

Translation of the abstract of DE 100 27 695 A1

Vaccine against conformation-dependent antigens as well as against antigens not or not exclusively being proteins or peptides

The invention relates to a method which makes it possible that the highly-effective technology of vaccination by means of deoxyribonucleic acid (DNA) can be used not only on sequence epitopes of proteins or peptides but also on conformation epitopes. Furthermore, this method allows the use of the DNA vaccination also with antigens which are not or only partly proteins or peptides.

As essential component, the preferred vaccine according to the invention contains a deoxyribonucleic acid (DNA) encoding a peptide sequence which, as such, represents the immunological imitation (mimicry) of a conformation-dependent antigen including protein conformation epitopes or an antigen which is not or only partly a protein or peptide. The mimicry peptide, which also is or can be part of the vaccine according to the invention, either is an anti-idiotypic antibody, an antibody fragment or a peptide derived therefrom or a specifically binding peptide obtained from a peptide gene bank by means of selection.

Areas of application of the invention are the medicinal and veterinary medicinal immunology, including the adjuvant therapy of tumour diseases.

PART AND A

® BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift ® DE 100 27 695 A 1

DEUTSCHES PATENT- UND **MARKENAMT** (2) Aktenzeichen: 100 27 695.4 ② Anmeldetag: 29. 5.2000 Offenlegungstag: 19. 4.2001

⑤ Int. Cl.⁷: C 07 K 16/00 C 07 K 14/435

A 61 K 39/39 A 61 K 39/395 C 12 N 15/13 C 12 Q 1/68

(66) Innere Priorität:

199 24 405.7 199 43 016.0 27.05.1999 09.09.1999

(7) Anmelder:

Max-Delbrück-Centrum für molekulare Medizin, 13125 Berlin, DE

(7) Vertreter:

Baumbach, F., Dr.rer.nat. Pat.-ing., Pat.-Ass., 13125 Berlin

(72) Erfinder:

Goletz, Steffen, Dr., 13129 Berlin, DE; Karsten, Uwe, Dr., 10407 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- SVakzine gegen konformationsabhängige Antigene sowie gegen Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind
- Die Erfindung betrifft ein Verfahren, das es erlaubt, die hocheffektive Technologie der Vakzinierung mittels Desoxyribonukleinsäure (DNA) nicht nur auf Sequenzepitope von Proteinen oder Peptiden, sondern auch auf Konformationsepitope anzuwenden. Dieses Verfahren ermöglicht derüber hinaus die Nutzung der DNA-Vakzinierung auch bei solchen Antigenen, die keine oder nur teilweise Proteine oder Peptide sind.

Die bevorzugte erfindungsgemäße Valzine enthält als wesentlichen Bestandteil eine Desoxyribonukleinsäure (DNA), die eine Peptidsequenz kodiert, welche ihrerseits die immunologische Imitation (Mimikry) eines konformationsabhängigen Antigens einschließlich Protein-Konformationsepitope oder eines Antigens, das kein oder nur teilweise Protein oder Peptid ist, darstellt. Das Mimikry-Peptid, das ebenfalls Teil der erfindungsgemäßen Vakzine ist oder sein kann, ist entweder ein antiidiotypischer Antikörper, ein Antikörperfragment, ein daraus abgeleitetes Peptid oder ein durch Selektion aus einer Peptid-Genbank erhaltenes spezifisch bindendes Peptid.

Anwendungsgebiete der Erfindung sind die medizinische und die veterinärmedizinische Immunologie, darunter die adjuvante Therapie von Tumorerkrankungen.

Die Erfindung betrifft Vakzinen gegen konformationsabhängige Antigene sowie gegen Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind. Desweiteren betrifft die Erfindung Verfahren zu ihrer Herstellung und ihre Verwendung sowie humane antiidiotypische Antikörperfragmente gegen das MUC1-Konformationsepitop und Aminosäuresequenzen von Mimikry-Peptiden gegen das MUC1-Konformationsepitop sowie antiidiotypische Antikörperfragmente gegen das TF-Antigen und Aminosäuresequenzen von Mimikry-Peptiden gegen das TF-Kohlenhydratepitop.

Zielstrukturen von Vakzinen gegen Erreger infektiöser Erkrankungen und nicht infektiöser Erkrankungen, einschließlich Tumoren, können Proteine bzw. Peptide, Kohlenhydrate oder Lipide, sowie Kombinationen aus diesen sein. Bei Proteinen bzw. Peptiden kann die immunogene Determinante (Epitop) entweder durch die Sequenz der Aminosäuren eines Abschnitts des Moleküls (Sequenzepitop) oder durch eine bestimmte räumliche Anordnung von Bindungskräften, die nicht der linearen Anordnung der Aminosäuren entspricht, bestimmt sein (Konformationsepitop). Konformationsepitope sind häufiger als Sequenzepitope; Mischformen kommen ebenfalls vor.

Konformationsepitope und Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind, sind nur schwer in eine wirksame und praktikable Vakzine umzusetzen. Konformationsepitope bilden sich in der Regel nur im nativen Protein und nicht in kürzeren Peptiden aus. Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind, wie beispielsweise Glykostrukturen oder Lipide, sind wenig immunogen. Ihre Synthese ist oft aufwendig. Ein besonders schwerwiegender Umstand ist, daß diese Antigene dem Immunsystem in vielen Fällen nicht richtig präsentiert werden. Eine effektive Antigenpräsentation ist aber unter anderem eine Voraussetzung für die Entstehung zytotoxischer T-Lymphozyten, d. h. für eine wirksame zelluläre Abwehr. Schließlich ist die sehr wirksame Form der DNA-Vakzinierung auf diese Antigene nicht anwendbar.

Bei der DNA-Vakzinierung (genomischen Vakzinierung) wird anstelle eines Protein- oder Peptidantigens die kodierende DNA-Sequenz als solche oder in einen Vektor verpackt intramuskulär oder intradermal als Vakzine injiziert. Auf diese Weise kann eine effektive humorale Antwort und zelluläre Antwort erreicht werden (Wolff, J. A. et al., Science 247: 1465, 1990; Ulmer, J. B. et al., Vaccine 12: 1541, 1994; Raz. E. et al., Cancer Res. 52: 1954, 1992). Ein besonders erfolgreiches Verfahren ist das sog. "Prime-Boost-Protocol" (Keystone Symposia: DNA-Vaccines, 12.–17.4.99, Snowbird, Utah, USA, Konferenzband), bei dem die intradermale, intramuskuläre oder intrarektale Injektion einer DNA (Priming), von einer Boosterung mit dem korrespondierenden Antigen gefolgt wird. Für die Boosterung kann auch ein entsprechendes rekombinantes Virus-Vektorpartikel (z. B. Fowlpox-, Adeno- oder Alphavirus-abgeleitete Konstrukte) erfolgreich eingesetzt werden. Das "Prime-Boost"-Verfahren führt bekannterweise zu einer starken zellulären Immunantwort mit der Aktivierung spezifischer zytotoxischer T Zellen, die im Falle von Tumorvakzinen besonders erwünscht ist. Deutlich verstärkt werden kann die Immunantwort durch zusätzliche Gabe von geeigneten Cytokinen, ebenfalls in Form einer DNA, von immunstimulatorischen CpG-DNA-Motiven (nichtmethylierte Cytosin-Guanin-Dinukleotide) oder von geeigneten Adjuvantien (z. B. Aluminiumphosphaten).

Die Aufgabe der Erfindung besteht darin, die oben genannten Nachteile zu umgehen und eine Vakzine, insbesondere eine DNA-Vakzine, auch für die Fälle zu entwickeln, die einer entsprechenden Vakzinierung bisher nicht zugänglich sind.

Die Erfindung wird gemäß den Ansprüchen realisiert. Sie betrifft zum einen ein Verfahren, mit dem der Anwendungsbereich der Vakzinierung, insbesondere der DNA-Vakzinierung auf konformationsabhängige Antigene und Mischformen, diese fallen im Sinne der Erfindung ebenfalls unter den Begriff der Konformationsepitope, sowie Antigene, deren relevante Epitope keine oder nicht ausschließlich Proteine oder Peptide sind, z. B. Kohlenhydrate, kombinierte Kohlenhydrai-Peptidepitope, Lipide, Glykolipide, erweitert wird und somit die oben aufgeführten Nachteile umgangen werden können. Dies geschieht erfindungsgemäß auf dem Umweg über ein das ursprüngliche Epitop (die Antigen-Determinante) immunologisch abbildendes, aber in seiner Aminosäuresequenz verschiedenes Peptid (Mimikry-Peptid). Dabei wird das Mimikry-Peptid vorzugsweise mit Hilfe der an sich bekannten Methoden des Phagen-Displays oder Ribosomen-Displays (Scott, J. K. und Smith, G. P. Science, 249: 386, 1990: Winter, G. et al. Annu Rev Immunol, 12: 433, 1994: Hanes, J. et al. Proc Natl Acad Sci USA, 95: 14130, 1998) gewonnen, und zwar entweder als kürzeres Peptid aus Peptid-Genbanken oder in Form eines antiidiotypischen Antikörperfragments aus entsprechenden Genbanken. Als driue, allerdings aufwendigere Methode kommt die Gewinnung antiidiotypischer Antikörper mittels der Hybridomtechnik in Frage. Das gemeinsame Ziel der drei genannten methodischen Varianten ist. das ursprüngliche Konformationsepitop oder das Epitop, das kein oder nicht ausschließlich ein Protein oder Pepud ist, in ein immunologisch entsprechendes Sequenzepitop "umzuschreiben", das eine bessere immunologische Präsentation ermöglicht und für eine DNA-Vakzinierung geeignet ist. Erfindungsgemäß können die Vakzinen, insbesondere die DNA-Vakzinen nicht nur in Form des beschriebenen Beispiels (Prime-Boost-Protokoll), sondern, auch in vergleichbaren Varianten und in Form der DNA-Vakzine allein oder der Mimikry-Strukturen allein in entsprechend geeigneten Formulierungen eingesetzt werden.

Außerdem betrifft die Erfindung Vakzinen gegen konformationsabhängige Antigene gemäß Anspruch 1. In dem erfindungsgemäßen Verfahren werden dabei die relevanten Konformationsepitope mit Hilfe der Phagen-Display- oder Ribosomen-Display-Methode in ein immunologisch entsprechendes und das Konformationsepitop imitierendes Sequenzepitop "umgeschrieben". Als primäre Reagenzien dienen dabei Moleküle, die das Zielantigen in seiner gewünschten Konformation spezifisch binden, z. B. Antikörper, Antikörperfragmente oder Rezeptoren. Aus den verschiedenen Genbibliotheken werden so Antikörperfragmente (antiidiotypische Antikörperfragmente, Ab2) oder lineare oder zirkuläre Peptide gewonnen, die die primären Reagenzien spezifisch binden und das Antigen immunologisch imitieren. Alternativ werden antiidiotypische Antikörper mit Hilfe der Hybridomtechnik gewonnen und gegebenenfalls Fragmente daraus isoliert. Diese Mimikry-Peptide werden in eine DNA umgeschrieben und als DNA-Vakzine eingesetzt. Ein Verfahren ist dabei das sog. "Prime-Boost-Protocol", bei dem die intradermale, intramuskuläre oder intrarektale Injektion einer DNA (Priming), in Form einer Plasmid-DNA, linearen DNA oder eines Plasmid-Replikon-Vektors, von einer Boosterung mit dem korrespondierenden Antigen, alleine, in Form einer chemischen Kopplung an Proteine, in Form von Bakteriophagen als Fusionsproteine mit Phagenhüllproteinen auf deren Oberfäche, in Form eines Fusionsproteins auf der Oberfäche anderer

Viren oder attenuierter biologischer Träger oder in Form mit dem Peptid beladener dendritischer Zellen, gefolgt wird. In diesem Fall werden sowohl die DNA als auch das exprimierte Mimikry-Peptid benötigt, was bei Anwendung der Phagen-Display- bzw. Ribosomen-Display-Technik problemlos möglich ist. Alternativ kann für die Boosterung ein entsprechendes rekombinantes Virus-Vektorpartikel (z. B. Fowlpox-, Adeno- oder Alphavirus-abgeleitete Konstrukte) erfolgreich eingesetzt werden. Die Immunantwort kann deutlich durch die zusätzliche Gabe von geeigneten Cytokinen, ebenfalls in Form einer DNA, von immunstimulatorischen CpG-DNA-Motiven (nichtmethylierte Cytosin-Guanin-Dinukleotide) oder von geeigneten Adjuvantien (z. B. Aluminiumphosphaten) verstärkt werden.

Die Erfindung betrifft neben Vakzinen gegen konformationsabhängige Antigene auch Vakzinen gegen Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind, gemäß Anspruch 3. Ein Zielantigentyp der Gruppe Antigene die keine oder nicht ausschließlich Proteine oder Peptide sind, sind Glykostrukturen, weitere, immunogene Strukturen sind kombinierte Kohlenhydrat-Proteinepitope, Lipide, Glykolipide oder synthetische Strukturen.

Aus DE 196 27 352 A1 ist ein Verfahren bekannt, mit dem ein monoklonaler antiidiotypischer Antikörper mit Hilfe der Hybridomtechnik gewonnen wird, der reine Kohlenhydratstrukturen immunologisch imitiert. Erfindungsgemäß wird ausgehend von diesem antiidiotypischen Antikörper wird eine Vakzine, bevorzugt eine DNA-Vakzine dieses Antikörpers oder eines geeigneien Fragmentes davon für die Vakzinierung verwendet. So erweiten die vorliegende Erfindung dieses Verfahren aus DE 196 27 352 A1 in mehreren Punkten. Es können antiidiotypische Antikörperfragmente direkt aus Antikörper-Genbibliotheken mittels der Phagen-Display-Technik oder der Ribosomen-Display-Technik gewonnen werden. Mit Hilfe dieses Verfahrens können direkt auch humane Antikörperfragmente gewonnen werden. Darüber hinaus können auch kombinierte Kohlenhydrat-Peptidepitope angewendet werden. Hinzu konumt weiter ein Verfahren, mit dem kurze lineare oder zirkuläre Peptide, die das Antigen immunologisch imitieren (sogenannte Mimikry-Peptide), aus Peptid-Genbibliotheken, ebenfalls mittels der Phagen-Display-Technik oder der Ribosomen-Display-Technik, gewonnen werden können. Dabei dienen nicht nur spezifische idiotypische Anukörper (Ab1), sondern auch andere Substanzen, die die Glykostruktur spezifisch erkennen, wie z. B. Lektine oder Rezeptoren, als primäre Reagenzien zur Selektion dieser imitierenden Strukturen. Das Verfahren schließt weiterhin die Verwendung dieser gewonnenen Strukturen bevorzugt als DNA-Vakzine ein, allein oder in Kombination mit den das Antigen immunologisch imitierenden Antikörpern. Antikörpernragmenten oder Peptiden in einer geeigneten Formulierung (siehe oben und Ansprüche), beispielsweise in der Formulierung des Prime-Boost-Protokolls. Außerdem können gemäß der Erfindung die imitierenden Proteinstrukturen auch alleine zur Vakzinierung verwendet werden.

Die Erfindung betrifft auch Vakzine, im vollen Umfang wie für konformationsabhängige Antigene beschrieben, gegen die Antigene Glykopeptide, Glykolipide, Lipide, synthetische Strukturen oder weitere Antigene, die keine oder lediglich teilweise Proteine oder Peptide sind, wobei die relevanten Epitope verbesserte immunogene Strukturen aufweisen, Verfahren ihrer Herstellung und ihre Verwendung.

Der Ansatz einer Immuntherapie bei Tumorerkrankungen geht davon aus, daß es möglich ist, die natürliche Immunantwort zu verstärken oder zu aktivieren. Die Rationale einer Vakzinierung besteht in der Bekämpfung der Residualerkrankung (Metastasenprophylaxe) nach einer konventionellen Therapie (z. B. chirurgischer Entfernung der Hauptmenge der Tumorzellen). Mimikry-Peptide imitieren definitionsgemäß immunologisch das ursprüngliche Antigen bzw. Epitop. Sie tun dies weitestgehend, aber nicht hundertprozentig.

Dies ist für den Anwendungsfall im Rahmen einer Vakzine (im besonderen bei einer Tumorvakzine) eher positiv in dem Sinne zu sehen, daß spezifisch inhibierende Prozesse, z. B. Toleranzphänomene, umgangen werden.

Voraussetzung für die Entwicklung definierter Tumorvakzinen ist nicht nur das Vorhandensein tumorspezifischer Antigene, sondern auch ihre Kenninis. Auf diesem Gebiet sind in den letzten drei Jahrzehnten große Fortschritte erzielt worden, nicht zuletzt durch die Entwicklung monoklonaler Antikörper.

Ein weitverbreitetes Karzinomantigen ist das epitheliale Muzin. MUC1. dessen immundominantes Epitop in vielfacher Wiederholung auf dem extrazellulären Teil des Moleküls vorkommt. Dieses Epitop bildet im nativen Zustand einen Typ-I-β-Turn aus, an synthetischen Peptiden allerdings nur unter bestimmten Bedingungen. z. B., wenn das Threonin der immundominanten Region mit GalNAcα1-0-Thr oder Galβ1-3GalNAcα1-0-Thr glykosylien ist (Karsten, U., et al., Cancer Res. 58: 2541-2549, 1998). Dieses Epitop wird vom Immunsystem in der Regel als typisches Konformationsepitop wahrgenommen, vgl. Beispiel 1. Erfindungsgemäß wird dieses Konformationsepitop mittels der Phagen-Display-Technik durch immunologisch identische (oder nahezu identische) Sequenzepitope imittert, die in Form einer DNA in einem DNA-Vakzinierungsvektor Bestandteil einer Tumorvakzine sind (Beispiel 1).

Gegenstand der Erfindung sind deshalb auch humane antiidiotypische Antikörperfragmente gegen das MUC1-Konformationsepitop sowie alle DNA Sequenzen, die diese Fragmente kodieren, und Proteinsequenzen oder DNA- o. Proteinteilsequenzen, die von diesen abgeleitet werden können und die die entsprechenden Eigenschaften aufweisen.

Bevorzugt handelt es sich um die folgenden humanen antiidiotypischen Antikörperfragmente gegen das MUC1-Konformationsepitop mit den folgenden Sequenzen Nr. 1 bis 31.

Fragmente, die die gewünschte DNA der scFv und der Peptide enthalten, wurden mit Hilfe der PCR vermehrt und anschließend sequenziert.

(Die Bezifferung, z. B. Q33, entspricht einem bestimmten isolierten Klon: die Sequenzen der verschiedenen scFv sind gegeneinander ausgerichtet (Alignment); die komplette Sequenz eines Klones ist für jeden Klon durchgehend über die verschiedenen Blöcke zu lesen)

Nr.1: Q33 EVOLLESGEGLVQPGGELRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIQRHGTWTGY

Nr.2: Q1.3 EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSINYNGDATSY

65

	Nr.3:	012	EVOLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVROAPGKGLEWVSTINAAGAOTGY
	NT . 4 :	04	EVOLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSRIGQKGNKTTY
5	Nr.5:	¥.2	EVOLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVROAPGKGLEWVSRITOSGTYTOY
3	Nr.6:	015	EVOLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSINAFGOSTRY
	N= . 7 :	R10	EVOLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVROAPGKGLEWVSGINASGTLTRY
10	Nr.E:	05	EVOLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVROAPGKGLEWVSSISDTGSATTY
10		N6	EVOLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVROAPGKGLEWVSNISDAGCATYY
	Nr.9:		
	NT.10:		EVQLLESGEGLVCPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTIHSAGCETIY
15	Nr.11:		EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSYITTNGSTTSY
	NT.12:		EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSYITTNGSTTSY
	Nr.13:	Q24	EVQLLESGEG1VQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSITTSGGDTAY
20	NI.14:	Q3.1	EVQLLESGEG1VQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSYINASGASTSY
	Nr.15:	Q25	EVQLLESGEG1VQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTITSSGOOTFY
	Nr.16:	N2	EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIYSQGPVTWY
25	NI.17:	Q3.3	EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSGISTSGSYTTY
	Nr.18:	Q21	EVQL1ESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTINGLGTPTAY
	Nr.19:	N4	EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTIQTSGRDTTY
30	Nr.20:	R3	EVQLLESGEG1VQPGG51RLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAITQYGGDTGY
	Nr.21:	Q2	EVQLLESGEGLVOPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVST1SNLGOPTHY
	Nr.22:	Q3 0	FVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTISNLGQLTHY
35	Nr.23:	Q16	EVQLLESGEGLVQPG35LRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTIDPMGQSTNY
	Nr.24:	R5	FVQLLESGEGLVQPGGELRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAITNTGQWTTY
	Nr.25:	Q2€	EVQLLESGEGLVQPG35LRLSCLASGFTF55YAMSWVRQAPGKGLEWV511C5VGTYTVY
40	Nr.26:	Q34	EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVST1PATGQRTFY
	Nr.27:	Q6.1	EVQLLESGEGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSISRTGKVTDY
	NT.28:	01.2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIEAGGGETTY
45	Nr.29:	R4	EVQLLESGEGLVQPGGSLRLSCAASGPTFSSYAMSWVRQAPGKGLEWVSGIRPQGHPTQY
	Nr.30:	NЭ	EVQLLESGEGLVOPGGELRLSCAASGFTFSEYAMSWVRQAPGKGLEWVSAIRPPGQTTQY
	Nr.31:	R7	EVQLLESGEGLVQPGGSLRLSCASGFTFSSYAMSWVRQAPGKGLEWVSQIQENGVTTTY
50			
	Q33		ADSVKGRFT1SRDNSKNTLYLOMNSLRAEDTAVYYCAKRNGEFDYWGQGTLVTVSSGGGG
55	Q1.3		ADSVKGRFTI SRDNSKNTLYLQMNSLRAEDTAVYYCAKSSSTFDYWGQGTLVTVSSGGGG
	Q12		ADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKTGTNFDYWGQGTLVTVSSGGGG
	Q4		ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKKSHDFDYWGQGTLVTVSSGGGG
60	R2		ADSVKGRFTI SRDNSKNTLYLQMNSLRAEDTAVYYCAKGLSRFDYWGQGTLVTVSSGGGG
	Q15		ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKYDHSFDYWGQGTLVTVSSGGGG
	R10		ADSVKGRFTI SRDNSKNTLYLQMNSLRAEDTAVYYCAKSAKSFDYWGQGTLVTVSSGGGG
65			

Q 5	ADSVKGRFTI SRDNSKNTLYLØMNSLRAEDTAVYYCAKNYYDFDYRGQGTLVTVSSGGGG	
N6	ADSVKGRFT1SRDNSKNTLYLOMNSLRAEDTAVYYCAKNSCGFDYWGQGTLVTVSSGGGG	
Q32	ADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCAKTLLGFDYWGQGTLVTVSSGGGG	5
R6	ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKDYSDFDYRGQGTLVTVSSGGGG	
Q9.3	ADSVKGRFTI SRDNSKNTLYLOMNSLRAEDTAVYYCAKDYSDFDYRGOGTLVTVSSGGGG	
Q24	ADSVKGRFT1SFDNSKNTLYLQMNSLRAEDTAVYYCAKNYADFDYRGQGTLVTVSSGGGG	10
Q3.1	ADSVKGRFT1SRDNSKNTLYLØMNSLRÆDTAVYYCARNTSDFDYRGQGTLVTVSSGGGG	
Q25	ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKRARPFDYWGQGTLVTVSSGGGG	
N2	adsvkgrftisrdnskntlylomnslrædtavyy Carhswpfdywgogtlytyssggg	15
Q3.3	ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKSGTTFDYWGQGTLVTVSSGGGG	
Q21	adsvkgrftisrdnekntlylomnslrædtavyy cakdlfgfdyrgogtlytyssgggg	
N4	adsvkgrftisednskntlylomnslraedtavyy cakrsorfdywgogtlytyssgggg	20
R3	adsvkgrftisrdnskntlylomnslrædtavyy caknwpyfdywgogtlytyssgggg	
Q2	adsvkgrftisfdnskntlylomnslrædtavyy caklfysfdywgogtlytyssgggg	
Ç3 0	adsvkgrftisrdnskntlylomnslrædtavyycaklfysfdywgogtlytyssgggg	25
©1 €	adsvkgrftisrdnskntlylomnslrædtavyy cakdgrefdywgogtlytyssgggg	
R5	adsvkgrftisrdnskntlylomnslrædtavyy cakagonfdywgogtlvtvssgggg	
Ç26	adevkgrftierdnekntlylomnslrædtavyy cakrenpfdywgogtlytyeegggg	30
Q34	adevkgrftierdnekntlylomnelrædtavyy caktaspfdywgogtlytyeeggg	
Q6.1	adevkgrftierdnekntlylomnelrædtavyy cakkmtefdywgogtuvtveegggg	
Q1.2	ADEVKGRFTI SRDNEKNTLYLQMNSLRAEDTAVYY CAKATTTFDYWGQGTLVTVESGGGG	35
R4	ADSVKGGFT1SRDNSKNTLYLQMNSLRAEDTAVYYCAKRPPFFDYWGQGTLVTVSSGGGG	
N1	ADEVKGRFT1SRDNSKVTLYLOMNSLRAEDTAVYYCAKTASVFDYWGQGTLVTVSSGGGG	40
R7	ADSVKGRFT1SRDNSKNTLYLQMNSLRAEDTA1YYCAKERLQFDYWGQGTLVTVSSGGGG	40
		4 5
O 33	eggggggggtdiomtoepeslsasvgdrvtitcrasoeiesylnwyookpgkapklli	
Q2.3	sggggsgggstdiomtospsslsasvgdgvtitcrasqsissylnwyqokpgkapklli	
Q12	eggggsgggstdiomtospeslsasvgdrvtitcrasosissylnwyookpgkapklli	50
Q4	SGGGGSGGGSTD10MT0SPSSLSASVGDRVT1TCRASQS1SSYLNWYQQKPGKAPKLL1	
R2	SGGGGSGGGGTD10MTQSPSSLSASVGDRVT1TCRASQSISSYLNWYQQKPGKAPKLL1	
Q15	SGGGGSGGGGTDIOMTOSPSSLSAEVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI	5 5
RIO	SGGGGSGGGGSTDIOMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI	
ČE	SGGGGGGGGGTDIOMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI	
N€	SGGGGSGGGGSTDIQMTQSPSSLSAEVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI	60
Q32	SGGGGSGGGSTD1QMTQSPSSLSAEVGDRVT1TCRASQS1SSYLNWYQQKPGKAPKLL1	
RE	SGGGGGGGGTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI	
Q9.3	SGGGGGGGGSTD1CMTQSPSSLSASVGDRVT1TCRASQS1SSYLNWYQQKPGKAPKLL1	65

SGGGGSGGGSTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGGGGGTT1QMTQSPSSLSASVGDRVT1TCRASQS1SSYLNWYQQKPGKAPKLL1 SGGGGGGGGTIIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGGGGGTTIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGGGGGTTIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGSGGGGSTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGGGGGGTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGGGGGGTDIOMTQSPSSLSASVGDRVTITCRASQSISSYLNWYOOKPGKAPKLLI sgggsggggetdiomtospeslsasvgdrvtitcpasosissylnwyookpgkapkili SGGGGSGGGGTTIQMTQSPSSLSASVGDRVTITCFASQSISSYLNWYQQKPGKAPKLLI SGGGGSGGGGSTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGSGGGSTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGSGGGSTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGSGGGGTDIQMTQSPESLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGSGGGGTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAFKLLI SGGGGGGGGTDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLI SGGGGGGGGTDIQMTQSPSSLSASVGDRVTITCFASQSISSYLNWYQQKPGEAPKLLI SGGGGGGGGTDIOMTCSPSSLSASVGDRVTITCRASQSISSYLNWYOCKPGKAPKILI SGGGGSGGGETDIOMTOSPPSLSASVGDRVTITCRASOSISSYLNWYOOKPGKAPKILI YSASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQNSTJPRTFGQGTKVEIKR

35

024

Q3.3 5 025

N2

10 021

N4

02 Q3 0

016

R5

026 Q34

06.1

01.2 **R4**

NΣ

R7

Q33

01.3 Q12

Q4

R2015

E30

Q5 ΝÉ

Q32

RΕ

09.3

Q24

Q3.1

Q25

N2 Q3.3

20

Q3.3

YSASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTSNSPATFGQGTKVEIKR YSASALQSGVPSRFSGSGSGTDFTLTISSLOPEDFATYYCOCTNTDPATFGOGTKVEIKR YRASDLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQPWDFPRMFGQGTKVEIKR YHASFLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQPWEFPRTFGQGTKVEIKR YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQPWLFPRTFGQGTKVEIKR YNASMLQSGVPSRFSGSGSGTDFTLTISSLQFEDFATYYCOCTLLWPLTFGOGTKVEIKR YDASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGTASPSTFGQGTKVEIKR YNASSLOSGVPSRFSGSGSGTDFTLT1SSLQPEDFATYYCQQYTGNPATFGQGTKVEIKR YAASWLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYSGHPSTFGQGTKVEIKR YSASYLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCOCTSANPYTFGOGTKVEIKR YSASGLQSGVPSRFSGSGSGTDFTLT1SSLQPEDFATYYCQQNGATPNTFGQGTKVE1KR YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSATPGTFGQGTKVEIKR YSASTLQSGVPSRFSGSGSGTDFTLTISSLQFEDFATYYCQQSGSAPATFGQGTKVEIKR YAASSLQSGVPSRFSGSGSGTDFTLTISSLOPEDFATYYCOOSYSTPNTFGOGTKVEIKR YAASSLQSGVPSRFSGSGSGTDFTLTISSLQFEDFATYYCQQSYSTPNTFGQGTKVEIKR YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPNTFGQGTKVEIKR

4	

		<i></i>	00 2 /	0,0 1.	•				
021	YAASSLOSGVPSR	FSGSGSG	TDFTLTI	SSLOPEDF.	ATYYCOOS	YSTPNTFO	OGTKVEIK	R	
N4	YAASHLQSGVPSR	FSGSGSG	TDFTLTI	SSLQPEDF	ATYYCQQC	GOTPVIF	QGTKVEIK	R	
R3	YYASNLQSGVPSR	FSGSGSG	TDFTLTI	SSLOFEDF	ATYYCOON	SFTPYTFO	QGTKVEIK	R	5
Q2	YDASFLQSGVPSR	FSGSGSG	TOFTLT1	SSLQFEDF	rtyycood	TRPPTTF	QGTKVEIK	R	
Ç30	YDASFLQSGVPSR	FSGSGSG	TDFTLTI	SSLQPEDF	ATYYCOOD	TRPPITFO	OGTKVEIK	R	
Q16	YDASKLQSGVPSR	FSGSGSG	TDFTLTI	SSLQFEDF:	YTYYCQQD	TRNPGTFG	QGTKVEIK	R	10
R5	YDASFLQSGVPSA	FSGSGSG	TDFTLTI	SSLQFEDF	ATYYCOOD	TRGPGTFG	OGTKVEIK	R	
Q 2€	YDASFLQSGVPSR	FSGSGSG	TDFTLTI.	SSLQFEDF	ATYYCQQD	TRGPGTFG	QGTKVEIK	R	
Q34	YSASRLQSGVPSR	FSGSGSG	TDFTLTI.	eslopedf;	ATYYCOOD	TROPGTFG	O GTKVE1K	R	15
Q€.1	YDASNLQSGVPSK	FSGSGSG	TDFTLTI	SSLQPEDF/	YTYYCQQD	TROPGTFG	QGTKVEIK	R	
Q1.2	YDASNLQSGVPSR	FSGSGSG	TDFTLTI	SSLQPEDFA	ATYYCQQD	TRPPVTFG	QGTKVEIKI	R	
R4	YDASVLQSGVPSR	FSGSGSG	TDFTLT1:	esl@pedf/	KTYYCQQR	RTYPPTFG	Q GTKVEIKI	R	20
KI.	YGASVLQSGVPSR	FSGSGSG	TDFTLTI	SSLQPEDFA	YTYYCQQH	LNYPLTFG	QGTKVE1KI	R	
R7	YDASNLQSGVPSK	FSGSGSG'	TDFTLTI	SSLQPEDF/	KTYYCQQF	GNYPRTFG	QGTKVE1KG	3	
Gegenstand der Konformationschie	Erfindung sind weite op sowic allc DNA S	rhin auch	Aminosäur die diese A	ensequenzer Aminosäurese	von Mimil	kry-Peptiden odieren, DNA	gegen das N Nund Popud-	MUC1-	25
Pepudieilsequenzer	n, die von diesen abge	leitet werd	len und die	die gleichen	Eigenschaft	en aufweise	n.		
Insbesondere han 32 bis 47.	idelt es sich um die A	minosäurei	nsequenzen	von Mimikr	y-Pepuden i	mii den folge	naen Seguen:	zen INI.	30
(Die Bezifferung	. z. B. S1, entspricht	einem bes	timmten is	olierten Kloi	a: die Seque	enzen der ve	rschiedenen I	Pepude	

sind gegeneinander ausgerichtet)

Nr.32:	S1	CEYYDVPMARC	
NT . 33 :	512	CDYPERLIDLC	35
Nr.34:	Rol	CGLACERPCGWVC	
Nr.35:	Ro5	CLGGCERPCMYSC	
Nr.36:	Rol3	CRGRCGEWCSRPC	40
Nr.37:	Ro6	CRGRCDQRCSRPC	
Nr.38:	Ro12	CPARCGVPCAMGC	
Nr.39:	Vll	CIPHRHDGC	45
NT.40:	V4	COPHRYDKSLPC	
Nr.41:	V10	CTTRLLNEDGSC	
Nr.42:	דט	LHGPLWD	50
Nr.43:	U10	LHGPLGM	
NT . 44 :	೮६	LHGPLWE	55
Nr.45:	U7a	LHGPLWDGAAGAETVES	23
Nr.46:	U10a	LHGPLGMGPLGPKLLKV	
Nr.47:	36a	LHGPLWEGPLGPKLLKV	60

Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind (z. B. Kohlenhydrat-Antigene) werden, ähnlich wie Konformationsepitope von Proteinen, vom Immunsystem als dreidimensionale Muster von Ladungen und anderen molekularen Wechselwirkungen wahrgenommen und unterliegen wie diese Einschränkungen bei der Generierung einer zellulären Immunantwort. Auch in diesen Fällen kann die erfindungsgemäße Selektion von Mimikry-Peptiden mittels der Phagen-Display-Technik zu einem "Umschreiben" des Antigens in eine Peptid-Sequenz führen, die wiederum 65 die Anwendung der DNA-Vakzinierungstechnik ermöglicht, vgl. Beispiel 2.

Gegenstand der Erfindung sind auch Protein-Sequenzen antidiotypischer Antikörperfragmente gegen TF sowie Aminosäurensequenzen von Mimikry-Peptiden gegen das TF-Kohlenhydratepitop sowie alle DNA Sequenzen, die diese

Aminosäuresequenzen kodieren und DNA sowie Protein- bzw. Peptid- sowie -teilsequenzen, die von diesen abgeleitet werden und die die gleichen Eigenschaften aufweisen.

Insbesondere handelt es sich um die folgenden Protein-Sequenzen antiidiotypischer Antikörperfragmente gegen TF mit den Sequenzen Nr. 48 bis 71.

Nr. 48 - >H16

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSMIDGSGSQTYYADSVKGRFTISRDN SKNTLYLQMNSLRAEDTAVYYCAKEDLDFDYWGQGTLVTVSSGGGGGGGGGGGGGGGGGGTDIQMTQSPSSLSASVG

- DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ SYSTPNTFGQGTKVEIKR
- Nr. 45 >P3

EVOLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSISYSGATTNYADSVKGRFTISRDN
SKYTLYLOMNSLRAEDTAVYYCAKSDASFDYWGQGTLVTVSSGGGGGGGGGGGGGGGGTDIQMTQSPSSLSASVG
DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYDASSLQSGVPSRFSGSGGGTDFTLTISSLQPEDFATYYCQQ

25 Nr. 50 - >P8

DYGGPTTFGQGTKVEIKR

30

35

40

45

50

55

60

25

30

35

60

65

EVOLLESGGLVOPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTISATGGSTYYADSVKGRFTISRDN SKNTLYLQMNSLRAVETAVYYCAKSSDGFDYWGQGTLVTVSSGGGGSGGGGGGGGGGGGGGTDIOMTQSPSSLSASVG DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYSASNLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ ASSAPATFGGGTKVEIKR

Nr. 51 - >HE

EVOLLESGGGLVOPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSTISAQGLTTTYADSVKGRFTISRDN

EKNTLYLOMNSLRAEDTAVYYCAKGRSSFDYWGQSTLVTVSSGGGGSGGGGSGGGSTDIQMTQSPSSLSASVG

DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ

15

RKLLPWTFGQGTKVEIKR

Nr. 52 - >H1

EVQLLESGGLVQPGGELRLECAASGFTFEEYAMSWVRQAPGKGLEWVSSITELGRSTQYADSVKGRFTISRDN
SKNTLYLQMNSLRAEDTAVYYCAKPWPHFDYWGQGTLVTVSSGGGGSGGGGGGGGGGGGTDIQMTQSPSSLSASVG
DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCOQ
AARRPTTFGQGTKVEIKR

NI. 53 - >H13

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSKISELGRNTSYADSVKGRFTISRDN

SKNTLYLQMNSLRAEDTAVYYCAKDITAFDYWGQGTLVTVSSGGGGSGGGGGGGGGGTDIQMTQSPSSLSASVG

DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ

SMRMPPTFGQGTKVEIKR

Nr. 54 - >K3

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIQWSGESTWYADSVKGRFTISRDN

SKNTLYLQMNSLRAEDTAVYYCAKSTSSFDYWGQGTLVTVSSGGGGSGGGGSGGGSTDIQMTQSPSSLSASVG

DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYDASLLQSGVPSRFSGSGSGTDFTLTISSLCPEDFATYYCQQ

RRHTPTTFGQGTKVEIKR

NI. 55 - >K3

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAIQWSGESTWYADSVKGRFTISRDN

SKNTLYLOMNSLRAEDTAVYYCAKSTSSFDYWGQGTLVTVSSGGGGSGGGGGGGGTDIQMTQSPSSLSASVG

DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYDASLLQSGVPSRFSGSGSGTDFTLTISSLQFEDFATYYCQQ

RRHTPTTFGGGTKVEIKR

Nr. 56 - > K4

EVOLLESGGGLVOPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSGIQFSGQGTRYADSVKGRFTISRDN

SKNTLYLOMNSLRAEDTAVYYCAKTLSTFDYWGQGTLVTVSSGGGGSGGGGGGGGGGGTDIQITQSPSSLSASVG

DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYRASHLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ GYRQFTTFGQ

GTKVEIKR

Nr. 57 - >K2

- 10 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSSIRPLGSATQYADSVKGRFTISRDN SKNTLYLOMNSLRAEDTAVYYCAKSNMAFDYWGQGTLVTVSSGGGGSGGGGGGGGGTDIQMTQSPSSLSASVG IRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGGGTDFTLTISSLQPEDFATYYCQQ
- 15 TTRPPTTFGOGTKVEIKR

Nr. 58 - >J6

- EVOLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSLISEQGARTMYADSVKGRFTISRDN SKNTLYLQMNSLRAEDTAVYYCAKSTPAFDYWGQGTLVTVSSGGGGGGGGGGGGGGGTDIQMTQSPSSLSASVG DRVTITCRASQSISSYLNWYQQKPGKAFKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ
- 25 MNNKPNTFGOGTKVEIKR

Nr. 59 - >E3

- 50 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSQITGLGSQTRYADSVKGRFTISRDN SKNTLYLQMNSLRAEDTAVYYCAKGETAFDYWGQGTLVTVSSGGGGGGDIQMTQSPSSLSASVGDRVTITCRAS QSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQRQQRFSTFGQ
- 35 GTKVEIKR

Nr. 60 - >Kl

- 40 EVOLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSNITQMGMTTAYADSVKGRFTISRDN SKNTLYLQMNSLRAEDTAVYYCAKGEQTFDYWGQGTLVTVSSGGGGSGGGGGGGGGTDIQMTQSPSSLSASVG DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ
- RRTHPOTFGOGTKVEIKR

Nr. 61 - >E5

- FVOLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISQTGTRTKYADSVKGRFTISRDN
 SKNTLYLQMNSLRAEDTAVYYCAKGSASFDYWGQGTL\TVSSGGGGSGGGGGGGGGGGTDIQMTQSPSSLSASVG
 DRVTITCRASQSISSYLNWYQQKPGKAPKLLIYGASGLQSGVPTRFSGSGSGTDFTLTISSLQPEDFATYYCQQ
- VTTHPNTFGQGTKVEIKR

Nr. 62 - >K2+

EVOLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDN SKNTLYLOMNSLRAEDTAVYYCAROVKSWTRWGQGTLVTVSSGGGGSGGGGGGGGGGGALSSELTQDPAVSVALGQT VRITCRGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRD

SSGNHYVFGGGTKLTVLG

Nr. 63 - >K4+	;
evolvesggglvopggslrlscaasgftfseysmnwvroapgkglewvsaisgsggstyyadsvkgrftisrdn	
SKNTLYLOMDSLRAEDTAVYYCARGRRKODKSTRWGOGTLVTVSSGEGGSGGGSGGSALSSELTODFAVSVAL	
GQTVRITCQGSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIFDRFSGSSSGNTASLTITGAQAEDEADYYCNS	i
RDSSGSSSVFGGGTKLTVLG	
Nr. 64 - >K4-	15
evolvesggglvopggslrlscaasgftfssysmnwvroapgkglewvsaisgsggstyyadsvkgrftisrdn	
SKNTLYLQMDSLRAEDTAVYYCARGRRKODKSTRWGQGTLVTVSGSGGGGGGGALSSELTQDFAVSVALGQTV	
ritcqgdslrsyyaswyqqkpgqapvlviygknnrpsgipdrfsgsssgntasltitgaqaedeadyycnsrds	20
SGSSSVFGGGTKLTVLG	
Nr. 65 - >K9+	25
evolvesggglvopggslrlscaasgftfssyemnwvroapgkglewvsylsssgstlyyadsvkgrftlsrdn	
AKNSLYLQMNSLRAEDTAVYYCARDPFHPWGQGTLVTVSSGGGGSGGGGGGGGALSSELIQDPAVSVALGQTVR	
itcogdslrsyyaswyookpgoapvlviygknnrpsgipdrfsgsssgntasltitgaoaedeadyycnsrdss	30
GTVFGGGTKLTVLG	
Nr. 66 - >Kl+	35
QVQLQESGPGLVKPSETLSLTCVVSGGS1SSSNWWSWVRQPPGKGLEW1GE1YHSGSPNYSPSLKSRATISVDK	
SKNQF5LKLSSVTAADTAVYYCARQDMTQQTSWGQGTLVTV55GGGGGGGGGGGGGALQ5VLTQPP5A5GTPGQ	40
rvtiscsgssnigsnyvywyqolpgtapklliyrnnorpsgvpdrfsgsksgtsaslaisglrsedeadyyca	
AWDDSLRNLVFGEGTKLTVLG	
Nr. 67 - >K3+	45
QVQLQESGPGLVKPSETLSLTCVVSGGS1SSSNWWSWVRQPPGKGLEW1GE1YHSGSPNYSPSLKSRATISVDK	
SKNQFSLKLSSVTAADTAVYYCARQDMTQQTSWGQGTLVTVSSGEGGSGGGGGGGGALQSVLTQPPSASGTPGQ	50
RVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNORPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCA	50
AWDDSLRNLVFGEGTKLTVL	
Nr. 6B - >ZA4	55
QVQLQESGPGLVKPSGTLSLTCAVSGGS1SSSNWWSWVRQP	
pgkglewigeiyhsgstnynpslksrvtisvDksknofslklssvtaadtavyycarDek	60
ggwgqctlvtvssgggggggggggsalqsvltqfpsasgtpgqrvtiscsgsssnigsn	
TVNWYQQLPGTAPKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAW	
DDSLRSLVFGGGTKLTVLG	65

Nr. 69 - >ZA36

- OVOLOESGPGLVKPSGTLSLTCAVSGGSISSSNWWSWVROPPGKGLEWIGEIYH
 SGSTNYNPSLKSRVTISVDKSKNOFSLKLSSVTAADTAVYYCARPSSIWGOGTLVTVSSG
 GGGSGGGGGGGGALQSVLTOPPSASGTPGORVTISCSGSSSNIGSNYVYWYQOLPGTAPK
 LLIYRNNORPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLRSLVFGGGTK
 LTVLG
- Nr. 70 >ZA14

 OVOLOESGPGLVKPSGTLELTCAVSGGSISSSNWWSWVROPPGKGLEWIGEIYHS

 GSTNYNPSLKSRVTISVXKSKNOFSLKLSSVTAXDTAVYYCARPSHHAGTHTWGQGTLVT

 VESGGGGSGGGGGGGSALQSVLTQPPSASGTPGORVTISCSGSSSNIGSNTVNWYQOLPG

 TAPKLLIYSNNORPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLRALVFG

25 Nr. 71 - >29

GGTKLTVLG

QVQLQESGAGLLKPSETLSLTCAVYGSSFSGYYWSWIRQPPGKGLEWIGEINHSGS

- 30 TNYNPELKERVTISVDTSKNOFELKLESVTAADTAVYYCARKGLNFGPWGQGTLVTVSSG GGGSGGGGGGGALQEVLTOPPSASGTPSQRVTISCSGSSSNVGSNTVNWYQQLPGTAPK LLIYSNNORPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLRSYVFGGGTK
- 35 LTVLG

Desweiteren handelt es sich um die Aminosäurensequenzen von Mimikry-Peptiden gegen das TF-Kohlenhydratepitop mit den folgenden Sequenzen Nr. 72 bis 96.

(Die Bezifferung, z. B. S1, entspricht einem bestimmten isolierten Klon)

40	Nr.72:	Tl	CLREGHFASFC
	Nr.73:	T14	CGMLTPAWIKC
	Nr.74:	T4	CETFSNLAFLC
45	Nr.75:	T 7	CEGPEIPAFVC
	Nr.76:	T 3	CESMVEPAWVC
	Nr.77:	T15	CTNDIMPPWVC
50	Nr.78:	T2	CDGLLLPIWAC
	Nr.79:	Tll	CAGEFVPVWAC
55	Nr.EO:	T16	CDLGLKPAWLC
	Nr.81:	ХЗ	CGPMCSGSCVPQC
	Nr.82:	X9	CDAGCNFFCPWRC

60

DE	100 27 695	A 1	

Nr.E3:	X2	CGPMCSGSCXPQC	
NT . 84:	УБ	VWWWQWS	
Nr.85:	נץ	MWRPFWL	5
Nr.86:	Y4	PPWVXHL	
Nr. 87:	YS	LIPOWIV	
Nr. 88:	K4	CTFADMSGC	10
Nr.89:	W3	CTFADMSGC	
Nr.50:	W16	CPSVWMLDLGPC	
Nr.91:	W15	CHGGLTFLC	15
Nr.52:	WB	CGPMMLWHW	
Nr.93:	W5	CTRHIHWGNAHW	
Nr.54:	W14	CTFADMSGW	20
Nr.95:	Al	CFRGGPWWSLC	
NT.56:		CAVRTWVISEC	٠.
Die Erf	indune wird a	durch Austuhrungsbeispiele naher erläutert, soll jedoch auf diese Beispiele nicht beschränkt wer-	25

Die Erfindung wird durch Austuhrungsbeispiele naher erlautert, soll jedoch auf diese Beispiele nicht beschränkt werden.

Ausführungsbeispiele

Beispiel 1 30

60

Herstellung der Hybridomzellinie A76-A/C7 und von Antikörpern

Balb/c-Mäuse wurden mit einer Suspension lebender menschlicher Mammakarzinomzellen der Zellinie T-47D (Keydar, I., et al., Eur J Cancer, 15: 659, 1979) nuch Behandlung mit Neuraminidase (V. cholerae) ohne Adjuvans i. p. immunisiert. Als Fusionszellinie diente X63-Ag8.653 (Keamey, J. F., et al., J Immunol 123: 1548, 1979). Die Hybridomtechnik selbst wurde nach Standardmethoden (z. B. Peters, H. H., et al., "Monoklonale Antikörper, Herstellung und Charakterisierung". Berlin 1985: Friemel, H., "Immunologische Arbeitsmethoden", 4. Aufl., Jena 1991) durchgeführt. Die Spezifitätsanalyse der von den Hydridomzellinien produzierten monoklonalen Antikörper (mAk) basierte auf Enzymimmunoassavs mit natürlichen Giykoproteinen und synthetischen Peptiden und Glykopeptiden. Immunftuoreszenzanalysen mit diversen Zellinien sowie immunhistochemischen Untersuchungen an Gewebsschnitten. Für den mAk A76-A/C7 wurde das epitheliale Muzin, MUC1, als spezifisches Antigen eindeutig bestimmt. Als Isotyp wurde IgG1, k. mit einem kleinen Anteil von IgM der gleichen Spezifität mit Eilfe eines kommerziellen Isotyping Kit (Pharmingen. San Diego, USA) ermittelt. Ein Epitop-Mapping im Rahmen des ISOBM TD-4 International Workshop on Monoclonal Antibodies against MUC1 (Tumor Biol. 19, Suppl. 1, 1998) definierte das Epitop als APDTRPAP. Weitere Untersuchungen unter Benutzung synthetischer, glykosylierter und nicht glykosylierter Peptide zeigten, daß das Epitop des mAk A76-A/C7 in starkem Maße durch seine Konformation bestimmt wird:

- Der Antikorper bindet nur geringfügig an eine einzelne Einheit (ein Repeat), obgleich diese die Epitopsequenz enthält.
- Die Bindung an nicht glykosylierte Pepude ist von der Länge des Pepuds, genau genommen von der Zahl der aneinandergereihten Repeats, abhängig (Abb. 1a). Aus der Literatur ist bekannt, daß sich die native Konformation des PDTRP-Motivs erst bei einer Pepudlänge von mehr als 3 Repeats ausbildet (Fontenot J. D., et al., J Biomol Struct Dyn 13: 245, 1995).
- Die Bindung des mAk A76-A/C7 an eine einzelne MUC1-Einheit (1 Repeat) wird stark erhöht, wenn diese im Bereich des Epitops am Thr mit GalNAc- oder Galß1-3GalNAc-glykosyliert ist (Abb. 1b; siehe auch Karsten, U., et al., Cancer Res, 58: 2541, 1998).

Der Anukörper wurde mittels Ammoniumsulfatfällung gefolgt von einer Affinitätschromatographie an ProteinA-Sepharose gereinigt.

Gewinnung von humanen rekombinanten Antikörperfragmenten, die das konformationsabhängige Epitop des MUCI imitieren, aus Antikörper-Genbibliotheken mit Hilfe der Phagen-Display-Technik

Es wurden zwei verschiedene synthetische Antikorper-Genbibliothek verwendet, die humane single-chain Antikorper-fragmente (scFv) darstellen. Die eine Antikorper-Genbibliothek (Griffin 1 Library: hup://www.mrc-cpe.cam.ac.uk/-phage/) besteht aus mehr als 10⁵ Phagen mit jeweils verschiedenen Kombinationen der variablen Regionen der schweren und leichten Ketten humaner Antikorper mit zum Teil randomisierten hypervariablen Regionen, welche mit einem

Peptidstück (Linker) verbunden sind und kovalent an ein Phagenhüllprotein (pIII) gebunden sind. Sie leitet sich aus einer anderen Antikörper-Genbibliothek ab (Griffiths, A. et al., 1994, EMBO J., 13: 3245-3260). Die zweite, kleinere Genbibliothek besieht aus scFv mit dem gleichen Framework (singleframework library), die durch Bindung an Protein L und Protein A auf aktive Faltung der Antikörperfragmente vorselektioniert wurde (1. Tomlinson, 9th anniverary conference: "Antibody engineering", IBC-Conferences, San Diego 1998: 1. Tomlinson, 10th anniverary conference: "Antibody engineering", IBC-Conferences, San Diego 1999; Speaker-Abstract). Die erste Bibliothek stammt aus dem Labor Dr. G. Winter und die zweite aus dem Labor Dr. I. Tomlinson (jeweils MRC Centre for Protein Engineering, Cambridge, UK). Die spezifischen Phagen wurden in 2-3 Runden selektionien (Phagen-Panning) unter Verwendung der proteolytischen Selektionsmethode mit dem Helferphagen KM13 (Kristensen, P. und Winter, G., Folding & Design, 3: 321, 1998). Als Antigen dienue der gereinigte monoklonale Antikörpre A76-A/C7 (35 µg/ml in 4 ml), das in einem Teströhrchen (Immunotube. Nunc, Wiesbaden) über Nacht bei 4°C in PBS immobilisiert wurde. Alternativ wurde A76-A/C7 mit den Phagen inkubiert: die an die Antikörper gebundenen Phagen wurden durch Magnetbeads mit immobilisierten anti-IgG Antikörpern (Deutsche Dynal, Hamburg) gewonnen. Die in den Selektionsrunden spezifisch gehundenen Phagen (3 h hei RT) wurden nach stringenten Waschschritten (bis zu 20 mal PBS/0.1% Tweer.20 und darauffolgend 20 mal PBS) durch das in der PDTR mit GalNAc glykosylierte Tandem-Repeat (100 µg/ml; Biosynthan, Berlin-Buch) eluiert und anschließend mit Trypsin (proteolytische Selektionsmethode) behandelt. Zwischen den Selektionsrunden wurden die eluierten Phagen in den Bakterien mit Helferphagen vermehrt und erneut selektioniert.

Gewinnung von Mimikry-Peptiden, die das konformationsabhängige Epitop des MUC1 imitieren, aus Peptid-Genbiblictheken mit Hilfe der Phagen-Display-Technik

Analog dem Beispiel zur Generierung von antiidiotypischen Antikörpern wurde in mehreren Selektionsrunden aus einer Peptid-Genbibliothek (Genbibliothek erhalten von Dr. H. Gollasch: Oligino, L., et al., J Biol Chem 272: 29046, 1997), die 107 verschiedene kurze Peptide an das Phagenhüllprotein pIII gekoppelt besitzt, spezifisch bindende Peptide gewonnen. Die exprimierten Peptide sind randomisierte Nonapeptide, die von zwei Cysteinen flankiert (CX9C) und damit zirkularisiert werden, wodurch die Stabilität und die Affinität erhöht werden. Die Selektion und Testung erfolgte wie bei der Generierung der antiidiotypischen Antikörper beschrieben. Analog dazu wurden mit weiteren Peptidbibliotheken zusätzliche lineare und zirkuläre Mimikry-Peptide gewonnen. Dabei handelt es sich um Peptid-Bibliotheken, die analog der oben beschriebenen Peptid-Bibliothek hergestellt wurden. Bei den exprimierten Peptiden handelt es sich um lineare Peptide mit 7 Aminosäuren und um zirkuläre Peptide mit 7 randomisierten Aminosäuren, flankiert von zwei Cysteinen (CX7C), um zirkuläre Peptide mit 10 randomisierten Aminosäuren, flankiert von zwei Cysteinen (CX10C), und um zirkuläre Peptide mit insgesamt 9 randomisierten Aminosäuren, mit zwei internen und zwei flankierenden Cysteinen (CX3CX3CX3CX).

