## Universität Heidelberg

## PARALLEL COMPUTER ARCHITECTURE

# Exercise 2

Barley, Daniel Barth, Alexander Nisblé, Patrick

Due date: 2019-11-08, 14:00

Group 04

### 2.1 Matrix-Vektor-Multiplikation

#### 2.1.2 Experimente und Evaluation

a.

Tabelle 1: Messwerte

| $\mathbf{M} 	imes \mathbf{N}$ | $t_{row}(\mathbf{s})$  | $t_{col}(\mathbf{s})$ | Ratio      |
|-------------------------------|------------------------|-----------------------|------------|
| $10 \times 10$                | $8.545 \times 10^{-6}$ | $1.1626 \times 10^5$  | 0.73499054 |
| $100 \times 100$              | 0.000254222            | 0.000722013           | 0.35210169 |
| $500 \times 500$              | 0.005989163            | 0.016997692           | 0.35235154 |
| $1000 \times 1000$            | 0.023987485            | 0.069154029           | 0.34687039 |
| $5000 \times 5000$            | 0.60724551             | 1.7547349             | 0.34606111 |
| $10000 \times 10000$          | 2.4371004              | 7.2018543             | 0.33839902 |

b.

Der spaltenweise Zugriff auf die bei uns implementierte Struktur wird durch das verteilte Zugriffsmuster langsamer. Speichert man Reihen nacheinander in einem Array, sind Spaltenzugriffe im gesamten Array verteilt und nicht in kontinuierlichen Blöcken erreichbar. Kontinuierliche Blöcke werden in modernen CPUs bevorzugt, da diese fast vollständig im Cache liegen können und es nicht so viele Cache-Misses gibt.

c.



Abbildung 1: Messwerte