UNIT-1 Knowledge-Representation and Reasoning

Logical Agents: Knowledge based agents, the Wumpus world, logic. Patterns in propositional Logic, inference in Fist-Order Logic propositional vs fist order inference unification and lifting

Logical Agents in AI & ML

Logical agents are intelligent systems that use logic to make decisions. They store knowledge, reason about it, and take actions based on logical rules.

1. What is a Logical Agent?

A **logical agent** is a type of AI that:

- Uses knowledge to understand the world.
- Uses logical reasoning to make decisions.
- Can infer new information from known facts.
- Takes actions based on logical conclusions.

Example:

Imagine a robot vacuum cleaner:

- It **knows** that "Dirt is bad".
- It sees dirt in a room.
- It **decides** to clean the dirt.
- It acts by moving towards the dirt and vacuuming.

Logical agents think logically, just like humans solving puzzles!

2. Knowledge-Based Agents

A knowledge-based agent (KBA) is a type of logical agent that:

- Has a knowledge base (KB) \rightarrow Stores facts about the world.
- Uses inference rules \rightarrow Applies logic to make decisions.
- **Updates its knowledge** \rightarrow Learns new information over time.

Components of a Knowledge-Based Agent:

- 1. Knowledge Base (KB): Stores facts and rules.
- 2. **Inference Engine:** Uses logic to reason and make decisions.
- 3. **Perception:** Observes the environment.
- 4. Action Execution: Takes actions based on logical conclusions.

Example:

A medical diagnostic system (like IBM Watson) works as a knowledge-based agent:

- **KB:** Stores medical facts (e.g., "Fever + Cough \rightarrow Maybe Flu").
- Inference: If a patient has fever & cough, concludes flu.
- Action: Suggests medicine or further tests.

3. The Wumpus World (A Logical Agent Game)

The Wumpus World is a classic AI problem used to test logical agents. It is a grid-based game where an agent must find gold while avoiding dangers.

The Environment:

- ♦ The world is a **4x4 grid** with:
- \checkmark Gold → The goal (agent must find it).
- \times The Wumpus \rightarrow A dangerous monster (agent must avoid it).
- \bigwedge **Pits** \rightarrow Deadly holes (agent must avoid them).
- Breeze → Found near pits (helps detect danger).
- **Stench** → Found near the Wumpus (helps locate it).

Agent's Knowledge & Reasoning:

- 1. Starts in the bottom-left corner (safe square).
- 2. Moves through the grid, sensing breeze & stench.
- 3. Uses logic to decide where to go safely.
- 4. Grabs the gold & exits safely.

4. How Logical Agents Solve the Wumpus World

- The agent follows logical **rules** to make decisions:
- Example Rule 1: If there is a breeze, a pit might be nearby.
- Example Rule 2: If there is a stench, the Wumpus is nearby.
- Example Rule 3: If a square has no danger signs, it is safe to move.

Q Logical Deduction Example:

- The agent moves into a square and senses **breeze**.
- It **infers** that a pit must be nearby.
- It marks the dangerous area and avoids moving there.
- It **continues exploring** and eventually finds the **gold safely**.

♦ Real-Life Analogy:

The Wumpus World is like a blindfolded treasure hunt:

- You hear sounds (stench, breeze) to guess dangers.
- You use reasoning to avoid danger.
- You **find the gold** using logic!

5. Applications of Logical Agents

Logical agents are used in real-world AI applications:

- Medical Diagnosis: AI doctors use logical reasoning to diagnose diseases.
- Game AI: Chess and video game characters use logic to plan moves.
- Autonomous Vehicles: Self-driving cars use logical rules to navigate safely.
- ✓ Virtual Assistants: Siri, Alexa, and Google Assistant answer questions logically.

Patterns in Propositional Logic in AI & ML

1. Introduction to Propositional Logic in AI & ML

Propositional Logic (PL) is a fundamental part of Artificial Intelligence (AI) and Machine Learning (ML). It is used to represent knowledge and make logical inferences about facts.

What is Propositional Logic?

- A **formal system** that uses **propositions (statements)** to express **truth values** (True or False).
- Used in Knowledge-Based Systems, Expert Systems, and Logical Agents.
- Forms the foundation of **automated reasoning** in AI.

Example:

- Statement (Proposition): "If it is raining, the ground is wet."
- Logic Representation:
 - Let P = "It is raining"
 - Let Q = "The ground is wet"
 - o **Rule:** $P \Rightarrow QP \setminus Rightarrow QP \Rightarrow Q$ (If P is true, then Q must also be true).

