18.

(a) Suppose x satisfies $x^n + a_{n-1}x^{n-1} + ... + a_0 = 0$ for some integers $a_{n-1}, ..., a_0$. If x is not an integer, then x is irrational. Proof. (Contradiction).

Suppose x is not an integer but x is rational. Then $x = \frac{b}{c}$ for some integers b and c > 1 which share no common factor

$$0 = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}$$

$$= \left(\frac{b}{c}\right)^{n} + a_{n-1}\left(\frac{b}{c}\right)^{n-1} + \dots + a_{0}$$

$$\left(\frac{b}{c}\right)^{n} = -a_{n-1}\left(\frac{b}{c}\right)^{n-1} - \dots - a_{0}$$

$$b^{n} = -a_{n-1}b^{n-1}c - \dots - a_{0}c^{n}$$

$$= c(-a_{n-1}b^{n-1} - \dots - a_{0}c^{n-1})$$
(Multiplying both sides by c^{n} .)

Thus $c|b^n$. But we assumed b and c share no common factor, so b^n and c cannot share a common factor, a contradiction.