EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

10219392

PUBLICATION DATE

18-08-98

APPLICATION DATE

31-01-97

APPLICATION NUMBER

09018839

APPLICANT: KAWASAKI STEEL CORP;

INVENTOR: AMANO KENICHI;

INT.CL.

: C22C 38/00 C21D 8/00 C22C 38/06 C22C 38/14

TITLE

: PARTS FOR INDUCTION HARDENING AND PRODUCTION THEREOF

ABSTRACT: PROBLEM TO BE SOLVED: To obtain parts for induction hardening excellent in machinability and furthermore capable of securing characteristics as parts such as a gear or the like by specifying the compsn. of C, Si, Mn, P, S, Al, O, N and Fe, oxide nonmetallic inclusions and induction hardenability.

> SOLUTION: A steel contg., by weight, 0.5 to 0.75% C, 0.5 to 1.8% Si, 0.4 to 1.5% Mn, 0.010 to 0.020% P, \leq 0.020% S, 0.019 to 0.05% AI, \leq 0.0015% O and 0.006 to 0.015% N, furthermore contg., at need, prescribed amounts of Mo, B, Ti, Ni, V and Nb, and the balance Fe with inevitable impurities is heated at 1100 to 1250°C and is subjected to hot rolling at ≥95% reduction of area, and the rolling is finished at ≥1000°C. In this way, the parts for induction hardening composed of the steel in which the number of oxide nonmetallic inclusions is regulated to ≤2.5/mm, also, the maximum size thereof is regulated to ≤19µm, and moreover, the grain size of austenite at the time of induction hardening is regulated to ≤16µm and capable of obtaining characteristics equal to or above those by the conventional carburizing process can be obtd.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-219392

(43)公開日 平成10年(1998)8月18日

(51) Int.Cl.6	鐵別記号	FI	
C 2 2 C 38/00	301	C 2 2 C 38/00 3 0 1	N
C 2 1 D 8/00		C 2 1 D 8/00	Α
C 2 2 C 38/06		C 2 2 C 38/06	
38/14		38/14	
		審査請求 未請求 請求項の数7	OL (全 18 頁)
(21)出願番号	特顧平9-18839	(71) 出願人 000001258	
		川崎製鉄株式会社	
(22) 山願日	平成9年(1997)1月31日	兵庫県神戸市中央区北	本町通1丁目1番28
		号	
		(72)発明者 大森 靖浩	
		岡山県倉敷市水島川崎	通1丁目(番地な
		し) 川崎製鉄株式会	社水島製鉄所内
		(72)発明者 星野 俊幸	
		岡山県倉敷市水島川崎	
			社水島製鉄所内
		(72)発明者 天野 虔一.	
		岡山県倉敷市水鳥川崎	
			社水島製鉄所内
		(74)代理人 弁理士 森 哲也	(外2名)

(54) 【発明の名称】 高周波焼入用部品およびその製造方法

(57)【要約】

【課題】被削性にも優れると同時に、高周波焼入れ後の 歯車に要求される衝撃値、疲労強度、転動疲労寿命など の特性についても従来の浸炭プロセスで製造される歯車 と同等以上の高周波焼入部品およびその製造方法を提供 する。

【解決手段】鋼の化学組成、鋼中の酸化物系非金属介在物の個数及びサイズを規制し、且つ二次加工プロセスに於ける熱問銀造条件を規定して、歯車製造プロセスを従来の浸炭焼入れから高周波焼入れに変更する。

【特許請求の範囲】

【請求項1】 重量比で、C:0.5~0.75%、Si:0.5~1.8%、Mn:0.4~1.5%、P:0.010~0.020%、S:0.020%以下、Al:0.019~0.05%、O:0.0015%以下、N:0.006~0.015%を含有し残部Fe及び不可避的不純物よりなり、酸化物系非金属介在物個数が2.5/mm²以下でかつその最大サイズが19μm以下であることに加えて、高周波焼入れ時のオーステナイト粒径が16μm以下である鋼材よりなることを特徴とする高周波焼入用部品。

【請求項2】 前記鋼材は、組成中にさらに、重量比で、Mo:0.05~0.5%、B:0.0003~0.005%、Ti:0.005~0.05%、Ni:0.1~1.0%の一種以上を含有していることを特徴とする請求項1記載の高周波焼入用部品。

【請求項3】 前記網材は、組成中にさらに、重量比で、V:0.05~0.5%、Nb:0.01~0.5%の少なくとも一種を含有していることを特徴とする請求項1記載の高周波焼入用部品。

【請求項4】 前記網材は、組成中にさらに、重量比で、Mo:0.05~0.5%、B:0.0003~0.005%、Ti:0.005~0.05%、Ni:0.1~1.0%の一種以上とV:0.05~0.5%、Nb:0.01~0.5%の少なくとも一種とを含有していることを特徴とする請求項1記載の高周波焼入用部品。

【請求項5】 請求項1ないし請求項4のいずれかに記載の鋼材を鋳片より熱間圧延するに際して、当該鋳片を1100~1250℃の温度領域に加熱し、1000℃以上の温度領域で圧延を終了することを特徴とする高周波焼入用部品の製造方法。

【請求項6】 請求項1ないし請求項4のいずれかに記載の鋼材を鋳片より熱間圧延するに際して、当該鋳片を1100~1250℃の温度領域に加熱し1000℃以上の温度領域で第1段の圧延を終了し、さらに1050~1150℃の温度領域に加熱し1000℃以上の温度領域で第2段の圧延を終了することを特徴とする高周波焼入用部品の製造方法。

【請求項7】 前記鋳片から鋼材を熱間圧延する際に、 断面減少率が95%以上となる圧延を施すことを特徴と する請求項5または請求項6記載の高周波焼入用部品の 製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高周波焼入部品及びその製造方法に関し、特に、従来は炭素鋼に浸炭、窒化などの表面処理を施すことにより製造される歯車等の部品に好適に適用できるものである。

[0002]

【従来の技術】従来、自動車、産業機械に用いられる歯車は、0.2%程度の炭素を含有する浸炭用合金鋼に鍛造、切削、旋削、歯切りを順に施すことにより所定の形状に加工し、その後に浸炭焼入れ焼戻し処理を行って歯車として必要な機能を確保するという方法で製造されている。このような浸炭プロセスによる製造は従来の歯車製造工程の主流となっているが、浸炭には800から950で程度の温度で数時間の処理が必要なため、歯車製造ライン中に組み入れることが困難であり、生産性を向上させることに限界がある。その結果、製造コストの低減にも自ずから限度が生じていた。

【0003】また、浸炭は通常、ガス浸炭法によるのが一般的であるが、ガス浸炭時に被処理材の表面層に不可避的に表面異常層が発生し、この異常層が疲労強度及び衝撃特性を低下させるために、疲労強度及び衝撃特性の向上に限度があった。また、浸炭焼入れ時に発生する熱処理歪みにより被処理材に変形が生じるため、熱処理条件の厳密な制御が要求される。

【0004】上記した従来の漫炭焼入れ焼戻し処理に伴 う問題点を克服するために、浸炭プロセスを前提とし て、鋼材中のSi, Mn, Crの量を減らすと共にM o. Ni等を添加することによりガス浸炭時に発生する 表面異常層を低減し、疲労強度及び衝撃特性の改善を意 図した高強度浸炭用鋼が開発されるに至っている。しか しその場合も、高価な合金元素を多量に用いるために鋼 材コストの上昇を招くとともに被削性等の加工性を劣化 させるため、高強度化は図れるものの製造コストの上昇 を招くという問題がある.また、JIS規格SСM43 5及びS55C等の機械構造用合金鋼及び炭素鋼を用い て、浸炭焼入プロセスよりも生産能率が高い高周波焼入 による歯車の製造が試みられているが、これらの鋼は本 来、歯車への適用を考慮して決定された化学組成でない ために、浸炭プロセスにより製造される歯車のごとく自 動車のトランスミッションやデファレンシャルに用いら れる高強度の歯車への適用は困難であり、比較的低強度 の歯車のみへの適用に留まっている。

[0005]

【発明が解決しようとする課題】こうした高強度部品を 製造する際の従来の諸問題を解決するために、たとえば 特開昭60-169544号公報には、鋼の化学組成を 特定の範囲に規制することにより高周波焼入プロセスに よる高強度の歯車製造を可能とする技術が開示されている。

【0006】しかしながら、本発明者らの検討によれば、前記特開昭60・169544号公報に開示の技術では、鋼中に存在する非金属介在物のサイズが大きくて、歯車用鋼等に要求される疲労強度及び転動疲労寿命が確保できないという未解決の課題がある。

【0007】また、Pの含有量が0.01重量%以下に限定されているため、製鋼コストが上昇するという他の

未解決の課題がある。また、上記公報に開示の化学組成では、従来の浸炭用鋼に比較して被削性が極端に低下するために、製造工程において必須のプロセスである切削工程での生産能率が低く、浸炭焼入れより高周波焼入れへのプロセスの変更による生産性の向上に限度があるという更に他の未解決の課題がある。

