Parallel Computing Platforms: Control Structures and Memory Hierarchy

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

Topics for Today

- SIMD and MIMD control structure
- Memory hierarchy and performance

Parallel Computing Platforms

A parallel computing platform must specify

- —concurrency = control structure
- —interaction between concurrent tasks = communication model

Control Structure of Parallel Platforms

Parallelism ranges from instructions to processes

- Processor control structure alternatives
 - —work independently
 - —operate under the centralized control of a single control unit
- MIMD
 - —Multiple Instruction streams
 - each processor has its own control control unit
 - each processor can execute different instructions
 - —Multiple Data streams
 - processors work on their own data
- SIMD (aka SIMT in nVIDIA GPUs)
 - —Single Instruction stream
 - single control unit dispatches the same instruction to processors
 - —Multiple Data streams
 - processors work on their own data

SIMD and **MIMD** Processors

MIMD architecture

PE = Processing Element

SIMD Control

- SIMD excels for computations with regular structure
 - —media processing, scientific kernels (e.g., linear algebra, FFT)
- Activity mask
 - —per PE predicated execution: turn off operations on certain PEs
 - each PE tests own conditional and sets own activity mask
 - PE can conditionally perform operation predicated on mask value

Example: 128-bit SIMD Vectors

Data types: anything that fits into 16 bytes, e.g.,

- Instructions operate in parallel on data in this 16 byte register
 —add, multiply etc.
- Data bytes must be contiguous in memory and aligned
- Additional instructions needed for
 - —masking data
 - —moving data from one part of a register to another

Computing with SIMD Vector Units

- Scalar processing
 - —one operation produces one result
- SIMD vector units

—one operation produces multiple results

Executing a Conditional on a SIMD Processor

conditional statement

if (A == 0)then C = Belse C = B/A

initial values

execute "then" branch

execute "else" branch

Processor 2

Processor 3

Processor 3

SIMD Examples

- Previously: SIMD computers
 - —e.g., Connection Machine CM-1/2, and MasPar MP-1/2
 - CM-1 (1980s): 65,536 1-bit processors
- Today: SIMD units or co-processors (AKA accelerators)

—vector units

SSE/2/3/4 - Streaming SIMD Extensions

8 128-bit vector registers

128 bits as 8-bit chars, 16-bit words, 32/64-bit int and float

AVX - Advanced Vector Extensions

16 256-bit vector registers in Intel and AMD processors since 2011

256 bits as 8-bit chars, 16-bit words, 32/64-bit int and float

32 512-bit vector registers in Intel Xeon Phi

512 bits as 8-bit chars, 16-bit words, 32/64-bit int and float

-co-processors

- nVIDIA Kepler GK110 GPGPU
- ClearSpeed CSX700 array processor (control PE + array of 96 PEs)

http://www.clearspeed.com

Intel MIC / Xeon Phi 5110P (Nov 2012)

- 60 cores
 - -32KB L1 I/D cache
 - -512 KB L2
 - **—32 512-bit vector registers**
 - —4-way SMT per core
- 1.053 GHz
- 8GB GDDR5 memory
- Memory B/W 352 GB/s
- 1.011 TFLOP, 225 Watts

NVIDIA Kepler GK110 (May 2012)

- 15 Streaming Multiprocessors (SMX)
- Each SMX
 - —192 CUDA cores (single precision)
 - fully pipelined FP and INT units
 - IEEE 754-2008; fused multiply add
 - —four warp schedulers
 - 32-thread groups (warp)
 - 4 warps issue and execute concurrently
 - 2 inst/warp/cycle
 - —64 DP FP units
 - -32 LS units
 - **—32 SFU**
- 1.31 TFLOP, 235W

