UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

MAT1100 — Kalkulus Deleksamen i:

Fredag 13. oktober 2017 Eksamensdag:

Tid for eksamen: 09.00 - 11.00

Oppgavesettet er på 5 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Eksamen består av 20 spørsmål. Alle spørsmålene teller like mye. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Krysser du av mer enn ett alternativ på et spørsmål, får du 0 poeng.

Oppgave 1. Det komplekse tallet z har polarkoordinater $r=4, \theta=\frac{5\pi}{6}$. Da er z lik:

A)
$$-2\sqrt{3} + 2i$$

B)
$$-2 + 2i\sqrt{3}$$

C)
$$-2\sqrt{3} - 2i$$

D)
$$2\sqrt{3} + 2i$$

E)
$$-2\sqrt{3} - 2i$$

Oppgave 2. Det komplekse tallet z = -4 - 4i har polarkoordinater:

A)
$$r = 4\sqrt{2}, \theta = \frac{7\pi}{4}$$

B)
$$r = 4, \theta = \frac{5\pi}{4}$$

A)
$$r = 4\sqrt{2}, \theta = \frac{\pi}{4}$$

B) $r = 4, \theta = \frac{5\pi}{4}$
C) $r = 4\sqrt{2}, \theta = \frac{3\pi}{4}$
D) $r = 4\sqrt{2}, \theta = \frac{5\pi}{4}$
E) $r = 8, \theta = \frac{3\pi}{4}$

D)
$$r = 4\sqrt{2}, \theta = \frac{5\pi}{4}$$

E)
$$r = 8, \theta = \frac{3\pi}{4}$$

Oppgave 3. Dersom $z = \overline{\left(\frac{1+4i}{4-i}\right)}$, så er:

A)
$$z = \frac{1}{5} - \frac{1}{3}i$$

B)
$$z = \frac{5}{17} - \frac{4}{17}$$

A)
$$z = \frac{1}{5} - \frac{1}{3}i$$

B) $z = \frac{5}{17} - \frac{4}{17}i$
C) $z = \frac{2}{15} - \frac{2}{3}i$
D) $z = -i$
E) $z = \frac{4}{15} + \frac{3}{5}i$

D)
$$z = -i$$

E)
$$z = \frac{4}{15} + \frac{3}{5}i$$

Oppgave 4. Ligningen (1+i)z + 2i = 2iz har løsningen:

A)
$$\frac{2}{5} + \frac{3}{5}i$$

B) $2 + 4i$

B)
$$2 + 4i$$

C)
$$\frac{2}{5} - \frac{3}{5}i$$

C)
$$\frac{2}{5} - \frac{3}{5}i$$

D) $-\frac{1}{2} + 2i$
E) $1 - i$

E)
$$1 - i$$

Oppgave 5. Hvis det reelle polynomet $P(z) = z^3 + az^2 + bz + c$ har 1 og -i som røtter, så er P(z) lik:

A)
$$z^3 + 2z^2 + 2z + 1$$

B)
$$z^3 - z^2 + z - 1$$

C)
$$z^3 - 1$$

D)
$$z^3 + 3z^2 - z + 1$$

E) Vi har ikke nok informasjon til å avgjøre hvilket polynom det er

Oppgave 6. Hvis $z = \sqrt{3} + i$, så er z^{38} lik:

A)
$$2^{38}i$$

B)
$$2^{37}(\sqrt{3}+i)$$

C) -2^{37}

$$(C) - 2^{37}$$

$$D') 2^{38}$$

E)
$$2^{37}(1+i\sqrt{3})$$

Oppgave 7. Grenseverdien $\lim_{n\to\infty} \frac{3n^4-2n^2+1}{7+3n^3+4n^4}$ er lik:

B)
$$\frac{3}{4}$$

C)
$$\infty$$

D)
$$\frac{1}{7}$$

D)
$$\frac{1}{7}$$
 E) $\frac{3}{7}$

Oppgave 8. Grenseverdien $\lim_{x\to 0} \frac{x^3+2x^4}{5x^3-4x^4}$ er lik:

$$\mathbf{B}) \ \frac{2}{5}$$

C)
$$-\frac{1}{2}$$

D) $\frac{1}{5}$

D)
$$\frac{1}{5}$$

Oppgave 9. Grenseverdien $\lim_{x\to\infty} x\left(\sqrt{1+\frac{1}{x}}-1\right)$ er lik:

C)
$$\infty$$

E)
$$\frac{1}{2}$$

Oppgave 10. Grenseverdien $\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos x}$ er lik:

