Puissance, Travail et Energie

Travail d'une force, puissance

1. Formules

 $\begin{aligned} \mathcal{P}(t) &= \vec{f}(t) \cdot \vec{v}(t) \\ \mathcal{P} &= \frac{\delta W}{dt} \\ \delta W &= \vec{f} \cdot d \overrightarrow{OM} \end{aligned}$ $W_{A\to B}(\vec{f}) = \int_{A\to B} \vec{f} \cdot d\overrightarrow{OM}$

 \mathcal{P} (W) : puissance \vec{f} (N) : force étudié \vec{v} (m.s⁻¹) : vitesse du solide étudié

 δW (J) : travail élémentaire entre t et t+dt W (J) : travail

2. Cas particuliers

Force	Expression	Travail
Force constante	$\vec{F} = \overrightarrow{cst}$	$W_{A o B}(ec F) = ec F \cdot \overrightarrow{AB}$
Force de frottement constante	$\ \overrightarrow{R_T}\ = cst$	$W_{A \to B} \left(\overrightarrow{R_T} \right) = -R_T \widehat{AB}$
Force élastique	$\vec{T} = -k(x - l_0)\overrightarrow{u_x}$	$W_{A\to B}(\vec{T}) = -\frac{k}{2}[(l_B - l_0)^2 - (l_A - l_0)^2]$

Formules d'énergies cinétique, potentielle et mécanique II.

 \vec{F} : résultante des forces $\vec{f_c}$: forces conservatives $\vec{f_{nc}}$: forces non conservatives

	Définition	Théorème de l'énergie	Puissance
$\mathcal{E}_{\mathcal{C}}$	$\mathcal{E}_C = \frac{1}{2}mv^2$	$\mathcal{E}_C(B) - \mathcal{E}_C(A) = W_{A \to B}(\vec{F})$	$\frac{d\mathcal{E}_{\mathcal{C}}}{dt} = \mathcal{P}(\vec{F})$
\mathcal{E}_{P}	$\overrightarrow{f_c} = -\overrightarrow{\operatorname{grad}}(\mathcal{E}_P)$	$\mathcal{E}_P(B) - \mathcal{E}_P(A) = -W_{A \to B}(\overrightarrow{f_c})$	$\frac{d\mathcal{E}_P}{dt} = -\mathcal{P}(\overrightarrow{f_c})$
\mathcal{E}_{M}	$\mathcal{E}_M = \mathcal{E}_C + \mathcal{E}_P$	$\mathcal{E}_M(B) - \mathcal{E}_M(A) = W_{A \to B}(\overrightarrow{f_{nc}})$	$\frac{d\mathcal{E}_{M}}{dt} = \mathcal{P}(\overrightarrow{f_{nc}})$

III. Compléments

1. Force conservative et énergies potentielles

Une force est conservative si son travail ne dépend pas du chemin suivi. Alors, elle dérive d'une énergie potentielle.

$$\overrightarrow{\text{grad}} \, \mathcal{E}_P = \frac{\partial \mathcal{E}_P}{\partial x} \overrightarrow{u_x} + \frac{\partial \mathcal{E}_P}{\partial y} \overrightarrow{u_y} + \frac{\partial \mathcal{E}_P}{\partial z} \overrightarrow{u_z}$$

$$\boxed{\mathcal{E}_{P_P} = mgz}$$

$$\mathcal{E}_{P_E} = \frac{1}{2} k (l - l_0)^2$$

Conservation de l'énergie mécanique

Si seules les forces conservatives travaillent, il y a conservation de l'énergie mécanique.

IV. Etude d'un mouvement unidirectionnel

Etat de diffusion : La particule sort du champ de force et peut s'échapper à l'infini

v2

La particule est prisonnière du champ de force <u>Etat lié :</u>

Minimums de $\mathcal{E}_P \Leftrightarrow \frac{d^2 \mathcal{E}_P}{dt^2} > 0$ Maximums de $\mathcal{E}_P \Leftrightarrow \frac{d^2 \mathcal{E}_P}{dt^2} < 0$ Position d'équilibre stable :

Position d'équilibre instable :