hadoop-2.7.3+zookeeper-3.4.8+hadoop-2.7.3 分布式环境搭建整理

- 一.准备环境
- 1.1. 安装包
 - 1) 准备 4 台 PC
 - 2) 安装配置 Linux 系统: CentOS-6.5

下载地址:

http://vault.centos.org/6.5/isos/x86 64/CentOS-6.5-x86 64-bin-DVD1.iso

http://vault.centos.org/6.5/isos/x86 64/CentOS-6.5-x86 64-bin-DVD2.iso

3) 安装配置 Java 环境: jdk-8u101-1inux-x64. tar. gz

下载地址:

http://download.oracle.com/otn-pub/java/jdk/8u101-b13/jdk-8u101-linux-x64.tar.gz

4) 安装配置 Hadoop: hadoop-2.7.3.tar.gz

下载地址:

http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

4) 安装配置 zookeeper: zookeeper-3.4.8.tar.gz

下载地址:

http://mirrors.hust.edu.cn/apache/zookeeper/zookeeper-3.4.8/zookeeper-3.4.8.tar.gz

5) 安装配置 Hbase: hbase-1.2.2-bin.tar.gz

下载地址:

http://www.apache.org/dist/hbase/stable/hbase-1.2.2-bin.tar.gz

1.2. 网络配置

主机名	IP			
-----	----	--	--	--

master	192.168.10.198
slaver1	192.168.10.170
slaver2	192.168.10.143
slaver3	192.168.10.168

1.3. 常用命令

- # service iptables start #运行一个服务
- # service iptables stop #停止一个服务
- # service iptables restart #重启一个服务
- # service iptables status #显示一个服务(无论运行与否)的状态
- # chkconfig iptables on #在开机时启用一个服务
- # chkconfig iptables off #在开机时禁用一个服务
- # reboot #重启主机
- # shutdown -h now #立即关机
- # source /etc/profile #配置文件修改立即生效
- # vi /etc/sysconfig/iptables #编辑防火墙配置文件
- # yum install net-tools

二.安装配置 CentOS

2.1 安装 CentOS

1) 选择启动盘 CentOS-6.5-x86_64-bin-DVD1.iso, 启动安装

- 2) 选择 Install CentOS 6.5, 回车,继续安装
- 3) 选择语言,默认是 English,学习可以选择中文,正时环境选择 English
- 4) 配置网络和主机名,主机名: master,网络选择开启,配置手动的 IPV4
- **5**)选择安装位置,在分区处选择手动配置,选择标准分区,点击这里自动创建他们,点击完成,收受更改
 - 6) 修改 root 密码, 密码: 123456
 - 7) 重启,安装完毕。
- 2.2 配置 IP (root 身份)
- 2.2.1 检查 IP

ip addr

或

ip link

2.2.2 配置 IP 和网管

#cd /etc/sysconfig/network-scripts #进入网络配置文件目录

find ifcfg-* #查到网卡配置文件,例如 ifcfg-em1

vi ifcfg-eth0 #编辑网卡配置文件

或

vi /etc/sysconfig/network-scripts/ifcfg-eth0 #编辑网卡配置文件

配置内容:

DEVICE=eth0 #网卡名称

BOOTPROTO=static #静态 IP 配置为 static, 动态配置为 dhcp

ONBOOT=yes #开机启动

HWADDR=08:00:27:6E:57:12 #mac 地址

IPADDR=192.168.10.198 #IP 地址

NETMASK=255.255.255.0 #子网掩码

GATEWAY=192.168.10.1 #网关

DNS1=202.96.134.133 #主 DNS

DNS2=202.96.134.188 #备 DNS

service network restart #重启网络

(如果提示错误,则参考《CentOS Linux 解决 Device eth0 does not seem to be present.doc》)

2.2.3 配置 hosts

vi /etc/hosts

编辑内容:

192.168.10.198 master

192.168.10.170 slaver1

192.168.10.143 slaver2

192.168.10.168 slaver3

2.2.3 修改 CentOS5.5 主机名称

安装的 CentOS5.5 主机名称默认是 localhost.localdomain 不太好记,需要修改。

要求不重新启动机器,在终端场景下修改 CentOS5.5 主机名的修改步骤如下:

