Produits tensoriels

1 Exercice 1.

Soient E, F et G des espaces vectoriels de dimension finie supérieure à 2.

- 1. Donner un élément de $E \otimes F$ qui n'est pas un tenseur simple.
- **2.** Donner un exemple d'espaces vectoriels E, F et G et d'application linéaire $h: E \otimes F \to G$ telle que $h(x \otimes y) \neq 0$ pour tout $x \in E \setminus \{0\}$ et $y \in F \setminus \{0\}$ mais qui n'est pas injective.
- **3.** Que se passe-t-il si E ou F est de dimension 1?
- **4.** Soient $f: E \to G$ et $g: F \to G$ des applications linéaires. Existe-t-il une application linéaire $\varphi: E \otimes F \to G$ telle que pour tout $x \in E$ et $y \in F$ on ait

$$\varphi(x \otimes y) = f(x) + f(y).$$

1. Considérons (e_1, e_2) une famille libre de E et (f_1, f_2) une famille libre de F. On considère

$$z = e_1 \otimes f_1 + e_2 \otimes f_2 \in E \otimes F$$
.

L'élément z n'est pas simple. Par l'absurde, supposons le simple, et on écrit que $z=x\otimes y$ avec $x\in E$ et $y\in F$. On complète les familles (e_1,e_2) et (f_1,f_2) en deux bases $(e_i)_{i\in \llbracket 1,n\rrbracket}$ et $(f_j)_{j\in \llbracket 1,m\rrbracket}$ de E et F respectivement. On écrit, avec les bases, $x=\sum_{i=1}^n \lambda_i x_i$ puis $y=\sum_{j=1}^m \mu_j f_j$. Alors $x\otimes y=\sum_{i,j} \lambda_i \mu_j (e_i\otimes f_j)=z$. Ceci permet d'en déduire que

$$\lambda_i \mu_j = \begin{cases} 1 & \text{si } i = j = 1 \text{ ou } i = j = 2 \\ 0 & \text{sinon.} \\ & -1/6 \end{cases}$$

D'où, $\lambda_1\mu_2=0$ et donc $\lambda_1=0$ ou $\mu_2=0$. Cependant, $\lambda_1\mu_1=\lambda_2\mu_2=1$, ce qui est **absurde**. Ainsi z n'est pas un tenseur simple.

2. Considérons $\mathbb{k} = \mathbb{R}$ et $E = F = \mathbb{C}$ vu comme un \mathbb{k} -espace vectoriel de dimension 2. On pose l'application

$$\varphi: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$
$$(x, y) \longmapsto xy,$$

qui est bilinéaire. Ainsi, par propriété universelle, φ induit une unique application linéaire

$$h: \mathbb{C} \otimes \mathbb{C} \longrightarrow \mathbb{C}$$
$$x \otimes y \longmapsto xy.$$

Alors, pour tout $x, y \in \mathbb{C} \setminus \{0\}$, alors $h(x \otimes y) = xy \neq 0$. Or, on a $h(1 \otimes i) = h(i \otimes i)$ et $1 \otimes i \neq i \otimes 1$ donne la non injectivité (car $(1 \otimes 1, i \otimes 1, 1 \otimes i, i \otimes i)$ forme une base de $\mathbb{C} \otimes \mathbb{C}$).

3. Si dim E = 1 on écrit E = vect e. Soit $(f_i)_{i \in [\![1,n]\!]}$ une base de F. Une base de $E \otimes F$ est $(e \otimes f_1, \ldots, e \otimes f_n)$, et

$$\sum_{j=1}^{n} \lambda_j(e \otimes f_j) = e \otimes \left(\sum_{j=1}^{n} \lambda_j f_j\right).$$

Tout élément de $E\otimes F$ est donc un tenseur simple ! Ainsi, l'application

$$F \longrightarrow E \otimes F$$
$$y \longmapsto e \otimes y$$

est un isomorphisme.

4. Montrons que l'application φ existe et est nécessairement nulle. On a, pour tout $x \in E$ et $y \in F$

$$f(x) = f(x) + 0 = \varphi(x \otimes 0) = 0 = \varphi(0 \otimes y) = g(y) = 0.$$

D'où, f = 0 et q = 0.

2 Exercice 2. Isomorphismes canoniques

Soient E et F deux espaces vectoriels de dimension finie.

