BMEG 802 – Advanced Biomedical Experimental Design and Analysis

Mixed Analysis of Variance (ANOVA)

Joshua G. A. Cashaback, PhD

Recap

- 1-Way Repeated Measures ("within" subjects) Design
 - Repeated Meaures ANOVA
 - Greenhouse-Geisser Corrections
 - Multivariate Approach
 - Friedman Test
- 2-Way Repeated Measures
 - Repeated Meaures ANOVA
 - Greenhouse-Geisser Corrections
 - Multivariate Approach

Today

- Mixed (Between-Within) Design
 - 2 or more groups
 - 2 or more repeated measures

Mixed ANOVA

- combines within and between ANOVA
- Same concepts and principles apply
 - assumptions
 - interactions, main effects
 - follow-up mean comparisons

Examples of a Within Design

- 1. effectiveness of a drug over time (e.g., Moderna vs. Pfizer), where you perform multiple tests and each subject serves as their own control
- e.g., how effective are different vaccines over time (2 or more tests)?
- 2. placebo vs. drug, treatment vs no treatment, etc.
- 2 (pre-test vs. post-test) or more tests over time.

General Linear Model (GLM)

Full Model:
$$Y_{ij} = \mu + \alpha_j + \beta_k + \pi_{i/j} + (\alpha\beta)_{jk} + (\beta\pi)_{ki/j} + \epsilon_{ijk}$$

Effect of Between Factor

Effect of Within Factor

Effect of Subjects

see Maxwell, Delaney, Kelley for details (restricted models, error, df, etc.)

Assumptions of Mixed ANOVA

- same assumptions as between and within designs
- we have to do the typical tests to check for:
 - normality
 - homogeneous of variance (sphericity)
 - Greenhouse-Geisser adjustments for within terms

Three Group Example in R

Let's determine if there is a main effect of age (Young vs Old) and physical therapy treatment over time. The dependent measure is pain out of 10 (lower values represent less pain).

Group	Treatment 1	Treatment 2	Treatment 3	
0	8	5	3	
0	7	6	6	
0	8	7	6	
0	7	5	4	
Υ	6	5	2	
Υ	5	5	4	
Υ	5	4	3	
Υ	6	3	2	

Setting up the Data

Setting up the Data

mydata

##		subject	pain	treatment	age
##	1	1	8	1	0
##	2	1	5	2	0
##	3	1	3	3	0
##	4	2	7	1	0
##	5	2	6	2	0
##	6	2	6	3	0
##	7	3	8	1	0
##	8	3	7	2	0
##	9	3	6	3	0
##	10	4	7	1	0
##	11	4	5	2	0
##	12	4	4	3	0
##	13	5	6	1	Y
##	14	5	5	2	Y
##	15	5	2	3	Y
##	16	6	5	1	Y
##	17	6	5	2	Y
##	18	6	4	3	Y
##	19	7	5	1	Y
##	20	7	4	2	Y
##	21	7	3	3	Y
##	22	8	6	1	Y
##	23	8	3	2	Y
##	24	8	2	3	Y

Plot Data

interaction.plot(treatment, age, pain)

Install Mixed ANOVA Package

```
install.package("rstatix")

library(rstatix)

##

## Attaching package: 'rstatix'

## The following object is masked from 'package:stats':
##

## filter
```

Mixed ANOVA Output

```
res.aov <- anova test(pain ~ age * treatment + Error(subject/(treatment)), data = mydata, type = 3, effect.size = "pes")
res.aov # note subject divided by within factor # pes is partial eta squared
## ANOVA Table (type III tests)
##
## $ANOVA
           Effect DFn DFd
##
                           F
                                     p p<.05 pes
## 1
              age
                       6 15.783 0.00700
                                           * 0.725
## 2
       treatment 2 12 19.500 0.00017 * 0.765
## 3 age:treatment 2 12 0.214 0.81000
                                         0.034
##
## $'Mauchly's Test for Sphericity'
           Effect W p p<.05
##
        treatment 0.54 0.214
## 2 age:treatment 0.54 0.214
##
## $`Sphericity Corrections`
##
           Effect GGe
                           DF[GG] p[GG] <.05 HFe
                                                         DF[HF]
                                                                   r[HF]
        treatment 0.685 1.37, 8.22 0.001 * 0.819 1.64, 9.83 0.000548
## 1
## 2 age:treatment 0.685 1.37, 8.22 0.730 0.819 1.64, 9.83 0.769000
## p[HF]<.05
## 1
## 2
```

Mixed ANOVA - GG Corrections

anova test reports the adjusted df. but not the F-statistic. So lets do that ourselves.

```
# Main effect of Treatment
pval = 0.001
df1 adi = 1.37
df2_adi = 8.22
Fscore = gf(1 - pval, df1=df1 adj, df2=df2 adj) # chi-square function
Facore
## [1] 21.24584
# Interaction between Age and Treatment
pval = 0.73
df1 adi = 1.37
df2 adi = 8.22
Fscore = gf(1 - pval, df1=df1 adj, df2=df2 adj) # chi-square function
Facore
## [1] 0.2141381
```

Mixed ANOVA Interpretation

- Main Effect of Age [F(1,6) = 15.8, p = 0.007, $\eta_p^2 = 0.725$] and Treatment [F(1.37, 8.22) = 21.2, p = 0.001, $\eta_p^2 = 0.765$].
- There was not a significant interaction between Age and Treatment [F(1.37,8.22) = 0.214, p = 0.730, η_p^2 = 0.034]
- Perform followup mean comparisons & effect sizes for the Main Effects ONLY
 - same rules apply on the order to examine interaction or main effects as in 2-way between ANOVA and 2-way within ANOVA designs.

