Introductory Course: Machine Learning (WWI15B4)

Support Vector Machines

Fabio Ferreira, David Bethge

DHBW Karlsruhe

Overview

- 1 Support Vector Machines
 - Introduction
 - Linear Maximum Margin Classifier
 - Non-linear separable data
 - Non-linear Maximum Margin Classifier: Soft Margin
 - Non-linear Maximum Margin Classifier: Kernel Method
 - Structural Risk Minimization
 - Evaluation

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Recommended Literature

- V.N. Vapnik: "Statistical Learning Theory", Wiley, 1998
- B. Schoelkopf: "Support Vector Learning"
- Patrick Winston, MIT 6.034 Artificial Intelligence, Fall 2010, https://www.youtube.com/watch?v=_PwhiWxHK8o

How to separate this space?

filled samples: positive, blank samples: negative

Approaches we know so far would do something like this:

There exist many hyperplanes that would correctly classify the data. Which one is the best?

Let's choose a hyperplane so that it represents the largest separation (margin) between both classes.

This yields the task: maximize the distance from the *middle line* to the nearest data point on each side.

Table of Contents

- 1 Support Vector Machines
 - Introduction
 - Linear Maximum Margin Classifier
 - Non-linear separable data
 - Non-linear Maximum Margin Classifier: Soft Margin
 - Non-linear Maximum Margin Classifier: Kernel Method
 - Structural Risk Minimization
 - Evaluation

Linear Maximum Margin Classifier: Decision Rule

Considering a vector pointing to an unknown sample \vec{u} and a vector \vec{w} of arbitrary length constrained to be perpendicular to the middle line. **Task**: Determine if \vec{u} is on the right or left side of the hyperplane

Idea: project \vec{u} onto \vec{w} with some constant $c \in \mathbb{R}$:

$$\vec{w} \cdot \vec{u} \ge c$$

or

$$\vec{w} \cdot \vec{u} + b \ge 0, c = -b$$

Decision rule: if this inequality holds then \vec{u} is a positive sample

Linear Maximum Margin Classifier: Constraints

Remember the decision rule: $\vec{w} \cdot \vec{u} + b \ge 0 \Rightarrow$ positive sample Idea: if some unknown sample is a positive sample, we insist the decision rule yields ≥ 1 (otherwise ≤ -1 .)

Remember the decision rule: $\vec{w} \cdot \vec{u} + b \ge 0 \Rightarrow$ positive sample Idea: if some unknown sample is a positive sample, we insist the decision rule yields ≥ 1 (otherwise ≤ -1 .) Mathematically:

- athernatically.
- for positive samples: $\vec{w} \cdot \vec{x}_+ + b \ge 1$
- for negative samples: $\vec{w} \cdot \vec{x}_- + b \le -1$

Remember the decision rule: $\vec{w} \cdot \vec{u} + b \ge 0 \Rightarrow$ positive sample Idea: if some unknown sample is a positive sample, we insist the decision rule yields ≥ 1 (otherwise ≤ -1 .)

Mathematically:

- for positive samples: $\vec{w} \cdot \vec{x}_+ + b \ge 1$
- for negative samples: $\vec{w} \cdot \vec{x}_- + b \le -1$

For convenience we introduce a variable y_i s.t.:

• $y_i = 1$ for positive samples and $y_i = -1$ for negative samples

The comfort we gain: only one inequality that holds for x_i laying outside of the margin boundaries

$$y_i(\vec{x}_i\cdot\vec{w}+b)\geq 1$$

Remember the decision rule: $\vec{w} \cdot \vec{u} + b \ge 0 \Rightarrow$ positive sample Idea: if some unknown sample is a positive sample, we insist the decision rule yields ≥ 1 (otherwise ≤ -1 .)

Mathematically:

- for positive samples: $\vec{w} \cdot \vec{x}_+ + b \ge 1$
- for negative samples: $\vec{w} \cdot \vec{x}_- + b \le -1$

For convenience we introduce a variable y_i s.t.:

• $y_i = 1$ for positive samples and $y_i = -1$ for negative samples

The comfort we gain: only one inequality that holds for x_i laying outside of the margin boundaries

$$y_i(\vec{x_i}\cdot\vec{w}+b)\geq 1$$

and we add one additional constraint for x_i placed on the margin boundaries:

$$y_i(\vec{x}_i \cdot \vec{w} + b) - 1 = 0$$

Geometrically this gives us:

Linear Maximum Margin Classifier: Margin Width

Recall: we want to maximize the distance between points of two different classes. This raises the question: how to express the distance between the two margin boundaries?

