295199USOPCT.ST25.txt SEQUENCE LISTING

<110>	Endo, Keiji Ozaki, Katsuya	
<120>	Modified promoter	
<130>	295199us0PCT	
<140> <141>	10/589,960 2006-08-18	
<150> <151>	PCT/JP05/03757 2006-03-04	
<150> <151>	JP 2004-062853 2004-03-05	
<160>	20	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 572 DNA Bacillus sp. KSM-S237	
<400> gatttg	1 ccga tgcaacaggc ttatatttag aggaaatttc tttttaaatt gaatacggaa	60
taaaat	cagg taaacaggtc ctgattttat ttttttgagt tttttagaga actgaagatt	120
gaaata	aaag tagaagacaa aggacataag aaaattgcat tagttttaat tatagaaaac	180
gccttt	ttat aattatttat acctagaacg aaaatactgt ttcgaaagcg gtttactata	240
aaacct	tata ttccggctct tttttaaaac agggggtaaa aattcactct agtattctaa	300
tttcaa	catg ctataataaa tttgtaagac gcaatatgca tctcttttt tacgatatat	360
gtaagc	ggtt aaccttgtgc tatatgccga tttaggaagg ggggtagatt gagtcaagta	420
gtaata	atat agataactta taagttgttg agaagcagga gagcatctgg gttactcaca	480
agtttt	ttta aaactttaac gaaagcactt tcggtaatgc ttatgaattt agctatttga	540
ttcaat	tact ttaaaaatat ttaggaggta at	572
<210> <211> <212> <213>	2 609 DNA Bacillus sp. KSM-64	
<400>	2 tacc attttagagt caaaagatag aagccaagca ggatttgccg atgcaaccgg	60
_	ttta gagggaattt ctttttaaat tgaatacgga ataaaatcag gtaaacaggt	120
	ttta ttttttgaa ttttttgag aactaaagat tgaaatagaa gtagaagaca	180
•	ataa gaaaattgta ttagttttaa ttatagaaaa cgcttttcta taattattta	240
a c g g a c		

tacctagaac	gaaaatactg		95199USOPCT ggtttactat	.ST25.txt aaaaccttat	attccggctc	300
ttttttaaa	cagggggtga	aaattcactc	tagtattcta	atttcaacat	gctataataa	360
atttgtaaga	cgcaatatac	atctttttt	tatgatattt	gtaagcggtt	aaccttgtgc	420
tatatgccga	tttaggaagg	gggtagattg	agtcaagtag	tcataattta	gataacttat	480
aagttgttga	gaagcaggag	agaatctggg	ttactcacaa	gttttttaaa	acattatcga	540
aagcactttc	ggttatgctt	atgaatttag	ctatttgatt	caattacttt	aataatttta	600
ggaggtaat						609
<210> 3 <211> 3149 <212> DNA <213> Baci) illus sp. KS	SM-S237				
<400> 3 gatttgccga	tgcaacaggc	ttatatttag	aggaaatttc	tttttaaatt	gaatacggaa	60
taaaatcagg	taaacaggtc	ctgattttat	ttttttgagt	tttttagaga	actgaagatt	120
gaaataaaag	tagaagacaa	aggacataag	aaaattgcat	tagttttaat	tatagaaaac	180
gcctttttat	aattattat	acctagaacg	aaaatactgt	ttcgaaagcg	gtttactata	240
aaaccttata	ttccggctct	tttttaaaac	agggggtaaa	aattcactct	agtattctaa	300
tttcaacatg	ctataataaa	tttgtaagac	gcaatatgca	tctcttttt	tacgatatat	360
gtaagcggtt	aaccttgtgc	tatatgccga	tttaggaagg	ggggtagatt	gagtcaagta	420
gtaataatat	agataactta	taagttgttg	agaagcagga	gagcatctgg	gttactcaca	480
agtttttta	aaactttaac	gaaagcactt	tcggtaatgc	ttatgaattt	agctatttga	540
ttcaattact	ttaaaaatat	ttaggaggta	atatgtgtta	agaaagaaaa	caaagcagtt	600
gatttcttcc	attcttattt	tagttttact	tctatcttta	tttccggcag	ctcttgcagc	660
agaaggaaac	actcgtgaag	acaattttaa	acatttatta	ggtaatgaca	atgttaaacg	720
cccttctgag	gctggcgcat	tacaattaca	agaagtcgat	ggacaaatga	cattagtaga	780
tcaacatgga	gaaaaaattc	aattacgtgg	aatgagtaca	cacggattac	agtggtttcc	840
tgagatcttg	aatgataacg	catacaaagc	tctttctaac	gattgggatt	ccaatatgat	900
tcgtcttgct	atgtatgtag	gtgaaaatgg	gtacgctaca	aaccctgagt	taatcaaaca	960
aagagtgatt	gatggaattg	agttagcgat	tgaaaatgac	atgtatgtta	ttgttgactg	1020
gcatgttcat	gcgccaggtg	atcctagaga	tcctgtttat	gcaggtgcta	aagatttctt	1080
tagagaaatt	gcagctttat	accctaataa	tccacacatt	atttatgagt	tagcgaatga	1140
gccgagtagt	aataataatg	gtggagcagg	gattccgaat	aacgaagaag	gttggaaagc	1200
ggtaaaagaa	tatgctgatc	caattgtaga	aatgttacgt	aaaagcggta	atgcagatga	1260

