Содержание

- 1 Гладкие многообразия
 - Определения
 - Подмногообразия
 - Регулярные поверхности
 - Гладкие отображения
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений

Содержание

- 1 Гладкие многообразия
 - Определения
 - Подмногообразия
 - Регулярные поверхности
 - Гладкие отображения
- Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений

Топологические многообразия (повтор)

Определение (напоминание)

Многообразие размерности n — хаусдорфово пространство со счётной базой такое, что у любой точки есть окрестность, гомеоморфная \mathbb{R}^n

Многообразия с краем пока не рассматриваем.

Замечание

Если у точки есть окрестность, гомеоморфная открытому $U \subset \mathbb{R}^n$, то есть и окрестность, гомеоморфная \mathbb{R}^n (так как открытый шар в \mathbb{R}^n гомеоморфен \mathbb{R}^n).

Обозначение

Для краткости размерность многообразия часто указывают верхним индексом.

Запись «многообразие M^n » означает то же самое, что «многообразие M размерности n»

Лекция 6

Атласы и их гладкость

Определение

Пусть M-n-мерное многообразие.

Карта) — гомеоморфизм $\varphi \colon U \to \varphi(U) \subset \mathbb{R}^n$,

где $U\subset M$ и $arphi(U)\subset \mathbb{R}^n$ открыты.

Атлас — набор карт, области определения которых покрывают M (примечание: используется вольность речи «карты покрывают M»).

Карты также называют локальными координатами.

Лекция 6 7 октября 2020 г.

Атласы и их гладкость

Определение

Пусть M - n-мерное многообразие.

Карта — гомеоморфизм $\varphi \colon U \to \varphi(U) \subset \mathbb{R}^n$, где $U \subset M$ и $\varphi(U) \subset \mathbb{R}^n$ открыты.

Атлас — набор карт, области определения которых покрывают M (примечание: используется вольность речи «карты покрывают M»).

Карты также называют локальными координатами.

Отображение перехода между картами $\varphi\colon U \to \mathbb{R}^n$ и $\psi\colon V \to \mathbb{R}^n$ — отображение

$$\psi \circ \varphi^{-1}$$
: $\varphi(U \cap V) \to \psi(U \cap V)$

Две карты гладко согласованы, если отображение прехода между ними гладкое.

Атлас — <u>гладкий</u>, если все его карты гладко согласованы.

4 D > 4 P > 4 B > 4 B > B 9 Q P

Лекция 6 7 октября 2020 г.

Эквивалентность атласов

Определение

Два гладких атласа эквивалентны, если их объединение — тоже гладкий атлас.

Легко проверить, что

это действительно отношение эквивалентности.

В каждом классе эквивалентности есть единственный максимальный (по включению) атлас — объединение всех атласов из класса эквивалентности.

Определение гладкого многообразия

Определение

Гладкое многообразие — многообразие с заданным на нём максимальным гладким атласом.

Максимальный атлас также называют стуктурой гладкого многообразия или дифференциальной структурой.

Замечание

Обычный способ задания структуры гладкого многообразия — задать один атлас $\mathcal A$ на M. Тогда дифференциальная структура состоит из всех карт, гладко согласованных со всеми каратами из $\mathfrak A$.

$$\varphi \circ \psi^{-1}(x) = x^{1/3} \notin C^{\infty}$$

Pyennep: R. Kepra $\varphi: \mathbb{R} \to \mathbb{R}$ he could crowd $\varphi(x) = x$.

Еще некоторые термины (для информации)

- Вместо «гладкое многообразие» также говорят «многообразие класса C^{∞} ». Аналогично определяются многообразия класса C^k , $k \in \mathbb{N}$.
- Область определения карты называется носителем карты.
 Будем использовать вольность речи: вместо «носитель карты содержит то-то» писать «карта содержит то-то».
- Отображения, обратные к картам, называются локальными параметризациями. Иногда их тоже называют картами.
- Если $\varphi \colon U \to \mathbb{R}^n$ карта и $x \in U$, то координаты точки $\varphi(x) \in \mathbb{R}^n$ называются координатами точки x в карте φ .

