

Discovering Users' Topics of Interest in Recommender Systems

Gabriel Moreira - @gspmoreira

Recommender Systems

An introduction

Recommendations by interaction

"A lot of times, people don't know what they want until you show it to them."

Steve Jobs

"We are leaving the Information Age and entering the Recommendation Age.". Cris Anderson, "The long tail"

Recommendations are responsible for...

38% of sales

2/3 views

38% of top news visualization

What else may I recommend?

```
products
            tags
       professionals
           courses
            musics movies
          jobs books
papers girlfriends investiments restaurants
              videos
       dressing
```


What can a Recommender Systems do?

1 - Recommendation

Given a user, produce an ordered list matching the user needs

2 - Prediction

Given an item, what is its relevance for each user?

How it works

Content-Based Filtering

Content-Based Filtering

Advantages

- Does not depend upon other users
- May recommend new and unpopular items
- Recommendations can be easily explained

Drawbacks

- Overspecialization
- May not recommend to new users
- May be difficult to extract attributes from audio, movies or images

User-Based Collaborative Filtering

Item-Based Collaborative Filtering

Collaborative Filtering

Advantages

Works to any item kind (ignore attributes)

Drawbacks

- Usually recommends more popular items
- Cold-start
 - Cannot recommend items not already rated/consumed
 - Needs a minimum amount of users to match similar users

Hybrid Recommender Systems

Some approaches

Composite

Iterates by a chain of algorithm, aggregating recommendations.

Weighted

Each algorithm has as a weight and the final recommendations are defined by weighted averages.

UBCF Example (Java / Mahout)

```
User, Item, Rating1,
15,4.0
1,16,5.0
1,17,1.0
1,18,5.0
2,10,1.0
2,11,2.0
2,15,5.0
2,16,4.5
2,17,1.0
2,18,5.0
3,11,2.5
```

input.csv

```
// Loads user-item ratings
DataModel model = new FileDataModel(new File("input.csv"));
// Defines a similarity metric to compare users (Person's correlation coefficient)
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
// Threshold the minimum similarity to consider two users similar
UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1, similarity,
model);
// Create a User-Based Collaborative Filtering recommender
UserBasedRecommender recommender = new
GenericUserBasedRecommender(model, neighborhood, similarity);
// Return the top 3 recommendations for userId=2
List recommendations = recommender.recommend(2, 3);
```

User-Based Collaborative Filtering example (Mahout)

Frameworks - Recommender Systems

<u>Java</u>

Python / Scala

Python

.NET

Case

Smart Canvas[©]

Corporate Collaboration

Powered by Recommender Systems and Topic Modeling techniques

Content recommendations

Discover channel - Content recommendations with personalized explanations, based on user's topics of interest (discovered from their contributed content and reads)

Person topics of interest

User profile - Topics of interest of users are from the content that they contribute and are presented as tags in their profile.

Searching people interested in topics / experts...

User discovered tags are searchable, allowing to find experts or people with specific interests.

Similar people

People recommendation - Recommends people with similar interests, explaining which topics are shared.

How it works

Collaboration Graph Model

Smart Canvas [©] Graph Model: Dashed lines and bold labels are the relationships inferred by usage of RecSys and Topic Modeling techniques

Architecture Overview

Outbrain Click Prediction - Kaggle competition

Can you predict which recommended content each user will click?

Dataset

- Sample of users page views and clicks during 14 days on June, 2016
- 2 Billion page views
- 17 million click records
- 700 Million unique users
- 560 sites

Completed • \$25,000 • 991 teams Outbrain Click Prediction

Wed 5 Oct 2016 - Wed 18 Jan 2017 (1 hour ago)

Private Leaderboard - Outbrain Click Prediction

This competition has completed. This leaderboard reflects the preliminary final standings. The results will become final after the competition organizers verify the results.

#	∆rank	Team Name + in the money	Score @	Entries	Last Submission UTC (Best - Last Submission)
1		code monkey 🗈 *	0.70145	48	Wed, 18 Jan 2017 23:33:17 (-1.7h)
2		brain-afk 👫 *	0.70144	79	Wed, 18 Jan 2017 23:58:08 (-1.7h)
3		Three Data Points 4 *	0.69956	130	Wed, 18 Jan 2017 16:03:08
4	20	Andrii Cherednychenko	0.69782	36	Wed, 18 Jan 2017 20:02:39 (-3.9h)
5		FG Knight 4	0.69736	52	Wed, 18 Jan 2017 19:11:20
6		Neuron	0.69644	15	Sat, 07 Jan 2017 16:03:16 (-10.6d)
7		rokh	0.69481	37	Tue, 17 Jan 2017 05:12:13
8	=1	CV #	0.69412	43	Fri, 23 Dec 2016 01:56:31 (-41.8h)
9	:1	Igor Pasechnik	0.69394	16	Wed, 18 Jan 2017 19:16:18
10	11	Sangxia	0.69393	9	Tue, 17 Jan 2017 12:55:50
11	-	Brain's Out! #	0.69378	68	Wed, 18 Jan 2017 23:58:56 (-0.9h)
12	_7	Medrr	0.69291	29	Wed, 18 Jan 2017 14:55:38
13		diaman & ololo 🗈	0.69285	33	Wed, 18 Jan 2017 19:34:55
14	-	insulator	0.69018	5	Fri, 23 Dec 2016 00:50:34
15	-	Frederik	0.68999	8	Wed, 18 Jan 2017 22:48:39
16		mfzszgs	0.68890	19	Wed, 18 Jan 2017 22:32:43 (-8.6d)
17	-	clustifier	0.68851	64	Wed, 18 Jan 2017 17:30:29
18	-	Sameh & Marko 🗚	0.68841	61	Wed, 18 Jan 2017 20:31:43
19		gspmoreira	0.68716	20	Wed, 18 Jan 2017 01:19:14

I got **19th** position from about 1000 competitors (top 2%), mostly due to Feature Engineering techniques.

Books

Copprighted Material
FRANCESCO RICCI
LIOR ROKACH
BRACHA SHAPIRA
PAUL B. KANTOR EDITORS

RECOMMENDER SYSTEMS HANDBOOK

Copyrighted Material

Thanks!

bit.ly/recsys ds camp bit.ly/kaggle outbrain fe

Gabriel Moreira

Lead Data Scientist

@gspmoreira