Linear Maximum Margin Classifier: Margin Width

How to express the distance between the two margin boundaries? One solution: compute the width with a unit vector (light blue) and project the purple vector on that unit vector

Linear Maximum Margin Classifier: Margin Width

$$width = (\vec{x}_+ - \vec{x}_-) \cdot \frac{\vec{w}}{\|\vec{w}\|}$$

now use $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0$ from before for to get:

Linear Maximum Margin Classifier: Margin Width

$$width = (\vec{x}_+ - \vec{x}_-) \cdot \frac{\vec{w}}{\|\vec{w}\|}$$

now use $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0$ from before for to get:

$$width = \frac{(1 - b + 1 + b)}{\|\vec{w}\|} = \frac{2}{\|\vec{w}\|}$$

Linear Maximum Margin Classifier: Margin Width

$$\textit{width} = (ec{x}_+ - ec{x}_-) \cdot rac{ec{w}}{\|ec{w}\|}$$

now use $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0$ from before for to get:

$$width = \frac{(1-b+1+b)}{\|\vec{w}\|} = \frac{2}{\|\vec{w}\|}$$

our goal now is:

$$\max \frac{2}{\|\vec{w}\|} = \max \frac{1}{\|\vec{w}\|} = \min \lVert \vec{w} \rVert \leadsto \min \frac{1}{2} \lVert \vec{w} \rVert^2$$

Linear Maximum Margin Classifier: Margin Width

$$width = (\vec{x}_+ - \vec{x}_-) \cdot \frac{\vec{w}}{\|\vec{w}\|}$$

now use $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0$ from before for to get:

$$width = \frac{(1-b+1+b)}{\|\vec{w}\|} = \frac{2}{\|\vec{w}\|}$$

our goal now is:

$$\max \frac{2}{\|\vec{w}\|} = \max \frac{1}{\|\vec{w}\|} = \min \|\vec{w}\| \leadsto \min \frac{1}{2} \|\vec{w}\|^2$$

find extremum of a function with constraints

- → use Lagrangian optimization (method of Lagrange multipliers)
- → yields a new (closed) expression with the constraints included

Linear Maximum Margin Classifier: Lagrangian Multipliers

Recall: we had defined a constraint for x_i placed directly on the margin boundaries: $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0 \rightarrow \text{re-use}$ it for the Lagrangian for m samples:

$$L(\vec{w}, \vec{\alpha}, b) = \frac{1}{2} ||\vec{w}||^2 - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 (1)

Recall: we had defined a constraint for x_i placed directly on the margin boundaries: $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0 \rightarrow \text{re-use}$ it for the Lagrangian for m samples:

$$L(\vec{w}, \vec{\alpha}, b) = \frac{1}{2} ||\vec{w}||^2 - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$
 (1)

compute the minimum/first partial derivatives of L w.r.t. \vec{w} and b:

$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i=1}^{m} \alpha_i y_i \vec{x_i} = 0 \Rightarrow \left| \vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x_i} \right|$$
 (2)

Linear Maximum Margin Classifier: Lagrangian Multipliers

Recall: we had defined a constraint for x_i placed directly on the margin boundaries: $y_i(\vec{x_i} \cdot \vec{w} + b) - 1 = 0 \rightarrow \text{re-use}$ it for the Lagrangian for m samples:

$$L(\vec{w}, \vec{\alpha}, b) = \frac{1}{2} ||\vec{w}||^2 - \sum_{i=1}^{m} \alpha_i [y_i (\vec{w} \cdot \vec{x_i} + b) - 1]$$
 (1)

compute the minimum/first partial derivatives of L w.r.t. \vec{w} and b:

$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i=1}^{m} \alpha_i y_i \vec{x_i} = 0 \Rightarrow \left| \vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x_i} \right|$$
 (2)

$$\frac{\partial L}{\partial \vec{b}} = -\sum_{i=1}^{m} \alpha_i y_i = 0 \Rightarrow \left| \sum_{i=1}^{m} \alpha_i y_i = 0 \right|$$
 (3)

Linear Maximum Margin Classifier: Lagrangian Multipliers

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i} \cdot \vec{x_j}$$
 (4)

¹note that W is a quadratic function ⇒ convex problem

Linear Maximum Margin Classifier: Lagrangian Multipliers

now we plug eq. 2 into eq. 1, simplify it and get:

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i} \cdot \vec{x_j}$$
 (4)

