Assignment 3

Group Number 32

Software used: Matlab

Sanit Prashant Bhatkar (173109003) Omkar Anil Pawar(173106001)

1. TDMA Method

Code	Output
fprintf('\n\nTDMA Method for Ax=b\n\n') p=0;q=0; %Matrix size definition b=[a0.8;0.8;0.8;200.8] [n,k]=size(b); fprintf('Size of matrix b is %d x %d\n',n,k); A=[2.04,-1,0,0;-1,2.04,-1,0;0,-1,2.04,-1;0,0,-1,2.04] [n,k]=size(A); fprintf('Size of matrix A is %d x %d\n',n,k); %Checking Matrix is TDMA or not for i=2:n-1 if diag(A,i)==0 & diag(A,-i)==0 p=1; else q=1; end end if q == 1 fprintf('Matrix A is not Tridiagonal matrix and code is not applicable\n\n'); else fprintf('Matrix A is Tridiagonal matrix\n\n'); beta(1)=A(1); g(1)=b(1); %TDMA triangular matrix solution for Lg=b form where g=UX for i=2:n alpha(i)=A(i,i-1)/beta(i-1); beta(i)=A(i,i)-alpha(i)*A(i-1,i); g(i)=b(i)-alpha(i)*g(i-1); end %Back substitution for solving g=UX x(n)=g(n)/beta(n); for i=n-1:-1:1 x(i)=(g(i)-A(i,i+1)*x(i+1))/beta(i); end x	a) For 2.04x ₁ + x ₂ = 40.8 -x ₁ + 2.04x ₂ - x ₃ = 0.8 -x ₂ + 2.04x ₃ - x ₄ = 0.8 -x ₃ + 2.04x ₄ = 200.8 Output: TDMA Method for Ax=b b = 40.8000 0.8000 0.8000 200.8000 Size of matrix b is 4 x 1 A = 2.0400 -1.0000 0 0 -1.0000 2.0400 -1.0000 0 0 -1.0000 2.0400 -1.0000 0 0 -1.0000 2.0400 Size of matrix A is 4 x 4 Matrix A is Tridiagonal matrix x = 65.9698 93.7785 124.5382 159.4795

Equation	Root
$2.04x_1 + x_2 = 40.8$ $-x_1 + 2.04x_2 - x_3 = 0.8$ $-x_2 + 2.04x_3 - x_4 = 0.8$ $-x_3 + 2.04x_4 = 200.8$	x_1 = 65.9698 x_2 = 93.7785 x_3 =124.5382 x_4 =159.4795

2. Gauss Seidel Method

$$27x_1 + 6x_2 - x_3 = 85$$

$$6x_1 + 15x_2 + 2x_3 = 72$$

$$x_1 + x_2 + 54x_3 = 110$$

Code	Output
foreign ((1) m) m Course Coid at 184 at head foreign (1) m) m(1)	a) For
fprintf('\n\nGauss Seidel Method for Ax=b\n\n')	a) For
%Defining matrx	$27x_1 + 6x_2 - x_3 = 85$
b=[85;72;110]	$6x_1 + 15x_2 + 2x_3 = 72$
[n,k]=size(b);	$x_1 + x_2 + 54x_3 = 110$
fprintf('Size of matrix b is %d x %d\n',n,k);	
A=[27,6,-1;6,15,2;1,1,54]	Output:
[n,k]=size(A);	
fprintf('Size of matrix A is %d x %d\n',n,k);x=zeros(n,1);	Gauss Seidel Method for Ax=b
xin=zeros(n,1);	
error=1;	
m=0;	b =
p=input('Error limit: ');	
	85
%Checking Matrix is TDMA or not	72
for i=2:n-1	110
if diag(A,i)==0 & diag(A,-i)==0	Size of matrix b is 3 x 1
p=1;	SILE OF HIGHING IS SIX I
p=1; else	A =
	A =
q=1;	
end	27 6 -1
end	6 15 2
if q == 1	1 1 54
fprintf('Matrix A is not Tridiagonal matrix\n\n ');	
else	Size of matrix A is 3 x 3
fprintf('Matrix A is Tridiagonal matrix\n\n');	Error limit: 10e-12
end	Matrix A is not Tridiagonal matrix
while error(1)>p	
	χ =
xin=x;	
m=m+1;	2.4255
%Formula for gauss-seidel	3.5730
x(1)=(b(1)-A(1,2:n)*x(2:n,1))/A(1,1);	1.9260
for i=2:n-1	
x(i)=(b(i)-A(i,1:i-1)*x(1:i-1,1)-A(i,i+1:n)*x(i+1:n,1))/A(i,i);	Number of iterations are 11
end	
x(n)=(b(n)-A(n,1:n-1)*x(1:n-1,1))/A(n,n);	
for i=1:n	
error(i)=norm((x(i)-xin(i)),inf)/norm(xin(i),inf);	
end	
%Norm calculation	
error= sort(error(1:n), 'descend');	
end	
X	
fprintf('Number of iterations are %d \n\n',m);	

