

NAVAL POSTGRADUATE SCHOOL Monterey, California

D D C

PROPERTY IS 1979

NEW 15 1979

A

Master's THESIS

DOC FILE COPY

THE USE OF THE EMPIRICAL PROBABILITY GENERATING FUNCTION TO ESTIMATE THE NEYMAN TYPE A DISTRIBUTION PARAMETERS.

by

Harold R. Bishop

September 1979

Thesis Advisor:

R. R. Read

Approved for public release; distribution unlimited

> 251 450 79 14 11 041

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
REPORY NUMBER	2. GOVT ACCESSION NO.	S. RECIPIENT'S CATALOG NUMBER			
THE (and Substite) The Use of the Empirical Pr Generating Function to Esti Neyman Type A Distribution	mate the	8. TYPE OF REPORT & PERIOD COVERED Master's Thesis; September 1979 6. PERFORMING ORG. REPORT NUMBER			
Harold R. Bishop		8. CONTRACT OR GRANT NUMBER(*)			
Naval Postgraduate School Monterey, California 93940		18. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Naval Postgraduate School Monterey, California 93940		September 1979 NUMBER OF PAGES 86			
Naval Postgraduate School Monterey, California 93940		Unclassified 18. DECLASSIFICATION/DOWNGRADING SCHEDULE			
Approved for public release	e; distribution	unlimited			
OISTRIBUTION STATEMENT (of the aborrect entered	d in Blook 20, il different fra	m Report)			
SUPPLEMENTARY NOTES					
EY BORDS (Centimus on reverse olds if necessary e	and identify by block masher				
The Maximum Likelihood esti tribution parameters are ve thesis, the Empirical Proba to provide estimators that asymptotic efficiency at le	imators for the ery difficult t ability Generat are easier to	o compute. In this ing Function is used compute and have			

Maximum Likelihood estimators over most of the parameter space considered. The estimators found by this method are consistently

DD 1 7084 73 1473 EDITION OF 1 NOV 65 15 OBSOLETE (Page 1) 5/N 0102-014-6601

READ INSTRUCTIONS

Approved for public release; distribution unlimited

THE USE OF THE EMPIRICAL PROBABILITY GENERATING FUNCTION TO ESTIMATE THE NEYMAN TYPE A DISTRIBUTION PARAMETERS

by

Harold Ralph Bishop Lieutenant, United States Navy B. A., San Jose State College, 1971

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL September 1979 Printing Codes

Availand/or special

Author

Approved by:

DR Read

Thesis Advisor

Toke Jayahanoon

Second Reader

Chairman, Department of Operations Research

Dean of Information and Policy Sciences

ABSTRACT

The Maximum Likelihood estimators for the Neyman Type A distribution parameters are very difficult to compute. In this thesis, the Empirical Probability Generating Function is used to provide estimators that are easier to compute and have asymptotic efficiency at least as high as 97% of that for the Maximum Likelihood estimators over most of the parameter space considered. The estimators found by this method are consistently better than the Method of Moments and the Method of Zero Frequency estimators with respect to asymptotic efficiency. The considerations of preference in using one method over another are discussed.

TABLE OF CONTENTS

I.	INTR	ODUCT	ION													•					5
II.	NEYM	AN TY	PE A	DI	STF	RIBU	TIO	N													7
III.	EFFI	CIENC	Y AN	D M	IAXI	MUM	LI	KE	LI	но	OD	E	QU	AT	IC	NS	;				11
IV.	ESTI	MATIN	G EQ	UAT	CION	ıs .															14
v.	CALC	ULATI	NG T	ECH	INIC	UES															22
	A. 1	METHO	o of	CC	MPU	TIN	G t	*	FO	R	TA	BL	E	1							22
	в.	METHO	o of	sc	LVI	NG	FOR	m	11*	A	ND	m	2*								23
	c. :	METHO	o of	DE	TEF	MIN	ING	9)												25
VI.		ARISO	N WI	ТН	EST	IMA	TIC	N	ВΥ	T	HE	M	ET	HC	D	OF					~ ~
	MOME	NTS			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
VII.	NUME	RICAL	EXA	MPI	ES								•								31
VIII.	TABL	ES .																			36
IX.	CONC	LUSIO	NS																		60
APPEND	X A	-COMP	UTER	PF	ROGE	RAMS															63
APPEND	IX В-	-RAND	OM N	UME	BERS	FR	OM	TH	E	NE	YM	IAN	T	YP	E						
		DIST	RIBU	TIC	N		•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	74
LIST OF	REF	ERENC	ES				٠														84
INITIAL	DIS	TRIBU	TION	LI	ST																85

I. INTRODUCTION

Several 'contagious' distributions, including the Neyman Type A distribution, were derived by Neyman [1] in the course of modeling the reproduction behavior of certain types of plants and bacteria. More currently, these models come under the heading of branching processes. Several methods of parameter estimation have been proposed for the Neyman Type A distribution with varying degrees of success. The two most frequently used are the Method of Moments and the Method of Zero Frequency. The performance of an estimation scheme can be measured by the asymptotic efficiency of its estimators as defined by Wilks [2]. This paper proposes a method for estimating the parameters of the Neyman Type A distribution by using the Empirical Probability Generating Function.

For the Neyman Type A distribution, the Method of Moments provides estimates that are quick and easy to compute, although the efficiency of these estimators is not always high. It is well known that Maximum Likelihood estimators are asymptotically efficient, but they are very difficult to compute for the Neyman Type A distribution.

The method of estimation by using the Empirical Probability Generating Function provides estimators with asymptotic efficiency close to that of the Maximum Likelihood estimators over most of the parameter space considered. Extensive tables are presented along with an algorithm that is relatively easy to use on current programmable calculators.

The estimators found by applying this method have consistently higher asymptotic efficiency than the Method of Moments and the Method of Zero Frequency estimators. However, larger sample sizes may be required to cause the algorithm to converge on a unique pair of estimates.

A brief outline of the report is presented as follows. A derivation of the Neyman Type A distribution with a list of some of its mathematical properties is contained in section The equations for the Maximum Likelihood estimators and asymptotic efficiency appear in section III. The mathematical details of using the Empirical Probability Generating Function to provide estimators are found in section IV, along with a pictorial display of asymptotic efficiency for these estimators. An algorithm for computing the estimates of this method is presented in section V. The method of using the Empirical Probability Generating Function is compared to the Method of Moments in Section VI. The algorithm described in section V is illustrated by a numerical example along with computer studies in section VII. Tables for use with the above algorithm are found in section VIII and a summary of the results appears in Section IX.

II. NEYMAN TYPE A DISTRIBUTION

Neyman's Type A distribution can be used to model decay and reproduction processes which fit the assumptions of compound Poisson processes. A derivation of this distribution provides an understanding of its structure, usefulness, and properties. For these reasons it is presented in the following form.

Consider a decay process in which radioactive nuclei decay to produce daughter nuclei according to a Poisson process with rate λ . Also suppose that the number of daughter nuclei produced after each decay are independent random variables having a common Poisson distribution with parameter m_2 . Let N(t) = the number of decays in the time interval (0,t].

Y_i = the number of daughters produced from the ith decay.

X = the total number of first generation daughters produced in the time interval (0,t).

Then

$$X = \sum_{i=1}^{N(t)} Y_i.$$

Because N(t) is a Poisson process with rate λ ,

$$P[N(t) = n] = e \frac{-\lambda t (\lambda t)^n}{n!} \text{ for } n = 0,1,....$$

Conditioning on N(t) is used now to find the probability mass function of the random variable X. For fixed N(t), X is a Poisson random variable with parameter nm_2 when N(t) = n. Thus

$$P (X = x | N(t) = n) = e \frac{-nm_2}{x!} for x = 1,2,3,...$$

The event that no daughters are produced in the first generation may be described by two cases, namely

1)
$$X = 0$$
 if $N(t) = 0$ or,

2)
$$X = 0$$
 if $N(t) \neq 0$.

From case 1) $P(X = 0 \mid N(t) = 0) = 1 \text{ is obvious.}$ And from case 2) $P(X = 0 \mid N(t) = n \neq 0) = e^{-nm_2}.$ Now, using the total probability theorem,

$$P_0 = P(X = 0) = \sum_{n=0}^{\infty} P(X = 0 | N(t) = n) P(N(t) = n)$$

or

$$P_{O} = e^{-\lambda t} + \sum_{n=1}^{\infty} e^{-nm_{2}} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}$$

$$P_{O} = e^{-\lambda t(1 - e^{-m_{2}})}$$

It is also obvious that for X = x > 0, $P(X = x \mid N(t) = 0) = 0$. And by using the same conditioning argument as above it is evident that,

$$P_{x} = P(X = x) = \sum_{n=1}^{\infty} e^{-nm_{2} \frac{(nm_{2})^{x}}{x!}} e^{-\lambda t \frac{(\lambda t)^{n}}{n!}}.$$

These two formulas may be combined into one expression which is given in Shenton [3] as

$$P_{x} = \frac{e^{-m_{1}}}{x!} m_{2}^{x} \left[0^{x} + \frac{\beta 1^{x}}{1!} + \frac{\beta^{2} 2^{x}}{2!} + \frac{\beta^{3} 3^{x}}{3!} + \dots \right] (2.1)$$

where

$$m_1 = \lambda t$$
 $\beta = m_1 e^{-m_2}$ and $0^x = \begin{cases} 1 \text{ if } x = 0 \\ 0 \text{ if } x \neq 0 \end{cases}$.

This probability distribution was originally derived by Neyman and is called the Neyman Type A distribution. Other forms of equation (2.1) may be found in Johnson and Kotz [4].

Some of the properties of this distribution are needed in the further development of this paper and are

1. Probability generating function,

2. Moment generating function,

By using the well-known formula

$$\frac{d^{k}}{dx^{k}} E(e^{uX}) = 0 = E(x^{k})$$

the following are obtained

3.
$$E(X) = m_1^m_2$$
 (2.4)

4.
$$E(x^2) = m_1 m_2 (1 + m_2 + m_1 m_2)$$
 (2.5)

5.
$$E(x^3) = m_1 m_2 (1 + 3m_2 + 3m_1 m_2 + 3m_1 m_2^2 +$$

$$m_2^2 + m_1^2 m_2^2$$
) (2.6)

6.
$$VAR(X) = m_1 m_2 (1 + m_2)$$
 (2.7)

III. EFFICIENCY AND MAXIMUM LIKELIHOOD EQUATIONS

A method for estimating the parameters of a distribution should yield estimators with high asymptotic efficiency and it is well known that Maximum Likelihood estimators have asymptotic efficiency equal to 1. However, the Maximum Likelihood equations may be difficult to solve and such is the case for the Neyman Type A distribution. Replacing some of these equations in the Maximum Likelihood system may produce a system of estimating equations that is more readily solved and still produces estimators with high asymptotic efficiency. Estimating equations considered here are those that equate a statistic with its expected value. This paper presents one such system for the Neyman Type A distribution.

