

THE PROVINCE OF ALBERTA

HE PETROLEUM AND NATURAL GAS CONSERVATION BOARD

NATURAL GAS RESERVES OF THE PROVINCE OF ALBERTA

and

OTHER RELATED DATA

January 31, 1957

THE PROVINCE OF ALBERTA

THE PETROLEUM AND NATURAL GAS CONSERVATION BOARD

NATURAL GAS RESERVES OF THE PROVINCE OF ALBERTA and

OTHER RELATED DATA

TABLE OF CONTENTS

I.	The Established Reserves of Natural Gas In The Province of Alberta	1
II.	The Trends in Exploration and Growth of The Reserves of Natural Gas In The	
	Province of Alberta	26
III.	The Present and Future Requirements of The Province of Alberta for Natural Gas;	
	Present Export Commitments	40

DAMES OF CONTRACTO

	The Established Reserves of Matural Cas La The Province of Alberta	»I
26	The Trends in Laterelian and Growth of The Reserves of Debuts la Tive Province of Alberta	
0,4	The Present and Enture Regulacionts of The Province of Alberta for Matheral Gar: Present Dyort Commitmento	.III.

LIST OF TABLES

Table	I-l	Established Reserves of Natural Gas In The Province of Alberta, September 30, 1956	4
Table	II-1	Trends in Wildcat Drilling and Growth Of Disposable Gas Reserves In The Province of Alberta	32
Table	III-l	Estimate of Natural Gas Requirements Of The Province	49
Table	III-2	Allocation of Provincial Requirements Between Areas Tributary to the Distributing Systems	50

gamer and tall

	Matabliabed Reserves of Matural Cas In The Province of Alberts, September 30, 1950	Table I-1,
32	Trends in Wildest Drilling and droath Of Sisposible Des Reperves in The Province of Albertassessesses	I-II eldeT
9.4	Astinate of Matural Cus Requirements Of The Province	Table III.I
	Allocation of Provincial Paragramment	Sall elds
137	Detroes areas initiating to the	

LIST OF FIGURES

Figure	I-1	Map of Alberta Showing the Location Of Fields and Areas Containing Important Gas Reserves	24
Figure	I-2	Table of Formations for Alberta Showing Stratigraphic Relationship Of Formations from which gas is Obtained	25
Figure	II-l	Growth of Cumulative Initial Disposable Reserves of Natural Gas By Date of Discovery	37
Figure	II-2	Trends in the Growth of Initial Disposable Reserves of Natural Gas Per Wildcat Well Drilled	38
Figure	II-3	Trends in the Growth of Initial Disposable Reserves of Natural Gas With The Cumulative Number of Wildcat Wells Drilled	39
Figure	III-l	Population Trends in the Province Of Alberta	51
Figure	III-2	Trends in Per Capita Gas Consumption	52
Figure	III-3	Trend in Use of Natural Gas in the Province of Alberta	53
Figure	III-4	Comparison of the Board's 1954 and 1955 Estimate of the Future Requirements Of the Province of Alberta	54
Figure	in die to	The Growth of Initial and Remaining Disposable Reserves Related to the Requirements of the Province and Existing Export Permits	55

LIST OF FICHERS

	'Map of Alberta Showing the Location 'Of Fields and Areas Containing Lagoreant Cas Sancryos	
	Thile of Formations for Alberta Showing Shirtigraphic Valationship Of Formations from which gas is Obtained	Figure I-2
	Disposable Receives of Natural Cas	Figure II-1
	Trends in the Greath of Initial Disposable Reserves of Natural Gas	S-II orogia
	Trends in the Growth of Initial Disposite Reserves of Natural Cas With The Cumbilative Number of Wildost Wells brilled	Figure II-3
	Population Trends in the Province	Figure 111-1
	Trends in Per Capita Ges Consumption	Figure III-2
53	Trend in Use of Kabarel Cas in the Province of Alberta	Figure III-3
	Comparison of the Board's 1954 and 1755 Estimate of the Falure decairements of the Province of Alberta	
28	The Growth of Initial and Hemaining 'Disposed's Reserves Helated to the Hemainson and Existing Export Fermits	Figure III-5

I. THE ESTABLISHED RESERVES OF NATURAL GAS IN THE PROVINCE OF ALBERTA

The last report of the Board's findings with respect to the estimated natural gas reserves of the Province of Alberta was published on November 30, 1955. The report showed that the estimated disposable reserves as at June 30, 1955 were 15.6 trillion cubic feet (not corrected for 1955 production). With the further development of existing reserves and the discovery of new pools since June, 1955, the Board's studies and certain submissions from industry indicate a considerable increase in the disposable gas reserves. These reserves as of September 30, 1956 are estimated to be 18.3 trillion cubic feet, an increase of 2.7 trillion cubic feet over those estimated in the November, 1955. report.

The Board's studies show that about half of the 2.7 trillion cubic feet increase is attributable to new discoveries and the balance to expansion of previously known reserves. The discoveries in the Windfall, Hussar, Wimborne and Crossfield areas account for more than half of the increase due to new discoveries, whereas, the increases in the previous reserve estimates for Harmatton-Elkton, Westerose South, Medicine Hat, Homeglen-Rimbey, Bindloss and Savanna Creek account for the majority of the increase due to expansion of previously known reserves. Partially offsetting the increase in the latter classification are substantial decreases in the reserves previously attributed to the Pembina and Pincher Creek fields.

The total disposable natural gas reserves of 18.3 trillion cubic feet may be classified as follows:

- a) Reserves presently considered within economic reach 16.5 T.C.F.
- b) Reserves presently considered to be beyond economic reach l.l T.C.F.
- c) Reserves subject to lengthy deferment due to the production of oil, or due to reinjection

 O.7 T.C.F.

 Total Reserves 18.3 T.C.F.

by the Board to be 10 Bcf or greater, plus, some smaller reserves which are available for local use. In addition, the table shows reserves, totalling 197 Bcf, of 39 small areas whose individual reserves are less than 10 Bcf, and which are presently considered to be within economic reach. Shown also are reserves, totalling 420 Bcf, of 115 small areas whose reserves are less than 10 Bcf and which at present are considered to be beyond economic reach.

A brief description of Table I-l is as follows:

Column	Presents
1.	Name of field or area. The location of the fields and areas are shown in Figure I-1.
2.	Geological formation or zone from which gas is obtained. The Stratigraphic relationship of the formations is shown in Figure I-2.
3.	Estimated original gas in place expressed in billions of cubic feet at standard conditions.

Presents Column Discount to be applied to original gas in place 40 (Column 3) to account for the gas left in the reservoir at abandonment. Discount to be applied, after that for reservoir loss, 5. to account for surface loss. This factor includes (where applicable) allowance for gas flared, operational loss, field and/or plant fuel, and processing shrinkage attending the removal of carbon dioxide, hydrogen sulphide, propane and butanes plus. Estimated disposable gas reserves as at September 30, 6. 1956 expressed in billions of cubic feet at standard conditions. Comments of specific application to individual fields. 7.

TABLE 1 - 1

THE PETROLEUM AND NATURAL GAS CONSERVATION BOARD

ESTABLISHED RESERVES OF NATURAL GAS IN THE PROVINCE OF ALBERTA, SEPTEMBER 30, 1956. (3)

7	(3) REMARKS		TO TO NAL	~ ~	PROPOSED WATER INJECTION,	PRESENTLY CONSIDERED BEYOND	POSSIBLE LOCAL SUPPLY.	SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.7 BCF PRODUCED TO	SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.3 BCF PRODUCED TO			PRESENTLY CONSIDERED BEYOND	SUPPLIES LOCAL UTILITY SYSTEM.	
9	DISPOSABLE GAS (3 BILLIONS OF CUBIC FEET	10.0	D°64	9°88	30°0	10.0	10.0	9	1,2	0°02	70.0	20.0	148°0	2,0
ΓV.	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ſΛ	10	25	ហ	Ŋ	Ŋ		N	22	2	15	Ŋ	ហ
4	DISCOUNT FOR RESERVOIR LOSS PER CENT	20	25(تر بر	10	20	20	20 ()	2 5	25	20	10	. 20	15
က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	13,2	73,2(1) 72,8(11)	90,1(1) 85,3(11)		13.2	13.2	5,6(1) 4,9(11)	2.1(1) 1.8(11)	98,2	92.0	26.2	63.1	r,
2	ZONF(5)	Viking	BLAIRMORE	LEDUC (D3) ', SOLUTION	BASAL BLAIRMORE	CARDIUM SOLUTION	LOWER CRETACEOUS	LOWER CRETACEOUS	Wabamun (D1)	VIKING	BASAL BLAIRMORE	MABAMUN (D1)	VIKING	BLAIRMORE
	FIELD	ACHESON			ALEXANDER	ALHAMBRA	ASHMONT	ATHABASCA	ATHABASCA EAST	ATLEE-BUFFALO		BEAVER CREEK	BEAVERHILL LAKE	

