HW1:博弈论与多臂老虎机算法基础

姓名: 学号: 日期:

1.1.占优策略均衡与纳什均衡的关系

证明如下关于占优策略均衡与纳什均衡的关系的结论:

1.如果每个参与人i都有一个占优于其它所有策略的策略 s_i^* , 那么 $s^* = (s_1^*, ..., s_n^*)$ 是纳什均衡;

2.如果每个参与人i都有一个严格占优于其它所有策略的策略 s_i^* ,那么 $s^* = (s_1^*, ..., s_n^*)$ 是博弈的唯一纳什均衡。

Solution:

1.我们要证明 $s^* = (s_1^*, s_2^*, ..., s_n^*)$ 是一个纳什均衡。根据纳什均衡的定义,我们需要证明对于任何参与人i,他都无法通过单方面改变策略来提高收益。也就是要证明:

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*) \quad \forall s_i \in S_i$$

根据题设,对于每个参与人i,策略s;是他所有策略中的一个(弱)占优策略。

根据占优策略的定义,对于任何参与人i,他的策略 s_i^* 满足:无论其他参与人选择什么策略组合 s_{-i} ,选择 s_i^* 的收益总是不会低于选择任何其他策略 s_i 的收益。即:

$$u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \quad \forall s_i \in S_i, \forall s_{-i} \in S_{-i}$$

既然这个条件对所有的对手策略组合 s_{-i} 都成立,那么它自然也对 s_{-i}^* (即其他参与人选择其各自占优策略的组合) 成立。

因此, 我们有:

$$u_i(s_i^*,s_{-i}^*) \geq u_i(s_i,s_{-i}^*) \quad \forall s_i \in S_i$$

这个不等式对所有参与人 $i \in N$ 都成立。这完全符合纳什均衡的定义。

因此,由每个参与人的占优策略构成的策略组合s*是一个纳什均衡。

2.这个证明包含两部分: a)证明s*是一个纳什均衡; b)证明这个纳什均衡是唯一的。

a)证明s*是一个纳什均衡

根据严格占优策略的定义,对于任何参与人i,他的策略 s_i^* 满足:无论其他参与人选择什么策略组合 s_i ,选择 s_i^* 的收益总是严格高于选择任何其他不等于 s_i^* 的策略 s_i 的收益。即:

$$u_i(s_i^*, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_i \in S_{i(s_i \neq s_i^*)}, \forall s_{-i} \in S_{-i}$$

同样,这个条件对所有的对手策略组合 s_i 都成立,自然也对 s_i^* 成立。所以:

$$u_i(s_i^*, s_{-i}^*) > u_i(s_i, s_{-i}^*) \quad \forall s_i \in S_{i(s_i \neq s_i^*)}$$

这显然满足纳什均衡的条件 $u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$ 。因此, s^* 是一个纳什均衡。

b)证明这个纳什均衡是唯一的

我们使用反证法。

假设除了 $s^* = (s_1^*, ..., s_n^*)$ 之外,还存在另一个不同的纳什均衡,我们称之为 $s' = (s_1', ..., s_n')$ 。由于 $s' = s^*$,那么必然存在至少一个参与人 j,使得他的策略 s_j' 与他的严格占优策略 s_j^* 不同,即 $s_j' \neq s_j^*$ 。

现在我们来考察参与人j的收益。根据严格占优策略 s_j^* 的定义,对于任意的对手策略组合 s_{-j} ,选择 s_i^* 的收益都严格大于选择任何其他策略 s_i^\prime 的收益。

$$u_j\big(s_j^*,s_{-j}\big)>u_j\big(s_j',s_{-j}\big)\quad\forall s_j'\neq s_j^*, \forall s_{-j}\in S_{-j}$$

