REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT - SESSION DE JUIN 2010

SECTION: MATHEMATIQUES

Le sujet comporte 4 pages numérotées de 1/4 à 4/4

Exercice 1 (3 points)

Répondre par « Vrai » ou « Faux ». Aucune justification n'est demandée.

- 1) Le quotient de (-23) par (-5) est 4.
- 2) Si a et b sont deux entiers tels que 64a + 9b = 1 alors les entiers b et 64 sont premiers entre eux.
- 3) $147^{146} \equiv 2 \pmod{12}$.
- 4) $x^2 \equiv 0 \pmod{8}$ équivaut à $x \equiv 0 \pmod{8}$.
- 5) Si $\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 4 \pmod{5} \end{cases}$ alors $x \equiv 19 \pmod{20}$.
- 6) Si p est un entier premier distinct de 2 alors $p^2 \equiv 1 \pmod{4}$.

Exercice 2 (4 points)

Le plan est orienté dans le sens direct.

Dans la figure (1) de l'annexe ci-jointe, [AB] et [IJ] sont deux diamètres perpendiculaires du cercle (\mathscr{C}), M est un point variable du cercle (\mathscr{C}) tel que $(\overline{MA}, \overline{MB}) \equiv \frac{\pi}{2}[2\pi]$ et MBEN et MKFA sont des carrés de sens direct.

- 1) Montrer que les points E, F et M sont alignés.
- 2) On désigne par r_1 et r_2 les rotations d'angle $\frac{\pi}{2}$ et de centres respectifs A et B.
 - a) Montrer que r₁₀ r₂ est la symétrie centrale de centre I.
 - b) Déterminer r₁or₂ (E). En déduire que lorsque M varie, la droite (EF) passe par un point fixe que l' on déterminera.
- 3) Soit S la similitude directe de centre A, d'angle $\frac{\pi}{4}$ et de rapport $\sqrt{2}$.
 - a) Déterminer S (M).
 - b) Construire le point G image de F par S.
 - c) Montrer que F est le milieu du segment[KG].
 - d) En déduire que lorsque M varie, la droite (KF) passe par un point fixe P. Construire P.

Exercice 3 (4 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On note A le point d'affixe - 2.

On considère l'équation (E) : $3z^3 - 2z^2 + 4z + 16 = 0$.

Soit $\alpha \in \mathbb{C}^*$ et M, N et P les points d'affixes respectives α , $\frac{3}{2}\alpha^2$ et $\frac{8}{\alpha}$.

- 1) Montrer que si $\alpha \in \mathbb{R}^*$ alors les points M, N et P sont alignés. Dans la suite de l'exercice on suppose que α n'appartient pas à \mathbb{R} .
- 2) Montrer que si MNAP est un parallélogramme, alors α est une solution de l'équation (E).
- 3) Dans cette question on prend $\alpha = 1 + i\sqrt{3}$.
 - a) Donner l'écriture exponentielle de chacun des nombres complexes α , $\frac{3}{2}\alpha^2$ et $\frac{8}{\alpha}$. Placer dans le repère (O, \bar{u}, \bar{v}) les points A, M, N et P.
 - b) Donner l'écriture algébrique de chacun des nombres complexes $\frac{3}{2}\alpha^2$ et $\frac{8}{\alpha}$. Montrer que le quadrilatère MNAP est un parallélogramme.
- 4) a) Montrer que si α est une solution de (E) alors $\overline{\alpha}$ est une solution de (E).
 - b) En déduire les affixes des points M pour lesquels MNAP est un parallélogramme.

Exercice 4 (5 points)

- 1) Soit la fonction f définie sur $]0, +\infty[$ par $f(x) = \ln x x \ln x + x$.
 - a) Calculer $\lim_{x\to 0^+} f(x)$; $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$.
 - b) Montrer que pour tout x > 0, $f'(x) = \frac{1}{x} \ln x$.
- 2) Dans la figure (2) de l'annexe ci-jointe, \mathscr{C}_g et \mathscr{C}_h sont les courbes représentatives dans un repère orthonormé $\left(O,\overline{i},\overline{j}\right)$ des fonctions g et h définies sur $\left[0,+\infty\right[par g(x)=\frac{1}{x}]$ et $h(x)=\ln x$.

 \mathscr{C}_{q} et \mathscr{C}_{h} se coupent en un point d'abscisse β .

- a) Par une lecture graphique donner le signe de f'(x).
- b) En déduire le sens de variation de f.
- c) Montrer que $f(\beta) = \beta + \frac{1}{\beta} 1$.

- 3) On désigne par \mathscr{C}_f la courbe représentative de f dans le repère $(0, \vec{i}, \vec{j})$.
 - a) Etudier la position relative des courbes \mathscr{C}_f et \mathscr{C}_h .
 - b) Montrer que la courbe \mathscr{C}_f coupe l'axe des abscisses en deux points d'abscisses respectives x_1 et x_2 telles que $0,4 < x_1 < 0,5$ et $3,8 < x_2 < 3,9$.
 - c) Placer dans le repère $(0, \vec{i}, \vec{j})$ les points A $(\beta, 0)$ et B $(0, \frac{1}{\beta})$ et en déduire une construction du point de coordonnées $(\beta, f(\beta))$.
 - d) Tracer &f.
- 4) Pour tout réel t de]0, $+\infty[\setminus\{\beta\}$, on désigne par $\mathscr{A}(t)$ l'aire de la partie du plan S(t) limitée par les courbes \mathscr{C}_g et \mathscr{C}_h et la droite d'équation x = t.
 - a) Montrer que pour tout réel $t \in]0,+\infty[\setminus\{\beta\}, \mathcal{A}(t) = f(\beta) f(t).$
 - b) Soit $t_0 > \beta$. Hachurer $S(t_0)$.
 - c) Montrer qu'il existe un réel unique t_1 dans]0, $\beta[$ tel que $\mathscr{A}(t_1) = \mathscr{A}(t_0)$. Hachurer $S(t_1)$.

Exercice 5 (4 points)

Dans la figure ci-contre, le solide de révolution (S) est obtenu en faisant tourner la portion de la courbe d'équation $y = e^{\sqrt{x}}$, $x \in [1, 2]$ autour de l'axe (Ox). Le but de cet exercice est de calculer le volume \boldsymbol{v} de ce solide .

- 1) Soit F la fonction définie sur $[1, +\infty[$ par $F(x) = \int_1^x e^{\sqrt{4t}} dt$. Vérifier que $v = \pi F(2)$.
- 2) Soit G la fonction définie sur $[1, +\infty[$ par $G(x) = \int_1^{\sqrt{4x}} te^t dt$.
 - a) Montrer que G est dérivable sur $[1, +\infty[$ et que G'(x) = 2 F'(x).
 - b) En déduire que pour tout réel x de [1, $+\infty$ [, 2 F(x) = G(x) G(1).
- 3) a) Montrer que pour tout réel x de $[1, +\infty[$, $G(x) = (\sqrt{4x} 1)e^{\sqrt{4x}}$.
 - b) Calculer alors $oldsymbol{v}$.

figure (1)

figure (2)

