High-Level Design (HLD) Document

Project Title: Cryptocurrency Liquidity Prediction for Market Stability

Objective:

To predict 24h liquidity volume of cryptocurrencies using machine learning models based on historical price and market data.

System Overview:

This project uses a supervised machine learning pipeline to forecast liquidity levels. The main components are:

- Data Collection
- Preprocessing and Normalization
- Exploratory Data Analysis (EDA)
- Model Selection and Training
- Evaluation
- Model Export for Deployment

Technologies Used:

- Python
- Scikit-learn
- Pandas, NumPy
- Google Colab
- Streamlit (for future deployment)

Data Sources:

Historical cryptocurrency prices and trading volume datasets (2016-2017).

Low-Level Design (LLD) Document

ivioaaioo aiia i iow.	Mo	dules	and	Flow:
-----------------------	----	-------	-----	-------

- 1. Data Ingestion:
 - Read CSV file using pandas
 - Check for nulls and clean
- 2. Feature Preparation:
 - Select features: price, 24h change, market cap
 - Normalize using StandardScaler
- 3. Target Engineering:
 - Use log transformation on target (24h volume)
- 4. Model Training:
 - Use Linear Regression and Random Forest
 - Evaluate using RMSE, MAE, R2
- 5. Model Export:
 - Save final model and scaler using pickle
- 6. Optional Deployment:
 - Load model in Streamlit app for live predictions

All steps are implemented in a Google Colab notebook and designed for reproducibility and clarity.