XX 基因通过促进糖酵解促进巨噬细胞 M1 极化

2024-04-15

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要		1
	1.1	生信需求	1
	1.2	结果	1
2	前言		1
3	材料	和方法	1
	3.1	材料	1
	3.2	方法	1
4	分析	结果	2
5	结论		2
6	附:	分析流程	2
	6.1	scRNA-seq	2
		6.1.1 数据来源	2
		6.1.2 细胞聚类与初步注释	3
		6.1.3 巨噬细胞重聚类	3
		6.1.4 巨噬细胞表型 M0、M1、M2 鉴定 Markers	4
		6.1.5 RA 与 Control 的巨噬细胞表型	6
		6.1.6 差异分析	7
	6.2	小鼠基因映射到人类基因	8
	6.3	糖酵解相关基因	9
	6.4	交集基因的表达 (小鼠单细胞数据)	10
Re	efere	nce	11
\mathbf{L}_{i}^{t}	ist	of Figures	
	1	SCSA Cell type annotation	3
	2	Microphage UMAP Clustering	4
	3	Heatmap show the reference genes	5
	4	Macrophage phenotypes type annotation	6
	5	The Phenotypes	6
	6	Intersection of RA M1 up with M1 not M2	8
	7	Intersection of RA M1M2 related with Glycolysis related	10
	8	Violing plot of expression level of the Pparg	11

List of Tables

1	The markers for Macrophage phenotypes annotation	4
2	DEGs of the contrasts	7
3	Mapped genes	8
4	Glycolysis related genes from GeneCards	9

1 摘要

1.1 生信需求

疾病: 类风湿性关节炎 RA 物种: 临床患者或者动物模型都可以细胞: 巨噬细胞

目标: 筛出 XX 基因, XX 基因满足, 1、是糖酵解相关基因 2、与巨噬细胞极化相关 (M1/M2)

设想: XX 基因在 RA 中上调, RA 中 M1 巨噬细胞上调, 其中 XX 基因主要分布在 M1 巨噬细胞而非 M2 巨噬细胞上, XX 基因可能通过促进糖酵解促进巨噬细胞 M1 极化

M1 标志: iNOS, CD11c, CD86 等 M2 标志: CD206, IL-10, TGF-beta 等

1.2 结果

- 首先通过分析 GEO 单细胞数据,鉴定出巨噬细胞不同表型 Fig. 5。
- 该数据集为小鼠来源,鉴定 MO、M1、M2 的小鼠基因 Marker 参考¹, 实际使用的 Marker 见 Tab. 1
- 进行差异分析 (Tab. 2):
 - XX 在 RA 中 M1 巨噬细胞上调: GPI-day25-RA_Macrophage_M1 vs Control_Macrophage_M1
 - 其中 XX 基因主要分布在 M1 巨噬细胞而非 M2 巨噬细胞上: GPI-day25-RA_Macrophage_M1 vs GPI-day25-RA_Macrophage_M2
- 以上两组差异基因交集见 Fig. 6
- 小鼠基因映射到人类 Tab. 3
- 其中糖酵解相关的基因见 Fig. 7
- 筛选到唯一的基因: PPARG (小鼠 Pparg)。其表达特征见 Fig. 8

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE184609**: scRNA-Seq analysis of FACS-sorted live synovial cells isolated from naïve mice (two replicates) or from mice at day 6, 14, or 25 of GPI-induced arthritis (one replicate per time point).

3.2 方法

Mainly used method:

- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)².
- The Human Gene Database GeneCards used for disease related genes prediction³.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- The data in published article of Jablonski et al used for distinguishing macrophage phenotypes $(M0/M1/M2)^1$.

- The R package Seurat used for scRNA-seq processing^{4,5}.
- SCSA (python) used for cell type annotation⁶.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

- 5 结论
- 6 附:分析流程
- $6.1 \quad scRNA-seq$

6.1.1 数据来源

这是一批小鼠的单细胞测序数据。

Data Source ID:

GSE184609

data_processing:

10X Genomics Cell Ranger v3.1

data_processing.1:

Gene-cell UMI matrix was generated for downstream analyses. Low-quality cells were removed based on their unique feature counts and mitochondrial gene content. Data was normalized and log transformed using the default setting of Seurat (version 3.1.4).

data processing.2:

Genome build: mm10

data_processing.3:

Supplementary_files_format_and_content: For each sample, there is one mtx file with filtered gene expressing UMI counts for each sample, one tsv file containing gene names, and one tsv file with cell barcodes.

