Министерство образования Красноярского края Краевое государственное бюджетное профессиональное образовательное учреждение «Красноярский колледж радиоэлектроники и информационных технологий»

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

09.02.02 Компьютерные сети

код и наименование специальности

<u>Красноярский колледж радиоэлектроники и информационных технологий</u> место прохождения практики

Производственная практика (преддипломная)

код и наименование профессионального модуля и междисциплинарного курса

Студент <u>9КС-1.17, 25538</u> номер группы, зачетной книжки	подпись, дата	/E.B.Аверяскин инициалы, фамилия
Руководитель от предприятия	$\overline{_{ ext{подпись, дата}}}$	/E.B.Харитонова инициалы, фамилия
		оценка
Руководитель от колледжа	подпись, дата	/инициалы, фамилия

Красноярск, 2021 г.

АННОТАЦИЯ

Данный документ является пояснительной запиской к преддипломной практике.

Первый раздел пояснительной записки содержит изучение организации.

Второй раздел пояснительной записки содержит проектирование схемы подключения, описание настройки оборудования и программного обеспечения.

Третий раздел содержит описание расчет экономических затрат.

Четвертый раздел содержит описание охраны труда и технику безопасности.

Также имеются Аннотация, Содержание, Введение, Заключение, Список сокращений, Библиографическое описание и Приложения

Пояснительная записка по преддипломной практике оформлена на ПЭВМ (Ryzen 5 2600, RAM 16 Gb, SDD 480 Gb) под управлением операционной системы Windows 10 в текстовом процессоре Microsoft Word 19. Пояснительная записка содержит 58 страниц, 75 рисунков, 2 таблицы, 5 приложений.

					КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>				
Изм.	Лист	№ докум.	Подпись	Дата					
Разра	ιб.	Аверяскин Е.В.			Производственная практика	Лист.	Лист	Листов	
Прове	₽р.	Харитонова Е.В			(преддипломная)		2	<mark>58</mark>	
Рецен	13.				· ·				
Н. Ког	нтр.			·		гр	уппа 9К	C-1.17	
Утве	рд.								

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. Организационно-техническая часть	5
1.1 Краткая характеристика организации	5
1.2 Спецификация оборудования органи	зации 6
1.3 Спецификация программного обеспе	ечения организации 7
1.1 Анализ существующей сети	8
2.1. Проектирование схемы подключени	я 10
2.2. Подключение и настройка оборудов	ания 11
2.3. Настройка программного обеспечени	ия 28
3. Экономическая часть	40
3.1. Расчет	40
4. Охрана труда и техника безопасности	Ошибка! Закладка не определена.
4.1. Охрана труда в учебном заведении	Ошибка! Закладка не определена.
СПИСОК СОКРАЩЕНИЙ	48
БИБЛИОГРАФИЧЕСКОЕ ОПИСАНИЕ	49
ПРИЛОЖЕНИЕ А	50
ПРИЛОЖЕНИЕ Б	Ошибка! Закладка не определена.
ПРИЛОЖЕНИЕ В	Ошибка! Закладка не определена.
ПРИЛОЖЕНИЕ Г	Ошибка! Закладка не определена.
ПРИЛОЖЕНИЕ Д	Ошибка! Закладка не определена.

Изм.	Лист	№ докум.	Подпись	Дата

ВВЕДЕНИЕ

Актуальность темы — в организации, которая имеет более ста рабочих станций, несколько десятков IP-камер видеонаблюдения и несколько сетевых МФУ большую опасность может сыграть широковещательный трафик на втором уровне сетевой модели ОSI, который могут генерировать все устройства в сети. При обычном режиме работы такой трафик можно контролировать, но если кто-то запустить на рабочей станции вредоносную программу, которая каждую секунду будет генерировать широковещательный трафик, то это может существенно ухудшить производительность сети, а если сетевое оборудование не сможет справиться с таким объемом трафика и попросту зависнет, что может парализовать работу все локальной сети. Для решения такой проблему существует технология VLAN.

VLAN — это технология, которая позволяет сетевым администраторам создавать логические широковещательные домены, позволяющие охватывать один или более коммутаторов, вне зависимости от физического расположения самих устройств. Это позволяет сокращать размер доменов широковещательной передачи, а также логически объединять группы, не располагая объекты в одном конкретном месте.

Оптимизация – повышение эффективности работы локальной компьютерной сети, путем логического разделения рабочих станций их друг от друга с помощью технологии VLAN.

Изм.	Лист	№ докум.	Подпись	Дата

1. Организационно-техническая часть

1.1 Краткая характеристика организации

«Красноярский колледж радиоэлектроники и информационных технологий» (далее колледж) официально начинает свою деятельность 12 января 2015 года. И вместе с тем, история эта насчитывает не одно десятилетие. Дело в том, что КГБПОУ «Красноярский колледж радиоэлектроники и информационных технологий» образовался в результате реорганизации путем слияния двух заведений среднего профессионального образования города Красноярска — КГБОУ СПО «Красноярский техникум информатики и вычислительной техники» и КГБОУ СПО «Красноярский колледж радиоэлектроники, экономики и управления».

