模拟电路复习手稿

半导体器件

半导体

- 多子的浓度取决于掺入杂质的浓度
- 少子的浓度取决于温度

二极管

- 二极管的两个模型: 理想模型和恒压降模型
- 硅管和锗管的导通压降: 0.7 V 和 0.2 V
- 了解一下稳压管怎么回事

三极管

直流分量 I_B , 交流分量 i_b , 瞬时值 i_B , 交流有效值 I_b , 交流值的相量

- 两条曲线: $i_{\mathrm{B}} = f(u_{\mathrm{BE}})|_{u_{\mathrm{CE}} = \mathrm{const}}$, $i_{\mathrm{C}} = f(u_{\mathrm{CE}})|_{i_{\mathrm{B}} = \mathrm{const}}$
- 三个区: 截止区(都反偏),放大区(BE 正偏、BC 反偏),饱和区(都正偏)
 - \circ 假设放大区,先算 $I_{
 m B}$,再算 $I_{
 m C}=eta I_{
 m B}$,看看 BC 是否反偏
 - 。 假设饱和区, $U_{
 m BE}=0.7{
 m V}, U_{
 m CES}=0.3{
 m V}$,看看是否有 $eta I_{
 m B}>I_{
 m CS}$

• 三极管有个安全工作区,电流不能太大,电压不能太大,功率也不能太大($i_{\rm C}-u_{\rm CE}$ 图上是一条反比例线)

放大电路的基本原理和分析方法

• PNP 三极管的微变等效电路: 电阻和受控电流源的位置与 NPN 的相同, 三个电流的方向取反

主要技术指标

• 放大倍数

• 输入电阻: 从输入端看进去的电阻, 越大越好

• 输出电阻: 从负载 RL 看进去的电阻, 越小越好

• 通频带: $\frac{\sqrt{2}}{2}$

单管放大电路三种组态

• 学会画直流通路和交流通路

• 学会画微变等效电路: be 之间连 $r_{
m be}$, ce 之间连电流源 $i_{
m c}=eta i_{
m b}$

• 求静态工作点 $ightarrow r_{
m be}
ightarrow$ 微变等效电路 ightarrow 放大系数、输入电阻、输出电阻($u_i=0$)

$$\circ~~r_{
m be}=r_{
m bb'}(=300\Omega)+(1+eta)rac{26{
m mV}}{I_{
m EO}}$$

共射

- 交直流并存、电压放大、倒相
- 在 $i_{\mathrm{C}} = f(u_{\mathrm{CE}})|_{i_{\mathrm{B}}=\mathrm{const}}$ 中,负载线过低 $ightarrow u_{\mathrm{CE}}$ 顶部截止失真(下边事截止区)
- 在 $i_{\mathrm{C}} = f(u_{\mathrm{CE}})|_{i_{\mathrm{B}=\mathrm{const}}}$ 中,负载线过高 $ightarrow u_{\mathrm{CE}}$ 底部饱和失真(左边事饱和区)

共集 (射极输出器)

- 电压不放大、电流放大
- 输入电阻大、输出电阻小
- 作为输入级可减小对输入信号源的影响,作为输出级可提高负载能力,作为中间级隔离前后级的影响

共基

- 输入电阻小,输出电阻大
- 放宽频带

静态工作点的稳定问题

温度升高, 静态工作点上移, 可能导致饱和失真

多级

- 1. 阻容耦合
 - 各级静态工作点独立
 - 不易放大低频信号, 无法集成
- 2. 变压器耦合
 - o 有阻抗变换的作用, 各级静态工作点独立
 - 不易放大低频信号, 无法集成
- 3. 直接耦合
 - 可放大直流和交流信号, 便于集成
 - o 各级静态工作点不独立,零点漂移严重

抑制零点漂移

- 引入直流负反馈以稳定静态工作点
- 热敏元件
- 差分放大电路

分析方法 (两级)

