ML Foundations

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set For Modeling: Data Exploration & Munging

What you can expect in this session

- 01 Overview
- 02 Data Preparation for ML
- 03 Data Preparation Tools
- 04 Introduction to Data Preparation Demo
- 05 What's Next?

Overview

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set for Modeling: Data Exploration &

Munging

Part: 1

AI & ML Foundations

Al Foundations

- Intro to Key Al Concepts
- No prior AI knowledge or background necessary
- No technical or coding experience necessary
- Exercises: Non-Technical and introductory

ML Foundations

- Applied Al Concepts
- Some experience with Python or R would be helpful to success
- Exercises: Technical and deeper

In both courses you get access to H2O.ai experts and community makers!

You can earn a badge for AI & ML Foundations by successfully completing the assessments at the end of each module (**not required**).

ML Foundations Overview

Module 0: Start with Business Problem, Again

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set For Modeling

You Are Here

Study Group

Ask Me Anything

Module 2: Feature Engineering in Machine Learning

Module 3: Machine Learning Deep Dive

Interested in knowing the full schedule for the ML Foundations course? View the schedule on the community learning site

Data Preparation for Machine Learning

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set for Modeling: Data Exploration &

Munging

Part: 2

Data & The Role of Machine Learning

 Machine Learning happens when a computer can take lots of data (examples) and learn patterns from it to make predictions on new data based on those learned patterns.

 Constructing a good dataset is critical once your business problem has been identified and can be achieved using various data preparation techniques

Data Preparation for Machine Learning

and more....

What kind of data can support an ML problem?

Image, Video, Audio

Sensor

Text, Log

Time Series

9

Data Types Used in ML Problems

Numerical Data

Continuous

Discrete

Data with distinct values

Quantitative Data

Categorical Data

Nominal

Categories with no particular order

Ordinal

Categories are ranked or ordered

Qualitative Data

Features

- A feature is an attribute or measurable characteristic that helps to explain a particular record
- The features can be pulled from multiple systems, sources, etc.
- Often a machine learning model can be improved using <u>feature</u>

engineering

	~ /
Module 2	. 3
_ Woddio Z	

Age	Historical Bill Amounts	Historical Payments Made	Account Balances
35	1000	500	3000
27	500	500	0

Confidentia Confidentia

Features & Labels

Features				<u>Labels</u>	
					<u>Laboro</u>
	Age	Historical Bill Amounts	Historical Payments Made	Account Balances	Target: Did customer make a payment?
	35	1000	500	3000	Yes
Observations	28	2000	2000	0	Yes
	32	500	200	300	No

Some Other Considerations For Preparing Your Dataset

- Size of data available
 - Small amount of data available
 - Large data available (should you sample?)
- Quality
 - Is data reliable? Trustworthy?
 - Does data represent what you are trying to predict?
 - Is the data skewed?
 - Will the data used to train be available at the time of prediction?
- Accounting for rare event problems (Imbalanced Classification Problems)
- Obtaining more data when necessary

13 Confident

Data Preparation Tools

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set for Modeling: Data Exploration &

Munging

Part: 3

Rich Al Ecosystem - Too Many Choices?

Rich Al Ecosystem - Too Many Choices?

Databases

- Typical frontline store of data (relational, graph, etc)
- May be hosted in cloud if volume of data warrants it

Big Data/Distributed Computing

elasticsearch

 If data is too big to be useful for accessing it you can use big data platforms for distributed, parallel, high-performance computing

Module 5

- In terms of accessing, isolating, cleaning, transforming data, these are the big 3.
- Python + R are consistently used for DS & modeling

Business Intelligence

 Most common resources for descriptive statistics and dashboarding (specialize in descriptive stats)

- For predictive & advanced analytic insights use Data Science/Al platforms (and py+R) to apply the highest quality methods.
- Cloud computing may be needed to run heavy math for these models.

Introduction to Data Preparation Demo

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set for Modeling: Data Exploration &

Munging

Part: x

Aquarium Account Creation

\leftarrow \rightarrow G \oplus add	uarium.h2o.ai/login					
Apps 🗎 Research	H20 Links Travel	Employee	Conferences	Github	Training	E
H ₂ O.ai						
Login						
Email *						
Password *						
I'm not a robot	reCAPTCHA Privacy - Terms					
Login						
Create a new account						
I forgot my password						
Please <u>send us email</u> if you	are having issues logging in.					

H2O.ai's Hands-On Learning System

- Contains 1 to 2 hours labs for H2O-3, Sparkling Water & Driverless AI
- Free account creation and use of labs
- Some labs are pre-packaged with robust examples

What's Next?

Module 1: Data Wrangling & Data Curation

Session 1: Getting the Right Data Set for Modeling: Data Exploration &

Munging

Part: x

Summary

 Data Preparation can be comprised of many different aspects of dealing with data from collecting it, to exploring it for areas to clean, to performing transformations

Tools like Pandas, R are great for data preparation for small datasets

H2O-3 can be used for large data to perform data preparation

Python datatable & R data.table are great for big data prep

 Driverless Al automates many aspects of data pre-processing and feature engineering & can be extended with data recipes for other data tasks Recording will be posted w/in 2 days

Upcoming Sessions

- 1. A recorded session for **Driverless Al Data Recipes** will be released by September 11 as part of this Module 1.
- 2. The next live session will begin Module 2: Feature Engineering For Machine Learning with Session 1: Feature Engineering Techniques From an Expert Kaggler will be held on Tuesday September 15, 2020 @ 7:00AM PDT

Additionally a recording for **Aquarium Account Setup & Site Exploration** will be released by September 11.

Quizzes & Study Groups

- Each session within a module will have a small quiz to complete and all quizzes for that module will be due before the next module starts.
- There are 2 options available for you to ask additional questions or get assistance on AI concepts covered in the sessions:
 - A Study Group for each Module will be held on Saturdays @ 10:00AM PDT
 - Ask Me Anything will be held on Sundays @10:00AM PDT

 Reminder: Don't forget to complete Quiz 1: Getting the Right Data Set For Modeling (released by Friday September 11) to be on the path to earn your badge!

Resources

datatable vs Pandas

Python datatable

- Python Library
- 2D data frames
- Data munging, manipulation
- Great for Big Data (greater than 100GB)
- High performance
- In-memory and out-memory datasets
- Multi-threaded algorithms
- Powerful API similar to R data.table

- Python Library
- 2D data frames
- Data munging and preparation
- Extensive data representation
- Great for small data (usually 100MB to 1GB)
- For large data (less than 100 GB)
 - Usually low performance
 - Long runtime
 - Insufficient memory usage

25 Confider

Data Preparation Using Driverless Al: Data Recipes

14736

Unique

- Datatable
- Recipes can be imported from a URL, from a file, or can be implemented live

Confidential

29999

Additional Resources

H2O.ai's Al Glossary	Glossary
Public Datasets - H2O.ai	Datasets
Kaggle Datasets	Datasets
Google Dataset Search	Datasets
H2O-3 Documentation - Data Munging	H2O-3 Data Munging Documentation (Python & R)
Python Pandas	Python Pandas Documentation
R Tidyverse	R Data Manipulation Packages
Python datatable documentation	Python Datatable Documentation
R data.table documentation	R data.table Documentation

Additional Resources

Datatable Overview	Blog
Data Analysis With Datatable	Blog
Using A Data Recipe in Driverless Al	Documentation
Driverless Al Data Recipes (Github Repo)	Github
Driverless Al Data Recipes: Live Code (Github Repo)	Github
Introduction to Python Data Wrangling with Python Datatable	Meetup Replay