

 $\underline{\sf Home}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Inorganic}\,\, \blacktriangleright \,\, \mathsf{Bonding}\,\, \blacktriangleright \,\, \mathsf{What} \, \mathsf{type} \, \mathsf{of} \, \mathsf{bonding}?$

What type of bonding?

Dout A Coval	ent and ionic chloride	_			^
					^
Which of th	ne following sets contair	two covalent chlorides a	nd two ionic chlorides?		
1	NaCl	BaCl_2	CCl_4	ICl	
2	BeCl_2	SiCl_4	PbCl ₄	SCl_2	
3	CaCl_2	SiCl_4	PCl_3	SCl_2	
1, 2	2 and 3 are correct				
1 a	nd 2 only are correct				
2 a	nd 3 only are correct				
	nly is correct				
3 0	nly is correct				
art B Calciu	ım chloride				~
Which of ${ m ic}$ ${ m CaCl}_2$?	onic, metallic, purely c	ovalent or polar covalen	t best describes the type	of bonding present in	
Part C Phosp	phorus trichloride				~
Which of ${ m ich}$ ${ m PCl}_3$?	onic, metallic, purely c	ovalent or polar covalen	t best describes the type	of bonding present in	

Part D Chlorine	~
Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in Cl_2 ?	
Part E Sodium	~
Which of ionic , metallic , purely covalent or polar covalent best describes the type of bonding present in N ?	3
Part F Silicon dioxide	~
Which of ionic, metallic, purely covalent or polar covalent best describes the type of bonding present in ${ m SiO_2?}$	

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 1, Question 31; Parts B-F created for isaacphysics.org by R. Less

All materials on this site are licensed under the ${\color{red} {\bf Creative\ Commons\ license}},$ unless stated otherwise.

 $\underline{\mathsf{Home}}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Inorganic}\,\, \blacktriangleright \,\, \mathsf{Bonding}\,\, \blacktriangleright \,\, \mathsf{s-block} \,\, \mathsf{metal} \,\, \mathsf{salts}$

s-block metal salts

	<u> </u>	
Part A	RbF vs. CsCl	^
	he lattice energies of rubidium fluoride, ${ m RbF}$, and caesium chloride, ${ m CsCl}$, are $-760{ m kJ~mol^{-1}}$ and $650{ m kJ~mol^{-1}}$, respectively.	
	/hat is the lattice energy of caesium fluoride, CsF , likely to be?	
	$\bigcirc -800\mathrm{kJ}\mathrm{mol}^{-1}$	
	$ ho -720\mathrm{kJ}\mathrm{mol}^{-1}$	
	$ ho - 620 \mathrm{kJ} \; \mathrm{mol}^{-1}$	
	$\mathrm{-900kJmol^{-1}}$	
Part B	MgS vs. KCl	
N	agnesium sulfide and potassium chloride are isoelectronic (have the same number of electrons).	
	hich of the following are reasons why the value of the lattice energy of magnesium sulfide is four to five mes that of potassium chloride?	
1	the higher the enthalpy change of hydration of the doubly charged cations	
2	the higher electrostatic attraction between the doubly charged ions	
3	the shorter internuclear distance between the doubly charged ions	
	1, 2 and 3 are correct	
	1 and 2 only are correct	
	1 and 2 only are correct 2 and 3 only are correct	

Part A adapted with permission from UCLES, A-Level Chemistry June 1995, Paper 4, Question 6; Part B adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 31 Home > Chemistry > Inorganic > Bonding > Lattice energy

Lattice energy

Part A Lattice energy definition

Which equation defines the lattice energy of the ionic compound XY?

- $X^{+}(g) + Y^{-}(g) \longrightarrow XY(s)$
- $X^{+}(s) + Y^{-}(s) \longrightarrow XY(s)$
- $X(g) + Y(g) \longrightarrow XY(s)$
- $X(s) + Y(s) \longrightarrow XY(s)$

Part B Lattice energies

The radius and charge of each of six ions are shown in the table.

ion	${ m J}^+$	\mathbf{L}^{+}	M^{2+}	\mathbf{X}^{-}	Y^{-}	${f Z}^{2-}$
radius/nm	0.14	0.18	0.15	0.14	0.18	0.15

The ionic solids JX, LY and MZ are of the same lattice type.

What is the correct order of their lattice energies placing the one with the highest **magnitude** (most exothermic lattice formation enthalpy) first?

