

CMPS 460 – Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by. WittySparks.com | Image source: Pixabay.com

5.b

Practical Issues: Evaluation

Sec 5.5-5.6

Performance Evaluation

Example

Performance Evaluation

What fraction of the examples are classified correctly?

$$Acc = ?$$

= 9/10

- $Acc(M_1) = ?$
- Acc(M₂) = ?

 M_2

What's the problem?

Problem with Accuracy?

- Imbalanced data (distribution of classes)!
- Some errors matter more than others ...
 - Given medical record, predict patient has COVID or not
 - Given an email, detect spam
- When classes are highly unbalanced, we focus on one <u>target class</u> (usually the rare class), denoted as the "positive" class.

Precision/Recall/F1 for the target class (positive)

positive

Precision

What fraction of those predicted as positive are actually positive?

$$P = \frac{TP}{TP + FP}$$

negative

$$P(M_1) =$$

$$P(M_2) =$$

Precision: % of positive predictions that are correct

positive

Recall

What fraction of the actual positive examples are predicted as positive?

$$R = \frac{TP}{TP + FN}$$

$$R(M_1) =$$

$$R(M_2) =$$

Recall: % of gold positive examples that are found

Trade-off between P & R

Example

Test example	Spam score	
email #25	0.94	
email #37	0.89	
email #2	0.76	
email #15	0.73	P=0.67, R=0.2
email #116	0.61	
 email #64	0.54	
email #7	0.42	P=0.5, R=0.3
email #38	0.24	
email #10	0.16	
email #25	0.13	P=0.34, R=0.9
email #168	0.02	

CMPS 460: Machine Learning

A Combined Measure: F-measure

• F_1 measure

$$F_1 = \frac{2 * P * R}{P + R}$$

Harmonic mean of P and R

Why?

Weighted F measure

$$F_{\beta} = \frac{(\beta^2 + 1) * P * R}{\beta^2 * P + R}$$

	M ₁	M ₂
Precision	?	?
Recall	?	?
F1	?	?

	M_1	M ₂
Precision	1/3 = 0.33	0/1 = 0
Recall	1/2 = 0.5	0/2 = 0
F1	0.4	0

Accuracy = ?

$$=(3+3+1)/10=0.7$$

What's the problem?

• Good measure when classes are nearly balanced!

Predicted

Actual

Predicted

3 0 1 0 3 1

Р		
R		
F1		

ctua

Predicted

3	0	1
0	3	1
1	0	1

P	0.75	1	0.333
R	0.75	0.75	0.5
F1	0.75	0.86	0.4

Macro-F1 = (0.75+0.86+0.4)/3 = 0.67