g) Develop a simple linear regression model using momentum optimizer.

		-
sample (i)	Xi	Yi
1	0.2	3.4
2	0.9	3.8
3	0.6	4.2
4	0.8	4.6

Solt [x, step1: [x, Y], m=1, c=-1,
$$n=0.1$$
, epochs=2, $Y=0.9$, $V_m=V_c=0$, $ns=2$.

step 2: it = 1

step 3: sample = 1

step 4:
$$g_{m} = \frac{\partial E}{\partial m} = -(y_{1} - mx_{1} - c)x_{1}$$
 $= -(3.4 - (1)(0.2) + 1)(0.2) = -0.84$
 $g_{c} = \frac{\partial E}{\partial c} = -(3.4 - 0.2 + 1) = -4.2$

Step 5: $V_{m} = YV_{m} - 2g_{m}$
 $= (0.9)(0) - (-0.1)(-0.84)$

$$V_c = YV_c - \eta g_c$$

= $(0.9)(0) - (-0.1)(-4.2)$
= -0.42

= 0-0.084 = -0.084

step6:
$$m = m + V_m = 1 + (-0.84) = -0.916$$
 $c = c + V_c = -1 - 0.42 = -1.42$

step7: sample = sample +1 = $1 + 1 = 2$

step8: if (sample> hs)

go to step9

clse

go to step4

step4: $g_m = \frac{36}{2m} = -(3.8 - (0.916)(0.4) + 1.42)(0.4)$
 $= -1.941$
 $g_c = \frac{36}{3c} = -4.853$.

Step5: $V_m = 1 V_m - 1 g_m$
 $= (0.9)(-0.084) - (-0.1 \times -1.941)$
 $= -0.2074$
 $V_c = 1 V_c - 1 g_c$
 $= (0.9)(-0.42) - (-0.1 \times -1.9453)$
 $= -0.863$

Step6: $m = m + V_m = 0.916 + (-0.3697) = 0.6463$
 $c = c + V_c = -1.42 - 0.863 = -2.283$

Step7: $sample = sample +1 = 2+1 = 3$

step8: if (sample> ns): goto step9

else

goto step4.

step9: if = itr +1

 $= 1 + 1 = 2$.

step : if (it > epochs)

goto step 4

else

goto step 3

stap 3: sample = 1

step 4:
$$g_m = \frac{2E}{\partial m} = -(3.4 - (6.646)(0.9) + 3.383)(0.2)$$
 $= -1.110.$
 $g_c = \frac{2E}{\partial c} = -(3.4 - (6.646)(0.2) + 3.383)$
 $= -5.553$

step 5: $V_m = V_m - V_m$
 $= (0.1)(-0.2(97) - (-0.1 \times -1.110)$
 $= -0.353$
 $V_c = V_C - V_C$
 $= (0.1)(-0.863) - (-0.1 \times -5.53)$
 $= -1.332.$

step 6: $m = m + V_m = 0.6463 + (0.363) = 0.343$
 $C = C + V_C = -9.283 - 1.332 = -3615$

step 7: $Sample = Sample + 1 = 1 + 1 = 2$

step 8: if (sample > ns) goto step 9

else: goto step 4

step 5: $V_m = (0.8 - (0.243)(0.4) + 3.615)(0.4) = -2.419$
 $V_c = (0.4)(-0.353) - (-0.1 \times -2.419) = -0.6076$
 $V_c = (0.4)(-0.353) - (-0.1 \times -2.419) = -0.6076$
 $V_c = (0.4)(-1.332) - (-0.1 \times -2.419) = -0.6076$