CLAIMS

We claim:

5 1. A compound according to formula (I),

or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein:

-NR₅(arylalkyl); wherein said aryl or arylalkyl are optionally substituted with one to two R₂₅;

W is hydrogen or $-(CR_7R_8)_q$ -H;

Z is a 5-membered heteroaryl group optionally substituted with 1-3 R_9 , a five to six membered heterocyclo or cycloalkyl group optionally substituted with

15 1-3 R₉, a 9 to 10 membered bicyclic aryl or heteroaryl optionally substituted with 1-3

substituents selected from
$$R_9$$
 and/or R_{10} , or R_{10} Z_3 Z_{11} Z_{22} Z_{33} Z_{11}

 Z_1 , Z_2 and Z_3 are independently N or CR_9 ;

 R_1 , R_2 and R_3 are attached to any available carbon atom of phenyl ring A and are independently selected from hydrogen, halogen, cyano, nitro, C_{1-10} alkyl,

 $\begin{array}{lll} \text{20} & \text{C}_{2\text{-}10} \text{alkenyl, substituted C}_{1\text{-}10} \text{alkyl, substituted C}_{2\text{-}10} \text{alkenyl, -C(=O)NR}_{12} R_{13}, \\ & -\text{OR}_{12}, -\text{CO}_2 R_{12}, -\text{C(=O)R}_{12}, -\text{SR}_{12}, -\text{S(O)}_t R_{15}, -\text{NR}_{12} R_{13}, -\text{NR}_{12} \text{SO}_2 R_{15}, \\ & -\text{NR}_{14} \text{SO}_2 \text{NR}_{12} R_{13}, -\text{NR}_{12} \text{CO}_2 R_{13}, -\text{NR}_{12} \text{C(=O)R}_{13}, -\text{NR}_{14} \text{C(=O)NR}_{12} R_{13}, \\ & -\text{SO}_2 \text{NR}_{12} R_{13}, \text{ aryl, heteroaryl, cycloalkyl, and heterocyclo;} \end{array}$

10

15

20

25

 R_5 is hydrogen, C_{1-4} alkyl, NH_2 , C_{1-4} alkylamino, hydroxy, or C_{1-4} alkoxy;

R₇ and R₈ are independently selected from hydrogen, -OR₁₈, -NR₁₈R₁₉,
-NR₁₈SO₂R₂₀, alkyl, alkenyl, substituted alkyl, substituted alkenyl, halogen,

haloalkyl, haloalkoxy, cyano, nitro, alkylthio, -C(=O)H, acyl, -CO₂H,
alkoxycarbonyl, sulfonamido, sulfonyl, and phenyl in turn optionally substituted with
1-3 of halogen, cyano, haloalkyl, haloalkoxy, nitro, hydroxy, C₁₋₄alkyl,
C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, amino, NH(C₁₋₄alkyl), N(C₁₋₄alkyl)₂, and/or
C₁₋₄aminoalkyl;

 R_9 , R_{10} and R_{11} are independently selected from hydrogen, halogen, alkyl, substituted alkyl, haloalkyl, haloalkoxy, cyano, nitro, $-S(O)_uR_{21}$, $-NR_{22}SO_2R_{21}$, $-C(=O)NR_{22}R_{23}$, $-OR_{22}$, $-CO_2R_{22}$, $-C(=O)R_{22}$, $-SR_{22}$, $-NR_{22}R_{23}$, $-NR_{22}CO_2R_{23}$, $-NR_{22}C(=O)R_{23}$, $-NR_{22}C(=O)NR_{23}R_{24}$, $-SO_2NR_{22}R_{23}$, $-NR_{22}SO_2NR_{23}R_{24}$, $-C(=NR_{22})NR_{23}R_{24}$, five or six membered heterocyclo or heteroaryl, phenyl, and C_{3-7} cycloalkyl, provided that R_{11} is not $-C(=NR_{22})NR_{23}R_{24}$ when W or W_1 is hydrogen; wherein when R_9 , R_{10} or R_{11} is selected from heterocyclo, heteroaryl, phenyl, and C_{3-7} cycloalkyl, each of said cyclic groups in turn is optionally substituted with up to three of C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, C_{1-4} alkylamino, and/or cyano;