■ W is only dependent on α_i

¹note that W is a quadratic function ⇒ convex problem

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i} \cdot \vec{x_j}$$
 (4)

- W is only dependent on α_i
- Now maximize W to get $\vec{\alpha}$ with subject to eq. 3 (we call this procedure finding the saddle point (minimax point))¹

¹note that W is a quadratic function ⇒ convex problem

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i} \cdot \vec{x_j}$$
 (4)

- W is only dependent on α_i
- Now maximize W to get $\vec{\alpha}$ with subject to eq. 3 (we call this procedure finding the saddle point (minimax point))¹
- After optimization we will observe that most $\alpha_i = 0$

¹note that W is a quadratic function ⇒ convex problem

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i} \cdot \vec{x_j}$$
 (4)

- W is only dependent on α_i
- Now maximize W to get $\vec{\alpha}$ with subject to eq. 3 (we call this procedure finding the saddle point (minimax point))¹
- After optimization we will observe that most $\alpha_i = 0$
- Those $\vec{x_i}$ with $\alpha_i > 0$ we call **support vectors** which all lie perpendicular to the margin line

¹note that W is a quadratic function ⇒ convex problem

Linear Maximum Margin Classifier: Support Vectors

Recall the the **decision rule** $\vec{w} \cdot \vec{u} + b \ge 0$ for positive samples, insert $\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x_i}$ (eq. 2) and we get:

$$\sum_{i=1}^{m} \alpha_i y_i \vec{x_i} \cdot \vec{u} + b \ge 0$$

for a positive (unknown) sample \vec{u} . The decision rule now also **only** depends on α_i and on the the dot product between $\vec{x_i}$ and \vec{u}

Recall the the **decision rule** $\vec{w} \cdot \vec{u} + b \ge 0$ for positive samples, insert $\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x_i}$ (eq. 2) and we get:

$$\sum_{i=1}^{m} \alpha_i y_i \vec{x_i} \cdot \vec{u} + b \ge 0$$

for a positive (unknown) sample \vec{u} . The decision rule now also **only** depends on α_i and on the the dot product between $\vec{x_i}$ and \vec{u} This lets us specify a classification rule:

$$f(\vec{u}) = sgn(\vec{w} \cdot \vec{u} + b) = \left| sgn\left(\sum_{i=1}^{m} \alpha_i y_i \vec{x_i} \cdot \vec{u} + b\right) \right|$$

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Non-linear separable data

What if the data is not linearly separable (as in most practical cases)?

Non-linear separable data

What if the data is not linearly separable (as in most practical cases)?

- ⇒ linear SVM won't converge. Two common solutions:
 - adjust SVM specification to use a soft margin
 - apply kernel methods
 - (or both)

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(ec{x_i} \cdot ec{w} + b) \geq 1$$
 to $y_i(ec{x_i} \cdot ec{w} + b) \geq 1 - \xi_i$

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(ec{x_i}\cdotec{w}+b)\geq 1$$
 to $y_i(ec{x_i}\cdotec{w}+b)\geq 1-\xi_i$

$$\boxed{\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^{m} \xi_i}$$

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(\vec{x_i}\cdot\vec{w}+b)\geq 1$$
 to $y_i(\vec{x_i}\cdot\vec{w}+b)\geq 1-\xi_i$

now the optimal hyperplane is given by:

$$\left|\min\frac{1}{2}\|\vec{w}\|^2 + C\sum_{i=1}^m \xi_i\right|$$

• re-apply maximization of $W(\vec{\alpha})$ w.r.t. $0 \le \alpha_i \le C$, $\xi_i \ge 0$

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(ec{x_i} \cdot ec{w} + b) \ge 1$$
 to $y_i(ec{x_i} \cdot ec{w} + b) \ge 1 - \xi_i$

$$\boxed{\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^{m} \xi_i}$$

- re-apply maximization of $W(\vec{\alpha})$ w.r.t. $0 \le \alpha_i \le C$, $\xi_i \ge 0$
- lacksquare C is a regularization parameter (usually $C \in [0,1]$)

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(ec{x_i}\cdotec{w}+b)\geq 1$$
 to $y_i(ec{x_i}\cdotec{w}+b)\geq 1-\xi_i$

$$\boxed{\min \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^m \xi_i}$$

- re-apply maximization of $W(\vec{\alpha})$ w.r.t. $0 \le \alpha_i \le C$, $\xi_i \ge 0$
- lacksquare C is a regularization parameter (usually $C \in [0,1]$)
- if C large ⇒ enforce only few misclassified samples

