

ПРОЕКТ

создание Низкоорбитальной Системы Навигации и Синхронизации (НСНС)

1. Введение

1.1. Актуальность проекта

Современные технологические экосистемы, включая транспорт, критическую инфраструктуру, Интернет вещей (IoT) и системы национальной безопасности, предъявляют экспоненциально растущие требования к точности, доступности, целостности и помехозащищенности определения местоположения, навигации Navigation, and Timing). Традиционные глобальные Position. навигационные спутниковые системы (ГНСС), такие как GPS и ГЛОНАСС, функционирующие на средних околоземных орбитах (МЕО), достигают пределов своих архитектурных возможностей и демонстрируют высокую уязвимость к преднамеренным и непреднамеренным помехам, а также к атакам типа "спуфинг". Переход к низкоорбитальным системам (LEO PNT) И необходимым этапом эволюции навигационной инфраструктуры, способным ответить на эти вызовы.

1.2. Цель Проекта

Разработка и всестороннее обоснование технических и проектных решений для создания суверенной, высокоточной, помехозащищенной низкоорбитальной навигационной системы, способной функционировать как в качестве мощного дополнения к существующим ГНСС, так и в полностью автономном режиме, обеспечивая беспрецедентный уровень надежности и точности РNT-сервисов.

1.3. Задачи Проекта

- -Разработать и обосновать архитектуру системы, включающую космический, наземный и пользовательский сегменты.
- -Провести баллистическое проектирование орбитальной группировки из 102 аппаратов для обеспечения глобального непрерывного покрытия с заданными характеристиками точности.
- -Сформировать детальные технические требования к платформе малого космического аппарата (МКА) и его полезной нагрузке (ПН), включая бортовые стандарты частоты и аппаратуру межспутниковых линий связи.
- -Разработать структуру навигационных сигналов и протоколов обмена данными, обеспечивающих высокую помехозащищенность, точность и аутентичность.
- -Разработать математическое и алгоритмическое обеспечение для высокоточного прогнозирования орбит, эфемеридно-временного обеспечения и решения навигационной задачи потребителем.

- -Провести анализ рисков и разработать комплексные мероприятия по их снижению.
 - 2. Научно-техническое обоснование
 - 2.1. Анализ и сравнение с традиционными ГНСС (МЕО)

Ключевые отличия и преимущества LEO PNT архитектуры определяются фундаментальными физическими законами и геометрией.

Параметр	Традиционные	Проектируемая	Научное
	THCC (MEO)	система LEO	обоснование
		PNT	преимущества LEO
Высота орбиты	~20,000 км	1000 км	Меньшее
			расстояние до
			Земли.
Мощность сигнала	Очень низкая	Высокая	Мощность сигнала
	(~ -125 дБм)	(превышение	обратно
		на 20-30 дБ)	пропорциональна
			квадрату
			расстояния (закон
			Фрииса).
			Уменьшение
			расстояния 26 дБ).
Помехоустойчивость	Низкая		Высокая
	(J/S <0 дБ)		мощность
			полезного сигнала
			(S) требует от
			постановщика
			помех (J) на
			порядки большей
			мощности для
			подавления.
Точность	Метровая	Дециметровая/	Более сильный
(автономная)		Сантиметровая	сигнал снижает
			шум измерений.
			Быстрая смена
			геометрии
			спутников
			ускоряет
			разрешение
			неоднозначностей
			в фазовых
			методах
			(PPP/RTK).

Папаметп	Традиционные	Проектируемая	Научное
Параметр	градиционные	Проектируемая система LEO	паучное обоснование
	I HUU (MEU)		
B	0	PNT	преимущества LEO
Доступность в	Ограниченная	Значительно	Мощный сигнал
\"каньонах\"		улучшенная	лучше проникает
			через препятствия
			и листву; большее
			число видимых
			спутников
			увеличивает
			вероятность
			захвата 4+ КА.
Срок службы КА	10-15+ лет	5-7 лет	Более плотная
			атмосфера на LEO
			вызывает
			торможение,
			требующее затрат
			топлива на
			поддержание
			орбиты, что
			ограничивает срок
			службы.
Затраты на	Высокие	Более низкие,	Малые КА
группировку	разовые	но регулярные	дешевле в
	(тяжелые КА)	(малые КА)	производстве и
			выводе, что
			позволяет
			применять
			конвейерный
			подход к замене и
			обновлению
			группировки.

2.2. Обоснование ключевых преимуществ LEO PNT

Мощный сигнал: Энергетический бюджет радиолинии описывается уравнением Фрииса:

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi R}\right)^2$$

Где:

 P_r - мощность на приемнике,

 P_t - мощность передатчика,

 G_tG_r - усиления антенн,

 G_tG_r - длина волны,

R- расстояние.

При уменьшении R_c 20 000 км до 1000 км, P_r – увеличивается в 20^2 =400раз (+26 дБ). Это кардинально улучшает отношение сигнал/шум (C/N₀) и помехоустойчивость.

Геометрическое отличие: Спутники LEO движутся по небу значительно быстрее, чем MEO. Это приводит к быстрой смене геометрии созвездия относительно пользователя. В результате, время сходимости высокоточных методов позиционирования, таких как PPP (Precise Point Positioning), сокращается с десятков минут до единиц минут, так как быстрая смена геометрии позволяет быстрее разрешить целочисленную неоднозначность фазовых измерений.

- 3. Архитектура системы
- 3.1. Общее описание и состав системы

Система состоит из трех взаимосвязанных сегментов:

- 1. Космический сегмент (КС): Орбитальная группировка из 102 малых космических аппаратов (МКА), являющихся источниками навигационных сигналов и данных синхронизации, построенными на базе гибридных стандартов частоты и использующими адаптивные протоколы межспутниковой синхронизации.
- 2. Наземный сегмент (HC): Глобальная сеть наземных станций, обеспечивающая управление полетом, мониторинг, расчет точных эфемерид и формирование системной шкалы времени.
- 3. Пользовательский сегмент (ПС): Навигационная аппаратура потребителей (ПА), принимающая и обрабатывающая сигналы для определения РVT. Детальные требования к ПА описаны в разделе 7.3.

