Lista 1 - Sistemas Baseados em Conhecimento (MAC0444)

Leonardo Heidi Almeida Murakami NUSP: 11260186

9 de setembro de 2025

1. Exercicio 1

Para cada caso, definimos uma interpretação $I=(D,\pi)$, onde D é o domínio e π é a função de interpretação que mapeia o predicado P e as constantes a,b.

(i) (a) falso, (b) e (c) verdadeiros

Neste caso, precisamos de uma relação que falhe na transitividade mas seja anti-simétrica e satisfaça a terceira condição.

- **Domínio** $D: \{c_1, c_2, c_3, c_4\}$
- Interpretação π :
 - $-\pi(a)=c_1$
 - $-\pi(b)=c_2$
 - $-\pi(P) = \{(c_2, c_3), (c_3, c_4)\}\$

Verificação:

- (a) $\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$ é **FALSA.** Para $x = c_2, y = c_3, z = c_4$, temos que $P(c_2, c_3)$ é verdadeiro e $P(c_3, c_4)$ é verdadeiro, mas $P(c_2, c_4)$ é falso. Portanto, a implicação é falsa e a sentença é falsa.
- (b) $\forall x \forall y ((P(x,y) \land P(y,x)) \rightarrow x = y)$ é **VERDADEIRA.** A relação é anti-simétrica. Não existe nenhum par (x,y) em $\pi(P)$ tal que (y,x) também esteja em $\pi(P)$ para $x \neq y$. O antecedente da implicação é sempre falso, tornando-a verdadeira.
- (c) $\forall x \forall y (P(a, y) \to P(x, b))$ é **VERDADEIRA.** Substituindo as constantes, a sentença se torna $\forall x \forall y (P(c_1, y) \to P(x, c_2))$. O antecedente $P(c_1, y)$ é sempre falso para qualquer $y \in D$, pois não há pares em $\pi(P)$ que comecem com c_1 . Portanto, a implicação é vacuamente verdadeira para todos x, y.

(ii) (b) falso, (a) e (c) verdadeiros

Queremos que P não seja anti-simétrica, mas seja transitiva e satisfaça a condição (c).

- **Domínio** $D: \{c_1, c_2, c_3, c_4\}$
- Interpretação π :
 - $-\pi(a) = c_1$ $-\pi(b) = c_2$ $-\pi(P) = \{(c_3, c_4), (c_4, c_3), (c_2, c_2), (c_3, c_3), (c_4, c_4), (c_1, c_2), (c_3, c_2), (c_4, c_2)\}$

Verificação:

- (b) $\forall x \forall y ((P(x,y) \land P(y,x)) \rightarrow x = y)$ é FALSA. Para $x = c_3, y = c_4$, temos que $P(c_3, c_4)$ é verdadeiro e $P(c_4, c_3)$ é verdadeiro, mas $c_3 \neq c_4$. Portanto, a implicação é falsa e a sentença é falsa.
- (a) $\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$ é **VERDADEIRA.** A relação é transitiva. Por exemplo, $P(c_3,c_4)$ e $P(c_4,c_3)$ implicam $P(c_3,c_3)$, que é verdadeiro. $P(c_4,c_3)$ e $P(c_3,c_4)$ implicam $P(c_4,c_4)$, que é verdadeiro. $P(c_4,c_3)$ e $P(c_3,c_2)$ implicam $P(c_4,c_2)$, que é verdadeiro. A transitividade se mantém para todas as combinações.
- (c) $\forall x \forall y (P(a, y) \rightarrow P(x, b))$ é **VERDADEIRA.** Substituindo, $\forall x \forall y (P(c_1, y) \rightarrow P(x, c_2))$. O único valor de y que torna $P(c_1, y)$ verdadeiro é $y = c_2$. Assim, a sentença exige que, se $P(c_1, c_2)$ for verdadeiro (o que é), então $P(x, c_2)$ deve ser verdadeiro para todo $x \in D$. De fato, os pares $(c_1, c_2), (c_2, c_2), (c_3, c_2), (c_4, c_2)$ estão na relação. Com a definição de $\pi(P)$ incluindo $(c_1, c_2), (c_2, c_2), (c_3, c_2), (c_4, c_2)$, a condição é satisfeita.

