•	•	•	•	•		•	•	,
Mich.		•	2.0		•		•	•	•	3.0	•	•	•	•	•	•	•	•	•	
La.		2.0	1.0		•	3.0	•	•	•	3.0	1	1	5.0	4.0	3.0	3.0	4.0	5.0	3.0	
s Kent.		1.0	•		•	•	•	•	•	4.0	•	•	•		•	•	•	•	•	
Kansa		•	2.5		•	•	•	•	•	3.0	•	•	•	•	•	•	•	•	•	,
Iowa		1.0	1.0		5.0	3.0	2.0	1.0	2.0	3.0	2.0	1.0	1.0	3.0	1.0	1.0	2.0	4.0	1.0	
Ind.		2.5	2.2		5.0	4.2	3.0	3.8	4.8	4.5	3.5	4.2	4.8	4.0	3.0	2.8	4.8	4.5	3.8	,
Manit. Ind.		1.9	1.5		3.9	3.4	2.0	3.3	4.4	3.0	3.3	3.1	3.8	3.1	1.4	2.3	2.4	3.5	2.6	,
Alb.		2.5	1.5		3.0	3.0	1.5	2.0	3.5	3.5	2.5	3.5	2.5	2.5	2.5	2.0	3.5	4.5	1.5	1
Cultivar or Selection	Early to Medium Early	ND146-4R	Norland	Medium to Late	Neb. Al29.69-1	Neb. A219.70-3	Neb. 7.67-1	Minn. 9781	Minn. 8777	Minn. 10162	Wisc. 726	Wisc. 774R	La. 7196	La. 31-124	ND119-3	ND55-7	Red Pontiac	Russet Burbank	Norchip	

 Very Early - Norland Maturity
 Early - Irish Cobbler Maturity
 Medium - Red Pontiac Maturity
 Late - Katahdin Maturity
 Very Late- Russet Burbank Maturity 1/

No data reported. 2/

North Central Regional Table 5. Percent Total Solids - 1981.

Cultivar	Alb.	Alb. Manit.	Ind.	Iowa	Kansas	Ken.	La. M	Mich.	Minn.	Mo.	Neb.	N.D.	Ohio	S.D. Wisc.	Ave.
Early to Medium Early															
ND146-4R Norland	20.3	19.7	15.0	13.1	19.0	14.5	16.0 1. 15.0 1!	7.1	16.2	16.5 15.4	18.0 15.9	20.2	18.6	16.5 15.4 15.9 15.0	17.1
Medium to Late															
Neb. Al29.69-1	27.0	21.6	15.2	•	œ	9	5.0 1	. 2	6	5		9	7	9.5 17.	•
Neb. A219.70-3		19	13.6		7	4.	6.5 1	.7	œ	4.		œ	18.0	.9 16.	•
1	19.8		14.0		9	2	5.0 1	.2	5	5		2	φ,	6.0 15.	
Minn. 9781	24.5	22.3	17.4	0	· 0		6.9	4. <	0 1	۲.		m		.6 20.	9, 6
	24.5			14.8	20.2	18.5	19.2 18	4. 4.	20.5	15.8	21.7	23.2	20.7	21.2 20.1	20.1
	21.8		17.8		6	5.	- 1	.2	9	5.		0	0	8.1 20.	6
Wisc. 774R	23.8	19.6	15.0	ς,	9	ς,	-	٠ و	9	4.	1	œ	9	9	9
La. 7196	20.8	18.3	15.2	5	7	4.	7.7 1	.2	9	4.		œ	7	1.1 15.	7
La. 31-124	21.0	19.0	16.5	4.	9	ů,	.5 1	۲.	9	4.	20.5	6	9		7
ND119-3	23.8		15.2	4.	œ •	ů,	5.0 1	.2	9	5.		6	œ	6.2 15.	9
ND55-7	21.5	21.5	16.0	3	φ	5	5.6 1	0.	7	5		2		7.7 18.	α̈́
Red Pontiac	20.3		14.3	2	9	2.	5.0 1	۲.	5.	4.		ά		5.5 16.	9
Russet Burbank	20.3	22.6	16.9	4.		7	6.9 1	.2	0	9		i.	6	9.9 20.	œ
Norchip	23.8	22.3	16.0		6		7.7 1	.2	φ.	7	20.9	2		8.6 19.	9.
Average	22.1	20.5	7.	14.4	17.9	7.	16.3.1	7.6	7.71	15.4	19.2	20.4	19.0	17.8 17.3	17.8
)	1)	• Н	•	•	i •)	•	•	• 1	,))		

North Central Regional Table	Regio	nal Tab	ole 6.	Scab	Scab Reaction Report.	on Repo		Most R	Most Representative Scab (Area-Type) $^{\perp}$	ntativ	e Scab	(Area	-Type).	1	1981.
Cultivar	Alb.	Manit.	Ind.	Iowa	Kansas	Ken.	La.	Mich.	Minn.	Mo.	Neb.	N.D.	Ohio	S.D.	Wisc.
Early to Medium Early															
ND146-4R Norland	T-1	1-2	3-2 1-3	1-1	1 - 1 - 1	1-1 1-1	0-0 T-1		5-2	0-0	1-3	1-1 1-1	T-1	1-1	
Medium to Late															
Neb.A129.69-1	1-3	1-2		T-3	2-1	1-2	T-1		5-4	1-3	1-3	2-3			1-1
Neb. A219.70-3		1-2	2-3	T-1	2-1	1-4	T-1		5-3	T-1	1-3	°5-3	1-2		2-1
Neb. 7.67-1	T-1			T-1	1-1	T-2	T-1		2-5	0-0	1-2	T-1			
		1-2	2-3	T-1	3-1	1-2	T-1		4-2	T-4	1-2	0-0		1	
Minn. 8777		1-1	1-4	T-3	3-2	Ţ-1	T-1		4-5	0-0	1-3	1-1		4-1	
Minn. 10162	T-2	T-2		T-1	2-1	T-1	T-1	1-3	5-4	0-0	0-0	1-2	T-4		1-3
Wisc. 726	1-2	T-1		T-1	2-1	T-1			5-3	T-3	1-4	2-2			
Wisc. 774R		1-1	3-1	T-1	1-1	Ţ-1			5-4	0-0		T-1			
La. 7196	T-1	2-2		T-1	3-1	1-3	0-0		5-3	T-3	1-3	2-5			1-4
La. 31-124	T-1	T-2		T-1	1-1	T-1	T-1		2-2	1-4	1-2	2-5	T-3		
ND119-3	T-1			T-1	1-1	T-1	T-1		5-2	T-1	1-2	T-1			
ND55-7		1-1		T-1	2-1	T-1	T-1		4-4	0-0	1-1	T-1			
Red Pontiac		1-2	3-2	T-1	3-2	T-1	0-0		2-2	0-0	1-3	1-2	1-2		
Russet Burbank	T-1			T-1	2-1	T-1	6-6		3-2	0-0	0-0	T-1			
Norchip		T-1	1-2	T-1	2-1	T-1	1-1		2-3	0-0	1-2	T-1			
1/ AREA					TYPE										
T = 1ess	than 1%	o)o			1 - Sm	Small, s Larger.	superficial	uperficial							
fi II					1 1	Larger, Larger F	rough pustules	pustu es, sh	Larger, rough pustules Larger pustules, shallow holes	noles					
4 = 61-80% 5 = 81-100%	0/0				ر ا د	verу даг	large pu	pustures,		aeep nores					

North Central Regional Table 7. Summary of Grade Defects - 1980.

			External					Internal	
		Growth	Second	Sun	Total Free of $\frac{1}{}$	Hollow	Internal	Vascular Discolor-	Total $\frac{1}{\text{Free of}^{-1}}$
Cultivar	Scab	Cracks	Growth	Green	Ext. Defects	Heart	Necrosis	ration	Int. Defects
Early to Medium Early									
ND146-4R	3.4	3.5	3.3	1.2	89.5	6.0	0.2	8.9	89.9
Norland	9.9	6.7		2.9	82.0	1.3	3.6	ب م	0.06
Medium to Late									
Neb. Al29.69-1	10.8*	2.5	4.7	6.1	81.0	2.1	0.2	5.4	92.3
Neb. A219.70-3	20.6*	9.1*	5.3		64.9	7.8	6.0	10.9*	80.4
Neb. 7.67-1	4.1	4.4	2.3	3.5	9.98	0.8	2.0	5.1	92.1
Minn. 9781	8.2	6.7	12.8	5.1	70.9	0.7	4.5	4.7	90.1
Minn. 8777	6.9	3.0	3.4	3.4	84.3	0.7	9.1*	13.3*	77.5
Minn. 10162	7.9	1.2	11.5	3.9	76.5	0.1	6.0	8.4	6.06
Wisc. 726	6.2	1.2		11.0*	77.4	0.3	3.3	10.1	86.5
Wisc. 774R	4.1		5.9	2.1	86.0	0.1	5.9	5.1	0.68
La. 7196	11.1*	1.8	5.1	7.9	74.2	0.3	3.3	8.3	88.1
La. 31-124	7.6	1.7	11.3	5.3	75.6	6.0	10.9*	9.9	81.5
ND119-3	2.9	2.7	4.6	5.3	85.5	0.3	1.3	3.8	94.6
ND55-7	3.3	1.6	2.5	4.4	88.1	1.3	4.4	6.5	8.68
Red Pontiac	8.6	5.6	12.7*	3.7	70.7	2.9	1.8	6.5	89.1
Russet Burbank	0.4	4.5	23.4*	1.9	72.3	*4.5	5.7	2.9	86.3
Norchip	3.3	5.4	8.1	8.7	76.9	6.0	5.2	8.2	86.2
Awerage	6.9	0 1	12.7	8	79.0	7.	3.7	7.1	87.9
		, •)) • •	•	(r)

1/ Percent normal tubers showing no defects (some individuals had more than one type of defect).

Possible weakness of cultivar or clone.

North Central Regional Table 8. Chip Quality - 1981.

Cultivar	Alb.	Manit $\frac{1}{\cdot}$ Ind $\frac{2}{\cdot}$	_	10wa Kansas 7	Ken;	La 2/	Mich-	Minn3/	Mo-1/	$Neb\frac{2}{\cdot}$	$N.D^{\frac{1}{2}}$	N.D. Ohio S.D.	Wisc 2/
Early to Medium Early													
ND146-4R Norland	32.5	55.0 45.0	2.0		63 43	2.4	3.0		2.0	2.0	41 44	70 72	0.9
Medium to Late													
Neb. Al29.69-1	17.6	37.5	4.0		44	5.2	•			•	36	61	•
Neb. A219.70-3	21.7	47.3	7.0		47	7.8	3.5		3.0	4.0	34	09	6.3
Neb. 7.67-1	20.1	54.3	5.0		34	7.6				•	40	99	•
Minn. 9781	30.3	41.3	4.0		40	3.4			•	•	40	29	•
Minn. 8777	20.5	32.0	8.0		55	5.6					29	61	•
Minn. 10162	42.6	56.3	2.0		54	3.2				•	43	71	•
Wisc. 726	36.3	51.8	3.0		26	1				•	42	70	•
Wisc. 774R	16.6	37.3	0.6		39	1				•	26	63	•
La. 7196	22.2	36.5	8.0		43	•			•	•	24	09	•
La. 31-124	23.8	30.8	7.0		47	•				•	37	64	•
ND119-3	36.3	51.0	2.0		19		•		•	•	41	73	•
ND55-7	35.8	58.0	3.0		61	3.4					45	64	•
Red Pontiac	14.1	34.3	0.6		32	•				•	28	52	•
Russet Burbank	31.3	47.0	0.9		45	•	•			•	33	65	
Norchip	35.3	54.0	2.0		56	•			•	•	47	73	•
Average	27.0	45.3	2.0		48	4.9	2.3		3.0	3.0	37	65	0.9

1/ PCII Color Chart (1 lightest; 10 darkest)

^{2/} Agtron (Highest number lightest)

^{3/} No data reported.

North Central Regional Table 9. Early Blight $^{-1}$ - 1981.

Cultivar	Alb.	Alb. Manit $\frac{2}{}$ Ind $\frac{2}{}$	Ind2/	Iowa	Kansas	Ken ; 1	La-2/ N	Mich-	Minn.	Mo-2/	Neb.	N.D.	Ohio 2/	S.D.	Wisc.
Early to Medium Early															
ND146-4R Norland	ហ			m m	1.0				٦.		2 0	2.1		m m	4 -
NOTERING	1			า	· -				-1		1	- -		า	-1
Medium to Late															
Neb. Al29.69-1	5			4	5.0				c		4	5.0		4	m
Neb. A219.70-3	2			4	4.3				r		4	5.0		4	4
Neb. 7.67-1	Ŋ			4	3.3				4		٦	5.9		4	⊣
Minn. 9781	5			4	2.5				r		٦	4.0		4	٦
Minn. 8777	Ŋ			4	4.5				r		m	5.0		4	٦
Minn. 10162	വ			4	3.8				m		m	4.0		4	7
Wisc. 726	Ŋ			4,	3.5				m		4	3.9		4	٦
Wisc. 774R	2			4	3.0				4		4			ı	7
La. 7196	വ			4	4.0				r		m	•		4	Ч
La. 31-124	Ŋ			4	3.5				4		4	4.3		4	Ч
ND119-3	5			4	1.5				٦		ı	•		4	4
ND55-7	Ω			4	•				5		2			4	Μ
Red Pontiac	5			4	3.3				٣		m	3.6		4	7
Russet Burbank	2			4	5.0				m		m	5.0		4	7
Norchip	Ŋ			4	3.0				4		2	3.8		5	П

1/ Early Blight; l susceptible; 5 highly resistant
2/ No data reported.

North Central Regional Table 10. Merit Ratings $^{1/}$ - 1981.

Total Points		32		ц) [י י	o C	, σ		- 7			ı C	, o	oσ	۰ د) L		
	l	М		٣) –	4		0	7 —	1 0	1				Ť	i -		17	
Wisc.		4				_	4	ιſ)	0	۳ ۱)							
s.D.				ιſ)	^	1								4	m)	г	
Ohio				4	ı m)		ιΩ)	7						2			
N.D.		Ŋ						m	2		7				4				
Neb.				4	ı			-	l	2					Ŋ	ı		т	
Mo.		4		m)	7				H								5	
Minn.								7.		m	Н				7		4		
Mich.		м		Ŋ	П			4		2									
La.		ιO			m				4			7						ı	
Ken.		ιO						7						m	4			г	
Kansas				4	5	-		2		m									
Iowa		н		2	2				4									ж	
Ind.									4	5	m			2		Ч			
Alb. Manit. Ind.		5 4						2		3							1		
b. M																			
Al		Н		5						2				4				ω.	
Cultivar	Early to Medium Early	ND146-4R Norland	Medium to Late	Neb. A129.69-1	Neb. A219.70-3	Neb. 7.67-1	Minn. 9781	Minn. 8777	Minn. 10162	Wisc. 726	Wisc. 774R	La. 7196	La. 31-124	ND119-3	ND55-7	Red Pontiac	Russet Burbank	Norchip	

1/ Merit Ratings

Points	5	4	m	2	П
Rating	г	2	m	4	2

WESTERN REGIONAL POTATO VARIETY TRIAL - 1981

J. J. Pavek, D. L. Corsini, and Cooperators 1/

The 1981 Western Regional Potato Variety Trial was uniformly grown at eleven locations. The trial consisted of 10 entries including seven experimental clones. The trial locations, planting, vine kill, and harvest dates, and days from planting to harvest were as follows:

State/ Province	Location	Planting Date	Vine Kill Date	Harvest Date	Days To Harvest
Alberta California Colorado Idaho Oregon Washington	Brooks Kern Co. Tulelake San Luis Valley Aberdeen Kimberly Hermiston Malheur Co Othello Prosser	5 13 2/26 5/12 5/13 5/7 4/30 4/7 4/23 4/15 4/24	9/10 - 9/2 9/9 9/8 - 9/9 10/1 - 9/9	10/1 6/22 9/29 9/15 10/9 10/7 9/21 10/7 10/23 9/15	141 116 136 125 155 160 167 166 161
>Wyoming]	Torrington	5/21	9/14	9/24	126

Cultural practices, use of fertilizer, pesticides, irrigation, and vine killing varied according to local conditions. All locations were irrigated on a regular schedule throughout the entire growing season. Temperatures across the region averaged somewhat below normal through July and then considerably above normal to the end of the season. Heat and moisture stress caused severe yield problems at Torrington and serious malformations, etc. at Brooks. Severe internal quality problems were experienced with the Russet Burbank control in the Columbia Basin (Washington, Hermiston, Oregon). Data on tuber yields, vine and tuber characteristics, and merit ratings are presented in Western Tables 1 through 7. Experimental clones to be retained in the 1982 trials are A72685-2 and AD74135-1.

^{1/} Alberta, D. Lynch; California, R. Voss; Colorado, J. Twomey, D. Holm; Idaho, G. Kleinschmidt, S. Michener; Oregon, A. Mosley, D. Hane, C. Stanger, G. Carter; Washington, M. Martin, W. Iritani, N. Holstad; Wyoming, K. Bohnenblust.

Western Table 1. Total yield cwt/acre.

Entry	A16 ³ /	California Kern Tul	i ornia TuT	Colo3/ SLV-3/	Idaho Ab Ki	ho Kim	Oregon Herm3/ N	n <u>Ma 1</u>	Washington Oth Pros	ngton Pros	Wyo1/3/	Overall $\frac{2}{4}$
A72545-2	373	365	425	318	268	403	269	317	720	711	82	460
A72685-2	393	510	315	339	324	497	743	258	713	806	135	200
AD7267-1	375	200	370	240	285	364	501	169	651	585	84	404
AD7377-1	361	320	485	334	300	489	699	226	655	588	09	443
AD74135-1	470	450	202	392	279	555	492	275	730	713	173	486
WnC521-12	417	1	460	324	286	432	564	376	643	269	88	463
WnC672-2	316	520	630	302	335	493	716	290	ı	675	128	495
Lemhi Russet	400	470	475	1	409	551	561	322	631	693	ı	486
Norchip	384	300	370	302	287	423	505	285	425	584	316	386
Russet Burbank	314	345	200	245	286	452	489	316	480	099	130	409
Location Means	380	421	454	315	306	466	593	283	632	681	134	453

 $\frac{1}{2}/$ Wyoming data not used in calculation of overall mean and in analysis of variance. $\frac{2}{3}/$ LSD @ 5% = 60 cwt (using locations as reps). $\frac{3}{3}/$ Sencor used for weed control.

Yield of U.S. No. 1's, cwt/acre and percent. Western Table 2.

Entry	Alb	California Kern Tul	rnia Tul	Colo SLV	Idaho Ab K	ho Kim	Oregon Herm	on Ma 1	Washington Oth Pros	ngton Pros	Wyo1/	Overall $\frac{2}{\text{Mean}}$
A72545-2	$140\frac{3}{18}$	345 95	325 76	230	238	340 84	630	236 74	613 85	. 637	57 70	373 81
A72685-2	92 23	475 93	230	285 84	284	436 88	06 699	189 73	539 76	744	80 59	394 79
AD7267-1	87 23	465 93	255 69	168 70	234 82	320 88	392 78	129 76	562 86	505 87	58 69	312 77
AD7377-1	86 24	285	395 81	253 76	253 84	385 79	564 84	140 62	482 74	509 87	35 58	335 76
AD74135-1	171 36	395 88	400 79	302	208 75	411 74	406 83	176 64	525 72	580 81	125 72	357 73
WnC521-12	112	1 1	385 84	258 80	235 82	378 88	526 93	310 82	514 80	598 86	68	373 81
WnC672-2	121 38	490 94	525 83	225 75	268	422 86	640 89	223 77	1 1	566 84	59 46	404 82
Lemhi Russet	131	440 94	355 75	1 1	267 65	471 85	513 91	211 66	536 85	570 82	1 1	376 77
Norchip	132 34	255 85	265 72	200 66	166 58	325 77	403 80	189	334 79	489 84	99	276 72
Russet Burbank	52 17	285	335	136	173	292 65	321	230	294	511	26	263
Location Means	112	385	347	232	233	378	206	203	496	571		346

 $\frac{1}{2}/$ Wyoming data not used in calculation of overall mean and in analysis of variance. $\frac{2}{3}/$ LSD @ 5% = 55 cwt (using locations as reps). $\frac{3}{4}/$ Top figure is cwt/acre, lower is % of total yield.

U.S. No. 1's over 10-12 oz, percent of total yield.* Western Table 3.

Entry	Alb	California Kern Tul	rnia Tul	Colo SLV	Idaho Ab K	ho Kim	Oregon Herm	on Ma l	Washi Oth	Washington Oth Pros	Муо	Overall Mean
A72545-2	23	_	25	21	34	99	ı	15	55	49	2	34
A72685-2	=	15	14	27	35	99	ı	18	47	35	m	31
AD7267-1	10	7	32	23	30	29	ı	34	09	46	0	34
07377-1	12	က	22	24	35	32	ı	6	43	23	0	27
D74135-1	12	7	24	21	14	48	ı	9	44	35	0	27
WnC521-12	21	ı	43	27	33	62	ı	39	49	52	2	39
WnC672-2	15	11	20	Ξ	12	43	ı	22		47	0	26
Lemhi Russet	22	10	23	ı	22	19	ı	12	47	34	1	30
Norchip	25	0	4	4	-	21	1	9	15	12	0	10
Russet Burbank	6	က	14	4	9	38	ı	25	29	24	∞	19
Location Means	16	8	23	19	22	52	1	19	44	36	ı	28

*Greater than 12 oz for California and Prosser, Washington; greater than 10 oz for rest.

U.S. No. 2's and culls over 4 oz, percent of total yield. Western Table 4.

Entry	Alb	California Kern Tul	ornia Tul	<u>Colo</u> <u>SLV</u>	Idaho Ab Kin	ho Kim	Oregon Herm M	Mal	Washi Oth	Washington Oth Pros	Wyo	Overall Mean
A72454-2	58	က	15	က	0	9	_	0	9	m	0	∞
A72685-2	75	က	16	4		2	က	_	11	თ	9	12
AD7267-1	75	2	18	13	വ	വ	10	9	7	9	4	14
AD7377-1	9/	9	Ξ	14	വ	15	10	4	14	വ	က	15
AD74135-1	62	9	10	13	2	20	9	m	16	∞	7	15
WnC521-12	20	ı	13	15	4	9	2	m	=	9	_	11
WnC672-2	26	2	14	12	2	4	7	2	ı	0	_	10
Lemhi Russet	99	2	17	ı	16	6	4	_∞	വ	_∞	1	13
Norchip	27	7	22	19	r	9	9	14	4	7	_	14
Russet Burbank	85	10	19	19	0	30	14	12	20	11	25	21
Location Means	65	4	15	12	വ	=	9	22	10	7	1	13

Western Table 5. Specific gravity.

Entry	Alb	California Kern Tu	rnia Tul	Colo	Idaho Ab	ho Kim	Oregon Herm Ma	gon Mal	Washington Oth Pro	ngton Pros	Myo	Overall ₁ /
A72545-2	1.098	1.076 1.09	1.091	1.096	1.096	1.078	1.078	1.093	1.081	1.074	1.075	1.085
A72685-2	117	35	94	103	102	83	82	100	82	82	88	93
AD7267-1	35	29	73	75	80	69	70	75	70	99	7.1	73
AD7377-1	06	68	78	36	79	67	75	83	70	65	65	75
AD74135-1	104	76	94	94	91	85	79	94	77	72	86	98
WnC521-12	98	ı	103	105	109	95	96	108	06	88	92	86
WnC672-2	125	83	86	102	104	85	83	86	ı	81	79	93
Lemhi Russet	102	79	86	ı	106	88	85	103	83	84	1	91
Norchip	87	71	82	93	89	92	81	88	9/	92	84	82
Russet Burbank	93	84	94	96	16	75	84	87	81	78	78	98
Location Means	100	78	89	95	95	80	81	93	80	77	18	86

LSD @ 5% = .004, using locations as reps.

Western Table 6. Summary of vine characteristics.

Entry	Seed Source	Stand $\frac{1}{\%}$	Seedborne $\frac{2}{2}$	Vine <u>3</u> / Size <u>-</u>	Vine Maturity <u>4</u> /	Vert ₅ / Wilt <u>5</u> /	Early ₆ / Blight <u>-</u>
A72545-2	0r	84	30	Lrg	3.8	1.5	1.7
A72685-2	0r	87	0	M.Lrg	3.8	1.8	2.2
AD7267-1	0r	94	25	M.Lrg	3.2	3.0	2.8
AD7377-1	0r	88	15	M.Lrg	3.3	2.6	2.8
AD74135-1	0r	93	10	M.Lrg	3.3	2.4	
WnC521-12	Co	84	0	Lrg	3.0	3.0	2.8
WnC672-2	Co	95	Ö	M.Lrg	2.8	2.1	3.4
Lemhi Russet	Id/Or	93	0	Lrg	3.4	3.9	3.4
Norchip	ΡI	92	0	M.Sm	3.3	4.4	4.5
Russet Burbank	0r	86	15	M.Lrg	3.7	4.4	o.e

Mean of 10 locations. $\frac{2}{4}$ Visual symptoms of mosaic, Aberdeen and Kimberly. $\frac{2}{3}$ Aberdeen.

4/ Mean of 8 locations, 1 (early) to 5 (very late).
5/ Verticillium wilt, 0 (none) to 5 (severe); mean of 3 locations.
6/ Farly blight 0 (none) to 5 (severe): Aberdeen

Early blight 0 (none) to 5 (severe); Aberdeen.

Tuber type, scab, and merit rating scores. Western Table 7.

		۱,					Me	erit R	Merit Rating Scores $^{2/}$	ores ² ,			
Entry	Shape	Tubers-/ Skin	Scab	Alb	Cal Kern	1†. Tul	Idaho Ab Ki	ho Kim	Ore. Herm	Wash Oth P	sh. Pros	Myo	Score
A72545-2	0	Buff	1.8	4	2	•		5	5	•		•	10
A72685-2	0	Rus.	1.3				2	2	2	က	2	4	27
AD7267-1	1-0	Rus.	6.0		2			က		•	•	-	6
AD7377-1	1-0	Rus.	0.1		_	2	4		m	2	. •	•	12
AD74135-1	T-0	Rus.	6.0	_	4	4	2	_	٠	•	_	2	18
WnC521-12	R-0	Buff	1.3	2		ო			4	4	•	2	15
WnC672-2	R-0	Buff	6.0		က	2	•	•	•	•	2	က	13
Lemhi Russet	T-0	Rus.	0.5	2		_	က	4	_	2	4		23
Norchip	~	White	6.0	т	•		•		•	_	•		4
Russet Burbank	_	Rus.	0.1		•		_	•	•	•			4

Shape: 0 = oblong, R = round, L = long; Skin: Buff = scaly, not smooth and white, Rus. = russet. Scab: 0 (none) to 5.0 (most severe); means of 5 locations.

2/ Merit Rating Rank Score

Rank Score

. 4 r

R.W. Chase, N.R. Thompson, R.B. Kitchen
Department of Crop and Soil Sciences

A. Dates of Harvest of Several Potato Varieties

The intensive dates-of-harvest study is conducted each year at the Montcalm Research Farm. Three blocks, each containing 112 ten foot plots were planted May 6, 1981. Each block contained 28 varieties and advanced selections planted in a randomized complete block design with four replications. One block was harvested August 11, a second on August 31 and the third on September 22. At each date, yields, specific gravity and chip scores were determined.

The plot area received 200 lbs/A plow down of 0-0-60, 500 lbs/A 20-10-10 and 150 lbs/A 45-0-0 sidedressed. The plowdown crop was a one year old stand of alfalfa. Temik at 20 lbs/A was applied at planting. Alachlor (Lasso) 2 lbs/A was applied soon after planting as early preemergence and metribrizen (Sencor) 0.5 lbs/A was applied delayed preemergence. The plots were irrigated.

Results

The yield performance at each date of harvest is summarized in Table 1. There was no yield increase between the second and third harvest which was due in part to an increased rate of growth during the season so that many varieties appeared to mature earlier than normal. There also was a definite curtailment in growth in September after the application of copper.

Yields in general were very desirable. Varieties which produced very acceptable yields before September were Atlantic, Crystal, Belchip, Onaway, Pioneer, Rideau, MS402-1, MS108-5, and Wis 718. Chipbelle, Denali, Lemhi, Michimac, Monona, Russet Burbank and CA027 would be judged as later maturing varieties.

Table 2 summarizes the specific gravity and chip quality of each variety. Overall there was no appreciable change in specific gravity between harvests. Varieties which show exceptionally high specific gravity are Chipbelle, Denali and Atlantic. All varieties except Onaway produced acceptable chips at most harvests. Several of the later maturing varieties produced darker chips at the early harvest, particularly if held for one week. Table 3 summarizes the internal and external defects which were observed. Hollow heart, growth cracks and second growth were all minimal. Vascular discolorations were observed in most varieties, however for the most part these were only slight. Dakchip exhibited the most severe vascular discoloration.

Variety Observations

Allagash Russet - yields were below average at all harvests, primarily reflecting a lack of adequate tuber sizing. Specific gravity is also low. Similar results were noted in 1980.

Atlantic - continues to produce very satisfactory yields and consistently high specific gravity. It produces very acceptable potato chips and it appears to be a variety with a fairly wide range in marketable harvest. With its wide adaptability including the southern states, this variety could become a year-around chipping variety.

Belchip - yielded well above the average with medium-high specific gravity. Tuber type and appearance were very good in 1981 and defects were minimal. Maturity is somewhat later than Atlantic.

Chipbelle - appears to be a late maturing variety with exceptionally high specific gravity at each harvest and above average yields. Tuber shape is oval to oblong. The plant is very susceptible to metribuzin (Lexone/Sencor). Chip color has been very good and comparable to Monona and Atlantic.

<u>Crystal</u> - appears to set and size tubers early. Tubers have a bright skin, however if scab is present it is often the deep and pitted scab. Bruising and susceptibility to storage problems have been reported.

<u>Dakchip</u> - yields were above average, however specific gravity is medium to low and it did decline with delayed harvest. Vascular discoloration was severe and this has been noted in previous years. It has a very short dormancy.

<u>Denali</u> - a late maturing variety which yielded well above average. Specific gravity is very high. It has a low tolerance to scab and fields with a history of scab should be avoided.

Highlat Russet - exceptionally low yields with inadequate tuber sizing. Released from Alaska in 1980 for specific markets in Alaska. It does not appear to be well adapted to Michigan.

<u>Jemseg</u> - an early maturing round white with some skin netting. Yields were below average.

Lemhi - yields were well above average and tuber type and shape were very attractive with a higher percentage of U.S. No. 1's than Russet Burbank. It appears to size tubers earlier than Russet Burbank, however hollow heart and blackspot are two serious problems at this point.

<u>Michimac</u> - a late maturing round white with high yields. Appears most suitable for fresh pack from a later harvest or out of storage. Appears to have a low tolerance to scab.

Monona - included as a check variety. Yields were average at the late harvest. Specific gravity was low and chip quality was excellent.

Oceania - yields were slightly below average. Tubers are attractive with shallow eyes and it has low specific gravity. Would appear most suitable for fresh pack.

Onaway - included as a check variety. Yields well above average and type was very good.

- <u>Pioneer</u> a long red variety being evaluated as a potential for early harvest frozen processing. Sets and sizes tubers early with very good yields.
- <u>Rideau</u> a medium-late round red variety with very good color. Yields above average at the later harvests.
- Russette yields were slightly below average. During both 1980 and 1981 hollow heart has been prevalent in this variety although it was not observed in these plots.
- Russet Burbank included as a late maturing check variety. Sizing did not continue after the second harvest which is not normal. Tuber type and quality were very good in 1981.
 - Superior yields were very good in 1981.
- Yukon a golden flesh variety which has good yields and very acceptable tuber shape and appearance. Specific gravity readings were consistently above 1.080.
- <u>P8972-1</u> a russet selection from the USDA-Peltsville program. Tuber sizing was very poor with a high percentage of tubers under 2 inch at all harvests. Yields were very low.
- <u>CA-027</u> is a late maturing selection from Maine. It yields well above average and appears most suitable as a fresh pack potato.
- <u>C-13</u> is an advanced selection from the Campbell Co. Yields were below average however tuber shape and appearance were very good.
- <u>MS108-5</u> is an advanced selection which yielded well above average. Individual tuber sizing is not adequate and at locations where there is a stress, the percentage of tubers under 2 inch increases rapidly. The selection is being deleted.
- <u>MS401-2</u> matures early and produces tubers which are smooth and sized well. It has a low specific gravity.
- <u>MS402-1</u> medium maturity with average yields. Tubers sized well and were smooth and well shaped. It has been observed to have some tolerance to scab at some locations.
 - MS402-5 has yielded below average and will be deleted.
- Wis 718 yielded exceptionally well with a high percentage of tubers over 3 1/4 inch. On larger tubers hollow heart has been observed. Specific gravity is low and it appears most suited to the fresh pack market.

THE YIELD & SIZE DISTRIBUTION OF SEVERAL POTATO VARIETIES HARVESTED ON 3 SEPARATE DATES MEF 1981

DATE		Augu	August 11				Лид	August 31				Sapter	September 22		
			Por	Percent				Porc-nt	^n¢				Percent	cnt	
Varioty	Total (CWt/A)	$NO.1$ (CWt/Λ)	2"-10oz	Over 1002	B'8	Total (CWt/A)	No.1 (CWt/A)	2"-10oz	Over 100z	B's	Total (cwt/n)	No.1 (CWt/A)	2"-10oz	Over 1002	B's
Allagash R.	280	229	81	0	19	274	223	81	0	18.	278	217	78	0	22
Atlantic	423	376	82	7	6	471	440	82	11	7	451	412	98	5	6
Belchip	321	296	68	3	8	440	403	79	13	^	421	385	92	15	6
Chipbello	363	334	88	4	8	415	377	68	7	6	451	413	68	m	7
Crystal	409	350	84	4	15	484	421	98	7	13	485	43.2	98	6	70
Dakchip	359	313	85	2	12	401	358	87	٣	10	393	329	28	9	16
Denall	332	305	87	4	9.	455	426	88	9	7	476	431	98	4	8
Highlat	203	136	29	0	33	761	184	20	0	29	223	148	99	0	34
Jemseg	253	230	88	7	6	311	288	87	5	9	277	248	8 5	2	10
Lembi	350	298	77	8	14	459	394	65	20	13	499	427	72	13	13
Michimac	323	298	06	2	8	467	432	82	10	В	477	434	87	4	6
Monona	288	261	87	٣	10	338	313	98	9	7	395	363	8.5	8	9
Oceania	351	319	87	ص	6	367	319	80	7	13	385	356	98	9	8
Onaway	388	373	84	12	4	442	422	85	10	5	426	402	73	21	ι,
Pioneer	430	390	72	19	6	471	434	83	6	7	479	435	7.8	13	6
Rideau	307	290	93	2	9	448	447	84	12	Ю	413	385	92	17	5
Russette	292	263	85	5	8	346	323	85	8	9	359	326	68	7	6
R. Burbank	280	215	77	0	19	375	286	7.1	5	18	370	287	7.5	6	20
Superior .	277	252	94	0	9	330	305	06	7	7	335	298	89	0	10
Yukon	309	286	89	*	7	357	332	85	00	v	351	328	83	77	9
B8972-1	280	188	29	0	33	261	157	09	0	40	256	126	20	0	20
CA 027	282	240	81	5	14	417	396	88	7	ς,	488	452	81	11	9
C13	334	311	79	14	9	330	305	84	8	7	287	257	65	24	6
MS 108-5	378	306	18	0	19	470	400	84	0	14	501	421	84	0	91
MS 401-2	232	203	88	0	12	244	205	84	0	15	250	201	81	a	19
MS 402-1	352	327	06	Э	9	392	357	98	۲۰	6	343	309	98	4	6
MS 402-5	303	246	7.9	2	19	334	292	98	7	13	349	295	84	0	16
WIS 718	367	340	68	3	8	524	202	59	36	5	512	487	7.5	20	5
Average	324	285				389	348				390	343.			

TABLE 2. THE SPECIFIC GRAVITY & CHIP QUALITY OF SEVERAL POTATO VARIETIES HARVESTED ON 3 SEPARATE DATES MEF-1981

· ·	chip score*		chip	chip score"		KOTOO GICC
ty Gravity day ash R. 1.071 1.00 Lic 1.094 1.00 Lic 1.094 1.00 Lic 1.095 1.00 Lic 1.005 1.00 Lic 1.007 1.00 Lic 1.007 1.00 La 1.070 1.00 La 1.071 1.00 La 1.071 1.00						Cittle Score
the 1.071 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		Specific	1 day	sheo	Gravity	November 19
tp 1.094 1.0 1.085 1.0 1.085 1.0 1.074 1.5 1.077 1.0 1.077 1.0 1.085 1.0 1.078 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.079 1.0 1.071 1.0 1.0		1.066	1.0	1.0	1.068	1.5
tp 1.085 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 2.5	1.091	1.0	7.0	1.091	1,0
lip 1.100 1.5 lip 1.074 1.5 lip 1.077 1.0 lip 1.073 1.0 lip 1.073 1.0 lip 1.073 1.0 lip 1.073 1.0 lip 1.070 1.0 lip 1.071 1.0 lip 1.		1.080.	1.0	1.0	1.083	1.0
tp 1.074 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.5 2.0	1.100	1.0	1.0	1.100	1.0
tp 1.077 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		1.074	1.0	2.5	1.079	1.5
the 1.093 1.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.073	1.0	1.0	1.069	2.0
trace 1.069 1.0		1.093	1.0	i.5	1.094	1.5
rac 1.073 1.5 2.5 3 1.081 2.5 3 1.081 2.5 3 1.070 1.00 1.00 1.00 1.00 1.00 1.00 1.0		1.067	1.5	1.5	1.066	2.5
1.081 2.5 3 1.072 2.0 3 1.070 1.0 1.0 1.070 1.0 1.0 1.070 1.0 1.5 1.070 2.5 1.070 1.0 2 1.085 1.5 1.085 1.0 2 1.083 1.0 2 1.083 1.0 2 1.082 1.0 2 1.082 1.0 2 1.082 1.0 2 1.082 1.0 2 1.082 1.0 2 1.082 1.0 2 1.083 1.0 2	1.5 2.0	1.074	1.0	1.5	1.072	3.5
Inmac 1.072 2.0 3 Inmac 1.070 1.0 1.0 Inmia 1.068 2.0 2.0 Inmia 1.070 3.0 4 Inmia 1.075 1.5 2 Inmia 1.079 2.0 2 Inmia 1.079 2.0 2 Inmia 1.079 2.0 2 Inmia 1.079 2.0 2 Inmia 1.079 1.0 2 Inmia 1.071 1.0 2 Inmia 1.0	2.5 3.0	1.084	1.0	1.0	1.084	1.5
nnia 1.070 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	2.0 3.0	1.073	1.0.	2.0	1.069	2.0
ay 1.068 2.0 2.0 4 leer 1.070 3.0 4 leer 1.075 1.5 2 sau 1.076 2.5 2 sette 1.079 2.0 2 srior 1.079 2.5 2 n 1.079 1.5 1 n 1.085 1.5 1 n 1.079 1.0 2 n 1.085 1.0 2 n 1.082 1.0 2 n 1.081 1.0 2 n 1.082 1.0 2 n 1.071 1.0 1	1.0 1.0	1.068	1.0	1.0	1.071	1.0
Augh 1.070 3.0 Heer 1.075 1.5 Hau 1.076 2.5 Sette 1.079 2.0 Surbank 1.079 2.5 Srior 1.077 1.5 D1 1.079 1.0 D27 1.079 1.0		1.066	1.0	1.0	1.065	2.0
neer 1.075 1.5 sau 1.076 2.5 sette 1.079 2.0 sette 1.079 2.0 srior 1.077 1.5 srior 1.077 1.5 srior 1.078 1.5 srior 1.078 1.0 srior 1.078 1.0 srior 1.078 1.0 srior 1.079 1.0 srior 1.079 1.0	3.0 4.0	1.068	3.0	3.0	1.065	4.0
sette 1.076 2.5 sette 1.079 2.0 surbank 1.079 2.5 srior 1.077 1.5 nn 1.085 1.5 n2-1 1.079 1.0 n27 1.078 1.5 n27 1.078 1.6 n27 1.078 1.6 n27 1.078 1.6 n27 1.078 1.6 n27 1.078 1.0		1.076	1.5	1.5	1.075	1.5
sette 1.079 2.0 surbank 1.079 2.5 srior 1.077 1.5 n 1.085 1.5 12-1 1.079 1.0 127 1.083 1.0 13-2 1.082 1.0 13-2 1.071 1.0		1.078	1.5	1.5	1.077	2:5
Surbank 1.079 2.5 srior 1.077 1.5 on 1.085 1.5 72-1 1.079 1.0 227 1.078 1.5 1.083 1.0 21-2 1.071 1.0 22-1 1.071 1.0	2.0 2.0	1.081	1.5	1.5	1.081	3.5
n. 1.077 1.5 n. 1.085 1.5 n2-1 1.079 1.0 n27 1.083 1.0 n9-5 1.082 1.0 n1-2 1.071 1.0 n2-1 1.071 1.0		1.080	1.5	2.5	1.078	3.0
22-1 1.079 1.5 227 1.079 1.0 227 1.078 1.5 1.083 1.0 23-2 1.071 1.0 23-2 1.071 1.0	1.5 1.5	1.075	1.5	1.5	1.076	1.5
72-1 1.079 1.0 727 1.078 1.5 1.083 1.0 78-5 1.082 1.0 71-2 1.071 1.0 72-1 1.071 1.0	1.5 1.5	1.082	1.0	1.5	1.084	2.0
1.078 1.5 3 1.083 1.0 1 1.082 1.0 2 1.071 1.0 1 1.071 1.0 1	1.0 2.0	1.079	1.0	1.5	1.076	1.5
1.083 1.0 1.082 1.0 1.02 1.071 1.0 1.071 1.0	1.5 3.0	1.082	1.0	0.1	1.079	1.5
1.082 1.0 1.071 1.0 1.071 1.0	1.0 1.0	1.074	1.0	1.0	1.077	1.5
1.071 1.0 1	1.0 2.0	1.084	1.5	1.5	1.082	2.5
1.071 1.0 1	1.0 1.0	1.071	1.0	1.0	1.071	3.0
1 082 1 0 1		1.071	1.0	1.5	1.069	1.5
7.007	1.0 1.0	1.075	1.0	7.0	1.077	1.5
1.5	1.5 1.5	1.066	1.0	1.5		
Average 1.078 chip score based on 1-5 scale 1= 11ght	cale 1= light & very acceptable;	y acceptable, 5	1	dark and .ot acceptable	ptable	

THE INCIDENCE OF EXTERNAL* & INTERNAL DEFECTS* ON SEVERAL POTATO VARIETIES MEF 1981 TABLE 3.

		External			Internal	
	Second	Growth		Vascular	Internal	Hollow
Variety	Growth	Crack	Scab	Discoloration	Nocrosis	Hoart
Allagash R.	;	1	<u> </u>	-	!	<u> </u>
Atlantic	;	:	1	2 sl	1	;
Belchip	7	:	-	2 sl, 2 sev	!	1
Chipbelle	-	1	}	4 31	!	1
Crystal	1	;	}	2 s1	;	1
Dakchip	!	}	7	2 sl, 12 sev	;	ł
Denali	1	!	1	1 sl, 1 sev	1	;
Highlat	1	!	!	2 s1	;	1
Jemseg	1	1	}	l sl	1	i
Lemlid	1	1	;	4 81	;	1
Michimac	1	!	7	4 sl, 5 sev	-	-
Monona	1	1	;	2 81	!	1
Oceanía	!	1	-	l sl	:	<u> </u>
Onaway	!	1	}	2 s1	1 br center	1
Pioneer	!	1	1	1	!	ļ
Rideau	1	1	1	2 s1	1	;
Russette	1	1	7	-	!	!
R. Burbank	1		;	3 s1	!	;
Superior	1	1	ł	2 s1	1 br center	}
Yukon	!	!	7	3 sl	•	}
B8972-1	1	-	ł	2 s1	!	<u> </u>
CA 027	-	-	!	9 sl	t t	-
C 13	-	:	-	2 s1	•	;
MS 108-5	}	1	}	0	!	;
MS401-2	-	1	:	•		:
MS402-1	1	1	7	-	!	ł
MS402-5	t 0 0	-	ł	3 sl, 1 sev	•	;
WIS 718	:	!	:	-	1	;

* Based on observations of 25 tubers selected at random from the Sept. 22 harvest. s1 = slight, sev = severe; br = brown

Storage evaluations

Table 4. summarizes the culinary quality of these several varieties after 3 months storage at 52F. Generally speaking after-cooking-darkening (ACD) ratings were poorer than other years. In some varieties such as Atlantic, Crystal, Denali, Oceania, Onaway, Pioneer, Rideau, Russet Burbank, Superior, Yukon, B8972-1 and Cl3 the cooking quality in terms of color was very desirable. Varieties with high specific gravity such as Atlantic, Chipbelle and Denali tend to slough more than do varieties with lower dry matter. Several varieties had the ACD confined to the area outside of the vascular ring and generally was most pronounced on the stem end, which is very typical of this reaction. Similiar samples stored at 40° will be evaluated in February.

Several of the selections remained in very acceptable chipping condition during this storage period. Atlantic, Belchip, Monona, Chipbelle and Allagash Russet remained in the most desirable chipping condition and were closely followed by Crystal, Denali, Superior, B8972-1, C-13, CA 027, MS402-5, Dakchip and Lemhi. Dakchip was badly sprouted at the end of the storage period and of all these varieties displayed the shortest rest period. Similiar samples have also been stored at 40F and these will be removed in February for reconditioning and the determination of their ability to produce an acceptable chip color.

Table 4. The after-cooking-darkening and cnip rating of several varieties held in storage at 52°F

	Hours a	after cod	oking	
<u>Variety</u>	0	_1_	24	Chip score
Allagash Russet	1.0	2.0	3.5	1.0
Atlantic	1.5	1.5	1.5	1.0
Belchip	1.5	2.0	2.5	1.0
Chipbelle	2.0	3.0	3.0	1.0
Crystal	1.0	1.0	1.0	1.5
Dakchip	1.5	2.0	2.0	1.5
Denali	1.5	1.5	1.5	1.5
Highlat	1.0	1.5	2.0	2.0
Jemseg	1.5	2.0	2.0	3.5
Lemhi	1.0	2.0	2.0	1.5
Michimac	2.0	3.5	3.5	3.5
Monona	1.0	2.0	2.0	1.0
Oceania	1.0	1.5	1.5	2.0
Onaway	1.0	1.5	1.5	4.0
Pioneer	1.5	1.5	1.5	2.5
Riāeau	1.0	1.5	1.5	3.0
Russette	1.5	2.0	2.0	3.0
R. Burbank	1.0	1.0	1.0	3.5
Superior	1.0	1.5	1.5	1.5
Yukon	1.0	1.0	1.0	3.0
B8972 - 1	1.0	1.5	1.5	1.5
CA 027	3.0	3.0	3.5	1.5
C 23	1.0	1.5	1.5	1.5
MS 108-5	1.5	2.0	2.0	2.5
MS 401-2	1.0	2.0	2.0	3.0
MS402-1	1.0	2.0	2.0	2.5
MS402-5	1.0	1.5	1.5	1.5

Ratings based on a 1-5 scale. I = clear with no after cooking darkening 5 = undesirable greyish black discoloration throughout the flesh

Chip score based on a 1-5 scale. 1 = light color and very acceptable 5 = dark color and not acceptable

B. 10 Hill Observation Plots

Very few selections were planted in 10 hill observation plots as most seed was sufficient enough to plant in a replicated plot. Following are the four selections observed in a single 10 hill plot.

				Percent	
Selection	Total cwt/A	US No. 1	Under 2"	Over 3 1/4	2-3 1/4
She $pody$	390	335	10	10	76
Snowchip	538	484	9	0	90
G 670-11	577	546	3	27	68
B 3833-6	257	156	36	0	61

C. Overstate Potato Variety Trials

Overstate potato variety trials are planted as single row, resultdemonstration plots in order to incorporate commercial handling of the
seed and harvest. Plots were established at DuRussel Brothers in Manchester,
Gordon Corrion in Munger, Leroy Woloszyk in Posen, Hank and Andy Leep at
Shelbyville, and Carl and George Horkey at Dundee. Half acre plantings of
several varieties were also evaluated at the Wayne Lennard Farm in Samaria.

Except at the Lennard Farm, approximately 35 pounds of seed of each variety was provided to the cooperating grower. The seed was cut in their mechanical cutter and then planted with their planter. The results are summarized in Table 5. Data from the Corrion and Horkey Farms are not included because of water damage to the plots during September and October. There was a significant range in climatic conditions between locations. Extremely dry conditions prevailed during the growing season in the northern Lower Peninsula and this is reflected in the lower yields and high specific gravity at the Woloszyk Farm.

Varieties which seemed to yield consistently well were Atlantic, Chipbelle, Crystal, Denali and Wis 718. Scab was very prevelant with the plot area at Allegan and was most severe on Crystal, Denali and Dakchip. When scab is present it frequently appears as the deep, pitted type on the Crystal variety. Dakchip has not yielded well and vascular discolorations have been frequently observed. Internal defects were less in 1981 than in 1980. Hollow heart was observed on Wis 718, Russette, Allagash Russet, Lemhi and Atlantic. Russette, Oceania and Rideau were observed to be slower in emergence and in early season vigor.

Table 5. The yield and specific gravity of several potato varieties grown at out-state locations in 1981.

		Leep Allegan County	ounty	Pr	Woloszyk esque Isle	Woloszyk Presque Isle Countu	Q 32	DuRussol Washtenaw Countu	County	Lonnard Monroe Co	Lonnard Monroe Countu
Variety	Total (cwt/A)	No. 1 (CWt/A)	Specific Gravity	Total (cwt/A)	No. 1 (cwt/A)	Specific Gravity	Tetal (cwt/A)	No. 1 (cwt/A)	Specific	Total (CWt/A)	Specific Gravity
Allagash Russet	ssot					•	220	186	1.058		
Atlantic	420	405	1.082	240	222	1.093				297	1.083
Belchip										352	1.078
Chipbelle	37.1	328	1.085	260	240	1.089	209	194	1.077	312	1.084
Crystal	401	374	1.070	217	176	1.086	406	381	1.064	346	1.070
Dakchip	333	320	1.065							226	1.065
Denali	453	443	1.083	199	165	1.093	394	363	1.081	288	1.087
Katahdin							922	265	1.066		
Lemhi							354	319	1.076	284	1.073
Michimac				304	.263	1.074					
Oceania	292	272	1.066				261	231	1.057	334	1.066
Ontario				254	213	1.074					
Rideau				145	135	1.077	287	273	1.066		
Russette				199	171	1.090	348	293	1.066	289	1.077
B 7805-1							378	27.1	1.064		
CA 027				222	207	1.084					
MS 108-5	400	364	1.072	219	168	1.086	278	247	1.069		
MS 402-1	302	289	1.062	184	164	1.078	447	392	1.065	319	1.063
WIS 718							358	345	1.057	311	1.063
Average	372	349	1.073	222	193	1.084	321	289	1.067	305	1.074
Planted:	May 15, 1981			May 14, 1981	1961		May 29, 191	161		April 5, 1981	1961
Harvestedı	Harvested: September 28, 1981	1861		Septembe	September 24, 1981	81	October	October 12, 1981		Septembe	September 10, 1981

INTRODUCTION OF NEW VARIETIES []
N.R. Thompson, R.W. Chase, R. Hammerschmidt, R.B. Kitchen

LEVERING SEED FARM

Sixty seven different cultivars or seed sources were planted as two cut units. A few units were rogued out because of rhizoctonia or weak growth. The more common virus diseases PVY, leaf roll and spindle tuber were not detected by visual symptoms. The crop was topkilled in mid-August and harvest was completed on September 3. This procedure is followed to minimize late season virus infections.

Mini bulk samples were collected for the winter testing program in Florida. Greenhouse tests will be conducted on the Russet Burbank, Katahdin, Jemseg, Onaway, Atlantic, Denali, Snowchip and G670-11 seed obtained from British Columbia to determine their freedom from PVX, PVY and spindle tuber. As testing techniques are established, it is planned to routinely test new selections that are introduced into the Levering seed plot program so that a nucleus of disease-free seed is available for the Michigan seed industry.

MSU ADVANCED SELECTIONS

Sixteen selections retained from the 8,000 new cultivars introduced in 1978 were planted in a replicated yield trial at the Montcalm Research Farm. Table 1. Several exhibited very desirable variety potential and will continue for further testing. Table 2 summarizes the culinary quality of these selections after 3 months storage at 52°F. Most of the selections remained in suitable chipping condition. Maturity has not been consistent with previous years.

C. U.S.D.A. - BELTSVILLE SELECTIONS

A major and continuing source of cultivars is from the USDA-Beltsville program. Eight seedlings were planted in replicated plots at the Montcalm Research Farm for two dates of harvest on August 26 and September 23. Table 3 summarizes the results of these two harvests. There was essentially no yield increase between the first and second harvest dates except for B7805-1 which is an attractive, smooth white skin potato.

Specific gravity readings for these selections are generally medium to low. There was some increase in specific gravity between the first and second harvests, particularly for B8528-3, B8943-4, B8822-9 and Russet Burbank.

THE CHARACTERISTICS AND PERFORMANCE OF SEVERAL NEW MICHIGAN SELECTIONS

TABLE 1.

Comments	Eyes slightly deep	Smooth, uniform	Smooth, uniform	Pointed, rough	Smooth, uniform	Deep eyes, blocky	Tendency to pointed shape	Smooth, some sungreen	Small run	Some scab	Over-size, rough	Smooth, small run	Smooth, uniform	Smooth, uniform	Smooth, uniform	Smooth, uniform	Slight greening	Rough skin	Smooth	Rough
Chip Rating	1.5	1.0	1.5	3.0	1.5	1.0	1.5	2.0	2.0	2.5	2.5	3.0	1.5	1.5	1.0	2.0	4.5	2.0	1.5	1.0
Specific Gravity	1.089	1.087	1.081	1.069	1.086	1.075	1.084	1.073	1.085	1.082	1.074	1.077	1.092	1.083	1.079	1.078	1.066	1.075	1.090	1.071
% 0ver 34	8.8	1.8	13.4	17.3	20.8	6.1	7.3	13.4	5.5	23.5	21.7	2.7	5.5	36.9	4.2	11.0	26.2	2.1	12.8	11.1
% No. 1	87.1	89.5	87.9	6.97	95.8	88.4	88.4	87.7	84.1	92.8	91.8	81.7	88.8	94.7	85.4	91.0	92.5	92.6	90.0	88.4
No. 1 cwt/A	467	332	485	283	322	359	479	306	324	400	281	300	326	339	287	353	458	373	367	296
Total cwt/A	536	371	552	368	336	406	542	349	385	431	306	367	367	358	336	388	495	403	408	335
Maturity	Late	Late	Medium	Medium	Late	Medium	Medium	Early	Medium	Medium	Medium	Medium	Medium	Late	Early	Early	Early	Early	Late	Late
Flesh Color	White	White	White	White	White	White	White	Golden	Golden	White	White	White	White	White	Golden	White	White	White	White	White
Cultivar	700-70	700-79	700-83	700-88	701-22	702-80	702-91	704-3	704-10	704-17	709-21	714-10	716-15	718-6	718-11	719-38	Опамау	Superior	Atlantic	Monona

TABLE 2. THE AFTER- COOKING-DARKENING (ACD) AND CHIP RATING OF SEVERAL NEW MICHIGAN SELECTIONS STORED 3 MONTHS AT 52°F

	Hours Af	ter Cooking	*	Chip*
Selection	0	1	24	Score
700-70	1.0	1.5	1.5	1.0
700-79	1.5	2.0	2.0	1.0
700-83	1.0	1.5	2.0	1.5
700-88	1.0	1.0	1.0	2.0
701-22	1.0	1.5	2.0	1.5
702-80	1.0	1.5	1.5	1.0
702-91	1.5	1.5	1.5	1.0
704-3	1.0	1.0	1.0	3.0
704-10	1.0	1.0	1.0	2.0
704-17	1.0	2.0	2.0	2.0
709-21	1.5	2.5	3.0	1.5
714-10	1.5	1.5	1.5	4.0
716-15	1.0	1.5	1.5	1.0
718-6	1.5	2.5	3.0	1.0
718-11	1.5	2.5	2.5	1.0
719-38	1.0	1.0	1.0	2.0
Onaway	1.5	3.5	3.5	4.0
Superior	.1.0	2.0	2.0	1.5
Atlantic	1.5	1.5	2.0	1.0
Monona	1.0	2.0	2.0	1.0

¹ ACD scored on a 1-5 scale. 1 = clear with no darkening; 5 = undesirable grayish-black discoloration throughout the cooked flesh.

