Final Assignment-v2

November 27, 2024

Extracting and Visualizing Stock Data

Description

Extracting essential data from a dataset and displaying it is a necessary part of data science; therefore individuals can make correct decisions based on the data. In this assignment, you will extract some stock data, you will then display this data in a graph.

Table of Contents

```
    <!i>>Define a Function that Makes a Graph
    <!i>Question 1: Use yfinance to Extract Stock Data
    <!i>Question 2: Use Webscraping to Extract Tesla Revenue Data
    <!i>Question 3: Use yfinance to Extract Stock Data
    <!i>Question 4: Use Webscraping to Extract GME Revenue Data
    <!i>Question 5: Plot Tesla Stock Graph
    <!i>Question 6: Plot GameStop Stock Graph
```

Estimated Time Needed: 30 min

Note:- If you are working Locally using anaconda, please uncomment the following code and execute it. Use the version as per your python version.

```
[264]: import yfinance as yf
import pandas as pd
import requests
from bs4 import BeautifulSoup
import plotly.graph_objects as go
from plotly.subplots import make_subplots
```

In Python, you can ignore warnings using the warnings module. You can use the filterwarnings function to filter or ignore specific warning messages or categories.

```
[265]: import warnings
# Ignore all warnings
warnings.filterwarnings("ignore", category=FutureWarning)
```

0.1 Define Graphing Function

In this section, we define the function make_graph. You don't have to know how the function works, you should only care about the inputs. It takes a dataframe with stock data (dataframe must contain Date and Close columns), a dataframe with revenue data (dataframe must contain Date and Revenue columns), and the name of the stock.

```
[266]: def make graph(stock data, revenue data, stock):
           fig = make_subplots(rows=2, cols=1, shared_xaxes=True,_
        subplot_titles=("Historical Share Price", "Historical Revenue"), □
        →vertical_spacing = .3)
           stock_data_specific = stock_data[stock_data.Date <= '2021-06-14']</pre>
           revenue data specific = revenue data[revenue data.Date <= '2021-04-30']
           fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data_specific.Date,_
        مinfer_datetime_format=True), y=stock_data_specific.Close.astype("float"), ا

¬name="Share Price"), row=1, col=1)
           fig.add_trace(go.Scatter(x=pd.to_datetime(revenue_data_specific.Date,_
        →infer_datetime_format=True), y=revenue_data_specific.Revenue.
        ⇔astype("float"), name="Revenue"), row=2, col=1)
           fig.update_xaxes(title_text="Date", row=1, col=1)
           fig.update xaxes(title text="Date", row=2, col=1)
           fig.update yaxes(title text="Price ($US)", row=1, col=1)
           fig.update yaxes(title text="Revenue ($US Millions)", row=2, col=1)
           fig.update_layout(showlegend=False,
           height=900,
           title=stock,
           xaxis_rangeslider_visible=True)
           fig.show()
```

Use the make_graph function that we've already defined. You'll need to invoke it in questions 5 and 6 to display the graphs and create the dashboard. > Note: You don't need to redefine the function for plotting graphs anywhere else in this notebook; just use the existing function.

0.2 Question 1: Use yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is Tesla and its ticker symbol is TSLA.

```
[267]: tesla = yf.Ticker("TSLA")
```

Using the ticker object and the function history extract stock information and save it in a dataframe named tesla_data. Set the period parameter to "max" so we get information for the maximum amount of time.

```
[268]: tesla_data = tesla.history(period="max")
tesla_data.head()
```

```
[268]:
                                       Open
                                                                                Volume
                                                  High
                                                             Low
                                                                      Close
       Date
                                   1.266667
       2010-06-29 00:00:00-04:00
                                              1.666667
                                                        1.169333
                                                                  1.592667
                                                                             281494500
       2010-06-30 00:00:00-04:00
                                   1.719333
                                             2.028000
                                                                             257806500
                                                        1.553333 1.588667
                                              1.728000
                                                                  1.464000
       2010-07-01 00:00:00-04:00
                                   1.666667
                                                        1.351333
                                                                             123282000
       2010-07-02 00:00:00-04:00
                                   1.533333
                                              1.540000
                                                        1.247333
                                                                   1.280000
                                                                              77097000
       2010-07-06 00:00:00-04:00
                                   1.333333
                                              1.333333
                                                        1.055333
                                                                  1.074000
                                                                             103003500
                                              Stock Splits
                                   Dividends
       Date
                                         0.0
                                                        0.0
       2010-06-29 00:00:00-04:00
       2010-06-30 00:00:00-04:00
                                                        0.0
                                         0.0
       2010-07-01 00:00:00-04:00
                                         0.0
                                                        0.0
       2010-07-02 00:00:00-04:00
                                         0.0
                                                        0.0
       2010-07-06 00:00:00-04:00
                                         0.0
                                                        0.0
```

