Calculus I Lecture 11 The Chain Rule

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- 1 The Chain Rule
 - Chain rule proof

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

The Chain Rule 5/26

The Chain Rule

- What is the derivative of $f(x) = \sqrt{x^2 + 1}$?
- The Power Rule doesn't tell us how to find the derivative.
- f is a composite function $g \circ h$:
- $y = g(u) = \sqrt{u}$.
- $u = h(x) = x^2 + 1$.
- Then $y = f(x) = g(h(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$.
- We know the derivatives of *g* and *h*:
- $g'(u) = \frac{1}{2}u^{-\frac{1}{2}}$.
- h'(x) = 2x.
- It would be nice if we could find the derivative of f in terms of the derivatives of y and u.
- It turns out that the derivative of the composition $g \circ h$ is the product of the derivative of g and the derivative of h.
- This important fact is called the Chain Rule.

The Chain Rule 6/26

The Chain Rule

Let g and h be functions. Recall that the composite function $f = g \circ h$ is defined via f(x) = g(h(x)).

Theorem

Let h be differentiable at x and let g be a differentiable at h(x). Then the composite function $f = g \circ h$ is differentiable at x and f' is given by the product

$$f'(x) = g'(h(x)) \cdot h'(x) \qquad (notation 1)$$

$$equivalently:$$

$$f'(x) = (g(u))' = g'(u)u' \qquad where u = h(x) \quad (notation 2)$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \qquad where y = g(u) \quad (notation 3) \quad .$$

The last equality uses the Leibniz notation (due to G. Leibniz (1646-1716)).

The Chain Rule 7/26

Chain rule notations

 As we saw, the chain rule can be written using a number of notations:

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

- The three notations are all accepted and can be used interchangeably.
- Most authors tend to prefer one of these notations over the others.
- In order to exercise ourselves we shall use all three notations throughout our course.
- There are additional notations (not covered here) used in practice.
- Whenever in doubt about derivative notation, if possible, request clarification.

The Chain Rule 8/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $h(x)$
Let $g(u) =$

Chain Rule:
$$f'(x) = g'(h(x))h'(x)$$

= $\begin{pmatrix} \\ \end{pmatrix}$ $\begin{pmatrix} \\ \end{pmatrix}$

The Chain Rule 9/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u =$
Let $g(u) =$
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

The Chain Rule 10/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 3)

Differentiate
$$y = \sqrt{x^2 + 1}$$
.
Let $u = \sqrt{x^2 + 1}$.
Then $y = \sqrt{x^2 + 1}$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= \left(\begin{array}{c} \\ \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right)$

The Chain Rule 11/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 1, square root of a trigonometric function)

Differentiate $f(x) = \sqrt{\sin x + 2}$.

Let
$$h(x)$$

Let $g(u) =$

Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} \\ \end{pmatrix} \begin{pmatrix} \\ \end{pmatrix}$

The Chain Rule 12/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u =$
Let $g(u) =$
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

The Chain Rule 13/26

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

```
Differentiate f(x) = \cos^3 x.

Let u =

Let g(u) =

Then f(x) = g(u).

Chain Rule: f'(x) = g'(u)u'
```

The Chain Rule 14/26

• In the example $y = \cos^3 x$, the outer function was a power function: $y = u^3$.

- The derivative was $\frac{dy}{dx} = 3u^2 \frac{du}{dx} = (3\cos^2 x)(-\sin x)$.
- We can generalize this:

Observation (The Power Rule Combined with the Chain Rule)

If n is any real number and u = h(x) is differentiable, then

$$\frac{\mathsf{d}}{\mathsf{d}x}(u^n) = nu^{n-1}\frac{\mathsf{d}u}{\mathsf{d}x}$$

Alternatively,

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

The Chain Rule 15/26

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \quad \text{(notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \quad \text{(notation 3)} \quad .$$

Example (Chain Rule, Notation 3, Power Rule)

Differentiate
$$y = (x^3 - 1)^{100}$$
.
Let $u =$
Then $y =$
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= () ()$

The Chain Rule 16/26

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Example (Chain Rule, Notation 1, Power Rule)

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x)$
Let $g(u) =$
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \begin{pmatrix} & & \\ & & \end{pmatrix}$

The Chain Rule 17/26

Example (Chain Rule and Quotient Rule)

Find the derivative of

$$g(t)=\left(\frac{t-2}{2t+1}\right)^9.$$

Power Rule and Chain Rule:

$$g'(t) = 9\left(\frac{t-2}{2t+1}\right)^8 \frac{d}{dt}\left(\frac{t-2}{2t+1}\right)$$

Quotient Rule:

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{\frac{d}{dt}(t-2) \cdot (2t+1) - (t-2)\frac{d}{dt}(2t+1)}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{1 \cdot (2t+1) - (t-2) \cdot 2}{(2t+1)^{2}}$$

$$= 9 \left(\frac{t-2}{2t+1}\right)^{8} \frac{2t+1-2t+4}{(2t+1)^{2}} = \frac{45(t-2)^{8}}{(2t+1)^{10}}.$$

The Chain Rule 18/26

Example

Find the derivative of $y = (2x + 1)^5(x^3 - x + 1)^4$.

