GG606

Misc

Reminder

- Tri-Agency Research Data Management Policy
 - http://www.science.gc.ca/eic/site/063.nsf/eng/h_97610.html
 - Applies to institutions & researchers
 - Data management plans
- Institutional research data management strategies
 - https://science.gc.ca/site/science/en/interagency-research-funding/policies-and-guidelines/research-data-management/published-institutional-research-data-management-strategies
 - https://www.wlu.ca/academics/research/research-services/assets/resources/rese arch-data-management-institutional-strategy.html
 - https://uwaterloo.ca/research/research-data-management-institutional-strategy

Deliverable 1 follow-up

- Superscripts & subscripts not easy
- See demo(plotmath) for examples
 - Similar to LaTeX
 - bquote() or paste() or expression()
 - Sometimes depends on your device

Deliverable 1 follow-up

- Superscripts & subscripts not easy
- qplot(1,1) +
 labs(x = expression("NO"[3]^-{}*" (mgN/L)"),
 y = expression("Q (m"^2*"/s)"))
- [3] subscript
- ^2 superscript, need {} after minus since there is no number
- * to paste things together

Spatial Data

- sp & sf packages
 - https://cran.r-project.org/web/views/Spatial.html
 - sf articles https://r-spatial.github.io/sf/
 - sp example https://edzer.github.io/sp/
 - Significant OS-specific dependencies (rdgal, gdal, geos, rwinlib, lwgeom)
- Data Carpentry has 3 workshops (last one is best)
 - https://datacarpentry.org/geospatial-workshop/

Model Fitting

- R4DS: Chapters 22-25
- purrr:: map act on nested data.frames Model basics
- broom turn tidy models into tidy data
- Hard to generalise

Model

22 Introduction

24 Model building

25 Many models

Model Fitting

- lm() & compare AIC values?
- Generalised linear glm() or generalised additive mgcv::gam() or penalised linear glmnet::glmnet() or Robust linear MASS::rlm()
- Trees rpart::rpart() or randomForest::randomForest()

Model Fitting | Building

- Differential Equations
 - https://cran.r-project.org/web/views/DifferentialEquations.html
- deSolve for coupled differential equations
 & simecol (+FME) for simulations & fitting
- Asks different question than statistical model

Tidymodels

- https://www.tidymodels.org/
- Sampling, unified interface, workflows, performance tuning

Shiny

- https://shiny.rstudio.com/tutorial/
- Videos & lessons
- Hard to so much code
- Similar to html and css

Functions, Loops

- for (i in X){}
- for (i in seq_along(X)){}
- apply(array, margin, fun)

Mostly preference

21 Iteration

21.1 Introduction

21.2 For loops

21.3 For loop variations

21.4 For loops

vs. functionals

21.5 The map functions

- apply, lapply, sapply, vapply 21.6 Dealing with failure 21.7 Mapping over multiple arguments

21.8 Walk

21.9 Other patterns of for loops

- for (i in X){}
- Use vectorised equivalent if it exists
- Don't grow objects in loop (e.g. c, cbind, rbind)
- Prealloc object(s) & fill during loop
- *apply handles memory alloc
- purrr:map* functions more consistent than *apply

- Don't grow objects in loop (e.g. c, cbind, rbind)
- Store outputs as a list:
 out ← vector("list",
 length(inputs))
- unlist(out) or purrr::flatten_dbl(out)

```
• means \leftarrow c(0, 1, 2)
• output ← double()
 for (i in seq_along(means)) {
   n \leftarrow sample(100, 1)
   output \leftarrow c(output, rnorm(n, means[[i]]))
str(output)
```

```
    out ← vector("list", length(means))

• for (i in seq_along(means)) {
   n \leftarrow sample(100, 1)
   out[[i]] \leftarrow rnorm(n, means[[i]])
str(out)
unlist(out)
purrr::flatten_dbl(out)
```

Conditional 'Loops'

- Simpler than for loop bc it only has 2 components
- Best for simulations?
- Special types of iterations when total number of iterations is not known

```
while (condition) {
    # body
}
```

Next

- Presentations: March 21 & 28
 - Written:
 - Technical depth /40
 - Critique /25
 - Accuracy /20
 - Writing style /15
 - Presentation:
 - Aesthetic appeal /25
 - Clarity and communication style /25
 - Technical completeness /50
- The report should be no longer than 4000 words
- The presentation should be between 13-15 minutes

