

General Description

The MAX5420 and MAX5421 are digitally programmable precision voltage dividers optimized for use in digitally programmable gain amplifier configurations. The MAX5420/ MAX5421 operate from a single +5V supply or dual ±5V supply, and consume only 3µA supply current. These devices consist of a digitally selectable resistor array that provides four precision noninverting gains of 1, 2, 4, and 8 for PGAs. The MAX5420 and MAX5421 achieve a resistor ratio accuracy of 0.025% (MAX542_A), 0.09% (MAX542_B), and 0.5% (MAX542_C). The MAX5421 includes an on-chip matching resistor for op amp bias-current compensation.

The MAX5420 and MAX5421 are available in 8-pin and 10-pin µMAX packages. The devices are specified over the extended temperature range (-40°C to +85°C).

Applications

General-Purpose Programmable Noninverting **Amplifiers**

Programmable Instrumentation Amplifiers

Features

- Four Precision Divider Ratios For Noninverting Gains of 1, 2, 4, and 8 in PGAs
- ♦ 0.025%, 0.09%, or 0.5% Ratio Accuracy Guaranteed Over -40°C to +85°C
- ♦ On-Chip Matching Resistor for Op Amp Bias-**Current Compensation (MAX5421)**
- ♦ 5V Single or ±5V Dual Supply Operation
- ♦ Low 3µA Supply Current
- **♦ CMOS/TTL Logic Compatible 2-Wire Parallel** Interface
- ♦ Small 8-Pin and 10-Pin µMAX Packages

Ordering Information

PART	PART TEMP. RANGE		GAIN ACCURACY	
MAX5420AEUA	-40°C to +85°C	8 µMAX	0.025%	
MAX5420BEUA	-40°C to +85°C	8 µMAX	0.09%	
MAX5420CEUA	-40°C to +85°C	8 µMAX	0.5%	
MAX5421AEUB	-40°C to +85°C	10 μMAX	0.025%	
MAX5421BEUB	-40°C to +85°C	10 μMAX	0.09%	
MAX5421CEUB	-40°C to +85°C	10 μMAX	0.5%	

Functional Diagram

MIXIN MAX5421 D0 **DECODER** MATCH_H MATCH_L V_{SS} GND L

Pin Configurations

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND0.3V to +6V	Cont
V _{SS} to GND+0.3V to -6V	8-
D0, D1 to GND0.3V to (V _{DD} + 0.3V)	10
H, L, W, MATCH_ to GND(V _{SS} - 0.3V) to (V _{DD} + 0.3V)	Ope
Input and Output Latchup Immunity±50mA	Stora

Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin µMAX (derate 4.1mW/°C above +70°C)	333mW
10-Pin µMAX (derate 5.6mW/°C above +70°C).	444mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range60	0°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\% \text{ or } V_{SS} = GND, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL		CON	DITION	S	MIN	TYP	MAX	UNITS	
		MAX542_A						±0.025		
Divider Ratio Accuracy		MAX542_B						±0.09	%	
		MAX542_C						±0.5		
H-to-L Resistance	R _{HL}	(Figure 1)					15		kΩ	
Input Resistance at H	RH						15		kΩ	
		Vss		Vss =	= -5V		300		0	
Input Resistance at W	Rw	Ratio = 1		Vss =	= 0		500		Ω	
		Ratio = 2, 4	1, 8				8		kΩ	
Capacitance at H, L, W, MATCH_H, MATCH_L	Canalog						5		pF	
			D :: 4	$V_{SS} = -5V$		300				
Matching Resistor		MAX5421	MAX5421 Ratio = 1		$V_{SS} = 0$		500		Ω	
			Ratio = 2	, 4, 8			8		kΩ	
DYNAMIC PERFORMANCE										
Switching Time	ts	V _{DD} = +5V, V _{SS} = -5V, digital input 0 to +3V, V _W settles to 0.02% of final value with 2pF capacitive load. Circuit of Figure 2.			0.5		μs			
DIGITAL INPUTS										
Input High Voltage	VIH			2.4			V			
Input Low Voltage	VIL							0.8	V	
Input Leakage Current		D1, D0 = V	DD or GND					±1	μΑ	
Input Capacitance					·		5		рF	

ELECTRICAL CHARACTERISTICS (continued)

(VDD = +5V ±5%, VSS = -5V ±5% or VSS = GND, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLIES							
Positive Supply Voltage	V_{DD}		4.75		5.25	\ \	
Negative Supply Voltage	V _{SS}		0		-5.25	V	
Decitive County Course	1	D1, D0 = V _{DD} or GND		3	7		
Positive Supply Current	I _{DD}	D1, D0 = 3V		15	25	μΑ	
No gotine Comple Compat	laa	D1, D0 = V _{DD} or GND		3	7		
Negative Supply Current	ISS	D1, D0 = 3V		15	25	- μΑ	
W, H, L, MATCH_L, MATCH_H Voltage Range			V _{SS}		V_{DD}	V	

