1 Publication number:

**0 061 673** B1

(12)

# **EUROPEAN PATENT SPECIFICATION**

(45) Date of publication of patent specification: 24.10.84

(2) Application number: 82102291.0

(2) Date of filing: 19.03.82

(i) Int. Cl.3: C 07 D 217/02,

C 07 D 401/02,

C 07 D 401/12,

C 07 D 405/02,

C 07 D 405/14,

C 07 D 413/02, C 07 D 413/12 // A61K31/47, A61K31/495,

A61K31/535

- (i) Isoquinolinesulfonyl derivatives and process for the preparation thereof.
- (3) Priority: 20.03.81 JP 39550/81 01.06.81 JP 82559/81 12.01.82 JP 2229/82 14.01.82 JP 3291/82
- 4 Date of publication of application: 06.10.82 Builetin 82/40
- (§) Publication of the grant of the patent: 24.10.84 Bulletin 84/43
- (A) Designated Contracting States: BE CH DE FR GB IT LI LU NL SE
- References cited: GB-A-2 002 365 US-A-4 096 263

H. KRAUCH "Reaktionen der organischen Chemie", 5th edition, 1976 HÜTHIG VERLAG GMBH, Heidelberg page 132 "Amin-Sulfonierung"

- Proprietor: Asahi Kasei Kogyo Kabushiki Kaisha
   2-6, Dojimahama 1-chome Kita-ku
   Control 10 2016 520 (18)
- Osaka-shi Osaka 530 (JP)
  Proprietor: Hiroyoshi, Hidaka
  799-25, Kannonji-cho
  Tsu-shi Mie-ken (JP)
- (7) Inventor: Hidaka, Hiroyoshl 799-25, Kannonji-cho Tsu-shi Mie-ken (JP) Inventor: Sone, Takanori 131,2-4-1, Midorigaoka Nobeoka-shi Miyazaki-ken (JP) Inventor: Sasaki, Yasuharu 112, 2-4-1, Midorigaoka Nobeoka-shi Miyazaki-ken (JP) Inventor: Sugihara, Taisuke 432, 2-4-1, Midorigaoka Nobeoka-shi Miyazaki-ken (JP)
- (4) Representative: Boeters, Hans Dietrich, Dr. et al Boeters, Bauer & Partner Thomas-Wimmer-Ring 14 D-8000 München 22 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

#### Description

10

25

35

40

45

65

## BACKGROUND OF THE INVENTION

# Field of the Invention

This invention relates to novel isoquinolinesulfonyl derivatives which possess a relaxatory action for vascular smooth muscle and are useful as a vasodilator and a hypotensor, and a process for the preparation thereof. US-PS 4,096,263 refers to 1,2,3,4-Tetrahydroisoquinolines of the formula

wherein R is a heterocyclic group which may have appropriate substituent(s) and pharmaceutically acceptable salts thereof together with a method for their preparation. These 1,2,3,4-Tetrahydroisoquinolines have relaxing activity on smooth muscle.

#### 20 SUMMARY OF THE INVENTION

According to the present invention in one embodiment there is provided an isoquinoline derivative of Formula (I):

$$SO_{2}[NH(CH_{2})_{m} CH(CH_{2})_{n}]_{1}N$$

$$R_{3}$$
(I)

30 wherein

I is zero or one;

m and n each is zero or an integer of one to nine;

m+n is an integer of at least one;

 $R_1$  is a hydrogen atom, a  $C_{1-10}$  alkyl group or a phenyl group;  $R_2$  and  $R_3$  each is a hydrogen atom, a  $C_{1-10}$  alkyl group, a  $C_{8-6}$  cycloalkyl group, a phenyl group or a benzyl group; or

 $\rm R_2$  and  $\rm R_3$  may be  $\rm C_{1-8}$  alkylene groups and linked directly or through an oxygen atom to form a 5-to 7-membered heterocyclic ring with the adjacent nitrogen atom; or

the 
$$-N$$
 group is a  $-N$   $N-R_6$   $R_3$ 

group wherein  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-10}$  alkyl group, a phenyl group or a benzyl or phenethyl group and  $R_5$  is a hydrogen atom, a  $C_{1-10}$  alkyl group, a phenyl group, a benzyl or phenethyl group, a benzyl group, a cinnamyl group, a cinnamyl group, a furoyl group or a

group wherein  $R_7$  is a  $C_{1-10}$  alkyl group; and the pharmaceutically acceptable acid addition salt thereof. The present invention in another embodiment provides a process of preparing the above described isoquinolinesulfonyl derivative.

# DETAILED DESCRIPTION OF THE INVENTION

Exemplary  $R_1$  groups in Formula (I) include a hydr g n atom;  $C_{1-10}$  alkyl groups, preferably  $C_{1-8}$ 

alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-noctyl, n-nonyl and decyl; and phenyl groups. The  $R_2$  and  $R_3$  groups in Formula (I) may be the same or different and exemplary  $R_2$  and  $R_3$  groups include a hydrogen atom;  $C_{1-10}$  alkyl groups, preferably  $C_{1-8}$  alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isopoutyl, sec-butyl, tert-butyl, n-pentyl, in-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl;  $C_{5-6}$  cycloalkyl groups such as cyclopentyl and cyclohexyl; phenyl groups; and benzyl groups. Exemplary 5- to 7-membered heterocyclic rings formed by linking  $R_2$  and  $R_3$  directly or through an oxygen atom together with the adjacent nitrogen atom include 1-pyrrolidinyl, piperidino, homopiperidino and morpholino groups. Preferred

groups include amino, methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, isobutylamino, n-hexylamino, cyclohexylamino, dimethylamino, diethylamino, di-n-butylamino, N-methyl-N-cyclopentylamino, N-methyl-N-cyclohexylamino, N-methyl-N-phenylamino, N-methyl-N-benzylamino, N-ethyl-N-benzylamino, N-isopropyl-N-benzylamino, 1-pyrrolidinyl, piperidino, homopiperidino and morpholino groups. The

$$R_2$$
 group may also be a  $-N$   $N-R_6$   $R_3$ 

group. The  $R_2$  and  $R_3$  groups may be the same or different and exemplary  $R_4$  and  $R_5$  groups include a hydrogen atom;  $C_{1-10}$  alkyl groups, preferably  $C_{1-6}$  alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl;  $C_{5-6}$  cycloalkyl groups such as cyclopentyl and cyclohexyl; phenyl groups; and benzyl,  $\alpha$ -phenethyl and  $\beta$ -phenethyl groups. Exemplary  $R_6$  groups include a hydrogen atom;  $C_{1-10}$  alkyl groups, preferably  $C_{1-6}$  alkyl groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, n-heptyl, n-nonyl and n-decyl; phenyl groups benzyl,  $\alpha$ -phenethyl and  $\beta$ -phenethyl groups; a benzoyl group; a cinnamyl group; a cinnamoyl group; a furoyl group; a

45 group wherein  $R_7$  is a  $C_{1-8}$  alkyl group, preferably a  $C_{1-4}$  alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl, n-hexyl, n-heptyl and n-octyl groups. Preferred

groups include piperazino, 2-methylpiperazino, 2-ethylpiperazino, 3-ethylpiperazino, 3-isopropylpiperazino, 3-isobutylpiperazino, 2-phenylpiperazino, 3-phenylpiperazino, 3-benzylpiperazino, 2,3-dimethylpiperazino, 2,5-dimethylpiperazino, 2,5-dimethylpiperazino, 2-methyl-5-ethylpiperazino, 2-methyl-5-n-propylpiperazino, 2-methyl-5-isopropylpiperazino, 2-methyl-5-isobutylpiperazino, 2-methyl-5-phenylpiperazino, 2-methyl-5-benzylpiperazino, 2,5-diethylpiperazino, 2-ethyl-5-n-butylpiperazino, 4-methylpiperazino, 4-ethylpiperazino, 4-n-propylpiperazino, 4-isobutylpiperazino, 4-n-hexylpiperazino, 4-phenylpiperazino, 4-benzylpiperazino, 4-phenethylpiperazino, 4-benzoylpiperazino, 4-cinnamylpiperazino, 4-cinnamoylpiperazino, 4-furoylpiperazino, 4-(2-methoxy-2-phenethyl)piperazino, and 4-(2-ethoxy-2-phenethyl)piperazino, 3-methyl-piperazino, 3,3-dimethyl-

piperazino and 4-(2-isobutoxy-2-phenethyl)-piperazino groups. Especially preferred groups are groups R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub>, R<sub>5</sub>, R<sub>6</sub> and R<sub>7</sub> mentioned in the examples. Preferred embodiments are as follows:

A compound of Formula (XIII)

(XIII)

wherein

 $\rm R_2$  and  $\rm R_3$  each is a hydrogen atom, a  $\rm C_{1-8}$  alkyl group, a phenyl group or a benzyl group, and when one of  $\rm R_2$  and  $\rm R_3$  is a hydrogen atom, the other is not a hydrogen atom; or  $\rm R_2$  and  $\rm R_3$  are  $\rm C_{1-8}$  alkylene groups and linked directly or through an oxygen atom to form 5- to 7-membered heterocyclic ring together with the adjacent nitrogen flow; or the

$$R_2$$
 group is a  $-N$   $N-R_6$   $R_5$ 

25

20

10

group wherein  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group or a benzyl group and  $R_6$  is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group, a benzyl group, a phenethyl group, a benzoyl group, a cinnamyl group, a cinnamy

35

30

group wherein  $R_7$  is a  $C_{1-4}$  alkyl group; and pharmaceutically acceptable acid addition salts thereof, i.e., a compound of Formula (I) wherein I is zero.

- The compound of (a), wherein  $R_2$  is a hydrogen atom or a  $C_{1-6}$  alkyl group and  $R_3$  is a  $C_{1-6}$  group. The compound of (a), wherein the (b) 40
  - (c)

45

group is a 1-pyrrolidinyl group, a piperidino group or a morpholino group. (d) The compound of (a), wherein the

$$-N = \begin{array}{c} R_2 \\ \text{group is a } -N \\ R_3 \end{array}$$

55

group wherein  $R_6$  is a hydrogen atom and  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group or a benzyl group.

The compound of (d), wherein  $R_6$ ,  $R_4$  and  $R_5$  are hydrogen at ms. The compound of (d), wherein  $R_4$  is a hydrogen at m or a  $C_{1-6}$  alkyl group and  $R_5$  is a  $C_{1-6}$  alkyl group, a phenyl group or a benzyl group.

The compound of (a), wherein the

$$-N = R_2$$
 group is a  $-N = N_0$   $N-R_0$   $R_3$ 

group wherein  $R_4$  and  $R_5$  are hydrogen atoms and  $R_6$  is a  $C_{1-8}$  alkyl group, a phenyl group, a benzyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

20

group wherein  $R_7$  is a  $C_{1-4}$  alkyl group. (h) The compound of (g), wherein  $R_6$  is a  $C_{1-8}$  alkyl group. (i) The compound of (g), wherein  $R_6$  is a phenyl group, a benzyl group, a cinnamyl group, a cinnamyl group, a cinnamyl group or a furoyl group.

The compound of (g), wherein R<sub>6</sub> is a

group wherein R<sub>7</sub> is a C<sub>1-4</sub> alkyl group.

A compound of Formula (XIV):

SO NH(CH<sub>2</sub>)<sub>m</sub>CH(CH<sub>2</sub>)<sub>n</sub>N 
$$R_3$$
 (XIV)

wherein

35

45

50

55

5

10

m and n each is zero or an integer of one to nine;

m+n is an integer of one to nine;

R<sub>1</sub> is a hydrogen atom, a C<sub>1-6</sub> alkyl group or a phenyl group;

 $R_2$  and  $R_3$  each is a hydrogen atom, a  $C_{1-8}$  alkyl group, a  $C_{5-8}$  cycloalkyl group, a phenyl group or a benzyl group; or

R<sub>2</sub> and R<sub>3</sub> are C<sub>1-6</sub> alkylene groups and linked directly or through an oxygen atom to form a 5- or 7-membered heterocyclic ring together with the adjacent nitrogen atom; or the

$$R_2$$
 group is a  $-N$   $N-R_6$   $R_5$ 

group wherein  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group or a benzyl group and  $R_6$  is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group, a benzyl group, a phenethyl group, a benzoyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

```
group wherein R<sub>7</sub> is a C<sub>1-4</sub> alkyl group;
    and pharmaceutically acceptable acid addition salts thereof, i.e., a compound of Formula (I), wherein I is
          The compound of (k), wherein m and n each is zero or an integer of one to nine, m+n is an integer
    (1)
    of one to nine and R_1, R_2 and R_3 are hydrogen atoms.
(m) The compound of (k), wherein m and n each is zero or one, m+n is one, R_2 and R_3 are hydrogen
    atoms and R_1 is a C_{1-6} alkyl group or a phenyl group.

(n) The compound of (k), wherein m and n each is zero or an integer of one to two, m+n is one or
    two, R_1 is a hydrogen atom, R_2 is a hydrogen atom or a C_{1-4} alkyl group and R^3 is a C_{1-8} alkyl group, a
   C<sub>5-6</sub> cycloalkyl group, a phenyl group or a benzyl group.

(o) The compound of (k), wherein m and n each is zero or an integer of one to two, m+n is one or
    two, R, is a hydrogen atom, R2 is a hdyrogen atom or a C1-4 alkyl group and R3 is a C1-6 alkyl group, a
    group or a morpholino group.
          Exemplary isoquinolinesulfonyl derivatives of this invention include:
           N-(2-aminoethyl)-5-isoquinolinesulfonamide referred to as "Compound (1)";
           N-(3-amino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (2)";
           N-(4-amino-n-butyl)-5-isoquinolinesulfonamide referred to as "Compound (3)";
     31
           N-(6-amino-n-hexyl)-5-isoquinolinesulfonamide referred to as "Compound (4)"
      4)
           N-(10-amino-n-decyl)-5-isoquinolinesulfonamide referred to as "Compound (5)"
20
     6)
           N-(2-amino-1-methylethyl)-5-isoquinolinesulfonamide referred to as "Compound (6)";
           N-(1-aminomethyl-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (7)"; N-(1-aminomethyl-n-pentyl)-5-isoquinolinesulfonamide referred to as "Compound (8)";
      7)
      8)
           N-(2-amino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (9)";
     9)
           N-(2-amino-n-butyl)-5-isoquinolinesulfonamide referred to as "Compound (10)"
    10)
           N-(2-amino-3-methylbutyl)-5-isoquinolinesulfonamide referred to as "Compound (11)";
25
    11)
           N-(2-amino-1-phenylethyl)-5-isoquinolinesulfonamide referred to as "Compound (12)";
    12)
           N-(2-amino-2-phenylethyl)-5-isoquinolinesulfonamide referred to as "Compound (13)";
    13)
    14)
           N-(2-methylaminoethyl)-5-isoquinolinesulfonamide referred to as "Compound (14)"
    15)
           N-(2-ethylaminoethyl)-5-isoguinolinesulfonamide referred to as "Compound (15)"
           N-(2-isopropylaminoethyl)-5-isoquinolinesulfonamide referred to as "Compound (16)"
30.
    16)
           N-(3-dimethylamino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (17)";
    17)
           N-(3-diethylamino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (18)"
    18)
           N-(3-di-n-butylamino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (19)";
    19)
           N-(3-piperidino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (20)"
    20)
           N-(3-morpholino-n-propyl)-5-isoquinolinesulfonamide referred to as "Compound (21)";
35
    21)
           N-[3-(N-methyl-N-cyclohexylamino)-n-propyl]-5-isoquinolinesulfonamide referred to as
    22)
           "Compound (22)";
           N-[3-(N-methyl-N-phenylamino)-n-propyl]-5-isoquinolinesulfonamide referred to as "Compound
    23)
           (23)
           N-[3-(N-methyl-N-benzylamino)-n-propyl]-5-isoquinolinesulfonamide referred to as "Compound
    24)
40
    25)
           N-methyl-5-isoguinolinesulfonamide referred to as "Compound (25)":
           N-ethyl-5-isoquinolinesulfonamide referred to as "Compound (26)"
    26)
           N-n-Butyl-5-isoquinolinesulfonamide referred to as "Compound (27)"
    27)
           N-isobutyl-5-isoquinolinesulfonamide referred to as "Compound (28)"
45
    28)
           N,N-dimethyl-5-isoquinolinesulfonamide referred to as "Compound (29)";
    29)
           N,N-diethyl-5-isoquinolinesulfonamide referred to as "Compound (30)"
    30)
           N,N-di-n-butyl-5-isoquinolinesulfonamide referred to as "Compound (31)";
    31)
           1-(5-isoquinolinesulfonyl)piperidine referred to as "Compound (32)"
    32)
           4-(5-isoquinolinesulfonyl)pyrrolidine referred to as "Compound (33)"
50
    33)
           1-(5-isoquinolinesulfonyl)morpholine referred to as "Compound (34)" 1-(5-isoquinolinesulfonyl)piperazine referred to as "Compound (35)";
    34)
    35)
           1-(5-isoquinolinesulfonyl)-4-methylpiperazine referred to as "Compound (36)"; 1-(5-isoquinolinesulfonyl)-3-methylpiperazine referred to as "Compound (37)"; 1-(5-isoquinolinesulfonyl)-2-methylpiperazine referred to as "Compound (38)";
    36)
    37)
    38)
           1-(5-isoquinolinesulfonyl)-3,5-dimethylpiperazine referred to as "Compound (39)" 1-(5-isoquinolinesulfonyl)-2,5-dimethylpiperazine referred to as "Compound (40)"
    39)
    40)
           1-(5-isoguinolinesulfonyl)-2,3-dimethylpiperazine referred to as "Compound (41)";
    41)
           1-(5-isoquinolinesulfonyl)-4-ethylpiperazine referred to as "Compound (42)" 1-(5-isoquinolinesulfonyl)-3-ethylpiperazine referred to as "Compound (43)"
    42)
    43)
           1-(5-isoquinolinesulfonyl)-4-n-propylpiperazine referred to as "Compound (44)";
    44)
           1-(5-isoquinolinesulfonyl)-3-isopropylpiperazine referred to as "Compound (45)";
    45)
           1-(5-isoquinolinesulfonyl)-3-isobutylpiperazine referred to as "Compound (46)";
    46)
           1-(5-isoguinolinesulfonyl)-4-isobutylpiperazine referred to as "Compound (47)"
     47)
           1-(5-isoquinolinesulfonyl)-2,5-diethylpiperazine referred to as "Compound (48)";
65
    48)
```

49) 1-(5-isoquinolinesulfonyl)-2-methyl-5-isobutylpiperazine referred to as "Compound (49)": 50) 1-(5-isoquinolinesulfonyl)-2-methyl-5-benzylpiperazine referred to as "Compound (50)"; 1-(5-isoquinolinesulfonyl)-4-n-hexylpiperazine referred to as "Compound (51)"; 1-(5-isoquinolinesulfonyl)-2-phenylpiperazine referred to as "Compound (52)"; 51) 52) 1-(5-isoquinolinesulfonyl)-3-phenylpiperazine referred to as "Compound (53)"; 1-(5-isoquinolinesulfonyl)-3-benzylpiperazine referred to as "Compound (54)"; 5 53) 54) 1-(5-isoquinolinesulfonyl)-4-phenylpiperazine referred to as "Compound (55)"; 55) 1-(5-isoquinolinesulfonyl)-4-benzylpiperazine referred to as "Compound (56)"; 56) 1-(5-isoquinolinesulfonyl)-4- $\beta$ -phenethylpiperazine referred to as "Compound (57)"; 1-(5-isoquinolinesulfonyl)-4-benzoylpiperazine referred to as "Compound (58)"; 57) 10 58) 1-(5-isoquinolinesulfonyl)-4-cinnamylpiperazine referred to as "Compound (59) 59) 60) 1-(5-isoquinolinesulfonyl)-4-cinnamoylpiperazine referred to as "Compound (60)": 1-(5-isoquinolinesulfonyl)-4-furoyipiperazine referred to as "Compound (61)" 61) 1-(5-isoquinolinesulfonyl)-4-(2-methoxy-2-phenylethyl)piperazine referred to as "Compound 62) 15  $(62)^{\circ}$ 63) 1-(5-isoquinolinesulfonyl)-4-(2-ethoxy-2-phenylethyl)piperazine referred to as "Compound (63)": 64) 1-(5-isoquinolinesulfonyl)-4-(2-isobutoxy-2-phenylethyl)piperazine referred to as "Compound (64)": 65) N-[2-methyl-N-benzylamino)ethyl]-5-isoquinolinesulfonamide referred to as "Compound (65)"; 20 N-[2-(N-ethyl-N-benzylamino)ethyl]-5-isoquinolinesulfonamide referred to as "Compound (66)" 66) 67) N-[2-(N-isopropyl-N-benzylamino)ethyl]-5-isoquinolinesulfonamide referred to as "Compound 68) 1-(5-isoquinolinesulfonyl)-3,3-dimethylpiperazine referred to as "Compound (68)"; and the pharmaceutically acceptable acid addition salts thereof.

