

Free Lunch Multivariate Forecast Projection: reducing forecast variance using linear combinations

Yangzhuoran Fin Yang Rob J Hyndman George Athanasopoulos Anastasios Panagiotelis

Free lunch forecast projection

A model-independent post-forecast adjustment method that can reduce forecast variance.

- Averaging indirect forecasts from linear combinations (components)
- Projecting forecasts of augmented series
- Free lunch: no additional data or information needed

What to expect

- Intuition with data
- Literature
- Method formulation
- Properties
- Empirical applications and simulation

Australian tourism data

- The data include tourism information on seven states and territories which can be divided into 77 regions
 - ▶ For example, Melbourne, Sydney, East Coast

Visitor nights

The total number of nights spent by Australians away from home recorded monthly

Melbourne and Sydney

Total and Region

Intuition

Observation

- 1. Similar patterns are shared by different series.
- 2. Better signal-noise ratio in the linear combination.

Intuition

Observation

- 1. Similar patterns are shared by different series.
- 2. Better signal-noise ratio in the linear combination.

One step further

Finding components that

- 1. are easy to forecast;
- 2. can capture the common signals;
- 3. can improve forecast of original series.

Literature

Forecast reconciliation

Wickramasuriya, Athanasopoulos, and Hyndman (2019): Projecting forecasts to be consistent with the hierarchical structure

Forecast combination

- Combining forecasts of the target series
- Hollyman, Petropoulos, and Tipping (2021):
 Combining direct and indirect forecasts
- Petropoulos and Spiliotis (2021): Combining forecasts of selections and transformations of the target series ("wisdom of data")

Literature

Bagging

- Bergmeir, Hyndman, and Benítez (2016): Bagging ETS models to forecast
- Petropoulos, Hyndman, and Bergmeir (2018): The benefits of bagging originate from the model uncertainty

Dynamic factor model (DFM)

- Stock and Watson (2002a), Stock and Watson (2002b)
- De Stefani et al. (2019): Machine learning extension

Series $z_t \in \mathbb{R}^m$

Components $oldsymbol{c}_t = \Phi oldsymbol{z}_t \in \mathbb{R}^p$

Free lunch forecast projection

$$oldsymbol{y}_t = egin{bmatrix} oldsymbol{z}_t \ oldsymbol{c}_t \end{bmatrix} \qquad oldsymbol{ ilde{y}}_{t+h} = oldsymbol{M} \hat{oldsymbol{y}}_{t+h}$$

$$\tilde{\boldsymbol{z}}_{t+h} = \boldsymbol{J} \tilde{\boldsymbol{y}}_{t+h} = \boldsymbol{J} \boldsymbol{M} \hat{\boldsymbol{y}}_{t+h}$$

$$egin{aligned} oldsymbol{M} &= oldsymbol{I}_{m+p} - oldsymbol{W}_h oldsymbol{C}' (oldsymbol{C} oldsymbol{W}_h oldsymbol{C}')^{-1} oldsymbol{C} \ oldsymbol{J} &= oldsymbol{J}_{m,p} = egin{bmatrix} oldsymbol{I}_m & oldsymbol{O}_{m imes p} \end{bmatrix} \ oldsymbol{C} &= egin{bmatrix} - oldsymbol{\Phi} & oldsymbol{I}_p \end{bmatrix} \ oldsymbol{W}_h &= \operatorname{Var}(\hat{oldsymbol{y}}_{t+h}) \end{aligned}$$

Forecasts and projection of series

Unbiasedness

Unbiasedness

If the base forecasts are unbiased, then the projected forecasts are also unbiased.

Projection matrix

- The matrix M is a projection onto the space where the constraint C is satisfied.
- The projected forecast $\tilde{\mathbf{y}}_{t+h}$ satisfies the constraint \mathbf{C} .
- For \mathbf{y}_{t+h} that already satisfies the constraint, the projection does not change its value: $\mathbf{M}\mathbf{y}_{t+h} = \mathbf{y}_{t+h}$

Nonnegative variance reduction

Under unbiasedness, the variance reduction is **positive semi-definite**:

$$\begin{aligned} \operatorname{Var}(\hat{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) &- \operatorname{Var}(\tilde{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) \\ &= \boldsymbol{JW}_h \boldsymbol{C}' (\boldsymbol{CW}_h \boldsymbol{C}')^{-1} \boldsymbol{CW}_h \boldsymbol{J}' \end{aligned}$$