²Chip rating based on a 1-5 scale. 1 = light and very acceptable color; 5 = dark and not acceptable

^{*}Determinations made December 17 and December 23, respectively.

USDA-BELTSVILLE SELECTIONS HARVESTED ON TWO DATES. MEF 1981 THE YIELD, SIZE DISTRIBUTION & SPECIFIC JRAVITY OF SEVERAL TABLE 3.

			Augi	August 26, 1981	, 198.	7				Septen	September 23, 1981	3, 198	7	
			Percent		dist	size distribution	on			Perce.	Percent size distribution	e dist	ribut	ion
	yield(cwt/A)	vt/A)		Over		Pick	Specific	yiel1(yiell(cwt/A)		Over		Pick	Specific
	Total	Total No. 1	2-34	3 4	B'S	outs	Gravity	Total	No. 1	2-34	3 \$	B's	outs	Gravity
B7154-10	47.1	386	82	0	16	2	1.060	457	399	87	7	11	7	1.063
B7516-7	312	275	98	7	12	0	1.077	303	259	83	m	14	0	1.077
B7805-1	417	385	98	7	2	2	1.070	473	462	80	18	2	0	1.074
B8528-3	320	262	82	0	97	2	1.069	337	261	92	7	23	0	1.075
B8934-4	309	239	7.5	2	18	5	1.067	309	229	74	7	24	7	1.067
B8943-4	295	207	20	0	30	0	1.066	315	220	20	0	59	7	1.074
B8972-1	273	137	51	0	47	2	1.073	263	125	47	0	53	0	1.075
B8822-9	359	242	89	0	30	2	1.060	339	212	63	0	37	0	1.066
R. Burbank	k 376	287	92	7:	22	7	1.071	406	292	19	11	21	7	1.079
Superior	321	278	87	0	12	1	1.070	324	289	88	1	11	0	1.071
Average	345	270					1.068	352	275					1.072

Planted: May 6, 1981

Fertilizer: 200 lbs/A 0-0-60 plowdown

500 lbs/A 20-10-10 planter + temik 3 lbs/A

200 lbs/A 45-0-0

ALABAMA

J.L. Turner and H. Bryce - Main Station
E.L. Carden, R.N. McDaniel and F.B. Selman - Gulf Coast Substation
F.E. Garrett (Retired) - Alabama State Department of Agriculture and Industries
M.H. Hollingsworth - North Alabama Horticulture Substation
J.T. Eason and M.E. Ruf - Sand Mountain Substation

Potato Variety Trials, Gulf Coast Substation
Fairhope and Sand Mountain Substation
Crossville, Alabama

Experimental Procedure. Seed potatoes were obtained from Frito-Lay Company (Baldwin County, Alabama); Rodney Schmidt, Saline Minnesota; Starks Farms in Wisconsin; and USDA, Beltsville, Maryland for the 1981 trials. Sixteen named varieties and 17 numbered selections were grown this year for yield data and specific gravity. Each entry was replicated four times in a randomized block design. One row plots were 25 feet by 38 inches at Fairhope and Crossville. Seedpieces were cut to approximately one and one-half ounces each and treated with Orthocide 10 Dust at the rate of 3/4 pounds to 100 pounds of cut seed. Seedpieces were stored at approximately 55°F for approximately 12-14 days and planted February 24 at Fairhope and March 9 at Crossville. Seedpieces were planted at Fairhope with a hand operated planter and at Crossville by hand. Seedpieces were spaced 12 inches in the drill. Plots were harvested June 2 at Fairhope and July 7 at Crossville.

Results. At Fairhope, Belchip from the USDA and Starks Farms produced the highest yields of total marketable and size A potatoes. Breeding lines B-8724-2 and Atlantic, FL 1221 and FL 1152 also produced excellent yields of total marketable and size A potatoes. Wisconsin 807-R produced the highest yield of the red skin entries. While Red La Soda did not yield among the top varieties this year, this variety remains the best red skin potato for the Baldwin County potato area. Wisconsin 748 and B-9127-17 were the lowest yielding entries. Percent of size A potatoes was very good for all entries. Specific gravity was highest for Wisconsin 760, 1.078. Atlantic, B-8615-2, Wisconsin 742 and Chipbelle also produced a high specific gravity. Specific gravity for Belchip was highest for the Starks Farms seed source.

At Crossville, weather conditions were favorable through mid-June this year. Excellent yields were obtained from most of the entries. Red La Soda from Rodney Schmidt Farm was the highest yielding entry. Frito-Lay 675, Atlantic, FL 1221 and Wisconsin 738 were the highest yielding white entries. Denali, Kennebec, Belchip and FL 1291 also produced good yields of total marketable and size A potatoes. Wisconsin 826 and 748 produced the lowest marketable yield. The precent yield of size A potatoes was excellent except for Wisconsin 797 and 826. Specific gravity was highest for Wisconsin 760, Atlantic and Denali. Wisconsin 716 had the highest stand count at harvest and Belchip and Wisconsin 748 had the lowest.

	Marke Total	Size Ate	1d/acre Size B	(D) 171	e 011	8 1 1 1 1 1 1 1
Variety				of total	gravi	har
	□₩□	° IM)	CWI	rice in the second		ij.¥
Belchip USDA	10	10	1	(X)	0	
Chib	10	1	ю	r.	90.	
-8724-2 USD	10	~1	12	10	90	
tlantic Sta	~1	-1		76	07	
I 1221 Frito Lay	3	CI	1	10	07	
I 1152 Frito La	3	C	7	70	rO	
U. Wisco	01	-	000	97	9	
ito Lay	221	212	Ō.	96	990.	888
FL 96 Frito Lay	-	0	9	76	0	
s 807-R U. Wisc	-	0)	10	00	10	
	-	0	00	96	9	
go Starks	0	0	9	97	10	
U. Wisconsin, Rhinelande	0	07	ω	96	1	
Wisconsin, Rhinelan	0/	0	9	16	1	
1	0	00	00	96	-	
a Soda Rodney	01	00	9	76	05	
FL 162 Frito Lay	00	1	0)	50	90	
ed La Soda Starks F	00	~	O)	96	10	
O.	00	00	m	80	10	
W	00	-	00	96	9	
FL 657 Frito Lay	~	1	10	76	10	
Wis 795 U. Wisconsin, Rhinelander	9	9	00	10	9	
I 1280 Frito Lay	9	10	O)	93 *	9	
Chipbelle USDA	9	10	O)	76	-	
Wis 716 U. Wisconsin, Rhinelander	10	4	00	92	9	
Sta	10	4	7	92	1	
B-8615-2 USDA	10	4	00	9		
eland	4	4	O)	76	9	
Rhinelande	4	3	7	00	-	
Rhinelande	$ \sqrt{T} $	3	9	96	1	
E-8710-16 USDA	4	3	10	96	0	
B-3798-20 USDA	4	3	m	ω ∞	9	
Superior Starks Farms	4	3	7	76	9	
48 U. Wisc	-	-	9	76	9	

Alabama Table 1. Continued

lsoil test: P = 100 (M): K = 110 (H); PH = 6.1.

 2 Size A = potatoes with 1-7/8 inches diameter and larger: Size B = potatoes with 1-1/2 to 1-7/8 inches diameter.

Specific gravity was greater than 1.0 for each variety.

Alabama Table 2. Potato Variety Trial, Crossville, 19811/

			Market	Marketable yield/acre	d/acre		Č		
Variety	Source		Total	Size A^{2} /	Size B	Size A of total	Specific 3 / gravity	Stand at harvest	
			Cwt.	Cwt.	Cwt.	%		%	1
Red La Soda	Rodney Schmidt, MN	E, MN	317	301	16	95	1,062	85	
Red La Soda	Starks Farms		289	277	12	96	.059	95	
FL 657	Frito Lay		253	246	7	26	.059	06	
Atlantic	Starks Farms		243	234	6	96	.082	85	
FL 1221	Frito Lay		242	232	10	96	.070	06	
Wis 738	U. Wisconsin,	Rhinelander	238	229	6	96	.067	98	
Denali	Starks Farms		226	217	6	96	.081	94	
Kennebec			225	219	9	26	990°	98	
Belchip	Starks Farms		223	216	7	97	890.	83	
FL 1291	Frito Lay		220	207	13	94	690.	88	
FL 795	Frito Lay		211	205	9	26	.074	90	
FL 96	Frito Lay		204	194	10	95	.064	84	
Wis 807-R	U. Wisconsin,	Rhinelander	201	184	17	92	.058	89	
La Chipper	Starks Farms		200	188	12	94	690.	92	
FL 162	Frito Lay		193	184	6	95	.064	89	
Wis 760	U. Wisconsin,	Rhinelander	193	184	6	95	.085	89	
Wis 723	U. Wisconsin,	Rhinelander	191	174	17	91	.070	95	
Superior	Starks Farms		190	183	7	96	890.	89	
Wis 742	U. Wisconsin,	Rhinelander	186	178	∞	96	.078	26	
FL 1152	Frito Lay		180	170	10	94	.056	96	
Wis 797	U. Wisconsin,		170	149	21	88	.072	91	
Wis 716	U. Wisconsin,	Rhinelander	161	150	11	93	· 064	86	
Wis 795	U. Wisconsin,	Rhinelander	151	139	12	92	.073	93	
FL 1280	Frito Lay		143	134	6	93	.067	84	
Russet Sebago	Starks Farms		125	116	6	93	.054	69	
	U. Wisconsin,	Rhinelander	117	104	13	89	.075	26	
Wis 748	U. Wisconsin,	Rhinelander	116	105	11	91	.070	83	
lSoil test: $P = 230$	P = 230 (VH); K = 180 (H);	(H); pH = 5.5.			1				

 $^{^2}$ Size A = potatoes with 1-7/8 inches diameter and larger; Size B = potatoes with 1-1/2 to 1-7/8 inches diameter.

 $^3\mathrm{Spec}$ ific gravity was greater than 1.0 for each variety.

The 1981 potato trials were conducted in the same manner as in 1980. First-year tubers, five-hill, 12-hill, and two replications of 20-hill were planted on February 26 on the USDA Cotton Research Station at Shafter in Kern County and on May 12 on the Tulelake Field Station at Tulelake in the "Klamath Basin." Additionally, four replications of 27 hills were planted at Riverside, Santa Maria, Shafter, Tulelake, Butte Valley, and Eureka. The Shafter and Tulelake data are summarized in Tables 1 and 2.

The first-year tubers were obtained from Drs. J. Pavek (Idaho) and R. Johansen (North Dakota). Dr. Pavek supplied 10,367 seedling tubers representing 43 families. Nine specific families were included in the Shafter trial only, and five specific families were included in the Tulelake trial only. The remaining 29 families were divided evenly between the two locations. Dr. Johansen supplied 10,220 seedling tubers representing 55 families. All North Dakota families were evenly divided between both locations. Evaluation of the 10,453 single hills at Shafter and 10,134 single hills at Tulelake was based on appearance. The number of single hills selected for further evaluation which will be planted in five-hill plots in 1982 were 189 at Shafter and 291 at Tulelake. In the five-hill plot tests, 71 of 514 lines at Shafter, and 69 of 321 lines at Tulelake were retained for further evaluation in 12-hill plots. The 12-hill observational plots using the same selection criteria had 35 of 114 lines saved from Shafter, and 18 of 67 lines saved from Tulelake.

The two replications of 20-hill plots grown at Shafter and Tulelake were evaluated for yield, specific gravity, chip color, and general tuber rating. From Shafter, 36 clones were tested; and from Tulelake, 29 clones were tested. The summary of this data appears in Tables 3 and 4.

The replicated yield trials at Shafter had 50 lines, and Tulelake had 48 lines. They were evaluated for yield, specific gravity, chip color, and general tuber rating. All entries at Shafter were tested for susceptibility to black spot. These entries are listed in Tables 1 and 2.

CALIFORNIA TABLE 1. Yield and Quality Measurements of Replicated Yield Trial at Shafter, 1981.

					Open net	4	/scab		-	54	+ -	:	N N								SB, IB				
	Notes ²⁾		웊	18	S, Open		۵۲, ۱۹					HS 3.0	S, GC,			၁၅	3 t	ST			slight SB,IB	IB	18	1	_
	Black Spot*	17	62 LL	45	4 ;	= °	-0- 27	υ α	၁	30	28	2]	، ح	ი 2	12	15	07	14	2		12	21	22 14	9 (-0-
	% St a nd	86	8 0	83	100	86	90	06	65	78	100	87	001	92	97	93	/6	83	95		87	66	98 98 8	86	90
	Sugar Level*	.85		.70	.75	01.1	.85	0.1	09.	1.25	. 85	1.20	7/4	1.20	.85	1.35	8	1.00	09.		1.10	.35	.70	.60	. 85
Spec.	Grav. 1.0	65	85 67	79	79	/6 75	85	80	76	89	69	91	8 2 2	72	99	68	84	81	79		66 82	89	81	65	79
	Tuber Rating*	8.3	۰, ۲.0	3.0	3.0	3.5	2.4	3.6	3.0	3.1	3.0	ر د د د	8.0	3.0	3.1	 	۰ د ۳ د	2.5	3.0				3.9 9.0	•	
	% % #1.8	603	0 0 0 0	94	94	88 C	89	92 95	95	95	68	68	98	94	87	83	8 8 8	85	68		94	91	97 94	94	93
	B's	35	25	20	15	30	35	ا 5	20	20	35	20	<u>. 5</u>	20	35	15	35	35	15		20	25	10 20	35	10 20
	2's + Culls	ניי	<u>.</u>	22	01:	52	10	ا 5	9	10	2	20	07		10	20	35	20	10		20 10	30	ر 10	20	10
d (CWT/AC)	4-12oz	480	400	395	385	365 370	375	300	340	300	315	270	280 280	300	265	275	280	205	200		540 505	515	435 385	355	345 365
	#1's \$120z	09	35	45	20	85	2 -0	35 35	2	40	ທູ	45	3 3 3 3	9 0	30	01	<u>-</u> -	5	2		80 90	50	55 70	55	30
	Total	540A ³)	473AB 465ABC	440ABCD	405ABCDE	3956CDE 3808CDE	375BCDE	355BCDE 345BCDF	345BCDE	340BCDE	320CDEF	315CDEF	315DEF 31ODEF	300DEF	295EF	285EF	280EF	210F	205E		620A 565AB	565AB	490ABC 455BCD	410CD	400CD 395CDE
	Seed	011	0. 0. 0.	0re	D217	ore n208	018	D236 D58	0re	D77	036	De	D63	D28	D10	0re	D228	D218	D219	!	D32 D17	D210	0re D202	D127	020 083
Variety ^{l)}	or Selection #	RUSSET AD7267-18	AD7267-1	LEMHI	A74133-1	CENTENNIAL	BUTTE	MD641-10 A74543-6	A72545-2	NDD392-9	NUD143-1A	A/U365-2/ An74103-3	RC8524 ×3	NOR. RUSSET "M"	AD7267-1A	AD7377-1	ND274-6	A74265-2	A68599-1	CHIPPER	ND9474-6A BELCHIP	CRYSTAL	ATLANTIC	MD337-4	ND258-1

2 Yield and Quality Measurements of Replicated Yield Trial at Shafter, 1981 - Page CALIFORNIA TABLE 1.

	bt SB	ht SF. C	- 55 -
Notes	severe SB IB, slight SB IN, S VS S S S S IB severe SB	VN, slight S K, VN, GC	
Black Spot* No	0,4420,00,40,		<i>S</i>
818 Spc	2 -0- 14 3 3 2 2 2 83	4 16 -0-	9
% Stand	96 98 98 94 93 95	80 87 85	100
Sugar Level*	.35 .35 .60 .45 .70 .70	.70 .85	1.20
Spec. Grav. 1.0	73 73 69 76 70 71 71 78	73 74 68	72
Tuber Rating*		3.4 2.5	3.1
% % #	82 89 91 97 72	88 80 81	95
B's	25 15 30 30 25 25 20 15	30 25 25	15
2's + Culls	20 20 20 20 80 80	15 40 30	5 20
d (CWT/AC 4-120z	345 360 345 345 365 315 255 240 220	320 245 195	415
Acre Vield #1's 1202	25 30 20 -0- 15	15 35	35 35
Total	390CDE 385CDE 375CDE 370CDE 335DEF 255EF 255EF	335A 260A 230A	450
Seed	069 016 085 0234 081 076 024	D222 D206 D216	0199
Variety or Selection #	NDD277-2 AK28-8 ND278-3 ND362-3 ND89-9 NORCH I P BC9071-6 DENAL I	LONG WHITE AD74548-5 AD7386-1 W. ROSE	RED CHIEFTAIN LSD

Seed for all entries was from the California Stockton delta

333

See notes abbreviations below Duncan's 5%, entries with common letters are not significantly different

maximum of approximately 1.2 acceptable for processing 75=intense darkening on 15 bruises O=no darkening on 15 bruises 1-5 BLACK SPOT: 0-75 TUBER RATING: SUGAR LEVEL: * NOTES: Abbreviations HS=heat sprouting GC-growth cracks LT=large tuber ST=small tuber BN=bottle neck S=skinned SB=scab

3=acceptable 4=good 5=excellent =very poor 2=poor

VS=tubers stick to vine

IN=internal necrosis

IS=irregular shape

K=knobby

IB=internal browning

VN=veinal necrosis

- 56 -

CALIFORNIA TABLE 2. Yield and Quality Measurements of Replicated Yield Trial at Tulelake, 1981.

	Notes ²⁾		<u></u>	LT, Rot	~	£	5/30 BS, GC		s BS	2	25	IS	LT		Susc. to BS	АН	×	×	АН	LT, K			IS,VD		Rot, K	2		Rot	Rot, Grn
	н		12	15	0/12 4/12	_	_	_ ,		- 6				12	12	12	12	12	12	12	_	_			4/12	1		1/12	4/12
	Tuber Rating*		9.		ກຸຕ	9.00	6.	ب و	ه د	· –	.2	4.	4.	.2	.2	.2	.5	.7	∞.	<u> </u>	∞.	9.	-	4.	∞	•		.3	3.5
	Vine Vigor				2.7			•	•				•	•			•	•	•	•	•	•						•	3.7
	% Stand		92	66	9 9	84	98	35	9 9 9	85	98	93	89	87	06	36	97	94	95	06	83	8	98	96	0 0 			94	89
	Sugar Leve1¥		6	1.0	ي م	1.6	1.0	ي ر	ا ب	1.4		2.0	1.0	1.4	1.4	2.2	.2	1.2	6.	ထ္၊	5.5	٥.	3.0	.5	က်က	•		•	1.5
, ,	Grav. 1.0		94	94	8 ₆	89	86	88 4	76 94	91	89	74	82	80	06	78	98	87	78	101	/3	103	94	84	67 74			92	80
	% #1.s		84	79	-81 78	9/	75	9/	67	77	71	73	77	8	89	71	70	25	69	29	69	65	73	85	<u> </u>			09	58
	B's		25	55	35 35	70	40	50	43 70	35	40	45	30	25	65	30	50	30	35	45	20	30	35	20	272 204			30	70
	2's + Culls		09	50	55 70	45	80	55	95	65	90	70	09	45	75	06	75	215	80	- 	02	95	20	30	285 285			185	95
(CWT/AC)	4-120z		290	280	240 285	280	245	706	203 265	220	265	230	230	225	250	225	240	0/1	017	145	1/5	1.5	185	130	<u>20</u>			220	170
Acre Yield (#1's		155	120	155 90	75	110) & C	70	105	09	80	202	75	45	0 :	50	<u> </u>	50	- - -	80	021	45	95	02			100	55
Acre			3)			-	-							_				_			_	_	<u>,</u>		7	4			
	Tota		445	400	375	355	355	325	335	325	325	310	300	300	2951	295	062	0/7	097	766	607	235	007	577	20			320	225
í	Seed ¹⁾ Source		Delta	0re	ore Delta	Delta	Ore Delte	Delta Delta	ore Ore	0re	Delta	Delta	Delta	Delta	Delta	Delta	Delta Delta	Delta Delta	Delta	Delta Ose	. ביים ביים	Delta Ogg	0.re	د ت	Akd Delta			Delta	Delta
Varietv	or Selection#	RUSSET	A74133-1	AD74135-1	A66122-3	BUTTE	LEMHI	AD7267_1	R. BURBANK	A72545-2	ND274-6	AD7377-1	A68599-1	CENTENNIAL	AD7267-3	BC3524-3	K.EUKBANK	AD74103-3	NDD143-1A	A14603-6 A07267.1	7 6 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	A79625.2	MP641 10	HIGHIAT	NDD392-9		LONG WHITES	WHITE ROSE	AD/4548-5

Yield and Quality Measurements of Replicated Yield Trial at Tulelake, 1982 - Page 2 CALIFORNIA TABLE 2.

	Notes ²⁾		- .	ن	<u>,</u> ⊢	-	12 Pink Apical	SRN		SRN	Rot	7X.	,, -	Sot GRN			Rot		Rough, GC		
				٠) <u></u>		Pir	U													
	H.		7/12	4/12	7/12	3/12	6/12	0/12	3/12	1/12	11/1	4/15	21//	4/12	3/12	2/12	3/12		1/12		
; -	luber Rating*			4 4 - C															4.0		
	Vigor		3.5					•	•	•	•	•		•			•		3.8		
	Stand		88 6	60 06	06	85	91	93	72	93	98	76	γ 7	84	91	75	95		98 95		
3	Sugar Leve™		1.2	. o	<u>_</u>	.7	ω.	۷.	1.2	3.6	9-		- α	0 4	9	1.0	2.2		1.0		
Spec.	1.0		102	8 8 8	74	85	83	08	103	84	72	78 20 20 20	ς / 7α	75	85	94	62		76		
<i>>6</i>	s. L#		88	8 8 9	87	98	97	77	84	28	88	0 2 2	S =	73	72	89	89		85 69		
	B's		15	12	25	15	35	45	ا ت	ည ပ	52	15	40	25.	25	15	15		30 25	Ċ	70
+ 316	Culls		60	6 6	40	22	06	75	000	9 5	52	007	Q G	82	80	82	22		55 145	L	45
Acre Yield (CWT/AC)	4-12oz		430	400	305	255	330	285	185	302	190	250	275	200	250	150	80		305 290	Ç	0
Yield ((>120z		140	125	130	165	65	105	200	0,5	130	<u> </u>	38	105	15	09	. 70		185 95	L	22
Acre						-	<u></u>	-		_		=	<u>_</u>	=	, '						
	Total		5707	525	435	420	395	390	385	0/0	3/0	330	295	305	265	210	150		490 I		
(1)	Source		Delta	0re	Delta	Delta	Delta	Delta ĉ.	000	Delta Delta	Delta Delta	Delta	Aka	Delta	Ida	Delta	Delta		Delta Delta		
Variety	Selection#	CHIPPERS	BELCHIP ATI ANTIC	WC672-2	ND377-4	BC9071-6	BC9020-7	ND258-1	WC521-12 ND362-3	ND0474 64	ND94/4-6A	ND278-3	ALASCLEAR	CRYSTAL	NORCHIP	NDD277-2	ND89-9	REDS	CHIEFTAIN RED LA SODA	/ou CO	LSU 3%

¹⁾ Seed for all entries was from the California Stockton delta. 2) See notes abbreviations on next page. 3) Duncan's 5%, entries with common lines are not significantly different.

^{*} Sugar Level: Maximum of approximately 1.2 acceptable for processing. * Tuber Rating: 1 = very poor; 2 = poor; 3 = acceptable; 4 = good; 5 = excellent.

Yield and Quality Measurements of Replicated Yield Trial at Tulelake, 1982 - Page 3 CALIFORNIA TABLE 2.

Abbreviations to NOTES:

tubers stick to vine veinal discoloration internal browning nternal necrosis veinal necrosis irregular shape alligator hide leat sprouting growth cracks bottle neck small tuber arge tuber nematodes skinned knobby green scab 11 11 $\Pi = \Pi$ NEM GRN HS IB IS K S N S

CALIFORNIA TABLE 3. Yield and Quality Measurements of 2 X 20 Hill Trial at Shafter, 1981.

	Notes ²⁾		NA	poor std., VN		HS, Rot GC Bot	VN VN			VN SB, IN, Uniform		Rot, GC	SB VN clicht CR	stand,	VN, slight SB, IS		IS K VN
	% Stand	100	90 100 95	75 90	100 98	က တ ၀ တ တ ၀	98 98 98	98 75		98	8 8 8 8	100	86 86	20	82		100 100 90
	Sugar Level		7.2.0.	• •	1.2		1.2	• •		7.	ت. د		7.	• •	.7		1.2
Spec.	Grav. 1.0	72	75 75	85	80 81	69 69	7/ 8/ 1/8	78		73	85 75	74	90	74	78		87 66 76
	Tuber Rating	1	3 3 3.3		2.5	•	ာ က က	က က		 	ლ ო	n m	m r	n m	· m		3.3
	% % #1.8	93 95	96 96	94 94	80 81	8 82 82	88 63 83	88		91	95	88	83	95	83		88 81 85
	8's	15	55.0	10	010	0 2 2	5 2 2	20		100	20	5 - 5	20	- -	15		35 10 35
AC)	2's + Culls	10	01	0 2	45 40	25 20 10	202	20		35 40	12 م	35	35	വ	25		20 60 15
ld (CWT/	4-120z	310	240 225	200 225	215	180 200 185	190	145 135		360 400	320	280	265 225	190	185		395 295 275
Acre Yield	# 1's	25 30	200	30 5	00	S 0 5	000	00		120 0	32	0	0 ч	വ	10		20 0 5
A	Total	335A ³) 295AB	240AB 240AB 230AB	230AB 230AB	215AB 215 B	210 B 200 B	190 B	145 B 135 B		480A 400AB	355ABC 310ABC	280 BC	265 BC	195 C	195 C		415A 295A 280A
Variety ¹⁾	or Selection #	AD 74458-5 ND 388-1 Rus	90-9 0-9 3-4	LEMHI AD 7430-2	A 7411-2 AD 75180-1	NDD 739-1 ND 537-4 NC 537-2 Pus	CPM	ND 534-4 ND 452-1	CHIPPERS	Kennebec ND 435-12	ND 258-1 ND 9750-3	435-9	Denali No 9750-4	194-1		LONG WHITES	AD 7508-1 White Rose ND 227-1

Yield and Quality Measurements of 2 X 20 Hill Trial at Shafter, 1981 - Page 2 CALIFORNIA TABLE 3.

	Notes ²⁾	IB, VN	
	% Stand	99 95 98	
	Sugar Level	7.2	
Spec.	Grav. 1.0	70 70 75 70	
	Tuber Rating	m m m m	
	% #1,2	96 98 86 86	
!	B's	15 5 15	10
(c)	2's + Culls	5 35 10	NS
ld (CWT/A	1's 2's + 20z 4-120z Culls B's	415 355 290 195	150
cre Yie	# 1's	10 50 15 0	35
Ă	# 1's Total >1202	425AB 405AB 305 BC 195 C	
Varietv ¹⁾	or Selection #	REDS Chieftain Red La Soda ND 24-1R ND 9403-16R	TSD

¹⁾ Seed for all entries was from the California Stockton delta 2) See notes abbreviations at end of replicated yield trial table 3) Duncan's 5%, entries with common letters are not significantly different

CALIFORNIA TABLE 4. Yield and Quality Measurements of 2 X 20 Hill Trial at Tulelake, 1981.

	Notes ²⁾		Deep Eye VD	IS LT	¥	R Rot		Rot Small	LT Rot VD GRN, Rot	
	н.н					0/6 0/6 1/6 2/6 2/6		0/6 0/6 0/6 0/6		
	Tuber Rating*	•								
	Vine Vigor					23.000.0		43.5 43.5 5.5 6.5		
	% Stand	86	78 95 93	72 83 13	75 85 55 75	288 78 90 93		83 85 100 95	885 83	
Acre Yield (CWT/AC)	Sugar Leve⊁	6.7			2.5 2.5 2.5 2.5	2.5			2.55	
	Grav.	87	93 89 75	83 89	78 93 79	87 70 82 70 93		87 77 98 101 85	85 82 73 87	
	% ! ! * ! . s	82	7.2 89 72	75 56 156	79 61 85 75	76 66 79 37		82 90 89 81	73 81 67 60	
	B's	09	70 95 90	60 30 145	40 60 25 45	30 90 30 30 155		85 40 30 30	15 45 30 50	35
	2's + Culls	09	85 20 35	45 90 90	35 35	40 25 60 15 25		40 20 30 35 20	140 50 70 65	2 2
	s 4-12oz	365	345 325 300	300 215 280	230 190 205	200 205 170 135		550 420 440 445	250 305 150 160	155
	#1's	175	55 95 20	90 15	20 20 30 30	25 15 20 30 0		15 135 80 75 10	160 90 50 15	65
	Total	540	380	315 305 295	283 270 260 235	225 220 190 165 105		555 520 520 500	410 395 200 175	180
	Seed 1) Source	Delta						Delta		
Varietv	or Selection #	RUSSET AD75193-2	LEMB1 ND6440-9 ND634-4 rus NDD666-2 rus	AD/5/8-; ND535-7 rus AD7425-1	CENTENNIAL R. BURBANK ND548-4 rus AD74392-4	AD71992-7 ND537-2 rus AD71992-8 NDD450-6 NDD712-2	CHIPPERS	ND413-4 ND435-9 ND377-5 DENALI ND129-6	KENNEBEC AD68678-4 ND9750-3 ND227-1	75 OST

Seedling Program. Twenty-seven parental clones were selected for crossing in 1981 and seeds from 124 crosses were obtained. Seventy seedling families were grown in the greenhouse, producing approximately 7500 tubers for initial selection in 1982. Surplus tubers are being distributed to other programs.

Seedlings were received from Dr. Raymon Webb, Beltsville, Maryland; Dr. J. J. Pavek, Aberdeen, Idaho; and Dr. Creighton Miller, College Station, Texas. A total of 40,000 first-year seedlings were planted and included 8,000 from our breeding program which was started in 1979.

Approximately 250 first-year seedlings were selected in 1981 for further observation. Thirty-two advanced seedlings are being increased and evaluated. Two processing lines, WC672-2 and WC521-12, are being tested extensively in other States. Clone AC67560-1 is being released as the variety Sangre. Line AC77182-1 has shown promise as a chipping potato and will be increased in 1982.

Nitrogen-Use Efficiency of Potato Clones. A preliminary field study was conducted in 1979 to evaluate the nitrogen-use efficiency (NUE) of 23 potato clones. Based on the preliminary study, 10 clones were selected on the basis of differing NUE for further evaluation in 1980 and 1981.

The clones were grown under two soil fertility regimes in each year - low nitrogen and high nitrogen. In 1979, nitrogen and phosphorus were applied at the rates of 92 and 45 pounds per acre, respectively, for the high-nitrogen regime. The low-nitrogen regime did not receive any fertilizer. The high soil-nitrogen-fertility regime in 1980 and 1981 received nitrogen and phosphorus at the rates of 140 and 44 pounds per acre, respectively. The low-nitrogen regime received only phosphorus.

Three criteria were used to assess nitrogen-use efficiency: (1) Total yield under low soil nitrogen conditions; (2) ability to produce greater total yields when additional nitrogen is supplied; and (3) tuber nitrogen recovery. Nitrogen recovery is measured by the percent increase in nitrogen in the tubers in the high-nitrogen regime compared to the low-nitrogen regime divided by the amount of nitrogen applied.

Colorado Table 1 summarizes the information on the three criteria used to assess NUE for the 10 clones evaluated. Clones differed considerably in yield under low soil-nitrogen levels, yield response to applied nitrogen, and tuber nitrogen recovery. None of the named cultivars were considered to have a low yield potential under low nitrogen conditions.

These results indicate that considerable variability for nitrogen-use efficiency exists in adapted potato clones. This indicates that it may be possible to develop potato cultivars that more efficiently utilize available mineral nutrients.

Colorado Table 1. Yield under low soil-nitrogen conditions, response to applied nitrogen, and nitrogen recovery by tubers of 10 potato clones averaged over a 3-year period (1979-1981).

	Total		N		
Clone	Yield	Response	Recovery		
	Cwt/	A	%		
A6680-5	222	15	7.1		
BC8370-4	258	32	18.0		
WC523-8	190	61	30.2		
WC567-1	360	29	13.7		
WC618-9	221	65	28.8		
WC672-9	323	31	22.0		
Atlantic	324	35	16.5		
Lemhi Russet	337	51	30.5		
Nooksack	276	78	37.1		
Russet Burbank	322	65	36.5		
Mean (\bar{x})	283	46	24.0		
95% C.I.	<u>x</u> ±42	x±15	$\frac{-}{x\pm7.2}$		

Methods. Potato varieties and seedlings were tested for their adaptability and desirable horticultural characteristics at the Agricultural Research Center, Hastings, Florida. Clones were grown in either advanced (four replications) or intermediate (two replications) trials. Seed was spaced 12 inches apart in 20 foot single row plots. Between row spacing was 40 inches. The crop was planted on January 30 and February 2 and was harvested May 18-20. Commercial cultural practices were used in all tests. Yield of tubers, their appearance and specific gravity were taken at harvest. Tuber samples were shipped to Berwick, PA, for chip color evaluation. The tests were grown under near excellent conditions.

Advanced Yield and Quality Tests (Round White Clones, Florida Table 1). Atlantic, standard chip processing variety grown in Florida, was superior to other clones in combining high tuber yields and specific gravities with desirable tuber types and chip color ratings. Late Superior, a strain of Superior which was selected in Nebraska, significantly produced greater yields than the standard strain. Late Superior with its highly desirable yields, tuber appearance and processing qualities may provide area growers with a promising new variety for both the table and processing markets.

Intermediate Yield and Quality Tests (Round White Clones, Florida Table 2). Clones which compared favorably with one of the standard varieties, Atlantic, Sebago, or Superior, will be tested further in 1982.

Advanced and Intermediate Russet Tests (Florida Table 3 and 4). Centennial and several seedlings produced exceptionally good tuber yields (Table 3) which were significantly higher than those obtained from BelRus, standard, long russet type in the area. Of these, B8972-1 was considered the most promising clone tested in 1981. It combined moderate to high tuber yield and specific gravity with an excellent long russet type.

Advanced Red Test (Florida Table 5). Red La Soda (north Florida's standard red variety) was superior to other clones tested in tuber yield production. However, Wis 806R and 774R produced tubers of more desirable appearance.

Florida Table 1. Results from 48 clones selected for advanced testing at Hastings, Florida -- 1981.

Florida Table 1. (Continued)

Variety		ld (acre)	Tuber appear-	Specific	Wee		ip aft			/est
	US#1A	Total	ance	gravity	1	2	3	4	5	Average
B6969-2 B9130-24 B9335-7 B8599-42 B8799-8	245 242 234 226 211	268 259 250 239 233	7.8 7.5 7.8 7.3 8.5	1.068 1.074 1.072 1.074 1.085	5 4 3 2 3	3 3 2 2	4 4 5 2 2	5 5 4 2 2	3 3 2 2	4.0 3.8 3.6 2.0 2.2
LSD (0.05) (0.01)	46 60	43 57	1.4 1.8	0.004 0.006						

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

Florida Table 2. Results from 96 clones selected for intermediate testing at Hastings, Florida -- 1981.

Variety	Yie (cwt/	eld 'acre)	Tuber appear-	Specific	Wee	Ch	nip aft	Col	lor ²	/ vest
	US#1A	Total	ance1/	gravity	1	2	3	4	5	Average
Sebago	401	446	6.0							
B9507-16	389	459	6.5	1.068	3	4	4	4	4	3.8
B9536-8	377	395	7.5	1.073	2	1	2	2	1	1.6
B9507-11	371	436	7.5	1.067	3	4	2	2	2	2.6
B8702-18	367	399	8.0	1.076	2	1	1	2	2	1.6
B8702-35	363	399	4.5	1.060	3	1	2	1 2	1	1.6
B8742-4	359	404	6.0	1.070	3	1	2	2	3	2.2
B8 701-1 0	348	361	6.0							
B8742-3	346	382	7.0	1.067	2	1	2	2	2	1.8
Sebago	340	391	7.0	1.070	2 3 3	1 3 4	2 3 5		3	3.2
B9524-8	338	368	7.5	1.073	3	4	5	6	4	4.4
B8742-17	334	393	6.0							
B8706-20	334	366	5.5	1.074	2	2	5 2	2	3	2.8
B8706-8	333	357	6.0	1.073	2	2	2	2	2	2.0
B9550-9	324	375	6.0							
B9507-1	315	393	7.5	1.068	3	3	2	5 3	3	3.2
B8706-10	312	34 8	7.0	1.078	3	2	3	3	4	3.0
B9071-7	308	349	6.5							
Atlantic	305	386	6.5	1.081	3	3	2	2	2	2.4
B9530-7	304	337	7.0	1.074	3	1	2	2	2	2.0
B8706-6	304	336	6.0							
B9507-12	297	390	7.0	1.074	2	3	3	2	2	2.4

^{2/} Chip color: 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 2. (Continued)

	Yie	ld	Tuber			Ch	iip	Col	or	
Variety		acre)	appear-	Specific	Wee				harv	vest
	US#1A	Total	ance	gravi ty	1	2	3	4	5	Average
B8701-12 B9580-6	295 291	331 353	5.5 5.5	1.074	3	2	2	5	5	3.4
B9523-18 PA P0035-1 B8742-10	287 287 276	377 317 294	5.0 4.0 6.0	1.070	3	2	3	3	6	3.4
B8706-1 B9621-22 Wis 706	275 271 270 270	293 330 337 321	7.5 7.5 6.5 8.0	1.085 1.070	3 5	2 2	2	2 2	2 2	2.2
B9510-19 B8742-15 B8702-31 B9621-5	269 269 268	312 299 337	6.0 6.0 4.0	1.070	5	۷	3	۷	۷	2.0
B9572-5 B9071-8 B9514-12	268 267 264	299 302 318	6.5 6.5 4.5	1.085	3	2	2	2	3	2.4
B9473-2 B9524-7 B8702-15	261 256 255	313 282 309	7.5 5.5 6.0	1.061	4	3	2	2	5	3.2
B9621-17 B9525-18 B9071-3	255 255 254	294 285 317	6.0 7.0 6.0	1.076 1.074	4	3	2	2	3	3.2 2.6
B9539-9LW B9514-38 Wis 815	253 250 248	292 282 312	5.0 7.5 6.5	1.074	4	1	2	2	2	2.2
B8706-14 B6969-2 PA 9LE-3 B9581-10	238 235 231 223	263 298 262 302	5.5 8.0 7.0 6.5	1.076 1.066 1.070	3 5 4	1 4 5	1 5 5	2 4 7	2 4 6	1.8 4.4 5.4
B9541-27 B9566-11 B9537-24LW B9550-23	219 218 216 212	233 278 286 285	8.0 6.5 4.0 4.0	1.076 1.071	2 4	1 2	1 5	1 2	4 3	1.8 3.2
B9601-5 B9523-12 B9510-17 PA 9AM-3 B9511-1 B8702-14 B9552-13Y	211 210 206 205 203 203 201	292 314 302 268 240 231 329	5.0 3.5 5.5 8.0 5.0 4.5 5.0	1.063 1.089 1.067	5 3 4	5 3 2	3 2 3	7 3 1	5 2 2	5.0 2.6 2.4
B9580-3 Superior B9541-45 B9567-3 B9619-9 B9507-3 B9581-9	199 197 197 195 194 193 190	265 240 212 284 275 268 233	6.0 6.0 8.5 4.5 8.0 7.5 6.5	1.080 1.076	4 2	2	2 2	3 2	2	2.6 1.6
Wis 716	189	236	6.0							

Florida Table 2. (Continued)

	Yie	eld	Tuber			Ch	nip	Col	or	
Variety	(cwt/	(acre)	appear-	Specific	Wee					vest
	US#1A	Total	ance	gravity	1	2	3	4	5	Average
B9555-21	187	231	6.5	•						
PA 9BJ-2	185	215	6.0	1.075	3	2	3	6	4	3.6
B9581-1	182	283	5.5	1.070	9	_	3			3.0
B8706-7	182	220	5.5					D		
Wis 703	175	217	6.5							
B9541-5	172	208	6.5							
B9536-34	167	200	5.5							
B9552-43	165	240	6.0							
B9541-20	165	183	8.0	1.073	3	1	2	2	2	2.0
B9536-23	161	214	5.0							
B9541-9	157	190	7.5	1.081	2	1	2	1	2	1.6
B9581-3	153	188	6.0							
B9581-5	150	218	5.5							
B9511-5	148	169	7.0	1.074	2	1	2	1	1	1.4
B9602-12	140	182	7.5							
B9541-44	137	171	7.0							
Wis 756	135	181	5.5							
Wis 752	133	212	5.5							
B9531-8	133	171	4.5							
B8706-15	124	164	6.0							
Wis 795	123	166	7.0							
B9520-5	113	172	5.5							
B9654-7	110	191	3.5							
PA 9HB-2	108	162	5.5							
B9582-18	93	126	5.5							
B9602-1	73	125	6.0							
B9582-17	54	133	7.0							

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

 $^{^{2}}$ / Chip color: 1-4 = acceptable; 5 = borderline; 6-9 = too dark for use.

Florida Table 3. Results from 18 russet clones selected for advanced testings at Hastings, Florida -- 1981.

Variety	Yie (cwt.	eld (acre)	Tuber appear-	Specific
var re cy	US#1A	Total	ance1/	gravity
Centennial	353	390	6.8	1.065
B8934-4	350	397	5.5	1.068
Wis 779	345	391	4.5	1.066
Centennial	337	372	8.0	1.068
Wis 780	335	367	5.3	1.072
B7583-6	333	405	7.7	1.073
B9147-3	329	372	5.5	1.064
Norgold 10-7	287	328	5.5	1.065
Butte	271	337	5.0	1.075
B9142-4	240	379	6.3	1.066
Norgold 35	238	282	5.3	1.064
B8972-1	229	301	8.3	1.073
Norgold USDA	201	241	5.5	1.072
B9221-14	178	233	4.3	1.069
B8833-6	176	206	8.5	1.075
Russet Burbank	164	263	2.8	1.070
BelRus USDA	149	184	8.0	1.076
BelRus Maine	142	184	8.0	1.075
LSD (0.05)	57	52	1.4	0.005
(0.01)	77	69	1.9	0.006

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

Florida Table 4. Results from 70 russet clones selected for intermediate testings at Hastings, Florida -- 1981

Variety		acre)	Tuber appear-
	US#1A	Total	ance ¹ /
B9540-62	408	446	8.5
B9648-15	387	425	6.5
B9553-6	373	430	6.0
B9540-29	358	374	7.0
B9648-9	348	382	6.0
B9539-14	344	4 01	4.5
B9540-5	344	368	6.0
B9545-25	321	415	6.0
B9538-6	304	329	8.5
B9606-12	301	347	8.0
B9635-12	295	357	5.0
Centennial	291	344	7.7

Florida Table 4. (Continued)

Variety	Yie (cwt/	ld acre)	Tuber appear-
	US#1A	Total	ance
B9540-16	290	361	8.0
B9540-2	289	440	5.0
B9539-18	282	359	8.0
B9616-3	282	314	6.5
B9538-9	281	301	6.0
B9540-14	278	338	7.0
B9589-26	278	293	5.5
B9540-22	277	402	5.5
B9545-42	274	338	6.5
B9636-19 B9592-5	274 274	325 312	5.0
B9540-47	274	338	4.5 5.5
B9598-3	270	329	4.5
B9545-12	267	305	4.5
B9539-7	265	350	7.5
B9540-55	265	304	5.5
B9540-33	259	313	4.5
B9539-1	259	279	9.0
B9545-34	257	332	6.5
B9539-21	255	333	5.0
B9598-5	255	318	6.5
B9540-24	249	304	7.5
B9540-25	246	289	7.5
B9540-27	246	278	7.0
B9539-4	240	305	5.5
B9539-6	238	297	8.0
B9566-1	236	387	5.0
B9552-32	234	278	4.5
B9523-10 B9540-50	233 232	270 321	8.0 6.5
B9569-2	224	265	6.5
B9635-13	218	400	5.5
B9540-53	215	262	8.0
B9606-10	207	267	5.0
B9523-5	205	333	4.0
B9537-23	205	255	5.5
B9599-5	203	240	5.5 7.5
B9540-20	191	314	5.0
B9523-15	191	297	4.5
B9604-4	190	254	4.5
B9539-5	138	287	5.5
B9545-40	184	254	5.0
B9604-7	179	235	6.0
B9540-43	176	208	8.5
B9523-6	174	222	7.5
B9606-9 B9596-4	173	189 204	8.0 5.5
B9540-7	165 150	372	3.5
B9538-3	150	257	5.5

Florida Table 4. (Continued)

Variety	Yie (cwt/	ld acre)	Tuber appear-
	US#1A	Total	ance
B9585-4	150	212	6.0
B9537-14	144	246	5.5
BelRus	143	171	8.0
B9596-2	139	212	4.5
B9540-23	138	210	6.5
B9537-17	128	185	6.5
B 9539- 8	124	248	4.5
B9544-9	116	199	5.0
B9537-4	66	240	5.0

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

Florida Table 5. Results from 9 red clones selected for advanced testings at Hastings, Florida -- 1981.

Vandat.	Yie		Tuber
Variety	US#1A	acre) Total	appear- ance ¹ /
	03π1Α	10001	ance .
Red La Soda	472	519	5.3
Wis 807R	407	434	5.3
Wis 806R	399	434	7.3
Wis 774R	393	416	7.7
Red New Norland #13	328	361	6.7
New Norland #6	290	340	6.7
Botouche Red	281	292	5.7
NB 234 Red	248	268	5.7
8767-10R	242	278	6.3
LSD (0.05)	72	71	1.4
(0.01)	99	97	NS

^{1/} From 9.0 = most desirable to 0.0 = completely undesirable.

J. J. Pavek, D. Corsini, C. Stanger, and S Michener

Crossing and early generations (Aberdeen). Eighty tetraploid and 24 diploid cultivated, parental clones and three wild diploids were crossed in 1169 combinations. The crosses were designed to produce enhanced germplasm as well as varieties for processing and fresh market. Tubers of about 60,000 seedlings were produced of 337 families in greenhouses and screenhouses. Five hundred thirty-two clones were selected from 2137 12-hill plots; after storage and quality testing about 100 of these will be selected for further field testing. One hundred fifty-two clones were tested in preliminary and intermediate yield and disease trials; storage and quality evaluations are now being run.

Thirty-eight selected clones were introduced to the Tetonia seed farm via tuber index and stem cutting.

Advanced yield trials. The late harvest trial was conducted at three locations; the results are shown in ID-OR Table 1. Weather related stresses adversely affected the results at Kimberly and Malheur Co. Three Russet Burbank protoplast-derived clones were included in this trial along with seven other experimental clones. The most promising clones in this trial are A7411-2, A74595-11 (one-fourth S. andigena with S. andigena cytoplasm), and A75188-3.

The early harvest trial results are presented in ID-OR Table 2. Considerable water rot occurred at the Malheur location and therefore yields are not shown. Clone A74114-4 appears most promising; it stores well.

Descriptive information, certain disease reactions, and blackspot data are presented in ID-OR Table 3. Clone A7411-2 has the best <u>Verticillium</u> wilt reaction relative to its maturity, but it has the highest scab susceptibility. The three protoplast-derived clones and A7419-2 can have a problem with dry rot. Lemhi Russet continues to have a blackspot problem in commercial production and the score in the table is in agreement.

Other studies. The uniform national biomass trial was conducted at Aberdeen as was the national chipping trial; the results will be presented elsewhere.

<u>Distribution</u>. The distribution of breeding selections, named varieties, seedling tubers, and true seed during 1981 is summarized in ID-OR Table 4.

1981 Advanced Late harvest yield trial, tuber yields, specific gravity, and french fry color. ID-OR Table 1.

			Aberdeen,	en, ID			Kim	Kimberly, ID	ID			Malheur Co.,	ır Co.	, OR	
Entry	Total Yield Cwt/A	U.S. #7	U.S. #1's Tot>10,02	Spec. Grav.	Fry Color	Total Yield Cwt/A	U.S. #1's Tot>10,0z	1, s 0,00z	Spec. Grav.	Fry Color	Total Yield cwt/A	U.S. #1's Tot>10%	20%0 0%0z	Spec. Grav.	Fry Color
A66102-16 A7411-2 A7419-2 A74595-11 A7578-1	354 501 382 431 323	69 83 75 66	24 51 46 19 20	1.082 84 78 91 79	2.1.0	448 520 410 - 440	80 84 74 -	52 60 53 42	1.086 91 77 - 83	2.2 1.5 2.1 1.8	303 273 323 - 260	71 78 80 80 -	13 23 35 14	1.107 101 94 -	8.0 0.8 0.0 8.0
A75188-3 78-LC1 RB-SM2-50st RB-SM8-50st RB-SM122	473 405 371 379 271	84 81 57 18	35 24 11 5	80 72 71 71 71	2.6 1.5 0.9	454 412 473 451 303	76 80 62 57 45	61 21 20 8	75 77 75 77 82	2.5 1.8 1.6	237 - 316 165 245	77 - 57 56 22	4- 880	89 - 84 84 91	2.4 0.9 0.8 0.7
Lemhi R. Russet B.	409	65	22 15	84 73	0.9	551 452	85	61	88	0.8	322 316	65	12 25	103	0.5
RSD %	99			.003	9.0	110			.004	0.7	57			.005	0.8

Specific gravity: Air and water weight method.

0.5 (lightest) to 4.0 (darkest), after 3 months' storage at 45° F. French Fry Color:

ID-OR Table 2. 1981 Advanced early harvest yield trial.

				Aberdeen, ID	ın, ID				Malheur	Malheur Co., OR
			U.S. No. 1		Culls	18				
	Total Yield cwt/A	Total %	% 20 01<	% 9<	<4 oz >4 oz % %	>4 02 %	Spec. Grav.	Fry	Spec. Grav.	Fry
A74114-4 NDA8694-3 78-LC1 Lembi Rus	266 279 269 282	77 69 72 78	22 12 9	61 44 54	17 19 25 15	3 1 6	1.074 70 74 79	0.5 0.5 0.9	1.090 81 85 92	0.7 0.5 0.7
Norgold Rus. Pioneer Russet B.	286 314 251	77 77 55	15 16 8	53 55 31	22 20 22	23 2 2	99 70 70	1.5	82 - 0	1.9
LSD 5%	53						.003	0.5	.005	7.0

French Fried 5 to 7 days after harvest.

ID-OR Table 3. Advanced selections, vine, tuber, disease characteristics. $\frac{1}{2}$

	т.,	h a .a	Video		eld (0				(0-5)
Entry	Rus	Shape	Vin Size	Mat	Vert wilt	Erly Blt	Scab	Dry Rot	Blk Spot
A66102-16	Lt	0	7	7	5	4	1	4	2.1
A7411-2	М	L	7	6	4	4	5	4	2.0
A7419-2	Buff	0	7	8	4	2	1	5	1.5
A74114-4	M-	0-L	5	4	8	7	2	2	-
A74595-11	M.Hv	L-0	6	5	5	5	0	3	-
A7578-1	M+	0	6	7	6	4	0	3	1.6
A75188-3	M	0	7	8	3	4	0	4	0.7
78-LC1	М	0-L	5	4	9	9	1	3	1.6
RB-SM2-50st	М	L	6	6	7	6	1	5	1.5
RB-SM8-50st	M	L	6	5	8	7	1	5	1.8
RB-SM122	M	L	6	6	5	5	0	5	1.5
Lemhi R.	M+	L-0	6	6	7	6	0	3	3.4
Russet B.	М	L	6	6	7	7	1	4	2.0

^{1/} Tuber: Rus = russeting; Lt = light, M = medium, Hv = heavy, Buff = non-russet.

Shape: 0 = oblong, L = long, O-L = oblong-long.

Field: 0 (minimum, earliest) to 9 (maximum, latest); 0 (minimum) to 5 (maximum).

Strg = Storage

ID-OR Table 4. Distribution of clones, seedlings, and seeds - 1981.

LOCATION	CO	OPERATOR	NUMBE	R LOCATION	COOPERATOR	NUMBER
Clones:						
Alberta	D.	Lynch	20	Montana	L. Baier	1
Argentina	Н.	 Brucher	10		R. Totten	4
California	W.		1	Nebraska	R. O'Keefe	1
		Kenfield McCoon	2 1	Nevada	W. Schafer	1
	J.		1	North Dakota	R. Johansen	4
		Timm	2	Oregon	R. Clarke]
0-1		Voss	41		D. Hane M. Johnson	5 62
Colorado		Holm Twomey]]		G. Vogt	2
		Urano	3		J. Zalewski	79
Florida	J.	Shumaker	1	Pennsylvania	P. Grun	3
Idaho		Amar	2	South Dakota	W. Renken	1
		Davis C. Dallimore	5 16	Texas	D. Smallwood	6
	R.		4	Washington	B. Dean L. Hiller	1
		Hoggan	1 29		M. Martin	2 157
		Kleinschmidt Sharp	29]	Wisconsin	R. Rominsky	2
	L.	Smith	2		J. Schoeneman	10
	L.	Van Slyke Williams	3 4		J. Staub	4
Illinois		Trees	2	Wyoming	<pre>K. Bohnenblust C. Sears</pre>]]
Maine	D.	Wilson	4			
Michigan	R.	Chase	14			
Missouri	Т.	Wagner	24			
Seedling tu	ıber	s or seeds:				
Alberta		Lynch	60+	families		
California		Voss	43	П		
Colorado	J.	Twomey	133	п		
No Dakota		Johansen	98	П		
Oregon	D.	Hane	13	П		
Texas		C. Miller, Jr	11	н		
Maryland		Webb	16	crosses		
Peru		Brown	8	П		
		Mendoza	20	н		
Poland	Κ.	Swiezynski	2	П		
Brazil	J.	Babka	1	composite		

INDIANA

H. T. Erickson

AN Potato Breeding

Two clones, 78-59-1 and 77-92-1, are being increased for extensive trials. Both are mid-season, high dry matter round whites with good scab resistance. They have been exceptionally free of tuber defects.

In the summer of 1981 a total of 135 clones were observed. Of these 44 were selections from previous years and 91 were first year selections grown in 5-hill plots. Approximately 40 have been retained for further observation and test.

Some 15,000 seedlings of 18 families were field grown from transplants. The most satisfactory schedule involves seeding in flats the first week in April. After about 2 weeks they are transplanted to 5×5 cm peat pots, which are field planted in mid May. It is advisable to grow seedlings under 18 to 24 hr photoperiods to reduce precocious tuberization. Plants reach maturity by September for the most part.

Selections are monitored for soluble tuber protein. Table 1 gives the average protein content for selections of the 18 seedling families. While the number of clones per family is variable it is apparent that families differ in protein content. Those having one high protein parent tended to have higher values. The table also shows relative dry matter. It should be noted that family 81-5 which was highest in protein was also number one in total dry matter. Evidently the two can be increased simultaneously, and this agrees with earlier observations.

