Dinamica - Principios de Newton

Dinamica - Principios de Newton

Primer Principio: Principio de Inercia

Todo particula en reposo, o en movimiento rectilineo uniforme, permanece en ese estado hasta que se le aplique una fuerza externa.

La masa se utiliza como una medida de inercia, en el cual esta se "opone" o se "resiste" al cambio de movimiento.

Para vencer esta inercia, se le debe aplicar una fuerza externa sobre la particula.

Segundo Principio: Principio de Masa

A partir de la cantidad de movimiento

$$ec{p}=mec{V}$$

Al derivarlo, obtenemos el concepto de fuerza en funcion de la cantidad de movimiento.

La resultante de todas las fuerzas, es igual a la variación de la cantidad de movimiento en función del tiempo.

$$\sum ec{F} = rac{dec{p}}{dt}$$

En el caso de que trabajemos con masa constante.

$$\sum \vec{F} = rac{d(m \vec{V})}{dt} = m rac{d \vec{V}}{dt} = m \vec{a}$$

La masa actua como una medida de inercia. A mayor masa se requiere mayor fuerza para acelerarlo, o se tendrá menor aceleración y por ende menor velocidad.

Primera Integral de movimiento (Impulso)

A partir de la definicion de fuerza, se define la magnitud vectorial **impulso**, que representa la fuerza aplicada durante un intervalo de tiempo

$$ec{J}=\int ec{F}dt$$

El cual es equivalente a decir

$$ec{J}=\int \sum ec{F}dt = \int dec{p} = \Delta ec{p}$$

Por lo tanto, el impulso aplicado sobre una particula es igual a la variación de la cantidad de movimiento.

$$ec{J}=\Deltaec{p}$$

Tercer Principio: Principio de Interacción

Si una partícula A interactúa con una partícula B aplicándole una fuerza \vec{F} , entonces la partícula B interactúa con A aplicándole una fuerza \vec{F}' con el mismo módulo y la misma dirección que \vec{F} , pero de sentido contrario

Las fuerzas, en consecuencia, surgen siempre de a pares, se trata de pares de interacción.

En la figura se encuentras las fuerzas

- ullet $ec{F_{\scriptscriptstyle RC}}$ fuerza persona sobre la roca
- ullet $ec{F_{\it CR}}$ fuerza roca sobre la persona

Notar que las fuerzas se aplican sobre cuerpos diferentes.

Ejemplos

FIGURA 5. En este caso, la fuerza que actúa sobre la superficie coincide con todo el peso de la caja. Por tanto, el módulo y dirección de la fuerza normal y el peso son iguales. Su dirección opuesta.

Superficie inclinada

FIGURA 6. En este tipo de superficies, el peso se descompone en 2 fuerzas. Una empuja a la superficie P_Y y otra que tira de la caja pendiente abajo P_X . El módulo y dirección de la fuerza normal es igual a P_Y , aunque de sentido contrario.

Un error frecuente es considerar que la Normal y el Peso (P) conforman un par de interacción; sin embargo, como la Normal es una fuerza que la *superficie ejerce sobre la caja* su par de interacción será una fuerza que la *caja ejerce sobre la superficie*, y está por lo tanto aplicada sobre esta última.