BACK PROPAGATION EXPLAINED

Motivation

- The general form of back propagation is difficult to understand because of the notation
- We need to consider the following indices: Layer index, input index, output index, weights index, and iteration index
- $\hfill\Box$ Therefore, a notation like $w_{i,j}^L(k+1)$ might be used in the literature
- To avoid unnecessary confusion, we intend to make the notation simple and easy to follow

Forward computation

□ The following is a simple example

$$\Box z_1 = x_1 w_1 + x_2 w_2$$

$$\square y_1 = \frac{1}{1 + \exp(-z_1)}$$

Forward computation

Simplify the drawings

■ We use mean-square error as an example

$$\square \ \varepsilon = \varepsilon_1 + \varepsilon_2 = \frac{1}{2}((y_1 - d_1)^2 + (y_2 - d_2)^2)$$

- We add $\frac{1}{2}$ to remove the constant in derivatives
- □ Want to minimize \mathcal{E} with respect to weights, we do gradient search $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k \eta \nabla f(\mathbf{x}_k)$
- \square In the present case, $f(\cdot) = \varepsilon(\cdot)$ and \mathbf{x}_k is \mathbf{w}_k

- \square To simplify the discussion, consider only updating w_1
- □ Therefore, $w_{1,(k+1)} \leftarrow w_{1,(k)} \eta \frac{\partial}{\partial w_1} \varepsilon$
- \square We know $\frac{\partial}{\partial w_1} \varepsilon = \frac{\partial}{\partial w_1} \varepsilon_1$ because ε_2 is not related to w_1

Recall that we have

$$\varepsilon_1 = \frac{1}{2} (y_1 - d_1)^2$$

where d_1 is constant (desired output)

$$y_1 = \frac{1}{1 + \exp(-z_1)}$$
$$z_1 = x_1 w_1 + x_2 w_2$$

 \Box By chain rule, we have $\frac{\partial \varepsilon_1}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$ where

$$\frac{\partial \varepsilon_1}{\partial y_1} = (y_1 - d_1)$$

$$\frac{\partial y_1}{\partial z_1} = y_1 (1 - y_1)$$

$$\frac{\partial z_1}{\partial w_1} = x_1$$

□ Finally, we obtain

$$\frac{\partial \varepsilon_1}{\partial w_1} = (y_1 - d_1)y_1(1 - y_1)x_1$$

- \square For the k-th iteration, we should have all values of y_1 , x_1 , and d_1 at hands because y_1 is from forward computation and x_1 and d_1 are the input (instance) and desired output
- We can derived the update rule for other weights by the same method

■ We now extend the concept to multi-layer networks

What do we have now

$$q_{1} = x_{1}w_{1} + x_{2}w_{2}$$

$$h_{1} = \frac{1}{1 + \exp(-q_{1})}$$

$$z_{1} = h_{1}w_{5} + h_{2}w_{6}$$

$$y_{1} = \frac{1}{1 + \exp(-z_{1})}$$

$$\varepsilon_{1} = \frac{1}{2}(y_{1} - d_{1})^{2}$$

□ From the single-layer results, we know

$$w_{5,(k+1)} \leftarrow w_{5,(k)} - \eta \frac{\partial \varepsilon}{\partial w_5}$$

where
$$\frac{\partial \varepsilon}{\partial w_5} = \frac{\partial \varepsilon_1}{\partial w_5} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial w_5}$$

= $(y_1 - d_1)y_1(1 - y_1)h_1$

 Other weights in the second layer can be obtained by using the same approach

- □ How about weights in the first (hidden) layer
- □ Use w_1 as an example: $\frac{\partial \varepsilon}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial w_1} + \frac{\partial \varepsilon_2}{\partial w_1}$
- We know (again by chain rule)

$$\frac{\partial \varepsilon_1}{\partial w_1} = \frac{\partial \varepsilon_1}{\partial y_1} \frac{\partial y_1}{\partial z_1} \frac{\partial z_1}{\partial h_1} \frac{\partial h_1}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

and

$$\frac{\partial \varepsilon_2}{\partial w_1} = \frac{\partial \varepsilon_2}{\partial y_2} \frac{\partial y_2}{\partial z_2} \frac{\partial z_2}{\partial h_1} \frac{\partial h_1}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

- Note that we can reuse partial results in weights updating in back propagation
- Observe the following equations

$$\frac{\partial \varepsilon_{1}}{\partial w_{5}} = \frac{\partial \varepsilon_{1}}{\partial y_{1}} \frac{\partial y_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{5}}$$

$$\frac{\partial \varepsilon_{1}}{\partial w_{1}} = \frac{\partial \varepsilon_{1}}{\partial y_{1}} \frac{\partial y_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial h_{1}} \frac{\partial h_{1}}{\partial q_{1}} \frac{\partial q_{1}}{\partial w_{1}}$$

- With the understanding of our example, you should be able to appreciate the "full" comprehensive BP equations given in the literature
- Notice that with more and more layers, the delta weight contains more and more terms, and thus, gets smaller and smaller
- That is one problem when training deep neural networks (i.e., networks with many layers)