Mixed ANOVA Effect Size

- Here we outputted η_p^2 (one of the options of this particular R package)
- Can also calculate ω_p^2
 - not in this package (can be performed by hand or some other package)
 - Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior research methods, 37(3), 379-384.
 - I'll leave it to you to explore further.

Repeated Measures ANOVA - Sphercity Violations

Repeated Measures are very sensitive to Sphericity Violations

- 1. Greenhouse-Geisser Corrections (we did this)
- 2. Multivariate Approach
- not going to do today, but just so you are aware this is an alternative option.

Organize Data (2x3 design)

Let's quickly split our data by

```
01 = c(pain[1],pain[4],pain[7],pain[10]) # old, treatment 1
02 = c(pain[2],pain[5],pain[8],pain[11])
03 = c(pain[3],pain[6],pain[9],pain[12])
Y1 = c(pain[13],pain[16],pain[19],pain[22])
Y2 = c(pain[14],pain[17],pain[20],pain[23])
Y3 = c(pain[15],pain[18],pain[21],pain[24]) # young, treatment 3
```

Organize Data - Main Effects of Age

Let's quickly split our data by age

```
Old = c(01, 02, 03) # old
Young = c(Y1, Y2, Y3) # young
```

Testing normalility for Main Effect of Age

```
shapiro.test(01d)$p.value

## [1] 0.5130488

shapiro.test(Young)$p.value

## [1] 0.1873705

Data are normally distributed (p > 0.05)
```

Follow up Mean Comparisons for Main Effect of Age

```
pOvY = t.test(Old, Young, paired = FALSE, alternative = "two.sided")$p.value pOvY

## [1] 0.005896452

There is significantly more pain in the old than young groups (p = 0.006)
```

NOTE: here we use a between group mean comparison (paired = FALSE)

Sample Effect Size for Main Effect of Age

```
install.packages("effsize")
library(effsize)
cohen.d(Old, Young, paired = FALSE)$estimate #
## [1] 1.245505
```

Organize Data - Main Effects of Treatment

Let's quickly split our data by treatment

```
treat1 = c(01, Y1) # time 1

treat2 = c(02, Y2) # time 2

treat3 = c(03, Y3) # time 3
```

Very important to keep Old and Young in same order, since we will be looking at the PAIRED differences

Testing normalility for Main Effect of Treatment

Performed on the PAIRED differences

```
shapiro.test(treat2-treat1)$p.value #
## [1] 0.1199348
shapiro.test(treat3-treat1)$p.value #
## [1] 0.4283399
shapiro.test(treat3-treat1)$p.value #
## [1] 0.4283399
Data are normally distributed (p > 0.05)
```

Follow up Mean Comparisons for Main Effect of Treatment

```
p1v2 = t.test(treat1, treat2, paired = TRUE, alternative = "two.sided")$p.value #
p1v3 = t.test(treat1, treat3, paired = TRUE, alternative = "two.sided")$p.value #
p2v3 = t.test(treat2, treat3, paired = TRUE, alternative = "two.sided")$p.value #
pvals = c(p1v2, p1v3, p2v3)
pvals holm = p.adjust(pvals, method = "holm", n = length(pvals))
sprintf("%.5f", pvals holm) #outputs in decimal (not scientific notation)
## [1] "0.01053" "0.00365" "0.01053"
There is a reduction in pain between treatments 1 and 2 (p = 0.011), treatments 1 and 3 (p <
0.004), and treatment 2 and 3 (p = 0.011)
```

Remember, treatment is a within factor (paired = TRUE)

Sample Effect Size for Main Effect of Treatment

```
library(effsize)
cohen.d(treat1, treat2, paired = TRUE)$estimate #
## [1] 1.25499
cohen.d(treat1, treat3, paired = TRUE)$estimate #
## [1] 1.931982
cohen.d(treat2, treat3, paired = TRUE)$estimate #
## [1] 0.8185863
```

Summary of Mixed ANOVA

- We found a significant main effects of Age [F(1,6) = 15.8, p = 0.007, $\eta_p = 0.725$] and Treatment [F(1.37, 8.22) = 21.2, p = 0.001, $\eta_p^2 = 0.765$].
- The elderly had significantly more pain the younger patients (p = 0.006, d = 1.26).
- There was a reduction in pain between treatments 1 and 2 (p = 0.011, d = 1.25), treatments 1 and 3 (p = 0.004, d = 1.93), and treatment 2 and 3 (p = 0.011, d = 0.82).

