Постановка задачи

За каждый месяц 1991-2000 годов имеются следующие данные об электрозатратах и электропотреблении одного конкретного домохозяйства в Германии. Ежемесячно 1991-2000 проводились замеры затрат на электроэнергию в долларах, так же показаны следующие данные: средняя температура за месяц в фаренгейтах, CDD и HDD - погодные индексы (CDD - суммарное количество градусов, на которое средняя дневная температура выше 65°F; HDD - количество градусов, на которые средняя дневная температура ниже 65°F, взятое суммой за все дни месяца), количество живущих в доме человек, бинарные данные: указатель установки двух новых тепловых насосов, указатель установки нового счётчика, количество потребляемой электроэнергии выраженном в киловатт-часах.

Постановка задачи линейной регрессии

1...п — объекты;

 $x_1...x_k$ — признаки;

у — зависимая переменная, потребление электроэнергии;

є — ошибка;

θ — неизвестные коэффициенты, которые хотим найти;

Хотим найти такую функцию f, что $y = f(x_1...x_k) + \varepsilon$;

Множественная линейная регрессия:

$$y_{i} = \theta_{1} + \theta_{2}X_{i,1} + \cdots + \theta_{k}X_{i,k-1} + \epsilon_{i}$$

$$\varepsilon = (\varepsilon_{1} \dots \varepsilon_{k})^{T}. \ E\varepsilon = 0. \ K_{\varepsilon} = \sigma^{2}I.$$

Решение

- 1. Исключим наблюдения, где затраты или потребление электричества равны 0.
- $\frac{\max \operatorname{cost}}{\min \operatorname{cost}} = 11.2478109 > 10$ и $\frac{\max \operatorname{consum}}{\min \operatorname{consum}} = 52.2121212 > 10$, поэтому найдём преобразования откликов методом Бокса-Кокса:

Метод Бокса-Кокса

Пусть значения отклика y_1, \ldots, y_n неотрицальны. Если $\max(y_i)/\min(y_i) > 10$, стоит посмотреть на возможность преобразования y. В каком виде его искать?

Рассмотривают преобразования вида y^{λ} , но они не имеет смысла при $\lambda=0$. Вместо них можно рассмотреть группу преобразований:

$$W = \begin{cases} (y^{\lambda} - 1)/\lambda &, \lambda \neq 0 \\ \ln y &, \lambda = 0 \end{cases}$$

Но они сильно варируется по λ . Вместо них рассмотрим семейство преобразований

$$V = \begin{cases} (y^{\lambda} - 1)/(\lambda \dot{y}^{\lambda - 1}) &, \lambda \neq 0 \\ \dot{y} \ln y &, \lambda = 0 \end{cases}$$

Где $\dot{y} = (y_1, y_2, \dots, y_n)^{1/n}$ — Среднее геометрическое наблюдений отклика.

В обоих случаях $\lambda=0$ попадает в 95% доверительный интервал, поэтому будем строить регрессию логарифма отклика.

Модель потребления 1

Построим линейную модель для потребления по всем признакам, за исключением HDD.

Полученная модель линейной регрессии:

$$y = -0.030206 * ave_temp + 0.001372 * CDD + 0.336694 * people + 1.459865 * counter - 0.767147 * pump_1 - 0.782292 * pump_2$$

Применив критерии Шапиро-Уилка, Бройша-Пагана и Стьюдента к остаткам модели, получаем p-value:

Критерий	p
Шапиро-Уилка	0.3584649
Стьюдента	1
Бройша-Пагана	0.0230271

Остатки нормальны и гетероскедастичны, поэтому для проверки несмещённости используем критерий Стьюдента

Условия для остатков:

$$Earepsilon_{i}=0,\;i=1,\ldots,n$$
 $Darepsilon_{i}=\sigma^{2},\;i=1,\ldots,n$ $arepsilon_{i}\sim N(0,\sigma),\;i=1,\ldots,n$ — независимы $arepsilon_{i},\;i=1,\ldots,n$ — независимы $arepsilon_{i}=y_{i}-f_{i},\;i=1,\ldots,n$

Для проверки гипотезы о нормальности остатков H_0 : «остатки распределены нормально» — против альтернативы H_1 : «остатки имеют не нормальное распределение» — используется критерий Шапиро-Уилка.

Критерий Бройша-Пагана применяется, если есть основания полагать, что дисперсия случайных ошибок может зависеть от некоторой совокупности переменных.

 H_0 : $\sigma_1^2 = \cdots = \sigma_n^2 \Leftrightarrow$ остатки гомоскедастичны;

Н₁: Н₀— неправильна, т.е. остатки гетероскедантичны.

Метод включений-исключений

Удалим из модели 1 все признаки, кроме бинарных (модель 2).

Полученная модель линейной регрессии: $y = 1.2234 * counter - 0.9284 * pump_1 - 0.7671 * pump_2 Остатки модели 2:$

Критерий	p
Шапиро-Уилка	0.0052393
Бройша-Пагана	0.4374139
Уилкоксона	0.6713462

Остатки не являются нормальными. Поэтому для проверки несмещённости используем критерий знаковых рангов Уилкоксона (метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок) вместо критерия Стьюдента.

И гомоскедастичны, то есть дисперсии случайных ошибок модели постоянны.

