Masked Autoencoders Are Scalable Vision Learners

2021250020 한정찬

01 Introduction

Masked autoencoder

NLP

Autoregressive modeling of GPT

Masked autoencoding of BERT

→ Remove a portion of data, learn to predict

Computer Vision

Masked autoencoder

→ don't work well

What's the difference ??

Language vs Image

- Architectures
 - → Attention VS CNN (solved by ViT)
- Information density
 - → Language > Image (하나의 sematic 정보
 - → Spatial redundancy
- Decoder's role
 - → predict words vs. pixels

02 Methodology

Our MAE

- High Masking ratio
 - → reduce redundancy
- Asymmetric encoder-decoder
 - → Encoder only patches without masking
 - → Decoder latent representation + masked
- Reduce computation

Figure 1. Our MAE architecture. During pre-training, a large random subset of image patches (e.g., 75%) is masked out. The encoder is applied to the small subset of visible patches. Mask tokens are introduced after the encoder, and the full set of encoded patches and mask tokens is processed by a small decoder that reconstructs the original image in pixels. After pre-training, the decoder is discarded and the encoder is applied to uncorrupted images (full sets of patches) for recognition tasks.

Our MAE

Masking

- Divide image into non-overlapping patches
- Random sampling with high masking ratio

MAE encoder

- ViT but applied only on unmasked patches (25%)
- Less computation, memory

Our MAE

MAE decoder

- Input: encoded patches + masked tokens
- Add positional embeddings (info about location)
- MAE decoder is only used during pre-training reconstruction task
- Independent of encoder design

Reconstruction

- Predict pixel values of masked patches
- Loss function computes MSE only on masked patches(like BERT)

03 Experiments

ImageNet Experiments

Self-supervised pre-training on ImageNet-1K

- Then evaluate
 - ⑤ Fine-tuning
 - 2 Linear probing

Baseline: ViT-Large

Masking ratio

- High Masking ratio
 - →75% is good for both

 Contrast behavior with BERT (typically 15%)

Figure 5. **Masking ratio**. A high masking ratio (75%) works well for both fine-tuning (top) and linear probing (bottom). The y-axes are ImageNet-1K validation accuracy (%) in all plots in this paper.

Decoder Design

blocks	ft	lin
1	84.8	65.5
2	84.9	70.0
4	84.9	71.9
8	84.9	73.5
12	84.4	73.3

(a) Decoder depth. A deep decoder can improve linear probing accuracy.

dim	ft	lin
128	84.9	69.1
256	84.8	71.3
512	84.9	73.5
768	84.4	73.1
1024	84.3	73.1

(b) **Decoder width**. The decoder can be narrower than the encoder (1024-d).

 sufficiently deep decoder is important for linear probing

 gap between a pixel reconstruction task and a recognition task

Others

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	$3.3\times$
encoder w/o [M]	84.9	73.5	1×

Reduce computation

(c) **Mask token**. An encoder without mask tokens is more accurate and faster (Table 2).

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85.3	71.6

⁽d) Reconstruction target. Pixels as reconstruction targets are effective.

case	ft	lin
none	84.0	65.7
crop, fixed size	84.7	73.1
crop, rand size	84.9	73.5
crop + color jit	84.3	71.9

⁽e) Data augmentation. Our MAE works with minimal or no augmentation.

case	ratio	ft	lin
random	75	84.9	73.5
block	50	83.9	72.3
block	75	82.8	63.9
grid	75	84.0	66.0

(f) Mask sampling. Random sampling works the best. See Figure 6 for visualizations.

Comparisons with previous results

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	\$	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	(8)	-	8
MoCo v3 [9]	INIK	83.2	84.1		20
BEiT [2]	IN1K+DALLE	83.2	85.2	7.5	-
MAE	INIK	83.6	85.9	86.9	87.8

Conclusion

- Language -> BERT
- Vision -> MAE
- Different domain, same approach, meaningful result

Thanks!