Красноярский техникум информатики и вычислительной техники зарекомендовал себя как современное, динамично развивающееся учебное заведение, вошел в рейтинг «100 лучших ссузов России», в 2012 году стал победителем конкурсного отбора в рамках долгосрочной целевой программы по модернизации сети образовательных учреждений среднего профессионального образования в номинации «Высокотехнологичный центр профессионального образования по отрасли «Информатизация и телекоммуникация».

В настоящее время Красноярский колледж радиоэлектроники и информационных технологий приглашает получить качественное образование по 5 направлениям подготовки:

09.00.00 Информатика и вычислительная техника

11.00.00 Электроника, радиотехника и системы связи

15.00.00 Машиностроение

20.00.00 Техносферная безопасность и природообустройство

38.00.00 Экономика и управление

Изм.	Лист	№ докум.	Подпись	Дата

Организационная структура колледжа (Рисунок 1) представляет собой структурную модель, выступающую базой распределения обязанностей сотрудников данной организации.

Рисунок 1 – Организационная структура организации

1.2 Спецификация оборудования организации

В колледже используется сетевое оборудование (таблица 1), а также: рабочие станции, принтеры и МФУ, камеры видеонаблюдения.

Таблица 1 – Сетевое оборудование сети организации

Тип	Технические характеристики	Кол-
		во
1	2	3
Межсетевой экран	Модель: Cisco ASA 5505	1
_	Количество портов: 8 x RJ-45	
	Пропускная способность: до 150 Мбит/с	
	Дополнительные возможности: поддерживает механизмы	
	шифрования AES	
Коммутатор	Модель: Cisco Catalyst 2960	3
	Объем оперативной памяти: 64 Мб	
	Объем флеш-памяти: 32 Мб	
	Количество портов коммутатора: 24 х 10/100 Мбит/сек	
	Внутренняя пропускная способность: 16 Гбит/с	
	Размер таблицы МАС адресов: 8192	
	Поддержка стандартов: Auto MDI/MDIX, Priority tags, VLAN,	
	STP	
	Модель: D-Link DES-1016D	1
	Количество портов: 16	
	Пропускная способность: 3,2 Гбит/сек	

L						Лист
					КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>	6
	Изм.	Лист	№ докум.	Подпись Дата	7	O

Окончание таблицы 1

1	2	3
	Модель: TP-Link TL-SG1024D	1
	Количество портов коммутатора: 24 порта 10/100/1000 Мбит/с	
	Внутренняя пропускная способность: 48 Гбит/с	
	Размер таблицы МАС адресов: 8192	
	Модель: PLANET GSD-802PS	1
	Количество портов коммутатора: 8 Gigabit PoE	
	Внутренняя пропускная способность: 16 Гбит/с	
	Размер таблицы МАС адресов: 8192	
	Модель: Allied Telesis AT-GS950/24	1
	Количество портов коммутатора: 24 x Ethernet 10/100/1000	
	Внутренняя пропускная способность: 32 Гбит/с	
	Размер таблицы МАС адресов: 8192	

1.3 Спецификация программного обеспечения организации

В колледже установлено программное обеспечение для управления локальной сетью и оборудованием (таблице 2), а также программное обеспечения для обучения студентов: КОМПАС-3D, Cisco Packet Tracer, Microsoft Office, Autodesk Inventor, Delphi, Microsoft Visual Studio,

Таблица 2 – Программное обеспечение сети организации

Название	Описание
1	2
Cisco Adaptive Security Device Manager	понятный и удобный веб-интерфейс,
(ASDM)	которым можно пользоваться без
	специальных знаний командной оболочки
	устройства
PuTTY	свободно распространяемый клиент для
	различных протоколов удалённого
	доступа, включая SSH, Telnet, rlogin
Служба Удаленного рабочего стола Windows	компонент Microsoft Windows,
	позволяющий пользователям удаленно
	запускать приложения или управлять
	сервером с любой машины
WireShark	программа-анализатор трафика для
	компьютерных сетей Ethernet и некоторых
	других
Veeam Backup & Replication	Программное обеспечение для резервного
	копирование виртуальных машин и
	восстановления
Windows Server 2016	серверная операционная система от
	Microsoft

						Лист
					КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>	7
Изм.	Лист	№ докум.	Подпись	Дата		/

1.4. Анализ существующей сети

В колледже имеется локальная сеть с древовидной топологией, корнем которой является межсетевой экран Cisco ASA 5505, с его помощью осуществляется связь локальной сети со вторым учебным отделением, находящимся по адресу пр. им. газеты Красноярский рабочий 156, а также с сетью Интернет. К межсетевому экрану подключен неуправляемый коммутатор D-Link DES-1016D, к которому подключены сервера и управляемый коммутатор Cisco Catalyst 2960. Он используется для подключения других коммутаторов, находящихся в кабинетах, камер видеонаблюдения, а также к нему подключен еще один управляемый коммутатор Cisco Catalyst 2960 для увеличения количества подключаемых устройств (рисунок 2).

Рисунок 2 – Текущая иерархия сети колледжа

Изм.	Лист	№ докум.	Подпись	Дата

Такая схема сети сложна для администрирования из-за отсутствия уровня распределения. Все устройства находятся в одном широковещательном домене, что предполагает большое количество широковещательного трафика, который значительно уменьшает производительность сети. Также из-за отсутствия сегментации сети разные типы трафика смешаны между собой и, например, трафик камер видеонаблюдения, которые двадцать четыре часа в сутки ведут запись и отправляют данные на сервер тоже нагружают сеть.

