Projeto de Computação para Engenharia

Data: 29/06/2024

Professor: Wesin Ribeiro Alves

Alunos:

Cecília Ferreira Nunes - 241024553

Ingrid de Sousa Vieira - 241008531

Jamilly Ferreira Rodrigues - 241024571

Kamily Silva Andrade Crispim - 241008522

OBJETIVO

O projeto visa auxiliar procedimentos de cálculo que envolvem os âmbitos de física experimental. Conjuntamente, envolver e relacionar os tópicos já estudados em computação de forma prática e funcional.

INTRODUÇÃO

A calculadora de propagação de incertezas realiza as operações básicas de soma, subtração, divisão e multiplicação entre duas ou mais medições e suas respectivas incertezas por meio das equações utilizadas na física experimental.

Conjuntamente, ela também realiza operação de potenciação e multiplicação de uma medida e incerteza por um valor escalar. Além disso, aborda conceitos base na física como o cálculo de erro aleatório e discrepância de medidas.

MATÉRIA APLICADA

- Bibliotecas utilizadas

lostream: manipulação de fluxo de dados padrão do sistema:

Vector: modelo de classe para contêineres de seguência.

Cmath: suporte a um grande número de funções matemáticas úteis

- Tópicos abordados

Os fundamentos incluem as bases da programação, como variáveis, operadores, e estrutura básica do código. Esses elementos são essenciais para manipular os valores e as operações matemáticas necessárias para calcular a propagação de incertezas.

Variáveis: Armazenam os valores das medições e suas incertezas.

Operadores: Executam as operações matemáticas necessárias (soma, subtração,

multiplicação, divisão, etc.).

Estrutura básica: Define a organização geral do programa.

Condicional

As instruções condicionais são utilizadas para tomar decisões no programa, permitindo a execução de diferentes blocos de código com base em determinadas condições.

Uso na calculadora: Essencial para o programa na seleção da operação escolhida pelo usuário na calculadora.

Função

Funções permitem modularizar o código, facilitando a reutilização e a manutenção. Cada operação de propagação de incerteza pode ser encapsulada em uma função separada.

Uso na calculadora: operação (soma, subtração, multiplicação, divisão) e para propagação de incerteza. para organizar em blocos as formulas necessárias para cada calculo

Loop

Loops são utilizados para iterar sobre um conjunto de dados ou para repetir uma operação até que uma condição seja satisfeita.

Uso na calculadora: para armazenar os resultados, para imprimir posteriormente e para ajudar na funcionalidade do menu.

Registros

Registros, ou estruturas de dados complexas, como listas, tuplas ou classes, são usadas para armazenar e organizar dados relacionados.

Uso na calculadora: utilizadas para agrupar diferentes tipos de dados relacionados nas operações.

PROCEDIMENTOS

O desenvolvimento do programa foi aferido no software DevC++. O planejamento envolveu primeiramente a definição das operações que ela iria realizar (soma, subtração, multiplicação, divisão, potenciação e multiplicação de uma medida e incerteza por um valor escalar e erro aleatório).

Seguidamente, o desenvolvimento foi pensado na forma a qual haveria a entrada de dados do usuário (a opção de inserir diversos valores e operações) e saída de dados após o retorno dos respectivos cálculos. O menu, que visa facilitar visualmente a seleção da operação que o usuário necessita, também foi uma etapa importante do desenvolvimento.

A lógica do código em larga escala foi a prescrição das operações separadamente com suas devidas variáveis dentro de um void. As componentes do código envolvem a entrada e saída de dados e o cálculo de incertezas.

Os testes para cada operação foram feitos no software DevC++. Além dos testes de funcionalidade do programa, aferimos a precisão da calculadora com dados reais e cálculo manual, conferindo os resultados.

CONCLUSÃO

Os experimentos físicos frequentemente geram grandes volumes de dados. A programação permite automatizar o armazenamento e a análise desses dados de forma eficiente e precisa.

Ela também pode ser usada para desenvolver cálculos com alta precisão e repetibilidade, minimizando erros humanos e melhorando a confiabilidade dos experimentos. Assim,

percebe-se a programação como ferramenta de ampla aplicação e utilidades em diversos meios.

BIBLIOGRAFIA

ALVES, Wesin. CPE. 2024. Disponível em: https://github.com/wesinalves/CPE. Acesso em: 28 jun. 2024.