MAC0317/5920 - Introdução ao Processamento de Sinais Digitais

Primeira lista de exercícios

1 Espaços vetoriais

Exercício 1.11 (1.12e2). Verifique que o conjunto $L^2(\mathbb{N})$ do Exemplo 1.5 com as respectivas operações é um espaço vetorial. Explique também por que $L^2(\mathbb{N})$ é um sub-espaço de $L^{\infty}(\mathbb{N})$. Dica: use a desigualdade $(x-y)^2 \geq 0$ para provar que $(x+y)^2 \leq 2x^2 + 2y^2$, $\forall x, y$.

Solução: para mostrar que $L^2(\mathbb{N})$ é um espaço vetorial mostraremos as seguintes propriedades:

1. $\mathbf{u}, \mathbf{v} \in L^2(\mathbb{N}) \implies \mathbf{u} + \mathbf{v} \in L^2(\mathbb{N})$

Note que como $(x-y)^2 \ge 0$:

$$(x+y)^2 \le (x+y)^2 + (x-y)^2 = x^2 + 2xy + y^2 + x^2 - 2xy + y^2 = 2x^2 + 2y^2$$

e portanto:

$$\sum_{k=0}^{\infty} (u_k + v_k)^2 \le \sum_{k=0}^{\infty} 2u_k^2 + 2v_k^2 = \sum_{k=0}^{\infty} 2u_k^2 + \sum_{k=0}^{\infty} 2v_k^2 < \infty$$

2. $\forall \mathbf{u} \in L^2(\mathbb{N}) \ e \ a \in L^2(\mathbb{N}) \implies a\mathbf{u} \in L^2(\mathbb{N})$

$$\sum_{k=0}^{\infty} (au_k)^2 = a^2 \sum_{k=0}^{\infty} u_k^2 < \infty$$

pois $\mathbf{u} \in L^2(\mathbb{N})$.

3. Para todo escalar $a, b \in \mathbb{R}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in L^2(\mathbb{N})$ são satisfeitas as propriedades:

a)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$\mathbf{u} + \mathbf{v} = (u_0, u_1, \dots) + (v_0, v_1, \dots)$$

$$= (u_0 + v_0, u_1 + v_1, \dots)$$

$$= (v_0, v_1, \dots) + (u_0, u_1, \dots)$$

$$= \mathbf{v} + \mathbf{u}$$

b)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = [(u_0, u_1, \dots) + (v_0, v_1, \dots)] + (w_0, w_1, \dots)$$

$$= (u_0 + v_0, u_1 + v_1, \dots) + (w_0, w_1, \dots)$$

$$= (u_0 + v_0 + w_0, u_1 + v_1 + w_1, \dots)$$

$$= (u_0, u_1, \dots) + (v_0 + w_0, v_1 + w_1, \dots)$$

$$= \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

c) Existe o vetor $\mathbf{0}$ tal que $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$

Seja $\mathbf{0} = (0, 0, \dots)$ temos que:

$$\sum_{k=0}^{\infty} (0)^2 = 0 < \infty$$

logo $\mathbf{0} \in L^2(\mathbb{N})$, e

$$\mathbf{u} + \mathbf{0} = (u_0, u_1, \dots) + (0, 0, \dots)$$

$$= (u_0 + 0, u_1 + 0, \dots)$$

$$= (u_0, u_1, \dots) = \mathbf{u}$$

$$= (0 + u_0, 0 + u_1)$$

$$= (0, 0, \dots) + (u_0, u_1, \dots) = \mathbf{0} + \mathbf{u}$$

d) $\forall \mathbf{u} \in L^2(\mathbb{N}) \; \exists \mathbf{w} \in L^2(\mathbb{N}) \; \text{tal que } \mathbf{u} + \mathbf{w} = \mathbf{0}$

