Unit 064 More on System of Linear Differential Equations

Slide 01: In this unit, we will discuss two special situations that may arise when we are solving a system of linear differential equations using eigenvalues an eigenvectors.

(#)

Slide 02: First, what happens when we encounter $\lambda = 0$ as one of the eigenvalues of A while solving the system Y' = AY?

(#)

Recall from a previous unit that if \boldsymbol{A} has an eigenvalue of λ and \boldsymbol{x} is an eigenvector of \boldsymbol{A} associated with λ , then $e^{\lambda t}\boldsymbol{x}$ is a solution to the system of linear differential equations.

In the event that λ is zero, this solution simply reduces to the eigenvector \boldsymbol{x} , since e^0 is 1.

Slide 03: Let us consider a simple example. We would like to solve Y' = AY where A is the 2×2 matrix as shown.

(#)

We first find the eigenvalues of \boldsymbol{A} as per normal by computing the characteristic polynomial of \boldsymbol{A}

(#)

and set it to zero. We find that the roots of the characteristic equation are 0 and 5. (#)

For the eigenvalue 0, we consider the eigenspace E_0

(#)

and solve the associated homogeneous linear system, whose augemented matrix is shown here.

Slide 04: Solving the homogeneous linear system by Gauss-Jordan Elimination, we arrive at the following reduced row-echelon form.

(#)

It is easily seen that the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ forms a basis for the eigenspace E_0 .

(#)

For the eigenspace E_5 , we do the same and solve the associated homogeneous linear system

(#)

resulting in the following reduced row-echelon form

(#)

and obtain the vector $\binom{-1}{2}$ forming a basis for this eigenspace.

(#)

We are now able to write down a general solution for the system of linear differential equations as \mathbf{Y} equals to some scalar k_1 times the eigenvector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ plus another scalar k_2 times the eigenvector $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ with the factor of e^{5t} .

Slide 05: The second situation that we may encounter when computing the eigenvalues of A is that we may find that A has complex-valued eigenvalues. Suppose, for example, $\lambda = a + ib$ is an eigenvalue of **A** To manage this situation, we first introduce the following theorem on complex eigenvalues of a matrix A and also what happens in relation to the system of linear differential equations Y' = AY. If λ is an eigenvalue of A and x is an eigenvector of A associated with λ , then (#)the complex conjugate of λ , that is λ will also be an eigenvalue of A. Furthermore, the complex conjugate of x, that is \bar{x} , will be an eigenvector of A associated with λ . **Slide 06:** In addition, we know that both $e^{\lambda t}x$ and its complex conjugate $e^{\bar{\lambda}t}\bar{x}$ are both solutions of Y' = AY and any linear combinations of these two solutions will also be a solution to the system. Slide 07: Now consider the following linear combination of $e^{\lambda t}x$ and $e^{\bar{\lambda}t}\bar{x}$. Here we see that Y_1 is $\frac{1}{2}$ times the sum of the conjuate pair while Y_2 is $\frac{1}{2i}$ times the difference of the conjugate pair. Recall what this will give us. For example, if we take $\frac{1}{2}$ of the sum of a conjugate pair of complex numbers a + ib and a - ib, (#)we obtain a(#)which is the real part of a + ib. On the other hand, if we take $\frac{1}{2i}$ of the difference of the pair, we obtain b(#)which is the imaginary part of a + ib.

Slide 08: So we now see that the two linear combinations Y_1 and Y_2 are basically the real and imaginary parts of the particular solution $e^{\lambda t}x$.

(#)

These two solutions Y_1 and Y_2 are therefore real-valued functions of Y' = AY. More precisely, we can compute

(#) $e^{\lambda t}x$, representing the complex eigenvalue λ as a+ib, (#) which upon simplification, (#) using Euler's formula gives us the following expression. (#)

The complex vector \boldsymbol{x} can also be written in terms of its real part and imaginary part,

(#)

giving the following expression, which is obtained by grouping all the real terms together and the imaginary terms separately.

Slide 09: Since we know that Y_1 is the real part of $e^{\lambda t}x$, we have the following expression for Y_1 , while

(#)

 Y_2 is the imaginary part of $e^{\lambda t}x$, we have the expression highlighted in yellow for Y_2 . This provides us with a quick and efficient method of computing two linearly independent real-valued solutions to the system of linear differential equations Y' = AY.

Slide 10: Let us consider an example. Here we wish to find a general solution to the system of linear differential equations where the matrix A is given as shown.

(#)

As before, we solve for the eigenvalues of \boldsymbol{A} by computing the characteristic polynomial

(#)

and setting it to 0. The pair of complex conjugate eigenvalues of \mathbf{A} are 2+i and 2-i.

(#)

We may choose λ to be 2+i and consider the eigenspace E_{λ} .

(#)

Solving the homogeneous linear system,

Slide 11: We have the following row-echelon form of the augmented matrix,

(#)

and the general solution of the system

(#)

gives us a basis for the eigenspace. Let x be the basis vector as shown.

(#)

Now $e^{\lambda t} \boldsymbol{x}$, which is $e^{(2+i)t} \boldsymbol{x}$

(#)

can be written as follows using Euler's formula.

(#)

This allows us to write the solution $e^{\lambda t} \boldsymbol{x}$ as a two-dimensional vector in the complex space \mathbb{C}^2 as shown here.

```
Slide 12: Upon simplification,
```

(#)

we obtain the real part

(#)

and the imaginary part of the solution, and by our earlier discussion, these two are (#)

precisely Y_1

(#)

and Y_2 , which are two linearly independent solutions to the system of linear differential equations.

(#)

Any linear combinations of these two real-valued solutions will also be a solution to the system Y' = AY.

Slide 13: Let us summarise the main points in this unit.

(#)

We first discuss the situation when one of the eigenvalues of A is 0 and how this translates into the general solution of the system Y' = AY.

(#)

Next, we discussed and found a general solution of Y' = AY when A has a pair of complex conjugate eigenvalues.