NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NAS A-CR-160401) SYSTEM PARAMETERS FOR ERYTHROPOIESIS CONTROL MODEL: COMPARISON OF NORMAL VALUES IN HUMAN AND MOUSE MODEL (General Electric Co.) 29 p HC A03/MF A01

N80-13759

Unclas 46339 100401

CSCL 06C G3/51

HOUSTON, TEXAS

GENERAL () ELECTRIC

TECHNICAL INFORMATION RELEASE

TIR 741-LSP-8024

FR OM TO J. A. Rummel, Ph.D./SE2 J. I. Leonard WORK ORDER REF WORK STATEMENT PARA: | REFERENCE: DATE NAS9-15487 12-15-78 SUBJECT System Parameters for Erythropoiesis Control Model: Comparison of

Normal Values in Human and Mouse Model

The computer model for regulation of erythropoiesis, originally developed to represent human function, has been recently adapted to the mouse system. This was accomplished by altering the values of the system parameters describing fluid volumes, blood flows, metabolic rates, hematologic indices, etc. This report documents the values used in the mouse model and compares them to the original human model. In addition, the report summarizes the source documents and data used in obtaining the parameter values for the mouse and the rat. It is anticipated that a similar model for the rat will be implemented.

The capability of using models for two different species will greatly enhance the realism of the simulations and provide greater flexibility for spaceflight hypothesis testing. A companion report, TIR 741-LSP-8029, documents the validation of the mouse model and its utility in suggesting new experimental approaches.

The extensive literature search, summarized in the Appendices, which provided the basis for the new parameter values was conducted by Robert Chamberlain, a summer engineer trainee.

Attachment /db.

CONCURRENCES

Counterpart:

ife Sciences Projects' Engrg. & Advanced Programs Unit Manager: DGFitzjerrel Subsection Mgr. CWFulcher GE/TSSD:

DISTRIBUTION NASA/JSC:

W. C. Alexander, Ph.D.

S. L. Kimzey, Ph.D.

C. S. Leach, Ph.D.

P. C. Rambaut, Sc.D.

S. N. Brand

D. J. Grounds

R. Chamberlain

V. Marks

J. Leonard

No.

SYSTEM PARAMETERS FOR ERYTHROPOIESIS CONTROL MODEL: COMPARISON OF NORMAL VALUES IN HUMAN AND MOUSE MODEL

Introduction

The computer model for enythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources as indicated in the Appendix* and in the Reference List. The immediate application of the mouse model was the study of the mouse as a potential experimental model for spaceflight. Data for the simulations were to be obtained from Dr. C.D.R. Dunn's experiments at the University of Tennessee Memorial Research Center and included studies of dehydration and hypoxia. The strain of mice used in these studies were C3H with approximate weight of 25 grams. Parameter values were chosen for this strain where possible. In certain cases, the literature values were superseded by values obtained directly from Dr. Dunn's studies. In a few cases mouse data were not available and data for the rat were substituted. Large variations in parameter values were usually observed as indicated in the Appendix, depending on mouse strain and investigator. The values finally chosen are, therefore, highly idealized.

Basic System Parameters

This report, in addition to documenting the source material, contains a comparison of system parameters for the mouse and human models as shown in Table I. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span (126 d vs. 42.5 d)** erythropoietin

The appendix also contains parameter values for the rat which were collected in anticipation of implementing a similar model for the study of that species.

^{**} First and second numbers in parenthesis refers to human and mouse, respectively.

TABLE I

SYSTEM PARAMETERS FOR ERYTHROPOIESIS CONTROL MODEL

DADAMETED	MODEL	PARAM	ETER VALUE	DEC	IMITC
PARAMETER	SYMBOL	HUMAN	MOUSE	REF.	UNITS
* Red Cell Mass	RCM	2000	0.63	(10)	ml
* Plasma Volume	PV	3000	0.77	(10)	ml
Blood Volume	BA	5000	1.40	(10)	mī
Whole-Body Hematocrit	нст	40.0	45.0	(10)	ml packed RBC 100 ml blood
* Mean Corpuscular Hemoglobin Concentration	мснс	0.375	0.300	(1)	gm Hb/ml RBC
Hemoglobin Concentration	•	15.0	13.5	(1,4)	gm Hb/100 ml blood
* O ₂ Capacity of Blood	•	20.1	19.0	(4)	ml 0 ₂ /100 ml blood
O ₂ Capacity of Hemoglobin	CHBO ₂	1.34	1.41	(1,4)	ml O ₂ /gm Hb
* PO ₂ tension at ½Hb Sat.	P50	27	39	(21)	mm Hg
* Arterial p0 ₂	P02A	95	78	(12)	mm Hg
Arterial Hb Saturation	S02A	.97	.99	(21)	percent
* Renal Metabolic Rate	MO2T	20	.04	(5)	ml O ₂ /min
* Renal Blood Flow	BF	1200	1.83	(16)	ml/min
* Normal Tissue pO ₂	PO2T	20	20		mm Hg
* Erythropoietin Half-Life	EHL	12	3.25	(11)	hours
* Red Cell Life Span	-	126	42.5	(12)	days
* Erythrocyte Maturation Time	Z	4	3.5		days
* Normal RBC Production Rate	P	22	.0205	(12)	m1 RBC/day
RBC Turnover Rate	RKC	1.1	3.26	(12)	percent/day

^{*} Fundamental value from which other parameter values may be derived (see Table II)

TABLE II

RELATIONSHIPS USED TO DERIVE PARAMETERS IN MOUSE MODEL

- 1. Blood Volume BV = RCM + PV = 0.63 + 0.77 = 1.4 ml
- 2. Whole-Body Hematocrit

HCT = RCM/BV = 0.63/1.4 = .45 ml packed RBC/ml blood

3. Hemoglobin Concentration

 $HB = HCT \times MCHC = 45 \times 0.3 = 13.5 \text{ gm Hb/100 ml blood}$

4. O₂ Capacity of Hemoglobin:

 $\frac{\text{CHBO}_2}{\text{CHBO}_2} = \frac{\text{O}_2 \text{ concentration of blood}}{\text{Hb concentration of blood}} = \frac{19}{13.5} = 1.41 \text{ ml } \text{O}_2/\text{gm Hb}$

