Today

- 1. Go over automation homework
- 2. Exploratory data analysis lecture
- 3. Visualization tutorial
- 4. Break
- 5. Group exercise wrangling & EDA working in small groups
- 6. Reconvene to go over exercise

Workflow assignment reminders

- Everyone: Self-critique paper turned in before class on Canvas
- Next week's presenters
 - Tina, Michael, Ziyi, Antonio, Hea Jung, Michelle, Jun
 - Email PDF of slides to me before class
 - For presentation, you will share screen and have 8 minutes max to present
 - I will warn you at 7 minutes to wrap it up

Week 06, 02/10: Custom Functions Part 1

- WORKFLOW PRESENTATIONS GROUP 1
- Finding new packages/APIs vs. writing your own functions
- Defining custom functions within a script
- *SKILLS:* Writing basic functions

Week 07, 02/17: Custom Functions Part 2

- WORKFLOW PRESENTATIONS GROUP 2
- "Technical debt", "design smells", and code refactoring
- Sourcing functions
- Working with function arguments
- SKILLS: Writing advanced functions

OTHER READING: Technical debt (Suryanarayana, Samarthyam, & Sharma, 2014)

Syllabus updates

Week 08, 02/24: Data Sharing and Reproducibility

- Reuse-minded project management
- Reproducible reports
- Preserving programming environment and analyses
- SKILLS: R Markdown, package control

R4DS: R Markdown

OTHER READINGS: Transparency in psychological science (Klein et al., 2018) and Care and feeding of data (Goodman et al., 2014)

Week 09, 03/03: Communication

- Communicating through graphical styles
- Interactive plots for data exploration
- Manuscript preparation in R Markdown
- SKILLS: ggplot and extensions, papaja

R4DS: Graphics for communication

OTHER READING: Designing graphs for decision-makers (Zacks & Franconeri, 2020), Chartjunk from (Tufte, 1990, 2001, 2006), and (optional) Graph construction (Witt, 2019).

GitHub updates

- Adding any code Jake writes when going over homework
- Tagging repos so that they're a bit easier to find

PSYC 259: Principles of Data Science

Week 5: Exploratory Data Analysis Error Checking & Visualization

Exploratory Data Analysis

CDA vs. EDA

- Goals of Confirmatory Data Analysis
 - Hypothesis testing, probabilistic modeling, inference
- Goals of Exploratory Data Analysis (Tukey)
 - Understanding the patterns in the data
 - Generating hypotheses
 - Checking your assumptions about data quality
 - "To find the unexpected, to avoid being fooled, and to develop rich descriptions" (Behrens & Yu, 2003)

Why do we need EDA? (Behrens & Yu, 2003)

- Summarization = a loss of information
 - If you first look at summarized data (across trials, across participants, etc.), you may miss important patterns that exist at the raw data level
- Statistics lie, so you need graphics
 - Correlations without looking at the scatterplot
 - Means without examining outliers/distribution
 - Statistical tests without examining n

Anscombe's quartet

Where does wrangling stop and EDA begin?

- Data need to be minimally read in, appropriately labelled, and tidied to check and visualize
- EDA will reveal errors or redundancies that will require new data wrangling steps

- filter with logical statements

```
> ds %>% filter(class != class rel)
# A tibble: 34 x 305
    time class class_prop class_rel class_prop_rel x_sum y_sum
                                                                z_sum corr_xy corr_xz
                                           <dbl> <dbl> <dbl>
   <dbl> <fct>
                  <dbl> <fct>
                                                                <dbl> <dbl>
                                                                                <db1>
1 105. held 0.662 sit
                                           0.602 197.
                                                         374. -157.
                                                                      -0.0875 0.610
2 414. held 0.657 supine
                                           0.502 216.
                                                         31.6
                                                                 7.50 - 0.618 - 0.718
   508. supi... 0.896 prone
                                                               148.
                                           0.522 - 160.
                                                         245.
                                                                      -0.771
                                                                               0.803
                                                                85.7 \quad 0.433 \quad -0.0730
   509. supi...
                  0.647 prone
                                           0.771 - 183.
                                                         284.
                   0.657 prone
5 <u>1</u>065. sit
                                                                      -0.701 -0.139
                                           0.502 - 81.0 249.
                                                               440.
```

- fct_count to check factor frequencies

Quick aside about factors

- When defining factors, all data that do not match a level will be coded as NA
- Checking levels before coding factors (or making a factor without prespecified levels) should be a first step

```
> ds$class <- factor(ds$class)</pre>
> fct_count(ds$class)
# A tibble: 8 x 2
                n
  <fct>
        <int>
1 held stat
              346
2 held walk
              340
3 prone
              325
4 sit cg
               64
 SIT CG
6 sit rest
              215
7 sit surf
              532
8 supine
              177
```

- summaries (with the right statistics/groupings)