Из-за большого количества коммутаторов, к которым могут быть подключены, как и конечные устройства, такие как рабочие станции, сетевые МФУ, камеры видеонаблюдения, так и другие коммутаторы локальная сеть менее отказоустойчива ведь в случае выхода какого-нибудь коммутатора из строя без сети могут остаться устройства разного типа, разной важности и в разных местах.

Поэтому планируется добавить новый уровень распределения, установить имеющийся управляемый коммутатор, который, используя технологию VLAN будет разделять между собой трафик пользователей, кабинета 227, в которой оборудована компьютерная лаборатория, трафик управления, а также трафик камер видеонаблюдения. VLAN 7 и 8 будут иметь идентификатор по цифре в третьем октете IP-адреса подсети, VLAN 227 будет иметь идентификатор по номеру кабинета, VLAN для камер видеонаблюдения будет идентификатор 100. Кроме будет того, настроена защита otпетель второго уровня, неавторизованных DHPC-серверов, контроль за широковещательным трафиком. Будет организован безопасный удаленный доступ к управляемым коммутаторам по протоколу SSH.

Изм.	Лист	№ докум.	Подпись	Дата

2 Рабочая часть

2.1. Проектирование схемы подключения

В иерархию сети будет добавлен новый уровень распределения, который будет разделять сеть колледжа на три подсети для подключения рабочих станций и одну подсеть для камер видеонаблюдения. Все четыре подсети будут ограничены друг от друга с помощью VLAN, так подсеть для администрации будет иметь ірадрес 192.168.7.0 /24 и идентификатор VLAN 7, подсеть для учебных аудиторий будет иметь ірадрес 192.168.8.0 /24 и идентификатор VLAN 8, подсеть для кабинета 227 иметь ірадрес 192.168.9.0 /24 идентификатор VLAN 227 и подсеть для камер видеонаблюдения будет иметь идентификатор VLAN 100.

Все также корнем сети будет межсетевой экран Cisco ASA 5505, который подключен к отделению по адресу пр. им. газеты Красноярский рабочий 156, будет иметь три виртуальных интерфейса, которые в свою очередь связаны с физическими интерфейсами. Виртуальные интерфейсы будут иметь первый ірадрес из подсети и будут выступать основными шлюзами. Каждый физический интерфейс представляет отдельную подсеть и имеет свой номер VLAN.

От межсетевого экрана будут идти три кабеля в главный управляемый коммутатор Cisco Catalyst 2960, интерфейсы которого будут иметь номер VLAN в соответствие с номером VLAN на интерфейсе Cisco ASA. Все остальные устройства будут подключены к главному коммутатору с соответствующим номером VLAN.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – Новая иерархия сети колледжа

2.2. Подключение и настройка оборудования

В этом разделе описан процесс подключения и настройки межсетевого экрана Cisco ASA 5505 и управляемых коммутаторов Cisco Catalyst 2960.

2.2.1 Подключение уровня распределения сети

Межсетевой экран Cisco ASA имеет 8 физических интерфейсов, к интерфейсу Ethernet0/0 был подключен кабель, который идет от провайдера. К интерфейсам Ethernet0/1, Ethernet0/2 и Ethernet0/3 подключены кабели (рисунок 4), соединяющие межсетевой экран с интерфейсами коммутатора FastEthernet0/1, FastEthernet0/2 и FastEthernet0/3 (рисунок 5).

ı					
ı					
	Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 4 – Подключение межсетевого экрана

Рисунок 5- Подключение главного коммутатора

2.2.2 Настройка межсетевого экрана Cisco ASA 5505

После подключения распределительного коммутатора был настроен межсетевой экран. Так как он был уже предварительно настроен все дальнейшие действия были выполнены с помощью программного обеспечения ASDM (рисунок 6).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 6 – Программное обеспечение ASDM

Трем интерфейсам были заданы идентификаторы VLAN (рисунки 7-9), каждому из них были заданы ір-адреса, имена и уровень безопасности (рисунки 10-12).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 7 – Настройка идентификатора VLAN для интерфейса Ethernet0/1

Рисунок 8 – Настройка идентификатора VLAN для интерфейса Ethernet0/2

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 9 – Настройка идентификатора VLAN для интерфейса Ethernet0/3

Рисунок 10 – Настройка IP-адреса для интерфейса Ethernet0/0

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 11 — Настройка IP-адреса для интерфейса Ethernet 0/1

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 12 — Настройка IP-адреса для интерфейса Ethernet0/2

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 13 — Настройка IP-адреса для интерфейса Ethernet0/3

Были настроены необходимые списки доступа (ACL) (рисунок 2)

