1. Alapfogalmak

A valószínűségszámítás praktikusságát talán nem kell bizonygatni egyetlen olvasónak sem⁴: a legtöbb kísérleti tudomány támaszkodik rá valamilyen formában. Az mégis kérdés, hogy az egyszeri halandónak miért nem elég a "kedvező-per-összes" józan ésszel is kitalálható magasságaiban maradni?

Az egyik ok, hogy néha a naiv megközelítés helytelen vagy ellentmondásos eredményt ad. Ezt jól demonstrálja a számos valószínűségi paradoxon az irodalomban⁵, íme az egyik:

- Bertrand-féle doboz paradoxon

Adott három egyforma doboz. Az elsőben két arany érme van, a másodikban két ezüst érme, a harmadikban pedig egy arany és egy ezüst. A dobozok tartalmát nem ismerve, (egyenletesen) véletlenszerűen választva kihúzunk egy dobozból egy érmét. Feltéve, hogy a kihúzott érme arany, mi a valószínűsége, hogy a dobozban lévő másik érme is arany?

Első nekifutásra az $\frac{1}{2}$ reális tippnek tűnhet, hiszen két esetben húzhattunk arany érmét: ha az első vagy második dobozból húztunk. Ezek közül pedig csak az egyik esetben lesz a másik érme ezüst. Ugyanakkor a paradoxon helyes megoldása $\frac{2}{3}$, amit kísérlettel is igazolhatunk. Ennek magyarázata, hogy eredetileg 6-féle kimenetele lehet a húzásunknak az alapján, melyik érmét húzzuk (az érméket különbözőnek véve). Ebből a 6 esetből 3-ban húzunk arany érmét, ez tehát az összes eseteink száma. Ebből a 3 esetből 2-ben a dobozban lévő másik érme szintén arany, így a keresett valószínűség $\frac{2}{3}$. A példából okulva érdemes definiálnunk a vizsgált fogalmainkat.

1.1. Eseménytér

A valószínűség fogalmát a **Kolmogorov-axiómák**⁶ segítségével formalizálhatjuk. Kolmogorov a huszadik század nagy hatású matematikusa, aki a fentihez hasonló félreérthetőségek feloldásaként dolgozta ki azt a keretrendszert, aminek a kiindulópontját ma Kolmogorov-axiómáknak nevezünk. Maguk az axiómák a **valószínűségi mező** definíciójában szereplő feltételek (ld 1.3 alfejezet).

- 1.1.1. Definíció. Legyen Ω egy tetszőleges halmaz. A következő elnevezéseket fogjuk használni:
 - Eseménytér: Ω ,
 - Kimenetel: az eseménytér egy eleme, $\omega \in \Omega$,
 - Események: az eseménytér "kitüntetett" $A \subseteq \Omega$ részhalmazai,
 - Valószínűség: egy eseményhez hozzárendelt $\mathbb{P}(A)$ -val jelölt, 0 és 1 közti valós szám.

A fenti paradoxon esetében például 6 kimenetel van, így az eseménytér 6 elemű halmaz. Annak az A eseménynek pedig, hogy "elsőre arany érmét húzunk" a $\mathbb{P}(A)$ valószínűsége $\frac{1}{2}$.

De mi az, hogy az események "kitüntetett" részhalmazok? Honnan fogjuk tudni, egy kérdés esetében mit akarunk eseménynek nevezni, és mit nem? Röviden, azokat a részhalmazokat választjuk eseménynek, amikhez valószínűségeket szeretnénk hozzárendelni. Sok elemi feladat esetében ez nem igazi probléma: minden részhalmazt eseménynek választhatunk, mert feltesszük, hogy mindegyik részhalmaznak van értelme beszélni a valószínűségéről (még ha nem is ismerjük a pontos értékét).

1.1.2. Példa. Egy kockadobás leírásánál az eseménytér így definiálható: $\Omega \stackrel{\text{def}}{=} \{1, 2, 3, 4, 5, 6\}$. Az Ω elemeit, vagyis a kimeneteleket megfeleltethetjük annak, hogy mikor milyen számot dobunk. Legyen Ω összes részhalmaza esemény. Például $\{2, 4, 6\}$ egy esemény. Az eseményeket sokszor logikai állításokkal határozzuk meg, így a $\{2, 4, 6\}$ eseményt röviden írhatjuk úgy is, hogy $\{\text{párosat dobunk}\}$.

