Winter Break, Advanced Calculus I, Yung-fu Fang, 20

Jan. 08 2024 Show All Work Name: Id:

- 1. State the definitions of the real numbers, a compact set, and a countable dense set. Let K be a compact set in a metric space X. Show that K has a countable dense subset.
- 2. State the definitions of a continuous function, a uniform continuous function, a differentiable function, a convergent sequence $\{a_n\}$, a convergent series $\sum a_n$, a pointwise convergent sequence of functions $\{f_n\}$, a uniform convergent sequence of functions $\{f_n\}$, an equicontinuous family of functions $\{f_n\}$, Riemann-Stieltjes integral $\int_a^b f d\alpha$.
- **3.** State the Mean-Value Theorem, Fundamental Theorem of Calculus, Taylor's Theorem, and Weierstrass Theorem.
- **4.** Let f be a continuous function on R^1 , f'(x) exists for all $x \neq 0$, and $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists? It it exists, then prove it; otherwise give an example.
- **5.** Suppose that α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$ and f(x) = 0 for $x \neq x_0$. Prove that $f \in R(\alpha)$ and $\int_a^b f d\alpha = 0$.
- **6.** Let a < s < b, f be bounded on [a.b], f continuous at s, and $\alpha(x) = 0$ for $x \le s$, = 1 for x > s. Show that $\int_a^b f d\alpha = f(s)$.
- 7. Show that the sequence of functions $\{f_n(x) = \frac{x^2}{x^2 + (1 nx)^2} : 0 \le x \le 1, n = 1, 2, 3, \cdots \}$ is pointwise convergent, but not equicontinuous.
 - 8. Prove that every uniform convergent sequence of bounded functions is uniform bounded.
- **9.** For $n = 1, 2, 3, \dots, x \in R$, and $f_n(x) = \frac{x}{1 + nx^2}$. Show that $\{f_n\}$ converges uniformly to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x)$ for $x \neq 0$. Find f'(0) and $\lim_{n \to \infty} f'_n(0)$.

10. (a) Let f be continuous on R, f(x) = 0 for $x \in (-\infty, 0) \cup (1, \infty)$, $Q_n(x) = (1-x^2)^n$ for $n = 1, 2, 3, \cdots$. Show that $P_n(x) = \int_{-1}^1 f(x+t)Q_n(t) dt$ is a polynomial.

(b) Prove that $(1 - x^2)^n \ge 1 - nx^2$ on [-1, 1].

- 11. Discuss the convergence and divergence of the power series $\sum_{k=1}^{\infty} k^q z^k$, where $z \in \mathbb{C}$.
- 11. Suppose f is a real, continuously differentiable function on [a, b]f(a) = f(b) = 0, and $\int_a^b f^2(x)dx = 1$. Prove that $\int_a^b x f(x)f'(x)dx = -\frac{1}{2}$ and that $\int_a^b [f'(x)]^2 dx \cdot \int_a^b x^2 f^2(x)dx > \frac{1}{4}$.
- 12. Suppose α increases monotonically on [a,b], g is continuous, and g(x)=G'(x) for $a\leq x\leq b$. Prove that $\int_a^b \alpha(x)g(x)dx=G(b)\alpha(b)-G(a)\alpha(a)-\int_a^b G(x)d\alpha$.

Hint: Take g real, without loss of generality. Given a partition $P = \{x_0, x_1, ..., x_n.\}$, choose $t_i \in (x_{i-1}, x_i)$ so that $g(t_i)\Delta x_i = G(x_{i-1}) - G(x_i)$. Show that $\sum_{i=1}^n \alpha(x_i)g(t_i)\Delta x_i = G(b)\alpha(b) - G(a)\alpha(a) - \sum_{i=1}^n G(x_{i-1})\Delta \alpha_i$.

13. State and prove the STONE-WEIERSTRASS THEOREM.

Have a Nice Winter Break!