将第二级的电阻看作第一级的负载电阻, $R_{
m i2}
ightarrow A_{
m u1}
ightarrow A_{
m u2}
ightarrow R_{
m i}
ightarrow R_{
m o}$

放大电路的频率响应

几个概念: $A_{\mathrm{um}}, f_{\mathrm{L}}, f_{\mathrm{H}}, BW = f_{\mathrm{H}} - f_{\mathrm{L}}$

三极管

高频时, $\dot{eta}=rac{eta_0}{1+\mathrm{j}rac{f}{f_eta}},\dot{lpha}=rac{lpha_0}{1+\mathrm{j}rac{f}{f_lpha}}$

• 共射截止频率: f_{β}

• 特征频率: $f_{
m T}=eta_0 f_eta$

• 共基截止频率: $f_{\alpha}=(1+eta_0)f_{eta}$

(共射的) 两种耦合方式

阻容耦合: $\dot{A}_{
m us} pprox rac{\dot{A}_{
m usm}}{(1-{
m j} rac{f_{
m l}}{f})(1+{
m j} rac{f}{f_{
m H}})}$

直接耦合: $\dot{A}_{\mathrm{us}} = rac{\dot{A}_{\mathrm{usm}}}{1+\mathrm{j}rac{f}{f_{\mathrm{H}}}}$

功率放大电路 (功放)

前面的放大电路与功放的不同:

- 电路的要求: 比较大的电压放大倍数 vs 足够的输出功率, 较高的效率
- 主要技术指标: 电压放大倍数、输入电阻、输出电阻 vs 最大输出功率、效率
- 分析方法: 图解法、微变等效电路 vs 图解法

分类:

- 电路结构
 - o OTL 互补对称功放
 - o OCL 互补对称功放
- 功率三极管导电角(一个周期内多大的范围导通)

○ 甲类: 360°, 波形好、管耗大效率低

o 乙类: 180°, 波形严重失真、管耗小效率高

 \circ 甲乙类: $180^{\circ} \sim 360^{\circ}$, 居中

射极输出器

- 输出电阻小,带负载能力强
- 对负向输入电压的跟随范围小
- 效率低, 若试图降低 Q 点, 会引起截止失真

互补对称式功率放大电路

OTL 和 OCL

- OTL 乙类: *i*_L **交越失真**
- OTL 甲乙类
 - 。 两种 OTL 在静态时 $U_C=V_{
 m CC}/2$
- OCL 甲乙类 (省去了大电容,改善了低频响应,有利于实现集成化)
 - o 静态时, $I_{\rm L}=0$
 - \circ 调节 R_1, R_2 做到 $U_{\mathrm{O}} = 0$
 - 出现交越失真则增大 R
 - 。 R 开路或 D_1,D_2 中有接反或开路,则三极管会烧毁;计算: $2V_{\rm CC}=I_{\rm B}(R_1+R_2)+2U_{\rm BEQ},P=V_{\rm CC} imes I_C$

极限参数

以 OCL 为例,对于 OTL,做代换 $V_{
m cc}
ightarrow rac{V_{
m cc}}{2}$ 即可。

- 1. 最大输出功率 $U_{
 m cem}=V_{
 m CC}-U_{
 m CES}$, $I_{
 m cm}=rac{U_{
 m cem}}{R_{
 m L}}$, $P_{
 m om}=rac{1}{2}U_{
 m cem}I_{
 m cm}$
- 2. 效率 $P_{
 m V}=rac{2}{\pi}V_{
 m CC}I_{
 m cm}$, $\eta=rac{P_{
 m om}}{P_{
 m V}}$
- 3. 功率三极管
 - 1. 集电极最大允许电流 $I_{\mathrm{CM}} > rac{V_{\mathrm{CC}} U_{\mathrm{CES}}}{R_{\mathrm{L}}}$
 - 2. 集电极最大允许反向电压 $U_{\mathrm{(BR)CEO}} > 2V_{\mathrm{CC}} |U_{\mathrm{CES2}}|$
 - 3. 集电极最大允许耗散功率 $P_{ ext{CM}} > rac{V_{ ext{CC}}^2}{\pi^2 R_{ ext{L}}}$
- 4. 欲得最大功率所需输入的电压有效值 $U_{
 m i}=rac{U_{
 m cem}}{\sqrt{2}}$

