PAKET 14

PELATIHAN ONLINE

po.alcindonesia.co.id

2019

SMA MATEMATIKA

WWW.ALCINDONESIA.CO.ID

@ALCINDONESIA

085223273373

PEMBAHASAN PAKET 14

1. Tentukan jumlah

$$\sum_{n=1}^{1994} (-1)^n \frac{n^2 + n + 1}{n!}$$

Jawaban boleh dinyatakan dalam faktorial.

a.
$$-1 + \frac{1995}{1994!}$$

b. $1 - \frac{1995}{1994!}$
c. $1 + \frac{1995}{1994!}$

b.
$$1 - \frac{1995}{1994!}$$

c.
$$1 + \frac{1995}{1994!}$$

d.
$$-1 - \frac{1995}{1994!}$$

Solusi:

Misalkan
$$S = \sum_{n=1}^{1994} (-1)^n \frac{n^2 + n + 1}{n!}$$

$$S = \sum_{n=1}^{1994} (-1)^n \left(\frac{n}{(n-1)!} + \frac{n+1}{n!} \right)$$

$$S = \sum_{n=1}^{1994} (-1)^n \left(\frac{n}{(n-1)!} \right) + \sum_{n=1}^{1994} (-1)^n \left(\frac{n+1}{n!} \right)$$

$$S = \sum_{n=0}^{1993} (-1)^{n+1} \left(\frac{n+1}{n!} \right) + \sum_{n=1}^{1994} (-1)^n \left(\frac{n+1}{n!} \right)$$

$$S = \left(-\frac{1}{0!} + \frac{2}{1!} - \frac{3}{2!} + \dots - \frac{1993}{1992!} + \frac{1994}{1993!}\right) + \left(-\frac{2}{1!} + \frac{3}{2!} - \frac{4}{3!} + \frac{5}{4!} - \dots - \frac{1994}{1993!} + \frac{1995}{1993!}\right)$$

$$\sum_{n=1}^{1994} (-1)^n \frac{n^2 + n + 1}{n!} = -1 + \frac{1995}{1994!}$$

2. Jika α, β dan γ adalah akar-akar persamaan $x^3 - x - 1 = 0$ tentukan

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$$

a.
$$-1$$

b.
$$-3$$

d.
$$-7$$

Solusi:

$$\alpha + \beta + \gamma = -\frac{B}{A} = 0$$

$$\alpha \beta + \alpha \gamma + \beta \gamma = \frac{C}{A} = -\frac{1}{1} = -1$$

$$\alpha \beta \gamma = -\frac{D}{A} = -\frac{-1}{1} = 1$$

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = \frac{(1+\alpha)(1-\beta)(1-\gamma) + (1+\beta)(1-\alpha)(1-\gamma) + (1+\gamma)(1-\alpha)(1-\beta)}{(1-\alpha)(1-\beta)(1-\gamma)}$$

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = \frac{3-(\alpha+\beta+\gamma)-(\alpha\beta+\alpha\gamma+\beta\gamma)+3\alpha\beta\gamma}{1-(\alpha+\beta+\gamma)+(\alpha\beta+\alpha\gamma+\beta\gamma)-\alpha\beta\gamma}$$

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = \frac{3-(0)-(-1)+3(1)}{1-(0)+(-1)-(1)}$$

$$\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma} = -7$$

3. Tentukan banyaknya semua penyelesaian sistem persamaan berikut.

$$\begin{cases} \frac{4x^2}{1 + 4x^2} = y\\ \frac{4y^2}{1 + 4y^2} = z\\ \frac{4z^2}{1 + 4z^2} = x \end{cases}$$

- a. 1
- b. 2
- c. 3
- d. 4

Solusi:

Karena bilangan kuadrat tidak mungkin negatif maka:

$$0 \le 4p^2 < 1 + 4p^2$$

$$0 \le \frac{4t^2}{1+4t^2} < 1 \rightarrow 0 \le x < 1; 0 \le y < 1; 0 \le z < 1$$

• lika
$$x = 0$$

Dari pers (1) didapat $y = 0 \rightarrow z = 0$

Begitu juga jika y = 0 dan z = 0

Didapat penyelesaian sistem persamaan (x, y, z) adalah (0, 0, 0)

• Jika tidak ada satu pun x, y, z = 0

$$\frac{4x^2}{1+4x^2} + \frac{4y^2}{1+4y^2} + \frac{4z^2}{1+4z^2} = x + y + z$$

$$\frac{4x^3 + x - 4x^2}{1+4x^2} + \frac{4y^3 + y - 4y^2}{1+4y^2} + \frac{4z^3 + z - 4z^2}{1+4z^2} = 0$$

$$\frac{x(2x-1)^2}{1+4x^2} + \frac{y(2y-1)^2}{1+4y^2} + \frac{z(2z-1)^2}{1+4z^2} = 0$$

