Dokumentacja projektu na zaliczenie wykładu

Szymon Kozakiewicz

1 Temat

Porównanie metod filtracji sygnału mowy

2 Cel programu

Program pozwala wygenerować sygnał a następnie porównać jak będzie on filtrowany za pomocą filtru Butterwortha gdy zmienimy typ przepustowości lub rząd.

3 Funkcjonalności programu

- 1. Program pokazuje trzy ramki (rysunek 1)
 - (a) sygnał przed filtracją
 - (b) sygnał po filtracji
 - (c) Reakcja na częstotliwość (pokazuje jakie częstotliwości były odfiltrowane)
- 2. Wykresy można skalować za pomocą kółka myszki
- 3. Wykresy można przesuwać przytrzymując lewy klawisz myszki nad ramką z wykresem i ruszając myszką
- 4. Zmienić rząd filtru (rysunek 5)
- 5. Zmienić typ przepustowości (dolnoprzepustowy, górno przepustowy, środkowozaporowy, środkowoprzepustowy) (rysunek 3)
- 6. Zmienić przedział zaporowy/przepustowy (rysunek 3)
- 7. Ustawić sygnał domyślny (rysunek 4)

Rysunek 2: Dodawanie nowej składowej

Rysunek 3: Okno do zmiany typu przepustowości oraz przedziału

- 8. Stworzyć nowy sygnał (rysunek 4)
- 9. Dodać składową do istniejącego sygnału (rysunek 2)

4 Struktura projektu

Aplikacja została napisana w języku python z wykorzystaniem następujących pakietów:

- 1. PyQt5 do interfejsu graficznego
- 2. pyqtgraph do wizualizacji wykresów
- 3. scipy do wspomagania filtracji sygnału
- 4. numpy do tablic

Projekt składa się z sześciu plików: main.py, templatka.py, new_order.py, addSignalPart.py, capacity_filters.py, filter_type.py. Plik main.py jest tu plikiem głównym.

5 Instrukcja działania

Po dopaleniu programu pokazuje się główne okno aplikacji (rysunek 1). W menu u góry możemy wybrać 'Edycja filtru' lub 'Sygnał'.

Edycja filtru dotyczy edycji filtru sygnału. Możemy więc tam wybrać rząd filtru (rysunek 5) lub typ przepustowości oraz przedział przepustowy (rysunek 3)

Sygnał dotyczy sygnału są tu opcje:

- dodaj składową sygnału Pozwala dodać nową składową do istniejącego sygnału. Manipulować możemy zmiennymi a i f
 ze wzoru $s(t) = asin(2\pi ft)$ (rysunek 4)
- **sygnał domyślny** Po wybraniu tej opcji przetwarzany bedzie sygnał widoczny na rysunku 1
- **nowy sygnał** Po wybraniu tej opcji przetwarzany sygnał zostanie wyzerowany (rysunek 6)

6 Przykład działania

- 1. Odpalamy program i zerujemy sygnał (rysunek 4)
- 2. Otwieramy menu Edycji filtra i klikamy 'przepustowość' (rysunek 9)
- 3. W otwartym oknie (rysunek 3) zaznaczmy że filtr ma byc środkowoprzepustowy z przedziału 500-1200 Hz. Po zatwierdzeniu operacji dolny wykres powinien wyglądać tak jak na rysunku 8
- 4. Otwieramy menu sygnału i klikamy 'dodaj składową sygnału' (rysunek 10)
- 5. W menu widocznym na rysunku 2 jako a wpisujemy 0.5 a jako f 800 (częstotliwość z pasma przepustowego). Powinniśmy zobaczyć wykres widoczny na rysunku 11
- 6. Otwieramy menu sygnału i klikamy 'dodaj składową sygnału' (rysunek 10)
- 7. W menu widocznym na rysunku 2 jako a wpisujemy 0.5 a jako f 100 (częstotliwość z poza pasma przepustowego). Powinniśmy zobaczyć wykres widoczny na rysunku 7

Rysunek 8: Wykres reakcji na częstotliwościowy przy przedziale 500-1200 Hz