caacattatc	attgttggta		95199USOPCT gagtcagcgt		cagctgataa	1320
tccaattgat	gatcaccata	caatgtatac	tgttcacttc	tacactggtt	cacatgctgc	1380
ttcaactgaa	agctatccgt	ctgaaactcc	taactctgaa	agaggaaacg	taatgagtaa	1440
cactcgttat	gcgttagaaa	acggagtagc	ggtatttgca	acagagtggg	gaacgagtca	1500
agctagtgga	gacggtggtc	cttactttga	tgaagcagat	gtatggattg	aatttttaaa	1560
tgaaaacaac	attagctggg	ctaactggtc	tttaacgaat	aaaaatgaag	tatctggtgc	1620
atttacacca	ttcgagttag	gtaagtctaa	cgcaaccaat	cttgacccag	gtccagatca	1680
tgtgtgggca	ccagaagaat	taagtctttc	tggagaatat	gtacgtgctc	gtattaaagg	1740
tgtgaactat	gagccaatcg	accgtacaaa	atacacgaaa	gtactttggg	actttaatga	1800
tggaacgaag	caaggatttg	gagtgaattc	ggattctcca	aataaagaac	ttattgcagt	1860
tgataatgaa	aacaacactt	tgaaagtttc	gggattagat	gtaagtaacg	atgtttcaga	1920
tggcaacttc	tgggctaatg	ctcgtctttc	tgccaacggt	tggggaaaaa	gtgttgatat	1980
tttaggtgct	gagaagctta	caatggatgt	tattgttgat	gaaccaacga	cggtagctat	2040
tgcggcgatt	ccacaaagta	gtaaaagtgg	atgggcaaat	ccagagcgtg	ctgttcgagt	2100
gaacgcggaa	gattttgtcc	agcaaacgga	cggtaagtat	aaagctggat	taacaattac	2160
aggagaagat	gctcctaacc	taaaaaatat	cgcttttcat	gaagaagata	acaatatgaa	2220
caacatcatt	ctgttcgtgg	gaactgatgc	agctgacgtt	atttacttag	ataacattaa	2280
agtaattgga	acagaagttg	aaattccagt	tgttcatgat	ccaaaaggag	aagctgttct	2340
tccttctgtt	tttgaagacg	gtacacgtca	aggttgggac	tgggctggag	agtctggtgt	2400
gaaaacagct	ttaacaattg	aagaagcaaa	cggttctaac	gcgttatcat	gggaatttgg	2460
atatccagaa	gtaaaaccta	gtgataactg	ggcaacagct	ccacgtttag	atttctggaa	2520
atctgacttg	gttcgcggtg	agaatgatta	tgtagctttt	gatttctatc	tagatccagt	2580
tcgtgcaaca	gaaggcgcaa	tgaatatcaa	tttagtattc	cagccaccta	ctaacgggta	2640
ttgggtacaa	gcaccaaaaa	cgtatacgat	taactttgat	gaattagagg	aagcgaatca	2700
agtaaatggt	ttatatcact	atgaagtgaa	aattaacgta	agagatatta	caaacattca	2760
agatgacacg	ttactacgta	acatgatgat	catttttgca	gatgtagaaa	gtgactttgc	2820
agggagagtc	tttgtagata	atgttcgttt	tgagggggct	gctactactg	agccggttga	2880
accagagcca	gttgatcċtg	gcgaagagac	gccacctgtc	gatgagaagg	aagcgaaaaa	2940
agaacaaaaa	gaagcagaga	aagaagagaa	agaagcagta	aaagaagaaa	agaaagaagc	3000
taaagaagaa	aagaaagcag	tcaaaaatga	ggctaagaaa	aaataatcta	ttaaactagt	3060
tatagggtta	tctaaaggtc	tgatgtagat	cttttagata	acctttttct	tgcataactg	3120
gacacagagt	tgttattaaa	gaaagtaag	Page	3		3149

Page 3

```
<210>
        795
        Bacillus sp. KSM-S237
<400>
Ala Glu Gly Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn 10 15
Asp Asn Val Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu 20 25 30
Val Asp Gly Gln Met Thr Leu Val Asp Gln His Gly Glu Lys Ile Gln 35 40 45
Leu Arg Gly Met Ser Thr His Gly Leu Gln Trp Phe Pro Glu Ile Leu 50 60
Asn Asp Asn Ala Tyr Lys Ala Leu Ser Asn Asp Trp Asp Ser Asn Met 65 70 75 80
Ile Arg Leu Ala Met Tyr Val Gly Glu Asn Gly Tyr Ala Thr Asn Pro
85 90 95
Glu Leu Ile Lys Gln Arg Val Ile Asp Gly Ile Glu Leu Ala Ile Glu
100 105 110
Asn Asp Met Tyr Val Ile Val Asp Trp His Val His Ala Pro Gly Asp 115 120
Pro Arg Asp Pro Val Tyr Ala Gly Ala Lys Asp Phe Phe Arg Glu Ile
130 135 140
Ala Ala Leu Tyr Pro Asn Asn Pro His Ile Ile Tyr Glu Leu Ala Asn 145 150 155 160
Glu Pro Ser Ser Asn Asn Asn Gly Gly Ala Gly Ile Pro Asn Asn Glu
165 170 175
Glu Gly Trp Lys Ala Val Lys Glu Tyr Ala Asp Pro Ile Val Glu Met
180 185
Leu Arg Lys Ser Gly Asn Ala Asp Asp Asn Ile Ile Ile Val Gly Ser
    Asn Trp Ser Gln Arg Pro Asp Leu Ala Ala Asp Asn Pro Ile Asp 210 215 220
                                             Page 4
```

