Recitation 11

October 17, 2024

1 Recap

1.1 The SVD

For an $m \times n$ matrix A of rank r, the SVD of A is the decomposition:

$$A = \underbrace{\left(u_{1} \quad \cdots \quad u_{r}\right)}_{m \times r \; \hat{U}} \underbrace{\left(\begin{matrix} \sigma_{1} \\ & \ddots \\ & \sigma_{r} \end{matrix}\right)}_{r \times r \; \hat{\Sigma}} \underbrace{\left(\begin{matrix} v_{1} \quad \cdots \quad v_{r} \end{matrix}\right)^{T}}_{(n \times r)^{T} \; \hat{V}^{T}}$$

$$= \underbrace{\left(u_{1} \quad \cdots \quad u_{m}\right)}_{m \times m \; U} \underbrace{\left(\begin{matrix} \sigma_{1} \\ & \ddots \\ & \sigma_{r} \quad 0 \quad \cdots \\ & 0 \quad 0 \quad \cdots \\ & \vdots \quad \vdots \quad \ddots \end{matrix}\right)}_{m \times n \; \Sigma} \underbrace{\left(\begin{matrix} v_{1} \quad \cdots \quad v_{n} \end{matrix}\right)^{T}}_{n \times n \; V^{T}}$$

$$= \sigma_{1} u_{1} v_{1}^{T} + \sigma_{r} u_{r} v_{r}^{T} + \cdots + \sigma_{r} u_{r} v_{r}^{T}$$

where $\hat{U}\hat{\Sigma}\hat{V}^T$ is the "compact" SVD and $U\Sigma V^T$ is the "full" SVD; the two versions encapsulate nearly the same information in different formats. Here,

- Singular values: $\sigma_1, \sigma_2, \dots, \sigma_r > 0$, the positive scaling factors on the diagonal of Σ , usually sorted in a non-increasing order $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$.
- Left singular vectors: u_1, \ldots, u_r , which form an orthonormal basis for C(A). The remaining m-r vectors u_{r+1}, \ldots, u_m in U (in the full SVD) form a basis for $C(A)^{\perp} = N(A^T)$, so that U is an orthogonal matrix.
- Right singular vectors: v_1, \ldots, v_r , which form an orthonormal basis for $C(A^T)$. The remaining n-r vectors v_{r+1}, \ldots, v_n in V (in the full SVD) form a basis for $C(A^T)^{\perp} = N(A)$, so that V is an orthogonal matrix.

We can't (yet) prove why this factorization exists or explain how to compute it, but we will focus for now on how to *use* the SVD. It is one of most powerful tools of applied linear algebra.

1.2 Induced Norm

The **induced L2 norm** of a matrix, denoted ||A|| (or $||A||_2$), is defined as:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||} = \sigma_{\max}(A)$$
 (or 0 if $A = 0$),

where $\sigma_{\text{max}}(A)$ is the largest singular value of A. This norm is commonly used in linear algebra, for instance, in the Eckart–Young theorem for low-rank approximations, which states that the truncated SVD of rank k is the closest rank-k matrix to A in both the induced norm and the Frobenius norm.

1.3 Condition Number

The **condition number** $\kappa(A)$ of an invertible square matrix A is defined as:

$$\kappa(A) = ||A|| \cdot ||A^{-1}|| = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)},$$

where $\sigma_{\min}(A)$ is the smallest singular value of A.

As we discussed in class, the condition number is crucial for analyzing the **sensitivity to perturbations**. When solving Ax = b, a small perturbation Δb in the right-hand side results in a perturbation $\Delta x = A^{-1}\Delta b$ in the solution, with the relative error bounded by:

$$\frac{\|\Delta x\|/\|x\|}{\|\Delta b\|/\|b\|} \le \kappa(A).$$

For an **ill-conditioned** matrix ($\kappa(A) \gg 1$), which is nearly singular, a small error in b can lead to a large error in x. In such cases, regularization may be necessary to obtain a stable and meaningful solution.

In contrast, if A is an orthogonal matrix Q (or any scalar multiple αQ), the condition number is $\kappa(A) = \kappa(\alpha Q) = \kappa(Q) = 1$. This is the smallest possible condition number, as such matrices are as "far from singular" as possible.

2 Exercises

1. Show, using the SVD, that A^TA is invertible if A has full column rank. Additionally, prove that $C(A^T) = C(A^TA)$ always holds.

