Задача А. Сажаем траву

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

У Фермера Джона есть n пастбищ ($2 \le n \le 100\,000$), соединенных n-1 двунаправленными дорогами так, что между любыми двумя пастбищами существует ровно один путь.

Бесси, любимая корова фермера Джона, пожаловалась, что вдоль дорог не растет трава, и фермер решил это исправить, посадив несколько кустов травы вдоль дорог.

Он делает это, используя процедуру, которая состоит из m шагов.

На каждом шаге происходит одна из двух вещей:

- Р-запрос: фермер Джон выбирает два пастбища и высаживает по одному кусту травы на каждой дороге на пути между ними.
- Q-запрос: Бесси выбирает дорогу и спрашивает, сколько кустов травы на ней высажено.

Помогите фермеру отвечать на вопросы Бесси.

Формат входных данных

Первая строка содержит два натуральных числа n и m ($2 \le n \le 10^5$, $1 \le m \le 10^5$).

Следующие n-1 строк описывают дороги, каждая дорога описывается номерами пастбищ, которые она соединяет.

Следующие m строк описывают шаги фермера. Первый символ каждой строки либо \mathbb{Q} - тип запроса. Затем следуют два разделенных пробелом целых числа a_i и b_i ($1 \le a_i, b_i \le n$), которые описывают путь для \mathbb{P} -запроса или дорогу для \mathbb{Q} -запроса.

Формат выходных данных

Выведите ответы на запросы в том порядке, в котором поступали эти запросы, по одному ответу в строке.

Система оценки

Подзадача 1 (баллы: 40)

Дополнительное ограничение $n, m \leq 2000$.

Подзадача 2 (баллы: 30)

Дополнительное ограничение $n, m \leq 50\,000$.

Подзадача 3 (баллы: 30)

Дополнительных ограничений нет.

стандартный ввод	стандартный вывод
4 6	2
1 4	1
2 4	2
3 4	
P 2 3	
P 1 3	
Q 3 4	
P 1 4	
Q 2 4	
Q 1 4	

Задача В. Почтовая реформа

 Имя входного файла:
 mail.in

 Имя выходного файла:
 mail.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

В Флатландии идет пора реформ. Недавно была проведена реформа дорог, так что теперь по дорогам страны из любого города можно добраться в любой другой, причем только одним способом. Также была проведена реформа волшебников, так что в каждом городе остался ровно один волшебник. Теперь же началась реформа почтовой системы.

Недавно образованное почтовое агентство «Экс-Федя» предлагает уникальную услугу — коллективную посылку. Эта услуга позволяет отправлять посылки жителям всех городов на каком-либо пути по цене обычной посылки. Удивительно, но пользоваться такой услугой стали только волшебники Флатландии, которые стали в большом количестве отправлять друг другу магические кактусы. Агентство столкнулось с непредвиденной проблемой: как известно, все волшебники живут в башнях и мало того, что не строят в них лестницы, так еще время от времени меняют их высоту. Поэтому, чтобы доставить посылку волшебнику, который живет в башне высотой h, курьеру агентства требуется иметь с собой не менее h метров веревки.

Вам поручено руководить отделом логистики — по имеющимся данным о высотах башен и об их изменениях вам нужно определять минимальную длину веревки, которую нужно выдать курьеру, который доставляет посылки между городами i и j.

Формат входных данных

Первая строка входного файла содержит число n — количество городов в Флатландии ($1 \le n \le 50000$). Во второй строке находится n положительных чисел, не превосходящих 10^5 — высоты башен в городах. В следующих n-1 строках содержится по два числа u_i и v_i — описание i-й дороги, $1 \le u_i, v_i \le n, u_i \ne v_i$. В следующий строке содержится число k — количество запросов ($1 \le k \le 100000$). В следующих k строках содержатся описания запросов в следующем формате:

- Уведомление от волшебника из города i о том, что высота его башни стала равна h, имеет вид ! i h, $1 \le i \le n$, $1 \le h \le 10^5$.
- Запрос от курьера о выдаче веревки для доставки посылок во все города на пути от i до j включительно имеет вид ? i j, $1 \le i, j \le n$.

