

Quad Matched 741-Type Operational Amplifiers

OP11

FEATURES

Guaranteed V_{OS} : 500 μV Max

Guaranteed Matched CMRR: 94 dB Min Guaranteed Matched Vos: 750 µV Max LM148/LM348 Direct Replacement Low Noise Silicon-Nitride Passivation Internal Frequency Compensation

Low Crossover Distortion Continuous Short-Circuit Protection Low Input Bias Current

GENERAL DESCRIPTION

The OP11 provides four matched 741-type operational amplifiers in a single 14-lead DIP package. The OP11 is pin compatible with the LM148, LM348, RM4156, RM4158, and HA4741 amplifiers. The amplifier is matched for common-mode rejection ratio and offset voltage which is very important in designing instrumentation amplifiers. In addition, the amplifier is designed to have equal positive-going and negative-going slew rates. This is an important consideration for good audio system performance.

The OP11 is ideal for use in designs requiring minimum space and cost while maintaining performance.

PIN CONFIGURATIONS

14-Lead Epoxy DIP (P Suffix)

14-Lead Hermetic DIP (Y Suffix)

Figure 1. Simplified Schematic

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002

OP11-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15$ V, $T_A = 25^{\circ}$ C, unless otherwise noted)

			OF	11A/OP	11 E		OP11F			OP11G		
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage	Vos	$R_S = 10 \text{ k}\Omega$		0.3	0.5		0.6	2.5		1.2	5.0	mV
Input Offset Current	I _{OS}			5.5	20		25	50		75	200	nA
Input Bias Current	I_B			180	300		300	500		300	500	nA
Input Resistance Differential Mode ¹	R _{IN}		0.17	0.29		0.1	0.17		0.1	0.17		ΜΩ
Input Voltage Range	IVR		±12	±13		±12	±13		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V}, R_S = 10 \text{ k}\Omega$	100	120		100	120		70	100		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V},$ $R_S \le 10 \text{ k}\Omega$		4	32		4	32		10	100	μV/V
Output Voltage Swing	V _o	$R_{\rm L}$ = 2 k Ω	±11	±13		±11	±13		±11	±13		v
Large-Signal Voltage Gain	A _{VO}	$R_{\rm L} \le 2 \text{ k}\Omega, V_{\rm O} = \pm 10 \text{ V}$	100	650		100	650		50	500		V/mV
Power Consumption ²	P _d	$V_O = 0 V$		105	180		123	180		210	340	mW
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		0.7			0.7			0.7		μV p-p
Input Noise Voltage Density	e _n	$f_{O} = 10 \text{ Hz}$ $f_{O} = 100 \text{ Hz}$ $f_{O} = 1 \text{ MHz}$		18 14 12			18 14 12			18 14 12		$nV/\sqrt{Hz} \\ nV/\sqrt{Hz} \\ nV/\sqrt{Hz}$
Input Noise Current	I _n p-p	0.1 Hz to 10 Hz		17			17			17		pA p-p
Input Noise Current Density	In	f _O = 10 Hz f _O = 100 Hz f _O = 1 MHz		1.8 1.5 1.2			1.8 1.5 1.2			1.8 1.5 1.2		pA/√Hz pA/√Hz pA/√Hz
Channel Separation	CS		100	130		100	130			130		dB
Slew Rate ²	SR		0.7	1.0		0.7	1.0		0.7	1.0		V/µs
Large Signal Bandwidth ³		V _O = 20 V p-p	11	16		11	16		11	16		kHz
Closed-Loop Bandwidth ⁴	BW	A _{VCL} = 1	2.4	3.0		2.4	3.0		2.4	3.0		MHz
Rise Time ³	t_{f}	$A_{\rm V} = 1, V_{\rm IN} = 50 \text{ mV}$		110	145		110	145		110	145	ns
Overshoot ³	os			15	25		15	25		15	25	%

REV. A -2-

NOTES
¹Guaranteed by input bias current.

²Total dissipation for all four amplifiers in package.

³Sample tested.

