Econometrics: Lecture 6

Hang Miao

Rutgers University

January 21, 2021

Overview

- Review
 - Types of Convergence
 - Law of Large Number
 - Central Limit Theorem
- 2 Statistical Inference on Population Mean
 - Hypothesis Testing
 - P-Value
 - Confidence intervals
- 3 Statistical Inference on Means of Two Different Population
 - Hypothesis Testing
 - P-Value for Mean Difference
 - Confidince Interval for Mean Difference

Review

Types of Convergence

Convergence of Random Variable

Throughout the following, we assume that $\{X_n\}$ is a sequence of random variables, and X is a random variable, and all of them are defined on the same probability space $(\Omega, \mathcal{F}, \Pr)$

Definition (Converge Almost Surely)

 $\{X_n\}$ converge almost surely to X if $\Pr(\lim_{n\to\infty}X_n=X)=1$, or $\Pr\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)\neq X(\omega)\right)=0$ Denoted as $X_n\stackrel{\mathrm{a.s.}}{\longrightarrow}X$

Definition (Converge in Probability)

 $\{X_n\}$ converge in probability to X if $\lim_{n\to\infty}\Pr\left(|X_n-X|\geq \varepsilon\right)=0$.

Denoted as $X_n \xrightarrow{P} X$, or $\underset{n \to \infty}{\text{plim}} X_n = X$.

Types of Convergence

Definition (Converge in Distribution)

 $\{X_n\}$ converges in distribution, or converge weakly, or converge in law to X if

$$\lim_{n\to\infty} F_n(x) = F(x), \quad \forall x \in \mathbb{R}$$

Denoted as $X_n \xrightarrow{d} X$. where $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions (CDF) of random variables $\{X_n\}$ and X, respectively.

Definition (Converge in Mean)

Given a real number $r \geq 1$, $\{X_n\}$ converges in the r-th mean (or in the L^r -norm) to X, if the r-th absolute moments $\mathrm{E}(\mid X_n\mid^r)$ and $\mathrm{E}(\mid X\mid^r)$ of $\{X_n\}$ and X exist, and

$$\lim_{n\to\infty} \mathsf{E}\left(|X_n-X|^r\right) = 0,$$

Denoted as $X_n \xrightarrow{L^r} X$.

Relationship Between Different Types of Convergence

Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{p} X$$

• Convergence in probability implies there exists a sub-sequence k_n s.t X_{k_n} converges almost surely to X:

$$X_n \xrightarrow{p} X \Rightarrow X_{k_n} \xrightarrow{\text{a.s.}} X$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{p} X \quad \Rightarrow \quad X_n \xrightarrow{d} X$$

• Convergence in *r*-th order mean implies convergence in probability:

$$X_n \xrightarrow{L^r} X \Rightarrow X_n \xrightarrow{p} X$$

Law of Large Number

Assumption

Suppose $\{X_n\}$ is a sequence of random variables. The sample mean of $\{X_n\}$ is defined as follow

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Definition (Weak Law of Large Numbers (Chebychev's LLN))

$$\lim_{n\to\infty} \mathrm{E}\left(\overline{X}_{n}\right) = \mu, \ \lim_{n\to\infty} \mathrm{Var}\left(\overline{X}_{n}\right) = 0 \implies \overline{X}_{n} \xrightarrow{p} \mu$$

Definition (Strong Law of Large Numbers (Kolmogorov's LLN))

$$\lim_{n\to\infty} \mathbb{E}\left(\overline{X}_n\right) = \mu, \ \{X_n\} \text{i.i.d.} \implies \overline{X}_n \xrightarrow{a.s} \mu$$

Central Limit Theorem

Assumption

The central limit theorem (CLT) establishes that, in some situations, when independent random variables are added, their properly normalized sum tends toward a normal distribution (informally a "bell curve") even if the original variables themselves are not normally distributed.