Equation	Root
$27x_1 + 6x_2 - x_3 = 85$ $6x_1 + 15x_2 + 2x_3 = 72$ $x_1 + x_2 + 54x_3 = 110$	x1=2.4255 x2=3.5730 x3=1.9260

3. Gauss Seidel Method

```
3.122x_1 + 0.576x_2 - 0.1565x_3 - 0.0067x_4 = 1.571

0.5761x_1 + 2.93x_2 + 0.1103x_3 - 0.0015x_4 = -0.9275

-0.5761x_1 + 0.1103x_2 + 4.127x_3 + 0.2051x_4 = -0.0625

-0.0067x_1 - 0.0015x_2 + 02051x_3 + 4.133x_4 = -0.0178
```

Code	Output
fprintf('\n\nGauss Seidel Method for Ax=b\n\n') %Defining matrx b=[1.571;-0.9275;-0.0652;-0.0178] [n,k]=size(b); fprintf('Size of matrix b is %d x %d\n',n,k); A=[3.122,0.5756,-0.1565,-0.0067;0.5756,2.93,0.1103,-0.0015;-0.1565,0.1103,4.127,0.2051;-0.0067,-0.0015,0.2051,4.133] [n,k]=size(A);	a) For $3.122x_1 + 0.576x_2 - 0.1565x_3 - 0.0067x_4 = 1.571$ $0.5761x_1 + 2.93x_2 + 0.1103x_3 - 0.0015x_4 = -0.9275$ $-0.5761x_1 + 0.1103x_2 + 4.127x_3 + 0.2051x_4 = -0.0625$ $-0.0067x_1 - 0.0015x_2 + 02051x_3 + 4.133x_4 =0.0178$ Output: Gauss Seidel Method for Ax=b
fprintf('Size of matrix A is %d x %d\n',n,k); %Size of matrix x=zeros(n,1); xin=zeros(n,1); error=1; m=0; %Checking Matrix is TDMA or not for i=2:n-1	b = 1.5710 -0.9275 -0.0652 -0.0178
<pre>if diag(A,i)==0 & diag(A,-i)==0 p=1; else q=1; end end if q == 1 fprintf('Matrix A is not Tridiagonal matrix \n\n'); else fprintf('Matrix A is Tridiagonal matrix\n\n'); end</pre>	Size of matrix b is 4 x 1 A = 3.1220 0.5756 -0.1565 -0.0067 0.5756 2.9300 0.1103 -0.0015 -0.1565 0.1103 4.1270 0.2051 -0.0067 -0.0015 0.2051 4.1330 Size of matrix A is 4 x 4 Matrix A is not Tridiagonal matrix
<pre>itr=input('Maximum Iterations: '); p=input('\n\nMaximum error: ');</pre>	Maximum Iterations: 100
<pre>while m<itr %formula="" end<="" for="" gauss-seidel="" i="2:n-1" m="m+1;" pre="" x(1)="(b(1)-A(1,2:n)*x(2:n,1))/A(1,1);" x(i)="(b(i)-A(i,1:i-1)*x(1:i-1,1)-A(i,i+1:n)*x(i+1:n,1))/A(i,i);" xin="x;"></itr></pre>	Maximum error: 10e-5 Iteration 1 xk = 0.5032 -0.4154 0.0144 -0.0044
x(n)=(b(n)-A(n,1:n-1)*x(1:n-1,1))/A(n,n); for i=1:n error(i)=norm((x(i)-xin(i)),inf)/norm(xin(i),inf); end	error = Inf Inf Inf Inf

```
fprintf('Iteration %d\n\n',m);
                                                          Iteration 2
  xk=x'
  error
  %Norm calculation
                                                          xk =
  error= sort(error(1:n),'descend');
  if error(1)< p
                                                            0.5805 -0.4311 0.0180 -0.0044
    break
end
                                                          error =
fprintf('Number of iterations are %d \n\n',m);
                                                            0.1536 0.0379 0.2480 0.0132
                                                          Iteration 3
                                                          xk =
                                                            0.5836 -0.4319 0.0181 -0.0044
                                                          error =
                                                            0.0053 0.0017 0.0078 0.0005
                                                          Iteration 4
                                                          xk =
                                                            0.5837 -0.4319 0.0181 -0.0044
                                                          error =
                                                           1.0e-03 *
                                                           0.2455 0.0773 0.3556 0.0225
                                                          Iteration 5
                                                          xk =
                                                            0.5837 -0.4319 0.0181 -0.0044
                                                          error =
                                                           1.0e-04 *
                                                            0.1110 0.0351 0.1608 0.0102
                                                          Number of iterations are 5
```

Equation	Root
$3.122x_1 + 0.576x_2 - 0.1565x_3 - 0.0067x_4 = 1.571$ $0.5761x_1 + 2.93x_2 + 0.1103x_3 - 0.0015x_4 = -0.9275$ $-0.5761x_1 + 0.1103x_2 + 4.127x_3 + 0.2051x_4 = -0.0625$ $-0.0067x_1 - 0.0015x_2 + 02051x_3 + 4.133x_4 = -0.0178$	$x_1=0.5837$ $x_2=-0.4319$ $x_3=0.0181$ $x_4=-0.0044$

The Norm of X = .72633