가설검정

■ 가설검정 핵심

- 1. 목적: 모집단의 모수에 대한 특정 주장이 옳은지 판정
- 2. 대상: 모평균, 모비율, 모분산 등 모수(parameter)
- 3. 절차
- 귀무가설(H₀)과 대립가설(H₁) 설정
- 표본으로부터 검정통계량 계산
- 유의수준(α)과 p값 비교
- H₀ 기각 여부 결정

4. 결과:

- "귀무가설 기각" → 가설에 반대할 근거 있음
- "기각하지 못함" → 가설을 부정할 근거 부족
- √ 가설검정은 표본을 근거로 모수에 대한 가설을 통계적으로 판정하는 절차입니다.

- 검정통계량과 분포별 사용 상황
- 1. Z분포 (표준정규분포)
- 사용 조건
- · 모집단 분산(σ²)을 알고 있거나
- · 표본 크기 n이 충분히 커서(보통 n ≥ 30) 중심극한정리 적용 가능
- 대표 상황
- · 모평균 검정 (σ^2 알려진 경우)
- · 모비율 검정
- · 두 집단 평균 차이 검정 (σ^2 알려진 경우, 큰 표본)

○ 사례

- 공장 불량률 검정
 - · 한 공장에서 생산된 부품 불량률이 5% 이하인지 알고 싶음.
 - · 대량 표본(예: 500개)을 뽑아 불량품 비율을 계산 → Z검정으로 모비율 판정.
- 대학생 키 평균 비교
- · 전국 대학생 평균 키가 172cm라고 알려져 있고, 모집단 분산(σ^2)이 알려져 있음.
- · 표본 50명을 조사했을 때 평균이 171cm → Z검정으로 평균 차이 검정

○ 문제

전국 대학생들의 평균 키는 172cm라고 알려져 있다.

모집단 분산은 $\sigma^2 = 9$ (즉, 표준편차 $\sigma = 3$)이다.

어느 대학에서 대학생 50명을 무작위 추출하여 조사한 결과, 표본 평균은 171cm였다.

이 대학생들의 평균 키가 전국 평균과 다르다고 할 수 있는지,

유의수준 0.05에서 검정하시오.

√ 풀이

- 1. 가설 설정
 - H₀ (귀무가설): μ = 172 (전국 평균과 같다)
 - H₁ (대립가설): μ ≠ 172 (전국 평균과 다르다)

2. 검정통계량 (Z값)

$$Z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

- ullet 표본평균 $ar{x}=171$
- 모집단 평균 μ₀ = 172
- 모집단 표준편차 σ = 3
- 표본 크기 n = 50

$$Z = rac{171 - 172}{3/\sqrt{50}} = rac{-1}{3/7.071} = rac{-1}{0.424} pprox -2.36$$

3. 기각역 결정

- 유의수준 α = 0.05, 양측검정
- Z 임계값 = ±1.96

4. 판정

- 계산된 Z = -2.36
- -2.36 < -1.96 → 기각역에 속함
- 따라서 귀무가설 기각

5. 결론

유의수준 5%에서 이 대학생들의 평균 키는 전국 평균 172cm와 다르다고 할 수 있다.

2. t분포 (Student's t)

- 사용 조건
- · 모집단 분산(σ²) 알려지지 않음
- · 표본 크기 n이 작거나 중간 규모
- 대표 상황
- · 단일 모평균 검정 (σ^2 모름)
- · 두 집단 평균 차이 검정 (독립표본 t-test, 대응표본 t-test)
- · 회귀분석에서 회귀계수 유의성 검정

○ 사례

- 소규모 표본 평균 검정
- · 신약 복용 환자 12명의 혈압 평균이 기존 120mmHg와 차이가 있는지 확인.
- · 모집단 분산은 모름 → 단일표본 t검정.
- 두 반 시험 성적 비교
- · 반 A(15명)와 반 B(17명)의 수학 평균 점수가 다른지 알고 싶음.
- · 분산은 모름, 표본 크기도 작음 → 독립표본 t검정.

