Chương 4: Mô hình dữ liệu quan hệ

GV: Nguyễn Hồng Hạnh Email: hanhnh@nuce.edu.vn

Bộ môn Công nghệ Phần mềm Khoa Công nghệ Thông Tin, Đại học Xây dựng

1

Nội dung chương:

1.Khái niệm cơ bản của mô hình quan hệ

- 2.Chuyển lược đồ ER sang mô hình quan hệ
- 3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ

Các bước xây dựng một hệ CSDL

3

Mô hình dữ liệu quan hệ

- Sự ra đời: vào năm 1970 [Codd, 1970]
- Dữ liệu được biểu diễn dưới dạng bảng
- Là mô hình dữ liệu khái niệm phổ biến cho đến tận thời điểm hiện tại
- Dựa trên lý thuyết toán học, đồng thời cũng gần với cấu trúc tệp và cấu trúc dữ liệu nên có hai loại thuật ngữ liên quan:
 - Thuật ngữ toán học: quan hệ, bộ, thuộc tính
 - Thuật ngữ hướng dữ liệu: bảng, bản ghi, trường

4

Ví dụ mô hình dữ liệu quan hệ

MON_HOC						
таМН	tenmon	soHT				
CNTT01	Nhập môn CSDL	4				
CNTT02 Truyền DL và mạng		4				
CNTT03	Phân tích và thiết kế hệ thống	4				
HTTT01	Quản lý dự án	3				

LOP

malop	lop	khoa	GVCN	loptruong
IT4	Tin 4	CNTT	Ng. V. Anh	Trần T. Bình
IT5	Tin 5	CNTT	Lê A. Văn	Ng. Đ. Trung
IT6	Tin 6	CNTT	Ng. T. Thảo	Trần M. Quế
IT7	Tin 7	CNTT	Ng. V. Quý	Ng. T. Phương

SINH VIEN

ma\$V	tenSV	ngaysinh	gt	diachi	malop
SV0011	Trần T. Bình	1/4/1981	0	21 T. Q. B	IT4
SV0025	Ng. Đ. Trung	3/2/1980	1	56 Đ. C. V	IT5
SV0067	Trần M. Quế	26/3/1982	0	45 H. B. T	IT6
SV0034	Ng. T. Phương	29/2/1980	0	86 L. T. N	IT7

5

1. Khái niệm cơ bản của mô hình quan hệ

1.1 Quan hệ

- \circ Các thông tin lưu trữ trong CSDL được tổ chức thành <u>bảng</u> (table) 2 chiều gọi là quan hệ
- o Một quan hệ gồm
 - o Tên
 - Tập hợp các cột
 - o **Tập hợp các dòng (tập thực thể):** Thay đổi theo thời gian

1 dòng là 1 nhân viên

Tên quan hệ là NHANVIEN

1.2 Thuộc tính

a. Khái niệm

là một tính chất riêng biệt của một đối tượng cần được lưu trữ trong CSDL để phục vụ cho việc khai thác dữ liệu về đối tượng

- b. Các đặc trưng của thuộc tính
 - Tên gọi (Name)
 - Kiểu dữ liệu (Data Type)
 - Miền giá trị (Domain)

7

1. Khái niệm cơ bản của mô hình quan hệ

1.2 Thuộc tính (tiếp)

- */ **Tên gọi:** Do người dùng đặt,có tính chất gợi nhớ, không quá dài, đặt theo quy định của HQT CSDL
- Lưu ý: Nếu không cần lưu ý đến ngữ nghĩa thì tên thuộc tính thường được ký hiệu bằng các chữ cái A, B, C, D còn X, Y, Z, W, ... dùng thay cho 1 nhóm thuộc tính.
- */ **Kiểu dữ liệu:** Mỗi thuộc tính khi định nghĩa đều thuộc về một kiểu dữ liêu xác định
 - Kiểu văn bản (text)
 - Kiểu số (number)
 - Kiểu logic (boolean)
 - Kiểu ngày giờ (datetime)

1.2 Thuộc tính

*/ Miền giá trị(Domain):

- ☐ Tập hợp các giá trị mà một thuộc tính A có thể 面hận được gọi là miền giá trị của A.
- \square Ký hiệu: Dom(A), MGT(A). Ví dụ: dom(MãSV) = {char(5)}
- **Miền thuộc tính:** là tập con các giá trị của một kiểu dữ liệu, mà từ đó có thể rút ra các giá trị thực sự xuất hiện trong một thuộc tính của một quan hệ

VD: Thuộc tính:DiemTB - MGT(DiemTB) = float - MTT(DiemTB) = (0..10)

9

1. Khái niệm cơ bản của mô hình quan hệ

1.3 Định nghĩa hình thức

 \circ **Lược đồ quan hệ:** là sự trừu tượng hóa của quan hệ ở mức độ cấu trúc của một bảng hai chiều. Ký hiệu $R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$ là một lược đồ quan hệ

Trong đó:

- A₁, A₂, ..., A_n là các thuộc tính
- Có các miền giá trị D₁, D₂, ..., D_n tương ứng

Bâc của lược đồ quan hệ là số lượng thuộc tính trong lược đồ

- Ví dụ: NHANVIEN(MANV:integer, TENNV:string, HONV:string, NGSINH:date, DCHI:string, GT:string, LUONG:integer, DONVI:integer)
 - o NHANVIEN là một lược đồ bậc 8 mô tả đối tượng nhân viên
 - o MANV là một thuộc tính có miền giá trị là số nguyên
 - o TENNV là một thuộc tính có miền giá trị là chuỗi ký tự

1.3 Định nghĩa hình thức

- Bộ giá trị (Tuple): là các thông tin của một đối tượng thuộc lược đồ quan hệ, còn gọi là mẫu tin (record- bản ghi) hay dòng (row)
- Ví dụ: NHANVIEN(MANV:integer, TENNV:string, HONV:string, NGSINH:date, DCHI:string, GT:string, LUONG:integer, DONVI:integer)
- ∘ Bộ giá trị của quan hệ NHANVIEN:
- t= (1234, "Hoàng", "Nguyễn Văn", 01/06/1993, "Hà Nội", "Nam", 10000000, 34)

11

1. Khái niệm cơ bản của mô hình quan hệ

1.3 Định nghĩa hình thức

- Quan hệ (thể hiện quan hệ instance relation)
 - o Một quan hệ r của lược đồ quan hệ $R(A_1, A_2, ..., A_n)$, ký hiệu r(R), là một tập hợp các bộ giá trị $r=\{t_1, t_2, ..., t_k\}$ tại một thời điểm nhất định
 - $\circ~$ Trong đó mỗi t_i là 1 danh sách <u>có thứ tự</u> của n giá trị $t_i \!=<\! v_1,\, v_2,\, ...,\, v_n\!>$
 - Tại những thời điểm khác nhau thì quan hệ có những thể hiện khác nhau

		TENNV	HONV	NGSINH	DCHI	PHAI	LUONG	PHG	
	$t_{\scriptscriptstyle 1}$	Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5	
	t_2	Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4	
i	t ₃	Nhu \	Le	06/20/1951	291 HVH QPN	Nu	43000	4	
	t_4	Hung \	Nguyen	09/15/1962	null	Nam	38000	5	
		/			1				
		,	V:						

1.4 Khái niệm về khóa

Ðịnh nghĩa

- Gọi K là một tập con khác rỗng các thuộc tính của R
- K là khóa nếu thỏa đồng thời 2 điều kiện:
- \circ $\forall r$, $\forall t1,t2 ∈ r$, t1 ≠ t2 \Rightarrow t1[K] ≠ t2[K]
- ° ∀ K' ⊂ K, K' ≠ K, K' không phải là khóa của R

∘Nhận xét

- Giá trị của khóa dùng để nhận biết một bộ trong quan hệ
- Khóa là một đặc trưng của lược đồ quan hệ, không phụ thuộc vào thể hiện quan hệ
- Khóa được xây dựng dựa vào ý nghĩa của một số thuộc tính trong quan hệ
- Lược đồ quan hệ có thể có nhiều khóa

13

1. Khái niệm cơ bản của mô hình quan hệ

1.4 Khái niệm về khóa

∘Khóa chính

Xét quan hệ

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG, PHG)

- o Có 2 khóa
 - o MANV
 - o HONV, TENNV, NS
- Khi cài đặt quan hệ thành bảng (table)
 - \circ Chọn 1 khóa làm cơ sở để nhận biết các bộ (chọn Khóa có ít thuộc tính hơn)
- Khóa được chọn gọi là khóa chính (PK primary key)
 - o Các thuộc tính khóa chính phải có giá trị khác null
 - o Các thuộc tính khóa chính thường được gạch dưới
 - \circ Thuộc tính có tham gia vào 1 khóa gọi là thuộc tính khóa, ngược lại thuộc tính không khóa.

