Entonces:

$$d + e + 1 = dc$$
 por (3.26)
= $(ac + a + c + 1)c$ por (3.25)
= $ac + ac + c + c$
= $0 + 0$
= 0

De aquí sacamos dos conclusiones:

$$d = e + 1 \tag{3.28}$$

$$0 = dc \tag{3.29}$$

Vamos a ver que si d=1 entonces d=0, lo que es patentemente absurdo pues \mathbb{Z}_2 tiene dos elementos y no uno. En efecto, supongamos que d=1; por (3.29) y porque \mathbb{Z}_2 es un dominio de integridad, c=0. Entonces, de (3.24) se deduce que a=e+1 y por (3.28) resulta a=d. Llevando todo esto a (3.25) tenemos que:

$$d = ac + a + c + 1$$
 por (3.25)
= $d0 + d + 0 + 1$

Así que d = d + 1 = 1 + 1 = 0. Deducimos, por tanto, que d = 0 y por tanto e = 1 (cfr. (3.28)). Entonces, de (cfr. (3.27)) concluimos que a = c. Si llevamos todo a (3.25)) resulta que:

$$0 = ac + a + c + 1$$
$$= a + 1$$

de donde a = 1 = c y p = 1 = q; por demás b = 1. En resumen tenemos que:

a = 1

b = 0

c = 1

d = 0

e = 1

p = 1

q = 1

3.7. Ejercicios de Lógica Proposicional

- 1. Dado un conjunto de fórmulas Γ del lenguaje, sea $Con(\Gamma)$ el conjunto de fórmulas γ tales que $\Gamma \models \gamma$.
 - a) Describa a $Con(\Gamma)$ para los conjuntos Γ de fórmulas insatisfacibles.
 - b) Demuestre que para cualesquiera conjuntos de fórmula Γ y Δ son ciertas las siguientes afirmaciones:
 - 1) $\Gamma \subseteq Con(\Gamma)$
 - 2) Si $\Gamma \subseteq \Delta$, entonces $Con(\Gamma) \subseteq Con(\Delta)$ (monotonía)

- 3) $Con(Con(\Gamma)) \subseteq Con(\Gamma)$
- 4) $Con(\emptyset) \subseteq Con(\Gamma)$
- 5) $Con(Con(\Gamma)) = Con(\Gamma)$ (idempotencia)
- 2. Sea Δ un conjunto de fórmulas. Δ es *cerrado* sii, por definición, $Con(\Delta) = \Delta$. De ejemplos de conjuntos de fórmulas que no sean cerrados y que sí lo sean.
- 3. Para todo conjunto de fórmulas $\Gamma \cup \{\alpha, \beta, \gamma\}$, demuestre que:
 - a) Si $\Gamma \models \alpha \leftrightarrow \beta$, entonces $Con(\Gamma, \alpha) = Con(\Gamma, \beta)$.
 - b) Si $\alpha = \beta$, entonces $Con(\Gamma, \alpha) = Con(\Gamma, \beta)$.
- 4. Sea $\Gamma \cup \{\alpha, \beta, \gamma\}$ un conjunto de fórmulas del lenguaje proposicional. Demuestre que si $\alpha \vee \beta \in Con(\Gamma)$ y $\neg \alpha \vee \gamma \in Con(\Gamma)$, entonces $\beta \vee \gamma \in Con(\Gamma)$.
- 5. Demuestre que para todo cojunto Γ de fórmulas:
 - a) Si $\varphi \in \text{Con}(\Gamma)$, entonces $\text{Con}(\Gamma, \varphi) = \text{Con}(\Gamma)$
 - b) $Con(\Gamma \cup Con(\emptyset)) = Con(\Gamma)$
- 6. Demuestre que para todo conjunto de fórmulas $\Gamma \cup \{\alpha, \beta, \gamma\}$:
 - a) $Con(\Gamma, \alpha \to \beta, \alpha \to (\beta \to \gamma)) = Con(\Gamma, \alpha \to \beta, \alpha \to \gamma)$
 - $b)\ \operatorname{Con}(\Gamma,\alpha\to(\beta\to\gamma))=\operatorname{Con}(\Gamma,(\alpha\to\beta)\to(\alpha\to\gamma))$
- 7. Sean las fórmulas:
 - $\mathbf{v} = \mathbf{v} = \mathbf{c} \rightarrow \mathbf{c}$
 - $\alpha \equiv a \wedge (\neg b \vee c)$
 - $\beta \equiv (\alpha \land \neg b) \lor c$

y sea $\Delta = \{\gamma\}$. Demuestre que:

