

UML (Unified Modelling Language)

- UML: foi desenvolvida para...
 - modelagem orientada à objetos: classes, objetos, e diferentes relacionamentos
 - modelagem conceitual: domínio da aplicação ("entidades do mundo real")
- Modelagem física com UML requer ligeiras adaptações
 - utiliza-se notação semelhante
- Um modelo físico de uma estrutura de dados descreve todas as possíveis instâncias desse conceito em memória física
- Um exemplo físico ilustra exatamente uma dessas possíveis instâncias

 Set 2009
 © LES/DI/PUC-Rio
 3 /28

Do modelo conceitual para...

- ... modelo físico:
 - É o resultado de uma transformação do modelo conceitual, tornando-o realizável no meio físico alvo
 - Estabelecem-se interdependências a serem realizadas no meio físico escolhido, tais como:
 - memória principal, determinada linguagem de programação, ou determinado sistema de gerência de banco de dados
 - Transformações devem preservar as características do modelo conceitual
 - Exemplo -Grafodirecionado

Set 2009

© LES/DI/PUC-Rio

4 /28

Esta aula: especificação

- Aula Anterior: Modelo conceitual, exemplo conceitual e modelagem da arquitetura
- Objetivo dessa aula
 - Concluir apresentação da linguagem gráfica para a modelagem física de estruturas de dados
 - Motivar o uso de assertivas com modelos
- Referência básica:
 - Capítulo 9.4
- Referência complementar
 - Silva, R.P.; UML2 em Modelagem Orientada a Objetos; Florianópolis, SC: Visual Books; 2007

 Set 2009
 © LES/DI/PUC-Rio
 9 /28

Sumário

- Linguagem de representação gráfica para modelos físicos
- Modelo físico
- Exemplo físico
- Modelagem de cabeças de estrutura de dados
- Assertivas estruturais

et 2009 © LES/DI/PUC-Rio 10 /2

Cabeça de estrutura

- Cada estrutura de dados deve poder ser tratada como se fosse uma unidade
 - independente da sua complexidade e da diversidade de componentes
- Para tal pode-se utilizar uma cabeça de estrutura
 - todas as referências para a estrutura referenciam a cabeça
 - as referências internas à estrutura são desconhecidas ao cliente
- Vantagens
 - melhor encapsulamento da estrutura
 - a cabeça da estrutura passa a ser uma interface de acesso
 - reduz o risco de uso acidental ou deliberadamente incorreto
 - permite tratar estruturas vazias
 - permite mover as estruturas na memória
 - somente a cabeça precisa ficar fixa

Ago 2008

Arndt von Staa © LES/DI/PUC-Rio

15 /28

Modelos devem ter assertivas adicionais

19 /30

 Para resolver o problema da insuficiência de detalhes em figuras utilizam-se assertivas estruturais.

- Exemplo: lista duplamente encadeada
 - Para cada nó N da lista
 - se N->pEsq != NULL então N->pEsq->pDir == N
 - se N->pDir != NULL então N->pDir->pEsq == N
- · Exemplo: árvore
 - para cada nó N da árvore
 - a referência para filho à esquerda de um nó tem como destino a raiz da sub-árvore à esquerda
 - a referência para filho à direita de um nó tem como destino a raiz da sub-árvore à direita
 - o conjunto de nós alcançáveis a partir da raiz da sub-árvore à esquerda é disjunto do conjunto de nós alcançáveis a partir da raiz da sub-árvore à direita

Abril 2009 © LES/DI/PUC-Rio

Lembretes e Avisos...

- Trabalho não esqueça: assume-se que vocês já estejam trabalhando...
 - Especificação e implementação dos módulos do jogo de damas
 - Raciocinar sobre regras do jogo de damas (requisitos) e quais funcionalidades para a realização de uma partida
 - não esqueça dos requisitos não funcionais
 - Planeje os principais módulos (arquitetura)
 - Agora:
 - Especificação da arquitetura
 - Melhoria da descrição dos requisitos para cada módulo
 - Linguagem para Scripts de Teste estará disponível esta semana
- Enviem para mim seus modelos da arquitetura
 - Próxima aula: esclarecimento de dúvidas do trabalho

Set 2009 LES/DI/PUC-Rio 23 /36

Processo de Desenvolvimento Modular

No Trabalho 2, vocês devem seguir este processo! Relatar os passos a cada dia no **arquivo de relatório**...

- 1. Descrição de requisitos do sistema
 - descoberta dos requisitos funcionais e não-funcionais, além do enunciado do problema
 - 2. especificação dos requisitos (p.e. linguagem natural)
- 2. Definição da arquitetura do sistema
 - 1. especificação do modelo lógico
 - identificação dos módulos
 - identificação das interfaces e relacionamentos entre os módulos
- 3. Refinamento da arquitetura
 - 1. especificação do modelo físico (e.g. modelo da estrutura de dados)
- 4. Desenvolvimento dos módulos
 - 1. especificação das interfaces (*.h) e requisitos associados
 - 2. especificação dos casos de teste
 - 3. especificação das funções (assertivas/contratos)
 - 4. Implementação dos módulos e definição de novos requisitos emergentes

Set

12