Простейшие примеры

$ig(\mathsf{Пример} \; (\mathbb{R}^n - \mathsf{гладкое} \; \mathsf{многообразие} ig)$

Стандартная дифференциальная структура на \mathbb{R}^n задается одной картой — тождественным отображением.

Другие карты — диффеормофизмы $\varphi\colon U\to V$, где $U,V\subset\mathbb{R}^n$ — открытые множества.

Простейшие примеры

$\lceil \mathsf{Пример} \; (\mathbb{R}^n - \mathsf{гладкое} \; \mathsf{многообразие}) ceil$

Стандартная дифференциальная структура на \mathbb{R}^n задается одной картой — тождественным отображением.

Другие карты — диффеормофизмы $\varphi\colon U \to V$, где $U,V\subset \mathbb{R}^n$ — открытые множества.

Пример

Открытое подмножество гладкого многообразия — гладкое многообразие той же размерности.

Простейшие примеры

$ig(\mathsf{Пример} \; (\mathbb{R}^n - \mathsf{гладкое} \; \mathsf{многообразие} ig)$

Стандартная дифференциальная структура на \mathbb{R}^n задается одной картой — тождественным отображением.

Другие карты — диффеормофизмы $\varphi\colon U\to V$, где $U,V\subset\mathbb{R}^n$ — открытые множества.

Пример

Открытое подмножество гладкого многообразия — гладкое многообразие той же размерности.

Пример

0-мерные многообразия — дискретные пространства и только они.

На 0-мерном многообразии есть единственная дифференциальная структура.

Лекция 6 7 октября 2020 г.

Пример: сфера

Пример

На сфере \mathbb{S}^{n-1} можно задать дифференциальную структуру разными естественными атласами, например

- 2*n* ортогональных проекций;
- две стереографические (центральные) проекции

Проверять гладкость отображений перехода будет проще, если заметить, что карты гладко продолжимы на открытые области в \mathbb{R}^n .

На самом деле проверять определение вручную не нужно, так как сфера — гладкое подмногообразие в \mathbb{R}^n (об этом позже)

Лекция 6 7 октября 2020 г.

Содержание

- 1 Гладкие многообразия
 - Определения
 - Подмногообразия
 - Регулярные поверхности
 - Гладкие отображения
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений

Лекция 6

Определение

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если: \nearrow

для любой точки $x\in \mathbb{Z}$ существует карта $\varphi\colon U\to \mathbb{R}^n$ многообразия N такая, что $\varphi(M\cap U)=\mathbb{R}^k\cap \varphi(U)$.

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» будет пропускаться.

Определение

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x \in K$ существует карта $\varphi \colon U \to \mathbb{R}^n$ многообразия N такая, что $\varphi(M \cap U) = \mathbb{R}^k \cap \varphi(U)$.

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Для краткости слово «гладкое» будет пропускаться.

Определение

На гладком подмногообразии $M\subset N$ определяется дифференциальная структура: берем в качестве карт всевозможные сужения $\varphi|_{M\cap U}$, где φ — выпрямляющая карта (обозначения как в предыдущем определении).

Лекция 6 7 октября 2020 г.

Пример: графики

Пример

Пусть $U\subset\mathbb{R}^k$ открытое, $f\colon U\to\mathbb{R}^{n-k}$ гладкое. Рассмотрим график

$$\Gamma_f := \{(x, f(x))\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k} \cong \mathbb{R}^n$$

Это гладкое подмногообразие в \mathbb{R}^n .

Доказательство: рассмотрим карту

$$\varphi \colon U \times \mathbb{R}^{n-k} \to U \times \mathbb{R}^{n-k}$$

заданную формулой

$$\varphi(x,y)=(x,y-f(x))$$

Это диффеоморфизм (следовательно, карта), она «выпрямляет» Γ_f .

Будем называть такие множества k-мерными графиками.

Лекция 6 7 октября 2020 г.