- a) $\alpha \models \beta$
- b) $\Delta, \alpha \models \beta$
- c) $\beta \not\models \alpha$
- d) $\alpha \neq \beta$
- e) $\Delta, \beta \models \alpha$
- f) Con(Δ , α) = Con(Δ , β)

Ejercicio 3.7.1. Sean α , β y γ fórmulas cualesquiera. Clasifique las siguientes fórmulas:

- a) $\varphi \equiv (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\gamma \rightarrow \alpha))$
- b) $\varphi \equiv (\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\gamma \rightarrow \alpha) \rightarrow ((\alpha \lor \beta \lor \gamma) \rightarrow (\alpha \land \beta \land \gamma)))$
- 8. Sean α , β , γ y δ fórmulas del lenguaje proposicional estándard. Demuestre que:

$$(((\alpha \to \beta) \to (\neg \gamma \to \neg \delta)) \to \gamma) \to \beta \models (\beta \to \alpha) \to (\delta \to \alpha)$$

- 9. Consideremos las fórmulas del lengua je proposicional estándar:
 - $\alpha = \alpha \rightarrow (b \land \neg c)$
 - $\beta = (\alpha \leftrightarrow \neg b) \lor c$

Encuentre una fórmula γ de dicho lenguaje tal que para cualquier asignación de variables ν se cumpla $\nu(\gamma) = \nu(\alpha) + \nu(\alpha)\nu(\beta)$.

10. En el lenguaje proposicional estándar, sea α la fórmula:

$$(a \rightarrow (b \rightarrow (c \rightarrow d))) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow (c \rightarrow d)))$$

Demuestre que α es una fórmula tautológica.

11. Clasifique la siguiente fórmula del lenguaje proposicional estándar:

$$((((a \lor b) \land \neg c) \to d) \land (\neg d \land (b \lor a))) \to (c \lor e)$$

- 12. Estudie si cada una de las siguientes implicaciones semánticas es cierta o no. Cuando no lo sea, encuentre una asignación de variables que lo revele:
 - a) $(a \land \neg b) \rightarrow (a \lor c) \models ((\neg a \lor b) \rightarrow (a \lor c)) \rightarrow (a \lor c)$
 - b) $(a \lor d) \to (b \to c) \models ((a \lor d) \to \neg b) \to \neg c$
- 13. Para cualesquiera n+1 fórmulas $\gamma_0, \ldots, \gamma_{n-1}, \varphi$ $(2 \le n)$, si $\gamma_0 \lor \cdots \lor \gamma_{n-1}$ es una tautología y para todo $0 \le i \le n-1$, $\Gamma, \gamma_i \models \varphi$, entonces $\Gamma \models \varphi$.
- 14. Sea Γ es siguiente conjunto de fórmulas del lenguaje proposicional estándard:

$$\{\neg a \lor a \lor c, b \lor c, \neg a \lor c \lor d \lor e, \neg e, a \lor \neg c \lor \neg d, \neg a \lor \neg d, c \lor \neg d, a \lor d, \neg c \lor d\}$$

Decida si Γ es o no satisfacible.

15. Decida si:

$$(\neg a \rightarrow b) \land (c \rightarrow d), a \rightarrow c, (\neg b \land \neg c) \rightarrow d, b \rightarrow a, (d \land \neg c) \rightarrow a, a \rightarrow d \models a \land c \land d$$

16. Pruebe que:

$$\models ((((a \rightarrow b) \rightarrow (\neg c \rightarrow \neg d)) \rightarrow c) \rightarrow e) \rightarrow ((e \rightarrow \neg b) \rightarrow ((e \rightarrow a) \rightarrow (d \rightarrow (a \land \neg b))))$$

- 17. Sean las siguientes fórmulas del lenguaje proposicional estándar:
 - a) $\gamma_1 = (a \vee b) \rightarrow (c \vee d)$
 - b) $\gamma_2 = (\neg a \land \neg d) \rightarrow (\neg c \land (c \lor e))$
 - c) $\gamma_3 = a \rightarrow (\neg c \land \neg b \land (\neg d \lor b))$
 - $d) \ \varphi = (d \rightarrow (b \lor a)) \rightarrow (d \land \neg (a \lor \neg b))$

Estudie si $\gamma_1, \gamma_2, \gamma_3 \models \varphi$ y caso de no serlo, dé una asignación de variables que lo evidencie.

