

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Mekelweg 4, Delft

(2)

(2)

(2)

(2)

(2)

(2)

	Mekerweg 4, Dent	
	Tentamen (deel 1) EE2M21, 13.30-15.30, Woensdag 9 december 2015 Naam: Studienummer:	
	Opmerking: Voor de korte antwoord vragen volstaat het antwoord.Bij de open vrag is duidelijke uitleg vereist. Het gebruik van de rekenmachine is niet toegestaan.	en
	Korte antwoord vragen	
1.	A en B zijn 3×3 matrices met $\det(A)=1$ en $\det(B)=5$. Bepaal $\det(2AB)$.	_
2.	A is een 2×2 matrix met eigenvector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ bij eigenwaarde $\lambda_1 = 1/2$ en eigenvect	
	$\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ bij eigenwaarde $\lambda_2 = 1$. Beschouw de rij $\{\mathbf{x}_n\}_{n \geq 0}$ met $\mathbf{x}_0 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ en \mathbf{x}_n $A\mathbf{x}_{n-1}$. Bepaal een expliciete formule voor \mathbf{x}_n en bepaal $\lim_{n \to \infty} \mathbf{x}_n$.	=
3.	Geef de definitie van een orthogonale matrix.	
4.	A is een symmetrische 2×2 matrix met eigenwaarden $\lambda = 2, 4$ en basis E_2 : $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$	}
	Geef een diagonalisering van de matrix A .	,
5.	Bepaal de algemene oplossing van de differen-	
	tiaalvergelijking $t^2y' = ty + t^3e^t$ op het interval $(0, \infty)$.	
6.	Bepaal de oplossing van de Eulervergelijking $t^2y'' + 5ty' + 3y = 0$ met $t > 0$. (Hint: probeer $y(t) = t^r$.)	

(2)	7.	Gegeven is het beginwaardeprobleem: $ty'' + p(t)y' + q(t)y = t^2 \text{ met } y(-1) = 2, y'(-1) = 0.$ De functie $p(t)$ is continu op het open interval $(-4, 2)$ en de functie $q(t)$ is continu op het
		interval $(-2,3)$. Geef een zo groot mogelijk open interval I waarop
		de oplossing $y(t)$ van dit beginwaarde probleem zeker zal bestaan.
(2)	8.	Beschouw het homogene lineaire stelsel $X' = AX$ met $X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$ en $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
		Bepaal de algemene oplossing van dit stelsel.
		Open vragen
(3)	1.	Laat Q een orthogonale $n \times n$ matrix zijn. Toon aan: $\det(Q) = \pm 1$.
(5)	2.	Bepaal de orthogonale projectie van de vector $\begin{bmatrix} 1 \\ -3 \\ 7 \end{bmatrix}$ op het vlak $x - 2y + 3z = 0$.

3. Beschouw de reële matrix $A = \begin{bmatrix} 1 & 5 \\ -1 & -3 \end{bmatrix}$.

(a) Bepaal de QR-ontbinding van A.

(3)

(4)

 $x_1(t)$ $x_2(t)$

(b) Bepaal de reële oplossing van het lineaire stelsel X' = AX met X(t) =

	4. Bese	chouw de autonome differentiaalvergelijking $\frac{dy}{dt} = -\frac{1}{2}(y-2)^3$.	
(2)		Bepaal het/de evenwichtspunt(en) en bepaal van deze het type.	
(4)	(b)	Bepaal een oplossing $y_1(t)$ met $y_1(2) = 3$.	
(4)	(5)	Heeft deze oplosing een verticale asymptoot?	
			6
(2)	(c)	Bepaal een oplossing $y_2(t)$ met $y_2(2) = 2$.	

5. Van de homogene lineaire differentiaalvergelijking $t^2y'' - t(t+2)y' + (t+2)y = 0 \ (t > 0)$ zien we één oplossing $y_1(t) = t$. Bepaal via reductie van orde de algemene oplossing y(t) op het interval $(0, \infty)$.

Normering: Voor korte antwoord resp. open vragen zijn 16 resp. 29 punten te halen. Als voor deze delen K resp. O punten gehaald zijn, dan:

Tentamencijfer =
$$\frac{5 + K + O}{5}$$