Getting to Regression: The Workhorse of Quantitative Political Analysis

Department of Government

London School of Economics and Political Science

2 Correlation

2 Correlation

2 Correlation

Correlation as Measure of Bivariate Relationship

Covariance:

$$Cov(X, Y) = \sum_{i=1}^{n} \frac{(X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

Correlation as Measure of Bivariate Relationship

Covariance:

$$Cov(X, Y) = \sum_{i=1}^{n} \frac{(X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

Correlation:

$$Corr(X, Y) = r_{x,y} = \sum_{i=1}^{n} \frac{(X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)s_x s_y}$$
 where $s_x = \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}$

Correlation is linear!

Source: Wikimedia

Guess the Correlation!

1 Go to: http://guessthecorrelation.com/

Play a few rounds

2 Correlation

 Definition: a statistical method for measuring the relationships between one variable and many other variables

- Definition: a statistical method for measuring the relationships between one variable and many other variables
- Uses of Regression
 - 1 Description
 - 2 Prediction
 - 3 Causal Inference

- Definition: a statistical method for measuring the relationships between one variable and many other variables
- Uses of Regression
 - 1 Description
 - 2 Prediction
 - 3 Causal Inference
- Ordinary least squares (OLS) regression

Interpretations of OLS

Interpretations of OLS

- Line (or surface) of best fit
- 2 Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)

Interpretations of OLS

- Line (or surface) of best fit
- 2 Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)
- 4 Estimating Unit-level Causal Effect

- Y is continuous
- lacksquare X is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment X had an effect on Y?

- Y is continuous
- \blacksquare X is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment *X* had an effect on *Y*?
- Look at mean-difference: $E[Y_i|X_i = 1] - E[Y_i|X_i = 0]$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$
 - $\Delta Y = E[Y_i|X=1] E[Y_i|X=0]$
 - $\Delta X = 1 0 = 1$

Three Equations

Population:

$$Y = \beta_0 + \beta_1 X \ (+\epsilon)$$

Three Equations

Population:

$$Y = \beta_0 + \beta_1 X \ (+\epsilon)$$

Sample estimate:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

Three Equations

Population:

$$Y = \beta_0 + \beta_1 X \ (+\epsilon)$$

2 Sample estimate:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + e$$

3 Unit:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

= $\bar{y}_{0i} + (y_{1i} - y_{0i}) x_i + (y_{0i} - \bar{y}_{0i})$

 \blacksquare Do we need variation in X?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero

- \square Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - \blacksquare No, $\hat{\beta}_1$ can equal zero

- \square Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - \blacksquare No, $\hat{\beta}_1$ can equal zero

- \square Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \mathbf{D} Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated

$$\widehat{\beta_1} = Cov(x,y)/Var(x)$$

X_i	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
1	1	?	?	?	?
2	5	?	?	?	?
3	3	?	?	?	?
4	6	?	?	?	?
5	2	?	?	?	?
6	7	?	?	?	?
\bar{x}	\bar{y}			Cov(x, y)	Var(x)

$$\widehat{\beta_1} = Cov(x,y)/Var(x)$$

X_i	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
1	1	?	?	?	?
2	5	?	?	?	?
3	3	?	?	?	?
4	6	?	?	?	?
5	2	?	?	?	?
6	7	?	?	?	?
\bar{x}	\bar{y}			Cov(x, y)	Var(x)

$$\widehat{\beta_1} = Cov(x, y) / Var(x)$$

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
1	1	$-2.\bar{6}$	-3	$-6.6\overline{6}$	6.25
2	5	$-1.\bar{3}$	+1	-2.00	2.25
3	3	$-0.\bar{6}$	-1	$-0.3\bar{3}$	0.25
4	6	$+0.\bar{3}$	+2	$-0.1\overline{6}$	0.25
5	2	$+1.\overline{6}$	-2	-2.50	2.25
6	7	$+2.\bar{3}$	+3	$-8.3\bar{3}$	6.25
3.5	3.6			11	17.5

$$\widehat{\beta}_1 = Cov(x, y) / Var(x) = 11/17.5 = 0.627$$

Xi	Уi	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
1	1	$-2.\bar{6}$	-3	$-6.6\overline{6}$	6.25
2	5	$-1.\bar{3}$	+1	-2.00	2.25
3	3	$-0.\bar{6}$	-1	$-0.3\bar{3}$	0.25
4	6	$+0.\bar{3}$	+2	$-0.1\overline{6}$	0.25
5	2	$+1.\overline{6}$	-2	-2.50	2.25
6	7	$+2.\bar{3}$	+3	$-8.3\bar{3}$	6.25
3.5	3.6			11	17.5

