

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Lista 5 - MAT 137 - Introdução à Álgebra Linear

- 1. Entre as funções dadas abaixo, verifique quais são transformações lineares.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2; T(x,y) = (x^2, y).$
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2; T(x,y) = (x, x+1).$
 - (c) $T: \mathbb{R}^2 \to M_2(\mathbb{R}); T(x,y) = \begin{bmatrix} 2y & 3x \\ -y & x+y \end{bmatrix}.$
 - (d) $T: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R}); T(ax^3 + bx^2 + cx + d) = bx^2 + cx + d.$
- 2. Considere a aplicação $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x,y) = (x+ky,x+k,y). Verifique em que casos T é linear: $k=x,\,k=0,\,k=1,\,k=y$.
- 3. Encontrar a imagem do quadrado de vértices $P_1 = (0,0)$, $P_2 = (1,0)$, $P_3 = (0,1)$ e $P_4 = (1,1)$ pela transformação linear dada por T(x,y) = (-x+2y,2x-y). Esboce um desenho.
- 4. Seja $T:U\to V$ transformação linear tal que T(u)=3u e T(v)=u-v. Calcular em função de u e v:
 - (a) T(u+v)
 - (b) T(3v)
 - (c) T(4u 5v).
- 5. Seja $T:U\to V$ uma aplicação linear entre espaços vetoriais reais. Mostre que
 - (a) Se T é transformação linear, então $T(0_U) = 0_V$. (Transformação linear leva vetor nulo em vetor nulo).
 - (b) T é transformação linear se, e somente se $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$, para quaisquer $u, v \in U$ e $\alpha, \beta \in \mathbb{R}$.
- 6. Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ uma transformação linear definida por $T(1,1,1)=(1,2),\ T(1,1,0)=(2,3)$ e T(1,0,0)=(3,4).
 - (a) Determine T(x, y, z).
 - (b) Determine $v \in \mathbb{R}^3$ tal que T(v) = (-3, -2).
 - (c) Determine $v \in \mathbb{R}^3$ tal que T(v) = (0,0).
- 7. Encontrar a transformação linear $T:\mathbb{R}^2\to\mathbb{R}^2$ que leva um ponto (x,y) em:
 - (a) Sua reflexão em torno da reta y = -x.
 - (b) Sua reflexão através da origem.
 - (c) Sua projeção ortogonal sobre o eixo x.
- 8. Achar a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ que leva o ponto (x, y, z) em sua reflexão através do plano xy.
- 9. Dadas as transformações lineares $T: \mathbb{R}^n \to \mathbb{R}^m$, determine para cada uma delas:
 - (i) Determinar o núcleo, uma base para este subespaço e a sua dimensão. T é injetora? Justifique.
 - (ii) Determinar a imagem de T, uma base para este subespaço e sua dimensão. T é sobrejetora? Justifique.