1. a) Montrer que l'application $E \times F \to F \otimes E$ donnée par $(x,y) \mapsto y \otimes x$ est bilinéaire. En déduire qu'il existe une unique application linéaire

$$f: E \otimes F \to F \otimes E$$

qui vérifie $f(x \otimes y) = y \otimes x$, pour tout $x \in E$ et tout $y \in F$.

On construit de même une application linéaire

$$q: F \otimes E \to E \otimes F$$

telle que $g(y \otimes x) = x \otimes y$.

- **b)** Montrer que $f \circ g = \mathrm{id}_{F \otimes E}$ et $g \circ f = \mathrm{id}_{E \otimes F}$. En particulier, f et g réalisent des isomorphismes entre $E \otimes F$ et $F \otimes E$.
- 2.
- 1. a) L'application

$$\varphi: E \times F \longrightarrow F \otimes E$$
$$(x, y) \longmapsto y \otimes x$$

est linéaire à gauche car $\cdot \otimes \cdot$ est linéaire à droite, et φ est linéaire à droite car $\cdot \otimes \cdot$ est linéaire à gauche. Par propriété universelle, on sait que φ induit une unique application linéaire $f: E \otimes F \to F \otimes E$.

b) Soit $z \in E \otimes F$. On pose $z = \sum_{i=1}^{n} (x_i \otimes y_i)$ avec $x_i \in E$

et $y_j \in F$. Alors,

$$g(f(z)) = g\left(f\left(\sum_{i=1}^{n} x_i \otimes y_i\right)\right)$$

$$= \sum_{i=1}^{n} g(f(x_i \otimes y_i))$$

$$= \sum_{i=1}^{n} g(y_i \otimes x_i)$$

$$= \sum_{i=1}^{n} x_i \otimes y_i$$

$$= z.$$

D'où, $g \circ f = \mathrm{id}_{E \otimes F}$. De même, $f \circ g = \mathrm{id}_{F \otimes E}$.

2. Pour $f \in E^*$ et $g \in F^*$, l'application

$$E \times F \longrightarrow \mathbb{k}$$
$$(x,y) \longmapsto f(x) \ g(y)$$

est bilinéaire. Ainsi, par propriété universelle, elle induit une application linéaire

$$P(f,g): E \otimes F \longrightarrow \mathbb{k}$$

 $x \otimes y \longmapsto f(x) \ g(y).$

L'application

$$P: E^* \times F^* \longrightarrow (E \otimes F)^*$$

 $(f,g) \longmapsto P(f,g)$

est bilinéaire donc, par propriété universelle, elle induit une unique application linéaire

$$\gamma: E^* \otimes F^* \longrightarrow (E \otimes F)^*$$
$$f \otimes g \longmapsto P(f, g).$$
$$-4/6 -$$

De plus, soit $(e_i)_i$ une base de E et $(f_j)_j$ une base de F. Une base de $(E \otimes F)^*$ est donnée par $((e_i \otimes f_i)^*)_{i,j}$. On vérifie que

$$\gamma(e_i^* \otimes f_i^*) = (e_i \otimes f_j)^*$$

par

$$\gamma(e_i^* \otimes f_j^*)(e_k \otimes f_\ell) = P(e_i^*, f_j^*)(e_i \otimes f_\ell) = e_i^*(e_k) \times f_j^*(f_\ell) = \delta_{i,k} \times \delta_{j,\ell}.$$

Ainsi γ est surjective. On conclut par égalité des dimensions :

$$\dim(E^* \otimes F^*) = \dim(E^*) \dim(F^*) = \dim(E) \dim(F) = \dim(E \otimes F) = \dim((E \otimes F)^*).$$

D'où, γ est un isomorphisme.

3. L'application

$$E^* \times F \longrightarrow \operatorname{Hom}(E, F)$$

 $(\lambda, y) \longmapsto (x \mapsto \lambda(x)y)$

est bilinéaire, donc par propriété universelle, elle induit Φ .

Une base de $\operatorname{Hom}(E, F)$ est donnée par les $h_{i,j}: x \mapsto e_i^*(x) f_j$. Or, $h_{i,j} = \Phi(e_i^*, f_j)$, donc Φ est surjective.

Enfin, on a

$$\dim(E^* \otimes F) = (\dim E^*)(\dim F) = (\dim E)(\dim F) = \dim(\operatorname{Hom}(E, F)).$$

D'où, Φ est un isomorphisme.

Table des matières

Produits tensoriels		1
1	Exercice 1	1
2	Exercice 2. Isomorphismes canoniques	3