- For two integers a and b, we say a **divides** b (and use the notation a|b) if b = ka for some integer k.
- An integer n is said to be **even** if 2 divides n.
- An integer is said to be **odd** if it is not even.

Problem 1. For integers a, b, and c, if a divides b then a divides bc.

Proof. Since a|b, b = ka for some integer k. Then

$$bc = (ka)c = (kc)a$$

which is an integral multiple of a. Therefore bc is divisible by a.

Problem 2. The sum of two even integer is also even.

Problem 3. The product of two even integer is also even.

Problem 4. For any integer n, $n^2 - n$ is even.

Note. An observation is that $n^2 - n = n(n-1)$, so either n or (n-1) is even. Therefore n(n-1) must be divisible by 2.

Proof. (Case 1) If n is even, then n = 2k for some integer k, and hence

$$n^2 - n = (2k)^2 - 2k = 4k^2 - 2k = 2(2k^2 - k)$$

which is an integral multiple of 2. Therefore $n^2 - n$ is even.

(Case 2) If n is odd, then n = 2k + 1 for some integer k, and hence

$$n^2 - n = n(n-1) = (2k+1)(2k+1-1) = 2(2k+1)k$$

which is an integral multiple of 2. Therefore $n^2 - n$ is even.

Problem 5. If the integers a and b are both even or both odd, then $a^2 - b^2$ must be even.

Proof. (Case 1) Suppose a and b are both even, then a=2m and b=2n for some integers m and n respectively. Then

$$a^2 - b^2 = (2m)^2 - (2n)^2 = 4m^2 - 4n^2 = 2(2m^2 - 2n^2)$$

which is an integral multiple of 2. Therefore $a^2 - b^2$ is even.

(Case 2) Suppose $\mathfrak a$ and $\mathfrak b$ are both odd, then $\mathfrak a=2\mathfrak m+1$ and $\mathfrak b=2\mathfrak n+1$ for some integers $\mathfrak m$ and $\mathfrak n$ respectively. Then

$$a^2 - b^2 = (2m+1)^2 - (2n+1)^2 = (4m^2 + 4m + 1) - (4n^2 + 4n + 1) = 2(2m^2 - 2n^2 + 2m - 2n)$$

which is an integral multiple of 2. Therefore $a^2 - b^2$ is even.

In both cases, $a^2 - b^2$ is even, so if the integers a and b are both even or both odd, then $a^2 - b^2$ must be even. \Box