Coriolis and *I*-Type Interactions in the ν_2 , $2\nu_2$, and ν_4 States of ¹⁴NH₃

Š. URBAN, V. ŠPIRKO, AND D. PAPOUŠEK

The J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, 160 00 Prague 6, Czechoslovakia

AND

ROBIN S. McDowell and Norris G. Nereson

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

AND

S. P. Belov, L. I. Gershstein, A. V. Maslovskij, and A. F. Krupnov

Institute for Applied Physics, Academy of Sciences, USSR, Gorkii.

AND

JOHN CURTIS AND K. NARAHARI RAO²

Department of Physics, The Ohio State University, Columbus, Ohio 43210

High-resolution infrared spectra have been remeasured for the ν_2 , $2\nu_2$, and ν_4 bands of $^{14}NH_3$ using a vacuum grating infrared spectrometer and a diode laser spectrometer. Farinfrared spectra of $^{14}NH_3$ have been measured with microwave accuracy in the 700–1100 GHz region by employing a submillimeter wave spectrometer (RAD) with acoustic detection. The pure inversion and inversion-rotation transition frequencies in the ν_2 excited state of $^{14}NH_3$ have been determined for the first time. The vibration-inversion-rotation Hamiltonian of ammonia [Špirko, Stone, and Papoušek, *J. Mol. Spectrosc.* **60**, 159–178 (1976)] has been used for a precise parameterization of the energy levels of ammonia. The ground state rotational and centrifugal constants of $^{14}NH_3$ have been determined using a modified method of combination differences. Coriolis and *l*-type interactions between ν_2 , ν_4 , $2\nu_2$, $\nu_2 + \nu_4$, and $3\nu_2$ states have been analyzed and the band parameters have been obtained which reproduce the transition frequencies within the accuracy of the experimental data.

I. INTRODUCTION

In previous papers (1-5) a new vibration-inversion-rotation Hamiltonian for ammonia has been developed and applied to the available experimental transition frequencies in the infrared, submillimeter, and microwave regions for ¹⁴NH₃, ¹⁵NH₃, ¹⁴NH₂D, ¹⁴ND₂H, ¹⁴ND₃, and ¹⁴NT₃. The main purpose of this work is to

¹ The Los Alamos portion of this work was supported by the United States Department of Energy.

² One of us (KNR) is grateful to the National Aeronautics and Space Administration for support of some of this research.

obtain an accurate value of the inversion barrier in ammonia and to discuss certain anomalies in the spectra of this classic example of a nonrigid molecule (5).

In the present paper we have used this Hamiltonian for a precise parameterization of the energy levels of ammonia in the sense of obtaining the effective values of molecular parameters which reproduce the high-resolution infrared, submillimeter, and microwave data to within the accuracy of the experiments. Formulas which are obtained from this Hamiltonian to fit the experimental data are formally identical with those that would be obtained from the standard Darling-Dennison vibrational-rotational Hamiltonian. There are however two main advantages of our approach (Section II): (i) higher-order formulas can be obtained from the lower-order terms in the expansion of our Hamiltonian in terms of Q [cf. (6)]; and (ii) relations of the effective parameters to the basic molecular constants such as the molecular geometry and the potential energy function of ammonia are clearly defined in our treatment.

In the present paper we apply this treatment to the infrared data on $^{14}NH_3$ measured with the vacuum grating spectrometer at the Ohio State University in Columbus, Ohio, with the diode laser spectrometer at the Los Alamos Scientific Laboratory, and with the submillimeter wave spectrometer RAD at the Institute for Applied Physics at the Academy of Sciences USSR in Gorkii, (Section III). Although the infrared spectrum of ammonia has been studied in considerable detail (7-23), previous measurements (7-13) have been done with much lower resolution than achieved here. With the grating spectrometer, we have measured with resolution of about 0.03-0.06 cm $^{-1}$ the ν_1 , ν_2 , ν_3 , and ν_4 fundamental bands, the $2\nu_2$ and $2\nu_4$ overtone bands, and the "hot" bands for transitions from the ν_2 level to the $\nu_1 + \nu_2$, $\nu_2 + \nu_3$, ν_4 , and $2\nu_2$ levels of $^{14}NH_3$. The 10^{-4} -cm $^{-1}$ resolution of the diode laser spectrometer has made it possible to resolve certain features in the ν_2 band that remained unresolved in the grating measurements. We report here also for the first time the measured frequencies of the pure inversion and rotation-inversion transitions in the ν_2 state of $^{14}NH_3$ at 700-1100 GHz.

Combining these data with some other high- and ultra-high-resolution submillimeter and infrared data on the ν_2 (or $2\nu_2$) band of ammonia (14, 16-20, 22-24), we have determined the ground-state rotational and centrifugal distortion constants of ¹⁴NH₃ using a modified method of combination differences (Section IV). We have also analyzed in detail the Coriolis and *l*-type interactions between the ν_2 , ν_4 , $2\nu_2$, $\nu_2 + \nu_4$, and $3\nu_2$ states of ammonia (Section V). The results of analysis of the ν_1 , ν_3 , and $2\nu_4$ states including the perturbation-allowed transitions to the $2\nu_4$ level will be presented in a subsequent paper.

II. PARAMETERIZATION OF THE ENERGY LEVELS OF AMMONIA

If we expand the vibration-inversion-rotation Hamiltonian for NH₃ (1, 4) in the vibrational coordinates Q, and retain only terms of order of magnitude $\kappa^2 T_v$, we obtain

$$H = T_i^0 + T_r^0 + T_{\text{cent}} + T_{\text{cor}} + T_{\text{Vib}} + V, \tag{1}$$

where

$$T_{i}^{0} = (1/2)\mu_{\rho\rho}^{0}J_{\rho}^{2} + (1/2)(J_{\rho}\mu_{\rho\rho}^{0})J_{\rho} + (1/2)(\mu^{0})^{1/4}\{J_{\rho}\mu_{\rho\rho}^{0}(\mu^{0})^{-1/2}[J_{\rho}(\mu^{0})^{1/4}]\} + U_{0}(\rho), \quad (2)$$

$$T_r^0 = (1/2)\mu_{rr}^0(J_r^2 + J_y^2) + (1/2)\mu_{zz}^0J_z^2, \tag{3}$$

$$T_{\rm Cent} = (1/2) \sum_{\alpha,\beta=x,y,z,\rho} \left[\sum_k X_k^{\alpha\beta} Q_k + \sum_{k,l} Y_{kl}^{\alpha\beta} Q_k Q_l \right] J_{\alpha} J_{\beta}$$

+
$$(1/2) \sum_{\alpha=x,y,z,\rho} [\sum_{k} (J_{\rho} X_{k}^{\rho\alpha}) Q_{k} + \sum_{k,l} (J_{\rho} Y_{kl}^{\rho\alpha}) Q_{k} Q_{l}] J_{\alpha},$$
 (4)

$$T_{\text{Cor}} = -(1/2) \sum_{\alpha = x, y, z, \rho} \mu_{\alpha\alpha}^{0} (J_{\alpha} p_{\alpha} + p_{\alpha} J_{\alpha}) - (1/2) (J_{\rho} \mu_{\rho\rho}^{0}) p_{\rho}, \tag{5}$$

$$T_{\text{Vib}} = (1/2) \sum_{k} P_k^2 + (1/2) \sum_{\alpha = x, y, z, \rho} \mu_{\alpha \alpha}^0 p_{\alpha}^2,$$
 (6)

$$V = V_0(\rho) + \sum_k \kappa_k(\rho) Q_k + (1/2) \sum_k \lambda_k(\rho) Q_k^2$$

$$+ \sum_{klm} k_{klm}(\rho) Q_k Q_l Q_m + \cdots . \qquad (7)$$

All the symbols have the same meaning as in Refs. (1,4,5); k,l,m take on the values 1, 3a, 3b, 4a, 4b. It should be emphasized that all parameters occurring in Eqs. (2)-(7) are functions of the coordinate measuring the large-amplitude inversion motion.

In the theory of centrifugal distortion described in Ref. (4) we used second-order perturbation theory and evaluated the matrix elements of the vibrational and rotational operators occurring in T_r^0 , $T_{\rm Cent}$, $T_{\rm Vib}$, and V. Together with T_i^0 , this gives an effective vibration-inversion-rotation Hamiltonian for NH₃ that contains only functions of ρ and the operator $J_{\rho} = -i\hbar\partial/\partial\rho$ [Eqs. (14)-(16) in (4)]. If the resulting Schrödinger equation is solved numerically as an "inverse" eigenvalue problem, we can obtain physically reliable information on the molecular potential function of ammonia including the "true" double-minimum potential function for the inversion motion (5). This is, however, a treatment which is not suitable for fitting experimental data with an accuracy comparable to that of the high-resolution infrared and microwave data.

We have now modified the treatment so that the parameterization of the energy levels can be achieved relatively easily. We do not obtain direct information on the whole potential function of ammonia, but effective molecular parameters such as rotational constants, band origins, and interaction parameters are obtained by a least-squares fit.

The basic idea of our treatment consists in the expansion of the ρ -dependent parameters in Eqs. (3)-(7) as a power series in the large-amplitude coordinate ρ in the point of the planar reference configuration of the atomic nuclei ($\rho = \pi/2$). The choice of the planar reference configuration in this expansion is the most natural from the point of view of the symmetry of the problem. All the ρ -dependent terms are either even or odd functions of $\bar{\theta} = \rho - \pi/2$ [A_1' or A_2'' species in the D_{3h} permutation-inversion group of NH₃ (1,5)]. Let us denote these parameters in general as $M_p^{(A_1')}$ and $M_p^{(A_2')}$. We can write

$$M_p^{(A_1')} = {}^{(0)}M_p^{(A_1')} + {}^{(1)}M_p^{(A_1')}\hat{\theta}^2 + {}^{(2)}M_p^{(A_1')}\hat{\theta}^4 + \cdots,$$
 (8a)

$$M_p^{(A_2'')} = {}^{(1)}M_p^{(A_2'')}\bar{\theta} + {}^{(2)}M_p^{(A_2'')}\bar{\theta}^3 + \cdots,$$
 (8b)

where ${}^{(s)}M_p$ are ρ -independent coefficients depending only on the molecular geometry and atomic masses.

If we substitute Eq. (8) into Eqs. (3)-(7), Eq. (1) can be written in the following form:

$$H = [T_i^0 + V_0(\bar{\theta})] + [(1/2) \sum_k P_k^2 + (1/2) \sum_k {}^{(0)} \lambda_k Q_k^2]$$

$$+ [(1/2)^{(0)} \mu_{xx}^0 (J_x^2 + J_y^2) + (1/2)^{(0)} \mu_{zz}^0 J_z^2] + H'$$

$$= H_0 + H',$$
(9)

where

$$H' = (1/2) \sum_{s=1}^{\infty} \left[{}^{(s)}\mu_{xx}^{0} \bar{\theta}^{2s} (J_{x}^{2} + J_{y}^{2}) + {}^{(s)}\mu_{zz}^{0} \bar{\theta}^{2s} J_{z}^{2} \right] + T_{\text{Cent}} + T_{\text{Cor}}$$

$$+ (1/2) \sum_{s=1}^{\infty} \mu_{\alpha\alpha}^{0} p_{\alpha}^{2} + \sum_{s=1}^{\infty} \sum_{s=1}^{\infty} (s) \lambda_{k} \bar{\theta}^{2s} Q_{k}^{2} + \sum_{klm} k_{klm} Q_{k} Q_{l} Q_{m}.$$
 (10)

Wavefunctions ψ_0 that are solutions of the Schrödinger equation

$$H_0\psi_0 = E_0\psi_0 \tag{11}$$

can be written as the product functions

$$\psi_0(\bar{\theta}; \theta, \Phi, \chi; Q) = [\psi_i(\bar{\theta})][S_{Jkm}(\theta, \Phi) \exp(ik\chi)][\prod_{n} \psi_n^0(Q)], \tag{12}$$

where v is summed over 1, 3a, 3b, 4a, 4b; here $\psi_i(\bar{\theta})$ are the inversion wavefunctions, $S_{Jkm}(\theta,\Phi)$ exp $(ik\chi)$ the symmetric rotor wavefunctions, and $\psi_v^0(Q)$ the harmonic oscillator wavefunctions. The inversion wavefunctions $\psi_i(\bar{\theta})$ are not obtained in the present treatment by a numerical integration of the Schrödinger equation with the operator $T_i^0 + V_0(\bar{\theta})$; they are assumed to be known.

The product functions (12) are basis functions in which the Schrödinger problem with the Hamiltonian H is solved either by standard perturbation methods or by a variational approach (if there is a close coincidence of the interacting levels). In this Section, only a simple example will be discussed to demonstrate the usefulness of this approach.

Let us consider the so-called rigid bender approximation which has been treated numerically in Refs. (1,2) to obtain information on the inversion potential function in ammonia. The rigid bender Hamiltonian $H_{\rm rb}^0$ can be written in the form (1)

$$H_{\rm rb}^0 = [T_i^0 + V_0(\bar{\theta})] + (1/2)\mu_{xx}^0(J^2 - J_z^2) + (1/2)\mu_{zz}^0 J_z^2. \tag{13}$$

If we expand μ_{xx}^0 and μ_{zz}^0 in a power series according to Eq. (8a), H_{rb}^0 has diagonal and off-diagonal matrix elements in $\psi_i(\bar{\theta})(\equiv |i\rangle)$:

$$(hc)^{-1}\langle v; J, k, m; i | H_{rb}^{0} | v; J, k, m; i \rangle$$

$$= E_{i}^{0}/hc + (h/4\pi^{2}c)[^{(0)}\mu_{xx}^{0} + \sum_{s=1}^{(s)}\mu_{xx}^{0}\langle i | \bar{\theta}^{2s} | i \rangle][J(J+1) - k^{2}]$$

$$+ (h/4\pi^{2}c)[^{(0)}\mu_{zz}^{0} + \sum_{s=1}^{(s)}\mu_{zz}^{0}\langle i | \bar{\theta}^{2s} | i \rangle]k^{2}$$

$$= E_{i}^{0}/hc + B_{i}J(J+1) + (C_{i} - B_{i})k^{2}, \qquad (14)$$

$$(hc)^{-1}\langle v; J, k, m; i | H_{rb}^{0} | v; J, k, m; i+2 \rangle$$

$$= (h/4\pi^{2}c)[\sum_{s=1}^{(s)}\mu_{xx}^{0}\langle i | \bar{\theta}^{2s} | i+2 \rangle][J(J+1) - k^{2}]$$

$$+ (h/4\pi^{2}c)[\sum_{s=1}^{(s)}\mu_{zz}^{0}\langle i | \bar{\theta}^{2s} | i+2 \rangle]k^{2}. \qquad (15)$$

If we treat this problem by the standard perturbation theory up to third order, we obtain the well-known formula for the energy levels of a nondegenerate vibrational state and the *i*th inversion state including sextic centrifugal distortion coefficients:

$$\left(\frac{E_i}{hc}\right) = \left(\frac{E_i^0}{hc}\right) + B_i J(J+1) + (C_i - B_i)k^2 - D_J^{(i)} J^2 (J+1)^2 - D_{JK}^{(i)} J(J+1)k^2 - D_K^{(i)} k^4 + H_{JJJ}^{(i)} J^3 (J+1)^3 + H_{JJK}^{(i)} J^2 (J+1)^2 k^2 + H_{JKK}^{(i)} J(J+1)k^4 + H_{KKK}^{(i)} k^6.$$
(16)

It should be mentioned that from the mathematical point of view such a treatment is correct if the series expansions (8) are convergent. We have verified a rapid convergence of the series expansions of all parameters occurring in the Hamiltonian H in Eq. (1), which justifies our procedure.

