PRELIMINARIES

NUMBER OF QUESTIONS—60

NO CALCULATOR

- 1. A line connects the points (0,1) and (1,5). Its slope is
 - (A) -4 (B) -1 (C) 1
- (D) 4
- (E) 5
- **2.** The function $ax^2 + 2x + c$ is rewritten in the form $a(x h)^2 + k$, where h and k are constants. What is the value of k?

- (A) $\frac{1}{2a^2}$ (B) $\frac{1}{a^2}$ (C) $\frac{ac-1}{a}$ (D) $\frac{a^2c-1}{a}$ (E) $\frac{1-ac}{a}$

- 3. $\frac{x-2}{x+4} > 0$ if
 - (A) x < -4
 - (B) -4 < x < 2
 - (C) $-4 < x \le 2$
 - (D) x > 2
 - (E) x < -4, x > 2

- **4.** The domain of $e^{\sqrt{x-2}} 6$ is
 - (A) $x \ge -6$
 - (B) $x \geqslant 0$
 - (C) $x \leq 2$
 - (D) $x \ge 2$
 - (E) all real numbers
- 5. For $\pi < \theta < \frac{3\pi}{2}$, $\cos \theta = -\frac{1}{5}$. Then $\sin \theta =$
 - (A) $-\frac{\sqrt{24}}{5}$ (B) $-\frac{4}{5}$ (C) $\frac{1}{5}$

- (D) $\frac{4}{5}$ (E) $\frac{\sqrt{24}}{5}$
- **6.** What is the solution set of x in the following system of equations?

$$y = 5x - 3$$

$$y = x^2 + 1$$

- (A) $\{-17, -2\}$
- (B) $\{-4, -1\}$
- (C) $\{1,4\}$
- (D) $\{2,17\}$
- (E) $\{4\}$

7. If
$$f(x) = x^3 - 4$$
, then $f^{-1}(x) =$

(A)
$$f^{-1}(x) = \sqrt[3]{x+4}$$

(B)
$$f^{-1}(x) = \frac{1}{x^3 - 4}$$

(C)
$$f^{-1}(x) = \sqrt[3]{x-4}$$

(D)
$$f^{-1}(x) = \sqrt[3]{x^3 - 8}$$

(E)
$$f^{-1}(x) = \frac{1}{\sqrt[3]{x+4}}$$

8. A man stands 50 feet from a building that is 200 feet tall. The angle between the man and the top of the building is

(A)
$$\tan^{-1}(4)$$
 (B) $\tan^{-1}\left(\frac{1}{4}\right)$ (C) $\sin^{-1}(4)$ (D) $\sin^{-1}\left(\frac{1}{4}\right)$ (E) $\cos^{-1}(4)$

9. The horizontal asymptote of $f(x) = \frac{2x^3 + 8x^2 - 6x}{4 + 8x^3} + 1$ is

(A)
$$y = 0$$
 (B) $y = \frac{1}{4}$ (C) $y = 1$ (D) $y = \frac{5}{4}$ (E) $y = 2$

- **10.** Which transformation must be performed to f(x) to obtain the new function g(x) = 3f(2x-4) + 7?
 - (A) f(x) must be shifted 2 units to the left.
 - (B) f(x) must be shifted 2 units to the right.
 - (C) f(x) must be shifted 4 units to the left.
 - (D) f(x) must be shifted 4 units to the right.
 - (E) f(x) must be shifted down 7 units.
- 11. $\cos\left(\frac{3\pi}{4}\right)$ is
 - (A) $-\frac{\sqrt{3}}{2}$ (B) $-\frac{\sqrt{2}}{2}$ (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$ (E) $\frac{\sqrt{2}}{2}$

- **12.** The slope of x 2y = 3 is
- (A) -2 (B) -1 (C) $-\frac{1}{2}$ (D) $\frac{1}{2}$
- (E) 1

- 13. Which statement is true about $f(x) = x^2 4x + 5$?
 - (A) f(x) has a minimum at (-2,1).
 - (B) f(x) has a maximum at (-2,1).
 - (C) f(x) has a minimum at (2,1).
 - (D) f(x) has a maximum at (2,1).
 - (E) f(x) has a minimum at (4,5).
- **14.** Which function has a vertical asymptote at x = 1?