- 18. Sean las siguientes fórmulas del lenguaje proposicional estándar:
 - a) $\gamma_1 = (r \vee t) \rightarrow (p \vee s)$
 - b) $\gamma_2 = (\neg r \wedge \neg s) \to (\neg p \wedge (\neg p \to q))$
 - c) $\gamma_3 = r \rightarrow (\neg(p \lor t) \rightarrow (\neg s \lor t))$
 - *d*) $\varphi = \neg(s \to (t \lor r)) \lor (s \land \neg(t \to r))$

Estudie si $\gamma_1, \gamma_2, \gamma_3 \models \varphi$ y caso de no serlo, dé una asignación de variables que lo evidencie.

19. Sean las siguientes fórmulas del lenguaje proposicional estándar:

- a) $\gamma_1 = (a \wedge b) \rightarrow (c \vee d)$
- b) $\gamma_2 = \neg((\alpha \lor c \lor d) \land e)$
- c) $\varphi = (a \rightarrow b) \rightarrow (e \rightarrow \neg a)$

Estudie si $\gamma_1, \gamma_2 \models \varphi$ y caso de no serlo, dé una asignación de variables que lo evidencie.

- 20. Llega un grupo de meteorólogos a la isla de los veraces y mendaces, insteresados en saber si durante la jornada anterior estuvo lloviendo en la misma. Encuentran a tres indígenas que dicen llamarse: Ana, Bruno y Carmen. Al ser preguntados por lo que interesa a los meteorólogos, las respuestas que dieron son las siguientes:
 - Ana: "ayer no llovió aquí"
 - Bruno: "ayer sí llovió aquí"
 - Carmen: "si ayer llovió aquí, yo soy mendaz"

Averigüe el carácter de cada uno de los indígenas y si llovió o no la jornada anterior en la isla. Constate que los meteorólogos habrían tenido éxito en su pesquisa hablando sólo con Carmen.

- 21. Sean α una fórmula del lenguaje proposicional estándard. Demuestre que son equivalentes las siguientes afirmaciones:
 - a) α es una tautología.
 - $b) \models \alpha$
- 22. ¿Es cierto que cualesquiera dos tautologías son lógicamente equivalentes? En caso de respuesta negativa, de un ejemplo que lo justifique.
- 23. Sea $\Gamma \cup \{\phi\}$ un conjunto de fórmulas. Demuestre que son equivalentes las siguientes afirmaciones:
 - a) $\Gamma \models \varphi$
 - b) $\Gamma \cup \{\neg \varphi\}$ es insatisfacible
- 24. Sea $\Gamma \cup \{\psi, \phi\}$ un conjunto de fórmulas. Demuestre que son equivalentes las siguientes afirmaciones:
 - a) $\Gamma, \psi \wedge \varphi \models \xi$
 - b) $\Gamma, \psi, \varphi \models \xi$
- 25. Demuestre que para cualesquiera fórmulas $\gamma_1, \ldots, \gamma_n, \varphi$ (2 \leq n) son equivalentes las siguientes afirmaciones:
 - a) $\gamma_1, \ldots, \gamma_n \models \varphi$
 - b) $\{\gamma_1, \gamma_2, \dots, \gamma_n, \neg \phi\}$ es insatisfacible
 - c) $\gamma_1 \wedge \gamma_2 \wedge \cdots \wedge \gamma_n \wedge \neg \varphi$ es insatisfacible
- 26. Sea $\Gamma \cup \{\alpha, \beta, \gamma, \phi, \psi, \xi\}$ un conjunto de fórmulas del lenguaje de proposicional estándar. Demuestre las siguientes reglas:
 - a) Si $\Gamma \models \alpha$ y $\Gamma \models \alpha \rightarrow \beta$ entonces $\Gamma \models \beta$ (regla de modus ponens)
 - b) Si $\Gamma \models \alpha \rightarrow \varphi$ y $\Gamma \models \neg \alpha \rightarrow \psi$ entonces $\Gamma \models \neg \psi \rightarrow \varphi$ (regla de modus ponens generalizada)
 - c) Si $\Gamma \models \alpha \rightarrow \varphi$ y $\Gamma \models \neg \alpha \rightarrow \psi$ entonces $\Gamma \models \neg \varphi \rightarrow \psi$
 - d) Si $\Gamma, \alpha \models \beta$ y $\Gamma, \beta \models \gamma$ entonces $\Gamma, \alpha \models \gamma$.
 - e) Si $\Gamma, \alpha \models \beta \rightarrow \gamma$ y $\Gamma, \alpha \models \beta$ entonces $\Gamma, \alpha \models \gamma$.