	Enabled	Enabled	Enabled	Source Criteria:			Destination Criteria:		Service	Action	Hits	Logging	Time	Description
	Source	User	Security Group	Destination	Security Group				,					
7 22	27 (1 incoming rule)													
1		盛 227-network/24	遍라 227-network/24	編, 227-network/24	any	any	DrWeb open_ports domain ve 2221 so 8080 so http to https webday	✓ Permit	0	disa		outside traffic from VLAN 227		
💆 ad	lmin (1 incon	ning rule)												
1	\checkmark	any	any	any	any	any	xe ip	✓ Permit	TIP 271	🗸 disa		outside traffic from VLAN 7		
🥦 stı	udy (1 incom	ing rule)												
1		骗 study-network/24	鶌 study-network/24	鶌 study-network/24	any4	any4	DrWeb open_ports domain to http to https webday	✓ Permit	10 5	adisa		outside traffic from VLAN 8		
🥦 Gle	obal (3 rules)												
1	~	any	any	any	any	any	eff icmp	✓ Permit	10	🗸 disa		PING		
2	\checkmark	all-pc	al-pc	al-pc	🦚 any	🦚 any	ıp ip	✓ Permit	0			All traffic from Admin PC		
3		any	any	any	any	any	⊥e ip	Deny				Implicit rule		

Рисунок 14 – Списки доступа

Была настроена трансляция сетевых адресов (NAT) для трёх подсетей (рисунки 15-17).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 15 – NAT для VLAN 7

Рисунок 16 – NAT для VLAN 8

Рисунок 17 – NAT для VLAN 227

Был настроен статический маршрут до второго учебного корпуса (рисунок

<mark>2</mark>).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 18 – Статический маршрут

Так как теперь DHCP-сервер находится в отдельной подсети, была настроена функция DHCP-ретрансляции (DHCP Relay), которая перехватывает запросы от DHCP-клиентов из других подсетей и отправляет их DHCP-серверу (рисунки 19-20).

Рисунок 19 – IP-адрес DHCP-сервера

Рисунок 20 – Активация DHCP Relay

Изм.	Лист	№ докум.	Подпись	Дата

Был настроен удаленный доступ к межсетевому экрану. Подключиться к нему можно с помощью протокола SSH, а также с помощью ПО ASDM (рисунок 14).

Type V1	Interface	IP Address	Mask/Prefix Length
SSH	inside	192.168.7.0	255.255.255.0
ASDM/HTTPS	inside	192.168.7.0	255.255.255.0

Рисунок 21 – Настройка удаленного доступа

2.2.3 Настройка управляемых коммутаторов Cisco Catalyst 2960 Для настройки коммутаторов использовалось консольное подключение и ПО PuTTY (рисунки 22-23).

Рисунок 22 – Консольное подключение

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 23 – Программное обеспечение РиТТУ

Настройка управляемого коммутатора уровня распределения заключалась в первоначальной настройке (рисунки 24-28).

Рисунок 24 – Назначение имени главному коммутатору

```
CORE (config) #ip domain name svoboda.local
CORE (config) #
```

Рисунок 25 – Назначение домена

Изм.	Лист	№ докум.	Подпись	Дата	

```
CORE (config) #username admin privilege 15 secret Ad%6dga
CORE (config) #service password-encryption
CORE (config) #
```

Рисунок 26 – Добавление пользователя и шифрование паролей

```
COME (config) #interface vlan 7

CORE (config-if) #ip

*Mar 11 10:52:47.340: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan7, changed state to do

CORE (config-if) #ip add

CORE (config-if) #ip add

CORE (config-if) #ip address 192.168.7.2 255.255.255.0

CORE (config-if) #
```

Рисунок 27 – Назначение ІР-адреса главному коммутатору

```
COM4 - PuTTY
                                                                          CORE(config) #access-list 23 permit 192.168.7.0 0.0.0.255
CORE(config) #line vty 0 4
CORE(config-line) #transport input ssh
CORE(config-line) #logging synchronous
CORE(config-line) #privilege level 15
CORE(config-line) #exec-timeout 60 0
CORE(config-line)#access-class 23 in
CORE(config-line)#exit
CORE(config) #crypto key generate rsa
The name for the keys will be: CORE.svoboda.local
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 3 seconds)
CORE (config) #
```

Рисунок 28- Настройка удаленного доступа SSH

Были добавлены VLAN (рисунок 29).

```
COM4 - PuTTY

CORE (config) #vlan 7

CORE (config-vlan) #name admin

CORE (config-vlan) #vlan 8

CORE (config-vlan) #name study

CORE (config-vlan) #vlan 227

CORE (config-vlan) #name 227

CORE (config-vlan) #name 227

CORE (config-vlan) #vlan 100

CORE (config-vlan) #name camera

CORE (config-vlan) #
```

Рисунок 29 – Добавление VLAN

					Лист
				КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>	25
Изм.	Лист	№ докум.	Подпись Дата		23

```
COM4 - PuTTY
                                                                          CORE(config)#interface range fastethernet 0/1-2
 CORE(config-if-range)#switchport mode access
 CORE(config-if-range)#switchport access vlan 7
 CORE(config-if-range)#exit
 CORE(config)#interface fastethernet 0/10
 CORE(config-if) #switchport mode access
 CORE(config-if) #switchport access vlan 7
  CORE(config-if)#
                  Рисунок 30 – Назначение идентификатора VLAN 7
   COM4 - PuTTY
                                                                         CORE(config)#interface range fastethernet 0/3-4
  CORE(config-if-range)#switchport mode access
  CORE(config-if-range)#switchport access vlan 8
  CORE(config-if-range)#exit
  CORE(config)#
                  Рисунок 31 – Назначение идентификатора VLAN 8
  COM4 - PuTTY
                                                                           CORE(config)#interface range fastethernet 0/5-6
 CORE(config-if-range) #switchport mode access
  CORE(config-if-range) #switchport access vlan 227
  CORE(config-if-range)#exit
  CORE(config)#
                 Рисунок 32 – Назначение идентификатора VLAN 227
     COM4 - PuTTY
                                                                         ×
    CORE(config)#interface fastethernet0/12
    CORE(config-if) #switchport mode access
    CORE(config-if)#sw
    CORE(config-if)#switchport access vlan 100
    CORE(config-if)#
                 Рисунок 33 – Назначение идентификатора VLAN 100
Была настроена защита от неавторизованных DHCP-серверов (рисунок 2).
   COM4 - PuTTY
                                                                          CORE(config)#ip dhcp snooping
   CORE(config)#ip dhcp snooping vlan 7
   CORE(config)#ip dhcp snooping vlan 8
   CORE(config)#ip dhcp snooping vlan 227
   CORE (config) #
           Рисунок 34 – Активация DHCP Snooping на существующих VLAN
                                                                                   Лист
```