Rotational and centrifugal distortion coefficients in Eq. (16), and in other relations which could be obtained from higher-order terms in the Hamiltonian by perturbation treatment, are effective parameters for the *i*th inversion state. Their relation to the coefficients of the expansion (8a) could be found in explicit form. The algebra involved in such a treatment is straightforward but rather lengthy and will not be carried out in this paper. Instead we concentrate on the determination of the effective molecular parameters by a least-squares fit to the experimental data (Sections IV-VI).

It should be noted that in our approach to the parameterization of the energy levels, NH_3 is treated as a planar molecule of D_{3h} symmetry with a large-amplitude motion. Because we use the model Hamiltonian described in Refs. (1,4,5), such an approach is physically correct and its advantage is that higher-order effects can be described in a lower-order treatment (see the above discussion of the rigid bender approximation). Previous approaches (e.g., (7,25)) considered ammonia as a molecule of C_{3v} symmetry and the vibration-rotation Hamiltonian was expanded in terms of Q in the point group of the equilibrium configuration. Strictly speaking this is not physically correct, and the relation between the effective molecular parameters and the true physical parameters is not clear in such a treatment, especially for the excited vibrational-rotational states.

III. HIGH-RESOLUTION INFRARED MEASUREMENTS

The ν_2 and ν_4 bands of ammonia in the infrared were recorded with a 3.5-m focal length vacuum grating infrared spectrometer at the Ohio State University equipped with a 9 in. \times 6 in. (22½ cm \times 15 cm) Bausch and Lomb grating with 40 grooves per millimeter and used echelle fashion. The gas sample used was supplied by Matheson and Company and was quoted to have a purity of 99.4% of ¹⁴NH₃. The source of continuous radiation was a carbon rod furnace. The measurements were made relative to the 1–0 band lines of CO and the accuracy is believed to be about 0.005 cm⁻¹. Other experimental details have been given in detail by Curtis (26). Figures 1a, 1b, and 1c display the spectra recorded, along with pressures and path lengths used for the ammonia gas.

Portions of the ν_2 band were examined under Doppler-limited resolution using the diode laser spectrometer at Los Alamos Scientific Laboratory (27). This was

Fig. 1a. Low-pressure grating spectra in the ν_2 region of ammonia. Gas pressure used was 2 mm Hg in a 1-m-long absorption cell. At the upper and lower ends of the spectrum some data were observed with a sample pressure of 5.5 mm Hg.

Fig. 1b. High-pressure grating spectra in the ν_2 region of ammonia. Gas pressure used was 1 cm Hg in an 11-m path. A line that has a dot over it is a blend of lines that are resolved in the low-pressure data.

FIG. 1c. Grating spectra of the ν_4 region of ammonia. Gas pressure used was 1 cm Hg in a 1-m-long absorption cell. Line with a dot over it is an H₂O line or a blend with an H₂O line.

FIG. 2. The spectrum of $^{14}NH_3$ between 1122.03 and 1122.23 cm $^{-1}$ as recorded with a tunable semiconductor diode laser, showing sR(7,K) and aR(9,9). Sample pressure was ~ 0.1 Torr in a 40-cm cell.

particularly useful for resolving the sR(J,K) groupings; sR(7,K) is shown as an example in Fig. 2. Relative line separations in these spectra were measured against simultaneously recorded interference fringes from a germanium etalon. Absolute wavenumbers were then obtained by referencing the lines to one transition in each group whose wavenumber had been very accurately determined as described in the next paragraph.

Experimental transition wavenumbers for the ν_2 , $2\nu_2$, and ν_4 bands together with their assignments are given in Tables I to III. In the case of the ν_2 band, we have also used the precise values of the pure inversion transition frequencies and inversion-rotation transition frequencies in the ν_2 excited state as measured by a submillimeter wave spectrometer, RAD³ (28-30), the infrared-microwave two-photon measurements (16, 17, 31) of the vibration-inversion-rotation transitions to the ν_2 state, and the ground-state pure inversion transition frequencies (32) to obtain precise frequencies of certain vibration-inversion-rotation transitions to the ν_2 state (see Fig. 3 and Table I).

The submillimeter-wave line centers of $^{14}NH_3$ were found to depend linearly on the pressure of the ammonia gas in the range 0.2–2 Torr (e.g., the slopes of the J,K=1,1 and 2,2 pure inversion transitions in the ν_2 state of $^{14}NH_3$ were found to be -2.4 MHz/Torr and +1.5 MHz/Torr, respectively). Most of the transition frequencies in Table IV were measured at a single value of pressure (in the range

³ The particular system of frequency stabilization of the backward wave oscillator used (Belov, Gershstein, and Maslovskii, in "Proceedings of the IV All Union Symposium on Molecular Spectroscopy of High and Superhigh Resolution, Tomsk-Novosibirsk, 1978") makes it possible to measure frequencies to a very high degree of accuracy.

TABLE~I Observed and Calculated Transition Wavenumbers in the ν_2 Band of $^{14}NH_3~(cm^{-1})^a$

J	K	νobs	v _{calc}	vcal vob	vobs	^ν calc	^V cal ^{−V} ob
			sP			aP	
1	0	948.2328 ⁱ 948.232	948.2323	-0.0005	• • •	•••	
2	0 1	928.230	928.2322	0.002	892.158 891.884	892.1570 891.8825	-0.001 -0.001
3 3 3	0 1 2	908.190 908.1785 ^h 908.115	908.1988 908.1767 908.1124	0.009 -0.0018 -0.002	872.565 871.737	872.5667 871.7371	0.002 0.000
4	0	888.0779 ^f 888.035 ^b	888.0788	0.0009	*853.817 853.5467h 853.549	853.8186 853.5472	0.002 0.0005
4	2	887.9988 [±]	887.9995	0.0007	852.7237 ^h 852.727	852.7239	0.0002
4	3	*887.87683 ⁹ 887.8773 [£] 887.878	887.8746	-0.0022	*851.32692 ^h 851.330	851.3271	0.0002
5 5 5 5 5	0 1 2 3 4	*867.980b *867.980b *867.882b *867.717 867.517	868.0003 867.9682 867.8723 867.7193 867.5204	0.020 -0.012 -0.010 0.002 0.003	834.826 834.013 *832.635 830.654	834.8230 834.0112 832.6338 830.6533	-0.003 -0.002 -0.001 -0.001
6 6 6 6	0 1 2 3 4 5	847.876 847.765 *847.578 847.336 847.053	847.8756 847.7622 847.5795 847.3375 847.0517	-0.000 -0.003 0.002 0.001 -0.001	*816.649 816.388 815.585 *814.239 812.297 809.714	816.6459 816.3864 815.5911 814.2418 812.3002 809.7151	-0.003 -0.002 0.006 0.002 0.003 0.001
7 7 7 7 7 7	0 1 2 3 4 5 6	*827.857b *827.857b 827.703 *827.491 827.202 826.854 826.470	827.8748 827.8329 827.7014 827.4878 827.2012 826.8553 826.4705	0.018 -0.024 -0.002 -0.003 -0.001 0.001	798.228 797.451 *796.131 794.240 791.723 788.506	798.2239 797.4491 796.1347 794.2444 791.7261 788.5112	-0.004 -0.002 0.004 0.004 0.003
8 8 8 8 8 8 8	0 1 2 3 4 5 6 7	807.873 807.716 *807.468 807.148 806.744 806.281 805.775	807.8714 807.7216 807.4768 807.1449 806.7382 806.2744 805.7788	-0.002 0.006 0.009 -0.003 -0.006 -0.007	*780.565b 780.309 779.564 *778.290 776.458 774.020 770.913 767.037	780.5523 780.3161 779.5657 778.2932 776.4637 774.0264 770.9130 767.0387	-0.013 0.007 0.002 0.003 0.006 0.006 -0.000 0.002
99999999	0 1 2 3 4 5 6 7 8	*788.079b *788.034b 787.853 *787.572 787.197 786.728 786.184b 785.594 784.976	788.0707 788.0213 787.8533 787.5776 787.2009 786.7334 786.1914 785.5964 784.9790	-0.008 -0.013 0.000 0.006 0.004 0.006 0.007 0.002	762.639 761.921 *760.695 758.927b 756.586 753.590 749.862 745.295	762.6409 761.9176 760.6919 758.9313 756.5871 753.5922 749.8612 745.2938	0.002 -0.003 -0.003 -0.004 0.001 0.002 -0.001 -0.001

^a Our infrared grating measurements unless stated otherwise; asterisk denotes that this value has not been used in the fit.

^b Blended line.

^c Ref. (16).

d Ref. (14).

e Ref. (31).

f Ref. (17).

g Ref. (19).

TABLE I-Continued

ј к	vobs	ν _{calc}	ν _{cal} -ν _{ob}	vobs	ν _{calc}	ν _{cal} -ν _{ob}
		sP			aP	
10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9	*768.309b *768.107b *767.812 767.408 766.877 766.241b 765.565 764.824 764.074	768.3114 768.1258 767.8199 767.3994 766.8733 766.2545 765.565. 764.8227	0.002 0.019 0.008 -0.009 -0.004 0.013 -0.003 -0.001	*745.409b *745.194b 744.490b *743.312 741.622 739.384 736.513 732.949 728.580b 723.275	745.3761 745.1760 744.4809 743.3047 741.6179 739.3754 736.5129 732.9456 728.5700 723.2714	-0.033 -0.018 -0.009 -0.007 -0.004 -0.009 -0.000 -0.003 -0.010 -0.004
11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10	*748.810b *748.810b 748.574b 748.574b 747.765 747.179 746.492 745.703 744.849 743.961 743.078	748.8207 748.7689 748.5663 748.2313 747.7687 747.1858 746.4935 745.7076 744.8512 743.9555	0.011 -0.041 -0.008 0.003 0.004 0.007 0.001 0.005 0.002 -0.006 -0.014	727.910 727.251 *726.109b 724.517 722.368 719.647 716.248 712.095 707.051	727.9026 727.2350 726.1077 724.4956 722.3585 719.6368 716.2486 712.0894 707.0372 700.9650	-0.007 -0.016 -0.001 -0.021 -0.009 -0.010 0.001 -0.006 -0.014
12 0 12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9 12 10 12 11	729.419 729.209 *728.822 728.331 727.699 726.943 *726.109b 725.101 724.052b 723.007 721.978	729.4196 729.2006 728.8378 728.3350 727.6980 726.9357 726.0615 725.0940 724.0600 722.9965 721.9546	0.001 -0.008 0.016 0.004 -0.007 -0.007 -0.007 0.008 -0.011 -0.023	*711.029 *710.796b 710.175 *709.098b *707.585b *705.550b 702.943 699.727 695.790 691.030 685.281 678.376	710.9625 710.8116 710.1682 709.0851 707.5430 705.5084 702.9287 695.8018 691.0257 685.2589 678.3670	-0.066 0.016 -0.007 -0.013 -0.042 -0.014 0.000 0.012 -0.004 -0.0022
13 0 13 1 13 2 13 3 13 4 13 5 13 6 13 7 13 8 13 9 13 10 13 11 13 12	*710.329b *710.329b *710.069b *709.669b *709.098b 708.420 *707.585b 706.645 *705.550b 704.411 703.197 701.962 700.774b	710.3367 710.2892 710.0545 709.6649 709.1235 708.4349 707.6063 706.6485 705.5769 704.4136 703.1896 701.9477 700.7468	0.008 -0.040 -0.015 -0.003 0.026 0.015 0.021 0.003 0.027 0.003 -0.006 -0.014	*698.811b *693.233b *692.298b 690.767 *688.849b *686.391b *683.356b 679.653 *675.156b	693.9096 693.2841 692.2358 690.7523 688.8087 686.3621 683.3448 679.6597 675.1800 669.7556 663.2297 655.4683	0.099 0.051 -0.062 -0.017 -0.040 -0.029 -0.011 0.007
		sQ			aΩ	
1 1	967.99774 ^C 967.995	967.9980	0.0003	931.62776h 931.6280f 931.632	931.6286	0.0008

^h Value calculated from the microwave ground state inversion frequencies, the submillimeter ν_2 inversion frequencies, and the high-resolution infrared vibration-inversion-rotation transition frequencies (see text).

¹ Ref. (20).

¹ Value calculated from the frequency difference (resolved K structure) in Ref. (18).

^k Value calculated from the microwave ground-state inversion frequencies, the submillimeter ν_2 inversion-rotation frequencies, and the high-resolution infrared vibration-inversion-rotation transition frequencies (see text).

¹ Our diode laser measurements.

