Methods for Causal Inference Lecture 6

Ava Khamseh School of Informatics

2021-2022

Causal inference with observed confounders

Overview of the course

- Lecture 1: Introduction & motivation, why do we care about causality?
- Lecture 2: Recap of probability theory, e.g., variables, events, conditional probabilities, independence, law of total probability, Bayes' rule
- Lecture 3: Recap of regression, multiple regression, graphs, SCM
- Lectures 4-20:

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to 'gold standard' of scientific research, used in biological, medical and behavioural sciences

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to 'gold standard' of scientific research, used in biological, medical and behavioural sciences

But RCT's can be impossible, imperfect or unethical:

Can be very costly and difficult to organise (demanding resources)

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to 'gold standard' of scientific research, used in biological, medical and behavioural sciences

But RCT's can be impossible, imperfect or unethical:

- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to 'gold standard' of scientific research, used in biological, medical and behavioural sciences

But RCT's can be impossible, imperfect or unethical:

- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm
- Unethical: Asking pregnant women to smoke to observe child birth weight Denying the control subjects a drug, e.g. treatment could have been potentially life saving for cancer patients

Randomised Control Trials (RCT): Subjects are assigned at random to various groups (treatment or control)

RCTs are sometimes referred to 'gold standard' of scientific research, used in biological, medical and behavioural sciences

But RCT's can be impossible, imperfect or unethical:

- Can be very costly and difficult to organise (demanding resources)
- Perfect control is hard to achieve (imperfect compliance): Adverse reaction to an experimental drug means dose has to be reduce no avoid harm
- Unethical: Asking pregnant women to smoke to observe child birth weight Denying the control subjects a drug, e.g. treatment could have been potentially life saving for cancer patients
- Randomisation may influence participation and behaviour

Randomising an instrument

Causal inference from studies in which subject have a final choice

Randomisation is confined to an indirect **instrument** that encourages or discourage participation in treatment or control programmes.

(However, imperfect compliance poses a problem, e.g., subjects that declined taking the drug are precisely those who would have responded adversely. So experiment might conclude the drug is more effective than it actually is.

-> more complex methods, e.g. bounds)

Instrumental Variable

- Unobserved confounders (U), violates unconfoundedness,
 i.e. conditioning on X alone, would not results in a randomised treatment assignment
- Unconfoundedness is fundamentally unverifiable

Naive regression lead to bias

$$Y = \tau T + \delta_U U$$

Naive regression lead to bias

What happens if we naively perform a regression of Y on T:

$$Y = \tau T + \delta_U U$$

$$\frac{\operatorname{Cov}[T, Y]}{\operatorname{Var}[T]} = \frac{\tau \operatorname{Var}[T] + \tau \delta_U \operatorname{Var}[U]}{\operatorname{Var}[T]} = \tau + \frac{\tau \delta_U \operatorname{Var}[U]}{\operatorname{Var}[T]}$$

Bias term

something wrong here

Instrumental Variable example

- Example 1:
 - T: smoking during pregnancy
 - Y: birthweight
 - X: parity, mother's age, weight, ...
 - U: Other unmeasured confounders

- Randomise Z (intention-to-treat): either receive encouragement to stop smoking (Z=1), or receive usual care (Z=0)
- Intention-to-treat analysis gives causal effect estimator of encouragement z on outcome y:

$$\mathbb{E}(y|z=1) - \mathbb{E}(y|z=0)$$

What can we say about the causal effect of smoking itself?

• **SUTVA**: Potential outcomes for each individual i are unrelated to the treatment status of other individuals:

$$Y^{(i)}(\mathbf{Z}, \mathbf{T}) = Y^{(i)}(Z^{(i)}, T^{(i)}), |\mathbf{Z}| = |\mathbf{T}| = N \text{ individuals}$$

• **SUTVA**: Potential outcomes for each individual i are unrelated to the treatment status of other individuals:

$$Y^{(i)}(\mathbf{Z}, \mathbf{T}) = Y^{(i)}(Z^{(i)}, T^{(i)}), |\mathbf{Z}| = |\mathbf{T}| = N \text{ individuals}$$

