Chapitre 3 Programmation linéaire en nombres entiers

Cours RO202

Zacharie ALES (zacharie.ales@ensta.fr)

Adapté de cours de Marie-Christine Costa, Alain Faye et Sourour Elloumi

- Introduction
- Algorithme de branch-and-bound
- Algorithme de branch-and-cut
- Conclusion

Optimisation dans les graphes

Chapitre ⁻

1.1 - Arbre couvrant

Sommaire

- Introduction

Définition - PLNE (Programmation Linéaire en Nombres Entiers)

Programmation linéaire où certaines variables doivent prendre des valeurs entières

Définitions - Types de PLNE

Introduction

- pure : variables entières uniquement
- mixte : variables entières et continues
- 0-1 ou binaire : variables $\in \{0, 1\}$

Exemple

max
$$x + 0.64y$$

s.c. $50x + 31y \le 250$
 $-3x + 2y \le 4$
 $x, y \in \mathbb{N}$

PL et PLNE sont <u>très</u> différentes! (impossible d'arrondir)

Exemple

$$\begin{cases}
\text{max} & x + 0.64y \\
\text{s.c.} & 50x + 31y \leq 250 \\
& -3x + 2y \leq 4 \\
& x, y \in \mathbb{N}
\end{cases}$$

PL et PLNE sont <u>très</u> différentes! (impossible d'arrondir)

Exemple

$$\begin{cases}
\text{max} & x + 0.64y \\
\text{s.c.} & 50x + 31y \leq 250 \\
& -3x + 2y \leq 4 \\
& x, y \in \mathbb{N}
\end{cases}$$

PL et PLNE sont <u>très</u> différentes! (impossible d'arrondir)

Exemple

$$\begin{array}{lll} \max & x + 0.64y \\ \text{s.c.} & 50x + 31y & \leq 250 \\ & -3x + 2y & \leq 4 \\ & x, y & \in \mathbb{N} \end{array}$$

$$(x, y) = (5, 0)$$

 $z = 5$

PL et PLNE sont très différentes!

(impossible d'arrondir)

Problème

Où et combien placer d'entrepôts pour servir toutes les villes à coût minimal ? Construction d'entrepôt et raccordement $\hat{\bot}$

Problème

Où et combien placer d'entrepôts pour servir toutes les villes à coût minimal?

Construction d'entrepôt et raccordement

Problème

Où et combien placer d'entrepôts pour servir toutes les villes à coût minimal ?

Construction d'entrepôt et raccordement

Problème

Où et combien placer d'entrepôts pour servir toutes les villes à coût minimal?

Construction d'entrepôt et raccordement

Problème

Introduction

Où et combien placer d'entrepôts pour servir toutes les villes à coût minimal ?

Construction d'entrepôt et raccordement

Objectif

Raccorder toutes les villes en minimisant les coûts de raccordement et d'installation

Variables

Nombre d'entrepôts potentiels

 $\mathbf{v}_j = \left\{ \begin{array}{ll} 1 & \text{si l'entrepôt } j \text{ est construit} \\ 0 & \text{sinon} \end{array} \right.$ $\forall j \in \{1, ..., m\}$

si i est approvisionné par l'entrepôt j $\forall i \in \{1,...,n\}, \ \forall j \in \{1,...,m\}$ sinon

Modèle mathématique

minimiser

tel que

 $y_j \in \{0, 1\} \quad \forall i$

 $x_{ij} \in \{0,1\} \quad \forall i,j$

Quiz!

Question 1

Déterminer une contrainte permettant d'imposer que l'entrepôt 3 soit construit

Question 2

Déterminer une contrainte permettant d'assurer qu'au moins un des deux centres 1 ou 4 soit ouvert

Question 3

Déterminer des contraintes permettant d'assurer que chaque centre n'approvisionne pas plus de 5 villes

Question 4

Déterminer une contrainte permettant d'assurer que la ville numéro 2 est approvisionnée par un entrepôt d'indice impair

Sommaire

- Algorithme de branch-and-bound

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{lll} \max z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{llll} \max \, z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

Exemple

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

▲ : solution non réalisable

1ère idée : Énumération exhaustive des solutions

Exemple

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

A: solution non réalisable

1ère idée : Énumération exhaustive des solutions

Exemple

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ & 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

