

RICKENBACKER AIR NATIONAL GUARD BASE COLUMBUS, OHIO

CLOSURE PLAN ADDENDUM HAZARDOUS WASTE STORAGE AREA (BUILDING 560)

DTIC ELECTE JUN 18 1992

MAY 1992

Thir document has been approved for public release and sale; its distribution is unlimited.

HAZWRAP SUPPORT CONTRACTOR OFFICE

Oak Ridge, Tennessee 3783 Managed by MARTIN MARIETTA ENERGY SYSTEMS, INC.
For the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

Report Document Page

Form Approved UMD No. 0704-0188

(computer generated)

Public reporting burden for this information is estimated to average. I hour per response, including the time to review instructions, searching existing data sources, gathering and

information, including suggestions for reducing	and reviewing the collection of information. So githis burden to Washington Service Headqual 22 and to the Office of Management and Budge	nters Services Directorate for Information O	perations and Reports, 1215 Jefferson Davis			
1. Agency Use Only (Leave Blan		3. Report Type and Date Final Closure Plan				
4. Title and Subtitle Rickenbacker AirNa Closure Plan Adden Hazardous Waste S 6. Author(s) N/A		s, Ohio	Funding Numbers			
7. Performing Organization Name Engineering 19101 Villay Clevland, O	g - Science view Road - Suite 301	8.	Performing Organization Report number			
Oak Ridge T Air National	Waste Remedial Action Prog		Sponsoring/Monitoring Agency Report Number			
11. Supplemental Notes	,					
12. Distribution/Availability State Approved fo	ment or public release; distribution	}	o. Distribution Code			
This plan was submitted by the Rickenbacker Air National Guard Base, in compliance with the Ohio Administrative Code. The plan describes the activities that will be undertaken at the former hazardous waste storage area (HWSA). A landfill closure with ground water remediation will be undertaken at this site. However, since the installation of a RCRA landfill cap at this site will interfere with the performance of the ground water remediation, a cap will not be installed. The building (Bldg 560) and the drum wash pad adjacent to the building will be cleaned. Environmental investigations were conducted at the HWSA in 1989, 1990, and 1991, to determine what contaminants exist at the site and the extent of the contaminants. As a result of these investigations a site closure and remediation has been selected and is presented in this document.						
-	lfill cap, site closure, Rickent Code, hazardous waste storag		15. Number of Pages 154 16. Price Code			
17. Security Classification of	18. Security Classification of	19. Security Classification of				
Report Unclassified	this Page Unclassified	Abstract Unclassified	None			

CLOSURE PLAN ADDENDUM

for

HAZARDOUS WASTE STORAGE AREA (BUILDING 560) RICKENBACKER AIR NATIONAL GUARD BASE Columbus, Ohio

Submitted By:

RICKENBACKER AIR NATIONAL GUARD BASE

MAY 1992

Prepared By:

ENGINEERING-SCIENCE Cleveland, Ohio

Under Direction of The

HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM
MARTIN MARIETTA ENERGY SYSTEMS, INC.
Oak Ridge, Tennessee

and the

AIR NATIONAL GUARD READINESS CENTER
ANGRC/CEVP
ANDREWS AFB, MARYLAND

Submitted to

OHIO ENVIRONMENTAL PROTECTION AGENCY
Central District

1.0 INTRODUCTION

This Closure Plan is submitted by Rickenbacker Air National Guard Base (the Base), in compliance with the Ohio Administrative Code (OAC) Chapter 3745 Part 66, and Code of Federal Regulations (CFR) Title 40 Part 265, Subpart G.

The Plan describes the closure activities that will be undertaken at the former hazardous waste storage area (HWSA) located at Building 560 of the Base, U.S. EPA Interim Status Permit #OH3571924544. The site was used from 1983 until 1986 for the storage of drummed wastes generated at the Base.

A landfill closure with groundwater remediation will be undertaken at the site. However, since the installation of a RCRA landfill cap at this site will interfere with the performance of the groundwater remediation, a cap will not be installed. The building (Building 560) and the drum wash pad adjacent to the building will be cleaned.

Environmental investigations were conducted at the HWSA in 1989, 1990, and 1991, to determine what contaminants exists at the site, and the extent of the contaminants.

This Closure Plan includes:

		<u>Page</u>
1.0	Description of the Rickenbacker Air National Guard Base	1-1
2.0	Description of the Hazardous Waste Storage Area	2-1
3.0	List of the Hazardous Wastes Stored at this Location	3-1
4.0	Description of the Investigations Conducted	4-1
5.0	Remediation Methods	5-1
	5.1 Building Decontamination	
	5.2 Underground Storage Tank Removal	
	5.3 Groundwater Remediation	
6.0	Sampling Plan and Analytical Procedures	6-1
7.0	Personnel Safety and Fire Prevention	7-1
8.0	A Schedule of the Closure	8-1
9.0	Certification of Closure	9-1
10.0	Post-Closure Status	10-1
11.0	Cost Estimates for Closure	11-1
12.0	Closure Rules	12-1
13.0	References	13-1

LIST OF FIGURES

		<u>Page</u>
1.1	Location Map	1-2
1.2	Hazardous Waste Storage Area - Location	1-3
1.3	Hazardous Waste Storage Area - Detail	1-4
2.1	Aerial Photograph of Area	2-3
2.2	Photograph of Building 560	2-4
5.1	Decontamination Pad	5-3
5.2	Recovery Well Detail	5-10
5.3	Groundwater Treatment Schematic	5-11
	LIST OF TABLES	
3.1	Summary of Wastes Stored at Hazardous Waste Storage Area	3-2
4.1	List of Analytes	4-2
5.1	Hazardous Constituents Associated with The Hazardous	
	Waste Storage Area	5-5
5.2	Treatment System - Design Concentration Levels	5-12
6.1	Analytical Methods and Collection Specifications for	
	Soil Samples	6-3
6.2	Analytical Methods and Collection Specifications for	
	Water Samples	6-6
6.3	Sample Numbering System	6-10
6.4	Chain of Custody	6-11
6.5	Minimum Detection Limits - Metals	6-13
8.5	Schedule for Closure	8-1
	LIST OF APPENDICES	
A	Analytical Results	
В	Previous Investigations	

1.0 FACILITY DESCRIPTION

1.1 RICKENBACKER AIR NATIONAL GUARD BASE

The Rickenbacker Air National Guard Base (the Base) is located 12 miles southeast of Columbus, and 0.5 miles east of Lockbourne, Ohio, as is illustrated on Figure 1.1. The Base covers approximately 2,100 acres of the glacial till plain that separates the Big Walnut and Walnut Creek drainage basins. The area has been used as an air base under the custody of various government branches, including the Army Air Corps, and the Air National Guard since 1942. Access to the Base is restricted through a continually guarded entrance.

The hazardous waste storage area (HWSA) is located at the edge of the shop area in the northern section of the Base (Figure 1.2). The HWSA includes a 170 foot by 95 foot, fenced, grass-covered area, and a 10 foot by 20 foot steel building on a concrete slab known as Building Number 560 (Figure 1.3). Four underground storage tanks (USTs) are located southeast of Building 560. These have been used for the storage of JP4 jet fuel, oils and de-icing fluid. These USTs were not used as a part of the permitted hazardous waste storage facility, however, one of the USTs is within the HWSA, and the other three are adjacent to it. The activities that generated the wastes stored in the HWSA include degreasing operations at Base shops, aircraft cleaning and general maintenance activities (painting, paint stripping, etc.).

1.2 ENVIRONMENTAL SETTING

The environmental setting of the Base is described in this subsection with an emphasis on the identification of natural features that may influence the movement of hazardous waste contaminants from this facility.

Meteorology

The climate of Columbus, Ohio is characterized as continental (Pierce, 1959). The mean annual temperature is 52°F. The coldest month is January, while the warmest month is July with mean temperatures of 30°F and 74°F, respectively. Mean annual precipitation is 38 inches with October being the driest and June the wettest months. Net precipitation is calculated to be 37.88 inches per year (HMTC, 1987).

Geology

The Base is located in the Glaciated Central Lowlands Province just west of the Appalachian Plateau Province. The geology of the area is characterized by 200 feet(+) of Pleistocene glacial outwash sand and gravel and silty and clayey till (mixed drift) filling a preglacial bedrock valley (Smith and Goldthwaite, 1958). The bedrock types under the mixed drift fill are Devonian limestones and shales of the Columbus and Delaware Formations.

Soils

Soils mapped at the Base are of the Kokomo and Crosby Series (SCS, 1976). The soils are characterized as deep, very poorly drained, slowly to moderately slowly permeable soils formed in glacial tills on uplands. The Crosby series soils are formed on slopes up to 6 percent grade while the Kokomo series soils form on gentler 0-2 percent slopes on the higher landscape positions. The Crosby soils exhibit permeabilities of 0.06 to 0.6 in/hr in unleached horizons. The Kokomo soils have permeabilities of 0.2 to 2.0 in/hr.

Surface Water Hydrology

Rickenbacker ANGB occupies the drainage divide between Big Walnut Creek and Walnut Creek. Surface drainage from the Base is through an extensive storm drain network which includes corrugated metal and concrete drainage pipes and open drainage ditches. All of the surface water is routed through oil-water separators before release into surrounding surface streams, eventually discharging to Walnut Creek and Big Walnut Creek.

Ground Water Hydrology

Groundwater is the primary source of drirking water in this area. There are six water supply wells located on the Base. Five of the wells are located in the northwest portion of the Base and supply the drinking water for ANGB personnel, residents of former Base housing, and the Village of Lockbourne. Three of the five drinking water wells are used. The depths of the ANGB drinking water wells range from 201 to 232

feet. The wells are screened in the glacial sands and gravels immediately above the shale bedrock at depths of 180 to 200 feet. Static water levels in the drinking water wells range from 36 to 56 feet. The sixth water well on the Base is found at the Heating Plant. Water from the five wells is treated by sand filtration and chlorination before distribution. Testing of water from the wells for priority pollutants indicated no detectable contamination (Ecology and Environment, 1986). Homes along the rural roads surrounding the Base are served by individual domestic water wells. These wells are completed in sand and gravel aquifers between 20 and 100 feet deep.

Twelve monitoring wells and 15 soil borings were completed at the HWSA during pre-closure sampling activities. The borings (including wells) ranged in depth from 10 to 27 feet. The stratigraphy cannot site consists of 10 to 14 feet of silty clay soils (till) over a sand and gravel aquifer ranging in thickness from five to 15 feet. The aquifer may in fact be two separate aquifers divided by a one foot thick clay layer (Appendix B). Groundwater is confined in the sand aquifer and attains a static level of approximately ten feet below grade in the monitoring wells. The Pre-Closure Sampling Report and the Addendum to the Pre-Closure Sampling Report (ES, 1992) contains further discussion of site geology.

2.0 HAZARDOUS WASTE STORAGE AREA

The site is located is the central area of the Base. The HWSA measures 150 feet by 95 feet, and in surrounded by a chain-link fence, with a locking gate. A majority of the site is not paved, and is vegetated with grasses and herbaceous material. There is a paved driveway that leads to the building, and the floor of the building (Building 560) is paved with concrete. The area surrounding the site is very level and is also vegetated with grasses and herbaceous material. To the north and east of the site is a gravel road, and beyond the road are rail tracks. These tracks are no longer in use. The area to the south and west is currently used as a storage yard for stockpiled telephone poles, and drummed material. To the south and east of the site are office buildings, and parking lots. Beyond the buildings to the east are the runways of the Base. These runways receive air traffic consisting of various military aircraft, as well as private aircraft associated with the Rickenbacker Port Authority.

From 1974 to 1983, Building 560 housed water demineralization equipment. In 1983, the building was converted to a hazardous waste storage facility. The conversion included sealing off all floor drains that lead to storm sewers, connecting remaining drains to the sanitary sewer and installing emergency eye-wash and shower fixtures.

The hazardous wastes were containerized and brought to the site from other areas of the Base and were sampled to determine contents. After contents were determined, the wastes were turned over to the Defense Property Disposal Office (DPDO) for disposal or recycling. The DPDO is currently named the Defense Reutilization and Marketing Office (DRMO).

The building (Figure 1.3) was used to store small (5 gallons or less) containers which usually held acids or spent desiccants. Other materials stored at this site were containerized in 55 gallon drums. As many as 165 containers were stored at one time in the grass area outside Building 560. Section 3.0 summarizes types and quantities of waste that were stored at the site from 1983 until 1986.

The area where the HWSA was constructed has had various other uses in the past. Historical maps and drawings indicate that the site had been used for a storage yard probably for drummed lube oils (Figure 2.1). When the Base was first constructed, each of the buildings were individually heated with coal. The coal storage area for the Base was located to the west of the HWSA, adjacent to the railroad tracks. The smoke

stack for a coal burning furnace is still standing near the site and can be seen in Figure 2.2. The stack is approximately 180 feet from the HWSA. Records also indicate buildings number 552, and 551 were also located on this site. Fuel pumping operations were managed from these two buildings. One of the buildings housed the valve controls to fuel hydrants used to off-load fuel from train cars. The foundation of Building 551 is still located at the site. Excavations and soil sampling were conducted adjacent to this foundation in 1990. These investigations indicated that the fill material surrounding the structure was not contaminated.

Located southeast of the site are four 25,000 gallon USTs. These have not been used as a part of the permitted HWSA, and were not described in the permit for the HWSA. Three of the tanks are outside of the fenced-in area of the HWSA, and one of the tanks is within the boundary of the fenced area. The tanks have most recently been used for the storage of recyclable jet fuel, recyclable oil, and de-icing fluid.

ES ENGINEERING—SCIENCE

3.0 LIST OF HAZARDOUS WASTES STORED AT THE HAZARDOUS WASTE STORAGE AREA

Wastes from operations on the Base were stored at the HWSA from 1983 to 1986. No wastes have been stored at the site since 1986. Table 3.1 contains a summary of those wastes.

TABLE 3.1

SUMMARY LIST OF WASTES STORED AT HAZARDOUS WASTE STORAGE AREA (BUILDING 560)

Rickenbacker ANGB, Ohio

Waste Description	EPA Haz. Waste No.	Gallons* 1983	1983		by Year in (Pounds) 1986
PD 680 (Stoddard Solvent, Flammable Aliphatic Petroleum Distillate	D001	1,155	1,450	110	2,429
Carbon Removing Compound (Methylene Chloride, Creosols, Phenols)	F001, F004	590	870		
HAN (Highly Aromatic (Naptha)	D001	500	290	••	÷ -
MEK (Methyl Ethyl Ketone)	F005	285	525		1,050
Paint Remover	F005	200	540	••	
Bromochloromethane		200	385	••	
Sulfuric Acid	D002	25	25		
Paint Thinner	D001	20	20		
Ethanolamine and Benzyl Alcohol	D001	220			
Oily Water and Cleaning Solutions containing Lead, Cadmium Chromium and Nickel	D006, D007, D008	495			
Hydraulic Fluid	-	0	360		
Synthetic Oil	-		440	••	
Inspection Penetrant		**	150		
Organic Peroxide	D002			1	
Spent Dessicant (Cobalt chlorine (pounds)	-	50	40	10	**

^{*} Dessicant and all 1986 quantities reported in pounds.

4.0 DESCRIPTION OF THE INVESTIGATIONS CONDUCTED

Environmental investigations were conducted at this site in 1989, 1990, and 1991. The activities of these investigations were presented in detail in the stand alone documents: "Pre-Closure Sampling Report, Hazardous Waste Storage Area", ES, Final March 1992, and the "Addendum to the Pre-Closure Sampling Report, Hazardous Waste Storage Area", ES, Final January 1992. A brief outline of the activities is included here, and additional details from these documents are contained in Appendix B.

4.1 Environmental Investigations

During the investigations, surface soil, subsurface soil, and groundwater were sampled, and analyzed for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC) and metals. The list of the analytes is included in Table 4.1.

Results of these investigations indicate that SVOCs are randomly distributed in the surface soils and subsurface soils at the site. There is also evidence of VOCs in the soils of the site as well as dissolved VOCs in the groundwater, and phase separated hydrocarbons on the groundwater in the area.

The data from all of the investigations was entered into a data base to facilitate the manipulation of the information. This data base in included in Appendix A. The data are listed by depth of sample, and by sample matrix. The data are also illustrated on eight of the sheets that are contained in this closure plan. Sheets 1 through 7 illustrate results of analyses that were obtained from different depths at the site. For example: Sheet 1 illustrates all of the results of the soil samples obtained from 0 to 2 feet in depth, and Sheet 2 illustrates all of the results of soil samples obtained from 3 to 5 feet in depth. Sheet 8 illustrates all of the sample locations at the site, without the associated data.

TABLE 4.1

LIST OF COMPOUNDS FOR WHICH ANALYSIS WAS CONDUCTED - RICKENBACKER ANGB, COLUMBUS, OH

Base/Neutral Extractable Semi-Volatile Organics

Acenaphthene Acenaphthylene Anthracene

Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Benzo(a)anthracene
Benzo(ghi)perylene
Benyl Alcohol *
Bis(2-chloroethyl)ether
Bis(2-chloroethoxy)methane

Bis(2-ethylhexyl)phthalate
Bis(2-chloroisopropyl)ether
4-Bromophenyl phenyl ether

Butylbenzlphthalate

2-Chloronaphthalene 4-Chloroaniline

4-Chlorophenyl phenyl ether

Chrysene

Dibenzo(a,h)anthracene

Dibenzofuran
Di-n-octylphthalate
1,3-Dichlorobenzene
1,2-Dichlorobenzene
1,4-Dichlorobenzidine
Diethyl phthalate
Dimethyl phthalate
2,4-Dinitrotoluene

2,6-Dinitrotoiuene Di-n-octylphthalate Fluoranthene Fluorene

Hexachlorobenzene Hexachlorobutadiene Hexachloroethane

Hexachlorocyclopentadiene

Indeno(1,2,3-cd)pyrene

Isophorone

Naphthalene Nitrobenzene

N-Nitrosodiphenylamine

2-Nitroaniline 3-Nitroaniline 4-Nitroaniline

N-Nitroso-Dimethylamine * N-Nitroso-di-n-dipropylamine

2-Methylnaphthalene

Phenanthrene Pyrene

1,2,4-Trichlorobenzene

^{*} These compounds are not on the Target Compound List (TCL) but were included in the analysis report.

TABLE 4.1 (continued)

LIST OF COMPOUNDS FOR WHICH ANALYSIS WAS CONDUCTED - RICKENBACKER ANGB, COLUMBUS, OH

Volatile Organics

Acrolein * 1,1-Dichloroethane
Acetone 1,2-Dichloroethane
Acrylonitrile * trans-1,2-Dichloroethene

Benzene trans-1,3-Dichloropropene

Bromomethane

Bromodichloromethane 2-Hexanone
Bromoform Ethyl Benzene
2-Butanone Styrene

Carbon disulfide 1,1,2,2-Tetrachloroethane

Carbon tetrachloride Tetrachloroethene

Chlorobenzene Toluene

Chloroethane 1,1,1-Trichloroethane Chloroform 1,1,2-Trichloroethane

2-Chloroethyl vinyl ether * Trichloroethene

Chloromethane * Trichlorofluoromethane *

Dibromochloromethane
1,2-Dichloropropane

Vinyl chloride

1,3-Dichlorobenzene * Vinyl Acetate * Methylene Chloride

cis-1,3-Dichloropropene Xylenes 4-Methyl-2-pentanone

1,2-Dichlorobenzene * 1,4-Dichlorobenzene * 1,1-Dichloroethene

Metals

Antimony Lead
Arsenic Mercury
Beryllium Nickel
Cadmium Selenium
Chromium Silver
Copper Thallium
Zinc

^{*} These compounds are not on the Target Compound List (TCL) but were included in the analysis report.

5.0 REMEDIATION METHODS

This section describes the remediation methods to be implemented at the site. They involve: decontamination of Building 560 via cleaning the building and the drum wash pad; the removal of the four USTs; and the remediation of the contaminated groundwater via a pump and treat system.

Prior to initiating any remediation procedures, temporary fencing will be erected as illustrated on Sheet 9, and work zones will be established. The zones will be clearly defined and labeled with posted signs, and will limit the movement of equipment, operators, and personnel into and out of these zones in compliance with OSHA 29 CFR 1910.120. Access to the Base is restricted through guarded entrances 24 hours each day.

These work zones are:

- a) Exclusion Zone this zone includes all areas where potentially contaminated materials are exposed, excavated, or handled and all areas where contaminated equipment or personnel may travel. The level of personnel protection will be determined by the Safety Officer.
- b) Contaminant Reduction Zone this is the area where the decontamination pad is located, and provides for the transfer of construction materials from off-site equipment to site-contaminated equipment, the decontamination of vehicles prior to re-entering the Support Zone, the decontamination of personnel and clothing (including containerization of disposable outerwear), and for the physical segregation of the Support and Exclusion Zones.
- c) Support Zone this zone is located near the building and provides a location for temporary site facilities, personnel decontamination facilities, and an entry and exit area for personnel, material, and equipment to and from the project site.

Prior to leaving site, all vehicles and equipment used in the Exclusion Zone will be decontaminated in the Contaminant Reduction Zone.

The following procedures will be used for the decontamination of hand tools and personal protective equipment:

- a) Hand tools used on site will be deposited on plastic drop cloths.
- b) Outer boots and gloves are washed and scrubbed using a long-handled stiff bristle brush in a detergent solution. They are then rinsed with clear water.
- c) Outer boots and gloves are removed.
- d) The outer coverall is then removed and placed in a covered 55-gallon drum.
- e) If a respirator is necessary, the respirator facepiece is then removed followed by the inner gloves.
- f) All tools that leave the Exclusion Zone will be washed on the decontamination pad with a high pressure water wash followed by steam.
- g) Decontamination water will be transfer of from the pad to a holding tank.
- h) Workers involved in decontamination of equipment and tools will wear appropriate protection covered by raingear.

The equipment decontamination pad (Figure 5.1) will be constructed for removing contaminants from all equipment leaving the site. The procedure to be used will be a high pressure water wash followed by steam wash. Water spray, steam, or other decontamination materials will be prevented from moving outside the decontamination pad. All equipment will be visually inspected by the decontamination attendants for visible contamination. Daily inspections will be made to ensure that this procedure is being followed. All equipment will be decontaminated to the Engineers' satisfaction prior to leaving the site.

5.1 BUILDING DECONTAMINATION

Acids and spent desiccants were the predominant wastes stored in the building. The building floor, walls, shelving and drum wash pad will be cleaned with soap and water and rinsed with clear water one time. Doorways and edges of the building will be diked with sorbent material to prevent runoff of washwater. The sorbent material will be containerized and disposed of appropriately. The floor drain has been previously

plugged. This plug will remain in place during this cleaning operation. All wash and rinsewater will be containerized and analyzed for all hazardous constituents listed in the Appendix to OAC 3745-54-93 that are associated with the hazardous wastes that were stored at this site (Table 5.1). If the water does not exhibit the characteristics of these compounds, it will be disposed of through the sanitary sewer with approval from the Columbus Sewer District. If the water is determined to be hazardous via exhibiting a listed waste or exhibiting the characteristics of a hazardous waste, a proper disposal method will be determined based on the types of the hazardous constituents detected. Written notification of the TSDF selected for this disposal will be forwarded to the Ohio EPA at least five days prior to transport from the site.

The concrete drum wash pad northwest of Building 560 and drain pipe associated with the drum wash pad will be decontaminated. The concrete pad will be washed and rinsed. The piping will be washed by running water through the pipe. The outlet will be plugged and diked. Rinsewater will be pumped from the pipe at the outlet into a container.

The building floor, walls, shelving and drum wash pad will be considered clean if the rinseate from the cleaning operation meets the following standards:

- a) Fifteen times the public drinking water maximum contaminant level (MCL) for hazardous waste constituents as promulgated in 40 CFR 141.11 and OAC 3745-81-11 for inorganics and 40 CFR 141.12 and OAC 3745-81-12 for organics;
- b) If an MCL is not available for a particular contaminant, then fifteen times the maximum contaminant level goal (MCLG) as promulgated in 40 CFR 141.50 shall be used as the clean standard;

OT

c) If the product of fifteen times the MCL or MCLG exceeds 1 mg/L or if neither an MCL nor an MCLG is available for a particular contaminant, 1 mg/L shall be used as the clean standard.

If the MCL or MCLG is less than the contaminant's analytical detection limit using methods found in U.S. EPA publication SW-846 (Test Methods for Evaluation Solid Waste: Physical/Chemical Methods), fifteen times the SW-846 analytical detection limit shall be used as the clean standard.

The cleaning operation will be repeated, if necessary, to accomplish these levels.

TABLE 5.1

HAZARDOUS CONSTITUENTS ASSOCIATED
WITH THE
HAZARDOUS WASTE STORAGE AREA

Common Name	Analytical	PQL
	Method	(ug/L)
Acetone	8240	100
Benzene	8020	2
	8240	5
Benzyl alcohol	8270	20
Cadmium	6010	40
	7130	50
	7131	1
Carbon tetrachloride	8010	1
	8240	5
Chloroethane; Ethyl chloride	8010	5
	8240	10
Chloroform	8010	0.5
	8240	5
Chromium	6010	70
	7190	500
	7191	10
Cobalt	6010	70
	7200	500
	7201	10
m-Cresol	8270	10
o-Cresol	8270	10
p-Cresol	8270	10
1,1 - Dichloroethane	8010	1
	8240	5
1,2-Dichloroethane	8010	0.5
	8240	5
1,1-Dichloroethylene	8010	1
-	8240	5
trans-1,2-Dichloroethylene	8010	1
_	8240	5
Ethylbenzene	8020	2
-	8240	5
Lead	8010	40
	7420	1000
	7421	10
Methylene chloride;	8010	5
Dichloromethane	8240	5

HAZARDOUS CONSTITUENTS ASSOCIATED
WITH THE
HAZARDOUS WASTE STORAGE AREA

TABLE 5.1

Common Name	Analytical	PQL
	Method	(ug/L)
Methyl ethyl ketone; MEK	8015	10
	8240	100
Nickel	6010	50
	7520	400
Phenol	8040	1
	8270	10
1,1,1,2-Tetrachloroethane	8010	5
	8240	5
1,1,2,2-Tetrachloroethane	8010	0.5
	8240	5
Tetrachloroethylene;	8010	0.5
Perchloroethylene;	8240	5
Tetrachloroethene		
Toluene	8020	2
	8240	5 5
1,1,1-Trichloroethane;	8240	5
Methylchioroform	-	
1,1,2-Trichloroethane	8010	0.2
	8240	5
Trichloroethylene;	8010	1
Trichloroethene	8240	5
Vinyl chloride	8010	5 2
-	8240	10
Xylene (total)	8020	5
	8240	5 5

5.2 UNDERGROUND STORAGE TANK REMOVAL

Prior to implementation of groundwater remediation activities, the four USTs will be removed. The following summary of work describes proposed tasks to be performed at the UST site. All applicable guidelines of the Ohio Department of Commerce, Division of State Fire Marshal, Bureau of Underground Storage Tank Regulations will be followed.

- 1. Provide for health and safety requirements per OSHA, 29 CFR 1910.120.
- 2. Provide for all necessary permits, manifests, and licenses.
- 3. Excavate soil to remove four USTs and pipelines. The pipelines are identified on Sheet 9, and connect the USTs to the fill stand northeast of the site.
- 4. Shore excavations as necessary and provide security while each excavation is open.
- 5. Empty, vapor purge, remove and clean the USTs.
- 6. Locate, drain, remove, empty, and clean pipelines from tank to fill stand northeast of the USTs.
- 7. Cut or crush and dispose of cleaned tanks and pipelines as scrap.
- 8. Soil will be inspected for hydrocarbon evidence using procedures described in Section 6.1.1, to determine if it is potentially contaminated.
- 9. Soil samples will be obtained from the tank cavity prior to backfilling. Samples will be obtained from native material as opposed to tank cavity material. At least twelve soil samples will be obtained from the tank cavity. One from beneath each of the four tanks and one at each end of each tank. Soil samples will also be obtained every 20 linear feet along piping runs, under pipe elbows, flex connectors, or joints. Soil samples will also be obtained from locations where soil is visible discolored. Each of these samples will be submitted to the laboratory for analysis. Table 7.2 contains a list of all analytical methods to be conducted.
- 10. For all excavated soils, segregate potentially contaminated soil from uncontaminated soil. Store in roll-off boxes with liners and covers at the excavation sites until soils can be characterized for disposal/treatment. Sampling of these containerized soils will be conducted as described in Section 7.1.1 of this plan.
- 11. Dispose of soils classified as hazardous at Federal and State approved RCRA hazardous waste facility.
- 12. Store containerized tank/pipeline contents and all wastewaters generated including, pumped groundwater, spent cleaning fluids, spent rinseates and flushing water until it is characterized for treatment/disposal.

- 13. Backfill and compact excavations with uncontaminated soil installing two recovery wells in old tank pit (Sheet 9).
- 14. Restore all work areas by regrading the surface soil to a smooth condition where no surface ponding will occur. All disturbed areas will be reseeded with a hardy grass seed mixture, and a straw mulch will be applied.

5.3 GROUNDWATER REMEDIATION

The groundwater at the site contains dissolved VOCs. There is also phase separated hydrocarbon material evident. The extent of the contaminant plume has been defined, and is illustrated on Sheets 6 and 7.

Phase separated hydrocarbon material has been skimmed from the water column MW-5 with a paristaltic pump since February 1991. Approximately 55 gallons of material has been removed to date.

During the removal of the four USTs, the water from the tank cavity will be pumped to a temporary storage tank appropriate for this material. The temporary storage tank will be positioned as near to the tank cavity as possible without interfering with excavation operations, or compromising the stability of the excavation wall. Liquids contained in the temporary storage tank will be sampled by obtaining a composite sample from the liquid at one foot intervals. This will be used to characterize the liquid for disposal. It is anticipated that the liquid will be hauled off site to a permitted treatment facility.

The proposed groundwater remediation system will be constructed and operated to achieve risk-based closure levels for the HWSA. The groundwater treatment system is composed of six recovery wells pumping to an onsite treatment system. The treatment system will be housed in Building 560 following the cleaning operations described in Section 5.1. A site plan, provided as Sheet 9, details the locations of the recovery wells and location of the treatment system.

The recovery wells will be located to ensure that their radial influences will overlap, depressing the groundwater table throughout the affected area and drawing unaffected groundwater into the site. The recovery wells will be screened through the thickness of the affected aquifer only (Figure 5.2). The wells will be constructed of 8-inch diameter pipe and are estimated to produce a two gpm flowrate per well. Each well will be equipped with a submersible groundwater (total fluids) recovery pump and

pneumatic controller. The controllers, located at the well heads in protective enclosures, will be fitted with the high tank shut-off features that will shut down the pump systems in the event of a high level condition at the treatment system.

The recovered groundwater (total fluids) will be pumped to the treatment system located in Building 560. A schematic of the treatment system is provided as Figure 5.3. The treatment system is designed for an estimated 20 gpm flowrate. Influent and effluent concentrations used to size the treatment system are provided in Table 5.2. Initially, the recovered fluid will be pumped to a coalescing oil/water separator. The separator is designed to effectively remove 36 micron and larger oil droplets by means of the coalescing pack. The coalescing pack, combination of hydrocarbon-resistant packing and baffle plates, provides for maximum separation. The oil/water separator will be adequately vented on both water and phase-separated hydrocarbon (PSH) tank sides. The tank will be equipped with high-level detection on both sides to prevent potential tank overflows or system failures. The recovered PSH will be characterized and disposed of in accordance with all applicable regulations. Written notification of the disposal methods and disposal facility will be forwarded to the Ohio EPA at least five days prior to transport from the site. The recovered groundwater will be gravity fed to a four tray air stripper. This system combines bubble aeration with a horizontal tray configuration to cause the required mass transfer. Aeration in the stripper is provided via an explosion-proof blower. The stripper will be adequately vented. The stripper will be fitted with a high-level tank indicator to prevent potential tankage overflows or system failures. The air stripper effluent will be equipped with a high-level sensor to detect obstructions in the discharge line. In addition, high and low air pressure switches will be incorporated to detect pressure drop, indicative of blower failure, or pressure increase, indicative of excessive fouling. The effluent from the tray stripper will be gravity discharged to the sanitary sewer.

The groundwater recovery/treatment system operation will be tracked by Remote Systems Monitoring (RSM). The RSM will be capable of recording recovery well level observation levels, tank levels, air stripper pressure drop, and compressed air system pressure. The RSM will be capable of supplying this data via a telephone hookup, as well as, providing information on the system's current operational status.

5-10

TABLE 5.2

TREATMENT SYSTEM - DESIGN CONCENTRATION LEVELS
Rickenbacker ANGB, Ohio

Compound	Average Influent Concentration (ppb)	Maximum Effluent Concentration (ppb)	
Benzene	127	5	-
Toluene	2	5	
Ethylbenzene	33	5	
Xylenes	35	5	
1,2-Dichloroethene	33	0.5	
1,1,1-Trichloroethane	3	200	
Trichloroethene	168	5	
Vinyl Chloride	5	0.2	

All appropriate permits to install, and operate will be obtained from the Ohio EPA, and the Columbus Sewer District. The system will be monitored on a monthly basis for analytes listed on Table 5.2 to ensure that the system is operating effectively. Phase-separated hydrocarbon materials from the separator tank will be drummed and characterized for appropriate disposal.

Effluent from the system will be piped directly to the sewer inlet inside of Building 560. The concrete plug in the sewer inlet will be removed after the building has been cleaned. A concrete dike surrounds the inlet to ensure that spills will not enter the sewer.

Groundwater modeling using "TH-WELLS" model indicates that the treatment system will operate for four to six years.

6.0 SAMPLING PLAN AND ANALYTICAL PROCEDURES

This Sampling and Analytical Plan has been developed to establish a protocol for soil and water sampling at the Hazardous Waste Storage Area (HWSA) during the site closure and during the post-closure monitoring. Section 6.1 below describes the sampling that will be performed during the closure of the HWSA. Section 6.2 discusses the post-closure sampling that will be done to insure that the closure is intact and that no contaminants are moving from the site, and Section 6.3 discusses sample collection and analytical procedures that will be used in all sampling.

6.1 SAMPLING DURING HAZARDOUS WASTE STORAGE AREA CLOSURE

Both soil and water sampling will be performed during the closure of the HWSA. The objective of the soil sampling will be to verify that soil left on the site after the removal of the underground storage tanks is acceptable and to characterize the material to be disposed of off of the site. Water sampling will be performed to establish that the decontamination water and the effluent from the on-site water treatment facility can be discharged to the local POTW. Samples will also be taken to confirm that the on-site water treatment plant is working properly.

6.1.1 Soil Sampling

Soil Sampling Plan

As is discussed in Section 6.2, four 25,000 gallon underground storage tanks will be removed as part of the closure of the HWSA. During tank excavation, all excavated soil will be stored in roll-off boxes. Material will be separated on the basis of visual inspection, with material which appears to be clean placed in one box and material which appears to the contaminated placed in another. Material in the boxes will be sampled as they are filled, with at least three samples per roll-off; one of the bottom third, one of the middle third and one of the top third. Additional samples will be taken if there is a visible change in the soil type or degree of contamination. Samples from each roll-off will be composited for laboratory analysis. Samples will be taken following the procedures outlined below, screened in the field for volatile organic compounds, and undergo laboratory analysis for the compounds listed in Table 5.2. Analytical results will be used to determine appropriate disposal for the soil.

After the removal of the tanks, the tank pit will be excavated to reveal the native soil or the original fill material (as opposed to tank cavity fill material). Soil samples will then be collected from the walls and floor of the excavation. A minimum of 12 samples will be taken at selected locations in the pit. All samples will be screened in the field for volatile organic compounds and sent to the laboratory for further analysis. Samples will be analyzed for the compounds listed in Table 5.2.

Soil Sampling Procedures

Sampling will proceed in accordance with Ohio EPA RCRA regulations and the requirements of the Ohio Department of Commerce, Division of State Fire Marshal, Bureau of Underground Storage Tank Regulation (BUSTR). Sample handling and analytical procedures which are common to all samples collected at the site are discussed in Section 6.3. Procedures which apply only to soil sampling during the closure are discussed below.

Each soil sample will be collected with a stainless steel trowel and evenly divided between two clean glass jars. One jar, intended for laboratory analysis, will be sealed with a TeflonTM-lined lid. These samples will be packed in a cooler with ice and transported to the laboratory under the chain-of-custody procedures described in Section 6.3. Details of the sample containers that will be used for soil samples are presented in Table 6.1.

The second of the two jars will not be sent to the laboratory, but will be screened in the field for the presence of organic vapors. This jar will be sealed with aluminum foil and allowed to equilibrate for at least five minutes. The concentration of organic vapors in the headspace of the jar will then be tested using a photoionization detector (PID). If the air temperature is below 40°F, these samples will be set aside in a heated room and checked for vapors using the PID after they have warmed. This step is taken because PIDs are less accurate below 40°F.

All equipment which comes into direct contact with the sample will be thoroughly decontaminated prior to reuse. Decontamination will consist of a detergent wash, a clean water rinse, a methanol rinse and a deionized, organic-free water rinse. After the final rinse, the sampling equipment will be allowed to air dry on a clean, plastic covered surface before being re-used.

TABLE 6.1

RICKENBACKER ANGB, COLUMBUS, OHIO
ANALYTICAL METHODS AND COLLECTION SPECIFICATIONS
FOR SOIL SAMPLES

Parameter	Analytical Method (1)	Sample Container	Preser- vation Method	Holding Time
Volatile Organics	CLP/8240 ²	Brass split-spoon sampler sealed w/Teflon ^(R) or 8 oz., widemouth glass w/Teflon ^(R) liner	Cool, 4°C	10 days after receipt
Semi-Volatile Organics	CLP/8240 ²	8 oz, widemouth glass w/Teflon ^(R) liner	Cool, 4°C	Samples must be extracted within 5 days days of receipt and extracts analyzed within 40 days
Metals: ³ Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	6010 7060 6010 6010 6010 6010 7470 6010 7841 6010 7840 6010	8 oz, widemouth glass w/Teflon ^(R) liner	Cool, 4°C	6 months (except Mercury; 28 days)

^{1.} Source unless otherwise noted: SW 846, Test Methods for Evaluating Solid Wastes, U.S. EPA, November 1986.

^{2. 8240} and 8270 methods were used during 1988 investigations.

^{3.} All samples for metals analysis were prepared by Method 3050.

6.1.2 Water Sampling

Water from Tank Cavity

During the UST removal, water will be pumped from the tank cavity to a temorary storage tank. Water from the tank cavity is expected to contain some phase-separated hydrocarbons, and it will therefore be passed through a separator tank before it enters the temporary storage tank. Hydrocarbons from the separator tank will be disposed off-site at an appropriate disposal facility. Water from the separator tank will pass to the temporary storage tank.

The temporary storage tank will be a carbon steel tank lined with a smooth material which will be compatible with the materials being stored. The capacity of the tank will be approximately 21,000 gallons. Liquids accumulated in the tank will be sampled and analyzed per the procedures outined in Section 6.3. Disposal of the liquids will consist of hauling the liquids to a licensed treatment facility offsite as needed. The timing of the disposal and location of the facility will be supplied to the Ohio EPA at least five days prior to the hauling of the liquid.

Decontamination Water

Water used to decontaminate sampling equipment, construction equipment, and Building 560 will be stored at the site in a tank appropriate for this use. When all decontamination water has been collected, or when the tank is full, a composite sample will be taken from the tank by collecting samples at one-foot horizontal intervals. The sample will be analyzed to determine whether it can be discharged to the Columbus Sewer District or must be transported off-site for treatment at a facility licensed to treat the constituents found. The analyses performed will be determined by the requirements of the Columbus Sewer District or the off-site treatment facility and by the constituents expected in the used decontamination water. Samples will be handled according procedures outlined in Section 6.3.

6.2 POST-CLOSURE GROUNDWATER SAMPLING

6.2.1 Groundwater Sampling Plan

After the HWSA closure activities described herein are complete, sampling will be instituted at two down-gradient groundwater monitoring wells (existing MW-11 and MW-12) to verify that contaminants at the HWSA are not migrating from the site.

Initially, the wells will be sampled quarterly, with sampling frequency and time-span to be re-evaluated on the basis of the results of each year's sampling (as allowed by OAC Rule 3745-65-92). All results of the monitoring will be reported to the Ohio EPA, as required by the Ohio Administrative Code (OAC Rule 3745-65-92). The samples will be analyzed for the constituents listed in Table 5.2. A discussion of sampling techniques specific to the groundwater sampling is given below. General sampling procedures will be as set forth in Section 6.3.

6.2.2 Groundwater Sampling Procedures

Prior to sampling each monitoring well, the static water level in the well will be measured, and the pH, temperature and conductivity of the water will be determined. The well will be purged by pumping or bailing until two to three total well water volumes (TWWV) have been removed and the pH, conductivity and temperature have stabilized (±10%), or until the well is dry. The TWWV includes water in the screen, riser and sand pack, and will be calculated for each well and recorded in the log book after the static water level is measured. If phase-separated hydrocarbons are present in either well, the depth-to-fluid, depth-to-water, and phase-separated hydrocarbon thickness will be determined prior to purging. The separated hydrocarbons will then be removed and disposed of appropriately. The first bailer full of water from the well will also be inspected for separate phase hydrocarbons.

The bailers and pumps used for purging will be constructed of Teflon™, stainless steel, and PVC. Samples will be collected using a Teflon™ Bailer with a dedicated polypropylene line. Plastic ground covering will be used at each well site to prevent surface soils from contaminating down-well sampling devices.

A portion of the water from the first bailer of water that is withdrawn from each well during each sampling event will be put into a bottle to be analyzed for volatile organic compounds. Other sample bottles will then be filled. Appropriate preservatives will be added to all sample bottles. Bottle types and preservatives to be used are summarized in Table 6.2.

One sample from each well will be collected for metals analysis and will be filtered in the field with a 0.45 micron mesh filter to remove suspended particles from the water. Filtered samples will be analyzed for the concentrations of metal dissolved in the water. Unfiltered samples from each well will also be analyzed for total metals concentrations. Vials used for containing samples to be analyzed for volatile organics

TABLE 6.2

RICKENBACKER ANGB, COLUMBUS, OHIO

ANALYTICAL METHODS AND COLLECTION SPECIFICATIONS FOR WATER SAMPLES

Parameter	Analytical Method (1)	Sample Container	Preser- vation Method	Holding Time
Volatile Organics	CLP	40 ml, glass, Teflon ^(R) -lined septum cap	HCL (4 drops), Cool, 4°C	10 days after receipt
Semi-Volatile Organics	CLP	1 Liter, amber glass, w/Teflon ^(R) liner	Cool, 4°C	Samples must be extracted within 5 days of receipt and extracts analyzed within 40 days
Total Metals: Antimony Arsenic Beryllium Cadmium Chromium Copper	6010 or: 7040/7041 7060/7061 7090/7091 7130/7131 7190/7191 7210			
Lead Mercury Nickel Selenium Silver Thallium	7420/7421 7470/7471 7520 7740/7741 7760 7840/7841	2 liter plastic or glass	HNO ³ to pH<2	6 months (except Mercury; 28 days)
Zinc	7950			

^{1.} Source unless otherwise noted: SW 846, Test Methods for Evaluating Solid Wastes, U.S. EPA, November 1986.

^{2.} U.S. EPA, Methods for Chemical Analysis of Water and Wastes, March 1983.

will be checked to assure that no air bubbles are present before the samples are packaged for shipment.

The bailers, pump, and water level indicator used at each well will be decontaminated before use at the next well. The decontamination procedure will consist of a detergent wash, a clean water rinse, a methanol rinse, and a deionized, organic-free water rinse. The bailer will be allowed to air dry completely before subsequent use. The probe of the pH wand and the conductivity meter will be rinsed with deionized, organic-free water after each use. Purge water will be drummed and stored in a secure area pending proper disposal.

6.3 GENERAL SAMPLING PROCEDURES

6.3.1 Sample Custody and Documentation

The sample custody and documentation procedures described in this section will be followed during collection of soil and water samples at the HWSA both during the site closure and during post-closure monitoring. Personnel involved in chain-of-custody preparation and the transfer of samples will be trained in these procedures prior to implementation of the field program at the Base.

Field Log Books

Bound field log books will be maintained by the field team leader and other team members. Information pertinent to the field sampling will be recorded in the log books. Bound books with consecutively numbered pages will be used, and waterproof ink will be used for all entries. Entries in the log book will include at least the following:

- Name and title of author, date and time of entry, and physical/environmental conditions during field activity;
- Purpose of sampling activity;
- Name and address of field contact:
- Names and titles of field crew members:
- Names and titles of any site visitors;
- Type of sampled media (e.g., soil, sediment, groundwater, etc.);
- Sample collection method;

- Number and volume of sample(s) taken:
- Description of sampling point(s);
- Date and time of sample collection;
- Sample identification number(s);
- Sample distribution (e.g., laboratory);
- References for all maps and photographs of the sampling site(s);
- · Field observations:
- · Any field measurements made, such as pH, temperature, water level, etc.; and
- Weather conditions.

If an error is made in a log book, the person who made the entry will make the correction by crossing a line through the error and entering the correct information. The erroneous information should not be obliterated. All entries will be signed and dated, and all corrections will be initialed and dated.

Sample Labels

All physical samples obtained at the site will be placed in appropriate sample containers for shipment to the laboratory. Each sample bottle will be identified with a separate identification label. The information on the label will include the following information:

- Project identification;
- · Sample identification;
- Preservatives added;
- Date of collection; and
- Required analytical method numbers.

Each sample will be assigned a unique sample identification number that describes where the sample was collected. Each number will consist of a group of letters and numbers separated by hyphens. The sample numbering system is presented in Table 6.3.

Chain-of-Custody Records

All samples will be accompanied by a Chain-of-Custody Record (Figure 6.4). A Chain-of-Custody Record (COC) will accompany the sample from sample collection and

shipmentne laboratory and through the laboratory. If samples are split and sent to different laboratories, a copy of the COC will be sent with each part of the sample.

The "Remarks" column on the COC will be used to record specific information associated with sample acquisition such as: sample type, container type, sample preservation methods, and method number of analyses to be performed. When samples are transferred, the individuals relinquishing and receiving the samples will note the date and time of transfer on the COC, and sign the document.

One copy of the COC will follow the samples to the laboratory. The laboratory will maintain one file copy, and the completed original will be returned to the project manager as a part of the final analytical report to serve as documentation for sample custody transfers.

6.3.2 Sample Handling, Packaging and Shipment

Precleaned sample bottles will be supplied by the laboratory or obtained from a commercial supplier. With the exception of bottles used for trip blanks, the bottles will be stored in their original unopened packages or in laboratory samplesavers until they are used at the collection site. Bottles used for trip blanks will be filled with organic-free water at the laboratory and resealed prior to shipment to the field.

The samples will be packaged in samplesavers with frozen "blue-ice" containers. If samplesavers are not used, individual sample bottles will be wrapped in bubble pack and placed in sealed plastic bags to prevent breakage during shipment to the laboratory. The packages will be placed in insulated shipping coolers with plastic bags of ice.

The COC describing the contents of the cooler will be placed in a sealed plastic bag and taped to the upper inside lid of the cooler, or placed in a samplesaver. The shipping container will be taped shut with security labels over the opposite ends of the lid. The container will then be shipped by air express courier for overnight delivery to the laboratory.

6.3.3 Quality Assurance Samples

Quality Assurance (QA) samples will be submitted to the laboratory with all water and soil samples. Blind duplicate samples will be given false sample numbers similar to ordinary sample numbers. The fact that the samples are duplicates will be recorded in field records, but will not appear on the sample bottle labels or on the

TABLE 6.3

SAMPLE NUMBERING SYSTEM RICKENBACKER ANGB, COLUMBUS, OHIO

Project Identification:	RB for Rickenbacker
Site Identification:	HW for Hazardous Waste Storage Area
Sample Source Number (sequential): MW HB AB SU Su Sample Number: GW SS	Monitor Well # Hand Boring # Auger Boring # Surface Sediment Sampling Location # Ground Water Soil Sample (Split-Spoon or HB)
GS	Surface Soil Grab Sample
Example:	
RB-HW-MW6-SS1	
First soil sample from Monitor Well #6 drilled a ANGB.	t the Hazardous Waste Storage Area at Rickenbacker

CHAIN OF CUSTODY FORM

COCs. Duplicate samples will provide a check on laboratory analytical accuracy. One duplicate sample for each analysis will be taken for each 10 soil samples and each 20 water samples submitted. Duplicate soil samples will be collected for analysis when contamination is suspected based on odor, discoloration, or the presence of organic vapors. Duplicate water samples will be collected where odor, pH readings or conductivity measurements suggest contamination.

Additional QA samples will consist of: one field blank (source water for decontamination appropriately preserved in the specified sample bottle) from each sampling period and water source; one equipment wash blank (deionized, organic-free water poured through the decontaminated sampling equipment into the sample bottle and appropriately preserved) for every other day of sampling; and one trip blank (VOA vial filled by the laboratory with deionized, organic-free water) in each cooler transporting samples for volatile organic analyses. Trip blanks serve to monitor for sample contamination that might occur during shipping and handling or from improperly cleaned sample bottles, field blanks serve to verify the quality of the water used for decontamination, and equipment wash blanks serve to test the effectiveness of decontamination procedures.

6.3.4 Analytical Methods and Detection Limits

Analytical methods which will be used in the analysis of soil and water are listed in Table 6.2. Method detection limits (MDLs) for each method are given in Table 6.5. The MDLs are determined using laboratory prepared standard solutions. The actual detection limit obtainable for an environmental sample may be higher due to interference introduced by the sample matrix. Practical quantitation limits (PQLs), also published with the analysis methods, represent the lower limits of the detectable concentrations that can be expected from environmental samples. They offer guidelines for establishment of the lower limit for quantitation.

TABLE 6.5
MINIMUM DETECTION LIMITS

METAL	ANALYSIS METHODS	WATER ug/L	SOIL mg/Kg	
Antimony	6010	100	10	
Arsenic	7060	5	0.5	
Beryllium	6010	5	0.25	
Cadmium	7131	5	0.5	
Chromium	7191	5	0.25	
Copper	6010	10	0.5	
Lead	7421	5	0.25	
Mercury	7470	0.2	0.25	
Nickel	6010	40	2	
Selenium	7740	5	0.5	
Silver	7761	5	0.5	
Thallium	6010	100	5	
Zinc	6010	10	0.5	

7.0 PERSONNEL SAFETY AND FIRE PREVENTION

During the implementation of the Closure Plan, the health and safety of the construction personnel as well as visitors to the site will be guided by the plan outlined below.

The plan was developed to establish personal protection standards and mandatory safety practices and procedures. These measures were taken to protect all personnel (including contractors and visitors) involved in closure activities.

All workers reporting for duty at the site will be required to provide certification of completion of a 40-hour safety training course (or equivalent experience) as defined in 29 CFR 1910.120. This documentation will be maintained at the site by the Project Health and Safety Officer.

In addition, the Project Health and Safety Officer will be responsible for developing a training program to be presented to all personnel working at the site. The training will be conducted before work commences, and will include the following topics:

- Names of personnel responsible for site health and safety;
- Acute effects of compounds at the site;
- OSHA regulations;
- · Safety, health and other hazards at the site;
- Work practices by which employees can minimize risk from hazards;
- Decontamination procedures; and
- Proper use of personnel protection equipment.

The Project Health and Safety Officer will also conduct daily briefings to discuss specific procedures and hazards which will be encountered that day and will ensure that field practices are consistent with the guidelines provided in OSHA's 29 CFR 1910.120, 1910.132, 1910.1200, and 1926, USEPA's Occupational Health and Safety Manual, and Chapter 9 of the USEPA's Standard Operating Safety Guidelines.

Environmental monitoring will be performed to determine the proper level of protective equipment necessary for the conditions at hand. Air monitoring will be used to identify and quantify airborne levels of hazardous substances. Periodic monitoring of volatile organic vapors in the breathing zone will be done using a PID. In the event of

discovery of additional potential air hazards, the monitoring program and protective equipment will be reevaluated to reflect these discoveries.

Personal levels of protection, as determined through use of the U. S. Department of Health and Human Services, National Institute for Occupational Safety and Health (NIOSH Respiration Decision Logic), will be adhered to. The Project Health and Safety Officer will be responsible for monitoring worker exposure, and determining the appropriate level of protective equipment.

The names and telephone numbers of emergency coordinator(s) and local emergency officials to be notified in case of emergency, as well as a map indicating the location of the nearest emergency care facility, will be prominently displayed at the site.

An Accident Prevention and Contingency Plan to deal with emergencies and accidental exposures has been developed and is included with the site-specific Health and Safety Plan.

A delineation of the work zones to be used during the closure (i.e., exclusion, contamination-reduction, and support zones) is presented on Sheet 9 and described in Section 5.0.

Decontamination procedures are fully detailed in the site-specific Health and Safety Plan, and involve the following:

- Personnel decontamination, including the removal of gross soil contamination from clothing and boots, on-site washing of hands and boots, removal of soiled clothing as soon as practicable, and personal hygiene practices to remove any residual contamination which may have penetrated clothing;
- Equipment decontamination, including the removal of gross soil contamination from the excavation equipment and sampling equipment, and the transportation of all equipment to the central equipment decontamination zone for thorough cleansing as outlined in the site-specific Health and Safety Plan;
- Containerization of soils generated from the above decontamination procedures pending proper disposal;

• Collection of runoff from the equipment decontamination area in collecting devices designed for that purpose and storage of the liquids pending proper disposal.

7.1 SITE SECURITY

The site is currently surrounded by a six-foot chain-link fence with locking gate. It is anticipated that this fence will remain throughout the course of the closure (see Sheet 9). Access to the site is limited further by overall Base security. A guard is on duty 24 hours a day at the Base gate.

Warning signs stating, "DANGER - UNAUTHORIZED PERSONNEL KEEP OUT," or similar language will be posted around the permanent and temporary fencing. These site security measures meet the requirements of 40 CFR 265.14.

7.2 FIRE PREVENTION

An explosivity meter will be used during construction to monitor work in areas where a potentially explosive atmosphere exists. Tools used in areas with potentially explosive atmospheres will be of non-sparking materials.

8.0 SCHEDULE FOR CLOSURE

Table 8.1 presents the schedule for the implementation of this Closure Plan.

TABLE 8.1
SCHEDULE FOR CLOSURE

Work Description	Weeks from Acceptance of Plan
Decontamination Pad construction	0-4 weeks
UST Removal	4-10 weeks
Soil Removal	8-12 weeks
Building Cleanup	4-8 weeks
Construction of the Groundwater Treatment System	12-15 weeks
Start up of the system	15 weeks
Removal of decon pad	18-21 weeks
Initiate monthly monitoring of the system	19 weeks

Each of these work categories is considered a major activity, and the Ohio EPA will be notified at least five days prior to initiating each work category. The engineer of record for the project will visit the site during approximately the 20, 60 and 95 percent completion of each of the work categories.

9.0 CERTIFICATION OF CLOSURE

Rickenbacker ANGB will submit certification of closure to the Director of the Central District Office of the Ohio EPA, and to the Regional Administrator of the USEPA. The certification will be signed by the Base Civil Engineer, and by an independent qualified registered professional engineer who is licensed in the state of Ohio.

In accordance with Ohio Revised Code rule OAC 3745-50-42(D), the signatories to the certification of closure will make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

The certification will be submitted to the OEPA and USEPA within 60 days of completion of closure activities, via registered mail. The certification will include a report detailing the closure activities. These activities consist of pre-closure sampling, UST removal, post-removal sampling, groundwater remediation system design and construction, and post-closure care. The report will also document that the hazardous waste storage area has been closed in accordance with the Specifications of the approved Closure Plan. Additionally, this document will incorporate all laboratory records and correspondence regarding the closure activity after the Ohio EPA approval.

10.0 POST-CLOSURE STATUS

The post-closure care of the site will be initiated upon completion of the work outlined in this Closure Plan. The care will continue for up to thirty years. If approval of a lesser time period for post-closure care is approved by the Ohio EPA, a lesser period will be conducted.

The post-closure care will consist of maintaining a secured perimeter and monitoring groundwater quality at the site. A chain-link fence with locking gate will surround the perimeter of the HWSA. This gate will be locked when not attended by authorized personnel. The Base security system monitors all entrants to the Base. The main road entry is monitored by a guard, other entrances are secured by locked gates. The location and dimensions of the fenced area will be determined by a registered professional surveyor with reference to a permanently surveyed benchmark. The survey plot of the area will note that disturbance or use of the area is restricted per OAC 3745-66-16.

The monitoring wells at the HWSA will be sampled quarterly, and analyzed for the presence of contaminants. Results of this analysis will be reported to the Ohio EPA as required by the Ohio Administrative Code.

11.0 COST ESTIMATES FOR CLOSURE

Rickenbacker Air National Guard Base is exempt from filing a closure cost estimate (40 CFR 265.14) because it is owned and operated by the Federal Government.

12.0 CLOSURE RULES

13.0 REFERENCES

Documents used in the preparation of this Plan include the following:

- Hazardous Materials Technical Center, 1987, <u>Installation Restoration Program:</u>
 Phase I, Records Search, Rickenbacker Air National Guard Base, Columbus, Ohio, June 1987.
 - Schmidt, J.J., and Goldthwait, R.P., 1958, <u>The Ground-Water Resources of Franklin County, Ohio</u>: Bulletin 30, Ohio Department of Natural Resources, Division of Water, 1958.
 - Pierce, L.J., 1959, <u>The Climate of Ohio; in Climates of the States</u>, Volume 1 Eastern States; Water Information Center, Inc., 1974, pp. 300-317.
 - Soil Conservation Service, 1976, Soil Survey of Franklin County, Ohio; USDA, Soil Conservation Service, 188 p. and 69 sheets.
 - Ecology and Environment, Inc., 1986, <u>Site Inspection Report</u>, Lockbourne/Rickenbacker ANG Base, Landfill Investigation, Draft Report.
 - Martin Marietta Energy Systems, Inc., 1987, <u>Statement of Work for Site Inspection</u>, <u>Remedial Investigation</u>, <u>Feasibility Study</u>, and <u>Remedial Design at Rickenbacker Air National Guard Base</u>, <u>Columbus</u>, <u>Ohio</u>, August 31, 1987.
 - HAZWRAP Support Contractor Office, 1988, <u>Rickenbacker Air National Guard Base</u>, <u>Columbus</u>, <u>Ohio</u>; <u>Site Inspection</u>, <u>Remedial Investigation</u>, <u>Feasibility Study</u>, <u>Remedial Design Work Plan</u>, June 1988.
 - HAZWRAP Support Contractor Office, 1990a, <u>Field Investigation Report</u>, <u>Hazardous Waste Storage Area, Rickenbacker ANGB</u>, October, 1990.
 - HAZWRAP Support Contractor Office, 1990b, <u>Rickenbacker ANGB</u>, <u>Columbus</u>, <u>Ohio</u>; <u>Determination of Phase-Separated Hydrocarbon Extent at The Hazardous Waste Storage Area</u>, Draft, October, 1990.
 - HAZWRAP Support Contractor Office, 1990c, Rickenbacker ANGB, Columbus, Ohio: Pre-Closure Sampling Report, Hazardous Waste Storage Area, Draft, October, 1990.
 - HAZWRAP Support Contractor Office, 1990d, <u>Rickenbacker ANGB</u>, <u>Columbus</u>, <u>Ohio</u>: <u>Plans and Specifications for Underground Storage Tank Removal</u>, Advance Final, October, 1990.
 - Swaine, Dalway J., Trace Elements of Coal, London, Boston: Butterworth, 1990.
 - Schobert, Harold H., ed, <u>Coal Science II</u>, 1989 Symposium of the American Chemical Society.
 - · Speight, James G., The Chemistry and Technology of Coal, Marcel Dekker, NY.