Treatment assignment Z associated with the treatment is random:

$$P(Z^{(i)} = 0) = P(Z^{(i)} = 1) , \forall i$$

• **SUTVA**: Potential outcomes for each individual i are unrelated to the treatment status of other individuals:

$$Y^{(i)}(\mathbf{Z}, \mathbf{T}) = Y^{(i)}(Z^{(i)}, T^{(i)}), |\mathbf{Z}| = |\mathbf{T}| = N \text{ individuals}$$

Treatment assignment Z associated with the treatment is random:

$$P(Z^{(i)} = 0) = P(Z^{(i)} = 1) , \forall i$$

Exclusion Restriction: Any effect of Z on Y is via an effect of Z on T, i.e.,
 Z should not affect Y when T is hold constant.

$$(Y^{(i)}|z=1,t) = (Y^{(i)}|z=0,t)$$

z can only affect y through t

 SUTVA: Potential outcomes for each individual i are unrelated to the treatment status of other individuals:

$$Y^{(i)}(\mathbf{Z}, \mathbf{T}) = Y^{(i)}(Z^{(i)}, T^{(i)}), |\mathbf{Z}| = |\mathbf{T}| = N \text{ individuals}$$

Treatment assignment Z associated with the treatment is random:

$$P(Z^{(i)} = 0) = P(Z^{(i)} = 1) , \forall i$$

- Exclusion Restriction: Any effect of Z on Y is via an effect of Z on T, i.e., Z should not affect Y when T is held constant $(Y^{(i)}|z=1,t) = (Y^{(i)}|z=0,t)$
- Non-zero Average: $\mathbb{E}\left[\left(T^{(i)}|z=1\right)-\left(T^{(i)}|z=0\right)\right]$ Relevance

 SUTVA: Potential outcomes for each individual i are unrelated to the treatment status of other individuals:

$$Y^{(i)}(\mathbf{Z}, \mathbf{T}) = Y^{(i)}(Z^{(i)}, T^{(i)}), |\mathbf{Z}| = |\mathbf{T}| = N \text{ individuals}$$

Treatment assignment Z associated with the treatment is random:

$$P(Z^{(i)} = 0) = P(Z^{(i)} = 1) , \forall i$$

- Exclusion Restriction: Any effect of Z on Y is via an effect of Z on T, i.e., Z should not affect Y when T is held constant $(Y^{(i)}|z=1,t) = (Y^{(i)}|z=0,t)$
- Non-zero Average: $\mathbb{E}\left[\left(T^{(i)}|z=1\right)-\left(T^{(i)}|z=0\right)\right]$ Relevance
- **Monotonicity** (increasing encouragement "dose" increases probability of treatment, no defiers):

$$\left(T^{(i)}|z=1\right) \ge \left(T^{(i)}|z=0\right)$$

Instrumental Variable: Potential values of T

Population	T z=0	T z=1	Description
Never-takers	0	0	Causal effect of Z on T is zero, since $ \left(T^{(i)} z=1\right) - \left(T^{(i)} z=0\right) = 0 $
Compliers	0	1	$\left(T^{(i)} z=1\right)-\left(T^{(i)} z=0\right)=1$ Treatment received is randomised
Defiers	1	0	Rule out by monotonicity , since $ \left(T^{(i)} z=1\right) - \left(T^{(i)} z=0\right) = -1 $
Always-takers	1	1	Causal effect of Z on Y is zero, since $ \left(T^{(i)} z=1\right) - \left(T^{(i)} z=0\right) = 0 $

Notation: T=1 is **not** smoking

Want ATE:

$$\mathbb{E}[(Y|t=1) - (Y|t=0)]$$

Will estimate:

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

Want ATE:
$$\mathbb{E}\left[\left(Y^{(i)}|t^{(i)}=1\right)-\left(Y^{(i)}|t^{(i)}=0\right)\right]$$

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

Derivation:

Want ATE:
$$\mathbb{E}\left[\left(Y^{(i)}|t^{(i)}=1\right)-\left(Y^{(i)}|t^{(i)}=0\right)\right]$$

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

Derivation:

Want ATE:
$$\mathbb{E}\left[\left(Y^{(i)}|t^{(i)}=1\right)-\left(Y^{(i)}|t^{(i)}=0\right)\right]$$