Definition (Lindeberg—Levy CLT)

Suppose $\{X_n\}$ is a sequence of i.i.d. random variables with $\mathrm{E}[X_i] = \mu$ and $\mathrm{Var}[X_i] = \sigma^2 < \infty$. Then as $n \to \infty$,

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$$

Or equivalently,

$$\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{d} N(0, 1)$$

Statistical Inference on Population Mean

Hypothesis Testing for Population Mean with Known Variance σ^2

Motivation

Equipped with Central Limit Theorem we could make the statistical inference about the population mean from sample mean by Hypothesis Testing introduced before.

Prerequisite Setting

Suppose there is a sequence of i.i.d. observed sample $\{X_n\}$ from population. The variance of the underlying population is known as σ^2 . The population mean μ is unknown.

Hypothesis Testing

We could propose certain value μ_0 for μ as null hypothesis $H_0: \mu = \mu_0$ then the alternative hypothesis should be $H_1: \mu \neq \mu_0$.

The object is to see how credible H_0 is and how likely we make a type I mistake if we reject the H_0 while in favor of the alternative H_1

Hypothesis Testing for Population Mean with Known Variance σ^2

Statistics

According to the central limit theorem (CLT), the Z-score statistic $Z_n = \frac{\overline{X}_n - \mu_0}{\sqrt{n}}$ converge in distribution to standard normal N(0,1). If the sample size is large enough, Z_n approximately follows standard normal distribution. As a result, we would expect to see Z_n near around the mean 0 rather than deviated far away from mean 0. This is because of the bell-shape of the Normal Probability Density Function put a high weight on center while less weight on tails.

Reject the Null

Suppose we do spot the Z_n lies on the tails under the Null Hypothesis $H_0: \mu = \mu_0$. Since such kind of event is less likely to happen, the null H_0 is less credible. Depending on the incredibility of H_0 , we could reject it at three regularly used different significant level: 10%, 5%, 1%

Reject the Null at 10% Significant Level: Case I

Reject the Null at 10% Significant Level: Case II

Can't Reject the Null at 10% Significant Level

Reject the Null at 5% Significant Level: Case I

Reject the Null at 5% Significant Level: Case II

Can't Reject the Null at 5% Significant Level

Reject the Null at 1% Significant Level: Case I

Reject the Null at 1% Significant Level: Case II

Can't Reject the Null at 1% Significant Level

P-Value

Motivation

From the above figures, we see that the Null H_0 could be reject at a lower significant level if it could be rejected at a higher significant level. It is inconvenient to compare the value of Z_n with each critical value $\Phi^{-1}(\cdot)$ at different significant level.

Definition (P-Value)

In order to resolve the inconvenience mentioned above. The p-value is introduced. It is the probability that we could spot a statistic as extreme as the current spotted one Z_n . Under the null hypothesis $H_0: \mu = \mu_0$. The p-value is the total area of two tails under PDF of Normal(0,1) started $\pm Z_n$. i.e it is $2\Phi(Z_n)$ if $Z_n \leq 0$, or $2(1-\Phi(Z_n))$ if $Z_n \geq 0$. In R, the p-value is calculated by the CDF of normal function $2*pnorm(Z_n, lower.tail = T)$ if if $Z_n \leq 0$, or $2*pnorm(Z_n, lower.tail = F)$ if $Z_n \geq 0$. The null hypothesis is rejected at significant level α , if the p-value less than α .

P-Value

Definition (Confidence intervals)

Confidence Interval (CI) is a type of interval estimate, computed from the statistics of the observed data, that might contain the true value of an unknown population parameter.