	KEPLER GK110
Compute Capability	3.5
Threads / Warp	32
Max Warps / Multiprocessor	64
Max Threads / Multiprocessor	2048
Max Thread Blocks / Multiprocessor	16
32-bit Registers / Multiprocessor	65536
Max Registers / Thread	255
Max Threads / Thread Block	1024
Shared Memory Size Configurations (bytes)	16K
	32K
	48K
Max X Grid Dimension	2^32-1
Hyper-Q	Yes
Dynamic Parallelism	Yes

SIMD: ClearSpeed MTAP Co-processor

MTAP processor

Features

- —hardware multi-threading
- —asynchronous, overlapped I/O
- —extensible instruction set

SIMD core

- —poly controller
- —poly execution unit
 - array of 192 PEs
 - 64- and 32-bit floating point
 - 250 MHz (key to low power)
 - 96 GFLOP, <15 Watts

Short Vectors: The Good and Bad

```
for (t = 0; t < T; ++t) {
                                                     for (t = 0; t < T; ++t) {
        for (i = 0; i < N; ++i)
                                                       for (i = 0; i < N; ++i)
                                                         for (j = 0; j < N; ++j)
          for (j = 1; j < N+1; ++j)
            C[i][j] = A[i][j] + A[i][j-1];
                                                           C[i][j] = A[i][j] + B[i][j];
S1:
                                              S3:
        for (i = 0; i < N; ++i)
                                                       for (i = 0; i < N; ++i)
          for (j = 1; j < N+1; ++j)
                                                         for (j = 0; j < N; ++j)
            A[i][j] = C[i][j] + C[i][j-1];
                                                           A[i][j] = B[i][j] + C[i][j];
S2:
                                              S4:
                                                           AMD Phenom 1.9 GFlop/s
               AMD Phenom
                            1.2 GFlop/s
  Performance: Core2
                                              Performance: Core2
                                                                        6.0 GFlop/s
                            3.5 GFlop/s
                                                           Core i7
                                                                        6.7 GFlop/s
               Core i7
                            4.1 GFlop/s
              (a) Stencil code
                                                      (b) Non-Stencil code
```

The stencil code (a) has much lower performance than the non-stencil code (b) despite accessing 50% fewer data elements

The Subtlety of Using Short Vectors

Consider the following:

Stream alignment conflict between b[i][j+1] and c[i][j]

Dimension-lifted Transformation (DLT)

- (a)
- 2D view of same array (b)
- (c) Transposed 2D array brings non-interacting elements into contiguous vectors
- **New 1D layout after transformation** (d)

MIMD Processors

Execute different programs on different processors

- Platforms include current generation systems
 - —shared memory
 - multicore laptop
 - workstation with multiple quad core processors
 - SGI Altix UV (up to 32K sockets, each with an 8-core processor)
 - Legacy: Cray X1 (up to 8K processors)
 - —distributed memory
 - clusters (e.g., biou.rice.edu, stic.rice.edu, davinci.rice.edu)
 - Cray XC, IBM Blue Gene
- SPMD programming paradigm
 - —Single Program, Multiple Data streams
 - —same program on different PEs, behavior conditional on thread id

SIMD vs. MIMD

SIMD platforms

- —special purpose: not well-suited for all applications
- —custom designed with long design cycles
- —less hardware: single control unit
- —need less memory: only 1 copy of program
- —today: SIMD common only for accelerators and vector units
 - accelerator: nVidia Kepler

MIMD platforms

- —suitable for broad range of applications
- —inexpensive: off-the-shelf components + short design cycle
- —need more memory: program and OS on each processor

Data Movement and Communication

- Latency: How long does a single operation take?
 - -measured in microseconds
- Bandwidth: What data rate can be sustained?
 - —measured in Mbytes or GBytes per second
- These terms can be applied to
 - -memory access
 - -messaging

A Memory Hierarchy (Itanium 2)

Memory Bandwidth

- Limited by both
 - —the bandwidth of the memory bus
 - —the bandwidth of the memory modules
- Can be improved by increasing the size of memory blocks
- Memory system takes I time units to deliver b units of data
 - —I is the latency of the system
 - —b is the block size