It can be shown (see, for example, Read [5]) that the asymptotic efficiency of the estimators of such a substitute system is

$$EFF = \frac{|M^{-1}|}{|\Lambda|}$$

where $|\Lambda|$ = information determinant of the probability distribution considered and

$$M = \lim_{n \to \infty} [nE(\hat{\theta} - \theta)(\hat{\theta} - \theta)^{T}]$$

with θ = vector of distribution parameters and $\hat{\theta}$ = vector of estimators of θ .

e above expression for EFF can be simplified if

h = vector of estimating equations

1)

A = the matrix
$$E\left(\frac{\partial h}{\partial \theta}\right)$$
 and $C = \lim_{n \to \infty} \{ nE(hh^T) \}$

en en

$$EFF = \frac{|\mathbf{A}|^2}{|\Lambda| |C|}.$$
 (3.1)

Le

The Maximum Likelihood equations for the Neyman Type A stribution are derived in [3] and the following forms are bund in [4]

1)
$$\overline{x} = \hat{m}_1 \hat{m}_2$$

2)
$$\sum_{i=1}^{n} (x_i + 1) \frac{P_{x_i} + 1}{P_{x_i}} = n\bar{x}$$
 (3.2)

here \bar{x} = the sample mean

nd n = the sample size.

It should be noted that equation 2) is an extremely comlicated function of m_1 and m_2 . To compute the efficiency f some other set of equations as substitutes for the equations in (3.2), it is necessary to compute the information eterminant of the Neyman Type A distribution. The information determinant has been derived in [3] and there it is shown that

$$|\Lambda| = \frac{1}{m_1 m_2^3} [(1 + m_2)Q - m_1 m_2^2 (m_1 + m_1 m_2 + m_2)]$$
 (3.3)

IV. ESTIMATING EQUATIONS

The Maximum Likelihood equations are quite difficult to solve for the Neyman Type A distribution as seen from the equations in (3.2). Namely, the second equation is the one that produces the complication. Replacing the second equation in (3.2) with a different one will allow for simpler calculations if this new equation is chosen judiciously. However, the idea of maintaining high efficiency should also be considered when making this choice of a substitute. The use of the Empirical Probability Generating Function (hereafter referred to as EPGF) seems to be appropriate in attaining this goal. This was suggested by the successful application of this choice in the case of the Negative Binomial distribution as demonstrated by Caglayan [7]. Since the EPGF contains the independent variable t, the solution of the new system of estimating equations can be "tuned" so as to achieve the estimators of maximum efficiency capable from the new system. Considering the form of the probability generating function for the Neyman Type A distribution, it is easily amendable to programming on current programmable calculators. With this motivation in mind, the first Maximum Likelihood equation in (3.2) and the EPGF equation which follows are considered as a possible alternative to estimating the parameters for the Neyman Type A distribution.

The EPGF is defined as

EPGF =
$$\frac{n}{n} \stackrel{x}{\underset{i=1}{\Sigma}} t^{i}$$

where n = the sample size and x_i = the ith sample value. The expected value of the EPGF is the probability generating function of the distribution of the random variable X and is given by equation (2.2). The system of estimating equations considered above is then

1)
$$\bar{x} = m_1 m_2$$
 (4.1)

2)
$$\frac{1}{n} = \sum_{i=1}^{n} t^{i} = e^{-m_{1} [1 - e^{m_{2}(t-1)}]}$$
 (4.2)

The notation m_1^* and m_2^* is used to denote the estimators of m_1 and m_2 found by solving equations (4.1) and (4.2). To solve these equations the variable t must have a value in the interval [0,1) to insure that the sign of the left-hand side of equation (4.2) is compatible with the right-hand side. The value chosen for t (which will be denoted as t*) is found by maximizing the asymptotic efficiency of the estimators m_1^* and m_2^* .

To compute the asymptotic efficiency of m_1^* and m_2^* equation (3.1) is used. To reduce the amount of typing in the following expressions let

$$G(t) = e^{-m_1 [1-e^{m_2(t-1)}]}$$

The vector of equations (h) is given by

$$h_1 = \overline{x} - m_1 m_2$$

$$h_2 = \frac{1}{n} \sum_{i=1}^{n} t^{x_i} - G(t) .$$

The matrix A is

$$\mathbf{E} \begin{bmatrix} \frac{\partial \mathbf{h}_1}{\partial \mathbf{m}_1} & \frac{\partial \mathbf{h}_1}{\partial \mathbf{m}_2} \\ \frac{\partial \mathbf{h}_2}{\partial \mathbf{m}_1} & \frac{\partial \mathbf{h}_2}{\partial \mathbf{m}_2} \end{bmatrix}$$

from which it follows that its elements are

$$A_{11} = -m_2$$
 (4.3)

$$A_{12} = -m_1$$
 (4.4)

$$A_{21} = \left[1 - e^{m_2(t-1)}\right] G(t)$$
 (4.5)

$$A_{22} = m_1(1-t)e^{m_2(t-1)}G(t)$$
 (4.6)

The matrix C is

$$\lim_{n\to\infty} nE \begin{bmatrix} h_1^2 & h_1h_2 \\ h_2h_1 & h_2^2 \end{bmatrix}$$

and it follows that its elements are

$$C_{11} = \lim_{n \to \infty} nVAR(\overline{x}) = m_1 m_2 (1 + m_2)$$
 (4.7)

$$C_{12} = \lim_{n \to \infty} n \operatorname{COV}(\overline{x}, \frac{1}{n}, \frac{n}{i+1}, \frac{x_i}{i+1}) = \operatorname{COV}(x_i, t^{x_i})$$

the last step resulting from x_i and x_j being independent when $i \neq j$.

Continuing,

$$C_{12} = E(x_i^{x_i}) - E(x_i)E(t^{x_i})$$

and using the fact that for well-behaved distributions (including Neyman's Type A)

$$E(x_i^{x_i}) = tE \left[\frac{d}{dt}(t^{x_i})\right] = tG'(t)$$

then

$$C_{12} = m_1 m_2 G(t)$$
 [te -1]. (4.8)

By symmetry $C_{12} = C_{21}$.

$$C_{22} = \lim_{n \to \infty} \text{nVAR}(\frac{1}{n} \stackrel{\Sigma}{=} t^{i}) = \text{VAR}(t^{i})$$
(4.9)

thus

$$C_{22} = G(t^2) - [G(t)]^2.$$
 (4.10)

Using equations (4.3) - (4.6)

$$|A| = m_1 G(t) [1 + (m_2(t-1) - 1)e^{m_2(t-1)}]$$
 (4.11)

and using equations (4.7) - (4.10) with

$$B = 1 + m_2 + m_1 m_2 (te^{m_2(t-1)} - 1)^2$$

then

$$|C| = m_1 m_2 [(1+m_2)G(t^2) - G^2(t) B].$$
 (4.12)

Now substituting (4.11) and (4.12) into (3.1) results in

EFF =
$$\frac{m_1 G^2(t) [1 + (m_2 t - m_2 - 1) e^{m_2(t-1)}]^2}{|\Lambda| m_2 [(1+m_2) G(t^2) - G^2(t) B]}$$
(4.13)

 t^* is the value of t used to solve equations (4.1) and (4.2). It is defined as

$$EFF(t^*) = \max_{0 \le t \le 1} EFF(t)$$
.

In order to use this definition the values of m_1 and m_2 must be given. t* and EFF(t*) have been computed for known m_1 and m_2 and are presented in Table 1. An algorithm for using these tabled values to find the estimates m_1^* and m_2^* is presented in section V.B.

To describe the relationship between t^* , m_1 and m_2 , a three-dimensional plot was made (Fig. 1) for m_1 and m_2 in the range .01(.01).09, .1(.1).9, 1(1)9. Fig. 2 is a corresponding plot of EFF(t^*) for the same set of values for m_1 and m_2 . Figures 1 and 2 are representations of the values found in Table 1.

For given values of m_1 and m_2 , t^* is the value of t which maximizes the efficiency function EFF(t). The values of t^* are not necessarily continuous as m_1 and m_2 are varied. The efficiency function determined by equation (4.13) is bimodal for certain values of m_1 and m_2 and these modes occur near the endpoints of the interval $\{0,1\}$. The global maximum of EFF(t) on this interval may occur at either mode for different values of m_1 and m_2 , which is the cause for the discontinuities of t^* as seen in Fig. 1. The jump in the surface occurs when m_1 is about 3.0 for all values of $m_2 > 2.0$. Further, it is interesting to note that t^* is approximately zero for $m_1 < 1.0$ and all values of m_2 , except for a singular point at

 m_1 = .09 and m_2 = .01. EFF(t*) appears to be a continuous function of m_1 and m_2 as shown in Fig. 2 and is very close to 1.0 over much of the range for m_1 and m_2 described above.

The method used for determining t* is discussed in section V.A.

Fig. 1 $\,$ t* vs. parameters ${\rm m}_1$ and ${\rm m}_2$

Fig. 2 EFF(t*) vs. parameters m_1 and m_2

V. CALCULATING TECHNIQUES

Estimation of the parameters m_1 and m_2 of the Neyman Type A distribution using the method outlined in section IV involves solving a nonlinear programming problem; specifically, finding a solution (m_1^*, m_2^*, t^*) that maximizes equation (4.13) subject to the constraint equations (4.1) and (4.2). Since this requires a large amount of computing power, an approximating sequential method is proposed that can be performed on a calculator. In order to do this the values of t^* must be known for any m_1 and m_2 pair. These t^* values are presented in Table 1 along with the associated maximum EFF for a wide range of values of m_1 and m_2 . Bivariate linear interpolation as discussed in Abramowitz and Stegun [8] can be used to approximate t^* between the values of m_1 and m_2 given in Table 1.

A. METHOD OF COMPUTING t* FOR TABLE 1

Table 1 was prepared by fixing m_1 and m_2 at constant values in the range .01 to 9.0 and then conducting a single variable search on the function EFF (as a function of t only). A Golden section search procedure was employed that terminated at the value of t* equal to the midpoint of the searched interval on which the value of EFF(t) was increasing but did not change by more than 10^{-7} across the interval. Because of the bimodality of EFF(t) on some regions, a search was initiated

from the right end of the interval [0,1) and a separate search started from the left end. The global maximum was then found by comparing the resulting local maximums.

B. METHOD OF SOLVING FOR m1 * AND m2 *

Given a sample of n observations on the random variable X assumed to have an underlying Neyman Type A distribution of which \mathbf{x}_1 represents the ith sample observation, the algorithm for solving equations (4.1) and (4.2) to find the estimators \mathbf{m}_1^* and \mathbf{m}_2^* of the parameters \mathbf{m}_1 and \mathbf{m}_2 consists of the following steps:

STEP 1 - Compute the Method of Moments estimators from the following equations

$$\overline{x} = \frac{1}{\overline{n}} \sum_{i=1}^{n} x_{i}$$

$$s^{2} = \frac{1}{\overline{n-1}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\widetilde{m}_{1} = \overline{x}/\widetilde{m}_{2}$$

$$\widetilde{m}_{2} = \frac{s^{2}}{\overline{x}} - 1$$
(5.1)

STEP 2 - Find t* in Table 1 corresponding to \tilde{m}_1 and \tilde{m}_2 . Note: If t* = 0. and the sample contains no zero values, set m_1 * = \tilde{m}_1 and m_2 * = \tilde{m}_2 then STOP.

STEP 3 - Solve the system of equations (4.1) and (4.2) for m_1^* and m_2^* with $t = t^*$ by using a Newton-Raphson procedure. Solving equation (4.1) for m_1 and substituting this into equation (4.2) yields

$$\frac{\overline{x}}{m_2}(g-1) - \ln(\overline{t^X}) = 0$$
 (5.2)

where

$$g = e^{m_2(t-1)}.$$

Applying the Newton-Raphson method on equation (5.2) produces as the (k+1)st iterate of m_0 *

$$m_{2(k+1)} = m_{k} \left[1 + \frac{1 - e^{m_{k}(t-1)} + m_{k} \ln(\overline{t^{x}})^{\overline{x}} - 1}{1 + e^{m_{k}(t-1)}} \right]$$

where for ease of typing $m_k = m_2$ and $m_2 = \tilde{m}_2$ (the Method of Moments estimator). When termination of the above iteration scheme occurs by the appropriate criteria as set by the user, set $m_2^* = m_2$ and compute m_1^* from equation (5.1).

