Exploring Visual Similarities and Genetic Similarities with Machine Learning

Research Project by Niloy Roy Supervised by Martin Hofmann

Contents

- Introduction
- Paradigm Overview
- DataSet
- Experiments (2/2)

Research Question

Design

Implementation

Results

- Conclusion
- Future Work

Introduction

- Taxonomic classification: Morphological, Genetic, Ecological similarity and differences
- Challenges in taxonomic study [e.g., complex taxonomic groups (TCGs)]
- Similarity Learning: Foundational Vs Machine-Learning
- Why Machine-Learning? Large-scale image dataset, high dimensionality
- Applications: Automated tools for taxonomy, Meaningful visual latent space
- Range of Impact: Ecologic & Evolutionary Study, Biodiversity Conservation,
 Medical Study (targeted treatments), Agriculture (new crops)

Similarity Learning Paradigms 1/2

Similarity Learning Paradigms 2/2

Dataset: Image

- Phylum: Mollusca, Class: Bivalve
- Labels taxa: Subclass (6), Order(26), Family(74), Genera(884), Species(4144)
 - 71,888 2D images (.jpg)
- Varying dimension in size (height*width)
- Class imbalance:

Paleoheterodonta (67 samples)
Imparidentia (33,852 samples)

- Filename to Taxon label mapping (Meta.csv)
- Source: Hofmann et al. (2024)

Dataset: Phylogenetic Distance

- Family-level pairwise phylogenetic distance
- Distance from phylogenetic tree:
 - 1. shortest path between taxa
 - 2. sum of branch lengths,
 - 3. same order pair < different order pair
- Square and symmetric (74*74)
- Self-distance along diagonal (0)
- Source: Hofmann et al. (2024)

Figure: Heatmap visualization of phylogenetic pair-wise distances of 74 families arranged by order

Research Question (1/2)

 Problem: Genetic data unavailable for empty shells, fossil records.

 Question: With how much confidence can visual similarity serve as a proxy for genetic similarity in taxonomic classification?

Experiment (1/2): Paradigm selection

- Foundational or Deep Methods?
- Fine-grained, high-dimensional
- Decision: Deep Learning
- Taxonomic labels: instance-level, highly-reliable
- Semantic supervision preferred Convergent evolution (*M. edulis, M. galloprovincialis, and M. trossulus*)
- Class imbalance: Data-based, modelbased, hybrid methods (<u>Das et al., 2022</u>)
- Decision: Supervised

Experiment (1/2): Paradigm selection

- Supervised: Contrastive, Ranking or Downstream Classifier ?
- Objective, Training efficiency
- Feature transfer with pre-trained model
- Decision: Strongly Supervised
 Classifier with Feature Transfer
- Performance:
 Random guess < Feature Transfer
 < Fine-Tuning (parameter training)

10

Experiment (1/2): Feature Transfer

Experiment (1/2): Feature Transfer

Implementation: Feature transfer based taxonomic classifier for subclass and order

- Up-sampling minority classes (gaussian noise)
- Augmentation inside feature extractor
- **Pre-trained Model:** ConvNexT (Tiny) → Top performance on ImageNet
- Feature matrix: (768, number of samples)
- Classifiers for taxon: independent, parallel
- Random forest

Bootstrap Sampling, Feature Bagging 100 decision trees

Feature Transfer: Result

Feature Transfer: Result

Research Question (2/2)

- Problem: Convergent Evolution, Morphological Disparity
- Question: To what extent can a biologically meaningful embedding space be learned from visual morphology data, when guided by phylogenetic distance?

Experiment (2/2): Embedding Learning

<u>Implementation</u>: To learn a visual embedding space aligned with phylogenetic distance.

Dataset pre-processing

- Down-sampling majority classes
- Up-sampling minority classes with augmentation
- Normalization of pixel values
- Re-sizing (224*224)

Feature extractor: Resnet50

Feature matrix: (number of samples, 2048)

Experiment (2/2): Embedding Learning

Weighted Attention-based Pooling: Importance to discriminative features.