TABLE I—Continued

J	К	νobs	^ν calc	ν _{cal} -ν _{ob}	vobs	νcalc	ν _{cal} -ν _{ob}
			sQ			aQ	
2	1	967.77467 ^h 967.777 ^d	967.7748	0.0001	932.13610 ^c 932.107 ^b	932.1361	0.0000
2	2	967.73860h 967.73859 ^C 967.73841 ^g 967.749	967.7386	0.0000	931.333429 931.33348f 931.3336 ^c 931.332	931.3338	0.0004
3 3	1 2	967.40680h	967.4490 967.4067	-0.0001	932.886 932.09402 ^c	932.8806 932.0936	-0.005 -0.0005
3	3	967.4073° *967.34632° 967.367	967.3441	-0.0022	932.107b *930.75697h 930.7557c 930.760	930.7574	0.0004
4	1	967.0302h 966.965b	967.0307	0.0005	933.8419 ^f 933.833 ^b	933.8422	0.0003
4	2	966.9814 ^h 966.965 ^b	966.9808	-0.0006	933.0762° 933.063	933.0753	-0.0009
4	3	*966.908d 966.898	966.9049	-0.003	*931.773	931.7729	-0.000
4	4	966.8150 ^h 966.816 ^d 966.814	966.8148	-0.0002	929.8982 ^f 929.8984 ^c 929.894	929.8984	0.0002
5 5	1 2	966.530 966.4739h 966.475d 966.476	966.5324 966.4735	0.002 -0.0004	934.999 934.2524 ^f 934.244 ^b	934.9948 934.2526	-0.004 0.0002
5	3	*966.37987h 966.3804° 966.379	966.3821	0.0022	*932.99243 ^C 932.99226 ^G 932.994	932.9919	-0.0005
5	4	966.26931 ^C 966.26935 ^G 966.268	966.2691	-0.0002	931.17745h 931.17735° 931.1776f	931.1766	-0.0009
5	5	966.15100 ^C 966.151	966.1512	0.0002	931.165 928.7543f 928.7547C 928.755	928.7549	0.0006
6 6	1 2	*965.982 ^b 965.904	965.9678 965.8989	-0.014 -0.005	936.311	936.3068	-0.004
6	3	*965.792 ^d 965.787	965.7904	-0.002	935.592 *934.377	935.5933 934.3814	0.001 0.004
6	4	965.65222h 965.6520 ^C	965.6521	-0.0001	932.63589f 932.635829	932.6359	0.0000
6	5	965.649 965.49939h 965.501 ^d 965.496	965.4993	-0.0001	932.634 930.30653 ^c 930.309	930.3058	-0.0007
6	6	965.355 ^d 965.352	965.3540	-0.001	927.32328 ^f 927.323239 927.3234 ^c 927.326	927.3240	0.0008
7 7	1 2	*965.360b	965.3515 965.2720	-0.008	937.736 937.063	937.7424 937.0609	0.006 -0.002
7	3	*965.1373¢	965.1452	0.0079	*935.9034h	935.9038	0.0004

TABLE I—Continued

J	К	vobs	^ν calc	νcal ^{-ν} ob	vobs	^ν calc	νcal ^{-ν} ob
			sQ			aΩ	
7	4	965.140 964.9797h 964.982d 964.982	964.9800	.0.0003	935.914 ^b 934.2358 ^f 934.244 ^b	934.2372	0.0014
7	5	964.79006 ^C 964.790	964.7903	0.0002	932.01111 ^h 932.014	932.0117	0.0006
7	6	964.5954° 964.596b	964.5957	0.0003	929.1616 ^f 929.161	929.1607	-0.0009
7	7	964.42410 ^c 964.428 ^b	964.4241	0.0000	*925.5977 ^f 925.598	925.6016	0.0039
8 8 8 8	1 2 3 4 5	*964.596b *964.428b 964.271 964.04115h 964.044	964.6981 964.6077 964.4621 964.2692 964.0413	0.012 0.034 -0.002 0.0002	939.256b *938.625b *937.516 *935.914b 933.82605f 933.823b	939.2637 938.6164 937.5182 935.9376 933.8275	0.008 -0.009 0.002 0.024 0.0015
8	6	963.79607h 963.651d 963.787	963.7962	0.0001	931.12190° 931.1227 [£] 931.124 ^b	931.1227	0.0008
8	7	963.55939 ^h 963.5582 ^c	963.5587	-0.0007	927.74196 ^C 927.739	927.7403	-0.0017
8	8	963.555 963.36262 ^c 963.362	963.3627	0.0001	923.582	923.5827	0.001
9 9	1 2 3	h	964.0219 963.9206 963.7560		*940.850b *940.235b *939.197	940.8335 940.2212 939.1837	-0.016 -0.014 -0.013
9	4 5	963.5343h 963.276b	963.5352 963.2691	0.0009	937.6989 ^f 937.701 935.710	937.6929 935.7053	-0.0060 -0.005
9	6	962.97368° 962.975	962.9733	-0.0003	933.15745 ^h 933.1571 ^c 933.152	933.1588	0.0013
9	7	962.6705h 962.6736 ^c 962.673	962.6698	-0.0007	929.9711 ^f 929.969 ^d 929.954	929.9712	0.0001
9	8	962.38850h 962.3878c 962.389	962.3888	0.0003	926.04584 ^C 926.047	926.0424	-0.0034
9	9	962.167	962.1715	0.004	921.255	921.2611	0.006
10 10 10 10	1 2 3 4		963.3374 963.2250 963.0415 962.7931		942.4206 ¹ *941.872 ^b *940.850 ^b *939.488 ^b	942.4201 941.8415 940.8632 939.4618	-0.0005 -0.030 0.013 -0.026
10	5	962.4895h	962.4892	-0.0003	937.6119 ^f 937.605	937.5988	-0.0132
10	6	962.1448 ^h	962.1435	-0.0013	935.2216 ^f 935.223	935.2169	-0.0047
10	7	*961.760 ^b	961.7752 961.4110	-0.0003	932.233 ^d 932.233 928.5581 ^f	932.2373 928.5590	0.004
10	8	961.411311	961.4110	-0.0003	928.559	920.3390	

TABLE I—Continued

J	K	ν _{obs}	ν _{calc}	ν _{cal} -ν _{ob}	v _{obs}	v _{calc}	ν _{cal} -ν _{ob}
			sQ			aQ	
10 10	9 10	961.086 960.85232 ^c 960.857	961.0870 960.8522	0.001 -0.0001	924.068 918.6209 ^f 918.620	924.0639 918.6296	-0.004 0.0087
11 11	1 2		962.6590 962.5357		943.4481 i 943.486 ^b	944.0025 943.4536	0.0054
11	3		963.3334		*942.5667i 942.569	942.5290	-0.0377
11 11 11 11	4 5 6 7	*961.325b *960.857b	962.0576 961.7165 961.3219 960.8908	-0.003 0.034	*941.255b *939.488b 937.273b 934.471b	941.2108 939.4676 937.2494 934.4829	-0.044 -0.020 -0.024 0.011
11	8 9	960.446 960.01990° 960.019	960.4463 960.0199	0.000	*931.124b 926.88456h 926.8844c 926.887	931.0693 926.8868	-0.055 0.0022
11	10	959.656	959.6544	-0.002	921.8120 ^f 921.810	921.7999	-0.0121
11	11	959.408	959.4071	-0.001	915.665	915.6800	0.015
12 12 12 12 12 12	1 2 3 4 5		962.0032 961.8687 961.6475 961.3442 960.9662 960.5237		*945.0918ib *944.1835i *942.9368ib	945.5772 945.0511 944.1696 942.9217 941.2849 939.2191	-0.0407 -0.0141 -0.0151
12 12 12 12	7 8 9 10	958.975 958.499	960.0315 959.5098 958.9858 958.4968	0.011 -0.002	*933.501b	936.6600 933.5147 929.6612 924.9547	0.014
12 12	11	958.089 957.835	958.0924 957.8390	0.003 0.004	924.942 919.264 912.385	919.2443 912.4029	-0.020 0.018
			sR			aR	
0	0		• • •	• • •	951.7794 [±] 951.775	951.7769	-0.0025
1	0	1007.5474	1007.5471	-0.0003		• • •	• • •
1	1	1007.544b 1007.54068h 1007.544b	1007.5406	-0.0001	971.882249 971.88204° 971.882	971.8821	-0.0001
2	0 1	 1027.0467 ^f	1027.0471	0.0004	*992.694 992.45019 ^k	992.7003 992.4500	0.006 -0.0002
2	2	1027.040b 1027.0331h 1027.0335f 1027.040b	1027.0329	-0.0002	992.452 991.69069 ^k 991.6914 ^c 991.690	991.6903	-0.0004
3	0	*1046.4056 ^l	1046.4053	-0.0003		• • • •	• • •
3	1	1046.392b 1046.4008 ^l 1046.392 ^b	1046.4009	0.0001	1013.1758 ^h 1013.174	1013.1757	-0.0001

TABLE I—Continued

J	K	[∨] obs	v _{calc}	ν _{cal} -ν _{ob}	v _{obs}	νcalc	^ν cal ^{-ν} ob
			sR			aR	
3	2	1046.3881 ^l 1046.392 ^b	1046.3881	0.0000	1012.4452 ^h 1012.442	1012.4449	-0.0003
3	3	*1046.37450h 1046.375d 1046.392b	1046.3745	0.0000	*1011.20350e 1011.2035c 1011.202	1011.2032	-0.0003
4 4	0 1	 1065.5944 ^f 1065.576 ^b	1065.5950	0.0006	*1034.245 1034.0128h 1034.011	1034.2409 1034.0141	-0.004 0.0013
4	2	1065.5824 ^f 1065.576 ^b	1065.5820	-0.0004	1033.3165h 1033.316	1033.3166	0.0001
4	3	*1065.5655 ^f 1065.576 ^b	1065.5677	0.0022	*1032.1311h 1032.129	1032.1311	0.0000
4	4	1065.5636 ^f 1065.576 ^b	1065.5636	0.0000	1030.4222h 1030.421	1030.4217	-0.0005
5 5	0 1	*1084.6296 ^l 1084.6244 ^l	1084.6276 1084.6246	-0.0020 0.0002	1054.916	1054.9152	-0.001
5	2	1084.608 ^b 1084.6082 ^c	1084.6102	0.0020	1054.2511 ^h	1054.2548	0.0037
5	3	1084.608b *1084.59306c	1084.5930	-0.0001	1054.254 *1053.13044h	1053.1320	0.0016
5	4	1084.608b 1084.58371c	1084.5837	0.0000	1053.135 1051.51207h 1051.517	1051.5123	0.0002
5	5	1084.608 ^b 1084.59924 ^c 1084.608 ^b	1084.5988	-0.0004	1049.34632h 1049.349	1049.3456	-0.0007
6	0	• • •			*1076.033	1076.0184	-0.015
6	1	1103.4846 ^l 1103.452 ^b	1103.4864	0.0018	1075.8218 ^h 1075.824	1075.8254	0.0036
6	2	1103.4686 ^l 1103.452 ^b	1103.4696	0.0010	1075.2024 [±] 1075.207	1075.2051	0.0027
6	3	*1103.4397 ^l 1103.452 ^b	1103.4478	0.0081	*1074.1477 ^h 1074.152	1074.1505	0.0026
6	4	1103.4293 ^l 1103.452 ^b	1103.4310	0.0017	1072.6262h 1072.631	1072.6288	0.0026
6	5	1103.4324 [£] 1103.452 ^b	1103.4342	0.0018	1070.5909 ^f 1070.594	1070.5914	0.0005
6	6	1103.4784 ^l 1103.452 ^b	1103.4792	0.0008	1067.9733 ^h 1067.976	1067.9735	0.0002
7	0	*1122.1861 ^l 1122.132 ^b	1122.1784	-0.0077		• • •	•••
7	1	1122.1792 ^l 1122.132 ^b	1122.1783	-0.0009	1096.6906 ^h 1096.682	1096.6900	-0.0006
7	2	1122.1606 ^l 1122.132 ^b	1122.1582	-0.0024	1096.1132 ^f 1096.112	1096.1117	-0.0015
7	3	*1122.1332 ^k 1122.132 ^b	1122.1305	-0.0027	*1095.1296h 1095.124	1095.1288	-0.0008
7	4	1122.1042 ^l 1122.132 ^b	1122.1043	0.0001	1093.7119 ^f 1095.715	1093.7111	-0.0008
7	5	1122.0937 ^l 1122.132 ^b	1122.0934	-0.0003	1091.8120 ^h 1091.816	1091.8128	0.0008
7	6	1122.132b 1122.132b	1122.1175	-0.0006	1089.3704 ^h 1089.370	1089.3704	0.0000

TABLE I—Continued

J	К	vobs	^ν calc	ν _{cal} -ν _{ob}	νobs	^ν calc	νcal ^{-ν} ob
			sR		·	aR	
7	7	1122.2046 ² 1122.132 ^b	1122.2039	-0.0007	1086.3044 ^h 1086.295	1086.3032	-0.0012
8	0 1	1140.697 ^l 1140.628 ^b	1140.6988	0.002	*1117.642 *1117.453b	1117.6036 1117.4563	-0.038 0.003
8	2	1140.628 ² 1140.677 ² 1140.628 ^b	1140.6749	-0.002	1116.922	1116.9200	-0.002
8	3	*1140.624 ^l 1140.628 ^b	1140.6404	0.016	*1116.015	1116.0100	-0.005
8	4	1140.601 ^k 1140.628 ^b	1140.6036	0.003	1114.703	1114.6992	-0.004
8	5	1140.575 ^{bl} 1140.628 ^b	1140.5768	0.002	1112.941 ^b	1112.9457	0.005
8	6	1140.575bl 1140.628b	1140.5781	0.003	1110.687	1110.6893	0.002
8	7	1140.630 ^l 1140.628 ^b	1140.6322	0.002	1107.843	1107.8503	0.007
8	8	1140.768 ^l 1140.628 ^b	1140.7725	0.004	1104.329	1104.3313	0.002
9999999999	0 1 2 3 4 5 6 7 8 9	*1159.165b *1158.910b	1159.0418 1159.0479 1159.0198 1158.9776 1158.9289 1158.8851 1158.8624 1158.8830 1158.9771 1159.1851		1138.081 1137.597 *1136.759b 1135.559 1133.944 1131.868 1129.259 1126.025 *1122.132b	1138.0777 1137.5818 1136.7423 1135.5368 1133.9287 1131.8628 1129.2630 1126.0314 1122.0536	-0.003 -0.015 -0.017 -0.022 -0.015 -0.005 0.004 0.006 -0.078
10 10 10 10 10 10 10 10	0 1 2 3 4 5 6 7 8 9	*1176.999b (*1177.131b	1177.2275 1177.1944 1177.1436 1177.0820 1177.0199 1176.9719 1176.9583 1177.0061 1177.1515	•••	*1158.663b *1158.493b *1158.049b *1157.301 1156.209b 1154.734b 1152.851b 1150.485 1147.535 1143.908 1139.471	1158.6099 1158.5200 1158.0600 1157.2846 1156.1770 1154.7079 1152.8295 1150.4716 1147.5389 1143.9135 1139.4646	-0.053 0.027 0.011 -0.016 -0.032 -0.026 -0.022 -0.013 0.004 0.005 -0.006
11 11 11 11 11 11 11 11 11	0 1 2 3 4 5 6 7 8 9 10	*1195.176b *1195.531b *1194.923b	1195.2250 1195.2426 1195.2038 1195.1431 1195.0669 1194.9849 1194.8609 1194.8620 1194.955		*1178.703b 1178.319 *1177.591b *1176.618b *1175.293b *1175.293b *1171.435 1168.781 *1165.497b *1161.483b 1156.555	1178.7681 1178.3365 1177.6135 1176.5895 1175.2441 1173.5398 1171.4156 1168.7823 1165.5222 1161.4957 1156.5574	0.065 0.018 0.023 -0.028 -0.049 -0.043 -0.019 0.001 0.0025 0.013

Note added in proof: ν_{obs} for aR(9,9) is 1122.0555 cm⁻¹ from our diode laser measurements (see Fig. 2).

