Brief introduction on multilevel logistic regression (softmax regression) and fista algorithm

Softmax regression is generalization of two level logistic regression has a defination $\hat{y}_i = argmax_{j=1}^k (\frac{exp(x_i^T\theta_j)}{\sum_{j=1}^k exp(x_i^T\theta_j)})$. In this senario, target loss function with L1 regularization is $L(\theta) = f(\theta) + \lambda g(\theta) = -\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^k I\{y_i = j\}ln(\frac{e^{x_i^T\theta_j}}{\sum_{l=1}^k x_i^T\theta_l}) + \lambda \sum_{i=1}^k ||\theta_i||_1$. The proximal gradient according to the paper proposing the fista algorithm has the form $\theta^{k+1} = p_{\lambda,\frac{1}{L}}(\theta^k) = (|u| - \frac{\lambda}{L})_+ sgn(u)$ where $u = \theta^k - \frac{1}{L}\nabla f(\theta^k)$ solving from the equation $\nabla f(\theta^k) + L(\theta^{k+1} - \theta^k) + \gamma(\theta^k) = 0$, $\gamma \in \partial g(\theta^{k+1})$

Statistical learning classification with L1 regularization

Due to the unbalanced data, some of the cell types are merged into one class called combined class. After finetuning model with λ ranges from 0 to 1, with 0.001 step size, we choose to set $\lambda = 0.033$ and according to the F1 score and balanced accuracy. The iteration plots are as follows, and also the result of the compressed coefficients are plotted in the following figure.

Figure 1: key results over lambda and non-zero coefficients

After deciding the λ , we find the first five genes influential for classifying specific cell types in terms of the absolute value of parameters. The results are as follows:

acinar	GSTA2	BCAT1	RNASE1	CTRB2	GSTA1
****	0.114	0.102	0.1	0.078	0.07
alpha ****	GCG	IRX2	TTR	GC	FAP
	0.33	0.232	0.202	0.197	0.162
beta ****	INS	ADCYAP1	IAPP	NPTX2	HADH
	0.349	0.244	0.203	0.201	0.151
\det_{****}	SST	LEPR	BCHE	RBP4	HHEX
	0.251	0.167	0.154	0.12	0.107
$_{****}^{\mathbf{ductal}}$	TINAGL1	CFTR	KRT19	SLC4A4	SERPING1
	0.143	0.132	0.118	0.088	0.087
gamma ****	PPY	SERTM1	GPC5-AS1	SLITRK6	THSD7A
	0.334	0.157	0.121	0.103	0.078
remaining ****	SPARC	PMP22	HCLS1	A2M	COL4A1
	0.091	0.086	0.053	0.051	0.05

The UMAP result is as follows:

Figure 2: umap result