1. 목적

- 두 개의 독립된 집단의 평균이 **통계적으로 유의하게 다른지** 판정하는 것.
 - 반 A와 반 B의 평균 시험 점수 비교
 - 남녀 평균 키 차이 검정
 - 신약 복용군 vs 위약군 평균 혈압 비교

2. 가설 설정

- 귀무가설(H₀): 두 집단의 평균이 같다 (μ₁ = μ₂)
- 대립가설(H₁): 두 집단 평균이 다르다 (μ₁ ≠ μ₂)

경우에 따라 **단측 검정**으로도 가능 (μ, > μ₂ 또는 μ, < μ₂)

3. 검정통계량

두 집단 평균 차이를 비교할 때 사용하는 통계량은 다음과 같습니다.

$$t = rac{ar{x}_1 - ar{x}_2}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

여기서,

- $ar{x}_1, ar{x}_2$: 두 집단의 표본평균
- n_1, n_2 : 두 집단의 표본 크기
- s_p : 풀드(pooled) 표준편차

$$s_p^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}$$

• 자유도(df): $n_1 + n_2 - 2$

4. 사용 조건 (전제 가정)

- 1. 두 집단은 서로 **독립적** (겹치지 않는 집단)
- 2. 각 집단은 **정규분포**를 따른다고 가정
- 3. 두 집단의 분산이 같다고 가정 (등분산성)
 - 만약 등분산성을 만족하지 않으면 Welch's t-test를 사용

5. 절차

- 1. 귀무가설(H₀)과 대립가설(H₁) 설정
- 2. 두 집단의 평균, 분산, 표본크기 계산
- 3. 풀드 표준편차 (s_p) 또는 Welch 분산 사용
- 4. 검정통계량 t값 계산
- 5. 자유도 df로 임계값 찾거나 p-값 계산
- 6. 유의수준 α 와 비교 → H_0 기각 여부 판정

6. 해석 방법

- |t| > 임계값 → H₀ 기각 → 평균 차이 있음
- |t| ≤ 임계값 → H₀ 채택 → 평균 차이 있다고 볼 수 없음
- p-값 < α → H₀ 기각

7. 구체적 예시

두 반 성적 비교

- 반 A (n₁=15): 평균 71.1, 표준편차 2.4
- 반 B (n₂=17): 평균 80.5, 표준편차 2.0

검정통계량:

$$t = \frac{71.1 - 80.5}{2.24\sqrt{1/15 + 1/17}} \approx -11.46$$

- 자유도 df = 30
- 유의수준 0.05, 양측검정 임계값 ≈ ±2.042
- |t| = 11.46 > 2.042 → H₀ 기각

8. 확장

- 대응표본 t-검정 (Paired t-test): 같은 집단을 전후 비교 (예: 운동 전후 체중 변화)
- Welch's t-검정: 두 집단 분산이 같지 않을 때 사용

② 독립표본 t검정 문제

문제

반 A(15명)과 반 B(17명)의 수학 시험 점수가 다음과 같다.

- 반 A: 72, 75, 68, 70, 74, 69, 71, 73, 76, 68, 72, 74, 70, 69, 71
- 반 B: 78, 80, 82, 79, 81, 77, 83, 84, 79, 80, 82, 78, 81, 83, 80, 79, 82

두 반의 평균 점수에 차이가 있는지 검정하라. (유의수준 α =0.05)

풀이

- 1. 가설 설정
- H₀: μ₁ = μ₂ (두 반 평균 차이 없음)
- H₁: μ₁ ≠ μ₂ (두 반 평균 차이 있음)
- 2. 표본 통계량
- 반 A 평균 = 71.1, 표준편차 \approx 2.40, n_1 = 15
- 반 B 평균 = 80.5, 표준편차 ≈ 2.02, n₂ = 17
- 3. 검정통계량
- 풀드 분산

$$s_p^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2} pprox rac{(14)(2.40^2) + (16)(2.02^2)}{30} pprox 5.02 \ s_p = \sqrt{5.02} pprox 2.24$$

• t값

$$t = rac{ar{x}_1 - ar{x}_2}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}} = rac{71.1 - 80.5}{2.24 \cdot \sqrt{1/15 + 1/17}} pprox rac{-9.4}{0.82} pprox -11.46$$

- 4. 기각역 확인
- 자유도 df = n₁+n₂-2 = 30
- α =0.05, 양측검정 ightarrow 임계값 $t_{0.025,30}pprox\pm2.042$
- 5. 판정
- 계산된 t = -11.46 은 기각역에 포함됨.
- 결론: 귀무가설 기각 → 두 반 평균 점수에 유의한 차이가 있음