TABLE II $Observed \ and \ Calculated \ Transition \ Wavenumbers \ in the \ 2\nu_2 \ Band \ of \ ^{14}NH_3 \ (cm^{-1})^a$

J	K	νobs	v _{calc}	v_{cal}^{-v} ob	νobs	^V calc	νcal ^{-ν} ob
			sP			aP	
1	0	1862.285 ^C	1862.2852	0.000	•••	• • •	• • •
2	0	 1842.099 [©]	 1842.0978	-0.001	1556.904	1557.4402 1556.8966	-0.007
3 3 3	0 1 2	1821.255 ^C 1821.814 ^C	1821.0697 1821.2542 1821.8138	-0.001 0.000	*1538.012 ^b 1536.458	 1538.0872 1536.4411	0.075 -0.017
4 4 4 4	0 1 2 3	 1799.9991 ^d 1800.5218 ^d 1801.4303 ^d	1799.9994 1800.5246 1801.4327	0.0003 0.0028 0.0024	1520.442b 1518.205 *1515.337b	1520.4775 1519.8926 1518.1647 1515.4286	0.036 -0.040 0.092
5 5 5 5 5 5	0 1 2 3 4	*1778.244° 1778.399° 1778.876° 1779.714° 1780.958°	1778.2226 1778.3929 1778.8763 1779.7129 1780.9556	-0.021 -0.006 0.000 -0.001 -0.002	1500.522b *1497.672b 1493.875	1502.3794 1500.5565 1497.6352 1493.8663	0.034 -0.037 -0.009
6 6 6 6 6	0 1 2 3 4 5	1756.508° 1756.935° 1757.689° 1758.812° 1760.390°	1756.5051 1756.9399 1757.6934 1758.8155 1760.3883	-0.003 0.004 0.004 0.003 -0.002	1486.245b	1486.2533 1485.6175 1483.6886 1480.5728 1476.4561 1471.7713	0.008
7 7 7 7 7	0 1 2 3	*1734.303° 1734.804° 1735.460°	1734.2412 1734.4161 1734.7962 1735.4564 1736.4429	-0.062 -0.008 -0.004	1467.645	 1469.6770 1467.6287 1464.3072 1459.8671	-0.016
7	5 6	1739.739 ^C	1737.8324 1739.7455	0.007	1454.585 ^b 1449.227	1454.5813 1449.1740	-0.003 -0.052
8 8 8 8 8 8	0 1 2 3 4 5 6 7	 1712.225° 1712.531° 1713.084° 1713.928° 1716.780° 1719.039°	1712.2137 1712.5341 1713.0923 1713.9301 1715.7706 1719.0563	-0.012 0.003 0.008 0.003 -0.009 0.017		1455.3213 1454.6262 1452.4369 1448.8888 1444.1324 1438.3818 1431.9797 1426.1235	
9 9 9 9 9 9 9 9	0 1 2 3 4 5 6 7 8	*1690.006 ^b 1690.215 ^b 1690.664 ^b 1691.357 ^b 1692.354 1693.736 1695.6462 ^d	1689.7693 1689.9922 1690.2488 1690.6977 1691.3764 1692.3494 1693.7206 1695.6492 1698.3710	-0.014 0.034 0.034 0.019 -0.005 -0.015 0.0030	1434.318	1440.5309 1438.1608 1434.3468 1429.2631 1423.1118 1416.1252 1408.6683 1402.6953	0.029
10 10 10 10	0 1 2 3 4	•••	1667.8509 1668.0405 1668.3745 1668.8856	•••		1428.2666 1427.4485 1424.8197 1420.6748 1415.2408	

^a Our infrared grating measurements unless stated otherwise; asterisk denotes that this value has not been used in the fit.

^b Blended line.

^c Calculated from the frequency of the hot band $2\nu_2 \leftarrow \nu_2$ transition (our measurements), ν_2 frequency, and the ground-state pure inversion transition.

TABLE II—Continued

J K	Vobs	v _{calc}	ν _{cal} -ν _{ob}	vobs	ν _{calc}	ν _{cal} -ν _{ob}
		sP			aP	
10 5 10 6 10 7 10 8 10 9		1669.6316 1670.7066 1672.2579 1674.5058 1677.7695			1408.7246 1401.3108 1393.1949 1384.7213 1378.9995	
11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10		1645.5558 1645.8935 1646.0135 1646.2283 1646.5658 1647.0759 1647.8432 1649.0019 1659.4042 1653.4042		•••	1415.3953 1412.3535 1407.8008 1415.2370 1409.8936 1402.8204 1393.9842 1383.3645 1370.7866 1355.1920	•••
12 0 12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9 12 10 12 11	•••	1624.2283 1624.2769 1624.3694 1624.5284 1625.2479 1626.0030 1627.2489 1629.2630 1632.4426 1637.3413	•••		1405.7387 1404.1348 1407.5765 1405.7684 1402.4624 1397.5366 1390.8810 1382.4472 1372.2658 1360.3733 1346.6781 1331.4857	Ē
		sQ			aQ	
1 1	1881.8646 ^d	1881.8637	-0.0009	1596.634	1596.6426	0.008
2 1 2 2	1880.8542d 1881.4389d	1880.8523 1881.4400	-0.0019 0.0011	*1597.594b 1596.046b	1597.6566 1596.0378	0.063 -0.008
3 1 3 2 3 3	1879.368 ^c 1879.9299 ^d 1880.8999 ^d	1879.3695 1879.9319 1880.9022	0.001 0.0020 0.0023	*1597.594b *1594.810b	1599.2261 1597.5343 1594.8588	-0.060 0.049
4 1 4 2 4 3 4 4	1877.4586d 1877.9836d 1878.8987d 1880.2514d	1877.4555 1877.9848 1878.8985 1880.2501	-0.0031 0.0012 -0.0002 -0.0013	1596.790° 1593.157 ^b	1601.3986 1599.6205 1596.7743 1593.1115	-0.016 -0.046
5 1 5 2 5 3 5 4 5 5	1875.168 ^C 1875.648 ^C 1876.4937 ^d 1877.74712 ^e 1879.4923 ^d	1875.1619 1875.6511 1876.4960 1877.7471 1879.4879	-0.006 0.003 0.0023 0.0000 -0.0044	1604.181b 1602.347c 1595.341c 1590.859b	1604.2259 1602.3501 1599.3234 1595.3325 1590.8111	0.045 0.003 -0.008 -0.048
6 1 6 2 6 3 6 4 6 5 6 6	*1872.561 ^C 1872.994 ^C 1873.7638 ^d 1874.887 ^C 1876.4821 ^d 1878.6270 ^d	1872.5510 1872.9937 1873.7590 1874.8938 1876.4764 1878.6290	-0.010 0.000 -0.005 0.007 -0.0057 0.0020	1607.775 1605.778° 1602.543° 1598.248° 1593.167° 1588.016	1607.7600 1605.7729 1602.5540 1598.2586 1593.1610 1587.9868	-0.015 -0.005 0.011 0.011 -0.006 -0.029

^d Calculated as indicated in footnote c but the diode laser measurements of the $2\nu_2 \leftarrow \nu_2$ frequency (20) have been used.

e Ref. (22).

^f Assigned as the $2\nu_2$ frequency although the corresponding upper state has the largest contribution from the $\nu_4(-l)$ state (see Section VI and Table XIII).

TABLE II—Continued

J K	νobs	^ν calc	ν _{cal} -ν _{ob}	νobs	v _{calc}	ν _{cal} -ν _{ob}
		sQ			aQ	
7 1 7 2 7 3 7 4 7 5 7 6 7 7	1870.081° 1870.735° 1871.763° 1875.102° 1877.681°	1869.6938 1870.0846 1870.7607 1871.7653 1873.1709 1875.0919 1877.7015	0.003 0.026 0.002 -0.010 0.020	1612.064° 1609.950° 1606.501° 1601.909° 1596.373b 1590.225° 1584.615	1612.0526 1609.9321 1606.4994 1601.9059 1596.3671 1590.2274 1584.6865	-0.011 -0.018 -0.002 -0.003 -0.006 0.002 0.072
8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8	1866.660° 1866.979° 1867.559° 1868.410° 1869.661° 1871.343° 1873.6087d	1866.6690 1867.0032 1867.5822 1868.4447 1869.6571 1871.3254 1873.6116 1876.7547	0.009 0.024 0.024 0.035 -0.004 -0.018 0.0029	1611.161 *1606.297b *1600.278b 1593.652 1586.534 1581.014b	1617.1537 1614.8596 1611.1731 1606.2694 1600.3522 1593.6557 1586.5474 1580.9841	0.012 -0.028 0.074 0.004 0.013 0.029
9 1 9 3 9 4 9 5 9 6 9 7 9 8 9 9	1863.530 1863.846 1864.390b	1863.5615 1863.8353 1864.3105 1865.0214 1866.0275 1867.4255 1869.3657 1872.0720 1875.8676	0.031 -0.011 -0.079	*1620.601b 1605.018 1597.985 1582.219	1623.1060 1620.5600 1616.5538 1611.3158 1605.0545 1597.9567 1590.2206 1582.1937 1576.9893	-0.041 0.037 -0.028 -0.025
10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9		1860.4619 1860.6723 1861.0386 1861.5902 1862.3794 1863.4932 1865.0694 1867.3158 1870.5357		*1630.288 ^b 1599.837 1587.831 1572.886	1629.9128 1626.9599 1622.5564 1630.2032 1625.1338 1618.4005 1609.9729 1599.8341 1587.8133 1572.8566	-0.085 -0.003 -0.017 -0.029
11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10	1869.1010 ^d	1857.4677 1857.6119 1857.8650 1858.2510 1858.8151 1859.6341 1860.8324 1862.6012 1865.2229 1869.1005	-0.0005	*1640.823b *1607.502b 1583.192	1637.3257 1640.8619 ⁴ 1639.2122 1636.1302 1631.4958 1625.2017 1617.2028 1607.5333 1596.2344 1583.2191	0.039
11 11		1874.7939				
-		sR			aR	
0 0 1 0 1 1	1920.6200 ^d	1920.4180 1920.6181	-0.0019	1616.980 ^b	1617.0601 1637.4027	0.080

TABLE II—Continued

J	K	ν _{obs}	ν _{calc}	ν _{cal} -ν _{ob}	vobs	v _{calc}	ν _{cal} -ν _{ob}
			sR			aR	
2 2 2	0 1 2	 1938.9681 ^d 1939.5562 ^d	 1938.9676 1939.5580	-0.0005 0.0018	1659.336 1658.777 1657.128b	1659.3593 1658.7954 1657.1310	0.024 0.018 0.003
3 3 3	0 1 2 3	1956.8292d 1957.3904d 1958.3681d	1956.6277 1956.8256 1957.3920 1958.3680	-0.0036 0.0016 -0.0001	1680.700 1678.964 1676.219	1680.7321 1678.9902 1676.2046	0.032 0.026 -0.014
4 4 4 4	0 1 2 3 4	1975.6790d 1977.0421d	 1974.2245 1974.7596 1975.6816 1977.0416	0.0026 -0.0005	1703.863 1703.236 1701.399b 1698.441b 1694.590	1703.8483 1703.2451 1701.4142 1698.4626 1694.5776	-0.014 0.009 0.015 0.022 -0.012
5 5 5 5 5 5	0 1 2 3 4 5	1995.5818 ^d	1990.9939 1991.2078 1991.7050 1992.5616 1993.8254 1995.5760	-0.0058	1726.390b 1724.444 1721.289 1717.132 1712.196b	1726.3683 1724.4344 1721.3046 1717.1350 1712.2008	-0.022 -0.010 0.016 0.003 0.005
6 6 6 6 6	0 1 2 3 4 5	2013.9848 ^d	2007.8287 2008.2821 2009.0633 2010.2162 2011.8149 2013.9755	-0.0093	1750.154 1748.088b 1744.733 1740.312 1734.952 1729.028	1750.7875 1750.1356 1748.0763 1744.7461 1740.2974 1734.9469 1729.0403	-0.019 -0.012 0.013 -0.015 -0.005 0.012
7 7 7 7 7 7 7	0 1 2 3 4 5 6 7		2023.8772 2024.1492 2024.5537 2025.2506 2026.2798 2027.7092 2029.6467 2032.2568		*1772.334 ^b 1768.769 1764.034 1758.376 1751.931 1745.084	1774.5801 1772.3548 1768.7837 1764.0429 1758.3375 1751.9034 1745.1103	0.021 0.015 0.009 -0.039 -0.028 0.026
8 8 8 8	0 1 2 3 4 5	•••	2040.2383 2040.5896 2041.1950 2042.0897	•••	1800.503 *1797.338b	1800.4941 1799.7288 1797.2588 1793.3801 1788.3221	-0.009 -0.079
8 8 9	6 7 8		2043.3352 2045.0303 2047.3281 2050.4556		1782.291 *1775.598b *1768.133b 1760.428	1782.2949 1775.4872 1768.0996 1760.4826	0.004 -0.111 0.033 0.055
9 9 9 9 9 9 9	0 1 2 3 4 5 6		2055.7768 2056.1725 2056.4670 2056.9746 2057.7260 2058.7753 2060.2121 2062.1772		1815.080 1806.919	1825.5703 1822.7002 1818.4355 1826.2782 1821.4637 1815.0464 1806.9986	-0.034 0.080

J	К	vobs	ν _{calc}	^ν cal ^{-ν} ob	ν _{obs}	^V calc	ν _{cal} -ν _{ob}
			sR			aR	
9	8		2064.8819 2068.6338		1797.338 1785.824	1797.3065 1785.8030	-0.031 -0.020
10 10 10 10 10 10 10 10	0 1 2 3 4 5 6 7 8	•••	2072.0362 2072.2707 2072.6752 2073.2754 2074.1185 2075.2841 2076.8999 2079.1610			1853.3861 1851.8432 1855.4684 1853.9678 1851.0964 1846.7360 1840.7818 1833.1915 1824.0029	f
10 10	9 10		2082.3544		*1813.351 1800.850	1813.2611 1800.8838	-0.090 0.034

TABLE II-Continued

0.3-0.6 Torr); the accuracy of those frequencies is about ± 1 MHz. The frequencies obtained by extrapolating to zero pressure from at least three measurements at different pressures are determined with the accuracy of ± 0.2 MHz (Table IV).

IV GROUND-STATE ROTATIONAL AND CENTRIFUGAL DISTORTION CONSTANTS

Combination relations have been used in evaluating the molecular constants of the ground state of ¹⁴NH₃. In the standard application of this method to NH₃, rotational and centrifugal distortion constants are obtained separately for the symmetric and antisymmetric components of the inversion doublet. We have modified this treatment so that all the infrared data are processed simultaneously with the microwave pure inversion transition frequencies, using the following equation in addition to the standard combination relations:

$$\Delta_{i}(J,K) = 0.7934115 + [^{(a)}B_{0} - {}^{(s)}B_{0}]J(J+1)
- [^{(a)}D_{J}^{0} - {}^{(s)}D_{J}^{0}]J^{2}(J+1)^{2} - [^{(a)}D_{JK}^{0} - {}^{(s)}D_{JK}^{0}]J(J+1)K^{2}
+ [^{(a)}H_{JJJ}^{0} - {}^{(s)}H_{JJJ}^{0}]J^{3}(J+1)^{3} + [^{(a)}H_{JJK}^{0} - {}^{(s)}H_{JJK}^{0}]J^{2}(J+1)^{2}K^{2}
+ [^{(a)}H_{JKK}^{0} - {}^{(s)}H_{JKK}^{0}]J(J+1)K^{4} + \{[^{(a)}C_{0} - {}^{(a)}B_{0}] - [^{(s)}C_{0} - {}^{(s)}B_{0}]\}K^{2}
- [^{(a)}D_{K}^{0} - {}^{(s)}D_{K}^{0}]K^{4} + [^{(a)}H_{KKK}^{0} - {}^{(s)}H_{KKK}^{0}]K^{6}. \quad (17)$$

The values of the molecular parameters obtained in this way are then consistent also with the experimental inversion frequencies; they are listed in Table V. In this and all other fits the weights of the experimental data have been chosen to be inversely proportional to the squares of their estimated dispersions.