APPENDIX A ANALYTICAL RESULTS

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

A-2	* 2100	EPTH			SATEGORY	FOR	OF HEAD	OUALIFIER	UNITS	LIM!
A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Filuoran A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Filuoran A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0 UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0 UT SURFACE SOIL SAMPLE M Antiboda A-2 0-2 0 UT SURFACE SOIL SAMPLE M Antiboda A-2 0-2 0 UT SURFACE SOIL SAMPLE M Antiboda A-2 0-2 0 UT SURFACE SOIL SAMPLE M Antiboda A-2 0-2 0 UT SURFACE SOIL SAMPLE M Antiboda A-2 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>; }</th> <th>RESULTS</th> <th></th> <th></th> <th></th>						; }	RESULTS			
A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Anthris A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Anthria A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0 -2 OUT SUPFACE SOIL SAMPLE M Antit A-2 0 -2 OUT SUPFACE SOIL SAMPLE M Antit A-2 0 -2 OUT SUPFACE SOIL SAMPLE M Antit A-2 0 -2 OUT SUPFACE SOIL SAMPLE M Antit										
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Fluorant A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(a)Fluorant A-2 0-2 OUT SURFACE SOIL SAMPLE M Antib A-3	-19 A-	0-2	OUT	SURFACE SOIL SAMPLE	S	Anthracene	5	7	ng/kg	330
A-2 0-2 0UT SURFACE SOIL SAMPLE SV Benzo(a)Anthra A-2 0-2 0UT SURFACE SOIL SAMPLE SV Benzo(b)Fluorani A-2 0-2 0UT SURFACE SOIL SAMPLE M Anti A-3	-19 A-	1	OUT	SURFACE SOIL SAMPLE	S	Fluoranthene	1500		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(a)Antitra A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indenz(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indenz(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indenz(b)Pluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indenz(b)Pluoran A-2 0-2 OUT SURFACE SOIL SAMPLE M Anti A-3	- V	- 1	OUT	SURFACE SOIL SAMPLE	SV	Pyrene	1500		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b)Fluoran A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indeno(12,3-cd)P A-2 0-2 OUT SURFACE SOIL SAMPLE M Antibolity Antib	-A	- 1	DOUT	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	740		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b) Fluorant A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b) Fluorant A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(b) Fluorant A-2 0-2 OUT SURFACE SOIL SAMPLE M Antibody A-3 0-2 OUT SURFACE SOIL SAMPLE M Antibody A-3 0-2<	-A 61		OUT	SURFACE SOIL SAMPLE	S	Chrysene	770		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Benzo(k)Fluorani Surface SOIL SAMPLE SV Benzo(k)Fluorani Surface SOIL SAMPLE SV Indenot 1, 2,3 - c/4)P Antition Surface SOIL SAMPLE N Antition Surface SOIL SAMPLE	Α-		OUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	750		ga/kg	330
A-2 0-2 0UT SURFACE SOIL SAMPLE SV Indeno(12,3-cd)PR SOIL SAMPLE SV INDENO(12,3-cd)PR A-2 0-2 0UT SURFACE SOIL SAMPLE M ANIMONIA SURFACE SOIL SAMPLE M SURFACE SOIL SAMPLE M ANIMONIA SURF	-V	0-2	DOUT	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	230		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE SV Indeno(12,3-cd)P- A-2 0-2 OUT SURFACE SOIL SAMPLE M Antiber SOIL SAMPLE SV Benzo(g,h,i)Per A-2 0-2 OUT SURFACE SOIL SAMPLE M A-2 0-2 OUT SURFACE SOIL SAMPLE M CA-2 0-2 OUT SURFACE SOIL SAMPLE M CA-3 0-2 OUT SURFACE SOIL SAMPLE	Α-	0-2	OUT	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	650		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE M Antiin Par A-2 0-2 OUT SURFACE SOIL SAMPLE M Antiin Par A-2 0-2 OUT SURFACE SOIL SAMPLE M Cad A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Antis A-2 0-2 OUT SURFACE SOIL SAMPLE M Antis A-2 0-2 OUT SURFACE SOIL SAMPLE M Antis A-3 0-2 OUT SURFACE SOIL SAMPLE M Antis A-3 0-2 OUT SURFACE SOIL SAMPLE M Antis A-3 0-2 OUT SURFACE SOIL SAMPLE	Α-	0-2	OUT	SURFACE SOIL SAMPLE	S	Indeno(1.2,3-cd)Pyrene	440		ug/kg	330
A-2 0-2 OUT SURFACE SOIL SAMPLE M Antition A-2 0-2 OUT SURFACE SOIL SAMPLE M Antition A-2 0-2 OUT SURFACE SOIL SAMPLE M Cad A-2 0-2 OUT SURFACE SOIL SAMPLE M Chro A-2 0-2 OUT SURFACE SOIL SAMPLE M Chro A-2 0-2 OUT SURFACE SOIL SAMPLE M Chro A-2 0-2 OUT SURFACE SOIL SAMPLE M M A-2 0-2 OUT SURFACE SOIL SAMPLE M M A-2 0-2 OUT SURFACE SOIL SAMPLE M Antit A-2 0-2 OUT SURFACE SOIL SAMPLE M Antit A-3 0-2 OUT SURFACE SOIL SAMPLE M Antit A-3 0-2 OUT SURFACE SOIL SAMPLE M Antit A-3 0-2 OUT SURFACE SOIL SAMPLE <t< td=""><td>A-</td><td>0-2</td><td>DOCT</td><td>SURFACE SOIL SAMPLE</td><td>S</td><td>Benzo(g.h.i)Perylene</td><td>380</td><td></td><td>ug/kg</td><td>330</td></t<>	A-	0-2	DOCT	SURFACE SOIL SAMPLE	S	Benzo(g.h.i)Perylene	380		ug/kg	330
A-2 0-2 0UT SURFACE SOIL SAMPLE M BORDANDLE M CADA A-2 0-2 0UT SURFACE SOIL SAMPLE M MACA OUT SURFACE SOIL SAMPLE M M MACA OUT SURFACE SOIL SAMPLE M M MACA OUT SURFACE SOIL SAMPLE M M MACA OUT	- A	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Antimony	4.6	35	mg/kg	9
A-2 0-2 OUT SURFACE SOIL SAMPLE M Cad A-2 0-2 OUT SURFACE SOIL SAMPLE M Chro A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Th A-2 0-2 OUT SURFACE SOIL SAMPLE M Anti A-3 0-2 OUT SURFACE SOIL SAMPLE M	¥-	0-2	DOOT	SURFACE SOIL SAMPLE	Σ	Arsenic	9.6	BNU	mg/kg	-
A-2 0-2 0UT SURFACE SOIL SAMPLE M Chro A-2 0-2 0UT SURFACE SOIL SAMPLE M Chro A-2 0-2 0UT SURFACE SOIL SAMPLE M Me A-2 0-2 0UT SURFACE SOIL SAMPLE M Me A-2 0-2 0UT SURFACE SOIL SAMPLE M Th A-2 0-2 0UT SURFACE SOIL SAMPLE M Th A-2 0-2 0UT SURFACE SOIL SAMPLE M Antit A-3 0-2 0UT SURFACE SOIL SAMPLE M <td>¥</td> <td>0-2</td> <td>OUT</td> <td>SURFACE SOIL SAMPLE</td> <td>Σ</td> <td>Baryllium</td> <td>0.45</td> <td>Φ,</td> <td>mg/kg</td> <td>9.0</td>	¥	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Baryllium	0.45	Φ,	mg/kg	9.0
A-2 0-2 OUT SURFACE SOIL SAMPLE M CAPTO COUT SURFACE SOIL SAMPLE M ME CAPTO COUT SURFACE SOIL SAMPLE M ME CAPTO COUT SURFACE SOIL SAMPLE M ME SOIL SAMPLE M MANIEM M AND CAPTO COUT SURFACE SOIL SAMPLE M MANIEM M AND CAPTO COUT SURFACE SOIL SAMPLE M AND CAPTO COUT SURFACE SOIL SAMPLE M MANIEM M CAPTO COUT SURFACE SOIL SAMPLE M SOIL SAMPLE M CAPTO COUT SURFACE SOIL SAMPLE M SOIL SAMPLE M CAPTO COUT SURFACE SOIL SAMPLE M CAPT	-\	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.68		mg/kg	9:0
A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M P A-2 0-2 OUT SURFACE SOIL SAMPLE M M A-2 0-2 OUT SURFACE SOIL SAMPLE M Antis A-3 0-2 OUT SURFACE SOIL SAMPLE M <td>Α-</td> <td>0-2</td> <td>OUT</td> <td>SURFACE SOIL SAMPLE</td> <td>Σ</td> <td>Chromium</td> <td>14.4</td> <td>z</td> <td>mg/kg</td> <td>-</td>	Α-	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromium	14.4	z	mg/kg	-
A-2 0-2 OUT SURFACE SOIL SAMPLE M Me A-2 0-2 OUT SURFACE SOIL SAMPLE M Sale A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M Antil A-3 0-2 OUT SURFACE SOIL SAMPLE <td< td=""><td>-V</td><td>-</td><td>OUT</td><td>SURFACE SOIL SAMPLE</td><td>Σ</td><td>Copper</td><td>15.8</td><td>•</td><td>mg/kg</td><td>2.5</td></td<>	-V	-	OUT	SURFACE SOIL SAMPLE	Σ	Copper	15.8	•	mg/kg	2.5
A-2 0-2 OUT SURFACE SOIL SAMPLE M Mean A-2 0-2 OUT SURFACE SOIL SAMPLE M Seleg A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE <t< td=""><td>¥</td><td>1</td><td>DOUT</td><td>SURFACE SOIL SAMPLE</td><td>Σ</td><td>Lead</td><td>110</td><td></td><td>mg/kg</td><td>0.3</td></t<>	¥	1	DOUT	SURFACE SOIL SAMPLE	Σ	Lead	110		mg/kg	0.3
A-2 0-2 OUT SURFACE SOIL SAMPLE M Seleg A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE <	- V	- 1	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.099	80	mg/kg	0.1
A-2 0-2 OUT SURFACE SOIL SAMPLE M Seles A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M ALL SEMI-VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE <td>Α-</td> <td>1</td> <td>OUT</td> <td>SURFACE SOIL SAMPLE</td> <td>≥</td> <td>Nickel</td> <td>14.1</td> <td></td> <td>mg/kg</td> <td>4</td>	Α-	1	OUT	SURFACE SOIL SAMPLE	≥	Nickel	14.1		mg/kg	4
A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha Tha A-3 0-2 OUT SURFACE SOIL SAMPLE M Auth SEMI-VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Auth SEMI-VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Auth SEMI-VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT <td< td=""><td>-A</td><td>-</td><td>OUT</td><td>SURFACE SOIL SAMPLE</td><td>2</td><td>Selenium</td><td>0.2</td><td>כ</td><td>mg/kg</td><td>0.5</td></td<>	- A	-	OUT	SURFACE SOIL SAMPLE	2	Selenium	0.2	כ	mg/kg	0.5
A-2 0-2 OUT SURFACE SOIL SAMPLE M Tha A-3 0-2 OUT SURFACE SOIL SAMPLE M All SEMI-VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M <td>-V</td> <td></td> <td>OUT</td> <td>SURFACE SOIL SAMPLE</td> <td>Σ</td> <td>Silver</td> <td>0.75</td> <td>D</td> <td>mg/kg</td> <td>-</td>	- V		OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.75	D	mg/kg	-
A-2 OUT SURFACE SOIL SAMPLE M ALL SEMI - VOLAT A-3 0-2 OUT SURFACE SOIL SAMPLE M Antin A-3 0-2 OUT SURFACE SOIL SAMPLE M Bery A-3 0-2 OUT SURFACE SOIL SAMPLE M Cadr A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M Chror A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A	- V		DOCT	SURFACE SOIL SAMPLE	Σ	Thallium	0.53	CWND	mg/kg	-
A-3 0-2 OUT SURFACE SOIL SAMPLE M Anti SEMI-VOLA A-3 0-2 OUT SURFACE SOIL SAMPLE M A Anti SEMI-VOLA A-3 0-2 OUT SURFACE SOIL SAMPLE M Ber A-3 0-2 OUT SURFACE SOIL SAMPLE M Cad A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M A	A-	-11	OUT	SURFACE SOIL SAMPLE	¥	Zinc	98.8	3	mg/kg	2
A-3 0-2 OUT SURFACE SOIL SAMPLE M ALL SEMI-VOLA A-3 0-2 OUT SURFACE SOIL SAMPLE M A A A A A A A A A A A A A A A A A A A	,									
A-3 0-2 OUT SURFACE SOIL SAMPLE M Anii A-3 0-2 OUT SURFACE SOIL SAMPLE M Ber A-3 0-2 OUT SURFACE SOIL SAMPLE M Cad A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M	20 A-	1	DOC	SURFACE SOIL SAMPLE	SS.	ALL SEMI - VOLATILES	Q		ng/kg	₹ Z
A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M Cad A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M	20 A-	1	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	4	3	mg/kg	9
A-3 0-2 OUT SURFACE SOIL SAMPLE M Ber A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M Chro A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M M A-3 0-2 OUT SURFACE SOIL SAMPLE M A	20 A-		OUT	SURFACE SOIL SAMPLE	Σ	Arsenic		<u> </u>	mg/kg	_
A-3 0-2 OUT SURFACE SOIL SAMPLE M A-4 0-4 OUT SURFACE SOIL SAMPLE M A-4 0-	¥	0-2	DO T	SURFACE SOIL SAMPLE	Σ	Beryllium			mg/kg	0.5
A-3 0-2 OUT SURFACE SOIL SAMPLE M A-4 0-4 OUT SURFACE SOIL SAMPLE M A-4 0-	-	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.19		mg/kg	0.5
A-3 0-2 OUT SURFACE SOIL SAMPLE M A-4 0-	¥	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromhm	1.6	₹	mg/kg	-
A-3 0-2 OUT SURFACE SOIL SAMPLE M Th	20 A-	0-2	OUT	SURFACE SOIL SAMPLE	∑	Copper	15.3	•	mg/kg	2.5
A-3 0-2 OUT SURFACE SOIL SAMPLE M Men A-3 0-2 OUT SURFACE SOIL SAMPLE M Sele A-3 0-2 OUT SURFACE SOIL SAMPLE M Sele A-3 0-2 OUT SURFACE SOIL SAMPLE M SHAPLE M That	20 A-	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Lead	22.9		mg/kg	0.3
A-3 0-2 OUT SURFACE SOIL SAMPLE M Sele A-3 0-2 OUT SURFACE SOIL SAMPLE M That	20 A-	0-2	OUT	SURFACE SOIL SAMPLE	≆	Mercury	0.062	08	mg/kg	1.0
A-3 0-2 OUT SURFACE SOIL SAMPLE M Sele A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M Tha	-	1	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	15.2		mg/kg	4
A-3 0-2 OUT SURFACE SOIL SAMPLE M A-3 0-2 OUT SURFACE SOIL SAMPLE M Tha	-	0-2	DO	SURFACE SOIL SAMPLE	Σ	Selenium			mg/kg	9.0
2d A-3 0-2 OUT SURFACE SOLL SAMPLE M Tha	¥	0-2	DOCT	SURFACE SOIL SAMPLE	≆	Silver			mg/kg	-
ALS ALS OLD CITY STIDEACT SALDIE IN	2	1	DOCT	SURFACE SOIL SAMPLE	2	Thallium	0.47	CWNO	mg/kg	-
בל טיבן פטיי אכב פטיר פעיש רב ש	2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	71	3	mg/kg	2

RICKENBACKER ANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS - SOIL

						ANALYSIS				DETECTION
SAMPLE #	GRID .	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
SU-21	A-A	0-2	OUT	SURFACE SOIL SAMPLE	NS.	ALL SEMI-VOLATILES	QN		ug/kg	X
SU-21	A-4	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	8.4	25	mg/kg	9
SU-21	A-4	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Arsenic	6.8		mg/kg	-
SU-21		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.36		mg/kg	9.0
SU-21		0-5	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.24	60	mg/kg	0.5
SU-21	_	0-2	OUT	SURFACE SOIL SAMPLE	\$	Chromium	3.6	3	mg/kg	-
- 1		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	Ξ	•	mg/kg	2.5
- 1		0-5	OUT	SURFACE SOIL SAMPLE	Σ	read	25.7	-	mg/kg	0.3
SU-21	_	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	90.0	<u> </u>	mg/kg	0.1
SU-21		0-5	OUT	SURFACE SOIL SAMPLE	Σ.	Nickel	11.9		mg/kg	4
	_	0-5	DOUT	SURFACE SOIL SAMPLE	2	Setenium	0.23	BW	mg/kg	0.5
SU-21	A-4	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Silver	0.78	3	mg/kg	-
3U-21	A-4	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.53	CWND	mg/kg	_
-11	A-4	0-2	OUT	SURFACE SOIL SAMPLE	W	Zinc	34.4	3	mg/kg	2
26-015		6-10	Filo	a lates los avealts	75	Obcording	8	_	04/01	23
	<		5 6	_	3 8	4	3 8	3	Bu/Bn	
27.00	•	7 6	5 6	_	200	FIGORATINENE	200		5×/6n	
ı	∢ ·	0-2	100		SS	Pyrene	920		ug/kg	
SU-22	4	0-5	DOC	_	SS	Вепzo(a) Anthracene	280	3	ng/kg	
1	4	0-2	OUT		SV	Chrysene	350	3	ug/kg	330
1	4	0-2	out	SURFACE SOIL SAMPLE	SS	Benzo(b) Fluoranthene	350	<u> </u>	ug/kg	330
SU-22	4	0-5	OUT		S	Benzo(a)Pyrene	250	7	ug/kg	330
SU-22	- A	0-2	OUT	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd)Pyrene	180		ug/kg	330
SU-22	4	0-5	OUT	SURFACE SOIL SAMPLE	SS	Benzo(g,h,i)Perylane	9	7	ug/kg	330
SU-22		0-2	OUT		Σ	Antimony	4.8		mg/kg	9
SU-22	¥-	0-5	DOUT		Σ	Arsenic	6.4	NB NB	mg/kg	_
27-0S	A	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	9.0		mg/kg	0.5
	- A	0-2	OUT		2	Cadmium	0.24	8	mg/kg	0.5
SU-22	- Y	0-2	OUT	_	Σ	Chromium	8.8	3	mg/kg	_
	Ā	0-2	OUT		Σ	Copper	12.6	•	mg/kg	2.5
	¥-	0-5	OUT		Σ	Lead	43.8		mg/kg	0.3
SU-22	4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.053	2	mg/kg	0.1
80-22	¥	0-2	OUT		Σ	Nickel	12.2		mg/kg	•
SU-22	¥	0-5	OUT		Σ	Selenium	0.21	3	mg/kg	0.5
SU-22	-\	0-2	OUT		Σ	Silver	0.79	5	mg/kg	-
t		0-5	OUT		3	Thallium	0.54	UNW	mg/kg	-
SU-22	-Y	0-5	OUT	SURFACE SOIL SAMPLE	2	Zinc	₩99.4	2	ma/ka	~

						ANALYSIS				DELECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	FMJ
- 1	- F		Ė	SIBEACE SOIL SAME	>8	Phenanthrene	280		D4/011	330
- 1			1110	SUBFACE SOIL SAMPLE	\ \frac{1}{2}	Fhoranthene		.	ייש/גמ	330
SU-23	: ፟፟፟፟		DOC	SURFACE SOIL SAMPLE	38	Pvrene		_	na/kg	330
ı	¥		TUO	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	260	_=	ug/kg	330
SU-23	A-6	0-2	DOUT	SURFACE SOIL SAMPLE	S	Chrysene			ug/kg	330
- 1	Α-		DOUT	SURFACE SOIL SAMPLE	SS	Benzo(b) Fluoranthene	520		ug/kg	330
	Α-		OUT	SURFACE SOIL SAMPLE	SS	Benzo(a)Pyrene	260	7	ug/kg	330
SU-23			OUT	SURFACE SOIL SAMPLE	Σ	Antimony	4.8	3	mg/kg	9
- 1	Α-		OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	10.8	SN S	mg/kg	-
SU-23			TUO	SURFACE SOIL SAMPLE	Σ	Beryllium	96:0		mg/kg	9.0
SU-23	- V		DOUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.23	¬	mg/kg	9.0
SU-23			TUO	SURFACE SOIL SAMPLE	Σ	Chromium	14.7	3	mg/kg	-
- 1			DOUT	SURFACE SOIL SAMPLE	Σ	Copper	18.6	•	mg/kg	2.5
SU-23			TUO	SURFACE SOIL SAMPLE	Σ	Lead	52.9		mg/kg	0.3
SU-23	-¥		DOCT	SURFACE SOIL SAMPLE	2	Marcury	0.09	8	mg/kg	0.1
SU-23			DOOT	SURFACE SOIL SAMPLE	Σ	Nickel	21.4		mg/kg	4
SU-23			TUO	SURFACE SOIL SAMPLE	Σ	Selenium	0.2	-	mg/kg	9.0
SU-23			TUO	SURFACE SOIL SAMPLE	Σ	Silver	62.0	_	mg/kg	-
SU-23			DOUT	SURFACE SOIL SAMPLE	2	Thallium	0.54	rwnn	mg/kg	-
SU-23	Α-		OUT	SURFACE SOIL SAMPLE	Σ	Zinc	138	2	mg/kg	2
SU-24		1	DOCT	SURFACE SOIL SAMPLE	S	Fluoranthene	140		ug/kg	330
SU-24		1	OUT	SURFACE SOIL SAMPLE	S	Pyrene	- - - -	7	ug/kg	330
SU-24	∢	1	OUT	SURFACE SOIL SAMPLE	Σ	Antimony		<u> </u>	mg/kg	9
SU-24	٩	•	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	15.2	3	mg/kg	-
SU-24	A -	- 1	TUO	SURFACE SOIL SAMPLE	≨	Beryllium	0.67		mg/kg	9.0
SU-24	⋖	1	DOUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.22	60	mg/kg	9.0
SU-24	•	•	DOUT	SURFACE SOIL SAMPLE	Σ	Chromium	14	2	mg/kg	•
SU-24	A-7	1	OUT	SURFACE SOIL SAMPLE	Σ	Copper	17.8	•	mg/kg	2.5
SU-24	•	•	OUT	SURFACE SOIL SAMPLE	Σ	Lead	68.4	_	mg/kg	0.3
SU-24	⋖	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Mercury	0.056	<u></u>	mg/kg	0.1
80-2 4	A-7	•	DOCT	SURFACE SOIL SAMPLE	\$	Nickel	24.1		mg/kg	4
SU-24	ı		TUO	SURFACE SOIL SAMPLE	Σ	Selenium	0.18	3	mg/kg	9.0
SU-24		1	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.74	-	mg/kg	-
80-2 4	A-7		OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.48	CWNO	mg/kg	-
SU-24	11	- 1 1	OUT	SURFACE SOIL SAMPLE	₹	Zinc	95.7	3	mg/kg	8

T I I I I I					***				*******	71001
SAMPLE	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	LOR	RESULTS	QUAUFIER	UNITS	
SU-25	8-2	-0	Z	SURFACE SOIL SAMPLE	AS	Fluoranthene	150		na/ka	330
SU-25	<u> </u>	6	Z	SURFACE SOIL SAMPLE	S	Pyrene	5.	7	ug/kg	330
SU-25		0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	3.8	725	mg/kg	ø
SU-25	60	-0	Z	SURFACE SOIL SAMPLE	×	Arsenic	17.3		mg/kg	0.5
SU-25	6 0		Z	SURFACE SOIL SAMPLE	Σ	Beryllium	99'0		mg/kg	9.0
SU-25	80	-0	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	0.47		mg/kg	-
SU-25	6 0	-6	Z	SURFACE SOIL SAMPLE	Σ	Chromium			mg/kg	2.5
SU-25	60	-6	Z	SURFACE SOIL SAMPLE	2	Copper	23.3	3	mg/kg	0.3
SU-25	6 0	6	Z	SURFACE SOIL SAMPLE	Σ	Pead	22.4	ž	mg/kg	0.1
SU-25			ž	SURFACE SOIL SAMPLE	2	Mercury	0.059	2	mg/kg	4
SU-25	4	- 1	Z	SURFACE SOIL SAMPLE	Σ	Nickel	24.4		mg/kg	9.0
SU-25	1A	1	Z	SURFACE SOIL SAMPLE	\$	Selenium	0.31	BW	mg/kg	-
SU-25	8	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	0.62	5	mg/kg	-
SU-25	8	1	ž	SURFACE SOIL SAMPLE	Σ	Thallium	0.21	BNW	mg/kg	N
SU-25	9-5	0-5	Z	SURFACE SOIL SAMPLE	₹	Zinc	84	2	mg/kg	2
	•				į	;			;	
20-28	20		Z	SURFACE SOIL SAMPLE	>s	Phenanthrene			ng/kg	330
SU-26	ω	1	Z	SURFACE SOIL SAMPLE	SS	Fluoranthene			ng/kg	330
SU-26	80	1	Z	SURFACE SOIL SAMPLE	S	Pyrene	1100		ug/kg	330
SU-26	6	1	Z	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	250		ug/kg	330
SU-26	6		<u>z</u>	SURFACE SOIL SAMPLE	S	Chrysene	280		ng/kg	330
SU-26	60	0-5	Z	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	1000		ug/kg	330
SU-28	æ	1	Z	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	510		ug/kg	330
SU-20		1	2	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd)Pyrene	330		ug/kg	330
SU-20	∞	1	Z	SURFACE SOIL SAMPLE	S	Benzo(g,h,i)Perylene	330		ng/kg	330
SU-20		0-2	<u>z</u>	SURFACE SOIL SAMPLE	Σ	Antimony			mg/kg	89
SU-28	8	1	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	12.5	3	mg/kg	0.5
SU-26	æ	1	Z	SURFACE SOIL SAMPLE	2	Beryllium	0.49	Ø	mg/kg	0.5
SU-26	8 0	1	Z	SURFACE SOIL SAMPLE	\$	Cadmium	1.4		mg/kg	-
SU-26	<u> </u>	1	Z	SURFACE SOIL SAMPLE	Σ	Chromium		z	mg/kg	-
SU-26	.	1	Z	SURFACE SOIL SAMPLE	Σ	Copper	31.6		mg/kg	2.5
80-26	60	1	<u>z</u>	SURFACE SOIL SAMPLE	₹	Lead	90.7		mg/kg	0.3
SU-20	€	0-5	Z	SURFACE SOIL SAMPLE	Σ	Mercury	2.6	Ó	mg/kg	1.0
80-26		1	Z	SURFACE SOIL SAMPLE	\$	Nickel	20.2		mg/kg	*
SU-26	60	1	<u>z</u>	SURFACE SOIL SAMPLE	Σ	Selenium	0.74	BW	mg/kg	0.5
30-26		1	Z	SURFACE SOIL SAMPLE	Σ	Silver	7.2	3	mg/kg	-
SU-26		0-5	Z	SURFACE SOIL SAMPLE	Σ	Thallium	0.56	CWNO	mg/kg	_
SU-26	B-4	0-5	N.	SURFACE SOIL SAMPLE	2	Zinc	203	3	mg/kg	8

SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	DETECTION
SU-27	8-4	0-5	Z	SURFACE SOIL SAMPLE	S	ALL SEMI-VOLATILES	9	¥	ug/kg	¥
SU27	8-4	0-2	Z	SURFACE SOIL SAMPLE	₹	Antimony	4.3	NO.	mg/kg	89
SU-27	9-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	-	3	mg/kg	0.5
SU-27	8-4	02	Z	SURFACE SOIL SAMPLE	₹	Beryllium	0.65		mg/kg	0.5
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Cadmium	0.2	כ	mg/kg	-
SU-27	8-4	2-0	Z	SURFACE SOIL SAMPLE	2	Chromium	14.1	z	mg/kg	-
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Copper	20.2	•	mg/kg	2.5
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Lead	59.8		mg/kg	0.3
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE	₹	Mercury	0.052	5	mg/kg	0.1
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Nickel	23.5		mg/kg	4
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Selenium	0.26	60	mg/kg	0.5
SU-27	8-4	0-2	ž	SURFACE SOIL SAMPLE		Silver	0.71	2	mg/kg	
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Thallium	0.48	CWNO	mg/kg	_
SU-27	8-4	0-2	Z	SURFACE SOIL SAMPLE		Zinc	89.3	3	mg/kg	2
SU-28	85	0-2	Z	SURFACE SOIL SAMPLE	S	ALL SEMI-VOLATILES	Q	YZ Y	ug/kg	A X
SU-28		0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	4.8	S	mg/kg	80
SU-28		0-2	Z	SURFACE SOIL SAMPLE		Arsenic	10.8	BNS	mg/kg	0.5
SU-28	85	0-2	Z	SURFACE SOIL SAMPLE		Beryflium	0.68		mg/kg	0.5
SU-28		0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	0.22	2	mg/kg	-
SU-28	6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	13.8	z	mg/kg	_
SU-28		0-2	Z	SURFACE SOIL SAMPLE	-	Copper	17.4	•	mg/kg	2.5
SU-28		0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	43.2		mg/kg	0.3
SU-28	6	0-2	Ž	SURFACE SOIL SAMPLE		Mercury	0.064	2	mg/kg	0.1
SU-28		0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	18.8		mg/kg	4
SU-28		0-2	Z	SURFACE SOIL SAMPLE	Σ	Selenium	0.48	63	mg/kg	9.0
SU-28	8-5	0-2	Z	SURFACE SOIL SAMPLE	2	Silver	0.75	>	mg/kg	_
SU-28	8-2	0-2	Z	SURFACE SOIL SAMPLE	2	Thallium	0.58	UNWU	mg/kg	-
SU-28	8-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	95	3	mg/kg	8

L							ANALYSIS				DETECTION
Ø .	SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LIMIT
L_											
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	S	Pyrene	260	7	ng/kg	330
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	220	7	ng/kg	330
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	SS	Benzo(a) Anthracene	- 1	7	ug/kg	330
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	S	Chrysene	180	7	ug/kg	330
	SU-29		0-2	ž	SURFACE SOIL SAMPLE	SV	Benzo(b) Fluoranthene	991	٦	ng/kg	330
_	SU-29		0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	130	7	ug/kg	330
	SU-29		02	Ž	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	5	7	ng/kg	330
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	2	Antimony	4.7	ON O	mg/kg	9
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	11.9	2	mg/kg	9.0
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	₹	Beryllium	0.93		mg/kg	0.5
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	0.22	ס	mg/kg	-
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	11.1	z	mg/kg	-
_	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	20.8		mg/kg	2.5
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	32.1		mg/kg	0.3
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	≥	Mercury	0.058	ח	mg/kg	0.1
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	21.5		mg/kg	*
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	Σ	Selenium	0.34	8W	mg/kg	9.0
	SU-29		0-5	Z	SURFACE SOIL SAMPLE	\$	Silver	71.0	כ	mg/kg	-
	SU-29		0-2	Z	SURFACE SOIL SAMPLE	₹	Thallium	0.49	MND	mg/kg	<u>-</u>
	SU-29	B-6	0-5	Z	SURFACE SOIL SAMPLE	Σ	Zinc	201	Z	mg/kg	8