3. 카이제곱 분포 (x²)

- 사용 조건
- · 비율/분할표, 분산 관련 검정에 주로 사용
- 대표 상황
- · 분산 검정 (모분산 = 특정 값인지?)
- · 적합도 검정 (데이터가 특정 분포를 따르는지?)
- · 독립성 검정 (두 범주형 변수 간 독립 여부, 교차표 분석)

○ 사례

- 주사위 적합도 검정
- · 주사위를 60번 던져 나온 눈의 분포가 "공정한 주사위(1/6씩)"인지 확인.
- · 기대빈도와 관찰빈도 비교 → x² 적합도 검정.
- 흡연과 질병의 독립성 검정
- · 흡연 여부(흡연/비흡연)와 질병 발생 여부(있음/없음)를 교차표로 분석.
- · 두 변수가 독립인지 여부 확인 → x² 독립성 검정.

○ 문제

어느 연구자가 200명을 대상으로 흡연 여부와 질병 발생 여부를 조사하여 다음과 같은 교차 표를 얻었다.

	질병 있음	질병 없음	합계
흡연자	30	70	100
비흡연자	10	90	100
합계	40	160	200

이 자료를 바탕으로, 흡연 여부와 질병 발생 여부가 독립인지 유의수준 0.05에서 검정하시오.

√ 풀이

- 1. 가설 설정
 - H₀ (귀무가설): 흡연 여부와 질병 발생 여부는 독립이다.
 - H1 (대립가설): 흡연 여부와 질병 발생 여부는 독립이 아니다.

2. 기대도수 계산

독립이라면 각 셀의 기대도수는

$$E_{ij} = rac{\left(ec{ ext{ot}} \, ec{ ext{a}} \, ec{ ext{a}} \,
ight) imes \left(ext{열합계}
ight)}{ ext{전체합계}}$$

• 흡연 & 질병 있음: $\frac{100 \times 40}{200} = 20$ • 흡연 & 질병 없음: $\frac{100 \times 160}{200} = 80$ • 비흡연 & 질병 있음: $\frac{100 \times 40}{200} = 20$ • 비흡연 & 질병 없음: $\frac{100 \times 160}{200} = 80$

따라서 기대도수표는:

	질병 있음	질병 없음
흡연자	20	80
비흡연자	20	80

3. χ² 검정통계량 계산

$$\chi^2 = \sum \frac{(관측도수 - 기대도수)^2}{기대도수}$$

- (30-20)²/20 = 100/20 = 5
- (70-80)²/80 = 100/80 = 1.25
- $(10-20)^2/20 = 100/20 = 5$
- (90-80)²/80 = 100/80 = 1.25

$$\chi^2 = 5 + 1.25 + 5 + 1.25 = 12.5$$

4. 기각역 결정

- 자유도 df = (행−1)×(열−1) = (2−1)×(2−1) = 1
- 유의수준 α = 0.05
- χ² 임계값 (df=1, α=0.05) = 3.841

5. 판정

- 계산된 χ² = 12.5 > 3.841
- ⇒귀무가설 기각

6. 결론

유의수준 5%에서 흡연 여부와 질병 발생 여부는 독립이 아니다. 즉, 흡연과 질병은 관련성이 있다고 볼 수 있다.

🔽 요약

- H₀: 독립이다 → 기각됨
- $\chi^2 = 12.5$, df=1, p<0.05
- 결론: 흡연과 질병은 독립이 아님 (연관 있음)

4. F분포

- 사용 조건
- · 두 개 이상의 분산 비교, 분산비를 검정
- 대표 상황
- · 두 집단의 분산이 같은지 검정
- · 분산분석(ANOVA) → 집단 평균 차이 검정 시 사용
- · 회귀분석 전체 유의성 검정

○ 사례

- 세 가지 학습법 효과 비교 (ANOVA)
- · 학습법 A, B, C 세 그룹 학생들의 평균 점수 차이가 있는지 비교.
- · 분산분석(ANOVA)에서 집단 간 분산과 집단 내 분산 비율을 계산 → F검정.

