Question Number	Answer		Mark
15(a)(i)	Mass difference calculation	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 8.7 \times 10^{-13} \text{ (J)}$	(1)	3
	Example of calculation		
	$\Delta m = (3.48572 - 3.41918 - 0.0664437) \times 10^{-25} \text{ kg} = 9.63 \times 10^{-30} \text{kg}$		
	$\Delta E = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 9.63 \times 10^{-30} \text{ kg} = 8.67 \times 10^{-1} \text{ J}$		
15(a)(ii)	Use of $E_{\mathbf{k}} = \frac{1}{2}mv^2$	(1)	
	$v = 1.6 \times 10^7 \text{m s}^{-1} (\text{allow ecf from (a)(i)})$	(1)	2
	Example of calculation		
	$0.98 \times 8.67 \times 10^{-1}$ $J = \frac{1}{2} \times 6.64437 \times 10^{-27} \text{ kg } \times v^2$		
	$v = \sqrt{\frac{2 \times 0.98 \times 8.67 \times 10^{-13} \text{ J}}{6.64437 \times 10^{-27} \text{ kg}}} = 1.60 \times 10^7 \text{ m s}^{-1}$		
15(b)	Momentum must be conserved (in the decay)	(1)	
	The lead nucleus must recoil after the decay Or the lead nucleus moves in the opposite direction to the alpha particle	(1)	2

7

Total for question 15