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG, PHG)

1.4 Khái niệm về khóa

oTham chiếu

- Một bộ trong quan hệ R, tại thuộc tính A nếu nhận một giá trị từ một thuộc tính B của quan hệ S, ta gọi R tham chiếu S
- o Bộ được tham chiếu phải tồn tại trước

			TENP	HG MAPHG				
		S	Nghien (cuu 5				
		3	Dieu ha	nh 4				
			Quan	ly 1				\
								1
	TENNV	HONV	NS	DCHI	GT	LUONG	PHG	.)
	Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5 _	
R	Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4	
	Nhu	Le	06/20/1951	291 HVH QPN	Nu	43000	4	
	Hung	Nguyen	09/15/1962	Ba Ria VT	Nam	38000	5	

15

1. Khái niệm cơ bản của mô hình quan hệ

1.4 Khái niệm về khóa

o Khóa ngoại

- Xét 2 lược đồ R và S
 - o Gọi FK là tập thuộc tính khác rỗng của R
 - o FK là khóa ngoại (Foreign Key) của R khi
 - \circ Các thuộc tính trong FK phải có cùng miền giá trị với các thuộc tính khóa chính của S
 - \circ Giá trị tại FK của một bộ $t_1 \in R$
 - $\circ~$ Hoặc bằng giá trị tại khóa chính của một bộ $t_2 \in S$
 - o Hoặc bằng giá trị rỗng

Ví dụ

Quan hệ tham chiếu

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG, *PHG*)
PHONGBAN(TENPHG, MAPHG)

Khóa ngoại
Cuan hệ bị
tham chiếu

1.5 Các đặc trưng của quan hệ

oThứ tự các bộ trong quan hệ là không quan trọng

HONV	TENNV	NGSINH	DCHI	PHAI	LUONG	PHG
Bui	Hang	07/19/1968	332 NTH Q1	Nu	25000	4
Le	Nhu	06/20/1951	291 HVH QPN	Nu	43000	4

o Thứ tự giữa các giá trị trong một bộ là quan trọng

Bộ <Nguyen, Tung, 12/08/1955, 638 NVC Q5, *Nam, 40000*, 5>

khác

Bộ <Nguyen, Tung, 12/08/1955, 638 NVC Q5, *40000, Nam*, 5>

o Không có bộ nào trùng nhau trong cùng một quan hệ

17

Nội dung chương:

1.Khái niệm cơ bản của mô hình quan hệ

2.Chuyển lược đồ ER sang mô hình quan hệ

3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ

Các quy tắc chuyển đổi

(QT1) Chuyển đối đối với Tập thực thể (trừ thực thể yếu)

- 1 tập thực thể → 1 quan hệ
 - thuộc tính → thuộc tính (trường)
 - 1 thực thể \rightarrow 1 bộ

19

2. Chuyển lược đồ ER sang mô hình quan hệ

Các quy tắc chuyển đổi

(QT1) Chuyển đối đối với Tập thực thể (tiếp)

 Các tập thực thể (trừ tập thực thể yếu) chuyển thành các quan hệ có cùng tên và tập thuộc tính

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG)

Các quy tắc chuyển đổi

(QT2) Chuyển đổi đối với Mối quan hệ (Liên kết)

o (2a) Một-Một

Tạo khóa ngoài: Thêm vào quan hệ này thuộc tính khóa chính của quan hệ kia cùng các thuộc tính của bản thân liên kết (nếu có)

PHONGBAN(MAPHG, TENPHG, MANV, NG_NHANCHUC)

21

2. Chuyển lược đồ ER sang mô hình quan hệ

Các quy tắc chuyển đổi

(QT2) Chuyển đổi đối với Mối quan hệ (Liên kết)

- o (2b) Một-Nhiều
 - o Thêm vào quan-hệ-nhiều thuộc tính khóa của quan-hệ-một

(Lấy khóa chính của quan hệ bên 1 đưa vào làm khóa ngoài của quan hệ bên n)

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG, MAPHG)

Các quy tắc chuyển đổi

(QT2) Chuyển đổi đối với Mối quan hệ (Liên kết)

- o (2c) Nhiều-Nhiều
 - o Tạo một quan hệ mới có
 - o Tên quan hệ thường là tên của mối quan hệ
 - Thuộc tính là những thuộc tính khóa của các tập thực thể liên quan cùng với thuộc tính của bản thân liên kết (nếu có)

PHANCONG(MANV, MADA, THOIGIAN)

23

2. Chuyển lược đồ ER sang mô hình quan hệ

Các quy tắc chuyển đổi

(QT3) Chuyển đổi đối với Thực thể yếu

- Chuyển thành một quan hệ
 - o Có cùng tên với thực thể yếu
 - o Thêm vào thuộc tính khóa của quan hệ liên quan

Các quy tắc chuyển đổi

(QT4) Chuyển đổi đối với Thuộc tính đa trị

- o Chuyển thành một quan hệ
 - o Có cùng tên với thuộc tính đa trị
 - Thuộc tính khóa của quan hệ này được xác định bởi thuộc tính đa trị và khóa của tập thực thể tương ứng.

NHANVIEN(MANV, TENNV, HONV, NS, DCHI, GT, LUONG, DCHI)

25

2. Chuyển lược đồ ER sang mô hình quan hệ

Các quy tắc chuyển đổi

(QT5) Chuyển đổi đối với Liên kết đa ngôi (n>2)

- Chuyển thành một quan hệ
 - o Có cùng tên với tên mối liên kết đa ngôi
 - o Khóa chính là tổ hợp các khóa của tập các thực thể tham gia liên

CUNGCAP(MANCC, MATB, MADA, SOLUONG)

Các quy tắc chuyển đổi

(QT6) Chuyển đổi đối với phân cấp là một (isa)

Một tập thực thể B được xác định thông qua liên kết "là một" với một tập thực thể A sẽ tạo thành một quan hệ mới có tên trùng với tập thực thể B và chứa khóa là khóa của tập thực thể A

SINHVIEN(MASV, HOSV, TENSV, GT, NS, HB, DCHI)

27

Nội dung chương:

- 1.Khái niệm cơ bản của mô hình quan hệ
- 2.Chuyển lược đồ ER sang mô hình quan hệ

3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ

Nội dung

- Các cách tiếp cận đối với thiết kế ngôn ngữ của CSDL quan hệ
 - · Giới thiệu một số ngôn ngữ và phân loại
 - ≽So sánh và đánh giá
- •Một số ngôn ngữ dữ liệu mức cao
 - QBE (<u>**Q**</u>uery <u>**B**</u>y <u>**E**</u>xample)
 - SQL ($\underline{\mathbf{S}}$ tructured $\underline{\mathbf{Q}}$ uery $\underline{\mathbf{L}}$ anguage)
- •Kết luận

29

29

CSDL ví dụ 1

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Takes

SID	SNO
1108	21
1108	23
8507	23
8507	29

Enrol

SID	Course
3936	101
1108	113
8507	101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

Subject

No	Name	Dept
21	Systems	CSCE
23	Database	CSCE
29	VB	CSCE
18	Algebra	Maths

CSDL ví dụ 2

Supplier

SID	SNAME	SIZE	CITY
S1	Dustin	100	London
S2	Rusty	70	Paris
S3	Lubber	120	London
S4	M&M	60	NewYork
S5	MBI	1000	NewOrlean
S6	Panda	150	London

Product

PID	PNAME	COLOR			
P1	Screw	red			
P2	Screw	green			
Р3	Nut	red			
P4	Bolt	blue			
P5	Plier	green			
P6	Scissors	blue			

SupplyProduct

SID	PID	QUANTITY
S1	P1	500
S1	P2	400
S1	P4	100
S2	Р3	250
S2	P4	50
S3	P1	300
S3	P2	350
S3	P6	200
S4	P1	10
S5	P2	200

31

31

Đặt vấn đề: các câu hỏi

- Tìm tên của các sinh viên nào sống ở Bundoora
 - Tìm các bộ của bảng Student có Suburb = Bundoora
 - Đưa ra các giá trị của thuộc tính Name của các bộ này

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Câu hỏi (tiếp)

- Tìm các sinh viên đăng ký khoá học có mã số 113
 - Tìm các giá trị SID trong bảng Enrol có Course tương ứng là 113
 - Đưa các bộ của bảng Student có SID trong các giá trị tìm thấy ở trên

Student

Id	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Enrol

SID	Course
3936	101
1108	113
8507	101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

33

33

Nội dung chương:

- 1.Khái niệm cơ bản của mô hình quan hệ
- 2.Chuyển lược đồ ER sang mô hình quan hệ
- 3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ

- 3.1 Ngôn ngữ Đại số quan hệ
- 3.2 Ngôn ngữ QBE
- 3.3 Ngôn ngữ truy vấn hướng cấu trúc SQL

Ngôn ngữ đại số quan hệ

35

35

Tổng quan

- Gồm các phép toán tương ứng với các thao tác trên các quan hệ
- Mỗi phép toán

ngo

- Đầu vào: một hay nhiều quan hệ
- Đầu ra: một quan hệ
- Biểu thức đại số quan hệ = chuỗi các phép toán
- Kết quả thực hiện một biểu thức đại số là một quan hệ
- Được cài đặt trong phần lớn các hệ CSDL hiện nay

=>Ngôn ngữ đại số quan hệ bao gồm các phép toánn và phép toán tương ứng trên các bảng.

