Chapter 11: Goodness-of-Fit and Contingency Tables

Section 11.1: Goodness-of-Fit

Stat 50

Def A **goodness-of-fit test** is used to test the hypothesis that an observed frequency distribution fits (or conforms to) some claimed distribution.

The M&M company claims that the distribution of plain M&M candies in a bag is 23% blue, 23% orange, 15% green, 12% red, 15% yellow, and 12% brown. Even though this is their claim, do you think this represents the true proportions of color distribution in all of the M&M bags? *How would we check?*

What to Compare and How to Compare It

Expected Counts (E _i)	Observed Counts (O _i)
The number in each category we would expect to see if H_0 is true	Observe how many in your sample are in each
* Two ways of calculating the expected counts:	category.
1) If the expected counts are EQUAL, then $E = \frac{n}{k}$ categories	*This information will be given.
2) If the expected counts are not equal, then calculate using	
$E_i = \mu_i = N_i$ where $i = 1, 2 \dots k$	
(binomial dist)	

*If the observation and experiment counts are "close", then $\frac{f_0}{f_0}$ to $\frac{f_0}{f_0}$ $\frac{f_0}{f_0}$

* If the observation and experiment counts "far apart" (BIG DIFFERENCE), then $Q \in \mathcal{F} \subset \mathcal{F}$

Ex: Finding the expected counts.

rell dice: prob(roll 1) = 1/6 = prob.(roll 2)

(a) A single die is rolled 45 times with the following results. Assuming that the die is fair and all outcomes are equally likely, find the expected frequency E for each empty cell.

Outcome	1	2	3	4	5	6	
Observed O_i	13	6	12	9	3	2	
Expected E_i	7.5	ブゲ	フ・「	7.5	ファ	7.5	
13: 11-1							

$$E = \frac{45}{6} \pm \frac{45}$$

(b) Jon works as an usher at a theatre. The theatre has 1000 seats that are accessed through five entrances. Each guest should use the entrance that's marked on their ticket. Entrances A and B should each have 30% of the guests using these entrances. Entrance C should have 20% of the guests using its entrance. Entrances D and E should each have 10% of the guests using these entrances. Find the expected frequency for each E for each entrance.

Entrance	A	В	С	D	E
Observed O_i	398	202	205	87	108
Expected E_i	300	300	200	100	106

 $E = n \cdot P$ = 1000 * 0.3 = 7000 * 0.3 = 7000 * 0.3

100 100 Note SEi=h

Sum of expectations

E = 1000 × 0-1 should equal total
observed in

= 300

Steps for Hypothesis Test for Goodness-of-Fit

What to Find...

- Number of categories, k
- Expected Counts, E_i

Check Requirements

- The data has to be randomly selected. (SDS)
- The sample data consist of frequency counts for each of the different categories.
- For each category, the expected frequency is at least 5.

Step 1: Hypotheses

 $H_0: p_1 = p_2 = \ldots = p_k$ (all outcomes are equally likely)

 H_1 : at least one of the probabilities is different from the others

 $H_0: p_1 = \#, p_2 = \# \dots p_k = \#$

at least one of the probabilities is different from the claimed distribution (12-00 atrons)

Step 2: Level of Significance

 $\alpha = 0.05$

Step 3: Test Statistic

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

3: Test Statistic $\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ • for find probabilities: $\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ • for find probabilities: $\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ • for find probabilities:

ALWAYS RIGHT -TAILED TEST!

Step 4: Find a Critical Value or P-Value to check using either the Critical Value or P-value method.

Step 5: Make a decision and draw a conclusion.

CRITICAL REGION METHOD

* Table A-4

Reject $H_0 \sim \text{if } \chi^{2^*} \text{ lies in the critical region}$ Fail to Reject $H_0 \sim \text{if } \chi^{2*}$ doesn't lie in the critical region df = k - 1

Reject $H_0 \sim \text{if } P\text{-value} \leq \alpha^{\bullet}$ Fail to Reject $H_0 \sim \text{if } P\text{-value} > \alpha$

P-VALUE METHOD

GRAPHING CALCULATOR (TI-83 OR 84)

Instructions:

STAT
$$\Rightarrow$$
 TESTS \Rightarrow D: $\chi^2 GOF$ -Test

Ex: The M&M company claims that the distribution of plain M&M candies in a bag is 23% blue, 23% orange, 15% green, 12% red, 15% yellow, and 12% brown. Suppose we took a simple random sample of 400 M&Ms from the populations of all M&Ms. The results are shown below:

J	r · r · · · · · · · · · · · · · · · · ·						
	COLOR	Blue	Orange	Green	Red	Yellow	Brown
	FREQUENCY	53	66	38	96	88	59
	EXPECTED	.92	92	66	48	60	48
_		A)					

$$E_{i} = n \cdot P_{i}$$
 | 400* 0.23 On (a)c $U = 0$ break(0) $U_{3} = (U_{1} - E_{1})^{2}/E$
Find $E_{i} = U_{1} = 0$ | $U_{2} = E_{1} = 0$ | $U_{3} = (U_{1} - U_{2})^{2}/U_{2}$

Is the proportion of each color different than the claim of the M&M's manufacturer?

sum (L3) = · UST(2nd Star)

Null and Alternative Hypothesis

Test Statistic

$$\chi_{\delta}^{2} = \sum_{\epsilon} \left(\frac{O - E}{\epsilon} \right)^{2} = 95.5$$

P-value/Critical Region

$$p = 4.61 E - 19$$
 $p = 4.61 \times 10^{-19}$
 $p = 0.000.....0461$
 $p = 0.18 \text{ 200s!} TINY$

Parision about Null Hypothesis

Decision about Null Hypothesis

Conclusion

I' There is enough statistical widence to support the elaim that at least one proportion of M&M colors is different than the M&M Factory's claimed proper ton.

A company sells their products exclusively by mail. The company's management wants to find out if the <u>Ex</u>: number of orders received at the company's office on each of the five days of the week is the same. The company took a random sample of 400 orders received during a four-week period. The following table lists the frequency distribution for these orders by the day of the week.

Çı	17	0;

	Monday	Tuesday	Wednesday	Thursday	Friday
Number of Orders	92	71	65	83	89
Expected Number	80	80	80	80	80

Test the claim that the orders are evenly distributed over the five days of the week. Use $\alpha = .025$

Null and Alternative Hypothesis

P-value/Critical Region

$$\alpha = 0.025$$
 $p = 0.1497...$
 $p = 0.150$

Decision about Null Hypothesis

PSX phil, null fly - (Fail to Reject Ho)

Conclusion

"There is not enough statistical evidence to support that the true proportion of orders the company recieves differs on each day of the week."