 R_{12} , R_{13} , R_{14} , R_{18} , R_{19} , R_{22} R_{23} , and R_{24} are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

 R_{15} , R_{20} and R_{21} are independently selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

 $R_{25} \text{ at each occurrence is selected from hydrogen, halogen, cyano, nitro, C_{1-10} alkyl, C_{2-10} alkenyl, substituted C_{1-10} alkyl, substituted C_{2-10} alkenyl, <math display="block">-C(=O)NR_{12}R_{13}, -OR_{12}, -CO_{2}R_{12}, -C(=O)R_{12}, -SR_{12}, -S(O)_{t}R_{15}, -NR_{12}R_{13}, \\ -NR_{12}SO_{2}R_{15}, -NR_{14}SO_{2}NR_{12}R_{13}, -NR_{12}CO_{2}R_{13}, -NR_{12}C(=O)R_{13}, \\ -NR_{14}C(=O)NR_{12}R_{13}, -SO_{2}NR_{12}R_{13}, \text{ aryl, heteroaryl, cycloalkyl, and heterocyclo;}$

p is 1 or 2;q is 1, 2 or 3;

t is 1 or 2; and

u is 1 or 2;

provided that when Z is phenyl, pyridyl or pyridazinyl, R_9 , R_{10} and/or R_{11} are other than cyano or $-C(=NR_{22})NR_{23}R_{24}$.

2. A compound according to claim 1, or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein the compound is of formula (Ia):

X is -OH, -O(phenyl) optionally substituted with one to two R_{25} , -O(benzyl) optionally substituted with one to two R_{25} , -NH(phenyl) optionally substituted with one to two R_{25} , or -NH(benzyl) optionally substituted with one to two R_{25} ;

W is hydrogen or $-(CH_2)_q$ -H;

15

20

Z is selected from a 5-membered heteroaryl group optionally substituted with 1-3 R₉, a five to six membered heterocyclo or cycloalkyl group optionally substituted with 1-3 R₉, a 9 to 10 membered bicyclic aryl or heteroaryl optionally substituted

with 1-3 substituents selected from R_9 and/or R_{10} , and R_{10} Z_3 R_{11} ;

 Z_1 , Z_2 and Z_3 are independently N or CR_9 and at least one of Z_1 , Z_2 and Z_3 is N;

 R_1 and R_2 are independently selected from hydrogen, halogen, cyano, nitro, $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, substituted $C_{1\text{-}10}$ alkyl, substituted $C_{2\text{-}10}$ alkenyl,

and/or cyano;

15

20

25

-C(=O)NR₁₂R₁₃, -OR₁₂, -CO₂R₁₂, -C(=O)R₁₂, -SR₁₂, -S(O)₁R₁₅, -NR₁₂R₁₃.
-NR₁₂SO₂R₁₅, -NR₁₄SO₂NR₁₂R₁₃, -NR₁₂CO₂R₁₃, -NR₁₂C(=O)R₁₃,
-NR₁₄C(=O)NR₁₂R₁₃, -SO₂NR₁₂R₁₃, aryl, heteroaryl, cycloalkyl, and heterocyclo;
R₉, R₁₀ and R₁₁ are independently selected from hydrogen, halogen, alkyl,
substituted alkyl, haloalkyl, haloalkoxy, cyano, nitro, -S(O)_uR₂₁,
-NR₂₂SO₂R₂₁, -C(=O)NR₂₂R₂₃, -OR₂₂, -CO₂R₂₂, -C(=O)R₂₂, -SR₂₂, -NR₂₂R₂₃,
-NR₂₂CO₂R₂₃, -NR₂₂C(=O)R₂₃, -NR₂₂C(=O)NR₂₃R₂₄, -SO₂NR₂₂R₂₃,
-NR₂₂SO₂NR₂₃R₂₄, -C(=NR₂₂)NR₂₃R₂₄, five or six membered heterocyclo or heteroaryl, phenyl, and C₃₋₇cycloalkyl, provided that R₁₁ is not -C(=NR₂₂)NR₂₃R₂₄
when W is hydrogen; wherein when R₉, R₁₀ or R₁₁ is selected from heterocyclo, heteroaryl, phenyl, and C₃₋₇cycloalkyl, each of said cyclic groups in turn is optionally substituted with up to three of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄ hydroxyalkyl, C₁₋₄ aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, C₁₋₄ alkylamino,

