〈11주차 실험 공지〉

트랜지스터 특성 곡선 (실험 교재: 132p ~ 133p)

- 기타 사항

- 1. "3. [특성 곡선의 Y축 그리기]"의 실험을 기반으로 아래와 같이 변경하여 수행합니다.
- 2. 실험에 사용하는 트랜지스터는 Q2N2222입니다.
- 3. 계산과정에서 β 가 필요한 경우, $\beta = 180$ 를 사용합니다.
- 4. 11주차 실험 예비보고서는 4장 이내로 작성하며, 계산과정을 작성합니다.

- 실험 1. 트랜지스터의 특성곡선과 작동점(Q point) 확인하기 I

- 1. 그림 7.11의 회로에서 $R_B=100k\Omega$, $R_C=220\Omega$ 인 회로를 구성하고, 이론상 작동점과 실험을 통해 구한 작동점을 비교하시오.
- ③ $V_{CC}=10\,V$ 일 때, 베이스 전류 $40\mu A$ 가 되도록 V_s 의 값을 구하고, $Q(i_c,v_{ce})$ 를 구하시오.
- ⑤ $V_{CC}=10\,V$ 일 때, 베이스 전류 $60\mu A$ 가 되도록 V_s 의 값을 구하고, $Q(i_c,v_{ce})$ 를 구하시오.
- ⓒ $V_{CC}=5\,V$ 일 때, 베이스 전류 $40\mu A$ 가 되도록 V_s 의 값을 구하고, $Q(i_c,v_{ce})$ 를 구하시오.
- ⑥ $V_{CC}=5\,V$ 일 때, 베이스 전류 $60\mu A$ 가 되도록 V_s 의 값을 구하고, $Q(i_c,v_{cc})$ 를 구하시오
- 2. 예비보고서 : PSpice 시뮬레이션 결과 $(v_{ce},\ i_c)$, 파형, 아래 표

	전원 전압 (V_s)			컬렉터 전류 (i_c)			컬렉터에미터 전압 (v_{ce})		
V_{CC} ,	계산	측정	오차	계산	측정	오차	계산	측정	오차
I_b		10			10			, ,	_ '
10V									
40uA									
10V									
60uA									
5V									
40uA									
5V									
60uA									

3. 결과보고서 : 멀티미터 측정 사진, 아래 표

V_{CC} , I_b	컬렉터에미터 전압 (V_{ce})	컬렉터 전류 (I_c)		
10V, 40uA	(멀티미터 측정 사진)			
10V, 60uA				
5V, 40uA				
5V, 60uA				

	전원 전압 (V_s)	칼	d렉터 전류 $(i$	_c)	컬렉터에미터 전압 (v_{ce})			
V_{CC} , I_b	계산	시뮬레이션	측정	오차	시뮬레이션	측정	오차	
10V								
40uA								
10V								
60uA								
5V								
40uA								
5V								
60uA								

4. 시뮬레이터로 특성곡선과 로드라인을 그리는 방법은 실험 교재의 117p와 OrCAD의 아래 아이콘을 참고하고, 하나의 그래프에 모든 특성곡선과 모든 로드라인을 그립니다.

- 실험 2. 트랜지스터의 특성곡선과 작동점(Q point) 확인하기 Ⅱ

- 1. 실험 1의 회로에서 $V_{CC}=5\,V$ 이고, V_S 를 다음의 교류 전압 원으로 대체했을 때, v_{ce} 출력 파형을 구하시오. (그림 7.17참고)
- ③ VAMPL=2, FREQ=10, VOFF=[실험 1의 ⓒ의 v_{ce}]
- b VAMPL=2, FREQ=10, VOFF=[실험 1의 d의 v_{ce}]
- 2. 예비보고서 : PSpice 시뮬레이션 출력파형 @, ®
- 3. 결과보고서 : 오실로스코프 출력파형 @, ®
- 4. 결과보고서의 실험 결과 분석에서는 실험 @, ⑥의 출력 파형의 형태를 보고, 시간에 따른 트랜지스터의 동작 상태를 서술할 것. (오차 관련 내용 필요 없음.)