Локальность

Свойство

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) подмногообразие той же размерности.
- $lue{ullet}$ Если $M\subset N$ множество, и у каждой точки $x\in M$ есть окрестность в М, являющаяся гладким k-мерным подмногообразием, то и всё M — гладкое подмногообразие.

$$f(\gamma_1 \gamma_1) = -\sqrt{1-x^2-\gamma^2}$$

Лекция 6

Локальность

Свойство

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) подмногообразие той же размерности.
- Если M ⊂ N множество, и у каждой точки x ∈ M есть окрестность в M, являющаяся гладким k-мерным подмногообразием, то и всё M — гладкое подмногообразие.

Следствие

Если $M \subset \mathbb{R}^n$ таково, что у каждой точки $x \in M$ есть окрестность в M, представимая в виде k-мерного графика (при некотором выборе координат), то M-k-мерное гладкое подмногообразие.

Легко видеть, что это условие выполняется для сферы (и многих других примеров).

To neebuois dynasum. Daer aoueanure epadure

13 / 55

Лекция 6 7 октября 2020 г.

Содержание

- 1 Гладкие многообразия
 - Определения
 - Подмногообразия
 - Регулярные поверхности
 - Гладкие отображения
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений

Лекция 6

Определение регулярной поверхности

Определение

Регулярная k-мерная поверхность в \mathbb{R}^n — такое гладкое отображение $f: U \to \mathbb{R}^n$, где $U \subset \mathbb{R}^k$ — открытое множество, что для любой точки $x \in U$ дифференциал $d_x f$ инъективен (условие регулярности).

Перефомулировки: rank $d_x f = k$, $\ker d_x f = \{0\}$.

Простая регулярная поверхность (вложение) — регулярная поверхность, которая является топологическим вложением.

Аналогично замене параметра у кривых, можно ввести отношение эквивалентности для регулярных поверхностей («замена параметризации», «замена координат»). Пока обойдёмся без этого.

forpage. 6

ㅁㅏ (레ㅏ (ㅌㅏ (ㅌㅏ) ㅌ / 어익()

Регулярные поверхности и подмногообразия

Теорема

Пусть $f: U \subset \mathbb{R}^k \to \mathbb{R}^n$ — регулярная поверхность.

- Локально f вложение. $T.е.\ y$ любой $p\in U$ существует окрестность V $(p \in V \subset U)$ такая, что $f|_V$ — вложение.
- **2** Если f вложение, то f(U) гладкое подмногообразие.

При этом f^{-1} — карта этого подмногообразия. \angle

7 октября 2020 г. Лекция 6

Доказательство

Вложим \mathbb{R}^k в $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F: U \times \mathbb{R}^{n-k}$:

$$F(x,y) = f(x) + L(y), \qquad (x)$$

где $L: \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 $d_p F$ невырожден \implies применима теорема об обратной функции \implies существует окрестность $W \subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi \colon F(W) \to W$.

$$\ker (d_p F) = \ker d_p f$$

$$d_p F = \left(\frac{d_p f}{L}\right).$$

Лекция 6 7 октября 2020 г.

Доказательство

Вложим \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k imes\mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F\colon U imes\mathbb{R}^{n-k}$:

$$F(x, y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 $d_p F$ невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W \subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi\colon F(W) \to W$.

Пусть $V = W \cap \mathbb{R}^k$ Тогда $f|_V$ — вложение, и φ — выпрямляющая карта для f(V).

Pares Cymenne bromenne F/W
- Truce bromenne UF

(ㅁ▶ ◀뤨▶ ◀불▶ ◀불▶ · 불 · 쒸٩C

Лекция 6 7 октября 2020 г.

Доказательство

Вложим \mathbb{R}^k в $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F: U \times \mathbb{R}^{n-k}$:

$$F(x, y) = f(x) + L(y),$$

где $L: \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 $d_p F$ невырожден \implies применима теорема об обратной функции \Longrightarrow существует окрестность $W \subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi \colon F(W) \to W$.

Пусть $V = W \cap \mathbb{R}^k$. Тогда $f|_V$ — вложение, и φ выпрямляющая карта для f(V).

Мы доказали всё, кроме последнего утверждения теоремы $(f^{-1}$ — карта для f(U)). Оно доказано для Vвместо U. Общий случай следует из локальности свойства гладкой согласованности карт.