2. Basic Elements of Propositional Logic

2.1 Propositions (Statements)

- A Proposition is a statement that is either True or False.
- Example Propositions:
 - o **P:** "It is raining." ✓ (Can be True or False)
 - **Q:** "The ground is wet." ✓ (Can be True or False)
 - \circ "What time is it?" \times (Not a proposition it is a question, not a statement).

2.2 Logical Operators (Connectives)

Propositional logic uses logical operators to combine statements.

Symbo	l Name	Meaning
$\neg P$	Negation (NOT)	"It is NOT raining."
PΛQ	Conjunction (AND)	"It is raining AND the ground is wet."
PVQ	Disjunction (OR)	"It is raining OR the ground is wet."
$P \Rightarrow Q$	Implication (IF-THEN)	"If it is raining, THEN the ground is wet."
P⇔Q	Biconditional (IF AND ONLY IF)	"The ground is wet IF AND ONLY IF it is raining."

3. Patterns in Propositional Logic

Patterns are common logical structures that help in knowledge representation and inference.

3.1 Modus Ponens (Pattern 1: Direct Reasoning)

♦ Definition:

If $P \Rightarrow Q$ is true, and P is true, then Q must also be true.

Example:

- 1. If it is raining, the ground is wet. $(P \Rightarrow Q)$
- 2. **It is raining.** (P is True)
- 3. Conclusion: The ground is wet. (Q is True)

♦ Logic Representation:

$$(P\Rightarrow Q), P\vdash Q(P\Rightarrow Q), P\vdash Q(P\Rightarrow Q), P\vdash Q$$

♦ Real-Life Example:

• Rule: "If a person studies hard, they will pass the exam."

- Fact: "John studied hard."
- Conclusion: "John will pass the exam."

3.2 Modus Tollens (Pattern 2: Indirect Reasoning)

Definition:

If $P \Rightarrow Q$ is true, and Q is false, then P must also be false.

Example:

- 1. If it is raining, the ground is wet. $(P \Rightarrow Q)$
- 2. The ground is NOT wet. $(\neg Q)$
- 3. Conclusion: It is NOT raining. $(\neg P)$
- **♦** Logic Representation:

$$(P\Rightarrow Q), \neg Q \vdash \neg P(P\Rightarrow Q), \neg Q \vdash \neg P(P\Rightarrow Q), \neg Q \vdash \neg P$$

- **♦** Real-Life Example:
 - Rule: "If the car has fuel, it will start."
 - Fact: "The car did NOT start."
 - Conclusion: "The car does NOT have fuel."

3.3 Hypothetical Syllogism (Pattern 3: Chain Reasoning)

Definition:

If $P \Rightarrow Q$ and $Q \Rightarrow R$, then $P \Rightarrow R$.

Example:

- 1. If it is raining, the ground is wet. $(P \Rightarrow Q)$
- 2. If the ground is wet, people carry umbrellas. $(Q \Rightarrow R)$
- 3. Conclusion: If it is raining, people carry umbrellas. $(P \Rightarrow R)$
- **\rightarrow** Logic Representation:

$$(P\Rightarrow Q), (Q\Rightarrow R)\vdash (P\Rightarrow R)(P\Rightarrow Q), (Q\Rightarrow R)\vdash (P\Rightarrow R)(P\Rightarrow Q), (Q\Rightarrow R)\vdash (P\Rightarrow R)$$

♦ Real-Life Example:

- Rule 1: "If a student studies, they pass the exam."
- Rule 2: "If they pass the exam, they get a certificate."
- Conclusion: "If a student studies, they get a certificate."

3.4 Disjunctive Syllogism (Pattern 4: Eliminating Options)

Definition:

If P V Q is true, and P is false, then Q must be true.

- **Example:**
 - 1. Either the lamp is broken OR the bulb is fused. $(P \lor Q)$
 - 2. The lamp is NOT broken. $(\neg P)$
 - 3. Conclusion: The bulb is fused. (Q)
- **♦** Logic Representation:

 $(P \lor Q), \neg P \vdash Q(P \lor Q), \neg P \vdash Q(P \lor Q), \neg P \vdash Q$

- **♦** Real-Life Example:
 - Statement: "Either John is at home OR he is at work."
 - Fact: "John is NOT at home."
 - **Conclusion:** "John is at work."

