Impact of climate change on insecticide use

Peiley Lau

December 1, 2016

Research Question

- How will climate change, in particular increases in temperature and volatility in temperature fluctuation, affect insecticide application?
- ► A future extension: How will changes in insecticide application affect incidence of cancer? (probably not within the scope of 2YP)

Motivation

- Insecticide application in the US has been trending downwards from 131 mi lb in 1968 to 29 mi lb in 2008 (USDA - ERS 2014).
- Min and max winter and spring temp trending upwards across continuous US from 1980 - present (NOAA).
- Warmer temp → extend the development time window for crop pests and can migrate further northward. Farmers spray more?
- Chronic exposure to low-levels of pesticide drift still not well understood.

Insect Physiology

- Insect rate of development is function of temperature, especially during critical windows during the year.
- Sequencing of temperature and rate of temperature change across days matter.
 - Fall: initiation of diapause (aka insect hibernation)
 - Winter: in diapause. Length of diapause moderated by winter temp. Diapause ends in late winter
 - Spring: development of insects governed by temperature
 - Summer: rate of reproduction governed by temperature

Data

- USGS Pesticide National Synthesis Project
 - Estimated Annual Agricultural Pesticide Use
 - annual pesticide estimates for each chemical compound, 1992 -2014, county-level
 - ▶ 3029 counties, 23 years, 492 unique chemical compounds
- LUGE Harvested Area and Yields of 175 crops dataset
 - county-level crop acreage data from 1960 2008
- Berkeley Earth Climate Data
 - gridded daily temperature data, 1992 2014
 - max, min and average temp at county centroid

Identification Strategy

- 2SLS
 - 1. 1st stage: Instrument for crop pest density with temperature

$$\overline{\textit{pest_density}_{c,y}} = \\ \alpha_0 + \alpha \cdot \textit{temp_sequence}_{c,y} + Z \cdot X_{c,y} + \gamma_c + \delta_y + \epsilon_{c,y}$$

- 2. 2nd stage:
 - ▶ pesticide_application_{c,y} = $\beta_0 + \beta \cdot \widehat{pest_density_{c,y}} + Z \cdot X_{c,y} + \gamma_c + \delta_y + \varepsilon_{c,y}$

$$X_{c,y} = \text{covariates for that county-year}$$

 $c = \text{county}$
 $y = \text{year}$