V. CORIOLIS AND l-TYPE INTERACTIONS IN THE EXCITED VIBRATION-INVERSION STATES OF $^{14}NH_3$

The lowest-lying vibration-inversion energy levels of ¹⁴NH₃ (Fig. 4) form a complicated system of interacting levels. In order to keep the problem in a

TABLE III $Observed\ and\ Calculated\ Transition\ Wavenumbers\ in\ the\ \nu_4\ Band\ of\ ^{14}NH_3\ (cm^{-1})^a$

J	K	νobs	^ν calc	ν _{cal} -ν _{ob}	νobs	^ν calc	ν _{cal} -ν _{ob}
			s ^P P			a ^P P	
1	1	1610.089	1610.0987	0.010	*1610.361 ^b	1610.4571	0.096
2 2	1 2	1590.684 1594.810 ^b	1590.6940 1594.7855	0.010 -0.024	1591.085 1595.072b	1591.1419 1595.1275	0.057 0.056
3 3 3	1 2 3	1571.823 ^b 1575.852 1579.364	1571.8419 1575.8580 1579.3528	0.019 0.006 -0.011	1572.483 1579.621 ^b	1572.5064 1576.3409 1579.6732	0.024
4 4 4 4	1 2 3 4	1553.622b *1557.532b 1560.893 1563.829	1553.6469 1557.4948 1560.8956 1563.8094	0.025 -0.035 0.003 -0.020	1554.725 *1558.270b 1561.373 1564.075	1554.7387 1558.2431 1561.3889 1564.1027	0.014 -0.027 0.016 0.028
5 5 5 5 5	1 2 3 4 5	1536.207 1539.756 1542.973 1545.796 1548.188	1536.2316 1539.7715 1543.0126 1545.8165 1548.1644	0.025 0.016 0.040 0.020 -0.024	1538.012 ^b 1541.002 1543.844 1546.324 1548.421	1538.0321 1540.9782 1543.8055 1546.3065 1548.4278	0.020 -0.024 -0.038 -0.018 0.007
6 6 6 6 6	1 2 3 4 5 6	1519.659b *1522.712b 1525.761 1528.375 1530.613 1532.445	1519.6938 1522.7758 1525.7670 1528.4040 1530.6304 1532.4265	0.035 0.064 0.006 0.029 0.017 -0.018	1522.388 1524.736 1527.055 1529.287 1531.153 1532.666	1522.4910 1524.7068 1527.0520 1529.2215 1531.1241 1532.6630	0.103 -0.029 -0.003 -0.065 -0.029 -0.003
7 7 7 7 7 7	1 2 3 4 5 6 7	1504.025 *1506.604b *1509.138b 1511.599 1513.654 1515.337 *1516.663b	1504.0737 1506.5935 1509.2316 1511.6277 1513.6786 1515.3466 1516.6045	0.049 -0.010 0.094 0.028 0.025 0.010 -0.058	1511.314 1513.054b 1514.599 1515.871 1516.840	1508.1241 1509.5679 1511.2770 1512.9703 1514.5373 1515.8837 1516.8229	-0.037 -0.084 -0.062 0.012 -0.017
8 8 8 8 8 8	1 2 3 4 5 6 7 8	*1489.304b 1491.320 1493.531 1495.527 1497.332 *1498.822b 1499.940 1500.746	1489.3635 1491.2920 1493.4829 1495.5537 1497.3607 1498.8457 1499.9734 1500.7068	0.059 -0.028 -0.048 0.027 0.029 0.024 0.033 -0.039	1495.726b 1497.672b *1498.822b 1499.806 1500.522b 1500.933	1494.9140 1495.6511 1496.6293 1497.7002 1498.7882 1499.8198 1500.6392 1500.9200	-0.075 0.028 -0.036 0.014 0.117 -0.013
99999999	1 2 3 4 5 6 7 8	1476.879 1480.191 1481.718 1482.955 1483.911 1484.496 1484.779	1475.5394 1476.9114 1478.5927 1480.2554 1481.7408 1482.9743 1483.9131 1484.5187	0.032 -0.064 0.023 0.019 0.002 0.023 -0.037	*1483.249b	1482.8682 1483.0076 1483.2377 1483.5720 1484.0286 1484.5927 1485.1588 1485.4564 1484.9608	-0.011
10 10 10 10	1 2 3 4 5	1464.643 1466.939 ^b	1462.5856 1463.4693 1464.6209 1465.8093 1466.8940	-0.022 -0.045	1471.623b *1471.147b *1470.754b	1472.0371 1471.6845 1471.2078 1470.7456 1470.4355	0.062 0.061 -0.008

^a Our infrared grating measurements unless stated otherwise; asterisk denotes that this value has not been used in the fit.

b Blended line.

^c Assigned as the ν_4 ^RX (X = P, Q, R) frequency although the corresponding upper state has the largest contribution from the $\nu_4(-l)$ state (see Section VI and Table XIII).

TABLE III—Continued

JК	v _{obs_}	v _{calc}	ν _{cal} -ν _{ob}	v _{obs}	^V calc	ν _{cal} -ν _{ob}
		s ^P P			a ^P P	
10 6 10 7 10 8 10 9 10 10	1467.783 1468.466 *1468.920b *1468.920b 1468.753b	1467.7981 1468.4752 1468.8873 1468.9890 1468.7170	0.015 0.009 -0.033 0.069 -0.036	1468.920	1470.3631 1470.5058 1470.6699 1470.4116 1468.9406	0.021
11 1 11 2 11 3 11 4 11 5 11 6 11 7 11 8 11 9 11 10 11 11	*1452.828b *1453.335b 1453.743b 1453.743b 1453.743b *1453.335b 1452.662	1450.5043 1450.9757 1451.6141 1452.2890 1452.9040 1453.3978 1453.7303 1453.7729 1453.3899 1452.6405	0.076 0.063 -0.013 -0.039 0.030 0.055	1452.828	1462.5162 1461.7552 1460.6378 1459.3724 1458.1999 1457.3275 1456.8519 1456.6874 1455.5894 1452.8387	0.011
12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9 12 10 12 11 12 12	*1439.621b *1439.621b *1439.208b 1438.563 1437.684 *1436.483b	1439.3178 1439.4463 1439.6113 1439.7628 1439.8582 1439.8573 1439.5399 1439.1554 1438.5725 1437.7260 1436.5199	-0.010 -0.081 -0.053 0.010 0.042 0.037		1408.5551 1453.3373 1451.6431 1449.6013 1447.5176 1445.7100 1444.4163 1443.6952 1443.3408 1442.8008 1441.0792 1436.6113	
		s ^P Q	·		a ^P Q	
1 1	1630.444b	1630.4598	0.016	1630.878	1630.8879	0.010
2 1 2 2	1631.427 1635.520b	1631.4400 1635.4842	0.013 -0.036	1632.028b 1635.896b	1632.0758 1635.9376	0.048 0.042
3 1 3 2 3 3	1632.998 1636.905 1640.358	1633.0170 1636.9020 1640.3651	0.019 -0.003 0.007	1634.076 *1637.544b 1640.823	1634.0721 1637.6128 1640.8191	0.004 0.069 -0.004
4 1 4 2 4 3 4 4	1635.268 1638.881 1642.176 ^b 1645.117	1635.2942 1638.8801 1642.1982 1645.1109	0.027 -0.001 0.022 -0.006	1637.023b 1640.075 1643.003 1645.588	1637.0513 1640.0422 1642.9447 1645.5516	0.028 -0.033 -0.058 -0.036
5 1 5 2 5 3 5 4 5 5	1638.325 1641.515 1644.588 *1647.406b 1649.731	1638.3506. 1641.4870 1644.5696 1647.3356 1649.7299	0.025 -0.028 -0.018 -0.070 -0.001	1643.382 1648.183 1650.213	1641.0993 1643.3683 1645.8026 1648.0979 1650.1639	-0.014 -0.085 -0.049
6 1 6 2 6 3 6 4	*1642.176b 1644.827 *1647.592b 1650.062	1642.2086 1644.7910 1647.5341 1650.0786	0.033 -0.036 -0.058 0.017	1649.582 1651.455	1646.2071 1647.7121 1649.5238 1651.3618	-0.058 -0.093

TABLE III—Continued

J	K	vobs	v _{calc}	ν _{cal} -ν _{ob}	ν _{obs}	vcalc	ν _{cal} -ν _{ob}
			s ^P Q			a ^P Q	
6	5 6	*1652.418 ^b 1654.217 ^b	1652.3226 1654.2301	-0.095 0.013	1654.703	1653.1170 1654.6965	-0.007
7 7 7 7 7 7	1 2 3 4 5 6 7	1648.857 1651.201 *1653.311b *1655.431b 1657.128b 1658.601	1646.8437 1648.8425 1651.1513 1653.3888 1655.4128 1657.1670 1658.6187	-0.015 -0.050 0.078 -0.018 0.039 0.018	*1654.217 ^b *1655.431 ^b 1656.839 1658.071	1652.3403 1653.1463 1654.2399 1655.4737 1656.7735 1658.0675 1659.2021	0.023 0.043 -0.065 -0.003
8 8 8 8 8 8	1 2 3 4 5 6 7 8	*1655.431 ^b 1659.056 ^b 1660.560 1661.833 *1662.813 ^b	1652.2163 1653.6658 1655.4772 1657.3237 1659.0485 1660.5791 1661.8755 1662.9024	0.046 -0.007 0.019 0.043 0.089	*1659.528 ^b	1659.4910 1659.7064 1660.0640 1660.5783 1661.2690 1662.1232 1663.0379 1663.7453	-0.037
99999999	1 2 3 4 5 6 7 8	1660.560 1662.038 1663.270 1664.510 1665.565b 1666.379b 1667.066	1658.2962 1659.2641 1660.5569 1661.9451 1663.2899 1664.5170 1665.5830 1666.4534 1667.0871	-0.003 -0.094 0.020 0.007 0.018 0.075 0.021		1667.6946 1667.4248 1667.0869 1666.8207 1666.7655 1667.0090 1667.5315 1668.1423 1668.4014	
10 10 10 10 10 10 10 10	1 2 3 4 5 6 7 8 9	*1665.565b *1666.379b *1667.349b 1668.975b 1670.423 1670.873 *1671.197b	1665.0728 1665.6345 1666.4244 1667.3134 1668.2075 1669.0478 1670.4286 1670.9044	0.070 0.045 -0.036 0.074 0.005 0.031 -0.019		1677.0337 1676.3616 1675.3933 1674.3386 1673.4402 1672.9076 1672.8407 1673.1575 1673.5212 1673.2540	
11 11 11 11 11 11 11 11			1672.5572 1672.7814 1673.1069 1673.4854 1673.8767 1674.2535 1674.5974 1674.8921 1675.1153 1675.2304			1641.2047 1686.6227 1685.0870 1683.2691 1681.4768 1680.0308 1679.1719 1678.9627 1679.2018 1679.3418	
			sPR			a ^P R	
1	1	1671.197 ^b	1671.2058	0.009	1671.793	1671.8218	0.029

TABLE III—Continued

J	K	ν _{obs}	^V calc	^ν cal ^{-ν} ob	ν _{obs}	^V calc	^ν cal ^{-ν} ob
_			s ^P R			a ^P R	
2 2	1 2	1692.615 1696.516	1692.6151 1696.5282	0.000 0.012	1693.643 1697.224	1693.6415 1697.2095	-0.001 -0.015
3 3 3	1 2 3	1714.639 1718.281 *1721.728b	1714.6643 1718.2873 1721.6678	0.025 0.006 -0.060	1716.357 1719.430 1722.425	1716.3848 1719.4119 1722.3749	0.028 -0.018 -0.050
4 4 4 4	1 2 3 4	1737.388 1740.601 1743.727 1746.605 ^b	1737.4132 1740.5956 1743.7552 1746.6301	0.025 -0.006 0.028 0.025	*1739.982b 1742.433 1744.978 1747.416	1740.1186 1742.4324 1744.9418 1747.3430	0.137 -0.001 -0.037 -0.073
5 5 5 5	1 2 3 4 5	*1760.802b 1763.527 *1766.252b 1768.980 *1771.287b	1760.8654 1763.5022 1766.3367 1769.0103 1771.4221	0.063 -0.024 0.085 0.030 0.135	1764.804 ^b *1766.253 ^b 1768.294 *1770.340 ^b *1772.287 ^b	1764.8155 1766.3736 1768.2744 1770.2382 1772.1568	0.011 0.121 -0.019 -0.102 -0.130
6 6 6 6	1 2 3 4 5	*1784.943b 1787.051b 1789.512b 1791.843 1794.030 *1796.093b	1784.9786 1787.0400 1789.4539 1791.8397 1794.0568 1796.0505	0.036 -0.011 -0.058 -0.003 0.027 -0.042	*1793.775b 1795.443 1796.921b	1790.4233 1791.2904 1792.4866 1793.8652 1795.3532 1796.8803	-0.090 -0.090 -0.041
7 7 7 7 7 7	1 2 3 4 5 6 7	1811.191 ^b 1813.121 1815.080 ^b 1818.914 ^b	1809.6964 1811.2162 1813.1456 1815.1589 1817.1006 1818.9004 1820.5207	0.025 0.024 0.079		1816.9173 1817.2016 1817.6746 1818.3518 1819.2543 1820.3709 1821.6008	
8 8 8 8 8 8 8	1 2 3 4 5 6 7 8	1837.457 1840.601 *1842.147b	1834.9730 1836.0185 1837.4414 1839.0134 1840.5976 1842.1217 1843.5454 1844.8371	-0.015 -0.003 -0.025		1844.3174 1844.1236 1843.9132 1843.8270 1844.0058 1844.5395 1845.4106 1846.4318	
99999999	1 2 3 4 5 6 7 8 9		1860.7833 1861.4293 1862.3604 1863.4492 1864.6034 1865.7667 1866.9055 1867.9941			1872.6912 1872.1019 1871.2724 1870.4136 1869.7701 1869.5535 1869.8663 1870.6298	
10 10 10 10 10	1 2 3 4 5 6		1887.1257 1887.4401 1887.9171 1888.5098 1889.1802 1889.9035		:	1855.7222 1901.2291 1899.8425 1898.2353 1896.7171 1895.6109	

