Simon Gröblacher

Current positions

12/2017- Associate Professor, Delft University of Technology, Delft, The Netherlands

Quantum optomechanics with photonic crystal cavities.

06/2018 – Director and Co-Founder, Nenso Solutions, Delft, The Netherlands

Nanofabrication and High-Tech Consultancy.

Previous positions

11/2014–11/2017 Assistant Professor, Delft University of Technology, Delft, The Netherlands

Quantum optomechanics with photonic crystal cavities.

04/2011-08/2014 Post-Doctoral Fellow, California Institute of Technology, Pasadena, CA, USA

Optomechanics, silicon nanophotonics. Advisor: Prof. Oskar Painter

09/2013-08/2014 Post-Doctoral Fellow, University of Vienna, Vienna, Austria

 $01/2011-03/2011 \\ \hspace{0.5cm} \textbf{Optomechanics, macroscopic quantum states, quantum optics. Advisor: Prof. Markus Aspelmeyer}$

02/2006–01/2011 Research & Teaching Assistant, Austrian Academy of Sciences / University of Vienna, Vienna, Austria

Optomechanics, macroscopic quantum states, quantum optics. Advisors: Prof. Markus Aspelmeyer & Prof. Anton

Zeilinger

10/2004–12/2005 Scientific Assistant, University of Vienna, Vienna, Austria

Quantum information processing in higher dimensions, entangled photons, orbital angular momentum. Advisor:

Prof. Anton Zeilinger

01/2004-09/2004 Research Assistant, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Research stay in the quantum optics group of Prof. Paulo H. S. Ribeiro

Education

2006–2011 Ph.D., Physics, University of Vienna, Vienna, Austria, with distinction.

2001–2005 Masters, Physics, University of Vienna, Vienna, Austria, with distinction.

06/1999 Austrian Matura, Bundesrealgymnasium Ringstraße, Krems, Austria, with distinction.

07/1997-06/1998 Exchange year, American Field Service (AFS), Colégio Sagrado Coração de Jesus, Ijuí, RS, Brazil.

1991–1999 **Secondary school**, Bundesrealgymnasium Ringstraße, Krems, Austria.

PhD thesis

Title Quantum opto-mechanics with micromirrors: combining nano-mechanics with quantum optics

Supervisors Prof. Markus Aspelmeyer & Prof. Anton Zeilinger

University of Vienna (2010)

Diploma thesis

Title Experimental Investigation of Quantum Communication Protocols in Higher Dimensions

Supervisors Prof. Anton Zeilinger

University of Vienna (2005)

Funding

	11/2019–10/2021	Quantum/Na	no startimpulsprogramm	ma, Nationale Wetenschaps Agenda	a.
--	-----------------	------------	------------------------	----------------------------------	----

08/2019–07/2024 Vrij Programma, Netherlands Organisation for Scientific Research (NWO); Coordinator.

05/2019–05/2020 Attract Grant, EU Research and Innovation Programme.

01/2017–12/2020 **Projectruimte**, Foundation for Fundamental Research on Matter (FOM).

11/2016–10/2021 Vidi Grant, Netherlands Organisation for Scientific Research (NWO).

03/2016–02/2021 **Starting Grant**, European Research Council (ERC).

07/2015–06/2019 **Projectruimte**, Foundation for Fundamental Research on Matter (FOM).

05/2015–04/2019 Frontiers of Nanoscience, TU Delft / Leiden University.

11/2014–10/2019 **Startup Grant**, Delft University of Technology.

Fellowships

09/2011-08/2014 Marie Curie International Outgoing Fellowship, European Commission.

07/2011–06/2012 Fellowship of the Institute for Quantum Information and Matter, California Institute of Technology.

01/2008–12/2009 **DOC fellowship**, Austrian Academy of Sciences.

10/2007-01/2011 Doctoral programme Complex Quantum Systems (CoQuS), Austrian Science Fund (FWF).

01/2004–09/2004 **Top-Stipendium Exchange Scholarship**, State of Lower Austria.

Awards

09/2020 Scientific Appreciation Award, for excellence in research, State of Lower Austria.

10/2014 ASciNA award, for excellent scientific work, Austrian Scientists & Scholars in North America.

12/2012 Loschmidt Prize, for distinguished theses, Austrian Chemical-Physical Scoiety.

03/2012 **Doc.Award 2011**, for outstanding doctoral theses, University of Vienna & City of Vienna.