STEP 4 - If $|m_2^* - \tilde{m}_2^*| < \epsilon$ STOP, where ϵ is set by the user. Otherwise return to STEP 2 after replacing \tilde{m}_2 with m_2^* .

The convergence of this algorithm depends on the sample size n and how well the Method of Moments estimators approximate the true values of m_1 and m_2 . Experience has shown that cycling between estimates can occur when the m_1^* and m_2^* values are close to the points where t* is discontinuous as determined from Fig. 1. This behavior was observed when the above algorithm was applied to data of sample sizes as large as 50. For most cases the estimates obtained by applying the

algorithm converge after two or three iterations. It should be noted from STEP 2 that if $t^* = 0$ and the sample contains no zero values, then the Method of Moments estimators are the default values obtained when using the algorithm.

C. METHOD OF DETERMINING Q

The value of Q as defined in equation (3.4) was computed according to equation (3.5) for the purpose of determining the asymptotic efficiency of the EPGF estimators given in Table 1. The xth power moment of a Poisson distributed random variable (denoted by $s_{\rm X}$ in equation (3.5)) was computed by finding the maximum term of the series and using this as a scaling factor to keep the partial sums within the limit of an IBM 360/67 computer, which was used for all computations. Actual computations were performed with 16 digit precision using logarithms. Truncation of the series occurred when the first scaled term after the maximum term was found to be less than $e^{-161.1}$. The value of Q was calculated by computing the successive partial sums of $q_{\rm X}$ until the relative error between the last two was less than 10^{-7} (the last term was not added to the partial sum computed previous to it), i.e., when

$$\frac{q_{m+1}}{\sum_{\Sigma} q_{\mathbf{X}}} < 10^{-7}.$$

A discussion of this stopping rule for the particular application described above may be found in Katti and Gurland [9]. As seen in Table 1 there are a few instances where the value

of EFF(t*) was computed as a value greater than 1.0, which is impossible. It is felt by this author that in these occurrences the value of Q was not computed accurately enough. The reason for this is that when m_1 or m_2 was large over 300 terms were required in the partial sum of Q in order to reach the stopping rule criterion given above. However, since the size and frequency of these inconsistencies were small, it is felt that the other results presented in Table 1 are not compromised. This is justified by noting the continuous behavior of EFF(t) as given by equation (4.13) and observing the few values of EFF(t*) > 1.0 in Fig. 2. It is not known why these occurrences did not happen at the extreme values of $m_1 = 9.0$ and $m_2 = .01$. As shown in Fig. 2, they appear to be isolated points of irregularity in the computation of EFF(t).

VI. COMPARISON WITH ESTIMATION BY THE METHOD OF MOMENTS

To determine the utility of the EPGF method of estimation for the Neyman Type A distribution, a comparison with Method of Moments estimation was made. This comparison was performed by computing the ratio of the asymptotic efficiencies of the two schemes. The estimators of \mathbf{m}_1 and \mathbf{m}_2 by the Method of Moments are found by solving the equations of (5.2) and is actually done in STEP 1 of the sequential algorithm presented in section V.B. The EPGF method is an attempt to improve on the Method of Moments estimation of \mathbf{m}_1 and \mathbf{m}_2 . The amount of improvement is determined by the increase in asymptotic efficiency gained by applying the EPGF method relative to that of the Method of Moments. In order to find this increase, the asymptotic efficiency of the Method of Moments must be found for the Neyman Type A distribution. Using equation (3.1), this was done and is shown below.

The determinants of A and C for the Method of Moments are determined in a manner similar to section IV. By using the equations in (5.2) the following results can be obtained:

$$A_{11} = -m_2$$
 $A_{12} = -m_1$
 $A_{21} = -m_2 - m_2^2$
 $A_{22} = -m_1 - 2m_1 m_2$

thus

$$|A| = m_1 m_2^2$$
. (6.1)

Also

$$C_{11} = VAR(X_i) = m_1 m_2 (1 + m_2)$$

$$C_{12} = E(X_i^3) - 3E(X_i^2)E(X_j) + 2 [E(X_i)]^3$$

$$C_{12} = m_1 m_2 (1 + 3m_2 + m_2^2)$$

and

$$c_{21} = c_{12}$$

From formulas derived in [5],

$$C_{22} = E(X_1 - \overline{X})^4 - [VAR(X_1)]^2$$

$$C_{22} = m_1 m_2 [2m_1 m_2 (1 + m_2)^2 + (1 + 7m_2 + 6m_2^2 + m_2^3)]$$

so that

$$|C| = m_1^2 m_2^2 [2m_1 m_2 (1 + m_2)^3 + 2m_2 + 2m_2^2 + m_2^3].$$
 (6.2) Substituting equations (6.1) and (6.2) into equation (3.1) yields

$$EFF_{mm} = \frac{m_2^2}{|\Lambda| [2m_1m_2(1+m_2)^3 + 2m_2 + 2m_2^2 + m_2^3]}$$
 (6.3)

where EFF_{mm} represents asymptotic efficiency of the Method of Moments estimators $\tilde{\text{m}}_1$ and $\tilde{\text{m}}_2$. The ratio EFF/EFF_{mm} formed from equations (4.13) and (6.3) represents the relative merit of the EPGF to Method of Moments estimation.

Values of t* and EFF/EFF_{mm} are tabulated in Table 2 for the same range as covered by Table 1. This comparison of the two methods is most readily observed in Fig. 3, which is a three-dimensional representation of Table 2. The EPGF method is better than the Method of Moments in producing estimators of high asymptotic efficiency for the range of parameter values covered in Table 2. This is clearly demonstrated by Fig. 3. The EPGF method reduces to the method of estimation by zero frequency when t* = 0. In this case the contours of Fig. 3 can be found in [4] and [9].

Fig. 3 Efficiency of the EPGF method relative to the Method of Moments vs. the parameters $\rm m_1$ and $\rm m_2$

VII. NUMERICAL EXAMPLES

EXAMPLE 1

To illustrate the EPGF method and in particular the algorithm of section V.B, the data of insurance claims caused by accident or sickness cited by Shenton [3] are used and reproduced below. The data are assumed to be observations from a Neyman Type A distribution and three methods of estimating the parameters \mathbf{m}_1 and \mathbf{m}_2 are considered;

- 1) the Method of Moments,
- 2) the EPGF method, and
- 3) the Method of Maximum Likelihood.

The data are:

Value		Fre	equency
0			187
1			185
			200
2 3 4 5			164
4			107
5			68
6			49
7			39
8			21
9			12
10			11
11			2
12			5
13			2
14			3
15			1
sample	size	=	1056
sample	mean	=	2.8059
sample	variance	=	6.4106.

When the EPGF algorithm of section V.B is applied to this data, the following results are obtained:

a) from STEP 1 the Method of Moments estimators are computed to be

$$\tilde{m}_1 = 2.184$$
 and $\tilde{m}_2 = 1.285$

b) from STEP 2 the t* value corresponding to \tilde{m}_1 and \tilde{m}_2 is found by bivariate linear interpolation in Table 1 as follows;

for $m_1 = 2.0$ and $m_2 = 1.285$ linear interpolation gives $t^* = .0748$,

for $m_1 = 3.0$ and $m_2 = 1.285$ linear interpolation gives $t^* = .3774$, and

for m_1 = 2.184 and m_2 =1.285 linear interpolation gives t* = .1305

c) from STEP 3 the solution of (5.2) yields

$$m_1^* = 2.638$$
 and $m_2^* = 1.064$

where termination of the Newton-Raphson method was set for an absolute error of .0001

d) from STEP 4, where ϵ = .01, a second application of the algorithm is required and the above m_1^* and m_2^* is used as the new starting point in STEP 1. This second iteration then yields

 $t^* = .2736$, $m_1^* = 2.609$, and $m_2^* = 1.076$.

Since the termination criteria of STEP 4 is not met a third iteration is performed resulting in the following

t* = .2653, $m_1* = 2.611$, and $m_2* = 1.074$

with the termination criteria being satisfied.

The computation of Maximum Likelihood estimators for the Neyman Type A distribution is very complicated and only approximate Maximum Likelihood estimates for the above data are given in [3]. To get an idea of the computational effort involved, these estimators are only the first iteration results and required several hours on a desk calculator in 1949.

Maximum Likelihood estimators for the above data were found using a TI-59 programmable calculator and the method presented in [6]. The range of observed values was small enough so that data storage was not exceeded on the calculator. The following results were obtained in approximately thirty minutes of computing time,

Iteration	<u>m</u> 1	m ₂			
1	2.475	1.134			
2	2.515	1.116			
3	2.516	1.115			
4	2.516	1.115.			
	2.510	1.117			

In comparison, the computing time used to perform the EPGF method was approximately five minutes and the data storage requirement consisted of only keeping eight numbers, which were not influenced by the data values.

EXAMPLE 2

Computer simulation was used to generate eighty-one data sets of random numbers from the Neyman Type A distribution.

Computer program 4 in Appendix A was written to simulate the model presented in section II and the data sets produced are

given in Appendix B. This program uses a random number generator that provides random deviates from a Poisson distribution and is a local subroutine. For each data set produced, the sample size was fifty and the range of values used for m_1 and m_2 was 1(1)9.

The EPGF estimates for each data set were found by applying the algorithm presented in section V.B. The t* value required in STEP 2 was computed by actually maximizing the efficiency equation (4.13) with the estimated values of m_1 and m_2 . The results of these computations are found in Table 3. The termination criteria of STEP 4 was set at ϵ = .0001, so that more iterations were required than would normally be expected.

In only two of the eighty-one cases considered, no improvement was achieved over the Method of Moments estimators. These two occurrences are noted in Table 3. For the case $m_1 = 4.0$ and $m_2 = 7.0$, the special termination of STEP 2 of the algorithm was invoked; i.e., $t^* = 0$ and the sample contained no zero values. For the case $m_1 = 5.0$ and $m_2 = 6.0$, cycling between the following estimate values occurred,

The successive estimate pairs m₁* and m₂* produce values of t* which are on either side of the discontinuous ridge seen in Fig. 1 of section IV. As previously discussed, the efficiency function is bimodal in this region and causes the

above behavior. Since the asymptotic efficiency is high in this region, a larger sample size producing better initial estimates should resolve the inconsistency which results when cycling occurs.

VIII. TABLES

Tables 1, 2 and 3 mentioned in the previous sections are contained on the following pages. Table 1 presents the optimal t and efficiency values found for the range of m_1 and m_2 from .01 - .09 (increments of .01), .1 - .9 (increments of .1), and 1.0 - 9.0 (increments of 1.0). Table 2 presents the optimal t and efficiency (relative to the efficiency of the Method of Moments) values found for the same range as used in Table 1. Table 3 presents the results of applying the algorithm of section V.B to the data sets of Appendix B.

