95.57/TB023 Organización del Computador

U1 – Sistemas de Numeración

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - o ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Bit de signo y valor absoluto

Bit de signo y valor absoluto

Paso por paso

```
Base = 2 precisión = 4
Representar -6
```

- 1) Ver signo para determinar el primer bit: 1 (por ser negativo)
- 2) Pasar valor absoluto a base 2: $|-6_{10}| = 6_{10} = 110_2$
- 3) Concatenar los bits: 1110

Indicar número almacenado en 1101

- 1) Ver primer bit para determinar el signo: negativo (por ser 1)
- 2) Pasar a base 10 los bits descartando el primero: $101_2 = 5_{10}$
- 3) Indicar el número según signo y valor obtenidos: -5

Antes de seguir veamos Bⁿ

Ejemplos:

B = 10
n = 2

Bⁿ =
$$10^2 = 100$$

[00, 01,99]

$$B = 2$$
 $n = 4$
 $B^n = 2^4 = 16$

Bit de signo y valor absoluto

Rango de Representación

Minimo: $-(2^{n-1}-1)$ Maximo: $2^{n-1}-1$

Ventajas

Rango simétrico

Desventajas

- Doble representación del 0
- No permite operar aritméticamente

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Paso por paso

```
Base = 2 precisión = 4
Representar -6
```

- 1. Pasar valor absoluto a base 2: |-6₁₀| = 6₁₀ = 110₂
- 2. Completar con 0 a izquierda hasta completar n: 0110
- 3. Si es negativo, complementar (hacer NOT): 1001

Indicar número almacenado en 1101

- 1. Si primer bit es 1 (es negativo), complementar (hacer NOT): 0010
- 2. Pasar a base 10: $0010_2 = 2_{10}$
- 3. Indicar el número según signo y valor obtenidos: -2

Rango de Representación

Minimo: $-(2^{n-1}-1)$ Maximo: $2^{n-1}-1$

Desventajas

Doble representación del 0

Ventajas

- Rango simétrico
- Permite operar aritméticamente sumando el "end-around carry"

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

$$Rep(x_b) = x_b$$
 $si x \ge 0$
 $Rep(x_b) = Cb(|x_b|)$ $si x < 0$

Ejemplos:

$$B = 10$$
 $n = 2 => B^n = 10^2 = 100$

Rep(3) = 03
Rep(-3) = Cb(3) =
$$100 - 3 = 97$$

Rep(-1) = Cb(1) = $100 - 1 = 99$
Rep(-50) = Cb(50) = $100 - 50 = 50$
Rep(50) => NO SE PUEDE
=> 49 es el mayor positivo representable

¿ Pero que es Cb?

$$Cb(r) + r = B^n$$

==> $Cb(r) = B^n - r$

Notar que:

Si

k es complemento de r

$$=> k + r = B^n$$

=> r es complemento de k

Rango de Representación

Mínimo: -(Bⁿ/2) Máximo: (Bⁿ/2) - 1

Desventajas

Rango asimétrico (un negativo más)

Ventajas

- Única representación del 0
- Permite operar aritméticamente

Permite operar aritméticamente:

```
Sumas (Con B = 10 \text{ y n} = 2)
5 + 2 (es 7) 5 + (-2) (es 3) -5 + 2 (es -3) -5 + (-2) (es -7)
95 + 02
                                           95 + 98
               11
05
               0.5
                           95
                                           95
+02
              + 98
                            + 02
                                          + 98
<del>0</del>07 (A)
                       <del>1</del>03 (B)
```

Restas: al plantear A-B se transforma en A+Bcomp

(B)

```
5-2 (es 5-(-2) (es 7) -5-2 (es -7) -5-(-2) (es -3)
3)
                                      95 - 98
          05 - 98 95 - 02
95 + Cb(98)
                        = 95 + 98
                                     = 95 + 02
 05 + Cb(2)
          = 07
                        = <del>1</del>93
                                      = 97
              (A)
                          (D)
                                        (C)
<del>1</del>03
```

Permite operar aritméticamente: CONCLUSIÓN

A - B
Se trabaja como
A + Comp (B)