⁴Guaranteed by rise time.

Specifications subject to change without notice

$\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} & \text{(@ $V_S = \pm 15$ V, -55°C} \leq T_A \leq +125^{\circ}$C for OP11A, 0°C} \leq T_A \leq 70^{\circ}$C for OP11E, unless otherwise noted) \\ \end{array}$

				OP11A	1		OP11E		
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage	Vos	$R_S \le 10 \text{ k}\Omega$		0.4	1.0		0.4	0.8	mV
Average Input Offset Voltage Drift ¹	TCVos	$R_{\rm S} \le 10 \text{ k}\Omega$		2.0	10		2.0	10	μV/°C
Input Offset Current	I _{OS}			20	40		14	30	nA
Average Input Offset Current Drift ¹	TCIos			0.1	0.3		0.1	0.3	nA/°C
Input Bias Current	I_{B}			200	375		200	350	nA
Input Voltage Range	IVR		±12	±13		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V},$ $R_{S} \le 10 \text{ k}\Omega$	100	120		100	120		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V},$ $R_S \le 10 \text{ k}\Omega$		4	32		4	32	μV/V
Large-Signal Voltage Gain	A _{VO}	$R_{L} \ge 2 \text{ k}\Omega,$ $V_{O} = \pm 10 \text{ V}$	50	250		50	250		V/mV
Output Voltage Swing	Vo	$R_L \ge 2 \text{ k}\Omega$	±11	±13		±11	±13		V
Power Consumption ²	P _d	$V_O = 0 V$		115	200		115	200	mW

NOTES

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15 \text{ V}, -40 ^{\circ}\text{C} \le T_A \le +85 ^{\circ}\text{C}, R_s \le 100 \ \Omega$, unless otherwise noted)

					7				
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage	Vos	$R_S \le 10 \text{ k}\Omega$		0.8	3.0		1.5	6.0	mV
Average Input Offset Voltage Drift	TCVos	$R_{\rm S} \le 10 \text{ k}\Omega$		4.0	15		4.0		μV/°C
Input Offset Current	I _{OS}			40	60		250	300	nA
Average Input Offset Current Drift ¹	TCI _{OS}			0.3	0.6		0.3	0.6	nA/°C
Input Bias Current	I _B			400	550		400	800	nA
Input Voltage Range	IVR		±12	±13		±12	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 12 \text{ V},$ $R_S \le 10 \text{ k}\Omega$	100	120		70	100		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 15 \text{ V},$ $R_S \le 10 \text{ k}\Omega$		4	32		10	100	μV/V
Large-Signal Voltage Gain	A _{VO}	$R_{L} \ge 2 \text{ k}\Omega,$ $V_{O} = \pm 10 \text{ V}$	50	250		25	100		V/mV
Output Voltage Swing	Vo	$R_L \ge 2 \ k\Omega$	±11	±13		±11	±13		V
Power Consumption ²	P _d	$V_O = 0 \text{ V}$		115	200		250	400	mW

NOTES

REV. A -3-

¹Guaranteed but not tested.

 $^{^2\}mathrm{Total}$ dissipation for all four amplifiers in package.

Specifications subject to change without notice

¹Guaranteed but not tested.

²Total dissipation for all four amplifiers in package.

Specifications subject to change without notice

OP11

ABSOLUTE MAXIMUM RATINGS*

ADSOLUTE MAXIMUM KATINGS
Supply Voltage (V_S)
Input Voltage* Supply Voltage
Differential Input Voltage±30 V
Output Short-Circuit Duration Continuous
(One Amp Only)
Storage Temperature Range
Y Package65°C to +150°C
P Package
Lead Temperature Range (Soldering, 60 sec)300°C
Operating Temperature Range
OP11A55°C to +125°C
OP11E0°C to 70°C
OP11F, OP11G40°C to +85°C

*Absolute maximum ratings apply to both DICE and packaged parts, unless

Package Type	θ _{JA} *	$\theta_{ m JC}$	Unit		
14-Lead Plastic DIP (P)	83	39	°C/W		
14-Lead Hermetic DIP (Y)	108	15	°C/W		

^{*} θ_{JA} is specified for worst-case conditions, i.e., θ_{JA} is specified for device in socket for CERDIP and P-DIP packages.