Spezifitätstests der Mimikry-Peptide und der antiidiotypischen Antikörperfragmente

Die selektionierten Peptide und Antikörperfragmente wurden in ELISA-Tests auf ihre Bindung an den mAk A76-A/C7 sowie in Form einer Negativ-Kontrolle an andere lgG und lgM-mAk getestet. Außerdem wurden sie in ELISA-Tests auf ihre Bindung an eine Reihe von gut charakterisierten MUC1-spezifischen Antikörpern geprüft, die sich in ihrer Feinspezifität unterscheiden. Für die ELISA-Tests wurde die an Phagen gekoppelte Form der Peptide und Antikörperfragmente verwendet. Die antiidiotypischen svFv und die Mimikry-Peptide lassen sich dabei in Gruppen unterteilen, die:

- ausschließlich an A76-A/C7 binden
- an A76-A/C7 und an andere MUC1-spezifische Antikorper binden, die entweder nur an das Konformationsepitop (in der PDTR-Region glykosyliertes MUC1-Tandem-Repeat) binden (Typ A) oder deren Bindung durch die PDTR-Glykosylierung des MUC1 Tandem Repeats (Konformationsinduktion) stark erhöht wird (Typ B)
- an MUC1-spezifische Antikörper, die neben Typ A und B auch MUC1-spezifische Antikörper binden, die in gleichem Maße glykosylierte und unglykosylierte MUC1-Tandem-Repeats binden (Typ D)
- eine starke Bindung an MUC1-spezifische Antikörper haben, die sich bezüglich der Glykosylierung der PDTR-Region des MUC1-Repeats zu A76-A/C7 umgekehrt verhalten und das glykosylierte MUC1-Peptid nicht oder wesentlich geringer als das nichtglykosylierte MUC1-Peptid binden (Typ C). Dabei können diese Mimikry-Peptide oder antiidiotypischen scFv auch an andere Typen der MUC1-spezifischen Antikörper binden.

Die Mimikry-Peptide und antiidiotypischen Antikörperfragmente wurden außerdem in ELISA-Inhibitionstests daraufhin untersucht, ob sie, in Form der synthetisierten Peptide oder gereinigten scFv (allein oder an Phagen gekoppelt) die
Bindung des A76-A/C7 an das glykosylierte MUC1-Peptid (im Epitop PDTR mit Ga1NAc glykosylierte Tandem-Repeat) und nichtglykosylierte Oligomere des 20-mer Tandem-Repeats spezifisch und konzentrationsabhängig bemmen.
Diese Versuche wurden mit Streptavidin-beschichteten Mikrotestplatten (BioTeZ, Berlin-Buch) und biotinylierten
MUC1-Peptiden (Biosynthan, Berlin-Buch: Abb. 1c) sowie mit normalen ELISA-Testplatten, auf denen die MUC1-Peptide durch Antrocknen immobilisien wurden, durchgeführt.

Inzuchtmäuse des Stammes Balb/c wurden intraperitoneal mit Mimikry-Peptiden und antiidiotypischen Antikörperfragmenten in Form der synthetisierten Peptide oder gereinigten scFv alleine, jeweils gekoppelt an das Protein KLH oder
gekoppelt an Bakteriophagen in PBS, gemischt mit inkomplettem Freundschem Adjuvans, immunisiert. Dabei wurden
Mischungen von antiidiotypischen scFv-Phagen beziehungsweise Mimikry-Peptid-Phagen aus jeweils den verschiedenen Gruppen (s. o.) verwendet. Drei Wochen später wurde mit dem gleichen Ansatz jedoch ohne Adjuvans geboostert.
Die Boosterung wurde nach 3 Wochen wiederholt und 10 Tage später den Mäusen Blut entnommen. Das Serum wurde in
ELISA-Tests auf Antikörper getestet, die spezifisch das konformationsabhängige Epitop des MUC1 erkennen (Versuchsaufbau wie oben). Die Mischungen der antiidiotypischen scFv sowie der Mimikry-Peptide erzeugen eine starke Reaktion

20

35

45

gegen das konformationsabhängige Epitop des MUC1.

Konstruktion der DNA-Vakzine und Testung an der Maus

Die antiidiotypischen scFv wurden direktional in einen DNA-Vakzinierungsvektor kloniert. Dabei wurden die scFv durch Sfil und Notl aus dem Phagemid Vektor ausgeschnitten und direktional in verschiedene DNA-Vakzinierungsvektoren kloniert die zuvor mit den gleichen Enzymen gespalten wurden. Ein geeigneter Vektor hierbei ist der Vektor pVAC2 (I. Farmer et al., Keystone Symposium "DNA-Vaccines", Snowbird, USA, 1999; Poster und Posterabstract), der, nach erfolgter Einfügung des scFv in den DNA-Vakzinierungsvektor, ein Fusionsprotein aus dem antiidiotypischen scFv mit einem Tetanus-Toxoid kodiert. Das Tetanustoxoid hat dabei die Eigenschaft eines Adjuvans und verstärkt die Immunreaktion gegen den fusionierten Proteinanteil C. King et al., 1998, Nat. Medicine 4: 1281-86).

Die Mimikry-Peptide wurden ebenfalls in verschiedene DNA-Vakzinevektoren kloniert. Die Klonierung erfolgte nach der an sich bekannten Methode der PCR-Klonierung, bei der mit Hilfe synthetischer Primer die Sequenzen die für die Mimikry-Peptide kodieren, in die DNA-Vakzinierungsvektoren eingefügt wurden. Dabei wurden ebenfalls DNA-Vakzinierungsvektoren auf der Basis des pVAC2 hergestellt, die jeweils für ein Fusionsprotein des Mimikry-Peptides mit dem Tetanustoxoid kodieren.

Die DNA der Vakzinierungsvektoren wurde nach an sich bekannten Methoden vermehrt, gereinigt und anschließend Mäusen injiziert. Dabei wurden für die Immunisierung Mischungen von DNA-Vakzinierungsvektoren, die antiidiotypische scFv beziehungsweise Mimikry-Peptide als Fusionsprotein mit dem Tetanustoxoid kodieren, die jeweils aus den verschiedenen Gruppen mit unterschiedlichen Bindungsmustern für MUC1-spezifische Antikörper (s. o.) stammen, verwendet. Als Dosis wurden 50 µg bzw. 200 µg an Gesamt-DNA verwendet und intra muskulär appliziert. Vier Wochen später wurde mit dem gleichen Ansatz geboostert und die Boosterung nach 4 Wochen wiederholt und 10 Tage später den Mäusen Blut entnommen. Das Serum wurde in ELISA-Tests auf Antikörper getestet, die spezifisch das konformationsabhängige Epitop des MUC1 erkennen (Versuchsaufbau wie oben).

Die Immuniserung mit den Mischungen der DNA-Vakzinevektoren, ergab sowohl bei den antiidiotypischen scFv als auch bei den Mimikry-Peptiden die kodierenden DNA-Vektoren eine starke humorale Immunreaktion gegen das konformationsabhangige Epitop des MUC1 sowie eine starke Reaktion gegen das Tetanustoxoid.

Vakzine im Tumor-Challenge Modell

30

Im Maus Tumor-Challenge Modell wurden verschiedene Maustumorzellinien (3T3 und P815) verwendet, die mit der cDNA der Transmembran-Form des humanen MUC1 stabil transfiziert. Die MUC1-positiven Mauszellinien exprimieren das Konformationsepitop des MUC1, das durch Immunbindungsstudien mit dem A76-A/C7 getestet wurde. Für die Studien wurden mehrere Mäusestämme verwendet (Balb/c, DBA/2 und C57BL/6). Nach der Vakzinierung der Mäuse nach dem unten beschriebenen Prime-Boost-Protokoll wurden die Mäuse mit 10⁶ bis 10⁷ Tumorzellen in 200 µ! PBS subkutan in der Nähe des Peritoneum injizitert und das Tumorwachstum (Tumorgröße in mm) über 20–30 Tage gemessen.

Vakzinierungsschema Prime-Boost

Es wurden für die Immuniserungen (Priming) eine Kombination aus DNA-Vakzinierungsvektoren (kodierend für scFv-Tetanustoxoid-bzw. Mimikry-Peptid-Tetanustoxoid-Fusionsprotein) mit jeweils zwei Kandidaten aus den 4 unterschiedlichen Gruppen der antiidiotypischen-scFv bzw. Mimikry-Peptide verwendet. Für die Boosterung wurden die gleichen Kombinationen der antiidiotypischen scFv bzw. Mimikry-Peptide jedoch in ihrer Proteinform in inkomplettem Freundschem Adjuvans verwendet. Hierfür wurden die scFv nach an sich bekannten Verfahren durch eine Nickel-Chelat-Chromatographie gereinigt und die Mimikry-Peptide nach an sich bekannten Vefahren chemisch an KLH gekoppelt. Für die Immunisierung wurden 50-200 µg gesamt-DNA intramuskulär appliziert und für die scFv und Mimikry-Peptide 10-200 µg intrapentoneal. Die zeitlichen Abstände waren 3 Wochen und die Boosterungen erfolgten 2-3 mal.

Als Kontrolle wurden die DNA-Vakzinierungsvektoren für ein scFv mit einer Spezifilät gegen ein irrelevantes bakterielles Protein bzw. für ein irrelevantes Peptid (SSGSSSSGS), beziehungsweise deren gereinigte scFv oder der Peptid-KLH Komplex verwendet. Für die verschiedenen Versuchsansätze wurden jeweils 5-10 Tiere untersucht.

Die Versuche zeigen, dass eine Vakzinierung nach dem Prime-Boost-Protokoll das Wachstum von injizitieren MUC1-positiven Maus-Tumorzellinien verhindert oder auf eine minimale Größe reduzien (0-20 mm² nach 20 Tagen). Die gleiche Vakzinierung erreicht bei darauffolgender Injektion mit den gleichen Tumorzellen ohne transfiziertes MUC1 eine Tumorgröße von durchschnittlich über 200 mm² (nach 20 Tagen). Auch die Injektion von MUC1-positiven Maus-Tumorzellinien in Mäuse ohne vorherige Vakzinierung ergibt eine starkes Tumorwachstum (> 200 mm² nach 20 Tagen). Eine Immunisierung und Boosterung mit den Proteinen der antiidiotypischen-scFv bzw. den Mimikry-Peptiden an KLH gekoppelt ohne DNA-Vakzinierungsvektoren erbgibt eine Immunantwort gegen die MUC1-Tumorzellen, die Tumorprotektion ist jedoch um ein vielfaches geringer als bei dem Prime-Boost Protokoll mit den DNA-Vakzinierungsvektoren.

Die Ergebnisse zeigen, dass eine Vakzinierung mit DNA-Vakzinierungsvektoren, die für antiidiotypische scFv bzw Mimikry-Peptide kodieren, eine ausgezeichnete Tumorprotektion ergibt. Diese Reaktion ist MUC1 spezifisch. Sie ist um ein Vielfaches besser oder überhaupt möglich im Vergleich zu Vakzinierungsstudien mit den Proteinen der antiidiotypischen-scFv bzw. Mimikry-Peptiden ohne vorangegangene Immunisierung mit den entsprechenden DNA-Vakzinierungsvektoren.

Damit ist gezeigt, dass die erfindungsgemäße Vakzine gegen konformationsabhängige Antigene durch DNA-Vakzinierungsvektoren von Mimikry-Strukturen eine erfolgreiche Form der Bekämpfung von Turnoren ist die diese konformationsabhängigen Antigene tragen.

Beispiel 2

Herstellung der Hybridomzellinien A78-G/A7 und von Anukörpern

- Balb/c-Mäuse wurden im Fall des A78-G/A7 (siehe auch Karsien, U., et al., Hybridoma 14: 37, 1995), mit 100 µg Asialoglykophorin (Sigma, Deisenhofen) in PBS, gemischt mit Freundschem Adjuvans, intraperitoneal immunisiert, Nach 24 h wurde 100 µg/kg Körpergewicht Cyclophosphamid in PBS i. p. verabreicht. Die Boosterung erfolgte nach 2 Wochen mit 100 µg Asialoglykophorin. Als Fusionszellinie diente jeweils X63-Ag8.653 (Kearney, J. F., et al., J Immunol 123: 1548, 1979). Die Hybridomtechnik wurde nach Standardmethoden (z. B. Peters, H. H., et al., "Monoklonale Antikörper, Herstellung und Charakterisierung", Berlin 1985: Friemel, H., "Immunologische Arbeitsmethoden", 4. Auft., Jena 1991) durchgeführt. Die Spezifitätsanalyse der von den Hydridomzellinien produzierten monoklonalen Antikörper basiene auf Enzymimmunoassays mit natürlichen Glykoproteinen, synthetischen Peptiden und Glykopeptiden, Glykolipiden und Neoglykolipiden und synthetischen Polyacrylamid-Kohlenhydrat-Konjugaten, Absorptionsanalysen an synthetischen Kohlenhydratkonjugaten (Synsorb, Chembiomed, Edmonton, Canada), Immunfluoreszenzanalysen mit diversen Zellinien sowie immunhistochemischen Untersuchungen ar. Gewebsschnitten, Für den A78-G/A7 wurde das tumorassoziierte Kohlenhydratepitop Thomsen-Friedenreich (TF), als spezifisches Antigen eindeutig bestimmt:
 - A78-G/A7 binder ausschließlich an das Disaccharid TF in der α-anomeren Konfiguration (TFα: Galβ1-3Gal-NAcα1-O-Ser/Thr) auf natürlichen und synthetischen Strukturen, wie es natürlich nur auf Glykoproteinen in Form einer direkten O-glykosidischen Bindung an Serine oder Threonine vorkommt. TFβ, das endständig an Glykanketten von Glykolipiden vorkommen kann, sowie andere Kohlenhydratstrukturen. Peptid- oder Lipicanteile werden dagegen nicht gebunden.
 - A78-G/A7 bindet hochspezitisch an verschiedene Karzinomzellinien in Immunfluoreszenzuntersuchungen und an verschiedene Karzinomie in histochemischen Untersuchungen. (Cao. Y., et al., Histochem Cell Biol 106: 197, 1996; Cao, Y., et al., Cancer 70: 1701, 1995; Cao, Y., et al., Virchows Arch 431: 159, 1997; Karsten, U., et al., Hybridoma 14: 37, 1995).
 - Als Isotyp wurde für A78-G/A7 der Isotyp IgM, k. mit Hilfe eines kommerziellen Isotyping Kit (Pharmingen, San Diego, USA) ermittelt.
- A78-G/A7 wurde aus Zellkulturüberstünden mittels einer Antmoniumsulfatfällung, gefolgt von einer Affinitätschromatographie an einer ProteinG-Affinitätsmatrix zur Abreinigung von ungewünschten IgG Antikörpern aus dem Kälberserum und schließlich mit einer Affinitätschromatographie mittels einer Ziege-anti-Maus-Ig-Affinitätsmatrix (Perzellulose, BioTeZ, Berlin-Buch) gereinigt (Dr. G. Butschak).
- 35 Herstellung von humanen rekombinanten Antikörperfragmenten gegen das Thomsen-Friedenreich Antigen aus Antikörper-Genbibliotheken mit Hilfe der Phagen-Display-Technik

Es wurden zwei verschiedene synthetische Antikörper-Genbibliotheken verwendet, die humane single-chain Antikörperfragmente (scFv) darstellen. Die eine Antikörper-Genbibliothek besteht aus mehr als 1010 Phagen mit jeweils verschiedenen Kombinationen der variablen Regionen der schweren und leichten Ketten humaner Antikorper mit zum Teil randomisierten hypervariablen Regionen, welche mit einem Peptidstück (Linker) verbunden sind und kovalent an ein Phagenhüllprotein (pIII) gebunden sind. Sie leitet sich aus einer anderen Antikörper-Genbibliothek ab (Griffiths. A. et al., 1994, EMBO J., 13: 3245-3260). Die zweite, kleinere Genbibliothek besteht aus scFv. die auf aktive Faltung der Antikörperfragmente vorselektioniert wurden. Die erste Bibliothek stammt aus dem Labor Dr. G. Winter und die zweite aus dem Labor Dr. I. Tomlinson (jeweils MRC Centre for Protein Engineering, Cambridge, UK). Die spezifischen Phagen wurden in 2-3 Runden selektionien (Phagen-Panning) unter Verwendung der proteolytischen Selektionsmethode mit dem Helferphagen KM13 (Kristensen, P. und Winter, G., Folding & Design, 3: 321, 1998). Als Antigen diente der gereinigte A78-G/A7 (35 µg/ml in 4 ml), das in einem Teströhrchen (immunotube, Nunc, Wiesbaden) über Nacht bei 4°C in PBS immobilisien wurde. Alternativ wurde der gereinigte Antikörper mit den Phagen inkubien: die an den Antikörper gebundenen Phagen durch Magnetbeads mit immobilisierten anti-IgM Antikörpern (Deutsche Dynal, Hamburg) gewonnen. Die in den Selektionsrunden spezifisch gebundenen Phagen (3 h bei RT) wurden nach stringenten Waschschritten (bis zu 20 mal PBS/0.1% Tween20 und darauffolgend 20 mal PBS) durch das das TFa-tragende Glykoprotein Asialoglykophorin (100-165 µg/ ml) spezifisch eluiert und teilweise anschließend mit Trypsin (proteolytische Selektionsmethode) behandelt. Zwischen den Selektionsrunden wurden die eluierten Phagen in den Bakterien mit Helferphagen ver-55 mehrt und erneut selektioniert. Es wurden 2 bis 3 Selektionsrunden durchgeführt.

ldentifizierung von Peptiden mit Hilfe einer Peptid-Genbibliothek, die spezifisch das Thomsen-Friedenreich Antigen imitieren

Analog dem Beispiel zur Generierung von antiidiorypischen Antikorpern wurde in mehreren Selektionsrunden aus einer Peptid-Genbibliothek (Oligino, L., et al., J Biol Chem 272: 29046, 1997), die 10⁷ verschiedene kurze Peptide an das Phagenhüllprotein pIII gekoppelt besitzt, spezifisch bindende Peptide gewonnen (in Zusammenarbeit mit Dr. H. Gollasch, Robert-Rössle-Klinik, Berlin-Buch). Die exprimierten Peptide sind randomisierte Nonapeptide, die von zwei Cysteinen flankiert und damit zirkularisiert werden, wodurch die Stabilität und die Affinität erhöht wird. Die Selektion und Testung erfolgte wie in der Generierung der antiidiotypischen Antikörper beschrieben.

Spezifitätstests der Mimikiy-Peptide und antiidiotypischen Antikörperfragmenten

Die selektionierten Peptide und Antikörperfragmente wurden in ELISA-Tests auf ihre Bindung an TF-spezifische Antikörper und an das Pfianzeniektin PNA (Peanut Agglutinin, Arachis hypogaea Lektin; Sigma), das auch, wenn auch nicht ausschließlich, das Thomsen-Friedenreich-Antigen bindet, sowie zur Kontrolle an andere IgM und IgG-Antikörper getestet. Hierfür wurden die an Phagen gekoppelte Form der Peptide und Antikörperfragmente verwendet, die zuvor durch eine in 96-Well Platten durchgeführte Polyethylenglykol-Fällung gereinigt wurden. Die potentiellen Mimikry-Peptide und antiidiotypischen Antikörperfragmente wurden in ELISA-Inhibitionstests daraufhin untersucht, ob sie die Bindung des A78-G/A7 und/oder andere TF-erkennender Antikörper und Lektine an das Disaccharid TFα spezifisch hemmen. Dahei wurde das das TFα tragende Glykoprotein Asialoglykophorin auf ELISA-Platten durch Antiocknen immobilisiert, und die Bindung der monoklonalen Antikörper und Lektine durch die Mimikry-Peptide oder antiidiotypischen Antikörperfragmente in Form der synthetisierten Peptide oder gereinigten scFv alleine oder gekoppelt an Phagen konzentrationsahhängig inhibitert (Abb. 2).

Inzuchtmäuse des Stammes Balb/c und des Stammes NMRI wurden intraperitoneal mit Mimikry-Peptiden und antiidiotypischen Antikorpertragmenten in Form der synthetisierten Peptide oder gereinigten scFv alleine, jeweils gekoppelt an das Protein KLII oder gekoppelt an Bakteriophagen in PBS, gemischt mit komplettem Freundschem Adjuvans, immunisiert. Drei Wochen spater wurde mit dem gleichen Ansatz jedoch ohne Adjuvans geboosten. Die Boosterung wurde nach 3 Wochen wiederholt und 10 Tage später den Mäusen Blut entnemmen. Das Serum wurde in ELISA-Tests auf Antikörperbindungen gegen das Thomsen-Friedenreich-Antigen untersucht.

Vakzinierung mit TF-imitierenden Peptiden im Maus-Tumormodell

20

35

40

50

Zellkultur

Die Maus-Colon-Karzmoni-Zellinie C-26 wurde im Medium RPMI 1640 mit Zusatz von 10% fetalem Kälberserum gehalten.

Tumormodell

In Mäuse des Stammes Balb/c wurden 10⁶ Zellen der syngenen Colon-Karzinom-Zellinie C-26 s. c. transplantiert, und zwar in zwei Varianten; a) unbehandelt und b) mit Neuraminidase aus V. cholerae (Serva, Heidelberg) vorbehandelt (TF-positiv). In wöchentlichen Intervallen wurde die Tumorgröße extern ermittelt. Nach 3 Wochen wurden die Tiere getötet und jeweils die Leber herauspraparient, um die Zahl der an der Oberfläche der Leber sichtbaren Metastasen zu ermittein.

Vakzinierung

Die Vakzinierung der Mäuse wurde 6 Wochen vor der Tumoruransplantation begonnen. Die Phagenpräparation bzw. die gereinigten schw (sowie entsprechende Kontrollen) wurden mit inkomplettem Freund-Adjuvans 1:1 emulgien und i. p. injizien. Vier Wochen später wurde geboosten (ohne Adjuvans). Nach weiteren 2 Wochen wurde die Tumoruransplantation (Tumor-Challenge) mit unbehandelten und Neuraminidase-behandelten C-26-Zellen vorgenommen.

Ergebnis

Die vorliegenden Ergebnisse mit drei der genannten antiidiotypischen-scFv zeigten, daß die Angangsrate der Tumoren bei den Neuraminidase-behandelten C-26-Zellen durch die Vakzinierung signifikant erniedrigt werden kann (auf 3-16% der Kontrolle: Kontrolle: 100% Angangsrate). Darüber hinaus entsprach die Zahl der Lebermetastasen bei den vakzinierten Tieren annähernd der der Tiere, die mit unbehandelten (TF-negativen) C-26-Zellen transplantiert worden waren (rund 2 pro Leber), während die nichtvakzinierten Kontrolltiere mit TF-positiven C-26-Zellen 5-9 Metastasen pro Leber aufwiesen.

Legenden zu den Abbildungen

Abb. 1c

Inhibition der A76-A/C7 Bindung an das MUC1-Glykopeptid (Biotin-Ahx-APPAHGVTSAPD-Thr(α-D-GalNAc)-RPAPGSTAPPAHGVTSA) durch scFv-Phagen. Das MUC1-Glykopeptid wurde an die Streptavidin-ELISA-Platte immobilisiert (5 ng/Well) und anschließend mit 30% FKS in RPMI blockiert. Kulturüberstand des A76-A/C7 (1:80 verdünnt) wurde mit den durch eine Polyethylenglykolfällung gereinigten scFv-Phagen in den angegebenen Konzentrationen (Volumenprozentanteil von abgeglichenen Phagenlösungen in PBS) für eine Stunde vorinkubiert und anschließend für 2 Stunden auf die MUC1-Glykopeptidplatte gegehen. Der Nachweis erfolgte über einen anti-Maus-POD-Antikörper (Dako). Die scFv-Phagen Q6. Q7 und Q8 sind Beispiele für antiidiotypische scFv. während Q4 und Q10 Beispiele für Kontrol-scFv sind, die den A78-A/C7 zwar binden, jedoch keine antiidiotypischen-scFv sind.

Abb. 2

Inhibition der A78-G/A7 Bindung an Asialoglykophorin durch scFv-Phagen. Das Asialoglykophorin (A-GP) wurde an die ELISA-Plate durch Antrocknen immobilsiert (25 ng/Well) und anschließend mit 30% FKS in RPMI blockiert. Kulturüberstand des A78-G/A7 (1:20 verdünnt) wurde mit den durch eine Polyethylenglykolfällung gereinigten scFv-

Phagen in den angegebenen Konzentrationen (Volumenprozentanteil von abgeglichenen Phagenlösungen in PBS) für eine Stunde vorinkubiert und anschließend für 2 Stunden auf die A-GP Platte gegeben. Der Nachweis erfolgte über einen anti-Maus-POD-Antikörper (Dako). Die scFv-Phagen P9. P13. P16. P3 und K3 sind Beispiele für antiidiotypische scFv. während P8 und Q1 Beispiele für Kontrol-scFv sind, von denen P8 zwar den A78-G/A7 bindet, jedoch kein antiidiotypischer scFv ist und Q1 ein Phage ist, der nicht den A78-G/A7 bindet.

