Chapitre 6: Espaces probabilisés

0 – Ensembles dénombrables

- I Notion d'espaces probabilisés
- II Propriétés élémentaires des probabilités
- III Probabilités conditionnelles et indépendantes
- IV Espaces probabilisés discrets

0 – Ensembles dénombrables

<u>Définition :</u>

Un ensemble est dénombrable s'il est fini ou en bijection avec N.

 \rightarrow un ensemble est dénombrable s'il est en bijection avec une partie de \mathbb{N} .

Propositions:

- \mathbb{R} n'est pas dénombrable.
- Le produit cartésien d'un nombre fini d'ensemble dénombrables est dénombrable.
- Une union finie ou dénombrable d'ensembles dénombrables est dénombrable.

Théorème de Cantor-Bernstein (HP):

Soient A, B deux ensembles.

S'il existe $\varphi_1: A \to B$ *et* $\varphi_2: B \to A$ *injectives, alors il existe* $\psi: A \to B$ *bijective.*

I – Notion d'espaces probabilisés

Prérequis:

- Univers Ω = Résultats possibles de l'expérience
- Evènement = partie de Ω , groupement de résultats

<u>Définitions</u>: Soit Ω un ensemble.

 $T \subset \mathcal{P}(\Omega)$ est une tribu sur Ω si :

- $\emptyset \in T$
- $\forall A \in T, \bar{A} \in T$
- $\forall (A_n)_{n\in\mathbb{N}} \in T^{\mathbb{N}}, \bigcup_{n\in\mathbb{N}} A_n \in T$

 (Ω, T) est un espace probabilisable.

Les éléments de T s'appellent les évènements.

 $P: T \to [0; 1]$ est une probabilité sur un espace probabilisable (Ω, T) si :

- $\forall A \in T, P(A) \in [0;1]$
- $P(\Omega) = 1$
- $\forall (A_n)_{n \in \mathbb{N}} \in T^{\mathbb{N}}$ deux à deux disjoints, $P(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} P(A_n)$

 (Ω, T, P) est un espace probabilisé.

<u>Propositions</u>: Soient (Ω, T, P) un espace probabilisé et $A, B \in T$.

- $A \cap B \in T$
- $\forall (A_n) \in T^{\mathbb{N}}, (\bigcap_{n \in \mathbb{N}} A_n) \in T$
- $P(\bar{A}) = 1 P(A)$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

II – Propriétés élémentaires des probabilités

Soit (Ω, T, P) un espace probabilisé.

Propositions:

- Soit $(A_n)_n \in T^{\mathbb{N}}$ croissante pour l'inclusion. $(\forall n, A_n \subset A_{n+1})$

$$P(A_n) \xrightarrow[n \to +\infty]{} P\left(\bigcup_{n \in \mathbb{N}} A_n\right)$$

- Soit $(B_n)_n \in T^{\mathbb{N}}$ décroissante pour l'inclusion.

$$P(B_n) \xrightarrow[n \to +\infty]{} P\left(\bigcap_{n \in \mathbb{N}} B_n\right)$$

- Soit $(A_n) \in T^{\mathbb{N}}$.

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leq \sum_{n\in\mathbb{N}}P(A_n) \qquad (dans\ R_+\cup\{+\infty\})$$

Définitions:

- A est négligeable si P(A) = 0
- A est presque sûr si P(A) = 1

Propositions:

Soit $(A_n)_n \in T^{\mathbb{N}}$.

- $\forall n, A_n \text{ est n\'egligeable} \Rightarrow \bigcup_{k=0}^{+\infty} A_k \text{ est n\'egligeable}.$
- $\forall n, A_n \text{ est presque } \hat{\sup} \Rightarrow \bigcap_{k=0}^{+\infty} A_k \text{ est presque } \hat{\sup}$.

Définition:

Soit $(A_i)_{i \in I} \in T^I$.

Les (A_i) forment un système quasi-complet d'évènements si :

$$\begin{cases} \forall i \neq j \in I, A_i \cap A_j = \emptyset \\ P\left(\bigcup_{i \in I} A_i\right) = 1 \end{cases}$$

(ie les (A_i) sont disjoints deux à deux et leur union est presque sûre)

III – Probabilités conditionnelles et indépendantes

<u>Définition</u>: Soient A, B ∈ T.

$$Si\ P(B) \neq 0, on\ note P_B(A) = \frac{P(A \cap B)}{P(B)}$$

Formule des probabilités totales :

Soient $(A_n) \in T^{\mathbb{N}}$ et $B \in T$.

On suppose $\Omega = \bigcup_{n \in \mathbb{N}} A_n$ et les A_n deux à deux disjoints (donc forment un système complet).

$$B = B \cap \Omega = B \cap \left(\bigcup_{n \in \mathbb{N}} A_n\right) = \bigcup_{n \in \mathbb{N}} (A_n \cap B)$$

d'où:

$$P(B) = \sum_{n=0}^{+\infty} P(A_n \cap B) = \sum_{n=0}^{+\infty} P(A_n) \cdot P_{A_n}(B)$$

Formule de Bayes:

Soient $A, B \in T$ tels que P(A) > 0 et P(B) > 0.

Alors:

$$P_B(A) = P_A(B) \cdot \frac{P(A)}{P(B)}$$

<u>Définitions</u>:

- $A, B \in T$ sont indépendants si $P(A \cap B) = P(A) \cdot P(B)$
- Soit $(A_i) \in T^I$.
 - Les (A_i) sont mutuellements indépendants si :

$$\forall J \subset I \ fini, P\left(\bigcap_{j \in J} A_j\right) = \prod_{j \in J} A_j$$

• Les (A_i) sont deux à deux indépendants si :

$$\forall i \neq j \in I, P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$$

Proposition:

Soient $A, B \in T$.

A et B sont indépendants \Leftrightarrow A et \overline{B} sont indépendants

IV – Espaces probabilisés discrets

Définitions :

Soit Ω un ensemble.

Une famille de réels positifs $(P_{\omega})_{\omega \in \Omega}$ est appelée distribution de probabilités discrète si:

$$\sum_{\omega \in \Omega} P_{\omega} = 1$$

Dans ce cas, on appelle support de cette distribution l'ensemble:

$$S = \{\omega \in \Omega \mid P_{\omega} > 0\}$$

Proposition:

S est fini ou dénombrable donc :

$$\sum_{\omega \in \Omega} P_{\omega} = \sum_{\omega \in S} P_{\omega}$$

Théorème:

Soient Ω un ensemble et (P_{ω}) une distribution de probabilités discrète sur Ω .

Alors il existe une unique probabilité sur $\left(\Omega,P(\Omega)\right)$ notée \wp telle que :

$$\forall A \in \mathcal{P}(\Omega), \wp(A) = \sum_{\omega \in A} P_{\omega}$$

Proposition:

Si Ω est fini ou dénombrable, on obtient ainsi toutes les probabilités possibles sur $(\Omega, \mathcal{P}(\Omega))$.