Asp His His Thr Met Tyr Thr Val His Phe Tyr Thr Gly Ser His Ala 225 230 235 240 Ala Ser Thr Glu Ser Tyr Pro Ser Glu Thr Pro Asn Ser Glu Arg Gly 245 250 255 Asn Val Met Ser Asn Thr Arg Tyr Ala Leu Glu Asn Gly Val Ala Val 260 265 270 Phe Ala Thr Glu Trp Gly Thr Ser Gln Ala Ser Gly Asp Gly Gly Pro 275 280 285 Phe Asp Glu Ala Asp Val Trp Ile Glu Phe Leu Asn Glu Asn Asn 290 295 300 Ile Ser Trp Ala Asn Trp Ser Leu Thr Asn Lys Asn Glu Val Ser Gly 305 310 315 320 Ala Phe Thr Pro Phe Glu Leu Gly Lys Ser Asn Ala Thr Asn Leu Asp 325 330 335 Pro Gly Pro Asp His Val Trp Ala Pro Glu Glu Leu Ser Leu Ser Gly 340 345 Glu Tyr Val Arg Ala Arg Ile Lys Gly Val Asn Tyr Glu Pro Ile Asp 355 360 365 Arg Thr Lys Tyr Thr Lys Val Leu Trp Asp Phe Asn Asp Gly Thr Lys 370 380 Gln Gly Phe Gly Val Asn Ser Asp Ser Pro Asn Lys Glu Leu Ile Ala 385 390 395 400 Val Asp Asn Glu Asn Asn Thr Leu Lys Val Ser Gly Leu Asp Val Ser 405 410 415 Asn Asp Val Ser Asp Gly Asn Phe Trp Ala Asn Ala Arg Leu Ser Ala 420 425 430 Asn Gly Trp Gly Lys Ser Val Asp Ile Leu Gly Ala Glu Lys Leu Thr 435 440 445 Met Asp Val Ile Val Asp Glu Pro Thr Thr Val Ala Ile Ala Ala Ile 450 455 460 Pro Gln Ser Ser Lys Ser Gly Trp Ala Asn Pro Glu Arg Ala Val Arg Page 5

Val Asn Ala Glu Asp Phe Val Gln Gln Thr Asp Gly Lys Tyr Lys Ala 485 490 495 Gly Leu Thr Ile Thr Gly Glu Asp Ala Pro Asn Leu Lys Asn Ile Ala 500 505 Phe His Glu Glu Asp Asn Asn Met Asn Asn Ile Ile Leu Phe Val Gly 515 520 525 Thr Asp Ala Ala Asp Val Ile Tyr Leu Asp Asn Ile Lys Val Ile Gly 530 540 Thr Glu Val Glu Ile Pro Val Val His Asp Pro Lys Gly Glu Ala Val 545 550 555 560 Leu Pro Ser Val Phe Glu Asp Gly Thr Arg Gln Gly Trp Asp Trp Ala
565 570 575 Gly Glu Ser Gly Val Lys Thr Ala Leu Thr Ile Glu Glu Ala Asn Gly 580 585 590 Ser Asn Ala Leu Ser Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser 595 600 605 Asp Asn Trp Ala Thr Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu 610 620 Val Arg Gly Glu Asn Asp Tyr Val Ala Phe Asp Phe Tyr Leu Asp Pro 625 630 640 Val Arg Ala Thr Glu Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro 645 650 655 Pro Thr Asn Gly Tyr Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn 660 665 670 Phe Asp Glu Leu Glu Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr 675 680 685 Glu Val Lys Ile Asn Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr 690 700 Leu Leu Arg Asn Met Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe 705 710 715 720

Page 6

295199USOPCT.ST25.txt Ala Gly Arg Val Phe Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr 725 730 735

Thr Glu Pro Val Glu Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro 740 745 750