(iii) (c) falso, (a) e (b) verdadeiros

Queremos que P seja transitiva e anti-simétrica, mas que a condição (c) seja falsa. A relação "(\leq)" sobre números parece um bom candidato.

- **Domínio** D: $\{1, 2, 3, 4\}$
- Interpretação π :
 - $-\pi(a) = 1$ $-\pi(b) = 3$
 - $-\pi(P) = \{(x,y) \in D \times D \mid x \le y\}$

Verificação:

- (c) $\forall x \forall y (P(a,y) \rightarrow P(x,b))$ é FALSA. Substituindo, $\forall x \forall y (1 \leq y \rightarrow x \leq 3)$. Para mostrar que esta sentença universal é falsa, precisamos encontrar um contra-exemplo, ou seja, valores para x e y que tornem a implicação falsa. Seja y=2 e x=4. O antecedente $1 \leq 2$ é verdadeiro, mas o consequente $4 \leq 3$ é falso. Como a implicação é falsa para esta instância, a sentença universal é falsa.
- (a) $\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \rightarrow P(x,z))$ é VERDADEIRA. A relação \leq é transitiva. Se $x \leq y$ e $y \leq z$, então $x \leq z$.
- (b) $\forall x \forall y ((P(x,y) \land P(y,x)) \rightarrow x = y)$ é **VERDADEIRA.** A relação \leq é anti-simétrica. Se $x \leq y$ e $y \leq x$, então necessariamente x = y.

2. Exercicio 2

(a) Representação do Conhecimento

Definimos os seguintes predicados e constantes:

- Constantes: A (Antônio), M (Maria), J (João), Chuva, Neve.
- Predicados:
 - -Membro(x): x é membro do Clube Alpino.
 - Esquiador(x): $x \in esquiador$.
 - Alpinista(x): x é alpinista.
 - Gosta(x, y): x gosta de y.

As sentenças são representadas em lógica de primeira ordem da seguinte forma:

- 1. $Membro(A) \wedge Membro(M) \wedge Membro(J)$
- 2. $\forall x ((Membro(x) \land \neg Esquiador(x)) \rightarrow Alpinista(x))$
- 3. $\forall x(Alpinista(x) \rightarrow \neg Gosta(x, Chuva))$
- 4. $\forall x (\neg Gosta(x, Neve) \rightarrow \neg Esquiador(x))$
- 5. $\forall y (Gosta(A, y) \rightarrow \neg Gosta(M, y))$
- 6. $\forall y(\neg Gosta(A, y) \rightarrow Gosta(M, y))$
- 7. $Gosta(A, Chuva) \wedge Gosta(A, Neve)$

(b) Prova Semântica

Queremos provar que $\exists x (Membro(x) \land Alpinista(x))$ é uma consequência lógica do conhecimento (KB). Uma prova semântica demonstra que qualquer modelo que satisfaça o KB também deve satisfazer a conclusão.

- 1. De (7), sabemos Gosta(A, Neve).
- 2. De (5), instanciando y = Neve, temos $Gosta(A, Neve) \rightarrow \neg Gosta(M, Neve)$.
- 3. Aplicando Modus Ponens com (1) e (2), obtemos $\neg Gosta(M, Neve)$.
- 4. De (4), instanciando x = M, temos $\neg Gosta(M, Neve) \rightarrow \neg Esquiador(M)$.
- 5. Por Modus Ponens em (3) e (4), concluímos $\neg Esquiador(M)$.
- 6. De (1), sabemos Membro(M).
- 7. Agora temos a conjunção $Membro(M) \wedge \neg Esquiador(M)$.
- 8. De (2), instanciando x = M, temos $(Membro(M) \land \neg Esquiador(M)) \rightarrow Alpinista(M)$.
- 9. Novamente utilizando Modus Ponens em (7) e (8), concluímos Alpinista(M).
- 10. Como temos Membro(M) (de 6) e Alpinista(M) (de 9), temos $Membro(M) \wedge Alpinista(M)$.
- 11. Portanto, demonstramos que $Membro(M) \wedge Alpinista(M)$ é verdadeiro, o que nos permite concluir $\exists x (Membro(x) \wedge Alpinista(x))$, já que Maria é uma instância concreta de membro e também é alpinista.

Assim, a existência de um membro alpinista é uma consequência lógica do KB.