○ 문제

- 어느 연구자가 세 가지 학습법(A, B, C)의 효과를 비교하기 위해 학생들을 세 그룹으로 나누어 시험 점수를 측정하였다.
 - · 학습법 A: 70, 72, 68, 74, 71
 - · 학습법 B: 75, 78, 74, 77, 76
 - · 학습법 C: 80, 82, 78, 81, 79
- 세 그룹 학생들의 평균 점수가 동일하다고 할 수 있는지, 유의수준 0.05에서 검정하시오.

√ 풀이

- 1. 가설 설정
- H₀ (귀무가설): 세 집단의 평균은 모두 같다 (μA = μB = μC)
- H1 (대립가설): 적어도 한 집단의 평균은 다르다
- 2. 기초 통계량 계산
- 그룹별 표본 크기: nA = nB = nC = 5, 총 n = 15
- 그룹 평균:
- \cdot A = (70+72+68+74+71)/5 = 71
- $\cdot B = (75+78+74+77+76)/5 = 76$
- \cdot C = (80+82+78+81+79)/5 = 80
- 전체 평균 (Grand mean): (355+380+400)/15 = 1135/15 ≈ 75.67

3. 제곱합 계산 (Sum of Squares)

집단 간 제곱합 (SSB)

$$SSB = \sum n_i (\bar{x}_i - \bar{x})^2 = 5(71 - 75.67)^2 + 5(76 - 75.67)^2 + 5(80 - 75.67)^2$$

- = 5(21.78) + 5(0.11) + 5(18.78)
- $\approx 108.9 + 0.55 + 93.9 = 203.35$
- 집단 내 제곱합 (SSW)

$$SSW = \sum \sum (x_{ij} - ar{x}_i)^2$$

(각 그룹 내 분산 계산 후 합산)

- 그룹 A 분산: (70-71)²+(72-71)²+(68-71)²+(74-71)²+(71-71)² = 1+1+9+9+0=20
- 그룹 B 분산: (75-76)²+(78-76)²+(74-76)²+(77-76)²+(76-76)² = 1+4+4+1+0=10
- 그룹 C 분산: (80-80)²+(82-80)²+(78-80)²+(81-80)²+(79-80)² = 0+4+4+1+1=10
 합계 = 40

따라서 SSW = 40

• 전체 제곱합 (SST) = SSB + SSW = 203.35 + 40 = 243.35

4. 자유도와 평균제곱

- 집단 간 자유도: dfB = k-1 = 3-1 = 2
- 집단 내 자유도: dfW = n-k = 15-3 = 12
- 평균제곱(MSB, MSW):
 - MSB = SSB / dfB = 203.35 / 2 = 101.68
 - MSW = SSW / dfW = 40 / 12 = 3.33

5. F 검정통계량

$$F=rac{MSB}{MSW}=rac{101.68}{3.33}pprox 30.5$$

6. 기각역 결정

- 자유도 (2, 12), α=0.05
- F임계값 ≈ 3.89

7. 판정

- 계산된 F = 30.5 > 3.89
- ⇒ 귀무가설 기각

✔ 결론

유의수준 5%에서 **세 가지 학습법의 평균 점수는 동일하지 않다.**

즉, 적어도 한 학습법은 다른 학습법과 평균 효과가 유의하게 다르다.

☑ 정리

- H₀: μA=μB=μC → 기각됨
- F=30.5, p<0.05
- 결론: 학습법 간 점수 차이가 있다

- 두 공정의 분산 비교
- · 공정 1과 공정 2의 제품 길이 변동성이 같은지 확인.
- · 두 집단의 분산비를 비교 → F분포 이용.

📌 문제

어느 공장에서 두 가지 공정(공정 1, 공정 2)을 통해 동일한 부품을 생산하였다. 두 공정의 제품 길이 변동성(분산)이 동일한 지 검정하기 위해 각각의 표본을 추출한 결과는 다음과 같다.

- ullet 공정 1: n₁=10, 표본분산 $s_1^2=4.0$
- \circ 공정 2: n₂=12, 표본분산 $s_2^2=2.0$

유의수준 0.05에서 두 공정의 분산이 동일하다고 할 수 있는지 검정하시오.