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

ī

VALUES					M2 VALUES	ES			
		0.0200	0.0300	0.0400	0.0500	0.0000	0.0700	0.0800	0060.0
10.0	0.0024	0.0003	0.0000	0.0006	0.0000	0.0003	0.0003	0.0003	0.0002
0.02		0.0000-1	0.0003	0.0003	0.0002	0.0005	0.0002	0.0001	0.0001
60.0		0.0000	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001
÷0.0	0.0000	0.0003	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
90.0		0.0003	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.00000
90.0		0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000	0.00000
10.0		0.0005	0.0001	0.0001	0.0001	0.0001	0.0000	6566.0	5566.0
90.0	0.0003	0.0005	0.0001	0.0001	0.0001	0.0000	0.00000	0.00000	0.0000
60.0		0.0001	0.0001	0.0001	0.0001	0.0000	6666.0	6666.0	8666.0
	FOR EACH T* = TOP	ACH ENTRY TOP VALUE	EACH ENTRY IN THE TABLE: TOP VALUE OF EACH PAIR	ABLE: PAIR					

EFF = BOTTCM VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

MI VALUES					M2 VALUE	E S			
	0.1000	0.2000	0.3000	0.4000	0.5000	0.000	0.7000	0.8000	0.9000
10.0	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0000000	0.0000
0.02	0.0001	0.0000	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000
0.03	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0000000	0.0000
40.0	0.0001	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	00000-0	0.0000
90.0	00000.0	0.9656.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000
90.0	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.0000
10.0	0.0000	0.00000	0.00000	000000	0.0000	0.0000	0.0000	0.0000	0.0000
90.0	00000.0	00000-0	0.0000	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000
60.0	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EFF = BOTTCH VALUE OF EACH PAIR

FOR EACH ENTRY IN THE TABLE: T* = TOP VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

MI VALUES					M2 VALUES	ES			
	1.0000	2.0000	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	00000.6
10-0	0000000	0000000	0.0000	0.0000	0.0000	0.0000	0.0001	2066.0	0.0002
0.02	0000000	0.666.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
0.03	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
*0.0	0.0000	6965-0	0.0000	0.0000	0.0000	0.0000	0000000	0.0000	0.0001
90.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
90.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.07	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9306.0	0.0000
90.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
60.0	0.0000	6.9900	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.0000
	FOR EACH	+ ENTRY	EACH ENTRY IN THE TABLE:	ABLE:					

EFF = BOTTCP VALUE OF EACH PAIR

T* = TOP VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

MI VALUES					M2 VALUE	E S			
	0010.0	0.0200	0.0300	00.0400	0.0500	0.0000	0.0100	0.0800	00600
01.0	0.0003	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000000000000000000000000000000000000	0.0000
0.20	0.0002	1000.0	0.0000	0.00000	0.0000	6566.0	0.0000	9666.0	9566.0
0.30	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.40	0.0001	0.0001	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.50	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
09.0	0.0001	1.0000	0.0000	0.0000	0.0000	0.0000	0.00000	9666.0	0.00000
0.70	0.0002	0.0001	0.0001	6566.0	0.0000	0.00000	0.0000	0.0000	0.00000
0.80	0.0003	1.0001	0.0001	0.0001	0.0000	0.00000	0.00000	0000000	5566.0
06.0	0.0006	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000
	FOR EAC	EACH ENTRY	IN THE TABLE	ABLE:					

EFF = BOTTCM VALUE OF EACH PAIR

T* = TOP VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

II VALUES					M2 VALUES	ES			
	0.1000	C.2000	0.3000	0.4000	0.5000	0.009	0.7000	0.8000	0.9000
0.10	0.0000	0.000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	000000
0.20	0.0000	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000000000000000000000000000000000000	0.0000
0.30	00.00.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.40	0.0000	0.0000	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.50	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
09.0	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	6066.0	0.0000
0.10	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
06.0	000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	FOR EAC	FOR EACH ENTRY	IN THE TABLE	APLE:					
	T* = T0		OF EACH PAIR	PAIR					
	EFF = 8	OTTCH VA	EFF = BOTTCH VALUE OF EACH PAIR	ACH PAIR					

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

MI VALUES					M2 VALUES	E S			
	1.0000	2.0000	3.0000	4.0000	5.0000	00000-9	7.0000	8.0000	000006
0.10	0.0000	00000.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.20	0.0000	0.625.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000
0.40	0000000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
00.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
06.0	9065.0	0655.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	FOR EACH	H ENTRY	IN THE TABLE:	ABLE:					

EFF . BUTTOM VALUE OF EACH PAIR

I* = TOF VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

11 VALUES					M2 VALUE	E S			
	0010.0	0.0200	0.0300	0.0400	0.0500	0.0000	0.0700	0.0800	0060.0
1.00	0.0023	0.0015	0.0000	0.0000	0.0003	0.0002	0.0002	0.000.1	0.0001
2.00	9:1813	0:1815	0.1815	0.1800	0.1799	1.6001	0.1800	6566.0	1:0000
3.00	0.3161	0.3170	0.3171	0.3184	0.3190	0.3199	0.3199	0.3208	0.3214
4.00	0.4138	1.0015	0.4171	0.4190	0.4200	0.4219	0.4228	0.4244	0.4256
9.00	0.4899	0.4914	0.4928	0.4946	0.4962	0.4984	0.5002	0.5019	0.5037
00.9	1:6517	0.5499	0.5514	1.0001	0.5561	0.5579	0.5600	0.5619	0.5637
7.00	0.5937	0.5561	0.5984	0.6008	0.6028	0.6047	0.6070	0.6091	0.6114
6.00	0.6314	0.6337	0.6361	0.6384	0.6408	0.6432	0.6455	0.6479	0.6502
00.6	0.6628	0.0652	0.6679	0.6699	0.6720	0.6746	0.6770	0.6796	0.6815

FOR EACH ENTRY IN THE TABLE: T* = TOP VALUE OF EACH PAIR EFF = BOTICM VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

MI VALUES					M2 VALUE	E S			
	0.1000	0.2000	0.3000	0.4000	0.5000	0.009	0.7000	0.8000	0006.0
00.1	0.0001	0.0000	0.00000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.00	0.1790	0.1748	0.9984	0.1643	0.1574	0.1496	0.1403	0.1302	0.1181
3.00	0.3219	0.3284	0.3343	0.3402	0.3459	0.3514	0.3571	0.3621	0.3673
4.00	0.4570	0.4403	0.4544	0.4688	0.4835	0.4984	0.5139	0.5296	0.5457
2.00	0.5055	0.9583	0.5422	0.5610	0.5800	0.5988	0.6174	0.6360	0.6542
00.9	0.5662	0.5866	0.6077	0.6281	0.6484	0.6681	0.6871	0.7054	0.7227
00.7	0.6137	0.6359	0.6574	0.6786	0.6988	0.7180	0.7362	0.7533	1186.0
00.8	0.6525	0.6748	0.6966	0.9968	0.7370	0.7553	0.9929	0.7880	0.8024
00.6	0.6840	1:0001	0.7281	0.7481	0.9965	0.9952	0.9994	0.8142	0.8275

EFF = BOTTCM VALUE OF EACH PAIR

FOR EACH ENTRY IN THE TABLE: T* = TOP VALUE OF EACH PAIR

TABLE 1: OPTIMAL T AND EFFICIENCY VALUES

7	MI VALUES					M2 VALUE	ES			
		1.0000	2.0000	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	000006
1.00	00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.00	00	0.1046	6.5616	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.00	00	0.3721	0.3968	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4.00	00	9:5618	1506:0	0.8583	0.8680	0.8994	0.9195	0.9332	0.9431	0.9505
2.00	00	0.5713	0.8055	0.8733	0.9089	0.9299	0.9435	0.9528	0.9556	0.9646
00.9	20	0.7392	0.8509	0.9028	0.9298	0.9458	0.9561	0.9633	0.9685	0.9725
7.00	00	0.7838	0.8787	0.9209	0.9427	9.9557	0.9640	0.9699	0.9741	0.9774
00.9	00	0.8157	0.8577	0.9332	0.9515	0.9624	0.9695	0.9744	0.9780	0.9808
9.00	00	0.8393	0.9114	0.9935	0.9982	0.9674	0.9735	0.9778	0.9809	0.9833

FOR EACH ENTRY IN THE TABLE:

T* = TOP VALUE OF EACH PAIR

EFF = BOTTCM VALUE OF EACH PAIR

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES					M2 VALUES	ES			
	0.0100	C.0200	0.0300	0.0400	0.0500	0.0000	0.0700	0.0800	0.0900
10.0	0.0024	0.0000	0.0009	0.0000	0.0006	0.0003	0.0003	0.0003	0.0002
70.0	0.0015	0.0006	0.0003	0.0003	0.0002	0.0002	0.0002	0.0001	0.0001
60.0	0.0009	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001
+0.0	0.0006	0.0003	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
60.0	0.0000	0.0003	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
90.0	0.0006	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000
10.0	0.0003	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000
90.0	0.0003	0.0002	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000
60.0	0.5953	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000
	FOR EAC	EACH ENTRY IN THE TABLE:	IN THE T	ABLE:					

EFF = BOTTCM VALUE OF EACH PAIR

T+ = TOP VALUE OF EACH PAIR

TABLE 2: OPTIMAL T AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES					M2 VALUE	E S			
	0.1000	0.2000	0.3000	0.4000	0.5000	0.000	0.7000	0.8000	0006.0
10.0	0.0002	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.02	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.03	0.0001	6.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
÷0°0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
90.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
90.0	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10.0	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.08	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
60.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	w		-	ABLE:					
	I* = TO EFF = 8	= BOTTCM VALUE	DF	PAIR EACH PAIR					

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES	LUES					M2 VALUES	ES			
		1.0000	2.0000	3.0000	4.0000	5.0000	6.0000	7.0000	8.0000	000006
0.01	_	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001
0.02	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
0.03	•	0.0000	6.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.04	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.05	•	0.0000	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000	0.0000	0.0000
0.00	•	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
20.0	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.1872
90.0		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
60.0	•	0.0000	0.0000	0.0000	0.0000	0.0000	2.2954	0.0000	0.0000	2.3663
		FOR EAC	EACH ENTRY	IN THE TABLE	ABLE:					
		1* = 10	TA = TOP VALUE	OF EACH PAIR	PAIR					
		EFF = 8	CITCP VA	= BCTICK VALUE OF EACH PAIR	ACH PAIR					

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES					M2 VALUES	ES			
	00.0100	0.0200	0.0300	0.0400	0.0500	0.0600	0.0100	0.0800	0060.0
01.0	0.0003	1.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
0.20	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.30	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0**0	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
05.0	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
09.0	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.10	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.80	0.0003	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
06.0	0.0006	0.0002	0.0001	0.0001	0.0001	0.0001	0.0300	0.0000	0.0000
	FOR EAC	EACH ENTRY	IN THE TABLE	ABLE:					
		TOP VALUE	OF EACH	PAIR					
	EFF = 8	BOTTCM VALUE	0 F	EACH PAIR					

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES	Es				M2 VALUE	ES			
	0.1000	C.2C00	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000
0.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.30	0.0000	C. CC00 1.1335	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.40	0.0000	1.1460	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
09.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.70	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
06.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	FOR EAC	EACH ENTRY	IN THE TABLE	ABLE:					
	1* = 10	TOP VALUE	OF EACH	PAIR					
	EFF = B	= BOTTCP VALUE OF	LUE OF E	EACH PAIR					

