TEAM 디비디비딥! (DBDB deeplearning)

mini project 머신러닝을 이용한 당뇨예측

INDEX

팀소개	담당 파트 소개
■ 사전 학습	도메인 사전조사
■ 개요	분석방향 설정, 데이터셋 확인
■ 데이터분석	사전 데이터 분석, 변수 선정
■ 머신러닝	데이터 전처리, 모델학습
■ 결과	학습결과 확인 및 웹 시뮬레이션

깃허브 및 공동작업 플랫폼 활용하여 협업.

01

조서현

- 도메인 사전조사
- 사전 분석 및 시각화

02

이수현

- 데이터 전처리
- 머신러닝 모델 학습

03

김유진

- 머신러닝 모델 웹 적용
- 웹 설문작성 및 시각화

project Summary

Index_프로젝트 방향

Index_사용데이터

- 사용 데이터
 - [National Health Interview Survey 2018 Data Release] https://www.cdc.gov/nchs/nhis_2018_data_release.htm
 - Sample Adult file : samadult.csv 사용
- 데이터 분석 캡쳐

df_a =	<pre>import pandas as pd df_a = pd.read_csv('samadult.csv') df_a = df_a[['SEX','AGE_P','R_MARITL','DIBEV1','HYPEV','PREGNOW','DEP_2','BMI',</pre>										
df_a											
	SEX	AGE_P	R_MARITL	DIBEV1	HYPEV	PREGNOW	DEP_2	BMI	AFLHCA18	AFLHCA18	
0	2	79	4	1	1	NaN	2	2358	2.0	2.0	
1	1	37	1	2	2	NaN	2	3279	NaN	NaN	
2	1	29	1	2	2	NaN	2	4363	NaN	NaN	
3	1	75	4	2	1	NaN	2	2229	2.0	2.0	
4	1	39	1	2	2	NaN	2	2372	2.0	2.0	
25412	2	19	7	2	2	2.0	2	2090	NaN	NaN	
25413	2	49	7	2	1	2.0	8	2745	2.0	2.0	
25414	2	40	7	2	1	2.0	2	2585	2.0	2.0	
25415	2	61	1	2	2	NaN	2	2663	2.0	2.0	
25416	2	70	5	1	1	NaN	2	2495	2.0	2.0	
25417 rd	25417 rows × 21 columns										

Index_사전데이터분석

• 먼저 분석할 컬럼을 추려내기 위한 시각화 하기 전 결측치(Nan) 값을 fillna()함수를 사용 → 0 값으로 대체

df.isnull().sum()						
FPX	0					
FMX	0					
HHX	0					
INTV_QRT	0					
WTIA_SA	0					
RCS_AFD	0					
PAIN_2A	0					
ANX_3R	9582					
DEP_3R	14683					
COGCAUS2	20457					
Length: 742	2, dtype:	int64				


```
df.fillna(0, inplace=True)
df.isnull().sum()
FPX
FMX
HHX
INTV_QRT
WTIA_SA
RCS_AFD
PAIN_2A
ANX_3R
DEP_3R
COGCAUS2
Length: 742, dtype: int64
```


Index_사전데이터분석

• BMI

△ 당뇨병 환자 BMI 그래프

△ 비 당뇨병 환자 BMI 그래프

당뇨병 환자들 경우 비 당뇨병 환자 BMI 보다 과체중에서 비만 빈도가 높을 것을 보아 BMI가 높을 수록 당뇨 발생이 높은 걸 볼 수 있음

project Summary

체중과 관련 있는 컬럼인 체중관리, BMI, 음주, 고지혈증, 신체활동빈도, 약물

Index_사전데이터분석

• 임신 당뇨병

호르몬 및 체중 변화 체지방 증가 ↑

인슐린 분비 충분 x

임신 당뇨병 발생

임신 당뇨병이 있었던 여성은 임신 때 제발 위험이 50%정도로 추산됨

[질병관리청 국민건강포털]