Seja **u** um elemento qualquer de $L^2(\mathbb{N})$ $\mathbf{w_u}=(-u_0,-u_1,\dots)$ temos que $\sum_{k=0}^{\infty}(-u_k)^2=\sum_{k=0}^{\infty}u_k^2<\infty$, pois $\mathbf{u}\in L^2(\mathbb{N})$, e

$$\mathbf{u} + \mathbf{w}_{\mathbf{u}} = (u_0, u_1, \dots) + (-u_0, -u_1, \dots)$$

= $(u_0 - u_0, u_1 - u_1, \dots)$
= $(0, 0, \dots) = \mathbf{0}$

e) $(ab)\mathbf{u} = a(b\mathbf{u})$

$$[ab]\mathbf{u} = [ab](u_0, u_1, \dots)$$

$$= ([ab]u_0, [ab]u_1, \dots)$$

$$= (a[bu_0], a[bu_1], \dots)$$

$$= a([bu_0], [bu_1], \dots)$$

$$= a[b\mathbf{u}]$$

f)
$$(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$$

$$[a+b]\mathbf{u} = [a+b](u_0, u_1, \dots)$$

$$= ([a+b]u_0, [a+b]u_1, \dots)]$$

$$= (au_0 + bu_0, au_1 + bu_1, \dots)$$

$$= (au_0, au_1, \dots) + (bu_0, bu_1, \dots)$$

$$= a\mathbf{u} + b\mathbf{u}$$

g)
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$

$$a(\mathbf{u} + \mathbf{v}) = a[(u_0, u_1, \dots) + (v_0, v_1, \dots)]$$

$$= a[(u_0 + v_0, u_1 + v_1, \dots)]$$

$$= (a[u_0 + v_0], a[u_1 + v_1], \dots)$$

$$= (au_0 + av_0, au_1 + av_1], \dots)$$

$$= (au_0, au_1, \dots) + (av_0, av_1, \dots)$$

$$= a\mathbf{u} + a\mathbf{v}$$

h)
$$1\mathbf{u} = \mathbf{u}$$

$$1\mathbf{u} = (1.u_0, 1u_1, \dots) = (u_0, u_1, \dots) = \mathbf{u}$$

Para mostrar que $L^2(\mathbb{N})$ é sub-espaço vetorial de $L^\infty(\mathbb{N})$, como já demonstramos que $L^2(\mathbb{N})$ é um espaço vetorial, basta mostrarmos que para todo $\mathbf{u} \in L^2(\mathbb{N}) \implies \mathbf{u} \in L^\infty(\mathbb{N})$. Faremos isso demonstrando a contra-positiva: $\mathbf{u} \notin L^\infty(\mathbb{N}) \implies \mathbf{u} \notin L^2(\mathbb{N})$

Seja $\mathbf{u} \notin L^{\infty}(\mathbb{N})$ logo para todo $M \in \mathbb{R}$ existe $k_0 \in \mathbb{N}$ tal que $|u_{k_0}| > M$. Assim:

$$\sum_{k=0}^{\infty} |u_k|^2 = \left(\sum_{k=0}^{k_0 - 1} |u_k|^2 + |u_{k_0}|^2 + \sum_{k=k_0 + 1}^{\infty} |u_k|^2\right) > |u_{k_0}|^2 > |u_{k_0}| > M$$

para todo $M \in \mathbb{R}$, e portanto $\sum_{k=0}^{\infty} |u_k|^2 \not< \infty$, logo $\mathbf{u} \notin L^2(\mathbb{N})$

Exercício 1.12 (1.13e2). o objetivo deste exercício é provar as afirmações na Proposição 1.4.1 para um espaço vetorial abstrato.

(a) Mostre que o vetor $\mathbf{0}$ é único. Para fazê-lo, suponha que existam dois vetores $\mathbf{0}_a$ e $\mathbf{0}_b$, os quais realizam a função do vetor nulo. Mostre que $\mathbf{0}_a = \mathbf{0}_b$. Dica: considere $\mathbf{0}_a + \mathbf{0}_b$.

