۱ امضای غیرقابل انکار

[۳] مفهوم طرح امضای غیرقابل انکار اولین بار توسط چام و آنترپن [۱] معرفی شده است. در یک طرح امضای غیرقابل انکار، امضاکننده یک امضای غیرقابل انکار σ را تولید میکند که توسط هرکسی (به صورت عمومی) قابل تایید نمی باشد. بنابراین تایید کننده برای تایید امضا نیاز به تعاملاتی با امضاکننده دارد که برای تایید یا انکار امضای σ ، امضاکننده یک اثبات دانش صفر را بوسیله اجرای پروتکل تایید یا پروتکل انکار انجام می دهد.

طرح امضای غیرقابل انکار موجب پیدایش برنامههای کاربردی فراوانی در رمزنگاری شده است. از جمله ی این کاربردها می توان به نرمافزار صدور مجوز 7 ، پول الکترونیکی 8 ، رای گیری الکترونیکی 4 و حراج الکترونیکی 6 اشاره کرد.

۱.۱ تعریف

مطابق با تعریف رسمی ارائه شده در [۲] ، یک طرح امضای غیرقابل انکار بوسیله چندتایی زیر مشخص شده است:

$$\Sigma = (G_{sign}, Sign, Check, Sim, \pi_{con}, \pi_{dis}).$$

الگوریتم امضا، الگوریتم G_{sign} یک الگوریتم الگوریتم تولیدکننده کلید، الگوریتم G_{sign} یک الگوریتم الگوریتم π_{con} یک شبیه ساز امضا ، پروتکل π_{con} یک پروتکل تایید و پروتکل π_{dis} یک پروتکل انکار میباشد.

الگوریتم تولیدکننده کلید G_{sign} ، یک الگوریتم چندجملهای احتمالاتی $^{\circ}$ میباشد که خروجی آن زوج کلید vk میباشد که vk یک کلید تاییدساز و vk یک کلید امضا vk میباشد. فضای پیام vk توسط vk مشخص شده است.

¹Undeniable Signature

²licensing software

³electronic cash

⁴voting electronic

⁵electronic auction

⁶PPT(probabilistic polynomial-time)

فرض می کنیم که sk به طور منحصر به فرد توسط vk تعیین شده است.

الگوریتم امضای sign ، یک الگوریتم چندجملهای احتمالاتی میباشد که امضای σ را از طریق پیام $m\in\mathcal{M}$ و کلید امضای sk به عنوان ورودی هایش تولید میکند.

اگر σ ، خروجی الگوریتم Sign(sk,m) با رشته تصادفی r باشد، آنگاه زوج (m,σ) را معتبر میگوییم، در غیر این صورت آن را نامعتبر میگوییم.

الگوریتم بررسی اعتبار Check ، یک الگوریتم چندجملهای قطعی میباشد که:

$$Checkig((vk,m),\sigmaig)= \left\{ egin{aligned} 1 & \text{ .as } (m,\sigma) \text{ as } (m,\sigma) \\ & & & & \end{aligned}
ight.$$
 اگر خروجی زوج (m,σ) نامعتبر باشد.

الگوریتم شبیه ساز Sim یک الگوریتم چند جمله ای احتمالاتی است که یک امضای شبیه سازی شده ی $\sigma'=Sim(vk,m)$

یک طرح امضای غیرقابل انکار باید ویژگیهای غیرقابل جعلی ^۸ و غیرقابل دسترسپذیری m ، m ، m و زنامرئی بودن m ، را داشته باشد. غیرقابل دسترسپذیری به معنای آن است که برای یک پیام m دریافتکننده نمی تواند متوجه شود که σ ، یک امضای معتبر است یا یک امضای شبیه سازی شده. این بدین معنی است که دریافت کننده نمی تواند اعتبار زوج m را به تنهایی تایید کند. درعوض با همکاری امضاکننده می توان اعتبار و عدم اعتبار زوج m را با اجرای پروتکل تایید ساز m و پروتکل انکار m و خروجی متناظر با آن پروتکل به دست آورد. پروتکل m یک سیستم اثبات دانش صفر تعاملی ^{۱۱} روی یک زبان m معتبر هستند m معتبر هستند m و خروجی m بین سیستم اثبات دانش صفر تعاملی روی یک زبان

زوچ (m,σ) معتبر نیستند $L_1=\{(vk,m,\sigma)|$ میباشد. هر سیستم اثبات دانش صفر تعاملی باید ویژگیهای تمامیت ، صداقت و اثبات صفر را داشته باشند.