Phân loại các phép toán đại số quan hệ

- Phép toán tập hợp
 - Phép hợp (union)
 - Phép giao (intersection)
 - Phép trừ (difference)
 - Phép tích đề-các (cartesian product)
- Phép toán quan hệ
 - Phép chiếu (projection)
 - Phép chọn (selection)
 - Phép kết nối (join)
 - Phép chia (division)

37

37

Nhóm phép toán tập hợp

•Định nghĩa: Quan hệ khả hợp (là có khả năng kết hợp)

Hai quan hệ r và s được gọi là khả hợp nếu chúng được xác định trên cùng 1 miền giá trị

- r xác định trên D₁x D₂ x...x D_n
- s xác định trên D'₁x D'₂ x...x D'_m
- \rightarrow D_i = D'_i và n=m

Phép hợp (union)

là phép ghép các bản ghi thuộc ít nhất 1 trong 2 bảng đầu vào, và 2 bảng đầu vào phải là 2 quan hệ khả hợp

- Đ/n: gồm các bộ thuộc ít nhất 1 trong 2 quan hệ đầu vào
- 2 quan hệ đầu vào phải là khả hợp
- Cú pháp: $R = R_1 \cup R_2$

39

Phép giao (intersection) điều kiện: phép giao cũng làm việc trên 2 quan hệ khả hợp.

•Đ/n: gồm các bộ thuộc cả hai quan hệ đầu vào

•Cú pháp: $R_1 \cap R_2$

Phép trừ (minus) điều kiện: phép giao cũng làm việc trên 2 quan hệ khả hợp.

- Đ/n: gồm các bộ thuộc quan hệ thứ nhất nhưng không thuộc quan hệ thứ hai
 - 2 quan hệ phải là khả hợp
- Cú pháp: $R_1 \setminus R_2$ hoặc R_1 R_2

41

41

Phép tích Đề-các (Cartesian Product)

Đ/n: là kết nối giữa từng bộ của quan hệ thứ nhất
 với mỗi bộ của quan hệ thứ hai.

•Cú pháp: $R = R_1 \times R_2$

Ví dụ phép tích Đề-các

Balwyn

StudentIdNameSuburb1108RobertKew3936GlenBundoora8507NormanBundoora

Mary

Sport
SportID Sport
05 Swimming
09 Dancing

Student_Sport

ld	Name	Suburb	SportID	Sport
1108	Robert	Kew	05	Swimming
1108	Robert	Kew	09	Dancing
3936	Glen	Bundoora	05	Swimming
3936	Glen	Bundoora	09	Dancing
8507	Norman	Bundoora	05	Swimming
8507	Norman	Bundoora	09	Dancing
8452	Mary	Balwyn	05	Swimming
8452	Mary	Balwyn	09	Dancing

43

8452

Nhóm phép toán quan hệ

Là nhóm các phép toán làm việc trên một hoặc nhiều các quan hệ (bảng)

- Phép chiếu (projection)
- Phép chọn (selection)
- Phép kết nối (join)
- Phép chia (division)

Phép chiếu (projection)

•Đ/n: Lựa chọn một số thuộc tính từ một quan hệ.

❖Ví dụ: đưa ra danh sách tên của tất cả các sinh viên

45

Phép chọn

•Đ/n: Lựa chọn các bộ trong một quan hệ thoả mãn điều kiện cho trước.

• Ví dụ: đưa ra danh sách những sinh viên sống ở Bundoora $\sigma_{\textit{suburb}='\textit{Bundoora'}}(\textit{Student})$

46

Phép chọn - Điều kiện (conditional)

- •Điều kiện chọn còn gọi là biểu thức chọn.
- Biểu thức chọn F:

Là một tổ hợp logic của các toán hạng. Mỗi toán hạng là một phép so sánh đơn giản giữa 2 biến là hai thuộc tính hoặc giữa 1 biến là 1 thuộc tính và 1 giá trị hằng.

- Các phép so sánh trong F: <, =, >, \le , \ge , \ne
- Các phép toán logic trong F: ∧, ∨, ¬

47

47

Ví dụ: kết hợp chọn và chiếu

 Viết biểu thức ĐSQH: Đưa ra tên của các sinh viên sống ở Bundoora

$$\prod_{Name} (\sigma_{suburb='Bundoora'} Student)$$

Student

Id	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Name
Glen
Norman

Phép kết nối (join) 2 quan hệ R và S

- Khái niệm ghép bộ: $u = (a_1,...,a_n); v=(b_1,...,b_m)$ $(u,v) = (a_1,...,a_n,b_1,...,b_m)$
- Phép kết nối 2 quan hệ thực chất là phép ghép các cặp bộ của 2 quan hệ thỏa mãn 1 điều kiện nào đó trên chúng.
- Biểu thức kết nối là phép hội của các toán hạng, mỗi toán hạng là 1 phép so sánh đơn giản giữa 1 thuộc tính của quan hệ r và 1 thuộc tính của quan hệ s.
- Cú pháp: R ⋈_{<<điều kiên>>} S

49

49

Phép kết nối - Ví dụ:

 Đưa ra danh sách các sinh viên và mã khoá học mà sinh viên đó tham gia: Student ⋈_{Id=SID} Enrol

Studer	nt		_	Enrol	
Id	Name	Suburb		SID	Course
1108	Robert	Kew	I-I CID	3936	101
3936	Glen	Bundoora	Id=SID	1108	113
8507	Norman	Bundoora		8507	101
8452	Mary	Balwyn			

SID	Id	Name	Suburb	Course
1108	1108	Robert	Kew	113
3936	3936	Glen	Bundoora	101
8507	8507	Norman	Bundoora	101

Phép kết nối bằng - kết nối tự nhiên

- Định nghĩa: Nếu phép so sánh trong điều kiện kết nối là phép so sánh bằng thì kết nối gọi là kết nối bằng
- •Định nghĩa: Phép kết nối bằng trên các thuộc tính cùng tên của 2 quan hệ và sau khi kết nối 1 thuộc tính trong 1 cặp thuộc tính trùng tên đó sẽ bị loại khỏi quan hệ kết quả thì phép kết nối gọi là kết nối tự nhiên
- •Cú pháp phép kết nối tự nhiên: $R_1 * R_2$

51

51

Phép kết nối tự nhiên - Ví dụ:

Takes Enrol SID SNO Course SID SNO SID Course 1108 21 113 1108 21 3936 101 * 1108 23 113 23 1108 113 1108 8507 23 101 8507 23 8507 101 8507 29 101 8507 29

52

Ví dụ: kết hợp chọn, chiếu, kết nối

 Viết BT ĐSQH đưa ra tên của các sinh viên sống ở Bundoora và mã khoá học mà sinh viên đó đăng ký:

53

Phép kết nối ngoài

Phép kết nối ngoài trái

Phép kết nối ngoài phải

54

Phép kết nối ngoài - Ví dụ:

 Đưa ra danh sách các sinh viên và mã khoá học mà sinh viên đó đăng ký nếu có

Enrol				
Course				
101				
113				
101				

ID	Name	Suburb	Course
1108	Robert	Kew	113
3936	Glen	Bundoora	101
8507	Norman	Bundoora	101
8452	Mary	Balwyn	null

55

Phép chia (division)

- Định nghĩa: Phép chia giữa 1 quan hệ r bậc n và quan hệ s bậc m (m<n) với sơ đồ quan hệ của s là tập con của sơ đồ quan hệ của r là một tập các (n-m)-bộ sao cho khi ghép mọi bộ thuộc s với t thì ta đều có một bộ thuộc r
- Cú pháp: $R = R_1 : R_2$

$$\mathbf{r} \; \div s \equiv \{\; t \; \mid \; \forall \; \; v \; \in \; s \; \Longrightarrow \; (t,v) \in \; \mathbf{r} \}$$

Phép chia (tiếp)

 Ví dụ: Đưa ra môn học được dạy ở tất cả các khoá học

57

57

Luyện tập

• Phép hợp (Union)

$$r \mathrel{\cup} s \mathrel{=} \{\; t \: | \: t \mathrel{\in} r \mathrel{\vee} t \mathrel{\in} s \}$$

Ví dụ:

