Université de Haute-Alsace

2022/2023

Maths Renfort CPB1

Quentin Ehret quentin.ehret@uha.fr

Chapitre 2 : Suites réelles

1 Définitions

1.1 Suites numériques

Définition 1

On appelle suite numérique réelle toute application $u : \mathbb{N} \longrightarrow \mathbb{R}$. Si $n \in \mathbb{N}$, on note $u_n := u(n)$. On appelle ce réel le *n*-ème terme ou terme général de la suite.

Lorsqu'on veut parler de toute la suite, on notera u, $(u_n)_{n\in\mathbb{N}}$ ou encore (u_n) . Si la suite ne commence pas en 0 mais en $n_0 > 0$, on note $(u_n)_{n>n_0}$. On note l'ensemble des suites réelles $\mathbb{R}^{\mathbb{N}}$.

Exemples:

- 1. $u_n = n^2, n \in \mathbb{N} : 0, 1, 4, 9, 16, 25, \dots$
- 2. $u_n = \frac{1}{n}, n > 0 : 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- 3. $u_n = (-1)^n, n \in \mathbb{N} : 1, -1, 1, -1, 1, -1, 1, -1, \dots$
- 4. Suite de Fibonacci : $F_0=1, F_1=1,$ puis $F_{n+2}=F_{n+1}+F_n$ pour n>1. On obtient $1,1,2,3,5,8,13,\ldots$

Remarque. Dans le dernier exemple, on voit un autre moyen pour présenter une suite : par récurrence. On donne un ou plusieurs termes initiaux, puis une formule pour calculer chaque terme en fonction du ou des précédents :

$$\begin{cases} u_0 \in I \\ u_{n+1} = f(u_n, u_{n-1}, ..., u_0) \quad \forall n \in \mathbb{N} \end{cases}$$

Vous savez déjà passer d'une présentation à une autre dans certains cas :

- $u_{n+1} = u_n + r \rightleftharpoons u_n = u_0 + nr$ (suite arithmétique);
- $v_{n+1} = qv_n \rightleftharpoons v_n = v_0q^n$ (suite géométique).

1.2 Suites majorées, minorées, bornées

Définition 2

Soit (u_n) une suite. Elle est dite :

- majorée si $\exists M \in \mathbb{R}$, tel que $\forall n \in \mathbb{N}, u_n \leq M$;
- minorée si $\exists m \in \mathbb{R}$, tel que $\forall n \in \mathbb{N}$, $u_n \geq m$;
- bornée si elle est à la fois majorée et minorée, $ie \exists M \in \mathbb{R}$, tel que $\forall n \in \mathbb{N}, |u_n| \leq M$.

Exemples:

 $((-1)^n)$ est bornée par 1, $(\frac{1}{n})$ est majorée par 1, (n^2) est minorée par 0.

1.3 Suites croissantes et décroissantes

Définition 3

Soit (u_n) une suite. Elle est dite :

- **croissante** si $u_{n+1} \ge u_n$ pour tout $n \in \mathbb{N}$;
- strictement croissante si $u_{n+1} > u_n$ pour tout $n \in \mathbb{N}$;
- **décroissante** si $u_{n+1} \leq u_n$ pour tout $n \in \mathbb{N}$;
- strictement décroissante si $u_{n+1} < u_n$ pour tout $n \in \mathbb{N}$;
- monotone si elle est croissante ou décroissante;
- strictement monotone si elle est strictement croissante ou strictement décroissante.

Exemples : $\left(\frac{1}{n}\right)$ décroît ; (n^2) croît ; $((-1)^n)$ n'est ni croissante ni décroissante ; la suite de Fibonacci croît.

Remarques:

- (u_n) croît $\iff u_{n+1} u_n \ge 0 \ \forall n \in \mathbb{N};$
- si (u_n) est à termes strictement positifs, alors (u_n) croît $\iff \frac{u_{n+1}}{u_n} \ge 1 \ \forall n \in \mathbb{N}$.