【0008】本発明は、このような従来技術の未解決の課題に着目してなされたものであり、被削性にも優れると同時に、従来の浸炭プロセスで製造される歯車等の部品に比較して同等以上の特性を確保することが可能な高周波焼入用部品およびその製造方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明者らは、上記の目的を達成するために、歯車に要求される特性を高周被焼入プロセスにおいて確保するための鋼材の化学組成を検討し、以下のような知見を得るに至った。

【0010】すなわち、歯車には、歯元強度、歯面強度 及び衝撃特性が要求される。歯元強度は歯部が繰り返し 応力を受け歯元部から疲労破壊を生じない最大の応力を 意味する。この歯元強度は回転曲げ等の疲労試験による 疲労強度と良い相関が有ることから、本発明者らは回転 曲げ疲労試験により鋼材化学組成を検討した。

【0011】疲労強度に影響を与える基本的な因子は、材料の硬さ及び非金属介在物である。材料硬さが低下すると疲労強度も低下する。この材料の硬さについて浸炭焼入材とほぼ同等の値を高周波焼入により確保しようとすると、約0.5重量%程度以上の炭素含有量(C量)が必要である。

【0012】疲労強度を向上させるためには、そればかりでなくオーステナイト粒径を細粒にすることが有効になる。その理由は、疲労亀裂が旧オーステナイト粒径に沿って仲展していくため、これを細粒にすることにより疲労亀裂伝播に対する抵抗が増加することの他に、粒界に偏折してこれを脆化させるP等の元素の濃度が細粒化により減少するからである。そのオーステナイトの細粒化に対しては、急速短時間加熱の処理である高周波焼入が極めて有効である。また、オーステナイト粒の成長を抑制する析出物を形成するN.A1等の添加により一層細粒化が促進され、疲労強度の向上に有効である。

【0013】また、素材硬さを得るためには、焼入性を確保するとの観点から合金元素の添加が必要となる。これらの合金元素は歯車のサイズに応じて適正量添加すれば良い。

【0014】さらに、疲労強度を向上させるためには、 上記したような素材硬さを確保するのみでは不十分であり、非金属介在物の低減も必要である。すなわち、素材 硬度を確保することができても、酸化物系非金属介在物 が存在すると、この部分から疲労破壊を生じ、極めて疲 労強度が低下するからである。特に、アルミナのような 硬質な非金属介在物は有害であり、このためには含有酸素量(〇量)の低減が必須である。本発明者らの検討によれば、〇量を〇、〇〇15重量%以下にすることが少なくとも必要であるが、それのみでは不十分である。

【0015】さらに木発明者らが検討した結果、従来の 浸炭処理材と同等の疲労強度を確保するためには、酸化 物の個数およびサイズを限定することが必要なことが明 らかとなった。非金属介在物が存在すると、これを起点 として疲労破壊が進行することは先速したとおりである が、非金属介在物が大きいほどその介在物に発生する応 力集中の程度が顕著となり、疲労初期電製が容易に発生 する

【0016】また、その初期亀裂も、非金属介在物が大きく応力集中の程度が大きい程顕著である。大きな初期 亀製がいったん発生すると、疲労亀製は迅速に進展して 疲労破壊に至る。本発明者の検討によれば、従来の浸炭 焼き入れ材以上の疲労強度を確保するためには、19μ mを越えるサイズの酸化物系非金属介在物が存在しない ことが必要なことが解った。

【0017】更に、非金属介在物個数の影響を検討した結果、非金属介在物が19μm以下であっても、その個数が2.5個/mm²を越えて存在すると、従来の浸炭焼き入れ材と同程度の疲労強度は得られないことが判明した。これは、非金属介在物が小さい場合、その部分より発生する初期無製は小さいが、これが成長すると他の非金属介在物より発生した疲労亀裂と合体して大きな疲労亀裂となり、その後急速に疲労亀裂は成長して短時間で疲労破壊に至るためである。

【0018】以上述べたとおり、疲労強度の確保のため には、O量の限定のみでなく酸化物系非金属介在物の個 数およびサイズの制御が必須である。さらに、本発明者 らは、酸化物系非金属介在物の量及びサイズを上記の範 囲に低減する方法を検討した。その結果、鋼中の()量を 15ppm以下に制限することにより、酸化物系非金属 介在物の量は目標とする2.5個/mm²以下に低減で きることが判明したが、サイズについては〇量の規定の みでは不十分である。本発明者らは、鋳造時の鋳片サイ ズより最終的に鋼材に圧延する際の断面減少率が非金属 介在物サイズと強い相関を持ち、当該断面減少率が増加 するにしたがって非金属介在物サイズが減少することを 見いだした。これは、圧延により、粗大な非金属介在物 が機械的に砕かれることによるものである。その結果、 目標とする19μm以下のサイズとするには、O量を1 5ppm以下に制御した鋼では、断面減少率として95 %以上の圧下が必要なことが判明した。

【0019】一方、歯車の歯面部には、繰り返し接触応力により、ピッチングと呼ばれる疲労損傷が生じる。これが生じると歯車は正常な機能を発揮することが困難となるので、歯面強度が必要とされる。

【0020】この歯面強度は、転動疲労試験との相関が

良好であり、この試験により評価することが可能である。ただし、歯車の場合には歯面部に相対すべりが発生するので、その摩擦により著しい温度上昇が生じる。この温度上昇により鋼材は軟化し、ビッチングが発生する。これを抑制するためには、鋼の焼もどし軟化抵抗を高めるSi、Mo、V及びNb等の添加が有効であり、これらの添加により歯面強度を高めることができる。

【〇〇21】また、転動疲労寿命に関しては、疲労強度と同様に酸化物系非金属介在物の量及びサイズが影響するが、上記した〇量の制御と共に鋳片より最終鋼材に圧延する際の断面減少率を制御することにより非金属介在物の量及びサイズを制御すれば、従来の浸炭鋼と同程度の転動疲労寿命を確保することが判明した。

【0022】 歯元に衝撃的な荷重が作用した場合、鋼材の衝撃特性が低いと歯元部より歯が折損し、歯車のみならず歯車の組み込まれている機械全体が回復が困難な損傷を受けるにいたる。このため衝撃特性は極めて重要な特性である。

【0023】衝撃特性に影響を及ぼす因子としてはC量が最も影響が大きい。しかし、浸炭プロセスを経て浸炭を施された部分のC濃度は約0.8 重量%程度であるのに対し、高周波焼入により同等の鋼材硬さを得るために必要なC濃度は0.5~0.7重量%程度であるので、衝撃特性確保の概点からは高周波焼入が有利である。しかしながら、衝撃特性に影響を及ぼす因子はそればかりでなく、高周波焼入時のオーステナイト粒径及び粒界に偏析したP等の不純物元素も影響を及ぼすから、r粒径細粒化及びP等の不純物元素の低減が衝撃特性向上の上でも有効である。

【0024】上述したように、Pは粒界に偏析して粒界を脆化させるから、これを低減することは歯元強度および衝撃特性の向上に有効である。しかし、Pの低減は製鋼工程におけるコスト上昇につながる。Pを低減することなく粒界偏析P量を低下させて粒界強度を高める手段として、結晶粒を細粒化して粒界面積を増やし、相対的な偏析P量を減少させるということが考えられる。この点に関して検討した結果、P含有量が0.020%までの場合においては、高周波焼入れ時のオーステナイト粒径を16μm以下にすれば、十分な歯元強度および衝撃特性が得られることがわかった。

【0025】上記したような歯車として必要とされる特性を確保するのみの対応では、高周波焼入による歯車の製造には不十分であり、加工性特に被削性の確保が重要である。この点については、浸炭プロセスの場合には、低C鋼が使用されるため、浸炭焼入前の状態では比較的高い被削性を持っているが、一方、高周波焼入プロセスの場合には浸炭鋼よりも高C化は必須であり、被削性確保の点で極めて不利である。そこで本発明者らは高C鋼における被削性に及ばす諸因子を検討した結果、以下のような知見を得るに至った。すなわち、0.5%C以上

の鋼においては、快削性元素を一定とした場合、最も被 削性に影響を及ぼす因子はそのミクロ組織である。特に フェライト量とバーライトの形態が最も顕著な影響を及 ぼすことが解った。すなわち、高C鋼の場合、ミクロ組 織としてはフェライトーパーライト組織となるが、フェ ライトが増加すると被削性は向上する。これは、フェラ イト量が増加することにより鋼材の硬さが減少すること 及びフェライトが増加することにより、切削時の亀裂の 発生部であるフェライト/パーライトの界面が増加して 被削性が向上するのである。また、パーライトの形態も 極めて大きな影響を及ぼす。すなわち、パーライトラメ ラーが層状に良く発達した組織の場合、パーライト部の 延性が高く、切削時の亀裂の発生部はフェライト/バー ライトの界面に限定されるが、ラメラーが発達していな い組織の場合には、切削時に変形を受ける部分ではフェ ライト/パーライトの界面の他にパーライト中のセメン タイト、フェライト界面からも亀裂が容易に発生するよ うになることにより、被削性が飛躍的に向上するのであ る。このような未発達のパーライトを形成させるために は、鋼中の合金元素の選択及び適正化が必要であり、変 態点を低下させてラメラーの層状化を促進するMn及び Crの低減が極めて効果的である。また、Moの添加は ラメラーの層状化を抑制し、セメンタイトの分断された 組織を形成させるので被削性の向上に有効である。

