Beam parameters for the Hall-B RG-M run during November 2021 through January 2022

October 28, 2021

Hall-B Run Group M is scheduled to run from November 10, 2021, to January 31, 2022. in experimental Hall B. The CLAS12 is a multipurpose detector system based on a toroidal (forward detector) and a solenoid (central detector) superconducting magnets. The detector system includes Cherenkov Counters, Drift Chambers, Scintillator Counters, Silicon-strip detectors, Micromega gas detectors, and Calorimeters. In this run period CLAS12 will be used in its standard detector and shielding configuration with the Forward tagger off and the Large Moller cone installed. RG-M run will use up to 6 GeV (3 passes) electron beam, with currents up to 300 nA (up to 500 nA on empty target). This run will use several different targets ranging from cryogenic, liquid targets, to heavy solid targets. Targets will be located inside the vacuum scattering chamber that is installed inside the central detector in the center of the 5 T solenoid magnet.

The target system used for RG-M is the Saclay cryo-target. This target system has been used in Hall B throughout the 6 GeV and 12 GeV era. RG-M will use the following liquid targets using the Saclay cryo target system (H₂, D₂, ⁴He, Ar), and also solid targets (¹²⁰Sn, C). This target system will be able to support all the targets of interest, except for ^{40,48}Ca which will require encapsulation and will need to be mounted separately. The targets are housed in a vacuum vessel along with the cryogenic system. A scattering chamber is installed around the target cell area. This is made from Rohacell foam with a wall thickness of 6.5 mm. Aluminum windows are used at the entrance and exit of the liquid cells, and at the exit of the scattering chamber.

The details of all components, such as windows and cells, are shown on the beam line drawing, including thicknesses and locations. The beam line layout is shown in Figure 1

Table 1: Target configurations that will be used in RG-M where liquid targets are denoted by "L" and soild targets are listed just as the chemical composition.

Energy (GeV)	Target	Thickness (cm)	Density $(g cm^{-3})$	$\begin{array}{c} {\rm Areal} \\ {\rm Density} \\ ({\rm mgcm^{-2}}) \end{array}$	T/X_o^1 (%)	Beam Current (nA)	$\begin{array}{c} \text{Luminosity}^2\\ (10^{35}\\ \text{s}^{-2}\text{cm}^{-2}) \end{array}$
6.6	LH LD2	5 5	$0.071 \\ 0.164$	355 820	0.6 0.7	80 70	1 2
	LHe	5	0.125	625	0.7	90	$\frac{2}{2}$
	LAr	0.5	1.396	698	3.6	80	2
	C^{-3}	0.2	2.20	440	1.0	130	2
	$^{120}\mathrm{Sn}$ 3	0.03	7.31	205	2.3	277	2
	$^{40,48}\mathrm{Ca}$	0.13	1.55	200	1.2	280	2
	Empty	_	_	_	_	525	_
4.4	LH	5	0.071	355	0.6	108	1.5
	LAr/C	0.5/0.2	1.396/2.20	698/440	3.6/1.0	110/175	3
	Empty	_ '	_ '	_	_	450	_
2.2	LH	0.5	0.071	35.5	0.06	50	0.06
	LAr/C	0.5/0.2	1.396/2.20	698/440	3.6/1.0	5/8	0.13
	Empty	_	_ ′		_	380	_

 $^{^1}$ Total thickness (T) per radiation length (X_o) 2 per nucleon. 3 4-foil target cell.

Thwe requirements for beam parameters for RG-M runare summarized in Table 2

Table 2: Required beam parameters.

Table 2. Required beam parameters.							
Parameter	Requirement	Comments					
Energy (GeV)	6, 4, 2	3, 2, 1 pass					
$\delta \mathrm{p}/\mathrm{p}$	$\sim 2 \times 10^{-4}$						
Current (nA)	≤ 300	up to 500 nA on empty target					
$\sigma_{xy} \; (\mu \mathrm{m})$	< 200	As measured by 2H01 harp					
Position stability (μm)	< 100	On $2H01$ and $2H00$ (> $30nA$)					
		BPMs with feedback					
Divergence (μrad)	< 100						
Beam Halo $(> \pm 5\sigma)$	$< 10^{-5}$	As measured by 2H01 harp					
Long term current stability	< 5 %	For > 30 nA, integrated					
		over minutes					
Short term bean intensity	< 10%	of the total power, measured					
stability (60 Hz harmonics)		with SLM and halo rates					
Bunch charge fluctuations	< 10 %	Measured with DAQ					

For initial beamline tuning and after extended down time (¿8 hours) the electron bem will be dumped in the tagger dump. After that the beam will be sent to the Faraday Cup and centered on the target. For beam currents for which beam power exceeds 175 W on the Faraday Cup (30 nA at 6 GeV, 44 nA at 4 GeV and 87 nA at 2 GeV) the beam blocker will be inserted upstream of the Faraday Cup.

Table 3 presents the proposed run plan. Depending on the performance of the experiment and accelerator it will be adjusted.

Table 3: Proposed Run plan

Table 3: Proposed Run plan								
Energy (GeV)	Target	Duration (Hours)	Target Change Date					
6.0	H	48	November 10, 2021					
	Target change H to D	8	November 13					
	D	144	November 13					
	Target change D to He	8	November 20					
	${ m He}$	144	November 20					
	Target change He to $^{40}\mathrm{Ca}$	22	November 26					
	$^{40}\mathrm{Ca}$	144	November 27					
	Target change ⁴⁰ Ca to ⁴⁸ Ca	12	December 4					
	$^{48}\mathrm{Ca}$	144	December 4					
	Target change $^{48}\mathrm{Ca}$ to C	12	December 4					
	\mathbf{C}	144	December 10					
	Target change C to Sn	1	December 17					
	Sn	120	December 17 - December 20					
	BREAK							
	Sn	24	January 10					
	Target change Sn to Ar	22	January 11					
	m Ar	152	January 11					
	Pass change to 1 pass		January 19					
2.1	Ār	40	January 19					
	Target change Ar to C	1	January 20					
	\mathbf{C}	40	January 18					
	Target change C to D	22	January 21					
	D	40	January 20					
	Target change D to H	8	January 23					
	$^{\mathrm{H}}$	8	January 23					
	Pass change to 2 pass		January 24					
	Target change H to Ar	22	January 24					
4.0	m Ar	40	January 25					
	Target change Ar to C	1	January 27					
	$^{\circ}$ C	40	January 27					
	Target change C to H	8	January 29					
	H	32	January 29					

Figure 1: The layout of the RG-M beamline.