LMM with B-Splines

Alexander McLain

Contents

The Six Cities Study of Air Pollution and Health example (see the first R notes for details).

	ID	Height	Age	INI_Height	INI_Age	Log_FEV1
1987	299	1.64	17.9904	1.57	12.9555	1.09527
1988	300	1.44	11.9617	1.44	11.9617	0.68310
1989	300	1.50	12.9993	1.44	11.9617	0.85015
1990	300	1.57	13.9055	1.44	11.9617	0.81536
1991	300	1.61	14.9596	1.44	11.9617	1.11841
1992	300	1.62	15.9398	1.44	11.9617	1.08181
1993	300	1.62	17.0075	1.44	11.9617	1.12817
1994	300	1.63	17.8645	1.44	11.9617	1.16938

We'll fit this using cubic B-splines for Age, since it appears to have a non-linear relationship.

```
# The 'bs()' function creates B-spline basis functions for the 'time' variable.
# You can adjust 'df' (degrees of freedom) or specify knots directly.
LMM_formula <- Log_FEV1 ~ Height + bs(Age, df = 4) + (1 + Height | ID)
LMM_int_slp <- lmer( formula = LMM_formula , data = Six_cities)</pre>
summary(LMM_int_slp)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: LMM formula
##
     Data: Six_cities
## REML criterion at convergence: -4696.9
##
## Scaled residuals:
      Min 1Q Median
                              3Q
                                     Max
## -6.4252 -0.4730 0.0657 0.5655 2.8502
## Random effects:
## Groups
                       Variance Std.Dev. Corr
            Name
## ID
            (Intercept) 0.095711 0.3094
##
            Height
                       0.043392 0.2083
                                         -0.94
                       0.003114 0.0558
## Residual
## Number of obs: 1994, groups: ID, 300
## Fixed effects:
##
                    Estimate Std. Error
                                                df t value Pr(>|t|)
                  -1.881e+00 7.223e-02 1.349e+03 -26.036 < 2e-16 ***
## (Intercept)
## Height
                   1.715e+00 5.868e-02 1.475e+03 29.222 < 2e-16 ***
                                                   7.152 1.26e-12 ***
## bs(Age, df = 4)1 1.223e-01 1.711e-02 1.726e+03
## bs(Age, df = 4)2 8.666e-03 2.820e-02 1.789e+03
                                                   0.307
## bs(Age, df = 4)3 2.890e-01 2.856e-02 1.928e+03 10.121 < 2e-16 ***
## bs(Age, df = 4)4 1.641e-01 2.697e-02 1.841e+03
                                                   6.085 1.41e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
             (Intr) Height b(A,d=4)1 b(A,d=4)2 b(A,d=4)3
## Height
              -0.987
## bs(Ag,d=4)1 0.017 -0.140
## bs(Ag,d=4)2 0.856 -0.893 0.155
## bs(Ag, d=4)3 0.760 -0.833 0.571
                                     0.765
## bs(Ag,d=4)4 0.823 -0.881 0.376
                                     0.926
                                                0.856
Now, let's plot the results
#-----
# 2) Plot the fitted B-spline curves
# Create a small grid of age points for prediction
new_age <- data.frame(Age = sort(unique(Six_cities$Age)), Height = mean(Six_cities$Height))</pre>
# Predict using the fixed effects (excluding random intercepts)
```

```
# If you want subject-specific predictions, include `re.form = NULL` or specify subject ID
new_age$pred <- predict(LMM_int_slp, newdata = new_age, re.form = NA)

# Plot
ggplot(new_age, aes(x = Age, y = pred)) + geom_line()</pre>
```


This plot gives you an idea of how the mean response (averaging across random intercepts) changes over age according to the B-spline basis.