SEQUENZPROTOKOLL

<110> Max-Delbrück-Centrum für Molekulare Medizin												
<120> Vakzine gegen konformaitonsabhängige Antigene	5											
<130> 100 27 695.4												
<140> 100 27 695.4												
<141> 2000-05-29												
:150> DE199 24 405.7	15											
<151> 1999-05-27												
<150> DE 199 43 016.0	20											
<151> 1999-09-09												
<160> 96												
	25											
<170> Patentln Ver. 2.1												
<210> 1												
<211> 240	30											
<212> PRT												
<213> Kûnstliche Sequenz												
<220>	35											
<223> Beschreibung der künstlichen Sequenz: humane												
antiidiotypische Antikörperfragmente gegen das	40											
MUC1-Konformationsepitop	-0											
<400> 1												
Glu Val Gln Leu Leu Glu Ser Gly Glu Gly Leu Val Gln Pro Gly Gly	45											
1 5 10 15												
Southern the Southern Southern State												
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30	50											
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val												
35 40 45	55											
Ser Ser Ile Gln Arg His Gly Thr Trp Thr Gly Tyr Ala Asp Ser Val												
50 55 60												
	60											
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80												
70 79 80												
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys	65											

85

95

90

Ala Lys Arg Asn Gly Glu Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val 105 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 115 120 10 Gly Gly Ser Thr Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser 140 135 Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser 150 155 . 160 Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 165 170 Lys Leu Leu Ile Tyr Ser Ala Ser Thr Leu Gln Ser Gly Val Pro Ser 185 190 180 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 195 200 Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Asn Ser 215 220 210 35 Thr Ile Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 230 235 40 45 <210>, 2 <211> 240 <212> PRT <213> Künstliche Sequenz <220> <223> Beschreibung der künstlichen Sequenz: humane antiidiotypische Antikorperfragmente gegen das MUC1-Konformationsepitop Glu Val Gln Leu Leu Glu Ser Gly Glu Gly Leu Val Gln Pro Gly Gly 10

Ser	Leu	Arg	Leu 20	Ser	Cys	ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr		5
Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val		·
Ser	Ser 50		Asn	Tyr	Asn	Gly 55	Asp	Ala	Thr	Ser	Tyr 60	Ala	Asp	Ser	Val		10
Lys 65	Gly	Arg	Phe	Thr	11e .70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80		15
Leu	Gln		Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys		20
	Lys	Ser	Ser 100	Ser	Thr	Phe	Asp	Tyr 105	Trp	Gly	Gln	GJY	Thr 110	Leu	Val		25
Thr	Val	Ser 115		Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly		30
Cly	Gly 130	Ser	Thr	Asp	Ile	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser		
Ala 145		Val	Gly	Asp	Gly 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160		35
Il€	Ser	Ser	Tyr	Leu 165		Trp	Tyr	Gln	Gln 170	ГÀЕ	Pro	Gly	Lys	Ala 175	Pro		40
Lys	Leu	Leu	lle 180	Tyr	Ser	Ala	Ser	Thr 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser		45
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	G]y 200	Thr	Asp	Phe	Thr	Leu 205	Thr	Ile	Ser		50
Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Thr	Ser		55
Asn 225	Ser	Pro	Ala	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240		-
																	60

65

<210> 3

	<23	11> 2	40													
	<21	2> I	RT													
5	<21	3> F	lünst	lich	e Se	guen	z									
•						-										
	<22	20>			•											
	<22	3> E	esch	reib	ung	der	kūns	tlic	hen	Seçu	enz:	hum	ane			
10			ntii		_					_				.5		
			rucı -													
				. •			•	- :								
15	<40	0> 3		•						•						
15	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly
	. 1		·. · · ·		··· 5		••	. ·		. 50	. •			. • •	ì5	
			, .							•						
20	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	.Ser	Tyr
			•	20		•			25	_				30		_
		-			•	•	٠.				•					
	Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
25			35		,			40					45			
			•													
	Ser	Thr	Ile	Asn	Ala	Ala	Gly	Ala	Gln	Thr	Gly	Тут	Ala	Asp	Ser	Val
30		50			. •		55	-				60				
			•							•	, .					
	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
	- 65					70		•			75					80
35											٠					
	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	qzA	Thr	Ala	Val	Tyr	Tyr	Cys
			•		. 85.					90					95	
10	•		-		•	•										
	Ala	Lys	Thr	Gly	Thr	Asn	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
			`	100		-			105					110		
15	Thr	Val	Ser	Ser	Gly	Gly	Gly		Ser	Gly	Gly	Gly	Gly	.Ser	Gly	Gly
		٠.	115		-		•	120			•		125			
				_	_	:			'		-					
0	GIY		Ser	Thr	Asp	11e		Met	Thr	Gln			Ser	Ser	Leu	Ser
	•	130					135					140				
	23 -	·		63	.		**- 3	m }	~ 3 -		_	_		_		_
			Val	GIY	Asp		Val	Thr	11e	Thr		Arg	Ala	Ser	Gln	
5	145					150					155	•				160
	73.0	50-		7 . –	7 han	3	· •			63 -	•	<u>.</u>	63.	•		_
	775	se!	Ser	IYI		ASII	irp	TAL		٠.		PTO	GIA	гàг		PTO
.n					165				•	170	•				175	
N)	i.	ĩ.e.:	Leu	71.c	τ.~	Ca~	2.3-	۶۸~·	n 7 -	7.000	C3-	F	63-6	U= 1	D=-	
	-y z	nen		180	·	9C1	Wig	SEL	•	nen	CID	ser	GIÀ		PTO	ser
				700					185					190		

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 195 200 205

Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn 210 215 Thr Asp Pro Ala Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 235 230 10 15 <210> 4 <211> 240 <212> PRT 20 <213> Künstliche Sequenz <220> 25 <223> Beschreibung der künstlichen Sequenz: humane antiidiotypische Antikorperfragmente gegen das MUC1-Konformationsepitop Glu Val Gln Leu Leu Glu Ser Gly Glu Gly Leu Val Gln Pro Gly Gly 5 10 35 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 25 30 40 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 40 45 35 Ser Arg Ile Gly Gln Lys Gly Asn Lys Thr Thr Tyr Ala Asp Ser Val 45 50 ... 55 ... 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr - 65 70 75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 55 Ala Lys Lys Ser His Asp Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val 105 60 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 115 120

Gly Gly Ser Thr Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser-

		130			•		.135	•				140				
5	Ala 145		Val	Gly	Asp	Arg 150		Thr	lle	Thr	Cys 155		Ala	Ser	Gln	Se:
10	Ile	Ser	Ser	Туг	Leu 165		Trp	Туг	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	
15	Lys	Leu	Leu	Ile 180	_	Arg	Ala	Ser	Asp 185	řeu	Gln	Ser	Gly	Val 190	Pro	Ser
20	Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200		Asp	Phe	Thr	Leu 205	Thr	lle	Ser
	Ser	Leu 210		Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Pro	Trp
25	Asp 225	Pro	Pro	Arg	Met	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	lle	-	Arg 240
30	•															
35																
	<210	0 > 5														
	<21	1> 24	10													
40	<212	2> PI	RT													
	<23.3	3> Ki	inst.	lich	e Sed	quen	Z									
	<220) >														
45	<223	3 > Be	eschi	reib	mg (ier ł	tûnst	tlic	hen :	Segue	enz:	huma	ane			
		ar	itiio	liot	ypiso	the A	anti)	korp	erfra	gmei	nte g	geger	a da	5		
		M	JC1 - I	Konf	ormat	tions	epit	top								
50	400															
	<400		~ 1-	7	*	6 3		63	.03**	63	•	**- 3	- 2-	5		
	1	VA1	GIII	Den	<i>Б</i> еи	نايق	ser	GIY	GIU	10	Leu	Vāl	GIN	PIO	15	GIY
55	•			•	•					10		•			13	
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
		-									• •		· .			
50	Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Lib	Val
		٠	٠.						•							
55	Ser	Arg 50	lle	Thr	Gln	Ser	Gly 55	Thr	Tyr	Thr	Gln	Tyr 60	Ala	Asp	Ser	Val

Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80		5
Leu	Gln	Met	Asn	Ser .85	Leu	Arg	λla	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	C'ns		
Ala	Lys	Gly	Leu 100	Ser	Arg	Phe	Asp	Тут 105	Trp	Gly	Gļn	Gly	Thr	Leu	Val	1	υ
Thr	Val	Ser			Gly		120	Ser 	єΊγ	Gly	Gly	Gly 125	Ser	Gly	Gly	1	5
Gly	130 GJA	Ser		-			•	•	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser	2	ò
Ala 145	Ser	Val	Gly		Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160	2	5
Ile	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro	2	•
Lys	Leu		lle 180	Tyr	His	Ala	Ser	Phe 185	Leu	Gln	Ser	Ģly	Val 190	Pro	Ser	,	0
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser	3	5
Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	.Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Pro	Trp	1	0
Glu 225	Pro	Pro	Arg	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240	4	5
																5	0
	> 6 > 24 > PF															5	5
<213		inst]	iche	e Sec	penz	2										6	ሳ
	> Be	tiid	lioty	pisc	the A		corpe		egner Segue				5			6	5

	Glu 1	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly
					5		•			10					15	
5	· ·	Leu	3 mm	T 011	C0*		21=	בומ	Cor.	, 	Dhe.	Thr	Dhe	Ser	Set	Th.re
	SEI	Ten	Arg	20	361	Cys	Me	MG	25	Gry	FHE	1111	rne	30	SEL	
10	Ala	Met	Ser	Trp	val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
16			35		•			40					45			
15	Ser	Ser 50	lle	Asn	Ala	Phe	Gly 55	Gl'n	Ser	Thr	Arç	Tyr 60	Ala	Asp	Ser	Val
		C3	>	Dha	The -	73.0	50=	2 200	200	2.cn	Co+	1) co	The e	t en	Tyr
20	65°		Arg	·	1111	70	SEI	My	Asp	A5II	.75	Lys	ASII	1111	Deu	60
25	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	-	Cys
23					85				,	90					95	
30	Ala	Lys	Tyr	Asp 100	His	Ser	Phe	Asp	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val
	Thr	ひって	Ser	Ser	Glv	Glv	Glv	Glv	Ser	GIV	ผาง	G) v	Glv	Ser	GIV	Gly
35			115		,,	,	,	120	•	,		,	125	- 	2	
55	Gly	Gly-		Thr	Asp	Ile	Gln 135	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
40			٠.							•						
	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	Ile	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
45	lle	Ser	Ser	Tyr		Asn	Trp	Tyr	Gln		Lys	Pro	Cly	Lys		Pro
				-	165					170				•	175	•
50	Lys	Leu	Leu	Ile 180	Tyr	Ala	Ala	Ser	Ser 185	Leu	Gln	Ser	Gly	Val 190		Ser
	Arg	Phe		Gly	Ser	Gly	Ser		Thr	Ьsр	Phe	Thr		Thr	lle	Ser
55			195			•		200					205			
	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Pro	Trp
60 ·	l.ev	Pro	D===) -	ም ኮ~	, Dhe	Gl w	61 m	Gl··	ጥኩ፦	lare	V-1	61	77.	t.ue	2
	225			~. y	****	230		HED	uzy ,	444	235	401			~y 5	240

<21	0> 7	1															
<21	1> 2	40															
<21	2> P	RT															5
<21	3 > K	ünst	lich	e Se	феи	2											
<22																10	٠,
<22				_					Segu							1,	U
								erfr	agme	nte	gege	n da	5				
	М	UCI-	Konf	ormä	tion	sepi	top										
																1.	5
	0>_7		•	•	63	6	~ 3	- 3	 2	•	•••						
		GID	ren			Ser	elà	GIU		Leu	Val	Gīn	Pro	Gly	Gly		
1				•5					10					15		•	
۲	*		• • • • •	. ``	•		• • •			- 1-	55 1			Ser	_	20	ע
SEI	Den	Wid		Sei	Cys	WIS	FLE		GIY	Pne	inr	Pne		Ser	ıyr		
			20					25					30				
A 7 =	Mot	Ser	T	3 25.7	7~~	612	ר ד תי	Dro	C111	1	· C3 **	7 000	~ 1	Trp	31-3	25	5
71.0	1700	35		V & 1	w ć	GIII	40		GIY	пуs	. Giy	45	GIU	110	Val		
					•		40					ڊ					
Ser	Glv	Ile	Asn	Ala	Ser	Glv	Thr	ī.eu	Thr	Arg	Tvr	= [4	Asp	Ser	v=1		
	50					55	••••	200		*** >	60	711 6	, and	561	461	36)
	-					-											
Lys	Gly	Arg	Phe	Thr	lle	Ser	Arg	qaA	Asn	Ser	Lys	Asn	Thr	Leu	Tvr		
65	•	•			70		-	•		75	-, -				80	35	
				•										•			
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys		
		•	•	85					90				-	95	-		
																40	,
Ala	Lys	Ser	Ala	Lys	Ser	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val		
			100					105					110				
		٠,										•				45	į
Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly		
		115					120					125					
		•								٠,						,,	
Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	50)
	130					135					140			•			
	_	•					:			•							
	Ser	Va1	Gly	Asp		Val	Thr	lle	Thr	Cvs	Arg	Ala	Ser	Gln	Ser	55	į
145					150					155					160		
*1		c	.		\ -					_	_		_		_		
116	ser	ser	TYT		ASD	Trp	lar	G11		Lys	Pro	Gly	Lys	ala	Pro		
			·.	165		, .			170					175		₩)
Lve	1.011	Lev	: 11=	175.~~	λ	27-	Ce	No+	7	~ 3 -	e	, ,	17- 7	D	c		
nvo	Tie fi	שבני.	116	1 7 1	MSII	WT ©	oe I	met.	ren	GID	ser	GIĀ	AST	Pro	ser		
																65	,

				100					160					190		
5 .	Arg	Phe	Ser 195		Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser
10	Ser	Leu 210		Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Thr	Leu
15	Leu 225	_	Pro	Leu	Thr	Phe 230	Сlу	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240
20																
25 .	<21	0> 8 1> 2 2> P														
30	<21 <22	3> K 0>	ûnst:													
35	<22	aı	eschi ntii UCl-1	lioty	piso	the A	antil	çp		-	-			.		
40		0> 8 Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly 15	Gly
45	Ser	Leu	Arg	Leu 20	Ser	Сув	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Şer 30	Ser	Tyr
50	Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	G) y	Leu 45	Glu	Trp	Val
55	Ser	Ser 50	Ile	Ser	Asp	Thr	Gly 55	Ser,	a LA.	Thr	Thr	Tyr	Ala	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser'	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
60	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val _.	Тут	Tyr 95	Cys .
65	Ala	_														

Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly	
Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	:
٠.	130			-		135					140					
	Ser	Val	Gly	Asp	_	Val	Thr	Il€	Thr		Arg	Ala	Ser	Gln		10
145					150					155	-				160	
Ile	Ser	Ser	Tyr			Trp	Tyr	Glr.		Lys	Pro	Gly	Lys	Ala	Pro	1:
				165					170					175		
Lys	Leu	Leu		Tyr	Asp	Ala	Ser		Leu	Gln	Ser	Gly		Pro	Ser	20
-			180	-				185					190			
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser	
		155		*\$			200					205				2:
Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	āĹĀ	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Gly	Thr	
								•								30
Ala 225	Ser	Pro	Ser	Thr	Phe 230	Gly	Gln	Gly		Lys 235	Val	Glu	Ile	Lys	Arg 240	
																35
																4(
<210)															
	l> 24	10														
	?> PF ?> Ki	RT instl	iche	: Sec	nienz	<u>.</u>										4
<220 <223		schr	reibu	කද ර	ier k	ünst	lich	nen S	egue	enz:	huma	ane				50
,		ntiid JC1-K						erfra	gmer	nte g	eger	o das	\$			
			.03.1			cpic	. Op									5:
<400 Glu		Gln	Leu	Leu	Glu	Ser	Gly	Glu	Glv	Leu	Val	Gln	Pro	Gly	Glv	
. 1				. 5			•		10	•				15	,	4
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	"
		-	20					25					.30			
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly.	Lys	Gly	Leu	Glu	Trp	Val	6
		35					40					45				

<223> Beschreibung der künstlichen Sequenz: humane antiidiotypische Antikörperfragmente gegen das MUC1-Konformationsepitop

<40	0> 1	0												•			
Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Glý	Leu	Val	Gln	Pro	Gly	Gly		
. 1				. 5			•		10		•			15	•		Ю
•				_													
	_	_	_	_	_			_					_		_		
5er	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr		
	•		20					25					30				15
				•						•							
Ala	Met	Ser	Tro	Val	Ara	Ġľ'n	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Tro	Val		
	•	35	•				40			. •	•	45		•			
				٠.													20
_	<u>:-</u> -			_		_:					_	_ •					
Ser	Thr	lle	His	Ser	Ala	GIÀ	Gln	GIu	Thr	lle	Tyr	Ala	Asp	Ser	Val		
	50			•	•	55					. 60						
																	25
Lvs	Gly	Ara	Phe	Thr	Ile	Ser	Arq	Asp	Asn	Ser	Lvs	Asn	Thr	Leu	TVY	•	
£5	•				70		_	•		75					80		
•		•								•-					00		
_			_	_	_	_											
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	-	30
		• .		85					90					95			
Ala	Lys	Thr	Leu	Leu	Glv	Phe	Asp	Tvr	Tro	Glv	Gln	Glv	Thr	Leu	Val		
	•		100					105		2			110			;	35
			100					203					110				
										_		_					
Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly		
		115					120					125				4	40
•					•												
Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser		
	130	٠.	•	•		135				•	140						
									•		140					4	45
	_	·		_													
Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Tle	Thr	Cys	Arg	Ala	Ser	Gln	Ser		
145					150					155		•			160		
	•												•				
Ile	Ser	Ser	Tvr	Leu	Asn	Tro	Tvr	Gln	Gln	Lvs	Pro	Glv	Lvs	Ala	Pro	2	50
•		•		165					170	-,-		,	-,-	175			
									2,0					113			
• .				_				_									
rys	Leu	Leu	116	Tyr	Ala	ELA	Ser	Trp	Leu	Gln	Ser	Gly	Val	Pro	Ser	:	55
			180		•			185					190	,			
		•					•	٠.						•			
Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser		
_		195	•		. •		200					205			· •	•	٧Ŋ
					٠.		200					200					
	_		<u>.</u>		_				_	_							
Ser	Leu	Gln	Pro	Glu	Asp		Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Tyr	Ser		
	210	•				215					220	•				1	55
			٠.									•				`	
•									•								

Gly His Pro Ser Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg

230

225

DE 100 27 695 A 1

- 235

240

5 10 <210> 11 <211> 240 <212> PRT <213> Künstliche Sequenz <220> 20 <223> Beschreibung der künstlichen Sequenz: humane antiidiotypische Antikorperfragmente gegen das MUC1-Konformationsepitop 25 <400> 11 Glu Val Gln Leu Leu Glu Ser Gly Glu Gly Leu Val Gln Pro Gly Gly 10 . 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr . 20 25 . 35 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 Ser Tyr Ile Thr Thr Asn Gly Ser Thr Thr Ser Tyr Ala Asp Ser Val 40 50 55 -Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 70 75 . 45 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 90 50 Ala Lys Asp Tyr Ser Asp Phe Asp Tyr Arg Gly Gln Gly Thr Leu Val 105 Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 120 Gly Gly Ser Thr Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser 130 135 140 Ala Ser Val Gly Asp Arg Val Thr 11e Thr Cys Arg Ala Ser Gln Ser

155

150

65

	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro	
Lys	Leu	Leu	11e 180	Tyr	Ser	Ala	Ser	Ty: 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser	·
Arg		Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	Ile	Ser	10
Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Cln	Thr	Ser	15
Ala 225	Asn	Pro	Tyr	Thr	Phe 230	Sly	Gln	Gly	Thr	Lys 235	Val	Glu	lle	Lys	Arg 240	26
																25
<213)> 1: l> 24 2> Pl	10														30
<213	> Ki		liche	e Sec	guen:	z										35
<220 <223	> Bo aı	atiio	dicty	ng o	che 1	Antil	çp					ane n das				4(
			•													
)>: 1: Val		Leu	Leu 5	Glu	Ser	Gly	Gly	Gly Gly	Leu	Val	Gln	Pro	G ly 15	Gly	45
Glu 1	Val	Gln		5	-	•			10			Gln		15		4 5 50
Glu 1 Ser	Val Leu	Gln	Leu 20	5 Ser	Cys	ala	вĹА	Ser 25	ely 10	Phe	Thr	٠	Ser 30	15 Ser	Tyr	
Glu 1 Ser	Val Leu Met	Gln Arg Ser	Leu 20 Trp	Ser Val	Cys	Ala	Ala Ala 40	Ser 25 Pro	10 Gly	Phe	Thr	Phe	Ser 30	15 Ser Trp	Tyr Val	50
Glu 1 Ser Ala Ser	Val Leu Met Tyr 50	Gln Arg Ser 35	Leu 20 Trp	5 Ser Val	Cys Arg Asn	Ala Gln Gly 55	Ala Ala 40 Ser	Ser 25 Pro	10 Gly Thr	Phe Lys Ser	Thr Gly Tyr 60	Phe Leu 45	Ser 30 Glu Asp	15 Ser Trp Ser	Tyr Val	5:

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

. 25 20 30

•	•			20					25					30				
A	la	Met	Ser 35	-	Val	Arg	Gln	Ala	Pro	Сĵà	Lys	СĵÃ	Leu 45		Trp	Val		5
S		Ser 50	Ile	Thr	Thr	Ser	Gly 55	Gly	Asp	Thr	Ala	Tyr 60	Ala	Asp	Ser	Val		10
	ys €5	Gly	Arg	Phe	Thr]]e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80		15
È	eu	Gln	Met	Asn	Ser 85	Leu	Æģ	Ala	Glu	Asp 90	Thr	alA	'Val	Tyr	Tyr 95	Cys		
A	la	Lys	Asn	Tyr 100	Ala	Asp	Phe	Asp	Tyr 105	Arg	Gly	Gln	Gly	Thr 110	Leu	Val		20
T	hr	Val	Ser 115		Glÿ	Gly	Gly	Gly 120		Gly	Gly	Gly	Gly 125	Ser	Gly	Gly		25
G:	ly	Gly 130	Ser	Thr	Asp	lle	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser		30
	la 45	Ser	Val	Gly	Asp	Arg 150		Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160		35
					165					170		-	Gly	,	175			40
-				180				•	1,85				Gly	190		•		45
	-		195					200					Leu 205 Gln	:				50
		210					215		•			220	Glu					30
	25			•		230	_		. ·		235				•	240		55
																		60
<.	210)> 1•	4															65

<211> 240-

	<21	2> P	RT													
	<21	3 > K	ûnst	lich	e Se	çuen	Z									
5																
	·<22	0>	•													
	<22	3> B	esch	reib	ung	der :	kūns	tlic	hen :	Segu	enz:	hum	ane			
		a	ntii	diot	ypis	che i	Anti	körp	erfr	egme:	nte	gege:	n da	E		
10		M	UC1 -	Konf	orma	tion	sepi	top								
			•	•									*			
		0> 1·														
15	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	G1;
	1				5					10					15	
	Ser	Leu	Arg	Leu	Ser	Cys	ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Ty:
20		· ·		20		•	-		25					30		
										_						_
	Ala	Met		Trp	Val	Arg	Gln		Pro	Gly	Lys	Gly		Glu	Trp	Va.
25	. •		35					40					45			
	`						-2	• • •		 1				•		••-
	Ser	-	116	Asn	Ala	ser		Als	ser	Inr	ser	_	ATS	Asp	Ser	va.
		50	÷				55					60				
30	7 440	C1	7 ma	Dhe	ጥኮታ	716	507	7.70). Nen	7.00	Sor	7.46). Nen	Thr	Leu	75.0
	£5	Gry	My	PHE	1 111	70	261	Arg	ASP	ASII	75	Dys	ASH	1111	neu	81
	65					,,				٠	,,					
35	1.en	GÌn.	Met	Ash	Set	Leu	Ara	a f A	Glu	Asp	Thr	Ala	Val	Tvr	Tyr	Cvs
	200	0111			85					90				- , -	95	-
	•															
	Ala	Arg	Asn	Thr	Ser	Asp	Phe	Asp	Tyr	Arg	Gly	Gln	Gly	Thr	Leu	Va:
40		٠		100		•			105	_			. •	110	•	•
	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly
45			115	•				120					125		•	
	Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Se
	• .	130					135					340				

	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220		Gln	Ser	Gly	
^		_			_,					_		_,		_		:
	Ala	Pro	Ala	Thr		Gly	Gin	.Gly	Thr		Val	Glu	Ile	Lys		
225				•	230			•	*	235					240	
																10
																15
<210		=														
<211																
<212																20
		inst.	l i che	Ser	2162											
~213	· / A(mis c.	LICIN	2 360	inem.	•										
<220	٠.															
		cch	re i bı	,na >	ier i	rûne:	- 1 : 61	nen (Seque		hum	- n.c				25
-223				-					agmei aedu				-			
		JC1-1						-4-4	agilie	ice ;	gege.	u ua.	=			
	3-20	JC1-1	COLLE) I IIIG I	. 1 0,11	echt.	LOp							•		20
<400	. 31	=	•													30
			Teir	1.eu	Glu	Ser	Glv	Glu	Gly	T.em	V=1	Gln	Pro	Glv	Gly	
1	V	. Gan	Je u	5	GIU	261	Cly	GIU	10	Den	VGI	GIII	FIU	15	GIY	
•	•		• .				•							10		35
Ser	Leu	Ara	Leu	Ser	Cvs	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Set	Ser	ጥህን	,
		=	20		. 70			25	,				30		- , -	
				:												
Ala	Met	Ser	Tro	Val	Aro	Gln	Ala	Pro	Gly	lvs	GIV	I.eu	Glu	لتعل	Val	40
		35	P		5		40		 ,	-,-		45				
	-														•	
Ser	Thr	Ile	Thr	Ser	Ser	Glv	Gln	Gln	Thr	Phe	Tvr	Ala	Asp	Ser	Val	45
	50					55			-		€0					
		•					•									
Lys	Gly	Arq	Phe	Thr	Ile	Ser	Ara	Asp	Asn	Ser	Lvs	Asn	Thr	Leu	Tvr	
65	•				70					75	•				80	50
				•												
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Тут	Tyr	Cys	
			•	85					90		•		•	95	•	55
		٠.		-												33
Ala	Lys	Arg	Ala	Arg	Pro	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	
		_	100				_	105	•	-			110	•		
								•								F/)
Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	
•		115	٠		-	-	120		-	-	•	125			-	
•		-		•												
Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	65
_	120	٠.	•		•	335					3.40					

<400> 17

	Glu 1	Vāl	Gln	Leu	Leu 5		Ser	Gly	Glu	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Ph∈	Ser 30	Ser	Tyr
10	Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ser	Gly 50	Ile	Ser	Thr	Ser	Gly 55	Ser	Tyr	Thr	Thr	Tyr 60	Ala	Asp	Ser	Val
20	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Lys	Ser	Gly 100	Thr	Thr	Phe	Asp	Тут 105	ŢŢÞ	Gly	Gln	Gly	Thr 110	Leu	Val
30	Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly
35	-	Gly 130	Ser	Thr	Asp	Ile	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser
40	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
45	Île	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro
50	Lys	Leu	Leu	lle 160	Tyr	Ala	Ala	Ser	Ser 185	Leu	Gln	Ser	Gly	Val 190	Pro	Sèr
	Arg	Phe	Ser 195	Gly	Ser	Gly	Ser'	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser
55	Ser .	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Ser	Tyr
60	Ser 225	Thr	Pro	Asn	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235 _.	Va]	Glu	lle	Lys	Arg 240

65

	<21	0> 11	В														
	<21	1> 24	4 O														
	<21	2> PI	RT			•	•										5
	<21	3 > Ki	inst:	liche	e Sec	quen:	Z										
			~	•													
	<22	0>															
	<22:	3> Be	eschi	reibu	mg d	ier 1	kůnst	tlic	nen s	Seque	enz:	huma	ene			•	10
		تة	ntiid	iioty	piso	che A	Antil	corpe	erfra	e Gwer	nte g	geger	n da:	5			
		M	JC1 - I	Conf	ormat	tions	sepit	qo	•						•		
•						•											15
	<40	0> 18	3														
	Glu	Val	Gln	Leu	Leu,	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	GJÀ	
	1				. 2	_				10					15		
				•	•												20
	Ser	Leu	Arg	Leu	Ser	Cys	aLA	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	
		•		. 20	. *				25					30			
		٠.					•										25
	Ala	Met		Trp	Val	Arg	Gln	Ala	Pro	GJĀ	Lys	Gly	Leu	Glu	Trp	Val	
			35					40				•	45				
									_		_						
	Ser		Ile	Asn	Gly	Leu	_	Thr	Pro	Thr	Ala	-	Ala	Asp	Ser	Val	30
		50					55	-				60			•		
	•			~.			_					_				_	
		GIA	Arg	Pne	Inr			Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu		35
	65					70					75					80	
	Len	C.) 2	Mot	200	Co~	1 611	7	77-	C3	7	ጥኮ~	23.0	37-3	m	~	O	
	Tieu	6111	rie.	WPII	85	neu	My	WIC	GIL	90 90	Thr	Mic	Vel	ıyı	1 y I	Cys	
					63					30					73		40
	Ala	Lvs	A=D	Len	Phe	ดาง	Phe	Z-SD	TV+	274	Gly	Gln	Glv	Thr	ī.en	٧±١	
		-3-		100		3			105	•=	017	·		110	200		
		•		•		•											45
	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Glv	Glv	Ser	Glv	Glv	,,,
			115		•	•	•	120		•	•	•	125		•	•	
					•												
	Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	50
		130			_		135					140					
•																	
	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	lle	Thr	Cys	Arg	Ala	Ser	Gln.	Ser	55
	145					150					155					160	33
	Ile	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	
					165					170					175		60
						-	•										
	Lys	Leu	Leu	lle	Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val	Pro	Ser	
				180					185					190			4.5
																	65