КРИТ. 09.02.02. ПП 538 ПЗ

Изм.

Лист

№ докум.

Подпись Дата

26

DHCP-сервер подключен к главному коммутатору к интерфейсу FastEthernet0/10 и он был указан как доверительный интерфейс (рисунок 31).

```
COM4 - PuTTY — — X

CORE (config) #interface fastethernet0/10

CORE (config-if) #ip dhcp snooping trust

CORE (config-if) #
```

Рисунок 35 – Настройка доверительного интерфейса

Также был настроен коммутатор для подключения рабочих станций для студентов и преподавателей, который находится в VLAN 8 (рисунок).

```
COM4 - PuTTY
Switch(config) #ip domain name svoboda.local
Switch (config) #hostname VLAN8-1
VLAN8-1(config) #service password-encryption
VLAN8-1(config) #username admin privilege 15 secret dsfh&3sa
VLAN8-1(config)#enable secret dsfh&3sa
VLAN8-1(config) #aaa new-model
VLAN8-1(config) #access-list 23 permit 192.168.7.0 0.0.0.255
VLAN8-1(config)#line vty 0 4
VLAN8-1(config-line) #transport input ssh
VLAN8-1(config-line) #logging synchronous
VLAN8-1(config-line) #privilege level 15
VLAN8-1(config-line) #exec-timeout 60 0
VLAN8-1(config-line) #access-class 23 in
VLAN8-1(config-line)#exit
VLAN8-1(config)#crypto key generate rsa
% You already have RSA keys defined named VLAN8-1.svoboda.local.
% Do you really want to replace them? [yes/no]: 1024
% Please answer 'yes' or 'no'.
% Do you really want to replace them? [yes/no]: yes
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 102
*Mar 11 12:34:34.053: %SSH-5-DISABLED: SSH 1.99 has been disabled4
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 4 seconds)
VLAN8-1(config)#
*Mar 11 12:34:42.005: %SSH-5-ENABLED: SSH 1.99 has been enabled
```

Рисунок 36 – Настройка коммутатора для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

2.3. Настройка программного обеспечения

В этом разделе описан процесс настройки DHCP-сервера в Windows Server 2016.

2.3.1. Hастройка Windows Server

Так как DHCP-сервер уже автоматически раздаёт ір-адреса из сети 192.168.7.0 /24 (рисунок 6), были добавлены еще два области ір-адресов для VLAN 8 и 227, 192.168.8.0 /24 и 192.168.9.0 /24.

Рисунок 37 – Область для VLAN 7

Создание области ір-адресов производилась в операционной системе Windows Server 2016 с помощью Мастера создания области (рисунок 7).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 38 – Мастер добавления области

Новой области было дано имя с соответсвии с идентификатором VLAN, имя pool8 для VLAN 8 (рисунок 8) и pool227 для VLAN 227 (рисунок 9).

	бласти обеспечить уникальное имя области. Кроме того, существует котором можно задать описание области.
	и описание новой области. Эти сведения помогут быстро сак именно область будет использоваться в сети.
<u>И</u> мя:	pool8
<u>О</u> писание:	Область для VLAN 8
	< <u>Н</u> азад <u>Д</u> алее > Отмена

Рисунок 39 – Имя области для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

Мастер создания области

Имя области

Необходимо обеспечить уникальное имя области. Кроме того, существует параметр, в котором можно задать описание области.

Рисунок 40 – Имя области для VLAN 227

Был указан диапазон ір-адресов для новой области, для VLAN 8 это 192.168.8.1–192.168.8.254 с маской подсети 24 бит (рисунок 10), для VLAN 227 это 192.168.9.1–192.168.9.254 с маской подсети 24 бит (рисунок 11).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 41 – Диапазон ір-адресов для VLAN 8

Мастер создания области

Диапазон адресов

Определить диапазон адресов области можно задавая, диапазон последовательных IP-адресов.

Введите диапазон адрес	ов, который описывает область.
Н <u>а</u> чальный IP-адрес:	192 . 168 . 9 . 1
<u>К</u> онечный IP-адрес:	192 . 168 . 9 . 254
пастроики конфигурации	
Ппина	, распространяемые DHCP-клиенту
Д <u>л</u> ина:	24.
Д <u>л</u> ина: Маска <u>п</u> одсети:	
-	24.
-	24.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 42 – Диапазон ір-адресов для VLAN 227

Были указаны первые двадцать адресов из области, которые DHCP-сервер не будут указаны вручную системными клиентам, ОНИ должен раздавать администраторами, для VLAN 8 это 192.168.8.1–192.168.8.20 (рисунок 12), для VLAN 227 это 192.168.9.1–192.168.9.20 (рисунок 13).

