Concurso PAD - Área Arquitectura de Computadoras

Rafael Ignacio Zurita Departamento de Ingenieria de Computadoras Clase presencial 6a

October 11, 2018

UNIDAD 3: Memoria

Características de las diferentes tecnologías de memoria.

Comportamiento de los programas: principio de localidad. Jerarquía de memoria. Memoria Cache. Memoria virtual.

Temario

- The Memory Wall
- Memorias
- Estrategias de organización posibles
- Principio de localidad
- Jerarquía de memoria
- DRAM vs SRAM
- Repaso y cierre

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesado	r:	 	 	 	 	
Memoria:		 	 	 	 	
D:						

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesado	r : más	rápido,	mas	cores
Memoria:				
Disco:				

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesador: más rápido, mas cores

Memoria: más memoria

Disco:

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesador: más rápido, mas cores

Memoria: más memoria

Disco:

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesador: más rápido, mas cores

Memoria: más memoria

Disco: más disco

Cuando se quiere comprar una computadora nueva...

Si ya contamos con una PC CPU core i3 2.6Ghz, 8GB RAM, 512GB disco, ¿Qué computadora queremos adquirir?:

Procesador: más rápido, mas cores

Memoria: más memoria

Disco: más disco

"Procesador más rápido, mas cores"

- IMPORTANTE: es tiempo de utilizar mayor precisión y terminología
- Ejemplo: "Microprocesador con un rendimiento mayor que el anterior"
 - (Es más adecuado)
 - Buscamos que realice una mayor cantidad de trabajo en el mismo tiempo o,
 - la misma cantidad de trabajo que antes, pero en un tiempo menor.

The Memory Wall

Año tras año ...

- Los microprocesadores nuevos son más rápidos (mejoran el rendimiento).
- Las memorias nuevas son más rápidas (mejoran el rendimiento).

Memorias

- En una computadora de propósito general se cuenta con:
 - Memoria con Firmware de arranque
 - Memoria RAM (volatil, estática y dinámica/DRAM y caché)
 - Disco rígido o memoria flash
 - Disco de estado sólido
 - DVD y CD
 - Memorias SD y pendrives

¿Por qué necesitamos tantos tipos de memoria?

Memorias

- En una computadora de propósito general se cuenta con:
 - Memoria con Firmware de arranque
 - Memoria RAM (volatil, estática y dinámica/DRAM y caché)
 - Disco rígido o memoria flash
 - Disco de estado sólido
 - DVD y CD
 - Memorias SD y pendrives

¿Por qué necesitamos tantos tipos de memoria?

Memoria ideal: ilimitada (siempre suficiente), veloz, densa (tamaño físico), de bajo consumo, robusta, barata, persistente. Pero, la tecnología es insuficiente.

Memorias

¿Por qué necesitamos tantos tipos de memoria?

Memoria ideal: ilimitada (siempre suficiente), veloz, densa (tamaño físico), de bajo consumo, robusta, barata, persistente. Pero, la tecnología es insuficiente.

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash	~100 GB	100 us	~\$1
Hard disk	~I TB	10 ms	~\$0.10

Memorias

¿Por qué necesitamos tantos tipos de memoria?

- RESPUESTA: Porque no es posible construir la memoria ideal con la tecnología actual
- Memoria ideal: ilimitada (siempre suficiente), veloz (tiempo de respuesta, ancho de banda), densa (tamaño físico), de bajo consumo, robusta, barata, persistente. Pero, la tecnología es insuficiente

	Capacity	Latency	Cost/GB
Register	1000s of bits	20 ps	\$\$\$\$
SRAM	~10 KB-10 MB	1-10 ns	~\$1000
DRAM	~10 GB	80 ns	~\$10
Flash	~100 GB	100 us	~\$1
Hard disk	~I TB	10 ms	~\$0.10

■ IDEA 1: Exponer todos los tipos de memoria y que el programador la utilice con el mejor rendimiento posible.

Localidad de las Referencias

- **IDEA 2**: mantener los datos más frecuentemente utilizados por el procesador en una pequeña memoria veloz SRAM (cercana a la CPU) de manera transparente.
- Hacer referencia a la memoria principal unicamente de vez en cuando.
 - Esta idea libera al programador
 - ¿Qué hace posible esta idea?

Localidad de las Referencias

- **IDEA 2**: mantener los datos más frecuentemente utilizados por el procesador en una pequeña pero veloz memoria SRAM (cercana a la CPU) de manera transparente.
- Hacer referencia a la memoria principal unicamente de vez en cuando.
 - Esta idea libera al programador
 - ¿Qué hace posible esta idea?
- Comportamiento de los programas: si se observa un intervalo corto de tiempo se utiliza una pequeña fracción del total de la memoria.
- Este comportamiento de acceso ha sido llamado principio de localidad de las referencias[DENN68], o simplemente **principio de localidad**.