Plants were regenerated <u>in vitro</u> from tuber discs and about 2500 grown in the field. Extensive data were collected to verify the existence of possible variability which might have arisen. While a few aberrant plants appeared it will be necessary to grow another clonal generation to get precise data on the degree of variation present. The variety "Superior" was used.

Indiana Table 1. Soluble protein and dry matter among seedlings of several crosses. Grown on mineral soil.

	Protei	n ¹ /	Dry Mat	ter ^{2/}	
Progeny	Ave	S.D.	Ave	S.D.	N
81-1	.91	.18	3.16	•53	29
81-2	1.00	.20	3.23	.46	37
81-3	1.16	.23	3.16	•50	36
81-4	1.26	.22	3.64*	.27	9
81-5	1.36*	.32	3.65*	.48	52
81-6	1.15	.08	3.46*	.21	5
81-7	.99	.27	3.21*	•50	29
81-8	•96	.17	2.71*	.36	7
81-9	1.11*	.19	2.98*	.38	9
81-10	.89*	.16	2.60	•35	9
81-11	•97	.30	2.30	0	2
81-12	1.35*	.22	3.38	.12	6
81-13	.80	.06	2.60*	.14	3
81-14	1.21*	.23	3.14	.38	21
81-15	.91	.18	2.36*	.24	9
81-16	.80	.26	2.34	.33	9
81-17	1.00	.21	3.32*	.42	24
81-18	1.06	.34	2.98*	.50	24

^{*} One parent high for this trait.

^{1/} Soluble protein on a fresh weight basis.

^{2/} Relative scale. Larger values have greater dry matter.

200

Potato Variety and Seedling Evaluation

Thirteen varieties and 13 seedlings were evaluated for yield and quality determinations at Manhattan.

Climatic Conditions:

The average monthly temperature by months follows: April 63, May 62, June 76, and July 79°F. The planting was irrigated three times, twice in April and once in June. Defects were numerous. Early maturity types generally were superior to late maturity selections. Table 1 gives the results of this study.

'Table] . Results of Regional and Commercial Potato Variety Trials, Manhattan, 1981

	Yield cv	vt/acre		De	fects1/			lity
Variety	Wt. of US#1	Total	Scab	Second growth	Cracks	Internal necrosis	Appear- ance	Specific gravity
Red Pontiac	199	230	3	4	3	1	3	1.053
Crystal	174	244	2	2	1	1	1	1.072
Denali	167	199	2	2	1	1	2	1.085
A 219.70-3	168	230	2	1	1	1	2	1.059
ND 8777	167	211	3	2	2	3	1	1.055
Dakchip	167	205	2	3	1	1	2	1.071
A 129.69-1	147	190	2	1	1	1	2	1.064
Wisc. 726	138	175	2	3	1	1	3	1.071
A 7.67-1	124	169	1	1	1	1	1	1.056
Norchip (R)	66	170	2	2	1	1	2	1.072
Superior	116	145	1	1	1	1	1	1.073
Red LaSoda	115	152	2	1	1	1	2	1.045
Wisc. 774-R	112	180	1	2	1	1	3	1.054
Norchip	109	152	2	2	1	1 ,	2	1.070
Viking	98	118	1	1	1	1	1	1.056
LA 71-96	91	173	2	3	1	1	3	1.060
ND 161-62	85	167	1	3	1	1	2	1.075
LA 31-124	80	155	1	2	1	2	2	1.057
Norland (R)	74	119	1	1	1	1	1	1.061
Red Norland	72	123	1	1	1	1	1	1.059
ND 55-7	69	142	2	2	2	1	2	1.067
Russet Burbank	65	176	1	4	1	1	3	1.063
ND 146-4R	61	98	3	4	1	1	1	1.069
ND 119-3	51	98	1	2	1	1	1	1.068
Lemhi	141	141	1	5	1	1	3	1.062
ND 9781	129	129	3	2	1	1	3	1.063
LSD	34	41						.005

Planted: March 24

Fertilizer: $N - P_2^0_5 - K_2^0 - 1b/A$

24 + 114 + 0 preplant

50 + 0 + 0 April 27 50 + 0 + 0 June 2

Spacing: Plants 1 foot apart in 3-foot rows

Irrigated: April 6, April 25, and June 8

Soil Insecticide: Diazinon 4 lb/A

Fungicide: Diathane 45 Herbicide: Eptam 3.0 lb/A

Insecticides: Sevin and Thiodan

Harvested: July 24

1/ 1 = superior; 2 = average; and 3 = inferior

Louisiana

James F. Fontenot, D. W. Newsom, H. M. Brewer, A. C. Miller, W. A. Poillion, and P. Wilson

Potato Breeding and Development

Objectives. The principal objectives of the Louisiana potato breeding project are wide adaptability, high yield, frost, heat and drought resistance, insect and disease resistance (particularly late blight and scab), improved culinary quality (including chipping quality, french frying quality, and baking quality), resistance to aftercooking darkening, improved storage ability, better shape and skin color and resistance to tuber greening. Development of an oblong russet type adapted to Louisiana conditions is highly desirable.

Other objectives are to gain a further insight into the physiological changes during rest and to ascertain the effect of growth regulators, applied as preplant, preharvest treatments on the production, storage ability and quality of potatoes. The total alkaloid content must be investigated. Air pollution may be a limiting factor in potato production and cultivar selection is essential to minimize yield losses.

Justification. Very few southern states have seen fit to include potato breeding as a research project for their state. Since none of these states, including Louisiana, produced certified seed potatoes it is of utmost importance that wide adaptability be our primary objective. We are unique in this respect because we realize unless a new clone will produce well in the areas of certified seed production (north) it will not be available for southern production no matter what its producing potential.

The potato ranks with rice and wheat as the world's leading food crops and is the world's leading vegetable crop. It is one of the cheapest sources of carbohydrates and furnishes appreciable amounts of Vitamin B and C. The per capita consumption of this vegetable has increased to over 100 pounds. The rapid expansion of the potato processing industry in the United States is one of the momentous developments in the field of food processing. This is coupled with the increase in per capita consumption of processed potatoes in the form of chips, frozen, dehydrated, canned and miscellaneous snack foods. For these reasons plus the fact a different type potato is needed for most uses it is paramount that the development of improved varieties be continued.

Important potato problems are also susceptibility or resistance to air pollution, insects, diseases, frost, heat, drought, and greening and any scientific knowledge that can be obtained could help explain the physiological basis for these factors. Furthermore, any new information obtained that concerns rest, dormancy, or suberization would certainly be a contribution.

Some 1981 results. We again participated in the regional trial table, and after scoring each entry on scab, growth cracks, second growth, sun green, hollow heart, internal necrosis, vascular discoloration, yield and culinary quality it was determined that ND146-4R was best, followed by Minn. 10162, Neb. A219.70-3, L71-96, and Norchip.

Results of a replicated trial conducted at Calhoun, La. are found in table 2. Red LaSoda was the most outstanding cultivars in yield of number ones and total yield. Other high yielding lines were 42-38, 71-72, 01-38 and 31-124. An observational yield trial was also conducted at Calhoun (table 3). A white skinned line, 81-20, yielded more than Red LaSoda. Other promising lines in this experiment were 01-44, 01-31, and 71-24. Some outstanding russet types in this test were 01-20, 01-31, and 02-13.

Other spring yield trials which are not presented in table form were conducted in Baton Rouge. In a source of seed test where Louisiana grown seed was compared to northern grown seed. It was observed that northern grown Red LaSoda produced three times more tonnage than Louisiana grown Red LaSoda. Lines 42-38 and 31-124 produced significantly higher yields from a southern seed source composed to northern seed. In a replicated test in which 1978 lines were composed it was found that the best lines were 81-7, 81-20, 81-24, 82-119, 81-167, and 81-173. In other experiment it was determined that 81-24 outyielded Red LaSoda. More good lines though they were inferior to Red LaSoda in this trial were 42-38, 81-20 and 81-173. In yet another experiment the best clones were 51-238 and 71-72, and 43-18.

Fall Yields: A fall potato cultivar study conducted at Hammond, La is indicated in table 4. Clone 81-7 produced a significantly higher yield than all lines except 81-20 this included Red LaSoda from two different sources. The most outstanding lines grown in Baton Rouge this fall were 01-47, 71-96, 01-4, 01-8, 01-50, Red LaSoda, Norland, N0146-4R, ND119-3, and Minn. 10162. In September 99 first year clones were selected at Rhinelander, Wisconsin and will be planted in Louisiana this spring. This represents individuals from 23 different families.

Culinary Studies: Specific gravity and some culinary rating of our 1980 selections are reported in table 5. Lines with very high gravity were 01-1, 01-5, 01-19, 01-27, 01-28, 01-29 and 01-38. Clones that chipped well were 01-7, 02-13, 01-19, 01-33, 01-38, 01-44, and 01-51. The best french fries were made from 01-7, 01,18, 01-33, 01-38, 01-41, 01-43, 01-44, 01-47, and 01-51. We consider it important that any future cultivar should show very little darkening after cooking and our best lines with this characteristic were 01-15, 01-27, 01-29 and 01-44. Culinary studies were conducted on all clones grown at Baton Rouge, Calhoun, Chase, Diamond and Hammond.

Yield and important information on some lines grown at Baton Rouge in 1981. Louisiana Table 1.

Varietv	Aver. 1_/ Mat.	Most 2/ Representa- tive Scab Area-Type	CWT/A Aver. Yield	CWT/A Aver. Yield US #1	Aver. Percent US #1	Aver Total Solids	Gen.3/ Merit Rating	Chip4/	Comments and General Notes
Early to Medium Early ND146-4R	2	0	197	130	99	16.0	П	2.4	excellent french fries
Norland	1	⊥	141	92	54	15.0		4.2	
Medium to Late									
Neb. A129.69-1	3	_	185	150	81	15.0		5.2	
Neb. A219.70-3	3	—	230	125	53	16.5	m	7.8	
Neb. 7.67-1	3	-	149	43	29	15.0		7.6	
Minn. 9781	3	_	149	9/	51	16.9		3.4	
Minn. 8777	3	_	195	106	54	16.0		5.6	
Minn. 10162	3	T	179	109	61	19.2	2	3.2	excellent french fries
La. 71-96	5	0	183	119	9	17.7	4	5.6	no after-cooking darkening
La. 31-124	4	⊢	235	165	70	16.5		4.8	good french fries
ND 119-3	3	_	132	63	48	15.0		4.4	excellent french fries
ND 55-7	3	-	217	143	99	15.6		3.4	excellent french fries
Red Pontiac	4	0	231	131	57	15.0		7.0	
Russet Burbank	5	0	154	38	25	16.9		5.8	little after-cooking darkening
Norchip	3	_	246	144	59	17.7	2	3.4	excellent french fries

1-Very Early-Norland maturity; 2-Early-Irish Cobbler maturity; 3-Medium-Red Pontiac maturity; 4-Late-Katahdin maturity; 5-Very Late-Kennebec or Russet Burbank maturity.

AREA - T-less than 1%; 1 - 1-20%; 2 - 21-40%; 3 - 41-60%; 4 - 61-80% 5 - 81-100%. TYPE - 1. Small, superficial 2. Larger, superficial; 3. Larger, rough pustules; 4. Larger pustules, shallow holes; 5. Very large pustules, deep holes

2/

(Rate first, second, third, Place top five among all entries including check varieties; disregard maturity classification. fourth and fifth (in order) for overall worth as a variety. 3/

 $\overline{4}/$ Chip Color - PCII Color Chart or Agtron.

conducted at Calhoun, Louisiana in 1981 Calhoun, Louisiana Replicated yield trial Louisiana Table 2

	Marketable	Yield cwt per Acre	r Acre	
Line	1's	2's	Total	Remarks
Red LaSoda		40.2	407.4	nice red, some second growth
42-38		\vdash	364.3	smooth red oval
71-72	303.0	28.8	331.8	slightly rough white, oval to oblong
01-38		22.0	324.1	smooth white, oblong
31-124		47.7	343.2	slightly rough white, oval to oblong
1-2		43.7	322.5	smooth white, oval
51-238		39.0	314.7	oblong white, some second growth
ouo		17.4	256.3	nice white, oval to slightly oblong
-3			273.5	nice white, oval to oblong
43-18			267.4	purple, oval to oblong
01-45			261.7	white, oval to oblong
			281.1	white, oval to oblong, some rough
1			238.7	smooth white, oval
1		7.8	211.2	smooth white, oval to oblong
1-5		~	275.7	very smooth oval white, small, yellow flesh
01-39		35.5	215.8	oval white, some early cracking
-1		198.8	359.3	late, smooth white, long stolons
01-42			181.2	white, oval to oblong, some cracks
01-40		30.9	158.1	smooth white, oblong

Fertilizer applied February 23 at the rate of 650 obs. of 8-24-24 per acre, planted February 24, 15 ft. plots, replicated four times, top-dressed April 8 with 100 lbs. of ammonium nitrate per acre and again April 23 with 60 obs. per acre. Harvested June 9.

Observational yield trial conducted at Calhoun, Louisiana in 1981. Louisiana Table 3. Calhoun, Louisiana

	Marketable	Marketable Yield cwt per	acre	
Line	1's	2's	Total	Remarks
81-20	384.2	36.6	420.8	large white, oblong
Red LaSoda	367.2	40.2	407.4	nice red but some second growth and cracks
01-44	316.2	41.8	358.0	smooth white oval
01-4	298.0	52.3	350.3	nice white, oval
01-31	250.0	22.6	272.6	nice white oval, slight russett
71-24	248.3	40.1	288.4	white, oblong
01-10	239.6	27.9	267.5	
01-8	235.2	13.1	248.3	smooth white, oval
01-17	223.0	40.1	263.1	smooth white, oval
01-29	210.8	38.3	249.1	smooth white oval, a few fresh cracks
01-30	204.7	53.1	257.8	smooth white, oblong
02-13	188.2	19.2	207.4	smooth red, oval, russett
02-6	187.3	41.0	228.3	smooth red, oval
01-23		56.6	243.0	white, oval to oblong, a little rough
01-26	184.3	21.8	206.1	smooth white, oval, small
01-20		54.9	229.1	smooth, oval, extreme russett
01-14	169.9	45.3	215.2	white, oval, some cracks and purple in flesh
01-18	158.6	28.8	187.4	smooth white, oval

Fertilier applied February 23 at the rate of 650 lbs. of 8-24-24 per acre, planted February 24, 15 ft. plots, 2 reps, top-dressed April 8 with 100 lbs. of ammonium nitrate per acre and again April 23 with 60 lbs. per acre. Harvested June 9.

Louisiana table 4. Fall potato cultivars study conducted at Hammond, Louisiana in 1981.

		ushels Per Acre	
Cultivar	US#1	US#2	Total
81-7 81-20 81-167 81-81 Red LaSoda ND 42-38 82-154 81-178 81-24 81-173 Monona 81-5 Red LaSoda Minn. 82-156 51-238 82-119	152 a 1 109 ab 96 b 91 bc 91 bc 90 bc 81 bc 80 bc 71 bcd 67 bcd 43 cd 25 de 23 de 21 de 15 e 14 e	15 ab 10 ab 9 ab 20 a 12 ab 13 ab 13 ab 15 ab 13 ab 11 ab 11 ab 8 ab 4 b 9 ab 5 b	167 a 119 ab 105 bc 111 b 103 bc 102 bc 94 bc 95 bc 84 bcd 76 bcde 53 cdef 36 def 31 def 25 ef 24 ef 19 f
43-18	14 e	14 ab	28 ef

 $^{^{1}\}mathrm{Cultivars}$ with the same letter are not significantly different.

Planted: 8/25/81

3 replicates, randomized block design

Harvested: 11/20/81

Louisiana Table 5. Specific gravity and some culinary ratings of 1980 clones grown in Baton Rouge in 1981.

Variety	Specific Gravity	Chip Rating 1)	French Fry Rating 2)	After Cooking Darkening 3)	Remarks
(1) 01-1	1.097	6.6	4.4	7.0	russet, fair type
(2) 01-3	N.E.	4.4	3.4	4.8	very nice, some cracks
(3) 01-5	1.089	9.6	5.0	3.8	very nice, few cracks
(4) 01-7	1.088	3.4	2.4	5.2	oblong, russet orange
(5) 01-12	1.080	5.2	3.8	3.2	very nice type
(6) 01-13	1.086	3.2	2.6	5.2	russet red, rough
(7) 01-15	1.091	4.4	2.6	2.6	fair yield, russet, cracks
(8) 01-18	1.078	3.0	1.8	4.2	fair
(9) 01-19	1.093	2.2	2.6	4.2	very round and good
(10) 01-20	1.075	4.6	3.0	5.6	fair russet
(11) 01-21	1.088	4.2	3.2	3.4	many cracks
(12) 01-22	-	-	-	-	high yield,cracks
(13) 01-24	1.065	4.6	3.4	3.6	very nice, cracks
(14) 01-27	1.094	5.4	2.6	2.6	nice, high yield
(15) 01-28	1.100	8.6	2.8	4.6	fair
(16) 01-29	1.093	3.6	2.6	2.8	good
(17) 01-33	1.077	3.2	2.4	3.8	very nice
(18) 01-38	1.096	3.2	2.4	5.2	nice, cracks, beautiful blue
					flowers.
(19) 01-40	1.085	6.0	2.8	3.2	outstanding shape, yield fair
(20) 01-41	1.076	4.6	2.4	5.8	nice
(21) 01-43	1.073	3.8	2.2	5.4	nice
(22) 01-44	1.086	3.2	2.2	2.8	very white, high yield
(23) 01-47	1.073	5.2	2.4	4.0	nice
(24) 01-51	1.081	3.6	1.8	3.0	rough
(25) 01-53	1.068	5.4	2.6	5.0	fair
(26) 01-54	-	-	-	-	good in Wisconsin
(27) 01-55	_	-	_	_	good in Wisconsin
(28) 01-56	-	-	-	-	good in Wisconsin
					-

 $[\]frac{1}{2}$ / 1 = very white; 10 = very dark $\frac{1}{2}$ / 1 = very white; 10 = very dark $\frac{3}{2}$ / 1 = very white; 10 = very dark

MAINE

S. S. Leach, Raymon E. Webb and David Wilson

Resistance to Fusarium Tuber rot (Fusarium roseum 'Sambucinum' and Fusarium solani 'Coeruleum'). Inoculum for this test was grown on potato dextrose agar. Spores were washed from seven day old cultures and adjusted to 50,000 per ml. The tubers of the test clones were inoculated with a hypodermic syringe midway between the bud and stem ends. The inoculum (100 spores) was injected into the tubers 7 mm below the tuber surface. The incoluated tubers were stored in a controlled environment room maintained at 55°F (13°C) and 95 percent relative humidity for 21 days. At the end of the storage period, the tubers were removed and scored for tuber rot development and amount of sprouting. The degree of rot in a tuber was determined by cutting through the inoculation sites and observing the degree of infection. This year, 6 round white and 6 russet-type clones were tested. Because of a lack of round white tubers for testing, only the russet types were tested for their reaction to both strains of the fungus. Clone B7200-33 is the reference clone as it has shown a very high degree of resistance in previous tests.

Clones B7200-33, B8881-5, B8943-4 and B8972-1 showed moderate-high degrees of resistance (Table 1). B8972-1 is a very promising russet-type with a moderate degree of <u>Fusarium</u> resistance. It should be an excellent potato for fresh market and processing.

Table 1. Resistance of breeding clones to <u>Fusarium roseum</u> 'Sambucinum' and <u>Fusarium solani</u> 'Coeruleum'

Clone	Disease rating 1/ F. roseum 'Sambucinum'	F. solani 'Coeruleum'
Round Type		
B 7200-33	5	
в 8710-16	2	
B 8751-6	1	
B 8685-4	2	
3-1888 g	4	
B 7805-1	3	
Russet Type		
B 8833-6	2	7
E 8848-2	1	7
3 8334-4	1	7
8-68 B	2	8
3 3343-4	4	8
B 8372-1	4	7

^{1/}Rating 0-9: 9 = no disease; 0 = severe diseas systems.

MAINE - 1981 Hugh J. Murphy and Leigh S. Morrow

Cooperative variety trials were conducted during 1981 at Presque Isle and Newport, Maine. Soil and weather conditions during May and June were excellent for planting and early growth. Because of ideal soil and moisture conditions, plant stands were near perfect for most varieties. Rainfall for July was below normal but August had about three acre inches above normal which caused some late blight and tuber rot problems. Tubers sized up larger than normal but were killed early enough to prevent oversize.

Plots at all test locations were single rows, 25 feet long, and replicated six times per variety. Planting, killing, and harvesting dates; seedpiece spacing, and fertilization rates used at both test locations are presented in Maine Table 4.

Yields and specific gravities for all varieties grown at Presque Isle and Newport are presented in Maine Table 1. The ten highest yielding varieties at Presque Isle in descending order were: B8086-3, Rosa, Michibonne, Kennebec, Lemhi, MN8757, B6043-WV6, BR7093-23, Chipbelle, and Butte. The nine highest ranking varieties in specific gravity were: Chipbelle, Lemhi, Russet Burbank, Butte, MN8224, Rosa, BR7088-18, MN9319, and Trent. Yields of all varieties at Newport were low, since this trial had to be killed two weeks early because of a late blight infection. The five highest ranking varieties in specific gravity were: Chipbelle, Denali, Atlantic, Belchip, and BR7088-18.

Tuber size distribution determinations for U.S. #1 and U.S. #1 (size A) are presented in Maine Table 2. All varieties grown at Newport had high percentages of tubers below 2^{1}_{2} inches in size because of the early killing date. Growth cracks and misshapen tubers were prevalent in most varieties grown at Presque Isle. Many varieties had a number of tubers with hollow heart.

Results of the first chipping and french fry color tests with tubers from 50° F storage are presented in Maine Table 3. Seedling C7232-4 grown at Presque Isle and Chipbelle and C7232-4 grown at Newport had acceptable chip color (<7.0). Thirty-four of the 48 varieties grown at Presque Isle had acceptable french fry color (<3.0). Many of the varieties grown at Presque Isle had unacceptable french fry texture (>1.2).

Complete details of the Maine cooperative variety trials are presented in the 1981 Performance Evaluations of Potato Clones and Varieties in The Northeastern States. This will be published by the Life Sciences and Agricultural Experiment Station as Bulletin 782 and is available from the Public Information and Central Services (PICS), University of Maine; Orono, Maine 04469.

Maine Table 1. Yield by hundredweight per acre and specific gravity for varieties grown at two locations in Maine - 1981.

	Presq	ue Is1e	Ner	wport
Variety	Yie1d	Specific gravity	Yie1d	Specific gravity
444			120	1 050
Allagash Russet			120	1.070
Atlantic			136	1.087
Be1chip			108	1.085
Buckskin	4.40	1 004	128	1.083
Butte	449	1.084	0.7	1 007
Chipbelle	464	1.095	97	1.097
Croatan	375	1.064	4.40	4 000
Dena1i			140	1.088
Katahdin	426	1.077	152	1.076
Kennebec (med.)	382	1.068	153	1.076
Kennebec (med. 1ate)	489	1.069		
Lemhi	484	1.094		
Michibonne	491	1.071	165	1.077
Michimac	405	1.067	172	1.072
Monona			154	1.076
Norchip			122	1.082
Rideau	289	1.066		
Rosa	520	1.083		
Russet Burbank	421	1.085		
Shepody	457	1.079		
Superior	345	1.073	121	1.075
Trent	220	1.081		
Yukon Go1d	318	1.080		
AF92-3	437	1.064		
AF186-5			133	1.081
AF201-25	341	1.069		
AF238-21	410	1.073	118	1.076
AF238-66	403	1.067	116	1.076
AF303-5	405	1.074	166	1.083
AF330-1	285	1.073	86	1.058
B6043-WV6	466	1.067		= 1 2 2 2
B8086-3	542	1.079	179	1.072
B8943-4	373	1.080		1.0,2
B8972-1	368	1.080		
BR5991-WV16	423	1.079		
BR7088-18	393	1.083	134	1.084
BR7093-23	466	1.080	111	1.074
C7232-4	302	1.075	94	1.075
C72132-2	388	1.075	54	1.075
C7358-14A	366	1.074		
C7358-14A	377	1.072		
C7490-2	299	1.068		
C7490-2 C74109-8	367	1.070		
			147	1 002
CC26-1A	334	1.075	143	1.082

Maine Table 1 - continued

	Preso	que Isle	Ne	wport
Variety	Yield	Specific gravity	Yield	Specific gravity
CE77E7 1	701	1 071	170	1 070
CF7535-1	391 747	1.071	139	1.078
CF7523-1	347	1.069	146	1.071
F68036	452	1.070	1.4	1 071
F69026	347	1.067	165	1.071
F73008	443	1.073	140	1.082
G6880-1	252	1.076		
G712-1	303	1.078	109	1.075
MN7973	341	1.067		
MN8224	347	1.084		
MN8757	468	1.063	185	1.070
MN9319	420	1.082		
W564-3A		_,,,,,	115	1.070
W718	436	1.064		
Waller Duncan L.S.D.				
(0.05)	42	0.003	46	0.005

Maine Table 2. Percentage of yield between 1-7/8 and 4 inches in diameter for varieties grown at Presque Isle and Newport, Maine - 1981.

	Presque :		Newpor	
Variety	1-7/8	2-1/2	1-7/8	2-1/2
variety	to 4	to 4	to 4	to 4
	inches	inches	inches	inches
Allagash Russet			85.6	16.0
Atlantic			91.9	37.4
Belchip			89.0	24.5
Buckskin			90.1	23.8
Butte	33.5 % 4	- 10 ounces		
Chipbelle	97.6	69.6	84.4	13.8
Croatan	97.1	63.3	• • • •	2000
Denali		00.0	88.9	19.3
Katahdin	88.2	77.6	93.2	40.8
Kennebec (med.)	94.4	72.8	91.7	39.2
Kennebec (med. late)		75.5		
Lemhi		- 10 ounces		
Michibonne	96.9	77.7	92.9	38.3
Michimac	95.8	66.0	91.0	36.4
Monona		00.0	93.3	29.7
Norchip			86.4	10.7
Rideau	95.8	71.7	00.,	
Rosa	96.2	58.0		
Russet Burbank		· 10 ounces		
Shepody		· 10 ounces		
Superior	98.2	58.5	90.7	23.6
Trent	96.7	55.3		
Yukon Gold	97.4	75.8		
AF92-3	94.0	71.7		
AF186-5	2		89.1	19.4
AF201-25	97.7	65.0		
AF238-21	97.6	65.3	84.2	14.2
AF238-66	96.6	62.9	81.0	6.4
AF303-5	96.1	75.2	91.2	28.3
AF330-1	95.9	41.6	81.1	15.0
B6043-WV6	97.8	68.1		
B8086-3	91.8	69.2	93.3	46.3
B8943-4		· 10 ounces		
B8972-1		- 10 ounces		
BR5991-WV16	96.5	53.7		
BR7088-18	97.2	69.6	93.2	31.8
BR7093-23	94.7	71.5	87.7	27.3
C7232-4	96.6	54.2	86.0	15.0
C72132-2	96.0	58.5		
C7358-14A	97.2	66.0		
C7358-26A	97.7	70.5		
C7490-2	97.9	32.5		

Maine Table 2 - continued

	Presque	Isle	Newpo	rt
Vaniativ	1-7/8	2-1/2	1-7/8	2-1/2
Variety	to 4	to 4	to 4	to 4
	inches	inches	inches	inches
C74109-8	97.5	55.9		
CC26-1A	96.3	41.2	90.9	25.9
CF7353-1	97.6	71.3	94.4	37.7
CF7523-1	95.0	43.3	90.9	18.1
F68036	34.1 % 4	- 10 ounces		
F69026	97.0	52.6	91.4	31.6
F73008	97.8	58.2	89.4	20.1
G6880-1	97.8	54.3		
G712-1	98.0	53.3	84.0	14.5
MN7973	98.3	73.9		
MN8224	95.4	52.2		
MN8757	88.7	75.4	95.1	67.9
MN9319	30.9 % 4	- 10 ounces		
W564 - 3A			84.0	12.7
W718	96.9	66.9		

Maine Table 3. Chip color and french fry color and texture indices for potato varieties grown at Presque Isle and Newport, Maine - 1981.

		Presque Isle		Newport
Variety	Chip		ch fry	Chip
	Color ¹	Color ²	Texture ³	Color ¹
Allagash Russet				8.1
Atlantic				8.1
Belchip				8.2
Buckskin				8.2
Butte	10.0	4.4	1.4	
Chipbelle	8.1	2.1	1.3	6.7
Croatan	8.6	2.4	1.0	
Denali				8.4
Katahdin	9.3	3.3	1.6	9.4
Kennebec (med.)	9.3	2.6	1.0	9.3
Kennebec (med. late)	9.2	3.0	1.4	
Lemhi	9.5	3.0	1.8	
Michibonne	9.5	3.0	1.5	9.2
Michimac	9.2	2.7	1.9	8.9
Monona				7.6
Norchip				8.2
Rideau	10.0	4.5	2.1	
Rosa	8.1	1.7	1.5	
Russet Burbank	9.5	3.4	1.5	
Shepody	8.8	3.0	1.6	
Superior	9.1	3.0	1.4	9.1
Trent	8.8	2.5	1.2	
Yukon Gold	9.9	4.1	1.0	
AF92-3	8.6	2.4	2.1	0 0
AF186-5	0 1	7 0	1 0	8.0
AF201-25 AF238-21	9.1	3.2	1.8	7.0
AF238-21 AF238-66	8.8 8.2	2.5 2.0	1.0 1.2	7.9 7.9
AF303-5	8.7	2.6	2.2	8.8
AF330-1	8.0	1.7	1.1	7.8
B6043-WV6	9.3	3.6	1.0	7.0
B8086-3	9.4	3.4	1.1	9.9
B8943-4	9.1	2.6	1.8	5.5
B8972-1	8.9	2.6	1.5	
BR5991-WV16	8.3	2.3	1.5	
BR7088-18	8.4	1.9	1.5	8.6
BR7093-23	8.1	2.4	1.3	8.3
C7232-4	6.4	1.0	1.0	6.6
C72132-2	8.8	2.4	1.2	
C7358-14A	8.7	2.7	1.5	
C7358-26A	9.6	3.4	1.1	
C7490-2	8.3	2.8	1.1	

Maine Table 3 - continued

		resque Isle		Newport
Variety	Chip		ch fry	Chip
	Color	Color ²	Texture ³	Color ¹
C74109-8	9.6	3.3	1.1	
CC26-1A	8.9	3.1	1.0	8.3
CF7353-1	7.8	1.6	1.6	8.5
CF7523-1	10.0	3.6	1.0	9.5
F68036	9.9	4.4	1.7	
F69026	8.6	2.6	1.0	8.1
F73008	9.0	2.3	2.0	8.2
G6880-1	8.1	2.5	1.0	
G712-1	8.9	2.9	1.2	9.6
MN7937	9.4	2.9	2.2	
MN8224	8.5	1.5	0.9	
MN8757	10.0	4.6	1.3	10.0
MN9319	8.3	2.3	1.9	
W564-3A				9.9
W718	8.7	1.7	1.3	
Waller Duncan	L.S.D.			
(0.05)	0.5	0.4	0.5	0.5

¹Chips with lower indices are lighter in color as read on PCII Reference Chart 1206-4.

²French fries with lower indices are lighter in color as read from U.S.D.A. Color Standards for Frozen French Fries.

³Lower texture indices indicate a mealier texture.

Maine Table 4. Pertinent information about the Maine Cooperative Potato Variety Trials - 1981.

Location and Maturity Season	Date Planted	Date Killed	Date Harvested	Fertilization	Spacing
Presque Isle					
Early & Med. Early Varieties	May 12	August 24	September 2	130-130-130	1/
Medium Varieties	May 12	August 19-24	August 29	130-130-130	
Medium Late Varieties	May 12	September 4	September 18	130-130-130	1/
Late Varieties	May 12	September 15	September 30	130-130-130	1/
Russet & Long Type Varieties	May 12	September 21	October 1	130-130-130	7/2
Newport					
All Varieties	May 28	August 28	September 29	140-140-140	1/

^{1/} Seedpieces of all varieties spaced 8 inches apart.

 $\frac{2}{2}$ Seedpieces of MN9319 spaced 10 inches apart.

Seedpieces of B8943-4 and B8972-1 spaced 12 inches apart.

Seedpieces of Lemhi spaced 14 inches apart.

All other seedpieces spaced 16 inches apart.

MAINE -- 1981

Alvin F. Reeves, Robert B. Long, and Garland S. Grounds

Potato Breeding

Seed and seedling production. Emphasis remains on crossing selections which are russet-skinned, early-maturing, good processing, and with multiple-disease-resistance. Over 50 parents were used in 45 different crosses to produce 27,030 true seeds. From open-pollinated fruits from field-grown 12-hill plots, 316,300 seeds were harvested. Seeds from 79 family lines were planted in April and June. A total of 22,273 transplants were grown to maturity; approximately one-third of these were grown in plasite pots outdoors, the remainder were held in greenhouse pots. An average of 83% of the transplants produced tubers large enough to harvest (18,466); 57% had second tubers (12,605).

Treatment of true seed with gibberellin. An attempt was made to enhance the germination of seed lots used in the breeding program. It was felt that seeds with a longer dormancy should produce selections with long dormant tubers, and that these types were being overlooked in the regular program due to the natural selection for early germinating seeds. When two kinds of gibberellin were tested in two types of application with both distilled and tap water, no effects were seen. Three different seed lots were used: 840, 475, and ll0 days old. There were differences in germination between seed lots (61.6%, 1.75%, and 43.5% respectively), but none were enhanced by any treatment. When open-pollinated seeds only one day old were treated with 2,000 ppm GA $_3$, the treated seeds seemed to emerge earlier than the untreated; but in the final analysis, there were no differences in the numbers germinating. It is possible that there is some time between immediately after harvest and ll0 days later that gibberellin is effective, but we have given up looking for it.

Method of planting. Seedlings were again grown in two locations at Presque Isle: Aroostook Farm and Gartley Farm. Fertilization rate was 115 pounds nitrogen per acre applied in the form of 14-14-14 for seed increase plots and early maturing yield tests. Medium maturity selections received 130 pounds; and later maturing tests, including storage tests, chip tests, and hollow heart and frost tests, received 145 pound nitrogen. Seed piece spacing was 10 inches for all plots except the single-hills which were planted at 30 inches. Yield tests were divided into early, medium and medium-late maturing types. Each selection in each yield test contained four replications of 20 hills each.

	Gartley Farm	Aroostook Farm
Planting dates	5/7-9;5/20	5/11-12,21,26-27;6/1-8,30
Killing dates	7/31;8/13,19	8/11,14,18,28;9/1,16
Harvest dates	8/20,24-26,31;9/1,3,4	8/21;9/2,8,15,16,26,28,20;10/1,6

<u>Seedling selection</u>. A total of 325 (1.35%) selections were saved from approximately 24,000 single-hill seedlings. From the 309 12-hill selections, 50 (16%) were saved for further testing. Twenty-four third year selections were tested in 20-hill, 60-hill, and disease plots. All were retained for further testing. Fifty of the 89 Campbell third-year selections were retained.

<u>Cell cloning.</u> Seventy-seven clones derived from Dr. Alan Langille's cell culture work at Kansas State University and at Orono were grown at the Gartley Farm in Presque Isle in 1981. Since these were all obtained from Russet Burbank cell cultures, and all were planted late (6/1), none matured enough for adequate selection or evaluation. All were sampled and will be replanted in 1982. Weeds were a problem in this late planted material also, but vine observations on 8/18 indicated that several aberrant types will be seen in this kind of material.

Disease tests. In cooperation with Drs. Frank Manzer and Richard Storch, a number of seedlings were tested for resistance to the diseases listed below. Selected seedlings were sent to Dr. Bill Brodie for golden nematode resistance testing, and to Dr. Robert Young for late blight testing. Resistance to early blight was found in 2/8 of Maine selections tested and 11/71 Campbell selections; to late blight in 3/36 Maine and 7/160 Campbell; to common scab in 12/25 Maine and 46/160 Campbell; to acid scab in 4/30 Maine and 11/160 Campbell; to verticillium in 1/20 Maine and 6/72 Campbell; to virus X in 9/33 Maine and 53/168 Campbell; to leafroll in 2/47; to net necrosis in 32/35 Maine and 138/160 Campbell; to golden nematode in 14/32 Maine and 14/73 Campbell; to hollow heart in 3/10 Maine and 27/71 Campbell; to frost in 4/74; to tuber greening in 16/33 Maine and 32/168 Campbell.

<u>Yield tests</u>. A total of 118 selections were tested in replicated yield tests in 1981; 47 were from the regular program, 71 from the Campbell Institute seedlings. Of the regular selections four had higher yields than the controls, twenty had higher specific gravity, and one was better for both yield and gravity. Ten of the Campbell selections had higher yields than controls, 19 had higher gravity, and two were higher for both characteristics.

Grower trials of advanced selections. The 1981 trials included AF 205-9, AF 186-5, and CC 26-1a. Several growers were very pleased with the selection AF 205-9; however, size was a problem for three growers. The most serious problem with this variety was the Botrytis tuber rot which practically destroyed the crop of the Crane Brothers in Corinna. The several good reports indicating wide adaptability of this selection, its golden nematode resistance, and its excellent chipping qualities may overshadow the storage disease problem if it indeed turns out to be an isolated incident rather than a special susceptibility to that particular fungus.

The three seed growers in Maine who planted AF 186-5 were not impressed and recommended further testing of this seedling. Two ware growers in New York (where this selection has done better in the NE-107 replicated variety trials) had quite different experiences with AF 186-5. One reported high yields and fairly good appearance; the other had low yields and had to sell the crop as pickouts. This latter grower was planting on muck soil.

The only grower who had all three selections chose CC 26-1a as the best of the three. It is oblong in shape and can get too big if allowed to grow too late with high fertilizer rates. Three of the four growers were pleased with this selection. Five additional seedlings will be grown by Maine seed growers in 1982: AF 238-21, CF 7358-14; CF 7523-1, WF 564-3, and BR7093-23.

<u>Campbell seed stocks</u>. In addition to the Campbell third year selections 72 more advanced selections were maintained in 60-hill increase plots in 1981. Information on these selections is given in the section on yield tests. Since spindle tuber was detected in the 1980 third year selections, they were grown in 16-hill observation plots in 1981. Only 56 of the 72 selections were retained for further tests, although no spindle tuber was detected in these plots in 1981.

Several clones (232) saved from the Campbell parental material are available on request. These were maintained as 10-hill plots in 1980 and 1981. Spindle tuber was detected in some of these in 1980, but not in 1981. All tubers planted in 1981 were indexed in the greenhouse during the winter. Several suspicious greenhouse plants were replanted in a separate plot at Aroostook Farm in 1981. Two of these plants definitely showed the spindle tuber symptoms in the field planting. These were clones also growing in the 10-hill maintenance plots. None of the plants in the main plots had visual symptoms. A list of the 10-hill material available is given in Table 2.

Common scab Golden nematode Aing rot Resistance to<u>6</u>/ MurffisityaV Acid scab Early blight Late blight Net necrosis [[onlb9] X suriV \<u>≠</u>gnisiuna Storage life4 Percent dry matter 4/ $\sqrt{\frac{4}{r}}$ seirl homorf to enutxel Cooked color, french fries $\frac{4}{4}$ Cooked color, table $use^{\frac{1}{4}}$ 1-yove[7 ICA5√ content4√ Yield ability 4/ Type of tuber $\frac{3}{4}$ Skin Color<u>2</u>/ \<u>T</u>yjinut£M

Pedigree

number

 \propto α S SAS a s S S Σ Σ SS Σ Σ Σ Σ Σ S SΣ α α α \propto SSSSS SSRSS \forall \forall V 5 5 5 V Σ 9 9 \forall 5 G E 9 9 9 A V A A Σ 9 9 5 5 9 Σ G A 9 9 \forall \forall Σ 9 6 G 9 5 9 9 9 9 9 9 9 3 3 3 α Ω Σ Σ Σ Ψ 뒫 뒫 236- 1 7353- 1 238-21 324- 1 201-25 7358-14 591-1 221- 1 7523- 1 CF76183-A 70114-

CF

	Common scab	S	S	S	Σ	S	×	Σ	Σ	S	S	\simeq	\simeq	Σ	Σ	\simeq
	Golden nematode	S	S	S	S	S	S	~	S	Σ	S	S	S	\simeq	~	S
	Ring rot	ഥ	ட	ட	ட	ட	ட	ட	ட	ட	ட	S	ட	ட	ட	ட
	Merticillium	~	S	Σ	Σ	S	S	~	S	S	~	S	S	~	S	S
t0 <u>6</u> /	Acid scab	S	S	S	S	S	Σ	S	Σ	S	S	Σ	Σ	Σ	S	~
ance	Early blight	S	S	Σ	S	S	Σ	Σ	Σ	S	Σ	Σ	S	S	Σ	Σ
Resistance	the blight	S	S	Σ	S	S	Σ	Σ	Σ	S	Σ	~	S	\simeq	~	S
Re	Net necrosis	~	~	~	~	~	~	~	~	~	~	~	~	\simeq	~	~
	Leafroll	S	S	S	S	S	~	S	S	S	S	S	S	S	S	S
	X suniV	~	S	S	~	S	S	S	S	ட	S	~	S	ட	S	S
Storage life ⁴ / brisina		ш	ட	ட	ட	ட	<u></u>	ட	ட	ட	ட	ட	Ŀ	ட	ഥ	L
																بنا
Percent dry matter			9	9	Σ	А	Σ	9	А	А	А	Σ	5	А	9	Σ
/4/zeirl honerl lo erutxel													5			
Cooked color, french fries $\frac{4}{4}$													5			
Cooked color, table $use^{\frac{4}{4}}$		l											А			
Tavorf7													Σ			
													V			
Type of tuber $\frac{3}{4}$ \ Yield ability $\frac{4}{4}$ \ TGA $\frac{5}{2}$ \ content $\frac{4}{4}$ \			9	9	5	5	9	А	А	А	9	А	А	9	5	9
		5		А	5	9	9	А	А	9	9	5	А	9	5	А
	Skin Color ² /			MC	ပ	ပ	3	В	3	3	3	~	MC	В	3	3
		Σ	Σ		ME		Σ	Σ		ш		Σ	ME	ш	፷	ليا
	\ <u>I</u> √I turiteM			ME	Σ	Σ			Σ		M		Σ			
		15	0	_	0	9	2	9	12	11	2	3а	П	10	15	3
	gree ber	7679-15	7688-	300-	7608- 9	CF76123-	307-	332-	299-12	7666-11	303- 5	564- 3a	222- 1	201-10	107-	135-
Pedigree		CF 7	CF 7	AF	CF 7	CF76	AF	AF	AF	CF 7	AF	MΕ	AF	AS	CF72107-15	CF74

Maturity: E = early, M = medium, L = late.

Color: R = russet, W = white, B = buff, Pu = purple, C = cream.

Type of tuber includes uniformity of shape, overall appearance, and presence of defects.

Rates as: U = unacceptable, M = marginal, A = acceptable, G = good, or F = further testing needed.

TGA = total glycoalkaloids.

Resistance: R = resistant, M = moderatly resistant, S = susceptible, F = further testing needed. -10161415101

Maine Table 2. List of clones saved from Campbell Institute Breeding Program

Pedigree	Color <u>l</u> /	Shape ^{2/}
Alaska Frostless	W	R
Arran Victory	Pu	R
Atzimba	-	-
Bevelander	Υ	R
Dorita	W	0 FL
Earlaine	W	R
Gloria	Υ	0 FL
Michibonne	W	R
Nipigon	W	OL FL
Noordeling	Υ	R
Pimpernel	W	RO
Populair	W	RO
Rideau	Re	R
Saphir	WY	R
Sientje	WC	OL pts
Tawa	W	R
Trent	DC	R
Vokal	Υ	0L
Voran	LY	RO
A 69657- 4	W	0
AC26619- 5	Υ	R
ADX 245- 7	Re	0 pts
AF 10-20 Rc	R	0
AF 22-8 c	W	R
AF 24-33 c	W	0
AF 197-2 c	YC	0
AF 279-1 c	W	FL 0
B 721- 1	W	R
B 922- 3	W	R
B 922-6	W	RO
B 962- 3	W	R
B 2834- 3	LR	RO
B 2938-22	Υ	R
B 3299-13	W	R
B 3429-23	WC	R FL

Pedigree	Color ¹ /	Shape ² /
B 3606- 5	W	RO
B 3627- 1	CN	RO FL
B 3652-8	W	R
B 3692- 4	W	OR
B 3721- 1	W	OR
B 3950- 1	WC	R
B 4087- 5	R	RO
B 4088- 4	irreg. R	OR <u>FL</u>
B 4090 - 5	W	OL
B 4093-18	R	R
B 4121- 7	WC	0 FL
B 4312- 4	Re	R
B 4557- 2	W	RO
B 4829- 7	W	RO
B 5398- 4	W	RO
B 5422-10	W	R (FL)
B 5662- WV4	W	R
B 6028- WV6	WC	RO
B 6038- 3	WC	RO
B 6043- WV6	W	0
B 6139-11	W	0
B 6376- 6	В	R
B 6503- 2	W	RO
B 6532- 4	В	0
B 6603-6P	DC	RO
B 6949- WV3	W	R FL
B 6969- 2	W	R (0)
B 7160- 4R	R	0
B 7196- 4	R	0
B 7200-33	W	0L
BL 61-74-167	W	R
BR 5957- 7	W	RO
BR 5960- 5	C	R
BR 5967- 7	DC	R

	Pedigree	Color ¹ /	Shape ² /	
	BR 5991- WV16	W	RO	
	BR 5991- WV25	W	RO	
	BR 6261- 1	W	RO	
	BR 6820-26	W	R	
	BR 6831- 5	WC	R	
	BR 7085- 1	С	FL OL	
	BR 7088-18	W	R	
	BR 7090-17	W	0 (FL)	
	BR 7104-10	W!	0 FL	
	BR 7105-14	W	R	
	BR 7108- 2	W	R	
	BT 5043- 2Rd	Re	R	
	CA 02-8	W	R (FL)	
	CA 46-11	WC	OL	
•	CA 53- 6	DC	R	
	CA 67- 2	С	RO	
	CA 70-13	W	OL pts	
	CA 74- 6Rd	Pi	R	
	CA 88- 2	W	0	
	CA 90-17	С	0	
	CA 90-19	W	R	
	CA 93- 2	W	0 FL	
	CC 08- 3	W	R	
	CD 10- 5a	WC	RO	
	CD 13- 2Ra	R	RO	
	CD 28- 1	W	0	
	CD 79 - 3a	W	RO	
	CD 89- 3a	R	OL	
	CD 95- 5a	W	RO	
	CD 103- 7a	W	R	
	CD 112- 4a	W Pu	R	
	CD 130- 5Ra	W	RO	
	CD 137- 5R	BN	R	
	CD 148- 50	W	0	
	CD 148- 56	WC	0	

Pedigree	Color ¹ /	Shape ² /
CS 7212- 2	DC	R
CS 7218-11	W	0
CS 7227-37	W	R
CS72121- 4	W	0
CS 7306-12F	R	0
CS 7339-15	W	R
CS 7355- 3F	LR	0
CS 7368- 2	W	R (0)
CS73100-11	WC	R
CS73108- 3	irregular R, W	0
CS74141- 3	DC	RO
CS77118- 1	Re R	RO
DT 3063- 1F	d Re	R
F 34011	W	0
F 55066	Pu	OL
F 56047	W	RO
F 59045	W	RO
F 59094	W	RO
F 67017	W	RO
F 67072	С	RO
F 67128	W!	0 FL
F 68150	W	R
F 71059	W	R
FG 5736- 2	W	OL
- 3	Υ	R
- 4	WY	R
- 5	W	R
- 8	LY	0 FL
- 9	W	RO
-10	LY	RO
-11	Υ	0 FL
-12	В	0L
-15	a WC	RO
-15	a WC	RO
-15	3 WC	RO FL

Pedigree	Color ¹ /	Shape ² /	
FG 5737- 2	W	R	
FG 5738- 4	W	R	
- 7	W	R	
FG 5748- 8	W	RO	
FG 5750- 1	W	R FL	
- 3	WC	R	
- 6	R	0L	
- 7	DC	0	
- 9	W	0	
-10	С	RO	
FG 5754- 2	WC	0L	
- 4B	Sp1	R	
G 670-11	CN	R	
G 678- 3Ra	R	R	
G 694- 3Rd	Re	R	
G 5280-267	W	RO	
G 6652-37	WC	R	
G 6666- 4Y	DC Pi	RO	
G 6880- 1	W	R	
G 68107-14	Υ	R	
G 7015- 5	W	R	
G 7151-14Ru	В	R	
K 219- 5	W	R	
M 2-18	W	R	
MN 2526	DR	0L	
MN 3866	Re	R	
MN 4858	Re	0	
MN 7973	WC	0	
MN 8586- Ru	R	0L	
MN 9732	W	R	
MP 1- 1	W	R	
- 4	Υ	R	
-10	Υ	R	
-11	Υ	R	
-13	YN	R	

Pedigree	Color ¹ /	Shape ^{2/}
MP 2- 1	YC	R
- 3	W	R
- 5	LY	R
- 6	Υ	0
-15	LY	R
-18	Υ	R
MP 4- 3	Υ	R
- 5	С	R
-10	WN	R
-13	YC	R
-16	WN	0
-20	LY	R
-21	WC	RO
-26	WN	R
MP 6- 1	WY	R
- 3	BY	R
- 6	WC	R
- 9	WN	R
-11	WN	R
-13	WC	R
-15	LY	R
MP 74- 3	Υ	R
- 4	Υ	RO
MPI 49/6	WN	R
MPI 50/5	Υ	R
MPI 55/54	Υ	0L
MPI 74- 2(B)	Υ	R
ND 137- 5R	W	R
ND 7103- 4	WN	R
ND 8742- 2	W	RO
ND 8750-20	W!	R
ND 8751-16	R	RO .
NY 57	W	R
NY 61	W (spl)	R (0)
NY 62	W	R

Maine Table 2. continued

Ped	igree	Color <u>l</u> /	Shape ² /	
USW	5276.1	W!	R	
۷T ³	62-10-22	Υ	0	
W	718	W	OR	
WC	230-14	LR	RO	
WC	285-83	R	R0	
WC	314- 2	R	RO	
WS	681- 5	W	R	
Х	96-56	W	R	
Υ	62- 2-221	W	R	
Υ	66-13-636	WC	RO	

R = russet; W = white; B = buff; C = cream; Pu = purple; Re = red; Pi = pink; spl = splashed; D = dark; L = light; N = netted; 1/ y = yellow. R = round; L = long; O = oblong; fl = flat; pts = pointed ends.

^{2/}

MINNESOTA POTATO BREEDING PROGRAM

Florian Lauer, David Wildung, John Wiersma. Richard Veilleux, Daniel Goldman, Gerald Rau, Michael Burke and Richard Wenkel

Research Studies

The breeding behavior of yield components and hollow heart in tetraploid-diploid vs. conventionally derived potato hybrids was studied. Six tetraploid cultivars or breeding lines (Cherokee, Oneida, MN 8586, Norgold Russet, Bison and MN 8573) were crossed to 1) Four cultivars (Norland, Norchip, Shoshoni and Chieftain), 2) Four tetraploid high-protein selections (2636, 9731, 9732 and 9757) and 3) Eight diploid S. phureja selections (126-9, 127-7, 128-5, 128-7, 128-13, 128-24, 148-17 and 154-1). Twenty-four seedlings from each of the 96 crosses and their parent clones grown in the field at Becker, Minnesota and individual plant data taken.

The cultivar x diploid \underline{S} . phureja hybrids were later maturing and had more and smaller tubers than the cultivar x cultivar hybrids. The cultivar x diploid \underline{S} . phureja hybrids were higher yielding than cultivar x cultivar hybrids, and were almost equal to that of the cultivar clones themselves (Table 1). The cultivar x tetraploid high protein selection hybrids were intermediate between the other two hybrid groups except for characteristically low yield. The frequency of hollow heart was greatest in the cultivar x cultivar hybrids with Norgold Russet contributing most of the hollow heart.

Four of the diploid <u>S. phureja</u> parents in crosses with cultivars generated progeny with mean yield superior to the cultivar parents. The mean yield of these four hybrid progenies was $6.0\ lbs./hill\ vs.\ 4.7\ lbs./hill\ for\ the cultivar x cultivar progeny and <math>5.6\ lbs./hill\ for\ the\ six\ tetraploid\ cultivars.$

Minnesota Table 1. Population means for three types of hybrids populations.

	Cultivar x Cultivar	Cultivar x Tetraploid High Protein	Cultivar x Diploid S. phureja
Yield (lbs./hill)	5.1	4.7	5.5
Tuber set/hill	16.8	19.3	28.8
Tuber size (oz.)	5.1	4.3	3.3
Marketable yield (lbs./hill)	3.9	3.5	3.5
No. of marketable tubers	8.8	9.2	10.1
Marketable size (oz.)	8.0	6.5	5.9
Hollow heart	15	10	9
Maturity ²	2.8	2.9	4.0

Percent of all plants with severe hollow heart symptoms.

 $^{^{2}}$ Scale, 1-5: 1 = early; 5 = late

Another study was made on the breeding behavior for tuber protein in S. tuberosum and tuberosum-phureja hybrids. Four tetraploid cultivars or breeding lines (Oneida, MN 8586, Bison and MN 8573) were crossed to three parents in each of four classes: 1) Tetraploid cultivars (Norland, Norchip, Chieftain), 2) Tetraploid high protein selections (9731, 9732 and 9757), diploid "low protein" S. phureja (126-9, 128-5 and 128-13) and diploid "high protein" S. phureja (128-24, 148-17 and 154-1). The material was grown at Becker, Minnesota. Twenty-one seedlings from each of the 48 crosses plus parents clones were analyzed for protein content.

To compare protein distribution among tuber, all tubers from a single plant of both 'Oneida' and 148-17 were processed and analyzed separately.

Although the "high protein" <u>S. phureja</u> male parents were approximately equal in protein content to the "high protein" tetraploid parents, transmission of the higher protein character to their progeny was obtained only with the tetraploid parents (Table 2). The population derived from the "high protein" tetraploid parents was significantly higher in protein content than the other three populations.

Minnesota Table 2. Mean true protein content on a dry weight basis for parent clones and their hybrid families.

		Male_		
Female Tetraploids Parents 4.8	Cultivars 4.7	"High-protein" Tetraploid Selections 6.4	"Low-protein" Diploid <u>S. phureja</u> 5.2	High-protein Diploid S. phureja 6.3
Population mea	ans 4.5	5.3	4.5	4.6

Even though there was a negative correlation between protein in content and tuber yield (up to -.39), identification of seedlings with moderately high protein content as well as respectable yield was possible in all four populations (Table 3).

Minnesota Table 3. Selections of seedlings in four hybrid populations with true protein in excess of 5.5 percent on a dry weight basis and high yield of 4.4 lbs. per hill.

		Cultiva	ars crossed with	
	Cultivars	"High-protein" Tetraploid Selections	"Low-protein" Diploid S. phureja	High-protein Diploid S. phureja
No. of seedlings evaluated	252	251	251	252
No. of seedlings with 5.5% or more protein	15	74	27	13
No. of seedlings above with 4.4 lbs. or more yield	9	19	11	7
Range in yield in lbs. per hill	4.4-7.7	4.4-7.3	4.4-9.3	4.4-7.1

In comparing protein distribution among tubers, we found that protein content was consistently lower in larger tubers in the \underline{S} . $\underline{tuberosum}$ cultivars. In the \underline{S} . $\underline{phureja}$ seedlings, protein content in large and small tubers did not differ significantly in protein content. The unpredictable variation within clones of \underline{S} . $\underline{phureja}$ make us doubt the legitimacy of high protein values in this species.