【0026】さらに、本発明者らはそれらの鋼の製造方法を検討し、以下の知見をうるに至った。すなわち、鋼中に形成されるMnSは熱問圧延に伴って圧延方向に伸長するが、その程度は熱間圧延条件により異なる。MnSが伸長する結果、その仲長方向に対し直角方向から採取した疲労試験片により測定される疲労強度は極端に低下する。これは、仲長したMnSが疲労亀裂の起点となるためである。ところで、実際の歯車においてはMnSの仲長方向に直角に歯が形成されることが多く、MnSの伸長が実体の歯車の疲労強度を低下させるおそれがある。

【0027】また、MnSの形状は被削性にも影響を及ばし、MnSの伸長が被削性を劣化させることは周知である。したがって、被削性及び疲労強度の一層の向上のためには熱間圧延時のMnSの伸長を抑制させる必要がある。

【0028】MnSの伸長抑制のために、Caの添加によりCaSを形成し伸長を抑制させるとの方法が知られているが。Caの添加は粗大なCa系の酸化物系非金属介在物を形成する。この結果、転動疲労寿命を低下させるとの問題がある。そこで、本願発明者らはMnSの形状に及ぼす熱問圧延時の加熱温度及び熱間圧延条件について検討した。その結果、以下の知見を得た。

【0029】熱問圧延時の加熱温度を上げるに伴ってMnSが一部固溶し、鋳片段階よりもMnSの粒径は減少する。これを熱間圧延すると、粒径の減少によりMnS

はより低温加熱の場合よりも仲長度は小さい。また、一旦固落したMnSは圧延途中で比較的微細に再析出するので、鋼材の平均的なMnSの仲長程度は低温加熱の場合に比較して抑制される。加熱圧延前のMnSの形状に関して検討した結果、MnSがより仲長された形状ものの方がその後の圧延による仲長も大きいことが判明した。

【0030】圧延条件の影響を検討すると、最もMnS が仲長する領域は900~1000℃の温度領域であ り、この温度よりも高い領域及び低い領域においてはそ の仲長の程度は小さいことが判明した。したがって、加 熱温度を高め、圧延温度領域として900~1000℃ の間を回避することによりMnSの仲長は顕著に改善で き、疲労強度及び被削性を改善できることが判明した。 【0031】本発明は、以上の知見をもとになされたも のであり、その要旨とするところは以下の通りである。 すなわち、本発明の高周波焼入用部品に係る発明は、重 量比で、C:0.5~0.75%、Si:0.5~1. 8%、Mn: 0.4~1.5%、P: 0.010~0. 020%、S:0.020%以下、A1:0.019~ 0.05%、0:0.0015%以下、N:0.006 ~0.015%を含有し、さらに必要に応じて、Mo: 0.05~0.5%, B:0.0003~0.005 %、Ti:0.005~0.05%、Ni:0.1~ 1.0%およびV:0.05~0.5%、Nb:0.0 1~0.5%の少なくとも一種を含有し、残部Fe及び 不可避的不純物よりなり、酸化物系非金属介在物個数が 2. 5/mm² 以下でかつその最大サイズが19μm以 下であることに加えて、高周波焼入れ時のオーステナイ ト粒径が16μm以下である鋼材よりなることを特徴と

【0032】本発明の製造方法に係る発明の要旨とする ところは、重量比で、C:0.5~0.75%、Si: $0.5 \sim 1.8\%$, Mn: $0.4 \sim 1.5\%$, P: 0.010~0.020%、S:0.020%以下、A1: 0.019~0.05%、0:0.0015%以下、 N:0.006~0.015%を含有し、さらに必要に 応じて、Mo:0.05~0.5%、B:0.0003 ~0.005%, Ti:0.005~0.05%, N i:0.1~1.0%およびV:0.05~0.5%、 Nb: 0.01~0.5%の少なくとも一種を含有し、 残部Fe及び不可避的不純物よりなり、酸化物系非金属 介在物個数が2.5/mm²以下でかつその最大サイズ。 が19μm以下であることに加えて、高周波焼入れ時の オーステナイト粒径が16μm以下である鋼材を鋳片よ り熱間圧延するに際して、当該鋳片を1100~125 ○℃の温度領域に加熱し、1000℃以上の温度領域で 圧延を終了することを特徴とする高周波焼入用部品の製 造方法である。ここで、上記の鋼材を鋳片より熱間圧延 するに際して、当該鋳片を1100~1250℃の温度

領域に加熱し1000℃以上の温度領域で第1段の圧延を終了し、さらに1050~1150℃の温度領域に加熱し1000℃以上の温度領域で第2段の圧延を終了することを特徴とするものとすることができる。

【0033】また、上記の鋼材を前記鋳片から熱間圧延 する際に、断面減少率が95%以上となる圧延を施すこ とを特徴とするものとすることができる。

[0034]

【発明の実施の形態】以下、木発明の実施の形態を述べる。まず、本発明に用いる鋼材の成分等の限定理由について説明する。

【0035】(C:0.5~0.75%) Cは高周波焼入により従来の浸炭鋼と同定度の表面硬さを得るために必須の成分であり、少なくとも0.5%以上の添加が必要である。しかし、0.75%を超えて添加すると、歯車に必要とされる衝撃特性及び被削性が劣化するので、0.75%までの添加とする。

【0036】 [Si:0.5~1.8%] Siは焼もどし軟化抵抗を向上させる元素である。このことにより歯面強度を向上させるが、従来の浸炭プロセスによる歯車と同程度の歯面強度を確保するためには、少なくとも0.5%以上の添加が必要である。しかし、1.8%を超えて添加すると、フェライトの固溶硬化により硬さが上昇し被削性の低下を招くので1.8%以下の添加とする。

(Mn:0.4~1.5%) Mnは焼入性を向上させ、高周波焼入時の硬化深さを確保する上で必須の成分であり積極的に添加するが、0.4%未満の添加ではその効果に乏しい。一方、1.5%を超えて添加すると、高周波焼入後の残留オーステナイトを増加させることにより、かえって表面硬度を低下させ疲労強度及び転動疲労寿命を低下させるので1.5%以下の添加とする。

【0037】 [P:0.010~0.020%] Pはオーステナイトの粒界に偏析し、粒界強度を低下させることにより歯元強度を低下させるばかりでなく、同時に衝撃特性を低下させるのでできるだけ低下させることが望ましいが0.020%まで許容される。0.010%未満とすると製鋼コストの上昇につながるため0.010%以下にすることは実際的ではない。また、0.020%以下の添加ならば、オーステナイト粒径を16μm以下とすることにより十分な歯元強度および衝撃特性が得られるため、0.010~0.020%の添加は許容される。

【0038】 (S:0.020%以下) SはMn Sを形成し、これが疲労破壊の起点となることにより疲労強度を低下させるが、他方でMn Sは被削性を向上させる元素でもあるので0.020%以下の添加は許容される。【0039】 (A1:0.019~0.05%) A1は脱酸に有効な元素であり、低酸素化のために有用な元素であるとともに、Nと結合してA1Nを形成し、これが

高周波加熱時のオーステナイト粒の成長を抑制する。これにより衝撃特別及び歯元疲労強度を向上させるので積極的に添加する。、0.019%未満の添加ではその効果が小さく、一方0.05%を超えて添加してもその効果が飽和するので0.019~0.05%の添加とする。

【0040】 (N:0.006~0.015%) NはA 1. Tiと結合してAIN, TiNを形成する。これが高周波加熱時のオーステナイトの成長を抑制することにより、衝撃特性及び疲労強度を向上させるので積極的に添加するが、0.006%未満の添加では、高周波加熱時のオーステナイト粒径が本発明の目標とする16μm以下とならずに粒界に偏析するPによる粒界脆化が生じて、衝撃特性及び疲労強度が低下するため0.006%以上の添加とする。しかし、0.015%を超えて添加すると熱間変形能を低下させることにより連続鋳造時に鋳片の表面欠陥を若しく増加させるので0.015%以下の添加とする。

【0041】本発明においては、上記の化学組成の他に、さらにMo:0.05~0.5%、B:0.0003~0.005%、Ti:0.005~0.05%、Ni:0.1~1.0%の一種以上を含有させることができる。

【0042】これらの元素の作用及び限定理由は、以下の通りである。

【Mo:0.05~0.5%】Moは焼入性向上に有用な元素であり、焼入性を調整するために用いる。Moの添加は同時にパーライトの組織形態に著しい影響を及ぼし、セメンタイトが分断されたパーライトを形成する。この結果、被削性を著しく向上させる。また、Moは焼もどし軟化抵抗を向上させるので、歯面強度も向上させることができる。さらに、Moは粒界に偏折するP等の不純物元素を低減させることにより歯元強度及び衝撃特性を向上させる作用があり、本発明においては好適な元素であるので積極的に添加するが、0.05%未満の添加ではその効果が小さく、一方0.5%を超えて添加すると高周波焼入のような急速短時間の加熱ではオーステナイト中への溶解が困難な炭化物を形成するので0.05%の範囲の添加とする。