Pro Val Asp Glu Lys Glu Ala Lys Lys Glu Gln Lys Glu Ala Glu Lys 755 760 765

Glu Glu Lys Glu Ala Val Lys Glu Glu Lys Lys Glu Ala Lys Glu Glu 770 775 780

Lys Lys Ala Val Lys Asn Glu Ala Lys Lys Lys 785 790 795

<210> 5 <211> 3332

<212> DNA <213> Bacillus sp. KSM-64

<400> 60 agtacttacc attttagagt caaaagatag aagccaagca ggatttgccg atgcaaccgg 120 cttatattta gagggaattt ctttttaaat tgaatacgga ataaaatcag gtaaacaggt 180 cctgatttta ttttttgaa tttttttgag aactaaagat tgaaatagaa gtagaagaca 240 acggacataa gaaaattgta ttagttttaa ttatagaaaa cgcttttcta taattattta tacctagaac gaaaatactg tttcgaaagc ggtttactat aaaaccttat attccggctc 300 360 tttttttaaa cagggggtga aaattcactc tagtattcta atttcaacat gctataataa atttgtaaga cgcaatatac atctttttt tatgatattt gtaagcggtt aaccttgtgc 420 tatatgccga tttaggaagg gggtagattg agtcaagtag tcataattta gataacttat 480 aagttgttga gaagcaggag agaatctggg ttactcacaa gttttttaaa acattatcga 540 aagcactttc ggttatgctt atgaatttag ctatttgatt caattacttt aataatttta 600 ggaggtaata tgatgttaag aaagaaaaca aagcagttga tttcttccat tcttatttta 660 720 gttttacttc tatctttatt tccgacagct cttgcagcag aaggaaacac tcgtgaagac 780 aattttaaac atttattagg taatgacaat gttaaacgcc cttctgaggc tggcgcatta 840 caattacaag aagtcgatgg acaaatgaca ttagtagatc aacatggaga aaaaattcaa ttacgtggaa tgagtacaca cggattacaa tggtttcctg agatcttgaa tgataacgca 900 tacaaagctc ttgctaacga ttgggaatca aatatgattc gtctagctat gtatgtcggt 960 gaaaatggct atgcttcaaa tccagagtta attaaaagca gagtcattaa aggaatagat 1020 1080 cttgctattg aaaatgacat gtatgtcatc gttgattggc atgtacatgc acctggtgat 1140 cctagagatc ccgtttacgc tggagcagaa gatttcttta gagatattgc agcattatat Page 7

cctaacaatc	cacacattat	ttatgagtta	gcgaatgagc	caagtagtaa	caataatggt	1200
ggagctggga	ttccaaataa	tgaagaaggt	tggaatgcgg	taaaagaata	cgctgatcca	1260
attgtagaaa	tgttacgtga	tagcgggaac	gcagatgaca	atattatcat	tgtgggtagt	1320
ccaaactgga	gtcagcgtcc	tgacttagca	gctgataatc	caattgatga	tcaccataca	1380
atgtatactg	ttcacttcta	cactggttca	catgctgctt	caactgaaag	ctatccgcct	1440
gaaactccta	actctgaaag	aggaaacgta	atgagtaaca	ctcgttatgc	gttagaaaac	1500
ggagtagcag	tatttgcaac	agagtgggga	actagccaag	caaatggaga	tggtggtcct	1560
tactttgatg	aagcagatgt	atggattgag	tttttaaatg	aaaacaacat	tagctgggct	1620
aactggtctt	taacgaataa	aaatgaagta	tctggtgcat	ttacaccatt	cgagttaggt	1680
aagtctaacg	caacaagtct	tgacccaggg	ccagaccaag	tatgggtacc	agaagagtta	1740
agtctttctg	gagaatatgt	acgtgctcgt	attaaaggtg	tgaactatga	gccaatcgac	1800
cgtacaaaat	acacgaaagt	actttgggac	tttaatgatg	gaacgaagca	aggatttgga	1860
gtgaatggag	attctccagt	tgaagatgta	gttattgaga	atgaagcggg	cgctttaaaa	1920
ctttcaggat	tagatgcaag	taatgatgtt	tctgaaggta	attactgggc	taatgctcgt	1980
ctttctgccg	acggttgggg	aaaaagtgtt	gatattttag	gtgctgaaaa	acttactatg	2040
gatgtgattg	ttgatgagcc	gaccacggta	tcaattgctg	caattccaca	agggccatca	2100
gccaattggg	ttaatccaaa	tcgtgcaatt	aaggttgagc	caactaattt	cgtaccgtta	2160
ggagataagt	ttaaagcgga	attaactata	acttcagctg	actctccatc	gttagaagct	2220
attgcgatgc	atgctgaaaa	taacaacatc	aacaacatca	ttctttttgt	aggaactgaa	2280
ggtgctgatg	ttatctattt	agataacatt	aaagtaattg	gaacagaagt	tgaaattcca	2340
gttgttcatg	atccaaaagg	agaagctgtt	cttccttctg	tttttgaaga	cggtacacgt	2400
caaggttggg	actgggctgg	agagtctggt	gtgaaaacag	ctttaacaat	tgaagaagca	2460
aacggttcta	acgcgttatc	atgggaattt	ggatacccag	aagtaaaacc	tagtgataac	2520
tgggcaacag	ctccacgttt	agatttctgg	aaatctgact	tggttcgcgg	tgaaaatgat	2580
tatgtaactt	ttgatttcta	tctagatcca	gttcgtgcaa	cagaaggcgc	aatgaatatc	2640
aatttagtat	tccagccacc	tactaacggg	tattgggtac	aagcaccaaa	aacgtatacg	2700
attaactttg	atgaattaga	ggaagcgaat	caagtaaatg	gtttatatca	ctatgaagtg	2760
aaaattaacg	taagagatat	tacaaacatt	caagatgaca	cgttactacg	taacatgatg	2820
atcatttttg	cagatgtaga	aagtgacttt	gcagggagag	tctttgtaga	taatgttcgt	2880
tttgaggggg	ctgctactac	tgagccggtt	gaaccagagc	cagttgatcc	tggcgaagag	2940
acgccgcctg	tcgatgagaa	ggaagcgaaa	aaagaacaaa	aagaagcaga	gaaagaagag	3000