5. Arterial Hb Saturation

SO2A = function (PO2A)
(see oxygen-hemoglobin dissociation curve, Figure 1)

6. RBC Turnover

RKC = turnover rate/100 =
$$.693/RBC$$
 Half-Life
= $.693/42.5/2$ = $.0326$ day = 3.26% per day

Steady State Destruction Rate = RCM x RKC = $0.63 \times .0326 = .0205 \text{ ml/day}$

half-life (12 hrs vs. 3.25 hrs) and normal arterial $p0_2$ (95 mm Hg vs. 78 mm Hg). The shorter life span of the mouse RBC implies a three-fold faster turnover of erythrocytes. That is, the daily rates of red cell production and destruction (as well as reticulocyte index) are about three times higher in the mouse than the human. Other parameters found to be more similar between the two species: hematocrit (40 vs. 45), mean corpuscular hemoglobin concentration (.375 vs. 30) and maximum oxygen carrying capacity of hemoglobin (1.34 vs. 1.41).

Although the arterial $p0_2$ in the mouse is much lower than in the human, the oxygen saturation of hemoglobin of both species are nearly identical (97% vs. 99%). This is a result of the distinctly different oxygen-hemoglobin dissociation curves shown in Figure 1 and reflected in the different P50 values (26.7 vs. 39.0 mm Hg). The P50 differences implies that at the same level of tissue oxygen tension, oxygen is more easily unloaded in the mouse than in the human. It should be noted that the normal $p0_2$ of arterial blood assumed here (78 mm Hg) was obtained from rat data (Ref. 4 & 11) and has been used in a previous model validated for the mouse with reasonably good results (Ref. 20). No corresponding mouse data could be located.

Values for renal blood flow of the mouse was not available and data from rats were utilized (6 ml/min-gm tissue).

Scaled Parameters

Some parameters of the mouse model differ considerably from the human model due to scaling factors alone. That is, the values used in the model are given on an absolute basis for the whole animal rather than as a specific property in terms of "per gram of tissue." In terms of specific units the differences between the mouse and human system are much smaller as shown below.

TABLE III - ABSOLUTE VS. SPECIFIC PARAMETER VALUE	TABLE	III -	ABSOLUTE	VS.	SPECIFIC	PARAMETER	VALUES
---	-------	-------	----------	-----	----------	-----------	--------

	ABSOLUT	E UNITS	SPECIFIC	
PARAMETER	HUMAN	MOUSE	HUMAN	MOUSE
Red Cell Mass	2000	0.63 ml	28.6	25.2 ml/kg body wt.
Plasma Volume	3000	0.77 ml	42.9	30.8 ml/kg body wt.
Blood Volume	5000	1.40 ml	71.4	56.0 ml/kg body wt.
Renal Blood Flow	1200	1.83 ml/min	4.28	6.10 ml/min-gm tissue
Renal O ₂ Consumption	20	0.04 ml/min	0.073	0.133 ml/min-gm tissue
Body 0, Consumption	250	0.51 ml/min	0.00357	0.0255 ml/min-gm tissue

* Based on: Body Weight = 70 kg man and 25 gm mouse

Renal Mass = 280 gm (.4% BWt) in man and 0.3 gm (1.2% BWt)
in mouse

Oxygen Balance

The balance of oxygen supply vs. oxygen demand is crucial to the feed-back regulation of erythropoiesis. A parameter reflecting this complex balance is the tissue oxygen tension which is believed to govern the release of erythropoietin. The oxygen balances for the human and mouse systems as used in the model are given in Table IV.

Oxygen consumption per gm renal tissue in the mouse is about twice that for the human. (Overall total oxygen consumption per gm body weight is nearly seven times greater in the mouse.) This higher oxygen demand of the mouse is satisfied in two ways in the model: a) there is a 50% greater efficiency in oxygen extraction as indicated in Table IV. (Note that in both species the amount of oxygen delivered at rest is more than sufficient - i.e. roughly 10 times that required by the tissues.), b) there is a 30% higher blood oxygen supply per gm of tissue due to greater tissue blood flow in the mouse.

The resting tissue oxygen tension is arbitrarily assumed to be identical in both model systems; i.e., 20 mm Hg. The equation describing oxygen diffusivity to the tissues from venous capillaries is given in the steady-state as:

TABLE IV

OXYGEN BALANCE AT KIDNEY

		HUMAN	MOUSE
A.	Oxygen Demand	20	.04 ml 0 ₂ /min
		0.073	0.153 ml 0 ₂ /min-gm
В.	Oxygen Supply Parameters		
	PO ₂ , arterial	95	78 mm Hg
	SO ₂ , arterial	97.4	98.6 % saturation
	0, concentration	196	188 ml 0 ₂ /liter blood
	BF	1200	1.83 ml blood/min
	O ₂ Supply Rate	235	.343 ml 0 ₂ /min
	2	.839	1 143 ml 0₂/mi n-ça
C.	Oxygen Venous Parameters		
	PO ₂ , venous	56	57 mm Hg
	SO ₂ , venous	89	86 % saturation
	PO ₂ , tissue	20	20 mm Hg
D.	Percent Oxygen Extraction		

8.7%

13.4%

 $= \frac{0_2 \text{ Demand}}{0_2 \text{ Supply}}$

Net oxygen delivery = tissue oxygen consumption

=
$$(p0_2, vein - p0_2, tissue) \times K$$

where K = conductivity coefficient = 0_2 Diffusivity x Capillary Surface Area The ratio of K(man)/K(mouse) would be expected to reflect the surface area ratio between species if diffusivity were assumed similar in mouse and man. Therefore, if S = capillary surface area, then

$$\frac{S(man)}{S(mouse)} = \frac{K(man)}{K(mouse)} = \frac{0_2 \text{ consumption,man}}{0_2 \text{ consumption,mouse}} \times \frac{(p0_2, vein - p0_2, tis), mouse}{(p0_2, vein - p0_2, tis), man}$$

$$= \frac{20 \text{ ml/min}}{.04 \text{ ml/min}} \times \frac{(57.5 - 20)}{(56.4 - 20)} \text{ mm Hg} = 508$$

This is in good agreement with the surface area ratio of 650 of the glomerular derived from data in Ref. 5 (pg. 174) in the following way:

Let: R = glomerular radius = 37 μ (mouse) and 100 μ (man) V = glomerular volume = 2.6 mm³ (mouse) and 4600 mm³ (man) L = glomerular capillary length S = glomerular capillary surface area

S = 2
$$\pi$$
 R x L and V = π R² x L

Therefore, S = 2 π R · V/ π R² = 2 V/R

and
$$\frac{S(man)}{S(mouse)} = \frac{V(man)}{V(mouse)} \times \frac{R(mouse)}{R(man)}$$

$$= \frac{4600 \text{ mm}^3}{2.6 \text{ mm}^3} \times \frac{37\mu}{100\mu}$$

$$= 650$$

This agreement lends support to the general representation of the kidney in the computer model.