⁸unforgeability

⁹invisibility

¹⁰zero-knowledge interactive proof system (ZKIP)

۲.۱ امنیت امضای غیرقابل انکار

١١

غیرقابل جعل بودن . مفهوم غیرقابل جعل بودن را توسط بازی زیر بین یک چالشگر ^{17}CH و یک متخاصم ^{17}A تشریح میکنیم.

- ۱. چالشگر یک زوج کلید (vk, sk) را به صورت تصادفی تولید و کلید تاییدساز vk را به متخاصم می دهد.
- ۲. برای m_i درخواستی به ویرای بعضی q_s متخاصم برای امضای پیام m_i درخواستی به اوراکل امضا می فرستد و متعاقبا یک امضای σ_i دریافت می کند.
 - ۳. در پایان، متخاصم زوج جعلی (m^*, σ^*) را به عنوان خروجی نمایش میدهد.

متخاصم این اجازه را دارد تا درخواست (m_j, σ_j) را در مرحله دوم برای اوراکل تایید/انکار ارسال کند و پاسخ اوراکل تایید/انکار به صورت زیر میباشد:

- اگر (m_j, σ_j) یک زوج معتبر باشد آنگاه اوراکل بیت $\mu=1$ را به عنوان خروجی برمی گرداند و اجرای پروتکل تایید π_{con} را با متخاصم در جریان می گذارد.
- در غیراینصورت، اوراکل بیت $\mu=0$ را برمیگرداند و بر این اساس پروتکل انکار π_{dis} را با متخاصم در جریان میگذارد.

گوییم متخاصم در جعل(قوی) موفق شده است اگر زوج (m^*, σ^*) معتبر باشد و این زوج در میان زوجهای (m_i, σ_i) تولید شده در میان درخواستهای امضای اوراکل نباشد. (m_i, σ_i) تعریف (m_i, σ_i) قویا غیرقابل جعل است اگر احتمال آنکه متخاصم در جعل(قوی) موفق شود (برای هر متخاصم چندجملهای احتمالاتی در بازی بالا)، ناچیز باشد.

¹¹Security of Undeniable Signature

¹²challenger

¹³adversary

۱۴ گوییم متخاصم در جعل(ضعیف) موفق شده است اگر (m^*, σ^*) معتبر باشد و m^* هرگز برای امضا از اوراکل درخواست نشده باشد.غیرقابلجعلی(ضعیف) و غیرقابلجعلی(قوی) یکی هستند اگرالگوریتم امضا قطعی باشد و درنتیجه برای هر پیام یک امضای منحصر به فرد وجود دارد که به درستی تایید می شود.

غیرقابل دسترسپذیری. دامگارد و پدرسون بوسیله بازی زیر بین چالشگر و متخاصم در [۲] به معرفی مفهوم غیرقابل دسترسپذیری پرداخته اند.

- ۱. چالشگر یک زوج کلید (vk, sk) را به صورت تصادفی تولید و کلید تاییدساز vk را به متخاصم می دهد.
- ۲. متخاصم مجاز است یک سری درخواست برای امضای پیام m_i به اوراکل امضا ارسال کند و امضای σ_i را دریافت کند.
 - ۳. در برخی موارد، متخاصم یک پیام m^* را انتخاب و برای چالشگر ارسال میکند.
 - ۴. چالشگر یک بیت تصادفی b را انتخاب میکند.
- ۵. اگر b=1 آنگاه چالشگر امضای واقی $\sigma^*=Sign(sk,m^*)$ را محاسبه میکند. در غیر اینصورت امضای ساختگی $\sigma^*=Sim(sk,m^*)$ را برای متخاصم برمیگرداند.
 - ع. متخاصم دوباره چند درخواست امضا را انجام می دهد.
- ۷. در انتهای بازی، متخاصم یک بیت حدسی b' را برمیگرداند. متخاصم مجاز است در مراحل Υ و Γ ، درخواست Γ را برای اوراکل تایید/انکار ارسال کند.

با این حال متخاصم اجازه ندارد تا چالش (m^*, σ^*) را در مرحله ی ۵ از اوراکل تایید/انکار درخواست کند. همچنین متخاصم مجاز نیست تا درخواست m^* را برای اوراکل امضا ارسال کند. تعریف T . گوییم Σ غیرقابل دسترس است اگر برای هر متخاصم با زمان چندجملهای احتمالاتی در بازی بالا، احتمال آنکه b=b' خیلی ناچیز باشد.

