Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Daniel Malinowski

Nr albumu: 292680

Metody dowodzenia prostoty grup

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem dra hab. Zbigniewa Marciniaka Instytut Matematyki

Czerwiec 2013

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

TODO

Słowa kluczowe

grupa prosta, grupa alternująca, specjalna rzutowa grupa liniowa, lemat Iwasawy

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.1 Matematyka

Klasyfikacja tematyczna

20. Group theory and generalizations

Tytuł pracy w języku angielskim

Methods of proving the simplicity of groups

Spis treści

W	prow	vadzenie
1.	Wia	domości wstępne
		Oznaczenia
		Grupy proste
	1.3.	Twierdzenia o izomorfizmie
	1.4.	Komutant i abelianizacja
		Działanie grupy na zbiorze
2.	Pro	stota grupy alternującej A_n
	2.1.	Przypomnienie wiadomości o S_n oraz A_n
	2.2.	Klasy sprzężoności S_n i A_n
	2.3.	Prostota A_n
3.	Len	nat Iwasawy
	3.1.	Prymitywne działanie grupy
	3.2.	Lemat Iwasawy
4.	Pro	stota specjalnej rzutowej grupy liniowej $PSL_n(k)$
	4.1.	Grupy liniowe
		Prostota $PSL_n(k)$
		4.2.1. Dodatkowe informacje o grupach $PSL_n(k)$ oraz lemacie Iwasawy 2
Ri	hling	rrafia

Wprowadzenie

TODO

Rozdział 1

Wiadomości wstępne

Rozdział ten zawiera przypomnienie pewnych definicji, własności i twierdzeń omawianych na podstawowym kursie Algebry I oraz ustalenie oznaczeń.

1.1. Oznaczenia

W niniejszej pracy wielkimi literami alfabetu (np. G, H, K) będą oznaczane grupy. Ich elementy będą oznaczanie małymi literami alfabetu (np. g, h, k), przy czym przez e będzie zawsze oznaczany element neutralny. Rozważane grupy będą (w większości) nieprzemienne, w związku z tym będzie stosowany zapis multiplikatywny.

Jeżeli H oraz K są podzbiorami grupy G, to przez HK będzie oznaczany podzbiór iloczynów $\{h \cdot k : h \in H, k \in K\} \subseteq G$.

W związku z tym oznaczeniem warto przytoczyć twierdzenie:

Twierdzenie 1.1.1.

Jeżeli H oraz K są podgrupami grupy G, przy czym K jest podgrupą normalną, to HK jest podgrupą grupy G.

1.2. Grupy proste

Przypomnijmy teraz podstawową definicję w tej pracy.

Definicja 1.2.1. Nietrywialną grupę G nazwiemy grupą prostą, jeżeli nie ma ona podgrup normalnych różnych od $\{e\}$ oraz samej siebie.

Stwierdzenie 1.2.1. Jedynymi (z dokładnością do izomorfizmu) przemiennymi grupami prostymi są skończone grupy cykliczne, których rząd jest liczbą pierwszą.

Jest to prosta konsekwencja tego, że w grupach przemiennych wszystkie podgrupy są normalne oraz że każda inna grupa przemienna ma właściwą podgrupę cykliczną.

1.3. Twierdzenia o izomorfizmie

Przejdźmy teraz do podstawowych twierdzeń o izomorfizmie.

Twierdzenie 1.3.1 (Pierwsze twierdzenie o izomorfizmie – odsyłacz).

Niech $\varphi: G \to H$ będzie homomorfizmem grup. Oznaczmy $K = \ker \varphi$ oraz $H' = \operatorname{im} \varphi$. Wówczas ma miejsce izomorfizm

$$G/K \simeq H'$$
. \square

Twierdzenie 1.3.2 (Drugie twierdzenie o izomorfizmie – odsyłacz).

Niech G będzie grupą, H_1, H_2 jej podgrupami normalnymi, przy czym $H_2 \leq H_1$. Wówczas $H_2 \leq H_1$, $H_1/H_2 \leq G/H_2$ i ma miejsce izomorfizm

$$(G/H_2)/(H_1/H_2) \simeq G/H_1$$
. \square

Twierdzenie 1.3.3 (Trzecie twierdzenie o izomorfizmie – odsyłacz).

Niech G będzie grupą, H oraz H_1 – jej podgrupami, przy czym H_1 jest podgrupą normalną w G. Wówczas $H \cap H_1$ jest podgrupą normalną w H oraz ma miejsce izomorfizm

$$H/(H \cap H_1) \simeq HH_1/H_1$$
. \square

1.4. Komutant i abelianizacja

Poniżej przedstawionych jest kilka użytecznych wiadomości o komutancie.

Definicja 1.4.1. Niech G będzie dowolną grupą. Wówczas komutantem grupy G nazywamy podgrupę G generowaną przez wszystkie elementy postaci $aba^{-1}b^{-1}$, $gdzie\ a,b\in G$. Komutant grupy G oznaczamy przez [G,G].

Twierdzenie 1.4.1 (O komutancie – odsyłacz).

Komutant [G,G] jest podgrupą normalną G, przy czym grupa ilorazowa G/[G,G] jest grupą abelową. Ponadto dla dowolnej podgrupy normalnej $H \subseteq G$ takiej, że G/H jest abelowa, zachodzi $[G,G] \leqslant H$ \square .

Definicja 1.4.2. Przekształcenie kanoniczne $G \to G/[G,G]$ (rzutowanie na grupę ilorazową) nazywamy homomorfizmem abelianizacji, zaś grupę ilorazową G/[G,G] – abelianizacją grupy G.

W skrajnym przypadku abelianizacja grupy jest trywialna, co prowadzi do ważnego pojęcia grupy doskonałej:

Definicja 1.4.3. Grupą doskonałą nazwiemy dowolną grupę, która jest równa swojemu komutantowi.

Grupami doskonałymi zajmiemy się w dalszej części pracy – przy lemacie Iwasawy. Na razie zanotujmy prosty fakt:

Stwierdzenie 1.4.1. Nieprzemienne grupy proste są grupami doskonałymi.

1.5. Działanie grupy na zbiorze

Na koniec tego rozdziału przyjrzyjmy się użytecznej własności grup – możliwości działania na zbiorach.

Definicja 1.5.1. Niech G będzie grupą, a X – zbiorem. Mówimy, że ρ jest działaniem grupy G na zbiorze X, jeżeli każdemu elementowi $g \in G$ przyporządkowane jest przekształcenie $\rho_g: X \to X$, takie, że:

- $\rho_e = \mathrm{id}_X$,
- $\rho_g \circ \rho_h = \rho_{gh}$, dla dowolnych $g, h \in G$.

Jeżeli sposób działania (ρ) wynika z kontekstu, to zamiast $\rho_g(x)$ będziemy pisać x^g .

Zgrabniejszy opis działania grupy na zbiorze daje następne twierdzenie. Zanim jednak do niego przejdziemy, przypomnijmy jeszcze jedną definicję.

Definicja 1.5.2. Niech X będzie dowolnym zbiorem. Wówczas grupą symetrii zbioru X nazywamy zbiór bijekcji $X \to X$, wraz z operacją składania. Grupę tę oznaczamy S_X .

Twierdzenie 1.5.1 (O działaniu grupy na zbiorze).