▲ : solution non réalisable

1ère idée : Énumération exhaustive des solutions

$$\begin{array}{llll} \max \ z = 9x_1 \ +5x_2 \ +6y_1 \ +4y_2 \\ \text{s.c.} & y_1 \ +y_2 \le 1 \\ & y_1 \ \le x_1 \\ & y_2 \le x_2 \\ 6x_1 \ +3x_2 \ +5y_1 \ +2y_2 \le 10 \\ & x_1, \quad x_2, \quad y_1, \quad y_2 \in \{0,1\} \end{array}$$

1ère idée : Énumération exhaustive des solutions

max
$$z = 9x_1 + 5x_2 + 6y_1 + 4y_2$$

s.c. $y_1 + y_2 \le 1$
 $y_1 \le x_1$
 $y_2 \le x_2$
 $6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10$
 $x_1, x_2, y_1, y_2 \in \{0, 1\}$

n variables binaires $\rightarrow 2^n$ cas possibles

- $n = 20 \to > 10^6$ cas
- $n = 30 \rightarrow > 10^9 \text{ cas}$
- ...

Si 1 milliard d'opérations par secondes :

n	30	40	50	60	70
Temps	1s	17min	11 jours	31 ans	31 000 ans

n variables binaires $\rightarrow 2^n$ cas possibles

•
$$n = 20 \to > 10^6 \text{ cas}$$

•
$$n = 30 \rightarrow > 10^9 \text{ cas}$$

..

Si 1 milliard d'opérations par secondes :

n	30	40	50	60	70
Temps	1s	17min	11 jours	31 ans	31 000 ans

Énumération de tous les cas possibles généralement impraticable

n variables binaires $\rightarrow 2^n$ cas possibles

•
$$n = 20 \to > 10^6 \text{ cas}$$

•
$$n = 30 \rightarrow > 10^9 \text{ cas}$$

...

Si 1 milliard d'opérations par secondes :

n	30	40	50	60	70
Temps	1s	17min	11 iours	31 ans	31 000 ans

Énumération de tous les cas possibles généralement impraticable

Mise en place d'une énumération "implicite"

Relaxation linéaire

2ème idée : Énumération implicite par encadrement de la valeur optimale

Définition - Relaxation continue d'un problème entier (P)

Problème obtenu lorsqu'on "oublie" le caractère entier des variables

 $Ex: x \in \{1, 2, ..., n\} \rightarrow x \in [1, n]$

Relaxation linéaire

2ème idée : Énumération implicite par encadrement de la valeur optimale

Définition - Relaxation continue d'un problème entier (P)

Problème obtenu lorsqu'on "oublie" le caractère entier des variables $Ex: x \in \{1, 2, ..., n\} \rightarrow x \in [1, n]$

Intérêts

- •
-
- •

Exemple - Relaxation linéaire du modèle de localisation d'entrepôt

Exemple

max
$$z = 9x_1 + 5x_2 + 6y_1 + 4y_2$$

s.c. $y_1 + y_2 \le 1$
 $y_1 \le x_1$
 $y_2 \le x_2$
 $6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10$
 $x_1, x_2, y_1, y_2 \in \{0, 1\}$

Optimum continu

- $(x_1, x_2, y_1, y_2) = (\frac{5}{6}, 1, 0, 1)$
- $Z_c = \frac{33}{2}$

Conclusion

Optimum entier $\frac{33}{2}$

Relaxation continue : interprétation

Relaxation continue: interprétation

Quelle information nous fournit une solution réalisable entière?

Exemple

max
$$z = 9x_1 + 5x_2 + 6y_1 + 4y_2$$

s.c. $y_1 + y_2 \le 1$
 $y_1 \le x_1$
 $y_2 \le x_2$
 $6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10$
 $x_1, x_2, y_1, y_2 \in \{0, 1\}$

Solutions connues

Solution entière

$$(x_1, x_2, y_1, y_2) = (1, 0, 0, 0)$$

•
$$Z_1 = 9$$

Solution continue

•
$$(x_1, x_2, y_1, y_2) = (\frac{5}{6}, 1, 0, 1)$$

•
$$Z_c = 16, 5$$

Quelle information nous fournit une solution réalisable entière?

