Matematik aflevering 1

9.168

Løs ligningen $x^2+x-12=0$ Ligningen er en andengradsligning da der er x^2 og xJeg starter med at finde deskriminanten

$$d = b^2 - 4ac$$

Værdierne for denne ligning er $a=1,\ b=1,\ c=-12$ Jeg indsætter dem

$$d = 1^2 - 4 \cdot 1 \cdot -12 = 1 - (-48) = 49$$

Så bruger jeg formlen

$$x = \frac{-b \pm \sqrt{d}}{2a}$$

Jeg indsætter mine værdier

$$x = \frac{-1 \pm \sqrt{49}}{2 \cdot 1} = \frac{-1 \pm 7}{2}$$
$$x = -4 \lor x = 3$$

Så løsningen på andengradsligningen er $x=-4 \vee x=3$

9.169

I et koordinatsystem er to vektorer \vec{a} og \vec{b} bestemt ved

$$\vec{b} = \begin{pmatrix} 2 \\ t+1 \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} t-1 \\ 3 \end{pmatrix}$$

Jeg ved at hvis de skal være orthogonale skal deres prikprodukt være 0 dvs.

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \begin{pmatrix} 2 \\ t+1 \end{pmatrix} \cdot \begin{pmatrix} t-1 \\ 3 \end{pmatrix} \Leftrightarrow 2 \cdot (t-1) + (t+1) \cdot 3 = 0$$

Så har vi en ligning hvor vi kan isolere og finde t

$$2t-2+3t+3=0 \Leftrightarrow 5t=-1 \Leftrightarrow t=-0.2$$

Så hvis vectorerne \vec{a} og \vec{b} skal være orthogonale skal t
 være -0.2

9.171

En funktion f er bestemt ved

$$f(x) = e^x - x - 1$$

Undersøg om f er en løsning til differentialligningen

$$\frac{dy}{dx} = y + x$$

Jeg starter med at indsætte f(x) ind på y's plads

$$\frac{dy}{dx} = e^x - x - 1 + x = e^x - 1$$

Så finder jeg f'(x) og ser om den er ens med ovenstående da

$$\frac{dy}{dx} = f'(x)$$

$$f'(x) = (e^x - x - 1)' = e^x - 1$$

Jeg ser så at de er ens og derfor ved jeg at f(x) er en løsning til differentialligningen

9.175

Mængde	Kunder
10	10
20	23
30	16
40	21
50	10
60	9

Tegn en sumkurve, og bestem kvartilsættet

Jeg starter med at finde frekvensen for hvert interval ved at tage antal kunder i intervallet og dividere det med antallet af kunder i alt

Mængde	Kunder	Frekvens
10	10	11.23596
20	23	25.84270
30	16	17.97753

Mængde	Kunder	Frekvens
40	21	23.59551
50	10	11.23596
60	9	10.11236

Så finder jeg den kummulerede frekvens

Mængde	Kunder	Frekvens	Kumfrek
10	10	11.23596	11.23596
20	23	25.84270	37.07865
30	16	17.97753	55.05618
40	21	23.59551	78.65169
50	10	11.23596	89.88764
60	9	10.11236	100.00000

Så kan jeg plotte dataet ind med Mængden på x-aksen og den kummulerede frekvens på y-aksen og aflæse hvor på grafen henholdsvis 25, 50 og 75 procent skærer grafen så jeg kan finde kvartilsættet

Så kan jeg så aflæse kvartilsættet på grafen til at være $Q_1=15.4\ median=27.2\ Q_3=38.5$

9.194

 ${\rm SARS\textsc{-}epidimiens}$ udvikling i Singapore i 2003 kan beskrives ved differentialligningen

$$\frac{dN}{dt} = 0.00526 \cdot N \cdot (209 - N)$$

hvor N er antal smittede til tidspunktet t (målt i døgn). Det oplyses, at der efter 30 døgn car 103 smittede.

1. Jeg indsætter bare 100 ind i differentialligningen da det er det eneste variable på højre side af ligningen.

$$\frac{dN}{dt} = 0.00526 \cdot 100 \cdot (209 - 100) = 57.334$$

Så væksthastigheden da antal smittet var 100 ville være 57.334 smittede pr $\operatorname{døgn}$

2. Jeg kan se på differentialligningen at det er logistisk vækst som følger modellen

$$\frac{dy}{dx} = ay\dot{(}M - y)$$

Så jeg kan bare indsætte værdierne ind i skabelonen

$$y = f(x) = \frac{M}{1 + ce^{-aMx}}$$

$$N(t) = \frac{209}{1 + ce^{-0.00526 \cdot 209 \cdot t}}$$

Da vi har fået at vide at N(30) = 103 kan jeg indsætte det i min formel for at finde værdien af c vha. solve

$$solve(\frac{209}{1+ce^{-0.00526\cdot 209\cdot 30}}=103,c)=2.17\cdot 10^{14}$$

Så den endelige formel er

$$N(t) = \frac{209}{1 + 2.17 \cdot 10^{14} \cdot e^{-0.00526 \cdot 209 \cdot t}}$$

Tallet 209 i differentialligningen betyder at N(t) aldrig vil gå over 209 det ville kun kunne komme meget tæt på

9.200

Bestem integralet

$$\int \frac{2x}{x^2 + 3} \ dx$$

Jeg starter med at skubbe tælleren ned da jeg vil bruge substitutionsmetoden

$$\int \frac{1}{x^2 + 3} \cdot 2x \ dx$$

Jeg sætter t til at være $x^2 + 3$

$$t = x^{2} + 3$$

$$t' = 2x$$

$$\frac{dt}{dx} = 2x \Leftrightarrow dt = 2x dx$$

Så substituerer jeg det ind i integralet

$$\int \frac{1}{t} dt$$

Nu er den lidt mere overskuelig, og da jeg ved at $\int \frac{1}{x} = \ln(x) + k$ ved jeg at integralet så er

$$\int \frac{1}{t} dt = \ln(t) + k$$

Så substituere jeg tilbage

$$ln(t) = ln(x^2 + 3) + k$$

Så stamfunktionen til $\frac{2x}{x^2+3}$ er $\ln(x^2+3)+k$