Niech G będzie grupą, a X – zbiorem. Wówczas ρ jest działaniem G na X wtedy i tylko wtedy, gdy ρ jest homomorfizmem z G w grupę symetrii zbioru X. \square

Z działaniem grupy na zbiorze związane jest dużo ważnych definicji i twierdzeń. Poniżej przytoczone są te najistotniejsze z punktu widzenia tej pracy.

Definicja 1.5.3. Załóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x \in X$. Wówczas:

- a) Stabilizatorem punktu x (grupą izotropii x) nazwiemy zbiór elementów $\{g \in G: x^g = x\}$. Stabilizator punktu x oznaczamy G_x .
- b) Orbitą punktu x nazwiemy podzbiór X równy $\{y \in X: \exists_{g \in G} x^g = y\}$. Orbitę punktu x oznaczamy G(x).

Podstawowe własności tych obiektów przedstawia następujące stwierdzenie:

Stwierdzenie 1.5.1 (odsyłacz). Załóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x, y \in X$. Wówczas:

- a) G_x jest podgrupą G.
- b) G(x) i G(y) są równe lub rozłączne (orbity tworzą rozbicie zbioru X). \square

Zanim przejdziemy do ważniejszych twierdzeń opisujących orbity i stabilizatory, przypomnijmy wcześniej, jakie własności może mieć działanie grupy na zbiorze.

Definicja 1.5.4. Załóżmy, że ρ jest działaniem grupy G na zbiorze X.

- a) ρ jest działaniem tranzytywnym (przechodnim), jeżeli wszystkie elementy X tworzą jedną orbitę.
- b) ρ jest działaniem wiernym, jeżeli ρ jest iniekcją jako homomorfizm $G \to S_X$.
- c) ρ jest działaniem nietrywialnym, jeżeli ρ nie jest homomorfizmem stałym $G \to S_X$.

Jak to zostało wcześniej zapowiedziane, na koniec przytoczmy kilka ważnych twierdzeń pokazujących zależność między orbitami a stabilizatorami.

Twierdzenie 1.5.2. [odsyłacz]

Załóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x,y \in X$ należą do jednej orbity. Wówczas grupy G_x oraz G_y są sprzężone w grupie G.

Twierdzenie 1.5.3 (O orbitach i stabilizatorach). [odsyłacz]

 $Zal\acute{o}zmy$, $\dot{z}e\ \rho\ jest\ działaniem\ grupy\ G\ na\ zbiorze\ X\ oraz\ x\in X.\ W\acute{o}wczas\ |G(x)|=[G:G_x].$

Twierdzenie 1.5.4 (Równanie klas). /odsyłacz/

Przy założeniach z poprzedniego twierdzenia zachodzi

$$|X| = \sum_{i=1}^{k} [G:G_{x_i}],$$

gdzie x_1, x_2, \cdots, x_k są reprezentantami wszystkich orbit działania ρ .

Rozdział 2

Prostota grupy alternującej A_n

Zanim udowodnimy główną tezę tego rozdziału, czyli twierdzenie, że A_n jest grupą prostą dla $n \ge 5$, przypomnimy znane własności o tej grupie oraz udowodnimy kilka mniej znanych.

2.1. Przypomnienie wiadomości o S_n oraz A_n

W poprzednim rozdziale wprowadziliśmy definicję grupy S_X symetrii zbioru X. Ważnym przypadkiem szczególnym jest sytuacja, gdy X jest zbiorem skończonym o n elementach. Wówczas, jako że grupy symetrii zbiorów równolicznych są izomorficzne, grupę S_X będziemy oznaczać S_n i bez straty ogólności przyjmiemy, że jej elementami są permutacje zbioru $\{1, 2, \dots, n\}$.

Stwierdzenie 2.1.1. $Rzad\ grupy\ S_n\ wynosi\ n!$. \square

Ważnym sposobem przedstawienia elementów grupy S_n jest rozkład na cykle.

Definicja 2.1.1. Permutację $\sigma \in S_n$ nazwiemy cyklem długości k, jeżeli istnieją różne elementy $c_1, c_2, \ldots, c_k \in \{1, 2, \cdots, n\}$ takie, że

$$\sigma(x) = \begin{cases} c_{i+1}, & \text{je}\dot{z}eli \ x = c_i \\ c_1, & \text{je}\dot{z}eli \ x = c_k \\ x, & \text{w przeciwnym przypadku} \end{cases}$$

Cykle zapisujemy w postaci (c_1, c_2, \dots, c_k) . Oczywiście zapis cyklu nie jest jednoznaczny; następujące zapisy: $(c_1, c_2, \dots, c_k) = (c_k, c_1, c_2, \dots, c_{k-1}) = (c_2, c_3, \dots, c_k, c_1)$ reprezentują ten sam cykl.

Dla $\sigma \in S_n$ oraz $x \in \{1, 2, \dots, n\}$ zbiór $\{x, \sigma(x), \sigma^2(x), \dots\} \subseteq \{1, \dots, n\}$ jest skończony, zatem istnieją liczby $k < l \le n$ takie, że $\sigma^k(x) = \sigma^l(x)$, a stąd $\sigma^{l-k}(x) = x$. Jeśli d jest najmniejszą liczbą całkowitą dodatnią taką, że $\sigma^d(x) = x$, to mamy cykl $(x, \sigma(x), \dots, \sigma^{d-1}(x))$. Powtarzając tę procedurę z niewybranymi jeszcze elementami x, dostaniemy rozkład na cykle:

Twierdzenie 2.1.1.

Każdą permutację $\sigma \in S_n$ można przedstawić jako iloczyn rozlącznych cykli, czyli takich (c_1, c_2, \dots, c_k) , (d_1, d_2, \dots, d_l) , że $\{c_1, c_2, \dots, c_k\} \cap \{d_1, d_2, \dots, d_l\} = \emptyset$ przy czym każdy element ze zbioru $\{1, 2, \dots, n\}$ znajduje się w pewnym cyklu. Przedstawienie jest jednoznaczne z dokładnością do kolejności cykli.

Przejdźmy teraz do zdefiniowania podgrupy A_n grupy S_n . Załóżmy do końca tego rozdziału, że $n \ge 2$.

Definicja 2.1.2. Transpozycją nazwiemy dowolny cykl długości 2.

Transpozycję są cegiełkami, z których można budować permutacje, tzn.

Twierdzenie 2.1.2.

Każda permutacja jest iloczynem pewnej liczby transpozycji.

Rozkład permutacji na transpozycje nie musi być jednoznaczny. Np. (1,2)(2,4)(4,2) = (1,2) oraz (1,2)(2,3)(3,4)(4,1) = (4,2)(2,3). Jednoznaczna natomiast jest parzystość liczby transpozycji w rozkładzie.

Definicja 2.1.3. Permutację, którą można przedstawić w postaci iloczynu parzystej liczby transpozycji, nazwiemy permutacją parzystą, w przeciwnym przypadku – nieparzystą. Podgrupę wszystkich permutacji parzystych grupy S_n nazywamy grupą alternującą i oznaczamy A_n .

Poprawność definicji wynika z twierdzenia:

Twierdzenie 2.1.3. [odsyłacz]

Parzystość liczby transpozycji w rozkładzie permutacji na transpozycje nie zależy od rozkładu. Permutacje o parzystej liczbie transpozycji tworzą podgrupę normalną grupy S_n indeksu 2, czyli rzędu n!/2.