The acid addition salts of the isoquinolinesulfonyl derivatives of Formula (I) according to this invention are pharmaceutically acceptable non-toxic salts and can be prepared by conventional methods.

Suitable examples of such pharmaceutically acceptable acid addition salts include the salts of 30 inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, and sulfuric acid; and the salts of organic acids such as acetic acid citric acid, tartaric acid, lactic acid, succinic acid, fumaric acid, maleic acid, methanesulfonic acid and p-toluenesulfonic acid.

The isoquinolinesulfonyl derivatives of Formula (I) of this invention can be prepared by reacting a 5-isoquinolinesulfonyl chloride of Formula (II) with a compound of Formula (III) in accordance with the 35 following equation:

40
$$\begin{array}{c} \text{SO}_2\text{CI} \\ & \text{H-[NH(CH_2)_mCH(CH_2)_n]_1-N} \end{array} \begin{array}{c} \text{R}_2 \\ \text{R}_3 \end{array}$$

45

55

wherein I, m, n, R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub> are the same as defined above.

Exemplary compounds of Formula (III) include 1,2-diaminoethane, 1,3-diamino-n-propane, 1,4diamino-n-butane, 1,5-diamino-n-pentane, 1,6-diamino-n-hexane, 1,8-diamino-n-octane, 1,10diamino-n-decane, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, n-hexylamine, dimethylamine, diethylamine, 2-(N-methyl-N-benzylamino)ethylamine, 2-(N-ethyl-N-benzylamino)ethylamine, 2-(N-isopropyl-N-benzylamino)ethylamine, di-n-butylamine, di-nhexylamine, 3-(N,N-dimethylamino)-n-propylamine, 3-(N,N-diethylamino)-n-propylamine, 3-(di-npropylamino)-n-propylamine, 3-diisopropylamino)-n-propylamine, 2-amino-n-pentylamine, 2-amino-npropylamino, 2-amino-n-butylamine, 2-amino-3-methylbutylamine, 2-amino-1-phenylethylamine, 2amino-2-phenylethylamine, 2-(methylamino)ethylamine, 2-(ethylamino)ethylamine, 2-(isopropyl-

amino)ethylamine, 3-(di-n-butylamino)-n-propylamine, 3-(diisobutylamino)-n-propylamine, 3-(N-methyl-N-cyclohexyl-amino)-n-propylamine, 3-(N-methyl-N-phenylamino)-n-propylamine, 3-(N-methyl-N-benzylamino)-n-propylamine, 3-(1-piperidino)-n-propylamine, 3-(1-pyrrolidino)-n-propylamine, 3-(4-morpholino)-n-propylamine, piperidine, piperazine, morpholine, pyrrolidine, 2-methyl-piperazine, 1-methylpiperazine, 2-ethylpiperazine, 1-ethylpiperazine, 2-n-propylpiperazine, 1-n-propyl-piperazine, 2-isopropylpiperazine, 1-isopropylpiperazine, 2-n-butylpiperazine, 1-n-butylpiperazine, 2,2-dimethyl-piperazine, 2,3-dimethylpiperazine, 2-h-exylpiperazine, 1-n-hexylpiperazine, 2,2-dimethyl-piperazine, 2-isobutyl-5-methylpiperazine, 2-benzyl-5-methylpiperazine, 2-phenylpiperazine, 1-phenyl-piperazine, 2-benzylpiperazine, 1-benzylpiperazine, 1-phenethylpiperazine, 1-benzoylpiperazine, 1-cinnamoylpiperazine, 1-furoylpiperazine, 1-(2-methoxy-2-phenylethyl)-piperazine, 1-(2-ethoxy-2-phenylethyl)piperazine, 1-(2-isobutoxy-2-phenylethyl)piperazine.

The reaction between the compound of Formula (II) and the compound of the Formula (III) can be carried out in the presence or absence of an acid acceptor. Exemplary acid acceptors which can be employed include alkali metal compounds such as a hydroxide, bicarbonate, carbonate, hydride or an alkoxide, e.g. sodium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride and sodium alkoxides such as sodium methoxide, sodium ethoxide and sodium tert-butoxide; and organic tertiary amines such as trimethylamine, triethylamine, 1,4-diazabicyclo[2,2,2]octane and pyridine.

In general, this reaction is carried out in the presence of a reaction medium. Exemplary reaction media which can be employed include halogenated hydrocarbons such as chloroform and dichloromethane; alcohols such as methanol, ethanol and butanol; ethers such as tetrahydrofuran and dioxane; N,N-dimethylformamide, dimethyl sulfoxide, acetonitrile and water. The reaction media may be used singly or in combination with one another.

The amount of the compound of Formula (III) which can be employed is at least 1 mol and typically ranges from 1 to about 20 mols, preferably from 1 to 10 mols per mol of the compound of Formula (II). A more preferred amount of the compound of Formula (III) ranges from 1 to 5 mols per mol of the compound of Formula (III) when the acid acceptor is present, and from 2 to 10 mols per mol of the compound of Formula (III) when the acid acceptor is absent. This amount, however, does not apply to amines having a low boiling point such as methylamine and ethylamine.

The amount of the acid acceptor employed is preferably about 0.5 to about 10 equivalents and more preferably about 1 to about 6 equivalents for each mol of the compound of Formula (III).

The reaction between the compound of Formula (II) and the compound of Formula (III) can be carried out typically at a temperature of from about -30°C to about 150°C and preferably from about 0°C to about 30°C.

While this reaction can be carried out at a pressure above atmospheric, it is generally advisable to utilize atmospheric pressure.

The reaction time which can be employed is typically about 0.5 to about 48 hours and preferably about 0.5 to 20 hours at atmospheric pressure.

Also, when  $R_2$  in Formula (I) is a hydrogen atom, the 5-isoquinolinesulfonyl derivatives of this invention represented by Formula (VI) can be prepared by the following equations:

25

35

Further, when I in Formula (I) is zero, the

5

10

40

$$R_2$$
 group in Formula (I) is a  $-N$   $N-R_6$   $R_4$ 

group and  $R_a$  is a hydrogen atom, the 5-isoquinolinesulfonyl derivatives of this invention represented by Formula (IX) can be prepared in accordance with the following equations:

In these Formulae, I, m, n, R<sub>1</sub>, R<sub>3</sub>, R<sub>4</sub> and R<sub>5</sub> are the same as defined above and X is a protective group. Exemplary protective groups represented by X which can be employed in this invention include acyl groups such as formyl, acetyl and benzoyl; arylmethyloxycarbonyl groups such as benzyloxycarbonyl; alkyloxycarbonyl groups such as tert-butoxycarbonyl; and benzyl group.

Exemplary compounds of Formulae (IV) and (VII) include N¹-acetyl-1,2-diaminoethane, N¹-acetyl-1.

Exemplary compounds of Formulae (IV) and (VII) include N¹-acetyl-1,2-diaminoethane, N¹-acetyl-1,3-diaminopropane, N¹-acetyl-1,4-diaminobutane, N¹-acetyl-1,5-diaminopentane, N¹-acetyl-1,6-diaminohexane, N¹-acetyl-1,8-diaminooctane, N¹-acetyl-1,10-diaminodecane, 2-benzyloxycarbonyl-amino-1-methylethylamine, 1-(benzyloxycarbonylaminomethyl)propylamine, 1-(benzyloxycarbonylaminomethyl)-pentylamine, 2-(benzyloxycarbonylamino)-propylamine, the compounds (IV) which provide the 2-amino-n-butyl group 2-(benzyloxycarbonylamino)-3-methylbutylamine, 2-acetamidopropylamine, 2-acetamido-3-methylbutylamine, 2-acetamido-2-phenylethylamine, 2-(N-benzyl-N-methylamine) ethylamine, 2-(N-benzyl-N-methylamine) ethylamine, 2-(benzyloxycarbonylamino)-1-phenylethylamine, 2-(benzyloxycarbonylamino)-2-phenylethylamine, 1-formyl-3-methylpiperazine, 1-acetyl-3-methylpiperazine, 1-benzyloxycarbonyl-3-methylpiperazine, 1-benzyloxycarbonyl-3-methylpiperazine, 1-benzyloxycarbonyl-3-ethylpiperazine, 1-benzyloxycarbonyl-3-phenylpiperazine and the compounds (VII) comprising the said protective group (X) providing the compounds (10), (35) to (37), (39) to (41), (43), (45) to (46), (48) to (50), (53) and (68).

The reaction between the compounds of Formula (II) and the compound of Formula (IV) and the reaction between the compound of Formula (III) and the compound of Formula (VIII) can be carried out under the same reaction conditions as in the reaction between the compound of Formula (III) and the compound of Formula (IIIII) to give the compound of Formula (VI) and the compound of Formula (VIIII), respectively. The method of obtaining the desired compound of Formula (VI) and the desired compound of Formula (IX) from the compound of Formula (VI) and the compound of Formula (VIII), respectively, may vary depending upon the protective gr up of X selected, generally known methods can be employed in this invention. For example, when the protective group of X is an acyl group such as formyl

or acetyl, the desired compounds can be obtained by hydrolysis with an acid or an alkali. When the protective group of X is a benzyl group, the desired compounds can be obtained by hydrogenation. When the protective group of X is an arylmethyloxycarbonyl group such as benzyloxycarbonyl, the desired compounds can be obtained by hydrogenation or hydrolysis with an acid. When the protective group of X is an alkyloxycarbonyl group such as tert-butoxycarbonyl, the desired products can be obtained by hydrolysis with an acid.

Furthermore, when I in Formula (I) is zero, the

35

$$\begin{array}{c} R_2 \\ -N \\ R_3 \end{array}$$
 group in Formula (I) is a  $-N$   $N-R_6$ 

group and  $R_{\rm g}$  is not a hydrogen atom, the 5-isoquinolinesulfonyl derivatives of this invention represented by Formula (XII) can be prepared in accordance with the following equations:

25 
$$SO_2CI$$
  $HN$   $NH$   $SO_2N$   $NH$   $SO_2N$   $N-R_6$   $R_5$   $R_6-W$   $SO_2N$   $N-R_6$   $R_5$   $R_6-W$   $SO_2N$   $N-R_6$   $R_7$   $R_8$ 

In these Formulae,  $R_4$ ,  $R_5$  and  $R_8$  are the same as defined above and W is an eliminable group. Exemplary eliminable groups include halogen atoms such as chlorine, bromine and iodine; substituted sulfonyloxy groups such as p-toluenesulfonyloxy and methanesulfonyloxy; and sulfuric acid residue. Exemplary compounds of the formula,  $R_6$ —W which can be employed include dimethyl sulfate, methyl iodide, diethyl sulfate, ethyl bromide, n-propyl iodide, n-propyl bromide, isopropyl bromide, n-butyl bromide, isobutyl bromide, n-hexyl bromide, n-hexyl-p-toluenesulfonate, benzyl chloride, benzyl bromide, phenethyl bromide, benzyl chloride, cinnamyl chloride, furoyl chloride, 2-methoxy-2-phenylethyl bromide and 2-isobutoxy-2-phenylethyl bromide and compounds  $R_6$ —W wherein  $R_6$  is a phenyl group.

In general, the reaction between the compound of Formula (XI) and the compound of  $R_8$ —W can be carried out in the presence of an acid acceptor. Exemplary acid acceptors which can be employed include the same ones as employed in the reaction between the compound of Formula (III) and the compound of Formula (III).

This reaction is, in general, carried out in the presence of a reaction medium. Exemplary reaction media which can be employed include the same one as employed in the reaction between the compound of Formula (III) and the compounds of Formula (III).

The amount of the compound of R<sub>s</sub>—W which can be employed is at least 1 mol and typically ranges from 1 mol to about 20 mols, preferably from 1.2 mol to 10 mols per mol of the compound of Formula (XI).

The amount of the acid acceptor employed is preferably about 1 to about 10 equivalents and more preferably 1 to 4 equivalents for each mol of the compound of Formula (III) and (XI) respectively.

The reaction between the compound of Formula (XI) and the compound of R<sub>s</sub>—W can be carried out typically at a temperature of from about -30°C to about 200°C and preferably from about 0°C to about 100°C.

While this reaction may be carried out at a pressure above atmospheric or under reduced pressure, it is advisable to employ atmospheric pressure for practical purposes.

The method of separating and purifying the isoquinolinesulfonyl derivative of Formula (I) from the reaction solution comprises extracting the compound of Formula (I) with diluted hydrochloric acid, rendering the aqueous hydrochloric acid layer extracted basic, extracting the extract with a solvent such as chloroform capable of easily dissolving the extract, condensing the extract and subjecting the condensed residues to a silica gel column or an aluminum column chromatography for purification.

It has now been found that the isoquinolinesulfonyl derivatives of Formula (I) and the pharmaceutically acceptable salts have pharmacol gically and biochemically interesting properties such as a relaxatory action for vascular smooth muscle and an action for increasing blood flow and are useful as a vasodilator, a hypotensor, an ameliorant of cerebral circulation, a medicine for angina pectoris and a preventive and a medicine for cardiovascular thrombosis.

The effect of the isoquinolinesulfonyl derivatives and the pharmaceutically acceptable acid addition salts of this invention on smooth muscle can be proved by suspending a mesenteric artery taken out from a rabbit in a helical form, contracting the mesenteric artery with potassium chloride and adding the isoquinolinesulfonyl derivatives or their pharmaceutically acceptable acid addition salts of this invention to the contracted mesenteric artery, resulting in the relaxation of the mesenteric artery. When, for example, 1-(5-isoquinolinesulfonyl)-4-methylpiperazine, i.e., Compound (36) was added and a complete relaxation was designated 100%, the concentration which could bring about a relaxation of 50%, i.e., ED<sub>50</sub> was 7.7  $\mu$ M, 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound (35) and N-(4-aminobutyl)-5-isoquinoline sulfonamide, i.e., Compound (3), ED<sub>50</sub> were 0.6  $\mu$ M and 11  $\mu$ M, respectively.

15

25

30

45

60

65

The effect of the isoquinolinesulfonyl derivatives and the pharmaceutically acceptable acid addition salts of this invention on the vasodilatation of the femoral and vertebral arteries can be measured by anesthetizing a dog of mixed breed weighing 8 to 15 Kg by an intravenous administration of 35 mg/Kg of pentbarbital, providing an acute type probe (a product of Nippon Koden K.K., Japan) with the femoral and vertebral arteries, administering the isoquinolinesulfonyl derivatives and the pharmaceutically acceptable acid addition salts to the femoral vein through a polyethylene tube inserted into the femoral vein side chain and measuring the blood flow volume with an electromagnetic flowmeter (a product of Nippon Koden K.K., Japan, "MF—27"). Among the isoquinolinesulfonyl compounds of Formula (I) of this invention, those with I=O and the

$$R_{2}$$

$$R_{3}$$
group = the  $-N$ 

$$R_{5}$$

group show a high action for increasing blood flow and simultaneously a selectivity to vertebral arteries. For example, when 1 mg/Kg of 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound (35) was intravenously administered, the increased blood flow volumes in the vertebral artery and in the femoral artery were 98% and 65%, respectively. Also the isoquinolinesulfonyl compounds of Formula (I) of this invention with I=1 and one of the I=1 and I=1

in the blood flow volume in the vertebral artery was continued for at least 30 minutes. Furthermore, when the isoquinolinesulfonyl derivatives and the pharmaceutically acceptable acid addition salts of this invention are intravenously and arterially administered for the above described purposes, any remarkable toxicity cannot be observed. For example, the acute toxicity of 1-(5-isoquinolinesulfonyl)-4-methylpiperazine, i.e., Compound (36), i.e., LD<sub>50</sub> was 94 mg/Kg in giving male ddY-strain mice an intravenous administration.

The following examples illustrate the present invention in more detail.

#### Example 1

In 200 ml of chloroform was dissolved 8.8 g of 1,4-diaminobutane, and to the solution was added dropwise 100 ml of a chloroform solution containing 4.55 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the chloroform solution, the mixed solution was stirred at a temperature of 20°C to 25°C for two hours, and then the reaction solution was extracted with a 10% aqueous hydrochloric acid solution. The pH of the aqueous layer was adjusted to 10 with a 10% aqueous sodium hydroxide solution, and the aqueous layer was extracted with chloroform. The chloroform layer extracted was washed with water and dried with anhydrous potassium carbonate. Then the chloroform was distilled from the chloroform layer, and the residue obtained was subjected to a column chromatography [silica gel: 200 g; developing solvent: 2% methanol/chloroform (volume ratio)] to give 3.46 g of N-(4-aminobutyl)-5-isoquinolinesulfonamide, i.e.; Compound (3) as an oily substance in a yield of 62%.

Mass spectrum (m/e): 279 (M<sup>+</sup>) and 221 NMR spectrum (CDCl<sub>3</sub>): 1.5—2.0 (4H, 2 × C $H_2$ ), 2.5—3.2 (4H, 2 × NC $H_2$ ), 2.4 (2H, N $H_2$ ), 7.5—7.7 (1H), 7.9—8.7 (4H) and 9.3 (1H) IR absorption spectrum ( $\nu_{\rm max}^{\rm cap}$  cm<sup>-1</sup>): 1330 and 1160

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 1—1 under the reaction conditions as set forth in Table 1—1, and N-( $\omega$ -aminoalkyl)-5-isoquinoline sulfonamides as set forth in Table 1—2 were obtained. The results and the analytical values of these compounds are shown in Table 1—2.

TABLE 1-1

| 10 |            | SO <sub>2</sub> CI |                                                                  |          |                                 |                            |
|----|------------|--------------------|------------------------------------------------------------------|----------|---------------------------------|----------------------------|
| 15 | Run<br>No. | (g) N              | Compound of formu (g)                                            | la (III) | Reaction<br>Temperature<br>(°C) | Reaction<br>Time<br>(hour) |
|    | 1          | 4.55               | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>2</sub> NH <sub>2</sub>  | 12.0     | 15 — 20                         | 2                          |
| 20 | 2          | 3.41               | $H_2N(CH_2)_3NH_2$                                               | 11.1     | ditto                           | ditto                      |
| 20 | 3          | 4.55               | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>6</sub> NH <sub>2</sub>  | 11.6     | ditto                           | 5                          |
| 25 | 4          | 2.28               | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>10</sub> NH <sub>2</sub> | 8.62     | ditto                           | 10                         |

|                                                                   | NMR Spectrum<br>(CDCl3)          | 1.5(2H, NH <sub>2</sub> ), 2.9(4H, 2×CH <sub>2</sub> )<br>7.58~7.9(1H), 8.0–8.7(4H)<br>9.33(1H) | 1.4~1.9(2H, CH2)<br>2.5~3.2(4H, 2xNCH2)<br>3.21(2H, NH2), 7.62(1H)<br>8.0~8.8(4H), 9.33(1H) | 1.0~2.0(8H), 2.9~3.2(4H)<br>7.65(1H), 8.0~8.8(4H)<br>9.33(1H) | 1.3(16H, 8xCH2)<br>2.5~3.2(4H, 2xNCH2)<br>3.3(2H, NH2), 7.0(1H, NH)<br>7.6(1H), 8.1~8.8(4H)<br>9.3(1H) |
|-------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <u>o</u>                                                          | Absorption Spectrum ("SO2, cm-1) | 3400, 1610<br>1330, 1165<br>1145, 1190<br>1030, 830                                             | 3400, 1610<br>1350, 1330<br>1160, 1145<br>1090, 830                                         | 1590, 1320<br>1140, 1120<br>1060, 810                         | 3400, 1590<br>1350, 1330<br>1160, 1140                                                                 |
| TABLE 1-2                                                         | Mass<br>Spectrum<br>(m/e)        | 222, 221<br>193, 129<br>128                                                                     | 265, 236<br>221, 143<br>128                                                                 | 307, 277<br>263, 243<br>221, 192<br>128                       | 363, 320<br>292, 221<br>192, 128                                                                       |
| n Z NH2                                                           | bid %]                           | (99)                                                                                            | (73)                                                                                        | (75)                                                          | (61)                                                                                                   |
| SO <sub>2</sub> NH(CH <sub>2</sub> ) <sub>n</sub> NH <sub>2</sub> | Yleid<br>Yleid                   | e.<br>6                                                                                         | 2.9                                                                                         | 9.4                                                           | 2:2                                                                                                    |
| 8,(                                                               | <u> </u>                         | લ                                                                                               | ကု                                                                                          | ø                                                             | <b>6</b>                                                                                               |
|                                                                   | Compound<br>No.                  | Ξ                                                                                               | (5)                                                                                         | (4)                                                           | (5)                                                                                                    |
|                                                                   | Run<br>No.                       | <del>-</del> .                                                                                  | 0                                                                                           | ო                                                             | 4                                                                                                      |

Exampl 2

In 50 ml of dichloromethane was dissolved 1.73 g of 5-isoquinolinesulfonyl chloride, and to the solution were added 1.54 g of triethylamine and 8.0 g of monomethylamine hydrochloride. The mixture was stirred at a temperature of 10°C to 15°C for 18 hours. The reaction solution obtained was washed with water, dried with magnesium sulfate, and then the dichloromethane was distilled therefrom under reduced pressure. The residue obtained was subjected to a silica gel column chromatography (silica: 50 g; solvent: chloroform) to give 1.30 g of N-methyl-5-isoquinolinesulfonamide, i.e., Compound (25) in a yield of 77%.