12/2011 **Award of Excellence**, for excellent and outstanding dissertations, Austrian Ministry for Science and Research.

11/2011 Scientific Recognition Award, for excellence in research, State of Lower Austria.

05/2011 PhD Thesis Prize, in recognition of the highest level of excellence, European Physical Society.

11/2010 **ESG-Nano-Award 2010**, for scientific activities in the field of nanosciences and nanotechnologies, Erwin Schrödinger Society for Nanosciences (ESG).

03/2010 **Bank Austria Research Award 2010**, for particularly interesting and promising research projects, Bank Austria Foundation for Science and Research at the University of Vienna.

10/2006 INITS Award 2006, for innovative applied research, Founder Service of the Austrian Universities (INITS).

06/2003 **Top-Stipendium Scholarship**, State of Lower Austria.

Teaching

since 2018/2019 Graduate course on quantum optics.

since 2015/2016 Undergraduate introductory course on quantum mechanics.

since 2014/2015 Undergraduate lab course on optomechanics.

Additional work experience

Peer review • Referee for Nature, Science, Nature Phys., Phys. Rev. Lett., Phys. Rev. X, among others.

Languages

German native speaker

English fluent, written and spoken

Portuguese fluent, written and spoken

Spanish good knowledge, written and spoken

French basic knowledge, written and spoken

Publications and Presentations

Publications 41 publications in peer-reviewed journals – incl. 7 Nature, 1 Science, 3 Nature Phys., 7 Phys. Rev. Lett., 1

Nano Lett., 1 Optica

Total citations: 7200; h-index: 25 (as of October 2020, Google Scholar).

Presentations 80+ invited talks at conferences or seminars at international venues.

Peer-reviewed journals

- * indicates equal contribution
- 1. Y. Chu and S. Gröblacher

A perspective on hybrid quantum opto- and electromechanical systems Appl. Phys. Lett. **117**,150503 (2020).

2. M. Leeuwenhoek, <u>S. Gröblacher</u>, M. P. Allan, and Y. M. Blanter *Modeling Green's function measurements with two-tip scanning tunneling microscopy* Phys. Rev. B **102**, 115416 (2020).

 J. Li, A. Wallucks, R. Benevides, N. Fiaschi, B. Hensen, T. P. Mayer Alegre, and <u>S. Gröblacher Proposal for optomechanical quantum teleportation</u> Phys. Rev. A 102, 032402 (2020).

4. A. Wallucks, I. Marinković, B. Hensen, R. Stockill, and <u>S. Gröblacher</u> A quantum memory at telecom wavelengths
Nature Phys. **16**, 772–777 (2020).

5. J. Li and S. Gröblacher

Stationary quantum entanglement between a massive mechanical membrane and a low frequency LC circuit New J. Phys. **22**, 063041 (2020).

6. J. Guo, R.A. Norte, and <u>S. Gröblacher</u>

Feedback cooling of a room temperature mechanical oscillator close to its motional groundstate

Phys. Rev. Lett. **123**, 223602 (2019).

7. R. Stockill*, M. Forsch*, G. Beaudoin, K. Pantzas, I. Sagnes, R. Braive, and <u>S. Gröblacher</u> *Gallium phosphide as a piezoelectric platform for quantum optomechanics* Phys. Rev. Lett. **123**, 163602 (2019).

8. M. Forsch*, R. Stockill*, A. Wallucks, I. Marinković, C. Gärtner, R. A. Norte, F. van Otten, A. Fiore, K. Srinivasan, and S. Gröblacher

Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state Nature Phys. **16**, 69–74 (2020).