【0043】 [B:0.0003~0.005%] Bは 微量の添加で焼入性を向上させる元素であるので、その 他の合金元素を低減させることができる。また、Bは粒界に優先的に偏析し、粒界に偏析するPの濃度を低減して歯元強度及び衝撃特性を著しく向上させる元素である。このためには0.0003%以上の添加が必要であるが、0.005%を超えて添加してもその効果は飽和するので0.005%以下の添加とする。

【0044】[Ti:0.005~0.05%] Bの焼 入性向上効果はBが単独に存在する場合に顕著である が、一方でBはNと結合しやすい元素であり、この場合 には上記した好適な効果が消失する。このBの焼入性向上効果を、B以上にNと結合しやすいTiを添加することにより十分発揮させることができるので、Tiをこのような場合に用いてもよい。もっとも0.005%未満の添加ではその効果は小さい。一方、0.05%を超えて添加するとTiNが多量に形成される結果、これが疲労破壊の起点となって歯元強度及び歯面強度を低下させるので0.05%未満の添加とする。

【0045】また、TiNは高周波加熱時のオーステナイト粒径を細粒化する作用があるので、Tiの単独添加のみでも歯面強度及び疲労強度を向上させる作用がある。この場合にもTi添加量としては0.005~0.05%の範囲が好適である。

【0046】[Ni:0.1~1.0%]Niはその添加により焼入性を向上させる元素であるのみでなく、衝撃特性を改善する元素であるので、焼入性を調整する場合または衝撃特性の改善が必要とされる場合に用いても良いが、0.1%未満の添加ではその効果が小さいので0.1%以上の添加とする。一方、Niは極めて高価な元素であるので、1.0%を超えて添加すると鋼材のコストが上昇し、本発明の目的に反するので1.0%未満の添加とする。

【0047】本発明においては、またさらに、V, Nb の一種以上を含有させることができる。これらの元素の 作用を説明する。

【0048】高周波焼入プロセスを経る場合には、被処理材の中心部の硬さを確保するために、前熱処理として焼入焼もどし処理を施すのが一般的である。しかし、この熱処理はコストを増大させるので、なるべくはこれを省略することが望ましい。前処理としての焼入を省略するには、高周波焼入前の素材硬さを上昇させておく必要がある。そのためには析出強化作用を有するV及びNbの添加が効果的である。

・【0049】V及びNbの添加量の限定理由は次の通りである。

(V:0.05~0.5%) Vは析出強化作用の極めて 強い元素であるので、高周波焼入前の前熱処理としての 焼入焼もどし処理を省略する必要の有る場合に添加する が、0.05%未満の添加ではその効果が小さく、一 方、0.5%を超えて添加してもその効果が飽和するの で0.05~0.5%の添加とする。

【0050】また、Vは鋼材の焼もどし軟化抵抗を向上 させる元素であるから、歯面強度の向上に極めて有効で もある。

【Nb:0.01~0.5%】Nbは析出強化作用の極めて強い元素であるので、高周波焼入前の前熱処理としての焼入焼もどし処理を省略する必要の有る場合に添加するが、0.01%未満の添加ではその効果が小さく、一方、0.5%を超えて添加してもその効果が飽和するので0.01~0.5%の添加とする。また、Nbの添

加は鋼材の焼もどし軟化抵抗を向上させる元素であるから、歯面強度の向上に極めて有効でもある。

【0051】また、本発明においては、疲労強度の確保のために、酸化物系非金属介在物の量(個数)およびサイズについて、それぞれ2.5個/mm²以下および19μm以下に規定する。この個数を越える酸化物系非金属介在物が存在すると、それぞれの非金属介在物より発生した疲労亀裂が合体して急速に疲労亀裂が進展し疲労破壊にいたる結果、目標とする疲労強度を確保する事が困難となるためである。また、サイズが19μmを越える酸化物系非金属介在物が存在すると、この非金属介在物より発生する初期亀裂が大きくなり、その結果急速に疲労亀裂が進展して早期に疲労破壊が生じるためである。

【0052】 [O:0.0015%以下] 上記の酸化物 系非金属介在物の量およびサイズを上記した目標の値以下に制御するためには、アルミナ等の酸化物系非金属介在物を形成するOの量を低減する必要がある。このためには、少なくとも0.0015%以下にOの量を低減する必要がある。そこで本発明にあっては、綱中の酸素含有量をO:0.0015%以下に限定する。

【0053】本発明において、高周波焼入れ時のオース テナイト粒径を16µm以下と規定する。その理由は次 の通りである。オーステナイト粒径は、細粒となればな るほど、オーステナイト粒界に偏析して粒界脆化を引き 起こすPの濃度が低下する。P含有量が0.020%以 下のとき、オーステナイト粒径が16μmより大きい場 合は、Pの粒界濃度が高まり粒界が脆化して十分な歯元 強度および衝撃特性が得られない。 逆に 16μm以下と すれば、粒界の脆化がかなり軽減され、このことと細粒 化の効果とが相まって十分な歯元強度および衝撃特性が 得られる。このため、高周波焼入れ時のオーステナイト 粒径を16μm以下と規定する。更に、本発明において は鋳片より鋼材へ圧延時の断面減少率を95%以上とす る。これも酸化物系非金属介在物のサイズを目標とする 19μm以下とするためであり、95%未満の断面減少 率では酸化物系非金属介在物のサイズの目標を達成でき ず早期に疲労破壊が生じるからである。

【0054】続いて、本発明の高周波焼入部品の製造条件の限定理由について説明する。本発明においては、MnSの仲長の抑制のために、熱間圧延時の加熱温度及び圧延条件を規定する。本発明の高周波焼入用部品の製造にあたり熱間圧延の加熱温度を1100~1250℃とするのは、1100℃未満の温度ではMnSが全く固溶せず鋳造時の积大なMnSのまま圧延されることになり、仲長が著しいためである。また、1250℃以下とするのは、この温度以上では部分的に粒界が溶融し、熱間変形能が低下するため熱間圧延が困難になるからである。また、圧延温度を1000℃以上とするのは、これを下回る温度域においては、MnSの仲長が顕著となるためである。

【0055】本発明の製造方法においては、鋳片より2回の圧延により最終形状に成形する場合もあり、その場合の熱間圧延温度条件についても規定するが、第1段の圧延温度保存については、上記と同一である。第2段の圧延温度条件については、第1段の圧延によりMnSが微細化されているので、加熱温度はMnSが固溶しない温度まで低下させてもよい。しかし、熱間圧延温度については1000℃以上の温度で圧延する必要がある。すなわち、第2段加熱温度を1050とするのは、それを下回る温度では熱間圧延温度を1000℃以上に維持することが困難であるためであり、また上限を1250℃とするのはこれを越える温度では熱間変形能が低下し熱間圧延が困難となるためである。

【0056】以下、本発明を実施例に基づいて説明する。

(実施例1)この実施例は、高周波焼入用部品の材料鋼の化学組成や、オーステナイト粒径、非金属介在物の状態等と部品特性との関係を検討したものである。

【0057】表1に示す化学組成の鋼を転炉・連続鋳造 プロセスにより溶製した。表中のNo.は試験No.と 鋼No.とを兼ねている。

[0058]