⁴Ha valakinek mégis kellene: robotics.stanford.edu/users/sahami/papers-dir/SIGCSE11-Probability.pdf

⁵lásd még: [youtube] PBS Infinite Series - Making Probability Mathematical

⁶Az axióma – hangzásával ellentétben – nem egy lassú lefolyású megbetegedés, hanem az *alapállítás* másik neve. Olyan kijelentéseket, alapvetéseket nevezünk így, amik globális feltevések az elméletünkben: nem bizonyítjuk, viszont bárhol használhatjuk őket. Kolmogorov eredeti axiómáit lásd Foundations of the Theory of Probability.

Felmerülhet a kérdés: "Miért nem választjuk simán mindig az összes részhalmazt eseménynek, 'oszt csókolom?". Azért, mert vannak olyan helyzetek, amikor szerepe van annak, mi esemény, és mi nem. Ilyen esetekre példa:

- (1) **Geometriai valószínűségek** esetén területekkel (vagy azzal analóg fogalommal) definiáljuk a valószínűségeket. Azonban ha minden részhalmazra szeretnénk értelmes területfogalmat definiálni, az nem fog sikerülni, ellentmondásokba futunk⁷. A megoldás, hogy nem minden részhalmaz esemény, így nem kell minden részhalmazra értelmeznünk annak területét.
- (2) **Megfigyelhetőség**en is alapulhat, mit nevezünk eseménynek. Például ha a fenti paradoxont szeretnénk modellezni: Ω továbbra is definiálható 6 eleműnek aszerint, hogy mit húzunk. Jelölje Ω elemeit $a_1, a_2, b_1, b_2, c_1, c_2$ (vegyük észre, hogy Ω elemei nem kell, hogy számok legyenek). Ezen húzások közül a_1, a_2, c_1 jelöl arany érméket, a többi ezüstöt, a_1, a_2 az első láda tartalmát, b_1, b_2 a másodikat és így tovább. A húzás ismeretében $\{a_1, a_2, c_1\}$ illetve $\{b_1, b_2, c_2\}$ részhalmazok megfigyelhetők, míg például $\{c_1, c_2\}$ nem, hiszen nem tudjuk, hogy a harmadik dobozból húztunk-e. Néhány problémánál érdemes pontosan azon részhalmazokat eseménynek nevezni, amik megfigyelhetők. Ilyen probléma például a feltételes várható érték számolása is.
- (3) Folyamatok, vagyis időben változó véletlen mennyiségek esetében az idő múlásával változhat, hogy mit tudunk megfigyelni és emiatt mit tartunk eseménynek. Lásd még Markov-láncok, martingálok.

Nézzük, milyen műveleteket végezhetünk eseményekkel.

1.1.3. Állítás. Mivel az események halmazok, így értelmezve van események **unió**ja $(A \cup B)$, **metszet**e $(A \cap B)$ és Ω -ra vett **komplementer**e (\overline{A}) .

Két esemény **különbség**e az előbbiekkel leírható: $A \setminus B = A \cap \overline{B}$. Két esemény **kizáró**, ha $A \cap B = \emptyset$. Az Ω -ra használatos még a **biztos esemény** elnevezés. Hasonlóan, az üreshalmaz (jele: \emptyset) neve a továbbiakban **lehetetlen esemény**.

1.1.4. Példa. A kockadobálós példánál maradva, a {párosat dobunk} esemény komplementere a {páratlant dobunk}, a {párosat dobunk} és a {3-nál nagyobbat dobunk} események metszete a $\{4,6\}$, míg uniója a $\{2,4,5,6\}$.

Végiggondolható, hogy ha az események kijelentésekkel vannak megfogalmazva (pl. {párosat dobunk}), akkor az uniójuk megfelel a kijelentések szintjén a "vagy" műveletnek, metszetük az "és"-nek, egy esemény komplementere pedig a logikai tagadásnak.