Confidence Intervals for the Population Mean

99% confidence interval for
$$\mu_X = \left[\overline{X}_n \pm 2.58 imes rac{\sigma}{\sqrt{n}}
ight]$$

95% confidence interval for
$$\mu_X = \left[\overline{X}_n \pm 1.96 imes rac{\sigma}{\sqrt{n}}
ight]$$

90% confidence interval for
$$\mu_X = \left[\overline{X}_n \pm 1.64 imes rac{\sigma}{\sqrt{n}}
ight]$$

We want the population mean μ_{ci90} takes the value such that statistic Z_n lie in the region where the area (probability) under the PDF is 90%.

$$\Phi^{-1}(0.05) \le \frac{\bar{X}_n - \mu_{ci90}}{\frac{\sigma}{\sqrt{n}}} \le \Phi^{-1}(0.95)$$
$$\frac{\sigma}{\sqrt{n}} \Phi^{-1}(0.05) \le \bar{X}_n - \mu_{ci90} \le \frac{\sigma}{\sqrt{n}} \Phi^{-1}(0.95)$$
$$\bar{X}_n - \frac{\sigma}{\sqrt{n}} \Phi^{-1}(0.95) \le \mu_{ci90} \le \bar{X}_n - \frac{\sigma}{\sqrt{n}} \Phi^{-1}(0.05)$$

Since normal distribution is symmetrical, $\Phi^{-1}(0.05) = -\Phi^{-1}(0.95) = 1.64$. Therefore,

$$\mu_{ci90} \in \left[\bar{X}_{n} - 1.64 \frac{\sigma}{\sqrt{n}}, \, \bar{X}_{n} + 1.64 \frac{\sigma}{\sqrt{n}}\right]$$

We want the population mean μ_{ci95} takes the value such that statistic Z_n lie in the region where the area (probability) under the PDF is 95%.

$$\Phi^{-1}(0.025) \le \frac{\bar{X}_n - \mu_{ci95}}{\frac{\sigma}{\sqrt{n}}} \le \Phi^{-1}(0.975)$$
$$\frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.025) \le \bar{X}_n - \mu_{ci95} \le \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.975)$$
$$\bar{X}_n - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.975) \le \mu_{ci95} \le \bar{X}_n - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.025)$$

Since normal distribution is symmetrical, $\Phi^{-1}(0.025) = -\Phi^{-1}(0.975) = 1.96$. Therefore,

$$\mu_{ci95} \in \left[\bar{X}_{n} - 1.96\frac{\sigma}{\sqrt{n}}, \, \bar{X}_{n} + 1.96\frac{\sigma}{\sqrt{n}}\right]$$

We want the population mean μ_{ci99} takes the value such that statistic Z_n lie in the region where the area (probability) under the PDF is 99%.

$$\Phi^{-1}(0.005) \le \frac{\bar{X}_n - \mu_{ci99}}{\frac{\sigma}{\sqrt{n}}} \le \Phi^{-1}(0.995)$$
$$\frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.005) \le \bar{X}_n - \mu_{ci99} \le \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.995)$$
$$\bar{X}_n - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.995) \le \mu_{ci99} \le \bar{X}_n - \frac{\sigma}{\sqrt{n}}\Phi^{-1}(0.005)$$

Since normal distribution is symmetrical, $\Phi^{-1}(0.005) = -\Phi^{-1}(0.995) = 2.58$. Therefore,

$$\mu_{ci99} \in \left[\bar{X}_{n} - 2.58 \frac{\sigma}{\sqrt{n}}, \, \bar{X}_{n} + 2.58 \frac{\sigma}{\sqrt{n}}\right]$$

Statistical Inference on Means of Two Different Population

Hypothesis Testing for Mean Difference of Two Different Population with Known Variance σ_1^2 and σ_2^2

Motivation

In many cases, a researcher is interesting in gathering information about two populations in order to compare them. As in statistical inference for one population parameter: Hypothesis tests of significance, P-Value and confidence intervals are useful statistical tools for the difference between two population parameters.

Prerequisite Setting

Suppose there are two sequence of i.i.d. observed sample $\{X_n\}$ and $\{Y_m\}$ from population. The variance of the two underlying population is known as σ_1^2 and σ_2^2 . The population mean μ_1 and μ_2 are unknown. We are interested to know whether there is there is a significant difference between the means of the two populations.