(上述信息框内容已保存至 Figure+Table/GSE184609-content)

6.1.2 细胞聚类与初步注释

使用 SCSA 对细胞类型注释。

Figure 1 (下方图) 为图 SCSA Cell type annotation 概览。

(对应文件为 Figure+Table/SCSA-Cell-type-annotation.pdf)

Figure 1: SCSA Cell type annotation

6.1.3 巨噬细胞重聚类

Figure 2 (下方图) 为图 Microphage UMAP Clustering 概览。

(对应文件为 Figure+Table/Microphage-UMAP-Clustering.pdf)

Figure 2: Microphage UMAP Clustering

6.1.4 巨噬细胞表型 M0、M1、M2 鉴定 Markers

Table 1 (下方表格) 为表格 The markers for Macrophage phenotypes annotation 概览。

(对应文件为 Figure+Table/The-markers-for-Macrophage-phenotypes-annotation)

注:表格共有 26 行 2 列,以下预览的表格可能省略部分数据;含有 3 个唯一'cell'。

Table 1: The markers for Macrophage phenotypes annotation

cell	markers
Macrophage_M0	Sh2d3c
$Macrophage_M0$	Slc13a3
$Macrophage_M0$	Rcan1
$Macrophage_M0$	Trp53inp1
$Macrophage_M0$	Slc40a1
$Macrophage_M0$	Il16
Macrophage_M1	Cfb

cell	markers
Macrophage_M1	Slfn4
$Macrophage_M1$	H2-Q6
$Macrophage_M1$	Fpr1
Macrophage_M1	Slfn1
$Macrophage_M1$	Ccrl2
Macrophage_M1	Fpr2
Macrophage_M1	Cxcl10
Macrophage_M1	Oasl1

Figure 3 (下方图) 为图 Heatmap show the reference genes 概览。

(对应文件为 Figure+Table/Heatmap-show-the-reference-genes.pdf)

Figure 3: Heatmap show the reference genes

Figure 4 (下方图) 为图 Macrophage phenotypes type annotation 概览。

(对应文件为 Figure+Table/Macrophage-phenotypes-type-annotation.pdf)

macrophage_phenotypes

Figure 4: Macrophage phenotypes type annotation

6.1.5 RA 与 Control 的巨噬细胞表型

随后,根据数据集的来源(RA或Control,将巨噬细胞分类)

Figure 5 (下方图) 为图 The Phenotypes 概览。

(对应文件为 Figure+Table/The-Phenotypes.pdf)

Figure 5: The Phenotypes

6.1.6 差异分析

- XX 在 RA 中 M1 巨噬细胞上调: GPI-day25-RA_Macrophage_M1 vs Control_Macrophage_M1
- 其中 XX 基因主要分布在 M1 巨噬细胞而非 M2 巨噬细胞上: GPI-day25-RA_Macrophage_M1 vs GPI-day25-RA_Macrophage_M2

Table 2 (下方表格) 为表格 DEGs of the contrasts 概览。

(对应文件为 Figure+Table/DEGs-of-the-contrasts.csv)

注:表格共有 355 行 7 列,以下预览的表格可能省略部分数据;含有 2 个唯一 'contrast;含有 335 个唯一 'gene'。

Table 2: DEGs of the contrasts

contrast	p_val	avg_log2FC	pct.1	pct.2	p_val_adj	gene
GPI-day25	1.75831850	2.17770295	0.044	0.385	5.27495551	Adora3
$\label{eq:GPI-day25} \text{GPI-day25}$	2.23900708	9.52901476	0.069	0.427	6.71702126	F7
$\label{eq:GPI-day25} \text{GPI-day25}$	6.04375313	9.97788827	0.093	0.536	1.81312594	Hal
$\label{eq:GPI-day25} \text{GPI-day25}$	1.83819770	13.5930067	0.052	0.641	5.51459312	Cxcl13
$\label{eq:GPI-day25} \text{GPI-day25}$	1.00690808	4.79632080	0.153	0.583	3.02072424	Ifi44
$\label{eq:GPI-day25} \text{GPI-day25}$	2.16444867	8.41136649	0.153	0.87	6.49334601	${\rm Slc} 13 {\rm a} 3$
$\label{eq:GPI-day25} \text{GPI-day25}$	8.87142099	7.46793928	0.081	0.391	2.66142629	Cd4
$\label{eq:GPI-day25} \text{GPI-day25}$	1.52778766	0.95745400	0.141	0.307	4.58336298	Tnfsf14
$\label{eq:GPI-day25} \text{GPI-day25}$	4.80404528	3.93765968	0.169	0.484	1.44121358	Cd79b
$\label{eq:GPI-day25} \text{GPI-day25}$	8.42060311	3.12179649	0.06	0.651	2.52618093	Cd209e
$\label{eq:GPI-day25} \text{GPI-day25}$	8.42067724	1.96704094	0.145	0.786	2.52620317	Adgre4
$\label{eq:GPI-day25} \text{GPI-day25}$	8.24915617	8.83724798	0.161	0.766	2.47474685	Pparg
$\label{eq:GPI-day25} \text{GPI-day25}$	1.31157015	8.50505864	0.153	0.292	3.93471045	F10
$\label{eq:GPI-day25} \text{GPI-day25}$	2.28779328	2.51813054	0.024	0.411	6.86337986	Apoc4
$\label{eq:GPI-day25} \text{GPI-day25}$	2.75634208	4.11075823	0.073	0.755	8.26902626	Il10