Soft Margin

Solution: instead of specifying a hard margin, specify a soft margin with a slack variable $\xi \geq 0 \Rightarrow$ demand that not all samples must be correctly classified:

slightly change constraint from

$$y_i(\vec{x_i} \cdot \vec{w} + b) \ge 1$$

to
 $y_i(\vec{x_i} \cdot \vec{w} + b) \ge 1 - \xi_i$

$$\min\frac{1}{2}\|\vec{w}\|^2 + C\sum_{i=1}^m \xi_i$$

- re-apply maximization of $W(\vec{\alpha})$ w.r.t. $0 \le \alpha_i \le C$, $\xi_i \ge 0$
- lacksquare C is a regularization parameter (usually $C \in [0,1]$)
- if C large ⇒ enforce only few misclassified samples
- if C small ⇒ more misclassified samples allowed

Soft Margin Example

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Example

Often data samples are

- not linearly separable in the original space
- but linearly separable in a higher-dimensional space

Example

Often data samples are

- not linearly separable in the original space
- but linearly separable in a higher-dimensional space use the *kernel trick* for projecting into such higher-dimensional space, for example:

Kernel Trick

Kernel Trick

The approach of transforming data into an **implicitly** higher-dimensional space without computing coordinates of the data in that space, but rather by computing pairwise inner products of the samples. Typically $K(\vec{x_i}, \vec{x_j}) = \phi(\vec{x_i}) \cdot \phi(\vec{x_j})$ [Wikipedia]

Kernel Trick

Kernel Trick

The approach of transforming data into an **implicitly** higher-dimensional space without computing coordinates of the data in that space, but rather by computing pairwise inner products of the samples. Typically $K(\vec{x_i}, \vec{x_j}) = \phi(\vec{x_i}) \cdot \phi(\vec{x_j})$ [Wikipedia]

Mapping $\phi: \mathbb{R}^n - > \mathbb{R}^m$, usually n > m

Kernel Trick

Kernel Trick

The approach of transforming data into an **implicitly** higher-dimensional space without computing coordinates of the data in that space, but rather by computing pairwise inner products of the samples. Typically $K(\vec{x_i}, \vec{x_j}) = \phi(\vec{x_i}) \cdot \phi(\vec{x_j})$ [Wikipedia]

Mapping $\phi : \mathbb{R}^n - > \mathbb{R}^m$, usually n > mSome clarification:

- the kernel trick does not produce a mapping from low to high-dimensional space
- it does provide a solution to compute inner products of samples in high-dim. space without knowing the mapping

Kernel Trick

Kernel Trick

The approach of transforming data into an **implicitly** higher-dimensional space without computing coordinates of the data in that space, but rather by computing pairwise inner products of the samples. Typically $K(\vec{x_i}, \vec{x_j}) = \phi(\vec{x_i}) \cdot \phi(\vec{x_j})$ [Wikipedia]

Mapping $\phi : \mathbb{R}^n - > \mathbb{R}^m$, usually n > mSome clarification:

- the kernel trick does not produce a mapping from low to high-dimensional space
- it does provide a solution to compute inner products of samples in high-dim. space without knowing the mapping
- Advantages: low-cost computation, operating in infinite spaces (e.g. Gaussian kernel) possible

Kernel Trick Example

Example for $K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z})^2$ without using the kernel trick (explicit mapping):

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{\mathbb{R}^3} \qquad \phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ \vdots \\ x_3 x_3 \end{bmatrix}_{\mathbb{R}^9}$$

 \Rightarrow 18 multiplications (project x and z : $\mathbb{R}^3 \to \mathbb{R}^9$) + 9 multiplications + 8 additions (inner product) = 35 operations

Kernel Trick Example

Example for $K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z})^2$ using the kernel trick:

$$\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_1 \\ z_1 \end{bmatrix}\right)^2 = (x_1z_1 + x_2z_2 + x_3z_3)^2$$

- \Rightarrow 3 multiplications + 2 additions + 1 multiplication ((·)²) = 6 exerctions
- = 6 operations

Kernel Trick in the SVM

Where the kernel trick is used in the SVM:

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \vec{x_i \cdot \vec{x_j}}$$

²must fulfill the Mercer theorem

³also called Gaussian kernel

Kernel Trick in the SVM

Where the kernel trick is used in the SVM:

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \left[\vec{x_i} \cdot \vec{x_j} \right]$$

Note: not all functions $\phi : \mathbb{R}^n \to \mathbb{R}^m, (n, m) \in \mathbb{R}$ are valid kernel functions².