1. 修改 CentOS 主机名称配置文件 /etc/sysconfig/network

vi /etc/sysconfig/network

修改 HOSTNAME 配置为想要的名称,例如:

NETWORKING=yes

NETWORKING_IPV6=no

HOSTNAME=master

2. 修改 /etc/hosts 配置文件

用户在进行网络连接时,首先查找该文件,寻找对应主机名(或域名)对应的 IP 地址。

修改之后的用户名对应的 IP 地址为 127.0.0.1,修改 /etc/hosts 文件如下:

vi /etc/hosts

- # Do not remove the following line, or various programs
- # that require network functionality will fail.
- 127.0.0.1 WebServer localhost.localdomain localhost
- ::1 localhost6.localdomain6 localhost6
- 3. 使用 hostname 命令修改主机名

完成以上两步,你会发现实际的主机名称并没有发生变化,因为修改的配置文件会在下次重启的时候才能加载。此时使用 hostname 命令来修改主机名称:

- # hostname
- # hostname master
- # hostname
- 2.3 关闭防火墙
 - # service iptables status #检查防火墙状态

```
# service iptables stop #关闭防火墙
    # chkconfig iptables off #禁止开机启动防火墙
2.4 时间同步
    # yum install -y ntp #安装 ntp 服务
    # ntpdate cn.pool.ntp.org #同步网络时间
2.5 安装配置 jdk
2.5.1 卸载自带 jdk
    安装好的 CentOS 会自带 OpenJdk,用命令 java -version , 会有下面的信息:
      java version"1.6.0"
  OpenJDK Runtime Environment (build 1.6.0-b09)
  OpenJDK 64-Bit Server VM (build 1.6.0-b09, mixedmode)
    最好还是先卸载掉 openjdk,再安装 sun 公司的 jdk.
    先查看 rpm -qa | grep java
    显示如下信息:
       java-1.4.2-gcj-compat-1.4.2.0-40jpp.115
       java-1.6.0-openjdk-1.6.0.0-1.7.b09.el5
    卸载:
       rpm -e -nodeps java-1.4.2-gcj-compat-1.4.2.0-40jpp.115
       rpm -e -nodeps java-1.6.0-openjdk-1.6.0.0-1.7.b09.el5
    还有一些其他的命令
       rpm -qa | grep gcj
       rpm -qa | grep jdk
    如果出现找不到 openidksource 的话,那么还可以这样卸载
       yum -y remove javajava-1.4.2-gcj-compat-1.4.2.0-40jpp.115
       yum -y remove javajava-1.6.0-openjdk-1.6.0.0-1.7.b09.el5
```

```
2.5.2 安装 jdk
```

上传 jdk-8u101-linux-x64.tar.gz 安装包到 opt 目录

tar -zxvf jdk-8u101-linux-x64.tar.gz

2.5.3 各个主机之间复制 jdk (可以先处理后面的免密问题再传输,以免不停需要输入密码)

scp -r /opt/jdk1.8.0_101 slaver1:/opt/

scp -r /opt/jdk1.8.0_101 slaver2:/opt/

scp -r /opt/jdk1.8.0_101 slaver3:/opt/

2.5.4 各个主机配置 jdk 环境变量

vi /etc/profile

编辑内容

export JAVA_HOME=/opt/jdk1.8.0_101

export PATH=\$JAVA_HOME/bin:\$PATH

export CLASSPATH=.:\$JAVA_HOME/lib/dt.jar:\$JAVA_HOME/lib/tools.jar

source /etc/profile #使配置文件生效

java -version #查看 java 版本

2.6 配置 ssh 无密钥访问

分别在各个主机上检查 ssh 服务状态:

