Mini-Project 3

Group Members: Sathya Pooja Ramireddy (sxr176830)

Sashidhar Donthiri(sxd173730)

Contributions:

Both of us have individually tried solving the problems, and came up solutions, further discussed and put it together.

1)

(a) Calculate Mean squared error of an estimator using Monte Carlo(MC) Simulation:

Given $\hat{\boldsymbol{\theta}}$ be our estimator of parameter $\vartheta(theta)$ can be computed using MC simulation by repeating the process of simulating a sample of data and then computing $\hat{\boldsymbol{\theta}}$ from the obtained sample quite a large number of times and then computing the average of squared deviation values between $\hat{\boldsymbol{\theta}}$ and $\vartheta(theta)$ gives the value for mean squared error of an estimator using Monte Carlo Simulation.

(b) Given combination of (n, ϑ), $\hat{\theta}_1$ and $\hat{\theta}_2$ can be computed using Monte Carlo Simulations with N=1000 replications from independent and identical data (same data).

Assume n=1, min=0, max=5, theta=5

R-code:

#given (n, θ) , compute mean squared errors(MSE) using Monte Carlo Simulation

#since we have to compute two estimated by simulating one sample

x_val=runif(1,0,5) #n,min,max

Max_Likelihood_est=max(x_val)

moment Val=2*mean(x val)

c(Max_Likelihood_est,moment_Val)

#since the replication val is 1000,n=1000

estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))

rowMeans((estimated_value-5)^2) #computing MSE by finding the deviation of theta hat from theta

17.96177 12.08442 #MSE for theta hat 1 and theta hat 2

(c) For different combinations of n and theta:

R-code followed by their results:

#nvalues= 1

#thetavalues=1,5,50,100

x_val=runif(1,0,1) #n,min,max

```
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-1)^2) #computing MSE by finding the deviatiosn of theta hat from theta
0.35702 0380365 #result
x_val=runif(1,0,50) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-50)^2) #computing MSE by finding the deviatiosn of theta hat from theta
1685.252 1030.644 #result
x_val=runif(1,0,5) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-5)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
0.0584219 203995630#result
x_val=runif(1,0,100) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-100)^2) #computing MSE by finding the deviatiosn of theta hat from theta
2894.130 85.64365 #result
```

```
#nvalues= 2
#thetavalues=1,5,50,100
x_val=runif(2,0,1) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-1)^2) #computing MSE by finding the deviatiosn of theta hat from theta
.00119610 .08536198#result
x_val=runif(2,0,50) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
row Means ((estimated\_value-50)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
213.9171 309.8031#result
x_val=runif(2,0,5) #n,min,max
Max\_Likelihood\_est=max(x\_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000 \,
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-5)^2) #computing MSE by finding the deviatiosn of theta hat from theta
```

```
\label{eq:continuous} $x\_val=runif(2,0,100) \#n,min,max$$ $Max\_Likelihood\_est=max(x\_val)$$ $moment\_Val=2*mean(x\_val)$$
```

```
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-100)^2) #computing MSE by finding the deviatiosn of theta hat from theta
2078.8323 526.5876#result
#nvalues= 3
#thetavalues=1,5,50,100
x_val=runif(3,0,1) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-1)^2) #computing MSE by finding the deviatiosn of theta hat from theta
x_val=runif(3,0,50) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-50)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
253.07461 75.31336 #result
x_val=runif(3,0,5) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-5)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
```