2	I'E MARKS					PRESENTLY CONSIDERED REYOND ECONOMIC REACH.							ORIGINAL LESS 2.6 BCF PRODUCED TO	NAL 5.1	30,	PRESENTLY CONSIDERED BEYOND	REACH.	UNTIL MOST OF OIL ADJUSTED BY 1,2	TO CONVERT TO 1000 B,1,U, BASIS, (1) ORIGINAL (11) LESS 24,2 BCF PRODUCED TO JUNE 30, 1956, ADJUSTED BY 1,23 FACTOR TO CONVERT TO 1000 B,T,U, BASIS	
						PRESENTLY CONSI							(1) ORIGI	(1) ORIGI	JUNE	PRESENT	ECONOMIC REACH.	DEFERRED PRODUCED,	TO CONVERT (1) OR GIN (11) LESS 22 JUNE 36 ADJUSTED BY CONVERT TO	
9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	3,0	7.0	50.0	15.0	2.0	10.0	180.0	20.0	1.0	25.0	12.0	2.0	8,2	10.0	3.0	9.0	0*698	283,0	
ın.	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ις.	ŗ.	Ŋ	10	ſΛ	70	ľ	Ŋ	Ŋ	īV	Ŋ	rv	ι ν .	15	Ŋ	LΩ	15		
. =†	DISCOUNT FOR RESERVOIR LOSS PER CENT	25	20	15	. 50	25	10	10	15	52	5	10	20,	20,	15	25	20	10	35.	
က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	1 to 2	9.2	61.8	20.8	2° 88	46.8	210.5	24.8	4.1	31.0	14.0	5.9(東) 3.3(百)	17.2(j) 12.1(i)	13.8	1,*2	11.8	482 , 5	659.0(m) 634.8(m)	
2	ZONE(5)	CADOTTE	NOTIKEWIN	GETHING	MISSISSIPPIAN	VIKING	BASAL BLAIRMORE	VIKING	BASAL BLAIRMORE	VIKING	BLAIRMORE	BOM ISLAND	ELLIS (RIBBON)	ELLIS (SAWTOOTH)	RUNDLE	VIKING	BLAIRMORE	LEDUC GAS CAP	LEDUC SOLUTION	
-	FIELD	BELLOY				BELLSHILL LAKE		BINDLOSS		BITTERN LAKE		BLACK BUTTE				Bolloque LAKE		BONNIE GLEN		

TOR

	7	REMARKS	(1) ORIGINAL (11) LESS 0.6 BCF PRODUCED TO	SUPPLIES LOCAL UTILITY, USED AS A STORAGE RESERVOIR BY CANADIAN WESTERN NATURAL GAS	COMPANY LIMITED. PRESENTLY CONSIDERED BEYOND	ECONOMIC REACH.									POSSIBLE LOCAL SUPPLY	SUPPLIES LOCAL UTILITY (1) ORIGINAL (11) LESS 0.6 PRODUCED TO	SUPPLIES LOCAL UTILITY, (1) ORIGINAL (11) LESS 3.0 BCF PRODUCED TO	POSSIBLE LOCAL SUPPLY.	6
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	τ, °ε	16.0	5,0	15.0	0.9	0.9	0.04	5.0	3.0	0.4	10.0	3.0	5.0	8° t	19.0	10,0	2000
	ľ	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ſΛ	ſΩ	rv.	Ŋ	5	2	2	77	5	ι,	2	10	5	ru L	M	5	5
	<i>‡</i>	DISCOUNT FOR RESERVOIR LOSS PER CENT	20:10	20	25	20	20	20	15	10	15	10	20		15	10,0%	20°C(1)	15	10
		ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	5,2(1) 4,6(11)	21.0	7.0	19,8	7.9	7.9	49.5	5,9	3.7	L*t1	13.2	3.9	6.2	6,3(1) 5,7(fi)	28,8(1) 25,8(11)	12.4	2,3
I NUE D!	2	ZONE (5)	COLONY &	BOW SLAND	LOWER CRETACEOUS	Nisku	CADOMIN	TRIASSIC	PERMO-PENN	PADDY	CADOTTE	CADOMIN	TRIASSIC	JURASSIC	BOW ISLAND	SUNBURST	MILK RIVER	SUNBURST	PADDY
IABLE : - (CONTINUED)	-	FIELD	BONNYVILLE	Bow Island	BOYLE-MUSTAMG-	AMISK LAKE	BRAEBURN			BRAEBURN WEST					BROOKS NORTH-	- - -	BROOKS-TILLEY		BURNT RIVER

0
NUED
-
TNO
2
_
ш
ABI

2	REMARKS		(1) HAS A VERY HIGH ACID GAS CONTENT.		JUNE 30, 1956 (111) REQUIRES PROCESSING WITH SOME GAS GATHERING DIFF	POSSIBLE LOCAL SUPPLY					PRESENTLY CONSIDERED BEYOND	CONSIDERED CONSIDERED CONSIDERED CONSIDERED CONSIDERED CONSIDERED CONSIDERED CONSIDERED									
9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	0 8	0°54	0°0†ı		30°0	18,0	2.0	75.0	775.0	220,0	0°4	12,0	13.0	15.0	5,0	20.0	20.0	0°E	3.0	7,0
īŪ	DISCOUNT FOR SURFACE LOSS, ETC., (4)	72	(1)09	20(212)		10	רט	ſΛ	ſΩ	r.	ſΛ	ľ	Ŋ	Ŋ	10	10	10	10		N	15
#	DISCOUNT FOR RESERVOIR LOSS PER CENT	10	10	15,0		10	70	10	20	20	15	20	20	10	15	20	10	10	20	ī	10
က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	#°6	125.0	61,2(1) 59,2(11)		37.0	22.3	2,3	98.8	1020,0	272.4	ກຶ່ນ	15,8	7 15,2	19,6	6.9	24.7	Z # 2	റ ന	n°2	2,0
2	ZONE(5)	BLUESKY	MABAMUN (CROSSFIELD)	BESAL BLAIRMORE	1	GLAUCONITIC SAND	VIKING	UPPER BLAIRMORE	VIKING	BASAL COLORADO	BASAL BLAIRMORE	VIKING	BASAL COLORADO	LOWER CRETACEOUS	LOWER CRETACEOUS	PADDY	CADOTTE	Notikewin	VIKING	BLAIRMORE	NISKU GAS CAP
-	FIELD	BURNT RIVER	(CONT'D)	CAMPBELL -NAM'.		CARBON	CASTOR		CESSFORD			CHANCELLOR			CHIGWELL	GHINOOK RIDGE			CLIVE		

TABLE I - 1 (CONTINUED)

	7	REMARKS	PRESENTLY CONSIDERED BEYOND	CEACH. OCAL UTILITY. INAL	(11) LESS U.9 BUF PRODUCED TO JUNE 30, 1956,								PRESENTLY CONSIDERED BEYOND	PRESENTLY CONSIDERED BEYOND	ECONOMIC REACH.			VIKING AND DEVONIAN SOLUTION	GAS BEING INSECTED INTO UTS.	(1) ORIGINAL (11) LESS 0,9 BCF PRODUCED TO	30
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	3,0	1,0	1,5,0	2.0	11.0	10.0	10.0	50.0	0.4	0058	27.6	8,0	2.0	10.0	0.6	5,0	2.0	0°4	
	ΓΛ.	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	25	M	ហ	Ŋ	'n	r.	Ŋ	ľ	72	20	ſΩ	·	rv.	ſΩ	ſΩ	ſΩ	ſΩ	20	
	#	DISCOUNT FOR RESERVOIR LOSS PER CENT		25	15	15	15	10	15	10	20	10	10	ਨ	7	20	20	2	7	30(::)	
	က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBTC FEET	1°1	2,6(1) 1,7(11)	55,7	8,7	13,6	11.7	12.4	58.5	5,3	118,2	31.6	6,6	2,5	13,2	£ 500 000 000 000 000 000 000 000 000 00	6,2	2,5	8.4(1) 7.5(11)	
NUE D/	2	ZONE (5)	LEDUC GAS CAP	BLAIRMORE	Bow 1sLAND	VIKING	BASAL BLAIRMORE	VIKING	BASAL BLAIRMORE	Bow ISLAND	BASAL BLAIRMORE	MISSISSIPPIAN (ELKTON)	GETHING	VIKING	DETRITAL	Bow ISLAND	BASAL COLORADO	VIKING	BLAIRMORE	DEVONIAN SOLUTION	
IABLE I - I (CONIINUED)	-	FIELD	CLIVE (CONTID)	Cold Lake	COMREY	CONNORSVILLE		CONTROL		Countess		CROSSFIELD	DIXONVILLE	DONALDA		Duchess		DUHAMEL			

	7	REMARKS	SUPPLIES CHEMICAL PLANT, (1) ORIGINAL (11) LESS 0,7 BCF PRODUCED TO JUNE 30, 1956,									SUPPLIES LOCAL UTILITY (1) ORIGINAL (11) LESS 0,3 BCF PRODUCED TO	JUNE 3U, 1956,			(III). ORIGINAL (III) LESS 0.6 BCF PRODUCED TO JUNE 30, 1956.			Possibly Deferred until oil Produced from Devonian reservoir,
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	0,	3,0	8,0	0°E	30,0	1,0	0°4	D'r	7.0	9.0	2,0	15,0	22.0	0 ຶ 8	125.0	1,0	7,0
	ſΛ	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ru	rU	ſΩ	L	20	'n	Ŋ	ιn	Ŋ	ľ	ſΩ	10	20 -		ľ	Ŋ	N
	#	DISCOUNT FOR RESERVOIR LOSS PER CENT	2 0 (1)	10	10	15	10	20	15	10	10	25(1)	25	77	10	en En	77	25	20
	m	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	2,2(1) 1,5(11)	in e	# . 6	3.7	1,17	£,	5.0	L* t	8,2	1,2(1).0,9(11)	2,8	19.6	30.6	18,5(11)17,9(111)	154,8	4° L	9,2
(CONTINUED)	2	ZONE(5)	VIKING	BELLY RIVER	VIKING	BASAL BLAIRMORE	MISSISSIPPIAN	(ELKTON) PEACE RIVER	GETHING	CADOMIN	MISSISSIPPIAN	BLAIRMORE	VIKING	BLAIRMORE	LEDUC GAS CAP	LEDUC SOLUTION	BOW ISLAND	BASAL BLAIRMORE	VIKING
TABLE 1 - 1 (Co.	qua	FIELD	DUXEBNAY	Dyberg			EAGLE HILL	EAGLESHAM				ELK POINT	ERSKINE				ETZIKOM		Excelsion