(A)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$

(B)
$$f(x) = \sqrt{x-1}$$

(C)
$$f(x) = \frac{x^2 - 1}{x - 1}$$

(D)
$$f(x) = \frac{x-1}{x+1}$$

(E)
$$f(x) = \frac{x^2}{x}$$

15. Which expression is equivalent to $(4w^2x^8y^{-2}\sqrt{z})^{-1/2}$?

(A)
$$\frac{2wx^4\sqrt[4]{z}}{y}$$
 (B) $\frac{y}{2wx^4\sqrt[4]{z}}$ (C) $\frac{2y}{wx^4\sqrt[4]{z}}$ (D) $\frac{wx^4\sqrt[4]{z}}{2y}$ (E) $\frac{2wx^4}{y^2\sqrt{z}}$

$$(B) \quad \frac{y}{2wx^4\sqrt[4]{z}}$$

(C)
$$\frac{2y}{wx^4\sqrt[4]{z}}$$

$$(D) \quad \frac{wx^4\sqrt[4]{z}}{2y}$$

$$(E) \quad \frac{2wx^4}{y^2\sqrt{z}}$$

16.
$$\frac{2x^2 - 5x + 9}{x - 1} =$$

(A)
$$2x^2 - 3x + 6$$

(B)
$$2x-3+\frac{6}{x-1}$$

(C)
$$2x^2 - 3x + \frac{6}{x-1}$$

(D)
$$2x - 3$$

(E)
$$2x-7+\frac{2}{x-1}$$

17. Assuming that the domains are restricted to avoid division by zero, $\frac{x^2 - 10x + 24}{x - 3} \cdot \frac{2(x - 6)^{-1}}{x - 4} = \frac{10x + 24}{x - 4}$

(A)
$$\frac{2(x-4)}{x-3}$$

(B)
$$\frac{2}{x-3}$$

(C)
$$\frac{2}{(x-3)(x-6)}$$

(D)
$$\frac{2(x-6)(x-4)}{x-3}$$

(E)
$$\frac{2}{x-4}$$

- **18.** The domain of $g(x) = \frac{\log_2(x)}{x-5}$ is
 - (A) $x \neq 0$
 - (B) x > 0
 - (C) $x \neq 5$
 - (D) $x > 0, x \neq 5$
 - (E) all real numbers
- **19.** Which option best describes the end behavior of $f(x) = e^{-2x} 2$?
 - (A) As $x \to \infty$, $f(x) \to -\infty$.
 - (B) As $x \to \infty$, $f(x) \to -2$.
 - (C) As $x \to \infty$, $f(x) \to 0$.
 - (D) As $x \to \infty$, $f(x) \to 1$.
 - (E) As $x \to \infty$, $f(x) \to \infty$.
- **20.** $\frac{\sin^8(x) \cos^8(x)}{\sin^4(x) + \cos^4(x)} =$
 - (A) $\frac{1}{2}$
 - (B) 1
 - (C) $\sin^2(x) \cos^2(x)$
 - (D) $\sin^4(x) + \cos^4(x)$
 - (E) $\cos^2(x) \sin^2(x)$

- 21. The period of $7 \sin \left(3x \frac{\pi}{4}\right) 2$ is

 - (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) π
- (D) 2π
- (E) 4π

- **22.** log(12) =
 - (A) 2log6
 - (B) 3log4
 - (C) $\log(4) + \log(3)$
 - (D) log(12)log(1)
 - (E) log(6)log(2)
- **23.** If $a = be^{cd}$, then d =
 - (A) $\frac{\ln(b) \ln(a)}{c}$
 - (B) $\frac{\ln a}{c \ln b}$
 - (C) $\sqrt[c]{\frac{a}{b}}$
 - (D) $\frac{1}{c}e^{a/b}$
 - (E) $\frac{\ln(a) \ln(b)}{c}$

24.
$$\sqrt{a} + \sqrt{b} =$$

- (A) $\sqrt{a+b}$
- (B) $\sqrt{a-b}$
- (C) \sqrt{ab}
- (D) $a\sqrt{b}$
- (E) None of the above
- **25.** What are the solutions to the equation $\frac{x^2 5x 24}{x 8} = 2x 5$?
 - (A) x = -3
 - (B) $x = \frac{5}{2}$
 - (C) x = 8
 - (D) x = -3, x = 8
 - $(E) \ \ The \ equation \ has \ no \ solution.$

26.
$$4^a \frac{2^{3b-1}}{8^{1-c}} =$$

- (A) $2^{a+3b+c-2}$
- (B) 2^{a+3b-c}
- (C) $2^{2a+3b-3c+2}$
- (D) $2^{2a+3b+3c-4}$
- (E) $2^{a(3b-1)/(1-c)}$