 R_{12} , R_{13} , R_{14} , R_{18} , R_{19} , R_{22} R_{23} , and R_{24} are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

 R_{15} , R_{20} and R_{21} are independently selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo; R_{16} is alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, or heterocyclo;

p is 1 or 2;q is 1, 2 or 3; andu is 1 or 2;

provided that when Z is phenyl, pyridyl or pyridazinyl, R_9 , R_{10} and/or R_{11} are other than cyano or $-C(=NR_{22})NR_{23}R_{24}$.

3. A compound according to claim 2, wherein:

X is selected from -OH, -O(phenyl), -O(benzyl), -NH(phenyl), and wherein each phenyl or benzyl group is optionally substituted with one to two R_{25} ,

W is hydrogen or $-(CH_2)_q$ -H;

Z is selected from the group:

$$(R_9)_s$$
 and
$$(H_N)_s$$

5 R_1 and R_2 are OR_{12} ;

 R_9 is selected from hydrogen, halogen, alkyl, substituted alkyl, haloalkyl, haloalkoxy, cyano, nitro, -S(O)_uR₂₁, -NR₂₂SO₂R₂₁, -C(=O)NR₂₂R₂₃, -OR₂₂, -CO₂R₂₂, -C(=O)R₂₂, -SR₂₂, -NR₂₂R₂₃, -NR₂₂CO₂R₂₃, -NR₂₂C(=O)R₂₃, -NR₂₂C(=O)NR₂₃R₂₄, -SO₂NR₂₂R₂₃, -NR₂₂SO₂NR₂₃R₂₄, five or six membered heterocyclo or heteroaryl, phenyl, and C₃₋₇cycloalkyl;

R₁₂, R₂₃ and R₂₄ are selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, or heterocyclo;

R₂₁ is selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

 R_{25} at each occurrence is selected from $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkoxy, $C_{1\text{-}4}$ hydroxyalkyl, $C_{1\text{-}4}$ aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, $C_{1\text{-}4}$ alkylamino, and/or cyano;

q is 1, 2 or 3; s is 0, 1, or 2; and

20 *u* is 1 or 2;

10

15

provided that when Z is phenyl, R_9 and/or R_{11} are other than cyano or $-C(=NR_{22})NR_{23}R_{24}$.

4. A compound according to claim 1, or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein the compound is of formula (Ib),

$$Z$$
 W
 X
 OR_{12b}
 OR_{12a}
 Z
 W
 X
 $(Ib),$

wherein:

5

10

X is selected from -O(phenyl), -O(benzyl), and -NH(phenyl) -NH(benzyl), wherein each group X is optionally substituted with one to two R_{25} ,

W is hydrogen or $-(CH_2)_q$ -H;

Z is selected from the group:

$$(R_9)_s$$
 $(R_9)_s$ and

 R_9 is independently selected from hydrogen, halogen, alkyl, aminoalkyl, hydroxyalkyl, haloalkyl, haloalkoxy, alkoxy, cyano, nitro, alkylamino, alkylthio, thioalkyl, $-C(=O)NH_2$, $-C(=O)NH(C_{1-4}alkyl)$, $-C(=O)N(C_{1-4}alkyl)_2$, five or six membered heterocyclo or heteroaryl, phenyl, and C_{3-7} cycloalkyl;

 R_{12a} and R_{12b} are independently selected from hydrogen, alkyl, substituted alkyl, phenyl, and benzyl;