- f) Si ξ es una tautología, $\Gamma, \xi \models \varphi$ sii $\Gamma \models \varphi$.
- g) Si $\Gamma, \alpha \models \varphi$ y $\Gamma, \neg \alpha \models \varphi$, entonces $\Gamma \models \varphi$.
- *h*) Si $\Gamma, \alpha \to \beta \models \varphi$ y $\Gamma, \beta \to \alpha \models \varphi$, entonces $\Gamma \models \varphi$
- *i*) Si $\Gamma, \alpha \rightarrow \beta \models \alpha$ entonces $\Gamma \models \alpha$
- j) Si $\Gamma, \psi \models \varphi$ entonces Si $\Gamma, \neg \varphi \models \neg \psi$.
- k) Si $\Gamma \models \varphi$ y $\Gamma \models \psi$, entonces $\Gamma \models \varphi \land \psi$.
- *l*) Si $\Gamma \models \varphi \land \psi$ entonces $\Gamma \models \varphi$.
- m) $\Gamma, \alpha, \beta \models \varphi \sin \Gamma, \alpha \land \beta \models \varphi$
- n) Si $\Gamma \models \alpha \lor \beta$ y $\Gamma \models \neg \alpha \lor \gamma$ entonces $\Gamma \models \beta \lor \gamma$ (regla de resolución en log. proposicional)
- \tilde{n}) Si $\Gamma, \alpha \models \varphi \ \forall \ \Gamma, \beta \models \varphi$, entonces $\Gamma, \alpha \lor \beta \models \varphi$.
- o) Si $\Gamma \models \varphi$ entonces $\Gamma \models \varphi \lor \psi$
- 27. Dada una fórmula proposicional que no es tautología, ¿existe una única fórmula en forma normal conjuntiva lógicamente equivalente a ella? ¿Qué se puede decir de dos fórmulas para las que se encuentra una fórmula en forma normal conjuntiva lógicamente equivalente a ambas? Si existe, encuentre una fórmula en forma normal conjuntiva para las siguientes fórmulas:
 - $a) \neg (a \leftrightarrow \neg (b \lor c))$
 - b) $(a \rightarrow \neg(b \rightarrow (c \lor d))) \rightarrow \neg(a \rightarrow b)$
- 28. Considere el conjunto de fórmulas:

$$\Gamma = \{a \lor \neg b \lor \neg c, \neg a \lor \neg b \lor c, a \lor b \lor \neg c \lor d, \neg d\}$$

- y decida mediante el método de Davis y Putnam si Γ es satisfacible o no.
- 29. Considere el conjunto de fórmulas:

$$\Gamma = \{b \vee \neg b \vee c, \neg a \vee \neg b \vee c, \neg b \vee a, b, \neg c\}$$

y decida mediante el método de Davis y Putnam si Γ es satisfacible o no. Concluya razonadamente que

$$\models ((b \rightarrow a) \rightarrow (b \rightarrow (b \rightarrow c))) \rightarrow ((b \rightarrow a) \rightarrow (b \rightarrow c))$$

30. Considere el conjunto de cláusulas

$$\Gamma = \{a \lor c, \neg b \lor c, d, \neg b \lor \neg c \lor e, b, \neg e\}$$

y decida mediante el método de Davis y Putnam si Γ es satisfacible o no. Concluya razonadamente que

$$\models ((a \rightarrow b) \rightarrow c) \rightarrow (d \rightarrow ((b \rightarrow (c \rightarrow e)) \rightarrow (b \rightarrow e)))$$

