ELECTRICAL PROPERTIES OF HETEROPHASE ION-EXCHANGED GLASS FIBRES AND MECHANICAL PROPERTIES OF GLASS FIBRES CONTAINING ALUMINIUM DISPERSOIDS

by ASHOK SHRIVASTAVA

MSP MSP/1905/D 1985 Share D

INTERDISCIPLINARY PROGRAMME OF MATERIALS SCIENCE
INDIAN INSTITUTE, OF TECHNOLOGY KANPUR
OCTOBER, 1985

ELECTRICAL PROPERTIES OF HETEROPHASE ION-EXCHANGED GLASS FIBRES AND MECHANICAL PROPERTIES OF GLASS FIBRES CONTAINING ALUMINIUM DISPERSOIDS

A Thesis Submitted
in Partial Fulfilment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

by
ASHOK SHRIVASTAVA

to the

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

OCTOBER 1985

18 DEC 198/

1PM3-1885-D-SEL-ELE

ओ३म्

ॐ भूर्भुव स्व । तत्सवितुवरेण्यम् भर्गो देव य धीमहि । धियो यो न प्रचोदयात ॥ (यजुर्वेद अ० ३६ म ३)

Om Bhoor Bhuvah Swah Tat Savitur Varenyam Bhargo Devasya Dheemahi Dhiyo Yo Nah Prachodayat

(Yajuerveda ch 36 mantra 3)

—Thou O Supreme Lord The Source of Existence Intelligence and Bliss! The Creator of The Universe! May we prove Worthy of Thy choice and acceptance! May we meet Thy Glorious Grace! May Thou vouchsafe an unerring guidance to our intellects and may we follow Thy lead unto Righteousness

In the fond memory of Amma

I dedicate this to my beloved

Father

ACKNOWLEDGE! (ENTS

Sanity disallows- not, expressing my- deep sense of gratitud and indebtedness to connessieur Professor D Chakravorty for his excellent guidance, lively suggestions and invigourating encouragement, throughout the course of the present research work, which ultimately transformed my unsightly- original into a completed manuscript I sincerely thank Dr D C Agrawal for not less but the same stimulating guidance, inspiration and cooperation during this work

Ify thanks are due to Professors E C Subbarao, K P Gupta, S Kar and D.s J Kumar, K N Rai, K Shahi, D Saran and S C Sen for their valuable suggestions and encouragement

I thank Drs Devendra Kumar, S Datta, G C Das, Om Prakash, D Bahadur, Shankar Ram, Anil K Srivastava and Kundan L Patel for their cooperation and unassuming help

I thank all my friends particularly Messrs Amar N Sen,
Abhitab Verama, G Uniyal, E G Rajan, Gopal Krishna, Iswaria,
P S Chauhan, Jayant, Ravi Shankar, P Singh, R.S Verma,
Iladho Singh, F K Palhotra, V K Srivastava, J C Srivastava,
H C Bhattacharya and Piss Parvati, Geeta Ahuja and Mrs Uma Devi
for rendering all possible helps whenever needed

Special acknowledgement is credited to Hessrs B Sharma, Samar Das S R. Chaurasia, B K Jain, V P Sharma, U S Lal, Nar Singh, I Sharma, A N Prasad, Uma Shankar Singh and R S Sharma for their active technical assistance during this work

I feel great pleasure in thanking Mr Jawar Singh for the excellent typing and S C Barthwal for elegant figure drawings I also thank Mr Laku Lal for neat and clean cyclostylling

The Financial assistance received from Science and Ergineering Pesearch Council, Department of Science and Technology Govt of India, is gratefully aclnowledged

reverence for learning which inspired my efforts. My wife Shashi and children who cheerfully and carefully nurtured these efforts with their forbearance, sacrifice and goodwill. Crucially significant intellectual association of Miss Sudha further stimulated the same. For them, I have rare words to express my heartify gratitute.

To them, my special thanks

С

Ashok Shrivastava

CONTENTS

LIST	OF	Γ.	A BI	ĿΕ	3			Page x
LIST	OF	F	IGī	JRI	ES			Xlll
LIST	OF	P	RII	1C.	IPAI	SY	MBOLS	xxııı
SYNO	PSI	5						7.√3
CHAPT	rep	1					INTRODUCLION	1
		1	1				Glass Fibres	2
		1	1	1			Historical Survey	2
		1	1	2			Basic Features of Glass Fibres	4
		1	1	2	1		Strength of Glass Fibres	5
		1	1	2	2		Griffith Equation	9
		1	1	2	3		Flaw Statistics	9
		1	1	2	4		Strength Protection by Surface Treatment	10
		1	1	2	5		Strength Enhancement by Precipitatic of a Heteroph se	10
		1	1	3			Types of Glass Fibres	11
		1	1	3	1		Reinforcement Glass Fibres	11
							(a) Glass Reinforced Plastics(b) Glass Reinforced Cements(c) Fibre Reinforced Metals	11 1 2 1 3
		1	1	3	2		Optical Glass Fibres	13
							(a) Monomode Fibres(b) Multimode Fibres	14 14
		1	1	3	3		Electrically Conducting Glass Fibres	1 5
		1	1	3	3 1		Coating of Electrically Conducting Thin Films on the Surface of Glass Fibres	15
		1	1	3	3 2	2	Glass Fibres Drawn from Glass Metal Composites	15

1	1	3	3 3	Electro Conducting Glass Fibres Produced by Ion Exchange Followed by Reduction Treatment	15
1	1	4		Glass Fibre Drawing Process	16
1	1	4	1	Bushing Technology	17
				(a) Marble Melt Process (b) Direct Melt Process	18 19
1	1	4	2	Rod Technology	19
1	2			Electrical Properties of Glasses	20
1	2	1		Electronic Conduction	21
1	2	1	1	Chalcogenide Glasses	21
1	2	1	2	Oxide Glasses Containing Transition Metal Ions	24
1	2	1	3	Glass Metal Particulate Composites	26
1	2	2		Ionic Conduction	30
1	2	2	1	Silica	32
1	2	2	2	Binary Alkali Sılicate Systems (R ₂ O SiO ₂)	33
1	2	2	3	M ₂ O SiO ₂ B ₂ O ₃ (M= Alkalı Metal)	33
1	2	2	4	B ₂ O ₃ Li ₂ O Lix (X= Cl,Br,I)	34
1	. 2	2	5	Li ₂ O Lif Li ₂ SO ₃ Li ₂ SO ₄ B ₂ O ₃	34
1	2	2	.6	B_2O_3 Li_2O Li_nx (n=1,x=Cl,Br,I and n=2, x= SO_4 , n=3, x= PO_4)	34
1	2	2	7	Li ₂ Si ₂ O ₅ Li ₂ SO ₄	34
1	2	2	8	LiNbO ₃ SiO ₂	35
1	2	2	9	M ₂ O MF Al(PO ₃) ₃ (M1Li,Na,V,Co)	35
1	2	2	10	Lipo ₃ Li ₂ SO ₄	35
1	2	2	11	LiPO ₃ Lix (x=Cl,Br,I)	3 5
1	2	2.	.1 2	Li ₂ O L ₁ Cl P ₂ O ₅	35

				VI
	1.	2 2.13	Li ₂ I L ₁₂ S P ₂ S ₅	35
	1	2 2 14	M ₂ S-GeS ₂ (M= Li, Na, Ag)	36
	1	2 2 15	Quenched Glass	36
	1.	2 2 1 6	Some Other New Glasses	37
	1	2 3	Fast Ion Conducting Glasses (FIC)	37
	1	2 4	A C Electrical Properties of Oxide Glasses	38
	1	3	Ion Exchange	48
	1.	3 1	Experimental Measurements	5 2
			(a) Instantaneous Source(b) Constant Source(c) External Electric Field	52 53 53
	1	3 2	Types of Ion-Exchanges	54
	1	4	Phase Separation in Glasses	57
	1	5	Statement of the Problem	66
CHAPTER	2		EXPERIMENTAL TECHNIQUES	69
	2.	1	Preparation of Glass	69
	2.	2	Fibre Drawing Assembly (FDA)	70
	2	2.1	Optimal Conditions for Fibre Drawing	74
	2	3	Preparation of Ion Exchanged Glass Fibres	76
	2	4	Electrical Resistivity Measurements	76
	2	4 1	Sample Preparation	76
	2.	4 2	Conductivity Cell	77
	2	4 3	D C Resistivity	79
	2.	4 4	A C Resistivity	8 2
	2	4 4 1	Complex Impedance Analysis of A C Data	83
	2	5	Differential Thermal Analysis (DTA)	84
	2.	6	Electron Microscopic Analysis (TEM)	85

				vii
	2	6 1	Preparation of Electron Microscopic Samples	85
	2	6 2	Analysis of SAD	86
	2	7	Chemical Analysis	86
	2	8	Density Measurements	86
	2	9	Diameter Measurements	87
	2	10	Measurement of Strength and Young's Modulus of Glass Fibres	87
	2	10 1	Sample Preparation	87
	2	10 2	Testing of Fibres	88
	2	10 3	Calculation of Strength and Strain	88
	2	10 4	Determination of Young's Modulus	89
	2	10 5	Determination of Strength	90
	2	10 6	Weibull's Analysis	91
	2	10 6 1	Graphical Regression Technique (GRE)	91
	2	10 6 2	Maximum Likelihood Technique (MLE)	92
	2	10 6 3	Regression of Streight Line	96
	2	10 7	Determination of Fracture Surface (SEM)	98
CHAPTER	3		ELECTRICAL CONDUCTION IN ION EXCHANGED GLASS FIBRES	100
	3	1	Introduction	100
	3	2	Results	101
	3	2 1	Glass Preparation and Fiberisation	101
	3	2 2	Ion Exchange	101
	3	2 3	Chemical Analysis	103
	3	2 4	DTA Analysis	103
	3	2 5	Electrical Measurements	103

	3	2	5	1	A C Measurements and Complex Impedance Analysis	106
	3	2	5	2	Temperature Dependence of Resistivity	110
	3	2	6		TEM Analysis	11 6
	3	2	6	1	N Glass System	1 21
	3	2	6	2	IN Glass System	1 21
	3	2	6	3	HIN Glass System	1 21
	3	3			Discussion	1 26
CHAPTER	4				ELECTRICAL CONDUCTION IN ION EXCHANGED GLASS FIBRES CONTAINING ALUMINIUM DISPERSOIDS	135
	4	1			Introduction	1 35
	4	2			Results	136
	4	2	1		Glass Preparation and Fiberisation	136
	4	2	2		Ion Exchange	138
	4	2	3		Chemical Analysis	138
	4	2	4		DTA Analysis	138
	4	2	5		Electrical Measurements	1 41
	4	2	5	1	A C Measurements and Complex Impedance Analysis	141
	4	2	5	2	Temperature Dependence of Resistivity	147
	4	2	6		TEM Analysis	1 61
	4	2	6	1	A Glass System	1 61
	4	2	6	2	IA Glass System	1 63
	4	2	6	3	HIA Glass System	1 63
	4	3			Discussion	170
CHAPTER	5				MECHANICAL PROPERTIES OF GLASS FIBRES CONTAINING ALUMINIUM PARTICLES	1,8

						viii
	3	2	5	1	A C Measurements and Complex Impedance Analysis	106
	3	2	5	2	Temperature Dependence of Resistivity	110
	3	2	6		TEM Analysis	11 6
	3	2	6	1	N Glass System	1 21
	3	2	6	2	IN Glass System	1 21
	3	2	6	3	HIN Glass System	1 21
	3	3			Discussion	1 26
CHAPTER	4				ELECTRICAL CONDUCTION IN ION EXCHANGED GLASS FIBRES CONTAINING ALUMINIUM DISPERSOIDS	135
	4	1			Introduction	1 35
	4	2			Results	136
	4	2	1		Glass Preparation and Fiberisation	136
	4	2	2		Ion Exchange	138
	4	2	3		Chemical Analysis	138
	4	2	4		DTA Analysis	138
	4	2	5		Electrical Measurements	141
	4	2	5	1	A C Measurements and Complex Impedance Analysis	141
	4	2	5	2	Temperature Dependence of Resistivity	147
	4	2	6		TEM Analysis	1 61
	4	2	6	1	A Glass System	1 61
	4	2	6	2	IA Glass System	1 63
	4	2	6	3	HIA Glass System	163
	4	3			Discussion	170
CHAPTER	5				MECHANICAL PROPERTIES OF GLASS FIBRES CONTAINING ALUMINIUM PARTICLES	1,8

	ל	1.		Introduction	178
	5	2		Results	179
	5	2	1	Strength (S) Strain (e) and Young's modulus of Virgin and Non-virgin Glass Fibres	180
	5	2	2	Strength and Weibull's Parameters	197
	5	2	3	Fracture Surface	21 1
	5	2	4	Susceptibility to Chemical Attack	21 5
	5	3		Discussion	215
CHAPTER	6			CONCLUSIONS	222
REFERENC	ŒS	5			227

LIST OF TABLES

sl No	Table No		Page
1	1 1	Composition and Basic Properties of Commercial Glass Fibres	6
2	1 2	E° Values for Various Glass-Metal Particulate Systems	28
3	1 3	E ^O Values for Various Glass-Metal Particulate Systems Produced by Ion -Exchange and Reduction Treatment	29
4	1 4	D C Resistivity of Different Alkali Silicate Glasses at 100°C (Ohm-Cm)	33
5	1 5	Some Glassy Fast Ion Conductors	39
6	1 6	Various Glass Systems Exhibiting Phase Separation and the Techniques for Characterisation	63
7	3 1	Composition and Density in Glass System N	102
8	3 2	Fiberisation Parameters of Glass System N	102
9	3 3	Molar Fraction of Silver in Glass System IN	102
10	3 4	T_{g} , T_{N} and T_{O} for Glass System N	107
11	3 5	Comparison of R $_{ m O}$ and R $_{ m T}$ for Glass Systems N and IN	107
1 2	3 6	Activation Energy and Pre-exponential Factor for Glass System N	1 20
13	3 7	Activation Energy and Pre-exponential Factor for Glass System IN	1 20
14	3 8	Activation Energy and Pre-exponential Factor for Glass System HIN	1 22
15	3 9	Widths of Interconnected Phases in Class Systems IN	1 22
16	3 10	Comparison of dhkl Values of Sılver with that for HIN Glass System	1 27

17	3 11	Microstructural Features of HIN Glass System	1 27
18	4 1	Composition and density in Glass System A	137
19	4 2	Particle Size Distribution of Aluminium Powder Used in Making the Glass-metal Composite	1 37
20	4 3	Fiberisation Parameters of Glass System A	139
21	4 4	Molar Fraction of Silver in IA Glass System	139
22	4 5	$ extsf{T}_{ extsf{g'}}$ $ extsf{T}_{ extsf{N}}$ and $ extsf{T}_{ extsf{O}}$ for Glass System A	146
23	4 6	Comparison of $R_{_{\hbox{\scriptsize O}}}$ and $R_{_{\hbox{\scriptsize T}}}$ for Glass Systems A and IA	146
24	4 7	Activation Energy and Pre-exponential Factor for Glass System A	1 60
25	4 8	$Q_{\mathbf{e}}$ and $P_{\mathbf{e}}$ for A3 A4 and A5 Glasses	1 60
26	4 9	Pre-exponential Factors and Activation Energies for Class System IA	1 60
27	4 10	Pre-exponential Factors and Activation Energies for Class System HIA	162
28	4 11	Comparison of dhkl Values of Aluminium with those obtained from SAD's of Glass System A	162
29	4 •1 2	Widths of Interconnected Phases in Glass System IA	1 69
30	4 13	Comparison of d _{hkl} Values of Aluminium with those obtained from SAD's of Glass System IA	1 69
31	4 14	Comparison of dhkl Values of Aluminium and silver those obtained from SAD's of Glass System HIA	171
32	4 15	Microstructural Features of Glass System HIA	171
33	5 1	Young's Modulus Estimators for Virgin and Non Virgin Glass Fibres	199

			xli
34	5 2	Weibull's Parameters by GRE Technique	199
35	5 3	Weibull's Parameters by MLE Technique	21 2
36	5 4	Mean, Dispersion and Coefficient of Variation for S and S for both Virgin and Non-Virgin Glass Fibres (GRE Technique)	21. 2
37	5 5	Mean, Dispersion and Coefficient of Variation for S and S for both Virgin and Non-virgin Glass Fibres (MLE Technique)	21 3
38	5 6	Mean, Dispersion and Coefficient of Variation for S and S for both Virgin and Non-virgin Glass Fibres	21 3

LIST OF FIGURES

sl No	Fig	No	Page
1	1 1	Time Dependence of Polarisation After Applying a Constant D C Field at Time to	45
2	1 2	Dependence of Normalised & and & on Frequency	45
3	1 3	Schematic Phase Diagram Showing Stable and Metastable liqud Immiscibility	58
4	1 4	Schematic Phase Diagram Showing Metastable Immiscibility	58
5	1.5	Immiscibility Dome for Hypothetical Two Component System	60
6	1 6	Free Energy Verses Composition of Hypothetical Two Component System	60
7	2 1	Photograph of Fibre Drawing Assembly (FDA)	71
8	2 2	Schematic View of Fibre Drawing Assembly (FDA)	72
9	2 3	Schematic View of Temperature Gradient Control Unit (TGCU)	72
10	2 4	Schematic View of Virgin Sample Unit (VSU)	72
11	2 5	Schematic View of Conductivity Cell	7 8
1 2	2 6	Schematic Circuit Diagram for D C Resistivity Measurement	80
13	2 7	Schematic Circuit Diagram for A C Resistivity Measurement	80
14	3 1	DTA Curve for Glass N_1	104
15	3 2	DTA Curve for Glass N2	104
16	3 3	DTA Curve for Glass N3	104
17	3 4	I V Plot for Glass System N	105

18	3 5	I V Plot for Glass System IN	105
19	3 6	Complex Impedance Plot for Glass N1 (T=275°C)	108
20	3 7	Complex Impedance Plot for Glass N2 (T=1 25°C)	108
21	3 •8	Complex Impedance Plot for Glass N3 (T= 100°C)	108
22	3 9	Complex Impedance Plot for Glass IN_1 ($T=4.2$ °C)	109
23	3 10	Complex Impedance Plot for Glass IN 2(T= 21°C)	109
24	3 11	Complex Impedance Plot for Glass IN3 (T=64°C)	109
25	3 1 2	Switching of IN ₁ Glass to HIN ₁ Glass $(T_c = 320^{\circ}C)$	111
26	3 13	Switching of IN_2 Glass to HIN_2 Glass $(T_c = 300^{\circ}C)$	111
27	3 14	Switching of IN_3 Glass to HIN_3 Glass $(T_C = 160 ^{\circ}C)$	111
28	3 15	Temperature Variation of Critical Electric Field (E _C) for Glass System IN	11 2
29	3 16	Temperature Variation of D C Resistivity/ Temperature for N_1 , IN_1 , HIN_1 Glass Fibres	113
30	3 17	Temperature Variation of D C Resistivity/ Temperature for N ₂ , IN ₂ , HIN ₂ Glass Fibres	114
31	3 18	Temperature Variation of D C Resistivity/ Temperature for N3, IN3, HIN3 Glass Fibres	115
3 2	3 19	Temperature Variation of D C Resistivity for Glass System N	117
33	3 20	Temperature Variation of D C Resistivity for Glass System IN	118
34	3 21	Temperature Variation of D C Resistivity for Glass System HIN	119
35	3 22	TEM Micrograph of Glass N ₁	1 23

36	3 23	SAD of Glass N1	1 23
37	3 24	TEM Micrograph of Glass N 2	1 23
38	3 25	SAD of Glass N ₂	1 23
39	3 26	TEM Micrograph of Glass N3	1 23
40	3 27	SAD of Glass N ₃	1 23
41	3 28	TEM Micrograph of Glass IN1	1 24
42	3 29	SAD of Glass IN1	1 24
43	3 30	TEM Micrograph of Glass IN 2	1 24
44	3 31	SAD of Glass IN 2	1 24
45	3 32	TEM Micrograph of Glass IN3	1 24
46	3 33	SAD of Glass IN3	1 24
47	3 34	TEM Micrograph of Glass HIN1	1 25
48	3 35	SAD of Glass HIN1	1 25
49	3 36	TEM Micrograph of Glass HIN 2	1 25
50	3 37	SAD of Glass HIN2	1 25
51	3 38	TEM Micrograph of Glass HIN3	1 25
52	3 39	SAD of Glass HIN3	1 25
53	3 40	Variation of Pre-exponential (ρ_{OT}) with Cation Concentration (n) for Glass Systems N and IN	11 2
54	4 1	DTA Curve for Glass A ₁	140
55	4 2	DTA Curve for Glass A ₂	140
56	4 3	DTA Curve for Glass A3	140
57	4 4	DTA Curve for Glass A4	140
58	4 5	DTA Curve for Glass A5	140
59	4 6	I.V Plot for Glass System A	142
60	4 7	I-V Plot for Glass System IA	142
61	48	Complex Impedance Plot for Glass A ₁ (T=100 C)	142

62	4 9	Complex Impedance Plot for Glass A_2 (T = 126 C)	143
63	4 10	Complex Impedance Plot for Glass A3 (T = 36°C)	143
64	4 11	Complex Impedance Plot for Glass A_4 (T = 96°C)	143
65	4 1 2	Complex Impedance Plot for Glass A ₅ (T = 27°C)	144
66	4 13	Complex Impedance Plot for Glass $IA_1 (T = 64$ °C)	144
67	4 14	Complex Impedance Plot for Glass IA ₂ (T = 150°C)	144
68	4 15	Complex Impedance Plot for Glass IA ₃ ($T = 24$ °C)	145
69	4 16	Complex Impedance Plot for Glass IA ₄ (T = 75°C)	145
70	4 17	Complex Impedance Plot for Glass IA_5 (T = 60°C)	145
71	4 18	Switching of IA_1 Glass to HIA_1 Glass ($T_c = 160^{\circ}$ C)	148
72	4 19	Switching of IA ₂ Glass to HIA ₂ Glass $T_c = 140$ °C)	148
73	4 20	Switching of IA ₃ Glass to HIA ₃ Glass ($T_c = 280$ °C)	148
74	1 21	Switching of IA ₄ Glass to HIA ₄ Glass (T _c = 300°C)	149
7 5	4.22	Switching of IA5 Glass to HIA5 Glass (T _c = 310°C)	149
76	4 23	Temperature Variation of Critical Electric Field (E _C) for Glass Systam IA	149
77	4 24	Temperature Variation of D C (Resistivity/ Temperature) for A ₁ , IA ₁ , HIA ₁ Glass Fibres	150
78	4 25	Temperature Variation of (D C Resistivity/ Temperature) for A ₂ , IA ₂ , HIA ₂ Glass Fibres	151

79	4 26	Temperature Variation of (D C Resistivity/ Temperature) for A_3 , IA_3 , HIA_3 Glass Fibres	152
80	4 27	Temperature Variation of (D C. Resistivity/ Temperature) for A_4 , IA_4 , HIA_4 Glass Fibres	153
81	4 28	Temperature Variation of (D C. Resistivity/ Temperature) for A5, IA5, HIA5 Glass Fibres	154
82	4 29	Temperature Variation of D C Resistivity for Glass System A	155
83	4 30	Temperature Variation of D C Resistivity for Glass System IA	156
84	4 31	Temperature Variation of D C Resistivity for Glass System HIA	157
85	4 32	Variation of Resistivity with $(\mathtt{T}^{-1/2})$ for Virgin Glass Fibres $(\mathtt{A_3,A_4,A_5})$	159
86	4 33	TEM Micrograph of Glass A ₁	164
87	4 34	SAD of Glass A ₁	164
88	4 35	TEM Micrograph of Glass A2	1 64
89	4 36	SAD of Glass A ₂	164
90	4 37	TEM Micrograph of Glass A3	164
91	4 38	SAD of Glass A ₃	164
92	4 39	TEM Micrograph of Glass A ₄	165
93	4 40	SAD of Glass A ₄	1 65
94	4,41	TEM Micrograph of Glass A5	165
9 5	4.42	SAD of Glass A5	165
96	1 43	TEM Micrograph of Glass IA1	165
97	4 44	SAD of Glass AIA1	169
98	1 45	TEM Micrograph of Glass IA2	166
99	4 46	SAD of Glass IA2	166
100	4 47	TEM Micrograph of Glass IA3	166

101	4 48	SAD of Glass IA3	166
102	4 49	TEM Micrograph of Glass IA ₄	16 6
103	4 50	SAD of Glass IA ₄	166
101	4 51	TEM Micrograph of Glass IA5	167
105	4 52	SAD of Glass IA5	167
106	4 53	TEM Micrograph of Glass HIA ₁	1 67
107	4 54	SAD of Glass HIA ₁	167
108	4 55	TEM Micrograph of Glass HIA2	1 67
109	4 56	SAD of Glass HIA2	1 67
110	4 57	TEM Micrograph of Glass HIA3	1 68
111	4 58	SAD of Glass HIA3	1 68
112	4 59	TEM Micrograph of Glass ${ m HIA}_4$	1 68
113	4 60	SAD of Glass HIA ₄	1 68
114	4 61	TEM Micrograph of Glass HIA5	1 68
115	4 62	SAD of Glass HIA5	1 68
11 6	5 1	Regression of Strength (S) with Strain (e) for Virgin Glass Fibres A ₁	182
117	5 2	Regression of Strength (S) with Strain (e) for Virgin Glass Fibres A ₂	183
118	5 3	Regression of Strength (S) with Strain (e) for Virgin Glass Fibres ${\tt A}_4$	184
11 9	5 4	Regression of Strength (S) with Strain (e) for Non-virgin Glass Fibres ${\bf A_1}$	185
1 20	5 5	Regression of Strength (S) with Strain (e) for Non-virgin Glass Fibres A2	186
1 21	5 6	Diameter (D) Histogram for Virgin Glass Fibres (A ₁	187
1 22	5 7	Diameter (D _C) Histogram for Virgin Glass Fibres A ₁	187

1 23	5 8	Diameter (D) Hıstogram for Virgın Glass Fıbres A ₂	188
1 24	5 9	Diameter (D) Histogram for Virgin Glass Fibres A_2	188
1 25	5 10	Diameter (D) Histogram for Virgin Glass Fibres \mathbf{A}_4	189
1 26	5 11	Diameter (D) Histogram for Virgin Glass Fibres ${\bf A}_4$	189
1 27	5 12	Diameter (D) Histogram for Non-virgin Glass Fibres A ₁	190
1 28	5 13	Diameter (D) Histogram for Non-virgin Glass Fibres ${\bf A}_1$	190
1 29	5 14	Diameter (D) Histogram for Non-virgin Glass Fibres ${\rm A}_2$	191
130	5 15	Diameter (D _C) Histogram for Non-virgin Glass Fibres $^{\rm A}2$	191
131	5 16	Strength (S) Histogram for Virgin Glass Fibres A ₁	192
132	5 17	Strength (S _c) Histogram for Virgin Glass Fibres A ₁	192
133	5 18	Strength (S) Histogram for Virgin Gqass Fibres A ₂	193
134	5 19	Strength (S _c) Histogram for Virgin Glass Fibres A_2	193
135	5 20	Strength (S) Histogram for Virgin Glass Fibres \mathbf{A}_4	194
136	5 21	Strength (S_) Histogram for Virgin Glass Fibres A_4	194
137	5 22	Strength (S) Histogram for Non-virgin Glass Fibres A_1	19 5
138	5 23	Strength (S _c) Histogram for Non-virgin Glass Fibres A ₁	195
139	5 24	Strength (S) Histogram for Non-virgin Glass Fibres A ₂	196
140	5 2 5	Strength (S $_{ m c}$) Histogram for Non-virgin Glass Fibres A $_{ m 2}$	196

141	5	26	Regression Analysis of Observed Strength (S) with Failure Probability (P) for Virgin Glass Fibres A ₁	200
142	5	27	Regression Analysis of Calculated Strength (S _c) with Failure Probability (P) for Virgin Glass Fibres A ₁	200
143	5	28	Regression Analysis of Observed Strength (S) with Failure Probability (P) for Virgin Glass Fibres A 2	201
144	5	29	Regression Analysis of Calculated Strength (S _C) with Failure Probability (P) for Virgin Glass Fibres A ₂	201
145	5	30	Regression Analysis of Observed Strength (S) with Failure Probability (P) for Virgin Glass Fibres A ₄	202
146	5	31	Regression Analysis of Calculated Strength (S _c) with Failure Probability (P) for Virgin Glass Fibres A ₄	202
147	5	32	Regression Analysis of Observed Strength (S) with Failure Probability (P) for Non-virgin Glass Fibres A ₁	203
148	5	33	Regression Analysis of Calculated Strength (S _C) with Failure Probability (P) for Non-virgin Glass Fibres A ₁	203
149	5.	34	Regression Analysis of Observed Strength (S) with Failure Probability (P) for Non-virgin Glass Fibres A ₂	204
150	5	35	Regression Analysis of Calculated Strength (S _c) with Failure Probability (P) for Non-virgin Glass Fibres A ₂	204
151	5	36	Variation of Failure Probability (P) with Observed Strength (S) for Virgin Glass Fibres A ₁ (MLE, GRE)	205
152	5	37	Variation of Failure Probability (P) with Calculated Strength (S _C) for Virgin Glass Fibres A ₁ (MLE, GRE)	205
153	5	38	Variation of Failure Probability (P) with Observed Strength (S) for Virgin Glass Fibres A2 (MLE, GRE)	206

154	5 39	Variation of Failure Probability (P) with Calculated Strength (S _C) for Virgin Glass Fibres A ₂ (MLE, GRE)	206
155	5 40	Variation of Failure Probability (P) with Observed Strength (S) for Virgin Glass Fibres A ₄ (MLE, GRE)	207
156	5 41	Variation of Failure Probability (P) with C_a culated Strength (S $_c$) for Virgin Glass Fibres A_4 (MLE, GRE)	207
157	5 42	Variation of Failure Probability (P) with Observed Strength (S) for Non-virgin Glass Fibres A_1 (MLE, GRE)	208
158	5 43	Variation of Failure Probability (P) with Calculated Strength ($S_{\rm C}$) for Non-virgin Glass Fibres A ₁ (MLE, GRE)	208
159	5 44	Variation of Failure Probability (P) with Observed Strength (S) for Non-wirgin Glass Fibres A ₂ (MLE, GRE)	209
1 60	5 45	Variation of Failure Probability (P) with Calculated Strength (S _c) for Non-virgin Glass Fibres A ₂ (MLE, GRE)	209
161	5 46	Comparision of Failure Probability Distributions of Observed Strength (S) and Calculated Strength (S) for Virgin (A ₁ ,A ₂ ,A ₄) and Non-virgin Glass Fibres (A ₁ ,A ₂) [GRE]	21.0
162	5 47	Comparision of Failure Probability Distributions of Observed Strength (S) and Calculated Strength (S,) for Virgin (A1 A2,A4) and Non-virgin Glass Fibres	
		(A_1, A_2) [MLE]	210
1 63	5 48	Fracture Surface of A ₁ Fibre [SEM]	21.4
1 64	5 49	Fracture Surface of A ₂ Fibre [SEM]	21.4
1 65	5 50	Fracture Surface of A ₄ Fibre [SEM]	21.4
166	5 51	Fracture Surface of A ₄ Fibre [SEM]	21 4
1 67	5 5 2	Fracture Surface of A ₄ Fibre [SEM]	21 4
1 68	5 53	Fracture Surface of A ₄ Fibre [SEM]	21 4

1 69	Fig Fibre		54	(a,b)	SEM	Micrograph	of	Etched	A ₁	Glass	21 6
170	Fig Fibre	5 8	55	(a b)	SEM	Mıcrograph	of	Etched	A 2	Glass	21 6
171	rıg Fıbre		56	(a,b)	SEM	Mıcrograph	of	Etched	A ₄	Glass	21 6

__

LIST OF PRINCIPAL SYMBOLS

a Flaw size

a_h Radius of nozzle

a_ Core radius

a_O Inter-atomic distance

a_A, a_B Activity of species A, B

b Shape parameter of Weibull's distribution

B₁,B₂ Constants

c Concentration of charge carriers

C₁ Activation energy of electron tunnelling

C Capacitance

C Surface concentration

CA,CB Ionic concentrations of species A, B

Diameter of fibres, self diffusion coefficient

D_C Calculated Fibre diameter

Interdiffusion coefficient

Do, Do Pre-exponential factors of self diffusion

and inter-diffusion coefficients

d Grain diameter

d₁ Density

E Young's modulus

E_R Regressed Young's modulus

E Mean value of E

E_e Electric field

E Critical electric field

Energy required to create a pair of

charged grains

E	Maximum value of electric field
ο E _σ	Activation energy of conductivity
	Other activation energies
Eg' Es' Eu Eh' Ep' Ez	
2	
f	Frequency
f _r , f _c	Correlation factors
F (7)	Distribution function of relaxation times
G	Conductance
h	Planck's constant
H :	Height of the glass in bushing
k	Boltzmann constant
k _e	Gradient energy coefficient
1	Length of nozzle bore
L ₁ , L _o	Length of fibre sample
М	Mass of sample
NC	Cation concentration
n	Charge carrier concentration
n ₁ , n ₂ , n ₃	Constants
p	Polarisation
P	Probability of failure
p _i	Load of ith sample
$\Omega_{f r}$	Activation energy for ion migration
R	Average hopping distance
Ro, R _T	D C resistances
S	Strength
s _o	Scaling parameter of Weibull's distribution
Sc	Calculated strength
~	

Strain

e, e_i

s	Inter particle separation
T _g	Glass transition temperature
T _N ,T _o ,T _c	Other temperatures
$v_{_{\mathrm{D}}}$	Dimensionless parameter
W	Power dissipation
x	Distance
γ	Fracture energy
δ	Loss angle
δ(x)	Delta Dirac function
€.	Dielectric constant
€'	Real part of dielectric constant
€"	Imaginary part of dielectric constant
$\eta_{_{\mathbf{O}}}$	Viscosity
η, η cladding η cire	Refractive indicies
ρ	Resistivity
Por Pot	Pre-exponential factors of resistivity
σ	Conductivity
σ_{O}	Pre-exponential factor of conductivity
σs	Stress
σ	Theoretical strength of glass
$\sigma_{m}^{}$	
T	Relexation times
7	Relexation times

Width of d , β phases

war was

SYNOPSIS

1 Name of student ASHOK SHRIVASTAVA

2 Programme Ph D

3 Department Interdisciplinary Programme in

Materials Science

Indian Institute of Technology

Kanpur INDIA

4 Title of Thesis Electrical Properties of Heterophase

Ion-exchanged Glass Fibres and

Mechanical Properties of Glass Fibres

Containing Aluminium Dispersoids

5 Thesis Supervisors (1) Professor D Chakravorty

(11) Dr D C Agrawal

Alkali containing oxide glasses have long been known to conduct electricity by the alkali ion migration under the influence of an electric field. But only recently with the development of several high conducting glass systems, ionic conduction in glasses have attained new dimensions. Such glass systems are known as fast ion conducting glasses (FIC) and they display very high value of ionic conductivity of the order of 10⁻² (Ohm-Cm)⁻¹ at room temperature. These find wide applications as solid electrolytes in various energy devices. More than 100 FIC's are reported in the literature and almost all of them have lithium or silver as the migrating species. Highest conductivity is exhibited by FIC's based on silver ion migration. Most of such FIC is are based upon compositions derived from AgI which itself is FIC in the

crystalline form and very few of these are based on SiO₂ as the network former because of the problem of silver precipitating out as metallic agglomerates during the melting operation. In the present thosis large concentration of silver in silica based glass has been achieved by sodium-silver ion exchange treatment. As the silver rich layer formed at the glass surface by the ion-exchange treatment is of the order of a few microns, possibility of replacing almost all the alkali ions by silver ions by this treatment has been explored by ion exchanging the base glass in fibre form. The average diameter of the fibres used is around 10 microns. The effect of such an ion exchange process on electrical conductivity has been studied.