aaagaagcag	taaaagaaga	aaagaaagaa	gctaaagaag	aaaagaaagc	aatcaaaaat	3060
gaggctacga	aaaaataatc	taataaacta	gttatagggt	tatctaaagg	tctgatgcag	3120
atcttttaga	taaccttttt	ttgcataact	ggacatagaa	tggttattaa	agaaagcaag	3180
gtgtttatac	gatattaaaa	aggtagcgat	tttaaattga	aacctttaat	aatgtcttgt	3240
gatagaatga	tgaagtaatt	taagaggggg	aaacgaagtg	aaaacggaaa	tttctagtag	3300
aagaaaaaca	gaccaagaaa	tactgcaagc	tt			3332

- 6 793
- PRT Baccillus sp. KSM-64
- <400>

Ala Glu Gly Asn Thr Arg Glu Asp Asn Phe Lys His Leu Leu Gly Asn 10 15

Asp Asn Val Lys Arg Pro Ser Glu Ala Gly Ala Leu Gln Leu Gln Glu 20 25 30

Val Asp Gly Gln Met Thr Leu Val Asp Gln His Gly Glu Lys Ile Gln 35 40 45

Leu Arg Gly Met Ser Thr His Gly Leu Gln Trp Phe Pro Glu Ile Leu 50 60

Asn Asp Asn Ala Tyr Lys Ala Leu Ala Asn Asp Trp Glu Ser Asn Met 65 70 75 80

Ile Arg Leu Ala Met Tyr Val Gly Glu Asn Gly Tyr Ala Ser Asn Pro

Glu Leu Ile Lys Ser Arg Val Ile Lys Gly Ile Asp Leu Ala Ile Glu 100 105 110

Asn Asp Met Tyr Val Ile Val Asp Trp His Val His Ala Pro Gly Asp 115 120 125

Pro Arg Asp Pro Val Tyr Ala Gly Ala Glu Asp Phe Phe Arg Asp Ile 130 135 140

Ala Ala Leu Tyr Pro Asn Asn Pro His Ile Ile Tyr Glu Leu Ala Asn 145 150 155 160

Glu Pro Ser Ser Asn Asn Asn Gly Gly Ala Gly Ile Pro Asn Asn Glu 165 170 175

Glu Gly Trp Asn Ala Val Lys Glu Tyr Ala Asp Pro Ile Val Glu Met 180 185 190 Leu Arg Asp Ser Gly Asn Ala Asp Asp Asn Ile Ile Ile Val Gly Ser 195 200 205 Pro Asn Trp Ser Gln Arg Pro Asp Leu Ala Ala Asp Asn Pro Ile Asp 210 215 220 Asp His His Thr Met Tyr Thr Val His Phe Tyr Thr Gly Ser His Ala 225 230 235 240 Ala Ser Thr Glu Ser Tyr Pro Pro Glu Thr Pro Asn Ser Glu Arg Gly 245 250 255 Asn Val Met Ser Asn Thr Arg Tyr Ala Leu Glu Asn Gly Val Ala Val 260 265 270 Phe Ala Thr Glu Trp Gly Thr Ser Gln Ala Asn Gly Asp Gly Gly Pro 275 280 285 Tyr Phe Asp Glu Ala Asp Val Trp Ile Glu Phe Leu Asn Glu Asn Asn 290 295 300 Ile Ser Trp Ala Asn Trp Ser Leu Thr Asn Lys Asn Glu Val Ser Gly 305 310 315 320 Ala Phe Thr Pro Phe Glu Leu Gly Lys Ser Asn Ala Thr Ser Leu Asp 325 330 335 Pro Gly Pro Asp Gln Val Trp Val Pro Glu Glu Leu Ser Leu Ser Gly 340 345 350 Glu Tyr Val Arg Ala Arg Ile Lys Gly Val Asn Tyr Glu Pro Ile Asp 355 360 365 Arg Thr Lys Tyr Thr Lys Val Leu Trp Asp Phe Asn Asp Gly Thr Lys 370 380 Gln Gly Phe Gly Val Asn Gly Asp Ser Pro Val Glu Asp Val Val Ile 385 390 395 400 Glu Asn Glu Ala Gly Ala Leu Lys Leu Ser Gly Leu Asp Ala Ser Asn 405 410 415 Asp Val Ser Glu Gly Asn Tyr Trp Ala Asn Ala Arg Leu Ser Ala Asp 420 425 430 Page 10