Mass spectrum (m/e): 208, 148 and 128

NMR spectrum (CDCl<sub>3</sub>): 2.63 (3H, singlet, NCH<sub>3</sub>), 3.23 (1H, NH), 7.4—7.7 (1H), 8.1—8.7 (4H) and 9.3 (1H)

IR absorption spectrum ( $\nu_{\rm max}^{\rm csp}$  cm $^{-1}$ ): 3050, 2920, 1610, 1580, 1440, 1365, 1320, 1210, 1150, 1130 and 1080

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 2—1 under the reaction conditions as set forth in Table 2—1, and there were obtained N-ethyl-5-isoquinolinesulfonamide, i.e., Compound (26); N,N-dimethyl-5-isoquinolinesulfonamide, i.e., Compound (29); and N,N-diethyl-5-isoquinolinesulfonamide, i.e. Compound (30). The results and the analytical values of these compounds are shown in Table 2—2.

| Re.                             |                                                                              |                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reaction<br>Temperature<br>(°C) | 15 – 25                                                                      | -ditto-                                                                                                                             | -ditto-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N(C2H5)3<br>(9)                 | 10                                                                           | -ditto-                                                                                                                             | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ula (III)                       | 8.2                                                                          | 8.2                                                                                                                                 | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Compound of Form                | H <sub>2</sub> N(C <sub>2</sub> H <sub>5</sub> ).HCl                         | HN(CH3)2.HCI                                                                                                                        | HN(C2H5)2.HC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 05 (g) (g)                      | 2.28                                                                         | -ditto-                                                                                                                             | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 | Reaction N(C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub> Temperature (9) (°C) | Reaction Compound of Formula (III) N(C2H5)3 Temperature (g) (9) H <sub>2</sub> N(C <sub>2</sub> H <sub>5</sub> ).HCI 8.2 10 15 – 25 | Reaction   Compound of Formula (III)   N(C2H5)3   Temperature (9) (°C)   Temperature (9) |

|           |                  | NMR Spectrum<br>(CDCl3)       | 1.15(3H, triplet) 2.73(2H, quartet) 3.33(1H, singlet, NH) 7.4~7.7(1H) 8.1~8.7(4H) | 2.85(6H, 2xC <i>H</i> 3)<br>7.5~7.9(1H)<br>8.2~8.5(4H), 9.3(1H) | 1,2~1,4(6H, 2xC <i>H</i> <sub>3</sub> )<br>2,2~3,3(4H, 2xNCH <sub>2</sub> )<br>7,5~8,6(5H), 9,3(1H) |
|-----------|------------------|-------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 2-2       | IR<br>Absorption | cap (v max.cm <sup>-1</sup> ) | 3050, 2920<br>1600, 1560<br>1440, 1360<br>1300, 1200<br>1150, 1070                | 1600, 1470, 1440, 1320<br>1145, 1125<br>1035, 975<br>940        | 1600, 1460<br>1360, 1150<br>1120, 1050                                                              |
|           | 2                | Spectrum (m/e)                | 236, 164<br>128                                                                   | 236, 191<br>143, 128                                            | 264, 235<br>191, 143                                                                                |
| TABLE 2-2 |                  | [(%)                          | (81)                                                                              | (75)                                                            | (77)                                                                                                |
|           | •                | Yeld<br>[g                    | 1.93                                                                              | 1.77                                                            | 1.34                                                                                                |
|           | SOS - N          | <b>,</b>                      | -NH(C2H5)                                                                         | -N(CH3)2                                                        | -N(C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub>                                                     |
|           |                  | Compound<br>No.               | (26)                                                                              | (59)                                                            | (30)                                                                                                |
|           |                  | Ro.                           | -                                                                                 | N                                                               | က                                                                                                   |

# Example 3

In 100 ml of methylene chloride were added 6.0 g of piperazine and 1.2 g of anhydrous potassium carbonate, and to the mixture was added dropwise 30 ml of a methylene chloride solution containing 2.0 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the methylene chloride solution, the mixed solution was stirred at a temperature of 15°C to 25°C for 15 hours, and then the reaction solution was washed with water, dried with anhydrous magnesium sulfate, and the methylene chloride was distilled therefrom. The residue thus obtained was subjected to a silica gel column chromatography (silica gel: 70 g; solvent: chloroform) to give 2.14 g of 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound (35) in a yield of 89%.

Mass spectrum (m/e): 277, 234, 212, 191 and 128

NMR spectrum (CDCl<sub>3</sub>): 1.65 (1H, NH), 2.8—3.3 (8H,  $4 \times$  NCH<sub>2</sub>), 7.5—7.9 (1H), 8.2—8.7 (4H) and 9.35 (1H)

IR absorption spectrum ( $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>): 3350, 1600, 1560, 1540, 1370 and 1160

## Example 4

In 100 ml of dichloromethane was dissolved 2.28 g of 5-isoquinolinesulfonyl chloride, and to the solution were added 1.38 g of anhydrous potassium carbonate and 1.46 g of n-butylamine, and the mixture thus obtained was stirred at a temperature of 20°C to 25°C for 12 hours. The reaction solution was washed with water, dried with anhydrous magnesium sulfate, and the dichloromethane was distilled therefrom under reduced pressure. The residue thus obtained was subjected to a silica gel column chromatography (silica gel: 70 g; solvent: chloroform) to give 1.90 g of N-n-butyl-5-isoquinolinesulfonamide, i.e., Compound (27) in a yield of 72%.

Mass spectrum (m/e): 264, 211 and 191 NMR spectrum (CDCl<sub>3</sub>): 0.7—1.6 (7H,  $C_3H_7$ ), 2.67 (2H, NCH<sub>2</sub>), 3.46 (1H, NH), 7.4—7.8 (1H),

25 8.1—8.6 (4H) and 9.3 (1H)

IR absorption spectrum ( $\nu_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3070, 2920, 1610, 1580, 1450, 1360, 1300, 1150, 1080

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 3—1 under the reaction conditions as set forth in Table 3—1, and there were obtained N-isobutyl-5-isoquinolinesulfonamide, i.e., Compound (28); N,N-di-n-butyl-5-isoquinolinesulfonamide, i.e., Compound (31); 1-(5-isoquinolinesulfonyl)piperidine, i.e., Compound (32); 1-(5-isoquinolinesulfonyl)pyrrolidine, i.e., Compound (33); and 1-(5-isoquinolinesulfonyl)morpholine, i.e., Compound (34). The results and the analytical values of these compounds are shown in Table 3—2.

35

10

15

40

45

50

55

60

65.

|           | Reaction<br>Time<br>(hour)                  | ß                                                  | 81            | 5       | -ditto-           | -ditto- |
|-----------|---------------------------------------------|----------------------------------------------------|---------------|---------|-------------------|---------|
|           | Reaction<br>Temperature<br>(°C)             | $20 \sim 25$                                       | -ditto-       | -ditto- | -ditto-           | ditto   |
|           | Anhydrous<br>Potass lum<br>Carbonate<br>(g) | 2.1                                                | 1.6           | 2.1     | -ditto-           | ditto-  |
| TABLE 3-1 | ormula (111)                                | 2.4                                                | 3.6           | 2.8     | 2,5               | 2.8     |
|           | Compound of Formula (III)<br>(g)            | H <sub>2</sub> N(i-C <sub>4</sub> H <sub>9</sub> ) | . HN(n-C4H9)2 | ( )     | \[ \frac{1}{2} \] | (°)     |
|           | SO (B)                                      | 3.0                                                | 2.5           | 3.0     | -ditto-           | ditto   |
|           | Run<br>No.                                  | -                                                  | 8             | တ       | 4                 | က       |

|       |                                          | NMR Spectrum<br>(CDCl <sub>3</sub> )                      | 0.7~1.1(6H, 2xCH <sub>3</sub> )<br>1.0~1.5(1H, CH)<br>2.55(2H, NGH <sub>2</sub> )<br>3.62(1H, NH), 7.5~7.8(1H)<br>8.1~8.6(4H), 9.3(1H) | 0.9~1.9(14H, 2xCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> )<br>2.9~3.5(4H, 2xNGH <sub>2</sub> )<br>7.5~8.8(5H), 9.3(1H) | 1.4~1.9(6H, 3xCH <sub>2</sub> )<br>3.0~3.3(4H, 2xNCH <sub>2</sub> )<br>7.6~7.9(1H), 8.2~8.8(4H)<br>9.4(1H) | 1.3~1.9(4H, 2xCH <sub>2</sub> )<br>3.0~3.5(4H, 2xNCH <sub>2</sub> )<br>7.6~7.9(1 H)<br>8.2~8.8(4H), 9.3(1H) | 3.0~3.3(4H, 2xNCH <sub>2</sub> )<br>3.6~3.8(4H, 2xOCH <sub>2</sub> )<br>7.5~7.9(1H)<br>8.0~8.7(4H), 9.3(1H) |
|-------|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|       | IR<br>Absorption<br>Spertrim             | IR<br>Absorption<br>Spectrum<br>(v cap cm <sup>-1</sup> ) |                                                                                                                                        | 1600, 1470<br>1360, 1150                                                                                                     | 1600, 1560<br>1470, 1370<br>1150                                                                           | 1600, 1550<br>1470, 1350<br>1150                                                                            | 1590, 1560<br>1540, 1470<br>1370, 1150                                                                      |
| E 3-2 | 900<br>P                                 | Spectrum<br>(m/e)                                         | 284, 211<br>191                                                                                                                        | 320, 234<br>191, 143                                                                                                         | 276, 211<br>191, 127                                                                                       | 262, 211<br>191, 127                                                                                        | 278, 234<br>213, 191<br>127                                                                                 |
| TABLE |                                          | Yield<br>(%)                                              | (89)                                                                                                                                   | (69)                                                                                                                         | (71)                                                                                                       | . (85)                                                                                                      | (4.6)                                                                                                       |
|       |                                          | Y ie                                                      | 2.37                                                                                                                                   | 2.43                                                                                                                         | 2.6                                                                                                        | 2.94                                                                                                        | 2.9                                                                                                         |
|       | \$000 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | >                                                         | -NH(I-C <sub>4</sub> Hg)                                                                                                               | -N(n-C4H9)2                                                                                                                  | Z I                                                                                                        |                                                                                                             | o<br>I                                                                                                      |
|       | ·                                        | Run Compound<br>No. No.                                   | (28)                                                                                                                                   | (31)                                                                                                                         | (32)                                                                                                       | (69)                                                                                                        | (34)                                                                                                        |
|       |                                          | Run<br>No.                                                | -                                                                                                                                      | CI CI                                                                                                                        | ო                                                                                                          | 4                                                                                                           | ro                                                                                                          |

## Example 5

In 50 ml of a chloroform solution containing 1.4 g of 3-dimethylaminopropylamine and 1.4 g of triethylamine was added dropwise 30 ml of a chloroform solution containing 2.6 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the chloroform solution, the mixed solution was stirred at a temperature of 2°C to 10°C for four hours, and the reaction mixture solution was washed with water and dried with anhydrous magnesium sulfate. After the chloroform was distilled therefrom, the residue obtained was subjected to a silica gel column chromatography (silica gel: 70 g; solvent: chloroform) to give 2.38 g of N-(3-dimethylaminopropyl)-5-isoquinoline-sulfonamide, i.e., Compound (17) in a yield of 71%.

Mass spectrum (m/e): 293, 249, 235, 221 and 207

NMR spectrum (CDCI<sub>3</sub>): 1.6 (2H, CH<sub>2</sub>), 2.0—2.6 (8H,  $2 \times NCH_3 + NCH_2$ ), 3.1 (2H,  $NCH_2$ ), 6.2 (NH), -7.7 (1H), 8.0—8.6 (4H) and 9.3 (1H)

IR absorption spectrum ( $v_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 2950, 2860, 2840, 1460, 1320, 1150, 1130, 830 and 760.

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 4-1 under the reaction conditions as set forth in Table 4-1, and there were obtained N-(3-diethylaminopropyl)-5-isoquinolinesulfonamide, i.e., Compound (18); N-(3-di-n-butylaminopropyl)-5-isoquinolinesulfonamide, i.e., Compound (19); N-(3-piperidinopropyl)-5-isoquinolinesulfonamide, i.e., Compound (20); N-(3-morpholinopropyl)-5-isoquinolinesulfonamide, i.e., Compound (21); N-[3-(N-methyl-N-cyclohexylamino)propyl]-5-isoquinolinesulfonamide, i.e., Compound (22); N-[3-methyl-N-phenylamine)propyl]-5-isoquinolinesulfonamide, i.e., Compound (23); and N-[3-(Nmethyl-N-benzylamino)propyl]-5-isoquinolinesulfonamide, i.e., Compound (24). The results and the analytical values of these compounds are shown in Table 4-2.

30

25

10

40

35

45

50

55

60

|              | Reaction<br>Time<br>(hour)                               | æ                 | -ditto-                                                                                          | . 12                                              | <b>5</b>      | -ditto-                                           | -ditto-                                           | -ditto-                                                                           |
|--------------|----------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|
|              | Reaction<br>Temperature<br>(°C)                          | , ci<br>          | 5 ~ 10                                                                                           | 10 ~ 20                                           | 15 ~ 25       | -ditto-                                           | -ditto-                                           | -ditto-                                                                           |
|              | N(C <sub>2</sub> H <sub>5</sub> ) <sub>3</sub><br>(g)    | 79.0              | -ditto-                                                                                          | -ditto-                                           | -ditto-       | e.<br>0                                           | -ditto-                                           | 0.5                                                                               |
| <del>-</del> |                                                          | 0.7               | .00                                                                                              | . 0.8                                             | 0.8           | 4,0                                               | 0.38                                              | 0.76                                                                              |
| TABLE 4-1    | H <sub>2</sub> N(CH <sub>2</sub> )3N /R <sub>3</sub> (9) | H2N(CH2)3N(C2H5)2 | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>3</sub> N(n-C <sub>4</sub> H <sub>9</sub> ) <sub>2</sub> | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>3</sub> N | 0 NE(642)3N2H | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>3</sub> N | H <sub>2</sub> N(GH <sub>2</sub> ) <sub>3</sub> N | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>3</sub> N CH <sub>3</sub> CH <sub>2</sub> |
|              | 00 (B)                                                   | 1.0               | -ditto-                                                                                          | -ditto-                                           | -ditto-       | 0.44                                              | -ditto-                                           | 0.75                                                                              |
|              | Run<br>No.                                               | -                 | 8                                                                                                | ø                                                 | 4             | ĸ                                                 | ຜ                                                 | 7                                                                                 |

|           | ·                                                                  | NMR Spectrum<br>(CDClg)                                 | 1.1(6H, 2xCH <sub>3</sub> )<br>1.5~2.0(2H, CH <sub>2</sub> )<br>2.0~2.6(6H, 3xNCH <sub>2</sub> )<br>3.1(2H, NCH <sub>2</sub> ), 6.8(1H, NH)<br>7.6(1H), 8.0~8.5(4H)<br>9.3(1H) | 0.8 ~ 2.0(16H, $2xCH_3 + 5xCH_2$ )<br>2.2 ~ 2.8(6H, $3xNCH_2$ )<br>3.1(2H, $NCH_2$ ), 5.4(1H, $NH$ )<br>7.7(1H), 8.1 ~ 8.7(4H), 9.3(1H) | 1.3~2.0(8H, 4xCH <sub>2</sub> )<br>2.0~2.6(6H, 3xNCH <sub>2</sub> )<br>3.0(2H, NCH <sub>2</sub> ), 6.8(1H, N <i>H</i> )<br>7.6(1H), 8.1~8.7(4H), 9.3(1H) | 1.3~1.9(2H, CH2) 2.0~2.7(6H, 3xNCH2) 3.0(2H, NCH2) 3.4~3.9(4H, 2xOCH2) 6.5~7.1(1H, NH), 7.7(1H) 8.1~8.8(4H), 9.4(1H) |
|-----------|--------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|           | <u>«</u>                                                           | Absorption<br>Spectrum<br>( $ u$ cap cm <sup>-1</sup> ) | 2950, 2850<br>1460, 1320<br>1160, 1130                                                                                                                                         | 2960, 2870<br>1460, 1325<br>1155, 1135                                                                                                  | 3075, 2920<br>2850, 2800<br>1320, 1160                                                                                                                   | 2950, 2850<br>2820, 1320<br>1160, 1140<br>1120, 760                                                                  |
| TABLE 4-2 |                                                                    | Mass<br>Spectrum<br>(m/e)                               | 321, 249<br>235, 221<br>207, 192                                                                                                                                               | 377, 334<br>296, 248<br>234, 220<br>140                                                                                                 | 332, 248<br>234, 220<br>206, 191                                                                                                                         | 334, 278<br>276, 248<br>234, 221<br>182, 143<br>128.                                                                 |
| TAB       | SO <sub>2</sub> NH(CH <sub>3</sub> ) <sub>3</sub> N R <sub>3</sub> | Yield<br>(%)]                                           | (53)                                                                                                                                                                           | (56)                                                                                                                                    | (49)                                                                                                                                                     | (43)                                                                                                                 |
|           |                                                                    | ۲۱.<br>[و                                               | 0.75                                                                                                                                                                           | 0.93                                                                                                                                    | 0.72                                                                                                                                                     | 0.63                                                                                                                 |
|           | SO S                           | -N_H <sub>3</sub>                                       | C2H5 C2H5                                                                                                                                                                      | -N n-C4 Hg                                                                                                                              | Z                                                                                                                                                        | (°)                                                                                                                  |
|           |                                                                    | Compound<br>No.                                         | (18)                                                                                                                                                                           | (18)                                                                                                                                    | (20)                                                                                                                                                     | (21)                                                                                                                 |
|           |                                                                    | Run<br>No.                                              | -                                                                                                                                                                              | &                                                                                                                                       | က                                                                                                                                                        | 4                                                                                                                    |

|                       |                                                     | NMR Spectrum<br>(CDCI3)                | 0.7~1.8(12H, 6xCH <sub>2</sub> )<br>2.1(3H, NCH <sub>3</sub> )<br>2.1~2.8(3H, NCH <sub>2+</sub> NCH)<br>2.7~3.1(2H, NCH <sub>2</sub> )<br>7.1~7.5(1H, NH), 7.5(1H)<br>7.9~8.7(4H), 9.2(1H) | 1.5~1.9(2H), 2.7(3H, NCH <sub>3</sub> )<br>2.8~3.4(4H, 2×NCH <sub>2</sub> )<br>6.2(1H, NH), 6.5~6.8(3H)<br>6.9~7.3(2H), 7.6(1H)<br>8.0~8.6(4H), 9.25(1H) | 1.3 ~ 1.9(2H, $CH_2$ ), 1.95(3H, $NCH_3$ ) 2.3 ~ 2.7(2H, $NCH_2$ ) 3.0 ~ 3.3(2H, $NCH_2$ ) 3.3(2H, $C_6H_5CH_2$ ) 7.0 ~ 7.1(1H, $NH$ ) 7.2(5H, $C_6H_5$ ), 7.6(1H) 8.0 ~ 8.5(4H), 9.3(1H) |
|-----------------------|-----------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Œ                                                   | Spectrum cap (v max,cm <sup>-1</sup> ) | 2930, 2850<br>1330, 1160<br>1140, 790<br>760                                                                                                                                               | 3050, 2900<br>2850, 1620<br>1500, 1330<br>1180, 1135<br>830, 750                                                                                         | 3050, 2950<br>2850, 2800<br>1620, 1450<br>1330, 1210<br>1155, 1135                                                                                                                        |
| TABLE 4-2 (Continued) |                                                     | Mass<br>Spectrum<br>(m/e)              | 361, 318<br>249, 221<br>192, 169<br>126                                                                                                                                                    | 355, 163<br>134, 128<br>120                                                                                                                              | 369, 354<br>278, 221<br>177, 134<br>128, 120<br>91                                                                                                                                        |
| TABLE 4               | N B                                                 | Yield (%)]                             | (62)                                                                                                                                                                                       | (36)                                                                                                                                                     | (71)                                                                                                                                                                                      |
| α                     | H <sub>3</sub> ) <sub>3</sub> N <sub>2</sub> Z-     | , 6j                                   | 0.43                                                                                                                                                                                       | 0.27                                                                                                                                                     | 0.86                                                                                                                                                                                      |
|                       | SO <sub>2</sub> NH(CH <sub>3</sub> ) <sub>3</sub> N | -N R <sub>2</sub>                      | P. N.                                                                                                                                                                                      | Ho Z                                                                                                                                                     | -N CH <sub>2</sub>                                                                                                                                                                        |
|                       |                                                     | Compound<br>No.                        | (22)                                                                                                                                                                                       | (23)                                                                                                                                                     | (24)                                                                                                                                                                                      |
|                       |                                                     | Run<br>No.                             | က                                                                                                                                                                                          | ø                                                                                                                                                        | 4                                                                                                                                                                                         |

#### Example 6

In 100 ml of chloroform was dissolved 5.0 g of 1-methylpiperazine, and to the solution was added 6.9 g of anhydrous potassium carbonate. To the mixture was added dropwise 200 ml of a chloroform solution containing 1.4 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the chloroform solution, the mixed solution thus obtained was stirred for one hour under cooling with ice, and then the reaction solution was washed with 50 ml of a 5N aqueous sodlum hydroxide solution and extracted twice with 50 ml of a 5N aqueous hydrochloric acid solution. The aqueous hydrochloric acid layer was rendered alkaline, extracted three times with 100 ml of chloroform, and the chloroform layer extracted was washed with water and dried with anhydrous 10 magnesium sulfate. After the chloroform was distilled therefrom under reduced pressure, 50 ml of a 5N aqueous hydrochloric acid solution was added to the residue and the mixture was condensed to dryness under reduced pressure. The crystalline residue thus obtained was recrystallized from ethanol to give 14.9 g of 1-(5-isoquinolinesulfonyl)-4-methylpiperazine [i.e., Compound (36)] dihydrochloride in a yield of 82%.