复合管

- 保证电流方向合理
- 前面那个管的类型就是所得复合管的类型
- 两个相同类型的管: $eta=eta_1eta_2$, $r_{
 m be}=r_{
 m be1}+(1+eta_1)r_{
 m be2}$
- 两个不同类型的管: $eta=eta_1eta_2$, $r_{
 m be}=r_{
 m be1}$

(a) NPN型

集成运算放大电路(集成运放)

四个部分:偏置电路(为各放大级提供偏置电流) \rightarrow 差分放大输入(克服零点漂移) \rightarrow 中间级(电压放大) \rightarrow 输出级(功率放大)

偏置电路

• 镜像电流源: $I_{\mathrm{B1}}=I_{\mathrm{B2}}$

• 比例电流源: $U_{\mathrm{B1}}=U_{\mathrm{B2}}, U_{\mathrm{BE1}}=U_{\mathrm{BE2}}$

• 微电流源: $R_{
m e2}=rac{26{
m mV}}{I_{
m C2}}{
m ln}\,rac{I_{
m C1}}{I_{
m C2}}$

差分放大输入

还是要进行静态分析和动态分析!

- 牺牲一个放大管的放大倍数换取对零点漂移的抑制(但不理想),单端输出时失去对零点漂移的抑制能力
- 差模輸入: $u_{\mathrm{Id}}=|u_+-u_-|$, 共模輸入: $u_{\mathrm{Ic}}=(u_++u_-)/2$
- 差模电压放大倍数: $A_{
 m d}=rac{\Delta u_{
 m O}}{\Delta u_{
 m Id}}$,共模电压放大倍数: $A_{
 m d}=rac{\Delta u_{
 m O}}{\Delta u_{
 m Ic}}$
- 共模抑制比: $K_{
 m CMR}=20\lg\left|rac{A_{
 m d}}{A_{
 m c}}\right|=20\lg\left|rac{\Delta u_{
 m Ic}}{\Delta u_{
 m Id}}\right|$
- 根据对称性,分析微变等效电路的时候只需要分析半个电路,但是注意输入电阻、输出电阻需要 ×2

基本形式差分放大电路

- $\bullet \quad A_{\rm d} = A_{\rm u1}$
- $A_{\rm c} = 0$

长尾式差分放大电路

• 静态分析注意两个交流源接地

恒流源式差分放大电路

• 交流通路与长尾式的相同

把双入双出作为标准,

- 单入啥也不影响
- 单出, 差模电压放大倍数 和 输出电阻 变为一半

中间级

目标:大的电压放大倍数、输入电阻、输出电流

- 1. 用(镜像)电流源替代共射的 $R_{\rm C}
 ightarrow$ 大的电压放大倍数
- 2. 复合管代替单管 \rightarrow 大的电压放大倍数、输入电阻
- 3. 差放替代单管, 单端输出

输出级

目标:大的输出功率、输入电阻,小的输出电阻;不要求大的电压放大倍数,应减小失真,应有过载保护

- 1. 互补对称电路: 甲乙类 OCL 或 OTL 互补对称电路
- 2. 过载保护电路

放大电路中的反馈

反馈的判断

- 什么事"输入信号": 集成运放的两个输入端点
- 什么事"集成运放": 就是上一章中的东西,常见的有:理想运放(三角形)的正负端点,三极管的 B 和 E,差放的两个输入

所谓的瞬时极性法需要记住:

- 1. 三极管 B 进, BE 同号, BC 反号; C 进, CE 同号;
- 2. 理想运放 + 出同号, 出反号;
- 3. 差放的两个 C 反号(跷跷板……)。

怎么判断正反馈还是负反馈?

