B. Wróblewski

Twierdzenie o kontrakcji

Zadanie 1. Przypomnij, że zbiór funkcji ciągłych C([a,b]) z "normą supremum"

$$||u||_{\infty} = \max_{x \in [a,b]} |u(x)|$$

jest w istocie przestrzenią liniową unormowaną. Udowodnij, że jest ona przestrzenią zupełną, to znaczy że każdy ciąg funkcji $(f_n)_{n\in\mathbb{N}}$ spełniający warunek Cauchy'ego jest jednostajnie zbieżny.

Zadanie 2. Zasada kontrakcji Banacha, wersja C[a, b]

Niech M będzie domkniętym, niepustym podzbiorem C[a,b] oraz niech odwzorowanie $T:M\to M$ będzie kontrakcją. Udowodnij, że równanie f=T(f) ma dokładnie jedno rozwiązanie $f\in M$.

WSKAZÓWKA: Pokaż, że dla dowolnego $f_0 \in M$ ciąg $T^n(f_0)$ jest ciągiem Cauchy'ego.

Zadanie 3. Uzasadnij, że twierdzenie Banacha nie jest prawdziwe, gdy przyjmiemy k=1 w definicji kontrakcji.

Zadanie 4. Ustal, dla jakich wartości parametru $\lambda \in \mathbb{R}$, odwzorowanie $T:C([a,b]) \to C([a,b])$ zadane wzorem

$$F(u)(x) = x + \lambda \int_{a}^{b} \sin(u(y)) dy$$

jest kontrakcją.

Zadanie 5. Zaproponuj warunki, dla których równanie

$$f(x) = g(x) + \lambda \int_{a}^{b} K(x, y) f(y) \, dy,$$

gdzie $g \in C([a,b])$, ma jednoznaczne rozwiązanie $f^* \in C([a,b])$.

Zadanie 6. (*) Udowodnij ogólną wersję zasady kontrakcji.

Twierdzenie Arzeli-Ascoliego

Zadanie 7. *Twierdzenie Arzeli-Ascoliego, wersja* C[a,b] Niech $(f_n)_{n\in\mathbb{N}}$ będzie ciągiem funkcji z C([a,b]), takim że:

- 1. jest on ograniczony, tzn. istnieje R>0 takie, ze dla każdego $n\in\mathbb{N}$ zachodzi $\|f_n\|_\infty\leq R$,
- 2. jest on jednakowo jednostajnie ciągły, tzn. dla każdego $\varepsilon>0$ istnieje $\delta>0$ taka, że dla każdych $x,y\in [a,b]$ i $n\in N$ zachodzi

$$|x-y| < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon$$
.

Wówczas ciąg $(f_n)_{n\in\mathbb{N}}$ posiada podciąg jednostajnie zbieżny.

Zadanie 8. Uzasadnij, że warunek jednostajnej ograniczoności, warunek jednostajnej ciągłości oraz ograniczoność i domkniętość przedziału są istotne w sformułowaniu twierdzenia Arzeli-Ascoliego.

Zadanie 9. Uzasadnij, że ciąg $(f_n)_{n\in N}$ funkcji z C([a,b]) o podanych własnościach jest jednakowo jednostajnie ciągły.

- Istnieje L>0 takie, że dla każdego $n\in\mathbb{N}$ i każdego $x,y\in[a,b]$ zachodzi $|f_n(x)-f_n(y)|\leq L|x-y|$.
- Wszystkie f_n są różniczkowalne w sposób ciągły, oraz istnieje D>0 takie, że dla każdego $n\in\mathbb{N}$ zachodzi $\|f_n(x)\|_\infty\leq D$.
- Istnieją H>0 i $\alpha\in[0,1]$ takie, że dla każdego $n\in\mathbb{N}$ i każdego $x,y\in[a,b]$ zachodzi $|f_n(x)-f_n(y)|\leq H|x-y|^{\alpha}$.

Zadanie 10. (*) Udowodnij ogólną wersję twierdzenia Arzeli-Ascoliego.

Definicja 1. Ciąg funkcji $(f_n)_{n\in\mathbb{N}}$ nazywamy ciągiem Cauchy'ego, jeżeli dla każdego $\varepsilon>0$ istnieje $N\in\mathbb{N}$ takie, że dla każdych n,m>N zachodzi $\|f_n-f_m\|<\varepsilon$.

Definicja 2. Zbiór $M \subset C[a,b]$ nazywamy domkniętym, jeżeli dla każdego ciągu $(f_n)_{n \in \mathbb{N}}$ funkcji ze zbioru M jeżeli ciąg ten zbiega jednostajnie do funkcji f to $f \in M$.

Definicja 3. Odwzorowanie $T:M\to M$, gdzie $M\subset C([a,b])$, nazywamy kontrakcją, jeżeli istnieje $0\le k<1$ takie, że dla każdych $f_1,f_2\in M$ zachodzi

$$||T(f_1) - T(f_2)||_{\infty} \le k||f_1 - f_2||_{\infty}$$
.

Twierdzenie 4. [Banach, 1920]

Niech (X,d) będzie zupełną przestrzenią metryczną i niech odwzorowanie $T:X\to X$ będzie kontrakcją. Wówczas równanie x=T(x) ma dokładnie jedno rozwiązanie $x^*\in X$.

Twierdzenie 5. [Arzelà 1883, Ascoli 1895]

Niech (X,d) będzie przestrzenią metryczną zwartą, a $(f_n)_{n\in\mathbb{N}}$ będzie ciągiem funkcji z C(X), spełniającym warunki

- 1. istnieje R > 0 takie, że dla każdego $n \in N$ zachodzi $||f_n||_{\infty} < R$ (jednakowa ograniczoność),
- 2. dla każdego $\varepsilon>0$ istnieje $\delta>0$ taka, że dla każdych $x,y\in X$ i $n\in N$ zachodzi

$$d(x,y) < \delta \Rightarrow |f_n(x) - f_n(y)| < \varepsilon$$
.

(jednakowa jednostajna ciągłość).

Wówczas ciąg $(f_n)_{n\in\mathbb{N}}$ posiada podciąg jednostajnie zbieżny.