Warto tu jeszcze wspomnieć o tym, które cykle są permutacjami parzystymi, a które nie. Mianowicie, trochę wbrew swojej nazwie, cykle o długości nieparzystej są parzyste, a o długości parzystej – nieparzyste. Stąd prawdziwe jest:

Stwierdzenie 2.1.2. Permutacja $\sigma \in S_n$ jest parzysta wtedy i tylko wtedy, kiedy w rozkładzie na cykle zawiera parzysta liczbe cykli o parzystej długości. \square

2.2. Klasy sprzężoności S_n i A_n

W celu udowodnienia prostoty grupy A_n zbadamy klasy sprzężoności tej grupy. Najpierw zajmiemy się jednak prostszym problemem – klasami sprzężoności S_n .

Definicja 2.2.1. Typem cyklowym permutacji $\sigma \in S_n$ nazwiemy listę długości cykli występujących w σ , tzn. ciąg $(1^{i_1}, 2^{i_2}, \dots, n^{i_n})$, gdzie i_k to liczba cykli długości k w rozkładzie σ na cykle rozłączne.

W celu uproszczenia zapisu można omijać długości cykli, które nie występują w rozkładzie. Dla przykładu typem cyklowym transpozycji jest $(1^{n-2}, 2^1)$, a identyczności – (1^n) .

Okazuje się, że w grupie S_n typ cyklowy jednoznacznie wskazuje na klasę sprzężoności:

Twierdzenie 2.2.1.

Permutacje $\pi, \sigma \in S_n$ są sprzężone wtedy i tylko wtedy, gdy ich indeks cyklowy jest taki sam.

Dowód. [Wygląda na to, że stosuje Pan funkcje do argumentu od strony lewej do prawej, czyli działa grupą permutacji z prawej strony. Warto to chyba zapowiedzieć zaraz po definicji permutacji]

Niech $\lambda = (c_1, c_2, \dots, c_k)$ będzie cyklem w S_n , $c_{k+1} = c_1$ oraz $\gamma \in S_n$. Wówczas zachodzi $(\gamma^{-1}\lambda\gamma)(\gamma(c_i)) = (\lambda\gamma)(c_i) = \gamma(c_{i+1})$, a na pozostałych elementach $\gamma^{-1}\lambda\gamma$ jest stałe. atem $\gamma^{-1}(c_1, c_2, \dots, c_k)\gamma = (\gamma(c_1), \gamma(c_2), \dots, \gamma(c_k))$. Stąd również

$$\begin{split} \gamma \Big(c_1^1, c_2^1, \cdots, c_{k_1}^1\Big) \cdots \Big(c_1^m, c_2^m, \cdots, c_{k_m}^m\Big) \gamma^{-1} &= \\ &= \gamma \Big(c_1^1, c_2^1, \cdots, c_{k_1}^1\Big) \gamma^{-1} \gamma \cdots \gamma^{-1} \gamma \Big(c_1^m, c_2^m, \cdots, c_{k_m}^m\Big) \gamma^{-1} &= \\ &= \Big(\gamma (c_1^1), \gamma (c_2^1), \cdots, \gamma (c_{k_1}^1)\Big) \cdots \Big(\gamma (c_1^m), \gamma (c_2^m), \cdots, \gamma (c_{k_m}^m)\Big) \end{split}$$

Jeżeli cykle $\left(c_1^1,c_2^1,\cdots,c_{k_1}^1\right)\cdots\left(c_1^m,c_2^m,\cdots,c_{k_m}^m\right)$ były rozłączne, to również powstałe po sprzężeniu cykle są rozłączne. Jest ich tyle samo i mają te same długości, zatem rzeczywiście sprzężenie zachowuje typ permutacji.

Wystarczy jeszcze pokazać, że permutacje o tym samym typie są sprzężone. Niech $\pi = \left(c_1^1, c_2^1, \cdots, c_{k_1}^1\right) \cdots \left(c_1^m, c_2^m, \cdots, c_{k_m}^m\right)$ oraz $\sigma = \left(d_1^1, d_2^1, \cdots, d_{k_1}^1\right) \cdots \left(d_1^m, d_2^m, \cdots, d_{k_m}^m\right)$. Wówczas permutacja $\gamma \colon c_i^j \mapsto d_i^j$ jest taka, że $\gamma \pi \gamma^{-1} = \sigma$.

Klasy sprzężoności permutacji parzystych w S_n mogą rozpaść się na kilka mniejszych w A_n , gdyż $A_n \leq S_n$, czyli w A_n jest mniejszy wybór elementów, którymi możemy sprzęgać. Okazuje się, że rzeczywiście niektóre z tych klas rozpadają się na dwie:

Twierdzenie 2.2.2.

Typy cyklowe permutacji parzystych, które zawierają cykl o parzystej długości lub dwa cykle o tej samej nieparzystej długości (możliwe, że o długości 1) odpowiadają jednej klasie sprzężoności w A_n . Pozostałe typy permutacji parzystych odpowiadają dwóm równolicznym klasom sprzężoności w A_n .

Dowód. Zauważmy najpierw, że jeżeli $\sigma \in A_n$ jest centralizowane przez pewną nieparzystą permutację γ (tzn. $\sigma = \gamma \sigma \gamma^{-1}$), to σ jest sprzężona w A_n ze wszystkimi permutacjami o tym samym typie cyklowym. Jest tak dlatego, że z każdą taką permutacją ψ permutacja σ jest sprzężona w S_n przez pewną permutację π , tzn. $\psi = \pi \sigma \pi^{-1}$. Ale również $\psi = \pi \gamma \sigma \gamma^{-1} \pi^{-1} = (\pi \gamma) \sigma (\pi \gamma)^{-1}$. Jedna z permutacji π lub $\pi \gamma$ jest parzysta, więc rzeczywiście ψ oraz σ są sprzężone w A_n .

Jeżeli σ ma w rozkładzie na cykle rozłączne cykl parzystej długości λ , to jest przez niego centralizowana (a jest on nieparzysty), a jeżeli ma dwa cykle o tej samej nieparzystej długości (c_1, c_2, \cdots, c_m) oraz (d_1, d_2, \cdots, d_m) , to jest centralizowana przez nieparzystą permutację $(c_1, d_1)(c_2, d_2) \cdots (c_m, d_m)$, czyli rzeczywiście σ jest sprzężona ze wszystkimi elementami o tym samym typie cyklowym.

W przypadku, gdy σ nie jest centralizowana przez żadną nieparzystą permutację, to permutacje o tym samym typie cyklowym co σ rozpadają się na dwie klasy sprzężoności – $\{\lambda\sigma\lambda^{-1}:\lambda\in S_n\backslash A_n\}$ oraz $\{\pi\sigma\pi^{-1}:\pi\in A_n\}$. Są one równoliczne, gdyż są sprzężone w S_n .

Z takim przypadkiem mamy do czynienia, gdy σ w rozkładzie na cykle rozłączne ma tylko cykle o różnych nieparzystych długościach. Przy centralizowaniu każdy taki cykl musi przejść na cykl o tej samej długości, czyli na siebie. Ponadto pierwsze elementy z cykli muszą przejść na elementy ze swoich cykli, a obraz pozostałych elementów jest już przez to wyznaczony jednoznacznie. W związku z tym σ może być centralizowane tylko przez permutacje, które są równe iloczynowi potęg cykli z rozkładu σ , czyli tylko przez permutacje parzyste.

