http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2013/bil682/tomgauld.jpg

DS501: Machine learning, Part 2

Prof. Randy Paffenroth rcpaffenroth@wpi.edu

Worcester Polytechnic Institute

Announcements

Midterms are being graded as we speak...

Announcements

 Case Study 3 is ready and lets have a conversation...

Course plan

- Original
 - Case study 3 out 353
 - Case study 3 due 4/6
 - Case study 4 out 4/13
 - Case study 4 due 4/27
 - Final exam 4/27

- · Possible
 - Case study 3 out 3/16
 - Cass study 3 due 3/30
 - Case study 4 out 4/6
 - Case study 4 due 4/20
 - Final exam 4/27

Learning **objectives** for this machine learning class.

- Supervised Regression
 - Linear Regression
 - High dimensional and non-linear
 - Model selection
 - Ridge Regression
 - Lasso Regression

- Advanced techniques and unsupervised learning.
 - Trees
 - Ensemble learning
 - K-means
 - Manifold learning
- Learn some Python packages, including:
 - scikit-learn
 - mayavi

Review!

The kinds of machine learning

Iris data set

Features:

sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

"Iris virginica" by Frank Mayfield - originally posted to Flickr as Iris virginica shrevei BLUE FLAG. Licensed under Creative Commons Attribution-Share Alike 2.0 via Wikimedia Commons -

http://commons.wikimedia.org/ wiki/File:Iris_virginica.jpg#medi aviewer/File:Iris_virginica.jpg

Catagories:

setosa versicolor virginica

"Kosaciec szczecinkowaty Iris setosa". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Kosaciec_szczeci nkowaty_lris_setosa.jpg#mediaviewer/File:Kosaciec_szcz ecinkowaty_lris_setosa.jpg

"Iris versicolor 3". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Iris_ver sicolor_3.jpg#mediaviewer/File:Iris_versicolor_ 3.jpg

Iris data set $f_{,(x,y,z,w)}$ $f_{,(x,y,z,w)}$

What is PCA?

- Principle Component Analysis
 - Commonly used tool for visualization and data preprocessing.

What is Linear Support Vector Machine (SVM)?

- Maximum margin classifier
 - Computes a linear "decision boundary" that splits the data into two regions.
 - Allows one to predict a classification of a point based upon which side of the decision boundary it lay on.

SVM

 $\label{linear_hyperplane_with_margin.png} $$ \t = \frac{\mbox{\commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png} {\mbox{\commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png} $$ \t = \frac{\mbox{\commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png} {\mbox{\commons.wikimedia.org/wiki/File:Sv$

SVM

But wait! Training vs. testing!

Testins data

Computing errors

Train data

Lomputing your model

What is K-NN?

- K-nearest neighbors
- Another common classification algorithm
 - Perhaps the most common

K-NN

New Material!

scikit-learn

Linear Regression flow chart

Relationship between Linear Regression and PCA...

Multiple-linear regression

Los mi lease
$$X$$
 white X ergine site $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k$

$$y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_1 x_{k,i}$$
 $\hat{y}_0 = \beta_0 + \beta_1 x_{1,0} + \dots + \beta_1 x_{k,0}$

"Non-linear" regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

See it in Python

Too much of a good thing...

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1 + \beta_3 X_1 X_2$$

$$+ \beta_4 \chi^2_1 \chi^2_2 + \beta_5 \chi^3_1 \chi^7_2 + \beta_6 (\omega_1(\chi_1) e^{\chi_2})$$

See it in Python

Cross Validation

Validation set

- K-fold
- Leave-one-out cross validation (LOOCV)

4- Fold (1055 val, Nation Toir Toir train Tost +10,- +10,- +15+ +10,~ +10,~ +94 -110,~ +1a,~ Te9+ + + tain + tain + tain

Feature selection

- Can someone describe:
 - Best-subset selection
 - Forward stepwise selection
 - Backward stepwise selection
- Recursive Feature Elimination (RFE) is what we will use today: http://axon.cs.byu.edu/Dan/778/papers/Feature%20Selection/guyon
 *.pdf
 - It would take us too far astray to talk about the details of this algorithm, but it is a close cousin of backward selection.
 - Steps
 - 1. Train the classifier.
 - 2. Compute the ranking criterion for all features.
 - 3. Remove the feature with smallest ranking criterion.

See it in Python

Ridge Regression

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1)^2 + \lambda(\beta_0^2 + \beta_1^2) = RSS + \lambda(\beta_0^2 + \beta_1^2)$$

See it in Python

Lasso Regression

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1)^2 + \lambda(|\beta_0| + |\beta_1|) = RSS + \lambda(|\beta_0| + |\beta_1|)$$

$$\min_{\beta} \left| \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1)^2 \right| \text{ s.t.} |\beta_0| + |\beta_1| \le s$$

See it in Python

Let's move on...

scikit-learn

Decision tree

- Quite commonly used in data mining.
- Each node in the tree splits the data into (classically) two groups.
 - To make things easy (and fast) you classically perform each split on a single variable.
- Each leaf node then represents a value (or perhaps range of values) for the response based upon the input variables.

Titanic data

Probability of survival Percentage in that leaf

"CART tree titanic survivors" by Stephen Milborrow - Own work. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png#mediaviewer/File:CART_tree_titanic_survivors.png

Decision tree: Making the splits

$$\hat{p}_{mk} = Pr(Y = k|X \text{ is in region } k)$$

$$E = \max_{k} \hat{p}_{mk}$$

$$\text{fight} \gamma' \text{of } \gamma$$

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$\text{Link}$$

Decision Trees

1) which susser 2) which predictor 3) wherein

Regression trees

Ensemble Learning: Random Forest

 As you can tell by the name, this idea revolves around having many trees.

"Kellerwald 004" by Willow - Own work. Licensed under Creative Commons Attribution-Share Alike 2.5 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Kellerwald_004.jp g#mediaviewer/File:Kellerwald_004.jpg

Tree bagging: Bootstrap aggregation

- Bootstrapping is one of my favorite algorithms in statistical learning.
- An extremely powerful idea for doing statistical learning with limited data.
- Generate many random samples of your data, with replacement, and train a tree on each...

Random forests

- Add even more randomness by randomly selecting for each tree a subset of the features it is allowed to split on.
 - Reduces correlation between the trees!
 - Not all trees can pick the "obvious" best predictor to split on first.

g#mediaviewer/File:Kellerwald 004.jpg

K-Means

- Perhaps the single most used unsupervised classification algorithm.
- Given a number of classes k, divide the data into groups so that the distance within a group is "small" compared to the distances between groups.

K-Means

arg
$$\min_{S} \sum_{i=1}^{k} \sum_{x \in S_i} \|x - \mu_i\|^2$$

$$\lim_{k \to \infty} \sum_{i=1}^{k} \sum_{x \in S_i} \|x - \mu_i\|^2$$

K-Means

- Lloyd's iterative refinement algorithm
 - Assign each measurement to the cluster whose mean gives the least sum of distance squared (i.e. the nearest)
 - Calculate new means to be the centroids (i.e. average) of the observations in each cluster.

Manifold learning

- As the last item in our foray into machine learning we will dip our toes into manifold learning.
 - There are many algorithms, see Wikipedia.

Local Tangent Space Alignment

- A very rough outline of the algorithm
 - Compute the collection of points nearest each point.
 - Compute the tangent space at each point (e.g. using PCA!)
 - Solve an optimization problem to align the tangent spaces.

