Aprendizado de Máquina 2

Aula 7

Professora: Patrícia Pampanelli

patricia.pampanelli@usp.br

Dúvidas da última aula?

Aula de Hoje

- Auto encoders

Redução de dimensionalidade consistem comprimir um conjunto grande de features em um subespaço de dimensão menor sem que haja perda de informação

Redução de Dimensionalidade

- Vocês já tiveram contato com algumas abordagens para redução de dimensionalidade:
 - K-means
 - Principal component analysis
 - Self-organizing maps
- Hoje nós vamos falar sobre outra técnica para redução de dimensionalidade: autoencoders
- Esta é uma técnica baseada em redes neurais artificiais

Recapitulando... Redes neurais

Esta é uma visão esquemática de uma camada com 3 neurônios e aplicação de funções de ativação.

- Funções de ativação:
 - Em 1986, David Rumelhart, Geoffrey Hinton, e Ronald Williams publicaram um trabalho propondo o uso do backpropagation como algoritmo de treinamento das redes neurais.
 - Para utilização deste algoritmo de treinamento, a derivada da função de ativação é importante. Desta forma, a step function foi substituída por outras funções de ativação com derivadas mais fáceis.

- Funções de ativação:
 - Sigmoide

- Funções de ativação:
 - Tangente hiperbolica

- Funções de ativação:

- ReLU

- Funções de ativação:
 - Leaky ReLU

Biases

Identificação de padrões

Representação eficiente de padrões

- A relação entre memória, percepção e identificação de padrões foi estudada pela primeira vez nos anos de 1970s por William Chase e Hebert Simon
- Eles observaram que jogadores profissionais de xadrez podiam memorizar a configuração das peças do tabuleiro observando-o por somente 5 segundos
- Eles só eram capazes de memorizar caso as peças estivessem em uma configuração possível

Representação eficiente de padrões

- Os jogadores de xadrez não tem uma memória diferente de qualquer outro ser humano.
- A diferença é que eles aprenderam a identificar estes padrões.

- Autoencoders são um tipo de rede neural artificial capaz de aprender padrões a partir dos dados de entrada
- Os padrões são chamados de codificação ou representação latente
- O treinamento destas redes é feito de forma não supervisionada

- O fato do treinamento ser não supervisionado é bastante interessante, visto que não precisamos de dados anotados
- A disponibilidade de dados costuma ser um gargalo bastante relevante em projetos de inteligência artificial. Este recurso pode ser utilizado, inclusive, em treinamentos para classificação onde a disponibilidade de dados é um gargalo. Veremos na seção de aplicações.

- Autoencoders são compostos de duas partes:
 - *Encoder* (rede de reconhecimento)
 - Decoder (rede generativa)
- O encoder é responsável por converter os dados de entrada em uma representação simplificada
- O decoder é responsável por converter as representações simplificadas (compactadas) em outputs
- O número de neurônios da camada de entrada deve ser igual ao número de neurônios na camada de saída

- Os inputs para treinamento destas redes podem ser de diferentes naturezas:
 - Podemos trabalhar com imagens, dados tabulares, etc
 - Dados que queremos encontrar padrões, remover ruído ou buscar uma representação simplificada

- A representação latente dos dados consiste em uma versão reduzida dos dados de entrada.
- Na maioria das vezes esta INPI
 camada tem um número
 menor de neurônios que a
 camada de entrada.
- Quando isso acontece o autoencoder é chamado de incompleto

- O autoencoder é chamado de super completo (overcomplete) quando esta camada tem um número maior de neurônios que a camada de entrada.
- Estes autoencoders são mais difíceis de serem desenhados e treinados, mas costumam ser mais poderosos ao aprender padrões mais complexos.
- Nestes casos é incluída uma camada de regularização.

LATENT REPRESENTATION

Conceitos - Autoencoders

- A camada de saída tem a mesma dimensão da camada de entrada.
- O objetivo ao treinar um autoencoder é que a saída se aproxime da camada de entrada. Por isso essas redes são treinadas de forma não supervisionada.

