GEO1003 - Shared Notes

Master Geomatics Students

2024-12-07

Contents

Introduction	3
Example	3
Introduction	3
Markdown Basics	3
Resources and Helpers	3
Comments	4
Headers	4
Bold and Italic	4
Lists	5
Links	5
Images	5
Blockquotes	6
Code	6
Tables	6
Math	6
Definition Blocks	7
Definition Blocks + Lists	7
Empty Section	7
How does GNSS work?	7
Introduction	7
GPS segments	8
Radio Signal	8
Initialisation	8
Pseudorange Measurement	g
Carrier Phase Measurement	9
Jamming and Spoofing	g
GPS Jamming	9
GPS Spoofing	9
GNSS performance	9
Introduction	g
Error Sources	g
Pseudorange Calculation	g
Ionosphere Delay	10

Accuracy and Precision														
Dilution of Precision														
Availability, Continuity and Integrity														
Availability														
Continuity														
Integrity														
PPP-RTK														
Abbreviations														
PPP														
RTK														
PPP-RTK														
Comparing RTK, PPP, and PPP-RTK														
DGNSS														
DGNSS	•	•		•	•	•	•	•	•		•	•	•	•
NSS in the built environment (outdoor, indoor	ar	nd	in	be	etv	vee	en.)						
Introduction								-						
Multipath														
Urban Canyon														
Shadow Matching														
Shadow Matching	•	•		•		•	•	•	•	•	•	•	•	•
RS														
Introduction														
Coordinate Systems														
Coordinate Reference Systems														
Geographic Coordinate Reference Systems														
Projected Coordinate Reference Systems .														
Linear Reference Systems														
· · · · · · · · · · · · · · · · · · ·														
Terrestrial Reference Systems and Frames														
Datum and Transformations														
Transformations and conversions														
Datums														
Map Projections														
RDNAP	•	•		•		•	•	•			•	•	•	•
i-Fi-monitoring / Fingerprinting														
Introduction														
Wi-Fi-Based Approaches														
Wi-Fi Monitoring														
Wi-Fi Fingerprinting														
Radio Signal Based Techniques														
Received Signal Strength (RSS)														
Time of Arrival (ToA) \dots														
Time Difference of Arrival (TDoA)														
Angle of Arrival (AOA)														
Path-Loss														
Fine Timing Measurement (FTM)														
Radio Frequency Identification (RFID) $$														
Hybrid and Other Techniques														
Trilateration														
Inertial Navigation Systems (INS)														
Visual Based Indoor Localisation														

Isovists	14
Performance Metrics	14
Position	14
Location	14
Yield	14
Consistency	14
Overhead	14
Latency	14
Power Consumption	14
Roll-Out and Operating Costs	14
ocation awareness and privacy	14
Introduction	14
Spaces	14
Indoor Space	14
Semi-Indoor Space	14
Semi-Outdoor Space	14
Outdoor Space	14
IndoorGML	14

Introduction

This is the introduction to the notes.

Example

Introduction

The goal of this chapter is just to demonstrate how things should be organized. It will be removed from the notes in the end.

Markdown Basics

Resources and Helpers

A nice cheat sheet about Markdown can be found at this link: https://www.markdownguide.org/cheat-sheet/.

On VS Code, there are some nice extensions that can help you write Markdown files:

- Markdown All in One to provide useful shortcuts and commands
- markdownlint to properly format your Markdown files

Feel free to ask me if you have questions about Markdown.

Comments

```
This <!--This is a comment.--> is <!--
Comments are not rendered.
They can take multiple lines
-->
a
sentence.
```

This is a sentence.

Headers

```
<!-- Comment the fist headers to avoid messing up the outline of this file -->
<!--
# Level 1

## Level 2

### Level 3
-->

#### Level 4

##### Level 5

###### Level 6
```

Level 4

Level 5 Level 6

Bold and Italic

```
- Normal text
- **Bold text**
- _Italic text_
- **_Bold and italic text_**
```

- Normal text
- Bold text
- Italic text
- Bold and italic text

Lists

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Links

```
[Example link] (https://www.example.com)
```

Example link

Images

```
![Example image](../../images/example.jpg){ width="250" }
```


Figure 1: Example image

Blockquotes

```
> This is a blockquote.
```

This is a blockquote.

