Using a Parametric Boostrap Approach for Nested Model Comparisons in Structural Equation Modeling

Sunthud Pornprasertmanit

Wei Wu

Todd D. Little

University of Kansas

Outline

- Introduction
- Trivial Misspecification
- Research Questions
- Parametric Bootstrap Approach
- Simulation
- Result and Discussion

Introduction

- Model evaluation
- Chi-square
- Practical fit Indices
 - Can a single cutoff be applied to any models with any sample sizes and with any types of data?

Introduction

- Nested Model Comparison
- Chi-square difference test
- Change in fit indices (e.g., Δ CFI)
 - Results of simulation study → Golden rules
 - Creative applications to nongeneralizable situations

Trivial Misspecification

 Hypothesized model approximates the underlying mechanism.

Research Questions

- How can the cutoff be tailored for each hypothesized model?
- How can the golden rule be avoided?
- How can the cutoff be accounted for trivial misspecification? → Test of approximate fit

- Fit the nested and parent models to the observed data
- Save the difference in a fit index

- Use the parameter estimates from the nested model
- Add trivial misspecification
- Generate n datasets (e.g., 1,000)

- Fit the nested and parent models to all simulated data
- Save the difference in a fit index for each simulated data
- Plot the distribution of the difference

- Find p value
 - $p \le \alpha$ → select the parent model
 - $p > \alpha \rightarrow$ select the nested model

- Sample size: 125, 250, 500, 1000
- Severity of misspecification: None, Trivial,
 Severe

Longitudinal Weak Invariance: No Misspecification

Longitudinal Weak Invariance: Trivial Misspecification

Longitudinal Weak Invariance: Severe Misspecification

- Sample size: 125, 250, 500, 1000
- Severity of misspecification: None, Trivial,
 Severe
- Three selection methods:
 - Chi-square difference test
 - Change in CFI < .002 (Meade et al., 2008)
 - Parametric Bootstrap
 - No misfit / Fixed / Random / Maximal

Fixed Misspecification

Population RMSEA ≈ .045

Population RMSEA ≈ .08

Population RMSEA ≈ .08

No Misspecification

- 1,000 Replications
- Rejection Rate
 - Low when population misfit is none or trivial
 - High when population misfit is severe

Result

Result

Result

Discussion

- Chi-square test = Parametric bootstrap without trivial misspecification, asymptotically
 - Reject trivial misfit in large sample size
- CFI cutoff of .oo2 (or .o1) has extremely low power
- Parametric bootstrap with defined trivial misspecification is good
 - Avoid universal cutoff criterion
 - Avoid rejection of trivial misspecification
 - Encourage Users to define trivial misspecification

Discussion

- Can develop your own simulation in R
- Parametric bootstrap approach in absolute fit and nonnested model comparison
- Semi-parametric bootstrap
- This procedure can be implemented in the simsem package in R
 - https://www.simsem.org

Acknowledgement

- Partial support
 - Grant NSF 1053160 (Wei Wu & Todd D. Little, co-Pls)
 - The Center for Research Methods and Data Analysis at the University of Kansas (Todd D. Little, director)

Thank you!!

Questions, Comments, Concerns

