15-213

Memory Technology March 14, 2000

Topics

- · Memory Hierarchy Basics
- · Static RAM
- Dynamic RAM
- · Magnetic Disks
- · Access Time Gap

Computer System

Levels in Memory Hierarchy

	Register	Cache	memory	DISK Memory
size:	200 B	32KB - 4MB	128 MB	20 <i>G</i> B
speed:	2 ns	4 ns	60 ns	8 ms
\$/Mbyte:		\$100/MB	\$1.50/MB	\$0.05/MB
block size:		32 B	8 KB	·

larger, slower, cheaper

Scaling to 0.1 µm

- · Semiconductor Industry Association, 1992 Technology Workshop
 - Projected future technology based on past trends

	1992	<u>1995</u>	<u>1998</u>	<u>2001</u>	<u>2004</u>	2007
Feature size:	0.5	0.35	0.25	0.18	0.12	0.10
- Industry	is slightly	y ahead of	projection	1		
DRAM capacity	: 16M	64M	256M	1 <i>G</i>	46	16 <i>G</i>
- Doubles	every 1.5	years				
- Predictio	n on traci	k				
Chip area (cm²) : 2.5	4.0	6.0	8.0	10.0	12.5
- Way off!	Chips st	aying smal	1			

class17.ppt -4- CS 213 5'00

Static RAM (SRAM)

Fast

· ~4 nsec access time

Persistent

- · as long as power is supplied
- · no refresh required

Expensive

- · ~\$100/MByte
- · 6 transistors/bit

Stable

· High immunity to noise and environmental disturbances

Technology for caches

Anatomy of an SRAM Cell

bit line: carries data

word line: used for addressing

Write:

- 1. set bit lines to new data value ·b' is set to the opposite of b
- 2. raise word line to "high"
- ⇒ sets cell to new state (may involve flipping relative to old state)

Read:

- 1. set bit lines high
- 2. set word line high
- 3. see which bit line goes low

class17.ppt CS 213 5'00

SRAM Cell Principle

Inverter Amplifies

- · Negative gain
- · Slope < -1 in middle
- · Saturates at ends

Inverter Pair Amplifies

- · Positive gain
- · Slope > 1 in middle
- · Saturates at ends

Bistable Element

Stability

- · Require Vin = V2
- · Stable at endpoints
 - recover from pertubation
- · Metastable in middle
 - Fall out when perturbed

Ball on Ramp Analogy

Example SRAM Configuration (16 \times 8)

class17.ppt - 9 - CS 213 5'00

Dynamic RAM (DRAM)

Slower than SRAM

· access time ~60 nsec

Nonpersistant

every row must be accessed every ~1 ms (refreshed)

Cheaper than SRAM

- · ~\$1.50 / MByte
- · 1 transistor/bit

Fragile

· electrical noise, light, radiation

Workhorse memory technology

Anatomy of a DRAM Cell

class17.ppt - 11 - CS 213 5'00

Addressing Arrays with Bits

Array Size

- · R rows, R = 2^r
- · C columns, C = 2c
- · N = R * C bits of memory

Addressing

- Addresses are n bits, where $N = 2^n$
- row(address) = address / C
 - leftmost r bits of address
- · col(address) = address % C
 - rightmost bits of address

Example

- $\cdot R = 2$
- $\cdot C = 4$
- · address = 6

	0	1	2	3	
0	000	001	010	011	
1	100	101	110	111	
		row 1		C	ol 2

Example 2-Level Decode DRAM (64Kx1)

DRAM Operation

Row Address (~50ns)

- Set Row address on address lines & strobe RAS
- · Entire row read & stored in column latches
- · Contents of row of memory cells destroyed

Column Address (~10ns)

- Set Column address on address lines & strobe CAS
- Access selected bit
 - READ: transfer from selected column latch to Dout
 - WRITE: Set selected column latch to Din

Rewrite (~30ns)

· Write back entire row

Observations About DRAMs

Timing

- · Access time (= 60ns) < cycle time (= 90ns)
- Need to rewrite row

Must Refresh Periodically

- · Perform complete memory cycle for each row
- · Approximately once every 1ms
- Sqrt(n) cycles
- · Handled in background by memory controller

Inefficient Way to Get a Single Bit

· Effectively read entire row of Sqrt(n) bits

Enhanced Performance DRAMs

Conventional Access

- · Row + Col
- · RAS CAS RAS CAS ...