Лекция 6

Характеризация подмногообразий \mathbb{R}^n

Теорема

Для множества $M \subset \mathbb{R}^n$ два свойства эквивалентны:

- М гладкое k-мерное подмногообразие;
- ② У каждой точки $x \in M$ есть окрестность $U \subset M$, которая является образом простой регулярной k-мерной поверхности.

Определение

Если образ простой регулярной поверхности f является открытым подмножеством M, то f называется локальной параметризацией многообразия M.

Замечание

Локальные параметризации — это в точности отображения, обратные к картам (локальным координатам).

Лекция 6

Доказательство теоремы

 $2 \implies 1$: из предыдущей теоремы. \checkmark

 $1 \implies 2$: Пусть $\varphi \colon W \to \mathbb{R}^n$ — выпрямляющая карта для M, где W — окрестность x в \mathbb{R}^n .

Возьмём $U=W\cap M$. Тогда $(\varphi^{-1})|_{\varphi(W)\cap\mathbb{R}^k}$ — искомая регулярная поверхность

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めらぐ

Лекция 6 7 октября 2020 г.

Содержание

- 📵 Гладкие многообразия
 - Определения
 - Подмногообразия
 - Регулярные поверхности
 - Гладкие отображения
- 2 Касательное пространство
 - Определения
 - Стандартные отождествления
 - Дифференцирование отображений

Ec76:
$$oup-e$$
 raad accordance $f: \mathcal{U} \to \mathbb{R}^n$

$$\mathbb{R}^n$$

$$\left(\mathcal{U} - oraposo\right)$$

Лекция 6

7 октября 2020 г.

Определение гладкого отображения

Пусть M^m , N^n — гладкие многообразия, $f: M \to N$ — непрерывное отображение.

Определение

Пусть $\varphi \colon U \to \mathbb{R}^m$ и $\varphi \colon V \to \mathbb{R}^n$ — карты в M и N.

Координатное представление f в картах φ и ψ — это отображение

$$f_{\varphi,\psi} = \psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V)) \to \mathbb{R}^n$$

Отображение f гладкое, если все его координатные представления гладкие (в том смысле, который определён для \mathbb{R}^n).

Лекция 6 7 октября 2020 г.

Пусть $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\varphi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

Лекция 6 7 октября 2020 г.

Пусть $f: M \to N$ — непрерывное отображение.

Определение

 $f: M \to N$ гладкое в точке $x \in M$, если существуют такие карты $\varphi \colon U \to \mathbb{R}^m$ и $\varphi \colon V \to \mathbb{R}^n$, что $x \in U$, $f(x) \in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

lacktriangle Свойство не зависит от выбора карт φ и ψ , содержащих x и f(x).

$$\psi_1 \circ f \circ \psi_1^{-1} = f_{\mu_1, \psi_1} = [\psi_1 \circ \psi_1^{-1}] \circ f_{\nu_1} \circ (\rho \circ \psi_1^{-1})$$

$$\psi_0 f_{\nu_1} \circ \psi_1^{-1}$$

Лекция 6 7 октября 2020 г.

Пусть $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\varphi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- ullet Свойство не зависит от выбора карт φ и ψ , содержащих x и f(x).
- $oldsymbol{0}$ f гладкое \Longleftrightarrow оно гладкое в каждой точке.

Лекция 6 7 октября 2020 г.

Пусть $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\varphi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- ullet Свойство не зависит от выбора карт arphi и ψ , содержащих x и f(x).
- 2/f гладкое \iff оно гладкое в каждой точке.
 - В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов M и N.

Пусть $f: M \to N$ — непрерывное отображение.

Определение

f:M o N гладкое в точке $x\in M$, если существуют такие карты $\varphi\colon U o \mathbb{R}^m$ и $\varphi\colon V o \mathbb{R}^n$, что $x\in U$, $f(x)\in V$, и координатное представление $f_{\varphi,\psi}$ гладкое в окрестности точки $\varphi(x)$.

- **①** Свойство не зависит от выбора карт φ и ψ , содержащих x и f(x).
- $oldsymbol{0}$ f гладкое \iff оно гладкое в каждой точке.
- В определении гладкости можно рассматривать не все карты, а только карты из фиксированных атласов M и N.
- $igoplus_{n}$ Для открытых множеств $M \subset \mathbb{R}^m$ и $N \subset \mathbb{R}^n$ определение гладкости эквивалентно обычному (которое для \mathbb{R}^n).