TABLE III—Continued

J	K	Vobs	v _{calc}	ν _{cal} -ν _{ob}	νobs	^ν calc	Vcal Vob
			s ^P R			a ^P R	
1.0 1.0 1.0	7 8 9 10		1890.6649 1891.4519 1892.2469 1893.0182			1895.1606 1895.4323 1896.2285 1897.0065	
			s ^R P			a ^R P	
2	0		•••		1586.859	1586.8905	0.031
3 3	0 1	1567.990 1561.756	1567.9820 1561.7647	-0.008 0.009	1562.369	1562.3783	0.009
4 4 4	0 1 2	1543.213 1537.464	1543.2388 1537.4717	0.026 0.008	1552.147 *1543.976b *1538.288b	1552.0983 1544.0147 1538.3108	-0.049 0.039 0.023
5 5 5 5	0 1 2 3	*1533.861 ^b 1524.948 1519.527 *1513.054 ^b	1533.7662 1524.9773 1519.5267 1513.0786	-0.095 0.029 0.000 0.025	*1525.761b 1520.747 1514.236	1525.8208 1520.7207 1514.2343	0.060 -0.026 -0.001
6 6 6 6	0 1 2 3 4	*1501.859b 1495.726 1488.596b	1506.8824 1501.9012 1495.7247 1488.5850	0.042 -0.001 -0.011	1521.264 *1507.809b 1503.431 1497.518 1490.191	1521.2243 1507.7154 1503.3869 1497.4829 1490.1889	-0.040 -0.094 -0.044 -0.035 -0.002
7 7 7 7 7	0 1 2 3 4 5	1502.754 1488.962b 1484.496 1478.715 *1471.889b 1463.997	1502.7137 1488.9154 1484.5084 1478.7080 1471.8475 1463.9890	-0.040 -0.047 0.012 -0.007 -0.041 -0.008	1486.245 ^b 1481.083 1474.397 1466.212	 1489.7439 1486.2209 1481.0309 1474.3912 1466.2159	-0.024 -0.052 -0.006 0.004
8 8 8 9 9 9	0 1 2 3 4 5	1471.147 1467.344 1461.969 1455.495b	1471.0952 1467.2891 1461.9553 1455.4543 1447.8958 1439.2895	-0.052 -0.054 -0.013 -0.041	1494.241 1469.180 1458.961 1451.530	1494.3012 1472.0249 1469.2347 1464.8287 1458.9233 1451.4957 1442.3400	0.060 0.055 -0.038 -0.034
9 9 9 9 9 9 9	0 1 2 3 4 5 6 7	1474.737 1450.180 1445.414 *1439.310b 1432.170 1423.901	1474.7816 1453.4751 1450.2295 1445.4154 1439.3445 1432.1498 1423.8678 1414.4866	0.045 0.049 0.001 -0.035 -0.020 -0.033	1428.824	1454.7163 1452.5523 1448.9270 1443.8018 1437.1169 1428.7759 1418.5357	-0.048
10 10 10 10 10 10	0 1 2 3 4 5 6		1436.1282 1433.3655 1429.0762 1423.4811 1416.7038 1408.7949	• • •		1471.6725 1438.0228 1436.4106 1433.5140 1429.1507 1423.1851 1415.5329	

TABLE III—Continued

J	К	vobs	v _{calc}	^ν cal ^{-ν} ob	vobs	v _{calc}	Vcal-Vob
			s ^R P			a ^R p	
10 10	7		1399.7610 1389.5813			1406.1186 1394.7183	
11 11 11 11 11 11 11 11	0 1 2 3 4 5 6 7 8		1420.2757 1419.1469 1416.7782 1412.9757 1407.8661 1401.5382 1394.0395 1385.3862 1375.5727 1364.5766			1422.2458 1421.1994 1418.9497 1402.0092 1395.1671 1387.4224 1378.8971 1369.7325	
12 12 12 12 12 12 12 12 12 12	0 1 2 3 4 5 6 7 8 9		1402.6499 1400.5891 1397.2061 1392.5536 1386.6760 1379.6030 1371.3495 1361.9180 1351.3002 1339.4772			1454.1513 1454.4490 1400.5114 1395.5822 1389.4992 1382.3974 1374.3996 1365.5969 1356.0518 1345.8586	
			s ^R Q			a ^R Q	
1	0	1625.487b	1625.4747	-0.013			•••
2	0 1	1621.351	1621.3628	0.012	1626.133 ^b 1621.934	1626.1827 1621.9477	0.050 0.014
3 3 3	0 1 2	1626.340b *1622.623b *1616.833b	1626.4059 1622.6089 1616.8789	0.066 -0.014 0.046	1623.350 1617.668	1623.3482 1617.6804	-0.002 0.012
4 4 4	0 1 2 3	1624.005 1618.613 1612.250	1624.0399 1618.6352 1612.2642	0.035 0.022 0.014	1627.314 1624.879 ^b 1619.790 1613.336 ^b	1627.4063 1624.8401 1619.7848 1613.3735	0.092 -0.039 -0.005 0.038
5 5 5 5	0 1 2 3 4	1625.599b 1620.601 1614.511 1607.502	1627.9994 1625.5392 1620.6125 1614.5273 1607.5166	-0.059 0.011 0.016 0.015	1626.341b 1622.062 1616.273b 1609.045	1626.3237 1622.0484 1616.2335 1609.0653	-0.017 -0.013 -0.039 0.021
6 6 6 6	0 1 2 3 4 5	1627.009b *1622.623b 1616.980b *1610.326b 1602.627	1627.0503 1622.7060 1617.0106 1610.2984 1602.6330	0.041 0.082 0.031 -0.028 0.006	1629.279b *1627.875b 1624.387 1619.320 1612.801 1604.763	1629.4055 1627.8269 1624.3651 1619.2776 1612.7827 1604.7956	0.127 -0.046 -0.022 -0.043 -0.019 0.033
7 7 7 7	0 1 2 3	*1630.288b 1628.608 *1624.879b *1619.603b	1630.1886 1628.5753 1624.8396 1619.6238	-0.099 -0.032 -0.039 0.021	1626.664 *1622.383b	1629.4513 1626.7299 1622.4393	0.066 0.056

TABLE III—Continued

J	К	vobs	ν _{calc}	^ν cal ^{-ν} ob	v _{obs}	^ν calc	ν _{cal} -ν _{ob}
			s ^R Q			a ^R Q	
7 7 7	4 5 6	1613.336b 1605.950 *1597.594b	1613.2894 1605.9479 1597.6108	-0.047 -0.002 0.017	*1616.716 ^b *1609.458 ^b 1600.567	1616.6968 1609.4810 1600.5877	-0.019 0.023 0.021
8 8 8 8 8	0 1 2 3 4 5 6 7	1627.009b *1622.383b *1616.378b *1609.458b 1601.469b 1592.432	1630.1519 1626.9839 1622.2999 1616.4128 1609.4575 1601.4726 1592.4490	-0.025 -0.083 -0.035 0.000 0.004 0.017	*1631.284b 1629.279 *1625.599b *1620.709b 1614.367 1606.297 1596.373b	1632.5383 1631.3391 1629.2511 1625.7533 1620.8081 1614.3572 1606.3064 1596.4147	0.055 -0.028 0.154 0.099 -0.010 0.010
9 9 9 9 9 9 9	0 1 2 3 4 5 6 7 8	1632.998b *1631.936b 1629.171b 1619.603b 1613.059 1605.527b 1596.840 1587.115b	1633.0390 1631.8388 1629.1603 1625.0123 1619.6169 1613.0997 1605.5138 1596.8688 1587.1474	0.040 -0.097 -0.011 0.013 0.041 -0.013 0.029 0.032	*1612.136 ^b 1603.130 1592.178 ^b	1633.6804 1632.1509 1629.3931 1625.2257 1619.5150 1612.1788 1603.1443 1592.1907	0.043 0.014 0.012
10 10 10 10 10 10 10 10	0 1 2 3 4 5 6 7 8 9	*1631.427b *1616.833b 1601.469b 1592.178 *1581.615b	1633.7154 1631.4369 1627.47859 1622.8905 1616.8416 1609.6895 1601.4537 1592.1325	0.010 0.008 -0.015 -0.046 0.093	*1616.980b *1610.326b *1602.926b *1594.810b *1577.276b	1637.7580 1636.7632' 1635.8058' 1633.7053 1616.9754 1610.4074 1603.0025 1594.8858 1586.2020 1577.2549	
11 11 11 11 11 11 11 11	0 1 2 3 4 5 6 7 8 9	1587.269 *1576.198b	1636.9352 1635.8893 1633.9242 1630.7017 1626.2762 1620.6945 1613.9892 1606.1789 1597.2703 1587.2601 1576.1351	-0.009 -0.063		1687.6396 ⁶ 1633.7968 1629.0261 1623.1670 1616.3566 1608.7203 1600.3525 1591.3194 1581.7197 1571.7810	
			s ^R R			a ^R R	
1 1 2 2 2	0 1 0 1 2	1667.349 1661.140 1682.187 1676.509	1667.3303 1661.1286 1682.2070 1676.5051	-0.019 -0.012 0.020 -0.004	1661.685 1691.037 1682.925 1677.263	1661.6937 1690.9800 1682.9176 1677.2771	0.009 -0.057 -0.007 0.014
3	0 1	1712.196b 1703.382	1712.1712 1703.4100	-0.025 0.028	1704.202	1704.1735	-0.028

TABLE III—Continued

J	ĸ	ν _{obs}	ν _{calc}	ν _{cal} -ν _{ob}	ν _{obs}	νcalc	ν _{cal} -ν _{ob}
		0,55	sRR	cui ob	0.05	a ^R R	cui ob
3	2	1698.026 1691.746	1698.0425 1691.7338	0.016 -0.012	1699.181 1692.792	1699.1544 1692.8037	-0.026 0.012
4 4 4 4	0 1 2 3 4	1724.581 1719.704 1713.711 1706.818	1724.6017 1719.7210 1713.7129 1706.8110	-0.021 0.017 0.002 -0.007	1738.843 1725.378 1721.151b 1715.405 1708.306	1738.8193 1725.3430 1721.1125 1715.3727 1708.3104	-0.024 -0.035 -0.038 -0.032 0.004
5 5 5 5 5	0 1 2 3 4 5	1759.503 *1745.743b 1741.417 1735.817 1729.226 1721.728b	1759.4664 1745.7070 1741.4172 1735.8132 1729.2300 1721.7325	-0.037 -0.036 0.000 -0.004 0.004	1746.427 1743.050b 1738.075b 1731.694 1723.821	1746.4352 1743.0266 1738.0282 1731.6591 1723.8354	0.008 -0.023 -0.046 -0.035 0.014
6 6 6 6 6	0 1 2 3 4 5	1766.751 1763.105 1757.932 1751.749 1744.604 1736.504	1766.7102 1763.0371 1757.9263 1751.7403 1744.5919 1736.4944	-0.041 -0.068 -0.006 -0.009 -0.012 -0.010	1789.684 1767.504 1764.804 1760.693 1755.100 1748.088 1739.386	1789.7673 1767.5343 1764.8741 1760.6861 1755.0883 1748.0607 1739.4010	0.083 0.030 0.070 -0.007 -0.011 -0.027 0.015
7 7 7 7 7 7	0 1 2 3 4 5 6 7	1808.848 1784.507 1779.960 1774.245 1767.504 1759.812 *1751.027b	1808.8894 1787.6321 1784.5343 1779.9683 1774.2479 1767.5096 1759.7939 1751.0942	0.042 0.027 0.008 0.003 0.005 -0.018 0.067	1778.512b 1772.334b 1764.538 1754.986	1788.7654 1786.7464 1783.3639 1778.5816 1772.3425 1764.5541	0.070 0.009 0.016 -0.009
8 8 8 8 8 8 8 8	0 1 2 3 4 5 6 7 8	1801.872 *1796.635 ^b 1790.398 1783.150 ^b 1774.848 1765.504	1808.5156 1805.9146 1801.8967 1796.6852 1790.4074 1783.1186 1774.8316	0.025 -0.050 0.009 -0.031 -0.017 0.027	1789.684 ^b 1781.028 1770.498	1843.9000 1810.3031 1808.8497 1806.2194 1802.2320 1796.7554 1789.7093 1781.0233 1770.4796	0.025 -0.004 -0.018
9999999	0 1 2 3 4 5 6 7	*1829.411b *1806.393b 1798.585	1860.2487 1829.4260 1827.2317 1823.7219 1819.0263 1813.2375 1806.4084 1798.5615	0.015 0.015 -0.024	*1799.625 ^b	1832.4208 1831.5461 1829.5844 1813.0504 1806.7373 1799.6484 1791.9115	
9 9 10 10	8 9 0	*1789.684b *1779.727b	1789.6986 1779.8062 1850.4577	0.014 0.079	1775.270	1783.6744 1775.2446 1901.7987 1902.1571	-0.026
10 10 10 10 10 10 10 10	2 3 4 5 6 7 8 9	*1822.154 1813.852 1804.413 1793.775	1848.5829 1845.5119 1841.3006 1835.9979 1829.6392 1822.2464 1813.8301 1804.3917 1793.9120	0.092 -0.022 -0.022 0.137	*1789.512b	1848.4033 1843.7816 1838.1332 1831.5969 1824.3004 1816.3412 1807.7890 1798.7464 1789.4456	-0.066

numerically manageable dimension, we have considered the interaction between the ν_2 , $2\nu_2$, $3\nu_2$, ν_4 , and $\nu_2 + \nu_4$ energy levels separately from the interaction between the ν_1 , ν_3 , and $2\nu_4$ levels. The Coriolis ζ coefficients for the interaction between the $\nu_1(A)$ and $\nu_4(E)$ as well as between the $\nu_2(A)$ and $\nu_3(E)$ states are very small and furthermore there is a large difference in energies between these states. This separation of the problem is therefore a very good approximation for the lowest-lying states ν_2 , $2\nu_2$, and ν_4 ; parameters obtained for these states should be considered as the main result of our work.

In our scheme, Coriolis interactions between the ν_2 , $2\nu_2$, $3\nu_2$, ν_4 , and $\nu_2 + \nu_4$ energy levels are described by the operator (4, 5)

$$H_{2,4} = (-i/2)[X_{4a}^{y\rho}J_{\rho} + (1/2)(J_{\rho}X_{4a}^{y\rho})](Q_{4}^{-}J_{+} - Q_{4}^{+}J_{-}), \tag{18}$$

where $Q_4^{\pm}=Q_{4a}\pm iQ_{4b},\,J_{\pm}=J_x\pm iJ_y.$ Besides this, there is a centrifugal distortion operator

$$H_{\text{Cent}} = (1/8)(Y_{4a4a}^{xx} - Y_{4a4a}^{yy})[(Q_4^+)^2 J_-^2 + (Q_4^-)^2 J_+^2]$$
 (19)

which connects the $\pm l$ levels in the ν_4 and $\nu_2 + \nu_4$ states. The energy matrix of these interactions is thus the 7×7 matrix given in Table VI. For the nondegenerate vibrational states, the diagonal matrix elements of this matrix are given by Eq. (15). For the inversion-rotational energy levels in the degenerate vibrational states the following expression has been used:

$$\left(\frac{E_{i}}{hc}\right) = \left(\frac{E_{i}^{0}}{hc}\right) + B_{i}J(J+1) + (C_{i} - B_{i})k^{2} - 2C_{i}\zeta_{4}^{(i)}kl_{4} - D_{J}^{(i)}J^{2}(J+1)^{2}
- D_{JK}^{(i)}J(J+1)k^{2} - D_{K}^{(i)}k^{4} + \eta_{4J}^{(i)}J(J+1)kl_{4} + \eta_{4K}^{(i)}k^{3}l_{4}
+ H_{JJJ}^{(i)}J^{3}(J+1)^{3} + H_{JJK}^{(i)}J^{2}(J+1)^{2}k^{2} + H_{JKK}^{(i)}J(J+1)k^{4} + H_{KKK}^{(i)}k^{6}
+ \tau_{4JJK}^{(i)}J^{2}(J+1)^{2}kl_{4} + \tau_{4JKK}^{(i)}J(J+1)k^{3}l_{4} + \tau_{4KKK}^{(i)}k^{5}l_{4} + \tau_{4KK}^{*(i)}k^{3}l_{4}^{3}.$$
(20)

Fig. 3. Energy-level diagram illustrating the calculation of the ν_2 transition frequency (dashed line) from the known ν_2 frequency for a transition starting from a level with opposite parity and from the known pure inversion transitions in the ground and excited ν_2 states (see Table I).