, AL	, 1116	195			. 91)	, 26.	200		. Asi) Phe	: INI	205		116	e ser
Ser	Leu 210		Pro	Glu	Asp	Phe 215		Thi	туг	Tyr	Cys 220		Gln	Ser	Тут
Ser 225		Pro	Asn	Thr	Phe 230		/ Glr	Gly		Lys . 235		Glu	Ile	Lys	Arg
<21	0> 1	9													
<21	1> 2	40													
	2 > P	_		_											
<21	3 > K1	ùnst.	liche	e Se	dnev	Z									
<22	0>			•											
		eschi	reibu	ung (der :	kůns	tlic	hen	Sesu	enz:	hum	ane			
										nte g			s		
		UC1-1							-		_				
		. .												•	
	0> 1! v=1		Less	T.com	C1'11	50=		C1		7	17. 1	C1-	Dese	63.	63.
1	491	GIII	חבת	בנים ב	616	ser	G1 Å	GIU	10	теп	Vāļ	GIN	PIO	15 25	Gly
_				J								-		دد	
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
			20					25					30		
בוג	Met	Ser	T	บรา		Cj~	አገ ~	D=-	<u>رم، د</u>		C1	,	6 14.		*** *
27 G		.35	ırp	val	Arg	GID	Ala 40	PIO	GIÀ	Lys	GIY	Leu 45	Glu	Trp	Val
	•			,			30								
Ser	Thr	Ile	Gln	Thr	Ser	Gly	Arg	Asp	Thr	Thr	Tyr	Ala	Asp	Ser	Val
	50					55					60		•		
* • • •	C3	·	ከ ኔ -	m\	• • •		•		_		_	_		_	_
ьуs 65	erA	Arg	rne	Tnr	70	ser	Arg	Asp	Asn		Lys	Asn	Thr	Leu	-
7,7					70					75					·60
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cvs
				85					90				- , -	95	-,-
										•					
Ala	Lys	Arg		Gln	Arg	Phe	qzA	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
		ē	100					105					110		
Thr	Val	Ser	Ser	G] v	G] v	G)v	G) v	Ser	Glv	Glv	alv	G) v	Se+	C) v	Gly
				1		1	~~ 7			y	y	-July	ع ج ع	21 A	GIA

115 120 125

					•												
	Gly	Gly 130	Ser	Thr	Asp	lle	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser	5
	Alä 145	Ser	Val `	Gly	Asp	Arg 150	Val	Thr	Ile	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160	10
	Ile	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro	15
•-	Lys	Leu	Leu	lle 180	Туг	Alà	Ala	Ser	His 185	Leu	GIn	Ser	Gly	Val 190	Pro	Ser	20
	Arg	Phe	Ser 195	Gly	Ser	.Gly	Ser	200 Gly	Thr	Asp	Phe	Thr	Leu 205	Thr	Ile	Ser	•
	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Gln	Gly	25
•	Gln 225		Pro	Val	Thr	Phe 230	Gly	Gl'n	GJY	Thr	Lys 235	Val	Glu	lle	Lys	Arg 240	30
																	35
	. 2.2.4	. 5															40
	<21:	0> 20 l> 20 l> PF	10 RT	ر د د د د د د د د د د د د د د د د د د د	- 66		_										45
	<220	>	÷	liche													43
•	<223	aı	ntiid		ypis	che i	Anti)	(Orpe		segne:				5			50
	Glu)> 2(Val		Leu		Glu	Ser	G] À	Glu	Gly	Leu	Val	Gln	Pro		Gly	55
	1 Ser	Leu	Arg		Ser	Cys	Ala	Ala		Gly	Phe	Thr	Phe		15 Ser	Туг	ഹ
	Ala	Met	Ser	20 Trp	Val	Arg	Gln	ala	25 Pro	Gly	Lys	Gly	Leu	30 Glu	Trp	Val	65
			35					40	•				45		,		63

	Ser	Ala 50	lle	Thr	Gln ,	Tyr	Gly 55	Gly	Asp	Thr	Gly	Tyr 60	aíA	Asp	Ser	Val
5	Lys 65		Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
10	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Тут	Tyr 95	Cys
15	Ala	Г'nє	Asn	Trp 100	Pro	Tyr	Phe	Asp	Tyr 105		Gly	Gln	Gly	Thr 110	Leu	Val
20	Thr		Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly
25	Gly	Gly 130	Ser	Thr	Asp `÷	Ile	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser
30	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
		Ser			165					170				-	175	
35		Leu		180			٠		185		•			190		
40		Phe	195	•				200			•		205	-		
45		Leu 210			•		215					220				
50	225	Thr	Pro	Tyr	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240
55																
60	<211 <212)> 21 > 24 !> PR 	0 T	iche	: Seq	hiens										
65	<220 <223)> > Be	chr	eibu	ung đ	er k	ùnst	lich	en S	eçue	nz:	buma	ne		•	

antiidiotypische Antikorperfragmente gegen das MUC1-Konformationsepitop

-40	0> 2:	1				:-											5
			Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly		
1				5					10					15			
	_	-															10
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr		
		•	20			٠.		25					30				
		÷	_		_			_:	63	•		•		·	11- 1		15
Ala	Met	Ser 35	Trp	Val	Arg	GIN	A12	Pro	GIY	тÃг	GÌÀ	16U	GIU	Trp	Val		
		33					-50					-1.5					
Ser	Thr	Ile	Ser	Asn	Leu	Gly	Gln	Pro	Thr	His	Tyr	Ala	Asp	Ser	Val		20
	50					55	٠.				60		-				
	٠ .			,			:										
Lys	Gly	Arg	Phe	Thr	lle	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr		
65					70					75					80		25
			_			_				_,							
Leu	GID	Met	Asn		Leu	Arg	Ϋ́ΤΒ	GIU		Thr	A.a.	VEI	1 y 1	Tyr 95	Cys		
•				85					90					75			30
Ala	Lvs	Leu	Pro	Tyr	Ser	Phe	Asp	Tyr	Trp.	Gly	Gln	Gly	Thr	Leu	Val		
	•		100	•			•	105	•	•		-	110				
																	35
Thr	Val	Şer	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	G1 y	Gly	Ser	Gly	Gly		
		115					120			-		125					
-3 ·								~ 1 -	.	.			6	• • • • •	6		40
GIA	130	ser	inr	Asp	11 e	135	met	ini	GIN	SEI	140	Ser	Ser	Leu	Ser		
						133					140						
Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Сув	Arg	Ala	Ser	Gln	Ser		45
145				-	150					155	٠				160		43
		•		•		•										•	
Ile	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro		
				165					170					175			50
. 1		Lou	77.0	~~) en	11 -	50*	Dho	Lou	Cl-	502	C) v	V=1	Pro	Cor		
Lys	neu	neu	180	1 7 1	wsb	VIC	261	185		GIII.	SEI	GIY	190	ΡĮ	261		
			100													-	55
Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser		
		195		•			200.		•			205	-		•		
				·			•										60
Ser		Gln	Pro	Glu	Asp		Ala	Thr	TYT	Tyr	_	Gln	Gln	Ąsp	Thr		
•	210					215				,	220						
Dr.	Dro	Dro	-44£_	: The	Dhe	Glv	Gla	G) v	The	Tare	v=1	G) 11	716	Lys	Aro		65
225			1111	1111	230	G1 y	GTH	es y	3 111	235	AG1	GIU		2 لام	240		
	•	•												•			

1	
1	

	<21	0> 2	2													
	<21	1> 2	40													
5	<21	2> F	RT													
	<21	3> K	ünst	lich	e Se	<u> ā</u> nen	z									
	<22	0'>														
10	<22	3> P	esch	reib	ung	der .	kūns	tlic	hen	Sequ	enz:	שחת	ane			
		a	nții	diot	ypis	ché .	Anti	körp	erfr	a'gme	nte	geçe	n da	S		
		M	UC1 -	Konf	orma	tion	sepi	top								
15					•											
••	<40	0> (2	2		V-2									٠		
	Glu	Val	Gln	Leu	Leŭ	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Ġly
	1				5		•			10					15	
20	•												•			
	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
		•		20		٠,.			25					30		
25	•							-								
	Ala	Met	-	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
			35					40					45			
		- ·	~ 3 -	•	•	•	 1	6 3	•		•••					
30	Ser		11 e	Ser	ÆSn	ren		GIN	Ten	ini	HIS	-		Asp	Ser	Val
		50					55					60				
	1.ve	Glv	Arc	Phe	Thr.	Tle	Ser	Arc	λen) en	Ser	Tare) Aen	ጥኮታ	T.eu:	Trier
35	65	Cly	n g			70	202	<i>,</i> 9	nop	nen	75	Dyb	ASII		عو م	80
	•													•		-
	Leu	Gln	Met	- Asn	Ser	Leu	Arq	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tvr	Cvs
					85		_			90				•	95	
10	-					•										
	Ala	Lys	Leu	Pro	Tyr	Ser	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
				100					105					110		
15						•							•	٠		•
	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly
		· .	115					120			•		125		•	
	•					4.1				•						
0	Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln.	Ser	Pro	Ser	Ser	Leu	Ser
		130	٠.				135					140				
	-		•		•										•	
55		Ser	Val	Gly	Asp		Val	Thr	lle	Thr		Arg	Ala	Ser	Gln	Ser
	145			•		150	1			•	155	. ,				160
	•			• •						•			•			

65

Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro

165 170 175

				-,-												
Lys	Leu	Leu	Ile 180	Tyr	Asp	Ala	Ser	Phe 185	Leu	Glr.	Ser	Gly	Val 190	Pro	Ser	5
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	Ile	Ser	10
Ser	Leu 210		Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Asp	Thr	15
Arg 225	Prò	Pro	lle	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	lle	Lys	Arg 240	20
																25
<211 <212)> 23 l> 24 l> PI l> Ki	4 O RT	liche	e Sec	žneu:	z ·										30
<220 <223	e> Be at	ntii	dioty	ypiso	ier) che /	Antii	corpe						5			35
	· M	UC1-:	Konf	ormat	tions	sepit	op.									40
	> 2:		•	•	Glu		C)	63	63	7 011	17-1		Pro	C) v	Gly	
1			•	. 5					10					15		45
Ser	Leu ,	Arg	Leu 20		Cys	Ala	Ala	Ser 25		Phe	Thr	Phe	Ser 30	Ser	Tyr	50
Ala	Met	Ser · 35	_	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	GÌu	Trp	Val	
Ser	Thr 50		Asp	Pro	Met	Gly 55		Ser	Thr	Asn	Tyr 60	-	Asp	Ser	Val	55
Lys 65	Gly	Arg	Phe	Thr	Ile 70		Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	H
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	qeA ı		Ala	Val	: Tyr	Tyr 95		6:

5	Ala	Lys	Asp	100	Arg	Glu	Phe	Asp	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val
	Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly
10	Gly	Gly 130	Ser	Thr	Asp	I}€	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser
15 .	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
20	Ile	Ser		Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro
25	Lys	Leu	Leu	Ile 180	Tyr	Asp	Ala	Ser	Lys 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser
30	Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	•	Asp	Phe	Thr	Leu 205		Ile	Ser
	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Asp	Thr
35	Arg 225	Asn	Pro	Gly	Thr	Phe 230	Gly	Gln ,	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240
40																
45)> 24 L> 24														
50		?> PF ?> Ki	_	iche	: Seç	wenz	:									
55	<220 <223	3> Be	tiid	eibu lioty Konfo	pisc	he A	ntik	orpe		_				.		
60)> 24 Val		Leu	Leu 5	Glu	Ser	Gly	Glu	Gly 10	Leu	۷al	Gln	Pro	Gly 15	Gly
65		Leu	Arg	Leu 20		Cys	Ala	Ala	Ser 25	C ly	Phe	Thr	Phe	Ser 30		Tyr

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	5
Ser Ala Ile Thr Asn Thr Gly Gln Trp Thr Thr Tyr Ala Asp Ser Val	
Lys Cly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80	10
Leu Gln Met Asn Ser Leu Arq Ala Glu Asp Thr Ala Val Tvr Tyr Cys 85 90 95	15
Ala Lys Ala Gly Gln Asn Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val	20
Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 115 120 125	25
Gly Gly Ser Thr Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser 130 135 240	30
Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser 145 150 155 160	35
Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 165 170 175	33
Lys Leu Leu Ile Tyr Asp Ala Ser Phe Leu Gln Ser Gly Val Pro Ser 180 185 190	40
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 195 200 205	45
Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Asp Thr 210 215 220	50
Arg Gly Pro Gly Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 225 230 235 240	55
	w
<210> 25	
<211> 240 <212> PRT	65

<213> Künstliche Seguenz

5	<22	0>														
			esch	reib	ung	đer	kūns	tlic	hen	Seđn	enz:	חטמ	ane			
		•						_	erfr	agme	nte	gege	n da	S		
10		M	NC1 -	Konf	orma	tion	sepi	top								
	<40	0> 2	5				٠.									
	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly
15	1	•			5	· . ·				10	··		•	_	15	
	* °C'=+	. 1.611	ž ro	T.e.i	Ce+	Cve	בוב'	ž 1's	Cor	GTV	Dhe	ምኮታ	Dhë	Car	567	Tyr
		Deu	<i>~</i> 9	20		Cye	MIC	ME	25	Cly	7.116	4	FIIC	30	261	131
20	٠	. <u>. </u>				: .	•				`					
	Ala	Met		Trp	Val	Arg	Gln		Pro	Gly	Lys	Gly		Glu	Trp	Val
24			35		•			40					45			٠
25	Ser	Thr	lle	Gln	Seř	Val	Cly	Thr	Tyr	Thr	Val	Tyr	Ala	Asp	Ser	Val
		50					55					. 60		•		
30		-3.	_		-1.				_	_		_		_,		_
-	₽ÀE	GIY	arg	Pne	inr	11e	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	TYI 80
	•	•		•					•							
35	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					. 85					. 90		•			95	
	ala	Lys	Arq	His	Asn	Pro	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
40		_		100				_	105	_	•			110		
												<u>.</u> .			. <u>.</u> .	<u> </u>
	Thr	A91	Ser	Ser	GIÀ	GIÀ	G1Å	120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly
45						:	٠.									
	Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
		130		· ·			135					140				-
50	Ala	Ser	Val	Gly	Asp	Arc	Val	Thr	lle	Thr	Cvs	Arc	Ala	Ser	Gln	Ser
	145			• •	•	150					155					160
							,	٠	<u>. </u>			. '				
55	Ile	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala	Pro
				•	103	. :				170	:				175	
60	Lys	Leu	Leu	lle	Tyr	Asp	Ala	Ser	Phe	Leu	Gln	Ser	Gly	Val	Pro	Ser
· #/			•	180		•			185					190		
	Aro	Phé.	Set	Glv	Ser	Glv	Ser.	ເກັນ	Thr	Aer.	Dhe	ጥኮታ	7.611	ጥb÷	Ile'	Ser
65	· 3		195	. Gr A	561	U2 y	CCL	200		برعم		-111	205		116	JEI
-	٠.	.1	,	٠.											•	•
	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Asp	Thr

210 215 220

			•													
Arg 225	Gly	Pro	Gly	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	ll€	Lys	Arg 240	5
																10
	2> 2 1> 2															15
	2> Pl 3> Ki		liche	e . Sed	ງູນėກ:	z										20
<221 <22	3> Bo aı	ntii	reib dioty Konfo	ypišo	che'	Antil	corpe		_				5			25
	0> 20 Val		Leu	Leu	Glu	Ser	Gly	Glu		Leu	Val	Gln	Pro		Gly	30
Ser		Arg	Leu 20	5 Ser	Cys	Ala	Ala	Ser 25	-	Phe	Thr	Phe	Ser 30	15 Ser	Тут	35
Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	40
Ser	Thr 50	Ile	Pro	ala	Thr	Gly 55.		Arg	Thr	Phe	Тут . 60	Ala	Asp	Ser	Val	45
Lys £5	Gly	Arg	Phe	Thr	11e 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	50
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	qaA 00	Thr	Ala	Väľ	Tyr	Tyr 95	Cys	
Ala	Lys	Thr	Ala 100	Ser	Pro	Phe	Asp	Tyr 105	•	Gly	Gln	Gly	Thr 110	Leu	Val	55
Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Glу	Gly	60
Gly	Gly 130	Ser	Thr	Asp	Ile	Gln 135		Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	65

	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Ser
	145					150		•			155					160
5								•	-							
	Ile	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro
				•	165		•			170					175	
10			•								•					
10	Lys	Leu	Leu	Ile	Tyr	Ser	'Ala	Ser	Arg	Leu	Gln	Ser	Gly	Val	Pro	Ser
				180					185				•	190	•	
				•												
15	Arg	Phe	Ser	Gly	Ser	Gly	Ser		Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser
			195					200					205			
•				_												
••	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr		Gln	Gln	Asp	Thr
20		210		•		•	215					220				
			•								_					_
	_	Gln	Pro	Gly	Thr	Phe	Gly	Gln	Gly	Thr		Val	Glu	Ile	Lys	
25	225					230					235					240
20			•													
30																
	-216) - 21	, ·													
35		l> 24	•													
		2> PI														
			•	liche	e. Sed	nenz	2									
40						•										
4 ∪ .	<220)>		•		•										
	<223	3 > Be	eschi	reibu	mg d	er k	ឈាន	lich	nen S	Segue	enz:	huma	ane	•		
	•				-	the A				-				5		
45	•	M	JC1 - I	Konfo	ormat	ions	epit	op			-					
									•							•
	<400	> 21	7										•			
50	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly
30	, , 1				. 5	÷	•			10					15	
	•		•				•			•						
	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
55		٠		20	•			•	25					30		
					٠		•		•							
	Ala	Met		Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
40			35					40	÷				.45			
60				٠.								_		_		
	Ser		Ile	Ser	Arg	Thr	-	Lys	Val	Thr	Asp		ala	Asp	Ser	val
		50			•		55				-	60				
65	1	~ 3	.	nh -	60 0	•••-		> -	* ~		C	7	x	ምኔ	7	· ·
	-		ATG	, rue	INI	lle	⊃eI'	₩.g	web	ASII	_	ħÅR	M5II	INI	ren	
	. 65					70					75					80

DE 100 27 695 A 1

	1				5					10		-			15	
5	Ser	Leu	Arg	Leu 20	-	Che	Ala	Ala	Ser 25		Phe	Thr	Phe	Ser 30	Ser	Туз
10	Ala	Met	Ser 35	Trp	Val	Arg	Glm	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Va.
15	Ser	Ala 50	Ile	Glu	Ala	Gly	Gly 55	Gly	Glu	Thr	Thr	Tyr 60	Ala -	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Τ̈̈́ςτ 80
20	Leu	Gln	Met	Asn	Ser 85	Lev	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Тут 95	Cyrs
25	Ala	Lys	Ala	Thr 100	Thr	Thr	Phe	Asp	Tyr 105	קבד	Gly	Gln	Gly	Thr	Leu	Val
30	Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gjy	Gly	Gly	Gly	Ser	Gly	Gly
35	Gly	Gly 130	Ser	Thr	Asp	lle	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser
40	Ala 145		Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
	lle	Ser	Ser	Tyr	Leu 165	Asn	dr£	Tyr	Gln	Gln 170	Lys	Pro	GJY	Lys	Ala 175	Pro
45	Lys	Leu	Leu	Ile 180	Tyr	Asp	ala	Ser	Asn 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser
50	Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser
55	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Asp	Thr
4 0	Arg 225	Pro	Pro	Val	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240

65

<210	> 29	,															
<211	> 24	0															
<212	> PF	T														5	
<213	> Kũ	instl	iche	Sec	nenz	:											
<220	>																
<223	> 56	schr	eibu	mg d	ier k	ŭnst	lich	en S	egue	n2:	huma	ເກ∈				10	
				piso									;				
				ormat					_	_	-						
	17.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				· op o	· · ·		-		•	-					
																15	
`<400 Glu			•	•	C 3	C = =	C1	<i>~</i> 1	C111	1.011	17= 7	G I D	270	Gla	GIV		
GIU	Val	GID	ъeπ		GIU	261	451 Y	Giu		Беп	V 62.2	G111		15	C 1		
1	•			5					10					10		20	
					_			_	~ 3.	5 1-	~~~	Dh =	c	6	To 1~		
Ser	Ŀeu	Arg	Leu	Ser	Cys	SiA	ME		GIA	Pne	Inr	Pne		261	1 7 2		
			20	٠.ن				25					30				
																25	
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	GIn	Trp	val		
		35					40			•		45					
											•						
Ser	Gly	lle	Arg	Pro	Gln	Gly	His	Pro	Thr	GJn	Tyr	alA	Asp	Ser	Val	30	
	50					55					60						
,																	
Lys	Gly	Gly	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr		
65	•	•			70					75					80	35	
ī.en	Gin	Met	Asn	Ser	Leu	Aro	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys		
,3000				85					50				-	95			
																40	
7.3 -	3.45	7 = 5	Pro	Pro	Dro	Phe	Asn	T \/~	Tro	e]v	Gin	Glv	Thr	Leu	Val		
F.1 C	Lys	<i>F.</i> . <i>G</i>	100	FIU	.10		7.05	105		0-3		,	110				
			100					105								45	
	••- 5	C	5	Gly	~i	C 1	634	Cer	G3v	Gly	Gly	C) v	Ser	Glv	้อาจ	,	
Thr	VE1		SEI	GIY	GIY	Gry		3E.	Gly	Gly	Cly	125	501	C2,	,		
		115					120					125	•				
		_	_	_		-1-			C3-	٠	timo		562	7.611	Cer	50	
Gly			Thr	Asp	116			Inr	Gin	SEI		Sei	Sei	ne a	Ser		
	130					135			,		140						
				-											_		
Ala	Ser	Val	GJA	Asp	Arg	Val	Thr	lle	Thr	Cys	Arg	Ala	Ser	Gln		55	
145					150					155					160		
												•					
ll€	Ser	Ser	Tyr	Leu	Ast	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Glu	ala	Pro		
				165					170					175		60	
Lys	Lev	Leu	lle	Tyr	Asp	Ala	Ser	Val	Leu	Gln	Ser	Gly	Val	Pro	Ser		
-								185					190				
																65	

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
195 200 205

Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Arg Arg

210 215 220

Thr Tyr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 225 230 235 240

15

²⁰ <210> 30

<211> 240

<212> PRT

25 <213> Künstliche Sequenz

<220>

- <223> Beschreibung der kunstlichen Sequenz: humane antiidiotypische Antikorperfragmente gegen das MUC1-Konformationsepitop
- 35 <400> 30
 Glu Val Gln Leu Leu Glu Ser Gly Glu Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
- Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30
- Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45
- Ser Ala Ile Arg Pro Pro Gly Gln Thr Thr Gln Tyr Ala Asp Ser Val
 50 55 60
 - Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
 - Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
- Ala Lys Thr Ala Ser Val Pne Asp Tyr Trp Gly Gln Gly Thr Leu Val

55

Gly	Gly		Thr	qsA	Ile	Gln 135	Met	Thr	Gln	Ser	Pro 140	Ser	Ser	Leu	Ser		
																	5
Ala	Ser	val	Gly	Asp	Aro	Val	Thr	lle	Thr			Ala	Ser	Gln			
145					150					155					160		
77e	Ser	Ser	Tvr	Leu	Asn	Tro	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro		10
	-		-3-	165		•	•		170	-				175			
Lys	Leu	Leu		Tyr	G]À	slA	Ser		Leu	Gln	Sėi	Gly	Val 190	Pro	Ser		15
			180					185		,			150				
Ara	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	lle	Ser		
	-,	195					200					205					20
				•					_	_		6 3	63	114 -			
Ser		Gln	Pro	Gļu	Asp	Phe 215	Ala	Thr	Tyr	īyr	220		Gin	HIS	peu		
	210	•				215											25
Asn	Tyr	Pro	Leu	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg		
225	•	•			230					235					240		
																	30
٠																	
																	2.5
																	35
	0> 3 l> 2	•															40
	2> P																
<21	3 > K	ünst	lich	e Se	dnev	2											
	_																45
<22		esch	reib	ung	der	kůns	tlic	hen	Segu	enz:	חשמ	ane					
							körp						s .				
	M	UCI -	Konf	orma	tion	sepi	top								•		50
. 4 0																•	
	0> 3 Val		Leu	Leu	Glu	Ser	Gly	Glu	Gly	Leu	Val	Gln	Pro	Gly	Gly		
1				5			•		10					15			55
				•			-										
Ser	Lev	Arg			Cys	Ala	a Ala			, Phe	Thi	Phe	Ser 30		Tyr	•	
			20)				25	,				3(•			60
a [.k	Met	Sez	Tr	val	Arg	Glr	Ala	Pro	Gly	/ Lys	(G1	/ Let	Gli	: Trj	val		
		35					40					45					
									:			. *1-	, »	· c			65
Ser	Gli	ı ile	e Glr	ı Glu	1 ASI	ı Gly	/ Val	. Thi	r. Thi	נמנ	נענ	المكا	: #5]	ຸ່ວ€:	r Val		

50 , 55 60

5	Lys 65	Gly	Arg	Phe	Thr	11e .70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
10	Leu	Gln	Met `	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Ile	Tyr	Tyr 95	Cys
15	Ala	Lys	Glu	Arg 100	Leu	Gln	Phe	Asp	Тут 105	Trp	Gly	Gln	Gly	Thr	Leu	Val
	Thr	Val	Ser 115	Ser	вy	Glý	Gly	்பேy 120	Ser	Gly	Gly	Gly	Gly 125	Ser	бy	Gly
20	Gly	Gly 130	Ser	Thr	Asp	Ile	Gln 135	Met	Thr	Gln	Ser	Pro 140	Pro	Ser	Leu	Ser
25	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gļn	Ser 160
30	. Ile	Ser	Ser	Tyr	Leu 165	Asn	Trp	Ţyı	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro
35	Lys	Leu	Leu	lle 180	Tyr	Asp	Ala	Ser	Asn 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser
40	Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	lle	Ser
	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Туг	Cys 220	Gln	Gln	Phe	Gly
45	Asn 225	Tyr	Pro	Arg	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240
50	-															
55																
60	<213 <212	2> Pi	l RT													
	<213		inst l	liche	e Sec	juen 2	2									
65	<223	> Be	schi	reibu	ing d	ier)	ins:	lich	en S	eque	er.z:					

Mimikry-Peptide gegen das

MUC1-Konformationsepeitop

<400> 32	:
Cys Glu Tyr Tyr Asp Val Pro Met Ala Arg Cys	
1 5 10	
	10
<210> 33	
<211> 11	
<212> PRT	15
<213> Künstliche Sequenz	
<220>	20
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	
MUC1-Konformationsepeitop	
	25
<400> 33	
Cys Asp Tyr Pro Ser Arg Leu Ile Asp Leu Cys	
1 5 10	30
	•
<210> 34	35
<211> 13	
<212> PRT	
<213> Kunstliche Sequenz	40
<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	45
MUC1-Konformationsepeitop	
<400> 34	
Cys Gly Leu Ala Cys Glu Arg Pro Cys Gly Trp Val Cys	50
1 5 10	
	55
······································	
<210> 35	
<211> 13	
<212> PRT	60
<213> Kûnstliche Sequenz	
<220>	65
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	

MUC1-Konformationsepeitop

```
<400> 35
   Cys Leu Gly Gly Cys Glu Arg Pro Cys Met Tyr Ser Cys
    1 5 10
10
   <210> 36
15 <211> 13
   <212> PRT
   <213> Künstliche Sequenz
   <220>__.
   <223> Beschreibung der künstlichen Sequenz:
       Mimikry-Peptide gegen das
        MUC1-Konformationsepeitop
   <400> 36
   Cys Arg Gly Arg Cys Gly Glu Trp Cys Ser Arg Pro Cys
30 1 5 10
   <210> 37
   <211> 13
   <212> PRT
  <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
   Mimikry-Peptide gegen das
   MUC1-Konformationsepeitop
   Cys Arg Gly Arg Cys Asp Gln Arg Cys Ser Arg Pro Cys
    1 5 10
55 .
   <210> 38
   <211> 13
   <212> PRT
   <213> Künstliche Seguenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
     Mimikry-Peptide gegen das
```


