Descripción del Dataset

El conjunto de datos contiene información sobre condiciones del suelo y clima, con el objetivo de predecir qué cultivo sería el más adecuado.

Cada fila representa una muestra de un lote, y contiene los siguientes atributos:

- N: Contenido de nitrógeno en el suelo (ppm)
- P: Contenido de **fósforo** en el suelo (ppm)
- K: Contenido de potasio en el suelo (ppm)
- temperature: Temperatura ambiente (°C)
- humidity: Humedad relativa (%)
- ph: Nivel de acidez del suelo
- rainfall: Precipitación anual (mm)
- label: Cultivo recomendado (variable objetivo)

Este es un problema de **clasificación multiclase**, ya que la variable label puede tomar varios cultivos como valores posibles.

📋 Comparación de Modelos

Modelo	Accuracy
Random Forest	99.55%
K-Nearest Neighbors (KNN)	97.73%
Support Vector Machine (SVM)	98.41%

✓ Random Forest fue el modelo con mejor rendimiento. Además, es más estable ante valores atípicos y menos sensible a la escala que KNN o SVM, lo que lo hace ideal para este tipo de datos.

Simulación de Recomendación de Cultivo

El bloque final permite simular una predicción personalizada, modificando las condiciones del suelo y el clima para obtener el cultivo más adecuado.

ideal para entender cómo responden los modelos entrenados.

Conclusiones Finales

En este proyecto se abordó el problema de **recomendar el tipo de cultivo más adecuado** en función de variables como nutrientes del suelo, temperatura, humedad, pH y precipitaciones.

Luego de analizar el dataset y aplicar distintos modelos de clasificación, se concluyó que:

- El dataset se encuentra balanceado, lo cual favorece un entrenamiento justo para todas las clases
- A nivel de correlación, la mayoría de las variables aportan información **independiente**, ideal para modelos predictivos.
- Random Forest fue el modelo con mejor desempeño, alcanzando un accuracy del 99.55%, superando a KNN (97.73%) y SVM (98.41%).

Este tipo de sistemas pueden resultar útiles para agricultores o sistemas de apoyo a la decisión, ayudando a optimizar el uso del suelo según las condiciones del entorno.

→ Como cierre, este proyecto permitió poner en práctica herramientas fundamentales de Data Science y Machine Learning, integrando análisis, visualización y evaluación de modelos en un flujo coherente y personalizado.

 $\$ Se entrenó un modelo K-Nearest Neighbors (KNN) con k=5. Este modelo clasifica en base a los cultivos más cercanos según las condiciones del suelo y clima. A continuación se presentan los resultados.

Índice X
 ■ Descripción del Dataset
 ■ Comparación de Modelos
 ■ Simulación de Recomendación de Cultivo
 ■ Conclusiones Finales
 + Sección

Se entrenó un modelo Random Forest con 100 árboles. Este modelo se destaca por ser eficaz con datos tabulares y manejar bien variables categóricas sin requerir mucha preparación de datos. A continuación se muestran las métricas de rendimiento obtenidas.

Este proyecto fue realizado como trabajo final del programa DataUy - Formación Movistar.

A través de este caso práctico, se integraron conceptos clave de análisis exploratorio, visualización, modelos predictivos y evaluación de resultados en un entorno aplicado y funcional.