- A) 0
- B) 2
- C) ∞
- D) $\frac{1}{2}$
- E) 1

Oppgave 11. Grenseverdien $\lim_{x\to 1} x^{\frac{2}{x-1}}$ er lik:

- A) 1
- B) 2
- C) e^2
- D) $\frac{1}{2}$
- E) ∞

Oppgave 12. Den omvendte funksjonen til $f(x) = 3 \ln(2x + 4)$ er:

- A) $g(x) = \frac{e^{3x+2}}{4}$
- B) Det finnes ingen omvendt funksjon
- C) $g(x) = \frac{4e^{x-2}}{3}$ D) $g(x) = \frac{1}{3\ln(2x+4)}$
- E) $g(x) = \frac{1}{2}e^{\frac{x}{3}} 2$

Oppgave 13. Funksjonen $f:[-2,\infty)\to\mathbb{R}$ definert ved $f(x)=(x+1)e^x$ er injektiv. Hvis g er den omvendte funksjonen, er g'(1) lik:

- A) $\frac{1}{2e}$
- B) 2
- C) 1
- D) $\frac{1}{2}$
- E) e

Oppgave 14. Funksjonen $f: \mathbb{R} \to \mathbb{R}$ er gitt ved

$$f(x) = \begin{cases} e^{2x} + 2 & \text{for } x \ge 0\\ Ax + B & \text{for } x < 0 \end{cases}$$

der A og B er konstanter. Hva må A og B være for at f skal være deriverbar i x = 0?

- A) A = 2, B = 3.
- B) A = 2, B kan være hva som helst
- C) A = 2, B = 0
- D) Ingen valg av A og B gjør f deriverbar i x=0
- E) B = 3, A kan være hva som helst

Oppgave 15. Funksjonen $f(x) = x^{\frac{2}{3}}$ er:

- A) konkav på hele \mathbb{R}
- B) konveks på $(-\infty, 0]$ og konkav på $[0, \infty)$
- C) konkav på $(-\infty, 0]$ og konveks på $[0, \infty)$
- D) konkav på $(-\infty, 0]$ og på $[0, \infty)$, men ikke på hele $\mathbb R$
- E) konveks på $(-\infty,0]$ og på $[0,\infty)$, men ikke på hele $\mathbb R$

Oppgave 16. Løsningene til annengradsligningen $z^2 - (1+i)z + i = 0$ er:

- A) Eneste løsning er i (dobbeltrot)
- B) 1 og -2i
- C) Eneste løsning er 1 (dobbeltrot)
- D) i og 2
- E) 1 og *i*

Oppgave 17. Asymptoten til $f(x) = \sqrt{x^2 + 3x}$ når $x \to \infty$ er:

- A) $y = x + \frac{3}{2}$
- B) y = x
- C) Det finnes ingen asymptote
- D) y = x + 3
- E) $y = x + \frac{1}{3}$

Oppgave 18. En orienteringsløper skal løpe fra punkt A til punkt B på figuren. Hun planlegger å følge veien fra A til C et stykke, og så løpe ut i terrenget i retning B (se pilene på figuren). Avstanden fra A til C er 500 m og avstanden fra C til B er 300 m. Langs veien kan hun løpe med en fart av 5 m/s, mens hun i terrenget løper med en fart av 3 m/s. Hvor langt må hun løpe langs veien for å bruke kortest tid fra A til B?

- B) 350 meter
- C) 275 meter
- D) 200 meter
- E) 250 meter

Oppgave 19. Et fly observeres fra et punkt på bakken. Flyet beveger seg horisontalt i en høyde av 8 km over bakken. I det flyets avstand fra observasjonspunktet er 10 km, endrer avstanden seg med 600 km/t. Hvor er farten til flyet i dette øyeblikket?

- A) 1000 km/t
- B) $\frac{2000}{3}$ km/t
- C) 750 km/t
- D) 800 km/t
- E) 900 km/t

Oppgave 20. Anta at f er en funksjon fra $\mathbb R$ til $\mathbb R$. Dersom det finnes positive tall M og b slik at

$$|f(x) - f(y)| \le M|x - y|^{1+b}$$

for alle $x,y\in\mathbb{R},$ så er:

- A) f strengt voksende.
- B) f strengt avtagende.
- C) f strengt avtagende for x < 0 og strengt voksende for x > 0
- D) Det finnes ingen slike funksjoner
- E) f er konstant

Slutt