Name: Kriuk Fedor

Objectives

- To be familiar with modulation and demodulation
- To be familiar with sampling

Part I (11)

- a) Download the audio file (m1a.wav)
- . Notice that there are **TWO** modulated signals.
- b) Use "audioread" to read the audio file and sampling frequency fs (in kHz).
- (1) The sampling frequency = 192 000 Hz
- c) Define a frequency index from $-\frac{f_s}{2}$ to $\frac{f_s}{2}$.
- d) Use "subplot(311)", "fft", "fftshift" and "abs" to plot the magnitude spectrum of the audio file versus frequency (Hz) in figure(1).
- e) Observe the carrier frequency (in kHz) for each modulated signal.
- (2) Located at lower frequency band = 28 kHz

Located at higher frequency band = 55 kHz

- f) Shift the spectrum located at **higher** frequency band back to the baseband using a **correct** carrier frequency.
- g) Use "subplot(312)", "fft", "fftshift" and "abs" to plot the magnitude spectrum after frequency shifting in figure(1).
- h) Design a Butterworth lowpass filter using "butter" and set N = 16.
- i) Determine the cutoff frequencies (in kHz) and write down the corresponding value of Wn. Use "Datatip" to check the width of the passband.
- (1) Cutoff = 10 kHz

Wn = 0.1042

- j) Use "freqz" to generate the frequency response and "abs" to plot the magnitude response in figure(2).
- k) Use "filter" to perform lowpass filtering.
- I) Use "subplot(313)", "fft", "fftshift" and "abs" to plot the magnitude spectrum of the output in figure(1).
- m) Use "soundsc" and the sampling frequency to hear the audio file (m1a) and the output.
- n) Describe the difference.
 - (1) Before modulating and demodulating (sample freq), we cannot hear the audio, while the output result is hearable.

(1) figure(2) with one "Datatip" to show the width of the passband

(2) figure(1) including (311), (312) and (313)

(3) Screenshot of Matlab code for Part I

```
lab4_1.m × lab4_2.m × +
                           [s4,fs]=audioread('m1a.wav'); % read the audio file and sample rate
  1
  2
                           s4=s4'; % transpose
  3
  4
                           % Modulation
  5
                           t=[0:length(s4)-1]/fs; % time index
   6
                           h_{carrier_f} = 55000;
                           c=cos(2*pi*h_carrier_f*t); % carrier frequency is 10 kHz (10e3 = 10000)
  7
  8
                           x=s4.*c; % x is the modulated signal
                           f=[-length(s4)/2:length(s4)/2-1]*fs/length(s4); % frequency index (from - fs/2 to fs/2)
  9
10
                           % Demodulation
                           e=x.*c; % frequency shifting (back to the baseband)
11
12
13
                           N=16;
15
                           W_n = 2 * 10000 / fs;
16
                           [B1, A1] = butter(N, W n);
17
18
                           y = filter(B1, A1, x);
                           [H1, fh] = freqz(B1, A1, 1e3, fs);
19
20
21
                           figure(1);
22
                            subplot(311); plot(f, abs(fftshift(fft(s4)))); ylabel('S4'); grid; % spectrum of baseband signal
23
                            subplot(312); \ plot(f, \ abs(fftshift(fft(e)))); \ ylabel(`E(f)'); \ grid; \ \% \ after \ frequency \ shifting \ Alter \ frequency \ frequency
24
                            subplot(313); \ plot(f, \ abs(fftshift(fft(y)))); \ ylabel('Y(f)'); \ grid; \ \% \ after \ lowpass \ filtering
                           xlabel("f [Hz]");
25
                            figure(2);
27
                            subplot(211); plot(fh, abs(H1)); axis([0 fs/2 0 1.2]); grid; ylabel('abs H1');
28
29
30
                            soundsc(s4, fs);
31
                            soundsc(y, fs);
32
```

Part II (9)

A CT signal is given as $x(t) = 6\cos(6\pi \times 10^3 t) + 9\cos(24\pi \times 10^3 t) + 11\cos(36\pi \times 10^3 t)$.

a) What is the unilateral bandwidth (fm in kHz) of x(t)?

(1) Unilateral bandwidth = 18 kHz

- b) Define a DT sequence x1 if the sampling frequency (fs1) is 16 kHz and number of points is 14400.
- c) Define a DT sequence x2 if the sampling frequency (fs2) is 72 kHz and number of points is 14400.
- d) Define **actual** frequency index f1 according to the sampling frequency fs1.
- e) Define **actual** frequency index *f*2 according to the sampling frequency *f*s2.
- f) Use **"subplot"**, "**fft"**, "**fftshift"** and "**abs**" to plot the magnitude spectrum of X1 versus f1 and the magnitude spectrum of X2 versus f2 in figure(3).

(1) figure(3)

g) Fill in the following tables by looking at the positive frequency axis.

(2)	Spectrum of $x_1[n]$	Frequency (Hz)	Magnitude
	1 st component	2000	5.5
	2 nd component	3000	3
	3 rd component	5000	4.5

Spectrum of $x_2[n]$	Frequency (Hz)	Magnitude
1 st component	3000	3
2 nd component	12000	4.5
3 rd component	18000	5.5

h) Which spectrum (X1 or X2) is the correct spectrum of x(t)?

(1) X2

- i) Explain your answer using **sampling theorem**.
- (2) The sampling theorem states that sampling frequency (fs) must be at least 2 times more than the highest frequency component so that Nyquist frequency is high enough to capture all relevant info in the signal. Only 2nd case works here, 72kHz > 2*18 kHz.

(2) Screenshot of Matlab code for Part II

```
lab4_1.m × lab4_2.m × +
 1
          clear
 2
          N=14400; % number of points
          n=0:N-1; % n index
3
 4
5
          fs1=16e3; % sampling frequency 1 (16 kHz)
 6
          x1 = 6*\cos(6*pi*1000*n/fs1)+9*\cos(24*pi*1000*n/fs1)+11*\cos(36*pi*1000*n/fs1);
 7
          f1=[-N/2:N/2-1]*(fs1/N); % frequency index for x1
 8
 9
          fs2=72e3; % sampling frequency 2 (72 kHz)
          x2 = 6*\cos(6*pi*1000*n/fs2)+9*\cos(24*pi*1000*n/fs2)+11*\cos(36*pi*1000*n/fs2); % x is sampled using fs2 = x2[n]
10
          f2=[-N/2:N/2-1]*(fs2/N); % frequency index for x2
11
12
13
          figure(3)
14
          subplot(211); plot(f1, abs(fftshift(fft(x1))/length(x1))); % plot magnitude spectrum of x1
15
          grid; ylabel('|X1|'); xlabel('freuqency (Hz)');
16
17
          subplot(212); plot(f2, abs(fftshift(fft(x2))/length(x2))); % plot magnitude spectrum of x2
18
          grid; ylabel('|X2|'); xlabel('freuqency (Hz)');
19
```