Al Programmer Salary Analysis and Prediction System

Dr. Sara Elmetwally Eng. Leqaa Hani

Agenda

Introduction

With the rising demand for Al programmers worldwide, determining appropriate salaries has become increasingly complex. Salaries vary depending on factors such as geographic location, company size, currency, and the job level (Junior, Mid-Level, Senior). This project aims to analyze and predict Al programmer salaries based on these factors, providing valuable insights to both employees and employers for making informed decisions.

Problem Statement

Al professionals often face challenges when trying to understand salary expectations across different regions and job levels. Employers, in turn, need insights into competitive salary ranges to attract top talent.

The lack of transparency and up-to-date salary data can lead to misalignment between expectations and reality. This project addresses the gap by building a system that can analyze and predict Al salaries based on various factors.

Goals

 The primary goal of this project is to provide a comprehensive analysis of Al programmers' salaries, segmented by country, company size, currency, job level, employment type, and remote work ratios. By achieving this, the project aims to generate actionable insights into global compensation trends in Al roles, which will benefit both employers and employees in making informed decisions. The specific objectives of this project include:

1. Standardize and Analyze Salary Data Globally

Convert all salary data to a standardized currency (USD) to enable accurate cross-country comparisons, ensuring consistency in evaluating the value of salaries across different economic contexts.

2. Identify Salary Trends by Job Level and Experience

Examine the salary distribution across different job levels (e.g., junior, mid-level, senior) to understand how experience influences compensation, helping to define career progression expectations for Al professionals.

3. Explore the Impact of Employment Type on Compensation

Compare salaries across different employment types (e.g., full-time, part-time, contract) to highlight the variations in compensation structures for Al roles based on employment contracts.

4. Assess Remote Work's Effect on Salaries

Analyze the impact of remote work ratios on salaries to determine whether a company's remote work policies correlate with changes in compensation, addressing a key trend in the tech industry.

5. Provide Insights Based on Company Size and Location

Investigate how company size and location affect salaries, considering factors such as regional economic conditions and organizational budget capabilities to attract Al talent.

6. Deliver a Comprehensive Report for Stakeholders

Compile findings into a clear, data-driven report that will serve as a resource for hiring managers, job seekers, and policymakers to make informed decisions related to Al job compensation trends.

Related Work

• Recent research and platforms have explored the analysis of salaries within the tech industry, focusing on geographic, experiential, and company size differences, which have significant implications in understanding wage trends for Al professionals. This section reviews notable work in salary analysis, tech industry trends, and the impacts of remote work, specifically focusing on Al and data-related roles.

1. Salary Analysis Platforms

Major salary platforms such as **Glassdoor**, **Payscale**, and **LinkedIn Salary Insights** offer aggregated data on salaries across multiple job sectors, including technology and Al. These platforms collect information based on user-submitted data or company reports, enabling a high-level comparison by experience level, company size, and location. However, these platforms often lack comprehensive salary breakdowns specific to Al roles, and they do not consistently account for currency fluctuations when comparing global salaries. This project intends to bridge these gaps by standardizing salaries to USD and providing a more nuanced breakdown by specific job levels (junior, mid-level, senior), employment type, and remote work ratios.

Related Work

Industry-Specific Reports on Al and Technology Salaries

Annual surveys such as the **Stack Overflow Developer Survey** and **IEEE Spectrum's Salary Survey** provide insights into the tech workforce, including Al and machine learning roles. These surveys identify trends in compensation by role and experience level while considering location-based disparities. However, they often aggregate salaries into broader categories, omitting more granular insights into specific employment types, such as contract versus permanent roles, or the influence of company size on salary. This project seeks to expand on these findings by categorizing data by employment type, adding value through analysis of contract and part-time roles, and highlighting trends unique to Al roles.

Impact of Remote Work on Salaries in Technology

Studies on the economic impacts of remote work, such as those by

•McKinsey & Company and Owl Labs, discuss how remote work has affected salary distribution, especially in tech. These reports suggest that remote work can lead to pay adjustments based on location and living costs, with global salary discrepancies narrowing as companies adopt remote-first policies. This project will incorporate the remote ratio as a variable, offering a unique insight into how different levels of remote work influence salaries in the AI field.

Project Objectives

Data Collection	Salary Analysis	Salary Prediction	Interactive Tool	Currency Conversion
Gather salary data for Al programmers from various sources, categorized by country, company size, job level, and currency.	Perform a detailed analysis of salary trends and patterns across different regions, job levels, and company sizes.	Develop a predictive model that estimates average Al programmer salaries based on the input criteria (e.g., region, job level, company size).	Build an interactive tool that allows users to input their location, job level, and company size to predict expected salaries.	Integrate a currency conversion system to standardize salaries across different regions.

Tools and Technologies

Programming Languages: Python (for data processing, analysis, and web development).

Libraries: Pandas, NumPy, Scikit-learn (for data manipulation and machine learning), Matplotlib, Seaborn (for data visualization).