TABLE 2: CPTIMAL T AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

N VALUE C					SHIIF OF	, L			
	1.0000	2.0000	3, 0000	4.0000	5.0000	6.0000	7.0000	6.000.8	00000.6
01.0	0.0000	0.0000	0.3000	0.0000	0.0000	0.0000	0.0000	C.0000 2.4198	0.0000
0.20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.30	0.0000	0.0000	0.0000	0.0000	0.0000 3.1586	3.2062	0.0000	3.2374	0.0000
0.40	0.0000	0.0000	0.0000	0.0000	0.0000	3.3711	0.0000	3.3745	0.0000
05.0	0.0000	0.3000	3.0942	9.0000	0.0000	3.4521	3.4460	3.4301	0.0000
09*0	0.0000	2.6713	3.1482	3.3808	3.4659	3.4780	3.4607	3.4348	0.0000
0.16	0.0000	2.6948	0.0000	0.0000	0.0000	3.4664	3.4357	0.0000	0.0000
0.80	0.0000	0.0000	0.0000	0.0000	0.0000	3.4283	3.3942	0.0000	0.0000
06.0	0.0000	0.3000	3.1316	3.3318	3.3861	3.3713	3.3313	3.2864	3.2449
	F CR EACH	H ENT RY	IN THE T	TABLES					
	T* = 10	TOP VALUE	CF EACH	PAIR					
	FFF = P	POTTOM VALUE OF		FACH PA 18					

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES					M2 VALUES	E S			
	0.0100	0.0200	0.0300	0.0400	0.0500	0.0000	0.0100	0.0800	0060.0
1.00	0.0023	0.0015	0.0009	0.0000	0.0003	0.0002	0.0002	0.0001	0.0001
00.2	1:0082	0.1814	0.1814	0.1800	0.1799	0.1799	0.1800	0.1791	0.1790
3.00	0.3161	0.3170	0.3171	0.3184	0.3190	0.3199	0.3199	0.3208	0.3214
4.00	0.4138	6.4161	9.4171	0.4150	0.4200	0.4219	0.4228	0.4244	0.4256
2.00	0.4899	0.4514	0.4928	0.4946	0.4962	0.4984	0.5002	0.5019	0.5037
00.0	0.5484	0.5499	0.5514	0.5537	0.5561	0.5579	0.5600	0.5619	0.5637
7.00	0.5937	0.5961	0.5984	0.6008	0.6028	0.6047	0.6070	0.6091	0.6114
8.00	0.6314	0.6337	0.6361	0.6384	0.6408	0.6432	0.6455	0.6479	0.6502
00.4	0.6628	0.6652	0.6679	0.6659	0.6720	0.6746	0.6770	0.6796	0.6815
	FOR EAC	H ENTRY	EACH ENTRY IN THE TABLE:	ABLE:					

EFF = BCTTCM VALUE OF EACH PAIR

T* = TOP VALUE OF EACH PAIR

TABLE 2: OPTIMAL I AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES	£S				M2 VALUE	ES			
	0.1000	C. 2000	0.3000	0304.0	0.5000	0009.0	0.7000	0.8000	0006.0
1.00	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.00	0.1790	0.1748	0.1702	0.1643	0.1577	0.1497	0.1406	0.1299	0.1181
3.00	0.3219	0.3284	0.3343	0.3402	0.3459	0.3515	0.3571	0.3621	0.3673
4.00	0.4270	C.4403 I.1183	0.4544	0.4688	0.4835	0.4984	0.5139	0.5256	0.5457
5.00	0.5055	0.5237	0.5421	0.5610	0.5800	0.5988	0.6175	0.6360	0.6541
00.9	0.5062	0.5866	0.6077	0.6281	0.6484	0.6681	0.6872	0.7054	0.7227
7.00	0.6137	0.6359	0.6574	0.6786	0.6988	0.7180	0.7362	0.7533	0.7651
8.00	0.6525	0.6748	0.6966	0.7175	0.7370	0.7553	0.7723	0.7880	0.8024
00.6	0.6840	0.7066	0.7281	0.7481	0.7668	0.7841	0.7999	0.8142	0.8275

EFF = BOTTCM VALUE OF EACH PAIR

FOR EACH ENTRY IN THE TABLE: T* = TOP VALUE OF EACH PAIR

TABLE 2: OPTIMAL T AND EFFICIENCY VALUES RELATIVE TO THE METHOD OF MOMENTS

MI VALUES					M2 VALUES	ES			
	1.0000	2.0000	3.0000	4.0000	5.0000	6.0000	1.0000	8.0000	000006
1.00	0.0000	0.0000	0.0000	3.2764	0.0000	3.3007	3.2560	3.2077	3.1633
2.00	0.1046	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.2463	2.2020
3.00	0.3721	0.3908	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
00.4	0.5618	6.3157	0.8141	C. 86 80 1.23 62	0.8994	0.9195	0.9332	0.9431	0.9505
00.3	0.6718	0.8055	0.8733	0.9089	0.9300	0.9435	0.9528	0.9596	0.9648
00.0	1:2017	6.8509	0.9028	0.9298	0.9458	0.9561	0.9633	0.9685	0.9725
00.1	0.7838	0.8787	0.9209	0.9427	0.9557	0.9640	1.0909	0.9741	1.0832
90.8	0.8157	6.6577	0.9332	0.9515	0.9624	0.9695	0.9744	0.9780	0.9808
00.6	0.8392	0.5114	0.9421	0.5580	0.9674	0.9735	0.9778	0.9809	0.9833
	FOR EAC	H ENTRY	EACH ENTRY IN THE TABLE:	ABLE:					

EFF = BOTTCP VALUE OF EACH PAIR

T* = TOP VALUE OF EACH PAIR

TABLE 3: NUMERICAL RESULTS

ī	M 2	I.	2 m z	*LN	F INAL	* I W	*2*	TA
1.000	1.000	606.0	956.0	00000	0000	0.864	0.995	2
1.000	2.000	1.406	1.465	. 0000	.0000	1.275	1.616	7
1.000	3.000	1.101	2.398	.0000	0000	1.054	2.506	2
1.000	4.000	1.382	2.149	00000	0000	1.116	3.405	2
1.000	5.000	1.282	3.145	. 0000	. 0000	1.092	4.394	2
1.000	000.9	1.264	4.335	00000	0000	1.086	5.047	7
1.000	1.000	1.178	5.246	. 0000	.0000	1.082	5.710	2
1.000	8.000	1.155	6.825	00000	0000.	1.080	7.295	2
1.000	000.5	1.458	5.502	.0000	0000	1.079	7.430	2
2.000	1.000	1.454	1.430	. 0000	. 0000	1.390	1.496	2
2,000	2.000	2.288	1.617	.0818	0000	1.464	2.527	3
2.000	3.000	1.459	3.660	. 0000	0000	1.465	3.644	2
2.000	4.000	1.433	5.529	0000	0000	1. 433	€. 52 €	2
2.000	5.000	1.425	7.146	.0000	0000	1.428	7.128	2
2.000	0000.9	1.681	6.938	. 0000	. 0000	1.428	8.168	2
2.000	7.000	1.342	9.571	00000	0000.	1.427	966.8	2
5.000	8.000	1.295	11.488	. 0000	0000	1.427	10.426	2
7.000	000.6	1.459	12.148	.0000	0000.	1. 427	12.417	2

TABLE 3: NUMERICAL RESULTS

Ī	¥	1 × 1	(HH)	===	FINAL	¥ 7	*2*	10.
3.000	1.000	3.733	0.713	.4798	.4193	3.290	0.809	2
3.000	2.000	3.012	2.032	.3983	.0000	2.075	2.950	3
3.000	3.000	2.700	3.126	0000.	0000.	2.164	3.500	2
3.000	4.000	3.005	4.080	. 0000	.0000	2.314	5.298	2
3.000	5.000	3.262	4.552	.0000	.0000	1.967	7.615	2
3.000	000.9	2.025	6.935	.0000	0000	2.303	1.901	2
3.000	1.000	2.601	7. 826	.0000	.0000	2.303	8.841	2
3.000	8.000	2.736	8.456	.0000		2, 303	10.045	2
3.000	000.5	2.973	8.766	0000		2.303	11.318	2
6.000	1.000	2.267	1.570	. 0852	. 4550	3.339	1.066	10
0000.4	2.000	4.800	1.583	.7445	.1390	4.660	1.631	٦
4.000	3.000	3.571	3.500	.8022	.8302	4.241	2.947	9
4.000	4.000	3.853	4.246	.8681	.8756	4. 220	3.877	2
4.000	5.000	3.623	5.156	.8825	0006	4.813	3.881	9
000.4	0000.9	3.401	7.052	. 9093	9136	3.593	6.674	2
4.000	7.000	3.096	8.572	00000	0000	3.096	8.572	*
4.000	8.000	3.315	659.6	. 9353	.9408	3.721	8.606	5
4.300	0000.6	3.235	10.900	.9411	3146.	3, 713	954.6	9

* The sample contained no zero values and t* = 0, therefore the algorithm terminated with the Method of Moments estimators.

TABLE 3: NUMERICAL RESULTS

ī	7	7 £	22	IN IT	FINAL	* 1	# Z ¥	178
5.000	1.000	4.845	1.070	.6701	15491	4.434	1.168	4
2.000	2.000	9.519	3.041	.7561	. 7333	3.340	3,203	3
5. 000	3.000	4.148	3.906	.8729	.8579	3.582	4.522	2
2.000	000.4	4.605	4.816	0116.	. 9144	4.289	5.171	4
5.000	2.000	4.132	6.462	.9304	.9250	3.639	7.336	2
5.000	6.000	3.696	8.430	. 93 85	!	!	!	٠
5.000	7.000	4.314	8.692	.9544	5056.	3, 711	16.106	2
5.000	8.000	4.043	10.967	· 96 14	0096.	3.760	11.792	4
5 .000	0000.6	3.781	12.859	. 9642	3196.	3,345	14.534	2
000.9	1.000	2.985	1.822	.3868	.5267	3.362	1.618	2
6.000	2.000	4.946	2.256	. 8247	.8411	6.094	1.831	2
0000.9	3.000	5.145	3.332	.8923	8885	4.811	3.563	3
6.000	4.000	6.170	3.867	8676.	.9300	6.289	3.194	3
000.9	2.000	189.5	5. 168	. 9438	5555.	6.053	4.850	(£)
000.9	000.9	5.964	5.818	1456.	.9 548	6.589	5.266	3
0.00.9	1.000	4.395	9.152	. 9585	0096	4.956	8.152	4
0000.9	8.000	414.4	10.616	.9658	1196.	5.114	5.289	4
6.000	8.000	4.394	12.130	8696 .	.9702	4.552	11.710	3

+ Cycling occurred between two pairs of estimates in this case. The algorithm was terminated after 20 iterations.