_Typical Operating Characteristics

 $(V_{DD} = +5V, V_{SS} = -5V, \text{ or } V_{SS} = \text{GND}, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V, V_{SS} = -5V, \text{ or } V_{SS} = \text{GND}, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$ (Note 1)

-2.75

NEGATIVE SUPPLY VOLTAGE (V)

-1.50

-5.25

-2.75

NEGATIVE SUPPLY VOLTAGE (V)

POSITIVE SUPPLY VOLTAGE (V)

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V, V_{SS} = -5V, or V_{SS} = GND, T_A = +25$ °C, unless otherwise noted.) (Note 1)

Note 1: For MAX542_C accuracy Typical Operating Characteristics, refer to MAX542_B accuracy Typical Operating Characteristics.

Pin Description

PIN		NAME	FUNCTION		
MAX5420	MAX5421	NAME	TONOTION		
1	1	V_{DD}	Positive Supply Voltage		
2	2	V _{SS}	Negative Supply Voltage		
3	3	GND	Ground		
4, 5	4, 5	D0, D1	Digital Control Inputs. Drive D0 and D1 logic high or logic low to set the divider ration See Logic Control Truth Table.		
6	8	L	Low Terminal of Resistor-Divider		
7	9	W	Resistor-Divider Output		
8	10	Н	High Terminal of Resistor-Divider		
_	6	MATCH_L	Matching Resistor Low Terminal		
_	7	MATCH_H	Matching Resistor High Terminal		

Detailed Description

The MAX5420/MAX5421 are digitally programmable precision voltage dividers for programmable-gain amplifiers. Operationally, these devices consist of digitally selectable precision resistor-dividers providing noninverting gains of 1, 2, 4, and 8 for PGA applications (see *Functional Diagram* and *Figure 1*).

Ratio =
$$1 + \frac{R_B}{R_A}$$

The MAX5420/MAX5421 achieve divider ratio accuracy of 0.025% (MAX5420A/MAX5421A), 0.09% (MAX5420B/MAX5421B) or 0.5% (MAX5420C/MAX5421C).

The end-to-end resistance from H to L is $15 k\Omega$. The impedance seen at W is designed to be the same $8k\Omega$ for divider ratios 2, 4, and 8, ensuring excellent impedance matching and constant switching times. In gain of +1 configuration, H is internally connected to W with a typical resistance of 500Ω .

Matching Resistor (MAX5421)

The MAX5421 includes a matching resistor to compensate for offset voltage due to input bias current of the op amp. The resistance from MATCH_H to MATCH_L, equals the resistance seen at W for gains of 2, 4, and 8. In the gain of +1, an internal switch connects MATCH_H and MATCH_L. This internal switch matches the impedance of the switch between H and W.

Table 1. Logic Control Truth Table

DIGITAL	DIVIDER		
D1	D0	RATIO	
0	0	1	
0	1	2	
1	0	4	
1	1	8	

Digital Interface Operation

The MAX5420/MAX5421 feature a simple two-bit parallel programming interface. D1 and D0 program the divider ratio setting according to the *Logic Control Truth Table* (Table 1). The digital interface is CMOS/TTL logic compatible.

_Applications Information

Programmable-Gain Amplifier

The MAX5420/MAX5421 are ideally suited for high-precision PGA applications. The typical application circuit of Figure 3 uses the MAX5421 with matching resistor to compensate for voltage offset due to op amp input bias currents. Use the MAX5420 with an ultra-low input bias current op amp such as the MAX4237 (Figure 4).

Power Supplies and Bypassing

The MAX5420/MAX5421 operate from dual ±5V supplies, or a single +5V supply. For dual supplies, bypass V_{DD} and V_{SS} with 0.1µF ceramic capacitors to GND. For single supply, connect V_{SS} to GND and bypass V_{DD} with a 0.1µF ceramic capacitor to GND.

6 _______/N/1XI/N

Figure 1. Simplified Functional Diagram

Figure 2. Switching Time Test Circuit

Figure 3. Programmable-Gain Amplifier with Op Amp Bias-Current Matching

Figure 4. Programmable-Gain Amplifier

Switching Time and Layout Concerns

The switching time of the MAX5420/MAX5421 depends on the capacitive loading at W. For best performance, reduce parasitic board capacitance by minimizing the circuit board trace from W to the op amp inverting input, and choose an op amp with low input capacitance.

Chip Information

TRANSISTOR COUNT: 118

PROCESS: CMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.