Discrete Mathematics and Its Applications

Lecture 5: Discrete Probability: Probability Basics

MING GAO

DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn

Nov. 22, 2018

Outline

- Introduction
- Sample Space and Events
- Probability and Set Operations
 - Probability of Union
 - Probability of Complement
 - Independence
 - Conditional Probability
- Take-aways

Introduction

Probability as a mathematical framework for:

- reasoning about uncertainty
- developing approaches to inference problems

Experiment

An **experiment** is a procedure that yields one of a given set of possible outcomes.

Experiment

An **experiment** is a procedure that yields one of a given set of possible outcomes.

Sample space

The **sample space**, denoted as Ω , of the experiment is the set of possible outcomes.

Experiment

An **experiment** is a procedure that yields one of a given set of possible outcomes.

Sample space

The **sample space**, denoted as Ω , of the experiment is the set of possible outcomes.

Example

- Roll a die one time, $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- We toss a coin twice (Head
 H, Tail = T),
 Ω = {HH, HT, TH, TT}.

Experiment

An **experiment** is a procedure that yields one of a given set of possible outcomes.

Sample space

The **sample space**, denoted as Ω , of the experiment is the set of possible outcomes.

Example

- Roll a die one time, $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- We toss a coin twice (Head
 H, Tail = T),
 Ω = {HH, HT, TH, TT}.

- "List" (set) of possible
- List must be:
 - Mutually exclusive
 - Collectively exhaustive
- Art: to be at the "right" granularity

Continuous sample space

For this case, sample space $\Omega = \{(x,y)|0 \le x,y \le 1\}$. Note that the sample space is infinite and uncountable.

In this course, we only consider the **countable sample spaces**. Thus, we call the learning content to be the discrete probability.

Probability axioms

Event

An event, represented as a set, is a subset of the sample space.

Probability axioms

Event

An **event**, represented as a set, is a subset of the sample space.

Example

- Roll an even number, $A = \{2, 4, 6\} \subset \Omega$;
- Toss at least one head $B = \{HH, HT, TH\} \subset \Omega;$
- Toss at least three head $C = \emptyset \subset \Omega$.
- There are $2^{|\Omega|}$ events for an experiments;
- Events therefore have all set operations.

Probability axioms

Event

An **event**, represented as a set, is a subset of the sample space.

Example

- Roll an even number, $A = \{2, 4, 6\} \subset \Omega$;
- Toss at least one head $B = \{HH, HT, TH\} \subset \Omega;$
- Toss at least three head $C = \emptyset \subset \Omega$.
- There are $2^{|\Omega|}$ events for an experiments;
- Events therefore have all set operations.

Axioms

- Nonnegativity: $P(A) \ge 0$;
- Normalization: $P(\Omega) = 1$ and $P(\emptyset) = 0$;
- Additivity: If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Furthermore, if $A_i \cap A_j = \emptyset$ for $\forall i \neq j$, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i).$$

Finite probability

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is

$$p(E)=\frac{|E|}{|S|}.$$

Finite probability

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is

$$p(E) = \frac{|E|}{|S|}.$$

- Let all outcomes be equally likely;
- Computing probabilities ≡ two countings;
 - Counting the successful ways of the event;
 - Counting the size of the sample space;

Examples

Example I

Question: An urn contains four blue balls and five red balls. What is the probability that a ball chosen at random from the urn is blue? **Solution:** Let *S* be the sample space, i.e.,

$$S = \{\bigcirc_1, \bigcirc_2, \bigcirc_3, \bigcirc_4, \bigcirc_1, \bigcirc_2, \bigcirc_3, \bigcirc_4, \bigcirc_5\}.$$

Let E be the event of choosing a blue ball, i.e.,

$$E = \{\bigcirc_1, \bigcirc_2, \bigcirc_3, \bigcirc_4\}.$$

In terms of the definition, we can compute the probability as

$$P(E) = \frac{|E|}{|S|} = \frac{4}{9}.$$

Example II

Question: What is the probability that when two dice are rolled, the sum of the numbers on the two dice is 7? **Solution:**

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Example II

Question: What is the probability that when two dice are rolled, the sum of the numbers on the two dice is 7? **Solution:**

					/\
(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

 There are a total of 36 possible outcomes when two dice are rolled.