• i和f在同端同号或异端异号,则为正反馈;

怎么判断电压反馈还是电流反馈?

• 将 U_0 置零, 若反馈消失, 则为电压反馈

怎么判断串联反馈还是并联反馈?

- 千万别去理解所谓的"以电压形式求和"和"以电流形式求和"……
- 反馈接到了输入端, 就是并联反馈

有两个撅喵的概念叫做"虚短"和"虚断",这是反馈概念的精髓,但请注意必须是深度负反馈。

有个愚蠢的概念叫做"虚地",不要去理解它,这是一个冗余的概念!

四种组态关注的量

- 不要尝试去记住这些东西, 而是去观察它们的名字和式子的形式
- 1. 电压串联负反馈: $\dot{A}_{\mathrm{uu}}=rac{\dot{U}_{\mathrm{o}}}{\dot{U}_{\mathrm{i}'}}, \dot{F}_{\mathrm{uu}}=rac{\dot{U}_{\mathrm{f}}}{\dot{U}_{\mathrm{c}}}$
- 2. 电压并联负反馈: $\dot{A}_{\mathrm{ui}} = \frac{\dot{U}_{\mathrm{o}}}{\dot{t}_{\mathrm{i}'}}, \dot{F}_{\mathrm{iu}} = \frac{\dot{I}_{\mathrm{f}}}{\dot{U}_{\mathrm{o}}}$
- 3. 电流串联负反馈: $\dot{A}_{\mathrm{iu}}=rac{\dot{I}_{\mathrm{o}}}{\dot{U}\mathrm{i}'}, \dot{F}_{\mathrm{ui}}=rac{\dot{U}_{\mathrm{f}}}{\dot{I}_{\mathrm{o}}}$
- 4. 电流并联负反馈: $\dot{A}_{ii}=rac{\dot{f}_o}{\dot{f}_i{}'}, \dot{F}_{ii}=rac{\dot{f}_f}{\dot{f}_o}$

这个东西似乎没有什么用处,按说它们可以方便电压放大倍数的计算,但是实际上电压放大倍数总是可以利 用虚短和虚断轻松得到

一般表达式

闭环放大倍数 $\dot{A}_{
m f}=rac{\dot{A}}{1+\dot{A}\dot{F}}$

对放大电路性能的影响

- 1. 放大倍数下降为原来的 $\frac{1}{1+\dot{A}\dot{F}}$, 放大倍数稳定性提高了 $\left(1+\dot{A}\dot{F}\right)$
- 2. 减小放大电路的非线性失真、抑制干扰
- 3. 上限截止频率提高 $\left(1+\dot{A}\dot{F}
 ight)$,下限截止频率变为原来的 $\frac{1}{1+\dot{A}\dot{F}}$
- 4. 输入电阻: 串联反馈增大、并联反馈减小(形象地理解, 串联反馈从输入端来看像是一个放大电路和另一个东西串联)
- 5. 输出电阻: 电压反馈减小, 电流反馈增大(形象地理解, 电压反馈从输输出端来看像是一个放大电路和另一个东西并联)
- 6. 非要说的话, 直流负反馈稳定静态工作点
- 7. 最后是一句废话: 电压负反馈稳定输出电压, 电流负反馈稳定输出电流

(深度负反馈) 计算闭环电压放大倍数

别的都没用,你就记住: $U_{+}=U_{-}, I_{+}=I_{-}=0$ 就完事了

负反馈的自激振荡

条件

 $\dot{A}\dot{F}=-1$ 或 $\left|\dot{A}\dot{F}
ight|=1$ 且 $rg\dot{A}\dot{F}=\pm(2n+1)\pi$,实际上是 $\left|\dot{A}\dot{F}
ight|\geq1$ 的时候也可以

运算电路(估计是这里会考电路的设计)