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
OP11AY* OP11EP OP11EY* OP11FP* OP11GP	-40°C to +125°C	14-Lead CERDIP	Y-14
	-40°C to +125°C	14-Lead Epoxy DIP	P-14
	0°C to 85°C	14-Lead CERDIP	Y-14
	-40°C to 85°C	14-Lead Epoxy DIP	P-14
	-40°C to 85°C	14-Lead Epoxy DIP	P-14

^{*}Not for new designs. Obsolete April 2002.

For Military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp

SMD Part Number	ADI Equivalent
5962-89801012A	OP11ARCMDA
5962-8980101CA	OP11AYMDA

MATCHING CHARACTERISTICS (@ $V_S = \pm 15$ V, $T_A = 25$ °C, $R_S \le 100$ Ω , unless otherwise noted)

			OP11A, OP11E			OP11F			
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			0.5	0.75		0.6	2.0	mV
Common-Mode Rejection Ratio Match	ΔCMRR	$V_{CM} = \pm 12 \text{ V}$ $V_{CM} = \pm 12 \text{ V}$	94	1 120	20	94	1 120	20	μV/V dB

Specifications subject to change without notice

$\begin{tabular}{ll} \textbf{MATCHING CHARACTERISTICS} & (@V_S = \pm 15 \ V, \, -55^\circ C \le T_A \le +125^\circ C \ for \ OP11A, \, 0^\circ C \le T_A \le 70^\circ C \ for \ OP11E, \, -40^\circ C \le T_A \le 100 \ \Omega, \, unless \ otherwise \ noted) \\ \end{tabular}$

			OP11A, OP11E			OP11F			
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Unit
Input Offset Voltage Match	ΔV_{OS}			0.6	1.0		1.0	2.5	mV
Common-Mode Rejection Ratio Match	ΔCMRR	$V_{CM} = \pm 12 \text{ V}$		3.2	20		3.2	20	μV/V
		$V_{CM} = \pm 12 \text{ V}$	94	110		94	110		dB

-4-

Specifications subject to change without notice

CAUTION-

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP11 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics—OP11

TPC 1. Input Offset Voltage vs. Temperature

TPC 2. Offset Current vs. Temperature

TPC 3. Bias Current vs. Temperature

TPC 4. Open-Loop Gain vs. Temperature

TPC 5. Open-Loop Gain and Phase vs. Frequency

TPC 6. Normalized Slew Rate and Bandwidth vs. Temperature

REV. A _5_

OP11

TPC 7. Open-Loop Gain vs. Supply Voltage

TPC 8. CMRR vs. Frequency

TPC 9. PSRR vs. Frequency

TPC 10. Channel Separation vs. Frequency

TPC 11. Voltage Noise Density vs. Frequency

TPC 12. Noise Current Density vs. Frequency

-6- REV. A

TPC 13. Transient Response

TPC 14. Voltage Follower Pulse Response

TPC 15. Maximum Output Swing vs. Frequency

TPC 16. Output Voltage vs. Load Resistance

TPC 17. Quiescent Current vs. Supply Voltage

TPC 18. Power Consumption vs. Temperature

REV. A -7-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Lead Epoxy DIP (P Suffix)

14-Lead Hermetic DIP (Y Suffix)

Revision History

Location	Page
Data Sheet changed from REV. 0 to REV. A.	
Change OP-09/OP-11 to OP11	Global
Edits to PIN CONNECTIONS	
Edits to Figure 1	
Edits to ABSOLUTE MAXIMUM RATINGS	
Edits to ORDERING GUIDE	
Edits to SPEC TABLES	2-4
Deletion of DICE CHARACTERISTICS	
Deletion of WAFER TEST LIMITS Table	5
Deletion of TYPICAL ELECTRICAL CHARACTERISTICS Table	