R₂₅ at each occurrence is selected from C₁₋₄alkyl, C₁₋₄alkoxy,

 C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, C_{1-4} alkylamino, and/or cyano;

p is 1 or 2; and s is 0, 1 or 2;

provided that when Z is phenyl, R_9 and/or R_{11} are other than cyano or $-C(=NR_{22})NR_{23}R_{24}.$

5. A compound according to claim 1, or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein Z is selected from:

5 Z_4 is fused to ring A comprising the common carbon atom C* and is

Z₅ is fused to ring A comprising the common carbon atom C* and is selected from:

10

 Z_6 is fused to ring A comprising the common carbon atom C* and is

 \mathbb{Z}_7 is fused to ring A comprising the common carbon atom \mathbb{C}^* and is selected from:

*
$$(R_9)_s$$
 , $(R_9)_r$, $(R_9)_r$, $(R_9)_s$, $(R_9)_s$, $(R_9)_s$, and $(R_9)_s$

Z₈ is fused to ring B comprising the common nitrogen atom N* and is selected from

5

$$\bigcap_{\substack{N \\ *}} (R_9)_r \qquad \bigcap_{\substack{N \\ *}} (R_9)_r \qquad \bigcap_{\substack{N \\ *}} (R_9)_r \qquad \bigcap_{\substack{N \\ *}} (R_9)_r$$
 and
$$\bigcap_{\substack{N \\ *}} (R_9)_r \qquad \bigcap_{\substack{N \\ *}} (R_$$

Z₉ is CH or N;

r is 0, 1, or 2; and

10 s is 0, 1, 2, or 3.

6. A compound according to claim 1, or a stereoisomer or a pharmaceutically-acceptable salt, hydrate or prodrug thereof, wherein Z is selected from:

15

5

10

$$-\frac{1}{2} \sum_{N=1}^{N} \sum_{N=1}$$

- 7. A compound according to claim 1, or a stereoisomer or a pharmaceutically-acceptable salt, hydrate or prodrug thereof, wherein R_1 and R_2 are OR_{12} .
- 8. A compound according to claim 7, or a stereoisomer or a pharmaceutically acceptable salt, hydrate or prodrug thereof, wherein R_{12} is $C_{1\text{-}6}$ alkyl, phenyl, or benzyl optionally substituted with one to two of halogen, cyano, haloalkyl, haloalkoxy, nitro, hydroxy, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ hydroxyalkyl, $C_{1\text{-}4}$ alkoxy, amino, $NH(C_{1\text{-}4}$ alkyl), and $N(C_{1\text{-}4}$ alkyl)₂.
- 9. A compound according to claim 8, or a stereoisomer or a pharmaceutically-acceptable salt, hydrate or prodrug thereof, wherein W is hydrogen.
- 10. A compound according to claim 9, or a stereoisomer or a pharmaceuticallyacceptable salt, hydrate or prodrug thereof, wherein X is NH(phenyl), NH(benzyl),
 SO₂alkyl, or SO₂(phenyl) optionally substituted with one to two of C₁₋₄alkyl,

 C_{1-4} alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, C_{1-4} alkylamino, and/or cyano.

5 11. A compound having the formula (Ib),

$$OR_{12b}$$
 OR_{12a}
 Z
 W
 X
 (Ib)

or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein:

X is selected from -O(phenyl) optionally substituted with one to two R_{25} , -O(benzyl) optionally substituted with one to two R_{25} , -NH(phenyl) optionally substituted with one to two R_{25} , and -NH(phenylalkyl) optionally substituted with one to two R_{25} ;

W is hydrogen or $-(CH_2)_q$ -H;

Z is selected from:

$$Z_1$$
 Z_2 Z_3 Z_{11} Z_2 Z_3 Z_{11} Z_4 Z_5 Z_5 Z_5 Z_6 Z_6 Z_6 Z_7 Z_8 Z_8

15

10

 Z_1 , Z_2 and Z_3 are selected from N and CR_9 ;

 Z_4 is fused to ring A comprising the common carbon atom C^{\ast} and is

-70-

 Z_5 is fused to ring A comprising the common carbon atom C^* and is selected from:

Z₆ is fused to ring A comprising the common carbon atom C* and is

5

 Z_7 is fused to ring A comprising the common carbon atom C^* and is selected from:

*
$$(R_9)_s$$
 , $(R_9)_r$, $(R_9)_r$, $(R_9)_s$, $(R_9)_s$, $(R_9)_s$, $(R_9)_s$, $(R_9)_s$, and $(R_9)_s$

 Z_8 is fused to ring B comprising the common nitrogen atom N* and is selected from

$$(R_9)_r$$
 $(R_9)_r$
 $(R_9)_r$

Z₉ is CH or N;

 R_9 and R_{10} are independently selected from hydrogen, halogen, alkyl, substituted alkyl, haloalkyl, haloalkoxy, cyano, nitro, $-S(O)_uR_{21}$, $-NR_{22}SO_2R_{21}$,

5

10

15

-C(=O)NR₂₂R₂₃, -OR₂₂, -CO₂R₂₂, -C(=O)R₂₂, -SR₂₂, -NR₂₂R₂₃, -NR₂₂CO₂R₂₃, -NR₂₂C(=O)R₂₃, -NR₂₂C(=O)NR₂₃R₂₄, -SO₂NR₂₂R₂₃, -NR₂₂SO₂NR₂₃R₂₄, -C(=NR₂₂)NR₂₃R₂₄, five or six membered heterocyclo or heteroaryl, phenyl, and C₃₋₇cycloalkyl, provided that R₉ and R₁₀ are not -C(=NR₂₂)NR₂₃R₂₄ when W is hydrogen; wherein when R₉ or R₁₀ is independently selected from heterocyclo, heteroaryl, phenyl, and C₃₋₇cycloalkyl, each of said cyclic groups in turn is optionally substituted with up to three of C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, C₁₋₄alkylamino, and/or cyano;

R₁₂, R_{12a}, R_{12b}, R₂₂ R₂₃, and R₂₄ are independently selected from hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

R₂₁ is selected from alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, heteroaryl, cycloalkyl, and heterocyclo;

 R_{25} at each occurrence is selected from $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkoxy, $C_{1\text{-}4}$ hydroxyalkyl, $C_{1\text{-}4}$ aminoalkyl, halogen, hydroxy, haloalkyl, haloalkoxy, amino, $C_{1\text{-}4}$ alkylamino, and/or cyano;

25

12. A compound according to claim 11, or a stereoisomer or a pharmaceutically-acceptable salt thereof, wherein Z is selected from

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N

13. A compound according to claim 1, wherein:

X is NR₅(benzyl) optionally substituted with one to two R₂₅;

W is hydrogen;

$$Z$$
 is $(R_9)_s$; and

 $R_{25} \text{ at each occurrence is selected from halogen, cyano, nitro, C_{1-10}alkyl,} $$$$ C_{2-10}$alkenyl, substituted C_{1-10}alkyl, substituted C_{2-10}alkenyl, $-C(=O)NR_{12}R_{13}$, $$$$$-OR_{12}, $-CO_2R_{12}, $-C(=O)R_{12}, $-SR_{12}, $-S(O)_tR_{15}, $-NR_{12}R_{13}, $-NR_{12}SO_2R_{15}$, $$$$$$

 $-{\rm NR}_{14}{\rm SO}_2{\rm NR}_{12}{\rm R}_{13}, -{\rm NR}_{12}{\rm CO}_2{\rm R}_{13}, -{\rm NR}_{12}{\rm C}(={\rm O}){\rm R}_{13}, -{\rm NR}_{14}{\rm C}(={\rm O}){\rm NR}_{12}{\rm R}_{13}, -{\rm NR}_{14}{\rm C}(={\rm O}){\rm NR}_{14}$

-SO₂NR₁₂R₁₃, aryl, heteroaryl, cycloalkyl, and heterocyclo.

10

14. A compound according to claim 13, wherein:

15

15. A compound according to claim 13, wherein:

20 16.