1) RESERVOIR LOSS HIGH BECAUSE (ii) tess 11,4 BCF PRODUCED TO JUNE 30, 1956.
PRESENTLY CONSIDERED BEYOND ORIGINAL LESS 1,9 BCF PRODUCED TO JUNE 30, 1956. BCF PRODUCED TO PRESENTLY CONSIDERED BEYOND BCF PRODUCED LESS 5.8 BCF PRODUCED JUNE 30, 1956. OF LOW DELIVERABILITY. REMARKS ECONOMIC REACH. ORIGINAL LESS 8,5 ECONOMIC REACH, LESS 0,3 JUNE 30, JUNE 30, ORIGINAL ORIGINAL DRIGINAL LESS 33 DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET 27,0 8,0 15,0 5,0 8,0 2,0 3,0 180,0 15,0 0°06 70.0 21,0 120,0 25.0 1,0 2,0 13,0 9 DISCOUNT FOR SURFACE LOSS, ETC., (4) 107 100 PER CENT 35 ഥ 2 10 S 2 2 Ŋ S S S S 10 35 0 DISCOUNT FOR RESERVOIR LOSS 20(1) 20(1) 35(1) PER CENT 30 ु 30 10 20 5 10 9 20 25 20 10 15 20 10 10 120,9(1) 119,0(11) 153.0(1) 141.6(11) 34,9(1) 29,1(11) 179,0(1) 170,5(11) 11,4(1) 11,1(11) ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET 3156. 235,5 10,5 30,9 10,5 2,6 15,2 2.6 4,2 6.6 22.6 18,6 BASAL BLAIRMORE BASAL BLAIRMORE BASAL BLAIRMORE BASAL BLAIRMORE NISKU SOLUTION BASAL COLORADO MISSISSIPPIAN MISSISSIPPIAN (PEKISKO) BOW ISLAND BOW ISLAND ZONE (5) BLAIRMORE FORT SASKATCHEWAN VIKING VIKING VIKING VIKING VIKING LEDUC LEDUC TABLE I - 1 (CONTINUED) 2 FENN-BIG VALLEY FAIRYDELL-BON GARRINGTON GHOST PINE EXCELSIOR (CONT 1D) EYREMORE FOREMOST ACCORD GILBY FIELD GEM

	7	REMARKS	PRESENTLY CONSIDERED BEYOND		NAL NAL	NAL	(II) LESS 1, I BUF.		INAL PCT	JUNE 30, 1956 AND 8.0 BCF STORED TO JUNE 30, 1956.	NET PRODUCTION -3.4 BCF, ALL DEFERRED BY REINJECTION PRESENTLY CONSIDERED BEYOND FCONOMIC RFACH,					PRODUCTION ECONOMICS QUESTIONABLE.		Possible Local Supply,	SUPPLIES CHEMICAL PLANT. (1) ORIGINAL (11) LESS 0.5 BCF PRODUCED TO JUNE 30, 1956.
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	5,0	2.0	0.6	12,0	3,0	0°6	75.0		0°t.	25.0	55,0	10,0	0°09	20,0	1,5,0	2.0	11,0
	N	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	20	LO	ī	15	15	20	25		ת	0	5	5	Ŋ	(.)	ĽΩ	Ŋ	ſΛ
	≠	DISCOUNT FOR RESERVOIR LOSS PER CENT	6	20	7.	10	10	35	25		20	10	20	15	10	25	10	25	20
	က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	7.0	4,4(1) 3,0(11)	11,8(1) 11,3(11)	16,9(1) 15,8(11)	٠ ٣	N 18.0(1) 17.6(11)	SOLUTION 129,0(i) 132,4(ii)		5,3	30,9	72° 4	12,4	70,1	28,1	RE 52,6	2.8	15,1(1) 14,6(11)
(CONTINUED)	2	ZONE (5)	WABAMUN	VIKING	BLAIRMORE	WABAMUN	NISKU GAS CAP	NISKU SOLUTION	LEDUC SOLUTION		VIKING	JURASSIC (NORDEGG)	CADOTTE	GETHING	CADOMIN	VIKING	BASAL BLAIRMORE	VIKING	BLAIRMORE
TABLE 1 - 1 (CON	1	FIELD	GILBY (CONTID)	GOLDEN SPIKE							GOODWIN LAKE		GORDONDALE			GRASSY ISLAND LAKE	HACKETT	HAIRY HILL	

TABLE 1 - 1 (CONTINUED)

-	. 2 2	ന	#	72	9	7
	ZONE (5)	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	DISCOUNT FOR RESERVOIR LOSS PER CENT	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	REMARKS
HAMELIN CREEK	CADOTTE	9*9	20	S	5.0	
	GETHING	8*94	10	ī.	0.04	
HAMILTON LAKE	VIKING	56,1	25	5	0°0t	
HANNA-WATTS	VIKING	5.0(1) 4.8(11)	20(%)	ſΩ	9 ° 6	SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.2 BCF PRODUCED TO
	BLAIRMORE	5,4(1) 5,2(11)	15(1)	ſŲ	£,2	JUNE 30, 1956. ORIGINAL LESS 0.2 BCF PRODUCED
	MISSISSIPPIAN	က္	20	ſΩ	2,5	JUNE 30, 1956.
HARMATTANEELKTON	MISSISSIPPIAN (ELKTON)27.8	ELKTON)27.8	10	20	20.0	
	DOLATED	SAS 3A1320.0	10	20	950,0	
	MISSISSIPPIAN SOLUTION	185,0(1) 184,9(11)	35(1)	25	0.06	INAL 0,1
						JUNE 30, 1956.
HERCULES	VIKING	11.2	15	ζ.	0.6	
	BASAL BLAIRMORE	11,7	10	52	10.0	
HOMEGLEN-RIMBEY	LEDUC GAS CAP	1117.2(1) 1113.0(11)	10	20	0,008	
	LEDUC SOLUTION	105,8(1) 103,8(11)	35	255	50.0	JUNE 30, 1956. (I) ORIGINAL (II) LESS 2.0 BCF PRODUCED TO JUNE 30, 1956.
Hussar	BASAL COLORADO	21.0	25	S	15.0	
	GLAUCONITIC SAND	up 105,4	10	5	0.06	
JOARCAM	VIKING GAS CAP	65,8	20	ſΩ	50,0	DEFERRED UNTIL OIL RESERVOIR DEPLETED.

	2	REMARKS	(ii) ORIGINAL (ii) Less 59,2 BCF PRODUCED TO JUNE 30, 1956.	HAS HIGH ACID CONTENT.		(1) HAS HIGH ACID CONTENT AND WET; WILL REQUIRE PROCESSING.	PRESENTLY BEYOND ECONOMIC REACH.	PRESSURE,	SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.3 BCF PRODUCED TO JUNE 30, 1956.	(1) ORIGINAL (11) LESS 0.6 BCF PRODUCED TO	(1) ORIGINAL (11) LESS 1.8 BCF PRODUCED TO JUNE 30, 1956. 14.0 BCF PRESENTLY CONSIDERED BEYOND		(1) ORIGINAL (11) LESS 30,8 BCF PRODUCED TO	32°	108, 108, 30, 10, 10, 10, 10, 10, 10,
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	538,0	30.0	50.0	10.0	30,0	10,0	7.7	12.0	151.0	32,5	58,0	348.0	56,8
	ī.	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	17	f0(1)	ΓŲ	(1)09	Ŋ	Ŋ		ſΛ	10	51	30	15	30
	#	DISCOUNT FOR RESERVOIR LOSS PER CENT	10	10	. 25	. 10	30(1)	25(1)	15	20		10	25	15	0 [†] t
	က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	787,5(1) 728,3(11)	55,6	70.2	27.8	45,1	14.0	6.9(11)	16,6(1) 16,0(11)	226,2(1) 224,4(11)	42.5	151.7(1) 120.9(11)	521.0(1) 488.2(11)	221,0(1) 169,6(11)
NUED)	2	ZONE (5)	RUNDLE	WABAMUN (CROSSFIELD)	VIKING	LEDUC	VIKING	McMurray	BLA I RMORE	VIKING	BLAIRMORE	NISKB' GAS CAP	Nisku Solution	Lebuc Gas Cap	LEDUC SOLUTION
TABLE I - 1 (CONTINUED)	1	FIELD	JUMPING POUNDS	KATHRYN	Kessler	KEVISVILLE	LAC LA BICHE		LEAHURST	LEDUC-MOODBEND					

TABLE 1 - 1 (CONTINUED)

	2	က	1 .		9	2
FIELD	20NE (5)	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	DISCOUNT FOR RESERVOIR LOSS PER CENT	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	REMARKS
LINDBERGH	VIKING	2,8	25	5	2.0	SUPPLIES SALT PLANT
	Colony	4.4(1) 2.7(11)	25		້	(1) ORIGINAL (11) LESS 1.7 BCF PRODUCED TO JUNE 30, 1956.
LITTLE SMOKY	PERMO-PENN	2,5	15	Ŋ	2.0	PRESENTLY BEYOND ECONOMIC REACH.
KIVER	MISSISSIPPIAN	2,8	15	15	2,0	
	LEDUC SOLUTION AND GAS CAP	22,3(1) 22,1(11)	35(1)	30	10.0	(i) ORIGINAL (ii) Less 0,2 BCF PRODUCED TO JUNE 30, 1956.
LLOYDMINSTER	COLOMY	7.9	04	15	0 1	UTILITY,
	SPARKY	8.7	09	O [†] t	2.1	A TOTAL OF 10,3 BUT HAS BEEN PRODUCED FROM BOTH ZONES TO JUNE 30, 1956,
MAJEAU LAKE	GLAUCONITIC SAND	2,6	20	īV	2.0	PRESENTLY BÉYOND ECONOMIC REACH.
	RUNDLE	12,3	10	10	10.0	
MALMO	VIKING	3,7	7	ſŲ	3,0	POSSIBLE LOCAL SUPPLY.
	BASAL BLAIRMORE	о° 6	ź	10	3°0	
	GAS CAP BASAL BLAIRMORE SOLUTION	4,2(1) 3,9(11)	[1] Ot	10	2,0	NAL 0.3
	NISKU GAS CAP	3.7	10	10	3.0	JUNE 30, 1996,
	NISKU SOLUTION	7,5(1) 6,6(11)	35.	25	3,0	
	LEDUC GAS CAP	2,	10	10	1,0	JUNE 30, 1956.
`	LEDUC SOLUTION	4,5(1) 4,1(11)	35	20	2,0	(1) ORIGINAL (11) LESS 0.4 BCF PRODUCED TO JUNE 30, 1956,

