Suites Réelles Brève extention aux autres suites MPSI 2

Familles indexées par \mathbb{Z} 1

Soit $(c_n)_{n\in\mathbb{Z}}$ On se ramène à l'étude de deux suites: $\forall n \in \mathbb{N}, \begin{cases} a_n = c_n \\ b_n = c_{-n} \end{cases}$

Suites a valeurs complexes 2

On a: $f: \mathbb{N} \longrightarrow \mathbb{C}$

Avec $z_n = x_n + i y_n$, x et y deux suites réelles composantes.

Définition 2.0.1

Soit z une suite a valeurs complexes, avec $\forall n \in \mathbb{N}, z_n = x_n + i y_n$ On dit que z converge vers a + ib si et seulement si x tend vers a et y tend vers b.

Propriété 2.0.1

z converge vers α ssi $(|z_n - \alpha|)_{n \in \mathbb{N}}$ converge vers 0

- ① Supposons que z converge vers $\alpha = a + ib$ Montrer que $(|z_n - \alpha|)_{n \in \mathbb{N}}$ converge vers 0 $|z_n - \alpha| = |x_n - a + i(y_n - b)|$ $\Rightarrow 0 \le |z_n - \alpha| \le |x_n - a| + |y_n - b|$ Or, x tend vers a et y tend vers b
- Donc par encadrement, on a: $(|z_n \alpha|) \underset{n \to +\infty}{\longrightarrow} 0$ ② Supposons que $(|z_n - \alpha|)_{n \in \mathbb{N}}$ converge vers 0.

Montrons que z converge vers $\alpha = a + ib$ Sachant que $z = x + iy \Rightarrow (x \le |x| \le |z|)$ et $(y \le |y| \le |z|)$

On obtient: $\begin{cases} 0 \leqslant |x_n - a| \leqslant |z_n - \alpha| \\ 0 \leqslant |y_n - b| \leqslant |z_n - \alpha| \end{cases}$ Donc par encadrement, x tend vers a et y tend vers b.

Remarque: une suite complexe est bornée si son module est majoré.

Propriété 2.0.2

Si z converge vers λ , alors:

- $\bullet |z_n| \underset{n \to +\infty}{\longrightarrow} |\lambda|$
- $\bullet \overline{z_n} \longrightarrow_{n \to +\infty} \overline{\lambda}$

Propriété 2.0.3

Soit z une suite complexe bornée.

Alors il existe une suite extraite de z convergente.

 \bullet D'après le théorème de Bolzano-Weierstrass, il existe une suite extraite de x convergente.

Soit $(x_{\phi(n)})_{n\in\mathbb{N}}$ une telle suite, et l_1 sa limite.

• Notons $\forall n \in \mathbb{N}, \ v_n = y_{\phi(n)}$

y est bornée, donc v est bornée.

D'après le théorème de Bolzano-Weierstrass, il existe une suite extraite de \boldsymbol{v} convergente.

Soit $(v_{\psi(n)})_{n\in\mathbb{N}}$ une telle suite, et l_2 sa limite.

 $\phi \circ \psi$ est définie dans $\mathbb N$ a valeurs dans N et strictement croissante

Donc $(y_{\phi(\psi(n))})_{n\in\mathbb{N}}$ est une suite extraite de y et convergeant vers l_2 .

• $(x_{\phi(\psi(n))})_{n\in\mathbb{N}}$ est une suite extraite de x, Donc elle converge vers l_1

• Donc:
$$\begin{cases} x_{\phi(\psi(n))} \xrightarrow[n \to +\infty]{} l_1 \\ y_{\phi(\psi(n))} \xrightarrow[n \to +\infty]{} l_2 \end{cases}$$

Donc par définition de la convergence complexe, $z_{\phi(\psi(n))} \underset{n \to +\infty}{\longrightarrow} l_1 + i \, l_2$