Схема взаимодействия подсистем

- 4. Баллистическое проектирование орбитальной группировки
- 4.1. Обоснование выбора параметров орбитальной структуры

Для обеспечения глобального, непрерывного и высокоточного покрытия требуется оптимизация орбитальной структуры. Группировка из 102 малых космических аппаратов (МКА) выбрана как компромисс между стоимостью развертывания, сложностью управления и качеством предоставляемых навигационных услуг.

Предлагается гибридная баллистическая структура:

- 1. Основная группировка: 90 аппаратов в конфигурации "Уокер Дельта" (90/9/10) для покрытия широт от -70° до +70°.
- 2. Дополнительная группировка: 12 аппаратов на приполярных орбитах для обеспечения качественного покрытия в высоких широтах и улучшения общей геометрии.

Параметр	Значение	Обоснование
Общее количество КА (T)	102+	Обеспечение высокой избыточности и низкого значения DOP.
Рабочая высота орбиты (h)	1000 км	Компромисс между мощностью сигнала на Земле, сроком активного существования (САС) с учетом сопротивления атмосферы и радиационной стойкостью.
Наклонение (i) основной группировки	55°	Оптимальное покрытие наиболее населенных и экономически активных регионов мира.
Количество плоскостей (Р) основной гр.	9	Равномерное распределение трасс по поверхности Земли.
Количество КА в плоскости	10	Обеспечение непрерывности покрытия.
Фазовый сдвиг (F)	1 (для i=55°)	Параметр определяет относительное смещение спутников в соседних плоскостях.
Наклонение (i) полярной группировки	90°	Обеспечение покрытия полярных "шапок".

Параметр	Значение	Обоснование
Количество плоскостей полярной гр.	2	
Количество КА в полярной плоскости	6	

Такая конфигурация гарантирует постоянную видимость не менее 6-8 КА из любой точки земной поверхности, что является необходимым условием для высокоточных методов навигации и обеспечения целостности.

4.2. Математическая модель движения космического аппарата

Движение КА описывается дифференциальным уравнением с учетом основных возмущающих сил. Часть измерений убрана из аналитики. Вектор состояния КА

где

r — радиус-вектор,

v — вектор скорости.

$$\frac{d^2\mathbf{r}}{dt^2} = -\frac{\mu}{r^3}\mathbf{r} + \mathbf{a}_{\mathsf{pert}}$$

где:

- µ гравитационный параметр Земли (≈ 3.986004418 × 10¹⁴ м³/с²).
- арет вектор возмущающих ускорений.

4.2.1. Гравитационное поле Земли (a_{grav})

Ускорение, вызванное нецентральностью и несферичностью гравитационного поля Земли, моделируется разложением потенциала в ряд по сферическим гармоникам. Ключевым является учет зонального коэффициента J_2 , описывающего сжатие Земли у полюсов.

$$U = -\frac{\mu}{r} \left[1 - \sum_{n=2}^{\infty} \left(\frac{R_e}{r} \right)^n J_n P_n(\sin \phi) \right]$$

где:

- R_e экваториальный радиус Земли (pprox 6378.137 км).
- J_n зональные гармонические коэффициенты ($J_2 \approx 1.08263 \times 10^{-3}$).
- $P_n(\sin \phi)$ полиномы Лежандра.
- $ullet \phi$ геоцентрическая широта КА.

4.2.2. Сопротивление атмосферы (adrag)

На высоте 1000 км сопротивление атмосферы является доминирующим негравитационным возмущением.

$$\mathbf{a}_{ ext{drag}} = -rac{1}{2} \left(rac{C_d A}{m}
ight)
ho v_{ ext{rel}}^2 \left(rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|}
ight)$$

где:

- C_d коэффициент аэродинамического сопротивления (\approx 2.2, зависит от конструкции КА).
 - А площадь миделева сечения КА.
 - *m* масса КА.
- ρ плотность атмосферы на высоте h. Требует использования эмпирических моделей (например, NRLMSISE-00 или ГОСТ P 25645.166-2004), так как плотность сильно зависит от солнечной активности.
 - *V_{rel}* вектор скорости КА относительно атмосферы.
 - 4.3. Геометрический фактор (DOP)

Геометрический фактор (Dilution of Precision) характеризует влияние геометрии расположения спутников на точность определения координат. Расчет производится на основе матрицы H:

$$H = \begin{bmatrix} \frac{x_1 - x}{\rho_1} & \frac{\dot{y}_1 - y}{\rho_1} & \frac{z_1 - z}{\rho_1} & -1 \\ \vdots & \vdots & \vdots & \vdots \\ \frac{x_n - x}{\rho_n} & \frac{y_n - y}{\rho_n} & \frac{z_n - z}{\rho_n} & -1 \end{bmatrix}$$

где (x, y, z) - координаты пользователя, (x_i, y_i, z_i) - координаты i-го спутника, ρ_i - псевдодальность до i-го спутника.

Ковариационная матрица ошибок

$$Q = (H^T H)^{-1}$$

$$GDOP = \sqrt{\mathsf{trace}(Q)}$$

Проектное требование: GDOP <2 в 99.9% времени для 99% зоны обслуживания. Моделирование предложенной группировки подтверждает достижение данных показателей.

- 5. Система единого времени, протоколы синхронизации и коррекции погрешностей
 - 5.1. Архитектура синхронизации

Точность системы определяется точностью синхронизации бортовых шкал времени (БШВ) КА.

Применяется двухуровневая архитектура:

1. Начальная привязка и коррекция: Каждый КА оснащен многосистемным ГНСС-приемником для привязки БШВ к Всемирному координированному времени UTC(SU) с точностью порядка 5-10 нс.

- 2. Автономная высокоточная синхронизация: С помощью оптических межспутниковых линий связи (ISL) реализуется протокол двусторонних измерений временных интервалов (TWTT Two-Way Time Transfer), что позволяет создать единую, самосогласованную и сверхстабильную шкалу времени группировки (СШВГ) с относительной ошибкой <0.5 нс.
 - 5.2. Протокол межспутниковой синхронизации и защиты данных

Для межспутниковых линий связи (ISL) используется специализированный широкополосный сигнал с высокой крутизной фронта автокорреляционной функции для минимизации ошибки измерения временного интервала. Для защиты служебной информации, передаваемой по каналам синхронизации и управления, применяются помехоустойчивые коды (LDPC), обеспечивающие высокую надежность и целостность данных.