Формат выходных данных

Для каждого запроса доставки посылок выведите минимальную длину веревки, которую необходимо выдать курьеру.

mail.in	mail.out
3	3
1 2 3	3
1 3	5
2 3	
5	
? 1 2	
! 1 5	
? 2 3	
! 3 2	
? 1 2	
1	1
100	1000
5	
! 1 1	
? 1 1	
! 1 1000	
? 1 1	
! 1 1	

Задача С. Связность в дереве

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Есть граф из n вершин. Требуется обрабатывать следующие запросы:

- ullet link U V добавить ребро UV. Гарантируется, что до этого запроса вершины U и V были в разных компонентах связности.
- \bullet cut V yдалить ребро UV. Гарантируется, что такое ребро существовало.
- ullet connected U V проверить, правда ли вершины U и V лежат в одной компоненте связности.

Формат входных данных

Первая строка содержит два числа n $(2 \leqslant n \leqslant 10^5)$ и m $(1 \leqslant m \leqslant 10^5)$ — число вершин и число операций. Следующие m строк содержат операции.

Формат выходных данных

Для каждой операции $connected\ V\ U$ выведите 1, если вершины в одной компоненте или 0 если в разных.

стандартный ввод	стандартный вывод
5 10	1
link 2 5	0
link 1 5	1
connected 1 2	1
cut 2 5	
connected 1 2	
connected 5 1	
link 2 3	
link 2 4	
link 3 5	
connected 1 2	

Задача D. Размер компонент

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Есть граф из n вершин. Требуется обрабатывать следующие запросы:

- ullet link U V добавить ребро UV. Гарантируется, что до этого запроса вершины U и V были в разных компонентах связности.
- \bullet cut V V удалить ребро UV. Гарантируется, что такое ребро существовало.
- ullet size V узнать размер компоненты связности вершины V.

Формат входных данных

Первая строка содержит два числа n $(2 \leqslant n \leqslant 10^5)$ и m $(1 \leqslant m \leqslant 10^5)$ — число вершин и число операций. Следующие m строк содержат операции.

Формат выходных данных

Для каждой операции $connected\ V\ U$ выведите 1, если вершины в одной компоненте или 0 если в разных.

стандартный ввод	стандартный вывод
5 10	3
link 2 5	2
link 1 5	1
size 1	5
cut 2 5	
size 1	
size 2	
link 2 3	
link 2 4	
link 3 5	
size 1	

Задача Е. Декомпозиция

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим дерево T. Назовем деревом декомпозиции корневое дерево D(T).

Выберем любую из вершин дерева T, назовем ее r. Рассмотрим все компоненты связности дерева T, после удаления вершины r: S_1, S_2, \ldots, S_k . Тогда корнем D(T) будет вершина r, а детьми r в D(T) будут $D(S_1), D(S_2), \ldots, D(S_k)$.

Вам задано T. Найдите дерево декомпозиции, высота которого не более 20. Высотой дерева называется максимальное число вершин, которые может содержать простой путь начинающийся в корне.

Формат входных данных

Первая строка содержит n — число вершин дерева T ($1 \le n \le 2 \cdot 10^5$).

Следующие n-1 строк содержат ребра дерева. Каждое ребро описывается парой чисел v_i, u_i — концы ребра $(1 \le v_i, u_i \le n)$.

Формат выходных данных

Выведите n чисел: i-е число — родитель вершины i в дереве декомпозиции, если вершина является корнем, выведите 0.

стандартный ввод	стандартный вывод
3	2 0 2
1 2	
2 3	
9	0 1 2 2 1 1 6 6 8
3 2	
4 2	
1 2	
5 1	
1 6	
7 6	
6 8	
8 9	

Задача F. Черно-белое дерево

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим дерево из n вершин. Каждая вершина покрашена в черный или белый цвет. Изначально все вершины черные. Требуется отвечать на два типа запросов:

- 1. Поменять цвет вершины.
- 2. Найти сумму расстояний от заданной вершины до всех вершин того же цвета.

Формат входных данных

Первая строка содержит n — число вершин дерева $(1\leqslant n\leqslant 2\cdot 10^5)$ и m — число запросов $(1\leqslant m\leqslant 10^5)$.

Следующие n-1 строк содержат ребра дерева. Каждое ребро описывается парой чисел v_i, u_i — концы ребра $(1 \le v_i, u_i \le n)$.

Следующие m строк содержат запросы, каждый вопрос задается двумя числами: тип запроса (1 или 2) и номер вершины.

Формат выходных данных

Для каждого запроса второго типа выведите ответ на него.

стандартный ввод	стандартный вывод
3 3	3
1 2	0
2 3	
2 1	
1 2	
2 2	
9 5	14
3 2	13
4 2	2
1 2	
5 1	
1 6	
7 6	
6 8	
8 9	
2 1	
1 2	
2 6	
1 5	
2 2	