Code

```
Inline code: `print("Hello, World!")`
Code block:
    ``python
def hello_world():
    print("Hello, World!")

Inline code: print("Hello, World!")
Code block:
def hello_world():
    print("Hello, World!")
```

Tables

Table: A simple table

Table 1: A simple table

Header 1	Header 2
Cell 1	Cell 2
Cell 3	Cell 4

Math

```
Inline math: $x^2$ is the square of $x$.

Block math: $$$ \left( \frac{0^{-x^2}}{dx} = \frac{\sqrt{\pi^2}}{2} \right) $$
```

Inline math: x^2 is the square of x.

Block math:

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Definition Blocks

Lorem ipsum dolor sit amet

: Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.

Cras arcu libero

: Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Lorem ipsum dolor sit amet Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.

Cras arcu libero Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Definition Blocks + Lists

- **Lorem ipsum dolor sit amet**
 - : Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.
- **Cras arcu libero**
 - : Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.
 - Lorem ipsum dolor sit amet Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.
 - Cras arcu libero Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Empty Section

An other section that is empty.

How does GNSS work?

Introduction

GPS (Global Positioning System), also known as NAVSTAR (NAVigation Satellite Time And Ranging) had its first satellite launched in 1978.

GPS segments

The GPS system consists of three segments:

- 1. Space segment (satellites with atomic clocks)
- 2. Control segment (ground stations for clock offsets)
- 3. User segment (receivers)

Radio Signal

The GPS radio signal contains:

- the **L-band carrier frequency** between 1 and 2 GHz
- the Pseudo Random Noise (PRN, also called the spreading code), unique to each satellite, publicly available
- the navigation message containing the satellite orbit and clock information

Figure 2: GPS L1 CA-signal (scale is not accurate)

Initialisation

When starting, GPS receivers try to find a particular GPS satellite on *each of their channels* (tens to hundreds). This is done by **overlaying the received signal** with a replica of the **spreading code** and then shifting it until correlation shows a maximum (best fit, or match).

Pseudorange Measurement

The **pseudorange** $p_{r,s}$ is calculated by multiplying the travel time $\tau_{r,s}$ by the speed of light c:

$$p_{r,s} = c \cdot \tau_{r,s}$$
 where $\tau_{r,s} = t_r - t_s$

Carrier Phase Measurement

Carrier Phase Measurement:

- Measures **fractional phase difference** between the received *carrier wave* from the satellite and a locally generated *replica*.
- Provides a **very precise distance** measure (satellite to receiver)
- Needs to be **initialized** by finding the initial number of carrier wave cycles.
- Is much more precise than pseudorange code measurement. thanks to the **carrier period** being **much smaller** than code chip duration (in L1 CA-code signal, 1540 carrier periods fit in one PRN spreading code chip).

Jamming and Spoofing

GPS Jamming

GPS Spoofing

GNSS performance

Introduction

Error Sources

Pseudorange Calculation

Multiple issues affect the calculation of the pseudorange:

- satellite clock offset (known).
- receiver clock offset (unknown).
- ionosphere delay (unknown).
- other errors, such as *multipath* (unknown).

The calculation is very sensible since $c \approx 3 \times 10^8 \,\mathrm{m/s}$, and a **1** μs error will cause a **300** m error in the calculated distance.

Ionosphere Delay

Ionospheric delay:

- Is due to **free electrons** in the ionosphere.
- Is highly variable (depends on **time** and **space**).
- Ranges from a few meters to hundreds of meters.
- Is maximum near geomagnetic equator, around local noon and during solar maxima.
- Is proportional to 1/frequency².
- Can be estimated using two frequencies. This is why satellites emit at **L1** (1575.42 MHz) and **L2** (1227.60 MHz).

Accuracy and Precision

The quality of the measurement can be assessed through the carrier-to-noise-density ratio C/N_0 (signal strength).