Melting point: 215°C

Mass spectrum (m/e): 291 (M+1), 128 and 99

NMR spectrum (CDCl<sub>3</sub>,  $\delta$ ): 2.9 (3H, s, CH<sub>3</sub>), 3.0—4.0 (8H, m, 4×CH<sub>2</sub>),7.8—8.1 (1H), 8.5—8.8 (4H) and 9.6 (1H, s)

IR absorption spectrum ( $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>): 3400, 1610, 1378, 1350, 1160 and 1140.

20

### Example 7

In 100 ml of ethanol were added 2.77 g of 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound (35), 1.66 g of anhydrous potassium carbonate and 5.45 g of ethyl bromide, and the reaction was carried out at an external temperature of 70°C for 24 hours. After the reaction solution was filtered, the 25 filtrate was condensed and the residue was dissolved in 50 ml of chloroform, and the solution was extracted twice with a 2N aqueous hydrochloric acid solution. The aqueous hydrochloric acid layer was rendered alkaline, extracted twice with 50 ml of chloroform, and the chloroform layer extracted was washed with water and dried with anhydrous magnesium sulfate. After the chloroform was distilled therefrom, the residue obtained was subjected to a silica gel column chromatography (silica gel: 100 g; solvent: 2% methanol-chloroform) to give 2.26 g of 1-(5-isoquinolinesulfonyl)-4-ethylpiperazine, i.e., Compound (42) in a yield of 74%.

Melting point (the dihydrochloride recrystallized from ethanol): 221°C

Mass spectrum (m/e): 305 (M+), 290 (M-15), 277, 128 and 113

NMR spectrum (CDCl<sub>3</sub>,  $\delta$ ): 0.9 (3H, t, CH<sub>3</sub>), 2.2—2.8 (6H, m,  $3\times$ CH<sub>2</sub>), 2.9—3.4 (4H, m,  $2\times$ CH<sub>2</sub>).

-8.9 (5H, m) and 9.3 (1H, s)

IR absorption spectrum ( $v_{max}^{cap}$  cm<sup>-1</sup>): 1610, 1350, 1340 and 1140.

## Example 8

The same procedures as in Example 7 were repeated except that 3.7 g of propyl bromide was employed instead of the 5.45 g of ethyl bromide. As a result there was obtained 1.53 g of 1-(5-isoquinolinesulfonyl)-4-propylpiperazine, i.e., Compound (44) in a yield of 48%.

Melting point (the dihydrochloride recrystallized from ethanol): 214°C

Mass spectrum (m/e): 319 (M<sup>+</sup>), 290 (M–29), 127 and 88 NMR spectrum (CDCl<sub>3</sub>  $\delta$ ): 0.8 (3H, t, CH<sub>3</sub>), 1.0—1.7 (2H, m, 1 × CH<sub>2</sub>), 2.0—2.7 (6H, m, 3 × NCH<sub>2</sub>), 3.0—3.3 (4H, m, 2 × NCH<sub>2</sub>), 7.5—8.7 (5H, m) and 9.2 (1H, s)

IR absorption spectrum ( $\nu_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 1607, 1350, 1260, 1165 and 1140.

#### Example 9

In 30 ml of chloroform was added 1.42 g of 1-isobutylpiperazine and 2.76 g of potassium carbonate, and to the mixture was added dropwise 50 ml of a chloroform solution containing 2.28 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the chloroform solution, the mixed solution thus obtained was stirred at a temperature of 15°C to 25°C for two hours, and then the reaction solution was washed with 20 ml of a 1N aqueous sodium hydroxide solution and extracted twice with a 5N aqueous hydrochloric acid solution. The aqueous hydrochloric acid layer was rendered alkaline, extracted three time with 30 ml of chloroform, and the chloroform layer extracted was washed with water and dried with anhydrous magnesium sulfate. After the chloroform was distilled therefrom under reduced pressure, the residue obtained was subjected to a silica gel column chromatography (silica gel: 100 g; solvent: 2% methanol-chloroform) to give 2.60 g of 1-(5-isoquinolinesulfonyl)-4-isobutylpiperazine, i.e., Compound (47) in a yield of 78%

Melting point (the dihydrochloride recrystallized from ethanol): 234°C

Mass spectrum (m/e): 333 (M<sup>+</sup>), 290 (M-C<sub>3</sub>H<sub>7</sub>), 141 and 128 NMR spectrum (CDCl<sub>3</sub>,  $\delta$ ): 0.8 (6H, d, 2×CH<sub>3</sub>), 1.2—2.0 (1H, m, CH), 2.0—3.3 (10H, 5×NCH<sub>2</sub>), -8.8 (5H) and 9.3 (1H, s)

IR absorption spectrum ( $\nu_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3430, 1620, 1350, 1340, 1170 and 1145.

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 5—1 under the reaction conditions as set forth in Table 5—1, and there were obtained 1-(5-isoquinolinesulfonyl)-4-n-hexylpiperazine, i.e., Compound (51); 1-(5-isoquinolinesulfonyl)-4-phenethylpiperazine, i.e., Compound (55); 1-(5-isoquinolinesulfonyl)-4-phenethylpiperazine, i.e., Compound (57); 1-(5-isoquinolinesulfonyl)-4-cinnamylpiperazine i.e., Compound (59); and 1-(5-isoquinolinesulfonyl)-4-(2-ethoxy-4-phenylethyl)piperazine, i.e., Compound (63). The results and the analytical values of these compounds are shown in Table 5—2.

|           | Reaction<br>Time<br>(hour)            | Ø .                                   | -ditto- | -ditto-                              | -ditto-                    | -ditto-                                                |
|-----------|---------------------------------------|---------------------------------------|---------|--------------------------------------|----------------------------|--------------------------------------------------------|
|           | Reaction<br>Temperature<br>(°C)       | 15 ~ 25                               | -ditto- | -ditto-                              | -ditto-                    | -ditto-                                                |
|           | К <sub>2</sub> СО <sub>3</sub><br>(g) | 2.76                                  | -ditto- | -ditto-                              | -ditto-                    | -dltto-                                                |
| TABLE 5-1 |                                       | 1.70                                  | 1.62    | 1.9                                  | 2.1                        | 2.34                                                   |
| TABI      | HN (g)                                | HN N-n-C <sub>6</sub> H <sub>13</sub> | NH NH   | HN N-CH <sub>2</sub> CH <sub>2</sub> | HN N-GH <sub>2</sub> OH=GH | HN N-CH <sub>2</sub> CH OC <sub>2</sub> H <sub>5</sub> |
|           | SO (9)                                | 2.28                                  | -ditto- |                                      | -ditto-                    | -ditto-                                                |
|           | Run<br>No.                            | <del>-</del>                          | 8       | <b>с</b>                             | 4                          | ശ                                                      |

|           |                                          | NMR Spectrum<br>(CDCls)                  | 0.6~1.8(11H, 4xCH <sub>2</sub> +CH <sub>3</sub> )<br>3.2~3.7(6H, 3xNCH <sub>2</sub> )<br>3.1~3.5(4H, 2xNCH <sub>2</sub> )<br>7.4~8.8(5H), 9.3(1H) | 3.8(8H, 4xNC <i>H</i> 2)<br>7.6(5H, C <sub>6</sub> H <sub>5</sub> )<br>7.6 ~ 9.0(5H), 9.2(1H) | 2.5~4.0(12H, 6xCH <sub>2</sub> )<br>7.3(5H), 7.9~9.0(5H)<br>9.8(1H)<br>(d <sup>6</sup> -dimethyl sulfoxide) | 4.0(8H, 4xNCH <sub>2</sub> )<br>3.9(2H, NCH <sub>2</sub> CH=)<br>6.0~ 8.5(1H), 6.9(1H)<br>7.3~7.5(5H), 8.0~9.2(5H)<br>9.9(1H)<br>(CD <sub>3</sub> OD) |
|-----------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | IR<br>Absorption                         | Spectrum (   cap cm <sup>-1</sup> ) max, | 1620, 1460<br>1350, 1335<br>1170, 1140                                                                                                            | 3400, 1605<br>1360, 1170<br>1150                                                              | 3400, 1350<br>1330, 1155<br>950                                                                             | 3400, 1350<br>1165, 1140<br>935                                                                                                                       |
| TABLE 6-2 |                                          | Mass<br>Spectrum<br>(m/e)                | 361, 290<br>169, 98                                                                                                                               | 353, 278<br>161                                                                               | 290<br>(M-CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> )                                                   | 394, 303<br>202, 117                                                                                                                                  |
| TAB       |                                          | Yield (%)]                               | (22)                                                                                                                                              | (69)                                                                                          | (64)                                                                                                        | (91)                                                                                                                                                  |
|           |                                          | e]                                       | 2.64                                                                                                                                              | 2.44                                                                                          | 44.                                                                                                         | 3.58                                                                                                                                                  |
|           | S. S | <br>R6                                   | n-C <sub>6</sub> H <sub>13</sub>                                                                                                                  |                                                                                               | 유<br>주<br>주                                                                                                 | p<br>c,<br>d = d — ⟨                                                                                                                                  |
|           |                                          | Compound<br>No.                          | (51)                                                                                                                                              | (65)                                                                                          | (57)                                                                                                        | (59)                                                                                                                                                  |
|           |                                          | Run<br>No.                               | -                                                                                                                                                 | 0                                                                                             | ო                                                                                                           | 4                                                                                                                                                     |



## Example 10

In 150 ml of ethanol were added 2.77 g of 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound (35), 1.0 g of potassium hydroxide and 1.9 g of benzyl chloride, and the mixture was refluxed under heating for five hours. After the ethanol was removed from the reaction solution, 100 ml of chloroform was added to the resulting solution, and the solution obtained was washed with a buffer solution having a pH of 5.5 and extracted twice with 20 ml of a 2N aqueous hydrochloric acid solution. The aqueous hydrochloric acid layer was rendered alkaline, extracted twice with 50 ml of chloroform, and the chloroform layer extracted was washed with water and dried with anhydrous magnesium sulfate. After the chloroform was distilled therefrom under reduced pressure, 5 ml of a 10N aqueous hydro-10 chloric acid solution was added to the residue and the mixture was condensed to dryness. The crystalline residue thus obtained was recrystallized from ethanol to give 2.9 g of 1-(5-isoquinolinesulfonyl)-4-benzylpiperazine [i.e., Compound (56)] dihydrochloride in a yield of 66%.

Melting point: 230°C

Mass spectrum (m/e): 361 (M+1), 290 (M-C<sub>5</sub>H<sub>11</sub>), 169 and 98

NMR spectrum (d<sup>6</sup>-dimethyl sulfoxide,  $\delta$ ): 3.0—4.0 (8H, 4×NC $H_2$ ), 3.3 (2H, s, NC $H_2$ ), 7.8—8.8 15 (5H) and 9.3 (1H, s)

IR absorption spectrum ( $v_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup>): 3350, 3450, 1360 and 1165.

#### Example 11

In 50 ml of chloroform were added 2.77 g of 1-(5-isoquinolinesulfonyl)piperazine, i.e., Compound 35 and 1.54 g of anhydrous potassium carbonate, and to the mixture was added dropwise 1.70 g of benzoyl chloride under cooling with ice, and the mixture was stirred at a temperature of 15°C to 20°C for three hours. The reaction solution was washed with a 1N aqueous sodium hydroxide solution, then with water and dried with anhydrous magnesium sulfate. After the chloroform was distilled therefrom, 25 the residue thus obtained was subjected to a silica gel column chromatography (silica gel: 70 g; solvent: chloroform) to give 2.7 g of 1-(5-isoquinolinesulfonyl)-4-benzoylpiperazine, i.e., Compound (58) in a yield of 71%.

Melting point (the hydrochloride): 217°C

Mass spectrum (m/e): 381 (M+), 318, 276 and 289

NMR spectrum (CDCl<sub>3</sub>,  $\delta$ ): 3.1—3.9 (8H,  $4\times$ CH<sub>2</sub>), 7.2 (5H), 7.5—8.5 (5H) and 9.3 (1H) IR absorption spectrum ( $\nu_{\rm max}^{\rm cap}$ , cm<sup>-1</sup>): 1690, 1370 and 1160.

The same procedures as described above were repeated using the compounds of the formula, -W under the reaction conditions as set forth in Table 6—1, and there were obtained 1-(5isoquinolinesulfonyl)-4-cinnamoylpiperazine, i.e., Compound (60) and 1-(5-isoquinolinesulfonyl)-4furoylpiperazine, i.e., Compound (61). The results and the analytical values of these compounds are shown in Table 6-2.

40

20

30

45

50

55

60

|          | :      | Heaction<br>Time<br>(hour)      | တ            | -ditto- |
|----------|--------|---------------------------------|--------------|---------|
|          | :<br>1 | Heaction<br>Temperature<br>(°C) | 15 ~ 20      | -ditto- |
|          |        | K2CO3<br>(g)                    | 1.54         | -ditto- |
| E 6-1    |        |                                 | 2.0          | 1.58    |
| TABLE 6- |        | R <sub>6</sub> W<br>(g)         | CH=CHCCI     | 0       |
|          | 08 / S | -Z<br>(6)                       | 2.77         | -ditto- |
|          |        | Run<br>No.                      | <del>-</del> | 2       |

|           |                  | NMR Spectrum<br>(CDClg)                     | 3.2~3.8(8H, 4xCH <sub>2</sub> )<br>6.7~7.5(2H, 2xC <i>H</i> )<br>7.3(5H), 7.9~9.2(5H)<br>10.0(1H) | 3.0~4.0(8H, 4xCH <sub>2</sub> )<br>6.4(1H), 6.95(1H)<br>7.4(1H), 7.4~8.8(5H)<br>9.3(1H) |
|-----------|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|           | IR<br>Absorption | spectrum ( $ u$ cap cm <sup>-1</sup> ) max, | 3400, 1645<br>1600, 1360<br>1165                                                                  | 3400, 1620<br>1490, 1335<br>1170, 1150                                                  |
| 2         | :                | Mass<br>Spectrum<br>(m/e)                   | 407, 344 · 277, 215                                                                               | 37.1                                                                                    |
| TABLE 6-2 | N-H <sub>B</sub> | (%)]                                        | (80)                                                                                              | (88)                                                                                    |
|           |                  | Yield                                       | 3.26                                                                                              | 3.26                                                                                    |
|           |                  | Re                                          |                                                                                                   | <br>                                                                                    |
|           |                  | Compound<br>No.                             | . 09                                                                                              | <b>1</b> 6                                                                              |
|           |                  | Run<br>No.                                  | <del>-</del>                                                                                      | Ø                                                                                       |

#### Example 12

In 30 ml of methylene chloride were dissolved 1.75 g of 2,5-dimethylpiperazine and 1.53 g of triethylamine, and to the solution was added dropwise 20 ml of a methylene chloride solution containing 1.73 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the methylene chloride solution, the mixed solution obtained was stirred at a temperature of 5°C to 10°C for three hours, and then the reaction mixture solution was washed with water and dried with anhydrous magnesium sulfate. After the methylene chloride was distilled therefrom, the residue obtained was subjected to an alumina column chromatography (alumina: 50 g; solvent: chloroform) to give 1.38 g of 1-(5-isoquinolinesulfonyl)-2,5-dimethylpiperazine, Compound (40) in a yield of 59%.

Mass spectrum (m/e): 305, 277, 249, 192 and 128 NMR spectrum (CDCI<sub>3</sub>): 0.8—1.3 (6H,  $2\times CH_3$ ), 1.7 (1H, NH), 2.3—4.2 (6H,  $2\times CH_2+2\times CH$ ), 7.6 (1H), 8.0—8.8 (4H) and 9.3 (1H).

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 7—1 under the reaction conditions as set forth in Table 7—1, and there were obtained 1-(5-isoquinolinesulfonyl)-3-methylpiperazine, i.e., Compound (37); 1-(5-isoquinolinesulfonyl)-2,3-dimethylpiperazine, i.e., Compound (39); 1-(5-isoquinolinesulfonyl)-2,3-dimethylpiperazine, i.e., Compound (41); 1-(5-isoquinolinesulfonyl)-3-ethylpiperazine, i.e., Compound (43); 1-(5-isoquinolinesulfonyl)-3-isopropylpiperazine, i.e., Compound (45); 1-(5-isoquinolinesulfonyl)-2,5-diethylpiperazine, i.e., Compound (48); 1-(5-isoquinolinesulfonyl)-2-methyl-5-isobutylpiperazine, i.e., Compound (49); 1-(5-isoquinolinesulfonyl)-2-methyl-5-benzylpiperazine, i.e., Compound (50); 1-(5-isoquinolinesulfonyl)-3-phenylpiperazine, i.e., Compound (53); 1-(5-isoquinolinesulfonyl)-3-benzylpiperazine, i.e., Compound (54); and 1-(5-isoquinolinesulfonyl)-3,3-dimethylpiperazine, i.e., Compound (68).