Exemple

max
$$z = 9x_1 + 5x_2 + 6y_1 + 4y_2$$

s.c. $y_1 + y_2 \le 1$
 $y_1 \le x_1$
 $y_2 \le x_2$

$$6x_1 +3x_2 +5y_1 +2y_2 \le 10$$

 $x_1, x_2, y_1, y_2 \in \{0, 1\}$

Solutions connues

Solution entière

$$(x_1, x_2, y_1, y_2) = (1, 0, 0, 0)$$

•
$$Z_1 = 9$$

Solution continue

$$(x_1, x_2, y_1, y_2) = (\frac{5}{6}, 1, 0, 1)$$

•
$$Z_c = 16.5$$

Conclusion

Z* est compris entre 9 et 16,5

$$Z_1 = 9$$
 $Z_c = 16, 5$

Valeurs possibles de solutions entières optimales

Propriétés générales

Solution entière $\begin{picture}(20,0)\put(0,0){\line(0,0){10}}\put(0,$ Optimum continu

• En cas de maximisation : $Z_1 \le Z^* \le Z_c$

Propriétés générales

Optimum entier Solution entière Optimum continu

• En cas de maximisation : $Z_1 \leq Z^* \leq Z_c$

• En cas de minimisation : $Z_c \le Z^* \le Z_1$

Méthode de résolution de PLNE

Algorithme de branch-and-bound

Séparation et évaluation en français

Principe

- Borne inférieure et supérieure

Branch and bound - Exemple

- Solution de la relaxation continue :
 - $(x_1, x_2, y_1, y_2) = (\frac{5}{6}, 1, 0, 1)$ • $Z_c = 16, 5 \ge Z^*$
- •
- 0

S : toutes les solutions entières

$$x_1=0$$
 Z* \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

Quiz!

Question 5

Vous considérez un programme linéaire en nombres entiers à 4 variables dont vous cherchez à maximiser l'objectif.

La solution optimale de la relaxation linéaire fournit un objectif de valeur z=3 et la solution $(x_1, x_2, x_3, x_4) = (1, 0.6, 2, 0.7).$

Quelle affirmation est vraie?

- A : Le problème est résolu et son optimum vaut 3 ;
- B: Je dois effectuer un branchement et je ne peux l'effectuer que sur une unique variable;
- C : Je dois effectuer un branchement et je peux l'effectuer sur plusieurs variables ;
- D : Le problème n'a pas de solution réalisable.

Quiz!

Question 6

Vous considérez un programme linéaire en nombres entiers P à 3 variables dont vous cherchez à maximiser l'objectif.

La solution optimale de la relaxation linéaire fournit un objectif de valeur z=7 et la solution $(x_1, x_2, x_3) = (2, 8.4, 3)$.

Vous choisissez de brancher sur la variable x_2 (seul choix possible).

Quelles contraintes ajoutez-vous dans les deux branches ainsi créées?

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

Ensemble S1 ($x_1 = 0$)

$$\max z = 5x_2 + 6y_1 + 4y_2$$

s.c.
$$y_1 + y_2 \le 1$$

 $y_1 \le x_1$

$$\leq x_1$$

 $y_2 \leq x_2$

$$x_2 + 5y_1 + 2y_2 \le 10$$

$$x_2, y_1, y_2 \in \{0, 1\}$$

$$(x_2, y_1, y_2) = (1, 0, 1)$$

•
$$Z_1 = 9$$

S : toutes les solutions entières

 $x_1=0$ **Z*** \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

$\boldsymbol{Z_1}=\boldsymbol{9}$

Ensemble S1 ($x_1 = 0$)

$$\max z = 5x_2 + 6y_1 + 4y_2$$

s.c.
$$y_1 + y_2 \le 1$$

$$y_1 \leq x_1$$

 $y_2 \leq x_2$

$$x_2 + 5y_1 + 2y_2 \le 10$$

$$x_2, y_1, y_2 \in \{0, 1\}$$

Solution de la relaxation continue :

$$(x_2, y_1, y_2) = (1, 0, 1)$$

•
$$Z_1 = 9$$

La relaxation continue fournit une solution entière!