1. 反相比例:输入电阻小、输出电阻小

幻灯片里是给你一个波特图问你能不能产生自激振荡。

2. 同相比例:输入电阻大、输出电阻小

3. 差分比例:输入电阻小、输出电阻小

- 4. 反相输入求和
- 5. 同相输入求和
- 6. 积分电路:波形变换、移相(具体计算时注意电容两端电压可能饱和)
- 7. 微分电路

反相比例和同相比例中 $R_2=R_1//R_{
m F}$,差分比例中 $R_1=R_{1'},R_{
m F}=R_{{
m F}'}$

积分电路 $U_{
m I}/R + C rac{{
m d} U_{
m O}}{{
m d} t} = 0$

信号处理电路

有源滤波器

1. 低通: RC 串联, 从 C 输出 2. 高通: RC 串联, 从 R 输出

3. 带通 = 低通 + 高通

4. 带阻 = 低通 + 高通

No. 22 / 33

RC 串联, R 上是高通, C 上是低通。 $f_{
m T}=rac{1}{2\pi RC}$

- 高通: $f < f_{\mathrm{T}}$, $20\mathrm{dB}$ /十倍频 达到零; $0.1f_{\mathrm{T}} < f < 10f_{\mathrm{T}}$, 90° 开始 -45° /十倍频 达到 0°
- 低通: $f > f_{\rm T}$,零开始 $-20{
 m dB}/+$ 倍频; $0.1f_{\rm T} < f < 10f_{\rm T}, \, 0^\circ$ 开始 $-45^\circ/+$ 倍频 达到 -90°

电压比较器

• 电压比较器工作在理想运放的非线性区

按照上交郑老师的说法,先分析临界点,再分析两边的情况。实际上,应该记住两边的趋势(看清楚是不是负端输入),然后直接看临界点($U_+=U_-$)

- 1. 过零比较器(输入负输出正)、单限比较器(抗干扰能力差)
- 2. 滞回比较器:算临界点的时候不用纠结具体的过程, $\pm U_{
 m Z}$ 各算一个就行了
- 3. 双限比较器: 临界点就是两个参考电压

注意,为了避免混淆,电压比较器我只贴出了反向端输入的(除了双限比较器)。

波形发生电路

分析方法

条件

• 起振: $\left|\dot{A}\dot{F}\right|>1$ 且 $arphi_{
m A}+arphi_{
m F}=\pm 2n\pi$

• 稳幅: $\left|\dot{A}\dot{F}\right|=1$ 且 $arphi_{
m A}+arphi_{
m F}=\pm 2n\pi$

如何判断给定电路是否满足相位条件: 瞬时极性法

断开反馈回路,加入输入信号 $\dot{U}_{\rm i}$,分析此时 $\dot{U}_{\rm i}$ 和 $\dot{U}_{\rm f}$ 的相位关系,若输入的和反馈回来的同极性则满足相位条件

- 注意, φ_A 只是放大电路的相位差, 往往此时放大电路事一个理想运放, 则 $\varphi_A = 0$ or 180°
 - 如果是三极管,则通常是共基(E 输入, C 输出)或共射(B 输入、C 输出)
 - 判断是共基还是共射: 反馈接到 E (B) 就是 共基 (共射)
 - 。 先判断是否满足相位条件($arphi_A+arphi_F$), 再判断 $arphi_A$,最后算 $arphi_F$
- $\dot{U}_{\rm f}$ 说的只是正反馈部分
- 这只是相位条件,判断完后不要得意忘形,还要判断幅值条件。你可能会说,我理想运放放大能力很强,幅值条件怎么会不满足?请注意,在深度负反馈情况下,放大电路的放大系数由负反馈系数决定
- 瞬时极性法里面一些电压关系的背后是电流,从这一点出发有时候很清楚

电路组成

放大 \rightarrow 选频 \rightarrow 正反馈 \rightarrow 稳幅

RC 振荡(低频)

RC 串并联网络

- 事一个带通滤波器
- 从 RC 并联那里输出
- $\dot{F}=rac{1}{3+\mathrm{j}\left[\omega CR-rac{1}{\omega CR}
 ight]}\Rightarrow\omega=\omega_0\equivrac{1}{RC}$ 时 $\dot{F}_{\mathrm{max}}=rac{1}{3}$, $arphi_F=0$
- $-90^{\circ} < \varphi_{\rm F} < 90^{\circ}$

