14.8: Lagrange Multipliers

Can be used to help solve optimization problems that have constraints

Orthogonal Gradient Theorem

Suppose f(x, y, z) is differentiable in region whose interior contains smooth curve:

$$C: ec{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

If P_0 is a point on C where f has a local extremum relative to its values on C, ∇f is orthogonal to C at P_0 .

Why?

f is at a local extremum on C when $rac{df}{dt}=0$.

For <u>derivatives along a path</u>, $rac{df}{dt} =
abla f \cdot ec{r}'$.

As such, $\nabla f \cdot \vec{r}' = 0$, so if f is at a local extremum on C, ∇f must be orthogonal to the path of travel there.

Method of Lagrange Multipliers

Suppose f(x,y,z) and g(x,y,z) are differentiable and $\nabla g \neq 0$ when g(x,y,z)=0. To find local extremum of f subject to g(x,y,z)=0, find x,y,z,λ satisfying:

$$abla f = \lambda
abla g \ g(x,y,z) = 0$$

Why?

Let's say the point we're trying to find is $P_0 = (x, y, z)$, which meets the condition g(x, y, z) = 0 (note that this means P_0 is on a level surface).

If P_0 is a local extremum, then on every curve at P_0 on the level surface, it must be at a local extremum.

By the above Orthogonal Gradient Theorem, ∇f is orthogonal to the level surface. Since gradients are orthogonal to level surfaces, ∇g is orthogonal to the level surface.

So ∇f must be a multiple of ∇g , or in other words:

• If ∇f is at a local extremum and g(x,y,z)=0, then there must be a constant λ such that $\nabla f=\lambda \nabla g$.

Two Constraints

$$egin{aligned}
abla f &= \lambda
abla g_1 + \mu
abla g_2 \ g_1(x,y,z) &= 0 \ g_2(x,y,z) &= 0 \end{aligned}$$

Why?

Let C be the smooth curve that describes the intersection between $g_1=0$ and $g_2=0$. ∇g_1 and ∇g_2 are both perpendicular to this curve since gradients are orthogonal to level surfaces.

Since ∇f is also perpendicular to this curve (since we're trying to find local extremum), then ∇f must be on the plane formed by ∇g_1 and ∇g_2 (and thus is a linear combination of the two).

Example

Maximize xy on ellipse $4x^2 + 9y^2 = 36$.

$$egin{aligned} f(x,y)&=xy\
abla f(x,y)&=y\mathbf{i}+x\mathbf{j} \end{aligned}$$
 $g(x,y)&=4x^2+9y^2-36$

 $\nabla g(x,y) = 8x\mathbf{i} + 18y\mathbf{j}$

Equations formed:

$$y=\lambda(8x) \ x=\lambda(18y) \ 4x^2+9y^2-36=0$$

We get values for x and y. This gives us points we can use to maximize xy.