Example $W_h = I_{m+p}$

$$\begin{aligned} \operatorname{Var}(\hat{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) &- \operatorname{Var}(\tilde{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) \\ &= \boldsymbol{J}\boldsymbol{C}'(\boldsymbol{C}\boldsymbol{C}')^{-1}\boldsymbol{C}\boldsymbol{J}' \\ &= \boldsymbol{\Phi}'(\boldsymbol{\Phi}\boldsymbol{\Phi}' + \boldsymbol{I})^{-1}\boldsymbol{\Phi} \end{aligned}$$

Let Φ consist of orthogonal unit vectors:

$$\Phi \Phi' = \mathbf{I}_p$$
 when $p \leq m$
 $\Phi' \Phi = \mathbf{I}_m$ when $p = m$.

$$\operatorname{tr}(\operatorname{Var}(\hat{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) - \operatorname{Var}(\tilde{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}))$$

$$= \frac{1}{2} \operatorname{tr}(\boldsymbol{\Phi}' \boldsymbol{\Phi}) = \frac{1}{2} \boldsymbol{\rho}$$

Positive condition

For the first component to have a guaranteed reduction of forecast variance, the following condition must be satisfied:

$$\phi_1 \mathbf{W}_{z,h} \neq \mathbf{w}_{c_1 z,h},$$

- $lack \phi_1$ is the weight vector of the first component
- $\mathbf{W}_{z,h} = \operatorname{Var}(\hat{\mathbf{z}}_{t+h})$
- $\mathbf{w}_{c_1z,h}$ is the forecast covariance between the first component and the original series.

Monotonicity

The sum of forecast variance reductions

$$\begin{aligned} \operatorname{tr}(\operatorname{Var}(\hat{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) - \operatorname{Var}(\tilde{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h})) \\ &= \operatorname{tr}(\boldsymbol{J}\boldsymbol{W}_h\boldsymbol{C}'(\boldsymbol{C}\boldsymbol{W}_h\boldsymbol{C}')^{-1}\boldsymbol{C}\boldsymbol{W}_h\boldsymbol{J}') \end{aligned}$$

is non-decreasing as p increases.

Minimum variance of individual series

The projection is equivalent to the mapping

$$\tilde{\mathbf{z}}_{t+h} = \mathbf{G}\hat{\mathbf{y}}_{t+h},$$

where $\mathbf{G} = \begin{bmatrix} \mathbf{g}_1 & \mathbf{g}_2 & \dots & \mathbf{g}_m \end{bmatrix}' \in \mathbb{R}^{m \times (m+p)}$ is the solution to

$$\operatorname{arg\,min}_{\boldsymbol{G}} \boldsymbol{G} \boldsymbol{W}_h \boldsymbol{G}' \qquad \text{s.t. } \boldsymbol{G} \boldsymbol{S} = \boldsymbol{I}$$

or

$$\underset{\boldsymbol{a}_{i}}{\operatorname{arg\,min}} \; \boldsymbol{g}_{i}' \boldsymbol{W}_{h} \boldsymbol{g}_{i} \quad \text{s.t. } \boldsymbol{g}_{i}' \boldsymbol{s}_{j} = \mathbf{1}(i = j),$$

where
$$oldsymbol{s} = egin{bmatrix} oldsymbol{I}_m \ oldsymbol{\Phi} \end{bmatrix} = oldsymbol{ar{s}}_1 \cdots oldsymbol{s}_m \end{bmatrix}.$$

Key results

- The forecast variance is **reduced** with forecast projection
- The forecast variance monotonically decreases with increasing number of components
- The forecast projection is **optimal** to achieve minimum forecast variance of each series

Estimation

$$\tilde{\boldsymbol{z}}_{t+h} = \boldsymbol{J} \tilde{\boldsymbol{y}}_{t+h} = \boldsymbol{J} \boldsymbol{M} \hat{\boldsymbol{y}}_{t+h}$$

$$\mathbf{M} = \mathbf{I}_{m+p} - \mathbf{W}_h \mathbf{C}' (\mathbf{C} \mathbf{W}_h \mathbf{C}')^{-1} \mathbf{C}$$

$$oldsymbol{W}_h = ext{Var}(\hat{oldsymbol{y}}_{t+h}) \ oldsymbol{C} = egin{bmatrix} -\Phi & oldsymbol{I}_p \end{bmatrix}$$

- Estimation of W_h
- \blacksquare Construction of Φ

Estimation of W_h

Shrinking variance towards their median (Opgen-Rhein and Strimmer 2007) and **shrinking covariance** towards zero (Schäfer and Strimmer 2005).