Presence of ultrafine metallic granules in glass has a significant effect on its electrical conductivity. Such metalglass microcomposites with aluminium as a dispersion metal in glass matrix, have been prepared Role of metallic dispersoids on ionic conductivity of alkali containing glasses and that of their ion exchanged versions has been investigated. It has been found that there is a large enhancement in electrical conductivity of glasses by metallic dispersion and ion-exchange treatment. It has been further observed for the first time, that high conducting glasses with almost neglible activation energy can be developed with conductivities at room temperature of the order of 10-2 (ohm Cm)-1. It has been further shown that aluminium dispersoids further enhance the conductivity of glass. The increase in conductivity is attributed to the microstructural features of

these glasses Presence of aluminium particulates further improves the morphological structure in a desirable way

Effect of aluminium particulates on the mechanical proporties of glass fibres has been investigated. It has been found that while strength of glass fibres decreases by the incorporation of aluminium particles, the modulus shows an increase with increasing amount of aluminium. As strength is a statistical parameter the strength data have been analysed by Weibull's analysis. A new technique to analyse the strength data for glass fibres has been developed. Fricture surface studies have been made using scanning electron microscopy. Corrosion strength of these glass fibres have been found to improve with increasing aluminium concentration.

In chapeter I (Introduction), various characteristics of glasses in bulk and fibre form have been reviewed. Present state of the art of glass fibre drawing +echnology is described. Electrical and mechanical properties of glasses, both in bulk and fibre form have been discussed. Various aspects of ion exchange and phase separation are described alongwith A.C. and D.C. responses of glass systems. A brief review of FIC glasses is also incorporated.

Chapter II (Experimental).describes the experimental techniques used to prepare and characterise glass fibres for their electrical and mechanical properties. Details of fibre drawing issembly and conductivity cell designed and fabricated

by the author are also given in this chapter Ion-exchange tratment of glass fibres have been discussed. The characterisation techniques include A C and D C electrical conductivity measurements, Chemical analysis, DTA, Transmission electron microscopy and Scanning electron microscopy.

In chapter III, results of DC and AC resistivity of some silicate glasses in fibre form containing 10 to 30 mol % of sodium have been described. These fibres after ion-exchange show lowering of activation energy and increase of electrical conductivity. An optimum combination of electric field and temperature brings about a permanent morphological transformation in ion-exchanged samples inducing a high conducting state in them. The newly attained conducting state is characterised by very low activation energy which in some cases is found to be almost tending to zero. Such behaviour has been attributed to the microstructural features exhibited by the samples.

In chapter IV, results of AC and DC conductivity of glass fibres of glass-metal composites containing aluminium metal dispersoids have been reported Mol % of aluminium has been varied from O to 10 Presence of aluminium particulates enhances the electrical conductivity of virgin and ion-exchanged samples. In virgin glasses, in the temperature range 20°C to 110°C, the conduction mechanism is shown to be due to electron Tunnelling between the metallic islands in the glass matrix. Ion-exchanged glass samples under the influence of electric field and temperature are found to attain a stable high conducting state chara-

Presence of aluminium particles brings in some desirable effects in the microstructure such that maximum conductivity at room temperature is obtained for glass composition having 5 mol% of aluminium. This behaviour has been supported by corresponding microstructural features.

In chapter V mochanical properties of glass fibres containing various amounts of aluminium particles have been described A new technique to process the data of mechanical measurements has been suggested which gives better estimates of strength and Young modulus. As surface flaws dictate the strength of glass fibres, the data have been analysed by the Weibull method Comparison of graphical regression technique and most likelyhood estimator technique (MLE) to evaluate the Weibull's parameters have been made Effect of aluminium concentration on Weibull's parameters has been investigated Fracture surface studies have been made by scanning electron microscopy. Presence of small pores of the order of 1 micron explains the decrease in strength of the composite glass fibres.

Chapter VI (Conclusions) gives a summary of the results of electrical properties of virgin and ion-exchanged glass fibres Similar results for fibres drawn from glass-metal micro composite systems are also described. It is inferred that ion-exchanged fibres of the glass systems studied constitute a new set of FIC glasses. In their high conducting state, they provide high conducting materials with almost zero activation energy. Mechanical strength decreases with increasing amount of aluminium particles.

INTRODUCTION

Glass fibre is one of the most important engineering materials of the present space age. It exhibits a unique set of optical, mechanical and electrical properties Its applications are enormous and diversified As a reinforcement material, it forms the backbone of G R P (Glass Reinforced Plastic) and G R C (Glass Reinforced Cement) products which have already captured a significant part of the industrial market Their use is continuously increasing GRP's have found diverse applications in space vehicles, air crafts, ships, submarines, boats, radomes, sonar domes, off shore structures, automobiles, protective armours, containers and pipes for chemical industry, corrosion resistant coatings, sporting goods, electronics and appliances (Parkyn Brian, 1970) G R C's main usage includes architectural cladding, walling systems, housing, street furnitures, water transport systems including pipes, sewer linnings, water channels, field drainage components, canal linings, tanks and various other applications in the field of agriculture and as an asbestos replacement (Smith, JW and Walker, TWL, 1980) Glass fibres with some of their characteristic optical properties, have emerged as major transmission media for light and are poised to revolutionize telecommunications (MacChesney, JB 1981) It has been possible to make these optical fibres with power loss even less than 1 dB/Km Flexibility of these optical fibres has been exploited commercially in the form of various medical and enginner-(Kapany 1960, 1967, Allan 1973) ing instruments

wide perspective of glass fibre applications, a potentially new dimension has been added by recent researches carried out to develop electrically conducting glass fibres either by a suitable choice of glass composition (Provance, JD, 1971), or by ionexchange and reduction technique (Mozhi T Arul and Chakravorty D, 1982), or by the fiberisation of glass-metal particulate system (Chakravorty D, et al. 1979) All these interesting features associated with glass fibres, result from the coupling of innate characteristics associated with the fibre form and other useful properties exhibited by glasses in their bulk form. In order to delineate the present trend of glass fibre technology and to contemplate the development of newer materials, a brief review incorporating various aspects of glass fibres and glass fibre technology is presented Various new glass forming systems including those exhibiting fast ion conduction and various technological aspects associated with glass-metal particulate systems are reviewed Dissussions on phase separation in glasses and the ion exchange process are also incorporated because of their technological importance as well as relevance to the present investigation

1 1 Glass Fibres

1.1 1 Historical Survey

Glass fibres in one form or another were known to glass makers in antiquity (Parkyn B, 1963). The Egyptian kings of xviiith Dynasty used small glass vases made of glass fibres for holding cosmetics. The earliest use of woven glass fibres was reported to be in 1713 when Rene Reaumur submitted some glass.

cloth to Paris Academy of Science, which had been woven by Venetian Carlo Riva In 1860, a woven glass garment was presented to spanish princess, but it was found that the fibre was too coarse to allow the garment to be folded (Parkyn B 1970).

Early in 1930's, the Owens - Illinois Glass Co. of New York, Ohio, made significant improvements to the process of glass fibre manufacture which made it commercially viable Later this company joined with Corning Glass Works of Corning, New York, which was also working in the same field, to form a specialist company namely Owens- Corning Fiber Glass Corporation, which became the undisputed leader in the development marketing and technology of this industry Upto this point, the fibre being manufactured on an industrial scale was discontinuous i e glass wool The need to insulate fine wire at high temperatures paved the way to the development of extremely well chosen formulation of glass which later became known as 'E' glass Under stress of war, economic circumstances or patent restrictions, other type of glasses were tried and for some time, found their market, they did not however gai a major importance in the industry As a result of exhaustive experimentation, some specialized glasses characterised by high chemical strength and extra high strength were also developed such as 'S' and 'HM' 905 glasses

The first patents covering room temperature thermosetting resins e.g polyesters appeared in 1935 Reinforcement of these resins with E'glass fibres gave birth to a new reinforced plastic industry and found its first major application in world war II

in the manufacture of radomes for aircrafts Since then, the industry has acquired a significant growth rate of 10 to 15% per annum. In 1949 Pittsburgh Plate Glass and Libbey- Owens-Ford acquired licences from Owens- Corning followed by overseas licences to St. Gobain in France in 1951 and Pilkington in Great Britain in 1952. New uses, better performance of composites and rapidly improving manufacturing technology have been the hall mark of this industry (Loewenstein, KL 1973)

1 1 2 Basic Features of Glass Fibres .-

Glass fibres are glass filaments usually having their diameters in the range of 3µm-15µm In the case of optical glass fibres the diameter of the cladded fibre is above 100µm Glass fibres differ from bulk glass of the same composition in two major respects first, the rate of cooling from molten state which is of the order of 10⁺⁵ 10⁺³ °K/Sec (Manfre G, 1967) and secondly the ratio of surface to weight of glass. For an average fibre diameter of 9um, 10gms of fibre possesses a surface area of 2 m2 (Loewenstein KL 1973) The effect of rapid quenching on fibre formation is such that the composition and structure related properties are lower for the fibre than for the bulk glass As density, refractive index and Young's modulus are structure sensitive properties 1 e. they depend on the composition of glass and its configuration temperature (Loewenstein KL 1961), it has been reported that density, refractive index and Young's modulus are 2%, 15 to 40% and 7 to 25% lower respectively than those of bulk glass (Loewenstein KL 1961) This has also been

observed that when fibres of same diameter are drawn from liquid glass at various temperatures, as the temperature of glass rises, so the fibres drawn from it show a progressive decrease in Young's Modulus (Leewenstein KL and Pervin K 1962) These differences in properties between glasses in bulk and fibre form can be eliminated by heating the fibres for a sufficiently long time at temperatures between 100-400°C, the higher the temperature, the more rapid the rate at which the glass fibres become denser and acquire the same properties as the bulk glass

1 1.2 1 Strength of Glass Fibres:

The strength of glass fibres when measured at room temperature and under not an uncommon condition of 60-65% relative humidity is found to depend upon the glass composition, the fibre diameter and the temperature of the glass from which the fibreis drawn (Loewenstein KL and Dowd J 1968) The extent to which each one of these factors influences—the strength varies with the composition—The alkali-containing 'A' glass shows a very significant strength diameter relationship whereas the strength of nearly alkali free 'E' glass fibres is almost independent of diameter. In fact when 'E' glass fibres are tested at room temperature and at relative humidities of 40% or below, the observed tensile strengths are independent of diameter and consistant to with in a coefficient of variation of about 1% (Thomas WF, 1960) Various basic properties exhibited by some commercial glass fibres along with their chemical composition are shown in Table 11.

Table 1 1 : Composition and basic properties of commercial glass fibres

Constituent	E glass	C glass	A glass	S glass	Fused silica	HM 905
SiO 2	55 2	6 5 0	72 0	65 0	99 97	48 0
Al ₂ O ₃	14 8	4.0	2 5	25 0	015	-
^B 2 ^O 3	7 3	5 0	0 5		-	8 •0
MgO	3 3	3 0	0 9	10 0	•	8 5
CaO	18 7	14 0	9 0	-	0032	11 5
Na ₂ O	0 3	8 5	125	-	0022	***
к ₂ 0	0 2	-	1 5	-	0007	-
Fe ₂ O ₃	0 3	0 5	0 5	•••	0010	-
F ₂	0 3	-	-	-	-	-
BeO	-	-	-	-	-	0.0
Li ₂ 0	-	-	***	-	•••	6.0
v ₂ o ₅	-	••	-	prov	-	4.0
MoO 2	_		-	-	-	2 0
TiO ₂		-	-	-	***	4 0
(1) Tensile strem of single file at 25°C(Kg/mm	re	310	310	430		
(2) Tensile strer of straind(Ko	ngth 175-27 y/mm ²)	5 160-235	160-235	210-320		
(3) Young's modul of fibre at ((Kg/mm ²)	ur 7700 25°C	7400	74 00	8800		
(4) Density 9/Cm ²	2 53	2 46	2 46	2 45		

(5)	Refractive index η_{D}	1	550	-	1 542	-	
(6)	Coefficient of linear thermal expantion per °C x 10	5	0	8.0	9 0	5	0
(7)	Dielectric constant at 25°C and 1010 Hz	6	11	-	-	5	21
(8)	Loss tangent at 25°C and 10 ¹⁰ Hz		004	-	-		009
(9)	Volume resisti- vity in Ohm-Cm	10	15	-	10 ¹⁰	•	-

The strength of glass fibres is much smaller than the theoretical strength of glasses. The latter can be evaluated from the following equation (Orowan, 1949)

$$\sigma_{\rm m} = \left(\frac{E \cdot V}{\epsilon_{\rm m}}\right)^{1/2} \tag{11}$$

where $\sigma_{\rm m}$ is theoretical strength of glass

E is Young's Modulus

Y is the fracture surface energy

and a is the inter atomic distance

Fracture surface energies for glasses have been reported and they lie in the range of 3 5 to 4 82 $\rm Jm^{-2}$ at 25°C (Wiede-rhorn 1966)

By substituting values of E, a and \checkmark as $10^{11}\,\mathrm{Nm}^{-2}$, $2\times10^{-10}\,\mathrm{m}$ and $3\,\mathrm{Jm}^{-2}$ respectively in the above equation, the theoretical strength of glass is found to be $4\times10^4\,\mathrm{MNm}^{-2}$ which is valid for all glasses of practical interest as none of the variables in the above equation is sensitive to the glass composition

Strengths of this order of magnitude have been measured in pristine glass fibres (Procter et. al 1962) However, strengths of glasses under most conditions are 10-100 times lower than this value. This apparant anamoly in strength value is attributed to the presence of Griffith flaws as mentioned below

1 1 2 2 Griffith Equation

The order of magnitude difference between theoretical and experimental strength values is explained in terms of surface flaws which act as stress concentrators, the stress at the flowtip being much greater than in the matrix. The strength S is related to the critical flaw size's by the following equation (Griffith 1920)

$$S = \sqrt{\frac{2EY}{\pi a}}$$
 (1 2)

where E is the Young' Modulus

Y is the fracture surface energy

For a fracture stress of 100 MNm⁻² which is the usual value of S for glasses in bulk form, the critical flaw size as calculated from equation (1 2) turns out to be 20 µm. It follows from equation (1 2) that any reduction in 'a' would cause an enhancement of strength (Rawson H 1984). As glass fibres show a strength an order of magnitude more than that for bulk glass, equation (1 2) suggests that surface flaws on glass fibres should be such that a < 1 µm. The dependence of strength on surface flaws has been confirmed experimentally when removal of surface damage by etchant consisting of an equeous 15% HF and 15% H₂SO₄ solution shows improvement in the strength of glass (Proctor 1962)

1 1 2 3 Flaw Statistics

The flaws on a glass surface have a distribution of shapes and sizes. Its quantitative description is given in terms

of a'flaw distribution function In principle, this function can be used to predict the strength under any specified system of loading The cumulative probability of failure is given by Weibull distribution (Weibull 1951)

$$P = 1 - \exp((-\frac{S}{S_0})^b)$$
 (1 3)

where $\mathbf{S}_{_{\mathbf{O}}}$ and \mathbf{b} are the scaling and shape parameters respectively of the distribution. The values of $\mathbf{S}_{_{\mathbf{O}}}$ and \mathbf{b} are determined experimentally

1 1 2 4 Strength Protection by Surface Treatment

To protect the surface of glass fibres from abrasion and to minimise the surface damage, glass fibres are coated with a sizing material which may be a resin (Roskos T G et al 1962, Eakins WJ 1964), glass (Morley JG 1959), Metal (Morley JG 1963) or graphite (Zvanut C 1965) Recently it has been shown that various factors which contribute towards strength, include glass quality, pretreatment prior to fibre drawing, cleanliness of the heat source, nature of size application and techniques of applying it (Schonhorn H et al 1976) It has been reported that ultimate strength of laser drawn silica fibres is dependent on fibre tension and drawing velocity (Schonhorn et al 1978)

1 1 2 5 Strength Enhancement by the Precipitation of a Heterophase

Alkaliboro silicate glass fibres containing bismuth and or silver have shown marginal improvement in strength but significant enhancement in Young's (Chakravorty D, et al 1979) This increse in strength is attributed to the deflection of cracks along the

glass metal interface during the course of crack propagation Similar effects have been observed in alkali alumino borosilicate glasses (Venkateswaran A 1979) Fibres drawn from glasses having compositions similar to that of the blast furnace slag have shown strength values comparable to that of E glass fibres with some improvement in Young's Modulus (Srivastava A and Chakravorty D. 1979) The latter has been ascribed to the presence of a crystalline phase (Srivastava A.1978) within the fibre

1 1.3 Types of Glass Fibres :

On the basis of its applications, glass fibres can be classified as follows

1.3.1 Reinforcement Glass Fibres

- 99% of the total production of glass fibres is being consumed as reinforcements for fabrication of various composite material A wide variety of such composites have been developed. These composites are characterised by a matrix which can be either polymer metal or a ceramic based (Mc Creight LR et. al 1965). A suitable combination of matrix and glass fibre defines a unique composite material. A detailed study of such combinations, has resulted in the development of the following group of composites which are being commercially exploited.
- (a) Glass Reinforced Plastics: Expoxide resins or polyester resin are used to make GRP's. E glass fibres are used as a reinforcement material Various lengths of fibres have been tried for reinforcement. It has been shown that polymers, reinforced with continuous

fibres exhibit strengths that are ⁵ times those for composites formed by short lengths. In some special applications such as in aerospace industry 'S' glass fibres are used as reinforcement (Parkyn B , 1970, Loewenstein KL, 1973)

(b) Glass Reinforced Cements The invention, development and commercialisation of alkali resist nt glass fibres for glass reinforced cement has introduced a new group of building and construction materials, which is rapidly gaining acceptance around the world (Majumdar AJ and Ryder JF 1968, Proctor BA and Yale, B 1978, Blackman LCF et al 1977) A typical glass composition is 71 3 SiO, 15 8 ZrO, 11 5 Na₂O 2Li₂O 1 K₂O 1 MgO CaO, (Bacon 1968) The early work at the U K Building Research Es ablishment has been commercially exploited by Pilkington Brothers U K , the fibre product being marketted as 'cemfil' (Rawson H , 1984) The ultimate strength of GRC whether it be bending tensile or impact strength is essentially dependent on the glass fibre content and form, orientation and disposition of fibres, the bonding between fibre and matrix (a function of matrix type, porosity and curing of matrix) The Young's Modulus limit of proportionality and creep behaviour of GRC, are strongly dependent on matrix property and are therefore influenced by the type of matrix being used (neat cement, mortar etc) and the degree of curve of the cement (Proctor BA 1980) Behaviour of glass fibres in strong acid and alkaline media have been studied (Ilona Wojnarovitis 1983) in this context

(c) Fibre-Reinforced Metals: Glass fibres have been used as reinforcement for metal matrix in both continuous and discontinuous forms. However the higher Shear strength available in metals permits the efficient use of short fibres, provided they are well bonded to the matrix. The highiest strength achieved by using continuous filaments for reinforcing metals have been silicatibre reinforced aluminium, which has been developed at Rolls-Royce Ltd. and used in making various items such as compressor blades for jet engines (Mc Creight et al 1965)

1 1 3 2 Optical Glass Fibres:

These consist of a core glass surrounded by a cladding layer of lower refractive index When a ray of light enters into the core region of the cladded fibre structure, the portion falling within a certain solid angle is guided by total internal reflection (Niizeki, Nobukazu 1984). The light collecting ability of a fibre is measured by its numerical aperture (NA) which is given by the lollowing relation

N A. =
$$\eta_{core}$$
 . (1.4)

where $\Delta = \frac{\eta_{core} - \eta_{cladding}}{\eta_{core}}$

 η core = refractive index of the ∞ re

cladding = refractive index of the cladding

The number of modes that such a fibre can transmit is

related to a dimensionless parameter V_D such that

$$V_{D} = \frac{2\pi a}{\lambda} (NA) \qquad (15)$$

$$= \frac{2\pi a \eta_{\text{core}}}{\lambda} \sqrt{2\Delta} \qquad .. \qquad (1.6)$$

Depending upon the modes that can be transmitted through optical fibres these can be subdivided into the following two categories:

- (a) Mono Mode Fibres: Such fibres are characterized by $V_D \stackrel{?}{\leftarrow} 4$ which implies from (1 6) that for $\lambda = 800$ nm and $\Delta \eta = 01$, core diameter should be of the order of 3 5 μm
- (b) Multimode Fibres: The optical glass fibres having $\Delta \eta > 01$ or core diameter > 3 5 μ m are known as multimode optical fibres. These may be either of the multimode step index or the multimode graded index type

One of the stringent conditions which glass fibres have to meet so that they can act as effective optical wavefuldes is low loss Absorption loss is specifically caused due to the presence of transition metal ions Fe³⁺, Co²⁺, Cu²⁺, Cr³⁺, Mn²⁺ v³⁺ etc. and OH within the glass. Other contributions to the loss arise from Rayleigh scattering and Mie scattering (Mac Chasney 1981). With the improvement and perfection of fabrication technology, glas fibres with power loss as low as 1 dB/Km are now available

1 1 3 3 Electrically conducting glass fibres:

In recent years there has been a spurt in research activity
to develop electrically conducting glass fibres. The efforts seem
to be directed to three different methods which can be broadly
classified as follows:

1 1 3 3.1 Coating of electrically conducting thin films on the surface of glass fibre

Various electrically conducting materials have been applied as a thin coating on the surface of the glass fibres. In another technique, thin ($3\mu\text{m}$) coatings of conducting SnO_2 - Sb_2O_3 have been successfully achieved by processing glass fibres with Sn ($\text{iso-PrO})_4$ and $\text{Sb}(\text{OPr})_3$ dissolved in iso-PrOH (Nano T and Eguchi T , 1985)

1 1 3 3 2. Glass Fibres Drawn From Glass Metal Composites:

Oxide glasses containing dispersed metallic granules of dimension of the order of a few hundred angstroms show electrical conduction by electron tunnelling mechanism between the metallic islands (Chakravorty et al 1979) Continuous glass fibres have been drawn in the system SiO_2 B_2O_3 $K_2O \cdot Al_2O_3$ As_2O_3 Bi_2O_3 Ag_2O for various molar fractions of Bi_2O_3 (0-3%) and Ag_2O (0-6%) respectively. Highlest conductivity of 10^{-8} (Ohm Cm)⁻¹ at room temp.

1.1.3 3.3 Electroconducting Glass Fibres Produced by Ion Exchange Followed by Reduction Treatment:

Suitable metallic particles can be precipitated in

alkalı containing glasses subjecting the latter to an ion exchange an reduction treatment (Chakravorty 1975) Preliminary investigations have shown that alkali containing glass fibres subjected to a sodium solver ion exchange followed by a reduction treatment show higher electrical conductivity as compared to the virgin fibre (Mozhi, T Arul and Chakravorty D, 1982) The lowest resistivity value at room temperature is reported to be 10 Ω-Cm. The conductivity has been ascribed to an electron tunnelling mechanism as described in the previous section.

Electrically conducting glass fibres have also been developed by subjecting glass fibres drawn from a suitable glass compositions to a reduction treatment (Provance 1971). In the fabrication of image intensifier and channel multiplier, similar approach is used where by reduction of the inner surface of hollow glass fibre a conducting layer of Pb is generated. An electron entering such a conducting channel kept in vacuum under influence of potential drop across the length of channel, undergoes many collisions with the conducting layers, thereby ejecting more than one electron at each impact. Thus for each electron entering one end of the channel, many leave at the other (Eschard and Manley 1971, Trap 1971, Washington et. al 1971, Mackenzie 1974, Graf and Polaert 1973)

1 1.4 Glass Fibre Drawing Process:

The fibre forming process is highly sensitive to glass melt temperature, viscosity and pulling rate Fibres are produced as continuous filaments which are mechanically drawn from softened glass under controlled conditions various techniques have been developed. Each of these typically effers some advantages that makes it preferable in a given situation. All of them are improved versions of either of the two techniques as described below.

1.1.4 1 Bushing Technology

Glass fibres are made by rapid attenuation of drops of molten glass exuding through nozzles under gravity and suspended from them The dynamic balance between forces of surface tension and mechanical attenuation results in the drop of glass taking on the shape of a meniscus held at the annular opening of the nozzle and tapering to the diameter of the fibre being drawn. For successful fiberisation glass viscosity should be in the range of 500-1000 poises. If viscosity is lower than 500 poises, the glass is too fluid and falls away from nozzle. as drops because of the predominance of surface tension forces. If the viscosity is higher than 1000 poises, the tension in the fibre is too high and rate of flow of glass through nozzle can become too low to maintain a meniscus (Lossenstein KL 1973)

The rate of fibre production from a given bushing is a function of the rate of flow of glass through the nozzles and is independent of rate of attenuation i.e. off the diameter of fibre mode. It has been reported that the flow rate is independent of the speed of draw and is a function of the temperature only. The rate of flow is given by the poiseuille equation

$$V_{f} = \frac{\pi a_{b}^{4} H d_{1} g}{8 \eta_{0} 1}$$
 (1.7)

where V_f is rate of flow (in m^3 , sec) a_b is radius of nozzle (m) H is height of glass above the nozzle (m) d_1 is density of glass (Kgm/m3) g is acceleration due to gravity (m/ sec 2) n_0 is viscosity of glass newton-Sec/ m 2)

1 is length of nozzle bore (m)

The fibre diameter is a function of the pulling rate and the bushing temperature

Almost all the fibre manufacturing units the world over employ bushings made of 10% Rhodium-Platinum and 20% Rhodium-Platinum alloys respectively the latter being more resistant to distortion at elevated temperatures Zirconium-stablised platinum, highly resistant to distortion has recently been added to the range of suitable materials. As Pt-Rh is a precious metal involving huge investment, an alternative ceramic bushing technology has been developed (

(Chakravorty et al 1981) The material used for making these bushings is either pure alumina or calcia stablised zirconia single nozzle bushings as well as multi-nozzle bushings have been made using slip casting technique followed by a sintering operation

There are two processes which are currently in use depending upon the feeding mechanism of glass into the bushings

(a) Marble Melt Process In this method glass cullet is introduced into the bushing in the form of marbles.

(b) Direct Melt Process:

The raw materials are fed directly into a glass melting tank from which molten glass is led onto different bushings via a long fore hearth

In either of these processes, glass fibre undergoes sizing operation by which a thin polymer coating is applied on the pristine surface of glass fibres, to protect its strength. Glass fibres are collected on the drum through a graphite shoe

1 1 4 2 Rod Technology

The glass which is to be fibersed is taken in the form of a rod or preform. A feed mechanism operates the lowering of the rod into the hot zone of the furnace or heat source where the glass softens. The glass is pulled down into a thin fibre which is wound on a drum. This rotating drum provides the force for the fibre drawing operation and at the same time stores the fibre neatly by translating as it revolves. Modern fibre drawing machines commercially available, are equipped with a laser monitoring device whose output excites the feed back mechanism to control the pulling speed, so as to regulate the diameter of the fibre to a preset value.

(Mc Chesney 1981). Protective coating is applied to the fibre by an applicator placed between furnace and the drum, so as to protect the pristing glass surface of drawn fibre and to preserve the strength Pulling speed varies from a few 100m/minute to 3 Km/minute

Hardly any industry uses this rod technology to draw glass fibres for reinforcement purposes. But almost all the optical glass

fibres are drawn by this technique. To meet the stringent conditions of high purity which involve an impurity level of less than a few tens of ppb and to have a cladding, number of techniques have been developed to make preforms with a characteristic *tructural and optical properties. Many such techniques each with a set of distinct advantages are commercially being exploited. In all of them a preform is fabricated by the vapour deposition technique. All the glass forming elements and the required dopants are taken in vapour form and are made to undergo a chemical reaction under well controlled conditions of temperature and pressure. The glass particles so formed are deposited layer by layer. The resultant tube is then collapsed to get the required preform which is subsequently fiberised to obtain the optical fibers. The various techniques to produce required preforms are as follows (Mc Chesney 1981)

- 1 Outside vapour phase oxidation technique (OVPO)
- 2 Vapour phase axial deposition technique (VAD)
- 3 Chemical vapour deposition technique (CVD)
- 4 Modified chemical vapour deposition technique (MCVD)

1 2 Electrical Properties of Glasses

Classes exhibit a very wide range of specific resistivities at room temperature. While calcium boro aluminate glasses show the highest specific resistivity of 10 27 cm cm the metallic alloy glasses are good electronic conductors, having a specific resistivity 10 3 Chm.cm. In between these two extremes are the oxide and chalcogenide semi conducting glasses. All the commercial oxide glasses are good.

insulators with their resistivities decreasing very rapidly with temperature (Rawson 1984)

The following sections give a brief review of the electrical behaviour of various inorganic glasses

1.21. Electronic Conduction :

Many glass systems show electronic conduction A good number of reviews exist concerning these semiconducting materials (Owen 1970, 1977, Owen and Spear 1976, Mott 1968, 1977) Three types of glass systems which show electronic conduction, are as follows 1 2 1 1 Chalcogenide Glasses:

These glasses are primarily based on S, Se and Tl as glass formers. It has been shown that semiconducting glasses are obtained by melting mixtures of As, Se, Te, S, Sb, Bi, Tl and P etc (Kolomie+s 1964) Their dc conductivity is given by

$$\sigma = \sigma_{o} \exp \left(- E_{\sigma} / KT \right) \tag{1.8}$$

where E_g is the activation energy which is a constant (Fritzsche 1974) and usually lie in the range (0.5 to 1.0 eV) Although values as low as 0.2 eV and as high as 1.5 eV have also been observed. The pre-exponential factor σ_0 is of the order of 10^3 - 10^4 (Ohm Cm)⁻¹ but it can be as low as 10^{-5} (Ohm Cm)⁻¹ and as high as 10^8 (Ohm Cm)⁻¹. They are characterised by a well defined optical absorption edge which for absorption coefficients $4>10^4$ Cm⁻¹ fits to an equation of the type.

$$4hv = B_2 (hv - Eg)^{n_2}$$
 (19)

where B_2 is a constant, Eg is the optical energy gap which is usually equal to twice the activation energy E_{σ} (MOttDavis 1971)

$$Eg = 2 E_{\sigma} \tag{1.10}$$

The Seebeck coefficient S is a decreasing function of temperature

$$S_{e} = \frac{K}{e} \left[\frac{E_{S}}{kT} + A_{1} \right] \qquad (1 11)$$

Its value is of the order of millivolts per degree where A_1 is a constant and Es is not equal to E_σ or Eg/2. The difference in E_σ and E_s is in the range of 1 to .15 eV. In most of the cases Seebeck coefficient is found to be positive indicating holes dominate the transport process. The carrier mobility is given by

$$\mu = \mu_{\bullet} \circ \exp \left(- E_{ij} / kT \right) \qquad (1 12)$$

This behaviour is explainable in terms of the following mechanisms

- Direct phonon-assisted hopping between localised states (Pfister 1976)
- ii) Polaron hopping (Quinn & Seager 1975, Seager et al 1973
- iii) Transport of carriers in the extended states.

A C. conductivity has been measured in various systems. It has been found that variation of conductivity with frequency is given by the following relation:

$$\sigma (\omega) \ll \omega^{n_3}$$
 (1 13)

where $7 \leq {n \choose 3} \leq 1$ 0

(113) has been found to be valid in the case of thin films of ${\rm As_2Se_3}$ (Lakatos and Abkowitz 1971), ${\rm As_2Te_3}$ (Rockstad 1972), bulk samples of As_2Se_3 , As_2S_3 and As_2Se_3 - As_2Te_3 (Owen and Robertson 1970, Kitao 1972, Itkin and Kolomiets 1970, Segawa 1974) and $(As_2Te_3)_{95}Ge_5$ (Lecleach and Palmier 1975) In some systems n_{2} is 2(Lakatos and Abkowitz 1971) in the megacycle frequency range It is further reported that the AC component of the total conductivity, with increasing frequency becomes less temperature senstive and measured AC conductivity approaches the D C. value at high temperatures. Conductivity has been found to be insensitive to doping which is ascribed to the fact that in the disordered materials the coordination environment can adjust to satisfy the valency requirement of each atom (Mott 1967, Ovshinsky 1977) . However, electrical conductivity increases by many orders of magnitude by chemically modifying the amorphous semiconductor with relatively large amounts of nickel or other transition metal atoms (Ovshinsky 1977) -

Recently it has been found out that many chalcogenide glasses become metallic under pressure with a continuous decrease in band gap and resistivity even as they retain their molecular structure (Sakai and Fritzche 1977, Minomura 1982) •

small amounts of reduced ions like V⁴⁺, W⁵⁺ and Mo⁵⁺ respectively. Reduction process is specially needed for Cu and Ti ions in phosphate glasses (Tsuchiya and Mariya 1975, Vaughan et al 1977) While for glasses containing large amounts of Mn, Co, Ni ions, an oxidation step is necessary as almost all the ions are present in the lower valency state.