【表1】

No.	L					ſt	掌	组	ž (1	(水足量				
PO.	C	Si	Ma	P	S	Ni	No	V	Nb	AL	TI	В	N	D
	0. 52	1.69	1.04	0.019	0.017	0	0	0	-	0.047	-		0. 0103	0.0014
2	0.58	1.04	0. 98	0.018	0.012	0	0	0	-	0.040	-	-	0.0113	0.0011
3	0. 66	0.79	0. 95	0.017	0.018	0	D	0		0. 035	-	-	0.0108	0.0012
4	0.74	0. 54	0.84	0.019	0.019	0	_ D	0	-	0.032	-	-	0. 0146	0. 0007
5	0. 58	0. 58	0. 57	0.010	0.015	0	0.42	0	-	0. 010	-		0.0099	0.0009
6	0.57	0.51	0. 65	0.018	0.017	0	0.22	0	_	0. 022	_		0. 0102	0. 0011
7	0.58	0.56	0.96	0.012	0.011	0	0. 25	0	-	0.039	-	0.0021	0.0136	0.0014
8	0. G1	0. 55	1. 01	0.020	0.016	0	0. 29	0	-	0.026	0.005	0. 0008	0.0120	0.0013
U U	0. 55	0.79	1. 41	0.016	0.012	0	0	0	-	0.045	0.020	-	0. 0128	0.0010
10	0.60	0. 53	0. 77	0.019	0.014	0.69	0.12	0	-	0.028	-	-	9. 0085	0.0009
11	0.56	0. SD	1. 13	0.031	0.014	0	0	0.31	_	0.044	-	-	0.0129	0.0008
1 2	0.61	0. 59	1.06	0.013	0.015	0	0.19	0.18	0.05	0.040	0.008	0.0035	0.0094	9.0015
1 3	0.52	1, 69	1.04	0.019	0.017	0	0	٥	-	0.047		-	0.0103	0.0014
14	0.58	0. 56	0.96	0.012	0.011	0	0. 25	0	_	0.039	-	0.0021	0.0136	0.0014
15	0.61	0.59	1.06	0.013	0.015	0	0.19	0.18	0.05	0.040	0. DO8	0.0035	0.0094	0.0015
16	0. 5B	J. 04	0. 98	0.018	0.012	0	0	٥	-	0.040		_	0.0113	0.0011
17	0. 57	0. 51	0. 65	0.018	0.017	0	0. 22	0		0.022	-	-	0.0102	0.0011
18	0.60	0. 53	0.77	0.019	0.014	0. 69	0.12	0	-	0.023	-	-	0.0085	0. 0009
19	0.74	0. 54	0. 64	D. D19	0.019	0	0. 25	0		0.032	_	_	0, 0040	0. 0007
20	0, 83	0. 64	0. 66	0.012	0.012	0	0.29	0	-	0.031	-	-	0. 0101	0.0010
2 1	0.42	0.70	0. 65	0.011	0.016	0	0	0	_	0.035	- "	-	0.0129	0.0011
22	0.71	0.23	0. 72	0.015	0.013	0	0	0	-	0.033		-	0. 0131	0.0014
2 3	0.53	0.62	1_62	0.019	0.017	0	0	0	-	D. 040	-	-	0. 0091	0.0013
2 4	0.55	0.60	0. 67	0.028	0.017	0	0	0	-	0.025	_	-	0. 0101	0.0009
2 5	0. 57	0.56	0. 58	0.018	0.028	0.78	0. 25	0		0.045		_	0.0081	0.0009
26	0. 55	0.54	O. 8B	0.014	0.019	0	0.15	0		0.008	-	0.0018	0.0147	0.0014
2 7	0.54	0.53	0. 69	0.010	D. 007	0	0, 35	_ 0	-	0.044	0.065	0.0010	0.0106	0.0010
28	0.62	0.84	0. 89	0.017	0.012	0	0	٥	-	0. 026	0.018	-	0.0100	0.0017
29	0, 22	0.24	0. 87	0.013	0.014	0	<u> </u>	0	_	0. 027		-	0. 0084	0.0011
3 0	0. 22	0.01	0.44	0.011	0.013	0	0.47	0		0. 922	-	-	0.0131	0.0010

【0059】鋳造時の抽片サイズは200×225mmであった。この銭片をブレークダウン工程を経て150mm角ピレットに圧延したのち、所定の断面減少率(後述の表2に記載)で棒鋼に圧延した。これを845℃×30min焼入れ後、550℃で焼もどしの処理を施した。これらを素材として、直径8mm平滑の回転曲げ疲労試験片及び直径27mmの転動疲労試験片を作製し、15kHzの高周波焼入試験機により表面焼入をおこない、その後180℃×1hの焼もどし処理を行った。また、焼入焼もどし村に同一の高周波焼入処理焼入焼もどし処理を行い、この表面近傍より2mm10Rノッチの

衝撃試験片を作製した。

【0060】また転炉・連鋳鋳造プロセスにて溶製し、上記と同じプロセスを経て表2に記載の断面減少率で圧延したSCM420鋼を用いて上記と同様の試験片を作製し、これらに930℃×4h(炭素ボテンシャル0.88)一焼入の浸炭処理を施し、180℃×2hの焼もどしを施した。

【0061】表2に圧延時の断面減少率、非金属介在物の個数、サイズ等の詳細を示す。

[0062]

【表2】

	4 151/1 4459	圧 延	酸化物系	上金属介在物	区分
	オーステナイト 粒径	斯面減少率	個 数	サイズ	
No.	(µ m)	(光)	(個数/mm²)	(µ m)	
1	10.7	99.0	2. 2	7	発明例
2	14. 6	"	2. 1	9	"
3	15. 0	*	2. 2	6	n
4	11.1	"	0. 9	10	"
5	15. 8	98. 4	1.1	15	Π
6	14.0	"	1.4	13	n
7	13.0	"	1.8	9	"
8	10. 7	"	1.8	14	n
9	10. 1	97. 2	1.0	17	n
1 0	15. 8	"	1. 2	16	"
1 1	10.9	"	0.7	19	n
1 2	11.8	"	2. 3	14	"
1 3	11. 2	94.1	1.5	21	比較例
1 4	13.5	"	0. 7	30	π
1 5	12.7	"	1.6	34	
1 6	17. 1	99.0	2. 1	9	"
1 7	18. 4	98.4	1.4	13	π
1 8	19.6	97.2	1. 2	16	#
1 9	20. 7	99.0	0. 9	10	,,,
2 0	15. 8	99.0	1. 8	10	Ħ
2 1	10. 5	"	2. 0	12	п
2 2	15. 9	"	2. 2	19	n n
2 3	12. 6	"	1. 9	15	n
2 4	13. 4	H	1.3	9	"
2 5	11.8	"	1.4	11	#
2 6	20. 6	"	2. 4	18	"
2 7	13. 1	"	2. 0	11	"
28	15. 4	"	3. 0	19	II
2 9	12. 0	98.4	1.8	15	従来例
3 0	13. 3	"	1.4	14	従来例

【0063】これらの試料を用いて衝撃試験、回転曲げ 疲労試験及び転動疲労試験を実施した。衝撃試験は、シャルピー衝撃試験機を用いて+20℃の条件により行った。

【0064】疲労試験は、小野式回転曲げ疲労試験機を 用いて常温で3600rpmの速度で実施した。転動疲 労試験は、試験片に直径130mmのローラを押し付けることにより、3677MPaの接触応力を与え、表面にピッチングが生じるまでの時間で寿命を評価した。 【0065】これらの試験結果を表3に示す。

[0066]

【表3】

No.	衝擊值 (J/cm³)	疲労強度 (MPa)	転動疲労寿命 (サイウル×10E6)	区分
1	19.4	933	3. 16	発明例
2	18.9	940	2. 84	1/
3	18. 1	975	3. 22	"
4	17. 2	991	3. 45	11
5	22. 7	1016	4. 91	//
6	23.0	1010	4. 89	"
7	24.3	1026	4. 80	"
8	23.5	1024	4. 84	"
9	20.8	987	2. 74	"
1 0	35. 2	1021	4. 78	"
1 1	19.7	973	4. 82	"
1 2	20.4	1059	5. 01	"
1 3	19.3	841	2. 21	比較例
1 4	24. 3	811	3. 22	"
1 5	20.5	868	3. 16	"
1 6	16. 4	802	1. 94	"
17	18.5	837	2. 71	"
1 8	25. 2	799	1. 88	n
1 9	12.3	816	2. 40	"
2 0	10.1	886	3. 48	"
2 1	26. 2	665	0. 04	"
2 2	17.8	920	0. 62	"
2 3	19.7	825	1. 53	"
2 4	12. 5	802	3. 01	"
2 5	35. 5	867	2. 94	"
2 6	13.8	846	3. 03	n
2 7	18. 3	823	1.46	n
2 8	17. 5	794	0.80	et
2 9	15. 2	745	1.05	従来例
3 0	23, 1	894	1. 87	従来例

【0067】No. 1~No. 12は本発明例である。 No. 29は従来例で、没炭鋼として多用されているJ IS SCr420相当鋼である。

【0068】No. 30も従来例で、JIS鋼を改良した高強度浸炭鋼である。No. 13~15は比較例で、 圧延の際の断面減少率が本発明の範囲外であり、その結果酸化物系非金属介在物のサイズが本発明の範囲から外れている場合である。上記SCr420鋼よりは優れた特性を有しているが、本発明例に比較して疲労強度及び 転動疲労寿命が劣化している。

【0069】No. 16~18の比較例は、オーステナイト粒径が本発明の範囲外の場合であり、本発明例に比較して衝撃値および疲労強度がかなり劣化している。No. 19~No. 28の比較例は、化学組成のいずれかが本発明の範囲外になっている。

【0070】すなわち、No. 19は、N量が本発明の 範囲を下回る場合であり、オーステナイト粒径が租大と なった結果、衝撃値および疲労強度が本発明例に比べか なり低下しており、No. 30の高強度浸炭鋼に比較し てもそれらは劣っている。

【0071】No.20は、C量が本発明の上限を超える場合であり、衝撃値が従来鋼よりも極端に低下してい

る。No. 21は、C量が本発明の範囲を下回る場合であり、表面硬さが低い結果、疲労強度及び転動疲労寿命の低下が著しく、SCr420よりもその特性は劣っている。

【0072】No. 22は、Si量が本発明の範囲を下回る場合であり、転動疲労寿命が極端に低下しており、SCr420より特性が低下している。No. 23は、Mn量が本発明の範囲を超える場合であり、疲労強度及び転動疲労寿命が低下している。

【0073】No. 24は、P量が本発明の上限を超える場合であり、衝撃値及び疲労強度の低下が著しい。No. 25は、S量が本発明の上限を超える場合であり、疲労強度が低下している。

