بسمه تعالى

هوش مصنوعی مسائل ارضاء محدودیتها - ۱

نيمسال اول ۱۴۰۳-۱۴۰۳

د کتر مازیار پالهنگ آزمایشگاه هوش مصنوعی دانشکدهٔ مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

مقدمه

- دریک م.ا.م. حالات بوسیلهٔ مقادیر مجموعه ای از متغیرها تعریف می شوند و آزمون هدف مجموعه ای از محدودیتهائی است که متغیرها باید ارضا کنند.
 - مثال:
 - ۸وزیر
- D_1,D_2,D_3,\dots متغیرها X_1,X_2,X_3,\dots که هر یک از دامنه ای X_1,X_2,X_3,\dots انتخاب می شوند و مجموعه ای از محدودیتها C_1,C_2,C_3,\dots را باید ارضا کنند.
 - مجموعهٔ X: متغیرها
 - مجموعهٔ D: دامنه ها
 - مجموعهٔ C: محدودیتها
 - <scope،rel> بصورت C_i

مازيار پالهنگ

هوش مصنوعي

2

- یک حالت مسئله بوسیلهٔ **انتساب** مقادیر به همه یا برخی از متغیرها تعریف می شود.
 - یک انتساب که هیچ یک از محدودیتها را نمی شکند یک **انتساب سازگار** یا قانونی نامیده می شود.
 - انتساب کامل وقتی که همهٔ متغیرها مقدار گرفته اند.
 - **حل** یک انتساب کامل و ساز گار است.
 - انتساب جزئی هنگامی فقط برخی از متغیرها مقدار گرفته اند.

مثال - رنگ آمیزی نقشه

■ متغیرها: {WA،NT،SA،QL،NSW،V،T} متغیرها: و متغیرها: 4

مازيار پالهنگ

- دامنه ها: {قرمز، سبز، آبي}
- محدودیتها: هیچ دو ایالت مجاوری هم رنگ نباشند.

$$C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V\}.$$

- $\langle (WA,NT),WA \neq NT \rangle$ مثلاً $WA \neq NT$ مثلاً مثلاً
 - ا يا
- (WA،NT) در مجموعهٔ {(قرمز، سبز)،(سبز، قرمز)،}

یک حل

- مى توان يك م.ا.م. را بوسيله يك **گراف محدوديت** به تصوير كشيد.
 - رئوس: متغیرها، یالها: محدودیتها

مازيار پالهنگ

- یک م.ا.م. را می توان بصورت یک مسئلهٔ جستجوی عمومی با تدوین افزایشی بیان نمود:
 - حالت اوليه: انتساب تهي
- تابع تالی: انتساب مقداری به یک متغیر بی مقدار به شرطی که با متغیرهای مقدار گرفته برخورد نداشته باشد.
 - **ا** آزمون هدف: انتساب فعلى كامل و سازگار باشد.
 - هزینهٔ مسیر: ثابت (مثلاً ۱) برای هر مرحله

- هر حل باید یک انتساب کامل باشد بنابر این در عمق n ظاهر خواهد شد اگر n متغیر وجود داشته باشد.
- \blacksquare چون عمق به n محدود است، بصورت امن می توان جستجوی عمق نخست را استفاده کرد.
- چون مسیر حل مهم نیست تدوین حالت کامل رامی توان استفاده کرد.
 - هر حالت یک انتساب کامل که سازگار هست یا نیست.
 - جستجوهای محلی برای این روش مناسب است.

e هو ش مصنو عي مازيار يالهنگ

تنوع متغيرها

- متغیرها گسسته
- دامنهٔ محدود (رنگ آمیزی نقشه هشت وزیر)
- $O(d^n)$ عداد انتسابهای کامل $O(d^n)$ تعداد انتسابهای کامل ا
 - حالت خاص: م.ا.م. بولي
 - دامنه نامحدود (زمانبندی کارها)
 - مثلاً مجموعهٔ اعداد صحیح
 - متغیرها زمان شروع/پایان هر کار
- نمی توان همهٔ ترکیبات مجاز را فهرست کرد. به یک زبان محدودیت نیاز است. بطور $StartJob_1 + 5 \leq StartJob_3$
 - متغیرها پیوسته
 - زمانهای شروع/پایان رصد کردن توسط تلسکوپ هابل

تنوع محدوديتها

- یکتائی مثلاً مردم یک استان از رنگ خاصی بدشان می آید: NT!=green
- ا با یک پیش پردازش می توان این مقدار را از دامنهٔ متغیر متناظر حذف نمود.
 - دو تائی بین دو متغیر NT =! WA!
 - بیشتر همانند معمای ریاضی
 - محدودیتی شامل تعدادی دلخواه متغیر، **محدودیت جهانی** نامیده می شود.

