

信用评分

李志勇/秘兴敏

西南财经大學

Southwestern University of Finance and Economics

社兴敏 21/4/1 1

第二章 基本概念

我不想听任何统计数字,我要把它们全部拿来当烟点了!

——Mark Twain(1983)

- 频数 (count): 重复n次独立试验, 其中某一结果发生的次数是r次
- · 频率 (frequency): 该结果发生次数所占的比例

$$f = r / n$$

- ·概率 (probability): 系统的属性或内部结构以及所处环境所共同决定的可能性
- · **比率(odds)**:一个事件发生(a:b)的比率是它发生的概率与它不发生的概率之比

$$a:b=p/(1-p)$$

$$p = a / (a + b)$$

$A \cup B$	集合A和集合B的并集,元素属于A或B
$A \cap B$	集合A和集合B的交集,元素同时属于A和B
$A \subset B$	A是B的子集,但B不一定是A的子集
A^{C}	A的补集
$a \in A$	a是A中的元素,不是子集
$p(\mathbf{A})$	事件A发生的概率,在0到1之间,也记为 p_A
p(A B)	在给定条件B的情况下,A发生的条件概率
••	因为
∴	所以

• 特征characteristic: 描述个体的一个维度

• 属性attribute: 某特征的可能值

案例:人的年龄(特征),>70(属性)

• Feature: CS里面的特征

• 变量variable: 模型中的输入

• 协变量covariate、控制变量control variable

• 自变量independent variable, 因变量dependent variable

p(G): 也就是 $p(G|G\cup B)$,即一个由好账户和坏账户构成的集合中好账户的概率。

x: 一个属性或者属性向量。

p(x): 账户具有属性 x 的概率。

p(G|x): 具有属性 x 的账户是好账户的概率。

p(x|G): 好账户中具有属性 x 的概率。

符号	解释	符号	解释
Σ	连加或求和。	П	连乘或求积。
α	检验假设中的显著水平。	Φ	累积标准正态分布,均值为0,标准差为1。
Z	z 统计量,偏离均值的标准差的数量。	X^2	卡方统计量。
μ	均值或期望。	σ	标准差, σ^2 是方差。
γ	相关系数。	X_{i}	变量 X 的第 i 个值。
$oldsymbol{eta}_{ m i}$	线性回归中变量 X _i 的系数。	b_i	回归系数。
ŝ	变量 s 的估计。	e	误差项,真实值和估计值之间的差 s_i - \hat{s}_i 。
λ	风险率,或死亡率。	exp(y)	指数 e ^y 。
ln(x)	以e为底的自然对数。		

G:用好人(Good)的首字母G来表示"令人满意的表现"

B:用坏人的(Bad)的首字母B来表示"不令人满意的表现"

信用分数定义: 信用分数是描述具有属性x的借款人在贷款上表现令人满意的概率的一个充分统计量(sufficient statistic)。

$$P(G \mid \mathbf{x}) = P(G \mid s(\mathbf{x})), \mathbf{x} \in \mathbf{X}$$

充分统计量:关于信用风险的所有信息都包含在分数里了。

信用分数(好人分数)包含了预测贷款人是好人所需的全部信息。

简单评分卡案例

居	住条件	年龄	(岁)	
属性	得分	属性	得分	
自有住房	30	18 ~ 25	5	
租房	17	26 ~ 35	10	
与父母同住	20	36 ~43	15	
其他	0	44 +	20	
贷	款目的	现址居住时长 (年)		
属性	得分	属性	得分	
买新车	31	< 2	4	
买二手车	9	2 ~ 5	9	
房屋修缮	14	6 ~ 11	16	
其他	0	12 +	18	

思考:

- ▶ 一个47岁、租房、在当前住 址住了10年、想借钱度假 的申请者得多少分?
- ▶ 一个25岁、有自己的房产、 在当前住址住了2年、想借 钱买二手车的人得多少分?
- ▶ 一个38岁、与父母同住、在 当前住址住了18个月、想借 钱装修的人也得到多少分?

事实上,一共有七个组合可以得到53分,虽然各自情况都不一样,但对贷款机构来说,代表了同样的风险水平。

评分系统采用了补偿机制,即借款人的缺点可以用优点去弥补。

某银行接受了8000位贷款申请者,之后的某年,其中的7000人按时还款,1000人发生违约。如果每个好人平均带来1000元利润,每个坏人带来1000元损失。

A

需要多少个好人 才能抵消一个坏 人带来的损失? В

潜在收益和潜在 风险对称吗?

C

总体比率是多少?