Page Mode

- · Row + Series of columns
- · RAS CAS CAS CAS ...
- · Gives successive bits

Other Acronyms

- · EDORAM
 - "Extended data output"
- · SDRAM
 - "Synchronous DRAM"

Entire row buffered here

Typical Performance

row access time col access time cycle time page mode cycle time 50ns 25ns

Video RAM

Performance Enhanced for Video / Graphics Operations

· Frame buffer to hold graphics image

Writing

- · Random access of bits
- · Also supports rectangle fill operations
 - Set all bits in region to 0 or 1

Reading

- · Load entire row into shift register
- · Shift out at video rates

Performance Example

- 1200 X 1800 pixels / frame
- · 24 bits / pixel
- · 60 frames / second
- · 2.8 GBits / second

Video Stream Output

DRAM Driving Forces

Capacity

- · 4X per generation
 - Square array of cells
- · Typical scaling
 - Lithography dimensions 0.7X
 - » Areal density 2X
 - Cell function packing 1.5X
 - Chip area 1.33X
- · Scaling challenge
 - Typically $C_{\text{node}} / C_{\text{BL}} = 0.1-0.2$
 - Must keep C_{node} high as shrink cell size

Retention Time

- Typically 16-256 ms
- Want higher for low-power applications

DRAM Storage Capacitor

Planar Capacitor

- · Up to 1Mb
- · C decreases linearly with feature size

Trench Capacitor

- · 4-256 Mb
- · Lining of hole in substrate

Stacked Cell

- · > 16b
- · On top of substrate
- · Use high ε dielectric

Trench Capacitor

Process

- · Etch deep hole in substrate
 - Becomes reference plate
- · Grow oxide on walls
 - Dielectric
- · Fill with polysilicon plug
 - Tied to storage node

IBM DRAM Evolution

- · IBM J. R&D, Jan/Mar '95
- Evolution from 4 256 Mb
- 256 Mb uses cell with area 0.6 μ m²

Cell Layouts

4 Mb Cell Structure

4Mb

16Mb

64Mb

256Mb

Mitsubishi Stacked Cell DRAM

- · IEDM '95
- · Claim suitable for 1 4 Gb

Technology

- 0.14 μ m process
 - Synchrotron X-ray source
- · 8 nm gate oxide
- \cdot 0.29 μ m² cell

Storage Capacitor

- Fabricated on top of everything else
- · Rubidium electrodes
- High dielectric insulator
 - 50X higher than SiO_2
 - 25 nm thick
- · Cell capacitance 25 femtofarads

Cross Section of 2 Cells

Fig. 2 Schematic cross-sectional view of DRAM memory cells with Ru/BST/Ru stacked capacitors.

Mitsubishi DRAM Pictures

Fig. 3 SEM cross-sectional photograph of the fabricated 0.29- μm^2 memory cell with Ru/BST/Ru stacked capacitor. The facet was fabricated by focused ion beam etching.

. Active Area . Transfer Gate

Fig. 8 SEM photograph of a Ru-metal storage node array with a projection la height of 0.2 μm.

Fig. 10 SEM cross-sectional view of a Ru/BST/Ru capacitor cell. The facet shown is a cleaved facet.