The conductivity for these glasses is given by (Mott 1968, Austin and Mott 1969)

$$\sigma = \frac{v_{\text{ph e}^2 c} (1-c)}{kTR} \exp(-2\alpha_{\text{H}}R) \exp(-\frac{E_{\text{H}} + \frac{E_{\text{O}}}{2}}{kT})$$
 1.14)

where that s phonon frequency

duns rate of decay of wavefunction

c is ratio of core of ions in lower valency state and total conc of transition metal ion

R is average hopping distance

Eu is polaron hopping energy

E is disorder energy

The conduction mechanism in these glasses is diffusion like in nature and the model is based on a random distribution of ions in the glass. Therefore any presence of heterogeneity will cause the conductivity to deviate from that predicted by the above theory. Maximum conductivity in iron phosphate glasses and vanadium phosphate glasses occur at c = 5 (Dozier et al 1972) and between 0.1 - 0 2 (Limisley et al 1970) respectively. Fe and Ti ions in silicate glasses do not follow this dependence of conductivity on concentration (Rawal and Mac

Crone 1978) A model is proposed by postulating that charge carriers move along paths of relatively highly conducting chains of transition metal ions. Usually $E_H > E_O / 2$ and tends to decrease with decreasing temp. Thus in contrast to chalcogenide glasses, plots of $\log \rho$ vs $\frac{1}{T}$ for transition metal oxide glasses tend to show a continuously decreasing slope over a wide range of temperatures

1 2 1.3 Glass-Metal Particulate Composites

Oxide glasses containing ultrafine metal particles exhibit semi conductivity (Chakravorty 1984) This effect has been ascribed to the tunnelling of electrons from one metal grain to the next (Chakravorty et al 1977) A theoretical model, to analyse the experimental results, has been proposed. According to this, the generation of a charge carrier viz. electron involves creation of a pair of positively and negatively charged grains. The energy $\mathbf{E}_{\mathbf{C}}^{\mathbf{O}}$ required to create such a pair is given by

$$E_{C}^{O} = \frac{2e^{2}}{K_{4} d}$$
 (1.15)

where e is electronic charge and d the metal grains diameter and

$$k_1 = \mathcal{E} \left[1 + \frac{d}{2s} \right]$$
 (1.16)

E = dielectric constant for glass

s = interparticle separation

If 0 is the effective barrier height, m the electronic mass and h the Planck's constant, the mobility of charge carrier in present system is proportional to tunnelling probability

$$exp (-2 \times s)$$
 where

$$x = \left[\frac{8\pi^2 m\theta}{h^2}\right]^{1/2} \qquad (1.17)$$

If $\beta(s)$ be the density of percolation paths associated with s then conductivity is given by (Abeles et al 1976)

$$\sigma \propto \int_{c}^{\infty} \beta(s) \exp \left[-2 \times s - \left(\frac{c_{1}}{2 \times s \times T} \right) ds \right]$$

$$\text{where } c_{1} = \times s E_{c}^{0} = \left(\frac{8\pi^{2} m\theta}{m\theta} \right)^{1/2} \frac{s_{2} e^{2}}{d\epsilon \left[1 + \frac{d}{2s} \right]}$$

$$= \frac{2\pi e^{2} \sqrt{-2m\theta}}{e h \left[\frac{d}{2s} \left(1 + \frac{d}{2s} \right) \right]}$$

under certain approximations (Abeles et al 1976)
(1 18 reduces to:

$$\sigma = \sigma_{Q} \exp \left(-2\left(\frac{c_{1}}{kT}\right)^{1/2}\right)$$
 (119)

Various glass metal particulate composites exhibits conductivity variation with temperature as predicted by eq. (1 19)

Table 1 2 summerises the E_C^O values for different systems as obtained from experimental data. It also includes calculated E_C^O values using average diameters of metal islands as estimated from electron microscopic investigation. Table 1 3 summarises the results obtained on some glass fibres subjected to ion exchange followed by reduction, to precipitate silver granules (Arul Mozhi and Chakravorty D , 1982). In all the cases calculated

Table 1 2 E^o values for various glass-metal particulate systems

sl	Glass composition		Avera	ge	E	(eV)	Reference
No.	mo1%	species	diame (A)	ter	Exper menta	i- Calcu-	
1	64sio, 18B203 8Bi203	Bismuth	50	4	x10 ⁻²	9x10 ⁻²	Chakravorty et al 1977
2	80v ₂ 0 ₅ 15p ₂ 0 ₅ 5B ₁₂ 0 ₃	Bismuth	50	1.2	2x10 ⁻²	1 3x10 ⁻²	Chakravorty et al 1979
3	70V ₂ O ₅ 15P ₂ O ₅ 15Bi ₂ O ₃	Bismuth	100	4 7	x10 ⁻³	3.9x10 ⁻²	Chakravorty et al 1979
4	85 B ₂ O ₃ •5Na ₂ O 10Bi ₂ O ₃	B1 smuth	1 20	1 4	×10 ⁻²	1.5x10 ⁻²	Chakravorty and Chakrabarty
5	7 ⁵ B ₂ O ₃ 20PbO 5Bi ₂ O ₃	Bismuth	400	4 2	x10 ⁻³	3 8x10 ⁻³	1980 Chakravorty and Chakravorty 1980
6	75V205 15P205 10Ag20	Silver	200	1 6	×10 ⁻³	1 6x10 ⁻³	Chakravorty et al 1979
7	46S10 ₂ 25B ₂ 0 ₃ 11K ₂ 0 9Al ₂ 0 ₃ 4Sb ₂ 0 ₃ 1As ₂ 0 ₃	Silver	500	1.7	x10 ⁻²	2.2x10 ⁻²	Chakravorty et al 1979b
	4Ag ₂ O (in fibre form)						

Table 1.3 E_{c}^{0} values for glass metal particulate system produced by ion exchange and reduction treatment.

S1 · No	Glass Composition	Ion-	Metallic Average	Average	E ^O (eV)	(Ve	References	i
		species	sbecres	particle Diameter	Expari- Calcu- mental lated	Jalcu- Lated		
-1	Commercial	Nate Ag Silver	Sılver	160	1,5x10 ⁻² 1 9x10 ⁻²	1 9x10 ⁻²	Arul Mozhi and and	
	C-glass						Chakravorty D 1982	1982
2.	64SiO ₂ •26B ₂ O ₃	Nata agt	Ag Silver	115	8 7x10 ⁻³	2 3x10-2	Arul Mozhı and	
	10Na ₂ o						Chakravorty D 1982 1982	1982
								i

values of E_{c}^{O} are in reasonable agreement with experimental values

1 2 2 Ionic Conduction:

Most of the inorganic oxide glasses exhibit ionic conductivity. In various glass systems like silicates, borates phosphates and germenates the presence of modifier oxides induces additional oxygen ions. This results in the degradation of the network structure. Cations, particularly those from I and II groups of the periodic table remain as free ions in these materials. The structure is characterised by large holes which facilitate ionic migration. These holes are surrounded by non-bridging oxygens (NBO) which act as host for the cations. The conductivity has Arrehenius like temperature dependence given by (Rawson 1984),

$$\sigma = \sigma_0 \exp \left(-Q / kT \right) \qquad .. \qquad (1.20)$$

A number of different transport models (Nakajima 1972), Tomozawa 1977) have been proposed to explain the behaviour given by (1 20) However in a simple model where in ion is supposed to move in a periodic potential barrier of average height E, it can be shown that (Rawson H, 1984)

$$\sigma_{0} = \frac{ne^{2} \ln R^{2}}{2 \ln R} \qquad (1.21)$$

where n is no of cations per unit volume

Uc is vibration frequency of cation

R is average distance between adjacent sites.

However the ion a glass experiences a potential barrier of random periodicity and heights, thus Ω and R denote some sort of average values for these parameters. The correlation factor f_c in Nernst-Einstein equation

$$\frac{\sigma}{D} = f_c \frac{n\sigma^2}{kT}$$
 (1 22)

where o = conductivity

D = diffusion coefficient

n = no. of alkali ions per unit volume

q = charge on alkali ion

k = Boltzman constant

T = temperature in °K

The general features of ionic conductivity in alkali containing oxides can be summarised as follows:

- (i) The ionic conductivity increases with increase of alkali oxide concentration but this increase is non-linear Thus an increase in alkali content from 15 to 45 mol % increases the conductivity about 100 times (Rawson H 1984)
- (ii) The activation energy decreases with increase in the alkali metal ion concentration
- (iii) Conductivity is propotional to the square root of the alkali oxide activity in alkali silicates (Rawaine and Souquet 1973, 1977, 1978)

Features (i) and (ii) have led to the concept that some of alkalı metal ion are mobile while others are 'trapped' in the structure and can undergo local but no long range motion

Feature (111) implies that alkali metal ions exist in the structure in such a way that one can think in terms of in association-dissociation equilibrium of alkali oxide in the glass solvent, with the charge carried only by the dissociated cations This approach is analogous to that used in liquid clectrolyte solutions. This has been exploited to incicase the cition activity by the addition of alkali halades in the glass, thereby increasing the concentration of undissociated alkali metal ions. In such a case, neither the alkalı ion nor the halide ion becomes bound into the macromolecular anionic structure, which consists primarily of shared tetrahedral groups Thus conductivity can be increased substantially be incorporating alkali halides and other sumple salts in the glass An increase of about two orders of magnitude in conductivity has been achieved in the case of lithium glasses Conductivity has been found to be greater, the larger the ion with which mobile ion is associated Sulphide analogs of oxide glasses have ionic conductivities about an order of magnitude higher than that for oxide glasses Various glass systems which have been studied can be classified as follows

1 2 2 1 Silica

The d c conductivity of bulk silica glasses is normally attributed to the presence of impurities, particularly sodium (Doremus 1968a) Q lies in the range of 1 3 eV to 1 5 eV Mobilities of Na⁺, Li⁺ and K⁺ in synthetic silica are found to be in the ratio of 1 03: 0007 (Doremus 1969) The activation energy E_i is same for all these ions. Hence 1000 to 1 variation in mobility should be almost entirely due to similar variation in vibrational frequency or some corresponding property

1 2 2 2. Binary Alkali Silicate Systems (R20-S102)

conductivity increases monotonically with increasing R₂O content (Hughes and Isard 1972) While activation energy shows a marked reduction (Charles 1966) Q lies in range of 54 eV to 60 eV. The comparision in Table 1 4 of the resistivities of various alkali silicate glasses at the same molecular composition and the same temperature shows that the values increase with increasing cation size. However no simple relationship between Q and the cation size exists which may be valid over the whole range of composition and temperature

Table 1 4 DC resistivity of different alkali silicate glasses at 100°C (Ohm Cm) (Charles, 1966)

Lf ₂ 0	Na ₂ O	к ₂ 0	Rb ₂ O	Cs ₂ O
1 7 x 10 ⁷	1.4 × 10 ⁸	3 1 x 10 ⁹	1.4 × 10 ¹⁰	3 3 x 10 ¹¹
9 7 x 10 ⁵	1.4 x 10 ⁵	9 4 x 10 ⁵	3 x 10 ⁶	
	1 7 x 10 ⁷ 4.2 x 10 ⁶	$1.7 \times 10^{7} 1.4 \times 10^{8}$ $4.2 \times 10^{6} 3.8 \times 10^{6}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lf ₂ 0 Na ₂ 0 K ₂ 0 Rb ₂ 0 1 7×10^7 1.4 $\times 10^8$ 3 1 $\times 10^9$ 1.4 $\times 10^{10}$ 4.2 $\times 10^6$ 3.8 $\times 10^6$ 6.5 $\times 10^6$ 9.7 $\times 10^6$ 9 7×10^5 1.4 $\times 10^5$ 9 4 $\times 10^5$ 3 $\times 10^6$

^{1 2 2 3} M_2^{O-} \sin_2^{-} $B_2^{O_3}$ (M =alkali metal):

Following observations have been made (Otto 1966)

- (i) Q increases linearly with increasing M2O content (<25 mol %)
- (ii) o is almost independent of M2O content
- (iii) o is enhanced by incorporating lithium salts
 Li₂O₄, Li_x (x = Cl, Br, F)

Complex impedance analysis has been reported (Tuller et al 1980)

1 2.2 4 B_2O_3 -Li₂O-Li x (x = Cl, Br, I)

 σ is strongly dependent on polarisability of an ion i e radius of ion (Levasseur et al 1978, 1979) Glasses containing LiI shows a maxim σ (350°C) = 3 4 x 10⁻² (Ohm Cm)⁻¹ and Ω = 46eV

1 2 2 5 Li₂O-LiF-Li₂SO₃-Li₂SO₄-B₂O₃ (Smedly and Angell 1978) Various glasses containing total Li₂x content between 43 to 84 mol % have been studied A glass with 70 mol % of Li₂x shows max. σ (200) = 2 26 x 10⁻³ Ohm Cm⁻¹ σ is function of F/O ratio

1 2 2 6 B_2O_3 - Ll_2O - Ll_n x (n=1, x=Cl, Br, I, and for n=2, $x=SO_4$, n=3, $x=PO_4$) have been studied in detail (Levasseur et al 1979a, b, 1980, 1981a, b c, Hagenmuller et al 1979, Irion et al 1980) σ is dependent or Ll_2O and Ll_n x content. σ_{max} (300°C) = 10^{-2} (Ohm Cm)

1 2 2 7 L1₂Si₂O₅ - L1₂SO₄ (Kone et al 1979):

Q (.66 eV) does not change with composition while $\sigma_{\rm O}$ changes significantly. Effect of replacing Si by S, shows linear increase in σ with Li $_2$ SO $_4$ content

1 2 2.8 LiNbO $_3$ -SiO $_2$ (Prasad et al 1980)

The glass with 35 mol % $\rm SiO_2$ shows σ (200°C) = 10^{-4} (Ohm Cm) $^{-1}$ on doping with 1 mol % of $\rm Fe_2O_3$ σ increases one order magnitude. Further addition of $\rm Fe_2O_3$ causes decrease in σ which is ascribed to the onset of nucleation of crystallites within

glass matrix

1 2 2 9 $M_2O-MF-Al(PO_3)_3(M=L1,Na,V,Co)$: (Evastropev et al1974)

Exceptionally high values of σ have been reported Highest σ is obtained in 50LiF. 30 Li $_2$ O 20 Al (PO $_3$) $_3$ with $\sigma_{\rm max}$ (300°C) = 10^{-2} (Ohm Cm) $^{-1}$ and O = 52 eV Mixed alkali effect observed in Al (PO $_3$) $_3$ -NaF-LiF (Pronkin 1978) Detailed A C measurement and analysis have been reported in LiF. Li $_2$ O Al(PO $_3$) $_3$ system (Jagla and Isard 1980, Kulkarni 1984). The number of effective charge carriers is very low but mobilities are found to be exceptionally high (Kulkarni 1984a)

1 2 2.10 LiPO3-Li2SO4 (Malugani et al 1978)

The highest conductivity of 10^7 (Ohm Cm) $^{-1}$ at 25°C is reported σ increases with increasing Li $_2$ SO $_4$ content while T $_g$ and Q decreases continuously

1 2 2 11 LiPO₃-Lix (x = Cl, Br. I) (Malugani and Robert 1979)

A linear increase in σ and decrease in \mathbf{T}_g and Q is reported with increasing Lix content

1 2 2 12 Li₂O-L₁Cl-P₂O₅ (Doreau et al 1980)

Maximum conductivity of the order of 5 \times 10⁻⁷ at 25°C is reported

1 2 2 13 L1I-Li $_2$ S- P $_2$ S $_5$ (Malugan1 and Robert 1980)

Various glasses have been made in this system and maximum σ is obtained in 37 Li₂S 18 P₂S₅. 45 LiI with σ (20) = 10⁻³ (Ohm Cm)⁻¹ with Q = 31 eV (Mercier et al 1981)

1 2 2 14 M_2 S-GeS₂ (M=Li,Na,Ag) :

GeS₂ forms stable glasses with alkali sulphides such that the molar ratio of GeS₂ lies in the range 1 to 5. Maximum σ is found in 50 Li₂S=50 GeS₂ with σ (25°C) = 4×10^{-5} (Ohm Cm)⁻¹ and Ω = 51 eV. (Malugani et al 1978)

1 2 2 15 Quenched Glasses

High conductivities have been obtained in Li⁺ containing specially prepared glass systems in which one normally does not expect glass formation. Glasses have been prepared by rapid quenching technique Following systems have been reported.

- (1) $\text{Li}_2\text{O-Nb}_2\text{O}_5$ (Glass et al 1978)
- (ii) L_{12}^{0} Ta_{2}^{0} (Nassau et al 1979, a,b, 1981 a)
- (iii) $\text{Li}_2\text{O-Al}_2\text{O}_3$ (Glass and Nassau 1980)
 - (1v) L120-Ga203 (Glass and Nassau 1980)
 - (v) $\text{Li}_2\text{O-Bi}_2\text{O}_3$ (Glass and Nassau 1980)
 - (vi) WO₃ (Nassau et al 1980)
 - (V11) MOO3 (Nassau and glass 1981 b)
- (viii) $\text{Ll}_2\text{SO}_4\text{-SrMg}$ (SO₄) $_2$ (Nassau and glass 1981 b)
 - (IX) Li_2SO_4 La_2 (SO₄)₃ (Nassau and glass 1981 b)

In all these glasses conductivity values are reported to be greatly enhanced compared to those normally obtained in corresponding crystals for example the enhanced conductivities ($\sigma_{250} \sim 10^{-3}$ (Ohm Gm)⁻¹) are almost 10²⁰ times greater at room temperature than in single crystal LiNbO₃ and are attributed to increased Li⁺ mobilities

1 2 2 16 Some other New Glasses:

Various other glass systems have been developed and studied They can be summarized as follows

- (i) ZrF₄-BaF₂-ThF₄
- (ii) ZrF₄-BaF₂-YF₃ (Chandrashekhar and Shafer 1978)
- (iii) PbO-PbCl (Rao and Elliott 1981)
 - (iv) Alkali Tungstate and Alkali Molybdate (Gossink 1971)
- (v) K2SO4-ZnSO4 (Narasimham and Rao 1978)
- (vi) K_2SO_4 -Na₂SO₄-ZnSO₄ (Sunder and Rao 1980)

1 2 3 Fast Ion Conductors (FIC)

Several glasses containing Li⁺ and Ag⁺ ions exhibit
fast ion conduction Developments in this area has been reviewed
recently (Tuller et al 1980) Some important FIC glasses are
summarised in Table 1 5 conductivity plots for several such
glassy FIC's are also reported. (Tuller et al 1980) After
detailed study of these materials, many basic features which
have been revealed for these FIC's are as follows:

- 1. They are formed in glass systems which are known to involve considerable network structures like silicate, Phosphate and borate systems and in molybdate and halide systems where bonding is essentially ionic
- Preexponential factor σ₀ is much smaller in case of FIC's than that for normal ionic conductors. This implies that vibrational frequency of charge transporting ion which may by associated with very shallow potential profiles for vibrations is very low. This makes the motion of ionic hopping

in FIC's somewhat inconsistent (Tuller 1980)

- Notion of a molten' or highly disordered sublattice of conducting ions loses much of its significance in glasses while being adequate in crystalline FIC (McGeehin and Hooper 1977)
- 4 The transport numbers of ions are close to unity (Minami et al 1977)
- 9 for Ag⁺ FIC's lie in the range of 15 to 47 eV while Q for Li⁺ FIC s lie in range of 31 to 73 eV (Kulkarni 1984)
- Tg's for Li⁺ FIC with amions capable of forming network structure seem to have higher Tg (160° to 280°C) otherwise Tg's are small (52° to 75°C)
- AgI which is the component of several glass FIC's is itself a fast ion conductor in its (high temperature) crystalline form

1 2 4 A C Electrical Properties of Oxide Glasses

When an insulator is subjected to an electric field it gets polarised. In any particular material, the polarisation usually involves several kinds of charge displacements. In oxide glasses polarisation also involves movement of ions over destances of one or two ionic diameters from one equlibrium position to another. These require the surmounting of energy barriers. It takes a finite time for all ions capable of this kind of motion to reach their final positions after the field is applied. So polarisation varies with time as shown in Fig. 1 1 and can be represented as equation 1 23

$$p(t) = p_s p_o$$
) (1 - exp (-t-to) (1 23)

where $\tau = relaxation time$

Table 1 5 · Some Glassy Fast Ion Conductors

S1 No	Glass Composition	σ(25°C) (Ohm-Cm) ¹	σ(I) (Ohm Cm)	Activation Energy (eV)	Reference
-	Lio B.O. (42.5-57 5)	7 1x10 ⁸	6.1x103(350)	9	Otto (1966)
. 7	L1 0 B 0 (63-37)	6 3x10 ⁻¹¹	ı	73	Levasseur et al (1979)
m	L120 L12C12 L12SO4 St02 B2O3	3 3x10-6	9 7x10 ⁻² (350)	53	Otto (1966)
	(35-10-30-12-5-12 5)		•		
4	Li20 Lic1.B203	3 2x10 ⁻⁶	1 7x10 ⁻² (385)	50	Levasseur et al (1979)
	(31 8-12 3-59.9)				
Ŋ	1120 11C1 A1203 B203	1 3×10-6	1 5×10 ⁻² (350)	49	Takahashi and Yamamoto
	(29-24-3-44)				(6/61)
φ	Li20 Lif Li2504 Li2503 B203	6 2x10 ⁻⁷	2 3x10 ⁻³ (200)	57	Smedly and Angell(1978)
	(22,1-12 6-15 8-20 5-28 5)				
7		7 44×10-9	1×10 ⁻³ (330)	62	Basu et al (1983)
. 00		ı	3 14×10 ⁻⁴ (200)	58	Smedly and Angell (1978)
) 6		1	2 10x10 ⁻² (300)	58	Levasseur et al (1979)
10	Li,0.Sio,(40-60)	9 2x10-9	1x10 ⁻⁶ (100)	63	Otto and Milbert(1968)
9-4 4-1	Lio Alo, Sio, (25-25-50)	6 2x10 ⁻¹⁰	6 1×10 ⁻⁴ (350)	72	
12	12 L120.B203 SiO ₂ (29-13-48)	4 3×10 ⁻⁹	1 5x10 ⁻³ (350)	29	Blefield et al (1978)

Kone et al (1979)	Souquet et al (1980)	Prasad et al (1980)	Maluganı and Report (1979)				Malugani et al (1978)	Evastroper et al (1974) Jagla and Isard (1980)	Mart1 et al(1983)		Ribes et al (1979)	Maluganı and Robert(1980)	Souquet et al (1981)	Glass et al (1978)	Nassau et al (1979 a b 1981)	40
99	56- 65		63	63	56	57	99	99	ب ري ع			31	بر 14	44	39	20
8 7×10 ⁻³ (350)		1×10^{-4} (200)	1	$1 \times 10^{-3} (20)$	1x10 ⁻³ (194)	$1 3x10^{-3} (220)$	3 5x10 ⁻³ (250)	1×10 ⁻² (300)	$1 \ 3 \times 10^{-3} (2 \times 20)$		1	ı	1	5 3×10 ⁻³ (350)	6 4×10 ⁻³ (350)	1
8 5) 1 3×10 ⁻⁸	ı	i	6 7×10 ⁻⁹	1x10-7	1×10-6	2 2x10 ⁻⁷	1×10-7	5 8x10-7	ı		1 1x10-4	1x10-3	4x10_ ⁵	1.6×10-6	5 _x 10-6	1x10 ⁻²
14 Lt ₂ St ₂ O ₅ Lt ₂ SO ₄ (71 5-28	15 L1 ₂ 0. L1 ₂ SO ₄ S1O ₂	16 Linbo ₃ Sio ₂ (65-35)	17 LiPO3 LiF (60-40)	Lipo, Lic1 (70-30)					(30-50-20) Li.o Life Al(PO.)	(15-70-15)	•	L1 ₂ S L1I P ₂ S _E (37-45-18)	11,8 GeS, (50-50)	Li, SND, Oc (50-50)		AgI Ag ₂ SeO ₄ (75-25) Tg=75°C
14	15	16	17	18	19	8	21	22	23		24	25	26	27	28	53

(7)	(1977 1976)	(1978)	(1978)			(1978)
(1977)		et al	et al	(1976)	(1976)	et al
Minam T et al	Borino F et al	Malugani J P	Maluganı J p	Kawamoto Y	K wamoto Y	Maluganı C P.
22	15	25	47	36	38	79
ì	t	i	ı	ı	ŧ	
1×10-2	1 5×10 ⁻²	1 5x10-2	4×10~6	9x10-5	3x10-4	-10) 1 3x10 ⁻¹⁰
Agi Ag ₂ MoO (7 ⁵ -25) Tg≂52°C	AgI Ag ₂ CrO ₄ (80-20) Tg=70°C	AgI AgPO ₃ (57 5x42 5) Tg=75°C	Ag 2SO ₄ AgPO ₃ (30-70) Tg160 C	Ag ₂ S Ag ₂ S ₃ (66 6-33 4) Tg=145°C	Ag ₂ S GeS.GeS ₂ (⁵ 0-5-45) Tg=280°C	ZrF4 BaF2 ThF4 (58 7-31 3-10) Tg=300 C
30	31	32	33	34	35	36

As the temperature increases more thermal energy is available and hence the rate at which ions surmount energy barriers to reach their final position is increased Consequently T decreases with increasing temperature and given by

$$T = T \exp \left(\frac{E_{\tau/kT}}{kT}\right) \qquad (1 24)$$

where E₁s the activation energy for the relaxation process

If the field alternates, there may be insufficient time in one half cycle for ions to reach their final positions and for polarisation to reach the final value p_s. At very high frequencies none of the ions may move in one half cycle and the polarisation will then not exceed the instantaneous value P_m. Continuous movement backwards and forwards under the action of an AC field results in a continuous absorption of energy by the material. The work done on the ions is dissipated as heat. The resultant rise in temperature decreases the relaxation time, thus increasing the number of ions which move in one half cycle. This can result in a run-away situation of progressively increasing energy loss.

If glass is brought into a periodic electric field, there will generally occur a phase angle δ which shows how much the difference in phase between current and applied voltage differs from $\pi/2$ The angle δ is termed as loss angle and tan δ the dissipation factor Significance of tan δ is seen from the expression of power dissipated in the form of heat W

per unit volume per unit time as given by

$$W = \frac{E_0^2 f \in ' \tan \delta}{8\pi} \qquad (1 25)$$

where E = maximum value of electric field strength

f = frequency of applied field

 e^t = dielectric constant at the given frequency

Thus, € tanô (Loss factor) representing the dissipated energy per cycle for unit field strength, is a measure of diele-ctric losses [Stevels, M 1957]

The conduction losses depend on the resistivity P as given by the following equation

$$tan\delta = \frac{1}{2\pi \, f \, \epsilon' \epsilon_{0D}} \tag{1 26}$$

where ϵ_0 = 8 85 x 10⁻¹⁴ F/Cm if ρ is expressed in Q=Cm. Thus a complex dielectric constant ϵ (ϵ) is conceived as given by eq.

$$\boldsymbol{\xi}(\omega) = \boldsymbol{\xi}'(\omega) + i\boldsymbol{\xi}''(\omega)$$
 $z(1 \ 27)$

such that
$$\epsilon''(\omega) = \epsilon'(\omega)$$
 tano (1 28)

The frequency dependence of conductivity and real and imaginary parts of dielectric constant and loss factor are given by Debye equations as shown below (Rawson 1984)

$$\sigma (\omega) = \frac{(\varepsilon - \epsilon_{\infty})^{\omega^2 - \tau}}{1 + \omega^2 \tau^2}$$
 (1 29)

$$\epsilon'(\omega) = \epsilon_{\infty} + \frac{(\epsilon_{s} - \epsilon_{\infty})}{1 + \omega^{2} + \epsilon_{\infty}^{2}}$$
 (1 30)

$$\stackrel{\text{\tiny #}}{\epsilon} (\omega) = \frac{(\underline{\epsilon}_s - \underline{\epsilon}_{\infty}) \, \omega T}{1 + \omega^2 \, t^2} \tag{1.31}$$

tanó =
$$(\underbrace{\mathcal{E}_{s} + \mathcal{E}_{sp})}_{\mathbf{E}_{s} + \mathcal{E}_{cp}} \underbrace{\omega^{2} \mathbf{T}^{2}}$$
 (1 32)

where \mathcal{E}_s and \mathcal{E}_{ss} are limiting values of low frequency and high frequency dielectric constants corresponding to \mathbf{p}_s and \mathbf{p}_{co} respectively. The solid lines in Fig. 1.2 correspond to Debye equations 1 e. they apply to materials having single relaxation time. \mathcal{E}'' attains a maxima at ω =1/ \mathcal{E}

While tanô attains a maxima at $\omega = \frac{1}{C} \left(\frac{\epsilon_5}{\epsilon_{\infty}}\right)^{1/2}$ Dotted line represent the A.C behaviour of a typical glass

A C measurements on a large range of glass corpositions and temperatures exhibit many unifying common features which are as follows:

- The dielectric loss curves are quite broad, ranging over two to three decade, in frequency and can not be described by a single Debye relaxation rather results require a distribution of relaxation times F (T)
- 2 F (T) in all cases is found to be very asymetric, having a long tail in short relaxation time region
- 3 F (7) is found to be independent of temperature.
- 4 Increase in concentration of alkali ions shifts F (T) towards shorter relaxation times (Hakim and Uhlman 1973)

- Activation energies for DC x AC conduction are virtually identical at alkali concentrations around 5% (Heroux L 1958)

 This implies that same process is responsible for both type of conduction
- At high frequencies variation of & becomes much less and usually for a significant range of frequency, dielectric loss is constant
- 7 In transition metal oxide glasses AC conductivity obeys $\sigma(\omega) = U\omega^{\frac{n_4}{4}} \text{ where U is constant increasing with temperature}$ and n_4 is in range 7 to 9

In terms of F(T) c' and E' can be written as follows:

$$\varepsilon' = \epsilon_{\infty} + (\epsilon_{S} - \epsilon_{\infty}) \int_{0}^{\infty} \frac{F(\mathcal{T}) d\mathcal{T}}{1 + \omega^{2} \mathcal{T}^{2}}$$
 (1 33)

$$\boldsymbol{\xi}'' = (\boldsymbol{\xi}_{S} - \boldsymbol{\xi}_{CO}) \qquad \int_{0}^{\infty} \frac{F(\boldsymbol{\tau}) \, \omega \boldsymbol{\tau}}{1 + \omega^{2} \, \boldsymbol{\tau}^{2}} d\boldsymbol{\tau} \qquad (134)$$

Discussion of experimental dielectric behaviour conventionally proceeds through a phenomenological function F(T) which fits the data to equations (1 3 3) and (1 3 4)

Systematic studies have been made on ionically conducting glasses (Taylor 1956, 1957, 1959) and subsequently discussed (Owen 1963, Isard 1969) Similar results on electronically conducting glasses containing transition metal ions have also been reported (Sayer et al 1971, 1972, Murawski and Gzowski 1974, Namikawa 1975, Man Singh et al 1975 a, b, 1976, Rawal and Mac Crone 1978)

Various models have been proposed to explain this behaviour In limited jump model (Stevels 1957) alkali ion is assumed to be moving through a series of potential wells whose barrier heights vary in a random fashion This model predicts a strong temperature dependence, which is contradicted by experimental results (Isard 1970) In another model, assumption of existence and migration of a defect consisting of two alkali ions attached to a non-bridging oxygen ion, explains the AC and DC activation energy but fails to explain broad destribution in τ without assuming an unrealistically large entropy contribution to the dispersion (Charles 1961) . Space charge model has also been developed in which electrode effects play a dominant role to explain the experimental observations (Doremus and Tomozava 1974) machanisms have been explained on the basis of phase separated regions in the glass These regions give rise to a Wagner-Sillar interfacial polarisation loss mechanism (Isard 1970) But similar characteristic loss curves have been reported in alkali glass systems despite the absence of phase separated regions within Results have been explained by assuming ions moving preferentially along paths or channels of relatively highconductivity (Hakin and Uhlman 1973) A similar model has been proposed for electronically conducting Pbo-SiO2Fe2O3 glass (Anderson and Mc Crone 1974) . By using the concept of truncated diffusion paths, dielectric relaxation in alkali containing ions, has been explained (Aitken and Mac Crone 1974)

1 3 Ion Exchange .

When a glass containing monovalent cations is placed in a molten salt containing another monovalent cation, ion exchange takes place (Frischat 1975) This reaction can be written as following:

$$\bar{A}$$
 (glass) + B(Salt) = \bar{B} (glass) + A (Salt) (1 35)

where A and B are the counterions in the exchanger phase and A and B are counterions in liquid phase Molten salts are required because of the temperature range needed before the cations in the glass become mobile with reference to the negatively charged exygens of rigid, immobile silicate network. Ion exchange is controlled by the diffusion of ions in the glass Study of diffusion process and the parameters, which influence the mobility of cations reveal the basic mechanism of this transport process Detailed information on exchange kinetics has recently been reviewed (Garfinkel 1972, Frischat 1975)

In binary ion exchange, the diffusing species A and B are charged and tend to diffuse at different rates. This results in a build up of electrical charge as one ion tend to move faster than the other. However, a gradient in electrical potential along with this charge acts to slow down the faster ion and speed up the slower ion. Despite the difference in the mobilities of two ions, the gradient in electrical potential the fluxes of two ions to be equal and opposite, thus preserving the electrical neutrality.

The driving force for transport of either species A or B is equal to the negative of its gradient in total chemical potential $\mu_{\rm C}$ which is the sum of gradient in activity and gradient in electrical potential. By assuming further that no other pressure or temperature gradient is present in the system and that mobilities of ions are same in self-diffusion and interdiffusion, the flux of diffusing species per unit time in \mathbf{x} direction is given by (Doremus 1964):

$$J_{B} = -D_{A} \left[\begin{array}{cc} \frac{\int C_{A}}{\int x} & \frac{\int Ln \, a_{A}}{\int Ln \, C_{A}} + C_{A} & \frac{FE_{e}}{RT} \end{array} \right] (1 \ 36 \)$$

where D_A = self diffusion coefficeent of species A C_A = ionic concentration of species A a_A = activity of species A E_e = electric field

Similarly for ion species B

$$J_{B} = -D_{B} \left[\frac{\partial C_{B}}{\partial x} \quad \frac{\partial Lna_{B}}{\partial LnC_{B}} + C_{B} \quad \frac{FE_{e}}{RT} \right] \quad (1 \ 37)$$

The equation J_A and J_B are referred to as Nernst-Planck Equations

The condition of electrical neutrality requires that $J_A = -J_B$ (1 38)

And since number of negative exchange sites is constant and fixed so

$$\frac{\partial c_A}{\partial x} = \frac{\partial c_B}{\partial x}$$
(1.39)
By using 1 36 and 1 37

$$E_{e} = \frac{RT}{F} \left[\begin{array}{cc} D_{B} - D_{A} \\ \hline C_{A}D_{A} + C_{B} D_{B} \end{array} \right] \frac{\partial C_{A}}{\partial x} \frac{\partial Ln a_{A}}{\nabla Ln C_{A}} \quad (140)$$

which by substitution in (1 36) gives

$$J_{A} = -\frac{D_{A} D_{B}}{N_{A} D_{A} + N_{B}D_{B}} \frac{\partial Ln \ a_{A} \partial C_{A}}{\partial Ln \ C_{A} \partial x}$$
(1 41)

where N is the cation fraction in the ion exchange As actvity is related to concentration (Karreman and Eisenman 1962) by

$$a_A = C_A^{n_1}$$
 (1 42)

where
$$n_1$$
 is a constant
so $J_A = -\frac{D_A D_B}{N_A D_A + N_B D_B}$ $n_1 \frac{\partial C_A}{\partial x}$ (1 43)

which when compared with Fick's first law of diffusion gives the interdiffusion coefficient

$$\bar{D} = \frac{D_A D_B}{N_A D_A + N_B D_B} \qquad n_1 \qquad (1 44)$$

for an ideal solution $n_1 = 1$ (Helfferich 1962) The temperature dependence is given by Arrhenius equatin

$$\bar{D} = \bar{D}_0 \exp \left(-E_{\tilde{T}}/kT\right) \tag{1.45}$$

$$D = D_0 \exp(-E_D/kT)$$
 (1 46)

where \bar{D} and D are interdiffusion and self diffused coefficients respectively.