Zanim udowodnimy prostotę grup A_n pokażemy jeszcze dwa przydatne lematy.

Lemat 2.2.1. Dla $n \ge 5$ klasy sprzężoności elementów nietrywialnych A_n mają co najmniej n elementów.

Dowód. Niech $\sigma \in A_n$, $\sigma \neq id$. Oszacujmy ile permutacji ma ten sam typ cyklowy co σ .

Jeżeli σ zawiera cykl długości $\geqslant 3$, to samych permutacji o tym samym typie co σ , które w tym cyklu mają liczbę 1 jest co najmniej (n-1)(n-2), gdyż możemy wybrać na co przechodzi liczba 1 i na co przechodzi wybrana liczba. \leftarrow niejasne Stąd z poprzedniego twierdzenia w klasie sprzężoności σ jest co najmniej $\frac{(n-1)(n-2)}{2} \geqslant n$ elementów (bo $n \geqslant 5$).

W przeciwnym przypadku σ zawiera co najmniej dwa cykle długości 2. Analogicznie dostajemy, że samych permutacji o tym samym typie co σ , które w jednym z tych cykli mają liczbę 1, a w drugim liczbę 2 jest co najmniej (n-2)(n-3), więc z poprzedniego twierdzenia w tym przypadku również rozmiar klasy sprzężoności σ wynosi co najmniej $(n-2)(n-3) \geqslant n$.

Lemat 2.2.2. Cykle długości 3 generują całą grupę A_n .

Dowód. Każdą permutację $\sigma \in A_n$ można przedstawić w postaci iloczynu parzystej liczby transpozycji $\sigma = \lambda_1 \lambda_2 \cdots \lambda_{2m-1} \lambda_{2m} = (\lambda_1 \lambda_2) \cdots (\lambda_{2m-1} \lambda_{2m})$. Stąd wystarczy przedstawić iloczyn dwóch transpozycji $\lambda_1 \lambda_2$ jako iloczyn cykli długości 3, a dostaniemy tezę.

Jeżeli $\lambda_1 = \lambda_2$, to $\lambda_1 \lambda_2 = \text{id. Gdy } \lambda_1$ i λ_2 są rozłączne, czyli $\lambda_1 = (a, b)$, $\lambda_2 = (c, d)$, to $\lambda_1 \lambda_2 = (a, c, d)(a, c, b)$. Jeżeli natomiast λ_1 i λ_2 mają jeden element wspólny, czyli $\lambda_1 = (a, b)$, $\lambda_2 = (a, c)$, to $\lambda_1 \lambda_2 = (a, b, c)$.

2.3. Prostota A_n

Jesteśmy już gotowi, żeby udowodnić twierdzenie:

Twierdzenie 2.3.1 (O prostocie A_n).

Grupa alternująca A_n jest prosta dla $n \ge 5$.

Dowód. Dowód przeprowadzimy przez indukcję ze względu na n.

Pokażemy najpierw, że grupa A_5 jest prosta.

Na podstawie Stwierdzenia 2.1.2 wiemy, że elementy A_5 mają jeden z następujących typów cyklowych: $(1^5), (1^2, 3^1), (1^1, 2^2)$ lub (5^1) . z twierdzenia 2.2.2 każdy z pierwszych czterech odpowiada jednej klasie sprzężoności, a ostatni dwóm – równolicznym. Stąd klasy sprzężoności A_5 mają rozmiary: 1, 20, 15, 12, 12.

Załóżmy nie wprost, że H jest nietrywialną, właściwą podgrupą normalną A_5 . Wówczas H musi być sumą pewnych klas sprzężoności A_5 , w tym klasy sprzężoności elementu neutralnego. Ponadto rozmiar H musi być dzielnikiem rozmiaru $A_5=60$. Najmniejszy nietrywialny możliwy rozmiar sumy klas sprzężoności wraz z trywialną wynosi 13. Stąd |H|=15, |H|=20 lub |H|=30. Ale żaden podzbiór multizbioru $\{1,12,12,15,20\}$ zawierający jedynkę nie sumuje się do potencjalnego rozmiaru H, zatem takie H nie może istnieć – A_5 jest grupą prostą.

Załóżmy zatem, że $n\geqslant 6$ oraz grupa A_{n-1} jest prosta. Pokażemy, że A_n również jest prosta.

Załóżmy nie wprost, że H jest nietrywialną, właściwa podgrupą normalną w A_n .

Jeżeli H zawiera pewną nietrywialną permutację σ , która ma punkt stały $a \in \{1, 2, \dots, n\}$, to niech $K = H_a$. Wówczas $K \simeq A_{n-1}$ oraz (np. z trzeciego twierdzenia o izomorfizmie) $H \cap K$ jest podgrupą normalną w K. Ale $\sigma \in H \cap K$ oraz K jest grupą prostą, zatem z założenia indukcyjnego $H \cap K = K$. Stąd H zawiera pewien element o typie $(1^{n-3}, 3^1)$, a zatem wszystkie elementy tego typu, na mocy twierdzenia 2.2.2, gdyż $n-3 \geqslant 3$. Ale z lematu

2.2.2 cykle o długości 3 generują całe A_n , stąd $H = A_n$ – sprzeczność z założeniem, że H jest podgrupą właściwą.

Jeżeli natomiast żaden nietrywialny element H nie ma punktu stałego, to $|H| \leq n$. W przeciwnym przypadku istniałyby dwie różne permutacje $\pi, \sigma \in H$ takie, że $\pi(1) = \sigma(1)$. Wtedy $\gamma = \pi \sigma^{-1} \neq \mathrm{id}, \ \gamma \in H$ oraz $\gamma(1) = 1$ – sprzeczność. Stąd rzeczywiście $|H| \leq n$. Ale z lematu 2.2.1 H jako nietrywialna suma pewnej liczby klas sprzężoności w tym trywialnej musiałaby mieć rozmiar co najmniej n+1. Stąd w tym przypadku również otrzymujemy sprzeczność.

We wszystkich przypadkach otrzymaliśmy sprzeczność, czyli rzeczywiście A_n jest grupą prostą, czyli z indukcji A_n jest grupą prostą dla wszystkich $n \ge 5$.

Można się jeszcze zastanawiać, jak wygląda A_n dla n < 5. Z twierdzenia 2.1.3 wiemy, że $|A_n| = n!/2$. Zatem A_2 jest grupą trywialną. A_3 ma 3 elementy – jest grupą cykliczną o 3 elementach, więc jest prosta. Natomiast grupa A_4 nie jest prosta – jej czteroelementowa podgrupa $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$ jest normalna, gdyż składa się ze wszystkich elementów o rzędzie ≤ 2 .

Rozdział 3

Lemat Iwasawy

W tym rozdziale przedstawione zostanie jedno z ważniejszych narzędzi do dowodzenia prostoty grup – lemat Iwasawy. Lecz najpierw wprowadzimy nowe pojęcie – prymitywność.

3.1. Prymitywne działanie grupy

Jak zostało to już wspomniane w wiadomościach wstępnych, działanie grupy G na zbiorze X jest tranzytywne, jeżeli elementy X tworzą jedną orbitę, czyli dla dowolnych $x,y\in X$ istnieje $g\in G$ takie, że $x^g=y$. Teraz uogólnimy to pojęcie.

Definicja 3.1.1. Załóżmy, że ρ jest działaniem grupy G na zbiorze X.