- (iii) Quais dos seguintes vetores (1, -1, 1), (0, 0, 0), (-3, 3, 3) pertencem ao núcleo de T na letra b.
- (a) T(x,y) = (x + y, x, 2y)
- (b) T(x, y, z) = (x + y, y + z).
- 10. Determine uma base e a dimensão do núcleo e da imagem da transformação linear $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definida por T(X) = MX XM, sendo $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.
- 11. Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x,y,0). Qual é o núcleo e a imagem da transformação linear? Neste caso, o que representam estes conjuntos geometricamente? Qual a relação entre a dimensão da imagem, a dimensão do núcleo e a dimensão do domínio da transformação?
- 12. Se $T:V\to W$ é uma transformação linear, mostre que Im(T) e N(T) são subespaços vetoriais de W e V respectivamente.
- 13. Seja $L: \mathbb{P}_3(\mathbb{R}) \to \mathbb{P}_3(\mathbb{R})$ definida por $L(at^3 + bt^2 + ct + d) = (a-b)t^3 + (c-d)t$.
 - (a) O vetor $t^3 + t^2 + t 1$ pertence a N(L)?
 - (b) O vetor $3t^3 + t$ pertence a Im(L)?
 - (c) Determine uma base para N(L) e dim N(L).
 - (d) Determine uma base para Im(L) e dimIm(L).
- 14. Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^2$ cujo núcleo seja gerado pelos vetores $e_1 = (1,0,0)$ e $e_2 = (0,1,0)$.
- 15. Determine uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cuja imagem seja gerada pelos vetores $v_1 = (1, 1, 1)$ e $v_2 = (0, 1, 1)$.
- 16. Seja $F:V\to I\!\!R^5$ uma transformação linear.
 - (a) Se F é sobrejetora e dimN(F) = 2, qual é a dimV?
 - (b) Se F é injetora e sobrejetora, qual é a dim(V)?
- 17. Sejam V e U espaços vetoriais e $T:V\to U$ uma transformação linear. Mostre que:
 - (a) Se os vetores $v_1, v_2, ..., v_n$ geram V, então os vetores $T(v_1), T(v_2), ..., T(v_n) \in U$ geram Im(T).
 - (b) Se $S = \{v_1, v_2, ..., v_n\}$ é L.I., $S \subset V$ e T é injetora, então $\{T(v_1), T(v_2), ..., T(v_n)\}$ é L.I. Mostre com um contra-exemplo que o fato de T ser injetora é essencial para que $\{T(v_1), T(v_2), ..., T(v_n)\}$ seja L.I.
- 18. Considere a aplicação $T: M_2(\mathbb{R}) \to \mathbb{R}$ dada por $T\left(\left[\begin{array}{cc} A_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \right) = a_{11} + a_{22}.$
 - (a) Mostre que T é uma transformação linear.
 - (b) A matriz $A = \begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}$ pertence ao núcleo de T?
 - (c) Encontre uma base e a dimensão do núcleo de T.
 - (d) Encontre uma base e a dimensão da imagem de T.
- 19. Considere os operadores lineares do \mathbb{R}^3 definidos por T(x,y,z)=(x-3y-2z,y-4z,z) e T(x,y,z)=(x,x-y,2x+y-z).

Verifique quais dos operadores lineares acima são isomorfismos e os que forem, determinar o isomorfismo inverso. Caso negativo, ache uma base para N(T) e Im(T).

- 20. Se a matriz de uma transformação linear, $T: \mathbb{R}^2 \to \mathbb{R}^3$, é $[T]_C^B = \begin{bmatrix} 3 & 1 \\ 2 & 5 \\ 1 & -1 \end{bmatrix}$, onde $B = \{(-1,1), (1,0)\}$ e $C = \{(1,1,-1), (2,1,0), (1,1,0)\}$ são as bases de \mathbb{R}^2 e \mathbb{R}^3 respectivamente.
 - (a) Encontre a expressão de T(x,y) e a matriz da transformação com respeito às bases canônicas de cada espaço.
 - (b) Qual a imagem do vetor (2, -3) pela T?
 - (c) Se T(v) = (2, 4, -2), encontre, se possível, o vetor v.
- 21. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que T(1,0,1) = (1,1,0), T(0,1,0) = (1,0,-1) e T(0,1,1) = (0,0,1).
 - (a) Determine T(x, y, z)
 - (b) Determine a matriz da transformação com respeito à base canônica de \mathbb{R}^3
 - (c) T é isomorfismo? Se for, calcule sua inversa.
- 22. Sejam $S: \mathbb{R}^2 \to \mathbb{R}^2$ dada por S(x,y) = (y,x) e $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (-x,y). Geometricamente, S e T produzem reflexões em relação às retas y = x e x = 0 respectivamente. Determine:
 - (a) $S^{-1}(x,y)$
 - (b) $T^{-1}(x,y)$
 - (c) $(S \circ T)(x, y)$ e interprete geometricamente
 - (d) $(T \circ S)(x, y)$ e interprete geometricamente
- 23. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a reflexão em torno da reta y = 3x. Encontre uma base B de \mathbb{R}^2 tal que $[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- 24. Sejam $u_1 = (1, 2, -1), u_2 = (a, 0, 1)$ e $u_3 = (1, b, c)$ e T um operador linear em \mathbb{R}^3 tal que $ImT = [u_1, u_2, u_3]$.
 - (a) Para que valores de a, b e c o operador é um isomorfismo?
 - (b) Para que valores de a, b e c o núcleo de T terá dimensão 1?
 - (c) Para que valores de a, b e c o núcleo de T terá dimensão 2?
 - (d) A dimensão do núcleo de T pode ser 3?
- 25. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ um operador linear tal que T(x, y, z) = (x y, x + 2y z, y z).
 - (a) Encontre $[T]_C^B$, sendo $B = \{(1,0,0), (0,1,1), (1,0,1)\}$ e $C = \{(1,0,1), (0,1,1), (0,0,1)\}$.
 - (b) Se $[T(v)]_C = (12-1)$, encontre v.
- 26. Sejam os vetores $v_1 = (1,3), v_2 = (-1,4)$ e a matriz $[T]_B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, onde $B = \{v_1, v_2\}$.
 - (a) Determine $[T(v_1)]_B$ e $[T(v_2)]_B$.
 - (b) Encontre $T(v_1)$ e $T(v_2)$.
 - (c) Encontre T(x,y).
- 27. Determine a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $[T]_C^B = \begin{bmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{bmatrix}$, onde $B = \{(1,1), (0,1)\}$ e $C = \{(0,3,0), (-1,0,0), (0,1,1)\}$.