3.5 Resolution (Pattern 5: Combining Knowledge)

Definition:

If $P \lor Q$ and $\neg Q \lor R$ are true, then we can infer $P \lor R$.

- **Example:**
 - 1. Either it is raining OR it is sunny. $(P \lor Q)$
 - 2. Either it is NOT sunny OR people go outside. $(\neg Q \lor R)$
 - 3. Conclusion: Either it is raining OR people go outside. $(P \lor R)$
- **♦** Logic Representation:

 $(P \lor Q), (\neg Q \lor R) \vdash (P \lor R)(P \lor Q), (\neg Q \lor R) \vdash (P \lor R)(P \lor Q), (\neg Q \lor R) \vdash (P \lor R)$

- **Real-Life Example:**
 - Statement 1: "Either the battery is dead OR the phone is on silent."
 - Statement 2: "Either the phone is NOT on silent OR you will hear a ringtone."
 - Conclusion: "Either the battery is dead OR you will hear a ringtone."

4. Applications of Propositional Logic Patterns in AI & ML

Expert Systems (Medical Diagnosis, Legal AI)

- AI doctors use **Modus Ponens** to diagnose diseases.
- Example: "If a patient has a fever, they might have the flu."

♦ Game AI (Chess, Wumpus World)

• Uses **Disjunctive Syllogism** to eliminate bad moves.

♦ Robotics & Autonomous Vehicles

- Uses **Hypothetical Syllogism** for navigation.
- Example: "If there is an obstacle ahead, the car should turn."

♦ Natural Language Processing (NLP)

• Uses **Resolution** to infer meaning from sentences.

Inference in First-Order Logic (FOL) – Step by Step Explanation

1. Introduction to Inference in First-Order Logic (FOL)

Inference in First-Order Logic (FOL) is the process of deriving new facts from known facts and rules. It allows AI systems to reason logically about the world.

What is First-Order Logic (FOL)?

First-Order Logic (also called **Predicate Logic**) extends **Propositional Logic** by adding:

- Quantifiers Express statements about "all" or "some" objects.
- Predicates Describe relationships between objects.
- ✓ Variables Represent unknown entities.

Example:

- Statement in English: "All humans are mortal."
- FOL Representation: $\forall x \text{ Human}(x) \Rightarrow \text{Mortal}(x) \setminus \text{forall } x \setminus \text{Human}(x) \setminus \text{Rightarrow } \text{Mortal}(x) \forall x \text{Human}(x) \Rightarrow \text{Mortal}(x)$
 - \circ \forall x (For all x): Applies to all objects.
 - Human(x): x is a human.
 - o **Mortal(x):** x is mortal.

♦ Inference Goal:

Given "Socrates is a human", can we infer that "Socrates is mortal"?

2. Propositional Logic vs. First-Order Logic (Differences in Inference)

Feature Propositional Logic (PL) First-Order Logic (FOL)

Variables No variables Uses variables (x, y, etc.)

Quantifiers \bigvee No quantifiers \bigvee Uses \forall (for all) and \exists (there exists)

Expressiveness Simple More powerful

Example Rule "If it rains, the ground is "If a person is a student, they have a teacher"

Limitation Cannot generalize Can represent relationships and general knowledge

Example Comparison:

□Propositional Logic (PL):

- **Rule:** "If it rains, the ground is wet."
 - o $P\Rightarrow QP \land Rightarrow QP\Rightarrow Q$ (where P = "It rains", Q = "The ground is wet")
- Fact: "It rains."
- **Inference:** "The ground is wet."

□First-Order Logic (FOL):

- **Rule:** "If a student is enrolled in a class, they have a teacher."
 - \circ ∀x Student(x)⇒HasTeacher(x)\forall x \, \text{Student}(x) \Rightarrow \text{HasTeacher}(x)∀xStudent(x)⇒HasTeacher(x)
- Fact: "Alice is a student." (Student(Alice))
- Inference: "Alice has a teacher." (HasTeacher(Alice))

Why FOL is More Powerful?

FOL can express knowledge more generally using variables and quantifiers, whereas PL requires separate rules for each individual case.

3. Inference in First-Order Logic (FOL) – Step by Step

Inference in FOL follows these methods:

- Forward Chaining Start with known facts and apply rules to infer new facts.
- ✓ Backward Chaining Start with a goal and work backward to prove it.
- **▼ Resolution** Use logical contradiction to derive conclusions.
- ✓ Unification & Lifting Match variables with constants or other variables.

