

Exercise 5A

Question 22:

Given: PQR is an equilateral triangle and QRST is a square.

To Prove: PT =PS and \angle PSR= 15⁰ Proof: Since \triangle PQR is an equilateral triangle, \angle PQR = 60° and \angle PRQ = 60° Since QRTS is a square, \angle RQT = 90° and \angle QRS = 90° In \triangle PQT \angle PQT = \angle PQR+ \angle RQT = 60° + 90° = 150°

In
$$\triangle PRS$$

$$\angle PRS = \angle PRQ + \angle QRS$$

$$= 60^{0} + 90^{0} = 150^{0} \dots \dots (1)$$

$$\Rightarrow \angle PQT = \angle PRS \qquad \dots \dots (2)$$
Thus, in $\triangle PQT$ and $\triangle PRS$

$$PQ = PR \qquad [sides of equilateral triangle $\triangle PQR]$

$$\angle PQT = \angle PRS \qquad [from (2)]$$

$$QT = RS \qquad [sides of square $\square QRST]$
Thus, by Side-Angle-Side criterion of congruence, we have
$$\therefore \triangle PQT \cong \triangle PRS \qquad [By SAS]$$
The corresponding parts of the congruent triangles are equal.
$$\therefore PT = PS \qquad [C.P.C.T]$$
Now in $\triangle PRS$, we have
$$PR = RS$$

$$\Rightarrow \angle RPS = \angle PSR$$
But $\angle PRS = 150^{0} \qquad [from (1)]$
So, by angle sum property in $\triangle PRS$

$$\angle PRS + \angle SPR + \angle PSR = 180^{0}$$

$$\Rightarrow 150^{0} + \angle PSR + \angle PSR = 180^{0}$$$$$$

******* END ******

 \Rightarrow 2 $\angle PSR = 180^{\circ} - 150^{\circ}$

 \Rightarrow 2 \angle PSR = 30⁰

 \Rightarrow $\angle PSR = \frac{30}{2} = 15^{\circ}$