https://health.kdca.go.kr/healthinfo/biz/health/gnrlzHealthInfo/gnrlzHealthInfo/gnrlzHealthInfo/gnrlzHealthInfoView.do?cntnts_sn=5271

project Summary

Index_세부요건분석

환경 생활 요인에 따라 당뇨 발병률에 영향을 줄 것이라 판단. 성별, 연령 등 인구통계학적 요인 포함한 환경 요인별 당뇨 예측을 진행

1	DIBEV1	Everbeen told that you have diabetes	당뇨유무
2	HYPEV	Everbeen told you have hypertension	고혈압유무
3	PREGNOW	Currently pregnant	현재 임신여부
4	AFLHCA17	Depression/anxiety/emotional problem causes difficulty with a	우울증 여부
5	AFLHCA18	Weight problem causes difficulty with activity	체중문제
6	BMI	BMI	체질량지수
7	AFLHC29_	Alcohol/drug/substance abuse problem causes difficulty with	알콜 및 약물 남용
8	AFLHC31_	Surgical after-effects/medical treatment causes difficulty with	수술 후유증
9	AFLHC32_	"Old age"/elderly/aging-related problem causes difficulty with	신체노화
10	AFLHC33_	Fatigue/tiredness/weakness causes difficulty with activity	피로무기력증
11	SMKEV	Eversmoked 100 cigarettes	흡연유무
12	ALC1YR	Everhad 12+ drinks in any one year	1년내 음주경험
13	CHLEV	Evertold you had high cholesterol	고지혈증없음
14	VIGNO	Freq vigorous activity:# of units	신체활동빈도
15	AUSUALPL	Place USUALLY go when sick	보통 아플 때 가는 곳
16	ASICNHC	How worried are you aboutmedical costs of healthcare	의료비지출에 대한 인식
17	HIT1A	Looked up health information on Internet, past 12 m	인터넷 건강정보 검색유무 1년내
18	SEX	SEX	sex
19	R_MARITL	R_MARITL	결혼여부
20	AGE_P	AGE_P	나이
21	ACPTCHLD	Number of children in HH that responded	응답한 가구 내 아동의 수는 몇 명?
22	ACPT_PER	Number of persons in HH responding	응답한 가구 내 사람의 수는 몇 명?
23	FSBALANC	Could not afford to eat balanced meals	균형 잡힌 식사를 할 여유가 없었습니다

분석 라이브러리

분석 라이브러리

import pandas

import numpy

import sklearn

import streamlit

import joblib

기본 데이터프레임 생성

```
df_adu = pd.read_csv('samadult.csv')

df_family = pd.read_csv('familyxx.csv')

df_household = pd.read_csv('househld.csv', index_col='HHX')

# df_adu와 df_family를 HHX와 FMX 기준으로 inner join

merged_df = pd.merge(df_adu, df_family, how='inner', on=['HHX', 'FMX'])

# df_household와 merged_df를 HHX 기준으로 inner join

df = pd.merge(df_household, merged_df, how='inner', on='HHX')

df_col = pd.read_excel('문석변수_총정리.xls')

col = df_col['Unnamed: 0'].tolist()

col = [i.replace(' ','') for i in col]

df = df[col]

col_list = df_col['Unnamed: 2'].tolist()

df.columns = col_list
```

	당뇨 유무	고혈압 유무	현재 임신 여부	우울증 여부	체중문 제	체질량지 수	알콜 및 약물 남용	수술 후 유증	신체노 화
0	1	1	NaN	2.0	2.0	2358	2.0	2.0	2.0
1	2	2	NaN	NaN	NaN	3279	NaN	NaN	NaN
2	2	2	NaN	NaN	NaN	4363	NaN	NaN	NaN
3	2	1	NaN	1.0	2.0	2229	2.0	2.0	2.0
4	2	2	NaN	2.0	2.0	2372	2.0	2.0	2.0