The results and the analytical values of these compounds are shown in Table 7-2.

|                 | Reaction<br>Time<br>(hour)        | 8                                        | -dltto-                                  | -                             | 10      | 81      | -ditto- |
|-----------------|-----------------------------------|------------------------------------------|------------------------------------------|-------------------------------|---------|---------|---------|
| TABLE 7-1<br>B. | Reaction<br>Temperature<br>(°C)   | 2 ~ 10                                   | -ditto-                                  | 15 ~ 25                       | -ditto- | -ditto- | ditto   |
|                 | N(C,H <sub>5</sub> ) <sub>3</sub> | 1.53                                     | -ditto-                                  | Ē                             | 1.0     | H       | ditto-  |
|                 |                                   | 1.52                                     | 1.73                                     | 1.25                          | 1.1     | 1.28    | 1.42    |
|                 | HN HN S (6)                       | A. A | HN NH N | H <sub>3</sub> C <sub>H</sub> | S E     | HN NH   | H NH    |
|                 | SO (B)                            | 1.73                                     | P P                                      | 1.0                           | 1.14    | ditto   | -ditto- |
|                 | Run<br>No.                        | -                                        | N                                        | м                             | 4       | ຜ       | ω       |

|                       | Reaction<br>Time<br>(hour)         | 18                                                                | 50       | -ditto-                                                                    | -ditto-    | -ditto-                                  | -ditto- |
|-----------------------|------------------------------------|-------------------------------------------------------------------|----------|----------------------------------------------------------------------------|------------|------------------------------------------|---------|
|                       | Reaction<br>Temperature<br>(°C)    | 15 ~ 25                                                           | 88       | -ditto-                                                                    | -ditto-    | -ditto-                                  | 15 ~ 25 |
| (juned)               | N(C <sub>2</sub> H <sub>5</sub> )3 | 1.53                                                              | 2.3      | -ditto-                                                                    | ditto      | -ditto-                                  | 1.0     |
| TABLE 7-1 (Continued) | -                                  | 2,28                                                              | 3.43     | 4.17                                                                       | 3.56       | 3.90                                     | 1.14    |
|                       | HN NH NH (B)                       | H <sub>5</sub> C <sub>2</sub> HN NH C <sub>2</sub> H <sub>5</sub> | HN NH NH | H <sub>3</sub> C<br>HN NH<br>CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> | HN HN S    | HN NH N | HN NH   |
|                       | OS (6)                             | 1.73                                                              | 1.0      | -ditto-                                                                    | -ditto-    | ditto                                    | 1.14    |
|                       | Run .<br>No.                       | 7                                                                 | ω        | O)                                                                         | . <b>0</b> | <del>E</del>                             | 12      |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NMR Spectrum<br>(CDCl3)                                      | 0.95(3H, C <i>H</i> <sub>3</sub> ), 1.6(1H, N <i>H</i> )<br>1.8~3.2(5H), 3.65(2H)<br>7.6(1H), 8.1~8.7(4H)<br>9.3(1H) | 1.0(6H, 2xCH <sub>3</sub> ), 2.1(2H)<br>2.5~3.3(2H), 3.6~4.0(2H)<br>4.3(1H, N <i>H</i> ), 7.8(1H)<br>8.1~8.8(4H), 9.4(1H) | $0.9 \sim 1.3 (6H, 2x CH_3)$ $1.6 (1H, NH), 2.6 \sim 4.3 (6H)$ $7.6 (1H), 8.1 \sim 8.8 (4H)$ $9.3 (1H)$ |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IR<br>Absorption<br>Spectrum<br>cap<br>(\$\rho\$ max, cm^-1) | 3300, 3000<br>2950, 2850<br>1610, 1560<br>1480, 1360<br>1330, 1160<br>1140, 1070                                     | 3350, 2920<br>2850, 1450<br>1370, 1330<br>1155, 1140                                                                      | 3400, 2920<br>2850, 1610<br>1360, 1330<br>1160, 1140                                                    |
| TABLE 7-2 | Solve Service | Mass<br>Spectrum<br>(m/e)                                    | 276, 206<br>162, 148                                                                                                 | 305, 278<br>264, 249<br>192, 128<br>114                                                                                   | 305, 277<br>249, 192<br>128                                                                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y leld (%)]                                                  | (88)                                                                                                                 | (92)                                                                                                                      | (75)                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y ej                                                         | 1.60                                                                                                                 | 2.<br>4.                                                                                                                  | 1.0                                                                                                     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R Y N N N N N N N N N N N N N N N N N N                      | P N N N N N N N N N N N N N N N N N N N                                                                              |                                                                                                                           | £ N N N N N N N N N N N N N N N N N N N                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compound<br>No.                                              | (37)                                                                                                                 | (66)                                                                                                                      | (41)                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.                                                          | <del>-</del> .                                                                                                       | 84                                                                                                                        | က                                                                                                       |

|                        | NMR Spectrum<br>(CDCl3)                                     | 1.0(3H, CH <sub>3</sub> ), 1.4(2H)<br>2.1(1H, NH), 1.8~3.0(5H)<br>3.6(2H), 7.6(1H)<br>8.0~8.6(4H), 9.3(1H) | 0.7~1.3(7H, C <sub>3</sub> H <sub>7</sub> ), 2.1(1H, N <i>H</i> )<br>1.8~3.5(5H), 3.7(2H)<br>7.6(1H), 8.1~8.8(4H)<br>9.3(1H) | 0.5.~1.3(9H, C <sub>4</sub> Hg), 2.7(1H, N <i>H</i> )<br>2.0~3.4(5H), 3.75(2H)<br>7.5(1H), 8.1~8.7(4H), 9.3(1H) | 0.7 ~1.8(10H, 2xC <sub>2</sub> H <sub>5</sub> ), 1.7(1H)<br>2.3 ~4.3(6H), 7.6(1H)<br>8.0 ~ 8.7(4H), 9.3(1H) |
|------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                        | IR<br>Absorption<br>Spectrum<br>(v. cap. cm <sup>-1</sup> ) | 3400, 2950<br>2800, 1600<br>1360, 1340<br>1160, 1140                                                       | 3400, 1610<br>1480, 1370<br>1335, 1160<br>1130                                                                               | 3350, 1600<br>1470, 1360<br>1330, 1160                                                                          | 3400, 1610<br>1400, 1360<br>1340, 1160<br>1130                                                              |
| TABLE 7-2 (Continued). | Mass<br>Spectrum<br>(m/e)                                   | 305, 206<br>192, 128<br>114                                                                                | 319, <i>27</i> 6<br>221, 128                                                                                                 | 333, 221<br>128                                                                                                 | 333, 265<br>248, 192                                                                                        |
| 3LE 7-                 | Yieid<br>[g (%)]                                            | (0.2)                                                                                                      | (64)                                                                                                                         | (64)                                                                                                            | (65)                                                                                                        |
| TAE                    |                                                             | 1.07                                                                                                       | 1.02                                                                                                                         | 1.07                                                                                                            | 1,65                                                                                                        |
|                        | H <sub>S</sub>                                              | -N NH NH                                                                                                   | N - N - N - N - N - N - N - N - N - N -                                                                                      | N- SH                                                                                                           | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-                                                                      |
|                        | Compound<br>No.                                             | (43)                                                                                                       | (45)                                                                                                                         | (46)                                                                                                            | (48)                                                                                                        |
|                        | Run<br>No.                                                  | 4.                                                                                                         | ro.                                                                                                                          | ဖ                                                                                                               | ~                                                                                                           |

|                                        |                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NMR Spectrum<br>(CDCl3)                | 0.7 ~ 1.8(12H, $C_4H_{9^4}CH_3$ ) 1.8(1H), 2.0 ~ 4.1(6H), 7.7(1H) 8.1 ~ 8.8(4H), 9.3(1H) | 1.0(3H, CH <sub>3</sub> ), 1.6(1H, N <i>H</i> )<br>2.0~4.3(8H), 7.1(5H)<br>7.6(1H), 8.0~8.6(4H)<br>9.3(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.6(1H), 1.8~3.2(5H)<br>3.65(2H), 7.2(5H)<br>7.6(1H) 8.1~8.7(4H)<br>9.3(1H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IR Absorption Spectrum (v cap cm²)     | 3400, 1610<br>1450, 1360<br>1340, 1160<br>1130                                           | 3350, 1600<br>1500, 1355<br>1340, 1160<br>1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3300, 1600<br>1510, 1360<br>1335, 1160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mass<br>Spectrum<br>(m/e)              | 347, 220<br>192, 128                                                                     | 381, 291<br>220, 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 353, 312<br>278, 235<br>192, 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (%)                                    | (28)                                                                                     | (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( 6)                                   | 0.88                                                                                     | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HN N N N N N N N N N N N N N N N N N N | £ N N N N N N N N N N N N N N N N N N N                                                  | HN N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TZ Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Compound<br>No.                        | (49)                                                                                     | . (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Run<br>No.                             | . <b>6</b> 0                                                                             | თ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | Compound — NH Yield Spectrum (v cap no. 1)  No. (m/e) (m/e) (w max, cm <sup>-1</sup> )   | Compound — N NH [g Yield Spectrum (x cap cm <sup>-1</sup> )]  CH <sub>3</sub> (49) — N NH 0.88 (58) 347, 220 3400, 1610  CH <sub>3</sub> | Compound — NH (g Yield Spectrum Cap Cap cm <sup>-1</sup> )  CH <sub>3</sub> CH |

|                       | NMR Spectrum<br>(CDCl3)                                   | 1.0~1.5(2H), 1.9(1H)<br>1.9~3.2(5H), 3.7(2H)<br>7.2(5H), 7.6(1H)<br>8.1~8.7(4H), 9.3(1H) | 1.2(6H, 2xC <i>H</i> 3), 1.3 ~2.1(1H, N <i>H</i> )<br>2.6 ~3.4(6H, 3xC <i>H</i> 3), 7.6(1H)<br>8.0 ~8.7(4H), 9.3(1H) |
|-----------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                       | IR<br>Absorption<br>Spectrum<br>(ν cap cm <sup>-1</sup> ) | 3400, 1600<br>1500, 1360<br>1340, 1160<br>1140                                           | 3300, 3000<br>2850, 1620<br>1560, 1370<br>1160, 1140                                                                 |
| TABLE 7–2 (Continued) | Mass<br>Spectrum<br>(m/e)                                 | 367, 276<br>220, 148<br>128                                                              | 305, 290<br>276, 191<br>129                                                                                          |
| TABLE 7.              | Yield (%)]                                                | (0.2)                                                                                    | (63)                                                                                                                 |
|                       | 6]                                                        | 1.13                                                                                     | 96                                                                                                                   |
| os                    | R. Y.                 | CH <sub>2</sub>                                                                          | PA P                                                                             |
|                       | Compound<br>No.                                           | (54)                                                                                     | (89)                                                                                                                 |
|                       | Run<br>So.                                                | F                                                                                        | 12                                                                                                                   |

Example 13

In 50 ml of chloroform wer dissolved 4.68 g of 1-benzyloxycarbonyl-3-methylpiperazine and 1.01 g of triethylamine, and to the solution was added dropwise 20 ml of a chloroform solution containing 4.55 g of 5-isoquinolinesulfonyl chloride, and the mixed solution was stirred at a temperature of 20°C to 25°C for 20 hours. The reaction solution obtained was washed with a saturated aqueous sodium hydrogencarbonate solution then with a saturated aqueous ammonium chloride solution, dried with anhydrous magnesium sulfate and concentrated to dryness under reduced pressure to 8.1 g of 1-(5-isoquinolinesulfonyl)-4-benzyloxycarbonyl-2-methylpiperazine as a yellowish white oily substance.

NMR spectrum (CDCl<sub>3</sub>): 1.0 (3H, d, C $H_3$ ), 2.5—4.3 (7H), 5.0 (2H, S, OC $H_2$  — ).

7.25 (5H, S,  $C_{\theta}H_{s}$ ), 7.55 (1H), 8.0—8.7 (4H) and 9.2 (1H) IR absorption spectrum ( $v_{max}^{cm}$  cm<sup>-1</sup>): 1.700, 1360 and 1130.

To 1.65 g of 1-(5-isoquinolinesulfonyl)-4-benzyloxycarbonyl-2-methylpiperazine as obtained above was added 5 ml of 25% hydrobromic acid-acetic acid, and the mixture was stirred at 20°C for five hours. To the reaction solution was added 30 ml of ethyl ether, and the crystals precipitated were separated by filtration. The crystals thus obtained were dissolved in 20 ml of water and washed with chloroform. Then the pH of the aqueous layer was adjusted to 9 with a 1N aqueous sodium hydroxide solution, extracted with chloroform, and the chloroform layer was washed with water and dried with anhydrous magnesium sulfate. Then the chloroform was distilled therefrom under reduced pressure to give 1.05 g of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, i.e., Compound (38) in a yield of 93%.

Mass spectrum (m/e): 291, 277, 249, 192, 129 and 128 NMR spectrum (CDCl<sub>3</sub>): 1.3 (6H, d, 2×CH<sub>3</sub>), 1.9 (1H, NH), 2.2—3.1 (4H), 3.1—4.0 (2H), 4.2 (1H),

7.7 (1H), 8.1—8.8 (4H) and 9.3 (1H)

IR absorption spectrum ( $\nu_{\rm max}^{\rm cap}$  cm<sup>-1</sup>): 3330, 2940, 2870, 2830, 1607, 1370, 1320, 1160, 1135, 990 and 760

Example 14

In 40 ml of chloroform were dissolved 2.23 g of 2-benzyloxycarbonyl-1-methylethylamine and 1.2 g of triethylamine, and to the solution was added dropwise 20 ml of a chloroform solution containing 2.28 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the chloroform solution, the mixed solution was stirred at a temperature of 20°C to 25°C for two hours. The reaction solution obtained was washed with a saturated aqueous hydrogencarbonate solution, then with water, dried with anhydrous magnesium sulfate and then the chloroform was distilled therefrom under reduced pressure to give 3.55 g of N-(2-benzyloxycarbonylamino-1-methylethyl)-5-isoquinolinesulfonamide in a yield of 89%.

NMR spectrum (CDCl<sub>3</sub>): 0.95 (3H, CH<sub>3</sub>), 2.5—4.5 (3H), 5.0 (2H, OCH<sub>2</sub>—

6.6 (1H), 7.2 (5H), 7.6 (1H), 8.0—8.6 (4H) and 9.3 (1H) IR absorption spectrum ( $\nu_{\rm max}^{\rm cap}$  cm $^{-1}$ ): 3350, 1700, 1330 and 1160.

To 2.0 g of N-(2-benzyloxycarbonylamino-1-methylethyl)-5-isoquinolinesulfonamide as obtained above was added 5 ml of 25% hydrobromic acid-acetic acid, and the mixture was stirred at a temperature of 20°C to 25°C for 20 hours. To the reaction solution was added 30 ml of ethyl ether, and the crystals precipitated were separated by filtration. The crystals thus obtained were dissolved in 20 ml of water, washed with chloroform, rendered alkaline with a 1N sodium hydroxide solution and extracted with chloroform. The chloroform layer was washed with water, dried with anhydrous magnesium sulfate and the chloroform was distilled under reduced pressure to give 1.2 g of N-(2-amino-1-methylethyl)-5-isoquinolinesulfonamide, i.e., Compound (6) in a yield of 90%.

Mass spectrum (m/e): 265, 240, 221, 192 and 128

NMR spectrum (CDCl<sub>3</sub>): 1.1 (3H), 1.7 (2H), 2.6 (2H), 3.7 (1H), 6.5 (1H), 7.6 (1H), 8.0—8.7 (4H) and 9.3 (1H)

IR absorption spectrum ( $v_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3400, 2900, 1610, 1460, 1330, 1160 and 1140.

The same procedures as described above were repeated using the compounds of Formula (III) as set forth in Table 8—1 under the reaction conditions as set forth in Table 8—1 and Table 8—2, and there were obtained N-(1-aminomethylpropyl)-5-isoquinolinesulfonamide, i.e., Compound (7); N-(1-aminomethylpentyl)-5-isoquinolinesulfonamide, i.e., Compound (8); and N-(2-amino-1-phenylethyl)-5-isoquinolinesulfonamide, i.e., Compound (12). The analytical values of these compounds thus obtained are shown in Table 8—3.

10

15

25

30

| SO <sub>2</sub> NHCHCH <sub>2</sub> NH-Z | IR Absorption<br>Spectrum                      | (ν max, cm <sup>-1</sup> ) | 1710, 1330, 1160 | 1710, 1340, 1160    | 1710, 1330, 1160 |
|------------------------------------------|------------------------------------------------|----------------------------|------------------|---------------------|------------------|
| SO NH                                    | Þ                                              | [(%)                       | (85)             | (70)                | (74)             |
|                                          | Yield                                          | ß]                         | 3.5              | 3.1                 | 3.4              |
|                                          | Reaction<br>Time                               | (hour)                     | 4                | ditto-              | -ditto-          |
|                                          | Reaction<br>Temperature                        | (o <sub>o</sub> )          | 20 ~ 25          | -ditto-             | -ditto-          |
|                                          | N(C <sub>2</sub> H <sub>E</sub> ) <sub>2</sub> | (a)                        | 1.2              | -ditto-             | -ditto-          |
|                                          | NH-Z                                           | (B) ·                      | 2.4              | 2.8                 | 3.0              |
| 1                                        | . H1<br>  NH2CHCH2NH-Z                         | R <sub>1</sub>             | C2H5             | n-C <sub>4</sub> H9 |                  |
| so <sup>2</sup> ci<br> -                 |                                                | (B)                        | 2.28             | -ditto-             | -ditto-          |
|                                          | E                                              | S                          | I                | Į.                  | Ĭ                |

|                       | Yield<br>(%)                        | (68)                          | (88)    | (02)    |                                          |
|-----------------------|-------------------------------------|-------------------------------|---------|---------|------------------------------------------|
|                       | Y ii                                | 06.0                          | 0.92    | 0.74    |                                          |
|                       | Product<br>Compound No.             | (2)                           | (8)     | (12)    | — G00CH <sub>2</sub> — (Z                |
|                       | Reaction<br>Time<br>(hour)          | 12                            | -ditto- | 18      | SO <sub>2</sub> NHCHCH <sub>2</sub> NH-Z |
| TABLE 8-2             | Reaction<br>Temperature<br>(°C)     | 20 ~ 25                       | -ditto- | -ditto- | S. S.                                    |
|                       | 25% HBrCH <sub>3</sub> COOH<br>(ml) | ιο                            | -ditto- | -ditto- | R1<br>NH2CHCH2NH-Z                       |
| ICH <sub>2</sub> NH-Z | (6)                                 | 1.5                           | -ditto- | -ditto- | ± ± +                                    |
| SONHCH                | Run<br>No. R <sub>1</sub> (g)       | C <sub>2</sub> H <sub>5</sub> | n-C4 Hg |         | S S Z Z                                  |
|                       | Run<br>No.                          | 1-2                           | 22      | 3-5     |                                          |

| NMR Spectrum                                                   | (E1000)   | 0.8(3H, $CH_3$ ), 1.0~1.7(2H)<br>1.9(2H, $NH_2$ ), 2.5~4.0(3H)<br>6.7(1H), 7.6~8.8(5H)<br>9.3(1H) | 0.7 ~ 2.0(9H), 2.1(2H, NH2)<br>2.5~ 3.8(3H), 7.0(1H)<br>7.6~ 8.8(5H), 9.3(1H) | 1.7(2H, $NH_2$ ), 2.5 ~ 4.4(3H) 6.6(1H), 7.1(5H) 7.6 ~ 8.8(5H), 9.3(1H) |
|----------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| IR Absorption<br>Spectrum<br>cap<br>(v. may cm <sup>-1</sup> ) | Han       | 3400, 2900, 1460<br>1360, 1160, 1140                                                              | 3350, 2900, 1370<br>1160, 1130                                                | 3350, 1610, 1350<br>1160, 1140                                          |
| TABLE 8-3 Mass Spectrum                                        | (a, /iii) | 279, 249, 221<br>192, 128                                                                         | 307, 277, 221<br>192, 128                                                     | 327, 297, 192<br>128                                                    |
| SO <sub>2</sub> NHCHCH <sub>2</sub> NH <sub>2</sub>            | 1         | C <sub>2</sub> H <sub>5</sub>                                                                     | n-C4H9                                                                        |                                                                         |
| Compound                                                       |           | (2)                                                                                               | (8)                                                                           | (12)                                                                    |
| A S                                                            |           | ÷                                                                                                 | 64                                                                            | က                                                                       |

## Example 15

In 50 ml of chloroform were dissolved 2.0 g of 2-acetamidopropylamine and 2.6 g of triethylamine, and to the solution was added dropwise 50 ml of a chloroform solution containing 3.28 g of 5-isoquinolinesulfonyl chloride under cooling with ice. Then the mixed solution was stirred at a temperature of 15°C to 25°C for two hours, and the reaction solution was washed with water, dried with anhydrous magnesium sulfate and the chloroform was distilled therefrom under reduced pressure to give 3.67 g of N-(2-acetamidopropyl)-5-isoquinolinesulfonamide in a yield of 83%.

NMR spectrum (CDCl<sub>3</sub>): 1.0 (3H, d,  $CH_3$ ), 2.2 (3H,  $COCH_3$ ), 2.6—3.8 (3H), 5.5—7.0 (2H), 7.6 (1H), 8.0—8.7 (4H) and 9.3 (1H)

IR absorption spectrum ( $v_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3300, 1670, 1365, 1150, 1130.

The reaction mixture of 3.0 g of the N-(2-acetamidopropyl)-5-isoquinolinesulfonamide as obtained above and 50 ml of 10% hydrochloric acid was stirred at a temperature of 90°C to 100°C for 36 hours. Then the reaction solution was washed with chloroform, rendered alkaline with 1N sodium hydroxide and extracted with chloroform. The chloroform layer was washed with water, dried with anhydrous magnesium sulfate, and the chloroform was distilled therefrom under reduced pressure. The residue thus obtained was subjected to an alumina column chromatography (alumina: 70 g; solvent: chloroform) to give 1.14 g of N-(2-aminopropyl)-5-isoquinolinesulfonamide, i.e., Compound (9) in a yield of 44%.

Mass spectrum (m/e): 265, 222, 193, 129 and 128 NMR spectrum (CDCl<sub>3</sub>): 1.0 (3H), 1.7 (2H), 2.9—4.0 (3H), 6.8 (1H), 7.5 (1H), 8.1—8.6 (4H) and

IR absorption spectrum ( $v_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3400, 1610, 1460, 1370, 1150 and 1130.

The same procedures as described above were repeated using the compounds of Formula (IV) as set forth in Table 9—1 under the reaction conditions as set forth in Table 9—1 and Table 9—2, and there were obtained N-(2-amino-3-methylbutyl)-5-isoquinolinesulfonamide, i.e., Compound (11) and N-(2-amino-2-phenylethyl)-5-isoquinolinesulfonamide, i.e., Compound (13).

The analytical values of these compounds are shown in Table 9-3.