We also compared haulm and yield differences in <u>Verticillium</u> wilt resistant and susceptible clones. We collected <u>Verticillium</u> resistant breeding stocks from five different programs and evaluated them visually for resistance at Cambridge, Minnesota. We selected eight clones on the basis of pedigree, foliar maturity and resistance to <u>Verticillium</u> wilt. These were then planted in an infested plot at Cambridge, Minnesota and an infested and a noninfested plot at Becker, Minnesota. Observations were made of seven vine and four tuber characters.

Resistant clones had a lower percentage of their leaf dry matter comprising the total vine dry matter and a higher percentage of their leaf dry matter originating from lateral branches than in susceptible clones. When grown in infested soil, susceptible clones had smaller tuber size but both higher set and more undersized tubers than the resistant clones. Within infested plots, the size of the large tubers was greater in the resistant than in the susceptible clones, whereas in the noninfested plot they were not significantly different.

Grower Increase of Advanced Selections

In cooperation with the Minnesota Department of Agriculture, 11 selections were released to Foundation and Certified growers in 1979. Of these, nine selections are still in the program. In most instances, around 200 cwt. of seed are available for grower evaluation. A brief description follows:

Reds:

MN 4536: Parentage: ND4524-7 x ND4620-1

Foliage: Vigorous upright growth, early maturing.

<u>Disease resistance</u>: Resistant to late blight, intermediate scab resistance (not as resistant as Norland but more resistant than Red Pontiac).

Tuber color: Red, color is similar to Norland

<u>Tuber characteristics</u>: Blocky in shape, shallow eye, low solids, excellent cooking quality, does not chip.

<u>Yielding ability</u>: Yield is between Norland and Red Pontiac. Tubers size as early as Norland. Tubers will get large so reduced spacing would probably be helpful, especially in RRV. This selection has performed well in RRV and as an early red on the irrigated sands. It is strictly a fresh market type.

Foundation stock: Henry Welberg

MN 8742: Parentage: MN32.63-9 x Norchief

Foliage: Vigorous vine, medium maturity.

<u>Disease resistance</u>: Intermediate resistance to scab (not as resistant as Norland but more resistant than Red Pontiac), high resistance to late blight.

Tuber color: Dark red

<u>Tuber characteristics</u>: Blocky in shape, shallow eye, intermediate solids, excellent cooking quality, does not chip.

Yielding ability: Higher than Norland but lower than Red Pontiac.

This selection does fairly well in the RRV and it has looked very good on the irrigated sands. It is strictly a fresh market type. It has a very vigorous vine and sizes up early.

Foundation stock: Paquin Brothers

Certified stock: Dagen Farm, Sherwood Peterson

MN 8757: Parentage: MN32.63-9 x Chieftain

Foliage: Large leafed, normal sized vine, medium late maturity.

<u>Disease resistance</u>: High resistance to scab and high resistance to late blight.

<u>Tuber color</u>: Red, color is similar to Norland.

<u>Tuber characteristics</u>: Blocky in shape, shallow eye, low solid, good cooking quality, does not chip.

<u>Yielding ability</u>: Yield is between Norland and Red Pontiac. Tuber will get very large, so reduced spacing would probably be helpful in reducing jumbos.

This selection can yield heavily. It has shown some promise in the RRV and in Hollandale. It is unacceptable on the irrigated sands because it gets a high degree of brown center. The selection is strictly a fresh market type.

Foundation stock: Jerry Pieper

Certified stock: Brian Halvorson, Veldman Brothers

MN 8758: Parentage: MN32.63-9 x Chieftain

Foliage: Normal sized vine, medium late maturity.

<u>Disease resistance</u>: High resistance to scab and high resistance to late blight.

Tuber color: Dark red

<u>Tuber characteristics</u>: Blocky in shape, shallow eye, intermediate solids, good cooking quality, does not chip.

Yielding ability: Yields like that or Norland.

This selection has excellent tuber shape and color in both the RRV and irrigated sands. It is strictly a fresh market type.

Foundation stock: Jerry Pieper

Certified stock: Earl Mallinger

Whites:

MN 7973: Parentage: Neb16.55-1 x MN1106.64-1

Foliage: More of a compact vine, medium maturity.

<u>Disease resistance</u>: High scab resistance and intermediate late blight resistance.

<u>Tuber color</u>: White-russet. In RRV this selection can have a russet skin at some locations.

<u>Tuber characteristics</u>: Long in shape, shallow eye, intermediate solids, excellent french fry and flake quality, good baking and cooking quality.

<u>Yielding ability</u>: Yield approaches but is not equal to Kennebec. Tubers size up early.

This selection produces large tubers early; therefore, it might have a use for start-up in french fry plants. It also appears to do well in the peat soils. Has excellent flaking quality.

Certified stock: Frank Thompson and Sons, Veldman Brothers

MN 9234: Parentage: B3692-4 x Atlantic

<u>Foliage</u>: Normal vine size with smaller leaves, medium late maturity.

<u>Disease resistance</u>: High resistance to scab and high resistance to late blight.

Tuber color: Bright white

<u>Tuber characteristics</u>: Round in shape, shallow eye, intermediate solids, good cooking quality, does not chip.

Yielding ability: Equal to Norchip.

This selection has shown some promise on peat soil. It is strictly a fresh market type.

Foundation stock: Jerry Pieper

Certified stock: Don Frederickson, Veldman Brothers

Russets:

MN 8586: Parentage: MN321.64-11 x 305.64-10

Foliage: More of a compact vine, medium maturity.

Disease resistance: Very high resistance to scab, low resistance to late blight.

Tuber color: A nice russet which is consistent across locations.

<u>Tuber characteristics</u>: Oval in shape, shallow eye, intermediate solids, has good cooking quality. This is an excellent chipper and is equal to Norchip in length of time it can be chipped.

<u>Yielding ability</u>: Low. It is lower than Norgold. This selection does not hollow, however.

This selection tends to have a heavy set with subsequent small tubers. Spacing, therefore, should be increased in comparison to other varieties and seed piece size reduced. MN8586 has performed quite well for yield in the southern end of the RRV. It could be used both fresh and chipped.

<u>Certified stock</u>: Kenneth Roland, Paquin Brothers

MN 9648: Parentage: MN366.65-3 x G6743-5

Foliage: Open vine, medium, late maturity.

<u>Disease resistance</u>: Very high resistance to scab and very high resistance to late blight.

<u>Tuber color</u>: Nice russet

<u>Tuber characteristics</u>: Fat-blocky in shape, shallow eye, intermediate solids, excellent baking and good cooking quality, marginal chipper.

Yielding ability: Similar to Norgold but not prone to hollow heart.

This selection could be grown in both the RRV and the irrigated sands. It would probably be more useful as a fresh market type. It looks excellent on the irrigated sands.

Foundation stock: Jerry Pieper, Henry Welberg

Certified stock: Keith Offutt

Replicated Yield Trials

Yield trials of advanced selections and new named varieties were conducted in the RRV at Grand Forks (Askim) and Baker (Preston), on nonirrigated sandy loam soil at Grand Rapids (Wildung), on irrigated sandy soil at Becker (Titrud), Big Lake (Klint) and Park Rapids (Preston), and on peat soil at Anoka (Klint). They were planted in 20 hill plots and replicated twice.

A total of 25 advanced selections and 10 new and standard varieties were included. Tabel 4 gives the results at two locations in the RRV and Table 5 gives the results at Becker on the irrigated sandy. Of the new selections entered into these trials for the first time, two appear to have promise. MN 10874 is a russet with very good tuber type that showed up good in all locations. The other is AC67650-1, a new dark red from Colorado which will be entered into the trials next year again.

Minnesota Table 4. REPLICATED YIELD TRIAL - 1981 Grand Forks and Baker

1980 GF6 Chipping 43F 65F	24 23 23	34 31 25 36	24 22 43 35	51 40 25 24 27	42 33 36	30 40 34 29	
1980 Chip 43F	20 16 16 20	47 27 18 31	21 15 40 32	43 30 17 19 20	39 32 32	31 40 32 37	
Shape	Blocky Blocky Blocky Blocky	Round Long Round Long Blocky	Long Blocky Round Blocky Blocky	Long Blocky Round Blocky Blocky	Blocky Round Round Blocky Long	Long Long Blocky Long Long	
Specific Gravity ⁵	1.079 1.077 1.078 1.082	1.093 1.084 1.085 1.083	1.081 1.087 1.085 1.090	1.097 1.099 1.080 1.079	1.081 1.094 1.082 1.088	1.083 1.090 1.090 1.093	
Marketable Yield ⁴	58.0 53.4 49.2 47.3 46.1	45.9 45.4 42.9 42.5	41.5 40.9 40.6 40.1 39.9	39.7 39.4 39.2 38.7 38.3	37.3 36.7 35.8 35.5 34.7	34.3 33.5 32.3 31.2	
Total Yield3	59.4 55.8 53.1 49.6	48.5 47.0 47.0 44.2 43.1	43.4 43.3 43.4 42.4 41.6	42.7 40.6 40.3 40.3 38.6	39.5 39.5 36.8 36.2	36.5 36.0 34.5 33.9	
Type ^{1,2}	2.0 2.0 2.0 2.0	2.5 2.0 2.0 2.0	2.0 2.5 2.5 2.5	3.0 3.0 1.5	23.0 3.0 5.5 0.5 0.5	3.50 3.50 3.50 3.50	
Maturity1,2	4.5 3.0 2.5 5.5	3.5 5.0 4.0 3.5	3.0 5.0 3.5 1.5	3.5 2.5 3.5 3.5	4.0 4.0 2.0 5.0	2.5 3.5 5.5	
Vigor ²	2.33.33.53	2.03888	8.0.8.0.8.	2.3.5.3.8	2.0 1.5 1.8 2.0	2.0	
Color	Red Red Light Red Dark Red Red	White White White White Russet	Russet Russet Dark Red White Red	White White Red Red Red	White White Red Russet Russet	Russet Russet Russet Russet White	
Variety	8757 Pontiac 8743 AC67560-1 8742	Norchip Kennebec 9234 7973 9648	Norgold 10874 8777 9885 10504	10162 10509 10498 4536 8758	Crystal 8224 Norland 10876 Burbank	9569 Lemhi 11807 9781 10049	

Cooperators: Dennis Askim, Grand Forks Frank Thompson & Sons Duane Preston, Baker

Minnesota Table 4. Continued

								1980	919
	(,	•	Total	Marketable	Specific		Chip	guic
Color	Vigor ²	Maturity ^{1,2}	Type ¹ ,2	Yield ³	Yield ⁴	Gravity ⁵	Shape	43F	43F 65F
White	1.8	3.5	2.5	32.2	29.6	1.088	Blocky	34	42
Russet	1.8	3.0	2.0	32.5	28.9	1.083	Blocky	42	40
Russet	2.0	3.0	2.5	30.2	28.4	1.004	Blocky	44	40
White	2.3	4.0	2.0	28.3	26.8	1.084	Blocky		
Russet	1.8	5.0	2.0	29.0	26.4	1.084	Blocky	9	25

Minnesota Table 5. LATE HARVESTED REPLICATED YIELD TRIAL - 1981 Becker

Shape	Blocky Round Blocky Blocky Blocky	Long Round Blocky Long Blocky	Long Blocky Blocky Blocky Long	Blocky Long Round Long Round	Blocky Blocky Blocky Round Long	Blocky Blocky Long Round Long
Specific Gravity	070. .079 .066 .078 .089	.084 .080 .067 .085	.068 .078 .073 .085	. 079 . 080 . 094 . 078	.084 .074 .069 .065	.070 .083 .063 .086
Spe						
Marketable Yield ³	98.3 97.8 93.0 79.5 77.0	75.8 75.0 74.9 73.5 71.3	68.3 67.3 66.3 65.1 64.8	64.8 63.8 62.0 58.8	58.8 58.3 56.0 52.8 52.0	51.5 51.5 51.5 50.5 49.3
Total Yield2	100.5 101.0 95.8 83.0 79.0	79.8 81.0 78.1 77.3	70.8 68.0 68.8 67.4 67.6	67.0 65.5 64.5 63.3 60.3	60.3 59.8 56.8 54.5 55.0	53.0 55.3 53.3 53.3
Type1	3.0 1.0 3.0 1.5	3.0 2.0 2.0 2.0	2.0 2.0 2.5 3.0	1.0 3.0 2.5 3.0	1.5 2.0 2.5 1.0	2.0 2.5 2.5 2.0
Vigor	0.1.0	7.0 7.0 7.0 7.0	2.0 2.0 2.0 1.0	1.5 2.0 1.0 2.5 2.0	2.0 2.0 2.0 1.0	3.0 2.5 3.0 2.0 2.0
Color	Red Red Light Red Red White	Russet White Dark Red Russet Red	Russet Russet Red White White	Russet White White White	Russet Red Red Red Russet	Light Red Russet White White
Variety	Pontiac 8777 8743 8758 Crystal	Burbank 9234 AC67560-1 Lemhi 4536	Norgold 9648 8757 10049	10874 Kennebec Denali 10509 Norchip	10267 8742 10498 Norland 9781	10504 10876 7973 8224 9862

Continued
2
Table
Minnesota

Shape	Blocky Blocky Blocky Long Blocky
Specific Gravity	1.080 1.076 1.075 1.072 1.088
Marketable Yield3	47.3 47.2 38.3 37.5 34.0
Total Yield ²	49.8 50.5 45.8 40.0
Type1	2.5 2.0 2.5 2.0
Vigor	0.020.0
Color	White Russet Russet Russet Russet
Variety	9885 10784 8586 9569 11807

²20 hill plots, 12" between hills, 36" between rows Scale, 1-5: 1, good; 5, poor $^{3}LSD_{05} = 15.4$

Cooperator: Glenn Titrud Planted: April 8, 1981 Harvested: August 27, 1981

Fertilization:
Preplant: 314 lbs/A 0-0-20
Starter: 1050 lbs/A 8-10-30 (banded)
Sidedress: May 27, 240 lbs/A 33-0-0
June 11, 240 lbs/A 33-0-0

Demonstration and replicated trials were continued at the Mesa Experiment Station (Dr. I. Pew, Dr. Paul Bessey) in Arizona in 1981 (Nebraska Table 1). The superior chipping selections were Crystal, Neb Al29.69-1 and Belchip. Belchip was superior to Atlantic in total yield and yield of US #1 potatoes. Lemhi and Neb A71.72-1 exceeded Norgold Russet in yield and tuber size; Norgold was superior to Centennial. Minn 4536 was comparable to Red LaSoda in yield and quality.

Yield and quality of selections in the Scottsbluff, Nebraska 1981 trials are given in Nebraska Table 2. Wisc 726, New Haig, Atlantic and Crystal were the high yielding chipping selections with high specific gravity and good chip color. Wisc 729R (Rhinered), Dark Red Norland and Red LaSoda exceeded Norland in yield and quality. Lemhi was the only russet that exceeded Norgold in yield. Norgold 19 was superior to the other strains of Norgold in the trial. Neb Al29.69-1, Neb 85.63-1 and WC 612-13 were highly tolerant to Early Blight.

Performance of Clonal Strains

Clonal strains of Monona and Norchip developed from stem cuttings were compared for differences in yield and quality (Nebraska Table 3). Monona 35 was the highest in yield but produced low specific gravity and a high percentage of oversize. Strains four and five were high yielding and of good grade quality and acceptable in specific gravity.

Norchip 30 was the outstanding strain in terms of yield, grade quality and specific gravity followed by strains 22 and nine.

Potatoes As An Energy Resource

The evaluation of potato selections as ethanol sources was continued for the second year. The effect of insect and disease control on yield and quality was included in the 1981 study. Weekly sprays with Cygon 400 plus Di-Syston at planting time was no more effective in controlling major insects than Di-Syston only plus one application of Cygon 400 applied late in the season. Weekly applications of Bravo retarded Early Blight development but had no apparent effect on yields. The major insects that were most prevalent in the "no control" plots were Potato Flea Beetle, Psyllid, Aphids, Leafhoppers and Lygus Bugs (Nebraska Table 4.) The number of insects in 50 sweeps was five times greater in the no control plots than in the control plots.

The yield and quality of potatoes harvested from the "complete" and "standard" control plots were comparable. Total yields were reduced 60 percent and US #1 yield was reduced by 55 percent in the "no control" plots (Nebraska Table 5). The selections A503-42, Wn 708-27, Onaway, Neb A158.70-1, Kennebec and Platte were least affected by the insect infestations. Crystal, ND 9403-16R, A 68113-4 and Wn 705-111 were the most susceptible to damage in terms of reductions in yield and quality. Ethanol is being produced from samples of each of 22 varieties and three treatments to determine the effect of insects on ethanol production.

Nebraska Table 1. Yield and quality of commercial varieties and potato advanced selections in Arizona 1981.

					Perce	ntages		
					Over	Under		
1/		Yield	Yield		3-7/8	1-7/8		2/
<u>Selections</u>	Color	Cwt/A	<u>US#1</u>	<u>US#1</u>	inch	inch	Culls	Defects
Crystal	W	279	163	58	20	1	20	GC,K
Neb 12.72-2	Rus	253	153	60	33	3	3	•
Red LaSoda	R	237	170	72	16	5	7	GC
Minn 4536	R	226	141	62	27	2	9	GC
Neb A129.69-1	W	217	145	67	20	2	11	GC, HS
Belchip	W	216	153	71	14	1	14	GC
Neb 7.67-1	W	205	120	58	23	2	16	GC
Kennebec	W	200	185	93	1	4	2	
Norchip	W	189	142	74	13	4	7	GC
Lemhi	Rus	187	164	88	2	5	5	K
Neb 143.70-2	R	187	116	62	30	5	3	
Neb A71.72-1	Rus	157	107	68	22	7	3	Sm1
Neb A219.70-3	W	154	86	56	19	3	22	HS
Minn 7973	W	148	100	68	23	3	6	
Atlantic	W	145	110	76	13	1	10	GC+
Oceania	W	139	92	66	23	1	9	
Norgold	Rus	127	110	87	0	10	3	HS
Denali	W	123	105	85	3	4	7	GC
Wisc 726	W	122	71	59	29	2	9	
Neb A63.71-1	Rus	99	66	66	23	3	7	GC
Centennial	Rus	86	55	64	0	21	15	Sm1
Neb 102.71-2	Rus	71	54	75	3	12	10	

^{1/} Planted: January 7, 1981. 10" x 34"; 4 reps. of 20 hills. Harvested: June 16, 1981. 1000 lbs/A 11-48-0 - 21bs/A. actual Thimet.

^{2/} Defects: GC = Growth Crack; K = Knobs; HS = Heat Sprouts; Sml = Small.

Nebraska Table 2. Yield and quality of potato selections, Scottsbluff, Neb. 1981.

				Perce	ntages					
		Yield		0ver	Under	Sort	Specific	Early	Chip	
Variety	Color	Cwt/A	<u>US#1</u>	3 <u>-7/8</u>	<u>1-7/8</u>	Out	Gravity	Blight	Color	Defects
1/								2/	3/	4/
Denali	W	236	62	5	9	24	1.0978	2	2	Sc,GC,OT
Atlantic	W	281	71	5	9	14	1.0948	2	2	BE,K
Wisc 726	W	3 38	68	15	7	9	1.0815	4	2	SG,OT
Crystal	W	317	75	5	11	9	1.0815	3	2	BE,SG
Minn 7973	W	3 05	56	13	7	24	1.0738	3	3	BE,SG,OT
Belchip	W	194	55	12	9	24	1.0808	3	2	DB,OT,DAE
Norchip	W	278	69	0	17	14	1.082	3	2	SG,GC.Sc
A129.69-1	W	237	81	0	12	7	1.0765	1	3	SG,OT
Croatan	W	230	76	0	20	4	1.0698	4	2	OT, BE
Chipbelle	W	317	7 5	2	7	15	1.0913	2	2	SG,PE,OT
A9-72-1	W	21 5	71	3	13	13	1.080	4	2	OT
New Superior	W	228	64	4	8	23	1.0838	4	3	K,BE,OT
Monona	W	167	30	0	2 3	47	1.082	2	2	PE,K
New Haig	W	290	81	0	11	7	1.0795	2	2	SG, BE, DAE
Oceania	W	269	71	20	6	3	1.0713	4	2	SG
Minn 4536	R	243	6 8	0	7	25	1.067	5	3	PE,GC
Wisc 729R	R	341	7 5	2	7	16	1.0838	3	2	HC, BE, OB
A143.70-2	R	163	76	7	10	7	1.0735	4	3	GC, BE
85.63-1	R	242	72	0	18	10	1.0953	1	2	PE, DB
D. R. Norland	R	307	79	0	9	12	1.062	5	2	BE,OT
New D. R. Norland	d R	231	71	0	12	17	1.0618	5	2	OB, BE
Norland	R	154	67	0	11	22	1.0658	5	2	OB,OT
Red LaSoda	R	344	73	4	3	19	1.0745	3	3	GC,K,BE
Red LaSoda #5	R	366	68	11	2	19	1.070	3	3	K,GC,BE
Lemhi	Rus	326	51	2	19	28	1.0883	4	2	PE,K,GG
A102.72-2	Rus	193	76	0	8	16	1.0655	3	3	GC, BE, Oval S
Norgold	Rus	297	67	0	20	13	1.0715	3	3	PR,GC
A63.71-1	Rus	191	76	3	14	8	1.0778	2	3	PE, BE
Allagash	Rus	221	73	4	14	9	1.0663	5	2	OT, PE
A71.72-1	Rus	232	60	0	33	7	1.0825	3	2	OT, PE
A69.72-1	Rus	229	63	15	5	17	1.0808	2	3	PE,OT,GC
Norgold M	Rus	196	58	0	21	21	1.0695	3	3	BE,K,PE
Norgold 19	Rus	235	68	Ö	16	16	1.0758	2	4	K,PE,OT
Norgold 35	Rus	227	35	0	23	41	1.072	3	3	K,PE
WC 612-13	W	230	70	2	15	12	1.096	1	2	K,SG
										,

^{1/} Planted: May 15, 1981; Harvested September 17, 1981. Spacing 9" x 36"; 2 Replicates of 20 hills.

 $[\]underline{2}$ / PCII Chip Color 1 to 10; 1 to 4 acceptable; A = Original, B = 3 months at 50° F.

³/ Early Blight foliage damage; 1 = 10% to 25%; 3 = 25% to 50%; 5 = 75% to 100%.

^{4/} BE = Bulged Eye; SG = Sun Green; GC = Growth Crack; PE = Pointed Ends; K = Knobs; OB = Overbrown; OT = Off-Type.

Nebraska Table 3. Yield and grade quality of clonal selections from stem cuttings 1981.

				Percen	tages				
		Yield		0ver	Under	Sort	Specific	Chip	
Variety	Clone	Cwt/A	US#1	3-7/8	1-7/8	Outs	Gravity	Color	Defects
1/								2/	3/
Monona	4	325	75	2	2	21	1.078	3	SG,GC,K
	5	324	61	1	9	28	1.077	3	OT,SG,BE
	7	286	72	8	7	13	1.077	3	BE,K,OT
	17	204	56	14	8	21	1.072	3	BE, OT, K
	32	290	64	9	6	20	1.070	3	BE,K,SG
	35	349	75	11	6	7	1.069	2	BE,SG,GC
	37	232	66	7	8	19	1.074	3	SG,BE,K
	43	272	66	14	8	11	1.069	3	K,BE,PE
	45	263	62	13	6	19	1.071	3	K,BE,SG
	47	293	63	13	4	20	1.076	3	K, BE, SG
Norchip	4	361	52	12	6	30	1.079	3	GC, ROT, OT
	9	313	54	11	9	25	1.083	3	GC, BE, PE
	18	298	46	13	11	30	1.079	3	K,PE,BE
	22	263	44	2	20	34	1.085	2	K,BE,SG
	29	282	50	14	9	27	1.082	3	K,BE,ROT
	30	346	58	5	6	31	1.084	3	BE,K,ROT
	34	333	49	13	8	29	1.079	3	K, BE, OT
	41	231	46	18	4	33	1.090	3	SG,GC,K
	48	341	63	11	5	21	1.070	2	K,BE,PE

^{1/} Planted May 26, 1981; harvested September 18, 1981. Spacing 9" x 36"; 4 Replicates of 20 - hills; fertilizer 100-100-0.

 $[\]underline{2}$ / PCII Chip Color 1 to 10; 1 to 4 acceptable.

^{3/} BE = Bulged Eye; SG = Sun Green; GC = Growth Crack; PE = Pointed Ends; K = Knobs; OB = Overbrown; OT = Off-Type.

Nebraska Table 4. Insect populations in potato ethanol plots Scottsbluff, Neb. 1981.

		2/	
Insect	Complete	Control Standard	None
Insect	Complete	(Ave. Counts/50 sweeps) $\frac{1}{}$	None
		(ive. dodines, so sweeps)	
Colorado Potato Beetle: Adults	2.89	12.0	23.33
Larvae	21.0	49.67	135.11
Potato Flea Beetle	5.11	3.78	129.67
Ladybird Beetle	1.0	0.22	8.89
Misc. Coleptera	1.56	1.44	5.11
Sarcophagidae (Fungus Fly)	0.33	1.22	14.67
Misc. Diptera	51.89	66.56	323.56
Potato Psyllid	3.67	5.78	117.44
Aphids	16.67	11.22	97.33
Potato Leafhopper	14.11	19.78	44.33
"Other" Leafhopper	5.89	4.33	23.56
Misc. Leafhopper	1.78	1.11	26.11
Lygus	6.56	8.33	111.11
Nabids	2.11	1.56	18.56
Misc. Hemiptera	1.11	0.56	2.67
Green Cloverworm	0.67	0.78	1.11
Misc. Lepidoptera	2.22	4.33	0.89
Parasitic Hymenoptera	12.89	11.33	17.56
Misc. Hymenoptera	4.55	6.67	13.11
Lacewings	0.56	0.22	3.67
Thrips	14.11	8.89	16.67
Misc. Orthoptera	0.0	0.0	0.11
Misc. Insects	0.44	0.67	1.78
Spiders	1.44	2.44	6.44
Totals	172.67	222.89	1142.9

^{1/} Sweeps made weekly from June 26 to August 13, 1981.

^{2/} Complete = Weekly spray with Cygon 400 plus Di-Syston at planting time; Standard = Di-Syston at planting time plus foliar spray based on monitoring insects; None = no insecticides used.

Nebraska Table 5. Effect of insect control on yield and quality, ethanol study 1981.

	Insect* Count	Total* <u>Yield</u> (CWT/A)	<u>US#1*</u>	Specific* Gravity
Complete control	173	228.6	37.0	1.0778
Standard control	223	215.0	37.4	1.0779
No control	1143	90.4	16.7	(Unobtainable)

*Average values for 24 varieties

Insect count = Weekly average number/50 sweeps.

Complete control = Systemic insecticide at time of planting plus weekly

insecticide spraying.

Standard control = Systemic insecticide at time of planting.

No control = No systemic of spraying.

Nebraska Table 6. Effect of PSTV on yield and quality of potatoes grown in Arizona 1980.

Variety	Source	$\frac{1}{\text{Total}}$ $\frac{\text{Yield}}{\text{cwt/A}}.$	F US#1	Percentage Sort Out	Under 1-7/8	Defects 3/
Progress	SB	95	21	57	22	ST,GC
Progress	NWAL PSTV2/	238 90 -62%	67 21 -46%	12 57 +45%	21 22 +1%	GC GC,ST
Saco	NWAL ₂ / PSTV	134 79 -41%	67 47 -20%	21 43 +22%	11 10 -1%	K GC,K,ST
Haig	NWAL ₂ /	115 97 -16%	80 84 +4%	12 9 -3%	8 7 -1%	OT,BE

^{1/3} replicates of (10 ft x 2.83 ft).

^{2/} Inoculated with contaminated seed cutting knife; Progress SB infected tubers from 1980 fall crop were the source of contamination; effect of disease is shown as percent change in yield and grade factors.

^{3/} Defects: ST = spindle-tubers, GC = growth cracks, K = knobs, OT = Off-type, BE = bulged-eye

Effect of PSTV on Yield and Quality

The effect of PSTV on yield and quality of the three varieties is shown in Nebraska Table 6. The yields of Progress, Saco, and Haig were reduced by 62 percent, 41 percent and 16 percent, respectively by "first year" infection with PSTV. Sort-outs due to "spindle-tubers" and growth cracks were increased by 45 percent and 22 percent in Progress and Saco. Haig tubers were not deformed by PSTV. The size of normal tubers was not changed by infection of the plants.

Processing Studies

Samples of four standard potato varieties and 13 advanced selections were obtained from 12 locations in the North Central Region and Canada in 1980. The samples were analyzed for sucrose (SR rating), glucose and chip color within one month of harvest and three and six months of $50^{\rm o}$ F storage. Protein contents of tubers were also determined.

The relationship of sucrose content (SR rating) at harvest time to long-time chipability was studied for the fourth year. The average sucrose content of the cultivars ranged from 1.89 to 3.08 mg/g which was similar to the ranges in 1977 through 1979 (Nebraska Table 7). However the average color of chips after three and six months of storage in 1978, 1979 and 1980 was not correlated with average SR rating nor was SR rating correlated with vine maturity in any of the years. SR ratings were correlated with long-time storage chip colors in 1977. Glucose contents after long-time storage were not correlated with SR ratings nor vine maturity but were highly correlated with chip color after six months storage in all years with r-values ranging from 0.877 to 0.980.

Protein contents of tubers were comparable to previous years and ranged from 3.34 to 5.22 percent. Protein content was not correlated with SR rating or vine maturity in all of the years.

The average <u>sucrose contents</u> (SR ratings) of samples from various locations ranged from 1.01 to 6.30 mg/g and was comparable for previous years (Nebraska Table 8). Average chip color of samples after six months 50° F storage were correlated with average SR ratings (r = 0.832) at harvest and with glucose contents (r = 0.975). These results are in agreement with those of 1977 but not 1978 and 1979. Sucrose contents at harvest were not correlated with length of growing season in any of the years. Average protein contents of samples ranged from 3.63 to 5.14 percent. As in previous years, protein content was not correlated with length of growing season.

Eight cultivars were common to nine locations for three years and ten locations in two years (Nebraska Table 9).

Average values for vine maturity, sucrose content, chip color after one, three, and six months of storage and glucose and protein contents of tubers were highly correlated for individual cultivars (genotypes) in paired years except for sucrose content in 1977-1978. Correlations for locations (environments) were variable for pairs of years. The data indicate that the repeatability of genotypes over a wide range of environments was high among the years while environmental variation within specific locations over the years had a variable effect (interaction) on genotypes.

Nebraska Table 7. Chip color sugar and protein contents of potatoes in the NCS Trials 1980.

Selection	Vine <u>Maturity</u>	Sucrose (1)** mg/g	PCII* (1)** Averages	PCII [*] (3) ⁻ for 12 1	PCII* (6) ocations	Glucose (6) s (%) ^{2/}	Protein (%)3/
Red Pontiac	3.9	3.08	6.4	7.6	8.0	0.81	4.50
NE A129.69-1	4.5	3.02	6.1	6.2	6.4	0.60	5.16
MN 8742	2.5	2.79	6.4	7.5	8.2	0.85	4.46
LA 42-38	3.8	2.62	6.1	6.5	6.8	0.59	4.89
AK 34-2	2.0	2.54	5.5	6.2	6.9	0.68	4.06
IND 14-1	2.1	2.28	5.0	6.5	7.4	0.67	5.22
NE A219.70-3	2.9	2.20	3.8	4.2	4.8	0.40	4.34
Rus Burbank	4.1	2.18	6.0	6.1	6.2	0.54	3.34
Norchip	3.1	2.17	4.0	4.6	4.3	0.28	4.70
Wisc 806R	3.3	2.12	5.9	7.6	8.8	0.91	4.70
MN 9319	2.8	2.09	4.2	4.9	5.8	0.46	3.64
MN 8757	2.9	2.07	6.2	8.2	8.6	0.94	3.73
NE A71.72-1	3.5	2.06	4.5	4.7	5.4	0.45	4.04
Wisc 723	3.3	2.05	3.9	4.7	5.4	0.35	4.62
Wisc 726	3.5	1.92	4.2	4.5	5.1	0.32	4.71
ND 146-4R	1.6	1.91	4.0	4.9	6.2	0.52	4.57
Norland	1.8	1.89	$\frac{5.0}{5.1}$	6.5	7.0	0.72	4.50
Mean:	3.0	2.29	5.1	5.9	6.5	0.59	4.42
Correlation				k*			
with Sucrose:	0.418		0.668	0.457	0.349	0.363	0.281

^{*} PCII Chip Color = 1 to 10 scale.

^{**} Number in parentheses = approximate number months after harvest.

^{1/} Treated with Fusarex.

 $[\]underline{2}$ / Correlation with Maturity = 0.144; correlation with PCII (6) = 0.980**

^{3/} Correlation with Maturity = 0.006.

Nebraska Table 8. Chip color sugar and protein contents of potatoes from various locations 1980.

	Days		ų.	alla.	ماله		
	to	Sucrose	PCII [*]	PCII*	PCII*	Glucose	Protein3/
Location	Harvest	(1)**	(1) ^^	$(3)^{\frac{1}{2}}$	$(6)^{\frac{2}{1}}$	(6)	
		mg/g	Averages	for 17	selections	3 %	%
Kansas	124 (8/5)	6.3	4.6	5.9	8.9	0.91	4.84
Kentucky	155 (8/25)	3.5	4.2	5.6	7.8	0.81	3.63
Minnesota	132 (8/26)	3.2	4.2	4.9	6.8	0.59	4.56
Colorado	128 (9/9)	2.2	3.2	4.0	5.3	0.38	4.14
Alberta	155 (9/30)	2.0	4.3	5.4	6.6	0.53	4.22
Wisconsin	139 (9/22)	1.8	5.6	6.9	6.2	0.52	4.04
South Dakota	146 (9/22)	1.7	5.7	5.8	4.6	0.20	5.14
Michigan	141 (9/24)	1.6	3.8	6.1	6.3	0.47	4.99
Indiana	135 (9/24)	1.5	4.4	5.3	6.2	0.38	4.96
Manitoba	125 (9/16)	1.4	7.0	7.4	6.6	0.60	4.20
Nebraska	119 (9/16)	1.3	4.5	5.5	5.2	0.28	4.68
North Dakota	134 (9/22)	1.1	5.3	5.2	5.2	0.33	4.42
Means:	136	2.3	4.7	5.6	6.3	0.50	4.48
Correlation					4.4.	ه ماد	Ja
with Sucrose:	0.078		0.243	0.079	0.832**	0.811	`

^{*} PCII Chip color = 1 to 10 scale.

^{**} Numbers in parentheses = approximate number of months after harvest.

^{1/} Treated with Fusarex.

 $[\]underline{2}$ / Correlation with glucose (%) = 0.975.**

³/ Correlation with Days to Harvest = 0.036.

The correlation of chip color with SR-values was significant for only one of the 12 environments (Kentucky). However, the correlation based on means of 17 genotypes was highly significant (r = 0.832). These results indicate that the use of the SR system is reliable for selecting a given genotype over a wide range for environments or cultural conditions in a given year. However, selection of genotypes for long-time chipability based on the SR system within an environment (single test) in a given year is not reliable.

Nebraska Table 9. Genotypic and environmental correlations (r) between pairs of years for characters measured in the NCS Trials.

		Genotypes ²	2/	$\frac{3}{2}$			
Character	1977-78	1978-79	1979-80	1977-78	1978-79	1979-80	
Vine Maturity	0.983**	0.989**	0.992**				
Sucrose (SR)	0.131	0.780**	0.848**	0.393	0.209	0.795**	
PCII $(1)^{\frac{1}{2}}$	0.884**	0.939**	0.869**	0.715*	0.540	0.765**	
PCII (3)	0.806**	0.840**	0.903**	0.069	0.477	0.456	
PCII (6)	0.889**	0.930**	0.892**	0.462	0.288	0.210	
Glucose (6)	0.636*	0.844**	0.921**	0.691*	0.891**	0.135	
Protein (%)	0.983**	0.695**	0.807**	0.890**	0.937**	0.165	
Number of							
Comparisons:	8	8	8	9	9	10	

- 1/ Number in parentheses equal months after harvest and stored at 50° F.
- 2/ Includes the "standards" Norchip, Norland, Red Pontiac and Russet Burbank each year plus advanced selections common to pairs of years.
- 3/ The trials in Alberta, Manitoba, North Dakota, South Dakota, Wisconsin, Nebraska and Kansas are included in all years.

New Jersey 1981

Melvin R. Henninger

New Jersey Table 1. Key for the Irish Potato Trial Tables, 1981.

Yield Over 17/8" Hundred Weight per Acre Metric Tons per Acre Total Yield Specific Gravity (add 1.0 to each value)	Tuber Shape round = round rd-ob = round to oblong obl = oblong obl-l = oblong to long long = long	Defects Rating ++ = none + = slight - = moderate = severe
	ture oth et sset Russet sset	Defects Second Growth Growth Cracks Hollow Heart Internal Discoloration
Market = cwt = mt/h = Total = SG =	= Tuber Texture = Very Smooth = Smooth = Slight Net = Net = Light Russet = Moderate Russet = Heavy Russet	
Bridgeton ick	Tuber Text v sm sm s net net l rus m rus h rus	Tuber SG = GC = HH = ID =
velopment Center - I arm near New Brunswar ar Deerfield near Freehold newer varieties. S I Z E S ssets Over 4 oz 4 to 10 oz 10 to 16 oz 0ver 1	Tuber Color white buff tan brown red	n on same scale)
Location SJ = Rutgers Research & Development Center - Bridgeton VRF = Vegetables Research Farm near New Brunswick JB = Johnson Bros. Farm near Deerfield EM = Edgar Maghan Jr. Farm near Freehold wh = Round white types rus = Russet types Adv = Advanced Seedlings and newer varieties. P E R C E N T T U B E R S I Z E S Round Whites A = Over 4 oz B = Over 2 1/2" A = Over 4 oz B = Over 2 1/2" A = Over 4 oz B = 1 7/8" A = 0 to 10 oz B = 1 7/8" B = 1 7/8" C = 1 7/8	Vine Mat = Vine Maturity v-e = Very Early early = Early e-med = Early to Medium med = Medium m-late = Medium to Late late = Late v-lat = Very Late	Tuber Conf = Tuber Conformation Chip Color and Overall (all 3 on excel = excellent good = good fair = fair poor = poor

continued	
Table	
Jersey	
N ew	

1 010000

				133 -				
Chip Color	poor good fair excel	fair fair good	poor fair excel	poor	excel	poor poor poor fair	fair excel	fair poor poor
Over all	good good good	good good good	good good good	fair good fair poor	good good fair good	fair good fair good	g g g b g o g	exce exce good fair
S III	! + ‡ +	‡ ‡ ‡ <u>+</u>	+ ‡ ‡ ‡	+ + + + +		‡ ‡ ‡ ‡	+ + 1 ‡	‡ ‡ ‡ ‡
Defects GC HH	‡ + + + +	+ + + + + + + + + + + + + + + + + + + +	1 1 + +	+ + + + +	‡ + + ı + ‡ ‡ ‡	‡ + ‡ + ‡ ı + +	+ + + ‡	‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
SG G	+ + + +	† † † † † † _† †	+ + + + +	+ + 1 + +	+ + + + +	+ 1 + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
R	good good good	good good fair good	good good good	fair good fair fair	fair good fair good	fair good fair good	good good good	good good good
Shape	round round obl	round rd-ob round rd-ob	round round round rd-ob	rd-ob round obl-l	obl rd-ob round	rd-ob obl rd-ob	rd-ob round round	round round round
U B ext	net	sm sm sm sm sm sm sm sm sm	net n		net n	()	ره د	
	S m n s		S m S m S m S m S m S m S m S m S m S m	S E E E E E E E E E E E E E E E E E E E	S S S	sm sm sm net	s net net net	E S E S S
Color	buff buff buff buff	white white buff buff	buff buff buff buff	white white buff buff	white white white	buff white buff buff	buff buff buff buff	buff buff white white
Vine Mat	med late med m-late	e-med med med med	late late med e-med	early m-late early m-late	early e-med m-late e-med	m-late m-late m-late early	e-med early med late	v-e m-late med med
\frac{1}{2} \frac{\pi}{2} \frac{\pi}{2}					0 - 0	0 = 1 1 = 1 0 = 2 0 ea		
zes 4	0000	8 0 23 0 110 0 15 0	υ#⊗π 0 0 0 0	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m w m	12 (24)	3 0 1 0 13 0 43 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r Si	31 30 39 29	29 45 2 31 1 62 1	28 42 55 46 1	39 1 41 1 31 2 37 2	41 54 30 33	7 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	29 38 36 1 30 4	32 31 34 34
Tuber 2	56 443 48	53 46 23	50 46 32 36	40 38 57 34	52 31 51	37 23 65	57 57 42 17	53 46 45
ent 1	11 6 5 5 5	9450	17 2 3	7 10 10	± % + 6	80408	0 4 9 8	13 8
Perce A B	39 8 8 33	37 68 41 77	33 46 63 61	53	44 67 38 35	56 70 78 28	33 49 80 80	39 41 40 40
	89 87 91 87	91 96 87 99	83 93 95 97	88 90 90	96 97 89 92	92 94 92 92	90 96 91 97	92 87 89 85
Sp	99	62	1 1 1 1	65	1 199	76	75	65
Tot	275 307 473 269	181 407 268 305	332 255 360 278	301 389 426 338	249 406 268 379	424 469 441 373	353 354 274 388	369 321 308 461
rket mt/h	27.7 30.0 48.6 26.4	18.4 43.7 26.2 34.1	30.7 26.5 38.4 30.2	- 8 W 4	26.7 44.2 26.6 39.3	43.9 50.5 46.3 38.6	35.5 38.0 28.1 42.1	38.1 31.2 30.7 44.1
Market cwt mt/	247 268 3 434 4 236 2	165 1 390 4 234 2 304 3	274 3 236 2 343 3 269 3	279 3 341 3 384 4 305 3	238 2 394 4 238 2 350 3	392 4 451 5 413 4 345 3	317 3 339 3 250 2 376 4	340 3 278 3 274 3 393 4
1	2200	~~~ 1	15 30	55 0 0 9 9 9 9 9	13 3 3 3 3 3 3	W 2 2 2 3 3 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4	32 32	2027
Variety	1 1 1 1	1 1 9						1 1 1 1
Var	B8599- B8599- B8615- B8615-	B8706- B8706- B8706- B8706-	B8706- B8706- B8706- B8706-	B8710- B8710- B8724- B8724-	B8742- B8798- B8798- B8799-	В8799- В9127- В9127- В9140-	B9140- B9140- B9140- B9192-	B9224- B9224- B9286- B9286-
ion	th th th	th th th	4444	5555	th dv th	th dv th	dv dv dv	h h h
Location	SJ-wh VRF-adv SJ-wh VRF-adv	SJ-wh SJ-wh VRF-adv SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh	SJ-wh VRF-wh SJ-wh VRF-wh	SJ-wh SJ-wh VRF-adv SJ-wh	VRF-wh SJ-wh VRF-adv SJ-wh	VRF-adv SJ-wh VRF-adv SJ-wh	SJ-wh VRF-adv SJ-wh VRF-wh
		-			>			> >

good fair fair poor

good boog good

Over Chip all Color

New Jersey Table continued

fair poor poor

good fair good good fair poor good poor

good good good excel excel fair fair

good good exce good fair fair fair good excel

fair fair good fair good good excel fair fair

fair good good good good good

Defects SG GC HH ID	† † + † 1 † + † † + 1 † † + ‡ †	+ + ‡ ‡ + ‡ + ‡ + ‡ + ‡ + ‡ + ‡ + ‡ + ‡	# # # # + + ! + # # # # # # # #	+ + + ‡ ‡ ‡ ‡ + ‡ ‡ + ‡ ‡ + ‡ ‡	‡ ‡ + ‡ 1 ‡ ‡ + 1 ‡ ‡ + + + + ‡	+ + + + + + + + + + + + + + + + + + + +		*
B E R Shape Conf	obl good round fair t obl good round good	round good round fair long good round good	round good round good obl good rd-ob good	round good rd-ob good round good	obl poor round good rd-ob fair obl good	rd-ob fair obl poor round good t round good	round fair round fair rd-ob good round good	round good t round good round fair obl fair
T U Color Text	white sm white sm buff s net	white sm white sm white sm	white sm white sm white sm buff sm	buff sm white sm buff sm	white sm buff sm buff sm white sm	white v sm white sm white v sm buff s net	white sm white sm buff sm buff net	buff net tan s net white sm
Vine Mat	e-med m-late m-late early	e-med m-late late late	med m-late v-e med	v-e e-med early med	early med e-med med	late med e-med e-med	med late e-med late	early early med m-late
es 5	0000	0000	0000	000-	0000	0000	0000	0000
Size	147	0000	389	0 21 39	17 2 11 2 11	<u>& ကပ်</u> ဝ	11 22 0	0000
Tuber 2 3	12 64 24 18 62 19 8 48 36 10 50 27	7 47 43 11 38 46 3 70 27 11 50 39	4 30 47 2 20 39 9 66 26 8 63 27	11 61 28 25 60 13 1 28 50 2 19 39	11 42 43 8 39 37 9 66 23 3 37 49	11 55 26 14 59 21 4 21 60 12 65 23	3 41 44 4 26 49 5 36 50 8 67 24	10 65 25 5 50 41 36 62 2 10 69 21
$\frac{Percent}{A}$	88 24 82 20 92 44 90 40	93 46 89 52 97 27 89 39	96 66 98 78 91 26 92 29	89 28 75 15 99 71 98 79	89 47 92 54 91 25 97 60	89 34 86 27 96 75 88 23	97 56 96 71 95 59 92 24	90 25 95 46 64 2 90 21
양성	80	17	73	65	1 63 1	1 1 1 1	1 1 1 1	1 1 1 1
Market Tot cwt mt/h cwt	297 33.3 336 357 40.0 433 357 40.0 388 316 35.4 349	304 34.1 326 450 50.4 498 321 36.0 332 315 35.3 355	282 31.6 293 365 40.9 373 294 32.9 320 327 36.7 355	198 22.2 221 181 20.3 244 338 37.9 342 409 45.9 416	405 45.4 452 469 52.6 508 334 37.4 367 352 39.5 363	275 30.8 309 155 17.4 181 437 48.9 456 194 21.7 220	280 31.4 289 344 38.5 356 291 32.7 306 198 22.2 217	151 16.9 167 197 22.1 207 78 8.8 123 299 33.5 333
Variety	B9335- 35 B9335- 35 B9335- 60 B9335- 60	B9336- 24 B9336- 24 B9336- 27 B9336- 27	B9340- 7 B9340- 7 B9340- 13 B9340- 13	B9384- 4 B9384- 4 B9384- 6 B9384- 6	B9423- 4 B9423- 4 B9468- 1 B9510- 5	B9510- 17 B9511- 1 B9514- 38 B9531- 8	B9533- 28 B9536- 8 B9541- 20 B9541- 27	B9541- 44 B9541- 45 B9555- 13 B9555- 21
Location	SJ-wh VRF-wh SJ-wh VRF-wh	SJ-wh .VRF-wh .SJ-wh VRF-wh	SJ-wh VRF-wh SJ-wh VRF-wh	SJ-wh VRF-wh SJ-wh VRF-wh	SJ-wh VRF-wh SJ-wh SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh

			_	133 -				
Chip	good fair	poor poor fair poor	fair good	good good fair	good good good	good good	fair fair	poor
Over	fair good good good	good good boog	good poor poor good	fair fair fair	good good fair good	good good good fair	fair good good good	good fair good good
Defects SG GC HH ID	; ; ; ; ; ; ; ; ; ; ; ; ;	* * * * * * * * * * * * * * *	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	‡ ‡ + ‡	† + † † + † † + † † † + † +	† † + + † + † † † † + † + † + †	+ + + + + + + + + + + + + + + + + + + +	‡ ‡ + + ‡ + ‡ + ‡ + ‡ + ‡ + ‡ ‡
B E R Shape Conf	round fair round good obl good round good	rd-ob good obl fair rd-ob good round good	rd-ob good round good round good t round good	round fair rd-ob fair rd-ob fair rd-ob fair	round good round good obl-l fair obl good	obl fair rd-ob fair round good	rd-ob good round good rd-ob fair round good	t round good rd-ob good round good
T U Color Text	buff sm white sm buff sm	buff sm white sm tan sm white sm	white sm buff sm buff sm buff s net	white sm white sm white sm	buff sm buff sm buff sm white sm	white sm white sm white sm	buff sm white sm white sm	buff s net white sm white v sm
Vine	v-e v-e early late	med early early	early m-late m-late m-late	m-late m-late m-late m-late	med m-late early m-late	m-late m-late med late	late m-late late late	early early late late
Percent Tuber Sizes A B 1 2 3 4 5	12 54 33 0 0 9 57 29 5 0 33 67 0 0 0 2 32 56 10 0	8 69 22 1 0 11 68 15 6 0 4 44 46 6 0 4 29 54 13 0	10 50 39 1 0 9 46 32 14 0 12 47 32 10 0 8 34 39 19 0	2 24 56 18 0 7 23 34 33 3 3 16 38 39 3 5 30 42 22 0	2 27 64 7 0 3 22 42 31 2 13 67 19 1 0 13 57 26 4 0	15 55 24 5 0 8 37 40 16 0 5 41 46 7 0 13 50 32 5 0	10 59 27 4 0 6 46 42 6 0 11 38 37 14 0 10 45 35 10 0	6 54 37 3 0 7 36 43 14 0 10 47 41 2 0 5 44 34 17 0
Perce A B	88 33 91 34 67 0 98 66	92 23 89 21 96 52 96 67	90 40 91 45 88 42 92 58	98 74 93 70 97 81 95 64	98 71 97 75 87 21 87 30	85 29 92 55 95 53 87 37	90 31 94 48 89 51 90 45	94 40 93 57 90 43 95 51
Sp	1 1 1 1	1 1 1 1	77 72 82	65 69 69	71 - 78	78 82 -	1 1 1 2 8 8	18911
Market Tot cwt mt/h cwt	211 23.7 240 225 25.2 248 120 13.5 178 416 46.7 424	278 31.1 301 360 40.4 405 426 47.7 445 340 38.1 354	244 <i>27.3 27</i> 0 369 41.4 404 208 23.3 236 338 37.9 368	418 46.9 427 376 42.2 405 399 44.7 413 345 38.7 365	335 37.5 341 319 35.7 330 219 24.5 252 284 31.8 326	208 23.3 247 340 38.1 368 323 36.2 342 367 41.2 420	322 36.1 358 264 29.6 282 309 34.6 347 289 32.4 322	203 22.8 217 333 37.4 358 299 33.5 333 312 34.9 326
Variety	B9572- 8 B9572- 11 B9581- 9 B9581- 10	B9582- 18 B9594- 4 B9607- 3 B9612- 4	B9641- 1 ATLANTIC ATLANTIC ATLANTIC	BELCHIP BELCHIP BELCHIP BELCHIP	CAMPELL-11 CAMPBEL-11 CHIPBELLE CHIPBELLE	CHIPBELLE CHIPBELLE DAKCHIP DAKCHIP	DENALI DENALI DENALI DENALI	JEMSEQ JEMSEQ KATAHDIN KATAHDIN
Location	SJ-wh SJ-wh SJ-wh SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh	SJ-wh VRF-wh VRF-adv JB-adv	SJ-wh VRF-wh VRF-adv JB-adv	SJ-wh VRF-adv SJ-wh VRF-wh	VRF-adv JB-adv SJ-wh VRF-adv	SJ-wh SJ-wh VRF-adv JB-adv	SJ-wh JB-adv SJ-wh SJ-wh