$$x_1=0$$
 Z* \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

 $Z_1 = 9$

S2: toutes les solutions entières telles que $x_1 = 1$

$$\max z = 9 + 5x_2 + 6y_1 + 4y_2$$

Ensemble S2 ($x_1 = 1$)

s.c.
$$y_1 + y_2 \le 1$$

$$y_1 \leq x_1$$

 $y_2 \leq x_2$

$$y_2 \leq x_2$$

$$x_2 +5y_1 +2y_2 \le 4$$

$$x_2, y_1, y_2 \in \{0, 1\}$$

•
$$(x_2, y_1, y_2) = (\frac{4}{5}, 0, \frac{4}{5})$$

•
$$Z_c^2 = 16, 2$$

S : toutes les solutions entières

 $x_1=0$ **Z*** \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

 $Z_1 = 9$

S2: toutes les solutions entières telles que $x_1 = 1$

 $Z_2 \leq 16, 2$

Ensemble S2 ($x_1 = 1$)

$$\max z = 9 + 5x_2 + 6y_1 + 4y_2$$

s.c.
$$y_1 + y_2 \le 1$$

$$y_1 \leq x_1$$

 $y_2 \leq x_2$

$$x_2 + 5y_1 + 2y_2 \le 4$$

$$x_2, y_1, y_2 \in \{0, 1\}$$

Solution de la relaxation continue :

$$(x_2, y_1, y_2) = (\frac{4}{5}, 0, \frac{4}{5})$$

•
$$Z_c^2 = 16, 2$$

La borne supérieure est améliorée

S : toutes les solutions entières

 $x_1=0$ **Z*** \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

 $Z_1 = 9$

S2: toutes les solutions entières telles que $x_1 = 1$

 $\textbf{Z}_2 \leq \textbf{16}, \textbf{2}$

Conclusions actuelles

- Valeur de la meilleure solution admissible connue : ...
 Solution courante
- Meilleure borne supérieure connue :

La valeur optimale est donc comprise entre

S : toutes les solutions entières

 $x_1=0$ **Z*** \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

 $Z_1 = 9$

entières solutions entières telles que $x_1 = 0$

 $\textbf{Z}_2 \leq \textbf{16}, \textbf{2}$

S2: toutes les

Conclusions actuelles

- Valeur de la meilleure solution admissible connue : ...
- Meilleure borne supérieure connue :

La valeur optimale est donc comprise entre

Comment continuer?

- Élaguer la branche de S1 Car solution entière trouvée
- Brancher en S2
 Car solution fractionnaire trouvée

S : toutes les solutions entières

 $x_1=0$ **Z*** \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

 $\textbf{Z_2} \leq \textbf{16}, \textbf{2}$

Conclusions actuelles

- Valeur de la meilleure solution admissible connue : ...
 Solution courante
- Meilleure borne supérieure connue :

La valeur optimale est donc comprise entre

Comment continuer?

- Élaguer la branche de S1 Car solution entière trouvée
- Brancher en S2
 Car solution fractionnaire trouvée

S : toutes les solutions entières

$$x_1=0$$
 Z* \leq **16**, **5** $x_1=1$

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

 $Z_2 \leq 16, 2$

Conclusions actuelles

- Valeur de la meilleure solution admissible connue : ...
- Meilleure borne supérieure connue :

La valeur optimale est donc comprise entre

Comment continuer?

- Élaguer la branche de S1 Car solution entière trouvée
- Brancher en S2
 Car solution fractionnaire trouvée

Sur quelle variable brancher en S2?

- Solution de la relaxation continue : $(x_1, x_2, y_2, y_2) = (1, \frac{4}{5}, 0, \frac{4}{5})$
- On peut brancher sur x₂ ou y₂
 Car valeurs fractionnaires

 $x_{1}=0$ **S**: toutes les solutions entières $x_{2}=0$ **Z*** \leq 16, 5

S1: toutes les solutions entières telles que $x_1 = 0$

S2: toutes les solutions entières telles que $x_1 = 1$

 $x_1=1$

 $x_2=0$

Conclusions actuelles

- Valeur de la meilleure solution admissible connue :
 Solution courante
- Meilleure borne supérieure connue :

La valeur optimale est donc comprise entre

Comment continuer?