Рисунок 43 – Исключаемый диапазон адресов для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 44 – Исключаемый диапазон адресов для VLAN 227 Срок аренды ір-адреса для VLAN 8 и 227 был указан 12 часов (рисунок 14).

Мастер создания области

Срок действия аренды адреса

Срок действия аренды определяет, как долго клиент может использовать IP-адрес из этой области.

Рисунок 45 – Срок аренды адреса

				·
Изм.	Лист	№ докум.	Подпись	Дата

КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>

Адресами основного шлюза были выбраны ip-адреса виртуальных интерфейсов Cisco ASA, для VLAN 8 это 192.168.8.1 (рисунок 15), для VLAN 227 это 192.168.9.1 (рисунок 16).

Рисунок 46 – Адрес основного шлюза для VLAN 8

Лист

Мастер создания области

Маршрутизатор (основной шлюз)

Вы можете указать маршрутизаторы или основные шлюзы, распределяемые этой областью.

Рисунок 47 – Адрес основного шлюза для VLAN 227

Адресом DNS-сервера и WINS-сервера был выбран ір-адрес данного Windows Server 2016 для VLAN 8 и 227 (рисунки 17–18).

Изм.	Лист	№ докум.	Подпись	Дата

Мастер создания области

Имя домена и DNS-серверы

DNS (Domain Name System) сопоставляет и отображает имена доменов, используемые в сети.

области могли использова за этих серверов.	ать DNS-серверы в вашей се	ти,
	IP- <u>а</u> дрес:	
		До <u>б</u> авить
Со <u>п</u> оставить	192.168.7.3	<u>Уд</u> алить
		<u>В</u> верх
		Вни <u>з</u>
	а этих серверов.	IP- <u>а</u> дрес:

Рисунок 48 – Адрес DNS-сервера

Macтep создания области WINS-серверы Компьютеры под управлением Windows м для преобразования NetBIOS-имен компь		ерверы 🟐
Ввод IP-адреса WINS-сервера позволит ка запросы до отправки широковещательных NetBIOS-имен.		
<u>И</u> мя сервера:	IP- <u>а</u> дрес:	
control16	1	До <u>б</u> авить
Со <u>п</u> оставить	192.168.7.3	<u>Удалить</u>
		<u>В</u> верх
		Вни <u>з</u>
Чтобы изменить такое поведение DHCP-к "Тип узла WINS/NBT" в параметрах облас		параметр 046
	< <u>Н</u> азад <u>Д</u> алее	> Отмена

Рисунок 49 – Адрес WINS-сервера

					КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>
Изм	Пист	№ докум	Подпись	Лата	

Теперь для каждой подсети есть своя область ip-адресов и устройства будут получать параметры сетевых адаптеров автоматически (рисунок 19).

Рисунок 50 – Области DHCP-сервера

Для проверки работоспособности DCHP-сервера, на рабочей станции, подключённой к коммутатору в VLAN 8, в параметрах сетевого адаптера была включена опция «Получить IP-адрес автоматически» (рисунок 52).

Рисунок 51 – Параметры сетевого адаптера

Через пару секунд рабочая станция автоматически получила ір-адрес из подсети для VLAN 8 (рисунок 21), а другая из подсети для VLAN 227 (рисунок 22).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 52 – Сведения о сетевом подключении VLAN 8

Рисунок 53 – Сведения о сетевом подключении VLAN 227

					КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>
Изм.	Лист	№ докум.	Подпись	Дата	

В программе ASDM теперь отображается статистика получения DHCPзапросов и ответов, хотя на самом межсетевом экране DHCP-сервер не настроен, он является ретранслятором для Windows Server 2016 (рисунок 23).

Рисунок 54 – Статистика DCHP

				·
Изм.	Лист	№ докум.	Подпись	Дата

3. Экономическая часть **3.1.** Расчет Лист КРИТ. 09.02.02. ПП 538 ПЗ 40 Изм. Лист № докум. Подпись Дата

4 Охрана труда и техника безопасности

Охрана труда — это система сохранения жизни и здоровья работников в процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия, образующие механизм реализации конституционного права граждан на труд (ст. 37 Конституции РФ) в условиях, отвечающих требованиям безопасности и гигиены.

Техника безопасности — вид деятельности (система организационных и технических мероприятий, защитных средств и методов) по обеспечению безопасности любой деятельности человека, в том числе и трудовой деятельности. Ранее под таким же названием выступала и наука, предметом которой выступает такой вид деятельности, а в настоящее время развивается дисциплина синдиника с более широким кругом предметной области, поглощающая и предмет науки о технике безопасности.

4.1. Особенности охраны труда в образовательном учреждении

Система управления охраной труда в общеобразовательных школах, в дошкольных образовательных учреждениях, в учреждениях дополнительного образования имеет одинаковый порядок и одинаковую структуру управления охраной труда. Обеспечением безопасности жизнедеятельности в системе образования, служит правовой и организационно-методической основой формирования управленческих структур, нормативных документов.