x_val=runif(5,0,5) #n,min,max

```
x_val=runif(3,0,100) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-100)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
474.397670 5.032389 #result
#nvalues= 5
#thetavalues=1,5,50,100
x_val=runif(5,0,1) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-1)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
x\_val = runif(5,0,50) \ \#n,min,max
Max\_Likelihood\_est=max(x\_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000 \,
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-50)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
3.155901 225.769548#result
```

```
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-5)^2) #computing MSE by finding the deviatiosn of theta hat from theta
0.74560748  0.03034125#result
x_val=runif(5,0,100) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-100)^2) #computing MSE by finding the deviatiosn of theta hat from theta
434.43983 81.87589#result
#nvalues= 10
#thetavalues=1,5,50,100
x_val=runif(10,0,1) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-1)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
0.000196453 0.094073992#result
x_val=runif(10,0,50) #n,min,max
Max_Likelihood_est=max(x_val)
moment\_Val=2*mean(x\_val)
```

```
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-50)^2) #computing MSE by finding the deviatiosn of theta hat from theta
3.715778 0.08248259#result
x_val=runif(10,0,5) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
rowMeans((estimated_value-5)^2) #computing MSE by finding the deviatiosn of theta hat from theta
0.1297616 0.7885489 #result
x_val=runif(10,0,100) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
row Means ((estimated\_value-100)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
367.95468 0.2592791#result
#nvalues= 30
#thetavalues=1,5,50,100
x_val=runif(30,0,1) #n,min,max
Max\_Likelihood\_est=max(x\_val)
moment_Val=2*mean(x_val)
c({\sf Max\_Likelihood\_est,moment\_Val})
#partial result
#since the replication val is 1000,n=1000
estimated\_value = replicate(1000, c(Max\_Likelihood\_est, moment\_Val))
```

```
x_val=runif(30,0,50) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-50)^2) #computing MSE by finding the deviatiosn of theta hat from theta
0.2445082 138.617698 #result
x_val=runif(30,0,5) #n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
rowMeans((estimated_value-5)^2) #computing MSE by finding the deviatiosn of theta hat from theta
0.001096449 0.587780490 #result
x\_val = runif(30,0,100) \ \#n,min,max
Max_Likelihood_est=max(x_val)
moment_Val=2*mean(x_val)
c(Max_Likelihood_est,moment_Val)
#partial result
#since the replication val is 1000,n=1000
estimated_value=replicate(1000,c(Max_Likelihood_est,moment_Val))
row Means ((estimated\_value-100)^2) \ \# computing \ MSE \ by \ finding \ the \ deviatiosn \ of \ theta \ hat \ from \ theta
2.394698 48.662957
                            #result
```

rowMeans((estimated_value-1)^2) #computing MSE by finding the deviatiosn of theta hat from theta

0.0002551631 0.0161627948#result

R-code for graphical representation:

```
par(mfrow=c(3,2))
\mbox{\tt \#a} function to above written code in a simpler form to calculate MLE and MOME
fun.mle=function(nvalue,thetavalue){
 mean(replicate(1000,((max(runif(nvalue,0,thetavalue)))-thetavalue)**2))\\
fun.mome=function(nvalue,thetavalue){
 mean(replicate(1000,((2*mean(runif(nvalue,0,thetavalue)))-thetavalue)**2))\\
#calcculate MLE and MOM for each paramter theta at n=1
val.mle=c(fun.mle(1,1),fun.mle(1,5),fun.mle(1,50),fun.mle(1,100))
val.mome=c(fun.mome(1,1),fun.mome(1,5), fun.mome(1,50),fun.mome(1,100))
val.mle
val.mome
#graphical representation
plot(thetavalue,val.mle,ylab="MSE")
#Red for MLE and Blue for MOME
lines(lowess(thetavalue,val.mle),col="red")
lines(lowess(thetavalue,val.mome),col="blue")
#n=2
val.mle = c(fun.mle(2,1),fun.mle(2,5),fun.mle(2,50),fun.mle(2,100))\\
val.mome=c(fun.mome(2,1),fun.mome(2,5), fun.mome(2,50),fun.mome(2,100))
val.mle
val.mome
plot(thetavalue,val.mle,ylab="MSE")
lines(lowess(thetavalue,val.mle),col="red")
lines(lowess(thetavalue,val.mome),col="blue")
#n=3
val.mle = c(fun.mle(3,1),fun.mle(3,5),fun.mle(3,50),fun.mle(3,100)) \\
val.mome = c(fun.mome(3,1),fun.mome(3,5),\,fun.mome(3,50),fun.mome(3,100))
val.mle
val.mome
plot(thetavalue,val.mle,ylab="MSE")
lines(lowess(thetavalue,val.mle),col="red")
lines(lowess(thetavalue,val.mome),col="blue")
val.mle = c(fun.mle(5,1),fun.mle(5,5),fun.mle(5,50),fun.mle(5,100)) \\
```