Поэтому оценку значимости признаков будем делать с обычной оценкой дисперсии. Также будем делать поправку на множественность.

Будем добавлять новые регрессоры методом

включений. Т.к. признаков немного, переберем

также различные их взаимодействия.

<u>Модель 3</u>: + HDD ⋅ people

Полученная модель линейной регрессии:

 $y = 1.3087080 * counter - 0.8484593 * pump_1 - 0.8133672 * pump_2 + 0.0002379 * HDD * people$

Р-value теста Бройша-Пагана для модели 3 составляет 0.707, т.е. остатки гетероскедастичны. Сравним модели 2 и 3 с помощью критерия Вальда. Критерий Вальда проверяет гипотезу H₀ о равенстве нулю коэффициентов при параметрах, которые появились в новой модели, против противоположной альтернативы H₁. Если p-value по критерию Вальда меньше выбранного уровня значимости, отвергаем H₀, т.е. считаем новую модель лучше предыдущей.

 $p = 2.2 \cdot 10^{-16} < 0.05$ — модель 3 лучше модели 2.

<u>Модель 4</u>: +people * counter

Полученная модель линейной регрессии:

 $y = -1.3087080 * counter - 0.8487730 * pump_1 -0.8131858*pump_2$

-0.0002369*HDD*people+0.6136127*people*counter

Сравним ее с моделью 3 при помощи критерия Вальда.

 $p = 2.7*10^{-8}$ По тем же соображениям видим, что модель 4 лучше, чем модель 3.

По тем же соображениям видим, что модель 4 лучше, чем модель 3.

<u>Модель 5</u>: +CDD * (1 – pump_1)

Полученная модель линейной регрессии: $y = -0.3906500 * counter - 0.7336461 * pump_1 - 0.8212860 * counter - 0.8212860 * count$

pump_2 +0.0002786*HDD*people+0.6094133*people*counter+0.0011709*CDD*(1-pump₁) Сравним ее с

предыдущей моделью:

p = 0.02251, Модель 5 лучше, чем модель 4. И это пока нас устраивает.

Модель 6: ave temp: (1 - counter)

Полученная модель линейной регрессии: $y = -1.21775350 * counter - 0.7165238 * pump_1 - 0.8714436 * pump_2 + 0.0001565 * HDD * people + 0.6217141 * people * counter + 0.0016678 * CDD * people + 0.6217141 * people * counter + 0.0016678 * people + 0.6217141 * people * counter + 0.0016678 * people * people$

 $(1 - pump_1) - 0.0149175 * ave_temp * (1 - counter)$ Применим тест Вальда:

p = 0.005168, Опять же, модель стала лучше.

<u>Модель 7</u>: people : (1 – pump_2)

Полученная модель линейной регрессии: $y = -1.5738140 * counter - 0.5253195 * pump_1 + 0.5579918*pump_2 + 0.0001105*HDD*people+0.6263581*people*counter+0.0019657*CDD* <math>(1 - pump_1) - 0.0001105*people*counter+0.0019657*CDD* (1 - pump_1) - 0.0001105*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*counter+0.001965*people*co$

 $0.0214221*ave_temp*(1-counter) + 0.4067542*people*(1-pump_2)$

Сравним с прошлой моделью: p = 0.00837, Старая модель хуже. После 7-й модели провела все возможные Вальд-тесты для новых регрессоров. Минимальное p-value при добавлении еще

одного признака составляет 0.334 — больше выбранного уровня значимости, следовательно, нет смысла в дополнительных регрессорах.

Остатки модели 7:

Критерий	p
Шапиро-Уилка	0.4897525
Бройша-Пагана	0.0931999

Остатки модели 7 нормальны и гетероскедастичны.

Удалим признак ритр 2:

Новая модель лучше, поэтому перейдем к этой модели 8.

Ее остатки:

Критерий	p
Шапиро-Уилка	0.380842
Бройша-Пагана	0.0936944

Остатки модели 8 нормальны и гетероскедастичны.

Получившиеся уравнение линейной регрессии:

$$y = -1.435 * counter - 5.867 * 10^{-1} * pump_1 + 1.26 * 10^{-4} * HDD * people + 1.26 * 10^$$

$$6.248 * 10^{-1}$$
 people * counter $+2.56*10^{-1}$ *people*(1-pump₂)-

$$1.92*10^{-2}*ave_{temp}*(1-counter)+1.865*10^{-3}*CDD*(1-pump_1)$$

Интерпретация коэффициентов

Итоговая модель для потребления электричества объясняет 76% вариации логарифма отклика:

При интересующих нас факторах стоят следующие коэффициенты:

95% доверительные интервалы:

Вывод:

Таким образом, с учётом того, что изначально мы перешли к логарифму, то коэффициенты будут браться как степень экспоненты и дальше будем их интерпретировать.

- установка нового счетчика уменьшила потребление в $e^{1.43} = 4.2$ раза,
- установка первого теплового насоса уменьшила расходы на 44%,
- установка второго теплового насоса сама по себе не повлияла на потребление,
- с установкой нового счетчика каждый дополнительный человек в доме увеличивал потребление на 87%,
- пока не был установлен второй насос, каждый человек увеличивал потребление на 29%,
- до установки нового счетчика, каждый градус средней температуры уменьшал потребление на 1.9%
- до установки первого насоса, каждый градус CDD повышал потребление на 0.19%.