- 9. M. Leeuwenhoek, R. A. Norte, K. M. Bastiaans, D. Cho, I. Battisti, Y. M. Blanter, <u>S. Gröblacher</u>, and M. P. Allan *Nanofabricated tips for device-based scanning tunneling microscopy*Nanotechnology **30**, 335702 (2019).
- 10. L. Magrini, R. A. Norte, R. Riedinger, I. Marinković, D. Grass, U. Delić, <u>S. Gröblacher</u>, S. Hong, and M. Aspelmeyer *Near-field coupling of a levitated nanoparticle to a photonic crystal cavity*Optica **5**, 1597–1602 (2018).
- 11. I. Marinković*, A. Wallucks*, R. Riedinger, S. Hong, M. Aspelmeyer, and <u>S. Gröblacher</u> *An optomechanical Bell test* Phys. Rev. Lett. **121**, 220404 (2018).
- 12. C. Gärtner*, J. P. Moura*, W. Haaxman, R. A. Norte, and <u>S. Gröblacher</u> *Integrated optomechanical arrays of two high reflectivity SiN membranes* Nano Lett. **18**, 7171–7175 (2018).
- M. Sanz, W. Wieczorek, <u>S. Gröblacher</u>, and E. Solano Electro-mechanical Casimir effect Quantum **2**, 91 (2018).
- R. A. Norte, M. Forsch, A. Wallucks, I. Marinković, and <u>S. Gröblacher</u> Platform for measurements of the Casimir force between two superconductors Phys. Rev. Lett. **121**, 030405 (2018).
- 15. J. Li, <u>S. Gröblacher</u>, S.-Y. Zhu, and G. S. Agarwal Generation and detection of non-Gaussian phonon-added coherent states in optomechanical systems Phys. Rev. A **98**, 011801(R) (2018).
- R. Riedinger*, A. Wallucks*, I. Marinković*, C. Löschnauer, M. Aspelmeyer, S. Hong, and <u>S. Gröblacher Remote quantum entanglement between two micromechanical oscillators</u> Nature **556**, 473–477 (2018).
- 17. J. P. Moura*, R. A. Norte*, J. Guo, C. Schäfermeier, and <u>S. Gröblacher</u> Centimeter-scale suspended photonic crystal mirrors
 Opt. Express **26**, 1895–1909 (2018).
- 18. S. Hong*, R. Riedinger*, I. Marinković*, A. Wallucks*, S. G. Hofer, R. A. Norte, M. Aspelmeyer, and <u>S. Gröblacher</u> Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator Science **358**, 203–206 (2017).
- 19. J. Guo, R. A. Norte, and <u>S. Gröblacher</u>

 Integrated optical force sensors using focusing photonic crystal arrays

 Opt. Express **25**, 9196–9203 (2017).

- R. A. Norte, J. P. Moura, and <u>S. Gröblacher</u>
 Mechanical resonators for quantum optomechanics experiments at room temperature
 Phys. Rev. Lett. **116**, 147202 (2016).
- 21. R. Riedinger*, S. Hong*, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher

Non-classical correlations between single photons and phonons from a mechanical oscillator Nature **530**, 313–316 (2016).

- 22. <u>S. Gröblacher</u>, A. Trubarov, N. Prigge, G. D. Cole, M. Aspelmeyer, and J. Eisert *Observation of non-Markovian micromechanical Brownian motion* Nature Commun. **6**, 7606 (2015).
- 23. J. D. Cohen*, S. M. Meenehan*, G. S. MacCabe, <u>S. Gröblacher</u>, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, and O. Painter

Phonon counting and intensity interferometry of a nanomechanical resonator Nature **520**, 522–525 (2015).

- S. M. Meenehan*, J. D. Cohen*, <u>S. Gröblacher</u>*, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter Silicon optomechanical crystal resonator at Millikelvin temperatures Phys. Rev. A **90**, 011803(R) (2014).
- 25. A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan, <u>S. Gröblacher</u>, and O. Painter *Two-dimensional phononic-photonic band gap optomechanical crystal cavity* Phys. Rev. Lett. **112**, 153603 (2014).
- 26. <u>S. Gröblacher</u>*, J. T. Hill*, A. H. Safavi-Naeini*, J. Chan, and O. Painter *Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity* Appl. Phys. Lett. **103**, 181104 (2013).
- S. Gröblacher, S. Gigan, and M. Paternostro
 Phase-space behavior and conditional dynamics of an optomechanical system
 Phys. Rev. A 88, 023813 (2013).
- A. H. Safavi-Naeini*, <u>S. Gröblacher</u>*, J. T. Hill*, J. Chan, M. Aspelmeyer, and O. Painter Squeezed light from a silicon micromechanical resonator Nature 500, 185–189 (2013).
- J. Li, <u>S. Gröblacher</u>, and M. Paternostro *Enhancing non-classicality in mechanical systems* New J. Phys. **15**, 033023 (2013).
- S. Ramelow, A. Mech, M. Giustina, <u>S. Gröblacher</u>, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin
 Highly efficient heralding of entangled single photons
 Opt. Express 21, 6707–6717 (2013).
- 31. A. H. Safavi-Naeini, J. Chan, J. T. Hill, <u>S. Gröblacher</u>, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter *Laser noise in cavity-optomechanical cooling and thermometry* New J. Phys. **15**, 035007 (2013).
- 32. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, <u>S. Gröblacher</u>, M. Aspelmeyer, and O. Painter

Laser cooling of a nanomechanical oscillator into its quantum ground state Nature **478**, 89–92 (2011).