27. Which function does *not* have all real numbers as its range?

(A)
$$y = 3x$$

(B)
$$y = 4x^3 - 8x^2 + x - 17$$

$$(C) y = \log_4(x+2)$$

(D)
$$y = \frac{x^2 - 3x - 10}{x + 2}$$

$$(E) \ y = \frac{e^x}{x - 3}$$

28. What values of *x* satisfy $\ln(x-3) + \ln(x+1) = \ln(5)$?

(A)
$$x = -4, x = 2$$

(B)
$$x = -2, x = 4$$

(C)
$$x = -2$$

(D)
$$x = 2, x = 4$$

(E)
$$x = 4$$

29. What is an equation of the line that passes through the point (-2,1) and has a slope of $-\frac{1}{2}$?

(A)
$$y+1 = -\frac{1}{2}(x-2)$$

(B)
$$y+1 = -\frac{1}{2}(x+2)$$

(C)
$$y-1=-\frac{1}{2}(x+2)$$

(D)
$$y+1=\frac{1}{2}(x-2)$$

(E)
$$y-1=\frac{1}{2}(x+2)$$

- **30.** The solution set of x in $\frac{3}{x-1} = \frac{x-2}{2}$ is

 - (A) $\{-4,1\}$ (B) $\left\{-\frac{3}{2},1\right\}$ (C) $\{-1,4\}$ (D) $\{-1\}$ (E) $\{4\}$

- 31. The range of $-3\cos\left(4x-\frac{\pi}{3}\right)+7$ is
 - (A) [-4,10] (B) [-3,3] (C) [4,10] (D) [5,11]

- (E) [11,15]

32. A downward-opening parabola intersects the y-axis at (0,30) and has zeros of x=-2 and x=5. The parabola's equation is

(A)
$$y = (x-2)(x-5)$$

(B)
$$y = (x+2)(x+5)$$

(C)
$$y = 3(x-2)(x-5)$$

(D)
$$y = -3(x+2)(x+5)$$

(E)
$$y = -3(x-2)(x-5)$$

33. $\cos(\tan^{-1}x) =$

(A)
$$\frac{x}{\sqrt{1+x^2}}$$
 (B) x

(C)
$$\frac{1}{\sqrt{1+x^2}}$$

$$(D) \quad \frac{1}{\sqrt{1-x^2}}$$

(C)
$$\frac{1}{\sqrt{1+x^2}}$$
 (D) $\frac{1}{\sqrt{1-x^2}}$ (E) $\frac{\sqrt{1+x^2}}{x}$

34. Which function does *not* have all real numbers as its domain?

$$(A) \ y = \frac{x^2}{x}$$

(B)
$$y = 2^x$$

(C)
$$y = -3\sin(x-4) + 9$$

(D)
$$y = |x - 4| - 2$$

(E)
$$y = -7$$

35. If $f(x) = x^2 - 4$ and $g(x) = \sin^2(x - 3)$, then g(f(x)) =

(A)
$$\sin^4(x-3)-4$$

(B)
$$\sin^2(x^2-7)$$

(C)
$$\sin^4(x-3) - 4\sin^2(x-3)$$

(D)
$$\sin^2(x^2 - x - 7)$$

(E)
$$\sin^2(x^2-4)$$

- **36.** What value of *x* satisfies $2^{3x-1} = 8^{4x-2}$?
 - (A) $\log_2\left(\frac{1}{5}\right)$ (B) $\log_2\left(\frac{5}{9}\right)$ (C) $\frac{1}{5}$
- (D) $\frac{5}{9}$
- (E) 1
- 37. An object's kinetic energy varies directly as the square of the object's speed. A cannonball traveling at 5 meters per second has a kinetic energy of 100 joules. How much kinetic energy would the cannonball have if it traveled at 10 meters per second?
 - (A) 40 joules
- (B) 100 joules
- (C) 200 joules
- (D) 400 joules
- (E) 2000 joules

