$\tau_{1^-}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha} t_{1}^{\#1}{}_{\alpha} t_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#1}$	0	0		$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha_{\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 + r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_1^{#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\text{-}}}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#^2} + ^{\alpha}$

 $\frac{1}{3}t_{2} \omega_{\theta_{1}K} \partial^{\kappa} f^{\prime \theta} + \frac{2}{3}t_{2} \omega_{\theta_{K}_{1}} \partial^{\kappa} f^{\prime \theta} - \frac{1}{6}t_{2} \partial^{\alpha} f^{\lambda}_{K} \partial^{\kappa} f_{\lambda \alpha} - \frac{1}{6}t_{2} \partial_{\kappa} f_{\beta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} +$ $_{\kappa}\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}t_{2}\omega_{,\theta\kappa}\partial^{\kappa}f^{'\theta}-\frac{2}{3}t_{2}\omega_{,\kappa\theta}\partial^{\kappa}f^{'\theta}.$ $_{\kappa}^{\alpha}\partial^{\prime}\omega_{\lambda}^{\alpha}$ $\alpha^{2}-r_{5}\partial_{1}\omega^{K\lambda}$ $_{1}^{\alpha}{}_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}+$ $^{\prime}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}+$ $_{\alpha}^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + \frac{1}{6}t_{2}\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} \alpha^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}$ $_{\theta}\partial^{\kappa}f_{\lambda}^{\theta}-4\,r_{3}\,\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\,\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{1}{2}\,r_{3}\,\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\,\partial^{\lambda}\omega^{\theta\kappa}_{}$ $_{\kappa}^{\lambda}\partial^{\prime}\omega_{\lambda}^{\alpha}$ $_{\kappa}^{\kappa}$ - $r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}$ $\frac{1}{2} r_3 \partial_\theta \omega_\lambda^{\alpha}$ $_{\alpha}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $_{2}^{1}$ $_{r_{3}}^{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $_{r_{5}}^{6}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}$ Added source term: $f^{lphaeta} \; au_{lphaeta} + \omega^{lphaeta\chi} \; \sigma_{lphaeta\chi}$ $\int_{1}^{1} -\frac{1}{2} r_3 \partial_i \omega^{K\lambda}$ $\alpha^{\alpha}_{\beta}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ $r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} {}_{\theta} \partial^{\lambda} \omega^{\theta \kappa} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}$ Lagrangian density $\frac{2}{3}t_2 \, \omega_{\kappa\lambda}^{\ \kappa\lambda} + \frac{1}{3}t_2 \, \omega_{\kappa\lambda}^{\ \prime} \, \omega_{\kappa\lambda}^{\ \kappa\lambda}$ $r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + 2 r_5 \partial_\theta \omega_\lambda^{\ \alpha}$ $\alpha _{\theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{c}$ $_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa}$ Ø $\frac{1}{6}t_2\,\partial^{\alpha}f_{\,\kappa\theta}\,\partial^{\kappa}f_{\,\alpha}$ $\frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}$ $r_5 \partial_\theta \omega_\lambda^{\ \alpha}$ $\frac{1}{6}t_2\,\partial_\kappa f^\lambda_{}$

$\alpha f_{1^-}^{\#2} \alpha$	0	0	0	0	0	0	0
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{2}k^{2}(r_{3}+2r_{5})$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	4 <u>7</u> 3	$-\frac{1}{3}$ ikt ₂	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_{1}^{\#_1} +^\alpha$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^-}^{\#1} +^\alpha$	$f_{1}^{\#2} +^{\alpha}$

	#	1	1	1	3	3	Э	3	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	0 ==	$\tau_1^{\#1}{}^{\alpha\beta} + i k \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{2^{-1}}^{\#1\alpha\beta\chi} == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

1	† ^{αμ}	Вх	0	()	0					
	#	Н	-	1	т	м	m	т	2	2	25
) irreps	0 =:	0 =	0 =	0 ==	0 ==	0 == 0	$\beta + i k \sigma_1^{\#_2^2 \alpha \beta} == 0$	0 == χ _θ ;	β == 0	:#_

	$\omega_{0}^{#1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{#1}$
$\omega_{0^+}^{\#1}\dagger$	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	t_2

Т	U	0	U	0					
†	0	0	0	0					
†	0	0	0	0			#1	#1	#
+	0	0	0	t_2			$\sigma_{0}^{\#1}$	$\tau_0^{"+}$	$\tau_0^{"}$
ı						$\sigma_{0}^{\#1}$ †	0	0	0
	σ	#1	$\tau_{2}^{\#1}$	$_{\alpha\beta}$ σ_{z}^{2}	#1	$\tau_{0^{+}}^{\#1}$ †	0	0	0
		2 · αβ	, 7.	ap^{-1}	2 αβχ				

0

,0+		,)		,	U			
$\tau_{0}^{\#2}$	† ()	0	()	0			
$\tau_{0^{+}}^{#2}$ $\sigma_{0^{-}}^{#1}$	† ()	0	C)	$\frac{1}{t_2}$			
						$^{1}_{+}$ * ω_{2}^{*1} *	Ydn -	0	C
3	2	<u> </u>	n	25		3			
0						+17	3	0	

$\omega_2 + \alpha \beta \Gamma_2 + \alpha \beta \ \omega_2^{} \alpha \beta_{\lambda}$	0	0	0
7 2 ⁺ $\alpha\beta$	0	0	0
$\omega_2 + \alpha \beta$	-3 k ² r ₃	0	0
	$\omega_2^{#1} + \alpha \beta$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2}^{#1} +^{\alpha eta \chi}$