Reset the index using the reset_index(inplace=True) function on the tesla_data DataFrame and display the first five rows of the tesla_data dataframe using the head function. Take a screenshot of the results and code from the beginning of Question 1 to the results below.

```
[269]: tesla_data.reset_index(inplace=True)
       tesla_data.head()
[269]:
                               Date
                                         Open
                                                    High
                                                               Low
                                                                        Close
       0 2010-06-29 00:00:00-04:00
                                     1.266667
                                                1.666667
                                                          1.169333
                                                                     1.592667
       1 2010-06-30 00:00:00-04:00
                                     1.719333
                                                2.028000
                                                          1.553333
                                                                     1.588667
       2 2010-07-01 00:00:00-04:00
                                     1.666667
                                                1.728000
                                                          1.351333
                                                                    1.464000
       3 2010-07-02 00:00:00-04:00
                                     1.533333
                                                1.540000
                                                          1.247333
                                                                    1.280000
       4 2010-07-06 00:00:00-04:00
                                     1.333333
                                                1.333333
                                                          1.055333
                                                                    1.074000
                     Dividends
                                 Stock Splits
             Volume
          281494500
       0
                            0.0
                                          0.0
                            0.0
                                          0.0
       1
          257806500
          123282000
                            0.0
                                          0.0
       3
           77097000
                            0.0
                                          0.0
```

0.3 Question 2: Use Webscraping to Extract Tesla Revenue Data

0.0

0.0

103003500

Use the requests library to download the webpage https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/revenue.htm Save the text of the response as a variable named html_data.

```
[270]: url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

SIBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/revenue.htm'

html_data = requests.get(url).text
```

Parse the html data using beautiful_soup using parser i.e html5lib or html.parser.

```
[271]: soup = BeautifulSoup(html_data, 'html5lib')
```

Using BeautifulSoup or the read_html function extract the table with Tesla Revenue and store it into a dataframe named tesla_revenue. The dataframe should have columns Date and Revenue.

Step-by-step instructions

Here are the step-by-step instructions:

- 1. Create an Empty DataFrame
- 2. Find the Relevant Table
- 3. Check for the Tesla Quarterly Revenue Table
- 4. Iterate Through Rows in the Table Body
- 5. Extract Data from Columns
- 6. Append Data to the DataFrame

Click here if you need help locating the table

Below is the code to isolate the table, you will now need to loop through the rows and columns soup.find_all("tbody")[1]

If you want to use the read_html function the table is located at index 1

We are focusing on quarterly revenue in the lab.

```
[272]: tables = pd.read_html(html_data)
# for table in tables:
# print(table.head()) # Used to Find which table I need. tables[1] is_
quarterly.
tesla_revenue = tables[1]
tesla_revenue.columns = ['Date', 'Revenue']
tesla_revenue.head()
```

```
[272]: Date Revenue
0 2022-09-30 $21,454
1 2022-06-30 $16,934
2 2022-03-31 $18,756
3 2021-12-31 $17,719
4 2021-09-30 $13,757
```

Execute the following line to remove the comma and dollar sign from the Revenue column.

<>:2: SyntaxWarning:

```
invalid escape sequence '\$'
<>:2: SyntaxWarning:
invalid escape sequence '\$'
C:\Users\zache\AppData\Local\Temp\ipykernel_21152\423335077.py:2: SyntaxWarning:
invalid escape sequence '\$'
```

[273]: Date Revenue 0 2022-09-30 21454 1 2022-06-30 16934 2 2022-03-31 18756 3 2021-12-31 17719 4 2021-09-30 13757

Execute the following lines to remove an null or empty strings in the Revenue column.

```
[274]: tesla_revenue.dropna(inplace=True)
tesla_revenue = tesla_revenue[tesla_revenue['Revenue'] != ""]
```

Display the last 5 row of the tesla_revenue dataframe using the tail function. Take a screenshot of the results.

```
[275]: tesla_revenue.tail()
```

```
[275]:
                  Date Revenue
       48
            2010-09-30
                             31
                             28
       49
            2010-06-30
       50
            2010-03-31
                             21
       52
            2009-09-30
                             46
            2009-06-30
       53
                             27
```

0.4 Question 3: Use yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is GameStop and its ticker symbol is GME.

```
[276]: gamestop = yf.Ticker("GME")
```

Using the ticker object and the function history extract stock information and save it in a dataframe named gme_data. Set the period parameter to "max" so we get information for the maximum amount of time.

```
[277]: gme_data = gamestop.history(period="max")
```