Note: this result was previously proven in recitation 7 using another approach.

- 2. If A is a 1-column matrix, whose column is the vector $a \in \mathbb{R}^n$, write the induced norm ||A|| in terms of a.
- 3. Show that the induced norm satisfies the inequality $||AB|| \le ||A|| \cdot ||B||$ for any matrices A and B of compatible sizes. (Hint: Use the definition of the induced norm in terms of $\max_{x\neq 0}$, not the SVD.)

Based on this result and the previous exercise, what does this imply for ||Ay|| where y is a vector?

- 4. From the previous result, how does $\kappa(AB)$ compare to $\kappa(A) \cdot \kappa(B)$ for square matrices A and B?
- 5. Suppose that instead of an error in b, we make an error ΔA in A, i.e. we solve $(A + \Delta A)(x + \Delta x) = b$ instead of Ax = b.
 - (a) Assuming that the errors are small so that we can neglect the second-order term $\Delta A \Delta x$, find an approximate formula for Δx in terms of A (or A^{-1}), x, ΔA , and/or b.
 - (b) Using the approximate Δx from the previous part, show that $\frac{\|\Delta x\|/\|x\|}{\|\Delta A\|/\|A\|} \leq \kappa(A)$. where $\|A\|$ is the induced norm. That is, the same condition-number bound applies to error in b or errors in A!
- 6. (a) Show that $\kappa(A^T A) = \kappa(A)^2$.
 - (b) Explain why this holds even for non-square $m \times n$ matrices, if we generalize the condition number as $\kappa(A) = ||A|| \cdot ||A^+|| = \sigma_{\max}/\sigma_{\min}$ in that case.

Solutions

1. Let $A = \hat{U}\hat{\Sigma}\hat{V}^T$ be the compact SVD of A, where \hat{U} is an $m \times r$ orthogonal matrix, \hat{V} is an $n \times r$ orthogonal matrix, and $\hat{\Sigma}$ is a diagonal $r \times r$ matrix with singular values of A on the diagonal. Then,

$$A^T A = (\hat{U} \hat{\Sigma} \hat{V}^T)^T (\hat{U} \hat{\Sigma} \hat{V}^T) = \hat{V} \hat{\Sigma}^T \hat{U}^T \hat{U} \hat{\Sigma} \hat{V}^T.$$

Since \hat{U} has orthonormal columns, we have $\hat{U}^T\hat{U} = I_r$, and thus:

$$A^T A = \hat{V}(\hat{\Sigma}^T \hat{\Sigma}) \hat{V}^T$$
.

Here, $\hat{\Sigma}^T\hat{\Sigma}$ is a diagonal matrix where each diagonal element is σ_i^2 , with σ_i being the singular values of A. This gives us:

$$\Sigma^T \Sigma = \underbrace{\begin{pmatrix} \sigma_1^2 & & \\ & \ddots & \\ & & \sigma_r^2 \end{pmatrix}}_{r \times r}.$$

Therefore, $\hat{V}(\hat{\Sigma}^T\hat{\Sigma})\hat{V}^T$ is the compact SVD of A^TA . This implies the following:

- (a) The ranks of A and A^TA are the same, and the singular values of A^TA are the squares of the singular values of A.
- (b) A^TA is invertible if and only if A has full column rank, i.e., r = n, so that the $n \times n$ matrix A^TA also has rank n.
- (c) The column space of A^TA , $C(A^TA)$, is spanned by the columns of \hat{V} . Similarly, since $A^T = \hat{V}\hat{\Sigma}^T\hat{U}^T$, we have $C(A^T)$ also spanned by the columns of \hat{V} . Therefore, $C(A^TA) = C(A^T)$.
- 2. Let A be a 1-column matrix with column a. The induced norm of A is given by:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

Since x is a 1-component vector $x = (\chi)$ with a single scalar component χ , this reduces to scalar operations: $Ax = a\chi$ and $||x|| = |\chi|$, so that the x terms cancel out:

$$||A|| = \max_{\chi \neq 0} \frac{||a|| \cdot |\chi|}{|\chi|} = ||a||.$$

Alternatively, we can use the compact SVD of A, which has rank 1. The SVD is

$$A = \underbrace{\frac{a}{\|a\|}}_{n \times 1} \underbrace{\left(\|a\|\right)}_{1 \times 1} \underbrace{\left(1\right)}_{1 \times 1},$$

Thus, ||a|| is the largest (and the only) singular value for A, so ||A|| = ||a||.

