INTERFACE HARDWARE-IN-THE-LOOP PARA AUXÍLIO NO ENSINO DE PROGRAMAÇÃO DE CLP's

Este experimento é parte do trabalho de conclusão de curso do discente Renan Praciano I. L. Sandes do curso de Engenharia Eletrônica Universidade Federal de Sergipe.

Março de 2020

Experimento para avaliação do sistema

Objetivo do experimento

Neste experimento será introduzido ao grupo a interface para simulação HIL. De forma resumida, a interface HIL integrará o controlador lógico programável à uma simulação em tempo real. Para isso, deve ser desenvolvida uma automação utilizando alguma linguagem de programação para CLP (Ladder, ou FBD) para a implementação. Ao final um questionário será apresentado aos participantes para avaliação da experiência.

A planta

Para este experimento, foi escolhida uma planta de separação de peças a ser automatizada. Esta planta é responsável por receber quatro tipos de peças (pequenas e grandes, metálicas e não metálicas) de outra etapa da fábrica e classificá-las de forma a enviar para máquinas que utilizarão estas peças para montagem dos

diferentes produtos desta fábrica. Para realizar esta tarefa, ela conta com três sensores, capacitivo, indutivo e óptico que detectam caso a peça seja não metálica, metálica e grande, respectivamente, e também com dois atuadores pneumáticos que controlam as portas onde as peças serão empurradas em direção às esteiras que as levarão às suas respectivas máquinas.

A separação deve ocorrer de modo que as peças grandes e não metálicas junto com as pequenas e metálicas vão para a contagem 1, as peças grandes e metálicas vão para a contagem 2 e as peças pequenas e não metálicas vão para a saída (descarte). Na figura a seguir está brevemente descrito as direções de cada bloco e também é possível observar a diferença entre cada tipo de peça.

Detalhes de montagem da planta

A interface HIL simulará para o controlador lógico programável a planta. Para isso, devem ser feitas as conexões de forma correta, respeitando as características elétricas dela. Para isso, a **interface** possui entradas, que receberão os sinais enviados para os atuadores da planta e saídas, que enviarão os sinais provenientes dos sensores da planta. Nesta simulação, as entradas e saídas estão relacionadas com a planta conforme a seguinte tabela:

Nome na interface	Entrada/Saída	Descrição
10	Entrada	Aciona o pistão da porta 1. O pistão retorna junto à porta quando desativado.
I1	Entrada	Aciona o pistão da porta 2. O pistão retorna junto à porta quando desativado.
15	Entrada	Solicita uma nova peça ao gerador de peças.
Q0	Saída	Saída do sensor capacitivo.
Q1	Saída	Saída do sensor indutivo.
Q2	Saída	Saída do sensor óptico.

Nas imagens a seguir pode ser visto um screenshot da tela e uma demonstração da ligação da interface com o controlador.

Instalação para utilização do material

- 1- Conecte a fonte de 5V de alimentação para o módulo relés interno.
- 2 Conecte o USB no computador.
- 3 Caso LED1 2 e 3 estejam piscando com intervalo de 1 s aproximadamente pule para o próximo passo. Senão, contate o instrutor.
- 4 Inicie o programa da simulação.
- 5 Teclas utilizadas para auxílio na simulação:
 - 1 e 2 Controlam as portas 1 e 2, respectivamente.
 - Espaço Gera um novo bloco na tela.
 - Delete Limpa todos os blocos da tela, e recomeça as contagens.
- 5 Conecte o CLP nas entradas e saídas da interface (indicados por I0 a I5 e Q0 a Q5 respectivamente) e proceda para a elaboração do seu programa.