組込システム I 第 5 回 課題

提出日 2025/05/22 学籍番号 21T2166D 名前 渡辺 大樹

1 演習 2 - AD コンバータによる分圧測定

資料の回路を作成して、抵抗による分圧電圧を AD コンバータで読み込み、理論値と比較せよ。

- 抵抗値は、2k, 6.8k, 33k, 47k の 4 種類の組み合わせを比較する。
- 分圧電圧は、Vout=Vin × R2/(R1+R2) で求める。
- AD コンバータの分解能は、10bit である。

1.1 回路

以下に実装した回路の写真と回路図を示す。

図 1 演習 2 回路の写真 (MCP3002 と固定抵抗による分圧)

図2 演習2回路図 (MCP3002 と固定抵抗による分圧)

1.2 プログラム

ソースコード 1 に分圧測定を行ったプログラムを示す。このコードでは、AD コンバータを使用して分圧電圧を測定している。

測定部分で 0.5 秒おきに AD コンバータの値を取得し、それの 10 回合計を取ってから平均値を計算している。

1.3 実行結果

以下に実行結果を示す。

表 1 に示すように、分圧電圧の測定値は理論値とほぼ一致している。測定電圧は、ADC 値を 1024 で割った後に 3.3V を掛けて計算した。理論電圧は $V_{out} = V_{in} \times \frac{R_2}{R_1 + R_2}$ ($V_{in} = 3.3V$) により求めた。誤差は、ほとんどの組み合わせで 1% 未満であり、最大でも約 3.6% 程度であった。これらの結果から、AD コンバータを用いた分圧測定は十分な精度で行えることが確認できた。

以下にこのデータのグラフを示す。

2 演習 3 - アナログ温度センサ LM35DZ の測定

資料の回路を作成して、アナログ温度センサ LM35DZ の出力電圧を AD コンバータで読み込み、温度を測定する。

- 温度センサの出力電圧は、10mV/℃である。
- AD コンバータの分解能は、10bit である。

表 1 固定抵抗による分圧電圧測定結果

R_1 [Ω]	R_2 [Ω]	ADC 値	測定電圧 [V]	理論電圧 [V]	誤差 [%]
2,000	47,000	982.2	3.17	3.13	1.28
2,000	6,800	817.5	2.64	2.61	1.15
2,000	33,000	983.0	3.17	3.06	3.59
6,800	2,000	231.0	0.75	0.75	0.00
6,800	33,000	849.7	2.74	2.72	0.74
6,800	47,000	893.6	2.88	2.86	0.70
33,000	6,800	173.4	0.56	0.56	0.00
33,000	2,000	59.2	0.19	0.19	0.00
33,000	47,000	598.9	1.93	1.93	0.00
47,000	2,000	41.0	0.13	0.13	0.00
47,000	33,000	423.5	1.37	1.37	0.00
47,000	6,800	129.0	0.42	0.42	0.00

図3 分圧測定結果のグラフ

2.1 回路

以下に実装した回路の写真と回路図を示す。

2.2 プログラム

ソースコード 2 にアナログ温度センサ LM35DZ の測定を行ったプログラムを示す。このコードでは、AD コンバータを使用して温度センサの出力電圧を測定している。コンバータから取った値に対して入力電圧を掛けてから 1023 で割ることで、実際の電圧を求めている。その後、温度セン

図 4 演習 3 回路の写真 (LM35DZ)

サの出力電圧を 10mV/°Cで割ることで、温度を求めている。

2.3 実行結果

以下に実行結果を示す。

表 2 は、様々な環境での温度センサの測定結果を示している。LM35DZ センサは、環境の変化に応じて出力電圧が変化し、それに比例して温度表示も変化することが確認できた。特に、手で温めた場合は体温に近い値を示し、センサの応答性の高さが確認できた。

図 5 演習 3 回路図 (MCP3002 と LM35DZ 温度センサ)

測定日時測定環境測定温度 [°C]2025/05/22 16:00温風を遠くから当てた状態30.62025/05/22 16:30室内 (エアコン使用)20.22025/05/22 17:00室内 (窓開放)23.2

表 2 温度センサ LM35DZ の測定結果

3 演習3-問い

センサ温度-¿センサ出力-¿AD変換結果-¿温度表示の流れを示す。

センサ温度から AD 変換を経て温度表示までの流れを、以下のように示す。

変換プロセスの説明

1. 環境温度 → センサ出力:

LM35DZ センサは環境温度を検知し、10mV/°Cの比率で出力電圧に変換する。

例:25 °Cの環境では、 $V_{out} = 0.01 \times 25 = 0.25$ [V] となる。

2. センサ出力 → AD 変換結果:

MCP3002 AD コンバータは、入力された電圧を 10 ビット (0-1023) のデジタル値に変換する。

変換式: $D = V_{out} imes rac{1023}{V_{ref}}$ (V_{ref} は基準電圧で 3.3V)

例:0.25V の入力では、 $D=0.25 imes rac{1023}{3.3}pprox 77.5$ となる。

3. **AD** 変換結果 → 温度表示:

デジタル値から再び電圧を計算し、それを温度に変換する。

変換式: $T' = \frac{D \times V_{ref}}{1023} \div 0.01$

例:デジタル値 77.5 では、 $T'=\frac{77.5\times3.3}{1023}\div0.01=25$ [°C] となる。 この変換過程により、センサが検知した環境温度が正確に表示される。

```
1 import spidev
2 import time
4 spi = spidev.SpiDev()
5 spi.open(0, 0)
6 spi.bits_per_word = 8
7 \text{ spi.max\_speed\_hz} = 10000
   start = 0b01000000
10 \text{ sgl} = 0b00100000
   ch0 = 0b00000000
12 \text{ ch1} = 0b00010000
13 \text{ msbf} = 0b00001000
   def mcp3002(ch):
15
       rcv = spi.xfer2([(start + sgl + ch + msbf ), 0x00])
       ad = (((rcv[0] & 0x03) << 8) + rcv[1])
17
       return ad
18
19
   try:
20
       for i in range(10):
           sum += mcp3002(ch1)
22
           time.sleep(0.5)
23
24
       print(sum / 10)
25
   except KeyboardInterrupt:
26
27
       pass
28
29 spi.close()
```

ソースコード 2 演習 3 コード

```
1 import spidev
2 import time
3
4 spi = spidev.SpiDev()
5 spi.open(0, 0)
6 spi.bits_per_word = 8
7 spi.max_speed_hz = 10000
8
9 start = 0b01000000
10 sgl = 0b001000000
```

```
11 \text{ ch0} = 0b00000000
12 \text{ ch1} = 0b00010000
13 \text{ msbf} = 0b00001000
15
   def mcp3002(ch):
       rcv = spi.xfer2([(start + sgl + ch + msbf ), 0x00 ] )
16
       ad = (((rcv[0] & 0x03) << 8) + rcv[1])
17
       return ad
18
19
20 try:
21
       sum = mcp3002(ch0)
       temp_tmp = (sum * 3.3) / 1023
23
       temp = (temp_tmp) / 0.01
^{24}
       print(f"temp:_{\sqcup}\{temp\}^{\circ}C")
25
26
   except KeyboardInterrupt:
28
       pass
29
30 spi.close()
```