EXISTENCE OF RIEMANNIAN METRICS

Let M be a smooth manifold. A A Riemannian metric is a smooth (0,2)-tensor field $g \in \mathcal{T}^2(M)$ such that each g_p is an inner product.

Proposition. Let M be a smooth manifold. Then M has a Riemannian metric.

Proof. Let $\mathcal{A} = \{(U_{\alpha}, (x_{\alpha}^{i}))\}$ be the smooth structure for M. For each α , define

$$g_{\alpha} := \delta_{ij} dx_{\alpha}^{i} \otimes dx_{\alpha}^{j},$$

which is a metric on U. Next, let $\{\psi_{\alpha}\}$ be a partition of unity subordinate to $\{U_{\alpha}\}$, and define $g: M \to T^{(0,2)}TM$ by

$$g:=\sum \psi_{\alpha}g_{\alpha}.$$

Around every point in M, there is a neighbourhood where the sum above is finite. Thus, g is smooth. Now, fix $p \in M$. It is easy to see that each g_p is bilinear and symmetric. There exists some α_0 such that $\psi_{\alpha_0}(p) > 0$. Therefore, given non-zero $v \in T_pM$, we have

$$g_p(v,v) = \sum \psi_{\alpha}(p)g_{\alpha}|_p(v,v) \ge \psi_{\alpha_0}(p)g_{\alpha_0}|_p(v,v) > 0.$$