試験13の軸受寿命加速試験(計測データの収集、センサの設置)

軸受等寿命加速試験

モータエミュレータの軸受No.3に対して直角方向に大荷重をかけた状態でモータを回転させ、 様々なセンサ(下図は5種類9センサ)で故障に至る計測データを収集・分析し、**軸受の自動** 診断ソフトウエアを開発した。

<試験構成>

試験13の軸受寿命加速試験概要

試験名	ラジアル荷重[kN]			試験形態	試験時間	試験終了	異常原因
	軸受 No.1	軸受 No.2	軸受 No.3	11、前央 77 2 总	[h]	理由	共市
試験13	1.5	3.0	1.5	24h連続運転	377	騒音、 負荷異常	 軸摩耗 ・軸受No.2付近の軸の摩耗(中央軸受の止ねじが摩耗し、空転、振動発生) 軸受異常 ・内輪、外輪、ボールに多数のキズ(軸受No. 2が最も重傷) ・軸受No. 2のグリス炭化

試験経過概要)

- ① 軸はこれまで軸折がない焼入れ炭素鋼(SC45C)Φ20mmとした。電食再現試験も継続して実施。 出力軸の速度は3780rpm程度に設定して実施した。
- ② 経過時間24.0hで軸受No.2のラジアル負荷を測定している軸力計測ボルトを交換し、ラジアル 負荷を調整した。
- ③ 試験時間経過とともに負荷電流が単調増加。320h経過から音が大きくなり、377h後には騒音と振動で試験終了。負荷電流実効値は367hにおいて0.69Aから0.58Aに低下した。
- ④ 試験後に軸と軸受の状態を確認(写真2)
 - ・軸受No.2と軸受No.3の間に摩耗による鉄粉が発生(軸の摩耗による鉄粉と思われる)

軸受**No.2** 摩耗によりクリアランス (すきま)拡大

試験開始直後(正常時)

試験終了直前(異常時)

