Distribution	Parameters	PMF/PDF	$\operatorname{Support}$	Expected Value	Variance	\mathbf{MGF}
Bernoulli Bern (p)	0 $q = 1 - p$	$P(X=k) = p^k q^{1-k}$	$k \in \{0,1\}$	p	pq	$q + pe^t$
Binomial $Bin(n, p)$	$0 n \in 1, 2 \dots$	$P(X = k) = \binom{n}{k} p^k q^{n-k}$	$k \in \{0, 1, \dots n\}$	np	npq	$(q+pe^t)^n$
$\begin{array}{c} \text{Geometric} \\ \text{Geom}(p) \end{array}$	0 $q = 1 - p$	$P(X=k) = q^k p$	$k \in \{0, 1, \dots\}$	q/p	q/p^2	$\frac{p}{1-qe^t}, qe^t < 1$
First Success $FS(p)$	0 $q = 1 - p$	$P(X=k) = q^{k-1}p$	$k \in \{1, 2, \dots\}$	1/p	q/p^2	$\frac{pe^t}{1-qe^t}, qe^t < 1$
Neg. Binomial $NBin(r, p)$	$ \begin{array}{l} r > 0 \\ 0$	$P(X = k) = \binom{k+r-1}{r-1} p^r q^k$	$k \in \{0, 1, \dots\}$	rq/p	rq/p^2	$\left(\frac{p}{1-qe^t}\right)^r, qe^t < 1$
Hypergeometric $HGeom(w, b, n)$	$w, b \in \{1, 2, \ldots\}$ $n \in \{1, 2, \ldots\}$	$P(X = k) = {w \choose k} {b \choose n-k} / {w+b \choose n}$	$k \in \{0, 1, \dots, n\}$	$\mu = \frac{nw}{b+w}$	$\left(\frac{w+b-n}{w+b-1}\right)n\frac{\mu}{n}(1-\frac{\mu}{n})$	messy
$\begin{array}{c} \text{Poisson} \\ \text{Pois}(\lambda) \end{array}$	$\lambda > 0$	$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$	$k \in \{0, 1, \dots\}$	λ	λ	$e^{\lambda(e^t-1)}$
Uniform Unif (a,b)	a < b	$f(x) = \frac{1}{b-a}$	$x \in (a, b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
$\begin{array}{c} \text{Normal} \\ \mathcal{N}(\mu, \sigma^2) \end{array}$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	$x \in (-\infty, \infty)$	μ	σ^2	$e^{t\mu + \frac{\sigma^2 t^2}{2}}$
Exponential $\operatorname{Expo}(\lambda)$	$\lambda > 0$	$f(x) = \lambda e^{-\lambda x}$ $F(x) = 1 - e^{-\lambda x}$	$x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}, \ t < \lambda$
$\begin{array}{c} \operatorname{Gamma} \\ \operatorname{Gamma}(a,\lambda) \end{array}$	$\begin{array}{l} a > 0 \\ \lambda > 0 \end{array}$	$f(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}$	$x \in (0, \infty)$	$rac{a}{\lambda}$	$rac{a}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^a, t < \lambda$
$\begin{array}{c} \operatorname{Beta} \\ \operatorname{Beta}(a,b) \end{array}$	a > 0 $b > 0$	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$x \in (0,1)$	$\mu = \frac{a}{a+b}$	$\frac{\mu(1-\mu)}{(a+b+1)}$	messy
Log-Normal $\mathcal{LN}(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-(\log x - \mu)^2/(2\sigma^2)}$	$x \in (0, \infty)$	$\theta = e^{\mu + \sigma^2/2}$	$\theta^2(e^{\sigma^2}-1)$	doesn't exist