2 Convergence de suites numériques

2.1 Limites

Définition 4 (Limite finie)

Soit (u_n) une suite réelle. On dit que (u_n) a pour limite $l \in \mathbb{R}$ ou que (u_n) converge vers $l \in \mathbb{R}$ si

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, |u_n - l| \le \varepsilon.$$

Cette phrase mathématique se lit "quel que soit ε strictement positif, il existe un entier positif N tel que pour tout entier n plus grand que N, on a $|u_n - l| \le \varepsilon$ ". Cela signifie que pour que la suite tende vers l, il faut qu'on puisse approcher ce nombre l d'aussi près que l'on veut avec des termes de la suite à partir d'un certain rang.

FIGURE 1 – Convergence d'une suite

Dès que n dépasse N, u_n appartient au segment $[l - \varepsilon, l + \varepsilon]$ et n'en sort plus jamais. u_n est ainsi aussi proche que l'on veut de l à partir d'un certain rang.

Remarque. Attention! N dépend de ε , mais ε est fixé dès le départ et ne dépend de personne!

Définition 5 (Limite infinie)

Soit (u_n) une suite réelle. On dit que

• (u_n) tend vers $+\infty$ si

$$\forall A > 0, \quad \exists N \in \mathbb{N}, \quad n \ge N \Longrightarrow u_n \ge A.$$

• (u_n) tend vers $-\infty$ si

$$\forall A > 0, \exists N \in \mathbb{N}, n \geq N \Longrightarrow u_n \leq -A.$$

On note $\lim_{n\to+\infty}(u_n)=\pm\infty$ ou bien $u_n\underset{n\to+\infty}{\longrightarrow}\pm\infty$. Comme dans le cas des suites, n tend toujours vers $+\infty$, on peut s'abstenir de le préciser.

- Si $u_n \xrightarrow[n \to +\infty]{} l \in \mathbb{R}$ (finie), on dit que (u_n) est **convergente**.
- Sinon, on dit que (u_n) diverge. Il peut y avoir deux cas : soit la suite tend vers $\pm \infty$, soit la suite n'admet aucune limite.

Exemples: $\frac{1}{n} \to 0$; $n^2 \to +\infty$; $(-1)^n$ n'a pas de limite (la suite oscille constamment entre 1 et -1.)

<u>La</u> limite est unique:

Proposition 6

Si une suite converge, alors sa limite est unique.

Démonstration. Procédons par l'absurde. Supposons que (u_n) est une suite convergente qui admet deux limites distinctes $l \neq l'$. Prenons ε tel que $\varepsilon < \frac{|l-l'|}{2}$.

$$u_n \longrightarrow l \Longrightarrow \exists N_1 \in \mathbb{N}, \quad \forall n \ge N_1, |u_n - l| \le \varepsilon.$$

$$u_n \longrightarrow l' \Longrightarrow \exists N_2 \in \mathbb{N}, \quad \forall n \geq N_2, |u_n - l'| \leq \varepsilon.$$

Posons $N = \max(N_1, N_2)$. Alors $|u_N - l| \le \varepsilon$ et $|u_N - l'| \le \varepsilon$ simultanément. Ainsi,

$$|l - l'| = |l - u_N + u_N - l'| \le |l - u_N| + |l' - u_N| \le 2\varepsilon.$$

Mais rappelons nous qu'avec notre choix de ε , on a aussi $2\varepsilon < |l - l'|$. On a ainsi |l - l'| < |l - l'|, ce qui est une contradiction. Notre hypothèse de départ $l \neq l'$ est donc fausse, d'où finalement l = l'.

2.2 Propriétés des limites

Proposition 7

- 1. $\lim(u_n) = l \iff \lim(u_n l) = 0 \iff \lim|u_n l| = 0$;
- 2. $\lim(u_n) = l \Longrightarrow \lim |u_n| = |l|$.

Proposition 8 (Opérations sur les limites finies)

Soient (u_n) et (v_n) deux suites convergentes.