If the electrical current in an exchanger is carried by a single ionic species, then by the Nernst-Einstein equation.

$$D = \frac{\sigma RT}{C(ZF)} 2 \tag{1 47}$$

where $\sigma = \text{specific conductivity of exchanger (Ohm Cm)}^{-1}$

R = 8 374 J/deg mole

C = Concentration of diffusing species in mols/Cm³

Z = ionic value

F = Faraday or 96500 C/ equiv

The measured σ is usually found to be less than that calculated from the diffusion coefficient (Terai and Hayami 1975). This difference is ascribed to a correlation factor f_r which depends on the structure of exchanger and the transport mechanism

$$f_{r} = \frac{D_{A}}{D_{\sigma}} \tag{148}$$

where $D_{\tilde{A}}$ is the measured self diffusion coefficient and $D_{\tilde{G}}$ is the diffusion coefficient as calculated from electrical conductivity

Thus f_r is a measure of efficiency of Nernst - Einstein Equation In case of completely random motion

$$f_{\Gamma} = 1 \tag{1 49}$$

while f_r(1 implies that jump direction is not entirely random and next jump depends upond the direction of the previous jump. As these correlations do not arise in electrical conduction (Compaan and Haven 19⁵6) the factor f_r(can be attributed to correlations in diffusion Several possible mechanisms have been proposed to explain the experimental data (Haven and Verkerk 1965, Haven and Stevels 1957)

1.3 1 Experimental Measurements:

Various techniques are used to study self diffusion and interdiffusion kinetics. To obtain self diffusion coefficients, radioactive tracers are necessary. Weight change, sectioning and electron microprobe data find extensive use for interdiffusion measurements and resistance change to a lesser extent. In all these methods diffusion profile is measured and by equating it to theoretically calculated values, self diffusion coefficients and interdiffusion coefficients are evaluated. These values are obtained by solving Fick's second law under appropriate boundary conditions. Fick's second law is expressed as (Frischat 1976)

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) \tag{1.50}$$

and if D is constant

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \tag{1.51}$$

where C is the concentration of the diffusing species Generally two types of boundary conditions are used which are as follows.

(a) Instantaneous Source

In this case the boundary conditions are

$$C (x,t) = \begin{cases} C_0 \delta(x) & \text{for } t = 0 \\ \text{for } x + \infty & \text{and } t > 0 \end{cases}$$
 (1 52)

Where C_Q (g/Cm^2) is the initial surface concentration and $\delta(x)$ is the Dirac's delta function. Under these conditions solution of (1.51) is given by

$$C(x,t) = \frac{C_0}{\sqrt{\pi D t}} \exp(-\frac{x^2}{4Dt})$$
 (1, 53)

(b) Constant Source

In this case boundary conditions are

$$C(x,t) = \begin{cases} C_0 & \text{for } x=0 \text{ and } t > 0 \\ 0 & \text{for } x > 0 \text{ and } t = 0 \end{cases}$$
 (1 54)

and $\frac{\partial C}{\partial x} = 0$ for $x \to \infty$ and $t \neq 0$

where $C_0(g/Cm^3)$ is constant initial concentration Solution of (1 51) is given by

$$C(x,t) = C_0 \operatorname{erfc}(\frac{x}{2\sqrt{Dt}})$$
 (1.55)

(c) External field

When diffusion takes place under the influence of external electric field $\mathbf{E}_{\mathbf{e}}$

$$\frac{\partial C}{\partial t} = \bar{D} \frac{\partial^2 C}{\partial x^2} - \mu_e E_e \frac{\partial C}{\partial x}$$
 (1 56)

where $u = \text{electrochemical mobility } (\text{Cm}^2/\text{V s})$ Under the boundary conditions of (1.54) the solution of (1.56) is

$$C (x,t) = \frac{C_0}{2} \left[\text{erfc} \left(\frac{x - \mu_e E_e t}{2 / D t} \right) + \exp \left(\frac{\mu_e E_e x}{D} \right) + \exp \left(\frac{x + \mu_e E_e t}{D} \right) \right]$$

$$\text{erfc} \left(\frac{x + \mu_e E_e t}{2 / D t} \right) \right] \tag{1.57}$$

1.3.2 Type of Ion- exchanges

The entire gamut of alkali exchanges can be classified into two categories

- i Alkali exchanges: The species entering and leaving the glass are alkali metal ions
- ii Comentation exchanges: This term has been earlier used for silver and copper staining but now includes the ion exchange of any metal ion other than alkalis or alkaline earths

During all these exchanges Si-0 network is almost stable. The mobilities of both cations in the melt are high compared with those in the glass and phase boundary reaction between melt and glass is very fast. Interdiffusion of ions in the glass is the rate-determining factor and interdiffusion coefficient. \overline{D} describing the binary diffusion process, is in general a function of composition.

Diffusion studies have been made by tracer technique in many glass systems Diffusion of Na, K, Rb and C_s is reported in glasses R_2° 3SiO₂ where R = Na, K, Rb, Cs, respectively (Malinin et al, 1972) Diffusion measurements of Na have been carried out in glasses having the following composition (Paylovskii 1970)

- (i) $\times \text{Li}_20$ (100-x) \sin_2
- (ii) $\times K_2^{0}$ (100-x) \sin_2
- (iii) $x \text{ Li}_20$ (20 x) K_20 805i0₂
 - (iv) x L1₂0 (30 x) K₂0 70si0₂

These results show that the interdiffusion process is energetically less favourable than corresponding self-diffusion process. Much work on alkali-ion exchange of glasses have been done at temperatures below and above T_g . However most of this work has been devoted to technical aspects than kinetics of interdiffusion process (Frischat 1976)

When small Li⁺ions ($r_c = 78 \text{ A}$) of a salt melt are exchanged for larger Na^+ ions $(r = 96 A^0)$ of glasses at temperatures above Tg, a lower surface expansion glass is produced which after cooling generates a compression at the surface In addition, in some compositions very low expansion crystalline phases can be precipitated in surface layer therby increasing the compressive stress in the surface upto 100 Kp/mw 2 (Varshmeya 1975, Cooper and Krohn 1969 Garfinkel and King 1970, Schaeffer and Heinze 1974) . Glass Ceramics have also been ion exchanged in a similar way (Barthalomew and Garfinkel 1977) Diffusion rates are about a factor of 3 slower in the glass caramic in comparison with the glass (Bartholomew and Garfinkel 1980) Another possibility to generate high compressive stress in the glass surface is exchange of larger ions from melt for smaller ones in the glass at temperatures below T_q i.e. K^+ ($r_c = 1$ 33 Å) for Na^+ ($r_c = 96$ Å) In this process called as crowding or ion stuffing , the larger ions occupy the site of smaller ones. To a first approximation the build up of integral compressive stresses, σ_s can be characterised by the equation (Hahnert M 1971)

$$\frac{d\sigma_s}{dt} = \frac{m_1}{\sqrt{+}} = \frac{\sigma_s}{\zeta_s} \tag{1.58}$$

where $m_1 = constant$

 $C_{\rm s} = \eta/K_{\rm p} = {\rm relaxation time}$

 η = viscosity of the glass

K_B = Bulk modulus

At lower temperatures T_S is large therefore σ increases with \sqrt{t} If however t is comparable with Z_S or if temperature is increased, stress relaxation occurs. It has been found that exchange temperature should be $\langle 100^{\circ}\text{C} \text{ below } T_g \text{ and for } t = (8 - .9)T_S$ the maximum stress build up can be obtained. As far as technical applicability is concerned this exchange process acquires increasing importance (Ernsberger 1966, Garfinikel 1969)

Cementation exchange is similar in its early steps to that of alkali exchange. However two further steps are added namely reduction of ions Ag⁺ and/ or Cu⁺ to metals and aggregation of these metals to (crystalline) centres of colour (2 100 A) Reduction of silver ions occurs with out special special treatment by an electron transfer process:

$$Aq^{+} + Fe^{2+} \rightarrow Aq^{0} + Fe^{3+}$$

or for the case of a simultaneous Ag^{+}/Cu^{+} exchange by $Ag^{+} + Cu^{+} + Ag^{O} + Cu^{2+}$

As Fe is a common impurity in the glass, the exchange has to be done in oxidising or neutral atmosphere otherwise an undesired metallic mirror is precipitated at the glass surface. Exhaustive literature is available on Ag⁺-alkali exchange

(Frischat 1976) Tracer diffusion studies Matousek 1973, Malinin 1972) have been carried out using 110 Ag Electron microprobe analysis has been used for Ag + Na + exchange (Garfinkal 1972) Strengthening of glasses by Ag + Na + ion exchange has been reported (Brungs and McCartney 1975)

1 4 Phase Separation in Glasses

It has been observed that many glasses in their molten states form homogeneous liquids which on cooling separate into two liquids or glass phases (Stookey 1959a) In many cases, one of the phases, possessing higher surface tension, exhibit itself in the form of droplets or emulsion. If by rapid cooling a glass is made to retain its homogeneous form, it will show this phase separation during reheating However, in most of the cases a two phase separation occurs very rapidly once the glass is cooled below a critical immiscibility temperature. This is initiated by a process of homogeneous nucleation and is more probable than homogeneous nucleation of a crystal phase within the glass, because the interfacial energy between two liquids is very small and may be almost zero wheras that between a glass and a crystalline substance is quite significant (Mc Millan 1979)

Phase separation is exhibited by glasses, which show both stable and metastable liquid immiscibility. The general features of immiscibility are represented in binary phase diagrams for a hypothetical two-component system involving A and B. Two types of situation may arise as has been depicted in Fig. 1.3 and Fig. 1.4 respectively Examples of glass systems

which show a behaviour typical of fig 1 3 are MO-SiO₂(M= Mg, Ca, Pb) (James 1975, Doremus 1973) and ZrO₂, SiO₂(Evans et al 1980) Features characteristic of Fig 1.4 have been found in many systems including BaO-SiO₂, R₂O-SiO₂(R = Li, Na), Al₂O₃-SiO₂(Dong Hi and Mc Pherson 1980) The crystalline phases and the metastable immiscibility regions of phase diagrams are obtained by quenching experiments (Evans et al 1980)

The tendency of phase separation, both above and below the liquidus line has been observed. The result of immiscibility can be amorphous phase decomposition or glass-in-glass separation Initial state of the material i e whether it is thermodynamically metastable or unstable, is the prime factor to decide the mechanism of decomposition In case of metastable region, decomposition occurs by the classical nucleation and growth mechanism typical microstructure of such a sysyem is characterised by discrete particles dispersed throughout a continuous matrix In unstable region, the phases formed during decomposition grow by increasing compositional contrast Microstructure developed by this mechanism are typified by irregular diffuse phase boundaries and both faces are continuously interconnected hypothetical two component system immiscibility region is represented by a dome as shown in Fig 1 5 The free energy configurations at various compositions have a typical variation as shown in Fig 1 6, at two temperatures T1 and T2 respectively.

At temperature T₂ which is below the liquidus line, the presence of two minima in the free energy curve, leads to

separation into two phases for compositions lying between A and B as the free energy gets minimised by such a conversion The loci of free energy minima, as the temperature is varied forms the immiscibility dome as marked in Fig 15 Two minima, coincede at T_{C} which is referred as the upper consolute temperature within the immiscibility dome The dotted curve covers the composition range in which phase separation occurs by spinodal decomposition. This curve is the loci of points for which $\frac{\Im G}{\Im G^2} = 0$ at different temperatures (Cahn 1968) In this region a small fluctuation in composition is associated with a reduction of a free energy so that the fluctuation is stablised and separate phases grow In the regions between a and c and between b and d $\frac{\partial^2 G}{\partial C^2}$ = positive and hence any composition fluctuation here is associated with an increase of energy Therefore in these ranges of composition phase separation arises due to a nucleation and growth (Cahn 1968) mechanism

In a widely applicable-theory (Cahn and Hilliard 1959) the variation of free energy with spatial variation of composition is considered Total free energy of such a system is given by

$$F = \int [f(c) + k_c (47 c)^2] dv$$
 (1 59)

where $f_{c}(c)$ is free energy per unit volume of uniform composition c and k, is the gradient energy coefficient

It has been shown that at very low supersaturations the properties of nucleus in metastable region (between binodal and spinodal) approach those predicted by the classical

theory of homogeneous nucleation (Russel 1970) Equation (1 59) is also used to analyse the spontaneous decomposition inside spinodal (Chakravorty 1981)

The reason for phase separation is basically structural and is determined by effects of network forming and network modifying cations on the final structure of glass system (Mc Millan 1979) Silicate glasses are built up of units of SiO₄ tetrahedra in which some foreign structural units have been incorporated At low concentration of foreign unit, the structure may be stable, resulting in a single-phase glass, at higher concentrations, the disruptive effect can lead to separation into two phases, one of which is rich in silica while the other is rich in oxide containing the foreign element. At still higher concentration the added oxide forms the major component such that a single phase system results in which SiO₄ tetrahedra can be regarded as being dissolved in the network of the second oxide

Various techniques have been used to characterise phase separated glasses Table 1 6 summarises the glass system investigated and the technique used for characterisation

The effect of phase separation on mechanical properties is significant Young's Modulus decreases by 3% as the texture of structure coarsens from 400 to 1500 Å (Zarzycki 1974). This is significant but quite small when compared to 10 fold change in viscosity that can occur during phase separation (Simmons et al 1970) It has been reported that poisson's ratio is the property most sensitive to structural changes (Nimilov & Gilev 1972)

Table 1 6 Various glass systems exhibiting phase separation and the techniques for characterisation

S1 No	<u> </u>	Technique of Characterisation	References
1	Lı ₂ O SıO ₂	Electrical Condictivity	Charles (1963)
2	Na ₂ O B ₂ O ₃ S1O ₂	Electrical Conductivity	Charles (1964)
3	S10 2 B203 Al203	Electrical Conductivity	Tomozawa (1978)
	K 20 L1 20		
4	Na ₂ O SiO ₂	Electron Microscopy	Moriya et al (1967)
5	Li ₂ 0 S10 ₂	Electron Microscopy	Moriya et al (1967)
6	Na ₂ O CaO S1O ₂	Electron Microscopy	James and Mc Millan (1968,1970)
7	Na ₂ O B ₂ O ₃ S ₁ O ₂	Electron Microscopy	Haller et al (1970) Srinivasan et al (1971)
8	Na ₂ O BaO S1O ₂	Electron Microscopy	Seward et al(1968), Mc Dowell and Beale (1969)
9	Na ₂ O S _{1O} ₂	Small Angle X-ray Scattering	Neilson (1969), Tomozawa et al (1970) Weinberg and Neilson (1978)
10	PbO B ₂ O ₃	Small Angle X-ray Scattering	Zarzycki and Naudin (1967), Nellson(1972)
11	PbO B ₂ O ₃ Al ₂ O ₃	Small Angle X-ray Scattering	Zarzyckı and Naudin (1969), Srınıvasan et al (1973)
12	Na20 B203 S102	Small Angle X-ray Scattering	Tomozawa and Takamorı (1977)

13 K ₂ O CaO B ₂ O ₃	Electron Spin Resonance	Kawazoe et al(1978), Kokumai andKKanazawa (1979)
14 K ₂ O BaO B ₂ O ₃	Electron Spin Resonance	Kawazoe et al (1978) Kokumai and Kanazawa (1979)
15 CaO Al ₂ O ₃ B ₂ O ₃ SiO ₂	Light Scattering	Hammel and Ohlberg (1965)
16 S10 2 B 20 3 Al 20 3 K 20 Ll 20 Na 20	Light Scattering	Takamori and Tomozawa (1976) Kerwawyez and Tomozawa (1980) Tomozawa and Takamori (1980)
17 TeO 2 P 205	Neutron Diffraction	Neov et al (1980)
¹⁸ Na ₂ O B ₂ O ₃ SiO ₂	Chemical Durability	Takamori and Tomozawa (1978), Tomozawa and Takamori (1977)
19 Na ₂ O B ₂ O ₃ SiO ₂	Vi sco sity	Mazurin and Strettsina (1972), Simmons et al (1974), Tomozawa (1978) Takamori and Tomozawa (1979)

hence to phase separation Various models to calculate Young's modulus for such system are reported in literature (Hashin and Shtrikman 1963, Shaw and Uhlman 1971)

Phase separated glasses can be leatched out to obtain microporous glasses having an interconnected microstructure. Such porous glasses have enormous potential to be used in various applications (Mc Millan 1976). Their important applications include enzymes immobilising substrates (Weatall 1969) carbon deposited resistance thermometers (Lawless 1972), high 'H_C' superconducting materials by impregnating it with Pb-Bi alloy and molecular stuffing by index modifierlike CeO₂ to make preforms for optical waveguides

1 5 Statement of Problem

From the discussion given in the previous sections it becomes apparent that most of the fast ion conducting glasses contain silver as the migrating species. However, very few of these glasses are based on S10, as the network former The reason is that it is difficult to incorporate silver ions in such a network in a large concentration because of the problem of silver precipitating out as metallic agglomerates during the melting operation [Riebling 1971] It is possible to incorporate silver ions into a silicate glass by an alkali silver exchange reaction at a temperature much below the glass transition point [Frischat 1976] However, such an exchange mechanism is controlled by the interdiffusion coefficient between silver and the alkali ion concerned [Doremus 1964] Under ordinary ion exchange conditions viz , temperature around 300°C and duration extending to 36 hours the silver-rich layer is found to be only a few tens of microns thick [Matousek 1973, Garfinkel 1972] Hence, one way to study the effect of replacing most of the alkali ions in a silicate glass by silver ions will be to carry out such experiments on glass fibres having diameters of the order of 10 microns In the latter case, it will be possible to substitute most of the alkali ions by silver within the glass by an ion-exchange process. The present work has undertaken to investigate the effect of sodium silver exchange on the electrical properties of suitably chosen silicate glass fibres

Presence of metallic granules may also affect the ionic conductivity of glass fibres that been reported that the

strength of bulk glasses can be improved by the incorporation of metallic particles within them [Krestic et al 1981] Investigation on the effect of metallic micro granules on the electrical conductivity as well as mechanical properties of glass fibres has also been included in the present study

The objectives of the present thesis may be summarised as follows:

- (1) To design and fabricate a semiautomatic fibre drawing assembly incorporating various facilities e.g., monitoring and controlling the temperatures, temperature gradient and drawing velocities
- (2) To draw glass fibres from various glasses and glassmetal composite systems.
- (3) To subject all the above fibres to a sodium silver ion exchange under suitable conditions of temperature for reasonable period of time & to chemically analyse the ion-exchanged glass fibres for their silver content so as to correlate this with the resulting electrical conductivity
- (4) To characterize the electrical properties of both virgin and ion-exchanged glass fibres
- (5) To characterise the microstructure of all glass fibres by transmission electron microscopy
- (6) To measure the strength and young s Modulus of metal containing glass fibres

- (7) To study fracture surface of the metal containing fibres by scanning electron microscope (SEM) and correlate with observed strength
- (8) To analyse the strength data of metal containing glass fibres by Weibull analysis

CHAPTER II

EXPERIMENTAL TECHNIQUES

In this chapter various aspects of preparation of glasses in both bulk and fibre form are being discussed. The details of the fibre drawing assembly used in the present work are described. Different characterisation techniques employed are delineated.

2.1 Preparation of Glass

All glasses are prepared from reagent grade chemicals

Two base glass systems chosen for the present investigation are
referred as N and A Their compositions are described in Table

3 1 and Table 4 1 respectively

Proportionate amounts of various oxides (e g SiO $_2$ Al $_2$ O $_3$) or compounds (e g Na $_2$ CO $_3$ for Na $_2$ O, CaCO $_3$ for CaO, and H $_3$ BO $_3$ for B $_2$ O $_3$) or metal powder (e g Al) are thoroughly mixed using acetone as grinding medium in FRITSCHE Ball Mill to prepare batch mixtures of various glasses in each system Each mixture is melted in pure alumina crucible in a temperature controlled electrically heated furnace. All these glasses

have been melted at temperatures in the range of 1300°C to 1450°C. They have been kept at this temperature for two hours each and are mechanically stirred so as to make it bubble free and homogeneous. The melt is poured in an aluminium mould to get a rectangular glass block which is immediately taken inside an annealing furnace maintained at 500°C where it is annealed for 6 hours. After taking it out from the annealing furnace, it is kept inside a desiccator. The fibre form of these glasses is obtained by fibre drawing assembly (FDA)

Fig 21 shows the photograph of this assembly Fig 22

2 2 Fibre Drawing Assembly (FDA)

gives a schematic view of the same unit. The salient features of this system are as follows

- (1) The unit is based on bushing technology where the bushings are made of pure alumina indigeneously developed and fabricated in this laboratory [Chakravorty et al 1981
- (11) The bushings are heated externally by a temperature controlled electrically heated semi cylindrical furnace (13 5 KVA) The heating chamber contains eight globar rods to which power is fed from transformers

1 On line display show no state of FDA

Temperature gradient

1100 5

2 Digital display for measureme temperatures of various 2 i

Temperature controller FDA

Velocity monitor

Dyno drive motor Manual control

8 System to move hor zontci pi

Drum

10 Location of bushing and terr separating verticial narru Furnace assembly heating chamber

Assembly to measure ture profile in 15 angement

erature gradient ont

12 Transformer

14 System to move u 13 - Virgin sample chi c embly in and L

Graphite shoe chamber

Ø = 'n Lower section of RDA with control panel (P) 9 antrol panel

" and automatic fibre drawing assembly (FDA) indigenously emstyned and fabricated by the author

- (111) The furnace temperature is controlled by a suitable temperature controller (APLAB 7152) using Pt-Rh thermocouples which are placed at different furnace zones. The temperature in the furnace can be maintained up to 1550°C with an accurry of ±10°C
 - (iv) The heating chamber (HC) is separated from a vertical one by a horizontal ceramic plate (PH). The temperature gradient in the vertical chamber (VC) can be varied by moving the horizontal plate in or out.
 - (v) An alumina bushing with a single nozzle is placed in the opening of a ceramic base plate (PV) which moves vertically in and out of vertical chamber (VC). Around this opening there is a small furnace (SF) which carries bushing. The temperature and temperature gradient at the bushingtip may be varied and maintained to a specific set of values by combination of movement of ceramic plates PH,PV and temperature in HC and SF TGCU represents the arrangement to monitor and control the temperature gradient at the bushing tip Within this, SF is located. The bushing tip temp can be varied upto 1200°C while temperature gradient may vary in range of 100°C/Cm to 500°C/Cm (Fig. 2.3.)
 - (vi) Glass is kept in the bushing and melted. At optimum conditions of temperature and temperature gradient, a glass meniscus is formed at the bushing tip, which is drawn in fibre form by a variable velocity motor 'DYNO DRIVE' at the required pulling rate. The velocity of draw may be

varied in the range of 3m/sec to 200 m/sec The fibre is wound on a drum

- (vi) The incoming fibre before being wound on the drum passes through VSU unit (Fig. 2.4.) to collect virgin fibre samples for mechanical characterisation. As described in section 1.1.2.4 strength of glass fibres is quite sensitive to surface damage. Hence to measure the strength of glass fibres before they come into contact with any other surface, virgin samples may be collected in situe of fibre drawing process by VSU unit.
- (vii) The temperature distribution along the fibre, during fibersing operation is recorded by TPU unit which measures temperatures along a length of 30 Cm at an interval of 1 Cm each

2 2 1 Optimal conditions of fibre drawing:

Viscosity temperature characteristics of a glass determine its optimal conditions of fiberisation. This itself is
decided by the chemical composition of glass For a given glass two
parameters need a stringent control and monitoring. They are

- (1) The temperature at the bushing tip (TB)
- (ii) The temperature gradient at the bushing tip (TGR)
- (iii) The temperature of glass melt (T_M)

Usually T_B , T_B and T_M have a narrow zone of variation within which fibre can be drawn continuously without encountering fibre breakage. If because of any perturbation, either of these parameters attains a value beyond the critical range, fiberisation

process ceases and either of the following situation may arise

(1) Glass inside the bushing may be very fluid but yet no meniscus be formed at the bushing tip. This implies that either of (21) and (22) or both together are true

$$T_B \angle T_B$$
 (critical) (21)

$$TG_B > TG_B$$
 (critical) (2 2)

This situation is termed as bushing being situated in 'Cold Zone' In such a case, optimal conditions are regained in this FDA by (1) moving base plate inside the vertical chamber and / or (11) opening of horizontal plate and/or (111) increasing current in minifurnace

(2) Glass is so fluid that glass starts pouring out through the bushing tip and no fiberisation is possible as glass meniscus drops to the ground before it can be attenuated to fibre form by the pulling force This situation may be described by bushing situated in 'Hot Zone' In such a case

$$T_B > T_B$$
 (critical) (23)

$$TG_{B} \langle TG_{B} \text{ (critical)}$$
 (24)

$$T_M > T_M$$
 (critical) (2.5)

The situation is brought back to normal one by (i) reducing current in minifurnace and/or (ii) moving base plate down in the vertical chamber and/or (iii) closing of horizontal plate

Many times due to variation in local composition of glass or due to irregualr power supply, such perturbation do arise

which brings the once attained optimal conditions to either of 'Cold Zone' or 'Hot Zone' state therby needing resetting of the conditions. In this present set up, this is done automatically by a series of control mechanisms activated by a temperature sensitive feed back circuit

2 3 Preparation of Ion Exchanged Glass Fibres

Glass fibres drawn from FDA are subjected to Na $\stackrel{\star}{\rightleftharpoons}$ Ag † ion exchange, in order to produce ion-exchanged glass fibres. Bunches of glass fibers of 10 Cm length are cut from the fibre cake wound on the drum. These are immersed in liquid AgNO3 bath which is made of a pyrex boat of semi-circular section. This boat is maintained at the required temperature within a temperature controlled electrically heated furnace with an accuracy of \pm 1°C After fibres have been subjected to ion-exchange treatment for the reasonable time (36 hours) boat is taken out of the furnace bunch of ion exchanged glass fibres taken out from AgNO3 melt and cooled in a petri dish. These fibres are treated in boiling water thrice for 1 hr. duration each and then washed throughly in acetone to remove any silver nitrate adhering to their surfaces.

The fibres are taken out of acetone bath and kept in a desiccator

2.4 Electrical Resistivity Measurement

2 4 1 Sample Preparation:

A piece of 2 Cm length is cut from the bunch of glass fibres for both virgin as well as ion exchanged fibres. They are weighed by a electronic weighing balance (least count 10 mgm)

A length of 0 5 Cm from each side of this bunch of fibres is coated by silver paste. This bunch is placed between two stainless steel electrodes of conducting cell and pasted at the electrodes by silver paint.

2 4 2 Conductivity Cell

Fig. 2 5 shows the schematic view of the cell used for electrical measurements It consists of a stainless steel lacket J, 300 mm long having a diameter of 50 mm $\rm\,E_{1}$ and $\rm\,E_{2}$ are two stainless steel electrodes These electrodes consist of a screw and nut arrangement having two small stainless steel bushes which are used to hold the sample The bushes are tightented by a spring attached to it by the nut so as to always keep it in a compressed These electrodes are supported on an alumina substrate which itself is attached rigidly to the main structure of the cell The centre to centre distance between the two electrodes is 22 mm , while the grameter of each of bushes is 12 mm. Thus the free distance between the two bushes is 10 mm The sample of length 20 mm , coated on both ends by silver paste (NPL, New Delhi) upto 5 mm length, is clamped between these spring supported bushes Silver paste is also applied to these bushes before placing the specimen, so as to assure good ohmic contact between the specimen and the bushes The spring supported mechanism ensures good ohmic contact even at higher temperature

The main structure of the cell consists of three stainless steel rods fixed to a bronze flange. The alumina substrate supporting the electrode assembly is rigidly attached to this main structure.

Fig 25 Schematic view of the conductivity cell

The electrodes are connected to the BNC connectors B with shielded wires A chromel-alumel thermocouple is placed near the electrode assembly its other end taken out through the teflon disc fitted onto the flenge Hc is a non-inductive heating coil wound on a porcelain tube This is connected to a 30 volts 2 amperes regulated power supply, through the shielded wires passing through the teflon disc. The flange is brazed with a cooling coil and clamped to the jacket through 0 ring lacket also has cooling coil assembly attached at its top contains the desiccant, silica gel for keeping the chamber moisture free The sample holder can also be flushed with a dry gas After loading the sample, the entire assembly, properly connected and clamped is placed inside an electrically heated temperature controlled assembly By this set up the temperature can be varied from room temperature to 500°K with an accuracy of ± 1°K

2 4 3 D C Resistivity

Fig 2.6 represents the schematic view of circuit used for measurement of current-voltage characteristics of different samples. The sample and the standard resistance are in series with a 30 V 2 amp. DC regulated power supply (APLAB Model 7152). The potential drop across the standard resistance is fed to Y axis of XY recorder (No. 2000 made by Digital Electronics. Ltd. India). The potential drop across the sample is fed to Keithley Electrometer (model 610) whose out put is fed to X axis of the XY recorder. Use of electrometer is necessary because of the impedance mismatch of sample (=10¹⁰Ω) with that of

Fig 27 Schematic circuit diagram for AC resistivity measurement

Fig 26 Schematic circuit diagram for D C resistivity measurement

the XY recorder ($10^6 \Omega$) The applied voltage is varied by the power supply and this is recorded as I-V characteristic on the X-Y recorder at a given temperature. The sample consists of number of fibres parallel to each other. If ith fibre has a resistance r_1 the total resistance (R) of the sample is given by

$$\frac{1}{2} = \Sigma \quad \frac{1}{r_{1}}$$
as $r_{1} = \rho \frac{1}{A_{1}}$

$$\approx \frac{1}{R_{0}} = \rho \Sigma \frac{A_{1}}{1_{1}} = \rho \Sigma \frac{A_{1}}{1_{1}} \frac{1}{2} \frac{d_{1}}{d_{1}} = \rho \Sigma \frac{m_{1}}{1_{1}^{2} d_{1}}$$

As all lengths are equal to L so

$$\frac{1}{R_{O}} = \frac{\rho}{L_{d_{1}}^{2}} \sum_{m_{1}} = \frac{m_{O}\sigma}{L_{d_{1}}^{2}}$$
 (2.8)

where n and L are the mass and length of uncoated length of specimen If M and L1 are the mass and length of sample

$$m_{O} = \frac{M}{L_{I}} L \qquad (2.9)$$

from equations (28) and (29)

$$\rho = \frac{M}{L L_1 d_1} R_0 \qquad (2.10)$$

where R_{O} is the resistance determined by the slope of (I-V) curve

Before each measurement, the temperature of the system

is maintained constant for sufficient time (approx 20 minutes)

to attain equalibrium by the arrangements described earlier

2 4 4 A C Resistivity

A schematic circuit diagram for AC resistivity measurement is shown in Fig 2.7 A General Radio GR 1615 transformer ratio arm capacitance bridge with GR 13136 oscillator bench and GR 1232 tuned amplifier and null detector are used to measure capacitance c and conductance G at various frequencies At each temperature the ac resistivity is determined by measuring capacitance and conductance G at frequencies (f) 02, 12, 10,50,100,500 and 100 KHz respectively. The ac resistivity is obtained from the following equation,

$$\rho_{AC} = \frac{M}{LL_1 d_1} \frac{1}{G} \qquad (2 11)$$

where m k s units are used for M,L,L, and d,

The real and imaginary parts of the dielectric permittivities are calculated using the relations

$$\epsilon' = \frac{d_1 L L_1}{M} \frac{C}{\epsilon_0}$$
 (212)

$$\epsilon'' = \epsilon' D$$

$$D = \frac{\omega C}{G}$$
(2.13)

where $\omega = 2\pi$ f

and $\epsilon_o = 8.54 \times 10^{-1.2}$ farads/m is the dielectric constant of free space

2.4 4 1 Complex Impedance Analysis of A-C Data

Conductance $G(\omega)$ and capacitance $C(\omega)$ contain all the information regarding electrical relaxation at a given temperature For various reasons, these variables are transformed to complex resistivities (ρ^*) complex modulus (M^*), complex permittivity (ξ^*) or some other formalism (Bottcher and Bordewijk 1978 Wong and Angell 1976) It is important to note that such transformations may emphasize and therefore, help resolve one particular aspect of relaxation process, but no new information which is not contained in $G(\omega)$ and $C(\omega)$ can be extracted For a specimen of unit thickness and unit area of across section

$$\rho^* = \rho' - i\rho'' = \frac{G}{G^2 + \omega^2 C^2} - i \frac{\omega C}{G^2 + \omega^2 C^2}$$
 (2.15)

$$M^* = M' + 1M'' = \frac{\omega^2_C}{G^2 + \omega^2_C^2} + \frac{i \omega^2_G}{G^2 + \omega^2_C^2}$$
 (1 16)

$$\epsilon^* = \frac{1}{M^*} \tag{2.17}$$

complex conductivity
$$\sigma^* = \frac{1}{\rho^*}$$
 (2.18)

and loss tangert

$$tan\delta = \frac{\varepsilon''}{\varepsilon'} = \frac{\omega c}{G}$$
 (219)

These equations imply that a plot of P'' or M'' vs $\log \omega$ will show Debye peak at $\omega = 1$ where $T (= C/_{G_D})$ is the time constant. The P' or M vs $\log \omega$ will be a sigmoidal curve with

a point of inflexion at $\omega \mathcal{C}=1$ On a complex plane ρ' vs ρ' will be a semi circle passing through origin. However, the experimental data for any glass rarely agree with the above description. This implies that specimen can not be simply treated as a parallel combination of a resistive and capacitative element. This departure in behaviour from that of an ideal capacitor is due to that fact that a real sample usually consists of a discontinuity at the electrode glass interface which has different polarisation properties than the bulk specimen. In most cases this can be approximated by a series combination of two parallel R-C elements

The electrode interface polarisation is a highly capacitive phenomenon, exhibiting a much larger time constant than the bulk phenomenon Complex resistivity plots (ρ^{μ} vs ρ^{\prime}) are generally used to separate these two effects, each appearing as an arc of a circle (Hodge et al 1976, Jain H and Nagi K L 1983) The D C. conductivity of the glass is given by the high frequency intersection of the semicircle with the real axis. This procedure has been used in the analysis of data so as to check whether there is any effect of the electrode polarisation on the data collected by either D C or A C resistivity measurements.