TABLE 1 - 1 (CONTINUED)

7	REMARKS			INAL 189°	JUNE 30, 1956,				ORIGINAL LESS 12.6	JUNE 30, 1956. PRESENTLY CONSIDERED BEYOND ECONOMIC REACH.			Possible source For Local SUPPLY,		(i) ORIGINAL (ii) Less 0.5 BCF PRODUCED TO JUNE 30, 1956.	PRESENTLY CONSIDERED BEYOND ECONOMIC REACH,			PRESENTLY CONSIDERED BEYOND ECONOMIC REACH.
9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	0°9	0,63	1000,0	15.0	15,0	50,0	2,0	100,00	25,0 PRE	30°0	1,80,0	2.0 Pos	5,0	3,0	12,0 PRE 5,0 ECC	3°0	5,0	
5	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT		5	7,0	ζ	5	10	Ŋ	īU	Ŋ	Ŋ	20	ſŪ	2	25	יני וְנִי	<u>د</u>	10	10
#	DISCOUNT FOR RESERVOIR LOSS PER CENT	20	15	20(1)	20	20	10	25	15(1)	10	20	10	20	10	35(1)	<u>rv</u> r v	10	10	10
က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	7.9	73,0	1580,8(1) 1391,0(11)	19,7	19.7	61.7	2,8	138,5(1) 125,9(11)	29°5	39,5	2°999	2.6	5,9	(11) 4°9 (1)6°9	14,9	3,5	6,2	12.4
2	ES ZONE (5)	UPPER BOW ISLAND	LOWER BOW ISLAND	MEDICINE HAT	BOW ISLAND	ELLIS	MISSISSIPPIAN	VIKING	BASAL BLAIRMORE	TRIASSIC (SPRAY RIVER)	LOWER CRETACEOUS	DEVONIAN	VIKING	BLA I RMORE	NISKU	GETHING TRIASSIC	PERMO-PENN	RUNDLE	RUNDLE
	FIELD	MANYBERRIES		MEDICINE HAT			MINNEHIK-BUCK LAKE	MORINVILLE		MOUNTAIN PARK	NEVIS		NEW NORWAY			Normandville			OBED

TABLE 1 - 1 (CONTINUED)

7	REMARKS		SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.7 BCF PRODUCED TO JUNE 30, 1956.	(1) HAS VERY HIGH ACID GAS CONTENT.			PRESENTLY CONSIDERED BEYOND ECONOMIC REACH.		_	JUNE 30, 1996,		NAL 34°	PRESENTLY CONSIDERED BEYOND	ECONOMIC REACH.			NAL 2,9	JUNE 30, 1956.
9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	π,0	0.7	135.0	70.0	8,0	15,0	1,0	700.0	1,0	3,0	145.0	0.6	0°t	10.0	1800,0	200°0	10,0
rv.	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ī	ſΛ	(1)09	20	Ŋ	15	ſΩ	t+1	ΓU	10	ſŲ	ΓU	Ŋ	15	25	ſΩ	ſΩ
<i>#</i>	DISCOUNT FOR RESERVOIR LOSS PER CENT	25	20(1)	10°)	10	20	10	20	2 ^t	25	5	20 %	20	15	10	16	15%	15
က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	9°0	1,8(1) 1,1(11)	375.0	97.2	10.5	19,6	1,3	2080.0(1) 2061.3(11)	4.1	3,9	234,1(1) 199,7(11)	11.8	5,0	13,1	2858.0	251,0(1) 248,1(11)	12,4
2	ZONE (5)	VIKING	BASAL BLAIRMORE	WABAMUN (CROSSFIELD)	WABAMUN (CROSSFIELD)	VIKING	RUNDLE	BELLY RIVER	CARDIUM SOLUTION	BASAL BLAIRMORE	RUNDLE	BOW ISLAND	GETHING	MISSISSIPPIAN	Lebuc	RUNDLE	Саротте	CADOMIN
-	FIELD	OBERLIN		Окотокѕ	OLDS	OYEN	Parkland	PEMBINA				PENDANT D'OREILEE	PHIL CAN		PIGEON LAKE	PINCHER CREEK	Pouce Coupe	

(1) ORIGINAL
(11) LESS 30.5 BCF PRODUCED TO
JUNE 30, 1956.
RESERVES ADJÚSTED BY 1,25 FACTOR
TO CONVERT TO 1000 B.T.U. BASIS. 0,4 BCF PRODUCED TO JUNE 30, 1956, PRESENTLY CONSIDERED BEYOND REMARKS ECONOMIC REACH, DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET 87,0 10,01 10,0 5,0 30,0 0000 5.0 62,5 3,0 0.6 3,0 0°t 5,0 28,0 500,0 1000 10,0 0.4 9 DISCOUNT FOR SURFACE LOSS, ETC.,(4) S S S L S 5 2 S 5 2 2 Ŋ 20 DISCOUNT FOR RESERVOIR LOSS PER CENT 35 10 15 25 20 10 20 20 20 20 25 04 20 20 20 20 15 15 259.0(1) 228.5(11) ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET 117.0 658,0 13,0 101,8 39,5 9.9 41.2 3,9 11,9 3,9 5.0 6.2 7.0 13,1 14.0 5,3 12.4 JEFFERSON GAS CAP (SCHOOLER CREEK) LOWER CRETACEOUS UPPER BLAIRMORE BASAL BLAIRMORE RUNDLE GAS CAP LEDUC SOLUTION BASAL COLORADO GLAUCONITIC BOW ISLAND CLEARWATER ZONE (5) DOE CREEK [RIASSIC SUMBURST WABAMUN CADOMIN CADOTTE VIKING VIKING VIKING 2 POUCE COUPE SOUTH ROCHESTER REDWATER PRINCESS PROVOST FIELD

TABLE 1 - 1 (CONTINUED)

TABLE 1 - 1 (CONTINUED)

	7	REMARKS							SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0,3 BCF PRODUCED TO JUNE 30, 1956.	SUPPLIES LOCAL UTILITY. (i) ORIGINAL (ii) LESS(1,0 BCF PRODUCED TO JUNE 30, 1956.		ORIGINAL Less 8,2 BCF PRODUCED TO JUNE 30, 1956.	SUPPLIES LOCAL UTILITY, (i) ORIGINAL (ii) LESS 1,2 BCF PRODUCED TO JUNE 30, 1956,	PRESENTLY BEYOND ECONOMIC REACH.		10
	9	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	21,0	0°9	5,0	10.0	10.0	7,0	12.0 SUPPLII (1) 0 (11) LI	12,4 SUPPLII (1) 01 (11) LI	2.0	0°0†	0,8 SUPPLII (i) 0	23.0 PRESEN	2,0	12,0
	ľ	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ın	Ŋ	Ŋ	ſŲ.		Ŋ	rv	ת		ſΛ	ſΛ	ſŲ	Ŋ	N
	. हा	DISCOUNT FOR RESERVOIR LOSS PER CENT	15	15	20	15	10	20	r L	75	20	10	20	10	15	10
	ო	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	26.0	7. h	9*9	12,4	11.7	9,2	15,2612 14,9(11)	GETHING NON-ASSOCIATED 16.6(1) 15.6(11) AND ASSOCIATED	2,6	56.0(1) 47.8(11)	2,5(1) 1,3(11)	26.9	2,5	14,0
VOE D.	2	ZONE (5)	Bow ISLAND	BASAL COLORADO	VIKING	GLAUCONITIC SAND	BASAL BLAIRMORE	VIKING	BASAL BLAIRMORE	GETHING NON-ASSOCIA AND ASSOCIATED	VIKING	LOWER CRETACEOUS	BLAIRMORE	PEACE RIVER	LOWER CRETACEOUS	BASAL BLAIRMORE ASSOCIATED AND NON-
IABLE 1 - 1 (CONTINUED)	-	FIELD	ROLLING HILLS		Rosebud			Rosedale		RYCROFT	ST. ALBERT		ST. PAUL	SADDLE HILLS		SAMSON

ORIGINAL LESS 0.5 BCF PRODUCED TO JUNE 30, 1956. ORIGINAL LESS 1,3 BCF PRODUCED TO JUNE 30, 1956, ORIGINAL LESS 0,9 BCF PRODUCED TO JUNE 30, 1956. BCF PRODUCED TO 1956, ORIGINAL LESS 0,3 BCF PRODUCED TO JUNE 30, 1956, PRESENTLY CONSIDERED BEYOND REMARKS ECONOMIC REACH, ORIGINAL LESS 1.2 E JUNE 30, 1 33 33 $\widehat{\Xi}$ ΞΞ 33 DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET 150.0 250.0 30,0 3,0 2.0 7,0 11,0 18,0 13,0 8,0 42,0 18,0 0° t 3,0 105,0 9 DISCOUNT FOR SURFACE LOSS, ETC.,(4) 35 25 35 Ŋ S S ഥ 5 5 20 25 2 5 25 30 DISCOUNT FOR RESERVOIR LOSS PER CENT 35 35 25 35 35 15 10 10 25 35 10 20 10 20 25 250,0(1) 248,7(11) ESTIMATED ORIGINAL GAS IN PLACE 24,4(1) 23,2(11) 43,1(1) 42,8(11) 9.5(1) 9.0(11) 11,1(1) 10,2(11) BILLIONS OF CUBIC FEET 370.0 39,5 15,2 14,2 16,4 52.0 2,6 208,3 4.2 21,1 က FRIASSIC SOLUTION LEDUC SOLUTION LEDUC SOLUTION NISKU SOLUTION LEDUC SOLUTION RIASSIC NON-ASSOCIATED PERMO-PENN BOW ISLAND ZONE (5) BLAIRMORE STURGEON LAKE SOUTH GETHING GENERAL AREA STURGEON LAKE SOUTH GETHING IRIASSIC. RUNDLE VIKING RUNDLE 2 TABLE 1 - 1 (CONTINUED) STURGEON LAKE SAVANNA CREEK SMITH COULEE STETTLER SIBBALD SARCEE FIELD