- 31. Haciendo uso del algoritmo de Davis y Putnam decida si son satisfacibles o no los siguientes conjuntos:
 - a) $\Sigma_1 = \{ \neg a \lor a \lor c, b \lor c, \neg a \lor c \lor d \lor e, \neg e, a \lor \neg c \lor \neg d \}$
 - b) $\Sigma_2 = \Sigma_1 \cup \{ \neg a \lor \neg d, c \lor \neg d \}$
 - c) $\Sigma_3 = \Sigma_2 \cup \{a \lor d, \neg c \lor d\}$
 - d) Justifique razonadamente que:

$$\models \big(\big(((\phi \to \psi) \to (\neg \chi \to \neg \theta)) \to \chi\big) \to \tau\big) \to \big((\tau \to \phi) \to (\theta \to \phi)\big)$$

e) Decida si el siguiente conjunto de fórmulas es o no satisfacible:

$$\{(b \land \neg a \land \neg b) \rightarrow c, \neg c \rightarrow \neg (\neg a \land \neg b), c \rightarrow a, b \rightarrow a, (\neg a \lor \neg b \lor \neg c) \land (d \lor e), a \rightarrow (b \rightarrow c), d \rightarrow \neg e\}$$

y caso de respuesta afirmativa, encuentre al menos una valoración que lo satisfaga.

3.8. Otros Ejercicios

- 1. Para las fórmulas proposicionales:
 - a) $p \rightarrow (q \rightarrow r)$
 - b) $(\neg p \land \neg q) \rightarrow (\neg r \land s)$
 - c) $p \leftrightarrow q$
 - d) $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
 - $e) (p \leftrightarrow \neg q) \leftrightarrow r)$
 - $f) p \wedge q \wedge r$

Encontrar fórmulas lógicamente equivalentes a ellas en las que se usen solamente las conectivas:

- $a) \{\neg, \land\}$
- b) $\{\neg, \lor\}$
- $c) \{\neg, \rightarrow\}$
- $d) \{ \vee, \wedge \}$
- 2. Estudiar si las siguientes equivalencias lógicas son ciertas o no. Justificar la respuesta.
 - a) $a \rightarrow b \equiv \neg a \rightarrow \neg b$
 - b) $a \leftrightarrow b \equiv \neg a \leftrightarrow \neg b$.
 - c) $(a \lor b) \rightarrow c \equiv (a \rightarrow c) \lor (b \rightarrow c)$.
 - d) $(a \lor b) \to c \equiv (a \to c) \land (b \to c)$.
 - e) $a \rightarrow (b \lor c) \equiv (a \rightarrow b) \lor (a \rightarrow c)$.
 - f) $a \rightarrow (b \rightarrow c) \equiv (a \land b) \rightarrow c$
- 3. Probar que las siguientes fórmulas son tautologías:
 - a) $p \rightarrow (q \rightarrow p)$
 - b) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
 - c) $(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$
- 4. Encontrar en cada uno de los apartados siguientes una fórmula α que lo haga verdadero:
 - a) α , $\alpha \to b \models \alpha \to c$, pero $\alpha \not\models \alpha \to c$.
 - b) α , $a \vee \neg b \models \neg a \ y \ \alpha, b \rightarrow c \models c$.
 - c) α , $a \rightarrow b \models \neg a \forall \alpha \models b \rightarrow c$.
 - d) α , $a \rightarrow b \models \neg \alpha \forall \alpha \not\models b$.
 - e) α , $a \models b \ y \ \alpha \models a \land \neg b$.
 - $f) \ \alpha, \ \alpha \to c, \ b \to c \vDash c, \, \text{pero} \ \alpha \not\vDash \alpha \ \text{y} \ \alpha \not\vDash b.$
- 5. Justificar si los siguientes enunciados son verdaderos o falsos:
 - a) Si α y β son contingentes, entonces $\alpha \vee \beta$ es contingente.
 - b) Si α y β son contingentes, entonces $\alpha \wedge \beta$ es contingente.
 - c) Si α y β son contingentes, entonces $\alpha \to \beta$ es contingente.
 - d) Si α y β son contingentes, entonces $\alpha \leftrightarrow \beta$ es contingente.