2.5 Differential Thermal Analysis (DTA)

To determine various transformation temperatures characteristic of a glass system, DTA analysis is undertaken for all the virgin glass fibre samples. The fibres are ground and then sieved out in the range of -14 mesh to 20 mesh (particle)

size \$100m) Pure alumina is taken as a reference. These powders (100 mg) are taken in alumina crucibles and heated at a rate of 10°C/minute upto 1000°C. Temperature, DTA and weight loss are recorded photographically by a MOM Derivatograph, Hungary

2 6 Electron Microscopic Analysis (TEM)

Both virgin as well as ion exchanged fibres are subjected to electron microscopic analysis. Their microstructures and selected Area Diffraction (SAD) are recorded by Phillips EM 3C1 electron microscope operating at 100 kV. For this purpose the electron microscopic samples are prepared in the following manner.

2 6 1 Preparation of Electron Micropic Sample:

A thin film of carbon is deposited on a cleaned glass slide Cuts in form of squares of approx sizes of 2 mm x 2 mm are made on this film formed at the glass slides. The glass slide is dipped into desonised water and small pieces of carbon films peel off from the surface of glass slide and float on the surface of water Electron microscopic copper grid (EMG) is made to cover itself by one of these small pieces by dipping it into the water below the floating piece and taking it out along with the film. This carbon coated grid is kept on a cleaned glass slide Glass fibres are crushed to very fine powder form and a very dilute suspension of this powder is made in acetone A drop of such suspension is poured on the carbon coated EMG A thin film of callodion is floated on the surface of deionised water and this sample containing EMG is placed on the surface of this film in such a way that glass particles re sandwiched below the carbon and callodion films respectively

The EMG is fished out of water and dried in an oven at 100°C for 1 hour

2 6 2 Analysis of S A D

The diameters of diffraction rings are measured from the negtive by using a graduated eye-piece with an accuracy of O1 Cm The interplaner spacings are calculated from the relation given below

$$R_{s} d_{hkl} = Camera Constant$$
 (2 20)

where R_sis radius of diffraction ring and d_{hkl} the corresponding interplaner spacing. The camera constant is determined from the standard gold diffraction pattern obtained at 100 kV (Srivastava A and Chakravorty D 1978)

2 7 Chemical Analysis

To estimate the concentration of silver ions in the ion exchanged glass fibres a weighed amount of these fibres is dissolved in dilute HF and a few drops of HNO3 added so as to dissolve silver in the form of silver-nitrate. The resulting solution is analysed for silver by an IL/751 atomic absorption spectrophotometer, which is calibrated by standard solutions of silver in the form of silver nitrate.

2 8 Density Measurement

Density of glass is measured by bouyancy method A known weight w_1 of glass is dipped into the water and weighed

giving its value W, Density is calculated by following formulae,

$$d_1 = \frac{W_1}{W_1 - W_2} \tag{2.21}$$

2 9 Diameter Measurement

Diameters of glass fibres are measured by an electronic comparator 'Sheffield ACCUTRON' U S.A. with an accuracy of 254 micron The fibre is held between two heads of a pressure transducer which is calibrated for the desplacement First the scale of accutron is calibrated by slip gauges

2 10 Measurements of Strength and Young's Modulus of Glass Fibres
2 10 1 Sample Preparation

To measure the strength(S) and Young's (E) modulus of glass fibres samples of length 10 Cm each are cut and pasted on fibre mounts which are fairly stiff smooth rectangular bits of paper of dimensions 10 Cm x 1 5 Cm x 25 Cm, having a rectangular slot of width 1 0 Cm and length equal to the gauge length, in the centre of paper (Fig 24). The fibres are mounted in a line through the centre of each slot and parallel to it Fibres are held firmly to the mount by pasting an adhesive (Quick Fix) at the mounts of this slot. The extra lengths of fibre extending for about 2 Cm each beyond the slot are either side are fixed to the ends of mounts by using cellotape. These extra ends may be used for diameter measurements in cases where the bits of fibres remaining within the gauge length after breaking is too small to be of any use. The mounts are

stored in a desiccator In case of determining the virgin strength of fibres, the samples are collected in situ during fibre drawing by the VSU unit of FDA (Fig 24) In case of non-virgin samples, fibres drawn and collected from the drum are used and single filaments are taken out from the bunch of fibres. They are cut to proper size and mounted on the fibre mounts as described above.

2 10 2 Testing of Fibres:

Instron Machine is used for the determination of S and E Fibre mount is firmly held between the two grips of Instron and load is adjusted to the zero value. The sides of the mount are cut, leaving the fibre intact, so that when the crosshead is made to move, the entire load is taken by the fibre itself. Fibre is pulled till it breaks. The breaking load as well as the elongation in the fibre are directly read from the chart traced on the x-y recorder attached to Instron. The load cell used has a range 0-50 gms with a least count of 1 gm. A uniform chart speed of 2 cm./min, 5 cm/min & 10 cm/min have been tried but for the accuracy of results chart speed of 10 cm/min has been used. Crosshead speed has been maintained at 0.05 cm/min and a gauge length of 5 cm has been used.

2 10 3 Calculation of Strength and Strain

Strength of ith specimen is evaluated by measuring the breaking load P_1 from the Instron chart and diameter (D_1) of fibre as described in Section 2.9 by the following

$$S_{i} = \frac{4 p_{i}}{\pi p_{i}^{2}}$$
 (2 22)

strain is given by e_{i} ,

which under present conditions becomes

$$e_i = 10^{-3} x_i$$
 (2 24)

2 10 4 Determination of Young's Modulus:

For a single measurement Young's Modulus may be estimated by the ratio of strength to strain 1 e

$$E_{i} = \frac{S_{i}}{e_{i}}$$
 (2 25)

But it is seen that for a set of such measurements taken on N number of fibres (N \geqslant 30), E_1 show a wide destribution Usually the mean of E_1 found by equation (2 22) has been taken as an estimator for Youngsmodulus of glass fibres i.e

$$\frac{\Sigma}{E} = \frac{\Sigma}{1-1} \quad E_{1}/N \qquad (2.26)$$

But it is being proposed that a better estimate of Young's Modulus can be made by regressing a straight line

between strength and strain, passing through the origin in the strength-strain plane. The slope of this line gives the best estimater for young's modulus of the glass fibre, as the regression line approximates the actual stress-strain relationship for a given set of glass fibres. If the regression line is given by

$$S = E_p \quad e \tag{2.27}$$

where \mathbf{E}_{R} is the slope obtained by the least square fit of the strength versus strain data then according to this proposition

$$\hat{\mathbf{E}}(\mathbf{E}) = \mathbf{E}_{\mathbf{p}} \tag{2.28}$$

where $\hat{E}(X)$ is the estimator of variable X.

2 10 5 Determination of Strength

Strength, especially in the case of glass fibres is a statistical quantity. It arises due to the distribution of surface flaws existing on the surface of the fibres as have been described in section (1 1 2.1). Two estimators of strength $\hat{E}_1(S)$ and $\hat{E}_2(S)$ are being evaluated. Either of them is found out by taking the mean value of strength for individual fibres.

Two sets of strength data are available to represent the sample. One of them is found as per the equation (2 22), while the other set is found by using eq (2 27) This calculated strength $S_{\rm C}$ is found as

$$S_{c_{i}} = E_{R} e_{i}$$
 (2 29)
and two estimates of strength are given by

$$E_1$$
 (S) = \bar{S} = $\sum_{i=1}^{N} S_i / N$ (2 30)

$$E_2(S) = \bar{S}_C = \sum_{1}^{N} S_{C_1}/N$$
 (2 31)

Where \bar{S} and \bar{S}_c are the mean of distributions of S_1 and S_c respectively. It is shown by variance and Weibull analysis respectively that $E_2(S)$ is a better estimator of strength than $E_1(S)$ for a given glass fibre

2 10 6 Weibull Analysis

It has been shown in section 1 1 2 3 that strength distribution is given by Weibull distribution as described by equation (1 3). This equation contains two parameters S_0 and be Specification of strength value in terms of these parameters is the best way of representing the entire set of data. These parameters contain all the information about the distribution. Two techniques are being used to evaluate S_0 and b, which are as follows

2 10 6 1 Graphical Regression Technique (GRE)

In this method a least square fit line is regressed between Log S_i and Log (Log $(1-P_i)$) If J_1 and J_2 are the slope and intercept of (Log S_i) axis for Log (Log $(1-P_i)$) being zero, then equation (1 3) can be rewritten as

$$\text{Log S} = \frac{1}{b} \text{ Log (Log (1-P))} + \text{Log S}_{o}$$
 (2 32)

So
$$b = 1/J_1$$
 (2.33)

and
$$S_0 = \exp(J_2)$$
 . (2.34)

To get P_i the probability of failure for strength $S \geqslant S_i$, the strength data are arranged in ascending order of values. The cumulative probability P_i is found out from this table as

$$P_{i} = i/(N+1)$$
 (2.35)

Where 1 is the sequence number for strength P_{i}

2 10 6 2 Maximum Likelihood Technique (MLE)

In this technique, the likelihood function is minimised with respect to two parameters (Cohen 1951) The likelihood function for failured censored sample with failure strength of r fibres that failed out of n fibres is given by

$$L \propto (\frac{b}{A})^{r} \left(\frac{r}{1} s_{1}^{b-1} \right) \exp \left(-\frac{\sum_{i=1}^{r} s_{i}^{b}}{A} \right) \left[\int_{sr^{A}}^{\infty} s_{1}^{b-1} \right]$$

$$\exp \left(-\frac{s_{1}^{b}}{A} \right) ds$$
(2 36)

Where
$$A - S_0^b$$

Or $S_0 = (A)^{\frac{1}{b}}$ (2 37)

Taking Log of L and differentiating equation (2 36) w r t A and b respectively one gets

$$\frac{\partial}{\partial A} \text{ Log}_{e} L = -\frac{r}{A} + \frac{r}{1} \frac{s_{1}^{b} + (n-r) s_{r}^{b}}{A^{2}}$$
 (2 38)

$$\frac{\partial}{\partial b} \quad \log_{e} L = \frac{r}{b} + \sum_{i=1}^{r} \log_{e} S_{i} - \frac{1}{A} \left[\sum_{i=1}^{r} \log_{e} S_{i} + \frac{1}{A} \left[\sum_{i=1}^{r} \log_{e} S_{i} \right] \right]$$
(n-r) $S_{r}^{b} \log_{e} S_{r}$ (2 39)

and for MLE
$$\frac{\partial}{\partial A}$$
 Log_e L = $\frac{\partial}{\partial b}$ Log_e L = 0 (2 40)

As in this work, complete sample is being analysed so r = n (2 41)

Hence values of \hat{b} and \hat{A} , which are the estimators of b and A respectively are obtained from above, are as follows

$$\frac{\sum_{i}^{n} S_{i}^{b} Log_{e} S_{i}}{\sum_{i}^{n} S_{i}^{b}} - \frac{1}{\hat{b}} = \frac{1}{n} \sum_{i}^{n} Log_{e} S_{i}$$
 (2 4 2)

$$\hat{A} = \frac{1}{n} \sum_{i=1}^{n} s_{i} \hat{b}$$
 (2 43)

Eq. (2.42) is solved by Newton-Raphson iterative method to get b and when this value is substituted in eq. (2.43) A is determined

By general theory of MLE (Cohen 1951) it has been shown that (\hat{b} , \hat{A}) is a bivariate normal with mean (b, A) and variance, co-variance matrix given by

The matrix given by
$$E \left(-\frac{\partial^{2} \text{Log}_{e}^{L}}{\partial b^{2}}\right) \quad E \left(-\frac{\partial^{2} \text{Log}_{e}^{L}}{\partial b \partial A}\right) \quad (244)$$

$$E \left(-\frac{\partial^{2} \text{Log}_{2}^{L}}{\partial A \partial b}\right) \quad E \left(-\frac{\partial^{2} \text{Log}_{e}^{L}}{\partial A^{2}}\right)$$

Where E(Z) is the expected value of Z

It can be shown that variance (b), variance (A) and co-variance of (b,A) are given by

$$Var(\hat{b}) = \frac{1}{U}(-\frac{\sum_{k=0}^{2} \log_{e} L}{\sum_{k=0}^{2} \sum_{k=0}^{2} \sum_{k=0}^$$

$$Var(\hat{A}) = \frac{1}{2} \left(-\frac{\frac{2}{b^2} \log_e L}{\frac{1}{b^2}}\right)_{\hat{b}, \hat{A}}$$
 (246)

$$\operatorname{Co-Var}(\hat{b}, \hat{A}) = \frac{1}{v} \left(\frac{\sum^{2} \operatorname{Log}_{e} L}{\partial_{A} \partial_{b}} \right) \hat{b}, \hat{A}$$
 (2 47)

Where
$$U = \left[\left(\frac{\partial^2 \log_e L}{\partial b^2} \right) \left(\frac{\partial^2 \log_e L}{\partial A^2} \right) - \left(\frac{\partial^2 \log_e L}{\partial b^2} \right)^2 \right]$$
 (248)

$$-\frac{\partial^{2} \text{Log}_{e} L}{\partial_{b}^{2}} \Big|_{b, \overline{A}} = \frac{n}{\hat{b}^{2}} + \frac{1}{\hat{A}} \left[\sum_{i=1}^{n} \hat{s}_{i}^{b} \left(\text{Log}_{e} \hat{s}_{i} \right)^{2} \right] \quad (2 49)$$

$$-\frac{\partial^2 \operatorname{Log}_{e} L}{\partial A^2} \bigg|_{\hat{b}, \hat{A}} = \frac{n}{\hat{A}^2} + \frac{2}{\hat{A}^3} \begin{bmatrix} \frac{n}{2} & s_{\hat{b}} \\ \frac{n}{2} & s_{\hat{b}} \end{bmatrix}$$
 (2 50)

$$-\frac{\partial^2 \operatorname{Loq}_{e} L}{\partial_{A} \partial_{b}} \begin{vmatrix} \frac{n}{\Sigma} \hat{s}_{1}^{b} \operatorname{Log}_{e} s_{1} \\ \frac{n}{\Sigma} \hat{s}_{1}^{b} \operatorname{Log}_{e} s_{1} \end{vmatrix}$$
(253)

For Terbull distribution mean and varance are calculated by

$$\bar{s} = \frac{b+1}{b}$$
 s_o (252)
 $var(s) = s_o^2 \left[\frac{b+2}{b} - \frac{b+1}{b} \right]$ (253)

and coefficient of variation, $V_{\mathbf{p}}$ which is independent of \widehat{A} , is obtained by

$$\frac{\overline{\text{Var (S)}}}{\bar{s}^2} = \sqrt{\frac{(b+2)/b}{-(b+1)/b}} - \frac{(b+1)/b}{2}$$
(2.54)

By using above equations \hat{S} and \hat{S}_{O} are evaluated for both sets of strength 1 e $S_{\dot{1}}$ and $S_{C_{\dot{1}}}$

2 10 6 3 Regression of Line

As has been described in earlier sections linear relationship is regressed between two variables (X_1, I_1) to evaluate slope m and intercept C in the following form

$$Y = mX + C \tag{2.65}$$

This is employed to find activation energy and preexponential factos in case of D C resistivity, Young's modulus
from strength (S), strain (e) data and Heibull parameters b and S_{O} from probability (P) and strength (S). To do this analysis
condition of least square fit is used which is as follows. The
error is given by a function F_{e} such that

$$F_e = \sum_{1}^{n} (Y_i - mX_i - C)^2$$
 (2.56)

for condition of minimum error,

$$\frac{\partial^F_e}{\partial m} = 0$$
 and $\frac{\partial^F_e}{\partial c} = 0$ (2.57)

By solving one gets

$$m = \frac{\overline{X} \quad \overline{Y} - y\overline{Y}}{(\overline{X})^2 - (\overline{X}^2)}$$
 (2.58)

and
$$C = \frac{\bar{x} + \bar{x} + \bar{y} + \bar{y} + \bar{x}^2}{(\bar{x})^2 - (\bar{x}^2)}$$
 (2.59)

Such that
$$\overline{Z} = \frac{1}{n} \sum_{n=1}^{n} Z_{n}$$

here \overline{Z} is the mean of Z_1

$$Var (m) = \frac{F_{k}^{2}}{\left[\sum y_{i}^{2} - n (\bar{y})^{2} \right]^{2}}$$
 (2 60)

$$Var (C) = F_{k}^{2} \left[\frac{1}{n} + \frac{\overline{x}^{2}}{\left[\sum x_{i}^{2} - n(\overline{y})^{2} \right]} \right] \qquad (261)$$

Where
$$F_k^2 = \frac{1}{n-2} \left[\sum (Y_1 - C - mX_1)^2 \right]$$

$$= \frac{1}{n-2} \left[\sum Y_1^2 - n\overline{Y}^2 - \frac{(\sum X_1 Y_1 - n\overline{X} \overline{Y})}{(\sum X_1^2 - n\overline{X}^2)} \right] (2.62)$$

Thus from above equations m and C are evaluated and a line fitted by above method provides these parameters with a range such that m and C lies between m $\pm \Delta$ m and C $\pm \Delta$ C respectively such that

$$\Delta m = \sqrt{var(m)} \qquad (2.63)$$

$$\Delta C = \sqrt{Var(C)} \qquad (2.64)$$

In case $C = Log_e$ B where B is a parameter to be determined so

$$B - \exp(C)$$
 (2.65)

$$\Delta B = \exp(C) \quad \Delta C = B \Delta C \qquad (2.66)$$

Thus B as well as \(\delta \) B are obtained

In case of line passing through the origin the above equations simplify to the following

$$m = \sum X_1 Y_1 / \sum X_1^2$$
 (2 67)

Var (m) =
$$\frac{F_{k}^{2}}{\sum X_{1}}$$
 (2 68)
Where $F_{k}^{2} = \frac{1}{n-1} \left[\sum Y_{1}^{2} - \frac{(\sum Y_{1}X_{1})^{2}}{\sum X_{1}^{2}} \right]$ (2 69)
 $\Delta m = \sqrt{\text{var}(m)}$ (2 70)

2 110 7 Determination of Fracture Surface:

The fracture surface has been studied by a scanning electron microscope (SEM), ISI-60 U K. The glass fibres fractured under tensile test are mounted on cylindrical aluminum base (1 Cm \times 1 Cm) with their fracture surface showing upwards. The length of such specimens is kept at about 5 Cm. Their

lower ends are pasted with silver paint to the aluminium base. The entire assembly is placed in a vacuum unit and a thin = 50 Å thick film of gold is deposited on the fractured surface of the specimen. This aluminium base loaded with gold coated glass fibres is observed in scanning electron microscope and fracture surface morphology is photographed. The same method has been used to study the corrosion resistance behaviour of these glass fibres to dilute hydrofluoric acid

Electrical conduction in ion exchanged glass fibres

3 1 INTRODUCTION

Electrical conduction in alkali containing glasses arises due to the long range migration of alkali ions under the influence of an electric field Ionic conduction in glasses has become important because of its technological importance. The possible use of lonic glasses as solid electrolytes has drawn attention of many research workers to this field [Tuller et al 1980] Various glasses so far investigated for fast ion conduction. have high alkali content or silver ion content ranging from 40 to 70 mol% Almost all of such fast ion conducting glass compositions are derived from Lithium based glass systems or AgI based glass systems [Kulkarnı AR et al 1984] It has been known from Na + Ag + ion exchange studies in some glasses that activation energy for silver self diffusion is low [Frischat G H 1976] This has prompted us to study the effect of replacing scdium ions by silver ions in an oxide glass on its ionic conductivity As silver rich layer so produced is usually a few microns thick [Chakravorty D et al 1972, Collins DR et al 1966] it is possible to enrich glasses by silver ions to more than 90% of their sodium concentration by subjecting the glass fibres with diameters around 10µm, of the said glass to a Na+ Ag+ ion exchange

It is to be noted further that by changing the sodium ion concentration in the base glass a significant change in the ionic conductivity of virgin glass fibres can be brought about. This change in alkali concentration is also expected to bring about drastic changes in the electrical conductivity of ion exchanged fibres because of corresponding variation in silver ion concentration in their fibres.

In this chapter we describe the results obtained with ion exchanged glass fibres having different initial concentrations of sodium ions

3 2 Results

The composition of glass fibres which have been investigated are referred to as glass system N Table 3 1 gives the compositions as well as the density of these glasses

3 2 1 Glass Preparation and Fiberization

The glass batch is prepared with the compositions described as above in which Na₂O and CaO are added as carbonates. The glass is melted in an alumina crubible at 1450°C for two hours. The melt when free of air bubbles is poured into aluminium mould to be cast as thin rectangular plates which are later annealed at 500°C for 6 hours. These plates are powdered and the glass powder so obtained is used to draw glass fibres as described in section 2.2. The fiberisation parameters are described in table 3.2.

3 2 2 Ion Exchange:

A bunch of fibres of length 10 Cm of each composition have

Table 3 1 Composition and density in glass system N

Sl No	Glass	Na ₂ O	SiO ₂	CaO	^B 2 ^O 3	Al 2 ^O 3	Density d ₁ (gm/cc)
1	N1	10	64	14	8	4	2 62
2	N2	20	60	13	4	3	2 63
3	из	30	55	12		3	2 62

Table 3 2 Fiberisation parameters of glass system N

Sl No	Glass	Melt Temp Tw(°C)	Bushing Temp TB(°C)	Bushing Tip Temp Tp(°C)	Velocity of draw m/sec
1	N1	1390	975	900	15,13,11,10
2	N 2	1335	940	870	16,13,11,10
3	и3	1300	9 20	8 20	20,16,13,11

Table 3 3 Molar fraction of silver in glass system IN

sl No	Glass	Concentration of glass in solution [G] µqm/cc	Conc of silver in solution [Ag] µgm/cc	Weight fraction of Ag ($\omega_{ m Ag}$)	Molar fraction of Ag
1	IN1	4 2	1 10	0 262	95%
2	IN2	3 5	1 56	0 446	98%
3	IN3	2 3	1 30	0 565	96%

been ion exchanged in a pyrex boat containing molten AgNo₃ at 330°C for 36 hours as described in section 2.3. The Ion-exchanged glass fibres are being referred to as constituting in glass system 3.2.3 Chemical analysis

IN glass system has been chemically analysed for silver by an $\rm IL/751$ atomic absorption spectrophotometer as described in section 2.4. The results of chemical analysis are being summarized in Table 3.3

3 2 4 D T A Analysis

Fig 3 1, 3 2 and 3 3 represent the DTA curves obtained for N glass system. The glass transition temperature Tg, nucleation temperature $T_{\rm N}$ and grawth temperature $T_{\rm O}$ for these glasses are being summarized in table 3 4 (D Bahadur et al 1982)

3 2 5 Electrical Measurements:

D C and A C resistivity measurements for these fibres have been carried out as discussed in section 2 4 A bunch of fibres cut to required size (1 6 Cm) are loaded in the conductivity cell between two electrodes Silver paste is used to make contact of fibres and electrodes I-V plots are obtained on x-y recorder by the circuit described in section 2 4 3. The slope of these plots gives D C resistance (R) of the sample Resistances have been found by such slopes of I-V curves obtained at various temperatures. All these plots have been found to be straight lines passing through the origin. Typical representative plots for N and IN samples are shown in figs. 3.4 and 3.5 respectively

Fig 3.1 D TA Curve for glass N_1

Fig 32 DTA Curve for glass N2

Fig 33 D TA Curve for glass N₃

3 2 5 1 A C Measurements and Complex Impedance Analysis

A C measurements yield the values for conductance (G) and capacitance (C) as a function of frequency (f) The frequency has been varied from 20 Hz to 100 kHz Impedance analysis have been carried out for all these glasses at various temperatures. The real (Z') and imaginary (Z') parts of impedance are calculated by equations 3 1 and 3 2

$$Z' = \frac{G}{G^2 + \omega^2 C^2}$$
 (3 1)

$$Z' = \frac{\omega C}{G^2 + \omega^2 C^2} \tag{3.2}$$

where $\omega = 2\pi f$

Various points in the Z -Z'' plane are found to lie on the arc of a circle. The intersection of this arc on the real (Z) axis yields the DC resistance ($R_{\rm T}$) of the sample. Figs 36, 37, 38 are typical Z''-Z' plats for N glass system while figs 39, 310 and 311 represent the similar behaviour of IN glasses system. Table 35 summarizes a typical set of results of complex impedance analysis. It also includes the percentage error ($e_{\rm r}$) in DC measurement ($R_{\rm O}$) as compared to the values obtained by impedance analysis. Error ($e_{\rm r}$) is given by equation 33

$$e = \frac{R_T - R_O}{R_O} \times 100$$
 (3.3)

As evident from the table 3 5 error in D C measurements is within 2% of that estimated from the complex impedance analysis. Hence resistances as obtained from I-V plots have been taken

Table 3 4 $${\rm T_{\rm g}}$$ ${\rm T_{\rm N}}$ and ${\rm T_{\rm O}}$ for glass system N

sl No	Glass	T _g (°C)	$T^{N}(\circ C)$	T₀ (°C)
1	N1	5 20	680	760
2	N 2	600	7 20	800
3	м3	440	65 ₀	730

Table 3 5 Comparison of $R_{\mbox{\scriptsize O}}$ and $R_{\mbox{\scriptsize T}}$ for glass systems N and IN

Sl No	Glass	T(°K)	R _O (Ω)	R _T (Q)	e r
1	N1	548	8 3 x 10 ⁷	8 4 x 10 ⁷	1 2
2	ИЗ	39 8	1 10 x 10 ⁹	1 08x 10 ⁹	- 1 82
3	из	373	1 33 x 10 ⁹	1 31 x 10 ⁹	- 1 50
4	IN1	315	4 5 x 10 ⁹	4 56x 10 ⁹	1 33
5	IN2	294	5 0 x 10 ⁸	5 1 x 10 ⁸	2 00
6	IN3	337	5 4 x 10 ⁷	5 46x 10 ⁷	1 11

as true representative values for D C resistance of glass systems N and IN

3 2 5 2 Temperature Dependence of resistivity

Resistivity for various glass samples has been calculated by equation 2.7 from the measured value of D.C. resistance R_{O} Such measurements have been carried out at various temperatures in the range of 20°C to 330°C for glass systems N and IN During such investigations it has been found that IN glass samples invariably show a sudden surge of current when the applied electric field (E_c) exceeds a critical value (E_c) The value of E_c is dependent upon the temperature (T_C) for a given glass composition Thus an optimum combination of E_{C} and T_{C} brings about a permanent change in the resistivity of glass. The newly attained state has resistivities many orders of magnitude lower than that of the ionexchanged glass system IN Once IN glass system attains this highly conducting state, it is being referred to have formed HIN glass system The typical switching behaviour (I-V plots) of IN glass to HIN glasses has been shown in Figs 3.12, 3 13 and 3 14 respectively In these figs both IN state and HIN state have been shown These plots are characterised by negative resistance region shown by arrow in these Figs HCS is a stable state and HIN glass system is a new material characterised by high conductivity Variation of E_c with T_c for IN glass system is shown in Fig 3 15

Figs 3 16, 3 17 and 3 18 show the variation of log (ρ/T) with 1/T for (N1, IN1, HIN1), (N2, IN2, HIN2) and (N3, IN3, HIN3) respectively In each figure there are three curves indi-

Fig 316 Temperature variation of (D.C. resistivity / temperature) for N1, IN1 and HIN1 glass fibres

Fig 317 Temperature variation of (DC resistivity/ temperature) for N2, IN2 and HIN2 glass fibres

Fig 318 Temperature variation of DC resistivity/temperature) for N3 IN3 and HIN3 glass fibres

cating the temperature dependence of resistivity for three sets of materials belonging to N,IN and HIN glass systems respectively. Figs 3 19,3 20 and 3 21 show the comparative variation of Log(p) with 1/T for glass system N, IN and HIN respectively. The data have been analysed in two ways. The temperature dependence of resistivity in each case, being assumed to follow relationships given by equations 3 4, 3 5

$$\circ = \rho_{\text{OT}} \text{ T exp } \left(\frac{Q_{\text{T}}}{KT} \right) \tag{3.4}$$

$$\sigma = \rho_{O} \exp \left(\frac{Q}{kT}\right) \tag{3.5}$$

Table 3 6 summarizes the results of this analysis for glass system N As values of $\rho_{\rm OT}$, $\rho_{\rm T}$, $\rho_{\rm O}$ and Q are calculated by least square fitting of a straight line hence each of these parameters will have a scatter which is estimated by the variance of each of them. Thus ${\rm dQ_T}$, ${\rm d}\rho_{\rm OT}$, ${\rm dQ}$ and ${\rm d}\rho_{\rm O}$ represent the scatter in the values of ${\rm Q_T}$, $\rho_{\rm OT}$, Q and $\rho_{\rm O}$ respectively. Thus each of these parameters is being provided with the corresponding scatter. Similar analysis have been carried out on IN glass system. The results are shown in Table 3.7 Table 3.8 shows results of similar analysis carried out for HIN glass system.

3 2 6 TEM Analysis

As described in section 2 6, samples have been characterised by transmission electron microscopy Basic features associated with each of them are described in the following sections.

Fig39Temperature variation of DC resistivity for glass elstemN

Fig 320 Temperature variation of D C resistivity for glass system IN

Fig 3.21 Temperature variation of resistivities for glass system HIN

Table 3 6 Activation energy and pre-exponential factors for glass system N

	Glass	$\Omega_{ m T} \pm d\Omega_{ m T}$ (eV)	$\rho_{OI} \pm d\rho_{OI}$ $\Omega \pm d\Omega$ (Ohm Cm κ^{-1}) (eV)	PO + dPO (Ohm-Cm)
1	N1	83 <u>+</u> 01	6 4x10 ⁻⁵ ±1x10 ⁻⁵ 78± 01	8 4×10 ⁻² ±2×10 ⁻²
2	N 2	89 <u>+</u> 01	5 7x10 ⁻⁷ ±3x10 ⁻⁷ 85± 01	7 $3 \times 10^{-4} \pm 4 \times 10^{-4}$
3	из	77 ± 01	$3.8 \times 10^{-7} \pm 2 \times 10^{-7}$ 74 ± 01	$3.5 \times 10^{-4} \pm 2 \times 10^{-4}$

Table 3 7 Activation energy and pre-exponential factors for glass system IN

S1 No	Glass	$^{ m Q}_{ m T}$ \pm $^{ m d}{ m Q}_{ m T}$	$ \rho_{\text{OT}\pm} \frac{d\rho_{\text{OT}}}{d\rho_{\text{CM}}} $ (Ohm-Cm-k	Q <u>+</u> dQ (eV)	ρ _O ± dρ _O (Ohm-Cm)
1	IN1	48 <u>+</u> 01	$9.8 \times 10^{-3} \pm 2 \times 10^{-3}$	44 <u>+</u> 01	121 <u>+</u> 27
2	IN2	46_ 01	$3 7 \times 10^{-4} \pm 4 \times 10^{-5}$	42 <u>+</u> 01	o 41± o5
3	IN3	50 <u>±</u> •01	$3 3 \times 10^{-5} \pm 1 \times 10^{-5}$	47 <u>+</u> 01	0 032 <u>+</u> 01

3 2 6 1 N glass System

Figs 3 22, 3 24 and 3 26 are representative micrographs of N1, N2 and N3 respectively. It is evident from them that N1 and N2 exhibit phase separation while N3 is a single phase system. The inhomogeneity of glasses N1 and N2 at microlevel causes one of the two phases of glass to be sodium rich, the other phase containing a smaller amount of sodium. Both of these phases are interconnected throughout the glass matrix. The darker regions in these micrographs represent silica rich phase. Corresponding S A D's (Selected Area Diffraction) are shown in Figs 3 23, 3 25 and 3 27 respectively. All of them show rings, characteristic of amorphous material.

3 2 6 2 IN glass System

Figs 3 28 3 30 and 3 32 reveal the microstructure of glasses IN1, IN2 and IN3 respectively and their corresponding SAD's are shown in Figs 3 29, 3 31 and 3 33 respectively. It is clear from these micrographs that IN glass system consists of a two phase structure. The darker phase (\mathcal{L}) is silver rich, while the lighter (β) one has less amount of silver. While \mathcal{L} shows broken interconnectivity, β is interconnected throughout the glass matrix. The average widths $\omega_{\mathcal{L}}$ and ω_{β} of the \mathcal{L} and β phases are given in Table 3.9. As none of the SAD's shows any diffraction rings, both of these phases are amorphous

3 2 6 3 HIN glass systems

Figs 3 34, 3 36 and 3 38 give the typical microstructures of HIN1, HIN2 and HIN3 respectively Figs 3 35, 3 37 and 3 39

Table 3 8 Activation energy and pre-exponential factors for glass system HIN

Sl No	Glass Q	r <u>+</u> dQT (eV)	POT± dPor (Ohm-CmK 1)	Q <u>+</u> (e	0-	
1	HIN1	04 <u>+</u> 01	6 2x10 ⁻² ±1	6x10 ⁻²	0007 <u>±</u> 0095	71 6 <u>+</u> 18 3
2	HIN2	02 <u>+</u> 01	4 182 <u>+</u>	07	015 <u>+</u> 014	214 <u>+</u> 80.2
3	ніпз	27 <u>+</u> 01	1x10 ⁻⁴ ± 15:	x10 ⁻⁴	23 ± 01	12 ± 02

Table 3 9 Widths of the interconnected phases in IN glass system

sl No	Glass	ယ္လ္ (ဂို) (Phase with broken interconnectivity)	$\omega_{g}\left(\begin{smallmatrix} 0 \\ A \end{smallmatrix} \right)$ (Interconnected phase)
1	IN1	3 20	85
2	IN2	480	62
3	IN3	275	11 2

Fig 322 TEM micrograph of glass 117

Fig 3 23 JAJ

TEM micrograph of glass N2 Fig 325 SAD of glass

Fig. 3 TEM micrograph of glass N3 Fig. 327 SAD of glass N4

FM mur Mrsp

Il in reach of e he

FIR IST JAL OF JE

£ 4 , 2

ri regroph of glass +

1"1" micro , rest of glass HIN. Fig. 337 SAD of glass HIN?