Machine Learning: Algorithms like Linear Regression, Decision Trees, and Random Forest for salary prediction.

Challenges and Risks

- •Data Quality: Incomplete or outdated data from online sources may affect model accuracy.
- •Currency Fluctuations: The need for continuous currency conversion updates may add complexity.
- •Regional Differences: Variations in cost of living and tax policies may require adjustments in the salary prediction model.

DataSet Column Description

Column Name	Description				
Work Year	The year of employment				
Experience Level	Level of experience for the role				
Employment Type	Type of employment contract (e.g., full-time, part-time, contract)				
Job Title	Title or designation of the job				
Salary	Annual salary of the Al professional				
Salary Currency	Currency in which the salary is paid				
Salary in USD	Equivalent of the salary converted to USD for standardization				
Employee Residence	Country of residence for the employee				
Remote Ration	Percentage of the role that is remote-based (e.g., O for onsite, 100 for fully remote, 50 For Hyper)				
Company Location	Country where the company is located				
Company Size	The Scale of the company				

DataSet Example

work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
	2020 MI	FT	Data Scientist	70000	EUR	79833	DE		0 DE	L
	2020 SE	FT	Machine Learning Scientist	260000	USD	260000	JP		O JP	S
	2020 SE	FT	Big Data Engineer	85000	GBP	109024	GB	5	0 GB	M
	2020 MI	FT	Product Data Analyst	20000	USD	20000	HN		0 HN	S
	2020 SE	FT	Machine Learning Engineer	150000	USD	150000	US	5	0 US	L
	2020 EN	FT	Data Analyst	72000	USD	72000	US	10	0 US	L
	2020 SE	FT	Lead Data Scientist	190000	USD	190000	US	10) US	S
	2020 SE	FT	Lead Data Engineer	12500	0 USD	1250	00 NZ		50 NZ	S
	2020 EN	FT	Data Scientist	4500	0 EUR	513	21 FR		0 FR	S
	2020 MI	FT	Data Scientist	300000	0 INR	404	81 IN		0 IN	L
	2020 EN	FT	Data Scientist	3500	0 EUR	399	16 FR		0 FR	M
	2020 MI	FT	Lead Data Analyst	8700	0 USD	870	00 US		100 US	L
	2020 MI	FT	Data Analyst	8500	0 USD	850	00 US		100 US	L
	2020 MI	FT	Data Analyst		0 USD		00 PK		50 PK	L
	2020 EN	FT	Data Engineer	445000	0 JPY	416	89 JP		100 JP	S
	2020 MI	FT	Data Engineer	6500	0 EUR	741	30 AT		50 AT	L
	2020 MI	FT	Data Science Consultant	10300	0 USD	1030	00 US		100 US	L
	2020 EN	FT	Machine Learning Engineer	25000	0 USD	2500	00 US		50 US	L
	2020 EN	FT	Data Analyst	1000	0 USD	100	00 NG		100 NG	S
	2020 EN	FT	Machine Learning Engineer	13800	0 USD	1380	00 US		100 US	S
	2020 MI	FT	Data Scientist	4576	0 USD	457	60 PH		100 US	S

VISUALIZATION

Job Title Distribution in Ai and Data Field plt.figure(figsize=(16,6)) In [190]: 2 sns.countplot(x=df_salaries["job_title"]) plt.title("Job Title Distribution in Ai and Data Field ") plt.xlabel("Job Titel") plt.xticks(fontsize=18,rotation=90) plt.show() Job Title Distribution in Ai and Data Field 200 175 150 125 75 50 25 Data Scientist Data Engineer Data Analyst ML Learning Data Specialist Data Architect ETL Developer NLP Engineer

Salaries Distribution in Ai and Data Field

Experience level Distribution In [240]: 1 plt.figure(figsize=(12,6)) 2 sns.histplot(df_salaries["experience_level"],color="#2ca02c") plt.title("Experience level Distribution ") 4 plt.xlabel("Experience level") 5 plt.xticks(fontsize=18) 6 plt.show() Experience level Distribution 250 200 150 Oorlut 100 50 0 MI SE ΕN EX Experience level

Trend of Salaries Over Years for Different Experience Levels

<Figure size 1600x600 with 0 Axes>

Avg Salary By location

```
In [261]:
```

```
plt.figure(figsize=(16,7))
sns.barplot(x=sor_sala_com.index,y=sor_sala_com["total salary spend in $"])
plt.title("Avg Salary By location")
plt.xlabel("Company Location")
plt.ylabel("Salary in USD ($) ")
plt.show()
```


Conclusion

This project aims to provide a comprehensive Al-based salary analysis and prediction system for Al programmers.

By offering detailed insights into salary trends and predictions, it will benefit both Al professionals and companies looking to make informed decisions in the hiring process. The system will ensure transparency in the Al job market, allowing users to easily compare and forecast salaries based on various criteria.