Faculty of Science & Technology

First Semester B.Tech. (ET in ET) (Common) (NEP) (AI/AIDS/AIML/RoAI/I IOT)

2024-2025 Examination

DIGITAL CIRCUITS & LOGIC DESIGN

Time: Three Hours] [Maximum Marks: 70

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Solve Question No. 1 OR Question No. 2.
- (3) Solve Question No. 3 OR Question No. 4.
- (4) Solve Question No. 5 OR Question No. 6.
- (5) Solve Question No. 7 ØR Question No. 8.
- (6) Solve Question No. 9 OR Question No. 10.
- (7) Due credit will be given to neatness and adequate dimensions.
- (8) Assume suitable data whenever necessary.
- (9) Illustrate your answers whenever necessary with the help of neat sketches.
- 1. (a) Explain different types of gates used in digital systems.

7

(b) Simplify using K-map and realize using gates:

$$f(A, B, C, D) = \sum m(0, 1, 4, 5, 9, 11, 14, 15) + \sum \phi(10, 13).$$

7

OR

2. (a) Explain and prove De-Morgan's Theorem.

6

- (b) Solve the following:
 - (i) $(1101.11)_2 = ()_{10}$
 - (ii) $(12.625)_{10} = (?)_{2}$
 - (iii) $(356)_{10} = (?)_8$

(iv) $(5352.4051)_s = (?)_{10}$

8

(Contd.)

MJ-- 14923

1

	3,	(a) Implement a Full Adder using two Half Adder and OR gate.	7
	((b) Design a 4 bit BCD adder.	7
		OR	
	4. (a) Implement 1 : 16 De multiplex using two 1 : 8 de multiplexers.	7
	(b) Implement the following function using 8:1 multiplexer:	
		$\mathbf{E} = \mathbf{\Sigma} \mathbf{m} \ (0, 1, 2, 3, 11, 12, 14, 15).$	7
5	š. (a	Draw and explain Master Slave JK flip flop.	6
	(t	b) Convert:	
		(i) JK flip flop to T flip flop	
		(ii) JK flip flop to D flip flop.	8
		OR	
6.	. (a)	What do you mean by Race around condition in JK flip flop? How this condition of	an be
		overcome?	7
	(b)		7
7.	(a)	Differentiate between Synchronous & Asynchronous counters. What do you mean by a m	
		of counter? https://www.rtmnuonline.com	7
	(b)	Design a 4 bit up/down asynchronous counter circuit.	7
		OR	
8.	(a)	Explain Serial Input Parallel Output (SIPO) Shift Register.	7
	(b)	Differentiate between Mealey and Moore Machines.	7
9.	(a)	Write a note on PAL.	7
9.		Write a note on Dynamic memories.	7
	(b)	OR	
			7
10.	(a)	Write a note on Optical Disk.	
	(b)	Write a note on Static Memories.	
-			