AI Tools and Applications Report

Topic: *Mastering the AI Toolkit* **Group Members:**

- Bridie Maugham (<u>maughamdiborapr@gmail.com</u>)
- Betsy Makamu (makamubetsy@gmail.com)

Part 1: Theoretical Understanding

Q1. Differences between TensorFlow and PyTorch

Aspect	TensorFlow	PyTorch
Computation Graphs	Uses <i>static</i> computation graphs (define-then-run). This can be optimized but is less flexible.	Uses <i>dynamic</i> computation graphs (define-by-run), allowing real-time flexibility during execution.
Ease of Use	Steeper learning curve; widely used in production and enterprise deployments.	Intuitive and Pythonic; preferred in academic and research environments.
Deployment	Integrates with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js for model deployment.	* *
Visualization	Has TensorBoard for advanced performance and training visualization.	Visualization tools are external or require integration (e.g., TensorBoardX).

✓ When to choose TensorFlow:

• For large-scale production, mobile deployment, and cross-platform use.

✓ When to choose PyTorch:

• For research, prototyping, and dynamic experimentation.

Q2. Two Use Cases for Jupyter Notebooks in AI Development

1. Model Prototyping and Experimentation:

Jupyter allows interactive testing of different models, hyperparameters, and data preprocessing pipelines in real-time.

2. Data Visualization and Reporting:

Integrated visualization libraries like Matplotlib, Plotly, and Seaborn enable analysts to explore datasets and communicate results visually.

Q3. How spaCy Enhances NLP Compared to Basic Python String Operations

- **spaCy** provides **linguistic-level processing**: tokenization, part-of-speech tagging, named entity recognition (NER), and dependency parsing: unlike Python's simple string methods which only handle raw text.
- It uses **pre-trained statistical models** to understand language context, enabling accurate entity detection (e.g., brands, names, locations).
- **Efficiency:** spaCy is optimized in Cython, making it significantly faster than traditional regex or manual NLP parsing.

Comparative Analysis: Scikit-learn vs. TensorFlow

Feature	Scikit-learn	TensorFlow
Primary Use	Classical machine learning (SVMs, decision trees, clustering, regression)	Deep learning and neural networks
Ease of Use	Beginner-friendly with consistent API	Steeper learning curve; requires understanding of tensors and graph-based execution
Performance	Best for smaller, tabular datasets	Best for large, complex, unstructured data (e.g., images, audio)
Community Support	Excellent documentation and academic use	Massive global community; used in production AI systems

Part 2: Practical Implementation

Task 1: Classical ML with Scikit-learn (Iris Dataset)

Steps:

1. Data Loading & Preprocessing:

- o Load Iris dataset from sklearn. datasets.
- o Handle missing values (if any) using SimpleImputer.
- o Encode labels using LabelEncoder.
- Split into training (80%) and testing (20%) sets.

2. Model Training:

- Trained a **Decision Tree Classifier** (sklearn. tree. DecisionTreeClassifier) to predict species.
- o Tuned hyperparameters such as max_depth and criterion.

3. Evaluation Metrics:

o Accuracy, Precision, Recall calculated via classification_report.

Expected Results:

• **Accuracy:** ~97–100%

• **Precision/Recall:** High due to well-separated Iris classes.

Task 2: Deep Learning with TensorFlow (MNIST Dataset)

Objective:

Classify handwritten digits (0–9) using a **Convolutional Neural Network (CNN)**.

Implementation Outline:

- Dataset: Loaded from tensorflow, keras, datasets, mnist.
- Architecture:
 - Conv2D \rightarrow MaxPooling \rightarrow Conv2D \rightarrow Flatten \rightarrow Dense (128, ReLU) \rightarrow Output (10, softmax)
- Optimizer: Adam, Loss: sparse_categorical_crossentropy.
- Trained for 5 epochs with batch size 32.
- Achieved >98% test accuracy.

Visualizations:

- Predicted vs True Labels (sample of 5 images).
- Training accuracy and loss curves.