Example II

Question: What is the probability that when two dice are rolled, the sum of the numbers on the two dice is 7? **Solution:**

- There are a total of 36 possible outcomes when two dice are rolled.
- There are six successful outcomes, namely, (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1).
- Hence, the probability that a seven comes up when two fair dice are rolled is 6/36 = 1/6.

Example III

Question: In a lottery, players win a large prize when they pick four random digits that match, in the correct order. A smaller prize is won if only three digits are matched. What is the probability that a player wins the large prize? What is the probability that a player wins the small prize?

Example III

Question: In a lottery, players win a large prize when they pick four random digits that match, in the correct order. A smaller prize is won if only three digits are matched. What is the probability that a player wins the large prize? What is the probability that a player wins the small prize?

Solution: By the product rule, there are $10^4=10,000$ ways to choose four digits.

Example III

Question: In a lottery, players win a large prize when they pick four random digits that match, in the correct order. A smaller prize is won if only three digits are matched. What is the probability that a player wins the large prize? What is the probability that a player wins the small prize?

Solution: By the product rule, there are $10^4=10,000$ ways to choose four digits.

Large prize case: There is only one way to choose all four digits correctly. Thus, the probability is 1/10,000 = 0.0001.

Example III

Question: In a lottery, players win a large prize when they pick four random digits that match, in the correct order. A smaller prize is won if only three digits are matched. What is the probability that a player wins the large prize? What is the probability that a player wins the small prize?

Solution: By the product rule, there are $10^4=10,000$ ways to choose four digits.

Large prize case: There is only one way to choose all four digits correctly. Thus, the probability is 1/10,000 = 0.0001.

Small prize case: Exactly one digit must be wrong to get three digits correct, but not all four correct.

Example III

Question: In a lottery, players win a large prize when they pick four random digits that match, in the correct order. A smaller prize is won if only three digits are matched. What is the probability that a player wins the large prize? What is the probability that a player wins the small prize?

Solution: By the product rule, there are $10^4 = 10,000$ ways to choose four digits.

Large prize case: There is only one way to choose all four digits correctly. Thus, the probability is 1/10,000 = 0.0001.

Small prize case: Exactly one digit must be wrong to get three digits correct, but not all four correct. Hence, there is a total of $\binom{4}{1} \times 9 = 36$ ways to choose four digits with exactly three of the four digits correct. Thus, the probability that a player wins the smaller prize is 36/10,000 = 9/2500 = 0.0036.

Example IV

Question: Find the probabilities that a poker hand contains four cards of one kind, or a full house (i.e., three of one kind and two of another kind).

Example IV

Question: Find the probabilities that a poker hand contains four cards of one kind, or a full house (i.e., three of one kind and two of another kind).

Solution: There are C(52,5) different hands of five cards.

Example IV

Question: Find the probabilities that a poker hand contains four cards of one kind, or a full house (i.e., three of one kind and two of another kind).

Solution: There are C(52,5) different hands of five cards.

Case I: # hands of five cards with four cards of one kind is

Example IV

Question: Find the probabilities that a poker hand contains four cards of one kind, or a full house (i.e., three of one kind and two of another kind).

Solution: There are C(52,5) different hands of five cards.

Case I: # hands of five cards with four cards of one kind is

Case II: # hands of three of one kind and two of another kind is

$$P(13,2)C(4,3)C(4,2)$$
.

Example IV

Question: Find the probabilities that a poker hand contains four cards of one kind, or a full house (i.e., three of one kind and two of another kind).

Solution: There are C(52,5) different hands of five cards.

Case I: # hands of five cards with four cards of one kind is

Case II: # hands of three of one kind and two of another kind is

$$P(13,2)C(4,3)C(4,2)$$
.