	00000000000000000000000000000000000000	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
		TUO	SURFACE SOIL SAMPLE	S	Fluoranthene	170	7	ug/kg	330
		OUT	SURFACE SOIL SAMPLE	NS	Pyrene	210	7	ng/kg	330
<u> </u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	OUT	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	130	٦	ng/kg	330
	0 0 0 0 0 0	TUO	SURFACE SOIL SAMPLE	S	Chrysene	140	7	ug/kg	330
	0 0 0 0 0 0	OUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	220	٦	ug/kg	330
	0 0 0 0 0	OUT	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	190	ר	ug/kg	330
	0 - 5	OUT	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	230	٦	ug/kg	330
	0 - 5	OUT	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd/Pyrene	200	7	ug/kg	330
	0-2	OUT	SURFACE SOIL SAMPLE	SV	Benzo(g,h,i)Perylene	220	٦	ng/kg	330
	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	6.4	ZND	mg/kg	9
		OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	8.6	NB BNC	mg/kg	0.5
	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.49		mg/kg	0.5
	0-2	DOOT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.23	5	mg/kg	•
~~~~~~	0-2	OUT	SURFACE SOIL SAMPLE	\$	Chromium	14.4	2	mg/kg	_
	0-2	OUT	SURFACE SOIL SAMPLE	≱	Copper	14	•	mg/kg	2.5
∞ ∞ (0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	65.1		mg/kg	0.3
6	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.052	כ	mg/kg	0.1
	1	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	13.9		mg/kg	4
20-30 B-7	1	OUT	SURFACE SOIL SAMPLE	Σ	Setenium	0.36	BW	mg/kg	9.0
-30 B		OUT	SURFACE SOIL SAMPLE	≆	Silver			mg/kg	_
-30 B	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Thatlium	0.54	WLNU	mg/kg	_
SU-30 B-7	1 I	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	76.3	2	mg/kg	2
č	•	į		ð	20 HT 4 1011	2			•
2 6	200	5 5	SUNTACE SOIL SAMPLE	<u>ک</u>	ALL SEMI - VOLAIILES	2 (ug/kg	ξ '
5 6	0 0	100	SURFACE SOIL SAMPLE	Σ	Antimony			mg/kg	ים ני
7 c	0 0	5 5	SURFACE SOIL SAMPLE	Σ	Arsenic	6.9	PANS	6x/6m	S C
2 6	9 6	5 5	SOUTH SOUTH SAMPLE	ξ 3	The state of the s			By/Rill	?
5 67	0 0	3 8	SURFACE SOIL SAMPLE	£ 3	Chomina	12.8		6×/6:	
- 1	0-5	007	SURFACE SOIL SAMPLE	2	Copper	13	•	ma/ka	2.5
3	0-2	DO	SURFACE SOIL SAMPLE	*	Lead	4		mg/kg	0.3
-31	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.064	2	mg/kg	0.1
_	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Nickel	16		mg/kg	4
-31	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.59		mg/kg	0.5
<u>.</u> ع	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silver		5	mg/kg	-
-3-	0-2	- TOO	SURFACE SOIL SAMPLE	Σ	Thalllum	0	<u>\$</u>	mg/kg	-
_	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	59	2	mg/kg	2

- 1				
	S	SURFACE SOIL SAMPLE SV	<u> </u>	IN SURFACE SOIL SAMPLE
	2	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	2 IN SURFACE SOIL
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	0-2 IN SURFACE SOIL SAMPLE M
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	N N
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	0-2 IN SURFACE SOIL SAMPLE M
	≆	SURFACE SOIL SAMPLE	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	2
	≆	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE M	IN SURFACE SOIL SAMPLE M	Z
	Σ	SURFACE SOIL SAMPLE	IN SURFACE SOIL SAMPLE M	<u>z</u>
	Σ	SURFACE SOIL SAMPLE	IN SURFACE SOIL SAMPLE	Z

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMI
							.			
SU-33	0-1	0-2	Z	SURFACE SOIL SAMPLE	S	Phenanthrene	920		ug/kg	330
SU-33		0-2	Z	SURFACE SOIL SAMPLE	SS	Anthracene	180	7	ug/kg	330
SU-33	0-1 1-0	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	1900		ug/kg	330
SU-33	Q-7	0-2	Z	SURFACE SOIL SAMPLE	SV	Pyrene	2300		ug/kg	330
SU-33	C-4	02	Z	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	1400		ug/kg	330
SU-33	C-4	0-5	Z	SURFACE SOIL SAMPLE	S	Chrysene	1400		ug/kg	330
SU-33	Q-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	1400		ug/kg	330
SU-33	V -0	0-2	Z	SURFACE SOIL SAMPLE	SS	Benzo(k) Fluoranthene	1200		ug/kg	330
SU-33	6 -4	0-5	Z	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	1300		ug/kg	330
SU-33	0-4	02	Z	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd)Pyrene	900		ug/kg	330
SU-33	C-4	0-2	Z	SURFACE SOIL SAMPLE	S	Dibenz(a,h) Anthracene	240	7	ug/kg	330
SU-33	4-0	0-5	Z	SURFACE SOIL SAMPLE	S	Benzo(g,h,i)Perylene	580		ug/kg	330
SU-33	C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	2	3	mg/kg	9
SU-33	4 -0	0-5	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	50		mg/kg	9.0
SU-33		0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.75		mg/kg	9.0
SU-33		0-2	Z	SURFACE SOIL SAMPLE	≆	Cadmium	0.63		mg/kg	-
SU-33		0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	13.2		mg/kg	-
SU-33		0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	25.5	2	mg/kg	2.5
SU-33		0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	112	ž	mg/kg	0.3
SU-33	0-1	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	0.064	כ	mg/kg	0.1
SU-33	C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	24.5		mg/kg	4
SU-33	0 -	0-2	Z	SURFACE SOIL SAMPLE	Σ	Selenium	0.49	BW	mg/kg	9.0
SU-33	C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	0.83	5	mg/kg	-
SU-33	C-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Thallium	0.19	EWN8	mg/kg	-
SU-33	C-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Zinc	124	3	mg/kg	8

GRID # INVOICE CO	IN SURFACE SOIL SAMPLE	CATEGORY S N N N N N N N N N N N N N N N N N N	ALL SEMI – VOLATILES Antimony Arsenic Beryflium Cadmium Copper Lead Mercury Nickel Selenium Silver Thailium Zinc	ND 4.3 15.8 0.53 0.2 11.5 20.6 19.5 0.057 24.8 0.057 0.75.5	ט מעאנון	ug/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA 0.5 0.5 1 1 1 2.5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			LL SEMI – VOLATILES Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	ND 4.3 15.8 0.53 0.2 11.5 20.6 19.5 0.057 0.39 0.75 0.75 0.52	25 - 8 85		X 0 0 0 X 0 0 X 0 0 X 0 0 X 0 X 0 X 0 X
			LL SEMI – VOLATILES Antimony Arsenic Berytlium Cadmium Chromium Copper Lead Mercury Nickery Nickery Silver Thallium Zinc	ND 4.3 15.8 0.53 0.2 11.5 20.6 19.5 0.057 0.39 0.75 0.75 5			X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		× × × × × × × × × × × × ×	Antimony Arsenic Berytlium Cadmlum Chromium Copper Lead Mercury Nickey Selenium Silver Thallium Zinc	4.3 15.8 0.53 0.2 11.5 20.6 19.5 0.057 0.39 0.75 0.75.5			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		2222222222	Arsenic Berytlium Cadmlum Chromium Copper Lead Mercuy Nickey Selenium Silver Thallium Zinc	15.8 0.53 0.2 11.5 20.6 19.5 0.057 0.39 0.7 0.75.5			0 0 0 0 0 0
		222222222	Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	0.53 0.2 11.5 20.6 19.5 0.057 0.057 0.39 0.39			0
		2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	0.2 11.5 20.6 19.5 0.057 24.8 0.39 0.7 0.55	— — — — — — — — — — — — — — — — — — —		23.6
		2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	11.5 20.6 19.5 0.057 24.8 0.39 0.7 0.5 75.5			- 25
		Z Z Z Z Z Z Z >	Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	20.6 19.5 0.057 24.8 0.39 0.7 0.52	N N		2.5
		Z Z Z Z Z Z >	Lead Mercury Nickel Selenium Silver Thallium Zinc	19.5 0.057 24.8 0.39 0.7 0.52 75.5	UN B		c
		2 2 2 2 2 3 ₀	Mercury Nickel Selenium Silver Thallium Zinc	0.057 24.8 0.39 0.7 0.52 75.5			2
		Z Z Z Z Z >	Selenium Silver Thallium Zinc	24.8 0.39 0.7 0.52 75.5	ON B	mg/kg mg/kg	0.1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Z Z Z Z >	Selenium Silver Thallium Zinc	0.39 0.7 0.52 75.5	B Š	mg/kg	4
		∑	Silver Thallium Zinc Phenanthrene	0.7 0.52 75.5	NO.	,	0.5
		∑ ∑ ≥ ≥	Thallium Zinc Zinc Phenanthrene	0.52		mg/kg	-
		∑	Zinc	75.5			•
		λs	Phenanthrene		3	mg/kg	8
		S	Phenanthrene				
				230	<u></u>	ng/kg	330
		S	Fluoranthene	420		ug/kg	330
		SS	Pyrene	340	7	ug/kg	330
	IN SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracene	180	<u>ء</u>	ug/kg	330
	IN SURFACE SOIL SAMPLE	S	Chrysene	210	<u>۔</u>	ug/kg	330
	IN SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	250	7	ug/kg	330
	IN SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	200	7	ug/kg	330
	SURFACE SOIL	Σ	Antimony	4.5	CN2	mg/kg	9
	SURFACE SOIL	Σ	Arsenic	7.9	BNW	mg/kg	0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN SURFACE SOIL SAMPLE	Σ	Beryllium	0.79	_	mg/kg	0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	Σ	Cadmium	0.23	89	mg/kg	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN SURFACE SOIL SAMPLE	Σ	Chromium	14.3	2	mg/kg	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		₹	Copper	17	•	mg/kg	2.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN SURFACE SOIL SAMPLE	Σ	Lead	27.1		mg/kg	0.3
C-6 0-2		Σ	Mercury	0.062	<u>ר</u>	mg/kg	0.1
		¥	Nickel	19.7		mg/kg	4
35 C-6 0-2		Σ	Selenium	0.2	ס	mg/kg	0.5
-35 C-6 0-2		ž	Silver	0.74		mg/kg	-
-35 C-6 0-2	SURFACE SOIL	¥	Thallium	0.54	CNW	mg/kg	-
SU-35 C-6 0-2 IN	IN SURFACE SOIL SAMPLE	¥	Zinc	93.9	7	mg/kg	8

						ANALYSIS			_	DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	LMIT
SU-36		0-2	TUO	SURFACE SOIL SAMPLE	S	ALL SEMI VOLATILES	2	Ϋ́	ug/kg	AN
SU-38		0-2	DO	SURFACE SOIL SAMPLE	Σ	Antimony	4.1	25	mg/kg	9
SU-38		0-2	TUO	SURFACE SOIL SAMPLE	Σ	Arsenic	6.6	80	mg/kg	0.5
SU-36		0-2	DOUT	SURFACE SOIL SAMPLE	₹	Beryllium	0.41	80	mg/kg	9.0
SU-38	C-7	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Cadmium	0.31	Ď	mg/kg	
SU-36	C-7	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Chromium	8.7		mg/kg	-
SU-38	C-7	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	15	•	mg/kg	2.5
SU-36	C-7	0-2	DOC	SURFACE SOIL SAMPLE	≨	Lead	24.8	•	mg/kg	0.3
SU-36		0-2	TUO	SURFACE SOIL SAMPLE	Σ	Mercury	0.042	J	mg/kg	0.1
SU-36		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	17.9	•	mg/kg	4
SU-38	C-7	0-2	DOUT	SURFACE SOIL SAMPLE	2	Selenium	0.25	BW	mg/kg	9.0
SU-36		0-2	TUO	SURFACE SOIL SAMPLE	Σ	Silver	0.68	2	mg/kg	-
SU~36		0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.47	rwn0	mg/kg	-
SU-36	C-7	0-5	TUO	SURFACE SOIL SAMPLE	2	Zinc	60.2	Ž	mg/kg	2
SU-37	C-8	0-5	TUO	SURFACE SOIL SAMPLE	SS	ALL SEMI-VOLATILES	2		ug/kg	¥ Z
SU-37	C-8	0-5	DOUT	SURFACE SOIL SAMPLE	*	Antimony	4.2	Z S	mg/kg	90
SU-37	C-8	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	17.6		mg/kg	0.5
SU-37	0-B	0-2	DOCT	SURFACE SOIL SAMPLE	≨	Beryllium	0.74		mg/kg	0.5
SU-37	C-8	0-2	TUO	SURFACE SOIL SAMPLE	₹	Cadmium	0.2	.	mg/kg	-
SU-37	C-8	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Chromium	15.7		mg/kg	-
SU-37	C-8	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Copper	21.9	•	mg/kg	2.5
SU-37	C-8	0-2	TUO	SURFACE SOIL SAMPLE	2	Lead	28.7	•	mg/kg	0.3
SU-37	C-8	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.066	2	mg/kg	0.1
SU-37	C-8	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Nickel	28.6	•	mg/kg	4
SU-37	C-8	0-2	TUO	SURFACE SOIL SAMPLE		Selenium	0.25	BW	mg/kg	0.5
SU-37	C-8	02	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.7	2	mg/kg	-
SU-37	8- ₀	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Thallium	0.54	rwn	mg/kg	-
SU-37	C-8	0-2	OUT	SURFACE SOIL SAMPLE	W	Zinc	95.1	ż	mg/kg	2

			***************************************	***************************************		ANALYSIS				DETECTION
SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	UMIT
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	S	Acenaphthene	170	7	ug/kg	330
SU-38	0-1	0-2	TUO	SURFACE SOIL SAMPLE	S	Fluorene	150	7	ug/kg	330
SU-38		0-2	TUO	SURFACE SOIL SAMPLE	SV	Phenanthrene	2000		ug/kg	330
BC-0S		0-2	DOUT	SURFACE SOIL SAMPLE	SV	Anthracene	300	7	ug/kg	330
8C-38		0-2	OUT	SURFACE SOIL SAMPLE	SV	Fluoranthene	2300		ug/kg	330
SU-38	0-1	0-2	OUT	SURFACE SOIL SAMPLE	S	Pyrene	2100		ug/kg	330
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracene	810		ug/kg	330
8C-08	0-1	0-2	DOCT	SURFACE SOIL SAMPLE	S	Сhrysene	860		ug/kg	330
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	SV	Benzo(b) Fluoranthene	790		ug/kg	330
SU-38		0-2	DOUT	SURFACE SOIL SAMPLE	SV	Benzo(k) Fluoranthene	290		ug/kg	330
SU-38	0-1	0-2	TUO	SURFACE SOIL SAMPLE	SV	Benzo(a)Pyrene	840		ug/kg	330
SU-38		0-2	TUO	SURFACE SOIL SAMPLE	SV	Indeno(1,2,3 - cd) Pyrene	290		ug/kg	330
SU-38		0-2	TUO	SURFACE SOIL SAMPLE	S	Benzo(g,h,i)Perylene	490	,-	ng/kg	330
SU-38		02	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	9.4	ZS	mg/kg	9
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	13.8	<u> </u>	mg/kg	0.5
SU-38	1-0	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.62		mg/kg	0.5
8C-38		0-2	TUO	SURFACE SOIL SAMPLE	Σ	Cadmium	0.37	å	mg/kg	-
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromium	13.7		mg/kg	-
S0-38		02	our	SURFACE SOIL SAMPLE	Σ	Copper	22.9	•	mg/kg	2.5
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	×	Lead	37.4	•	mg/kg	0.3
SU-38		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.062	2	mg/kg	0.1
SU-38	D-1	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	23.3	•	mg/kg	4
SU-38		0-2	DOCT	SURFACE SOIL SAMPLE	\$	Selenium	0.32	BW	mg/kg	0.5
SU-38		0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Silver	0.81	ס	mg/kg	-
8C-08	0-1	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.55	rwn0	mg/kg	-
SU38		0-5	DUT	SURFACE SOIL SAMPLE	Σ	Zinc	91.9	J.N	mg/kg	2

Benzo(a)
- 0

						ANALYSIS				DETECTION
SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
SU-41	0-4	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	330		ug/kg	330
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE		Pyrene	300	¬	ug/kg	330
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	AS .	Chrysene	500	7	ug/kg	330
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	240	7	ng/kg	330
SU-41	9-4	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	170	2	ng/kg	330
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	5.1	3	mg/kg	9
SU-41	Y-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.8		mg/kg	9.0
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Berytlium	0.38	89	mg/kg	9.0
SU-41	0-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	0.24	Š	mg/kg	-
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	12.8		mg/kg	-
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	25.8	•	mg/kg	2.5
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	39.2	•	mg/kg	6.0
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	0.061	כ	mg/kg	1.0
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	21.5	•	mg/kg	4
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	2	Selenium	0.22	<u> </u>	mg/kg	6.0
SU-41	D-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	0.83	<u></u>	mg/kg	-
SU-41	4-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Thallium	9.0	BNWJ	mg/kg	-
SU-41	0-4	0-2	Z	SURFACE SOIL SAMPLE	×	Zinc	87.9	ž	mg/kg	2
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE		Fluoranthene	81	7	ug/kg	330
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	S	Pyrene	190	7	ug/kg	330
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	₹	Antimony	5.3	TNS	mg/kg	8
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic			ıng/kg	0.5
SU-42	S-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.53		mg/kg	9.0
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	₹	Cadmium	0.28	80	mg/kg	-
SU-42	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	18		mg/kg	-
SU-42	9-Q	0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	32.6	•	mg/kg	2.5
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	Z	Lead	35	•	mg/kg	0.3
SU-42	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	0.067	<u> </u>	mg/kg	0.1
SU-42	0-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	30.9	•	mg/kg	4
SU-42	9-0	0-2	Z	SURFACE SOIL SAMPLE	≥	Setenium	0.38	80	mg/kg	9.0
SU-42	D-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Silver	0.87	5	mg/kg	-
SU-42	S-0	0-5	Z	SURFACE SOIL SAMPLE	Σ	Thallium	0.61	PMN0	mg/kg	-
SU-42	0-2	0-2	Z	SURFACE SOIL SAMPLE	\$	Zinc	- 28	ž	ma/ka	~

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	UMIT
SU-43			Z	SURFACE SOIL SAMPLE	S	ALL SEMI - VOLATILES	Q.	¥ X	ug/kg	Ą.
SU-43	9-0		Z	SURFACE SOIL SAMPLE	Σ	Antimony	4.7	3	mg/kg	9
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Arsenic	8.3	60	mg/kg	9.0
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.58		mg/kg	9.0
SU-43	9-0	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	0.22	ż	mg/kg	-
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Chromium	17.5		mg/kg	-
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Copper	29.5	•	mg/kg	2.5
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Lead	26.4	•	mg/kg	6.0
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Mercury	90.0	5	mg/kg	0.1
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Nickel	31.8	•	mg/kg	4
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Setenium	0.25	80	mg/kg	9.0
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Silver	0.76	J	mg/kg	-
SU-43			Z	SURFACE SOIL SAMPLE	Σ	Thallium	0.54	CWNU	mg/kg	-
SU-43	9-0	0-5	Z	SURFACE SOIL SA'APLE	Σ	Zinc	116	ž	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
- 44 - 112		c	į		į					
2		7	5	SOUL SOUL SAMPLE	20	Z~Chlorophenol	80	7	ng/kg	99
SU-44	2-0	0-5	OUT	SURFACE SOIL SAMPLE	SS	3 - Nitroaniline	24	7	ug/kg	1600
SU-44	D-7	0-5	DOOT	SURFACE SOIL SAMPLE	S	Acenaphthene	2	7	ug/kg	330
SU-44	2-0	0-2	DOCT	SURFACE SOIL SAMPLE	S	4 - Nitroaniline	30	7	ug/kg	1600
SU-44	D-7	0-2	DOCT	SURFACE SOIL SAMPLE	S	Phenanthrene	18	7	ua/ka	330
SU-44	D-7	0-2	OUT	SURFACE SOIL SAMPLE	S	bis(2-Chlorethyl)ether	8	7	ua/ka	330
SU-44	0-7	0-2	OUT	SURFACE SOIL SAMPLE	S	Anthracene	17	· ¬	ua/ka	330
SU-44	D-7	0-2	DOUT	SURFACE SOIL SAMPLE	S	Fluoranthene	16	7	ng/kg	330
SU-44	2-O	0-5	DOUT	SURFACE SOIL SAMPLE	S	Pyrene	39	7	ua/ka	330
SU-44	D-7	<u></u>	OUT	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	35	7	ua/ka	330
SU-44	2-0	0-2	DOCT	SURFACE SOIL SAMPLE	S	Chrysene	36		ua/ka	330
SU44	2-Q	-	TUO	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	48		ua/ka	330
SU-44	1-0		DOCT	SURFACE SOIL SAMPLE	SV	Вепто(а)Ругеле	20	7	ua/ka	330
SU-44	2-Q	02	OUT	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd)Pyrene	50	7	ng/ka	330
SU-44	D-7	0-5	DOC	SURFACE SOIL SAMPLE	SV	Benzo(g,h,i)Perylene	98	7	ug/kg	330
SU-44	2-0	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	4.7	CNO	ma/ka	9
SU-44	D-7	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	7.6	80	mg/kg	0.5
SU-44	2-0	0-5	DOUT	SURFACE SOIL SAMPLE	₹	Baryllium	0.47	80	mg/kg	0.5
SU-44	D-7	0-2	OUT	SURFACE SOIL SAMPLE	2	Cadmium	1.6	•	mg/kg	-
SU-44	2-O	0-5	DOUT	SURFACE SOIL SAMPLE	Σ	Chromium	41		mg/kg	-
SU-44	2-Q	0-2	OUT	SURFACE SOIL SAMPLE	2	Copper	45.3	•	ma/ka	2.5
SU-44	2-0	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	77	•	mg/kg	0.3
SU-44	2-Q	0-2	TUO	SURFACE SOIL SAMPLE	2	Mercury	0.055	ם	mg/kg	0.1
SU-44	2-0	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	17.9	•	mg/kg	4
SU-44	D-7	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.17	3	mg/kg	0.5
SU-44	2-Q	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.77	2	mg/kg	_
SU-44	2-Q	0-2	OUT	SURFACE SOIL SAMPLE	\$	Thallium	0.45	UNM	mg/kg	-
SU-44	0-7	2-0	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	68.3	ž	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMIT
SD-45	E-2	0-2	TUO	SURFACE SOIL SAMPLE	S	Phenanthrene	11000		ug/kg	330
SD-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	S	Anthracene	2200	7	ug/kg	330
SU-45	E-2	0-2	TUO	SURFACE SOIL SAMPLE	S	Fluoranthene	23000		ug/kg	330
S0-45	E-2	0-2	TUO	SURFACE SOIL SAMPLE	S	Pyrene	25000		ug/kg	330
SU-45	E-2	0-2	TUO	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	15000		ug/kg	330
SU-45	E-2	0-2	DOCT	SURFACE SOIL SAMPLE	S	Chrysene	17000		ug/kg	330
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	20000		ug/kg	330
SU45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	14000		ug/kg	330
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	15000		ug/kg	330
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	S	Indeno(12,3-cd)Pyrene	10000		ug/kg	330
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	S	Dibenz(a,h) Anthracene	3500		ug/kg	330
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	S	Benzo(g,h,i)Perylene	8600		ug/kg	330
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	≥	Antimony	4.3	35	mg/kg	9
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Arsenic	4.8	80	mg/kg	9.0
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.25	ס 	mg/kg	0.5
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	1.9	•	mg/kg	-
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Chromium	12.5		mg/k	-
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	11.9	•	mg/kg	2.5
S0-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	32.4	•	mg/kg	0.3
SU-45	E-2	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Mercury	0.053	כ	mg/kg	0.1
SU-45	E-2	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Nickel	13.8	•	mg/kg	4
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.19	š	mg/kg	0.5
SU-45	E-2	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.71	5	mg/kg	-
SU-45	E-2	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Thallium	0.5	CWND	mg/kg	-
SU-45	E-2	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	43.9	J.	mg/kg	2

						ANALYSIS)	DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	LIMIT
•	-		!				1			
SU-46	ຄ_ ສ	0-2	100	SURFACE SOIL SAMPLE	SS	Phenanthrene	2100		ng/kg	330
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	S	Anthracene	970	7	ug/kg	330
SU-46	E-3	02	OUT	SURFACE SOIL SAMPLE	S	Fluoranthene	1500		ug/kg	330
SU-46	E-3	0-5	OUT	SURFACE SOIL SAMPLE	SV	Pyrene	11000		ug/kg	330
SU-46		0-2	DUT	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	2800		ug/kg	330
SU-46	8 E-3	0-5	OUT	SURFACE SOIL SAMPLE	S	Chrysene	6700		ug/kg	330
SU-46		0-2	OUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	8400		ug/kg	330
SU-46		0-2	DOUT	SURFACE SOIL SAMPLE	SV	Benzo(k) Fluoranthene	8000		ug/kg	330
SU-46		0-2	DOC	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	9009		ug/kg	330
SU-46		0-2	OUT	SURFACE SOIL SAMPLE	SV	Indeno(1	4900		ug/kg	330
SU-46		0-2	DOUT	SURFACE SOIL SAMPLE	SV	Dibenz(a,h) Anthracene	1900	7	ug/kg	330
SU-46	B E-3	0-5	OUT	SURFACE SOIL SAMPLE	SV	Benzo(g.h.i)Perylene	4700		ug/kg	330
SU-46		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	4.2	CNO	mg/kg	9
SU-46	E-3	0-5	OUT	SURFACE SOIL SAMPLE	2	Arsenic	7.2	60	mg/kg	0.5
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.48	60	mg/kg	0.5
SU-48	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	1.6	•	mg/kg	-
SU-46	3 E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromium	13.8		mg/kg	-
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	18.4	•	mg/kg	2.5
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	54.9	•	mg/kg	0.3
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.056	5	mg/kg	0.1
SU-48	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	19.7	•	mg/kg	4
SU-46	E-3	0-5	DOCT	SURFACE SOIL SAMPLE	2	Selenium	0.23	BW	mg/kg	0.5
SU-48	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silver	1.8		mg/kg	-
3U-48	E-3	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Thallium	0.51	rwnn	mg/kg	-
SU-46	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	113	ż	mg/kg	2

1		1				ANALYSIS	; ;			DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	L WIT
211-47	H.	0-0	Lic	SLIBEACE SOLL SAMPLE	λ,	Flioranthene		-	04/50	330
K 7 - 1 - 0	1 4	1 0	500	SIDEACE SOLL CAMPIE	3	Bonzo(h) Fluoranthene	3 5	_	24/07	33.
K 7 - 1 : 0	1	0 0		SUBSTITUTE SOIL SAMPLE	} 3	Antimony	3 4	7	84/65 64/56	3 6
511-47	J 11	2 -0	3 5	SUBFACE SOIL SAMPLE	E 3	Arsenic	14.4	3	gy/gin	- C
SU-47	1 111	0-2	TNO	SURFACE SOIL SAMPLE	2	Beryllium	0.59		ma/ka	0.5
SU-47	H-4	0-2	DO	SURFACE SOIL SAMPLE	Σ.	Cadmium	0.59	•	mg/kg	-
SU-47	F-4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Chromium	18		mg/kg	-
SU-47	F-4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	29.3	•	mg/kg	2.5
SU-47	E-4	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Lead		•	mg/kg	0.3
SU-47	F-4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.056	2	mg/kg	0.1
SU-47	E-4	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	29.6	•	mg/kg	4
SU-47	E-4	0-2	TUO	SURFACE SOIL SAMPLE	₹	Selenium	0.44	BW	mg/kg	9.0
SU-47	F-4	0-5	TUO	SURFACE SOIL SAMPLE	Σ	Silver	0.77	5	mg/kg	-
SU-47	E-4	0-2	DOUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.49	rwn n	mg/kg	_
SU-47	E-4		OUT	SURFACE SOIL SAMPLE	Σ	Zinc	111	V •0	mg/kg	2
SU-48	B-8	0-5	DOCT	SURFACE SOIL SAMPLE	SS	Phenanthrene	170	7	ng/kg	330
SU-48	E-6	0-2	DOC	SURFACE SOIL SAMPLE	SS	Fluoranthene	380	7	ug/kg	330
SU-48	E-8	0-5	DOOT	SURFACE SOIL SAMPLE	S	Pyrene	270	7	ug/kg	330
SU-48	E-6	0-5	OUT	SURFACE SOIL SAMPLE	S	Chrysene	170	٦	ug/kg	330
SU-48	E - 6	0-2	DOOT	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	130	7	ug/kg	330
SU-48	E-6	0-2	TOO	SURFACE SOIL SAMPLE	Σ	Antimony	4.9	TN _D	mg/kg	9
SU-48	E-6	0-5	DOCT	SURFACE SOIL SAMPLE	Σ	Arsenic		S	mg/kg	9.0
SU-48	E-6	0-5	DO	SURFACE SOIL SAMPLE	Σ	Beryllium	0.49	8	mg/kg	0.5
SU-48	E-8	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.85	•	mg/kg	-
SU-48	E-6	0-2	DOUT	SURFACE SOIL SAMPLE	≥	Chromium	15.4		mg/kg	-
SU-48	E-6	02	DOUT	SURFACE SOIL SAMPLE	Σ	Copper	32.7	•	mg/kg	2.5
SU-48	E-6	0-2	DOC	SURFACE SOIL SAMPLE	Σ	read	43.7	•	mg/kg	0.3
SU-48	B-8	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Mercury	90.0	Ö	mg/kg	0.1
SU-48	E-6	0-2	OUT	SURFACE SOIL SAMPLE	\$	Nickel	31.6	•	mg/kg	4
SU-48	8 − 3	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.59	BW	mg/kg	0.5
SU-48	E-6	0-2	DOCT	SURFACE SOIL SAMPLE	Σ	Silver	8.0	כ	mg/kg	-
SU-48	₽	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.56	CWNU	mg/kg	-
S11-48	K L		בוכ	SUBFACE SOIL SAMPLE	2	Zinc	2	ż	mo/ka	~

SU-49 B-4 0-2 IN SURFACE SOIL SU-49 B-4	DESCRIPTION C	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LWI
		 					
### ### ### ### ### ### ### ### ### ##	SURFACE SOIL SAMPLE	S	Phenanthrene	240	7	ng/kg	330
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SURFACE SOIL SAMPLE	S	Fluoranthene	450		ug/kg	330
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SURFACE SOIL SAMPLE	SV	Pyrene	460		ng/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracene	220	7	ug/kg	330
2	SURFACE SOIL SAMPLE	S	Chrysene	250	2	ug/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FACE SOIL SAMPLE	SV	Benzo(k) Fluoranthene	130	7	ug/kg	330
	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	320	7	ug/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	S	Benzo(a)Pyrene	220	7	ng/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	SV	Indeno(12,3-cd)Pyrene	140	7	ug/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Antimony	6.4	3	mg/kg	90
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Arsenic	16.8	S	mg/kg	0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Beryllium	0.49		mg/kg	9.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Cadmium	0.85	•	mg/kg	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Chromium	15.4		mg/kg	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SURFACE SOIL SAMPLE	Σ	Copper	32.7	•	mg/kg	2.5
	SURFACE SOIL SAMPLE	₹	Lead	43.7	•	mg/kg	0.3
	FACE SOIL SAMPLE	₹	Mercury	90.0	3	mg/kg	0.1
2	SURFACE SOIL SAMPLE	Σ	Nickel	31.6	•	mg/kg	4
	SURFACE SOIL SAMPLE	Σ	Selenium	0.59	BW	mg/kg	9.0
1	SURFACE SOIL SAMPLE	Σ	Silver	0.8	3	mg/kg	-
	SURFACE SOIL SAMPLE	Σ	Thallium	0.56	rwn n	mg/kg	-
	SURFACE SOIL SAMPLE	Σ	Zinc	196	Ž	mg/kg	2
				:			
	AUGER BORING	>	ALL VOLATILES	QN N		ug/kg	A N
2	AUGER BORING	S	ALL SEMI - VOLATILES	Q		ng/kg	¥ Z
\$\$\text{\$\	AUGER BORING	Σ	Antimony	4.8	<u> </u>	mg/kg	9
\$\$\text{\$\	AUGER BORING	Σ	Arsenic	22.9	3	mg/kg	-
2	AUGER BORING	Σ	Beryllium	0.59		mg/kg	0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AUGER BORING	Σ	Cadmium	0.47	83	mg/kg	0.5
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	AUGER BORING	Σ	Chromium	17.3		mg/kg	-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AUGER BORING	≥	Copper	34.7		mg/kg	2.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AUGER BORING	Σ	Lead	22		mg/kg	0.3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AUGER BORING	Σ	Mercury	0.059	2	mg/kg	0.1
N N N N N N N N N N N N N N N N N N N	AUGER BORING	Σ	Nickel	35.3		mg/kg	*
N	AUGER BORING	Σ	Selenium	0.2	ONNO	mg/kg	0.5
SS1 0-0	AUGER BORING	Σ	Silver	0.78	3	mg/kg	•
	AUGER BORING	₹	Thallium	1.2	788	mg/kg	-
AB1-551 B-2 3-5 IN AUGER	AUGER BORING	Σ	Zinc	101		mg/kg	N

•						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LIMIT
			-							
AB1 - SS2	8-2	8-10	Z	AUGER BORING	>	Ethylbenzene	6700	•	ug/kg	ĸ
AB1 - SSZ	8-2	9-10	Z	AUGER BORING	>	m/p-Xylene	0009		ug/kg	VS
AB1-552	8-2	8-10	Z	AUGER BORING	>	o - Xylene	12000		ug/kg	S
AB1-552	8-2	8~10	Z	AUGER BORING	S	Naphthalene	130	7	ug/kg	330
AB1-552	8-2	8-10	Z	AUGER BORING	Σ	Antimony	4.7	UNB	mg/kg	9
AB1-552	B-2	8-10	Z	AUGER BORING	2	Arsenic	16.1	2	mg/kg	-
AB1-552	8-2	8-10	Z	AUGER BORING	≥	Beryllium	0.35	8	mg/kg	0.5
AB1-552	8-2	8-10	Z	AUGER BORING	Σ	Cadmium	0.35	8	mg/kg	9.0
AB1-552	B-2	8-10	Z	AUGER BORING	Σ	Chromium	10.8		mg/kg	-
AB1-552	8-2	8-10	Z	AUGER BORING	Σ	Copper	25.6		т9/кд	2.5
AB1-552	8-2	8-10	Z	AUGER BORING	Σ	Lead	22.8	•	mg/kg	0.3
AB1-552	8-2	8-10	Z	AUGER BORING	Σ	Mercury	0.058	¬	mg/kg	1.0
AB1-552	8-2	8-10	ž	AUGER BORING	Σ	Nickel	29		mg/kg	4
A81-SS2	8-2	8-10	Z	AUGER BORING	Σ	Selenium	0.52	BNWJ	mg/kg	0.5
AB1-SS2	8-2	8-10	Z	AUGER BORING	Σ	Silver	0.77	2	mg/kg	-
AB1-552	B-2	8-10	Z	AUGER BORING	ž	Thallium	0.47	ZYB SYS	mg/kg	-
AB: - SS2	B-2	8-10	Z	AUGER BORING	¥	Zinc	92.1		mg/kg	2
	•				:				•	
AB2-551	8-4	Ĺ	Z	AUGER BORING	>	Benzene	<u>-</u>	_	ug/kg	S.
AB2-551	8-4	1	<u>z</u>	AUGER BORING	S	Naphthalene	1200			330
AB2-551		3-5	z	AUGER BORING	Σ	Antimony	4.6	UNA	mg/kg	9
AB2-551	B-4	3-5	Z	AUGER BORING	Σ	Arsenic	18.8	3	mg/kg	-
AB2-531	8-4	3-5	Z	AUGER BORING	Σ	Beryllium	0.57		mg/kg	9.0
AB2-551	8-4	3-2	Z	AUGER BORING	Σ	Cadmium	0.34	80	mg/kg	9.0
A82-551	B-4	3-5	Z	AUGER BORING	Σ	Chromium	14.9		mg/kg	-
AB2-551	8-4	3-5	Z	AUGER BORING	Σ	Соррег	30.3		mg/kg	2.5
AB2-551	B-4	3-5	Z	AUGER BORING	Σ	Lead	17.9		mg/kg	0.3
A82-551	8-4	3-8	Z	AUGER BORING	Σ	Mercury	0.057	<u> </u>	mg/kg	0.1
AB2-551	8-4	3-5	Z	AUGER BORING	Σ	Nickel	37.6		mg/kg	4
AB2-551	8-4	3-5	Z	AUGER BORING	Σ	Selenium	0.19	rwn n	mg/kg	0.5
AB2-551	8-4	3-5	Z	AUGER BORING	₹	Silver	0.75	-	mg/kg	•
AB2-531	8-4	3-5	Z	AUGER BORING	Σ	Thallium	-	RA BA	mg/kg	-
AB2-551	B-4	3-5	2	AUGER BORING	Σ	Zinc	91.1		mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMIT
!									:	
AB2 - 552		8-10	Z	_	>	ALL VOLATILES		¥Z	ug/kg	¥ Z
AB2-552	8-4	810	Z	AUGER BORING	S	Naphthalene	1900		ug/kg	330
AB2-552	B-4	8-10	Z	AUGER BORING	Σ	Antimony	4.7	UNB	mg/kg	9
AB2-552	B-4	8~10	Z	AUGER BORING	Σ	Arsenic	13.7	₹	mg/kg	-
AB2-SS2	84	8-10	Z	AUGER BORING	₹	Beryllium	0.35	60	mg/kg	9.0
AB2-552	8-4	8-10	Z	AUGER BORING	Σ	Cadmium	0.35	80	mg/kg	9.0
AB2-552	B-4	8-10	Z	AUGER BORING	Σ	Chromium	13.4		mg/kg	•
AB2-552	8-4	8-10	Z	AUGER BORING	Σ	Copper	25.9		mg/kg	2.5
AB2-SS2	8-4	8-10	Z	AUGER BORING	Σ	Lead	15.3		mg/kg	6.0
AB2-552	8-4	8-10	Z	AUGER BORING	Σ	Mercury	0.085	<u> </u>	mg/kg	1.0
AB2-552	8-4	8-10	Z	AUGER BORING	Σ	Nickel	25.9		mg/kg	4
AB2-SS2	8-4	8-10	Z	AUGER BORING	Σ	Selenium	0.59	2	mg/kg	9.0
AB2-SS2		8-10	Z	AUGER BORING	Σ	Silver	0.77	<u> </u>	mg/kg	-
AB2-SS2	8-4	8-10	Z	AUGER BORING	₹	Thallium	0.72	BNS	mg/kg	-
AB2-SS2	B-4	8-10	Z	AUGER BORING	W	Zinc	84		mg/kg	2
AB3-551	8-5	3-5	Z	AUGER BORING	>	ALL VOLATILES	Q		ug/kg	AN
AB3-551	8-5	3-5	Z	AUGER BORING	S	ALL SEMI - VOLATILES	9	AN .	ug/kg	AN A
AB3-551	8-5	1	Z	AUGER BORING	2	Antimony	4.7	_	mg/kg	9
AB3-SS1	8-5	3-8	Z	AUGER BORING	Σ	Arsenic	20.4	2	mg/kg	-
AB3-551	B-5	3-5	Z	AUGER BORING	Σ	Beryllium	0.58	_	mg/kg	9.0
AB3-551	8-5	3-5	Z	AUGER BORING	Σ	Cadmium	0.58		mg/kg	9.0
AB3-551	8-5	1	Z		Σ	Chromium	17.4		mg/kg	-
AB3-551	8-8	3-2	Z	AUGER BORING	₹	Copper	24.9		mg/kg	2.5
AB3-551	8-5	3-5	Z	AUGER BORING	Σ	Lead	20.1		mg/kg	0.3
AB3-551	8-5	3-5	Z	AUGER BORING	Σ	Mercury	90.0	<u> </u>	mg/kg	0.1
AB3-551	8-5	3-5	Z	AUGER BORING	Σ	Nickel	25.2		mg/kg	4
AB3-551	8-8	1	Z		Σ	Selenium		BNU	mg/kg	6.0
AB3-551	8-2	3-5	Z	AUGER BORING	Σ	Silver	0.77	<u> </u>	mg/kg	-
AB3-551	1	3-5	Z	AUGER BORING	Σ	Thallium	0.59	BNE	mg/kg	-
AB3-5S1	8-5	3-5	Z	AUGER BORING	Σ	Zinc	82.6		mg/kg	2

E.F. GRID # DEPTH IN/OUT DESCRIPTION CATEGORY FOR RESULTS QUAJF 552 8-10 IN AUGER BORING V ALL SEM-VOLATILES ND 552 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND 552 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND 552 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND 552 8-10 IN AUGER BORING M AUGER BORING M AUGER BORING M 552 8-10 IN AUGER BORING M AUGER BORING M </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ANALYSIS</th> <th></th> <th></th> <th></th> <th>DETECTION</th>							ANALYSIS				DETECTION
B-5 8-10 IN AUGERBORING V ALL SEMI-VOLATILES ND B-5 8-10 IN AUGERBORING M ALL SEMI-VOLATILES ND B-5 8-10 IN AUGERBORING M ALL SEMI-VOLATILES ND B-5 8-10 IN AUGERBORING M Cadmium 0.45 B-5 8-10 IN AUGERBORING M Cadmium 0.67 B-5 8-10 IN AUGERBORING M Chonwin 0.36 B-5 8-10 IN AUGERBORING M Chonwin 0.36 B-5 8-10 IN AUGERBORING M Chonwin 0.74 B-5 8-10 IN <th>SAMPLE #</th> <th>GRID #</th> <th>DEPTH</th> <th>IN/OUT</th> <th>DESCRIPTION</th> <th>CATEGORY</th> <th>FOR</th> <th>RESULTS</th> <th>QUAUFIER</th> <th>UNITS</th> <th>LIMIT</th>	SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LIMIT
B-5 8-10 IN AUGER BORING M ALL SEMI-VOLATILES ND B-5 8-10 IN AUGER BORING M ARIBINOTY 4.5 B-5 8-10 IN AUGER BORING M Copper 2.14 B-5 8-10 IN AUGER BORING M Copper 2.14 B-5 8-10 IN AUGER BORING M Copper 2.18 B-5 8-10 IN AUGER BORING M Copper 2.18 B-5 8-10 IN AUGER BORING M Copper 2.18 B-5 8-10 IN AUGER BORING M AUGER BORING M AUGER BORING B-6 10 IN AUGER BORING M AUGER BORING M AUGER BORING AUGER BORING M AUGER BORING	AB3-SS2		8-10	Z	AUGER BORING	>	Benzene	66		ug/kg	S.
B-5 8-10 IN AUGER BORING M Arsenic 1.28 B-5 8-10 IN AUGER BORING M Cadmium 0.45 B-5 8-10 IN AUGER BORING M Cadmium 0.45 B-5 8-10 IN AUGER BORING M Cadmium 0.45 B-5 8-10 IN AUGER BORING M Cadmium 0.05 B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M AUGER BORING M B-6 9-10 IN AUGER BORING M AUGER BORING M B-6 9-10 IN AUGER BORING M AUGER BORING M B-7 IN AUGER BORING M AUGER BORING M Auger BORING B-6 3-5 IN <td>AB3-552</td> <td>•</td> <td>8-10</td> <td>Z</td> <td>AUGER BORING</td> <td>S</td> <td>ALL SEMI - VOLATILES</td> <td>QV</td> <td>₹ Z</td> <td>ug/kg</td> <td>Y X</td>	AB3-552	•	8-10	Z	AUGER BORING	S	ALL SEMI - VOLATILES	QV	₹ Z	ug/kg	Y X
B-5 8-10 IN AUGER BORING M Bayllium 0.34 B-5 8-10 IN AUGER BORING M Cadmium 0.45 B-5 8-10 IN AUGER BORING M Chromium 0.45 B-5 8-10 IN AUGER BORING M Chromium 0.05 B-5 8-10 IN AUGER BORING M Chromium 0.05 B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M AUGER BORING M B-5 8-10 IN AUGER BORING M ALLVOLATILES ND B-6 3-5 IN AUGER BORING M ALLVOLATILES ND B-6 3-5 IN AUGER BORING M ALLVOLATILES ND B-6 3-5 IN AUGER BORING M Auger BORING M Auger BORING M B	AB3-552	- 1	1	Z	AUGER BORING	Σ	Antimony	4.5	UNB	mg/kg	ø
B-5 6-10 IN AUGER BORING M Cadmium 0.34 B-5 8-10 IN AUGER BORING M Chopper 28 B-5 8-10 IN AUGER BORING M Chopper 28 B-5 8-10 IN AUGER BORING M Copper 28 B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M Mickel 218 B-5 8-10 IN AUGER BORING M AUL VOLATILES ND B-6 IN AUGER BORING M AUL VOLATILES ND B-6 IN AUGER BORING SV Fluoranthene 130 B-6 3-5 IN AUGER BORING M Authorition 152 B-6 3-5 IN AUGER BORING M Authorition 1 B-6 3-5 IN AUGER BORING M	AB3-552	1	١	Z	AUGER BORING	Σ	Arsenic	12.8	7	mg/kg	-
B-6 6-10 IN AUGER BORING AUGER BORING AUGER BORING B-5 M Chadmium 	AB3~SS2	- 1	8-10	Z	AUGER BORING	Σ	Beryllium	0.34	60	mg/kg	0.5
B-5 6-10 IN AUGER BORING M Chromium 10.8 B-5 6-10 IN AUGER BORING M Chromium 2.8 B-5 6-10 IN AUGER BORING M Mercury 0.057 B-5 6-10 IN AUGER BORING M Mercury 0.057 B-5 6-10 IN AUGER BORING M Thallium 0.35 B-5 6-10 IN AUGER BORING M Thallium 0.36 B-6 10 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING M AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M Aurinmony 5 B-6<	AB3-552		8-10	Z	AUGER BORING	Σ	Cadmium	0.45		mg/kg	9.0
B-5 6-10 IN AUGER BORING M Copper 28 B-5 9-10 IN AUGER BORING M Mercury 0.057 B-5 9-10 IN AUGER BORING M Nickel 218 B-5 8-10 IN AUGER BORING M Salvar 0.74 B-5 8-10 IN AUGER BORING M ALL VOLATILES ND B-6 3-6 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N AUGER BORING N B-6 3-5 IN	AB3-882	- 1	8-10	Z	AUGER BORING	≨	Chromium	10.8		mg/kg	•
B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M Mickel 21.8 B-5 8-10 IN AUGER BORING M Nickel 21.8 B-5 8-10 IN AUGER BORING M Silver 0.74 B-5 8-10 IN AUGER BORING M Thallium 0.36 B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALSentin 15.2 B-6 3-5 IN<	AB3-SS2	1	8-10	z	AUGER BORING	Σ	Copper	28		mg/kg	2.5
B-5 8-10 IN AUGER BORING M Mercury 0.057 B-5 8-10 IN AUGER BORING M Salvarium 0.18 B-5 8-10 IN AUGER BORING M Thallium 0.35 B-5 8-10 IN AUGER BORING M ALL VOLATILES 0.74 B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING SV Pyrene 170 B-6 3-5 IN AUGER BORING M Auger BORING M Auger BORING B-6 3-5 IN AUGER BORING M Auger BORING M Auger BORING M B-6 3-5 IN AUGER BORING M Auger BORING	AB3~SS2	1	8-10	Z	AUGER BORING	Σ	Lead	14.8		mg/kg	0.3
B-5 8-10 IN AUGER BORING M Selenium 0.55 B-5 8-10 IN AUGER BORING M Silvet 0.74 B-5 8-10 IN AUGER BORING M Thallium 0.36 B-6 9-10 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N ALL VOLATILES ND B-6 3-5 IN AUGER BORING N Arisanic 150 B-6 3-5 IN AUGER BORING M Arisanic 152 B-6 3-5 IN <td>AB3-SS2</td> <td>1</td> <td>8-10</td> <td>Z</td> <td>AUGER BORING</td> <td>2</td> <td>Mercury</td> <td>0.057</td> <td>כ</td> <td>mg/kg</td> <td>0.1</td>	AB3-SS2	1	8-10	Z	AUGER BORING	2	Mercury	0.057	כ	mg/kg	0.1
B-5 8-10 IN AUGER BORING M Salenium 0.55 B-5 8-10 IN AUGER BORING M Thallium 0.74 B-6 3-5 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN	AB3 - SS2	1	8-10	z	AUGER BORING	\$	Nickel	21.8		mg/kg	4
B-5 8-10 IN AUGER BORING M Thailium 0.36 B-5 8-10 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING SV Pyrene 180 B-6 3-5 IN AUGER BORING SV Pyrene 170 B-6 3-5 IN AUGER BORING SV Benzo(b) Fluoranthene 170 B-6 3-5 IN AUGER BORING M Arisenic 15.2 B-6 3-5 IN AUGER BORING M Arisenic 15.2 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN	AB3 - SS2	1	8-10	Z	AUGER BORING	Σ	Selenium	0.55	TWN	mg/kg	9.0
B-5 8-10 IN AUGER BORING M Thallium 0.36 B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M Aritmony 170 B-6 3-5 IN AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M AUGER BORING	AB3-882	- 1	8-10	Z	AUGER BORING	Σ	Silver	0.74	ס	mg/kg	-
B-5 8-10 IN AUGER BORING M ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Pyrana 180 B-6 3-5 IN AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 22.2 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING	AB3-SS2	1	8-10	Z	AUGER BORING	Σ	Thallium	96.0	BNC	mg/kg	
B-6 3-5 IN AUGER BORING V ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING SV Benzo(b) Fluoranthene 170 B-6 3-5 IN AUGER BORING M Aritmony 5 B-6 3-5 IN AUGER BORING M Arisenic 15.2 B-6 3-5 IN AUGER BORING M Arisenic 15.2 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M AUGER BORING	AB3-SS2	- 1 1	11	Z	AUGER BORING	Σ	Zinc	80.9		mg/kg	2
B-6 3-5 IN AUGER BORING V ALL VOLATILES ND B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING M Pyrene 170 B-6 3-5 IN AUGER BORING M Antimony 5 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M AUGER BORING M									:		
B-6 3-5 IN AUGER BORING SV Fluoranthene 180 B-6 3-5 IN AUGER BORING SV Benzo(b)Fluoranthene 170 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN	AB4-551	8-8	ı	Z	AUGER BORING	>	ALL VOLATILES	ą	z	ug/kg	Y V V
B-6 3-5 IN AUGER BORING SV Pyrene 180 B-6 3-5 IN AUGER BORING M Antimony 5 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M COpper 21.2 B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BORING M AUGER BORING M B-6 3-5 IN AUGER BO	A84-SS1	8-6	1	Z	AUGER BORING	S	Fluoranthene	180	7	ug/kg	330
B-6 3-5 IN AUGER BORING SV Benzo(b)Fluoranthene 170 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Berytlium 0.5 B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Capper 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUG	AB4-551	8-6	ι	z	AUGER BORING	SS	Pyrene	180	7	ug/kg	330
B-6 3-5 IN AUGER BORING M Antimony 5 B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUGER BORING M Mercury 0.08 B-6 3-5 IN AUGER BORING M Mercury 0.08 B-6 3-5 IN AUGER BORING	AB4-SS1	8-6	1	Z	AUGER BORING	S	Benzo(b) Fluoranthene	170	ז	ug/kg	330
B-6 3-5 IN AUGER BORING M Arsenic 15.2 B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Chromium 22.3 B-6 3-5 IN AUGER BORING M Chromium 22.3 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUGER BORING M Nickel 21.8 B-6 3-5 IN AUGER BORING M Selenium 0.47 B B-6 3-5 IN AUGER BORING M Selenium 0.61 B B-6 3-5 IN AUGER BORING M Thaillium 0.61 B B-6 3-5 IN AUGER BORING M Thaillium 0.61 B	AB4-551	B-6	ı	Z	AUGER BORING	≥	Antimony	S	UNR	mg/kg	9
B-6 3-5 IN AUGER BORING M Cadmium Cadmium O.5 B-6 3-5 IN AUGER BORING M Chromium Cadmium O.5 B-6 3-5 IN AUGER BORING M Chromium Cadmium O.5 B-6 3-5 IN AUGER BORING M Copper Cadmium O.5 B-6 3-5 IN AUGER BORING M Mercury O.06 B-6 3-5 IN AUGER BORING M Nickel 21.8 B-6 3-5 IN AUGER BORING M Selenium O.47 B B-6 3-5 IN AUGER BORING M Selenium O.03 O.08 B-6 3-5 IN AUGER BORING M Thaillium O.01 O.08	AB4-551	- 1	1	Z	AUGER BORING	≨	Arsenic	15.2	2	mg/kg	-
B-6 3-5 IN AUGER BORING M Cadmium 0.5 B-6 3-5 IN AUGER BORING M Chromium 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUGER BORING M Nickel 21.8 B-6 3-5 IN AUGER BORING M Selenium 0.47 B B-6 3-5 IN AUGER BORING M Silver 0.03 B-6 3-5 IN AUGER BORING M Thaillium 0.61 B B-6 3-5 IN AUGER BORING M Thaillium 0.61 B	AB4 - SS1	8-6	1	Z	AUGER BORING	Σ	Beryllium	_		mg/kg	9.0
B-6 3-5 IN AUGER BORING M Chromium 22.3 B-6 3-5 IN AUGER BORING M Copper 21.2 B-6 3-5 IN AUGER BORING M Mercury 0.06 B-6 3-5 IN AUGER BORING M Nickel 21.8 B-6 3-5 IN AUGER BORING M Silver 0.08 B-6 3-5 IN AUGER BORING M Silver 0.03 B-6 3-5 IN AUGER BORING M Thaillium 0.61	AB4-551	8-6	1	Z	AUGER BORING	Σ	Cadmium	0.5	83	mg/kg	9.0
-551 B-6 3-5 IN AUGERBORING M Copper 21.2 -551 B-6 3-5 IN AUGERBORING M Mercury 0.08 -551 B-6 3-5 IN AUGERBORING M Selenium 0.47 B -551 B-6 3-5 IN AUGERBORING M Silver 0.83 -551 B-6 3-5 IN AUGERBORING M Thaillium 0.61 B -551 B-6 3-5 IN AUGERBORING M Thaillium 0.61 B	AB4-551	8-8	1	z	AUGER BORING	≨	Chromium	22.3		mg/kg	-
-551 B-6 3-5 IN AUGERBORING M Mercury 0.08 AUGERBORING M Mercury 0.08 AUGERBORING M Nickel 21.8 B-6 3-5 IN AUGERBORING M Selenium 0.47 B Silver 0.83 B-6 3-5 IN AUGERBORING M Thaillium 0.61 B-6 3-5 IN AUGERBORING M THAILING M THAI	AB4 - SS1	8-6	ı	Z	AUGER BORING	Σ	Copper	21.2		mg/kg	2.5
-551 B-6 3-5 IN AUGERBORING M Mercury 0.06 -551 B-6 3-5 IN AUGERBORING M Selenium 0.47 B Silver 0.83 -551 B-6 3-5 IN AUGERBORING M Silver 0.83 -551 B-6 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M Thaillium 0.61 B B C 3-5 IN AUGERBORING M THAILING M TH	AB4-551	8-8	1	Z	AUGER BORING	₹	Lead	385	•	mg/kg	0.3
-5S1 B-6 3-5 IN AUGERBORING M Selenium 0.47 B Selenium 0.61 B B-6 3-5 IN AUGERBORING M Thaillium 0.61 B B-6 3-5 IN AUGERBORING M THAILING M	AB4-551	1	1	Z	AUGER BORING	≨	Mercury	90.0	2	mg/kg	0.1
-5S1 B-6 3-5 IN AUGERBORING M Selenium 0.47 B Silver 0.83 Silver 0.83 Silver 0.83 Silver 0.83 B-6 3-5 IN AUGERBORING M Thaillium 0.61 B B-6 3-5 IN AUGERBORING M THAILING M THAIL TH	AB4-SS1	1	1	Z	AUGER BORING	Σ	Nickel			mg/kg	4
-551 B-6 3-5 IN AUGERBORING M Silver 0.83 -551 B-6 3-5 IN AUGERBORING M Thattium 0.61 B -551 B-6 3-5 IN AUGERBORING M	AB4-551	B-6	1	Z	AUGER BORING	Σ	Selenium	0.47	BNL	mg/kg	9.0
-551 B-6 3-5 IN AUGERBORING M Thaillium 0.61	AB4-551	8-6	1	Z	AUGER BORING	₹	Silver	0.83	O	mg/kg	-
-SS1 B-6 3-5 IN AUGER BORING M	AB4-851	8-6	-	Z	AUGER BORING	Σ	Thallium	0.61	BNL	mg/kg	-
	AB4 - 331	B-6	3-5	Z	AUGER BORING	¥	Zinc	166		mg/kg	8

						AMALTOIO				
SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
404 CCA		9	141	OMIGOG GROUP	,		030	6	20 A) 2000	8,
1		0 1	<u> </u>	SALE BONING	> 3	ACRIOINA			Ry/Rn	3 '
1		8-10	Z	AUGER BORING	>	Ethylbenzene			By/8⊓	- 2
AB4-552	8-6	8-10	Z	AUGER BORING	>	m/p-Xylene	36		ug/kg	2
AB4 SS2		8-10	Z	AUGER BORING	>	o - Xylene	51		ug/kg	9
A84-552	8-6	8-10	Z	AUGER BORING	S	Naphthalene	880		ug/kg	330
A84-552		8-10	Z	AUGER BORING	S	Phenanthrene	180		ug/kg	330
AB4 - 552	8-6	8-10	Ž	AUGER BORING	S	Fluoranthene	- 8		ug/kg	330
AB4-552		8 - 10	Z	AUGER BORING	S	Pyrene	120		ug/kg	330
AB4 - SS2		8-10	Z	AUGER BORING	Σ	Antimony	4.5	UNB	mg/kg	9
A64-552	B-6	8-10	Z	AUGER BORING	Σ	Arsenic	_	3	mg/kg	_
AB4-552		8-10	Z	AUGER BORING	Σ	Baryllium	0.79		mg/kg	0.5
AB4-552		8-10	Z	AUGER BORING	Σ	Cadmium	0.45	8	mg/kg	0.5
AB4 - SS2		8-10	Z	AUGER BORING	Σ	Chromium	10.8		mg/kg	_
AB4-552		8-10	Z	AUGER BORING	Σ	Copper	20.4		mg/kg	2.5
AB4-552		8-10	Z	AUGER BORING	Σ	Lead	20.3	•	mg/kg	0.3
- 1	8-6	8-10	Z	AUGER BORING	≆	Mercury	0.058	ס	mg/kg	0.1
AB4-SS2		8-10	Z	AUGER BORING	Σ	Nickel	27.8		mg/kg	4
AB4-552		810	Z	AUGER BORING	Σ	Selenium	0.35	BNW	mg/kg	0.5
1		8-10	Z	AUGER BORING	Σ	Silver	0.74	<u> </u>	mg/kg	_
1	B6	8-10	Z	AUGER BORING	Σ	Thallium	0.46	BNO	mg/kg	-
AB4-552		8 - 10	Z	AUGER BORING	Σ	Zinc	90.3		mg/kg	CI
	(;					
100 JOA	y (7	2 3	ONICOS CUCTA	> 3	ALL VOLATILES			09/80 	2 :
ABO = SO	y (ה ו ה	Ξ:	שמונים אשסטע	<u>ه</u>	ALL SEMI-VOLAFILES			By/6n	¥ '
AB5-551	C-3	0 0	Z	AUGEH BOHING	Σ:	Antimony		-	mg/kg	9
AB5-551	C-2	S - 10	Z	AUGER BORING	₹ :	Arsenic		3	mg/kg	<u></u>
1	C-2	3-5	2	AUGER BORING	₹	Beryllium			mg/kg	0.5