val.mome=c(fun.mome(5,1),fun.mome(5,5), fun.mome(5,50),fun.mome(5,100))
val.mle
val.mome
plot(thetavalue,val.mle,ylab="MSE")
lines(lowess(thetavalue,val.mle),col="red")
lines(lowess(thetavalue,val.mome),col="blue")
#n=10
val.mle=c(fun.mle(10,1),fun.mle(10,5),fun.mle(10,50),fun.mle(10,100))
val.mome=c(fun.mome(10,1),fun.mome(10,5),fun.mome(10,50),fun.mome(10,100))
val.mle
val.mome
plot(thetavalue,val.mle,ylab="MSE")
lines(lowess(thetavalue,val.mle),col="red")
lines (lowers (the tavalue, val.mome), col="blue")
#n=30
val.mle = c(fun.mle(30,1),fun.mle(30,5),fun.mle(30,50),fun.mle(30,100))
val.mome=c(fun.mome(30,1),fun.mome(30,5), fun.mome(30,50),fun.mome(30,100))
val.mle
val.mome
plot(thetavalue,val.mle,ylab="MSE")
lines(lowess(thetavalue,val.mle),col="red")
lines/lewess/thetavalue val memo) sel="blue")

Below graph represents graphical representation of MSE with parameter theta 1 and theta 2 over n=1,2,3,5,10,30 in order. MLE-"Red" and MOME-"Blue", thetavalue->parameter

(d) **Observations**:

- From above results we can observe that, the MSE's of both the estimators decrease as n increases, which means that as estimators become more accurate as n increases.
- They converge to the true parameter value in the given limit where MSE can be 0.
- It can also be seen that for n=1, MSEs of both estimators are almost same and when value of n is increased, like n>=5, MSE for MLE (theta 1) lies below that of MOME (theta 2).
- So, we can say that n=1, the two estimators hold good importance, but n>=5, the MLE is better when compared.

Thus, from graphs we can say that both MSEs are almost same for n=1,2 and for n>2, the ML Estimator is better than MOME.

Q2)

(a) Derive expression for MLE of theta:

For
$$2=1,2,3...$$
 n , π $\frac{0}{2^{Q+1}} \Rightarrow \pi$.

For $2=1,2,3...$ n , π $\frac{0}{2^{Q+1}} \Rightarrow \pi$.

For Maximum Walkhood function,

we apply log to π

$$\lim_{z \to 1} \log_{z} \pi + \frac{0}{2^{Q+1}} \Rightarrow \lim_{z \to 1} \log_{z} \frac{0}{2^{Q+1}}$$

$$\lim_{z \to 1} \log_{z} \pi - \lim_{z \to 1} \log_{z} (\log_{z}(x^{Q+1})) \Rightarrow n \log_{z} \pi - \lim_{z \to 1} \log_{z} (x^{Q+1})$$

$$\lim_{z \to 1} \log_{z} \pi - \lim_{z \to 1} \log_{z} (x^{Q+1}) = 0$$

$$\lim_{z \to 1} \log_{z} \pi - \lim_{z \to 1} \log_{z} \pi + \lim_{z \to 1} \log_{z} \pi$$

(b)

To compute MLE estimate based on given x values:

x=c(4.79,10.89,6.54,22.15)

logl < 4*(1/sum(log(x)))

Result: 0.4479208

```
(c)
        Using data in (b) to obtain the estimate by numerically maximizing the log-likelihood function
using optim function in R:
neg_loglikelihood<- function(theta,x)</pre>
logl < 4*(1/sum(log(x)))
return(-logI)
}
#Maximizing the Negative log likelihood function using optim function
max_lklhood.est <- optim(par=1,fn=neg_loglikelihood,method="BFGS",hessian = TRUE,
x=c(4.79,10.89,6.54,22.15))
#finding the MLE
-max_lklhood.est$value
#Result: 0.4479208
    • Yes, my results match and are same.
(d) Using output of numerical maximization in (c),
#standarderror of MLE
se=sqrt(diag((max_lklhood.est$hessian)))
se
#Result: 0.2239593
# to compute Confidence Interval assuming the dist is t-dist'ed
upperCI=max_lklhood.est$par + qt(0.975,3)*se
upperCI
lowerCI=max_lklhood.est$par -qt(0.975,3)*se
lowerCI.
```

Reason:

- As we have considered t-distribution taking an assumption to be a normal distribution, so in this case the approximations will not be accurate.
- Here, if you increase sample size, the width of confidence intervals will increase is False.
- Increasing the sample size decreases the width of confidence intervals, because it decreases the standard error.
- Note that the null value of the confidence interval for the relative risk is one. If a 95% CI for the relative risk includes the null value of 1, then there is <u>insufficient evidence</u> to conclude that the groups are statistically significantly different.

Since the sample size is small, and width is more (approx. 1.4254766) this doesn't give a good approximation.