Hence, the probabilities are

$$\frac{C(13,1)C(4,4)C(48,1)}{C(52,5)}\approx 0.00024, \frac{C(13,2)C(4,3)C(4,2)}{C(52,5)}\approx 0.0014.$$

Example V

Example V

For this case, sample space $\Omega = \{(x, y) | 0 \le x, y \le 1\}.$

Question: How to compute the probability of a point inside the circle area?

Example V

For this case, sample space $\Omega = \{(x, y) | 0 \le x, y \le 1\}.$

Question: How to compute the probability of a point inside the circle area?

Let E be an event that the point locates in the circle area C, where $C = \{(x, y) | x^2 + y^2 \le 1 \land x, y \ge 0\}.$

Example V

For this case, sample space $\Omega = \{(x, y) | 0 \le x, y \le 1\}.$

Question: How to compute the probability of a point inside the circle area?

Let E be an event that the point locates in the circle area C, where $C=\{(x,y)|x^2+y^2\leq 1 \land x,y\geq 0\}.$

$$P(E) = \frac{S(C)}{S(\Omega)},$$

where $S(\cdot)$ is the area of a plane region.

Then we have

Assigning probabilities

Let Ω be the sample space of an experiment with a finite or countable number of outcomes. We assign a probability P(s) to each outcome $s \in \Omega$. We require that two conditions be met:

1 $0 \le P(s) \le 1$ for each $s \in \Omega$;

Assigning probabilities

Let Ω be the sample space of an experiment with a finite or countable number of outcomes. We assign a probability P(s) to each outcome $s \in \Omega$. We require that two conditions be met:

- **1** $0 \le P(s) \le 1$ for each $s \in \Omega$;

Function P from the set of all outcomes of the sample space Ω to [0,1] is called a **probability distribution**.

We can model experiments in which outcomes are either equally likely or not equally likely by choosing the appropriate function P(s).

Example I

Question: What probabilities should we assign to the outcomes H (heads) and T (tails) when a fair coin is flipped? What probabilities should be assigned to these outcomes when the coin is biased so that heads comes up twice as often as tails?

Solution:

Fair case: For a fair coin, the probability that heads comes up when the coin is flipped equals the probability that tails comes up, so the outcomes are equally likely, i.e., $P(H) = P(T) = \frac{1}{2}$.

Example I

Question: What probabilities should we assign to the outcomes H (heads) and T (tails) when a fair coin is flipped? What probabilities should be assigned to these outcomes when the coin is biased so that heads comes up twice as often as tails?

Solution:

Fair case: For a fair coin, the probability that heads comes up when the coin is flipped equals the probability that tails comes up, so the outcomes are equally likely, i.e., $P(H) = P(T) = \frac{1}{2}$.

Unfair case: For the biased coin we have P(H) = 2P(T). Since P(H) + P(T) = 1, it follows that P(T) = 1/3 and P(H) = 2/3.

Uniform distribution

Definition of uniform distribution

Suppose that Ω is a set with n elements. The **uniform distribution** assigns the probability 1/n to each element of Ω .

Uniform distribution

Definition of uniform distribution

Suppose that Ω is a set with n elements. The **uniform distribution** assigns the probability 1/n to each element of Ω .

Definition of event probability

The probability of event E is the sum of the probabilities of the outcomes in E (E is a countable set). That is,

$$P(E) = \sum_{s \in E} P(s).$$

(Note that when E is an infinite set, $\sum_{s \in E} P(s)$ is a convergent infinite series.)

Operators

Let Ω be the sample space, A and B be two events:

$$P(A \cup B) = P(A) + P(B);$$

Operators

Let Ω be the sample space, A and B be two events:

$$P(A \cup B) = P(A) + P(B);$$

2

$$P(\overline{A}) = P(\Omega) - P(A) = 1 - P(A);$$

Operators

Let Ω be the sample space, A and B be two events:

$$P(A \cup B) = P(A) + P(B);$$

2

$$P(\overline{A}) = P(\Omega) - P(A) = 1 - P(A);$$

If A and B are independent, then

$$P(A \cap B) = P(A) \cdot P(B);$$

Operators

Let Ω be the sample space, A and B be two events:

$$P(A \cup B) = P(A) + P(B);$$

2

$$P(\overline{A}) = P(\Omega) - P(A) = 1 - P(A);$$

3 If A and B are independent, then

$$P(A \cap B) = P(A) \cdot P(B);$$

1 The conditional probability of A given B, denoted by P(A|B), is computed as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Probability of union of two events

Theorem

Let E_1 and E_2 be events in the sample space Ω . Then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$$

Proof.