ECONOMIC REACH. (1) ORIGINAL (11) Less 265.8 BCF PRODUCED TO JUNE 30, 1956. ORIGINAL LESS 0.4 BCF PRODUCED TO JUNE 30, 1956. LESS 1.7 BCF PRODUCED TO JUNE 30, 1956. AFTER DEDUCTING PRODUCTION TO DEFERRED UNTIL OIL RESERVES PRESENTLY CONSIDERED BEYOND SUPPLIES LOCAL UTILITY. REMARKS ORIGINAL. JUNE 30, 1956. DEPLETED. $\widehat{\Xi}$ DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET 19.0 0.9 205.0 559,0 15,0 30.0 34,0 4.0 10.0 0.06 70.0 5,0 5.0 25.0 1⁺ 0 18.0 4.0 2.0 150,0 9 (±) DISCOUNT FOR SURFACE LOSS, ETC., 20.0 38.0 PER CENT S Ŋ 2 S S S 5 25 S 10 5 5 5 5 0 5 20 20 DISCOUNT FOR RESERVOIR LOSS 30,0(1) PER CENT 20 . . . 15 15 10 10 15 10 20 10 15 20 20 35 10 20 10 1068,0(1) 802,2(11) ESTIMATED ORIGINAL 62,2(1) 61,8(11) 27.2(1).25.5(11) GAS IN PLACE BILLIONS OF CUBIC FEET 5.0 5.0 21.2 2.9 39,8 5,6 15.0 111,5 92,2 5,8 9.9 30,9 22,1 က MISSISSIPPIAN GAS CAP RUNDLE SOLUTION GAS BASAL BLAIRMORE BASAL BLAIRMORE RUNDLE GAS CAP. MISSISSIPPIAN MISSISSIPPIAN MISSISSIPPIAN THREE HILLS CREEK BELLY RIVER (PEKISKO) BOW ISLAND (ELKTON) MILK RIVER ZONE(5) SOLUTION DEVONIAN TRIASSIC CADOTTE GETHING VIKING RUNDLE ELLIS \sim TABLE I - 1 (CONTINUED) VIKING-KINSELLA TURNER VALLEY SYLVAN LAKE SUFFIELD TANGENT TURIN SUNDRE FIELD

TABLE 1 - 1 (CONTINUED)

BLE 1 - 1 (CONTINUED)

	5)	ORIGINAL LACE OF	DISCOUNT FOR RESERVOIR LOSS PER CENT	5 DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	208 31.1 31.1	7) REMARKS
WEST PRAIRIE (CONTID)	GETHÍNG (F. V.T.)	ŧ	10	יט ג	5,0	
WESTWARD HO	MISSISSIPPIAN (ELKTON) NON-ASSOCIATED MISSISSIPPIAN (ELKTON) SOLUTION	33.2	35(1)		13.0	(1) ORIGINAL (11) LESS 0.3 BCF PRODUCED TO
	GETHING	75,1(1) 74,3(11)	72	ιν.	0°09	SUPPLIES LOCAL UTILITY. (1) ORIGINAL (11) LESS 0.8 BCF PRODUCED TO JUNE 30, 1956,
	TRIASSIC (Spar River)	61,9	15	M	20°0	
	LOWER CRETACEOUS	13,5(1) 7,4(11)	20	ſυ	ហ្វំដ	(1) ORIGINAL (11) LESS 6,1 BCF PRODUCED TO JUNE 30, 1956,
LDUNN CREEK	VIKING	19.7	20	Ŋ	15.0	•
	VIKING	ተ* [25	ın	1,0	
	NISKU GAS CAP	2,9	20	15	2.0	
	LEDUC GAS CAP	120,5	10	(1)04	65.0	(1) HAS HIGH ACID GAS CONTENT.
	VIKING	t.°C	25	. 10	5,0	
	RUNDLE	r.	25	10	1,0	
	LEDUC NON-ASSOCIATED	1025,0	10	35	0.009	
LAKE	VIKING	2,57	15	ľ	2.0	
	LOWER CRETACEOUS	6.6	15	ſΩ	8,0	
	LEDUC SOLUTION 2	249.0(1) 240.0(11)		30	98,5	(1) ORIGINAL (11) LESS 8.6 BCF PRODUCED TO JUNE 30, 1956, RESERVES ADJUSTED BY 1.23 FACTOR TO CONVERT TO 1000 B.T.U. BASIS.

	2	DISPOSABLE GAS (3) BILLIONS OF CUBIC FEET	15,0	197.0 ESTIMATED TO BE WITHIN ECONOMIC REACH. \$\\$\\$\\$\\$20.0\$ REACH.	
	72	DISCOUNT FOR SURFACE LOSS, ETC.,(4) PER CENT	ſΛ		8
	≠	DISCOUNT FOR RESERVOIR LOSS PER CENT	. 10	BOVE	
	က	ESTIMATED ORIGINAL GAS IN PLACE BILLIONS OF CUBIC FEET	17,5	BIC FEET NOT LISTED A	
TINUED)	2	ZONE (5)	BASAL BLAIRMORE	ERVES LESS THAN 10 BILLION CUBIC FEET NOT LISTED ABOVE ERVES LESS THAN 10 BILLION CUBIC FEET NOT LISTED ABOVE	
TABLE 1 - 1 (CONTINUED)		FIELD	Wood River	OTHER RESERVES LE OTHER RESERVES LE	

UNLESS OTHERWISE NOTED RESERVOIR LOSS IS CALCULATED AS 10% GENERAL NOTES:

OF ORIGINAL GAS IN PLACE EXCEPT IN PARTICULAR CASES WHERE THE FOLLOWING LOSSES PERTAIN: Sand thickness 10-15 feet Reservoir loss 15%, Sand thickness 5-10 feet Reservoir loss 20%, Sand thickness 0-5 feet Reservoir loss 25%

SURFACE LOSS IS TAKEN AS 5% FOR ALL DRY GAS, AND VARIES FOR WET GAS DEPENDING UPON ITS COMPOSITION. 2

DISPOSABLE RESERVES AS AT SEPTEMBER 30TH, 1956, WITH PRODUCTION DEDUCTED TO JUNE 30TH, 1956 ONLY. က

UNLESS OTHERWISE NOTED SURFACE DISCOUNT FACTORS IN EXCESS OF 5% ARE DUE TO EXTRACTION OF HEAVY HYDROCARBONS. **.**

REFER TO THE TABLE OF FORMATIONS SHOWN IN FIGURE 1 - 2 FOR THE STRATIGRAPHIC RELATIONSHIP OF THE ZONES. ις.

THE TRENDS IN EXPLORATION AND GROWTH OF THE RESERVES OF NATURAL GAS IN THE PROVINCE OF ALBERTA

In previous reports prepared by the Board studies of the trends in exploration and the growth of reserves have been presented. The studies were based upon data submitted at various hearings before the Board and upon an analysis of statistics compiled by the Board's own staff. While no new submissions have been received since the November, 1955 report, the Board's statistics have been reviewed and brought up-to-date.

In a submission made to The Royal Commission on Canada's Economic Prospects, in October, 1955, the Board staff estimated that there existed within the Alberta portion of the Western Canada Sedimentary Basin a maximum area of 213,500 square miles of land favorable for the prospecting of crude petroleum and natural gas. This figure included all of the area covered by sediments to a depth in excess of 1,000 feet but did not include the mountain ranges. The volume of sediment occurring between the base of the glacial drift and the top of the precambrian granite over the available acreage of sediments underlying the plains area of Alberta has been calculated to be approximately 225,000 cubic miles. By assigning a uniform thickness of 20,000 feet to the entire foothills belt (presently considered to represent the economic depth limited for future exploration in the foothills) an additional 45,000 cubic miles of effective basin sediments have been calculated to exist in Alberta. The

area used in the Board's submission agrees closely with the 200,000 square mile estimate contained in the Board's November, 1953 report. For the purpose of this report the area of potential gas lands in the Province is still considered to be 200,000 square miles.

The density of wildcat drilling has increased steadily from one wildcat well per 121 square miles (of the 200,000 square miles of potential gas area) as at December 31, 1951 to one wildcat well per 57 square miles as at September 30, 1956. The Board considers that this density will increase to one wildcat well per 10 square miles before the increase in the cumulative initial disposable gas reserves per wildcat well becomes negligible. This would give a total of some 20,000 wildcat wells for the 200,000 square miles of potential gas area.

Statistical data dealing with the number of wildcat wells drilled, and the initial disposable gas reserves discovered to September 30, 1956, are presented in Table II-1.