Gly Trp Gly Lys Ser Val Asp Ile Leu Gly Ala Glu Lys Leu Thr Met 435 440 445 Asp Val Ile Val Asp Glu Pro Thr Thr Val Ser Ile Ala Ala Ile Pro 450 460 Gln Gly Pro Ser Ala Asn Trp Val Asn Pro Asn Arg Ala Ile Lys Val 465 470 475 480 Glu Pro Thr Asn Phe Val Pro Leu Gly Asp Lys Phe Lys Ala Glu Leu 485 490 495 Thr Ile Thr Ser Ala Asp Ser Pro Ser Leu Glu Ala Ile Ala Met His 500 505 510 Ala Glu Asn Asn Ise Asn Asn Ile Ile Leu Phe Val Gly Thr Glu 515 520 525 Gly Ala Asp Val Ile Tyr Leu Asp Asn Ile Lys Val Ile Gly Thr Glu 530 540 Val Glu Ile Pro Val Val His Asp Pro Lys Gly Glu Ala Val Leu Pro 545 550 560 Ser Val Phe Glu Asp Gly Thr Arg Gln Gly Trp Asp Trp Ala Gly Glu 565 570 Ser Gly Val Lys Thr Ala Leu Thr Ile Glu Glu Ala Asn Gly Ser Asn 580 585 590 Ala Leu Ser Trp Glu Phe Gly Tyr Pro Glu Val Lys Pro Ser Asp Asn 595 600 605 Trp Ala Thr Ala Pro Arg Leu Asp Phe Trp Lys Ser Asp Leu Val Arg 610 615 620 Gly Glu Asn Asp Tyr Val Thr Phe Asp Phe Tyr Leu Asp Pro Val Arg 625 630 635 640 Ala Thr Glu Gly Ala Met Asn Ile Asn Leu Val Phe Gln Pro Pro Thr 645 650 655 Asn Gly Tyr Trp Val Gln Ala Pro Lys Thr Tyr Thr Ile Asn Phe Asp 660 665 670 Glu Leu Glu Glu Ala Asn Gln Val Asn Gly Leu Tyr His Tyr Glu Val Page 11

Lys Ile Asn Val Arg Asp Ile Thr Asn Ile Gln Asp Asp Thr Leu Leu 690 700 Arg Asn Met Met Ile Ile Phe Ala Asp Val Glu Ser Asp Phe Ala Gly 705 710 715 720 Arg Val Phe Val Asp Asn Val Arg Phe Glu Gly Ala Ala Thr Thr Glu 725 730 735 Pro Val Glu Pro Glu Pro Val Asp Pro Gly Glu Glu Thr Pro Pro Val 740 745 750 Asp Glu Lys Glu Ala Lys Lys Glu Gln Lys Glu Ala Glu Lys Glu Glu 755 760 765 Lys Glu Ala Val Lys Glu Glu Lys Lys Glu Ala Lys Glu Glu Lys Lys 770 780 Ala Ile Lys Asn Glu Ala Thr Lys Lys 785 790 7 572 <210> <212> DNA Bacillus sp. KSM-S237 <400> gatttgccga tgcaacaggc ttatatttag aggaaatttc tttttaaatt gaatacggaa 60 120 taaaatcagg taaacaggtc ctgattttat ttttttgagt tttttagaga actgaagatt gaaataaaag tagaagacaa aggacataag aaaattgcat tagttttaat tatagaaaac 180 gcctttttat aattatttat acctagaacg aaaatactgt ttcgaaagcg gtttactata 240 300 aaaccttata ttccqqctct tttttaaaac agggggtaaa aattcactct agtattctaa tttcaacatg ctataataaa tttgtaagac gcaatatgca tctcttttt tacgatatat 360 gtaagcggtt aaccttgtgc tatatgccga tttaggaagg ggggtagaat atttcaagta 420 480 gtaataacat acaatactta taagttgttg agaagcagga gagcatctgg gttactcaca 540 agttttttta aaactttaac gaaagcactt tcggtaatgc ttatgaattt agctatttga

ttcaattact ttaaaaatat ttaggaggta at

572

<210> 8 <211> 609 <212> DNA <213> Bacillus sp. KSM-64

	295199USOPCT.ST25.txt			
<400> agtactt	8 cacc attttagagt caaaagatag aagccaagca ggatttgccg atgcaaccgg	60		
cttatat	tta gagggaattt ctttttaaat tgaatacgga ataaaatcag gtaaacaggt	120		
cctgatt	tta ttttttgaa tttttttgag aactaaagat tgaaatagaa gtagaagaca	180		
acggaca	ataa gaaaattgta ttagttttaa ttatagaaaa cgcttttcta taattattta	240		
tacctag	gaac gaaaatactg tttcgaaagc ggtttactat aaaaccttat attccggctc	300		
tttttt	caaa cagggggtga aaattcactc tagtattcta atttcaacat gctataataa	360		
atttgta	aaga cgcaatatac atctttttt tatgatattt gtaagcggtt aaccttgtgc	420		
tatatgo	ccga tttaggaagg gggtagaata tttcaagtag taataacata caatacttat	480		
aagttgt	ttga gaagcaggag agaatctggg ttactcacaa gttttttaaa acattatcga	540		
aagcact	ttc ggttatgctt atgaatttag ctatttgatt caattacttt aataatttta	600		
ggaggta	aat	609		
<210> <211> <212> <213>	9 37 DNA Artificial sequence			
<220> <223>	Oligonucleotide as PCR primer designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase; the sequece with insertion of the BamHI restriction site at the 5'-end	e a		
<400> ttgcgga	9 atcc aacaggctta tatttagagg aaatttc	37		
<210> <211> <212> <213>	10 40 DNA Artificial sequence			
<220> <223>	Oligonucleotide as PCR primer designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase; the sequence containing eight nucleotides substitution for SigmaE recogniti			
<400> gtatgt	10 tatt actacttgaa atattctacc ccccttccta	40		
<212>	11 39 DNA Artificial sequence			
<220> <223>	Oligonucleotide as PCR primer designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase; the sequence containing eight nucleotides substitution for SigmaE recognition	ce i on		
<400>	11 Page 13			