Figure 6 (下方图) 为图 Intersection of RA M1 up with M1 not M2 概览。

(对应文件为 Figure+Table/Intersection-of-RA-M1-up-with-M1-not-M2.pdf)

Figure 6: Intersection of RA M1 up with M1 not M2

Intersection:

Ifi44, Adgre4, Pparg, Dppa3, Cadm1, P2ry14, Gm1673, Vwf, Ednrb, Fam43a, Bambi, Slc28a2, Plk2, Rcn3, Rrm1, Ifi204, Bmp2, Gfra2, Spon1, Gstm1

(上述信息框内容已保存至 Figure+Table/Intersection-of-RA-M1-up-with-M1-not-M2-content)

6.2 小鼠基因映射到人类基因

Table 3 (下方表格) 为表格 Mapped genes 概览。

(对应文件为 Figure+Table/Mapped-genes.csv)

注: 表格共有 19 行 2 列,以下预览的表格可能省略部分数据;含有 19 个唯一'mgi_symbol;含有 19 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)

Table 3: Mapped genes

mgi_symbol	hgnc_symbol
Bmp2	BMP2
Ednrb	EDNRB
Dppa3	DPPA3
Spon1	SPON1
Gfra2	GFRA2
Bambi	BAMBI

mgi_symbol	hgnc_symbol
Cadm1	CADM1
Slc28a2	SLC28A2
Rrm1	RRM1
Ifi44	IFI44
Gm1673	C4orf48
Ifi204	MNDA
P2ry14	P2RY14
Rcn3	RCN3
Gstm1	GSTM1
•••	•••

6.3 糖酵解相关基因

The GeneCards data was obtained by querying:

Glycolysis

Restrict (with quotes):

FALSE

Filtering by Score: :

Score > 3

Table 4 (下方表格) 为表格 Glycolysis related genes from GeneCards 概览。

(对应文件为 Figure+Table/Glycolysis-related-genes-from-GeneCards.xlsx)

注:表格共有 118 行 7 列,以下预览的表格可能省略部分数据;含有 118 个唯一'Symbol'。

Table 4: Glycolysis related genes from GeneCards

Symbol	Description	Category	UniProt_ID	GIFtS	GC_id	Score
TIGAR	TP53 Induc	Protein Co	Q9NQ88	45	GC12P038924	22.4
PKM	Pyruvate K	Protein Co	P14618	58	GC15M072199	20.77
HK2	Hexokinase 2	Protein Co	P52789	55	GC02P074947	19.42
GAPDH	Glyceralde	Protein Co	P04406	59	GC12P038965	17.14
LDHA	Lactate De	Protein Co	P00338	59	GC11P018394	15.81
HIF1A	Hypoxia In	Protein Co	Q16665	57	GC14P061695	15.1

Symbol	Description	Category	${\bf UniProt_ID}$	GIFtS	GC_id	Score
RRAD	RRAD, Ras	Protein Co	P55042	46	GC16M067483	15.1
HK1	Hexokinase 1	Protein Co	P19367	59	GC10P069269	14.64
PKLR	Pyruvate K	Protein Co	P30613	55	GC01M155289	13.37
ENO1	Enolase 1	Protein Co	P06733	56	GC01M008861	13.36
ENO3	Enolase 3	Protein Co	P13929	54	GC17P004948	13.33
PFKP	Phosphofru	Protein Co	Q01813	53	GC10P003066	13.19
TPI1	Triosephos	Protein Co	P60174	55	GC12P006867	13.18
GLTC1	Glycolysis	RNA Gene (2	GC11U909607	12.97
PGK1	Phosphogly	Protein Co	P00558	57	GC0XP078166	12.94

Figure 7 (下方图) 为图 Intersection of RA M1M2 related with Glycolysis related 概览。

(对应文件为 Figure+Table/Intersection-of-RA-M1M2-related-with-Glycolysis-related.pdf)

Figure 7: Intersection of RA M1M2 related with Glycolysis related

Intersection:
PPARG

(上述信息框内容已保存至 Figure+Table/Intersection-of-RA-M1M2-related-with-Glycolysis-related-content)

6.4 交集基因的表达 (小鼠单细胞数据)

Figure 8 (下方图) 为图 Violing plot of expression level of the Pparg 概览。

(对应文件为 Figure+Table/Violing-plot-of-expression-level-of-the-Pparg.pdf)

Figure 8: Violing plot of expression level of the Pparg

Reference

- 1. Jablonski, K. A. et al. Novel markers to delineate murine m1 and m2 macrophages. PloS one 10, (2015).
- 2. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 3. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics **54**, 1.30.1–1.30.33 (2016).
- 4. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, (2021).
- 5. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, (2019).
- 6. Cao, Y., Wang, X. & Peng, G. SCSA: A cell type annotation tool for single-cell rna-seq data. Frontiers in genetics 11, (2020).