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

Derivation:

$$\begin{split} &\left(Y^{(i)}|T^{(i)}(z=1)\right) - \boxed{\left(Y^{(i)}|T^{(i)}(z=0)\right)} \quad \text{t is either t=0 or t=1, and exclusion restriction} \\ &= \left[Y^{(i)}\left(t^{(i)}=1\right) \cdot \left(t^{(i)}|z=1\right) + Y^{(i)}\left(t^{(i)}=0\right) \cdot \left(1 - \left(t^{(i)}|z=1\right)\right)\right] \\ &- \left[Y^{(i)}\left(t^{(i)}=1\right) \cdot \left(t^{(i)}|z=0\right) + Y^{(i)}\left(t^{(i)}=0\right) \cdot \left(1 - \left(t^{(i)}|z=0\right)\right)\right] \end{split}$$

$$= \left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \cdot \left(\left(t^{(i)} | z = 1 \right) - \left(t^{(i)} | z = 0 \right) \right)$$

Want ATE:
$$\mathbb{E}\left[\left(Y^{(i)}|t^{(i)}=1\right)-\left(Y^{(i)}|t^{(i)}=0\right)\right]$$

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

Derivation:

To continue the derivation, we use the fact that:

$$\mathbb{E}\left[XY\right] = \int \int xy \ p(x,y) dx dy = \int dy \ y \ p(y) \int dx \ x \ p(x|y) = \int dy \ y \ p(y) \mathbb{E}[x|y]$$

and write,

$$\mathbb{E}\left[\left(Y^{(i)}|T^{(i)}(z=1)\right) - \left(Y^{(i)}|T^{(i)}(z=0)\right)\right]$$
 0, 1, -1
$$= \mathbb{E}\left[\left(Y^{(i)}\left(t^{(i)} = 1\right) - Y^{(i)}\left(t^{(i)} = 0\right)\right) \cdot \left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right)\right)\right]$$

To continue the derivation, we use the fact that:

$$\mathbb{E}\left[XY\right] = \int \int xy \ p(x,y) dx dy = \int dy \ y \ p(y) \int dx \ x \ p(x|y) = \int dy \ y \ p(y) \mathbb{E}[x|y]$$

and write,

$$\mathbb{E}\left[\left(Y^{(i)}|T^{(i)}(z=1)\right) - \left(Y^{(i)}|T^{(i)}(z=0)\right)\right] \qquad \qquad \textbf{0, 1, -1}$$

$$= \mathbb{E}\left[\left(Y^{(i)}\left(t^{(i)}=1\right) - Y^{(i)}\left(t^{(i)}=0\right)\right) \cdot \left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right)\right)\right]$$

$$= \mathbb{E}\left[\left(Y^{(i)}\left(t^{(i)}=1\right) - Y^{(i)}\left(t^{(i)}=0\right)\right) | \left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right)\right) = 1\right] \cdot P\left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right) = 1\right)$$

$$-\mathbb{E}\left[\left(Y^{(i)}\left(t^{(i)}=1\right) - Y^{(i)}\left(t^{(i)}=0\right)\right) | \left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right)\right) = -1\right] \cdot P\left(\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right) = -1\right)$$
because 0 will eliminate the term

because 0 will eliminate the term

$$\frac{\mathbb{E}\left[\left(Y^{(i)}|T^{(i)}(z=1)\right) - \left(Y^{(i)}|T^{(i)}(z=0)\right)\right]}{\mathbb{E}\left[\left(t^{(i)}|z=1\right) - \left(t^{(i)}|z=0\right)\right]}$$

$$= \mathbb{E}\left[\left(Y^{(i)} \left(t^{(i)} = 1 \right) - Y^{(i)} \left(t^{(i)} = 0 \right) \right) \middle| \left(\left(t^{(i)} | z = 1 \right) - \left(t^{(i)} | z = 0 \right) \right) = 1 \right]$$

i.e. restricting to *compliers*, the average causal effect of Z on Y is proportional to the average causal effect of T on Y. Rubin 1996

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

- In this example, Z was randomly assigned as part of the study
- IV can also be randomised in nature (nature randomiser):
 - Mendelian randomisation
 - Quarter of birth (T=education, Y=earning)

Instrumental Variable: Mendelian Randomisation

Population genetics:

Z = a DNA variant associated with a particular exposure T

T = exposure, e.g. lipid levels in the blood

Y = heart disease

X = population stratification (might affect Z, need to adjust)

U = unobserved variables affecting both lipid levels and disease

Instrumental Variable: Economics

How does price of a product casually affect demand?