- 1. si $u_n \to l \in \mathbb{R}$, alors pour tout réel λ , $\lambda u_n \to \lambda l$.
- 2. si $u_n \to l \in \mathbb{R}$ et $v_n \to l' \in \mathbb{R}$, alors $u_n + v_n \to l + l'$ et $u_n v_n \to ll'$.
- 3. si $u_n \to l \in \mathbb{R} \setminus \{0\}$, alors $u_n \neq 0$ pour n assez grand et $\lim_{n \to \infty} \frac{1}{l}$.

Proposition 9 (Opérations sur les limites infinies)

Soient (u_n) et (v_n) deux suites telles que $v_n \to +\infty$.

- 1. $\lim \frac{1}{v_n} = 0$.
- 2. si (u_n) est minorée, alors $u_n + v_n \to +\infty$.
- 3. si (u_n) est minorée par un réel strictement positif, alors $u_n v_n \to +\infty$.
- 4. si $\lim(u_n) = 0$, et $u_n > 0$ à partir d'un certain rang, alors $\lim \frac{1}{u_n} = +\infty$.

Exemple: $n^2 \to +\infty$ donc $\frac{1}{n^2} \to 0$.

Proposition 10 (Théorèmes de comparaison)

- 1. Soient (u_n) et (v_n) deux suites convergentes telles que pour tout $n, u_n \leq v_n$. Dans ce cas, $\lim_{n \to \infty} (u_n) \leq \lim_{n \to \infty} (v_n)$.
- 2. Soient (u_n) et (v_n) deux suites telles que $u_n \to +\infty$ et $u_n \le v_n$. Alors $v_n \to +\infty$.
- 3. (Théorème des gendarmes) Soient (u_n) , (v_n) et (w_n) trois suites vérifiant $u_n \leq v_n \leq w_n$ pour tout n et $\lim_{n \to \infty} (u_n) = \lim_{n \to \infty} (w_n) = l$. Alors (v_n) converge et $\lim_{n \to \infty} (v_n) = l$.

Remarque. Attention! Si $u_n > 0$ pour tout n, cela ne signifie pas forcément que $\lim(u_n) > 0$! par exemple $\frac{1}{n+1} > 0$ pour tout n mais sa limite est 0.

Démonstration. 1. Posons $w_n = v_n - u_n$ On se ramène à montrer que si $w_n \ge 0$ et converge, alors $\lim(w_n) \ge 0$. Par l'absurde, supposons que $l = \lim(w_n) < 0$. Posons $\varepsilon = \left|\frac{l}{2}\right|$. On obtient

$$\exists N \in \mathbb{N}, \ \forall n \geq N, |w_n - l| \leq \varepsilon,$$

donc $|w_n - l| \le \left| \frac{l}{2} \right| = -\frac{l}{2}$ (car l < 0). En particulier, on a que pour tout $n \ge N$, $w_n \le l - \frac{l}{2} = l/2 < 0$. Ceci est une contradiction, car $w_n \ge 0$.

- 2. Exercice.
- 3. Supposons réunies les conditions de l'énoncé. Posons $u'_n = v_n u_n$ et $v'_n = w_n u_n$. Alors on a

$$0 \le u_n' \le v_n',$$

avec $v_n' \to 0$. Montrons que $u_n' \to 0$ également.

Soit $\varepsilon > 0$ et $N \in \mathbb{N}$ tel que $n \ge N \Longrightarrow |v_n'| \le \varepsilon$. Comme $|u_n'| = u_n' \le v_n'$, on obtient que $|u_n'| \le \varepsilon$ pour $n \ge N$. Donc $u_n' \to 0$.

2.3 Théorèmes de convergence

Théorème 11

Toute suite croissante et majorée est convergente.

Toute suite décroissante et minorée est convergente.