Functional Relationships

Three functional relationships are included in the computer model: a) oxygen-hemoglobin equilibrium curve (EC), b) erythropoietin release as a function of tissue $p0_2$, and c) erythrocyte production rate as a function of erythropoietin concentration. The first of these is shown in Figure 1 and will be described in detail below. The form of the function curves for erythropoietin and red cell release will be assumed identical in the mouse and human models (Figures 2 and 3). There is no reason at the present time to take issue with this assumption, particularly since the bone marrow function (Figure 3) was originally obtained from the mouse. These curves (as shown in Figures 2 and 3 and as used in the models) are represented in normalized form (i.e. % of control) so that any species may be represented. The gain factors, G_1 and G_2 , representing the slope of the relationships, may be different between species. This is of little concern in the basic design of the model since these parameters will be adjusted during the simulation process and their actual values estimated by "fitting" the model output to the experimental data.

The equation describing the sigmoidal OEC is a form of the Hill equation and is shown in the insert of Figure 1. The two solid lines represent human and mouse blood, respectively, and were recently obtained from single blood samples in Dr. Dunn's laboratory. The value of P50 is explicitly stated in the equation so that shifts in oxygen-hemoglobin affinity may be easily described. The value of the exponent "K", found from the best fit of the mouse curve, also provides a good fit of the human curve as shown by the symbols in Figure 1. Thus, the only difference between the equation describing the human and mouse OEC is the value of P50. The dashed line in Figure 1 is a theoretical calculation of a P50 shift of +10 mm Hg from the standard mouse curve.

Simulations

A model representing the mouse system was implemented and verified as being substantially appropriate. The model presently exists on the UNIVAC 1110 and PDP 1140 systems at NASA/JSC as well as on the DEC facility at the University of Tennessee. Preliminary validation studies were performed and have been summarized in a companion report, 11R 741-LSP-8029.

RENAL ERYTHROPOIETIN PRODUCTION RATE FUNCTION CURVES

FIGURE 2

REFERENCES

- 1. Green, Earl L.; Biology of the Laboratory Mouse; New York: McGraw-Hill, 1966; p. 351-372.
- 2. Goodman, Joan Wright and L. H. Smith. "Erythrocyte Life Span in Normal Mice and in Radiation Bone Marrow Chimeras." American Journal of Physiology, 200(4):764-770, 1961.
- 3. Schermer, Siegmund; Blood Morphology of Laboratory Animals; Philadelphia: F. A. Davis Co., 1967; p. 61-74.
- 4. Attman, Philip L., Dorothy S. Dittmer and Bethosda Maryland; Biology Data Book; Federation of American Societies for Experimental Biology, 1972; Volumes 1, 2, and 3.
- 5. Spector, William S.; Handbook of Biological Data; Philadelphia: W. B. Saunders Co., 1961.
- 6. Schmidt-Nielsen, Knut Stortebecker; Animal Physiology; Englewood Cliffs: Prentice-Hall, 1964.
- 7. Melby, E. C., Jr. and N. H. Altman; Handbook of Laboratory Animal Science; Cleveland: CRC Press, 1976.
- 8. Altland, P.D., et al. "Blood Gases and Acid-Base Values of Unane_thetized Rats Exposed to Hypoxia." American Journal of Physiology, 212(1): 142-148, 1967.
- 9. Mylrea, Kenneth C. and Peter H. Abbrecht." Hematologic Responses of Mice Subjected to Continuous Hypoxia." American Journal of Physiology, 218(4): 1145-1149, 1970.
- 10. Dunn, C.D. R. Private Communication. See also Effect of Dehydration on Erythropoiesis in Mice, Aviat. Space Environ. Med. 49: 990-993, 1978.
- 11. Abbrecht, Peter H. and Judith K. Littell. "Plasma Erythropoietin in Men and Mice During Acclimatization to Different Attitudes." Journal of Applied Physiology, 32(1): 54-58, 1972.
- 12. Abbrecht, Peter H. and Judith K. Littell. "Erythrocyte Life Span in Mice Acclimatized to Different Degrees of Hypoxia." Journal of Applied Physiology. 32(4): 443-445, 1972.
- 13. "Conference on Bone Marrow Transplantation and the Physiology of Hematopoietic Tissues." Experimental Hematology, no. 14. Paris, 1967.
- 14. Altland, P.D., et al. "Blood Gases and Acid-Base Values of Unanesthetized Rats Exposed to Hypoxia." American Journal of Physiology 212(1): 142-148, 1967.

REFERENCES (Continued)

- 15. Schermer, Siegmund, Blood Morphology of Laboratory Animals; Philadelphia: F. A. Davis Co., 1967; p. 41-60.
- 16. Arendshorst, William F. "Autoregulation of Blood Flow in the Rat Kidney."

 <u>American Journal of Physiology</u> 228(1): 127-133, 1975.
- 17. Heighley, Geoffrey. "Metabolic Fate of Erythropoietin." In Jacobsen, Leon 7. and Margot Doyle's <u>Erythropoiesis</u>.
- 18. Jacobsen, Leon O. "Studies on the Production and Metabolism of Erythropoietin in Rat Liver and Kidney." In Jacobsen, Leon O.'s Erythropoiesis.
- 19. Kaneko, Jerry F. Comparative Erythrocyte Metabolism, Table I.
- 27. Mylrea, Kenneth C. and Peter H. Abbrecht: "Mathematical Analysis and Digital Simulation of the Control of Erythropoiesis." Journal of Theoretical Biology, 33: 279-297, 1971.
- 21. Ulrich, S., P. Hilpert, and H. Bartels. "Uber die Atmungrfunktion des Blutes von Spitzmausen wußen Mausen und syrischen Goldhamstern." Pflugers Archiv. 277: 150-165, 1963.