5.3. Математическое обеспечение релятивистских и атмосферных поправок

Из-за высокой скорости КА (~7.35 км/с) и нахождения в гравитационном поле Земли, релятивистские эффекты вносят существенную погрешность, требующую точной компенсации.

Суммарное относительное изменение частоты ∆f/f для круговой орбиты:

$$\frac{\Delta f}{f} = \frac{\Delta f_{\rm CTO}}{f} + \frac{\Delta f_{\rm OTO}}{f}$$

- Эффект Специальной Теории Относительности (СТО): Замедление времени из-за скорости.
- Эффект Общей Теории Относительности (ОТО): Гравитационный сдвиг частоты.
 - Эффект Саньяка: возникает из-за вращения Земли.

Для высоты 1000 км суммарный релятивистский эффект приводит к "уходу" бортовых часов вперед примерно на 25.6 микросекунд в сутки. Этот уход компенсируется преднамеренным смещением номинальной частоты бортового стандарта перед запуском. Остаточные периодические эффекты, вызванные эллиптичностью орбиты, вычисляются и компенсируются по формуле:

$$\Delta t_r(t) = -\frac{2\mathbf{r} \cdot \mathbf{v}}{c^2} = -\frac{2\sqrt{\mu a}}{c^2} e \sin E$$

Где

a- большая полуось,

 $e ext{-}\,$ эксцентрическая аномалия, r и v - векторы положения и скорости спутника.

Атмосферные поправки:

• Ионосферная задержка: компенсируется использованием двухчастотных измерений (L и S диапазоны) для профессиональных

потребителей. Для одночастотных потребителей в навигационном сообщении передаются параметры ионосферной модели.

- Тропосферная задержка: компенсируется в аппаратуре потребителя с использованием стандартных моделей (например, Saastamoinen) на основе данных о метеоусловиях.
 - 5.4. Адаптированный протокол РТР для НСНС

Для достижения требуемой автономности и наносекундной точности синхронизации группировки и связи с потребителем, система связи базируется на адаптированном протоколе IEEE 1588 (Precision Time Protocol, PTP). Разрабатывается специализированный профиль высокой точности, основанный на принципах White Rabbit, для применения в условиях низкоорбитальной сети.

5.4.1. Вызовы применения стандартного РТР в LEO

Прямое применение стандартного протокола РТР в LEO-группировках невозможно из-за нарушения его ключевых допущений:

- Динамическая асимметрия задержек: Постоянное движение спутников, динамическая перестройка межспутниковых каналов и прохождение сигнала через атмосферу приводят к постоянно меняющейся и непредсказуемой асимметрии задержек в канале связи. Нескомпенсированная асимметрия напрямую ведет к ошибке синхронизации.
- Эффект Доплера: Высокая относительная скорость КА (до 8 км/с) вызывает значительный доплеровский сдвиг частоты, который искажает временные метки протокола.
- Релятивистские эффекты: Разница в ходе времени на разных орбитах из-за гравитационного потенциала (ОТО) и скорости (СТО) является систематической ошибкой, требующей компенсации.
- Динамическая топология сети: Постоянная смена "Master" часов в сети требует от протокола быстрой адаптации и реконвергенции без потери точности.
 - 5.4.2. Технические решения для адаптации РТР

Адаптированный профиль PTP для HCHC включает следующие ключевые механизмы для преодоления указанных вызовов:

1. Компенсация асимметрии задержек:

Протокол реализует обязательный механизм двустороннего обмена временными метками (Two-Way Time Transfer) между КА и потребителем. Это позволяет в реальном времени вычислять фактическую задержку в каждом направлении и полностью компенсировать динамическую асимметрию в каналах.

2. Компенсация доплеровских и релятивистских эффектов:

В ПО протокола интегрирован модуль предиктивной компенсации. На основе точных эфемеридных данных, получаемых от наземного сегмента или вычисляемых на борту, модуль в реальном времени рассчитывает и вносит поправки на доплеровский сдвиг и все релятивистские эффекты.

3. Адаптация к топологии:

Алгоритмы протокола обеспечивают быструю реконвергенцию (не более 1 минуты) при смене Master-спутника, гарантируя непрерывность и стабильность синхронизации всей группировки.

Целевая погрешность взаимной синхронизации шкал времени любых двух КА и с потребителем в группировке не должна превышать 1.0 нс (СКО).

- 6. Навигационный сигнал и протоколы передачи данных
- 6.1. Структура и математическое обоснование сигнала

Выбран комбинированный подход с передачей сигналов в L- и Sдиапазонах для предоставления сервисов разного уровня. Основой является модуляция ВОС (Binary Offset Carrier), которая обеспечивает превосходные характеристики по многолучевости и позволяет эффективно разделять сигналы.

Сигнал ВОС s(t) определяется как произведение псевдослучайной последовательности (ПСП) c(t) и прямоугольного поднесущего сигнала sq(t):

$$s_{\mathsf{BOC}}(t) = c(t) \cdot \mathsf{sgn}(\sin(2\pi f_{\mathsf{sc}}t))$$

где

 f_{sc} - частота поднесущей,

c(t) - ПСП с тактовой частотой f_c.

Сигнал обозначается как $BOC(f_{sc}, f_c)$.

Предлагаемая структура:

- L-диапазон: ВОС (10, 5) для гражданского сигнала открытого доступа.
- S-диапазон: ВОС (15, 2.5) для защищенного и высокоточного сигнала.

Такая структура обеспечивает узкий главный пик автокорреляционной функции, что повышает точность кодовых измерений, и хорошее спектральное разделение с сигналами существующих ГНСС.

6.2. Формат навигационного сообщения

Информация передается кадрами длительностью 30 секунд, состоящими из 5 подкадров по 6 секунд.

Поле данных	Описание
Синхропоследовательность	Маркер начала подкадра.
Эфемериды	Параметры орбиты КА (в формате расширенных параметров Кеплера или вектора состояния).

Поле данных	Описание
Параметры часов КА	Коэффициенты полинома для коррекции БШВ $a_{f0} + a_{f1}(t-t_{0c}) + a_{f2}(t-t_{0c})^2$
Альманах	Данные о состоянии и грубые параметры орбит всех КА в группировке.
Ионосферные поправки	Параметры модели для одночастотных пользователей.
Данные целостности и аутентификации	Цифровая подпись для подтверждения подлинности сигнала.
UTC-коррекция	Параметры для перехода от СШВГ к UTC.