Intercept \hat{eta}_0

Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Intercept \hat{eta}_0

- Simple formula: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})

Intercept $\hat{\beta}_0$

- lacksquare Simple formula: $\hat{eta}_0 = ar{y} \hat{eta}_1 ar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})
- **Ex.**: $\hat{\beta}_0 = 3.\overline{6} 0.627 * 3.5 = 1.4\overline{6}$

Regression

Intercept $\hat{\beta}_0$

- Simple formula: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})
- Ex.: $\hat{\beta}_0 = 3.\bar{6} 0.627 * 3.5 = 1.4\bar{6}$
- $\hat{y} = 1.4\bar{6} + 0.6857\hat{x}$

Systematic versus unsystematic components

Systematic versus unsystematic components

- Systematic: Regression line (slope)
 - Linear regression estimates the conditional means of the population data (i.e., E[Y|X])

Systematic versus unsystematic components

- Systematic: Regression line (slope)
 - Linear regression estimates the conditional means of the population data (i.e., E[Y|X])
- Unsystematic: Error term is the deviation of observations from the line
 - The difference between each value y_i and \hat{y}_i is the *residual*: e_i
 - OLS produces an estimate of β that minimizes the *residual sum of squares*

■ Fundamental randomness

- Fundamental randomness
- Measurement error

- Fundamental randomness
- Measurement error
- Omitted variables

OLS Minimizes SSR

■ Total Sum of Squares (SST): $\sum_{i=1}^{n} (y_i - \bar{y})^2$

- We can partition SST into two parts (ANOVA):
 - Explained Sum of Squares (SSE)
 - Residual Sum of Squares (SSR)
- \blacksquare SST = SSE + SSR
- OLS is the line with the lowest SSR

RMSE (σ)

- Definition: $\hat{\sigma} = \sqrt{\frac{SSR}{n-p}}$, where p is number of parameters estimated
- Interpretation:
 - How far, on average, are the observed y values from their corresponding fitted values ŷ
 - sd(y) is how far, on average, a given y_i is from \bar{y}
 - lacktriangledown σ is how far, on average, a given y_i is from \hat{y}_i
- Units: same as y (range 0 to sd(y))

Correlation/Regression Equivalence

- Definition: $Corr(x, y) = \hat{r}_{x,y} = \frac{Cov(x,y)}{(n-1)s_x s_y}$
- Slope $\hat{\beta}_1$ and correlation $\hat{r}_{x,y}$ are simply different scalings of Cov(x,y)

Correlation/Regression Equivalence

- Definition: $Corr(x, y) = \hat{r}_{x,y} = \frac{Cov(x,y)}{(n-1)s_x s_y}$
- Slope $\hat{\beta}_1$ and correlation $\hat{r}_{x,y}$ are simply different scalings of Cov(x,y)

$$R^2 = \hat{r}_{x,y}^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

Questions about OLS calculations?

Are Our Estimates Any Good?

Are Our Estimates Any Good?

- Works mathematically
- \mathbf{Z} Linear relationship between X and Y
- X is measured without error
- 4 No missing data (or MCAR)
- No confounding (next week)

Linear Relationship

- If linear, no problems
- If non-linear, we need to transform
 - Power terms (e.g., x^2 , x^3)
 - \blacksquare log (e.g., log(x))
 - Other transformations
 - If categorical: convert to set of indicators
 - Multivariate interactions (next week)

Coefficient Interpretation Activity

- Four types of variables:
 - I Indicator (0,1)
 - 2 Categorical
 - 3 Ordinal
 - 4 Interval
- How do we interpret a coefficient on each of these types of variables?

Questions?