Introduction to Computer Graphics

– Image Processing (2) –

June 16, 2016 Kenshi Takayama

Texture Synthesis

Scenario 1: Removal of objects in images

Synthesis result

Bit different problem setting than "image cloning"

Scenario 2: Synthesis of large texture image

Similarity between input & output images [Kwatra05]

Look for the most similar patch

- Want to find T which minimizes D
- Direct solution seems infeasible
 → iterative computation

Optimization by iterative computation [Kwatra05]

Multiresolution synthesis

Bidirectional similarity [Simakov08; Wei08]

Effect of Completeness/Coherence terms

problem a.k.a. "Image Summarization"

Input image

Output image

Completeness only

$$\sum_{s \in S} \min_{t \in T} \|s - t\|^2$$

Bidirectional

Coherence only

$$\sum_{t \in T} \min_{s \in S} ||s - t||^2$$

Bidirectional

Texture synthesis via stitching of patches

(briefly)

Image Quilting [Efros01]

Image Quilting [Efros01]

Graphcut Textures [Kwatra03]

https://www.youtube.com/watch?v=Ya6BshBH6G4

• Formulate the best seam between patches as a minimum-cost cut in a graph

Graphcut Textures [Kwatra03]

Acceleration techniques for nearest neighborhood search

Technique #1: Spatial data structure + dimensionality reduction

- 5x5 neighbor pixels each with RGB channels
 - → 75D vector

- Nearest neighbor search in high dimensional space
 - → Acceleration using k-d tree

- k-d tree performs poorly when dimensionality is too high
 - → Dimensionality reduction using Principal Component Analysis

Technique #2: k-coherence [Tong02]

Candidates for the neighborhood match

Technique #2: k-coherence [Tong02]

Best bet: PatchMatch [Barnes09]

https://www.youtube.com/watch?v=dgKjs8ZjQNg

Best bet: PatchMatch [Barnes09]

- Randomly initialize matches
- Update matches in scanline order
 - Propagation:
 Accept either left or above match if it's better than the current match
 - Random Search:
 Try a few random matches; accept if it's better than the current match

Demo

Extensions & applications

Synthesis control by limiting the search space

Output pixels with markers only match with input pixels with the same markers

Image Analogies [Hertzmann01]

- Simulate arbitrary image filters using texture synthesis
- Variety of applications possible with this formulation

Image Analogies – Texture by Numbers

Image Analogies – Super Resolution

Removal of objects in videos

Frame 43

Frame 57

(c) Spatio-temporal completion

Space-time video completion [Wexler CVPR04]

Random synthesis of face images [Mohammed09]

Naïve synthesis from face images with positional alignment

Parametric model for "average faces"

Synthesis result

Training images closest to synthesis results

Random synthesis of structured images [Risser10]

Texture synthesis for 3D graphics

On-surface texture synthesis [Wei01; Turk01]

Multiresolution synthesis

Uniform sample points

Vector field

Texture synthesis over arbitrary manifold surfaces [Wei SIGGRAPH01] Texture synthesis on surfaces [Turk SIGGRAPH01]

Solid textures

- Represent texture as 3D volume (e.g. voxel) of RGB
 - RGB color directly obtained from XYZ coord
 - easy to use!
- Early methods
 - Combine noise functions, tweak parameters
 - Automatic example-based synthesis using statistical approaches
 - Limited to noise-like textures

 $= colormap(\sin(x + \operatorname{noise}(x, y, z)))$

Solid texture synthesis by optimization

 Almost straightforward generalization of 2D version [Kwatra05] to 3D

(Some tricks needed for better quality)

Fast on-demand synthesis using GPU parallelism [Lefebvre05]

- Basic idea similar to [Kwatra05]
 - Key technique: precomputation + parallel independent processing
- Synthesize only when drawing
 - = Reduced memory consumption
 - suited for games

On-demand synthesis specific to façade images [Lefebvre10]

Precompute horizontal/vertical seams → combine at runtime on GPU

Applications of texture synthesis outside image processing

Terrain (height field) synthesis [Zhou07]

Geographical data

User's sketch

Synthesis result

Synthesis of surface details [Bhat04]

Mesh Quilting [Zhou06]

Careful stitching of neighboring triangle meshes

Synthesis of architectural models [Merrell07]

Hair synthesis [Wang09]

- Single hair strand = 3D polyline with N vertices = 3N dim vector
 - Regarding this as color, apply texture synthesis

Synthesis of artistic vortices for fluids [Ma09]

- Synthesize detailed vortex velocity field along input low-res velocity field
 - Regarding 2D/3D velocity vector as colors, apply texture synthesis

Synthesis of element arrangement [Ma11]

• Optimization algorithm similar to [Kwatra05]

Pointers

- Existing implementations
 - http://www2.mta.ac.il/~tal/ImageCompletion/ImageCompletion1.01.zip
 - http://www.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/patchmatch-2.1.zip
 - http://research.nii.ac.jp/~takayama/cggems12/cggems12.zip
- Surveys
 - State of the art in example-based texture synthesis [Wei EG09STAR]
 - Solid-Texture Synthesis; A Survey [Pietroni CGA10]