Modélisation de l'addiction

Gerbaud Florent Troudi Rayane Zouga Jassim

Polyteh Nice

April 26, 2023

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- Cas avec exposition sociale :
- 6 Approches thérapeutiques
- 6 Conclusion

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- Cas avec exposition sociale :
- 5 Approches thérapeutiques
- Conclusion

Introduction

Définition de l'addiction

Sample text

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- 4 Cas avec exposition sociale :
- 5 Approches thérapeutiques
- Conclusion

Le modèle mathématiques

Équation théorique du modèle

C(t) := "Intensité de fringale ou de désir"

S(t) := "Intensité de Self Contrôle"

A(t) := "Passage à l'acte"

V(t) := "Etat addictifs"

E(t) := "Influences extérieurs"

 $\psi(t) :=$ "État psychologique"

Condition initiale

$$E(0) = E_0, \ C(0) = C_0, \ S(0) = S_0$$

Constante théorique du modèle

 S_m :="Self Contrôle max"

k:="coefficient du passage à l'acte"

h:="Compétition entre S et C"

p:="Résilience psychologique"

 α :="Effet d'oublie"

 γ :="Accentuation du Désir dû au passage à l'acte"

b:="Influence de passée à l'acte"

q:="quantité maximum d'ingestion"

•
$$C(t+1) = C(t) - \alpha C(t) + \gamma A(t)$$

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $S(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $S(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$
- $\bullet \ A(t) = A(V) = qV$

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $S(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$
- A(t) = A(V) = qV
- $V = min\{1, max\{\phi(t), 0\}\}$

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $S(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$
- $\bullet \ A(t) = A(V) = qV$
- $V = min\{1, max\{\phi(t), 0\}\}$
- $E(t) = E_0$

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $S(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$
- A(t) = A(V) = qV
- $V = min\{1, max\{\phi(t), 0\}\}$
- $E(t) = E_0$
- $\psi(t) = C(t) S(t) E(t)$

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- Cas avec exposition sociale :
- 5 Approches thérapeutiques
- Conclusion

Les paramètres

Comment évolue le passage à l'acte en fonction de la fringale ?

Figure: Fringale VS passage à l'acte (1)

Figure: Fringale VS passage à l'acte (2)

Comment évolue la vulnérabilité en fonction du self contrôle ?

Figure: Self contrôle VS Vulnérabilité (1)

Figure: Self contrôle VS Vulnérabilité (2)

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- Cas avec exposition sociale :
- 5 Approches thérapeutiques
- Conclusion

Équation avec l'influence sociale

Nouvelles équations

$$(t+1) = S(t) + p.max\{0, S_{max} - S(t)\} - h.C(t) - k.A(t)$$

3
$$A(t) = A(V) = qV + \frac{R(\lambda(t))}{R_m} q(1 - V(t))$$

- **1** $V = max\{1, min\{\phi(t), 0\}\}$
- $E(t+1) = E(t) m_E$
- **1** $\psi(t) = C(t) S(t) E(t)$

Constante

- $\mathbf{0}$ $m_E := "évolution de l'influence sociale"$
- $R_m := "Rencontre maximale"$

Comment évolue le passage à l'acte en fonction de la fringale ?

Figure: Fringale VS vulnérabilité (1)

Figure: Fringale VS vulnérabilité (2)

Comment évolue la vulnérabilité en fonction du self contrôle ?

Figure: Param1

Figure: Évolution avec plus d'addiction au départ

L'influence sociale et les occasions sociales

Figure: Param1

Figure: Évolution avec plus d'addiction au départ

- Introduction
- 2 Modèle mathématique
- 3 Cas sans exposition sociale
- 4 Cas avec exposition sociale :
- 5 Approches thérapeutiques
- 6 Conclusion

Équation avec l'influence sociale de manière périodique

Les équations qui incluent un traitement psychologique

- $C(t+1) = C(t) \alpha C(t) + \gamma A(t)$
- $(t+1) = S(t) + p.max\{0, S_{max} S(t)\} h.C(t) k.A(t)$
- **3** $A(t) = A(V) = qV + \frac{R(\lambda(t))}{R_m} q(1 V(t))$
- **1** $V = max\{1, min\{\phi(t), 0\}\}$
- $E(t+1) = \begin{cases} 1 \text{ si la semaine est multiple de 5} \\ E(t) m_E \text{ sinon} \end{cases}$
- **1** $\psi(t) = C(t) S(t) E(t)$

Constante

- $m_E :=$ "évolution de l'influence sociale"
- $R_m :=$ "Rencontre maximale"

- Introduction
- 2 Modèle mathématique
- Cas sans exposition sociale
- Cas avec exposition sociale :
- 5 Approches thérapeutiques
- 6 Conclusion

Conclusion