Let's twist again: the problem with fake abelian surfaces

Enric Florit Zacarias (UB)

SiMBa - May 18,2022

Joint work with Francisc Fite & Xevi Guitart

1. Introduction

1.1. Modulanty

An elliptic curve is defined by an equation

 $E: y^2 = x^3 + Ax + B.$

Every elliptic curre has an attached meromorphic function called its L-function:

 $L(E,s) = \prod_{p|N} (1-a_{p}p^{-s})^{-1} \prod_{p\nmid N} (1-a_{p}p^{-s}+p^{1-2s})^{-1}$ $S \in \mathbb{C}$

The values ap are computed by counting points on E modulo p.

A modular form is a holomorphic function $f: \{z \in C, \operatorname{Im}(z) > 0\} \longrightarrow C$

satisfying certain transformation properties with respect to a matrix group $T_0^2(N) = \{(a,b)\} \subset SL_2(Z)$.

Because of these properties, ne have Fourier expansions:

f(z)= = = zninz nzo

a form:

$$L(f,s) = \int_{t}^{\infty} f(it) t^{s} \frac{dt}{t} = \sum_{n \ge 1} \frac{a_n}{n^{s}}$$

Theorem: for every elliptic curve E_1 there is some modular form f_E such that $L(E,s) = L(f_E,s)$. with various eigenvalues

1.2. Paramodularity

Let 7/2 be the following set:

A Siegel modular form is a holomorphic function $f: H_2 \longrightarrow \mathbb{C}$

satisfying certain transformation properties

with respect to a group of matrices TC Sp4 (Z).

 $\mathcal{H}_2 = \left\{ \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \omega \end{pmatrix} \in \mathbb{M}_{2\times 2}(\mathbb{C}) \mid (\text{Im} \in \text{Im} \mathbb{Z}) \text{ is positive} \right\}$

then f is called a Siegel paramodular form.

As for modular forms, there are Hecke operators, eigenforms, and L-functions

We want to use paramodular forms to generalise modularity.

Definition: An abelian variety is an algebraic variety A defined over k, with two marphisms $m: A \times A \longrightarrow A$ $inv: A \longrightarrow A$ and $e \in A(k)$, such that $A(\overline{k})$ is a group with (m, inv, e).

(Com motative)

1) Elliptic curves, y=x3+Ax+B

2) Given TEHZ (Tt=T, In(T), $\mathbb{C}^2/(\mathbb{Z}^2\oplus\mathbb{Z}^2\top)$ is an abelian surface. Paramodular Conjecture (I)

There is a bijection

form with rational abelian surface

A with trivial eigenvalues

A unith trivial endomorphism ring

eigenvalues) (endomorphism ring) such that $L(f,s) = L(A_f,s)$.

Problem: me do not have construction in either way!

2. Abelian varieties of GL4 - type

TeA:=line A[en] ~> pe: Gk ~ GL4(Qe)

Let A be au abeliau surface. For any prime l'ue have a continuous representation

which comes from the action of the Galois group on the points of A:

$$P = (P_0: P_a: \dots: P_m) \longrightarrow P = (\sigma(P_0): \dots: \sigma(P_m))$$

The L-function of A is defined in terms of pe: L(A,s) = Total det (pe (Frobp) - p-s Id) Hence the connection racieties forms requires studying the representations pe.

In general, if A has dimension of their me have a representation

pe: Gal(Q/Q) -> GL2n(Qe)

for each l=2 prime. But sometimes, me can hower the dimension of this representation.

- Need to study endomorphisms of A.

2.2. Endouorphism ring of A

Given an abelian variety A, its endomorphism

End (A):= $\{ \varphi : A \rightarrow A \mid \psi \text{ is a morphism of algebraic } \}$ $\psi : A(\overline{\mathbb{Q}}) \rightarrow A(\overline{\mathbb{Q}})$

It is a ring with sum and composition. Téchnical (but important) points:

1) We prefer norting with End(A) & Q

2) Given a field KDQ, me distinguish the set of endomorphisms defined over K by writing End(AK).

For all integers n∈Z, me have an endomorphism [n]: A → A, defined by

 $P \longmapsto \begin{cases} P + \cdots + P, & \text{if } n > 0 \\ 0, & \text{if } n = 0 \\ -(P + \cdots + P), & \text{if } n < 0. \end{cases}$

If mfn, ne have [m] \$ [n]. Hence

Zc End(A) => End(A) is a ring of characteristic

Theorem: For all fields KDQ, End(AK) & Q is finite-dimensional Q-algebra

1) The elliptic curve E: y2 = x3+1 has $\operatorname{End}(E_{\overline{Q}}) \otimes Q = Q$, $\operatorname{End}(E_{\overline{Q}}) \otimes Q = Q(\overline{I-3})$

2) The corre C: $y^2 = x^5 + 1$ has an associated abelian surface A = Jac(C) with End $(A_Q) \otimes Q = Q$,

End(A@) Q = Q(e2ni/s)

3) The wrve
$$(:y^2 = x^5 - 2i\sqrt{2}x^4 - \frac{11}{3}x^3 + 2i\sqrt{2}x^2 + x)$$
 has an associated surface $A = Jac(c)$, such that

such that
$$\operatorname{End}(A_{\overline{a}}) \otimes Q = \begin{pmatrix} 3, -1 \\ -1 \end{pmatrix} = \langle 1, i, i, i \rangle_{\overline{a}}$$

 $\operatorname{End}(A_{\overline{Q}}) \otimes Q = \begin{pmatrix} 3 & -1 \\ \overline{Q} \end{pmatrix} = \langle 1, i, j, ij \rangle_{Q}$

the quaternion algebra such that i2=3, j2=-1.