(A В C) b_1 C_1 b_1 b_2 a_1 b_2 C_2 b_2 В C) (A b_1 a_1 C_1 a_1 b_2 c_1

58

•Phép giao (intersection)

$$r\,\cap\,s\,{\equiv}\,\{\,\,t\,|\,t\in r\,\wedge\,t\in\!s\}$$

Ví dụ:

$$r \cap s = g$$
 (A B C)
 $a_1 b_1 c_1$
 $a_1 b_2 c_2$

5

59

Luyện tập

• Phép trừ (minus)

$$r \text{-} s = \{\ t \mid t \in r \ \land \ t \not\in s\}$$

60

• Phép tích Đề - Các (Cartesian Product)

$$r \times s = \{t \mid t = (a_1, a_2, ..., a_n, b_1, b_2, ..., b_m) \land (a_1, a_2, ..., a_n) \in r \land (b_1, b_2, ..., b_m) \in s\}$$

61

Luyện tập

Phép chiếu (Projection)

$$\prod_{X} (r) = \{ t[X] \mid t \in r \}$$

$$V_{idu}$$
: $X = \{ A, B \} ; Y = \{ C \}$

Phép chọn (Selection)

63

Luyện tập

Phép kết nối (join)

•Kết nối tự nhiên (natural join)

$$r(U) \, * \, s(V) = \{ \, t[U \cup V] \mid t[U] \, \in \, r \, \, \land \, \, t[V] \in \, s \, \}$$

65

65

Luyện tập

•Phép chia (Division)

$$\mathbf{r} \div \mathbf{s} \equiv \{ \mathbf{t} \mid \forall \mathbf{v} \in \mathbf{s} \Rightarrow (\mathbf{t}, \mathbf{v}) \in \mathbf{r} \}$$

Ví dụ: (D E) В E) (A 1 b_1 1 e_1 a_1 e_1 1 2 1 3 b_1 e_2 2 e_2 a_1 b_1 Θз е3 2 1 2 2 b_2 e_1 a_2 b_2 e_2 p+s=q (A B C) 3 2 ез b_2 a_2 3 1 a₁ b₁ 1 аз bз e_1 3 2 b_2 2 bз a_3 e_2 3 bз bз 3 аз Θз a_3

Bài tập

• Cho CSDL gồm 3 quan hệ sau: S(Các hãng cung ứng), P (các mặt hàng), SP(các sự cung ứng).

S (S# S1 S2 S3	SNAME Smith Jones Black	STATUS 20 10 30	CITY) London Paris Paris		S1 S1 S1 S2 S2	P# P1 P2 P3 P1 P2 P2	QTY) 300 200 400 300 400 200
P (P# P1 P2 P3 P4	PNAME Nut Bolt Screw Screw	COLOR red green blue red	WEIGHT 12 17 17 14	CITY) London Paris Rom London			67

67

Yêu cầu của bài tập

- Biểu diễn các truy vấn sau bằng đại số quan hệ:
 - Đưa ra danh sách các mặt hàng màu đỏ
 - Cho biết S# của các hãng cung ứng mặt hàng 'P1' hoặc 'P2'
 - Liệt kê S# của các hãng cung ứng cả hai mặt hàng 'P1'
 và 'P2'
 - Đưa ra S# của các hãng cung ứng ít nhất một mặt hàng màu đỏ
 - Đưa ra S# của các hãng cung ứng tất cả các mặt hàng.

Lời giải của bài tập

Đưa ra danh sách các mặt hàng màu đỏ:

$$\sigma_{COLOR = 'red'}(P)$$

Cho biết S# của các hãng cung ứng mặt hàng 'P1' hoặc 'P2':

$$\prod_{S\#} (\sigma_{P\# = 'P1'} \vee_{P\# = 'P2'}(SP))$$

Liệt kê S# của các hãng cung ứng cả hai mặt hàng 'P1' và 'P2':

$$\prod_{S\#} (\sigma_{P\# = P1'}(SP)) \cap \prod_{S\#} (\sigma_{P\# = P2'}(SP))$$

Đưa ra S# của các hãng cung ứng ít nhất một mặt hàng màu đỏ:

$$\prod_{S\#}(SP * \sigma_{COLOR = 'red'}(P))$$

Đưa ra S# của các hãng cung ứng tất cả các mặt hàng:

$$\prod_{S\#,P\#}(SP) \div \prod_{P\#}(P)$$

69

69

Bài tập về nhà

•Cho các quan hệ sau:

Supplier

sid	sname	size	city
S 1	Dustin	100	London
S2	Rusty	70	Paris
S3	Lubber	120	London

Product

pid	pname	colour		
Р1	Screw	red		
P2	Screw	green		
Р3	Nut	red		
P4	Bolt	blue		

SupplyProduct

sid	pid	quantity
S 1	P1	500
S 1	P2	400
S 1	P3	100
S2	P2	200
S3	P4	100
S2	P3	155

Bài tập về nhà

- Biểu diễn các truy vấn sau bằng biểu thức đại số quan hệ:
 - Đưa ra {sid,sname,size,city} của các Supplier có trụ sở tại London
 - 2) Đưa ra (pname) của tất cả các mặt hàng
 - Đưa ra {sid} của các Supplier cung cấp mặt hàng P1 hoặc P2
 - 4) Đưa ra {sname} của các Supplier cung cấp mặt hàng P3
 - 5) Đưa ra {sname} của các hãng cung ứng ít nhất một mặt hàng màu đỏ

71

71

Bài tập về nhà

- 6) Đưa ra {sid} của các hãng cung ứng tất cả các mặt hàng màu đỏ
- 7) Đưa ra {sname} của các hãng có cung ứng mặt hàng màu đỏ hoặc màu xanh
- 8) Đưa ra {sname} của các hãng cung ứng ít nhất một mặt hàng màu đỏ và ít nhất một mặt hàng màu xanh
- 9) Đưa ra {sid} của các hãng không cung ứng mặt hàng nào

73

73

Nội dung chương:

- 1.Khái niệm cơ bản của mô hình quan hệ
- 2.Chuyển lược đồ ER sang mô hình quan hệ
- 3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ
 - 3.1 Ngôn ngữ Đại số quan hệ

- 3.2 Ngôn ngữ QBE
- 3.3 Ngôn ngữ truy vấn hướng cấu trúc SQL

Ngôn ngữ QBE

75

75

QBE (Query-By-Example)

- ·Là một ngôn ngữ truy vấn dữ liệu
- Các cậu truy vấn được thiết lập bởi một giao diện đồ hoạ
- Phù hợp với các câu truy vấn đơn giản, tham chiếu đến ít bảng
- Một số sản phẩm: IBM™ (IBM Query Management Facility), Paradox, MS. Access, ...

Truy vấn trên một quan hệ

•P.~ Print

Student	ID	Name	Suburb
		Px	Bundoora

• Biểu thức đại số quan hệ tương đương

$$\sigma_{suburb='Bundoora'}(Student)$$

77

Truy vấn trên một quan hệ (tiếp)

•Lựa chọn tất cả các cột

Student	ID	Name	Suburb
P.			Bundoora

Sắp xếp

Student	ID	Name	Suburb
		P.AO(1)	P.AO(2)

AO: sắp xếp tăng dầnDO: sắp xếp giảm dần

Truy vấn trên nhiều quan hệ

 Đưa ra tên của các sinh viên có đăng ký ít nhất một khoá học

Student	ID	Name	Suburb
	id	P. name	

Enrol	SID	Course
	_id	

 Đưa ra tên các sinh viên không đăng ký một khoá học nào

Student	ID	Name	Suburb
	_id	Pname	

Enrol	SID	Course
\neg	_id	

79

79

Các tính toán tập hợp

- ·Các phép toán: AVG, COUNT, MAX, MIN, SUM
- Ví dụ: đưa ra tên các thành phố và số lượng sinh viên đến từ thành phố đó

Student	ID	Name	Suburb	
	_id		G.P.	P.COUNTid

•G. ~ Grouping

Hộp điều kiện

- •Được sử dụng để biểu diễn
 - Điều kiện trên nhiều hơn 1 thuộc tính
 - Điều kiện trên các trường tính toán tập hợp
- Ví dụ: đưa ra danh sách các thành phố có nhiều hơn 5 sinh viên

Student	ID .	Name	Suburb	Condition
	_id		G.P.	COUNTid > 5

81

81

Các thao tác thay đổi dữ liệu

Xóa

Student	ID	Name	Suburb
D.	1108		

• Thêm

Student	ID	Name	Suburb
I.	1179	David	Evry

• Sửa

Student	ID	Name	Suburb
	1179		U.Paris

Tính đầy đủ của QBE

•Có thể biểu diễn cả 5 phép toán đại số cơ sở $(\sigma,\Pi,\cup,\setminus,x)$

83

83

Định nghĩa dữ liệu trong QBE

 Sử dụng cùng qui cách và giao diện đồ họa như đối với truy vấn.