36

10

20

25

35

40

45

50

55

60

|           | <u>ਕ</u> —ਰੂ                                 | IH Absorption<br>Spectrum<br>(v cap cm <sup>-1</sup> ) | 1665, 1330, 1160                | 1660, 1330, 1160 |  |
|-----------|----------------------------------------------|--------------------------------------------------------|---------------------------------|------------------|--|
|           | SO <sub>2</sub> NHCH <sub>2</sub>            | old (%)]                                               | (69)                            | (75)             |  |
|           |                                              | Yield                                                  | 2.31                            | 2.77             |  |
|           |                                              | Reaction<br>Time<br>(hour)                             | 9,0                             | <del>-</del>     |  |
| TABLE 9-1 |                                              | Reaction<br>Temperature<br>(°C)                        | 15 ~ 20                         | -ditto-          |  |
| ì         |                                              | N(C2H5)3<br>(9)                                        | 1.6                             | -ditto-          |  |
|           |                                              | COCH <sub>3</sub>                                      | 2.16                            | 2.67             |  |
|           | Æ                                            | H <sub>2</sub> NCH <sub>2</sub> CHNH-COCH <sub>3</sub> | 1-C <sub>3</sub> H <sub>7</sub> |                  |  |
|           | so co<br>——————————————————————————————————— | 2<br>2<br>3<br>3                                       | 2.28                            | ditto            |  |
|           |                                              | Run<br>No.                                             | 1                               | 2-1              |  |

|           |                                                          | Yield<br>(%)]           | (51)                            | (66)    |                                                          |
|-----------|----------------------------------------------------------|-------------------------|---------------------------------|---------|----------------------------------------------------------|
|           |                                                          | . E                     | 09.0                            | 0.38    | ę.                                                       |
|           |                                                          | Product<br>Compound No. | (11)                            | (13)    | SO <sub>2</sub> NHCH <sub>2</sub> CHNH-COCH <sub>3</sub> |
|           | Beaction                                                 | Time<br>(hour)          | 35                              | 30      | \$                                                       |
| TABLE 9-2 | Reaction of                                              | Temperature<br>(°C)     | 100                             | ) tilb  | .сосн                                                    |
|           | _                                                        | 10% HCI<br>(ml)         | 30                              | -ditto- | R1<br>                                                   |
|           | SO <sub>2</sub> NHCH <sub>2</sub> CHNH-COCH <sub>3</sub> | (6)                     | 1.34                            | Ë       | +<br>// \                                                |
|           | SO <sub>2</sub> NHOH,                                    | )<br> =<br> -           | i-C <sub>3</sub> H <sub>7</sub> |         | 00 - S                                                   |
|           |                                                          | ₽<br>No.                | 1–2                             | 22      |                                                          |

|           | NMR Spectrum<br>(CDCls)                             | 0.9(6 H, 2xCH <sub>3</sub> ), 1~1.8(1H)<br>2.5~3.8(3H), 2.1(2H)<br>7.6(1H), 8.1~8.9(4H)<br>9.3(1H) | 1.7(2H, N <i>H</i> 2), 2.7~4.0(3H)<br>6.8(1H), 7.2(5H), 7.6(1H)<br>8.0~8.8(4H), 9.3(1H) |
|-----------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|           | IR Absorption<br>Spectrum<br>(v cap<br>max, cnf1)   | 3450, 1600, 1460<br>1330, 1160, 1140                                                               | 3400, 1610, 1440<br>1400, 1330, 1150                                                    |
| TABLE 9-3 | Mass<br>Spectrum<br>(m/e)                           | 221, 182, 148<br>128                                                                               | 221, 192, 148<br>128                                                                    |
|           | SO <sub>2</sub> NHCH <sub>2</sub> CHNH <sub>2</sub> | +C <sub>3</sub> H <sub>7</sub>                                                                     |                                                                                         |
|           | Compound<br>No.                                     | (11)                                                                                               | (13)                                                                                    |
|           | Run<br>No.                                          | -                                                                                                  | 0                                                                                       |

Example 16

In 70 ml of methylene chloride were dissolved 3.24 g of 2-(2-N-methyl-N-benzylamino)ethylamine and 2.0 g of triethylamine, and to the solution was added dropwise 50 ml of a methylene chloride solution containing 3.0 g of 5-isoquinolinesulfonyl chloride under cooling with ice. After the dropwise addition of the methylene chloride solution, the mixed solution was stirred at a temperature of 15°C to 25°C for one hour, and then the reaction solution was washed with water and extracted with a 10% aqueous hydrochloric acid solution. The aqueous layer was washed with chloroform, rendered alkaline with a 1N aqueous sodium hydroxide solution, extracted with chloroform, and then the chloroform layer was washed with water, dried with anhydrous magnesium sulfate and 10 the chloroform was distilled therefrom under reduced pressure. The residue thus obtained was subjected to a silica gel column chromatography (silica gel: 100 g; solvent: chloroform) to give 3.84 g of N-[2-(N-methyl-N-benzylamino)ethyl]-5-isoquinolinesulfonamide, i.e. Compound (65) in a yield of 84%.

Mass spectrum (m/e): 355, 340, 264, 221 and 128

·15

30

35

40

45

50

55

60

65

NMR spectrum (CDCl<sub>3</sub>): 1.9 (3H, NCH<sub>3</sub>), 2.3-2.7 (2H), 3.0-3.3 (2H), 3.5 (2H,CH<sub>2</sub>)

6.8 (1H), 7.2 (5H), 7.6 (1H), 8.0-8.5 (4H) and 9.3 (1H) IR absorption spectrum ( $v_{\text{max}}^{\text{cap}}$  cm<sup>-1</sup>): 3050, 2950, 1620, 1450, 1330, 1155 and 1135. 20

The same procedures as described above were repeated using the compound of Formula (III) as set forth in Table 10-1 under the reaction conditions as set forth in Table 10-1, and there was obtained N-[2-(N-isopropyl-N-benzylamino)ethyl]-5-isoquinolinesulfonamide, i.e., Compound (67). The 25 analytical values of this compound are shown in Table 10-2.

TABLE 10-1

| Product            | Compound (67) Yield [g (%)]                                                                         | 5.44 (71)    | NMR Spectrum<br>(CDClg)                                              | 5~2.8(3H)<br>2 ( )<br>6 ~ 8.5(5H)                                                                                                |
|--------------------|-----------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                    | Reaction<br>Time<br>(hour)                                                                          | <del>-</del> | INMN SO                                                              | 0.9(6H, $2xCH_3$ ), 2.5~2.8(3H)<br>3.3(2H), 3.7(2H, $CH_2$ $\longrightarrow$ 8.5(5H)<br>6.8(1H), 7.2(5H), 7.6~8.5(5H)<br>9.3(1H) |
|                    | Reaction<br>Temperature<br>(°C)                                                                     | $15 \sim 25$ | -2<br>IR Absorption<br>Spectrum<br>cap<br>(ν max, om <sup>-1</sup> ) |                                                                                                                                  |
|                    | N(C2H5)3<br>(g)                                                                                     | 2.2          | 3LE 10                                                               | ಷ್                                                                                                                               |
| :                  | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>2</sub> N CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> (9) | 3.84         | TAE<br>Mass Spectrum<br>(m/e)                                        | 383, 340                                                                                                                         |
| 20 <sup>5</sup> CI | O)N <sup>2</sup> H N(6)                                                                             | 4,55         | Product<br>Compound (67)                                             | SO <sub>2</sub> NH(CH <sub>2</sub> ) <sub>2</sub> N CH <sub>2</sub> CH <sub>2</sub>                                              |

Example 17 In 100 ml of ethanol was dissolved 2.0 g of N-[2-(N-methyl-N-benzylamino)ethyl]-5-isoquinoline-sulfonamide, i.e., Compound (65) as obtained in Example 16, and to the solution was added 0.2 g of 10% palladium-carbon. Then the solution was vigorously stirred at a temperature of 20°C to 25°C in a hydrogen stream of 2.0 to 2.5 atm. for 5 hours. After the palladium-carbon was separated from the reaction solution by filtration, the reaction solution was concentrated to dryness to give 0.95 g of N-(2methylaminoethyl)-5-isoquinolinesulfonamide, i.e., Compound (14) in a yield of 64%.

Mass spectrum (m/e): 265, 250, 221 and 128

NMR spectrum (CDCl<sub>3</sub>): 1.7 (1H, NH), 2.9 (3H, CH<sub>3</sub>), 2.5—3.1 (2H), 3.1—3.5 (2H), 7.0 (1H), 7.6

10 (1H), 8.1-8.5 (4H) and 9.3 (1H)

IR absorption spectrum ( $\nu_{\rm max}^{\rm cap}$  cm<sup>-1</sup>): 3400, 1610, 1350, 1330, 1160 and 1140.

The same procedures as described above were repeated using Compound (67) under the reaction conditions as set forth in Table 11—1, and there was obtained N-(2-isopropylaminoethyl)-5-isoquino-linesulfonamide, i.e., Compound (16). The analytical values of this compound are shown in Table

25

20

30

35

40

45

50

55

60

TABLE 11-1

| Product<br>Yield (%)]           | (44)                                                                                |               |                                                              | (H)<br>(HL)                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|-------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [9 Y                            | 0.50                                                                                |               | strum                                                        | .1(1H, N<br>~3.5(3H<br>5H), 9.3(                                                                                                                                                                                                                                                                                            |
| Reaction<br>Time<br>(hour)      | 10                                                                                  |               | NMR Spectrum<br>(CDCI3)                                      | 1.0(6H, 2xCH <sub>3</sub> ), 2.1(1H, N <i>H</i> )<br>2.5~2.9(2H), 3.0~3.5(3H)<br>6.8(1H), 7.6~8.8(5H), 9.3(1H)                                                                                                                                                                                                              |
| tion<br>rature<br>C)            | 25                                                                                  |               |                                                              |                                                                                                                                                                                                                                                                                                                             |
| Reaction<br>Temperature<br>(°C) | 20 ~ 25                                                                             |               | in -1)                                                       | 3400, 1600, 1350, 1330<br>1160, 1140                                                                                                                                                                                                                                                                                        |
|                                 |                                                                                     |               | -2<br>IR Absorption<br>Spectrum<br>(v cap cm <sup>-1</sup> ) | 0, 135                                                                                                                                                                                                                                                                                                                      |
| Hydrogen<br>Pressure<br>(atm.)  | 81                                                                                  |               | 1-2<br>IR A<br>Sp                                            | 0, 160<br>30, 114                                                                                                                                                                                                                                                                                                           |
| Hyc<br>Pre:<br>(at              |                                                                                     |               | TABLE 11-2<br>IR,<br>s                                       |                                                                                                                                                                                                                                                                                                                             |
| ပု                              |                                                                                     |               | TAE<br>Mass Spectrum<br>(m/e)                                | 293, 263, 221<br>143, 128                                                                                                                                                                                                                                                                                                   |
| 10% Pd-C<br>(9)                 | 0.15                                                                                |               | hass Sp<br>(m/                                               | 293, 26<br>143, 12                                                                                                                                                                                                                                                                                                          |
| ·                               |                                                                                     | :             | 2                                                            | ~ -                                                                                                                                                                                                                                                                                                                         |
| Starting Material               | SO <sub>2</sub> NH(CH <sub>2</sub> ) <sub>2</sub> N CH <sub>2</sub> CH <sub>2</sub> | Compound (87) | Product<br>Compound (16)                                     | SO <sub>2</sub> NH(CH <sub>2</sub> ) <sub>2</sub> N  H  N  H  N  H  N  H  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  H  N  N |

#### Relaxation of Mesenteric Artery

After a home bred rabbit of a Japanese species weighing about 3 Kg was subjected to bloodletting, resulting in death and then to abdominal incision, the mesenteric artery was taken out, cut into helicoids of 2 mm x 25 mm and suspended in a 20 ml organ bath filled with a Krebs-Henseleit solution into which a mixed gas of 95% by volume of  $O_2$  and 5% by volume of  $O_2$  was introduced and one end of the artery was connected with an isometric transducer. When a load of 1.5 g was applied to the artery, the contraction and the relaxation of the artery were recorded as a weight on the transducer (a product of Nippon Koden K.K., Japan, "FD Pickup TB—912T"). The relaxation of the mesenteric artery was observed by adding the isoquinolinesulfonyl derivatives and their pharmaceutically acceptable acid addition salts of this invention to the mesenteric artery at the condition of about one half of the maximum contraction with KCl at KCl concentration of 15—20 mM. When the complete relaxation of the mesenteric artery was designated 100%, the concentration of the isoquinolinesulfonyl derivatives and their pharmaceutically acceptable acid addition salts which brought about a relaxation of 50% is shown in Table 12.

.

0 061 673

TABLE 12

| Compound<br>Nos. | Relaxation<br>of Mesenteric<br>Artery ED <sub>50</sub><br>(µM) | Compound<br>Nos. | Relaxation<br>of Mesenteric<br>Artery ED <sub>50</sub><br>(μΜ) |
|------------------|----------------------------------------------------------------|------------------|----------------------------------------------------------------|
| (1)              | 5                                                              | (9)              | 15                                                             |
| (2)              | 7                                                              | (11)             | 28                                                             |
| (3)              | 11                                                             | (12)             | 18                                                             |
| (4)              | 10                                                             | (13)             | 25                                                             |
| (5)              | 14                                                             | (14)             | 12                                                             |
| (6)              | 10                                                             | (16)             | 10                                                             |
| (7)              | 21                                                             | (17)             | 10                                                             |
| (8)              | 19                                                             | (18)             | 30                                                             |
| (19)             | 17                                                             | (42)             | 18                                                             |
| (20)             | 42                                                             | (43)             | 6.1                                                            |
| (21)             | 50                                                             | (44)             | 8.6                                                            |
| (22)             | 42                                                             | (45)             | 7.5                                                            |
| (23)             | 4.0                                                            | (46)             | 6.5                                                            |
| (24)             | 17                                                             | (47)             | 24                                                             |
| (25)             | 13                                                             | (48)             | 1.8                                                            |
| (26)             | 8.8                                                            | (49)             | 10                                                             |
| (27)             | 21                                                             | (50)             | 16                                                             |
| (28)             | 19                                                             | (51)             | 19                                                             |
| (29)             | 13                                                             | (53)             | 7                                                              |
| (30)             | 8.9                                                            | (54)             | 11                                                             |
| (31)             | 28                                                             | (55)             | 9                                                              |
| (32)             | 16                                                             | (56)             | 23                                                             |
| (33)             | 11                                                             | (57)             | 12                                                             |
| (34)             | 10                                                             | (58)             | 40                                                             |
| (35)             | 0.6                                                            | (59)             | 6.8                                                            |
| (36)             | 7.7                                                            | (60)             | 27                                                             |
| (37)             | 4.0                                                            | (61)             | 24                                                             |
| (38)             | 5.0                                                            | (63)             | 13                                                             |
| (39)             | 9.5                                                            | (65)             | . 13                                                           |
| (40)             | 0.6                                                            | (67)             | 18                                                             |
| (41)             | 1.5                                                            |                  | <del></del>                                                    |

# Effect on Blood Flow Volume of Femoral and Vertebral Arteries of Dog

The effect on the vasodilatation of the femoral and vertebral arteries was measured by anesthetizing a dog of mixed breed weighing 8 to 15 Kg by an intravenous administration of 35 mg/Kg of pentbarbital, providing an acute type probe (a product of Nippon Koden K.K., Japan) with the femoral and vertebral arteries, administering the 5-isoquinolinesulfonyl derivatives and their pharmaceutically acceptable acid addition salts to the femoral vein through a polyethylene tube inserted into the femoral vein side chain and measuring the blood flow volume with an electromagnetic blood flowmeter (a product of Nippon Koden K.K., Japan, "MF-27"). The results are shown in Table 13.

TABLE 13

| <i>15</i> | Compound<br>No. | Amount of<br>Intravenous<br>Administration<br>(mg/Kg) | Increased Blood<br>Flow Volume in<br>Femoral Artery<br>(%) | increased Blood<br>Flow Volume in<br>Vertebral Artery<br>(%) |
|-----------|-----------------|-------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|
|           | 1               | 1                                                     | 30                                                         | 45                                                           |
| 20        | 3               | 1                                                     | 33                                                         | 36                                                           |
|           | 19              | 1                                                     | 25                                                         | 20                                                           |
| 25        | 25              | 1                                                     | 38                                                         | 29                                                           |
|           | 33              | 1                                                     | 35                                                         | 37                                                           |
|           | 35              | 1                                                     | 69                                                         | 98                                                           |
| <i>30</i> | 36              | 1                                                     | 35                                                         | 63                                                           |
|           | 37              | 1                                                     | 65                                                         | 90                                                           |
| 36        | 40              | 1                                                     | 50                                                         | 110                                                          |
|           | 46              | 1 .                                                   | 32                                                         | 55                                                           |
|           | 51              | 1                                                     | 39                                                         | 68                                                           |
| 40        | 59              | 1                                                     | · 25                                                       | 49                                                           |

## **Acute Toxicity**

The acute toxicity of the 5-isoquinolinesulfonyl derivatives and their pharmaceutically acceptable acid addition salts was measured by giving male ddy-strain mice an intravenous administration. The results are shown in Table 14.

TABLE 14

| 10        | Compound<br>Nos. | LD <sub>50</sub><br>(mg/Kg) |
|-----------|------------------|-----------------------------|
|           | 1                | 108                         |
| 15        | 3                | 87                          |
|           | 19               | 180                         |
|           | 25               | 137                         |
| 20        | 33               | 150                         |
|           | 35               | 29                          |
|           | 36               | 94                          |
| 25        | 37               | 89                          |
|           | 40               | 42                          |
| <i>30</i> | 46               | 130                         |
|           | 51               | 108                         |
|           | 59               | 145                         |

# Claims

40

45

50

60

# 1. A compound of Formula (I):

$$SO_{2}[NH(CH_{2})_{m}CH(CH_{2})_{n}]_{1}N = R_{3}$$
(1)

#### wherein

I is zero or one;

m and n each is zero or an integer of one to nine;

m+n is an integer of at least one;

 $R_2$  is a hydrogen atom, a  $C_{1-10}$  alkyl group or a phenyl group;  $R_2$  and  $R_3$  each is a hydrogen atom, a  $C_{1-10}$  alkyl group, a  $C_{5-6}$  cycloalkyl group, a phenyl group or

a benzyl group; or  $R_2$  and  $R_3$  are  $C_{1-6}$  alkylene groups and linked directly or through an oxygen atom to form a 5- to 55 7-membered heterocyclic ring with the adjacent nitrogen atom; or the

$$-N = \begin{cases} R_2 \\ \text{group is a} - N \\ R_3 \end{cases} + R_6$$

group wherein

 $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1\rightarrow 10}$  alkyl group, a phenyl group or a benzyl or phenethyl

 $R_{\rm g}$  is a hydrogen atom, a  $C_{1-10}$  alkyl group, a phenyl group, a benzyl or phenethyl group, a benzyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

10

20

25

35

45

50

55

60

65

group wherein  $R_7$  is a  $C_{1-8}$  alkyl group; and the pharmaceutically acceptable acid addition salt thereof.

2. The compound of claim 1 wherein I is zero; R<sub>2</sub> and R<sub>3</sub> each is a hydrogen atom, a C<sub>1-8</sub> alkyl group, a phenyl group or a benzyl group and when one of R<sub>2</sub> and R<sub>3</sub> is a hydrogen atom, the other is not a hydrogen atom; or R<sub>2</sub> and R<sub>3</sub> are C<sub>1-8</sub> alkylene groups and linked directly or through an oxygen atom to form a 5- to 7-membered heterocyclic ring together with the adjacent nitrogen atom; or the

$$-N = \begin{cases} R_2 & R_4 \\ \text{group is a } -N & N-R_6 \\ R_3 & R_5 \end{cases}$$

group wherein  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-5}$  alkyl group, a phenyl group, an  $\alpha$ -phenethyl group, a  $\beta$ -phenethyl group or a benzyl group and R<sub>8</sub> is a hydrogen atom, a C<sub>1-8</sub> alkyl group, a phenyl group, a benzyl group, a phenethyl group, a benzoyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

group wherein  $R_7$  is a  $C_{1-4}$  alkyl group. 3. The compound of claim 2 wherein  $R_2$  is a hydrogen atom or a  $C_{1-6}$  alkyl group and  $R_3$  is a  $C_{1-6}$ 

 $\overline{4}$ . The compound of claim 2 wherein  $R_2$  and  $R_3$  form together with the adjacent nitrogen atom a 1-pyrrolidinyl group, a piperidino group or a morpholino group.

5. The compound of claim 2 wherein the

$$R_{2}$$
 group is a  $-N$   $N-R_{6}$   $R_{3}$ 

group wherein R<sub>s</sub> is a hydrogen atom and R<sub>4</sub> and R<sub>5</sub> each is a hydrogen atom, a C<sub>1-6</sub> alkyl group, a phenyl group or a benzyl group.