답변1/2로정형화

```
df = df[~df['冒뇨유무'].isin([3, 7, 9])]
df.fillna(0, inplace=True)
# 용답거부, 모품 등등을 0으로 처리
col_exclude = ['채질량지수', '나이', '결혼여부']
for column in df.columns:
   if column not in col exclude:
      df.loc[df[column].isin([3, 7, 8, 9, 996,997,998,999]), column] = 0
# bmi가 7000 넘는데 당뇨가 아님, 무조건 잘못기입한 자료일것
df.loc[df['체질량지수'] >= 7000, '체질량지수'] = 0
# bmi가 4000 널는데 당뇨가 아닐 김 없음
df.loc[df['체질량지수'] >= 4000, '당뇨유무'] = 1
# 신체활동반도가 10이상 50미만일 때는 한달 기준으로 기입한 것으로 가전 -> /4 , 50이상일 때는 1년 기준으로 기입한 것으로 가전 -> /48
df['신체활동빈도'] = df['신체활동빈도'].apply(lambda x: round(x / 4) if 10 <= x < 50 else round(x / 48) if x >= 50 else x)
# 걱정됨->1, 걱정되지않음->2
df.loc[df['의료비지출에 대한 인식'].isin([1,2]), '의료비지출에 대한 인식']= 1
df.loc[df['의료비지출에 대한 인식'].isin([3,4]), '의료비지출에 대한 인식']= 2
# 결혼 합->1 , 결혼 안함->2
df.loc[df['결혼여부'].isin([1,2,3]), '결혼여부']= 1
df.loc[df['결혼여부'].isin([4,5,6,7,8,9]), '결혼여부']= 2
```

컬럼명 정리

	당노 유무	체질량 지수	신체활 동변도	버어	응답한 가구 내 아동의 수는 및 명?	응답한 가구 내 사람의 수는 및 명?	고혈압유 무 yes	고혈압유 무_no	현재 임신 여부 yes	현재 임신 여부_no
0	- 1	2358	0	79	0.0	1.0	True	False	False	False
2	1	4363	4	29	1.0	0.0	False	Tirue	False	False
10	1	2616	2	68	0.0	2.0	True	False	False	False
11	1	2080	0	76	0.0	1.0	True	False	False	False
20	1	3905	0	61	0.0	1.0	True	False	False	False

project Summary

스케일링 및 데이터 scv 저장

```
# 2 - 전 2 2 2 2 2 3 2 3 3 3 4 2 4 3 4 5 2 2 3 4 5 2 4 5 2 3 4 5 2 4 5 2 3 4 5 2 4 5 2 3 4 5 2 4 5 2 3 4 5 2 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4
```

	당뇨 유무	체질량 지수	신체활 동빈도	나 이	응답한 가구 내 아동의 수는 몇 명?	응답한 가구 내 사람의 수는 몇 명?	고혈압유 무_ yes	고혈압유 무_ no	현재 임신 여부_yes	현재 임신 여부_ no
0	1	2358	0	79	0.0	1.0	True	False	False	False
2	1	4363	4	29	1.0	0.0	False	True	False	False
10	1	2616	2	68	0.0	2.0	True	False	False	False
11	1	2080	0	76	0.0	1.0	True	False	False	False
20	1	3905	0	61	0.0	1.0	True	False	False	False