文氏电桥

- RC 串并联网络正反馈 从 + 输入端输入, 作用: 选频
- 电阻串联负反馈 从 输入端输入,作用:改善振荡波形、减小放大电路对选频特性的影响、提高振荡电路的带负载能力
- $\bullet \quad f_0 = \frac{1}{2\pi RC}$
- 起振 $\left|\dot{A}\dot{F}
 ight|>1\Rightarrow R_{\mathrm{F}}>2R'$ (也就是说反馈电阻、离地远的那个电阻更大!)

 $(R_1 = R_2, C_1 = C_2)$

RC 移相式振荡电路

• 一节 RC 电路的移相范围事 $0\sim90^\circ$

LC 振荡(高频)

LC 并联电路

- ullet $f_0=rac{1}{2\pi\sqrt{LC}}$,想清楚谁是 L,谁是 C,因为可能存在电感的串并联、电容的串并联、互感
- $Q = \frac{\omega_0 L}{R}$

- 1. 变压器反馈式
- 2. 电感三点式
- 3. 电容三点式
- 可能是: $f=rac{1}{2\pi\sqrt{(L_1+L_2+2M)C}}, f=rac{1}{2\pi\sqrt{Lrac{C_1C_2}{C_1+C_2}}}, f=rac{1}{2\pi\sqrt{LC_3}}$

直流电源

四个部分: 变压(幅值变小) \to 整流(有正有负变为全正) \to 滤波(过滤脉动值、提高平均值) \to 稳压(使得负载变化时电压保持稳定)

单相整流

直接利用二极管的单向导电性整流。

1. 单相半波整流电路: 一个二极管

2. 单相全波整流电路: 两个二极管

3. 单相桥式整流电路: 四个二极管

模拟电路复习手稿

	输出直流电压 $U_{ m O(AV)}$	脉动系数 $S = rac{U_{ m Olm}}{U_{ m O(AV)}}$	二极管正向平均电流 $I_{ m D(AV)}$	二极管最大反向峰值电 压 $U_{ m RM}$
半波	$0.45U_2$	1.57	I_0	$\sqrt{2}U_2$
桥式	$0.9U_2$	0.67	$I_0/2$	$\sqrt{2}U_2$

缺单相半波整流电路和单相全波整流电路的电路图

滤波

- 1. 电容滤波(负载并上电容)
 - 。 桥式整流时: $R_{
 m L}C \geq (3\sim 5)rac{T}{2}, U_{
 m O(AV)}pprox 1.2U_2$
 - ο 小电流负载
 - 整流二极管中将流过较大的冲击电流

	负载开路(滤波 时电压不下降)	正常工作(整流 + 滤波)	电容开路 (仅整 流)	一个二极管开路	一个二极管开路 + 电 容开路(半波整流)
$rac{U_{ m O(AV)}}{U_2}$	$\sqrt{2}$	1.2	0.9	$0.6\sim0.9$	0.45

- 2. 电感滤波 (负载串上电感)
 - o 直流流过电感没有损失,交流电源全部落在电感上
 - o 大电流负载
 - 整流二极管冲击电流小
- 3. 复式滤波
 - 1. LC 滤波
 - 2. LC ∏ 型滤波: 在桥式整流和 LC 滤波之间并一个电容

3. RC - Π 型滤波: LC - Π 型滤波 的电感换成电阻

	$U'_{ m O(AV)}/U_2$	使用场合	整流二极管冲击电流	外特性 (?)
电容滤波	1.2	小电流	大	软
电感滤波	0.9	大电流	小	硬
LC 滤波	0.9	适应性较强	小	硬
LC - II 型滤波	1.2	小电流	大	软
RC - II 型滤波	1.2	小电流	大	更软

如何记忆?记住前两列和前两行