TABLE 3: NUMERICAL RESULTS

;	2 £	7.5	(MM)	*LIN	F INAL	* I T	¥2*	α Ω Ε
1. ccc	1.000	3.378	1.865	.5656	1901.	4.778	1.319	6
000.7	2.000	5.115	2.542	.8532	. 8557	5.325	2.441	3
7.000	3.000	5.015	3.952	1806.	1016.	5.384	3.681	4
7.000	4.000	5.690	4. 738	. 9380	.9390	6.197	4.350	4
1.000	5.000	5.329	097.9	6056.	196.	5.565	5. 995	3
7.000	6.000	4.825	8.332	. 95 95	.9613	5.910	6.802	4
1.000	7.000	5.403	8.710	. 9672	. 5617	5.847	8.049	4
7.000	8.000	5.688	9.205	.9712	.9714	5.851	8.949	3
7.000	6.000	5.634	10.234	. 9742	. 9744	5.938	9.710	
0000.8	1.000	14.014	0.014	.8663	.8772	16.441	C. 523	4
8. CCO	2.000	14.120	1.215	6916.	19157	13.405	1.280	3
8.000	3.000	6.623	3.950	. 9376	. 5367	6.1.05	4.285	m
8.000	4.000	1.741	4.214	.9524	.9523	7.588	4.299	3
8.000	5.000	1.947	5.426	.9655	.9655	8.049	5.357	2
8.000	000.9	1.851	6.437	.9712	.9713	8.507	5.941	3
8.000	7.000	10.058	5.856	1976.	1976.	10.048	5.862	7
8.000	8.000	9.811	6.831	. 9793	. 9753	9.581	966.9	3
8.000	000.6	8 .343	9.347	.9825	.9824	8.056	5.680	3

TABLE 3: MIMERICAL RESULTS

7	N.	12	2 X X X X X X X X X X X X X X X X X X X	* L	F INAL	Ť	* 5 *	2-
5.000	1.000	165.9	1.413	. 8163	.8166	6.520	1.408	2
0000.6	2.000	12.135	1.401	.9128	. 9166	14.339	1.186	4
9.000	3.000	11.014	2.372	4146.	.9420	11.965	2.183	
9.000	4.000	10.264	3.577	. 9592	6666.		3.270	3
9.000	2.000	1 9 9 6	4.568	1996.	1996.	9.817	554.4	2
5. 000	6.000	8.119	6.557	.9729	.9731	8.977	5.930	~
000.6	7.000	8.241	1. 426	6916.	5915.	8.262	7.407	2
9.000	8.000	8.081	8.918	.9808	6086.	8.394	8.584	
6.000	8.000	8.197	9.960	. 9833	. 9834	8.585	605.6	3

IX. CONCLUSIONS

The EPGF method provides estimators with asymptotic efficiency close to that of the Maximum Likelihood estimators over most of the parameter values considered. The smallest value found was 54% (at $\rm m_1$ = 3.0 and $\rm m_2$ = 9.0) and in most instances the asymptotic efficiency is greater than 97%. The EPGF method outperforms the Method of Moments in producing estimators of consistently higher asymptotic efficiency for all parameter values from .01 to 9.0.

The efficiency of the EPGF method relative to the Method of Moments is less than 110% when $m_2 < .3$ for most values of m_1 . As may be seen from Table 3, the relative efficiency drops below this value again for large m_1 and m_2 beginning about $m_1 = 9.0$ and $m_2 = 3.0$, and extending to $m_1 = 6.0$ and $m_2 = 9.0$.

In almost all cases, $t^*=0$. when m_1 is less than 1.0. When this occurs the EPGF method reduces to estimation by the Method of Zero Frequency. The EPGF method becomes an extension of the Zero Frequency method when the efficiency of the estimators of the latter decreases. This happens when $t^*>0$. which is always the case for $m_1>3.0$.

Although the EPGF method is always better than the Method of Zero Frequency in terms of efficiency, it involves a greater computational effort when $t^* \neq 0$. As shown in [4],

the Method of Moments estimators have higher asymptotic efficiency than those of the Method of Zero Frequency whenever $m_1 > 3.5$ for all values of m_2 . The efficiency of the Method of Moments estimators is over 20% higher than the Zero Frequency estimators when m, > 4.5. Combined with the above discussion of the EPGF method, whenever t* > 0. the EPGF method will yield estimators of substantially higher asymptotic efficiency than those found by the Zero Frequency method. The choice of which method to use always rests with the user. However, if it is assumed that $m_2 > .3$ and that both m_1 and m, are not large (greater than about 7.0) then the extra effort required by the EPGF method is compensated for by a better than 10% increase in asymptotic efficiency of the estimators. When it is supposed that m, and m, are not to be found in the above region then estimation by the Method of Moments is recommended, as little increase in efficiency can be expected by using the EPGF method; i.e., going beyond STEP 1 of the algorithm presented in section V.B.

As noted in section VII, the EPGF method as applied by the algorithm of section V.B can fail to converge. This is characterized by cycling between two different pairs of estimators when the sample size is small. When this occurs the remedy is to use a larger sample. The variance of a population having the Neyman Type A as an underlying distribution grows large as \mathbf{m}_1 and \mathbf{m}_2 increase, especially when both are greater than 1.0. Assuming that the sample size is

large enough for the Central Limit theorem to provide a good approximation by a Normal distribution, the sample size required to provide a reasonable confidence interval containing the true mean is quite large. Since $\bar{x} = m_1 m_2$ is one of the estimating equations used in the EPGF method, it may be difficult to provide good initial estimates for the iterative procedure when n is small. It has been found by experience, as the sample size is increased, the EPGF estimates tend to cluster more tightly than the Method of Moments estimators about the true parameter values.

The EPGF method is not as easy to use as the Method of Moments, but with the aid of Table 2 and the use of the algorithm presented it can be applied readily with current programmable calculators. This is not always the case for estimation by Maximum Likelihood.

Although the EPGF method appears to be time consuming and tedious, it is far easier to implement than the Maximum Likelihood method. By using Table 1, reasonably good estimators can be obtained with less effort than required by the latter method.

APPENDIX A

COMPUTER PROGRAMS

Four computer programs were used in the compilation of this paper and are given on the following pages. All were programmed in the standard Fortran IV language and in double precision. Program 1 was used to compute the values of the information determinant $|\Lambda|$ of section III for m_1 and m_2 in the range of Table 1. Program 2 was run to compute the values of t* and EFF(t*) and produce Table 1. Table 2 was produced by slightly modifying program 2 to compute and table the efficiency ratio EFF/EFF of section VI. Program 3 was used to perform the algorithm of section V.B and produce the estimates for the numerical examples of section VII, which are found in Table 3. Program 4 was used in simulating random numbers from the Neyman Type A distribution. The subroutine LPOIS1 found in program 4 is a local random number generator for Poisson distributed random deviates.

Programs 1, 2, and 3 are complete and may be used directly. Program 4 must be modified to be compatible with the user's local random number generation subroutines.

COMPUTER PROGRAM 1

```
C
      COMPUTATION OF INFORMATION DETERMINANT GIVEN M1 AND M2
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, BETA, DET
      DIMENSION PARM(27), DETQ(27,27)
      DATA PARM/1.D-2,2.D-2,3.D-2,4.D-2,5.D-2,6.D-2,7.D-2,
     * 8.D-2,9.D-2,1.D-1,2.D-1,3.D-1,4.D-1,5.D-1,6.D-1,7.D-1,
     * 8.D-1,9.D-1,1.D0,2.D0,3.D0,4.D0,5.D0,6.D0,7.D0,8.D0,
     * 9.DO/
      CREATE A TABLE OF DETERMINANT VALUES FOR VARYING
C
C
      PARAMETERS OF
      M1 AND M2
      J1 = 27
      J2 = 27
      DO 999 I = 27,27
      Ml = PARM(I)
      DO 99 J = J1, J2
      M2 = PARM(J)
      BETA = M1*DEXP(-M2)
      VALUES HAVE BEEN SET FOR M1 AND M2
      COMPUTE INFORMATION DETERMINANT
      CALL DETQS
      DETQ(I,J) = DET
99
      CONTINUE
       IF (I.NE.1) GO TO 150
      WRITE (6,101) (PARM(L), L=J1, J2)
      FORMAT(5X,3(3X,F12.10))
101
150
      WRITE (6,151) M1, (DETQ(I,L),L=J1,J2)
151
      FORMAT (F5.2, 3 (3X, F12.10))
999
      CONTINUE
      STOP
      END
C
         SUBROUTINE DETOS
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, BETA, DET
C
      COMPUTE Q GIVEN M1 AND M2
      H = 1.D-7
      PO = DEXP(BETA - M1)
      RX = BETA
      QX = BETA*RX
      Q = QX
      ELN = DLOG(BETA) + BETA
      DO 10 IX = 1,500
      X = DFLOAT(IX)
      ELNEXT = SERIES (X+1.D0)
```

```
RNEXT = ESXP(ELNEXT - ELN)
      ELN = ELNEXT
      QX = QX*M2*(RNEXT/X)*(RNEXT/RX)
      RX = RNEXT
      IF (QX/Q .LT. H) GO TO 20
      K = IX
10
      O = O + OX
      0 = M2*M2*P0*0
20
      A = M1*M2*M2*M2
      B = M1*M2*M2*(M1+M2+M1*M2)
      DET = (1.D0 + M2)*Q/A - B/A
      RETURN
      END
C
         FUNCTION SERIES (X)
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, BETA, DET
      SERIES = 0.D0
      FIND INDEX OF THE MAX TERM: AIM
C
      AIM = 1.D0
      C1 = 1.00
      C2 = 2.D0
      DO 10 K = 1,100
      FNUM = C2*AIM*DLOG(BETA/AIM) + C2*X - C1
      FDEN = C2*(X + AIM) - C1
      AINEXT = AIM*(C1 + FNUM/FDEN)
      IF (AINEXT .LE. 1.D-5) GO TO 11
      AIM = AINEXT
10
      CONTINUE
11
      IF(AIM .LE. 1.D0) AIM = 1.D0
      IF(AIM .GT. 1.D0) AIM = DFLOAT(IDINT(AIM + .5D0))
      IM = IDINT(AIM)
      COMPUTE MAX TERM OF THE SERIES
      ALNIM = 0.DO
      DO 20 I = 1.IM
      AI = DFLOAT(I)
20
      ALNIM = ALNIM + DLOG(AI)
      ALNIM = X*DLOG(AIM) + AIM*DLOG(BETA) - ALNIM
C
      COMPUTE EACH TERM (K) OF SERIES AND SUM TO THE SERIES
      DO 40 \text{ K} = 1.300
      AK = DFLOAT(K)
      ALNK = 0.D0
      DO 30 J = 1, K
      AJ = DFLOAT(J)
30
      ALNK = ALNK + DLOG(AJ)
      ALNK = X*DLOG(AK) + AK*DLOG(BETA) - ALNK
      BK = ALNK - ALNIM
      IF (BK .GE. -161.1D0) SERIES = SERIES + DEXP(BK)
      IF (BK .LT. -161.1D0 .AND. K .GT. IM) GO TO 50
      CONTINUE
40
C
      COMPUTE THE NATURAL LOG OF THE XTH MOMENT.
50
      SERIES = ALNIM + DLOG(SERIES)
      RETURN
      END
```

