Compare three different Yolo Versions V3, V5, and the latest version:

Models	YOLOv3	YOLOv5	Latest YOLOv.			
[5 pt] Comparison between these Models.						
Deploying year	2018	2020	Jan. 2023			
Architecture	Concentration Addition Residual Block Upwarefung Layer — Further Layers	Backbone Focus Conv Upsample Conv Conv Conv Conv Conv Conv Conv Conv	YOLOVB Head Cocking Head Coc			
Prediction scales	YOLOv3u makes predictions at three different scales with strides 32, 16, and 8. Then, it combines the results to get the final detection.		predictions for various tasks, returning either a list of Results			

Number of Anchors	YOLOv3u in pa anchors.	rticular has 3	YOLOv5n has 9 anchor boxes and the number of clusters is 9.		YOLOv8n is an anchor-free model. This means it predicts directly the center of an object instead of the offset from a known anchor box.	
Number of params	,	61,918 learnable 13 Convolution	YOLOv5n model has parameters	1.9 million different	YOLOv8n has nearly 5 million parameters.	
Loss Function	$\begin{aligned} & \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ & + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ & + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \lambda_{\text{scools}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{coolj}} \left(C_i - \hat{C}_i \right)^2 \\ & + \sum_{i=0}^{S^2} \mathbb{1}_{ij}^{\text{obj}} \left(\sum_{c \in \text{classes}} \left(p_i(c) - \hat{p}_i(c) \right)^2 \right) \end{aligned}$		$LOSS = L_{classification} + L_{c}$ $L_{classification} = \sum_{i=0}^{s^{2}} \ell_{i}^{obj} \sum_{j=0}^{B} \left[L_{confidence} = \sum_{i=0}^{s^{2}} \sum_{j=0}^{B} \ell_{i}^{obj} \left[\left(C_{i} \right) \right] $ $\sum_{i=0}^{s^{2}} \sum_{j=0}^{B} \ell_{i}^{noobj} \left[\left(C_{i} \right) \right]$	$\left(p_{i}\left(c ight)-\stackrel{\wedge}{p_{i}}\left(c ight) ight)^{2} ight]$ $_{i}-\stackrel{\wedge}{C_{i}} ight)^{2} ight]+\lambda_{noobj}$	$\begin{aligned} & \textbf{YOLOv8n} & \textbf{uses} & \textbf{VFL} & \textbf{Loss} & \textbf{as} \\ & \textbf{classification loss and DFL Loss+CIOU} \\ & \textbf{Loss as classification loss}. \end{aligned} \\ & \textbf{VFL}(p,q) = \begin{cases} -q(q\log(p) + (1-q)\log(1-p)) & q > 0 \\ -\alpha p^{\gamma}\log(1-p) & \text{CSDN @whalosoft}^{\Omega} \overline{4} \overline{4}, \end{cases} \\ & \textbf{DFL}(\mathcal{S}_i,\mathcal{S}_{i+1}) = -((y_{i+1}-y)\log(\mathcal{S}_i) + (y-y_b)\log(\mathcal{S}_{b+1})). \end{aligned}$	
[5 pt]Test video on	the previous models.		I			
Number of objects	2614		2272		2483	
speed(Detection Time)	597224.87 msec = 597 sec		26018.24 msec = 26 sec		28207.86 msec = 28 sec	
•	⊥ at the comparison for the	e next models.				
	T	T				
Models	yolov5n	yolov5s	yolov5m	yolov5l	yolov5x	

Deploying year	2020					
Architecture	Backbone Pocus Conv C					
Prediction scales	YOLOV5 makes a four-scale prediction head. It is modified to capture objects with a large-scale variation. An additional prediction scale is added to the prediction head of the proposed detection model.					
Number of Anchors	YOLOv5n has 9 anchor boxes and the number of clusters is 9.					
Number of params	YOLOv5n model has 1.9 million different parameters. YOLOv5s model has 7.2 million different parameters. YOLOv5m model has YOLOv5m model has 46.5 million different parameters.					

Loss Function	$LOSS = L_{classification} + L_{confidence} + L_{CIoU}$				
		$L_{classification}$	$_{m}=\sum_{i=0}^{s^{2}}\ell_{i}^{obj}\sum_{j=0}^{B}\left[\left(p_{i}\left(c ight) ight.$	$-\stackrel{\wedge}{p_i}(c)\Big)^2\Big]$	
	$egin{aligned} L_{confidence} &= \sum_{i=0}^{s^2} \sum_{j=0}^{B} \ell_i^{obj} \left[\left(C_i - \overset{\wedge}{C_i} ight)^2 ight] + \lambda_{noobj} \ \sum_{i=0}^{s^2} \sum_{j=0}^{B} \ell_i^{noobj} \left[\left(C_i - \overset{\wedge}{C_i} ight)^2 ight] \end{aligned}$				
Test video on the pr	evious models.				
Number of objects	2272	2428	2583	2668	2719
speed(Detection	26217.75 msec	63514.08 msec	154673.03 msec	300879.21 msec = 300 sec	535098.98 msec
Cpu	= 26 sec	= 63 sec	= 154 sec	355 350	= 535 sec

Assumptions:

For the comparison, I have used Yolo 3u, 5n, and 8n.

Referefnece:

[1] https://blog.roboflow.com/yolov5-improvements-and-evaluation/

[2] https://blog.roboflow.com/whats-new-in-yolov8/

[3]https://www.mdpi.com/2077-1312/10/9/1230#:~:text=To%20suppress%20t he%20effect%20of.of%20the%20proposed%20detection%20model.

[4]https://www.coursera.org/learn/programming-languages?fbclid=IwAR1ao8Y

4y6DIiZRQziiU nX XRVt6qQdkfcLGNP3Qicp9uGq2ICYJkg5Ulo

 $\begin{tabular}{l} [5] $\underline{$https://blog.csdn.net/qq} $\underline{$29788741/article/details/128626422} \\ \end{tabular}$

[6] https://github.com/ultralytics/yolov5