Главной целью управления охраной труда и в целом обеспечением безопасности жизнедеятельности в системе образования является сохранение жизни и здоровья воспитанников, обучающихся и работающих в процессе труда, обучения, воспитания и организованного отдыха.

Изм.	Лист	№ докум.	Подпись	Дата

Лист

Деятельность по управлению охраной труда в системе образования направлена на:

- обеспечение выполнения требований законодательных, нормативных правовых актов по созданию здоровых и безопасных условий труда и образовательного процесса;
- организацию и проведение профилактической работы по предупреждению травматизма, профессиональной и производственно-обусловленной заболеваемости среди работающих, обеспечение их средствами индивидуальной защиты;
- предотвращение несчастных случаев с обучающимися (воспитанниками) во время проведения образовательного процесса, дорожно-транспортном, бытового травматизма и происшествий на воде;
- соблюдение требований нормативных документов по радиационной и пожарной безопасности, защите окружающей среды и действиям в чрезвычайных ситуациях;
- обеспечение безопасности эксплуатации учебных и бытовых зданий и сооружений, используемых в образовательном процессе, оборудования, приборов и технических средств обучения;
- охрану и укрепление здоровья работающих, обучающихся (воспитанников), организацию их лечебно-профилактического обслуживания, создание оптимального сочетания режимов труда, обучения, организованного отдыха;
- создание и совершенствование непрерывной системы образования в области обеспечения безопасности жизнедеятельности, включающей дошкольное, все виды общего, начальное профессиональное, среднее и высшее педагогическое образование, систему переподготовки и повышения квалификации кадров.

Изм.	Лист	№ докум.	Подпись	Дата

4.2. Структура службы охраны труда в образовательном учреждении

Функциональные обязанности и права работников службы охраны труда разрабатываются с учетом того, что ответственность за состояние условий и охраны труда в образовательном учреждении возложена на работодателя, а работники образовательного учреждения обязаны соблюдать нормы, правила и инструкции по охране труда, правильно применять коллективные и индивидуальные средства защиты.

В образовательном учреждении, где службе вменяются дополнительно функции по обеспечению экологической, радиационной и пожарной безопасности, создается служба (управление, отдел, сектор и др.) безопасности труда и жизнедеятельности.

Основные задачи службы охраны труда:

- организация разработки и осуществления мероприятий, направленных на улучшение состояния условий труда, предупреждение производственного травматизма и профессиональной заболеваемости;
- мониторинг и анализ состояния охраны труда на объектах образовательного учреждения;
- контроль за соблюдением требований охраны труда, выявление нарушений требований охраны труда и контроль за их своевременным устранением;
- участие в работе комиссий по контролю за состоянием охраны труда в образовательном учреждении.

Организация проведения инструктажей, обучения, проверки знаний по охране труда образовательных учреждений. Для решения своих задач служба охраны труда выполняет следующие функции:

— доводит до сведения работников вводимые в действие новые законодательные и иные нормативные правовые акты по охране труда.

Изм.	Лист	№ докум.	Подпись	Дата

- выявляет опасные и вредные производственные факторы на рабочих местах.
- выявляет опасные конструктивные недостатки оборудования, механизмов, систем защиты, контроля и управления, принимает меры для их исключения с целью предупреждения производственного травматизма.

4.3. Техника безопасности в компьютерной аудитории

При эксплуатации оборудования необходимо остерегаться:

- поражения электрическим током;
- механических повреждений, травм.

Требования безопасности перед началом работы:

- 1. запрещено входить в кабинет в верхней одежде, головных уборах, с громоздкими предметами и едой;
- 2. запрещено входить в кабинет информатики в грязной обуви без бахил или без сменной обуви;
- 3. запрещается шуметь, громко разговаривать и отвлекать других учащихся;
 - 4. запрещено бегать и прыгать, самовольно передвигаться по кабинету;
- 5. перед началом занятий все личные мобильные устройства учащихся (телефон, плеер и т.п.) должны быть выключены;
- 6. разрешается работать только на том компьютере, который выделен на занятие:
- 7. перед началом работы учащийся обязан осмотреть рабочее место и свой компьютер на предмет отсутствия видимых повреждений оборудования;
- 8. запрещается выключать или включать оборудование без разрешения преподавателя;
- 9. напряжение в сети кабинета включается и выключается только преподавателем.

Изм.	Лист	№ докум.	Подпись	Дата

Требования безопасности во время работы:

- 1. с техникой обращаться бережно: не стучать по мониторам, не стучать мышкой о стол, не стучать по клавишам клавиатуры;
- 2. при возникновении неполадок: появлении изменений в функционировании аппаратуры, самопроизвольного её отключения необходимо немедленно прекратить работу и сообщить об этом преподавателю;
 - 3. не пытаться исправить неполадки в оборудовании самостоятельно;
- 4. выполнять за компьютером только те действия, которые говорит преподаватель;
 - 5. контролировать расстояние до экрана и правильную осанку;
 - 6. не допускать работы на максимальной яркости экрана дисплея;
- 7. в случае возникновения нештатных ситуаций сохранять спокойствие и чётко следовать указаниям преподавателя.