A halmazoknál megszokott tulajdonságok itt sem vesztik érvényüket: $A \cup B = B \cup A$, $A \cap \Omega = A$ és a többi. Névvel is bíró, megjegyzendő azonosság az alábbi:

1.1.5. Állítás. (de Morgan-azonosságok) Két halmazra:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 és $\overline{A \cap B} = \overline{A} \cup \overline{B}$,

illetve végtelen sok halmazra:

$$\overline{\bigcup_{i=1}^{\infty} A_i} = \bigcap_{i=1}^{\infty} \overline{A_i} \qquad \textit{és} \qquad \overline{\bigcap_{i=1}^{\infty} A_i} = \bigcup_{i=1}^{\infty} \overline{A_i}.$$

Az első állításpár Venn-diagramon könnyen ellenőrizhető.

Feladat. Legyenek A, B és C események. Írjuk fel a következő eseményeket a fenti műveletek segítségével: a) legalább egy esemény teljesül, b) A és B teljesül, de C nem, c) minden esemény teljesül, d) egyik esemény sem teljesül, e) pontosan egy esemény teljesül.

⁷lásd en.wikipedia.org/wiki/Vitali_set

1.2. Eseményalgebra

Szeretnénk beszélni az összes eseményt tartalmazó halmazról is: ezt a halmazt eseményalgebrának hívjuk. Az eseményalgebra már nem Ω részhalmaza, hanem Ω részhalmazainak halmaza, vagyis egy $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ részhalmaz. Itt $\mathcal{P}(\Omega)$ az Ω ún. hatványhalmazát jelöli, azaz $\mathcal{P}(\Omega)$ elemei épp Ω részhalmazai.

1.2.1. Példa. Legyen $\Omega = \{1, 2, 3, 4, 5, 6\}$ és \mathcal{F} elemei pontosan az $\{1, 2, 3\}$, a $\{4, 5, 6\}$ halmaz, a lehetetlen esemény \emptyset és a biztos esemény Ω . Ekkor nem minden kimenetelekből álló részhalmaz esemény. Mégis előfordulhat olyan feladat, ahol ez az \mathcal{F} modellezi jól a problémát (vö. fenti 2. megjegyzés).

Felmerülhet kérdésként, hogy két esemény uniója (ill. metszete, különbsége) szintén esemény-e. A válasz: igen. Egész pontosan azt fogjuk megkövetelni az \mathcal{F} eseményalgebrától, hogy úgynevezett σ algebra (ejtsd: szigma-algebra) legyen, vagyis teljesítse a következőket.

- 1.2.2. Definíció. Legyen Ω tetszőleges halmaz, \mathcal{F} pedig az Ω részhalmazainak egy halmaza. Ekkor \mathcal{F} -et σ -algebrának nevezzük az Ω alaphalmazon, ha az alábbi három feltétel mindegyike teljesül:

 - (2) ha $A \in \mathcal{F}$, akkor $\overline{A} \in \mathcal{F}$, (3) ha $A_1, A_2, ..., A_i, ... \in \mathcal{F}$, akkor $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Röviden, \mathcal{F} pontosan akkor σ -algebra, ha eleme a teljes tér, zárt a komplementer-képzésre és a megszámlálható unióra.

A definíció valószínűségszámítási szempontból a következőt mondja. Ha \mathcal{F} -re úgy gondolunk, mint a megfigyelhető események halmazára, akkor a feltételek szerint meg kell tudjuk figyelni azt, ami biztosan bekövetkezik (első feltétel), és azt is, ha egy A esemény nem történik meg (második feltétel). A harmadik kicsit trükkösebb, azt modellezi, hogy ha események egy sorozatát külön-külön meg tudjuk figyelni, akkor azt is, hogy legalább az egyikük bekövetkezik-e.

A σ -algebra fogalma a mértékelmélet témaköréből származik. A mértékelmélet az analízis azon ága, amely a különböző terület- és térfogatfogalmak általánosításait vizsgálja. Ennek a témának az eredményeit használta fel Kolmogorov a valószínűségszámítás megalapozására.

