maile

$$(\sigma_n, \tau)$$

 $\mu = 0.5 \pm 0.1$

$$E'_{static} = E_{static}/(1-\nu^2)$$

0.0015 $\varepsilon_{Hmax} =$

= 0 ε_{hmin}

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{bmatrix} = \begin{bmatrix} +\frac{1}{E_h} & -\frac{\nu_h}{E_h} & -\frac{\nu_v}{E_v} & 0 & 0 & 0 \\ -\frac{\nu_h}{E_h} & +\frac{1}{E_h} & -\frac{\nu_v}{E_v} & 0 & 0 & 0 \\ -\frac{\nu_v}{E_v} & -\frac{\nu_v}{E_v} & +\frac{1}{E_v} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G_v} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G_v} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_h} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix}$$

$$G_h = \frac{E_h}{2(1+\nu_h)}$$

$$E_h = \frac{(C_{11} - C_{12}) \left[C_{33} (C_{11} + C_{12}) - 2 C_{13}^2 \right]}{C_{11} C_{33} - C_{13}^2}$$

$$E_v = C_{33} - \frac{2 C_{13}^2}{C_{11} + C_{12}}$$

$$\nu_h = \frac{C_{13}}{C_{11} + C_{12}}$$

$$\nu_v = \frac{C_{12}C_{33} - C_{13}^2}{C_{11}C_{33} + C_{13}^2}$$

$$G_v = C_{44}$$

$$G_h = C_{66} = \frac{C_{11} - C_{12}}{2}$$

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \\ 2\varepsilon_{12} \end{bmatrix}$$

$$C_{11} = \left[\frac{1}{(1 - \nu_h)E_v - 2\nu_v^2 E_h}\right] \left(\frac{E_h E_v - \nu_v^2 E_h^2}{1 + \nu_h}\right)$$

$$C_{33} = \left[\frac{1}{(1 - \nu_h)E_v - 2\nu_v^2 E_h}\right] (E_v^2 - \nu_h E_v^2)$$

$$C_{12} = \left[\frac{1}{(1 - \nu_h)E_v - 2\nu_v^2 E_h}\right] \left(\frac{\nu_v^2 E_h^2 + \nu_h E_h E_v}{1 + \nu_h}\right)$$

$$C_{13} = \left[\frac{1}{(1 - \nu_h)E_v - 2\nu_v^2 E_h}\right] (\nu_v E_h E_v)$$

$$C_{66} = \frac{C_{11} - C_{12}}{2} = G_h = \frac{E_h}{2(1 + \nu_h)}$$

$$(x,y) =$$

 σ_{mean}

$$\alpha \frac{(1-2\nu)}{(1-\nu)}$$

$\Gamma_{pore\ fluid}$

$$\sigma_1 = UCS + q\sigma_3$$

$$P_W = P_p$$

$$\phi = \phi_0 \exp\left(-\beta \sigma_v\right)$$

$$e = e_0 - C_c \ln \left(\frac{\sigma_v}{1 \text{ MPa}} \right)$$

$$d\varepsilon_p^e = \frac{\kappa}{v} \frac{dp'}{p'}; \ d\varepsilon_q^e = \frac{dq}{3G}$$

$$\begin{bmatrix} d\varepsilon_p^p \\ d\varepsilon_q^p \end{bmatrix} = \frac{\lambda - \kappa}{vp'(M^2 + \eta^2)} \begin{bmatrix} M^2 - \eta^2 & 2\eta \\ 2\eta & \frac{4\eta^2}{M^2 - \eta^2} \end{bmatrix} \begin{bmatrix} dp' \\ dq \end{bmatrix}$$

$$v = 1 + e$$

$$\eta = q/p'$$

$$de = v d\varepsilon_p^p$$

$$dp_o' = d\varepsilon_p^p \frac{v}{\lambda - \kappa} p_o'$$