Examples

Week 12

객체를 통한 static 멤버 사용

```
class StaticSample {
   public int n;
   public void g() {
      m = 20;
   public void h() {
      m = 30;
   public static int m;
   public static void f() {
      m = 5;
                 50
```

```
public class Ex {
   public static void main(String[] args)
      StaticSample s1, s2;
      s1 = new StaticSample();
      s1.n = 5;
      s1.q();
      s1.m = 50; // static
      System.out.println(s1.m);
      s2 = new StaticSample();
      s2.n = 8;
      s2.h();
      s2.f(); // static
      System.out.println(s2.m);
```

클래스이름을 통한 static 멤버 사용

```
class StaticSample {
   public int n;
   public void g() {
      m = 20;
   public void h() {
      m = 30;
   public static int m;
   public static void f() {
      m = 5:
                 10
                 5
```

```
public class Ex {
   public static void main(String[] args)
      StaticSample.m = 10;
      System.out.println(StaticSample.m);
      StaticSample.f();
      System.out.println(StaticSample.m);
      StaticSample s1;
      s1 = new StaticSample();
      System.out.println(s1.m);
```

클래스이름을 통한 static 멤버 사용 (Employee 클래스)

```
class Employee
    private String name;
    private static int count = 0;
    public Employee(String name)
        this.name = name;
        ++count;
    public String toString()
        return "Employee: " + name;
    public static int getCount()
        return count;
```

클래스이름을 통한 static 멤버 사용 (Employee 클래스)

```
public class EmployeeTest
    public static void main( String[] args )
        System.out.println( Employee.getCount() );
        Employee e1 = new Employee( "Susan Baker" );
        Employee e2 = new Employee( "Bob Blue" );
        System.out.println( e1 );
        System.out.println( e2 );
        System.out.println( Employee.getCount() );
}
         Employee: Susan Baker
         Employee: Bob Blue
```

Math클래스 (수학 함수와 상수를 static 멤버로 제공)

Method	Description	Example
abs(x)	absolute value of x	abs(23.7) is 23.7 abs(0.0) is 0.0 abs(-23.7) is 23.7
ceil(x)	rounds x to the smallest integer not less than x	ceil(9.2) is 10.0 ceil(-9.8) is -9.0
cos(x)	trigonometric cosine of x (x in radians)	cos(0.0) is 1.0
exp(x)	exponential method ex	exp(1.0) is 2.71828 exp(2.0) is 7.38906
floor(x)	rounds x to the largest integer not greater than x	floor(9.2) is 9.0 floor(-9.8) is -10.0
log(x)	natural logarithm of x (base e)	log(Math.E) is 1.0 log(Math.E * Math.E) is 2.0
$\max(x, y)$	larger value of x and y	max(2.3, 12.7) is 12.7 max(-2.3, -12.7) is -2.3
$\min(x, y)$	smaller value of x and y	min(2.3, 12.7) is 2.3 min(-2.3, -12.7) is -12.7
oow(x, y)	x raised to the power y (i.e., x^y)	pow(2.0, 7.0) is 128.0 pow(9.0, 0.5) is 3.0
sin(x)	trigonometric sine of x (x in radians)	sin(0.0) is 0.0
qrt(x)	square root of x	sqrt(900.0) is 30.0
$\operatorname{can}(x)$	trigonometric tangent of x (x in radians)	tan(0.0) is 0.0

Math클래스 (수학 함수와 상수를 static 멤버로 제공)

```
public class MathTest
    public static void main( String[] args )
        System.out.printf( "sqrt(900.0)=\%.2f\n", Math.sqrt(900.0) );
        System.out.printf( "cos(900.0)=\%.2f\n", Math.cos(900.0) );
        System.out.printf( "\log(900.0) = \%.2f \ ", Math.\log(900.0) );
        System.out.printf("floor(9.25)=\%.2f\n", Math.floor(9.25));
        System.out.println( "PI=" + Math.PI );
    }
}
          sqrt(900.0)=30.00
          cos(900.0)=0.07
          \log(900.0) = 6.80
          floor(9.25)=9.00
          PI= 3.141592653589793
```

Calc클래스 (static 멤버 제공)

```
class Calc {
    public static int abs(int a) { return a>0 ? a : -a; }
    public static int max(int a, int b) { return (a>b) ? a : b; }
    public static int min(int a, int b) { return (a>b) ? b : a; }
}

public class CalcEx {
    public static void main( String[] args ) {
        System.out.println( Calc.abs(-5) );
        System.out.println( Calc.max(10, 8) );
        System.out.println( Calc.min(-3, -8) );
    }
}
```

static 메소드 (non-static 멤버를 접근할 수 없음)

```
public class StaticMethod
    int n:
    void f1(int x) \{ n = x; \}
    void f2(int x) \{ m = x; \}
    static int m;
    static void s1(int x) \{ n = x; \}
    static void s2(int x) { f1(3); }
    static void s3(int x) { m = x; }
    static void s4(int x) { s3(3); }
}
         StaticMethod.java:8: error: non-static variable n cannot be referenced from
         a static context
                 static void s1(int x) \{ n = x; \}
         StaticMethod.java:9: error: non-static method f1(int) cannot be referenced
         from a static context
                 static void s2(int x) { f1(3); }
```

static 메소드 (this 사용불가)

```
public class StaticAndThis
{
   int n;
   static int m;

   void f1(int x) { this.n = x; }
   void f2(int x) { this.m = x; }
   static void s1(int x) { this.n = x; }
   static void s2(int x) { this.m = x; }
}
```

CurrencyConverter 클래스 (static 멤버 제공)

```
import java.util.Scanner;
class CurrencyConverter
    private static double rate;
    public static double toDollar(double won) {
        return won/rate;
    public static double toKRW(double dollar) {
        return dollar * rate;
    public static void setRate(double r) {
        rate = r;
```

CurrencyConverter 클래스 (static 멤버 제공)

```
public class CurrencyConverterTest
    public static void main(String[] args)
        Scanner scanner = new Scanner(System.in);
        System.out.print("Exchange rate ($1) >> ");
                                                          Exchange rate ($1) >> 1164
        double rate = scanner.nextDouble();
                                                          100,000 \text{ KRW} = \$85.91
        CurrencyConverter.setRate(rate);
                                                          $100 = 116.400 \text{ KRW}
        System.out.printf("%,d KRW = \$\%,.2f\n",
             100000, CurrencyConverter.toDollar(100000));
        System.out.printf("\$\%,d = \%,d KRW\n",
             100, (int) CurrencyConverter.toKRW(100));
        scanner.close();
```

2차 방정식의 실수해

- ▶ 내용: 2차 방정식 $ax^2 + bx + c = 0$ 의 실수해 구하기
- ightharpoonup 입력: a, b, c (double type)
- $b^2 4ac$ 의 값에 따라 아래와 같이 처리
 - $b^2 4ac < 0$ 인 경우: "no answer" 라고 출력
 - $b^2 4ac = 0$ 인 경우: 한 개의 x 값 출력
 - $b^2 4ac > 0$ 인 경우: 두 개의 x 값 출력
- ▶ Math.sqrt() 사용
- ▶ 근의 공식:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