Reset the index using the reset_index(inplace=True) function on the gme_data DataFrame and display the first five rows of the gme_data dataframe using the head function. Take a screenshot of the results and code from the beginning of Question 3 to the results below.

```
[278]: gme_data.reset_index(inplace=True)
       gme_data.head()
[278]:
                                                                      Close
                              Date
                                        Open
                                                  High
                                                             Low
                                                                               Volume
       0 2002-02-13 00:00:00-05:00
                                    1.620129
                                              1.693350
                                                        1.603296
                                                                  1.691667
                                                                             76216000
       1 2002-02-14 00:00:00-05:00 1.712707
                                              1.716074
                                                        1.670626
                                                                  1.683250
                                                                             11021600
       2 2002-02-15 00:00:00-05:00 1.683250
                                              1.687458 1.658002
                                                                              8389600
                                                                  1.674834
       3 2002-02-19 00:00:00-05:00
                                   1.666418
                                              1.666418 1.578047
                                                                  1.607504
                                                                              7410400
                                                                              6892800
       4 2002-02-20 00:00:00-05:00 1.615920
                                              1.662210 1.603296
                                                                  1.662210
                    Stock Splits
          Dividends
       0
                0.0
                              0.0
                0.0
                              0.0
       1
       2
                0.0
                              0.0
       3
                0.0
                              0.0
```

0.5 Question 4: Use Webscraping to Extract GME Revenue Data

0.0

Use the requests library to download the webpage https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html. Save the text of the response as a variable named html_data_2.

```
[279]: url = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

GIBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html'

html_data2 = requests.get(url).text
```

Parse the html data using beautiful_soup using parser i.e html5lib or html.parser.

```
[280]: soup2 = BeautifulSoup(html_data2, 'html5lib')
```

Using BeautifulSoup or the read_html function extract the table with GameStop Revenue and store it into a dataframe named gme_revenue. The dataframe should have columns Date and Revenue. Make sure the comma and dollar sign is removed from the Revenue column.

Note: Use the method similar to what you did in question 2.

Click here if you need help locating the table

4

0.0

Below is the code to isolate the table, you will now need to loop through the rows and columns soup.find_all("tbody")[1]

If you want to use the read_html function the table is located at index 1

```
[281]: tables2 = pd.read_html(html_data2)
       # for table in tables2:
             print(table.head()) # Used to Find which table I need.
       gme_revenue = tables2[1]
       gme_revenue.columns = ['Date', 'Revenue']
       gme_revenue['Revenue'] = gme_revenue['Revenue'].str.replace('[\$,]', '',__
        →regex=True)
       gme_revenue.dropna(inplace=True)
       gme_revenue = gme_revenue[gme_revenue['Revenue'] != ""]
      <>:6: SyntaxWarning:
      invalid escape sequence '\$'
      <>:6: SyntaxWarning:
      invalid escape sequence '\$'
      C:\Users\zache\AppData\Local\Temp\ipykernel_21152\2055515117.py:6:
      SyntaxWarning:
      invalid escape sequence '\$'
```

Display the last five rows of the gme_revenue dataframe using the tail function. Take a screenshot of the results.

```
[282]: gme_revenue.tail()
```

```
[282]:
                 Date Revenue
       57
           2006-01-31
                          1667
       58
           2005-10-31
                           534
       59
          2005-07-31
                           416
       60 2005-04-30
                           475
       61
           2005-01-31
                           709
```

0.6 Question 5: Plot Tesla Stock Graph

Use the make_graph function to graph the Tesla Stock Data, also provide a title for the graph. Note the graph will only show data upto June 2021.

Hint

You just need to invoke the make_graph function with the required parameter to print the graph

```
[283]: make_graph(tesla_data, tesla_revenue, 'Tesla')
```

C:\Users\zache\AppData\Local\Temp\ipykernel_21152\3316612210.py:5: UserWarning:

The argument 'infer_datetime_format' is deprecated and will be removed in a

future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.

C:\Users\zache\AppData\Local\Temp\ipykernel_21152\3316612210.py:6: UserWarning:

The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.

0.7 Question 6: Plot GameStop Stock Graph

Use the make_graph function to graph the GameStop Stock Data, also provide a title for the graph. The structure to call the make_graph function is make_graph(gme_data, gme_revenue, 'GameStop'). Note the graph will only show data upto June 2021.

Hint

You just need to invoke the make_graph function with the required parameter to print the graph

```
[284]: make_graph(gme_data, gme_revenue, 'Gamestop')
```

C:\Users\zache\AppData\Local\Temp\ipykernel_21152\3316612210.py:5: UserWarning:

The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.

C:\Users\zache\AppData\Local\Temp\ipykernel_21152\3316612210.py:6: UserWarning:

The argument 'infer_datetime_format' is deprecated and will be removed in a future version. A strict version of it is now the default, see https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. You can safely remove this argument.

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Azim Hirjani

0.8 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2022-02-28	1.2	Lakshmi Holla	Changed the URL of GameStop
2020-11-10	1.1	Malika Singla	Deleted the Optional part
2020-08-27	1.0	Malika Singla	Added lab to GitLab

##

 $[\]ensuremath{{\mathbb C}}$ IBM Corporation 2020. All rights reserved.