Autoencoder Simples - Iris D

- Os autoencoders podem ter **várias camadas escondidas**
- Nestes casos os autoencoders são chamados de stacked autoencoders (ou deep autoencoders)
- A adição de novas camadas ajudam a rede a aprender padrões mais complexos
- É importante ter cuidado para não fazer o autoencoders tão complexo que ele acaba mapeando cada input em um número arbitrário. Nestes casos, o autoencoder acaba não aprendendo padrões relevantes dos dados de entrada.

- A arquitetura dos autoencoders geralmente segue uma estrutura simétrica em relação a camada central (camada de codificação).
- Simplificando, a arquitetura é como se fosse um "sanduíche"
- Vamos ver no próximo slide como ficaria uma arquitetura de um autoencoders para reduzir dimensões dos dados do MNIST

- Todas as camadas do autoencoder são totalmente conectadas (fully connected)
- Em outras palavras, cada neurônio de uma camada está conectado a todos os neurônios da camada seguinte

784 neurônios na camada de entrada

784 neurônios na camada de entrada

784 neurônios na camada de entrada

784 neurônios na camada de entrada

Autoencoders

- Autoencoders são ferramentas extremamente flexíveis em Deep Learning!
- Redução de dimensionalidade é uma das aplicações destes modelos baseados em redes neurais.
- Mudanças aplicadas às saídas da rede, por exemplo, podem tornar os autoencoders ferramentas interessantes para outras finalidades.
- Nos próximos blocos de aula vamos entender algumas dessas modificações.

supervisionado

Pré-treinamento não

- Uma utilização bastante interessante de autoencoders é para fazer treinamentos de modelos de classificação em cenários onde você não tem muitos dados anotados.
- Este é um cenário bastante comum, visto que é sempre mais barato obter grandes volumes de dados não anotados. A anotação de dados é uma tarefa bastante custosa.

- Se a maioria dos seus dados são não anotados (unlabeled), você pode utilizar o autoencoder para aprender as características mais importantes dos seus dados.
- Posteriormente, pode alterar as últimas camadas da etapa de decoder substituí-las por uma camada de saída e uma função softmax.

- Vamos utilizar o exemplo do MNIST mostrado anteriormente. Neste exemplo, o autoencoder é treinado com um conjunto de dados de dígitos escritos à mão.
- Apesar do dataset set anotado, os labels aqui não são necessários para treinar o autoencoder

supervisionada

INPUTS

Utilizar as primeiras camadas da rede

Substitui o decoder por duas novas camadas: uma camada de saída com o número de classes e uma camada softmax \mathbf{X}_{1} **▶** C₁ $\mathbf{X}_{\mathbf{2}}$ \mathbf{C}_2 2 **INPUTS** X_3 **▶ C**₃ ••• X_4 C_4 ••• 30 ••• ••• ••• ••• 30 neurônios na 100 camada de codificação 784 X_{78} **C**₅ 10 10 100 neurônios na 4 camada escondida **Softmax** 784 neurônios na 10 neurônios na function camada de entrada camada de saída

Treinar novamente a rede de forma supervisionada para executar a tarefa de classificação \mathbf{X}_{1} **▶** C₁ $\mathbf{X}_{\mathbf{2}}$ \mathbf{C}_{2} 2 **INPUTS** X_3 **▶ C**₃ ••• X_4 C_4 ••• 30 ••• ••• ••• ••• 30 neurônios na 100 camada de codificação X_{78} 784 \mathbf{C}_{5} 10 10 100 neurônios na 4 camada escondida Softmax 784 neurônios na 10 neurônios na function camada de entrada camada de saída

Uma opção é <u>congelar</u> estas camadas iniciais durante o processo de treinamento para classificação

- As etapas deste processo são as seguintes:
 - a. Treinamento de um autoencoder utilizando os dados não anotados (*unlabeled*)
 - b. Reutilize as camadas do *encoder* para criar uma nova rede neural
 - c. Treine esta rede em dados anotados para uma determinada tarefa de classificação. Esta etapa irá precisar de bem menos dados anotados do que o treinamento de um modelo do zero para performar essa mesma tarefa

Transfer Learning

- Este é um exemplo importante sobre transferência de aprendizado. Esta é uma técnica largamente utilizada em Deep Learning.
- A ideia central aqui é aproveitar os pesos da rede de um treinamento feito anteriormente para:
 - minimizar a quantidade de dados necessários para uma determinada tarefa
 - melhorar a acurácia da rede
 - reduzir o tempo de treinamento de uma rede. Na maioria dos casos, é mais caro treinar um modelo do zero.