Magnetic Disks

class17.ppt - 24 - CS 213 5'00

Disk Capacity

Parameter	18GB Example
 Number Platters 	12
 Surfaces / Platter 	2
 Number of tracks 	6962
 Number sectors / track 	213
· Bytes / sector	512
Total Bytes	18,221,948,928

Disk Operation

Operation

· Read or write complete sector

Seek

- Position head over proper track
- Typically 6-9ms

Rotational Latency

- · Wait until desired sector passes under head
- Worst case: complete rotation
 10,025 RPM ⇒ 6 ms

Read or Write Bits

- Transfer rate depends on # bits per track and rotational speed
- E.g., 213 * 512 bytes @10,025RPM = 18 MB/sec.
- Modern disks have external transfer rates of up to 80 MB/sec
 - DRAM caches on disk help sustain these higher rates

Disk Performance

Getting First Byte

Seek + Rotational latency = 7,000 - 19,000 μsec

Getting Successive Bytes

- \cdot ~ 0.06 μ sec each
 - roughly 100,000 times faster than getting the first byte!

Optimizing Performance:

- · Large block transfers are more efficient
- · Try to do other things while waiting for first byte
 - switch context to other computing task
 - processor is interrupted when transfer completes

Disk / System Interface

1. Processor Signals Controller

 Read sector X and store starting at memory address Y

2. Read Occurs

- "Direct Memory Access" (DMA) transfer
- Under control of I/O controller

3. I/O Controller Signals Completion

- · Interrupts processor
- Can resume suspended process

Magnetic Disk Technology

Seagate ST-12550N Barracuda 2 Disk

· Linear density	52,187 .	bits per inch (BPI)
- Bit spacing	0.5	microns
 Track density 	3,047.	tracks per inch (TPI)
- Track spacing	8.3	microns
· Total tracks	2,707.	tracks
 Rotational Speed 	7200 .	RPM
 Avg Linear Speed 	86.4	kilometers / hour
 Head Floating Height 	0.13	microns

Analogy:

- · put the Sears Tower on its side
- · fly it around the world, 2.5cm above the ground
- · each complete orbit of the earth takes 8 seconds

CD Read Only Memory (CDROM)

Basis

- · Optical recording technology developed for audio CDs
 - 74 minutes playing time
 - 44,100 samples / second
 - 2 X 16-bits / sample (Stereo)
 - \Rightarrow Raw bit rate = 172 KB / second
- Add extra 288 bytes of error correction for every 2048 bytes of data
 - Cannot tolerate any errors in digital data, whereas OK for audio

Bit Rate

- \cdot 172 * 2048 / (288 + 2048) = 150 KB / second
 - For 1X CDROM
 - NX CDROM gives bit rate of N * 150
 - E.g., 12X CDROM gives 1.76 MB / second

Capacity

74 Minutes * 150 KB / second * 60 seconds / minute = 650 MB

Storage Trends

SRAM

metric	1980	1985	1990	1995	2000	2000:1980
\$/MB	19,200	2,900	320	256	100	190
access (ns)	300	150	35	15	2	100

DRAM

metric	1980	1985	1990	1995	2000	2000:1980
\$/MB access (ns)	8,000 375	880 200	100 100	30 70	1.5 60	5,300 6
typical size(MB)	0.064	0.256	4	16	64	1,000

Disk

metric	1980	1985	1990	1995	2000	2000:1980
\$/MB access (ms)	500 87	100 75	8 28	0.30 10	0.05 8	10,000 11
typical size(MB)	1	10	160	1,000	9,000	9,000

(Culled from back issues of Byte and PC Magazine)

class17.ppt - 31 - CS 213 5'00

Storage Price: \$/MByte

class17.ppt - 32 - CS 213 5'00

Storage Access Times (nsec)

Processor clock rates

Processors

metric	1980	1985	1990	1995	2000	2000:1980
typical clock(M) processor	Hz) 1 8080	6 286	20 386	150 Pentiur	600 n P-III	600

The CPU vs. DRAM Latency Gap (ns)

Memory Technology Summary

Cost and Density Improving at Enormous Rates Speed Lagging Processor Performance Memory Hierarchies Help Narrow the Gap:

- · Small fast SRAMS (cache) at upper levels
- · Large slow DRAMS (main memory) at lower levels
- · Incredibly large & slow disks to back it all up

Locality of Reference Makes It All Work

· Keep most frequently accessed data in fastest memory