atatttcaan	tagtaataac	atacaatact	tataaqttq
atallladu	Lauldalaal	alacaalaci	Lataaytty

<210> <211> <212> <213>	12 20 DNA Artificial sequ	ience				
<220> <223>						ence
<400> tcgcta	12 ccct tttattatcg					20
<210> <211> <212> <213>	13 1795 DNA Bacillus sp. KS	SM-K38				
<400> caggcc	13 agcc aaagtagcca	ccaactaagt	aacatcgatt	caggataaaa	gtatgcgaaa	60
cgatgc	gcaa aactgcgcaa	ctactagcac	tcttcaggga	ctaaaccacc	ttttttccaa	120
aaatga	catc atataaacaa	atttgtctac	caatcactat	ttaaagctgt	ttatgatata	180
tgtaag	cgtt atcattaaaa	ggaggtattt	gatgagaaga	tgggtagtag	caatgttggc	240
agtgtt	attt ttatttcctt	cggtagtagt	tgcagatgga	ttgaacggta	cgatgatgca	300
gtatta	tgag tggcatttgg	aaaacgacgg	gcagcattgg	aatcggttgc	acgatgatgc	360
cgcagc	tttg agtgatgctg	gtattacagc	tatttggatt	ccgccagcct	acaaaggtaa	420
tagtca	ggcg gatgttgggt	acggtgcata	cgatctttat	gatttaggag	agttcaatca	480
aaaggg	tact gttcgaacga	aatacggaac	taaggcacag	cttgaacgag	ctattgggtc	540
ccttaa	atct aatgatatca	atgtatacgg	agatgtcgtg	atgaatcata	aaatgggagc	600
tgattt	tacg gaggcagtgc	aagctgttca	agtaaatcca	acgaatcgtt	ggcaggatat	660
ttcagg	tgcc tacacgattg	atgcgtggac	gggtttcgac	ttttcagggc	gtaacaacgc	720
ctatto	agat tttaagtgga	gatggttcca	ttttaatggt	gttgactggg	atcagcgcta	780
tcaaga	aaat catattttcc	gctttgcaaa	tacgaactgg	aactggcgag	tggatgaaga	840
gaacgg	taat tatgattacc	tgttaggatc	gaatatcgac	tttagtcatc	cagaagtaca	900
agatga	gttg aaggattggg	gtagctggtt	taccgatgag	ttagatttgg	atggttatcg	960
tttaga	itgct attaaacata	ttccattctg	gtatacatct	gattgggttc	ggcatcagcg	1020
caacga	agca gatcaagatt	tatttgtcgt	aggggaatat	tggaaggatg	acgtaggtgc	1080
tctcga	attt tatttagatg	aaatgaattg	ggagatgtct	ctattcgatg	ttccacttaa	1140
	itttt taccgggctt					1200
aggato	ttta gtagaagcgc	atccgatgca	tgcagttacg Page	tttgttgata 14	atcatgatac	1260

tcagccaggg	gagtcattag	agtcatgggt	tgctgattgg	tttaagccac	ttgcttatgc	1320
gacaattttg	acgcgtgaag	gtggttatcc	aaatgtattt	tacggtgatt	actatgggat	1380
tcctaacgat	aacatttcag	ctaaaaaaga	tatgattgat	gagctgcttg	atgcacgtca	1440
aaattacgca	tatggcacgc	agcatgacta	ttttgatcat	tgggatgttg	taggatggac	1500
tagggaagga	tcttcctcca	gacctaattc	aggccttgcg	actattatgt	cgaatggacc	1560
tggtggttcc	aagtggatgt	atgtaggacg	tcagaatgca	ggacaaacat	ggacagattt	1620
aactggtaat	aacggagcgt	ccgttacaat	taatggcgat	ggatggggcg	aattctttac	1680
gaatggagga	tctgtatccg	tgtacgtgaa	ccaataacaa	aaagccttga	gaagggattc	1740
ctccctaact	caaggctttc	tttatgtcgc	ttagctttac	gcttctacga	ctttg	1795

<210> 14

<400> 14

Asp Gly Leu Asn Gly Thr Met Met Gln Tyr Tyr Glu Trp His Leu Glu 10 15

Asn Asp Gly Gln His Trp Asn Arg Leu His Asp Asp Ala Ala Leu 20 25 30

Ser Asp Ala Gly Ile Thr Ala Ile Trp Ile Pro Pro Ala Tyr Lys Gly
35 40 45

Asn Ser Gln Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu 50 60

Gly Glu Phe Asn Gln Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys 65 70 75 80