Since we have $|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$,

Probability of union of two events

Theorem

Let E_1 and E_2 be events in the sample space Ω . Then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2).$$

Proof.

Since we have $|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$,

$$P(E_1 \cup E_2) = \frac{|E_1 \cup E_2|}{|\Omega|} = \frac{|E_1| + |E_2| - |E_1 \cap E_2|}{|\Omega|}$$
$$= \frac{|E_1|}{|\Omega|} + \frac{|E_2|}{|\Omega|} - \frac{|E_1 \cap E_2|}{|\Omega|}$$
$$= P(E_1) + P(E_2) - P(E_1 \cap E_2).$$

Probability of union Cont'd

• If $E_1 \cap E_2 = \emptyset$, then

$$P(E_1 \cup E_2) = P(E_1) + P(E_2);$$

• If $E_i \cap E_j = \emptyset$ for $\forall i, j$, then

$$P(\bigcup_{i=0}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i);$$

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$$
$$- P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3)$$
$$+ P(E_1 \cap E_2 \cap E_3)$$

4 D > 4 D >

Question: What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5?

Solution: Let E_1 be the event that the integer selected at random is divisible by 2, and let E_2 be the event that it is divisible by 5.

Question: What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5?

Solution: Let E_1 be the event that the integer selected at random is divisible by 2, and let E_2 be the event that it is divisible by 5. Then $E_1 \cup E_2$ is the event that it is divisible by either 2 or 5.

Question: What is the probability that a positive integer selected at random from the set of positive integers not exceeding 100 is divisible by either 2 or 5?

Solution: Let E_1 be the event that the integer selected at random is divisible by 2, and let E_2 be the event that it is divisible by 5. Then $E_1 \cup E_2$ is the event that it is divisible by either 2 or 5.

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$= \frac{50}{100} + \frac{20}{100} - \frac{10}{100}$$

$$= 0.6$$

Probability of complement of an event

Theorem

Let E be an event in a sample space Ω . The probability of event $\overline{E} = \Omega - E$, the complementary event of E, is given by

$$P(\overline{E})=1-P(E).$$

Proof.

Since we have $|\Omega| = |E| + |\overline{E}|$,

Probability of complement of an event

Theorem

Let E be an event in a sample space Ω . The probability of event $\overline{E} = \Omega - E$, the complementary event of E, is given by

$$P(\overline{E})=1-P(E).$$

Proof.

Since we have $|\Omega| = |E| + |\overline{E}|$,

$$P(\overline{E}) = \frac{|E|}{|\Omega|} = \frac{|\Omega| - |E|}{|\Omega|}$$
$$= \frac{|\Omega|}{|\Omega|} - \frac{|E|}{|\Omega|} = 1 - P(E).$$

Question: A sequence of 10 bits is randomly generated. What is the probability that at least one of these bits is 0?

Solution: Let *E* be the event that at least one of the 10 bits is 0.

Question: A sequence of 10 bits is randomly generated. What is the probability that at least one of these bits is 0?

Solution: Let E be the event that at least one of the 10 bits is 0. Then \overline{E} is the event that all the bits are 1s. Because the sample space Ω is the set of all bit strings of length 10, it follows that

Question: A sequence of 10 bits is randomly generated. What is the probability that at least one of these bits is 0?

Solution: Let E be the event that at least one of the 10 bits is 0. Then \overline{E} is the event that all the bits are 1s. Because the sample space Ω is the set of all bit strings of length 10, it follows that

$$P(E) = 1 - P(\overline{E}) = 1 - \frac{1}{2^{10}} = \frac{1023}{1024}.$$

Running example

Tossing coins

We toss a coin twice (Head = H, Tail = T), then $\Omega = \{HH, HT, TH, TT\}.$

We define three events:

- \bullet *A* : the first toss is *H*;
- B: the second toss is H;
- O : the first and second toss give the same results.

