定理 **4.18** 设 $m, n, k \in \mathbb{N}$,则

(1)
$$m + (n+k) = (m+n) + k$$
;

(2)
$$m + n = n + m$$
;

(3)
$$m \cdot (n+k) = m \cdot n + m \cdot k;$$

(4)
$$m \cdot (n \cdot k) = (m \cdot n) \cdot k$$
;

(5) $m \cdot n = n \cdot m$.

定理 4.19 $\subseteq_{\mathbb{N}} (\leq_{\mathbb{N}})$ 为 \mathbb{N} 上的线序关系, $\in_{\mathbb{N}} (<_{\mathbb{N}})$ 为 \mathbb{N} 上的拟线序关系.

定理 **4.20** 设 $m, n, k \in \mathbb{N}$,则

- (1) $m \in n \Leftrightarrow (m+k) \in (n+k) \ (m < n \Leftrightarrow m+k < n+k);$
- (2) $m \in n \Leftrightarrow m \cdot k \in n \cdot k \ (m < n \Leftrightarrow m \cdot k < n \cdot k), k \neq 0.$

定理 **4.21** 设 n, m, k 为自然数,

- (1) 如果 m + k = n + k, 则 m = n;
- (2) 如果 $k \neq 0$,且 $m \cdot k = n \cdot k$,则 m = n.

定理 **4.22** (\mathbb{N} 上的良序定理) 设 A 为 \mathbb{N} 的非空子集,则存在惟一的 $m \in A$,使得对于一切的 $n \in A$,有 $m \in n$ (这样的 m 称为 A 的最小元).

定理 **4.23** (\mathbb{N} 上的强归纳原则) 设 A 为 \mathbb{N} 的一个子集,对于任意的 $n \in \mathbb{N}$,如果小于 n 的元素都属于 A,就有 $n \in A$,则 $A = \mathbb{N}$.