۳.۱ پروتکل

۱۵

 $[\]overline{^{15}\text{Protocol}}$

برای پیادهسازی این طرح امضا به روی خمهای سوپرسینگولار لازم است تا عدد اول p به فرم برای پیادهسازی این طرح امضا به روی خمهای سوپرسینگولار لازم است تا عدد اول p به فرم E_p^{eA} داشته باشیم و سپس یک خم بیضوی سوپرسینگولار $\ell_A^{eA}\ell_M^{eC} \ell_C^{eC} \cdot f \pm 1$ معرفی کنیم چنانکه مرتبه ی خم ($\#E(\mathbb{F}_{p^r})$) مقدار $\ell_A^{eA}\ell_M^{eM}\ell_C^{eC}$ را عاد کند. همچنین لازم است تا مولدهای زیرگروههای $E[\ell_C^{eA}]$ ، $E[\ell_A^{eM}]$ ، $E[\ell_A^{eA}]$ میباشد را نیز به دست آوریم. در طراحی این پروتکل معمولا نقاط $\{P_C,Q_C\}$ و $\{P_A,Q_A\}$ برای داده ی پیام و نقاط $\{P_A,Q_A\}$ برای داده قرار میگیرند.

امضاکننده به صورت تصادفی دو عدد صحیح m_A و m_A و m_A و عدد صحیح میکند $\mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$ انتخاب میکند و $K_A=[m_A]P_A+[n_A]Q_A$ را به دست آورده و . ($m_A,n_A\in\mathbb{Z}/\ell_A^{e_A}\mathbb{Z}$) . و سپس زیرگروه E_A را محاسبه میکند. در انتها همسانی ϕ_A که از E_A به E_A میباشد ($\phi_A:E\to E_A$

پارامترهای عمومی: $\{P_C,Q_C\}$ ، $\{P_M,Q_M\}$ ، $\{P_A,Q_A\}$ ، E ، p و تابع هش . $H:\{ullet,lambda\}^* o \mathbb{Z}$

. $\phi_A(Q_C)$ و $\phi_A(P_C)$ ، E_A

 n_A و m_A کلید خصوصی:

برای امضای پیام M لازم است تا با استفاده از تابع هش به مقدار h=H(M) دست بیابیم. هسته همسانی به شکل $K_M=P_M+[h]Q_M$ خواهد بود. در ادامه امضاکننده همسانی های زیر

- $\phi_M: E \to E_M = E/\langle K_M \rangle$ •
- $\phi_{M,AM}: E_M \to E_{AM} = E_M/\langle \phi_M(K_A) \rangle$
 - $\phi_{A,AM}: E_A \to E_{AM} = E_A/\langle \phi_A(K_M) \rangle$ •

همراه با نقاط کمکی $\phi_{M,AM}(\phi_M(Q_C))$ و $\phi_{M,AM}(\phi_M(P_C))$ محاسبه میکند. امضاکننده سپس این دو نقطه کمکی را به همراه خم بیضوی E_{AM} به عنوان امضا منتشر میکند. (شکل ۱).

پروتکل تایید به شکل زیر انجام می شود. در ابتدا خم E_{AM} را بدون افشای همسانی های که آن را ساخته اند تایید می کنیم، برای این منظور خم E_{AM} را بوسیله همسانی ϕ_C کور می کنیم و سپس همسانی های کورشده را نمایش می دهیم. (شکل ۲).

- را از میدان $\mathbb{Z}/\ell_C^{ec}\mathbb{Z}$ انتخاب می کند m_C امضا کننده به صورت مخفی اعداد تصادفی m_C و m_C را از میدان m_C را به همراه خمها و $K_C = [m_C]P_C + [n_C]Q_C$ و نقطه m_C ، انقطه m_C ، انقطه
 - $E_C = E/\langle K_C \rangle$ •
 - $E_{MC} = E_M/\langle \phi_M(K_C) \rangle = E_C/\langle \phi_C(K_M) \rangle$
 - $E_{AC} = E_A/\langle \phi_A(K_C) \rangle = E_C/\langle \phi_C(K_A) \rangle$
 - $E_{AMC} = E_{MC}/\langle \phi_{C,MC}(K_A) \rangle$ •
- را به عنوان $\ker(\phi_{C,MC})$ و همچنین E_{AMC} ، E_{MC} ، E_{AC} ، E_{AC} ، را به عنوان E_{AMC} . تعهد منتشر میکند.
 - ۳. تاییدکننده به طور تصادفی بیت $b \in \{ \, \cdot \, , \, 1 \, \}$ را انتخاب می کند.
- ۴. اگر 0 = 0 آنگاه امضاکننده $\ker(\phi_C)$ را منتشر میکند. تاییدکننده به همراه کلیدعمومی اگر $\Phi_{M,MC}$ با آنگاه امضاکننده $\ker(\phi_M)$ را محاسبه میکند. با دانستن $\ker(\phi_M)$ بتاییدکننده می تواند می تواند را محاسبه کند. همچنین تاییدکننده با کمک نقاط کمکی داده شده در امضا ، می تواند را محاسبه کند. تاییدکننده همچنین هر نگاشت همسانی بین دو خم اشاره شده در تعهد را بررسی میکند. با اطلاع از $\ker(\phi_C)$ ، همچنین به طور مستقل می تواند $\ker(\phi_C)$ را دوباره محاسبه و بررسی کند که آیا با تعهد ارائه شده همخوانی دارد یا نه.
- ۵. اگر b=1 آنگاه امضاکننده $\ker(\phi_{C,AC})$ را نمایش می دهد. در ادامه تاییدکننده همسانی های $\phi_{AC,AMC}$ و $\phi_{AC,AMC}$ و $\phi_{AC,AMC}$ و $\phi_{AC,AMC}$ و $\phi_{AC,AMC}$ را محاسبه می کند و نگاشت های $\phi_{AC,AMC}$ و $\phi_{AC,AMC}$ را بین دو خم معرفی شده متناظر در تعهد را بررسی می کند.