Лекция 6 7 октября 2020 г.

1 Тожественное отображение — гладкое.

$$id_{\varphi,\varphi} = id$$

1 Тожественное отображение — гладкое.

Композиция гладких отображений — гладкое.

Лекция 6 7 октября 2020 г.

- Тожественное отображение гладкое.
- Композиция гладких отображений гладкое.

Тожественное отображение — гладкое.

Композиция гладких отображений — гладкое.

 Сужение гладкого отображения на гладкое подмногообразие — гладкое отображение (из подмногообразия).

① Пусть $M \subset N$ — подмногообразие. Тогда включение $in \colon M \to N$ — гладкое отображение.

- **1** Тожественное отображение гладкое.
- Композиция гладких отображений гладкое.
- Сужение гладкого отображения на гладкое подмногообразие — гладкое отображение (из подмногообразия).
- **4** Пусть $M \subset N$ подмногообразие. Тогда включение $in \colon M \to N$ гладкое отображение.
- Пусть N подмногообразие в некотором \widehat{N} . Тогда гладкость $f: M \to N$ равносильна гладкости f как отображения из M в \widehat{N} (т.е., отображения $in \circ f$, где in включение).

Лекция 6 7 октября 2020 г.

- **1** Тожественное отображение гладкое.
- Композиция гладких отображений гладкое.
- Сужение гладкого отображения на гладкое подмногообразие — гладкое отображение (из подмногообразия).
 - **4** Пусть $M \subset N$ подмногообразие. Тогда включение $in \colon M \to N$ гладкое отображение.
 - Пусть N подмногообразие в некотором \widehat{N} . Тогда гладкость $f: M \to N$ равносильна гладкости f как отображения из M в \widehat{N} (т.е., отображения $in \circ f$, где in включение).
 - Пусть M подмногообразие в некотором \widehat{M} . Тогда гладкость f равносильна локальной гладкой продолжимости: для любой $x \in M$ существует окрестность $U \ni x$ в \widehat{M} и гладкое отображение $\widehat{f}: U \to N$, продолжающее $f|_{U \cap M}$.

Лекция 6

Диффеоморфизм

Определение

Диффеоморфизм — гладкая биекция между гладкими многообразиями, у которой обратное отображение тоже гладкое.

Два многообразия диффеоморфны, если существует диффеоморфизм между ними.

Очевидно, диффеоморфность — отношение эквивалентности.

Лекция 6

Диффеоморфизм

Определение

Диффеоморфизм — гладкая биекция между гладкими многообразиями, у которой обратное отображение тоже гладкое.

Два многообразия диффеоморфны, если существует диффеоморфизм между ними.

Очевидно, диффеоморфность — отношение эквивалентности.

Свойство

У диффеоморфных многообразий размерности равны.

Доказательство.

Координатное представление диффеоморфизма $f\colon M^m\to N^n$ — диффеоморфизм между областями в \mathbb{R}^n и \mathbb{R}^m .

Дифференцируя и применяя производную композиции, получаем изоморфизм векторных пространств \mathbb{R}^m и \mathbb{R}^n . Значит, m=n.

24 / 55

Лекция 6 7 октября 2020 г.

Диффеоморфизм и карты

Свойство

Карты многообразия $M^n - в$ точности диффеоморфизмы между открытыми областями в M и открытыми областями в \mathbb{R}^n .

Доказательство.

Тривиально из определений.

Диффеоморфизм и карты

Свойство

Карты многообразия M^n- в точности диффеоморфизмы между открытыми областями в M и открытыми областями в \mathbb{R}^n .

Доказательство.

Тривиально из определений.

Следствие

Диффеоморфизм $f: M \to N$ индуцирует биекцию между картами M и N таким образом: карте $\varphi: U \to \mathbb{R}^n$ многообразия N соответствует карта $\varphi \circ f: f^{-1}(U) \to \mathbb{R}^n$ многообразия M.

Таким образом, диффеоморфизм — изоморфизм дифференциальных структур.

Лекция 6