 $D\acute{e}monstration$. Faisons la preuve dans le cas croissante majorée. Notons $A = \{u_n, n \in \mathbb{N}\}$. Supposons $u_n \leq M$ $\forall n \in \mathbb{N}$. Alors A admet M pour majorant, et A est non vide. Il admet donc une borne supérieure. Notons donc $l = \sup(A)$. Montrons que u_n converge vers l.

Soit $\varepsilon > 0$. Il existe un élément $u_N \in A$ tel que $l - \varepsilon < u_N \le l$. Mais alors, pour $n \ge N$, on a les inégalités $l - \varepsilon < u_N \le u_n \le l$, et donc $|u_n - l| \le \varepsilon$.

Remarque. Toute suite croissante non majorée diverge vers $+\infty$ et toute suite décroissante non minorée diverge vers $-\infty$.

Définition 12 (Suites adjacentes)

Deux suites (u_n) et (v_n) sont dites **adjacentes** si :

- 1. (u_n) croît et (v_n) décroît;
- 2. pour tout $n, u_n \leq v_n$;
- $3. \lim_{n \to +\infty} (u_n v_n) = 0.$

Théorème 13

Si les suites (u_n) et (v_n) sont adjacentes, alors elles convergent vers la même limite.

Remarque. Ce théorème fournit deux résultats : la convergence des suites et l'égalité des limites.

Les termes des deux suites sont donc rangés dans l'ordre suivant :

$$u_0 \le u_1 \le u_2 \le \dots \le u_n \le \dots \le v_n \le \dots \le v_1 \le v_0.$$

Démonstration.

- (u_n) est croissante et majorée par v_0 , donc converge vers un réel l;
- (v_n) est décroissante et minorée par u_0 , donc converge vers un réel l';
- $l l' = \lim(u_n) \lim(v_n) = \lim(u_n v_n) = 0$, donc l = l'.

Théorème 14

Soit (u_n) une suite de réels non nuls. On suppose qu'il existe un réel l tel que, pour n assez grand, on ait

$$\left| \frac{u_{n+1}}{u_n} \right| < l < 1.$$

Alors $\lim(u_n) = 0$

Démonstration. Supposons que $\left| \frac{u_{n+1}}{u_n} \right| < l < 1$. Alors

$$\frac{u_n}{u_0} = \frac{u_1}{u_0} \frac{u_2}{u_1} \frac{u_3}{u_2} ... \frac{u_n}{u_{n-1}},$$

donc on obtient $\left|\frac{u_n}{u_0}\right| < l^n$. Ainsi, on a $|u_n| \le |u_0| l^n \to 0$. (voir aussi exercice 2 du TD)

Corollaire 15

Soit (u_n) une suite de réels non nuls. Si $\lim \frac{u_{n+1}}{u_n} = 0$, alors $u_n \to 0$.

Exemple important : Pour tout réel a, on a $\frac{a^n}{n!} \to 0$.

3 Approximation de réels par des décimaux et Bolzano-Weierstrass

3.1 Approximation de réels par des décimaux

Proposition 16

Soit $x \in \mathbb{R}$. Posons

$$u_n := \frac{E(10^n x)}{10^n},$$

E désignant la partie entière.

Alors u_n est une approximation décimale de x à 10^{-n} près, et (u_n) converge vers x.

Démonstration. Par définition de E, on a

$$E(10^n x) \le 10^n x \le E(10^n x) + 1$$
,

donc en divisant cette inégalité par 10^n , on trouve

$$u_n \le x < u_n + \frac{1}{10^n},$$

que l'on peut réécrire en $0 \le x - u_n < \frac{1}{10^n}$. On conclut par le théorème des gendarmes.

Exemple : Prenons $x = \pi$. $u_0 = E(\pi) = 3$; $u_1 = \frac{E(10\pi)}{10} = 3.1$; $u_2 = \frac{E(100\pi)}{100} = 3.14$; etc...

