Indian Institute of Engineering Science and Technology, Shibpur Dual Degree (B.Tech & M. Tech.) 4th Semester End-Term Examination, April 2017 Theory of Computation (CS 404)

Full Marks: 70 Time: 3 hours

- Question 1. is compulsory. Attempt Question 1. and any four from the rest.
- Two marks are reserved for clarity of presentation
- · Answers should be brief, to the point and in your own words as far as practicable.
- Make your own assumptions as and when necessary and state them at proper places.
- 1. State and justify the truth or falsity of any three of the following statements.
 - (a) There are uncountably infinite number of languages over some alphabet Σ .
 - (b) Given a Deterministic Finite Automaton M_{dfa} , one can always mechanically construct one Push Down Automaton M_{pda} , such that, $L(M_{dfa}) = L(M_{pda})$.
 - (c) Grammars cannot compute functions from natural numbers to natural numbers.
 - (d) Given a Deterministic Turing Machine $M = (K, \Sigma, \delta, s)$, one can always construct one Non-Deterministic Turing Machine $M' = (K', \Sigma', \Delta', s')$ doing what M does. [4 × 3]
- Construct Finite Automaton (Deterministic or Non-Deterministic) or Pushdown Automaton for thefollowing languages.
 - (a) $\{\omega_1\omega_2 : \omega_1 \in \{a,b\}^*, \omega_2 \in \{c,d\}^* \text{ and } |\omega_1| = |\omega_2|\}$
 - (b) $\{\omega \in \{a,b\}^* : \omega \text{ does not have } abaab \text{ as a substring}\}$
 - (c) $\{0^i 1^j 2^k : i, j, k \ge 0 \text{ and } i \ne j\}$
 - (d) $\{a^ib^jc^{2i-1}d^k: i,j,k>0\}$ [3+3+4+4]
- 3. Construct Grammar (Regular or Context-Free or Unrestricted) for the following languages.
 - (a) $\{\omega c^m d^n : \omega \in \{a,b\}^*, m = \text{ the number of } a$'s in ω and n = the number of b's in ω
 - (b) $\{\omega \in \{a,b\}^* : |\omega| \text{ is odd and the middle symbol of } \omega \text{ is 'b'}\}$
 - (c) $\{\omega\omega'^R: \omega, \omega' \in \{a,b\}^*, |\omega| = |\omega'|, \omega(i) = a \text{ iff } \omega' = b, \text{ and } \omega'^R \text{ is reverse of } \omega'\}$
 - (d) $\{a^ib^jc^jd^{2i}: i, j \ge 0\}$ [5 + 3 + 3 + 3]
- 4. (a) Formally define the concepts of a 2-Tape Turing machine, configuration of such a machine, its yields in one step relation and the idea that such a machine computes a function from natural numbers to natural numbers.
 - (b) Construct a Turing machine (standard Turing machine or any extension) M that computes the function $inc: \mathcal{N} \to \mathcal{N}, inc(n_1) = n_1 + 1$. M accepts a natural number in binary representation (as input) and produces the next natural number in binary representation (as the output). [6+8]
- 5. (a) Propose a scheme for encoding any arbitrary Turing machine $M = (K, \Sigma, \delta, s)$ as a string over some fixed alphabet so that it can be fed as an input to the Universal Turing Machine.
 - (b) Given a Context-Free Grammar $G = (V, \Sigma, R, S)$, formally define the idea of "Derives in one step" relation between $u, v \in V^*$ under G ($u \stackrel{G}{\Longrightarrow} v$).
 - (c) Formally prove that, given a Context-Free Grammar $G = (V, \Sigma, R, S)$, for every derivation $S \stackrel{\mathcal{G}}{\Rightarrow} \omega$ under G, there exists a leftmost derivation of ω under G. [7+2+5]

(Contd.)

- 6. Write short notes on the following.
 - (a) Nondeterminism in Automata
 - $\langle b \rangle$ Pumping Lemma for the class of Context-Free Languages
 - (c) Turing acceptable languages

[5+5+4]