TABLE IV

Submillimeter Wave Inversion and Rotation-Inversion Transitions of $^{14}NH_3$ in the ν_2 State (MHz)

J	K		ν inv .	J	K	ν _{inv.}	J	K		inv.
1	1	1066	650.8 ^a	7	1	810 918.7	10	6	790	818.
_	_			7	2	828 521.9	10	7	867	343.5
2	1	1045	318.7	7	3	858 394.2	10	8	964	060.3
2	2	1067	676.8ª	7	4	902 459.2				
				7	5	961 885.4	11	6	706	899.0
3	1	1014	084.0	7	6	1039 360.8	11	7	775	717.6
3 3 3	2		816.2				11	8	862	810.
3	3	1073	050.7	8	1	747 286.8	11	9	972	301.
				8	2	763 583.3				
4	1	973	826.5	8	3	791 531.4	12	8	763	996.
4	2	994	747.8	8	4	831 969.3	12	9	861	672.
4	3	1030	531.2	8	5	887 018.8				
				8	6	958 827.9	13	9		447.6
5	1	925	657.4	8	7	1050 521.5	13	11	1000	151.0
5	2	945	604.8							
5	3	979	650.0	9	3	721 263.7	14	12	1019	895.5
5	4	1029	374.5	9	4	759 001.2				
				9	5	809 481.9				
5	2	889	710.9	9	6	875 368.8				
5	3	921	940.3	9	7	959 569.0				
5	4	968	810.0	9	8	1065 868.2				
5	5	1032	323.0							

otation-Inversion Transition Frequencies					
(J',K') - (J,K)	$^{\nu}$ invrot.				
$a(0,0) - s(1,0)^{a,b}$	466 245.1				
$s(2,1) - a(1,1)^{c}$	140 143.5				
$s(3,2) - a(2,2)^a$	741 788.1				
$s(3,1) - a(2,1)^a$	762 852.3				
$s(3,0) - a(2,0)^a$	769 710.2				
$a(3,3) - a(2,0)^{d}$	772 594.9				
$s(3,0) - s(3,3)^{d}$	1070 166.6				

^a Value obtained by extrapolating to zero pressure.

The precision of our ν_2 data would require the additional introduction of operators that connect levels with $\Delta k = \pm 3$ in the ground and ν_2 excited state. A detailed study of this interaction using submillimeter wave data on the inversion and inversion-rotation transitions in the ν_2 excited state will be published in a separate paper. Therefore in the present paper we have not included in our fit transitions from the ground-state levels with k'' = 3 or 0 to those ν_2 excited states that are perturbed by this interaction (cf. Table I).

VI. SPECTROSCOPIC PARAMETERS OF 14NH₃

In Tables VII to XII, spectroscopic parameters of ¹⁴NH₃ are presented that have been obtained by a damped least-squares fit (33) to the experimental data

b Ref. (29).

c Ref. (30).

d Forbidden (or perturbation-allowed) transition.

TABLE V

Ground-State Molecular Parameters of ¹⁴NH₃ (in cm⁻¹)

	s	а
В	9.9466529 ± 0.0000004	9.9416356 ± 0.0000004
$D_{\mathbf{J}}^{\mathbf{J}}$	$(8.4721 \pm 0.0002) \times 10^{-4}$	$(8.3184 \pm 0.0002) \times 10^{-4}$
$D_{\mathbf{J}\mathbf{K}}^{\mathbf{O}}$	$(-15.6907 \pm 0.0007) \times 10^{-4}$	$(-15.2647 \pm 0.0007) \times 10^{-4}$
$H_{\mathbf{J}\mathbf{J}\mathbf{J}}^{\mathbf{O}}$	$(2.298 \pm 0.001) \times 10^{-7}$	$(2.071 \pm 0.001) \times 10^{-7}$
H_O^{JJK}	$(-8.554 \pm 0.006) \times 10^{-7}$	$(-7.604 \pm 0.006) \times 10^{-7}$
H_O^{KK}	$(11.49 \pm 0.02) \times 10^{-7}$	$(10.15 \pm 0.02) \times 10^{-7}$
(a)c	$(a)_{0} - (a)_{0} - (s)_{0} - (s)_{0}$	$(6.9989 \pm 0.0001) \times 10^{-3}$
(a)	$p_{K}^{\circ} - (s) p_{K}^{\circ}$	$(2.9512 \pm 0.0002) \times 10^{-5}$
(a) _H	KKK - (s)H _O	$(6.3031 \pm 0.0008) \times 10^{-8}$

Fig. 4. The lowest vibration and inversion energy levels in NH_3 .

TABLE VI

Energy Matrix of the Coriolis and *l*-Type Interaction Between the ν_2 , $2\nu_2$, ν_4 , $\nu_2 + \nu_4$, and $3\nu_2$ States of NH₃^a

v ₂ [±] ,v ₄ ^ℓ ,J,k⟩	3v ₂ [±]	+l (v ₂ + v ₄) [∓]	$\begin{pmatrix} -\ell \\ (v_2 + v_4)^{\mp} \end{pmatrix}$			
3 [±] ,0°;J,k⟩	E _{3v₂} (J,k,l ₄ =0) [±]	(3 [±] α 1 [∓] > f (J, k+1)	$-(3^{\pm} \alpha 1^{\mp})f(J,k-1)$			
1 [‡] ,1 ⁺¹ ;J,k+1		E _{V2+V4} (J,k+1,£4=1) [‡]	$\langle 1^{\mp} \beta 1^{\mp} \rangle g(J,k)$			
1 [∓] ,1 ⁻¹ ;J,k-1			$\mathbb{E}_{v_2+v_4}(J,k-1,\ell_4=-1)^{\frac{1}{+}}$			
2 [±] ,0 ⁰ ;J,k						
$ 0^{\mp},1^{+1};J,k+1\rangle$	Hermitian					
$ 0^{\mp},1^{-1};J,k-1\rangle$						
1 [±] ,0 ⁰ ;J,k						

2ν [±] 2	+2 v∓ 4	-2 v ₄	v_2^{\pm}
0	$\langle 3^{\pm} \alpha 0^{\mp} \rangle f(J,k+1)$	$-\langle 3^{\pm} \alpha 0^{\mp} \rangle f(J,k-1)$	0
$\langle 1^{\mp} \alpha 2^{\pm} \rangle$ f (J, k+1)	0	0	0
$-\langle 1^{\mp} \alpha 2^{\pm} \rangle f(J,k-1)$	0	0	0
$E_{2v_2}(J,k,l_4=0)^{\pm}$	$\langle 2^{\pm} \alpha 0^{\mp} \rangle f(J,k+1)$	$-\langle 2^{\pm} \alpha 0^{\mp} \rangle f(J,k-1)$	0
	$E_{v_{4}}(J,k+1,\ell_{4}=+1)^{\mp}$	ζ0[∓] β 0 [∓] ⟩g(J,k)	$\langle 0^{7} \alpha 1^{\pm} \rangle f (J,k+1)$
		$E_{v_4}(J,k-1,\ell_4=-1)^{\mp}$	$-\langle 0^{\tilde{t}} \alpha 1^{\hat{t}} \rangle f(J,k-1)$
			$E_{v_2}(\mathfrak{J},k,\ell_4=0)^{\pm}$

a $\alpha(\text{cm}^{-1}) = h^{3/2}[2(2\pi)^{5/2}c]^{-1}[X_4^{y\rho}\partial/\partial\rho + \frac{1}{2}(\partial X_4^{y\rho}/\partial\rho)]\lambda_4(\rho)^{-1/4}$, where the first operator $\partial/\partial\rho$ operates outside the square brackets while the second one operates only within the brackets; $\beta(\text{cm}^{-1}) = h^2[8(2\pi)^3c]^{-1}(Y_{4xa}^{xx} - Y_{4ya}^{yy})\lambda_4(\rho)^{-1/2}; f(J, k \pm 1) = +[J(J+1) - k(k \pm 1)]^{1/2}; g(J,k) = f(J, k+1) \times f(J, k-1); \langle 3^{\pm} | \alpha | 1^{\mp} \rangle$ means $\langle v_2 = 3^{\pm} | \alpha | v_2 = 1^{\mp} \rangle$, etc.; and $E_n(J,k,l_4)^{\pm} = E_i/hc$, where E_i is defined in Eq. (20).

on the ν_2 , $2\nu_2$, and ν_4 bands given in Tables I to III and on the data on the $\nu_2 + \nu_4$ and $3\nu_2$ bands (11). Because the fitted parameters are in general correlated, considerable care had to be taken to use suitable damping factors during the first cycles of iteration in order to reach the convergence region where the damping

TABLE VII Independent Linear Combinations of the Parameters of the ν_2 Band of ¹⁴NH₃ (in cm⁻¹)

ν _ο (s + a) *	968.12224 ± 0.00006	$v_0 (a \rightarrow s)*$	931.64155 ± 0.00007
^a B	10.21521 ± 0.00007	s _B	10.50682 ± 0.00003
$({}^{a}C - {}^{a}B) - ({}^{s}C^{o} - {}^{s}B^{o})$	-0.33864 ± 0.00007	$({}^{S}C - {}^{S}B) - ({}^{a}C^{O} - {}^{a}B^{O})$	-0.65066 ± 0.00003
$^{\rm s}{\rm p}_{\rm J}^{\rm o}$ - $^{\rm a}{\rm p}_{\rm J}$	$(0.855 \pm 0.001)10^{-4}$	a _D o - s _D	$(-2.325 \pm 0.002)10^{-4}$
$^{s}D_{JK}^{o} - ^{a}D_{JK}$	$(-1.875 \pm 0.002) 10^{-4}$	a _D o - s _D _{JK}	$(7.396 \pm 0.004)10^{-4}$
sdK - adK	$(1.095 \pm 0.001) 10^{-4}$	apo - sp _K	$(-5.500 \pm 0.002)10^{-4}$
a _H JJJ - SHO	$(-1.950 \pm 0.004) 10^{-7}$	s _H _{JJJ} - a _H o	$(-0.58 \pm 0.02)10^{-7}$
a H _{JJK} s H O JJK	$(6.50 \pm 0.02) 10^{-7}$	s _H _{JJK} - ^a H ^O	$(0.54 \pm 0.04)10^{-7}$
aH _{JKK} - SHO	$(-7.59 \pm 0.02)10^{-7}$	s _{HJKK} - a _H o	$(-1.41 \pm 0.06)10^{-7}$
aHKKK - sHOKKK	$(3.14 \pm 0.01)10^{-7}$	shkkk - ahkkk	$(1.46 \pm 0.03) 10^{-7}$
		L	

Inversion splitting in the J = k = 0 v_2 state: 35.68728 \pm 0.00020

factor could be put equal to zero. Calculations have been done with the CDC Cyber 172 computer using double-precision arithmetic (120 bits).

Because in the investigated system of interacting levels not k but $k-l_4$ is a good quantum number, the standard assignment of the transition frequencies to the ν_2 , $2\nu_2$, ν_4 , etc., bands is only approximate. This is especially true for the $s2\nu_2$, $a\nu_4$ levels because of the level crossing in this system. The only objective criterion on which such assignments can be based is to consider the coefficients of mixing of the wavefunctions in the system of interacting levels,

$$\psi_i = \sum_k c_{ik} \psi_{ik}^0, \tag{21}$$

 $TABLE\ VIII$ Independent Linear Combinations of the Parameters of the $2\nu_2$ Band of $^{14}NH_3$ (in $cm^{-1})$

v _o 's → a) *	1882.1751 ± 0.0001	ν _C (a + s)*	1596.6753 ± 0.0020
ав	9.73747 ± 0.00009	s _B	10.5676 ± 0.0002
(^a C - ^a B) - (^s C - ^s B)	0.15203 ± 0.00008	(^s C - ^s B) - (^a C - ^a B)	-0.9284 ± 0.0002
s _D o - a _D J	$(3.860 \pm 0.006) 10^{-4}$	a _D o - s _D	(3.23 ± 0.04)10 ⁻⁴
$^{s}D_{JK}^{o} - ^{a}D_{JK}$	$(-10.225 \pm 0.010)10^{-4}$	aDO - SDJK	(-6.56 ± 0.007)10 ⁻⁴
spo - ap _K	$(6.057 \pm 0.007)10^{-4}$	a _D O - s _D K	$(4.94 \pm 0.06)10^{-4}$
H,JJ,J - SHO	$(-0.478 \pm 0.005)10^{-6}$	s _H _{JJJ} - a _H _{JJJ}	$(-0.227 \pm 0.030)10^{-6}$
H _{JJK} - SHO	$(1.868 \pm 0.020)10^{-6}$	s _H _{JJK} - a _H O	$(3.22 \pm 0.08)10^{-6}$
H ^{JKK} - sHO	$(-4.179 \pm 0.040) 10^{-6}$	sH ^{JKK} - aH ^{JKK}	$(-14.67 \pm 0.20) 10^{-6}$
HKKK - SHO	(4.596 ± 0.030)10 ⁻⁶	s _{HKKK} - a _H o	$(13.87 \pm 0.10)10^{-6}$

Inversion splitting in the J = k = 0 $2v_2$ state: 284.7064 ± 0.0020

^{*} The band origin ν_0 is defined as $\nu_0 = (E_{i'}^0 - E_{i''}^0)/hc$ [Eq. (16)].

^{*} The band origin v_0 is defined as $v_0 = (E_{i'}^0 - E_{i'}^0)/hc$ [Eq. (16)].

