Complexité & graphes

Université de Tours

Département informatique de Blois

Exercice PRIM

Soit $G = (N, A, \omega)$, un graphe non dirigé, connexe et valué. L'algorithme PRIM fournit un arbre $T = (N, A_T, \omega)$ tel que $A_T \subseteq A$ et $\sum_{a \in A_T} \omega(a)$ est minimal.

Autrement, dit, on cherche un arbre T, résultant de G, tel que la somme des poids des arcs de T est la plus petite.

Soit le graphe G suivant :

On applique l'algorithme PRIM au départ d'un noeud source quelconque (ici noeud 3). Les notations suivantes sont utilisées:

- p[i], le prédécesseur du noeud i.
- d[i], la distance minimale du noeud i depuis le prédécesseur p[i].
- \bullet M, l'ensemble des noeuds non encore traités.

À chaque itération, on sélectionne le noeud x dont la distance d[x] est la plus petite, i.e. $x = \underset{x \in M}{\operatorname{argmin}} \{d[x]\}$, puis on l'ajoute à M. La couleur orange désigne le noeud x en cours de traitement. Si $d[i] > \omega(i, x)$ et $i \in M$, alors on met à jour les tableaux tel que :

- $p[i] \leftarrow x$
- $d[i] \leftarrow \omega(i, x)$

On obtient:

i	1	2	3	4	5	6	M
d[i]	∞	4	0	1	2	∞	(1 2 4 5 6)
p[i]	3	3	3	3	3	3	$ \{1, 2, 4, 5, 6\} $
d[i]	∞	4		1	2	∞	$\{1, 2, 5, 6\}$
p[i]	3	3		3	3	3	{1,2,5,0}
d[i]	6	4			2	1	$\{1, 2, 6\}$
p[i]	5	3			3	5	11, 2, 0 }
d[i]	2	4				1	$\{1,2\}$
p[i]	1	3				5	\1,2}
d[i]	2	4					{2}
p[i]	1	3					\25
d[i]		4					Ø
p[i]		3					V

L'arbre obtenu est le même que celui du cours. Le poids total de l'arbre est de 1+2+1+2+4=10.

Exercice Dijkstra

Soit $G = (N, A, \omega)$, un graphe dirigé et valué. L'algorithme de Dijkstra fournit l'ensemble des plus courts chemins au départ d'un noeud $s \in N$.

Soit le graphe G suivant :

On applique l'algorithme PRIM au départ du noeud source s=6. Les notations suivantes sont utilisées:

• d[i], la distance minimale totale depuis la source s vers le noeud i.

- p[i], le prédécesseur du noeud i.
- \bullet M, l'ensemble des noeuds non encore traités.

À chaque itération, on sélectionne le noeud x dont la distance d[x] est la plus petite, i.e. $x = \underset{x \in M}{\operatorname{argmin}} \{d[x]\}$, puis on l'ajoute à M. La couleur orange désigne le noeud x en cours de traitement. À chaque itération, si $d[i] > d[x] + \omega(i, x)$ et $i \in M$, alors on met à jour les tableaux tels que :

- $p[i] \leftarrow x$
- $d[i] \leftarrow d[x] + \omega(i, x)$

On obtient:

1	2	3	4	5	6	M
2	∞	∞	∞	1	0	(1 9 9 4 5)
6	6	6	6	6	6	$\{1,2,3,4,5\}$
2	6	3	4	1		$\{1, 2, 3, 4\}$
6	5	5	5	6		$\{1, 2, 3, 4\}$
2	6	3	4			$\{2, 3, 4\}$
6	5	5	5			$\{2,3,4\}$
	5	3	4			$\{2,4\}$
	3	5	5			{2,4}
	5		4			{2}
	3		5			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	5					Ø
	3					ν
	2 6 2 6 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ainsi, le plus court chemin de 6 vers 2 est $2 \leftarrow 3 \leftarrow 5 \leftarrow 6$ pour un coût de 5.

Exercice Réseau de transport

Une raffinerie R reçoit son pétrole brut à travers trois sources S_1, S_2 et S_3 et un réseau de terminaux S_1, \ldots, S_5 . Les capacités maximales S_1, \ldots, S_5 les capacités maximales S_2, \ldots, S_5 les capacités maximales S_1, \ldots, S_5 les capacités maximales S_1, \ldots, S_5 les capacités maximales S_2, \ldots, S_5 les capacités maximales S_1, \ldots, S_5 les capacités maximales S_2, \ldots, S_5 les capacités maximales S_2, \ldots, S_5 les capacités maximales S_1, \ldots, S_5 les capacités maximales S_2, \ldots, S_5 les capacités maximales S_3, \ldots, S_5 les capacités maximales S_3, \ldots, S_5 les capacités max

L'origine du flot se lit depuis la ligne o vers la colonne destination d

$o \backslash d$	S_1	S_2	S_3	T_1	T_2	T_3	T_4	T_5	R
E	5	4	3						
S_1		2		3					
S_2				2	1	1			
S_3		2				3			
T_1					2		7		
T_2							2	1.5	
T_3					3			1	
T_4									8
T_5									4

On obtient le réseau suivant:

Au départ du réseau on a respectivement les sources S_1, S_2 et S_3 qui fournissent 3, 2 et 3 million de litres par heure.