The precision of the measurement depends on the method used:

Table 2: Precision of GNSS measurements

	Pseudorange	Carrier Phase						
Precision	Few meters to few decimeters	Few centimeters to millimeter						

Dilution of Precision

Availability, Continuity and Integrity

Availability

Continuity

Integrity

PPP-RTK

Abbreviations

- SV: space vehicles or orbiting space vehicles
- RTK: Real-Time Kinematic
- **PPP**: Precise Point Positioning
- PPP-RTK: Hybrid of PPP and RTK
- CORS: Continuously Operating Reference Station
- NRTK: Network RTK
- OSR: Observation State Representation
- SSR: State Space Representation

PPP

- **PPP** achieves decimetre-level or better accuracy by leveraging corrections transmitted via satellite or the internet.
- It utilises the SSR message format for efficient data transmission.
- **PPP** is suitable for global applications due to its independence from regional base stations.
- The primary limitation of **PPP** is its long convergence time, typically ranging from 5 to 30 minutes.
- **PPP** primarily corrects for orbit errors, clock errors, and biases to achieve its positioning solution.
- **PPP** offers a trade-off between accuracy and coverage, providing moderate accuracy over a wide area.
- Variations like PPP-AR and A-PPP exist, offering enhanced accuracy or specialized capabilities.

RTK

- RTK provides centimetre-level accuracy, achieving the highest precision among the discussed technologies.
- RTK relies on the OSR message format, which requires a two-way communication channel between the base station and the rover.
- The coverage area of **RTK** is limited to a short range (30-50 km) due to signal degradation with distance.
- RTK boasts a near-instantaneous convergence time, typically under 5 seconds.
- RTK corrects for various errors, including orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay.
- RTK is widely adopted in applications demanding high accuracy within a limited area, such as surveying and agriculture.
- Developments like Network RTK (NRTK) address range limitations by incorporating networks of base stations.

PPP-RTK

- **PPP-RTK** combines the strengths of PPP and RTK, offering high accuracy, global coverage, and fast convergence.
- **PPP-RTK** achieves centimetre-level accuracy comparable to RTK while offering global coverage.
- **PPP-RTK** employs the efficient **SSR** message format, enabling broadcast corrections and lower bandwidth requirements.
- **PPP-RTK** utilises a network of CORS stations for precise atmospheric and clock corrections.
- **PPP-RTK** converges significantly faster than PPP, typically within 1-10 minutes, and potentially seconds under ideal conditions.
- It effectively corrects for orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay, allowing for integer ambiguity resolution.
- **PPP-RTK** gracefully degrades to standard PPP performance when outside the range of the CORS network.

Comparing RTK, PPP, and PPP-RTK

Feature	RTK	PPP	PPP-RTK
Accura	cm-level (up to 1 cm + 1 ppm)	dm-level or better (less than 10 cm)	cm-level, similar to RTK
Covera Area	glimited range (typically 30-50 km from the base station)	Global	Global with graceful degradation to standard PPP outside the range of the CORS network
For-	Space (Observation	SSR (State Space Repre-	SSR (State Space Representation)
mat Transm Chan- nel	Representation) Representation Communication between base	sentation) Corrections delivered via satellite or	Corrections broadcast to users, enabling a large number of users to connect simultaneously
Conver Time	instantaneous (typically less than	the internet Relatively long (typically 5-30 minutes)	Fast (typically 1-10 minutes, potentially within seconds under ideal conditions)
Errors Solved	5 seconds) Orbit errors, clock errors, bias, ionospheric delay, tropospheric	Orbit errors, clock errors, bias	Orbit errors, clock errors, bias, ionospheric delay, tropospheric delay, enabling integer ambiguity resolution
Key Strengt	delay High accuracy, very Masst convergence time	Global coverage, no reliance on local base stations	High accuracy, fast convergence time, global coverage, lower bandwidth requirements compared to RTK, graceful degradation outside CORS range
Key Limi- ta- tions	Limited range, high bandwidth requirements, reliance on local base stations	Long convergence time, lower accuracy compared to RTK	Still requires a CORS network (though less dense than RTK) and may degrade to standard PPP with increasing distance from CORS station

Figure 3: difference in message format and resolved errors

DGNSS

GNSS in the built environment (outdoor, indoor and in between)

Introduction

Multipath

Urban Canyon

Shadow Matching

CRS

Introduction

Coordinate Systems

Coordinate Reference Systems

Geographic Coordinate Reference Systems

Projected Coordinate Reference Systems

Linear Reference Systems

Terrestrial Reference Systems and Frames

Datum and Transformations

Transformations and conversions

Datums

Map Projections

RDNAP

Wi-Fi-monitoring / Fingerprinting

Introduction

Wi-Fi-Based Approaches

Wi-Fi Monitoring

Wi-Fi Fingerprinting