New Jersey Table continued

continued
Table
Jersey
New

			-	136 -				
Over Chip all Color	boog boog boog	good poor fair good fair fair	fair good fair good good good	good good good excel good fair	fair good poor good poor	fair fair good good good	fair fair fair good	fair fair good
Defects SG GC HH ID	+ + [†] + + [†] [†] [†] + [†] + [‡] + + + [‡]	+ ‡ ‡ ‡ + + + ‡ + ‡ +	+ 1 + ‡ ‡ ‡ + ‡ 1 ‡ ‡ ‡	# # # # # # 1 # # # # # # # 1	‡ 1 + ‡ + ‡ ‡ ‡ ‡ ‡ + ‡ + ‡ + +	+ + [†] [†] † † † †	+ + + + + + + + + + + + + + + + + + + +	
B E R Shape Conf	round good round good rd-ob good round good	round good round fair round good round good	round fair round fair round good	round good round fair round good long fair	obl fair obl good obl good obl	obl fair rd-ob good rd-ob good rd-ob fair	rd-ob fair obl fair rd-ob fair round good	rd-ob fair obl fair round good rd-ob fair
T U Color Text	white sm white v sm white sm white sm	white sm white v sm white sm white sm	white v sm white sm white v sm	white sm white sm white sm	white sm buff sm buff sm white s net	buff sm buff s net buff sm white sm	white sm white sm white sm	white sm white sm white s net
Vine	late late med m-late	late m-late m-late m-late	m-late e-med early m-late	m-late med m-late e-med	e-med med med m-late	med e-med v-e m-late	m-late e-med late early	early e-med late e-med
Percent Tuber Sizes A B 1 2 3 4 5	8 28 32 30 2 5 24 38 29 4 3 44 40 13 0 5 21 52 22 0	17 55 25 2 0 7 32 41 20 0 10 54 31 6 0 5 41 41 14 0	20 59 19 2 0 12 56 28 4 0 3 37 52 9 0 5 34 46 16 0	7 30 38 25 0 9 59 32 0 0 12 44 38 6 0 12 64 24 0	11 51 35 3 0 6 37 42 14 0 4 40 50 7 0 10 55 29 5 0	4 30 41 25 0 7 45 44 4 0 1 33 52 14 0 9 57 28 7 0	11 47 38 5 0 5 42 40 13 0 8 34 33 25 0 14 49 36 1 0	5 31 38 24 1 14 59 25 2 0 9 45 35 11 0 4 25 42 28 2
	92 64 95 71 97 53 95 74	83 28 93 61 90 36 95 54	80 22 88 32 97 61 95 61	93 63 91 32 88 44 88 24	89 38 94 57 96 57 90 34	96 66 93 48 99 65 91 35	89 43 95 53 92 58 86 37	95 63 86 27 91 46 96 71
Market Tot Sp	261 29.2 283 55 345 38.7 365 56 369 41.3 379 - 323 36.2 338 67	199 22.4 241 - 330 37.0 354 58 265 29.7 293 - 353 39.6 372 -	312 35.0 389 70 285 32.0 325 73 272 30.4 279 - 425 47.6 446 69	291 32.6 311 63 287 32.1 315 - 329 36.9 372 71 263 29.5 300 -	230 25.7 257 73 316 35.4 336 - 378 42.4 393 - 360 40.4 402 70	349 39.1 363 63 289 32.4 309 71 364 40.8 369 67 407 45.6 446	282 31.6 316 82 393 44.1 413 70 299 33.5 324 71 192 21.5 217 79	375 42.0 397 72 235 26.4 273 75 245 27.5 270 76 367 41.1 382 66
Variety	KATAHDIN KATAHDIN MICHIBONE MICHIBONE	MICHIMAC MICHIMAC NORCHIP NORCHIP	NORCHIP NORCHIP OCEANIA OCEANIA	OCEANIA ROSA ROSA SHEPODY	SHEPODY SUPERIOR SUPERIOR	SUPERIOR SUPERIOR SUPERIOR TRENT	TRENT AF092-3 AF201-25 AF222-1	AF238-21 AF238-66 AF303- 5 AF307- 5
Location	VRF-adv JB-adv SJ-wh JB-adv	SJ-wh JB-adv SJ-wh SJ-wh	VRF-adv JB-adv SJ-wh VRF-wh	VRF-adv SJ-wh JB-adv SJ-wh	JB-adv SJ-wh SJ-wh VRF-wh	VRF-adv JB-adv EM-rus SJ-wh	VRF-adv JB-adv JB-adv JB-adv	JB-adv JB-adv JB-adv JB-adv

continued
Table co
Jersey
New

			-	13/ -				
r Chip Color	776	d good d poor r	סגסג	r poor d poor r	d poor r d poor d poor	d poor d fair r	d good d good d good	d fair d good d poor d fair
Over all	good good fair fair	good good fair fair	good poor good fair	poor poor good fair	good good poor good	good good fair poor	good good poor good	good good good good
Defects SG GC HH ID	‡ ‡ · · · · ‡ ‡ · · ‡ · · · · · · · · · · · · · · ·	‡ + + ‡ ‡ ‡ + ‡ ‡ ‡ + ‡	‡ ‡ ‡ + + ‡ + + + ; ‡ ; + ‡ ‡	+ + + + + 	‡ + ‡ ‡ ‡ + ‡ ‡ ‡ ‡ ‡ ‡ + ‡ ‡	‡ ‡ + + + ‡ ‡ ‡ ‡ ‡ ‡ + ‡ + ‡ +	‡;‡ ;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;	# # + + + # # # # # # # # + # # # #
B E R Shape Conf	round fair round good round fair round fair	rd-ob good round good round fair obl-l fair	obl good round fair round good rd-ob good	round fair round good round good	round good rd-ob good round good round fair	round excel round good rd-ob fair obl-l fair	round good rd-ob good round good round good	round good obl fair round good round good
T U Color Text	white sm buff sm white sm	buff sm white v sm white v sm purp sm	purp sm white sm buff sm	white sm white sm white v sm	white sm white v sm white sm white v sm	tan s net buff sm tan sm white v sm	white sm white sm white sm white v sm	white sm white sm buff s net white sm white v sm
Vine Mat	early med late late	e-med late m-late e-med	early late early	late late late	early late early late	late m-late late m-late	late late v-e e-med m-late	e-med late e-med v-e m-late
SICI	m000	0000	0000	0-0-	0000	0000	0-000	00000
Sizes	23 17 16	₩ 0 0 0 1 1 0	<u> </u>	31	16 24 6 10	7 7 7 1	34 11 28 11	90000
(M)	44 30 30 30	33	37 38 38 30	33 41 33	55 th 20 th	23 28 14 14	33 39 30 30 30	22 24 27 27 10 10 10
nt Tuber	6 25 6 30 15 52 9 36	8 55 12 58 12 43 13 64	8 43 10 33 7 39 10 44	12 32 10 26 6 42 14 42	8 43 4 34 3 43 3 43 3 43 3 43 3 43 4 3 43 4 3 43 5 43 5	7 58 17 57 11 63 30 55	8 36 6 25 3 39 6 27 6 44	11 59 6 40 2 42 4 30 8 32
Percent	69 64 55	37 30 45 22	49 53 46	52 44 44 44	62 49 62 62	33 12 12 13	57 70 58 67 50	30 54 67 60
	94 94 97 91	92 88 88 87	8888	88 0 48	97 92 96	2888	92 64 6	86 86 86 86 86 86 86 86 86 86 86 86 86 8
Sp	75 75 67 80	1 101	66 64 72	45 53 56	99	59	169	1 1 1 1 1
Tot	303 400 277 427	319 491 444 258	370 389 209 349	257 249 331 194	467 437 418 371	332 328 505 273	321 410 342 435 328	320 451 364 410 369
	32.0 42.1 26.3 43.5	$\omega \omega \omega \omega$	0.7.7.	$mm\omega\omega$	0 % m 60 % m m 80	34.7 30.5 50.5 21.8	w.≠ <i>–</i> w.o.	-40m-
Market cwt mt/h		13 48 11 43 15 25	39 38 39 38 3 35	25 25 25 25 34 34 34 34	$\omega \pm \pm \omega$		33 38 43 31 31 34 34 34 34 34	37 32 33 47 37 40 57 40 10 38
2 ð	285 376 6 235 16 388	3 294 1 433 1 391 225	339 351 194 313	226 226 311 168	451 413 387 355	310 272 450 195	297 388 331 413 309	287 423 357 395 340
Variety	AF324- 1 AF330- 1 B 6043WV BR5991WV10	CF74135- CF75023- CF75023- F69026	F69026 F73008 G712-1 G712-1	NY-59 NY-63 NY-67 NY-67	NY-68 NY-68 P0021-4 P0035-1	S377- 8 S377- 8 S377-41 S377-41	WIS 718 WIS 718 9AM-3 9BJ-2 9GE-1	9GE-1 9HB-2 9II-1 9LE-3 9LV-2
Location	JB-adv JB-adv JB-adv JB-adv	SJ-wh SJ-wh JB-adv SJ-wh	JB-adv JB-adv SJ-wh JB-adv	VRF-adv VRF-adv SJ-wh VRF-adv	SJ-wh VRF-adv SJ-wh SJ-wh	SJ-wh VRF-adv SJ-wh VRF-adv	SJ-wh JB-adv SJ-wh SJ-wh SJ-wh	SJ-wh SJ-wh SJ-wh SJ-wh SJ-wh

continued
Table
Jersey
New

			-	138 -				
Chip Color						poor		
Over all	fair poor good fair	fair good fair poor	good fair good good	good good fair exce	fair good good poor	good good good fair	fair good good	good poor good fair
Defects SG GC HH ID	+ ‡ ‡ ‡ + ‡ ‡ † † † † † † † † † † † † †	‡ + ‡ ‡ + + · · ‡ ‡ + · + · · + + ‡ ‡	‡ ‡ ‡ ‡ 1 1 ‡ 1 + + ‡ + + + 1 +	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	# # # # # # # # # # # # + + #	# # # I # # # # # # # # I # # # # #	+ ‡ + ‡ + ‡ + ‡ + ‡ + ‡ † † ‡ ‡ ‡ ‡ ‡ ‡	+ + + + + + + + + + + + + + + + + + +
R	fair poor fair fair	fair good fair poor	good boog boog	good fair good good	fair good good good	good fair good good	fair good good good	good poor good good
T U B E	buff s net long brown m rus obl-l buff l rus obl buff net long	brown l rus obl-l brown net obl brown l rus long tan l rus obl-l	brown 1 rus long brown m rus long brown m rus obl-1 tan net obl-1	brown h rus long tan l rus obl tan net rd-ob buff net obl-l	buff net obl tan 1 rus obl brown m rus obl tan 1 rus long	brown 1 rus long brown 1 rus obl tan net long brown 1 rus obl	brown 1 rus obl brown 1 rus obl tan 1 rus long brown 1 rus long	tan lrus long brown s net long tan lrus obl-l tan net obl-l
Vine Mat	v v ee v v v v v v v v v v v v v v v v	m-late v-e early e-med	v-e early m-late early	v-e v-e early	early early e-med v-e	early e-med v-e e-med	early early v-e	early early med
Sizes 4 5	0 33 0	0 24 11 0 0 12 0 12	8 0 18 0 20 1 0	0000	0 0 0 0 0 0 0	7 15 0 0 0 0	0000	0000
Percent Tuber Si A B 1 2 3	79 - 21 58 22 52 - 16 37 15 72 - 0 50 22 90 - 10 87 4	55 - 21 48 7 98 - 2 36 51 1 88 - 0 67 22 63 - 25 54 9	97 - 3 53 35 82 - 0 61 21 46 - 33 42 4 86 - 14 61 24	93 - 7 74 19 83 - 17 67 16 83 - 17 46 36 81 - 19 69 12	47 - 40 47 0 81 - 19 41 40 54 - 42 47 7 81 - 19 0 81	74 - 11 54 12 67 - 33 40 27 73 - 27 65 8 86 - 14 28 58	87 - 13 61 26 70 - 30 40 30 80 - 20 56 24 84 - 16 50 34	86 - 14 47 39 90 - 10 42 49 76 - 24 25 51 85 - 15 42 42
Sp G PJ	63	81 71 -	67 - 72 70	62	69	72	1 1 1 1	1 1 1 1
Market Tot cwt mt/h cwt	149 16.7 188 162 18.1 313 123 13.8 165 175 19.6 194	145 16.3 264 284 31.9 289 191 21.4 216 150 16.8 238	239 26.8 246 172 19.3 209 166 18.6 355 234 26.2 273	210 23.5 226 150 16.8 181 221 24.7 267 192 21.5 235	133 14.9 280 147 16.5 181 147 16.5 275 82 9.2 102	276 30.9 375 95 10.6 141 119 13.3 163 165 18.4 192	225 25.2 258 104 11.6 148 160 17.9 198 165 18.4 197	150 16.8 174 206 23.1 228 102 11.4 134 186 20.8 220
τχ	0000	###	4	- + 00	7225	11 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 18 . 21 . 24	. 29 . 51 . 55
Variety	B8686- B8686- B8833- B8833-	B8934- B8934- B8943- B8943-	B8943- B8972- B8972- B8972-	B8972- B9333- B9333- B9400-	B9400- B9400- B9400- B9434-	B9434- B9538- B9539- B9539-	B9539- B9539- B9540- B9540-	B9540- B9540- B9540- B9540-
Location	SJ-rus VRF-rus SJ-rus EM-rus	VRF-rus EM-rus SJ-rus VRF-rus	EM-rus SJ-rus VRF-rus JB-adv	EM-rus SJ-rus SJ-rus SJ-rus	VRF-rus SJ-rus VRF-rus SJ-rus	VRF-rus SJ-rus SJ-rus SJ-rus	SJ-rus SJ-rus SJ-rus SJ-rus	SJ-rus SJ-rus SJ-rus SJ-rus

continued
e
Ξ
Ξ.
П
ā
Ö
Ç
ab1e
Ĺ
끍
Ę
Jersey
a
S
Н
Je
٠,
12
New
7

Chip			-	139 -	poor		poor
Over all	fair fair fair fair	good exce good	good good fair good	fair good good	fair good good poor	fair poor fair fair	good good good
Defects	# # # # # # + + # # # # # #	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	# # # # # # # # # # # # # # # 	+ + + + + + + + + + + + +
R	good good fair good	fair excel good good	good good good	fair good good	fair good good poor	fair poor fair fair	good good good
T U B E Color Text Shape	tan lrusrd-ob buff net obl brown lrusobl-l white sm round	tan lrus long brown lrus long brown net long brown lrus long	brown l rus obl-l tan l rus long brown l rus obl-l brown l rus obl	brown m rus long brown m rus long brown m rus long brown m rus long	brown 1 rus long brown 1 rus long brown 1 rus long tan 1 rus long	brown 1 rus long brown net long brown m rus obl brown 1 rus obl	brown m rus long brown m rus long tan l rus long
Vine Mat	early v-e med v-e	v-e early v-e early	v-e early v-e v-e	early med e-med v-e	med late e-med e-med	late early late e-med	early m-late early
Percent Tuber Sizes	- 65 - 35 51 14 0 0 - 84 - 16 53 31 0 0 - 84 - 16 62 22 0 0 - 86 - 14 37 49 0 0	- 80 - 20 64 16 0 0 - 81 - 19 66 15 0 0 - 86 - 14 42 44 0 0 - 84 - 16 72 12 0 0	- 80 - 20 58 22 0 0 - 74 - 26 70 4 0 0 - 78 - 22 59 19 0 0 3 98 - 2 44 46 8 0	- 81 - 19 50 31 0 0 3 62 - 17 55 7 0 21 1 90 - 10 53 30 6 0 3 97 - 3 58 36 4 0	- 89 - 11 43 46 0 0 2 74 - 23 64 10 0 3 7 98 - 2 48 45 5 0 - 88 - 12 23 65 0 0	9 42 - 23 42 0 0 35 2 89 - 11 65 22 1 0 54 - 36 50 4 0 9 1 98 - 2 40 51 7 0	- 82 - 18 56 26 0 0 7 35 - 34 31 4 0 32 0 98 - 2 48 38 12 0
Market Tot Sp	66 7.4 101 224 25.1 265 221 24.7 261 171 19.2 200	160 17.9 198 - 210 23.5 259 - 178 20.0 206 - 202 22.7 241 -	120 13.5 150 - 169 19.0 229 - 118 13.2 151 - 335 37.5 342 63	126 14.1 155 - 233 26.1 374 73 254 28.4 283 71 171 19.1 175 68	277 31.0 312 - 250 28.0 339 72 267 30.0 273 77 229 25.7 261 -	137 15.4 325 69 158 17.7 178 72 183 20.5 333 70 241 <i>2</i> 7.0 246 71	157 17.6 191 - 139 15.6 405 57 385 43.1 391 70
Variety	B9545- 40 B9563- 2 B9566- 1 B9566- 11	B9569- 2 B9585- 4 B9604- 7 B9635- 13	B9648- 15 B9651- 1 ALLAGASH ALLAGASH	BELRUS BELRUS BELRUS BELRUS	LEMHI LEMHI LEMHI R BURBANK	R BURBANK R BURBANK RUSSETTE RUSSETTE	WF564-3 WF564-3 WF564-3
Location	SJ-rus SJ-rus SJ-rus SJ-rus	SJ-rus SJ-rus SJ-rus SJ-rus	SJ-rus SJ-rus SJ-rus EM-rus	SJ-rus VRF-rus JB-adv EM-rus	SJ-rus VRF-rus EM-rus SJ-rus	VRF-rus EM-rus VRF-rus EM-rus	SJ-rus VRF-rus EM-rus

Long Island, New York State

J.B. Sieczka and R.C. Neese

Results of Potato Variety Trials, 1981

Sixty-one clones were entered in four replicated variety trials conducted at the Long Island Horticultural Research Laboratory at Riverhead, New York. One hundred and forty-eight clones were entered in observational experiments. Soil at the Lab is classified as a Haven loam with approximately two percent organic matter. The early season was conducive to good potato growth. Natural precipitation was supplemented by irrigation through the growing season. However, August was an especially dry month with only 0.5 inches recorded and some moisture stress occurred. In addition, Colorado potato beetles were extremely difficult to control during the midseason. Both these factors affected the yield of entries in the variety trials. With this in mind data should be viewed in a relative sense. Yield potential and performance of a given clone should be made by comparing it to one of the standard varieties in the test. Appearance ratings and percent defects give a good estimate of these parameters.

In the Early Variety Trial (see Table 1) Superior produced the highest marketable yield. Entries that approached this level and had an acceptable appearance rating were Campbell 13, CC26-1A and CF7358-14A. In Main Season 1 (see Table 2) Belchip, Wauseon, AF186-5 and NY63 produced marketable yields equal to or better than Katahdin. Other lines which produced yields just below Katahdin were B7592-1, NY67 and S377-8. Internal necrosis appears to be a problem in B7592-1. Most of the entries from the USDA breeding program listed in Table 3 yielded at the same level or higher than Katahdin. However, tendency toward heat sprouts, other external defects or internal disorders eliminated most from future testing. In Main Season III, Michimac, AF92-3 and B9340-7 showed promise.

In the replicated russet trial (see Table 5) all USDA entries yielded more than BelRus and Russet Burbank. B8972-1 and B9395-25 show the most promise. None of the unnamed selections had high specific gravity.

Fertilizer trials were conducted on three recently named varieties, BelRus, Chipbelle and Rosa. BelRus yields, size and specific gravity were not affected by nitrogen rate. The lowest rate of nitrogen was 100 lb/A and the highest 270 lb/A. Chipbelle also was not affected by fertilizer rate. Yield and specific gravity of Rosa decreased as nitrogen rate increased.

Acknowledgments

Seed was provided by Robert Plaisted, Cornell University; Raymon Webb, USDA; and Hugh Murphy, University of Maine.

Early Potato Variety Trial Results, Riverhead, New York 1981 Long Island Table 1.

	Yield	Yield (cwt/A)	% of	1		1,5				/9				/«	
3.7			Sup	% of Total	tal ,,	Spec='	/ /	7 5	7	Vine Z	17		Tuber Data="	ata='	
Clone-/	Total	Total 1-7/8-4	1-7/8-4	1-7/8-4	Def-	Grav.	App [±]	, HH ² /	nt ² /	Mat	Comments"	Co1.	Tex.	Shape	Depth
Campbell 13	270	230	91	85	2	76	7.8	0	0	6.8	Len .	X	S	×	TW
Chippewa	223	176	7.0	79	7	65	7.3	0	4	8°9	Sl irr	BW	S	R-0	SF
Superior	282	253	100	06	0	73	7.0	0	0	8.0	Sl irr	Bu	SN	R-0	SF
B8751-6	220	174	69	79	1	73	8.0	0	0	8.3		Bu	SN	R-0	MT
CC26-1A	279	244	96	87	2	79	8.3	3	0	7.0	Att	Bu	SN	R-0	Ж
CF7358-14A	261	236	93	06	0	72	8.8	0	0	8.8	Att	Bu	Z	0-R	×
CF7523-1	276	221	87	80	1	81	8.0	0	0	5.0		X	RS	R-0	TM
F69026	183	149	59	82	1	73	7.0	0	0	0.6		Pu	S	0-R	MT
NY68	209	176	70	84	2	69	7.5			0°6	Sk	M	RS	~	MT
Waller-Duncan(.05)	(89)	(67)				(2)									
															-

Planted April 16, 1981, vine killed August 4, 1981, harvested August 17, 1981, within row spacing 9.3". Fertilizer applied at a rate 1000 lb/A of 10-20-10 -2 Mg in bands at time of planting, 60 lbs of N side dressed, 4 replications.

Abbreviations S = sunburn, Sc Defects = Total of all defects. Letters in parenthesis are abbreviations for major defects. misshapen, G = growth cracks, L = prominent lenticels.

Specific gravity determined by hydrometer. 1.0 omitted.

Appearance rated on a scale of 1 to 9; 1 = extremely rough, unattractive, 9 = smooth, attractive.

Number of tubers with hollow heart or internal necrosis of 40 tubers cut (10 per replication).

12 16 15 14 13

Vine maturity rated on August 10, 1981 on a scale of 1 to 9, 1 = completely dead, 9 = green and vigorous.

Irr = irregular, Sl irr = slightly irregular, Sm = small, Sk = skinned, SE = shallow eyes, P = pink, HS = heat sprouts, CT = chain tubers, DAE = deep apical eyes, MDAE = moderately deep apical eyes, Att = attractive, Len = Prominent lenticels, St = stolons.

Color - B=brown, BR=bright red, Bu=buff, BW=bright white, MR=medium red, P=pink, Pu=purple, W=white

- HP.=heavy russet, MR=medium russet, RS=relatively smooth, SN=slight net, S=smooth.

Shape - O=oblong, L=long, R=round.

Depth - F=flat, MT=medium thick, R=round, SF=slightly flattened.

Long Island Table 2. Main Season I, Riverhead, New York 1981

		Depth	SF	ĹĽ,	SF	SF	SF	SF	MT	Ψ	MT	×	В	~	MT	~	~	R	
	1/ata_		R	0-R	R	0	R-0	×	R	0-R	0	0	×	R	R	×	R	R	
-	Tuber Da	Tex. Shape	S	S	Z	SN	RS	S	SN	Z	SN	S	S	S	S	SN	SN	SN	
-		Col.		M	Bu	Bu	M	W-P	Bu	Bu	Bu	æ	M	×	Μ	Bu	Bu	Bu	
		Comments—/	Sl irr	Irr		Irr	Sl irr	Sm, Sk	Sl irr	Sm, Irr	SE		Sm	Sl irr	Sl irr	P buds	P buds	Sm, HS	
	i	$Int^{\frac{5}{2}}$	1	0	0	0	0		_	0	0	8	0	_	4	0	П	0	
	,	^田 5/	0	0	0	-	7	0	0	0	1	0	0	1	0	0	0	П	
		App ⁴ /	7.0	6.5	7.3	8.9	7.8	6.8	8.9	6.5	7.3	7.8	7.8	7.0	7.0	7.5	8.0	8.5	
	Spec 3/	Grav.	63	75	82	82	99	89	72	77	92	89	7.0	64	63	64	62	69	(5)
	,	ef ² /	11 (Sc)	-	17 (Sc)	5 (Sc)	3	13 (Sc)	-	4, (Sc)	17 (Sc)	2 (Sc)	3 (Sc)	14 (Sc)	2 (Sc)	4 (Sc)	7 (Sc)	4 (Sc)	
	% of Total	1-7/8-4						62											
	% Kat Yield	1-7/8-4	100	104	73	89*	61	65	105	100	57	91	62	106	95	79	91	09	
	Yield (cwt/A)	1-7/8-4	211	221	156	189	129	139	223	214	122	194	132	226	203	168	195	128	(92)
	Yield	Total	260	241	209	243	157	222	256	261	213	231	216	287	230	224	273	181	(64)
		Clonel/	Katahdin	Belchip	Campbell-11	Chipbelle	Hudson	Rosa	Wauseon	AF186-5	AF205-9	B7592-1	B7200-33	NY-63	NY67	S376-2	S377-8	S377-41	Waller-Duncan (.05)

1/ Planted April 10, 1981, vine killed September 4, 1981, harvested Oct. 7, 1981. See footnote Table 1.

2/-7/ - See appropriate footnotes in Table 1.

Long Island Table 3. Main Season II, Riverhead, New York 1981

	Yield	Yield (cwt/A)	% Kat Yield	% of Total	al	Spec 3/	;		ì	73		Tuber Data-	7/ Jata-	
Clone_/	Total	1-7/8-4	1-7/8-4	1-7/8-4	Def-7/	Grav.	App=-	(날)	Int ² /	Comments—	Co1.	Tex.	Shape	Depth
Katahdin	202	180	100	89	2	63	7.3	0	0	Slirr	×	RS	~	R.S.
Hudson	164	141	7.8	86	2	64	7.3	-	0	S1 irr	* 3	RS	· ~	M T
B8710-16	233	191	106	82	2	72	7.5	1	4	Sl irr	M	RS	0-R	MT
B8771-6	235	209	116	89	7	81	7.3	0	7	Len	×	RS	0-R	MT
B8798-20	253	233	129	92	0	79	6.3	0	0	HS, Irr	Bu	SN	æ	MT
B8799-13	250	211	117	84	4	81	6.5	3	-	Irr, Sm	Bu	SN	R-0	TW
B8907-4	231	213	118	92	4	70	6.5	10	0	DAE	Bu	SN	R-0	MT
B9018-12	257	225	125	88	2	72	0.9	0	0	HS, CT, Irr	Bu	SN	Ж	MT
B9140-32	231	211	117	91	0	79	7.0	-	3	Irr	Bu	Z	×	MT
B9142-4	215	171	95	80	0	69	7.5	0	3	SE	_	SN	0-R	MT
B9224-6	259	226	126	87	1	74	8.9	0	0	HS	Bu	RS	R-0	MT
B9279-9	221	172	96	78	3	75	7.3	0	4	Sm	Bu	SN	Ж	×
B9285-3	230	202	112	88	1	74	7.3	0	13	HS	Bu	SN	×	MT
B9286-1	196	156	87	80	2	61	8.9	0	0	HS	M	S	R-0	R
B9332-1	224	188	104	84	0	79	7.3	0	0	Sm	×	SN	R-0	×
B9335-60	216	165	92	92	3	77	7.0	0	0	Sm	Bu	SN	0	MT
Waller-Duncan (.05)	(52)	(52)				(2)								

1/ Planted April 10, 1981, vine killed September 4, 1981, harvested Oct. 7, 1981. See footnote Table 1.

 $\frac{2}{7}$ - See appropriate footnotes in Table 1.

Long Island Table 4. Main Season III, Riverhead, New York, 1981

	Yield	Yield (cwt/A)	% Kat			12							11	
1/		US No. 1	Yield	% of Total	7	Spec_3/	4/		7	/9		Tuber Data'	Data''	
Clone='	Total	Total 1-7/8-4	1-7/8-4	1-7/8-4	ef=/	Grav.	App	五	Int ^{2/}	Comments—	Co1.	Tex.	Shape	Depth
Katahdin	301	264	100	88	1	61	7.3	0	0	St, Sl irr	×	S	R-0	MT
Michibonne	314	287	109	92	0	69	7.3	0	0	HS, MDAE	×	SN	R-0	TW
Michimac	281	244	92	87	-		8.0	0	0	SE	×	S	X	SF
Rosa	262	187	71	71	1 (Sc)		7.0	0	0	Sm, St, Sk	W-P	S	R	SF
Shepody	221	165	63	7.5	14 (M)		4.5	0	1	HS, Irr	W	SN	T-0	SF
AF92-3	362	318	121	88	1	99	7.0	Û	1	Irr	*	Ů.	0-R	Liw
AF238-66	298	253	96	85	-	7.0	7.0	0	0	HS! Irr	×	RS	0-R	MT
B6043-WV6	193	137	52	71	_	99	8.9	0	ı	CT, Irr	×	SN	CL.	MT
B8086-3	292	264	100	06	-	99	7.0	0	0	Irr, Off wh	Bu	SN	H	MT
B9336-27	311	280	106	06	П	78	6.3	2	8	HS! Irr	W	RS	0	SF
B9340-3	295	269	102	91	1	72	8.9	0	0	HS! Irr	×	RS	R-0	TM
B9340-7	261	241	91	92	0	78	8.0	1	0	SE, Sl irr	Bu	SN	ĸ	ĸ
B9340-13	258	211	80	82	-	72	6.5	2	0	HS! Irr	Bu	SN	0-R	MT
B9384-6	319	262	66	82	1,5) 6	_	6.3	0	0	Sl irr, Len	Bu	SN	K	MT
BR5991-WV16	379	338	128	89	1 (M)		6.3	6	20	HS, CT,	Irr Bu	SN	ĸ	ĸ
CF7353-1	322	288	109	68	2		6.5	1	13	SE	Pu-Bu	SN	æ	MT
Waller-Duncan (.05)	(33)	(31)				(3)								

1/ Planted April 10, 1981, vine killed September 4, 1981, harvested Oct. 7, 1981. See footnote Table 1.

 $\frac{2}{7}$ - See appropriate footnotes in Table 1.

Long Island Table 5. Russet Variety Trial Results, Riverhead, New York, 1981.

	Yield	Yield (cwt/A) US No. 1	% BelRus Yield		% of Total	otal		Spec. 3/		ì	ì		Г	Tuber Data 7/	1ta_/	
Clone-	Total	4-16 oz	4-16 oz	4	4-10	10-16	Def=/	Grav.	App. 4/ HH2/	ξ F F	Int. 2/	Comments	Col.	Tex.		Depth
BelRus	130	89	100	48	51	1	0	69	8.0	0	0		В	HR	ы	SF
R. Burbank	116	34	50	20	30	0	20(M)	75	4.8	0	8	Irr	В	MR	Г	Æ
B8972-1	253	160	235	37	62	1	1	69	7.8	3	0		В	MR	L-0 ·	MT
B9020-18	220	143	210	35	63	2	1	89	7.3	2	13	Sl irr	В	MR	0-R	SF
B9395-3	151	64	94	57	41	1	2	99	7.0	0	0	Sm, Sl irr	В	MR	r-0	MT
B9395-7	213	160	235	24	72	3	1	7.0	8.9	0	2	HS, Sl irr	В	MR	0-T	Æ
B9395-25	196	133	196	32	99	1	1	69	7.3	0	4	Sl irr	В	MR	0-T	ΜT
B9399-1	166	88	129	46	52	1	1	62	7.5	0	0		В	MR	r-0	MT
Waller-Duncan (.05)	(15)	(16)						(4)								
Long Island Table 6.		Russet Observational Trial Results,	al Trial Ro	esults	1	Riverhead, No	New York,	1981.								
	Yiel	Yield (cwt/A)	% BelRus	Rus	0/5	of Total			Spec. $\frac{3}{2}$;	ì		Tuber Data 6/	ata-6/	
Clone-1/	Total	4-16 oz	4		<4 4 4	-10	16	$\frac{2}{\text{Def}^2}$ (Grav.	App	4	Comments-/	Col.	Tex.	Shape	Depth
Belbus	221	139	100		37		-	1	69	∞		SE	8	HR-PR	Г	SF
R. Burbank	180	87	63		34		9	17 (M)	29	5		Irr	В	MR.	7,	¥ :
B9333-4	164	123	88		22		;	3	09	∞ ∘		i.	(- c	₩ 5	⊣ -	SF
B9333-6	159	72	52		55	45		۱,	07	∞ Γ		SE S1 inr	х э ц	A M	J-[E E
B9333-9	7/7	190	15/		07		1	7	70				9	XIII.	2	:
B9347-5	205	154	111		20		;	5	65	7			В	MR	0	SF
B9391-2	221	118	85		44	54	ŀ	2	64	7			B − ₹	PR i	(M
B9395-8	216	108	78		20		1	1 '	59	-		1	Σ F	¥ 5	⊃ -	¥ 6
B9397-7	87	51	37		35	59	1 1	9	79	ו ת		SE	٦ ,	AN:	-1 (۲ ۲
B9398-2	133	103	74		19		12	4	65	_		lrr	Ω	Ä	>	J.
B9400-2	103	36	26		09		1	2	29	80			B	MR	0-L	2
B9419-1	139	82	59		37		7	4	29	7		Sl irr	8	W.	₁,	SF
B9434-11	87	31	22		59	29	9	9	1	7			മ	₩.	٦ (YS C
B9434-13	133	29	48		50		1	:	;	7		Sc	20	MK X	0	Z
1/ Planted April 14, 1981, vine-killed September	4, 1981,	vine-killed	September	4	81, har	vested	October	13, 198	l, see	footno	1981, harvested October 13, 1981, see footnote 1, Table 1.	ble 1.				
			,													

Planted April 14, 1981, vine-killed September 4, 1981, harvested October 13, 1981, see footnote 1, Table 1.

- $\frac{7}{}$ See appropriate footnotes in Table 1.

Table 7. BelRus Fertilizer Rate and Timing

	N/A at			(cwt/A)		f Total		Specific
Planting	4-6''	10-12"	Total	4-16 oz	< 4	4-10	10-16	Gravity
100	0	0	186	127	31	65	3	1.073
100	60	0	183	133	27	68	4	1.071
100	120	0	195	143	26	68	4	1.073
100	60	60	163	112	31	65	3	1.072
150	0	0	180	128	28	66	4	1.072
150	60	0	167	117	29	66	3	1.073
150	120	0	175	130	25	66	7	1.071
150	60	60	174	126	27	67	4	1.072
			(ns)	(ns)				(ns)
Main Effe	cts							
100			182	129				1.072
150			178	125				1.072
Sidedress								
	0	0	183	128				1.072
	60	0	175	125				1.072
	120	0	185	137				1.072
	60	60	169	119				1.072

Planted 5/4/81, all plots received 0-200-100-50 MgO/A at planting, harvested 9/8/81.

Table 8. Rosa Nitrogen Rate Experiment $\frac{1}{}$

N Rate		(cwt/A)	% of Total	Spec.	_	
	Total	1 7/8-4	1 7/8-4	Grav.	Int.	н. н.
50	276	244	88	1.067	7/40	4/40
100	255	223	87	1.063	7/40	0/40
150	258	213	82	1.062	8/40	1/40
200	242	208	85	1.061	2/40	1/40
Sig Level	(ns)	(.05)		(.05)		

Table 9. Chipbelle Nitrogen Rate Experiment $\frac{1}{}$

N Rate	Yield	(cwt/A)	% of Total	Spec.		
	Total	1 7/8-4	1 7/8-4	Grav.	Int.	Н. Н.
50	218	189	86	1.084	0/40	5/40
100	217	195	90	1.087	0/40	9/40
150	200	178	89	1.082	0/40	1/40
200	215	188	87	1.085	0/40	2/40
Sig Level	(ns)	(ns)		(ns)		

^{1/} Planted 4/22/81, all plots received 0-300-150-50 Mg0/A at planting, vine killed 9/12/81, harvested 10/15/81.

NEW YORK (LONG ISLAND)

R. Loria and B. A. Taborsky

Evaluation of Potato Varieties and Breeding Lines for Resistance

to Common Scab at Riverhead, New York: 1981

Procedure. Seedpieces of 70 breeding lines and varieties were planted on April 27 in a Haven-loam soil which was naturally infested with S. scabies. Seedpieces were placed 12 in apart with 34 in between rows, and plots were fertilized (10-20-10, 1000 1b/A) at planting. 'Chippewa' plots were planted adjacent to test plots and scab infection data from these plots were used as a standard against which to compare infection.

Weeds were controlled with normal cultivation and applications of Lasso at 2 qt/A and Lorox at 2 1b/A on May 8, and Eptam at 50 1b/A on June 10. Foliar sprays were applied when necessary for insect and disease control. Plots were not irrigated in order to increase disease pressure. However, rainfall during the months of May and June totalled 7.5 inches. Plots were harvested on October 20.

Tubers, usually 40, from each 10-hill plot were washed and examined for scab lesions. Each tuber was scored 0 (no lesions) to 4 (deep pits) for type of scab present and 0 (no scab) to 5 (61 percent or more) for surface area covered by scab lesions. These values were converted to individual tuber indices that ranged from 0 (no scab) to 140 (61 percent or more of surface area covered by deep pitted scab). The scab index for each plot was calculated by dividing the sum of the individual tuber indices by the number of tubers examined. The index for each variety and breeding line in the replicated trial was determined by calculating the average of the scab indices from the two plots. A scab index ratio was calculated for each variety and breeding line by dividing the index of the variety or breeding line by the index of the paired Chippewa plot and multiplying the quotient by 100. Similar ratios were calculated for percent tubers with scab and average lesion type. These ratios allow comparison of scab resistance of the varieties or breeding lines to a scab-susceptible standard, Chippewa, and to each other. This is important since disease pressure is not equal throughout the field.

Results. Lines which appeared to be most resistant (scab index ratios of less than 10) were: B113-6, CS7622-8, CS7684-9, U715-76, U756-7 and U756-31. Other test lines were moderately resistant (scab index ratios of 11-30): B111-3, CS7198-1, CS7619-9, CS7638-22, CS73107-10, T30-47, U681-3, U699-5, U715-12, U715-94A, U720-3, U723-8, U723-29, U727-5, U729-15, U731-5, U741-49, U756-9, U756-45, U757-84, U757-93.

Susceptibility of potato breeding lines and varieties to <u>Streptomyces scabies</u>, as compared to the 'Chippewa' variety at Riverhead, New York: 1981. Table 1.

		Scab index		Averag	Average lesion type	type	"Tul	Tubers with scab	scab
Cultivar or breeding line	Test Line	Chipp- ewa	Ratio	Test Line	Chipp- ewa	Ratio	Test Line	Chipp- ewa	Ratio
10-hill, non-replicated,	ated, 40	tubers:							
B111-3	1.8	6.7	26.9	•	2.3	95.6	•		61.3
B113-6	0.4	6.9	5.8	2.0	2.4	83.3	17.5	70.0	25.0
CS7591-6R	4.2	5.4		•	2.1	•	•		3
CS7598-1R	2.3	5.4	42.6	•	•	95.8	•		
CS7619-9	1.7	7.8	21.8	2.0	2.5	80.0	57.5		92.8
CS7622-8	0.3	4.4	8.9	•	2.2	81.8	•	55.0	7
CS7638-22	1.9	7.8	24.4	2.2	2.4	91.7	47.5	62.5	•
CS7639-1	1.6	4.0	40.0	•	2.4	87.5	2	58.0	3
CS7684-9	0.4	7.4	5.4	•	•	•	2.	80.0	28.1
CS7685-6	2.0	4.0	50.0	2.1	2.3	91.3	55.0	70.0	×
CS73107-8	2.0	5.8	34.5	•	•	6.06	7	70.0	82.1
CS73107-10	9.0	4.4	13.6	2.0	2.6	76.9	27.5	47.5	7
U681-3	0.2	1.5	13.3	•	•	6.06	5		26.3
U683-13	3.4	2.4	141.7	•	•	108.7	•	50.0	•
U685-5	1.8	2.4	75.0	•	•	104.3	•	47.5	81.0
U688-1	1.6	2.9		2.0	2.0	100.0	42.5	0.09	70.8
U694-10	1.4	2.4	58.3	•	•	100.0	•	57.5	92.6
U697-1	2.2	1.8	122.2	2.0	1.9	105.3	47.5	47.5	100.0
U699-5	0.8	4.4	18.2	•	•	6.06	•	75.0	40.0
U699-23	2.4	2.3	104.3	•	•	91.3	52.5	45.0	116.7
U709-3	1.8	4.8	37.5	•	•	6.06	•	•	
U711-24	2.7	3.2	4	•	•	•	•	37.5	173.3
U713-6 ·	3.0	8.4	35.7	•	•	84.6	•	•	•
U713-23	3.4	1.9	178.9	2.0	2.5	80.0	62.5	43.2	144.7
U715-12	1.8	7.2	•	•	•	6.06	•	•	0.09

(Table 1 continued next page)

Table 1. (continued)

scab	Ratio		112.5	88.5	•	69.2	5	6	75.0	٠.	01	0.	87.1	47.8	111.1	92.6	73.3	6.06	63.0	94.8	50.0	114.3		131.6		18.	
Tubers with scab	Chipp- ewa		40.0	65.0	37.5	65.0	2.99	80.0	0.06	40.0	72.5	75.0		57.5	67.5	67.5	75.0	55.0		58.0		70.0	7	47.5	2	5	7
% Tub	Test Line			57.5			0	47.5	67.5	5	0.09	•	7	7	75.0	2	•	50.0		55.0		80.0	•	62.5	40.0		•
type	Ratio		3.	95.2	7	0	7.	3.	0	5	87.0	l.	Ξ.	3	95.4	3	87.0	0	7	83.3	0	83.3	0	6.97	4	5	1.
Average lesion type	Chipp- ewa		•	2.1	•	•	•	2.4	2.6		2.3	•	•	•	2.2	•	•			2.4		•		2.6		•	•
	Test Line		•	2.0			•	•	2.1	•	•	•	2.1	•	2.1	•	2.0	2.0		2.0		•	•	2.0		•	•
	Ratio	<u></u>	48.0	46.4	120.0	44.2	5.0	20.2	27.4	191.7	24.3	16.2	54.9	21.0	50.0	51.8	26.9	31.8	9	45.0	36.4	37.0		47.7		5	5
Scab index	Chipp- ewa	40 tubers:)	2.5	5.6	1.5	5.2	4.0	8.4	17.5		7.0	8.0			4.8			4.4	4.1	4.0	2.2			4.4			
	Test Line		1.2	2.6	1.8	2.3	0.2	1.7	4.8	4.6	1.7	1.3	2.8	8.0	2.4	2.8	1.4	1.4	1.2	1.8	0.8	3.4	4.4	2.1	1.3	2.9	2.4
	Cultivar or breeding line	(10-hill, non-replicated,	U715-13	U715-34	U715-52	U715-64	U715-76	U715-94A	U720-3	U720-8	U723-8	U723-29	U725-3	U727-5	U727-22	U728-3	U729-15	U729-21	U731-5	U736-3	U740-27	U741-20	U741-27	U741-36	U741-49	U747-8	U756-3

(Table 1 continued next page)

Table 1. (continued)

		Scab index	<u>ا</u>	Avera	Average lesion type	n type	% Tu	% Tubers with scab	scab
Cultivar or breeding line	Test Line	Chipp- ewa	Ratio	Test Line	Chipp- ewa	Ratio	Test Line	Chipp- ewa	Ratio
11756-7	0.2	3, 9	5	~		78.3	12 5	7 7 5	21.7
U756-9	0.3	2.0	15.0	1.7		94.4	15.0	62.5	24.0
U756-31	0.2	4.4	4.5	1.2	2.2	54.5	15.0	72.5	20.6
U756-38	2.4	4.6	52.2	2.0	•	100.0	0.09	72.5	82.8
U756-45	0.8	3.6	22.2	1.3		68.4	45.0	85.0	52.9
U757-70	0.8	2.4	33.3	2.2		104.8	20.0	57.5	34.8
U757-74	1.0	2.0	50.0	1.4		77.8	42.5	55.0	77.3
U757-84	0.4	1.5	26.7	1.8		94.7	15.0	42.5	35.3
U757 -93	9.0	3.7	16.2	1.5		65.2	32.5	52.5	61.9
10-hill, 2 replications,		80 tubers:							
CS7198-1	1.0	5.1	19.6	2.1		95.4	31.2	66.3	47.0
CS7827-10	3.4	3.4	100.0	2.1		91.3	67.5	57.6	117.2
CS77118-19RdR	1.5	2.6	57.7	2.2	2.1	104.8	37.5	55.0	68.2
CS78155-1	1.7	2.8	60.7	2.2		110.0	46.2	62.5	73.9
NY59	0.7	1.8	38.9	2.2		92.6	23.8	45.4	52.4
S376-2	0.8	2.3	34.8	•	•	94.7	27.5		62.8
Superior	•	3.4	8.8	2.1	2.2	95.4	8.8	58.8	15.0
T4-20	1.8	2.8	64.3		•	87.5	31.6		81.4
T11-29	1.1	1.5	73.3		•	95.2	42.5		103.2
T30-47	•	6.2	19.4	•	•	77.3	38.8		52.6
T37-29	1.5	2.1	71.4			110.0	48.8		82.6

NEW YORK STATE

D. Halseth, C. Maatta, C. MacNeil and M. Reisen

25

Results of Potato Variety Trials in Upstate New York 1980-1981

The Vegetable Crops Department conducted nine replicated variety trials in upstate New York in 1981 in which a total of one hundred and twenty clones were entered. Six trials were conducted at the Thompson Vegetable Research Farm at Freeville on a Howard gravelly loam, two in Wayne County on muck soil near Savannah and one on mineral upland soil in Steuben County near Avoca. Two hundred and sixty observational clones were evaluated in an unreplicated trial and three fertilizer experiments were conducted at the Thompson Vegetable Research Farm.

Field data for 1981 are listed in Tables 1-13. Emphasis on golden nematode resistant varieties and clones was top priority. Promising resistant clones are AF186-5, NY68, NY63, NY59, T37-29, T20-5. Resistant varieties that continue to yield competitively are Atlantic, Belchip, Chipbelle, Peconic, Rosa, and Wauseon. Noteworthy entries without golden nematode resistance are the early maturing clones: CF7523-1, C7358-14A and B7805-1 and the main season clones: Denali, Michibonne, Michimac, B6043-WV6, B8086-3, B8798-20 and F69026. Promising russets include BelRus, B9391-2, B9395-25 and B9400-5.

Hollow heart was a major problem in 1981, especially in the Steuben County trial. Entries with greater than 12% hollow heart include Atlantic, Belchip, Chipbelle, Denali, Jemseg, Lemhi Russet, Monona, Norchip, Rosa, Russet Burbank, Shepody, Trent, AF186-5, B7151-4, BR7093-23 and T5-10.

In the replicated fertilizer trial with Rosa (Table 11), total yield was significantly higher at 200 lbs/A N than with 50, 100 or 150 lbs/A N, but no significant difference in US #1 yield was found between 150 and 200 lb/A N. The replicated fertilizer experiment (Table 12) comparing Chipbelle and AF186-5, displayed no significant difference in yield, tuber number or mean tuber weight between varieties. Specific gravity was significantly higher in Chipbelle and hollow heart was a major problem for both. Yields were significantly higher in response to nitrogen fertilization up to 150 lbs/A and then leveled off. An experiment with BelRus (Table 13) with between and within row spacing and two nitrogen rate treatments showed that yield of US #1's is significantly greater in a two row arrangement with 36" between rows than a three row arrangement with 18" between rows. No significant difference in yield due to spacing within the row of 9" versus 12" or nitrogen rate of 150 lbs/A versus 200 lbs/A was found.

Storage results for 1980 (Tables 14-15) indicate that clones with the best potato chip potential are Atlantic, Monona, Rosa, Chipbelle, B7151-4, B8771-6, B8783-6, B8798-20, B8799-8, B8887-1, B9097-5, C7232-4, ND9403-16R, Q155-3 and S376-2. After-cooking darkening of an objectionable level was found in Norland, B7583-6 (Russette), B8934-4, B9020-18 and ND146-4R. Clones that lost more than 12% of total weight due to the combination of sprout weight and general shrinkage are Belchip, BelRus, Dakchip, Norchip, Norland, Rideau, Rosa, AF186-5, B8922-10, B9016-20, B9019-14, B9020-18 and ND146-4R.

Acknowledgements

Special thanks go to the grower-cooperators who provided time, land and equipment to conduct some of these experiments and to our typist, Kaye Borden. Seed was provided by Robert Plaisted, Cornell University; Raymon Webb, USDA; Hugh Murphy, NE107 in Maine; Sam Squire, Ontario, Canada; and Curtis Dearborn, USDA in Alaska.

Upstate New York Table 1. Tuber characteristics of clones in replicated trials, 1981.

Clone	Color	Texture	Shape	Depth	Clone	Color	Texture	Shape	Depth
Atlantic	Bu	SN	R	ŠF	B9335-7	Bu	SN	R	MT
Belchip	W-Bu	SN	R	SF-F	B9335-17	W	S	R-0	MT
Be1Rus	DB	HR	0	SF	B9335-34	W	SN	0-R	MT
Chipbelle	Bu	SN	0	F	B9335-35	Bu	SN	R	SF
Denali	W	SN	R	SF	B9335-60	W-Bu	RS	0-R	SF
Highlat Rus.	В	LR	0	SF	B9336-27	W-Bu	SN	L-0	F-SF
Jemseg	Bu	SN	R-0	MT	B9340-3	W	SN	R	MT
Hudson	W	SN	R-0	SF	B9340-7	Bu	SN	R	MT
Katahdin	W	SN	R-0	SF	B9340-13	W-Bu	RS	0-R	SF
Kennebec	W	S		F-SF	B9384-4	Bu	SN	R-0	MT
Lemhi	В	MR	ő	SF	B9384-6	Bu	SN	R	MT
Michibonne	W	SN	R	SF	B9391-2	В	M-HR	Ô	SF
Michimac	W	SN		F-SF	B9395-3	В	MR	ŏ	SF
Monona	W	SN	R	SF	B9395-7	В	MR	Ŏ	
Norchip	W	S-SN	R	SF	B9399-23	Bu	LR	Õ	F F
Peconic	W	SN	R	F	B9400-5	В	M-HR	Ö	SF
Rosa	W-PK	S	R	SF	B9473-2	W-Bu	RS	Ř	SF
Rus.Burbank	В	MR	Ô	F	BR5991-WV16	W	SN	R	SF
Shepody	W	SN	Ĺ	F	BR7093-23	W	S	R-0	SF
Simcoe	W	SN	Ŕ	SF	C7232-4	W-Bu	Š	0-R	MT
Superior	Bu	SN	R-0	MT	C7348-14A	Bu	SN	0	MT
Trent	В	SN	R-0	SF	CC26-1A	Bu	SN	Ö	MT
Wauseon	W	SN	R	SF	CF7523-1	W	S	R	MT
AF92-3	W	SN	0	SF	F69026	P	S	0	SF
AF186-5	Bu	SN	R-0	SF	NY59	W-Bu	SN	R	MT
AF238-66	W	S	0-L	SF	NY63	W-Bu	SN	R	MT
B6043-WV6	Bu	SN	0-1	SF	NY67	W-Du W	S	R	SF
	Bu Bu	SN		F-SF	NY68	W	S	R-0	MT
B7151-4	W	S	0-L				SN		SF
B7592-1				SF	\$376-2	Bu		R	MT
B7805-1	W	RS	R-0	MT	\$377-8	Bu	SN	R O	MT
B8086-3	W	SN	R	Ţ	S377-41	Bu	SN		SF
B8491-1	Bu	SN	0	SF	T4-20	Bu	SN	R	
B8514-8	W	SN	0-R	SF	T5-10	Bu	RS	R	MT
B8710-1	W	RS	0-L	SF	T5-24	Bu	SN	R	MT
B8771-6	W	SN		F-SF	T11-29	W	RS	R	MT
B8798-20	W	SN	R	MT	T20-5	Bu	SN	R	MT
B8799-8	BW	S	R	MT	T30-36	Bu	SN	R	SF
B8799-13	W-Bu	SN	0-R	SF	T30-47	Bu	SN	R-0	MT
B8887-1	Bu	SN	R	MT	T30-71	W	S	R	MT
B9020-18	В	HR	0	F	T37-29	W	S	R	MT
B9062-5	W	S	R-0	MT	T53-26	Bu	SN	R	MT
B9097-5	В	SN	R-0	MT	T88-6	W-Bu	RS	R	MT
B9285-3	Bu	SN	R	SF	T272-32	W	S	R-0	SF
B9286-1	W	S	0-R	F	T275-100	W	S	R	MT
B9332-1	Bu	SN	R	SF	. BW = bright				

Abbreviations: Color - B = brown, Bu = buff, BW = bright white, DB = dark brown, P = purple, PK = pink, W = white

Texture - H = heavy russet, MR = medium russet, LR = light russet, RS = relatively smooth, SN = slight net, S = smooth

Shape - 0 = oblong, L = long, R = round

Depth - F = flat, MT = medium thick, R = round, SF = slightly flattened

1981.
York.
New
Freeville,
/ White,
Early
_
Trial
Variety
Table 2.
York
New
Upstate

1/1	Yield (cwt/	(cwt/A)	dns %		% of	f Total Yield	Yield		Č				
Clone	Total	US #1	Yield 12-4	12-21	US No. 2½-3½	34-4	¥	Defects 2/	$MTW = \frac{3}{4}$	Spec $\frac{4}{6}$	/ HH 5/	, App <u>6</u> ,	$\frac{6}{6}$ Mat
CF7523-1		459	145	15	52	28	_ c	~	1	79	-	1	7
NY68	453	415	131	17	63	12	0	9	5.7	77	o	7.0	. 4 . 7
CC26-1A		372	118	15	27	20	2	2		86	· က		ω, κ
C7358-14A		330	104	14	54	21	2	9	•	9/	0		1.5
B/805-1		319	101	6	41	38	_	7		75	~		4.3
Superior	333	318	100	17	99	12	0	2	•	77	0		2.3
88887-1	366	317	100	20	49	18	_	∞		85	_		3,3
Jemseg	372	309	86	9	42	35	က	13(6C)	_	73	7		3.3
B9097-5	341	307	97	12	59	19	0	•	_	77	_	_	.5
C7232-4	321	303	95	13	28	24	0	က	5.9	78	_	6.8	2.5
Trent	275	259	85	18	65	12	0	က		93	13		8.9
Waller- Duncan _(.05)	(59)	(63)							(0.7)	(3)			
0ther 8/ B9062-5	328	283	89	10			0	12(6C)	6.5	78	0	6.7	3.0

Planted May 7, vines mowed August 19, harvested August 26, between row spacing 34", within row spacing 9.9", 1000 lbs/A of 15-15-15 applied in bands at time of planting. Defects = Total of all defects. Defects >7% in parenthesis with the major defects listed first.

Abbreviations: S = sunburn, M = misshapen, GC = growth cracks.

MTW = Mean tuber weight in ounces.

Spec Grav = Specific gravity determined by hydrometer with 1.0 omitted.

HH = Number of tubers with hollow heart and/or brown center of 40 tubers cut (10 per replication). 21412191218

App = Appearance rating based on a scale of 1 to 9; 1 = extremely rough unattractive, 9 = smooth attractive. Vine maturity rated on a scale of 1 to 9, 1 = completely dead, 9 = green and vigorous. Rated September 19. Not included in analysis of variance. Thirty tubers examined for hollow heart and/or brown center.

Yield (cwt/A	Yield	Yield (cwt/A)	% Kat		% of	f Total	Yield				. .		
Clone-/		L# Sn	Yield		US No.	-			MTW3/	$Spec \frac{4}{2}$	` _	ì	Vine"/
	Total	18-4	1 2 - 4	$1\frac{7}{8} - 2\frac{1}{2}$	24-34	34-4	× 4	Defects 4	(oz)	Grav	\ <u>2</u> HH	App ⁵ ∕	Mat
137-29	553	481	109	12	42	33	က	7		9/	-	•	
120-5	220	472	107		38	39	m	6	•	73	0		•
Katahdin	206	440	100	=	48	59	2	ω	•	82	က	•	
Rosa	477	422	96	20	20	38	_	2	5.5	84	0	7.0	6.5
T30-47	476	407	93	Ξ	51	23	2	6	•	11	0	•	•
188-6	457	403	92	19	51	19	_	9	•	75	0	•	•
T11-29	449	395	90	18	46	24	_	9	•	82	0		•
T30-71	461	386	88	16	42	56	က	10(6C)	•	73	0		•
1272-32	420	383	87	21	47	23	_	'm	9.6	77		7.5	5.0
T30-36	431	382	87	17	47	52	_	7	•	74	0	•	•
1275-100	425	364	83	21	52	12	_	10	•	83	0		
15-24	411	364	83	Ξ	44	34	2	9	6.3	89	0	7.3	2.5
15-10	387	320	73	7	50	45	17	10(S)	•	79	9	•	•
T53-26	372	304	69	19	38	52	2	φ	•	98	0	•	
Waller- Duncan(.05)	(65)	(28)							(1.0)				
$0 t her^{8/}$	 	 	 	 	 	 	 	 	 	 	 	 	
T4-20	383	334	92	14	34	39	7	4	6.4	80	0	7.8	4.7
, ,													

¹/Planted May 8, vines sprayed with 1.6 lbs/A ametryn September 1 and 2.5 lbs/A dinoseb September 10, harvested September 14, within row spacing 9.8". See footnote 1, Table 2.

 $\frac{2}{-6}$ See appropriate footnotes, Table 2.

 $\frac{7}{4}$ Vines rated August 27. See footnote 7, Table 2.

8/See footnote 8, Table 2.

te Nev	York	Upstate New York Table 4.	Variety Trial	3.	Freeville,	New York, 1981	k, 198						
	Yield	Yield (cwt/A)	% Kat		% of	Total	Yield		3/	4			7/
	Total	1 2 4 1 8 - 4	$1\frac{7}{8}-4$	18-21	2½-3½	34-4	>4	Defects $\frac{2}{2}$	(oz)	Spec-	HH ² /	$App \frac{6}{2}$	6/Vine
	200	457	113	12	5.7	22		7	1	00		1	l l
BR7093-23	498	453	112	10	000	32	٥ د	۷ -	•	70	۰ د	•	•
	471	426	107	0 0	י ער	ار 1	٥ د	ט ע	•	000	ი ი	•	•
Atlantic	467	419	104	2	20	22	1 C) «		8 2	റ ഗ	•	•
Katahdin	451	410	100	14	20	27	, ,	9	•	\$ 6	· ~	•	•
	457	408	100	10	46	33	2	4	6.8	83	0	7.0	8.0
	432	405	66	16	59	19	0	22	•	8	6		•
	437	400	86	12	54	56	_	9	•	8	· (*)		•
	442	399	86	14	48	29	_	9		£ &) (•
	434	397	97	13	54	23	_	7		25	- 0		•
	437	380	94	17	48	22	4		•		· ~	•	•
	411	369	91	18	51	20	_	7	5.7	85	4	6.8	5.3
AF238-66	411	364	91	28	51	6	0	ve		75	~		
	429	358	88	14	53	17	_	13	•	76) (°	•	•
	403	351	88	19	53	9		9	• •	85) —		•
<u>e</u>	370	342	85	23	58	=	0	9		100	۰ ۳		•
	363	336	83	23	57]	0	9		83) —		•
	322	300	74	14	53	56	5	m	7.1	78	0	6.3	4.5
		,											
Uuncan(.05)	(4)	(E)							(1.5)	(7)			

1/Planted May 8, vines sprayed with 1.6 lbs/A ametryn September 1 and 2.5 lbs/A dinoseb September 10, harvested September 16, within row spacing 9.6". See footnote 1, Table 2.

 $[\]frac{1}{2}$ Vines rated August 27. See footnote 7, Table 2. $\frac{2}{3}$ /-6/See appropriate footnotes, Table 2.

Freeville, New York, 1981. Variety Trial 4. Upstate New York Table 5.

