Music recommendation System - Spotify

Collaborative Filtering and Feedback System

Table of contents

- Introduction
- Methods of recommendation
- Collaborative Filtering in Spotify
- Feedback System
- Conclusion
- References

The ideal music recommender

- maximize user's satisfaction
- Recommend songs to hit top songs of user's favourite list
- Nowadays streaming music provides best services such as Soundcloud, Deezer, Spotify

Spotify

- Uses various ways of recommendation
- 100 mio. monthly active users with millions of songs and playlists
- Three main services for recommendation and a feedback system

Spotify track

Spotify track

```
"danceability" : 0.560,
"energy" : 0.527,
"key" : 2,
"loudness" : -9.783,
"mode" : 1,
"speechiness" : 0.0374,
"acousticness" : 0.516,
"instrumentalness" : 0.0000240,
"liveness" : 0.156,
"valence" : 0.336,
"tempo" : 93.441,
"type" : "audio_features",
"id" : "2z7D7kbpRcTvEdT71tdiNQ",
"uri" : "spotify:track:2z7D7kbpRcTvEdT71tdiNQ",
"track_href" : "https://api.spotify.com/v1/tracks/2z7D7kbpRcTvEdT71tdiNQ",
"analysis url" : "http://echonest-analysis.s3.amazonaws.com/TR/-ENytQjtFbuv9XJtXVpEI2tp9PXqI7k
"duration ms" : 168720,
"time signature" : 4
                                                                           Mithun Madathil
```

1. Content-based recommendation

- Without user's evaluation or ratings
- Uses machine language to acquire information
- Algorithms: decision trees, neural networks and vector-based methods

2. Knowledge-based recommendation

- Based on demands and preferences of user
- Predictions decided by functions and features of objects

3. Collaborative Filtering - KNN

- Uses K-nearest neighbour (KNN) technique
- Music taste of users calculates distance between different users
- Search for neighbour users who share similar interest in music and recommend content
- Daily life: friend's recommendation

Categories:

Memory- based	Model-based	Hybrid
Predict items based on previous ratings	Uses algorithms and models preferences	Combining both models and outperforms them

[2]

Collaborative Filtering - Flowchart

[1]

Collaborative Filtering - Approach (1)

Neighborhood Models:

$$\hat{r}_{ui} = \frac{\sum_{j \in S^{k}(i;u)} s_{ij} r_{uj}}{\sum_{j \in S^{k}(i;u)} s_{ij}}$$
[4]

Minimize cost function:

$$\min_{x_{\star},y_{\star}} \sum_{u,i} c_{ui} (p_{ui} - x_{u}^{T} y_{i})^{2} + \lambda \left(\sum_{u} ||x_{u}||^{2} + \sum_{i} ||y_{i}||^{2} \right)$$
[4]

Mithun Madathil

Collaborative Filtering – Approach (2)

- 1. Initialize user & item vectors
- 2. Fix item vectors and solve for optimal user vectors
- 3. Fix user vectors and solve for optimal item vectors
- 4. Repeat till convergence

$$x_u = (Y^T C^u Y + \lambda I)^{-1} Y^T C^u p(u)$$
 $y_i = (X^T C^i X + \lambda I)^{-1} X^T C^i p(i)$

In Spotify: Discover Weekly

Playlist

My discover weekly playlist

Feedback System

Theory of general feedback system [1]

Mithun Madathil

Results in Spotify

Frequency of pressing "like" when users find songs matching their taste [1]

Mithun Madathil

Conclusion – Collaborative Filtering

Advantages	Disadvantages
Evaluates information that is difficult to be analysed	Cold-start problem
Avoids low accuracy by matching items with neighbourhood users	Unusual taste leads to poor recommendations
Provides users with not similar recommendations but based on taste	Personalization weakened with popular songs recommended
	Big amount of data needed

Conclusion – feedback system improvements

- Time delay of correcting measures
- Requirements, features and development for every system
- Users moods are not important which leads into the inaccuracy problem

Papers

- [1]:Exploring drawbacks in music recommendation systems
- [2]:A survey of music recommendation systems and future perspectives
- [3]:A model-based music recommendation system for individual users and implicit user groups
- [4]:Collaborative Filtering for implicit feedbacks

Sources

- [5]: https://developer.spotify.com/spotify-echo-nest-api
- [6]: https://qz.com/571007/the-magic-that-makes-spotifys-discover-weekly-playlists-so-damn-good

Time for your questions!