I.Student	I.	ID	Name	Suburb
KEY	I.	Y	N	N
TYPE	I.	CHAR(5)	CHAR(30)	CHAR(30)
DOMAIN	Ī.	Sid	SName	Surb
INVERSION	I.	Y	N	N

Nội dung chương:

- 1.Khái niệm cơ bản của mô hình quan hệ
- 2.Chuyển lược đồ ER sang mô hình quan hệ
- 3.Ngôn ngữ định nghĩa và thao tác dữ liệu đối với mô hình quan hệ
 - 3.1 Ngôn ngữ Đại số quan hệ
 - 3.2 Ngôn ngữ QBE
- \Box
- 3.3 Ngôn ngữ truy vấn hướng cấu trúc SQL

85

Ngôn ngữ SQL

SQL (Structured Query Language)

•1975: SEQUEL

System-R

•1976: SEQUEL2

•1978/79: SQL •System-R

•1986: chuẩn SQL-86

• 1989: chuẩn SQL-89

•1992: chuẩn <u>SQL-92</u>

• 1996: chuẩn SQL-96

87

87

Các thành phần của SQL

- Ngôn ngữ định nghĩa dữ liệu (<u>D</u>ata <u>D</u>efinition <u>L</u>anguage)
 - Cấu trúc các bảng CSDL
 - Các mối liên hệ của dữ liệu
 - Quy tắc, ràng buộc áp đặt lên dữ liệu
- Ngôn ngữ thao tác dữ liệu (<u>D</u>ata <u>M</u>anipulation <u>L</u>anguage)
 - Thêm, xoá, sửa dữ liệu trong CSDL
 - Truy vấn dữ liệu
- Ngôn ngữ điều khiển dữ liệu (<u>p</u>ata <u>c</u>ontrol <u>L</u>anguage)
 - Khai báo bảo mật thông tin
 - Quyền hạn của người dùng trong khai thác CSDL

Ngôn ngữ định nghĩa dữ liệu

- Các thông tin được định nghĩa bao gồm
 - Sơ đồ quan hệ
 - Kiểu dữ liệu hay miền giá trị của mỗi thuộc tính
 - Các ràng buộc toàn vẹn
 - · Các chỉ số đối với mỗi bảng
 - Thông tin an toàn và ủy quyền đối với mỗi bảng
 - Cấu trúc lưu trữ vật lý của mỗi bảng trên đĩa
- →Được biểu diễn bởi các lệnh định nghĩa dữ liệu

89

89

Quy ước đặt tên và kiểu dữ liệu

- Quy ước đặt tên
 - 32 ký tự: chữ cái, số, dấu
- Kiểu dữ liệu (SQL-92)
 - char(n)
 - varchar(n)
 - int
 - smallint
 - numeric(p,d)
 - real, double
 - float(n)
 - date
 - time

Microsoft Access Data Types

Data type	Description	Storage
Text	Use for text or combinations of text and numbers. 255 characters maximum	
Memo	Memo is used for larger amounts of text. Stores up to 65,536 characters. Note: You cannot sort a memo field. However, they are searchable	
Byte	Allows whole numbers from 0 to 255	1 byte
Integer	Allows whole numbers between -32,768 and 32,767	2 bytes
Long	Allows whole numbers between -2,147,483,648 and 2,147,483,647	4 bytes
Single	Single precision floating-point. Will handle most decimals	4 bytes
Double	Double precision floating-point. Will handle most decimals	8 bytes
Currency	Use for currency. Holds up to 15 digits of whole dollars, plus 4 decimal places. Tip: You can choose which country's currency to use	8 bytes
AutoNumber	AutoNumber fields automatically give each record its own number, usually starting at 1	4 bytes
Date/Time	Use for dates and times	8 bytes
Yes/No	A logical field can be displayed as Yes/No, True/False, or On/Off. In code, use the constants True and False (equivalent to -1 and 0). Note: Null values are not allowed in Yes/No fields	1 bit
Ole Object	Can store pictures, audio, video, or other BLOBs (Binary Large OBjects)	up to 1GB
Hyperlink	Contain links to other files, including web pages	
Lookup Wizard	Let you type a list of options, which can then be chosen from a drop-down list	4 bytes

91

Quy ước đặt tên và kiểu dữ liệu

MySQL Data Types

Text types:

Data type	Description
CHAR(size)	Holds a fixed length string (can contain letters, numbers, and special characters). The fixed size is specified in parenthesis. Can store up to 255 characters
VARCHAR(size)	Holds a variable length string (can contain letters, numbers, and special characters). The maximum size is specified in parenthesis. Can store up to 255 characters. Note: If you put a greater value than 255 it will be converted to a TEXT type
TINYTEXT	Holds a string with a maximum length of 255 characters
TEXT	Holds a string with a maximum length of 65,535 characters
BLOB	For BLOBs (Binary Large OBjects). Holds up to 65,535 bytes of data
MEDIUMTEXT	Holds a string with a maximum length of 16,777,215 characters
MEDIUMBLOB	For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of data
LONGTEXT	Holds a string with a maximum length of 4,294,967,295 characters
LONGBLOB	For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of data
ENUM(x,y,z,etc.)	Let you enter a list of possible values. You can list up to 65535 values in an ENUM list. If a value is inserted that is not in the list, a blank value will be inserted.
	Note: The values are sorted in the order you enter them.
	You enter the possible values in this format: ENUM('X','Y','Z')
SET	Similar to ENUM except that SET may contain up to 64 list items and can store more than one choice $$

MySQL Data Types

Number types:

Data type	Description
TINYINT(size)	-128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of digits may be specified in parenthesis
SMALLINT(size)	-32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum number of digits may be specified in parenthesis
MEDIUMINT(size)	-8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The maximum number of digits may be specified in parenthesis
INT(size)	-2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*. The maximum number of digits may be specified in parenthesis
BIGINT(size)	-9223372036854775808 to 9223372036854775807 normal. 0 to 18446744073709551615 UNSIGNED*. The maximum number of digits may be specified in parenthesis
FLOAT(size,d)	A small number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
DOUBLE(size,d)	A large number with a floating decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d parameter
DECIMAL(size,d)	A DOUBLE stored as a string , allowing for a fixed decimal point. The maximum number of digits may be specified in the size parameter. The maximum number of digits to the right of the decimal point is specified in the d

93

Quy ước đặt tên và kiểu dữ liệu

MySQL Data Types

Date types:

Data type	Description
DATE()	A date. Format: YYYY-MM-DD
	Note: The supported range is from '1000-01-01' to '9999-12-31'
DATETIME()	*A date and time combination. Format: YYYY-MM-DD HH:MM:SS
	Note: The supported range is from '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
TIMESTAMP()	*A timestamp. TIMESTAMP values are stored as the number of seconds since the Unix epoch ('1970-01-01 00:00:00' UTC). Format: YYYY-MM-DD HH:MM:SS
	Note: The supported range is from '1970-01-01 00:00:01' UTC to '2038-01-09 03:14:07' UTC
TIME()	A time. Format: HH:MM:SS
	Note: The supported range is from '-838:59:59' to '838:59:59'
YEAR()	A year in two-digit or four-digit format.
	Note: Values allowed in four-digit format: 1901 to 2155. Values allowed in two-digit format: 70 to 69, representing years from 1970 to 2069

SQL Server Data Types

Character strings:

Data type	Description	Storage
char(n)	Fixed-length character string. Maximum 8,000 characters	n
varchar(n)	Variable-length character string. Maximum 8,000 characters	
varchar(max)	Variable-length character string. Maximum 1,073,741,824 characters	
text	Variable-length character string. Maximum 2GB of text data	

Unicode strings:

Data type	Description	Storage
nchar(n)	Fixed-length Unicode data. Maximum 4,000 characters	
nvarchar(n)	Variable-length Unicode data. Maximum 4,000 characters	
nvarchar(max)	Variable-length Unicode data. Maximum 536,870,912 characters	
ntext	Variable-length Unicode data. Maximum 2GB of text data	

Binary types:

Data type	Description	Storage
bit	Allows 0, 1, or NULL	
binary(n)	Fixed-length binary data. Maximum 8,000 bytes	
varbinary(n)	Variable-length binary data. Maximum 8,000 bytes	
varbinary(max)	Variable-length binary data. Maximum 2GB	
image	Variable-length binary data. Maximum 2GB	

95

Quy ước đặt tên và kiểu dữ liệu

Number types: Data type Storage Allows whole numbers from 0 to 255 tinyint smallint Allows whole numbers between -32,768 and 32,767 Allows whole numbers between -2,147,483,648 and 2,147,483,647 Allows whole numbers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 bigint decimal(p,s) Fixed precision and scale numbers. Allows numbers from -10^38 +1 to 10^38 -1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point), p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 numeric(p,s) Fixed precision and scale numbers. Allows numbers from -10^38 +1 to 10^38 -1. The p parameter indicates the maximum total number of digits that can be stored (both to the left and to the right of the decimal point), p must be a value from 1 to 38. Default is 18. The s parameter indicates the maximum number of digits stored to the right of the decimal point. s must be a value from 0 to p. Default value is 0 $\,$ smallmoney Monetary data from -214,748.3648 to 214,748.3647 4 bytes Monetary data from -922,337,203,685,477.5808 to 922,337,203,685,477.5807 money float(n) Floating precision number data from -1.79E + 308 to 1.79E + 308. The n parameter indicates whether the field should hold 4 or 8 bytes. float(24) holds a 4-byte field and float(53) holds an 8-byte field. Default value of n is 53. real Floating precision number data from -3.40E + 38 to 3.40E + 38 4 bytes