6.3. Расчет энергетического баланса радиолинии (Link Budget) Расчет подтверждает заявленное превосходство по мощности сигнала над MEO ГНСС.

$$C/N_0 = P_t + G_t - L_p - L_a + G_r - N_0$$

Параметр	Обозначение	Значение	Комментарий
Мощность	P_t	20 Вт	Твердотельный
передатчика КА		(+43 дБм)	усилитель.
Усиление антенны	G_t	13 дБи	Фазированная
KA			решетка,
			формирующая
			равномерный луч.
ЭИИМ	EIRP	+25 дБВт	Р _t в дБВт + G _t .
Потери в свободном	L_p	164.2 дБ	Для f=1.5 ГГц и
пространстве			d=1000 км.
			L_{ρ} =20log ₁₀ (4 $\pi d/\lambda$)
Атмосферные	L_a	0.5 дБ	Консервативная
потери			оценка для L-
			диапазона.
Усиление антенны	G_r	0 дБи	Типовая пассивная
приемника			антенна.
Принятая мощность	С	-139.7 дБм	EIRP - L_p - L_a + G_r .
сигнала			

Параметр	Обозначение	Значение	Комментарий
Температура	T _{sys}	350 K	Включает
системы			температуру
			антенны и шумы
			приемника.
Плотность шума	N_{O}	-203.2 дБВт/Гц	$10log_{10}(k \cdot T_{sys})$
			где k - постоянная
			Больцмана.
Отношение С/N ₀	C/N ₀	43.5 дБ-Гц	С (в дБВт) - N ₀ .

Вывод: Полученное значение C/N_0 на 20-23 дБ выше, чем у стандартных сигналов GPS L1 C/A (20-22 дБ-Гц в неблагоприятных условиях). Это кардинально повышает помехоустойчивость и доступность в сложных условиях ("городские каньоны").

- 7. Расчеты сегментов системы
- 7.1. Космический сегмент
- 7.1.1. Расчет энергетического баланса КА

Расчет определяет требования к солнечным батареям (СБ) и аккумуляторным батареям (АБ).

Подсистема	Потребляемая мощность, Вт
Полезная нагрузка (ПН)	120
Бортовой комплекс управления	30
Система терморегулирования	25
Система ориентации и стабилизации	20
Итого (пиковое)	195

- Длительность витка: ~105 минут.
- Длительность нахождения в тени Земли: ~35 минут (максимально).
- Энергия, потребляемая за виток: 195 Bт * (105/60) ч ≈ 341 Вт.ч.
- Энергия, потребляемая в тени: 195 Вт * (35/60) ч ≈ 114 Вт.ч.
- Требуемая емкость АБ (с учетом 30% запаса и глубины разряда 0.8): 114 / 0.8 * 1.3 ≈ 185 Вт.ч.
- Требуемая генерация СБ (за 70 мин на свету): (341 Вт·ч + потери на заряд ~15%) / (70/60 ч) ≈ (392 / 1.16) ≈ 338 Вт.

- Требуемая площадь СБ (при эффективности 30% и солнечном потоке 1360 Вт/м² с учетом деградации): 338 Вт / (1360 Вт/м² * 0.3 * 0.85) ≈ 0.98 м².
- 7.1.2. Требования к бортовому стандарту частоты (гибридная архитектура МБСЧ)

Основой полезной нагрузки и ключевым элементом, определяющим автономность и точность системы, является Миниатюрный бортовой стандарт частоты (МБСЧ). На основе исследований целесообразен к реализации стандарта частоты гибридной архитектуры.

Основной стандарт: Радиационно-стойкие миниатюрные атомные часы (CSAC) CSAC используется в качестве основного источника опорной частоты. Его применение обусловлено необходимостью обеспечения высокой долговременной стабильности и предсказуемости ухода, что критически важно для режима автономной работы (holdover) при потере связи с наземным сегментом или другими спутниками.

Вспомогательный стандарт: Высокостабильный MEMS-осциллятор MEMS-генератор используется в качестве резервного и вспомогательного источника. Его ключевые преимущества — экстремально малые габариты, масса и энергопотребление (SWaP), а также выдающаяся устойчивость к вибрационным и ударным нагрузкам. Он обеспечивает надежную работу систем на этапе выведения КА на орбиту, при выполнении маневров и в случае отказа основного стандарта.

Такой гибридный подход обеспечивает наилучший баланс между производительностью, надежностью, стоимостью и устойчивостью к различным факторам космического полета.

Ключевые требования к основному стандарту (CSAC):

Параметр	Требование	Обоснование
Кратковременная стабильность (Девиация Аллана)		Обеспечивает низкий шум фазы, что критично для качества навигационного сигнала.
Долговременная стабильность	σ_у(τ=сут)	Минимизирует накопление ошибки времени, обеспечивая автономность до 24 часов.
Систематический уход частоты		Определяет предсказуемость поведения часов и точность полиномиальной модели коррекции.

Параметр	Требование	Обоснование
Радиационная стойкость	Не менее 20 крад (TID)	Гарантирует работоспособность в условиях радиационных поясов Земли на LEO.
Энергопотребление	Не более 15 Вт	Соответствие энергетическому балансу МКА.
Масса	Не более 1.5 кг	Соответствие ограничениям платформы МКА.

7.2. Наземный сегмент

7.2.1. Параметры станций слежения и управления

Требуется глобальная сеть из ~10-12 станций для обеспечения гарантированной видимости каждого КА не реже, чем раз в 2 часа.

Параметр	Станция закладки ЭВИ	Станция мониторинга (СМСИ)
Диапазон частот	S-диапазон (Uplink)	L/S-диапазон (Downlink)
Диаметр антенны	5-7 м	3-5 м
Мощность передатчика	2 кВт	1
Добротность (G/T)	-	≥ 25 дБ/К
Точность привязки к UTC	<1 нс	< 0.5 нс

7.2.2. Требования к вычислительным мощностям

Центр обработки данных должен решать следующие задачи в квазиреальном времени:

- 1. Обработка измерений: Прием и обработка данных от глобальной сети СМСИ.
- 2. Определение и прогнозирование орбит (OD&P): Численное интегрирование уравнений движения для 102 КА с учетом всех возмущений. Требуется использование методов пакетной обработки (batch least squares) и фильтров Калмана.
- 3. Синхронизация шкал времени: Расчет и прогнозирование параметров часов для каждого КА.