Hypothesis Testing for Mean Difference of Two Different Population with Known Variance σ_1^2 and σ_2^2

Hypothesis Testing

Consider μ_1 and μ_2 as their true population mean, we are interest to test the null hypothesis $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$ against the alternative hypothesis should be $H_1: \mu_1 \neq \mu_2$ or $H_1: \mu_1 - \mu_2 \neq 0$ The object is to see how credible H_0 is and how likely we make a type I mistake if we reject the H_0 while in favor of the alternative H_1

Statistics

Let the Z-score statistics constructed in the following way:

$$Z = \frac{\left(\overline{X}_n - \overline{Y}_m\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

We claim that sample size is large enough, *Z* approximately follows standard normal distribution by the Central Limit Theorem.

Hypothesis Testing for Population Mean with Known Variance σ^2

To apply the central limit theorem, we need to check the statistics Z satisfies the condition as follow:

•
$$\mathrm{E}[\overline{X}_n - \overline{Y}_m] = \mu_1 - \mu_2$$

•
$$\operatorname{Var}\left[\overline{X}_n - \overline{Y}_m\right] = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}$$

Proof:

$$\begin{split} \mathbf{E} \big[\overline{X}_n - \overline{Y}_m \big] &= \mathbf{E} \big[\overline{X}_n \big] - \mathbf{E} \big[\overline{Y}_m \big] = \mu_1 - \mu_2 \\ \mathrm{Var} \big[\overline{X}_n - \overline{Y}_m \big] &= \mathrm{Cov} \big[\overline{X}_n - \overline{Y}_m, \overline{X}_n - \overline{Y}_m \big] \\ &= \mathrm{Cov} \big[\overline{X}_n, \overline{X}_n \big] + \mathrm{Cov} \big[\overline{X}_n, -\overline{Y}_m \big] \\ &+ \mathrm{Cov} \big[- \overline{Y}_m, \overline{X}_n \big] + \mathrm{Cov} \big[- \overline{Y}_m, -\overline{Y}_m \big] \\ &= \mathrm{Var} \big[\overline{X}_n \big] + \mathrm{Var} \big[\overline{Y}_m \big] = \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} \end{split}$$

Can't Reject the Null at 1% Significant Level

Reject the Null at 10% Significant Level: Case I

Reject the Null at 10% Significant Level: Case II

Confidince Interval for Mean Difference

We want the population mean μ_{ci99} takes the value such that statistic Z lie in the region where the area (probability) under the PDF is 99%.

$$\Phi^{-1}(0.005) \le \frac{\left(\overline{X}_n - \overline{Y}_m\right) - \mu_{ci99}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \le \Phi^{-1}(0.995)$$

$$\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \Phi^{-1}(0.005) \le (\overline{X}_n - \overline{Y}_m) - \mu_{ci99} \le \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \Phi^{-1}(0.995)$$

$$\left(\overline{X}_n - \overline{Y}_m\right) - \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \Phi^{-1}(0.995) \le \mu_{ci99} \le \left(\overline{X}_n - \overline{Y}_m\right)$$

Since normal distribution is symmetrical,

$$\Phi^{-1}(0.005) = -\Phi^{-1}(0.995) = 2.58$$
. Therefore,

$$\begin{split} \left(\overline{X}_n - \overline{Y}_m\right) - \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \Phi^{-1}(0.995) &\leq \mu_{ci99} \leq \left(\overline{X}_n - \overline{Y}_m\right) \\ &+ \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} \Phi^{-1}(0.995) \end{split}$$

$$\mu_{ci99} \in \left[\left(\overline{X}_{\textit{n}} - \overline{Y}_{\textit{m}} \right) - 2.58 \sqrt{\frac{\sigma_1^2}{\textit{n}} + \frac{\sigma_2^2}{\textit{m}}}, \; \left(\overline{X}_{\textit{n}} - \overline{Y}_{\textit{m}} \right) + 2.58 \sqrt{\frac{\sigma_1^2}{\textit{n}} + \frac{\sigma_2^2}{\textit{m}}} \right]$$