Ala Gln Leu Glu Arg Ala Ile Gly Ser Leu Lys Ser Asn Asp Ile Asn 85 90 95

Val Tyr Gly Asp Val Val Met Asn His Lys Met Gly Ala Asp Phe Thr $100 \,$ $105 \,$ Met Gly Ala Asp Phe Thr

Glu Ala Val Gln Ala Val Gln Val Asn Pro Thr Asn Arg Trp Gln Asp 115 120 125

Ile Ser Gly Ala Tyr Thr Ile Asp Ala Trp Thr Gly Phe Asp Phe Ser 130 135 140

<211> 480

<212> PRT <213> Bacillus sp. KSM-K38

Gly Arg Asn Asn Ala Tyr Ser Asp Phe Lys Trp Arg Trp Phe His Phe 145 150 155 160 Asn Gly Val Asp Trp Asp Gln Arg Tyr Gln Glu Asn His Ile Phe Arg 165 170 175 Phe Ala Asn Thr Asn Trp Asn Trp Arg Val Asp Glu Glu Asn Gly Asn 180 185 Tyr Asp Tyr Leu Leu Gly Ser Asn Ile Asp Phe Ser His Pro Glu Val 195 200 205 Gln Asp Glu Leu Lys Asp Trp Gly Ser Trp Phe Thr Asp Glu Leu Asp 210 215 220 Leu Asp Gly Tyr Arg Leu Asp Ala Ile Lys His Ile Pro Phe Trp Tyr 225 230 235 240 Thr Ser Asp Trp Val Arg His Gln Arg Asn Glu Ala Asp Gln Asp Leu 245 250 255 Phe Val Val Gly Glu Tyr Trp Lys Asp Asp Val Gly Ala Leu Glu Phe 260 265 270 Tyr Leu Asp Glu Met Asn Trp Glu Met Ser Leu Phe Asp Val Pro Leu 275 280 285 Asn Tyr Asn Phe Tyr Arg Ala Ser Gln Gln Gly Gly Ser Tyr Asp Met 290 295 300 Arg Asn Ile Leu Arg Gly Ser Leu Val Glu Ala His Pro Met His Ala 305 310 315 320 Val Thr Phe Val Asp Asn His Asp Thr Gln Pro Gly Glu Ser Leu Glu 325 330 335 Ser Trp Val Ala Asp Trp Phe Lys Pro Leu Ala Tyr Ala Thr Ile Leu 340 345 350 Thr Arg Glu Gly Gly Tyr Pro Asn Val Phe Tyr Gly Asp Tyr Tyr Gly 355 360 Ile Pro Asn Asp Asn Ile Ser Ala Lys Lys Asp Met Ile Asp Glu Leu
370 375 380 Leu Asp Ala Arg Gln Asn Tyr Ala Tyr Gly Thr Gln His Asp Tyr Phe 385 390 395 400

Asp His Trp Asp Val Val Gly Trp Thr Arg Glu Gly Ser Ser Ser Arg
405 410 415 Pro Asn Ser Gly Leu Ala Thr Ile Met Ser Asn Gly Pro Gly Gly Ser Lys Trp Met Tyr Val Gly Arg Gln Asn Ala Gly Gln Thr Trp Thr Asp Leu Thr Gly Asn Asn Gly Ala Ser Val Thr Ile Asn Gly Asp Gly Trp 450 460 Gly Glu Phe Phe Thr Asn Gly Gly Ser Val Ser Val Tyr Val Asn Gln 465 470 475 480 <210> 15 25 <211> <212> DNA <213> Artificial sequence <220> Oligonucleotide as PCR primer designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase; the sequece with a insertion of the BamHI restriction site at the 5'-end <223> <400> 25 cccggatcca acaggcttat attta <210> 16 <211> 29 <212> DNA Artificial sequence <213> <220> Oligonucleotide as PCR primer; its 3'-portion designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase and its 5'-portion designed from nucleotide sequence of Bacillus <223> sp. KSM-K38 gene for amylase <400> 16 29 ttcaatccat ctgctgcaag agctgccgg 17 <210> <211> 30 <212> DNA Artificial sequence <213> <220> Oligonucleotide as PCR primer; its 3'-portion designed from nucle otide sequence of Bacillus sp. KSM-K38 gene for amylase and its <223> 5'-portion designed from nucleotide sequence of Bacillus sp. KSM-S237 gene for cellulase <400> 17 30 gctcttgcag cagatggatt gaacggtacg Page 17

<210> <211> <212> <213>	18 30 DNA Artificial sequence	
<220> <223>	Oligonucleotide as PCR primer designed from nucleotide sequence of Bacillus sp. KSM-K38 gene for amylase; the sequece with a insertion of the XbaI restriction site at the 5'-end	!
<400> ttggtc	18 taga ccccaagctt caaagtcgta	30
<210> <211> <212> <213>	27	
<220> <223>	A promoter sequence recognized by SigE	
<400> atattt	19 caag tagtaataac atacaat	27
<210> <211> <212> <213>	27	
<220> <223>	Original sequence in an alkaline cellulase gene	
<400> ttgagt	20 caag tagtaataat atagata	27