列联表

序号	公司性 质	信用等 级
1	国企	AAA
2	民企	AAA
3	民企	AA
4	民企	Α
5	国企	AAA
••••	••••	••••

	信用等级			
		AAA	AA	А
ᄼᄀᄴᄄ	国企	2	0	0
公司性质	民企	1	1	1

列联表

	好人	P(x G)	坏人	P(x B)	好坏比率/总体比率
已婚	4900	0. 7	400	0. 4	4900:400=12.25:1
未婚	2100	0. 3	600	0.6	2100:600=3.5:1
合计	7000	1	1000	1	7000 : 1000=7 : 1

概率和比率

某银行有1000个历史借款人的样本,每个借款人有三个特征:年龄、居住条件和信用卡持有状况。每个借款人都已确定为好人或坏人。数据中有900个好借款人,100个坏借款人。现在只考虑居住条件,包括三个属性值:自有、租房和其他。

居住条件	好人数量	坏人数量
自有	570	30
租房	150	50
其他	180	20
总数	900	100

计算:自有住房、租房和其他的好人概率P(G|x)和好人比率O(G|x)。

概率和比率

$$p(G | \text{owner}) = \frac{570}{570 + 30} = 0.95 \quad o(G | \text{owner}) = \frac{570}{30} = 19.0$$

$$p(G | \text{renter}) = \frac{150}{150 + 50} = 0.75 \quad o(G | \text{renter}) = \frac{150}{50} = 3.0$$

$$p(G | \text{others}) = \frac{180}{180 + 20} = 0.90 \quad o(G | \text{others}) = \frac{180}{20} = 9.0$$

- •**源于**贝叶斯关于"逆概"问题的文章,而这篇文章是在他死后才由他的一位朋友发表出来的。
- •正概率问题:如"假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率是多大"。
- •逆概率问题: "如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测"。
- •**贝叶斯论文的工作**:直接求解逆概率问题,并没有意识到这里面所包含的深刻思想。

Thomas Bayes (1701 –1761) was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem.

Thomas Bayes (1701 –1761) was an English statistician, philosopher and Presbyterian minister who is known for formulating a specific case of the theorem that bears his name: Bayes' theorem.

- •贝叶斯方法发展:席卷概率论,广泛应用到各领域,是机器学习的核心方法之一。
- •背后原因:现实世界本身就是不确定的,人类的观察能力是有局限性的,我们日常所观察到的只是事物表面上的结果。此时,需要提供一个猜测(hypothesis,更为严格的说法是"假设",这里用"猜测"更通俗易懂一点),所谓猜测,当然就是不确定的(很可能有好多种乃至无数种猜测都能满足目前的观测),但也绝对不是两眼一抹黑瞎蒙。

需要做两件事情: 1. 算出各种不同猜测的可能性大小。2. 算出最靠谱的猜测是什么。第一个就是计算特定猜测的后验概率,对于连续的猜测空间则是计算猜测的概率密度函数。第二个则是所谓的模型比较,模型比较如果不考虑先验概率的话就是最大似然方法。

- 概率分析中,已知**先验概率**
- 然后,通过抽样或者试验,获得**额外信息**
- 通过这些额外信息, 计算更新后验概率
- 贝叶斯定理(Bayes' theorem)是一种更新先验概率的方法
- 用途: 通过已知的三个概率而推出第四个概率

- 设 $X = (X_1, X_2, ..., X_n)$ 是借款人的特征,如年龄、婚姻、住房等;
- 设 $\mathbf{x} = (x_1, x_2, ..., x_n)$ 是借款人特征的属性值,如年龄的属性有: 18-25岁, 26-35岁, 36-43岁,>43岁等;
- p(G) 和 p(B) 是先验概率;
- 后验概率p(G|x)是给定某些属性值时借款人是好人的概率
- 后验概率 p(B|x)是给定某些属性值时借款人是坏人的概率
- p(x/G)和 p(x/B) 是在好人或坏人总体中,属性值x的似然值,也表示为 f(x|.)
- 根据贝叶斯定理:

$$O(G \mid \mathbf{x}) = \frac{P(G \mid \mathbf{x})}{P(B \mid \mathbf{x})} = \frac{P(\mathbf{x} \mid G) \times P(G) / P(\mathbf{x})}{P(\mathbf{x} \mid B) \times P(B) / P(\mathbf{x})} = I(\mathbf{x}) \times O_{Pop}$$

信息比率

	好人	P(married G)	坏人	P(married B)	边际比率
已婚	4900	0. 7	400	0.4	4900:400=12.25:1
未婚	2100	0. 3	600	0.6	2100:600=3.5:1
合计	7000	1	1000	1	

