Coupon Collector Calculator (CCC)

See the PDF version of this README file if you want to view the mathematical symbols the way they were intended.

Let X_1, X_2, \ldots be i.i.d. random variables taking values in $\{1, \ldots, N\}$. Let $p_j = P(X_1 = j)$. This represents a sequence of trials, where on each trial, we collect one of N possible coupons. The probability of collecting the j-th coupon on any given trial is p_i .

Fix $n \in \mathbb{N}$, nonempty $S \subset \{1, \dots, N\}$, and $k \in \{1, \dots, |S|\}$. The main purpose of CCC is to calculate

$$P(|\{X_1,\ldots,X_n\}\cap S|\geq k),$$

which is the probability of collecting at least k coupons from S in n trials.

To use CCC, save the script, CCC.R, and README.md to the same folder, then run the script in R.

CCC.R

When you run this script, it will load four functions, <code>combnPure</code>, <code>combnGE</code>, <code>coupExact</code>, and <code>coup</code>. The main function is <code>coup</code>. The usage details are below, but here is a brief summary.

coup(p,n) returns the probability of collecting all coupons by the n-th trial. Normalizing p is unnecessary. For example, p=(0.2,0.8) and p=(1,4) both represent a scenario with two coupons, the first of which is four times rarer than the second. You can also use single integers for p. For example, p=4 represents four equally likely coupons.

coup(p,n,k) returns the probability of collecting at least k coupons by the n-th trial.

coup(p,n,k,g) returns the probability of collecting at least k coupons from S by the n-th trial. Here, g is a vector of length ISI whose components are the elements of S.

For example, suppose there are 15 equally likely coupons numbered 1 through 15. The probability of collecting, in 40 trials, at least 7 distinct coupons with numbers between 1 and 10 is coup(15,40,7,1:10).

combnPure

Let S be a set and let g be a vector of length |S| whose components are the elements of S. Let k be an

element of $\{0, 1, \ldots, |S|\}$. Then combnPure(g, k) returns a list with $\binom{|S|}{k}$ items. Each item is itself a list of the elements in a particular subset of S. In this way, combnPure(g, k) lists all subsets of S of size k, including the empty set when k equals zero. Unlike the built-in function, combn, the behavior of combnPure is the same even when length(g) equals one or zero.

combnGE

This function is the same as combnPure, except it lists all subsets of size greater than or equal to k. The default value for k is zero, so that combnGE(g) returns all subsets of S, including the empty set.

coupExact

Let p be a vector of nonnegative real numbers with length $N \geq 2$. If they do not add up to one, then coupExact will normalize the vector to be a probability vector. If the user enters an integer $N \geq 2$ for p, then coupExact will replace it by the vector of length N whose every component is $\frac{1}{N}$.

Let n be any positive integer.

Let $S \subset \{1, ..., N\}$ be nonempty. Let g be a vector of length |S| whose components are the elements of S. As a shortcut, entering zero for g is equivalent to taking $S = \{1, ..., N\}$.

Then coupExact(p,n,g) returns $P(\{X_1,\ldots,X_n\}=S)$. This function utilizes the formula described in this paper. The default value for g is zero, so that coupExact(p,n) returns the probability of collecting all coupons in n trials.

coup

Let p, g, and n be as above. Let k be an element of $\{1, \ldots, |S|\}$. As a shortcut, entering zero for k is equivalent to taking k equal to |S|.

Then coup(p,n,k,g) returns

$$P(|\{X_1,\ldots,X_n\}\cap S|\geq k),$$

the probability of collecting at least k coupons from S in n trials. The default values for k and g are both zero. Thus, $\operatorname{coup}(p,n)$ is the same as $\operatorname{coupExact}(p,n)$, and $\operatorname{coup}(p,n,k)$ is the probability of collecting at least k coupons in n trials.