Powiemy, że ρ jest działaniem k-tranzytywnym (k-przechodnim), jeżeli dla dowolnych ciągów k elementowych (a_1, a_2, \dots, a_k) oraz (b_1, b_2, \dots, b_k), które skladają się z różnych elementów z X, istnieje taki element g z grupy G, że $a_i^g = b_i^g$ dla każdego $i = 1, 2, \dots, k$.

W szczególności 1-tranzytywność to jest dokładnie to samo, co zwykła tranzytywność.

Aby zilustrować to pojęcie, policzmy jaki jest stopień tranzytywności naturalnego działania S_n oraz A_n na zbiorze $X = \{1, 2, \dots, n\}$, tzn. takiego, w którym $i^{\sigma} = \sigma(i)$.

Jak łatwo zauważyć, działanie S_n jest n-tranzytywne – skoro S_n składa się ze wszystkich permutacji, to zawsze możemy odwzorować ciąg (a_1, a_2, \dots, a_n) na (b_1, b_2, \dots, b_n) , gdyż jak założyliśmy w definicji, wszystkie a_i jak i wszystkie b_i są parami różne. Stąd również działanie S_n jest k-tranzytywne dla każdego $k \leq n$.

Natomiast w A_n nie ma wszystkich permutacji, zatem działanie A_n nie może być n-tranzytywne. Nie może być również (n-1)-tranzytywne, gdyż skoro ustalimy na co przejdzie pierwsze n-1 elementów X i ma to być permutacja, to obraz ostatniego elementu też jest ustalony, czyli wybór (n-1) pozycji jest tak na prawdę wyborem wszystkich n pozycji, a na wszystkich elementach nie możemy dowolnie ustalić permutacji. Zauważmy jednak, że działanie A_n jest (n-2)-tranzytywne. Rzeczywiście, chcąc żeby a_i przeszło na b_i dla $i=1,2,\cdots,(n-2)$ mamy do wyboru dwie permutacje $(z S_n)$. Jedna z nich odwzorowuje $x\mapsto y,x'\mapsto y'$, a druga $x\mapsto y',x'\mapsto y$, gdzie x,x' to elementy różne od wszystkich a_i , a y,y' to elementy różne od wszystkich b_i . Ale te permutacje różnią się o transpozycję (y,y'), zatem jedna z nich jest parzysta, czyli należy do A_n , więc rzeczywiście możemy odwzorować (a_1,a_2,\cdots,a_{n-2}) na (b_1,b_2,\cdots,b_{n-2}) . Stąd działanie S_n jest k-tranzytywne dla każdego $k\leqslant n-2$.

Wprowadzimy teraz własność prymitywności. Jest to własność pomiędzy tranzytywnością a 2-tranzytywnością.

Definicja 3.1.2. Załóżmy, że ρ jest działaniem grupy G na zbiorze X.

Systemem bloków działania ρ nazywamy podział zbioru X zachowywany przez ρ , tzn. rodzinę zbiorów $\mathfrak{A} = \{Y_i : i \in I\}$, które są niepuste, parami rozłączne, sumują się do X oraz dla dowolnych $Y \in \mathfrak{A}, x, x' \in Y$ oraz $g \in G$ oba elementy x^g oraz x'^g znajdują się razem w jednym zbiorze $Y' \in \mathfrak{A}$.

Zauważmy, że zawsze mamy co najmniej dwa systemy bloków – jeden blok z całym zbiorem $\mathfrak{A} = \{X\}$ oraz system z wszystkimi blokami jednoelementowymi $\mathfrak{A} = \{\{x\}: x \in X\}$. W związku z tym naturalna jest definicja:

Definicja 3.1.3. Nietrywialnym systemem bloków nazywamy dowolny system bloków, który jest różny od dwóch wyżej wspomnianych – z jednym blokiem lub z blokami jednoelementowymi.

Teraz jesteśmy już gotowi na wprowadzenie pojęcia prymitywności.

Definicja 3.1.4. Załóżmy, że ρ jest działaniem grupy G na zbiorze X.

 $Działanie \ \rho$ nazywamy prymitywnym, jeśli nie istnieje nietrywialny system bloków działania ρ .

Aby lepiej zrozumieć tą własność, pokażemy, że rzeczywiście jest to własność pomiędzy tranzytywnością oraz 2-tranzytywnością.

Twierdzenie 3.1.1. Załóżmy, że ρ jest nietrywialnym działaniem grupy G na zbiorze X. Wówczas:

- a) Jeżeli ρ jest prymitywne, to jest tranzytywne.
- b) Jeżeli ρ jest 2-tranzytywne, to jest prymitywne.
- Dowód. Ad a) Załóżmy nie wprost, że ρ nie jest tranzytywne. Wówczas rozbicie X na orbity daje nietrywialny system bloków. Rzeczywiście, z nieprzechodniości dostajemy, że liczba bloków wynosi co najmniej 2 a z nietrywialności ρ któryś blok ma co najmniej 2 elementy. Ostatecznie ρ permutuje elementy orbit, więc w szczególności je zachowuje. Znaleźliśmy nietrywialny system bloków działania ρ , czyli sprzeczność ρ nie jest prymitywne. Stąd ρ musi być tranzytywne.
- Ad b) Załóżmy nie wprost, że ρ nie jest prymitywne. Wówczas istnieje nietrywialny system bloków $\mathfrak{A} = \{Y_i : i \in I\}$, w którym istnieją $Y_1, Y_2 \in \mathfrak{A}$ takie, że $|Y_1| > 1$. Niech więc $x, y \in Y_1, z \in Y_2$ gdzie $x \neq y$. Z 2-tranzytywności możemy odwzorować parę (x, y) na parę (x, z), co daje sprzeczność z definicją systemu bloków. Stąd ρ musi być prymitywne.

Oczywiście możliwe jest, że grupa działa tranzytywnie a nie prymitywnie, lub prymitywnie, a nie 2-tranzytywnie.

Jako pierwszy przykład możemy rozważyć naturalne działanie czteroelementowej grupy $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$ będącej podgrupą S_4 na zbiorze 4 elementowym. Jak łatwo widać jest ono przechodnie. Nie jest jednak prymitywne, gdyż zachowuje ono np. system bloków $\{\{1,2\},\{3,4\}\}$.

Jako drugi przykład rozważmy działanie A_3 na zbiorze $\{1,2,3\}$. Jak pokazaliśmy wcześniej nie jest ono 2-tranzytywne, ale jest tranzytywne. To, że jest to również działanie prymitywne wynika z następującego lematu:

Lemat 3.1.1. Załóżmy, że ρ jest tranzytywnym działaniem grupy G na zbiorze X. Wówczas w dowolnym systemie bloków wszystkie bloki są równych rozmiarów.

Dowód. Rzeczywiście, jeżeli Y_1, Y_2 są blokami, to skoro możemy odwzorować $y_1 \in Y_1$ na $y_2 \in Y_2$, To całe Y_1 musi być przekształcone w Y_2 (z własności systemu bloków), stąd $|Y_1| \leq |Y_2|$. Analogicznie $|Y_2| \leq |Y_1|$, zatem $|Y_1| = |Y_2|$.

W tym przypadku bloki w nietrywialnym systemie bloków muszą mieć rozmiary 1 i 2, czyli różne, więc nietrywialny system bloków nie może istnieć.

Udowodnijmy teraz jeszcze jedno stwierdzenie, które jest użyteczne w dowodzie lematu Iwasawy.