AB5-551	C-2	3-5	Z	AUGER BORING	Σ	Cadmium		80	mg/kg	0.5
	C-2	3-5	Z	AUGER BORING	Σ	Chromium			mg/kg	-
		3-5	Z	AUGER BORING	₹	Copper	29.4		mg/kg	2.5
AB5-551		3-2	Z	AUGER BORING	Σ	Lead	16.1		mg/kg	0.3
AB5-551	C-2	3-5	Z	AUGER BORING	Σ	Mercury	0.056	>	mg/kg	0.1
AB5-581	C-2	3-5	Z	AUGER BORING	Σ	Nickel	31.1		mg/kg	4
AB5-581	C-3	3-5	Z	AUGER BORING	Σ	Selenium	0.2	BNWJ	mg/kg	0.5
AB5-531	C-2	3-2	Z	AUGER BORING	*	Silver	0.74	ס	mg/kg	-
AB5-531	C-2	3-5	Z	AUGER BORING	Σ	Thallium	0.53	BNE	mg/kg	-
AB5-551	C-2	3-5	Z	AUGER BORING	2	Zinc	86.3		04/50	٠

ATILES ND NA ATILES ND NO.22 B admium 0.057 U Copper Capper 15.4 BNWJ Silver Copper 15.4 BNWJ ATILES ND NA Arsenic 22.2 ND Arsenic 22.2 ND Arsenic 22.2 ND Arsenic 22.2 ND NA ND NA ND NA ND NA ND NA ND							ANALYSIS				DETECTION
C-2 8-10 IN AUGER BORING V ALL SEML VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEML - VOLATILES ND NA C-2 8-10 IN AUGER BORING M AGRAMOR	SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	UMIT
C-2 8-10 IN AUGER BORING SV ALL SEM-VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-2 8-10 IN AUGER BORING M Arimony 4.45 UN C-2 8-10 IN AUGER BORING M Arimony 4.55 UN C-2 8-10 IN AUGER BORING M Chromium 0.33 B C-2 8-10 IN AUGER BORING M Chromium 0.32 B C-2 8-10 IN AUGER BORING M AUGER BORING											
C-2 8-10 IN AUGER BORING SV ALL SEM - VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM - VOLATILES ND NN C-2 8-10 IN AUGER BORING M Chromium 0.33 ND C-2 8-10 IN AUGER BORING M Chromium 0.22 B C-2 8-10 IN AUGER BORING M Chromium 0.22 B C-2 8-10 IN AUGER BORING M Chromium 11.6 D C-2 8-10 IN AUGER BORING M AUGER BORING <td>A35-552</td> <td>٥</td> <td>8-10</td> <td><u>z</u></td> <td></td> <td>></td> <td>ALL VOLATILES</td> <td></td> <td></td> <td>ug/kg</td> <td>4Z</td>	A35-552	٥	8-10	<u>z</u>		>	ALL VOLATILES			ug/kg	4Z
C-2 8-10 IN AUGER BORING M Animony 4.5 UNR C-2 8-10 IN AUGER BORING M AGRICA 14.4 NU C-2 8-10 IN AUGER BORING M Cadmium 0.23 B C-2 8-10 IN AUGER BORING M Cadmium 0.23 B C-2 8-10 IN AUGER BORING M Cadmium 0.057 U C-2 8-10 IN AUGER BORING M Macury 0.057 U C-2 8-10 IN AUGER BORING M	AB5-552		8-10	Z		SS	ALL SEMI - VOLATILES	2		ug/kg	Ϋ́
C-2 8-10 IN AUGER BORING M Arsenic 144 NJ C-2 8-10 IN AUGER BORING M Cadmium 0.33 B C-2 8-10 IN AUGER BORING M Chromium 0.022 B C-2 8-10 IN AUGER BORING M Chromium 0.022 B C-2 8-10 IN AUGER BORING M Copper 22.1 D C-2 8-10 IN AUGER BORING M Marcury 0.022 B C-2 8-10 IN AUGER BORING M	AB5-552		8-10	<u>z</u>		Σ	Antimony	4.5		mg/kg	9
C-2 8-10 IN AUGER BORING M Cadmium 0.33 B C-2 8-10 IN AUGER BORING M Chromium 0.022 B C-2 8-10 IN AUGER BORING M Copper 27.1 B C-2 8-10 IN AUGER BORING M Copper 27.1 D C-2 8-10 IN AUGER BORING M Nickel 24.8 BNWJ C-2 8-10 IN AUGER BORING M Silver 0.057 U C-2 8-10 IN AUGER BORING M ALL VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND C-4 3-5 <t< td=""><td>AB5-552</td><td></td><td>8-10</td><td><u>z</u></td><td></td><td>Σ</td><td>Arsenic</td><td>14.4</td><td></td><td>mg/kg</td><td>_</td></t<>	AB5-552		8-10	<u>z</u>		Σ	Arsenic	14.4		mg/kg	_
C-2 8-10 IN AUGER BORING M Cadmium 0.22 B C-2 8-10 IN AUGER BORING M Copper 27.1 1.6 C-2 8-10 IN AUGER BORING M Copper 27.1 1.6 C-2 8-10 IN AUGER BORING M Mickel 24.6 15.4 C-2 8-10 IN AUGER BORING M Mickel 24.6 BNWJ C-2 8-10 IN AUGER BORING M Tailling 0.38 BNJ C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND C-4 3-5	A85-5S.	C-2	8-10	Z		Σ	Beryllium	0.33		mg/kg	0.5
C-2 8-10 IN AUGER BORING M Chromium 11.6 C-2 8-10 IN AUGER BORING M Copper 27.1 C-2 8-10 IN AUGER BORING M Marcuny 0.057 U C-2 8-10 IN AUGER BORING M Marcuny 0.055 BNWJ C-2 8-10 IN AUGER BORING M Thallium 0.35 BNWJ C-2 8-10 IN AUGER BORING M Thallium 0.35 BNWJ C-2 8-10 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND C-4 3-5 IN <t< td=""><td>ABS-SS3</td><td>1 C-2</td><td>8-10</td><td><u>z</u></td><td></td><td>Σ</td><td>Cadmium</td><td>0.22</td><td></td><td>mg/kg</td><td>0.5</td></t<>	ABS-SS3	1 C-2	8-10	<u>z</u>		Σ	Cadmium	0.22		mg/kg	0.5
C-2 8-10 IN AUGER BORING M Copper 27.1 C-2 8-10 IN AUGER BORING M Maccury 0.057 U C-2 8-10 IN AUGER BORING M Nickel 24.8 U C-2 8-10 IN AUGER BORING M Silver 0.057 U C-2 8-10 IN AUGER BORING M Thailium 0.55 BNWJ C-2 8-10 IN AUGER BORING M Thailium 0.58 BNMJ C-2 8-10 IN AUGER BORING M ALL VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND AUGER BORING M AUGER BORING	ABS-SS2			<u>z</u>		Σ	Chromium	11.6		mg/kg	-
C-2 8-10 IN AUGER BORING M Macury 15.4 U C-2 8-10 IN AUGER BORING M Macer BORING M Selentium 0.057 U C-2 8-10 IN AUGER BORING M Selentium 0.54 BNWJ C-2 8-10 IN AUGER BORING M Thailium 0.53 BNWJ C-2 8-10 IN AUGER BORING M ALL VOLATILES 0.74 U C-2 8-10 IN AUGER BORING N ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING N ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALSEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALSEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALSEMI-VOLATILES ND <td>AB5-552</td> <td></td> <td></td> <td><u>z</u></td> <td></td> <td>Σ</td> <td>Copper</td> <td>27.1</td> <td></td> <td>mg/kg</td> <td>2.5</td>	AB5-552			<u>z</u>		Σ	Copper	27.1		mg/kg	2.5
C-2 8-10 IN AUGER BORING M Mercury 0.057 U C-2 8-10 IN AUGER BORING M Selvanium 0.55 BNWJ C-2 8-10 IN AUGER BORING M Thallium 0.36 BNWJ C-2 8-10 IN AUGER BORING M Thallium 0.36 BNJ C-2 8-10 IN AUGER BORING M ALL SEM-VOLATILES D.74 U C-3 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND ND C-4 3-5 IN AUGER BORING M ALL SEM-VOLATILES ND ND	AB5-552		8-10	<u>z</u>		Σ	Lead			mg/kg	6.0
C - 2 8 - 10 IN AUGER BORING M Selenium 0.55 BNWJ C - 2 8 - 10 IN AUGER BORING M Silver 0.74 U C - 2 8 - 10 IN AUGER BORING M Thallium 0.55 BNWJ C - 2 8 - 10 IN AUGER BORING M ALL VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING N ALL VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING N ALL VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING N ALL VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING N ALL VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING M ALSemi-VOLATILES ND NA C - 4 3 - 5 IN AUGER BORING M ALL VOLATILES ND NA <	AB5-552			<u>z</u>		Σ	Mercury	0.057		mg/kg	0.1
C-2 8-10 IN AUGER BORING M Selenium 0.55 BNWJ C-2 8-10 IN AUGER BORING M Thailium 0.54 U C-2 8-10 IN AUGER BORING M ALL VOLATILES ND NA C-2 8-10 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND ND	AB5-552		8-10	Z		Σ	Nickel	24.8		mg/kg	4
C-2 8-10 IN AUGER BORING M Thailium 0.38 BNJ C-2 8-10 IN AUGER BORING M Thailium 0.38 BNJ C-2 8-10 IN AUGER BORING M ALL VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M Arsenic 22.2 ND C-4 3-5 IN AUGER BORING M Arsenic 22.2 NUR C-4 3-5 IN AUGER BORING M Copper 16.5 COPPER C-4 3-5 IN AUGER BORING M Copper 16.5 COPPER COPPER COPPER 16.5 COPPER COPPER <td>AB5-552</td> <td></td> <td>8-10</td> <td>Z</td> <td></td> <td>Σ</td> <td>Selenium</td> <td>0.55</td> <td></td> <td>mg/kg</td> <td>9.0</td>	AB5-552		8-10	Z		Σ	Selenium	0.55		mg/kg	9.0
C-2 8-10 IN AUGER BORING M Thallium 0.38 BNJ C-2 8-10 IN AUGER BORING M ALL VOLATILES BNJ C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M Arismony 4.5 UNR C-4 3-5 IN AUGER BORING M Arismony 4.5 UNR C-4 3-5 IN AUGER BORING M Arismony 4.5 UNR C-4 3-5 IN AUGER BORING M	AB5-552		•	Z		Σ	Silver			mg/kg	-
C C - 2 8 - 10 IN AUGER BORING M ALL VOLATILES ND NA I C - 4 3 - 5 IN AUGER BORING V ALL VOLATILES ND NA I C - 4 3 - 5 IN AUGER BORING M Arismony 4.5 UNR I C - 4 3 - 5 IN AUGER BORING M Arismony 4.5 UNR I C - 4 3 - 5 IN AUGER BORING M Chromium 16.5 I C - 4 3 - 5 IN AUGER BORING M AUGER BORING	A85-552	5	- 1	<u>z</u>		Σ	Thallium	0.38		mg/kg	-
C-4 3-5 IN AUGER BORING V ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING SV ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M Arsenic 22.2 NUR C-4 3-5 IN AUGER BORING M Cadmium 3.3 B C-4 3-5 IN AUGER BORING M Cadmium 3.3 B C-4 3-5 IN AUGER BORING M Copper 18.5 C C-4 3-5 IN AUGER BORING M AUGER BORING	- 1	2	- 1	2		Σ	Zinc			mg/kg	2
C-4 3-5 IN AUGER BORING V ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING SV ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M ALL SEMI-VOLATILES ND NA C-4 3-5 IN AUGER BORING M Cadmium 0.33 B C-4 3-5 IN AUGER BORING M Copper 18.9 N C-4 3-5 IN AUGER BORING M											
C4 3-5 IN AUGER BORING SV ALL SEMI-VOLATILES ND NA C4 3-5 IN AUGER BORING M Arsenic 22.2 NU C4 3-5 IN AUGER BORING M ACAMINIUM 0.33 B C4 3-5 IN AUGER BORING M Cadmium 3.3 B C4 3-5 IN AUGER BORING M Copper 18.5 N C4 3-5 IN AUGER BORING M Copper 18.9 U C4 3-5 IN AUGER BORING M Mercury 0.058 U C4 3-5 IN AUGER BORING M AUGER BORING M Selenium 0.058 U C4 3-5 IN AUGER BORING M Selenium 0.29 BNWJ C4 3-5 IN AUGER BORING M Silver 0.73 U	AB6-551	C-4	i	<u> </u>		>	ALL VOLATILES	Q.		ug/kg	AN AN
C-4 3-5 IN AUGER BORING M Antimony 4.5 UNR C-4 3-5 IN AUGER BORING M Arsenic 22.2 NU C-4 3-5 IN AUGER BORING M Cadmium 0.33 B C-4 3-5 IN AUGER BORING M Chromium 18.5 N C-4 3-5 IN AUGER BORING M Copper 18.9 U C-4 3-5 IN AUGER BORING M Mercury 0.058 U C-4 3-5 IN AUGER BORING M Mercury 0.058 U C-4 3-5 IN AUGER BORING M Selenium 0.29 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN	AB6-551	C-4	1	<u> </u>		S	ALL SEMI-VOLATILES	Q		ug/kg	Y Y
C4 3-5 IN AUGER BORING M Arsenic 22.2 NU C4 3-5 IN AUGER BORING M Cadmium 0.33 B C4 3-5 IN AUGER BORING M Cadmium 3.3 B C4 3-5 IN AUGER BORING M Copper 18.9 Load C4 3-5 IN AUGER BORING M Copper 18.9 U C4 3-5 IN AUGER BORING M Nickel 25.2 U C4 3-5 IN AUGER BORING M Nickel 25.2 U C4 3-5 IN AUGER BORING M Silver 0.058 U C4 3-5 IN AUGER BORING M Silver 0.73 U C4 3-5 IN AUGER BORING M Silver 0.73 U C4 3-5 IN	AB6-551	C-4	-	Z		Σ	Antimony	4.5		mg/kg	9
C4 3-5 IN AUGER BORING M Beryllium 0.33 B C4 3-5 IN AUGER BORING M Cadmium 3.3 B C4 3-5 IN AUGER BORING M Copper 18.5 C4 3-5 IN AUGER BORING M Copper 18.9 C4 3-5 IN AUGER BORING M Mercury 0.058 U C4 3-5 IN AUGER BORING M Nickel 25.2 BNWJ C4 3-5 IN AUGER BORING M Silver 0.058 U C4 3-5 IN AUGER BORING M Silver 0.73 U C4 3-5 IN AUGER BORING M Silver 0.73 U C4 3-5 IN AUGER BORING M Thallium 0.73 U C4 3-5 IN AUGER BORING <	AB6-551	C-4	3-5	Z		Σ	Arsenic			mg/kg	-
C-4 3-5 IN AUGER BORING M Cadmium 3.3 C-4 3-5 IN AUGER BORING M Chromium 16.5 C-4 3-5 IN AUGER BORING M Copper 18.9 C-4 3-5 IN AUGER BORING M Mercury 0.058 U C-4 3-5 IN AUGER BORING M Nickel 25.2 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ C-4 3-5 IN AUGER BORING M Thallium 0.73 U C-4 3-5 IN AUGER BORING M Thalli	AB6-551	C-4	3-5	<u>z</u>		Σ	Beryllium	0.33		mg/kg	9.0
C-4 3-5 IN AUGER BORING M Chromium 16.5 C-4 3-5 IN AUGER BORING M Copper 16.9 C-4 3-5 IN AUGER BORING M Mercury 0.058 U C-4 3-5 IN AUGER BORING M Nickel 25.2 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.79 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ C-4 3-5 IN AUGER BORING M Thallium 0.73 U C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ	A86-551	C-4	3-5	<u>z</u>		Σ	Cadmium	3.3		mg/kg	0.5
C-4 3-5 IN AUGER BORING M Copper 16:9 * C-4 3-5 IN AUGER BORING M Mercury 0.058 U C-4 3-5 IN AUGER BORING M Nickel 25.2 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.79 BNWJ C-4 3-5 IN AUGER BORING M Silver 0.73 U C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ	AB6-SS1	0 1	3-5	<u>z</u>		Σ	Chromium			mg/kg	-
C C - 4 3 - 5 IN AUGER BORING M Lead 19.5 • C C - 4 3 - 5 IN AUGER BORING M Mickel 25.2 U C C - 4 3 - 5 IN AUGER BORING M Silver 0.29 BNWJ C C - 4 3 - 5 IN AUGER BORING M Silver 0.73 U C C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ C C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ C C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ	AB6-551	V-7	3-2	Z _		Σ	Copper	16.9		mg/kg	25
C - 4 3 - 5 IN AUGER BORING M Mercury 0.058 U C - 4 3 - 5 IN AUGER BORING M Selenium 0.29 BNWJ C - 4 3 - 5 IN AUGER BORING M Silver 0.73 U C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ C - 4 3 - 5 IN AUGER BORING M Thallium 0.88 BNJ	AB6-551	Q-7	3-8			Σ	Lead			mg/kg	0.3
C C-4 3-5 IN AUGERBORING M Nickel 25.2 BNWJ C C-4 3-5 IN AUGERBORING M Silver 0.73 U C C-4 3-5 IN AUGERBORING M Thallium 0.73 U C C-4 3-5 IN AUGERBORING M Thallium 0.88 BNJ I C-4 3-5 IN AUGERBORING M Tinc 83.1	AB6-551	C-4	3-5	<u>z</u>		Σ	Mercury	0.058		mg/kg	0.1
C C-4 3-5 IN AUGER BORING M Selenium 0.29 BNWJ I C-4 3-5 IN AUGER BORING M Thallium 0.73 U I C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ I C-4 3-5 IN AUGER BORING M Zinc 83.1	AB6-551	V -0	3-5	<u>z</u>		Σ	Nickel	25.2		mg/kg	4
C-4 3-5 IN AUGER BORING M Silver 0.73 U 1 C-4 3-5 IN AUGER BORING M Thallium 0.88 BNJ 1 C-4 3-5 IN AUGER BORING M Zinc 83.1	AB6-551	C-4	3-5	<u>z</u>		_	Selenium	0.29		mg/kg	0.5
-SS1 C-4 3-5 IN AUGERBORING M Thallium 0.88 BNJ -SS1 C-4 3-5 IN AUGERBORING M Zinc 83.1	A86SS1	0-1	3-5	<u>z</u>		Σ	Silver	0.73		mg/kg	-
-551 C-4 3-5 IN AUGERBORING M Zinc 83.1	A86-551	V-7	3-2	<u>z</u>		Σ	Thallium	0.88		mg/kg	-
	-11		1]	≥		Σ	Zinc			mg/kg	2

# SSS	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
AB6-552 AB6-552	C-4		-			And the second s				
AB6-552 AB6-552	C-4									
AB6-552		8-10	<u>z</u>	AUGER BORING	>	Benzene	_	¬	gx/gn	S
	C-4	8-10	Z	AUGER BORING	S	ALL SEMI-VOLATILES	Q	4Z	ug/kg	₹ X
AB6 - 552	C-4	8-10	z	AUGER BORING	Σ	Antimony	3.9	UNB	mg/kg	89
AB6-552	C-4	8-10	Z	AUGER BORING	Σ	Arsenic	20.3	3	rng/kg	-
AB6-552	C-4	8-10	Z	AUGER BORING	Σ	Beryllium	0.22	<u></u>	mg/kg	0.5
AB6-552	C-4	8-10	Z	AUGER BORING	≆	Cadmium	0.49		mg/kg	0.5
AB6-552	C-4	8-10	Z	AUGER BORING	≨	Chromium	12.4		mg/kg	-
AB6-552	C-4	8 - 10	Z	AUGER BORING	Σ	Copper	25.7		mg/kg	2.5
AB6-SS2	C-4	8 – 10	Z	AUGER BORING	2	Lead	14.8	-	mg/kg	0.3
AB6-552	0 4-0	8-10	Z	AUGER BORING	₹	Mercury	90.0	ב	mg/kg	0.1
AB6-552	C-4	8-10	Z	AUGER BORING	⋝	Nickel	20.3		mg/kg	4
AB6-SS2	C-4	8-10	Z	AUGER BORING	Σ	Selenium	0.53	BNWJ	mg/kg	9.0
AB6-SS2	C-4	8-10	Z	AUGER BORING	Σ	Silver	0.64	ס	mg/kg	-
AB6-552	C-4	8-10	Z	AUGER BORING	Σ	Thallium	0.39	BNU	mg/kg	-
AB6-552	C-4	8-10	Z	AUGER BORING	W	Zinc	85.7		mg/kg	2
4B7-SS1	C-7	3-5	DO	AUGER BORING	>	Methylene Chloride	130	80	ng/kg	2
AB7 - SS1	C-7	3-5	OUT	AUGER BORING	S	ALL SEMI-VOLATILES	Q	AN N	ug/kg	Y V
AB7-SS1	C-7	3-5	TUO	AUGER BORING	Σ	Antimony	5,1	UNB	mg/kg	9
AB7 - SS1	C-7	3-5	TUO	AUGER BORING	Σ	Arsenic	18.2	2	mg/kg	-
AB7-SS1	C-7	3-5	TUO	AUGER BORING	Σ	Beryllium	0.63		mg/kg	9.0
AB7-SS1	C-7	0 1 0	DOUT	AUGER BORING	Σ	Cadmium	0.38	8	mg/kg	0.5
1	C-7	1	DOUT	AUGER BORING	Σ	Chromium	17.8		mg/kg	_
AB7-SS1	C-7	1	DOUT	AUGER BORING	Σ	Copper	30.8		mg/kg	2.5
AB7-551	C-7	3-5	DOCT	AUGER BORING	2	Lead	17.6		mg/kg	6.0
AB7-551	C-7	3-5	DOOT	AUGER BORING	Σ	Mercury	0.061	ס	mg/kg	0.1
•	C-7	3-5	OUT	AUGER BORING	Σ	Nickel	35.6		mg/kg	4
AB7-551	C-7	3-5	DOUT	AUGER BORING	Σ	Selenium	0.2	<u> </u>	mg/kg	0.5
AB7-551	C-7	1	OUT	AUGER BORING	Σ	Silver	0.83	5	mg/kg	-
1	C-7	3-5	OUT	AUGER BORING	Σ	Thallium		BNN	mg/kg	-
AB7 SS1	C-7	3-5	OUT	AUGER BORING	Σ	Zinc	99.7		mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	TIMI
AB8-SS2	D-2	8 - 10	Z	AUGER BORING	>	ALL VOLATILES	S	Ϋ́	ug/kg	Ϋ́
AB8-SS2	D-2	8 – 10	Z	AUGER BORING	S	ALL SEMI - VOLATILES	S	¥ X	ug/kg	¥ X
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Antimony	2	GNA	mg/kg	9
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Arsenic	17.4	2	mg/kg	-
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Beryllium	0.37	8	mg/kg	0.5
AB8-SS2	D-2	8-10	Z	AUGER BORING	Σ	Cadmium	0.37	8	mg/kg	0.5
AB8-SS2	D-2	9-10	Z	AUGER BORING	Σ	Chromium	15.9		mg/kg	-
AB8 - SS2	D-2	8-10	_	AUGER BORING	Σ	Copper	30.2		mg/kg	2.5
AB8-SS2	D-2	8 - 10		AUGER BORING	Σ	Lead	14.9		mg/kg	0.3
AB8-SS2	D-2	8 – 10	Z	AUGER BORING	Σ	Mercury	0.059	5	mg/kg	0.1
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Nickel	22.2		mg/kg	4
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Setenium	0.35	CWNB	mg/kg	9.0
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Silver	0.82	5	mg/kg	-
AB8-552	D-2	8-10	Z	AUGER BORING	Σ	Thallium	0.48	RN9	mg/kg	_
AB8-552		8-10	Z	AUGER BORING	Z	Zinc	93.7		mg/kg	2
AB9SS1	0-4	3-6	Z	AUGER BORING	>	ALL VOLATILES	Q	¥ X	ug/kg	
A89-SS1	0-4	3-6	Z	AUGER BORING	S	ALL SEMI-VOLATILES	2	¥ Z	ng/kg	¥ X
AB9-551	0-4		Z	AUGER BORING	Σ	Antimony	9.4	UNA	mg/kg	9
AB9-551	0-4	3-8	Z	AUGER BORING	Σ	Arsenic	20.7	2	mg/kg	-
AB9-SS1	0-4	3-5	Z	AUGER BORING	Σ	Beryllium	0.49	8	mg/kg	
AB9-551	0-4			AUGER BORING	Σ	Cadmium	0.49	80	mg/kg	9.0
AB9-551	D-4	3-5	_	AUGER BORING	Σ	Chromium	16.9		mg/kg	-
AB9-531	D-4	3-5	Z	AUGER BORING	Σ	Copper	27.7		mg/kg	2.5
AB9-551	D-4	3-5	_	AUGER BORING	Σ	Lead	27.7	S	mg/kg	0.3
AB9-551	0-4	3-5		AUGER BORING	Σ	Mercury	90'0	5	mg/kg	0.1
AB9-551	D-4	3-5	Z	AUGER BORING	Σ	Nicket	30.6		mg/kg	4
AB9-551	0-4	3-5	Z	AUGER BORING	Σ	Selenium	0.21	CNO	mg/kg	9.0
AB9-551	1 -0	3-2	Z	AUGER BORING	Σ	Silver	0.81	>	mg/kg	-
AB9-551	1-0	3-5	Z	AUGER BORING	Σ	Thallium	0.48	NB NS	mg/kg	-
A89-SS1	D-4	3-2	Z	AUGER BORING	Σ	Zinc	97.2		mg/kg	CV.

						ANALYSIS				
SAMPLE #	GRID #	DEPTH	TUO/NI	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	LIMIT
AB9-SS2	D-4	8-10	Z	AUGER BORING	>	ALL VOLATILES	Q		ug/kg	ĀN
AB9-552	D-4	8-10	Z	AUGER BORING	S	ALL SEMI - VOLATILES	Q.		ug/kg	¥ Z
AB9-SS2	D-4	8-10	Z	AUGER BORING	₹	Antimony	90	ONB BNC	mg/kg	9
AB9 - SS2	0-4	8-10	Z	AUGER BORING	Σ	Arsenic	16.1	3	mg/kg	-
AB9-SS2	0-4	8-10	Z	AUGER BORING	\$	Beryllium	0.64		mg/kg	0.5
AB9 - SS2	D-4	8-10	Z	AUGER BORING	Σ	Cadmium	0.51	8	mg/kg	0.5
AB9-552	1-0	8-10	Z	AUGER BORING	Σ	Chromium	17.3		mg/kg	-
AB9-552	D-4	8-10	Z	AUGER BORING	Σ	Copper	24.9		mg/kg	2.5
AB9-552	D-4	8-10	Z	AUGER BORING	Σ	Lead	19.5		mg/kg	0.3
AB9-SS2	D-4	8-10	Z	AUGER BORING	≥	Mercury	90.0	3	mg/kg	0.1
AB9-SS2	0-4	8-10	Z	AUGER BORING	Σ	Nickel	30.7		mg/kg	4
AB9-552	D-4	8-10	Z	AUGER BORING	\$	Selenium	0.21	CN2	mg/kg	0.5
AB9-SS2	D-4	8-10	Z	AUGER BORING	Σ	Silver	0.84	2	mg/kg	-
A89-SS2	0-4	8-10	Z	AUGER BORING	Σ	Thallium	0.74	CN8	mg/kg	-
A89-SS2	D-4	8-10	Z	AUGER BORING	Σ	Zinc	6.06		mg/kg	2
AB10-SS1	0-5	3-5	Z	AUGER BORING	>	ALL VOLATILES	Q		ug/kg	A N
AB10-SS1	0-5	3-8	Z	AUGER BORING	SS	ALL SEMI-VOLATILES	2	A N	ng/kg	A N
AB10-SS1	0-5	3-5	Z	AUGER BORING	Σ	Antimony	4.7	UND	mg/kg	9
AB10-SS1	0-5		Z	AUGER BORING	Σ	Arsenic	23	2	mg/kg	-
AB10-551	0-5	3-5	Z	AUGER BORING	Σ	Beryllium	0.58		mg/kg	0.5
AB10-SS1	0-5		Z	AUGER BORING	Σ	Cadmium	0.35	80	mg/kg	0.5
AB10-SS1	0-5	3-5	ž	AUGER BORING	Σ	Chromium	17.8		mg/kg	-
AB10-SS1	05		Z	AUGER BORING	Σ	Copper	29.4		mg/kg	2.5
AB10-551	05		Z	AUGER BORING	Σ	Lead	17.6		mg/kg	0.3
AB10-SS1	0-5	3-5	Z	AUGER BORING	Σ	Mercury	90.0	2	mg/kg	0.1
AB10-SS1	0-5	3-5	Z	AUGER BORING	Σ	Nickel	28.6		mg/kg	4
AB10-551	0-5	-6	Z	AUGER BORING	Σ	Selenium	0.19	N N	mg/kg	0.5
AB10-531	0-5		Z	AUGER BORING	Σ	Silver	0.78	5	mg/kg	_
AB10-551	0-5	3-5	Z	AUGER BORING	Σ	Thallium	0.58	BNS	mg/kg	-
AB10-SS1	0-5	3-5	Z	AUGER BORING	Σ	Zinc	90.5		mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMIT
0104	ď		3		>	SEITA IOVITA	4		04/6.1	
200-0104		2 !	= :	שניים ביים	> ;	ארר אסנאייוררט	2 :		Ru/Rn	
AB10-552		8-10	Z	AUGER BORING		ALL SEMI - VOLATILES	2		ug/kg	
AB10-SS2	0-5	8-10	Z	AUGER BORING	Σ	Antimony	8.4	<u> </u>	mg/kg	9
AB10-552	0-5	8-10	Z	AUGER BORING	₹	Arsenic	15	₹	mg/kg	_
AB10-552	0-5	8-10	Z	AUGER BORING	Σ	Beryllium	9.0		mg/kg	0.5
AB10-SS2	D-5	8-10	Z	AUGER BORING	Σ	Cadmium	0.24	80	mg/kg	0.5
AB10-SS2	D-5	8-10	Z	AUGER BORING	Σ	Chromium	17.1		mg/kg	-
AB10-552	D-5	8-10	Z	AUGER BORING	Σ	Copper	21.4		mg/kg	2.5
AB10-552	0-5	8-10	Z	AUGER BORING	Σ	Lead	19.8		mg/kg	0.3
AB10-SS2	0-5	9-10	Z	AUGER BORING	Σ	Mercury	90.0	כ	mg/kg	0.1
AB10-552		8-10	Z	AUGER BORING	Σ	Nickel	32.1		mg/kg	4
AB10-552		8-10	Z	AUGER BORING	Σ	Selenium	0.31	BNWJ	mg/kg	0.5
AB10-552	0-5	8-10	Z	AUGER BORING	Σ	Silver	0.79	5	mg/kg	-
AB10-SS2		8-10	Z	AUGER BORING	Σ	Thallium	0.69	NB NB	mg/kg	-
AB10-SS2		8-10	2	AUGER BORING	M	Zinc	76.1		mg/kg	2
AB11-554	8-4	15-17	Z	AUGER BORING	>	ALL VOLATILES	2		ug/kg	
AB11-854	8-4	15-17	Z	AUGER BORING	S	ALL SEMI-VOLATILES	2		υg/kg	AN
AB11 - SS4	8-4	15-17	Z	AUGER BORING	Σ	Antimony	2.7	N N	mg/kg	9
AB11-SS4	8-4	15-17	Z	AUGER BORING	Σ	Arsenic	3.7	83	mg/kg	-
AB11-554	8-4	15-17	Z	AUGER BORING	2	Beryllium	0.16	5	mg/kg	0.5
AB11-854	8-4	15-17	ž	AUGER BORING	2	Cadmium	0.21	80	mg/kg	0.5
AB11-854		15-17	Z	AUGER BORING	2	Chromium	5.3		mg/kg	-
AB11-SS4	8-4	15-17	Z	AUGER BORING	Σ	Copper	51.3		mg/kg	2.5
AB11-554	8-4	15-17	Z	AUGER BORING	2	Lead	9.4	ż	mg/kg	0.3
AB11-S54		15-17	Z	AUGER BORING	Σ	Mercury	0.058	5	mg/kg	0.1
AB11-SS4		15-17	Z	AUGER BORING	≥	Nickel	0		mg/kg	4
AB11-854		15-17	Z	AUGER BORING	≆	Selenium	0.43		mg/kg	0.5
AB11-SS4	8-4	15-17	z	AUGER BORING	2	Silver	0.45	2	mg/kg	_
AB11-SS4	8-4	15-17	Z	AUGER BORING	Σ	Thallium	0.074	ANO.	mg/kg	-
AB11-SS4	8-4	15-17	Z	AUGER BORING	≥	Zinc	25	3	mg/kg	N

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
AB11-SS7	8-4	21-23	2	AUGER BOBING	^	ALL VOLATILES	Q	Ϋ́ N	uq/ka	N.
	8-4	21-23	Z	AUGER BORING	S	ALL SEMI-VOLATILES	Q		ug/kg	AZ AZ
AB11-SS7	B-4	21-23	Z	AUGER BORING	Σ	Antimony	2.7	3	mg/kg	9
AB11-SS7	B-4	21-23	Z	AUGER BORING	Σ	Arsenic	11.2		mg/kg	-
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Beryllium	0.2	80	mg/kg	0.5
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Cadmium	0.13	,	mg/kg	0.5
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Chromium	5.5		mg/kg	_
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Copper	22.4	3	mg/kg	2.5
AB11-SS7	B-4	21-23	Z	AUGER BORING	Σ	Lead	10.6	ž	mg/kg	0.3
AB11-SS7	8-4	21-23	Z	AUGER BORING	₹	Mercury	0.087	60	mg/kg	0.1
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Nickel	23.3		mg/kg	4
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Selenium	0.29	BW	mg/kg	0.5
AB11-SS7	8-4	21-23	Z	AUGER BORING	Σ	Silver	0.44	5	mg/kg	•
AB11-SS7	B4	21-23	Z	AUGER BORING	Σ	Thallium	960'0	ONW	mg/kg	-
AB11-SS7	8-4	21-23	N	AUGER BORING	W	Zinc	79.3	3	mg/kg	2
AB12-553	C-5	13-15	Z	AUGER BORING	>	ALL VOLATILES	2		ug/kg	Y Y
AB12-553	C-5	13-15	Z	AUGER BORING	SS	ALL SEMI-VOLATILES	2	¥2	ug/kg	A N
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Antimony	4.5		mg/kg	ø
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Arsenic	13.5		mg/kg	-
AB12-553	C-5	13-15	2	AUGER BORING	Σ	Beryllium	0.67		mg/kg	0.5
AB12-SS3	C-5	13-15	Z	AUGER BORING	Σ	Cadmium	0.44	60	mg/kg	0.5
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Chromium	13.6		mg/kg	-
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Copper	25.3	₹	mg/kg	2.5
AB12-553	C-5	13-15	ž	AUGER BORING	Σ	Lead	37		mg/kg	0.3
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Mercury	0.059	>	mg/kg	0.1
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Nickel	25.9		mg/kg	4
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Selenium	0.38	BW	mg/kg	0.5
AB12-553	C-5	13-15	Z	AUGER BORING	Σ	Silver	0.73	5	mg/kg	-
AB12-553		13-15	Z	AUGER BORING	₹	Thallium	0.1	ANO.	mg/kg	-
AB12-553		13-15	Z	AUGER BORING	×	Zinc	78.6	2	mq/kq	N

						ANALTOIO				
SAMPLE #	GRID .	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	TIMU
9			3		3		67	•		•
1	ı	1	Ξ	AUGER BORING	>	Ciloroemane	<u> </u>	•	ng/kg	2
1	1	21-23	Z	AUGER BORING	>	Bromomethane	12	7	ng/kg	0
AB12-SS7	1	21-23	z	AUGER BORING	>	Vinyl Chloride	12	7	ug/kg	10
AB12-SS7	- 1	21-23	Z	AUGER BORING	>	Chloroethane	12	7	ug/kg	10
AB12-SS7	- 1	21-23	Z	AUGER BORING	>	Methylene Chloride	2	7	ug/kg	S
AB12-SS7	•	21-23	Z	AUGER BORING	>	Acrolein	12	7	ug/kg	0
AB12-557	1	21-23	Z	AUGER BORING	>	Acetone	81		ug/kg	5
AB12-SS7	1	21-23	Z	AUGER BORING	>	Acrylonitrile	12	_	ug/kg	10
AB12-SS7	C-5	21-23	Z	AUGER BORING	>	Carbon Disulfide	12	7	ug/kg	10
AB12-SS7	- 1	21-23	Z	AUGER BORING	>	Trichlorofluoromethane	12	-	ug/kg	01
AB12-SS7	- 1	21-23	Z	AUGER BORING	>	1,1 - Dichloroethene	9	ר	ug/kg	S
AB12-SS7	- 1	21-23	z	AUGER BORING	>	1,1 - Dichloroethane	9	7	ug/kg	S
AB12-SS7	-	21-23	Z	AUGER BORING	<u>=</u> >	trans - 1,2 - Dichloroethene	9	¬	ug/kg	2
AB12-SS7	1	21-23	Z	AUGER BORING	>	Chloroform	9	7	ug/kg	S
AB12-SS7	- 1	21-23	Z	AUGER BORING	>	1,2-Dichloroethane	9	7	ug/kg	S
AB12-SS7	ı	21-23	Z	AUGER BORING	>	2-Butanone	116		ug/kg	5
AB12-SS7	1	21-23	Z	AUGER BORING	>	1,1,1 - Trichloroethane	9	_	ug/kg	S
AB12-SS7	ı	21-23	Z	AUGER BORING	>	Carbon Tetrachloride	9	_ _	ug/kg	2
- 1	•	21-23	Z	AUGER BORING	>	Vinyl Acetate	28	7	ug/kg	20
AB12- SS7	C-5	21-23	Z	AUGER BOR,NG	>	Bromodichloromethane	9	7	ng/kg	S.
1	C-5	21-23	Z	AUGER BORING	>	1,2 - Dichloropropane	•	7	ng/kg	2
AB12-857	C-5	21-23	Z	AUGER BORING	>	cis - 1,3 - Dichloropropene	9	ד	ug/kg	S
AB12-557	C-5	21-23	Z	AUGER BORING	>	Trichloroethene	9	ד	ug/kg	S
AB12-857	C-5	21-23	Z	AUGER BORING	>	Benzene	9	ד	ug/kg	ß
AB12-SS7	S-2	21-23	Z	AUGER BORING	>	Dibromochloromethane	•	7	ug/kg	S
AB12-SS7	S-5	21-23	Z	AUGER BORING	>	1,1,2 - Trichloroethane	9	7	ug/kg	9
AB12-SS7	C-5	21-23	Z	AUGER BORING	>	rans – 1,3 – Dichloropropen	9	7	ug/kg	S
	C-5	21-23	Z	AUGER BORING	>	2 Chloroethylvinylether	12		ug/kg	10
AB12-887	1	21-23	Z	AUGER BORING	>	Bromatorm	•	7	ug/kg	ď
AB12-557	ı	21-23	Z	AUGER BORING	>	2 - Hexane	58	۔	ug/kg	20
	C-5	21-23	Z	AUGER BORING	>	4 - Methyl - 2 - pentanone	58	7	ug/kg	50
AB12-557	1	21-23	7.	AUGER BORING	>	Tetrachloroethane	90	7	ug/kg	5
	1		Z	AUGER BORING	>	1,1,2,2 - Tetrachloroethane	•	7	ug/kg	L O
AB12-887	C-5	21-23	Z	AUGER BORING	>	Toluene	•	5	ug/kg	ĸ
AB12-887	1	21-23	Z	AUGER BORING	>	Chlorobenzene	80	7	ug/kg	ι ς
	1	21-23	Z	AUGER BORING	>	Ethylbenzene	•	7	tig/kg	ß
		21-23	Z	AUGER BORING	>	Styrene	•	٦ 	ug/kg	ĸ
AB12-887	1	21-23	2	ALIGER ROPING	>	m/n-Xvlene	•		04/C.	4

						ANALYSIS				DETECTION
SAMPLE # GRID #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	TMU
AB12-557	C-5	21-23	Z	AUGER BORING	>	o – Xylene	9	5	ug/kg	S
AB12-SS7	C-5	21-23	Z	AUGER BORING	>	1,3-Dichlorobenzene	9	7	ug/kg	ĸ
AB12-SS7		21-23	Z	AUGER BORING	>	1,2/1,4 - Dichlorobenzene	9	7	ug/kg	S
AB12-SS7	C-5	21-23	Z	AUGER BORING	S	ALL SEMI-VOLATILES	9	Ϋ́	ug/kg	¥ Z
AB12-557		21-23	Z	AUGER BORING	Σ	Antimony	3.9	TNO	ıng/kg	•
AB12-SS7		21-23	Z	AUGER BORING	Σ	Arsenic	8.8	8	mg/kg	-
AB12-SS7		21-23	Z	AUGER BORING	₹	Beryllium	0.38	60	mg/kg	0.5
AB12-SS7		21-23	Z	AUGER BORING	Σ	Cadmium	0.18	3	mg/kg	0.5
AB12-SS7	C-5	21-23	Z	AUGER BORING	Σ	Chromium	6.5		mg/kg	-
AB12-557		21-23	Z	AUGER BORING	Σ	Copper	21.7	3	mg/kg	2.5
AB12-SS7		21-23	Z	AUGER BORING	Σ	Lead	1.41	ŗ.	mg/kg	0.3
AB12-557		21-23	Z	AUGER BORING	Σ	Mercury	0.064	5	mg/kg	0.1
AB12-SS7		21-23	z	AUGER BORING	Σ	Nickel	14.5		mg/kg	4
AB12-SS7		21-23	Z	AUGER BORING	Σ	Selenium	0.28	BW	mg/kg	0.5
AB12-SS7		21-23	Z	AUGER BORING	Σ	Silver	0.63	ס	mg/kg	-
AB12-SS7	C-5	21-23	Z	AUGER BORING	Σ	Thallium	0.12	BNWJ	mg/kg	-
AB12-SS7	C-5	21-23	N.	AUGER BORING	Σ	Zinc	32.8	N.	mg/kg	2

		DEDTU	IN/OUT	DESCRIPTION CAT	CATEGORY	EOB	RESULTS	QUAUFIER	UNITS	LMI
SAMPLE #	GMD •									
AB13-555	C-3	61-21	Z	AUGER BORING	>	ALL VOLATILES	Q	Ϋ́	ua/ka	¥ Z
	0-3	17-19	Z	AUGER BORING	S	ALL SEMI-VOLATILES	2	¥	ua/ka	¥Z
AB13-SS5	C-3	17-19	Z	AUGER BORING	Σ	Antimony	4.	3	mg/kg	9
AB13-555	C-3	17-19	Z	AUGER BORING	Σ	Arsenic	5.8	80	mg/kg	-
AB13-SSS	C-3	17-19	Z	AUGER BORING	Σ	Beryllium	0.31	60	mg/kg	9.0
AB13-SS5	C-3	17-19	Z	AUGER BORING	Σ	Cadmium	0.2	כ	mg/kg	9.0
AB13-SS5	C-3	17-19	Z	AUGER BORING	Σ	Chromium	6.7		mg/kg	-
AB13-SS5	C-3	17-19	Z	AUGER BORING	≆	Copper	42.8	2	mg/kg	2.5
AB13-SS5	C-3	17-19	Z	AUGER BORING	Σ	Lead	10.2	ž	mg/kg	0.3
AB13-5S5	C-3	17-19	Z	AUGER BORING	≥	Mercury	0.17		mg/kg	0.1
AB13-SS5	C-3	17-19	Z	AUGER BORING	*	Nickel	8.8		mg/kg	4
AB13-855	C-3	17-19	Z	AUGER BORING	2	Selenium	0.32	BW	mg/kg	0.5
AB13-SS5	C-3	17-19	Z	AUGER BORING	2	Silver	69.0	2	mg/kg	•
AB13-SS5	ပ	17-19	Z	AUGER BORING	≥	Thallium	0.11	PMN0	mg/kg	•
AB13-SS5	C-3	17-19	ž	AUGER BORING	2	Zinc	47.9	2	mg/kg	2
					-					
AB13-557	C-3	21-23	Z	AUGER BORING	>	ALL VOLATILES	2	¥Z	ng/kg	¥
AB13-557	C-3	21-23	Z	AUGER BORING	S	ALL SEMI-VOLATILES	2	₹ X	ug/kg	¥
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Antimony	1.8	35	mg/kg	90
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Arsenic	9.5		mg/kg	-
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Beryllium	0.18	83	mg/kg	9.0
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Cadmium	0.088		mg/kg	9.0
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Chromium	4.8		mg/kg	-
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Copper	42.9	3	mg/kg	2.5
AB13-SS7	C-3	21-23	Z	AUGER BORING	Z	Lead	10.1	ž	mg/kg	6.0
AB13-SS7	C-3	21-23	Z	AUGER BORING	≥	Mercury	0.053	ɔ	mg/kg	0.1
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Nickel	8.8		mg/kg	4
AB13-557	C-3	21-23	Ž	AUGER BORING	Σ	Selenium	0.24	80	mg/kg	0.5
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Silver	0.29	2	mg/kg	-
AB13-SS7	1	21-23	<u>z</u>	AUGER BORING	Σ	Thallium	0.085	AND CNW	mg/kg	-
AB13-SS7	C-3	21-23	Z	AUGER BORING	Σ	Zinc	65.1	R	mg/kg	2

AB14-5S2 C-6 B-10 IN AUGER BORING V EntyBenance FOR RESULTS Q AB14-5S2 C-6 B-10 IN AUGER BORING V EntyBenance 15000 AB14-5S2 C-6 B-10 IN AUGER BORING V IND-Xylene 15000 AB14-5S2 C-6 B-10 IN AUGER BORING V IND-Xylene 15000 AB14-5S2 C-6 B-10 IN AUGER BORING SV 2-AbathyInsalene 15000 AB14-5S2 C-6 B-10 IN AUGER BORING M Cadminory 3.3 AB14-5S2 C-6 B-10 IN AUGER BORING M Cadminory 3.3 AB14-5S2 C-6 B-10 IN AUGER BORING M Cadminory 3.3 AB14-5S2 C-6 B-10 IN AUGER BORING M Cadminory 3.3 AB14-5S2 C-6 B-10 IN AUGER BORING							ANALYSIS				DETECTION
Secondary Seco				IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMI
Second S											
Auger Boring Auge	- 1	Ċ	- 1	3	OMIGOR GROUND	3	Correct			c al con	¥
Name		· (2 9	= =		> :				ת קלי	· ·
SSZ C-6 8-10 IN AUGER BORING V m/p-Xylene SSZ C-6 8-10 IN AUGER BORING SV 2-Mathylmatene SSZ C-6 8-10 IN AUGER BORING SV 2-Mathylmatene SSZ C-6 8-10 IN AUGER BORING M	AB14-55	ს	8-10	<u>z</u>	AUGER BOHING	>	Ethylbenzene			ng/kg	n
5.552 C-6 8-10 IN AUGER BORING V Naphthalane 7. Naphthalane 5.552 C-6 8-10 IN AUGER BORING SV 2-Mathymaphthalane 7. Alsenic 5.552 C-6 8-10 IN AUGER BORING M Cadmium 5.552 C-6 8-10 IN AUGER BORING M Cadmium 5.552 C-6 8-10 IN AUGER BORING M Cadmium 5.552 C-6 8-10 IN AUGER BORING M Allentim 5.552 C-6 8-10 IN AUGER BORING M Allentim 5.552 C-6 8-10 IN AUGER BORING M Allentim </th <th>AB14-SS</th> <th>ပ</th> <th>8-10</th> <th>z</th> <th>AUGER BORING</th> <th>></th> <th>m/p-Xylene</th> <th></th> <th></th> <th>ug/kg</th> <th>S</th>	AB14-SS	ပ	8-10	z	AUGER BORING	>	m/p-Xylene			ug/kg	S
5.5% C6 θ-10 IN AUGER BORING SV 2-Methyhapithalene 5.5% C6 θ-10 IN AUGER BORING SV 2-Methyhapithalene 5.5% C6 θ-10 IN AUGER BORING M Ariemony 5.5% C6 θ-10 IN AUGER BORING M Ariemican 5.5% C6 θ-10 IN AUGER BORING M Cadrium 5.5% C6 θ-10 IN AUGER BORING M Chadrium 5.5% C6 θ-10 IN AUGER BORING M ALL SEM-VOLATILES 5.5%	AB14~SS	ე	8-10	Z	AUGER BORING	>	o – Xylene		_	ug/kg	ιo
-552 C - 6 8 - 10 IN AUGER BORING SV 2 - Methylnaphthalene -552 C - 6 8 - 10 IN AUGER BORING M Auger Boring -552 C - 6 8 - 10 IN AUGER BORING M Ausenthylnaphthalene -552 C - 6 8 - 10 IN AUGER BORING M Ausenthylnaphthalene -552 C - 6 8 - 10 IN AUGER BORING M Cadmium -552 C - 6 8 - 10 IN AUGER BORING M Chromium -552 C - 6 8 - 10 IN AUGER BORING M Chromium -552 C - 6 8 - 10 IN AUGER BORING M Chromium -552 C - 6 8 - 10 IN AUGER BORING M Chromium -552 C - 6 8 - 10 IN AUGER BORING M Auger BORING -552 C - 6 8 - 10 IN AUGER BORING M Auger BORI	•	<u>ე</u>	8-10	Z	AUGER BORING	S	Naphthalene		_	ug/kg	330
-5%2 C-6 8-10 IN AUGER BORING SV Di-n-Buty Prhthalate -5%2 C-6 8-10 IN AUGER BORING M Antimony Ansanic -5%2 C-6 8-10 IN AUGER BORING M Cadmium -5%2 C-6 8-10 IN AUGER BORING M Marcury -5%2 C-6 8-10 IN AUGER BORING M Auger Boring -5%2 C-6 8-10 IN AUGER BORING M Authorium -5%2 C-6 8-10 IN AUGER BORING M Authorium -5%2 C-6 8-10 IN AUGER BORING M Authorium -5%2 C-6		ပ	8-10	Z	AUGER BORING	S	2 - Methylnaphthalene			ug/kg	330
-552 C-6 8-10 IN AUGER BORING M Antimony -552 C-6 8-10 IN AUGER BORING M Arsenic -552 C-6 8-10 IN AUGER BORING M Chromium -552 C-6 8-10 IN AUGER BORING M Chromium -552 C-6 8-10 IN AUGER BORING M Chromium -552 C-6 8-10 IN AUGER BORING M Mercury -552 C-6 8-10 IN AUGER BORING M Mercury -552 C-6 8-10 IN AUGER BORING M Auger Boring -552 C-6 8-10 IN AUGER BORING M Authorium -552 C-6 8-10 IN AUGER BORING M Authorium -552 C-6 8-10 IN AUGER BORING M Authorium -553 C-6 21-25 </th <th>AB14-552</th> <th>ပ</th> <th>8-10</th> <th>Z</th> <th>AUGER BORING</th> <th>SS</th> <th>Di-n-Butyl Phthalate</th> <th></th> <th>7</th> <th>ug/kg</th> <th>330</th>	AB14-552	ပ	8-10	Z	AUGER BORING	SS	Di-n-Butyl Phthalate		7	ug/kg	330
-582 C-6 8-10 IN AUGER BORING M Assenic -582 C-6 8-10 IN AUGER BORING M Cadmium -582 C-6 8-10 IN AUGER BORING M Cadmium -582 C-6 8-10 IN AUGER BORING M Cadmium -582 C-6 8-10 IN AUGER BORING M Capper -582 C-6 8-10 IN AUGER BORING M Mercury -582 C-6 8-10 IN AUGER BORING M Salentium -582 C-6 8-10 IN AUGER BORING M Salentium -582 C-6 8-10 IN AUGER BORING M ALL SEMI-VOLATILES -582 C-6 8-10 IN AUGER BORING M ALL SEMI-VOLATILES -583 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -583 C-6 <th>AB14-552</th> <th>ა</th> <th>8-10</th> <th>Z</th> <th>AUGER BORING</th> <th>Σ</th> <th>Antimony</th> <th></th> <th>5</th> <th>mg/kg</th> <th>ø</th>	AB14-552	ა	8-10	Z	AUGER BORING	Σ	Antimony		5	mg/kg	ø
-5.52 C-6 8-10 IN AUGER BORING AUGER BORING AUGER BORING B-10 M AUGER BORING 	AB14-55	ပ	8-10	Z	AUGER BORING	₹	Arsenic			mg/kg	-
-5.52 C - 6 8 - 10 IN AUGER BORING M Cadmium -5.52 C - 6 8 - 10 IN AUGER BORING M Copper -5.52 C - 6 8 - 10 IN AUGER BORING M Mercury -5.52 C - 6 8 - 10 IN AUGER BORING M Mercury -5.52 C - 6 8 - 10 IN AUGER BORING M Mercury -5.52 C - 6 8 - 10 IN AUGER BORING M Nickel -5.52 C - 6 8 - 10 IN AUGER BORING M Nickel -5.52 C - 6 8 - 10 IN AUGER BORING M Autorium -5.52 C - 6 2 1 - 25 IN AUGER BORING M Autorium -5.57 C - 6 2 1 - 25 IN AUGER BORING M Autorium -5.57 C - 6 2 1 - 25 IN AUGER BORING M Autorium -5.	AB14-552	ပံ	8-10	Z	AUGER BORING	₹	Beryllium			mg/kg	9:0
-5.52 C-6 8-10 IN AUGER BORING M Chromium -5.52 C-6 8-10 IN AUGER BORING M Copper -5.52 C-6 8-10 IN AUGER BORING M Nickel -5.52 C-6 8-10 IN AUGER BORING M Nickel -5.52 C-6 8-10 IN AUGER BORING M Nickel -5.52 C-6 8-10 IN AUGER BORING M Selentium -5.52 C-6 8-10 IN AUGER BORING M Thailtium -5.52 C-6 8-10 IN AUGER BORING M ALL SEMI-VOLATILES -5.52 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -5.53 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -5.57 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -5.57<	AB14-55	ပ်	8-10	Z	AUGER BORING	Σ	Cadmium		89	тд/кд	9.0
-552 C-6 8-10 IN AUGER BORING M Mercury -552 C-6 8-10 IN AUGER BORING M Mercury -552 C-6 8-10 IN AUGER BORING M Selentum -553 C-6 8-10 IN AUGER BORING M Zinc -553 C-6 8-10 IN AUGER BORING M Zinc -554 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -557 C-6 21-25 IN AUGER BORING M AUGER BORING M Arsenic -557 C-6 21-25 IN AUGER BORING M Corper -557 C-6 21-25 IN AUGER BORING M Selentium -558 C-6 21-25 IN AUGER BORING M Selentium -558 C-6 21-25 IN AUGER BORING M Selentium -558 C-6 21-25 IN AUGER BORING M Zinc -558 C-	AB14-552	<u>ဂ</u>	8-10	Z	AUGER BORING	Σ	Chromium			mg/kg	-
-5522 C-6 8-10 IN AUGER BORING M Mercury -5522 C-6 8-10 IN AUGER BORING M Mercury -5522 C-6 8-10 IN AUGER BORING M Silver -5522 C-6 8-10 IN AUGER BORING M Thallium -5522 C-6 8-10 IN AUGER BORING M Thallium -5522 C-6 8-10 IN AUGER BORING M ALL SEMI-VOLATILES -552 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -557 C-6 21-25 IN AUGER BORING M Auger Boring -557 C-6 21-25 IN AUGER BORING M Copper -557 C-6 21-25 IN AUGER BORING M Copper -557 C-6 21-25 IN AUGER BORING M Copper -557 C-6 <th>AB14-SS2</th> <th>ပ်</th> <th>8-10</th> <th>Z</th> <th>AUGER BORING</th> <th>Σ</th> <th>Copper</th> <th>33.5</th> <th>3</th> <th>mg/kg</th> <th>2.5</th>	AB14-SS2	ပ်	8-10	Z	AUGER BORING	Σ	Copper	33.5	3	mg/kg	2.5
-5SZ C-6 8-10 IN AUGER BORING M Mercury -5SZ C-6 8-10 IN AUGER BORING M Nickel -5SZ C-6 8-10 IN AUGER BORING M Thailium -5SZ C-6 8-10 IN AUGER BORING M Thailium -5SZ C-6 8-10 IN AUGER BORING M Thailium -5SZ C-6 21-25 IN AUGER BORING N ALL SEMI-VOLATILES -5SZ C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -5SZ C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -5SZ C-6 21-25 IN AUGER BORING M Copper -5SZ C-6 21-25 IN AUGER BORING M Copper -5SZ C-6 21-25 IN AUGER BORING M Copper -5SZ C-6 </th <th>AB14-SS</th> <th>ا</th> <th>8-10</th> <th>Z</th> <th>AUGER BORING</th> <th>Σ</th> <th>Lead</th> <th></th> <th>ž</th> <th>mg/kg</th> <th>0.3</th>	AB14-SS	ا	8-10	Z	AUGER BORING	Σ	Lead		ž	mg/kg	0.3
-SSQ C-6 8-10 IN AUGER BORING M Nickel -SSQ C-6 8-10 IN AUGER BORING M Selenlum -SSQ C-6 8-10 IN AUGER BORING M Thaillum -SSQ C-6 8-10 IN AUGER BORING M Zinc -SSQ C-6 8-10 IN AUGER BORING M ALL SEMI -VOLATILES -SSQ C-6 21-25 IN AUGER BORING M ALL SEMI -VOLATILES -SSQ C-6 21-25 IN AUGER BORING M Arsenic -SSQ C-6 21-25 IN AUGER BORING M Arsenic -SSQ C-6 21-25 IN AUGER BORING M Arsenic -SSQ C-6 21-25 IN AUGER BORING M Archainm -SSQ C-6 21-25 IN AUGER BORING M Archainm -SSQ C-6	AB14-552	<u>ე</u>	8 – 10	Z	AUGER BORING	Σ	Mercury		5	mg/kg	0.1
-SS2 C-6 8-10 IN AUGER BORING M Selenium -SS2 C-6 8-10 IN AUGER BORING M Thalfium -SS2 C-6 8-10 IN AUGER BORING M Thalfium -SS2 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M Arsenic -SS7 C-6 21-25 IN AUGER BORING M Arsenic -SS7 C-6 21-25 IN AUGER BORING M Copper -SS7 C-6	AB14-552	<u>ე</u>	8-10	Z	AUGER BORING	≨	Nickel			mg/kg	4
-SS2 C-6 8-10 IN AUGER BORING M Thallium -SS2 C-6 8-10 IN AUGER BORING M Thallium -SS2 C-6 8-10 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M Autisenic -SS7 C-6 21-25 IN AUGER BORING M Cappar -SS7 C-6 21-25 IN AUGER BORING M Cappar -SS7 C-6 21-25 IN AUGER BORING M Cappar -SS7 C-6 21-25 IN AUGER BORING M Auger Boring -SS7 <th>AB14-55</th> <th><u>ს</u></th> <th>8-10</th> <th>Z</th> <th>AUGER BORING</th> <th>Σ</th> <th>Selenium</th> <th></th> <th>BW</th> <th>mg/kg</th> <th>9.0</th>	AB14-55	<u>ს</u>	8-10	Z	AUGER BORING	Σ	Selenium		BW	mg/kg	9.0
-SSZ C-6 8-10 IN AUGER BORING M Thallium -SSZ C-6 8-10 IN AUGER BORING M Zinc -SSZ C-6 21-25 IN AUGER BORING N ALL SEMI-VOLATILES -SSZ C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SSZ C-6 21-25 IN AUGER BORING M ALL SEMI-VOLATILES -SSZ C-6 21-25 IN AUGER BORING M Cadmium -SSZ C-6 21-25 IN AUGER BORING M Chromium -SSZ C-6 21-25 IN AUGER BORING M Chromium -SSZ C-6 21-25 IN AUGER BORING M Chromium -SSZ C-6 21-25 IN AUGER BORING M Maccury -SSZ C-6 21-25 IN AUGER BORING M Maccury -SSZ	AB14-S%	ე	8-10	Z	AUGER BORING	Σ	Silver		5	mg/kg	-
-SSQ C-6 8-10 IN AUGER BORING M Zinc -SS7 C-6 21-25 IN AUGER BORING V ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M Antimony -SS7 C-6 21-25 IN AUGER BORING M Arsenic -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Capper -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-2	AB14-SS	ပ	8-10	Z	AUGER BORING	Σ	Thallium		BNW	mg/kg	-
- SS7	- 1 1	ပ	8-10	Z	AUGER BORING	Σ	Zinc		2	mg/kg	2
- SST C-6 21-25 IN AUGER BORING V ALL SEMI-VOLATILES Antimony AUGER BORING SV ALL SEMI-VOLATILES Antimony AUGER BORING M ALS MAINMONY AUGER BORING M ALS MAINMONY ALL SST C-6 21-25 IN AUGER BORING M Cadmium Copper C-5ST C-6 21-25 IN AUGER BORING M CAGMium Copper C-5ST C-6 21-25 IN AUGER BORING M Chromium C-5ST C-6 21-25 IN AUGER BORING M MAINMORTH M AUGER BORING M Selentium SST C-6 21-25 IN AUGER BORING M Selentium SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINAR SINAR SINAR SST C-6 21-25 IN AUGER BORING M SINAR SINA											
-SS7 C-6 21-25 IN AUGER BORING SV ALL SEMI-VOLATILES -SS7 C-6 21-25 IN AUGER BORING M Arsenic -SS7 C-6 21-25 IN AUGER BORING M Beryllium -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Copper -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Silver -SS7 C-6 21-25 IN AUGER BORING M Silver -SS7 C-6	AB14-SS7			Z	AUGER BORING	>	Benzene			ug/kg	S
-557 C-6 21-25 IN AUGER BORING M Antimony -557 C-6 21-25 IN AUGER BORING M Arsenic -557 C-6 21-25 IN AUGER BORING M Cadmium -557 C-6 21-25 IN AUGER BORING M Cadmium -557 C-6 21-25 IN AUGER BORING M Copper -557 C-6 21-25 IN AUGER BORING M Mercury -557 C-6 21-25 IN AUGER BORING M Silver -557 C-6 21-25 IN AUGER BORING M Thallium -557 C-6 21-25	AB14-SS7	_		Z	AUGER BORING	S	ALL SEMI-VOLATILES			ug/kg	¥ Z
-SS7 C-6 21-25 IN AUGER BORING M Arsenic -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Cadmium -SS7 C-6 21-25 IN AUGER BORING M Copper -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mercury -SS7 C-6 21-25 IN AUGER BORING M Mickel -SS7 C-6 21-25 IN AUGER BORING M Silver -SS7 C-6 21-25 IN AUGER BORING M Silver -SS7 C-6 21-25 IN AUGER BORING M Silver -SS7 C-6 21-25 IN AUGER BORING M Thallium -SS7 C-6 21-25	AB14-857	_		Z	AUGER BORING	Σ	Antimony		3	mg/kg	9
- 557 C-6 21-25 IN AUGER BORING M Beryllium - 557 C-6 21-25 IN AUGER BORING M Cadmium - 557 C-6 21-25 IN AUGER BORING M Chromium - 557 C-6 21-25 IN AUGER BORING M Copper - 557 C-6 21-25 IN AUGER BORING M Mercury - 557 C-6 21-25 IN AUGER BORING M Selentium - 557 C-6 21-25 IN AUGER BORING M Selentium - 557 C-6 21-25 IN AUGER BORING M Selentium - 557 C-6 21-25 IN AUGER BORING M Selentium - 557 C-6 21-25 IN AUGER BORING M SINer - 557 C-6 21-25 IN AUGER BORING M Zinc - 557 C-6 21-25 IN AUGER BORING M Zinc - 557 C-6 21-25 IN AUGER BORING M Zinc - 557 C-6 21-25 IN AUGER BORING M Zinc	AB14-SS7	·		Z	AUGER BORING	Σ	Arsenic			та/ка	-
- SS7 C-6 21-25 IN AUGERBORING M Cadmium Chromium C-SS7 C-6 21-25 IN AUGERBORING M Chromium C-SS7 C-6 21-25 IN AUGERBORING M COPPER C-SS7 C-6 21-25 IN AUGERBORING M Mercury Nickel N AUGERBORING M Selentium Selentium C-SS7 C-6 21-25 IN AUGERBORING M Selentium C-SS7 C-6 21-25 IN AUGERBORING M Selentium C-SS7 C-6 21-25 IN AUGERBORING M Silver C-6	•	_		Z	AUGER BORING	Σ	Beryllium		60	mg/kg	9.0
- SS7 C-6 21-25 IN AUGER BORING M Chromium Copper - SS7 C-6 21-25 IN AUGER BORING M COPPER COPPER C-SS7 C-6 21-25 IN AUGER BORING M Mercury Nickel Nickel C-SS7 C-6 21-25 IN AUGER BORING M Selentum Selentum SS1 C-6 21-25 IN AUGER BORING M Silver SS7 C-6 21-25 IN AUGER BORING M Silver SS7 C-6 21-25 IN AUGER BORING M Silver SS7 C-6 21-25 IN AUGER BORING M Thallium SS7 C-6 21-25 IN AUGER BORING M Thallium SS87 C-6 21-25 IN AUGER BORING M Thallium SS7 C-6 21-25 IN AUGER BORING M Thallium SS87 C-6 21-25 IN AUGER BORING M Thallium SS87 C-6 21-25 IN AUGER BORING M Thallium SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SS87 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SIlver SS7 C-6 21-25 IN AUGER BORING M Thallium SIlver SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SS8 C-6 21-25 IN AUGER BORING M THALLIUM SILVER SILVER SILVER SS8 C-6 21-25 I	•			Z	AUGER BORING	Σ	Cadmium			mg/kg	0.5
- 557 C-6 21-25 IN AUGER BORING M COPPORT C-6 21-25 IN AUGER BORING M Mercury AUGER BORING M Mercury Nickel	AB14-SS7		8	Z	AUGER BORING	Σ	Chromium			mg/kg	-
- 557 C-6 21-25 IN AUGER BORING M Mercury - 557 C-6 21-25 IN AUGER BORING M Mercury - 557 C-6 21-25 IN AUGER BORING M Selentum - 557 C-6 21-25 IN AUGER BORING M Silver - 557 C-6 21-25 IN AUGER BORING M Silver - 557 C-6 21-25 IN AUGER BORING M Thaillium - 557 C-6 21-25 IN AUGER BORING M Thaillium - 557 C-6 21-25 IN AUGER BORING M Thaillium - 557 C-6 21-25 IN AUGER BORING M Thaillium	•	·	<u>~</u>	Z	AUGER BORING	Σ	Copper	46		mg/kg	2.5
-557 C-6 21-25 IN AUGERBORING M Mercury -557 C-6 21-25 IN AUGERBORING M Selentum -557 C-6 21-25 IN AUGERBORING M Silver -557 C-6 21-25 IN AUGERBORING M Silver -557 C-6 21-25 IN AUGERBORING M Zinc -557 C-6 21-25 IN AUGERBORING M Thatitum -557 C-6 21-25 IN AUGERBORING M Zinc	1		20	Z	AUGER BORING	Σ	Lead		ż	mg/kg	0.3
-557 C-6 21-25 IN AUGER BORING M Selenium Selenium C-557 C-6 21-25 IN AUGER BORING M Selenium Silver C-6 21-25 IN AUGER BORING M Silver C-557 C-6 21-25 IN AUGER BORING M Thallium C-557 C-6 21-25 IN AUGER BORING M Zinc 7	AB14-SS7		~	Z	AUGER BORING	₹	Mercury		<u> </u>	mg/kg	0.1
-557 C-6 21-25 IN AUGERBORING M Selenium C-557 C-6 21-25 IN AUGERBORING M Silver C-557 C-6 21-25 IN AUGERBORING M Thallium C-557 C-6 21-25 IN AUGERBORING M Zinc 7	AB14-557		2	Z	AUGER BORING	Σ	Nickel			mg/kg	▼
-557 C-6 21-25 IN AUGERBORING M Silver Thallium -557 C-6 21-25 IN AUGERBORING M Thallium 2inc	AB14-557		~	Z	AUGER BORING	Σ	Selenium			mg/kg	6.0
-557 C-6 21-25 IN AUGERBORING M Thailium 2inc 21-25 IN AUGERBORING M Zinc	AB14-887	ن د	21-25	Z	AUGER BORING	Σ	Silver			mg/kg	-
-SS7 C-6 21-25 IN AUGERBORING M ZINC	1	ს	21-25	Z	AUGER BORING	×	Thallium		<u>5</u>	mg/kg	-
	11	٥	21-25	Z	AUGER BORING	Σ	Zinc		₹	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	70 P	RESULTS	QUALIFIER	UNITS	F W
AB15 - CC3	1	4	3	SNGC9 93 61 A	>	Acotona	940		04/011	Ē
AB15-553	2 - 0	13-15	2 2	ALIGEB BOBING	> >	Ethylbenzene	250		BY/RO	<u> </u>
AB15-SS3	0-5	13-15	Z	AUGER BORING	S	ALL SEMI-VOLATILES	Q	¥ Z	ng/kg	Y Z
AB15-SS3	0-5	13-15	Z	AUGER BORING	Σ	Antimony	6.4	3	mg/kg	90
AB15-553	0-5	13-15	Z	AUGER BORING	Σ	Arsenic	14.8		mg/kg	-
AB15-553	0-5	13-15	Z	AUGER BORING	Σ	Beryllium	0.73		mg/kg	9.0
AB15~SS3	D-5	13-15	Z	AUGER BORING	Σ	Cadmium	0.23	5	mg/kg	9.0
AB15-883	0-5	13-15	Z	AUGER BORING	Σ	Chromium	18.2		mg/kg	-
AB15-SS3	D-5	13-15	Z	AUGER BORING	Σ	Copper	23.7	2	mg/kg	2.5
AB15-SS3	D-5	13-15	Z	AUGER BORING	Σ	Lead	15.8	ž	mg/kg	0.3
AB15-SS3	0-5	13-15	Z	AUGER BORING	Σ	Mercury	960'0	89	mg/kg	1.0
AB15-SS3	D-5	13-15	Z	AUGER BORING	Σ	Nickel	27.2		mg/kg	4
AB15-553	0-5	13-15	Z	AUGER BORING	Σ	Selenium	0.21	3	mg/kg	9.0
AB15-SS3	9-Q	13-15	Z	AUGER BORING	Σ	Silver	9.0	ר	mg/kg	-
AB15-553	D-5	13-15	Z	AUGER BORING	Σ	Thallium	0.11	NNO	mg/kg	-
AB15-SS3	0-5	13-15	Z	AUGER BORING	W	Zinc	76.8	3	mg/kg	2
AB15-SS8	9-0	25-27	Z	AUGER BORING	>	Trichloroethene	4	7	ug/kg	S