- M. Aspelmeyer, <u>S. Gröblacher</u>, K. Hammerer, and N. Kiesel Quantum optomechanics – throwing a glance J. Opt. Soc. Am. B **27**, A189–A197 (2010).
- 34. <u>S. Gröblacher</u>, K. Hammerer, M. R. Vanner, and M. Aspelmeyer *Observation of strong coupling between a micromechanical resonator and an optical cavity field* Nature **460**, 724–727 (2009).
- 35. <u>S. Gröblacher</u>, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer *Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity* Nature Phys. **5**, 485–488 (2009).
- 36. G. D. Cole, <u>S. Gröblacher</u>, K. Gugler, S. Gigan, and M. Aspelmeyer Monocrystalline Al_x Ga_{1-x}As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime Appl. Phys. Lett. **92**, 261108 (2008).
- 37. <u>S. Gröblacher</u>, S. Gigan, H. R. Böhm, A. Zeilinger, and M. Aspelmeyer *Radiation-pressure self-cooling of a micromirror in a cryogenic environment* Europhys. Lett. **81**, 54003 (2008).
- 38. T. Paterek, A. Fedrizzi, <u>S. Gröblacher</u>, T. Jennewein, M. Żukowski, M. Aspelmeyer, A. Zeilinger *Experimental test of nonlocal realistic theories without the rotational symmetry assumption* Phys. Rev. Lett. **99**, 210406 (2007).

- M. Stütz, S. Gröblacher, T. Jennewein, and A. Zeilinger
 How to create and detect N-dimensional entangled photons with an active phase hologram
 Appl. Phys. Lett. 90, 261114 (2007).
- 40. <u>S. Gröblacher</u>, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger *An experimental test of non-local realism*Nature **446**, 871–875 (2007).
- S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger Experimental Quantum Cryptography with Qutrits New J. Phys. 8, 75 (2006).

Electronic preprints

- 42. I. Marinković*, M. Drimmer*, B. Hensen, and <u>S. Gröblacher</u>

 Hybrid integration of silicon photonic devices on lithium niobate for optomechanical wavelength conversion arXiv:2010.08493 (2020).
- 43. J. Li and <u>S. Gröblacher</u>

 Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics arXiv:2007.09083 (2020).

Proceedings

44. G. D. Cole, I. Wilson-Rae, M. R. Vanner, <u>S. Gröblacher</u>, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer *Megahertz monocrystalline optomechanical resonators with minimal dissipation*, 23rd IEEE International Conference on Microelectromechanical Systems (Hong Kong, China, January 24-28, 2010).

Popular science

 N. Kiesel, W. Wieczorek, <u>S. Gröblacher</u>, and M. Aspelmeyer *Licht macht Druck* Phys. Unserer Zeit **42**, 276–284 (2011).

Dissertation

46. <u>S. Gröblacher</u>, *Quantum opto-mechanics with micromirrors: combining nano-mechanics with quantum optics* University of Vienna (2010).

Master thesis

47. <u>S. Gröblacher</u>, Experimental Investigation of Quantum Communication Protocols in Higher Dimensions University of Vienna (2005).

Books

48. Gröblacher, Simon. Quantum opto-mechanics with micromirrors: combining nano-mechanics with quantum optics. Heidelberg: Springer, 2012.

Patents

- M. Leeuwenhoek, M. Allan, R. A. Norte, and <u>S. Gröblacher</u>. Novel atomic force microscopy probes with phononic crystals.
 Patent pending (2019).
- 50. R. A. Norte and <u>S. Gröblacher</u>. *High-selectivity dry release of dielectric structures*. Patent pending (2019).
- S. Gröblacher, M. Forsch, and R. Stockill. Quantum wavelength converter between a microwave signal and an optical signal.
 NL2021950B1 (2018).
- 52. R. A. Norte and <u>S. Gröblacher</u>. *Method for Fabrication of Large-Aspect-Ratio Nano-Thickness Mirrors*. NL2019631B1 (2017).
- 53. R. A. Norte and <u>S. Gröblacher</u>. *Photonic Crystal Mirrors on Tethered Membrane Resonator*. NL2016081B1 (2016).