MUC1-Konformationsepeitop	
<400> 38	
Cys Pro Ala Arg Cys Gly Val Pro Cys Ala Met Gly Cys	
1 5 10	
	,
	11
<210> 39	
<211> 9	1:
<212> PRT	
<213> Künstliche Sequenz	
<220>	26
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	
MUC1-Konformationsepeitop	
	25
<400> 39	
Cys Ile Pro His Arg His Asp Gly Cys	
1 5	30
	, , , , , , , , , , , , , , , , , , ,
<210> 40	35
<211> 12	
<212> PRT	
<213> Kûnstliche Sequenz	
	4(
<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	45
MUC1-Konformationsepeitop	43
<400> 40	
Cys Gln Pro His Arg Tyr Asp Lys Ser Leu Pro Cys	50
1 5 10	
:	55
-210> 43	
<210> 41	
<211> 12	
<212> PRT	₩
<213> Künstliche Sequenz	
<220>	65
<223> Beschreibung der künstlichen Sequenz:	u.
Mimikry-Pentide cegen das	

MUC1-Konformationsepeitop

```
5 <400> 41
    Cys Thr Thr Arg Leu Leu Asn Glu Asp Gly Ser Cys
            _ 5
10
    <210> 42
   <211> 7
    <212> PRT
    <213> Kunstliche Sequenz
    <220>___
    <223> Beschreibung der künstlichen Sequenz:
       Mimikry-Peptide gegen das
25
        MUC1-Konformationsepeitop
    <400> 42
   Leu His Gly Pro Leu Trp Asp
    1
                  5 .
   <210> 43
    <211> 7
    <212> PRT
    <213> Künstliche Sequenz
    <220>
    <223> Beschreibung der künstlichen Sequenz:
         Mimikry-Peptide gegen das
         MUC1-Konformationsepeitop
    <400> 43
   Leu His Gly Pro Leu Gly Met
55
    <210> 44
    <211> 7
    <212> PRT
    <213> Künstliche Sequenz
    <220>
    <223> Beschreibung der künstlichen Sequenz:
         Mimikry-Peptide gegen das
```


MUC1-Konformationsepeitop

<400> 44	5
Leu His Gly Pro Leu Trp Glu	
1 5	
	10
·	
<210> 45	
<211> 17	15
<212> PRT	
<213> Kunstliche Sequenz	
<220>	20
<223> Beschreibung der kunstlichen Sequenz:	
Mimikry-Peptide gegen das	
MUC1-Konformationsepeitop	••
	25
<400> 45	
Leu His Gly Pro Leu Trp Asp Gly Ala Ala Gly Ala Glu Thr Val Glu	
1 5 10 15	30
Ser	
	35
<210> 46	40
<211> 17	40
<212> PRT	
<213> Künstliche Sequenz	
	45
<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen das	
MUC1-Konformationsepeitop	50
<400> 46	
Leu His Gly Pro Leu Gly Met Gly Pro Leu Gly Pro Lys Leu Lys	35
1 5 10 15	-
Val	
	60
<210> 47	65
<211> 17	

	<212> PR	r ·				•					
	<213> Kür	nstliche	Seguen	z .							
5					••						
	<220>				•						
	<223> Bes	schreibu	mg der i	künstl	ichen S	Seguenz	:				
	Min	nikry-Pe	eptide g	egen d	las						
10	MUC	Cl-Konfo	rmation	sepeit	op				•		•
	1		•	• . •						•	
•	<400> 47	•							•		
15	Leu His C	Sly Pro	Leu Trp	Glu G	ly Pro	•	y Pro	Lys	Leu		Lys
	1		5	•		10	•			15	
	Val										
20											
	•										
25	<210> 48										
	<211> 240)									
	<212> PR7										
30	<213> Kur		Sequen	z							
30	,		• •	•							
	<220>										
	<223> Bes	chreibu	ing der l	nînstl	ichen S	equenz	:				
35	ant	iidioty	pische i	Antikô	rperfra	gmente	gege	n TF			
		٠.		•							
	<400> 48										
40	Glu Val C	In Leu	Leu Glu	Ser G	ly Gly	Gly Le	ı Val	Gln	bio	Gly 4	Gly
	1	•	5			10	-			15	•
										_	
	Ser Leu 1		Ser Cys	Ala A		Gly Ph	e Thr	Phe		Ser '	Tyr
45		20	1		25	•	•		30		•
	33 a 34 a 6	D		C1 N		Cl., 1.,			C3	m	
	Ala Met S		val Arg		40	GIA TA	e GiA	15	EIU	irp	V C J
50		35			40			73		•	
	Ser Met 1	Tle Asn	Gly Ser	GIV S	er Gln	Thr Tv	፦ ጥህተ	Ala	: Asn	Ser	v=1
	50	p		55			60	-			
55	Lys Gly A	Arg Phe	Thr Ile	Ser A	arg Asp	Asn Se	r Lys	Asn	Thr	Leu	Tyr
	.65		70			. 7	5				80
	•										
60	Leu Gln 1	Met Asn	Ser Leu	Arg A	la Glu	Asp Th	r Ala	Val	Tyr	Tyr ·	Cys
			€5	٠		90		•		95	
	••		• .								
46	Ala Lys	_	Leu Asp	Phe A	Asp Tyr	Lab el	y Gln	Gly		Leu	Val
65		100	•		105				110		

Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly 115 120 125	
Gly Gly Ser Thr Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser	5
Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser 145 150 155 160	10
Ile Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro 165 170 175	15
Lys Leu Leu Ile Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser	20
Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser	20
195 200 205 Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr	25
210 215 220 Ser Thr Pro Asn Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg	30
225 230 235 240	35
	40
<210> 49 <211> 240	
<212> PRT <213> Kunstliche Sequenz	45
<220> <223> Beschreibung der künstlichen Sequenz: antiidiotypische Antikorperfragmente gegen TF	50
<400> 49 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly	55
1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30	ക
Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	65

antildiotypische Antikorperfragmente gegen TF

		0> 51			•								_					5
		Val	Gln	Leu		Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	15	G1Å		
					5					.10								
	Ser	Leu	Arĝ	Leu	Ser	Cvs	Ala	Ala	Ser.	Gly	Phe	Thr	Phe	Ser	Ser	Tyr		10
			_	20					25					30				
	Ala	Met	Ser	Trp	Val	Arģ	Gln	Ala	Pro	Gly	Lys	GJ À	Leu	Glu	Trp	Val		15
			35					40				•	45					
				_			,	6 1		~		~	23.0	700	50-	w∈1		
	Ser		lle	Ser	Ala	Thr	GIY	GIŸ	Ser	Thr	ıyr	60 191	Fic	Asp	261	AG 7		20
		5.0					33											• -
	Lvs	Glv	Arg	Phe	Thr	lle	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr		
	65	•	_			70					75	•				80		
					`•													25
-	Leu	Gln	Met	naA	Ser	Leu	Arg	Ala	Val	Asp	Thr	Ala	Val	Tyr	Tyr	Сув		
					85					90					95			
	- •		_	_		•••	5 1		~		C3	63 m	~ 1	Th-	T.611	17a 7		30
	Ala	Lys	Ser		Asp	GIĀ	Pne		191 105	up	GIÀ	GIN	GIY	110	Deu	VOI		
	•	-		100									•		•			
	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly		35
			115		•	•		120			;		125					
		·.					-		-									
	Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser		40
		130	•				135		•			140	•					
٠		_		-3		•		(T)	*1-	77 h	O 10		77-	So*	Gl n	Car		
			Val	GIY	Asp	Arg 150	Vāl	Inr	11e	1111	155	мg	MIC		G111	160		45
	145					150							t					43
	Ile	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Aļa	Pro		
				•	165		_	-		170					175			
			•								•			•				50
	Lys	Leu	Leu	Ile	Tyr	Ser	Ala	Ser	Asn	Leu	Gln	Ser	Gly	Val	Pro	Ser		
				180					185	•				190				
	_ 、			-3		- 3	c	63		200	. Dhe	Th~	7.011	Thr	Tle	Ser		55
	Arg	Phe	Ser 195	GIY	ser	GIY	ser	200		мэр	FIIE	1111	205		116	361		
			193					200										
	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Тут	Cys	Gln	Gln	Ala	Ser		60
		210					215	•		•		220						
										•			•					
	Ser	Ala	Pro	Ala	Thr			Gln	Gly	Thr			Glu	Ile	Lys			65
٠	225		•			230	,				235	•			:	240		

DE	100 27 695	A	1

	<21	0 > 5	1 .	•	•											
5	<21	1 > 2	40 -		٠.											
•	<21	2> P	RT .			•										
		3 > K		lich	e Se	āņen	2									
			•					•								
10	<22															
	₹22	3 > B			. —											
		. at	ntii	dioty	ypis	che i	Anti	körp	erir	agme:	nte	gege:	n TF			
15	-40	 :2 <0														
				1.011	Tein	Glu	Ser	Glv	Glv	Glv	Leu	Val	Gln	Pro	Gly	Glv
	1		Ç	200	٠ _	020	001	01,		10					15	1
20	•		• .		, 5			•								
	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
		-	٠	20		-	•		25	=				` 30		-
				•		•										
25	Ala	Met	Ser	Trp	Val	Arg	Gl'n	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
			35	•				4 0		٠.		•	45			
			~7.		• • • •	- C3 -			50%	m>	errib on		23-	3 am	C	17-7
30	ser		ire	Ser	YIS	GID	55 55	ren	Thr	Thr	Thr	60	ATS	Asp	Ser	vaı
		. 50				٠.										
	Lys.	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
35	65	_				70		-			75					80
										•		•				
	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
40					85	·		•		90		•		•	95	
		_				_							~ 3	~ \	•	••- •
	Ale	Lys	Gly	_	Ser	Ser	Phe	Asp	191 105	Trp	GIA	Gin	GIÀ		Leu	Val
		-	٠.	100										110		
45	Thr	Val	Ser	Ser	Gly	Glv	Gly	Glv	Ser	Gly	Glv	Gly	Gly	Ser	Gly	Gly
			115		-	•	-	120			•	-	125			•
	_	•	٠.							•	·				•	
50	Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
		130					.135					140				
		_			_	_						5			~ 3	6
55		Ser	Val	Gly	qaA	_	Va1	Thr	Ile	Thr	•	Arg	Ala	Ser	Gln	
	145				•	150			•		155					160
	Ile	Ser	Ser	TVI	Leu.	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro
60			· .	4 -	165			•		170	•		•	•	175	

Lys Leu Leu Ile Tyr Gly Ala Ser Gly Leu Gln Ser Gly Val Pro Ser 180 185 190	5
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser 195 200 205	10
Ser Leu Glin Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Glin Glin Arg Lys 210 220	10
Leu Leu Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 225 230 235 240	15
	20
<210> 52	25
<211> 240 <212> PRT <213> Künstliche Seguenz	30
<220> <223> Beschreibung der künstlichen Sequenz:	35
antiidiotypische Antikorperfragmente gegen TF	
antiidiotypische Antikorperfragmente gegen TF <400> 52 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15	40
<400> 52 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly	
<pre><400> 52 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1</pre>	40
<pre>c400> 52 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1</pre>	40 45
C400> 52 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Ser Ile Thr Glu Leu Gly Arg Ser Thr Gln Tyr Ala Asp Ser Val	40 45 50
Clu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 Ser Ser Ile Thr Glu Leu Gly Arg Ser Thr Gln Tyr Ala Asp Ser Val 50 55 60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr	40 45

65 ·	Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
6 0	Ser	Leu	Arg	Le u 20	Ser	Сув	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30		Tyr
55				Leu	Leu 5	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly 15	Gly
50	<223			reibu								gegei	TF	٠		
50	<220) >	•			-	-									
45	<212 <213	-		liche	e Sec	nen:	Z									
-		0> 53 1> 24														
40																
35	~				•				•	•						
-	Arg 225	Arg	Pro	Thr	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	lle	Ļys	Arg 240
30	. ·	210	GIII	Pro	GIU	wah	215	ΛIG	4311	* A *	*Y1	220	GIII		Ma	
25	Ser	1.eu	195	Dro	.∵ Gur) en	Dhe	200	ም ኮ ሦ	ans.	Tur	Ove	205	G1n	בומ	בוג
	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser
20	Lys	Leu	Leu	Ile 180	Tyr	Cly	Ala	Ser	Gly 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser
15	Ile	Ser	Ser	Tyr	Leu 165	Asn	Trp	Tyr	Gln	Gln 170	Lys	Pro	Gly	Lys	Ala 175	Pro
10	Ala 145	Ser	Val	Gly	Asp	Arg 150:		Thr	Ile	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
	Gly	Gly 130	Ser	Thr	Asp	Ile	G1n 135	met	ınr	Gin	ser	Pro 140	ser	ser	Leu	Ser
5			115					120			0	5	125	_	•	
	Thr	Val		Ser	Gly	Gly	Gly		Ser	Gly	Gly	Gly	-	Ser	Gly	Gly

antiidiotypische Antikorperfragmente gegen TF

5	<40	0> 5	4									•				
	Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
	1				5			•		10					15	
	`*										•					
10	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
	•	•		20	•				25					30	•	
	•								•						•	
15	Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
			35	٠.		٠.		40					45			•
••	Ser	Ala	Ile	Gln	Trp	Ser	_	Glu	Ser	Thr	Trp	Tyr	Ala	Asp	Ser	Val
20		<u>.5</u> 0					55			,		60				
						·	_			_	_	_	_			_
	-	Gly	Arg	Phe	Thr		Ser	Arg	Asp	Asn		Lys	Asn	Thr	Leu	
25	65				` ;	70				:	75					80
	•	6 3			C	•	>		63	3	57 }		72-7			٥
	ren	Gin	met	Asn		ren	Arg	ATG	GIR	_	im	ATA	val	171	95	Cys
30			-		85					90					90	
50	פוג	Tare	Ser	Thr	Ser	Ser	Dhe) en	ጥጥ		Glv	Glr	G) v	Thr	T.eu	Val
	VIC	nys	361	100	DCI .		rne	nsp 	105	بيدر	Gry	Ç	02 y	110	200	
				100		٠			100							
35	Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly
			115			,•	•	120		•		•	125		-	•
														•		
40	Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
		130					135					140	•			•
						:	•									-
	Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	lle	Thr	Cys	Arg	Ala	Ser	Gln	Ser
45	145			•	•	150					155		•			160
		•		•	•					-						
	lle	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys		Pro
50					165			٠.	•	170					175	
											٠.					
	Lys	Leu	Leu	Ile	Tyr	Aep	Ala	Ser		Leu	Gln	Ser	Gly		Pro	Ser
				180					185	-				190		•
55		5 1	0	63	C	63	ć		m b	•	nh -	5 75	7	6	71.	~
	Arg	Pne		GIÀ	ser	GIY	ser	_	Thr	Asp	rne	Tar		Thr	116	Ser
	•	•	195					200	•				205			
60	Ser	l.e.	ເດີກ	Pro	Gl 11	Aen	Phe	1) a	ጥ ኮታ	Type	T\17	Cire	4CJ m	Gl n	ara	Ara
		210	-211		-10		215		ھەد ھ		-1-	220	-411		~9	,-3
	•						3									-
	His	Thr	Pro	Thr	Thr	Phe	Glv	Gln	Glv	Thr	Lys	Val	Glu	lle	Lys	Ara
65	225					220	- •				775				•	240

<210	D> 5!	5														
<213	1> 24	40														
<212	2 > PI	RT				•				•						5
<213	3 > Ki	inst.	liche	e Se	men	Z .										
	•															
<220																10
<223			reib	•												
	aı	ntii	dioty	ypiso	che 1	Anti)	korp	erfra	agmer	nte	gegei	TF				
	> 5			•	63	.	G3		C 3		tra 1	63 5	Dro	<i>c</i> 1	Glav	15
	Val	GID	ren		GIU	Ser	GIĀ	GIY	10	ren		Gln	PIU	15	Gry	
. 1		•		, 5					10		-					
Ser	1.611	2.00	T.e.ii	Ser	C/5	21=	Ala	Set	Giv	Phe	Thr	Phe	Ser	Ser	Tvr	20
361	Deri	بم	20	001	ديي	73.0		25					30			
		•							·		•				•	
Ala	Met	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	25
	-	. 35	•				40		-			45				23
		•														
Ser	Ala	Ile	Gln	Trp	Ser	Gly	Glu	Ser	Thr	Trp	Tyr	Ala	Asp	Ser	Val	
	50			•		55					60	٠.				30
						•						•		•		
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu		
65				`.`	70	•				75					80	35
									_					_	<u>.</u>	
Leu	Gln	Met	Asn		Leu	Arg	Ala	Glu		Thr	Ala	Val	Tyr		Cys	
				. 85					90					95.		
ר ל ת		Cer	Thr	502	Ser	Dhe	Len	TVY	T+T)	Giv	Gln	Gly	Thr	Leu	Val	40
WIG	Dys	261	100	36.	561	7	رويم	105		 1		0-7	110			
•										٠.						
Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	45
		115				•	120				•	125				
							•									
Gly	Gly	Ser	Thr	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	50
	130				*	135			•		140					30
-		•									٠.		٠			
Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr		Arg	Ala	Ser	Gln		
145			•		150					155					160	. 55
			·	•	• •	· .	·	<u></u>	C1-	7	Ð	G1++	7	- נע	Dro	
11 e	ser	ser	ıyı			ırp	ıyr	GIN	170	μys	PIO	Gly	nys	175	110	
				165					110					115		60

65

₹ .																
بد.	ys	Leu	Leu	Ile	Tyr	Asp	Ala	Ser	Leu	Leu	Gln	Ser	Gly	Val	Pro	Se
		•		180					185					190		
A:	rg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Se
٠.			195		٠.			200					205			
	•				•			٠.			•					
Se	er	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Arg	Ar
		210				_	215			_		220			•	
			•							•						
H:	is	Thr	Pro	Thr	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lvs	Ar
	25				• • • • • • • • • • • • • • • • • • • •	230	•	. •		٠	235	•	••		. •	24
												•				
. <2	210	> 5	5													
	•	.> 24														
		> PI														
				liche	e Sec	men:	Z									
						• .										
)> _ > Be	schi	reibu	ing (der)	ឈានា	tlicl	nen S	Segue	enz:					
		>. Be						tlick		_		geger	ı TF			
<2	23	>. Be	ntiid							_		geger	ı TF	٠.		
<2	23	> Be ar > 56	ntiid S	ioty	/piso	che)	Antil	(Örpe	erfra	gmer	nte g			Pro	Glv	œ1·
<2	23	> Be ar > 56	ntiid S	ioty	piso	che /	Antil		erfra	Gly	nte g			Pro	_	·G1;
<2	23 00 u	> Be ar > 56	ntiid S	ioty	/piso	che /	Antil	(Örpe	erfra	gmer	nte g			Pro	Gly 15	·G1;
<2 <4 G1	23 00 u	> Be ar > 56 Val	tiid Gln	iioty • Leu	piso Leu 5	Che)	Anti) Ser	corpe Gly	erfra Gly	Gly 10	ite (Val	Gln		15	
<2 <4 G1	23 00 u	> Be ar > 56 Val	tiid Gln	iiot) Leu Leu	piso Leu 5	Che)	Anti) Ser	(Örpe	Gly Ser	Gly 10	ite (Val	Gln	Ser	15 Ser	
<2 <4 G1	23 00 u	> Be ar > 56 Val	tiid Gln	iioty • Leu	piso Leu 5	Che)	Anti) Ser	corpe Gly	erfra Gly	Gly 10	ite (Val	Gln		15 Ser	
< 4 G1 Se	00 u 1	> Be ar > Se Val	Gln Arg	Leu Leu 20	piso Leu 5 Ser	Glu Cys	Anti) Ser Ala	Gly Ala	Gly Ser 25	Gly 10	Leu Phe	Val Thr	Gln	Ser 30	15 Ser	Ty:
< 4 G1 Se	00 u 1	> Be ar > Se Val	Gln Arg Ser	Leu Leu 20	piso Leu 5 Ser	Glu Cys	Anti) Ser Ala	Gly Ala Ala	Gly Ser 25	Gly 10	Leu Phe	Val Thr	Gln Phe Leu	Ser 30	15 Ser	Ty:
< 4 G1 Se	00 u 1	> Be ar > Se Val	Gln Arg	Leu Leu 20	piso Leu 5 Ser	Glu Cys	Anti) Ser Ala	Gly Ala	Gly Ser 25	Gly 10	Leu Phe	Val Thr	Gln	Ser 30	15 Ser	Ty:
<4 Gl	00 u 1	> Be ar > 56 Val Leu	Gln Arg Ser	Leu Leu 20 Trp	piso Leu 5 Ser	Glu Cys Arg	Ser Ala	Gly Ala Ala 40	Gly Ser 25	Gly Gly Gly	Leu Phe	Val Thr	Gln Phe Leu 45	Ser 30 Glu	15 Ser Trp	Ty:
<4 Gl	00 u 1	> Be ar selection ar selection ar selection ar selection are selection a	Gln Arg Ser 35	Leu Leu 20 Trp	piso Leu 5 Ser	Glu Cys Arg	Ser Ala Gln	Gly Ala Ala	Gly Ser 25	Gly Gly Gly	Leu Phe	Val Thr Gly	Gln Phe Leu 45	Ser 30 Glu	15 Ser Trp	Ty:
<4 Gl	00 u 1	> Be ar > 56 Val Leu	Gln Arg Ser 35	Leu Leu 20 Trp	piso Leu 5 Ser	Glu Cys Arg	Ser Ala	Gly Ala Ala 40	Gly Ser 25	Gly Gly Gly	Leu Phe	Val Thr	Gln Phe Leu 45	Ser 30 Glu	15 Ser Trp	Ty:
<22 <44 G1 See	23 00 u 1	> Be ar so see a	Gln Arg Ser 35	Leu Leu 20 Trp	Piso Leu 5 Ser Val	Glu Cys Arg	Ser Ala Gln Gly 55	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly Gly	Leu Phe Lys	Val Thr Gly Tyr 60	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser	Ty: Va:
<22 <44 G1 See All	23 00 1 r	> Be ar so see a	Gln Arg Ser 35	Leu Leu 20 Trp	Piso Leu 5 Ser Val	Glu Cys Arg Ser	Ser Ala Gln Gly 55	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly Gly	Leu Phe Lys Arg	Val Thr Gly Tyr 60	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser	Ty: Va:
<22 <44 G1 See All	23 00 u 1	> Be ar so see a	Gln Arg Ser 35	Leu Leu 20 Trp	Piso Leu 5 Ser Val	Glu Cys Arg	Ser Ala Gln Gly 55	Gly Ala Ala 40	Gly Ser 25 Pro	Gly 10 Gly Gly	Leu Phe Lys	Val Thr Gly Tyr 60	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser	Ty: Va:
<22 <44 G1 Se Al	23 00 1 r a	> Be ar ar > 56 Val	Gln Arg Ser 35	Leu Leu 20 Trp Gln Phe	Piso Leu 5 Ser Val Phe	Glu Cys Arg Ser Ile 70	Ser Ala Gln Gly 55 Ser	Gly Ala Ala 40 Gln Arg	Gly Ser 25 Pro Gly Asp	Gly 10 Gly Thr	Leu Phe Lys Arg	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser	Val
<22 <44 G1 Se Al	23 00 1 r a	> Be ar ar > 56 Val	Gln Arg Ser 35	Leu Leu 20 Trp Gln Phe	Piso Leu 5 Ser Val Phe Thr	Glu Cys Arg Ser Ile 70	Ser Ala Gln Gly 55 Ser	Gly Ala Ala 40	Gly Ser 25 Pro Gly Asp	Gly 10 Gly Thr Asn	Leu Phe Lys Arg	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser Leu	Val
<22 <44 G1 Se Al	23 00 1 r a	> Be ar ar > 56 Val	Gln Arg Ser 35	Leu Leu 20 Trp Gln Phe	Piso Leu 5 Ser Val Phe	Glu Cys Arg Ser Ile 70	Ser Ala Gln Gly 55 Ser	Gly Ala Ala 40 Gln Arg	Gly Ser 25 Pro Gly Asp	Gly Gly Thr	Leu Phe Lys Arg	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala	Ser 30 Glu Asp	15 Ser Trp Ser	Val
<22 <44 G1 Se Al Le	223 00 u 1 r a	> Be ar ar > 56 Val Leu Met Gly 50 Gly	Gln Arg Ser 35 Ile Arg	Leu Leu 20 Trp Gln Phe	Piso Ser Val Phe Thr	Cys Arg Ser Ile 70 Leu	Ser Ala Gln Str Ser Arg	Gly Ala Ala 40 Gln Arg	Gly Ser 25 Pro Gly Asp	Gly 10 Gly Thr Asn Asp 90	Leu Phe Lys Arg Ser 75	Val Thr Gly Tyr 60 Lys	Gln Phe Leu 45 Ala Asn	Ser 30 Glu Asp Thr	15 Ser Trp Ser Leu Tyr 95	Val. Val. Tyr 80

Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly [*]	Gly		Gly 125		Gly	Gly	5
GJA	Gly 130	Ser	Thr	Asp	lle	Gln 135	lle	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	
Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	lle	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160	10
Ile	Ser	Ser	Tyr	Leu 165	Asn	-Ттр	Tyr		Ġîn 170	Lys	Pro	Gly ⁻		Ala .175	Pro	15
Lys 	Leu	Leu	Ile 180	Tyr	Arg	Ala	Ser	His 185	Leu	Gln	Ser	Gly	Val 190	Pro	Ser	20
Arg	Phe	Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe		Leu 205	Thr	lle	Ser	25
Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Сув 220	Gln	Gln	Gly	Tyr	30
Arg 225	Gln	Pro	Thr	Thr	Phe 230	Gly	Gln	Gly	Thr	Lys 235	Val	Glu	lle	Lys	Arg 240	35
<210)> 5:	7														40
<211 <212	> 24 > PI	10 T	liche	e Sed	quen:	z										45
<220 <223	> Be			_	der)						nege:	n TF				50
)> 51	7 •				•		· .					Pro	Gly	Glv	55
1						•			10	;				15 Ser		en
•	-		. 20					25					30	TIP	-	65
		35			3		40			-1-	1	45				0.