Date types:

Data type	Description	Storage
datetime	From January 1, 1753 to December 31, 9999 with an accuracy of 3.33 milliseconds	8 bytes
datetime2	From January 1, 0001 to December 31, 9999 with an accuracy of 100 nanoseconds	6-8 bytes
smalldatetime	From January 1, 1900 to June 6, 2079 with an accuracy of 1 minute	4 bytes
date	Store a date only. From January 1, 0001 to December 31, 9999	3 bytes
time	Store a time only to an accuracy of 100 nanoseconds	3-5 bytes
datetimeoffset	The same as datetime2 with the addition of a time zone offset	8-10 bytes
timestamp	Stores a unique number that gets updated every time a row gets created or modified. The timestamp value is based upon an internal clock and does not correspond to real time. Each table may have only one timestamp variable	

Other data types:

Data type	Description
sql_variant	Stores up to 8,000 bytes of data of various data types, except text, ntext, and timestamp $$
uniqueidentifier	Stores a globally unique identifier (GUID)
xml	Stores XML formatted data. Maximum 2GB
cursor	Stores a reference to a cursor used for database operations
table	Stores a result-set for later processing

97

Cú pháp

•Tạo bảng

```
CREATE TABLE tên-bảng (

cột-1 kiểu-dữ-liệu-1 [NOT NULL], ...,

cột-2 kiểu-dữ-liệu-2 [NOT NULL], ...,

.....
[CONSTRAINT tên-ràng-buộc kiểu-ràng-buộc]
....
);

*Xoá bảng

DROP TABLE tên-bảng
```

Tạo bảng - Ví dụ:

```
CREATE TABLE Supplier(
    sid char(4) NOT NULL,
    sname varchar(30) NOT NULL,
    size smallint,
    city varchar(20),

CONSTRAINT KhoachinhS primary key(sid)
);
```

99

99

Tạo bảng - Ví dụ (tiếp)

```
CREATE TABLE Product(
   pid char(4) NOT NULL,
   pname varchar(30) NOT NULL,
   colour char(8),
   weight int,
   city varchar(20),

CONSTRAINT KhoachinhP primary key(pid)
);
```

100

Tạo bảng - Ví dụ (tiếp)

```
CREATE TABLE SupplyProduct(
    sid char(4) NOT NULL,
    pid char(4) NOT NULL,
    quantity smallint,
    primary key(sid,pid),
    foreign key(sid) references Supplier(sid),
    foreign key(pid) references Product(pid),
    check(quantity >0)
    );
```

101

101

Kiểu ràng buộc

- Ràng buộc toàn vẹn (RBTV) về giá trị miền
 CONSTRAINT <tên ràng buộc>
 CHECK <điều kiện>
- •RBTV về khoá ngoại hay phụ thuộc tồn tại CONSTRAINT <tên ràng buộc> FOREIGN KEY (fk;) REFERENCES tên-bảng(k;);

Thêm/xoá/sửa cột của các bảng

•Thêm

ALTER TABLE <tên bảng>
ADD COLUMN <tên cột> <kiểu dữ liệu> [NOT NULL];

Xoá

ALTER TABLE <tên bảng>
DROP COLUMN <tên cột>;

•Sửa

ALTER TABLE <tên bảng>
CHANGE COLUMN <tên cột> TO <kiểu dữ liệu mới>;

103

103

Ví dụ:

- ALTER TABLE SupplyProduct ADD COLUMN price real NOT NULL;
- ALTER TABLE SupplyProduct DROP COLUMN price;
- ALTER TABLE Supplier CHANGE COLUMN sname
 TO varchar(20);

Thêm/xóa các ràng buộc

•Thêm

ALTER TABLE < tên bảng>
ADD CONSTRAINT < tên ràng buộc> < kiểu ràng buộc>

Xóa

ALTER TABLE < tên bảng>
DROP CONSTRAINT < tên ràng buộc>

105

105

Ngôn ngữ truy vấn dữ liệu

• Cú pháp câu lệnh SQL:

Truy vấn không điều kiện trên một bảng

Tìm thông tin từ các cột của bảng

Ví du

SELECT Name **FROM** Student;

Student

Id	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Robert	Bundoora
8452	Mary	Balwyn

107

107

Truy vấn không điều kiện trên một bảng

Một số ví dụ khác:

- Đưa ra tên của các mặt hàng SELECT pname FROM Product;
- Đưa ra tên khác nhau của các mặt hàng SELECT DISTINCT pname FROM Product;
- Đưa ra toàn bộ thông tin về các hãng cung ứng SELECT * FROM Supplier;
- Đưa ra mã số hãng cung ứng, mã mặt hàng được cung ứng và 10 lần số lượng mặt hàng đã được cung ứng SELECT sid, pid, quantity*10
 FROM SupplyProduct;

Truy vấn có điều kiện trên 1 bảng

Chọn các bản ghi (dòng)

SELECT <DS cột>
FROM <Tên bảng>
WHERE <Điều kiện tìm kiếm>

Ví dụ

SELECT *
FROM Student

WHERE Suburb='Bundoora';

Student

Id	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Robert	Bundoora
8452	Mary	Balwyn

109

109

Truy vấn có điều kiện trên 1 bảng

Một số ví dụ khác:

 Đưa ra tên của các hãng cung ứng có trụ sở tại London

SELECT sname FROM Supplier WHERE city = 'London';

 Đưa ra mã số và tên của các hãng cung ứng nằm ở London và có số nhân viên lớn hơn 75

SELECT sid, sname FROM Supplier WHERE city = 'London' AND size > 75;

Biểu diễn điều kiện lựa chọn

- Các phép toán quan hệ: =, !=, <, >, <=, >=
- ·Các phép toán logic: NOT, AND, OR
- Phép toán phạm vi: BETWEEN, IN, LIKE
 - Kiểu dữ liêu số
 - attr **BETWEEN** val1 **AND** val2 (\Leftrightarrow (attr>=val1) and (attr<=val2))
 - attr IN (val1, val2, ...) (\Leftrightarrow (attr=val1) or (attr=val2) or ...)
 - Kiểu dữ liêu xâu
 - LIKE: sử dụng đối sánh mẫu xâu với các ký tự thay thế cho 1 ký tự bất kỳ (_, ?), thay thế cho 1 xâu ký tự bất kỳ (*, %)

(PostGreSQL sử dụng dấu % và dấu _)

111

111

Biểu diễn điều kiện lựa chọn - Ví dụ:

 Đưa ra thông tin của các hãng cung ứng có số nhân viên trong khoảng từ 100 đến 150

```
SELECT * FROM Supplier WHERE size BETWEEN 100 AND 150;
```

- Đưa ra mã số của hãng cung ứng mặt hàng P1 hoặc
 P2
 - Cách 1:

SELECT sid FROM SupplyProduct WHERE pid = 'P1' OR pid = 'P2';

Cách 2:

SELECT sid FROM SupplyProduct WHERE pid IN ('P1', 'P2');

Biểu diễn điều kiện lựa chọn - Ví dụ (tiếp)

 Đưa ra thông tin của hãng sản xuất có trụ sở đặt tại thành phố bắt đầu bằng chữ New SELECT * FROM SUPPLIER WHERE city LIKE 'New%';

New York, New Jersey, New Mexico, New Hampshire

113

113

Loại trừ các bản ghi trùng nhau

• Từ khoá DISTINCT

```
SELECT DISTINCT <DS côt> FROM <DS bảng>
```

 Ví dụ: đưa ra danh sách tên các khoa (Dept) tương ứng với các khoá học (Course). Mỗi giá trị chỉ hiện thị một lần

SELECT DISTINCT Dept **FROM** Course

Truy vấn có sử dụng phép toán đổi tên

 SQL cho phép đối tên các bảng và các cột trong một câu truy vấn (sau mệnh đề SELECT và FROM) sử dụng cấu trúc:

```
<tên cũ> AS <tên mới>
```

 Đưa ra tên và số nhân viên của các hãng cung ứng ở Paris

```
SELECT sname AS HangOParis, size AS SoNhanVien
FROM Supplier
WHERE city = 'Paris';
SELECT SID, Stud.Name as SName,
Sub.Name as Subject
FROM Student as Stud,Takes,
Subject as Sub
WHERE (Id=SID) and (SNO = No)
```

