Formuleblad Statistiek deel 1 (2024-2025)

Gegeven is een steekproef met n uitkomsten x_1, x_2, \ldots, x_n .

Steekproefgemiddelde:

$$\overline{x} = \frac{\sum_{i} x_i}{n} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Steekproefvariantie:

$$s^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n}$$
 (optie 1)

$$s^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n}$$
 (optie 1)
$$s^{2} = \frac{\left(\sum_{i} x_{i}^{2}\right) - n \cdot \overline{x}^{2}}{n} = \frac{(x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}) - n \cdot \overline{x}^{2}}{n}$$
 (optie 2)

Rekenregels kansrekening:

$$P(A \text{ of } B) = P(A) + P(B) - P(A \text{ en } B)$$
 (optelregel)
$$P(B) = 1 - P(\text{niet } B)$$
 (complement regel)
$$P(A \mid B) = \frac{P(A \text{ en } B)}{P(B)}$$
 (conditionele kansen)

Discrete en continue kansverdelingen:

	Discrete kansvariabelen	Continue kansvariabelen
Uitkomstenruimte:	Eindig / aftelbaar oneindig	Overaftelbaar oneindig
Toepassingen:	Tellen / categoriseren	Meten
Kansbegrip:	\mid Kansfunctie $p(k) = P(X = k)$	\mid Kansdichtheidsfunctie $f(x)$
CDF:	$\mid F(k) = P(X \le k) = \sum_{\ell:\ell \le k} p(\ell)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$
Verwachtingswaarde:	$ E[X] = \sum_{k} k \cdot P(X = k) $	$ E[X] = \int x \cdot f(x) dx $
Variantie:	$ \operatorname{Var}(X) = \sum_{k} (k - E[X])^2 \cdot P(X = k)$	$ \operatorname{Var}(X) = \int (x - E[X])^2 \cdot f(x) dx$
Standaardafwijking:	$\sigma(X) = \sqrt{\operatorname{Var}(X)}$	$\sigma(X) = \sqrt{\operatorname{Var}(X)}$

Verwachtingswaarde en variantie van veelgebruikte kansverdelingen:

Verdeling	Kans(dichtheids)functie	CDF	E(X)	Var(X)		
Discreet						
Uniform (a, b)		$F(k) = \begin{cases} 0 & x < a \\ \frac{k-a+1}{b-a+1} & a \le k < b \\ 1 & k \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$		
Binomiaal (n, p)	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$F(k) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$	np	np(1-p)		
Poisson(λ)	$p(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	$F(k) = \sum_{i=0}^{k} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$	λ	λ		
Continuous						
Uniform(a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elders.} \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
Exponentieel(λ)	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		

Veelgebruikte functies op de grafische rekenmachine

Kansverdeling van X	Type vraag	TI-84 Plus	Casio
Continu (willekeurig)	$P(a \le X \le b)$	$\int_{a}^{b} f(x) dx$	$\int_{a}^{b} f(x) dx$
Binomiaal(n,p)	$P(X = k)$ $P(X \le k)$		
$N(\mu,\sigma)$	$P(a \le X \le b)$ Wat is g als $P(X \le g) = p$?		

• Continue kansvariabelen met kansdichtheidsfunctie *f*:

$$\int_{a}^{b} f(x) dx = \mathsf{fnInt}(f(x); x; a; b)$$

- Binomiaal verdeelde kansvariabele $X \sim \text{Binomiaal}(n; p)$:
 - $P(X = k) = \mathsf{binompdf}(n; p; k)$ en $P(X \le k) = \mathsf{binomcdf}(n; p; k)$
- Normaal verdeelde kansvariabele $X \sim N(\mu; \sigma)$:

-
$$P(a \le X \le b) = \text{normalcdf}(a; b; \mu; \sigma) \text{ en } P(X \le g) = p \to g = \text{invNorm}(p; \mu; \sigma)$$

- Poisson verdeelde kansvariabele $X \sim \text{Poisson}(\lambda)$:
 - $P(X = k) = poissonpdf(\lambda; k)$ en $P(X \le k) = poissoncdf(\lambda; k)$

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Centrale limietstelling: Gegeven n kansvariabelen X_1, X_2, \ldots, X_n die onderling onafhankelijk zijn en dezelfde kansverdeling hebben met een verwachtingswaarde μ en standaardafwijking σ , dan geldt (bij benadering) dat

- de som $\sum X=X_1+X_2+\ldots+X_n$ normaal verdeeld is met verwachtingswaarde $n\cdot\mu$ en standaardafwijking $\sqrt{n}\cdot\sigma$.
- het gemiddelde $\overline{X}=\frac{X_1+X_2+...+X_n}{n}$ normaal verdeeld is met verwachtingswaarde μ en standaardafwijking $\frac{\sigma}{\sqrt{n}}$.