【0074】No. 26は、A1量が本発明を下回る場合であり、この結果A1N生成量が減少してオーステナイト粒径が粗粒となり、衝撃特性および疲労強度が低下している。特に衝撃値は、SCr420を下回っている

【0075】No. 27は、Ti量が本発明の上限を超える場合であり、疲労強度及び転動疲労寿命の低下が著しい。No. 28は、O量が本発明の上限を超える場合であり、その結果酸化物系非金属介在物の個数が多く

疲労強度及び転動疲労寿命が極端に低下している。その 値はSCr420よりも劣っている。

【0077】(実施例2)この実施例は、高周波焼入用

部品の材料鋼の化学組成、オーステナイト粒径、非金属 介在物等の材料条件に加えて、熱間圧延温度等の製造条件と部品特性との関係を検討したものである。

【0078】表4に示す組成の鋼を転炉-連続鋳造プロセスにより560×400mmのブルームに溶製した。表5に圧延の断面減少率、非金属介在物の個数、サイズ等の詳細を示す。

[0079]

【表4】

														_			_	_	_		-,			_	_	-		_
	Û	0. 0014	0.0011	0.0012	0.0007	0.000	0.001;	0.0014	0.0013	0.0010	0.0008	0.0008	0.0015	0.0014	0.0014	0.0015	0.0007	0.0019	0.0011	0.0014	0.0013	0.0008	0.0000	0.0014	0.0010	0,0017	0.0011	0 0010
	z	0.0033	0.0 %	0.0055	0.0078	0.0051	0.0062	0.0041	0.0035	0.0042	0.0065	0.0062	0.0045	0.0103	0.0138	0.0054	0,0046	0.0048	0.0051	0.0062	0.0054	0.0061	0.0057	0.0030	0.0063	0.0049	0.0118	0 0129
	ß	1	i	1	1	ı		0.0021	0.0008	1	ı	1	0.0035	}	0, 0021	0.0035	1	1	_	1	ı	1	i	0.0018	0,0010	1	1	ţ
	Ţį	-	1	-	ı	_	-	_	0.005	0.020	ı	ı	0.008	_	i	0.008	1	ı	_	_		1	1	-	0.065	0.018	1	
重量%)	11	0.047	0.040	0.035	0.032	0.019	0.022	0.039	0.026	0.045	0.023	0.044	0.040	0.047	0.039	0.040	0.032	0.031	0.035	0.033	0.040	0.025	0.045	0.008	0.044	0.026	0.027	660 0
	Мb	1	ì	1		1	ı	-	1	ı	1	J	0.05	1	ł	0.05	i	1	1	-	ı	1	1	-	1	١	1	
領、政	٨	0	0	0	0	0	0	0	0	0	0	0.31	0. 18	0	0	C. 18	ŋ	ũ	0	0	0	0	0	0	0	0	0	•
枡	No.	0	0	0	0	0.42	0.22	0.25	0.29	0	0.12	0	0.19	0	0.25	0.19	0.25	0.29	0	0	0	0	0.25	0.15	0.35	0	0	0 47
3	įŅ	0	0	0	0	0	ů.	ũ	0	0	0.69	0	0	0	0	0	0	0	0	0	0	0	0.78	0	0	0	0	-
	S	0.017	0,012	0.018	0.019	0.015	0.017	0.011	0.016	0.012	0.014	0.014	0.015	0.017	0.011	0.015	0.019	0.012	0.016	0.013	0.017	0.017	0.028	0.019	0.007	0.012	0.014	619
	l l	0.009	0.010	0.007	0.008	0.005	0.004	0.008	900.0	0.005	0.015	0.008	0.007	0.019	0.012	0.013	0.019	0.008	0.010	900.0	0.007	0.020	900.0	0.008	0.010	0.007	0.011	000
	ş	1.04	0.98	0.95	0.84	0.57	0.65	95.0	1.01	1.41	0.77	1.13	1.06	1.04	0.96	1.06	0.84	0.66	0.65	0.72	1.62	0.67	0.58	0.68	0.60	0.89	0.87	7 7
	SI	1.69	1.04	0.79	0.54	0.58	0.51	0.56	0.55	0.79	0.53	09.0	0.59	1.69	0.56	0.59	0.54	0.64	0.70	0.23	0.62	0.60	0.56	0.54	0.53	0.84	0.24	100
	ပ	0.52	0.58	0.66	0.74	0.58	0.57	0.58	0.61	0.55	0.60	0.56	0.61	0.52	0.58	0.51	0.74	0, 83	0.42	0.71	0.53	0.55	0.57	0.55	0.54	0.62	0.22	000
1	0	3 1	3 2	3 3	3.4	3 5	3 6	3 7	3 8	3 9	4 0	4 1	4 2	4 3	4 4	4 5	4 6	4 7	4 8	4.9	5 0	5.1	5 2	5 3	5 4	5 5	5 6	

[0080]

【表5】

	圧 延	酸化物系非	丰立国介在物	区分
	断面减少率	個 数	サイズ	1
No.	(%)	(但數/四四2)	(# m)	
3 1	99. D	2. 2	7	発明例
3 2	"	2. 1	9	i)
3 3	"	2. 2	Б	ı,
3 3 3 4 3 5	99. D	0. 9	10	"
3 5	98.4	1.1	15	1/
3 6	"	1.4	13	"
3 7 3 8	"	1.8	9	"
	"	1.8	14	i/
3 9	97. 2	1.0	17	l/
4 0	"	1. 2	18	"
4 1	"	0.7	19	11
4 2	"	2. 3	14	11
4 3	94. 1	1.5	21	比較例
4 4	"	0.7	30	11
4 5	"	1.6	34	11
4 6	99.0	0. 9	10	"
4 7	"	1.8	10	"
4 8	"	2. 0	12	11
4 9	"	2. 2	19	11
5 0	"	1. 9	15	Ħ
5 1	"	1. 3	9	"
5 2	"	1.4	11	1/
5 3	"	2. 4	18	1/
5 4	"	2. 0	11	"
5 5	"	3. 0	19	"
5 6	98.4	1.8	15	従来例
5 7	"	1.4	14	従来例

【0081】なお、表中のNo.31~57は試料鋼のNo.である。このブルームを後述の表6に示す熱間圧延条件により直径100mmの棒鋼に圧延した。この素材より、圧延方向の直角方向及び圧延方向より直径30mmの素材を作製し、これを845℃×30min焼入れ処理した後、550℃焼もどしの処理を施した。これらを素材として、直径8mm平滑の転曲げ疲労試験片及び直径27mmの転動疲労試験片を作製し、15kHzの高周波焼人試験機により表面焼入をおこない、その後180度℃×1hの焼もどし処理を行った。

【0082】また、直径30mmの焼入焼もどし村に同一の高周波焼入処理焼入焼もどし処理を行い、この表面近傍より2mm10Rノッチの衝撃試験片を作製した。一方、転炉・連鋳プロセスにて溶製し、直径90mmの棒鋼に圧延後、その棒鋼より直径30mmの素材を切削

加工により作製したSCr420鋼を用いて上記と同様の試験片を作製し、これらに930 $\mathbb{C}\times4h$ (炭素ボテンシャル0.88)→焼入の浸炭処理を施した後、180 $\mathbb{C}\times2h$ の焼もどしを行った。

【0083】これらの試料を用いて衝撃試験、回転曲げ 疲労試験及び転動疲労試験を、実施例1の場合と同一の 条件で実施した。また、熱間圧延のままの状態で超硬工 具P10を用いて、切り込み2mm、送り0.25mm / rev、切削速度200/minの条件で切削試験を 行った。被削性は、逃げ面摩耗が0.2mmに達するまでの切削時間(工具寿命)により評価した。

【0084】本第2の実施例の試験No. 2-1~2-39の各試験の結果を表6及び表7に示す。

[0085]