A compound according to claim 1, wherein:

X is OH;

W is hydrogen; and

17. A compound according to claim 16, wherein:

18. A compound according to claim 16, wherein:

10

5

- 19. A compound according to claim 1, wherein the compound is selected from the group:
- 2-(4-Aminomethyl-phenylamino)-N-benzyl-2-(3-ethoxy-4-isopropoxy-phenyl)-acetamide;
 - 7-{[Carboxy-(3-ethoxy-4-isopropoxy-phenyl)-methyl]-amino}-3,4-dihydro-1H-isoquinoline-2-carboxylicacid *tert*-butyl ester;
 - [3-(*tert*-Butoxycarbonylamino-methyl)-phenylamino]-(3-ethoxy-4-isopropoxy-phenyl)-acetic acid;
 - (1-Amino-isoquinolin-6-ylamino)-(3-ethoxy-4-isopropoxy-phenyl)-acetic acid;
 - 2-(1-Amino-isoquinolin-6-ylamino)-N-benzyl-2-(3-ethoxy-4-isopropoxy-phenyl)-acetamide; or a stereoisomer or a pharmaceutically-acceptable salt thereof.

25

20

20. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1, or a stereoisomer or a pharmaceutically-acceptable salt thereof.

5

21. A method for treating a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt thereof.

10

22. A method according to Claim 21, wherein the thromboembolic disorder is selected from the group consisting of arterial cardiovascular thromboembolic disorders, venous cardiovascular thromboembolic disorders, and thromboembolic disorders in the chambers of the heart.

15

20

25

23. A method according to Claim 21, wherein the thromboembolic disorder is selected from unstable angina, an acute coronary syndrome, first myocardial infarction, recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, peripheral occlusive arterial disease, venous thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary arterial thrombosis, cerebral arterial thrombosis, cerebral embolism, kidney embolism, pulmonary embolism, and thrombosis resulting from (a) prosthetic valves or other implants, (b) indwelling catheters, (c) stents, (d) cardiopulmonary bypass, (e) hemodialysis, or (f) other procedures in which blood is exposed to an artificial surface that promotes thrombosis.

24. The pharmaceutical composition of claim 20 further comprising at least one other therapeutic agent selected from one or more of potassium channel openers, calcium channel blockers, sodium hydrogen exchanger inhibitors, antiarrhythmic agents, antiatherosclerotic agents, anticoagulants, antithrombotic agents, prothrombolytic agents, fibrinogen antagonists, diuretics, antihypertensive agents,

ATPase inhibitors, mineralocorticoid receptor antagonists, phospodiesterase inhibitors, antidiabetic agents, anti-inflammatory agents, antioxidants, angiogenesis modulators, antiosteoporosis agents, hormone replacement therapies, hormone receptor modulators, oral contraceptives, antiobesity agents, antidepressants, antianxiety agents, antipsychotic agents, antiproliferative agents, antitumor agents, antiulcer and gastroesophageal reflux disease agents, growth hormone agents and/or growth hormone secretagogues, thyroid mimetics, anti-infective agents, antiviral agents, antibacterial agents, antifungal agents, cholesterol/lipid lowering agents and lipid profile therapies, and agents that mimic ischemic preconditioning and/or myocardial stunning.

25. The pharmaceutical composition of claim 20 wherein the at least one other therapeutic agent is an antihypertensive agent selected from ACE inhibitors, AT-1 receptor antagonists, ET receptor antagonists, dual ET/AII receptor antagonists, and vasopepsidase inhibitors, or an antithrombotic agent selected from an antiplatelet agent selected from GPIIb/IIIa blockers, P2Y₁ and P2Y₁₂ antagonists, thromboxane receptor antagonists, and aspirin.

20

15

26. A method of treating a Factor VIIa-associated disorder comprising administering an effective amount of at least one compound of Claim 1, or a stereoisomer or a pharmaceutically-acceptable salt thereof, to a patient in need thereof.

25

30

27. The method of claim 26 wherein the Factor VIIa-associated disorder is selected from myocardial infarction, coronary artery disease, non-Q wave MI, congestive heart failure, cardiac arrhythmias, unstable angina, chronic stable angina, Prinzmetal's angina, high blood pressure, intermittent claudication, and peripheral occlusive arterial disease.