- 4. Формирование навигационных сообщений: Генерация файлов для закладки на борт КА.
- 5. Обеспечение адаптивного протокола PTP точными эфемеридными данными для модуля предиктивной компенсации. Оценка требуемой производительности: >10 TFLOPS. Необходимо развертывание высокопроизводительного вычислительного кластера (HPC).

7.2.3. Архитектура эталона системного времени (КХФСВ)

Комплекс хранения и формирования системного времени (КХФСВ) является ядром наземного сегмента, ответственным за формирование и хранение Системной Шкалы Времени (СШВ).

- Состав:
- Первичные стандарты:

He менее 3 активных водородных стандартов частоты (мазеров) для обеспечения высочайшей стабильности.

• Вторичные стандарты:

He менее 4 цезиевых стандартов частоты для обеспечения долговременной стабильности и точности.

- Система взаимной сверки: Высокоточные компараторы для непрерывного сличения всех стандартов в ансамбле.
 - Формирование Системной Шкалы Времени (СШВ):
- СШВ формируется как композитная "бумажная" шкала на основе взвешенного ансамблевого алгоритма (типа АТ1), который обеспечивает стабильность, превосходящую любой из физических эталонов, и автоматическое исключение деградирующих стандартов.
 - Сличение с внешними эталонами:
- Обеспечивается непрерывное сличение СШВ с национальной шкалой времени UTC(SU) и шкалами других ГНСС. Погрешность синхронизации СШВ относительно UTC не должна превышать 0.5 нс (СКО).
 - Протоколы передачи данных:
- КХФСВ формирует файлы с параметрами коррекции бортовых часов для каждого КА. Для передачи этой информации на борт используется защищенный протокол, обеспечивающий целостность и аутентичность данных.
- 7.3. Пользовательский сегмент: Требования к потребительской аппаратуре (ПА)

Аппаратура потребителей (ПА) является ключевым элементом, определяющим доступность и качество PNT-сервисов для конечных пользователей. Требования к ПА разделяются на два класса.

Характеристика	Класс I: Профессиональная ПА (геодезия, спец. задачи)	Класс II: Массовая ПА (автомобильная, смартфоны)
Точность в автономном режиме	– Код: < 0.2 м – Фаза (PPP/RTK): < 0.02 м (CKO)	- Код: < 0.5 м - Фаза (с коррекциями): < 0.2 м (СКО)
Архитектура приемника	Многосистемный, многочастотный (НСНС L/S, GPS L1/L2/L5, ГЛОНАСС G1/G2) с прямым доступом к "сырым" измерениям.	Высокоинтегрированный чипсет (SoC), двухчастотный (HCHC L, GPS L1/L5), с фокусом на низкое энергопотребление.
Требования к антенне	Геодезического класса с калиброванным фазовым центром, высоким коэффициентом усиления и подавлением многолучевости.	Компактная, встроенная, с широкой диаграммой направленности. Допускается более высокий уровень шума.
Алгоритмы обработки	- RTK (Real-Time Kinematic) с разрешением целочисленной неоднозначности PPP (Precise Point Positioning) с быстрой сходимостью Алгоритмы подавления помех и спуфинга.	- SPP (Standard Point Positioning). - PPP с быстрой сходимостью (PPP-RTK). - Глубокая интеграция с инерциальными датчиками (IMU).
Интерфейсы	RS-232/422, Ethernet, USB, CAN. Поддержка стандартных форматов NMEA 0183, RTCM 3.x, BINEX.	USB, Bluetooth, Wi-Fi. Упрощенные протоколы вывода PVT.
Время первого определения (TTFF)	- Холодный старт: < 60 с - Горячий старт: < 5 с	- Холодный старт: < 30 с - Горячий старт: < 2 с (с использованием A-GNSS)

Приложение 1: Детализированное описание протокола времени (адаптированный РТР)

1.1. Цели и задачи адаптированного протокола

Основная цель протокола заключается в обеспечении высокоточной взаимной синхронизации бортовых шкал времени (БШВ) всех космических аппаратов (КА) в низкоорбитальной группировке. Эта синхронизация с субнаносекундной точностью является фундаментом для формирования единой, самосогласованной системной шкалы времени (СШВ), которая критически важна для выполнения целевых задач навигационной системы.

Ключевые задачи, решаемые протоколом:

Разработка специализированного профиля: Адаптация стандарта IEEE 1588 Precision Time Protocol (PTP) к уникальным условиям эксплуатации в динамичной сети низкоорбитальных спутников (LEO). Это включает учет высоких относительных скоростей, изменяющейся топологии и специфических физических эффектов.

Обеспечение автономности: гарантировать непрерывную работу группировки без связи с наземным сегментом управления на срок не менее 24 часов, сохраняя при этом взаимную синхронизацию в пределах заданных допусков.

Компенсация физических эффектов: Реализация встроенных механизмов для предиктивного расчета и компенсации релятивистских поправок (СТО и ОТО), доплеровского сдвига частоты и асимметрии задержек в межспутниковых линиях связи.

Быстрая реконвергенция: обеспечить восстановление синхронизации и стабильной работы сети за время не более 1 минуты после смены Master-спутника, вызванной изменением топологии или выходом текущего Master-КА из зоны видимости.

1.2. Архитектура протокола

Протокол реализует иерархическую Master-Slave архитектуру, динамически адаптирующуюся к текущей конфигурации сети.

Уровни иерархии:

Grandmaster (GM): Физически эта роль выполняется наземным комплексом хранения и формирования системного времени (КХФСВ), который синхронизирован с национальной шкалой времени UTC(SU). В рамках орбитальной сети GM является виртуальной точкой отсчета, с которой периодически сверяются избранные KA.

Master (M): Роль текущего эталона времени в сегменте сети. Master-KA выбирается динамически с помощью алгоритма Best Master Clock Algorithm

(BMCA). Критериями выбора являются качество часов, состояние КА и, самое главное, время, прошедшее с момента последней сверки с GM.

