

High Transfer Wave

Antenna Evaluation Report

Customer: IAC

PJT:MA5000

Antenna Tested By: kevin

2011/07/28

Revision History

Date	Revision	Description of changes
07/28	1	Passive Report

Contents

1. Technical Summary	
2. Experiment	
2.1Test fixture	g
2.2Matching Network····	
2.3 Test Setup	3
2.3.1 VNA Test Setup	3
2.3.2 Anechoic Chamber Test Setup	
3. General Description	6

1. Technical Summary

This report is RF performance of the proposal about WIFI antenna to support IAC project. This antenna designed on below of the WIFI Function.

- 2. Experiments
- 2.1 Test fixture

Figure 2-1 Measurement fixture figure

2.2 Matching Network

No matching network used.

2.3 Test Setup

2.3.1 VNA Test Setup

Return Loss measurements (S11) were performed using an Agilent E5071C Network Analyzer (Figure 2-2) and the test fixture shown in Figure 2-1. The testing was performed in free space.

Figure 2-2 Agilent E5071C Network Analyzer

2.3.2 Anechoic Chamber Test Setup

The antenna efficiency and gain were measured using a ETS AMS-8500 3D anechoic chamber at HTW. The configuration and the accuracy of the chamber are shown in Figure 2-3 and 2-4 the placement of the tested DUT is show in 2-5.

Figure 2-3 Configuration of AMS-8500

Figure 2-4 Configuration of AMS-8500

3 .Test results

This test mainly aims the antenna Return Loss · VSWR · TRP and Efficiency to make the measurements.

3.1 WIFI Antenna Passive test data:

Frequency	2.412GHz	2.437GHz	2.462GHz
Total Rad. Pow. (dBi)	-1.58	-1.74	-1.65
Peak Gain (dBi)	4.55	4.47	4.59

Table 3-1 WIFI Gain

Frequency	2.412GHz	2.437GHz	2.462GHz
Efficiency (%)	69.5	66.98	68.39

Table 3-1 WIFI Efficiency

Figure 3-1 WIFI Antenna Return Loss

Figure 3-2 WIFI Antenna VSWR

Far-field Power Distribution on X-Z Plane(E-Plane of L3 Pol Sense) Gain= 3.54 dBi; Total Radiating Efficiency: 59.47% @2.41200 GHz

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense) $_{Gain=\,3.54\,dBi;\,Total\,Radiating\,Efficiency:\,59.47\%\,\,@2.41200\,GHz}$

Far-field Power Distribution on X-Y Plane Gain= 3.54 dBi; Total Radiating Efficiency: 59.47% @2.41200 GHz

Far-field Pattern @ Phi=0 deg(E-Theta Plane-Cut) Gain= 3.18 dBi; Co-Pol Efficiency: 54.93% @ Freq: 2.41200 GHz Ppol Xpol

Far-field Power Distribution on X-Z Plane(E-Plane of L3 Pol Sense) Gain= 4.16 dBi; Total Radiating Efficiency: 61.03% @2.43700 GHz

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense)

Far-field Power Distribution on X-Y Plane

Far-field Power Distribution on X-Z Plane(E-Plane of L3 Pol Sense) Gain= 4.41 dBi; Total Radiating Efficiency: 62.11% @2.46200 GHz

Far-field Pattern @ Phi=0 deg(E-Theta Plane-Cut)

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense)

Far-field Power Distribution on X-Y Plane Gain= 4.41 dBi; Total Radiating Efficiency: 62.11% @2.46200 GHz