这个条件对于对手策略组合 s'_{-j} (即在s'均衡中,除j以外的其他人的策略)也成立。所以,我们有:

$$u_i(s_i^*, s_{-i}') > u_i(s_i', s_{-i}')$$

这个不等式意味着:在其他参与人都选择 s'_{-j} 的情况下,参与人j如果将自己的策略从 s'_{j} 单方面变更为 s^*_{i} ,他的收益将会严格增加。

但这与我们最初的假设"8'是一个纳什均衡"矛盾。因为根据纳什均衡的定义,任何参与人都不可能通过单方面改变策略来获得更高的收益。

矛盾, 故假设是错误的。

因此,不存在其他任何纳什均衡。由每个参与人的严格占优策略构成的策略组合s'是该博弈的唯一纳什均衡。

1.2.N人古诺竞争

假设在古诺竞争中,一共有J家企业。当市场中所有企业总产量为q时,市场价格为p(q)=a-bq。且每个企业生产单位产品的成本都是同一个常数c,即企业i的产量为 q_i 时该企业的成本为 $c_i(q_i)=c\cdot q_i$ 。假设 $a>c\geq 0, b>0$ 。

- 1.求纳什均衡下所有企业的总产量以及市场价格;
- 2.讨论均衡价格随着J变化的情况, 你有什么启示?
- 3.讨论J → ∞的均衡结果, 你有什么启示?

1.3.公地悲剧

假设有I个农场主,每个农场主均有权利在公共草地上放牧奶牛。一头奶牛产奶的数量取决于在草地上放牧的奶牛总量N: 当 $N < \overline{N}$ 时, n_i 头奶牛产生的收入为 $n_i \cdot v(N)$;而当 $N \geq \overline{N}$ 时, $v(N) \equiv 0$ 。假设每头奶牛的成本为c,且v(0) > c, v' < 0, v'' < 0,所有农场主同时决定购买多少奶牛,所有奶牛均会在公共草地上放牧(注:假设奶牛的数量可以是小数,也就是无需考虑取整的问题)。

- 1.将上述情形表达为策略式博弈;
- 2.求博弈的纳什均衡下所有农场主购买的总奶牛数(可以保留表达式的形式,不用求出具体解); 3.求所有农场主效用之和最大(社会最优)情况下的总奶牛数(可以保留表达式的形式,不用求出 具体解),与上一问的结果比较,你能从中得到什么启示?

1.4.教育作为一种信号

本练习题表明,大学教育除了扩展学生的知识之外,还向未来的雇主传递了一种形式的信号。一个去求 职的年轻人可能是高能力的,也可能是低能力的。假设 1/4 的高中毕业生是高能力的,剩下的是低能 力的。一个新近的高中毕业生,他知道自己是否是高能力的,在申请一份工作之前,可以选择去国外旅 行一年或者进入大学(假定他无法同时做这两件事)。雇主希望雇用一个人填充空缺,但他不知道工作 申请者是否是高能力的;他所知道的仅仅是这个申请者是进入了大学还是去国外旅行了。雇主从雇用 一个工人中所得到的收益,只取决于被雇用工人的能力(而不取决于他的教育水平),而这个年轻人的 收益取决于高中毕业后做了什么、他的才能(因为高能力的学生更享受学习的过程)以及他是否得到了 这份工作。下面的表格描述了这些收益:

- 1.将上述博弈表达为一个不完全信息博弈;
- 2.求出博弈所有的贝叶斯纳什均衡。

1.5.混合策略的不完全信息解释

考虑以下抓钱博弈 (grab the dollar): 桌子上放 1 块钱,桌子的两边坐着两个参与人,如果两人同时去抓钱,每人罚款 1 块;如果只有一人去抓,抓的人得到那块钱;如果没有人去抓,谁也得不到什么。因此,每个参与人的策略是决定抓还是不抓。

抓钱博弈描述的是下述现实情况:一个市场上只能有一个企业生存,有两个企业在同时决定是 否进入。如果两个企业都选择进入,各亏损 100 万;如果只有一个企业进入,进入者盈利 100 万;如果没有企业进入,每个企业既不亏也不盈。

1. 求抓钱博弈的纯策略纳什均衡;