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz:

antiidiotypische Antikorperfragmente gegen TF

٠																5
<400	0> 51	В	Ţ	•				-								
Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Cly	Gly	Leu	Val	Gln	Pro	Gly	Gly	
1				5					10					15		
_					•											10
•	•	. •	•			• • •	· > 7 -	C = =	<u>د، د</u>	Dho	The	Dho	5.~~	C^~	••••	••
Ser	Leu	Arg			Cys	MIE	A10		Gry	FIIE	1117	FILE		361	1 3 1	
			20					25					30			
Ala	Mét	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	15
		35	·	• •			40		•			45				
															•	
٠.					- 23-			.	60%	N -5	~~~	7.7.	»	C	37- 7	
Ser	_	Ile	ser	GIU	Gin		FIR	Arg	1111	riet			ASP	SEI	VQI	20
	.50					55					. 60	1	•			
							•									
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr	
65		_			70.		-	•		75					80	25
			•	` `		-										
			•	•	• -:-			~7	3	m>	71-	17-1	~~	T	C++C	
ren	GID	Met	ASI	Ser	ren	Arg	Yis	GIU		1111	WIG	val	171		Cys	
:				85					90	•				95		30
			•		•											
Ala	Lys	Ser	Thr	Pro	Ala	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	
		•	100				٠	105					110			
	•															25
_,	' -	_		-3.				.	63	G3	~ 1	63	C	~1··	~1	35
Thr	Val	Ser	Ser	GIA	GIÀ	сìл	-	Ser	GIA	GIY	GIY		ser	GIA	GIY	
		115					120					125			•	
									•							
Gly	Gly	Ser	Thr	Asp	lle	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	40
•	130	•				135					140					
								•								•
	C-~	Val	Glv) en	2 ~ 0	37= 7	ጥ ት ም	716	Thr	CVE	Ara	פומ	Ser	Gln	Ser	
	SET	AG7	Gry	,ASD		A 67.7		116	4 4 4 4							45
145				•	150					155.					160	
				•												
lle	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	
	•	•		165	••		•		170					175		50
					•						,			•		
Lare	7.011	Leu	776	Tarr	GI v	e [4	Ser	Glv	1.611	Gln	Ser	GIV	val.	PTO	Set	
nys	שבע	Deu		171	Cly	770	561		با عابد	01		- 27			-	
			180		•			185					190			. 55
									•						•	
Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	
		195		. •			200		•			205				
			• •	-		•								•		60
Ser	t.en	Gln	Pro	Glu	Aen	Phe	Bla	Thr	TVT	TVT	Cvs	Gln	Gln	Met	Asn	(4)
					ب ر سم.				-] -	- 3 -						
	210			'.		215				_	220		•			
		• .			•	•				•	•			•		
Asn	Lys	Pro	Asn	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	65
225				-	230					235		•			240	
					•		•									

		•				L	E	100	21	07.	<i>,</i> A	. 1				
<21	0 > 5	9 .														
<21	1 > 2	30 -			•	•										
<21	2> F	RT														
<21	3 > ¥	ünst	lich	e Se	quen	2	•									
	;		•	٠.												
<22	0 > '		٠.													
<22	3 > E	esch	reib	ung	der	kūns	tlic	hen	Segu	enz						
•	··a	ntii	diot	ypis	che .	Anti	körp	erfr	agme	nte	gege	n TF				
	- حن				. :	• .	٠						:			
<40	0> 5	9					•.			•	-					
Glu	Val	Gln	Leu	Leu	Glu	Ser	Gly	Glý	Gly	Leu	Val	Gln	Pro	Gly	€ly	
1		٠.		٠ ٦					10		•			15		
			• .·			-					•	-				
Ser	Leu	Arg		Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	
. :			20					25					30			
		_	<u>.</u>	` :.	_		·			•				•		
Ala	Met		TIP	Val	Arg	Gln	_	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	
•		35					40					45				
Ser	Gla	716	74. v	Gly	7.611	Glv.	50~	~ 15	The	7	The re-	212	Asp	5 0=	3253	
261	. 50		1111	Gry	Deu	55	SEI	GIII	1111	Αżg	1 3 7	WIG	wsp	Sei	AGT	
			••							•						
Lys	Gly	Arq	Phe	Thr	Ile	Ser	Aro	Asp	Asn	Ser	Lvs	Asn	Thr	Leu	TVT	
65	Ī				70			•		75	•				ВО	
								•			_ •					
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	
			•	85	•				90					95	-	
									•			•		,		
Ala	Lys	Gly	Glu	Thr	Ala	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	
			100		•			105		•			110			
		•								•						
Thr	Val	Ser	Ser	Gly	Gly	Gly	Gly	Ser	GÌÝ	Asp	Ile	Gln	Met	Thr	Gĺn	
		115					120					125			•	
					• •											
		Ser	Ser	Leu	Ser		Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	
•	130		•	•		135		4. Z		•	140	· ·	• •	• •		
_	_						_	_	_			_	_ •			
Cys	Arg	Ala	Ser	Gln	Ser	Ile	Ser	Ser	Tyr	Leu	Asn	Trp	Tyr	Gln	Gln	

60

55

65

145 150 155 160

Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Gly Ala Ser Gly Leu
165 170 175

Gln	Ser	Gly	Val 180	Pro	Ser	Arg		Ser 185	Gly	Ser	Gly	ser	Gly 190	Thr	Asp ·	
Phe	Thr	Leu 195	Thr	lle	Ser	Ser	Leu 200	Gln	Pro	Glu	Asp	Phe 205	Ala	Thr	Tyr	5
Tyr	Cys 210	Gln	Gln	Arg	Gln	Gln 215	Arg	Pro	Ser		Phe 220	Gly	Gln	Ġly	Thr	10
Lys 225	Val	Glu	lle	Lys	Arg 230											15
<210)> 60)														20
<212	l> 24 2> PF 3> Kü		lich€	e Sec	pen:	z .										25
<220		eschi	reibu		der)	rûnst	tlicl	nen s	Segue	enz:	. •					30
<400	ar 0> 60	ntiio	dioty	piso	che A	Anti)	corpe	erfra	agmei	ate 9	gegei	n TF	•			
Gļu		Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	10	Leu	Val	Gln	Pro	Gly 15	Gly	35
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Cly	Phe	Thr	Phe	Ser 30	Ser	Tyr	40
Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	45
Ser	Asn 50	lle	Thr	Gln	Met	Gly 55	Met	Thr	Thr	Ala	Tyr 60	Ala	Asp	·Ser	Val	50
Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Àsn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80	
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90		Ala	Val	Тут	Тут •95	Cys	55
	_	Clv.	C3			Phe	yen	Tvr	Tro	Glv	Gln	Glv	Thr	Leu	Val	60
Ala	Lys	Gly	100	GID	ınr	rne	nop	105					110	•		

	Gly	Gly 130	Ser	Thr	Asp	Ile	Gln 135	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser
5	Ala 145	Ser	Val	Gly	Asp	Arg 150	Val	Thr	Ile	Thr	Cys 155	Arg	Ala	Ser	Gln	Ser 160
10	Ile	Ser	Se≆		Leu 165	Àsn	Trp	Tyr	Gln	Ģln 170	Lys	Pro	Gly	Lys	Ala 175	Pro
15	Lys	Leu	Leu	Ile 180	Tyr	eĵу	Ala	Ser	Glý 185		Gln	Ser	Gly	Val	Pro	Ser
20	Arg		Ser 195	Gly	Ser	Gly	Ser	Gly 200	Thr	Asp	Phe	Thr	Leu 205	Thr	Ile	Ser
25	Ser	Leu 210	Gln	Pro	Glu	Asp	Phe 215	Ala	Thr	Tyr	Tyr	Cys 220	Gln	Gln	Arg	Arg
	Thr 225	His	Pro	Gln	Thr	Phe 230		Gln	Gly	Thr	Lys 235	Val	Glu	Ile	Lys	Arg 240
30	٠.															
35																
40	<210 <211	> 24	0													
	<212 <213	_	_	iche	Sec	nenz	. ·									
45	<220	'>		•												
••	<223				-					Seque				•		
		an	, E11'C	посу	pisc	ne A	mtik	orpe	ŗŗŗ	gmer	ite g	eger	TF			
50	<400	> 61		:		•		•				-		•		٠,
	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
55	Ser	Leu	Arg	Leu		Cys	Ala	Ala	Ser	Gly.	Phe	Thr	Phe	Ser		Тут
		٠.		20					25	· ·				30		
5 ()	alA	Met	Ser 35	TIP	Val	Arg	Gln	Ala 40		Gly	Lys	Gly	Leu 45	Glu	Trp	Val
55	Ser	ala 02	lle	Ser	Gln	Thr	Gly 55	Thr	Arg	Thr	Lys	Tyr		Asp	Ser	Val

5	Glu 1		Gln	Leu	Val 5		Ser	Gly	Gly	Gly		Val	-Gln	Pro	Gly 15	Gly
•	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	-	Phe .	Thr	Phe	Ser 30		Tyr
10	Ala	Met	Ser . 35	Trp	.Val	Arg	Gln	Ala 40		Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ser	Ala 50	Ile	Ser	Gly	Ser	Gly 55		Ser	Thr	Tyr	Ty1 60	Ala	Asp	Ser	Val
20	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30 -	•			100			•		105	•			•	110		Val
			115					120	· .			÷	125			Gly
35	•	130					135			•••		140		•		
40	145					Arg 150		·		٠	155	·. •				160
45					165	Tyr		•	-	170					175	
50		•		180		Asn			185		. •			190		
55 .		. •	195	•	•	Gly		200					205			
		210	٠				215			•		220				•
60	225	asi	nlS	ıyr	val	Phe 230	GIÀ	GIÀ	GTÅ	Thr	Lys 235	Leu	Thr	Val		Gly 240

65

<21	U> 6.	3														
<21	1> 2	42		•												5
<21	2 > P	R.T														,
<21	3 > 'Kı	ünst.	lich	e Sed	quen:	2										
<22																10
<22:	3> B	eschi	reib	mg d	ier)	růnst	lic	nen S	Seque	enz:			٠.			
	aı	ntijo	dioty	ypiso	che /	Antil	côrpe	erfra	gmei	ite 9	geger	1 TF		•	٠.	
•	• •							·								
) > · 6:															15
Gļu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly	
1	. سز		٠.	5	-				10					15		
							•							٠.		20
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr	
		•	20	•				25					30			•
	• :						••					-	•			•
Ser	Met	Asn	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	. 25
•	٠.	35		٠.			40			٠,٠		45				
			٠.													
Ser	Ala	Ile	Ser	Gly	Ser	Gly	Gly	Ser	Thr	Tyr	Tyr	Ala	Asp	Ser	Val	
	50			•		55	•			•	60					30
·	•	•														
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr	
65			•		70					75					80	35
	•					-										
Léu	Gln	Met	Asp	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Сув	
	•			85					. 90		-	•		95	. •	
	_											·				40
Ala	Arg	Gly	Arg	Arg	Lys	Gln	Asp	Lys	Ser	Thr	Arg	Trp	Gly	Gln	Gly	
			100		•			105					110			
		•									•					
Thr	Leu	Val	Thr	Val	Ser	Ser	Gly	Glu	Gly	Gly	Ser	Gly	Gly	Gly	Gly	45
•		115		٠.			120					125			·	
Ser	Gly	.Gly	Ser	Ala	Leu	Ser	Ser	Glu	Leu	Thr	Gln	Asp	Pro	Ala	Val	50
	130					135					140					
				•												
Ser	Val	Ala	Leu	Gly	Gln	Thr	Val	Arg	lle	Thr	Cys	Gln	Gly	Ser	Leu	
145		•			150					155					160	55
		•								:						
Arg	Ser	Tyr	Tyr	Ala	Ser	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	
				165					170					175		
				•						٠.						60
Val	Leu	Val	Ile	Tyr	Gly	Lys	Asn	Asn	Arg	Pro	Ser	Gly	Ile	Pro	Asp	
			180	_				185				•	190			
			•			•										65

	Arg	Phe	Ser	Gly	Ser	Ser	Ser	Gly	naA	Thr	Ala	Ser	Leu	Thr	Ile	Thr
			195					200					205		-	
5								•								•
	Gly	Ala	Gln	Ala	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Asn	Ser	Arg	Asp
		210					215		,			220				
	•					•				•			•			
10	Ser	Ser	Gly	Ser	Ser	Ser	Val	Phe	Gly	Gly	Gly	Thr	Lys	Leu	Thr	Val
	225					230					235					240
		•	٠. ٠	•	•	٠.										
15	Leu	Gly			. ,					•	`					•
			·					-	-							
20																
	<21	0> 6	4													
	<21	1> 2	39													
25	<21	2> P	RT													
دن	<21	3 > K	unst.	lich	e Sě	quen:	Z									
					• .											
	<22	0>														
30	<22	3> B	esch:	reib	mg (der 1	künst	tlic	ben !	Segu	enz:	•				
		a	atiio	dioty	ypis	che 1	Antil	körpe	erfr	agme	nte :	gege	n TF			٠.٠
	•			•	•		•	•								
_	<40	0> è	4	•		•	. •		. ••							
35	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
	1				5					10					15	
											•					
40	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Tyr
		•		20					.25					30	•	
								•								
	Ser	Met	Asn	Trp.	Val	Arġ	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Lib	Val
15	•		35			•		40					45			
	•				•								•			
	Ser		Ile	Ser	Gly	Ser	Gly	Gly	Ser	Thr	Tyr	Tyr	Ala	Asp	Ser	Val
50		50	٠.			•	. 55			. • :		60		•		
,,,					• •	٠	•					·	•			
		Gly	Arg	Phe	Thr	lle	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
	65			• •		70			•		75					80
55			•			٠.	•	• •				•				•
	Leu	Gln	Met.	Asp	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
				• :	85	•	•			90	•	•	•	٠.٠	95	
		•				•					•					
5 ()	Ala	Arg	Gly	Arg	Arg	Lys	Gln	Asp	Lys	Ser	Thr	Arg	Trp	Gly	Gln	Gly
				100	•				105					110		
		•						•								
	Thr	Leu	Val	Thr	Val	Ser	Gly	Ser	Gly	Gly	Gly	Gly	Ser.	Gly	Gly	Ser
55			115					120					125			

Ala Leu Ser Ser	Glu Leu Thr Gln Asp	Pro Ala Val Ser Val	Ala Leu .
Gly Gln Thr Val	Arg Ile Thr Cys Gl	n Gly Asp Ser Leu Arg	Ser Tyr
145	150	155	160
_	Tyr Gln Gln Lys Pro 165	o Gly Gln Ala Pro Val	Leu Val 175
lle Tyr Gly Lys		Gly Ile Pro Asp Arg	Phe Ser 15
Gly Ser Ser Ser	Gly Asn Thr Ala Ser	Leu Thr Ile Thr Gly	Ala Gln
		Asn Ser Arg Asp Ser	Ser Gly
210 Ser Ser Ser Val	215 Phe Gly Gly Gly Thr	Lys Leu Thr Val Leu	25 Gly
225	230	235	30
<210> 65			
<211> 236 <212> PRT	·		35
<213> Künstliche	Sequenz		. 40
<223> Beschreibu	ng der kûnstlichen pische Antikôrperfi		
<400> 65			45
I l	Val Glu Ser Gly Gly 5	Gly Leu Val Gln Pro	15 50
Ser Leu Arg Leu :	Ser Cys Ala Ala Ser 25	Gly Phe Thr Phe Ser	Ser Tyr
Glu Met Asn Trp	Val Arg Gln Ala Pro 40	Gly Lys Gly Leu Glu	Trp Val
		: Ile Tyr Tyr Ala Asp	Ser Val 60
50	55	60	
Lys Gly Arg Phe 65	Thr Ile Ser Arg Asp 70	Asn Ala Lys Asn Ser 75	Leu Tyr 80

	Leú	Gln	Met	Asn	Ser 85		Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
5	Ala	Arg	Asp	Pro		His	Pro	Trp	Gly 105	Gln	Gly	Thr	Ļeu	Val	Thr	Val
10	Ser	Ser	Gly 115	Gly	Gly	Gly	Ser	Gly 120	Gly	Gly	Gly	Ser	Gly 125	Gly	Ser	Ala
15	Leu	Ser 130	Ser	Glu	Leu	Ile	Gln 135	Asp	Pro	Ala	Val	Ser 140	Va]	Ala	Leu	Gly
20	Gln 145	Thr	Val	Arg	Ile	Thr	Сув	Gln	Gly	Asp	Ser 155	Leu	Arg	Ser	Tyr	Tyr 160
26	Ala	Ser	Trp	Тут	Gln 165	Gln	Lys	Pro	Gly	170.		Pro	Val	Leu	Val 175	Ile
25	Tyr	Gly	Lys	Asn 180	Asn	Arg	Pro	Ser	Gly 185	Ile	Pro	Asp	Arg	Phe 190	Ser	Gly
30	Ser	Ser	Ser 195	Gly	Asn	: Thr	Ala	Ser 200	Leu	Thr	Ile	Thr	G ly 205		Gln	Ala "
35	Glu	Asp 210	Glu	Ala	Asp	Tyr	Tyr 215	Cys	Asn	Ser	Arg	Asp 220	Ser	Ser	Gly	Thr
40	Val 225	Phe	Gly	сjу	Gly	Thr 230	Lys .	Leu	Thr	Val	Leu 235	Gly	:		· .	
45	<210)> 66	5													
50	<212	l> 24 l> PF l> Ki	T	iche	: Seç	menz	:									
55	<220 <223	> Be								eque		reget	. Tr			
	. :	•		2						. <u></u>	2		- 			
60)> 66 Val		Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Glu
65	Thr	Leu	Ser	Leu 20		Cys	Val	Val	Ser 25	Gly	Gly	Ser	lle	Ser 30		Ser

Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp 35 40 45	
Ile Gly Glu Ile Tyr His Ser Gly Ser Pro Asn Tyr Ser Pro Ser Leu 50 55 60	5
Lys Ser Arg Ala Thr Ile Ser Val Asp Lys Ser Lys Asn Gln Phe Ser	10
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85 - 90 95	15
Ala Arg Gln Asp Met Thr Gln Gln Thr Ser Trp Gly Gln Gly Thr Leu 100 105 110	20
Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly	20
115 120 125 Gly Ser Ala Leu Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly	25
Thr Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn	30
145 150 155 160 Ile Gly Ser Asn Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala	35
Pro Lys Leu Leu Ile Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro	40
Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile	40
195 200 205 Ser Gly Leu Arg Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp	45
210 215 220 Asp Asp Ser Leu Arg Asn Leu Val Phe Gly Glu Gly Thr Lys Leu Thr	50
225 230 235 240 Val Leu Gly	55
	(0
<210> 67 <211> 242	ю
<211> 242 <212> PRT <213> Kûnstliche Sequenz	65

		• -														
	<22	3 > B	esch:	reib	mg (der l	kūns	tlic	hen :	Segu	enz:					-
5	• •	a	ntii	iiot	vois	che i	Anti	koro	erfr	acme	nte (gege:	n TF	•	:	
•	•			,	, , ,					- 5		5-5-				
		0 > 6.	•													:
	Gln	Val	Gln	Leu	Gln	Glu	Ser	Gly	Pro	Gly	Leu	Val	Lys	Pro	Ser	Glu
10	1			•	. 5	•				10	•				15	
	-				~					- •	٠,					
						•		•		•						
	Thr	Leu	Ser	Leu	Thr	Cys	Val	Val	Ser	Gly	Gly	Ser	Ile	Ser	Ser	Ser
				20	•				25					30	• • •	
15	•	•										•				
	_	_		•				,		_			_		_	
	ASB	Trp	Trp	Ser	Trp	Val	Arg	Gln	Pro	Pro	Gly	Lys	Gly	Leu	Glu	Trp
		. ــــــــــــــــــــــــــــــــــــ	35			• •		40				•	45			
20		,														
	770	63.5	C3.	116	Th	114 6	c	C1			3 am	m	C	D	·	
	116		GIU	116	IYI	LT P	Sei	GIA	ser	PIO	ASII	ıyı	ser	PIO	ser	Leu
		50			43		55		•			60				
	•		·	· .	. ~										:	
25	Lvs	Ser	ATO	בות	The	Tle	Ser	ับลา	Asn	1.ve	Ser	1.00	A en	Gln	Dhe	Ser
			5		••••					2,0		2,0	,	:	1116	
	- 65				•	70			·		75	•		•		80
												•				
30	Leu	Lys	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	Ala	Val	TVI	Tvr	Cvs
•		. •			85			٠.		90				•	95	- •
			•	•	. ,					90					70	
				_					•.							
	Ala	Arg	Gln	Asp	Met	Thr	Gln	Gln	Thr	Ser	Trp	Gly	Gln	Gly	Thr	Leu
35				100			٠.		105					110		
								•								
	32-3	603	*** *	.	•	63		-1	-						_	
	val	ını	Val	ser	ser	GIÀ	GIA	GIÀ	GIA	Ser	Gly	GIU	GIA	GIY	Ser	Gly
40			115					120					125			
~~	•											•		•	•	
	Glv	Ser	בומ	נום.	G) n	Ser	17= 1	7.611	Thr	·63m	Dro	Dro	Ca-	71-	Sa~	Gly
			7.20	200	0111	561		שבט					261	VIE	251	Gry
		130		·			135			•		140				
45										•						
	Thr	Pro	Gly	Gln	Arq	Val	Thr	Ile	Ser	Cye	Ser	Glv	Ser	Ser	Ser	Asn
	145		•		-	150				•	155					
	230			•		130				•	125					160
**																
50	Ile	Gly	Ser	Asn	Tyr	Val	Tyr	Trp	Tyr	Gln	Gln	Leu	Pro	Gly	Thr	Ala
					165					170					175	
						•										
	_	_	_			_	_	_	_			_	_			
55	Pro	Lys	Leu	Leu	lle	Tyr	Arg	Asn	Asn	Cln	Arg	Pro	Ser	Gly	Val	Pro
				180	•				185					190		
											:					
) e	>	Dha	· ·	C1	Sc~	1	C	<u></u>	· ~~	0	23-	C	3	3 2 -	~ 9 -
	لأهد	ΥĞ		oe!	GIÀ	ser	TAE		Gly	inr	ser	WTS	ser	ren	ATS	TTE
60			195	•				200					205		•	
	Ser	Glv	Leu	Aro	Ser	Glu	Aso	Glu	Ala	Aso	Tvr	Tvr	Cve	Ala	= [4	رشائي
		270		3			215				- 1 -	330	, -			

	Asp 225	Asp	Ser	Leu	Arg	Asn 230	Ŀeu	Val	Phe	Gly	Glu 235	Gly	Thr	Lys	Leu	Thr 240		
		_								•							:	5
	Val	Leu																
																	10	υ
	<210		-														•	
	<212			n stells													15	,
	<212	> K	unst.	lich	e 5e0	inen:	Z											
	<220 <223		esch:	ŕeib	ma e	der 1	kůnst	tlich	hen :	Seau	enz:						20)
					_					-		geger	n TF	. :	·			
•	<400)> 61	В .		13							٠,	:				25	5
	Ģln 1	Val	Gln	Leu	Gln 5	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Lys	Pro	Ser 15	Gly		
					٠.								-				30	J
	Thr	Leu	Ser	Leu 20	Thr	Cys	Ala	Val	Ser 25	Gly	Gly	Ser	Ile	Ser 30	Ser	Ser		
	, cn	Trans.	~~~	Ca-	Tana	พรา	1	C) =	Pro	Pro	G134	Lys	Glv	Levi	G) n		35	•
		110	. 35	JCI.	ıτρ	V21		40	710	110	Gry	Lys	45	Deu		110		
	lle	Gly	Glu	Ile	Tyr	His	Ser	Gly	Ser	Thr	Asn	Tyr	Asń	Pro	Ser	Leu		
		. 50			•	•	55		;			60	•		-	,	40)
	_		Arg	Val	Thr	Île	Ser	vál	Asp	Lys	Ser	Lys	Asn	Gln	Phe	Ser		
	65	•				70					75		·			80	45	į
	Leu	Lys	Leu	Ser	Ser 85	Val	Thr	Ala	Ala	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys		
					•		:	-									50)
	Ala	Arg	Asp	Asp 100	٠.	Gly	Gly	Trp	Gly 105	Gln-	Gly	Thr	Ļeu	Val	Thr	Val		
	C	S	63	63	63	63	C	63	61		63	S	G3	Class	6 -		55	j
	ser	Ser	115	GIY.	GIÀ	GIY.	Ser	120	GIY	GIÀ	GIY	Ser _.	125	GIÀ	ser	Ala		
	Leu	Gln	Ser	Val	Leu	Thr	Gln	Pro	Pro	Ser	: Ala	Ser	Glv	Thr	Pro	Glv	60)
		130				. :	135		-	:		140	•			•		
	Gln	Arg	Val	Thr	Ile	Ser	Cys	Ser	Gly	Ser	Ser	Ser	Asn	Ile	Gly	Ser		
	145	•		٠.		150		· .			155		·			160	65	5

5	. Asn	Thr	Val	Asn	Trp 165	Tyr	Gln	Gln	Leu	Pro 170	•	Thr	ala	Pro	Lys 175	
	Leu	Ile	Tyr	Ser 180		Asn	Gln	Arg	Pro 185	Ser	Gly	Val	Pro	Asp 190	Arg	Phe
10	Ser	Gly	Ser 195	Lys	Ser	Gly	Thr	Ser 200	Ala	Ser	Leu	Ala	Ile 205	Ser	Gly	Leu
15		210	Glu				215	•	-			2,20		_	_	
20	Leu 225		Ser	Leu -	Val	Phe 230	Gly	Gly	Gly	Thr	Lys 235	Leu	Thr	Val	Lev	Gly 240
25																
30 %	<21: <21:	0> 6: 1> 2: 2> PI	9													
	<21:	3 > Ki	inst]	liche	Sec	menz	Z									
35	<22	0> _.	inst] eschi	•			•	lich	nen S	Seque	enz:					
35	<22	0> 3> Be		reibu	mg d	ler)	rûnst			-		eger	TF			
	<22 <22 <40	0> 3> Be ar 0> 6!	eschi ntiic	reibu	mg d Mpiso	ier } :he }	rünst Antil	(ôrpe	erfra	gmer	ite g	. • •	•	Pro	Car	Čl v
	<22 <22 <40	0> 3> Be ar 0> 6!	eschi	reibu	mg d Mpiso	ier } :he }	rünst Antil	(ôrpe	erfra	gmer	ite g	. • •	•	Pro	Ser 15	€ly
4 0 .	<220 <223 <400 Gln 1	0> 2> Be ar 0> 69 Val	eschi ntiic	reibu iioty Leu	ing o piso Gln 5	ler) the /	rûnst Anti) Ser	¢ôrp€ Gly	erfra Pro	Gly 10	ite g	Val	Lys		15	
40	<220 <220 <400 Gln 1	0> 3> Be ar 0> 69 Val	eschi ntiid) Gln	Leu Leu 20	ing o	der) che ; Glu Cys	cûnst inti) Ser Ala	Gly Val	Pro Ser	Gly 10	Leu Gly	Val Ser	Lys Ile	Ser 30	15 Ser	Ser
40	<220 <220 <400 Gln 1 Thr	0> 2> Be an 0> 69 Val Leu	eschi ntiid Gln Ser Trp 35	Leu Leu Ser	ing o	der) the / Glu Cys	cûnst Anti) Ser Ala	Gly Val Gln 40	Pro Ser 25	Gly 10 Gly Pro	Leu Gly	Val Ser Lys	Lys lle Gly 45	Ser 30 :	15 Ser Glu	Ser
40	<220 <220 <400 Gln 1 Thr	0> 69 au 0> 69 Val Leu Trp Gly 50	eschi ntiid Gln Ser Trp 35	Leu Leu 20 Ser	ong of piscons of the	der) the / Glu Cys Val	cûnst Anti) Ser Ala Arg Ser	Gly Val Gln 40 Gly	Pro Ser 25 Pro	Gly 10 Gly Pro	Leu Gly Gly	Val Ser Lys Tyr 60 Lys	Lys lle Gly 45	Ser 30 Leu Pro	Ser Glu Ser	Ser Trp Leu

Ala Arg Pro Ser Ser Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser	
Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Ala Leu	5
115 120 125	10
Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln 130 135 140	10
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 145 150 155 160	15
Tyr Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu	
165 170 175	20
Ile Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser	
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg	25
195 200 205	30
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu 210 215 220	
Arg Ser Leu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly	35
225 230 235	
	40
<210> 70 <211> 244	
<212> PRT <213> Kunstliche Sequenz	45
<220> <223> Beschreibung der kunstlichen Sequenz:	50
antiidiotypische Antikorperfragmente gegen TF	
<400> 70 Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gly	53
1 5 10 15	
Thr Leu Ser Leu Thr Cys Ala Val Ser Gly Gly Ser Ile Ser Ser Ser 20 25 30	60
Asn Trp Trp Ser Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp	
35 40 45	65