AB15-558	9-0	25-27	Z	AUGER BORING	s	ALL SEMI-VOLATILES	Q		ug/kg	¥ X
AB15-558	05	25-27	Z	AUGER BORING	Σ	Antimony	2.6	3	mg/kg	9
AB15-558	0-5	25-27	Z	AUGER BORING	Σ	Arsenic	14.5		mg/kg	-
AB15-558	D-5	25-27	Z	AUGER BORING	Σ	Beryllium	0.72		mg/kg	9.0
AB15-SS8	0-5	25-27	Z	AUGER BORING	Σ	Cadmium	0.13	89	mg/kg	9.0
AB15-558	0-5	25-27	Z	AUGER BORING	Σ	Chromium	18.4		mg/kg	-
AB15-SS8	D-5	25-27	Z	AUGER BORING	Σ	Copper	19.9	3	mg/kg	2.5
AB15-SS8	0-5	25-27	Z	AUGER BORING	Σ	Lead	13.2	ž	mg/kg	0.3
AB15-SS8	0-5	25-27	Z	AUGER BORING	Σ	Mercury	0.16		mg/kg	1.0
AB15-SS8	0-5	25-27	Z	AUGER BORING	Σ	Nickel	30.3		mg/kg	4
AB15-SS8	0-5	25-27	Z	AUGER BORING	Σ	Selenium	0.31	BW	mg/kg	0.5
AB15-558	0-5	25-27	Z	AUGER BORING	Σ	Silver	0.43	>	mg/kg	•
AB15-SS8		25-27	Z	AUGER BORING	Σ	Thatlium	0.094	<u>5</u>	mg/kg	-
A815-SS8		25-27	Z	AUGER BORING	Σ	Zinc	6.89	2	mg/kg	2

				***************************************		ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
MW4-552	8-1	8-10	TUO	MONITORING WELL	>	ALL VOLATILES	9	¥	ug/kg	¥ X
MW4-552	B-1	8-10	DOUT	MONITORING WELL	S	ALL SEMI-VOLATILES	2	¥	ug/kg	₹ Z
MW4-552	8-1	8-10	TUO	MONITORING WELL	Σ	Antimony	3.2	3	mg/kg	9
MW4-552	B-1	8 – 10	DOUT	MONITORING WELL	Σ	Arsenic	17.4		mg/kg	_
MW4-552	8-1	8-10	DOUT	MONITORING WELL	Σ	Beryllium	0.39		mg/kg	9.0
MW4-552	8-1	8-10	DOCT	MONITORING WELL	₹	Cadmium	0.24	82	mg/kg	9.0
MW4-552	8-1	8-10	TUO	MONTORING WELL	Σ	Chromium	9.1		mg/kg	-
MW4-552	8-1	8-10	DO T	MONITORING WELL	Σ	Copper	28.7	2	mg/kg	2.5
MW4-552	B-1	8-10	DOUT	MONITORING WELL	Σ	Lead	15.7	ž	mg/kg	6.0
MW4-SS2	B-1	8-10	TUO	MONITORING WELL	Σ	Mercury	0.057	>	mg/kg	1.0
MW4-552	8-1	8-10	DOUT	MONITORING WELL	Σ	Nickel	24		mg/kg	4
MW4-552	8-1	8-10	OUT	MONITORING WELL	Σ	Selenium	0.18	BW	mg/kg	9.0
MW4-552	B-1	8-10	OUT	MONITORING WELL	Σ	Silver	0.52	D	mg/kg	-
MW4-552	8-1	8-10	TUO	MONITORING WELL	Σ	Thallium	0.34	BNWJ	mg/kg	-
MW4-SS2	8-1	8-10	OUT	MONITORING WELL	M	Zinc	81	2	mg/kg	2
MW4-553	8-1	13-15	DOUT	MONITORING WELL	>	ALL VOLATILES	8	¥Z	ug/kg	¥ Z
MW4-553	8-1	13-15	OUT	MONITORING WELL	S	ALL SEMI-VOLATILES	Q		ng/kg	¥ X
MW4-553	8-1	13-15	OUT	MONITORING WELL	Σ	Antimony	3.4	S	mg/kg	89
MW4-SS3	8-1	13-15	OUT	MONITORING WELL	Σ	Arsenic	9.1		mg/kg	-
MW4-553	8-1	13-15	OUT	MONITORING WELL	Σ	Beryllium	0.43		mg/kg	9.0
MW4-553	8-1	13-15	OUT	MONITORING WELL	Σ	Cadmium	0.68		mg/kg	9.0
MW4-553	8-1	13-15	OUT	MONITORING WELL	Σ	Chromium	11.2		mg/kg	-
MW4-5S3	B-1	13-15	- TOO	MONITORING WELL	Σ	Copper	19.7	2	mg/kg	2.5
MW4-553	B-1	13-15	OUT	MONITORING WELL	Σ	Lead	15.1	ž	mg/kg	6.0
MW4-553	8-1	13-15	OUT	MONITORING WELL	Σ	Mercury	0.057	<u> </u>	mg/kg	1.0
MW4-553	1-1	13-15	DOUT	MONITORING WELL	₹	Nickel	25.2		mg/kg	4
MW4-583	8-1	13-15	DOCT	MONITORING WELL	Σ	Selenium	0.57		mg/kg	9.0
MW4-883	8-1	13-15	OUT	MONITORING WELL	Σ	Silver	0.56	-	mg/kg	-
MW4-883	B-1	13-15	DOCT	MONITORING WELL	Σ	Thallium	0.27	BNWJ	mg/kg	-
MW4-853	B-1	13-15	P	MONITORING WELL	Σ	Zinc	91.1	2	mg/kg	2

WWYS-5SZ B-4 B-10 IN MONITORNO WELL SALASHAPLE & GARD & GETTH FIRE SAMPLE & GARD							ANALYSIS				DETECTION
Secondary Seco		GRID #	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	UMIT
Secondary Seco						:		:		;	:
Secondary Seco	MW5555		8-10	Z	MONITORING WELL	>	ALL VOLATILES	2		ng/kg	Š
Barry Barr	MW5-SS2		8-10	Z	MONITORING WELL	SS	ALL SEMI - VOLATILES	9			¥ Z
Beach Beac	MW5-SS2		8-10	Z	MONITORING WELL	Σ	Antimony	4.5			89
Secondary Seco	MW5-SS2		8-10	Z	MONITORING WELL	₹.	Arsenic	28		mg/kg	-
Secondary Seco	MW5-SS2		8-10	Z	MONITORING WELL	Σ	Beryllium	0.57		mg/kg	0.5
B	MWS-SS2		8-10	Z	MONITORING WELL	Σ	Cadmium	0.23		mg/kg	0.5
B-4 B-10 IN MONTORNG WELL M MACKATORNG WELL M MONTORNG WELL M M MONTORNG WELL M M MONTORNG WELL M	MWS-SS2		8-10	Z	MONITORING WELL	Σ	Chromium	16.5		mg/kg	-
B-4 8-10 IN MONTORNO WELL M Mercury 0.055 U n B-4 8-10 IN MONTORNO WELL M Mercury 0.055 U n B-4 8-10 IN MONTORNO WELL M MONTORNO WELL M N+J n B-4 8-10 IN MONTORNO WELL M M N+J n B-4 8-10 IN MONTORNO WELL M M N+J n B-4 8-10 IN MONTORNO WELL N M MONTORNO WELL N M N+J N-J B-4 13-15 IN MONTORNO WELL N M N-J	MW5-SS2		8-10	z	MONITORING WELL	Σ	Copper	26.2		mg/kg	2.5
B-4 8-10 IN MONITORING WELL M Mercury 0.055 U P B-4 8-10 IN MONITORING WELL M MONITORING WELL M N+J P P B-4 8-10 IN MONITORING WELL M MONITORING WELL M P <td>MW5-552</td> <td></td> <td>8-10</td> <td>Z</td> <td>MONITOPING WELL</td> <td>Σ</td> <td>Lead</td> <td>18.8</td> <td></td> <td>mg/kg</td> <td>0.3</td>	MW5-552		8-10	Z	MONITOPING WELL	Σ	Lead	18.8		mg/kg	0.3
B-4 8-10 IN MONTORNG WELL M </th <td>MW5-SS</td> <td></td> <td>8-10</td> <td>Ž</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Mercury</td> <td>0.055</td> <td></td> <td>mg/kg</td> <td>1.0</td>	MW5-SS		8-10	Ž	MONITORING WELL	Σ	Mercury	0.055		mg/kg	1.0
B-4 8-10 IN MONTORNG WELL M Montorner M N+J N+J B-4 8-10 IN MONTORNG WELL M MONTORNG WELL M N+J N+	MW5-552		8-10	Z	MONITORING WELL	Σ	Nickel	26		mg/kg	4
B-4 8 + 10 IN MONTORING WELL M Thailium 0.75 U B-4 8 - 10 IN MONTORING WELL M Fithylbenzene 7400 P B-4 13 - 15 IN MONTORING WELL V M/P-Xylene 7000 J B-4 13 - 15 IN MONTORING WELL V M/P-Xylene 7000 J B-4 13 - 15 IN MONTORING WELL V M/P-Xylene 7000 J B-4 13 - 15 IN MONTORING WELL N A C-Xylene 7000 J B-4 13 - 15 IN MONTORING WELL M A A-Xylene 4.2 UNR B-4 13 - 15 IN MONTORING WELL M MONTORING WELL M Arsenic 8.3 N B-4 13 - 15 IN MONTORING WELL M MONTORING WELL M A A-Xylene 0.25 B B-4 13 - 15<	MW5-SS		8-10	Z	MONITORING WELL	Σ	Selenium	0.51			9.0
B-4 6-10 IN MONTORING WELL M Finalitum 0.31 B B-4 13-15 IN MONTORING WELL V Ethylbenzene 7400 J B-4 13-15 IN MONTORING WELL V MONTORING WELL V T/400 J B-4 13-15 IN MONTORING WELL SV A-Methylnagene 1900 J B-4 13-15 IN MONTORING WELL SV 2-Methylnagene 480 J B-4 13-15 IN MONTORING WELL M Arienno 4.2 UNR B-4 13-15 IN MONTORING WELL M Arienno 9.8 N B-4 13-15 IN MONTORING WELL M MONTORING WELL M MONTORING WELL M MONTORING WELL M Copper 57.4 O B-4 13-15 IN MONTORING WELL M MONTORING WELL M MONTORING WELL M MONTOR	MW5-552	80	8-10	Ž	_	Σ	Silver	0.75		mg/kg	-
B-4 8-10 IN MONTORNG WELL N Eithylbanzana 7400 B-4 13-15 IN MONTORNG WELL V MONTORNG WELL 7400 B-4 13-15 IN MONTORNG WELL V MONTORNG WELL V MONTORNG WELL V B-4 13-15 IN MONTORNG WELL V Anthylnaghntalene 1900 J B-4 13-15 IN MONTORNG WELL SV 2-Methylnaghttalene 460 J B-4 13-15 IN MONTORNG WELL M Assenic 8.3 NJ B-4 13-15 IN MONTORNG WELL M Assenic 8.3 NJ B-4 13-15 IN MONTORNG WELL M Assenic 8.3 NJ B-4 13-15 IN MONTORNG WELL M Assenic 8.3 NJ B-4 13-15 IN MONTORNG WELL M Assenic 8.3 NJ B-4<	MW5-SS2		8-10	Z	_	Σ	Thallium	0.31	80	mg/kg	-
B-4 13-15 IN MC NITORNG WELL V Ethylbenzene 7400 B-4 13-15 IN MONTORNG WELL V m/p-xylene 7000 B-4 13-15 IN MONTORNG WELL SV Antimophi alene 7000 B-4 13-15 IN MONTORNG WELL SV 2-Methylnaphthalene 4.2 UNR B-4 13-15 IN MONTORNG WELL M Aritimoph 4.2 UNR B-4 13-15 IN MONTORNG WELL M Aritimoph 4.2 UNR B-4 13-15 IN MONTORNG WELL M Aritimoph 4.2 UNR B-4 13-15 IN MONTORNG WELL M Aritimoph 4.2 UNR B-4 13-15 IN MONTORNG WELL M Aritimoph 9.8 Aritimoph B-4 13-15 IN MONTORNG WELL M Aritimoph 0.21 B B-4 13-15	MW5-SS2			Z	MONITORING WELL	Σ	Zinc	82		mg/kg	~
B-4 13-15 IN MCNITORNG WELL V Ethylbenzene 7400 B-4 13-15 IN MONITORNG WELL V m/p-Xylene 7400 B-4 13-15 IN MONITORNG WELL SV 2-Methylnalene 450 B-4 13-15 IN MONITORNG WELL SV 2-Methylnalene 460 B-4 13-15 IN MONITORNG WELL M Assentic 8.3 NJ B-4 13-15 IN MONITORNG WELL M Assentic 8.3 NJ B-4 13-15 IN MONITORNG WELL M Assentic 8.3 NJ B-4 13-15 IN MONITORNG WELL M Assentic 8.3 NJ B-4 13-15 IN MONITORNG WELL M Assentic 9.8 NJ B-4 13-15 IN MONITORNG WELL M MONITORNG WELL M MONITORNG WELL M MONITORNG WELL M MONI											
B-4 13-15 IN MONITORING WELL V m/p-Xylene 1900 B-4 13-15 IN MONITORING WELL V 0-Xylene 7000 J B-4 13-15 IN MONITORING WELL SV 2-Methylnaphthalene 460 J B-4 13-15 IN MONITORING WELL M Antimony 4.2 UNR B-4 13-15 IN MONITORING WELL M Acadmium 0.32 B B-4 13-15 IN MONITORING WELL M Acadmium 0.21 B B-4 13-15 IN MONITORING WELL M Acadmium 0.21 B B-4 13-15 IN MONITORING WELL M Acadmium 0.21 B B-4 13-15 IN MONITORING WELL M MONITORING WELL M </th <td>MW5-583</td> <td></td> <td>13-15</td> <td>Z</td> <td>MC NITOPING WELL</td> <td>></td> <td>Ethylbenzene</td> <td>7400</td> <td></td> <td>ug/kg</td> <td></td>	MW5-583		13-15	Z	MC NITOPING WELL	>	Ethylbenzene	7400		ug/kg	
B-4 13-15 IN MONTORING WELL V O - Xylene 7000 J B-4 13-15 IN MONTORING WELL SV 2 - Methylnaphthalene 460 J B-4 13-15 IN MONTORING WELL M Arsenic 4.2 UNR B-4 13-15 IN MONTORING WELL M Arsenic 8.3 NJ B-4 13-15 IN MONTORING WELL M Arsenic 8.3 NJ B-4 13-15 IN MONTORING WELL M Actionmium 9.8 NJ B-4 13-15 IN MONTORING WELL M MONTORING WELL M Action NJ B-4 13-15 IN MONTORING WELL M MONTORING WELL M <td< th=""><td>MW5-SS3</td><td></td><td>13-15</td><td>Z</td><td>MONITORING WELL</td><td>></td><td>m/p - Xylene</td><td>1900</td><td></td><td>ug/kg</td><td></td></td<>	MW5-SS3		13-15	Z	MONITORING WELL	>	m/p - Xylene	1900		ug/kg	
B-4 13-15 IN MONTOPING WELL SV 2-Methyladene 160 J B-4 13-15 IN MONTOPING WELL M 2-Methyladene 460 J B-4 13-15 IN MONTOPING WELL M Arsenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Arsenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Arsenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M Assentium 9.8 U B-4 13-15 IN MONTOPING WELL M Assentium 0.058 U B-4 13-15 IN MONTOPING WELL M M Assentium 0.18 U B-4 13-15 IN MONTOPING WELL M Assentium 0.18 U <tr< th=""><td>MW5-583</td><td></td><td>13-15</td><td>Z</td><td>MONITORING WELL</td><td>></td><td>o – Xylene</td><td>7000</td><td></td><td>ng/kg</td><td>S</td></tr<>	MW5-583		13-15	Z	MONITORING WELL	>	o – Xylene	7000		ng/kg	S
B-4 13-15 IN MONTOPING WELL SV 2-Methylnaphthalene 460 UNR B-4 13-15 IN MONTOPING WELL M Arsenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Arsenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Cadmium 9.8 9.8 B-4 13-15 IN MONTOPING WELL M Chromium 9.8 9.8 B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M M Nickel 13.7 NI B-4 13-15 IN MONTOPING WELL M M Solenium 0.18 U B-4 13-15 IN MONTOPING WELL M M Ni	MW5-583	&	13-15	z	MONITORING WELL	SS	Naphthalene	160		ng/kg	330
B-4 13-15 IN MONTOPING WELL M Antimony 4.2 UNR B-4 13-15 IN MONTOPING WELL M Assenic 8.3 NJ B-4 13-15 IN MONTOPING WELL M Cadmium 0.32 B B-4 13-15 IN MONTOPING WELL M Chromium 9.8 0.21 B B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M Montopium 9.8 0 B-4 13-15 IN MONTOPING WELL M Montopium 0.058 U B-4 13-15 IN MONTOPING WELL M Nickel 13.7 U B-4 13-15 IN MONTOPING WELL M Nickel 0.78 U B-4 13-15 IN MONTOPING WELL M Nixel 0.78 U	MW5-SS3		13-15	Z	MONITORING WELL	S	2 - Methylnaphthalene	84		ug/kg	330
B-4 13-15 IN MONTOPING WELL M Assenic 8.3 NU B-4 13-15 IN MONTOPING WELL M Cadmium 0.32 B B-4 13-15 IN MONTOPING WELL M Cadmium 9.8 9.8 B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M M Cadmium 9.8 • B-4 13-15 IN MONTOPING WELL M M Montopium 0.058 U B-4 13-15 IN MONTOPING WELL M M Nickel 13.7 N B-4 13-15 IN MONTOPING WELL M Nickel 0.78 U B-4 13-15 IN MONTOPING WELL M N N N B-4 13-15 IN MONTOPING WELL M N N N <	MW5-583		13-15	Z	MONITORING WELL	Σ	Antimony	4.2			9
B-4 13-15 IN MONTORNG WELL M Beryllium 0.32 B B-4 13-15 IN MONTORNG WELL M Cadmium 0.21 B B-4 13-15 IN MONTORNG WELL M Copper 57.4 • B-4 13-15 IN MONTORNG WELL M Copper 57.4 • B-4 13-15 IN MONTORNG WELL M Montorng Mell M Nickel 13.7 NJ B-4 13-15 IN MONTORNG WELL M M Nickel 13.7 N B-4 13-15 IN MONTORNG WELL M N Silver 0.058 U B-4 13-15 IN MONTORNG WELL M N N 0.058 U B-4 13-15 IN MONTORNG WELL M N N N N N N B-4 13-15 IN MONTORNG WELL	MW5-553		13-15	Z	MONITORING WELL	Σ	Arsenic	8.3		mg/kg	-
B-4 13-15 IN MONTOPING WELL M Cadmium 0.21 B B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M M Nickel 17.6 NJ B-4 13-15 IN MONTOPING WELL M M Nickel 13.7 BNSJ B-4 13-15 IN MONTOPING WELL M Nickel 13.7 U B-4 13-15 IN MONTOPING WELL M Nickel 13.7 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U </th <td>MW5-553</td> <td></td> <td>13-15</td> <td>Z</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Beryllium</td> <td>0.32</td> <td></td> <td>mg/kg</td> <td>9.0</td>	MW5-553		13-15	Z	MONITORING WELL	Σ	Beryllium	0.32		mg/kg	9.0
B-4 13-15 IN MONTOPING WELL M Chromium 9.8 B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M M NICKel NJ B-4 13-15 IN MONTOPING WELL M M Nickel 13.7 NJ B-4 13-15 IN MONTOPING WELL M Nickel 13.7 NJ B-4 13-15 IN MONTOPING WELL M NG NG NJ B-4 13-15 IN MONTOPING WELL M NG NG NG B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U	MW5-883		13-15	Z	MONITORING WELL	Σ	Cadmium	0.21		mg/kg	0.5
B-4 13-15 IN MONTOPING WELL M Copper 57.4 • B-4 13-15 IN MONTOPING WELL M Lend 17.6 NJ B-4 13-15 IN MONTOPING WELL M M Nickel 13.7 BNSJ B-4 13-15 IN MONTOPING WELL M N Selenium 0.18 BNSJ B-4 13-15 IN MONTOPING WELL M N Silver 0.7 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U	MW5-883		13-15	Z	MONITORING WELL	Σ	Chromium	8.6		mg/kg	-
B-4 13-15 IN MONTOPING WELL M Lend 17.6 NJ B-4 13-15 IN MONTOPING WELL M Montoping 0.058 U B-4 13-15 IN MONTOPING WELL M N Solenium 0.18 BNSJ B-4 13-15 IN MONTOPING WELL M Silver 0.7 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U	MW5-SS		13-15	Z	MONITORING WELL	Σ	Copper	57.4		mg/kg	2.5
B-4 13-15 IN MONTOPING WELL M Moscury 0.058 U B-4 13-15 IN MONTOPING WELL M Nickel 13.7 BNSJ B-4 13-15 IN MONTOPING WELL M Silver 0.7 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U	MW5-583		13-15	Z	MONITORING WELL	Σ	Lend	17.6	_	mg/kg	0.3
B-4 13-15 IN MONTOPING WELL M Nickel 13.7 BNSJ B-4 13-15 IN MONTOPING WELL M Silver 0.7 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U B-4 13-15 IN MONTOPING WELL M Thallium 0.058 U	MW5-553	6 0	13-15	ž	MONITOPING WELL	∑	Mercury	0.058		mg/kg	0.1
B-4 13-15 IN MONITORING WELL M Selenium 0.18 BNSJ B-4 13-15 IN MONITORING WELL M Thallium 0.058 U B-4 13-15 IN MONITORING WELL M Thallium 0.058 U	MW5-SS	€	13-15	Z	MONITORING WELL	Σ	Nickel	13.7		mg/kg	
B-4 13-15 IN MONITOPING WELL M Silver 0.7 U B-4 13-15 IN MONITOPING WELL M Thallium 0.058 U B-4 13-15 IN MONITOPING WELL M Zinc 65.6	MW5-883	œ	13-15	Z	MONITORING WELL	Σ	Selenium			mg/kg	9.0
B-4 13-15 IN MONITORING WELL M Thallium 0.058 U B-4 13-15 IN MONITORING WELL M Zinc 65.6 Inc.	MW5-883	<u> </u>	13-15	Z	MONITORING WELL	Σ	Silver			mg/kg	-
SS3 B-4 13-15 IN MONTORING WELL M Zinc 65.6	MWS-SS3	&	13-15	Z	MONITORING WELL	Σ	Thallium			mg/k ₃	••
	MWS-SS	-	13-15	Z	MONITORING WELL	Σ	Zinc			mg/kg	2

E							ANALYSIS			· Andrews Andrews Address Andrews	DETECTION
E-5 8-10 OUT MONTORNG WELL SV ALL SEM - VOLATIES	SAMPLE #	GRID #	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMIT
E-5 8-10	MW6-552	Ē	8-10	OUT	MONITORING WELL	>	ALL VOLATILES	Q	¥ Z	ug/kg	Y Z
E-5 8-10 OUT MONTORNG WELL M Antimony	MW6-552	ш	8-10	DO	MONITORING WELL	S	ALL SEMI-VOLATILES	Q.		ug/kg	٧Z
E-5 8-10 OUT MONTORING WELL M Baryllium Out MONTORING WELL M Cadmium Orderium Out MONTORING WELL M Cadmium Orderium Out MONTORING WELL M Cadmium Orderium Out MONTORING WELL M M M M M M M M M	MW6-552	<u>"</u>	8-10	TUO	MONITORING WELL	2	Antimony	4.4	UNA	mg/kg	89
E-5 8-10 OUT MONTORING WELL M Beryllium Cadmium Capper E-5 8-10 OUT MONTORING WELL M Copper Copper E-5 8-10 OUT MONTORING WELL M Mercury Copper E-5 13-15 OUT MONTORING WELL M Mercury Copper E-5 13-15 OUT MONTORING WELL W Mercury Copper E-5 13-15 OUT MONTORING WELL W Mercury Copper E-5 13-15 OUT MONTORING WELL M Mercury Out MONTORING WELL M M MONTORING WELL M M M M M M M M M	MW6-SS2		8-10	DOUT	MONITORING WELL	Σ	Arsenic	19.6	3	mg/kg	-
E-5 8-10 OUT MONTORNG WELL M Chromium Out MONTORNG WELL M Chromium Out MONTORNG WELL M Chromium Out MONTORNG WELL M Montornornornornornornornornornornornornorno	MW6-552		8-10	TUO	MONITORING WELL	Σ	Beryllium	0.54		mg/kg	0.5
E-5 8-10 OUT MONTORNG WELL M Copper Copper	MW6-552		8-10	DO	MONITORING WELL	Σ	Cadmium	0.33	60	mg/kg	0.5
E-5 8-10 OUT MONTORNG WELL M Mercury O.	MW6-552		8-10	DOUT	MONTORING WELL	Σ	Chromium	16		mg/kg	-
E-5 8-10 OUT MONTORNG WELL M Marcury O.0	MW6-552		8-10	OUT	MONITORING WELL	Σ	Copper	29.9	•	mg/kg	2.5
E-5 8-10 OUT MONTORNG WELL M Mickel 20 E-5 8-10 OUT MONTORNG WELL M Mickel 2 E-5 8-10 OUT MONTORNG WELL M M Thallium 0 E-5 8-10 OUT MONTORNG WELL M M Thallium 0 E-5 8-10 OUT MONTORNG WELL M 1,1-Dichloroehane 0 E-5 13-15 OUT MONTORNG WELL V 1,1-Dichloroehane 11 E-5 13-15 OUT MONTORNG WELL V 1,1-Dichloroehane	MW6-552		8-10	OUT	MONITORING WELL	Σ	Lead	18.7	NSV	mg/kg	0.3
E-5 8-10 OUT MONTORNG WELL M Nickel 2 E-5 8-10 OUT MONTORNG WELL M Thallium 0 E-5 8-10 OUT MONTORNG WELL M Triallium 0 E-5 8-10 OUT MONTORNG WELL W V Vinyl Chloride E-5 13-15 OUT MONTORNG WELL V Vinyl Chloride 0 E-5 13-15 OUT MONTORNG WELL V Vinyl Chloride 0 E-5 13-15 OUT MONTORNG WELL V Vinyl Chloride 1 E-5 13-15 OUT MONTORNG WELL V ALL SEMI-VOLATILES E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M Arsenic 1 E-5 13-15 OUT MONTORNG WELL M Arsenic 1 E-5 13-15 OUT M	MW6-552		8-10	TUO	MONITORING WELL	Σ	Mercury	0.057	5	mg/kg	0.1
E-5 8-10 OUT MONTORNG WELL M Salver O E-5 8-10 OUT MONTORNG WELL M Thallium D E-5 8-10 OUT MONTORNG WELL M Intellium Intellium E-5 13-15 OUT MONTORNG WELL V Intellium Intellium E-5 13-15 OUT MONTORNG WELL M Alt SEMI-VOLATILES E-5 13-15 OUT MONTORNG WELL M Alternal E-5 13-15 OUT MONTORNG WELL M Alternal E-5 13-15 OUT	MW6-552		8-10	DOUT	MONITORING WELL	Σ	Nickel	28.6		mg/kg	4
E-5 8-10 OUT MONTORNG WELL M Thallium O E-5 13-15 OUT MONTORNG WELL V Vinyl Chloride E-5 13-15 OUT MONTORNG WELL V Viryl Chloride E-5 13-15 OUT MONTORNG WELL V Viryl Chloride E-5 13-15 OUT MONTORNG WELL V Trichloroethene E-5 13-15 OUT MONTORNG WELL N ALL SEMI-VOLATILES E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES E-5 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES E-5	MW6-SS2	4	8-10	DOUT	MONITORING WELL	Σ	Selenium	0.79	7+X	mg/kg	9.0
E-5 8-10 OUT MONITORING WELL M Thallium D E-5 13-15 OUT MONITORING WELL V Vinyl Chloride B E-5 13-15 OUT MONITORING WELL V Vinyl Chloride B E-5 13-15 OUT MONITORING WELL V Trichloroethene II E-5 13-15 OUT MONITORING WELL V Trichloroethene II E-5 13-15 OUT MONITORING WELL V Trichloroethene II E-5 13-15 OUT MONITORING WELL V ALL SEMI-VOLATILES E-5 13-15 OUT MONITORING WELL M Arsenic I E-5 13-15 OUT MONITORING WELL M Arsenic I E-5 13-15 OUT MONITORING WELL M Arsenic I E-5 13-15 OUT MONITORING WELL M ALL SEMI-VOLATIORING ALL SEMI-VOLATIORING	MW6-552	<u>.</u>	8-10	OUT	MONITORING WELL	Σ	Silver	0.72		mg/kg	-
E-5 8-10 OUT MONTORNG WELL W Vinyl Chloride E-5 13-15 OUT MONTORNG WELL V 1,1-Dichloroethene 10 E-5 13-15 OUT MONTORNG WELL V Trichloroethene 10 E-5 13-15 OUT MONTORNG WELL V Trichloroethene 10 E-5 13-15 OUT MONTORNG WELL V Trichloroethene 10 E-5 13-15 OUT MONTORNG WELL N ALL SEMI - VOLATILES E-5 13-15 OUT MONTORNG WELL M Arsenic 1 E-5 13-15 OUT MONTORNG WELL M ALL SEMI - VOLATILES E-5 13-15 OUT MONTORNG WELL M ALL SEMI - VOLATILES E-5 13-15 OUT MONTORNG WELL M Cadmium Cadmium E-5 13-15 OUT MONTORNG WELL M Chromium Cadmium E-5 13-15	MW6-552	4	8-10	DOUT	MONITORING WELL	Σ	Thallium	0.29	60	mg/kg	-
E-5 13-15 OUT MONITORNG WELL V L1-Dichloroethene E-5 13-15 OUT MONITORNG WELL V L1-Dichloroethene E-5 13-15 OUT MONITORNG WELL V Trichloroethene E-5 13-15 OUT MONITORNG WELL V Trichloroethene E-5 13-15 OUT MONITORNG WELL N ALL SEMI-VOLATILES E-5 13-15 OUT MONITORNG WELL M Attention Antimony E-5 13-15 OUT MONITORNG WELL M Attention Attention E-5 13-15 OUT MONITORNG WELL M Attention Cadmium E-5 13-15 OUT MONITORNG WELL M Cadmium Chromium E-5 13-15 OUT MONITORNG WELL M Chromium Chromium E-5 13-15 OUT MONITORNG WELL M Chromium Chromium E-5 13-15 OUT	MW6-552	<u>.</u>	8-10	OUT	MONITORING WELL	Σ	Zinc	82.8		mg/kg	2
E-5 13-15 OUT MONITORING WELL V 1,1-Dichloroethene E-5 13-15 OUT MONITORING WELL V 1,1-Dichloroethene E-5 13-15 OUT MONITORING WELL V Trichloroethene E-5 13-15 OUT MONITORING WELL N ALL SEMI-VOLATILES E-5 13-15 OUT MONITORING WELL M Arsenic E-5 13-15 OUT MONITORING WELL M Arsenic E-5 13-15 OUT MONITORING WELL M Cadmium E-5 13-15 OUT MONITORING WELL M Capper Capper E-5 13-15 OUT MONITORING WELL M Capper Capper E-5 13-15 OUT MONITORING WELL M Morecury Out E-5 13-15 OUT MONITORING WELL M Marcury Out E-5 13-15 OUT MONITORING WELL M Marcu									-	:	
E-S 13-15 OUT MONITORING WELL V L1-Dichloroethene 15 E-S 13-15 OUT MONITORING WELL V Trichloroethene 15 E-S 13-15 OUT MONITORING WELL V ALL SEMI-VOLATILES E-S 13-15 OUT MONITORING WELL M Antimony E-S 13-15 OUT MONITORING WELL M Arsenic E-S 13-15 OUT MONITORING WELL M Arsenic E-S 13-15 OUT MONITORING WELL M Arsenic E-S 13-15 OUT MONITORING WELL M Copper Copper E-S 13-15 OUT MONITORING WELL M Arsenic Lead E-S 13-15 OUT MONITORING WELL M Archomium Copper E-S 13-15 OUT MONITORING WELL M Archomium Archomium E-S 13-15 OUT MONITORING WELL </th <td>MW6-553</td> <td></td> <td>13-15</td> <td>OUT</td> <td>MONITORING WELL</td> <td>></td> <td>Vinyl Chloride</td> <td>29</td> <td></td> <td>ug/kg</td> <td>10</td>	MW6-553		13-15	OUT	MONITORING WELL	>	Vinyl Chloride	29		ug/kg	10
E-5 13-15 OUT MONTORNG WELL V trans-12-Dichloroethene 16 E-5 13-15 OUT MONTORNG WELL V Trichloroethene 16 E-5 13-15 OUT MONTORNG WELL N ALL SEMI-VOLATILES E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M Copper Copper E-5 13-15 OUT MONTORNG WELL M Arsenic Lead E-5 13-15 OUT MONTORNG WELL M Copper Copper E-5 13-15 OUT MONTORNG WELL M Arsenic Lead E-5 13-15 OUT MONTORNG WELL M Arsenic Copper E-5 13-15 OUT MONTORNG WELL	MW6-553		1315	OUT	MONITORING WELL		1,1 - Dichloroethene	CI.	¬	ug/kg	ഗ
E-5 13-15 OUT MONITORING WELL V Trichloroethene E-5 13-15 OUT MONITORING WELL SV ALL SEMI-VOLATILES E-5 13-15 OUT MONITORING WELL M Antimony E-5 13-15 OUT MONITORING WELL M Arsenic E-5 13-15 OUT MONITORING WELL M Arsenic E-5 13-15 OUT MONITORING WELL M Copper E-5 13-15 OUT MONITORING WELL M Copper E-5 13-15 OUT MONITORING WELL M Arsenic E-5 13-15 OUT MONITOR	MW6-553		13-15	DOCT	MONITORING WELL		rans - 12 - Dichloroethene	1000		ug/kg	S
E-5 13-15 OUT MONTORING WELL V Toluene E-5 13-15 OUT MONTORING WELL MANTORING WELL MANTORING WELL MANTORING WELL MARCHILES E-5 13-15 OUT MONTORING WELL MARCHILES Arsenic 1 E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES Arsenic 1 E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES Copper 2 E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES Arsenic 1 E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES MARCHILES Architectury Out E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES MARCHILES MARCHILES Architectury Out E-5 13-15 OUT MONTORING WELL MARCHILES MARCHILES MARCHILES MARCHILES MARCHILES MARCHILES MARCHILES	MW6-553		13-15	DUT	MONITORING WELL	>	Trichloroethene	40		ug/kg	S
E-5 13-15 OUT MONTORING WELL SV ALL SEMI-VOLATILES E-5 13-15 OUT MONTORING WELL M Arsenic 1 E-5 13-15 OUT MONTORING WELL M Arsenic 1 E-5 13-15 OUT MONTORING WELL M Cadmium 0 E-5 13-15 OUT MONTORING WELL M Cadmium 1 E-5 13-15 OUT MONTORING WELL M Cadmium 1 E-5 13-15 OUT MONTORING WELL M Mercury 0 E-5 13-15 OUT MONTORING WELL M Mercury 0 E-5 13-15 OUT MONTORING WELL M Salentium 0 E-5 13-15 OUT MONTORING WELL M Salentium 0 E-5 13-15 OUT MONTORING WELL M Salentium 0 E-5 13-15 OUT	MW6-553		13-15	TUO	MONITORING WELL	>	Toluene	_		ug/kg	2
E-5 13-15 OUT MONTORNG WELL M Antimony E-5 13-15 OUT MONTORNG WELL M Arsenic E-5 13-15 OUT MONTORNG WELL M Cadmium E-5 13-15 OUT MONTORNG WELL M Copper E-5 13-15 OUT MONTORNG WELL M Copper E-5 13-15 OUT MONTORNG WELL M Mercury E-5 13-15 OUT MONTORNG WELL M Mercury E-5 13-15 OUT MONTORNG WELL M Mercury E-5 13-15 OUT MONTORNG WELL M Selenium	MW6-553		13-15	TUO	MONITORING WELL	S	ALL SEMI-VOLATILES	Q	¥2	ug/kg	AN AN
E-5 13-15 OUT MONTORING WELL M Arsenic E-5 13-15 OUT MONTORING WELL M Cadmium E-5 13-15 OUT MONTORING WELL M Chromium E-5 13-15 OUT MONTORING WELL M Copper E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Selentium E-5 13-15 OUT MONTORING WELL M Selentium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver	MW6-553		13-15	OUT	MONITORING WELL		Antimony	3.9	-	mg/kg	9
E-5 13-15 OUT MONTORING WELL M Beryflium E-5 13-15 OUT MONTORING WELL M Cadmium E-5 13-15 OUT MONTORING WELL M Copper E-5 13-15 OUT MONTORING WELL M Copper E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Selentium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver	MW6-553		13-15	OUT	MONITORING WELL	Σ	Arsenic	11.3	2	mg/kg	
E-5 13-15 OUT MONTORNG WELL M Cadmium E-5 13-15 OUT MONTORNG WELL M Copper E-5 13-15 OUT MONTORNG WELL M Copper E-5 13-15 OUT MONTORNG WELL M Mercury E-5 13-15 OUT MONTORNG WELL M Nickel E-5 13-15 OUT MONTORNG WELL M Nickel E-5 13-15 OUT MONTORNG WELL M Silver E-5 13-15 OUT MONTORNG WELL M Silver E-5 13-15 OUT MONTORNG WELL M Silver	MW6-553		13-15	DOUT	MONITORING WELL	Σ	Beryflium	0.49		mg/kg	9.0
E-5 13-15 OUT MONTORING WELL M Chromium E-5 -13-15 OUT MONTORING WELL M Copper E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Nickel E-5 13-15 OUT MONTORING WELL M Selenium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Thaillium	MW6-553	ů.	13-15	DOOT	MONITORING WELL	Σ	Cadmium	0.2	60	mg/kg	9.0
E-5 13-15 OUT MONTORING WELL M Copper E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Nickel E-5 13-15 OUT MONTORING WELL M Selenium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver	MW6-553	₩	13-15	DOOT	MONITORING WELL	Σ	Chromium	14.5		mg/kg	-
E-5 13-15 OUT MONTORING WELL M Lead E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Selenium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Thaillium	MW6-553	<u>.</u>	13-15	OUT	MONITORING WELL	₹	Copper	21.6	•	mg/kg	2.5
E-5 13-15 OUT MONTORING WELL M Mercury E-5 13-15 OUT MONTORING WELL M Selenium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Thaillum	MW6-553		13-15	OUT	MONITORING WELL	Σ	Lead	15.1	NS.	mg/kg	0.3
E-5 13-15 OUT MONTORING WELL M Nickel E-5 13-15 OUT MONTORING WELL M Selenium E-5 13-15 OUT MONTORING WELL M Silver E-5 13-15 OUT MONTORING WELL M Thallium C	MW6-553		13-15	TUO	MONITORING WELL	Σ	Mercury	0.057	כ	mg/kg	1.0
E-5 13-15 OUT MONTORING WELL M Salenium Silver Silver Silver MONTORING WELL M Thallium (MW6-853		13-15	DOUT	MONITOPING WELL	Σ	Nickel	28.5		mg/kg	4
E-5 13-15 OUT MONTORING WELL M Silver C Thallium (MW6-553	₽	13-15	TUO	MONITORING WELL	≥	Selenium	0.98	Z	mg/kg	6.0
E-5 13-15 OUT MONTORING WELL M Thallium	MW6-553	₩	13-15	DOUT	MONTORING WELL	Σ	Silver	0.65	>	mg/kg	-
	MW6-553	ū	13-15	DUO	MONITORING WELL	Σ	Thallium	0.078	3	mg/kg	-
E-5 13-15 OUT MONTORING WELL M	MW6-553		13-15	TUO	MONITORING WELL	Σ	Zinc	72.8		mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMIT
MW7-882	0-8	8-10	OUT OUT	MONITORING WELL	>	1,1,1 - Trichloroethane	88	·	ug/kg	<u>.</u>
MW7-SS2	0-8	8-10	POOT	MONITORING WELL	>	Велгеле	2100		ng/kg	S
MW7-SS2	0-8	8-10	TUO	MONTORNG WELL	>	Ethylbenzene	980		ug/kg	S
MW7-SS2	D-8	8-10	DOUT	MONITORING WELL	>	m/p – Xylene	1800		ug/kg	S
MW7-552	9-Q	8-10	DOUT	MONITORING WELL	>	o-Xylena	1200		ug/kg	S
MW7-SS2	9-0	8-10	TUO	MONITORING WELL	S	ALL SEMI-VOLATILES	QN Q	¥ Z	ug/kg	4N
MW7-552	8Q	8-10	TUO	MONITORING WELL	≥	Antimony	4.3	3	mg/kg	9
MW7-552	8-Q	8-10	TUO	MONITORING WELL	Σ	Arsenic	15.7	3	mg/kg	-
MW7-552	D-8	8-10	DOUT	MONITORING WELL	Σ	Beryllium	0.65		mg/kg	9.0
MW7-SS2	D-8	8-10	DOOT	MONITORING WELL	Σ	Cadmium	0.22	80	mg/kg	9.0
MW7-SS2	0-0	8-10	DOUT	MONITORING WELL	2	Chromium	19		mg/kg	-
MW7-552	D-8	8-10	TUO	MONITORING WELL	Σ	Copper	26.4	•	mg/kg	2.5
MW7-552	D-8	8-10	OUT	MONITORING WELL	Σ	Lead	19.2	NS.	mg/kg	6.0
MW7-SS2	D-8	8-10	TUO	MONITORING WELL	Σ	Mercury	0.059	5	mg/kg	0.1
MW7-SS2	0-8	8-10	TUO	MONITORING WELL	Σ	Nickel	25.7	-	mg/kg	4
MW7-SS2	D-8	8-10	DOUT	MONITORING WELL	Σ	Selenium	0.19	TNO NO	mg/kg	9.0
MW7-552	0-8	8-10	DOC	MONITORING WELL	Σ	Silver	0.71	5	mg/kg	-
MW7-SS2	D-8	8-10	TUO	MONTORNG WELL	Σ	Thallium	0.27	BW	mg/kg	-
MW7-SS2	0-0	8-10	OUT	MONITORING WELL	Σ	Zinc	79.9		mg/kg	2
1					,				;	1
MW/-553	0-8	13-15	500	MONITORING WELL	>	Benzene	140		ng/kg	n
MW7-SS3	8-Q	13-15	OUT	MONITORING WELL	>	Toluene	4		ug/kg	9
MW7-553	8-Q	_	OUT	MONITORING WELL	S	ALL SEMI - VOLATILES	Q		ug/kg	¥ ¥
MW7-883	8-Q	13-15	OUT	MONITORING WELL	Σ	Antimony	S	UND	mg/kg	9
MW7-553	D-8	13-15	OUT	MONITORING WELL	Σ	Arsenic	15.8	3	mg/kg	-
MW7-553	8-Q	13-15	OUT	MONITORING WELL	Σ	Beryllium	0.75		mg/kg	0.5
MW7-553	9 -0	13-15	DOCT	MONITORING WELL	Σ	Cadmium	0.24	5	mg/kg	0.5
MW7-553	8-Q	_	OUT	MONITORING WELL	Σ	Chromium	22.4	-	mg/kg	-
MW7-883	8 -0	13-15	OUT.	MONITORING WELL	Σ	Copper	25.3	•	mg/kg	2.5
MW7-883	8 -0	13-15	OUT	MONITORING WELL	Σ	Lead	25.2	ž 	mg/kg	0.3
MW7-553	8-Q	13-15	DOCT	MONITORING WELL	Σ	Mercury	0.063	5	mg/kg	0.1
MW7-883	8 -0	13-15	OUT	MONITORING WELL	Σ	Nickel	31.6		mg/kg	4
MW7-993	8 -0	13-15	DOCT	MONITORING WELL	Σ	Selenium	0.32	<u> </u>	mg/kg	0.5
MW7-593	8-Q	13-15	OUT	MONITORING WELL	≥	Silver	0.83	5	mg/kg	-
•	<u></u>	13-15	OUT	MONITORING WELL	Σ	Thallium	0.23	80	mg/kg	-
MW7-883		13-15	OUT	MONTORING WELL	Σ	Zinc	89.6		mg/kg	2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 UT	MONTORNG WELL	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LIMIT
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1000000	MONTORNG WELL			**			
	000 000	MONITORING WELL						
	00000	MONTONIO WELL	:		2		2	3
	0 0 0 0		> ;	ALL VOLATILES	2		By/Sn	ξ:
	0 0 0		>s	ALL SEMI - VOLATILES	2		ng/kg	¥ Z
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	MONITORING WELL	Σ	Antimony	4.5	UNN	mg/kg	9
	OUT	MONITORING WELL	Σ	Arsenic	23	3	mg/kg	-
	-	MONITORING WELL	Σ	Beryllium	0.58		mg/kg	9.0
		MONITORING WELL	Σ	Cadmium	0.22	8	mg/kg	9.0
	DOUT	MONITORING WELL	Σ	Chromium	15.8		mg/kg	-
	OUT	MONITORING WELL	Σ	Copper	25.7	•	mg/kg	2.5
	OUT	MONTORING WELL	Σ	Lead	15.4	NSV	mg/kg	0.3
	DOUT	MONITORING WELL	Σ	Mercury	0.057	ר	mg/kg	1.0
	OUT	MONITORING WELL	Σ	Nickel	32.1		mg/kg	4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DOUT	MONITORING WELL	Σ	Selenium	1.7	NSN	mg/kg	0.5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DOUT	MONITORING WELL	Σ	Silver	0.73	כ	mg/kg	-
0 0 0 0 0	DOUT	MONITORING WELL	Σ	Thallium	0.058	M S	mg/kg	-
0 0 0 0 0 0 0 0 0 0	OUT	MONITORING WELL	Σ	Zinc	82.6		mg/kg	2
9999								
2 0 0	OUT	MONITORING WELL	>	Велгеле	8		ug/kg	S
0-10	DOCT	MONITORING WELL	28	ALL SEMI-VOLATILES	Q	AN AN	ug/kg	Y Y
•	TUO	MONITORING WELL	Σ	Antimony	4	UNB	mg/kg	9
	DOUT	MONITORING WELL	Σ	Arsenic	5.2	BNJ	mg/kg	-
	TUO	MONTORING WELL	₹	Beryllium	0.29	כ י	mg/kg	9.0
	DOUT	MONTORING WELL	Σ	Cadmium	0.24	ב	mg/kg	9.0
C-10	DOCT	MONITORING WELL	Σ	Chromium	6.1		mg/kg	-
C-10	OUT	MONITORING WELL	Σ	Copper	12	•	mg/kg	2.5
C-10	OUT	MONITORING WELL	Σ	Lead	12.1	NSV	mg/kg	0.3
C-10	DOUT	MONITORING WELL	Σ	Mercury	0.063	D	mg/kg	0.1
C-10	DOOT	MONTOPING WELL	Σ	Nickel	13.1		mg/kg	4
C-10	DOUT	MONITORING WELL	Σ	Selenium	0.8	NS.	mg/kg	0.5
	OUT	MONITORING WELL	Σ	Silver	0.83	>	mg/kg	-
SS3 C-10	- T00	MONITORING WELL	Σ	Thallium	0.083	ס	mg/kg	-
MW8-SS3 C-10 13-15	DOUT	MONITORING WELL	Σ	Zinc	59.5		mg/kg	2

AWM9-5S2 WW9-5S2 WW9-5S2 A-4 A-4 B-10 B-10 OUT OUT MONTORNG WELL MONTORNG WELL WW9-5S2 A-4 ALL SEML VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ALL SEML VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ALL SEML VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S2 A-4 B-10 ND ADDITION WELL MW9-5S3 A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S3 A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S3 A-4 B-10 ALL VOLATILES A-4 B-10 ALL VOLATILES A-4 B-10 ND ADDITION WELL MW9-5S3 A-4 B-10							ANALYSIS				DETECTION
NA	SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMI
Name											
Nontroling well Nontroling	MW9-552	4-A	8-10	DO	MONITORING WELL	>	ALL VOLATILES	Q	¥ Z	ug/kg	A N
Nontroping Well Montroping	MW9-552		8-10	DO	MONITORING WELL	SV	ALL SEMI - VOLATILES	2		ug/kg	4Z
NowNormal Well Montoring Well Mont	MW9-552		8-10	DOUT	MONITORING WELL	Σ	Antimony	4.2		mg/kg	9
A-4 8-10 OUT MONTORING WELL M Beryflium 0.62 A-4 8-10 OUT MONTORING WELL M Copper 24.6 NJ A-4 8-10 OUT MONTORING WELL M Copper 24.6 NJ A-4 8-10 OUT MONTORING WELL M METCHY 0.058 U A-4 8-10 OUT MONTORING WELL M METCHY 0.058 U A-4 8-10 OUT MONTORING WELL M METCHY 0.058 U A-4 8-10 OUT MONTORING WELL M METCHY 0.058 U A-4 8-10 OUT MONTORING WELL M ALL VOLATILES N A-4 8-10 OUT MONTORING WELL M ALL SEM-VOLATILES N A-4 13-15 OUT MONTORING WELL M ALL SEM-VOLATILES N A-4 13-15 OUT MONTORING WELL	MW9-552		8-10	DOUT	MONITORING WELL	Σ	Arsenic	16.2	2	mg/kg	<u>-</u>
A-4 B-10 OUT MONTORING WELL M Cadmium 0.31 B A-4 B-10 OUT MONTORING WELL M Cadmium 0.31 B A-4 B-10 OUT MONTORING WELL M Mecury 0.058 U A-4 B-10 OUT MONTORING WELL M Mecury 0.058 U A-4 B-10 OUT MONTORING WELL M Mecury 0.058 U A-4 B-10 OUT MONTORING WELL M Mecury 0.058 U A-4 B-10 OUT MONTORING WELL M ALL VOLATILES U A-4 B-10 OUT MONTORING WELL M ALL VOLATILES U A-4 B-10 OUT MONTORING WELL M ALL SEMI-VOLATILES ND A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND A-4 13-15 OUT MONTORING	MW9-552		8-10	DOCT	MONITORING WELL	2	Beryllium	0.62		mg/kg	0.5
A-4 8-10 OUT MONTORING WELL M ChromLum 13.1 A-4 8-10 OUT MONTORING WELL M Copper 246 A-4 8-10 OUT MONTORING WELL M Marcury 0.038 U A-4 8-10 OUT MONTORING WELL M Marcury 0.048 BS A-4 8-10 OUT MONTORING WELL M M Marcury 0.048 BS A-4 8-10 OUT MONTORING WELL M M Thaillum 0.48 BS A-4 8-10 OUT MONTORING WELL M M Thaillum 0.48 BS A-4 8-10 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND A-4<	MW9-552		8-10	DO	MONITORING WELL	Σ	Cadmium	0.31	60	mg/kg	0.5
A-4 8-10 OUT MONTORING WELL M Copper 24.6 NU A-4 8-10 OUT MONTORING WELL M Mercury 0.058 U A-4 8-10 OUT MONTORING WELL M Mercury 0.058 U A-4 8-10 OUT MONTORING WELL M Mickel 0.68 U A-4 8-10 OUT MONTORING WELL M M Thallum 0.48 BS A-4 8-10 OUT MONTORING WELL M ALL VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M Artselm-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M Artselm-VOLATILES ND NA </th <th>MW9-552</th> <td></td> <td>8-10</td> <td>TUO</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Chromium</td> <td>13.1</td> <td></td> <td>mg/kg</td> <td>-</td>	MW9-552		8-10	TUO	MONITORING WELL	Σ	Chromium	13.1		mg/kg	-
A-4 8-10 OUT MONTORNG WELL M Macrony 0.058 U A-4 8-10 OUT MONTORNG WELL M Mickel 31 U A-4 8-10 OUT MONTORNG WELL M Mickel 31 BS A-4 8-10 OUT MONTORNG WELL M Thaillum 0.46 BS A-4 8-10 OUT MONTORNG WELL M ALL VOLATILES 0.04 MONTORNG WELL M ALL VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL N ALL VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL N ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALSEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALSEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL	MW9-552		8-10	DOC	MONITORING WELL	≆	Copper	24.6		mg/kg	2.5
A-4 8-10 OUT MONTORNG WELL M Miked 31 U A-4 8-10 OUT MONTORNG WELL M Silver 0.58 U A-4 8-10 OUT MONTORNG WELL M Thallum 0.46 B A-4 8-10 OUT MONTORNG WELL M ALL VOLATILES ND B A-4 8-10 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND	MW9-552		8-10	DOCT	MONITORING WELL	₹	Lead	13.8	2	mg/kg	0.3
A-4 8-10 OUT MONTORNG WELL M Nickel 31 A-4 8-10 OUT MONTORNG WELL M Selentium 0.48 BS A-4 8-10 OUT MONTORNG WELL M Thallium 0.04 BS A-4 8-10 OUT MONTORNG WELL M ALL VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND ND A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND ND	MW9-552		8-10	OUT	MONITORING WELL	Σ	Mercury	0.058		mg/kg	0.1
A-4 8-10 OUT MONTORING WELL M Salenium 0.48 BS A-4 8-10 OUT MONTORING WELL M Thallium 0.48 BS A-4 8-10 OUT MONTORING WELL M ALL VOLATILES B4.7 B A-4 13-15 OUT MONTORING WELL SV ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES	MW9-552		8-10	DO	MONITORING WELL	Σ	Nickel	31		mg/kg	4
A-4 8-10 OUT MONTORING WELL M Thallium 0.68 U A-4 8-10 OUT MONTORING WELL M ALL SEMI-VOLATILES 0.68 U A-4 13-15 OUT MONTORING WELL SV ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND ALL SEMI-VOLATILES ND ALL SEMI-VOLATILES ND ALL SEMI-VOLATILES ND ND </th <th>MW9-552</th> <td></td> <td>8 - 10</td> <td>DOC</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Selenium</td> <td>0.48</td> <td></td> <td>mg/kg</td> <td>0.5</td>	MW9-552		8 - 10	DOC	MONITORING WELL	Σ	Selenium	0.48		mg/kg	0.5
A-4 B-10 OUT MONTORNG WELL M Thatlium 0.4 B A-4 13-15 OUT MONTORNG WELL N ALL VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL N ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic 24.9 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic Arsenic Arsenic Arse	MW9-552		8-10	OUT	MONITORING WELL	Σ	Silver	0.68		mg/kg	-
A-4 8-10 OUT MONTORING WELL N ALL VOLATILES ND NA A-4 13-15 OUT MONTORING WELL N ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORING WELL M Arithmony 4.2 UNR A-4 13-15 OUT MONTORING WELL M Arithmony 0.72 NJ A-4 13-15 OUT MONTORING WELL M Arithmony 0.21 B A-4 13-15 OUT MONTORING WELL M Arithmony 0.021 M A-4 13-15 OUT MONTORING WELL M Arithmony 0.062 U A-4 13-15 OUT MONTORING WELL M Arithmony 0.062 U A-4 13-15 OUT MONTORING WELL M Arithmony Arithmony Ari	MW9-552		8-10	DOCT	MONITORING WELL	Σ	Thattium	0.4	60	mg/kg	-
A-4 13-15 OUT MONITORING WELL V ALL VOLATILES ND NA A-4 13-15 OUT MONITORING WELL SV ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONITORING WELL M Arsenic 22.2 NU A-4 13-15 OUT MONITORING WELL M Arsenic 22.2 NU A-4 13-15 OUT MONITORING WELL M Arsenic 0.21 B A-4 13-15 OUT MONITORING WELL M Copper 24.9 NU A-4 13-15 OUT MONITORING WELL M Arsenic 0.021 B A-4 13-15 OUT MONITORING WELL M Arsenic 0.062 U A-4 13-15 OUT MONITORING WELL M M Arsenic 0.062 U A-4 13-15 OUT MONITORING WELL M M Arsenic 0.06	MW9-552		8-10	OUT	MONITORING WELL	2	Zinc	84.7		mg/kg	8
A-4 13-15 OUT MONITORING WELL V ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONITORING WELL M ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONITORING WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONITORING WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONITORING WELL M Cadmium 0.72 B A-4 13-15 OUT MONITORING WELL M Copper 24.9 NJ A-4 13-15 OUT MONITORING WELL M Monitorium 0.062 U A-4 13-15 OUT MONITORING WELL M Monitorium 0.062 U A-4 13-15 OUT MONITORING WELL M Monitorium 0.062 U A-4 13-15 OUT MONITORING WELL M M Monitorium 0.069 </th <th></th> <td></td>											
A-4 13-15 OUT MONTORNG WELL SV ALL SEMI-VOLATILES ND NA A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Cadmium 0.72 B A-4 13-15 OUT MONTORNG WELL M Copper 24.9 NJ A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.069 U A-4 </th <th>MW9-553</th> <td></td> <td>13-15</td> <td>OUT</td> <td>MONITORING WELL</td> <td>></td> <td>ALL VOLATILES</td> <td>Q</td> <td>ΨZ V</td> <td>ug/kg</td> <td>¥Z</td>	MW9-553		13-15	OUT	MONITORING WELL	>	ALL VOLATILES	Q	ΨZ V	ug/kg	¥Z
A-4 13-15 OUT MONTORNG WELL M Antimony 4.2 UNR A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Cadmium 0.72 B A-4 13-15 OUT MONTORNG WELL M Cadmium 0.21 B A-4 13-15 OUT MONTORNG WELL M Cadmium 0.021 NJ A-4 13-15 OUT MONTORNG WELL M Montorny 0.062 U A-4 13-15 OUT MONTORNG WELL M Montorny 0.062 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.062 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.069 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.069 U A-4	MW9-553		13-15	DO	MONITORING WELL	S	ALL SEMI-VOLATILES	9		ug/kg	AN AN
A-4 13-15 OUT MONTORNG WELL M Arsenic 22.2 NJ A-4 13-15 OUT MONTORNG WELL M Beryllium 0.72 N A-4 13-15 OUT MONTORNG WELL M Chromium 0.21 B A-4 13-15 OUT MONTORNG WELL M Copper 24.9 N A-4 13-15 OUT MONTORNG WELL M M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M M Nickel 33 A-4 13-15 OUT MONTORNG WELL M Nickel 33 UW A-4 13-15 OUT MONTORNG WELL M Nickel 0.062 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.069 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.069 U A-4 </th <th>MW9-553</th> <td></td> <td>13-15</td> <td>OUT</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Antimony</td> <td>4.2</td> <td></td> <td>mg/kg</td> <td>9</td>	MW9-553		13-15	OUT	MONITORING WELL	Σ	Antimony	4.2		mg/kg	9
A-4 13-15 OUT MONTORNG WELL M Beryllium 0.72 B A-4 13-15 OUT MONTORNG WELL M Cadmium 0.21 B A-4 13-15 OUT MONTORNG WELL M Copper 24.9 NJ A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M Nickel 33 A-4 13-15 OUT MONTORNG WELL M Nickel 0.068 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.069 U A-4 13-15 OUT MONTORNG WELL M Nickel 0.049 B A-4 13-15	MW9-553		13-15	DOUT	MONITORING WELL	≨	Arsenic	22.2	7	mg/kg	-
A-4 13-15 OUT MONTORNG WELL M Cadmium 0.21 B A-4 13-15 OUT MONTORNG WELL M Copper 24.9 NJ A-4 13-15 OUT MONTORNG WELL M Copper 24.9 NJ A-4 13-15 OUT MONTORNG WELL M Mercury 0.062 U A-4 13-15 OUT MONTORNG WELL M M Nickel 33 A-4 13-15 OUT MONTORNG WELL M Nickel 33 UW A-4 13-15 OUT MONTORNG WELL M Nickel 0.068 U A-4 13-15 OUT MONTORNG WELL M Xing 0.68 U A-4 13-15 OUT MONTORNG WELL M Xing 0.49 B A-4 13-15 OUT MONTORNG WELL M Xing 0.49 B	MW9-583		13-15	TUO	MONITORING WELL	Σ	Beryllium	0.72		mg/kg	0.5
A-4 13-15 OUT MONTORING WELL M Chromium 13.6 A-4 13-15 OUT MONTORING WELL M Copper 24.9 A-4 13-15 OUT MONTORING WELL M Mercury 0.062 U A-4 13-15 OUT MONTORING WELL M Montorium 0.062 U A-4 13-15 OUT MONTORING WELL M Silver 0.68 U A-4 13-15 OUT MONTORING WELL M Silver 0.68 U A-4 13-15 OUT MONTORING WELL M Thallium 0.49 B A-4 13-15 OUT MONTORING WELL M Thallium 0.49 B	MW9-553		13-15	TUO	MONITORING WELL	≆	Cadmium	0.21	83	mg/kg	9.0
A-4 13-15 OUT MONTORING WELL M Copper 24.9 NJ A-4 13-15 OUT MONTORING WELL M Morcury 0.062 U A-4 13-15 OUT MONTORING WELL M Nickel 33 UW A-4 13-15 OUT MONTORING WELL M Silver 0.68 U A-4 13-15 OUT MONTORING WELL M Thallium 0.49 B A-4 13-15 OUT MONTORING WELL M Thallium 0.49 B A-4 13-15 OUT MONTORING WELL M Thallium 0.49 B	MW9-553		13-15	OUT	MONITORING WELL	≆	Chromium	13.6		mg/kg	-
A-4 13-15 OUT MONITORING WELL M Load 18.4 NJ A-4 13-15 OUT MONITORING WELL M Moscol 33 U A-4 13-15 OUT MONITORING WELL M Silver 0.68 U A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B	MW9-553		13-15	OUT	MONITORING WELL	Σ	Copper	24.9		mg/kg	2.5
A-4 13-15 OUT MONITORING WELL M Mercury 0.062 U A-4 13-15 OUT MONITORING WELL M Nickel 33 UW A-4 13-15 OUT MONITORING WELL M Silver 0.68 U A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B	MW9-553		13-15	OUT	MONITORING WELL	Σ	Lead	18.4	2	mg/kg	0.3
A-4 13-15 OUT MONITORING WELL M Selenium 0.21 UW A-4 13-15 OUT MONITORING WELL M Silver 0.68 U A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B	MW9-553		13-15	DOT	MONITORING WELL	Σ	Mercury	0.062		mg/kg	0.1
A-4 13-15 OUT MONITORING WELL M Selenium 0.21 UW A-4 13-15 OUT MONITORING WELL M Thallium 0.68 U A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Zinc 87.1	MW9-553		13-15	OUT	MONITORING WELL	Σ	Nickel	33		mg/kg	4
A-4 13-15 OUT MONITORING WELL M Silver 0.68 U A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Zinc 87.1	MW9-583		13-15	OUT	MONITORING WELL	Σ	Selenium	0.21	<u> </u>	mg/kg	0.5
A-4 13-15 OUT MONITORING WELL M Thallium 0.49 B A-4 13-15 OUT MONITORING WELL M Zinc 87.1	MW9-553		13-15	OUT	MONITORING WELL	Σ	Silver	0.68		mg/kg	+
A-4 13-15 OUT MONITORNG WELL M Zinc 87.1	MW9-553		13-15	OUT	MONITORING WELL	Σ	Thallium		83	mg/kg	_
	MW9-553		13-15	OCT	MONITORING WELL	Σ	Zinc			mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID *	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	ראים
MW10-551	8-4	S-6	THO	NEOL NOW	>	ALL VOLATIES	Ş		no/ko	AN
MW10-551	8-W	3-5	TOO	MONTORNG WELL	S	ALL SEMI - VOLATILES	2	Y Y	ua/ka	¥ Z
MW10-551	A-8	3-5	TUO	MONITORING WELL	Σ	Antimony	9.		mg/kg	9
MW10-551	8-A	3-5	TUO	MONITORING WELL	Σ	Arsenic	19.8	7	mg/kg	-
MW10-551	A-8	3-5	TUO	MONITORING WELL	Σ	Beryllium	*		mg/kg	0.5
MW10-551	A-8	3-5	- OUT	MONITORING WELL	Σ	Cadmium	0.37		mg/kg	0.5
MW10-551	A-8	3-5		MONITORING WELL	Σ	Сһготіл	28.6	7	mg/kg	-
MW10-SS1	A-8	3-5	<u> </u>	MONITORING WELL	≥	Copper	49.3		mg/kg	2.5
MW10-SS1	A-8	3-5	OUT	MONTORING WELL	≥	Lead	20.7		mg/kg	0.3
MW10-551	A-8	3-5	DOUT	MONITORING WELL	Σ	Mercury	90.0	כ	mg/kg	0.1
MW10-551	A-8	3-5	OUT	MONITORING WELL	₹	Nickel	32.3		mg/kg	4
MW10-551	A-8	- 1	OUT	MONITORING WELL	Σ	Selenium	0.51	7	mg/kg	0.5
MW10-551	A-8	3-5	DOC	MONITORING WELL	Σ	Silver	0.44	ס	mg/kg	-
MW10-551	A-8	3-5	OUT	MONITORING WELL	2	Thallium	0.51	¬	mg/kg	-
MW10-SS1	A-8	-14	OUT	MONITORING WELL	Z	Zinc	109	J	mg/kg	2
MW10-553	8-Y	13-15	<u> </u>	MONITORING WELL	>	ALL VOLATILES	Q	AN	ug/kg	¥
MW10-553	A-8	13-15	<u> </u>	MONITORING WELL	S	ALL SEMI-VOLATILES	Q	YN V	ug/kg	₹ Z
MW10-553	A8	13-15	<u> </u>	MONITORING WELL	₹	Antimony	2.2		mg/kg	9
MW10-SS3	8-Y	13-15	<u> </u>	MONITORING WELL	≥	Arsenic	10.8	7	mg/kg	-
MW10-553	8-V	13-15	<u> </u>	MONITORING WELL	Σ	Beryllium	0.25		mg/kg	9.0
MW10-553	A-8	13-15	<u> </u>	MONITORING WELL	Σ	Cadmium	0.72		mg/kg	0.5
MW10-853	8-V	13-15	<u> </u>	MONITORING WELL	2	Chromium	7.4	7	mg/kg	-
MW10-553	A-8	13-15	•	MONITORING WELL	Σ	Copper	22.6		mg/kg	2.5
MW10-553	A-8	13-15	<u> </u>	MONITORING WELL	Σ	Lead	12.1	7	mg/kg	0.3
MW10-553	A-8	13-15	° _	MONITORING WELL	Σ	Mercury	90.06	כ	mg/kg	0.1
MW10-553	8 - V	13-15	DOUT	MONTORING WELL	Σ	Nickel	19.7		mg/kg	4
MW10-853	A-8	13-15	<u> </u>	MONITORING WELL	₹	Selenium	0.54	ס -	mg/kg	9.0
MW10-883	8-Y	13-15	<u> </u>	MONITORING WELL	2	Silver	0.75	ח	mg/kg	-
MW10-883	8-V	13-15	ō	MONITORING WELL	Σ	Thallium	0.54	7	mg/kg	-
MW10-853	A-8	13-15		MONITORING WELL	Σ	Zinc	98.3	ſ	mg/kg	2

SAMPLE # (GRID #	DEPTH	TINONI		CATEGORY	500	RESULTS	QUAUFIER	UNITS	LW1
) }		ב כי	Ĕ) in			
	1		!						:	