A σ -algebrák több tulajdonsága adódik a definícióból:

- **1.2.3.** Állítás. Legyen \mathcal{F} σ -algebra az Ω alaphalmazon. Ekkor teljesülnek a következők:

 - $ha\ A, B \in \mathcal{F}, \ akkor\ A \cup B, A \cap B, A \setminus B \in \mathcal{F},$ $ha\ A_1, A_2, ..., A_i, ... \in \mathcal{F}, \ akkor\ \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}.$

Bizonyítás. Az (1) tulajdonság miatt $\Omega \in \mathcal{F}$, így (2) miatt $\emptyset = \overline{\Omega} \in \mathcal{F}$.

A második pont bizonyításához legyen $A_1 = A$, $A_2 = B$, és minden $i \ge 3$ esetén $A_i = \emptyset$. Ekkor (3) miatt

$$A \cup B = \bigcup_{i=1}^{\infty} A_i \in \mathcal{F},$$

vagyis az unióra valóban zárt \mathcal{F} . A metszetre való zártság ebből már levezethető: ha $A, B \in \mathcal{F}$, akkor (2) miatt $\overline{A}, \overline{B} \in \mathcal{F}$. Továbbá, már beláttuk, hogy unió-képzésre zárt az \mathcal{F} , tehát $\overline{A} \cup \overline{B} \in \mathcal{F}$. Viszont a két halmazra vonatkozó De Morgan-azonosság okán tudjuk, hogy $\overline{A} \cup \overline{B} = \overline{A \cap B}$, tehát $\overline{A \cap B} \in \mathcal{F}$. Innen ismét a (2) tulajdonságot használva következik, hogy $A \cap B \in \mathcal{F}$.

A harmadik pont bizonyításához vegyük észre, hogy $A_i \in \mathcal{F}$ miatt $\overline{A_i} \in \mathcal{F}$ is teljesül (2) miatt. Ezen új halmazsorozatra alkalmazhatjuk a (3) tulajdonságot, így

$$\bigcup_{i=1}^{\infty} \overline{A_i} \in \mathcal{F}.$$

Viszont a végtelen halmazokra vonatkozó De Morgan-azonosság miatt ez éppen $\bigcap_{i=1}^{\infty} A_i$ komplementere. Mivel \mathcal{F} zárt a komplementerképzésre, így az állítást ezzel beláttuk.

1.3. Valószínűségi mező

Volt szó arról, hogy mi az eseménytér, mik az események, de eddig nem kerültek elő valószínűségek. Fentebb említettük, hogy azon $A \subseteq \Omega$ halmazok események, amiknek szeretnénk a $\mathbb{P}(A)$ valószínűségéről beszélni. Vagyis a valószínűség egy $\mathcal{F} \to [0,1]$ függvény kell legyen, ahol \mathcal{F} egy σ -algebra. De ennél többet is tudnia kell.

A 1.3.1. Definíció. Legyen \mathcal{F} egy σ -algebra az Ω tetszőleges halmazon. Ekkor egy $\mathbb{P}: \mathcal{F} \to [0,1]$ függvényt valószínűségi mértéknek nevezünk, ha $\mathbb{P}(\Omega) = 1$, és teljesül a következő:

Ha $A_1, A_2, \ldots, A_i, \cdots \in \mathcal{F}$ olyan eseménysorozat, amire minden $i \neq j$ esetén $A_i \cap A_j = \emptyset$, akkor

$$\mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

A feltétel röviden úgy olvasható: páronként kizáró eseménysorozat uniójának valószínűsége az események valószínűségeinek (végtelen) összege. Röviden ezt a tulajdonságot σ -additivitásnak nevezzük.

1.3.2. Definíció. Egy $(\Omega, \mathcal{F}, \mathbb{P})$ hármast (Kolmogorov-féle) valószínűségi mezőnek hívunk, ha \mathcal{F} σ -algebra az Ω halmazon és \mathbb{P} valószínűségi mérték.