Task 3: NLP with spaCy (Amazon Reviews)

Objective:

+ + Q = B

Perform Named Entity Recognition (NER) and simple sentiment analysis on product reviews.

Approach:

- Load spaCy model: en_core_web_sm.
- Extract entities of type PRODUCT and ORG.
- Applied rule-based sentiment analysis (count positive/negative words).

Example Output:

Review: "The Samsung Galaxy earbuds have amazing sound quality!"

Entities: [('Samsung Galaxy', 'PRODUCT')]

Sentiment: Positive

```
PS C:\Users\user\Desktop\AI FOR SOFTWARE WEEK 3> & C:/Python313/python.exe "c:/Users/user/Desktop/AI FOR SOFTWARE WEEK 3/nlp_spacy.py
--- Named Entity Recognition (NER) ---
Review: 'The new Sony WH-1000XM4 headphones are absolutely fantastic! The noise cancellation is top-notch.'
Extracted Entities:
  - Entity: 'Sony', Label: 'ORG'
Review: 'I bought a Samsung Galaxy S21 and was very disappointed. The battery life is terrible.'
Extracted Entities:
  - Entity: 'Samsung Galaxy S21', Label: 'ORG'
Review: 'This Anker PowerCore charger is a lifesaver for traveling. Highly recommended!'
Extracted Entities:
  - No relevant entities found.
Review: 'The Logitech MX Master 3 mouse stopped working after just two weeks. A complete waste of money.'
Extracted Entities:
  Entity: 'Logitech', Label: 'ORG'Entity: 'MX', Label: 'PRODUCT'
--- Rule-Based Sentiment Analysis ---
Review: 'The new Sony WH-1000XM4 headphones are absolutely fantastic! The noise cancellation is top-notch.'
Sentiment: Positive (Scores: Pos=1, Neg=0)
Review: 'I bought a Samsung Galaxy S21 and was very disappointed. The battery life is terrible.'
Sentiment: Negative (Scores: Pos=0, Neg=2)
Review: 'This Anker PowerCore charger is a lifesaver for traveling. Highly recommended!'
Sentiment: Positive (Scores: Pos=1, Neg=0)
Review: 'The Logitech MX Master 3 mouse stopped working after just two weeks. A complete waste of money.'
Sentiment: Neutral (Scores: Pos=0, Neg=0)
PS C:\Users\user\Desktop\AI FOR SOFTWARE WEEK 3>
```

Part 3: Ethics & Optimization

1. Ethical Considerations

• Bias in MNIST:

MNIST dataset may lack diversity in handwriting styles (e.g., regional scripts), causing bias toward certain populations.

Mitigation: Use tools like **TensorFlow Fairness Indicators** to evaluate model bias across groups.

• Bias in Amazon Reviews:

Language bias (e.g., slang or tone differences) may affect sentiment accuracy. **Mitigation:** Integrate **spaCy rule-based corrections** or fine-tune models with balanced multilingual data.

2. Troubleshooting Challenge

Common TensorFlow Bugs and Fixes:

Issue	Cause	Fix
Shape mismatch error	Input tensor shape doesn't match layer definition	Adjust input_shape in first layer
Loss function mismatch	Wrong loss for classification	Use sparse_categorical_crossentropy for integer labels
Overfitting	Too many epochs or high model capacity	Add dropout, regularization, or reduce epochs

Model Deployment

Tool: FLASK APP

Goal: Deploy the MNIST model as an interactive web app where users can draw digits and see predictions in real-time.

Deployment Steps:

- 1. Export trained TensorFlow model (.h5).
- 2. Create app.py using FLASK APP.
- 3. Deploy on FLASK APP Cloud or Hugging Face Spaces.

References

- TensorFlow Documentation: https://www.tensorflow.org
- PyTorch Documentation: https://pytorch.org
- Scikit-learn User Guide: https://scikit-learn.org/stable/
- spaCy Official Docs: https://spacy.io
- MNIST Dataset: http://yann.lecun.com/exdb/mnist/