파이썬 라이브러리를 활용한 데이터 분석 툴 스터디 3주차

지난주!

- EDA 과정과 방법을 이해해 보았습니다.

- 바 그래프를 그리며 데이터를 시각화해 보았고,

■ 평균, 중앙값, 최빈값, 범위, 분산 등의 통계 지표를 박스 플롯 차트를 통해 이해하였습니다.

 상관관계의 개념을 이해하고, heatmap 차트를 그려 타이타닉 데이터 변수 간의 상관관계를 확인하였습니다.

오늘은?

 데이터 분석은 우리가 입증하고자 하는 가설을 세워 데이터 분석을 통해 가설이 합당한지, 그렇지 않은지 확인하기 위해 진행합니다.

- 오늘은 기초적인 확률·통계 개념을 배운 다음,

개념을 바탕으로 데이터 분석 과정의 핵심인 '추론'과 '가설 검정' 과정을 이해해보겠습니다!

확률이란?

• 확률(Probability): 어떠한 '사건의 공간' 에서 '특정 사건'이 발생할 가능성을 '수치'로 나타낸 것

Ex) 예를 들어, '하나의 동전을 던지는' 사건에서

'동전의 앞면이 나올' 확률은
$$\frac{1}{2}$$

동전의 앞면이 나올 사건을 'E'라고 할 때,
 동전의 앞면이 나올 확률은 P(E)로 표기합니다.

종속성과 독립성, 조건부 확률

- 사건 A와 사건 B가 있을 때,
 사건 A의 발생 여부가, 사건 B의 발생 여부에 대한 '정보를 제공'한다면,
 사건 A와 사건 B는 종속 사건(Dependent Event)
- 사건 A와 사건 B의 발생 여부가 서로 상관이 없을 때,
 사건 A와 사건 B는 독립 사건(Independent Event)
- 사건 A와 B가 동시에 발생할 확률 P(A, B) = P(A)P(B)일 경우, 사건 A와 B는 독립 사건!

■ 조건부 확률(Conditional Probability):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
, 사건 A가 일어났을 때, 사건 B가 발생할 확률

확률 변수와 확률 분포

• 확률 변수 (Random Variable) 특정 값이 나타날 가능성이 '확률적으로 주어지는' 변수

• 확률 분포 (Probability Distribution)

확률 변수가 특정한 값을 가질 확률을 의미합니다

오른쪽 차트와 같이 각각의 확률 변수의 확률 분포를
나열한 것을 우리는 확률분포표 라고 부릅니다.

정규분포와 표준 정규 분포

- 중심극한정리: 서로 독립 관계를 가진 확률 변수 n개의 평균의 분포는

n이 적당히 크다면 정규분포에 근사함 (그래프 형태가 정규분포에 가까워 짐)

■ 정규분포(Normal distribution): 평균을 중심으로 그래프의 좌측과 우측이 대칭인 확률 분포

표준 정규 분포(Standard normal distribution):

정규 분포를 표준화하여 만들어진 평균 = 0, 표준편차 = 1인 정규 분포를 의미합니다.

정규분포와 표준 정규 분포

■ **정규화 (Normalization):** 여러 대상들을 일정한 규칙이나, 기준에 따르는 '정규적인' 상태들로 바꾸는 과정

- 표준화 (Standardization)를 하는 두가지 이유
 - 1) 서로 다른 자료를 비교, 분석할 수 있게 됨
 - Ex) 국적과 통화가 서로 다른 두 회사원의 연봉 평균을 표준화하여 둘의 연봉 평균을 비교할 수 있게 됨
 - 2) 표준 정규 분포표를 이용해 근사값을 찾기만 하면 복잡한 확률의 계산을 간편하게 할 수 있음

추론

- 모집단에서 추출한 **표본**을 가지고 **모집단의 특성을 추정**할 수 있습니다.
- 그리고 그 결과가 신뢰성이 있는지 검정하는 과정을 통틀어 추론이라고 합니다.

- 추론 과정에서 우리는 다음과 같은 질문의 답을 얻어낼 수 있습니다.
- 1. 표본집단이 모집단을 대표할 수 있는가?
- 2. 표본의 확률분포는 어떠한가?
- 3. 추정된 결과는 신뢰성이 있는가?