MW11-551	F-7	3-5	- - - - -	MONTONING WELL	>	ALL VOLATILES	2		ng/kg	₹ Z
MW11-551	F-7	3-5	DO	MONITORING WELL	S	ALL SEMI-VOLATILES	Q	¥	ug/kg	Y Z
MW11-551	F-7	3-5	OUT	MONITORING WELL	Σ	Antimony	3.3	7	mg/kg	9
MW11-551	F-7	3-5	TUO	MONITORING WELL	Σ	Arsenic	17.9	7	mg/kg	-
MW11-551	F-7	3-5	TUO	MONITORING WELL	2	Beryllium	0.41		mg/kg	9.0
MW11-551	F-7	3-5	DO	MONITORING WELL	Σ	Cadmium	0.83		mg/kg	9.0
MW11-551	F-7	3-5	DO	MONITORING WELL	Σ	Chromium	9.5	7	mg/kg	-
MW11-SS1	F-7	3-5	DOC	MONITORING WELL	Σ	Copper	33.4		mg/kg	2.5
MW11-551	F-7	3-5	OUT	MONTORING WELL	Σ	Lead	16.2	7	mg/kg	0.3
MW11-551	F-7	3-5	OUT	MONITORING WELL	Σ	Mercury	90.0	5	mg/kg	0.1
MW11-551	F-7	3-8	OUT	MONITORING WELL	\$	Nickel	28.2		mg/kg	4
MW11-SS1	F-7	B - 5	OUT	MONITORING WELL	Σ	Selenium	0.38		mg/kg	0.5
MW11-551	F-7	3-6	OUT	MONTORING WELL	Σ	Silver	99.0	3	mg/kg	-
MW11-551	F-7	3-5	DOC	MONITORING WELL	Σ	Thallium	0.43	7	mg/kg	-
MW11-551	F-7	3-5	OUT	MONITORING WELL	≆	Zinc	79.8	٦	mg/kg	7
MW11-553	F-7	13-15	DO	MONITORING WELL	>	ALL VOLATILES	Q		ug/kg	Y Y
MW11-553	F-7	13-15	TUO	MONITORING WELL	S	ALL SEMI - VOLATILES	2	¥Z	ug/kg	ď
MW11-SS3	F-7	13-15	DOCT	MONITORING WELL	Σ	Antimony	2.7	7	mg/kg	80
MW11-883	F-7	13-15	- TOO	MONITORING WELL	Σ	Arsenic	13.4	7	mg/kg	-
MW11-553	F-7	13-15	DO	MONITORING WELL	Σ	Beryllium	0.41		mg/kg	9.0
MW11-853	F-7	13-15	TUO	MONITORING WELL	2	Cadmium	0.59		mg/kg	9.0
MW11-883	F-7	13-15	OUT.	MONITORING WELL	Σ	Chromium	1.1	7	mg/kg	_
MW11-553	F-7	13-15	DOOT	MONITORING WELL	Σ	Copper	22		mg/kg	2.5
MW11-SS3	F-7	13-15	TUO	MONITORING WELL	Σ	Lead	15.2	7	mg/kg	0.3
MW11-883	F-7	13-15	TUO	MONITORING WELL	Σ	Mercury	90.0	ח	mg/kg	0.1
MW11-553	F-7	13-15	TUO	MONITORING WELL	₹	Nickel	16.8		mg/kg	4
MW11-553	F-7	13-15	TUO	MONITORING WELL	₹	Selenium	0.5	7	mg/kg	9.0
MW11-883	F-7	13-15	DO T	MONITORING WELL	Σ	Silver	0.63	>	mg/kg	-
MW11-883	F-7	13-15	DO T	MONITORING WELL	Σ	Thallium	0.5	7	mg/kg	
MW11-883	F-7	13-15	OUT	MONITORING WELL	Σ	Zinc	70.3	7	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE # GRID #	ORIO	DEPTH IN/OU	TUO/NI	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	L WIT
MW12-551	E-9	3-5	TUO	MONITOPING WELL	>	ALL VOLATILES	Q.	¥	ug/kg	A N
MW12-551	E-9	3-6	OUT	MONITORING WELL	S	ALL SEMI ~ VOLATILES	2	¥	ug/kg	¥
MW12-551	E-9	3-6	OUT	MONITORING WELL	Σ	Antimony	4.1	7	mg/kg	9
MW12-551	E-9	3-6	TUO	MONTORING WELL	Σ	Arsenic	20.7	7	mg/kg	*-
MW12-551	E-9	3-5	DOUT	MONITORING WELL	Σ	Beryllium	0.64		mg/kg	9.0
MW12-551	E-9	3-5	TUO	MONITOPING WELL	Σ	Cadmium	0.52		mg/kg	0.5
MW12-551	6-3	3-5	OUT	MONITORING WELL	Σ	Chromium	15.8	7	mg/kg	-
MW12-551	E-9	3-5	OUT	MONITORING WELL	Σ	Copper	36.7		mg/kg	2.5
MW12-551	E-9	3-5	OUT	MONITORING WELL	Σ	Lead	17.7		mg/kg	0.3
MW12-551	E-9	3-6	DOUT	MONITORING WELL	Σ	Mercury	90.0	<u>ح</u>	mg/kg	0.1
MW12-551	E-9	3-6	OUT	MONITORING WELL	Σ	Nickel	32.1		mg/kg	4
MW12-551	6-3	3-6	OUT	MONITORING WELL	Σ	Selenium	0.38	7	mg/kg	9.0
MW12-551	E-9	3-8	OUT	MONITORING WELL	Σ	Silver	0.48	>	mg/kg	_
MW12-551	B-3	3-5	OUT	MONITORING WELL	Σ	Thallium	0.38	7	mg/kg	_
MW12-551	E-9	3-5	OUT	MONITORING WELL	Σ	Zinc	98.2	r	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE #	GRID #	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMI
MW12-553	6- 1-	13-15	TUO	MONITORING WELL	>	ALL VOLATILES	ON	ď	ug/kg	A Z
MW12-553	E-9	13-15	DOCT	MONITORING WELL	S	Phenanthrene	300	7	ug/kg	380
MW12-SS3	E-9	13-15	OUT	MONITORING WELL	S	Anthracene	82	ד	ug/kg	380
MW12-SS3	E-9	13-15	DO	MONITORING WELL	S	Carbazole	190	ד	ug/kg	380
MW12-SS3	E-9	13-15	DOUT	MONITORING WELL	S	Fluoranthene	310	7	ug/kg	380
MW12-553	B - B	13-15	DOCT	MONITORING WELL	λs	Pyrana	250	7	ug/kg	380
MW12-553	E-9	13-15	DOUT	MONITORING WELL	S	Benzo(a) Anthracene	110	7	ug/kg	380
MW12-SS3	E-9	13-15	OUT	MONITORING WELL	SS	Chrysene	130	7	ug/kg	380
MW12-553	E-9	13-15	OUT	MONITORING WELL	S	Benzo(b) Fluoranthene	110	7	ug/kg	380
MW12-SS3	6-B	13-15	OUT	MONITORING WELL	SS	Benzo(a)Pyrene	87	7	ug/kg	380
MW12-553	E-9	13-15	DOCT	MONITORING WELL	Σ	Antimony	2.9	7	mg/kg	9
MW12-553	E-9	13-15	OUT	MONITORING WELL	Σ	Arsenic	4	7	mg/kg	-
MW12-553	E-9	13-15	OUT	MONITORING WELL	Σ	Beryllium	0.22		mg/kg	0.5
MW12-553	E-3	13-15	DOCT	MONITORING WELL	Σ	Cadmium	0.37		mg/kg	0.5
MW12-553	E-9	13-15	DOCT	MONITORING WELL	Σ	Chromium	5.8	7	mg/kg	-
MW12-SS3	E-3	13-15	OUT	MONITORING WELL	Σ	Copper	38.5		mg/kg	2.5
MW12-553	E-9	13-15	DOCT	MONITORING WELL	×	Lead	=	ד	mg/kg	0.3
MW12-553	6-B	13-15	OUT	MONITORING WELL	Σ	Mercury	0.05	ɔ	mg/kg	0.1
MW12-553	Q- W	13-15	OUT	MONITORING WELL	Σ	Nickel	9.7		mg/kg	4
MW12-SS3	E-9	13-15	OUT	MONITORING WELL	Σ	Selenium	0.26	7	mg/kg	0.5
MW12-SS3	E-9	13-15	OUT	MONITORING WELL	Σ	Silver	0.47	5	mg/kg	-
MW12-553	E-9	13-15	TUO	MONITORING WELL	Σ	Thallium	0.26	ד	тд/ка	-
MW12-553	E-9	13-15	DUT	MONITORING WELL	Σ	Zinc	50.1	7	mg/kg	2

CC-2 C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-2	SURFACE SOIL SAMPLE	FOR	RESULTS	QUALIFIER	UNITS	UMIT
C-2 0-2 IN SURFACE SOIL SAMPLE C-2 0-2 OUT SURFACE SOIL SAMPLE C-2 0-2 OUT SURFACE SOIL SAMPLE C-2 0-2 OUT SURFACE SOIL SAMPLE C-3 0-2 OUT SURFACE SOIL SAMPLE C-4 0-2 OUT SURFACE SOIL SAMPLE C-5 0-2 OUT SURFACE SOIL SAMPLE C-6 0-2 OUT SURFACE SOIL SAMPLE C-7 0-2 OUT SURFACE SOIL SAMPLE C-8 0-2 OUT SURFACE SOIL SAMPLE C-9 0-2 OUT S	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE					
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE E-3 0-2 OUT S	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE					
C-2 0-2 IN SURFACE SOIL SAMPLE C-2 0-2 OUT SURFACE SOIL SAMPLE C-3 0-2 OUT SURFACE SOIL SAMPLE C-4 0-2 OUT SURFACE SOIL SAMPLE C-5 0-2 OUT SURFACE SOIL SAMPLE C-6 0-2 OUT SURFACE SOIL SAMPLE C-7 0-2 OUT SURFACE SOIL SAMPLE C-8 0-2 OUT SURFACE SOIL SAMPLE C-9 0-2 OUT S	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE	NOT ANALIZED				
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE SURFACE SOIL SAMPLE	ALL SEMI-VOLATILES	Q	¥Z	ug/kg	A N
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Antimony	2.5		mg/kg	9
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	T 10110 110110110110	Arsenic	12.6	7	mg/kg	-
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOFT SAMPLE	A	0.5		mg/kg	0.5
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Cadmium	0.63		mg/kg	9.0
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Chromium	12.4	ה	mg/kg	-
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Copper	19.2		mg/kg	2.5
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Lead	23.1		mg/kg	0.3
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Mercury	90.0	5	mg/kg	0.1
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Nickel	18.6		mg/kg	4
C-2 0-2 IN SURFACE SOIL SAMPLE C-2 0-2 IN SURFACE SOIL SAMPLE C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Selenium	0.38	7	mg/kg	0.5
C-2 0-2 IN SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Silver	e	7	mg/kg	-
C-2	SURFACE SOIL SAMPLE	Thallium	0.48	7	mg/kg	-
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Zinc	179	ſ	mg/kg	2
E-2 0-2 OUT SURFACE SOIL SAMPLE						
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	NOT ANALYZED				
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	ALL SEMI - VOLATILES	QN	¥ Z	ug/kg	AN
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Antimony	1.7	7	mg/kg	•
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Arsenic	10.8	7	mg/kg	-
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Beryllium	0.41		mg/kg	9.0
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Cadmium	9.0		mg/kg	9.0
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Chromium	10.3	7	mg/kg	-
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Copper	27.2		mg/kg	2.5
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Pead	28.8		mg/kg	0.3
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Mercury	90.0	כ	mg/kg	0.1
E-2 0-2 OUT SURFACE SOIL SAMPLE E-2 0-2 OUT SURFACE SOIL SAMPLE E-2 0-2 OUT SUBFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Nickel	15.5		mg/kg	*
E-2 0-2 OUT SURFACE SOIL SAMPLE	SURFACE SOIL SAMPLE	Selenium	0.5	3	mg/kg	0.5
CELD OLD OLD SINGE SOL SANDER	SURFACE SOIL SAMPLE	Silver	0.58	2	mg/kg	-
	SURFACE SOIL SAMPLE	Thallium	0.5	2	mg/kg	-
-2 0-2		Zinc	189	7	mg/kg	2

						ANALYSIS				DEFECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMIT
888		C		HIDEACE COLL CAMPIE	>	NOT ANA! VZED				
200		0 0		SUBFACE SOIL SAND E	2	Phenanthrene	110	-	oy/on	380
SSS		0-0		SURFACE SOIL SAMPLE	>s	Fluoranthena	210	7	ua/ka	380
883	<u>_</u>	0-5	100	SURFACE SOIL SAMPLE	SS	Pyrene	170		ug/kg	380
SS		0-2	DOUT	SURFACE SOIL SAMPLE		Benzo(a) Anthracene	84	7	ug/kg	380
SS		0-2	OUT	SURFACE SOIL SAMPLE	S	Chrysene	130	7	ug/kg	380
SS		0-2	DOUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	150	7	ug/kg	380
SS3		0-2	TUO	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	170	7	ug/kg	380
SS3		0-2		SURFACE SOIL SAMPLE	S	Indeno(12,3-cd)Pyrene	84	7	ug/kg	380
SS3		0-2		SURFACE SOIL SAMPLE	2	Antimony	N	7	mg/kg	9
SS3		0-2		SURFACE SOIL SAMPLE	Σ	Arsenic	12.4	7	mg/kg	-
SS3		0-5		SURFACE SOIL SAMPLE		Baryllium	0.45		mg/kg	0.5
SS3		0-2		SURFACE SOIL SAMPLE	\$	Cadmium	-		mg/kg	0.5
SS3		0-2		SURFACE SOIL SAMPLE		Chromium	12	7	mg/kg	-
SS3		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Copper	49.2		mg/kg	2.5
ဗေဒ		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	38.6		mg/kg	0.3
ess		0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.05	<u> </u>	mg/kg	0.1
SS3		0-5	DOCT	SURFACE SOIL SAMPLE		Nickel	14.9		mg/kg	4
883		0-2	OUT	SURFACE SOIL SAMPLE		Selenium	0.49	7	mg/kg	0.5
SS3		0-2	DOCT	SURFACE SOIL SAMPLE	2	Silver	0.67	כ	mg/kg	-
583		0-2	OUT	SURFACE SOIL SAMPLE	-	Thallium	0.49	2	mg/kg	-
SS3		0-5	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	162	7	mg/kg	2
700			1	n journal Incompany	3	COT ANA TON				
5 6			3 6	COLORAGE COLORAGE CE			•		- II	000
n d		2-0	5 6	SURFACE SOIL SAMPLE		Briefic			ug/kg	oor "
nn d		2 0		SURFACE SOIL SAMPLE		Anumony	י ני		mg/kg	•
900		2-0		SURFACE SOIL SAMPLE		Arsenic	u. 6	7	mg/kg	- (
400		0 0		SUMPACE SOIL SAMPLE	2 2	Beryllium	0.6		mg/kg	G G
466		2-0		STIREACE SON SAMPLE		an imord		-	Bu/Bu	?
888	<u></u>	0-0	100	SURFACE SOIL SAMPLE		Copper	24	•	By/BE	2.5
SSA		0-5		SURFACE SOIL SAMPLE	Σ	Lead	86.5		ma/kg	0.3
554		0-2		SURFACE SOIL SAMPLE		Mercury	0.05	5	mg/kg	0.1
884		0-2		SURFACE SOIL SAMPLE	Σ	Nickel	8.5		mg/kg	4
884		0-2		SURFACE SOIL SAMPLE		Selenium	₩.0	7	mg/kg	9.0
584		0-2	_	SURFACE SOIL SAMPLE		Silver	0.57	5	mg/kg	_
884		0-5		SURFACE SOIL SAMPLE	Σ	Thallium	4.0	7	mg/kg	_
488		0-5		SURFACE SOIL SAMPLE	Ξ	Zine	128	_	ma/ka	•

				***************************************		ANALYSIS				DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	FW1
888		0-2	OUT	SURFACE SOIL SAMPLE	>	NOT ANALYZED				
888	Ü	ļ	OUT	SURFACE SOIL SAMPLE	S	Fluoranthene	8		ug/kg	350
SSS	Ī	ı	OUT	SURFACE SOIL SAMPLE	S	Pyrene	90	7	ug/kg	350
585			OUT	SURFACE SOIL SAMPLE	S	Chrysene	78	7	ug/kg	350
585	<u>_</u>	- 1	TUO	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	87	٦	ug/kg	350
888	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	8	7	mg/kg	9
888			DOUT	SURFACE SOIL SAMPLE	Σ	Arsenic	19.5	7	mg/kg	-
888	ŵ	•	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.69		mg/kg	0.5
888		•	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.74		mg/kg	0.5
888		- 1	DOUT	SURFACE SOIL SAMPLE	₹	Chromium	15.4	¬	mg/kg	-
SSS	Ü	١	OUT	SURFACE SOIL SAMPLE	Σ	Copper	32.2		mg/kg	2.5
555	┙		OUT		Σ	Lead	39.8		mg/kg	0.3
888	ī	١	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	90.08	5	mg/kg	0.1
888		١	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	24.1		mg/kg	4
888		١	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.43		mg/kg	0.5
888		١	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.55	5	mg/kg	-
385	ш	1	DOUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.43	7	mg/kg	-
888	E-	- 1	OUT	SURFACE SOIL SAMPLE	Σ	Zinc	28		mg/kg	2
			!							
000		0-2	100	SURFACE SOIL SAMPLE	>	NOI ANALYZED	•		:	
988	_	1	DOOT		SS	Phenanthrene	76		ug/kg	320
988	W	1	DOCT		S	Anthracene	9/		ug/kg	350
828	E-4	1	DOUT		S	Fluoranthene	8		ng/kg	320
888	_	1	DOCT		S	Pyrene	<u>.</u>		ng/kg	320
888	w	1	OUT	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	160	7	ug/kg	320
888	ш	1	DOUT	SURFACE SOIL SAMPLE	2	Antimony	1.8		mg/kg	9
888		1	DUC	SURFACE SOIL SAMPLE	Σ	Arsenic	16.2	7	mg/kg	_
888	W	١	DOCT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.48		mg/kg	0.5
988	W	1	DOUT	SURFACE SOIL SAMPLE	Σ	Cadmium	6.0		mg/kg	0.5
828		1	DOUT	SURFACE SOIL SAMPLE	Σ	Chromium	14.8	7	mg/kg	-
888		1	DOUT	SURFACE SOIL SAMPLE	₹	Copper	53.6		mg/kg	2.5
888	E-4	0-2	DOUT	SURFACE SOIL SAMPLE	*	Lead	<u>48</u>		mg/kg	0.3
888		1	DOUT	SURFACE SOIL SAMPLE	*	Mercury	0.05	2	mg/kg	0.1
888	E-4	1	OUT	SURFACE SOIL SAMPLE	2	Nicket	20.7		mg/kg	4
988	E-4	1	OUT	SURFACE SOIL SAMPLE	2	Selenium	0.41	7	mg/kg	0.5
880	E-4	1	DOUT	SURFACE SOIL SAMPLE	2	Silver	9.0	2	mg/kg	-
888	E-4	0-2	TUO	SURFACE SOIL SAMPLE	2	Thallium	0.41	<u> </u>	mg/kg	-
888	E-4	-11	OOT	SURFACE SOIL SAMPLE	Σ	Zinc	522	<u>-</u>	mg/kg	2

						ANALYSIS				DETECTION
SAMPLE	GHED •	DEPTH	IN/OUT	DESCHIPTION C	CATEGORY	FOR	RESULTS	QUALIFIER	ONITS	
587	E - 5	0-2	TUO	SURFACE SOIL SAMPLE	>	NOT ANALYZED				
SSA	E-5	0-2	TOO	SURFACE SOIL SAMPLE	SS	ALL SEMI-VOLATILES	QN	AN	ug/kg	¥ Z
SST	E-5	0-2	OUT	SURFACE SOIL SAMPLE	≆	Antimony	1.9	7	mg/kg	60
557	E-5	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	10.9	7	mg/kg	-
SS7	E-5	0-2	OUT	SURFACE SOIL SAMPLE	*	Beryllium	0.39		mg/kg	0.5
SS7	E-5	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	0.51		mg/kg	9.0
557	E-5	0-2	DO	SURFACE SOIL SAMPLE	Σ	Chromium	8.6	7	mg/kg	-
557	E-5	0-2	-TOO	SURFACE SOIL SAMPLE	Σ	Copper	28.6		mg/kg	2.5
557	E-5	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Lead	22.4		mg/kg	6.0
SS7	E-5	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Mercury	0.05	כ	mg/kg	0.1
587	E I	0-5	OUT	SURFACE SOIL SAMPLE	¥	Nickel	18.4		mg/kg	4
887	E-5	02	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.43	7	mg/kg	0.5
587	E S	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Silver	0.63	ב	mg/kg	-
587	E-5	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Thallium	0.43	7	mg/kg	-
SS7	E-5	0-2	OUT	SURFACE SOIL SAMPLE	W	Zinc	81.3	ſ	mg/kg	2
828	E-3	0-5	OUT	SURFACE SOIL SAMPLE	>	NOT ANALYZED				
828	E-3	0-5	OUT	SURFACE SOIL SAMPLE	S	Fluoranthene	83	7	ug/kg	320
828	E-3	0-2	OUT	SURFACE SOIL SAMPLE	S	Pyrene	120	7	ng/kg	350
828	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Antimony	2.1	7	mg/kg	9
SSB	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Arsenic	13.3	7	mg/kg	-
828	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Beryllium	0.53		mg/kg	9.0
828	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Cadmium	1.5		mg/kg	9.0
888	E-3	0-5	OUT	SURFACE SOIL SAMPLE	×	Chromium	10.5	7	mg/kg	-
828	E-3	0-5	OUT	SURFACE SOIL SAMPLE	Σ	Copper	22.5		mg/kg	2.5
828	E - B	0-5	DOUT	SURFACE SOIL SAMPLE	Σ	Lead	61.8		mg/kg	0.3
828	П -3	0-5	DOCT	SURFACE SOIL SAMPLE	Σ	Mercury	90.0	5	mg/kg	1.0
828	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Nickel	42.9		mg/kg	4
888	E-3	0-2	OUT	SURFACE SOIL SAMPLE	Σ	Selenium	0.42	7	mg/kg	9.0
888	E-3	0-2	OUT	SURFACE SOIL SAMPLE	\S	Silver	0.7	Þ	mg/kg	-
888	E-3	0-5	OUT	SURFACE SOIL SAMPLE	¥	Thallium	0.42	7	mg/kg	-
888	E-3	0-5	DO.	SURFACE SOIL SAMPLE	Σ	Zinc	394	7	mg/kg	2

SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUAUFIER	UNITS	DETECTION
7000	L					272				
0 0	7 (L 1	0 - 2	3 :	SURFACE SOIL SAMPLE		NOI ANALTZED		•	į	1
888	F-3	0-2		SURFACE SOIL SAMPLE		Phenanthrene	310	7	ug/kg	350
888	F-3	0-2		SURFACE SOIL SAMPLE	S	Fluoranthene	380	7	ug/kg	350
888	F-3	0-2		SURFACE SOIL SAMPLE		Pyrene	430	7	ug/kg	350
888	F-3	0-5	TUO	SURFACE SOIL SAMPLE	S	Benzo(a) Anthracene	280	7	ug/kg	350
888	F-3	0-5		SURFACE SOIL SAMPLE		Chrysene	330	7	ng/kg	350
888	F-3	0-5		SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	520	7	ug/kg	350
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Antimony	1.8	۵.	mg/kg	φ
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Arsenic	_	7	mg/kg	-
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Beryllium	0.68		mg/kg	0.5
888	F-3	0-5		SURFACE SOIL SAMPLE	≥	Cadmium	1.7		mg/kg	0.5
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Chromium	14.9	7	mg/kg	-
888	F-3	0-5		SURFACE SOIL SAMPLE	Σ	Copper	32.3		mg/kg	2.5
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Lead	89.7		шд/кд	0.3
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Mercury	0.05	2	mg/kg	0.1
888	F-3	0-5		SURFACE SOIL SAMPLE	Σ	Nickel	27.8		mg/kg	4
888	F-3	0-5		SURFACE SOIL SAMPLE	¥	Selenium	0.43	3	mg/kg	9.0
888	F-3	0-2		SURFACE SOIL SAMPLE	2	Silver	9.0	3	mg/kg	-
888	F-3	0-2		SURFACE SOIL SAMPLE	Σ	Thallium	0.43	7	mg/kg	-
888	F-3	0-2	TUO	SURFACE SOIL SAMPLE	Σ	Zinc	441	7	mg/kg	8

SURFACE SOIL SAMPLE MAND BORING HAND B					C	TIME
\$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\text{SS10}\$ \$\$510 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\text{M}\$ \$\$510 E-4 0	IN/OUT DESCRIPTION	30RY FOR	RESULTS	QUALIFIER	SIIS	- E 3
\$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\$ \$\$10 E						
\$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$	DOUT	V NOT ANALYZED				
\$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\text{SY}\$ \$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\text{M}\$ \$\$10 E-4 0-2 0UT SURFA	OUT	SV Phenanthrene	120	7	ng/kg	380
\$\$10 E-4 0-2 0UT SURFACE SOIL SAMPLE \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$	DOUT	SV Fluoranthene	220	7	ug/kg	380
\$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$V \$\$	OUT	SV Pyrene	180	7	ug/kg	380
\$\$10 E-4 0-2 0UT \$URFACE SOLL \$AMPLE SV \$\$10 E-4 0-2 0UT \$URFACE SOLL \$AMPLE SV \$\$10 E-4 0-2 0UT \$URFACE SOLL \$AMPLE SV \$\$10 E-4 0-2 0UT \$URFACE SOLL \$AMPLE M\$ \$\$10 E-4 0-2 0UT \$URFACE SOLL \$URFACE S	DOUT	SV Benzo(a) Anthracene	98	ח	ug/kg	380
\$\$10 E-4 0-2 0UT \$URFACE SOIL SAMPLE SV \$\text{SS10}\$ E-4 0-2 0UT \$URFACE SOIL SAMPLE SV \$\text{SS10}\$ E-4 0-2 0UT \$URFACE SOIL SAMPLE M\$\text{SS10}\$ E-4 0-2 0UT \$URF	DOUT	SV Chrysene	140	7	ug/kg	380
\$\$10 E-4 0-2 OUT SURFACE SOLL SAMPLE S\$10 E-4 0-2 OUT SURFACE SOLL SAMPLE M\$10 S\$10 S\$10 S\$10 S\$10 S\$10 S\$10 S\$10 S	OUT	SV Benzo(b) Fluoranthene	150	7	ug/kg	380
\$\$10 E-4 0-2 0UT \$URFACE SOIL SAMPLE \$\$10 E-4 0-	DOUT	SV Indeno(12,3-cd)Pyrene	81	ד	ug/kg	380
\$\$10 E-4 0-2 OUT SURFACE SOIL SAMPLE \$\$10 E-4 0-	DOUT	M	1.9	7	mg/kg	9
\$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$10 E-4 0UT \$URFACE SOLL SAMPL	DOUT	M	17.4	7	mg/kg	-
\$\$10 E-4 0-2 0UT \$URFACE SOLL SAMPLE \$\$10 E-4 0UT \$URFACE SOLL SAMPL	TUO	M	12.0		mg/kg	0.5
\$\$10 E-4 0-2 0UT \$URFACE \$CAL \$AMPLE \$\$10 E-4 0-2 0UT \$URFACE \$CAL \$AMPLE \$\$10 E-4 0-2 0UT \$URFACE \$CAL \$CAMPLE \$\$10 E-4 0UT \$URFACE \$CAL \$CAMPLE \$\$10 E-4 0-2 0UT \$URFACE \$CAL \$CAMPLE \$\$10 E-4 0-2 0UT \$URFACE \$CAL \$CAMPLE \$\$10 E-4 0UT \$URFACE \$CAL \$CAMPLE \$URFACE \$CAL \$CAMPLE \$CAL \$CAMPLE \$\$10 E-4 0UT \$URFACE \$CAL \$CAMPLE	TUO	M	1.1		mg/kg	0.5
\$\$10 E-4 0-2 0UT \$URFACE SOIL SAMPLE \$\$10 E-4 0UT \$URFA	OUT	M	18.5	7	mg/kg	-
\$\$10 E-4 0-2 OUT \$URFACE SOIL SAMPLE \$\$10 E-4 0-	DOUT	M Copper	34.1		mg/kg	2.5
\$\$10 E-4 0-2 OUT SURFACE SOIL SAMPLE \$\$10 E-4 0-2 IN HAND BORING \$\$10 E-5 IN HAND BORING \$\$10	OUT	M	1 56.2		mg/kg	0.3
\$\$10 E-4 0-2 OUT SURFACE SOLL SAMPLE \$\$10 C-3 0-2 IN HAND BORING \$\$10 C-3 0-2	OUT	Mercury	0.05	ס	mg/kg	1.0
SS10 E-4 0-2 OUT SURFACE SOLL SAMPLE SS10 C-3 0-2 IN HAND BORING -SS1 C-3 0-2 IN HAND BORING	TUO	M	31.8		mg/kg	4
SS10 E-4 0-2 OUT SURFACE SOIL SAMPLE SS10 E-4 0-2 OUT SURFACE SOIL SAMPLE SS10 E-4 0-2 OUT SURFACE SOIL SAMPLE -SS1 C-3 0-2 IN HAND BORING	OUT	M Selenium	0.47	ت	mg/kg	9.0
SS10 E-4 0-2 OUT SURFACE SOLL SAMPLE -SS1 C-3 0-2 IN HAND BORING	OUT	M	r 0.64	כ	mg/kg	-
SS10 E-4 0-2 OUT SURFACE SOIL SAMPLE	TUO	M Thallium	1 0.47	7	mg/kg	-
- 551 - 551	OUT	M	274	ŋ	mg/kg	2
- 551						
- 581 - 581	Z	V Methylene Chloride	92000	∢	ug/kg	S
- 581 C - 3 O - 2 IN HAND BORING S C - 3 O - 2 IN HAND BORING C - 3 O - 2 I	Z	V o - Xylene	440000	_	ug/kg	S
-581 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND	<u>Z</u>	SV 2 - Methylnaphthalene	1100		ug/kg	330
- 551 C-3 0-2 IN HAND BORING H	N.	M	QN	z	mg/kg	9
- 551 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-3	2 IN HAND	M	15		mg/kg	9.0
- 551 C-3 0-2 IN HAND BORING H	2 IN HAND	M	0.78 م		mg/kg	0.1
- 551 C-3 0-2 IN HAND BORING HAND BORING HAND BORING HAND BORING HAND BORING C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-	N N	M	4	g	mg/kg	-
- 551 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-3	N N	M	16.3		mg/kg	_
-551 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-3 I	2 IN HAND	M			mg/kg	-
- 551 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-3	Z	M	15.7		mg/kg	S
-551 C-3 0-2 IN HAND BORING HAND BORING C-3 0-2 IN HAND BORING C-3 I	-2 IN	Mercury	QN		mg/kg	0.1
- 551 C-3 0-2 IN HAND BORING	-2 -	M	21.7		mg/kg	-
-551 C-3 0-2 IN HAND BORING	-2 N	M		*	mg/kg	0.5
-SSI C-3 0-2 IN HAND BORING		Silver			mg/kg	-
C C C C C C C C C C	Z Z	Tha			mg/kg	0
001 0-0 0-c III	11	Zinc	72.5		mg/kg	-

						ANALYSIS				DETECTION
SAMPLE #	GRID *	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	LMIT
HB1-552	5	0-2	Z	HAND BORING	>	Methylene Chloride	30000	∢	ug/kg	vs
HB1 SS2		0-5	Z	HAND BORING	>	o - Xylene	300000		ug/kg	S
HB1-552	C-3	0-5	Z	HAND BORING	S	Naphthalene	390		ug/kg	330
HB1 - SS2		0-2	Z	HAND BORING	SS	2 - Methylnaphthalene	960		ug/kg	330
HB1 - SS2		0-2	Z	HAND BORING	2	Antimony	Q	z	mg/kg	9
HB1 - SS2		0-5	Z	HAND BORING	Σ	Arsenic	11.5	z	mg/kg	0.5
HB1-SS2	5	- 1	Z	HAND BORING	₹	Beryllium	2	z	mg/kg	0.1
HB1-552	- 1	Ť	Z	HAND BORING	Σ	Cadmium	Q N	z	mg/kg	-
HB1 - SS2		0-2	Z	HAND BORING	Σ	Chromium	16.2	z	mg/kg	-
HB1-552	ا	0-2	Z	HAND BORING	Σ	Copper	21.9	z	mg/kg	-
HB1 - SS2	<u>ن</u>	0-2	Z	HAND BORING	\$	Lead	10		mg/kg	S
HB1-552		0-2	Z	HAND BORING	Σ	Mercury	9		mg/kg	0.1
HB1 - SS2		0-2	Z	HAND BORING	Σ	Nickel	27.8	z	mg/kg	-
HB1-552		0-5	Z	HAND BORING	Σ	Selenium	Q		mg/kg	0.5
HB1-552	C-3	0-2	Z	HAND BORING	Σ	Silver	Q		mg/kg	-
HB1-552		0-5	Z	HAND BORING	2	Thallium	QN		mg/kg	0
HB1-SS2	C-3	0-2	Z	HAND BORING	Σ	Zinc	82.1	z	mg/kg	-
										·
HB1-553	ن	1	Z	HAND BORING	>	Ethylbenzene	120000	6	ng/kg	S
HB1-553	ပ	3-5	Z	HAND BORING	>	Methylene Chloride	130000	∢	ug/kg	S
HB1-553		3-2	Z	HAND BORING	>	o – Xylene	1900000	6	ng/kg	S
HB1-553		3-2	Z	HAND BORING	SS	Di-n-butyl Phthalate	009		ug/kg	330
HB1-553		3-2	Z	HAND BORING	S	Naphthalena	1600		ug/kg	330
HB1-553		3-2	Z	HAND BORING	SS	2 - Methylnaphthalene	2800		ug/kg	330
_	ပ	3-5	Z	HAND BORING	Σ	Antimony	Q	z	mg/kg	9
1	ပ်	ī	z	HAND BORING	₹	Arsenic	17.6		mg/kg	9.0
1	ပ်	3-2	Z	HAND BORING	Σ	Beryllium	0.84		mg/kg	0.1
HB1-553	ပ်		Z	HAND BORING	Σ	Cadmium	6.9	9	mg/kg	-
1		3-5	Z	HAND BORING	Σ	Chromium	18.4		mg/kg	
1		ï	Z	HAND BORING	≆	Copper	22.7		mg/kg	-
HB1-553		3-2	Z	HAND BORING	Σ	Lead	10		mg/kg	S
HB1-553		3-5	Z	HAND BORING	≆	Mercury	Q		mg/kg	0.1
ı	C-3	1	Z	HAND BORING	Σ	Nickel	25.3		mg/kg	-
ı	C-3	3-5	Z	HAND BORING	Σ	Selenium	9		mg/kg	9.0
1		3-2	Z	HAND BORING	≆	Silver	Q		mg/kg	-
1	C-3	3-5	Z	HAND BORING	Σ	Thallium	9		mg/kg	10
HB1 - SS3	C-3	3-5	ī	HAND BORING	Σ	Zinc	83.3		mg/kg	-

						ANALYSIS				DETECTION
SAMPLE #	GRID .	DEPTH	IN/OUT	DESCRIPTION CA	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
HB2+3-551	8-O	0-2	Z	HAND BORING	>	ALL VOLATILES	Q	Ä	ug/kg	A N
HB2+3-SS1	0 - 0	0-2	Z	HAND BORING	S	Naphthalene	870		ug/kg	330
HB2+3-SS1	0 - 0	0-2	Z	HAND BORING	S	2 - Methylnaphthalene	1900		ug/kg	330
HB2+3-SS1	8-O	0-2	Z	HAND BORING	Σ	Antimony	Q		mg/kg	ဖ
HB2+3-SS1	8-0 C-8	0-2	Z	HAND BORING	Σ	Arsenic	12		mg/kg	9.0
HB2+3-SS1	8-O	0-2	Z	HAND BORING	Σ	Beryllium	Q	·	mg/kg	0.1
HB2+3-SS1	0 - 0	0-2	Z	HAND BORING	Σ	Cadmium	Q	z	mg/kg	•
HB2+3-SS1	0 0	02	Z	HAND BORING	Σ	Chromium	1.4.1	·	mg/kg	-
HB2+3-SS1		0-2	Z	HAND BORING	Σ	Copper	19.5	-	mg/kg	-
HB2+3-SS1	8-D	0-2	z	HAND BORING	Σ	Lead	27		mg/kg	S
HB2+3-SS1		0-2	Z	HAND BORING	Σ	Mercury	Q		mg/kg	0.1
HB2+3-SS1		0-2	Z	HAND BORING	Σ	Nickel	21.4	z	mg/kg	-
HB2+3-SS1	0-0	0-2	Z	HAND BORING	Σ	Selenium	Q.		mg/kg	9.0
HB2+3-SS1	9-0	0-2	Z	HAND BORING	Σ	Silver	Q.		mg/kg	-
HB2+3-551	8-0	0-2	Z	HAND BORING	2	Thallium	ð		mg/kg	10
HB2+3-551	6B	0-2	Z	HAND BORING	*	Zinc	1.98	Z	mg/kg	1
HB2-SS2	9-0	0-2	Z	HAND BORING	>	o-Xylene	43	9	ug/kg	S
HB2-SS2	0-0	0-2	Z	HAND BORING	S	Di-n-butyl Phthalate	3900		ug/kg	330
HB2-552	0 - O	0-2	Z	HAND BORING	S	Naphthalene	5400		ug/kg	330
HB2-552		0-2	Z	HAND BORING	S	Phenanthrene	2600		ug/kg	330
HB2-552		0-2	Z	HAND BORING	SV	2 - Methylnaphthalene	23000		ng/kg	330
HB2-552		0-2	Z	HAND BORING	Σ	Antimony	Q	z	mg/kg	90
HB2-SS2		0-2	Z	HAND BORING	Σ	Arsenic	18.5		mg/kg	9.0
HB2-SS2	8-0 0	1	Z	HAND BORING	Σ	Beryllium	0.81		mg/kg	0.1
HB2-552		0-5	Z	HAND BORING	Σ	Cadmium	8.2	5	mg/kg	-
HB2-SS2		0-2		HAND BORING	Σ	Chromium	17.7		mg/kg	-
HB2-882		0-2		HAND BORING	Σ	Copper	24.4		mg/kg	-
HB2-552		0-2		HAND BORING	Σ	Lead		z	mg/kg	ĸ
HB2-552		0-2	Z	HAND BORING	Σ	Mercury	9		mg/kg	0.1
HB2-852		0-2	Z	HAND BORING	Σ	Nickel	28.8		mg/kg	-
HB2-552	9 -0	1	Z	HAND BORING	Σ	Selenium	S.	`	mg/kg	9.0
HB2-552		0-2		HAND BORING	Σ	Silver	2		mg/kg	-
HB2-882	0-0 0	0-5		HAND BORING	Σ	Thallium	2		mg/kg	01
HB2-552		0-2	Z	HAND BORING	≥	Zinc	85.5		mg/kg	-

SAMPLE #								OUALIFIER	3411	LIMIT
	GRID *	DEPTH	IN/OUT	DESCRIPTION CA	CATEGORY	FOR	RESULTS			
HB2-553		3-5	Z	HAND BORING	>	ALL VOLATILES	Q.	NA NA	ug/kg	¥ Z
HB2-553	0-0	3-5	Z	HAND BORING	S	Di-n-butyl Phthalate	2900		ug/kg	330
HB2-553	8-0 0-8	3-5	Z	HAND BORING	SS	Fluorene	480		ug/kg	330
HB2-553		3-8	Z	HAND BORING	S	Naphthalene	570		ug/kg	330
HB2-553		3-2	z	HAND BORING	S	Phenanthrene	780		ug/kg	330
HB2-553	8-O		Z	HAND BORING	S	2 - Methylnaphthalene	2800		ug/kg	330
HB2-553	9-0	3-5	Z	HAND BORING	Σ	Antimony	Q.	z	mg/kg	9
HB2-553	0 - 0	3-5	Z	HAND BORING	Σ	Arsenic	11.4	_	mg/kg	9.0
HB2-553		3-5	Z	HAND BORING	Σ	Beryllium	Q.	z	mg/kg	0.1
HB2-553		9-0	Z	HAND BORING	Σ	Cadmium	2	z	mg/kg	-
HB2-553		3-6	Z	HAND BORING	Σ	Chromium	10.1		mg/kg	-
HB2-553			Z	HAND BORING	Σ	Copper	18.2		mg/kg	-
H82-SS3		3-5	Z	HAND BORING	Σ	Lead	8.2	80	mg/kg	40
HB2-553		3-5	Z	HAND BORING	Σ	Mercury	2		mg/kg	0.1
HB2-SS3			Z	HAND BORING	Σ	Nickel	25	z	mg/kg	-
HB2-553	0-0	3-5	Z	HAND BORING	Σ	Selenium	Q.	_	mg/kg	9.0
HB2-553		ï	Z	HAND BORING	Σ	Silver	Q Q	-	mg/kg	•
HB2-5S3		1	Z	HAND BORING	Σ	Thallium	2		mg/kg	01
HB2-SS3	0-0	3-5	Z	HAND BORING	Σ	Zinc	73.4	Z	mg/kg	-
					-					
H84SS1	B-3	0-5	Z	HAND BORING	>	ALL VOLATILES		¥ Z	ug/kg	Y Y
HB4-551	B-3	0-5	Z	HAND BORING	SV	Pyrene			ug/kg	330
H84-SS1	ï	0-5	Z	HAND BORING	Σ	Antimony	9	z	mg/kg	90
HB4-551		0-5	Z	HAND BORING	Σ	Arsenic	7.9		mg/kg	0.5
HB4-551	8-3	0-5	Z	HAND BORING	Σ	Beryllium	4.0	8	mg/kg	0.1
HB4-551		0-2	Z	HAND BORING	Σ	Cadmium	Q		mg/kg	-
HB4-SS1		0-2	Z	HAND BORING	Σ	Chromium	10	5	mg/kg	-
HB4-SS1		0-2	Z	HAND BORING	Σ	Copper	58	•	mg/kg	-
H84-SS1		0-5	Z	HAND BORING	Σ	Lead	27	•	mg/kg	S.
HB4-551	B-3	0-2	Z	HAND BORING	Σ	Mercury	2	•	mg/kg	0.1
HB4-551	8-3	0-2	Z	HAND BORING	Σ	Nickel	23	•	mg/kg	-
HB4-551	8-3	0~2	Z	HAND BORING	Σ	Selenium	Q.	Z	mg/kg	0.5
HB4-851	B-3	0-2	Z	HAND BORING	Σ	Silver	2		mg/kg	-
1	8-3		Z	HAND BORING	Σ	Thallium	_	z	mg/kg	10
H84-SS1	8-3	0-5	Z	HAND BORING	Σ	Zinc	108		mg/kg	-

HB4-SS2 B-3 D-2 N							ANALYSIS				DETECTION
Second	SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	TIMU
Second Part											
Paris Pari	1	8	0-2	Z	HAND BORING	>	ALL VOLATILES	2	ž	ug/kg	Y X
HAND BORING	- 1	8	0-2	Z	HAND BORING	SS	ALL SEMI-VOLATILES	2	¥Z	ug/kg	¥ X
HAND BORING	1	-6		Z		Σ	Antimony	Q	z	mg/kg	9
HAND BORING	1	8	- 1	Z	HAND BORING	Σ	Arsenic	42	z	mg/kg	0.5
Figure 1	,	8	02	Z		Σ	Beryllium	6.0	•	mg/kg	0.1
HAND BORING	1	8	0-2	Z	HAND BORING	2	Cadmium	QN QN		mg/kg	-
SSZ B-3 O-2 IN HAND BORING M Copper Solenium Nickel Solenium Nic		<u></u>	0-2	Z		₹	Chromium	15	g	mg/kg	-
-SS2 B-3 0-2 IN HAND BORING HAND BORING AND BORING AND BORING 	1	4	0-2	Z		Σ	Copper	38		mg/kg	-
-SS2 B-3 0-2 IN HAND BORING M Mercury Nickel ND u -SS2 B-3 0-2 IN HAND BORING M Selentium ND N -SS2 B-3 0-2 IN HAND BORING M Thailium ND N -SS2 B-3 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS2 B-3 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND ND -SS3 </td <td>- 1</td> <td>4</td> <td>0-2</td> <td>Z</td> <td>HAND BORING</td> <td>Σ</td> <td>Lead</td> <td></td> <td>•</td> <td>mg/kg</td> <td>5</td>	- 1	4	0-2	Z	HAND BORING	Σ	Lead		•	mg/kg	5
-552 B-3 0-2 IN HAND BORING M Selentum ND N -552 B-3 0-2 IN HAND BORING M Thattum ND N -552 B-3 0-2 IN HAND BORING M ALL VOLATILES ND NA -552 B-3 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -552 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -553 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -553 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND ND -553 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND ND -553 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND ND -553 <td>- 1</td> <td>- 1</td> <td>0-2</td> <td>Z</td> <td>HAND BORING</td> <td>Σ</td> <td>Mercury</td> <td>QV</td> <td>3</td> <td>mg/kg</td> <td>0.1</td>	- 1	- 1	0-2	Z	HAND BORING	Σ	Mercury	QV	3	mg/kg	0.1
-552 B-3 0-2 IN HAND BORING M Selenium ND N -552 B-3 0-2 IN HAND BORING M Thallium ND N -552 B-3 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -553 B-3 3-5 IN HAND BORING N ALL SEMI-VOLATILES ND NA -553 B-3 3-5 IN HAND BORING N ALL SEMI-VOLATILES ND NA -553 B-3 1N HAND BORING N ALL SEMI-VOLATILES ND NA -553 B-3 1N HAND BORING N ALL SEMI-VOLATILES ND N -553 B-3 1N HAND BORING M ALL SEMI-VOLATILES ND N -553 B-3 1N HAND BORING M ALL SEMI-VOLATILES ND N -553 B-3 1N HAND BORING <	-	•	0-2	Z	HAND BORING	Σ	Nickel	9	•	mg/kg	-
Silver ND NA HAND BORING M Thailium ND NA HAND BORING ND NA HAND BORING NA ALL VOLATILES ND NA HAND BORING NA Arsenic SS3 B-3 3-5 IN HAND BORING NA Arsenic SS3 B-3 3-5 IN HAND BORING NM Nickel A11 N Narcury ND Narcury	- 1	4	-	Z	HAND BORING	Σ	Selenium	Q.	z	mg/kg	9.0
- SS2	- 1	8	- 1	Z	HAND BORING	Σ	Silver	2		mg/kg	-
-SS2 B-3 0-2 IN HAND BORING M ALL VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M Arsenic 29 N -SS3 B-3 3-5 IN HAND BORING M Arsenic 29 N -SS3 B-3 3-5 IN HAND BORING M Cadmium 0.6 * -SS3 B-3 3-5 IN HAND BORING M Cadmium NO.6 * -SS3 B-3 3-5 IN HAND BORING M Cadmium NO.6 * -SS3 B-3 3-5 IN HAND BORING M Capper 35 * -SS3 B-3 3-5 IN HAND BORING M Makeroury ND u -SS3 B-3 IN	1	-8		Z	HAND BORING	₹	Thallium	2	z	mg/kg	10
- SS3	- 1	-8	- 1	Z	HAND BORING	×	Zinc	131		mg/kg	1
-SS3 B-3 3-5 IN HAND BORING V ALL SEMI-VOLATILES ND NA -SS3 B-3 3-5 IN HAND BORING M Arsenic 29 N -SS3 B-3 3-5 IN HAND BORING M Arsenic 29 N -SS3 B-3 3-5 IN HAND BORING M Cadmium 0.6 • -SS3 B-3 3-5 IN HAND BORING M Copper 35 • -SS3 B-3 3-5 IN HAND BORING M Copper 35 • -SS3 B-3 3-5 IN HAND BORING M Mercury ND u -SS3 B-3 10 HAND BORING M Mercury ND u -SS3 B-3 10 HAND BORING M ND ND u -SS3 B-3 10 HAND BORING M ND											
-SS3 B-3 3-5 IN HAND BORING SV ALL SEMI-VOLATILES ND NA Aritimony ND Aritimony ND Aritimony ND Aritimony ND Aritimony ND NA Ar	- 1	8	i	Z	HAND BORING	>	ALL VOLATILES	2	₹ Z	ug/kg	¥ X
-SS3 B-3 3-5 IN HAND BORING M Antimony ND -SS3 B-3 3-5 IN HAND BORING M Cadmium 0.6 • -SS3 B-3 3-5 IN HAND BORING M Chromium 0.6 • -SS3 B-3 3-5 IN HAND BORING M Copper 35 • -SS3 B-3 3-5 IN HAND BORING M Copper 35 • -SS3 B-3 3-5 IN HAND BORING M Mercury ND u -SS3 B-3 3-5 IN HAND BORING M Nickel 41 • -SS3 B-3 10 HAND BORING M Nickel 41 • -SS3 B-3 10 HAND BORING M ND ND ND -SS3 B-3 10 HAND BORING M ND ND ND	1	8	1	Z	HAND BORING	SS	ALL SEMI - VOLATILES	2	¥N Y	ug/kg	¥ X
-SS3 B-3 3-5 IN HAND BORING HAND BORING A M Arsenic Acadmium Acadmium 29 N -SS3 B-3 3-5 IN HAND BORING HAND BORING A M Cadmium Chromium Acadmium 0.6 • -SS3 B-3 3-5 IN HAND BORING HAND BORING A M Cadmium Chromium Acadmium ND Cadmium 	-	•	1	Z	HAND BORING	Σ	Antimony	Q	z	mg/kg	9
- SS3	•	-8	-1	Z	HAND BORING	Σ	Arsenic	29	z	mg/kg	9.0
-SS3 B-3 3-5 IN HAND BORING M Chromium ND Copper 35 - 1	ı	1		Z	HAND BORING	\$	Beryllium	9.0	•	mg/kg	0.1
-SS3 8-3 3-5 IN HAND BORING M Chromium 12 G G	1	1	1	Z	HAND BORING	Σ	Cadmium	2		mg/kg	-
-553 B-3 3-5 IN HAND BORING M Lead 18 - 18 - 18 - 18 - 19 - 18 - 19 - 19 -	1	8-3	- 1	Z	HAND BORING	Σ	Chromium	12	g	mg/kg	-
-553 B-3 3-5 IN HAND BORING M Mercury ND Lead 18 - 1	ı	8-3	1	Z	HAND BORING	Σ	Copper	35	•	mg/kg	-
-553 B-3 3-5 IN HAND BORING M Mercury ND L -553 B-3 3-5 IN HAND BORING M Selenium ND NCKel ND	HB4533	8	1	Z	HAND BORING	Σ	Lead		•	mg/kg	S
-SS3 B-3 3-5 IN HAND BORING M Selenium ND NCKel ND NCKel ND	HB4-553	1	1	Z		∑	Mercury	Q	3	mg/kg	0.1
-SS3 B-3 3-5 IN HAND BORING M Selenium ND N Silver ND HAND BORING M Thallium ND N N N N N N N N N N N N N N N N N N	- 1	1	1	Z	HAND BORING	₹	Nickel	4	•	mg/kg	-
-SS3 B-3 3-5 IN HAND BORING M Silver ND N -SS3 B-3 3-5 IN HAND BORING M Thailium ND N -SS3 B-3 3-5 IN HAND BORING M Zinc 108	١	1		Z	HAND BORING	Σ	Selenium	8	z	mg/kg	9.0
-SS3 B-3 3-5 IN HAND BORING M Thallium ND N -SS3 B-3 3-5 IN HAND BORING M Zinc 108	1	1	1	Z	HAND BORING	Σ	Silver	2		mg/kg	-
-SS3 B-3 3-5 IN HANDBORING M Zinc 108	i	- 1		Z	_	\$	Thallium	Q	z	mg/kg	01
	-11	- 1]	-11	Z		¥	Zinc	108		mg/kg	1

SAMPLE SIN C-4 C-2 IN HAND BORING HBS-SS1 M ALL SEM-VOLATILES CAPPING HBS-SS1 C-4 C-2 IN HAND BORING HBS-SS1 M ALL SEM-VOLATILES HD ND HBS-SS1 M ALL SEM-VOLATILES HD ND							ANALYSIS				DETECTION
SSI C-4 0-2 IN	SAMPLE #	GRID #	DEPTH	IN/OUT	. , :	ATEGORY	FOR	RESULTS	QUALIFIER	UNITS	TIMI
C-4											
Secondary Seco	HB5-551	\$-0	0-2	Z	HAND BORING	>	ALL VOLATILES	Q	¥ X	ng/kg	A N
C-4 0-2 IN	HB5-551	V-0	0-2	Z	HAND BORING	S	ALL SEMI-VOLATILES	Q		ug/kg	¥ Z
SS1 C-4 0-2 IN HAND BORING M Assenic 8.4 SS1 C-4 0-2 IN HAND BORING M Cadmium 0.5 SS1 C-4 0-2 IN HAND BORING M Chops 23 SS1 C-4 0-2 IN HAND BORING M Maccury ND SS1 C-4 0-2 IN HAND BORING M Maccury ND SS1 C-4 0-2 IN HAND BORING M Maccury ND SS1 C-4 0-2 IN HAND BORING M Maccury ND SS1 C-4 0-2 IN HAND BORING M ALL SEM -VOLATILES ND SS1 C-4 0-2 IN HAND BORING M ALL SEM -VOLATILES ND SS1 C-4 0-2 IN HAND BORING M ALL SEM -VOLATILES ND SS1 D-5 <t< td=""><td>HB5-551</td><td>4-0</td><td>0-5</td><td>Z</td><td>HAND BORING</td><td>Σ</td><td>Antimony</td><td>Q</td><td></td><td>mg/kg</td><td>9</td></t<>	HB5-551	4-0	0-5	Z	HAND BORING	Σ	Antimony	Q		mg/kg	9
SS1 C-4 0-2 IN HAND BORING M Cadmium 0.5 SS1 C-4 0-2 IN HAND BORING M Chromium 10 SS1 C-4 0-2 IN HAND BORING M Copper 23 SS1 C-4 0-2 IN HAND BORING M Metal 25 SS1 C-4 0-2 IN HAND BORING M Metal 25 SS1 C-4 0-2 IN HAND BORING M Metal ND N SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND SS1 D-5	HB5-551	V-0	0-2	Z	HAND BORING	Σ	Arsenic	8.4		mg/kg	0.5
SS1 C-4 0-2 IN HAND BORING M Cadmium ND SS1 C-4 0-2 IN HAND BORING M Chord 23 SS1 C-4 0-2 IN HAND BORING M Mercury ND U SS1 C-4 0-2 IN HAND BORING M Mercury ND U SS1 C-4 0-2 IN HAND BORING M Mercury ND U SS1 C-4 0-2 IN HAND BORING M Miskel 25 SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND N SS1 C-4 0-2 IN HAND BORING M ALL SEMI - VOLATILES ND N SS1 C-4 0-2 IN HAND BORING M ALL SEMI - VOLATILES ND N SS1 C-5 IN HAND BORING M ALL SEMI - VOLA	HB5-SS1	C-4	0-2	Z	HAND BORING	Σ	Beryllium	9'0		mg/kg	0.1
SS C-4 0-2 IN	HB5-551	V-2	0-2	Z	HAND BORING	Σ	Cadmium	Q		mg/kg	-
SS1 C-4 O-2 IN	HB5-551	Q-4	0-2	Z	HAND BORING	Σ	Chromium	10		mg/kg	-
SS C-4 D-2 IN	HB5-551	Q-4	0-2	Z	HAND BORING	Σ	Copper	23		mg/kg	-
-551 C-4 0-2 IN HAND BORING HAND BORING A M Mercury Nickel 	HB5-551	Q-4	0-2	Z	HAND BORING	Σ	Lead	19		mg/kg	S
-SS1 C-4 0-2 IN HAND BORING M Selevium D ND -SS1 C-4 0-2 IN HAND BORING M Selvium ND ND -SS1 C-4 0-2 IN HAND BORING M Thailium ND ND -SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND NA -SS1 C-4 0-2 IN HAND BORING N ALL VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M ALL SEM - VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M ALL SEM - VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M ALL SEM - VOLATILES ND ND -SS1 D-5 0-2 IN HAND BORING M ALL SEM - VOLATILES ND ND -SS1	HB5-SS1	Q-4	0-2	Z	HAND BORING	Σ	Mercury	QN		mg/kg	0.1
-551 C-4 0-2 IN HAND BORING M Salenium ND N -531 C-4 0-2 IN HAND BORING M Thallium ND ND ND -531 C-4 0-2 IN HAND BORING M ALL VOLATILES ND NA -551 D-5 0-2 IN HAND BORING N ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING N ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING N ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA <tr< td=""><td>HB5-551</td><td>\$-0</td><td>0-2</td><td>Z</td><td>HAND BORING</td><td>Σ</td><td>Nickel</td><td>25</td><td></td><td>mg/kg</td><td>-</td></tr<>	HB5-551	\$-0	0-2	Z	HAND BORING	Σ	Nickel	25		mg/kg	-
-SS1 C-4 0-2 IN HAND BORING M Thailium ND NA HAND BORING M Arisenic ND NA HAND BORING M Arisenic ND NA HAND BORING ND NA HAND BORING ND NA HAND BORING ND ND Copper SS1 D-5 0-2 IN HAND BORING ND Arisenic ND	HB5-551	Q-4	0-2	Z	HAND BORING	Σ	Selenium	QN		mg/kg	0.5
-551 C-4 0-2 IN HAND BORING M Thallium ND -551 C-4 0-2 IN HAND BORING M ALL VOLATILES ND NA -551 D-5 0-2 IN HAND BORING M ALL SEMI-VOLATILES ND NA -551 D-5 0-2 IN HAND BORING M Antimony ND NA -551 D-5 0-2 IN HAND BORING M Antimony ND ND NA -551 D-5 0-2 IN HAND BORING M Antimony ND ND <td>HB5 - SS1</td> <td>Q-4</td> <td>0-2</td> <td>Z</td> <td>HAND BORING</td> <td>Σ</td> <td>Silver</td> <td>Q</td> <td></td> <td>mg/kg</td> <td>-</td>	HB5 - SS1	Q-4	0-2	Z	HAND BORING	Σ	Silver	Q		mg/kg	-
-SS1 C-4 0-2 IN HAND BORING M ALL VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M ALL SEMI - VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M All SEMI - VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M All SEMI - VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M Chromium NO All SEMI - ND -SS1 D-5 0-2 IN HAND BORING M All Semin NO ND -SS1 D-5 0-2 IN HAND BORING M All Semin ND ND -SS1 D-5 IN HAND BORING M All Semin ND ND -SS1 D-5	HB5-551	C-4	0-2	Z	HAND BORING	Σ	Thallium	Q		mg/kg	10
-SS1 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M Antimony ND N -SS1 D-5 0-2 IN HAND BORING M Arisenic 4.1 N -SS1 D-5 0-2 IN HAND BORING M Copper 4.1 N -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M Mercury ND u -SS1 D-5 0-2 IN HAND BORING M Mercury ND u -SS1 D-5 0-2 IN HAND BORING M Mercury ND u -SS1 D-5 0-2 IN HAND BORING M Mercury ND u -SS1 D-5 IN HAND BORING M	- 1 1		0-2	N.	HAND BORING	Σ	Zinc	83	Z	mg/kg	-
-SS1 D-5 0-2 IN HAND BORING V ALL VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M Antimony ND NA -SS1 D-5 0-2 IN HAND BORING M Arsenic 4.1 ND -SS1 D-5 0-2 IN HAND BORING M Arsenic 4.1 ND -SS1 D-5 0-2 IN HAND BORING M Chromium 10 -S -SS1 D-5 0-2 IN HAND BORING M Chromium 10 Lead 11 • -SS1 D-5 0-2 IN HAND BORING M Mercury ND L -SS1 D-5 0-2 IN HAND BORING M Mercury ND L -SS1 D-5 IN HAND BORING M ND ND N -SS1 D-5 IN						-					
-SS1 D-5 0-2 IN HAND BORING SV ALL SEMI-VOLATILES ND NA -SS1 D-5 0-2 IN HAND BORING M Arsenic 4.1 N -SS1 D-5 0-2 IN HAND BORING M Chromium 0.5 -SS1 D-5 0-2 IN HAND BORING M Chromium 10 -SS1 D-5 0-2 IN HAND BORING M Chromium 10 -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M ND L -SS1 D-5 0-2 IN HAND BORING M ND L -SS1 D-5 0-2 IN HAND BORING M ND ND -SS1 D-5 0-2 IN HAND BORING M ND ND -SS1 D-5	HB6-551	0-5	0-2	Z		>	ALL VOLATILES	QN	į	ug/kg	¥Z
-SS1 D-5 0-2 IN HAND BORING M Antimony ND -SS1 D-5 0-2 IN HAND BORING M Arsenic 4.1 ND -SS1 D-5 0-2 IN HAND BORING M Chromium 0.5 -SS1 D-5 0-2 IN HAND BORING M Chromium 10 -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M Mercury ND -SS1 D-5 0-2 IN HAND BORING M NGKell 11 • -SS1 D-5 0-2 IN HAND BORING M NGKell ND -SS1 D-5 0-2 IN HAND BORING M NGKell ND -SS1 D-5 IN HAND BORING M NG ND -SS1 D-5 IN <td>HB6-SS1</td> <td>0-5</td> <td>0-2</td> <td>Z</td> <td></td> <td>S</td> <td>ALL SEMI VOLATILES</td> <td>Q</td> <td></td> <td>ng/kg</td> <td>¥ Z</td>	HB6-SS1	0-5	0-2	Z		S	ALL SEMI VOLATILES	Q		ng/kg	¥ Z
-SS1 D-5 0-2 IN HAND BORING M Arsenic 4.1 -SS1 D-5 0-2 IN HAND BORING M Cadmium 0.5 -SS1 D-5 0-2 IN HAND BORING M Chromium ND -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M Mercury ND -SS1 D-5 0-2 IN HAND BORING M NIckel 11 • -SS1 D-5 0-2 IN HAND BORING M NIckel ND -SS1 D-5 0-2 IN HAND BORING M ND ND -SS1 D-5 0-2 IN HAND BORING M ND ND -SS1 D-5 IN HAND BORING M ND ND -SS1 D-5 IN HAND BORING	HB6-SS1	0-5	0-2	Z	HAND BORING	Σ	Antimony	QN	-	mg/kg	9
-SS1 D-5 0-2 IN HAND BORING M Beryllium 0.5 -SS1 D-5 0-2 IN HAND BORING M Chromium ND -SS1 D-5 0-2 IN HAND BORING M Chromium ND -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M Mercury ND -SS1 D-5 0-2 IN HAND BORING M NICkel 18 -SS1 D-5 0-2 IN HAND BORING M Selenium ND -SS1 D-5 0-2 IN HAND BORING M ND -SS1 D-5 0-2 IN HAND BORING M ND -SS1 D-5 0-2 IN HAND BORING M ND -SS1 D-5 IN HAND BORING M ND <	HB6-551	9-0	0-2	Z	HAND BORING	≆	Arsenic	4.1		mg/kg	0.5
-SS1 D-5 0-2 IN HAND BORING M Cadmium ND -SS1 D-5 0-2 IN HAND BORING M Chromium 10 -SS1 D-5 0-2 IN HAND BORING M Copper 22 -SS1 D-5 0-2 IN HAND BORING M Mercury ND -SS1 D-5 0-2 IN HAND BORING M Nickel 18 -SS1 D-5 0-2 IN HAND BORING M Selenium ND -SS1 D-5 0-2 IN HAND BORING M Selenium ND -SS1 D-5 0-2 IN HAND BORING M ND -SS1 D-5 IN HAND BORING M ND -SS1 D-5 IN HAND BORING M ND -SS1 D-5 IN HAND BORING M	HB6-551	0-5	0-2	Z	HAND BORING	Σ	Beryllium	0.5		mg/kg	0.1
-551 D-5 0-2 IN HAND BORING M Chromium 10 -551 D-5 0-2 IN HAND BORING M Copper 22 -551 D-5 0-2 IN HAND BORING M Mercury ND -551 D-5 0-2 IN HAND BORING M Nickel 18 -551 D-5 0-2 IN HAND BORING M Selenium ND -551 D-5 0-2 IN HAND BORING M Silver ND -551 D-5 0-2 IN HAND BORING M Silver ND -551 D-5 0-2 IN HAND BORING M Zinc 79 N	HB6 - SS1	0-5	0-2	Z	HAND BORING	Σ	Cadmium	Q		mg/kg	-
-551 D-5 0-2 IN HAND BORING M Copper 22 -551 D-5 0-2 IN HAND BORING M Mercury ND Lead 11 -551 D-5 0-2 IN HAND BORING M Nickel 18 -551 D-5 0-2 IN HAND BORING M Selenium ND HAND BORING M Silver ND HAND BORING M HAND BORING M Silver ND HAND BORING M Thallium ND Thallium ND HAND BORING M Thallium ND Thallium ND HAND BORING M Thallium ND Thallium	H86-SS1	D-5	0-2	Z	HAND BORING	Σ	Chromium	0		mg/kg	-
-551 D-5 0-2 IN HAND BORING M Mercury ND Lead 11 • • • • • • • • • • • • • • • • • •	HB6-551	0-5	2-0	Z	HAND BORING	Σ	Copper	22		mg/kg	-
-551 D-5 0-2 IN HAND BORING M Nickel 18	HB6-551	9-Q	0-2	Z	HAND BORING	Σ	Lead	=	•	mg/kg	S
-551 D-5 0-2 IN HAND BORING M Selenium ND	HB6-551	0-5	0-2	Z	HAND BORING	2	Mercury	QN		mg/kg	0.1
-5S1 D-5 0-2 IN HAND BORING M Selenium ND N -5S1 D-5 0-2 IN HAND BORING M Thallium ND -5S1 D-5 0-2 IN HAND BORING M Thallium ND -5S1 D-5 IN HAND BORING M Zinc 79 N	HB6-551	0-5	0-2	Z	HAND BORING	Σ	Nickel	18		mg/kg	-
-581 D-5 0-2 IN HAND BORING M Silver ND	HB6-551	D-5	0-2	Z	HAND BORING	Σ	Selenium	Q		mg/kg	9.0
-5S1 D-5 0-2 IN HAND BORING M Thallium ND -5S1 D-5 0-2 IN HAND BORING M Zinc 79 N	HB6-531	D5	0-5	Z	HAND BORING	Σ	Silver	Q		mg/kg	-
-531 D-5 0-2 IN HAND BORING M Zinc 79 N	ı	ī	02	Z	HAND BORING	₹	Thallium	Q		mg/kg	01
		1	0-2	Z	HAND BORING	Σ	Zinc	79	Z	mg/kg	-

						ANALYSIS				DETECTION
SAMPLE #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	TIMI
			:		:					
HB6-552	0-5	0-2	Z	HAND BORING	>	ALL VOLATILES	2		ng/kg	A Z
HB6-552	9-0	0-2	Z	HAND BORING	S	ALL SEMI-VOLATILES	2	AN	ng/kg	Y Y
HB6-SS2	D-5	0-2	Z	HAND BORING	Σ	Antimony	QN	z	mg/kg	9
HB6-552	9-0	0-2	Z	HAND BORING	Σ	Arsenic	15		mg/kg	0.5
HB6-552	9-0	0-2	Z	HAND BORING	Σ	Beryllium	0.5		mg/kg	0.1
HB6-552	0-5	0-2	Z	HAND BORING	Σ	Cadmium	Q		mg/kg	-
HB6-552	0-5	0-2	Z	HAND BORING	Σ	Chromium	12		mg/kg	-
HB6 SS2	0-5	0-2	Z	HAND BORING	Σ	Copper	32		mg/kg	-
HB6-SS2	9-Q	0-2	Z	HAND BORING	₹	Lead	18	•	mg/kg	S
HB6-552	0-S	0-2	Z	HAND BORING	Σ	Mercury	8	3	mg/kg	0.1
HB6-552	9-Q	0-2	Z	HAND BORING	Σ	Nickel	25		mg/kg	-
H86-SS2	9-0	0-2	Z	HAND BORING	Σ	Selenium	Q	z	mg/kg	0.5
HB6-552	0-5	0-2	Z	HAND BORING	Σ	Silver	Q		mg/kg	-
H86-SS2	9-0	0-2	Z	HAND BORING	Σ	Thallium	QN		mg/kg	10
HB6-552	0-5	0-2	Z	HAND BORING	Σ	Zinc	88	Z	mg/kg	-
HB6-SS3	9-Q	3-5	Z	HAND BORING	>	ALL VOLATILES	QN	¥Z	ug/kg	Y Z
HB6-553	9-0	3-5	Z	HAND BORING	S	ALL SEMI-VOLATILES	Q	¥Z	ug/kg	4Z
HB6-553	S-0	3-5	Z	HAND BORING	Σ	Antimony	Q	z	mg/kg	\$
HB6-553	0-5	3-6	Z	HAND BORING	Σ	Arsenic	13		mg/kg	0.5
HB6-SS3	D-5	3-5	Z	HAND BORING	Σ	Beryllium	9.0		mg/kg	0.1
HB6-553	9-0	3-8	Z	HAND BORING	≥	Cadmium	Q		mg/kg	-
HB6-883	9-0	3-5	Z	HAND BORING	Σ	Chromium	4		mg/kg	-
HB6-583	9-0	3-5	Z	HAND BORING	≊	Copper	52		mg/kg	-
HB6-883	0-5	3-5	Z	HAND BORING	2	Lead	15	•	mg/kg	50
H86-SS3	9-0	3-5	Z	HAND BORING	Σ	Mercury	Q	ס	mg/kg	0.1
HB6-533	0-5	3-5	Z	HAND BORING	Σ	Nickel	25		mg/kg	-
HB6-553	9-0	3-5	Z	HAND BORING	Σ	Selenium	Q Q	z	mg/kg	0.5
HB6-883	9-Q	1	Z	HAND BORING	Σ	Silver	2		mg/kg	-
1	D-5	3-2	Z	HAND BORING	Σ	Thallium	Q		mg/kg	9
H86-883	0-5	3-2	Z	HAND BORING	Σ	Zinc	92	Z	mg/kg	-

						ANALYSIS				DETECTION
SAMPLE #	GRID #	DEРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUAUFIER	UNITS	UMIT
			::		7	4	·			i,
MW 1-33	ָ ט נ	CI - CI	Z	MONIOR WELL	> :	Euryloenzene			DA/DD	n 4
MWI-00-	י ני	CI - EI	Z	MONIOHNG WELL	>	0 - Aylene	2		Da/So	n
MW1-551	9-U	13-15	Z	MONTORING WELL	SS	ALL SEMI - VOLATILES	Q	¥ Z	ug/kg	¥ Z
MW1-551	0-0	13-15	z	MONITORING WELL	Σ	Antimony	Q	z	mg/kg	9
MW1-551	9-U	13-15	Z	MONITORING WELL	2	Arsenic	7.8	z	mg/kg	9.0
MW1-551	9-O	13-15	z	MONTORING WELL	*	Beryllium	S S	z	mg/kg	1.0
MW1-551	9-0	13-15	Z	MONITORING WELL	Σ	Cadmium	9		mg/kg	-
MW1-551	0-0	13-15	2	MONITORING WELL	Σ	Chromium	4.5	83	mg/kg	-
MW1-551	C-6	13-15	Z	MONITORING WELL	≆	Copper	12.7		mg/kg	-
MW1-551	C-6	13-15	Z	MONITORING WELL	3	Lead	S		mg/kg	Ş
MW1-551	0 - 0	13-15	z	MONITORING WELL	₹	Mercury	ONO		mg/kg	0.1