For each family:

Pair-wise Visual Distance Matrix:

- > 74 family vectors normalized
- Pair-wise cosine distance (74*74)

Training:

- Genetic distance normalization ([0,1.7]) to [-1,1])
- Upper-triangle MSE loss

Embedding Learning: Result

Figure: Comparison of Genetic Distance Heatmap (left) and Visual Similarity Heatmap(right).

Embedding Learning: Result

Correlation	Value	p-value
Experiment	0.4032	5.7419 e -109
Hofmann et al. (2024)	0.78	< 0.00001

Table: Correlation values comparison from the literature

- Moderate positive Pearson correlation between genetic and visual similarity matrices indicates partial linear alignment.
- Extremely small p-values confirm correlations are statistically significant and not due to chance.

Conclusion

Taxonomic classification: Visual similarity as proxy (RQ1):

- > Average accuracy significantly better than random guess
- ➤ Aligned with feature transfer performances from the literature
- Baseline performance: Feature transfer with no fine-tuning,
- Random Forest with no hyper-parameter tuning.

Distance-guided embedding Learning: Alignment between visual and genetic distances (RQ2):

- ➤ Moderate positive Pearson correlation with very low p-value
- > Encouraging linear alignment between genetic similarity and visual similarity

Technical Tools:

➤ Google colab Pro, A100 GPU, Tensorflow (1st experiment), PyTorch (2nd experiment)

Future Work

Fine-tuning:

- Classification: Feature engineering (ranking, fusion); Training neural network
- > Embedding: Better representation

Handling Class Imbalance:

- Taxonomic aware re-sampling,
- Neural network training with weighted loss function
- Few-shot learning

Hierarchy-Guided Neural Network (HGNN):

- Taxonomic classification with biological hierarchy (genus and species)
- ➤ Dual-ResNet, joint loss function
- Improved accuracy with small, imbalanced data (Elhamod and Tung, 2020)

References

- Hofmann, M., Kiel, S., Kösters, L. M., Wäldchen, J., & Mäder, P. (2024). Inferring taxonomic affinities
 and genetic distances using morphological features extracted from specimen images: A case study
 with a bivalve data set. Systematic Biology, XX(XX), 1–22. https://doi.org/10.1093/sysbio/syae042
- Das, S., Mullick, S. S., & Zelinka, I. (2022). On supervised class-imbalanced learning: An updated perspective and some key challenges. IEEE Transactions on Artificial Intelligence, 3(6), 973–991.
- Elhamod, M., & Tung, F. (2020). Hierarchy-guided neural network for species classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3957–3966). IEEE.
- Valan, M., Mokonyi, K., Maki, A., Vondráček, D., & Ronquist, F. (2019). Automated taxonomic identification of insects with expert-level accuracy using effective feature transfer from convolutional networks. Systematic Biology, 68(6), 876–895.

Thank you so much!

Feature Transfer Classifier: Limitations

Limitations	Implication	Improvement
Class imbalance	Minority class performance drops the overall average accuracy performance	- Hyper-parameter tuning of Random Forest- Support Vector Machine
Class imbalance	- Without down-sampling the majority classes, imbalance skew persists	ResamplingRepetitions in train_featuresextractions
High-dimensional feature space	- Weak, noisy and non-discriminative features remaining	FusionRankingPrincipal Component Analysis

Embedding Learning: Limitations

Limitations	Implication	Improvement
Random down-sampling	Loss in feature representation	- Better down-sampling alternatives (Taxonomically aware)
Feature extraction with pre- trained weights only	- No training with our dataset	- Fine-Tuning : Unfreeze and train the intermediate to last convolutional layers to balance better feature extraction with reduced over-fitting risk.

Downstream classifier: Results

Figure 7: Comparison of Accuracy with macro and weighted average of F1 score

Downstream classifier: Results

Figure 8: Classification Report or the 6 subclasses (0-5) with different classifiers

Downstram classifier: Results

At taxonomic SubClass:

Figure 9: Impact of class imbalance on 26 orders classification performance