1.3.3. Példa. A mérsékelten kreatív példánknál maradva, egy kockadobás esetén ha $\Omega = \{1, 2, 3, 4, 5, 6\}$, és \mathcal{F} az összes részhalmaz, akkor egy A esemény $\mathbb{P}(A)$ valószínűsége $|A|/|\Omega|$, például $\mathbb{P}(\{1, 2, 5, 6\}) = \frac{4}{6}$. Az ilyen valószínűségi mezőket (amikor $\mathbb{P}(A) = |A|/|\Omega|$) klasszikus valószínűségi mezőnek hívjuk. Ennek általánosítása a **geometriai valószínűségi mező**, amikor Ω a sík, tér (vagy \mathbb{R}^n) egy részhalmaza, és $\mathbb{P}(A) = \lambda(A)/\lambda(\Omega)$ ahol λ a terület, a térfogat vagy az n-dimenziós térfogat.

1.3.4. Példa. Nézzünk egy 5 kérdéses tesztet, amin minden kérdés eldöntendő (igen-nem típusú), és a kitöltő mindegyikre 60% eséllyel ad helyes választ a többi kérdésre adott választól függetlenül. Ekkor az 5 hosszú 0-1 sorozatok tere, azaz $\Omega = \{0,1\}^5$ modellezheti a feladatot ($\mathcal F$ pedig az összes részhalmaz). Ez már nem klasszikus valószínűségi mező, mert a csak a (0,1,0,1,0) kimenetelt tartalmazó esemény valószínűsége $0.4^3 \cdot 0.6^2 \approx 0.023$, nem pedig $\frac{1}{2^5} \approx 0.031$.

Mit várunk el egy jól működő valószínűség fogalomtól? Például a következő tulajdonságot, ami ugyan nem szerepel a definícióban, de könnyen levezethető belőle.

1.3.5. Állítás. Ha A és B kizáró, akkor $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

Bizonyítás. Használjuk a valószínűségi mérték definíciójában szereplő σ -additivitást azzal a választással, hogy $A_1=A,\ A_2=B,$ illetve $A_i=\emptyset$ minden $i\geq 3$ esetén. Ekkor

$$\mathbb{P}(A \cup B) = \mathbb{P}\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) = \mathbb{P}(A) + \mathbb{P}(B) + \sum_{i=3}^{\infty} \mathbb{P}(\emptyset).$$

Ez csak úgy történhet, ha $\mathbb{P}(\emptyset) = 0$ (különben a jobb oldal végtelen lenne, míg a bal 0 és 1 közti). Innen az állítás már következik.

- **1.3.6.** Következmény. Tetszőleges $A, B \in \mathcal{F}$ eseményekre a következők teljesülnek:
 - (1) $\mathbb{P}(A) + \mathbb{P}(\overline{A}) = 1$,
 - (2) $\mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A),$
 - (3) ha $B \subseteq A$, akkor $\mathbb{P}(B) < \mathbb{P}(A)$.

Bizonyítás. Az első állításhoz alkalmazzuk a véges additivitást az (egymást kizáró) A és \overline{A} eseményekre, a második állításhoz pedig az $A \cap B$ és $A \cap \overline{B}$ eseményekre. A harmadik tulajdonság következik a másodikból, hiszen $B \subseteq A$ esetén $A \cap B = B$, és $\mathbb{P}(A \cap \overline{B}) \geq 0$.

Feladat. Vegyünk egyenletesen véletlenszerűen egy egyszerű irányítatlan gráfot az $\{a, b, c, d\}$ négyelemű csúcshalmazon. (Ekkor az eseménytér egy 64 elemű halmaz.) Melyiknek nagyobb az esélye: hogy a gráf fagráf, vagy hogy legfeljebb három éle van?

7

1.4. Poincaré-formula

A

Hogyan lehet kiszámolni az unió valószínűségét, ha az események nem feltétlenül kizáróak? A válasz a Poincaré-formula (vagy más néven szita formula), amihez szintén csak a fenti véges additivitást kell használnunk.

1.4.1. Példa. Legyen A,B,C három esemény, például egy céltáblán három részhalmaz eltalálásának eseménye, amelyek közül legalább az egyiket el akarjuk találni.