- \bigcirc LY > MZ > JX
- MZ > LY > JX
- JX > LY > MZ
- MZ > JX > LY

Home > Unknown page

Page not found

We're sorry, page not found: /questions/lattice_enthalpy_definition

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > XCl_n

 XCl_n

Element X forms a chloride XCl_n which melts at 3 °C. When $0.500\,\mathrm{g}$ of the chloride reacts with an excess of acidified silver nitrate, $1.19\,\mathrm{g}$ of AgCl are formed.

Another $0.500\,\mathrm{g}$ sample of chloride is heated strongly and chlorine gas is given off.

When the residue is treated with an excess of acidified silver nitrate, only $0.714\,\mathrm{g}$ of AgCl is precipitated.

Adapted with permission from UCLES, A-Level Chemistry, November 1995 Paper 1, Question 5

<u>Home</u> > Chemistry > Inorganic > Bonding > Oxides

Oxides

Part A Ionic and covalent oxides	^
Which of the following oxides is likely to be the most ionic in character?	
\bigcirc Na ₂ O	
○ MgO	
\bigcirc Al ₂ O ₃	
\bigcirc SiO ₂	
\bigcirc P ₄ O ₆	

Part A adapted with permission from OCSEB, A-Level Chemistry (Salters), June 1995, Paper 1, Question 18; Part B adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 6

Home > Chemistry > Inorganic > Bonding > Lattice enthalpy estimation

Lattice enthalpy estimation

Within the ionic model, lattice enthalpies in $kJ \, mol^{-1}$ may be estimated using the equation:

$$\Delta_{
m L} H^{\circ} = rac{C \!\cdot\! z^+ \!\cdot\! z^- \!\cdot\!
u}{(r^+ \,+\, r^-)} - 2.5
u$$

Where:

- C is a constant approximately equal to $105\,000$ units;
- z^+ and z^- are the *signed* charges on the cation and anion respectively in units of e;
- ν is the number of ions in the formula (e.g. 3 for MgI_2);
- r^+ and r^- are the radii of the ions in pm;
- The -2.5ν term corrects for the difference between internal energy and enthalpy.

The table below shows the radii for certain ions.

lon	${ m Li}^+$	Na^+	Ca^{2+}	Cr^{3+}	Hg^+	O^{2-}	\mathbf{F}^-	Cl^-	${\rm Br}^-$
Radius / pm	74	102	100	62	158	140	133	180	195

Estimate the values of $\Delta_L H^{\circ}$ for the following compounds, using the equation given. Give your answers to 3 significant figures.

Part A LiBr

 $\Delta_{\mathrm{L}} H^{\scriptscriptstyle \oplus}$ for LiBr

Part B Na₂O

 $\Delta_{\mathrm{L}} H^{\scriptscriptstyle \oplus}$ for $\mathrm{Na_2O}$

Part C CaF ₂						~
$\Delta_{ m L} H^{\circ}$ for ${ m CaF}_2$						
Part D $ m Cr_2O_3$						~
$\Delta_{ m L} H^{\circ}$ for ${ m Cr}_2 { m O}_3$						
Part E $ m Hg_2Cl_2$						`
$\Delta_{ m L} H^{\circ}$ for ${ m Hg_2Cl_2}$						
art F Poor approximation						,
Experimentally found lattice er	nthalpies are:					
Lattice	LiBr	$\mathrm{Na_{2}O}$	CaF_2	$\mathrm{Cr}_2\mathrm{O}_3$	$\mathrm{Hg_{2}Cl_{2}}$	
$\Delta_{ m L} H^\circ$ / ${ m kJmol^{-1}}$	-800	-2530	-2635	-15115	-1950	
For which compound is the ior	nic model a poo	or approximati	on?			

Based on question F4.4 from the Physical Chemistry book

 $\underline{\mathsf{Home}}$ > Chemistry > Inorganic > Bonding > Ionic halides, oxides, sulfides

Ionic halides, oxides, sulfides

Part A Lattice enthalpies ^

${\rm Li}^+$	0.060
Na^+	0.095
${ m Mg}^{2+}$	0.065
Ca^{2+}	0.099
Ba^{2+}	0.135
\mathbf{F}^-	0.136
Cl^-	0.181
O^{2-}	0.140
S^{2-}	0.184

The values of the ionic radii, in nm, of several ions are given above.