Lemat 3.1.2. Załóżmy, że ρ jest tranzytywnym działaniem grupy G na zbiorze X oraz $x \in X$. Wówczas ρ jest prymitywne wtedy i tylko wtedy, gdy G_x jest maksymalną podgrupą G, tzn. nie istnieje podgrupa H grupy G, taka że $G_x \leq H \leq G$.

Dowód. Zauważmy najpierw, że warstwy (lewostronne) G_x odpowiadają jednoznacznie elementom zbioru X – bijekcja zadana jest wzorem $\zeta: gG_x \mapsto x^g$. Funkcja ta jest dobrze określona oraz jest iniekcją, gdyż $g_1G_x = g_2G_x \iff g_1^{-1} \cdot g_2 = h$ dla pewnego $h \in G_x \iff x^{g_1^{-1} \cdot g_2} = x^h = x \iff x^{g_1} = x^{g_2}$. Ponadto ζ jest surjekcją, gdyż działanie jest tranzytywne. Stad rzeczywiście ζ jest bijekcja.

Przejdźmy teraz do dalszej części dowodu.

Załóżmy nie wprost, że G_x nie jest maksymalna, czyli istnieje H, takie, że $G_x \leq H \leq G$. Skoro H zawiera G_x , to warstwy H są sumami pewnych warstw G_x – jeżeli $g_1G_x = g_2G_x \iff g_1^{-1} \cdot g_2 \in G_x$ to również $g_1^{-1} \cdot g_2 \in H \iff g_1H = g_2H$. Stąd warstwy H odpowiadają rozbiciu zbioru warstw G_x , czyli również rozbiciu zbioru X. Zauważmy jeszcze, że działanie G zachowuje warstwy H. Jest tak dlatego, że dla $g_1H = g_2H$ zachodzi $g_1^{-1} \cdot g_2 \in H$. Punkt $g_iG_x = x^{g_i}$ przy działaniu elementem f grupy G przechodzi na $(x^{g_i})^f = x^{fg_i} = fg_iG_x$. Ale warstwy fg_1G_x oraz fg_2G_x zawierają się w jednej warstwie H, gdyż $(fg_1)^{-1}fg_2 = g_1^{-1}f^{-1}fg_2 = g_1^{-1}g_2 \in H$.

Otrzymaliśmy zatem system bloków, który na dodatek jest nietrywialny, gdyż H zawiera się ściśle pomiędzy G_x a G. Zatem działanie ρ nie jest prymitywne – sprzeczność. Stąd taka grupa H nie istnieje – G_x jest maksymalną podgrupą G.

Tutaj również przeprowadzimy dowód nie wprost. Załóżmy, że ρ nie działa prymitywnie na X, czyli istnieje pewien nietrywialny system bloków $\mathfrak A$. Niech $Y \in \mathfrak A$ będzie tym blokiem, który zawiera x oraz niech H będzie stabilizatorem całego zbioru Y (czyli zbiorem $\{g \in G: \forall_{y \in Y} y^g \in Y\}$). Skoro $\mathfrak A$ jest nietrywialne, to $Y \neq X$ oraz istnieje blok rozmiaru co najmniej 2. Ale z poprzedniego lematu wiemy, że wszystkie bloki mają tą samą wielkość, więc również $|Y| \geqslant 2$.

Zauważmy, że $H = \{g \in G: x^g \in Y\} \stackrel{def}{=} K$. Oczywiście $H \subseteq K$, gdyż elementy H zachowują zbiór Y. Z drugiej strony, jeżeli jakiś element z Y trafia z powrotem do Y, to całe Y jest zachowywane, gdyż Y jest elementem systemu bloków. Stąd rzeczywiście H = K.

Na koniec wystarczy zobaczyć, że skoro $\{x\} \subsetneq Y \subsetneq X$, to $G_x \lneq H \lneq G$. Jest tak dlatego, że H, w przeciwieństwie do G_x , zawiera elementy odwzorowujące x na jakiś inny element zbioru Y ale nie zawiera elementów, które odwzorowują x na elementy spoza Y (które istnieją). Stąd G_x nie jest maksymalne – sprzeczność. Stąd to działanie musi być prymitywne.

Teraz jesteśmy już gotowi na sformułowanie i dowód lematu Iwasawy.

3.2. Lemat Iwasawy

Twierdzenie 3.2.1. Zalóżmy, że G jest grupą doskonałą, ρ – wiernie oraz prymitywnie działanie G na zbiorze X. Zalóżmy dodatkowo, że dla pewnego $x \in X$ stabilizator G_x zawiera normalną podgrupę abelową A, której sprzężenia w G generują całe G. Wówczas grupa G jest prosta.

Dowód. Załóżmy przeciwnie, że w G istnieje właściwa, nietrywialna podgrupa normalna K. Skoro G działa wiernie oraz K jest nietrywialna, to $x_0^{k_0} \neq x_0$ dla pewnego $k_0 \in K$. Niech $H = G_{x_0}$. Dostajemy, że $K \nleq H$, gdyż $k_0 \not\in H$, stąd również $H \lneq HK$.

Z lematu 3.1.2 otrzymujemy, że H jest podgrupą maksymalną w G. $H \lneq HK$, więc HK = G. Stąd (i z twierdzenia 1.1.1) każdy element $g \in G$ jest postaci g = hk, gdzie $h \in H$ oraz $k \in K$.

Skoro działanie ρ jest prymitywne, a więc tranzytywne, to z twierdzenia 1.5.2 dostajemy, że G_x jest sprzężone z H. Z założenia dodatkowo wynika, że H zawiera podgrupę B sprzężoną do A, ponadto B jest normalną podgrupą abelową H, której sprzężenia (w G) generują całe G. Sprzężenia B są postaci $g^{-1}Bg = k^{-1}h^{-1}Bhk = k^{-1}Bk \leq BK$. Wszystkie sprzężenia B generują G i są zawarte w $BK \leq G$, stąd G = BK.

Korzystając z trzeciego twierdzenia o izomorfizmie dostajemy:

$$G/K = BK/K \simeq B/B \cap K$$

Ale grupa ilorazowa grupy abelowej jest abelowa, stąd zarówno $B/B \cap K$ jaki i G/K są abelowe. Z twierdzenia o komutancie wnioskujemy, że $K \ge [G,G] = G$, gdyż G jest grupą doskonałą – dostaliśmy sprzeczność z założeniem, że K jest właściwą podgrupą G, stąd G jest grupą prostą.

Rozdział 4

Prostota specjalnej rzutowej grupy liniowej $PSL_n(k)$

W tym rozdziale pokażemy zastosowania udowodnionego powyżej lematy Iwasawy. Udowodnimy prostotę grupy $PSL_n(k)$ oraz zaproponujemy alternatywny dowód prostoty A_n .

4.1. Grupy liniowe

Zacznijmy od przypomnienia definicji grup liniowych.

Definicja 4.1.1. Ogólną grupą liniową $GL_n(k)$ nazywamy grupę kwadratowych macierzy odwracalnych stopnia n nad ciałem k, wraz z operacją mnożenia macierzy i macierzą jednostkową I_n jako element neutralny.

Oprócz $PGL_n(k)$ ważne są również inne grupy liniowe – $PGL_n(K)$, $SL_n(k)$ oraz $PSL_n(k)$. Zanim je zdefiniujemy, przypomnimy pewne wiadomości z algebry liniowej.