- **38.** Polynomial f(x) contains the distinct factor $(x-p)^2$. Which statement describes the behavior of f(x) at x=p?
 - (A) f(x) intersects the x-axis at x = p.
 - (B) f(x) curves through the x-axis at x = p.
 - (C) f(x) bounces off the x-axis at x = p.
 - (D) f(x) does not touch the x-axis at x = p.
 - (E) f(x) is undefined at x = p.
- **39.** $f(x) = \log_3(\sqrt[3]{x-p})$ is undefined for
 - (A) $p \leq 0$
- (B) $p \geqslant 0$
- (C) p = x
- (D) $p \leqslant x$
- (E) $p \geqslant x$
- **40.** Which statement describes the end behavior of $f(x) = x^6 + 2x^5 x^2 + 4$?
 - (A) As $x \to -\infty$, $f(x) \to 0$; as $x \to \infty$, $f(x) \to 0$.
 - (B) As $x \to -\infty$, $f(x) \to -\infty$; as $x \to \infty$, $f(x) \to -\infty$.
 - (C) As $x \to -\infty$, $f(x) \to -\infty$; as $x \to \infty$, $f(x) \to \infty$.
 - (D) As $x \to -\infty$, $f(x) \to \infty$; as $x \to \infty$, $f(x) \to \infty$.
 - (E) As $x \to -\infty$, $f(x) \to \infty$; as $x \to \infty$, $f(x) \to \infty$.

41.
$$\sum_{i=1}^{5} (2i-1) =$$

- (A) 8
- (B) 20
- (C) 25
- (D) 30
- (E) 125

42. The range of
$$\frac{2}{5-x} - 1$$
 is

- (A) all real numbers
- (B) x > -1
- (C) $x > -\frac{3}{5}$
- (D) $x \neq 0$
- (E) $x \neq 5$
- **43.** What are the solutions to |x-4|+2=5?
 - (A) x = -1
 - (B) x = 3
 - (C) x = 7
 - (D) x = -1, x = 7
 - (E) x = 1, x = 7

44.
$$\sec\left(\frac{\pi}{2}\right)$$
 is

- (A) -1
- (B) 0
- (C) 1
- (D) π
- (E) undefined

- **45.** Which expression is equivalent to $\frac{1}{a} + \frac{1}{b}$?
 - (A) $\frac{a+b}{ab}$ (B) $\frac{1}{a+b}$ (C) $\frac{1}{ab}$ (D) $\frac{ab}{a+b}$ (E) $\frac{2}{a+b}$

- **46.** Which expression is equivalent to $\left(4a^4b^3c^{-7}d^{-5}\right)^2$?
 - (A) $16a^8b^6c^{-14}d^{-10}$
 - (B) $\frac{a^4b^3}{16c^7d^5}$
 - (C) $\frac{c^{14}}{16a^8b^6}$
 - (D) $\frac{a^2b}{16c^9d^7}$
 - (E) $\frac{16c^9d^7}{a^2h}$
- 47. A sphere with radius r has a volume of $\frac{4}{3}\pi r^3$ and a surface area of $4\pi r^2$. A spherical ball has a surface area of 400π square meters. Its volume, in cubic meters, is
 - (A) 10
- (B) $\frac{40\pi}{3}$ (C) 1000
- (D) $\frac{400\pi}{3}$ (E) $\frac{4000\pi}{3}$

48.
$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) =$$

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{2\pi}{3}$ (D) $\frac{1}{2}$ (E) $\frac{\sqrt{3}}{2}$
- **49.** Which expression is equivalent to $e^{f(x)}$? (Note: $\log x = \log_{10} x$.)
 - (A) $10^{f(x)\log e}$
 - (B) $10^{f(x) + \log e}$
 - (C) $10^{f(x)\ln 10}$
 - (D) $10^{f(x)-\log e}$
 - (E) $10^{f(x)+\ln 10}$
- **50.** $2x^2 kx + 8$ has no real solutions for
 - (A) -8 < k, k > 8
 - (B) $k < -\sqrt{2}, k > \sqrt{2}$
 - (C) -8 < k < 8
 - (D) $-2\sqrt{2} < k < 2\sqrt{2}$
 - (E) k < 64

51. If
$$f(x) = x^2 + 4$$
, then $\frac{f(x+h) - f(x)}{h} =$

- (A) 2x+h
- (B) 2x + 2h (C) $x^2 + h$
- (D) 2x+h+4 (E) x^2+h+4

52. For 0 < x < 1, which inequality is true?

(A)
$$\sqrt{x} < x^2 < x$$

(B)
$$x^2 < x < \sqrt{x}$$

(C)
$$\sqrt{x} < x < x^2$$

(D)
$$x^2 < \sqrt{x} < 1$$

(E)
$$x < \sqrt{x} < x^2$$

53. Which set of x satisfies the following system of equations?

$$y = 2\sin^2 x$$
$$y - 1 = \sin x$$

(A)
$$\{-1,2\}$$

(B)
$$\left\{-\frac{1}{2},1\right\}$$

(C)
$$\left\{\frac{3\pi}{2}\right\}$$

(D)
$$\left\{\frac{\pi}{2}, \frac{7\pi}{6}\right\}$$

(E) No solution exists.