Which of the following compounds, all of which have the same crystal structure, has the greatest lattice enthalpy?

lilaip	y :
	MgO
	NaCl
	BaS
	LiF
	CaO

Part	B NaF vs. MgO	~
	The values of two lattice energies are given below:	
	$ m NaF - 915 kJ mol^{-1} \ MgO - 3933 kJ mol^{-1}$	
	Which of the following correct statements help to explain the difference between these two values?	
	1 In each of these compounds, the ions are isoelectronic (have the same number of electrons). 2 The attraction between doubly-charged ions is about four times that between singly-charged ions. 3 The interionic distance in NaF is $0.102\mathrm{nm}$ and that in MgO is $0.074\mathrm{nm}$.	
	1, 2 and 3 are correct	
	1 and 2 only are correct	
	2 and 3 only are correct	
	1 only is correct	
	3 only is correct	

Part A adapted with permission from OCSEB, A-Level Chemistry, June 1995, Paper 1, Question 11; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 33

Part B

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \; \mathsf{Chemistry} \; \; \blacktriangleright \; \; \mathsf{Inorganic} \; \; \blacktriangleright \; \; \mathsf{Bonding} \; \; \blacktriangleright \; \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{F4.5}$

Essential Pre-Uni Chemistry F4.5

Rank the following sets of compounds in order of increasing magnitude of lattice enthalpy, as predicted using the ion model:	ic
Part A	^
m KI, LiCl, NaBr	
$igcup ext{KI} < ext{NaBr} < ext{LiCl}$	
$igcup ext{KI} < ext{LiCl} < ext{NaBr}$	
$\bigcirc NaBr < KI < LiCl$	
\bigcirc NaBr < LiCl < KI	
\bigcirc LiCl < NaBr < KI	
\bigcirc LiCl < KI < NaBr	
Part B	~
m MgO,NaF,GaN	
$\bigcirc \mathrm{MgO} < \mathrm{NaF} < \mathrm{GaN}$	
$\bigcirc GaN < NaF < MgO$	
$\bigcirc \mathrm{MgO} < \mathrm{GaN} < \mathrm{NaF}$	
NaF <gan <="" mgo<="" td=""><td></td></gan>	
igcap NaF < MgO < GaN	
$\bigcirc GaN < MgO < NaF$	

$CuCl,CuCl_2,CuBr_2$		
$\bigcirc CuCl < CuBr_2 < CuCl_2$		
$igcup ext{CuCl}_2 < ext{CuCl} < ext{CuBr}_2$		
$\bigcirc CuBr_2 < CuCl < CuCl_2$		
$igcup { m CuBr}_2 < { m CuCl}_2 < { m CuCl}$		
$\bigcirc CuCl < CuCl_2 < CuBr_2$		
$igcup { m CuCl_2 < CuBr_2 < CuCl}$		

Part C

 $\underline{\mathsf{Home}}\,\, \blacktriangleright \,\, \mathsf{Chemistry}\,\, \blacktriangleright \,\, \mathsf{Inorganic}\,\, \blacktriangleright \,\, \mathsf{Bonding}\,\, \blacktriangleright \,\, \mathsf{Changing}\,\, \mathsf{elements}\,\, \mathsf{in}\,\, \mathsf{lattices}\,\,$

Changing elements in lattices

Part /	A Calcium chloride vs. potassium bromide	^
	What factors contribute to the lattice energy of calcium chloride being numerically greater than that of potassium bromide?	
	1 The radius of the chloride ion is smaller than that of the bromide ion.	
	2 The charge on the calcium ion is greater than that on the potassium ion.	
	3 Chlorine is more highly electronegative than bromine.	
	1, 2 and 3 are correct	
	1 and 2 only are correct	
	2 and 3 only are correct	
	1 only is correct	
	3 only is correct	

right?	the following statements are correct for the sequence of compounds below considered from left to
	m NaF~MgO~AlN~SiC
2 The for	ectronegativity difference between the elements in each compound increases. mula-units of these compounds are isoelectronic (have the same number of electrons). nding becomes increasingly covalent.
<u> </u>	, 2 and 3 are correct
_ 1	and 2 only are correct
_ 2	and 3 only are correct
_ 1	only is correct
3	only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, November 1992, Question 32;
Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 35

Part B

Changes in bonding