3.2 Théorème de Bolzano-Weierstrass

$\{ \mathbf{D} \hat{\mathbf{e}} \mathbf{f} \mathbf{i} \mathbf{n} \mathbf{i} \mathbf{t} \mathbf{i} \mathbf{o} \mathbf{n} \mathbf{17} \}$

Soit (u_n) une suite. Une **suite extraite** ou **sous-suite** de (u_n) est une suite de la forme $u_{\varphi(n)}$, avec $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante (appelée **extractrice**).

6

Exemple: Prenons $u_n = (-1)^n$, $\varphi : x \longmapsto 2x$ et $\psi : x \longmapsto 2x + 1$. Alors $u_{\varphi(n)} = (-1)^{2n} = 1$ et $u_{\psi(n)} = (-1)^{2n+1} = -1$ pour tout n.

Proposition 18

- 1. Soit (u_n) une suite. Si (u_n) converge vers l, alors toute suite extraite de (u_n) converge aussi vers l.
- 2. Si (u_n) est une suite admettant une sous-suite divergente, alors (u_n) diverge.
- 3. Si (u_n) est une suite admettant deux sous-suites qui convergent vers deux limites distinctes, alors (u_n) diverge.

Démonstration. Exercice.

Théorème 19 (Bolzano-Weierstrass)

Toute suite bornée admet une sous-suite convergente.

4 Exercices

Exercice 1: (suites géométriques)

Soit $a \in \mathbb{R}$, on pose $u_n = a^n$.

- 1. Montrer: si a > 1, alors $\lim_{n \to +\infty} (u_n) = +\infty$.
- 2. Montrer: si -1 < a < 1, alors $\lim_{n \to +\infty} (u_n) = 0$.
- 3. Montrer: si $a \leq -1$, alors (u_n) diverge.

Exercice 2:

Soit (u_n) une suite réelle.

- 1. Montrer que si $\lim_{n \to +\infty} (u_n) = +\infty$, alors $\lim_{n \to +\infty} (1/u_n) = 0$.
- 2. Montrer que toute suite convergente est bornée.
- 3. Soit (v_n) une suite réelle convergeant vers 0. Montrer que si (u_n) est bornée, alors (u_nv_n) converge aussi vers 0.
- 4. En déduire que $\lim_{n\to +\infty}(u_nv_n)=\lim_{n\to +\infty}(u_n)\times\lim_{n\to +\infty}(v_n)$ pour u et v deux suites convergeant vers une limite réelle finie. Indication: remarquer que ab-cd=(a-c)b+c(b-d), pour $a,b,c,d\in\mathbb{R}.$

Exercice 3: (calculs de limites)

Calculer les limites (si elles existent) des suites suivantes :

- 1. $\frac{(-1)^{n-1}}{n}$;
- 2. (u_n) définie par $u_1 = 0.23$, $u_2 = 0.233$, $u_3 = 0.2333$, etc;
- 3. $\frac{n+(-1)^n}{n-(-1)^n}$;
- 4. $u_n = \sum_{k=1}^n \frac{1}{2^k}$;
- 5. (v_n) définie par $v_1 = \sqrt{2}$, $v_n = \sqrt{2v_{n-1}}$. Utiliser ln et le point 4;
- 6. $\sqrt{n+1} \sqrt{n}$;
- 7. $\frac{n^2 3n + 2}{2n^2 + 5n 34}$; $\sqrt{n + \sin(n)}$; $\frac{1}{n + (-1)^n}$; $\frac{3n}{n + \cos(n)}$.

Exercice 4:

- 1. Soit $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer (par récurrence) que $u_n \leq 2 \frac{1}{n}$. Déduire que (u_n) converge.
- 2. (Série harmonique) Soit $H_n = \sum_{k=1}^n \frac{1}{k}$.
 - (a) Avec une intégrale, montrer que $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$ pour tout $n \in \mathbb{N}$.
 - (b) En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$. Limite de H_n ?
 - (c) On pose $v_n = H_n \ln(n)$. Montrer que (v_n) est positive et décroissante. Conclusion ?

Exercice 5:

Montrer que la suite $u_n = (-1)^n + \frac{1}{n}$ ne converge pas.