Otros Ejercicios 113

- e) Si α y β son contradicciones, entonces $\alpha \leftrightarrow \beta$ es tautología.
- f) Si α es tautología, entonces $\beta \vee \alpha$ es tautología.
- g) Si α es insatisfacible, entonces $\alpha \to \beta$ es una tautología.
- h) $\alpha \vee \beta$ es una tautología si, y sólo si, α y β son tautologías.
- i) Si $\alpha \vee \beta$ es contradicción, entonces α y β son contradicciones.
- j) Si $\alpha \vee \beta$ es una tautología, entonces α o β son tautologías.
- k) Si $\alpha \vee \beta$ es contingente, entonces α y β lo es.
- l) Si $\alpha \to \beta$ es una tautología, entonces α es una contradicción o β es una tautología.
- m) Si $\alpha \to \beta$ es una fórmula contingente, entonces α y β son contingentes.
- 6. En cada una de las situaciones siguientes indicar en cada caso qué tipo de fórmula es β (o qué tipo de fórmula no es β). Justificar la respuesta.
 - a) α es una tautología y $\alpha \leftrightarrow \beta$ es una contradicción.
 - b) α es una tautología y $\alpha \wedge \beta$ es cotingente.
 - c) α es una tautología y $\alpha \wedge \beta$ es una contradicción.
 - d) α es una tautología y $\alpha \to \beta$ es contingente.
 - e) α es una tautología y $\alpha \to \beta$ es una contradicción.
 - f) α es una contradicción y $\alpha \leftrightarrow \beta$ es una contradicción.
 - g) α es una contradicción y $\alpha \vee \beta$ es una contradicción.
 - h) α es una contradicción y $\alpha \vee \beta$ es contingente.
 - i) α es una contradicción y $\beta \to \alpha$ es una tautología.
 - j) α es contingente y $\alpha \vee \beta$ es una tautología.
 - k) α es contingente y $\alpha \wedge \beta$ es una contradicción.
 - l) α es contingente y $\alpha \to \beta$ es una tautología.
 - m) α es contingente y $\alpha \to \beta$ es contingente.
- 7. Razonar si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si una fórmula proposicional no es satisfacible, su negación sí lo es.
 - b) Si una fórmula proposicional no es consecuencia de un conjunto de fórmulas, su negación sí lo es.
 - c) Si una fbf no es consecuencia lógica de un conjunto de fórmulas, su negación tampoco.
 - d) Si $\Gamma \vDash \alpha$ es posible que exista $\Delta \subset \Gamma$ tal que $\Delta \nvDash \alpha$.
 - e) Si $\Gamma \nvDash \alpha$ es posible que exista $\Delta \subset \Gamma$ tal que $\Delta \vDash \alpha$.
- 8. Estudiar si el conjunto de proposiciones:

$$\Gamma = \{ \gamma \to (\alpha \lor \beta), \beta \to (\gamma \to \alpha), \delta \land \neg(\gamma \to \alpha) \}$$

es satisfacible o insatisfacible.

9. Usar los distintos tipos de técnicas estudiadas (cálculo de interpretaciones en \mathbb{Z}_2 , resolución, algoritmo de Davis-Putnam) para determinar si son o no tautologías las siguientes fórmulas:

$$\textit{a)} \ (\textbf{q} \rightarrow \textbf{p} \lor \textbf{r}) \rightarrow \big((\textbf{p} \rightarrow \textbf{q}) \rightarrow (\textbf{p} \rightarrow ((\textbf{r} \rightarrow \textbf{q}) \rightarrow \textbf{r})) \big)$$

b)
$$(\beta \rightarrow \neg \alpha) \rightarrow ((\neg \alpha \rightarrow \neg (\alpha \rightarrow \beta)) \rightarrow \alpha)$$