【表6】

1	発明例				= =		= = = =	= = = = = =	= = = = = = =	= = = = = = = = = = = = = = = = = = = =	= = = = = = = = = = = = = = = = = = = =	= = = = = = = = = = = = = = = = = = = =	= = = = = = = = = = = = = = = = = = = =	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11 11 11 11	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	上, 上, 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二		上, 上, 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	比较的 """"""""""""""""""""""""""""""""""""""	上 上 上 二 二 二 二 二 二 二 二 二 二 二 二 二	出版 四二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	出版 二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
(m m)	10 7		14.6	14.6	15.0	15. 0 11. 1 15. 8	15.0 15.0 17.0 17.0	15.8 17.0 17.0	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	11. 1 15. 0 15. 0 15. 8 13. 0 16. 7	13.0 16.7 16.7 16.7 16.7	15.8 10.9 10.9	15.8 10.9 11.8 10.9	15.8 10.7 10.9 10.7 10.9 10.9	15.8 15.8 10.9 10.9 11.8 11.8 11.8 11.8	15.0 10.9 10.7 10.9 10.9 10.9 10.9 10.9 10.9	10. 0 10. 0	15. 8 10. 7 10. 9 10. 7 10. 9 11. 1 11. 1 12. 8 12. 0 13. 0 14. 6 15. 8 16. 7 17. 0 17. 0	15. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15. 8 10. 9 10. 9 10
	32	1 66	20	31	31	31 31 41	43	31 31 41 43 40	31 31 41 40 38	31 31 31 31 31	31 40 40 40 31 31 30	31 31 31 31 31 31 31	31 31 31 31 31 31 31 31	23 31 31 31 31 31 31 31 31 31 31 31 31 31	31 31 31 31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 31 31 31 31 31 31 31 31 31 3	31 31 31 31 31 31 31 31 31 31	31 41 41 41 41 41 41 41 41 41 4	31 31 31 31 31 31 31 31 31 31	31 31 31 31 31 31 31 31 31 31	31 31 31 31 31 31 31 31 31 31
-	3. 16	2.84	-	3, 52	_											 								
H		0 . 928	996 9	-	106	1	-																	
4 933			1 975	2 991		1016	-																	
19.4		18.1		17.2	22. 7		63.0	24.3	24.3 23.5	24.3 24.3 23.5 20.8	24. 3 24. 3 23. 5 20. 8 35. 2	23. 0 24. 3 23. 5 20. 8 35. 2 18. 7	23. 0 20. 8 20. 8 35. 2 18. 7	23. 5 20. 8 20. 8 20. 4 20. 4 19. 3	23. 0 20. 8 20. 8 35. 2 18. 7 19. 3	23. 5 23. 5 20. 8 35. 2 19. 7 19. 3 18. 0	23. 2 23. 5 20. 8 20. 8 7 19. 3 19. 3 18. 0 17. 4	23. 2 23. 5 20. 8 20. 8 20. 4 19. 3 19. 3 17. 4 17. 4	23. 5 23. 5 20. 8 20. 4 19. 3 19. 3 18. 0 17. 4 22. 7	23. 5 23. 5 20. 8 20. 4 19. 3 18. 0 17. 4 22. 7 22. 7 22. 8	23. 5 23. 5 20. 8 20. 4 20. 4 19. 3 18. 0 17. 4 17. 4 22. 7 22. 7 22. 7 22. 8 24. 3 23. 4	23. 5 23. 5 20. 8 20. 4 20. 4 19. 3 19. 3 17. 4 22. 7 22. 7 22. 7 22. 8 24. 3 23. 4 20. 7	23. 5 23. 5 20. 8 20. 4 19. 3 11. 4 17. 4 17. 4 17. 4 17. 4 22. 7 22. 7 22. 7 22. 7 22. 8 24. 3 23. 4 20. 7 35. 1	23. 5 23. 5 20. 8 20. 4 20. 4 22. 7 22. 7 22. 7 22. 8 24. 3 24. 3 26. 7 27. 8 24. 3 26. 7 27. 8 27. 8
1053	1021		1065	1096	1048		9101	1016	1016 1099 1098	1016 1099 1099 1099	1016 1099 1099 1099	1016 1099 1099 1099 1092 1107	1016 1099 1099 1099 1092 1107 1046	1016 1099 1098 1099 1092 1107 1107 873	1016 1099 1099 1099 1002 1107 1046 873	1016 1099 1099 1099 1107 1107 873 873 876	1016 1099 1099 1092 1107 1107 873 873 876 859	1016 1099 1099 1092 1107 1107 873 876 876 859 863	1016 1099 1098 1098 1002 1107 1107 873 873 876 859 863 863	1016 1099 1098 1098 1002 1107 1107 873 873 876 859 863 863 974	1016 1099 1099 1099 1002 1107 1107 1046 873 873 876 859 863 863 974 974 974	1016 1099 1099 1092 1107 1107 1107 873 873 876 859 863 974 974 974	1016 1099 1099 1092 1107 1107 1107 873 873 876 876 879 879 874 974 974 974 974	1016 1099 1099 1099 1002 1107 1107 873 876 876 859 859 863 874 974 974 974 974 974 976 977
1205	1134	FOTT	1219	1210	1163	C 20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6611	1139 1215	1139 1215 1138	1139 1215 1138 1185	1139 1215 1138 1185 1204	1139 1215 1138 1185 1204 1157	1139 1215 1138 1183 1204 1157 963	1139 1215 1138 1183 1204 1157 963	1139 1215 1138 1185 1204 1157 991	1139 1215 1138 1185 1185 1157 1157 991 990	1139 1215 1138 1185 1204 1157 963 991 999	1139 1215 1138 1185 1185 1204 1157 960 990 1041	1139 1215 1138 1183 1185 1204 1157 963 991 990 1041	1139 1215 1138 1183 1185 1204 1157 961 990 990 1041 1041	1139 1215 1138 1183 1185 1204 1157 960 990 990 1041 1041	1139 1215 1138 1183 1204 1157 963 991 990 1041 1047 1047	1139 1215 1138 1183 1185 1204 1157 963 991 990 1041 1047 1047 1065 974
	ı	- 1	3 3	- 1	- F	3 6	ı	1		1 1 1 1														
	1	1	2 - 3	1	1	ı		ı	1 1	8 6	1 1 1 1 1	86	8 6 1	8 6 1 1 1 1	8 6						- 0 0 2 	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 0	- C C C C C C C C C C C C C C C C C C C

【0086】 【表7】

ている。

*		85													<u> </u>	28
Ø		比较例	"	"		"	"	-	*	-	1	"	*	"	米比	従来
7 粒径	(m m)	11.2	13.5	12.7	20.7	15.8	10.5	15.9	12.6	13.4	11.8	20.6	13.1	15.4	12.0	13.3
工具鼻命	(min)	32	40	31	31	92	42	32	31	41	30	41	40	32	18	31
転動疲労寿命	(#171 × 10E6)	2.21	3.22	3, 16	3.40	3.48	0.04	0. 62	1.53	3.01	2.94	3.03	1. 46	0.80	1.05	1.87
E (MPs)	C方向	834	804	860	880	1873	656	808	813	793	855	834	813	786	737	188
疲労強度(MP&)	し方向	841	811	898	890	988	999	920	825	802	867	846	823	784	745	884
衝擊值	(J/cm²)	19.3	24.3	20.5	12. 3	10.1	26.2	17.8	19.7	12.5	35. 5	13.8	18.3	17.5	15.2	23. 1
圧延温度条件	圧延仕上げ(で)	1014	1041	1074	1101	1044	1076	1063	1017	1082	1075	1088	1027	1020	1023	1028
熱間圧延	加熱温度(°C)	1128	1140	1154	1154	1116	1176	1211	1114	1150	1215	1171	1180	1189	1154	1189
噩	No.	4.3	4 4	4.5	4 6	4 7	4 8	4 9	5 0	5 1	2 2	5 3	54	5.5	5 6	5.7
報	No.	2 - 25	2 - 2 8	$2 - 2 \ 7$	82 - 2	8 - 8	2 - 30	2 - 31	2 - 3 2	2 - 33	2 - 34	2 - 35	2 - 36	2 - 37	2 - 38	2 - 39

【0087】表中の鋼No.31~57は、表4の鋼No.に対応している。試験No.2-1~2-12は本発明例である。試験No.2-13~2-24は、化学組成は本発明の範囲内であるが、熱間圧延条件が本発明の範囲外の場合である。

【0088】試験No. 2-25~2-37は、化学組成が本発明の範囲外あるいは圧延の際の断面減少率が本発明の範囲外であり、その結果、酸化物系非金属介在物のサイズが本発明の範囲から外れている場合である。【0089】試験No. 2-38は浸炭網として多用されている JIS SCr420相当鋼である。また、試験No.

39はJIS鋼を改良した高強度浸炭鋼である。 【0090】試験No. 2-1~No. 2-12の本発明例は、浸炭鋼SCr420に比べて衝撃特性、疲労強度、転動疲労寿命および被削性のいずれにおいても優れ

【0091】一方、試験No. 2-13~2-24の比較例は、本発明例に比較しC方向の疲労強度が低下しており、従来鋼のSCr420よりも低くなっている。この事実は、熱間圧延条件が本発明を満足しないとSCr420と同等の特性を確保することは困難であることを示している。

【0092】試験No. 2-25~2-37は、化学組成あるいは酸化物系非金属介在物の規定が本発明の範囲外の場合であり、衝撃特性、疲労強度、転動疲労寿命および被削性のうちのいずれか、あるいは複数の特性がSCr420よりも劣っている。

【0093】すなわち、本実施例によれば、本発明の範囲外の鋼の場合には、諸特性のうちのいずれかがSCr420あるいは高強度浸炭用鋼よりも低い値となっているのに対し、本発明鋼の場合はいずれの特性も従来浸炭鋼SCr420よりも優れ、さらに高強度浸炭用鋼とほぼ同等またはそれ以上の値であることが明らかである。【0094】(実施例3)この実施例は、高周波焼入用部品の材料鋼の製造条件、特に第1段、第2段と二段圧延を行った場合について、部品特性との関係を検討したものである。

