COMP4418: Knowledge Representation and Reasoning—Solutions to Exercise 1 Propositional Logic

1. (i)
$$(\neg Ja \land \neg Jo) \rightarrow T$$

Where:

Ja: Jane is in town

Jo: John is in town

 $T{:}\ we\ will\ play\ tennis$

(ii)
$$R \vee \neg R$$

Where:

R: it will rain today

(iii)
$$\neg S \rightarrow \neg P$$

Where:

S: you study

P: you will pass this course

2. (i)
$$P \to Q$$

 $\neg P \lor Q \text{ (remove } \to)$

(ii)
$$(P \to \neg Q) \to R$$

 $\neg (\neg P \lor \neg Q) \lor R \text{ (remove } \to)$
 $(\neg \neg P \land \neg \neg Q) \lor R \text{ (De Morgan)}$
 $(P \land Q) \lor R \text{ (Double Negation)}$
 $(P \lor R) \land (Q \lor R) \text{ (Distribute } \lor \text{ over } \land)$

(iii)
$$\neg (P \land \neg Q) \rightarrow (\neg R \lor \neg Q)$$

 $\neg \neg (P \land \neg Q) \lor (\neg R \lor \neg Q)$ (remove \rightarrow)
 $(P \land \neg Q) \lor (\neg R \lor \neg Q)$ (Double Negation)
 $(P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R \lor \neg Q)$ (Distribute \lor over \land)
This can be further simplified to: $((P \lor \neg R \lor \neg Q) \land (\neg Q \lor \neg R)$
And in fact this cab be simplified to $\neg Q \lor \neg R$ since $(\neg Q \lor \neg R) \vdash (P \lor \neg R \lor \neg Q)$

In all rows where both $P \to Q$ and $\neg Q$ are true, $\neg P$ is also true. Therefore, inference is valid.

	P	Q	$\neg P$	$\neg Q$	$P \to Q$	$\neg Q \rightarrow \neg P$
	T	T	F	F	T	T
(ii)	T	F	F	T	F	F
	F	T	T	F	T	$\mid T \mid$
	F	F	T	T	T	T

In all rows where both $P \to Q$ is true, $\neg Q \to \neg P$ is also true. Therefore, inference is valid.

	P	Q	R	$P \rightarrow Q$	$Q \to R$	$P \rightarrow R$
	T	T	T	T	T	T
	T	T	F	T	F	$\mid F \mid$
	T	F	T	F	T	$\mid T \mid$
(iii)	T	F	F	F	T	F
	F	T	T	T	T	$\mid T \mid$
	F	T	F	T	F	T
	F	F	T	T	T	$\mid T \mid$
	F	F	F	T	T	$\mid T \mid$

In all rows where both $P \to Q$ and $Q \to R$ are true, $P \to R$ is also true. Therefore, inference is valid.

4. (i)
$$\operatorname{CNF}(P \to Q)$$

 $\equiv \neg P \lor Q$
 $\operatorname{CNF}(\neg Q)$
 $\equiv \neg Q$
 $\operatorname{CNF}(\neg \neg P)$
 $\equiv P \text{ (Double Negation)}$
Proof:
1. $\neg P \lor Q$ (Hypothesis)
2. $\neg Q$ (Hypothesis)
3. P (Negation of Conclusion)
4. Q 1, 3 Resloution
5. \square 2, 4 Resloution

(ii)
$$CNF(P \rightarrow Q)$$

 $\equiv \neg P \lor Q$

$$\begin{array}{l} \operatorname{CNF}(\neg(\neg Q \to \neg P)) \\ \equiv \neg(\neg \neg Q \vee \neg P) \text{ (Remove } \to) \\ \equiv \neg(Q \vee \neg P) \text{ (Double Negation)} \\ \equiv \neg Q \wedge \neg \neg P \text{ (De Morgan)} \\ \equiv \neg Q \wedge P \text{ (Double Negation)} \end{array}$$

$$\begin{array}{ll} \text{Proof:} \\ 1. & \neg P \lor Q \quad \text{(Hypothesis)} \end{array}$$

2.
$$\neg Q$$
 (Negation of Conclusion)

4.
$$\neg P$$
 1, 2 Resolution

5.
$$\square$$
 3, 4 Resolution

(iii)
$$P \to Q, Q \to R \vdash P \to R$$

 $\operatorname{CNF}(P \to Q)$
 $\equiv \neg P \lor Q$
 $\operatorname{CNF}(Q \to R)$
 $\equiv \neg Q \lor R$

$$\begin{array}{l} \operatorname{CNF}(\neg(P \to R)) \\ \equiv \neg(\neg P \lor R) \text{ (Remove } \to) \\ \equiv \neg \neg P \land \neg R \text{ (De Morgan)} \\ \equiv P \land \neg R \text{ (Double Negation)} \end{array}$$

Proof: 1. $\neg P \lor Q$ 2. $\neg Q \lor R$ (Hypothesis) (Hypothesis)

3. (Negation of Conclusion) 4. $\neg R$ (Negation of Conclusion)

5. Q1, 3 Resoltion 6. R2, 5 Resolution 7. 4, 6 Resolution

		P	Q	$\neg P$	$P \lor Q$	$(P \lor Q) \land \neg P$	$ \mid ((P \lor Q) \land \neg P) \to Q \mid $
		T	T	F	T	F	T
5.	(i)	T	F	F	T	F	
		F	T	T	T	$\mid T \mid$	
		F	F	T	F	F	

Last column is always true no matter what truth assignment to the atoms P and Q. Therefore $((P \lor Q) \land \neg P) \to Q$ is a tautology.