- Autora: Victoria Crosina
- Montevideo, Uruguay

Gracias por acompañar 🍪

```
# 🌾 Formación MOVISTAR DataUy- Recomendación de Cultivos
### Proyecto Final - Programa DataUy
#### 🧎 Autora: Victoria Crosina
##### Este proyecto tiene como objetivo aplicar las herramientas vistas en el programa
###### Se busca no solo generar un modelo predictivo eficaz, sino también realizar un
# 🖣 Cargo las librerías necesarias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# No quiero ver alertas que ensucian mucho el código
import warnings
warnings. filter warnings ("ignore", category = User Warning, module = "IPython.core.pylabtools") and the property of the pr
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
# Estilo (colores Glam Pastel Chic ≯)
sns.set(style="whitegrid", palette=["#F7CAC9", "#92A8D1", "#F4E1D2", "#C1B1A1", "#B2B2B
# Cargo el dataset desde el repositorio de ActiveSoft-uy (Es mi repo personal el de Act
url = "https://raw.githubusercontent.com/ActiveSoft-uy/datauy-proyecto/main/Crop_recomm
df = pd.read_csv(url)
# Muestra las primeras filas
df.head()
# 🦒 Temperatura
plt.figure(figsize=(8, 5))
sns.histplot(df['temperature'], bins=30, kde=True, color="#92A8D1")
plt.title("Distribución de Temperatura", fontsize=14)
plt.xlabel("Temperatura (°C)")
plt.ylabel("Frecuencia")
plt.grid(True)
plt.show()
plt.figure(figsize=(8, 5))
sns.histplot(df['ph'], bins=30, kde=True, color="#F7CAC9")
plt.title("Distribución del pH del Suelo", fontsize=14)
plt.xlabel("Nivel de pH")
plt.ylabel("Frecuencia")
plt.grid(True)
plt.show()
# 💧 Mapa de calor
plt.figure(figsize=(10, 6))
correlation = df.drop("label", axis=1).corr()
sns.heatmap(correlation, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Mapa de Calor de Correlaciones", fontsize=14)
plt.show()
# T Conteo de cultivos
plt.figure(figsize=(12,6))
sns.countplot(
        x='label',
        data=df.
```

```
order=df['label'].value_counts().index,
   hue='label',
   palette='pastel',
   dodge=False,
   legend=False
plt.title("Cantidad de Muestras por Cultivo \\\ ", fontsize=14)
plt.xlabel("Cultivo")
plt.ylabel("Cantidad")
plt.xticks(rotation=45)
plt.grid(True, axis='y', linestyle='--', alpha=0.6)
plt.tight_layout()
plt.show()
# Boxplot de pH por tipo de cultivo
plt.figure(figsize=(12,6))
sns.boxplot(x='label', y='ph', data=df, palette="pastel")
plt.title("Distribución del pH según Cultivo", fontsize=14)
plt.xticks(rotation=45)
plt.ylabel("pH del Suelo")
plt.xlabel("Cultivo")
plt.grid(True, axis='y', linestyle='--', alpha=0.6)
plt.show()
# Datos para el modelo predictivo
# variables predictoras (X) y variable objetivo (y)
X = df.drop('label', axis=1)
y = df['label']
# Entrenamiento y prueba
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                           test_size=0.2,
                                           random_state=42,
                                           stratify=y)
print(f"Tamaño entrenamiento: {X_train.shape[0]} muestras")
print(f"Tamaño prueba: {X_test.shape[0]} muestras")
# Entrenamiento
from \ sklearn.ensemble \ import \ Random Forest Classifier
from \ sklearn.metrics \ import \ classification\_report, \ confusion\_matrix
# Creación del modelo
model_rf = RandomForestClassifier(n_estimators=100, random_state=42)
model_rf.fit(X_train, y_train)
# Evaluación
y_pred = model_rf.predict(X_test)
# Reporte
print("Reporte de Clasificación:\n")
print(classification_report(y_test, y_pred))
# Modelo KNN para la comparación de modelos
from sklearn.neighbors import KNeighborsClassifier
# Entrenamiento
model_knn = KNeighborsClassifier(n_neighbors=5)
model_knn.fit(X_train, y_train)
# Predicciones y evaluación
y_pred_knn = model_knn.predict(X_test)
print("KNN - Reporte de Clasificación:\n")
print(classification_report(y_test, y_pred_knn))
```

from sklearn.svm import SVC

```
# Entrenamiento
model_svm = SVC(kernel='rbf', random_state=42)
model_svm.fit(X_train, y_train)
# Predicciones y evaluación
y_pred_svm = model_svm.predict(X_test)
print("SVM - Reporte de Clasificación:\n")
print(classification_report(y_test, y_pred_svm))
# Calculo la presición por modelo...
from sklearn.metrics import accuracy_score
acc_rf = accuracy_score(y_test, y_pred)
acc_knn = accuracy_score(y_test, y_pred_knn)
acc_svm = accuracy_score(y_test, y_pred_svm)
print("Accuracy por modelo:")
print(f"Random Forest: {acc_rf:.4f}")
print(f"KNN:
                   {acc_knn:.4f}")
print(f"SVM:
                    {acc_svm:.4f}")
# Comparación visual
import matplotlib.pyplot as plt
# Datos con los resultados
modelos = ['Random Forest', 'KNN', 'SVM']
accuracy = [0.9955, 0.9773, 0.9841]
# Colores
colores = ['#F7CAC9', '#92A8D1', '#C1B1A1']
plt.figure(figsize=(8, 5))
bars = plt.bar(modelos, accuracy, color=colores)
plt.ylim(0.95, 1.0)
plt.ylabel('Accuracy')
plt.title('Comparación de Accuracy por Modelo', fontsize=14)
plt.grid(axis='y', linestyle='--', alpha=0.6)
for bar in bars:
   yval = bar.get_height()
   plt.text(bar.get_x() + bar.get_width()/2, yval + 0.001, f'{yval:.2%}', ha='center',
plt.show()
# Predicción interactiva de cultivo
#(la idea es que quien entre puede cambiar los valores como quiera
#y que le muestre una predicción como para darle un cierre a la entrega)
#El ejemplo es para Arroz..
mi_muestra = pd.DataFrame([{
   'N': 85,
   'P': 55,
   'K': 45,
   'temperature': 24.0,
   'humidity': 75.0,
   'ph': 6.2,
    'rainfall': 220.0
}1)
# Predicción
cultivo = model_rf.predict(mi_muestra)[0]
# Resultado
display(mi_muestra)
print("\n\rangle Cultivo recomendado por el modelo:", cultivo)
```