- 4 m is granh of gizes HIM? Fig 339 SAD of glas, HI is

are corresponding SAD's These SAD's show very faint rings These have been characterised. Table 3.10 shows the comparison between calculated $d_{\mbox{hkl}}$ values for these rings and $d_{\mbox{hkl}}$ (ASTM) for silver metal

The results imply that a small fraction of silver ions get reduced to silver metal. These silver metal particles are precipitated in the silver rich phase which is shown as the dark region in the two phased microstructure of HIN glass system. There are indications as shown by arrows in Figs. 3.34, 3.36 and 3.38, that as compared to microstructure of IN glass system, links have been formed between the disjointed portions of the \mathcal{L} phase. Thus in HIN system both silver rich (\mathcal{L}) and silver depleted (\mathcal{L}) phases are interconnected. The average widths (\mathcal{L} , \mathcal{L} , \mathcal{L}) of these two phases in the HIN system are summarised in Table 3.11

3 3 Discussion

Glass transition temperature T_g for N2 is found to be higher than those for N1 and N3. It is expected that addition of increasing amount of Na₂O should lower the T_g value as the SiO_4 tetrahedral structure is broken up by the formation of non-bridging oxygen ions (Rawson). Thus T_g for N3 should have been lower than that of N2 and N1. Similarly T_g of N2 should be lower than that of N1. But as is clear from table 3.4, this is not the case. This anomaly may be explained by the morphological differences as evident from the microstructures of N1 and N2. Though both N1 and N2 show phase separation, the interconnectivity of

Table 3 10 Comparison of $d_{\mbox{\scriptsize hkl}}$ values of silver with that for HIN glass system

Sl No	(hkl)	d _{hkl} (Ag) (ASTM)	d _{hk1}	(Calculated) HIN2	ніиз	
1	111	2 359	2 35	2 31	2 32	
2	200	2 044	2 06	1 99	2 02	
3	220	1 445	1 4-	1 40	1 43	
4	311	1 231	1 24	1 22	1 21	
5	222	1 180	1 16	1 19	1 •17	

Table 3 11 Microstructural features of HIN glass system

Sl No	Glass	۵ (Å)	ω _β (A)
1	HIN1	21 5	1 2 2
2	HIN 2	200	136
3	німз	1 25	140

sodium rich phase is more frequent in case of N1 than that of N2 This implies that N1 has a relatively more open structure than that of N2 and this seems to be responsible for higher T_g of N2 as compared to that of N1

In the case of N glass system, conduction is due to migration of sodium ions as discribed in section 1 2 2The activation energies for sodium migration in the present study are found to be of the same order as reported earlier (Owen 1963, Hughes and Isard 1972)

The resistivities for N glass system decrease with increase of sodium concentration while the activation energy shows a maximum for N2 The slight increase of activation energy for N2 with respect to that of N1 is explainable in terms of its structural characteristics. The trend of T_g for N glass system is exactly similar to that observed in the variation of activation energy. Thereby suggesting the same mechanism being responsible for both these effects. The relative openness of structure of N1 compared to that of N2 makes Q_T for N1 to be less than that of N2. The open single phase structure of N3 is responsible for the lowest value of Q_T in the present series of glasses. The pre-exponential factors in the glass system N and IN are consistent with stevel's model of Ionic migration in glass, viz value of pre-exponential factor decreases with increasing number of charge carriers.

As evident from Fig. 3 40, plots of \log_{10} $\rho_{\rm OT}$ vs Log η show a linear behaviour for both N and IN glass systems. Both

of these lines are approximately equal to each other. The slopes of the least square fit lines are estimated to be 5 $^{\pm}$.05. This implies an empirical relationship between $\rho_{\rm OT}$ and concentration n of the mobile change carriers as follows

$$\rho_{\text{OT}} = \frac{C}{n^5} \tag{3.6}$$

where C (N) =
$$10^{94}$$
 for N glass (3.7)

and C(IN) =
$$10^{95.5}$$
 for IN glass (3.8)

As per stevel s model,
$${}^{\circ}OT = \frac{6k}{2}$$
 (3 9)

where n = no of cations/unit vol

D = vibration freq of cations

R = average distance between adjascent sites

$$n = \frac{2d_1}{M_0} \frac{N_C}{100} N_0$$
 (3 10)

where $d_1 = Density of glass$

No = Avogadro number

 $M_{O} = Molecular wt of glass$

 N_{C} = molar fraction of cation

from eq 3 6 it is obvious that

$$\frac{\rho_{\rm OT \ (IN)}}{\rho_{\rm OT \ (N)}} = \frac{C(IN)}{C(N)} = 10^{1.5}$$
 (3.11)

substituting expressions from eq 3 9

$$\left(\frac{6k}{ne^{2}, R^{2}}\right)_{IN} \left(\frac{ne^{2}, R^{2}}{6k}\right)_{N} = 10^{1.5}$$

(314)

assuming

$$J_{\text{IN}} = J_{\text{N}} \tag{3.12}$$

and

$$d_{TN} \stackrel{\sim}{\longrightarrow} d_{N} \tag{3.13}$$

we get

$$\frac{n_{N}}{n_{IN}} = 10^{1.5}$$
or $n_{IN} = 10^{1.5}$ n_{N}

$$= 3.16 \times 10^{-2} n_{N}$$
(3.1)

Thus it is evident from that charge carrier concentration in IN glass system is about 3% of that of N glass system assumptions given by (3 12 and (3 13) are reasonable in the present case because the ion-exchange process involves only one to one substitution of Na by Ag and no drastic structural change is likely

As evident from equation (3 14) the mumber of charge carriers effective in determining electrical conductivity in IN glass system is about 3% of that present in N glass system This is explainable in terms of the microstructure of IN glass system which consists of an interconnected silver-deficient phase () in section 3 2 6 2) and a silver-rich phase (Lin section 3 2 6 2) which has a broken interconnectivity. The conductivity is therefore controlled by the carrier concentration in the silverdeficient phase Hence it can be concluded that the charge carrier concentration in the 13 phase is about 3% that in the d-phase

From Tables 3 6 and 3 7 it is seen that the values of activation energies for IN glass system are lower as compared to those for N glass system. Such decrease in the activation energy for diffusion of silver ions as compared to that of sodium ions has been observed in oxide glass systems (Frischat 1976). This has been explained on the basis of the ionic radii of sodium and silver respectively. It has been shown (Stevels JM 1957) that the activation barrier to ionic transport in oxide glasses is usually comprised of two parts, electrostatic and mechanical energies. If the glass network is sufficiently open (which is the case when enough alkali ions are present) the mechanical energy can be neglected. Under these circumstances, the larger ions should have lower activation energies.

The values of activation energies and resistivity at room temperature for IN system are found to be in agreement with values for silver FIC glass systems reported earlier in the literature (Table 1 5)

The activation energies $\Omega_{\rm T}$ and Ω for N glass system has been found to follow a relationship given by equations 3 19 and 3 20 within an accuracy of \pm 4%

$$\frac{\Omega_{\rm T}}{N_{\rm C}} = 2014 - 1194 \log_{10} N_{\rm C}$$
 (3 19)

$$\frac{Q}{N_c} = 1892 - 1116 \log_{10} N_c$$
 (3 20)

where N is the molar concentration of sodium ions

Similar functional relationship in IN glass system is untenable as error is $\pm 16\%$. The relationship valid in IN glass system is given by equations 3 21 and 3 22 with the accuracy of $\pm 6\%$.

$$Q_{T} = OOLN_{C} + 46$$
 (3.21)

$$Q = = 0015 N_{C} + 413$$
 (3 22)

where N_{C} is molar fraction of silver ions

Difference in functional forms for dependence of activation energy on the concentration of cations in N and IN glass systems, reflects the difference in the mechanisms responsible for giving rise to corresponding activation energies. This suggests that during ion exchange process, alongwith one to one substitution of sodium ions by silver ions, some morphological transformation also takes place. This is expected as the ionic radii for sodium and silver ions are different.

As reported in section 3 2 5 2 an optimum combined influence of E_C and T_C switches the IN glass system to HIN system. This effect of E_C and T_C is reflected in the microstructures of IN and HIN glass systems as mentioned in section 3 2 6 2 and 3 2 6 3. The activation energies and preexponential factors of HIN systems are given in Table 3 8. HIN system is characterised by very small activation energies. HIN1 and HIN2 show a activation energy barriers which are negligibly small. This extraordinary behaviour of HIN glass system can be explained in terms of its microstructural features. Switching of IN to HIN system is a

diffusion controlled phenomenon. Under combined influence of $E_{\rm C}$ and $T_{\rm C}$ silver ions from the silver rich phase (>) diffuse to the silver dipleted phase (>) so as to form links among the disjointed portions of the > phase. Thus a continuous path of $\mathcal C$ phase is created throughout the glass matrix. It is this interconnected microstructure of silver rich phase which is responsible for the extremely high conductivity of HIN glass system. As silver ions are highly mobile and silver rich phase (\(\delta \)) is relatively more open as compared to Γ phase, hence very low activation energy for this state is expected.

As evident from the fig 3 15, E dicreases with increasing T This is expected for diffusion controlled phenomenon, as higher the temperature, the higher is the rate of diffusion Only temperature does not seem to be sufficient to bring about this change It is most likely that the presence of electric field is helpful for directional diffusion of silver ions through the \wp phase separating the nearest disjointed portions of & phase, so as to make a continuous interconnection of Aphase As phase is supposed to have almost all the silver ions (>99%) present in the glass and structure of a phase is quite open, This HIN system has high electrical conductivity Possibility of reduction of a tiny fraction of silver ions to silver atoms as shown by SAD's of HIN system, can not be ruled out during the morphological transformation of IN glass system to HIN glass system These small fractions of silver atoms are most likely to be located in the & phase

From the present studies it has been estiblished that a new class of glasses based on silica network can be prepared with a high silver concentration upto molar fractions of 29% by subjecting high-soda containing silica based glass fibres to a sodium silver ion-exchange reaction. The ion exchanged glass fibres so prepared—show electrical conductivity and activation energy which are similar to those exhibited by fast ion conducting glasses.

Another interesting out come of the present investigation is the development of a new group of materials consisting of the HIN glass systems. Special metion is to be made of HIN1 and HIN2 glasses which have almost negligible activation energy and exhibit very high conductivity of 2 5x10⁻² (Ohm-Cm)⁻¹ and 1 7 x 10⁻² (Ohm-Cm)⁻¹ at room temperature respectively. As is obvious from the comparis—with Table 1 5, both HIN1 and HIN2 glasses have the highest conductivity so far reported in the literature with almost 0 activation energy. It is worth mentioning that highest conducting glassy FIC (from Table 1 5) are A_gI based and contain 70 to 80 mol% of silver and none of them is silica based, whereas HIN1 and HIN2 systems contain only 9 5 and 19 6 mol% silver, respectively and are based on silica network. Hence HIN glass system has potential for futuristic applications in energy devices

Electrical conduction in ion exchanged glass fibres containing aluminium dispersoids

4 1 INTRODUCTION

Oxide glasses with ultrafine dispersion of metallic granules of dimension of the order of few hundred angstroms show electrical conduction by electron tunnelling mechanism between the metallic islands (D Chakravorty et al 1977, D Chakravorty et al 1979) Such microstructures, consisting of dispersion of metallic granules has been induced in glasses by either choosing the mixture of oxides for melting purposes properly (D Chakravorty et al 1977) or by subjecting the glasses to an ion exchange and reduction treatment (T Arul Mozhi, D Chakravorty 1982) The lowest resistivity values obtained by the latter technique is reported to be 10⁵Q Cm at room temperature

Another method for preparing such glass-metal particulate system may be to use metal in fine powder form and mix it into the batch itself which is then melted. If proper blending could be achieved at the batch level of preparation, it is possible to obtain required microstructure. As this is a potentially straight forward technique the method may be exploited to prepare such, glass-metal particulate systems on a large scale.

As reported and discussed in chapter III, by subjecting the glass fibres of certain composition to Na Ag ion exchange the resistivity of glass may be reduced by many orders of magnitude and under the influence of temperature and voltage, such a material may be brought to a high conducting state (HCS). The material in HCS is still an ionic conductor and it is most likely that such ion exchanged glass fibres in HCS state constitute a family of new glasses which are fast ion conductors

Thus it ecomes highly interesting to look for the effect of the presence of metal despersoids on the virgin as well as ion exchanged specimens and to explore the possibility of preparing newer material with improved conductivity behaviour

In the present chapter we have explored the possibility of dispersing aluminium particles in glass matrix by directly melting fine aluminium powder with the glass batch. The base glass system chosen for such exploration has been N3 containing 30% of sodium. We, describe the results obtained during this investigation in the following sections.

4 2 Results

The composition and density of glasses which have been investigated are summarised in Table 4.1. The glass system in virgin state is being referred to as A. The initial particle distribution of aluminium powder is given in Table 4.2.

4 2 1 Glass Preparation and Fiberisation.

The glass batch is prepared with the compositions descrit(d in Table 4 1 in which Na₂O and CaO have been added as

Table 4 1 Composition (in mole $^\sigma$) and density of glasses in system A

Sl. No	Glass	Na ₂ O	SiO ₂	CaO	B ₂ O ₃	Al	Density (Gm/cc)
1	A1	30 0	55	1200	3	0	2 62
2	₽ 2	29 9	54 7	11 9	3	0 5	2 62
3	ДЗ	28 5	523	11 4	2 8	5 0	2 61
4	A4	27 8	50 9	11 0	28	7 5	2 53
5	A5	27 O	49 5	10 8	2 7	10 0	2 50

Table 4 2 Particle size distribution of aluminium powder used in making the glass-metal composite

Particle diameter (µm)	Weight //	
1 0 - 2 0	32	
2 O - 2 5	16	
25 - 30	11	
30 - 35	11	
3 5 - 4 0	1 2	
40-45	18	

carbonates The glass is melted in an alumina crucible at 1450°C for two hours. The melt when free of air bubbles is poured into aluminium mould to be cast as thin rectangular plates which are later annealed at 500°C for 6 hours. The plates are powdered and the glass powder so obtained is used to draw glass fibres as discussed in section 2.2. The fiberisation parameters are described in Table 4.3.

4 2 2 Ion Exchange

A bunch of fibres cut to 10 Cm length, have been ion exchanged in a pyrex boat containing molten AgNO₃ at 330°C for 36 hours as described in section 2 3. This has been done for all the glass compositions. The ion-exchanged glass fibres are being referred to as constituting IA glass system.

4 2 3 Chemical Analysis

In order to know the molar fraction of silver present in the glass fibres after the ion exchange process, chemical analysis has been performed for IA glass samples by IL/751 atomic absorption spectrometer as described in section 2.4. The results of chemical analysis are summarised in Table 4.4.

4 2 4 D T.A. Analysis:

Figs 41, 42, 43, 44 and 45 represent the DTA curves obtained for different compositions in the A glass system. The glass transition temperature $T_{\rm g}$, nucleation temperature $T_{\rm N}$ and growth temperature $T_{\rm O}$ for these glasses are summarised in Table 45 Details of these terms may be seen elsewhere (D Bahadur et al 1982)

Table 4 3 Fiberisation parameters of glass system A

sı	10	Glass	Melt Temp T _M (°C)	Bushing Temp T _B (°C)	Bushing Tip Temp Tp (C)	Velocity of draw V(m/sec)
	1	A1	1300	9 20	^o 20	20,16,13,11
	2	A 2	1 3 20	950	830	20,16,13 11
	3	АЗ	1360	960	8 ⁵ 0	16,13 11 10
	4	д4	1400	985	876	14,13,11,10
	5	45	1450	1020	P90	13 11,10,9

Table 4 4 Molar fraction of silver in IA glass system

sl	No	Glas s	Conc of glass in solution [G ^c (Ig/cc)	Conc of stlver in sol [Ag] (µg/cc)	Weight fraction of Ag= WAg	Molar fraction of Ag
	1	IN1	2 3	1 30	565	96
	2	IN2	3 5	1 97	563	96°₽
	3	IN3	2 8	1 57	561	97%
	4	IN4	3 2	1 76	55	95.,
ji	5	INS	2 9	1 60	552	97%

4 2 5 Electrical Measurements

D C and A C resistivity measurements for these fibres have been carried out as discussed in section 3 2 5 D C. resistance ($R_{\rm O}$) is obtained — from the slope of I-V plots Typical representative plots for A and IA samples are shown in Figs 4 6 and 4 7 respectively

4 2 5 1 A C measurement and Impedance Analysis

Conductance (G) and capacitance (C) as a function of frequency (f) have been measured and complex impedance analysis similar to section 3 2 5 1 has been carried out for glass systems A and IA for measurements taken at various temperatures Figs 4 8, 4 9, 4 10, 4 11 and 4 12 are representative Z' -Z' plots for different samples in A glass system Similarly Figs 4 13, 4 14, 4 15, 4 16 and 4 17 show complex impedance analysis for samples of the IA glass system

The D C resistance (R_T) of the sample has been calculated from the intersection of the arc on the real (Z') axis Comparis on of R_o and R_T for a typical respresentative set of data is summarised in Table 4 6 Error (e_r) as calculated by equation (3 3) is also shown in this table

It is obvious from Table 4 6 that errors in D C measurements is within 2% of that estimated from complex impedance analysis. Hence resistances as obtained from I-V plots have been taken as true representative values for D.C resistance of glass systems A and IA

Fig 4-14 Camplex impedance plot for glass IA2(T=150°C)

Table 4 $^{\rm f}$ ${\rm T_{\rm q}},$ ${\rm T_{\rm N}}$ and ${\rm T_{\rm O}}$ for glass system A

sl No	Glass	T _g (°C)	T _N (°C)	T _O (°C)
1	A1	44C	650	730
2	12	390	600	740
3	RΆ	410	640	8 20
4	p4	4 70	670	850
E	4 5	4 20	700	860
dereserve de la companyación de la	additions. are a	the suffer AND ANNA TORS . HE WAS AND		

Table 4 6 Comperison of $\mathbf{R}_{_{\!\!\boldsymbol{T}}}$ and $\mathbf{R}_{_{\!\!\boldsymbol{T}}}$ for glass systems A and IA

Sl No	Class	T	_प ्(२)	R_{T} (Ω)	e _r (%)
1	A1	100 C	1 3° x 10 ⁹	1 31 x 10 ⁹	-1 50
2	A2	1 26 C	3 7 x 10 ⁹	3 75 x 10 ⁸	1 4
3	А3	36°C	60 x 10 ⁸	6 1 x 10 ⁸	1 7
4	4	96°C	90 × 10 ⁸	8 9 x 10 ⁸	-1 1
5	A5	27 C	5 0 x 10 ⁹	5 1 x 10 ⁹	2 0
6	IAI	64°C	5 40x 10 ⁷	5.46x 10 ⁷	1.11
7	IA2	150 C	2 36x10 ⁶	24 × 10 ⁶	1 7
8	IA3	24°C	5 45 _x 10 ⁷	5 5 x 10 ⁷	0 9
9	IA4	7 ⁵ °C	8 2 x 10 ⁷	8 3 x 10 ⁷	1 2
10	IA ⁵	60° C	1 6 x 10 ⁸	1 58x 10 ⁸	-1 3

4 2 5 2 Temperature Dependence of resistivity

The resistivity values for various glass samples have been calculated by eq. 2.7 from the measured value of D.C. resistance P_D determined at various temperatures in the range of 20°C to 330°C for glass systems A and IA. The glass system IA has been found to exhibit switching behaviour similar to that shown by glass system IN, described in section 3.2.5.2. Under the combined influence of critical electric fields (E_C) and critical temperature (T_C) a decrease in resistivities by many orders of magnitude is brought about. Glass fibres in this highly conducting state are referred to as hIA glass system. The newly attained high conducting state is found to be permanent and stable.

The typical I-V plots pertaining to the switching of IA to HIA glass system are shown in Figs 4 18,4 19,4 20,4 21 and 4 22 respectively. In each figure both IA and HIA states have been shown. These plots have a negative resistance region as shown by arrows in these figures. Variation of E_c and T_c for IA system is shown in fig 4 23

Figs 4 24,4 25,4 26,4 27 and 4 28 show the variation of log (ρ/T) with 1/T for (A1,IA1,HIA1), (A2,IA2,HIA2) (A3 IA3,HIA3), (A4,IA4,HIA4) and (A5,IA5,HIA5) systems respectively Each figure shows three curves representing dependence of resistivity on temperature for three sets of materials belonging to A, IA and HIA glass systems respectively IN figs 4 29,4 31 and 4 32, comparison of Log ρ with 1/T for A,IA and HIA glass systems respectively has been shown

Fig 424 Température variation of(D C resistivity/temperature) for A1 IA1 and HIA1 glass fibres

Fig 425 Temperature variation of (D C resistivity/tempe - rature, for A2, IA2 and H*A2 glass fibres

Fig 4 26 Temperature variation of(D C resistivity / temperature) for A3, IA3 and HIA3 glass fibres

Fig 4 27 Temperature variation of (D C resistivity/ temperature) for A4, IA4 and HIA4 glass fibres.

Fig. 428 Temperature variation of (D C resistivity/temperature) for A5, IA5 and HIA5 glass fibres

Fig 429 Temperature variation of D C restivities for glass system A

4 30Temperature variation of D C resistivities for glass Fig system IA

Fig system HIA

As evident from these figures, for glass system A, or compositions corresponding to A3,A4 and A5, resistivity ariation with temperature comprises of two branches characteried by different slopes. In the lower temperature range the conductivity arises due to electron tunnelling between the aluminium ranules [Chakravorty 1984] while in the higher temperature range to is due to the migration of alkali ions. For electron tunnelling the analysis of data has been shown in figure 4-32 where variation of log ρ with 1/π has been shown.

The temperature dependence of resistivity in each case s assumed to follow the relationship given by equations (3 4) and (3 5) and for electron tunnelling relationship given by equation (4 1) has been assumed (Section 1 2 1 3)

$$\rho = \rho_{\rm e} \exp \left(\frac{Q_{\rm e}}{kT}\right)^{1/2} \tag{4.1}$$

Various values of pre-exponential factors and activation nergies for both virgin and ion-exchanged glass systems have been halved. Each calculated parameter has been assigned its variance to Table 4.7 summarises the results of this analysis for glass system A, for ion migration corresponding to higher temperature agion (110°C-330°C)

Similar analysis carried out for electron tunnelling echanism in the temperature region from 20°C to 110°C for lass compositions A3, A4 and A5 is presented in Table 4 8

Pre-exponential factors and activation energies alculated for IA and HIA glass systems are presented in Table 4 9 and 4 10 respectively

Fig 432Variation of resistivity with $(\bar{T}^{\frac{1}{12}})$ for virgin glass - fibres (A3, A4, A5)

Table 4 7 Activation energy and pre-exponential factor for glass system A

sl No.	Glass	$\Omega_{ m T} \pm \ d\Omega_{ m T}$ (eV)	POT±dPOT (Ohm-Cm-K-1)	Q <u>+</u> dQ (eV)	P _O ±dP _O (Ohm-Cm)
1	A1	77 <u>+</u> 01	$3 8 \times 10^{-7} \pm 2 4 \times 10^{-7}$	74 <u>+</u> -01	3 5x10 ⁻⁴ ±2 2x10 ⁻⁴
2	A2	56± 01	$4.7 \times 10^{-4} \pm 1.9 \times 10^{-4}$		$5 8 \times 10^{-1} \pm 2 3 \times 10^{-1}$
3	A3	64 ± 01	$4.8 \times 10^{-5} \pm 1.4 \times 10^{-4}$	60 <u>+</u> 01	$6 \ 2x^{10}^{-2} \pm 1 \ 8x^{10}^{-2}$
4	A1	•73 <u>+</u> 01	$7 2 \times 10^{-6} \pm 2 1 \times 10^{-6}$		9 $2x10^{-3} \pm 2 6x10^{-3}$
5	A5	65 <u>+</u> 01	$3 3x^{10}^{-5} \pm 6 3x^{10}^{-6}$	61 ± 01	$4 3 \times 10^{-2} \pm 8 1 \times 10^{-3}$

Table 4 8 $\,\mathrm{Q}_{\mathrm{e}}$ and $\,\mathrm{P}_{\mathrm{e}}$ for A3, A4 and A5 glasses

Sl No	Glass	Ω _e ± dΩ _e (eV)	ρ ±dρ _e (Ohm Cm)
1	АЗ	036 <u>+</u> 003	$1 \times 10^{-3} \pm 1 \ 9 \times 10^{-3}$
2	A4	047 <u>+</u> 002	5 21 0 ⁻⁶ ±7 7x10 ⁻⁶
3	A ₅	019 <u>+</u> 001	60 5 <u>±</u> 28 5

Table 4 9 Pre-exponential factors and activation energies for glass system IA

Sl No	Glass	$\mathfrak{Q}_{\mathrm{T}} \pm \mathfrak{Q}_{\mathrm{T}}$ (eV)	ρ _{OT} ± ^{dρ} _{OT} (Ohm-Cm-K ⁻¹)	Q <u>+</u> dQ (eV)	Pot dpo (Ohm-Cm)
1	IA1	50 <u>+</u> 01	3 3x10 ⁻⁵ <u>-</u> 1x10 ⁻⁵	47 <u>+</u> 01	3 2x10 ⁻² ±1x10 ⁻²
2	IA2	49 <u>+</u> 01	8 3x10 ⁻⁶ ±3 4x10 ⁻⁶		$7 6 \times 10^{-3} \pm 3 1 \times 10^{-3}$
3	EAI	50 <u>1</u> 01	$3.1 \times 10^{-5} \pm 6 \times 10^{-5}$		$36x10^{-2} \pm .6x10^{-2}$
Д	IA4	56± 01	$1.7 \times 10^{-5} \pm 2 \times 10^{-5}$	5 2 <u>+</u> 01	$2x10^{-2} \pm 2x10^{-2}$ $1 \ 4x10^{-1} \pm 2x10^{-1}$
5	IA5	46 <u>+</u> 01	1 $2x^{1}0^{-4} \pm 2x^{1}0^{-4}$	43 <u>+</u> 01	$1 \ 4 \times 10^{-2} \pm 2 \times 10^{-2}$

4 2 6 TEM Analysis

Detailed microstructural studies have been carried out by transmission electron microscopy as described in section 2 6 Basic features associated with each of them are described in the following sections

4 2 6 1 A Glass System

Figures 4 33, 4 35, 4 37, 4 39 and 4 41 are representative micrographs of A1, F2, F3, A4 and A5 respectively Corresponding SiD's are shown in figures 4 34, 4 36, 4 38, 4 40 and 4 42 respectively It is evident that A1 does not exhibit any phase separation Corresponding SAD also confirms the amorphous character of Al The glasses A2, A3 A4 and A5 show phase separation All of them consist of two phases-darker regions constitute the phase containing metallic aluminium Separation of two phases is maximum in A2. A3 exhibits two phases which are thoroughly interconnected Corresponding SAD's shows characteristic rings corresponding to metallic aluminium This also confirms the uniform fine dispersion of aluminium particulates Both the phases seem to be interconnected in A3 The glasses A4 and A5 besides exhibiting a two phase structure indicate the presence of some bigger particles of aluminium Both the phases seem to be interlinked in these two glass systems

 $\rm d_{hkl}$ values calculated from these SAD's are compared with $\rm d_{hkl}(ASTM)$ values of aluminium in Table 4 11

Table 4 10 Pre-exponential factors and activation energies ofor glass system HIA

Sl No	Glass	$\Omega_{ m T} \pm \ d\Omega_{ m T}$ (eV)	POT± dPOT (Ohm cm v-1)	Ω <u>+</u> ἀΩ (eV)	Pot dpo (Ohm Cm)
1	HIA1	27 <u>+</u> 005	$(1 \pm 2) \times 10^{-4}$	23 <u>+</u> 005	1 2x10 ⁻¹ ± 2x10 ⁻¹
2	HIA2	36 <u>+</u> 003	$(1 \ 3\pm 1) \times 10^{-5}$	33 <u>+</u> 003	$(1 \ 5 \pm 1) \times 10^{-2}$
3	HIA3	034 ± 016	$(5 \ 5\pm 2 \ 5) \times 10^{-3}$		
4	ніа4	07°± 025	$(1 6 \pm 1 2) \times 10^{-2}$	04 <u>±</u> 02	17 9 <u>+</u> 12 8
5	HIA5	14 <u>+</u> 01	$(20\pm 6) \times 10^{3}$	11 _± 01	2 3 <u>+</u> 7

Table 4 11 Comparison of dhkl values of aluminium with those obtained from SAD's of Glass System A

sl No	(hkl)	d _{hkl} (A1)	hkl (Calculated)					
		(ASTM)	A1	A2	A3	A4	A5	
1	111	2 34	_	2 34	2 34	2 34	2 34	
2	200	2 02	p=0	2 02	2 03	2 0 2	2 03	
3	220	1 43	-	1 42	1 42	1 42	1 43	
4	311	1 22	-	1 21	1 22	1 21	1 22	

F At

4 2 6 2 IA Glass System 🛭

Figs 4 43, 4 4° 4 47, 4 49 and 4 51 represent the typical microstructure of glasses IA1, IA2, IA3, I.4 and IA5 respectively Corresponding SAD's are shown in figures 4 44, 4 46, 4 48, 4 50 and 4 52 respectively. It is evident that IA glass system consists of two phases. The darker phase (\mathcal{L}) is the silver rich phase which shows broken interconnectivity. The lighter phase (\mathcal{L}) is interconnected through out the glass matrix and has less amount of silver. The average width of \mathcal{L} and \mathcal{L} phases denoted by \mathcal{L} and \mathcal{L} are given in Table 4 12.

The rings observed in SAD's of IA2, IA3, IA4 and IA5 confirm the presence of aluminium metal dispersion. Comparison of dhkl values (ASTM) of aluminium with those calculated from SAD's of In glass system is shown in Table 4 13

4 2 6 3 HIA Glass System

Figs 453, 455, 457, 459 and 461 give the representative microstructures of AIA1, AIA2, HIA3, HIA4 and HIA5 respectively while Figs 454, 456, 458, 460 and 462 are corresponding SAD's The rings in SAD's of HIA1, HIA2, HIA3, HIA4 and HIA5 have been analysed and summarised in Table 414. The calculated dhkl values for these SAD's have been compared to dhkl (ASTM) values corresponding to silver and aluminium metal. As it is not possible to resolve the difference in dhkl of silver and aluminium by SAD's the presence of faint rings in SAD of

Fig 433 TEM micrograph of glass A1

Fig 435 TEM micrograph of glass A2 Fig 436 SAD of glass A2

Fig 437 TEM micrograph of glass A3 Fig 438 SAD of glass A3

TEM micrograph of glass +4 4 3 9

TEM micrograph of glass A5 Fig 442 SAD of glass A5

TEM micrograph of glass 1A1 4 43 Eig

444 SAD of glass IA1 Fig

F 1 +51 TEM micrograph of

Fig 4 33 TEM m cragraph of gite the

11. TEm nicrograph

able 4 12 Widths of the interconnected phases in IA Glass system

Sl No	Glass	Wy (A) (Phase with broken interconnectivity)	Wg (A') (Interconnected Phase)	WB /WK
1	IA1	275	85	31
2	142	435	402	9 2
3	IA3	251	135	54
4	IA4	3°6	115	34
5	IA5	275	263	96

Table 113 Comparison of dhil values of aluminium with those obtained from SAD's of Glass System IA

sl No	(hk])	d _{hkl} (A1)	d _{hkl} (Calculated)					10-10
		(ASTM)	IA1	IA2	IA3	IA4	IA5	Regul (Probagily and
1	111	2 34		2 35	2 34	2 35	2 34	
2	200	2 02	-	2 03	2 0 2	2 03	2 0 2	
3	220	1 43	-	1 42	1 42	1 43	1 42	
1	311	1 22	_	1 21	1 22	1 22	1 21	
1								

HI-1, imply that some silver ions are reduced to their atomic state

From the micrographs it is evident that the microstructure of HIA glass system is diphasic. The darker regions containing high amount of silver denote the $_{\infty}$ phase while the lighter phase ($_{13}$) has less amount of silver. There are indications as shown by arrows in the micrographs as compared to microstructure of IA glass system that links have formed between the disjointed portions of the $_{\infty}$ phase so as to make a completely interconnected network of $_{\infty}$ phase. Thus in HIA glass system both $_{\infty}$ and $_{\beta}$ phases are interconnected. The average width ($_{\omega}$) and ($_{\omega}$) for $_{\infty}$ and $_{\beta}$ phases in HIA glass system are summarised in Table 4–15

4.3-Discussion

As seen from table 4 5, maximum value of Tg is for 4 4 while minimum is for 4 2 Small addition of aluminium powder (5%) in 4 3, shows phase separation while 4 4 with no aluminium is a single phased system. Darker portions of micrograph for 4 4 correspond to aluminium rich phase. It is most likely that openness of the microstructure which increases by the addition of small amount of aluminium as is the case with 4 4 due to the separation is responsible for lower value of Tg for 4 4 as compared to that of 4 5.

Further addition of aluminium increases Tg as is evident or the compositions A_3 , A_1 and A_5 This is explainable in

Table 4 14 Comparison of $^{
m d}_{
m hkl}$ values of aluminium and silver with those obtained from SAD's of Glass System In

sl	(hkl)	d _{hkl} (ASTM),		d _{hkl} (Calculated)		An an analysis distributed		
Νo		Ag	Al	'HIA1	HIA2		HIA4	I _F 5
1	111	2 36	2 34	2 3 2	2 35	2 35	2 34	2 3 6
2	200	2 04	2 02	2 0 2	2 03	2 02	2 0 2	2 01
3	220	1 44	1 43	1 43	1 43	1 43	1 44	1 43
4	311	1 23	1 22	1 21	1 23	1 22	1 22	1 21

Table 4 15 Microstructural features of Glass System HI,

Sl No	Glass	W _{od} (Å)	AB (A)	
1	HIA1	1 25	140	
2	HIA2	1 69	502	
3	HIA3	182	69	
4	HIA4	357	415	
5	HIA5	78	112	

terms of an increase of alumina content in the glass due to oxidation of aluminium particles during glass melting and fiberisation process. Aluminium, during melting of the glass is oxidised partially, thereby, increasing alumina content in the glass. As alumina is a network former and its action in glass is that of stabilisation [Rawson 1984]/to its inclusion in silica network, the viscosity and Tg of these glasses are bound to be higher than that for A_1 or A_2 . The anomalous increase of Tg for A_4 as compared to A_3 or A_5 may be understood in terms of their microstructural features. Presence of larger aluminium particulates in A_4 as compared to A_3 and A_5 and lesser uniformity of distribution of the two phases are the most likely reasons for this variation of Tg

In case of A glass system for A₁ and A₂ in the entire temperature range of 20°C to 330 C, conduction is due to migration of sodium ions For A₃, A₄ and A₅, two mechanisms for conduction are operative. In the temperature range of 20°C to 110°C, it is the electron-tunnelling between the aluminium islands dispersed in the glass matrix. The activation energies of electron tunnelling as shown in Table 4.8 are of the same order as those, reported in the literature (Section 1.2.1.3). As evident from the equation (1.18) the activation energy for formation of a charged pair of grains is a function of the ratio. s/d where, d is the particle diameter and s is the interparticle separation. The variation of s/d reflecting morphological characteristics of A₃,

 $_4$ and $_5$, is manifest in the trend of ϱ_e as summarised in able 4.8. The pre-exponential factor, too, reflects the same echanism

For A_3 , A_4 and A_5 in the temperature range of 110°C to

30 C, the mode of conduction is migration of sodium ions. The ctivation energies and pre-exponential factors for glass systems , for ionic migration are summarised in $T_able\ 4\ 7$ Highest ctivation energy ($Q_{
m T}$)is 77eV for A1 while the minimum is 56 eV or A₂ Further increase of Al concentration, increases the value f Ω_{T} as compared to that of A2 This trend is similar as obtained or Tg Phase separation of aluminium rich phase in A 2 helps to educe the value of $\Omega_{
m T}$ Both aluminium rich and aluminium deplected hases will have sodium ions, it is most likely that both the hases will be responsible for conduction in proportion to the mount of sodium ions present within them. The pre-exponential actor for A_1 is three orders of magnitude less than that for A_2 his is ecpected due to change of charge carrier concentration(N) nd average distance between adjacent sites (R) by phase separation rom equation (3 9) such a change will give rise to the observed rend of the pre-exponential factor The variation of activation hergies and pre-exponential factors for A2, A4 and A5 shows the ple played by increasing amount of alumina due to partial xidation of aluminium particles during glass melting

In IA glass system the conduction is due to migration of ilver ions. The IA glass system shows Ω_{T} to lie in the range of

76 eV to 5 6eV For IA₁, IA₂ and IA₃, activation energies are almost identical (50 eV) Q_T for IA, is maximum being equal to 56 eV while that for IA₅ is minimum being equal to 46 eV. The pre-exponential factor P_{O1} varies in the range of 83 x10 $^{-5}$ to 12 x 10 $^{-5}$ Q CmK $^{-1}$. The maximum value is for IA₅ while minimum for IA₂. These features may be explained in terms of the two phase microstructure of IA glass system.