	抓	不抓
抓	-1,-1	1,0
不抓	0,1	0,0

2. 求抓钱博弈的混合策略纳什均衡;

现在考虑同样的博弈但具有如下不完全信息:如果参与人i赢了,他的利润是 $1+\theta_i$ (而不是 1).这里 θ_i 是参与人的类型,参与人i自己知道 θ_i ,但另一个参与人不知道。假定 θ_i 在[$-\varepsilon,\varepsilon$]区间上均匀分布。

	抓	不抓
抓	-1,-1	$1+\theta_1,0$
不抓	$0.1 + \theta_2$	0,0

由于两个参与人的情况完全对称,故考虑如下对称贝叶斯纳什均衡(两个人的策略相同)形式:参与人i(i=1,2)的策略均为

$$s_{i(\theta_i)} = \begin{cases} \texttt{\scriptsize M}, \texttt{\scriptsize D} \mathbb{R} \theta_i \geq \theta^* \\ \texttt{\scriptsize T} \texttt{\scriptsize M}, \texttt{\scriptsize D} \mathbb{R} \theta_i < \theta^* \end{cases}$$

即 θ *是两个参与人抓或不抓的类型分界阈值,其中 θ *是一个待计算确定的参数。 3.求 θ^* :

 $4.3\varepsilon \rightarrow 0$ 时,上述贝叶斯纳什均衡会收敛干什么?从中你能得到怎样的启示。

1.6. 飞机跑道成本分配的沙普利置计算

机场跑道的维护费用通常是向在那个机场降落飞机的航空公司来收取的。但是轻型飞机所需的 跑道长 度比重型飞机所需的跑道长度短,这就带来了一个问题,如何在拥有不同类型飞机的 航空公司之间确 定公平的维护费用分摊。

定义一个成本博弈(即每个联盟的效用是成本(N;c),这里N是降落在这个机场上的所有飞机的 集合, c(S)(对于每个联盟S)是能够允许联盟中所有飞机降落的最短跑道的维护费用。)如果用 沙普利值来确定 费用的分摊,证明:每段跑道的维护费用由使用那段跑道的飞机均摊。

下图描绘了一个例子, 其中标号为A, B, C, D, E, F, G和H的八架飞机每天都要在这个机场降 落。每 架飞机所需的跑道的整个长度由图中的区问来表示。例如, 飞机F需要前三个跑道区 间。每个跑道区间的每周维护费用标示在图的下面。例如, c(A, D, E) = 3200, c(A) = 2000和 c(C, F, G) = 5100。在这一 例子中, A的沙普利值恰好等于 2000/8 = 250, 而F的沙普利值等 于 2000/8 + 1200/6 + 900/3 = 750。你的任务是将这一性质推广到一般的情形下给出证明 (提示:使用沙普利值的性质和公式的特点)。

Start of runway
$$A, B C, D, E F G, H$$
 End of runway $2,000$ $1,200$ 900 $1,000$

提示:整体思路是先考虑求任一时刻t+1的期望遗憾 $\mathbb{E}[R_{t+1}]$,然后对这些遗憾求和,具体步 骤如下:

1. 对于时刻t+1, 注意在前t时刻中期望出现 $\sum_{i=1}^{t} \varepsilon_i$ 次探索,则每个臂被选中的平均次数为 $\sum_{i=1}^{t} \frac{\varepsilon_i}{K}$, 然后定义事件E为

$$|\mu_t(a) - Q_t(a)| \leq \sqrt{\frac{K \log t}{\sum_{i=1}^t \varepsilon_i}}$$

则接下来的步骤与课上讲的贪心算法分析类似;

2. 证明任一时刻t+1的期望遗憾 $\mathbb{E}[R_{t+1}]$ 满足

$$\mathbb{E}[R_{t+1}] \le 3\left(\frac{1}{t}K\log t\right)^{\frac{1}{3}} + O(t^{-2})$$

3. 将上式从1到T求和并放锁得到遗憾界。