Evaluation

Princeton AI4ALL NLP Group

Recap

- Linear regression and standard deviation
- Python functions
- File organization

Evaluation Metrics

Material adapted from Stanford AI4ALL 2017

Plan for today

- How to evaluate the performance of a classifier?
- Implement an evaluation metric and evaluate your rule-based classifier

Evaluation

- How can we determine whether one classifier is better than another?
- How can we determine whether making changes to a classifier actually leads to improvements?
 - E.g. does writing an additional rule help, or make things worse?

Overview

- 1. You have labeled data (each input labeled with its true category)
- 2. Split the data into training examples and test examples
- 3. Develop your classifier using the training examples
- 4. Use the classifier to label all the test examples
- 5. Compare the classifier's labels with the true labels and measure performance

Example	Predicted label True label	
1	Benign	Malignant
2	Benign	Malignant
3	Malignant	Malignant
4	Benign	Benign
5	Malignant	Benign
6	Benign	Benign
7	Benign	Benign
8	Malignant	Malignant
9	Benign	Benign
10	Benign	Benign

How would you measure the performance of the classifier?

Accuracy

$$Accuracy = \frac{Number of correctly classified examples}{Number of examples}$$

Example	Predicted label	True label	Correct?
1	Benign	Malignant	No
2	Benign	Malignant	No
3	Malignant	Malignant	Yes
4	Benign	Benign	Yes
5	Malignant	Benign	No
6	Benign	Benign	Yes
7	Benign	Benign	Yes
8	Malignant	Malignant	Yes
9	Benign	Benign	Yes
10	Benign	Benign	Yes

Accuracy?

Example	Predicted label	True label	Correct?
1	Benign	Malignant	No
2	Benign	Malignant	No
3	Malignant	Malignant	Yes
4	Benign	Benign	Yes
5	Malignant	Benign	No
6	Benign	Benign	Yes
7	Benign	Benign	Yes
8	Malignant	Malignant	Yes
9	Benign	Benign	Yes
10	Benign	Benign	Yes

Accuracy = 70%

Example	Predicted label	True label	Correct?
1	Benign	Malignant	No
2	Benign	Malignant	No
3	Malignant	Malignant	Yes
4	Benign	Benign	Yes
5	Malignant	Benign	No
6	Benign	Benign	Yes
7	Benign	Benign	Yes
8	Malignant	Malignant	Yes
9	Benign	Benign	Yes
10	Benign	Benign	Yes

Just classify everything as benign!

Accuracy?

Accuracy

Accuracy not a good when uneven distribution of labels in the data

The distribution of `Stance` classes in `train_stances.csv` is as follows:

		Predicted label	
		malignant	benign
True label	malignant	True positive	False negative
	benign	False positive	True negative

Example	Predicted label	True label
1	Benign	Malignant
2	Benign	Malignant
3	Malignant	Malignant
4	Benign	Benign
5	Malignant	Benign
6	Benign	Benign
7	Benign	Benign
8	Malignant	Malignant
9	Benign	Benign
10	Benign	Benign

Example	Predicted label	True label	
1	Benign	Malignant	FN
2	Benign	Malignant	FN
3	Malignant	Malignant	TP
4	Benign	Benign	TN
5	Malignant	Benign	FP
6	Benign	Benign	TN
7	Benign	Benign	TN
8	Malignant	Malignant	TP
9	Benign	Benign	TN
10	Benign	Benign	TN

What about for spam classification?

True positives?

False positives?

True negatives?

False negatives?

What next?

Precision and Recall

Precision: "Of all those labeled positive, how many were correctly labeled?"

Precision =
$$\frac{tp}{tp + fp}$$

Recall: "Of all the true positive examples, how many did the classifier detect?"

Recall =
$$\frac{tp}{tp + fn}$$

Precision and Recall

Why do precision and recall matter?

- High recall:
- High precision:

- For detecting malignant tumors, which is more important?
- For convicting someone of a crime, which is more important?
- For detecting spam email, which is more important?

Precision and Recall

Why do precision and recall matter?

- High recall: classifier has few false negatives
 - e.g. few malignant tumors go undetected
- High precision: classifier has few false positives
 - e.g. few "false alarms" on benign tumors
- For detecting malignant tumors, which is more important?
 - High recall
- For convicting someone of a crime, which is more important?
 - High precision
- For detecting spam email, which is more important?
 - Both are important

How to combine precision and recall into a single balanced measure?

Harmonic mean

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

precision

How should we measure performance for the Fake News Challenge?

Go to AI4ALL_NLP_Student folder in Terminal

Type git pull

Type unzip Day6_evaluation

Go to the Day6_evaluation folder in Terminal

Type source ~/miniconda3/bin/activate

Type jupyter notebook

http://bit.ly/20m1YZX