- Élaguer la branche de S1 Car solution entière trouvée
- Brancher en S2
 Car solution fractionnaire trouvée

Sur quelle variable brancher en S2?

Solution de la relaxation continue : $(x_1, x_2, y_2, y_2) = (1, \frac{4}{5}, 0, \frac{4}{5})$

 $x_2 = 1$

On peut brancher sur x₂ ou y₂
 Car valeurs fractionnaires

$$\begin{array}{lll} \max z = 9 & +6y_1 & +4y_2 \\ \text{s.c.} & y_1 & +y_2 \leq 1 \\ & y_1 & \leq x_1 \\ & y_2 \leq 0 \\ & 5y_1 & +2y_2 \leq 4 \\ & y_1, & y_2 \in \{0,1\} \end{array}$$

$$(x_1, x_2, y_1, y_2) = (1, 0, \frac{4}{5}, 0)$$

•
$$Z_c^3 = 13.8$$

$$\begin{array}{lll} \max z = 9 & +6y_1 & +4y_2 \\ \text{s.c.} & y_1 & +y_2 \leq 1 \\ & y_1 & \leq x_1 \\ & y_2 \leq 0 \\ & 5y_1 & +2y_2 \leq 4 \\ & y_1, & y_2 \in \{0,1\} \end{array}$$

$$(x_1, x_2, y_1, y_2) = (1, 0, \frac{4}{5}, 0)$$

•
$$Z_c^3 = 13.8$$

$$\begin{array}{lll} \max z = 9 & +6y_1 & +4y_2 \\ \text{s.c.} & y_1 & +y_2 \leq 1 \\ & y_1 & \leq x_1 \\ & y_2 \leq 0 \\ & 5y_1 & +2y_2 \leq 4 \\ & y_1, & y_2 \in \{0,1\} \end{array}$$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 0, \frac{4}{5}, 0)$$

•
$$Z_c^3 = 13,8$$

Sous-ensemble S4 ($x_1 = 1, x_2 = 1$)

maxz = 14 +6
$$y_1$$
 +4 y_2
s.c. y_1 + $y_2 \le 1$
 y_1 ≤ 1
 $y_2 \le 1$
 $5y_1$ +2 $y_2 \le 1$
 y_1 , $y_2 \in \{0, 1\}$

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, \frac{1}{2})$$

•
$$Z_c^4 = 16$$
 Fractionnaire!

$$\begin{array}{lll} \max z = 9 & +6y_1 & +4y_2 \\ \text{s.c.} & y_1 & +y_2 \leq 1 \\ & y_1 & \leq x_1 \\ & y_2 \leq 0 \\ & 5y_1 & +2y_2 \leq 4 \\ & y_1, & y_2 \in \{0,1\} \end{array}$$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 0, \frac{4}{5}, 0)$$

•
$$Z_c^3 = 13,8$$

Sous-ensemble S4 ($x_1 = 1, x_2 = 1$)

maxz = 14 +6
$$y_1$$
 +4 y_2
s.c. y_1 + $y_2 \le 1$
 y_1 ≤ 1
 $y_2 \le 1$
 $5y_1$ +2 $y_2 \le 1$
 y_1 , $y_2 \in \{0, 1\}$

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, \frac{1}{2})$$

•
$$Z_c^4 = 16$$
 Fractionnaire!

Conclusions actuelles

- Valeur de la meilleure solution admissible connue :
- Meilleure borne supérieure connue :

Comment continuer?