Solução: Sejam $\mathbf{0}_a$ e $\mathbf{0}_b$ dois vetores nulos para adição, temos que:

$$\mathbf{0}_a + \mathbf{0}_b = \mathbf{0}_a$$
 pois $\mathbf{0}_b$ é elemento nulo (1)

$$\mathbf{0}_b + \mathbf{0}_a = \mathbf{0}_b$$
 pois $\mathbf{0}_a$ é elemento nulo (2)

logo, de (1) e (2) temos que:

$$\mathbf{0}_a = \mathbf{0}_a + \mathbf{0}_b = \mathbf{0}_b \implies \mathbf{0}_a = \mathbf{0}_b$$

(b) Abaixo está uma demostração de $0\mathbf{u} = \mathbf{0}$ em todo espaço vetorial. Nesta demonstração $-\mathbf{u}$ representa o inverso aditivo de \mathbf{u} , logo $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. Quais das propriedades listadas na Proposição 1.4.1 justificam cada passo? Solução:

$$(1+0)\mathbf{u} = 1\mathbf{u} + 0\mathbf{u} \qquad (f) \ (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$

$$1\mathbf{u} = \mathbf{u} + 0\mathbf{u} \qquad (h) \ 1\mathbf{v} = \mathbf{v}$$

$$\mathbf{u} = \mathbf{u} + 0\mathbf{u} \qquad (h) \ 1\mathbf{v} = \mathbf{v}$$

$$\mathbf{u} + (-\mathbf{u}) = (\mathbf{u} + (-\mathbf{u})) + 0\mathbf{u} \qquad (d) \ \forall \mathbf{v} \exists \mathbf{w} | \mathbf{v} + \mathbf{w} = \mathbf{0}, \ (a)\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$\mathbf{v} + (\mathbf{v} + \mathbf{v}) + \mathbf{v} = \mathbf{v} + (\mathbf{v} + \mathbf{w})$$

$$\mathbf{v} = \mathbf{v} + \mathbf$$

(c) Mostre que se $\mathbf{u} + \mathbf{v} = \mathbf{0}$, então $\mathbf{v} = (-1)\mathbf{u}$ (Isto mostra que o inverso aditivo de $\mathbf{u} \in (-1)\mathbf{u}$). Solução:

$$\mathbf{u} + \mathbf{v} = 0 \implies (u_0, u_1, \dots) + (v_0, v_1, \dots) = (0, 0, \dots)$$

$$\implies (u_0 + v_0, u_1 + v_1, \dots) = (0, 0, \dots)$$

$$\implies (v_0, v_1, \dots) = (-u_0, -u_1, \dots)$$

$$\implies (v_0, v_1, \dots) = ((-1).u_0, (-1).u_1, \dots)$$

$$\implies (v_0, v_1, \dots) = (-1)(u_0, u_1, \dots)$$

$$\implies \mathbf{v} = (-1)\mathbf{u}$$

2 Formas de ondas básicas analógicas e discretas

Exercício 1.17 (1.18e2). Mostre que é possível fatorar a forma de onda bidimensional básica $\mathcal{E}_{m,n,k,l}$ como:

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T,$$

onde $\mathbf{E}_{m,k}$ e $\mathbf{E}_{n,l}$ são as formas de onda unidimensionais discretas básicas definidas na Equação 1.22, como vetores coluna (lembre-se que o sobrescrito T denota a operação de transposição de vetores e matrizes).

Solução Temos que se se $\mathbf{B} \in \mathbb{C}^m$ e $\mathbf{C} \in \mathbb{C}^n$ então $A = \mathbf{B}\mathbf{C}^T \in \mathbb{C}^{m \times n}$ e $A(i,j) = \mathbf{B}(i).\mathbf{C}(j)$ onde A(i,j) é o elemento da i-ésima linha e j-ésima coluna de A.