حال به تشریح پروتکل انکار میپردازیم. فرض کنید امضاکننده یک امضای جعلی (E_F,F_P,F_Q) نقاط کمکی جعلی بهجای نقاط برای پیام M ارائه کند، که E_F خم جعلی بهجای نقاط

معادل کمکی صحیح $\phi_{M,AM}(\phi_M(Q_C))$ و $\phi_{M,AM}(\phi_M(P_C))$ باشند. پس طبق طرح ارائه شده ما موظفیم تا خم E_F را بدون افشای خم E_{AM} ، انکار کنیم. بدین منظور قبل از به دست آوردن خم E_{AM} ، خم E_{AM} را کور میکنیم. و اطلاعاتی به اندازه کافی در اختیار تاییدکننده میگذاریم تا بتواند خم E_{AM} را محاسبه و رابطه $E_{FC} \neq E_{AMC}$ را بررسی کند.

- ۱. امضاکننده به صورت مخفی اعداد تصادفی m_C و m_C را از میدان $\mathbb{Z}/\ell_C^{ec}\mathbb{Z}$ انتخاب میکند، و $K_C=[m_C]P_C+[n_C]Q_C$ و شده در شکل ۲ محاسبه میکند.
- به عنوان تعهد $\ker(\phi_C)$ به همراه E_{AMC} و E_{AMC} و E_{AMC} به عنوان تعهد د.
 - ۳. تاییدکننده یک بیت تصادفی $b \in \{ \, \cdot \, , \, 1 \}$ انتخاب میکند.
- ۴. اگر b=0 آنگاه امضاکننده $\ker(\phi_C)$ را منتشر میکند. در ادامه تاییدکننده همسانیهای $\phi_F: E_F \to E_{FC} = E_F/\langle [m_C]F_P +$ را بههمراه همسانی $\phi_{A,AC}$, $\phi_{M,MC}$, ϕ_C را محاسبه کرده و هر نگاشت همسانی بین دوخ مشخص شده در در تعهد را بررسی میکند. تاییدکننده به طور مستقل همسانی $\phi_{C,MC}$ را محاسبه و بررسی میکند که آیا خروجی، همان همسانی ذکرشده در تعهد می باشد یا خیر
- ۵. اگر b=1 آنگاه امضاکننده $\ker(\phi_{C,AC})$ را منتشر میکند و در ادامه تاییدکننده همسانی های $\phi_{MC,AMC}$ و $\phi_{MC,AMC}$ را محاسبه و بررسی میکند که آیا این همسانی ها نگاشتی به خم E_{AMC} دارند یا خیر.

شكل ١: توليد امضا

شكل ٢: پروتكل تاييد

شكل ٣: پروتكل انكار

۴.۱ اثباتهای امنیت

۱۶

۱.۴.۱ پروتکل تایید

۱۷

¹⁶Security Proofs

¹⁷Confirmation Protocol

۲۰۴۰۱ پروتکل انکار

۱۸

¹⁸Disavowal Protocol

مراجع

- [1] David Chaum and Hans Van Antwerpen. Undeniable signatures. In Conference on the Theory and Application of Cryptology, pages 212–216. Springer, 1989.
- [2] Ivan Damgård and Torben Pedersen. New convertible undeniable signature schemes. In *International Conference on the Theory and Applications of Cryptographic Techniques*, pages 372–386. Springer, 1996.
- [3] David Jao and Vladimir Soukharev. Isogeny-based quantum-resistant undeniable signatures. In *International Workshop on Post-Quantum Cryptography*, pages 160–179. Springer, 2014.