This is a revision of similar tables in previous reports. These data show that at September 30, 1956, the drilling of 3,496 wildcat wells had resulted in the discovery of some 19.4 trillion cubic feet of initial disposable gas reserves. This is an overall discovery rate of 5.6 billion cubic feet of gas for every wildcat well drilled. The corresponding rates established in June, 1953, and June, 1955 were 5.3 and 5.4 billion cubic feet of gas per wildcat well, respectively.

present on the control of the contro

In Figure II-l is shown a plot of the growth of the cumulative initial disposable reserves of natural gas, by years, using the data listed in Table II-1. Also shown, are the corresponding curves published in the reports of March, 1952, November, 1953, and November, 1955. The curves confirm the Board's conclusion indicated in previous reports; that a time lag of several years occurs before new disoveries may be fully evaluated. The graph indicates that reserves discovered previous to 1953 have been almost completely evaluated, while those subsequent to that time likely will be assigned higher values when re-evaluated in the future. The dip in the curve for the data tabulated in Table II-1 below that plotted from corresponding data published in the November, 1955 report for the years 1948 to 1952 inclusive, is caused by some corrections having been made in the dates of discovery of certain pools and a downward revision in reserve estimates of some pools discovered in that time interval.

that contained in the November, 1955 report. It shows the initial disposable reserves per wildcat well drilled from 1941 to 1956 inclusive. The dashed line A-A indicates the ratio of the initial disposable reserves discovered per year to the number of wildcat wells drilled per year. It is quite erratic due to its sensitivity to discoveries of larger reserves. From this curve it may be seen that an average of approximately 4.3 billion

·

.

•

. ...

cubic feet of new gas reserves have been obtained per wildcat well drilled in the last five years. The line B-B is the ratio of the cumulative initial disposable reserves discovered to the cumulative number of wildcat wells drilled. This curve shows that at September 30, 1956, due to the drilling of 3,496 wildcat wells which resulted in the discovery of some 19.4 trillion cubic feet of initial disposable gas reserves, the cumulative rate of discovery was 5.6 billion cubic feet for each wildcat well drilled (compared with the rate of 5.3 billion cubic feet per wildcat well established in June, 1953 and 5.4 billion cubic feet per wildcat well established in June, 1955). It can be seen from the curve that, due to the time lag effect, the 1953 and 1955 values have increased to 6.8 and 5.9 billion cubic feet per wildcat drilled. The Board still believes the figure of 6 billion cubic feet to be a realistic interpretation of the reserves which may be developed per wildcat well drilled at the present time.

Figure II-3, as in the previous report, illustrates the trend in growth of cumulative initial disposable gas reserves with the cumulative number of wildcat wells drilled. The line DEF (which was first constructed as a conservative forecast on Figure B-4 of the November, 1953 report) is an estimate of the growth trend of initial disposable gas reserves which may be anticipated to the drilling of a total of 20,000 wildcat wells.

It still is considered to be a conservative projection. The change in slope of the curve indicates an expected diminishing of the rate of growth of initial disposable reserves of natural gas per wildcat well drilled in future years from the present expectation of 6 billion cubic feet per wildcat well.

Of general interest, is a projection contained in the Board's submission to The Royal Commission on Canada's Economic Prospects based upon:

- a) The accumulation of crude oil reserves in the United States in relation to the volume of sediments in that country (40,000 barrels of oil per cubic mile of sediment)
- b) The volume of available sediments in Alberta, (270,000 cubic miles), and
- c) The 1955 ratio of established initial disposable gas reserves to the initial recoverable crude oil reserves.

Assuming that the same degree of oil accumulation will be found in Alberta as has occurred in the United States, and assuming that the ratio of gas reserves to oil reserves in Alberta will remain constant, an ultimate total reserve of recoverable natural gas in the order of 75 trillion cubic feet may be forecast. The Board considers this geological approach to be indicative of the ultimate possibilities.

A trend in the distribution of gas reserves by types has become evident in the past few years. By classifying each reserve listed in Table II-1 into four types of gas, the percentage distribution among types as of 1950 and as of 1956 is

es de la companya de

as follows:

Types of Reserve	Percentage of	Total Reserves
	1950	1956
Non-Associated "Dry" Gas	58	46
Condensate Gas	27	22
Associated Gas	9	20
Solution Gas	6	12

It may be seen that the percentage of dry gas reserves has declined from 58 in 1950 to 46 in 1956. Geographically, the dry gas reserves generally are located in sands of the Upper and Lower Cretaceous Periods underlying the plains area of Alberta. With the apparent shifting in exploration from the plains area to the foothills and mountain areas of the Province, it is expected that more "wet" gas reserves will be discovered and that the percentage of gas requiring processing for removal of liquid hydrocarbons will increase beyond the current 54 per cent of total reserves.

TABLE 11 - 1

THE PETROLEUM AND NATURAL GAS CONSERVATION BOARD

TRENDS IN WILDCAT DRILLUNG AND GROWTH OF DISPOSABLE GAS RESERVES IN THE PROVINCE OF ALBERTA

-	23	ო		5	9	7	œ
YEAR	WILDCAT WELLS PER YEAR	WILDCAT WELLS CUMULATIVE	NAME OF FIELD	DISPOSABLE GAS RESERVES AS OF SEPT. 30, 1956 BCF	SALES TO JUNE 30, 1956 BCF	DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF	CUMULATIVE INITIAL DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF
PRIOR 1	10	172.	MEDICINE HAT, BOW ISLAND, BROOKS, TILLEY, VIKING-KINSELLA (VIKING), TURNER VALLEY, FOREMOST,	2196	842	3038	3038
1930	29	201 210 216		m		ო	3038 3041
1934 1935 1935	~ m ~ ∞	228 228 228 238 238	LLOYDMINSTER	9	9	12	3041 3053 3053
1937	<u>, €</u> 50	251 263 263	WILDMERE	Д	9	10	3063 3063
1940 1941 1941	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	304 324 324	PRINCESS SUFFIELD	158 19	• • •	21	3063 3221 3242
5 . 5 5	34	401 457	OTHER SMALL FIELDS ATHABASCA BLACK BUTTE	∞ ≠ π α ο α α α	1 1 1 2	m + + Φ [3250 3254 3258 3297
1945	56	513	PATRICIA OTHER SMALL FIELDS BEAVERHILL LAKE (VIKING) BROOKS NORTH-EAST (SUNBURST)	0 0 4 8 W W	, 1 1 ← 0	70 10 48 4 7	3898 3898
1947	71	8 9 9	PENDANT D'OREILLE PROVOST FAIRYDELL-BON ACCORD HANNA-WATTS (BLAIRMORE AND MISSISSIPPIAN) LEDUC-NOODBEND MANYBERRIES MEDICINE HAT (BOW ISLAND AND ELLIS)	14.5 510 98 658 65	33 7 7 9 1 1	001 000 000 000 000 000 000 000 000 000	5494
			JLEE JLE FIELDS		I	2 ~ ∞ ~	3 9255

the state of the s

	Φ	CUMULATIVE INITIAL DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF		7555			9271		9753
	2	DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF	5 114 1800 72	250 4 50 50 50 50 50 50 50 50 50 50 50 50 50	1070 34 110	25 2 2 2 2 8 3 3 4 4 5 6 6 9 5	201 44 75 75 75 75 75 75 75 75 75 75 75 75 75	90 83 12 33	56 70 15
	9	SALES TO JUNE 30, 1956 BCF	.11211	1 (+ 1 1 g)		111-1	(-1011		-1110
	ſΛ	DISPOSABLE GAS RESERVES AS OF SEPT, 30, 1956 BCF	102 1800 72	, 10 12 20 20 20 20 20	1070 34 110 4	12	200 45 7 7 7 7 7 7 7 7 7	21 83 12 10 10 10 10 10 10 10 10 10 10 10 10 10	56 15 652
		S NAME OF FIELD	BROOKS NORTH-EAST (BOW ISLAND) ELK POINT MORINVILLE PINCHER CREEK REDWATER	ASHMONT BONNYVILLE BOLLOQUE LAKE CAMPBELL-NAMAO CASTOR	CESSFORD EXCELSIOR GOLDEN SPIKE HANNA-WATTS (VIKING	JOARCAM LAC LA BICHE NORMANDVILLE (GETHING) OBERLIN ROCHESTER	WESTLOCK (VIKING) OTHER SMALL FIELDS ACHESON ATHABASCA EAST COUNTESS	FENN-BIG VALLEY LEAHURST ROLLING HILLS (BOW ISLAND SIBBALD TURIN (RUNDLE)	OTHER SMALL FIELDS ATLEE-BUFFALO (VIKING) BELLOY (MISSISSIPPIAN) BONNIE GLEN
(က	WILDCAT WELLS CUMULATIVE	492	973			1197		1653
1 - 1 (CONTINUED)	2	WILDCAT WELLS PER YEAR	126	509			22 4		95 th
TABEE 11	-	YEAR	1948	1949			1950		1951

ω.	CUMULATIVE INITIAL DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF	11495
~	DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY DA	2000年200000000000000000000000000000000
9	SALES TO JUNE 30, 1956 BCF	1 t = t t t t t t t t
Ŋ	DISPOSABLE GAS RESERVES AS OF SEPT. 30, 1956 BCF	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	NAME OF FIELD	CLIVE DUCHESS ETZIKOM (BOW ISLAND) FORT SASKATCHEWAN HAMELIN CREEK HARMATIN-ELKTON (NON-ASSOCIATED) HEROULES HEROULES MAJEAU LAKE NEW NORWAY OKOTOKS ST. ALBERT TANNERT TANNER TANNER ST. ALBERT TANNER ST. ALBERT TANNER TOWN (BOW ISLAND, BASAL BLAIRMORE AND ELLIS) VIKING-KINSELLA (BLAIRMORE AND DEVONIAN) WISNER OFFICE (BARRANDE) WINDENER (RANDER) WINDENER OTHER SWALL FIELDS BILLOY (CADOTTE AND GETHING) BITTER OTHER SWALL FIELDS BILLOY (CADOTTE AND GETHING) BITTER OTHER SWALL COLD LAKE COMMEY COLD LAKE COMMEY COLD LAKE COMMEY COLD LAKE COMMEY HAND MINDENIA HARTY HILL HAMILTON LAKE MALMO MINNEHIK-BUCK LAKE MALMO MINNEHIK-BUCK LAKE NEVIS OLDS PHIL CAN PICEON LAKE NEVIS GOLD MINNEHIK-BUCK LAKE NEVIS PHIL CAN
ო	WILDCAT WELLS CUMULATIVE	2112
1 - 1 (GONTINUED)	WILDCAT WELLS PER YEAR	(CONT.) 14.59
TABLE 1	YEAR	1951 (6

.