115

Truy vấn phức tạp trên nhiều bảng

•Điều kiện kết nối

SELECT <DS cột> FROM <DS bảng>

WHERE <Điều kiện tìm kiếm>

 Ví dụ: đưa ra danh sách mã sinh viên (ld), tên sinh viên (Name), thành phố (Suburb), mã khoá học (Course) mà các sinh viên đã đăng ký

SELECT Id, Name, Suburb, Course

FROM Student, Enrol

WHERE Id=SID;

Kết nối tự nhiên

SELECT <DS cột> FROM A, B, C WHERE A.CộtX = B.CộtX AND B.CộtY = C.CộtY

SELECT <DS cột>
FROM A NATURAL JOIN B NATURAL JOIN C

117

117

Kết nối hai bảng

Kết nối trong

SELECT <DS cột> FROM A INNER JOIN B ON A.Key = B.Key

Kết nối OUTER JOIN

SELECT <DS cột> FROM A FULL OUTER JOIN B ON A.Key = B.Key

Kết nối OUTER JOIN

SELECT <DS cột>
FROM A FULL OUTER JOIN B
ON A.Key = B.Key
WHERE A.Key IS NULL OR
B.Key IS NULL

118

Kết nối hai bảng

Kết nối ngoài trái

SELECT <DS cột> FROM A LEFT JOIN B ON A.Key = B.Key

Kết nối ngoài trái

SELECT <DS cột> FROM A LEFT JOIN B ON A.Key = B.Key WHERE B.Key IS NULL

119

119

Kết nối hai bảng

Kết nối ngoài phải

SELECT <DS cột> FROM A RIGHT JOIN B ON A.Key = B.Key

Kết nối ngoài phải

SELECT <DS cột> FROM A RIGHT JOIN B ON A.Key = B.Key WHERE A.Key IS NULL

120

Truy vấn phức tạp trên nhiều bảng

Đưa ra tên của hãng có cung ứng mặt hàng P1

```
SELECT sname
FROM Supplier S, SupplyProduct SP
WHERE S.sid = SP.sid AND SP.pid = 'P1';
```

 Đưa ra tên và mã số của hãng cung ứng ít nhất một mặt hàng màu đỏ

```
SELECT sname, S.sid
FROM Supplier S, SupplyProduct SP, Product P
WHERE S.sid = SP.sid AND P.pid = SP.pid AND
P.colour = 'red';
```

121

121

Tìm kiếm có sắp xếp

 Sắp xếp các bản ghi kết quả theo một thứ tự cho trước

```
SELECT <DS cột>
FROM <DS bảng>
[WHERE <Điều kiện tìm kiếm>]
ORDER BY <DS cột> [ASC | DESC]
```

 Ví dụ: đưa ra danh sách tên các sinh viên theo thứ tự tăng dần

```
FROM Student
ORDER BY Name ASC
```

Phân nhóm các bản ghi kết quả

 Phân nhóm các bản ghi kết quả theo giá trị của 1 hoặc nhitroều thuộc tính

> SELECT <DS cột> FROM <DS bảng>

[WHERE <Điều kiện tìm kiếm>]

[GROUP BY <DS côt>]

- Cột được chỉ ra ng mệnh đề GroupBy được sử dụng làm cơ sở để chia nhóm. Cột này cũng bắt buộc phải được chỉ ra trong mệnh đề Select
- Ví dụ đưa ra tên các sinh viên nhóm theo thành phố của sinh viên đó

SELECT Suburb, Name **FROM** Student **GROUP BY** Suburb

SELECT Suburb, Count(Id)
FROM Student
GROUP BY Suburb

123

123

Phân nhóm các bản ghi kết quả

Orders

O_Id	OrderDate	OrderPrice	Customer
1	2008/11/12	1000	Hansen
2	2008/10/23	1600	Nilsen
3	2008/09/02	700	Hansen
4	2008/09/03	300	Hansen
5	2008/08/30	2000	Jensen
6	2008/10/04	100	Nilsen

SELECT Customer, SUM(OrderPrice) FROM Orders

The result-set will look like this:

 Customer
 SUM(OrderPrice)

 Hansen
 5700

 Nilsen
 5700

 Hansen
 5700

 Hansen
 5700

 Jensen
 5700

 Nilsen
 5700

SELECT Customer, SUM(OrderPrice) FROM Orders GROUP BY Customer

The result-set will look like this:

Customer	SUM(OrderPrice)
Hansen	2000
Nilsen	1700
Jensen	2000

Điều kiện hiển thị các bản ghi kết quả

· Lựa chọn các bản ghi kết quả để hiển thị

SELECT <DS cột>
FROM <DS bảng>

[WHERE <Điều kiện tìm kiếm>]
GROUP BY <Ds cột> HAVING <Điều kiện>

• Ví dụ: đưa ra tên các thành phố có nhiều hơn 3 sinh viên

SELECT Suburb, COUNT(ID)

FROM Student

GROUP BY Suburb

HAVING COUNT(ID) > 3

125

125

Điều kiện hiển thị các bản ghi kết quả

Ví dụ: Điều kiện trên nhóm HAVING

Bảng Orders

Tìm và đưa ra tất cả khách hàng có tổng giá trị các hóa đơn <2000

Tìm khách hàng có tên "Hansen" hoặc "Jensen có tổng giá trị các hóa đơn

Các phép toán tập hợp:

- ❖ SQL có cài đặt các phép toán tập hợp
 - ❖Hợp (UNION)
 - ❖Giao (INTERSECT)
 - ❖Trừ (EXCEPT)
- ❖ Kết quả trả về là tập hợp
 - ❖Loại bỏ các bộ trùng nhau
 - ❖Để giữ lại các bộ trùng nhau phải sử dụng từ khóa
 - ***** UNION ALL
 - **❖ INTERSECT ALL**
 - **❖** EXCEPT ALL

127

Các phép toán tập hợp:

Ví dụ UNION

E_ID	E_Name
01	Turner, Sally
02	Kent, Clark
03	Svendson, Stephen
04	Scott, Stephen

SELECT E_Name FROM Employees_Norway
UNION
SELECT E_Name FROM Employees_USA

E_Name
Hansen, Ola
Svendson, Tove
Svendson, Stephen
Pettersen, Kari
Turner, Sally

Kent, Clark Scott, Stephen

Các phép toán tập hợp:

Ví dụ: UNION ALL

"Employees_Norway":

E_ID	E_Name
01	Hansen, Ola
02	Svendson, Tove
03	Svendson, Stephen
04	Pettersen, Kari

"Employees_USA":

E_ID	E_Name
01	Turner, Sally
02	Kent, Clark
03	Svendson, Stephen
04	Scott, Stephen

SELECT E_Name FROM Employees_Norway UNION ALL SELECT E_Name FROM Employees_USA

E_Name	
Hansen, Ola	
Svendson, Tove	
Svendson, Stephen	
Pettersen, Kari	
Turner, Sally	
Kent, Clark	
Svendson, Stephen	
Scott, Stephen	

129

Các phép toán tập hợp:

 Ví dụ: đưa ra danh sách tên các môn học không có sinh viên nào tham dự

SELECT DISTINCT Subject.Name

FROM Subject

MINUS

SELECT DISTINCT Subject.Name

FROM Student, Takes, Subject

WHERE Student.Id = Takes.SID and Takes.SNO = Subject.No

Tìm sid của hãng cung ứng đồng thời 2 mặt hàng P1 và P2

SELECT sid FROM SupplyProduct WHERE pid = 'P1'

INTERSECT

SELECT sid **FROM** SupplyProduct **WHERE** pid = 'P2'

Tìm mã số của hãng không cung ứng mặt hàng nào

SELECT sid **FROM** Supplier

MINUS

SELECT sid **FROM** SupplyProduct

130

Các câu truy vấn lồng nhau

- Là trường hợp các câu truy vấn (con) được viết lồng nhau
- Thường được sử dụng đế
 - Kiểm tra thành viên tập hợp (IN, NOT IN)
 - So sánh tập hợp (>ALL, >=ALL, <ALL, <=ALL, =ALL, NOT IN,SOME,)

```
Ví dụ :SELECT *
FROM Supplier
WHERE SIZE>=ALL(SELECT SIZE FROM Supplier);
```

- Kiểm tra các bảng rỗng (EXISTS hoặc NOT EXISTS)
- Các truy vấn con lồng nhau thông qua mệnh đề WHERE

131

131

Các câu truy vấn lồng nhau

- ❖Truy vấn lồng
 - ❖Cú pháp :

```
SELECT <danh sách các cột>
FROM <danh sách các bảng>
WHERE < điều kiện so sánh> (SELECT....
FROM ....
WHERE... )
```

- ❖Các câu lệnh SELECT có thể lồng nhau ở nhiều mức
- ❖ Câu truy vấn con thường trả về một tập các giá trị
- ❖ Kết quả của câu truy vấn con sẽ làm điều kiện cho câu truy vấn ngoài, thứ tự thực thi từ trong ra ngoài