*** NO IMPORTA EL SIGNO DE B ****

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Rep
$$(x_{10}) = x_2$$
 si $x \ge 0$
Rep $(x_{10}) = NOT(|x_2|) + 1$ si $x < 0$

Ejemplos:

$$B = 2 \quad n = 4$$

Rep(-8) = NOT(1000) + 1
= 0111 + 1
= 1000
Rep(8) => NO SE
PUEDE
=>
$$7 = 0111_{12}$$
 es el mayor
positivo representable

Paso por paso

```
Base = 2 precisión = 4
Representar -6
```

- 1. Pasar valor absoluto a base 2: $|-6_{10}| = 6_{10} = 110_2$
- 2. Completar con 0 a izquierda hasta completar n: 0110
- 3. Si es negativo, complementar (hacer NOT + 1): 1001 + 1 = 1010

Indicar número almacenado en 1101

- 1. Si primer bit es 1 (es negativo), complementar (hacer NOT+1): 0010 + 1 = 0011
- 2. Pasar a base 10 los bits: $0011_2 = 3|_{10}$
- 3. Indicar el número según signo y valor obtenidos: -3

Rango de Representación

Mínimo: -(2ⁿ⁻¹) Máximo: 2ⁿ⁻¹ - 1

Desventajas

Rango asimétrico (un negativo más)

Ventajas

- Única representación del 0
- Permite operar aritméticamente.
 Aplica la misma mecánica de resolver X-Y como X+Cb(Y)

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso (*)
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754 (*)

Formato y Configuración

Formato:

Representación computacional de un número

Configuración:

Expresión en una determinada base de un número en un formato

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Expansión y Truncamiento

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Binario de punto fijo sin signo

Base = 2 Precisión = n Enteros positivos

Como almacenar un número

- 1) Pasar el nro a base 2
- 2) Completar con 0 a izquierda hasta alcanzar n digitos

Como recuperar un número almacenado Pasos anteriores en orden inverso

Rango de representación

Minimo: 0

Máximo: 2ⁿ - 1

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Binario de punto fijo con signo

Base = 2 Precisión = n Enteros positivos y negativos

Es la implementación del método complemento a 2

Como almacenar un número

- 1) Pasar el nro a base 2
- 2) Completar con 0 a izquierda hasta alcanzar n digitos
- 3) Si el nro es negativo, complementar usando método de "complemento a 2" (Not +1)

Como recuperar un número almacenado

- 1) Si el primer bit es 1 (es negativo), complementar.
- 2) Quitar 0 a izquierda.
- 3) Pasar a base 10 y colocar el signo que corresponda.

Binario de punto fijo con signo

Validación Overflow en operaciones aritméticas

```
Resolver 7 - 1
7_{|10} = 0111_{|2}
1_{|10} = 0001_{|2}
Hallo C(1) para hacer 7+C(1)
NOT(0001) = 1110
               1111
Ahora sumo
 1111 Ultimos 2 acarreos iguales
  01<u>1</u>1 => VALIDO
+ 1111
  0110
```

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

BCD Empaquetado

Base = 16 Precisión = n Enteros positivos y negativos

Como almacenar un número

- 1) Pasar el nro a base 10
- 2) Colocar c/digito en los nibbles dejando libre el último (el de la derecha)
- 3) Colocar en el último nibble el signo siendo C, A, F o E para positivos B o D para negativos

Como recuperar un número almacenado

- 1) Tomar cada digito de los nibbles (excepto el último) para armar la cadena en base 10
- 2) Colocar el signo según el dígito del último nibble

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Zoneado

Base = 16 Precisión = n Enteros positivos y negativos

Como almacenar un número

- 1) Pasar el nro a base 10
- 2) Colocar c/digito en los nibbles numeric
- 3) Colocar una F en cada nibble zone excepto en el último
- 4) Colocar en el último nibble zone el signo siendo
 C, A, F o E para positivos
 B o D para negativos

Como recuperar un número almacenado

- 1) Tomar cada digito de los nibbles numeric para armar la cadena en base 10
- 2) Colocar el signo según el dígito del último nibble zone