A $\mathbb{P}(A \cup B \cup C)$ valószínűség kiszámolásához kiindulhatunk a $\mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$ mennyiségből. Vegyük észre, hogy itt a metszetek valószínűségét duplán számoltuk, vagyis le kell vonjuk a $\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) + \mathbb{P}(A \cap C)$

 $\mathbb{P}(B\cap C)$ összeget, ha jobb közelítést szeretnénk $\mathbb{P}(A\cup B\cup C)$ -ra. De ezzel sem vagyunk kész, hiszen az $A\cap B\cap C$ rész valószínűségét háromszor adtuk hozzá, de háromszor is vontuk le, pedig egyszer kellene számoljuk. Tehát végül

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

adódik. Ezt a formulát általánosítja n eseményre a Poincaré-formula.

A tétel rövid kimondásához további jelölésre van szükségünk. Jelölje [n] az $\{1, 2, ..., n\}$ halmazt. Legyenek $A_1, A_2, ..., A_n \in \mathcal{F}$ események, továbbá legyen $I = \{i_1, i_2, ..., i_k\}$ egy k elemű részhalmaza az [n] halmaznak. Ekkor nézhetjük a $\bigcap_{i \in I} A_i$ esemény valószínűségét, vagyis valamely k darab különböző esemény egyszerre teljesülésének valószínűségét. Végül definiáljuk az

$$S_k \stackrel{\text{def}}{=} \sum_{I \subseteq [n]} \mathbb{P}\Big(\bigcap_{i \in I} A_i\Big)$$

számot, azaz az összes lehetséges módon kiválasztunk k darab különböző eseményt, majd ezek metszeteinek valószínűségét mind összegezzük. Például k=1 esetén $S_1=\sum_{i=1}^n \mathbb{P}(A_i)$.

1.4.2. Tétel (Poincaré-formula). Legyenek $A_1, A_2, \ldots, A_n \in \mathcal{F}$ események. Ekkor

$$\mathbb{P}\Big(\bigcup_{j=1}^{n} A_j\Big) = \sum_{k=1}^{n} (-1)^{k+1} S_k.$$

Felmerülhet kérdésként, hogy mi történik, ha a szummának csak az első néhány tagját nézzük, a maradékot elhanyagoljuk (például mert a gyakorlatban annyira kicsik és lassan számolhatók). Az unió valószínűségéről ekkor is kaphatunk információt.

1.4.3. Állítás (Bonferroni-egyenlőtlenségek). Legyenek $A_1, A_2, \ldots, A_n \in \mathcal{F}$ események, és $1 \leq m_1, m_2 \leq n$ egészek, ahol m_1 páratlan, és m_2 páros. Ekkor

$$\mathbb{P}\Big(\bigcup_{j=1}^{n} A_j\Big) \le \sum_{k=1}^{m_1} (-1)^{k+1} S_k, \quad \text{\'es} \quad \mathbb{P}\Big(\bigcup_{j=1}^{n} A_j\Big) \ge \sum_{k=1}^{m_2} (-1)^{k+1} S_k.$$

A fenti két állítást nem bizonyítjuk. Példákat lásd a gyakorlaton.

1.4.4. Következmény (Boole-egyenlőtlenség). Legyenek $A_1, A_2, \ldots, A_n \in \mathcal{F}$ események. Ekkor

$$\mathbb{P}\Big(\bigcup_{j=1}^{n} A_j\Big) \leq \sum_{j=1}^{n} \mathbb{P}(A_j), \quad \text{\'es} \quad \mathbb{P}\Big(\bigcap_{j=1}^{n} A_j\Big) \geq 1 - \sum_{j=1}^{n} \mathbb{P}(\overline{A_j}).$$

Bizonyítás. Alkalmazzuk az első Bonferroni-egyenlőtlenséget $m_1 = 1$ választással, ebből éppen az első egyenlőtlenségünk adódik, hiszen S_1 a $\mathbb{P}(A_j)$ -k összege. A második egyenlőtlenség következik az elsőből és a De Morgan-azonosságból, ha azt az $\overline{A_j}$ eseményekre alkalmazzuk.

Az állítás a Bonferroni-egyenlőtlenség nélkül, teljes indukcióval is könnyen belátható.