Deep Learning for Image Classification					
Load the data	Load image_train_data and image_test_data .show() to see the images				
Training the Data, initial pass at prediction	1. Train the data				
	<pre>raw_pixel_model = graphlab.logistic_classifier.create(image_train,target='</pre>				
	PROGRESS: Creating a validation set from 5 percent of training data. This ake a while. You can set ``validation_set=None`` to disable validation tracki				
	Take some images from the test data set and see what the classifier says they are.				
	<pre>image_test[0:3]['image'].show()</pre>				
	All 3 images in <temporary sarray=""></temporary>				
	<pre>In [8]: image_test[0:3]['label']</pre>				
	Out[8]: dtype: str Rows: 3 ['cat', 'automobile', 'cat']				
	3. Let's see what the model predicts for the three images				
	<pre>In [9]: raw_pixel_model.predict(image_test[0:3])</pre>				
	Out[9]: dtype: str Rows: 3 ['bird', 'cat', 'bird']				
	Very off 4. Evaluate the raw pixel model on test data, very low accuracy				
	<pre>In [10]: raw_pixel_model.evaluate(image_test)</pre>				
	Out[10]: {'accuracy': <mark>0.468</mark> , 'confusion_matrix': Columns: target_label int predicted_label int count int				
	Rows: 16				
Improve The Model using	Pull the images to train				
Deep Features	<pre>deep_learning_model = graphlab.load_model('imagenet_model') image_train('deep_features') = deep_learning_model.extract_features(image_train)</pre>				
	image_train.head()				
	id image label deep_features image_array 24 Height: 32 Width: 32 bird [0.242871761322, 1.09545373917, 0.0, [73.0, 77.0, 58.0, 71.0, 68.0, 50.0, 77.0, 69.0,				
	Code to train the model				

3. Apply the deep features model to the first few images of test set and see if it's more accurate now

```
deep_features_model.predict(image_test[0:3])
dtype: str
Rows: 3
['cat', 'automobile', 'cat']
```

4. Show the accuracy level

```
deep_features_model.evaluate(image_test)
{'accuracy': 0.7845, 'confusion_matrix': Columns:
    target_label int
    predicted_label int
    count int
```

Deep Features for Image Retrieval

Load the Data

- 1. Load image_train_data and image_test_data
- 2. .show() to see the images

Creating a nearest neighbors model

1. Train a nearest neighbor model (knn_model) for retrieving images using deep features

2. Retrieve an image to find the nearest images on

```
graphlab.canvas.set_target('ipynb')
cat = image_train[18:19]
cat['image'].show()
```

3. Find the nearest images for the cat

knn_model.query(cat)

query_label	reference_label	distance	rank
0	384	0.0	1
0	6910	36.9403137951	2
0	39777 ¹	38.4634888975	3
0	36870	39.7559623119	4
0	41734	39.7866014148	5

4. Create a function that takes those reference labels and returns the image

5. Next time we look for an image, it will return the pictures