service sshd status #检查 ssh 服务状态

yum install openssh-server openssh-clients #安装 ssh 服务,如果已安装,则不用执行该步骤

service sshd start #启动 ssh 服务,如果已安装,则不用执行该步骤

分别在各个主机上生成密钥

ssh-keygen -t rsa #生成密钥

```
在 slaver1 上
    # cp ~/.ssh/id_rsa.pub ~/.ssh/slaver1.id_rsa.pub
    # scp ~/.ssh/slaver1.id_rsa.pub master:~/.ssh
    在 slaver2 上
    # cp ~/.ssh/id_rsa.pub ~/.ssh/slaver2.id_rsa.pub
    # scp ~/.ssh/slaver2.id_rsa.pub master:~/.ssh
     在 slaver3 上
    # cp ~/.ssh/id_rsa.pub ~/.ssh/slaver3.id_rsa.pub
    # scp ~/.ssh/slaver3.id_rsa.pub master:~/.ssh
     在 master 上
    # cd ~/.ssh
    # cat id_rsa.pub >> authorized_keys
    # cat slaver1.id_rsa.pub >>authorized_keys
    # cat slaver2.id_rsa.pub >>authorized_keys
    # cat slaver3.id_rsa.pub >>authorized_keys
    # scp authorized_keys slaver1:~/.ssh
    # scp authorized_keys slaver2:~/.ssh
    # scp authorized_keys slaver3:~/.ssh
三.安装配置 hadoop
3.1 安装 hadoop
    上传 hadoop-2.7.3.tar.gz 安装包到 opt 根目录
    # tar -zxvf hadoop-2.7.3.tar.gz
```

```
# mkdir ./hadoop-2.7.3/tmp
    # mkdir ./hadoop-2.7.3/logs
    # mkdir ./hadoop-2.7.3/hdf
    # mkdir ./hadoop-2.7.3/hdf/data
    # mkdir ./hadoop-2.7.3/hdf/name
3.1.1 在 hadoop 中配置 hadoop-env.sh 文件
    edit the file etc/hadoop/hadoop-env.sh todefine some parameters as follows:
      # vi ./hadoop-2.7.3/etc/hadoop/hadoop-env.sh
      export JAVA_HOME=/opt/jdk1.8.0_101
3.1.2 修改 yarn-env.sh
     # vi ./hadoop-2.7.3/etc/hadoop/yarn-env.sh
    #export JAVA_HOME=/home/y/libexec/jdk1.7.0/
    export JAVA_HOME=/opt/jdk1.8.0_101
3.1.3 修改 slaves
    # vi ./hadoop-2.7.3/etc/hadoop/slaves
    配置内容:
    删除: localhost
    添加:
    slaver1
    slaver2
    slaver3
3.1.4 修改 core-site.xml
```

vi ./hadoop-2.7.3/etc/hadoop/core-site.xml

```
配置内容:
    <configuration>
      property>
       <name>fs.default.name</name>
       <value>hdfs://master:9000</value>
      </property>
      property>
       <name>hadoop.tmp.dir</name>
       <value>file:/opt/hadoop-2.7.3/tmp</value>
      </property>
    </configuration>
3.1.5 修改 hdfs-site.xml
    # vi ./hadoop-2.7.3/etc/hadoop/hdfs-site.xml
    配置内容:
    <configuration>
      property>
       <name>dfs.datanode.data.dir</name>
       <value>/opt/hadoop-2.7.3/hdf/data</value>
       <final>true</final>
      </property>
      property>
       <name>dfs.namenode.name.dir</name>
```

```
<value>/opt/hadoop-2.7.3/hdf/name</value>
       <final>true</final>
      </property>
    </configuration>
3.1.6 修改 mapred-site.xml
    #
cp./hadoop-2.7.3/etc/hadoop/mapred-site.xml.template./hadoop-2.7.3/etc/hadoop/map
red-site.xml
    # vi ./hadoop-2.7.3/etc/hadoop/mapred-site.xml
    配置内容:
    <configuration>
      property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
      </property>
      property>
       <name>mapreduce.jobhistory.address</name>
       <value>master:10020</value>
      </property>
      property>
       <name>mapreduce.jobhistory.webapp.address</name>
       <value>master:19888</value>
      </property>
```

```
</configuration>
3.1.7 修改 yarn-site.xml
    # vi ./hadoop-2.7.3/etc/hadoop/yarn-site.xml
    配置内容:
    <configuration>
      property>
       <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
       <value>org.apache.mapred.ShuffleHandler</value>
      </property>
      cproperty>
       <name>yarn.resourcemanager.address</name>
       <value>master:8032</value>
      </property>
      property>
       <name>yarn.resourcemanager.scheduler.address</name>
       <value>master:8030</value>
      </property>
      property>
       <name>yarn.resourcemanager.resource-tracker.address</name>
       <value>master:8031</value>
      </property>
```

