261. Graph Valid Tree

You have a graph of n nodes labeled from 0 to n-1. You are given an integer n and a list of edges where edges[i] = [a_i, b_i] indicates that there is an undirected edge between nodes a_i and b_i in the graph.

Return true if the edges of the given graph make up a valid tree, and false otherwise.

Example 1:

Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]

Output: true

Example 2:

Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]

Output: false

Constraints:

- 1 <= n <= 2000
- 0 <= edges.length <= 5000
- edges[i].length == 2
- $0 \ll a_i$, $b_i \ll n$
- a_i != b_i
- There are no self-loops or repeated edges.

[[0,1],[0,2],[0,3],[1,4]]

Tree Properties:

- 1. In a Tree the child has only one immediate Parent.
- 1. In a Tree If we start from root, we can visit every Node.

n=5 and edges = [[0,1],[0,2],[0,3]] In a valid Tree no.of edges == n-1 3

Here Graph is not a valid Tree: because no.of edges were 3, expected: 4

n=5, edges: [[0,1],[0,2],[0,3],[1,2]]

Tree Properties:

- 1. In a Tree the child has only one immediate Parent.
- 1. In a Tree If we start from root, we can visit every Node.

4

Its Not a Valid Tree Because node(2) is having two parents node(0), node(1)

V(1), & V(2) were are already connected because root is same[0] so return False

323. Number of Connected Components in an Undirected Graph

Medium 2067 ♀ 70 ○ Add to List ☐ Share

You have a graph of n nodes. You are given an integer n and an array edges where edges[i] = [a_i, b_i] indicates that there is an edge between a_i and b_i in the graph.

Return the number of connected components in the graph.

Example 1:

Input: n = 5, edges = [[0,1],[1,2],[3,4]]

Output: 2

Example 2:

Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]]
Output: 1

Constraints:

- 1 <= n <= 2000
- 1 <= edges.length <= 5000
- edges[i].length == 2
- 0 \leftarrow $a_i \leftarrow$ $b_i \leftarrow$ n
- a_i != b_i
- There are no repeated edges.

No Of distinct root = 2 : [0,3] So output is 2

No Of distinct root = 1: [0] So output is 1