6. The compound of claim 5 wherein R<sub>s</sub>, R<sub>4</sub> and R<sub>5</sub> are hydrogen atoms.

7. The compound of claim 5 wherein  $R_8$  is a hydrogen atom,  $R_4$  is a hydrogen atom or a  $C_{1-8}$  alkyl group and  $R_s$  is a  $C_{1-\epsilon}$  alkyl group, a phenyl group or a benzyl group. 8. The compound of claim 2 wherein the

$$R_{2}$$
group is  $a-N$ 

$$R_{3}$$

$$R_{5}$$

group wherein  $R_4$  and  $R_5$  are hydrogen atoms and  $R_5$  is a  $C_{1-6}$  alkyl group, a phenyl group, a benzyl group, a phenethyl group, a benzoyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

 10 group wherein R<sub>7</sub> is a C<sub>1-4</sub> alkyl group.
 9. The compound of claim 1 wherein I is one; m and n each is zero or an integer of one to nine; m+n is an integer of one to nine;  $R_1$  is a hydrogen atom, a  $C_{1-8}$  alkyl or a phenyl group;  $R_2$  and  $R_3$  each is a hydrogen atom,  $C_{1-8}$  alkyl group, a  $C_{5-8}$  cycloalkyl group, a phenyl group or a benzyl group; or  $R_2$  and  $R_3$  are  $C_{1-8}$  alkylene groups and linked directly or through an oxygen atom to form a 5- to 7-membered heterocyclic ring together with the adjacent nitrogen atom; or the

$$R_2$$
 group is a  $-N$   $N-R_6$   $R_3$ 

group wherein  $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group or a benzyl group and  $R_6$  is a hydrogen atom, a  $C_{1-6}$  alkyl group, a phenyl group, a benzyl group, a phenethyl group, a benzoyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

group wherein R<sub>7</sub> is a C<sub>1-4</sub> alkyl group.

10. A compound of claim 9 wherein m and n each is zero or an integer of one to nine; m+n is an integer of one to nine; and R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub> are hydrogen atoms.

11. The compound of claim 9 wherein m and n each is zero or one; m+n is one; R<sub>1</sub> is a C<sub>1-8</sub> alkyl

group or a phenyl group; and R<sub>2</sub> and R<sub>3</sub> are hydrogen atoms.

12. The compound of claim 9 wherein m and n each is zero or an integer of one to two; m+n is one or two;  $R_1$  is a hydrogen atom;  $R_2$  is a hydrogen atom or a  $C_{1-4}$  alkyl group; and  $R_3$  is a  $C_{1-6}$  alkyl group, a  $C_{5-6}$  cycloalkyl group, a phenyl group or a benzyl group.

13. The compound of claim 9 wherein m and n each is zero or an integer of one to two; m+n is

one or two; and R2 and R3 form together with the adjacent nitrogen atom a piperidino group or a morpholino group.

14. A process of preparing the compound of Formula (I) of claim 1 which comprises reacting 5isoquinolinesulfonyl chloride of Formula (II)

with a compound of Formula (III)

$$\begin{array}{c} R_1 \\ \downarrow \\ H-\text{\{-NH(CH_2)_mCH(CH_2)_n\}_1}-N \\ & \\ R_3 \end{array} \tag{IIII)}$$

wherein

20

25

30

50

60

l is zero or one:

m and n each is zero or an integer of one to nine; m+n is an integer of at least one;

 $R_1$  is a hydrogen atom, a  $C_{1-10}$  alkyl group or a phenyl group;  $R_2$  and  $R_3$  each is a hydrogen atom, a  $C_{1-10}$  alkyl group, a  $C_{5-6}$  cycloalkyl group, a phenyl group or a benzyl group; or

 $R_2$  and  $R_3$  are  $C_{1-8}$  alkylene groups and linked directly or through an oxygen atom to form a 5- to 7-membered heterocyclic ring together with the adjacent nitrogen atom; or the

$$-N = \begin{bmatrix} R_2 & & & \\ & & \\ R_3 & & & \\ & & & \\ R_5 & & & \end{bmatrix}$$

group wherein R4 and R5 each is a hydrogen atom, a C1-10 alkyl group, a phenyl group or a benzyl or phenethyl group and

 $R_{\rm s}$  is a hydrogen atom, a  $C_{1-10}$  alkyl group, a phenyl group, a benzyl or phenethyl group, a benzyl group, a cinnamyl group, a cinnamoyl group, a furoyl group or a

group wherein  $R_7$  is a  $C_{1-8}$  alkyl group. 15. A process of preparing the compound of Formula (I) of claim 1 wherein  $R_2$  is a hydrogen atom which comprises reacting 5-isoquinolinesulfonyl chloride of Formula (II)

with a compound of Formula (IV)

$$R_1$$
 $H=[NH(CH_2)_mCH(CH_2)_n]_{+-}N$ 
 $R_2$ 
(IV)

wherein

10

20

30

40

45

I is zero or one;

m and n each is zero or an integer of one to nine;

m+n is an integer of at least one;

 $R_1$  is a hydrogen atom, a  $C_{1-10}$  alkyl group or a phenyl group;  $R_3$  is a hydrogen atom, a  $C_{1-10}$  alkyl group, a  $C_{5-6}$  cycloalkyl group, a phenyl group or a benzyl group; and
X is a protective group,

to give a compound of Formula (V)

$$SO_{2} = [NH(CH_{2})_{m}CH(CH_{2})_{n}]_{1} - N$$

$$R_{3}$$
(V)

60

I, m, n,  $R_1$ ,  $R_3$  and X are the same as defined above, and eliminating the protective group from the compound of Formula (V).

65

## 061 673

16. A process of preparing the compound of Formula (I) of claim 1 wherein I is zero and the

 $R_2$  group is a -N  $N-R_6$   $R_5$ 

group wherein  $R_{\rm s}$  is a hydrogen atom which comprises reacting 5-isoquinolinesulfonyl chloride of Formula (II)

SOCI<sub>2</sub>
(II)

20 with a compound of Formula (VII)

wherein

35

40

50

55

65

5

10

 $\rm R_4$  and  $\rm R_5$  each is a hydrogen atom, a  $\rm C_{1-10}$  alkyl group, a phenyl group or a benzyl or phenethyl group; and

group; and

X is a protective group,
to give a compound of Formula (VIII)

SO<sub>2</sub>N N-X (VIII)

and eliminating the protective group from the compound of Formula (VIII).

17. The process according to any of the preceding claims, wherein the protective group is a formyl, acetyl, benzoyl, arylmethyloxycarbonyl, alkyloxycarbonyl or benzyl group.

18. A process of preparing the compound of Formula (I) of claim 1 wherein I is zero and the

 $-N = \begin{cases} R_2 & R_4 \\ R_3 & R_5 \end{cases}$ 

wherein  $R_{\rm e}$  is a  $C_{\rm 1-10}$  alkyl group, a phenyl group, a benzyl or phenethyl group, a benzoyl group, a cinnamyl group, a cinnamyl group, a furoyl group or a

group wherein R7 is a C1-8 alkyl group which comprises reacting 5-isoquinolinesulfonyl chloride of

with a compound of Formula (X)

10

15

25

30

40

55

65

5

(X)

wherein

 $R_4$  and  $R_5$  each is a hydrogen atom, a  $C_{1-10}$  alkyl group, a phenyl group or a benzyl or phenethyl group.

to give a compound of Formula (XI)

(XI)

R4 and R5 are the same as defined above, and reacting the compound of Formula (XI) with a compound of the formula

wherein

R<sub>6</sub> is the same as defined above; and

W is an eliminable group.

19. The process of claim 18 wherein the eliminable group is a halogen atom, a substituted sulfonyloxy group or a sulfuric acid residue.

20. The process according to any of the preceding claims, wherein the amount of the compound of Formulae (III), (IV), (VII) and (X) respectively is at least 1 mol per mol of the compound of Formula (II). 21. The process of claim 20, wherein the amount of the compound of Formula (III), (IV), (VII) and

(X) respectively is 1 to 20 mols.

22. The process according to any of the preceding claims, wherein the reaction between the compound of Formula (II) and the compound of the Formulae (III), (IV), (VII) and (X) respectively is carried out in the presence of an acid acceptor.

23. The process of claim 22, wherein the acid acceptor is an alkali metal compound or an organic tertiary amine.

24. The process according to any of the preceding claims, wherein the amount of the acid acceptor is 0.5 to about 10 equivalents for each mol of the compound of Formula (III), (IV), (VII) and (X)

respectively.

25. The process according to any of the preceding claims, wherein the amount of the compound of Formula (III), (IV), (VII) and (X) respectively is 1 to 5 mols per mol of the compound of Formula (II) when the acid acceptor is present, and is 2 to 10 mols per mol of the compound of Formula (II) when the acid acceptor is absent, under the condition that the amine used does not have a low boiling point.

26. The process according to any of the preceding claims, wherein the reaction between the compound of Formula (II) and the compound of Formulae (III), (IV), (VII) and (X) respectively is carried

out in the presence of a reaction medium.

27. The process of claim 26, wherein the reaction medium is a halogenated hydrocarbon, an alkanol, an ether, N,N-dimethylformamide, dimethyl sulfoxide, acetonitrile or water, or mixtures thereof. 28. The process according to any of the preceding claims, wherein the reaction between the

compound of Formula (II) and the compound of Formula (III), (IV), (VII) and (X) respectively is carried out at a temperature of from -30°C to 150°C.

29. The process according to any of the preceding claims, wherein the reaction time is 0.5 to 48 hours at atmospheric pressure.

30. The process according to any of the preceding claims, wherein the amount of the compound R<sub>s</sub>—W is from 1 mol to 20 mols per mol of the compound of Formula (XI).

31. The process according to any of the preceding claims, wherein the amount of the acid acceptor is 1 to 10 equivalents for each mol of the compound of Formula (III) and (XI) respectively.

32. The process according to any of the preceding claims, wherein the reaction between the compound of Formula (XI) and the compound R<sub>8</sub>—W is carried out at a temperature of from —30°C to 200°C.

## Patentansprüche

## 1. Eine Verbindung der Formel (I):

 $SO_{2}[NH(CH_{2})_{m}CH(CH_{2})_{n}]_{1}N$   $R_{3}$  (1)

25 in der

20

30

35

40

50

1 null oder eins ist,

m und n je null oder eine ganze Zahl von eins bis neun bedeuten,

m+n eine ganz Zahl von mindestens eins ist,

R<sub>1</sub> ein Wasserstoffatom, eine C<sub>1-10</sub>-Alkylgruppe oder eine Phenylgruppe ist,

 $R_2$  und  $R_3$  je ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine  $C_{5-6}$ -Cycloalkylgruppe, eine Phenylgruppe oder eine Benzylgruppe sind, oder

R<sub>2</sub> und R<sub>3</sub> C<sub>1-e</sub>-Alkylengruppen sind, die direkt oder über ein Sauerstoffatom zu einem 5- bis 7gliedrigen heterocyclischen Ring mit dem benachbarten Stickstoffatom verbunden sind, oder die

$$R_2$$
 $R_3$ 
Gruppe ist eine Gruppe der Formel  $-N$ 
 $N-R_6$ 
 $R_5$ 

in der

 $\rm R_4$  und  $\rm R_5$  je ein wasserstoffatom, eine  $\rm C_{1-10}$ -Alkylgruppe, eine Phenylgruppe oder eine Benzyloder Phenetylgruppe sind und

 $R_{\rm s}$  ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine Phenylgruppe, eine Benzyl- oder Phenetylgruppe, eine Benzoylgruppe, eine Cinnamylgruppe, eine Cinnamylgruppe, eine Furoylgruppe oder eine Gruppe der Formel

ist,

5 in der R<sub>7</sub> eine C<sub>1-8</sub>-Alkylgruppe ist,

und ihr pharmazeutisch verträgliches Säureadditionssalz.

2. Die Verbindung nach Anspruch 1, in der 1 null ist,  $R_2$  und  $R_3$  je ein Wasserstoffatom, eine  $C_{1-8}$ - Alkylgruppe, eine Phenylgruppe oder eine Benzylgruppe sind und, wenn einer der Reste  $R_2$  und  $R_3$  ein Wasserstoffatom ist, der andere nicht ein Wasserstoffatom ist, oder  $R_2$  und  $R_3$   $C_{1-8}$ -Alkylengruppen, die

·65.

direkt oder über eine Sauerstoffatom zu einem 5- bis 7-gliedrigen heterocyclischen Ring mit dem benachbarten Stickstoffatomn verbunden sind, oder die

$$R_2$$
 Gruppe ist eine Gruppe der Formel  $N_1$   $N_2$   $R_3$ 

in der R<sub>4</sub> und R<sub>5</sub> je ein Wasserstoffatom, eine C<sub>1-6</sub>-Alkylgruppe, eine Phenylgruppe, eine alpha-Phenetylgruppe eine β-Phenetylgruppe oder eine Benzylgruppe sind und R<sub>6</sub> ein Wasserstoffatom, eine C<sub>1-6</sub>-Alkylgruppe, eine Phenetylgruppe, eine Benzylgruppe, eine Phenetylgruppe, eine Benzylgruppe, eine Phenetylgruppe, eine Benzylgruppe, eine Benzylgru eine Cinnamylgruppe, eine Cinnamoylgruppe, eine Furoylgruppe oder eine Gruppe der Formel

ist, in der  $R_7$  eine  $C_{1-4}$ -Alkylgruippe ist. 3. Die Verbindung nach Anspruch 2, in der  $R_2$  ein Wasserstoffatom oder eine  $C_{1-6}$ -Alkylgruppe ist und R<sub>3</sub> eine C<sub>1-6</sub>-Alkylgruppe bedeutet.

4. Die Verbindung nach Anspruch 2, in der R<sub>2</sub> und R<sub>3</sub> zusammen mit dem benachbarten Stick-

stoffatom eine 1-Pyrrolidinylgruppe, eine Piperidinogruppe oder eine Morpholinogruppe bilden.

5. Die Verbindung nach Anspruch 2, in der die

$$R_2$$
 Gruppe eine Gruppe der Formel  $N$   $N$   $R_6$ 

ist, in der  $R_6$  ein Wasserstoffatom ist und  $R_4$  und  $R_5$  je ein Wasserstoffatom, eine  $C_{1-8}$ -Alkylgruppe, eine Phenylgruppe oder eine Benzylgruppe sind.

6. Die Verbindung nach Anspruch 5, in der R<sub>8</sub>, R<sub>4</sub> und R<sub>5</sub> Wasserstoffatome sind.

7. Die Verbindung nach Anspruch 5, in der R<sub>8</sub> ein Wasserstoffatom ist, R<sub>4</sub> ein Wasserstoffatom 40

oder eine C<sub>1-6</sub>-Alkylgruppe ist und R<sub>s</sub> eine C<sub>1-6</sub>-Alkylgruppe, eine Phenylgruppe oder eine Benzylgruppe bedeutet.

8. Die Verbindung nach Anspruch 2, in der die

$$R_2$$
Gruppe eine Gruppe der Formel  $-N$ 
 $N-R_6$ 
 $R_3$ 

ist, In der  $R_4$  und  $R_5$  Wasserstoffatome sind und  $R_6$  eine  $C_{1-6}$ -Alkylgruppe, eine Phenetylgruppe, eine Benzoylgruppe, eine Cinnamylgruppe, eine Furoylgruppe oder eine Gruppe der Formel

ist, in der R7 eine C1-4-Alkylgrupp ist.

45

50

65

9. Die Verbindung nach Anspruch 1, in der 1 eins ist, m und n je null oder eine ganze Zahl von eins

bis neun bedeuten, m+n eine ganze Zahl von eins bis neun ist,  $R_1$  ein Wasserstoffatom, eine  $C_{1-\theta}$ -Alkyloder Phenylgruppe darstellt,  $R_2$  und  $R_3$  je ein Wasserstoffatom, eine  $C_{1-\theta}$ -Alkylgruppe, eine  $C_{5-\theta}$ -Cycloalkylgruppe, eine Phenylgruppe oder eine Benzylgruppe ist, oder  $R_2$  und  $R_3$  sind  $C_{1-\theta}$ -Alkylengruppen, die direkt oder über ein Sauerstoffatom zu einem 5- bis 7-gliedrigen heterocyclischen Ring mit dem benachbarten Stickstoffatom verbunden sind, oder die

in der R<sub>4</sub> und R<sub>5</sub> je ein Wasserstoffatom, eine C<sub>1-e</sub>-Alkylgruppe, eine Phenylgruppe oder eine Benzylgruppe sind und R<sub>6</sub> ein Wasserstoffatom, eine C<sub>1-e</sub>-Alkylgruppe, eine Phenylgruppe, eine Benzylgruppe, eine Phenetylgruppe, eine Benzoylgruppe, eine Cinnamylgruppe, eine Cinnamoylgruppe, eine Furoylgruppe oder eine Gruppe der Formel

ist, in der R<sub>7</sub> eine C<sub>1-4</sub>-Alkylgruppe ist.

10. Die Verbindung nach Anspruch 9, in der m und n je null oder eine ganze Zahl von eins bis neun bedeuten, m+n eine ganze Zahl von eins bis neun ist und R<sub>1</sub>, R<sub>2</sub> und R<sub>3</sub> Wasserstoffatome sind.

11. Die Verbindung nach Anspruch 9, in der m und n je null oder eins bedeuten, m+n eins ist, R<sub>1</sub>

30 eine C<sub>1-6</sub>-Alkylgruppe oder eine Phenylgruppe ist und R<sub>2</sub> und R<sub>3</sub> Wasserstoffatome sind.

12. Die Verbindung nach Anspruch 9, in der m und n je null oder eine ganze Zahl von eins bis zwei bedeuten, m+n eins oder zwei ist,  $R_1$  ein Wasserstoffatom ist,  $R_2$  ein Wasserstoffatom oder eine  $C_{1-4}$ -Alkylgruppe darstellt und  $R_3$  eine  $C_{1-6}$ -Alkylgruppe, eine  $C_{5-6}$ -Cycloalkylgruppe, eine Phenylgruppe oder eine Benzylgruppe bedeutet.

13. Die Verbindung nach Anspruch 9, in der m und n je null oder eine ganze Zahl von eins bis zwei bedeutet, m+n eins oder zwei ist und R<sub>2</sub> und R<sub>3</sub> zusammen mit dem benachbarten Stickstoffatom eine Piperidinogruppe oder eine Morpholinogruppe bilden.

14. Verfahren zur Herstellung der Verbindung der Formel (I) nach Anspruch 1, dadurch gekennzeichnet, daß man 5-lsochinolinsulfonylchlorid der Formel (II)

mit einer Verbindung der Formel (III) umsetzt

50 
$$H = \frac{R_1}{| |} N + \frac{R_2}{| |} N + \frac{1}{| |} N + \frac{R_2}{| |} N + \frac{1}{| |} N + \frac$$

*55* in der

10

20

40

45

1 null oder eins ist,

m und n je null oder eine ganze Zahl von eins bis neun bedeuten,

m+n eine ganze Zahl von mindestens eins ist,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe oder eine Phenylgruppe ist,

 $R_2$  und  $R_3$  je ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruippe, eine  $C_{5-6}$ -Cycloalkylgruppe, eine Phenylgruppe oder eine Benzylgruppe bedeuten, oder

R<sub>2</sub> und R<sub>3</sub> C<sub>1-e</sub>-Alkylengruppen sind, die direkt oder über ein Sauerstoffatom zu einem 5- bis 7-

65

gliedrigen heterocylischen Ring mit dem benachbarten Stickstoffatom verbunden sind, oder die

in der  $R_4$  und  $R_5$  je ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine Pheneylgruppe, eine Benzyl- oder Phenetylgruppe sind und

 $R_6$  ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruippe, eine Phenylgruppe, eine Benzyl- oder Phenetyl-15 gruppe, eine Benzoylgruppe, eine Cinnamylgruppe, eine Cinnamoylgruppe, eine Furoylgruppe oder eine Gruppe der Formel

ist, in der R<sub>7</sub> eine C<sub>1-8</sub>-Alkylgruppe ist.
15. Verfahren zur Herstellung der Verbindung der Formel (I) nach Anspruch 1, in der R<sub>2</sub> ein Wasserstoffatom ist, dadurch gekennzeichnet, daß man 5-lsochinolinsulfonylchlorid der Formel (II)

mit einer Verbindung der Formel (IV) umsetzt

40 in der

20

25

30

1 null oder eins ist,

m und n je null oder eine ganze Zahl von eins bis neun bedeutet,

m+n eine ganze Zahl von mindestens eins ist,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe oder eine Phenylgruppe ist,  $R_3$  ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine  $C_{5-6}$ -Cycloalkylgruppe, eine Phenylgruppe oder eine Benzylgruppe darstellt und

X eine Schutzgruppe ist,

zu einer Verbindung der Formel (V)

$$SO_{2}-[NH(CH_{2})_{m}CH(CH_{2})_{n}]_{1}-N$$

$$R_{3}$$
(V)

I, m, n,  $R_1$ ,  $R_3$  und X die gleiche Bedeutung wie oben haben, und die Schutzgruppe aus der Verbindung der Formel (V) entfernt.

