

Synchronous Sequential Logic

2019. 4. 15.

K-S. Sohn

Contents

- Sequential circuits
- Latches
- Flip-flops
- Analysis of clocked secuential circuits
- State reduction and assignment
- Design of secuential circuits

Introduction

- Combinational circuits
 - o neither memory element nor feedback
 - output> = F(<input>)

Sequential circuits

■ Block diagram of secuential circuit

- feedback path
- memory element

Sequential Circuits

State

- the binary information stored in the memory element at any given time defines the state of the sequential circuit at that time.
- <output> = F(<state>, <input>: <control signal>)

Syncrounous

the transition happens at discrete instants of time

Asnychronous

the transition happens at any instant of time

Sequential Circuits

- Asynchronous sequential circuits
 - having only feedback path (or with the "pseudo-memory")
 - output> = F(<state>, <input>)
 - difficult to avoid instability in design

Synchronous Sequential Circuits

- Clock generator
 - a master-clock generator to generate a periodic train of clock pulses
 - the clock pulses are distributed throughout the system
- clocked sequential circuits
 - most commonly used
 - no instability problems
- clock speed
 - limited by the operational speed of the combinational circuit

Synchronous Sequential Circuits

- □ the memory elements: flip-flops
 - binary cells capable of storing one bit of information
 - two outputs: one for the normal value and one for the
 - complement value
 - maintain a binary state indefinitely until directed by an input signal to switch states

Synchronous Sequential Circuits

Synchronous clocked sequential circuit

Latches

- asynchronous sequential circuits
 - binary state (0 or 1)
 - \circ Q(t+1) = F(Q(t), <input>)
- Level sensitive circuits
 - the next state is determined by the level of inputs and the current state
 - o can not be used for synchronous sequential circuits,
 - but, building blocks of flip-flop

Tow NOR gates with cross-coupled connection

S	R	Q	Q'	
1	0	1	0	
0	0	1	0	(after $S = 1, R = 0$)
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$)
1	1	0	0	(forbidden)

(b) Function table

- Most fundamental building block
 - more complicated types can be built upon this SR latch
- Functional characteristics
 - (S,R)= (0,0): no operation (usual position of the level of inputs)
 - \circ (S,R)=(0,1): reset (Q=0, the clear state)
 - (S,R)=(1,0): set (Q=1, the set state)
 - (S,R)=(1,1): indeterminate state (Q=Q'=0, out of SR rules)

NAND implementation

- complement of the NOR version
- S'R' latch

S	R	Q	Q'	9
1	0	0	1	
1	1	0	1	(after $S = 1, R = 0$)
0	1	1	0	
1	1	1	0	(after $S = 0, R = 1$)
0	0	1	1	(forbidden)

(b) Function table

□ SR latch with control input

- En = 0, no change
- En = 1, enable input

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

(b) Function table

Design objectives

- eliminate the undesirable conditions of the indeterminate state in the SR latch by using an inverter and tied inputs
- □ 'D' comes from:
 - Q=<input data>, transparent latch

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

(b) Function table

Graphic Symbols

SR latches

D latch

Flip-Flops

- Trigger
 - the momentary change of control inputs
 - the state of a latch or flip-flop is switched by a change of the control input
- Level triggerd: latch

Edge triggered: F-F

Flip-Flop

- Why F-F as the memory element in the S.S.L.?
 - If a latch used:

- the feedback path may cause instability problem
- Edge-triggered F-Fs
 - the state transition happens only at the edge
 - eliminate the multiple-transition problem

Edge-triggered D Flip-Flop

- Master-slave D flip-flop
 - two separate D latches and an inverter
 - master latch (triggered during clk's positive level)
 - slave latch(triggered during clk's negative level)

- triggered at negative or positive edge?
- how to reverse the direction of triggering edge?

Edge-triggered D Flip-Flop

D type positive-edge triggered F-F

Edge-triggered D Flip-Flop

□ In sum.

○ CP=0: (S,R) = (1,1), no state change

O CP=↑: state change once

○ CP=1: state holds

eliminate the feedback problems in sequential circuits

Graphic Sumbols of D F-F

- The edge-triggered D F-F
 - the most economical and efficient
 - positive-edge and negative-edge

Specifications of Flip-Flop

Setup time

 A minimum time for which the D input must be maintained at a constant value prior to the occurrence of the clock transition

Hold time

 A minimum time for which the D input must not change after the application of the positive transition of the clock

Specification of Flip-Flop

□ Time contribution analysis

setup time > td1 + td4

JK Flip-Flop

Operational requirements

○ Set: J=1, K=0, Q(t+1)=1

• Reset: J=0, K=1, Q(t+1)=0

Complement: J=1, K=1, Q(t+1)=Q'(t)

 \circ No change: J = K = 0, Q(t+1)=Q(t)

Constraints

Use D F-F and some logic gates including inverters

JK Flip-Flop

- Front logic
 - D = JQ' + K'Q
 - How?
- Logic diagram and graphical symbol

T Flip-Flop

Functional requirements

- toggle output with a T input
- \circ T=0, Q(t+1)=Q(t)
- \circ T=1, Q(t+1)=Q'(t)

Constraints

Use D F-F and some logic gates

T Flip-Flop

- □ Front logic
 - D=TQ'+T'Q
 - Why?
- Logic diagram and graphic symbol

Characteristics Tables

- - a period of the clock pulse
 - (t+1) means the next clock pulse period
- □ Q(t)
 - present state
- □ Q(t+1)
 - next state

JK	<i>JK</i> Flip-Flop					
J	K	Q(t + 1))			
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	Q'(t)	Complement			

D Flip-Flop			<i>T</i> Flip-Flop		
D	Q(t + 1)	T	Q(t + 1)		
0	0 Reset	0	Q(t) No change		
_1	1 Set	1	Q(t) No change $Q'(t)$ Complement		

Characteristic Equations

- D flip-flop
 - \circ Q(t+1)=D
- □ JK flip-flop
 - \bigcirc Q(t+1)=JQ'+K'Q
- □ T flip-flop
 - \bigcirc Q(t+1)=TQ'+T'Q

Direct Inputs

Ansynchronous set and/or reset

R	Clk	D	Q	Q
0	X	X	0	1
1	\uparrow	0	0	1
1	1	1	1	0

Discussion~~~