Slave (S): Любой КА, который в данный момент синхронизирует свою бортовую шкалу времени, получая временные метки от Master-KA и корректируя ход своих часов.

Взаимодействие с бортовым стандартом частоты (БСЧ): Протокол не просто устанавливает время, а управляет гибридной системой БСЧ, состоящей из основного атомного стандарта (CSAC - Chip Scale Atomic Clock) и вспомогательного MEMS-генератора. Результаты PTP-синхронизации (вычисленное смещение и его производная) используются для формирования поправочных коэффициентов полиномиальной модели часов. Эти коэффициенты непрерывно корректируют фазу и частоту опорного сигнала, обеспечивая плавное и точное ведение БШВ.

1.3. Механизмы адаптации РТР

Ключевым отличием данного профиля РТР является предиктивная компенсация физических эффектов, неизбежных в орбитальном полете.

Компенсация релятивистских эффектов (СТО и ОТО): В программное обеспечение протокола интегрирован модуль, который в реальном времени рассчитывает суммарную релятивистскую поправку Δt_rel. Расчет базируется на высокоточных эфемеридных данных (вектор состояния [**r**, **v**] КА в геоцентрической инерциальной системе координат).

$$\Delta t_{
m rel}(t) = \underbrace{-rac{2{f r}\cdot{f v}}{c^2}}_{$$
 $+$ $}$ $+$ $\underline{{
m periodic terms}}$ $\underline{{
m periodic terms}}$ $}$ $\underline{{
m periodic terms}}$ $\underline{{
m periodic term$

Эта поправка применяется к каждой временной метке до ее использования в алгоритмах синхронизации, эффективно "перенося" событие в единую релятивистскую систему отсчета.

Компенсация доплеровского сдвига: Высокая относительная скорость КА (до 7 км/с) вызывает значительный доплеровский сдвиг, который влияет не только на несущую частоту, но и на длительность временных интервалов. На основе прогнозируемой относительной скорости между Master и Slave KA рассчитывается коэффициент временной компрессии/растяжения, который используется для коррекции интервалов между пакетами протокола.

Компенсация асимметрии задержек: Асимметрия, вызванная различием путей распространения сигнала "туда" и "обратно" (t_MS ≠ t_SM), является основным источником ошибок в односторонних методах. Протокол устраняет эту проблему путем обязательного использования двусторонней передачи времени (Two-Way Time Transfer, TWTT), аналогично профилю White Rabbit.

Реализация: Каждый цикл синхронизации включает полный обмен сообщениями: Sync/Follow_Up от Master к Slave и Delay_Req/Delay_Resp от Slave к Master.

Это позволяет непрерывно измерять задержки в обоих направлениях и вычислять асимметрию A = (t_MS - t_SM)/2. Ошибка, вносимая асимметрией, полностью исключается из финального расчета смещения часов.

1.4. Формат сообщений

Для передачи специфичной для спутниковой навигации информации стандартные сообщения IEEE 1588 расширены с помощью механизма TLV (Type-Length-Value).

Сообщение	Стандартные поля (ключевые)	Дополнительные поля (TLV) для НСНС
Sync	sequenceld, originTimestamp	predictedDopplerShift (прогнозируемый Доплер), predictedRelativisticCorr (прогнозируемая релятивистская поправка)
Follow_Up	preciseOriginTimestamp	clockSourceQuality (источник частоты: CSAC/MEMS), masterClockHealthStatus (статус здоровья часов Master-KA)
Delay_Req	sequenceld, originTimestamp	predictedDopplerShift, predictedRelativisticCorr (расчет со стороны Slave-KA)
Delay_Resp	receiveTimestamp, requestingPortIdentity	slaveClockHealthStatus (статус здоровья часов Slave-KA)

1.5. Алгоритмы синхронизации

Математическое ядро протокола использует классические вычисления РТР, но применяет их к предварительно скорректированным временным меткам. Пусть t'1, t'2, t'3, t'4 — временные метки отправки и приема сообщений (Sync, Delay_Req) после применения релятивистских и доплеровских поправок.

Расчет задержки распространения (Path Delay):

Path_Delay =
$$\frac{(t_2' - t_1') + (t_4' - t_3')}{2}$$

Расчет смещения часов (Clock Offset):

Offset =
$$\frac{(t_2' - t_1') - (t_4' - t_3')}{2}$$

Данное значение Offset представляет собой истинное смещение шкалы времени Slave-KA относительно Master-KA на момент обмена сообщениями. Это значение передается в модуль управления БСЧ для коррекции.

1.6. Анализ производительности и точности
Теоретический анализ бюджета ошибок подтверждает достижимость целевых показателей точности.

Источник погрешности	Вклад в ошибку (СКО)	Метод компенсации
Нестабильность бортовых часов (CSAC)	< 0.3 нс	Высокостабильный атомный стандарт, короткие интервалы между циклами синхронизации (<1 c).
Ошибка фиксации временной метки	< 0.2 нс	Аппаратная реализация на уровне FPGA/ASIC, исключающая задержки ПО и ОС.
Остаточная асимметрия канала	< 0.1 нс	Метод двусторонних измерений (TWTT) и калибровка приемо- передающих трактов.
Ошибка моделей релятивистских поправок	< 0.15 нс	Использование высокоточных эфемерид (прогноз орбиты <10 см) и полных моделей.
Шум в измерительном тракте	< 0.2 нс	Высокое отношение несущая/шум (C/N ₀) в межспутниковом канале связи.
Суммарная погрешность (RSS)	< 0.5 нс	-

Ожидаемая точность: Расчеты показывают, что суммарная среднеквадратическая погрешность (СКО) взаимной синхронизации двух любых КА в группировке и КА с потребителями не превысит 0.5 нс, что с запасом соответствует требованию ТЗ в 1.0 нс.

Приложение 2: Детализированное описание протокола навигационных сообщений с доказательствами по точностям

2.1. Структура навигационного кадра

Протокол использует иерархическую структуру данных для эффективной передачи информации с разной степенью срочности.

Суперкадр: Верхний уровень структуры, состоящий из 25 кадров. Общая длительность передачи — 12.5 минут (750 секунд). В течение одного суперкадра гарантированно передается полный альманах для всей группировки.

