ДЗ-10: непрерывность, эквиваленты

1. Найти для функции f(x) эквивалентную функцию вида Ax^{α} .

1)
$$f(x) = \frac{\sin(1/(x+1))}{\sqrt[3]{x+\sqrt{x}}}$$
, а) при $x \to +\infty$; б) при $x \to 0+$;

2)
$$f(x) = \sqrt{x^2 + 1} - x$$
, а) при $x \to +\infty$; б) при $x \to -\infty$.

2. Найти точки разрыва и определить их тип

(a)
$$f(x) = \frac{|x-1|}{x^3 - x^2}$$
; (c) $f(x) = \frac{3^{1/x} - 2^{1/x}}{3^{1/x} + 2^{1/x}}$;

- 3. Докажите по определению, что функция $y = \ln x$ непрерывна на $(0, +\infty)$.
- 4. При каких a и b функция будет непрерывна на \mathbb{R} ? Сформулируйте задачу геометрически.

$$f(x) = \begin{cases} 1 - x^2, & x < 0; \\ ax + b, & 0 \le x \le 1; \\ 2 + x^2, & x > 1. \end{cases}$$

- 5. Докажите, что уравнение $x^5 3x = 1$ имеет а) корень на промежутке (1, 2); 6) не менее трех корней на \mathbb{R} .
- 6. Докажите, что уравнение $2^x = 5x$ имеет не менее двух вещественных корней.
- 7. Докажите, что уравнение $x2^{x} = 1$ имеет единственное решение в \mathbb{R} .
- 8. Найдите точки разрыва функции Римана: $r(x)=\begin{cases} 0, & x\in\mathbb{R}\setminus\mathbb{Q};\\ 1/n, & x=\frac{m}{n}\text{-}\ \text{несокр.}\ \text{дробь};\\ 1, & x=0. \end{cases}$
- 9. Найти все непрерывные на \mathbb{R} функции f, если при всех значениях аргумента выполнено равенство f(2x) f(x) = x
- 10. Найти главную часть вида $C(1-x)^a$ функции

$$f(x) = 4\sqrt[4]{x} - 5\sqrt[5]{x} + 1$$

при $x \to 1$

Комментарии и ответы:

1(1) a)
$$x^{-4/3}$$
; 6) $x^{-1/6} \sin 1$. 1(2) a) $x^{-1}/2$; 6) $-2x$.

 $^{5,\!6,\!7}$ – используйте теоремы о непрерывных функциях на отрезке.

 $8-\mathbb{Q}$ — точки разрыва, непрерывна на $\mathbb{R}\setminus\mathbb{Q}$. $9-f(x)=x+C,\,C$ - константа. Воспользуйтесь тем, что f(2x)-2x=f(x)-x, выполните замену и вспомните решение задачи f(2x)=f(x) с практики.

$$10 - \frac{(1-x)^2}{40}$$