가설 검정

- 우리는 표본을 통해 모집단에 대한 주장(가설)의 옳고 그름을 판정할 수 있습니다.
- 그리고 가설 검정을 통해 대립가설(H1)을 채택하고, 귀무가설(H0)을 기각합니다.
- 귀무가설은 처음부터 '기각할 것'을 가정하고 설정하는 가설입니다. 귀무가설은 'ㅇㅇ과 ㅇㅇ은 차이가 없다', 'ㅇㅇ과 ㅇㅇ은 같다', 'ㅇㅇ은 ㅇㅇ에 영향을 미치지 않는다' 등으로 설정합니다.
- 대립가설은 우리가 '옳음'을 확인하고자 하는 가설이며, 귀무가설과 대비되도록 'ㅇㅇ는 ㅇㅇ보다 많다', 'ㅇㅇ은 ㅇㅇ보다 적다', 'ㅇㅇ은 ㅇㅇ에 영향을 준다' 등으로 설정합니다.
- 통계적 가설 검정의 궁극적인 목표는 대립가설이 옳은 지 확인하는 것입니다.
 그렇기 때문에 처음에 <u>귀무가설을 설정</u>한 다음, <u>추론과 검정 과정</u>을 통해 <u>귀무가설을 기각</u>하고,
 대립가설이 옳음을 확인하여, 대립가설을 채택하게 됩니다.

가설 검정

■ 검정통계량 Z: 표본 데이터를 기반으로 계산되어, 가설 검정에 사용되는 랜덤 변수입니다.

설정한 임계치를 기준으로, 검정통계량 값이 기각역 안에 속할 때, 귀무가설을 기각합니다.

■ 신뢰수준: 일반적으로 95%, 혹은 99%로 설정합니다.

- 유의수준: 신뢰수준이 95%일 때, **5% | 99%일 때, 1%**입니다.

임계치: 신뢰수준이 95%일 때, **-1.96**, **+1.96** │ 99%일 때, **-2.58**, **+2.58**

· '표본'이 신뢰수준 95%를 벗어날 경우 (= 검정 통계량 Z 값이 유의수준 5%에 속하여, 기각역 안에 포함될 경우) 귀무가설이 틀렸음이 인정되고, 귀무가설을 기각하고 대립가설을 채택할 수 있다.

가설 검정

- 검정통계량 Z 값 공식: $\frac{\mathbf{E}\mathbf{E}\mathbf{G}\mathbf{G}-\mathbf{E}\mathbf{G}\mathbf{G}}{\mathbf{E}\mathbf{E}\mathbf{G}\mathbf{G}\mathbf{G}}$

$$Z=rac{\overline{X}-\mu}{SE}$$

 \overline{X} 표본평균, μ 는 모 평균, SE는 표준오차

$$SE = \sigma_{ar{x}} \ = rac{\sigma}{\sqrt{n}}$$

σ는 모집단 표준편차(standard deviation), n은 모집단의 크기

■ 가설 검정 과정

- 1. 가설 설정 (귀무 가설과 대립 가설)
- 2. 유의 수준 설정
- 3. 검정 통계량 산출
- 4. 가설 기각/채택 판단

전체 인구 IQ의 평균은 100이고, 표준편차가 15입니다.
 연구팀이 개발한 신약이 인간의 IQ에 영향을 주는지 알아봅시다.

1. 귀무가설(H0)과 대립가설(H1) 설정:

귀무가설: 신약을 복용한 사람들의 IQ 평균은 100이다. (신약은 IQ 변화에 영향을 주지 않는다)

대립가설: 신약을 복용한 사람들의 IQ 평균은 100이 아니다.

(신약 복용이 IQ 변화에 영향을 준다)

2. 유의수준 설정:

유의수준을 5%로 설정 (= 검정통계량 Z값이 신뢰수준 95%를 벗어난다면 귀무가설 기각) 5%이므로 유의수준은 0.05!

• 가설 검정을 위해 모집단에서 실험 참여자 30명을 표본으로 추출하여 이들의 IQ를 샘플링하였습니다. 샘플링한 표본의 평균은 140이었습니다.

■ 3. 검정통계량 산출:

표본평균: 140, 모평균: 100, 표준편차: 15, \sqrt{n} : $\sqrt{30}$

$$z = \frac{140 - 100}{\frac{15}{\sqrt{30}}} = \frac{40}{2.74} = 14.6$$

- 4. 가설 기각/채택 판단

유의수준: 0.05 / 임계치: -1.96, +1.96 / 검정통계량 Z: 14.6 귀무가설 '이 약을 복용한 사람의 아이큐 평균은 100이다.'는 기각될까요?

=> 검정통계량 Z 값이 임계치 1.96보다 크므로, 표본은 신뢰수준 95%를 벗어나 기각역에 포함됩니다!

따라서 귀무가설을 기각하고, 대립가설을 채택할 수 있습니다.

신약을 복용한 사람의 IQ 평균은 100이 아니다 (신약은 IQ의 변화에 영향을 준다)라는 대립가설은 유의수준 0.05에서 통계적으로 유의미하다고 결론을 내릴 수 있습니다.

다음주!

■ 다음주 툴 스터디는 팀장 개인 일정으로 인해 녹화 영상으로 제공될 예정입니다. 📵

- 다음주에는 쥬피터 노트북을 이용해 오늘 배운 추론과 가설 검정 과정을 실습해볼 예정입니다!

■ 그리고 간단한 웹 크롤링 개요를 설명 드리도록 하겠습니다