Assim temos que:

$$[\mathbf{E}_{m,k}\mathbf{E}_{n,l}^T](a,b) = \mathbf{E}_{m,k}(a).\mathbf{E}_{n,l}^T(b)$$

$$= e^{2\pi i ka/m}.e^{2\pi i lb/n}$$

$$= e^{2\pi i ka/m + 2\pi i lb/n}$$

$$= e^{2\pi i (ka/m + lb/n)}$$

$$= \mathcal{E}_{m,n,k,l}(a,b)$$

e portanto $\mathbf{E}_{m,k}\mathbf{E}_{n,l}^T = \mathcal{E}_{m,n,k,l}$.

Exercício 1.18 (1.19e2). Considere a forma de onda exponencial

$$f(x,y) = e^{2\pi i(px+qy)}$$

como descrita na Seção 1.5.2 (p e q não precisam ser inteiros). A Figura 1.7 nesta seção indica que a forma de onda tem uma "direção" e um "comprimento de onda" naturais. O objetivo deste problema é compreender em que sentido isso é verdade, e em quanto esses valores dependem de p e q.

Defina $\mathbf{v} = (p,q)$, assim \mathbf{v} é um vetor bidimensional. Considere a reta L que passa por um ponto arbitrário $\mathbf{x}_0 = (x_0, y_0)$ na direção de um vetor unitário $\mathbf{u} = (u_1, u_2)$ (logo, $\|\mathbf{u}\| = 1$). A reta L pode ser parametrizada em função de \mathbf{x}_0 e \mathbf{u} como

$$x(t) = x_0 + tu_1, \quad y(t) = y_0 + tu_2$$

(a) mostre que a função g(t) = f(x(t), y(t)), com x(t) e y(t) como acima (ou seja, f avaliada sobre a reta L) é dada por

$$q(t) = Ae^{2\pi i \|\mathbf{v}\|\cos(\theta)t}$$

onde A é um número complexo que não depende de t, e θ é o ângulo entre ${\bf u}$ e ${\bf v}$. Dica: Use a Equação 1.30.

Solução: Note que $(x(t), y(t)) = (x_0 + tu_1, y_0 + tu_2) = \mathbf{x}_0 + t\mathbf{u}$, assim:

$$\begin{split} g(t) &= f(x(t), y(t)) \\ &= e^{2\pi i (px(t) + qy(t))} \\ &= e^{2\pi i \langle (p,q), (x(t), y(t)) \rangle} \\ &= e^{2\pi i \langle (\mathbf{v}, \mathbf{x}_0 + t \mathbf{u}) \rangle} \\ &= e^{2\pi i \langle (\mathbf{v}, \mathbf{x}_0) + \langle \mathbf{v}, t \mathbf{u} \rangle)} \\ &= e^{2\pi i \langle (\mathbf{v}, \mathbf{x}_0) \rangle} \cdot e^{2\pi i \langle \mathbf{v}, t \mathbf{u} \rangle} \\ &= e^{2\pi i \langle (\mathbf{v}, \mathbf{u}) \rangle} \cdot e^{2\pi i \langle \mathbf{v}, t \mathbf{u} \rangle} \\ &= A e^{2\pi i ||\mathbf{v}|| \|\mathbf{u}\| \cos(\theta) t} \\ &= A e^{2\pi i \|\mathbf{v}\| \cos(\theta) t} \end{split}$$

(b) Mostre que se L é ortogonal a ${\bf v}$ então a função g (e também f) se mantém constante em L.

Solução: Temos que se L é ortogonal a ${\bf v}$ então ${\bf u}$ é ortogonal a ${\bf v}$ e portanto $\theta=\pi/2$. Assim

$$q(t) = Ae^{2\pi i \|\mathbf{v}\|\cos(\theta)t} = Ae^{2\pi i \|\mathbf{v}\|\cos(\pi/2)t} = Ae^0 = A$$

(c) Encontre a frequência (oscilações por unidade de distância percorrida) de g como uma função de t, em termos de p,q e θ .