property>

```
<name>yarn.resourcemanager.admin.address</name>
       <value>master:8033</value>
      </property>
     property>
       <name>yarn.resourcemanager.webapp.address</name>
       <value>master:8088</value>
      </property>
    </configuration>
3.2 各个主机之间复制 hadoop
    # scp -r ./hadoop-2.7.3 slaver1:/opt
    # scp -r ./hadoop-2.7.3 slaver2:/opt
    # scp -r ./hadoop-2.7.3 slaver3:/opt
3.3 各个主机配置 hadoop 环境变量(每个主机都需要这样操作)
    # vi /etc/profile
    编辑内容:
    export HADOOP_HOME=/opt/hadoop-2.7.3
    export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
    export HADOOP_LOG_DIR=/opt/hadoop-2.7.3/logs
    export YARN_LOG_DIR=$HADOOP_LOG_DIR
    # source /etc/profile #使配置文件生效
```

3.4 格式化 namenode (只需要在 master 机上执行,严格来说你需要那个做为 namenode 就 在那个上面执行)

cd /opt/hadoop-2.7.3/sbin

hdfs namenode -format

3.5 启动 hadoop (只需要在 master 机上执行)

启动 hdfs:

cd /opt/hadoop-2.7.3/sbin

start-all.sh

检查 hadoop 启动情况:

http://192.168.10.198:50070

http://192.168.10.198:8088/cluster

查看状态:

/opt/hadoop-2.7.3/bin/hadoop dfsadmin -report

[root@master sbin]# ../bin/hdfs dfsadmin -report

Configured Capacity: 56338194432 (52.47 GB) Present Capacity: 33484337152 (31.18 GB) DFS Remaining: 33484255232 (31.18 GB)

DFS Used: 81920 (80 KB)

DFS Used%: 0.00%

Under replicated blocks: 0 Blocks with corrupt replicas: 0

Missing blocks: 0

Missing blocks (with replication factor 1): 0

Live datanodes (3):

Name: 192.168.10.168:50010 (slaver3)

Hostname: slaver3

Decommission Status: Normal

Configured Capacity: 18779398144 (17.49 GB)

DFS Used: 24576 (24 KB)

Non DFS Used: 5563150336 (5.18 GB) DFS Remaining: 13216223232 (12.31 GB)

DFS Used%: 0.00%

DFS Remaining%: 70.38%

Configured Cache Capacity: 0 (0 B)

Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%

Xceivers: 1

Last contact: Fri Sep 02 00:23:30 PDT 2016

Name: 192.168.10.170:50010 (slaver1)

Hostname: slaver1

Decommission Status: Normal

Configured Capacity: 18779398144 (17.49 GB)

DFS Used: 28672 (28 KB)

Non DFS Used: 8745037824 (8.14 GB)

看到类似如上信息则表示成功了。

检查进程:

master 主机包含 ResourceManager、SecondaryNameNode、NameNode 等,则表示 启动成功,例如

2212 ResourceManager

2484 Jps

1917 NameNode

2078 SecondaryNameNode

各个 slave 主机包含 DataNode、NodeManager 等,则表示启用成功,例如

17153 DataNode

17334 Jps

17241 NodeManager

3.6 出现问题

1.启动以后如果活着的 slaver 节点少于部署的,可以看看各自 logs 下的日志。若出现 【UnknownHostException: VM-172.16.54.11: VM-172.16.54.11: Name or service not known 】,即 可能为你修改 hostsname 以后没有重启电脑,执行 hostname master 即可

2.注意把防火墙关了

四.安装配置 zookeeper

4.1 配置 zookeeper 环境变量

vi /etc/profile

export ZOOKEEPER_HOME=/opt/zookeeper-3.4.8

export PATH=\$ZOOKEEPER_HOME/bin:\$PATH

source /etc/profile

4.2 配置 zookeeper

1、到 zookeeper 官网下载

zookeeper http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.8/

2、在 slaver1,slaver2,slaver3 上面搭建 zookeeper

例如:

slaver1 192.168.10.170

slaver2 192.168.10.143

slaver3 192.168.10.168

3、上传 zookeeper-3.4.8.tar.gz 到任意一台服务器的根目录,并解压: zookeeper:

tar -zxvf zookeeper-3.4.8.tar.gz

4、在 zookeeper 目录下建立 data 目录, 同时将 zookeeper 目录下 conf/zoo_simple.cfg 文件复制一份成 zoo.cfg

mkdir /opt/zookeeper-3.4.8/data

cd /opt/zookeeper-3.4.8/conf/

cp zoo_sample.cfg zoo.cfg

5、修改 zoo.cfg

vi zoo.cfg

Thenumber of milliseconds of each tick

tickTime=2000

Thenumber of ticks that the initial

#synchronization phase can take

initLimit=10

```
# Thenumber of ticks that can passbetween
#sending a request and getting anacknowledgement
syncLimit=5
# thedirectory where the snapshot isstored.
# do notuse /tmp for storage, /tmp hereis just
#example sakes.
dataDir=/opt/zookeeper-3.4.8/data
# theport at which the clients willconnect
clientPort=2181
# themaximum number of clientconnections.
#increase this if you need to handle moreclients
#maxClientCnxns=60
#
# Besure to read the maintenance section of the
# administratorguide before turning onautopurge.
#
#http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# Thenumber of snapshots to retain indataDir
#autopurge.snapRetainCount=3
# Purgetask interval in hours
```

```
# Set to"0" to disable autopurge feature
#autopurge.purgeInterval=1
server.1=slaver1:2888:3888
server.2=slaver2:2888:3888
server.3=slaver3:2888:3888
6、拷贝 zookeeper 目录到另外两台服务器:
# cd /opt
# scp -r /opt/zookeeper-3.4.8 slaver1:/opt
# scp -r /opt/zookeeper-3.4.8 slaver2:/opt
# scp -r /opt/zookeeper-3.4.8 slaver3:/opt
分别在几台服务器的 data 目录下建立 myid 其 ip 对应相应的 server.*
server.1 的 myid 内容为 1
# cd /opt/zookeeper-3.4.8/data/
# touch myid
# echo 1 > myid
server.2 的 myid 内容为 2
# cd /opt/zookeeper-3.4.8/data/
# touch myid
# echo 2 > myid
server.3 的 myid 内容为 3
# cd /opt/zookeeper-3.4.8/data/
```

touch myid

echo 3 > myid

7、启动 ZooKeeper 集群,在每个节点上分别启动 ZooKeeper 服务:

```
# cd /opt/zookeeper-3.4.8/bin/
# ./zkServer.sh start
```

8、可以查看 ZooKeeper 集群的状态,保证集群启动没有问题:分别查看每台服务器的 zookeeper 状态 zookeeper#bin/zkServer.shstatus 查看那些是 following 那个是 leader

Eg:

./jps

./zkServer.sh status

slaver1:

```
[root@slaverl bin]# ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@slaverl bin]# jps
15394 DataNode
17507 QuorumPeerMain
15498 NodeManager
17535 Jps
[root@slaverl bin]# ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Mode: follower
[root@slaverl bin]# [
```

slaver2:

```
[root@slaver2 bin]# ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@slaver2 bin]# jps
15365 DataNode
17483 OuorumPeerMain
15469 NodeManager
17517 Jps
[root@slaver2 bin]# ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Mode: leader
[root@slaver2 bin]# []
```

slaver3:

```
[root@slaver3 bin]# ./zkServer.sh start
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
[root@slaver3 bin]# jps
14304 Jps
12164 DataNode
14277 QuorumPeerMain
12270 NodeManager
[root@slaver3 bin]# ./zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper-3.4.8/bin/../conf/zoo.cfg
Mode: follower
[root@slaver3 bin]# [
```

看到以上信息则表示安装成功。

```
五.安装配置 hbase
```

5.1 安装 hbase

上传 hbase-1.2.2-bin.tar.gz 安装包到 root 根目录

tar -zxvf hbase-1.2.2-bin.tar.gz

mkdir /opt/hbase-1.2.2/logs

5.2 配置 hbase 环境变量 (各主机)

vi /etc/profile

export HBASE_HOME=/opt/hbase-1.2.2

export PATH=\$PATH:\$HBASE_HOME/bin

source /etc/profile

5.3 修改 hbase-env.sh

vi /opt/hbase-1.2.2/conf/hbase-env.sh

配置内容(直接替换所有内容或开放相应配置内容):