APPENDIX

(1) SYSTEM PAPAVETERS FOR THE MOUSE

Ret. \$	3.5	2.9	2.3	 	2.0	5°2	8.8	2.2	2.5.	2.5	2.1	2.5	1.5	2.5	3.1	2.5	6. 6.	2.1
Eb g'ec cells	0.30	8.	8.	R •	# •	ដ.	E .	•30	•30	8.	62.	&	.30	&	8.	8.	#	æ .
Hb g/100 ec bleed	12.9 ± 0.2	12.7 ± 0.2	13.9 ± 0.2	14.5 ± 0.2	15.0 ± 0.2	13.5 ± 0.2	12.2 ± 0.4	13.2 ± 0.3	13.0 ± 0.3	13.3 ± 0.2	14.6 ± 0.2	14.9 ± 0.2	13.2 - 0.2	12.5 ± 0.2	12.7 ± 0.1	13.5 ± 0.1	13.7 ± 0.2	11 ± 0.2
MOV	45.1 \$ 1.4	44.8 ± 1.0	48.5 ± 1.6	45.9 ± 1.1	45.7 = 1.0	14.8 - 1.8	44.9 2 1.4	44.7 ± 1.6	44.7 ± 1.0	45.5 ± 0.6	47.4 \$ 0.9	51.5 ± 1.1	41.6 ± 1.2	43.3 ± 1.1	41.4 - 1.1	45.6 ± 1.5	46.2 ± 1.3	44.6 ± 1.4
Het.	42.5 - 0.4	42.5 ± 0.5	45.6 ± 1.0	1,5.5 ± 0.8	1.9.0 - 0.54	45.0 ± 1.3	39.5 ± 0.7	43.0 ± 1.0	43.4 ± 0.8	क•० ∓ ०•क	50.0 ± 0.5	50.6 ± 0.4	43.8 = 0.6	43.0 = 0.6	42.6 ± 0.5	46.8 ± 0.7	44.5 ± 0.5	14.1 ± 1.11
PBC millions/m3	9.42 + 0.	9.48 ± 0.18	9.38 ± 0.24	10.14 ± 0.15	10.51 \$ 0.16	10.04 2 0.27	8.79 ± 0.24	9.63 ± 0.26	9.70 ± 0.15	9.66 ± 0.09	10.54 2 0.17	9.82 \$ 0.20	10.52 ± 0.27	9.93 ± 0.27	10.30 ± 0.25	10.27 靠 0.27	9.63 ± 0.25	9.88 ± 0.19
STRAIN	A/3	A/ReJ	AZR/J	PAIS/e And	zazz/e J	C34/3	CZH/3	c3=/se1	C5TBL/6pJ	C57EL/63	C5TER/edJ	C576/HeJ	DBA/LJ	Dar/waj	DBA/2J	1/1	REI/J	21/1

MOUSE ENTIRECTIES & REMOGLOBIN

Author	-	# RBC(millions)	£		
Efrschfield 1897	9	5.2-9.15(7.06)	85-100(93.3)	2.8 - 3.5% (Kunze)	(e)
Kablerski 1961	33	8.2-14 (10.7)	97.0 75-125 (97.1)	3.2 - 82 (Issaes) 1.8 - 1.92 (Schermen	î î
Leny 1926	25	5.5-13.98(9.8)	94-128 (116)	40% at birth to 5% 6 we	9 24
Kileneberger 1927	17	7.3-11.7 (9.7)	76-112 (94.2)	44\$ at birth to 20% 1	7 14
Eaan 1931	2	8.16-11.46(9.42)	70-103 (90)		
Albritton 1955	:	7.7-12.5(9.3)			
Schermar 1957	36	6.14-11.5(9)			

RETICULOCITE COUNT

er - larger values in juvenile mice)
weeks later (Seyfarth & Jurgens)
4 days later (Kunze)

41.5% (Albritton) (3) HCT.

Serum Viscosity 1.47 (Frank) 1.41 - 1.50 (3)

Specific Gravity of Blood 1.057 (Albritton) 1.052 - 1.062 (3)

ERYTHROCYTE AND HENOGLOBIN VALUES

NBC Dimen. (4) sions 6.0	teat 6.5) (5)		•	
RBC Hb Content pg 16(15,5-16,5)	RBC Nb content p # 8 15 (15.5-16.5) (5)	(2)		(6)
g/100 ml RBC 36 (33-39)	RBC (ED) 8/100 El RBC 36 (33-39)		(2.5)	
Hb g/100 ml g blood R 14.8(10.19 3	Blood (Rb) 8/100 ml blood 14.8(10.19)	Retics		Ħ
RBC 3 8, Volume b 49(48-51) 1	RBC vol. B cu # 8 49(48-51) 1	MCHC	35 29 13) 34 (30) 30 33	RBC count
	RBC diem. R Petry film] c	HCH HCH H-B	•	[Hb] g/100 ml 16.7
. RBC packed volume ml/100 ml blood kl.5		n HCV	43 41 52 48 (45) 48 (45) 48 (45) 42 57 57	(m)
1 blood	Reticulocytes % of total RBC 4.0	HB FCV 8/100 ml \$	14.8 43 11.9 41 16.2 (13.4) 48 15.3 12.7 42 14.2 45	HCT ★ 50
RBC count million/ 1 blood 9.3 (7.7 - 12.5)	HCT m1/100 m1 41.5	•		HC H
RBC cc	RBC millions/mm ³ 9.3(7.7-12.5)	RBC/m3 x 10	8.6 7.9 10.0 (9.9) 7.4 8.6	House
Muscelus			C57B1/6xA 6 Charles River C57B1/6Jax Strong CBA C57B1 Final Est.	