Karena persamaan kuadrat tidak mungkin negatif dan telah dibuktikan sebelumnya bahwa $x,y,z\,>\,0$ maka persamaan di atas hanya dapat dipenuhi jika :

$$(2x - 1)^2 = 0$$
; $(2y - 1)^2 = 0$ dan $(2z - 1)^2 = 0$
 $x = y = z = \frac{1}{2}$

Jadi terdapat dua buah penyelesaian tripel (x, y, z) sistem persamaan di atas yaitu (0, 0, 0) dan $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

- 4. Segitiga ABC adalah segitiga sama kaki dengan AB = AC. Garis bagi dari titik B memotong AC di D dan diketahui bahwa BC = BD + AD. Tentukan besar ∠A.
 - a. 60°
 - b. 75°
 - c. 100°
 - $d. 120^{\circ}$

Solusi:

Dibuat titik E yang terletak pada sisi BC sehingga BE = BD → AD = EC

Karena BD adalah garis bagi \triangle ABC maka : $\frac{AB}{BC} = \frac{AD}{CD}$

$$\frac{CE}{CD} = \frac{AD}{CD} = \frac{AB}{BC}$$

Karena ΔABC sama kaki maka:

$$\frac{CE}{CD} = \frac{AD}{CD} = \frac{AB}{BC} = \frac{CA}{BC}$$

Pada \triangle CED dan \triangle CAB berlaku \angle DCE = \angle ACB dan $\frac{CE}{CD} = \frac{CA}{BC}$ yang membuat \triangle CED $\cong \triangle$ CAB

Maka \angle DCE = \angle ACB ; \angle CDE = \angle ABC dan \angle CED = \angle CAB

Misalkan $\angle ABC = 2x$ maka $\angle CDE = \angle DCE = 2x \rightarrow \angle DEC = 180^{o}$

$$4x \rightarrow \angle DEB = 4x$$

Karena \angle BDE sama kaki maka \angle BDE = \angle DEB = 4x

Karena BD adalah garis bagi sudut B maka $\angle DBE = x$

Pada \angle BDE berlaku : $x + 4x + 4x = 180^{\circ} \rightarrow x = 20^{\circ}$

$$\angle A = 180^{\circ} - 4x$$

$$\angle A = 100^{\circ}$$

- 5. Berapa banyak pasangan bilangan bulat positif x, y dengan $x \le y$ yang memenuhi FPB(x, y) = 5! dan KPK(x, y) = 50!
 - a. 2^{14}
 - b. 2^{15}
 - c. 5^{14}
 - d. 5^{15}

Solusi:

Misalkan $p_1, p_2, p_3, \cdots, p_{12}$ adalah bilangan prima antara 7 sampai 47

$$5! = 2^3 \cdot 3^1 \cdot 5^1 \cdot p_1^0 \cdot p_2^0 \cdot \cdots \cdot p_{12}^0$$

$$50! = 2^4 \cdot 3^2 \cdot 5^2 \cdot p_1^{m_4} \cdot p_2^{m_5} \cdot \dots \cdot p_{12}^{m_{15}}$$

 2^4 , 3^2 , 5^2 , p_1^{m4} , p_2^{m5} ,... , p_{12}^{m15} semuanya membagi 50!. Maka pangkat prima dari 5! Dan 50! semuanya berbeda.

Misalkan,

$$x = 2^{n1} \cdot 3^{n2} \cdot 5^{n3} \cdot p_1^{n4} \cdot p_2^{n5} \cdot \dots \cdot p_{12}^{n15}$$

$$y = 2^{m1} \cdot 3^{m2} \cdot 5^{m3} \cdot p_1^{m4} \cdot p_2^{m5} \cdot \dots \cdot p_{12}^{m15}$$

$$y = 2^{m1} \cdot 3^{m2} \cdot 5^{m3} \cdot p_1^{m4} \cdot p_2^{m5} \cdot \cdots \cdot p_{12}^{m12}$$

Maka $maks(n_i, m_i) = pangkat prima dari 50! Dan <math>min(n_i, m_i) = pangkat$ prima dari 5!

Karena ni dan mi keduanya berbeda maka ada 2 kemungkinan nilai nimaupun m_i

Banyaknya kemungkinan nilai x dan y masing-masing adalah 2^{15}

Karena tidak ada nilai x dan y yang sama dan karena diinginkan x < y maka hanya ada setengah kemungkinan dari nilai x dan y yang mungkin.