TABLE IX $Independent\ Linear\ Combinations\ of\ the\ Parameters\ of\ the\ \nu_4\ Band\ of\ ^{14}NH_3\ (in\ cm^{-1})^a$

	$s \leftrightarrow s$, $n = s$	$a \leftrightarrow a, n = a$
$v_0 - (^n c^0 - ^n B^0) + \frac{1}{4} (^n \eta_K + ^n \tau_{KK}^*) - \frac{2n}{3} \tau_{KKK}$	1629.99072 ± 0.00021	1630.3391 ± 0.0008
$^{n}C - ^{n}B - ^{n}C^{n}\zeta_{4} + ^{n}\eta_{K} + ^{n}\tau_{KK} - \frac{4}{3}\tau_{KKK}$	-2.43295 ± 0.00005	-2.41663 ± 0.00017
${}^{n}C - {}^{n}B - ({}^{n}C^{0} - {}^{n}B^{0}) - \frac{5}{2}\tau_{KKK} + \frac{3}{2}({}^{n}\eta_{K} + {}^{n}\tau_{KK}^{*})$	-0.160203 ± 0.000035	-0.15235 ± 0.00008
n _B	10.040597 ± 0.000027	10.02747 ± 0.00006
$D_{\mathbf{J}}^{\mathbf{O}} - {}^{\mathbf{D}}D_{\mathbf{J}}$	$(-2.235 \pm 0.006)10^{-4}$	$(-0.871 \pm 0.019)10^{-4}$
D _{JK} - ⁿ D _{JK}	$(5.503 \pm 0.014)10^{-4}$	$(1.393 \pm 0.044)10^{-4}$
$D_{K}^{\circ} - {}^{n}D_{K} + \frac{5n}{2} \tau_{KKK}$	$(-2.706 \pm 0.011)10^{-4}$	$(2.580 \pm 0.041) 10^{-4}$
H _{JJJ} - ⁿ H ^O	$(1.2014 \pm 0.0040) 10^{-6}$	(0.2486 ± 0.0018)10 ⁻¹
H _{JJK} - ⁿ H _O	$(-3.689 \pm 0.015)10^{-6}$	$(-1.167 \pm 0.007)10^{-5}$
H _{JKK} - ⁿ H _O	$(3.096 \pm 0.025)10^{-6}$	$(2.545 \pm 0.012)10^{-5}$
HKKK - nHO	$(-0.557 \pm 0.013)10^{-6}$	(-1.753 ± 0.006)10 ⁻⁵
n, _T	$(-0.967 \pm 0.038)10^{-4}$	$(5.08 \pm 0.17)10^{-4}$
^т ЈЈК	$(1.1278 \pm 0.0042)10^{-5}$	(0.2702 ± 0.0025)10-4
TJKK _	(-2.708 ± 0.006)10 ⁺⁵	(-1.3090 ± 0.0028)10
$D_{K}^{O} + \frac{5}{6} \tau_{KKK} - \frac{1}{4} (^{n} \eta_{K} + ^{n} \tau_{KK}^{*})$	$(1.0438 \pm 0.0011)10^{-3}$	(1.0501 ± 0.0038)10 ⁻³
HO + Entre	$(2.3124 \pm 0.0030)10^{-6}$	(1.6732 ± 0.0015)10 ⁻⁵
$n_{K} - n_{K}^{(\nu_{2}+\nu_{k})} + n_{\tau_{KK}^{*}} - n_{\tau_{KK}^{*}}^{*}(\nu_{2}+\nu_{k})$	$(-4.7168 \pm 0.0046) 10^{-3}$	$(1.905 \pm 0.016)10^{-3}$
T (V2+V4)	0 _p	0 _p

Inversion splitting in the J = k = 0 v_4 state: 1.1488 \pm 0.0010

where ψ_{ik}^0 are the unperturbed wavefunctions. Our assignments in Tables I to III are essentially based on the principle of the maximum contribution of the unperturbed wavefunction ψ_{ik}^0 to the perturbed state. This is illustrated by Table XIII which, however, also shows that in some cases this principle may not work.

TABLE X

Off-Diagonal Matrix Elements of the Coriolis and l-Type Interaction^a

(3 ⁻ α 1 ⁺)	6.6934 ± 0.0018	<3 ⁺ α 1 ⁻ >	-1.484 ± 0.021
$\langle 3^- \alpha 0^+ \rangle$	0.504 ± 0.011	〈 3 ⁺ α 0 ⁻ 〉	-5.9031 ± 0.0010
$\langle 2^- \alpha 1^+ \rangle$	5.2619 ± 0.0032	<2 ⁺ α 1 ⁻ >	11.3684 ± 0.0040
$\langle 2^- \alpha 0^+ \rangle$	-2.194 ± 0.006	(2 ⁺ α 0 ⁻)	-1.2827 ± 0.0025
(1 - a 0 +)	10.338 ± 0.031	(1 ⁺ \a 0 ⁻)	11.461 ± 0.009
	i		
$\langle 1^+ \beta 1^+ \rangle$	-0.244 ± 0.029	(1 ⁻ 8 1 ⁻ >	0.00466 ± 0.00041
(0+ B 0+>	-0.00291 ± 0.00011	<0- β 0->	-0.00701 ± 0.00021
		<u> </u>	

a Matrix elements are defined in Table VI.

^a The band origin v_0 is defined as $v_0 = (E_i^0 - E_i^0)/hc$ [Eq. (20)].

^b Constrained value.

TABLE XI Independent Linear Combinations of the Parameters of the $3\nu_2$ Band of $^{14}NH_3$ (in cm $^{-1}$)

ν _ο (s → a)*	2895.6063 ± 0.0012	ν _ο (a → s)*	2383.3804 ± 0.0026
a _B	8.91779 ± 0.00026	s _B	9.42827 ± 0.00031
$({}^{a}C - {}^{a}B) - ({}^{s}C^{o} - {}^{s}B^{o})$	1.10027 ± 0.00018	$(^{S}C - ^{S}B) - (^{a}C^{O} - ^{a}B^{O})$	0.47510 ± 0.00028
$^{\mathbf{s}}D_{\mathtt{J}}^{\mathtt{o}}$ - $^{\mathbf{a}}D_{\mathtt{J}}$	$(1.179 \pm 0.042)10^{-3}$	a _D o - s _D	$(0.963 \pm 0.019)10^{-3}$
$^{s}D_{JK}^{o} - ^{a}D_{JK}$	$(-3.165 \pm 0.058)10^{-3}$	a _D o s _D JK	$(-2.528 \pm 0.043) 10^{-3}$
sDK - aDK	$(1.994 \pm 0.038) 10^{-3}$	a _D O - S _D K	$(1.661 \pm 0.038)10^{-3}$
a _{H_{JJJ}} - s _H o	$(-1.573 \pm 0.049) 10^{-5}$	s _{H_{JJJ}} - a _{H_{JJJ}}	(-0.769 ± 0.026)10 ⁻⁶
aH _{JJK} - SH _{JJK}	$(4.618 \pm 0.059)10^{-5}$	s _H _{JJK} - a _H ⁰ _{JJK}	$(2.269 \pm 0.061)10^{-6}$
aH ^{JKK} - aH _O	$(-4.096 \pm 0.058)10^{-5}$	s _H _{JKK} - a _H O	$(-2.222 \pm 0.038)10^{-6}$
aHKKK - sHC	$(1.039 \pm 0.029)10^{-5}$	sHKKK - aHo	$(0.737 \pm 0.032)10^{-6}$

Inversion splitting in the J = k = 0 $3v_2$ state: 511.4325 ± 0.0040

For example, the 1855.468 cm⁻¹ and 1901.229 cm⁻¹ transitions should both be assigned as $a^PR(10,2)$, $\nu_4(-l)$. To avoid this, we assign the 1901.229 cm⁻¹ transition as $a^PR(10,2)$, $\nu_4(-l)$ because it has a larger contribution from the $|0^-,1^{-1};11,1\rangle$ state than the 1855.468 cm⁻¹ transition. The latter is then assigned as aR(10,2), $2\nu_2$ because its second-largest contribution is from the $|2^+,0^0;11,2\rangle$ state. The few such cases that occurred in our data are indicated in Tables II and III by special labels.

TABLE XII Independent Linear Combinations of the Parameters of the ν_2 + ν_4 Band of $^{14}NH_3$ (in cm $^{-1}$)^a

	$s \leftrightarrow s$, $n = s$	$a \leftrightarrow a, n = a$
$v_{o} - (^{n}C^{o} - ^{n}B^{o}) + \frac{1}{4}^{n}n_{K}$	2544.2587 ± 0.0012	2588.9592 ± 0.0017
$^{n}_{C}$ - $^{n}_{B}$ - $^{n}_{C}^{n}_{\zeta_{4}}$ + $^{n}_{\eta_{K}}$	-3.0029 ± 0.0006	-2.4137 ± 0.0008
${}^{n}C - {}^{n}B - ({}^{n}C^{O} - {}^{n}B^{O}) + \frac{3}{2}{}^{n}{}_{K}$	-0.6471 ± 0.0006	-0.1187 ± 0.0006
ⁿ B	10.38786 ± 0.00021	9.97176 ± 0.00046
$^{n}D_{J}^{\circ} - ^{n}D_{J}$	$(5.302 \pm 0.011)10^{-4}$	$(-1.759 \pm 0.009) 10^{-4}$
ⁿ D _{JK} - ⁿ D _{JK}	$(-4.539 \pm 0.007)10^{-4}$	$(11.711 \pm 0.047)10^{-4}$
${}^{n}D_{K}^{O} - {}^{n}D_{K}$	$(-3.314 \pm 0.021) 10^{-4}$	$(-15.881 \pm 0.051)10^{-4}$
$^{\mathrm{n}}$ $_{\mathrm{J}}$	$(2.369 \pm 0.005)10^{-3}$	$(-6.503 \pm 0.009)10^{-3}$

Inversion splitting in J = k = 0 $v_2 + v_4$ state: 45.4993 ± 0.0030

^{*} The band origin ν_0 is defined as $\nu_0 = (E_i^0 - E_i^0)/hc$ [Eq. (16)].

^a The band origin is defined as $\nu_0 = (E_{i'}^0 - E_{i'}^0)/hc$ [Eq. (20)]; sextic parameters have been neglected.

Example of the Assignments Based on the Values of $(c_{ik}^2/\sum_k c_{ik}^2) \times 100$ for $J=11, k-l_4=2$ TABLE XIII

200			i	\v^±	v=1,v2,v4, 1J,K			
(cm ⁻¹)	Assignment	3 ⁺ ,0 ⁰ ;11,2} 1	$ 3^+,0^0;11,2\rangle \ 1^-,1^+^1;11,3\rangle \ 1^-,1^-;11,1\rangle \ 2^+,0^0;11,2\rangle \ 0^-,1^+^1;11,3\rangle \ 0^-,1^-^1;11,1\rangle \ 1^+,0^0;11,2\rangle $	1-1;11,1)	2 ⁺ ,0 ⁰ ;11,2	0-,1+1;11,3	(0-,1-1;11,1)	11,00;11,2)
1158.060	aR(10,2), v ₂	0.0	0.0	0.0	0.0	3.3	3.3	93.4
1848.403	a ^R R(10,2), v ₄ (+£)	0.2	8.0	8.0	42.5	51.9	2.6	1.3
1855.468	aR(10,2),2v ₂	0.0	7.0	7.0	38.1	19.7	40.6	0.2
1901.229	a ^P R(10,2), v ₄ (-2)	1.7	0.4	0.4	15.8	24.1	52.6	5.2
2557,356	aR(10,2),3v ₂	97.4	0.3	0.3	0.1	6.0	1.0	0.0
2797.258	aR(10,2), v2+v4(+2)	0.1	73.9	25.8	0.2	0.0	0.0	0.0
2838.523	aPR(10,2), v2+v4(-2)	9.0	23.9	72,1	3,3	0.0	0.0	0.0

It should be emphasized that such assignments are only formal if there is strong mixing of the upper-state wavefunctions. Strictly speaking, we should give the same label to a series of lines originating from the same ground inversion-rotational level J'', k'' and terminating on upper-state levels with the same J', $k' - l_4$ quantum numbers.

REFERENCES

- 1. D. PAPOUŠEK, J. M. R. STONE, AND V. ŠPIRKO, J. Mol. Spectrosc. 48, 17-37 (1973).
- 2. V. ŠPIRKO, J. M. R. STONE, AND D. PAPOUŠEK, J. Mol. Spectrosc. 48, 38-46 (1973).
- 3. V. DANIELIS, D. PAPOUŠEK, V. ŠPIRKO, AND M. HORÁK, J. Mol. Spectrosc., 54, 339-349 (1975).
- 4. V. ŠPIRKO, J. M. R. STONE, AND D. PAPOUŠEK, J. Mol. Spectrosc. 60, 159-178 (1976).
- 5. D. PAPOUŠEK AND V. ŠPIRKO, Top. Curr. Chem. 68, 59-102 (1976).
- 6. A. R. HOY AND P. R. BUNKER, J. Mol. Spectrosc. 52, 439-456 (1974).
- 7. J. S. Garing, H. H. Nielsen, and K. Narahari Rao, J. Mol. Spectrosc. 3, 496-527 (1959).
- 8. H. M. MOULD, W. C. PRICE, AND G. R. WILKINSON, Spectrochim. Acta 15, 313-330 (1959).
- 9. W. S. BENEDICT, E. K. PLYLER, AND E. D. TIDWELL, J. Res. Nat. Bur. Stand. 61, 123-147 (1958).
- 10. W. S. BENEDICT AND E. K. PLYLER, Canad. J. Phys. 35, 1235-1241 (1957).
- 11. W. S. BENEDICT, E. K. PLYLER, AND E. D. TIDWELL, J. Chem. Phys. 29, 829-845 (1958).
- 12. W. S. BENEDICT, E. K. PLYLER, AND E. D. TIDWELL, J. Chem. Phys. 32, 32-44 (1960).
- 13. J. M. Dowling, J. Mol. Spectrosc. 27, 527-538 (1968).
- 14. F. SHIMIZU, J. Chem. Phys. 52, 3572-3576 (1970).
- 15. C. CHASSAGNE, M. L. GRENIER-BESSON, AND D. BARGUES, J. Phys. (Paris) 37, 71-80 (1976).
- 16. S. M. FREUND AND T. OKA, Phys. Rev. A 13, 2178-2190 (1976).
- 17. H. Jones, Appl. Phys. 15, 261-264 (1978).
- 18. J. P. SATTLER AND K. J. RITTER, J. Mol. Spectrosc. 69, 486-488 (1978).
- T. KOSTIUK, M. J. MUMMA, J. J. HILLMAN, D. BUHL, L. W. BROWN, J. L. FARIS, AND D. L. SPEARS, Infrared Phys. 17, 431-439 (1977).
- 20. N. NERESON, J. Mol. Spectrosc. 69, 489-493 (1978).
- 21. D. LAUGHTON, S. M. FREUND, AND T. OKA, J. Mol. Spectrosc. 62, 263-270 (1976).
- 22. W. K. BISCHEL, P. J. KELLY, AND C. K. RHODES, Phys. Rev. A 13, 1829-1841 (1976).
- 23. P. Helminger, F. C. DeLucia, and W. Gordy, J. Mol. Spectrosc. 39, 94-97 (1971).
- A. F. KRUPNOV, L. I. GERSHSTEIN, V. G. SHUSTROV, AND V. V. POLYAKOV, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 12, 1584-1586 (1969).
- 25. Y. Y. Kwan and E. A. Cohen, J. Mol. Spectrosc. 58, 54-75 (1975).
- 26. J. B. Curtis, Ph.D. dissertation, The Ohio State University, 1974.
- R. S. McDowell, H. W. Galbraith, C. D. Cantrell, N. G. Nereson, and E. D. Hinkley, J. Mol. Spectrosc. 68, 288-298 (1977).
- A. F. KRUPNOV AND A. V. BURENIN, in "Molecular Spectroscopy: Modern Research," Vol. 2, (K. Narahari Rao, Ed.) Academic Press, New York, 1976.
- E. N. KARYAKIN, A. F. KRUPNOV, D. PAPOUŠEK, JU. M. SCHURIN, AND Š. URBAN, J. Mol. Spectrosc. 66, 171-173 (1977).
- 30. F. Y. Chu and S. M. Freund, J. Mol. Spectrosc. 48, 183-184 (1973).
- 31. H. Jones, in "Proc. Vth Internat. Seminar on High Resolution Infrared Spectroscopy, Liblice near Prague, 18-22, Sept. 1978."
- 32. E. SCHNABEL, T. TÖRRING, AND W. WILKE, Z. Phys. 188, 167-171 (1965).
- 33. D. Papoušek, S. Toman, and J. Plíva, J. Mol. Spectrosc. 15, 502-505 (1965).