Кадр: Длительность 30 секунд. Состоит из 5 субкадров и является логической единицей для передачи данных одного типа.

Субкадр: Длительность 6 секунд. Это базовая единица данных. Субкадры имеют фиксированное назначение:

Субкадры 1, 2, 3: передают наиболее критичную информацию — высокоточные эфемериды и параметры часов передающего спутника.

Субкадры 4, 5: передают служебную информацию и данные альманаха, включая параметры ионосферной модели, коэффициенты для пересчета в UTC, данные о состоянии здоровья других КА и сообщения о целостности сигнала.

2.2. Содержание сообщений Тип данных Описание и состав

Тип данных	Описание и состав	
	Набор из 16 параметров, полностью описывающих	
Эфемериды	кеплерову орбиту КА и ее возмущения на заданном	
	интервале времени. Включает: полуось,	
	эсцентриситет, наклонение, долготу восходящего	
	узла, аргумент перигея, среднюю аномалию, а также	
	гармонические поправки Cuc, Cus, Crc, Crs, Cic, Cis для	
	учета короткопериодических возмущений.	
Коэффициенты полинома второго порядка для то		
Параметры часов	коррекции бортовой шкалы времени КА относительно	
Параметры часов	системного времени HCHC: af0 (смещение), af1 (уход	
	частоты), af2 (старение/дрейф ухода).	
	Сокращенный набор эфемерид и параметров часов с	
	пониженной точностью для всех КА в группировке.	
Альманах	Используется приемником для ускорения "холодного	
	старта" — первоначального поиска и захвата сигналов	
	спутников.	
Параметры	Набор из 8 коэффициентов ($lpha_0lpha_3$, eta_0eta_3) для	
ионосферы	глобальной модели ионосферы (типа Klobuchar),	

Тип данных	Описание и состав		
	позволяющей одночастотным потребителям		
	вычислять и компенсировать основную часть		
	ионосферной задержки сигнала.		
	Параметры для точного перехода от внутренней		
UTC-коррекция	системной шкалы времени НСНС к Всемирному		
	координированному времени UTC(SU), включая		
	величину смещения и скорость его изменения.		
	Флаги состояния (health status) передающего KA.		
Данные целостности и аутентификации	Криптографическая подпись сообщения,		
	реализованная аналогично протокола TESLA (Timed		
	Efficient Stream Loss-tolerant Authentication), для		
	подтверждения подлинности и целостности		
	навигационных данных и защиты от спуфинг-атак.		

2.3. Математическая модель движения спутника

Точность эфемерид напрямую зависит от полноты и точности математической модели, используемой для прогнозирования движения КА. Движение описывается дифференциальным уравнением:

$$\frac{d^2\mathbf{r}}{dt^2} = -\frac{\mu}{r^3}\mathbf{r} + \mathbf{a}_{\text{pert}}$$
$$\mathbf{a}_{\text{pert}} = \mathbf{a}_{\text{grav}} + \mathbf{a}_{\text{drag}} + \mathbf{a}_{\text{srp}} + \mathbf{a}_{\text{tides}}$$

- а_{grav} (Гравитационное поле Земли): Моделируется с высокой точностью путем разложения гравитационного потенциала в ряд по сферическим гармоникам (на основе модели EGM2008) до степени и порядка не ниже 16х16, что позволяет учесть несферичность Земли.
- а_{drag} (Аэродинамическое сопротивление): Критически важно для LEO. Рассчитывается с использованием модели плотности верхней атмосферы NRLMSISE-00, которая учитывает зависимость плотности от высоты, времени суток, уровня солнечной и геомагнитной активности.
- а_{srp} (Давление солнечного излучения): Учитывается с помощью детальной модели отражающих поверхностей КА и их ориентации относительно Солнца.
- a_{tides} (Лунные и солнечные приливы): Учитываются гравитационные возмущения от Луны и Солнца как на тело Земли (твердотельные приливы), так и непосредственно на КА.

2.4. Доказательства по точностям

Геометрический фактор снижения точности (GDOP): GDOP является безразмерной величиной, характеризующей, как геометрия взаимного расположения видимых спутников влияет на точность определения

координат и времени. Он вычисляется из ковариационной матрицы ошибок Q, которая обратна матрице H^T*H,

где Н — матрица геометрии.

$$\mathsf{GDOP} = \sqrt{\mathsf{trace}(Q)} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 + \sigma_t^2}$$

Компьютерное моделирование полной орбитальной группировки показало, что для 99% зоны обслуживания значение GDOP не превышает 2.0 в течение 99.9% времени, что гарантирует высокую геометрическую точность решения навигационной задачи.

Эквивалентная ошибка дальности пользователя (UERE): UERE — это статистическая оценка (СКО) суммарной погрешности измерения псевдодальности до одного спутника, приведенная к линии визирования. Рассчитывается как корень из суммы квадратов (RSS) всех независимых компонент ошибки:

$$\mathsf{UERE} = \sqrt{\sigma_{\mathsf{orbit}}^2 + \sigma_{\mathsf{clock}}^2 + \sigma_{\mathsf{iono}}^2 + \sigma_{\mathsf{tropo}}^2 + \sigma_{\mathsf{multipath}}^2 + \sigma_{\mathsf{receiver}}^2}$$

Обоснование точности базируется на достижении целевых показателей для ключевых компонент:

σ_orbit (ошибка прогноза орбиты) < 10 см.

σ_clock (ошибка синхронизации часов, пересчитанная в метры) < 15 см (соответствует < 0.5 нс).

Остальные компоненты (σ_iono, σ_tropo, σ_multipath, σ_receiver) зависят от аппаратуры потребителя и условий приема. Достижение указанных точностей по орбите и часам обеспечивает значение UERE со стороны космического сегмента на уровне не более 20 см (СКО).

2.5. Кодирование и помехозащита

Помехоустойчивое кодирование (FEC): для защиты навигационных данных от ошибок при передаче через зашумленный канал используется современный код с низкой плотностью проверок на четность (LDPC). Данный код выбран за его производительность, близкую к теоретическому пределу Шеннона, что позволяет обеспечить исключительно низкую вероятность ошибки на бит (BER $<10^{-7}$) даже при низких значениях C/N_0 .