Các câu truy vấn lồng nhau (tiếp)

- Kiểm tra thành viên tập hợp với IN và NOT IN:
 - Đưa ra mã số của các hãng cung ứng đồng thời 2 mặt hàng P1 và P2:

```
SELECT DISTINCT sid FROM SupplyProduct
WHERE pid = 'P1' AND
sid IN (SELECT sid FROM SupplyProduct SP2 WHERE
SP2.pid = 'P2');
```

Đưa ra sid của các hãng không cung ứng mặt hàng P3:
 SELECT sid FROM SupplyProduct

WHERE sid NOT IN (SELECT sid From SupplyProduct SP2 WHERE SP2.pid = 'P3');

133

133

Các câu truy vấn lồng nhau (tiếp)

- So sánh tập hợp: Sử dụng các phép toán <,>, >=,<=,=,!= (<>) kèm với các mệnh đề ANY và ALL
 - Đưa ra tên của các hãng có số nhân viên đông nhất:

```
SELECT sname FROM Supplier
```

WHERE size >= ALL(SELECT size FROM Supplier)

 Đưa ra sid của hãng cung ứng một mặt hàng với số lượng bằng ít nhất 1 trong số lượng các mặt hàng được cung ứng bởi S2

```
SELECT sid FROM SupplyProduct
```

WHERE sid != 'S2' AND quantity = ANY(SELECT quantity FROM SupplyProduct SP2 WHERE SP2.sid = 'S2');

Các câu truy vấn lồng nhau (tiếp)

- Kiểm tra tập hợp rỗng với EXISTS và NOT EXISTS
 - **EXISTS** (câu truy vấn con): nhận giá trị đúng khi câu truy vấn con cho ra kết quả là một quan hệ khác rỗng
 - NOT EXISTS (câu truy vấn con): nhận giá trị đúng khi câu truy vấn con cho ra kết quả là một quan hệ rỗng

135

135

Các câu truy vấn lồng nhau (tiếp)

 Đưa ra thông tin của các nhà cung cấp đã cung ứng ít nhất một mặt hàng

```
SELECT * FROM Supplier S
WHERE EXISTS (SELECT sid FROM SupplyProduct SP
WHERE S.sid = SP.sid);
```

 Đưa ra thông tin của các nhà cung cấp không cung ứng mặt hàng nào

```
SELECT * FROM Supplier S

WHERE NOT EXISTS (SELECT * FROM SupplyProduct SP

WHERE S.sid = SP.sid);
```

Các hàm thư viện

- · Hàm tính toán trên nhóm các bản ghi
- ❖COUNT()
 - ❖ COUNT(*) đếm số dòng
 - COUNT(<tên thuộc tính>) đếm số giá trị khác NULL của thuộc tính
 - COUNT(DISTINCT <tên thuộc tính>) đếm số giá trị khác nhau và khác NULL của thuộc tính
- ❖MIN(<tên cột>) trả về giá trị cực tiểu chứa trong cột
- ❖MAX(<tên cột>) trả về giá trị cực đại chứa trong cột
- ❖SUM(<tên cột>) tổng giá trị trong cột
- ❖AVG(<tên cột>) giá trị trung bình của cột

137

137

Các hàm thư viện (tiếp)

- Hàm tính toán trên bản ghi
 - Hàm toán học: ABS, SQRT, LOG, EXP, SIGN, ROUND
 - Hàm xử lý xâu ký tự: LEN, LEFT, RIGHT, MID
 - Hàm xử lý thời gian: DATE, DAY, MONTH, YEAR,
 HOUR, MINUTE, SECOND, DATEPART
 - Hàm chuyển đổi kiểu giá trị: FORMAT

Một số ví dụ với các hàm thư viện

- Có bao nhiêu mặt hàng khác nhau được cung ứng SELECT COUNT(DISTINCT pid)
 FROM SupplyProduct;
- Có tổng cộng bao nhiêu nhân viên làm cho các hãng ở Paris

```
SELECT SUM(size) FROM Supplier WHERE city = 'Paris';
```

 Đưa ra số lượng mặt hàng trung bình mà hãng S1 cung ứng

```
SELECT AVG(quantity)
FROM SupplyProduct
WHERE sid = 'S1';
```

139

139

Một số truy vấn phức tạp

Đưa ra tên của hãng S1 và tổng số lượng các mặt hàng mà hãng đó cung ứng

```
SELECT sname, SUM(quantity)
FROM Supplier S, SupplyProduct SP
WHERE S.sid = SP.sid AND S.sid = 'S1'
GROUP BY sname:
```

 Đưa ra mã số các hãng cung ứng và số lượng trung bình các mặt hàng được cung ứng bởi từng hãng

```
SELECT sid, AVG(quantity) FROM SupplyProduct GROUP BY sid:
```

 Đưa ra mã số các hãng cung ứng mà số lượng mặt hàng trung bình được cung cấp bởi hãng đó là trong khoảng từ 75 đến 100

```
SELECT sid, AVG(quantity) FROM SupplyProduct
GROUP BY sid HAVING AVG(quantity) BETWEEN 75 AND 100
```

Thêm bản ghi vào bảng (INSERT)

❖Lệnh INSERT

- ❖ Dùng để thêm 1 hay nhiều dòng vào bảng
- ❖ Để thêm dữ liệu
 - ❖ Tên quan hệ
 - ❖ Danh sách các thuộc tính cần thêm dữ liệu
 - Danh sách các giá trị tương ứng
- Thứ tự các giá trị phải trùng với thứ tự các cột
- Có thể thêm giá trị NULL ở những thuộc tính không là khóa chính và NOT NULL
- ❖ Câu lệnh INSERT sẽ gặp lỗi nếu vi phạm RBTV
 - ❖Khóa chính
 - ❖Tham chiếu
 - ❖NOT NULL các thuộc tính có ràng buộc NOT NULL bắt buộc phải có giá trị 141

141

Thêm bản ghi vào bảng (tiếp)

Persons

P_Id	LastName	FirstName	Address	City
1	Hansen	Ola	Timoteivn 10	Sandnes
2	Svendson	Tove	Borgvn 23	Sandnes
3	Pettersen	Kari	Storgt 20	Stavanger

INSERT INTO Persons VALUES (4,'Nilsen', 'Johan', 'Bakken 2', 'Stavanger')

The "Persons" table will now look like this:

P_Id	LastName	FirstName	Address	City
1	Hansen	Ola	Timoteivn 10	Sandnes
2	Svendson	Tove	Borgvn 23	Sandnes
3	Pettersen	Kari	Storgt 20	Stavanger
4	Nilsen	Johan	Bakken 2	Stavanger

Thêm bản ghi vào bảng (tiếp)

```
Cú pháp:

>INSERT INTO table[(col1,col2,...)]

VALUES (exp1,exp2,...)

>INSERT INTO table[(col1,col2,...)]

SELECT col1,col2,...

FROM tab1, tab2,...

WHERE <dieu_kien>
```

143

143

Thêm bản ghi vào bảng (tiếp)

```
Ví dụ
>INSERT INTO Student
VALUES ('1179','Jane','California');
>INSERT INTO Student(Id, Name, Suburb)
VALUES ('1180','David','NewYork');
>INSERT INTO Student(Name, Id, Suburb)
VALUES ('Mary','1181','Texas');
>INSERT INTO Student(Id, Name, Suburb)
VALUES ('1182','John','Ohio'), ('1183','Tom','Georgia'), ('1184','Declan','Arizona');
```

Xóa bản ghi trong bảng (DELETE)

Lệnh UPDATE

- Dùng để xóa các dòng của bảng (xóa mọi dòng, xóa có điều kiện)
- Cú pháp

```
DELETE FROM <tên bảng>
[WHERE <điều kiện xóa>]
```

- ❖ Có thể dùng DELETE FROM : xóa mọi dòng
- Ví dụ:

```
DELETE FROM SupplyProduct
WHERE sid = 'S4';
DELETE FROM Student
WHERE Suburb = 'Indiana';
```

145

145

Sửa dữ liệu trong bảng (UPDATE)

Lệnh UPDATE

- Dùng để thay đổi giá trị của thuộc tính cho các dòng của bảng
- ❖Cú pháp

Sửa dữ liệu trong bảng

- Ví dụ:
 - Hãng S1 chuyển tới Milan

UPDATE Supplier

SET city = 'Milan'

WHERE sid = 'S1';

 Tất cả các mặt hàng được cung cấp với số lượng nhỏ hơn 100 đều tăng số lượng lên 1.5 lần

UPDATE SupplyProduct

SET quantity = quantity * 1.5

WHERE quantity < 100;

147

147

148

Lời hay ý đẹp

"Người kém thông minh nhưng say sưa với công việc, tiến mạnh và xa hơn người cực thông minh mà lãnh đạm với công việc".

J. Deval

149