Запрещается:

- 1. эксплуатировать неисправную технику;
- 2. при включённом напряжении сети отключать, подключать кабели, соединяющие различные устройства компьютера;
 - 3. работать с открытыми кожухами устройств компьютера;
- 4. касаться экрана дисплея, тыльной стороны дисплея, разъёмов, соединительных кабелей, токоведущих частей аппаратуры;
 - 5. касаться автоматов защиты, пускателей, устройств сигнализации;
 - 6. во время работы касаться труб, батарей;
 - 7. самостоятельно устранять неисправность работы клавиатуры;
 - 8. нажимать на клавиши с усилием или допускать резкие удары;
 - 9. пользоваться каким-либо предметом при нажатии на клавиши;
 - 10. передвигать системный блок, дисплей или стол, на котором они стоят;
 - 11. загромождать проходы в кабинете сумками, портфелями, стульями;
 - 12. брать сумки, портфели за рабочее место у компьютера;
 - 13. брать с собой в класс верхнюю одежду и загромождать ею кабинет;

Лист

45

			КРИТ. 09.02.02. <mark>ПП</mark> 538 <mark>ПЗ</mark>
Изм. Лист	№ докум.	Подпись Дата	

- 14. быстро передвигаться по кабинету;
- 15. класть какие-либо предметы на системный блок, дисплей, клавиатуру;
- 16. работать грязными, влажными руками, во влажной одежде;
- 17. работать при недостаточном освещении;
- 18. работать за дисплеем дольше положенного времени.

Запрещается без разрешения преподавателя:

- 1. включать и выключать компьютер, дисплей и другое оборудование;
- 2. использовать различные носители информации (дискеты, диски, флешки);
 - 3. подключать кабели, разъёмы и другую аппаратуру к компьютеру;
- 4. брать со стола преподавателя дискеты, аппаратуру, документацию и другие предметы;
 - 5. пользоваться преподавательским компьютером.

Требования безопасности по окончанию работы:

- 1. По окончании работы дождаться пока преподаватель подойдёт и проверит состояние оборудования, сдать работу, если она выполнялась;
- 2. Медленно встать, собрать свои вещи и тихо выйти из класса, чтобы не мешать другим учащимся.

Изм.	Лист	№ докум.	Подпись	Дата

ЗАКЛЮЧЕНИЕ

В процессе прохождения преддипломной практики была достигнута цель и были выполнены следующие задания:

- 1. организована бесперебойная работа системы по резервному копированию и восстановлению информации;
- 2. выполнена установка, тестирование и эксплуатация информационных систем, согласно технической документации;
- 3. произведена настройка аппаратного и программного обеспечения сетевой инфраструктуры;
- 4. выполнены операции резервного копирования и восстановления данных;
 - 5. выполнено обеспечение антивирусной защиты в организации;
- 6. произведена проверка контроля доступа, сохранение целостности данных и журналирование;
- 7. осуществлена диагностики и поиск неисправностей технических средств;
 - 8. выполнено тестирование кабеля;
- 9. выполнена замена расходных материалов и выполнен мелкий ремонт периферийного оборудования.

Изм.	Лист	№ докум.	Подпись	Дата

СПИСОК СОКРАЩЕНИЙ

ПК – персональный компьютер

ФЗ – федеральный закон

ОС – операционная система

ОЗУ – оперативное запоминающее устройство

ПО – программное обеспечение

ИБ – информационная безопасность

ИБП – источник бесперебойного питания

ЭВМ – электронно-вычислительная машина

Изм.	Лист	№ докум.	Подпись	Дата

БИБЛИОГРАФИЧЕСКОЕ ОПИСАНИЕ

- 1. Назаров, А. В. Эксплуатация объектов сетевой инфраструктуры: учебник / А.В. Назаров, А.Н. Енгалычев, В.П. Мельников. Москва: КУРС; ИНФРА-М, 2020. 360 с.
- 2. Щеглов, А. Ю. Анализ и проектирование защиты информационных систем. Контроль доступа к компьютерным ресурсам : методы, модели, технические решения / А. Ю. Щеглов, К. А. Щеглов ; под ред. М. В. Финкова. Санкт-Петербург : Профессиональная литература, 2017. 415 с.
- 3. Сандерс Крис Анализ пакетов. Практическое руководство по использованию Wireshark и tcpdump для решения реальных. 3-е изд. 448 с.
- 4. Михаил Михеев Администрирование VMware vSphere 5. 3-е изд. ДМК Пресс, 2016. 504 с.
- 5. Таненбаум Э.С., Уэзеролл Д. Компьютерные сети. 5-е изд. Прогресс книга, 2021. 960 с.
- 6. В. Ф. Шаньгин Информационная безопасность и защита информации. ДМК Пресс, 2017. 702 с.
- 7. Решение для резервного копирования данных // Veeam URL: https://www.veeam.com/ru/vm-backup-recovery-replication-software.html (дата обращения: 08.04.2021).
- 8. Комплекты «Для школ» для учреждений дошкольного, начального, среднего и дополнительного образования // Dr. Web Антивирус URL: https://products.drweb.ru/bundles/safe school/ (дата обращения: 06.04.2021).
- 9. Красноярского колледжа радиоэлектроники и информационных технологий URL: http://www.kraskrit.ru/ (дата обращения: 01.04.2021).

10.

Изм.	Лист	№ докум.	Подпись	Дата