Reusing Data in the Memory Hierarchy

- Spatial reuse: using more than one word in a multi-word line
 - —using multiple words in a cache line
- Temporal reuse: using a word repeatedly
 - —accessing the same word in a cache line more than once
- Applies at every level of the memory hierarchy
 - -e.g. TLB
 - spatial reuse: access multiple cache lines in a page
 - temporal reuse: access data on the same page repeatedly

Experimental Study of Memory (membench)

Microbenchmark for memory system performance


```
for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x
time the following loop
(repeat many times and average)
for i from 0 to L by s
load A[i] from memory (4 Bytes)
```

Membench: What to Expect

- Consider the average cost per load
 - —plot one line for each array length, time vs. stride
 - -unit stride is best: if cache line holds 4 words, only 1/4 miss
 - —if array is smaller than a cache, all accesses will hit after first run
 - time for first run is negligible with enough repetitions
 - —upper right figure assumes only one level of cache
 - —performance profile is more complicated on modern systems

Memory Hierarchy on a Sun Ultra-2i

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

Memory Hierarchy on a Pentium III

Memory Bandwidth in Practice

What matters for application performance is "balance" between sustainable memory bandwidth and peak double-precision floating-point performance.

Systems at TACC

- —Ranger (4-socket quad-core AMD "Barcelona")
 - bandwidth = 7.5 GB/s (2.19 GW/s, 8-Byte Words) per node
 - peak FP rate = 2.3 GHz * 4 FP Ops/Hz/core * 4 cores/socket * 4 sockets = 147.2 GFLOPS/node
 - ratio = 67 FLOPS/Word
- —Lonestar (2-socket 6-core Intel "Westmere")
 - bandwidth = 41 GB/s (5.125 GW/s) per node
 - peak FP rate = 3.33 GHz * 4 Ops/Hz/core * 6 cores/socket * 2 sockets = 160 GFLOPS/node
 - ratio = 31 FLOPS/Word
- —Stampede (2-socket 8-core Intel "Sandy Bridge" processors)
 - bandwidth = 78 GB/s (9.75 GW/s) per node
 - peak FP rate = 2.7 GHz * 8 FP Ops/Hz * 8 cores/socket * 2 sockets = 345.6 GFLOPS per node
 - ratio = 35 FLOPS/Word

Memory System Performance: Summary

- Exploiting spatial and temporal locality is critical for
 - —amortizing memory latency
 - —increasing effective memory bandwidth
- Ratio # operations / # memory accesses
 - —good indicator of anticipated tolerance to memory bandwidth
- Memory layout and computation organization significantly affect spatial and temporal locality

Multithreading for Latency Hiding

- A thread is a single stream of control in the flow of a program.
- We illustrate threads with a dense matrix vector multiply

```
for (i = 0; i < n; i++)
    c[i] = dot_product(get_row(a, i), b);</pre>
```

Each dot-product is independent of others

```
—thus, can execute concurrently
```

Can rewrite the above code segment using threads

```
for (i = 0; i < n; i++)
c[i] = create_thread(dot_product,get_row(a, i), b);</pre>
```

Multithreading for Latency Hiding (contd)

- Consider how the code executes
 - —first thread accesses a pair of vector elements and waits for them
 - —second thread can access two other vector elements in the next cycle

---...

- After I units of time
 - —(*I* is the latency of the memory system)
 - —first thread gets its data from memory and performs its madd
- Next cycle
 - —data items for the next function instance arrive
- ...
- Every clock cycle, we can perform a computation

Multithreading for Latency Hiding (contd)

- Previous example makes two hardware assumptions
 - —memory system can service multiple outstanding requests
 - —processor is capable of switching threads at every cycle
- Also requires program to have explicit threaded concurrency
- Machines such as the Sun T2000 (Niagara-2) and the Cray Threadstorm rely on multithreaded processors
 - —can switch the context of execution in every cycle
 - —are able to hide latency effectively
- Sun T2000, 64-bit SPARC v9 processor @1200MHz
 - —organization: 8 cores, 4 strands per core, 8KB Data cache and 16KB Instruction cache per core, L2 cache: unified 12-way 3MB, RAM: 32GB
- Cray Threadstorm: 128 threads