RBC (Wo. x 10 / M 1) 9.6 - 0.8 HCT & 47.9 ± 0.7

Tension 1/2 sat mm Hg OXYGEN Temp. C ထ္ထ 범 TENSION OF 1/2 SATURATION PCO II 188

S

2

RBC LIFESPAN AND/OR 1/2 LIFE PROCEDURE USED FOR DETERM.

and the control of the thought the bear.		Cl4 labeled glycine or Hb precursor	C ⁴⁴ - labeled glycine or Hb precursor	in vivo p32-labeled duropropyllinorophorphate	transferred isologous normal C 51 lebeled (Goodman & Smith)	transferred isologous C 51_labeled (Bernstein) (1)	=	:		F F E	: r				£ £ £	
•	DALF LIFE				20 days	25.6 days	15-20 days			15.0 (12.5 - 17.2) days		17.6 (14.8 - 19.7) days	19.7 (16.1 - 21.7) days	t	16.6 (14.1 - 19.4) days	19 (15.8 - 20.5) days
MACOUNT ORG	WHICH ITT OF	TE 40-43 days			4		sev. inbred strains (avg.) 50-55 days		BALB/C	$(BALB/C \times A/JAX) F_1$	$(c5731/6 \times DBA/2)F_{\star}$	$(C57L \times A/JAX)F_1$	$(c573L \times 101)F_1^{\dagger}$	(C3H x 101)F	(101 × C3H) ²	Sprague-Dawley Rats 60 days

RBC Life Span of about 20 days (Guess)(9)

	its/mi) in plasma		(hto ma Hg)		46.9 days at 1 atm	44.0 days at .7 atm	39.2 days at .5 atm
ERYTHROPOLETIN HALF-LIFE (IN PLASMA) => 3.25 Hours	Normal erythropoietin level = 0.02 units/ml (Int. Ref. Prep. units/ml) in plasma	Blood volume est, at 7% of total body weight	Maximum erythropoietin level $*$ 0.3 units/ml in plasma at 14,500 ft (440 mm Hg)	ERYTHROCYTE LIFE SPAM(12)	Method used was intraperitoneal injection of 1 μ c of	raticactively labelled diuropropyl phorphorofluorodate	DF ³² P => very accurate at S.S.

Normal life span using 51cr dilution has been det. to be from 23-63 days; 19 days using the sulfhemoglobin method.

two other studies by Van Futten using $DF^{3/2}p$ => 40.7 and 44.6 days

DATA FOR CONSTRUCTING BLOOD OXYGEN DISSOCIATION CURVES⁽⁴⁾

			20000	770077	CHICAN PROCESSION COURTS	ſ	
	Blood or Blood Fraction	Solvent Pco, mm Hg	H	Temp. C	P50	BOHR Effect	n [A leg 50/°c]
Mus Musculus	Whole Blood		7.40	37 1	52	•	•
	Free Solution	[40] 0.03 M PO.	7.6 6.8	37	41.5 34.2	: !	1 (
		0.1 M Po.	1	, ₂	12.3	-0-93	.
		0.1 M PO ₄	7.16	35	26.0	96*0-	2.80
		MORPHON	METRIC PARA	MORPHOMETRIC PARAMETERS OF LUNG (4)	(5)		
monse	# Wt, kg	lung volume, ml	•	Alveolar surface, m	ace, #2	cepillary surf, m	α _H
	5 0.023 ± 0.002	0.74 ± 0.075	O	0.068 ± 0.009		900.0 = 0.006	
	Capillary volume, ml			0.084 ± 0.009	. 600*		
	Mean thickness of alveolar - capillary tissue barrier, \boldsymbol{u} m	- capillary tissue bar	rrier, u m	1.25 ± 0.08	.08		,
	Harmonic mean barrier thickness,	kness, am		0.32 ± 0.0006	9000*		
	Minimal barrier thickness,			0.15			
	Harmonic Mean thickness of plasma layer, # m	plasma layer, µ m		0.11 + 0.002	.002		
	Maximal diffusion capacity of lung	of lung		0.147 ± 0.015	.015		
	Ratio of capillary to alveolar surface	olar surface		0.87			
	Capillary volume per alveolar surface, m1/m2	dar surface, m1/m2		1.23			

Mus musculus

Respiration Freq. breath/min.

163 (84 - 230)

PERTITATION	
LUNC	

Tidel Volume (ml) 0.15 (0.09-0.23)

Minute Volume (L) x T.V. 0.023 (0.011 - 0.035)

TISSUE OXYGEN CONSUMPTION

								:	3	
					A = Series		B = Ringer Glucose		D = Ringer Phosphate Ca	E = Ringer Solution
	مي م			0.60	2.5	7.9	0.0	6.1	16.9	
	Medium	ed)		⋖	≪	∢	∢	m ^r	ቴ	
	Tissue	Mouse (concluded		Overy	Placenta, 0.4 mg	10.9 - 13.7 mg	Pituitary	Skin, newborn	Spleen	
MedQo	4 .6.0 TT 32.0		B 10.4							
Mouse	Adrenal Brain cortex	Cerebral cortex	Embryo	Kidney cortex	Liver	Liver	Liver	Lunk	Lung	

free

OXYGEN CONSUMPTION (4)

Body Wt. gm Ambient Temp. C

°C 0 Consumption ml/gm hr 1.59

Deviation \$ + 4.6

OXYGEN CAPACITY AND BOSE EFFECT⁽⁴⁾

Method of Measurement micromanometric

Temp. °c P₅₀ mm He 37.0 34

P₅₀ mm Hg 0₂

O₂ Capacity ^{ml O}2/100 ml blood 19

BORN Erfect 0.63

Arterial $PO_2 = > 78 \text{ mm Hg} (11,20)$

Maximum O2 capacity of Hb => calculated => 1.41 using 13.4 g Hb/100 ml blood (1) and 19 ml 02/100 ml blood as oxygen capacity⁽¹⁾

.....

```
37.4(33.6-11.2)
37.9(35.7-40.1)
36.5(35.2-37.9)
37.3(35.3-39.3)
39.3(34.7-43.1)
36.5(34.9-38.1)
37.3(35.3-39.3)
38.3(36.6-40.0)
                                                                                                                                      9
                                                                                           red-backed (Clethrionomus gapper1) red-backed (C. rutilus)
                                          jumping (Zapus hudsonicus)
meadow (Microtus pennsylvanicus)
pocket (Perognathus hispidus)
                                                                                                                                          BLOOD PRESSURE
deer (Peromyscus leucopus)
deer (P. maniculatus)
                            house (Mus musculus)
                                                           Mouse,
                                            Mouse,
                                                                            Mouse,
                                                                                                          Mouse,
                                                                                            Mouse,
                             Mouse,
                Mouse,
```