已婚边际比率: $0.7:0.4\times7:1=12.25$

未婚边际比率: 0.3:0.6×7:1=3.5

信息比率

O(G|x) = 边际比率 = 信息比率 × 总体比率

计算自有住房、租房和其他的信息比率、边际比率

居住条件	好人数量	坏人数量	总数
自有住房(owner)	570	30	600
租房(renter)	150	50	200
其他(other)	180	20	200
总数(Total)	900	100	1000

- 好人占比: p(G) = p_G= 900/1000 = 0.9
- 坏人占比: p(B) = p_B= 100/1000 = 0.1
- p(自有住房owner) = 600/1000 = 0.6
- p(租房renter) = 200/1000 = 0.2
- p(其他other) = 200 / 1000 = 0.2

$$p(\text{owner}|G) = 570/900 = 0.633$$

$$p(\text{owner}|B) = 30/100 = 0.3$$

$$P(G|\text{owner}) = \frac{p(\text{owner}|G) * p(G)}{p(\text{owner})}$$

$$= \frac{0.633*0.9}{0.6} = 0.95$$

$$s(\text{owner}) = \ln(\frac{p(G|\text{owner})}{p(B|\text{owner})})$$

$$= \ln(\frac{p_G}{p_B}) + \ln(\frac{p(\text{owner}|G)}{p(\text{owner}|B)})$$

$$= \ln(\frac{0.9}{0.1}) + \ln(\frac{0.633}{0.3})$$

$$= \ln(9) + \ln(2.11)$$

两个特征

• 婚姻状况

	Good	P(x G)	Bad	P(x B)
Married	4900	0.7	400	0.4
Not married	2100	0.3	600	0.6

• 工作经验

0	1050	0.15	500	0.5
up to 6 m	1680	0.24	250	0.25
6m - 3y	1960	0.28	140	0.14
3y+	2310	0.33	110	0.11
Total	7000		1000	

多个特征

◆如果有两个特征,需要一个三维的列联表:

$$O(G \mid x_1, x_2) = \frac{P(G \mid x_1, x_2)}{P(B \mid x_1, x_2)} = \frac{p_G P(x_1, x_2 \mid G)}{p_B P(x_1, x_2 \mid B)} = \frac{p_G}{p_B} \times \frac{P(x_1 \mid G)}{P(x_1 \mid B)} \times \frac{P(x_2 \mid G, x_1)}{P(x_2 \mid B, x_1)}$$

◆如果两个特征独立,那么根据乘法法则

$$P(E \cap F) = P(E) \times P(F)$$
$$p(\mathbf{x} \mid G) = p(x_1 \mid G) \times p(x_2 \mid G) \dots p(x_n \mid G)$$

- ◆但如果有很多特征,怎么办?
- ◆n个独立特征的发生比率=总体比率×信息比率(X1)× ...×信息比率(Xn)

$$O(G \mid x_1, x_2) = \frac{P(G \mid x_1, x_2)}{P(B \mid x_1, x_2)} = \frac{p_G P(x_1, x_2 \mid G)}{p_B P(x_1, x_2 \mid B)} = \frac{p_G P(x_1 \mid G) P(x_2 \mid G)}{p_B P(x_1 \mid B) P(x_2 \mid B)} = O_{Pop} \times I(x_1) \times I(x_2)$$

多个特征

◆ 如果婚姻状况和工作时间相互独立

已婚和无工作的好人比率=7/1 ×0.7/0.4 ×0.15/0.5

$$=7 \times 1.75 \times 0.3 = 3.675$$

◆ 未婚和三年以上工作时间的好人比率?

未婚和三年以上工作经验的好人比率=7/1 ×0.3/0.6 ×0.33/0.11=10.5

对以上等式取对数:

Log odds score =
$$ln(7) + ln(1.75) + ln(0.3)$$

- = In(3.675)
- = 1.3

s(X)

证据权重 (weights of evidence)

		D(IC)		D(D)
	Good	P(x G)	Bad	P(x B)
Married	4900	0.7	400	0.4
Not married	2100	0.3	600	0.6

0	1050	0.15	500	0.5
up to 6 m	1680	0.24	250	0.25
6m - 3y	1960	0.28	140	0.14
3y+	2310	0.33	110	0.11
Total	7000		1000	

风险决策

好坏 比率	婚姻 状况	工作 经验
36.75:1	已婚	3年以上工作经验
24.5:1	已婚	6m-3y工作经验
11.76:1	已婚	0-6m工作经验
10.5:1	未婚	3年以上工作经验
7:1	未婚	6m-3y工作经验
3.675:1	已婚	无工作经验
3.36:1	未婚	0-6m工作经验
1.05:1	未婚	无工作经验