The shrinkage estimator is

- Positive definite, and
- Numerically stable.

In empirical applications, we assume

$$\widehat{\mathbf{W}}_{h}^{shr} = \eta_{h} \widehat{\mathbf{W}}_{1}^{shr}.$$

Construction of Φ

Principal component analysis (PCA)

Finding the weights matrix so that the resulting components **maximise variance**

Simulation

Generating values from a random distribution and normalising them to unit vectors

- Normal distribution
- Uniform distribution
- Orthonormal matrix (Borchers 2023)

Tourism (ETS)

FRED-MD (DFM)

Simulation

- Data generating process (DGP): VAR(3) with m = 70 variables
- Sample size: T = 400
- Number of repeated samples: 220
- Base model: ARIMA and DFM

Simulation

Future research directions

- Investigate why PCA performs better than random weights
- Find other components that are better than PCA
- Find optimal components by minimising forecast variance with respect to Φ
- Use forecast projection and forecast reconciliation together

References i

- Bergmeir, Christoph, Rob J Hyndman, and José M Benítez. 2016. "Bagging Exponential Smoothing Methods Using STL Decomposition and Box–Cox Transformation." International Journal of Forecasting 32 (April): 303–12. https://doi.org/10.1016/j.ijforecast.2015.07.002.
- Borchers, Hans W. 2023. *pracma: Practical Numerical Math Functions*. https://CRAN.R-project.org/package=pracma.
- De Stefani, Jacopo, Yann-Aël Le Borgne, Olivier Caelen, Dalila Hattab, and Gianluca Bontempi. 2019. "Batch and Incremental Dynamic Factor Machine Learning for Multivariate and Multi-Step-Ahead Forecasting." International Journal of Data Science and Analytics 7 (June): 311–29.
 - https://doi.org/10.1007/s41060-018-0150-x.
- Hollyman, Ross, Fotios Petropoulos, and Michael E Tipping. 2021. "Understanding Forecast Reconciliation." *European Journal of Operational Research* 294 (October): 149–60. https://doi.org/10.1016/j.ejor.2021.01.017.
- Opgen-Rhein, Rainer, and Korbinian Strimmer. 2007. "Accurate Ranking of Differentially Expressed Genes by a Distribution-Free Shrinkage Approach." *Statistical Applications in Genetics and Molecular Biology* 6 (February). https://doi.org/10.2202/1544-6115.1252.

References ii

- Petropoulos, Fotios, Rob J Hyndman, and Christoph Bergmeir. 2018. "Exploring the Sources of Uncertainty: Why Does Bagging for Time Series Forecasting Work?" European Journal of Operational Research 268 (July): 545–54. https://doi.org/10.1016/j.ejor.2018.01.045.
- Petropoulos, Fotios, and Evangelos Spiliotis. 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting." Forecasting 3 (June): 478–97. https://doi.org/10.3390/forecast3030029.
- Schäfer, Juliane, and Korbinian Strimmer. 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics." Statistical Applications in Genetics and Molecular Biology 4 (November). https://doi.org/10.2202/1544-6115.1175.
- Stock, James H, and Mark W Watson. 2002a. "Macroeconomic Forecasting Using Diffusion Indexes." *Journal of Business & Economic Statistics* 20 (April): 147–62. https://doi.org/10.1198/073500102317351921.
- ——. 2002b. "Forecasting Using Principal Components from a Large Number of Predictors." Journal of the American Statistical Association 97 (December): 1167–79. https://doi.org/10.1198/016214502388618960.

References iii

Wickramasuriya, Shanika L, George Athanasopoulos, and Rob J Hyndman. 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization." Journal of the American Statistical Association 114 (April): 804–19. https://doi.org/10.1080/01621459.2018.1448825.