	Ile	Gly 50		Ile	Tyr	His	Ser 55		Ser	Thr	Asn	. Tyr 60		Pro	Ser	Leu
5	Lys 65		Arg	Val	Thr	Ile 70		Val	Xaa	Lys	Ser 75	-	Asn	Gln	Phe	Ser 80
טו	Leu	Lys	Leu	Ser	Ser 85		Thr	Ala	Xaa	Asp 90		Ala	Val	Tyr	Tyr 95	Cys
15	Ala	Arg	Pro	Ser 100	His	His	Ala	Gly	Thr 105	His	Thr	Trp	Gly	Gln íÌ0	Gly	Thr
20	Leu	Val	Thr	Val	Ser	Ser	Gly	Gly 120	Gly	Gly	Ser	Gly	Gly 125	Gly	Gly	Ser
25	Gly	Gly 130		Ala	,点 Ten	Gln	Ser 135	Val	Leu	Thr	Gln	Pro 140	Pro	Ser	Ala	Ser
	Gly 145	Thr	Pro	Gly	Gln	Arg 150	Val	Thr	Ile	Ser	Cys 155	Ser	Gly	Ser	Ser	Ser 160
30	Asn	Ile	Gly	Ser	Asn 165	Thr	Val	Asn	Trp	Tyr 170	Gln	Gln	Leu	Pro	Gly 175	Thr
35	Ala	Pro	Lys	Leu 180	Leu	Ile	Tyr	Ser	Asn 185	Asn	Gln	Arg	Pro	Ser 190	Gly	Val
40	Pro	Asp	Arg 195	Phe	Ser	Gly	Ser	Lys 200	Ser	Gly	Thr	Ser	Ala 205	Ser	Leu 	Ala
45		Ser 210	Gly	Leu	Gln	Ser	Glu 215	Asp	Glu	Ala		Tyr 220	Tyr	Cys	Ala	Ala
50	Trp . 225	Asp	Asp	Ser		Arg 230	Ala	Leu	Val		Gly 235	Gly	Gly	Thr	Lys	Leu ' 240
55	Thr	Val	Leu	Gly												
33	•															
60	<210: <211: <212: <213:	> 24 > PR	ı T		Seq	uenz										
65	<220: <223:		schr	eibu	ng d	er k	ůnst	lich	en S	eđre	D z:		-		•	

antiidiotypische Antikörperfragmente gegen TF

< 40	0> 7	ŀ														5
Gln	Val	Gln	Leu	Gln	Glu	Ser	Gly	Ala	Gly	Leu	Leu	Lys	Pro	Ser	Glu	
1	• •			5			•	٠.	1,0					15		
		٠.			•	•										10
Thr	Leu	Ser	Leu	Thr	Cys	Ala	Val	Tyr	Gly	Gly	Ser	Phe	Ser	Gly	Tyr	
	. :		20					25	•				30			
_	_ `.		_				_	_				_				
Tyr	irb		-	iie	Arg	GID		Pro	GIA	rys	GIY		GIU	Trp	116	15
		35	-				40		٠.			45				
Gly	Glu	Tle) en	Vie	Cer	Gly	Ser	The r	. Aen	T-1.27	Acn	Pro	Ser	Leu	i. Tare	
Gly	50		A.I.	1112		55 55		****	·ron	- 7 -	.60		-		 ,	20
	. تــــــــــــــــــــــــــــــــــــ															
Ser	Arg	Val	Thr	Ile	Ser	val	Asp	Thr	Ser	Lys.	Asn	Gln	Phe	Ser	Leu	
65			. •.		70	•				75					80	25
÷	•			. 4			• •				•		٠			
Lys	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	
				85	•				90				•	95		
٠						_			٠.							30
Arg	Lys	Gly		Asn	Phe	Gly	Pro		Gly	Gln	Gly	Thr		Val	Thr	
		•	100	•				105					110		·	
V=1	Ser	Ser	Glv	Gly	Glv.	G) v	Ser	Glw	Gly	Glv	Gly	Ser	Gly	Gly	Cer.	35
467		115	Gly	Gry	G. y	GIY	120	Gry	GLY	Gry	Gly	125	Gry	GIY	261	
	•					•										
Ala	Leu	Gln	Ser	Val	Leu	Thr	Gln	Pro	Pro	Ser	Ala	Ser	Gly	Thr	Pro	40
	130					135	-				140		-	•		-0
			•	-			-	-								
Gly	Gln	Arg	Val	Thr	ïle	Ser	Cys	Ser	Gly	Ser	Ser	Ser	Asn	Val	Gly	
145	•	•			150			٠		155					160	45
		•										•				
Ser	Asn	Thr	Val		Trp	Tyr	Gln	Gln		Pro	Gly	Thr	Ala	Pro	Lys	
				165				-	170					175		50
i. Tæn	Len.	716	ጥኒም	Ser	Aen.	Aen.	Gla	Ara	Pro	Ser	G] v	V=1	Pro	Asp	h-r-a	
neu	Deu	116	180	261		ASII	GIII	185		261	Gly	V01	190	reh.	му	
							•									65
Phe	Ser	Gly	Ser	Lys	Ser	Gly	Thr	Ser	λla	Ser	Leu	Ala	Ile	Ser	Gly	55
		195			•		200			-		205			•	
						•				:.			•			
Ге́л	Gln	Ser	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Сув	Ala	Ala	Trp	Asp	Asp	60
	210				-	215	•			-	220					
_							_									
	Leu	Arg	Ser	Tyr		Phe	Gly	Gly	Gly		Lys	Leu	Thr	Val		65
225	•				230	•				235		٠.	:		240	•

Gly

<210>.72

<211> 11 ~

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der kunstlichen Sequenz: Mimikry-Peptide gegen TF

20

<400> 72

Cys Leu Arg Glu Gly His Phe Ala Ser Phe Cys

1 5 10

30 <210> 73

<211> 11

<212> PRT

<213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Mimikry-Peptide gegen TF

<400> 73

Cys Gly Met Leu Thr Pro Ala Trp Ile Lys Cys

45 1 5

<210> 74 <211> 11

<212> PRT

55 <213> Künstliche Sequenz

<220>

<223> Beschreibung der künstlichen Sequenz: Mimikry-Peptide gegen TF

<400> 74

Cys Glu Thr Phe Ser Asn Leu Ala Phe Leu Cys 1 5 10

94

DE	100 27 695	A 1

<210> 75	
<211> 11	
<212> PRT.	5
<213> Künstliche Sequenz	
<220>	
<223> Beschreibung der künstlichen Sequenz:	10
Mimikry-Peptide gegen TF	
<400> 75"	15
Cys Glu Gly Pro Glu Ile Pro Ala Phe Val Cys	
1 5 10	
•	
	20
<210> 76	
<211> 11	25
<212> PRT	
<213> Kunstliche Sequenz	
<220>	30
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen TF	
	35
<400> 76	
Cys Glu Ser Met Val Glu Pro Ala Trp Val Cys	
1 5 10	
	40
•	
•	
<210> 77	45
<211> 11	•
<212> PRT	
<213> Kunstliche Sequenz	
	50
<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen TF	55
-400- 77	33
<400> 77 Our Thr han han lie Met Pro Pro Tro Val Cys	
Cys Thr Asn Asp lle Met Pro Pro Trp Val Cys 1 5 10	
	ക
<210> 78	
	65

```
<211> 11.
   <212> PRT
 5 <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
    Mimikry-Peptide gegen TF
   <400> 78
   Cys Asp Gly Leu Leu Pro Ile Trp Ala Cys
    1 5 10
20
   <210> 79
  <211> 11
  <212> PRT
   <213> Künstliche Séguenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
    Mimikry-Peptide gegen TF
   <400> 79
   Cys Ala Gly Glu Phe Val Pro Val Trp Ala Cys
   1 5 10
40
   <210> 80
   <211> 11
45 <212> PRT
   <213> Künstliche Sequenz
   <220>
  <223> Beschreibung der künstlichen Sequenz:
       Mimikry-Peptide gegen TF
55 . <400> 80
   Cys Asp Leu Gly Leu Lys Pro Ala Trp Leu Cys
   1 5 10
   <210> 81
  <211> 13
  . <212> PRT
   <213> Kûnstliche Sequenz
```


<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen TF	
<400> 81	
Cys Gly Pro Met Cys Ser Gly Ser Cys Val Pro Gln Cys	
1 .5 . 10	10
·	1:
<210> 62	
<211> 13	
<212> PRT	
<213> Künstliche Sequenz	20
•	
<220>	
<223> Beschreibung der künstlichen Sequenz:	25
Mimikry-Peptide gegen TF	
<400> E2	
Cys Asp Ala Gly Cys Asn Phe Phe Cys Pro Trp Arg Cys	30
1 5 10	
·	35
<210> 63	
<211> 13	
<212> PRT	
<213> Kûnstliche Sequenz	40
<220>	
<223> Beschreibung der künstlichen Sequenz:	45
Mimikry-Peptide gegen TF	
<400> £3	
Cys Gly Pro Met Cys Ser Gly Ser Cys Xaa Pro Gln Cys	50
1 5 10	
•	55
<210> 84	
<211> 7	
<212> PRT	60
<213> Künstliche Sequenz	
<220>	65
<223> Beschreibung der künstlichen Sequenz:	

Mimikry-Peptide gegen TF

```
<400> 84
   Val Trp Trp Trp Gln Trp Ser
   5
10
   <210> 85
  <211> 7
  <212> PRT
   <213> Künstliché Sequenz
       <220>___
   <223> Beschreibung der künstlichen Sequenz:
     Mimikry-Peptide gegen TF
  <400> 85
  Met Trp Arg Pro Phe Trp Leu
 1 5
30
  <210> 86
  <211> 7
  <212> PRT
   <213> Künstliche Sequenz
40
  <220>
   <223> Beschreibung der künstlichen Sequenz:
      Mimikry-Peptide gegen TF
   <400> 86
   Pro Pro Trp Val Xaa His Leu
  <210> B7
   <211> 7
   <212> PRT
   <213> Kunstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
     Mimikry-Peptide gegen TF
```

<400> 87

Leu Ile Pro Gln Trp Ile Val

<210> 8	•	10
<211> 9		
<212> P	•	
<213> K	unstliche Sequenz	
		15
<220>	and the second of the second o	
	eschreibung der kunstlichen Sequenz:	
M	imikry-Peptide gegen TF	
٠		20
<400> 8	.8	
Cys Thr	Pro Ala Asp Met Ser Gly Cys	
·· 1	.5	25
<210> 8	9	30
<211> 9		
<212> P	PRT	
	fûnstliche Sequenz	
		35
<220>		
	eschreibung der kunstlichen Sequenz:	
	Nimikry-Peptide gegen TF	
		40
<400> 8	r 9	
	Pro Ala Asp Met Ser Gly Cys	
1	5	45
-2205 6		50
<210> 9		
<211> 1	•	
<212> F		
<213> F	Künstliche Sequenz	5
220.		
<220>	and the state of the state of the company	
	Seschreibung der künstlichen Sequenz:	64
. N	Aimikry-Peptide gegen TF	ni
<400> 9		
Cys Pro	Ser Val Trp Met Leu Asp Leu Gly Pro Cys	6:
· 1	5 10	

```
<210> 91
   <211> 9
5 <212> PRT
   <213> Künstliche Sequenz
   <223> Beschreibung der künstlichen Sequenz:
        Mimikry-Peptide gegen TF
15 <400> 91
   Cys His Gly Gly Leu Thr Pro Leu Cys. .
    1 ---
           5
   <210> 92
   <211> 9
   <212> PRT
   <213> Künstliche Sequenz
     • • •
30 <220>
   <223> Beschreibung der künstlichen Sequenz:
   Mimikry-Peptide gegen TF
   <400> 92
   Cys Gly Pro Met Met Leu Trp His Trp
   1 5
40
   <210> 93
   <211> 12
   <212> PRT
   <213> Künstliche Sequenz
   <220>
   <223> Beschreibung der künstlichen Sequenz:
    Mimikry-Peptide gegen TF
        . J. .
55
   Cys Thr Arg His Ile His Trp Gly Asn Ala His Trp
```

<210> 94

DE	100 27	695	A 1	

<211> 9	
<212> PRT	
<213> Kûnstliche Sequenz	:
<220>	
<223> Beschreibung der künstlichen Sequenz:	
Mimikry-Peptide gegen TF	10
<400> 94	
Cys Thr Pro Ala Asp Met Ser Gly Trp	15
1 5	
im a	20
<210> 95	
<211> 11	
<212> PRT	25
<213> Kůnstliche Sěquenz	
<220>	
<223> Beschreibung der kunstlichen Sequenz:	30
Mimikry-Peptide gegen TF	
<400> 95	25
Cys Phe Arg Gly Gly Pro Trp Trp Ser Leu Cys	35
1 5 10	
	40
<210> 96	
.<211> 11	
<212> PRT	45
<213> Künstliche Sequenz	
<220>	50
<223> Beschreibung der künstlichen Sequenz: **********************************	
Mimikry-Peptide gegen TF	
<400> 96	
Cys Ala Val Arg Thr Trp Val Ile Ser Glu Cys	55
cys Ala vai Arg im irp vai ire ser ord cys	
	60

Patentansprüche

Vakzine gegen konformationsabhängige Antigene, gekennzeichnet durch

 eine DNA, welche diejenige Region eines antiidiotypischen Antikörpers (Ab2), eines antiidiotypischen Antikörperfragmentes oder eines anderen Peptides kodiert, die die Bindungsstelle eines Antikörpers (Ab1) oder eines das Antigen bindende Molekül spezifisch bindet und das ursprüngliche Antigen immunologisch imitiert, wobei das Epitop ganz oder teilweise konformationsabhängig ist und eine immunogene Struktur aufweist, welche nicht durch eine einfache Aufeinanderfolge von Aminosäuren der Primärsequenz des Antigens sondern

5

10

15

20

25

30

35

40

50

55

60

65

DE 100 27 695 A 1

durch eine bestimmte räumliche Konformation von Aminosäuren definiert ist, und die DNA entweder in Form nackter DNA, linear oder zirkulär, und/oder mit Hilfe eines viralen Vektors mit oder ohne Adjuvantien angewendet wird, oder

- b. durch einen Antikörper, ein Antikörperfragment oder ein Peptid, die das konformationsabhängige Antigen immunologisch imitieren, oder
- c. durch eine Kombination der Stoffe aus a und b.
- 2. Vakzine nach Anspruch 1, dadurch gekennzeichnet, daß die immunogenen Strukturen durch eine bestimmte räumliche Konformation von Aminosäuren definiert sind, die beispielsweise durch die Interaktion von Aminosäuren zustande kommen, welche in der Primärsequenz des Antigens nicht benachbart sind, oder durch Ausbildung einer Sekundär- oder höheren Strukturordnung aufgrund einer Interaktion von Aminosäuren aus Proteinen eines Proteinkomplexes oder durch die Modifikation der Primärstrukturen, beispielsweise durch Glykosylierung oder Phosphorylierung, bedingt sind.
- 3. Vakzine gegen Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind, gekennzeichnet durch a. eine DNA, welche diejenige Region eines antiidiotypischen Antikörpers (Ab2), eines antiidiotypischen Antikörperfragmentes oder eines anderen Peptides kodiert, die die Bindungsstelle eines Antikörpers (Ab1) oder eines das Antigen bindende Molekül spezifisch bindet und das ursprüngliche Antigen immunologisch inititiert, wobei es sich bei dem Antigen um Substanzen handelt, deren relevanten Epitope zwar keine Protein- oder Peptidepitope sind, jedoch immunogene Strukturen aufweisen und die DNA entweder in Form nackter DNA, linear oder zirkulär, und/oder mit Hilfe eines viralen Vektors mit oder ohne Adjuvantien angewendet wird, oder b. durch einen Antikörper, ein Antikörpertragment oder ein Peptid, die das Antigen, das kein oder nicht auschließlich ein Protein wer Peptid ist, immunologisch imitieren, oder
 - c. durch eine Kombination der Stoffe aus a und b.
- 4. Vakzine nach Anspruch 3. dadurch gekennzeichnet, daß immunogene Strukturen der relevanten Epitope vorzugsweise Glykostrukturen, kombinierte Kohlenhydrat-Proteinepitope, Lipide, Glykolipide oder synthetische Strukturen darstellen.
- 5. Vakzine nach einem der Anspruche 1 bis 4. dadurch gekennzeichnet, daß die Peptide linear oder zirkulär, beispielsweise durch Einfügung von Cysteinen an geeigneten Stellen, vorliegen.
- 6. Verwendung einer Vakzine nach Anspruch 1 bis 5 zur Immunisierung mittels DNA und/oder den das Antigen immunologisch imitierenden Antikörpern. Antikörpertragmenten (antiidiotypische Ak) oder Peptiden (Mimikry-Peptide).
- 7. Verwendung der Vakzine nach Anspruch 6. gekennzeichnet durch als Vakzine geeignete Formulierungen dieser Proteinstrukturen entweder durch Gabe der sie kodierenden DNA gemäß 1a oder 3a. oder durch Gabe der Strukturen alleine, wie Peptide, inverse Peptide oder retroinverse Peptide, in Form einer chemischen Kopplung an Proteine, wie Keyhole limpet hemocyanin (KLII), in Form von Bakteriophagen als Fusionsproteine mit Plagenhüllproteinen auf deren Oberfäche, in Form eines Fusionsproteins auf der Oberfäche anderer Viren oder attenuierter biologischer Träger oder durch Beladung dendritischer Zellen nach an sich bekannten Verfahren, jeweils gegebenenfalls in Kombination mit geeigneten Adjuvantien oder immunstimulatorischen Molekülen wie Cytokinen, die auch in Form einer sie kodierenden DNA verabreicht werden können.
- 8. Verwendung der Vakzine nach Anspruch 6 und 7. gekennzeichnet durch eine Kombination der DNA und der Protein-Strukturen in einer geeigneten Formulierung.
- 9. Verwendung von Vakzinen nach Anspruch 1, 2, 5, 6, 7 oder 8 gegen tumorassoziierte konformationsabhängige Antigene.
- 10. Verwendung von Vakzinen nach Anspruch 3 bis 8 gegen tumorassoziierte Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind.
- 45 11. Verwendung von Vakzinen nach Anspruch 1.2.5.6, 7 oder 8 gegen konformationsabhängige Antigene von Erregern infektiöser Erkrankungen, wie Prionen, Viren, Bakterien, Parasiten.
 - 12. Verwendung von Vakzinen nach Anspruch 3 bis 8 gegen Antigene von Erregem insektiöser Erkrankungen, wie Prionen. Viren. Bakterien. Parasiten, die keine oder nicht ausschließlich Proteine oder Peptide sind.
 - Verwendung von Vakzinen nach Anspruch 1 bis 8 gegen weitere infektiöse oder nichtinfektiöse Erkrankungen auf dem medizinischen und veterinärmedizinischen Gebiet.
 - 14. Verfahren zur Herstellung einer Vakzine gegen konformationsabhängige Antigene gemäß einem oder mehreren der Ansprüche 1. 2 oder 5 auf der Basis immunologisch imitierender Strukturen in Form antiidiotypischer Antikörper, antiidiotypischer Antikörper, antiidiotypischer Antikörperfragmente oder Mimikry-Peptide oder daraus resultierender DNA-Sequenzen, dadurch gekennzeichnet, daß man:
 - a. mit der Hybridomtechnik monoklonale Antikörper (Ab1) gegen konformationsabhängige Antigene nach Anspruch 1 und antiidiotypische Antikörper (Ab2 vom Typ b), die das Antigen nach Anspruch 1 oder 2 immunologisch imitieren,
 - b. aus genomischen, Hybrid-, semisynthetischen oder synthetischen Antikorper-Genbibliotheken sowie aus Genbibliotheken immunisierter oder nicht-immunisierter Spender mittels der Phagen-Display-Technik oder der Ribosomen-Display-Technik rekombinante Antikörperfragmente (Ab1) gegen konformationsabhängige Antigene oder mit Hilfe idiotypischer Antikörper oder Antikörperfragmente, die das konformationsabhängige Antigen spezifisch erkennen, rekombinante antiidiotypische Antikörperfragmente (Ab2), die das Antigen nach Anspruch 1, 2 oder 5 immunologisch imitieren.
 - c. aus genomischen, Hybrid-, semisynthetischen oder synthetischen Antikörper-Genbibliotheken sowie aus Genbibliotheken immunisierter oder nicht-immunisierter Spender mittels der Phagen-Display-Technik oder der Ribesomen-Display-Technik mit Hilfe von Substanzen (z. B. Rezeptoren), die das konformationsabhängige Antigen spezifisch erkennen, rekombinante Antikörperfragmente, die das konformationsabhängige Antigen nach Anspruch 1, 2 oder 5 immunologisch imitieren.

d. aus synthetischen Peptid-Genbibliotheken mittels Phagen-Display-Technik oder Ribosomen-Display-Technik mit Hilfe idiotypischer Antikörper oder Antikörperfragmente, die das konformationsabhängige Antigen spezifisch erkennen, lineare oder zirkuläre Peptide, die die antigen-bindende Regionen der konformationsspezifischen Antikörper (Ab1) nach Anspruch 1 binden und somit das Antigen nach Anspruch 1, 2 oder 5 immunologisch imitieren,

e. aus synthetischen Peptid-Genbibliotheken mittels Phagen-Display-Technik oder Ribosomen-Display-Technik mit Hilfe von Substanzen (z. B. Rezeptoren), die das Zielantigen spezifisch erkennen. lineare oder zirkuläre Peptide, die die antigen-bindende Regionen der konformationsspezifischen Antikörper (Ab1) nach Anspruch 1 binden und somit das Antigen nach Anspruch 1, 2 oder 5 immunologisch imitieren.

hersielli hzw. selektionieri und eine den Antikörpern oder Peptiden nach a-e oder geeigneten Teilpeptiden oder abgeleiteten Peptiden, beispielsweise durch Zirkularisierung. Mutationen, in Form inverser oder retroinverser Peptide, oder repetitiven Konstrukten entsprechende DNA entsprechend des Anspruches 1 nach an sich bekannten Verfahren erzeutet.

15. Verführen zur Herstellung von Vakzinen gegen Antigene gemäß einem der Ansprüche 3, 4 oder 5 auf der Basis immunologisch imitierender Strukturen in Form antiidiotypischer Antikorperfragmente oder Mimikry-Peptide oder daraus resultierender DNA-Sequenzen, dadurch gekennzeichnet, daß man:

a. aus genomischen, Hybrid-, semisynthetischen oder synthetischen Antikörper-Genbibliotheken sowie aus Genbibliotheken immunisierter oder nicht-immunisierter Spender mittels der Phagen-Display-Technik oder der Ribesomen-Display-Technik rekombinante Antikörperfragmente (Ab1) gegen Antigene, die primär keine Proteine oder Peptide sind, oder mit Hilfe idiotypischer Antikörper oder Antikörperfragmente, die das konformationsahlungige Antigen spezifisch erkennen, rekombinante antiidiotypische Antikörperfragmente (Ab2), die das Antigen nach Anspruch 3, 4 oder 5 immunologisch imitieren.

b. aus genomischen. Hybrid-, semisynthetischen oder synthetischen Antikörper-Genbibliotheken sowie aus Genbibliotheken immunisierter oder nicht-immunisierter Spender mittels der Phagen-Display-Technik oder der Ribesomen-Display-Technik mit Hilfe von Substanzen, beispielsweise von Lektinen, Rezeptoren, Peptiden, die das Zielamigen spezifisch erkennen, rekombinante Antikörperfragmente, die das Zielamigen nach Anspruch 3, 4 oder 5 immunologisch imitieren.

c. aus synthetischen Peptid-Genbibliotheken mittels Phagen-Display-Technik oder Ribosomen-Display-Technik lineare oder zirkuläre Peptide, die die antigen-bindende Regionen der Antikörper (Ab1) gegen Antigene, die keine oder nicht ausschließlich Proteine oder Peptide sind, nach Anspruch 3 und 4, binden und somit das Antigen nach Anspruch 3, 4 oder 5 immunologisch imitieren.

d. aus synthetischen Peptid-Genbibliotheken mittels Phagen-Display-Technik oder Ribosomen-Display-Technik mit Hille von Substanzen, beispielsweise Lektine, Rezeptoren, Peptide, die das Zielantigen spezifisch erkennen, lineure oder zirkulare Peptide, die das Zielantigen nach Anspruch 3, 4 oder 5 immunologisch imitieren.

herstellt bzw. selektionieri und eine den Antikörpern oder Peptiden nach a-d oder geeigneten Teilpeptiden oder abgeleiteten Peptiden, beispielsweise durch Zirkularisierung. Mutationen, in Form inverser oder retroinverser Peptide, oder repetitiven Konstrukten entsprechende DNA entsprechend des Anspruches 3 nach an sich bekannten Verfahren erzeugt.

16. Verlahren nach Anspruch 14 oder 15. dadurch gekennzeichnet, daß man Vakzinen nach einem der Ansprüche 1 bis 5 herstellt.

17. Verfahren nach einem der Ansprüche 14 oder 16. dadurch gekennzeichnet, daß man eine Vakzine gegen das immundominante Epitop (PDTR) des MUC1 herstellt, dessen für die Immunogenität wichtige Konformation beispielsweise durch die Glykosylierung des Thr im Epitop PDTR herausgebildet wird.

18. Verfahren nach einem der Ansprüche 15 oder 16. dadurch gekennzeichnet, daß man eine Vakzine gegen die tumorassoziierten Glykostrukturen Core-1 Struktur (GalNAcβ1-3-GalNAcα1). Tn oder Sialyl-Tn herstellt.

19. Humane antiidiotypische Antikörperfragmente gegen das MUC1-Konformationsepitop mit den Sequenzen Nr. 1 bis 31, sowie davon abgeleitete Proteinsequenzen und -teilsequenzen, die die gleichen Eigenschaften aufweisen. 20. DNA Sequenzen, die die Fragmente und davon abgeleitete Proteine bzw. Teilsequenzen mit den gleichen Eigenschaften gemäß Anspruch 19 kodieren.

21. Aminosäurensequenzen von Mimikry-Peptiden gegen das MUC1-Konformationsepitop mit den Sequenzen Nr. 32 bis 47, sowie davon abgeleitete Peptidsequenzen und -teilsequenzen, die die gleichen Eigenschaften aufweisen.

22. DNA Sequenzen, die die Aminosäurensequenzen und davon abgeleitete Peptide bzw. Teilsequenzen mit den gleichen Eigenschaften gemäß Anspruch 21 kodieren.

gleichen Eigenschaften gemäß Anspruch 21 kodieren.

23. Antiidiotypische Antikörperfragmente gegen das TF-Antigen mit den Sequenzen Nr. 48 bis 71, sowie davon abgeleitete Proteinsequenzen und -teilsequenzen, die die gleichen Eigenschaften aufweisen.

24. DNA Sequenzen, die die Fragmente und davon abgeleitete Proteine bzw. Teilsequenzen mit den gleichen Eigenschaften gemäß Anspruch 23 kodieren.

25. Aminosäurensequenzen von Mimikry-Pepuden gegen das TF-Kohlenhydratepitop mit den Sequenzen Nr. 71 his 96, sowie davon abgeleitete Peptidsequenzen und -teilsequenzen, die die gleichen Eigenschaften aufweisen.

26. DNA Sequenzen, die die Aminosäurensequenzen und davon abgeleitete Peptide bzw. Teilsequenzen mit den gleichen Eigenschaften gemäß Anspruch 25 kodieren.

Hierzu 4 Seite(n) Zeichnungen

65

- Leerseite -

DE 100 27 695 A1 C 07 K 16/00 19. April 2001

Abb. 1a: Bindung des mAk A76-A/C7 an synthetische MUC1-Peptide verschiedener Länge

DE 100 27 695 A1 C 07 K 16/00 19. April 2001

Abb. 1b: Bindung des mAk A76-A/C7 an das synthetische MUC1-Peptid #585 (30 Aminosäuren)

C-Glykosylierung mit GalNAc am T im PDTRP-Motiv

Abb.1c: Inhibition der A76-A/C7 Bindung an das MUC1-Glykopeptid durch antiidiotypische scFv-Phagen

DE 100 27 695 A1 C 07 K 16/00 19. April 2001

Abb.2 Inhibition der A78-G/A7 Bindung an Asialoglykophorin durch antiidiotypische scFv-Phagen

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.