MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 9 de julio de 2020.

Total Dual Integral (TDI)

Sea G = (V, E) un grafo conexo y no dirigido. El objetivo de este problema es probar que el sistema que define al polítopo de los bosques de G, $B(G) = \{x \in \mathbb{R}^E : x(E(S)) \le |S| - 1, \forall \emptyset \ne S \subseteq V, x \ge 0\}$ es TDI.

- (a) Escriba el dual (D) del problema máx $\{c^Tx \colon x \in B(G)\}$, usando variables $\{y_S\}_{S \subset V, S \neq \emptyset}$.
- (b) Considere una solución dual óptima y^* que minimice la cantidad $\Psi(y) = \sum_{S \subseteq V, S \neq \emptyset} y_S |S| |V \setminus S|$ y pruebe que el soporte \mathcal{L} de y^* es una familia **laminar**, es decir que no existen dos conjuntos A, B intersectantes en su soporte¹. ¡Cuidado! Recuerde que no existe la variable y_{\emptyset} .
- (c) Sea W un conjunto finito, $\mathcal{L} \subseteq 2^W$ una familia laminar y $\mathcal{E} \subseteq 2^W$ una familia de conjuntos. Pruebe que la matriz $M \in \{0,1\}^{\mathcal{E} \times \mathcal{L}}$ dada por $M_{I,J} = \begin{cases} 1 & \text{si } I \subseteq J, \\ 0 & \text{en otro caso,} \end{cases}$ es totalmente unimodular (TU)

Indicación: Use Ghouila-Houri asignando signos en las columnas adecuadamente.

(d) Usando las partes (b) y (c), pruebe que el sistema que define B(G) es totalmente dual integral (TDI). Concluya que B(G) es integral.

 $^{^1}A, B$ se dicen intersectantes si $A \setminus B, \, B \setminus A, \, A \cap B$ son todos no vacíos.