Chap14

Anjali Krishnan and Richard Troise

```
library(xtable)
library(gmodels)
```

We collect the data for each subjects for all levels of Factor A and Factor B for each subject.

First, set working directory. 'data' is a table with two columns and same number of rows, and should be numeric. Columns have headers indicating the names of the variables. **User will also input desired variable names in double quotes**

```
data <- read.csv("chap14.csv", header = FALSE, skip = 1)
colnames(data) <- c("b1", "b2")</pre>
```

We now combine the observations into one long column (score)

```
colnames(data) <- c("V1", "V2")
score=c(data$V1,data$V2)</pre>
```

We now prepare the labels for the 4x5x2 scores according to the factor levels: a1 a2 a3 a4 a5, a1 a2 a3 a4 a5......etc for Factor A

```
Face=gl(5,1,5*4*2, labels=c("a1","a2","a3","a4","a5"))
```

b1 b2, b1 b2..... etc for Factor B

```
Typicality=gl(2,4*5*1,5*4*2,labels=c("Atypical","Typical"))
```

 $sub_1 \ sub_1....., sub_2 \ sub_2....., sub_3 \ sub_3 \, sub_4 \ sub_4 \, \ sub_5 \ sub_5..... etc \ for \ Subjects$

We now form a data frame with the dependent variable and the factors, then we print the data

score	Face	Typicality		
20	a1	Atypical		
22	a2	Atypical		
25	a3	Atypical		
24	a4	Atypical		
19	a5	Atypical		
9	a1	Atypical		
8	a2	Atypical		
21	a3	Atypical		
21	a4	Atypical		
21	a5	Atypical		

score	Face	Typicality		
18	a1	Atypical		
20	a2	Atypical		
18	a3	Atypical		
21	a4	Atypical		
33	a5	Atypical		
5	a1	Atypical		
14	a2	Atypical		
16	a3	Atypical		
22	a4	Atypical		
23	a5	Atypical		
37	a1	Typical		
37	a2	Typical		
43	a3	Typical		
48	a4	Typical		
45	a5	Typical		
34	a1	Typical		
35	a2	Typical		
35	a3	Typical		
37	a4	Typical		
39	a5	Typical		
35	a1	Typical		
39	a2	Typical		
39	a3	Typical		
37	a4	Typical		
40	a5	Typical		
38	a1	Typical		
49	a2	Typical		
51	a3	Typical		
50	a4	Typical		
52	a5	Typical		

Anova when "Subject" is considered as a random factor

```
aov1 = aov(score ~ (Subject + Face%in%Typicality + Typicality +
                      Typicality:Subject))
Df = summary(aov(score ~ (Subject + Face%in%Typicality +
                            Typicality + Typicality:Subject)))[[1]]$Df
Sum_Sq = summary(aov(score ~ (Subject + Face%in%Typicality +
                                Typicality + Typicality:Subject)))[[1]]$Sum
MS = summary(aov(score ~ (Subject + Face%in%Typicality +
                            Typicality + Typicality:Subject)))[[1]]$Mean
F = summary(aov(score ~ (Subject + Face%in%Typicality +
                           Typicality + Typicality:Subject)))[[1]]$F
F[2]=NA
Pr = summary(aov(score ~ (Subject + Face%in%Typicality +
                            Typicality + Typicality:Subject)))[[1]]$Pr
Pr[2]=NA
Source_names = c("Subject", "Typicality", "Face(Typicality)",
                 "Subject * Typicality", "Error:Face * Subject(Typicality)")
```

We print the Anova table. The 'Typicality' factor has a Quasi F or F'. This F' has not been displayed in the Anova table and has to be calculated separately

Names	Df	Sum.Sq	Mean.Sq	F.Value	Pr.F
Subject	3	240	80	5.333333	0.0058525
Typicality	1	4840	4840	NA	NA
Face(Typicality)	8	480	60	4.000000	0.0038873
Subject * Typicality	3	360	120	8.000000	0.0007215
Error:Face * Subject(Typicality)	24	360	15	NA	NA

We now print the rest of the results

```
print(model.tables(aov1, "means"), digits=3)
```

```
## Tables of means
## Grand mean
##
## 30
##
## Subject
## Subject
\#\# sub_1 sub_2 sub_3 sub_4
##
      32
           26
                  30
##
## Typicality
## Typicality
## Atypical Typical
##
         19
##
##
  Face: Typicality
##
       Typicality
## Face Atypical Typical
     a1 13
##
                 36
##
     a2 16
                 40
##
     a3 20
                 42
##
     a4 22
                 43
##
     a5 24
                 44
##
##
   Subject: Typicality
##
          Typicality
## Subject Atypical Typical
##
     sub_1 22
                    42
                    36
##
     sub_2 16
##
     sub_3 22
                    38
     sub_4 16
                    48
```