Stwierdzenie 4.1.1. Wyznacznik det: $GL_n(k) \to k^*$ jest homomorfizmem grup.

Stwierdzenie 4.1.2. Centrum Z_n grupy $GL_n(k)$ składa się z macierzy postaci λI_n , gdzie $\lambda \in k \setminus \{0\} \stackrel{ozn}{=} k^*$.

Centrum jest oczywiście podgrupa normalną. Stąd poprawna jest

Definicja 4.1.2. Rzutowa grupa liniowa $PGL_n(k)$ nazywamy grupę ilorazową $GL_n(k)/Z_n$.

Definicja 4.1.3. Specjalną grupą liniową $SL_n(k)$ nazywamy jądro funkcji det: $GL_n(k) \to k^*$. Innymi słowy $SL_n(k)$ to macierze o wyznaczniku równym 1.

W $SL_n(k)$ prawdziwe jest, analogiczne od powyższego, stwierdzenie o jego centrum.

Stwierdzenie 4.1.3. Centrum SZ_n grupy $SL_n(k)$ składa się z macierzy postaci λI_n , gdzie $\lambda \in k^*$: $\lambda^n = 1$.

Jesteśmy teraz gotowi na zdefiniowanie obiektu badań tego rozdziału.

Definicja 4.1.4. Specjalną rzutową grupą liniową $PSL_n(k)$ nazywamy iloraz $SL_n(k)/SZ_n$.

Twierdzenie o rzędzie grup dla ciała skończonego?

W celu zastosowania lematu Iwasawy, zajmiemy się macierzami elementarnymi postaci $E_{ij}(a) = I_n + a\Delta_{ij}$, gdzie $a \in k$, $i \neq j$ oraz Δ_{ij} to macierz składająca się z jedynki na pozycji (i,j) oraz samych zer.

Udowodnimy o tych macierzach 2 lematy.

Lemat 4.1.1. Macierze $E_{ij}(a)$ dla $i \neq j$ generują grupę $SL_n(k)$.

Dowód. Oczywiście $E_{ij}(a) \in SL_n(k)$ dla $i \neq j$. Ponadto $E_{ij}(a)^{-1} = E_{ij}(-a)$, zatem aby pokazać, że każdy element $M \in SL_n(k)$ jest iloczynem macierzy $E_{ij}(a)$, wystarczy pokazać, że jak będziemy mnożyć M z lewej strony przez macierze $E_{ij}(a)$, to dostaniemy identyczność. Ale mnożenie przez $E_{ij}(a)$ to dodanie do j-tego wiersza a krotność i-tego wiersza. Dzięki zastosowaniu eliminacji Gaussa możemy w ten sposób doprowadzić M do postaci diagonalnej, a nawet postaci diagonalnej z jedynkami na przekątnej poza pozycją (n,n), gdyż dodając i-ty wiersz do (i+1)-go, a następnie odpowiednio odejmując od i-tego c krotność (i+1)-wszego dostajemy na przekątnej jedynkę. Ale wówczas ostatnia pozycja również będzie równa 1, gdyż $\det(M) = 1$, a mnożenie przez $E_{ij}(a)$ wyznacznika nie zmienia.

Lemat 4.1.2. Macierze $E_{ij}(a)$ dla $i \neq j$ są komutantami pewnych elementów z $SL_n(k)$, poza przypadkiem, gdy n = 2 oraz $|k| \leq 3$.

Dowód. Gdy n > 2, to weźmy $k \le n$ takie, że $k \ne i$ oraz $k \ne j$. Wówczas

$$[E_{kj}(1), E_{ik}(-a)] = E_{kj}(1)E_{ik}(-a)E_{kj}(1)^{-1}E_{ik}(-a)^{-1} =$$

$$= E_{kj}(1)E_{ik}(-a)E_{kj}(-1)E_{ik}(a) =$$

$$= (I_n + \Delta_{kj})(I_n - a\Delta_{ik})(I_n - \Delta_{kj})(I_n + a\Delta_{ik}) =$$

$$= (I_n + \Delta_{kj} - a\Delta_{ik})(I_n - \Delta_{kj} + a\Delta_{ik}) = I_n + a\Delta_{ij} = E_{ij}(a)$$

gdyż $\Delta_{ab}\Delta_{bc}=\Delta_{ac}$ oraz $\Delta_{ab}\Delta_{dc}=0$ dla $b\neq d.$

W przypadku, gdy n=2 oraz |k|>3, w k istnieje element x różny od 0,1,-1. Wtedy $x^2\neq 1$ i dla $y=\frac{a}{1-x^2}$ oraz $\epsilon=i-j\in\{-1,1\}$ zachodzi

$$[E_{ij}(y), x\Delta_{11} + x^{-1}\Delta_{22}] =$$

$$= E_{ij}(y)(x\Delta_{11} + x^{-1}\Delta_{22})E_{ij}(y)^{-1}(x\Delta_{11} + x^{-1}\Delta_{22})^{-1} =$$

$$= (I_n + y\Delta_{ij})(x\Delta_{11} + x^{-1}\Delta_{22})(I_n - y\Delta_{ij})(x^{-1}\Delta_{11} + x\Delta_{22}) =$$

$$= (x\Delta_{11} + x^{-1}\Delta_{22} + yx^{\epsilon}\Delta_{ij})(x^{-1}\Delta_{11} + x\Delta_{22} - yx^{-\epsilon}\Delta_{ij}) =$$

$$= \Delta_{11} + \Delta_{22} + y(1 - x^2)\Delta_{ij} = I_n + a\Delta_{ij} = E_{ij}(a)$$

4.2. Prostota $PSL_n(k)$

Twierdzenie 4.2.1. Grupa $PSL_n(k)$ jest prosta dla $n \ge 2$ i dowolnego ciala k, poza przypadkiem, gdy n = 2 oraz $|k| \le 3$.

Dowód. Rozważmy działanie ρ grupy $SL_n(k)$ na X – zbiorze jednowymiarowych podprzestrzeni k^n przez domnażanie, tzn. dla $M \in SL_n(k)$ oraz $v \in k^n, v \neq 0$ definiujemy $\langle v \rangle^M = \langle Mv \rangle$.

Wówczas dla $M \in SZ_n$ zachodzi $\langle v \rangle^M = \langle Mv \rangle = \langle v \rangle$. Zatem $SZ_n \subset \ker \rho$. Jeżeli natomiast $M \in SL_n(k) \setminus SZ_n$, to M ma niezerowy element a_{ij} dla $i \neq j$, więc przekształca podprzestrzeń rozpinaną przez wektor standardowy e_j na inną, albo M ma tylko elementy na przekątnej, ale dla $a_{ii} \neq a_{jj}$ gdzie $i \neq j$ wynika, że $\langle e_i + e_j \rangle^M = \langle a_{ii}e_i + a_{jj}e_j \rangle \neq \langle e_i + e_j \rangle$. Stąd $SZ_n = \ker \rho$, czyli ρ indukuje również wierne działanie $\tilde{\rho}$ grupy $SL_n(k)/SZ_n = PSL_n(k)$ na tym samym zbiorze.

