Trabalho Computacional de Fluxo de Potência

Prof. Silvan Antônio Flávio

1) Faça um programa computacional para solução do Fluxo de Potência por meio do método de Newton Raphson, seguindo o algoritmo descrito nas notas de aula (slide 56).

Observações:

- O programa deverá imprimir os resultados de barra e os fluxos nas linhas.
- Utilize o exemplo de 3 barras resolvido em sala de aula para testar o programa.
- 2) Utilize o programa para obter os resultados para o sistema abaixo. Faça uma análise do ponto de operação com e sem o banco de capacitor da barra 5.

Barra	Tipo	V (pu)	Ang. (graus)	P _G (MW)	Q _G (MVAr)	P _D (MW)	Q _D (MVAr)	Q _{sh} (MVAr)
1						0	0	0
2						0	0	0
3						0	0	0
4						70	25	0
5						90	30	-30
6						86	35	0

De	Para	R	X	b	tap	defas
		(%)	(%)	(%)	(pu)	(pu)
1	2	4,0	20,0	2,0	0,000	0,000
1	4	4,0	20,0	2,0	0,000	0,000
1	5	6,0	30,0	3,0	0,000	0,000
2	3	5,0	25,0	2,0	0,000	0,000
2	4	2,0	10,0	1,0	0,000	0,000
2	5	6,0	30,0	3,0	0,000	0,000
2	6	3,5	20,0	2,0	0,000	0,000
3	5	5,0	26,0	3,0	0,000	0,000
3	6	2,0	10,0	1,0	0,000	0,000
4	5	8,0	40,0	4,0	0,000	0,000
5	6	6,0	30,0	3,0	0,000	0,000

Dicas para programação:

- Primeiramente, padronize a leitura dos dados de forma a facilitar o entendimento do programa. Siga a estrutura/ordem das tabelas acima, em que foram fornecidos os dados. Assim que fizer a leitura dos dados, faça uma interface com os nomes das variáveis. Por exemplo: Tipo(:,1)=dados(:,2) {e.g. 1 Swing; 2 PV; 3 PQ}; V(:,1)=dados(:,3); Theta(:,1)=dados(:,4)*pi/180; Pg(:,1)=dados(:,5); e assim por diante. É importante que o algoritmo seja desenvolvido utilizando variáveis conhecidas da modelagem estudada em sala de aula.
- Defina o número de barras e circuitos, de acordo com os dados. Exemplo: nb=size(dados,1) {número de barras}
- Em seguida, faça a montagem da Ybus e confira detalhadamente se está tudo certo, utilizando o exercício de três barras. Caso seja necessário, confira com seu colega de classe. Lembre-se que Geradores e Cargas não fazem parte da Ybus. Obtenha os parâmetros G e B da matriz Ybus: G=real(Ybus); B=imag(Ybus).
- Para implementação dos loops de resolução do problema, basta seguir o algoritmo disponibilizado nos slides.
- Como os subproblemas são definidos de acordo com o tipo de barra, é importante que se tenha apontadores para os números das barras associadas a cada tipo, bem como o número total de barras de cada tipo.

Exemplo:

```
SW – vetor de barras Swing → SW=find(Tipo==1);
PV – vetor de barras PV → PV=find(Tipo==2);
PQ – vetor de barras PQ → PV=find(Tipo==3);
NSW – vetor de barras não SW → NSW=find(Tipo~=1);
NPQ – vetor de barras não NPQ → NPQ=find(Tipo~=3);

nSW-número da barra swings → nSW=length(SW);
nPV- número de barras PV → nPV=length(PV);
nPQ- número de barras PQ→ nPQ=length(PQ);
nNSW- número de barras não swing→ nNSW=length(NSW);
nNPQ- número de barras não PQ→ nNPQ=length(NPQ);
```

- A tolerância deve ser verificada para todas as variáveis dP<tol e dQ<tol associadas ao subproblema 1, além de verificar um número máximo de iterações para evitar loop infinito, caso o problema seja divergente, it<Nmax.
- Após a solução do subproblema 1, resolva o subproblema 2.

Os resultados devem ser apresentados em duas tabelas: resultados de barra e resultados de circuitos. Os resultados de barra compreendem as tensões e ângulos. Os resultados de circuitos compreendem os fluxos de potência ativa e reativa. Imprima os resultados considerando potências em MW e MVAr; tensões em pu e ângulos em graus.