Torque Control

vviineim

Introduction

_ ...

Tochniques

Experiencing Torque Control A Literary Review

C. Wilhelmi

George Mason University Fairfax, VA

October 17, 2016

Outline

Torque Control

Wilhelm

Definitions
Problems

- Introduction
- 2 Important Definitions
- Problems To Deal With
- 4 2011 To Present
- Takeaway Points

Introduction

Introduction

Torque Control

Wilhelm

Introduction

_ ...

1 TODICITIC

recrinique

The idea of Torque Control will be discussed in the following ways:

- Definitions
- Problems
- Techniques
- Interesting Concept
- Takeaway Points

ICUB¹

Definitions

Let's All Speak The Same Language

Torque Control

wilhein

Introductio

Definitions

Problem

Technique

- Asymptotic Stability
- Lyapunov Stability
- Fuzzy Logic

General Issues:

- Must manipulate end effector (or end joint) positions to execute a desired command [?]
- Must minimize or reject disturbances [?,?]
- Conventional controllers need exact dynamical models [?]
- Extremely nonlinear [?,?,?]

PID Controllers [?]

- Must decouple each joint
- Good for slow motion but degradation at faster speeds

Torque Controllers:

- Excellent control comes at the cost of flux [?]
- Powerful nonlinear controller that is widely used in robotic manipulators

Techniques

Super-Twisting Sliding Mode [?]

Torque Control

Wilhelm

Introductio Definitions

TTODICTIS

Techniques

Conclusion

- Fast switching of control inputs
- Produces a stable response
- The closed loop response is stable if external influences are bounded and gains set to large values
- Works well with PWM and inverter switching
- STSM control is a second order scheme
- Asymptotic convergence

Figure 3. The sliding-mode direct torque and flux controller (r = 0).

Techniques

Super-Twisting Sliding Mode [?]

device can be

Torque Control

Wilheln

Introduction Definitions

Problems

Techniques

that $0 \le r \le$ • Step 1: with r = 0, select K_P for the desired response time

The nonlinearity of the

controlled by changing the exponent *r* such

- the flux rising time has a strong impact on startup peak current
- Step 2: with r = 1, select K_I for the desired overshoot and settling time.

Try to not have a

Figure 1. The STSM-DTC controller for IM drives.

Torque Control

Wilhelm

Definitions
Problems

Techniques

- Fuzzy logic parameters can compensate for dynamic parameters
- Much simpler to implement than regular torque control problems
- Based on Brunousky canonical form

$$\dot{x} = Ax + Bu$$

$$\dot{x} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ I \end{bmatrix} N$$

$$N = B(q)[\dot{q}\dot{q}] + C(q)[\dot{q}]^2 + G(q)$$

Fig 1: PD CTC with application to rigid manipulator

Torque Control

Techniques

For the PD Feedback for N(t):

$$au = M(q)(\ddot{q}_d + K_D \dot{e} + K_P e) + N(c)$$

When gravity is added into the feedback system:

$$au = M(q)(\ddot{q}_d + K_D \dot{e} + K_P e) + G(c)$$

The above has been found to be stable in Lyapunov sense

Fig 1: PD CTC with application to rigid manipulator

Torque Control

wilnein

Introduction

Definitions

Problem

Techniques

. .

asdf

Fig. 1. HyQ: Hydraulic Quadruped robot. Left: picture of the robot. Right: sketch with labels of the three leg joints, hip abduction/adduction (HAA), hip flexion/extension (HFE) and knee flexion/extension (KFE) and endeffector trajectory of the trot experiment presented in Section V.

Torque Control

Techniques

asdf

Takeaway What did we learn?

Torque Control

Wilhelm

Introduction

Droblome

Techniques

Conclusion

In conclusion, several items were learned:

- Robotic manipulators and joints are highly nonlinear
- Torque control has several different ways to solve
- Stability criteria can be met
- Latex Beamer is just not fun

References I

Torque Control

Wilhelm

Introduction

Definitions

Б ...

Techniques

Conclusion