머신러닝 GSCV 파라미터

```
# 서포트 벡터 머신에 대한 그리드 서치 파라미터
svc params = {
    'C': [0.1, 1, 10, 100],
    'kernel': ['linear', 'rbf', 'poly'],
    'gamma': ['auto', 0.1, 1, 10],
    'max iter': [1000, 2000, 3000]
# Decision Tree에 대한 그리드 서치 파라미터
dt params = {
    'criterion': ['gini', 'entropy'],
    'splitter': ['best', 'random'],
    'max depth': [None, 10, 20, 30],
    'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4],
# K-최근점 이웃에 대한 그리드 서치 파라미터
knn params = {
   'n_neighbors': [3, 5, 7, 10, 15, 20, 25],
   'weights': ['uniform', 'distance'],
   'algorithm': ['auto', 'ball tree', 'kd tree', 'brute']
```

```
# Adaboost에 대한 그리드 서치 파라미터
adaboost params = {
    'n estimators': [50, 100, 200],
    'learning rate': [0.01, 0.1, 0.2],
    'base estimator': [
       DecisionTreeClassifier(criterion='gini', max features=7, max depth=1),
       DecisionTreeClassifier(criterion='gini', max features=7, max depth=2),
       DecisionTreeClassifier(criterion='entropy', max features=7, max depth=1),
       DecisionTreeClassifier(criterion='entropy', max features=7, max depth=2),
       DecisionTreeClassifier(criterion='gini', max features=8, max depth=1),
       DecisionTreeClassifier(criterion='gini', max features=8, max depth=2),
       DecisionTreeClassifier(criterion='entropy', max features=8, max depth=1),
       DecisionTreeClassifier(criterion='entropy', max features=8, max depth=2)
   ],
# Naive Bayes에 대한 그리드 서치 파라미터
nb params = {
     'var smoothing': [1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3]
```

```
# XGBoost # CHE JUE AT BUBBLE

xgb_params = {
    'learning_rate': [0.01, 0.1, 0.2],
    'n_estimators': [50, 100, 200],
    'max_depth': [3, 4, 5],
    'min_child_weight': [1, 2, 3],
    'gamma': [0, 1, 5],
    'subsample': [0.8, 0.9, 1.0],
    'colsample_bytree': [0.8, 0.9, 1.0],
    'n_jobs': [-1]
}
```

머신러닝기본틀

```
# 각 데이터프레일에 대해 Decision Tree 모델 확습과 평가
for i in range(1, 7):
           train csv path = f'train data {i}.csv'
           test_csv_path = f'test_data_{i}.csv'
          print(f"\n---- Training and Evaluating Decision Tree for {train_csv_path} ----")
          # CSV 파일을 데이터프레임으로 읽기
          df_train = pd.read_csv(train_csv_path)
          # X, y 설정
          y_train = df_train['당뇨유무']
          X train = df train.drop('당뇨유무', axis=1)
          # 대용하는 test 데이터셋
          df test = pd.read_csv(test_csv_path)
          X_test = df_test.drop('\sum \mathfrak{G} \ma
          y_test = df_test['당뇨유무']
          # Decision Tree에 대한 그리드 서치
          dt model = DecisionTreeClassifier()
          dt_gscv = GridSearchCV(dt_model, dt_params, cv=5, scoring='f1_macro')
          # 모델 학습
          dt_gscv.fit(X_train, y_train)
          # 21 # 29
          print(f"Decision Tree for {train_csv_path} - Best Parameters:", dt_gscv.best_params_)
          print(f"Decision Tree for {train csv path} - Best F1 Score:", dt gscv.best score )
           # 모델에 대한 분류 리포트 출력
          dt report = classification report(y test, dt gscv.predict(X test))
          print(f"Decision Tree Classification Report for {test_csv_path} (on Test Set):\n", dt_report)
```