147 (133-160)

160 (102-110) A

beats/min (5) HEART RATE

600 (328-780) 534 (324-858)

Peromyscus rp. (deer)

Mus musculus

3 BLOOD VOLUME

Welker gn nouse 2-2.5 ml (Isaacs) in a 25 7.6% of body weight (6.3-8.3) 6.6% of body weight (5.4-8.3)

57.4 ml/kg (dessication)

PLASMA VOLUME (5)

Jolly & Lafond

BLOOD INDICES ARE GREATLY INFLUENCED BY NATURE OF BLOOD SAMPLING,

Blood from femoral artery

Venous blood from tail

WBC	8,250 10,568 10,900 1,500 6,200 6,000
Hb (4)	125 125 133 120 95
RBC	10.25 10.625 11.03 10.475 9.2 8.73
WBC	16,000 13,000 31,600 16,086 18,500 12,750
Hp (%)	120 125 125 133
RBC's	10.6 10.745 11.225 12.385 8.89 11.64

Erythrocyte counts are 1.3 million higher on the average if tail is immersed in warm water. (3)

KIDNEY MEASUREMENTS(5)

	-			-			•
	Vol/g Kidney	12 tz					(93-103) _1 102 ml* min ₁ *100g *11ver 35 ml*min* 100 g*11ver
Glomerulus	lney .	2.5					al*kg 63.0 min *body wt.
•	p) 1 1000's/kidney	12.4	1.062) (5)			HEPATIC BLOOD FLOW (4)	[198 gold
-	Radius (37) s 1.057 (1.052 -]	3-4 days (1)		त्यम् । 	Det. by ext. counting of head Single injection of colloidal ICG Injection
Wt. of 1 Kidney	, & body wt.	19.0	ole mouse blood 1:	transit time =>	0.61% BW (5)		Det. by ext. counting of Single injection of collo ICG Injection
¥	Body wt. (kg) g	0.02 0.12) Specific gravity of whole mouse blood is 1.057 (1.052 - 1.062) (5)	Spleen and bone marrow transit time =>	Renal mass = 0.12 g or 0.61% BW (5)		Anesthetized
	Body		Spec	Sple	Rena		Mouse An

(4) SYSTEM PARAMETERS FOR THE RAT

		PCV		(ED)				
	RBC Count	RBC Packed Vol.	RBC Vol.	g/100 ml blood	8/100 ml RBC	RBC Rb Content	NBC Dimensions	*
	8.9 (7.2 - 9.6)	16 (15 - 53)	61 (57 - 65)	14.8(12.0-17.5)	32 (30 - 35)	7 (15 - 19)	7.5 (6.0 - 7.5)	•
	RBC millions/mm ³	HCT m1/100 m1	Reticulocytes \$ of total	RBC Diameter (Any film)	RBC Volume	Blood (Hb) 2/100 ml blood	Blood (R5) 2/100 ml RBC	NDC No Contest
	8.9 (7.2 - 9.6)	46 (39 - 53)	2.9 (0.6-4.9)	7.5(6.0-7.5)	61(57-65)	14.8(12-17.5)	32 (30-35)	17 (15-19)
	RBC/pm3	нсв	PCV	MC.	Ü	MCHC	Retical	
	ж 10 ⁰	g/100 ml	V e.	8 .	es •	w.	*	
CDES . A1 VEF	7.5	15.4	දු භූ	6 K	8 a	Q <u>S</u>	•	
Wister	7.9	16.6	SE SE	161	រ ត រ	្ វ # :	11	
		17.0	Z <u>G</u>	23	ស ស	r r	: :	
Long-Poune	5.5	16.7	82 c	£9	នេះ	i Ka		
Mixed Stock	9.9	13.0	Ç 6	ಕರ	ଟ ର	ಜ	6.9	•
Sprague Davley	_	13.5	2	65	ឧ	12	! !	
Fischer Axenic	ife 9.0	14.6	7.	4. 4.	91	គ	:	
	2 00	0 eq	‡. C.	ደ።	/ T	F1 X	i	
Finel Est.	7-3	15.2	£5.	રહ	ដង	24.	0.T	
	*#z		3		determined by co method at sea level(14)	(34)		
	10	40.8	13.1 g/100 ml; 2.39 g total					
	53	ት 64	15.0 g/100 ml	RBC millions/rl 9.1 ml	립			
	3 RBC/m 8.4 x 10 ± 2.5	HTC &	Hb gcf (13)					

Ferris & Griffith Albritton Hulse Wirth Albritton Hulse 16.5 (11.4-19.2) With 14.8 (12-17.5) Albrit: 15.4 HEMIOCRIT ≰ 50 46 (39-53) 50.5 6.2 (5.7 - 7) Kleneberger 6.8 (6.0 - 7.5) Albritton 2.9 (0.6 - 4.9) Albritton 2-5 Scherher 2.3 Hulse Seyfarth RETICULOCTIES \$ RBC DIAMETER #

DATA FOR CONSTRUCTING BLOOD OXYGEN DISSOCIATION CURVES (14)

						•			
	Blood or Blood Fraction		(PCO , mmHg)	Hd	Temp. C	7.50 mile	BOHR Effect	m & log 50/c	စ္ပပ
Rattus norvegicus	Whole Blood		04		37	38	ł	ł	
Long-Evans	Whole Blood		35	•	37	64	ł	:	
	Free Solution		0.1 M PO,	7.40	ຄ	6.0	-0.78	•	
White	Whole Blood		, 	7.40	37	33	ł	•	
	Free Solution		0.03 M POL	7.2	37	19.7	i	•	
Wild	Whole Blood			7.40	37	39	:	:	
	Free Solution		0.03 M PO	7.2	37	20.3	ł	•	
	# Meth	Method of Measurement		Temp. C	P ₅₀ mHE	O ₂ Capacit	, ,		
Rattus norvegicus, Wistar I	16 M	Micromanometric		37.0	35	mi 02/100 ml blood 23	ml blood	BOMR Effect	
	Body Temp.	Sample Blood	Plesma pH	#0# #½/₹	cell vol.	co cam Poser m/L	CO Total	CO Pressure	Ħ, ŋ

* Assumed []of 20 mM Hb/L RBC; 1 mM (single Fe - atom structure, molecular weight 16,500) combines with 22.4 ml of O2, S.T.P. when saturated.

