Problem 6.4 A stationary conducting loop with an internal resistance of 0.5Ω is placed in a time-varying magnetic field. When the loop is closed, a current of 5 A flows through it. What will the current be if the loop is opened to create a small gap and a $2-\Omega$ resistor is connected across its open ends?

Solution: $V_{\rm emf}$ is independent of the resistance which is in the loop. Therefore, when the loop is intact and the internal resistance is only 0.5 Ω ,

$$V_{\rm emf} = 5 \text{ A} \times 0.5 \Omega = 2.5 \text{ V}.$$

When the small gap is created, the total resistance in the loop is infinite and the current flow is zero. With a 2- Ω resistor in the gap,

$$I = V_{\text{emf}}/(2 \Omega + 0.5 \Omega) = 2.5 \text{ V}/2.5 \Omega = 1$$
 (A).