export JAVA_HOME=/opt/jdk1.8.0_101

export HBASE_LOG_DIR=\${HBASE_HOME}/logs

export HBASE_MANAGES_ZK=false

5.4 修改 regionservers

```
# vi /opt/hbase-1.2.2/conf/regionservers
    配置内容:
    删除: localhost
    添加:
    slaver1
    slaver2
    slaver3
5.5 修改 hbase-site.xml
    # vi /opt/hbase-1.2.2/conf/hbase-site.xml
    配置内容:
    <configuration>
      property>
        <name>hbase.rootdir</name>
        <value>hdfs://master:9000/hbase</value>
      </property>
      property>
          <name>hbase.cluster.distributed</name>
          <value>true</value>
      </property>
      property>
```

<name>hbase.zookeeper.quorum</name>

```
<value>slaver1,slaver2,slaver3</value>
</property>
 cproperty>
   <name>hbase.master</name>
   <value>hdfs://master:60000</value>
</property>
property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/opt/zookeeper-3.4.8/data</value>
</property>
property>
 <name>hbase.zookeeper.property.clientPort</name>
 <value>2181</value>
</property>
    <!--默认 HMaster HTTP 访问端口-->
cproperty>
    <name>hbase.master.info.port</name>
    <value>16010</value>
 </property>
    <!--默认 HRegionServer HTTP 访问端口-->
```

```
cproperty>
           <name>hbase.regionserver.info.port</name>
           <value>16030</value>
        </property>
    </configuration>
5.6 各个主机之间复制 hbase
    # scp -r /opt/hbase-1.2.2 slaver1:/opt
    # scp -r /opt/hbase-1.2.2 slaver2:/opt
    # scp -r /opt/hbase-1.2.2 slaver3:/opt
5.7 启动 hbase (在 master 上执行, 其它机器不需要执行)
    启动之前先启动 hadoop 和 zookeeper 集群
    启动 hbase:
    # cd /opt/hbase-1.2.2/bin
    #./start-hbase.sh
5.8 启动 hbase 后活着的点只有本机器的,其他 slaver 点日志上
【INFO [regionserver/localhost/127.0.0.1:16020] regionserver.HRegionServer: reportForDuty to
master=localhost,16000,1495017286384 with port=16020, startcode=1495017287226
2017-05-17
              18:59:55,323
                              WARN
                                             [regionserver/localhost/127.0.0.1:16020]
regionserver. HRegionServer: error telling master we are up
com.google.protobuf.ServiceException: java.net.ConnectException: Connection refused
修改方法:将每个集群的主机的主机名修改为 regionservers 文件中对应的主机名
vi /etc/sysconfig/networks
HOSTNAME=主机名
如:在 master 上修改 HOSTNAME=master
    在 slaver1 上修改 HOSTNAME= slaver1
    在 slaver2 上修改 HOSTNAME= slaver2
    在 slaver3 上修改 HOSTNAME= slaver3
```

重启 network 服务设置生效

service network restart

5.9 时间不同步导致 hbase 启动不了

解决方法:

一般情况下,将 slaver 们的节点同步到 master 就行了,执行命令:

ntpdate -bu master 【ntpdate -bu 192.168.59.128】

就行了

但是在虚拟机上,可能上述时间同步命令不好使,并且报错:

【24 Jul 21:59:25 ntpdate[2480]: no server suitable for synchronization found】

解决方法: 【得能联网】, 执行命令

yum install -y rdate

安装完成以后,执行命令:

rdate -s time-b.nist.gov

这样就行了

检查 hbase 启动情况:

cd /opt/hbase-1.2.2/bin

#./hbase shell

显示如下信息则为正常:

```
[root@master bin]# hbase shell

SLF41: Class path contains multiple SLF41 bindings.
SLF41: Found binding in [jar:file:/opt/hbase-1.2.2/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF41: Found binding in [jar:file:/opt/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF41: See http://www.slf4j.org/codes.htmlemultiple_bindings for an explanation.
SLF41: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
HBase Shell: enter 'help-RETURPb-' for List of supported commands.
Type "ext-RETURPb-' to leave the HBase Shell
Version 1.2.2. r3f67lclead70d249ea4598flbbcc5151322b3a13, Fri Jul 1 08:28:55 CDT 2016

hbase(main):001:0> list
TABLE
O row(s) in 0.3650 seconds

> []
hbase(main):002:0> [
```

http://192.168.10.198:16010/master-status (注意: 是 master 机)

http://192.168.10.170:16030/rs-status (注意: 是 slaver 机)