試験13の軸受寿命加速試験(計測・収集したcsャデータの説明) R 5.10.31 岐阜県産業技術総合センター

特徴量の先頭の数字は 該当するCH番号

黄色の箇所は後述の 軸受診断ソフトウエア で使用している特徴量

No.	特徴量等(列要素)の説明, ()内は単位	内容
1	Japan_time(unix epoch)	日本時間(UNIX エポック)、単位はseconds
2	date	日本時間(年月日24時間表示)
3	Elapsed time(hours)	軸受寿命加速試験の経過時間、単位はhours
4	0.acc_pp(m/s2)	CHO(軸受No.1 プーリー)の振動加速度のビークtoビーク値
5	0.acc_avr(m/s2)	CHO(軸受No.1 プーリー)の振動加速度の平均値
6	0.acc_rms(m/s2)	CH0(軸受No.1 プーリー)の振動加速度の実効値
7	0.acc_cf(a.u.)	CHO(軸受No.1 プーリー)の振動加速度の波高率(クレストファクタ)
8	0.rubbing_lvl(m/s2)	CHO(軸受No.1 プーリー)の振動加速度の高周波成分(5k-10kHz)の平均値
9	0.vel_pp(mm/s)	CH0(軸受No.1 プーリー)の振動速度のビークtoビーク値
10	0.vel_avr(mm/s)	CH0(軸受No.1 プーリー)の振動速度の平均値
11	0.vel_rms(mm/s)	CH0(軸受No.1 プーリー)の振動速度の実効値
12	0.vel_cf(a.u.)	CHO(軸受No.1 プーリー)の振動速度の波高率(クレストファクタ)
13	0.envlp_pp(m/s2)	CHO(軸受No.1 プーリー)の振動加速度包絡線のピーク to ピーク値
14	0.envlp_avr(m/s2)	CHO(軸受No.1 プーリー)の振動加速度包絡線の平均値
15	0.envlp_rms(m/s2)	CHO(軸受No.1 プーリー)の振動加速度包絡線の実効値
16	0.envlp_cf(a.u.)	CHO(軸受No.1 プーリー)の振動加速度包絡線の波高率(クレストファクタ)
17	0.vel_rpm(Hz)	CHO(軸受No.1 プーリー)の推定回転数(振動速度のFFTビーク値から推定)
18	0.vel_rpm_val(mm/s)	CHO(軸受No.1 プーリー)の推定回転数のFFTビーク値
19	0.outer_Pre_Hz(Hz)	CHO(軸受No.1 プーリー)の外輪キズ周波数(軸受の寸法形状と推定回転数から推定)
20	0.outer_Hz(Hz)	CHO(軸受No.1 ブーリー)の外輪キズ周波数 (振動加速度包絡線のFFTビーク値から推定)
21	0.outer_Hz_val(m/s2)	CHO(軸受No.1 ブーリー)の外輪キズ周波数のFFTビーク値
22	1.acc_pp(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度のビークtoビーク値
23	1.acc_avr(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度の平均値
24	1.acc_rms(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度の実効値
25	1.acc_cf(a.u.)	CH1(軸受No.2 中央、皿パネ)の振動加速度の波高率(クレストファクタ)
26	1.rubbing_lvl(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度の高周波成分(5k-10kHz)の平均値
27	1.vel_pp(mm/s)	CH1(軸受No.2 中央、皿パネ)の振動速度のビークtoビーク値
28	1.vel_avr(mm/s)	CH1(軸受No.2 中央、皿バネ)の振動速度の平均値
29	1.vel_rms(mm/s)	CH1(軸受No.2 中央、皿バネ)の振動速度の実効値
30	1.vel_cf(a.u.)	CH1(軸受No.2 中央、皿バネ)の振動速度の波高率(クレストファクタ)
31	1.envlp_pp(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度包絡線のピークtoビーク値
32	1.envlp_avr(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度包絡線の平均値
33	1.envlp_rms(m/s2)	CH1(軸受No.2 中央、皿バネ)の振動加速度包絡線の実効値
34	1.envlp_cf(a.u.)	CH1(軸受No.2 中央、皿パネ)の振動加速度包絡線の波高率(クレストファクタ)
35	1.vel_rpm(Hz)	CH1(軸受No.2 中央、皿バネ)の推定回転数(振動速度のFFTビーク値から推定)
36	1.vel_rpm_val(mm/s)	CH1(軸受No.2 中央、皿バネ)の推定回転数のFFTピーク値
37	1.outer_Pre_Hz(Hz)	CH1(軸受No.2 中央、皿バネ)の外輪キズ周波数(軸受の寸法形状と推定回転数から推定)
38	1.outer_Hz(Hz)	CH1(軸受No.2 中央、皿パネ)の外輪キズ周波数(振動加速度包絡線のFFTビーク値から推定)
39	1.outer_Hz_val(m/s2)	CH1(軸受No.2 中央、皿バネ)の外輪キズ周波数のFFTビーク値
40	2.acc_pp(m/s2)	CH2(軸受No.3 奥)の振動加速度のピークtoピーク値
41	2.acc_avr(m/s2)	CH2(軸受No.3 奥)の振動加速度の平均値
42	2.acc_rms(m/s2)	CH2(軸受No.3 奥)の振動加速度の実効値
43	2.acc_cf(a.u.)	CH2(軸受No.3 奥)の振動加速度の波高率(クレストファクタ)
44	2.rubbing_lvl(m/s2)	CH2(軸受No.3 奥)の振動加速度の高周波成分(Sk-10kHz)の平均値
45	2.vel_pp(mm/s)	CH2(軸受No.3 奥)の振動速度のビークtoビーク値
46	2.vel_avr(mm/s)	CH2(軸受No.3 奥)の振動速度の平均値
47	2.vel_rms(mm/s)	CH2(軸受No.3 奥)の振動速度の実効値
48	2.vel_cf(a.u.)	CH2(軸受No.3 奥)の振動速度の波高率(クレストファクタ)
49	2.envlp_pp(m/s2)	CH2(軸受No.3 奥)の振動加速度包絡線のビークtoビーク値
50	2.envlp_avr(m/s2)	CH2(軸受No.3 奥)の振動加速度包絡線の平均値