مازيار يالهنگ

مثال محدودیت چندتائی – معماری ریاضی

- $\{F,T,U,W,R,O,C_1,C_2,C_3\}$ متغیرها:
 - دامنه ها: {٠و ١ و ٢ و ٣ و ٩ و ٥ و ٩ و ٧ و ٨ و ٩ }
- محدو دیتها: Alldiff(F,T,U,W,R,O)

$$O + O = R + 10 \cdot C_1$$

 $C_1 + W + W = U + 10 \cdot C_2$
 $C_2 + T + T = O + 10 \cdot C_3$
 $C_3 = F$,

مازيار پالهنگ

هوش مصنوعي

12

- ابرگراف محدودیت برای محدودیتهای چندتائی (همانند شکل قبل)
- محدودیت مطلق: شکستن آن یک حل بالقوه را از بین می برد.
 - محدودیت ترجیحی: بهتر است اینگونه باشد
 - مثلاً در زمان بندی
 - محدودیتهای ترجیحی را معمولاً می توان با افزودن هزینه به انتساب متغیرها حل نمود.

جستجوى عقبگرد

- فرض کنید از عرض نخست استفاده کنیم.
- ضریب انشعاب در عمق ۱ برابر nd است.
- است. (n-1)d برابر (n-1)d است.
- در انتها دارای $n!d^n$ برگ خواهیم بود در حالیکه کلاً d^n انتساب کامل داریم.
- انتساب متغیرها جابجائی است یعنی {WA=green، NT=red} با NT=red} با NT=red (WA=green (WA=green)
 - بنابر این در هر مرحله فقط یک متغیر را مقدار می دهیم.
 - حال dn برگ خواهیم داشت.

مازيار پالهنگ

- جستجوی عمق نخستی که هر بار فقط یک متغیر را مقدار می دهد، جستجوی عقبگرد نامیده می شود.
 - جستجوی بنیادی م.۱.م. بصورت ناآگاهانه
 - n=25 وزير تا n=25

جستجوى عقبگرد

function BACKTRACKING-SEARCH(csp) **returns** a solution or failure **return** BACKTRACK(csp, { })

function BACKTRACK(csp, assignment) returns a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)
 for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
 if value is consistent with assignment then
 add {var = value} to assignment

 $result \leftarrow BACKTRACK(csp, assignment)$ if $result \neq failure$ then return result

remove {var = value} from assignment return failure

مازيار پالهنگ

هوش مصنوعي

16

بهبود کار آئی جستجوی عقبگرد

- چه متغیری باید بعداً انتساب داده شود؟
- به چه ترتیبی مقادیر آن باید آزموده شوند؟
- آیا می توانیم شکستهای اجتناب ناپذیر را زودتر متوجه شویم؟

متغیر محدود شدهٔ بیشینه most constrained variable

- مكاشفهٔ كمترين مقادير باقيمانده minimum remaining) (value: يك شكست اول
 - اگر متغیری هیچ مقادیر باقیمانده ای نداشته باشد زودتر انتخاب شده، و زودتر شکست می خوریم.

متغیر محدود کن بیشینه most constraining variable

- كدام متغير **ابتدا** انتخاب شود؟
- متغیری را ابتدا انتخاب کن که کمترین مقدار را برای سایر متغیرها باقی می گذارد. (مکاشفهٔ درجه)
 - ضریب انشعاب را برای گزینه های آتی می کاهد

قابل استفاده هنگامی که چند متغیر محدود شدهٔ بیشین
 قابل انتخاب هستند (و می خواهیم بین آنها انتخاب کنیم).

23

مقدار محدود کن کمینه least constraining value

- هنگامی که متغیر انتخاب شد، ترتیب انتخاب مقادیر متغیر مهم است.
- متغیری که کمترین مقادیر را از متغیرهای باقیمانده حذف می کند.

■ ترکیب مکاشفه های گفته شده ۱۰۰۰ وزیر را نیز امکان پذیر می سازد.

- دنبال کردن مقادیر متغیرهای باقیمانده انتساب نشده
- خاتمهٔ جستجو هنگامی که متغیری هیچ مقدار قانونی نداشته باشد.

انتشار محدوديت

- چک جلو اطلاعات را از متغیرهای انتساب شده به نشده انتقال می دهد ولی اجازهٔ تشخیص همهٔ ناساز گاریهای زود هنگام را نمی دهد.

امی توانند هر دو آبی باشند. SA و SA نمی توانند هر دو SA و SA

مازيار يالهنگ

سازگاری کمان

- **حمان منظور یالی است در گراف محدودیت**
- حمان $X \longrightarrow X$ سازگار گفته می شود اگر برای هر مقدار X در دامنهٔ X مقدار Y در دامنهٔ Y وجود داشته باشد که با آن سازگار باشد.
 - مثال کمان سازگار

سازگاری کمان

- کمان منظور یالی است در گراف محدودیت
- حمان $Y \longrightarrow X$ سازگار گفته می شود اگر برای هر مقدار X در دامنهٔ X مقدار Y در دامنهٔ Y وجود داشته باشد که با آن سازگار باشد.
 - مثال کمان ناسازگار

- دقت نمائید که پاورپوینت ابزاری جهت کمک به یک ارائهٔ شفاهی می باشد و به هیچ وجه یک جزوهٔ درسی نیست و شما را از خواندن مراجع درس بی نیاز نمی کند.
 - لذا حتماً مراجع اصلى درس را مطالعه نمائيد.
 - در تهیهٔ اسلایدها از سایت کتاب استفاده شده است.
 - حضور فعال در کلاس دارای امتیاز است.