📌 풀이

1. 가설 설정

- Η₀ (귀무가설): 두 집단의 분산이 같다 (σ₁² = σ₂²)
- H₁ (대립가설): 두 집단의 분산이 다르다 (σ₁² ≠ σ₂²)

2. 검정통계량

F 통계량은 **큰 분산 ÷ 작은 분산**으로 정의.

$$F=rac{s_1^2}{s_2^2}=rac{4.0}{2.0}=2.0$$

3. 자유도

- 분자 자유도: df₁ = n₁−1 = 9
- 분모 자유도: df₂ = n₂−1 = 11

4. 기각역 결정

- 유의수준 α=0.05, 양측검정
- F 분포표 (df₁=9, df₂=11) 참고
 - 상한 임계값: $F_{0.975,9,11}pprox 3.59$
 - ullet 하한 임계값: $F_{0.025,9,11}=rac{1}{F_{0.975,11,9}}pproxrac{1}{3.68}pprox0.272$

즉, 기각역은 F < 0.272 또는 F > 3.59

5. 판정

- 계산된 F = 2.0
- 기각역(0.272 ~ 3.59) 안에 포함됨

6. 결론

유의수준 5%에서 두 공정의 분산은 동일하다고 볼 수 있다.

즉, 공정 1과 공정 2의 제품 길이 변동성에는 유의한 차이가 없다.

√ 정리표

분포	주로 쓰는 상황
Z분포	모분산 알고 있거나, 표본 크기 충분히 클 때 평균·비율 검정
t분포	모분산 모를 때 평균 검정, 작은 표본, 회귀계수 검정
카이제곱(χ²)	분산 검정, 분할표 독립성 검정, 적합도 검정
F분포	두 분산 비교, 분산분석(ANOVA), 회귀모형 전체 검정

√ 요약표

분포	사례 1	사례 2
Z분포	공장 불량률 ≤ 5% 판정	전국 평균 키와 표본 평균 비교
t분포	신약 복용 환자 혈압 평균 vs 기준	두 반의 시험 성적 평균 차이
χ²분포	주사위가 공정한지 적합도 검정	흡연과 질병 발생 독립성 검정
F분포	3개 학습법 점수 차이 (ANOVA)	두 공정 분산이 같은지 비교

- □ 가설검정에서 쓰이는 대표적인 분포들
- 1. 정규분포 (Normal distribution)
- 용도: 많은 검정이 정규분포를 기반으로 파생됨.
- 사례:
 - · Z검정의 근거 분포
 - · 표본평균의 분포 (중심극한정리)
- 2. 이항분포 (Binomial distribution)
- 용도: 성공/실패 같은 이산 확률 상황에서 검정
- 사례:
 - · 동전이 공정한지(앞면 확률 p=0.5 검정)
 - · 제품 불량률이 5%인지 검정
- 3. 포아송분포 (Poisson distribution)
- 용도: 희귀 사건 발생 횟수에 대한 가설검정
- 사례:
 - · 시간당 교통사고 발생 횟수가 일정한지 검정
 - · 특정 구역에서 하루 평균 사건 발생 건수 비교

- 4. 지수분포 (Exponential distribution)
- 용도: 대기시간, 수명분석에서 검정
- 사례:
 - · 부품 고장 시간 분포가 평균 λ^{-1} 인지 검정
 - · 대기시간 분포가 특정 모형과 일치하는지
- 5. t, F, χ² 의 파생분포들
 - 스튜던트화된 범위분포(Studentized range, q분포)
 - · 용도: 다중비교 (Tukey HSD 검정 등)
 - Hotelling's T² 분포
 - · 용도: 다변량 평균 검정 (여러 변수 동시 평균 비교)
- 6. 비모수 검정에서의 분포
- 순위 기반 분포 (Rank-based distributions)
- · Wilcoxon 검정, Mann-Whitney U 검정 → 특정 분포 가정 없음
- 부트스트랩 분포 (Bootstrap distribution)
- · 컴퓨터 시뮬레이션 기반으로 가설검정

○ 정리

분포	쓰임새	
정규분포	많은 검정의 기반, 평균 관련 검정	
이항분포	비율·성공/실패 검정	
포아송분포	희귀 사건 발생 횟수 검정	
지수분포	대기시간, 생존 분석 검정	
t, F, χ² 파생분포	다변량, 다중비교	
비모수 분포(순위/부트스트랩)	분포 가정을 하지 않는 검정	

○ 가설검정 분포 선택 흐름도