Tamaño entrenamiento: 1760 muestras Tamaño prueba: 440 muestras Reporte de Clasificación:

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	20
banana	1.00	1.00	1.00	20
blackgram	1.00	0.95	0.97	20
chickpea	1.00	1.00	1.00	20
coconut	1.00	1.00	1.00	20
coffee	1.00	1.00	1.00	20
cotton	1.00	1.00	1.00	20
grapes	1.00	1.00	1.00	20
jute	0.95	1.00	0.98	20
kidneybeans	1.00	1.00	1.00	20
lentil	1.00	1.00	1.00	20
maize	0.95	1.00	0.98	20
mango	1.00	1.00	1.00	20
mothbeans	1.00	1.00	1.00	20
mungbean	1.00	1.00	1.00	20
muskmelon	1.00	1.00	1.00	20
orange	1.00	1.00	1.00	20
papaya	1.00	1.00	1.00	20
pigeonpeas	1.00	1.00	1.00	20
pomegranate	1.00	1.00	1.00	20
rice	1.00	0.95	0.97	20
watermelon	1.00	1.00	1.00	20
accuracy			1.00	440
macro avg	1.00	1.00	1.00	440
weighted avg	1.00	1.00	1.00	440
0				

KNN - Reporte de Clasificación:

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	20
banana	1.00	1.00	1.00	20
blackgram	0.91	1.00	0.95	20
chickpea	1.00	1.00	1.00	20
coconut	1.00	1.00	1.00	20
coffee	1.00	1.00	1.00	20
cotton	0.95	1.00	0.98	20
grapes	1.00	1.00	1.00	20
jute	0.78	0.90	0.84	20
kidneybeans	1.00	1.00	1.00	20
lentil	1.00	1.00	1.00	20
maize	1.00	0.95	0.97	20
mango	1.00	1.00	1.00	20
mothbeans	1.00	0.95	0.97	20
mungbean	1.00	1.00	1.00	20
muskmelon	1.00	1.00	1.00	20
orange	1.00	1.00	1.00	20
papaya	1.00	1.00	1.00	20
pigeonpeas	1.00	0.95	0.97	20
pomegranate	1.00	1.00	1.00	20
rice	0.88	0.75	0.81	20
watermelon	1.00	1.00	1.00	20
accuracy			0.98	440
macro avg	0.98	0.98	0.98	440
weighted avg	0.98	0.98	0.98	440

SVM - Reporte de Clasificación:

precision recall f1-score support

apple	1.00	1.00	1.00	20
banana	1.00	1.00	1.00	20
blackgram	0.95	1.00	0.98	20
chickpea	1.00	1.00	1.00	20
coconut	1.00	1.00	1.00	20
coffee	1.00	1.00	1.00	20
cotton	0.95	1.00	0.98	20
grapes	1.00	1.00	1.00	20
jute	0.80	1.00	0.89	20
kidneybeans	1.00	1.00	1.00	20
lentil	1.00	1.00	1.00	20
maize	1.00	0.95	0.97	20
mango	1.00	1.00	1.00	20
mothbeans	1.00	1.00	1.00	20
mungbean	1.00	1.00	1.00	20
muskmelon	1.00	1.00	1.00	20
orange	1.00	1.00	1.00	20
papaya	1.00	1.00	1.00	20
pigeonpeas	1.00	0.95	0.97	20
pomegranate	1.00	1.00	1.00	20
rice	1.00	0.75	0.86	20
watermelon	1.00	1.00	1.00	20
accuracy			0.98	440
macro avg	0.99	0.98	0.98	440
weighted avg	0.99	0.98	0.98	440

Accuracy por modelo: Random Forest: 0.9955 KNN: 0.9773 SVM: 0.9841

 ☐ Cultivo recomendado por el modelo: rice