Solução: Temos que a frequência angular de de g(t) é dada por $2\pi \|\mathbf{v}\| \cos(\theta)$ e assim:

$$f = \frac{\omega}{2\pi}$$

$$= \frac{2\pi \|\mathbf{v}\| \cos(\theta)}{2\pi}$$

$$= \|\mathbf{v}\| \cos(\theta)$$

$$= \sqrt{p^2 + q^2} \cos(\theta)$$

(d) Encontre o valor de θ que maximiza a frequência em que g(t) oscila. Este θ dita a direção em que que deve-se mover, relativo a \mathbf{v} , para que f oscile o mais rápido possível. Como este valor de θ se compara com o valor de θ na questão (b)? Qual é a maior frequência de oscilação em termos de p e q?

Solução: Os valores de θ que maximizam a frequência em que g oscila são os valores em que $cos(\theta)$ atinge seu máximo, ou seja, são os valores da forma $2\pi k$ para $k \in \mathbb{Z}$ e portanto a $f_{\max} = \sqrt{p^2 + q^2} = ||\mathbf{v}||$. Note que os valores de θ que maximizam a frequência de g são os que fazem \mathbf{u} (e consequentemente L) paralelos \mathbf{v} .

(e) Encontre a distância "pico-a-pico", ou o comprimento de onda, da forma de onda f(x,y), em termos de p e q.

Solução: Temos que o comprimento de onda de f(x, y) corresponde a um período da forma de onda g(t) como definido no item (d). Assim:

$$\lambda = \frac{1}{f} = \frac{1}{\sqrt{p^2 + q^2}}$$

3 aliasing

Exercício 1.20 (1.21e2). Para uma forma de onda unidimensional pura de N amostras, mostre a relação de *aliasing*

$$\mathbf{E}_{N-k} = \overline{\mathbf{E}_k}$$

Solução: temos que para $0 \le m \le N-1$:

$$\mathbf{E}_{N-k}(m) = e^{2\pi i(N-k)m/N}$$

$$= e^{2\pi iNm/N} \cdot e^{2\pi i(-k)m/N}$$

$$= e^{2\pi im} \cdot e^{2\pi i(-k)m/N}$$

$$= 1 \cdot e^{-2\pi ikm/N}$$

$$= \overline{\mathbf{E}}_k(m)$$

e portanto $\mathbf{E}_{N-k} = \overline{\mathbf{E}_k}$

Exercício 1.21 (1.22e2). Encontre todas as relações de aliasing que você conseguir (incluindo aliasing conjugados) para $\mathcal{E}_{m,n,k,l}$. Isto pode ser feito diretamente ou utilizando a equação 1.26 e as relações de aliasing para $\mathbf{E}_{N,k}$.

Solução

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \mathbf{E}_{m,k-m} \mathbf{E}_{n,l}^T = \mathcal{E}_{m,n,k-m,l}$$

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \mathbf{E}_{m,k} \mathbf{E}_{n,l-n}^T = \mathcal{E}_{m,n,k,l-n}$$

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \mathbf{E}_{m,k-m} \mathbf{E}_{n,l-n}^T = \mathcal{E}_{m,n,k-m,l-n}$$

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \overline{\mathbf{E}}_{m,m-k} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,m-k} \mathbf{E}_{n,n-l}^T = \overline{\mathcal{E}}_{m,n,m-k,n-l}$$

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \overline{\mathbf{E}}_{m,m-k} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,m-k-m} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,n-k-n-l}$$

$$\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \overline{\mathbf{E}}_{m,m-k} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,m-k-m} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,m-k-l}$$

 $\mathcal{E}_{m,n,k,l} = \mathbf{E}_{m,k} \mathbf{E}_{n,l}^T = \overline{\mathbf{E}}_{m,m-k} \overline{\mathbf{E}}_{n,n-l}^T = \overline{\mathbf{E}}_{m,m-k-m} \overline{\mathbf{E}}_{n,n-l-n}^T = \overline{\mathbf{E}}_{m,-k} \mathbf{E}_{n,-l}^T = \overline{\mathcal{E}}_{m,n,-k,-l}$