Step 1: Forward Chaining (Data-Driven Inference)

- Starts with known facts and applies rules to derive new conclusions.
- Used in expert systems and rule-based AI.

Example:

- 1. **Rule:** "If x is a bird, then x can fly." $\forall x \operatorname{Bird}(x) \Rightarrow \operatorname{CanFly}(x) \setminus \operatorname{CanFly}(x) \Rightarrow \operatorname{CanFly}(x) \Rightarrow \operatorname{CanFly}(x)$
- 2. Fact: "Tweety is a bird." (Bird(Tweety))
- 3. Inference: "Tweety can fly." (CanFly(Tweety))
- **✓ AI Application:** Used in **diagnostic expert systems** (e.g., medical AI).

Step 2: Backward Chaining (Goal-Driven Inference)

- Starts with a **goal** and tries to prove it using known facts.
- Used in AI Planning & Logical Programming (e.g., Prolog).

Example:

- 1. Query: "Can Tweety fly?" (CanFly(Tweety)?)
- 2. **Rule:** "If x is a bird, then x can fly."
- 3. Fact: "Tweety is a bird."
- 4. **Conclusion:** "Yes, Tweety can fly."
- **✓** AI Application: Used in chatbots and automated reasoning systems.

Step 3: Resolution (Proving by Contradiction)

- Converts **FOL statements into clauses** and **derives contradictions** to prove the conclusion.
- Used in automated theorem proving.

Example:

1. Given Statements:

- o **NotFact:** ¬Studies(Alice)\neg \text{Studies}(Alice)¬Studies(Alice) (Alice does not study).
- 2. Contradiction Found: Alice is a student but does not study.

- 3. Conclusion: Reject "Alice does not study" → Alice must study.
- **✓** AI Application: Used in mathematical proofs and AI logic solvers.

Step 4: Unification & Lifting (Pattern Matching in Inference)

Unification is the process of matching logical variables to constants or other variables to make inference possible.

4.1 Unification (Finding Matching Substitutions)

Example:

- **Rule:** "All birds can fly." $\forall x \operatorname{Bird}(x) \Rightarrow \operatorname{CanFly}(x) \setminus \operatorname{Sird}(x) \setminus \operatorname{CanFly}(x) \setminus \operatorname{CanFly}(x) \Rightarrow \operatorname{CanFly}(x)$
- Fact: "Tweety is a bird." (Bird(Tweety))
- Unification: x=Tweetyx = \text{Tweety}x=Tweety
- Inference: "Tweety can fly." (CanFly(Tweety))
- **✓ Application:** Used in **AI search engines and expert systems**.
- **4.2 Lifting (Applying Unification to Complex Sentences)**

Example:

- **Rule:** "If someone is a parent, they have a child." $\forall x \, \text{Parent}(x) \Rightarrow \exists y \, \text{Child}(x,y) \setminus x \, \text{Parent}(x) \Rightarrow \exists y \, \text{Child}(x,y) \setminus x \, \text{Child}(x,y) \in x \, \text$
- Fact: "John is a parent." (Parent(John))
- Lifting Unification: x=Johnx = Johnx=John and introduces y (child's name unknown)
- Inference: "John has a child." (Child(John, y))
- **✓** Application: Used in Natural Language Processing (NLP) and AI knowledge graphs.

4. Summary of Key Concepts

Concept	Definition	Example
Forward Chaining	Start from facts and apply rules to infer new facts.	"Bird(Tweety) \rightarrow CanFly(Tweety)"
Backward Chaining	Start with a goal and work "Can Tweety fly?" (Check Bird(Tweety)) backward to prove it.	

Concept	Definition	Example
Resolution	Uses logical contradiction prove a conclusion.	n to "If Alice is a student, she studies. Alice does not study → Contradiction!"
Unification	Matches variables to constants. " $x = Tweety$ " in Bird $(x) \rightarrow CanFly(x)$	
Lifting	Generalizes unification complex cases.	for "John is a parent → John has a child."

5. Conclusion

First-Order Logic (FOL) allows AI to make complex inferences using variables, predicates, and quantifiers.

- **✓** Forward & Backward Chaining → Used in Expert Systems & AI Planning.
- **Resolution** \rightarrow Used in **Automated Theorem Proving**.
- **\checkmark** Unification & Lifting → Used in AI Search Engines & NLP.

Would you like a **Python implementation** demonstrating **FOL inference**?