Legend	
PE	Positional encoding matrix
rows	Total number of rows
cols	Total number of columns
cells	Total number of cells $(rows \times cols)$
i	Row index
j	Column index
d_{model}	Hidden size dimension

Each 2D position (i, j) is assigned a unique index in the first dimension of $PE \in R^{\text{cells} \times d_{model}}$, where each row stores a d_{model} dimensional positional encoding. Assuming rows is even, we compute differently based on whether j is even or odd for all rows of PE:

$$\begin{aligned} & \left\{ \sin \left(\frac{i}{10 \left(4 \times 2 \times \text{torch.arange} \left(d_{model} \right) \right)} \right) \\ & + \sin \left(\frac{j}{10 \left(4 \times 2 \times \text{torch.arange} \left(d_{model} \right) \right)} \right), \qquad j \ \% \ 2 = 0 \end{aligned} \right. \\ & \left\{ \sin \left(\frac{i}{10 \left(4 \times 2 \left(\text{torch.arange} \left(d_{model} \right) + 1 \right) \right)} \right) \\ & + \sin \left(\frac{j}{10 \left(4 \times 2 \left(\text{torch.arange} \left(d_{model} \right) + 1 \right) \right)} \right), \quad j \ \% \ 2 \neq 0 \end{aligned} \right. \end{aligned}$$