Z = Market supply

T = Price

Y = Demand

U = Factors confounding influencing price and demand (e.g. tax imposed)

Instrumental Variable: Economics

How does price of a product casually affect demand?

Z = Market supply

T = Price

Y = Demand

U = Factors confounding influencing price and demand (e.g. tax imposed)

Exclusion restriction requires that market supply does not affect demand (e.g. COVID-19 toilet paper fiasco!)

(e.g. Pokemon cards)

Also, individuals may not be independent anymore

The Wald Estimator (for binary variables)

$$\tau = \frac{\mathbb{E}\left[(Y|z=1) - (Y|z=0) \right]}{\mathbb{E}\left[(T|z=1) - (T|z=0) \right]}$$

$$\hat{\tau} = \frac{\frac{1}{n_{z=1}} \sum_{i \in z=1} Y^{(i)} - \frac{1}{n_{z=0}} \sum_{i \in z=0} Y^{(i)}}{\frac{1}{n_{z=1}} \sum_{i \in z=1} T^{(i)} - \frac{1}{n_{z=0}} \sum_{i \in z=0} T^{(i)}}$$

Linear case:

$$\tau = \frac{\operatorname{Cov}(Y, Z)}{\operatorname{Cov}(T, Z)}$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

Two-Stage Least-squares Estimator

Linear case:

$$\tau = \frac{\operatorname{Cov}(Y, Z)}{\operatorname{Cov}(T, Z)}$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

Two-Stage Least-squares Estimator

$$Cov(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z]$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

$$Cov(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z]$$
$$= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z]$$

By linearity and exclusion restriction

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

$$Y = \tau T + \delta_U U$$

$$Cov(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z]$$

$$= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z]$$

$$= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z]$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

$$Y = \tau T + \delta_U U$$

$$Cov(Y, Z) = \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z]$$

$$= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z]$$

$$= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z]$$

$$= \tau Cov(T, Z) + \delta_U Cov(U, Z)$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

$$Y = \tau T + \delta_U U$$

$$\begin{aligned} \operatorname{Cov}(Y,Z) &= \mathbb{E}[YZ] - \mathbb{E}[Y]\mathbb{E}[Z] \\ &= \mathbb{E}(\tau T + \delta_u U)Z] - \mathbb{E}[\tau T + \delta_u U]\mathbb{E}[Z] \\ &= \tau \mathbb{E}[TZ] + \delta_u \mathbb{E}[UZ] - \tau \mathbb{E}[T]\mathbb{E}[Z] - \delta_u \mathbb{E}[U]\mathbb{E}[Z] \\ &= \tau \operatorname{Cov}(T,Z) + \delta_U \operatorname{Cov}(U,Z) \quad \text{Instrument is not} \\ &= \tau \operatorname{Cov}(T,Z) \qquad \text{confounded by U} \end{aligned}$$

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y, Z)}{\hat{\text{Cov}}(T, Z)}$$

Non-zero denominator by relevance assumption

$$Y = \tau T + \delta_U U$$

Two-Stage Least Squares Estimator (linear regression):

- 1. Estimate $\mathbb{E}[T|Z]$, to obtain \hat{T} in subspace Z
- 2. Estimate $\mathbb{E}[Y|\hat{T}]$, to obtain $\hat{\tau}$, which is the fitted coefficient in front of \hat{T} in this regression.

Two-Stage Least Squares Estimator (linear regression):

- 1. Estimate $\mathbb{E}[T|Z]$, to obtain \hat{T} in subspace Z
- 2. Estimate $\mathbb{E}[Y|\hat{T}]$, to obtain $\hat{\tau}$, which is the fitted coefficient in front of \hat{T} in this regression.

Methods for Causal Inference Lecture 6

Ava Khamseh School of Informatics

2021-2022