19 Vyšší programovací jazyky pro mcu

09:11

Wednesday, 19 January 2022

Požadavky vpj na architekturu mcu, omezení a rozdíly vůči programování pro osobní počítače, optimalizace kompilátoru.

•	progi	ramov	ání pro mcu
			nce operačního systému u jednodušších mcu
	a.	С	
		•	norma
		•	přímý přístup k HW
		•	práce s jednotlivými bity (u PC řešeno softwarově)
		•	omezená nebo zakázaná rekurze
		•	někdy je nutno implementovat stack (zásobník) přes pointery
		•	omezené HW prostředky
			□ redukována velikost paměti
			□ hloubka implementace zásobníku
			□ podpora ALU
		•	absence služeb OS
			 absence dynamické alokace
			 potřeba vlastní implementace multitaskingu
		•	datové typy
			□ podporována většina
			□ velikost int závislá na platformě
			□ float/double nejsou podporovány HW
			◆ potřeba SW emulace
	h	ASM	 výjimkou jsou novější a výkonnější ARM (Cortex M4)
	D.		složitější
			vysoká uroveň optimalizace
			nepřenosnost mezi platformami
	0		davky vyššího programovacího jazyka
			více pracovních registrů
			charakteristika RISC (<i>Reduced Instruction Set Computer</i>)
		ii.	SCI (Single Cycle Instruction)
			□ RISC
			□ pipelining
		iii.	rozšířená podpora pointerů
			□ lze jimi adresovat celou paměť
		iv.	indexace polí
			 instrukce obsahuje adresu začátku pole a relativní displacement (poloha od
			začátku)
		٧.	minimálně 4 paměťové ukazatele
		:	□ zdroj, cíl, stack pointer, datový segment
		VI.	šíření příznaku nuly instrukce zahrnující výsledek předchozí operace
			□ carry příznakový registr
		vii	bitové proměnné
		VII.	□ zjištění hodnoty na portech
			set, clear, test (skip if bit)
		viii.	instrukce i s operandy na jedné adrese
			□ charakteristika RISC
		ix.	HW stack pointer
			nodnora Al instrukcí s vyšší šířkou než nativní

			□ např. word - zdvojené registry
•	optin	nalizac	e kompilátoru
	0	cílem	je minimální velikost nebo nejvyšší rychlost programu
		•	tyto požadavky jdou většinou proti sobě
	a.	závisl	é na HW
		i.	registrové proměnné
			 kompilátor se pokusí proměnnou uložit do registrů místo do operační
			paměti
		ii.	optimalizace jednoduchým přístupem
			 je-li to možné, použijí se bitové operace
		iii.	změna typu/směru smyčky
			 pro CPU bývá jednodušší číslování sestupně směrem k 0
			 náhrada for za while
	b.		vislé na HW
		i.	zpracování konstant
			 výpočty lze předpočítat v době kompilace
		ii.	vyloučení opakovaných výrazů
			uložení hodnoty do registru
		iii.	optimalizace skokových příkazů
			 vnořené příkazy lze nahradit relativním/absolutním skokem na cílovo
			adresu
		IV.	vyloučení mrtvého kódu
			nedosažitelný kód se odstraní z programu
		V.	náhrada opakujícího se kódu za skoky
			při opakování instrukcí se vytvoří podprogram
		VI.	negace skoků
		vii	 odstranění jedné větve podmínky její negací překrývání dat
		VII.	□ sdílení statických proměnných v několika funkcích
		viii	optimalizace plnění
		VIII.	inicializaci nepoužívaných proměnných vynechá
		iy	optimalizace smyček
		1/1.	□ místo cyklů se kód nakopíruje za sebe
			 zvýšení paměti, ale i rychlosti
		Χ.	rotace smyček
		۸.	záměna pořadí instrukcí, pokud jsou na sobě nezávislé
		xi.	optimalizace řídícího toku
			□ switch-case -> if