MLAI Week 8 Exercise: Unsupervised Learning

Note: An indicative mark is in front of each question. The total mark is 13. You may mark your own work when we release the solutions.

- 1. Consider 30-bit deep colour images of size 1200×1200 . How many possible images of this size and bit depth are there?
- 2. We are using PCA to reduce data dimensionality from 3 to 2. The top two eigenvectors are $\begin{pmatrix} 0.4729 & -0.8817 \\ -0.8817 & -0.4719 \end{pmatrix}$ where each column is an eigenvector. Use this PCA transformation to reduce the dimensionality of two data points $\mathbf{x}_1 = (2,3,3)^{\top}$ and $\mathbf{x}_2 = (4,1,0))^{\top}$ to 2 as $\hat{\mathbf{x}}_1$ and $\hat{\mathbf{x}}_2$. Show the procedures to compute $\hat{\mathbf{x}}_1$ and $\hat{\mathbf{x}}_2$.
- 3. Given a dataset $\{0, 2, 4, 6, 24, 26\}$, initialise the k-means clustering algorithm with 2 cluster centres $c_1 = 3$ and $c_2 = 4$. What are the values of c_1 and c_2 after one iteration of k-means? What are the values of c_1 and c_2 after the second iteration of k-means?
- $\boxed{2}$ 4. For the graph below, compute the normalised cut Ncut(A, B).

- 3 5. An alternative to derive PCA is to minimize the reconstruction error (Slide 26) for all N data samples $\mathbf{x}^{(i)}, i=1,\cdots,N$, assuming that the mean $\boldsymbol{\mu}=\sum_i \mathbf{x}^{(i)}$ is zero. Take this approach to derive the first principal component (as the first eigenvector of the data matrix).
- $\boxed{3}$ 6. In spectral clustering, show that the smallest eigenvalue for the formulated generalized eigenvalue problem on Slide 41 is 0 with the corresponding generalized eigenvector $\mathbf{y} = \mathbf{1}$, hence the same "representation/embedding" for all nodes.