机器学习

实验课题1-Support Vector Machines

Linear classifiers which line is better?

Which decision boundary is better?

Pick the one with the largest margin!

Scaling

Classification rule:

Classify as..
$$+1$$
 if $w \cdot x + b \ge 1$ -1 if $w \cdot x + b \le -1$ Universe explodes if $-1 < w \cdot x + b < 1$

How large is the margin of this classifier?

Goal: Find the maximum margin classifier

Computing the margin width

Let x⁺ and x⁻ be such that

•
$$w \cdot x^+ + b = +1$$

•
$$\mathbf{w} \cdot \mathbf{x} + b = -1$$

$$|x^+ - x^-| = M$$

Maximize $M \equiv minimize \ \mathbf{w} \cdot \mathbf{w} !$

Observations

We can assume b=0

Classify as..
$$+1$$
 if $w \cdot x + b \ge 1$
$$-1$$
 if $w \cdot x + b \le -1$ Universe if $-1 < w \cdot x + b < 1$ explodes

This is the same as

$$y_i\langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$$
, $\forall i=1,\ldots,n$

The Primal SVM

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ training data set.
- Assume that D is linearly separable.

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$, $\forall i = 1, \dots, n$

Prediction: $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \text{sign}(\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle)$

This is a QP problem (m-dimensional) (Quadratic cost function, linear constraints)

The Primal SVM

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ training data set.
- Assume that *D* is **linearly separable**.

argmin:
$$\frac{1}{2} |\mathbf{w}|^2 + C \sum_{i=1}^n \max(0, 1 - y_i \mathbf{w}^T x_i)$$

The cost function is often referred to as **the primal optimization problem**, which seeks to minimize the sum of hinge losses over all training examples, subject to a constraint that the magnitude of the weight vector is bounded.

The Primal SVM

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ training data set.
- Assume that *D* is **linearly separable**.

argmin:
$$\frac{1}{2} |\mathbf{w}|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T x_i + b))$$

The cost function is often referred to as **the primal optimization problem**, which seeks to minimize the sum of hinge losses over all training samples, subject to a constraint that the magnitude of the weight vector is bounded.

Implementation--Training

- 1. Any programming language can be used.
- 2. Write the function of the gradient computation with respect to \mathbf{w} and \mathbf{b} (if you assume $\mathbf{b} \neq \mathbf{0}$). (manually derive the gradients on papers).
- Write the function of computing the loss of the objective function over all training samples.
- 4. Construct a loop structure to compute gradients, update weights (w, b) according to the gradients, and update the loss in each iteration.

Implementation--Testing

- 1. Load the trained model (load the parameters of ${f w}$ and ${f b}$ learned).
- 2. Load the testing data
- 3. Input each testing sample into the below prediction function to make a prediction.
- Report the accuracy by comparing the prediction outputs and the true labels.

$$f_{\widehat{\mathbf{W}}}(x) = \operatorname{sign}(\langle \widehat{\mathbf{W}}, \mathbf{x} \rangle)$$

Prediction:

$$f_{\widehat{\mathbf{W}}}(x) = \text{sign}(\langle \widehat{\mathbf{W}}, \mathbf{x} \rangle + b)$$