(c) Contra-exemplo

Se a sentença (5) for removida, a prova anterior não é mais válida. Para mostrar isso, construímos um modelo (um contra-exemplo) no qual o KB modificado é verdadeiro, mas a conclusão $\exists x (Membro(x) \land Alpinista(x))$ é falsa. A falsidade da conclusão é equivalente a $\forall x (Membro(x) \rightarrow \neg Alpinista(x))$.

Modelo de Contra-exemplo:

- **Domínio**: $\{A, M, J, Chuva, Neve\}$
- Extensão dos Predicados:
 - $Membro = \{A, M, J\}$
 - $-Alpinista = \emptyset$ (para tornar a conclusão falsa)
 - $Esquiador = \{A, M, J\}$
 - $Gosta = \{(A, Chuva), (A, Neve), (M, Neve), (J, Neve)\}$

Verificação do Modelo:

- (1) Membro(A), Membro(M), Membro(J): Verdadeiro.
- (2) $\forall x((Membro(x) \land \neg Esquiador(x)) \rightarrow Alpinista(x))$: Verdadeiro, pois para todos os membros, $\neg Esquiador(x)$ é falso, tornando o antecedente falso.
- (3) $\forall x (Alpinista(x) \rightarrow \neg Gosta(x, Chuva))$: Verdadeiro, pois Alpinista é um conjunto vazio, tornando o antecedente sempre falso.
- (4) $\forall x (\neg Gosta(x, Neve) \rightarrow \neg Esquiador(x))$: Verdadeiro, pois todos os membros gostam de neve, então o antecedente é sempre falso para eles.
- (6) $\forall y(\neg Gosta(A,y) \rightarrow Gosta(M,y))$: Verdadeiro. Antônio gosta de Chuva e Neve. Para y = Chuva e y = Neve, o antecedente $\neg Gosta(A,y)$ é falso.
- (7) $Gosta(A, Chuva) \wedge Gosta(A, Neve)$: Verdadeiro.

O KB modificado é satisfeito neste modelo, mas a conclusão $\exists x (Membro(x) \land Alpinista(x))$ é falsa, pois não há alpinistas. Portanto, a prova não é mais possível.

(d) Resolução com Extração de Resposta

O objetivo é responder à pergunta: "Quem é o membro do Clube Alpino que é alpinista mas não esquiador?". A consulta é $\exists k (Membro(k) \land Alpinista(k) \land \neg Esquiador(k))$.

Passo 1: Convertemos a KB para CNF

- C1: Membro(A)
- C2: Membro(M)
- C3: Membro(J)
- C4: $\neg Membro(x) \lor Esquiador(x) \lor Alpinista(x)$
- C5: $\neg Alpinista(y) \lor \neg Gosta(y, Chuva)$
- C6: $Gosta(z, Neve) \lor \neg Esquiador(z)$
- C7: $\neg Gosta(A, w) \lor \neg Gosta(M, w)$
- C8: $Gosta(A, w') \vee Gosta(M, w')$
- C9: Gosta(A, Chuva)
- C10: Gosta(A, Neve)

Passo 2: Negar a consulta e adicionar o literal de resposta A negação da consulta é $\forall k \neg (Membro(k) \land Alpinista(k) \land \neg Esquiador(k))$, que em forma clausal com o literal de resposta Ans(k) é:

CQ: $\neg Membro(k) \lor \neg Alpinista(k) \lor Esquiador(k) \lor Ans(k)$

Passo 3: Provar por Resolução

- 1. $[C7, C10 \text{ com } \{w/Neve\}] \rightarrow R1 : \neg Gosta(M, Neve)$
- 2. $[R1, C6 \text{ com } \{z/M\}] \rightarrow R2 : \neg Esquiador(M)$
- 3. $[R2, CQ \text{ com } \{k/M\}] \rightarrow R3 : \neg Membro(M) \lor \neg Alpinista(M) \lor Ans(M)$
- 4. $[R3, C2] \rightarrow R4 : \neg Alpinista(M) \lor Ans(M)$
- 5. $[R2, C4 \text{ com } \{x/M\}] \rightarrow R5 : \neg Membro(M) \lor Alpinista(M)$
- 6. $[R5, C2] \rightarrow R6 : Alpinista(M)$
- 7. $[R6, R4] \rightarrow R7 : Ans(M)$

A resolução deriva a cláusula Ans(M), o que significa que **Maria** é o membro do Clube Alpino que é alpinista mas não esquiadora.