7.	Yield	Yield (cwt/A)	% Kat		16 of	Total	Yield		d	•			i
Clone <u> 1</u> /		US #1	Yield			No. 1			MTW3/	$Spec^{\frac{4}{4}}$	ì	-, (/ine_//
	Total	17-4	$1\frac{7}{8} - 4$	$1\frac{7}{6} - 2\frac{1}{2}$	21/2-34	34-4	>4	Defects <u>2</u> /	(02)	Grav	/⊊HH	App 5/ Mat	Mat
BR5991-WV16		497	120	13	49	33	0	4	6.8	79	4		
B6043-WV6	557	489		12	57	19	_	11(S)	6.5	74	~	•	
Michibonne	523	463	112	8	45	36	2	9(S)	7.7	74	ı m		
Michimac	490	447	108	13	58	21	0	8(S)	6.1	7	0		
B8086-3	486	442	107	15	53	24	_	7	5.9	11	2	7.0	2.5
Denali	470	429	104	15	57	19	2	7	6.2	91	2		
Kennebec	295	428	103	∞	45	24	_	22(S)	8.3	79	_	•	
Monona	434	414	100	14	63	18	_	, m	6.1	89	0		
Katahdin	526	414	100	7	43	58	က	24(S)	7.7	75	0		
AF92-3	453	404	86	16	62	Ξ	0	, 6	6.1	70	_	6.3	3.5
Wauseon	463	396	96	13	49	23	_	13(S)	6.2	72	0	•	
B7151-4	457	382	95	6	42	33	2	14(S)	7.7	89	9	•	
Shepody	464	380	95	15	52	15	_	16(S)	8.0	83	6	6.3	
B8799-8	326	305	74	Ξ	61	22	_	. 2	6.9	78	0		
Simcoe	311	300	73	17	29	13	0	2	5.4	84	0	•	0.9
Waller- Duncan(.05)	(64)	(69)							(0.7)	(4)			

1/Planted May 14, vines sprayed with 1.6 lbs/A ametryn September 10 and 2.5 lbs/A dinoseb September 15, harvested September 30, within row spacing 9.7". See footnote 1, Table 2.

 $\frac{2}{-6}$ See appropriate footnotes, Table 2.

 $\frac{7}{4}$ Vines rated September 8. See footnote 7, Table 2.

Freeville, New York, 1981. Variety Trial 5. Upstate New York Table 6.

, [Yield	Yield (cwt/A)	% Kat		% of	Total	Yield		7 0				1, 1
Clone_/	Total	US #1 18-4	Yield 1 ⁷ -4	$1\frac{7}{6} - 2\frac{1}{2}$	US NO.	1 3½-4	<u>^</u>	Defects <u>2</u> /	(02)	Spec 4/ Grav	HH 5/	App <u>6</u> /	Vine _/ 6/ Mat
Katahdin	441	406	100	10		32	_	9	•	84	_		•
B8710-1	454	403	100	=		19	0	10		72	_		
B9340-3	443	394	26	80		40	က	7		75	0	•	•
B8798-20	404	389	96	14	51	31	0	2	6.4	84	2	7.8	5.0
B8771-6	420	377	94	10		38	4	2		80	0	•	•
B9335-34	382	361	88	∞		36	0	2	•	73	0	•	•
B8514-8	391	358	88	Ξ	53	28	_	9		85	0		•
B9340-13	405	357	88	12	49	27	0	10(S)	•	9/	0		•
B9473- 2	374	356	88	17	29	50	0	5	5.5	9	_	8.0	.3
B9336-27	373	354	88	20	89	∞	0	က	•	83	0		•
tlant	431	347	98	=	44	52	80	10	•	95	0	•	•
B9384-6	415	335	83	10	38	32	4	13(6C)	•	70	_	•	•
B9285-3	388	328	81	13	38	33	2	12		81	0	•	•
B8799-13	336	313	78	=	55	56	_	4	•	88	2	•	•
B9384-4	335	308	76	23	57	215	0,	ຕຸ	•	73	0 (•	•
B9332-00	332	280	1 / 6	0 7	7 4 7	<u>-</u> c	 c	13/61	•	ر د د	m (•	•
89335-17	321	279	69	39	38 4	01 10	00	(c) (3) 9	0.4	79 76	00	7.8	. 8. . 8.
Waller-													
Duncan (.05)	(49)	(54)	 			 	 	 	(0.8)	(3)	1		
0ther $8/$													
B9335-7	396	336	86	7,		9	0 (3(•	78		•	3.7
B9340-7 B9286-1	3 6 6 338	318 282	8 0	7 -	65 53	17	⊃	14(GC)	5.7 6.6	28 99	- 0	7.0	1.3
1 7 7 5		•		47 15 3			-	7 . 7	1			1	1 4 0

1/ Planted May 8, vines sprayed with 1.6 lb/A ametryn September 1 and 2.5 lbs/A dinoseb September 10, harvested September 15, within row spacing 9.6". See footnote 1, Table 2.

 $\frac{2}{7}$ / See appropriate footnotes, Table 2. $\frac{7}{7}$ / Vines rated August 27. See footnote 7, Table 2. $\frac{7}{8}$ / Not included in analysis of variance. Thirty tubers examined for hollow heart and/or brown center for B9286-1 and B9335-7, twenty tubers examined for B9340-7.

Upstate New York Table 7. Variety Trial 6. Russet Variety Trial, Freeville, New York, 1981.

Clone ¹ /	Yield Total	(cwt/A) US#1 4-16 oz	% R.B. Yield 4-16 oz	0-4	% of 1 US No 4-10	Total Yio 0. 1 10-16	eld >16	Defects ² /	MTW ³ / (oz)	Spec4 Grav	/ HH <u>5</u> /	App <u>6</u> /	,Vine ^{7/} Mat
Lemhi B9400-5 B9391-2 B9395-7 B9395-25	362 357 349 331 302	279 278 267 266 221	140 140 133 134 112	14 12 17 9 18	64 51 51 53 57	14 28 25 28 17	2 7 4 4 2	7 2 4 7 7	5.5 7.1 5.9 6.4 5.4	93 72 75 69 76	9 1 5 0	7.5 6.8 6.8 6.5 7.3	5.0 4.8 2.8 2.0 2.0
BelRus B9395-3 B9020-18 R.Burbank Highlat R.	296 329 319 348 254	215 212 210 203 147	109 106 110 100 74	25 25 16 24 24	65 54 46 47 46	9 10 20 12 11	1 2 6 1 2	2 9 13(GC) 17(M) 16(GC)	4.5 5.1 5.8 5.2 4.5	81 71 66 87 68	0 1 0 4 2	8.0 7.3 5.8 5.5 6.5	2.3 2.3 2.0 7.0 1.8
Waller- Duncan(.05)	(55)	(47)							(1)	(3)			
Other ⁸ / B9399-23	333	242	119	21	53	17	2	3	5.9	74	3	7.3	2.5

^{1/}Planted May 7, vines sprayed with 1.6 lbs/A ametryn September 1 and 2.5 lbs/A dinoseb September 10, harvested September 14, within row spacing 9.8". See footnote 1, Table 2.

Upstate New York Table 8. Wayne County Russet Variety Trial, Savannah, New York, 1981.

Clone ¹ /	<u>Yield</u> Total	(cwt/A) US #1 4-16 oz	0-4	% of Total US No. 1 ounces 4-16	>16	Defects ² /	Spec <mark>4/</mark> Grav	нн <u>5</u> /
BelRus R. Burbank Lemhi R. Waller- Duncan(.05)	286 379 353 (72)	282 242 214 (ns)	15 9 9	75 65 80	8 17 8	2 10(M) 3	68 73 76 (ns)	0 14 23

^{1/}Planted May 4, 1981, harvested September 25, 1981, 1200 1b/A of 15-15-15 applied in bands at time of planting, vines sprayed with dinoseb in early September.
2/, 4/, 5/See appropriate footnotes, Table 2.

^{2/-6/}, 8/See appropriate footnotes, Table 2.

Yvines rated August 27. See footnote 7, Table 2.

Upstate New York Table 9. Steuben County White Variety Trial, Cohocton, New York, 1981.

Clone 1/	Yield (cwt/A) US#1	% Kenn Yield		% of Tot US No.	al Yie			
Clone	Total	17-4	17-4	<17	17-4	>4	Defects 2/	нн <u>5</u> /	
BR7093-23	382	340	121	9	89	1	1	8	
Belchip	394	340	121	7	86	2	5	13	
Chipbelle	379	338	120	9	89	0	l 2	9	
F69026	380	335 3 3 2	119 118	8 1 7	89 81	0	3 2	2	
Norchip AF186-5	411 371	3 3 2 3 2 7	116	10	88	1	1	9 2 8 6	
AI 100-3	3/1	327	110	10	00	'	•	U	
Monona	3 82	326	116	15	85	0	0	13	
Atlantic	366	318	113	11	87	0	0 2 0	11	
Rosa	378	29 8	106	18	79	4	0	10	
Denali	352	296	105	10	84	1	5	11	
Kennebec	360	281	100	6	79	2	14(GC)	3 0	
C7232-4	293	261	93	9	89	0	2	0	
Waller- Duncan(.05)	(ns)	(ns)							
0ther 3/						-			
Simcoe	350	316	113	9	90	0	1	4	

 $[\]frac{1}{2}$ Planted May 19, harvested November 2, within row spacing 9", between row spacing 36".

Upstate New York Table 10. Wayne County White Variety Trial, Savannah, New York, 1981.

1/	Yield		% Kat			al Yield		Δ/	
Clone ¹ /	Total	US #1 12-4	Yield 17-4	<17	US No. 1 18-4	>4	Defects2/	Spec ⁴ / Grav	HH 5/
Belchip*	492	425	109	6	86	1	7	78	5
Wauseon*	466	391	101	8	83	3	5	67	i
Katahdin	498	389	100	8 3 5 11	79	7	11	6 6	5
Monona	427	386	99	5	90	2	2 7	64	1
Peconic*	457	373	96	11	81	1	7	82	Ó
Norchip*	438	369	95	12	84	0	4	74	1
Rosa*	429	366	94	12	85	Ō	4 3 6 3 9	74	4
Denali*	407	359	92	4	88	2	6	88	7
Atlantic	382	341	88	7	89	1	3	79	1
Chipbelle'	* 399	330	85	9	83	0	9	86	13
Hudson	374	315	81	6	83	2	10	64	0
Jemseg	347	294	76	5	85	2	7	64	0
C7232-4	310	274	70	10	8 8	1	1	6 8	0
Waller- Duncan(.09	(102) 5)	(ns)						(2)	

^{*}Not included in analysis of variance. Values are the average of 3 replications (part of the 4th replication was under water). Thirty tubers cut for hollow heart evaluation.

^{2/}, 5/See appropriate footnotes, Table 2.

 $[\]frac{3}{N}$ Not included in analysis of variance. Thirty tubers examined for hollow heart and/or brown center.

^{1/} Planted May 4, 1981 /ines sprayed with dinoseb in early September, harvested September 25, 1200 lb/A of 15-15-15 applied in bands at time of planting, within row spacing 9", between row spacing 36"

^{2/}, 4/, 5/ See appropriate footnotes, Table 2.

Upstate New York Table 11. Effect of nitrogen rate on yield and quality of Rosa, Freeville, New York, 1981.

N rate ¹ /(1b/A)	Tuber No. per ft.	Yield Total	(cwt/A) US#1 12-4	1-1-1-7		of Total No. 1 2½-3‡	Yield 31-4	>4	Defects ²	, MTW ³ / (oz)	Spec <u>4/</u> Grav	нн <u>5</u> /	Vine ⁷ / Mat
50 100 150 200 Duncan (.0	7.5 8.3 8.4 8.8	329 a 372 ab 405 b 432 c	299 a 342 a 358 ab 386 b	4 3 3 2	30 27 24 24	58 57 57 57	3 8 7 8	0 0 0	5 6 9(S) 9(S)	4.6 a 4.7 a 5.1 b 5.2 b	79 78 77 75 ns	22 18 15 14	2.0 3.7 4.3 6.8

Upstate New York Table 12. Effect of nitrogen rate on yield and quality of Chipbelle and AF186-5, Freeville, New York, 1981.

Clone 1/	Tuber	Yield (cwt/A)		% (of Total	Yield			3/	_ 4/		7/
N rate (1b/A)	No. per ft.	Total	US#1 17-4	11/2-17	1 ₈ -2 ₂	No. 1 $2\frac{1}{2} - 3\frac{1}{4}$	31-4	>4	Defects2/	MTW ^{3/} (oz)	Spec <u>4/</u> Grav	нн ⁵ /	Vine ⁷ / Mat
Chipbelle 50	5.4	286	24 8	6	26	48	13	0	8	5.6	89	30	2.5
100 150 200	5.5 6.0 6.2	292 333 356	246 283 306	4 5 3	26 20 19	50 52 55	9 13 12	1 1 0	11(S) 10(S) 11(S)	5.6 5.9 6.0	92 91 94	22 21 27	3.3 4.0 5.5
AF186-5 50 100 150 200	4.7 6.1 6.1 6.6	240 308 343 351	222 293 322 318	4 3 2 3	20 24 17 18	64 61 62 59	8 11 16 13	0 0 1 1	4 2 4 6	5.3 5.3 5.9 5.5	77 78 78 77	15 9 13 16	1.3 2.3 3.8 4.8
Significan N rate x clone			** = 1% ns	ns	ns	ns	ns	ns	ns	ns	ns		
Clone	ns	ns	ns	*	ns	**	ns	ns	**	ns	**		
N rate me- 50 100 150 200	5.1 5.8 6.0 6.4	263 300 338 353	235 270 303 312	5 3 3 3	23 25 18 18	56 56 57 57	11 10 14 13	0 0 1 0	6 7 7 8	5.4 5.4 5.9 5.8	83 85 84 87	23 15 17 22	1.9 2.8 3.9 5.1
Waller- Duncan(.0	(1.6) 5)	(22)	(28)	ns	(4)	ns	ns	ns	ns	ns	ns		

Planted May 15, vines sprayed with 1.6 lb/A ametryn September 10 and 2.5 lb/A dinoseb September 15, harvested September 28, within row spacing 10" for Rosa, 8" for Chipbelle and AF186-5, fertilizer banded at time of planting. Experimental design for Rosa a randomized complete block, for Chipbelle and AF186-5 a split plot where N rate is the main effect and variety the subplot.

a split plot where N rate is the main effect and variety the subplot.
2/-4/ See appropriate footnotes, Table 2.
5/ Total number of tubers with hollow heart and/or brown center of 40 tubers cut for all except Rosa 100 lb/A which had 30 tubers cut.

7/ Vines rated on September 8. See footnote 7, Table 2.

By Duncan's multiple range test. Numbers with the same letter are not significantly different from each other.

Upstate New York Table 13. Effect of row arrangement, spacing and nitrogen rate on yield and quality of BelRus, Freeville, New York, 1981.

Row arrange-1/ment, spacing,	Tuber	No.	Yield	(cwt/A) US #1		% of US N	Total \	/ield		- _{MTI4} 3/	Spec <u>4</u> /	_	Vine ^{7/}
N rate (1b/A)	ft	plot	Total	4-16 oz	0-4	4-10	10-16	>16	Defects ²	- MTW ^{3/} 2/(oz)	Grav	HH <u>5</u> /	Mat
2 Row 9" 150 9" 200 12" 150 12" 200	7.4 6.5 5.7 6.1	230 221 192 207	274 275 262 267	192 198 193 185	25 25 19 25	57 61 62 58	13 10 12 11	2 1 2 1	4 3 6 6	4.5 4.7 5.1 5.0	71 67 71 70	5 4 6 3	2.8 3.3 2.8 2.8
3 Row 9" 150 9" 200 12" 150 12" 200	5.2 4.8 5.1 4.9	256 246 259 250	249 253 273 275	141 150 180 174	42 40 32 25	55 56 60 57	1 3 5 6	0 0 0 0	2 1 2 3	3.7 3.8 3.9 4.1	70 70 70 69	1 2 2 1	2.0 2.8 1.8 2.8
Significance L	evel wi	thin s	ources	of varia	tion	* = 5% ,	** = 1%						
Rep Arr Sp Arr x Sp N rate Arr x N rate Sp x N rate Arr x Sp x N rate	ns * ns ns ns ns ns ns ns	ns ns ns ns ns ns ns ns	** ns ns * ns ns ns ns ns ns	* ns * ns ns ns ns ns	ns ** ** ns ns ns ns	ns ns ns ns ns ns ns	ns ns ns ns ns ns	ns ns ns ns ns ns ns	ns ns ns ns ns ns ns	ns ns * ns ns ns ns	* ns ns ns ns ns ns ns		ns ns ns ns ** ns ns ns
Rep 1 2 3 4			251 265 245 303	178 163 157 2 09							69 67 66 77		2.3 1.8 2.0 4.4
Arr 2 3	6.1 5.0			192 161 	23 37 			. – – -					
<u>Sp</u> 9 12					33 28					4.2 4.5			
Arr x Sp 2 9" 2 12" 3 9" 3 12"			275 265 251 274	195 189 145 177									
N rate 150 200													2.3 2.9
Arr x N rate 2 150 2 200 3 150 3 200 1/ Experimenta	al dosis	ID 2 CF	lit co	it plot	whoma	main nio	t is un	W 2000	ngomont	cubplo*	ic en	aing	2.8 3.0 1.9 2.8

row and sub-sub plot N rate. Planted May 26, harvested September 16. A three row planter used to open furrows and band fertilizer at 150-300-300 lbs/A prior to handplanting the seed pieces. The 200 lbs/A N achieved by sidedressing an additional 50 lbs/A N at 6" stage. Between row spacing for 3 row plots is 18" and 2 row plots 36".

2/-5/ See appropriate footnotes, Table 2.

7/ Vines rated September 8. See footnote 7, Table 2.

1	1				1 1		l I	ı		•
Color Results ² /	Wyoming Wh Russ 50 50	44			40	39				 ext page)
	Myo 50	54 54 	52 31 42	56	56	56 56 49	 		 	(Cont'd next
. Chip	Russet 50	39	 	1	45	42			42	
, New York.	Red 45-60	 	 	32			 		 	
Freeville	50	36		44 46	 		 		 	
	Trial IV 0 45-60		1			52 52 54	52		44 8 8 8 8 8 8 8 8 8	
Trials 1/	1 1		40			53 52 49	26 49 47	33	38 21	
Variety	Trial II 50		45		54 57		44	46 46 53 58	58 53	
Potato	al II 45-60	52 52 40		54 46	 	44	 		 	
1980		48 45 44	40 41 38 31	37 50 42	 	43	 		 	 -
e 14.	1 I 45-60				49		 			
k Table	Trial 50 4		39		1 23 1		 		 	
Vew Yor			ا	 				 	 	1
Upstate New York	Clone	Atlantic Belchip BelRus Chieftain Crystal	Dakchip Denali Jemseg Katahdin Michibonne	Michimac Monona Norchip Norland Rideau	Rosa – Rosa – R.Burbank Superior Trent A68678-1	AF186-5 B6987-184 B7151-4 B7583-6 B7592-1	87805-1 - 88491-1 - 88491-24 - 88514-8 - 88706-7*	88715-22 88751-6 88771-6 88783-1 88783-6	88798-20 88799-8 88832-3 88881-5 88881-5	

B8922-10 B8934-4 B8934-4 B8943-4 B8977-2 B89016-20 B9019-14 B9062-5 B9097-5 B9099-5 C7232-4 CA02-7	45 4 45 4 45	23	66 1 49 1 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 27 - 35 - 35 - 43 - 43 43 - 4	44			27		8
3-5 6-20 9-14 0-18 2-5 7-5 9-5 93-23	45	23	49 58 -	44 -27 35 35 -43	44 –		 	ഹ മ		
6-20 9-14 0-18 2-5 7-5 9-5 93-23 2-4	45 4 41	23	49 - 58 	35 35 43 -			7	<u>. </u>		
2-5 2-5 7-5 9-5 93-23 2-4	45	23	49 - 58 	43		 	 		 	
2-5 7-5 9-5 93-23 2-4	41	53	49 - 58 	- 4 <u>3</u>			т ——	33		
99-5 93-23 2-4 6 4b	45	53		-43						
93-23 2-4 -7	45	53			37	 	 	 	 	
2-4 -7 6 AB	41								51	
-7 6 10	41		59							
Z 1D										
	 	 		 -	 	49 – –	37 + - =		1	
<u>03-16</u> R	 									
27	_									
 	 		1				 - 	 	 -	
									4.2	
-3 49 58									39	
									,	
32		-11-2								
+	 - - 	 	1 1				 	 - -	 	
22										
-4] -4] 39										
.05) Tukey (10) (11	(8)	(6)	(9)	(8)	(10)	(10)) (6)) (6)	(01) (01)	(01

Upstate New York Table 14. (Continued)

1/ See 1979-1980 report for harvest results.
2/ Agtron M30 colorimeter readings. Standards for whole chips were discs 00 and 90 which were calibrated to give readings of 0 and 90 respectively. Minimum value for "generally acceptable color" for whole chips is about 45. Two slices of each of seventeen tubers per replication were fried in vegetable oil at 3650F. Variety Trial III samples were fried 9/11/80, one week after harvest. Other $50^0\mathrm{F}$ samples were stored at $50^0\mathrm{F}$ from time of harvest until fried 1/14/81. The $45-60^0\mathrm{F}$ samples were stored at $45^0\mathrm{F}$ from time of harvest until 2/18/81 when the temperature was raised to $60^0\mathrm{F}$. Samples were fried on 3/19/81.

		t		10.6	1		! !		5.4	,			4.5	 		 		!!!	7.2	. !
2/		Russet	000	3.1					0.0	•	 - - -		0.2	 				! !	1.9	; ; ; ; ;
Results	er than weight	Red 0+h		5.7			! !	7.6	 					 		 		1		
t Loss	loss other of total w	1 15	5	2.1	i !		i i	9.6	i 		 -	· · · · ·		! !		i !		<u> </u> -		
·- 1	₩.	V 0+b			1 1	9.4	 		, 			6.7	6.4	8.1	10.8		8.5	7.3	5. 8	
ing Var	> 21 \	Spr			i	1.6			 			2.5	1.0	0.9	0.5		1.5	1:1	3.0	
Darken	S We	1 0th	10.0	t r	76.0 7.7	7.9	9.0		! ! !		- 9-6			' 				 		
cooking	Sprout w	Spr	2.6	(10.3 - 2.6	2.1	3.0		 		4.8			1 		 		 		1
After-		Oth h				6.5			11.8		1			 				 		!
York,		Sor			1	2.2	 		1.7		1			 		 		1 1 1		
le, New		ng Russ		5.0	1		 		5.0	1			4.0	 		1		1		1
Freevil		Wyoming Wh Ru	4.6		T	4.9	4.8		4.6		4.5	4.3	5.0	 		 		i 		; ; ;
rials,	er	Russ		4.5	 		! ! !		4.8	-			3.2	 		 		! ! !	4.7	
riety 1	oking ing al Number	Red		4.9	1		 	3.8	 		1			 		 		 		1
otato Variety	Arter-cook darkenin Variety Trial	ΛI			1	4.3	! ! !		 			4.6 5.0	5.0	4.8	4.8	 	9	4.3	5.0	
1980 Po	Vari	111		-	1	4.9	 			5.0	1			5.0		4.8	5.0	α α	•	4.2
15.		11	4.8 5.0	0	4.8	5.0	4.8 5.0 4.4				4.5					1		 		
k Table		н			 	5.0	 		4.9							 		 		
Upstate New York Table		Clone	Atlantic Belchip	BelRus Chieftain Crystal	Dakchip — — — Denali	Jemseg Katahdin Michibonne	Michimac Monona Norchip	Norland Rideau	Rosa R.Burbank	Superior Trent	AF186-5	B6987-184 B7151-4	B7592-1	B7805-1 B8491-1	B8514-8 B8706-7	B8715-22 B8751-6	B87/1-6 B8783-1 B8783-6	<u>B8798-20</u>	B8832-3 B8881-5	<u>B8887-1</u>

(Cont'd next page)

ss Wyoming 1 11 11 11 11 11 12 14 15 14 15 14 15 16 <th< th=""><th>After-cooki darkening Variety Trial</th><th>1 2</th><th>ing g Number</th><th></th><th></th><th></th><th>prout wei</th><th>ght or weight xpressed at % Variety Trial</th><th>Sprout weight or weight loss other than sprouts expressed at % of total weight Variety Trial Number</th><th>t 2</th><th></th></th<>	After-cooki darkening Variety Trial	1 2	ing g Number				prout wei	ght or weight xpressed at % Variety Trial	Sprout weight or weight loss other than sprouts expressed at % of total weight Variety Trial Number	t 2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1 2	_	Russ	Wyoming Wh Russ			11 Oth	Sor Oth	Red	Rus	set Oth
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٦ 4		4.3							2.4 0.7 0.3	10.3 10.5 5.7 8.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.8		3.0	! ! ! !	 	 		1		 6.8 1	12.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8		 	4.7	 	0 	l	! !	 	 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			 		 	- 0		 	i	 	İ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	 	i	8.0.4					i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4.6		5. 4.c	 	 	 	 	
	(0.5) (0.5) (0.5)	<u> </u>	(1.1)	(0.9) (0.3)		 	1	1	(1.4)	(1.1)	(4.3)

Upstate New York Table 15. (Continued)

2/ Stored at 50°F from time of harvest. Data collected 3/6/81.

NEW YORK

R. L. Plaisted and H. D. Thurston

New York Breeding Program []

Crossing and Seedling Production. This year 65 crosses were made for variety selection purposes. These all segregate for resistance to the golden nematode, and several will segregate for resistance to scab, PVX, PVY, and late blight. Four hundred crosses were made in the program to develop a neotuberosum population, 39 were made to improve resistance to root knot nematodes and bacterial wilt, and several hundred produced in the glandular trichome project. We transplanted 114,000 seedlings to pots which yielded 87,368 tubers of the largest size. The single hills were planted near Lake Champlain at Willsboro, New York. Harvest was very difficult due to the 12 inches of rain that fell during the harvest season. Another 8,000 were planted at Ithaca. A total of 5,800 were selected, but many of these will be discarded at cutting time.

Early Generation Selections. The third generation, four hill plots, consisted of 5,157 clones, of which 605 were selected and are being tested for golden nematode resistance. The fourth generation had 373 clones of which 102 have been saved after the cooking and chipping trials. The fifth generation had 90 clones which were grown in yield trials at Ithaca and Riverhead in an observation trial at Freeville. Thirty-three clones survived those trials (Table 1), but three will be discarded based on the scab trial. Thirteen clones were evaluated in the sixth generation and six survived to date (Table 2).

Advanced Selections. The performance of these clones is given in Table 3. NY 59 has been a high yielding clone with excellent resistance to golden nematode, late blight, Verticillium wilt, and early blight. However, heat necrosis prevents its use on Long Island and poor chip color and lateness are limitations upstate. Farm scale trials will be conducted to evaluate the future of this clone. NY63 is a Katahdin type that is especially promising on Long Island. It has nematode and V. wilt resistance. It appears to be more susceptible to scab than Katahdin, but no worse than Chippewa. NY67 has excellent V. wilt resistance as well as nematode resistance. NY68 is an early clone with nematode resistance. All three were grown on farm demonstrations in Long Island and will be repeated in 1982. The two S377 clones are both very attractive with nematode and scab resistance. Both are subject to small tuber size.

¹ In cooperation with Anderson, Brodie, Ewing, Fry, Jones, Sieczka, and Tingey.

N.Y. Table 1. First Year Yield Trial Selections - 1981.

Avg. 2 yr.	200	1.078	1.067	1.066	1.073	1.068	1.075	1.074	1.064	1.073	1.074	1.067	1.083
Appear.	Score	ო ო ო ო	3.6	3.3	e e e	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.9	3.6	3.6	4.8	3.5	3.5	3.2
#/20 int.	necr.	0 1	e 0	0 0	0 0	0 1	0 0	0 0	0 0	0 1	5 0	0	0
#/20	nnr	0 2	00	00	00	00	00	0	1 0	00	00	00	0
% 67	7/1 7	84 70	82 70	81 48	85	81 68	75 64	74	66 61	87 73	80 42	78	65 58
t/A	7/1 7	325 188	293 207	379 143	348 157	287 205	326 208	264 124	257 166	388 295	298 95	279 167	244 172
CW CW	0// 1/			471 300						447			378 298
ς	ocan	43	53			120		19		39		80	176
N		S	æ	×	×	æ	æ	×	R	R	R	R	R
-	100c	ВН	ВВ	ВН	ВМ	ВВ	ВН	ВВ	ВВ	ВЯ	ВЯ	ВЯ	I
	orone	Katahdin	U688-1	U689-5	U694-1	U697-1	U699-1	0699–5	U699-19	U709-3	U710-2	U711-24	U713-23

Avg.	SG	1.077	1.077	1.084	1.083	1.072	1.077	1.071	1.079	1.084	1.068	1.082	1.072	1.066
Appear.	Score	3.9	3.8	3.5	4.0	4.5	4.0	3.0	3.9 3.6	2.9	4.1	3.9	3.5	3.6
#/20 int.	necr.	0	00	0 1	0	0 2	00	00	0 %	0 1	00	00	00	1 6
#/20	hht.	7	0 0	0 0	0 0	디 디	0 0	0 0	0 0	1 0	00	00	0 0	0 0
%	>2 1/2	83 68	65 48	46 50	79 73	81 75	78 68	85 76	73 55	72 57	64	81 63	51 55	85 65
νt/A	>2 1/2	368 238	237 134	133 170	320 244	310 274	271 193	343 274	291 156	294 207	278 132	305 205	190 136	325 198
5	>1 7/8	444	362 282	290 341	403	383 367	347 284	406 362	401 286	406 366	431 280	378 328	376 249	382 304
	Scab	25		77	21	24		16		26	33		37	137
	GN	ĸ	ĸ	ĸ	×	ĸ	ĸ	æ	æ	æ	æ	æ	æ	ĸ
	Loc.	ПЯ	ня	ΗЖ	пя	H &	H M	R H	R H	R H	ВН	ня	R H	R I
	Clone	U715-12	U715-52	U715-64	U715-94A	U723-8	U723-19	U723-29	U725-1	U729-15	U729-21	U741-12	U741-20	U741-27

Avg. 2 yr.	200	1.075	1.068	1.077	1.069	1.076	1.080	1,085	1.075	1.078
Appear,	Score	4.0	3.5	3.4	3.5	3.4	4.0	3.0	3.9	3.6
#/20 int.	necr.	0 2	0 0	1 0	0 0	1 0	1 0	0 0	0	0 0
#/20	nnt.	00	7	00	0 0	7 0	0 0	0 0	0 0	1 0
	\wedge i		80 76							
t/A	7/1 7<	307 173	288 221	298 243	415 177	346 172	218 180	357 268	253 209	314 218
CW	8// 1<	342 232	360 289	385 333	458 252	454 298	304 295	427 344	339 287	392 312
	Scab	22	6	7	54		42	21	24	51
Š	<u>s</u>	ĸ	러	ĸ	ĸ	ĸ	ద	ĸ	ĸ	æ
٠		В	н	П	В	Н	В	ВВ	ня	пя
Ç	Clone	U741-49	U754-9	U756-31	U756-38	U768-6	CS759-1R	CS7619-9	CS7638-22	CS7685-6

I = Ithaca
R = Riverhead Loc.:

Scab: Index of scab relative to Chippewa R = resistant GN:

Score: 1 to 5, 5 most attractive

N.Y. Table 2. Second Year Yield Trial Selections - 1981.

GN	ω	ಜ	ĸ	ĸ	ĸ	ĸ	ĸ
LB	4.8	7.0	5.0		6.5	5,8	4.0
Scab	43	63	70		ĸ	69	10
WW	3.4	4.0	4.2		5.4	4.0	2,6
SG	1.077	1.073	1,080	1.065	1.072	1,071	1,080
int.	2/50 6/60 0/20	5/50 0/30 1/30	0/50 0/30 0/30	0/20 6/30 0/30	0/50 3/30 0/30	4/50 8/30 0/30	0/50 4/30 1/30
hht.	8/50 0/60 3/30	4/50 0/30 2/30	1/50 1/30 1/30	1/50 0/30 3/30	0/50 0/30 1/30	1/50 0/50 3/30	1/50 0/30 1/30
Score	3.25 3.5 3.8 3.1	3.5 3.4 3.3	3.6 3.9 3.4	3.7 3.3	3.6 3.7 3.3	3.9 4.2 4.5 3.8	3.6 3.9 3.2
>2 1/2	81 70 85 57	84 49 89 68	82 57 83 55	82 53 82	80 51 72 51	74 50 85 46	82 64 88 42
>2 1/2	343 223 282 96	293 91 290 136	366 183 306 145	376 164 356	364 180 236 129	342 177 402 136	355 156 376 86
>1 7/8	422 317 331 168	349 187 325 200	445 318 370 266	458 309 420	453 350 324 253	461 357 476 295	430 243 429 203
Total	446 345 194	359 208 214	455 350 293	472 342	468 385 290	478 397 346	436 275 237
Loc.	I. R. C EH	I R C EH	I R C EH	I C	I R C EH	I R C EH	I R EH
Clone	Katahdin	T4-20	T11-29	T20-5	T30-36	Т37-29	T53-26

Table 2 (cont.)

GN	œ	S
LB	5.8	
Scab		
MM	5, 8	
SG	1.072	
int. necr.	0/50 0/30 0/30	3/30
hht,	0/50 0/30 0/30	1/30
Score	3.8 4.0 4.6 3.2	3.0
>2 1/2	70 57 78 45	61 48
>2 1/2	314 188 212 121	181 123
>1 7/8	449 332 270 266	295 247
Total	468 365 306	318 267
Loc.	I R C EH	R EH
Clone	T88-6	Superior

Loc.:

I = Ithaca
R = Riverhead
C = Cato
EH = Early harvest, 87 days to vine kill

Verticillium wilt. 7 = most susceptible WW:

Scab: Index relative to Chippewa

Late blight. 8 most susceptible

LB:

Golden nematode. R is resistant GN:

N.Y. Table 3. Advanced Selections - 1981

GN	ω	œ	ω	ω	ω	œ	œ
LB	4.8	3.8				3.0	4.5
Scab	43			6		39	97
MA	3.4	2.6			3.4	2.2	2.2
SG	1.077	1.077	1.073	1.075	1.078	1.081	1.071
int.	4/150 5/120 0/30	1/90 4/60 0/30	5/100	1/90	06/0	0/130	1/120 4/60 0/30
hht.	26/150 0/120 3/30	2/90 0/60 3/30	13/100	1/90 3/60	2/90	3/130	14/120 0/60 1/30
Score	6.4 7.0 7.6 6.2	7.4 7.9 7.5 7.0	3.8	5.8	5.2	6.5	7.4 7.8 8.3 6.8
>2 1/2	82 65 85 57	60 37 74 39	80 88 28	78 48 48	72	84 86 58	84 62 86 62
>2 1/2	329 183 282 96	234 80 320 89	296 292 112	277 135 123	264	311 323 110	323 170 293 147
cwt/A >1 7/8	401 278 331 168	391 219 434 230	368 327 194	357 280 247	368	371 378 190	386 274 342 235
Tota1	415 306 194	418 361 275	378	376 308 267	387	387	395 299 254
Loc.	I R C EH	I R C EH	I R C EH	I R C EH	RH	I R C EH	I R C EH
Clone	Katahdin	Rosa	Monona	Superior	Norchip	NY 59	NY63

Table 3 (cont.)

GN	×	×	æ	×
LB	5.5	5.8	5.5	8.
Scab		53	23	4
VW	1.2	5.8	5.0	3.6
SC	1.078	1.073	1.063	1.075
int. necr.	0/100 0/60 0/30	4/80 0/60 1/30	0/100 0/60 1/30	0/110 1/60 0/30
hht.	1/100 0/60 0/30	08/0	3/100 0/60 3/30	14/110 0/60 2/30
Score	7.3 7.8 7.3 6.0	6.7 6.8 6.8 6.2	8.5 9.5 7.8	6 8 8 8
% > 2 1/2	73 57 83 41	76 44 76 65	76 39 75 45	68 29 75 41
>2 1/2	243 127 264 65	287 109 212 153	298 104 287 104	275 70 250 81
cwt/A >1 7/8	335 221 315 160	377 249 276 235	394 266 381 231	405 240 332 197
Total	351 257 189	388 281 254	412 301 260	419 285 237
Loc.	I R C EH	I R C EH	I R C EH	I R C EH
Clone	NY67	NY68	8377-8	S377-41

Loc.: I = Ithaca
R = Riverhead
C = Cato
EH = Early harvest, 87 days to vine kill

Verticillium wilt. 7 = most susceptible VW:

Scab: Index relative to Chippewa

Late blight. 8 most susceptible LB:

Golden nematode. R is resistant GN:

NORTH CAROLINA

F. L. Haynes

246 Breeding Program (1)

The objectives of the program are early maturity, scab resistance, processing quality and adaptation to the Tidewater area. This includes adaptation to the peculiar environmental stresses encountered in planting around March 1st in cold, wet soils and harvesting during June under high soil and air temperatures. Processing quality is essential since less than 20 percent of the crop enters the market for consumption as table stock.

Eastern Trials. Three locations in the early commercial area were planted to performance trials of selected clones. The results are presented in N.C. Tables 1, 2, and 3. Pungo continued to produce superior yields but was again susceptible to heat sprouting at all locations. Atlantic and Belchip produce acceptable yields and are more dependable as chipping varieties than Pungo. Atlantic suffered from internal browning (heat necrosis) to varying degrees at all locations. No breeding lines were consistently superior to these varieties in 1981.

Seedling Production and Clonal Maintenance. Clonal maintenance and increase from tuber-indexed seed tubers was conducted at the Waynesville Station, in the mountains. The summer hybridization program was conducted at the same station.

Adaptation and Diploid Breeding

The diploid breeding and adaptation project was continued. The interbreeding PHU-STN base population and the various sub-populations were advanced.

Heat Tolerance - Selected superior clones from field evaluations (described in the 1980 Report) for heat tolerance were planted in isolation in a design to promote random mating. This population produced 40 seed families (based on maternal parents) which will be screened for increase in tolerance to high temperatures. The parent clones will also be re-evaluated.

<u>High Tuber Dry Matter.</u> To provide a population for fourth cycle recurrent selection for high specific gravity, 165 selected third-cycle clones were planted in an isolated crossing block. Included were clones which had both high specific gravity and stability for high specific gravity under high temperatures. The planting was designed to promote random mating. The 165 families (based on maternal parents) will be screened for high dry matter and improved tuber production.

A planting was grown of 6000 seedlings (100 seedlings x 60 families) from seed produced in 1980 in a seed nursery similar to that just described. The 60 parent clones had been selected for high specific gravity. From this planting, 149 segregates were selected on the basis of superiority of tuber type and yield. Tuber yield ranged from 0.9 to 2.1 pounds per plant.

Specific gravity was determined for the selected clones. The results were:

Specific	gravity	of	1.100	or greater	56	clones
11	II	Ш	1.095	- 1.099	27	II
11	11	Ш	1.094	or less	66	П

From preliminary examination, it appears that yield, tuber type and specific gravity were advanced, although the greatest gain was in yield.

Early Blight Resistance - In 1980 a program of evaluation for early blight resistance was initiated. A population of 4,000 diploid seedlings from the base population was inoculated and evaluated for resistance to early blight (Alternaria solani). Resistance was identified and the selected plants were grown in a replicated trial in 1981 for more critical evaluation. In addition, a study was initiated to estimate heritability of the resistance. Thirty crosses of 60 segregates each (1800 plants) were inoculated and evaluated for disease reaction. Preliminary data and analysis indicate high heritability coefficient estimates. From both the parental clone planting and the seedling families, high levels of resistance were identified.

4X - 2X Crosses. The program of hybridization between commercial tetraploids and selected diploids was greatly expanded. Hybrids were made between tetraploids and heat tolerant, high specific gravity, and early blight resistant diploid clones. These will be evaluated in 1982. A small number of 4X - 2X progenies from 1980 crosses are being field tested in an eastern performance trial in 1982.

North Carolina Table 1. Potato performance trial in Tyrrell County. Plots were 1 row, 24 ft. long, 4 replications of 32 entries in RCB, 32 hills/plot. Spacing in row, 9 inches. Width row, 40 inches. Fertilized: 1000 lbs./A. 15-10-10 banded. Planted 3/4/81, harvested 6/26/81 (112 days).

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip ^{1/} Color	Appear ² / ance	Maturity
Pungo	319	91.3	1.076	4.0	7.2	Midseason
73C26-5	316	93.7	58	7.0	6.7	Med. late
Belchip	310	91.8	66	3.5	7.2	Midseason
73C26-4	310	97.3	50	6.0	8.0	Med. late
B8706-7	309	95.7	66	5.0	8.0	Med. early
B9336-N3	308	89.8	67	5.5	8.5	Med. early
B9130-24	301	88.1	67	5.5	8.0	Midseason
B9455-N9	296	92.4	62	5.5	7.7	Midseason
Superior	293	95.8	66 68	4.0 5.0	8.0 8.0	Med. early
Norchip Atlantic	281 280	90.8 91.3	71	5.0	8.0	Med. early Midseason
B9336-N10	279	92.2	63	5.5	7.7	Med. early
72C75-3	279	84.0	81	5.5	7.7	Midseason
B9455-N18	273	89.2	69	5.5	8.0	Med. early
76C11-3	275	92.8	66	6.0	9.0	Early
B9336-N2	274	90.6	64	6.5	8.0	Midseason
Croatan	272	90.8	55	5.0	8.0	Med. early
73C28 - 4	268	86.2	53	6.0	7.7	Med. early
B9628-N3	264	88.4	57	3.5	8.2	Med. early
71C15-20	256	90.3	71	4.5	8.0	Midseason
73C26-1	253	91.4	50	5.5	9.0	Med. early
76C29-4	242	92.1	_	5.0	8.0	Med. early
B9336-N11	240	92.6	69	3.0	8.7	Med. early
B9455-N16	239	92.2	69	4.5	8.0	Med. early
72C75-2	238	76.1	66	5.0	8.0	Midseason
B8972-1	233	85.4	62	2.5	9.0	Early
B8686-8	231	82.0	77	4.5	7.0	Midseason
B8934-4	189	76.9	60	3.0	8.5	Med. early
B8833-6	182	83.3	71	5.5	8.0	Med. early
Belrus	154	79.7	67	2.5	9.0	Early
76C10-3	144	71.6	70	5.5	8.0	Midseason
B9455-N4	116	75.8	80	2.5	8.0	Early
L.S.D. (.05)	55	5.5			. 4	
C.V. (PCT)	15.1	4.5			3.7	

^{1/}Chip color determined by Wise Foods, Borden, Inc., Berwick, Pa. Average of 5 samples, 1 per week for 5 weeks following harvest. 1-4 acceptable with grade 1 = perfect; 5 useable but not desirable; 6-14 unacceptable with 14 = black.

5 = Fair

^{2/}Appearance

^{1 =} Very poor 7 = Good 3 = Poor 9 = Excellent

North Carolina Table 2. Potato performance trial at Weeksville. Plots were 1 row, 24 ft. long, 4 replications of 24 entries in RCB, 32 hills/plot. Spacing in row, 9 inches. Width row, 40 inches. Fertilized: 1600 lb.A. 10-10-15. Planted 3/10/81, harvested 6/25/81 (106 days).

Variety	US#1-A cwt/A	Percent US#1-A	Specific Gravity	Chip <u>1</u> / Color	Appear ² /ance	Maturity
Pungo Belchip Atlantic Croatan 72C75-2 75C2-5 72C75-3 75C5-4 76C2-2 Superior B9455-N9 73C26-5 Norchip B9455-N16 76C1-1 B9455-N18 73C26-4 B9336-N11	361 351 348 328 327 326 321 316 306 302 284 277 276 272 165 263 260 259	92.7 95.6 93.6 94.5 87.6 91.1 89.6 91.3 90.6 96.0 89.7 94.0 90.1 91.0 93.0 92.2 96.5 90.6	1.077 66 77 57 56 54 66 61 67 60 68 45 67 73 67 65 62 72	4.5 3.0 4.5 5.0 5.5 5.0 6.5 5.5 6.5 5.5 5.5 5.5 5.5	7.5 7.5 7.7 7.5 7.0 7.5 7.7 8.7 8.0 8.7 8.2 7.0 7.5 7.2 8.2 7.7	Midseason Midseason Midseason Midseason Midseason Midseason Midseason Med. early Midseason Med. early Med. early Med. late Med. early Midseason Med. early
73C26-1 76C4-2 B8686-8 71C15-20 B8934-4 Belrus L.S.D. (.05)	249 223 195 187 184 118	92.7 80.2 82.7 88.8 82.2 81.4	68 64 71 79 62 71	5.0 5.0 6.0 4.0 3.0 4.0	8.7 8.7 7.0 8.0 8.2 8.0	Med. early Med. early Midseason Midseason Med. early Med. early
C.V. (PCT)	10.0	2.8			5.8	

 $[\]underline{1}/$ and $\underline{2}/$ See footnotes, N. C. Table 1.

(112 days).

North Carolina Table 3. Potato performance trial at Tidewater Research Station, Plymouth. Breeding clone trial. Plots were 1 row, 30 ft. long, 36 replicated entries, 48 augmented entries (12 per rep), 4 replications in RCB W/aug. ent. design. 36 hills per plot. Spacing in row, 10 inches. Width row, 38 inches. Fertilized: Total/A. 100 lbs. N, 200 lbs. P205, 200 lbs. K20 banded. 30 lbs./A. N. applied midseason. Planted 3/9/81, harvested 6/30/81

Variety	Total cwt/A	Percent US#1-A	Appear ^{2/} ance	Maturity
	R	eplicated entrie	S	
72C75-3 73C28-4 73C26-1 Pungo Atlantic Belchip 76C33-1 B9484-N1 Norchip Croatan Superior 73C26-4 B9648-N1 77C15-2 B9336-N11 B6987-184 73C26-5 CS2175 B8755-N7 CS2115 76C33-4 CS2106 72C75-2 CS2114 76C4-5 B9655-N1 B8706-N2 Belrus CS2189 71C4-5 CS2118 76C42-1 71C15-20	280 229 227 226 222 212 209 206 201 196 186 180 179 177 175 169 164 157 154 151 149 147 144 141 137 132 129 119 117	76.4 82.7 90.0 86.4 86.1 88.1 83.1 82.7 86.4 78.8 88.6 91.7 89.7 85.1 86.1 77.8 86.5 66.1 70.2 77.9 79.5 87.2 55.9 78.6 77.3 71.5 60.6 67.2 78.8 86.1 86.3 67.9	7.2 7.0 7.7 7.2 8.0 7.7 7.2 7.0 7.2 7.0 7.2 8.0 7.2 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.2 8.0 8.2 8.0 8.2	Midseason Midseason Med. early Midseason Midseason Midseason Med. early Midseason Med. early Midseason Med. early Midseason Midseason Midseason Midseason Med. early Med. early Med. early Med. early Med. early Midseason Early Midseason Midseason Early Midseason

North Carolina Table 3 continued.

	Augmented entri	es - Rep I - adj	usted yields	
R. Pontiac CS2190 77C15-1 CS2066 76C18-6 CS2197 76C29-4 76C18-1 B9616-N2 B9627-N1 76C13-6 76C29-2	274 236 231 223 197 194 178 155 153 148 147	96.2 90.4 77.3 88.9 69.1 93.3 65.0 74.7 80.3 77.4 92.7 60.3	7.0 9.0 8.0 8.0 7.0 8.0 7.0 8.0 8.0 8.0	Midseason Early Midseason Midseason Midseason Midseason Midseason Early Med. early Midseason Midseason
	Augmented entri	es - Rep II - ad;	justed yields	5
76C29-4 76C18-4 76C18-5 CS1978 76C33-2 77C25-1 76C21-2 B9336-N2 B9622-N5 77C14-1 77C8-1 B9336-N14	246 245 232 200 185 170 163 149 144 136 129	93.9 92.4 82.8 89.0 93.8 84.9 82.6 86.2 33.4 90.9 72.4 78.9	7.0 8.0 7.0 8.0 7.0 6.0 7.0 9.0 7.0 6.0 7.0	Midseason Med. early Midseason Midseason Midseason Midseason Midseason Med. early Early Med. late Midseason Midseason
	Augmented entri	es - Rep III - ad	djusted yield	ds
76C29-1 B9627-N2 76C29-7 76C28-2 77C3-2 CS1979 Superior-L 77C4-2 76C25-2 76C29-5 76C29-10 B9624-N1	190 173 171 165 152 150 101 96 95 70 68 66	89.4 87.7 86.4 85.3 81.5 82.2 82.2 89.0 86.1 90.2 61.0 67.6	8.0 7.0 8.0 8.0 9.0 7.0 7.0 7.0 8.0 8.0	Early Early Early Med. early Med. early Early Midseason Midseason Med. late Med. early Med. early Midseason

North Carolina Table 3 continued.

Augmented entries - Rep IV - adjusted yields

B8737-N5 B9455-N9 CS2191 B9631-N2 B9455-N16 76C29-9 76C29-8 77C14-2 B9622-N4 CS1854 76C11-2 B9644-N1	209 179 174 162 153 141 139 120 118 88 70 48	92.3 85.4 91.6 84.8 85.2 77.1 82.8 86.0 82.0 64.3 64.6 72.8	6.0 8.0 8.0 7.0 7.0 7.0 8.0 7.0 8.0 9.0 7.0	Midseason Early Midseason Midseason Midseason Med. late Midseason Midseason Midseason Med. early Early Med. early
L.S.D. (.05) RE AE Same Rep. AE Dif. Rep. RE vs. RE C.V. (PCT)	33 67 68 54	7.5 15.1 15.3 12.1		

^{2/}See foctnotes, N.C. Table 1.

NORTH DAKOTA

R. H. Johansen, B. Farnsworth, D. Hahn, G. Secor and P. Nolte

Potato Breeding Program

Crosses and Seedling Production. From February through April, 333 crosses were made in the greenhouse during 1981. Crosses were made for good red skin color, russeting, disease resistance, yield, processing qualities, high solids and good horticultural characteristics. Potato crosses adapted for California potato production were also made. Breeding objectives for the California program are earliness, russeting, long and smooth type and cultivars adapted to the hot interior valley of California. During 1981 56,402 seedlings were grown in the greenhouse and will be planted at the Langdon, North Dakota Experiment Station in 1982.

A total of 50,193 seedling tubers were planted at the Langdon Experiment Station in 1981. Of these seedlings, 12.2 percent were reds, 61.6 percent were whites and 26.2 percent were russets. The seedling plot was planted on May 12th and 13th and harvested on September 14-16th. Approximately 1,200 seedlings were saved at harvest for further study and evaluation.

Advanced Selections. In 1981, 916 second year selections and 58 second year selections from Minnesota and Texas were planted in an adaptation trial at Grand Forks and a seed increase plot at Absaraka. In addition, 247 third year selections, 116 fourth year selections, 97 selections and cultivars from other breeding programs and 106 Texas selections were planted in adaptation trials at Grand Forks and a seed increase plot at Casselton. Several second year and some older selections were sent to Beach, North Dakota and planted in a seed increase plot. The plots at Grand Forks were planted on May 15th and harvested on September 1-2. Casselton was planted on May 7th and harvested on September 3, 4, 8, 9 and 10. An increase plot of several promising advanced selections was also planted on the Ralph Mathew farm at Barnesville, Minnesota. This plot was planted on May 29 and harvested October 2. The plot at Barnesville was planted on sandy soils.

Promising Selections and Cultivars. The most promising advanced selection in the North Dakota program appears to be ND146-4R. This selection has been ranked third and first in overall merit ratings when tested in the North Central Trial during 1979 and 1980. Compared to Norland, ND146-4R is as early but has higher yield and percent solids; ND146-4R has good culinary and chipping qualities. In 1981, approximately 80 acres of certified seed of ND146-4R were grown by growers at Beach, Cando and in the Red River Valley.

Other selections showing promise are ND388-lRuss, ND534-4Russ, ND55-7, ND294-lR and ND372-2R. Approximately one acre each of ND388-lRuss and ND534-4Russ were planted for seed increase at Beach in 1981.

Crystal and Lemhi, two cultivars released two years ago, are also being increased and tested. There seems to be some interest in California for

Crystal as a processing cultivar. Lemhi has been reported to show serious hollow heart when grown in the Red River Valley and black spot when grown in California. At the present, the future of both of these cultivars is unknown.

Cultivar Trials. Trials consisting of 25 hills grown in four replicated blocks were planted at Grand Forks, Park River, Minot and Williston. Wayne Grinde, County Extension Agent, was in charbe of the Park River Trial and Dennis Askim, Farm Manager of the Research Farm, was in charge of the Grand Forks trial. Superintendents Ernie French and Ben Hoag were in charge of the Williston and Minot trial, respectively (North Dakota Table 1). In the Park River trial, 25 entries were tested while 16 entries were tested at Minot and Williston. Marketable yield consisted of all U.S. No.1 tubers over 1-7/8 inches in diameter. Specific gravity was determined by the use of a potato hydrometer.

In addition to the State trials, eight russet, four red and four white selections were planted in a trial at Grand Forks. Also at Grand Forks, an Ethanol trial was planted in cooperation with Dr. Mark Martin; Prosser, Washington and will be summarized in another report. The North Central Trial was planted at Grand Forks and its data will also be summarized in another report.

Spacing, fertilizer, soil type, planting and harvest dates of the 1981 trial are as follows:

North Dakota Table 1. Spacing, fertilizer, soil type, planting and harvest dates of the 1981 trial.

	Spa	cing			Plant-	Har-
	Row	Plant		1 /	ing	vest
Location	(in.)	(in.)	Fertilizer	Soil Type 1/	Date	Date
Park River	38	12	Fall application	Bearden SL	4/29	9/1
Grand Forks	38	12	340#/20-20-20	Bearden CL	5/13	9/21
Minot	36	14	None reported	Williams L	5/15	9/15
Williston	36	16	96-69-0	Williams L	5/5	10/2

^{1/} L - Loam

SL - Silt Loam

CL - Clay Loam

In general, environmental conditions in 1981 were quite favorable for potato production in the Red River Valley. The only exception was at Park River, where a dry period occurred at a critical time for good potato production. This was the first time in several years that the Park River trial produced lower yield than the Grand Forks trials. Grand Forks received almost 10 inches of precipitation during the growing season. It was extremely dry and hot in western North Dakota during most of the season. Spring again came early with the trial at Park River being planted on April 29th.

In the Red River Valley trials the average yield for all entries was 233 cwt/A at Grand Forks and 138 cwt/A at Park River (North Dakota Table 2). Yields at Williston averaged 65 cwt/A and at Minot 91 cwt/A. All yields are reported as U.S. No. 1 yields.

Crystal, with an average U.S. No. 1 yield per acre of 261 cwt was the highest yielding entry in the trials in the Red River Valley or eastern North Dakota. Other high yielding entries were ND258-1, Red Pontiac, Kennebec and Lemhi. In the Red River Valley trials, ND146-4R had an average yield of 211 cwt/A compared to Norland with 148 cwt/acre. Entries that produced the lowest yields were TND14-1Russ, ND115-21R and ND632-5; ND55-7 produced yields slightly higher than Norchip.

In the trials in western North Dakota, Red Pontiac, Viking, Crystal, Kennebec and ND9403-16R produced the highest yields (North Dakota Table 3). All five of these cultivars and selections have some drought resistance and it is not surprising that with the droughty conditions in western North Dakota that these entries did better than the early maturing cultivars and selections that are not drought resistant.

Entries Lemhi, ND55-7, Norchip, Crystal and ND258-1 produced the highest average total solids when tested at Grand Forks and Park River. These five cultivars and selections averaged above 21.7 percent total solids. In similar trials, ND146-4R produced total solids averaging 20.1 percent compared to Norland with 18.6 percent, Bison 19.6 percent and Red Pontiac with 18.9 percent. At Minot and Williston, ND55-7 produced the highest percent total solids.

Processing Tests - Chipping. During 1981-1982, 176 second year, 65 third year and 76 fourth year and older selections will be tested for chip quality by the Potato Research Lab at East Grand Forks, Minnesota. Percent sucrose will be determined on the second year selections.