Hence, we have

•
$$P(A) = P(B) = P(C) = \frac{1}{2}$$
;

•
$$P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{|\{HH\}|}{|\Omega|} = \frac{1}{4}$$
;

•
$$P(A \cap B \cap C) = \frac{|\{HH\}|}{|\Omega|} = \frac{1}{4};$$

401491471717

Independence

Definition

• Events E_1 and E_2 are **pair-wise independent** if and only if

$$P(E_1 \cap E_2) = P(E_1)P(E_2);$$

• Events E_1, E_2, \dots, E_n are **mutually independent** if

$$P(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_m}) = P(E_{i_1})P(E_{i_2}) \cdots P(E_{i_m}),$$

where $i_j, j = 1, 2, \dots, m$, are integers with $1 < i_1 < i_2 < \dots < i_m < n$ and m > 2.

Note that mutually independent must be pair-wise independent, but pair-wise independent may not imply mutually independent (shown in previous example).

Independence

Theorem

Events E and F are pair-wise independent, then

- E and \overline{F} are pair-wise independent;
- \overline{E} and F are pair-wise independent;
- \overline{E} and \overline{F} are pair-wise independent;

Proof.

$$P(E) = P(E \cap (F \cup \overline{F})) = P((E \cap F) \cup (E \cap \overline{F}))$$

$$= P(E \cap F) + P(E \cap \overline{F})$$

$$P(E \cap \overline{F}) = P(E) - P(E \cap F) = P(E) - P(E)P(F)$$

$$= P(E)(1 - P(F)) = P(E)P(\overline{F})$$

Hence, we have E and \overline{F} are independent.

Question: Suppose E is the event that a randomly generated bit string of length four begins with a 1 and F is the event that this bit string contains an even number of 1s. Are E and F independent, if the 16 bit strings of length four are equally likely?

Solution: Because there are 16 bit strings of length four, it follows that

$$P(E) = P(F) = 8/16 = 1/2.$$

Question: Suppose E is the event that a randomly generated bit string of length four begins with a 1 and F is the event that this bit string contains an even number of 1s. Are E and F independent, if the 16 bit strings of length four are equally likely?

Solution: Because there are 16 bit strings of length four, it follows that

$$P(E) = P(F) = 8/16 = 1/2.$$

Because $E \cap F = \{1111, 1100, 1010, 1001\}$, we see that

$$P(E \cap F) = \frac{4}{16} = \frac{1}{4} = (\frac{1}{2})(\frac{1}{2}) = P(E)P(F).$$

Question: Suppose E is the event that a randomly generated bit string of length four begins with a 1 and F is the event that this bit string contains an even number of 1s. Are E and F independent, if the 16 bit strings of length four are equally likely?

Solution: Because there are 16 bit strings of length four, it follows that

$$P(E) = P(F) = 8/16 = 1/2.$$

Because $E \cap F = \{1111, 1100, 1010, 1001\}$, we see that

$$P(E \cap F) = \frac{4}{16} = \frac{1}{4} = (\frac{1}{2})(\frac{1}{2}) = P(E)P(F).$$

Hence, events E and F are independent.

40.40.41.41.1.000

Question: Assume that each of the four ways a family can have two children is equally likely. Are events E, that a family with two children has two boys, and F, that a family with two children has at least one boy, independent?

Solution: Because $E = \{BB\}$ and $F = \{BB, BG, GB\}$, we have P(E) = 1/4 and P(F) = 3/4.

Question: Assume that each of the four ways a family can have two children is equally likely. Are events E, that a family with two children has two boys, and F, that a family with two children has at least one boy, independent?

Solution: Because $E = \{BB\}$ and $F = \{BB, BG, GB\}$, we have P(E) = 1/4 and P(F) = 3/4. Obviously, $E \cap F = \{BB\}$, we see that $P(E \cap F) = 1/4$.