Localidad de las Referencias

i: \$s3, j: \$s4, k: \$s5, base of save[]: \$s6

add \$t1,\$s3,\$s3 Loop: add \$t1,\$t1,\$t1 add \$t1,\$t1,\$s6 lw \$t1,0(\$t1) bne \$t1,\$s5,Exit

add \$s3,\$s3,\$s4

Exit:

Loop

Repaso de IC: Ciclo de instrucción

El procesador ejecuta las mismas instrucciones varias veces,

tambien accede a elementos del vector save[].

4 日 × 4 周 × 4 3 × 4 3 ×

Localidad de las Referencias

i: \$s3, j: \$s4, k: \$s5, base of save[]: \$s6

Loop: add \$t1,\$s3,\$s3 add \$t1,\$t1,\$t1 add \$t1,\$t1,\$s6 lw \$t1,0(\$t1) bne \$t1,\$s5,Exit

> add \$s3,\$s3,\$s4 i Loop

Exit:

Repaso de IC: Ciclo de instrucción

El procesador ejecuta las mismas instrucciones varias veces (localidad temporal),

y tambien accede a elementos del vector save[] (**localidad espacial**).

Resumen

- Jerarquía de Memoria: Organización de la memoria de una computadora que permita
 - obtener el rendimiento de una memoria de alta velocidad
 - al costo (precio) de una memoria grande y lenta.
- Idea clave: tener los datos correctos, en el lugar preciso, en el momento adecuado (principio de localidad)

Jerarquía de Memoria

Organizar el sistema de memoria dentro de una jerarquía de niveles.

Cada nivel está compuesto por un tipo de memoria (tecnología)

Objetivo: obtener el rendimiento de una memoria de gran velocidad al coste de una memoria de baja velocidad, y de tamaño casi ilimitado.

DRAM vs SRAM

- Factores: densidad, costos, consumo, rendimiento.
- ¿Densidad en cachés?

Figure: DRAM vs SRAM

Repaso

Organizando las tecnologías de memoria dentro de una **jerarquía de niveles** se puede construir un sistema de memoria de

- bajo costo y
- con un rendimiento similar al de una memoria cara y de alta velocidad

Si este sistema es transparente al programador

■ ¿Para qué interesa su estudio?

Verifique su comprensión del tema

- ¿Qué significa el principio de localidad?.
- Intente componer y redactar una analogía no técnica.
- 3 Evaluar el tiempo de ejecución de los dos programas a continuacion.
- 4 Debatir en grupo por qué es posible que existe una diferencia.
- 5 En base a la respuesta anterior: ¿Considera que es importante el estudio de Jerarquía de Memoria?.

Verifique su comprensión del tema

```
# Recorre una matriz- version 1
                                                             # Recorre una matriz- version 2
main () {
                                                            main () {
    int i, j, k;
                                                                int i, j, k;
    int n[10000][100]: /* definicion de una matriz */
                                                                int n[10000][100]: /* definicion de una matriz */
    for (k=0; k<100; k++) {
                                                                for (k=0: k<100: k++) {
    for (i=0: i<10000: i++)
                                                                for (j=0; j<100; j++)
    for (j=0; j<100; j++)
                                                                 for (i=0: i<10000: i++)
        n[i][i] +=3;
                                                                    n[i][j] +=3;
    for (i=0; i<10000; i++)
                                                                 for (i=0: i<100: i++)
    for (j=0; j<100; j++)
                                                                for (i=0: i<10000: i++)
        n[i][i] +=5;
                                                                    n[i][i] +=5:
```

- ¿Preguntas?
- Próximas clases: Caché y Memoria Virtual

Bibliografía

Material complementario de estudio

Apunte de cátedra

- Memoria, Rafael Ignacio Zurita 2017 (disponible en PEDCO). Versión en español ampliada (con permiso escrito de Prof. Alan Clements y Prof. Hank Levy) de los libros:
 - Computer Organization and Architecture: Themes and Variations, Alan Clements, Cengage Learning, 2013, ISBN: 1285415426, 9781285415420
 - Computer Programming and Architecture the VAX-11, Henry Levy, Digital Press 1980

Libros

- Andrew S. Tanenbaum (2000), ORGANIZACIÓN DE COMPUTADORAS un enfoque estructurado, Editorial Prentice Hall. (10 copias en biblioteca)
- David. Patterson John L. Hennessy (1995), ORGANIZACIÓN Y DISEÑO DE COMPUTADORES La interfaz hardware/software, McGraw-Hill (8 copias en biblioteca).