Lecture: Binary dearch on Answer

Agenda

Painter partition problem

Aggressive cows.

۲,

Painter partition problem

There are k painters available and each of them takes I unit of time to paint I unit of the board. Calculate and return minimum time required to get the job done.

<u>constraints</u>.

- 1) Two painters cannot chare a board to paint. That is to say, a board cannot be partially pointed by one painter, and partially by another
- 2> A painter will only paint continuous boards. This means a painta paints a continuous subarray of boards.

0	1	2	3	4	5	6	٦	8	9	10	11	12	13	14
3	5	1	7	8	2	5	3	10	1	4	7	5	Ч	6
	26							23					22	

0		2			
10	20	30	40	k = 2	on = 60

Approach | Divide total time | total no of painters.

Each painter will paint boards of length = $\frac{40}{2}$ = 20

flow: It leads to partial painting

Each painter will paint boards of length = $\frac{110}{2}$ = 55

Approach2

0	1	_ 2	3	Ч	5	6	٦	8	9	10	11	12	13	14
3	5	1	7	8	2	5	3	10	1	4	7	5	4	6
					k = 4								•	

colour code of each painter:

Learch space

Min value of range = day we have as many painters as the no.

(Best case) of boards, in which case each painter will paint one board.

Max value of range Worst case.

Target The max time to complete the task

Condition

— day we calculated mid. How to decide whether mid is answer? — We can check if we can complete the task within mid: amount of time.

If yer, we should cave that as the answer.

and move to left to try for a lesser time.

Else, move to right (it means we will need

- Else, move to right (it means we will need more time to complete the task).

start	end	$mid\left(\frac{8+e}{2}\right)$	Action
10	71	40	an = 40 Left e = mid-1
10	39	24	an=24 Left e=mid-1
10	23	16	Right s=mid+1
ΙΤ	2.3	&D	Right, s=miatl
ब ।	2.3	22	Ans=22 left
21	21	21	Right
22	21 –		Break

Pseudwde

```
function painter Partition (A[], K) {
         n = A \cdot length;
         start = max(A);
         end = sum (A);
         while ( start (= end) {
             mid = <u>start + end</u>;
             if (is possible (A, K, mid)) { --- oln
                     an = mid;
                     end = mid-l;
              3 else {
                   start = midtl;
     return ans:
function ispossible (A, K, mid) { ---- o(n)
      sum=0, painters=1;
     for ( int cl: A) {
          sum + = el'
          if ( sum> mid) {
             painters ++;
             sum = cl;
    if (paintou <=K) {
        retur trué;
    return false:
                         TC: Olhrogn
                         SC: 0(1)
                  Break: 8:24-8:34
```

Aggressive cows

Given n cows and m stalls, all m stalls are located at different location at x-axis, place all the cows such that the minimum distance blu any two cows is maximised

Contrainte

1) There can only be one cow in a stall at a time

2) He need to place all cows.

stall: Exi cows = 3stall = 5

<u>Ans</u> 3

		4	8	9	min distance
-CI	·c2	c3			
c1		£2		£3	3
c1			c2	3	T

_Fx2

Stalls!

Ō	1	2	3	Ч	5	в	7	8
2	6	[1	14	19	25	30	39	43

cows: 4

stall: 9

2	6	П	14	19	2.5	30	39	43	min diotance.
cı	12	C 3	c4						3
									ρ
C1		c 2		C 3		c4			8
Cl			c2			c 3		.c4	12_

_Approach

Learth space

Noret case. If there are same cows as the no of stalls? min (diff blu adjacent cells).

Best case: There are 2 cours? Place them at corner

Dry run!

J												
	O	1	2	3	Ч	5	6	٦	8			•
	2	6	ا ر	14	19	25	30 9	39	43	X	ows = 4.	$m\hat{n}=1$ $max = 43-2 = 41$
	cı –					- C2						
	CI —			c2 -			· C3 —		— C4			
	cı —				-c2 -			— C3				
	cı –				(2 -			— c3				
	℃ I				c2 -			_ <i>L</i> 3				

start	end	mid	Action
X 3	41.	22	Left
3	21	12	On =12 Right
13	21	17	Left
13	16	14	Left
3	13	13	Left
13	12		<u>eto</u>

```
boolean check (A(I), int cows, int mid) {

n = A·length;

count=1; // no of cows placed at mid distance.

la*t=0;

for(l=0; i(n; l+1) {

lf (Ali) - Allact) >= mid) {

la*t=l;

count++;

lif (count >= cows) {

return true!

}

return false;
```