²must fulfill the Mercer theorem

³also called Gaussian kernel

Kernel Trick in the SVM

Where the kernel trick is used in the SVM:

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \left[\vec{x_i} \cdot \vec{x_j} \right]$$

Note: not all functions $\phi: \mathbb{R}^n \to \mathbb{R}^m, (n, m) \in \mathbb{R}$ are valid kernel functions².

Popular kernel functions are:

- inner product: $K(\vec{x}, \vec{z}) = \vec{x} \cdot \vec{z}$
- degree-d polynomial: $K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z} + c)^d, c \ge 0$

²must fulfill the Mercer theorem

³also called Gaussian kernel

Kernel Trick in the SVM

Where the kernel trick is used in the SVM:

$$W(\vec{\alpha}) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j}^{m} \alpha_i \alpha_j y_i y_j \left[\vec{x_i} \cdot \vec{x_j} \right]$$

Note: not all functions $\phi: \mathbb{R}^n \to \mathbb{R}^m, (n, m) \in \mathbb{R}$ are valid kernel functions².

Popular kernel functions are:

- inner product: $K(\vec{x}, \vec{z}) = \vec{x} \cdot \vec{z}$
- degree-d polynomial: $K(\vec{x}, \vec{z}) = (\vec{x} \cdot \vec{z} + c)^d, c \ge 0$
- Gaussian radial basis function³: $K(\vec{x}, \vec{z}) = \exp(-\frac{\|\vec{x} \vec{z}\|^2}{2\sigma^2})$

²must fulfill the Mercer theorem

³also called Gaussian kernel

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Duality of feature and hypothesis space

Points in the feature space correspond to hyperplanes in the hypothesis space and vice versa ("Statistical Learning Theory", Vapnik, 1998).

Duality of feature and hypothesis space

Points in the feature space correspond to hyperplanes in the hypothesis space and vice versa ("Statistical Learning Theory", Vapnik, 1998).

Implications:

- the more data points, the more the hypothesis space will be constrained
- maximum margin search means searching for hyper planes with largest distance to data points ⇒ center point of hyper sphere

 during the saddle point search in the SVM (Lagrange optimization) more and more data samples are considered

- during the saddle point search in the SVM (Lagrange optimization) more and more data samples are considered
- this successively constrains the hypothesis search space

- during the saddle point search in the SVM (Lagrange optimization) more and more data samples are considered
- this successively constrains the hypothesis search space
- then, the best hyper plane with the smallest empirical error is chosen (center point of hyper sphere)

- during the saddle point search in the SVM (Lagrange optimization) more and more data samples are considered
- this successively constrains the hypothesis search space
- then, the best hyper plane with the smallest empirical error is chosen (center point of hyper sphere)
- recall from concept learning lecture: this is **Structural Risk** Minimization e.g. ... $H_3 \subset H_2 \subset H_1$

Table of Contents

1 Support Vector Machines

- Introduction
- Linear Maximum Margin Classifier
- Non-linear separable data
- Non-linear Maximum Margin Classifier: Soft Margin
- Non-linear Maximum Margin Classifier: Kernel Method
- Structural Risk Minimization
- Evaluation

Advantages

- SVM optimization problem is convex (no local minima)
- can handle high-dimensional data well
- fast test time execution (usually few $\alpha_i > 0 \Rightarrow$ few inner products, if linear SVM: \vec{w} can always be pre-computed [use eq. 2], if non-linear SVM: no pre-computation of \vec{w} guaranteed [e.g. Gaussian kernel] but computing inner products between support vector train samples and a new sample is still relatively cheap)

Advantages

- SVM optimization problem is convex (no local minima)
- can handle high-dimensional data well
- fast test time execution (usually few $\alpha_i > 0 \Rightarrow$ few inner products, if linear SVM: \vec{w} can always be pre-computed [use eq. 2], if non-linear SVM: no pre-computation of \vec{w} guaranteed [e.g. Gaussian kernel] but computing inner products between support vector train samples and a new sample is still relatively cheap)

Disadvantages

- data samples have to be stored (space complexity not negligible, however, SVM is still not a lazy-learner since it learns a decision boundary ⇒ eager-learner)
- number of support vectors depend on problem
- no pre-processing of the data in the SVM approach included
- finding optimal kernel can be tedious

Reading Assignment

Use the Internet to gain knowledge about the following topics:

- multi-class SVM (one-vs-all and one-vs-one)
- where the kernel trick is further applied (in addition to the SVM)