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

ASCII / EBCDIC / UNICODE

- Representación en forma digital/numéricas de los caracteres
 - ASCII (American Standard Code for Information Interchange)
 - 7 bits ☐ AŚCII Básico
 - 8 bits □ ASCII Extendido
 - EBCDIC (Extended Binary Coded Decimal Interchange Code)
 - 8 bits
 - UNICODE Consortium
 - Codificación Universal/Estandard de los Caracteres
 - Consorcio Unicode □ Unicode 14.0
 - UTF-8 / UTF-16 / UTF-32T
 - https://home.unicode.org/

ASCII / EBCDIC / UNICODE

Hex	Dec	EBCDIC	ASCII
23	35		#
30	48		0
31	49		1
42	66		В
62	98		b
7B	123	#	{
82	130	b	
C0	192	{	
C2	194	В	
F0	240	0	
F1	241	1	

Documento tablas ASCII & EBCDIC

Agenda

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Exceso a la base

$$Rep(x_b) = x_b + exceso (para todo x)$$

Con
$$B = 2$$

Exceso =
$$2^{n}/2$$

= $2*2 \cdot \cdot \cdot *\frac{2/2}{2}$
= 2^{n-1}

Ejemplos:

B = 10 n = 2
=>
$$B^{n}/2 = 10^{2}/2 = 50$$

Rep
$$(3) = 3 + 50 = 53$$

$$Rep(-3) = -3 + 50 = 47$$

$$Rep(0) = 0 + 50 = 50$$

$$Rep(-50) = -50 + 50 = 0$$

Rep
$$(49) = 49 + 50 = 99$$

Rep(50) NO SE PUEDE (da 100)

¿ Pero que es el exceso? Es Bⁿ/2

Entendamos por qué: Con B=10 y n = 1 Bⁿ = 10 valores posibles

uál sería el rango de números a representar "más justo"?

10 en total

Cuánto hay q sumar como mínimo a cada negativo para que "desaparezca" el signo?

Que termina siendo Bⁿ/2

Números a representar

Como se representan

Agenda

- Métodos de representación de números negativos
 - Bit de signo y valor absoluto
 - Complemento a 1
 - Complemento a la base
 - Complemento a 2
 - Exceso
- Conceptos de Formato y Configuración
- Conceptos de Expansión y Truncamiento
- Formatos de representación de números enteros
 - Binario de punto fijo sin signo
 - Binario de punto fijo con signo
 - BCD Empaquetado
 - Zoneado
- Formatos de representación caracteres
 - ASCII
 - o EBCDIC
 - UNICODE
- Formatos de representación números decimales
 - Binario punto Flotante IEEE 754

Notación Científica

- -/+ 765,987 x 10 ⁻³
- \circ -/+765987 x 10 $^{-6}$ 10
- \circ -/+ 7,65987 x 10 ⁻¹ ₁₀
- -/+ 0,0765987 x 10 ¹ ₁₀

Mantisa Normalizada

¿Cuál es el digito de la cifra significativa en Binario?

- 80s □ Institute of Electrical and Electronics
- Precisión
 - Simple (32) / Doble (64) / Extendida (128)
- Representación
 - Signo
 - Exponente
 - Mantisa
- Exponente en Exceso
 - 0 127 / 1023 / 16383
- Mantisa normalizada

Precisión Simple

- Exceso de 127
 - EExceso = Exp + 127₁₀
- Mantisa Normalizada
 - 1 implícito

- 1) Paso de base 10 □ base 2 123₁₀ □ 1111011 ₂
 - $0,456_{10} \square 01110110_{2}$
 - $-123,456_{10} \square 1111011, 01110100_{2}$
- 2) Normalizo
- 1,11101101110100 x 10 110 2
- 3) Almaceno


```
3) Almaceno
Signo = 1
EExceso
6 + 127 = 133_{10}
133_{10} \square 10000101_{2}
Mantisa
1,11101101110100_{2}
```

Normalizado	\pm 0 < Exp < Max	Cualquier patrón de bits
Desnormalizado	<u>+</u> 0	Cualquier patrón de bits ≠ 0
Cero	<u>+</u> 0	0
Infinito	± 1111	0
NAN	± 1111	Cualquier patrón de bits ≠ 0