- 28. Determine a transformação linear $T: \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ tal que T(1) = x, $T(x) = 1 x^2$ e $T(x^2) = 2x$. Encontre N(T) e Im(T).
- 29. Sejam $T_1: \mathbb{R}^2 \to \mathbb{R}^2 \in T_2: \mathbb{R}^2 \to \mathbb{R}^3$ dadas por $T_1(x,y) = (3x y, -3x + y) \in T_2(x,y) = (x + y, x, 2y)$.
 - (a) Calcule $T_2 \circ T_1 : \mathbb{R}^2 \to \mathbb{R}^3$
 - (b) Mostre que $T_2 \circ T_1$ é uma transformação linear.
 - (c) Calcule $[T_1]_B$, $[T_2]_B^C$ e $[T_2 \circ T_1]_B^C$, onde B e C são as bases canônicas do \mathbb{R}^2 e \mathbb{R}^3 , respectivamente.
 - (d) Compare as matrizes $[T_2]_B^C$. $[T_1]_B^C$ e $[T_2 \circ T_1]_B^C$. O que você observa?
- 30. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u=(2,1) e triplica o comprimento do vetor v=(1,2) sem alterar as direções e nem inverter os sentidos.
 - (a) Determine T(x, y)
 - (b) Qual é a matriz do operador T na base $\{(2,1),(1,2)\}$.
- 31. Verifique se o vetor v dado é autovetor do correspondente operador linear.

(a)
$$v = (-2, 1), [T]_C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
 e C base canônica de \mathbb{R}^2 .

(b)
$$v = (1, 1, 2), [T]_C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$
 e C é a base canônica de \mathbb{R}^3 .

- 32. Determine os autovalores e autovetores das seguintes transformações lineares:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (x+2y, -x+4y)$
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x,y) = (2x + 2y, x + 3y)$
 - (c) $T: I\!\!R^3 \to I\!\!R^3, T(x,y,z) = (x+y+z,2y+z,2y+3z)$
 - (d) $T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (x, -2x y, 2x + y + 2z)$
- 33. Determine o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ cujos autovalores são $\lambda_1 = 3$ e $\lambda_2 = -2$ associados aos autovetores $v_1 = (1,2)$ e $v_2 = (-1,0)$ respectivamente.
- 34. Suponha que o polinômio característico do operador linear T seja $p(x) = x(x+2)^2(x-2)^3(x-3)^4$. Responda justificando cada ítem
 - (a) Qual a dimensão do domínio de T.
 - (b) T é inversível?
 - (c) Quantos auto-espaços tem T?
 - (d) O que podemos dizer sobre as dimensões dos auto-espaços de T?
 - (e) O que podemos dizer sobre as dimensões dos auto-espaços de T, se souber que T é diagonalizável?
 - (f) Seja $\{v_1, v_2, v_3\}$ um conjunto L.I. de autovetores de T, todos associados ao mesmo autovalor. O que podemos dizer sobre este autovalor?
- 35. Verifique se as afirmações são verdadeiras ou falsas e justifique sua resposta.
 - (a) Toda transformação linear sobrejetora tem obrigatoriamente núcleo de dimensão zero.
 - (b) Se $T: V \to W$ é uma transformação linear e dim(V) < dim(W), então T não pode ser sobrejetora.
 - (c) Seja $T:V\to V$ uma transformação linear . Se dimV=n, então uma condição suficiente para que T seja diagonalizável é que T tenha n autovalores distintos.

