信息与计算科学导论 Number Theory 221502023 沈硕 第四次作业

Problem 38 [Difficulty Estimate=2.4] Prove Proposition 52 without using induction.

Proposition 52: For any distinct odd numbers p, q > 1, suppose f is the permutation on Z_{pq} that maps aq + b to a + bp for every $a \in Z_p, b \in Z_q$. Then, f has the same parity as $\frac{(p-1)(q-1)}{4}$.

Solution: I give up.

Problem 39 [Difficulty Estimate=1.2] Prove Propositions 53 and 54.

Proposition 53: For any positive odd integers n, m and any integers a, b, the Jacobi symbol $(\frac{ab}{n}) = (\frac{a}{n})(\frac{b}{n})$; the Jacobi symbol $(\frac{a}{nm}) = (\frac{a}{n})(\frac{a}{m})$.

Proposition 54: For any positive odd integers n, the Jacobi symbol $(\frac{-1}{n}) = 1$ if $n \equiv 1 \pmod{4}$; $(\frac{-1}{n}) = -1$ if $n \equiv 3 \pmod{4}$; the Jacobi symbol $(\frac{2}{n}) = 1$ if $n \equiv \pm 1 \pmod{8}$; $(\frac{2}{n}) = -1$ if $n \equiv \pm 3 \pmod{8}$.

Solution to Proposition 53:

Denote n as $p_1^{k_1} \cdots p_l^{k_l}$, where $p_1 \cdots p_k$ are all odd primes. $\frac{ab}{n} = (\frac{ab}{p_1})^{k_1} \cdots (\frac{ab}{p_l})^{k_l}$, And as the $(\frac{ab}{p_i})^{k_i}$ can also be a Legender symbol, so it

can be separated as $((\frac{a}{p_i})(\frac{b}{p_i}))^{k_i}$. Apply this to all $i = 1, 2, \dots, l$ can prove the former one.

For the latter one, denote m as $q_1^{i_1} \cdots q_j^{i_j}$, then by the definition of Jacobi symbol we can similarly reach the proposition.

Solution to Proposition 54:

Problem 40 [Difficulty Estimate=1.2] Read another proof of Gauss quadratic reciprocity. For example, you may consider reading the original proof by Gauss, or the famous alternative proof by Einstein.

Solution: I have read it... That sounds very strange and difficult www.

Problem 41 [Difficulty Estimate=1.8] Suppose a is a positive integer but not a perfect square (i.e., not equal to the square of any integer). Prove that there exist infinitely many primes p such that $(\frac{a}{p}) = -1$

Solution: Since a is not a perfect square, a can be denoted by $q^k m$, where k is an odd integer to satisfy a is not a perfect square, and m is a positive integer and coprime to q.

Then
$$(\frac{a}{p}) = (\frac{q}{p})^k (\frac{m}{p}) = (\frac{q}{p})^k \Pi_{i=1}^n (\frac{b_i}{p})^{c_i}$$
, where we let $m = \Pi_{i=1}^n b_i^{c_i}$ and $b_i, i = 1, 2, \dots, n$ are all primes.

Observed that if $(\frac{q}{p}) = -1$ and $(\frac{b_i}{p}) = 1$, $\forall i$, then $(\frac{a}{p}) = -1$ can be satisfied. By quadratic reciprocity, $(\frac{q}{p})(\frac{p}{q})=(-1)^{\frac{(p-1)(q-1)}{4}}$, and if $p\equiv 1\pmod 4$, then this quadratic reciprocity leads to $(\frac{q}{p})(\frac{p}{q})=1$. In this situation, $(\frac{q}{p})$ and $(\frac{p}{q})$ are all 1 or -1. Then it switches to find p to satisfy $(\frac{p}{q}) = -1$. We can arbitrarily choose an x s.t. x is a QNR_q , then choose p s.t. $p \equiv x \pmod{q}$ can make $\left(\frac{p}{q}\right) = -1$.

Then consider $(\frac{b_i}{p})(\frac{p}{b_i}) = (-1)^{\frac{(p-1)(b_i-1)}{4}}$. Since $p \equiv 1 \pmod{4}$, there must be $(\frac{b_i}{p})(\frac{p}{b_i}) = 1$. To make $(\frac{b_i}{p}) = 1$, letting $p \equiv 1 \pmod{b_i}$ can satisfy.

So, summing up all conditions below: $p \equiv 1 \pmod{4}$, $p \equiv x \pmod{q}$,

 $p \equiv 1 \pmod{b_i}$. Denote $b_{n+1} = 4$, $b_{n+2} = q$, $Q = Pi_{i=1}^{n+2}b_i$ Using CRT can get $p = \sum_{i=1}^{n+1} \frac{Q}{b_i} \left[\frac{Q}{b_i}\right]^{-1} + x \frac{Q}{q} \left[\frac{Q}{q}\right]^{-1} + kQ$. And if q or b_i is 2 then delete the correpondent equiv is also well.

 $\sum_{i=1}^{n+1} \frac{Q}{b_i} \left[\frac{Q}{b_i} \right]^{-1} + x \frac{Q}{q} \left[\frac{Q}{q} \right]^{-1}$ is coprime to Q, because for b_i , $\forall j \neq i, \ b_i \mid Q, \ b_i \mid \frac{Q}{b_i} [\frac{Q}{b_i}]^{-1}$, but $b_i \nmid \frac{Q}{b_i} [\frac{Q}{b_i}]^{-1}$. So by Dirichlet Lemma there are infinite p.