TABLE 1	I - 1 (CONTINUED)						
-	2	က	.	rυ	9	7	ω
YEAR	WILDCAT WELLS PER YEAR	WILDCAT WELLS CUMULATIVE	NAME OF FIELD	DISPOSABLE GAS RESERVES AS OF SEPT, 30, 1956 BCF	SALES TO JUNE 30, 1956 BCF	DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF	CUMULATIVE INITIAL DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF
1952 (G	(Cont.)	2523	RYGROFT STURGEON LAKE STURGEON LAKE STURGEON LAKE SOUTH GENERAL AREA WEST DRUMHELLER WESTEROSE WILDUNN CREEK OTHER SMALL FIELDS ATLEE-BUFFALO (BASAL BLAIRMORE)	12 62 22 150 15 73	· · · · · · · · · · · · · · · · · · ·	13 62 22 150 73 70	13105
			DONALDA DYBERG EYREMORE GILBY GORDONDALE (GETHING AND CADOTTE) HARMATTAN-ELKTON (MISSISSIPPIAN GAS CAP) HOMEGLEN-RIMBEY KESSLER	10 14 17 196 196 196 196 196 196 196 196 196 196		07 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	
			SMOKY D DUPE E E LAKE 1LLS SE SC	450 20 20 20 20 20 20 20 20 20 20 20 20 20		14525 455 555 555 555 555 555 555 555 555	•
1954	363 363	288 6	OTHER SMALL FIELDS ALEXANDER ALHAMBRA BELLSHILL LAKE BINDLOSS (BASAL BLAIRMORE) BRAEBURN GARRINGTON GEM GRASSY ISLAND LAKE HARMATTAN-ELKTON (MISSISSIPPIAN SOLUTION) KATHRYN SADDLE HILLS	25 20 20 20 20 25 20 25 20 25 20 25		22 22 23 20 24 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	16982

\omega	CUMULATIVE INITIAL DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY	17898	18909	19373
7	DISPOSABLE GAS RESERVES AT DATE OF DISCOVERY BCF	150 250 21 30 66 44 10 30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	29 10 13 10 10 105
.	SALES TO JUNE 30, 1956 BCF			
	DISPOSABLE GAS RESERVES AS OF SEPT, 30, 1956 BCF	150 250 21 21 30 66 44 10 45	20 10 10 10 10 10 10 10 10 10 10 10 10 10	29 10 25 13 10 10 105
.	NAME OF FIELD	SARCEE SAVANNA CREEK WAYNE WESTWARD HO (RUNDLE NON-ASSOCIATED) WIMBORNE (VIKING AND LEDUC) OTHER SMALL FIELDS BURNT RIVER CALGARY CARBON	CHANCELLOR (VIKING AND BASAL COLORADO) CONTROL ETZIKOM (BASAL BLAIRMORE) HUSSAR ROLLING HILLS (BASAL COLORADO) SUNDRE WESTWARD HO (RUNDLE SOLUTION) WINDFALL OTHER SMALL FIELDS BEAVERHILL LAKE (BLAIRMORE) BEAVERHILL LAKE (BLAIRMORE) BELLOY (NOTEKWIN) BRAEBURN WEST CHIMOOK RIDGE CONNORSVILLE CROSSFIELD EAGLE HILL EAGLESHAM (GETHING AND CADOMIN)	GOODWIN LAKE KEVISVILLE MOUNTAIN PARK NORMANDVILLE (TRIASSIC, PERMO-PENN, RUNDLE) UBED WARBURG WEST PRAIRIE OTHER SMALL FIELDS
ო	WILDCAT WELLS CUMULATIVE	3228	36 ₄ E	
2	WILDCAT WELLS PER YEAR	(CONT.)	568	
	YEAR	1954 (0	1956	

TABLE 11 - 1 (CONTINUED)

III. PRESENT AND FUTURE REQUIREMENTS OF NATURAL GAS OF THE PROVINCE

In reviewing its 1955 estimates of Alberta's requirements of natural gas, the Board has again given consideration both to population growth and to annual per capita rates of consumption. Full account has been taken of new information obtained since the last report.

Population

In the light of additional information and knowledge of population growth made available by the 1956 Dominion Government Census, the Board believes that its 1955 estimate of population growth over the 30 year period 1952 to 1981 can remain unchanged. The 1956 cansus records the provincial population at 1,123,116 persons as compared to the Board's estimate of 1,120,000 persons. The distribution of population, however, has been revised to reflect an even greater concentration in urban centres. It is now assumed that the urban population will be approximately 65% of the total population by 1961 (as compared to 60% in 1960 in the 1955 report) and that all of the urban population will be served with gas by about 1961. It is further estimated that the proportion of the total provincial population served will increase from about 65% in 1961 to about 75% in 1986.

The growth periods and the mid-year population estimate for the terminal year of each period of the Board's estimate of

population is indicated below.

Period	Average Annual Rate Of Increase	Terminal Year Population
1952 - 1961	3.4%	1,310,000
1962 - 1971	2.3%	1,643,000
1972 - 1981	1.6%	1,932,000

The population growth curves for Canada, Alberta,

Edmonton and Calgary appear in Figure III-1. The population curve

shown for Canada is based on the Gordon Royal Commission Report on
the Economic Prospects of Canada.

Domestic and Commercial Requirements

After considering additional experience data and information supplied by the Canadian Western Natural Gas Company
Limited, Northwestern Utilities Limited and other utility companies,
the Board has adjusted the Provincial domestic and commercial per
capita rates. These rates are now estimated to increase from the
actual figure of 26 Mcf in 1955 to 30 Mcf in 1960, to 35 in 1966
for domestic and from the actual figure of 17 Mcf in 1955 to 22
in 1960, to 25 in 1966 for commercial.

The Board has made an upward extrapolation in the per capita figures only for a ten year period in the belief that per capita consumption may tend to level out within that time. The per capita figures are assumed to be constant from 1967 onward.

TO MENT SHOW THE PARTY OF THE PARTY

the second second

and the state of t

e de la companya del companya de la companya del companya de la co

the control of the co

the first of the control of the cont

the control of the control of the second of the control of the con

The present population projection and the adjusted per capita consumption rates are both reflected in increases in estimated requirements. The total domestic and commercial requirements for the period 1957 to 1986 are estimated at 1680 billion cubic feet and 1200 billion cubic feet respectively. These figures compare with 1467 billion cubic feet and 1035 billion cubic feet previously estimated for the period 1955 to 1984.

Industrial Requirements

Industrial requirements again have been considered under four main categories embracing:

- (1) Use of dry or lean natural gas as a fuel for industrial processes, steam generation, power plants, etc.;
- (2) Use of dry or lean natural gas, primarily for its methane content, for the manufacturers of carbon black, ammonia and a relatively few other products which may be produced economically using methane as a raw material;
- (3) Use of ethane recovered from residue gas for conversion to ethylene and other products; and
- (4) Use of LPG (propane and/or butane) for conversion by partial oxidation or other processes to a wide range of chemicals; use of butane for conversion to butadiene, use of isobutane for the manufacture of alkylate important constituent of aviation gasoline, etc.

in the second of the second second

the second of the second of

the contract of the contract o

The Board, in its previous reports, stated that it
anticipated a rapid increase in the industrial demand for natural
gas. Since the 1955 report, the Board has had the opportunity to
examine additional information concerning the use of natural gas
by petrochemical plants, power plants and other industrial plants.

In addition, information has been received regarding new expansion
programs for existing plants and plans for establishing new industries
within the Province. A re-assessment of presently available information leads the Board to believe that considerable expansion in
the industrial demand for natural gas can be expected.

The best yardstick for forecasting these industrial requirements, is, in the Board's opinion, by per capita consumption rates related to past trends but adjusted to take into consideration current information together with an allowance for future expansion. The Board has reviewed the per capita rates used in previous reports, and, in view of further information obtained has made an upward revision. It is assumed that the per capita industrial rate will continue to rise over the next ten years but will level off about 1966 at a rate of 100 Mcf.

Fuel requirements of gas processing plants in fields such as Acheson, Bonnie Glen, Jumping Pound, Leduc-Woodbend, Pincher Creek and Turner Valley have not been included in the market estimates since allowance for these requirements has been made in the gas reserve estimates.

Revised Estimates

Investigation of the actual natural gas consumption figure for 1955 and the preliminary figure for 1956 reveals that actual consumption exceeded the 1955 estimates in both cases. The actual consumption in 1955 was in excess of the estimate by 6.5 billion cubic feet and the preliminary figure for 1956 was in excess of the estimate by about four billion cubic feet. A comparison of the actual consumption for 1955 and the preliminary total consumption for 1956 with the previous estimates exclusive of field use, processing plant use, storage and exclusive of propane and butane, is provided below:

	1955 Actual (1) Bcf	1955 Estimate Bcf	1956 Actual (1, 2) Bcf	1956 Estimate Bcf
Domestic	27.9	25.9	29.0	28.0
Commercial	18.7	18.4	20.0	19.9
Industrial	48.6	44.04	57.0	54.0
Total	95.2	88.7	106.0	101.9

- (1) Converted to a normal degree day basis.
- (2) Figures are preliminary and subject to minor change.