- On ne peut élaguer ni S3 ni S4
- On branche en S4

Peut potentiellement contenir une solution admissible de valeur > 13, 8, contrairement à S3

On branche sur y₂ qui est fractionnaire en S4

$$maxz = 14 + 6y_1$$

s.c.
$$y_1 \le 1$$

$$y_1 \leq 1$$

$$5y_1 \le 1$$

$$y_1 \in \{0, 1\}$$

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$

•
$$Z_c^5 = 15, 2$$

$$maxz = 14 + 6y_1$$

s.c.
$$y_1 \le 1$$

$$y_1 \leq 1$$

$$5y_1 \le 1$$

$$y_1 \in \{0, 1\}$$

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$

•
$$Z_c^5 = 15, 2$$

$$maxz = 14 + 6y_1$$

s.c.
$$y_1 \leq 1$$

$$y_1 \le 1$$

$$5y_1 \leq 1$$

$$y_1 \in \{0, 1\}$$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$

•
$$Z_c^5 = 15, 2$$

Sous-ensemble S6 $(x_1 = x_2 = 1, y_2 = 1)$

$$\label{eq:maxz} \begin{split} \max &z = 20 + 6y_1 \\ \text{s.c.} & y_1 \leq 0 \end{split}$$

$$y_1 \le 1$$

5 $y_1 \le -1$

$$y_1 \le -1$$

 $y_1, \in \{0, 1\}$

On élague S6

$$maxz = 14 + 6y_1$$

s.c.
$$y_1 \leq 1$$

$$y_1 \leq 1$$

$$5y_1 \le 1$$

$$y_1 \in \{0, 1\}$$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$

•
$$Z_c^5 = 15, 2$$

Sous-ensemble S6 $(x_1 = x_2 = 1, y_2 = 1)$

$$\label{eq:maxz} \begin{split} \max &z = 20 + 6y_1 \\ \text{s.c.} & y_1 \leq 0 \end{split}$$

$$y_1 \leq 0$$

 $y_1 < 1$

$$5y_1 \le 1$$
 $5y_1 \le -1$

$$y_1, \in \{0, 1\}$$

- Aucune solution
- On élague S6

$$maxz = 14 + 6y_1$$

s.c.
$$y_1 \le 1$$

$$y_1 \le 1$$

$$5y_1 \leq 1$$

$$y_1 \in \{0, 1\}$$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$

•
$$Z_c^5 = 15, 2$$

Sous-ensemble S6 $(x_1 = x_2 = 1, y_2 = 1)$

$$\label{eq:maxz} \begin{split} \max &z = 20 + 6y_1 \\ \text{s.c.} & y_1 \leq 0 \end{split}$$

$$y_1 \leq 1$$

$$5y_1 \le -1$$

$$y_1, \in \{0, 1\}$$

- Aucune solution
- On élague S6

QCM

A ce stade, que peut-on élaguer?

- S3 seul
- S5 seul
- S3 et S5
- ni S3 ni S5

Conclusions actuelles

- Valeur de la meilleure solution admissible connue :
- Meilleure borne supérieure connue :

Comment continuer?

- On branche en S5 qui a la plus grande borne supérieure
 Peut potentiellement contenir une solution admissible de valeur > 13,8
 - On branche sur y₂ qui est fractionnaire en S5

Sous-ensemble S7

$$(x_1 = x_2 = 1, y_2 = 0, y_1 = 0)$$

$$\max z = 14$$

Solution:

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$$

Nouvelle solution entière trouvée!

Sous-ensemble S7

$$(x_1 = x_2 = 1, y_2 = 0, y_1 = 0)$$

$$max z = 14$$

Solution:

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$$

Nouvelle solution entière trouvée!

Sous-ensemble S7

$$(x_1 = x_2 = 1, y_2 = 0, y_1 = 0)$$

$$\max z = 14$$

Solution:

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$$

•
$$Z_7 = 14$$

Nouvelle solution entière trouvée!

Sous-ensemble S8

$$(x_1 = x_2 = 1, y_2 = 1, y_1 = 0)$$

$$\max z = 20$$

- Aucune solution
- On élague S8

$$(x_1 = x_2 = 1, y_2 = 0, y_1 = 0)$$

$$\max z = 14$$

Solution:

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$$

•
$$Z_7 = 14$$

Nouvelle solution entière trouvée!

Sous-ensemble S8

$$(x_1 = x_2 = 1, y_2 = 1, y_1 = 0)$$

$$\max z = 20$$

- Aucune solution
- On élague S8

$$(x_1 = x_2 = 1, y_2 = 0, y_1 = 0)$$

$$\max z = 14$$

Solution:

$$(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$$

•
$$Z_7 = 14$$

Nouvelle solution entière trouvée!