Index_머신러닝

머신러닝 결과

Index_머신러닝

AdaBoost 최종 선택

```
# AdaBoost 모델 생성
adaboost_model = AdaBoostClassifier(
   base_estimator=DecisionTreeClassifier(criterion='entropy', max_depth=1, max_features=8),
   learning_rate=0.1,
   n_estimators=100
)
```

```
# 각 데이터프레임에 대해 Adaboost 모델 학습과 평가
while os.path.exists(train_csv_path) and os.path.exists(test_csv_path):
   print(f"\n---- Training and Evaluating Adaboost for {train csv path} ----")
   # CSV 파일을 데이터프레임으로 읽기
   df_train = pd.read_csv(train_csv_path)
   # X, y 설정
   y_train = df_train['당뇨유무']
   X train = df train.drop('당뇨유무', axis=1)
   # 대응하는 test 데이터셋
   df_test = pd.read_csv(test_csv_path)
   X_test = df_test.drop('당뇨유무', axis=1)
   y test = df test['당뇨유무']
   # 모델 학습
   adaboost model.fit(X train, y train)
   # 모델에 대한 평가
   y_pred = adaboost_model.predict(X_test)
   accuracy = accuracy_score(y_test, y_pred)
   print(f'{i}번째 {accuracy}')
   # 모델이 이전에 저장한 모델보다 더 나은 경우 갱신
   if (accuracy > best_accuracy) and (len(df_train) >= best_length):
       best_accuracy = accuracy
       best_model = adaboost_model
       best length = len(df train)
       print(f"Best Model Updated! Accuracy: {best accuracy}")
   i += 1
   train_csv_path = f'train_data {i}.csv'
   test csv path = f'test data {i}.csv'
if best model is not None:
   # 저장된 최적의 모델을 파일로 저장
   joblib.dump(best_model, 'ada_best_model.pkl')
   print("Best Model Saved Successfully!")
   print(best_accuracy)
else:
   print("No models met the criteria for saving.")
```

상위 10개 특성 중요도

AdaBoost 성능평가 그래프

Calibration curve

Calibration 모델 변경 후 Confusion Matrix

Calibration 모델 변경 후 ROC 그래프

Calibration 모델 변경 후 Precision-Recall

Calibration 모델 변경 후 Cumulative Gains Curve

Index_머신러닝 시뮬레이션

NHIS 2018 데이터와 유사한 데이터 확보를 위해 웹 설문 진행

• 본설문문항

("고혈압 진단을 받은 적이 있으십니까?", ["예(1)", "아니오(2)"]), ("현재 임신 중이십니까?", ["예(1)", "아니오(2)"]), ("우울증 진단을 받은 적이 있으십니까?", ["예(1)", "아니오(2)"]), ("활동에 영향을 줄 정도의 과체중이십니까?", ["예(1)", "아니오(2)"]), ("알콜 중독이나 약물 중독 경험이 있으십니까?", ["예(1)", "아니오(2)"]), ("수술 후유증을 경험한 적이 있으십니까?", ["예(1)", "아니오(2)"]), ("신체 노화를 체감하십니까?", ["예(1)", "아니오(2)"]), ("쉽게 피로해지고 피곤을 잘 느끼시나요?", ["예(1)", "아니오(2)"]), ("흡연을 하십니까?", ["예(1)", "아니오(2)"]), ("음주를 하십니까?", ["예(1)", "아니오(2)"]), ("고지혈증 진단을 받은 적이 있으십니까?", ["예(1)", "아니오(2)"]), ("몸이 아플 때 병원이나 약국을 가는 편이십니까?", ["예(1)", "아니오(2)"]), ("의료비를 지출에 경제적인 부담을 느끼십니까?", ["예(1)", "아니오(2)"]), ("인터넷 등 의료 정보를 획득하기 위한 활동을 자주 하시나요?", ["예(1)", "아니오(2)"]), ("균형잡힌 식사를 하시는 편인가요?", ["예(1)", "아니오(2)"]), ("결혼여부", ["예(1)", "아니오(2)"])

• 설문하러 가기

Appendix_향후 개선방향

- 데이터 셋	당뇨 발병 주요 요인에 대한 변수 부족, 정확한 예측 어려움
- 모델관련	Calibration 모델로 변경 하였으나 F1점수, 정확도 등등 모든 지표가 오히려 변경 전보다 안 좋아짐. 원인 찾아야 됨
■ 적용관련	웹이나 애플리케이션으로 배포하여 실제 활용도 높임

TEAM: 디비디비딥! DBDBdeep

Thank you

※ 프로젝트 관련 질문은 Slack message 로 보내주시기 바랍니다.