- summaries (with the right statistics/groupings)

```
# A tibble: 240 x 4
  participant block condition trial num
   <chr>>
                <chr> <chr>
                                     <db1>
 1 6191
                      near
2 6191
                      near
3 6191
                      near
4 6191
                      near
5 6191
                      near
6 6191
                      near
7 6191
                      near
8 6191
                      near
9 6191
                      near
10 6191
                                        10
                      near
# ... with 230 more rows
```

```
> ds %>% group by(participant, block) %>% summarize(trials 20 = n())
`summarise()` regrouping output by 'participant' (override with `.groups` argument)
# A tibble: 12 x 3
# Groups: participant [2]
  participant block trials 20
   <chr>
               <chr>
                         <int>
 1 6191
                            20
 2 6191
                            20
 3 6191
                            20
 4 6191
                            20
 5 6191
                            20
 6 6191
                            20
                            20
 7 6192
```

Automation

- EDA means taking a detailed approach to look at data on different levels (participant/condition/wave/etc.)
- Running multiple filters/checks, plotting multiple figures, etc. can get overwhelming without automation

New tools for EDA - Visualizations

DataExplorer package

- Brute force, first glance methods
- plot_histogram() of every continuous variable
- plot_bar() counts of every categorical variable

VisDat package

- vis_miss() to plot missing values
- vis_expect() to plot conditionals

New tools for EDA - Visualizations

- ggplot2 package (part of tidyverse)
 - Create any type of graph
 - Today we'll talk about making quicker plots for eda using geom_histogram, geom_point, geom_boxplot, and a few others
 - Week 9 we'll talk about making publication-ready plots to communicate effects

Anatomy of a ggplot call

```
The ggplot() The data parameter function

ggplot(data = , aes(x = , y = )) +

geom_line()

The geometric object we want to draw (i.e., the geom)
```

- define the dataset we are using (long format)
- define the mapping of variables to aesthestics
- Add (+) geoms, graphical elements like histograms, lines, points, bars, boxplots, and many others
- Optional arguments to change the overall look

Each type of geom has different aesthetics that can be mapped

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

f + geom_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

e + geom_point(), x, y, alpha, color, fill, shape, size, stroke

h + geom_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight

What aes values are required for each geom?

 Check the help page to see required mappings in bold

Aesthetics

geom point() understands the following aesthetics (required aesthetics are in bold):

- x
- y
- alpha
- colour
- fill
- group
- shape
- size
- stroke

Adding elements to graphs

- ggplot() + geomX() +....
- Add (+) other modifications to the plot
 - xlim(lower_bound, upper_bound) or ylim
 - hline(yintercept = X) or vline
 - xlab("x label")
 - titles, custom scales, other geoms
- Make sure that plus is on the previous line, lines that start with + will throw an error

EDA visualization tutorial

Group work: Exploratory Data Analysis

"259-group-wrangling-checking"

Study setup

- Participants (6 months 10 years and adults) watched 5 different stimulus videos ("Feist", "Pentatonix", "Science", "Plane", "Dogs") while their eyes were tracked
- The file includes their age in days and their age group (e.g., 0.5-1 year, 1-1.5 years, etc.)
- The DVs are AUC_sal and AUC_dist, which measure how well a saliency vs. a distance model predicted whether participants look (0-1, where 0.5 = chance)
- Precision is a measure of eye tracking data quality, where larger = worse (and over 2.5 is concerning)
- Watched asks whether participants had seen the videos prior to the study

group_exercise_without_answers.R × ds ×

⟨□□⟩ | □□ | ▼ Filter

÷	stim ‡	id ‡	age 🕏	AUC_sal ‡	AUC_dist	age_group ^	precision •	watched [‡]
1		37	180	0.59957	0.62031	.5-1 y	1.485714	Yes
2		37	180	0.58893	0.64556	.5-1 y	1.485714	Yes
						•		
3	Science	37	180	0.67927	0.82317	.5–1 y	1.485714	No
4	Plane	37	180	0.59959	0.60541	.5-1 y	1.485714	No
5	Dogs	37	180	0.61225	0.54289	.5-1 y	1.485714	No
6	Feist	44	285	0.63152	0.69146	.5-1 y	1.816667	Not Sure
7	Pentatonix	44	285	0.56917	0.75917	.5-1 y	1.816667	Yes
8	Plane	44	285	0.48053	0.63904	.5-1 y	1.816667	No
9	Dogs	44	285	0.61609	0.65665	.5-1 y	1.816667	No
10	Feist	50	240	0.60309	0.64959	.5-1 y	1.616667	No
11	Pentatonix	50	240	0.57844	0.58591	.5-1 y	1.616667	No
12	Science	50	240	0.65497	0.71104	.5-1 y	1.616667	No
13	Plane	50	240	0.60990	0.69281	.5-1 y	1.616667	No
14	Dogs	50	240	0.54050	0.40872	.5-1 y	1.616667	No

Work in groups

- We'll randomly assign you to groups of 3
- Work with your group in RStudio Cloud, and Jake and I will filter in to check on groups
- Do as much as you can, but don't worry if you don't get through all of them
- We will reconvene to go over it together