Product Rule:

$$y'=$$
 $\frac{d}{dx}\left((2x+1)^5\right)(x^3-x+1)^4+(2x+1)^5\frac{d}{dx}\left((x^3-x+1)^4\right)$

Chain Rule:

$$= \left(5(2x+1)^4 \frac{d}{dx}(2x+1)\right) (x^3 - x + 1)^4 + (2x+1)^5 \left(4(x^3 - x + 1)^3 \frac{d}{dx}(x^3 - x + 1)\right) = 5(2x+1)^4 (2) (x^3 - x + 1)^4 + 4(2x+1)^5 (x^3 - x + 1)^3 (3x^2 - 1)
Common factor $2(2x+1)^4 (x^3 - x + 1)^3$:$$

$$= 2(2x+1)^4(x^3-x+1)^3(2(2x+1)(3x^2-1)+5(x^3-x+1)))$$

$$= 2(2x+1)^4(x^3-x+1)^3(17x^3+6x^2-9x+3)$$

The Chain Rule 19/26

Example (Chain Rule, general exponential function)

Differentiate
$$y = 2^x$$
.
 $y = (e^{\ln 2})^x$
 $y = e^{x \ln 2}$.
Let $u =$
Then $y =$
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= ()()$

The Chain Rule 20/26

Example (Chain Rule, general exponential function)

Differentiate
$$y = a^x$$
.
 $y = \left(e^{\ln a}\right)^x$
 $y = e^{x \ln a}$.
Let $u = x \ln a$.
Then $y = e^u$.
Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
 $= (e^u)(\ln a)$
 $= \left(e^{(x \ln a)}\right)(\ln a)$
 $= \left(e^{\ln a}\right)^x(\ln a)$
 $= a^x \ln a$.

The Chain Rule 21/26

Theorem (The Derivative of a^x)

$$\frac{\mathsf{d}}{\mathsf{d}x}(a^x) = a^x \ln a.$$

The Chain Rule 22/26

• We can add more "links" when we use the Chain Rule.

- y = f(u)
- u = g(x)
- x = h(t)
- Use the Chain Rule twice:

$$\frac{dy}{dt} = \frac{dy}{du}\frac{du}{dt} = \frac{dy}{du}\frac{du}{dx}\frac{dx}{dt}$$

The Chain Rule 23/26

Example (Using the Chain Rule twice)

Differentiate:
$$y = \sin \sqrt{10^x + 1}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(\sin \sqrt{10^x + 1} \right)$$
Chain Rule: $= \left(\qquad \right) \frac{d}{dx} \left(\qquad \right)$
Chain Rule: $= \left(\qquad \right) \left(\qquad \right) \frac{d}{dx} \left(\qquad \right)$

The Chain Rule 24/26

Example (Using the Chain Rule twice)

Differentiate:
$$y = e^{\tan(\pi x)}$$
.
$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\tan(\pi x)} \right)$$
 Chain Rule: $= \begin{pmatrix} & & \\ & & \end{pmatrix} \frac{d}{dx} \begin{pmatrix} & & \\ & & \end{pmatrix}$ Chain Rule: $= \begin{pmatrix} & & \\ & & \end{pmatrix} \begin{pmatrix} & & \\ & & & \end{pmatrix} \begin{pmatrix} & & & \\ & & & \end{pmatrix} \begin{pmatrix} & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & & & \\ & & & \end{pmatrix} \begin{pmatrix} & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & & & & \\ & & & & & \end{pmatrix} \begin{pmatrix} & & & & \\ & & & &$

The Chain Rule Chain rule proof 25/26

Theorem (Chain rule)

Let g-differentiable at neighborhood of a, f-diff. at neighb. of g(a).

$$(f(g(x)))'_{|x=a} = f'(g(a))g'(a)$$

Proof with additional assumptions -motivation for actual proof.

Suppose that $g(x) \neq g(a)$ so long as $x \neq a$. Set $G(y) = \frac{f(y) - f(g(a))}{y - g(a)}$. G(y) is continuous at $g(a) \Rightarrow G(g(x))$ is continuous at a. Furthermore g(x) is continuous at a.

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \lim_{x \to a} \left(\frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \right) \lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)$$

$$= \left(\lim_{y = g(x), y \to g(a)} \frac{f(y) - f(g(a))}{y - g(a)} \right) g'(a) = f'(g(a))g'(a) .$$

The Chain Rule Chain rule proof 26/26

Theorem (Chain rule)

g-diff. near a, f-diff. near $g(a) \Rightarrow (f(g(a)))' = f'(g(a))g'(a)$.

Proof.

Define
$$Q(y)=\left\{ egin{array}{ll} rac{f(y)-f(g(a))}{y-g(a)}, & y
eq g(a) \\ f'(g(a)), & y=g(a) \end{array}
ight.$$
 . $Q(g(x))$ - defined for all x near a . Therefore $f'(g(a))=\lim_{y
ightarrow a}Q(y)=\lim_{x
ightarrow a}Q(g(x))$.

$$\begin{array}{lcl} Q(g(x))\frac{g(x)-g(a)}{x-a} & = & \begin{cases} \frac{(f(g(x))-f(g(a)))}{(g(x)-g(a))}\frac{(g(x)-g(a))}{x-a}, & g(x) \neq g(a) \\ f'(g(a))\frac{g(a)-g(a)}{x-a} = 0, & g(x) = g(a) \\ & = & \frac{f(g(x))-f(a)}{x-a}. \end{cases}$$

$$(f \circ g)'(a) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} Q(g(x)) \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} Q(g(x)) \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(g(a))g'(a) .$$