- c) $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$
- $d) ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha$
- e) $(\beta \rightarrow \gamma) \rightarrow (\neg(\alpha \rightarrow \gamma) \rightarrow \neg(\alpha \rightarrow \beta))$
- f) $((\alpha \rightarrow \beta) \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma)$
- $g) ((\neg \alpha \lor \beta) \land (\alpha \lor \neg \beta)) \leftrightarrow (\alpha \leftrightarrow \beta)$
- $h) \neg (a \rightarrow b) \rightarrow (\neg a \rightarrow \neg b)$
- $i) (\neg a \rightarrow \neg b) \rightarrow \neg (a \rightarrow b)$
- j) $(p \rightarrow q) \rightarrow ((\neg p \rightarrow q) \rightarrow q)$
- 10. Estudiar si las siguientes afirmaciones son ciertas o no. Caso de no serlo, encuentra una asignación que lo muestre:
 - $a) \{a \rightarrow b, a \rightarrow \neg b\} \models \neg a$
 - b) $\{a \rightarrow b, a \lor b\} \models b$.
 - c) $\{a \rightarrow \neg b, a \land b\} \models c$.
 - *d*) $\{a \lor b, \neg a \lor \neg b\} \models a \leftrightarrow \neg b$.
 - $e) \{a \leftrightarrow \neg b, a \rightarrow c\} \models b \lor c.$
 - f) $\{(a \land b) \leftrightarrow c, \neg c\} \models \neg a \land \neg b$.
 - g) $\{\neg(a \land b \land c), (a \land c) \lor (b \land c)\} \models a \rightarrow \neg b.$
 - h) $\{b \to (c \lor a), a \leftrightarrow \neg(b \land d)\} \models b \leftrightarrow (c \lor d).$
 - i) $\{(a \land b) \rightarrow c, c \rightarrow (a \lor d)\} \models b \rightarrow (\neg a \rightarrow c).$
 - j) $\{(a \lor c) \rightarrow \neg a, c \rightarrow \neg a, b \rightarrow \neg a\} \models \neg a.$
 - k) $\{(a \land b) \rightarrow c, c \rightarrow d, b \land \neg d\} \models \neg a.$
 - l) $\{(a \rightarrow b) \lor (c \rightarrow d), \neg a \rightarrow a, \neg c \rightarrow c\} \models b \lor d.$
 - m) { $a \rightarrow (b \lor c)$, $c \rightarrow d$, $\neg b \lor d$ } $\models \neg (a \land \neg d)$.
 - $n) \{(b \rightarrow a) \land b, c \rightarrow d, b \rightarrow c\} \models a \lor d.$
 - \tilde{n}) $\{(a \land b) \rightarrow c, (\neg a \land \neg b) \rightarrow d, a \leftrightarrow b\} \models c \lor d.$
 - o) $\{a \to (b \lor c), d \lor \neg c, b \lor d\} \vDash a \to d.$
 - $p) \{(\neg b \land \neg c) \rightarrow \neg a, a \rightarrow b, a \leftrightarrow c\} \models b \lor c.$
 - $q) \{a \rightarrow (a \rightarrow b), (b \lor c) \rightarrow a, c \rightarrow (a \lor b)\} \models b.$
 - r) $\{(a \land \neg b) \rightarrow \neg c, (\neg a \land b) \rightarrow d, \neg a \lor \neg b, e \rightarrow (a \land \neg d)\} \models \neg e.$
 - s) $\{c \to d, a \lor b, \neg(\neg a \to d), \neg a \to b\} \models b \land \neg c.$
- 11. Aplicar el algoritmo de Davis-Putnam a los siguientes conjuntos de cláusulas:
 - a) $\{\neg a \lor \neg b \lor c \lor d, \neg a \lor \neg b \lor \neg c \lor \neg d, a \lor \neg b \lor \neg c \lor \neg d, \neg a \lor \neg b \lor \neg c \lor d, a \lor b \lor \neg c, a \lor b \lor \neg d, \neg a \lor c \lor d, \neg b \lor c \lor d, a \lor \neg b, \neg a \lor b, c\}$
 - b) $\{p \lor q, \neg p \lor \neg q, \neg q \lor r \lor t, q \lor \neg r \lor t, q \lor r \neg t, \neg q \lor \neg r \lor \neg t, \neg r \lor s, r \lor \neg s, \neg p \lor s \lor t, p \lor \neg s \lor t, p \lor s \lor \tau, \neg p \lor \neg s \lor \neg t\}$
 - c) $\{p \lor \neg q \lor \neg r \lor s \lor \neg t, \neg q, p \lor \neg r \lor \neg s, q \lor r \lor \neg s, p \lor \neg q \lor r \lor s \lor \neg t, \neg p \lor \neg q \lor \neg s \lor \neg t, p \lor \neg q \lor r \lor r, q \lor \neg r \lor s \lor t, p \lor \neg q \lor r \lor s, p \lor \neg r \neg s, \neg p \lor s, p \lor \neg q \lor t\}$
- 12. Formular como un conjunto de cláusulas el principio del palomar de orden n, \mathbb{P}_n , que dice que no es posible colocar n+1 objetos distintos en n casilleros de forma que distintos objetos queden en distintos casilleros. Aplicar el algoritmo de Davis-Putnam para demostrar que el conjunto de 9 cláusulas que se deriva de \mathbb{P}_2 es insatisfacible.