Banyaknya pasangan (x, y) yang memenuhi dengan x < y adalah $\frac{2^{15}}{3} = 2^{14}$

- 6. Bilangan a, b, c adalah digit-digit dari suatu bilangan yang memenuhi 49a +7b + c = 286. Berapakah nilai b yang memenuhi?
 - a. 3
 - b. 5
 - c. 7
 - d. 9

Solusi:

286 jika dibagi 7 akan bersisa 6

49a + 7b habis dibagi 7

Karena ruas kanan jika dibagi 7 bersisa 6 maka c = 6

$$49a + 7b + 6 = 286 \rightarrow 7a + b = 40$$

karena $0 \le b \le 9$ maka $31 \le 7a \le 40$ maka $a = 5 \rightarrow b = 5$ Jadi, nilai b adalah 5

- 7. Jika $\log_{2n}(1994) = \log_{n}(486\sqrt{2})$, tentukan nilai n^{6} .
 - a. 3^{10} . 2^6
 - b. $3^{15}.2^6$
 - c. 3^{20} , 2^6
 - d. 3^{25} , 2^6

Solusi:

Misalkan $\log_{2n}(1994) = \log_n(486\sqrt{2}) = k$, maka:

$$1944 = (2n)^k \text{ dan } 486\sqrt{2} = n^k$$

$$\left(\frac{2n}{n}\right)^k = \frac{1944}{486\sqrt{2}} = 2\sqrt{2} \quad \to \quad 2^k = 2^{3/2} \quad \to \quad k = \frac{3}{2}$$

$$n^6 = (n^k)^4 = \left(486\sqrt{2}\right)^4$$

$$n^6 = 3^{20}, 2^6$$

- 8. Dua dadu dengan sisinya dicat merah atau biru. Dadu pertama terdiri dari 5 sisi merah dan 1 sisi biru. Ketika kedua dadu tersebut dilempar, peluang munculnya sisi dadu berwarna sama adalah ½. Ada berapa banyak sisi dadu kedua yang berwarna merah ?
 - a. 1
 - b. 2
 - c. 3
 - d. 4

Solusi:

Misalkan banyaknya sisi dadu kedua yang berwarna merah =x maka sisi dadu birunya =6-x

Peluang munculnya sisi dadu berwarna sama $=\frac{5}{6} \cdot \frac{x}{6} + \frac{1}{6} \cdot \frac{6-x}{6}$

$$\frac{5}{6} \cdot \frac{x}{6} + \frac{1}{6} \cdot \frac{6-x}{6} = \frac{1}{2}$$

$$5x + 6 - x = 18$$

$$x = 3$$

Banyaknya sisi dadu kedua yang berwarna merah adalah 3

9. Segitiga ABC memiliki sisi AB = 137, AC = 241 dan BC = 200. Titik D terletak pada sisi BC sehingga lingkaran dalam \triangle ABD dan lingkaran dalam \triangle ACD menyinggung sisi AD di titik yang sama, yaitu E. Tentukan panjang CD.

- a. 122
- b. 132
- c. 142
- d. 152

Solusi:

Misalkan garis AB menyinggung lingkaran di F dan G. Garis BC menyingung lingkaran di H dan J.

Panjang
$$AF = x \rightarrow AE = AF = x \operatorname{dan} BF = 137 - x \rightarrow AG = AE = x \rightarrow BH = BF = 137 - x$$

Panjang $GC = 241 - x \rightarrow CJ = CG = 241 - x$

Misalkan panjang $DE = y \rightarrow DH = DJ = DE = y$
 $BC = BH + HD + DJ + CJ = 137 - x + y + y + 241 - x = 378 + 2y - 2x$
 $200 = 378 + 2y - 2x \rightarrow x - y = 89$
 $BD = 137 - x + y = 137 - 89 = 48$
 $CD = CJ + DJ \rightarrow CD = 241 - x + y \rightarrow CD = 241 - (x - y)$
 $CD = 241 - 89$
 $CD = 152$

- 10. Sebuah trapesium DEFG dengan sebuah lingkaran dalam menyinggung keempat sisinya dan berjari-jari 2 serta berpusat di C. Sisi DE dan GF adalah sisi yang sejajar dengan DE < GF dan DE = 3. Diketahui bahwa $\angle DEF = \angle EFG = 90^{\circ}$. Tentukan luas trapesium.
 - a. 12
 - b. 15
 - c. 16
 - d. 18

Solusi:

Misalkan garis DG menyinggung lingkaran di titik Z dan Garis GF menyinggung lingkaran di titik Y maka GZ = GY dan FY = 2

Misalkan garis DE menyinggung lingkaran di titik X maka DX = 3 - 2 =

$$1 \rightarrow DZ = DX = 1$$

Tarik garis dari titik D tegak lurus GF memotong GF di titik J maka DJ=4 Dengan menganggap GZ=GY=k maka pada Δ DGJ berlaku :

$$(k + 1)^2 = (k - 1)^2 + 4^2 \rightarrow k = 4$$

$$GF = GY + YF = 4 + 2 = 6$$

Luas trapesium =
$$\frac{6+3}{2}$$
 = 18