 $36. \text{ Sejam } T: V \to V \text{ e } S: W \to W \text{ operadores lineares, onde } [T]_B = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 5 & 2 \\ -1 & 3 & 2 \end{array} \right] \text{ e } [S]_C = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 0 & -1 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{array} \right],$

para determinadas bases B e C de V e W respectivamente. Procure observar neste exercício as seguintes propriedades:

- (a) Se um operador admite $\lambda = 0$ como autovalor, então T não é inversível.
- (b) Se ao invés das matrizes acima, tivéssemos a sua transposta, os autovalores permaneceriam os mesmos.
- (c) Os autovalores de uma transformação liner cuja matriz com respeito a uma base é triangular, os autovalores são os elementos da diagonal principal.
- 37. Seja [T] um operador linear em \mathbb{R}^3 e a matriz de T com respeito a base canônica é dada por

$$[T]_C = \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{array} \right].$$

- (a) Encontre o polinômio característico de T, os autovalores e autovetores correspondentes.
- (b) Ache $[T]_B$, onde $B = \{(0, 1, 1), (0, -1, 1), (1, 0, 1)\}$. O que você observou?
- 38. Verifique se a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x,y,x-3y+2z) é diagonalizável. Caso a resposta seja positiva, indique a matriz diagonal de T e a base em relação a qual T é diagonalizável.
- 39. Suponha que λ_1 e λ_2 sejam autovalores distintos e diferentes de zero de $T: \mathbb{R}^2 \to \mathbb{R}^2$. Mostre que:
 - (a) Os autovetores v_1 e v_2 correspondentes são L.I.
 - (b) $T(v_1)$ e $T(v_2)$ são L.I.
- 40. Seja T um operador linear em \mathbb{R}^2 . Sabendo que T duplica o vetor (1,-1) e triplica o vetor (0,1) sem alterar o sentido deles, determine T(x,y). A transformação linear T é diagonalizável? Justifique sua resposta. Se for, dê a base do \mathbb{R}^2 com relação à qual a matriz de T é diagonal e escreva a matriz de T com relação a esta base.
- 41. Dê exemplos de:
 - (a) Um operador linear em $I\!\!R^2$ que não possui autovalores reais.
 - (b) Um operador linear em \mathbb{R}^3 que satisfaça todas as condições abaixo:
 - i. T é diagonalizável;
 - ii. T não é injetora;
 - iii. $T(v) \neq v$, para qualquer vetor não nulo;
 - iv. $\lambda = 2$ é autovalor de T;
 - v. $v_0 = (1, 0, -1)$ é autovetor de T;
 - vi. $T(v_0) \neq v_0$;
 - vii. $(0,0,2) \in Im(T)$.
- 42. Verifique se as afirmações são verdadeiras ou falsas e justifique sua resposta.
 - (a) Se $T(v) = \lambda v$ para algum escalar não-nulo λ , então v é autovetor de T.
 - (b) Se λ é um autovalor do operador linear T, então $(\lambda I [T]_B)X = 0$ só tem a solução trivial.
 - (c) Se v_1, v_2 e v_3 são vetores de auto-espaços distintos, então é impossível escrever v_3 como combinação linear de v_1 e v_2 .

- 43. Seja T um operador linear sobre um espaço vetorial de dimensão n.
 - (a) Defina autovalor de T
 - (b) Se λ é autovalor de T, então 2λ é autovalor de 2T
 - (c) Se λ é autovalor de T, mostre que λ^2 é autovalor de $T^2 = T \circ T$.
- 44. O Teorema de Cayley-Hamilton afirma que uma matriz quadrada A é uma raíz de seu polinômio característico, isto é, se $p(x) = a_0 + a_1 x + ... + a_n x^n$ é o polinômio característico de A então $a_0 I + a_1 A = a_2 A^2 + ... + a_n A^n = 0$ (matriz nula).
 - (a) Verifique este resultado para $\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} e \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}.$
 - (b) Este teorema proporciona um método para calcular a inversa e potências n de uma matriz, tendo conhecimento de potências inferiores. Verifique que isto é verdade tomando por exemplo uma matriz 2×2 com polinômio característico $c_0 + c_1 x + c_2 x^2$.
 - (c) Calcule agora A^2 e A^3 sendo $A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}$ e calcule a inversa da matriz $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$.