2.3. Abelian varieties of GL4-type

Note that "most" abelian surfaces A have $End(A_{\overline{Q}})=Z$. The degree of Q is 1, half of dim A=2.

Definition. An abelian variety A is of GL_4 -type if $End(A_Q)$ contains a number field of degree $[E:Q]=\frac{1}{2}d$ in A.

Proposition for each prime $d \in E$, there is a representation $p_A: Gal(\overline{Q}/Q) \rightarrow GL_4(E_A)$ a finite extension of Qe).

A general principle for studying Galois representations is that a representation $\rho_1: Gal(\overline{Q}/Q) \to GL(V)$

is determined by its traces

Define tuo fields:

H:= Conter (End (AQ))

F: - Center (End (A@))

We have inclusions FCHCE.

We say a field F is totally real if, for all injections o: F co C, we have

o(F)cR.

We suppose from now on that $F=2(End (A_{\bar{Q}}))$ is a totally real field.

Theorem. If $E \subset End(A_Q)^{\otimes Q}$ is a maximal field, then $End(A_{\overline{Q}}) \otimes Q = M_n(D)$, where D is either F, or a quaternion algebra defined over F. Geometrically, A is irogenous (over \overline{Q}) to B^h , where B is a simple abelian variety over \overline{Q} , and $End(B_{\overline{Q}}) \otimes Q = D$ Proposition H is the extension of F generated by the traces of P_{H} , $H = F(\{trp_{H}(Frob_{p})\})$.

Proposition The extension H/F is abelian. We all Gal (H/F) the group of inner trists of A.

3. Examples

3. Examples

Mestre's family of genus 4 curves

let $K = Q(v, a_1, a_2)$, and let C be the gows - 4 wree

C: $y^2 = (x - v)(vx - 1)(x^2 - a_1)(x^2 - a_2)\left(x^2 - \frac{a_1v^2 - 1}{a_1v^2}\right)\left(x^2 - \frac{a_2v^2 - 1}{a_2v^2}\right)$

The fourfold Jac(C) is generically simple, and

 $Q(\overline{12}) \subset End(Jac(C)_{k}).$

A family of fourfolds with
$$F_{\varphi}H$$

Let $r, s, t \in Q$, $w = \frac{r^2 + 2s^2 + 1}{2}$;

Let
$$r, s, t \in \mathbb{Q}$$
, $w = \frac{r^2 + 2s^2 + 1}{2}$;

$$\int F_{\lambda}(x) = x^2 + (r + s\sqrt{-2})x + (w + t\sqrt{-2})$$

$$|F_{\lambda}(x)| = x^{2} + (r + s\sqrt{-2})x + (w + t\sqrt{-2})$$

$$|F_{\lambda}(x)| = \sqrt{-2}x + (s - r\sqrt{-2})$$

$$|F_{\lambda}(x)| = -\sqrt{-2}x^{2} - (-2s + r\sqrt{-2})x + (2t + (\frac{1}{2} - w))$$

 $LF_3(x) = -\sqrt{-2}x^2 - (-2s + r\sqrt{-2})x + (2t + (\frac{1}{2} - w)\sqrt{-2}).$ Let $C: y^2 = F_1(x)F_2(x)F_3(x)$. If C: s smooth, then $A = \text{Res}_{Q(F_2)/Q}(\text{Jac}(C))$

s an abelian fourfold with End $(A_Q) \otimes Q = Q(\overline{Q})$ and $End(A_{\overline{Q}}) \otimes Q = M_2(Q)$

F=Q

4. Fake surfaces

4. Fake surfaces

A fake abelian surface abelian variety:

. Of dimension

• such that $\operatorname{End}(A_{\mathbb{Q}})=\operatorname{End}(A_{\overline{\mathbb{Q}}})$ is a quaternion algebra over \mathbb{Q} , ie

D=Q+Qi+Qj+Qij with $j^2 = a$, $j^2 = b$, ij = -ji; $a,b \in \mathbb{Q}^{\times}$.

Such a variety is of GL4-type.

Since $\operatorname{End}(A_{\mathbb{Q}}) = \operatorname{End}(A_{\mathbb{Q}})$, we have $F = H = \mathbb{Q}$. Hence all traces of $p_{\mathbb{Q}}$ lie in \mathbb{Q} . Even more, for all $g \in \operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$,

Even more, for all $g \in Gal(Q/Q)$, $det(pe(g)-x.Id)=p(x)^2$, where p(x) has degree four.

It's like we see double (or twice the representation of a surface).

Siegel paramodular form, Calegari: if & is a it could happen a Jake ovrface that there is A such that $L(f,s)^2 = L(A,s).$

Hence, the problem with Jake surfaces is that we cannot distinguish them from actual surfaces, at least not by booking at the traces of a representation.

Paramoduler Conjecture (II)

There is abijection

Paramodular

Porefaces

Pover Q

Fuch that
$$L(A,s) = \begin{cases} L(f_{A},s)^2 & \text{if } \dim A = 2\\ L(f_{A},s)^2 & \text{if } \dim A = 4 \end{cases}$$