3. By the definition of the induced norm:

$$||AB|| = \max_{x \neq 0} \frac{||ABx||}{||x||} = \max_{x \neq 0} \frac{||A(Bx)||}{||x||} = \max_{x \neq 0} \left(\frac{||A(Bx)||}{||Bx||}\right) \left(\frac{||Bx||}{||x||}\right).$$

Since the maximum of a product is bounded by the product of the maxima, we have:

$$\|AB\| \le \max_{y \ne 0} \frac{\|Ay\|}{\|y\|} \cdot \max_{x \ne 0} \frac{\|Bx\|}{\|x\|} = \|A\| \cdot \|B\|,$$

where y = Bx. Thus, $||AB|| \le ||A|| \cdot ||B||$.

Additionally, for any vector y, this implies that $||Ay|| \le ||A|| \cdot ||y||$, treating y as a 1-column matrix (as in problem 2).

4. We showed that $||AB|| \leq ||A|| \cdot ||B||$. Since $(AB)^{-1} = B^{-1}A^{-1}$, it follows that:

$$||(AB)^{-1}|| \le ||B^{-1}|| \cdot ||A^{-1}||.$$

Therefore,

$$\kappa(AB) = ||AB|| \cdot ||(AB)^{-1}||$$

$$\leq (||A|| \cdot ||B||) \cdot (||B^{-1}|| \cdot ||A^{-1}||)$$

$$= \kappa(A) \cdot \kappa(B).$$

Thus, $\kappa(AB) \leq \kappa(A) \cdot \kappa(B)$.

5. (a) Starting from $(A + \Delta A)(x + \Delta x) = b$ and neglecting the second-order term $\Delta A \Delta x$, we have:

$$b = (A + \Delta A)(x + \Delta x)$$

$$= Ax + \Delta Ax + A\Delta x + \Delta A\Delta x \approx 0$$

$$\approx b + A\Delta x + \Delta Ax.$$

After canceling Ax = b, we get:

$$A\Delta x \approx -\Delta Ax$$
.

Thus, the approximate formula for Δx is:

$$\Delta x \approx -A^{-1}\Delta Ax$$
.

which approaches zero proportionally to ΔA .

(b) The relative error in x can be approximated using part (a):

$$\frac{\|\Delta x\|}{\|x\|} \approx \frac{\|A^{-1}(\Delta A)x\|}{\|x\|}.$$

Using the inequality from problem (3):

$$\frac{\|A^{-1}(\Delta A)x\|}{\|x\|} \le \|A^{-1}\Delta A\| \le \|A^{-1}\| \cdot \|\Delta A\|.$$

Therefore, we get:

$$\frac{\|\Delta x\|/\|x\|}{\|\Delta A\|/\|A\|} \approx \frac{\|A^{-1}(\Delta A)x\|}{\|x\|} \cdot \frac{\|A\|}{\|\Delta A\|}$$

$$\leq (\|A^{-1}\| \cdot \|\Delta A\|) \frac{\|A\|}{\|\Delta A\|}$$

$$= \|A^{-1}\| \cdot \|A\| = \kappa(A).$$

Remark: The condition number $\kappa(A)$ is related to error growth for any type of error, including errors in b, A as we have shown. A similar analysis can be applied to roundoff errors (with the help of some numerical-analysis knowledge, beyond 18.C06, of "backwards stable" algorithms).

6. (a) From problem (1), we know that the singular values of A^TA are the squares of the singular values of A. Therefore, the condition number of A^TA is:

$$\kappa(A^T A) = \frac{\sigma_{\max}(A^T A)}{\sigma_{\min}(A^T A)} = \left(\frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}\right)^2 = \kappa(A)^2.$$

(b) Nothing changes in the generalized case, since it is still true that the singular values of A^TA are the squares of the singular values of A, and the pseudo-inverse inverts these singular values (exactly as the inverse does in the invertible case).

Remark: Because of this, numerical linear algebra (beyond the scope of 18.C06) typically does not solve least-squares problems by solving the normal equations $A^T A \hat{x} = A^T b$, since that squares the sensitivity to errors (e.g., roundoff errors). Instead, one prefers other algorithms based on QR factorization or the SVD.