MW1-851	9-O	13-15	Z	MONITORING WELL	Σ	Nickel	13.3		mg/kg	-
MW1-551	O - 6	13-15	Z	MONITORING WELL	Σ	Selenium	Q		mg/kg	9:0
MW1-551	0-0	13-15	Z	MONITORING WELL	Σ	Silver	Q		mg/kg	-
MW1-551	0-0	13-15	Z	MONITORING WELL	2	Thallium	Q.	z	mg/kg	10
MW1-551	C-6	13-15	Z	MONITORING WELL	2	Zinc	56.1	Z	mg/kg	1
MW1-552	9-J	14-16	Z	MONITORING WELL	>	Benzene	1900		ug/kg	S
MW1-552	9-0	14-16	Z	MONITORING WELL	>	Ethylbenzene	1 1000		ug/kg	S
MW1-552	0-0	14-16	Z	MONITORING WELL	>	o – Xylene	20000		ug/kg	ν ₀
MW1-552		14-16	Z	MONITORING WELL	os	Naphthalene	630		ug/kg	330
MW1-552		14-16	Z	MONITORING WELL	S	2 - Methyinaphthalene	1200		ug/kg	330
MW1-882	0-B	14-16		MONITORING WELL	Σ	Antimony	Q		mg/kg	9
MW1-852		14-16		MONITORING WELL	≨	Arsenic			mg/kg	0.5
MW1-852		14-16		MONITORING WELL	₹	Beryllium	<u>Q</u>		mg/kg	0.1
MW1-882	9-0	14-18		MONITORING WELL	₹	Cadmium	2	z	mg/kg	-
MW1-852		14-16	Z	MONITORING WELL	Σ	Chromium	8.4		my/kg	-
MW1-852		14-16	Z	MONITORING WELL	Σ	Copper	17.2		mg/kg	-
MW1-882		14-16	Z	MONITORING WELL	Σ	Lead	8.8		mg/kg	S
MW1-852	9-U	14-16		MONITORING WELL	₹	Mercury	DNG		mg/kg	0.1
MW1-552		14-16		MONITORING WELL	Σ	Nickel	22.2		mg/kg	-
MW1-552		14-16		MONITORING WELL	Σ	Selenium	Q Q	}	mg/kg	0.5
MW1-882		14-16		MONITORING WELL	Σ	Silver	2		mg/kg	**
MW1-552	9 -0	14-16	Z	MONITORING WELL	2	Thallium	2		mg/kg	01
MW1-552	ပ	14-16	Z	MONITORING WELL	Σ	Zinc	63.8		ma/ka	-

B							ANALYSIS				DETECTION
B-7 0-2 OUT MONTORNG WELL NV ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Action of Assance 15 B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Montornam 15 B-7 0-2 OUT MONTORNG WELL M Montornam ND B-7 0-2	SAMPLE #	GRID #	рертн	IN/OUT	DESCRIPTION	CATEGORY	FOR		QUAUFIER	UNITS	UMIT
B-7	30	•		21.0		3	i i	3			
B-7 0-2 OUT MONTORNG WELL M ALL SEM-VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Action 15 B-7 0-2 OUT MONTORNG WELL M Action ND B-7 0-2 OUT MONTORNG WELL M Action ND B-7 0-2 OUT MONTORNG WELL M Action ND B-7 0-2 OUT MONTORNG WELL M Montornorng Well M Nickel 25 B-7 0-2 OUT MONTORNG WELL M Montornorng Well M Nickel 17 B-7 0-2 OUT MONTORNG WELL M Montornorng Well M Nickel 25 B-7 0-2 OUT MONTORNG WELL M All SEM-YOLATILES ND B-7 0-2 OUT MONTORNG WELL M All SEM-YOLATILES ND B-7 0-2 OUT MONTORNG	MWZ-23) Q	y - 0	5	MON-OFING WELL	>	ALL VOLATILES	2		6x/6n	<u>{</u>
B-7 0-2 OUT MONTORNG WELL M Animony ND B-7 0-2 OUT MONTORNG WELL M M Acsenic 15 B-7 0-2 OUT MONTORNG WELL M M Cadrium ND B-7 0-2 OUT MONTORNG WELL M M Cadrium ND B-7 0-2 OUT MONTORNG WELL M M Montornam ND B-7 0-2 OUT MONTORNG WELL M Montornam ND <tr< th=""><td>MW2-551</td><td>8-7</td><td>0-5</td><td>OUT</td><td>MONTORING WELL</td><td>S</td><td>ALL SEMI ~ VOLATILES</td><td>2</td><td></td><td>ug/kg</td><td>¥ Z</td></tr<>	MW2-551	8-7	0-5	OUT	MONTORING WELL	S	ALL SEMI ~ VOLATILES	2		ug/kg	¥ Z
B-7 0-2 OUT MONTORNG WELL M Assenic 15 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M M Copper 21 B-7 0-2 OUT MONTORNG WELL M M Montorn ND B-7 0-2 OUT MONTORNG WELL M M MONTORNG WELL M B-7 0-2 OUT MONTORNG WELL M M Assenic ND B-7 0-2 OUT MONTORNG WELL M M Assenic ND B-7 0-2 OUT MONTORNG WELL M Assenic ND B-7 0-2 OUT MONTORNG WELL M ALL SEM-VOLATILES ND	MW2-551	8-7	0-5	DOUT	MONITORING WELL	Σ.	Antimony	2		mg/kg	9
B-7 0-2 OUT MONTORNG WELL M Beryllium ND B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Addition ND B-7 0-2 OUT MONTORNG WELL M Addition ND B-7 0-2 OUT MONTORNG W	MW2-551	8-7	0-5	OUT	MONTORING WELL	Σ	Arsenic	15		mg/kg	0.5
B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Copped 21 B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Antimony ND B-7 0-2 OUT MONTORNG WELL M Artistium ND B-7 0-2 OUT MONTORNG WELL M Artistium ND B-7 0-2 OUT MONTORNG WELL M Artistium ND B-7 0-2 OUT MONTORN	MW2-551	8-7	0-5	OUT	MONTORING WELL	Σ	Beryllium	2		mg/kg	0.1
B-7 0-2 OUT MONTORNG WELL M Coppor 21 B-7 0-2 OUT MONTORNG WELL M M Coppor 21 B-7 0-2 OUT MONTORNG WELL M M Nickal 25 B-7 0-2 OUT MONTORNG WELL M Mickal 25 B-7 0-2 OUT MONTORNG WELL M M Nickal 25 B-7 0-2 OUT MONTORNG WELL M M Nickal ND B-7 0-2 OUT MONTORNG WELL M M ND 66 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M MONTORNG WELL	MW2-551	8-7	0-5	OUT	MONITORING WELL	Σ	Cadmium	2		mg/kg	-
B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Montornium ND B-7 0-2 OUT MONTORNG WELL M Montornium ND B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 6 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 6 B-7 0-2 OUT MONTORNG WELL M Antimory ND B-7 0-2 OUT </th <td>MW2-551</td> <td>8-7</td> <td>0-2</td> <td>DOCT</td> <td>MONITORING WELL</td> <td>2</td> <td>Chromium</td> <td>15</td> <td></td> <td>mg/kg</td> <td>-</td>	MW2-551	8-7	0-2	DOCT	MONITORING WELL	2	Chromium	15		mg/kg	-
B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Mercury ND B-7 0-2 OUT MONTORNG WELL M Mostina ND B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 66 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 66 B-7 0-2 OUT MONTORNG WELL M Arisamin ND B-7 0-2 OUT <td>MW2-551</td> <td>8-7</td> <td>0-2</td> <td>OUT</td> <td>MONTORING WELL</td> <td>2</td> <td>Copper</td> <td>2</td> <td></td> <td>mg/kg</td> <td>-</td>	MW2-551	8-7	0-2	OUT	MONTORING WELL	2	Copper	2		mg/kg	-
B-7 0-2 OUT MONTORNG WELL M Metruy ND B-7 0-2 OUT MONTORNG WELL M Selentium ND B-7 0-2 OUT MONTORNG WELL M Thallium ND B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 66 B-7 0-2 OUT MONTORNG WELL M Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M Antimony ND B-7 0-2 OUT MONTORNG WELL M M Antimony B-7 0-2 OUT <td>MW2-551</td> <td>8-7</td> <td>0-5</td> <td>OUT</td> <td>MONITORING WELL</td> <td>2</td> <td>Lead</td> <td>17</td> <td></td> <td>mg/kg</td> <td>S</td>	MW2-551	8-7	0-5	OUT	MONITORING WELL	2	Lead	17		mg/kg	S
B-7 0-2 OUT MONTORNO WELL M Nickel 25 B-7 0-2 OUT MONTORNO WELL M Solanium ND B-7 0-2 OUT MONTORNO WELL M Thallium ND B-7 0-2 OUT MONTORNO WELL M Methylene Chloride 5 B-7 0-2 OUT MONTORNO WELL N Methylene Chloride 5 B-7 0-2 OUT MONTORNO WELL N Methylene Chloride 5 B-7 0-2 OUT MONTORNO WELL N ALL SEM - VOLATILES ND B-7 0-2 OUT MONTORNO WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNO WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNO WELL M Cadmium ND B-7 0-2 OUT MONTORNO WELL M Arsenic 7.6 B-7 0-2	MW2-551	8-7	0-5	DOUT	MONITORING WELL	Σ	Mercury	9		mg/kg	0.1
B-7 0-2 OUT MONTORNG WELL M Selenium ND B-7 0-2 OUT MONTORNG WELL M Thallium ND B-7 0-2 OUT MONTORNG WELL M ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M ALL SEM -VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Action of Trainium ND B-7 0-2 OUT MONTORNG WELL M Action of Trainium ND B-7 0-2 OUT MONTORNG WELL M Action of Trainium ND B-7 0-2 OUT MONTORNG WELL M Action of Trainium ND B-7 0-2 OUT MONTORNG WELL M Action of Trainium ND </th <td>MW2-551</td> <td>8-7</td> <td>0-2</td> <td>TUO</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Nickel</td> <td>25</td> <td></td> <td>mg/kg</td> <td>-</td>	MW2-551	8-7	0-2	TUO	MONITORING WELL	Σ	Nickel	25		mg/kg	-
B-7 0-2 OUT MONTORNG WELL M Thallium ND B-7 0-2 OUT MONTORNG WELL M Thallium ND B-7 0-2 OUT MONTORNG WELL SY ALL SEM-VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Antimony ND B-7 0-2 OUT MONTORNG WELL M Actionide 5 B-7 0-2 OUT MONTORNG WELL M Actionide 7.6 B-7 0-2 OUT MONTORNG WELL M Actionide 7.6 B-7 0-2 OUT MONTORNG WELL M Actionium ND B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT	MW2-551	8-7	0-5	DOCT	MONITORING WELL	Σ	Selenium	Q		mg/kg	0.5
B-7 0-2 OUT MONTORNG WELL M Thallium ND B-7 0-2 OUT MONTORNG WELL M ALL SEMI-VOLATILES 66 B-7 0-2 OUT MONTORNG WELL N ALL SEMI-VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Action of Arisanic 7.6 B-7 0-2 OUT MONTORNG WELL M Action of Arisanic 7.6 B-7 0-2 OUT MONTORNG WELL M Action of Arisanic 7.6 B-7 0-2 OUT MONTORNG WELL M Action of Arisanic 7.6 B-7 0-2 OUT MONTORNG WELL M Action of Arisanic 7.1 B-7 0-2 OUT MONTORNG WELL M Action of Arisanic ND B-7 0-2 OUT MONTORNG WELL M Action of Arisanic ND B-7 0-2 OUT MONTORNG WELL M Action of Arisanic <td< th=""><td>MW2-551</td><td>8-7</td><td></td><td>OUT</td><td>MONITORING WELL</td><td>Σ</td><td>Silver</td><td>Q</td><td></td><td>mg/kg</td><td>-</td></td<>	MW2-551	8-7		OUT	MONITORING WELL	Σ	Silver	Q		mg/kg	-
B-7 0-2 OUT MONTORNG WELL M Amethylene Chloride 5 B-7 0-2 OUT MONTORNG WELL V Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Arsenic 7.12 B-7 0-2 OUT MONTORNG WELL M Arsenic ND B-7 0-2 OUT MONTORNG WELL M Arsenic ND B-7 0-2 OUT </th <td>MW2-551</td> <td>8-7</td> <td>0-2</td> <td>OUT</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Thallium</td> <td>9</td> <td></td> <td>mg/kg</td> <td>10</td>	MW2-551	8-7	0-2	OUT	MONITORING WELL	Σ	Thallium	9		mg/kg	10
B-7 0-2 OUT MONTORNG WELL V Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL M ALL SEM - VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Cadmium 0.2 B-7 0-2 OUT MONTORNG WELL M Chromium 12 B-7 0-2 OUT MONTORNG WELL M Moscury ND B-7 0-2 OUT MONTORNG WELL M Moscury ND B-7 0-2 OUT MONTORNG WELL M Moscury ND B-7 0-2 OUT MONTORNG WELL M Selenium ND B-7 0-2 OUT MONTORNG WELL M MONTORNG WELL M B-7 0-2 OU	MW2-551	8-7	- 1	OUT	MONITORING WELL	Σ	Zinc	99		mg/kg	-
B-7 0-2 OUT MONTORNG WELL V Methylene Chloride 5 B-7 0-2 OUT MONTORNG WELL ND ALL SEM - VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Chromium 12 B-7 0-2 OUT MONTORNG WELL M Montornium 12 B-7 0-2 OUT MONTORNG WELL M Montornium ND B-7 0-2 OUT MONTORNG WELL M Montornium ND B-7 0-2 OUT MONTORNG WELL M Nickel 21 B-7 0-2 OUT MONTORNG WELL M Nickel 21 B-7 0-2 O											
B-7 0-2 OUT MONTORNG WELL SV ALL SEMI-VOLATILES ND B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Cadmium ND B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M M Copper 21 B-7 0-2 OUT MONTORNG WELL M Montorng WELL M Montorng WELL M ND B-7 0-2 OUT MONTORNG WELL M M ND Selenium ND B-7 0-2 OUT MONTORNG WELL M M ND Selenium ND B-7 0-2 OUT MONTO	MW2-552	8-7	0-5	OUT	MONITORING WELL	>	Methylene Chloride	S		ug/kg	S.
B-7 0-2 OUT MONTORING WELL M Antimony ND B-7 0-2 OUT MONTORING WELL M Arsenic 7.6 B-7 0-2 OUT MONTORING WELL M Cadmium 0.2 B-7 0-2 OUT MONTORING WELL M Cadmium ND B-7 0-2 OUT MONTORING WELL M Copper 21 B-7 0-2 OUT MONTORING WELL M MONTORING WELL M MONTORING WELL M B-7 0-2 OUT MONTORING WELL M MONTORING WELL M Nickel ND B-7 0-2 OUT MONTORING WELL M MONTORING WELL M Nickel ND B-7 0-2 OUT MONTORING WELL M MONTORING WELL M NG B-7 0-2 OUT MONTORING WELL M NG NG B-7 0-2 OUT	MW2-552	8-7	0-2	OUT	MONTORING WELL	S	ALL SEMI-VOLATILES	Q		ug/kg	¥ Z
B-7 0-2 OUT MONTORNG WELL M Arsenic 7.6 B-7 0-2 OUT MONTORNG WELL M Cadmium 0.2 B-7 0-2 OUT MONTORNG WELL M Cadmium 12 B-7 0-2 OUT MONTORNG WELL M Copper 21 B-7 0-2 OUT MONTORNG WELL M MONTORNG WELL M Montorng B-7 0-2 OUT MONTORNG WELL M M Montorng ND B-7 0-2 OUT MONTORNG WELL M M Nickel ND B-7 0-2 OUT MONTORNG WELL M Silver ND B-7 0-2 OUT MONTORNG WELL M Nickel ND B-7 0-2 OUT MONTORNG WELL M Nickel ND B-7 0-2 OUT MONTORNG WELL M Nickel ND B-7	MW2-552	8-7	0-5	OUT	MONTORING WELL	Σ	Antimony	Q		mg/kg	80
B-7 0-2 OUT MONTORING WELL M Baryllium 0.2 B-7 0-2 OUT MONTORING WELL M Cadmium 12 B-7 0-2 OUT MONTORING WELL M Copper 21 B-7 0-2 OUT MONTORING WELL M MONTORING WELL M B-7 0-2 OUT MONTORING WELL M MONTORING WELL M B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M MONTORING WELL M Thallium ND B-7 0-2 OUT MONTORING WELL M MONTORING WELL M MONTORING WELL </th <td>MW2-552</td> <td>B-7</td> <td>0-5</td> <td>OUT</td> <td>MONITORING WELL</td> <td>Σ</td> <td>Arsenic</td> <td>7.6</td> <td></td> <td>mg/kg</td> <td>0.5</td>	MW2-552	B-7	0-5	OUT	MONITORING WELL	Σ	Arsenic	7.6		mg/kg	0.5
B-7 0-2 OUT MONTORING WELL M Cadmium ND B-7 0-2 OUT MONTORING WELL M Copper 21 B-7 0-2 OUT MONTORING WELL M M Copper 21 B-7 0-2 OUT MONTORING WELL M M Morcury ND B-7 0-2 OUT MONTORING WELL M M Nickel 21 B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND	MW2-552	8-7	0-5	DOCT	MONITORING WELL	Σ	Beryllium	0.2		mg/kg	0.1
B-7 0+2 OUT MONTORING WELL M Chromium 12 B-7 0-2 OUT MONTORING WELL M Copper 21 B-7 0-2 OUT MONTORING WELL M Montorium ND B-7 0-2 OUT MONTORING WELL M MONTORING WELL M B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thallium ND	MW2-552	8-7	0-5	DOUT	MONITORING WELL	Σ	Cadmium	Q		mg/kg	-
B-7 0-2 OUT MONTORING WELL M Copper 21 B-7 0-2 OUT MONTORING WELL M Montoring well M B-7 0-2 OUT MONTORING WELL M M Nickel 21 B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thallium ND	MW2-552	8-7	0-5	OUT	MONITORING WELL	Σ	Chromium	12		mg/kg	-
B-7 0-2 OUT MONTORING WELL M Mercury ND B-7 0-2 OUT MONTORING WELL M Morkel 21 B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thallium ND B-7 0-2 OUT MONTORING WELL M Thallium ND B-7 0-2 OUT MONTORING WELL M Thallium ND	MW2-552	B-7	0-5	OUT	MONTOFING WELL	Σ	Copper	21		mg/kg	-
B-7 0-2 OUT MONTORING WELL M Mercury ND B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thallium ND	MW2-552	8-7	0-5	OUT	MONITORING WELL	Σ	Lead			mg/kg	2
B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND	MW2-552	8-7	0-5	OUT	MONITORING WELL	Σ	Mercury	Q		mg/kg	0.1
B-7 0-2 OUT MONTORING WELL M Selenium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Thaillium ND B-7 0-2 OUT MONTORING WELL M Zinc 74	MW2-552	8-7	0-2	500	MONITORING WELL	Σ	Nickel	21		mg/kg	-
B-7 0-2 OUT MONTORING WELL M Silver ND B-7 0-2 OUT MONTORING WELL M Thallium ND B-7 0-2 OUT MONTORING WELL M Zinc 74	MW2-882	8-7	0-2	DOUT	MONITORING WELL	Σ	Selenium	Q		mg/kg	9.0
B-7 0-2 OUT MONTOFING WELL M Thallium ND Sinc 74	MW2-552	8-7	0-5	OUT	MONTORING WELL	Σ	Silver	Q.		mg/kg	_
B-7 0-2 OUT MONITORING WELL M Zinc 74	MW2-882		ı	OUT	MONTORING WELL	Σ	Thallium	9		mg/kg	10
	MW2-882	8-7	1	OUT	MONITORING WELL	Σ	Zinc	74	Z	mg/kg	-

SAMPLE #	GRID #	DEPTH	THO/NI			800			()	
				DESCRIPTION	CATEGORY	Ž	RESULTS	QUALIFIER	UNITS	
MW2-553	8-7	3-5	OUT	MONITORING WELL	>	Methylene Chloride	S		ng/kg	S
MW2-553	8-7	3-5	OUT	MONITORING WELL	S	ALL SEMI VOLATILES	Q.	Š	ug/kg	₹ Z
MW2-553	B-7	3-5	OUT	MONITORING WELL	Σ	Antimony	Q		mg/kg	90
MW2-553	8-7	3-5	OUT	MONITORING WELL	≥	Arsenic	9.6	z	mg/kg	0.5
MW2-553	8-7	3-5	OUT	MONITORING WELL	Σ	Beryllium	9		mg/kg	0.1
MW2-553	B-7	3-5	DOUT	MONITORING WELL	Σ	Cadmium	QN		mg/kg	-
MW2-553	8-7	3-5	OUT	MONITORING WELL	Σ	Chromium	60		mg/kg	-
MW2-553	8-7	3-5	DOUT	MONITORING WELL	*	Copper	24		mg/kg	-
MW2-553	8-7	3-8	OUT	MONITORING WELL	Σ	Lead	56		mg/kg	S
MW2-553	B-7	3-8	OUT	MONITORING WELL	Σ	Mercury	Q		mg/kg	0.1
MW2-553	B-7	3-5	OUT	MONITORING WELL	Σ	Nickel	9.5	80	mg/kg	-
MW2-553	8-7	3-8	OUT	MONITORING WELL	Σ	Selenium	2		mg/kg	0.5
WW2-553	8-7	3-5	OUT	MONITORING WELL	Σ	Silver	2		mg/kg	-
MW2-553	8-7	3-5	OUT	MONITORING WELL	Σ	Thallium	2		mg/kg	01
MW2-5S3	B-7	3-2	OUT	MONITORING WELL	Σ	Zinc	76	z	mg/kg	-
			-							
MW3-551	7-5 0	0-5	Z	MONTORING WELL	SS.	ALL SEMI - VOLATILES	2	z 	ng/kg	¥ Z
MW3-551	7 -0	0-5	Z	MONITORING WELL	₹	Antimony	9	Z	mg/kg	90
MW3-551	7 -0	0-5	Z	MONITORING WELL	Σ	Arsenic	15.3		mg/kg	0.5
MW3-551	C-4	0-2	Z	MONITORING WELL	Σ	Beryllium	2	z	тау/ка	0.1
MW3-551	V -0	0-2	Z	MONITORING WELL	Σ	Cadmium	2		mg/kg	-
MW3-851	0-4 0	02	Z	MONITORING WELL	Σ	Chromium	13.1		mg/kg	-
MW3-551	C-4	0-5	Z	MONITORING WELL	Σ	Copper	20.5		mg/kg	-
MW3-551	70	0-5	Z	MONITORING WELL	\$	Lead	15.6		mg/kg	S
MW3-551	C-4	0-2	Z	MONITORING WELL	*	Mercury	Q.		mg/kg	0.1
MW3-551	C-4	0-2	Z	MONITORING WELL	¥	Nickel	24.1		mg/kg	-
MW3-551	C-4	0-2	Z	MONITORING WELL	Σ	Selenium	Q.	_	mg/kg	0.5
MW3-551	C-4	0-2	Z	MONITORING WELL	\$	Silver	Q	z	mg/kg	-
MW3-551	7-0	0-2	Z	MONITORING WELL	\$	Thallium	Q		mg/kg	2
MW3-881	C-4	02	Z	MONITORING WELL	Σ	Zinc	87.1		т9/кд	-

MW3-SS2 MW3	INDUT IN MONTORNG WELL IN MONTORNG WELL	CATEGORY S S S S S S S S S S S S S S S S S S S	ALL SEMI – VOLATILES Antimony Arsenic Beryllium Cadralum Chromhum Copper Lead Mercury Nickel Selenium Silver	ND N	QUALFIE Z	UNITS Ug/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	AN 80.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
		S	ALL SEMI – VOLATILES Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	ON O	Ž		X 0 0 0 0
		\$ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ALL SEMI - VOLATILES Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	O N N O N T T T T T T T T T T T T T T T	ž		X 0 0 0 0
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Antimony Arsenic Beryllium Cadralum Chromhum Copper Lead Mercury Nickel Selenium Silver	ON O			<u> </u>
		2222222	Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	1.61 ON 0.45 1.61 0.45 0.45 0.45			0 0 0 0
		33333 33	Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	ND 14.1 19.1 13.7 ND			0 0 0
		22222	Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	14.1 1.9.1 1.0.1 ND		mg/kg mg/kg mg/kg mg/kg mg/kg	0 O
		<u> </u>	Chromhum Copper Lead Mercury Nickel Selenlum Silver	1.91 1.00 0 40		mg/kg mg/kg mg/kg mg/kg	Q O O
		XXXX :	Copper Lead Mercury Nickel Selenium Silver	19.1 7.07 0N 8.45		mg/kg mg/kg mg/kg	+ S 0 1.0
		ZZZ Z	Lead Mercury Nickel Selenium Silver	13.7 ND 94.9		mg/kg mg/kg mg/kg	0.1
		<u> </u>	Mercury Nickel Selenium Silver	ON 0.40		mg/kg mg/kg	0.1
		3 2	Nickel Selentum Silver	249		mg/kg	0.5
		Σ	Selenium Silver	27.4			0.5
		:	Silver	2		mg/kg	
		Σ		2	_	mg/kg	-
		Σ	Thallium	10.5		mg/kg	10
		*	Zinc	83.7		mg/kg	-
	IN SURFACE SOIL SAMPLE	S S	Benzo(k) Fluoranthene	280		ng/kg	330
	IN SURFACE SOIL SAMPLE	S	Fluoranthene	43	_	ug/kg	330
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN SURFACE SOIL SAMPLE	Σ	Antimony	Ş	z	mg/kg	80
	IN SURFACE SOIL SAMPLE	Σ	Arsenic	14.1		mg/kg	0.5
	IN SURFACE SOIL SAMPLE	Σ	Beryllium	0.79		mg/kg	0.1
	IN SURFACE SOIL SAMPLE	Σ	Cadmium	6.3	9		-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IN SURFACE SOIL SAMPLE	2	Chromium	22.1		mg/kg	-
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IN SURFACE SOIL SAMPLE	Z	Copper	29.3		mg/kg	_
89 - 20 C C - 20 C C C C C C C C C C C C C C C C C C	IN SURFACE SOIL SAMPLE	Σ	Lead	41.9		mg/kg	ν ₀
B-2,C-2	IN SURFACE SOIL SAMPLE	Σ	Mercury	Q	_	mg/kg	0.1
0-00-0	IN SURFACE SOIL SAMPLE	Σ	Nickel	28.2		mg/kg	-
ם-גיר-ג	IN SURFACE SOIL SAMPLE	Z	Selenium	QN	}	mg/kg	0.5
SU1+2-GS1 B-2,C-2 0-2	IN SURFACE SOIL SAMPLE	2	Silver	2	_	mg/kg	-
SU1+2-GS1 B-2,C-2 0-2	IN SURFACE SOIL SAMPLE	Σ	Thallium	Q		mg/kg	01
SU1+2-GS1 B-2,C-2 0-2	IN SURFACE SOIL SAMPLE	Σ	Zinc	42		mg/kg	-

						ANALYSIS				DETECTION
SAMPLE #	SAMPLE # GRID #	DEPTH	INOUT	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	LMI
					-					
SU3+4-GS1 D-2D-3	0-20-3	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	200		ug/kg	020
SU3+4-GS1 D-2,D-3	1 0-20-3	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	570		ug/kg	330
SU3+4-GS1 D-2.D-3	1 0-2,0-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	Q.	Z	mg/kg	9
SU3+4-GS1 D-2,D-3	1 0-2,0-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	19.7		mg/kg	9.0
SU3+4-GS1 D-2,D-3	D-2,D-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	9.0		mg/kg	1.0
SU3+4-GS1 D-2,D-3	1 0-2,0-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	8.3	5	mg/kg	•
SU3+4-GS1 D-2,D-3	1 0-2,0-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Chromium	22.4		mg/kg	-
SU3+4-GS1 D-2,D-3	1 0-20-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	28.1		mg/kg	-
SU3+4-GS1 D-2,D-3	1 0-2.0-3	0-2	Z	SURFACE SOIL SAMPLE	2	Lead	35.3		mg/kg	2
SU3+4-GS	SU3+4-GS1 D-2,D-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	Q		mg/kg	0.1
SU3+4-GS	SU3+4-GS1 D-2,D-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	28.3		mg/kg	-
SU3+4-GS	SU3+4-GS1 D-2,D-3	0-5	Ž	SURFACE SOIL SAMPLE	Σ	Selenium	QN	_	mg/kg	9.0
SU3+4-GS	SU3+4-GS1 D-2.D-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	2	_	mg/kg	-
SU3+4-GS	SU3+4-GS1 D-2,D-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Thallium	Q		mg/kg	2
SU3+4-GS1 D-2,D-3	1 0-2.0-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc			mg/kg	-

						ANALYSIS		***************************************		DETECTION
SAMPLE #	GRID .	DEPTH	TUO/NI	DESCRIPTION CA	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LW1
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Anthracene	280		ug/kg	330
SU5+6-GS1	8−3,	0-2	Z	SURFACE SOIL SAMPLE	SV	Benzo(a) Anthracene	2100		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Benzo(a)Pyrene	2600		ug/kg	330
SU5+6-GS1	B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	SV	Benzo(b) Fluoranthene	3200		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Benzo(g,h,i)Perylene	1700		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Benzo(k) Fluoranthene	2800		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Bis(2-ethylhexyl)Phthalate	4100		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Chrysene	2800	-	ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Dibenz(a,h) Anthracene	380		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	4100		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Indeno(1,2,3-cd)Pyrene	1700		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	S	Phenanthrene	4200		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	SV	Pyrene	2600		ug/kg	330
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	Q	z	mg/kg	90
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.7	တ	mg/kg	0.5
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.75		mg/kg	0.1
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	6. 6.	g	mg/kg	-
SU5+6-GS1	B-3.C-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Chromium	25.6		mg/kg	-
SU5+6-GS1	B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Copper	57.9	-	mg/kg	-
SU5+6-GS1	B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead	187	-	mg/kg	S
SU5+6-GS1	8-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	Q.		mg/kg	0.1
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	≊	Nicket	19.1		mg/kg	-
SU5+6-GS1	8-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Selenium	Q	3	mg/kg	0.5
SU5+6-GS1	B-3,C-3	0-5	Z	SURFACE SOIL SAMPLE	Σ	Silver	Q		mg/kg	-
SU5+6-GS1	B-3,C-3	0-2	Z	SURFACE SOIL SAMPLE	Σ	Thallium	QN N		mg/kg	01
SU5+6-GS1	B-3,C-3	0-5	2	SURFACE SOIL SAMPLE	Σ	Zinc	433		mg/kg	1

						ANALYSIS				DETECTION
SAMPLE #	GRID #	ОЕРТН	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QVALIFIER	UNITS	LIMIT
SU7+8-GS1	B-4.C-4	0-2	Z	SURFACE SOIL SAMPLE	SS	Benzo(b) Fluoranthene	230	-	ug/kg	330
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	S	Di-n-butyl Phthalate	940		ug/kg	330
SU7+8-GS	B-4,C-4	0-5	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	520		ug/kg	330
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	\$	Antimony	Q	z	mg/kg	9
SU7+8-GS	B-4,C-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	15.2		mg/kg	0.5
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	6.0		mg/kg	0.1
SU7+8-GS	B-4,C-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	90	g	mg/kg	-
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	22.1		mg/kg	-
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Соррег	23.1		mg/kg	-
SU7+8-GS	B-4,C-4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead			mg/kg	\$
SU7+8-GS	B-4,C-4	0-5	Z	SURFACE SOIL SAMPLE	\$	Mercury	QN		mg/kg	0.1
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	20.6		mg/kg	-
SU7+8-GS	B-4,C-4	ı	Z	SURFACE SOIL SAMPLE	Σ	Selenium	QN		mg/kg	0.5
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	Q.		mg/kg	-
SU7+8-GS	B-4,C-4	1	Z	SURFACE SOIL SAMPLE	₹	Thallium	QN		mg/kg	10
SU7+8-GS	B-4,C-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	296		mg/kg	-
	•				i	4				
SUS+10-GS	1	0-5	<u>z</u>	SURFACE SOIL SAMPLE	25	Benzo(a)Pyrene	360		ug/kg	330
SU9+10-GS1	4	0-5	Z	SURFACE SOIL SAMPLE	S	Benzo(b) Fluoranthene	570		ug/kg	330
SU9+10-GS	D-4,E-4	0-5	Z	SURFACE SOIL SAMPLE	જ	Benzo(k) Fluoranthene	380		ug/kg	330
SU9+10-GS1	D-4,E-4	0-5	Z	SURFACE SOIL SAMPLE	S	Chrysene	420		ug/kg	330
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	940		ug/kg	330
SU9+10-GS1	D-4,E-4	0-5	Z	SURFACE SOIL SAMPLE	S	Phenanthrene	410		ug/kg	330
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	S	Pyrene	630		ug/kg	330
SU9+10-GS	D-4,E-4	02	_	SURFACE SOIL SAMPLE	Σ	Antimony	Q Q	z	mg/kg	9
SU9+10-GS	4	0-5		SURFACE SOIL SAMPLE	Σ	Arsenic	17.9		mg/kg	5.0
SU9+10-GS1	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.95		mg/kg	0.1
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	\$	Cadmium	9.1	g	mg/kg	-
SU9+10-GS1	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	20.1		mg/kg	-
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	73.1		mg/kg	-
SU9+10-GS	1	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead	72.8		mg/kg	S
SU9+10-GS1	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	≆	Mercury	QN QN		mg/kg	0.1
SU9+10-GS	1	0-5	Z	SURFACE SOIL SAMPLE	Σ	Nickel	26.6		mg/kg	-
SU9+10-GS1	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	Σ	Selenium	Q.		mg/kg	0.5
SU9+10-GS	7	1	Z	SURFACE SOIL SAMPLE	≆	Silver	2		mg/kg	-
SU9+10-GS1	4	0-5	Z	SURFACE SOIL SAMPLE	Σ	Thaillum	Q		mg/kg	01
SU9+10-GS	D-4,E-4	0-2	Z	SURFACE SOIL SAMPLE	≥	Zinc	260		mg/kg	-

						ANALYSIS				DETECTION
SAMPLE # (GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LMIT
SU11+12-GS	-50-		2	SURFACE SOIL SAMPLE	\S	Benzo(a)Pyrene	530		ua/ka	330
+12-6	î Kî Î	0-2	Z	SUBFACE SOIL SAMPLE	\ \frac{1}{2}	Benzo(b) Fluoranthene	850		ua/ka	330
+12-68	-5.0-		2	SURFACE SOIL SAMPLE	AS.	Benzo(k)Fluoranthene	94		ug/kg	330
Ö	-5.D-		Z	SURFACE SOIL SAMPLE	S	Bis(2-ethylhexyl)Phthalate	480		ug/kg	330
SU11+12-GS C	-5,0-	0-2	Z	SURFACE SOIL SAMPLE	SS	Chrysene	540		ug/kg	330
SU11+12-GS C	-5,0-	0-5	Z	SURFACE SOIL SAMPLE	S	Di-n-butyl Phthalate	9200		ug/kg	330
SU11+12-GS C	-5,0-		Z	SURFACE SOIL SAMPLE	SS	Fluorene	1400		ug/kg	330
SU11+12-GS C	3-0'9-3		Z	SURFACE SOIL SAMPLE	S	Phenenthrene	1100		ug/kg	330
SU11+12-GS C	3-0'9-0	0-2	Z	SURFACE SOIL SAMPLE	S	Pyrene	1000		ng/kg	330
SU11+12-GS C	2-0'5-0		Z	SURFACE SOIL SAMPLE	Σ	Antimony	Q	z	mg/kg	9
SU11+12-GS C	-5,D-	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.7		mg/kg	9.0
	-5,0-		z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.78		mg/kg	0.1
SU11+12-GS C	3-2'D-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	8	9	mg/kg	-
SU11+12-GS C	2-2'D-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Chromium	19.5		mg/kg	-
SU11+12-GS C	2-2'D-5		Z	SURFACE SOIL SAMPLE	Σ	Соррег	29.7		mg/kg	-
SU11+12-GS C	2-5,D-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead	35		mg/kg	S
+12-68	-9'0-	0-5	z	SURFACE SOIL SAMPLE	ž	Mercury	2		mg/kg	0.1
SU11+12-GS C	2-2,0-5		Z	SURFACE SOIL SAMPLE	Σ	Nickel	26.5		mg/kg	-
SU11+12-GS C	2-5,D-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Selenium	QN	S	mg/kg	9.0
SU11+12-GS C	3-5,D-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	Q		mg/kg	-
	C-5,D-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Thallium	Q		mg/kg	01
SU11+12-GS C	-2,0-	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	113		mg/kg	-
SU13+14-GS	B-6 C-5	0-0	2	SHREACE SOIL SAMPLE	λ.	Benzo(h) Fluoranthene	430		04/011	330
4-68	-6.C	- 1	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	440		ua/ka	330
4 - GS	-J'9	1	Z	SURFACE SOIL SAMPLE	≥	Antimony	Q	z	mg/kg	9
SU13+14-GS	B-6,C-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	12.8		mg/kg	0.5
SU13+14-GS E	B-6,C-5	- 1	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.89		mg/kg	0.1
100	B-6,C-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	7.7	g	mg/kg	-
SU13+14-GS E	8-6,C-5	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	19.6		mg/kg	-
+14-GS	B-6,C-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Copper	19.7		mg/kg	_
	B-6,C-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Lead	41.5		mg/kg	S
-68	-0'9-	0-5	Z	SURFACE SOIL SAMPLE	Σ	Mercury	Q.		mg/kg	0.1
89-	-0'C-	1	Z	SURFACE SOIL SAMPLE	Σ	Nickel	14.8		mg/kg	-
	-0'0-	0-5	Z	SURFACE SOIL SAMPLE	Σ	Selenium			mg/kg	9.0
90) (0' (0'	1	Z	SURFACE SOIL SAMPLE	Σ	Silver			mg/kg	-
ဗ္	-0,0 -	1	Z	SURFACE SOIL SAMPLE	Σ	Thallium			mg/kg	10
SU13+14-GS	B-6,C-5	0-5	Z	SURFACE SOIL SAMPLE	Σ	Zinc	81		mg/kg	-

						ANALYSIS				DETECTION
SAMPLE # GRID #	GRID #	DEPTH	IN/OUT	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
		•			ě	i	9			
2012+16-69 5-600	こったローロ	0-2	Z	SURFACE SOIL SAMPLE	20	Benzo(b) Fluoranthene	2		ng/kg	3
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	S	Fluoranthene	740		ug/kg	330
SU15+16-GS C-6,D-6	C-6,D-8	0-2	Z	SURFACE SOIL SAMPLE	S	Pyrene	520		ug/kg	330
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Antimony	QN	z	mg/kg	9
SU15+16-GS C-6.D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Arsenic	17.2		mg/kg	9.0
SU15+16-CS C-6,D-6	C-6,D-8	0-2	Z	SURFACE SOIL SAMPLE	Σ	Beryllium	0.75		mg/kg	0.1
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Cadmium	7.7	g	mg/kg	+
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Chromium	23.9		mg/kg	-
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Copper	30.7		mg/kg	-
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Lead	52.1		mg/kg	S
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Mercury	QN		mg/kg	0.1
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Nickel	26.4		mg/kg	-
SU15+16-GS C-6,D-6	C-6,D-8	0-2	Z	SURFACE SOIL SAMPLE	Σ	Setenium	Q	3	mg/kg	9.0
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Silver	2		mg/kg	-
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Thallium	9		mg/kg	10
SU15+16-GS C-6,D-6	C-6,D-6	0-2	Z	SURFACE SOIL SAMPLE	Σ	Zinc	135		mg/kg	-

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS — GROUNDWATER

		YES/NO			ANALYSIS				DETECTION
SAMPLE #	GRID #	FILTERED DATE	DESCRIPTION CATEGORY	GORY	FOR	RESULTS	QUALIFIER	CNITS	LIMIT
MW1-GW1	ပ်	19 - Sep - 88	Groundwater Sample	>	Веплепе	96		J/on	5
MW1-GW1	9-0	-	Grandweter Semile	>	Acotona	120) (c)	, 5
MW1-GW1	9-0	- 5	Groundwater Semple) No.	ALL SEMI-VOLATILES	2 2		,	2
MW1-GW1) (C		Grandwater Semile	>	enelyX-0	8) (A) (A)	
MW1-GW1	9-0	-61	Groundwater Sample	Σ	Antimony	2		1/e'u	0.06
MW1-GW1	9-0	-61	Groundwater Sample	Σ	Arsenic	0.34		ma/L	0.005
MW1-GW1	9-O	-£	Groundwater Sample	Σ	Beryllium	2	z	ma/L	0.00
MW1-GW1	9-0		Groundwater Sample	Σ	Cadmium	0.15		mg/L	
MW1-GW1	9-0		Groundwater Sample	Σ	Chromium	0.52		mg/L	
MW1-GW1	9-O		Groundwater Sample	Σ	Copper	0.88		mg/L	
MW1-GW1	00		Groundwater Sample	≨	Lead	0.82		mg/L	0.005
MW1-GW1	9-O	19-Sep-88	Groundwater Sample	Σ	Mercury	0.0003		mg/L	0.0002
MW1-GW1	9-0		Groundwater Sample	Σ	Nickel	0.84		mg/L	0.01
MW1~GW1	9-O	19-Sep-88	Groundwater Sample	Σ	Selenium	2	-	mg/L	0.005
MW1-GW1	0-0		Groundwater Sample	Σ	Siver	2	z	mg/L	0.01
MW1-GW1	0 -0	19-Sep-88	Groundwater Sample	Σ	Thallium	2		mg/l.	0.1
MW1-GW1	9-0 C-9	19 Sep 88	Groundwater Sample	Σ	Zinc	3.6		T/Bm	0.01
MW1-GW1D	9-0	19 - Sep 88	Groundwater Sample	>	Вепзепе	3 4		ug/L	
MW1-GW1D	9-O		Groundwater Sample	S	2-Methylnapthalene	. 13		1/Bn	
MW1-GW1D	9-O		Groundwater Sample	Σ	Antimony	2		mg/L	90.0
MW1-GW1D	9-0		Groundwater Sample	Σ	Arsenic	4.0		mg/L	
MW1-GW1D	9-O		Groundwater Sample	Σ	Beryllium	2	z	mg/L	
MW1-GW1D	9-0		Groundwater Sample	≥	Cadmium	0.18		mg/L	0.01
MW1-GW1D	9-0		Groundwater Sample	Σ	Chromium	99:0		mg/L	
MW1-GW1D	9-0		Groundwater Sample	Σ	Copper	=		√l/gm	0.01
MW1-GW1D	9-0		Groundwater Sample	Σ	Lead	0.99		mg/L	0.005
MW1-GW1D	9-O		Groundwater Sample	Σ	Mercury	0.0003		mg/L	0.0002
MW1-GW1D	9-0		Groundwater Sample	Σ	Nickel	_		mg/L	
MW1-GW1D	9-O		Groundwater Sample	Σ	Selenium	2		mg/L	0.005
MW1-GW1D	9-0		Groundwater Sample	Σ	Siver	2	z	mg/L	_
MW1-GW1D	9-0		Groundwater Sample	≥	Thallium	Q		mg/L	0.1
MW1-GW1D	9-0	19-Sep-88	Groundwater Sample	Σ	Zinc	4.3		mg/L	0.01

		YES/NO				ANALYSIS				DETECTION
SAMPLE #	GRID *	FILTERED	DATE	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	EMI]
MW2 – GW1	8-7		19 - Sen - 88	Groundwater Sample	>	ALL VOLATILES	CZ		1/bm	ď.
MW2-GW1	8-7			Groundwater Sample	S	ALL SEMI-VOLATILES		Ž	na/L	X X
MW2-GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Antimony			mg/L	90.0
MW2-GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Arsenic	0.184		mg/L	0.005
MW2-GW1	B-7	_	19-Sep-88	Groundwater Sample	Σ	Benyllium	<u>Q</u>	z	mg/L	0.001
MW2-GW1	8-7		19Sep88	Groundwater Sample	Σ	Cadmium	0.12		mg/L	0.01
MW2-GW1	8-7		19-Sep-88	Groundwater Sample	Σ	Chromium	0.28		mg/L	0.01
MW2 - GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Copper	99.0		T/6m	0.01
MW2-GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Lead	0.55		mg/L	0.005
MW2-GW1	8-7		19-Sep-88	Groundwater Sample	Σ	Mercury	0.0002		mg/L	0.0002
MW2-GW1	8-7		19-Sep-88	Groundwater Sample	Σ	Nickel	0.45		mg/L	0.01
MW2-GW1	8-7		19-Sep-88	Groundwater Sample	Σ	Selenium	QN -	>	mg/L	0.005
MW2-GW1	8-7	_	19-Sep-88	Groundwater Sample	Σ	Silver	₽ N		mg/L	0.01
MW2-GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Thallium	2		mg/L	0.1
MW2 - GW1	B-7		19-Sep-88	Groundwater Sample	Σ	Zinc	2.4		mg/L	0.01
					;	:			•	,
MW3-GW1	5		22-Sep-88	Groundwater Sample	>	Irichloroethylene			7/6n	S
MW3-GW1	0 -4		22-Sep-88	Groundwater Sample	SV	ALL SEMI-VOLATILES		¥Z	ng/L	¥Z
MW3-GW1	Q-4		22-Sep-88	Groundwater Sample	Σ	Antimony	2		mg/L	90.0
MW3-GW1	0 4-0		22 Sep 88	Groundwater Sample	Σ	Arsenic	_		mg/L	0.005
MW3-GW1	0		22 - Sep -88	Groundwater Sample	Σ	Beryllium	2	z	mg/L	0.001
MW3-GW1	-C		22-Sep-88	Groundwater Sample	Σ	Cadmium	0.04		mg/L	0.01
MW3-GW1	C-4		22-Sep-88	Groundwater Sample	Σ	Chromium	_		mg/L	0.01
MW3-GW1	0-4 -		22-Sep-88	Groundwater Sample	Σ	Copper	0.2		mg/L	0.01
MW3-GW1	0 4-0		22 - Sep -88	Groundwater Sample	Σ	Lead	_		mg/L	0.005
MW3-GW1	0 4-0		22-Sep-88	Groundwater Sample	Σ	Mercury	2		mg/L	0.0002
MW3-GW1	0 4-0		22-Sep-88	Groundwater Sample	Σ	Nickel	0.27		mg/L	0.01
MW3-GW1	0 -4		22-Sep-88	Groundwater Sample	Σ	Selenium	0.0082	S	mg/L	0.005
MW3-GW1	C-4		22-Sep-88	Groundwater Sample	Σ	Siver			mg/L	0.01
MW3-GW1	C-4		22 - Sep -88	Groundwater Sample	Σ	Thallium	2		mg/L	0.1
MW3-GW1	0 -		22-Sep-88	Groundwater Sample	Σ	Zinc	0.94		mg/L	0.01
MW3-GW1	0		17 -Oct-88	Groundwater Sample	SV	Bis(2 - ethylhexyl)phthalat	24	В	ng/L	10

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS — GROUNDWATER

SAMPLE #	4 000									•
	ous.	FILTERED	DATE	DESCRIPTION	CATEGORY	FOR	RESULTS	RESULTS QUALIFIER	UNITS	LIMIT
MW1-GW2	C C	02	06 – Feb –90	Groundwater Semole		Antimon	35.3	5	1/011	9
MW1-GW2			06-Feb-90	Groundwater Sample	Σ	Arsenic	9.5		J/Bn	5
MW1-GW2			06-Feb-90	Groundwater Sample	_	Beryllium	3.9	2	ug/L	S
MW1-GW2	0-0		06-Feb-90	Groundwater Sample		Cadmium	4.9	5	ng/L	ın
MW1-GW2	0-0		06-Feb-90	Groundwater Sample	Σ	Chromium	70.4		ng/L	5
MW1-GW2	9-0 0-0		06-Feb-90	Groundwater Sample		Copper	171		ng/L	25
MW1-GW2	9-0	2	06-Feb-90	Groundwater Sample		Lead	195		ng/L	က
MW1-GW2			06-Feb-90	Groundwater Sample	Σ	Mercury	0.1	5	ng/L	0.2
MW1-GW2		Q S	06-Feb-90	Groundwater Sample		Nickel	121		ng/L	40
MW1-GW2	0-0		06-Feb-90	Groundwater Sample	Σ	Selenium	5.5		ng/L	လ
MW1-GW2			06-Feb-90	Groundwater Sample		Siver	9.1	ס	ng/L	5
MW1-GW2			06-Feb-90	Groundwater Sample		Thallium	6.0	5	ng/L	0
MW1-GW2	9-O	<u>Q</u>	06-Feb-90	Groundwater Sample		Zinc	678		ng/L	20
MW1-GW2			06-Feb-90	Groundwater Sample	_	Antimony	40.2	5	ng/L	09
MW1-GW2	0-0		06-Feb-90	Groundwater Sample		Arsenic	4.6	60	ng/L	10
MW1-GW2	9-0 0-0		06-Feb-90	Groundwater Sample	_	Beryllium	2.3	<u></u>	ng/L	S
MW1-GW2	9-O		06-Feb-90	Groundwater Sample		Cadmium	1.9		ng/L	S
MW1-GW2	9-0 0-1		06-Feb-90	Groundwater Sample		Chromium	8.7	כ	ng/L	01
MW1-GW2			06-Feb-90	Groundwater Sample		Copper	4.4	2	ng/L	52
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	Σ	Lead	7.7	ſs	ng/L	6
MW1-GW2			06-Feb-90	Groundwater Sample	Σ	Mercury	0.11	80	ng/L	0.2
MW1-GW2		YES	06-feb-90	Groundwater Sample		Nickel	23.6	5	ng/L	04
MW1-GW2			06-Feb-90	Groundwater Sample		Selenium	1.7		ng/L	S
MW1-GW2			06-Feb-90	Groundwater Sample		Siver	9.9	5	ng/L	9
MW1-GW2	9-0	YES	06-tep-90	Groundwater Sample	Σ	Thallium	6.0	⊃	ng/L	5
MW1-GW2	9-0	YES	06-Feb-90	Groundwater Sample	Σ	Zinc	2	3	ng/L	ຂ

		YES/NO				ANALYSIS				DETECTION
SAMPLE #	GRID *	FILTERED	DATE	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
MW2-GW2	8-7	Q	07 - Feb -90	Groundwater Sample	×	Antimony	40.2	n	ug/L	09
MW2-GW2	8-7	2	07 - Feb-90	Groundwater Sample		Arsenic	6.5	60)	ug/L	01
MWZ-GWZ	8-7	2	07 - Feb - 90	Groundwater Sample	Σ	Beryllium	2.3	2	ng/L	2
MW2-GW2	8-7	2	07-Feb-90	Groundwater Sample		Cadmium	1.9	>	ug/L	2
MW2-GW2	8-7	2	07-Feb-90	Groundwater Sample	Σ	Chromium	33		ng/L	5
MW2-GW2	8-7	2	07 - Feb - 90	Groundwater Sample		Copper	101		ng/L	25
MW2-GW2	8-7	2	07 - Feb-90	Groundwater Sample		Lead	84.5	ဟ	ng/L	က
MW2-GW2	8-7	2	07-Feb-90	Groundwater Sample		Mercury	0.1	5	ng/L	0.2
MW2-GW2	8-7	2	07 - Feb - 90	Groundwater Sample		Nickel	52		ng/L	64
MW2-GW2	B-7	2	07-Feb-90	Groundwater Sample	Σ	Selenium	1.9	BW	ng/L	S
MW2-GW2	B-7	2	07-Feb-90	Groundwater Sample		Siver	9.9	2	ug/L	5
MW2-GW2	B-7	9	07-Feb-90	Groundwater Sample	Σ	Thallium	6.0	5	ng/L	5
MW2-GW2	B-7	2	05-Feb-90	Groundwater Sample		Zinc	340		ug/L	8
MW2-GW2	B-7	YES	07-Feb-90	Groundwater Sample		Antimony	34.6	כ	ng/L	9
MW2-GW2	8-7	YES	07-Feb-90	Groundwater Sample	Σ	Arsenic	4.2	BW	ug/L	9
MW2-GW2	8-7	YES	07 - Feb - 90	Groundwater Sample		Beryllium	3.8	5	ng/L	S
MW2-GW2	87	YES	07-Feb-90	Groundwater Sample		Cadmium	4.8	D	ng/L	ĸ
MW2-GW2		YES	05-Feb-90	Groundwater Sample		Chromium	9.6	5	ng/L	9
MW2-GW2	8-7	YES	07 - Feb - 90	Groundwater Sample		Copper	9	ס	ng/L	52
MW2-GW2	B-7	YES	07 - Feb - 90	Groundwater Sample	Σ	Lead	41	3	ng/L	6
MW2-GW2	8-7	YES	07 - Feb - 90	Groundwater Sample		Mercury	0.1	ס	ng/L	0.2
MW2-GW2	8-7	YES	07-Feb-90	Groundwater Sample		Nickel	31.1	<u>э</u>	ug/L	64
MW2-GW2	8-7		07 - Feb - 90	Groundwater Sample		Selenium	4.1	<u>ס</u>	ng/L	2
MW2-GW2	B-7		05 - Feb 90	Ground vater Sample		Siver	8.9	5	ug/L	2
MW2-GW2	8-7	YES	07 Feb-90	Groundwater Sample	Σ	Thallium	6.0	5	ng/L	0
MW2-GW2	8-7	YES	07-Feb-90	Groundwater Sample	M	Zinc	18	B	ug/L	20

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS — GROUNDWATER

SAMPLE #	GRID #	YES/NO FILTERED	DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	DETECTION
AWS - GWD	7	Ç	08 - Feb - 00	Acmed veteral	2	Antimos	40.2	=	1701	8
MW3 - GWD	0 0	2		eldmen Samples Gample	E >	Areanic	, c) a	9,0	3 5
ZWG - GWM) C	2	8 - Feb - 80	Grandwater Semole		Bearilly and) =) 	2 10
CAN CO	0 (2 2	8 40	olding issues to the		Delyman.) =	1 . 2 :) L
MW3-GWZ	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2 2	06-06-1-00 06-06-1-00	Groundwater sample		Cadmium	. ·	5 :	ng/L	n ;
MW3-GWZ	1 C	2 :	06-rep-90	Groundwater Sample		Chromium	8.7	5	ng/L	9
MW3-GW2	0-1	2	06-Feb-90	Groundwater Sample		Copper	_	80	ng/L	52
MW3-GW2	1 -0	2	06-Feb-90	Groundwater Sample	Σ	Lead	9.7	7	ng/L	6
MW3-GW2	Q-0	2	06-feb-90	Groundwater Sample		Mercury	0.1	5	ng/L	0.2
MW3-GW2	O 1	2	06-Feb-90	Groundwater Sample		Nickel	23.6	⊃	ug/L	40
MW3-GW2	Ö	<u>Q</u>	06-Feb-90	Groundwater Sample		Selenium	1.7	כ	ng/L	S
MW3-GW2	0-1	9	06-Feb-90	Groundwater Sample	₹	Siver	9.9)	ng/L	9
MW3-GW2	4-0	2	06-Feb-90	Groundwater Sample		Thallium	6.0	Þ	ng/L	ō
MW3-GW2	0-1	2	06Feb90	Groundwater Sample	Σ	Zinc	35	7	ng/L	8
MW3-GW2	1 0	YES	06-Feb-90	Groundwater Sample		Antimomy	34.6	5	ng/L	09
MW3-GW2	O-4	YES	06-Feb-90	Groundwater Sample		Arsenic	2	80	ug/L	9
MW3-GW2	C-4	YES	06-feb-90	Groundwater Sample	≥	Beryllium	3.8	5	ng/L	S
MW3-GW2	C-4	YES	06-Feb-90	Groundwater Sample		Cadmium	8.4	Þ	ug/L	2
MW3-GW2	0-1	YES	06-Feb-90	Groundwater Sample		Chromium	9.6)	ng/L	10
MW3-GW2	Q-4	YES	06-feb-90	Groundwater Sample		Copper	9	כ	ng/L	52
MW3-GW2	C-4	YES	06-Feb-90	Groundwater Sample	Σ	Lead	5.3		ng/L	က
MW3-GW2	0 4	YES	06-Feb-90	Groundwater Sample		Mercury	0.1	Ď	ng/L	0.2
MW3-GW2	C-4	YES	06-Feb-90	Groundwater Sample	Σ	Nickel	31.1	Þ	ng/L	4
MW3-GW2	0 -4	YES	06-Feb-90	Groundwater Sample	Σ	Selenium	1.4	5	ng/L	δ.
MW3-GW2	0	YES	06-Feb-90	Groundwater Sample	Σ	Siver	6.8	2	ug/L	9
MW3-GW2	C - 4	YES	06-Feb-90	Groundwater Sample	Σ	Thallium	6.0	כ	ng/L	2
MW3-GW2	C-4	YES	06-Feb-90	Groundwater Sample	₹	Zinc	17	2	ug/L	8

RICKENBACKERANGB HAZARDOUS WASTE STORAGE AREA ANALYTICAL RESULTS — GROUNDWATER

SAMPLE # G	GRID #	YES/NO FILTERED	DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	DETECTION LIMIT
WW4 - GW1	8-2	2	06-de90	Groundwater Sample	_	Antimony	34.6	>	ng/L	8
MW4 - GW1	B-2	2	06-Feb-90	Groundwater Sample	X	Arsenic	18.5		ng/L	5
MW4 - GW1	B-2	9	06-Feb-90	Groundwater Sample		Beryllum	3.8		ng/L	3
MW4 - GW1	8-2	ð	06-feb-90	Groundwater Sample	Σ	Cadmium	4.8	ם	ng/L	2
MW4 - GW1	B-2	2	06-Feb-90	Groundwater Sample	Σ	Chromium	39		ng/L	0,
MW4 - GW1	B-2	9	06-Feb-90	Groundwater Sample	₹	Copper	73		ng/L	52
MW4-GW1	8-2	9	06-Feb-90	Groundwater Sample	₹	Lead	27.1	ဟ	ug/L	
-GW1	B-2	9	06-Feb-90	Groundwater Sample		Mercury	0.1	J	ng/L	
MW4 - GW1	8-2	2	06-feb-90	Groundwater Sample	Σ	Nickel	73		ng,(
MW4 - GW1	B-2	9	06Feb90	Groundwater Sample	Σ	Selenium	1.5	BW	ng/L	
MW4 - GW1	B-2		06-feb-90	Groundwater Sample	₹	SNer	6.8	3	ng/L	
MW4 - GW1	B-2	_	06-Feb-90	Groundwater Sample		Thallium	6.0	3	ug/L	
MW4 - GW1	B-2	2	06-feb-90	Groundwater Sample		Zinc	340		√/Sn	
MW4 - GW1	B-2	YES	06-Feb-90	Groundwater Sample		Antimony	40.2	5	√gu	
MW4 - GW1	8-2	YES	06-feb-90	Groundwater Sample	Σ	Arsenic	1.5	5	ng/L	\$
MW4 - GW1	B-2	YES	06-feb-90	Groundwater Sample		Beryllium	2.3		ng/L	2
MW4 - GW1	8-2	YES	06-Feb-90	Groundwater Sample	₹	Cadmium	6.1	<u></u>	ng/L	ŝ
WW4 - GW1	82	YES	06-feb-90	Groundwater Sample		Chromium	8.7		υg/L	5
MW4 - GW1	8-2	YES	06-4e-30	Groundwater Sample		Copper	4.	2	ug/L	52
MW4 - GW1	B2	YES	06-Feb-90	Groundwater Sample	Σ.	Pead	12.5		ug/L	က
MW4 - GW1	B-2	YES	06-feb-90	Groundwater Sample		Mercury	0.1		ng/L	0.2
WW4 - GW1	B-2	YES	06-Feb-90	Groundwater Sample	Σ	Nickel	23.6		ng/L	6
WW4 - GW1	B-2		06-Feb-90	Groundwater Sample		Selenium	1.7	<u> </u>	ng/L	S
MW4 - GW1	8-2		06-Feb-90	Groundwater Sample		Siver	9.9	5	√gn	9
MW4 - GW1	8-2	YES	06-feb-90	Groundwater Sample	Σ	Thallium	6.0		ng/L	₽
-GW1	8-2	YES	06-Feb-90	Groundwater Sample	Σ	Zinc	2	28	ug/L	8

SAMPLE	# Clas	YES/NO FII TERED	DATE	DESCRIPTION	CATERODRY	ANALYSIS	DECI LE	ONAL ICICO	OTIMIT	DETECTION
					CALEGGIII		וובמסבוו			
MW6-GW1	E-5	Š	07 - Feb-90	Groundwater Sample	*	Antimony	35.3		ug/L	8
MW6-GW1	E-5	2	07-Feb-90	Groundwater Sample	Σ	Arsenic	9.2	BW	ng/L	õ
MW6-GW1	E-5		07 - Feb - 90	Groundwater Sample	Σ	Beryllium	3.9	2	ng/L	5
MW6-GW1	E5		07-Feb-90	Groundwater Sample	Σ	Cadmium	6.4	2	1/6n	S
MW6-GW1	E-5	2	07 Feb-90	Groundwater Sample	₹	Chromium	32.6		ng/L	9
MW6-GW1	E-5	_	07 - Feb - 90	Groundwater Sample	Σ	Copper	101		1/6n	52
MW6-GW1	E-5		07 - Feb-90	Groundwater Sample	_	Lead	_		1/6n	က
MW6-GW1	E-5		07 - Feb 90	Groundwater Sample		Mercury	0.1	2	ng/L	0.2
MW6-GW1	E-5		07 - Feb - 90	Groundwater Sample	_	Nickel	83.6		n8/r	40
MW6-GW1	E-5	9	07 - Feb - 90	Groundwater Sample		Selenium	13	BW	ng/L	S
MW6-GW1	E-5		07 Feb-90	Groundwater Sample	_	SNer	9.1	5	ng/L	0
MW6-GW1	E-5		07 -Feb-90	Groundwater Sample		Thallium	6.0	5	1/Bn	õ
MW6-GW1	E-5		05 - Feb - 90	Groundwater Sample		Zinc	455		1/6n	20
MW6-GW1	E-5		07 - Feb - 90	Groundweto: Sample	_	Antimony	40.2	5	ng/L	8
MW6 GW1	E-5		07~Feb-90	Groundwate: Sample		Arsenic	5.	5	ng/L	10
MW6-GW1	E-5		07 - Feb -90	Groundwater Sample		Beryllium	2.3	<u>ہ</u>	ng/L	22
MW6-GW1	E-5	_	07 - Feb -90	Groundwater Sample		Cadmium	1.9	5	ng/L	2
MW6-GW1	E-5		07-Feb-90	Groundwater Sample	Σ	Chromium	8.7	2	ng/L	5
MW6-GW1	E-5		07-Feb-90	Groundwater Sample		Copper	4.1	כ	ug/L	52
MW6-GW1	E-5		07 ~ Feb - 90	Groundwater Sample	Σ	Peed	3.1	7	ng/L	6
MW6-GW1	E-5		07 Feb 90	Groundwater Sample	_	Mercury	0.1	5	ng/L	0.2
MW6-GW1	E-5	YES	07 - Feb - 90	Groundwater Sample		Nickel	23.6	ס	ng/L	40
MW6-GW1	E-5		07 - Feb - 90	Groundwater Sample	_	Selenium	1.7	5	ng/L	S
MW6-GW1	E-5		07 - Feb 90	Groundwater Sample	Σ	Siver	9.9	<u> </u>	ng/L	5
MW6-GW1	E-5		05-Feb-90	Groundwater Sample	Σ	Thallium	6.0	5	ng/L	2
MW6-GW1	E-5		07 Feb-90	Groundwater Sample	æ	Zinc	5	BJ	ng/L	20

SAMPLE #	GRID #	YES/NO FILTERED	DATE	DESCRIPTION CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	DETECTION LIMIT
MW7 GW1	8-O	ON	07 – Feb –90	Groundwater Sample M	Antimony	34.6	٦	ua/L	8
MW7 - GW1	0-8	9	07 - Feb - 90		Arsenic	17.9		ug/L	0
MW7-GW1	0-8	9	07-Feb-90	Groundwater Sample M	Beryllium	3.8	5	ug/L	S
MW7 - GW1	0-8	Q N	07 - Feb 90	Groundwater Sample	Cadmium	4.8	5	ug/L	2
MW7-GW1	9-Q	9	07-Feb-90	Groundwater Sample M	Chromium	27		ug/L	5
MW7-GW1	0-8	2	07-Feb-90	Groundwater Sample M	Copper	31		ng/L	25
MW7-GW1	D-8	2	07 - Feb -90	Groundwater Sample M	Lead	25.8	+	ng/L	က
MW7-GW1	D-8	Q Q	07 - Feb - 90	Groundwater Sample	Mercury	0.1	5	ug/L	0.2
MW7-GW1	D-8	<u>Q</u>	07 - Feb - 90	Groundwater Sample M	Nickel	31.1	5	ng/L	6
MW7 - GW1	D-8	9	07 - Feb - 90	Groundwater Sample M	Selenium	1.4	<u>₹</u>	ng/L	သ
MW7-GW1	D-8	2	07-Feb-90	Groundwater Sample	SNer	6.8	ס	ng/L	9
MW7 - GW1	D-8	9	07-Feb-90	Groundwater Sample	Thallium	0.0	5	ng/L	5
MW7 - GW1	D-8	S S	07-Feb-90	Groundwater Sample	Zinc			ng/L	8
MW7 - GW1	D-8	YES	07-Feb-90	Groundwater Sample M	Antimony	40.2	5	ug/L	9
MW7-GW1	8-Q		07-Feb-90	Groundwater Sample M	Arsenic	6.9	80	ug/L	5
MW7 - GW1	D-8		07-Feb-90	Groundwater Sample M	Beryllium	2.3	5	ng/L	S
MW7-GW1	D-8	YES	07-Feb-90	Groundwater Sample M	Cadmium	1.9	ס	ng/L	2
MW7 - GW1	D-8		07-Feb-90	Groundwater Sample M	Chromium	8.7	5	ng/L	5
MW7-GW1	D-8		07-Feb-90	Groundwater Sample	Copper	4.1	ס	ng/L	52
MW7 - GW1	D-8		07-Feb-90	Groundwater Sample M	Lead	6.4	7	ng/L	ო
MW7 - GW1	8-Q		07-Feb-90	Groundwater Sample	Mercury	0.1	D	ng/L	0.2
MW7-GW1	D-8	YES	07-Feb-90	Groundwater Sample M	Nickel	23.6	D	ng/L	Q
MW7-GW1	8- Q		07 - Feb 90		Selenium	1.7	2	ng/L	2
MW7 - GW1	D-8		07-Feb-90	Groundwater Sample M	Siver	9.9)	ng/L	2
