

Software Engineering (CE304T)

CEP: Assignment # 03

Submitted to:

Dr. Usman Younis

Ms. Ayesha Aman

Submitted by:

Fatima Ehsan (BSCE21016) Ifrah Batool (BSCE21011)

Taha H. Raza (BSCE20027)

Dated: May 12, 2024

Table of Contents

1. Use Case Diagram (Recalling)	3
2. Structural Model	3
2.1. Relationships	3
2.1.1. Association	3
2.1.2. Dependency	3
2.1.3. Extends/Includes	3
2.1.4. Composition	4
2.1.5. Uses/Use by	4
2.1.6. Interfaces	4
2.2. UML Class Diagram	4
3. Dynamic Model	5
3.1. Use Case # 01: User Scans QR Code	5
3.2. Use Case # 02: User Redeems Points	5
3.3. Use Case # 03: User Shares Badges	6
3.4. Use Case # 04: Display Leaderboard on App	6
3.5. Use Case # 05: Dispose Trash	7
3.6. Use Case # 06: Bin Full Alert to Garbage Collector	8
3.7. Use Case # 07: Maintenance Alert to Maintenance Personnel	8

1. Use Case Diagram (Recalling)

In this assignment, we are required to make structural and dynamic models of our system that will cover all the use cases of our system TRASHCA\$H.

Recalling the use case diagram:

2. Structural Model

The structural model of the system will be a detailed UML class diagram showing all the relationships between the classes.

2.1. Relationships

2.1.1. Association

- User and Mobile App (association relation; there are many users, and each user has its own app)
- App and scanner (directed association; The mobile app interacts with the Scanner class by scanning QR codes)

2.1.2. Dependency

- User uses the mobile app (dependency relation; because the user needs a mobile app to access its functionalities)
- Motor uses sensor class (dependency; sensor detects the type of trash, then lid moves accordingly)

2.1.3. Extends/Includes

Sensors include motor class.

When trash is detected, it extends to points allocation. (sensor to point allocation class)

2.1.4. Composition

• Badge class composes the points allocation class (if points allocation class does not exist, then badge class will also not exist)

2.1.5. Uses/Use by

- Mobile app uses points allocation class (it gets points details for its leaderboard from point allocation class)
- Mobile app uses badge class (it gets the badge for its leaderboard from badge class)
- Maintenance personnel use sensor class. (Maintenance personnel is dependent on sensor class to get alerts.
- Garbage Collector uses sensor class. (Maintenance personnel is dependent on sensor class to get alerts.

2.1.6. Interfaces

 Mobile app system, scanner, motor, point allocation, badge, and sensor class will also have their interface classes.

2.2. UML Class Diagram

3. Dynamic Model

3.1. Use Case # 01: User Scans QR Code

3.2. Use Case # 02: User Redeems Points

3.3. Use Case # 03: User Shares Badges

3.4. Use Case # 04: Display Leaderboard on App

3.5. Use Case # 05: Dispose Trash

3.6. Use Case # 06: Bin Full Alert to Garbage Collector

3.7. Use Case # 07: Maintenance Alert to Maintenance Personnel

