SIGNALS AND SYSTEMS USING MATLAB Chapter 8 — Sampling Theory

L. F. Chaparro and A. Akan

Uniform sampling

$$\delta_{T_s}(t) = \sum_n \delta(t - nT_s)$$
 $x_s(t) = x(t)\delta_{T_s}(t) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} x(t)e^{jk\Omega_s t}$

Modulation

$$\delta_{T_s}(t)$$
, periodic, $\Omega_s = 2\pi/T_s$, $\delta_{T_s}(t) = \sum_{k=-\infty}^{\infty} D_k e^{jk\Omega_s t}$

$$D_k = \frac{1}{T_s}, \quad x_s(t) = x(t)\delta_{T_s}(t) = \frac{1}{T_s}\sum_{k=-\infty}^{\infty} x(t)e^{jk\Omega_s t}$$

$$X_s(\Omega) = rac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\Omega - k\Omega_s)$$

Discrete-time Fourier transform

$$X_{s}(t) = \sum_{n=-\infty}^{\infty} x(nT_{s})\delta(t - nT_{s})$$

$$X_{s}(\Omega) = \sum_{n=-\infty}^{\infty} x(nT_{s})e^{-j\Omega T_{s}n}$$

(a) Spectrum of band-limited signal, (b) spectrum of sampled signal when satisfying the Nyquist sampling rate condition, (c) spectrum of sampled signal with aliasing (superposition of spectra, shown in dashed lines, gives a constant shown by continuous line)

Band-limited signals and Nyquist condition

A signal x(t) is band-limited if its low-pass spectrum $X(\Omega)$ is such that

$$|X(\Omega)|=0$$
 for $|\Omega|>\Omega_{max},\quad \Omega_{max}$: max frequency in $x(t)$

can be sampled uniformly and without frequency aliasing using a sampling frequency

$$\Omega_s = rac{2\pi}{T_s} \geq 2\Omega_{max}$$
 Nyquist sampling rate condition

Example: $x(t) = 2\cos(2\pi t + \pi/4)$, $-\infty < t < \infty$, band-limited

$$T_s = 0.4, \quad \Omega_s = 2\pi/T_s = 5\pi > 2\Omega_{max} = 4\pi, \text{ satisfy Nyquist}$$
 $x(nT_s) = 2\cos(2\pi\ 0.4n + \pi/4) = 2\cos\left(\frac{4\pi}{5}n + \frac{\pi}{4}\right) \qquad -\infty < n < \infty$

$$T_s=1,~~\Omega_s=2\pi<2\Omega_{max}=4\pi~~ ext{aliasing} \ x(nT_s)=2\cos(2\pi n+\pi/4)=2\cos(\pi/4)=\sqrt{2}.$$

Sampling of $x(t) = 2\cos(2\pi t + \pi/4)$: (a) $T_s = 0.2$, (b) $T_s = 0.4$, (c) $T_s = 0.5$ and (d) $T_s = 1$ sec/sample

Example: Causal exponential $x(t) = e^{-t}u(t)$ is not band–limited

$$X(\Omega) = rac{1}{1+j\Omega}$$
 so that $|X(\Omega)| = rac{1}{\sqrt{1+\Omega^2}}$

Frequency Ω_M so that 99% of the energy is in $-\Omega_M \leq \Omega \leq \Omega_M$:

$$\frac{1}{2\pi} \int_{-\Omega_M}^{\Omega_M} |X(\Omega)|^2 d\Omega = \frac{0.99}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega$$

$$|2 an^{-1}(\Omega)|_0^{\Omega_M}=2 imes 0.99 an^{-1}(\Omega)|_0^\infty$$

$$\Omega_M = an\left(rac{0.99\pi}{2}
ight) = 63.66 ext{ rad/sec}$$

Choose
$$\Omega_s=2\pi/T_s=5\Omega_M$$
 or $T_s=2\pi/(5\times63.66)\approx0.02$ sec/sample

Nyquist-Shannon sampling theorem

Low-pass signal x(t) is band-limited (i.e., $X(\Omega) = 0$ for $|\Omega| > \Omega_{max}$)

• Information in x(t) preserved by sampled signal $x_s(t)$, with samples $x(nT_s) = x(t)|_{t=nT_s}$, $n=0,\pm 1,\pm 2,\cdots$, provided

sampling frequency $\Omega_s \geq 2\Omega_{max}$ (Nyquist sampling rate condition), or sampling rate f_s (samples/sec) or sampling period T_s (sec/sample) are $f_s = \frac{1}{T_s} \geq \frac{\Omega_{max}}{\pi}$

• When Nyquist condition is satisfied, x(t) can be reconstructed by ideal low–pass filtering $x_s(t)$:

frequency response ideal LPF $H(j\Omega) = \begin{cases} T_s - \Omega_s/2 < \Omega < \Omega_s/2 \\ 0 & \text{otherwise} \end{cases}$

Reconstructed (sinc interpolation)

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\sin(\pi(t-nT_s)/T_s)}{\pi(t-nT_s)/T_s}$$

Antialiasing filtering

For signals that do not satisfy the band-limitedness condition

Anti-aliasing filtering of non band-limited signal

Example: Aliasing effects

$$x_1(t)=\cos(\Omega_0 t), \quad x_2(t)=\cos((\Omega_0+\Omega_1)t) \quad \Omega_1>2\Omega_0$$
 sampling signals with $T_s=2\pi/\Omega_1$ $x_1(nT_s)=\cos(\Omega_0 nT_s), \quad x_2(nT_s)=\cos((\Omega_0+\Omega_1)nT_s)=\cos(\Omega_0 T_s n)=x$

No frequency aliasing in $x_1(nT_s)$, frequency aliasing in $x_2(nT_s)$

Sampling sinusoids of frequencies $\Omega_0=1$ and $\Omega_0+\Omega_1=8$ with $T_s=2\pi/\Omega_1$. The higher frequency signal is under–sampled, causing aliasing and making the two sampled signals coincide

Practical aspects of sampling — Sample-and-hold sampling

Sample–and–hold sampling system for $\Delta = T_s$; $y_s(t)$ multi–level signal

$$y_s(t) = (x_s * h)(t) \Rightarrow Y_s(\Omega) = \left[\frac{1}{T_s} \sum_k X(\Omega - k\Omega_s)\right] \frac{\sin(\Delta\Omega/2)}{\Omega/2} e^{-j\Omega\Delta/2}$$

Practical aspects of sampling — Quantization and coding

Four-level quantizer and coder.

Sampled signal $x(nT_s) = x(t)|_{t=nT_s}$ four-level quantizer: $k\Delta \le x(nT_s) < (k+1)\Delta \implies \hat{x}(nT_s) = k\Delta, \quad k=-2,-1,0,1$ coder assigns binary number to each output level of quantizer

Application to digital communications

PCM system: transmitter, channel and receiver.

Time Division Multiplexin (TDM) system: transmitter, channel and receiver