Question: Assume that each of the four ways a family can have two children is equally likely. Are events E, that a family with two children has two boys, and F, that a family with two children has at least one boy, independent?

Solution: Because $E = \{BB\}$ and $F = \{BB, BG, GB\}$, we have P(E) = 1/4 and P(F) = 3/4.

Obviously, $E \cap F = \{BB\}$, we see that $P(E \cap F) = 1/4$. However, P(E)P(F) = 3/16.

That is

$$P(E \cap F) \neq P(E)P(F)$$
.

Question: Assume that each of the four ways a family can have two children is equally likely. Are events E, that a family with two children has two boys, and F, that a family with two children has at least one boy, independent?

Solution: Because $E = \{BB\}$ and $F = \{BB, BG, GB\}$, we have P(E) = 1/4 and P(F) = 3/4.

Obviously, $E \cap F = \{BB\}$, we see that $P(E \cap F) = 1/4$. However, P(E)P(F) = 3/16.

That is

$$P(E \cap F) \neq P(E)P(F)$$
.

Hence, events E and F are not independent.

Question: Are the events E, that a family with three children has children of both sexes, and F, that this family has at most one boy, independent? Assume that the eight ways a family can have three children are equally likely.

Question: Are the events E, that a family with three children has children of both sexes, and F, that this family has at most one boy, independent? Assume that the eight ways a family can have three children are equally likely.

Solution: Because $E = \{BBG, BGB, BGG, GBB, GBG, GGB\}$, $F = \{BGG, GBG, GGB, GGG\}$, and $E \cap F = \{BGG, GBG, GGB\}$, it follows that P(E) = 6/8 = 3/4, P(F) = 4/8 = 1/2, and $P(E \cap F) = 3/8$.

Question: Are the events E, that a family with three children has children of both sexes, and F, that this family has at most one boy, independent? Assume that the eight ways a family can have three children are equally likely.

Solution: Because $E = \{BBG, BGB, BGG, GBB, GBG, GGB\}$, $F = \{BGG, GBG, GGB, GGG\}$, and $E \cap F = \{BGG, GBG, GGB\}$, it follows that P(E) = 6/8 = 3/4, P(F) = 4/8 = 1/2, and $P(E \cap F) = 3/8$.

Because P(E)P(F) = 3/8, it follows that $P(E \cap F) = P(E)P(F)$, so E and F are independent.

Conditional probability

Definition

Let E and F be events with P(F) > 0. The **conditional probability** of E given F, denoted by P(E|F), is defined as

$$P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

Conditional probability

Definition

Let E and F be events with P(F) > 0. The **conditional probability** of E given F, denoted by P(E|F), is defined as

$$P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

Conditional probability

Definition

Let E and F be events with P(F) > 0. The **conditional probability** of E given F, denoted by P(E|F), is defined as

$$P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

- P(E|F) is the probability of E, given that F occurred
- F is our new sample space;
- P(E|F) is undefined if P(F) = 0.

Question: What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely.

Question: What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely.

Solution: Let E be the event that a family with two children has two boys, and let F be the event that a family with two children has at least one boy.

Question: What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely.

Solution: Let E be the event that a family with two children has two boys, and let F be the event that a family with two children has at least one boy.

It follows that $E = \{BB\}$, $F = \{BB, BG, GB\}$, and $E \cap F = \{BB\}$.

Question: What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely.

Solution: Let E be the event that a family with two children has two boys, and let F be the event that a family with two children has at least one boy.

It follows that $E = \{BB\}$, $F = \{BB, BG, GB\}$, and $E \cap F = \{BB\}$. Because the four possibilities are equally likely, it follows that P(F) = 3/4 and $P(E \cap F) = 1/4$.

Question: What is the conditional probability that a family with two children has two boys, given they have at least one boy? Assume that each of the possibilities BB, BG, GB, and GG is equally likely.

Solution: Let E be the event that a family with two children has two boys, and let F be the event that a family with two children has at least one boy.