COMPUTER PROGRAM 2

```
COMPUTATION OF OPTIMAL T AND EFFICIENCY GIVEN M1 AND M2
C
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, DET, TSTAR, ESTAR
      DIMENSION PARM(27), TOPT(27,27), EOPT(27,27), DETQ(27,27)
      CREATE A TABLE OF T-OPTIMAL VALUES FOR VARYING
C
C
       PARAMETERS OF
C
      M1 AND M2
C
C
      READ IN M1 AND M2 AND CORRESPONDING INFORMATION
C
       DETERMINANT VALUES FROM A DISK
      J2 = 0
      DO 99 K = 1.9
      J1 = J2 + 1
      J2 = J1 + 2
      DO 99 I = 1.27
      IF(I .NE. 1) GO TO 50
      READ (5,101) (PARM(J), J=J1, J2)
50
      READ (5,101) (DETQ(I,J),J=J1,J2)
      FORMAT (5X, 3 (3X, F12.10))
101
99
      CONTINUE
      SET M1 AND M2 VALUES FROM PARM
C
C
      COMPUTE OPTIMAL T-STAR = TOPT AND OPTIMAL EFFICIENCY
C
       E-STAR = EOPT
      DO 199 I = 1,27
      Ml = PARM(I)
      DO 199 J = 1,27
      M2 = PARM(J)
      DET = DETQ(I,J)
      CALL OPTIML
      TOPT(I,J) = TSTAR
      EOPT(I,J) = ESTAR
199
      CONTINUE
      PRINT OUT TABLE OF OPTIMAL T AND EFFICIENCY
      IU = 0
      DO 299 KI = 1,3
      IL = IU + 1
      IU = IL + 8
      JU = 0
      DO 298 KJ = 1,3
      JL = JU + 1
      JU = JL + 8
      WRITE (6,201)
      WRITE (6,202)
      WRITE (6,203)
      WRITE (6,204) (PARM(J), J=JL, JU)
      DO 297 I = IL, IU
      WRITE (6,205) PARM(I), (TOPT(I,J),J=JL,JU)
      WRITE (6,206) (EOPT(I,J),J=JL,JU)
297
      CONTINUE
```

```
WRITE (6,207)
      WRITE (6,208)
      WRITE (6,209)
298
      CONTINUE
299
      CONTINUE
      FORMAT('1',////)
FORMAT('0',33X,'TABLE 1: OPTIMAL T AND EFFICIENCY
201
202
      * VALUES',//)
      FORMAT('0',9X,'M1 VALUES',35X,'M2 VALUES')
FORMAT('0',19X,9(2X,F6.4))
203
204
      FORMAT('0',11X,F4.2,4X,9(2X,F6.4))
205
      FORMAT(' ',19X,9(2X,F6.4))
206
      FORMAT('0',/,22X,'FOR EACH ENTRY IN THE TABLE:')
FORMAT('0',21X,'T* = TOP VALUE OF EACH PAIR')
207
208
      FORMAT('0',21X,'EFF = BOTTOM VALUE OF EACH PAIR')
209
      STOP
      END
C
          SUBROUTINE OPTIML
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, DET, TSTAR, ESTAR
      FLAG = 0
      THETA = 9999.D-4
      E2 = 0.00
   FIND A COARSE BRACKET AROUND THETA: (A, B).
      THETA = THETA - 1.D-2
      IF (THETA .LT. 0.D0) GO TO 15
      ET = EFF(THETA)
      IF (ET .LT. E2) GO TO 15
      E2 = ET
      GO TO 5
15
      A = THETA
      IF (A . LT. 0.D0) A = 0.D0
      B = THETA + 2.D-2
      IF(B .GT. 9999.D-4) B = 9999.D-4
   PERFORM A GOLDEN SECTION SEARCH FOR TSTAR TO MAX
       EFF (TSTAR)
   WITH STARTING INTERVAL (A, B).
      R = (-1.D0 + DSQRT(5.D0))/2.D0
20
      A1 = (1.D0 - R) * (B - A) + A
      B1 = R*(B - A) + A
      EAl = EFF(Al)
      EB1 = EFF(B1)
      IF (DABS (EAL - EBL) .LT. 1.D-7) GO TO 30
      IF(EAl .GT. EBl) B = Bl
      IF(EAl .LT. EBl) A = Al
      GO TO 20
30
      TSTAR = (A1 + B1)/2.D0
      ESTAR = EB1
      CHECK FOR A MAX FROM THE LEFT END
C
       IF (FLAG .EQ. 1) GO TO 40
```

```
IF (TSTAR .LT. 1.D-1) RETURN
      T = TSTAR
      E = ESTAR
      THETA = 0.D0
      E2 = 0.D0
      THETA = THETA + 1.D-2
35
      IF (THETA .GT. 99.D-2) RETURN
      ET = EFF(THETA)
      IF(ET .LT. E2) GO TO 36
      E2 = ET
      GO TO 35
36
      A = THETA - 2.D-2
      IF(A .LT. 0.D0) A = 0.D0
      B = THETA
      FLAG = 1
      GO TO 20
40
      IF (E .LT. ESTAR) RETURN
      TSTAR = T
      ESTAR = E
      RETURN
      END
C
         FUNCTION EFF (T)
      IMPLICIT REAL*8 (A-H, O-Z)
      REAL*8 M1, M2
      COMMON M1, M2, DET, TSTAR, ESTAR
      COMPUTE PROBABILITY GENERATING FUNCTION G(T)
C
      F = DEXP(M2*T - M2)
      G = DEXP(-M1*(1.D0 - F))
      COMPUTE G(T**2)
C
      F2 = DEXP(M2*T*T - M2)
      G2 = DEXP(-M1*(1.D0 - F2))
      COMPUTE NUMERATOR OF EFF (T)
C
      FN = 1.D0 + (M2*T - M2 - 1.D0)*F
      FN = M1*G*G*FN*FN
C
      COMPUTE DENOMINATOR OF EFF (T)
      FD = 1.D0 + M2 + M1*M2*(T*F - 1.D0)*(T*F - 1.D0)
      FD = M2*((1.D0 + M2)*G2 - G*G*FD)
      FD = DET*FD
C
      COMPUTE EFFICIENCY EFF (T)
      EFF = FN/FD
      RETURN
      END
```

COMPUTER PROGRAM 3

```
ESTIMATION OF M1 AND M2
C
C
      IMPLICIT REAL*8 (A-H, O-Z)
      DIMENSION IX (450, 10), M2 (9)
      COMMON HATM1, HATM2
      READ (5,9) (M2(J),J=1,9)
9
      FORMAT (3X, 915)
C
      READ IN MATRIX OF RANDOM NOS .: IX
      READ (5,10) ((IX(I,J),J=1,10),I=1,450)
10
      FORMAT (13, 915)
      NNN = 50
      ANN = DFLOAT (NNN)
      IFLAG = -1
      DO 90 I = 1.9
      IFLAG = IFLAG^*(-1)
      IK = NNN*(I-1) + 1
      IKE = IK + NNN - 1
      PM1 = DFLOAT(IX(IK, 1))
      IF (IFLAG .LT. 0) GO TO 15
      WRITE (6,100)
      FORMAT('1',///,T37,'TABLE 3: NUMERICAL RESULTS')
100
      WRITE (6,101)
     FORMAT('0',/,T19,'M1',T27,'M2',T35,'M1',T43,'M2',T51,
* 'T*',T58,'T*',T65,'M1*',T73,'M2*',T80,'NO.')
      WRITE (6,102)
FORMAT(' ',T34,'(MM)',T42,'(MM)',T50,'INIT',T56,'FINAL',
102
     * T80, 'ITR.')
15
      CONTINUE
      DO 90 J = 2,10
      JK = J - 1
      PM2 = DFLOAT(M2(JK))
      XBAR = 0.00
      XSQ = 0.D0
      DO 20 K = IK, IKE
      XBAR = XBAR + DFLOAT(IX(K,J))
20
      XSQ = XSQ + DFLOAT(IX(K,J)*IX(K,J))
      XBAR = XBAR/ANN
      XVAR = (XSQ - ANN*XBAR*XBAR)/(ANN - 1.D0)
      HATM2 = (XVAR - XBAR)/XBAR
      HATM1 = XBAR/HATM2
      AMI = PMI
      AM2 = PM2
      BM1 = HATM1
      BM2 = HATM2
      FIND ESTIMATORS USING EMPIRICAL PGF
      PAST = HATM2
      JJJ = 0
30
      CALL TOPT (T)
      IF(JJJ .EQ. 0) TI = T
      JJJ = JJJ + 1
```

```
IF (JJJ .GT. 20) GO TO 65
      TBAR = 0.D0
      DO 60 KK = IK, IKE
      IF(IX(KK,J) .EQ. 0) TBAR = TBAR + 1.D0
      IF(T .GT. 1.D-4 .AND. IX(KK,J) .NE. 0) TBAR = TBAR +
     * T**IX(KK.J)
60
      CONTINUE
      IF (TBAR .LE. 1.D-4) GO TO 70
      TBAR = TBAR/ANN
      CALL ANEWT (TBAR, PAST, XBAR, T, PM2)
      HATM1 = XBAR/PM2
      IF (DABS (HATM2 - PM2) .LE. 1.D-4) GO TO 80
      HATM2 = PM2
      GO TO 30
      WRITE (6,103) AM1, AM2, BM1, BM2, TI
65
103
      FORMAT('0',T14,4F8.3,T49,F5.4,T56,'----',T64,'----',
     * T72,'----',T81,'+')
      GO TO 90
70
      WRITE (6,104) AM1, AM2, BM1, BM2, TI, T, BM1, BM2, JJJ
104
      FORMAT('0',T14,4F8.3,T49,F5.4,T56,F5.4,2F8.3,I5,'*')
      GO TO 90
80
      WRITE (6,105) AM1, AM2, BM1, BM2, TI, T, HATM1, PM2, JJJ
105
      FORMAT('0',T14,4F8.3,T49,F5.4,T56,F5.4,2F8.3,I5)
90
      CONTINUE
      WRITE (6,106)
      FORMAT('1')
106
      STOP
      END
C
         SUBROUTINE ANEWT (TBAR, YIN, XBAR, T, YOUT)
C
      IMPLICIT REAL*8 (A-H, O-Z)
      COMMON HATM1, HATM2
      TL = DLOG(TBAR)
      DO 20 KKK = 1,20
      GY = DEXP(YIN*(T-1.D0))
      FY = YIN*TL + XBAR*(1.D0 - GY)
      FPY = TL - XBAR*GY*(T - 1.D0)
      YOUT = YIN - FY/FPY
      IF (DABS (YOUT - YIN) .LE. 1.D-4) GO TO 99
      YIN = YOUT
20
      CONTINUE
99
      RETURN
      END
C
         SUBROUTINE TOPT (T)
C
      IMPLICIT REAL*8 (A-H, O-Z)
      COMMON HATM1, HATM2
      FLAG = 0
      THETA = 9999.D-4
      E2 = 0.00
      FIND A COARSE BRACKET AROUND THETA: (A,B)
```

```
5
      THETA = THETA - 1.D-2
      IF (THETA .LT. 0.D0) GO TO 15
      ET = EFF (THETA)
      IF (ET .LT. E2) GO TO 15
      E2 = ET
      GO TO 5
15
      A = THETA
      IF(A .LT. 0.D0) A = 0.D0
      B = THETA + 2.D-2
      IF(B .GT. 9999.D-4) B = 9999.D-4
      R = (-1.D0 + DSQRT(5.D0))/2.D0
      A1 = (1.D0 - R) * (B - A) + A
20
      B1 = R^*(B - A) + A
      EAl = EFF(Al)
      EB1 = EFF(B1)
      IF (DABS (EA1-EB1) .LT. 1.D-15) GO TO 30
      IF (EAL .GT. EBL) B = BL
      IF(EAl .LT. EBl) A = Al
      GO TO 20
30
      T = (A1 + B1)/2.D0
      CHECK FOR MAX FROM THE LEFT END
      IF (FLAG .EQ. 1) GO TO 40
      IF (T .LT. 1.D-1) RETURN
      TSTAR = T
      ESTAR = EB1
      THETA = 0.DO
      E2 = 0.00
35
      THETA = THETA + 1.D-2
      IF (THETA .GT. 99.D-2) RETURN
      ET = EFF (THETA)
      IF (ET .LT. E2) GO TO 36
      E2 = ET
      GO TO 35
      A = THETA - 2.D-2
36
      IF(A . LT. 0.D0) A = 0.D0
      B = THETA
      FLAG = 1
      GO TO 20
      IF (ESTAR .LT.EB1) RETURN
40
      T = TSTAR
      RETURN
      END
C
         FUNCTION EFF(Q)
C
      IMPLICIT REAL*8 (A-H, O-Z)
      COMMON HATM1, HATM2
      AM1 = HATM1
      AM2 = HATM2
      F = DEXP(AM2*Q - AM2)
      G = DEXP(-AM1*(1.D0 - F))
      F2 = DEXP(AM2*Q*Q - AM2)
      G2 = DEXP(-AM1*(1.D0 - F2))
```

```
FN = 1.D0 + (AM2*Q - AM2 - 1.D0)*F

FN = AM1*G*G*FN*FN

FD = 1.D0 + AM2 + AM1*AM2*(Q*F - 1.D0)*(Q*F - 1.D0)

FD = AM2*((1.D0 + AM2)*G2 - G*G*FD)

EFF = FN/FD

RETURN

END
```