The excess of actual consumption over estimates for both years was due in part to the fact that the population served with gas for certain areas of the Province increased at a faster rate than was anticipated and in part to the fact that certain large industrial consumers realized early expansion in their plants.

. "

Figure III-2 contains the revised per capita trends in domestic, commercial and industrial requirements. The total annual requirements under each of these categories is obtained by combining the per capita rate with the provincial population projection of Figure III-1. These total requirements are shown in Figure III-3 and in Table III-1. Figure III-4 gives a comparison of the present estimates with the Board's 1955 estimates.

The Board now estimates the total requirements of the Province for the 30 year period 1957-86 to be about 7610 billion cubic feet. A comparison with the 1955 report is provided below:

	(Perio	November 1, 1955 d 1955 - 1984) n Cubic Feet		Revised riod 1957 - 1986 lion Cubic Feet
Domestic		1,466.7		1,678.1
Commercial		1,034.9	<i>:</i>	1,199.0
Industrial		3,537.7		4,732.0
Total		6,039.3		7,609.1
	say	6,040		7,610

These requirements are allocated to the areas tributary to the Canadian Western Natural Gas Company Limited system, the Northwestern Utilities Limited system, the Medicine Hat-Redcliff area, the Peace River area and the remainder of the Province as shown in Table III-2. This table contains the estimated peak day requirements and the load factors for the five areas. The present allocation of requirements represent the Board's best judgement in

the matter and is based on the past proportion of each category in the various areas in relation to the total provincial requirements adjusted to take into account any foreseen changes.

The estimated requirements of the area tributary to the Northwestern Utilities Limited system have been increased by 747 Bcf over the estimate of the 1955 report and now amount to approximately 3816 Bcf. The total for the area tributary to the Canadian Western system has been increased by 414 Bcf. These requirements are now estimated at 2102 Bcf. The remaining provincial requirements have been allocated to the Medicine Hat-Redcliff area, the Peace River area and the remainder of the Province. The total estimated requirements for this group have been increased by 409 Bcf and now total 1692 Bcf.

The requirements of the existing permits for the export of gas from the Province are as follows:

Permittee	Maximum Daily MMCFD	Maximum Annual BCF		Withdrawn To June 30, 1956 BCF
Peace River Transmission Company Limited	6	0.6	13	2.9
Peace River Transmission Company Limited	7	1.0	20	~
Westcoast Transmission Company Limited and Westcoast Transmission Company (Alberta) Limited	190	56	1080	-
Canadian Montana Pipeline Company	100	20	⇔ *	51.1
Trans Canada Pipe Lines Limited Total	620 923	183 260.6	<u>4350</u> 5757	-

*All the gas from Black Butte, Comrey, Manyberries,
Pendant d'Oreille and Smith Coulee fields. Reserves in
these fields are presently estimated at 294 billion cubic
feet.

When related to initial disposable reserves which have been developed, the total number of wildcat wells drilled to date indicates an average discovery rate of approximately six billion cubic feet of gas for each wildcat drilled. Over the past five years some 300 to 500 wildcat wells have been drilled each year. Assuming that on the average 400 wildcat wells will be drilled each year for the next 30 years, it can be expected that some 15,000 wildcat wells would be drilled by 1986. Assuming that the present discovery rate will remain near six billion for each wildcat drilled for the next few years and then decline to about 2.8 billion cubic feet, a conservative estimate of initial disposable reserves of about 42 trillion cubic feet can be expected by 1986. The past reserves, related to both annual and total natural gas consumption for past years with a projection for the next 30 years is shown in Figure III-5.

The projected initial disposable reserves, shown in Figure III-5 as curve (1), when reduced by the overall past and future requirements, curve (2), leave remaining

disposable reserves, curve (3), in the order of 28 trillion cubic feet by 1986. The significance of the reserve estimates is indicated by the ratio of the year-end remaining disposable reserves to the annual requirements at any point of time. The ratio, called the life-index, curve (4), has declined from a high value of 219 in 1953 to 173 in 1956, but it is expected to decline rapidly due to the effect of export requirements to about 60 in 1963 and remain fairly constant until 1980 by which time the existing export permits expire. The life-index rises thereafter to a value of 85 in 1986.

As a matter of interest, the life-index for the whole of the United States has been approximately 25 in recent years, and for the year 1956 was 22.5.

TABLE III - 1

THE PETROLEUM AND NATURAL GAS CONSERVATION BOARD

ESTIMATE OF NATURAL GAS REQUIREMENTS

PROVINCE OF ALBERTA, JANUARY 1, 1957 - DECEMBER 31, 1986

1			2	3	ų	5
YEAR			DOMESTIC BILLIONS OF CUBIC FEET	COMMERCIAL BILLIONS OF CUBIC FEET	INDUSTRIAL BILLIONS OF CUBIC FEET	TOTAL BILLIONS OF CUBIC FEET
1957		٧	31.3	22.1	73,1	126,5
1958			33.6	24.0	. 81.5	139.1
1959			35.9	26.0	92.9	154.8
1960			38.2	28.0	101.9	168.1
1961			41.9	29.5	109.4	180.8
1962			43.6	30.8	121.3	195.7
1963			45.2	32,2	128.2	205.6
1964			47.7	34.4	135.4	217.5
1965			49.5	35.2	142.2	226.9
1966			51.4	36.7	146.9	235.0
1967			52.6	37.6	150.2	240,4
1968	`		53.8	38.4	153.6	245.8
1969			55.0	39.3	157.1	251.4
1970			56,2	40.2	160.6	257.0
1971			57.5	41.1	164.3	262.9
1972	•		58.5	41.8	167.1	267.4
1973			59.5	42.5	169.9	271.9
1974			60.4	43.2	172.7	276.3
1975			61.5	43.9	175.7	281.1
1976			62.5	44.7	178,7	285.9
1977			63.6	45.4	181.6	290.6
1978			64.6	46.1	184.5	295.2
1979			65.6	46.9	187.5	300.0
1980			66.7	47.6	190.5	304.8
1981		,	67.6	48.3	193.2	309.1
1982			68.7	49,1	196.2	314.0
1983			69.7	49.8	199.2	318.7
1984			70.8	50.6	202.3	323.7
1985			71.9	51,4	205.5	328.8
1986			73.1	52,2	208.8	334.1
TOTALS			1678.1	1199.0	4732.0	7609.1
SAY			1680.0	1200.0	47 30,0	761.0.0

.

· :

ESTIMATE OF NATURAL GAS REQUIREMENTS

PROVINCE OF ALBERTA, JANUARY 1, 1957 - DECEMBER 31, 1986

					50
RY TO THE DISTRIBUTING SYSTEM	19	TOTAL PROVINCIAL REQUIREMENTS	Load Factor Per Cent	00000000000000000000000000000000000000	
	18		MWCF PEAK DAY	760 828 914 984 1045 1134 1132 1134 11354 1257 1317 1317 1317 1539 1560 1682 1682 1705 1705 1705 1705 1705 1705 1705 1705	
	17	TOTAL REQU	ANNUAL BILLIONS OF CUBIC FEET	126,5 139,1 154,8 180,8 195,7 205,6 225,6 257,0 257,0 271,9 271,9 271,9 271,9 271,9 271,9 271,9 271,9 271,9 304,8 304,8 318,7 328,8 334,1	7609,1
	16		Содр Рек Сеит Рек Сеит	999999999999999999999999999999999999999	
	15	REMAINDER OF PROVINCE	MMCF PEAK DAY	86 119 119 147 168 168 168 191 201 201 221 223 233 235 235 235 235 235 235 235 235	
	11	REMA	ANNUAL BILLIONS OF CUBIC FEET	12. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	892,0
	13	CINE HAT - LIFF AREA	∴ daol Rotoa∃ Tu∃O R∃9	68 00 00 00 00 00 00 00 00 00 00 00 00 00	
	12		PEAK DAY	527 577 577 578 577 578 577 578 578 579 579 579 579 579 579 579 579 579 579	
	11	MED I C REDCL	Annual Billions of Cubic Feet	22222222222222222222222222222222222222	569,3
AREAS TRIBUTARY	10	AREA	олој Растор ТизО язЧ	222222222222222222222222222222222222	
BETWEEN ARI	0	PEACE RIVER	PEAK DAY	13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
ALLOCATION BETW	ω		ANNUAL BILLIONS OF CUBIC FEET	- 0.0. w. a.	230,6
ALLOC	7	AREA TRIBUTARY TO N.U.L. SYSTEM	LOAD FACTOR PER CENT	22 22 22 22 22 22 22 22 22 22 22 22 22	
	9		PEAK DAY	370 398 4434 461 461 527 527 528 640 647 647 647 647 705 719 719 719 719 719 719 817 817 817 817 818 818 818 818 818 818	
	Ŋ		ANNUAL BILLIONS OF CUBIC FEET	63.5 69.8 84.4 84.4 103.0 103.0 113.8 113.8 113.8 1140.9 1150.9 1150.9 1150.9 1150.9 1150.9 116	3815,5
	#	RIBUTARY 1.G. SYSTEM	Содр Рек Сеит Рек Сеит	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
	က	TRIBUT,	MMCF PEAK DAY	240 263 312 312 329 354 408 442 451 451 451 451 451 451 451 451 510 510 551 551	
	2	AREA TO C.W.	ANNUAL BILLIONS OF CUBIC FEET	35.9 39.3 39.3 4.3.3 50.5 50.0 50.0 77.2 77.2 77.5 80.1 80.1 80.1 80.2 80.2 80.2 80.2	2101.7
	1		ЯЕАЯ	1957 1958 1960 1961 1962 1963 1965 1968 1970 1971 1975 1976 1976 1982 1982 1981 1985 1985 1985	TOTALS

1 -----