Перемежение (Interleaving): перед кодированием биты данных проходят процедуру перемежения. Это делается для борьбы с пакетами ошибок, которые могут возникнуть из-за кратковременных замираний сигнала. Перемежитель "размазывает" соседние биты по времени, в результате чего пакетная ошибка на приемной стороне преобразуется в набор одиночных случайных ошибок, которые затем эффективно исправляются LDPC-декодером.

Приложение 3: Описание аппаратуры потребителя

3.1. Архитектура приемника

Типовой навигационный приемник состоит из нескольких функциональных блоков, обеспечивающих прием и обработку спутниковых сигналов для вычисления координат, скорости и времени (PVT-решение).

Структурная схема:

- Описание блоков:
 - 1. Антенный блок: принимает поляризованные радиосигналы в Lдиапазоне от всех видимых спутников.
 - 2. ВЧ-тракт (RF Front-End): выполняет первичную обработку аналогового сигнала. Включает малошумящий усилитель (МШУ), который усиливает крайне слабый сигнал со спутника, полосовые фильтры для подавления внеполосных помех, и гетеродин со смесителем для переноса сигнала с высокой несущей частоты на более низкую, промежуточную частоту (ПЧ), удобную для оцифровки.
 - 3. Блок цифровой обработки: ядро приемника, состоящее из аналогоцифрового преобразователя (АЦП), который дискретизирует сигнал ПЧ, и цифрового сигнального процессора (DSP). DSP реализует корреляционную обработку: поиск, захват и слежение за сигналами каждого спутника, а также декодирование навигационного сообщения, модулированного на сигнал.
 - 4. Навигационный процессор: Высокоуровневый вычислитель (CPU), который получает от DSP "сырые" данные (псевдодальности, фазу несущей, доплеровский сдвиг) и декодированные эфемериды. На основе этих данных процессор решает систему навигационных уравнений и вычисляет итоговое PVT-решение.

3.2. Требования к ключевым компонентам

Требования к компонентам аппаратуры потребителя (ПА) сильно варьируются в зависимости от класса оборудования.

Компонент	Характеристики для профессиональной ПА (Класс I)	Характеристики для массовой ПА (Класс II)
Антенна	Геодезического класса с подавлением многолучевости (Choke Ring), с известным и стабильным калиброванным фазовым центром, коэффициент усиления> 5 дБи.	Компактная встроенная patch-антенна, пассивная или с низким усилением, с широкой, ненормируемой диаграммой направленности.

Компонент	Характеристики для профессиональной ПА (Класс I)	Характеристики для массовой ПА (Класс II)
мшу (LNA)	Коэффициент шума <1.0 дБ, коэффициент усиления > 30 дБ, высокая линейность.	
Гетеродин	Высокостабильный термокомпенсированный кварцевый генератор (TCXO) с низким уровнем фазового шума для минимизации ошибок слежения за фазой несущей.	слежения за кодом.
АЦП (ADC)	Разрядность не менее 4 бит, высокая частота дискретизации для обработки широкополосных сигналов и повышения помехоустойчивости.	оптимизирован по энергопотреблению и

3.3. Алгоритмы работы навигационного процессора

- 1. Поиск и слежение за сигналами:
 - Поиск (Acquisition): Начальный этап, на котором процессор ищет сигналы спутников. Для этого выполняется двумерный поиск в пространстве "доплеровский сдвиг кодовая задержка" путем многократного вычисления взаимной корреляции между принятым сигналом и локальной копией дальномерного кода.
 - Слежение (Tracking): после обнаружения сигнала ("захвата") активируются три цифровых следящих контура для точного сопровождения параметров сигнала:
 - DLL (Delay-Locked Loop): Контур слежения за задержкой кода, обеспечивает точное измерение псевдодальности.
 - PLL (Phase-Locked Loop): Контур фазовой автоподстройки частоты, обеспечивает точное слежение за фазой несущей, что необходимо для измерений фазы и Доплера.
 - FLL (Frequency-Locked Loop): Контур частотной автоподстройки, используется для грубого слежения за частотой и помогает PLL при высоких динамиках.
- 2. Декодирование сообщений: Извлечение битов навигационного сообщения (эфемерид, альманаха, поправок) из сигнала, за которым ведется слежение.

- 3. Решение навигационной задачи (PVT-решение):
 - Формирование системы нелинейных навигационных уравнений, где каждое уравнение связывает измеренную псевдодальность до одного спутника с неизвестными координатами приемника (x, y, z) и смещением его часов (Δt).
 - Для решения системы (требуется минимум 4 уравнения/спутника) используются итерационные методы, такие как метод наименьших квадратов или, что более распространено, фильтр Калмана, который позволяет не только вычислять текущее решение, но и прогнозировать его, а также эффективно сглаживать шум измерений.
 - В зависимости от класса ПА и наличия внешних данных, могут применяться разные методы: от стандартного SPP (Standard Point Positioning) до высокоточных PPP/RTK, использующих фазовые измерения. Часто применяется глубокая интеграция с инерциальными датчиками (IMU) для повышения точности и доступности навигации в сложных условиях (тоннели, городская застройка).

3.4. Протоколы вывода данных

Приемник предоставляет навигационную информацию внешним системам через стандартизированные протоколы и интерфейсы.

- Форматы данных:
 - NMEA 0183: де-факто стандартный текстовый протокол, используемый для вывода основных навигационных параметров в виде коротких сообщений (GGA, RMC, GSV и др.).
 - RTCM 3.x+: Стандарт, разработанный для передачи дифференциальных поправок и другой информации, необходимой для высокоточных режимов позиционирования (RTK, PPP).
 - BINEX (Binary Exchange Format): Эффективный бинарный формат, предназначенный для записи и передачи "сырых" измерений (псевдодальности, фазы несущей, доплеровского сдвига) и полного содержания навигационных сообщений для последующей обработки или анализа.
- Физические интерфейсы:
 - Последовательные порты: RS-232, RS-422 (для промышленных и геодезических приложений).
 - Сетевые интерфейсы: Ethernet (для передачи данных по IP-сетям, например, поправок RTCM).
 - Современные цифровые интерфейсы: USB.
 - Беспроводные интерфейсы: Bluetooth, Wi-Fi (преимущественно в массовой ПА).