65

50

16. Ein Verfahren zur Herstellung der Verbindung der Formel (I) nach Anspruch 1, in der 1 null ist und die

$$R_2$$
 $R_3$ 
Gruppe eine Gruppe der Formel  $-N$ 
 $R_5$ 

ist, in der Re ein Wasserstoffatom ist, dadurch gekennzeichnet, daß man 5-Isochinolinsulfonylchlorid der Formei (il)

mit einer Verbindung der Formel (VII) umsetzt

$$_{25}$$
  $_{HN}$   $_{N-X}$   $_{R_5}$   $_{(VII)}$ 

35

40

45

5

10

in der  $R_4$  und  $R_5$  je ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine Phenylgruppe oder eine Benzyloder Phenetylgruppe sind und

X eine Schutzgruppe ist,

zu einer Verbindung der Formel (VIII)

und die Schutzgruppe aus der Verbindung der Formel (VIII) entfernt.

17. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Schutzgruppe eine Formyl-, Acetyl-, Benzoyl-, Arylmethyloxycarbonyl-, Alkyloxycarbonyl- oder Benzylgruppe ist.

18. Ein Verfahren zur Herstellung der Verbindung der Formel (I) nach Anspruch 1, in der 1 null ist

in der  $R_s$  eine  $C_{1-10}$ -Alkylgruppe, eine Phenylgruppe, eine Benzyl- oder Phenetylgruppe, eine Benson zoylgruppe, eine Cinnamylgruppe, eine Cinnamylgruppe, eine Furoylgruppe oder eine Gruppe der

65

ist, in der  $R_7$  eine  $C_{1-8}$ -Alkylgruppe ist, dadurch gekennzeichnet, daß man 5-lsochinolinsulfonylchlorid der Formel (II)

nit einer Verbindung der Formel (X) umsetzt,

20 in der  $R_4$  und  $R_5$  je ein Wasserstoffatom, eine  $C_{1-10}$ -Alkylgruppe, eine Phenylgruppe oder eine Benzyloder Phenetylgruppe sind,

zu einer Verbindung der Formel (XI)

$$SO_2N$$
 NH  $P_5$   $(XI)$ 

in der

5

15

25

55

65

 $\rm R_4$  und  $\rm R_5$  die gleiche Bedeutung haben wie oben, und die Verbindung der Formel (XI) mit einer Verbindung der Formel

R<sub>6</sub>—W umsetzt,

in der Re die gleiche Bedeutung wie oben hat, und

W eine abspaltbare Gruppe ist.

19. Das Verfahren nach Anspruch 18, in dem die abspaltbare Gruppe ein Halogenatom, eine sub45 stituierte Sulfonyloxygruppe oder ein Schwefelsäurerest ist.

20. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Menge der Verbindung der Formeln (III), (IV), (VII) bzw. (X) mindestens 1 Mol je Mol der Verbindung der Formel (III) beträgt. 21. Das Verfahren nach Anspruch 20, in dem die Menge der Verbindung der Formel (III), (IV), (VII) bzw. (X) 1 bis 20 Mol beträgt.

22. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Reaktion zwischen der Verbindung der Formel (II) und der Verbindung der Formeln (III), (IV), (VII) bzw. (X) in Gegenwart eines Säureakzeptors durchgeführt wird.

23. Das Verfahren nach Anspruch 22, in dem der Säureakzeptor eine Alkalimetallverbindung oder ein organisches tertiäres Amin ist.

24. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Menge des Säureakzeptors, 0,5 bis etwa 10 Äquivalente je Mol der Verbindung der Formel (III), (IV), (VII) bzw. (X) beträgt.

25. Das Verfahren nach einer der vorstehenden Ansprüche, in dem die Menge der Verbindung der Formeln (III), (IV), (VII) bzw. (X) 1 bis 5 Mol je Mol der Verbindung der Formel (II) bei Anwesenheit des Säureakzeptors beträgt und 2 bis 10 Mol je Mol der Verbindung der Formel (II) bei Anwesenheit des Säureakzeptors ist, mit der Bedingung, daß das verwendete Amin keinen niedrigen Siedepunkt hat.

26. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Reaktion zwischen der Verbindung der Formel (II) und der Verbindung der Formeln (III), (IV), (VII) bzw. (X) in Gegenwart eines Reaktionsmediums durchgeführt wird.

27. Das Verfahren nach Anspruch 26, in dem das Reaktionsmedium ein halogenierter Kohlen-

wasserstoff, ein Alkanol, ein Ether, N,N-Dimethylformamid, Dimethylsulfoxid, Acetonitril oder Wasser oder eines ihrer Gemische ist.

28. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Reaktion zwischen der Verbindung der Formel (II) und der Verbindung der Formei (III), (IV), (VII) bzw. (X) bei einer Temperatur von -30°C bis 150°C durchgeführt wird.

29. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Reaktionszeit 0,5 bis 48 h bei Atmosphärendruck beträgt.

30. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Menge der Verbindung

der Formel R<sub>s</sub>—W von 1 Mol bis 20 Mol je Mol der Verbindung der Formel (XI) beträgt. 31. Das Verfahren nach einem der vorstehenden Ansprüche, in dem die Menge des Säureakzep-1 bis 10 Äquivalente je Mol der Verbindung der Formeln (III) bzw. (XI) beträgt.

32. Das Verfahren gemäß einem der vorstehenden Ansprüche, in dem die Reaktion zwischen der Verbindung der Formel (XI) und der Verbindung der Formel R<sub>6</sub>---W bei einer Temperatur von --30°C bis 200°C durchgeführt wird.

## Revendications

10

15

30

40

45

55

## 1. Composé de formule (I):

20 (1)25

dans laquelle

l est zéro ou un;

chacun de m et n est zéro ou un nombre entier de 1 à 9;

m+n est un nombre entier d'au moins un;

R, est un atome d'hydrogène, un groupe alcoyle C<sub>1-10</sub> ou un groupe phényle;

chacun de R2 et R3 est un atome d'hydrogène, un groupe alcoyle C1-10, un groupe cycloalcoyle C<sub>5-8</sub>, un groupe phényle ou un groupe benzyle; ou

 $R_2$  et  $R_3$  sont des groupes alcoylènes  $C_{1-6}$  et liés directement ou par un atome d'oxygène pour former un noyau hétérocyclique à 5 à 7 élements avec l'atome d'azote adjacent; ou le groupe

$$\begin{array}{c} R_2 \\ -N \\ \text{est un groupe} \end{array} - N \begin{array}{c} R_4 \\ N - R_6 \\ R_5 \end{array}$$

où chacun de  $R_4$  et  $R_5$  est un atome d'hydrogène, un groupe alcoyle  $C_{1-10}$ , un groupe phényle ou un groupe benzyle ou phénéthyle et  $R_6$  est un atome d'hydrogène, un groupe alcoyle  $C_{1-10}$ , un groupe phényle, un groupe benzyle ou phénéthyle, un groupe benzoyle, un groupe cinnamyle, un groupe 50 cinnamoyle, un groupe furoyle ou un groupe

où R7 est un groupe alcoyle C1-8;

et ses sels d'addition d'acide acceptables en pharmacie.

2. Composée selon la revendication 1, où 1 est zéro; chacun de  $R_2$  et  $R_3$  est un atome d'hydrogène, un groupe alcoyle  $C_{1-8}$ , un groupe phényle ou un groupe benzyle et lorsque l'un de  $R_2$  et R<sub>3</sub> est un atome d'hydrogène, l'autre n'est pas un atome d'hydr gène; ou

 $R_2^-$  et  $R_3^-$  sont des groupes alcoylènes  $C_{1-6}^-$  et liés directement ou par un atome d'oxygène pour former un noyau hétérocyclique à 5 à 7 éléments avec l'atome d'azote adjacent; ou bien le groupe

$$-N = \begin{cases} R_2 \\ \text{est un groupe} - N \\ R_3 \end{cases}$$

où chacun de R4 et R5 est un atome d'hydrogène, un groupe alcoyle C1-e, un groupe phényle, un groupe  $\alpha$ -phénéthyle, un groupe  $\beta$ -phénéthyle, ou un groupe benzyle et  $R_6$  est un atome d'hydrogène, un 15 groupe alcoyle C<sub>1-e</sub>, un groupe phényle, un groupe benzyle, un groupe phénéthyle, un groupe benzoyle, un groupe cinnamyle, un groupe cinnamoyle, un groupe furoyle ou un groupe

5

10

30

35

50

55

où  $R_7$  est un groupe alcoyle  $C_{1-4}$ . 3. Composé selon la revendication 2, où  $R_2$  est un atome d'hydrogène ou un groupe alcoyle  $C_{1-6}$ 

 25 et R<sub>3</sub> est un groupe alcoyle C<sub>1-6</sub>.
 4. Composé selon la revendication 2, où R<sub>2</sub> et R<sub>3</sub> forment ensemble, avec l'atome d'azote adjacent, un groupe 1-pyrrolidinyle, un groupe pipéridino ou un groupe morpholino.

5. Composé selon la revendication 2, où le groupe

$$-N = \text{est un groupe} - N = -R_6$$

$$R_3 = R_5$$

où  $R_{\rm s}$  est un atome d'hydrogène et chacun de  $R_{\rm 4}$  et  $R_{\rm 5}$  est un atome d'hydrogène, un groupe alcoyle C<sub>1-8</sub>, un groupe phényle ou un groupe benzyle.

6. Composé selon la revendication 5, où R<sub>6</sub>, R<sub>4</sub> et R<sub>5</sub> sont des atomes d'hydrogène.
7. Composé selon la revendication 5, ou R<sub>6</sub> est un atome d'hydrogène, R<sub>4</sub> est un atome d'hydrogène ou un groupe alcoyle C<sub>1-6</sub>, et R<sub>5</sub> est un groupe alcoyle C<sub>1-6</sub>, un groupe phényle ou un groupe benzyle.

8. Composé selon la revendication 2, où le groupe

$$-N = \text{est un groupe } -N = N - R_6$$

$$R_3 = R_5$$

où  $R_4$  et  $R_5$  sont des atomes d'hydrogène et  $R_6$  est un groupe alcoyle  $C_{1-6}$ , un groupe phénéthyle, un groupe benzyle, un groupe cinnamyle, un groupe benzyle, un groupe cinnamyle, un groupe cinnamoyle, un groupe furoyle ou un groupe

où R7 est un groupe alcoyle C1-4-

#### 61 673

9. Composé selon la revendication 1 ou 1 est 1; chacun de m et n est zéro ou un nombre entier de 1 à 9; m+n est un nombre entier de 1 à 9; R<sub>1</sub> est un atome d'hydrogène; un groupe alcoyle C<sub>1-6</sub> ou un groupe phényle; chacun de R2 et R3 est un atome d'hydrogène, un groupe alcoyle C1-8, un groupe cycloalcoyle  $C_{5-6}$ , un groupe phényle ou un groupe benzyle; ou bien  $R_2$  et  $R_3$  sont des groupes alcoylènes C<sub>1-8</sub> et liés ensemble directement ou par un atome d'oxygène pour former un noyau hétérocyclique à 5 à 7 membres avec l'atome d'azote adjacent ou bien le groupe

où chacun de R4 et R5 est un atome d'hydrogène, un groupe alcoyle C1-6, un groupe phényle, ou un groupe benzyle et Re est un atome d'hydrogène, un groupe alcoyle C1-6, un groupe phényle, un groupe benzyle, un groupe phénéthyle, un groupe benzoyle, un groupe cinnamyle, un groupe cinnamoyle, un 20 groupe furoyle ou un groupe

où R7 est un groupe alcoyle C1-4.

10. Composé selon la revendication 9, où chacun de m et n est zéro ou un nombre entier de 1 à 9; m+n est un nombre entier de 1 à 9; et R<sub>1</sub> et R<sub>3</sub> sont des atomes d'hydrogène.

11. Composé selon la revendication 9, où chacun de m et n est zéro ou 1; n+m est 1; R1 est un

30. groupe alcoyle C<sub>1-6</sub> ou un groupe phényle; et R<sub>2</sub> et R<sub>3</sub> sont des atomes d'hydrogène.

12. Composé selon la revendication 9, où chacun de m et n est zéro ou un nombre entier de 1 à 2; m+n est 1 ou 2; R<sub>1</sub> est un atome d'hydrogène; R<sub>2</sub> est un atome d'hydrogène ou un groupe alcoyle C<sub>1-a</sub>; et R<sub>3</sub> est un groupe alcoyle C<sub>1-8</sub>, un groupe cycloalcoyle C<sub>5-8</sub>, un groupe phényle ou un groupe benzyle.

13. Composé selon la revendication 9, où chacun de m et n est zéro ou un nombre entier de 1 à 2; 35 m+n est 1 ou 2; et R2 et R3 forment ensemble, avec l'atome d'azote adjacent, un groupe pipéridino ou un groupe morpholino.

14. Procédé de préparation du composé de formule (I) selon la revendication 1 qui consiste à faire réagir du chlorure de 5-isoqinolinesulfonyle de formule (II)

avec un composé de formule (III)

$$R_1$$
  $R_2$   $H$ - $\{NH(CH_2)_mCH(CH_2)_n\}_{1}$   $N$   $R_3$ 

55 dans laquelle

I est zéro ou un:

chacun de m et n est zéro ou un nombre entier de 1 à 9;

m+n est un nombre entier d'au moins un;

R<sub>1</sub> est un atome d'hydrogène, un groupe alcoyle C<sub>1-10</sub>, ou un groupe phényle;

chacun de  $R_2$  et  $R_3$  est un atome d'hydrogène, un groupe alcoyle  $C_{1-10}$ , un groupe cycloalcoyle  $C_{5-6}$ , un groupe phényle ou un groupe benzyle; ou

65

10

15

40

45

R<sub>2</sub> et R<sub>3</sub> sont des groupes alcoylènes C<sub>1-4</sub> et liés directement ou par un atome d'oxygène pour former un noyau hétérocyclique à 5 à 7 éléments avec l'atome d'azote adjacent; ou le

$$-N = \text{est un groupe} - N = N - R_6$$

$$R_3$$

οù

5

10

20

chacun de R4 et R5 est un atome d'hydrogène, un groupe alcoyle C1-10, un groupe phényle ou un groupe benzyle ou phénéthyle et R<sub>e</sub> est un atome d'hydrogène, un groupe alcoyle C<sub>1-10</sub>, un groupe phényle, un groupe benzyle ou phénéthyle, un groupe benzoyle, un groupe cinnamyle, un groupe cinnamoyle, un groupe furoyle ou un groupe

où  $R_7$  est un groupe alcoyle  $C_{1-8}$ .
15. Procédé de préparation du composé de formule (I) selon la revendication 1, où  $R_2$  est un 25 atome d'hydrogène qui consiste à faire réagir du chlorure de 5-isoquinolinesulfonyle de formule (II)

30

35

45

50

avec un composé de formule (IV)

$$R_1$$
 $H=[-NH(CH_2)_mCH(CH_2)_n]_1$ 
 $R_3$ 
(IV)

dans laquelle

I est zéro ou un;

chacun de m et n est zéro ou un nombre entier de 1 à 9;

m+n est un nombre entier d'au moins 1;

R<sub>1</sub> est un atome d'hydrogène, un groupe alcoyle C<sub>1-10</sub>, ou un groupe phényle;

 $R_3$  est un atome d'hydrogène, un groupe alcoyle  $C_{1-10}$ , un groupe cycloalcoyle  $C_{5-8}$ , un groupe phényle ou un groupe benzyle; et

X est un groupe protecteur,

pour donner un composé de formule (V)

$$\begin{array}{c} \text{SO}_2-\text{[NH(CH}_2)_m\text{CH(CH}_2)_n]_1-N \\ \\ \text{N} \end{array}$$

55

dans laquelle

I, m, n, R<sub>1</sub>, R<sub>3</sub> et X sont tels que définis ci-dessus, et à éliminer le groupe protecteur du composé de formule (V).

60

16. Procédé de préparation du composé de formule (I) selon la revendication 1 où I est zéro et le groupe

$$-N = \begin{cases} R_2 \\ \text{est un groupe} - N \\ R_3 \end{cases}$$

où R<sub>s</sub> est un atome d'hydrogène qui consiste à faire réagir du chlorure de 5-isoquinolinesulfonyle de formule (II)

soci<sub>2</sub>

20 avec un composé de formule (VII)

dans laquelle

5

10

25

30

35

40

chacun de  $\rm R_4$  et  $\rm R_5$  est un atome d'hydrogène, un groupe alcoyle  $\rm C_{1-10}$ , un groupe phényle ou un groupe benzyle ou phénéthyle; et

X est un groupe protecteur,

pour donner un composé de formule (VIII)

$$R_{4}$$
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 

et à éliminer le groupe protecteur du composé de formule (VIII).

17. Procédé selon l'une quelconque des revendications précédentes, où le groupe protecteur est un groupe formyle, acétyle, benzoyle, arylméthyloxycarbonyle, alkyloxycarbonyle ou benzyle.

18. Procédé de préparation du composé de formule (I) selon la revendication 1 où l est zéro et le so groupe

$$R_2$$
 est un groupe  $-N$   $N-R_6$   $R_5$ 

où  $R_6$  est un groupe alcoyle  $C_{1-10}$ , un groupe phényle, un groupe benzyle ou phénéthyle, un groupe 60 benzoyle, un groupe cinnamyle, un groupe cinnamyle, un groupe furoyle ou un groupe

65

où R, est un groupe alcoyle C, qui consiste à faire réagir du chlorure de 5-isoquinolinesulfonyle de formule (II)

(II)

10 avec un composé de formule (X)

(X)

20 dans laquelle

15

chacun de R<sub>4</sub> et R<sub>5</sub> est un atome d'hydrogène, un groupe alcoyle C<sub>1-10</sub>, un groupe phényle ou un groupe benzyle ou phénéthyle pour donner un composé de formule (XI)

25 (XI) 30

35 dans laquelle

R<sub>4</sub> et R<sub>5</sub> sont tels que définis ci-dessus, et à faire réagir le composé de formule (XI) avec un composé de formule

40 dans laquelle

65

R<sub>6</sub> est tel que défini ci-dessus; et W est un groupe éliminable.

19. Procédé selon la revendication 18, où le groupe éliminable est un atome d'halogène, un groupe sulfonyloxy substitué ou un résidu d'acide sulfurique.

20. Procédé selon l'une quelconque des revendications précédentes, où la quantité du composé des formules (III), (IV), (VII) et (X) respectivement est d'au moins 1 mole par mole du composé de

21. Procédé selon la revendication 20, caractérisé en ce que la quantité du composé de formule (III), (IV), (VII) et (X) est respectivement d'environ 1 à 20 moles.

22. Procédé selon l'une quelconque des revendications précédentes, où la réaction entre le composé de formule (II) et le composé des formules (III), (IV), (VII) et (X) respectivement est mise en oeuvre en présence d'un accepteur d'acide.

23. Procédé selon la revendication 22, où l'accepteur d'acide est un composé d'un métal alcalin ou une amine tertiaire organique.

24. Procédé selon l'une quelconque des revendications précédentes, où la quantité de l'accepteur d'acide est de 0,5 à environ 10 équivalents, pour chaque mole du composé de formule (III), (IV), (VII) et

25. Procédé selon l'une quelconque des revendications précédentes, où la quantité du composé de formule (III), (IV), (VII) et (X) respectivement est de 1 à 5 moles par mole du composé de formule (II) quand l'accepteur d'acide est présent et de 2 à 10 moles par mole du composé de formule (II) quand l'accepteur d'acide est absent, à la condition que l'amine utilisée n'ait pas un faible point d'ébullition.

26. Procédé selon l'une quelconque des revendications précédentes, où la réaction entre le composé de formule (II) et le composé des formules (III), (IV), (VII) et (X) respectivement est mise en oeuvre en présence d'un milieu réactionnel.

27. Procédé selon la revendication 26, où le milieu réactionnel est un hydrocarbure halogéné, un

# 0 61 673

alcanol, un éther, du N,N-diméthylformamide, du diméthyl sulfoxyde, de l'acétonitrile ou de l'eau ou leurs mélanges.

28. Procédé selon l'une quelconque des revendications précédentes, où la réaction entre le composé de formule (II) et le composé de formule (III), (IV), (VII) et (X) respectivement est mise en oeuvre à une température comprise de —30°C à 150°C.

29. Procédé selon l'une quelconque des revendications précédentes, où la durée de la réaction est d'une demi-heure à 48 heures à la pression atmosphérique.

30. Procédé selon l'une quelconque des revendications précédentes, où la quantité du composé  $R_{\rm s}$ —W est de 1 mole à 20 moles par mole du composé de formule (XI).

31. Procédé selon l'une quelconque des revendications précédentes, où la quantité de l'accepteur d'acide est de 1 à 10 équivalents pour chaque mole du composé de formule (III) et (XI) respectivement.

32. Procédé selon l'une quelconque des revendications précédentes, où la réaction entre le composé de formule (XI) et le composé R<sub>s</sub>—W est effectuée à une température de -30°C à 200°C.

15

20

25

30

35

. 40

45

50

55

60