Sous-ensemble S8

$$(x_1 = x_2 = 1, y_2 = 1, y_1 = 0)$$

$$\max z = 20$$

- Aucune solution
- On élague S8

Valeur de la meilleure solution admissible connue : 14

Comment continuer?

- Z₇ entier : on élague S7
- $Z_c^3 < Z_7$: on élague S3

Valeur de la meilleure solution admissible connue : 14

Comment continuer?

- Z₇ entier : on élague S7
- $Z_c^3 < Z_7$: on élague S3

Valeur de la meilleure solution admissible connue : 14

Comment continuer?

- Z₇ entier : on élague S7
- $Z_c^3 < Z_7$: on élague S3

Valeur de la meilleure solution admissible connue : 14

Comment continuer?

- Z₇ entier : on élague S7
- $Z_c^3 < Z_7$: on élague S3

Solution optimale obtenue!

- $(x_1, x_2, y_1, y_2) = (1, 1, 0, 0)$
- $Z^* = Z_7 = 14$

Gain par rapport à l'énumération complète

Solutions parcourues par le branch-and-bound :

▲: solution non réalisable

Initialisation

- Calculer une solution admissible de valeur Z^* ou poser $Z^* = -\infty$
- Résoudre la relaxation continue et mettre à jour Z* si besoin Évaluation

Algorithme B&B - Maximisation - Résumé

Initialisation

- Calculer une solution admissible de valeur Z* ou poser Z* = -∞
- Résoudre la relaxation continue et mettre à jour Z* si besoin Évaluation

Tant qu'il reste des nœuds non élagués

- Ohoisir un nœud non élagué
- Brancher sur une des variables de valeur fractionnaire en ce nœud Séparation
- Résoudre la relaxation continue des deux nœuds obtenus et mettre à jour Z* Évaluation
- Appliquer les tests d'élagage

Algorithme B&B - Maximisation - Résumé

Initialisation

- Calculer une solution admissible de valeur Z* ou poser $Z^* = -\infty$
- Résoudre la relaxation continue et mettre à jour Z* si besoin Évaluation

Tant qu'il reste des nœuds non élagués

- Choisir un nœud non élagué
- Brancher sur une des variables de valeur fractionnaire en ce nœud Séparation
- Résoudre la relaxation continue des deux nœuds obtenus et mettre à jour Z* Évaluation
- Appliquer les tests d'élagage

A l'issue de ce processus, la solution courante Z^* est optimale

Algorithme B&B – Maximisation – Résumé suite

Un nœud est élagué si

- Le problème devient infaisable
 Pas de solution continue ou entière
- 2 La valeur optimale de la relaxation continue est $\leq Z^*$
- La solution de la relaxation continue est entière Attention, c'est x qui doit être entière pas Z*

La mise en place de l'algorithme nécessite de préciser

- La règle de sélection Sur quel nœud brancher?
- 2 La règle de branchement Sur quelle variable brancher?

B&B - Variables entières

Cas général des variables entières (\neq du cas 0 – 1)

- Choisir une variable de valeur fractionnaire dans la solution optimale de la relaxation continue
- Brancher sur l'arrondi supérieur et inférieur de cette valeur

Exemple

Détermination des solutions admissibles

- Souvent difficile
- Pas de méthode générale rapide
- Des algorithmes fonctionnent bien dans certains cas particuliers Par exemple si l'arrondi est toujours admissible

Problème d'efficacité

- Le nombre de nœuds explorés détermine le temps de calcul À chaque nœud, on résout un programme linéaire (continu)
- Nombre maximal de nœuds à explorer inconnu à priori
- Un PL continu se résout généralement « vite »
- Un PLNE nécessite du temps

Efficacité - Exemple

min
$$z = \sum_{j=1}^{n} c_{j}x_{j}$$

s.c. $\sum_{j=1}^{n} a_{1j}x_{j} \le b_{1}$
 $\sum_{j=1}^{n} a_{2j}x_{j} \le b_{2}$
 $x_{ij} \in \{0, 1\}$

- n = 1000
- Données aléatoires
- Relaxation continue: 0.03 secondes
- Résolution en entier : 43 secondes