It follows that $E = \{BB\}$, $F = \{BB, BG, GB\}$, and $E \cap F = \{BB\}$.

Because the four possibilities are equally likely, it follows that P(F) = 3/4 and $P(E \cap F) = 1/4$.

We conclude that

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{1/4}{3/4} = \frac{1}{3}.$$

(ロ) (団) (団) (ヨ) (ヨ) (ロ)

• P(E|F) = P(E) if events E and F are independent;

- P(E|F) = P(E) if events E and F are independent;
- $P(E \cap F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$;

- P(E|F) = P(E) if events E and F are independent;
- $P(E \cap F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$;

• $P(E) = P(F_1) \cdot P(E|F_1) + P(F_2) \cdot P(E|F_2) + P(F_3) \cdot P(E|F_3)$ if $F_1 \cup F_2 \cup F_3 = \Omega$ and $F_i \cap F_j = \emptyset$ for $i \neq j$ (Total probability theorem);

- P(E|F) = P(E) if events E and F are independent;
- $P(E \cap F) = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$;

- $P(E) = P(F_1) \cdot P(E|F_1) + P(F_2) \cdot P(E|F_2) + P(F_3) \cdot P(E|F_3)$ if $F_1 \cup F_2 \cup F_3 = \Omega$ and $F_i \cap F_j = \emptyset$ for $i \neq j$ (Total probability theorem);
- $P(F_i|E) = \frac{P(F_i) \cdot P(E|F_i)}{P(E)} = \frac{P(F_i) \cdot P(E|F_i)}{\sum_i P(F_i) \cdot P(E|F_i)}$ (Bayes rule).

4 D > 4 A > 4 B > 4 B > B 90 0

Proof of the total probability theorem

Theorem

Let F_i (for $i=1,2,\cdots,n$) be a partition of sample space Ω , for any event E, then

$$P(E) = \sum_{i=1}^{n} P(F_i) \cdot P(E|F_i).$$

Proof of the total probability theorem

Theorem

Let F_i (for $i=1,2,\cdots,n$) be a partition of sample space Ω , for any event E, then

$$P(E) = \sum_{i=1}^{n} P(F_i) \cdot P(E|F_i).$$

Proof:

$$P(E) = P(E \cap \Omega) = P(E \cap (F_1 \cup F_2 \cup \cdots \cup F_n))$$

$$= P((E \cap F_1) \cup (E \cap F_2) \cup \cdots \cup (E \cap F_n))$$

$$= P(E \cap F_1) + P(E \cap F_2) + \cdots + P(E \cap F_n)$$

$$= P(F_1) \cdot P(E|F_1) + P(F_2) \cdot P(E|F_2) + \cdots + P(F_n) \cdot P(E|F_n)$$

$$= \sum_{i=1}^{n} P(F_i) \cdot P(E|F_i).$$

Question: Suppose we draw two cards from a well shuffled deck. What is the probability the second card in the deck is an ace?

Question: Suppose we draw two cards from a well shuffled deck. What is the probability the second card in the deck is an ace? **Solution:** Let E and F be events that the first and the second cards are Aces, respectively. Hence E and \overline{E} is a partition of the sample space.

Question: Suppose we draw two cards from a well shuffled deck. What is the probability the second card in the deck is an ace?

Solution: Let E and F be events that the first and the second cards are Aces, respectively. Hence E and \overline{E} is a partition of the sample space.

In terms of the total probability theorem, condition on whether the first card is an ace or not:

$$P(F) = P(E) \cdot P(F|E) + P(\overline{E}) \cdot P(F|\overline{E})$$

$$= (\frac{4}{52})(\frac{3}{51}) + (\frac{48}{52})(\frac{4}{51})$$

$$= \frac{3 \cdot 4 + 48 \cdot 4}{51 \cdot 52} = \frac{4}{52}$$

400440450450 5 000

Take-aways

Conclusions

- Introduction
- Sample Space and Events
- Probability and Set Operations
 - Probability of Union
 - Probability of Complement
 - Independence
 - Conditional Probability