Otros Ejercicios 115

- 13. Formalizar en lenguaje proposicional los siguientes argumentos y decidir si son correctos:
 - a) Si no hay control de nacimientos, entonces la población crece ilimitadamente. Pero si la población crece ilimitadamente, aumentará el índice de pobreza. Por consiguiente, si no hay control de nacimientos, aumentará el índice de pobreza.
 - b) Si la función f no es continua, entonces la función g no es diferenciable. g es diferenciable. Así pues, f no es continua.
 - c) Si hay petróleo en Poligonia, entonces los expertos tienen razón o el gobierno está mintiendo. No hay petróleo en Poligonia o los expertos se equivocan. Así pues, el gobierno está mintiendo.

19. Sean las siguientes fórmulas del lenguaje proposicional estándar:
$a) \gamma_1 = (a \wedge b) \rightarrow (c \vee d)$
b) $\gamma_2 = \neg((a \lor c \lor d) \land e)$
c) $\varphi = (a \rightarrow b) \rightarrow (e \rightarrow \neg a)$
Estudie si $\gamma_1, \gamma_2 \models \phi$ y caso de no serlo, dé una asignación de variables que lo evidencie.
TI, Te = 9 = D I = { TI, Te, 79} insatisfaciole
Antes de aplicar el método de Dovis y Pitram necesitames reescribir las formulas como clausulas:
$ Y^{T} = (\sigma \vee \rho) (cig) = J(\sigma \vee \rho) \wedge (cig) = (J\sigma \wedge J\rho) \wedge (cig) $
15 = 1((ancha)ve) = 1((ave)n(cve) n(ave)) = (Janje)v(Janje)v(Janje)
φ = (a->6)->(e->7a)=7(a->6)->(e->7a)=7(7a+6)~(7e+7a)= / Forma normal
$= (\alpha \wedge 7b) \vee (\pi e \vee 7a) \qquad \qquad (conjuntiva \qquad $
$ \cdot \cdot \cdot \neg \varphi := (\neg a \lor b) \land (e \land a) \cdot $
I = {rantonerd, rante, rente, tante, ranto, e, a}
Regla 2 - Formula unitaria (a) v(a)=1
······································
ξηρηςηφ' με 'μενης' ρ'e3
Regla 2 - Formula unitaria (e). v(e)=1.
The state of the s
{76,000,000,000,000,000,000,000,000,000,0
$\{ \neg b \lor c \lor d, \Box, \neg c, \neg d, b \}$
Va es insatisfacible porque la clausula vava "□" es insatisfacible
•
I' es insatisfacible, luego $\Gamma_1, \Gamma_2 \models \varphi$. Una asignación de variables que evidencie esto es cualquiera que verifique que $V(\alpha) = 1$.
dra com a constant to

28. Considere el conjunto de fórmulas:

$$\Gamma = \{a \lor \neg b \lor \neg c, \neg a \lor \neg b \lor c, a \lor b \lor \neg c \lor d, \neg d\}$$

y decida mediante el método de Davis y Putnam si Γ es satisfacible o no.

favibule, Tavibue, avourevd, Ta}

Regla ≥ (Claure unitaria) v(7d)=1

favibule, Tavibue, avoured + ¢

favibule, Tavibue, avoure3

Regla 4 (Oescamposición)

Ta,0

{aurburc, avourc3 {7aurbuc3} No es necesario seguir pues ya tenemas

el otro proso

. I es satisfacible, ya que lan valoraciones tales que v(a)=1, v(c)=1, y(d)=0 . So satisfacen.