【0095】表4に示す化学組成の鋼(鋼No.31~57)を、転炉・連続鋳造プロセスにより560×400mmのブルームに溶製した。このブルームを表7に示す熱間圧延条件により150mm角ビレットに圧延し、さらに熱間圧延により直径50mmの棒鋼に圧延した。この素材より、圧延方向の直角方向及び圧延方向より直径30mmの素材を作製し、これを845℃×30min焼入れ後、550℃で焼もどしの処理を施した。これらを素材として、直径8mm平滑の回転曲げ疲労試験片及び直径27mmの転動疲労試験片を作製し、15kHzの高周波焼入試験機により表面焼入をおこない、その後180℃×1hの焼もどし処理を行った。また、直径30mmの焼入焼もどし材に同一の高周波焼入処理焼入焼もどし処理を行い、この表面近傍より2mm10Rノッチの衝撃試験片を作製した。

【0096】また、上記と同一のプロセスで製造したS Cr420を用いて、上記と同様の試験片を作製し、こ れらに930℃×4h(炭素ボテンシャル0.88) ー 焼入の浸炭処理を施した後、180℃×2hの焼もどし を行った。

【0097】これらの試料を用いて衝撃試験、回転曲げ 疲労試験及び転動疲労試験を、実施例1の場合と同一の 条件で実施した。また、熱間圧延のままの状態で超硬工 具P10を用いて、切り込み2mm、送り0、25mm /rev,切削速度200/minの条件で切削試験を行った。被削性は、逃げ面摩耗が0、2mmに達するまでの切削時間(工具寿命)により評価した。

【0098】本第3の実施例の試験No.3-1〜3-51の各試験の結果を表8及び表9に示した。

[0099]

【表8】

_		_		_		_				_	_	-			_				-		_	_	_	_	\neg
7位径	(mm)	10.7	14.6	15.0	11.1	15.8	14.0	13.0	10.7	10.1	15.8	10.9	11.8	10.7	14.6	15.0	11.1	15.8	14.0	13.0	10.7	10.1	15.8	16.9	11.8
工具寿命	(ain)	32	33	31	30	42	43	40	38	31	37	32	31	28	28	28	26	34	37	32	32	2.3	. 30	26	27
転動疲労寿命	(\$194 × 10E6)	3. 19	2.86	3. 23	3, 43	16.4	4.93	4.82	1.80	2.72	4.77	4.78	4.98	3. 18	2.88	3. 25	3, 46	4.87	4.91	4.84	4.87	2. 75	4.80	4,84	5.02
度(MPa)	こ方向	626	936	885	166	1010	1014	6101	8201	916	1023	975	1901	969	189	7117	732	745	730	. 111	742	733	150	126	777
极労強即	し方向	040	946	883	1001	1024	1028	1030	1042	680	1036	886	1079	646	643	987	1000	1018	1011	1046	1027	166	1024	686	1062
意整值	(J/cm²)	19.4	18.9	18.2	17.3	7.22	23.2	24.5	23.7	21.0	35. 4	19. T	20.4	19.5	19.1	18.2	17.2	8.22	23.2	24.4	23.6	20.9	35. 3	8.61	20. 5
間圧延条件(で)	压缩仕上げ	1010	1901	1001	1964	1085	1039	6101	1075	1014	1080	1062	1010	1039	1090	1056	1014	1030	1046	1009	1080	1021	1014	2601	1036
第2段熱間日	加熱温度	1058	1087	1057	1113	1135	1086	1068	1121	1083	1109	1107	0901	1089	1137	1103	1059	1076	1092	1058	1125	1100	1001	1141	1082
(つ))地域	压延仕上げ	1109	1090	1062	101	1901	1075	1113	1098	1047	1118	1011	1111	957	929	1006	984	916	884	983	906	1005	981	986	987
第1股熱間圧	加熱温度	1127	1181	1239	0911	1240	1221	1145	1142	1189	1205	1143	1130	1005	975	1053	1933	953	944	1030	952	1054	1031	1034	1033
3	°Z	3.1	3 2	3 3	3.4	3 5	3 6	3.7	3 8	3 8	4 0	4 1	4 2	3.1	3 2	3 3		3 5	3 8	3.7	3 8	3	4	4 -	4 2
双弧	. o Z	3 - 1	3 - 2	3 - 3	3 - 4	3 - 5	3 - 6	3 - 7	3 - 8	3 - 8	3 - 10	3-11	3 - 12	3-13	3 - 1 4	3 - 1 5	3 - 1 6	3 - 1 7	3 - 1 8	3 - 1 9	7	3 - 2 1	3 - 2 2	3 - 2 3	3 - 24

[0100]

【表9】

_	_	_		_	_	_	_	_		_		_	-		- ;	_	_	-	_	_	-	_	_	_	_	7	_	_
7 粒值	(m m)	10.7	14.8	15.0	11.1	15.8	14.0	13.0	10.7	10.1	15.8	10.9	11.8	11. 2		12. 7	20.7	15.8	10.5	15.9	12.6	13.4	11.8	20.6	13.1	15. 4	12.0	13.3
五具幕命	(min)	82	29	27	27	36	38	34	34	28	31	27	28	32	40	31	31	26	42	32	31	41	31	41	40	32	31	31
転動度労寿命	(#49# × 10E6)	3.14	2.81	3. 19	3.43	4.88	4.88	4.78	4.87	2. 76	4.80	4.79	4.98	2.21	3.21	3, 17	3.40	3.47	₹0.0	0.62	1.52	3,00	2.94	3.03	1. 47	0.30	1. 36	1.85
(MPa)	C方向	697	705	732	753	755	768	778	779	750	786	738	804	843	813	857	895	883	663	828	821	661	864	844	816	786	744	897
疲労強度(MPa)	L方向	939	944	877	883	1017	1012	1027	1033	1004	1040	984	1063	852	825	869	902	894	672	938	828	811	875	856	825	962	751	808
衝撃値	(1/cm²)	19.5	19.1	18.3	17.3	22.8	23. 2	24. 4	23.6	8.02	35. 3	16.8	20.5	18.4	24. 4	20.5	12.4	10.1	26.3	18.0	19.8	12.6	35.5	13.9	18.5	17.6	15.4	23. 1
間圧延条件("C)	14	806	800	965	918	938	904	930	912	957	899	980	965	1024	1025	1601	1063	1094	1040	1087	1084	1013	1049	1013	1985	1028	1023	1028
8	白鹭蹈殿	1018	948	1014	984	984	952	978	958	1002	945	1026	1014	1070	1071	1137	1111	1142	1087	1135	1132	1062	1096	1962	1143	1077	1154	1189
汉	压强任上		1108	1038	1089	1015	1090	1040	1035	1069	1010	1072	1085	1095	1104	1069	1086	1058	1057	1064	1109	1116	1064	1118	1093	1062	1023	1028
一班一段新題用	打發過兩	1191	1113	1158	1126	1197	1143	1117	1132	1228	1141	11177	1238	1145	1190	1232	1186	1129	1195	1238	1138	1167	1142	1163	1233	1159	1154	1189
羅	o Z		3 2		3 4	3 5	3 6	3 7	3 8	3 9	0	4	4 2	4 3	4 4	4 5	4	47	4 8	4 8	0 12	5 1	5 2	1	1	5 5		5 7
25,			2	2 -	h	1	1	1	3 - 3 2	3 - 3 3	3 - 3 4	13	1 3	1	Į i	3 - 3 9	3 - 4 0	3 - 4 1	3 - 4 2	3 - 4 3	3 - 4 4	3 - 4 5	3 - 4 6	1	3 - 4 8	3 - 4 9	3 - 5 0	3 - 5 1

【0101】表中の試験No. 3-1~3-12は本発明例である。いずれの特性もSCr420よりも高く、高強度浸炭鋼と同等以上の特性を有する例もある。本発明例の二段熱間圧延を適用すれば、高周波焼入により浸炭鋼と同等以上の特性を得ることが可能なことが明らかである。

【0102】試験No.3-13~3-24は第1熱問 圧延の条件が本発明の範囲外にある場合である。また、 試験No.3-25~3-36は第2段熱間圧延の条件 が本発明の範囲外の場合である。いずれの場合も、本発 明例に比較するとC方向の疲労強度の低下が著しく、S Cr420に比較しても値が低くなっているものがあ る。また、被削性も本発明例に比較して低下しており、 本発明の熱間圧延条件を適用することにより被削性も向 上させることが可能なことが判る。

【0103】試験No.3-37~3-39は、酸化物系非金属介在物の規定が、また試験No.3-40~3-49は化学組成が、それぞれ本発明の範囲外にある場合である。本発明例に比較して、いずれかの特性あるいは複数の特性が著しく低下していることがわかる。

【0104】以上述べたように、本発明を適用することにより、歯車の製造プロセスを、浸炭鋼より生産性の高

い高周波焼入に変更することが可能となり、歯車の製造コストの低減に資するところ大である。

[0105]

【発明の効果】本発明によれば、鋼の化学組成、酸化物系非金属介在物の個数及びサイズを規制し、かつ二次加工プロセスにおける熱間鍛造条件を規定することにより、従来は浸炭プロセスで製造される高強度の歯車等の機械部品に生産性の良い高周波焼入れを適用することが可能となり、その結果、浸炭品と同等以上の特性を有する部品を容易に量産できるという効果を奏する。