During 1980, 134 second year selections were tested for chip quality by the Research Laboratory. Of these selections, 12 percent had Agtron readings ranging from 40-45 and 14 percent had Agtron readings ranging from 46 to 52. The second year selections were chipped only once after being stored at 43°F for about three months and then reconditioned for one month at 65°F. The third year selections were chipped twice; once out of 43°F storage and again out of 65°F after being stored for one month. When chipped out of 65°F storage, 26 percent of the third year selections had Agtron readings ranging from 40-45 and seven percent had Agtron readings from 32 to 40.

Chip tests were again conducted on the 1980 potato cultivar trials grown at Park River and Grand Forks, North Dakota (Table 4). The samples were chipped out of 40° F storage and then chipped two weeks and four weeks out of 65° F storage. The best selections for chipping in both trials were ND8850-2, ND193-2, ND55-7 and the best cultivars were Dakchip and Norchip. Crystal chipped comparable to Kennebec but was darker than both Norchip and Dakchip.

Processing Tests - Frozen French Fry and Flake Tests. The Potato Research Laboratory at East Grand Forks, Minnesota prepared frozen french fry and flake products from some of the most promising North Dakota selections and cultivars. The highest sensory scores for french fry color, texture and flavor were produced by ND119-3 and ND467-3. In similar tests, Crystal and ND388-1Russ had much better color, flavor and texture than Russet Burbank. Flake sensory tests indicated that several advanced selections were better than Norchip. Sensory tests for french fries and flakes are found in North Dakota Table 5.

<u>Culinary Tests</u>. Several advanced selections and cultivars grown in the 1980 potato cultivar trials at Park River and Grand Forks were tested for boiling and baking qualities. Sloughing was again observed in the selections and cultivars with high total solids. Some after cooking darkening was observed in ND146-4R (North Dakota Table 6).

Other Trials. A trial of several new advanced selections were planted in a trial at Grand Forks. These selections were ones that have shown promise in a very early stage of development; however they have had only limited testing for yield or specific gravity. The highest yielding russet selections were ND722-2Russ and ND748-3Russ. In the red and white group, ND678-8, ND651-9 and ND731-6R produced the highest yield (North Dakota Table 7).

Disease Control and Resistance. Approximately 916 second year, 247 third year and 116 fourth year selections were evaluated for scab and silver scurf resistance at the Potato Research Farm, Grand Forks. Many selections appeared to have excellent resistance to scab and silver scurf. Over 50 percent of the selections showed some resistance to both of these diseases.

Approximately 916 second year selections were grown in a potato-free area (Absaraka) and evaluated for disease and horticultural characters. Diseased selections were removed and superior selections saved for further observation and indexing.

Approximately 400 advanced selections were greenhouse grown and read visually for tuber borne diseases. These selections were also indexed for spindle tuber using gel electrophoresis and PVX using serology. None were found to be infected with PVX and only a few were found to be infected with PSTV. The disease-free selections were maintained at the Agronomy Seed Farm, Casselton, as a source of clean seed for breeding and other purposes.

Approximately 30 selections were indexed for disease and released to growers in Beach, North Dakota for increase as part of the basic seed stock program.

Representative tubers of second year and advanced selections were grown in Florida for winter indexing of virus diseases (cooperator, Doug Johansen, State Seed Department).

Resistance to late blight (race 0) was evaluated for 40 advanced selections. In 17 of these selections, resistance was evaluated in both foliar and tuber tissue. In four selections, ND146-4R, ND372-2R, ND413-4 and ND 651-5, resistance was found to late blight in both foliar and tuber tissue. In

four other selections, ND55-7, ND698-1, ND741-7 and ND9403-16R, resistance was exhibited in tuber tissue however only moderate resistance was found in foliar tissue.

In an additional 23 selections, resistance to late blight was evaluated only in foliar tissues. Of the selections evaluated only one, ND1069-2Russ, was resistant and seven selections, ND1062-3Russ, ND664-12R, ND967-1Russ, ND744-1R, ND860-2, ND821-3R and ND1000-5R were moderately resistant.

One of the most outstanding advanced selections, ND146-4R, has good late blight resistance in both tuber and foliar tissue and, based on widespread field data, appears to have excellent resistance to scab and silver scurf. This selection is susceptible to Verticillium and Fusarium dry rot.

U.S. No. 1 Yield, Percent U.S. No. 1 and Total Solids of Potato Cultivars Grown in the Red River Valley Trials, 1981 North Dakota Table 2.

	Gra	Grand Forks		P	Park River			Average	
	Cwt/A	0/0		Cwt/A	9/0		Cwt/A	9/0	
	U.S. No. 1	u.s.	Total	U.S. No. 1	Ω	Total	U.S. No. 1	u.s.	Total
Cultivar	Yield	No. I	Solids	Yreld	No. I	Solids	Yield	No. I	Solids
Crystal	313	94	21.8	208	85	•	261	90	21.7
ND258-1	288	95	22.4	221	89	20.9	255	92	21.7
Red Pontiac	291	97	19.0	200	91	•	246	94	18.9
Kennebec	290	97	20.3	202	93	20.7	246	95	20.5
Lemhi	262	06	22.2	198	87	22.2	230	89	22.2
ND294-1R	253	97	21.4	185	93	19.7	219	06	20.6
ND445-1	292	86	19.2	140	82	18.8	216	90	19.0
ND372-2R	246	86	21.8	178	80	21.2	212	89	21.5
ND146-4R	260	94	20.1	162	81	20.1	211	88	20.1
ND9403-16R	248	94	20.1	164	85	19.7	206	90	19.9
ND55-7	252	66	22.0	132	69	21.6	192	84	21.8
ND463-1R	238	96	20.5	138	85	20.7	188	91	20.6
Norgold Russet	241	91	20.1	124	78	20.9	183	85	20.5
ND388-1Russ	223	93	20.3	124	75	21.4	173	84	20.9
Norchip	224	92	22.2	115	29	21.4	170	80	21.8
ND534-4Russ	210	89	20.3	124	9/	21.4	167	83	20.9
Russet Burbank	204	89	20.5	110	71	20.9	157	80	20.7
Bison	207	92	19.7	101	78	19.4	154	85	19.6
ND206-1R	183	96	20.1	124	82	19.0	154	89	19.5
ND467-3	191	86	19.4	107	61	18.6	149	74	19.0
Norland	174	92	18.8	121	77	18.4	148	85	18.6
ND612-9	188	92	21.2	88	53	20.9	138	73	21.1
TND14-1Russ	193	89	22.2	52	54	20.7	124	72	21.5
ND115-21R	175	91	18.6	70	99	18.6	123	79	18.6
ND632-5	183	88	21.8	63	58	20.9	123	73	21.4
Average	233	93	20.6	138	76	19.6	186	85	20.5

U.S. No. 1 Yield, Percent U.S. No. 1 and Total Solids of Potato Cultivars and Selections Grown in Western North Dakota Trials. North Dakota Table 3.

								2622211	
	Cwt/A	9/0		Cwt/A	0/0		Cwt/A	%	
	U.S. No. 1	U.S.	Total	U.S. No. 1	u.s.	Total	U.S. No. 1	U.S.	Total
Cultivar	Yield	No. 1	Solids	Yield	No. 1	Solids	Yield	No. 1	Solids
Red Pontiac	144	84	20.5	77	89	21.2	111	87	20.9
Viking	127	26	22.1	87	93	22.7	107	95	22.4
Crystal	117	80	23.3	86	9/	22.2	102	78	22.8
Kennebec	139	88	22.9	64	84	22.9	102	86	22.9
ND9403-16R	124	89	21.4	77	83	22.7	101	86	22.1
Lemhi	132	98	22.9	47	70	22.7	101	86	22.1
ND372-2R	94	74	22.7	70	85	22.4	85	80	22.6
ND294-1R	93	73	21.2	74	80	20.7	84	77	21.0
ND146-4R	77	70	21.2	71	73	22.0	74	72	21.6
Norland	67	69	19.4	72	98	20.5	70	78	
Bison	79	77	21.4	51	65	21.8	65	71	21.6
ND55-7	54	47	23.1	64	99	22.9	59	57	•
Russet Burbank	59	53	22.2	56	64	22.7	58	59	22.5
Norgold Russet	99	29	21.8	48	29	22.0	57	67	21.9
Norchip	20	52	23.1	55	71	22.9	53	62	23.0
TND 14-1Russ	41	59	22.0	34	09	22.7	38	09	22.4
							:		
Average	91	73	22.0	65	92	22.2	79	75	22.1

North Dakota Table 4. 1981 Chip Tests of Cultivars and Selections Grown at Grand Forks and Park River-1980.

	Agtron 0 weeks 3	on 38°F	Agtron 2 weeks 6	ron s 68°F	Agtron 4 weeks 6	ron s 68°F	Percent yield average 3 test	yield 3 tests
, αν: + Γιζ	Grand	Park	Grand	i	1 🖂 🛂		Grand	1
Carcinat	10101	TO A TVI	LOTAR	TOATV	LOTIVO	WT V CT	LOTUS	TANTU
Bison	11.3	13.5	24.5	27.5	28.0	44.8	30.3	29.8
Crystal	12.5	17.8	23.5	28.0	31.0	39.5	31.7	33.3
Dakchip	16.5	27.5	21.5	42.5	32.0	50.0	32.4	34.3
Kennebec	10.5	15.0	24.8	35.8	25.3	42.8	30.2	30.5
Lemhi	13.3	18.0	19.5	30.5	33.0	38.5	30.4	33.3
Norchip	12.0	26.0	28.3	35.5	42.5	49.8	32.6	33.7
Norgold Russet	10.3	18.3	24.3	25.5	22.8	36.5	30.5	32.4
Red Norland	13.5	15.0	25.0	30.5	39.5	49.0	29.8	30.3
Red Pontiac	8.5	19.5	21.0	22.0	17.0	28.5	29.1	31.1
Russet Burbank	11.3	19.5	18.5	21.5	22.0	33.3	30.6	32.3
Viking	0.9	11.3	18.3	14.0	12.5	18.5	29.3	30.3
AND 7422-1Russ	11.0	17.3	17.5	24.0	21.8	38.5	31.1	32.8
TND 14-1Russ	12.5	14.5	19.0	18.0	23.0	32.8	31.4	30.4
ND55-7	16.5	19.0	22.3	30.5	40.5	48.0	31.6	33.3
ND119-3	13.0	26.8	22.5	36.0	34.8	48.3	30.8	33.0
ND146-4R	10.5	23.5	30.5	37.5	30.5	50.3	31.4	31.6
ND193-2	13.0	21.0	24.5	44.5	47.5	58.0	30.8	32.5
ND206-1R	7.8	9.8	21.5	23.5	24.5	27.5	30.4	31.1
ND258-1	12.8	16.5	28.0	26.0	38.5	41.3	31.8	31.1
ND294-1R	8.0	11.0	22.0	22.5	23.0	32.0	29.9	29.4
ND372-2R	11.8	13.3	24.0	26.3	33.5	29.8	32.7	32.3
ND383-9	12.5	13.8	32.5	35.3	35.5	49.5	35.0	33.7
ND463-1R	12.5	16.5	20.8	20.3	28.8	41.8	29.6	30.8
ND467-3	12.5	15.0	26.0	21.5	32.5	34.0	29.8	30.0
ND8850-2	25.5	29.5	21.5	42.5	34.8	51.0	31.3	32.5

North Dakota Table 5. French Fry and Flake Tests of Potato Cultivars and Selections Grown in 1980 Trials $\frac{1}{2}$.

Cultivar	Color ² /	Texture	Flavor	Average for all tests
		FRENCH FRIES		
ND119-3	7.88	7.30	7.75	7.64
ND467-3	7.50	7.33	6.84	7.22
ND728-13Russ	7.70	7.05	6.76	7.17
Crystal	7.46	6.96	6.67	7.03
ND388-1Russ	7.27	7.52	6.00	6.93
ND612-9	6.39	7.02	7.35	6.92
TND 14-1Russ	6.93	6.78	6.83	6.85
ND651-5	7.46	7.38	5.59	6.81
ND457-17	6.46	7.07	6.32	6.62
ND445-1	6.77	6.54	6.45	6.59
ND671-2Russ	6.20	6.32	6.67	6.40
Russet Burbank	5.92	6.34	5.75	6.00
ND537-8Russ	5.80	5.47	6.09	5.79
ND722-2Russ	4.94	6.14	5.62	5.57
ND790-4Russ	4.71	5.67	5.29	5.22
ND455-1Russ	4.93	5.70	4.40	5.01
ND606-4Russ	4.42	5.32	4.67	4.80
AND 7430-1Russ	4.94	4.83	3.73	4.50
Viking	3.75	5.10	4.30	4.38
ND469-7Russ	3.00	5.50	3.42	3.97
ND748-3Russ	3.57	4.54	3.22	3.78
AVERAGE	5.90	6.28	5.70	5.96
		POTATO FLAKES		
Dakchip	8.33	8.17	7.83	8.11
ND8850-2	8.20	7.60	7.40	7.73
Russet Burbank	8.00	7.50	7.17	7.56
ND55-7	8.00	7.83	6.67	7.50
ND467-3	7.40	7.60	7.20	7.40
ND119-3	7.83	7.00	7.33	7.39
Norchip	8.00	6.83	6.67	7.17
ND445-1	8.00	6.83	6.83	7.22
Crystal	7.67	6.33	7.00	7.00
TND 14-1Russ	7.60	7.00	6.00	6.87
ND455-1Russ	6.50	6.67	6.17	6.45
ND388-1Russ	6.50	4.17	3.00	4.56
AVERAGE	7.67	6.96	6.61	7.08

^{1/} RATING GUIDE: 7-9 (Good); 5-6 (Fair, but acceptable); 104 (Poor, not acceptable)

^{2/} Not treated for color correction on french fry score.

1981 Cooking Tests of Cultivars and Selections Grown and Grand Forks and Park River, North Dakota - $1980\underline{1}/.$ North Dakota Table 6.

			Boiling				Baking	
				Color				
			Color	4 Hours				
Cultivar	Slough- ing2	Meali- ness <u>3</u> /	After 4/ Cooking-	After Cooking ⁵ /	Flavor ⁶ /	Mealiness	Color	Flavor
Bison	10.0	4.3	0.6	7.3	7.3	4.9	9.5	6.7
Crystal	8.0	8.5	10.0	0.6	8.3	6.8	9.5	7:3
Dakchip	6.6	6.9	9.5	6.5	8.0	5.9	10.0	7.2
Kennebec	9.4	7.8	7.5	8.0	6.7	6.8	8.8	8.9
Lemhi	8.5	6.3	7.5	8.2	7.0	7.2	9.3	6.4
Norchip	9.1	8.2	0.8	7.3	8.4	7.3	9.8	7.1
Norgold Russet	8.5	8.3	0.6	2.5	8.1	7.6	10.0	7.7
Red Norland	6.6	5.7	9.3	8.3	7.8	5.4	9.8	8.9
Red Pontiac	9.5	6.7	9.5	8.8	7.8	5.8	9.3	7.1
Russet Burbank	10.0	7.4	0.6	8.8	6.5	8.1	9.3	6.2
Viking	10.0	5.4	10.0	0.6	7.1	5.4	9.5	9.9
AND7422-1Russ	9.4	7.9	8.3	8.8	7.4	6.8	0.6	6.7
TND 14-1Russ	8.4	6.9	9.3	9.3	7.8	7.4	9.3	6.9
ND 55-7	9.9	8.7	•	0.6	7.9	6.9	8.6	8.2
ND 119-3	9.6	6.2	0.6	7.5	8.9	7.7	10.0	7.4
ND 146-4R	9.5	5.9	7.5	5.5	7.7	0.9	9.5	7.2
ND 193-2	9.1	5.1	0.6	7.3	7.3	5.4	9.3	6.7
ND 206-1R	9.5	6.3	7.8	8.8	7.8	6.2	0.6	5.9
ND 258-1	8.9	7.4	8.8	7.8	6.8	7.5	9.3	7.2
ND 294-1R	9.3	4.9	7.5	7.5	6.8	6.4	9.8	6.9
ND 372-2R	8.5	7.1		8.4	7.8	7.4	10.0	7.3
ND 383-9	8.1	9.1	8.5	8.0	7.4	7.3	6.3	6.1
ND 463-1R	9.7	5.3	0.6	7.3	6.7	5,3	0.6	6.8
ND 467-3	10.0	4.4	9.3	7.0	7.7	5.3	8.6	6.8
ND 8850-2	9.4	7.3	9.5	7.5	7.5	6.2	6.3	7.4

Average of two locations (Grand Forks and Park River).

Severe Sloughing - 1; No Sloughing - 10

Not Mealy - 1; Very Dry and Mealy - 10 Dark - 1; Very White - 10

Dark - 1; Very White - 10

Poor Flavor - 1; Excellent Flavor - 10

North Dakota Table 7. Russet, Red and White-Skinned Selections Grown at Grand Forks, North Dakota - 1981.

	_		1/	8
	Total	No.1	Specific $\frac{1}{}$	Total
Cultivar	Yield	Yield	Gravity	Solids
	(Cwt/A)	(Cwt/A)		
Russets				
ND450-11Russ	186	163	90	21.8
ND455-1Russ	153	86	72	18.0
ND537-8Russ	213	164	93	22.4
ND606-4Russ	213	153	88	21.4
ND722-2Russ	238	161	70	17.5
ND748-3Russ	236	190	85	20.7
ND765-1Russ	188	143	94	22.7
ND770-4Russ	195	162	93	22.4
Reds and Whites				
ND649-4R	233	207	87	21.2
ND651-9	293	248	89	21.6
ND664-12R	244	171	78	19.2
ND678-8	257	229	89	21.6
ND689-3	240	207	92	22.2
ND731-6R	247	217	88	21.4
ND744-1R	239	210	80	19.7
ND779-4	214	179	89	21.6
			·····	
Average	224	181	86	20.9

^{1/ 1.0} deleted.

J.M. Pisarczyk, R.C. Rowe, E.C. Wittmeyer, F.I. Lower, W.A. Gould and David Kelly

24 Potato Cultivar Trials, 1981 [] J.

Over 60 potato varieties and advanced selections were evaluated in trials across Ohio in 1981. These trials included: 1) a Statewide Trial of 10 entries located on 6 commercial farms, 2) an Observation Trial of many newer entries located on two of the 6 commercial farms, and 3) a trial of 8 entries at the OARDC Muck Crops Branch at Celeryville.

Ten entries were evaluated at 6 commercial farms located across the state. Eight of the entries (Crystal, Neb. A129.69-1, W 718, Denali, NY 59, Jemseg, Dakchip, and Michimac) were included because they have looked promising in previous years, and the other two entries (Norchip and Katahdin) were included as standards. Katahdin was included for comparison as a standard midseason variety, and Norchip was included as a standard for comparison of chipping potential. Twenty-three entries were evaluated in the observation plots.

All plots on the 6 commercial farms were subjected to standard cultural and pest control practices used on those farms. Plots consisted of double rows approximately 40 feet long (80 seedpieces) and entries were replicated four times. Stand, vigor, and disease were evaluated at certain farms during the growing season. The observation plots on two of the six farms that had the main plots. Plot size consisted of double rows approximately 25 feet long (50 seedpieces).

Neb. A129.69-1 led in yield in the Statewide Trials the second year in a row. Tubers have a very low percentage of internal defects. Tubers are attractive. It remains a promising late-maturing fresh market cultivar. NY 59 continues to produce high yields but the high percentage in internal necrosis in certain years will probably limit its use in Ohio. W 718 continues to have above-average yields. The tendency to hollow heart in this cultivar should be taken into account if planted commercially. It continues to be a promising fresh market cultivar. Denali over several years has shown a high yield potential and has high specific gravity. It is a promising late maturing chipping cultivar. Jemseg shows promise as an early maturity fresh market cultivar for Ohio but needs further testing.

The four highest yielding cultivars, in the observation trial, were BR 5991-WV16, AK 114, Russette, and Atlantic. AK 114 and BR 5991-WV16 look promising in limited tests in Ohio and will be tested again next year. Russette has heavily russetted oval to oblong tubers and above-average yields. It has shown a tendency to hollow heart. Atlantic continues to have high yields but because of the severe internal necrosis problems in certain years it cannot be recommended. It also has a hollowheart problem.

W 718, Michimac, Jemseg, and Katahdin produced equivalent yields of U.S. No. 1 potatoes in the muck trial. W 718 led in yield for the sixth consecutive year. Jemseg had the most hollow heart of any cultivar on the muck. W 718 has shown a tendency to hollow heart in muck soils in previous years. Neb.Al29.69-1, which led in yield in the Statewide Trials only had an average yield on muck soil. It had the largest percentage of B-size tubers, but the lowest percentage of culls of the eight cultivars tested. It also showed a tendency to hollow heart on the muck soils.

OHIO Table 1. Average U.S. No. 1 yields, grades, and stands -- Statewide trials, 1981. (Listed in order of average yield of the six farms.)

	Avg. Yield	Δ	verage Percent		Tuber wt.	Avg.
Entry	cwt/A	U.S. No. 1	B-Size	Culls	(oz.)	stand
Neb.A129.69-1	336	85.6	5.0	9.2	5.2	94.2
NY 59	324	83.9	4.3	11.9	6.1	89.7
W 718	311	85.5	4.2	10.5	6.1	90.9
Katahdin	292	85.2	3.7	11.1	6.0	88.3
Michimac	273	83.4	5.2	11.6	5.8	89.6
Denali	269	78.6	6.1	15.3	5.6	83.6
Crystal	254	78.2	5.8	15.9	5.6	91.5
Dakchip	240	78.1	5.7	16.1	5.3	89.7
Norchip	231	78.6	10.1	11.3	4.4	90.3
Jemseg	207	80.0	4.0	16.0	6.3	90.0
Average	274	81.7	5.4	12.9	5.7	89.8

OHIO Table 2. Percentage of total tubers cut showing hollow heart and internal necrosis. Statewide Trial.

Entry	Н.Н.	Nec.	Entry	Н.Н.	Nec.
Neb. Al29.69-1	0.4	1.7	Denali	2.2	3.5
NY 59	2.7	33.0	Crystal	1.2	3.3
W 718	6.4	5.5	Dakchip	0.5	2.0
Katahdin	1.7	7.8	Norchip	0.5	4.0
Michimac	3.2	7.3	Jemseg	6.4	3.0

OHIO Table 3. Yield, grade, and tuber size of Observation Trial entries.

	Yield	% U.S.	Tuber
Entry	(cwt/A)	No. 1	weight (oz.)
BR 5991-WV16	398	80	<i>C</i> 1
AK 114	352		6.1
Russette		84	5.6
Atlantic	314	90	6.9
	314	86	6.3
Kennebec	306	69	6.5
Rosa	300	84	5.8
Neb. 51-3	297	76	6.0
BR 7093-23	287	79	6.3
Chipbelle	282	82	6.4
W 726	280	80	7.3
W 723	271	83	6.2
AK 13-5	269	84	4.5
Bake King	268	88	5.1
MS 402-1	262	80	6.2
Superior	256	86	4.5
AF 205-9	256	80	5.1
W 738	240	68	5.6
AK 14-1	236	73	4.3
Neb. A71.72-1	232	78	6.5
AK 38-2	226	74	6.5
Allegash Russet	186	73	5.0
Highlat Russet	183	74	4.4
TND 14-1 Russet	176	75	5.9

OHIO Table 4. Summary of percent hollow heart and internal necrosis of tubers cut. Observation Trial.

ollow Heart		
Severe	Moderate	Slight
Allegash Russet	Rosa	MS402-1
Atlantic	Highlat Russet	Russette
Neb. A71.72-1		AK 38-2
Chipbelle		
ecrosis		
Severe	Moderate	Slight
- The state of the	BR 5991-WV16	Atlantic
	Neb. A71.72-1	W 738
	Allegash Russet	Kennebec
		W 723
		BR 7093-23

OHIO Table 5. Yield and grade characteristics of entries in Celeryville Muck Trials.

	_ Cw	/t/A			Percent		
Centry	Total	US # 1	US #1	B-Size	Culls	н.н.	Nec.
W 718	373	317	85.0	6.9	8.1	13	0
Michimac	348	311	89.3	4.6	6.1	15	0
Jemseg	372	310	83.3	3.6	13.1	40	0
Katahdin	351	308	87.7	3.9	8.4	27	0
Crystal	372	293	78.7	8.1	13.2	0	0
Neb. Al29.69-1	332	282	84.9	10.0	5.1	30	0
Superior	313	÷232	74.1	8.1	17.8	7	0
Dakchip	305	215	70.3	7.8	21.9	0	0

245 OREGON EJ

A. R. [Mosley, D. C. Hane, G. E. Carter, M. J. Johnson and C. Stanger

Results of six yield trials conducted in the Columbia Basin and Willamette Valley will be reported herein. Additional varietal information for the Klamath Basin, Malheur County and Central Oregon will be available from the authors by April, 1982.

Crops were grown using cultural practices common to the areas. For the most part, individual plots were single rows 25 feet long, replicated four times. A high percentage of the lines and varieties compared in Oregon in 1981 showed excess tuber-borne mosaic viruses. Therefore, data should not be considered conclusive.

COLUMBIA BASIN TESTS

WESTERN REGIONAL TRIAL. Ten entries were compared at the Columbia Basin Agricultural Research Center (CBARC) at Hermiston. As in most Oregon studies, individual plots were single rows 25 feet long and replicated four times in a randomized block design. Seed pieces were planted nine inches apart in 34-inch rows on April 7. Metribuzin was applied at the rate of ½ 1b ai/A on June 4.

None of the entries were outstanding (Table 1), but A 72685-2 did appear to have considerable promise for fresh market. Others showing some promise included WnC 521-12, AD 7377-1, A 72545-2 and Lemhi.

Most of the entries were severely infected with mosaic viruses.

OREGON STATEWIDE TRIAL. The statewide trial was conducted at four locations in 1981, but only Hermiston results will be reported here. The crop was planted and handled as described for the western regional test. Thirty-eight entries were compared.

Large differences in yield and quality were noticeable. Promising selections included: A 69657-4, A 69870-3, A 72602-2, A 74212-1, A 74393-1, A 7596-1, AD 74135-1, Butte and Lemhi. Most of these were oblong to long russets.

ON-FARM TRIALS. Five varieties and two numbered selections were compared under center-pivot irrigation in three commercial fields. Large differences in yield existed among the locations. Average performance for all three locations is summarized in Table 3.

Selection A 74404-3 yielded well but has no potential in the Columbia Basin because of susceptibility to scab. It also showed some tendency toward internal necrosis, although less so than Russet Burbank. Selection AD 7377-1 produced attractive tubers but specific gravities were too low for processing. This entry may have some promise for fresh market.

Nooksack appeared to have considerable potential. Gravities were high and tuber appearance was generally uniform although the shape was rounder and flatter than normally acceptable for processing. Nooksack tubers were large enough to produce a high percentage of long french fries. Russet Burbank was more susceptible to internal necrosis (heat necrosis) than any of the other entries. Internal necrosis is becoming a serious problem in the Columbia Basin.

WILLAMETTE VALLEY TRIAL

Twenty-nine varieties and selections were compared for chipping and fresh market at Corvallis in 1981. U. S. No. 1 yields were lower than normal due to a high percentage of undersize tubers for most varieties. Extremely hot weather during the first two weeks of August was largely responsible for yield deficiencies. However, metribuzin injury obviously caused yield loss for Bison and possibly several others including Belrus and ND 467-3. Seed-borne mosaic viruses also reduced yields for some entries and, therefore, confounded results to some extent. These data should not be considered conclusive, therefore.

Chipping tests are presently being completed and will be available from the authors by April, 1982.

Oregon Table 1. Yield and Quality Characteristics of Western Regional Entries, Hermiston, 1981.

Entry		Cwt/A Total	Per No. 1	No. 2	0z Tuber	Specific Gravity	Comments ¹ /
A 72545-2 A 72685-2	630 669	697 743	90 90	1 3	11.8 11.6	1.078 1.082	O.,Lt.Rus. Scab. IN. O.Rus.
AD 7267-1 AD 7377-1	392 564	501 669	78 84	10 10	10.6 10.7	1.070 1.075	O.Rus. Shatter O.Dk. Rus. G.C. Eyes
AD 74135-1	406	4 92	82	6	8.7	1.079	O.Rus. Shatter
WnC 521-12 WnC 672-2	526 640	564 716	93 89	2	8.8 8.8	1.096 1.083	R,Lt.Rus. Shatter R,Rus. Scab. Ugly
Lemhi	513	561	91	4	10.9	1.085	O.Rus
Norchip	403	502	80	6	6.6	1.081	R. W. Scab. Cracks
R. Burbank LSD, .05	321 133	489 147	66 -	14	8.6	1.084	L., Rus. Cracks, Knobs

^{1/} Shape, skin type: 0 = oblong; R = round; L = long; R = russet; W = white; IN = internal necrosis; GC = growth cracks.

Oregon Table 2. Yield and Quality Characteristics, Statewide Trial, Hermiston, 1981.

Selection	Yield, No. 1	Cwt/A Total	Per No. 1	cent No. 2	0z Tuber	Specific Gravity	Comments ^{1/}
A 69173-2	407	469					
A 69657-4	624	806	87 77	3 6	8.4 9.8	1.084 1.087	Good O-L,Lt.Rus.6%Mo. White.Scab, G. Poor
A 69870-3	666	709	94	1	8.6	1.082	Good.Blocky rus.
A 69870-6	621	670	93	1	10.0	1.080	R-O,Rus. Late
A 72545-2	655	715	92	2	11.8	1.075	R-0, Lt. rus. 60% Mo.
A 72602-2	533	608	88	3	10.6	1.087	Fair Dk. Rus. 30%Mo.
A 7403-3	672	806	83	7	10.9	1.078	Poor,R-O Dk.Rus.18%Mo.
A 7487-3	294	386	76	3	7.2	1.081	Early Lt.Rus. Fair
A 7487-5	357	430	83	3	9.2	1.079	RW, Shatter, Lent. G.
A 74104-8	581	699	83	5	10.7	1.072	O.White, Ugly, 40%Mo.
A 74124-3	635	869	73	12	10.9	1.075	R-O,White,Poor,6%Mo.
A 74212-1	684	768	89	3	9.5	1.078	Good Long Rus. Late
A 74393-1	635	683	93	2	9.1	1.083	Good R-O Rus. Flat.
A 74396-1	138	183	76	6	9.7	1.074	R-O Rus. 90%Mo.
A 74404-3	704	803	88	4	8.5	1.081	R-O Rus. Late. Scab.
A 7518-8	252	311 326	81	5 3	7.1	1.078	Small, Rgh. Rus. 79%Mo.
A 7578-5 A 7596-1	291 744	841	89 88	3 7	7.7 12.7	1.080 1.084	R-O Rus. Scab, GC
A 75291-3	481	546	88	4	9.8	1.004	Good Blocky, Dk. Rus. Fair Rus. Flat.
A 75291-4	543	590	92	3	10.9	1.079	Flat. Lt. Rus. 9%Mo.
AC 67560-1	557	610	91	3	10.2	1.074	Red. Scab.
AD 74135-1	518	640	81	7	8.3	1.079	O-L Rus. Fair.
AK 38-2	338	552	61	22	7.6	1.078	Knobs Poor. 27%Mo.
ALR 4-1	446	530	84	1	7.7	1.092	Good Lt. Rus. Scab
Butte	703	767	92	1	7.4	1.086	Fair-Good O. Rus.
Chieftain	586	632	93	3	9.4	1.071	Red. Oblong. 12%Mo.
Lemhi	469	568	83	8	11.3	1.079	Good Blocky Rus. 51%Mo
ND 137-2	220	322	68	5	5.4	1.068	R.Rus. Dark. Poor. G.C 18% Mo.
ND 451-2	4 04	439	92	1	11.2	1.072	R., Blocky Rus. 21%Mo.
ND 561-1	540	619	87	4	11.1	1.078	O.Rus. Late 36%Mo.
ND 638-1	180	211	85	3	6.9	1.073	Cent. Type. 45%Mo.
Norgold	369	417	88	1	8.2	1.077	R-O. Rus. Good 27%Mo.
Pioneer	297	347	85	2	7.7	1.074	Good Oblong Red
R. Burbank	420	576	73	16	8.8	1.086	Long Rus.Knobs. 100% Mo.
R.B.,1978							
Gen. 1	457	754	61	21	9.4	1.083	Long Rus.
T 226-1	421	567	74	6	10.1	1.064	Red. Scab. Rgh.
Targhee	710	810	88	5	9.5	1.084	Dark Rus. Oblong.Ok
WN 630-5	577	670	86	5	13.1	1.081	Long White. Scab.
LSD, .05	147	155	-	-	-	0.005	-

^{1/} Comments: DK = dark colored; G = green; GCC = growth cracks; L = long;
Lt = light colored; Mo = mosaic; O = oblong; R = round; Rgh = rough;
Rus = russet; W = white.

Oregon Table 3. Average Yield and Quality of Seven Potato Selections Under Center-Pivot Irrigation on Three Commercial Farms in the Columbia Basin, 1981.

Selection		Cwt/A Total	Specific Gravity	Oz Tuber	Comments ¹ /
A 74404-3	594	712	1.078	8.5	O Rus. Scab! IN R-O, Rus. Sl. Flat. O Rus. Small. Sl. Flat. Ok. O-L Rus. Good. R-O Rus. Lge. Flat. GC. Skin L Rus. Knobs. IN. HH. R-O, Dark Rus. Good
AD 7377-1	520	592	1.076	9.9	
Butte	417	513	1.084	8.4	
Lemhi	376	495	1.087	8.4	
Nooksack	532	573	1.091	12.7	
R. Burbank	320	481	1.082	8.9	
Targhee	482	544	1.081	9.3	

^{1/}L = long, 0 = oblong, R = round, IN = internal necrosis, HH = hollow heart, GC= growth cracks.

Oregon Table 4. Yield, Grade and Quality Characteristics of 29 Potato Varieties and Selections, Corvallis, 1981.

	Yield,	Cwt/A	Perc	ent ¹ /	Specific	
Entry	Total	No. 1	No. 1	<4 oz.	Gravity	Comments
A 74404-3	503	298	59.3	39.6	1.087	Oblong light rus.
AC 67560-1	460	201	43.6	56.0	1.072	Red
AD 7377-1	446	332	74.4	23.0	1.076	Smooth oblong rus.
Allagash	371	209	56.3	41.8	1.075	Fair. Rus.
ALR 22-2	441	205	57.8	35.0	1.079	Round-oblong light rus.
Atlantic	357	233	65.3	32.3	1.087	Smooth. Round rus.
BC 9071-6	513	303	59.2	31.7	1.081	_
Belrus	209	43	20.8	75.9	1.082	Round white. Green.
Bintje	524	253	48.4	48.7	1.083	Large, Green, Yellow
Bison	119	42	35.4	39.3	1.081	Red. Sencor inj.
Butte	354	1 94	54.7	36.5	1.085	Oblong rus.
Crystal	413	234	56.7	36.0	1.074	Round white
Dakchip	455	266	58.3	34.6	1.072	Round white. Skinnin
Delta Gold	570	372	65.2	26.4	1.091	Yellow flesh
Denali	422	271	64.2	19.3	1.094	Round white
Lemhi	434	204	47.0	51.0	1.090	Oblong rus.
ND 55-7	404	177	43.8	54.4	1.073	-
ND 258-1	392	246	62.9	33.3	1.077	-
ND 274-6	286	139	39.2	48.3	1.074	-
ND 467-3	355	90	25.3	66.2	1.068	- Sencor injury.
ND 8850-2	384	165	43.0	54.7	1.073	-
ND 9474-6A	474	300	63.3	28.9	1.070	-
NDD 110-4	401	207	51.7	42.1	1.073	-
Norchip (Neb.)	389	147	37.9	58.8	1.083	Typical
Norchip (N. Rus.)	440	180	40.9	55.9	1.078	Russet norchip?
Norchip (Or.)	451	205	45.4	50.5	1.078	Typical
Norgold	341	163	48.0	43.9	1.076	Some decay
R. Burbank	521	308	59.2	31.4	1.084	Long russet
WC 521-12	290	176	60.6	32.2	1.090	90% virus
LSD, .05	108	85	-	-	0.004	

^{1/} Tubers tended to be unusually small in 1981 causing poor grades.

TEXAS

J. Creighton Miller, Jr. and Douglas G. Smallwood

Variety Development and Testing [],

Seedling Program. Approximately 32,000 first year seedlings, representing 294 families, were grown for selection near Hereford in 1981. However, only 20 selections were made because of severe hail damage sustained by the crop. Approximately one-half (12,264) of the 1981 first year seedlings resulted from crosses made at the Texas Agricultural Experiment Station near Lubbock, during the winter of 1979-1980. The remainder were obtained from Bob Johansen in North Dakota (11,116), Joe Pavek in Idaho (5,187) and Florian Lauer in Minnesota (3,000). The Texas program also supplied the North Dakota, Idaho and Colorado programs with second, third and fourth sized seedling tubers for selection.

Adaptation Trials. Some 568 entries were grown in replicated and nonreplicated trials at two locations in West Texas. This provided for testing both on sandy soil with center pivot irrigation (Olton) and on clay or tight soil (Hereford) where the furrow irrigation method is used. Not all entries were included at each locale. Only selected trials from Olton are included in this report, since yields from Hereford were greatly reduced because of severe hail damage.

The variety and advanced selection trial at Olton (Table 1) was planted April 4 and harvested on July 24. The outstanding entries in the Olton trial were: Norgold "M", Lemhi Russet (Idaho seed source) and Norgold Russet #10. Based on overall performance, other russet entries deserving mention included, Norgold Russet #10-7, AD 7377-1, MnTX 8-57-1 Ru and Norgold Russet. The relative rank of the Norgold Russet strains, based on total yield, was as follows: Norgold "M", Norgold #10-7, Norgold #7, Norgold Russet (ND), Norgold #10, Norgold #35, Norgold #19 and Norgold Russet (Neb.). Of the strains tested over the past several years, Norgold "M" is the most consistent and outstanding from season to season. Outstanding red entries in the yield trial were the check variety Red LaSoda and New Norland #13.

Advanced selections from various breeding programs were tested under Texas conditions as can be seen in Tables 2 and 3. Several of these entries performed well relative to the check varieties. Those deserving mention based on overall performance include: NDTX 8-666-1 Ru, NDTX 8-349-4 R, ATX 8-71881-2 Ru, NDTX 8-731-1 R, ND 385-4 Ru, ND 651-9 and ND 677-7 (Table 2) and ATX 7-75115-1 Ru and CS 78144-4 Ru (Table 3).

Some 147, 1979 advanced selections were tested in 1981. Of these the 56 which will be advanced in 1982 are presented in Table 4. Those deserving mention, based on overall performance, include: NDTX 9-1069-4 Ru, TX 9-649-9 Ru, NDTX 9-1068-11 R, TX 9-684-1 Ru, TX 9-655-20 Ru, NDTX 9-851-1 R, ATX 9-7738-13 Ru, ATX 9-7738-8 Ru, ATX 9-75446-8 Ru, TX 9-682-10 Ru, TX 9-657-39 Ru, ATX 9-77254-3 Ru, ATX 9-77254-16 Ru and ATX 9-7738-9 Ru. These selections represent the finest material that we have seen since the breeding program was begun.

Total yield, percent of tubers over 4 ounces, average weight per tuber, specific gravity, vigor, maturity, and general rating of 33 potato varieties or selections grown at Olton, Texas - 1981. Texas Table 1.

asoda 376.1 78.5 3.9 1.068 3.9 3.5 5.9 3.6 1.064 3.8 3.6 1.077 3.7 7.7 4.1 1.064 3.3 3.5 5.2 2.9 1.077 3.7 2.9 3.3 1.077 3.7 3.7 2.9 3.3 1.078 3.9 3.5 5.0 1.077 3.7 3.9 3.5 5.1 1.064 3.3 3.9 5.2 2.2 3.9 1.072 3.9 3.9 2.7 4.1 1.064 3.9 3.9 2.7 4.1 1.062 3.9 3.5 5.1 1.083 3.9 3.5 5.2 2.2 2.2 1.083 3.9 3.5 5.1 1.083 3.9 3.5 5.2 2.2 2.2 3.9 3.1 2.01 1.005 3.0 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Variety or Selection	Total Yield CWT/A	Percent of Tubers over 4 oz.	Average Weight/ Tuber in oz.	Specific Gravity	Vigor <u>1</u> /	Maturity <u>2/</u>	General <u>3/</u> Rating <u>3/</u>
6-344-1 R 191.4 55.0 3.3 1.069 2.4 3.8 2.	#13 Ru Ru Ru Ru Ru Ru Ru Ru Ru	240.6 376.1 320.9 320.0 316.3 311.3 311.3 316.3 316.3 316.3 269.2 269.2 244.2 244.2 244.5 244.5 244.5 244.5 244.5 251.0 221.0 221.0 221.0 200.4 194.0	88.7 7.0.9 88.7 7.0.9 7.0.0 7.	0. w.	1.068 1.072 1.072 1.083 1.064 1.065 1.063 1.063 1.063 1.063 1.069 1.069			

Continued

Texas Table 1. Continued

MNTX 8-57-1 Bu (ND)	180 1	81 8	~ /	1 066	0 0	3 0	ر بر
ND 1/3-1	187.3	0 · 0) o	1.000	7.7	5,0	າດ
140H 140H	0.701	00.00	ر س ر	0.10	- ° °	7.0	0.0
NDTX 5-15-1 Ru	1/0.2	50.1	5.6	1.073	.2.9	4.0	2.9
TXND 14-1 Ru	165.0	72.4	4.5	1.064	2.8	3.8	3,3
Bel Russ	151.0	69.3	3.2	1.077	2.8	3.7	3.0
ND 8767-10 R	111.8	70.1	4.1	1.074	2.6	3.9	3.1
c							
Average	244.8	/4.9	4.2	1.069	3.2	3.4	3.4
L.S.D. (.05)	44.7	6.6	6.0				

 $\frac{1}{2}$] = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous

 $\frac{2}{1}$ l = very late, 2 = late, 3 = medium, 4 = early, 5 = very early

 $\frac{3}{1}$ 1 = very poor to 5 = excellent

Total yield, percent tubers in 2 size grades, average weight per tuber, vigor, maturity and general rating of 20 North Dakota, Texas, Idaho-Texas and North Dakota-Texas advanced selections and 2 check varieties of potatoes grown at Olton, Texas - 1981. Texas Table 2.

Selection	Total	Percent Tubers by Number	ubers	Average Weight/			
or Check Variety	Yield CWT/A	Under 2 in.	Over 2 in.	Tuber in oz.	Vigor <u>l</u> /	Maturity $^{2/}$	General $\frac{3}{4}$
Red LaSoda	468.7	41.3	58.7				3.8
ND 677-7	467.0	49.5	50.5				. r.
NDTX 8-349-4 R	435.8	53.8	46.2	0.9	3.5	3.0	3.3
51-	332.8	40.6	59.4				3.3
ND 445-1	287.5	52.1	47.9				3.0
ND 115-21 R	282.3	68.1	31.9				3.0
NDTX 8-666-1 Ru	278.8	8.69	30.2				3.7
Norgold Russet	256.1	68.2	31.8				3.5
	250.9	59.3	40.7				3.0
ND 410-19	240.5	56.3	43.7				3.0
NDTX 671-10 Ru	235.2	50.0	50.0	_			3.0
ND 457-17	231.7	76.9	23.1				2.9
ND 606-21 Ru	216.1	89.7	10.3				2.9
ND 552-2 Ru	216.1	64.2	35.8				2.3
NDTX 8-731-1 R	212.6	41.5	58.5				3.0
12-	209.1	76.5	23.5				2.9
ND 671-2 Ru	198.6	88.9	1.1				3,3
TX 8-458-2 Ru	195.1	71.1	28.9				3.0
ND 779-4	181.2	67.8	32.2				3.0
ND 385-4 Ru	174.2	66.7	33.3				3.5
ND 728-13 Ru	130.7	79.1	20.9				2.9
NDTX 8-418-1 Ru	57.5	- 82.3	17.7				3.2

Continued

Texas Table 2. Continued

Average	252.7	64.3	35.7	4.0	3.1	3.4
L.S.D. (.05)	7.96	15.4	15.4	6.0		

3.1

 $\frac{1}{2}$ 1 = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous

 $\frac{2}{1}$ | = very late, 2 = late, 3 = medium, 4 = early, 5 = very early

 $\frac{3}{2}$] = very poor to 5 = excellent

- 207 -Total yield, percent tubers in 2 size grades, average weight per tuber, vigor, maturity and general rating of 25 advanced selections (Texas seed) from breeding programs in California, Idaho, Minnesota, Norgh Dakota, Texas and The Campbell Institute for Agricultural Research (discontinued program) and General 3/ Rating 3/ Maturity $\frac{2}{}$ / $\begin{array}{c} \text{\tt Cuu}_{\bf u} + \text{\tt u}_{\bf u} \text{\tt u}_{\bf u} + \text{\tt u}_{\bf u} \text{\tt u}_{\bf u} + \text{\tt u}_{\bf u} {\bf u} \text{\tt u}_{\bf u}_{\bf u} \text{\tt u}_{\bf u}_{\bf u} \text{\tt u}_{\bf $Vigor^{1/2}$ two check varieties of potatoes grown at Olton, Texas - 1981. Average Weight/ Tuber in oz. $\begin{array}{c} \text{$0.4$} \\ \text{$0$ 32.6 20.0 65.1 36.4 35.6 20.9 37.4 29.7 39.9 24.3 53.7 27.3 27.3 38.9 31.1 19.2 2 in. Over Percent Tubers by Number Under 80.8 59.8 80.1 83.9 94.5 90.9 46.3 72.7 61.6 68.9 56.0 63.4 80.0 34.9 63.6 64.4 79.1 62.6 70.3 2 in. 60.1 153.3 143.8 132.4 129.8 126.3 126.3 125.5 124.6 119.4 119.4 215.2 205.6 80.2 80.2 77.9 Yield CWT/A 186.4 155.1 [ota] CS 78235-10 R CS 77118-4 Rd TX Early Norgold CS 7837-18 R CS 77127-14 Red LaSoda ATX 7-75115-1 Ru Norgold Russet TX 6-001-8 W AS 433-2 CS 78144-2 R CS 76111-14 CS 78144-4 R CS 7743-24 R CS 77129-18 MnTX 8-44-5 Ru TX 7-336-26 Ru က် TX 7-341-4 Ru CS 78147-2 Check Variety CS 73105-2 R CS 78211-25 TXND 14-1 Ru Texas Table Selection NDD 358-9

19.9 16.1 5.5 36.0 9.1

61.9 61.0 43.6 28.8 12.2

Ra

NDTX 7-554-2

CS 78211-4

CS 78211-2

TX 7-157-1 Ru

74.1

Texas Table 3. Continued

Average	132.3	8.79	32.1	3.5	2.4	3.4	
L.S.D. (.05)	83.4	13.0	13.1	6.0			

3.2

 $\frac{1}{2}$ 1 = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous

 $\frac{2}{3}$ | = very late, 2 = late, 3 = medium, 4 = early, 5 = very early

 $\frac{3}{4}$] = very poor to 5 = excellent

Total yield, percent tubers in 2 size grades, average weight/tuber, vigor, maturity and general rating of 56 Idaho-Texas, North Dakota-Texas, Minnesota-Texas and Texas advanced selections (Texas seed) and 2 check varieties of potatoes grown at Olton, Texas - 1981. Texas Table 4.

Selection	Total	Percent Tubers by Number	Tubers oer	Average Weight/			
or Check Variety	Yield CWT/A	Under 2 in.	Over 2 in.	Tuber in oz.	$Vigor^{1/}$	Maturity $\frac{2}{}$ /	General <u>3/</u> Rating <u>3/</u>
- F-0	1	ي ا]		l .		1
_d>Uda 3_77266_2	-	o d		•		•	•
-007//-6							
	390.3	60°3°	30.65	4.3	າດ	3.0	3.4
TX 9-649-9 Ru		5		•			
9-1068		0				•	
-684-1 Ru	10	7.		•			
9-993-		5.		•		•	
-652 - 10		4.		•		•	•
-646-6		$\dot{\infty}$		•	•	•	
-657 - 49		7					
9-77259		6.		•	•		
TX 9-655-20 Ru		5.		•		•	•
9-820-		6					•
9-851-		2		•	•		•
9-77259		9		•			
9-657-36		4.		•			
- 656-22 Ru		$\dot{\infty}$		•	•		
9-75446		5.					
9-7738-13		9		•			
9-7738		9		•			
-581-2		4.		•			
gold Ru		5		•	•		
9-75446-8		0			•		
9-75446-9		2		•			
TX 9-682-10 Ru		3		•			
TX 9-1012-		7		•			
TX 9-652-20 Ru		5.		•			
TX 9-1015-1		7		•			
TX 9-655-23 Ru		3		•			

Texas Table 4. Continued

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.4
	3.3
~	2.8
44 % % % % % % % % % % % % % % % % % %	3.8
25.7 26.3 36.9 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	38.2
52.1 64.1 70.3 39.5 76.3 76.3 76.9 77.8 87.1 76.9 77.8 87.1 76.6 87.1 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.6 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 76.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7 88.7	61.8
207.4 198.6 198.6 188.2 186.4 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8 170.8	223.1
ATX 9-7721-1 Ru NDTX 9-867-1 Ru TX 9-649-20 Ru TX 9-657-39 Ru ATX 9-77259B-7 Ru ATX 9-77259B-7 Ru ATX 9-77259B-7 Ru ATX 9-77254-3 Ru ATX 9-77254-3 Ru ATX 9-77254-1 Ru ATX 9-7725-1 Ru ATX 9-7725-2 Ru ATX 9-7725-2 Ru ATX 9-77262-2 Ru ATX 9-77262-2 Ru ATX 9-77262-2 Ru ATX 9-77262-2 Ru ATX 9-677-1 Ru ATX 9-77262-2 Ru ATX 9-77263-9 Ru	Average L.S.D.(.05)

 $\frac{1}{2}$  1 = poor or weak, 2 = fair, 3 = medium, 4 = vigorous, 5 = very vigorous

 $[\]frac{2}{2}$  | = very late, 2 = late, 3 = medium, 4 = early, 5 = very early  $\frac{3}{2}$  1 = very poor to 5 = excellent

## VIRGINIA

Carroll P. Savage, Jr. and Martin P. Mascianica Virginia Truck and Ornamentals Research Station, Painter, Virginia

## 1981 Variety and Seedling Evaluations

General Plot Procedures and Growing Conditions. For each test the plot size and number of replications were as follows: First Year Observational Trial, 20 hill (20 foot) plots with one replication; Intermediate Trial, 25 hill (25 foot) plots with four replications; and Advanced Trial, 25 hill (25 foot) plots with four replications. All trials were planted at 3 foot row spacing on March 10 and harvested on July 6. All plots received 1200 lb. 10-10-10/ acre placed in a band at planting. TEMIK systemic insecticide was banded in the seed furrow at 3 lbs. a.i./acre. VYDATE (1 pt./acre) and FURADAN (1 pt./acre) were applied as a foliar spray on June 11 to control Colorado potato beetles. Corn borer infestation was high by June 10 in all plots and could not be adequately controlled. To control weeds 1.25 lb. LEXONE/acre was applied at drag-off (April 8). Rainfall was average to above-average at Painter during March through May. On June 18, 2.5 inches of H2O was applied to all plots to alleviate moisture stress which occurred in June. On the evening of June 18 an additional 0.9 inch of H2O was added to the plots through precipitation. Following this June 18 irrigation-rainfall, a hot, humid environment persisted. The authors feel that this environment in combination with the corn borer injury allowed for development of Bacterial Soft Rot in the stems which brought about a rapid decline in the foliage by late June.

Tubers were hand harvested and graded with a chain type grader that retained all tubers 1-7/8 inches in diameter or larger. Due to improper handling of chip samples, valid ratings could not be made.

Experimental Results. The results for the round whites within the Advanced Trial are shown in Table 1. The yield for Pungo was below traditional levels and less than that observed for Superior. This suggests that yields of the later maturing clones (Pungo) may have been supressed more by the canopy decline than were the earlier maturing clones (Superior). Top yields were attained with B6987-29 (Belchip) and LaChipper. LaChipper has a history of susceptability to air-pollution injury which implies that air quality was not a factor which affected yields at Painter during 1981.

Specific gravity was lower than usual in the Advanced and Intermediate trials with Pungo and Superior averaging 1.057 and 1.064, respectively. The "usual" specific gravity is 1.075 for Pungo and 1.070 for Superior at Painter.

The round white results for the <u>Intermediate Trial</u> are shown in Table 2. Pungo outyielded all of the unnamed clones (at 325.4 cwt/acre), but had a low specific gravity (1.058). The clones B8757-7, B8503-13, and B9140-4 had

specific gravities in the 1.070-1.075 range and yields in the 220-260 cwt./acre range. These values were close to those observed for Atlantic at Painter this year.

The results for the russet clones grown in the Advanced and Intermediate trials can be seen in Table 3. In general, yields realized with the russet clones at Painter have been somewhat lower than the round whites. Irrigation studies conducted at Painter in 1981 which contained several russet clones (data not shown) suggests that a more intensive irrigation management program may be required for larger russet yields in eastern Virginia.

Virginia Table 1. Advanced Trial, Round Whites. Characteristics of Potato Varieties and Seedlings at Painter, Virginia in 1981.

Clone	Yield, Cwt/Acre (1-7/8"+)	Specific Gravity 1.0 omitted	Tuber <u>l</u> / Shape	Vine <mark>2</mark> / Mat.
LaChipper	351.0	65	4	5 s
B6987-29 (Belchip)	337.6	63	1	, 7
B8710-1	319.7	63	4	5
B8710-16	318.9	63	4	, 7
Superior	305.7	6 <b>1</b>	5	4
B9224-6	296.9	66	5	5
B8724-2	296.8	68	5	5
B9144-5	293.7	70	5	5
			5	5 5
B9127-6 B9140-14	293.2 292.6	56 63	1	5
			2	
B8615-2	289.2	70 50		4
B9286-4	286.9	58	3	5 5
B9127-1	283.4	52	5	5
B9311-7	281.1	68	4	5
Pungo	277.9	55	5	7
Norchip	268.8	68	4	6
B9139-1	267.8	60	5	7
B8091-8	267.0	69	5	7
B7154-10	239.1	57	4	5
B9152-44	234.1	68	4	7
B9018-12	230.6	67	5	4
B8907-4	219.0	59	5	5
B8799-13	215.2	66	5	4
Atlantic	209.2	72	5	5 5
B6969-2	207.8	59	5	5
B9146-1	201.2	59	5	-
B7805-1	197.0	59	5	7
B6987-184	178.5	69	1	7
B8599-42	153.9	67	4	5
L.S.D. (0.05)	36.3	-	•	-
L.S.D. (0.01)	48.0	-	-	-

1/Tuber Shape: 1=round (spherical); 2=most round; 3=round to oblong; 4=most oblong; 5=oblong; 6=oblong to slightly long; 7=oblong to long; 8=most long; 9=long (cylindrical).

2/Vine Maturity: 1=very early; 3=early; 5=medium; 7=late; 9=very late;
2, 4, 6, 8=intermediate stages.

Virginia Table 2. Intermediate Trial, Round Whites. Characteristics of potato varieties and seedlings at Painter, VA 1981.