まなな でで がで が

CO Pressure im Eg

co_rotal 24 (20-28)

Plesma pH (7.26-7.44) 7.35

Arteriel

38.2

9 *1/2 sat (tension of 1/2 saturation) of rat in mm Hg at 27°C and pH of 7.4 is =

Minute Vol. (L) 0.100 (0.075 - 0.130) Tidel Vol. (ml)
1.5 (1.4-1.6)

RQ or CO2/2 is 0.894 (0.754 - 1.072) Respiratory Exchange Characteristics =

5)		cu mm 0_2 per mg dry wt. tissue in one hour	A = Serum	D = Binger	D = Ringer Phosphate	I = Lactate	J = Succinate	K = Pyruvate	L = Glucose	M = No substrate added	N = Alenine	0 = Butyrate	•			
TISSUE OXYGEN CONSUMPTION (15)		ဂို === ဂို === ဂို	15.8	33.0	23•2	23.1	0°±	26.0	38.2	7.2	8.1	0.0	10.7	25.0	17.2	7-1
TISSUE	37°C	Medium	M	M	0	'n	н	ĸ	'n	ပ	,a	н	ы	۲,	Ъ	A,B
	l atm	Tissue	32 K1dney	33 Kidney	34 Kidney	35 Kidney	36 Kidney	37 Kidney	38 Kidney Cortex	39 Liver	40 Liver	41 Liver	42 Liver	42 Liver		45 Liver fetus

Intravenously injected erythropoietin 1/2 life in plasma is 1 hour

Long-Evans + Rats

Erythropoletin 1/2 life is 1-5 hours

Ealf life of ESF in perfused Rat Liver is 3.5 hours RBC Life span = 55 days

Erythrocyte Life Span and Half Life(2)

Sprague-Dawley 60 days life span and 19 days half life (1) Rattus norvegicus body temperature of 37.3 (34.5-40.0) C

BLOOD VOLUME

Blood Volume = 5.29 ml/100 gm BW(18)
Blood Volume(15)

5-8% of body weight (Schulz and Von Kruger) 6.7 ml/100 gm body weight (Cartland & Koch)

HEPATIC BLOOD FLOW(14)

66.2 ml min kg body wt-1 79 (75-92) ml. min-1 100g 11ver-1 42 ml min-1 100 g 11ver-1 I - albumin Single injection of colloidal Normal Thermoelectric Anesthetized Inermoelectric Normal Ret

KIDNEY FUNCTION(15)

221 ml/min per sq. m. S.A. 145 ml/min per sq. m. S.A. 40 (23-96) ml/min per sq. m. S.A. S.A. = surface area = 0.18 sq. m in 0.2 kg rat 8 ml/min 4.4 ml/min 1.7 ml/min 28 Filtration fraction GFR/ERPF[(% Plasma filtered)] Effective renal blood flow Effective renal plasma flow Glomerular Filtration rate

PLASMA VOLUME m1/kg(15)

Very young 54.7 (49.6 - 59.8) 6290-350g
Pubescent 65.0 (59.2 - 70.8)
Adult 41.5 (29.5 - 53.5)

45.1 (31-59)

Comparison of mean values for total blood flow (RBF) in one kidney in vivo by different techniques in nondiuretic rats (16)

												Blood flow 6 ml/min .g kidney wt.
No. of Animals	13 6	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ដ	71 9	17		1881	28 15	20 16	6	(9:	
Strain of Ret b	ଟ ଟ	ස ද හි හි හි ය හි	23	6 6 6			MA MA	ţs.	***	;≥	REMAL BLOOD FLOW (16)	Arterial pressure madig
Mean AP mmHg a	114	112 112 120		127			130 122 109	114				Arteriel >100
RBF ml min	6.0 g kw ^c 5.1 g kw ^d	6.2/g kw ^d 5.4/g kw ^d 6.5/g kw ^d 6.4/250 g Bwg.h.1 5.5 6.6 6.6 3.9/250 g Bw _d .k	5.8	6.8/g KW 7.5 6.3	4,4/250 g BM 7,1/250 g BW	3.6/g KW	8°4 8°5 6°E	4.2/g KW 3.4/g KW	3.5/250 g BWr 3.9/250 g BWr	ic 3.1/250 g BWk	F BLOOD(15)	
Technique	Electromagnetic flow transducer	PAH clearance	Microsphere	Antiglomerular basement membrane Antibody	K uptake	RH uptake	Macro puncture of superficial nephrons	XE washout	Renal venous outflow	High frequency microcinematographic	VISCOSITY OF	min 1.44 max 1.96 avg. 1.54