251402 nœuds parcourus contre ~10300 pour une énumération complète

Sommaire

- Introduction
- 2 Algorithme de branch-and-bound
- 3 Algorithme de branch-and-cut
- 4 Conclusion

Programme linéaire en Nombres Entiers (PLNE)

Principe - Ajout de coupe

Séparer l'optimum continu des solutions admissibles

- : optimum continu
- : optimum entier
- : autres solutions entières

Programme linéaire en Nombres Entiers (PLNE)

Principe - Ajout de coupe

Séparer l'optimum continu des solutions admissibles

Inégalité séparant la solution de la relaxation continue et les solutions entières

- : optimum continu
- : optimum entier
- : autres solutions entières

Définition - **Inégalité valide** pour (P)

 $ax \le b$ est vérifiée par tout $x \in F(P)$

Définition - **Inégalité valide** pour (*P*)

 $ax \le b$ est vérifiée par tout $x \in F(P)$

Définition - Inégalité valide "intéressante"

 $ax \le b$ "tronque" $F(P_R)$

Inégalités valides

Problème

$$\begin{array}{ll} \max \ z = 2x_1 \ + x_2 \\ \text{s.c.} & x_1 \ + x_2 \ \leq 4 \\ 3x_1 \ - x_2 \ \leq 6 \\ x_1, \quad x_2 \in \mathbb{N} \end{array}$$

- : optimum continu
- o : optimum entier
- : autres solutions entières

Inégalités valides

Problème

$$\begin{array}{ll} \max \ z = 2x_1 \ +x_2 \\ \text{s.c.} & x_1 \ +x_2 \ \leq 4 \\ & 3x_1 \ -x_2 \ \leq 6 \\ & x_1, \quad x_2 \in \mathbb{N} \end{array}$$

Inégalité valide considérée (I_v)

$$8x_1 + x_2 \le 20$$

Toutes les solutions entières vérifient (I_V)

- : optimum continu
- o : optimum entier
- : autres solutions entières

Inégalités valides

Problème

max
$$z = 2x_1 + x_2$$

s.c. $x_1 + x_2 \le 4$
 $3x_1 - x_2 \le 6$
 $x_1, x_2 \in \mathbb{N}$

Inégalité valide considérée (I_v)

$$8x_1 + x_2 \le 20$$

Toutes les solutions entières vérifient (I_V)

Relaxation continue respectant (I_v)

- $(x_1, x_2) = (2, 2)$
- z = 6

Optimum entier atteint

- : optimum continu
- : optimum entier
- : autres solutions entières

Algorithme de branch-and-cut

Branch-and-cut

- Procédure arborescente
- Ajout de coupes en chaque nœud Meilleur borne, donc on tronque l'arbre plus facilement

En pratique

- Nombre de coupes limité en chaque nœud Économise le temps de calcul
- Possibilité de ne mettre des coupes qu'à la racine

Sommaire

- Conclusion

Il existe divers logiciels

Logiciels PL et PLNE

Langages de modélisation

- AMPI
- Mosel
- Julia/JuMP

Écriture au format « mathématique » du problème

Logiciels propriétaires

- XPRESS-MP : sociétés FICO
- Artelys CPLEX : société IBM (ILOG)
- Gurobi

Versions étudiantes gratuites

Logiciels libres

- COIN-OR
- GLPK

Taille de problèmes résolvables (variables et contraintes)

- En continu : des centaines de milliers
- En entier : des centaines voire des milliers

Peut fortement dépendre du problème

En résumé, la PLNE

- Augmente la capacité de modélisation de la PL
- Augmente la complexité de résolution
- Résolvable par l'algorithme branch-and-bound voire branch-and-cut
- De très gros progrès depuis 30-40 ans

Q1:
$$y_3 = 1$$

Q2: $y_1 + y_4 \ge 1$
Q3: $\sum_{i=1}^n x_{ij} \le 5 \ \forall j \in \{1, ..., m\}$

oo :
$$\Gamma = \lim_{M \to 1} x_m \ge 1$$
 impair et $\le m \le 1$; ou $0 = \lim_{M \to 1} x_m \ge 1$ is our $0 \le 1$ in 0