Corrigés du TD 10

Exercice 1. Fonctions à plusieurs variables (décembre 2007)

1. La fonction \ln étant définie sur \mathbb{R}_+^* , pour que f(x,y) soit définie, il faut que 2x-y>0, c'est-à-dire y<2x. Il s'agit donc du demi-plan situé en-dessous de la droite d'équation y=2x (droite non comprise). Le domaine est grisé sur la figure suivante.

- 2. Pour tout $(x,y) \in D$, les dérivées partielles de f sont $\frac{\partial f}{\partial x}(x,y) = 2x + y + \frac{2}{2x-y}$ et $\frac{\partial f}{\partial y}(x,y) = x + 4y \frac{1}{2x-y}$, donc $\frac{\partial f}{\partial x}(1,1) = 5$ et $\frac{\partial f}{\partial y}(1,1) = 4$.
- 3. Une équation du plan tangent à la surface d'équation z = f(x, y) au point (1, 1, 4) est :

$$z = 4 + 5(x - 1) + 4(y - 1)$$

Exercice 2. Equation différentielle (mai 2008)

- 1. Pour tout $x \in]2, +\infty[$, on a $\phi'(x) = \frac{2}{x(x-2)}$.
- 2. Il s'agit d'une équation différentielle linéaire du premier ordre de la forme y' = a(x)y + b(x) avec $a(x) = \phi'(x)$ et b(x) = 2(x-2). L'équation homogène associée est $y' = \frac{2}{x(x-2)}y$. Une primitive de a(x) est $A(x) = \phi(x)$, par conséquent la solution générale de l'équation homogène associée est :

$$y_0 = Ke^{\phi(x)} = K\frac{x-2}{x}$$
 avec $K \in \mathbb{R}$

Pour trouver une solution particulière, on utilise la méthode de la variation de la constante : on va chercher une solution particulière de l'équation avec second membre $y'=\frac{2}{x(x-2)}y+2(x-2)$ sous la forme :

$$y_p = K(x) \frac{x-2}{x}$$

La dérivée de y_p est donnée par $y_p'=K'(x)\frac{x-2}{x}+K(x)\frac{2}{x^2}$. En injectant y_p dans l'équation, on obtient :

$$K'(x)\frac{x-2}{x} + K(x)\frac{2}{x^2} = \frac{2}{x(x-2)}K(x)\frac{x-2}{x} + 2(x-2)$$

donc:

$$K'(x)\frac{x-2}{x} + K(x)\frac{2}{x^2} = \frac{2}{x^2}K(x) + 2(x-2)$$

donc
$$K'(x) = 2x$$
.

On peut donc choisir $K(x) = x^2$ et on obtient $y_p = x(x-2)$.

Par conséquent la forme générale de la solution de l'équation avec second membre est :

$$y = y_p + y_0 = x(x-2) + K\frac{x-2}{x}, K \in \mathbb{R}$$

Exercice 3. Bijection (juin 2009)

- 1. Pour tout $x \in \mathbb{R}$, $g'(x) = \arctan(x) + \frac{x-1}{1+x^2}$ et $g''(x) = \frac{2(x+1)}{(1+x^2)^2}$.
- 2. Comme Pour tout $x \in \mathbb{R}$, $(1+x^2)^2 > 0$, g''(x) est strictement négatif pour x < -1, nul en x = -1et strictement positif pour x > -1. Par conséquent, g' est strictement décroissante sur $]-\infty,-1]$ et strictement croissante sur $[-1, \infty[$.
- 3. g' est strictement décroissante et continue sur $]-\infty,-1]$ donc $g'(]-\infty,-1])=[g(-1),\lim_{x\to-\infty}g(x)]$. Or $\lim_{x\to -\infty} \frac{x-1}{1+x^2} = 0$, donc $\lim_{x\to -\infty} g(x) = -\frac{\pi}{2}$. Donc $J = [-\frac{\pi}{4} - 1, -\frac{\pi}{2}]$
- 4. $0 \notin J$ donc g'(x) = 0 n'a pas de solution dans $]-\infty, -1]$. g étant strictement croissante sur $[-1, +\infty[, g]]$ définit une bijection de $[-1,+\infty[$ sur $g([-1,+\infty[)=[-\frac{\pi}{4}-1,\frac{\pi}{2}[$. Or $0\in[-\frac{\pi}{4}-1,\frac{\pi}{2}[$. Par conséquent l'équation g'(x) = 0 a une unique solution dans $[-1, +\infty[$ et donc a une unique solution dans \mathbb{R} . Comme g'(0) < 0 et g'(1) > 0, le théorème des valeurs intermédiaires nous permet de conclure que $c \in]0,1[$.
- 5. g'(x) est nul en x = c, positif pour x > c et négatif pour x < c par conséquent, q admet un minimum en c.

Exercice 4. Fonctions réciproques (décembre 2008)

1.
$$f'(x) = \frac{4(1+\tan^2 x)}{(e^{\tan x} + e^{-\tan x})^2}$$

2. On a:
$$f(x) = \frac{e^{\tan x} - e^{-\tan x}}{e^{\tan x} + e^{-\tan x}} = \frac{e^{\tan x} (1 - e^{-2\tan x})}{e^{\tan x} (1 + e^{-2\tan x})} = \frac{(1 - e^{-2\tan x})}{(1 + e^{-2\tan x})}$$

On en déduit que $\lim_{x \to \frac{\pi}{2}} f(x) = 1$

Puis de façon analogue, en écrivant que $f(x)=\frac{e^{2\tan x}-1}{e^{2\tan x}+1}$, on obtient $\lim_{x\to -\frac{\pi}{2}}f(x)=-1$.

f'(x) étant positif pour tout $x \in I$, f est strictement croissante sur I. f étant strictement croissante et continue sur I, on peut conclure que J =]-1,1[.

f est strictement monotone donc elle définit une bijection de I dans son image J, et il existe donc une application réciproque f^{-1} définie sur J.

3. On a
$$x = f(f^{-1}(x)) = \frac{e^{\tan(f^{-1}(x))} - e^{-\tan(f^{-1}(x))}}{e^{\tan(f^{-1}(x))} + e^{-\tan(f^{-1}(x))}} = \frac{e^{2\tan(f^{-1}(x))} - 1}{e^{2\tan(f^{-1}(x))} + 1}.$$

Donc
$$e^{2\tan(f^{-1}(x))} - 1 = x(e^{2\tan(f^{-1}(x))} + 1)$$
.

On trouve alors
$$e^{2\tan(f^{-1}(x))} = \frac{1+x}{1-x}$$
.

En passant au logarithme, on obtient alors : $\tan(f^{-1}(x)) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

4. On sait que
$$f'(y) = \frac{4(1+\tan^2 y)}{(e^{\tan y} + e^{-\tan y})^2}$$
 et que pour $x \in J$, $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$. Donc $(f^{-1})'(x) = \frac{(e^{\tan(f^{-1}(x))} + e^{-\tan(f^{-1}(x))})^2}{4(1+\tan^2(f^{-1}(x)))}$.

Donc
$$(f^{-1})'(x) = \frac{(e^{\tan(f^{-1}(x))} + e^{-\tan(f^{-1}(x))})^2}{4(1 + \tan^2(f^{-1}(x)))}$$

En utilisant l'expression obtenue dans la question précédente, on trouve alors :

$$(f^{-1})'(x) = \frac{1}{(1-x^2)(1+\frac{1}{4}(\ln(\frac{1+x}{1-x}))^2)}$$