-80 80-90 90-100 100-110 110-120 120-130 .2 849 945 1047 114.0 123.1 .6 5.24 5.66 5.90 5.95 5.95 6.05 .5 15.9 16.2 17.3 18.8 20.1 .5 15.9 16.2 17.3 18.8 20.1 .13 12 12 12 13.1 ± 3.1												1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								PRESSI	TRE RANGE			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		40-50	20-60	02-09	70-80	80-90	90-100	100-110		2. 8.		
KW $^{2.82}_{-3.9}$ $^{24.5}_{-2.0}$ $^{44.5}_{-0.9}$ $^{44.5}_{-1.0}$ $^{44.5}_{-1.1}$ $^{44.5}_{-1.2}$ $^{44.5}_{-1.3}$ $^{44.5}_{-1.4}$ $^{44.5}_{-2.9}$ $^{42.5}_{-2.9}$ $^{4.29}_{-2.9}$ $^{4.76}_{-0.69}$ $^{5.24}_{-1.05}$ $^{5.66}_{-1.05}$ $^{5.90}_{-0.93}$ $^{5.95}_{-0.82}$ $^{4.09}_{-0.88}$ $^{4.76}_{-1.05}$	AP. III He	6								150-130	130-140	140-150
KW $^{2.82}_{-0.69}$ $^{3.39}_{-0.65}$ $^{4.29}_{-0.82}$ $^{4.76}_{-1.05}$ $^{5.24}_{-1.05}$ $^{5.66}_{-0.91}$ $^{5.99}_{-0.93}$ $^{4.59}_{-0.82}$ $^{4.05}_{-0.88}$ $^{4.05}_{-0.88}$ $^{4.05}_{-0.88}$ $^{4.76}_{-0.93}$ $^{5.24}_{-0.93}$ $^{5.99}_{-0.93}$ $^{5.99}_{-0.82}$ $^{4.08}_{-0.88}$ $^{14.9}_{-0.88}$ $^{15.1}_{-2.9}$ $^{15.1}_{-2.9}$ $^{14.9}_{-2.9}$ $^{15.5}_{-3.6}$ $^{15.9}_{-3.7}$ $^{15.9}_{-2.8}$ $^{15.9}_{-3.1}$ $^{14.8}_{-3.1}$ $^{18.8}_{-3.1}$ $^{20.1}_{-3.2}$ $^{12.9}_{-3.1}$ $^{13.1}_{-3.7}$ $^{13.1}_{-3.7}$ $^{13.1}_{-3.1}$ $^$	P I	++• 	2.0 2.0	64.6 +0.9	75.2 11.0	84.9 1.1.	104.5 11.2	104.7 - 1.3	114.0	123.1 - 2.9	132.7	4 0 2 0 4 0
14.9 15.1 14.4 15.5 15.9 16.2 17.3 18.8 20.1 2.9 ±2.9 ±2.9 ±3.7 ±2.8 ±3.1 ±3.1 ±3.2 9 12 12 13 13 13 13	RBF, ml/min.g KW	2.82 \$0.69	3.39	4.29 10.82	4.76 ±1.05	5.24	5.66 ±0.91	+ 5.90 + 0.93	- + 0.82 82	6.05 0.88	6.13	6.14
9 12 13 14 51 51 51	RVR, mHg/ml. min.g KW	14.9	15.1 1 2.9	14.4 12.9	15.5 -3.6	15.9 1 3.7	16.2 2.8	17.3 + 3.1	18.8 + 3.1	+ 20°1	त्र त _{्र}	8 8 6 8 8 6
T T T T	No. of animals	σ,	टा	य	13	. 21	13	££	13	. E	, c	ν

Values are means + 1 SD.

SPECIFIC GRAVITY OF BLOOD(5)

1.054 (1.046 - 1.061) 1.023 (1.618 - 1.028) Whole Plasma

HEPATIC BLOOD FLOW(4)

79 (75-92) ml/100g tissue per min. Basal thermoelectric

ARTERIAL BLOOD PRESSURE um Hg(4)

Dies. 90 (60-100) Sys. 116 (88-130)

CAPILLARY BLOOD PRESSURE (MESENTERY) cm H20(4)

Arterial 30.0 (22.0 - 34.0)

Venous 17.0 (15.0 - 20.0)

0.18 Anesthetized

Body Wt. (kg)

S.A. (rq. m.)

Stroke Vol. ml/beat

1.3 - 2.0*

CARDIAC CUTPUT (4)

L/min Cardiac Output 0.047 (0.015-0.079)

L/rq m/min Cardiac index

.5 ml/kg = > enimals ?.5-4 kg

HEART RATE Beats/min(4)

328 (261 - 600)

Cardiac Output = 285 ml/kg min Heart Rate = 420 beats/min Arterial Blood Pressure = 130

Arterial Oxygem Saturation = 91.3%

8 million Meen (15) 16.0 Range of Variation 5.5 - 10 million 2-5% 80-129 11.4 - 19.2 RBC Retics Hb% Hb gm/100 ml

Max. 0 Cepacity of Hb is 1.55 (calculated)

Renal Mass is .37% BW

2.8 ± 0.1 ml RBC/100 gm BW

⁰₂ Capacity of Blood is 23 ml 0₂/100 ml blood

人.

	Number	Number of Subjects			œ	
	Body W	Body Wt., kg			0.14 = 0.007	
	Lung V	Lung Vol., T.			6.3 + 0.5	
	Alveol	Alveolar surface, m			20.0 - 95.0	
	G27113	Capillary surface, of			0.41 - 0.02	
	Capilli	Cepillary Vol., mi			20.0 - 84.0	
	Meen t	Mean thickness of alveolar - capillary tissue barrier, µm	ar - cepillary t	issue berrier, #m	1.42 - 0.07	
	Harmon	Harmonic mean barrier thickness, ##	ckness, µm		0.38 - 0.02	
	re mon	Harmonic mean thickness of plasma layer, µm	of plasma layer	# E	0.13 \$ 0.005	
	Winter.	Minimal berrier thickness	£O.		0.15	
	Wextra	Maximal diffusion capacity of lung	ty of lung		0.83 ± 0.03	
	Minime	Minimal diffusion capacity of lung	ty of lung		:	
	Secto	Ratio of capillary to alveolar surface	Iveolar surface		1.05	
	Spill	Capillary volume per alveolar surface	eoler surfece		1.23	
Rettus norvegious	*#=	Body wt.g	Temp. °C Body	C Ambient	02 Consumption ml g-l hr-l	Deviation \$
	9	545	37.5	23	₹8°0	54+
		MEASTRED VALUES		CALCULATED VALUES(14)		

Buff, base, mBq/liter	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
(HCO ₂ =)p ₃	หนุของกองก อำนาจสะเล่าจับ	83.1 0.63
PCO2, munit &	# # # # # # # # # # # # # # # # # # #	
(co ^S)p³uw	4000 h 0 400 4000 h 0 400	6 6 6 6
Нq	44444444444444444444444444444444444444	19 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
' · તાર્વાફ	11 12 12 12 12 12 12 12 12 12 12 12 12 1	m
S (drodro) Mir	က လူလူလူ က လူလူလု နုံလိုလို ကို လိုလိုလိုလို	000
्रत्य इन्हरू ज्यानस्य इक्ट	a w a ei a axo a ei a a a a a axo a ei	w 3 11 w 0 0
3911	ល្ក ក្នុងក្នុងក្នុង ០៧ពិន្ទុក្នុងក្នុង	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rat No.	- 100,100,000	Mean + + 500 +

In this and subsequent teches, on clocd; prantseme