MW7 GW1	D-8	YES	07-Feb-90	Groundwater Sample M	Thallium	6.0	כ	ug/L	2
MW7 - GW1	D-8		07 - Feb 90	Groundwater Sample	Zinc	8	B	ug/L	20

CAMBIE	1 000	YES/NO		NOT GEOGRA	NO COURT	ANALYSIS	1000	0114110	o Elivi	DETECTION
Symmetry 1	oup.	ricience	J .		CALEGORI	E C	MESULIS	AOALIFIEN	0	
MW8-GW1	C-10	9	07 - Feb-90	Groundwater Sample	Σ	Antimony	40.2		ug/L	8
MW8-GW1	C-10	9	07 - Feb - 90	Groundwater Sample		Arsenic	1.7	BW	ug/L	9
MW8-GW1	C-10	9	07 - Feb - 90	Groundwater Sample	Σ	Beryllium	n	80	ng/L	S
MW8-GW1	C-10	9	07 - Feb-90	Groundwater Sample	Σ	Cadmium	1.9	כ	ng/L	S
MW8-GW1	C-10	9	07 - Feb - 90	Groundwater Sample	Σ	Chromium	65		ug/L	10
MW8-GW1	C-10		07 - Feb-90	Groundwater Sample		Copper	135		ng/L	52
MW8-GW1	C-10	9	07 - Feb - 90	Groundwater Sample		Lead	58.1		ug/L	m
MW8-GW1	C-10		07-Feb-90	Groundwater Sample		Mercury	0.1	ס	ug/L	0.2
MWB-GW1	C-10		07 - Feb - 90	Groundwater Sample		Nickel	134		ng/L	4
MW8-GW1	C-10	2	07-Feb-90	Groundwater Sample	Σ	Selenium	1.7	š	ng/L	S
MW8-GW1	C-10		05-Feb-90	Groundwater Sample		Siver	6.6	J	ng/L	10
MW8-GW1	C-10		07 - Feb 90	Groundwater Sample		Thallium	6.0	¬	ug/L	5
MW8-GW1	C-10	Q Q	07 - Feb - 90	Groundwater Sample		Zinc	642		ug/L	50
MW8-GW1	C-10		07 - Feb 90	Groundwater Sample		Antimony	34.6		ng/L	9
MWB-GW1	C-10	YES	07 - Feb-90	Groundwater Sample		Arsenic	3.1	BW	ng/L	10
MWB-GW1	C-10	YES	07 - Feb 90	Groundwater Sample		Beryllium	3.8		ug/L	ß
MWB-GW1	C-10	YES	07 - Feb 90	Groundwater Sample	•	Cadmium	8.4)	ng/L	22
MW8-GW1	C-10		07 - Feb - 90	Groundwater Sample		Chromium	9.6	כ	ug/L	5
MW8-GW1	C-10		07 - Feb -90	Groundwater Sample		Copper	9	5	ng/L	52
MW8-GW1	C-10		07 - Feb - 90	Groundwater Sample		Lead	9		ng/L	က
MW8 GW1	C-10		07 - Feb - 90	Groundwater Sample		Mercury	0.1	J	ng/L	0.2
MW8-GW1	C-10		07 - Feb - 90	Groundwater Sample		Nickel	31.1	>	ug/L	4
MW8-GW1	C-10		05 - Feb - 90	Groundwater Sample		Selenium	1.4	¬	ug/L	S
MW8-GW1	C-10		04-Feb-90	Groundwater Sample		Siver	8.9	3	ng/L	9
MWB-GW1	C-10	YES	07 - Feb -90	Groundwater Sample	Σ	Thallium	0.9)	ng/L	0,
MW8~GW1	C-10	YES	07 - Feb - 90	Groundwater Sample	Σ	Zinc	21	٦	ng/L	20

SAMPLE #	GRID *	FILTERED	DATE	DESCRIPTION	CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Antimony	40.2	ס	ng/L	9
MW9-GW1	¥-¥	2	16-Feb-90	Groundwater Sample	Σ	Arsenic	8.4	BS	ng/L	2
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Beryllium	2.3	60	ng/L	S
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Cadmium	1.9	>	ug/L	S
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	Σ	Chromium	24		ng/L	5
MW9-GW1	A − A	<u>Q</u>	16-Feb-90	Groundwater Sample	Σ	Copper	15	8	ng/L	52
MW9-GW1	A-4	2	16-Feb-90	Groundwater Sample	×	Lead	33.3		ug/L	n
MW9-GW1	A_4	2	16-Feb-90	Groundwater Sample	×	Mercury	0.1	ס	ug/L	0.2
MW9-GW1	A_4	2	16-Feb-90	Groundwater Sample	Σ	Nickel	23.6		ug/L	40
MW9-GW1	A-4	9	16-Feb-90	Groundwater Sample	×	Selenium	1.7	3	ng/L	S
MW9-GW1	A-4	2	16-Feb-90		Σ	Siver	9.9		ug/L	01
MW9-GW1	A4	2	16 - Feb - 90	Groundwater Sample	Σ	Thallium	6.0	<u>ت</u>	ug/L	10
MW9-GW1	A-4	9	16-Feb-90	Groundwater Sample	Σ	Zinc	62		ng/L	20
MW9-GW1		YES	16-Feb-90	Groundwater Sample	Σ	Antimony	40.2	5	J/Bn	9
MW9-GW1	A-4		16-Feb-90	Groundwater Sample	Σ	Arsenic	N	8	ng/L	10
MW9-GW1	A-4		16-Feb-90	Groundwater Sample	Σ	Beryllium	2.3	<u>ت</u>	ng/L	S.
MW9-GW1	A-4		16-Feb-90		Σ	Cadmium	1.9	5	ng/L	S
MW9-GW1	A-4	YES	16-Feb-90		Σ	Chromium	8.7	2	ng/L	5
MW9-GW1	A-4		16-Feb-90	Groundwater Sample	Σ	Copper	4.1	ס	ng/L	25
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Lead	3.6	7	ug/t	m
MW9-GW1	A-4	·	16-Feb-90	Groundwater Sample	Σ	Mercury	0.1)	ng/L	0.2
MW9-GW1	A-4		16 - Feb 90	Groundwater Sample	Σ	Nickel	23.6	5	ng/L	40
MW9-GW1	A-4		16-Feb-90	Groundwater Sample	Σ	Selenium	1.7	₹	ng/L	S.
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Siver	9.9	J	ug/L	5
MW9-GW1	A4	YES	16 - Feb - 90	Groundwater Sample	Σ	Thallium	6.0	ס	ug/L	5
MW9-GW1	A-4	YES	16-Feb-90	Groundwater Sample	Σ	Zinc	13	BJ	ug/L	20
					;		,		1	
MWI -GWZ			06-rep-90	Groundwater Sample	> :	Acetone	90 3	3	ng/L	0 :
MW1-GW2			06-Feb-90	Groundwater Sample	>	2 - Butanone	8	5	ng/L	9
MW1-GW2			06-Feb-90	Groundwater Sample	>	Vinyl Acetate	S.	D	ug/L	\$
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	>	Benzene	260	٥	ng/L	9
MW1-GW2			06-Feb-90	Groundwater Sample	>	2 - Hexanone	ß	<u> </u>	ng/L	5
MW1-GW2			06-Feb-90	Groundwater Sample	_	4 - Methyl - 2 - pentanone	S	⊃	ng/L	\$
MW1-GW2			06-Feb-90	Groundwater Sample	>	Ethylbenzene	110		ng/L	2
MW1-GW2			06-Feb-90	Groundwater Sample	>	m/p-Xylene	35		ng/L	5
MW1-GW2	9-0		06-Feb-90	Groundwater Sample	>	o-Xylene	98		ug/L	10
4							,		•	,
MWZ-GWZ			0/-rep-90	Groundwater Sample	> ;	Acetone	8	> :	ng/L	10
MW2-GW2			07 Feb-90	Groundwater Sample	> :	2 - Butanone	<u>\$</u>	5	ng/L	5
MW2-GW2			07-Feb-90	Groundwater Sample	>	Vinyl Acetate	S	5	√l/6n	5
MW2-GW2			07 - Feb-90	Groundwater Sample	>	2 - Hexanone	2	>	ng/L	5
MW2-GW2	8-7		07 Feb 90	Groundwater Sample	>	4 - Methyl - 2 - pentanone	S	=	/01	Ç

YES/NO SAMPLE # GRID # FILTERED	GRID #	YES/NO FILTERED	DATE	DESCRIPTION C	CATEGORY	ANALYSIS FOR	RESULTS	RESULTS QUALIFIER	UNITS	DETECTION
MW3-GW2	0		06-Feb-90	Groundwater Sample	>	Acetone	 00 100	<u></u>	ng/L	
MW3-GW2	1 0		06-feb-90	Groundwater Sample	>	2 - Butanone)	ng/L	
MW3-GW2	Q-4		06-Feb-90	Groundwater Sample	>	Vinyl Acetate	S	ח	ug/L	10
MW3-GW2	C-4		06-Feb-90	Groundwater Sample	>	Trichloroethene	_		ng/L	
MW3-GW2	C	·	06-Feb-90	Groundwater Sample	>	2Hexanone	ሜ	-	ng/L	9
MW3-GW2	C-4		06-Feb-90	Groundwater Sample	^	4-Methyl-2-pentanone	20	U	ng/L	10
MW4 - GW1	B-2		06-Feb-90	Groundwater Sample	>	Acetone	5		ug/L	·
MW4 - GW1	8-2		06-Feb-90	Groundwater Sample	>	2 - Butanone	5	-	ug/L	9
MW4 - GW1	B-2		06-Feb-90	Groundwater Sample	>	Vinyl Acetate		¬	ng/L	
MW4 - GW1	B-2		06-Feb-90	Groundwater Sample	>	2~Hexanone	ଊ	D	ng/L	9
MW4 GW1	B-2		06-Feb-90	Groundwater Sample	>	4 - Methyl-2-pentanone		U	ng/L	10
MW6 - GW1	II.		07 - Fah - 90	Groundwater Samole	>	Acetone			//011	9
MW6-GW1	Ψ		07 - Feb - 90	Groundwater Sample	>	Trans-12-Dichloroethene	89		J/Bn	
MW6-GW1	E-6		07 - Feb 90	Groundwater Sample	>	2-Butanone	100	>	ng/L	9
MW6-GW1	E-6		07 - Feb -90	Groundwater Sample	>	Vinyl Acetate	8	_	ng/L	
MW6-GW1	E-6		07 - Feb 90	Groundwater Sample	>	Trichloroethene			ng/L	
MW6-GW1	9-Y		07 - Feb - 90	Groundwater Sample	>	2-Hexanone		-	ng/L	
MW6-GW1	E-6		07 Feb 90	Groundwater Sample	>	4 Methyl-2 pentanone	20	_	ng/L	

SAMPLE #	GRID #	FILTERED	DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	LIMIT
MW7-GW1	0-7		07 - Feb-90	Groundwater Sample	>	Chloromethane	5	כ	ng/L	5
MW7-GW1	0-7		07 - Feb-90	Groundwater Sample	>	Bromoethane	5	ס	ng/L	Ç
MW7-GW1	1-0		07-Feb-90	Groundwater Sample	>	Vinyl Chloride	5	_	ng/L	9
MW7 - GW1	0-7		07 - Feb - 90	Groundwater Sample	>	Chloroethane	\$	э	ng/L	0
MW7-GW1	0-1		07-Feb-90	Groundwater Sample	>	Methylene Chloride	જ	3	ug/L	5
MW7 - GW1	D7		07-Feb-90	Groundwater Sample	>	Arolein	8	⊃	ng/L	9
MW7 - GW1	0-7		07-Feb-90	Groundwater Sample	>	Acetone	1000	3	ng/L	9
MW7 - GW1	0-7		07-Feb-90	Groundwater Sample	>	Arylonitrile	5	-	ug/L	9
MW7 - GW1	0-7		07-Feb-90	Groundwater Sample	>	Carbon Disulfide	5	_	ng/L	5
MW7 - GW1	D-7		07-Feb-90	Groundwater Sample	>	Trichlorofluoromethane	<u>\$</u>	_	ng/L	5
MW7-GW1	D-7		07-Feb-90	Groundwater Sample	>	1,1-Dichloroethene	22	כ	ug/L	2
MW7 - GW1	D-7	_	07-Feb-90	Groundwater Sample	>	1,1-Dichloroethane	20	-	ng/L	9
MW7 - GW1	D-7		07-Feb-90	Groundwater Sample	>	Trans-12-Dichloroethene	8	¬	ug/L	ō
MW7 - GW1	D-7	•	07-Feb-90		>	Chloroform	જ	-	ug/L	0
MW7 - GW1	D-7		07 - Feb - 90	Groundwater Sample	>	1,2-Dichloroethane	ଌ	_	ng/L	5
MW7-GW1	1-O		07 Feb 90	Groundwater Sample	>	2 - Butanone	5		ug/L	5
MW7-GW1	0-7		07 Feb 90		>	1,1,1-Trichloroethane	S	¬	ug/L	5
MW7-GW1	1-0		07-Feb-90	Groundwater Sample	>	Carbon Tetrachloride	22	_	ng/L	9
MW7 - GW1	1-0		07 Feb 90		>	Viryl Acetate	200	ס	ng/L	2
MW7-GW1	1-0		07-Feb-90	Groundwater Sample	>	Bromodichloromethane	S	⊃	ng/L	5
MW7-GW1	1-0		07-Feb-90	Groundwater Sample	>	1,2 - Dichlorpropane	S		ng/L	10
MW7 - GW1	D-7		05-Feb-90	Groundwater Sample	>	cis-1,3-Dichlorpropene	S	ס	ng/L	5
MW7 - GW1	0-7		07Feb-90	Groundwater Sample	>	Trichloroethene	8	D	ng/L	9
MW7 - GW1	0-7		07~Feb-90	Groundwater Sample	>	Benzene	500		ng/L	9
MW7-GW1	1-0		07-Feb-90	Groundwater Sample	>	Dibromochloromethane	20		ng/L	01
MW7-GW1	0-7	_	07-Feb-90	Groundwater Sample	>	1,1,2 - Trichloroethane	8		ng/L	đ
MW7 - GW1	1-0		07-Feb-90	Groundwater Sample	>	trans-1,3-Dichlorpropene	S	כ	ng/L	ō
MW7 - GW1	1-0		07-Feb-90	Groundwater Sample	>	2-ChloroethyNinylether	<u>5</u>		ng/L	5
MW7-GW1	D-7	-	07-Feb-90	Groundwater Sample	>	Bromoform	20	כ	ng/L	ţ
MW7-GW1	D-7		07 - Feb - 90	Groundwater Sample	>	2-Hexanone	200		ng/L	01
MW7 - GW1			07-Feb-90	Groundwater Sample	>	4 - Methyl-2 - pentanone	200	¬	ng/L	10
MW7-GW1	D-7		07-Feb-90	Groundwater Sample	>	Tetrachloroethene	ଊ		ng/L	10
MW7 - GW1	0-7		07 - Feb - 90	Groundwater Sample	>	1,1,2,2-Tetrachloroethene	20		ng/L	5
MW7 - GW1	D-7		07 ~ Feb 90	Groundwater Sample	>	Toluene	20	-	ng/L	2
MW7-GW1	1-0		07 - Feb - 90	Groundwater Sample	>	Chlorobenzene	S.		ng/L	2
MW7 - GW1	D-7		07 - Feb - 90	Groundwater Sample	>	Ethylbenzene	8		ng/L	2
MW7-GW1	1-0		07~Feb-90	Groundwater Sample	>	Styrene	ୟ		ng/L	\$
MW7-GW1	D-7		07~Feb-90	Groundwater Sample	>	m/p-Xylene	2	7	ng/L	Q
MW7 - GW1	0-7		07-Feb-90	Groundwater Sample	>	o-Xylene	2		ng/L	9
MW7 - GW1	0-7		07-Feb-90	Groundwater Sample	>	1,3-Dichlorobenzene	ୟ		ng/L	9
MW7 - GW1	0-1		07 - Feb - 90	Groundwater Sample	^	1,2/1,4 - Dichlorobenzene	8	D	ng/L	10

MWB-GW1 C-10 07-Feb-90 Groundwater Sample V MWB-GW1 A-4 16-Feb-90 Groundwater Sample V DB 07-Feb-90 Groundwater Sample V DB 07-Feb-90 Groundwater Sample V DB 07-Feb-90 Groundwater Sample V MW1-GW2 C-4 07-Feb-90 Groundwater Sample V MW2-GW2 C-4			Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Hexanone 4-Methyl-2-pentanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone Actone 2-Hexanone Actone 2-Hexanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone Vinyl Acetate 2-Hexanone	2 3 <th></th> <th>7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n</th> <th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th>		7/6n 7/6n 7/6n 7/6n 7/6n 7/6n 7/6n	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
C-10 07-Feb-90 Groundwater Sample V 16-Feb-90 Groundwater Sample V 07-Feb-90 Groundwater Sample SV 07-Feb-90 Gro			Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone X-Butanone Vinyl Acetate 2-Hexanone Acetone 2-Hexanone Acetone 2-Hexanone Acetone 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone	2 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
C-10			Acetone 2 - Butanone Vinyl Acetate 2 - Hexanone 2 - Hexanone 2 - Butanone Vinyl Acetate 2 - Hexanone - Methylone - Chloride Acetone 2 - Butanone Vinyl Acetate 2 - Hexanone 2 - Hexanone 2 - Hexanone	35 35 35 35 35 38 <			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
C-10 07-Feb-90 Groundwater Sample V A-4 16-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample SV C-6 06-Feb-90 Groundwater Sample SV C-6 06-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV G-10 07-Feb-90 Groundwater Sample S			2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone -Methyle-2-pentanone Acetone 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Butanone 2-Butanone Vinyl Acetate	35 35 35 38 <			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
A-4 16-Feb-90 Groundwater Sample V C-10 O7-Feb-90 Groundwater Sample V C-10 O7-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample SV C-4 O6-Feb-90 Groundwater Sample SV C-4 O6-Feb-90 Groundwater Sample SV C-10 O7-Feb-90			Vinyl Acetate 2 - Hexanone 2 - Hexanone Acetone 2 - Butanone Vinyl Acetate 2 - Hexanone - Methyl-2 - pentanone Acetone 2 - Butanone Vinyl Acetate 2 - Butanone Vinyl Acetate 2 - Hexanone	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
C-10 07-Feb-90 Groundwater Sample V A-4 16-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample SV C-6 06-Feb-90 Groundwater Sample SV C-7 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV			2-Hexanone -Methyl-2-pentanone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone Methylene_Chloride 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone	02 03 04 05 08 09 08 09 <th></th> <th>7/60 7/60 7/60 7/60 7/60 7/60</th> <th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th>		7/60 7/60 7/60 7/60 7/60 7/60	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
A-4 16 - Feb-90 Groundwater Sample V A-5 07 - Feb-90 Groundwater Sample V A-6 07 - Feb-90 Groundwater Sample V A-7 07 - Feb-90 Groundwater Sample V A-7 07 - Feb-90 Groundwater Sample V B-7 07 - Feb-90 Groundwater Sample SV B-7 07 - Feb-90 Groundwater Sample SV B-7 06 - Feb-90 Groundwater Sample SV B-7 07 - Feb-90 Groundwater Sample SV C-4 06 - Feb-90 Groundwater Sample SV C-10 07 - Feb-90 Groundwater Sample SV C-10 07 - Feb-9			-Methyl-2-pentanone Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone	02 02 03 03 05 05 05 05 05 05 05 05 05 05 05 05 05		7/60 0 0 0/6 0 0 0 0/6 0 0 0 0/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
A-4 16-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample V O7-Feb-90 Groundwater Sample SV B-7 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV B-2 06-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV <td< th=""><th></th><th></th><th>Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyle-2-pentanone Acetone 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone 2-Hexanone</th><th>8 8 9 1 1 1 1 1 1 1 2 2 3 3 4 5 6 6 7 8 9 <t< th=""><th></th><th>7/6n 7/6n 7/6n 7/6n 7/6n</th><th>5 5 5 5 5 5 5 5 5</th></t<></th></td<>			Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyle-2-pentanone Acetone 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone 2-Hexanone	8 8 9 1 1 1 1 1 1 1 2 2 3 3 4 5 6 6 7 8 9 <t< th=""><th></th><th>7/6n 7/6n 7/6n 7/6n 7/6n</th><th>5 5 5 5 5 5 5 5 5</th></t<>		7/6n 7/6n 7/6n 7/6n 7/6n	5 5 5 5 5 5 5 5 5
A-4 16-Feb-90 Groundwater Sample V 17-Feb-90 Groundwater Sample SV 16-Feb-90 Groundwater Sample SV 16-Fe			2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone	2 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		7/6n 7/6n 7/6n 7/6n 7/6n	5 5 5 5 5 5 5 5
A-4 16-Feb-90 Groundwater Sample V 16-Feb-90 Groundwater Sample V 16-Feb-90 Groundwater Sample V 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV G-10 07-Feb-90 G-			Methyl-2-pentanone Methylone_Chloride Acetone 2-Hexanone Methylone_Chloride Acetone 2-Butanone Vinyl Acetone 2-Hexanone 2-Hexanone	3 8 8 8 8 ° 8 8 8 8 8 8		7/6n n 20/r n 20/r n 20/r	5 5 5 5 5 5 5
A-4 16-Feb-90 Groundwater Sample V 16-Feb-90 Groundwater Sample V 07-Feb-90 Groundwater Sample SV 07-			Methyl-2-pentanone Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Hexanone 2-Hexanone	8 8 8 8 8 8 8 8		00/c 00/c 00/c 00/c	5 5 5 5 5 5 5 5
A-4 16-Feb-90 Groundwater Sample V 07-Feb-90 Groundwater Sample SV 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV SV SV C-10 07-Feb-90 Groundwater Sample SV			-Methyl-2-pentanone Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone	8 8 6 5 8 8		1,60 0,00/L 0,00/L	5 5 5 5 5 5
C-6			Methylene_Chloride Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone	2 5 5 5 8 S		1/6n 1/6n 1/6n	5 5 5 5 5
C-6 06-Feb-90 Groundwater Sample V 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV E-5 07-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV			Methylene_Chiorde Acetone 2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone	e 5 5 % %		7/6n n n8/r n8/r	5 5 5 5 5
C-6			Acetone 2 - Butanone Vinyl Acetate 2 - Hexanone - Methyl - 2 - pentanone	5 5 % %		1,60 1,60 1,00/L	5 6 6 6
C-6 O7 - Feb-90 Groundwater Sample V 07 - Feb-90 Groundwater Sample V 07 - Feb-90 Groundwater Sample V C-6 06 - Feb-90 Groundwater Sample SV B-7 07 - Feb-90 Groundwater Sample SV E-5 06 - Feb-90 Groundwater Sample SV C-10 07 - Feb-90 Groundwater Sample SV			2-Butanone Vinyl Acetate 2-Hexanone -Methyl-2-pentanone	<u> </u>	_	1/6/ 08/L	5 5 5
C-6 O7 - Feb-90 Groundwater Sample V 07 - Feb-90 Groundwater Sample V 07 - Feb-90 Groundwater Sample SV C-4 06 - Feb-90 Groundwater Sample SV B-2 06 - Feb-90 Groundwater Sample SV C-10 07 - Feb-90 Groundwater Sample SV A-4 16 - Feb-90 Groundwater Sample SV			Vinyl Acetate 2 - Hexanone - Methyl - 2 - pentanone	68 68 68		ug/L	5 5
C-6 07 - Feb - 90 Groundwater Sample V C-6 06 - Feb - 90 Groundwater Sample SV B-7 07 - Feb - 90 Groundwater Sample SV C-4 06 - Feb - 90 Groundwater Sample SV E-5 07 - Feb - 90 Groundwater Sample SV C-10 07 - Feb - 90 Groundwater Sample SV C-10 07 - Feb - 90 Groundwater Sample SV C-10 07 - Feb - 90 Groundwater Sample SV A-4 16 - Feb - 90 Groundwater Sample SV			2-Hexanone -Methyl-2-pentanone	28		/\car	5
C-6 06-Feb-90 Groundwater Sample V B-7 07-Feb-90 Groundwater Sample SV C-4 06-Feb-90 Groundwater Sample SV E-5 07-Feb-90 Groundwater Sample SV D-7 07-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV C-10 07-Feb-90 Groundwater Sample SV A-4 16-Feb-90 Groundwater Sample SV			-Methyl-2-pentanone))	
C-6 06 - Feb-90 Groundwater Sample B-7 07 - Feb-90 Groundwater Sample C-4 06 - Feb-90 Groundwater Sample B-2 06 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample A-4 16 - Feb-90 Groundwater Sample		sv		S	ח	ng/L	5
B-7 07 - Feb-90 Groundwater Sample C-4 06 - Feb-90 Groundwater Sample B-2 06 - Feb-90 Groundwater Sample E-5 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample A-4 16 - Feb-90 Groundwater Sample			3,3'-Dichlorobenzidine	20	D	ng/L	10
C4 06-Feb-90 Groundwater Sample B-2 06-Feb-90 Groundwater Sample E-5 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample A-4 16-Feb-90 Groundwater Sample		SV	3,3'-Dichlorobenzidine	8	D	ug/L	10
B-2 06-Feb-90 Groundwater Sample E-5 07-Feb-90 Groundwater Sample D-7 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample A-4 16-Feb-90 Groundwater Sample		SV	ALL SEMI-VOLATILES	ND	ſ	ug/L	A N
E-5 07 - Feb-90 Groundwater Sample D-7 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample A-4 16 - Feb-90 Groundwater Sample		SV	3,3'-Dichlorobenzidine	2	ס	ug/L	9
D-7 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample A-4 16 - Feb-90 Groundwater Sample		ì	č				
D-7 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample C-10 07 - Feb-90 Groundwater Sample A-4 16 - Feb-90 Groundwater Sample	1	۸۵	3,3 - Ulchioropenzidine	2)	ng/r	2
C-10 07-Feb-90 Groundwater Sample C-10 07-Feb-90 Groundwater Sample A-4 16-Feb-90 Groundwater Sample		S	3,3'-Dichlorobenzidine	20	5	ng/L	9
C-10 07-Feb-90 Groundwater Sample A-4 16-Feb-90 Groundwater Sample	_	SV	2-Methylnaphthalene	S			9
A-4 16-Feb-90 Groundwater Sample		SV	3,3'-Dichlorobenzidine	20			10
		SV	3,3'-Dichlorobenzidine	20	ם	ug/L	10
D-0		\ <u>\</u>	2 Methylnenhthelene	ıc	_	//	Ş
07 - Feb - 90 Groundwater Sample		» S	3,3'-Dichloroberzidine	8		ng/L	9
				:			
D-9 B-7 17-Oct-91 Groundwater Sample SV	1	λS	ALL SEMI-VOLATILES	ON I	ΨZ.	ng/L	Y Z
MW-4 B-2 17-Oct-91 Groundwater Sample SV		SV	ALL SEMI-VOLATILES	Q	Y Y	ug/L	N N

SAMPLE #	GRID ≉	YES/NO FILTERED	DATE	DESCRIPTION	CATEGORY	ANALYSIS FOR	RESULTS	QUALIFIER	UNITS	DETECTION LIMIT
MW-6	E-5		17-Oct-91	Groundwater Sample	SV	ALL SEMI-VOLATILES	QN	N	ng/L	A N
MW-7 MW-7	0-7		17 Oct-91 17 Oct-91	Groundwater Sample Groundwater Sample	S S	Naphthalene 2-Methvinaphalene	φ ^	. د	ug/L	
MW-8	A-8		17-Oct-91	Groundwater Sample	SS	ALL SEMI-VOLATILES	Z	Ž	na/L	ď Z
MW-11	F-7		17-Oct-91	Groundwater Sample	\s	ALL SEMI-VOLATILES			ng/L	
MW-11DUP	F-7		17 - Oct-91	Groundwater Sample	λS	ALL SEMI-VOLATILES	QN	A Z	ug/L	
MW-12	E-9		17-Oct-91	Groundwater Sample	λS	ALL SEMI-VOLATILES	QN	AN AN	ug/L	
MW-2	8-7		17-Oct-91	Groundwater Sample	^	1,1,1 -Trichloroethane	2	٦	ng/L	
MW-3	C-4		17-Oct-91	Groundwater Sample	>	Trichloroethene	10		ug/L	
MW-3R	C-4		17-Oct-91	Groundwater Sample	>	Trichloroethene	8	ر	ug/L	
MW-4	B-2		17 - Oct-91	Groundwater Sample	>	ALL VOLATILES	QN	NA	ng/L	AZ AZ
MW-6	П С 1 5		17 - Oct-91 17 - Oct-91	Groundwater Sample Groundwater Sample	>>	1,2-Dichloroethene(total) Trichloroethene	190		ng/L	
WW-7	2-0		17_04 01	S september 1	7	The last of the la	!			
MW-7			17 - Oct 91	Groundwater Sample	> >	Viriyi chioride Benzene			1/6n na/r	
MW-7	0-7		17 Oct 91	Groundwater Sample	> >	Toluene		7	ug/L	
MW-7			17-Oct-91		` >	Xylene (total)	36		ug/L ug/L	
MW-8	C-10		17-Oct-91	Groundwater Sample	>	1,1,1 - Trichloroethane	3	L.	ng/L	
6-WW	A-4		17-Oct-91	Groundwater Sample	>	ALL VOLATILES	Ñ	Y.	ug/L	Y Y
MW-10	A-8		17-Oct-91	Groundwater Sample	>	ALL VOLATILES	N	N.	ug/L	NA
MW-11	F-7		17-Oct-91	Groundwater Sample	>	ALL VOLATILES	Q Q	A A	ug/L	NA
MW-11DUP	F-7		17-Oct-91	Groundwater Sample	>	ALL VOLATILES	Q.	Ϋ́	ug/L	NA
MW-12	E-9		17-Oct-91	Groundwater Sample	>	ALL VOLATILES	ON	¥	ug/L	NA

DETECTION																										
UNITS	ng/L	ug/L	ug/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ng/L	ug/L	ug/L	ug/L	ng/L	ug/L	ng/L	ug/L	ng/L								
RESULTS QUALIFIER	7	7			7					αc	>	αc		J		ס	כ	2	7	7	2	כ	3	5	ס	٦
RESULTS	28.2	22.5	5.1	80	101	347	259	0.17	196	4	m	4	1090	O	5.1	-	8	က	3.1	7.7	0.1	O	2,5	က	2.2	4.7
ANALYSIS FOR	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	Zinc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Setenium	Silver	Thallium	Zinc
CATEGORY	Σ	Σ	Σ	Σ	Σ	Σ	₹	₹	Σ	¥	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≥	Σ	Σ	Σ	Σ	Σ	Σ	M
DESCRIPTION	Groundwater Sample																									
DATE	17-Oct-91	17 Oct 91	17 Oct91	17 -Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17 -Oct-91	17 Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17 -Oct-91	17 - Oct-91	17 -Oct-91	17-Oct-91	17-Oct-91	17 - Oct-91	17-Oct-91	17 -Oct-91	17-Oct-91	17 Oct 91	17 Oct 91	17-Oct-91	17-Oct-91	17-Oct-91
YES/NO FILTERED	9	2	Q	Q N	0	2	0	<u>Q</u>	<u>Q</u>	9	O N	0	<u>Q</u>	YES												
GRID #			8-7		B-7				_		_															8-7
SAMPLE #	MW-2																									

SAMPLE #	GRID #	YES/NO FILTERED	DATE	DESCRIPTION CATEGORY	ANALYSIS Y FOR	RESULTS	QUALIFIER	UNITS	DETECTION LIMIT
WW-4	8-2		17 Oct-91	Groundwater Sample	M	29.5		ug/L	
MW4	8-2		17-Oct-91	Groundwater Sample N	M Arsenic		2	ng/L	
MW4	8-2		17-Oct-91	Groundwater Sample N	M Beryllium	3.7		ug/L	
MW-4	8-2	Q	17 - Oct - 91	Groundwater Sample	M Cadmium			ug/L	
MW-4	B-2		17 - Oct - 91	Groundwater Sample	M Chromium	2.96.7	2	ug/L	
MW-4	B-2		17-Oct-91	Groundwater Sample	Copper	208		ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample	M Lead			ng/L	
MW-4	8-2		17 - Oct - 91	Groundwater Sample N	Mercury	0.29		ug/L	
MW-4	B-2		17-Oct-91	Groundwater Sample N	Nickel			ng/L	
MW-4	8-2		17 - Oct - 91	Groundwater Sample N	M Selenium	80	ac.	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample	M Siver	m	5	ug/L	
MW-4	8-2		17-Oct-91	Groundwater Sample	M Thallium	4	Œ	ug/L	
MW-4	8-2		17 - Oct - 91	Groundwater Sample N	M Zinc	645		ug/L	
MW-4	B-2		17 - Oct - 91	Groundwater Sample N	M Antimony	6	5	ng/L	
MW-4	B-2		17 -Oct-91	Groundwater Sample N	M Arsenic	~	,	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample N	M Beryllium	_	5	ng/L	
MW4	8-2		17-Oct-91	Groundwater Sample	M Cadmium	8	5	ng/L	
MW-4	B-2		17-Oct-91	Groundwater Sample	M Chromium	က	D	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample	M Copper		<u></u>	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample N	M	1.9	7	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample N	M Mercury	0.1	ס	ug/L	
MW-4	8-5		17 - Oct - 91	Groundwater Sample	Nickel	6	5	ng/L	
MW-4	B-2		17-Oct-91	Groundwater Sample N	M Selenium	2.2	3	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample N	M Siver	က	5	ng/L	
MW-4	8-2		17-Oct-91	Groundwater Sample N	M Thallium	2.2	ס	ng/L	
MW-4	B-2		17-Oct-91	Groundwater Sample	M Zinc	3	ſ	ug/L	

DESCRIPTION		DATE
elomes retembered	_	17_0_tv_
Groundwater Sample	_	_
Groundwater Sample	_	_
Groundwater Sample	_	17 - Oct - 91 Groundwate
Groundwater Sample	_	17 – Oct – 91 Groundwal
Groundwater Sample	_	17-Oct-91 Groundwa
Groundwater Sample	_	17 - Oct - 91 Groundwat
Groundwater Sample	_	_
Groundwater Sample	_	17 - Oct - 91 Groundwate
Groundwater Sample	_	17-Oct-91 Groundwater
Groundwater Sample	_	17-Oct-91 Groundwater
Groundwater Sample	_	_
Groundwater Sample	_	17 - Oct - 91 Groundwa
Groundwater Sample	_	17 - Oct - 91 Groundwat
Groundwater Sample	_	_
Groundwater Sample	_	17 - Oct - 91 Groundwal
Groundwater Sample	_	17 -Oct-91 Groundwate
Groundwater Sample	_	17 - Oct - 91 Groundwat
Groundwater Sample	_	17 – Oct – 91 Groundwat
Groundwater Sample	_	17 – Oct – 91 Groundwal
Groundwater Sample	_	17 – Oct – 91 Groundwa
Groundwater Sample	_	17 - Oct - 91 Groundwa
Groundwater Sample	_	

DETECTION UNITS LIMIT	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L																				
QUALIFIER UN	7	7						ס		Œ	¬	œ))	ס	5	7		כ	3))	-
RESULTS	18.9	5.4	က	2.8	66.4	155	147	0.1	152	60	က	4	513	o	7.6	-	8	က	ო	3.8	0.1	6	2.2	က	2.2	-
ANALYSIS FOR	Antimomy	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercuny	Nickel	Selenium	Siver	Thallium	Zinc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	-
CATEGORY		Σ	_	≥	Σ	_	_	Σ			Σ	Σ	_	Σ		Σ	Σ	≆		Σ	Σ	Σ	Σ	Σ	Σ	-
DESCRIPTION	Groundwater Sample	Groundwater Sample	Groundwater Sample																							
DATE	17 -Oct-91	17 -Oct-91	17-Oct-91	17 Oct91	17-Oct-91	17-Oct-91	17 -Oct-91	17 -Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17 -Oct-91	17 - Oct - 91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-Oct-91								
YES/NO FILTERED	ON	9	2	2	2	<u>Q</u>	2	YES	YES	YES	YES	YES	YES													
GRID .	2-0	/ D-7	D-7	D-7		D-7	2-Q	D-7	D-7	D-7	0-7	D-7		D-7	D-7	D-7	1 -0	D-7	D-7	D-7	D-7	D-7	D-7	0-7	0-7	(
SAMPLE #	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7																				

DETECTION	\rac{1}{2}	<u>_</u>		7	/r	~	7	_	-	<u></u>	<u></u>	7		\ \ \		7	<u>۔۔</u>	<u>-</u>	<u></u>	٦	\r	\r		7	\r	
UNITS	√6n	J/gu	/gu	J/gu	ם ח	√g,	δ'n	Ď,	6n	Β'n	ng/L	Бn _	Bn	Бn	ng/L	Bn.	S _D	B	6n	1/6n	ng/L	J/gn _	√gn	1/6n	1/6n	70:
RESULTS QUALIFIER	,	7						ס		Œ	D	Œ.		D		5	<u>ס</u>	D	כ	7	5	כ	3	ס	ס	_
RESULTS	28.7	58.9	4.	9	86.55	175		0.1	169	60	n	4	550	6	12.1	-	2	6	e	2.7	0	6	2.2	က	2.2	2.7
ANALYSIS	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	Zinc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	Zinc
CATEGORY	Σ	≥	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≨	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	2
DESCRIPTION	Groundwater Sample																									
DATE	17-Oct-91	17 -Oct-91	17-Oct-91	17 -Oct-91	17 - Oct-91	17-Oct-91	17 -Oct-91	17-Oct-91	17-Oct-91	17-Oct-91	17-0ct-91	17-0ct-91	17 Oct 91	17-Oct-91	17 -Oct-91	17 - Oct-91	17-Oct-91	17 -Oct-91	17-Oct-91	17 -Oct-91	17-Oct-91					
YES/NO FILTERED	9	2	2	9	O _N	Q Z	<u>Q</u>	<u>Q</u>	<u>Q</u>	2	<u>Q</u>	2	2	YES												
GRID #	A-8	8-V	A-8	A-8	8−∀	8-V	8-¥	9-Y	8-¥	8-¥	8-8	8-V	8-V	8-V	8-Y	A-8	A-8	8-Y	A-8	8-V	8-V	A-8	8-¥	A-8	8-V	A-A
SAMPLE #	MW-10	MW - 10	MW-10	MW - 10	MW-10	MW-10	MW-10	MW-10	MW-10	MW - 10	MW - 10	MW-10	MW10	MW-10	MW-10	MW-10	MW - 10	MW-10	MW-10							

		YES/NO			ANALYSIS				DETECTION
SAMPLE #	GRID .	FILTERED	DATE	DESCRIPTION CATEGORY	FOR	RESULTS	QUALIFIER	UNITS	LIMIT
MW-11	F-7	ON N	17-Oct-91	Groundwater Sample	Antimony	65.4	ſ	J/Bn	
MW-11			17-Oct-91	Groundwater Sample M	Arsenic		7	ug/L	
MW-11	I F-7	_	17-0ct-91	Groundwater Sample M	Beryllium			ug/L	
MW-11	- F-7	_	17-Oct-91	Groundwater Sample	Cadmium	8.7		ng/L	
MW-11	_		17-Oct-91	Groundwater Sample	Chromium	149	7	ug/L	•
MW-11	F-7	Q.	17 Oct-91	Groundwater Sample	Copper	322		ug/L	
MW-11	I F-7	_	17-Oct-91	Groundwater Sample M	Lead			ng/L	
MW-11	F-7	Q N	17 - Oct-91	Groundwater Sample M	Mercury	0.14		ug/L	
MW-11	I F-7	Š Š	17-Oct-91	Groundwater Sample M	Nickel			ug/L	
MW-11	I F-7	Q N	17-Oct-91	Groundwater Sample	Selenium	8	Œ	ng/L	
MW-11	F-7		17-Oct-91	Groundwater Sample	Siver	6		ug/L	
MW-11	I F-7	_	17 - Oct - 91	Groundwater Sample M	Thallium	4	Œ	ug/L	
MW-11	I F-7		17-Oct-91	Groundwater Sample	Zinc	1090		ug/L	
MW-11	I F-7		17-Oct-91	Groundwater Sample	Antimony	0	3	ug/L	
MW-11	F-7	_	17-Oct-91	Groundwater Sample	Arsenic	4.1	7	ng/L	
MW-11	F-7	_	17-Oct-91	Groundwater Sample M	Beryllium	_	כ	ug/L	
MW-11		_	17 - Oct-91	Groundwater Sample M	Cadmium	8	ס	ug/L	
MW-11	F-7	_	17 - Oct - 91	Groundwater Sample M	Chromium	e	<u>5</u>	ug/L	
MW-11	_	_	17-Oct-91	Groundwater Sample M	Copper		>	ng/L	
MW-11	I F-7		17-Oct-91	Groundwater Sample M	Lead	2.2	7	ng/L	
MW-11			17-Oct-91	Groundwater Sample M	Mercury	0.1	¬	ug/L	
MW-11	1 F-7	_	17-Oct-91	Groundwater Sample	Nickel	6	ɔ	ng/L	
MW-11	I F-7	_	17-Oct-91	Groundwater Sample M	Selenium	2.2	3	ng/L	
MW-11	F-7		17 - Oct - 91	Groundwater Sample M	Siver	e	5	ng/L	
MW-11	1 F-7	YES	17-Oct-91	Groundwater Sample M	Thallium	2.2	<u> </u>	ng/L	-
MW-11	F-7		17-Oct-91	Groundwater Sample M	Zinc	3	D	ng/L	

DETECTION						_																				
UNITS	1/6n	ng/L	ug/L	ng/L	J/Bn	ng/L	ug/L																			
QUALIFIER	٦	7		,	ר					Œ	5	Œ		2	ד	ס))	7	7	5	5	3)	¬	ſ
RESULTS	33.9	12.9	4.9	6.5	97.1	328	185	0.18	178	8	ဗ	4	898	6	3.6	-	8	က	3.9	2.4	0.1	6	2.2	က	2.2	6.2
ANALYSIS FOR	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	Zinc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Siver	Thallium	Zinc
CATEGORY	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	≥	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	V
DESCRIPTION	Groundwater Sample																									
DATE	17-Oct-91	17 Oct-91	17-Oct-91																							
YES/NO FILTERED	Q Z	9	2	2	Q Z	2	<u>Q</u>	<u>Q</u>	2	9	<u>Q</u>	2	<u>Q</u>	YES												
GRID #	E-9	6-3	E-9	6-3	E-9	E-9	E-9	E-9	E-9	6-3	E-9	E-9														
SAMPLE #	MW-12																									

APPENDIX B PREVIOUS INVESTIGATIONS

APPENDIX B

PREVIOUS INVESTIGATIONS

1.0 1988 FIELD INVESTIGATION

Engineering-Science (ES) completed the first phase of the field investigation at the Hazardous Waste Storage Area (HWSA) in October 1988. The purpose of the investigation was to determine if the soil or groundwater beneath the site had been contaminated due to spills or leaks form on-site storage containers.

The results of this investigation are presented in detail in the <u>Field Investigation</u> Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio (1989), and the results are summarized in the following paragraphs.

1.1 SUMMARY OF ANALYTICAL RESULTS

The soil-gas survey identified with elevated concentrations of benzene, toluene and ortho-xylene (BTX). Concentration of total BTX in the soil gas ranged from undetectable to 29.8 ppm.

Analyses of the soil samples indicated elevated semi-volatile organic and metals concentrations. The characteristics of the semi-volatile organics found were typical of coal-tar derivatives and phthalates. Metals identified included cadmium, chromium, copper, lead and zinc.

Three of the auger borings made during soil sampling were completed as monitoring wells in the shallow aquifer. Water samples from two of these wells exhibited volatile organic concentrations in excess of Federal Maximum Contaminant Levels (MCLs). Water from MW1 contained 94 μ g/l benzene, 20 μ g/l xylenes and 13 μ g/l methylnapthalene. Water from MW3 contained 44 μ g/l trichloroethene. Samples from all wells had total unfiltered metals concentrations in excess of Federal Drinking Water Standards for arsenic, cadmium, chromium and lead.

2.0 1990 FIELD INVESTIGATION

The phase of the field investigation at the HWSA was completed in March 1990. The purpose of this additional field investigation was to determine the extent of contamination and to allow revision of the Closure Plan to affect a "clean" closure of the site.

The pre-closure sampling activities included soil sampling at the surface and at depth and the installation of six new monitoring wells in and around the HWSA (MW4 through MW9). The results of this investigation are presented in detail in the <u>Pre-Closure Sampling Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio</u> (1992), and a summary of the results follows.

2.1 SUMMARY OF ANALYTICAL RESULTS

2.6.1 Metals

Total metals were found over the site with higher levels within the fenced area. Detected above background criteria were beryllium, cadmium, copper, lead, mercury, silver and zinc.

2.2 VOLATILE ORGANIC COMPOUNDS

Volatile organic compounds in samples from the 0-2 foot interval, were only analyzed for at six hand boring and two monitoring well locations. The only VOCs detected were $440,000 \mu g/kg$ o-xylene at HB1.

Volatile organic compounds were detected at concentrations up to 1,900,000 μ g/kg in soils from the 3-5 foot interval. Elevated ethylbenzene and o-xylene concentrations were found in HB1, near Building 560, while benzene was detected in AB2.

Volatile organics were found in samples from the 8-10 foot interval at levels up to 27,000 μ g/kg of o-xylene. The highest concentrations were found at AB1, AB14 and MW7. Specific compounds include: benzene, ethylbenzene, xylenes and 1,1,1-trichloroethane.

Samples from the 13-15 foot interval containing volatile organic compounds were found in the southern corner and along the northeast side of the area. These include:

benzene, ethylbenzene, toluene, xylenes, acetone, trichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, and vinyl chloride. The highest concentration was $1,000 \mu g/kg$ trans-1,2-dichloroethene at MW6.

At the greater than fifteen foot interval, sand and gravel is present to a depth of approximately 25' with a thin layer of clay from 18'-19'. Detected volatile and semi-volatile organics were confined to the southeast side of the area. Semi-volatile organics were found only at MW1 at a total concentration of 1,830 μ g/kg. The highest volatile organic concentrations were also found at this location. They were benzene, ethylbenzene, and o-xylene at concentrations of 1,900, 11,000, and 20,000 μ g/kg, respectively.

2.3 SEMI-VOLATILE ORGANIC COMPOUNDS

Semi-volatile organics were detected in the soils at various depths and ranged from non-detect to $4,630 \mu g/kg$.

2.6.2 Groundwater

Volatile and Semi-Volatile Organics

On the analytical results map (Sheet 6), both the 1990 and 1988 sampling data are shown. The only semi-volatile organic compound found in the groundwater was 2-methylnaphthalene at $5J \mu g/L$ in MW8.

Volatile organics compounds were detected in MW1, MW3, MW6 and MW7, and include benzene, ethylbenzene, o-xylene, p-xylene, trichloroethene, and trans-1,2-dichloroethene. In addition, four feet of phase-separated hydrocarbons were floating in MW5. Fingerprint analysis of the liquid hydrocarbons identified it as a 30 to 40 percent weathered gasoline mixed with jet fuel.

Filtered Metals

Four metals were detected at all concentrations below the Federal Drinking Water Standards. These four metals were arsenic (found at 2.0 to 9.4 μ g/L), lead (found at 3.1 to 14.0 μ g/L), zinc (found at 5.0 to 35 μ g/L) and mercury (found at 0.11 μ g/L).

3.0 1991 FIELD INVESTIGATION

The third phase of the field investigation at the HWSA was completed in October 1991. Field activities conducted during this investigation include groundwater screening, monitoring well installation and soil sampling from the well borings, surface soil sampling, and groundwater sampling.

The additional sampling was conducted to fill data gaps existing after the original pre-closure sampling report. Specifically, these data gaps are:

- The anomalously high concentrations of semi-volatile organic compounds (SVOCs) found at the surface soils of the westernmost corner of the HWSA.
- The extent of VOCs previously detected in the groundwater.

The results of this investigation were reported in the Addendum to the Pre-Closure Sampling Report - Hazardous Waste Storage Area: Rickenbacker Air National Guard Base, Columbus, Ohio (1992) and a summary of the results follows.

The data obtained through the groundwater sampling indicate that petroleum hydrocarbon and chlorinated organic contamination is restricted to the area upgradient and downgradient of the four underground storage tanks (USTs) numbered 47, 48, 49, 50. Wells MW1 and MW5, where phase-separated hydrocarbons were observed, lie in the northern and furthest upgradient portion of this contaminant plume. In the downgradient direction, the dissolved organic plume does not extend to MW11 and MW12.

Volatile organic results of the groundwater sampling events indicate that chlorinated organics are present in MW3 and MW6. The compound 1,1,1-trichloroethane was found at an estimated concentration of 3 μ g/L in MW8 during the 1991 sampling event. This compound was also found in MW2 at an estimated quantity of 2 μ g/L. Although this compound was found in the associated trip blank, it is still possible that it is present at this site since it has been detected in the past.

No groundwater samples were collected from MW5 in either sampling event due to the presence of PSH. In 1990, MW1 had concentrations of dissolved benzene, ethylbenzene and xylenes; however, due to the presence of PSH in 1991, this well was

not resampled. Dissolved benzene, ethylbenzene and xylenes were found in MW7. No volatile organics were detected in MW4 and MW9.

The semi-volatile organic compounds, 2-methylnaphthalene and naphthalene were found in MW7 at estimated concentrations 2 and 6 μ g/L respectively.

Groundwater analyses indicate the presence of total metals in the water samples; however, the filtered aliquot analysis showed a decrease in metals concentrations. Therefore, the presence of metals is associated with the silt suspended in the water sample.

Four metals were detected in filtered groundwater samples, all at concentrations below the Federal Drinking Water Standards. These four metals were arsenic found at 2.9 to 12.1 μ g/L, copper at 3.1 to 6.2 μ g/L, lead at 1.9 to 7.7 μ g/L, and zinc at 3.7 to 20.1 μ g/L.

Soil Results

Five of the ten surface soil samples were collected at the fenceline surrounding the site, the remaining five from locations off site. One sample (SS3) was collected in duplicate. All surface soil samples were analyzed for SVOCs and the priority pollutant metals.

Samples with no detected SVOCs are SS1, SS2 and SS7. Samples SS3, SS9 and SS10 have the highest total SVOC concentrations, 1108, 2250 and 977 μ g/kg respectively. The SVOCs detected can be classified as coal tar derivatives.

Metals analysis from these surface soil samples were compared to background levels that were established for the Base during the Site Investigation for the Installation Restoration Program. Detected above background criteria were arsenic, cadmium, copper, lead, nickel, silver and zinc.

Soil boring samples were collected from two depths (3 to 5 feet and 13 to 15 feet) in each of the three soil borings. Each sample was analyzed for SVOCs, VOCs, and priority pollutant metals. SVOCs were not detected in either of the two samples from MW10 and MW11. The soil sample from the 13 to 15 foot horizon of MW12 had a total semi-volatile concentration of 1569 μ g/kg although no SVOCs were detected in the shallow soil sample (3 to 5 feet), or in the groundwater sample from this well. These compounds are coal tar derivatives.

LEGEND:

- 1 RB-HW-AB1
- 2 RB-HW-AB2
- 3 RB-HW-AB3
- 4 RB-HW-AB4
- 5 RB-HW-AB5
- 6 RB-HW-AB6
- 7 RB-HW-AB7
- 8 RB-HW-AB8
- 9 RB-HW-AB9
- 10 RB-HW-AB10
- 11 RB-HW-AB11
- 12 RB-HW-AB12
- 13 RB-HW-AB13
- 14 RB-HW-AB14
- 15 RB-HW-AB15

FIGURE B.3

CROSS-SECTION LOCATION AND

WATER SURFACE MAP

HAZARDOUS WASTE STORAGE AREA

RICKENBACKER ANGB, OHIO

6 FEBRUARY 1990

No VOCs were detected in the soils from borings from MW10, MW11 and MW12.

Metals analysis from the soil samples obtained from the soil borings were also compared to the background levels for the Base. Detected above background criteria were arsenic, beryllium, cadmium, chromium, copper.

DATE

ENGINEER

BY

NO. DATE

REVISIONS

REGISTRATION NO.

19101 VILLAVIEW ROAD • SUITE 301 • CLE' OFFICES IN PRINC

IEERING-SCIENCE

• RESEARCH • PLANNING

SUITE 301 • CLEVELAND, OHIO 44119 • 216/486-9005 DFFICES IN PRINCIPAL CITIES

ES

HAZARDOUS WASTE STO

RICKENBACKER ANBG, C

SCALE AS SHOWN SEMI-VOLATILE ORGANICS AND METALS SURFACE SOIL SAMPLES 0' - 2' SHEET NO. **3 WASTE STORAGE AREA** KENBACKER ANBG, OHIO **ANALYTICAL RESULTS** FILE NO.

--X-- FENCE

AB1/HB1 SOIL BORING

MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ND NOT DETECTED

NE DOES NOT EXCEED ESTABLISHE

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

—×—

FENCE

◆ AB1/HB1

SOIL BORING

♦ MW1

MONITORING WELL

▲ 5U1

SURFACE SOIL SAMPLE

ND

NOT DETECTED

NE

DOES NOT EXCEED ESTABLISHED CRITERIA,

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

L·)

DATE

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 OFFICES IN PRINCIPAL CITIES

VCE VNING 14119 • 216/486-9005

ES

HAZARDOUS WARICKENBAC

METALS, VOLATILE ORGANICS AND SEMI-VOLATILE ORGANICS SOIL SAMPLES 3' - 5'

ANALYTICAL RESULTS

SCALE

AS SHOWN

SHEET NO.

2

FILE NO.

WASTE STORAGE AREA

WASTE STORAGE AREA

SEMI-VOLATILE ORGANICS
SEMI-VOLATILE ORGANICS
SOIL SAMPLES 3' - 5'

ANALYTICAL RESULTS

(l')**(**©)

—×--

FENCE

◆ AB1/HB1

SOIL BORING

🔷 MW1

MONITORING WELL

▲ SU1

SURFACE SOIL SAMPLE

ND

NOT DETECTED

NE

DOES NOT EXCEED ESTABLISHED CRITERIA.

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

—×—

FENCE

◆ AB1/HB1

SOIL BORING

❤ MW1

MONITORING WELL

▲ SU1

SURFACE SOIL SAMPLE

ND

NOT DETECTED

NE

DOES NOT EXCEED ESTABLISHED CRITERIA,

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

TE ____

DESIGN * RESEARCH * PLANNING

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/4 OFFICES IN PRINCIPAL CITIES

486-9005

ES

HAZARDOUS WASTE S'

RICKENBACKER ANBO

TORAGE AREA g, ohio

METALS, VOLATILE ORGANICS AND SEMI-VOLATILE ORGANICS SOIL SAMPLE 8' - 10'

ANALYTICAL RESULTS

---×--

AB1/HB1 SOIL BORING

FENCE

MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ND NOT DETECTED

NE DOES NOT EXCEED ESTABLISHED CRITER

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

--X-- FENCE

AB1/HB1 SOIL BORING

♦ MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ND NOT DETECTED

NE DOES NOT EXCEED ESTABLISHED CRITERIA,

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

ETALS, VOLATILE ORGANICS AND SEMI-VOLATILE ORGANICS SOIL SAMPLES 13' - 15'

ANALYTICAL RESULTS

AS SHOWN

SHEET NO.

4

FILE NO.

ES

HAZARDOUS WASTE STORAGE AREA RICKENBACKER ANBG, OHIO

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING

IEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/486-9005 OFFICES IN PRINCIPAL CITIES

REGISTRATION NO.

BY

REVISIONS

DATE

---X-- FENCE

AB1/HB1 SOIL BORING

MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ND NOT DETECTED

NE DOES NOT EXCEED ESTABLISHED CRITERIA,

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

FENCE

◆ AB1/HB1

SOIL BORING

wu 💠

MONITORING WELL

▲ SU1

SURFACE SOIL SAMPLE

ND

NOT DETECTED

NE

DOES NOT EXCEED ESTABLISHED CRITERIA,

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

METALS IN mg/Kg

DATE

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/48 OFFICES IN PRINCIPAL CITIES

}-9005

ES

HAZARDOUS WASTE ST(
RICKENBACKER ANBG,

—X— FENCE

AB1/HB1 SOIL BORING

MW1

MONITORING WELL

▲ 5U1

SURFACE SOIL SAMPLE

ND

NOT DETECTED

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA VOLATILE AND SEMI-VOLATILE ORGANICS IN $\mu g/L$

--X-- FENCE

AB1/HB1 SOIL BORING

♦ MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ND NOT DETECTED

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA VOLATILE AND SEMI-VOLATILE ORGANICS IN $\mu g/L$

.

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/48 OFFICES IN PRINCIPAL CITIES

ES

-9005

HAZARDOUS WASTE STO

RICKENBACKER ANBG, O

(

—X— FENCE

AB1/HB1 SOIL BORING

MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

* MCL METALS

METALS IN µg/L

SEE TEXT FOR EXPLANATION OF MAPPING CRITEF

NOTE:

1988 GROUNDWATER SAMPLES WERE NOT ANALY FOR FILTERED METALS.

---X--- FENCE

AB1/HB1 SOIL BORING

♦ MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

* MCL METALS

METALS IN µg/L

SEE TEXT FOR EXPLANATION OF MAPPING CRITERIA

NOTE:

1988 GROUNDWATER SAMPLES WERE NOT ANALYZED FOR FILTERED METALS.

9005

ES

HAZARDOUS WASTE STOR,

RICKENBACKER ANGB, OHK

⊘

3

--×--

FENCE

◆ AB1/HB1

SOIL BORING

♦ MW1

MONITORING WELL

▲ SU1

SURFACE SOIL SAMPLE

—X— FENCE

AB1/HB1 SOIL BORING

♦ MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/48 OFFICES IN PRINCIPAL CITIES

ES

36-9005

HAZARDOUS WASTE STOF RICKENBACKER ANBG, OF

(8)

©

AB1/HB1 SOIL BORING

♦ MW1 MONITORING WELL

▲ SU1 SURFACE SOIL SAMPLE

RECOVERY WELL

TEMPORARY FENCING FOR EXCLUSION ZONE

STEAM LINE TO BE REMOVED

STEAM LINE

FENCE TO BE REMOVED

———— FENCE

==== PIPING TO BE DECONTAMINATED

◆ AB1/HB1 SQII_ BORING
 ◆ MW1 MONITORING WELL
 ▲ SU1 SURFACE SOIL SAMPLE
 ◆ RECOVERY WELL

TEMPORARY FENCING FOR EXCLUSION ZONE

STEAM LINE TO BE REMOVED

STEAM LINE

FENCE TO BE REMOVED

—X— FENCE

===== PIPING TO BE DECONTAMINATED

DATE

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING

19101 VILLAVIEW ROAD • SUITE 301 • CLEVELAND, OHIO 44119 • 216/486-OFFICES IN PRINCIPAL CITIES

ES

05

HAZARDOUS WASTE STOR, RICKENBACKER ANGB, OHK

(4)

