. 3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 DATA STRUCTURE & ALGORITHMS

SEMESTER - 3

			25.0	
Time: 3 Hours]				[Full Marks : 70

			GRO	UP - A			
		(Mı	ultiple Choic	е Туре 9	uestions)		
	,			C A1	Call and the state of the	10	× 1 = 10
Choo		e correct alterna			•		
i)					ires 4 bytes of s		
	of ar		location of a	arr[10][10	when the array	is stored as	s column
	a)	2820		b)	2840		
	c)	4048		d)	4840.		
ii)	Max	imum possible l	height of an	AVL Tree v	with 7 nodes is	•	
	a)	3		b)	4		
	c)	5		d)	6.		
iii)	In a	circularly lin	ked list org	anization	, insertion of a	record invo	olves the
	mod	lification of					
	a)	no pointer		b)	1 pointer	•	
	c)	2 pointers		d)	3 pointers.		
iv)	The	in-order and po	st-order trav	versal of a	binary tree are D	BEAFC and	DEBFCA
	resp	ectively. What	will be the t	otal numl	per of nodes in t	he left subtr	ee of the
	give	n tree ?					
•	a)	1		b)	4		
	c)	5		d)	None of these.		
		•		,			

33101 (4/12)

v)	Whi	Which data structure is used for breadth first traversal of a graph?							
	a)	Stack	b)	Queue					
	c)	Both stack and queue	d)	None of these.					
vi)	The	The prefix expression for the infix expression a^* ($b + c$) / $e - f$ is							
	a)	/*a + bc - ef	b)	-/* + abcef					
	c)	-/*a + bcef	d)	none of these.					
vii)	Whi	Which of the following is not a requirement of good hashing function?							
	a)	Avoid collision	b)	Reduce the storage space					
	c)	Make faster retrieval	d)	None of these.					
viii)	The	The adjacency matrix of an undirected graph is							
	a)	Unit matrix	b)	asymmetric matrix					
	c)	symmetric matrix	d)	none of these.					
ix)	BFS								
	a)	a) scans all incident edges before moving to the other vertex							
	b)	b) scans adjacent unvisited vertex as soon as possible							
	c)	is same as backtracking		• • • • • • • • • • • • • • • • • • •					
	d)	none of these.							
x)	A n	A non-planar graph with minimum number of vertices has							
	a)	9 edges, 6 vertices	b)	6 edges, 4 vertices					
	c)	10 edges, 5 vertices	d)	9 edges, 5 vertices.					
xi)	A b	inary tree is a special type of t	ree						
	a)	that is ordered							
	b)	such that no node has degree more than 2							
	c)	c) for which both (a) and (b) above are correct							
	d)	in which non-leaf nodes will have degree 2.							
xii)	Á I	A B-tree is							
	a)	always balanced	b)	an ordered tree					
	c)	a directed tree	d)	all of these.					

33101 (4/12)

5

http://www.makaut.com

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Prove that, the best case time complexity for quick sort is $O(n \log n)$ for input size of n.
- 3. a) Compare sequential versus direct access file structures.
 - b) Explain multi-index file structure.
- 4. "The designer of an algorithm need to balance between space complexity and time complexity." Comment on the validity of the statement in the context of recursive algorithms.
- 5. What are the advantages of linked list over an array? Write an algorithm to insert a data X after a specific data item Y in a linked list.
- 6. Give an algorithm to search for an element in an array using binary search.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) Why is hassing referred as a heuristic search method?
 - b) What is the primary advantage of hashing over deterministic search algorithms?
 - c) Define collision. Discuss two collision resolution techniques and compare their performances.
 - d) Why the hash functions need to be simple?

3 + 4 + 7 + 1

- 8. a) What is linear data structure?
 - b) Do you consider the following data-structures as linear?
 - i) Circular doubly linked list
 - ii) Binary tree.

Explain for both cases.

- c) Represent the following polynomial by linked list (show the diagram only): $9x^5 + 3x^3 8x + 15$.
- d) Write an algorithm to delete all nodes having value greater than X from a given singly linked list. 1 + 6 + 2 + 6

33101 (4/12)

6

- 9. a) Define circular queue.
 - b) Write an algorithm to insert an item in circular queue.
 - c) What is input restricted dequeue?
 - d) Write an algorithm to convert an infix expression to postfix using stack.

$$2 + 5 + 2 + 6$$

- 10. a) What do you mean by external sorting? How does it differ from internal sorting?
 - b) Write an algorithm for sorting a list numbers in ascending order using selection sort technique.
 - c) Describe Kruskal's minimal spanning tree algorithm.

$$3 + 7 + 5$$

In a 2-tree, if E be the external path length, P be the internal path length and Q be the number of vertices that are not leaves, then prove that

$$E = P + 2Q.$$

- b) What is threaded binary tree?
- c) Write an algorithm to delete a node from a binary search tree.
- d) Create a AVL tree by inserting the following numbers in the order in which they are given: 17 25 19 23 75. Draw figure for each step.

$$5 + 1 + 6 + 3$$

END