Prefetching for Latency Hiding

- Misses on loads cause programs to stall; why not load data before it is needed?
 - —by the time it is actually needed, it will be there!
- Drawback: need space to store early loads
 - —may overwrite other necessary data in cache
 - —if early loads are overwritten, we are little worse than before!
- Prefetching support
 - -software only, e.g. Itanium2
 - —hardware and software, e.g. Opteron
- Hardware prefetching requires
 - —predictable access pattern
 - —limited number of independent streams

Tradeoffs in Multithreading and Prefetching

- Multithreaded systems
 - —bandwidth requirements
 - may increase very significantly because of reduced cache/ thread
 - —can become bandwidth bound instead of latency bound
- Multithreading and prefetching
 - —only address latency
 - —may often exacerbate bandwidth needs
 - —have significantly larger data footprint; need hardware for that

Understanding Performance Limitations

Williams, Waterman, Patterson; CACM April 2009

Shared Memory Platforms

- Part (or all) memory is accessible to all processors
 - —modify data objects stored in shared memory
- Flavors of shared memory platforms
 - —UMA: uniform memory access
 - time taken by a processor to access any memory word is identical
 - —NUMA: non-uniform memory access
 - time taken by a processor to memory may vary

NUMA and **UMA** Platforms

- NUMA and UMA platforms differ with respect to locality
 - algorithms must exploit locality for performance on NUMA platforms
- Programming these platforms
 - easy communication: reads and writes are implicitly visible to other processors
 - tricky coordination: read-write operations to shared data must be coordinated
 - Pthreads mutexes, OpenMP critical sections
- Cache coherent vs. non cache-coherent architectures
 - non-cache coherent shared-address space architectures
 - provides an address map, but not coordinated sharing
 processors must explicitly flush data to memory before sharing
 - examples: BBN Butterfly, Cray T3E
 - cache coherent architectures: caches coordinate access to multiple copies
 - hardware support to keep copies consistent
 up to date values can be retrieved from cache by remote processors
 - examples: SGI Origin, SGI Altix

NUMA and **UMA** Platforms

UMA shared address space platform with cache (Sequent Symmetry, 1988)

NUMA shared address space platform (BBN Butterfly, 1988)

UMA shared address space platform (BBN Monarch, 1990)

SGI Origin 2000: NUMA Platform (1997)

J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scalable server. *Proc. of the 24th annual Intl. Symp. on Computer Architecture*, Denver, 241 - 251,1997

SGI Origin Network Topology

Example: "bristled hypercube" for 64 processors

Figure credit: http://web.cecs.pdx.edu/~alaa/ece588/papers/laudon_isca_1997.pdf

Modern NUMA Multiprocessor

Six-Core AMD Opteron™ Processor with AMD Chipset Platform:

Max Frequency	Max Capacity	Max Bandwidth
800MHz with 32GB per CPU	64GB per CPU at 533MHz	12.8GB/s at 800MHz per CPU

Dual SR5690 is optional

References

- Adapted from slides "Parallel Programming Platforms" by Ananth Grama accompanying course textbook
- Vivek Sarkar (Rice), COMP 422 slides from Spring 2008
- Jack Dongarra (U. Tenn.), CS 594 slides from Spring 2008, http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/ cs594-2008.htm
- Kathy Yelick (UC Berkeley), CS 267 slides from Spring 2007, http://www.eecs.berkeley.edu/~yelick/cs267_sp07/lectures
- Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam and P. Sadayappan. Data Layout Transformation for Stencil Computations on Short-Vector SIMD Architectures. In ETAPS Intl. Conf. on Compiler Construction (CC'2011), Springer Verlag, Saarbrucken, Germany, March 2011.