(ii) $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$

	P	Q	R	$P \rightarrow Q$	$\neg(P \to R)$	$(P \to Q) \land \neg (P \to R)$	$((P \to Q) \land \neg (P \to R)) \to (P \to Q)$
	T	T	T	T	F	F	T
	T	T	F	$\mid T \mid$	T	T	
	T	F	T	F	F	F	
(iii)	T	F	F	F	T	F	
` ,	F	T	T	$\mid T \mid$	F	F	$\mid T \mid$
	F	T	F	$\mid T$	F	F	$\mid T \mid$
	F	F	T	$\mid T$	F	F	$\mid T \mid$
	F	F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P, Q and R. Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

	P	$\neg P$	$\neg P \wedge P$	$\neg(\neg P \land P)$	$\neg(\neg P \land P) \land P$
(iv)	T	F	F	T	T
	F	T	F	T	F

Last column is not always true. Therefore $\neg(\neg P \land P) \land P$ is not a tautology.

(v) $(P \lor Q) \to \neg(\neg P \land \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \lor Q$	$\neg P \land \neg Q$	$\neg(\neg P \land \neg Q)$	$(P \lor Q) \to \neg(\neg P \land \neg Q)$
T	T	F	F	T	F	T	T
T	F	F	T	T	F		$\mid T \mid$
F	T	T	F	T	F		$\mid T \mid$
F	F	T	T	F	T	$\mid F \mid$	

6. (i)
$$\operatorname{CNF}(\neg(((P \lor Q) \land \neg P) \to Q)) \equiv \neg(\neg((P \lor Q) \land \neg P) \lor Q)$$
 (Remove \to)
$$\equiv \neg \neg((P \lor Q) \land \neg P) \land \neg Q)$$
 (DeMorgan)
$$\equiv (P \lor Q) \land \neg P) \land \neg Q$$
 (Double Negation)

Proof:

- 1. $P \vee Q$ (Negated Conclusion)
- 2. $\neg P$ (Negated Conclusion)
- 3. $\neg Q$ (Negated Conclusion)
- 4. Q 1, 2 Resolution
- 5. \square 3, 4 Resolution

Therefore $\neg(((P \lor Q) \land \neg P) \to Q)$ is a tautology.

(ii)
$$\operatorname{CNF}(\neg(((P \to Q) \land \neg(P \to R)) \to (P \to Q)))$$

 $\equiv \neg(\neg((\neg P \lor Q) \land \neg(\neg P \lor R)) \lor (\neg P \lor Q)) \text{ (Remove } \to)$
 $\equiv \neg\neg((\neg P \lor Q) \land \neg(\neg P \lor R)) \land \neg(\neg P \lor Q) \text{ (De Morgan)}$
 $\equiv (\neg P \lor Q) \land (\neg \neg P \land \neg R) \land (\neg \neg P \land \neg Q) \text{ (Double Negation)}$
 $\equiv (\neg P \lor Q) \land (P \land \neg R) \land (P \land \neg Q) \text{ (Double Negation)}$

Proof:

- 1. $\neg P \lor Q$ (Negated Conclusion)
- 2. P (Negated Conclusion)
- 3. $\neg R$ (Negated Conclusion)
- 4. $\neg Q$ (Negated Conclusion)
- 5. Q 1, 2 Resolution
- 6. \square 4, 5 Resolution

Therefore $((P \to Q) \land \neg (P \to R)) \to (P \to Q)$ is a tautology.

(iii) $CNF(\neg(\neg(\neg P \land P) \land P))$

$$\equiv \neg \neg (\neg P \land P) \lor \neg P \text{ (De Morgan)}$$

$$\equiv (\neg P \land P) \lor \neg P \text{ (Double Negation)}$$

$$\equiv (\neg P \lor \neg P) \lor (P \lor \neg P)$$
 (Distribute \land over \lor)

 $\equiv \neg P$ (Can simplify to this by removing repetition and tautologies)

Proof:

1.
$$\neg P$$
 (Negated Conclusion)

Cannot obtain empty clause using resolution so $\neg(\neg P \land P) \land P$ is not a tautology.

(iv)
$$\operatorname{CNF}(\neg((P \lor Q) \to \neg(\neg P \land \neg Q))) \equiv \neg(\neg(P \lor Q) \lor \neg(\neg P \land \neg Q))$$

 $(\operatorname{Remove} \to)$
 $\equiv \neg\neg(P \lor Q) \lor \neg\neg(\neg P \land \neg Q))$ (De Morgan)
 $\equiv (P \lor Q) \lor (\neg P \land \neg Q))$ (Double Negation)

Proof:

2.
$$\neg Q$$
 (Negated Conclusion

3.
$$\neg P$$
 (Negated Conclusion)

 $\begin{array}{lll} 1. & (P \vee Q) & (\text{Negated Conclusion}) \\ 2. & \neg Q & (\text{Negated Conclusion}) \\ 3. & \neg P & (\text{Negated Conclusion}) \\ 4. & Q & 1, 2 \text{ Resolution} \\ 5. & \square & 3, 4, \text{ Resolution} \\ \text{Therefore } (P \vee Q) \rightarrow \neg (\neg P \wedge \neg Q) \text{ is a tautology.} \\ \end{array}$