(注:如果是在本机浏览器打开,需要注意本身的 hosts 配置或如果已经配置,则可以使用主机名直接访问,否则不可以)

看到上图表示正常安装启动。

检查进程:

jps

master 主机包含 ResourceManager、SecondaryNameNode、NameNode、HQuorumPeer、HMaster 等,则表示启动成功,例如

2212 ResourceManager

2999 Jps

2697 HQuorumPeer

1917 NameNode

2078 SecondaryNameNode

2751 HMaster

各个 slave 主机包含 DataNode、NodeManager、HRegionServer、HQuorumPeer 等,则表示启用成功,例如

17540 Jps

17142 NodeManager

17338 HRegionServer

17278 HQuorumPeer

17055 DataNode

六.试用 hbase (hbase shell 常用操作命令)

根据下面 tb1 表的结构来演示 hbase 增删改查用法:

name	info		address	
	sex	age	audress	
zhangsan	22	man	beijing	
lisi	23	woman	shanghai	

- # hbase shell #进入字符页面
- 6.1 创建表 tb1,并有两个列族 name、info 和 address, info 列族下有 sex 和 age 列

hbase(main):024:0> create 'tb1', 'name', 'info', 'address'

6.2 查看表结构

hbase(main):025:0> describe 'tb1'

6.3 列出所有表

hbase(main):025:0> list

6.4 插入几条记录

hbase(main):028:0> put 'tb1', 'zhangsan', 'info:sex', '22' hbase(main):039:0> put 'tb1', 'zhangsan', 'info:age', 'man'

hbase(main):031:0> put 'tb1', 'zhangsan', 'address', 'beijing'

hbase(main):046:0> put 'tb1', 'lisi', 'info:age', 'woman'

hbase(main):047:0> put 'tb1','lisi','info:sex','23'

hbase(main):048:0> put 'tb1', 'lisi', 'address', 'shanghai'

6.5 查看所有记录(全表扫描)

hbase(main):040:0> scan 'tb1'

ROW COLUMN+CELL

zhangsan column=address:,timestamp=1435129009088,value=beijing changsan column=info:age,timestamp=1435129054098, value=man column=info:sex,timestamp=1435128714392, value=22

说明:

ROW: 行,用来检索记录的主键。

COLUMN family: 列族,是表的一部分,必须在创建表时定义,可以看到列名是以列族作为前缀,一个列族可以有多个列(column)。

CELL: 存储单位,存储实际数据,也就是所看到的 value, cell 中没有数据类型,全部是字节码形式存储。

timestamp:时间戳,可以看做是数据版本号,hbase写时自动赋值,为当前系统时间,精确到毫秒。如果每个cell保存同一份数据多个版本时,可通过时间戳来索引版本。

6.6 统计表中记录总数 hbase(main):050:0> count 'tb1' 2 row(s) in 0.0190 seconds

=> 2

6.7 查看表中某条记录

hbase(main):054:0> get 'tb1', 'zhangsan'

COLUMN CELL

address: timestamp=1435129096397,value=beijing info:age timestamp=1435129054098,value=man info:sex timestamp=1435128714392,value=22

6.8 查看表中某行某列族中的所有数据

hbase(main):055:0> get 'tb1', 'zhangsan', 'info'

COLUMN CELL

info:age timestamp=1435129054098,value=man info:sex timestamp=1435128714392,value=22

6.9 更新一条记录(覆盖)

hbase(main):063:0> put 'tb1','zhangsan','info:sex','23' 0 row(s) in 0.0080 seconds

- 6.10 给 lisi 增加一个 comment 字段 hbase(main):070:0> incr 'tb1','lisi','info:comment'
- 6.11 删除某行某列族数据 hbase(main):065:0> delete 'tb1','zhangsan','info:sex'
- 6.12 删除某行所有记录 hbase(main):067:0> deleteall 'tb1','zhangsan'
- 6. 13 删除一个表 hbase(main):072:0> disable 'tb1' #先禁用 hbase(main):073:0> drop 'tb1' #再删除