Transfer Learning

- Aviso importante!!
 - Não estamos explorando aqui todos os aspectos desta técnica. Nosso escopo de atuação aqui são os autoencoders.
 - Transfer learning é uma técnica com dezenas de outras aplicações em deep learning. Vocês vão voltar a ouvir falar sobre esta técnica em disciplinas futuras no curso.
 - A demanda por dados é imensa e este é um grande gargalo em muitos projetos de machine learning. Transfer learning é uma técnica que auxilia muito neste processo.

Transfer Learning - Autoencoders

Transfer Learning - Autoencoders

autoencoders mais eficiente

Tornando treinamento dos

Como treinar os autoencoders de forma mais eficiente?

- O treinamento de autoencoders pode ser bastante custoso. Isso acontece principalmente com os Deep Autoencoders, onde o número de camadas pode ser bem grande
- Uma técnica que pode ser utilizada para tornar estes treinamentos mais eficientes é "amarrar" os pesos das camadas de encoder com as camadas do decoder
- Essa técnica pode ser utilizada quando o autoencoder é simétrico.

Como treinar os autoencoders de forma mais eficiente?

- Além de tornar o treinamento do modelo mais eficiente, esta técnica também é capaz de reduzir o número de pesos necessários para representar estas camadas
- Na prática, o que acontece é que estamos "reutilizando" esta camada do encoder no decoder. Em termos de implementação, elas serão a mesma camada.

Como treinar os autoencoders de forma mais eficiente?

 Vamos verificar novamente como isso funciona no exemplo de autoencoder que utilizamos para o dataset MNIST:

encoder para o decoder

Copiando os pesos das camadas de

- Os autoencoders também podem ser utilizados para remoção de ruído em imagens.
- Para isso, é modificada a imagem de entrada da rede durante o processo de treinamento do autoencoder.
- Vamos ver como ficam os dados de entrada do autoencoder:

- A implementação deste tipo de autoencoder é simples. Para isso, utilizamos uma camada adicional na entrada do autoencoder.
- Essa nova camada adicional do autoencoder é responsável por aplicar ruído aos dados de entrada.
- Desta forma, o treinamento do autoencoder fará com que a rede neural aprenda a receber uma imagem com ruído e apresentar na saída uma imagem sem ruído.

 Vamos ver como ficam os dados de entrada do autoencoder:

- Os autoencoders podem ser construídos com diferentes arquiteturas de rede.
- Nós vimos os autoencoders construídos com camadas fully connected
- As imagens pequenas podem funcionar com autoencoders deste tipo. Contudo, para imagens maiores é necessário o uso de outros tipos de arquiteturas.

 Para imagens maiores, a ideia é a mesma das redes fully connected.
 Vocês vão construir a arquitetura da rede de modo que a dimensão das imagens seja reduzida no encoder. No decoder será feito o processo contrário.

 Autoencoders com redes de convolução também são utilizados para segmentação em imagens. Neste casos, a saída do autoencoder é alterada para um mapa onde os pixels de determinado objeto estão marcados.

 Autoencoders também podem ser construídos com redes recorrentes. São redes que têm bastante aplicação em séries temporais e para processamento de texto.

Trabalho - Autoencoders

Trabalho 3

- Exercício do trabalho: Autoencoders

- Tópicos:

- Autoencoders

- **Dataset:** Cifar-10

- **Entrega:** TBD

Resumo da Aula de Hoj

- Autoencoders
- Stacked autoencoders

Dúvidas?

Obrigada!