In I' glass system the silver rich phase (\mathcal{A}) has broken interconnectivity while β phase having less amount of silver is thoroughly interconnected. Findently β phase controls the electrical conductivity. The variation of ρ_{OT} for A_1 and A_2 implies that carrier concentration in β phase is about 3 ρ of that is the Δ phase, as explained in Section 3.3 for A_3 and A_4 in A_4 espectively). This implies absence of any drastic structural change brought about by the ion-exchange treatment.

The comparison of $\rho_{\rm OT}$ values for $^{\rm A}_{\rm 2}$, $^{\rm A}_{\rm 3}$, A $^{\rm A}_{\rm 5}$ with those of IA $_{\rm 2}$, IA $_{\rm 3}$, IA $_{\rm 4}$, IA $_{\rm 5}$ respectively suggests that the presence of aluminium has a crucial effect on the average distance between adjacent sites (R) in ion exchanged samples. The changes incurred in the values of R, are reflected in the variation of pre-exponential factors of these glasses. The maximum effect is observed in case of IA $_{\rm 2}$. It is most likely that drastic structural changes take place during ion-exchange of A $_{\rm 2}$ and A5 samples to form IA $_{\rm 2}$ and IA $_{\rm 5}$ respectively

for A $_3$ and A $_4$ respectively, it is inferred that ion-exchange does not change the relative distribution of carrier commentration in aluminium rich and aluminium depleted phases. As is evident from table 4 12 $\frac{\omega \beta}{\omega \kappa} \simeq 1$ for IA $_2$ and IA $_5$ while for IA $_3$ and IA $_4$ this ratio is $\frac{\omega}{\kappa}$ 5

As mentioned in section 4 2 5 2, under the influence of an optimum combination of E_C and T_C , IA glass system switches to form HIA glass system, characterised by very low activation energies as is evident from Table 4 10. It is remarkable that HIA3 has almost zero activation energy. Switching of IA to HIA glass system is a diffusion controlled phenomenon, continuous links are formed among the disjointed portions of $\mathcal L$ phase by diffusion of silver ions from $\mathcal L$ phase under the influence of E_C and E_C to E_C phase. This interconnection of E_C phase induces high electrical conductivity to the glass system. High mobility of silver ions and relatively open structure of E_C phase as compared to E_C phase are responsible for very low activation energy for the HIA glass system.

Presence of aluminium particles have improved the conductivity of glass in its high conducting state. This may be explained on the basis of microstructural features brought about by the presence of aluminium particles. As mentioned above, during melting of glasses, aluminium particles are partially oxidised to form alumina. This alumina most likely forms a

ribbon type, three dimentional network and provides a continuous bath for silver ions to move along it as alumina is four coordinated in the silica metwork [Doremus 1984]

E_C decreases with increasing T_C. This is natural for any diffusion controlled phenomenon. It is expected that electric field causes directional diffusion of silver ions from // phase to β phase so as to form continuous links between disjointed fortion of the / phase as δ, phase contains almost all (97%) of silver ions present, once these links are formed, the conductivity improves by many order of magnitude.

From the present investigation it has been found that netal-glass microcomposites having aluminium as metal phase may be prepared by directly melting aluminium powder with the glass patch. Glass fibres may be drawn from such microcomposites. The presence of aluminium has a significant effect on the conductivity of base glass. When added in smaller portion (5%) it lowers the activation energy of sodium ion migration and improves the conductivity. When aluminium is present in more than 5 mol %, electron-cunnelling is the mechanism of charge conduction in the temperature range of 20°C to 110 C. Above this temperature sodium ion migration is the major mode of conduction.

It has been further established that after ion-exchanging of those glas fibres, a new set of microcomposites having agh concentration of silver ions may be prepared. By an

stimum combination of ${ t E}_{ t C}$ and ${ t I}_{ t C}$ a desired morphology is created the LA glass system to form HIA glass system resulting an tremely high values of conductivity The activation energy id conductivity values of IA and HIA glass systems compare well FIC's as mentioned in Table 1 5 th those Thus for the first mc a new class of FIC material has been prepared from a glasstal microcomposite The most significant result of the present rk is the feasibility of HII, with almost negligible activation lergy and extremely high conductivity of 3 \times 10⁻¹ (Ohm Cm). ie other basic features of IA and HIA glass system are that mey are silich besed and are not derived from AgI The maximum lue of total silver content in these systems is about 29 mol # ily Because of their unique features, IA and HI; glass systems ve enormous potential for futuristic applications in energy **Vices**

Mechanical Properties of Glass Fibres Containing Aluminium Particles 5 1 Introduction

Glass fibres are characterized by high strength and superior modulus values as compared to bulk glasses. This unique combination of various mechanical properties makes them as a very useful group of strength giving materials. The latter are used widely as structural composites in different military and civilian applications. In case of optical fibres too, alongwith other specific optical properties, the strength of optical fibre is a critical parameter which ultimately decides its limitation for any practical application.

The study of metal-glass composites has become very significant in recent years because of the technological importance of these materials [Abeles B et al 1975, Granqvist C G and Buhrman R A 1976] These composites have been developed through various techniques such as by r f sputtering a suitable composite metal-insulator target to a suitable substrate, ion-exchange followed by a reduction treatment [Chakravorty D 1974, Chakravorty D et al 1975], by melting an organo-metallic compound in the glass batch [Datta S and Chakravorty D, 1983] and by melting a suitable choice of mixtures of oxides [Chakravorty D et al 1977, Chakravorty et al 1979] In photo sensitive glasses fine dispersions of gold and silver granules have been obtained by nucleation induced by UV irradiation followed by a suitable

heat treatment (Smithard M A and Dupreer 1972)

The mechanical properties of such composite systems have been found to be very promising Aluminium particulates have been shown to increase the strength of bulk glass 64 times while nickel reduces the strength (ristic V D et al 1981, Stephanie C Kunz 1983, Kristic V D and Nicholson P S 1983) mechanism for the toughening of brittle matrices with ductile particles has been proposed (Kristic V D 1983)

Various techniques have been developed for strengthening qlasses (La Course 1972) This includes microcrack healing (Wiederhorn 1970) etching of glass surface by HF (Ryabov and Kupfer 1970) or etching by steam (Ryabor et al 1972), peripheral clamping (Markov and Kopylov 1970), thermal tempering (Robert Gardon 1980) and chemical strengthening (RF Bartholomew and HM Garfinkel 1980)

The present investigations have been envisaged to incorporate metal particles in glass matrix in fibre form i e development of glass metal composite fibres. As various metallic species have shown to improve the mechanical properties of the glasses in bulk form, it is interesting to know whether a similar trend persists when the micro-glass metal composites are drawn in the fibre form

5 2 Results

The composition and density of glasses which have been used in the present study are shown in Table 4.1 The initial

particle distribution of aluminium powder incorporated in the glass matrix has been given in Table 4 2. These glasses have been prepared as described in section 4 2.1. The fiberisation parameters of these glasses are included in Table 4.3. Both sets of glass fibres viz fibres collected in situ in the fibre drawing process, being referred to as virgin fibres and those collected from the drum, being referred to as non-virgin fibres have been used for mechanical characterisation. Sets of virgin and non-virgin samples have been prepared as described in section 2.10.1

For testing of fibres on INSTRON, samples are prepared as described in section 2 10 2 Cross head speed has been adjusted to 05Cm/minute Diameter of fibres have been measured by Accutron (section 2 9) an electronic comparator Load cell for measuring load on the fibres has a range of 0-50 gms. Five sets of glass fibres have been used for the present study. It includes a set of virgin fibre samples of glasses A1, A2 and A4 and another set of non virgin fibres of glasses A1 and A2. The chart speed has been fixed to 10 Cm/minute.

5 2 1 Strength(S) strain(e) and young modulus (E) of virgin and non-virgin glass fibres

Observed strength $(\mathbf{S_i})$ for ith specimen is calculated by equation (2 22) while strain by equation (2 24). The load $(\mathbf{P_1})$ and extension $(\mathbf{x_1})$ corresponding to fracture are determined by x-y chart recorder attached to INSTRON such that y axis, calibrated to load, and connected to the load cell provides value of $\mathbf{P_i}$ while x-axis monitoring displacement by cross head movement gives values of $\mathbf{x_i}$

For each measurement, youngs modulus has been calculated by equation (2 25) and in a given set of such measurements, wide scatter in the values of E_1 are found and youngs' modulus for a given glass fibre is obtained by the average of such E, 's as given by equation (2 26) As proposed in section 2 10 2, a better estimate of young s modulus is obtained by regression of stress versus strain by a straight line passing through origin Figures 5 1, 5 2 and 5 3 show this regression analysis for virgin glass fibres A1, A2 and A4 respectively Non-virgin sample set of A1 and A2 have been similarly analysed in figures 5 4 and 5 5 respectively The values of E_R The estimator of young's modulus as obtained by regression analysis and $\overline{\mathbf{E}}$, the estimator of young's modulus as obtained by equation (2 26) are summarised in Table 5 1 Prefixes of V and NV are being used to denote virgin and nonvirgin state of fibres dE and dEp denote the variance of E and Ep and are measure of scatter

The observed diameters (D) of fibres in each set show a distribution Figures 5 6, 5 8, 5 10, 5 12 and 5 14 represent the histograms of observed diameters of VA1, VA2, VA4, NVA1 and NVA2 respectively. The observed strength(S) as calculated by equation (2 22) for each set has been plotted as histogram so as to represent distribution of strength values. Figures 5 16, 5 18, 5 20, 5 22 and 5 24 exhibit the histograms of observed strength(S) for VA1, VA2, VA3, NVA1 and NVA2 respectively.

Corresponding to each set of observed strength(S) values, another set of strength, referred to as calculated

Fig 51 Regression of strength(S) with strain(e) for virgin glassfibres (A1)

The second of th

Fig. 52 Regression of strength (S) with strain (e) for virgin glass fibres (A2)

Secretary as a secretary of the second

Fig 53 Regression of strength (S) with strain (e) for virgin glass fibres (A4)

Fig 54Regression of strength(S) with strain(e) for non-virgin glass fibres (A1)

To the

ふとが、たれて、直面であるといるなどであるとは事を持ちてあるなるをある

李 安 帝 是

Fig 5 5 Regression of strength (S) with strain (e) for non virgin glass fibres (A2)

Calculated diameter Dc

Fig 57 Diameter histogram for virginglass fibres (A1)

事子をなるようとう

Diameter histogram for virgin glass fibres(A2) Fig 58

はいれている はことの 動かるあるとれ

De Cole mare

Fig 511 Diameter histogram for virgin glass fibres (A4)

D Observed diameter

Fig 513 Diameter histogram for non-virgin glass fibres (A1)

Fig 515 Diameter histogram for non-virgin glass fibres(A2)

D Observed diameter

Fig 514 Diameter histogram for non-virgin glass fibres (A2)

,

I FIT WELL A

THE R. LEWIS CO.

Fig 517 Strength histogram for virgin glass fibres (A1)

Fig 516 Strenc h histogram for virgin glass fibres (A1)

THE REPORT OF THE PARTY OF THE

Fig 519 Strength histogram for virgin glass fibres (A2)

Fig 518 Strength histogram for virgin glass fibres (A2)

Fig 523 Strength histogram for non-virgin glass fibres (A1)

Fig 522 Strength histogram for non-virgin glass fibres (At)

大きなない こうしょう はんかん かんしん かんかん

N. W.

Fig 5 25 Strength histogram for non-v rgin glass fibres (A2)

Fig 524 Strength histogram for non-virgin gluss fibres (AZ)

THE PROPERTY OF THE PROPERTY O

strength (S_c) may be obtained by equation $(5\ 1\ by\ using\ equation$ $(2\ 27)$

$$S_{C_1} = E_R e_1 \tag{5.1}$$

where Sc_1 is the calculated strength for ith specimen in a given set which is characterised by young modulus E_R , as obtained by regression of stress versus strain and e_1 is the strain for that specimen Figures 5 17, 5 19, 5 21, 5 23 and 5 25 show the histograms of Sc for VA1, VA2, VA4, NVA1, NVA2 respectively Significance of S_C will be discussed in section 5 2 Corresponding to each set of Sc, a new set of calculated diameters, hereby referred as D_C is generated by equation (5 2)

$$D_{C_1} = D_1 \qquad \int \frac{S_1}{S_{C_1}}$$
 (5 2)

where ith subscript denotes values corresponding to ith sample for a given set

The implications of set of $D_{\rm C}$ will be discussed in section 5 3 Figures 5 7, 5 9, 5 11, 5 13 and 5 15 represent the histograms of calculated diameters $D_{\rm C}$ for VA1, VA2, VA4, NVA1 and NVA2 respectively

5 2 2 Strength and Weibull Parameters

As described in section 1 1 2 2, strength of glass fibres is dictated by the flaws present on the surface of glass fibres

The flaw size has a distribution represented by weibull's distribution as given by equation (1 3). The scaling parameter S_{O} and shape parameter b of this distribution, corresponding to a given set of strength data are obtained by graphical regression technique (GRE) (section 2 10 6 1) and MLE technique (section 2 10 6 2). Figures 5 26, 5 28, 5 30, 5 32 and 5 34 represent regression analysis for weibull s parameters for observed strength(s) corresponding to VA1, VA2, VA4, NVA1, and NVA2 respectively. Similar analysis for calculated strength (S_{C}) for VA1, VA2, VA4, NVA1 and NVA2 have been given in figures 5 27, 5 29, 5 31, 5 33 and 5 35 respectively. Table 5 2 summarises the values of weibull's parameters corresponding to observed strength(s) and calculated strength S_{C} for virgin and non-virgin samples.

Table 5 3 summarises the results of weibull analysis by MLE Technique The analysis has been performed for both observed strength S and Calculated strength $S_{\mathbf{C}}$

一大 中華 人 一大學 人工 在一次 不管的 中 教 在日本的

Comparison of weibull's distribution as obtained by regression technique and MLE technique with the experimental data has been shown in figures 5 36, 5 38, 5 40, 5 42 and 5 44 for VA1, VA2, VA4, NVA1 and NVA2 respectively Similar comparison of weibull's distributions corresponding to calculated strength S_c has been given in figures 5 37, 5 39, 5 41, 5 43 and 5 45 for VA1, VA2, VA4, NVA1 and NVA2 respectively

Relative variation of failure probability P with S and ϵ_c for virgin and non-virgin samples as evaluated by regression

Table 5 1 Young's modulus estimators for virgin and non-virgin glass fibres

SlNo	Set E (MPa)	dF(MPa)	F _R (MPa)	DE _R (MPa)
1	VA1 295 x 10 ⁴	1 38 x 10 ⁴	4 58 x 10 ⁴	2 28 x 10 ⁴
2	$VA2 2 45 \times 10^4$	0 81 x 10 ⁴	5 52 x 10 ⁴	1 82 x 10 ⁴
3	$VA4 2 37 x 10^4$	0 82 x 10 ⁴	8 36 x 10 ⁴	2 31 x 10 ⁴
4	NVA1 3 34 \times 10 4	1 82 x 10 ⁴	7 48 x 10 ⁴	3 36 x 10 ⁴
5	NVA2 1 90 x 10 ⁴	0 96 x 10 ⁴	5 92 x 10 ⁴	0 74 x 10 ⁴

Table 5.2 Weibull's parameters by GRE Technique

Sl.No	Set	,	S	s _c		
		b	, S _O (MPa)	b ,	S _O (MPa)	
1	VA1	1 69	89 2	1 55	734	
2	VA2	2 94	719	3 02	666	
3	VA4	3 50	681	4 65	666	
4	NVA1	2 04	953	2 29	897	
	NVA2	1 82	⁵ 62	1 92	5 26	

Fig 527Regression analysis of calculated strength(Sc) with failure probability(P) for virgin glass fibres(A1)

Fig 526 Regression analysis of observed strength (S) with failure probability (P) for virgin glass fibres(A1)

Fig 529Regression analysis of calculated strength (Sc) with failure probability (P) for virgin glass fibres (A2)

Fig 528 Regression analysis of observed strength(5) with failure probability(P) for virgin glass fibres (A2)

Fig 531 Regression analysis of calculated strength (Sc) with failure probability (P) for virgin glass fibres (A4)

Fig 530 Regression analysis of observed strength(5) with failure probability(P) for virgin glass fibres (A4)

.

and the

ř

ŧ

Fig 533 Regression analysis of calculated strength (Sc) with failure probability (P) for non virgin glass fibres (A1)

Fig 532Regression analysis of observed strength 5) with failure probability (P) for non-virgin glass "lores(A1)

Fig 535Regression analysis of calculated strength/5c, with failure probability(P) for non-virgin glass fibre_(A2)

Fig 534 Regression analysis of observed strength (S) with failure probability (P) for nor virgin glass fibres (A2)

Fig 537 Variation of failure probability (P) with calculated strength (Sc) for virgin glass fibres (A1)

Fig-536Variation of failure probability (P) with observed strength (S) for virgin glass fibres (A1)

Fig 539 Variation of failure probability (P) with calculated strength (Sc) for virgin glass fibres (A2)

Fig 538 Variation of failure probability (P) with observed strength (S) for virgin glass fibres(A2)

Fig 541 Variation of failure probability (P) with calculated - strength (Sc) for virgin glass fibres (A4)

Fig 540Variation of failure probability(P) with observed strength(S) for virgin glass fibres(A4)

Fig 543 Variation of failure probability (P) with calculated strength (Sc) for non-virgin glass fibres (A1)

Fig 542 Variation of failure probability (P) with observed strength (S) for non-virgin glass fibres (A1)

Fig 5 45 Variation of failure probability(p) with calculated—strength(Sc) for non-virgin glass fibres(A2)

Fig 5 44Variation of failure probability(P) with strength (S) for non-virgin glass fibres (A2)

Fig:547Comparison of failure probability distributions of observed strength (S) and calculated strength (Sc) for virgin (A1, A2 A4) and non-virgin glass fibres (A1 A2) (MLE)

Fig:546 Comparison of failure probability distributions of observed strength (S) and calculated strength (Sc) for Virgin (A1, A2, A4) and non-virgin glass fibres (A1, A2) (GRE).

Fig.547Comparison of failure probability distributions of observed strength (S) and calculated strength (Sc) for virgin (A1, A2, A4) and non-virgin glass fibres (A1, A2) (MLE).

Fig:546 Comparison of failure probability definitions of observed strength (5) and calculated strength (5c) for virgin (A1, A2, A4) and non-virgin glass fibres (A1, 10) 13RE)

technique and MLE technique are shown in figures 5.46 and 5.47 respectively.

As shown in section 2.10.6.2 rean (\bar{S}) and variance (Var (S)) of Weibull's distribution are given by equations (2.58) and (2.59) respectively while coefficient of variation ($V_{\rm p}$) is given by equation (2.60).

The values of mean (\bar{S} and \bar{S}_{C}) deviation in rean given by square root of variance ($d\bar{S}$ and $d\bar{S}_{C}$) and coefficient of variance (V_{p}) for both S and S_C corresponding to Weibull's parameters as obtained by regression and MLE technique for both virgin and non-virgin samples are summarised in Table 5.4 and Table 5.5.

Similar analysis has been performed for both sets of S and $S_{\rm C}$ and corresponding statistical parameters have been found out directly by equations 2.30 and 2.31. These are summarised in Table 5.6.

5.2.3 Fracture Surface:

Glass fibres have been subjected to fracture surface studies. Samples have been prepared and characterised by scanning microscope (ISI-60) as described in section 2.10.7. Representative fracture surfaces of Al, A2 are shown in figures 5.48 and 5.49 respectively. Four typical fracture surfaces of A4 are shown in figures 5.50, 5.51, 5.52 and 5.53 respectively.

One remarkable feature of A4 fibres is the presence of of diameters ranging from 1 µm to 1.5 µm. Such holes are

Table 5.3 : Weibull's parameters by MLE Technique.

- Professor Andrews Control of the C

slNo	• Set	S	6 (10)	S _C		
		b ;	S _o (MPa)	;	S _C (MPa)	
1	VA1	2.16	85C	1.º2	714	
2	VA2	3.51	708	2.95	617	
3	VA4	3 •00	688	5.59	632	
4	NVA1	2.34	947	2.44	835	
5	NVA2	2.11	560	1.36	611	

Table 5.4 : Mean, dispersion and coefficient of variation for S and S_C for both virgin and non-virgin glass fibres (GRE Technique).

Si-No · Set		; S			S _c		
		S(MPa)	dS (MPa)	v _p (s)	S _C (MPa)	dŠ _c (M₽a)	V _{p(S_C)}
1	VA1	796	483	•61	661	438	•66
2	VA2	642	237	•37	595	21.4	•36
3	VA4	61 2	196	•32	608	152	.25
4	NVA1	844	433	•51	795	370	•47
5	NVA 2	500	285	.57	467	253	.54

Table 5.5 : Mean, dispersion and coefficient of variation for S and $S_{\rm C}$ for both virgin and non-virgin glass fibres (MLE Technique).

	Cat	; S ;			S _C		
S 1. No	. Set	S(MPa)	dS(MP	al V _{p(3)}	S _c (MFa,	; dSoli Pa,	; 'p'sc,
1	VA1	753	365	.49	644	433	•67
2	VA 2	637	204	•32	551	204	•37
3	VA4	615	221	•36	584	1 21	• 21
4	NVA1	8 3 9	383	.46	741	3 24	-44
5	NVA2	496	245	•50	543	304	•56

Table $^{5}.6$: Mean, dispersion and coefficient of variation for both S and $S_{\rm C}$ for both virgin and non virgin glass fibres

SL-No.	Set	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	_ S (MP	s a);d\$ (MPa);	V _p (s)	S _c (MPa)	dS _c (MPa)	Vp(Sc)
1	VA1		766	360	•47	65 2	439	•67
2	VA2		637	211	•33	548	21.4	•39
3	VA4		61 6	21 2	•34	582	137	. 24
4	nva1		872	474	.54	788	350	.44
5	nva 2		498	248	•50	544	302	•56

Fig 548 Fracture surface of A1 glass - Fig 549 Fracture surface of A1 glass fibre (SEM).

fibre (SEM).

Fracture surface of A4 glassfore (SEM)

Fig 551 Fracture surface 1 A. fibre (SEM)

tibre (SEM)

Fig. 5.2 Fracture surface of A4 glass- Fig. 5.53 Fracture surface of A. fibre / SFH1

not observed in case of A1 and A2. Another interesting feature of fracture surfaces is the increasing frequencies with which the fracture path is observed to change as the aluminium content is increased. Thus in A4 in nearly all the cases a part of fracture surface is nearly perpendicular to the tensile axis while remaining part is quite parallel to it. This is most clearly indicated in figures 5.50, 5.51 and 5.53 by arrows.

5.2.4 Susceptibility to Chemical Attack:

When glass fibres are treated with 1% HF solution, they show a marked difference in chemical susceptibility. Figures 5.54, 5.55 and 5.56 show typical scanning micrographs of A1, A2 and A4 fibres respectively when they have been treated with HF solution for 20 seconds.

For Al fibres there is a severe, wide spread attack by acid while the attack on A2 fibres may be described as 'inter granular' kind in which region between blocks of material are attacked preferably. A4 fibre are found to be the least affected. These fibres are still largely intact. They however show only a light nearly uniform etching.

5.3 Discussion:

The young's modulus for a given glass fibre may be obtained by two methods as described in section 5.2.1. The two estimators \bar{E} and E_R may be found out. This is obvious from Table 5.1 that E_R is always greater than \bar{E} . The value of $\frac{dE_R}{E}$ is found to be less than the value of $\frac{d\bar{E}}{E}$ in almost all the cases. This implies

Fig 555 SEM micrograph of etched A2 glass fibres.

(a) Fig. 5.56 SEM micrograph of etched A4 glass tibres.

that dispersion of $\mathbf{E}_{\mathbf{R}}$ is smaller than that of $\bar{\mathbf{E}}$. It is proposed that $\mathbf{E}_{\,\mathbf{R}}$ is a better estimator of young's modulus than $\mathbf{\bar{E}}$ for a given set of glass fibres. The reason for such a propostion is that regression of strength with strain for a given set of data provides a linear relationship which effectively represents the hypothetical stress versus strain curve for the given material. Thus slope of this line ought to represent the true young's modulus of the material. There is no similar logic based upon the physics of the problem in support of the calculated E which thus merely represents a statistical average of some parameter having dimensions similar to that of young's modulus. The further confirmation to above conclusion comes from the effect of the presence of aluminium particle on the young's modulus of glass fibres. While there is decrease in E with increase in aluminium percentage correspondingly there is a definite increasing trend of E_{R} . The latter behaviour is expected for any such composite material.

The large scatter in the observed strength arises from two sources. One is the surface flaws which arise due to various(a) intrinsic reasons and (b) processing effects. The other results from the errors made during strength measurement. The error arises predominantly from the diameter measurement made by an electronic comparator such as Accutron. Sometimes during sample preparation more than one fibre get stuck together which can not be resolved with naked eye. Only during fracture this gets resolved. Thus various procedural steps bring in extraneous errors in measure-

ments of strength and strain. The error involved in strain are insignificant while those in strength(S) are substantial. Thus distribution of S which has been referred to as observed strength really does not represent the true set of strenth data for a given glass fibre. So a better representative picture is obtained from parameter S_c . This is so because regression minimises in E_R the effect of extremities of data points in stress strain plane. As E_R expresses the best estimate of young's modulus where effect of extraneous errors in strength S and strain e has been averaged out and as the error in e is insignificant as compared to that in Shence S_c . Calculated by equation 5.1 is the more appropriate representatives of strength distribution reflecting the actual surface flaw distribution of glass fibres from S and S_c histograms it is clear that strength distribution becomes sharper in case of S_c than that for S_c .

Corresponding to $S_{\rm c}$ a new set of diameters $D_{\rm c}$ is found by equation 5.2. $D_{\rm c}$ represents the actual and effective distribution of diameters in the set of fibres tested, devoid of any extraneous error incroporated in diameter measurement.

Weibull's parameters may be determined by both graphical regression technique (GRE) and MLE technique. As obvious from the failure probability distributions f_1 and f_2 corresponding to parameters as obtained by GRE and MLE techniques respectively. Analysis with S gives values such that f_1 and f_2 invariably cross each other at some critical value of S being referred to as

 s^* . For $s < s^*$, $f_1 > f_2$ while for $s > s^*$, $f_1 < f_2$. Similar analysis of S_{C} provides a remarkable defference as compared to that of S_{\bullet} For S_{C} , $f_{1} < f_{2}$ in the entire range of S_{C} in almost all the cases except that of VA4 where f1 and f2 cross each other. Thus for same value of strength $S(> S^*)$ and Sc, MLE Technique provides estimators of b and S_0 such that probability of failure is higher than that predicted by GRE. This ensures a better estimate for mean strength for safer designing. Hence MLE technique should be preferable to GRE technique for estimating weibull's parameters. This is reflected in the mean value of strength which is invariably found to be less for MLE technique as compared to that for GRE technique, as seen in Tables 5.4 and 5.5. Another remarkable outcome of this analysis is that mean strength \bar{S}_{c} is found to be always less than mean strength \bar{S} as is evident from Tables 5.4, 5.5 and 5.6. The deviation $d\tilde{S}_{C}$ is always found to be less than dS in case of GRE, estimators (Table 5.4) and similar trend persists in most of the cases analysed by MLE technique (Table 5.5). Comparison of Tables 5.5 and 5.6 reveals that analysis done by the MLE technique provides mean strength values \bar{s} and \bar{s}_{c} and Vp(S) and Vp(Sc) which are almost equal to those obtained by simple arithmatic averaging of strength data. This further supports the superiority of MLE technique over GRE technique.

An increase in aluminium concentration in glass fibres results in the deterioration of observed strength (\bar{S}) in both virgin and non-virgin samples as is evident from Tables 5.4, 5.5 and 5.6. In case of \bar{S}_{C} , it is obvious from these tables that

minimum \overline{S}_{c} occurs for VA₂ while it increases marginally for VA₄. These **deservations** suggest that aluminium particulates act as inclusions or stress concentrators, thereby reducing the rean strength.

This feature is reflected in the fracture surface micrographs as described in section 5.23. The complex surface morphology arises because of complex stress distribution due to the presence of hole and surface flaws nearest to the hole. Such duplex fracture surface morphology is not observed in case of A1. In case of A2 it is observed occasionally but in A4 such morphology is always observed. Presence of such a characteristic fracture surface can be taken to indicate the presence of stress concentrator like a hole or a particle inside the fibre even though such a feature may not be directly observable.

Al particles are embedded in the fibre. These particles have either been dislodged during fracture process or they have caused the formation of small cylindrical cavities in the fibre during the fibre drawing process, so that particles may still be existing at the end of these cavities. In the latter case the holes represent a cross section through these cylindrical cavities.

The trend of \overline{S}_C suggests that aluminium presence even at .5% level introduces the microheterogenities which act as stress preentrators and reduce the strength when aluminium concentration wither increased to 7.5%, the \overline{S}_C improves from its corre-

sponding value for .5% though some holes are also present. Whether these holes arise because of bigger aluminium particle getting dislodged during testing or during fiberisation process, in either case further deterioration of strength is expected. This suggests that microheterogeneities produced at atomic scale are the most probable cause for the lowering of strength.

From the present study a new technique has been established to evaluate young's modulus based on strength-strain regression analysis. The observed strength(S) does not represent the true distribution of surface flaws but another variable S_c is a better representation of strength distribution. Weibull's distribution represents the strength of glass fibres. The Weibull's parameters may be evaluated by graphical regression technique (GRE) or by maximum likelihood estimation technique. The latter technique is preferable as discussed above.

Aluminium particles decrease the strength while they increas—the young's modulus of glass fibres. The microheterogeneities at atomic scale seem to be acting as stress concentrators. Bigger particles give rise to formation of holes whose diameters are of the order of a few microns. These give rise to formation of duplex fracture surfaces. Chemical susceptibility increases with increasing aluminium concentration.

Conclusion:

From the present investigations about electrical and mechanical behaviour of heterogeneous glass fibres, following conclusions are drawn.

- (1) Glass fibres may be drawn from silica based compositions with sodium molar concentration varying in the range of 10 to 30%. Further the glass-metal composite, formed by melting aluminium powder with the glass batch, may be fiberised to give composite glass fibres. The aluminium fraction may be varied in the range of 0 to 10 mol%.
- (2) Almost all of the sodium ions of these glasses may be replaced by silver by subjecting the glass fibres of such compositions to a sodium silver ion exchange treatment. This may be achieved by ion-exchanging the glass fibre specimens in a silver nitrate bath at 330°C for 36 hours.
- (3) A.C. and D.C. electrical conductivity measurements may be made on these glass fibres, using silver paint as non blocking electrodes. Glass fibres having no metal particulates show ionic conductivity in which sodium ions are the charge carriers. The resistivity level is quite high (\$\sim 10^9 Q Cm at room temperature. The activation energy is about .8 eV. Conductivity increases with increasing amount of sodium concentration.
- (4) Similar studies made on composite glass fibres reveal that higher concentration of aluminium in glass fibres (≥5 mol%)

increases the glass conductivity. The mechanism prevailing in lower temperature range is electron tunnelling while in higher temperature range (T> 120-C) ion migration predominates.

- (5) Phase separation is seen in most of these glasses. Phase separation has been found to influence the electrical behaviour of these glasses in a significant manner. Glass transition temperature is also found to be sensitive to phase separation.
- (6) Ion-exchanged glass fibres show an improvement by about two orders of magnitude in electrical conductivity as compared to that of the virgin fibres. The activation energy comes down to around .45eV. The maximum conductivity of 10⁻⁶ (ohm cm) ⁻¹ at room temperature may be achieved by the ion exchange process.
- (7) The charge carrier mechanism in ion-exchanged glass fibres is the migration of silver ions. The fraction of silver ions contributing to conduction mechanism are found to be of the order of 1%.
- (8) The microstructure of ion-exchanged glass fibres shows phase separation. The disjointed regions of silver rich phase are scattered in the interconnected second phase having less than 1% of total silver content present in the glass.

 It is this interconnected phase which is responsible for electrical conduction.

- (9) It has been established that an optimum combination of electric field and temperature brings a permanent microstructural change in ion-exchanged glass fibres. This results in an increase of conductivity by many order of magnitudes. These electric fields are found to be quite low of the order of 1 volt/cm. With increasing temperature the value of critical electric field which brings about this transformation from low conducting state to high conducting state decreases. The initial glass composition too influences this critical electric field.
- (10) The microstructural evidence suggests formation of links among the disjointed portions of silver rich phase under the combined influence of electric field and temperature. This makes silver ions, locked earlier in disjointed portion of silver rich phase, to move in the interconnected network of silver rich phase. Thus in high conducting state, it is the silver rich phase which predominantly contributes to silver ion migration.
- (11) The activation energies in the high conducting state are very small, in some cases they tend to be negligibly small becoming almost zero. The highest conductivity of the order of 10⁻² (ohm cm)⁻¹ may be achieved in this high conducting state.
- (12) The presence of aluminium particles further increases the conductivity of ion-exchanged samples. Maximum effect has

been found when aluminium is present in small amount (.5 mol%). It is shown to influence the ricrostructure considerably.