Mixed ANOVA Interactions

- We did not have a significant interaction between age and treatment
- But what is the procedure if we had found one?
 - As with the previous 2-way ANOVA, we have to decide which 'direction' to look
 - Age
 - Treatment
 - Let's go through both as an example, but remember you only pick one direction if you find a significant interaction (typically the between effect in a mixed design).

Mixed ANOVA Interactions - Normality

```
shapiro.test(01)$p.value
## [1] 0.02385679
shapiro.test(02)$p.value
## [1] 0.2724532
shapiro.test(03)$p.value
## [1] 0.2242305
shapiro.test(Y1)$p.value
## [1] 0.02385679
shapiro.test(Y2)$p.value
## [1] 0.2724532
shapiro.test(Y3)$p.value
## [1] 0.2724532
```

Data are normally distributed (p > 0.05)

Mixed ANOVA Interactions (Examining Age) - Mean Comparisons

```
p1v2 = t.test(01, Y1, paired = FALSE, alternative = "two.sided")$p.value #
p1v3 = t.test(02, Y2, paired = FALSE, alternative = "two.sided")$p.value #
p2v3 = t.test(03, Y3, paired = FALSE, alternative = "two.sided")$p.value #
pvals = c(p1v2, p1v3, p2v3)
pvals_holm = p.adjust(pvals, method = "holm", n = length(pvals))
sprintf("%.5f", pvals_holm) #outputs in decimal (not scientific notation)
```

note: we found a significant different between young and old at treatment 1, but we did not actually have permission to examine this! remember, we are just practicing the prodecure.

[1] "0.00814" "0.13722" "0.13722"

Mixed ANOVA Interactions (Examining Age) - Effect Size

```
library(effsize)
cohen.d(01, Y1, paired = FALSE)$estimate #
## [1] 3.464102
cohen.d(02, Y2, paired = FALSE)$estimate #
## [1] 1.566699
cohen.d(03, Y3, paired = FALSE)$estimate #
## [1] 1.589439
```

Mixed ANOVA Interactions (Examining Treatment) - Mean Comparisons

```
p01v02 = t.test(01, 02, paired = TRUE, alternative = "two.sided") $p.value
p01v03 = t.test(01, 03, paired = TRUE, alternative = "two.sided")$p.value
p02v03 = t.test(02, 03, paired = TRUE, alternative = "two.sided")$p.value
pY1vY2 = t.test(Y1, Y2, paired = TRUE, alternative = "two.sided")$p.value
pY1vY3 = t.test(Y1, Y3, paired = TRUE, alternative = "two.sided")$p.value
pY2vY3 = t.test(Y2, Y3, paired = TRUE, alternative = "two.sided")$p.value
pvals = c(p01v02, p01v03, p02v03, pY1vY2, pY1vY3, pY2vY3)
pvals holm = p.adjust(pvals, method = "holm", n = length(pvals))
sprintf("%.5f", pvals_holm) #outputs in decimal (not scientific notation)
```

[1] "0.21049" "0.21049" "0.21049" "0.21049" "0.21049" "0.21049"

Mixed ANOVA Interactions (Examining Treatment) - Effect Size

```
library(effsize)
cohen.d(01, 02, paired = TRUE)$estimate #
## [1] 2.160364
cohen.d(01, 03, paired = TRUE) $estimate #
## [1] 2.486706
cohen.d(02, 03, paired = TRUE) $estimate #
## [1] 0.6235665
cohen.d(Y1, Y2, paired = TRUE)$estimate #
## [1] 1.602739
cohen.d(Y1, Y3, paired = TRUE)$estimate #
## [1] 3.578086
cohen.d(Y2, Y3, paired = TRUE)$estimate #
## [1] 1.566699
```

Power Analysis on ANOVA

```
install.packages("WebPower")
library(WebPower)
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:rstatix':
##
##
       select
## Loading required package: lme4
## Loading required package: Matrix
## Registered S3 methods overwritten by 'lme4':
     method
##
                                      from
     cooks distance influence morMed car
```

Power Analysis on ANOVA

We need 62 participants per group for a sufficiently powered.

```
install.packages("WebPower")
library(WebPower)
# n=sub, nq=#ofgroups, nm=#ofmeasurements, nscor=sphericity(1=perfect)
#type "0" between-effect; "1" within-effect; and "2" interaction effect
wp.rmanova(n = NULL, ng = 2, nm = 3, f = .4, nscor = 1,
           alpha = 0.05, power = 0.8, tvpe = 2)
## Repeated-measures ANOVA analysis
##
##
              n f ng nm nscor alpha power
       61.75222 0.4 2 3 1 0.05 0.8
##
##
## NOTE: Power analysis for interaction-effect test
## URL: http://psychstat.org/rmanova
```

Next Week

- ANCOVA
 - Similar to ANOVA
 - regressing out covariates (e.g., age)