Zauważmy również, że działanie ρ , a więc również $\tilde{\rho}$, jest 2-tranzytywne, stąd również prymitywne. Jest tak dlatego, że za pomocą mnożenia przez odpowiednią macierz, możemy przekształcić dowolną bazę k^n na inną. Stąd chcąc przekształcić $\langle v_i \rangle$ na $\langle w_i \rangle$ dla i=1,2 dopełniamy v_i do bazy v_1, \dots, v_n oraz w_i do bazy w_1, \dots, w_n dostajemy macierz przejścia M i dzielimy ostatni wiersz M przez $\det(M)$. Otrzymana macierz jest z $SL_n(k)$, przekształca tak samo jednowymiarowe podprzestrzenie co M, w szczególności przekształca $\langle v_i \rangle$ na $\langle w_i \rangle$ dla i=1,2.

Rozważmy teraz stabilizator H punktu $\langle e_1 \rangle$ przy działaniu ρ . H składa się z tych macierzy o wyznaczniku 1, które stabilizują $\langle e_1 \rangle$, czyli w pierwszym wierszu mają wektor $(\lambda, 0, 0, \dots, 0)$, gdzie $\lambda \in k^*$.

Niech A będzie podzbiorem H macierzy o postaci blokowej $\begin{pmatrix} 1 & 0_{n-1} \\ v_{n-1} & I_{n-1} \end{pmatrix}$. Wówczas A jest abelową podgrupą H. Rzeczywiście:

$$\begin{pmatrix} 1 & 0_{n-1} \\ v_{n-1} & I_{n-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0_{n-1} \\ w_{n-1} & I_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 0_{n-1} \\ v_{n-1} + w_{n-1} & I_{n-1} \end{pmatrix}$$

Czyli iloczyn elementów z A należy do A, jest przemienny oraz biorąc $w_{n-1} = -v_{n-1}$ otrzymujemy, że odwrotność elementów z A również należy do A.

Ponadto A jest podgrupą normalną H, gdyż

$$\begin{pmatrix} \lambda & 0_{n-1} \\ w_{n-1} & A_{n-1} \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0_{n-1} \\ v_{n-1} & I_{n-1} \end{pmatrix} \cdot \begin{pmatrix} \lambda & 0_{n-1} \\ w_{n-1} & A_{n-1} \end{pmatrix} =$$

$$= \begin{pmatrix} \lambda^{-1} & 0_{n-1} \\ w'_{n-1} & A_{n-1}^{-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0_{n-1} \\ v_{n-1} & I_{n-1} \end{pmatrix} \cdot \begin{pmatrix} \lambda & 0_{n-1} \\ w_{n-1} & A_{n-1} \end{pmatrix} =$$

$$= \begin{pmatrix} \lambda^{-1} & 0_{n-1} \\ w'_{n-1} & A_{n-1}^{-1} \end{pmatrix} \cdot \begin{pmatrix} \lambda & 0_{n-1} \\ \lambda v_{n-1} + w_{n-1} & A_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 0_{n-1} \\ v'_{n-1} & I_{n-1} \end{pmatrix}$$

dla odpowiednio dobranych w'_{n-1} oraz v'_{n-1} .

Pokażemy teraz również, że sprzężenia A w $SL_n(k)$ zawierają wszystkie macierze elementarne $E_{ij}(a)$ (dla $i \neq j$). Dzięki temu oraz lematu 4.1.1 będziemy wiedzieć, że sprzężenia A generują całe $SL_n(k)$.

Gdy n=2, to $E_{21}(a) \in A$ oraz

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = E_{12}(a)$$

Gdy natomiast $n \geq 3$ oraz $j \neq k$ to z przechodniości naturalnego działania grupy A_n na $\{1, 2, \dots, n\}$ dostajemy pewien element $\pi \in A_n$ taki, że $\pi(1) = k$. Niech $l = \pi^{-1}(j) \neq 1$ oraz P_{π} – macierz permutacji π , tzn. P_{π} zawiera jedynki na pozycjach $(i, \pi(i))$ a poza tym same zera. Wówczas z parzystości π dostajemy, że $\det(P_{\pi}) = 1$, czyli $P_{\pi} \in SL_n(k)$ oraz

$$(P_{\pi})^{-1}E_{l1}(a)P_{\pi} = P_{\pi^{-1}}(I_n + a\Delta_{l1})P_{\pi} =$$

$$= I_n + P_{\pi^{-1}}(a\Delta_{l\pi(1)}) = I_n + a\Delta_{\pi(l)\pi(1)} = I_n + a\Delta_{jk} = E_{jk}(a)$$

Przechodząc teraz do działania $\tilde{\rho}$ widzimy, że stabilizatorem punktu $\langle e_1 \rangle$ przy tym działaniu jest $\tilde{H} = H/SZ_n \leqslant PSL_n(k)$. Ponadto $\tilde{A} = A/SZ_n$ jest abelową podgrupą normalną \tilde{H} oraz sprzężenia \tilde{A} generują $PSL_n(k)$, gdyż $\tilde{g}^{-1}\tilde{A}\tilde{g} = (g^{-1}Ag)/SZ_n$.

Udowodniliśmy zatem, że działanie $\tilde{\rho}$ grupy $PSL_n(k)$ na zbiorze X jest wierne, prymitywne oraz stabilizator \tilde{H} punktu $\langle e_1 \rangle$ zawiera podgrupę normalną \tilde{A} , której sprzężenia generują całe $PSL_n(k)$.

Żeby zatem skorzystać z lematu Iwasawy wystarczy pokazać, że $PSL_n(k)$ jest grupą doskonałą poza przypadkiem, gdy n=2 oraz $|k| \leq 3$. Ale z lematu 4.1.1 dostajemy, że macierze $E_{ij}(a)$ generują $SL_n(k)$, zatem również elementy $E_{ij}(a) \cdot SZ_n$ generują $PSL_n(k)$. Ponadto z lematu 4.1.2 dostajemy, że dla n>2 lub k>3 macierze $E_{ij}(a)$ są komutantami macierzy z $SL_n(k)$, stąd także elementy $E_{ij}(a) \cdot SZ_n$ są komutantami elementów z $PSL_n(k)$ Stąd zarówno grupa $SL_n(k)$ jak i grupa $PSL_n(k)$ jest grupą doskonałą.

Założenia lematu Iwasawy dla grupy $PSL_n(k)$ są spełnione, zatem jest to grupa prosta.

4.2.1. Dodatkowe informacje o grupach $PSL_n(k)$ oraz lemacie Iwasawy

Na koniec tej pracy wspomnimy jeszcze o dwóch rzeczach – udowodnimy, że rzeczywiście grupy $PSL_2(\mathbb{F}_2)$ oraz $PSL_2(\mathbb{F}_3)$ nie są proste, a także naszkicujemy alternatywny dowód prostoty grup A_n dla $n \ge 5$ – tym razem korzystając z lematu Iwasawy.

Bibliografia

- [Wil09] Robert A. Wilson, The Finite Simple Groups, Springer, 2009.
- [Bia87] Andrzej Białynicki-Birula, Zarys algebry, Państwowe Wydawnictwo Naukowe, 1987.
- [Lan73] Serge Lang, Algebra, Państwowe Wydawnictwo Naukowe, 1973.
- [Kar76] M. I. Kargapołow, J. I. Mierzlakow, Podstawy teorii grup, Państwowe Wydawnictwo Naukowe, 1976.
- [Bag02] Czesław Bagiński, Wstęp do teorii grup, Script, 2002.
- [Neu03] Peter M. Neumann, Gabrielle A. Stoy, Edward C. Thompson, *Groups and Geometry*, Oxford Science Publications, 2003.