- (13) In high conducting state, aluminium particulates have a desirable effect. They further boost up the conductivity level. The value of conductivity is found to depend upon the amount of aluminium concentration in the ion exchanged glass fibres.
- (14) It is for the first time that such a high state of electrical conduction could be achieved characterised by almost negligible activation energies. Without aluminium particles, highest conductivity of 2.5 x 10⁻² (0 hm cm)⁻¹ has been achieved. Highest conductivity of 3 x 10⁻¹ (0 hm cm)⁻¹ has been acomplished in the case of 5 mol% of ion-exchanged fibres containing aluminium particulates.
- (15) Low value of activation energy and high value of conductivity at room temperature suggest that ion-exchanged glass fibres in both the states are most likely FIC. This further establishes a general route to prepare a family of new FIC from any silica based glass composition, viz. through the effect of sodium silver ion exchange on these glasses in their fibre form, followed by electric field induced morphological transformation.

Youngs modulus is found to increase with increasing aluminium concentration in the glass fibres. Strength invariably

decreases with increasing amount of all-inl-. This siggests that microheterogeneties at atomic scale caused by the presence of aluminium particles act as stress concentrators. The presence of bigger aluminium particles results in the formation of holes (.1-lum diameter). The corresion resistance increases with increasing aluminium arount.

- (17) A new technique to estimate Youngs rodulus for glass fibres has been proposed, based on regression of strength strain data. Better representative parameter of strength has been suggested.
- (18) Strength of glass fibres has been found to follow Weibull statistics. Weibull's parameters may be found out by GRE and MLE technique. The analysis suggests the superiority of MLE technique over GRE technique.

REFERENCES

- 1(a) Abeles, B., Shong P., Coutts M.D. and Arrey Adv. Phys., 24,407 1975)
 (b) Abeles B., and Gittleran J.I., Aprl. Opt. 15, 2327 (1976)
- 2. Litken J. and Mac Crone R.K. (Materials Science Recearch, Vol. 9 'Mass Transport Phenomena in Ceramics' eds, F.F. Cooper and A.H. Heuer: Plenum Press(1975, (I.Y.).
- 3. Allan W.B. 'Fibre Optics', Theory and Practice'Florum Fross, 247 (1973) (N.Y.).
- 4. Inderson R. and Mc Crone R.K, J. of Fon Cryst. Solids, Vol. 11, (112 (1974).
- Austin I.G. and Mott F.F. Adv. Phrs. 18, 41 (1969)
- 6. Facon F.R., Glass Inc. 49, 430-46, 494-9, 544-9 (1968).
- 7. Bartholomew R.F. and Garfinkel H.M. 'Chimical Stringthening of Glass' in Glass, Science and Technology (ed) D.R. Uhlrann and N.J. Kreidel (1980) Icadomic Fress (I.Y.).
- 8. Bartholomew R.F. and Garfinkel H.M. 'Non Crystalline Solids' (ed.) G.H. Frischat, 4⁵9-461 (1977). Trans. Tachn. Publ., Aedermannsdorf, (Switzerland).
- 9. Basu B., Maiti H.S. and Prul A. 1 Bull. Mater. Sci., 5 , 21 (1983)
- 10. Baynton P.L., Rawson H and Stanwarth, J.E. Trans. Electrochem. Soc. 104, 237-40 (1956).
- 11. Biefield R.M., Johnson R.T. and Banghman P.J., J. Electrochem. Soc., 125, 179 (1978) .
- 12. Blackman L.C. F., Proctor B.A., Smith J.W. and Taylor J.I., The Chartered Mechanical Engineer Jan. 45-51 (1977).
- 13. Borino F., Lazzari M., Leonardi A., Rivalta B. and Scrosati B., J. Sol. St. Chem., 20, 315 (1977).
- 14(a).Brungs, M.P. and Mc Cartnev E.R., Phys. Chem. Glasses 16, 44 (1975).
- 15. Bundy F.P. and Dunn K.J., J. Chem. Phrs. 71, 1550 (1979)
- 16. Burnett D.G. and Douglas R.V., Phys. Chim. Glasses 11, 125(1970).
- 17. Cahn, J.W., Trans. AIME 242, 166(1968).
- 18. Cahn J.W. and Hilliard J.E., J. Chem. Phys. 31, 688 (1959).
- 14.(b) Bottcher C.J.F. and Bordewijk, Theory of Electric 'blarisation Vol. I, II 2nd ed (Elsevier HY 1978).

- 19.(a). Chakravorty D. Appl. Prys. Lett. 24, 62 (1974,.
 19.(b)Chakravorty D., Bull. Mater. Sci. 6, (2, May, 193-203 (1984).
- 20. Chakravorty D. in'Preparation and Characterisation of Materials (eds.) J.M. Honig and C.N.R. Rac 515 (1931) Academic Press (N.Y.).
- 21. Chakravorty D., Bandvopadhvay A.K. and Nagasa V.K., J. Phys. D, 10, 2077 (1977).
- 22. Chakravorty D. Bhatnagar R and Sharma B., Mat. In Engineering, 2, (3) (1981).
- 23. Chakravorty D. and Chakrabarty S. J. Non-Cryst. Solids, 38,39, 295(1980).
- 24. Chakravorty D., Harnahalli A.R. and Kurar D., Phys. Status Solidi 51,275(1979a)
- 25. Chakravorty D., Keshavram B.M., Venkateswaran A., J. Mat. Sci. 14, 2991 (1979).
- 26. Chakravorty D. and Murthy C.S. J. Prys. D?, L162 (1975).
- 27. Chakravorty D., Shuttleworth A and Gaskell P.H. J. Mat. Sci., 10, 79 (1975).
- 28. Chakravorty D., Tiwarı A.N., Goel P.S. Phys. Chem. Glasses, 13, 91-93(1972).
- 29. Chandresekhar G.V. and Shafer W.M., Extended Abstracts Electrochem. Soc., 260 (1978), (Seattle: Washington)
- 30. Charles R.J. J. Am. Ceram. Soc. 49, 55-62(1966).
- 31. Charles R.J., J. Am. Ceram. Soc. 47, 559 (1964).
- 32. Charles R.J., J. Am. Ceram. Soc. 46, 235(1963).
- 33(a) Charles R.J., J. Appl. Phys. 32, 115, (1961).
- 33(b) Cohen (1951) 'Life Testing and Reliability Estimation',
- Kale B.X and Sinha S.K., New Delhi, Wiley Eastern (1986).

 34. Collins D.R., Schroder D.K., Sah C.T., Appl. Phys. Letters 8, 323-325(1966).
- 35. Compaan K. and Haven Y , Trans. Faraday Soc. 52, 786(1956).
- 36. Cooper A.R. and Krohn D.A., J. Am. Coram. Soc. 52, 665 (1969).
- 37. Das G.C. and Chakravorty D., J. Phys. D15, 2255 (1982).
- 38. Das G.C. and Chakravorty D. J. Appl. Phys. 51, 3896(1980).
- 19.(c) Chakravorty, D., Chattopadhyaya S., Datta S., Khan S.K. Sengupta K and Bahadur D, J. of Mater. Sc. Lett. 3, 461-3 (1984).

- 40 (a) Datta S., Chakravorty D., J. of Mat. Sci. Letters 2 229-31 (1983).
 40 (b) Denton E.P., Rawson H and Stanworth J.E. Nature, 173, 1080-1 (1954).
- 41. Dong. Hi Lee and Mc Pherson R., J. Mat. Sci. 15, 25 (1990)
- 42. Doreau M. and Robert G., Mater. Ros. Bull. 15, 1499 (1997).
- 43. Doremus J. Am. Ceram. Soc., 67, N(7) July (1984)
- 44. Doremus R.H. and Tomozawa M., J. of Non Cryst. Solids 14, 4, (1974).
- 45. Doremus R. H. Glass Science, John Wiley and Sons (N.Y.), 44 (1973)
- 46. Doremus R.H. JPhys. Chem. Glasses, 10, 28 (1969).
- 47. Doremus R.H. J. Electrochem. Soc. 115, 181(1968a).
- 48. Doremus R.H. J. Phys. Chem. 68, 2212 (1961).
- 49. Dozier A.W., Wilson L.K., Frieble E.J. and Kinser D.L., J. Am. Ceram. Soc. 55, 373 (1972).
- 50. Eakins W.J., Glass/Resin Interface, Patent Survey, Patent list and General Bibliography, D.C. Bell and Richardson Inc. Hazardville, Conn., Plastics Tech. Eval. Center, Picalinny Arsenal, Dover J.J., Plastics Rpt. 18 Sept. (1964).
- 51. Ernsberger F.M., Glass Ind. 47, 422-427, 481-487-542-545, (1966).
- 52. Eschard G. and Manley B.N., Acta Electron, 14, 19-39 (1971).
- 53. Evans A.M., Williamson J.P.H. and Glasser F.P., J. Mat. Sci. 15, 2325 (1980).
- 54. Evastropev K.K., Veksler G.I. and Kondrateva B.S. Dokl., Akad. Nauk. SSR, 215, 902(1974).
- 55. Frischart G.H., Ionic Diffusion in Oxide Glasses, Trans. Tech. Publ. Aeder Mannsdorf, Switzerland (1976).
- 56. Fritzsche H, Amorphous and Liquid Semi conductors, (ed.)
 J. Tauc, Plenum , Chapt. 5 , 221 (1974).

W.

57. Gardon R.'Thermal Temperang of glass' in Glass Science and Technology (ed.) D.R. Uhlmann and N.J. Krieidl , 145-213 (1980), Academic Press (N.Y.).

- 58. Garfinkel H.M., Membranes, Vol 1: Nordsorpic Systems and Models, (ed.) G. Eisenman, Dakker, 179-227 (1972, 47-7.
- 59. Garfinkel H.M., and King C.B. J. Am. Ceram. Soc. 53, 516 (1970).
- 6C. Garfinkel H.M. J.Chem. Phys., 73 1766-1773 1969,.
- 61. Glass A.M., Nasseu K and Hegram T.J., J. Appl. Phys. +9, 4800, (1978).
- 62. Glass A.M. and Massau K. J. Appl. Phys. 51, 3756 (1980).
- 63. Graf. J. and Polnert R , Lott Electron 16, 11-22 1973).
- 64. Granqvist C.G and Buhrran P.A., J. Appl. Phys. 47, 220 (1976).
- 65. Griffish 7.A., Phil Trans. R. Soc. A221, 163-199 (1920 .
- 66. Gossink R.G., Philips Res. Repts. Suprl., 3 (1971).
- 67. Gupta M.C. and Ruoff .L., J. Ppol. Phys. 19, 5880 (1978, .
- 68. Hagenmuller P., Levasseur A, Lucat C., Rosu J.M., and Villensuve G., Fast Ion Transport in Polids (eds), F. Vastishtia, G.K. Shenoy and J.N. Mundy 637 (1979) (North Halland, Elsevicu).
- 69. Hahnert M., Silikttechn, 22, 241-246 (1971).
- 70. Hamim R.M. and Uhlmann D.R., Phys. Chcm. Glasses, 11, 81 1973).
- 71. Haller W., Blackburn D.H., Wagstaff F.D. and C arles P.J., J. Am. Ceram. Soc. 53, 34 (1970).
- 72. Hammel J.J. and Ohlberg S.L., J. Aprl Phys., 36, 14:2 (1965).
- 73. Hashin AZ. and Shtrikman S, J. Mech. Phys. Solids 11(2), 127-140 (1963).
- 74. Haven Y. and Stevels J.M., Proc. Int. Congr. Glass
 4th , 343-317 (1957)., Imprimarie Chaix, 20 rus Bergene, Paris.
- 75. Haven Y. and Verkerk E. Phys. Chem. Glasses 6, 38 (1965).
- 76. Helfferich F., J. Phys. Ch.m. 55, 39 (1962).
- 77. Herous L., J. Appl. Phys. 29, 1639 (1953).

- 78. Nughes K. and Isard J.O. 'Phys. of Electrolytes' Vol.1 , (ed.) J.H. Hladic, 351-400 (1972) A.F. London.
- 78.(b) Hodge I.M., Ingram h.D. and West A.R., J. Electroanal Chem. 74, 125 (1976).

- 79. Irion M., Couzi M., Levesseur 1., Peau J.M., Eretrous J.C., Solid State Chem. 31, 235 (1980)
- 90. Isard J.O. J. of Non Cryst. Solids. 4, 357 (1970, .
- 81. Isard J.O. J. Non Cryst. Solids 1, 235 (1969).
- 82. Ivkin E.B. and Kolomiets B.T., J. Non Oryst. Colids 3, 41(1970, .
- 83. Jagla M. and Isard J.O. Mat. Res. Bull. 15, 1727 (1970).
- 34. James P.F., J. Mat. Sci. 10, 1002 (1975, ..
- 85. James P.F. and Mc. Millan P. ., Poil. Mag. 10, 963 (1983).
- 86. James P.F. and Mc. Millan P.J. Phys. Chem. Glasses 11, 59 (1970).
- 87. Jain H and Ngai K.L. Proc. Workshop on Relaxation Phenomenon in Disordered Systems, Plocksburg V.A. July 1983 (U.S. Govt. Printing Office, 1985).
- 88. Kapany M.S. Fibre Optics: Prorciples and Applications", (1967), Academic Press. (USA).
- Kapany N.S. Scient. Am. 203, 72-31 (1060,.
 89. Karreman G. and Fisenman G., Bull. Math. Elartes. 21, :13, (1962).
- 90. Kawamoto Y., J. Non Cryst. Solids 20, 393 (1976).
- 91. Kawazoe H., Hosono H. and Kanazara T., J. Non Cryst. Solidi, 2., 279 (1978).
- 92. Kawazoe H. Hosono H., Kokumai H, and Kanazawa T., J. Carar. Society Japan 87, 237 (1979).
- 93. Kerwawvez J.F. and Tomorawa M., J. Appl Phys. 51, 4391 (1998).
- 94. Kitao M., Jpn. J. Appl. Phys. 11, 1+72(1972).
- 95. Kone A., Barrau B., Soucuct, J.L., and Ribes h., Mat. Rose Bull. 14, 393 (1979).
- 96. Kolomites B.T., Phys. Stat. Solid: 7, 713 (1961).

The state of the s

- 97. Kulkarni A.R. 'Lithium ion conducting classy solid electrolytes in the LiF-Li₂O-Al(303)₃ systems, Ph.D. thesis submitted to IIT/ Kharegpur., (1981).
- 98. Kulkarni A.R. Maiti H.S. and Paul Glass formation and electrical conductivity in the system LiF-Li20(FC3)3, paper presented in 45th Annual 5 ssion of Indian Caramics Society.
- 99. Kulkarni A.R. Maiti H.S. and Paul A., Bull Mater. Sci., 6 (2), 201-221 (1984).

- 101 Kristic, V.D., P.S. Nicholson, J. Ar. Certric Soc. 60, 467 (1977) •
- 102. Kristic V.D., Nicholson P.D. and Hongland R.C., J. A. Coramic Soc., 64(9) 199-504 (1981).
- 103. Latatos A.I. and 'browitz M., Phys. Rov. 33, 1791 (1971,.
- 104. La Course : .C. In Introd. Glass Sci. Proc. Tutorial Symp. 1970 (ed.) L.D. Pye, 451-512 (1972). Plenum Press, (T.Y.).
- 105. Lewless ".N., Rev. Sci. Instr. -3, 1743 (1972).
- 106. Lecleach T. and Flater J.F., J. Pon Cryst. Solids 19, 265 (1975).
- 107. Lovasceur A., Brethous J.C., Roau J.M and Lagenruller P., Mat. Res. Bull. 14, 921 (1979).
- 108. Levesseur A. Brethous JTC., Hagenmuller P., Berge R. and Vignend , Solid State Corrun. 32, 115 (1979b).
- 109. Lovesseur A., Brethous J.C., Reau J.M. Hagerruller P., Coizi M., Solid State Ionics 1, 117 (1980).
- 110. Levasseur A., Report EUR 707 F.R. Comm. Europian Communities Luxemberger, 40 (1981).
- 111. Levasseur A., Olazcuaga R., Kabla, M., Zahır M., Hagenmuller P., Couzi M., Solid State Ionics 2, 205 (1991).
- 112. Lavasseur A., Brethous J.C., Kabla, M., Hagenmuller F., Solid Stat. Ionics 5,651 (1981).
- 113. Lewasseur A., Cales B., Raru J.M. and Hagenmuller F., Mat. Res. Bull. 13, 205 (1978).
- 114. Levasseur A., Kabla M. Brethous J.C. Reau J.M., Hagenruller F., and Couzi M. Solid State Commun. 32, 839 (1979).
- 115 Linsley, G.S. Owen, A.E. and Hayatee F.M., J. Non Cryst., Solids 4, 208 (1970).
- 116. Loeweustein K.L. The Manufacturing Tachnology of continuous Glass Fibres (1973) Elsevier Scientific Company, Amsterdam Netherlands.
- 117. Loewenstein K.L., Phys. Chem. Glasses, 2,69 (1961).

1

- 118. Loewenstein K.L., Phys. Chem. Glasses 2, 119 (1961,...
- 119. Loewenstein K.L. and Dowd J., Glass Technol., 9, 164 (1967).
- 120. Loewenstein K.L. and Parvink, Brit. Plastics Federation, 3rd Reinforced Plastics Conf. 12 (1962).
- 121. Mac Chesney J.B., 'Case History of Drvelopment of C tical fibres', Preparation and Characterisation of Statement (ed.) J.M. Honig and C.M.R. Rac [37-56] 981, public Press (N.Y.).
- 122. Mec Dowell, J.F. and Beale J.H., J. Am. Ceram. Soc. 2, 17 (1969).
- 123. Mackenzie J.D., Proc. 10th Int. Jongr. Glass, Koyoto, I.4, 71-81 (1974).
- 124. Mackenzie J.D. 'Electrical Conduction in Caramics and glasses' Part B (ed.) N.M. Tallen, Marcel Daker, 559 (1074).

 (N.Y.).
- 125. Mackenzie J.D. Modern Aspects of Vitreous State', Vol. 3 (1964), (ed.) J.D. Mackenzie, Eutterworth London.
- 126. Maiti H.S., Kulkarni A.R. and Paul .., 'Lithiur Confucting Glassy Solid Electrolytes in the Lif-Lige-Al(PC3), system,' paper presented in 4th International Conf. on Solid State Ionics (1983) Grenoble, (France.
- 127. Majumdar A.J. and Ryder J.T. 'Glass Reinforcement of Cament Products', Glass Technology 9, (3), 73-84 (1968).
- 128. Malinin V.R., Evstroper K.K., Tsekhomskii V.A., J. April. Chem. USSR, 45, 172-174 (1972), Transl. from Zhur. Prinkl., Khim. 45, 184-186 (1972).
- 129. Malugani J.P., Robert G., Solia State Icnics 1, 519 (1932).
- 130. Malugani J.P., Robert G., Mater. Ros. Bull. 14, 1075 (1979; .
- 131. Malugani J.P. Fashievski A., Doreau Mand Robert G., CF Acad. Sci. 237, 455 (1978). (Paris).
- 132. Manfre G., Meeting Am. Ceram. Soc. Bedford Springs Pro., Oct. (1967).
- 133. Mansingh A., J. Phys. C9, 1809 (1976).
- 134. Mansing A, Tandon R.F. and Vaid J.K., J. Phys. Cher. Solids 36, 1267 (1975).

- 135. Mansingh A., J. Phys. Co, 1023 (1975).
- 136. Markov V.P. and Kepylov C.M., Glass Ceramics, 27, 723-725 (1970) (English Transl.).
- 137. Matousek, J., Silikaty 12, 73-73, 86-9 (1968, Matousek J., Nemec L: Sb.Vys. S.Y. Chem. Technol. Praze norg. Chem. Technol. B16, 99-117 (1973).
- 133. Magistics A., Chiodelli, A., and Carpari C.V., Z.Naturf. 31a, 974 (1976).
- 139. Marurin C.V. and Strettsina. .V., J. Non Cryst. Solids, 11, 199 (1972).
- 140. Mc. Creight L.R. Rauch H.J., Sr. and Sutton ".H., Ceramics and Graphide Fibres and Thiskers (1965), Academy Press (N.Y.,
- 141. Mc Geehin P., and Hooper A., J. Mat. Sci. 12, 1 1977).
- 142. Mac Nillan P..., Glass Ceratics, 71 (1979) (Academic Press, London.) N.Y.)
- 143. Mc Millan P.W., Phys. Chem. Glasses 17, 193 (1976).
- 144. Minami T., Nambu H. and Tanaka M., J. Ar. Coram. Soc. 60, 467 (1977).
- 145. Minomura S. 'Amorphous Semi conductors, Technologies and Devices (ed.) Y. Hamakawa 245(1932) (Amsterdam: Morth Holland).
- 146. Minomura S., High Pressure and Low Temperature Physics, (ed.) C.W. Chu and J.A. Toolam 483 (1973) (Y.Y., Plenum).
- 147. Morley J.G. 'Reinforcing Metals ith Fibres' New Scientist, 322, 122-125 Jan. 17 (1963).
- 143. Morley J.G. 'Strength of Glass Fibres' lature 124, (4698), 1560 Nov. (1959).
- 149. Moriya Y. Warington D.H. and Douglis R. . , Pry. Chem. , Glass 8, 19 (1967).
- 150. Mott N.F., Contemp. Phys. 19, 225-15 (1977).
- 151. Mott N.F. J. Non Cryst. Solids 1, 1-17, (1968).
- 152. Nott. N.F. Adv. Phys. 16, 49 (1967).
- ott N.F. and Davis I.A., Electronic Processes in Mon rystalline Solids Ist Ed. (1971). (Oxford Press).

- 154. Mozhi, T., Arul and Chakravorty D., J. Of Mat. Sc. Latters, 1, 426-428 (1982).
- 155. Murawski L., Chung C.H. and Mackengin J.D., J. of Hon Cryst. Solids, 32, 91 (1979).
- 156. Murawski L. and Growski O., Phys. Stat. Colid: 48, 23, K115 (1974).
- 157. Nakajima T. 'Innual report conference on Electrical Insulation and Dielectric Pagnomena (1972-1971,, Natle-cad. Sci.
- 158. Mono Tsutomo, Egichi Tamiyuku (Kamagafuchi Chemical Indus Co. Ltd. Pat. Applied E.P. 190575 (Cl. HolBl/CB), 9 Jan. 1995, J.F. applied.
- 15g. Marasımham P.S.L. and Rao K.J., J. Mon Cryst. Schlids 27, 225, (1978).
- 160. Nassau K., Glass A.M. and Olson L.M., J. Electrochem. Soc., 127, 2743 (1990).
- 161 . Nassau K., and Glass .M., J. Fon Cryst. Solids 44, 97 (1901 b.
- 162. Passau K., Cava R.J. and Glads W.M., Solif State Ionics 2, 153 (1981 a).
- 163. Nassau K., Mang C.A. and Gracco L., Im. Ceram. Soc. 62, 74 (1979 a).
- 164. Nassau K., Mang C.A. and Grasso M., Jr. Ceram. Soc. 62, 503 (1979 b).
- 165 Neilson G.F., Phys. Chem. Glasses 10, 54 (1969).
- 165. Neilson G.F., Phys. Cher. Glassis 13, 70 (1972).
- 167. Pemilov S.V. and Gilev I.S., Inorg. Mater. 8, 294-297 (1972).
- 168. Macv S., Gerasimova I., Kochukharov, V. and Marinev 1., J. Mat. Sci. 15, 1153 (1980).
- 169. Mimikawa H. Resourches of Electrochemical Laporatory, No. 757' (Agency of Industrial Sciences and Tachnology) (1975).
- 170. Milzeki , Nobukazu , Jpn. Annu. Prv. Electron Comput. Talecom. 11, 168-78 (1984).

- 171. Orovan E. Rep. Prog. Phys. 12, 185-232 (1949).
- 172. Otto K., Phys. Cher. Glasses 7, 29, (1966).
- 173. Otto K. and Milberg M.E., J. Am. Ceram. Scc. F1, 325 [1069].
- 174. Ovshinsky S.R., Proc. 7th Int. Conf. on Amorphous ind Liquid Semiconductors (ed.) '.E. Ipear, G.G. Stowanson, Dundee, 519 (1977).
- 175. Owen F.E., J. Non Cryst. Solids 25, 370 1977, .
- 176. Oren A.E., Contemp. Phys. 11, 227-96 (1970).
- 177. Owen A.E., Prog. Ceram. Sc. Vol. 3, 77 (1963), Perg=ron Press.
- 17º. Owen A.E. and Robertson J.M., J. Non Cryst. Solids 2, 40, (1970).
- 179. Owen A.E. and Spear '.E. , Phys. Chur. Glasses 17, 174-92, (1976).
- 180. Parkyn Brian'Glass Reinforced Plastics' (ed.), Butterworth and Co., London 11-108 (1970).
- 181. Parkyn B., Fl. R. Soc. Arts Czl., 205-23 (1963).
- 182. Parthasarthy G and Gopal E.S.R., Bull. Meter. Ici. 6, (2), 231-242 (1984).
- 183. Pavlovskii V.K. Stekllobraznoe Sostoyanie 5,148-153 (1970).
- 184. Pfister G., Phys. Rev. Letts. 36, 271 (1976).
- 185. Pronkin A.A., Sov. J. Phys. Chem. 4, 388 (1978).
- 186. Prasad E., Sayer M. and Vyas H.M., J. Non Cryst. Solids, 40, 119 (1980).
- 187. Froctor B.A. in CI °O, Fibres Concrete, The Concrete Society, 69-96 (1990), published by The Construction Press Ltd. Lancaster (U.K.)
- 188. Proctor B.A. and Yale B. Rovel Society Dicussion Mc ting, New Fibres and their composites, May (1978) [(London)[to be published in Proceedings of Royal Society;
- 189. Proctor B., Phys. Chem. Glasses 3, 7-27 (1962).

The state of the s

Provance J.D. and Huebner J.S., A. Am. Ceramic Society 54, 147 (1971).

- 191. Quinn R.K. and Seager C.H., J. Non Cryst. Solids 17, 385, (1975).
- 192. Rao K.J. and Elliott S.R. (1931) results to be bublished.
- 193. Ravaine D and Soucuet J.L., Solid Electrolytes, General Principles Characterisation, Materials Application (cd., P. Hagenmuller and W. Van Gool 277, (1973) (N.Y., cad. Irass.
- 194. Ravaine D and Souguet J.L., Phys. Chem. Glasses 19, 27, (1977).
- 195. Ravaine D and Souguet J.L., Proc. 24th Meeting ISE Eindhover (1973).
- 196. Rawal B.S. and Maccrone R.K., J. Non Cryst Solids 23, 347, (1978).
- 197. Rawson H., Properties and Applications of Glass (ed.)
 (1984' Elsevier Science Publishers, Amsterdam, Notherlands.
- 193. Riebling E.F., J. Chem. Phys. 55, 204 (1971).
- 199. Rockstad H.K., J. Non Cryst. Solids 3-10, 621 (1972).
- 200. Roskos T.G. et. al 'Interfacial Properties of an Amine-modified Cilcne and its Preformed Polymer at E glass surfaces' SPE Trans., 2, (4) 326-331 Oct. (1962).
- 201. Russel K.C., 'Phase Transformations' (ed.) H.I. Pronson (Amer. Soc. Metals 'distributed by Chapman and Hall, 219, (1970) (London).
- 202. Ryabov V.A. and Kupfer V.V., Glass Ind. 51, 268, 271 (1970).
- 203. Ryabov V.A., Semenov N.I. and Paplauskao A.B, Glass Technol. 13, 168-170 (1972).
- 204. Sakai N. and Fritzsche H., Phys. Rev. E15, 973 (1977).
- 205. Saver M., and Mansingh A. Phys. Rev. F6, 4629 (1972).
- 206. Sayer M., Reeves J.M. and Rosenblatt C., J. Appl. Phys. 42, 2857 (1971).
- 207. Schaeffer H.A. and Heinze R , Glastoch. Ber, 47, 199 (1974).
- 208. Schonhorn H., Kurkjian C.R., Jaegar, R.E. Vazirani H.M., Albarino R.V. and Di Marcella F.V. Appl. Phys. Lett. 29, 7.2 (1976).

- 209 Sehonhorn H., Vazirani H.N. and Frisch H.L., J. Appl. Phys. 49 (7), 3703-6, July (1978).
- 210. Seager C.H., Emin D. and Quinin R.K., Phys. Rev. B10, 4746, (1973).
- 211. Segawa H., J. Phys. Soc. Jpn. 36, 1087 (1974).
- 21 2. Seward, T.P., Uhlman. D.R. and Turnbull D.R., J. Am. Ceram. Soc. 51, 634 (1968).
- 213. Shaw R.R. and Uhlmann D.R., J. Non Cryst. Solids 5, (3) 237-263 (1971).
- 214. Simmons J.H., Maceda, P.B., Napollitano, A. and Haller W.K., Discuss Faraday Soc. No. 50155-165 (1970).
- 215. Simmons J.H., Mills S.A. and Napolitano A., J. Am. Ceram. Soc. 57, 109, (1974).
- 216. Smedly S.I. and Angell C.A., Solid State Commun. 27, 21 (1978).
- 217. Smith J.W. and Walker, T.W.D., Application of glass fibre Cement 174-188 (1980). CI80 Fibrous Concrete, The Concrete Society published by The Construction Press Ltd. Lancaster (U.K.).
- 218. Smithard M A.and Dupreer, Phys. Status Solidi, All, 695, (1972).
- 219. Souquet J.L., Kone A. and Ribes M., J. Non Cryst. Solids 38, 39, 307 (1980).
- 220. Srinivasan G.R., Colella R., Macedo P.G. and Volterra V., Phys. Chem. Glasses, 14, 90, (1973).
- 221. Srinivasan G.R., Sarkar A., Gupta, P.K. and Mercedo P.B., J. Non Cryst. Solids 20, 141 (1976).
- 222. Srinivasan G., Tweer I., Macedo P.B., Sarkar A. and Haller W., J. Non Cryst. Solids 6, 221 (1971).
- 223. Srivastava A., M. Tech. Thesis (1978), IIT/ Kampur.
- 224. Srivastava A. and Chakravorty D., J. of Instution of Engineers (1979) (India) 59, I3, Journal IDJE 59, 104-107.
- 225. Stephanie C., Kunz, J. Am. Ceramic Soc. 66 (4), C73 (1983).
- 226. Stevels J.M. 'The Electrical Property of Glasses' [Handbuch der Physic] Vol. XX., (ed.) S.W. Flugge 350 (1957) (Springer-Verlog, Berlin).

- 227. Stookey S.D., Glastech. Ber. V. International Glass Congress 32K, Heft V. (1959).
- 228. Sundar H.G.K. and Rao K.J., J.C.S.I., 76, 1617 (1980).
- 230. Takahashi T. and Yamamoto O, Chem. Phys. Lett. 135 (1979).
- 231. Takamori T and Tomozawa M., J. Am. Ceram. Soc. 62, 373, (1979).
- 232. Takamori T and Tomozawa M. J. Am. Ceram. Soc. 61, 509, (1978).
- 233. Takamori T and Tomozawa M.J. Am. Ceram. Soc. 59, 377, (1976).
- 234. Taylor H.E., J. Soc. Glass Tech. 43, 124T (1959).
- 235. Taylor H.E., J. Soc. Glass Tech. 41, 350T (1957).
- 236. Taylor H.E., Trans. Farad. Soc. 52, 873 (1956).
- 237. Terai R.H. and Hayami R , J. Non-Cryst. Solids 18, 217, (1975).
- 238. Thomas W.F., Phys. Chem. Glasses 1, 4 (1960).
- 239. Tomo zawa M. and Takamori T, J. Am. Ceram. Soc. 63, 276 (1980).
- 240. Tomo zawa M., J. Am. Ceram. Soc. 61, 444 (1978).
- 241. Tomozawa M. and Takamori T., J. Am. Ceram. Soc. 60, 301, (1977).
- 242. Tomozawa M.'Treatise on materials science and technology' (eds.) M. Tomozawa and R.H. Doremus, 12, 283 (1977) . (N.Y.) Acad. Press.
- 243. Tomozawa M. Mac Crone R.K. and Herman H. Phys. Chem. Glasses 11, 136 (1970).
- 244 Trap H J L , Acta Electron 14, 41-77 (1971) •
- 245. Tsuchiya T. and Moriya T., Glass Ceram. Bull 22, 55, (1975).
- 246. Tuller H.L. Button D.P. and Uhlman D.R., J. Non Cryst. Solids, 40, 93 (1980).
- 247. Varshneya A.K., J. Am. Ceram. Soc. 58, 106 (1975).
- 248. Vaughan J.G., Perry C.H. and Kinser D.L. Phys. Chem. Glasses 18, 87 (1977).
- 249. Venkateswaran A. M. Tech. Thesis (1979), IIT Kampur

- 250. Washington D., Duchenois V, Polaert R and Beasley R.M., Acta. Electro. 14, 201-24(1971).
- 251. Weatall H.H., Nature, 223, 959 (1969).
- 252. Weibull W., J. Appl. Mech. 18, 293 (1951).
- 253. Weinberg Mc and Neilson G.F., J. Mat. Sci. 13,1206 (1978).
- 254. Wiederhorn S.M., 'Mat. Sci. Res. 3, 503-25 (1966) (eds.)
 W.W. Kriegel and H. Palmour (N.Y.) Plenum Press.
- 255. Wiederhorn S.M., J. Am. Ceram. Soc. 53, 486-489 (1970).
- 256(a)-Wojnarovits I., J. Am. Ceram. Soc. 66, (12), 896-8 (1983). 256(b)-Wong J. and Angell C.A., Glasses: Structure by Spectroscopy (M. Dokker, N.Y. (1976).
- 257. Zarzycky J., C.R. Acad. Sci. Paris, Ser.C. 278(8),487-90(1974).
- 258. Zarzycki J. and Naudin F., Phys. Chem. Glasses 8, 11 (1967).
- 259. Zarzycki J. and Naudin F., J., Non Cryst.Solids, 1, 215, (1969).
- 260. Zvanut C., Contract Report No. 28-D P.118 'Ceramic and Graphite Fibres and Whiskers' (ed.) Mc Creight L.R., H.W. Rauch., Sr, and W.H. Sutton Academic Press (1965), (N.Y.).

10 109194 1085-D-SR+ELE