Le reste du flot est spécifié par la deuxième matrice ci-dessous:

$o \backslash d$	S_1	S_2	S_3	T_1	T_2	T_3	T_4	T_5	R
E	3	2	3						
S_1		0		3					
S_2				2	?	1			
S_3		2				1			
T_1					1		4		
T_2							?	1	
T_3					1			1	
T_4									6
T_5									2

On doit déterminer la valeur des arcs :

• S_2 vers T_2

La valeur de pétrole en
$$S_2$$
 est de : $\underbrace{2}_{\text{origine de }E} + \underbrace{0}_{\text{de }S_1} + \underbrace{2}_{\text{de }S_3} = 4$ (millions) de litres.

Dès lors, d'après la loi de conservation, la valeur de S_2 vers T_2 est de 1.

• T_2 vers T_4

Par un raisonnement analogue, on trouve que la valeur de T_2 vers T_4 vaut 2.

Pour tout noeud du réseau, la loi de conservation est respectée :

$$\forall n \in N, \sum_{u \in \Gamma(n)} f(u) = \sum_{u \in \Gamma^+(n)} f(u)$$

Autrement dit, toute la matière qui entre au noeud n en sort et la valeur de notre flot est égal à 8. On complète notre réseau de transport. En rouge les arcs de flots complets.

Pour savoir si le flot considéré est maximal, on applique l'algorithme de Ford-Fulkerson et on recherche une chaîne améliorante μ de $\{S_1, S_2, S_3\}$ vers R.

Les notations suivantes sont utilisées:

- \bullet F est une file d'attente.
- $D = \{\rightarrow, \leftarrow\}$ qui indique si y est un sucésseur de x $(x \rightarrow y)$ ou si y est un prédécesseur de x $(x \leftarrow y)$.
- $\bullet\,$ M, l'ensemble des noeuds non encore traités.

Au départ, on ajoute l'entrée E du réseau à F comme suit

$$F = \begin{array}{|c|c|c|}\hline E & \hline \end{array}$$

À chaque itération, on traite le noeud x en tête de file de la façon suivante:

- Pour sucesseur $y \in \Gamma^+(x)$ et tel que $y \in M$, si f(x,y) < k(x,y), c'est-à-dire que le flot entre x et y actuel est inférieur à la capacité maximale:
 - \circ Ajouter y à F et supprimer y de M.
- Pour prédécesser $y \in \Gamma^-(x)$ et tel que $y \in M$, si f(x,y) > b(x,y), c'est-à-dire que le flot entre x et y actuel est supérieur à la capacité minimale (ici 0):
 - $\circ\,$ Ajouter y à F et supprimer y de M.

On obtient:

On a $R \notin M$, on est arrivé à la sortie du réseau. On s'arrête.

La chaîne améliorante μ s'obtient en concaténant les sorties successives de F et en ajoutant les directions issues de D:

$$\mu = E \to S_1 \to S_2 \leftarrow S_3 \to T_3 \to T_2 \to T_5 \to R$$

- On appelle μ^+ les arcs avants de $\mu: \mu^+ = \{(E, S_1), (S_1, S_2), (S_3, T_3), (T_3, T_2), (T_2, T_5), (T_5, R)\}$ On a $\delta^+ = \min\{f(u) - k(u) | u \in \mu^+\} = \min\{2, 2, 2, 0.5, 2\} = 0.5$
- On appelle μ^- les arcs arrières de μ : $\mu^- = \{(S_2, S_3)\}$ On a $\delta^- = \min\{f(u) - b(u) | u \in \mu^-\} = \min\{2\} = 2$

L'augmentation δ possible de la valeur du flot est donnée par

$$\delta = \min\{\delta^+, \delta^-\}$$

On ajoute δ à tous les arcs de μ^+ et on retire à tous les arcs de μ^- . On obtient le réseau suivant :

On répète le calcul d'une nouvelle chaîne améliorante.

Sans détailler les calculs, on observe que l'on peut obtenir un nouveau gain $\delta=1$ grâce à la chaine $\mu'=E\to S_1\to S_2\leftarrow S_3\to T_3\to T_2\leftarrow T_1\to T_4\to R.$

La recherche d'une nouvelle chaîne améliorante serait non concluante. On obtient le réseau final:

En bleu figure le noeud bloquant lors de la 3ème recherche de chaine améliorante. Le flot actuel entre $f(T_1, T_2) = 0$, il n'est pas possible d'accéder à T_1 par T_2 .

L'ensemble des noeuds de M à l'issu de la recherche de la dernière chaine améliorante non concluante permet d'engendrer l' ω -coupe du réseau de transport. Il s'agit des arcs qui sont traversés par la courbe pointillée.

Plus précisement, on a :

•
$$\omega^+(M) = \{ u = (x, y) | x \in M, y \notin M \}$$

•
$$\omega^{-}(M) = \{u = (x, y) | x \notin M, y \in M\}$$

Dès lors,
$$\omega(M) = \omega^+(M) \cup \omega^-(M) = \{(T_3, T_5), (T_2, T_5), (T_2, T_4), (T_1, T_2), (S_2, T_1), (S_1, T_1)\}.$$

Si l'on veut encore augmenter la valeur du réseau, il faut augmenter la capacité $k(u), u \in \omega(M)$ si u est en rouge (ou diminuer la borne $b(u), u \in \omega(M)$ des arcs en bleu ce qui est impossible ici).