- **54.** If $f(x) = \cos(2x+4)$ and $g(x) = \sqrt{x-2}$, then the domain of f(g(-2x)) is
 - (A) $x \leq -2$
 - (B) $x \le -1$
 - (C) $x \ge 1$
 - (D) $x \geqslant 2$
 - (E) all real numbers
- **55.** What values of x satisfy the inequality $x^2 4x + 3 > 0$?
 - (A) $-\infty < x < \infty$
 - (B) 1 < x < 3
 - (C) $1 \le x \le 3$
 - (D) x < 1, x > 3
 - (E) $x < 1, x \ge 3$
- **56.** Which set of *x* satisfies $e^{2x} 5e^x + 6 = 0$?
 - $(A) \ \{-\ln(3), -\ln(2)\}$
 - (B) $\{-\ln(2), \ln(3)\}$
 - (C) $\left\{-\ln\left(\frac{3}{2}\right), -\ln\left(\frac{2}{3}\right)\right\}$
 - (D) $\{ln(2), ln(3)\}$
 - (E) $\{2,3\}$

57. Which expression is equivalent to sec(x) - csc(x)?

(A)
$$\frac{\cos(x) - \sin(x)}{\sin(x)\cos(x)}$$

(B)
$$\frac{\sin(x)\cos(x)}{\sin(x) + \cos(x)}$$

(C)
$$\frac{\sin(x) + \cos(x)}{\sin(x)\cos(x)}$$

(D)
$$\frac{\sin(x) - \cos(x)}{\sin(x)\cos(x)}$$

(E)
$$\frac{\sin(x) - \cos(x)}{\sin(x) + \cos(x)}$$

58. What values of x satisfy the equation $\frac{2}{x+4} - \frac{2}{x-1} = 3$?

(A)
$$x = \frac{9 \pm \sqrt{9^2 - 4(3)(2)}}{2(3)}$$

(B)
$$x = \frac{9 \pm \sqrt{9^2 - 4(3)(2)}}{2(3)}$$

(C)
$$x = \frac{9 \pm \sqrt{9^2 - 4(3)(2)}}{3}$$

(D)
$$x = \frac{-9 \pm \sqrt{9^2 - 4(3)(2)}}{3}$$

(E)
$$x = \frac{9 \pm \sqrt{9^2 - (3)(2)}}{3}$$

- **59.** Let f be an invertible function. The graph of y = g(x) is obtained by performing the following transformations to the graph of y = f(x):
 - The graph is reflected across the line y = x.
 - The graph is then shifted 4 units to the left.
 - The graph is then translated 3 units down.

Which function is g(x)?

(A)
$$g(x) = f(x+4) - 3$$

(B)
$$g(x) = f(x-4) - 3$$

(C)
$$g(x) = f^{-1}(x+4) - 3$$

(D)
$$g(x) = f^{-1}(x-4) - 3$$

(E)
$$g(x) = f^{-1}(x-4) + 3$$

60. Which expression is equivalent to $\log(2w) + 3\log(x) - \frac{1}{2}\log(4y) + 3\log(z)$?

(A)
$$\log\left(\frac{\sqrt{y}}{wx^3z^3}\right)$$

(B)
$$\log \left(\frac{wx^3z^3}{2\sqrt{y}} \right)$$

(C)
$$\log\left(\frac{w\sqrt{y}}{4x^3z^3}\right)$$

(D)
$$\log \left(\frac{wz^3}{2x^3\sqrt{y}} \right)$$

(E)
$$\log\left(\frac{wx^3z^3}{\sqrt{y}}\right)$$

- 1. D
- . C
- . E
- . D
- . A
- . C
- 7. A
- . A
- . D
- . B
- . B
- . D
- . C
- 14. A15. B
- . B
- . B
- . D
- . B
- . C
- . B
- . C
- . E
- . E
- . E
- 26. D27. D
- . E
- . C
- . C
- . C
- . E
- . C

- . A
- . B
- . D
- . D
- . C
- . E
- . E
- . C
- . A
- . E
- . E
- . A
- . C
- . E
- . B
- 49. A50. C
- . A
- . B
- . D
- . B
- . D
- . D
- . D
- . B
- . C
- . E