COMPUTER PROGRAM 4

```
RANDOM NUMBER GENERATION FROM NEYMAN'S TYPE A
       DISTRIBUTION
      DIMENSION AD (50)
      DATA ISEED1, ISEED2, ISORT, KSIZE/431219, 187648, 0,50/
      CALL OVFLOW
      DO 10 M1 = 1,9
      PM1 = FLOAT (M1)
      CALL LPOIS1 (ISEED1, AD, KSIZE, PM1, ISORT)
      WRITE (6,1)
      FORMAT('1',//////)
1
      WRITE (6,2)
      FORMAT (' ',14X, 'RANDOM NOS. FROM THE NEYMAN TYPE A
2
     * DISTRIBUTION')
      WRITE (6,3)
3
      FORMAT('0',//,12X'M1 VALUE',T40,'M2 VALUES')
      CALL DGHTER (AD, ISEED2, M1, KSIZE)
10
      CONTINUE
      STOP
      END
C
          SUBROUTINE DGHTER (AD, ISEED2, M1)
      DIMENSION AD (50), Y (100), IX (50,9)
      WRITE (6,99) (J,J=1,9)
      FORMAT('0',18X,915,//)
99
      DO 200 K = 1,50
       ISIZE = INT(AD(K))
      IF (ISIZE .NE. 0) GO TO 53
      DO 50 M2 = 1,9
50
      IX(K,M2) = 0
      GO TO 55
53
      DO 100 M2 = 1.9
      PM2 = FLOAT(M2)
      CALL LPOIS1 (ISEED2, Y, ISIZE, PM2, 0)
      IX(K,M2) = 0
      DO 100 I = 1, ISIZE
100
      IX(K,M2) = IX(K,M2) + INT(Y(I))
      WRITE (6,101) M1, (IX(K,J), J=1,9)
FORMAT(' ',10X,15,3X,915)
55
101
200
      CONTINUE
      RETURN
       END
```

APPENDIX B

RANDOM NUMBERS FROM THE NEYMAN TYPE A DISTRIBUTION

Computer program 4 was used to generate the eighty-one sets of random numbers for the numerical examples of Table 3. The parameter range used was \mathbf{m}_1 and \mathbf{m}_2 from 1 to 9 in increments of 1 and the sample size was 50 in all cases. The following pages contain the data sets generated.

M1	VALUE				42	VALU	ES			
		1	2	3	4	5	6	7	8	9
		100-1000000000000000000000000000000000	31320040603000210300432101006310524192062060017432	58200010800000410204447502007580311818007080015147	59460010403000470506659107005550513223054080030665	64490040602000780407617603001870955853050080024772	41680060408000300804468V0700NV50838V45048060073855	957800906000000000000000000000000000000000	1560090209000990001767105005990809868057050016651	1094900601060009802094875090000007088200920600048883

MI	VALUE	M2 VALUES								
		1	2	3	4	5	6	7	8	9
	NEWNAMINEN NEWNONA PARINONA PA	0040403062465040245044604052242425600205220522052244440070	005050337557703032002108056265558805094420613820550	00007035757910707840373640757865308056470051450390	007703020806000703180237643710054007014630895810340	00105030081900407720W758904W3803W000098403919608W0	00401068746240704380966570951176809095490946950550	00604060813100301460244184246844305011450139170990	00105055910710109030V394958846387030760V054C080480	005030579388350400990204775482386508072030629570240

MI	VALUE				42	VAL	IES			
		1	2	3	4	5	6	7	8	9
	ជាមានរថានាយាយនាយាយនាយាយនាយាយនាយាយនាយាយនាយាយ	44440118803018735318422131206022382240020345270031	64037527407064957762496375017142478750010731235076	13057577140025773880251288511370664420090691336061	9109999950700598487665144460358102426020080140728065	2491587420V052154163365453068675268010090586502035	70103229640052315696195593605938723100080997788070	90094+42874069818573251160881964589520070466394076 232 41214 3 4322113323 13 3 1 11123 122431 22	341251215 3 15423522221123 2 1 12224 1 232351 23	19563285490091665736010843008724286560060014098051

MI	VALUE		M2 VALUES							
		1	2	3	4	5	6	7	8	9
	***************************************	237143384019738754335145822512222222222222222222222222222222	88288077532005965499092104196671486357427571422462	65370796856446621062071215733937205646067661827404	92076755014764219304635265707341286680121373058043	73003420463481097001817821233064200905842206089679	40038301936168230859482147453110712102502887679311 2241234412 321433 1252 14 12213114111251131 33521	17756523927216740219673660237314990781220206878464	98552153000641918450965465037913814317177173787940	48959603632492892965329556770715508507596440099691 4331376723144254512382 161133142231112512511155832

MI	VALUE				42	VAL	JES			
		1	2	3	4	5	6	7	8	9
	りゃうのいうじょうじゅうじゅうじょうじょうじょうしょうしょうじゅうじゅうじゅうじゅうじゅうしゃ	469161407918833033361655722725814446457524048481159	74841060849036332830509057654288334946105360204817	0557937023262533332662630018944762169345334491820	276493300355497277087867425747063023238841495480142 2213321 2313 2215 1111122133122223232323232 12 41124	3354321 3412 12226 222312422514321223232 32 5 124	76467800439578089092417875098254347124687361586825 3334321 3613 2344 3324126235 4421435352 2515 135	911967106349555504992222331462862675959094571279798	65201650235884622037917762867995839356045775788450 4565442 5725 1 36471344423736717442646573 36181230	7576652 4826 1 46491335624745819643846573147181249

MI	VALUE				4 2	VALU	ES			
		1	2	3	4	5	6	7	8	9
	\$	5256367245044732245034241377775610057811523730751876	1755260658939911139342176457001509749805177281843642	1 111 112 21211 13221111 112323 321312 22 13 121	2 1211212112122 28322122222342314425131221 14 123	67.258230079003366094839509374809035770164128533675	95268101204212866996033929816294190645940378263627 21242232421525232245332233223463525627162342 3512233	179767606127537156293309824533617537292242 271235	51263353622526342467343434445048295483023521451247	54761147317431977962162766451736487331135138162948 5116455273163645247043354746694620860293573 302259

MI	VALUE	42 VALUES								
		1	2	3	4	5	6	7	8	9
	777777777777777777777777777777777777777	4312471362742884545454547684456000718366546541064262	554458766856311117598369686163470324428297285492268	12588187761035426314990438730908087538175777487249	89310792401931772083146212904849922980664654766013	711204803450550502223516358009407901836575529262558	14750738805132215506846786102584771070809520825773 32113321627421335534423341523654523344531225544258	718834875 0231988643506337441664091359259 0088380688	632706104715928846525855183524757766278784087677766 24113423821439447746624471735885525454723427764379	40307153039991641434162771090341799579942798180808 342136220204326597564355883537898724576834337844389

MI	VALUE				42	VAL	UE S			
		1	2	3	4	5	6	7	8	9
	മ ഴമെയെ ഇത്രയ മയത്തെ ഇത്രയ മയത്തെ ഇത്രയ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00007030881881721244780152813880695092309106483283	3 5233223324222242 12234213 32 24221233 112223422	4172242999824399424B 229944522410869417832578497152222	69731344545927081792882558465571827104511850587500	7072448812573162158444412626805657144499957820304353845524753745456613274613352662564435541334569852	5026654778071226242521637151E7238596598135897023411 63047636765956457625364803473663686445661426587964	8123643589577075511867599122678416268652730024275483157757666157659934287985453573816656771547578564	93.620289810596116700612048152610230372321358730380 93.620289810596116700612048152610230372321358730380 93.620289810596116700612048152610230372321358730380

MI	VALUE				42	VAL	JES			
		1	2	3	4	5	6	7	3	9
	\$	1168006842932853335353508255902559324779018379758424	121025314970988001310301324079501964149868182882700	14292459460393835262458922835642490395805461339325	73100225257117223427640363912610026929927839938259 1332763324535343324242442342626342332424153223232	80785807417268159783459572093758483070500117548359 24327754266363431343525554532716443544635264234243	97004231431609404585286804878921630852721538688930 2453C854385483642455647983552938454556645273243246	48698830745530797505288083991855459777312682934257 24439865277586543+86750984863029564656847296245336	14397837794126082707854287941054554784308029742032 17653966380607953575850184864231675969159315345557	59-61-6037-87-31-931-87-8-4-34-601-50-2-2-4-801-80-6-57-1-8-9-9-4-4-31-0-87-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

LIST OF REFERENCES

- Neyman, J., "On a New Class of 'Contagious' Distributions, Applicable in Entomology and Bacteriology," <u>Annals of</u> <u>Mathematical Statistics</u>, 10, p. 35-57, 1939.
- Wilks, S. S., Collected Papers, Contributions to Mathematical Statistics, p. 49-51, John Wiley & Sons, 1967.
- Shenton, L. R., "On the Efficiency of the Method of Moments and Neyman's Type A Distribution," <u>Biometrika</u>, 36, p. 450-454, 1949.
- Johnson, N. and Kotz, S., <u>Discrete Distributions</u>, p. 216-226, Houghton Mifflin Company, 1969.
- Read, R. R., "Asymptotic Efficiency and Some Quasi-Method of Moments Estimators," USNPS Technical Report NPS55-77-7, Monterey, California, 1977.
- Douglas, J. B., "Fitting the Neyman Type A (two parameter) Contagious Distribution," <u>Biometrics</u>, 11, p. 149-173, 1955.
- Caglayan, R., "Efficient Estimation of Negative Binomial Parameters Using Empirical LaPlace Transform," Unpublished M. S. Thesis, U. S. Naval Postgraduate School, 1978.
- Abramowitz, M. and Stegun, I. A., "Handbook of Mathematical Function," Ninth Edition, p. xiii, Dover Publications, Inc., 1972.
- Katti, S. K. and Gurland, J., "Efficiency of Certain Methods of Estimation for the Negative Binomial and the Neyman Type A Distributions," <u>Biometrika</u>, 49, p. 215-226, 1962.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
4.	Professor Robert R. Read, Code 55Re Department of Operations Research Naval Postgraduate School Monterey, California 93940		1
5.	Professor Toke Jayachandran, Code 53Jy Department of Mathematics Naval Postgraduate School Monterey, California 93940		1
6.	Commander in Chief Pacific Research and Analysis Office J77, Box 13 Camp H. M. Smith, Hawaii 96861		1
7.	Professor James B. Douglas Department of Statistics University of New South Wales P. O. Box 1 Kensington, NSW Australia		1
8.	Professor Jerzy Neyman Director, Statistical Laboratory University of California Berkeley, California 94720		1
9.	Professor Paul R. Milch, Code 55Mh Department of Operations Research Naval Postgraduate School Monterey, California 93940		1

		No.	Copies
10.	Leonard R. Shenton 210 Pine Valley Drive Athens, Georgia 30601		1
11.	Harold R. Bishop 1480 Shaffer Drive San Jose California 95132		1