	Yield,	Specific	1.1	0.4
	Cwt/Acre	Gravity	Tuber1/	Vine2/
Clone	(1-7/8" +)	1.0 Omitted	Shape	Mat.
Pungo	325.4	58	5	7
B9384-6	280.2	62	5	5
B9335-3	276.5	68	5	7
Superior	269.8	66	5	5
B9423-4	266.4	61	4	7
B6986-2	260.6	62	5	7
B8757-7	258.9	70	5	7
B9130-24	252.2	69	5	6
B9140-4	238.6	75	4	5
B9282-12	231.2	63	4	-
B9445-2	227.2	60	5	5
B9473-9	223.9	57	5	5
B8503-13	223.2	75	5	6
Atlantic	221.7	75	5	7
B8706-7	221.0	66	5	7
B9140-6	218.5	65	5	7
B9455-3	216.6	71	5	7
B9473-2	213.3	57	5	4
B9497-2	212.9	74	5	5
B9489-2	211.3	77	1	7
B7151-4	207.5	62	4	9
B9335-60	196.3	66	4	5
B9361-1	195.7	76	1	5
B9140-17	194.4	67	5	7
B9409-1	193.4	71	5	7
B9336-24	188.3	70	5	5
B9140-32	187.2	75	4	7
B9335-7	183.1	69	4	4
B9439-4	181.8	66	5	5
B9335-35	180.3	78	4	5
B9481-2	178.5	-	5	5
B9467-1	178.3	71	5	
B9344-5	178.2	70	5	5 5
B9148-4	177.1	71	5	7
B9337-12	174.7	66	5	5
B9340-13	165.7	72	4	9
B9279-9	160.7	67	5	-
B8477-17	148.3	61	5	7
B9335-15	133.7	68	5	5
B8751-6	130.2	69	5	9
	05) 30.9	•	-	_
	01) 40.8			
,				

 $[\]frac{1}{2}$  See Table 1.  $\frac{2}{2}$  See Table 1.

Virginia Table 3. Selected characteristics for Russet clones grown in the Advanced and Intermediate Trials at Painter, Virginia in 1981.

	Yield, Cwt/Acre	Specific Gravity	Tuber1/	Vine <u>2</u> /	Tuber3/
Clone	(1-7/8"+)	1.0 omitted	Shape	Mat.	Conf.
		Advanced Trial			
B8977-2	223.5	54	4	9	4
B9137-9	222.7	<b>5</b> 9	8	5	4
B7583-6	212.1	64	8	7	7
Norgold Russet	211.3	55	2	5	5
B8943-4	191.4	66	8	7	4
B9147-3	164.2	54	8	7	7
B8972-1	144.6	68	8	5	5
B8833-6	128.8	70	8	5	7
L.S.D. (0.05)	39.4	-	-	-	~
L.S.D. (0.01)	53.6				
	]	Intermediate Tri	al		
B8934-4	243.9	59	4	7	8
B9419-6	220.7	66	2	5	5
Norgold Russet	197.5	58	4	5	4
B9164-1	185.9	75	8	7	8
B9398-2	185.9	70	3	5	6
B9217-7	168.4	6 <b>2</b>	4	5	5
B9419-1	145.2	65	8	5	7
B9399-27	116.2	56	2	5	3
B9434-18	81.3	71	8	5	6
B9597-7	81.3	68	2	5	7
B9221-14	69.7	58	8	5	4
L.S.D. (0.05)	19.0				
L.S.D. (0.01)	30.8				

¹/ See Table 1.

^{2/} See Table 1.

^{3/} Tuber Conformation: 1=very poor; 5=fair; 7=good; 9=excellent.

M. W. Martin and N. M. Holstad

Two regional trials were conducted in Washington in 1981, one in a commercial potato circle, south of Prosser, and the other on the WSU research farm near Othello, under solid set irrigation. At Prosser, 180 lbs/a each of NPK + 5 1bs Zn were plowed down, 50 1bs N, 20 1bs P, 20 1bs K, 1 1b Zn were applied at planting and 225 lbs N/a applied in irrigation water during the season. Very vigorous plant growth resulted. The plot was planted April 24. For insect control applied 3 lbs ai/a Thimet before planting and 3 lbs ai/a Temik at emergence, followed by a Monitor spray in early August. For weed control applied 2/3 pt/a Sencor + 1/2 gal/a Eptam through the sprinkler system at layby. For disease control the field was airplane sprayed with Dithane at layby followed by 3 applications of Duter in the irrigation water. A little over 30 in. of irrigation water was applied during the season. We had a cool spring and mild summer which was ideal for potato growing, except for a few days of high temperature stress in early fall. Vines were beat off Sept. 9, as early dying was becoming very evident in susceptible cultivars. The plots was harvested Sept. 15. Results are shown in Tables 1 and 2.

At Othello 360 lbs N, 200 lbs P and 250 lbs K were plowed down. Planting was done April 15. Eptam at 1/2 gal/a was applied at layby for weed control. Insect control was accomplished by 2 sprays of Monitor and 2 sprays of Imidan. The plot was sprayed once with the fungicide Kolospray. The plot was dug on Oct. 23, after susceptible cultivars had been dead for some time from early dying diseases. Results are shown in Tables 3 and 4.

With the exception of AD74135-1, we have seen all the regional trial entries in numerous trials over the past few years and AD74135-1 was included in 6 other trials in 1981. Based on their performance in regional and other trials, we compiled the following "performance profile" narratives to describe the potential value and use of these lines in the Northwest.

Russet Burbank: Looked better than usual in 1981, had good yield and a fair percent No. 1's, but still rougher than any other line in trial and had serious brown center and internal brown spot. It had fair solids, stored well, and fried well except for sugar ends. It is susceptible to all the early dying diseases but has good resistance to scab and Sencor damage. It had very little shatter bruise but some blackspot bruising. Hard to replace but has many problems.

<u>Lemhi</u>: Very nice oblong russet with good yield and high percent No. 1's. Few external or internal problems except for its serious blackspot susceptibility. It seldom shows as much hollow heart as Russet Burbank in Washington trials, except under excessive irrigation. It had good solids, low sugars and fried well, but often had limp fries. It did not store as well as Russet Burbank, sprouted sooner and had some storage rot problems. It has good resistance to scab but is susceptible to all the early dying diseases and is not as resistant to Sencor damage as Russet Burbank. <u>Because of bruise susceptibility will find limited use</u>, mostly for processing when it can be taken directly from field to factory.

Norchip: An ordinary, round, white chipper with fair yield and good percent No. 1's. It had few external or internal problems. Had only fair solids but fried well. Broke dormancy and sprouted early but didn't have storage rot. Appeared to have resistance to scab and Sencor but was very susceptible to all early dying diseases. Had very little shatter bruise but some blackspot. Has limited use in West, for chipping industry.

WnC521-12: A blocky chipper or french-frying line with a light net skin, should be compared with Kennebec. Produced a good yield and high percent No. 1's, set low numbers of tubers which got very large so had a high percent over 12 oz. Had few external or internal blemishes except for an extreme tendency to shatter bruise. Had high solids early in the season. Tubers were very smooth and did not produce second growths. They occasionally had serious hollow heart. It had very good solids, low sugars and produced excellent fries. Stored fairly well but was very susceptible to bacterial soft rot. Susceptible to scab and the early dying diseases, but less so than Kennebec. Because of susceptibility to bruising and scab may not be acceptable, but should be looked at for early season processing.

WnC672-2: A round, flat, medium-russeted chipping line that might have some use for french fries because of number of tubers over 12 oz. Good yields and high percent No. 1's. Tubers did not produce many second growths but were often rough in shape. Seldom much hollow heart but had serious weakness to internal necrosis and occasionally had serious shatter bruising. It had good solids, very low sugars and made excellent fries, although many were too short. Stored fairly well but quite susceptible to bacterial soft rot and fusarium dry rot. Susceptible to scab and early blight, but had some resistance to other early dying diseases. It's somewhat sensitive to Sencor. Because of susceptibility to bruising, scab and internal problems and its short french fries it will probably have limited acceptance as a cultivar in the Northwest.

AD7267-1: Had long tubers with a medium-russet skin. Yielded very well in 1980 but didn't do as well in 1981. Had large tubers and high percent No. 1's. Had very low solids, high sugars and fried very poorly. Seldom showed second growth but tended to have rough shape. Occasionally had hollow heart and had rather serious internal brown spot in one regional trial. Stored fairly well but often had bacterial soft rot, thumb nail cracking and blackspot. Susceptible to scab, somewhat sensitive to Sencor, and susceptible to all the early dying diseases. Because of its poor processing quality, internal, bruising and rot problems will probably not be used in the Northwest.

A72545-2: Oblong, medium-russeted tubers. Yielded very well with high percent No. 1's and high proportion of tubers over 12 oz. Tubers had few external blemishes except for rather serious amount of blackspot bruising and thumb nail cracking. Occasionally had serious internal necrosis. Had acceptable solids, low sugars and fried well on first appearance. The most serious deficiency of this line is its extreme amount of after-cooking darkening. It stored well with not much rotting. Very susceptible to scab and susceptible to early blight, but good resistance to Verticillium and Sclerotinia wilts and Sencor. Because of after-cooking darkening and susceptibility to scab and bruising will probably not be commercially grown.

A72685-2: Oblong, medium-russeted tubers. Very good yields, good percent No. 1's, rather large proportion over 12 oz. Seldom produced knobs but tended to have rough shape. Occasionally had rather serious hollow heart and internal brown spot. Had good solids, rather low sugars, and produced fair fries but they were usually limp, sometimes variable in color with sugar ends and developed some after-cooking darkening. Did not store well, had short dormancy and shriveled badly. Had some storage rot and blackspot bruising, about like Russet Burbank. Susceptible to scab, somewhat sensitive to Sencor, susceptible to early blight, but some resistance to Verticillium and Sclerotinia wilts. Because of its poor storability, handling and frying characteristics and susceptibility to scab it will probably not be acceptable as a processing cultivar in the Columbia Basin. It might have some fresh market potential because of its high productivity.

AD7377-1: Long, heavy-russeted tubers. Produced very high yields in 1980 but didn't do so well in 1981. Had good percent No. 1's with few knobs but had a rough shape, often being flattened and pear shaped. Seldom had hollow heart but often troubled with internal brown spot and other internal blemishes. It had very low solids and high sugars and did not fry well. Had less blackspot than Russet Burbank but showed some thumb nail cracking. Very resistant to scab but susceptible to the early dying diseases and quite sensitive to Sencor. Because of its poor cooking quality, roughness and poor storability, will probably not be used in the Northwest.

AD74135-1: Long, medium-russeted tubers. Produced a very good yield with good percent No. 1's and moderate proportion over 12 oz. Had a nice external appearance but had a weakness to growth cracking and internal necrosis. Had a strong tendency toward pear shape. Rather low solids, fairly high sugars and produced fries that were barely acceptable. Had short dormancy, some thumb nail cracking and blackspot bruising. Good scab resistance but is very susceptible to all early dying diseases. A high yielding, nice looking line but its poor storability, processability and bruise susceptibility will probably make it unacceptable. Worthy of further evaluation.

In addition to the regional trials we screened through hundreds of other promising new lines coming out of U.S. and Canadian breeding programs and took a thorough look at new cultivar releases. Most show little potential for use in the Northwest. Following are "performance profiles" for the most interesting or promising of the new cultivars.

Nooksack: A processing or fresh market cultivar with blocky, medium-russeted tubers that are smooth and often flattened, sometimes having a pear shape. It produces few stems and tubers, so tubers generally large in size. Seldom has external or internal blemishes but will growth crack if irrigation rates are high. Because of extreme dormancy needs to be warmed for an extra long period before planting, which sometimes leads to seed piece rot and poor stands. Has few eyes so large seed pieces are needed. It usually yields less total than Russet Burbank but has high percent No. 1's and often yields more total U.S. No. 1's. Has an unusual, upright bushy plant and requires less irrigation or fertilization than most cultivars, especially Russet Burbank.

Has high solids, low sugars and produces excellent fries. Can not be harvested as early cultivar, must be allowed to mature and suberize properly. Very little bruising and stores well, but some storage rots. Very resistant to scab and Sencor and some resistance to Colorado potato beetle but is susceptible to all the early dying diseases, although not as much so as Russet Burbank. Because of serious internal problems being experienced in Russet Burbank and other cultivars and the fact that more growers are learning how to get a good stand of Nooksack with resulting good yields, this cultivar will continue to grow in importance.

Targhee: Oblong tuber with heavy russeting that often produces elephant skin. Produces medium to good yield with medium percent No. 1's. Seldom produces second growths but tends to be rough and non-uniform in size or shape and sometimes has growth cracking. Occasionally has serious hollow heart and often has serious blackspot or shatter bruising. It is susceptible to leafroll net necrosis. It has only fair solids, tends to build up sugars in storage and generally produces rather poor french fries. It stores fairly well but has rather short dormancy and soft rots quite easily. It has excellent resistance to scab, is not very sensitive to Sencor and has some resistance to Verticillium, but is susceptible to other early dying diseases. Has only medium yield, storability and cooking qualities and serious bruising and internal problems so not good for processing. Might have limited potential for a fresh market.

Butte: Unless fertilized and watered quite heavily and grown over a long season does not produce good yields and will produce pear shaped tubers. Tubers are long and smooth with a medium-russeted skin and few external or internal blemishes, so has high percent No. 1's. Has good solids and baking quality but has high sugars and dark fries after storage. Sprouts early and often has shatter bruise and storage rot problems. Has good scab resistance but is very susceptible to early dying. Should be evaluated in the Columbia Basin for fresh market potential, being sure to add sprout inhibitors if it is stored.

Russette: Produces low yields of small oblong, flattened tubers with heavy russeting. Has a serious weakness to growth cracking and often has elephant skin and hollow heart. It has long dormancy and stores well. Has good solids and eating quality but builds up sugars in storage which produce dark fries. It is somewhat susceptible to scab and is susceptible to early dying. Will probably have limited use in the Northwest because of low yields and susceptibility to diseases.

BelRus: An attractive cultivar which produces a low yield of long, heavy-russeted tubers with few external or internal blemishes except a strong tendency toward elephant skin, especially on lighter soils. It is a good eating potato. Is susceptible to scab and early dying. Will probably find very limited use in the Northwest because of low yields and disease susceptibility.

Allagash Russet: An attractive cultivar with low yields of smooth, oblong, russet tubers with few external or internal blemishes except some blackspot bruising. It has fair cooking quality similar to Norgold. Is very susceptible to scab and early dying. Probably will not find a place as a fresh market line in Northwest because of low yields and disease susceptibility.

Norgold Russet: Has become established as a line to beat for early fresh market because it has the desired oblong russet type, is very early, has few internal problems, and can be handled and shipped with few bruising or rot problems. It is not high yielding, has serious blackleg and early dying problems, has low solids and only marginal culinary quality but its scab resistance and attractive appearance will help it retain its popularity.

Norgold M: One of the better of a series of Norgold selections made in Nebraska which have larger plants that are not so susceptible to early dying diseases, and consequently, usually have large tubers and higher yields. Unfortunately, this more vigorous top growth seems to cause more roughness and hollow heart than is found in standard Norgold. In most of our trials though, Norgold M has been clearly superior to Norgold. This selection and some of its sister selections should be looked at more extensively by Norgold growers in the Columbia Basin.

LC-1: An interesting new line picked up a few years ago as a rogue in a seed field. It has a small, compact plant which produces a medium yield of smooth, oblong, medium-russeted tubers that do not get very large and usually have a pear shape. It is an early-maturing line that is very susceptible to early dying diseases but has a good scab resistance. Has few external or internal blemishes and has good bruise resistance. It has a storage rot problem but generally has had good storability, solids and cooking qualities in preliminary trials. As this line becomes available it deserves more extensive trials.

1981 Western Regional Variety Trial on Sunheaven Ranch, south of Prosser, tuber, growth and productivity factors. Washington Table 1.

	` -			, ,		1.1		Total	#1 over	Under	Other	
	Main ^I		Skin	Emerge 3/	%	E. Die"	Total	US #1	12 oz	4 oz	culls	Sp. Gr.
Cultivar	Use	Shape ² /	Type	Rating	Stand	Stand Resist	cwt/a	cwt/a(%)	cwt/a(%)	cwt/a(%)	cwt/a(%)	(1.0)
Rus Burbank FF, FM	· FF, FM	Lg	Med Rus	4.5	86	1.4	099	511(77)	159(24)	78(12)	72(11)	78
Lemhi	FF	0b1	Hvy Rus	3.8	95	1.3	693	570(82)	233(34)	(6) (8)	58(8)	84
A72545-2	FF, FM	B1	Med Rus	3.0	95	3.7	711	637 (90)	345 (49)	54(8)	20(3)	74
A72685-2	FF, FM	B1	Hvy Rus	3.3	89	3.7	806	744(82)	321(35)	83(9)	80(9)	82
AD74135-1	FF, FM	Lg	Med Rus	2.5	96	1.7	713	580(81)	249(35)	75(11)	58(8)	72
AD7267-1	FM	Lg	Med Rus	3.5	96	1.7	582	505(87)	266 (46)	38(7)	37(6)	99
AD7377-1	FM	0b1	Med Rus	4.0	90	1.3	588	509(87)	134(23)	51(9)	29 (5)	65
Norchip	Chp	Rnd	Wh	3.3	86	1.0	584	489 (84)	69(12)	55(9)	40(7)	9/
WnC521-12	Chp, FF	B1	Lt Rus	3.5	85	2.3	269	598(86)	360(52)	56(8)	43(6)	88
WnC672-2	Chp	Rnd	Med Rus	4.8	66	3.7	675	566(84)	319(47)	(4)65	(6)09	81
1/ FF = Fror	Joh Fryin	O FM = Fr	rech Marke	Chn = C	hinner							
7/ 1	OF 1 -	Ob 1 2 2 D	1 - D1 201cm	Dad - Do	11777							
3110T = BT /7	≥, UUL -	ODTOIRS, D.	T - DIOCKY	, Mild - NO	plin		1		,			
2 / Decorporate	M POTON	Com 96 mg	15 7 1 5 m	ء]ں.	101	promo roc	5 0000	o Piner II	and pagerner	900		

4/ Early dying resistance rated just before harvest; 1 = very susceptible, plants dead, 5 = very resistant, no dying 3/ Emergence rated May 26, using 1-5 scale; 1 = slow, poor emergence, 5 = rapid, good emergence

1981 Western Regional Variety Trial on Sunheaven Ranch, south of Prosser. tuber defects. Washington Table 2.

	, c		,	딢	xternal I	External Defects (%) ^L	) _T (	T	Internal D	Internal Defects $(%)^{1/}$		
	Scab ^{2/}	Bruising ^{3/}	ing ^{3/}	Growth	Second	Other	No Ext	Hollow	Int Br	Other Int	No Int	
Cultivar	Rating	Blksp	Shat	Crack	Growth	Malform	Defects	Heart	Spot	Defects	Defects	
Rus Burbank	0.7	2.7	1.9	7	11	13	75	21	2	80	71	
Lemhi	0.3	3.9	1.9	ന	П	5	91	0	П	5	96	
A72545-2	2.6	2.8	2.4	0	0	Н	66	1	4	7	88	
A72685-2	2.3	2.6	1.6	m	∞	œ	83	П	11	11	77	
AD74135-1	0.3	2.2	1.0	0	7	8	88	0	4	7	89	
AD7267-1	1.3	2.8	2.0	2	2	13	83	1	10	8	81	
AD7377-1	0.3	2.4	2.1	က	က	15	80	1	7	13	80	
Norchip	0.0	2.4	1.7	Н	г	6	86	П	5	17	78	
WnC521-12	2.0	1.9	3.2	6	0	4	85	0	7	19	75	
WnC672-2	1.5	1.8	3.7	5	7	2	89	ന	14	7	92	

Rated on 1-5 scale; 1 = no bruising, Tendency toward blackspot or shatter bruising determined by motor-driven hammer. 1/ Based on four 25-tuber samples (one from each rep)
2/ Scab rated on 0-5 scale; 0 = no scab, 5 = very severe common scab
3/ Tendency toward blackspot or shatter bruising determined by motor-

5 = severe bruising

Washington Table 3. 1981 Western Regional Variety Trial at Othello, tuber, growth and productivity factors.

Cultivar	Main ¹ / Use	Shape	Skin Type	% Stand	E. Die 2/ Resist	Total cwt/a	Total US #1 cwt/a(%)	#1 over 10 oz cwt/a(%)	Under 4 oz cwt/a(%)	Other culls cwt/a(%)	Sp. Gr. (1.0)
Rus Burbank Lemhi	FF, FM FF	다 8 8	Rus Rus	98	3.5	480 631	294(61) 536(85)	138(29) 294(47)	90(9)	96(20) 29(5)	81 83
A72545-2 A72685-2	FF, FM FF, FM	Lg Obl	Lt Rus Rus	86 79	3 4	720 713	613(85) 539(76)	396(55) 335(47)	67(9) 77(11)	41(6)77(11)	81 82
AD74135-1	FF, FM	E F	Rus	85	3	730	525(72)	318(44)	85 (12)	120(16)	77
AD7267-1 AD7377-1	FM FM	L S B	Rus Rus	95	നന	651 655	562(86) 482(74)	388(60) 284(43)	45(7) 83(13)	44(7) 90(14)	70
Norchip WnC521-12	Chp Chp, FF	Rnd Obl	Wh Buff	86 95	3.5	425 643	334(79) 514(80)	63(15) 318(49)	76(18) 65(10)	15( 4) 68(11)	92 90
1/ FF = French Frying, FM = Fresh Market, Chp = Chipping	ch Frying,	FM = Fres	sh Market,	Chp = (	Chipping	54.1					

2/ Rated late August on 1-5 scale; 1 = dead, 5 = no plant dying

Washington Table 4. 1981 Western Regional Variety Trial at Othello, tuber defects.

		External	al Defects $(%)^{1/}$	(%)1/			Internal	Internal Defects 1/	
	${\tt Blspt}^{2/}$	Growth	Second	Other	No Ext	Hollow	Int Br	Other Int	No Int
Cultivar	Bruise	Crack	Growth	Malform	Defects	Heart	Spot	Defects	Defects
	,	í	4	,	i	,		1	
Rus Burbank	2.1		6	12	78	0	04	11	64
Lemhi	က	1	2	1.5	95	0	ო	m	
A72545-2	1.9	2	c	0.4	96	3	26	0	
A72685-2	2.1	2	7	1.8	89	e	1.5	5	80
AD74135-1	3.2	7	1.5	8	83	0	17	0	
AD7267-1	2.2	0.5	2	2.5	93	0	3	9	96
AD7377-1	1	1.5	Э	7	89	0	17	0	84
Norchip	9.0	0	0	1	26	0	8	5	87
WnC521-12	1.8	7	0.5	9	68	0	9	5	68

Rating of 3 or above is serious 1/ Based on four 25-tuber samples (one from each rep)
2/ Blackspot bruising visual ratings; 1 = trace, 5 = very severe.

## WEST VIRGINIA

R. J. Young

## Test For Reaction To Phytophthora Infestans Potato Race-1,4

Late Blight Trial 1981. The 1981 late blight trial was conducted on the West Virginia Agriculture and Forestry Research Farm located at Reedsville, West Virginia. The farm is located at 1760' on atkins loam soil. Rainfall was abundant from March through July, averaging seven inches per month. August was dry with less than one inch of precipitation recorded. More normal levels of about three inches were recorded in September. Temperatures were near normal throughout the season. Test clones were hand planted on May 22 into preformed rows. Spacing between rows and between plants within rows measured 90 cm (36 inches), and about 23 cm (9 inches), respectively. Fertilizer and soil insecticides were incorporated into furrows at rates determined by soil test and Mfg. recommendation, respectively. Potato foliage was sprayed periodically with insecticide for maintenance. No fungicides were applied. were evaluated on the basis of either five or eight hill non-replicated plots. Katahdin was planted into the outside boarder rows and into every third row throughout the plot, serving as inoculator-plants. These 'inoculum-source-plants' were inoculated with a suspension of zoospores/ sporangia of P. infestans race-1,4 on July 29, 1981. Late blight symptoms developed slowly because of lower than normal precipitation through August. Evaluations were made on August 13 and again on August 20, 1981. Plants were determined susceptible or immune. An immune score indicates that no late blight symptoms were observed. Because of infrequent and low levels of precipitation through August, the possibility of escape should be considered. Consulting the West Virginia Report for 1979, 1980, and 1981, should give the reader a better idea of the reaction of specific clones to various races of P. infestans. The reaction of the andigenia material obtained from the Cornell and Agriculture Canada Breeding Programs to three races of P. infestans should be noted. No symptoms were observed in the clones tested in 1981 to race-1,4. In the 1980 test only the Agriculture Canada material was available for testing, and no symptoms were observed to race-0 of P. infestans. In 1979, when tested against race-1,3,4, five of 10 clones (Tarn) showed no symptoms, whereas four clones showed good polygenic resistance and one was susceptible. Poor sporulation also was noted when lesions developed on the andigenia material. See West Virginia table 1 for details of the 1981 test.

West Virginia Table I. Evaluation of seedling clones and varieties for resistance to Race - 1,4 Phytophthora infestans, 1981.

Field No.	Pedigree	Disease Reaction	Comments
	West Virginia Seed Stocks	5	
1501	Abnaki (R _O )	Susc.	Excellent sporulation
1502 1503	Alamo (R  ) Boone (R  )	Susc. Susc.	Good spores Good spores, mod. multi., eb. susc.
1504	Calrose (R _n )	Immune	No Ib., eb. susc.
1505	Cascade	Susc.	Fair spores, eb. susc.
1506	Cherokee (R ₁ )	Susc.	Good spores
1508	Irish Cobbler (R _O )	Susc.	Good lesions with spores tips. 95% defoliated
1509	Katahdin (R _o )	Susc.	Good to exc. spores
1570	Kennebec (Rĭ)	Susc.	Good spores
1511	Merrimac	Susc.	Good spores
1512	Mohawk	Susc.	Good spores
1513	Nampa	Susc.	Good spores
1514	Norland (R _o )	Susc.	Only tips left. Good lesions with spores
1515	Ona	Susc.	Exc. sporulation
1517	Penn Chip (R ₂ )	Immune	Good foliage, no eb.
1718	Pentland Ace (R ₃ )	lmmune	No lb., some eb.
1719	Russet Burbank	Susc.	Exc. sporulation
1720	Russet Rural	Susc.	Exc. sporulation
1721	Saco	Susc.	Good sporulation, good folmodlow multi-
1522	C	C	genic
1522 1523	Superior (Reg.)	Susc.	Good spores
1525	Superior (late) (R _n ) B3682 <del>-</del> WVI (R ₂ , R ₃ , R ₄ )	Immune	No lb., no eb. No lb., mod. eb.
1525	$B3720-WV4 (R_n)$	lmmune Immune	No lb., good fol.
1527	B5662-WV4 (R _n )	Immune	No lb., no eb.
1528	B5602-WV13 (R _n )	Immune	no lb., no eb.
1529	BR5991-WV16 (R _n )	Immune	No lb., sl. eb., good fol.
1530	BR5991-WV21 (R _n )	Immune	No lb., no eb., exc. fol.
1531	B6026-WV5 (R _n )	Immune	No Ib., mod. eb., good fol.
1532	B6028-WV6 (R _n )	Immune	No lb., some eb.
1533	B6039-WV2 (R _n ')	Immune	No lb., exc. fol., sl. eb.
1534	B6039-WV6 (R _n )	Immune	No lb., some eb., good fol.
1535	B6039-WV9 (R _o )	Susc.	Poor spores, exc. fol. high multigenic resis- tance
1536	B6043-WV6 (R _n )	Immune	No lb., good fol., sl. eb.

West Virginia Table I. (Continued)

Field No.	Pedigree	Disease Reaction	Comments
1537	B6086-WV21 (R ₁ , R ₂ , R ₃ )	Immune	No lb., good fol., no eb.
1538	B6653-WV7 (R _n )	Immune	No lb., some eb. Good spores, modlow multigenic
1539	B6655-WVI	Susc.	
1540	B6667-WVI	Susc.	Good to exc. spores,  low multigenic res.,  Sebago type
1541	B6928-WV 4	Susc.	Good spores. 20%  defol., mod. multi- genic resistance
1542	B6935-WV2 (R _n )	Immune	No lb., some eb. Good spores, modlow multigenic resistance, Sebago type
1543	B6949-WV3	Susc.	
l 545	B6960-WV2	Immune	No lb., susc. eb. Good spores, modlow multigenic resistance
l 546	B6975-WVI	Susc.	
1547	B6988-WVI0	Susc.	Good spores, slmod.  multigenic resistance,  similar to Kennebec
1549	B6994-WV2	Susc.	Good spores, low multi- genic resistance
550	B7019-WV1	Immune	No lb. Good spores, low multi- ple resistance
55	B5141 <b>-</b> 6 (Lenape)	Susc.	
1553	NY59 (R _o )	Susc.	Good lesions spreading with good sporulation, mod. multigenic resis- tance
1554	M297	Susc.	Exc. sporulation No lb. Good lesions and spores
1555	3R _c -8 (R ₂ )	Immune	
1556	Green Mtn. (R _o )	Susc.	
1557	Norgold Russet	Susc.	Good spores
1585	1563 _c -14 (R ₄ )	Susc.	Good spo <b>re</b> s
	Seed Stock Agriculture Ca	nada	
1634	Green Mtn.	Susc.	Good spores and lesion dev. Good les. and spores
1632	Libertas	Susc.	
1645	F72090	Susc.	
1642	F73008	Immune	No lb., good fol., sl. eb. Good lb. and eb., good spores
1641	F73092	Susc.	
1638	F73099	Susc.	Good spores Exc. sporulation Good spores Exc. sporulation No lb., eb. susc.
1640	F73104	Susc.	
1639	F74047	Susc.	
1643	F74117	Susc.	
1644	F74123	Immune	

West Virginia Table I. (Continued)

Field No.	Pedigree	Disease Reaction	Comments
1637	F75077	Susc.	Good les. dev. and
1631	F75114	Susc.	spores Good multiple resistance
1648	F76021	Susc.	_
1633	F76054	Susc.	Mod. multiple resistance
1635	F76076	Susc.	Mod. multiple resistance
1647	F77002	Immune	No lb., good fol.
	NE 107 Seed Stocks		
1689	Atlantic	Susc.	_
1577	Bake King	Susc.	Good spores
438	Batoche	Susc.	Good sporulation
421	Belchip	Susc.	Exc. sporulation
1695	Belleisle	Susc.	-
423	BelRus	Susc.	Good-exc. sporulation
418	Buckskin	Susc.	Good spores
444	Butte	Susc.	Good spores
1682	Campbe  -	Susc.	-
430	Campbell-12	Susc.	Good spores
1568	Campbell-13	Susc.	Good spores
454	Centennial Russet	Susc.	Good-to-exc. sporulation
432	Chippewa	Susc.	Good spores
1576	Croatan	Susc.	Good spores
434	Denali Craan M+n (D)	Susc.	Good spores
1697 420	Green Mtn. (R _o ) Hudson	Susc. Susc.	Exc. sporulation Exc. sporulation
448	I. Cobbler (R _O )	Susc.	Exc. sporulation
414	Katahdin (R _o )	Susc.	Good spores
416	Kennebec (R _I )	Susc.	Good spores
447	Lemhi	Susc.	Good sporulation
415	Michibonne	Susc.	Good spores
1686	Michimac	Susc.	_ '
436	Norchip	Susc.	Good spores
433	Norland	Susc.	Good spores
1699	Peconic	Susc.	-
1687	Penn 71	Susc.	-
	Pungo	Susc.	-
428	Redeau	Susc.	Good sporulation
407	Rosa	Susc.	-
412	Russet Burbank	Susc.	Good sporulation
1583	Russette	Susc.	Good spores
446	Shepody	Susc.	Good sporulation
429	Superior	Susc.	Good sporulation
1581 439	Surchip	Susc.	Good sporulation
439 442	Tobique Wauseon	Susc. Susc.	Good sporulation Good sporulation
1680	AF92-3	Susc.	Susc. to eb.
413	AF 186-5	Susc.	Susc. to eb.
424	AF201-25	Susc.	Good spores

West Virginia Table I. (Continued)

AF330-  B6987- 84   Susc. Good sporulation	Field No.	Pedigree	Disease Reaction	Comments
1691	425	AF330 <b>-</b> 1	Susc.	_
402   B8086-3   Susc.   Good sporulation		B6987-184		Good sporulation
1627	402		Susc.	Good sporulation
457	1625	B8934 <b>-</b> 4	Susc.	
BR7088-18	1627	B8972 <b>-</b> I	Susc.	Exc. sporulation
Susc.   Good sporulation	457	BR5991-WV16	lmmune	No lb. or eb.
449         C7232-4         Susc.         Good to exc. spores           1690         C74109-8         Immune         Susc. eb.           409         CA02-7         Susc.         Good spores           417         CD106-16         Immune         Eb. susc.           451         CF7353-1         Susc.         Good sporulation           401         CF7523-1         Susc.         Good sporulation           459         CF7615-4         Susc.         Good sporulation           460         CF7719-6         Immune         No Ib., eb. susc.           467         CF7722-19         Susc.         Good spores           465         CF7829-4         Immune         No Ib., good fol., eb. susc.           462         CF72107-15         Immune         No Ib., good fol., sl. eb. susc.           468         CF7127-3         Susc.         Exc. sporulation           1684         F67128         Susc.         Very susc. eb.           445         F68036         Susc.         Good sporulation           458         F96026         Susc.         Good sporulation           458         F96026         Susc.         Good lesions and spores           450         MN8224 <t< td=""><td>441</td><td>BR7088-18</td><td>Immune</td><td></td></t<>	441	BR7088-18	Immune	
1690	1694	BR7093-23	Susc.	Good sporulation
409         CA02-7         Susc.         Good spores           417         CD106-16         Immune         Eb. susc.           451         CF7353-1         Susc.         Good sporulation           401         CF7525-1         Susc.         Good sporulation           459         CF7615-4         Susc.         Good sporulation           460         CF7719-6         Immune         No Ib., eb. susc.           467         CF722-19         Susc.         Good spores           465         CF7829-4         Immune         No Ib., good fol., eb. susc.           465         CF72107-15         Immune         No Ib., good fol., eb. susc.           468         CF77127-3         Susc.         Exc. sporulation           1684         F67128         Susc.         Very susc. eb.           445         F68036         Susc.         Good sporulation           458         F96026         Susc.         Good sporulation           422         G6880-1         Susc.         Good lesions and spores           450         MM8224         Susc.         Good spores           450         MM8224         Susc.         Good spores           1586         AF236-1         Immune <td>449</td> <td>C7232-4</td> <td>Susc.</td> <td>Good to exc. spores</td>	449	C7232-4	Susc.	Good to exc. spores
417	1690	C74109-8	lmmune	Susc. eb.
451         CF7523-1         Susc.         Good sporulation           401         CF7523-1         Susc.         Good sporulation           459         CF7615-4         Susc.         Good sporulation           460         CF7719-6         Immune         No Ib., eb. susc.           467         CF7722-19         Susc.         Good spores           465         CF7829-4         Immune         No Ib., good fol., eb. susc.           460         CF72107-15         Immune         No Ib., good fol., sl. eb. susc.           462         CF72107-3         Susc.         Exc. sporulation           1684         F67128         Susc.         Good sporulation           445         F68036         Susc.         Good sporulation           458         F96026         Susc.         Good sporulation           422         G6880-1         Susc.         Good lesions and spores           450         MN8224         Susc.         Good sporulation           410         W718         Susc.         Good sporulation           Maine and Campbell Soup Seedling Selections           1586         AF236-1         Immune         No Ib., eb. susc.           1589         AF398-5         Susc.	409	CA02-7	Susc.	Good spores
401         CF7523-I         Susc.         Good sporulation           459         CF7615-4         Susc.         Good sporulation           460         CF7719-6         Immune         No lb., eb. susc.           467         CF7722-19         Susc.         Good spores           465         CF7829-4         Immune         No lb., good fol., eb. susc.           462         CF72107-15         Immune         No lb., good fol., sl. eb. susc.           468         CF77127-3         Susc.         Exc. sporulation           1684         F67128         Susc.         Very susc. eb.           445         F68036         Susc.         Good sporulation           458         F96026         Susc.         Good-exc. sporulation           422         G6880-1         Susc.         Good lesions and spores           450         MN8224         Susc.         Good sporulation           410         W718         Susc.         Good sporulation           410         W718         Susc.         Good spores           1588         AF307-5         Susc.         Good spores           1589         AF398-5         Susc.         Good spores           1565         BR5967-7         <		CD106-16	lmmune	
459         CF7615-4         Susc.         Good sporulation           460         CF7719-6         Immune         No lb., eb. susc.           467         CF7722-19         Susc.         Good spores           465         CF7829-4         Immune         No lb., good fol., eb. susc.           462         CF72107-15         Immune         No lb., good fol., sl. eb. susc.           468         CF77127-3         Susc.         Exc. sporulation           1684         F67128         Susc.         Good sporulation           445         F68036         Susc.         Good sporulation           1685         F73008         Immune         Susc. eb.           458         F96026         Susc.         Good-exc. sporulation           422         G6880-1         Susc.         Good lesions and spores           450         MN8224         Susc.         Good sporulation           410         W718         Susc.         Good sporulation           410         W718         Susc.         Good spores           1588         AF307-5         Susc.         Good spores           1589         AF398-5         Susc.         Good spores           1570         BR6820-26         S				•
460				
467				
Molb., good fol., eb. susc.				
Susc.   No   Ib., good fol.,   sl. eb.				
## SI. eb. → ## 468 CF77127-3 Susc. Exc. sporulation ## 1684 F67128 Susc. Very susc. eb. ## 445 F68036 Susc. Good sporulation ## 1685 F73008 Immune Susc. eb. ## 458 F96026 Susc. Good-exc. sporulation ## 422 G6880-1 Susc. Good lesions and spores ## 450 MN8224 Susc. Very susc., exc. sporulation ## 410 W718 Susc. Good sporulation ## Maine and Campbell Soup Seedling Selections  ## 1586 AF236-1 Immune No Ib., eb. susc. ## 1588 AF307-5 Susc. Good spores ## 1589 AF398-5 Susc. Good spores ## 1565 BR5967-7 Susc. Good spores ## 1572 BR6820-26 Susc. Good spores ## 1575 C7446-1 Susc. Good spores ## 1570 C7446-1 Susc. Good spores ## 1575 CA02-7 Susc. Good spores ## 1570 C7440-1 Susc. Good spores ## 1575 CA02-7 Susc. Good spores ## 1570 C7440-1 Susc. Good spores ## 1570 C74109-8 Susc. Good spores ## 1575 CA02-7 Susc. Good spores ## 1570 C7440-1 Susc. Good spores ## 1570 C74109-8 Susc. Good spores ## 1570 C74109-8 Susc. Good spores ## 1570 C7440-1 Susc. Good spores ## 1570 C74109-8 Susc. Good spores ## 1570 C7440-1 Susc. Good spores		CF7829-4	Immune	
1684	462	CF72107-15	lmmune	
445	468	CF77127-3	Susc.	Exc. sporulation
1685	1684	F67128	Susc.	Very susc. eb.
458       F96026       Susc.       Good-exc. sporulation         422       G6880-1       Susc.       Good lesions and spores         450       MN8224       Susc.       Very susc., exc. sporulation         410       W718       Susc.       Good sporulation         Maine and Campbell Soup Seedling Selections         1586       AF236-1       Immune       No Ib., eb. susc.         1588       AF307-5       Susc.       Good spores         1589       AF398-5       Susc.       Good spores         1565       BR5967-7       Susc.       Good spores         1572       BR6820-26       Susc.       Good spores         1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores			Susc.	
422   G6880-    Susc.   Good lesions and spores				
1688   G6666-4Y   Susc.   Good lesions and spores				Good-exc. sporulation
MN8224   Susc.   Very susc., exc.   sporulation				-
Sporulation   Susc.   Good sporulation				•
Maine and Campbell Soup Seedling Selections           1586         AF236-I         Immune         No lb., eb. susc.           1588         AF307-5         Susc.         Good spores           1589         AF398-5         Susc.         Good spores           1565         BR5967-7         Susc.         Good spores           1572         BR6820-26         Susc.         Good spores           1566         BR7085-I         Immune         No lb., eb. susc.           1579         C7358-26A         Susc.         Good spores           1570         C7446-I         Susc.         Good spores, eb. susc.           1571         C74109-8         Susc.         Good spores           1575         CA02-7         Susc.         Good spores				sporulation
1586	410	W718	Susc.	Good sporulation
1588       AF307-5       Susc.       Good spores         1589       AF398-5       Susc.       Good spores         1565       BR5967-7       Susc.       Good spores         1572       BR6820-26       Susc.       Good spores         1566       BR7085-1       Immune       No Ib., eb. susc.         1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores		Maine and Campbell	Soup Seedling Selecti	ons
1589       AF398-5       Susc.       Good spores         1565       BR5967-7       Susc.       Good spores         1572       BR6820-26       Susc.       Good spores         1566       BR7085-1       Immune       No 1b., eb. susc.         1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores	1586	AF236-1	Immune	No lb., eb. susc.
1565       BR5967-7       Susc.       Good spores         1572       BR6820-26       Susc.       Good spores         1566       BR7085-1       Immune       No 1b., eb. susc.         1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores		AF307-5	Susc.	Good spores
1572       BR6820-26       Susc.       Good spores         1566       BR7085-1       Immune       No lb., eb. susc.         1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores	1589	AF398-5	Susc.	
1566       BR7085-I       Immune       No lb., eb. susc.         1579       C7358-26A       Susc.       Good spores         1570       C7446-I       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores	1565	BR5967 <b>-</b> 7	Susc.	
1579       C7358-26A       Susc.       Good spores         1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores				•
1570       C7446-1       Susc.       Good spores         1571       C74109-8       Susc.       Good spores, eb. susc.         1575       CA02-7       Susc.       Good spores				
1571 C74109-8 Susc. Good spores, eb. susc. 1575 CA02-7 Susc. Good spores				·
1575 CA02-7 Susc. Good spores				
				Good spores, eb. susc.
1596 CAU2-8 Susc. Good spores, eb. susc.				
	1596	CA02-8	Susc.	Good spores, eb. susc.

West Virginia Table I. (Continued)

Field	Dadiana	Disease	Course or to
No.	Pedigree	Reaction	Comments
1564	CD106-16	lmmune	No lb., sl. eb.
1590	CF7518-4	Susc.	Good spores, eb. susc.
1559	CF7622-I	Immune	No lb., sl. eb.
1560	CF7622-10	Immune	No lb., sl. eb.
1561	CF76114-4	lmmune	No Ib., no eb.
1562	CF76120-2	Susc.	Good spores, eb. susc.
1994	CF76150 <b>-</b> 6	Susc.	Good spores, eb. susc.
	USDA Seedlings and New R	eleases	
1618	Chipbelle (B6987-184)	Susc.	Exc. sporulation
1619	Russette (B7583 <b>-</b> 6)	Susc.	Exc. sporulation
1621	B8686 <b>-</b> 8	Susc.	Good sporulation
1622	B8822 <b>-</b> 30	Susc.	Good sporulation
1624	B8848 <b>-</b> 2	Immune	No Ib., susc. eb.
1625	B8934 <b>-</b> 4	Susc.	Exc. sporulation
1626	B8 <b>9</b> 66 <b>-</b> 3	Immune	No Ib., susc. eb.
1627	B8972 <b>-</b> I	Susc.	Exc. sporulation
1628	B9916 <b>-</b> 6	Susc.	Good sporulation
	New Maine Seedling Selec	tions	
1669	AF332 <b>-</b> 9	Susc.	Good spores
1667	AF332 <b>-</b> 11	Susc.	Good spores
1674	AF339 <b>-</b> 5	Susc.	Good spores, eb. susc.
1662	AF398 <b>-</b> 3	Immune	No lb., eb. susc.
1650	AF428-12	Susc.	Good spores
1671	AF43 <b>I-</b> 4	Susc.	Good spores
1658	CF7523-I	Susc.	Good spores
1670	CF7615-4	Susc.	SImod. multiple
1659	CF7793-2	Immune	No Ib., susc. eb.
1655	CF77127-3	Susc.	Good sporulation
1653	CF77139-14	Susc.	-
1675	CF77146-6	Susc.	Good spores
1665	CF77 <b>15</b> 9 <b>-</b> 3	Susc.	Good to exc. sporulation
1661	CF77159-9	Susc.	Good spores
1649	WF530-2	Susc.	Good to exc. sporulation
	NY Andigena and Neotuber	osum Material	
47 I	A I 40-4	Immune	No Ib., eb. susc.
472	A140-6	Immune	No lb., eb. mod., fair
473	A I 40- I I	Immune	fol. No Ib., eb. susc.
474	A146-9	Immune	No lb., no eb. wild-type
475·	A150 I	I mm	fol. small leaflets
475 ⁻	A158-I	Immune	No lb., sl. eb. fertile
			wild-type fol.

West Virginia Table I. (Continued)

Field No.	Pedigree	Disease Reaction	Comments .
476	A282 <b>-</b> 4	Immune	No lb., mod. eb., small
477 470	S377-41 NY63	Susc. Susc.	leaflets Good to exc. sporulation Good spores, slmod. multigenic resistance
	Agriculture Canada	Andigena Material (R.	Tarn)
516 517 518 519 520 521	A105 A132 A203 A276 A249 A298	Immune Immune Immune Immune Immune	No lb., small pls. No lb. No lb., fair fol. No lb., fair fol. No lb., some eb. No lb., fertile, fair
522 523	A421 A453	lmmune Immune	fol. No lb., pls. weak No lb., sl. eb., good fol.
524	A505	Immune	No lb., sl. eb., pls. fair
525	A541	Immune	No lb., sl. eb., fertile
	IR-J Material		
494	Ackersegen	Susc.	Fair to good multigenic, sporulation mod.
493 515 480 482 490 484 483 485	Alpha Atzimba Bertita Dorita Elentita Greta Hindenburg	Susc. Immune Immune Immune Immune Immune Immune Immune	Fair-good sporulation No lb., sl. eb. No lb., eb. susc. No lb., eb. susc. No lb., sl. eb. No lb., no eb. No lb., slmod. eb. No lb., sl. eb., good fol.
486 495 496 499	Kenya Akiba Kufri Jeevan Kufri Joyti Libertas	lmmune Immune Immune Immune	No lb., sl. eb. No lb. No lb., mod. eb. No lb., some eb., good
507 498 492 488 478 505 512	Limosa Losickij Maritta Marries B5444-15 (R _I , R ₂ , B5444-34 (R _I , R ₂ , 3618	Immune Immune Susc. Immune R3, R4) Immune R3, R4) Immune Susc.	fol. No lb., susc. eb. No lb., some eb. Mod. sporulation No lb., eb. susc. No lb. No lb. Good spores

West Virginia Table I. (Continued)

Field No.	Pedigree	Disease Reaction	Comments -
504	203905	Immune	No lb., susc. eb.
48 I	215623 (R _n )	Immune	No Ib., susc. eb.
498	USW930-I "	Immune	No lb., no eb.
511	WV5-3 (R _I , R ₃ )	Immune	No Ib., no eb.
513	$WVII-32 (R_n)^{-1}$	Immune	No Ib.
503	WV13-8 $(R_1, R_4)$	Susc.	Modmultigenic
	·		good sporulation
510	WV I 4- I 7	Immune	No lb., eb. susc.
500	Sto/Tuberosum (R2241)	1 mmune	No lb., some eb., good fol.
50 I	Dem/Tuberosum (R2245)	Immune	No lb., some eb.
502	Dem/Tuberosum (R2248)	Immune	No Ib.
487	$3R_{c}-8$ (R ₂ )	Immune	No lb., no eb., good fol.
506	1563 _c -14 (R ₄ )	Susc.	Fair-good sporulation

Comment Abbreviations - Ib.= late blight; eb.= early blight; fol.= foliage; spores = sporulation; nod.= nodulate; exc.= excellent



Genetics, Cytogenetics and Physiology of the Tuber-bearing Solanum Species

ing <u>Solanum</u> Species

(Cooperative USDA, ARS and Wisconsin Experiment Station)

Genetics and Use of the <u>Solanum commersonii</u> Synaptic Variant. Efforts have been made to determine the genetics of a synaptic variant of <u>Solanum commersonii</u> P.I. 243503. The apparent absence of functional 'n' gametes on both the male and female side has prevented the conventional determination of its genetics at the diploid level. Consequently, a half-diallel has been done within this accession to determine the genetics of this variant at the diploid level. A scheme of 4x x 2x crosses has also been used providing tetraploid segregation ratios in the progeny.

The variant has been used as a female in several interspecific crosses and estimates of intraspecific male and female fertility have been made using  $4x ext{ S. commersonii}$ . Meiosis of interspecific hybrids of  $\underline{S. commersonii}$   $x ext{ S. chacoense}$  appear to be quite normal by cytological observation and produce from ten to seventy-five percent stainable pollen.

Using 3x <u>S. commersonii</u> x <u>S. chaocense</u> plants as females, backcrosses to each of the parental species have been done; however, these crosses have produced some unexpected results. Backcrosses to <u>S. chaocense</u> were easier to accomplish and the progeny were in most cases considerably more vigorous than were the progeny in backcrosses to <u>S. commersonii</u>. The backcrosses to <u>S. commersonii</u> were unusually weak considering they are not inbred. Chromosome counts are currently being done on these plants.

The ease of backcrossing to 2EBN species is fortuitous for our goals of incorporating this variant into useful breeding stocks. Efforts are underway to incorporate "parallel spindles" into plants containing the menotic variant to increase levels of 2n gamete production.

Incorporation of lEBN Germplasm into More Readily Usable Forms. The incorporation of lEBN germplasm into useful breeding material falls into two discrete categories: 1) transfers from Mexican diploids and  $\underline{S}$ .  $\underline{commersonii}$  into 2EBN material and 2) transfers from Series Etuberosa material into 2EBN material. The first category begins with the initial production of a triploid hybrid, followed by backcrosses to a 2x(2EBN) species. In this case however the 2x(1EBN) gamete may come from a colchicine produced 4x(2EBN) plant. Presumably meiotic pairing between any of the Mexican diploids and any 2EBN species will be sufficiently normal and that backcrossing will present no problem.

The second category presents more complex problems. A limited number of non-tuber-bearing x tuber-bearing crosses have been done, and although not all have been examined meiotically, apparently little or no meiotic pairing occurs between the Etuberosa and tuber-bearing genomes. Observations of male fertility have shown only a few percent stainable pollen, and this is probably

2n or near 2n. Allopolyploidy may be used as a means of crossing these hybrids with other 2EBN species; however, 2n gametes may be used as an alternative more rapid approach to incorporating Etuberosa genes into cultivated germplasm. Using this approach a cross of 3x brd₂ chc x 4x tub Wis AG 231 has yielded a putative pentaploid.

Assignment of Endosperm Balance Numbers (EBN) to <u>Solanum</u> species. Efforts are being made to define the Endosperm Balance Number (EBN) for all <u>Solanum</u> species in the IR-l collection. To do this several accessions of each species are tested by crossing them with lEBN, 2EBN and 4EBN standards. Seed set from all successful crosses is determined as is the ploidy level of the progeny. Pollen tube growth in the style is tested by fluorescent microscopy for all crosses which fail or result in poor seed set. This is done to eliminate other interspecific crossability barriers from interfering with the interpretation of EBN. The EBN for a species is assigned, then, based on seed set, ploidy of the progeny and stylar data.

Results from preliminary crossing last spring using several Mexican and U.S. species indicated that several more species in Series Longipedicellata are 2EBN. Successful crosses were achieved in 4x x 2x 2EBN crosses and the progeny from these crosses were all 3x. Therefore, in addition to S. stoloniferum, S. fendleri, S. hjertingii and S. polytrichon are 2EBN.

Large scale EBN screening among the species was begun this past summer and further testing will be done this spring and next summer. Preliminary evidence, though scant at this point, suggests that 2x S. michoacanum (S. trifidum) may be 1EBN. This species belongs to Series Pinnatisecta which contains the 1EBN species S. cardiophyllum and S. pinnatisectum. In addition other results imply that 4x S. acroscopicum, 2x S. berthaultii, 2x S. canasense ssp. xerophyllum, 2x S. marinasense and 2x S. sparsipilum are probably 2EBN. Many EBN's can be conferred from information in the literature; however, this study is an effort to confirm assignments using EBN standard species under defined conditions, with the elimination of other interspecific crossing barriers from clouding EBN interpretation. It is hoped that this information will eventually prove useful to those involved in potato improvement, interspecific gene transfer and the study of species relationships.

Protoplast Strategies for Somatic Cell Genetics. Methods of protoplast isolation, purification, and culture were examined for various tuber-bearing Solanum species. To date modifications of the procedure of Shepard (Plant Physiology 60: 313, 1977) have given adequate yields and survival in several species, haploids, and cultivars. All stock materials are maintained by in vitro plantlet culture and are propagated through nodal/tip cuttings. Lines containing metribuzin sensitivity, frost resistance, differential late blight resistance, and high regeneration capacity have been used. Regeneration procedures are being evaluated for these and other materials prior to beginning protoplast fusion studies. This is a joint project with Dr. J. P. Helgeson, Plant Physiologist, USDA, ARS, Madison.

Low Temperature Germplasm Preservation. The cryogenic exposure procedure developed for shoot tips of <u>S. etuberosum</u> gave survival for shoot tips of <u>Solanum tuberosum</u> Graups Andigena, Phureja, Stenotomum, and Tuberosum. Cryogenic experiments for all species often show considerable variation due, in part, to bacterial contamination which hinders the regrowth analysis after

treatment. Since this contamination probably arose from shoot-tips harvested from greenhouse-grown plants, a protocol was developed to use isolated shoot-tips from  $\underline{\text{in}} \ \underline{\text{vitro}}\text{-grown}$  (sterile) plantlets. Such plantlets were initially derived from meristem tip culture using techniques developed from our previous virus-elimination studies. Results from experiments using isolated shoot tips from sterile plantlets are much more consistent.

A second problem concerned the development of an adequate medium to test the regeneration potential of low temperature treated tips from S. tuberosum materials. Results from microscopic analyses of sections from treated buds of both S. etuberosum and S. tuberosum Group Tuberosum demonstrated that only a few cells within the tip survived the low temperatures (ca. -30° C, -40° C, -40° C transferred to liquid nitrogen). A suitable regrowth culture medium was developed such that treated tips of S. etuberosum developed into a multiple shoot mass. Although a medium for growth of control tips from cultivars was available, it did not suffice for treated materials—callus formation with occasional shoot regeneration was the usual response. Inclusion of the cytokinin, zeatin, gave multiple shoot production from both control and low temperature treated tips.

Thus, use of tips from sterile stock plantlets and development of new regeneration media has allowed more reproducible survival estimates along with significant shoot production from low temperature treated  $\underline{S}$ .  $\underline{tuberosum}$  Group Tuberosum cultivars. Some details differ in the cryogenic survival response as compared to the  $\underline{S}$ .  $\underline{etuberosum}$  model and are being examined, but the results are encouraging for cryogenic preservation of clonal germplasm.

Longevity of True Seed. The longevity of true seed for different species of the tuber-bearing Solanums under 1-2°C storage with a seed moisture content of about five percent was compiled from data collected by the Inter-Regional Potato Introduction Project (IR-1). Although long storage periods are not available for all species, accessions of many species retained high percentages of germination for at least 20 or more years. Examples include S. tuberosum Group Andigena, 98 percent after 27 years, Gp. Phureja, 96 percent after 23 years, Gp. Stenotomum 100 percent after 23 years; S. hjertingii 100 percent after 26 years, and S. demissum 92 percent after 28 years. Seed from some species exhibited an erratic pattern of germination from test to test over the period of storage.

Pollen Preservation by Cryogenic Methods. Previous data had suggested that the <u>in vitro</u> percentage of germination was roughly indicative of ability to set seed and that the rehydration of CaCl₂-dried pollen usually increased <u>in vitro</u> germination. In several tests, however, rehydration of dried pollen did not reproducibly increase seed set although the <u>in vitro</u> germination did increase. In several cases seed set with rehydrated pollen was considerably lower than that obtained by pollinating directly with dried pollen. Thus, <u>in vitro</u> percent germination gives an indication that stored pollen or low temperature-exposed pollen is viable but cannot directly be related to seed set. These data came from bulked pollen placed onto flowers borne on cut stems bulked from several plants within different accessions. Pollen from several species stored for one to two years in liquid nitrogen vapors did retain the ability to set seed.