No.	特徴量等(列要素)の説明, ()内は単位	内容
51	2.envlp_rms(m/s2)	CH2(軸受No.3 奥)の振動加速度包絡線の実効値
52	2.envlp_cf(a.u.)	CH2(軸受No.3 奥)の振動加速度包絡線の波高率(クレストファクタ)
53	2.vel_rpm(Hz)	CH2(軸受No.3 奥)の推定回転数(振動速度のFFTビーク値から推定)
54	2.vel_rpm_val(mm/s)	CH2(軸受No.3 奥)の推定回転数のFFTビーク値
55	2.outer_Pre_Hz(Hz)	CH2(軸受No.3 奥)の外輪キズ周波数 (軸受の寸法形状と推定回転数から推定)
56	2.outer_Hz(Hz)	CH2(軸受No.3 奥)の外輪キズ周波数(振動加速度包絡線のFFTピーク値から推定)
57	2.outer_Hz_val(m/s2)	CH2(軸受No.3 奥)の外輪キズ周波数のFFTビーク値
58	4.sound_pp(mV)	CH4(音センサ)出力のビークtoビーク値
59	4.sound_avr(mV)	CH4(音センサ)出力の平均値
60	4.sound_rms(mV)	CH4(音センサ)出力の実効値
61	4.sound_cf(a.u.)	CH4(音センサ)出力の波高率(クレストファクタ)
62	3.current_pp(A)	CH3(モータ負荷電流センサ)出力のビークtoビーク値
63	3.current_avr(A)	CH3(モータ負荷電流センサ)出力の平均値
64	3.current_rms(A)	CH3(モータ負荷電流センサ)出力の実効値
65	3.current_cf(a.u.)	CH3(モータ負荷電流センサ)出力の波高率(クレストファクタ)
66	5.temp_b1(deg)	CH5(軸受No.1 プーリーの表面温度)出力、単位は摂氏
67	5.temp_b2(deg)	CH5(軸受No.2 中央の表面温度)出力、単位は摂氏
68	5.temp_b3(deg)	CH5(モータの表面温度)出力、単位は摂氏
69	6.temperature(deg)	CH6(環境気温)出力、単位は摂氏
70	6.humidity(%)	CH6(環境湿度)出力
71	6.pressure(hPa)	CH6(環境気圧)出力
72	0.rub_min	CHO(軸受No.1 プーリー)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の最低値
73	0.rub_rate	CHO(軸受No.1 ブーリー)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の現在値と最低値の比
74	1.rub_min	CH1(軸受No.2 中央、皿パネ)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の最低値
75	1.rub_rate	CH1(軸受No.2 中央、皿パネ)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の現在値と最低値の比
76	2.rub_min	CH2(軸受No.3 奥)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の最低値
77	2.rub_rate	CH2(軸受No.3 奥)の振動加速度の高周波成分(5k-10kHz)の平均値(0.5日間)の現在値と最低値の比
78	sound_min	音センサ出力の0.5日間平均の最低値
79	sound_rate	音センサ出力の0.5日間平均の最低値と、その時の平均値または瞬間値(どちらか大きい方)との比
80	sound_alert_flg	sound_rateが2.0以上であるか(True=1, False=0)
81	sound_alert_cnt	sound_alert_flgが1の状態の継続数
82	sound_alert_out	sound_alert_flgが立っている場合(1の時)に1を出力
83	current_CV_rms	モータ負荷電流の実効値の0.5日間の 変動係数の現在値
84	current_CV_min	モータ負荷電流の実効値の0.5日間の 変動係数の最低値
85	current_CV_rate	モータ負荷電流の実効値の現在値と最低値の比
86	current_alert_flg	current_CV_rateが2.0以上であるか(True=1, False=0)
87	current_alert_out	current_alert_figが立っている場合(1の時)に1を出力
88	0.acc_alert	CHO(軸受No.1 プーリー)の振動加速度のアラート (正常=0, 注意=1, 異常=2)
89	0.vel_alert	CHO(軸受No.1 ブーリー)の振動速度のアラート(正常=0, 注意=1, 異常=2)
90	0.envlp_alert	CHO(軸受No.1 ブーリー)の振動加速度包絡線のアラート (正常=0, 注意=1, 異常=2)
91	0.alert_lvl	CHO(軸受No.1 ブーリー)の軸受診断の異常度の総合判定 (0 - 正常, 1, 2, 3, 4, 5 - 緊急事態)
92	1.acc_alert	CH1(軸受No.2 中央、皿バネ)の振動加速度のアラート (正常=0,注意=1,異常=2)
93 94	1.vel_alert 1.envlp_alert	CH1(輸受No.2 中央、皿パネ)の振動速度のアラート (正常=0, 注意=1, 異常=2) CH1(輸受No.2 中央、皿パネ)の振動加速度包絡線のアラート (正常=0, 注意=1, 異常=2)
94	1.alert Ivi	CH1(無交No.2 中央、皿バネ)の振動加速度已給線のアラート (止席=0, 注意=1, 英帝=2) CH1(軸交No.2 中央、皿バネ)の軸受診断の異常度の総合判定 (0-正常, 1, 2, 3, 4, 5 - 緊急事態)
95	2.acc alert	CH1(和文NO.2 中央、皿ハイ)の和文が即の共布及の総合刊上 (0 = 止治、1, 2, 3, 4, 3 = 素息争態) CH2(軸受No.3 奥)の振動加速度のアラート (正常=0, 注意=1, 異常=2)
96	2.vel_alert	CH2(転叉NO.3 奥)の振動油送後のアラート(正常=0, 注意=1, 共常=2) CH2(軸受No.3 奥)の振動速度のアラート(正常=0, 注意=1, 異常=2)
98	2.envlp_alert	CH2(軸叉NO.3 奥)の振動加速度のグラード (正市=0, 注意=1, 共市=2) CH2(軸叉No.3 奥)の振動加速度包絡線のアラート (正常=0, 注意=1, 異常=2)
98	2.alert Ivl	CH2(軸交NO.3 奥)の敵愛診断の異常度の総合判定 (0 = 正常.1, 2, 3, 4, 5 = 緊急事態)
33	2.00.0	

(参考) 試験13の軸受寿命加速試験における収集データ

試験13(6月12日~6月28日 377h)の収集データ結果(中央軸受、ラジアル負荷大(皿バネ))

(参考) 試験13の軸受自動診断ソフトウエア (軸受診断結果)

試験13を開発した軸受診断ソフトウエアで判定し、診断が妥当であることを確認した。

