Домашняя работа к занятию 9

1.1 Покажите, что функции $\varphi_1(x)$, $\varphi_2(x)$, ... $\varphi_n(x)$ линейно независимы. Постройте линейное однородное дифференциальное уравнение с постоянными коэффициентами (как можно более низкого порядка), ФСР которого содержит эти функции.

a)
$$\varphi_1(x) = \sinh x, \ \varphi_2(x) = \sinh(1-x)$$

b)
$$\varphi_1(x) = x$$
, $\varphi_2(x) = x^2$, $\varphi_3(x) = x^3$

c)
$$\varphi_1(x) \equiv 1$$
, $\varphi_2(x) = \cos x$, $\varphi_3(x) = e^x$

1.2 Решите задачу Коши
$$\begin{cases} y^{IV} + 2y'' + y = 0 \\ y(0) = y'(0) = y''(0) = 0, \ y'''(0) = 1 \end{cases}$$

- **1.3** Постройте *специальную* ФСР для уравнения y''' + y' = 0, расположив характеристические числа в следующем порядке: $\lambda_1 = i, \ \lambda_2 = -i, \ \lambda_3 = 0.$
 - **2.1** Решите задачу Коши $\begin{cases} x^3y'''-x^2y''+2xy'-2y=0\\ y(-1)=1,\ y'(-1)=-1,\ y''(-1)=1 \end{cases}$
- **2.2** Постройте линейное однородное дифференциальное уравнение с постоянными коэффициентами (как можно более низкого порядка), Φ CP которого содержит функцию $xe^{-x}\sin x$.
- **2.3** Покажите, что условия a>0 и b>0 являются необходимыми и достаточными для того, чтобы все решения уравнения y''+ay'+by=0 стремились к нулю при $x\to +\infty$.
- **3.1** Покажите, что функция $y = \sin^n x$ при любом $n \in \mathbb{N}$ удовлетворяет некоторому линейному однородному уравнению с постоянными коэффициентами порядка n+1 и не является решением линейного одно-

родного уравнения с постоянными коэффициентами меньшего порядка.

3.2 Покажите, что функции $\psi_1(x), \psi_2(x), \dots \psi_n(x)$ действительно образуют ФСР соответствующего уравнения.

Ответы и указания

- **1.1** Other: a) y'' y = 0, b) $y^{IV} = 0$, c) $y^{IV} y''' + y'' y' = 0$
- 1.2 Указание: общее решение уравнения

$$y = C_1 \cos x + C_2 \sin x + C_3 x \cos x + C_4 x \sin x$$

Из условия y(0) = 0 находим, что $C_1 = 0$. Для быстрого определения остальных коэффициентов воспользуемся разложениями Тейлора:

$$y = C_2(x - \frac{x^3}{6} + \dots) + C_3x(1 - \frac{x^2}{2} + \dots) + C_4x(x - \frac{x^3}{6} + \dots) =$$
$$= (C_2 + C_3)x + C_4x^2 - \frac{C_2 + 3C_3}{6}x^3 + \dots$$

Отсюда
$$C_4 = 0$$
, $C_3 = -\frac{1}{2}$, $C_2 = \frac{1}{2}$.

Other:
$$y = \frac{1}{2}(\sin x - x \cos x)$$

- **1.3** Other: $\psi_1(x) = e^{ix}$, $\psi_2(x) = \sin x$, $\psi_3(x) = 1 \cos x$.
- **2.1** Указание: уравнение является уравнением Эйлера. Его характеристический многочлен $P_3(\lambda) = (\lambda 2)(\lambda 1)^2$

Общее решение
$$y = C_1 x + C_2 x \ln|x| + C_3 x^2$$

Other:
$$y = x \ln(-x) + x^2, x \in (-\infty; 0)$$

2.2 Указание: $\lambda_{1,2} = -1 \pm i$ имеют кратность 2. Характеристический многочлен $P_4(\lambda) = (\lambda^2 + 2\lambda + 2)^2$

Ответ:
$$y^{IV} + 4y''' + 8y'' + 8y' + 4y = 0$$
.

- **2.3** Указание: вспомните теорему Виета для корней квадратного уравнения. Рассмотрите случаи вещественных и комплексных корней.
 - **3.1** Указание: $\sin^n x = \left(\frac{e^{ix} e^{-ix}}{2i}\right)^n = \frac{e^{inx} + \dots + (-1)^n e^{-inx}}{(2i)^n}$
- **3.2** Указание: вспомните, каким данным Коши удовлетворяют эти функции.