Contrôle de géométrie analytique N°2

Durée : 1 heure 30 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM:	

- 1. Dans l'espace muni d'un repère orthonormé direct, on donne
 - le point A(1, 1, 1),
 - les vecteurs $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ et $\vec{d} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et les droites $a = a(A, \vec{a})$ et $d = d(A, \vec{d})$.
 - la droite $g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ k \\ 1 \end{pmatrix}, \quad k \in \mathbb{R},$
 - le plan β : x + y z + 5 = 0.
 - a) Déterminer les équations paramétriques de la droite $\,b\,,\,$ symétrique de $\,a\,$ par rapport à $\,d\,.$
 - b) Déterminer la distance $\,\delta\,$ entre les deux droites gauches $\,a\,$ et $\,g\,.$
 - c) Soit α le plan défini par les deux droites a et d. Déterminer les coordonnées du (des) point(s) de la droite g équidistant(s) des plans α et β .

6 pts

2. Dans l'espace muni d'un repère orthonormé direct, on donne les coordonnées de trois points A, B et P et les équations cartésiennes d'une droite d.

$$A(-2, 3, 5), \quad B(-2, 4, 8), \quad P(-1, 3, 5), \quad d: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z+2}{1}$$

Soient I la projection orthogonale du point P sur la droite d, et β le plan défini par les trois points A, B et P.

Déterminer les équations paramétriques de la droite $\,g\,$ passant par $\,I\,,\,$ parallèle à $\,\beta\,$ et orthogonale à $\,d\,.$

4,5 pts

3. Dans l'espace muni d'une origine O, on considère un plan α passant par O et admettant le vecteur \vec{n} comme vecteur normal, une droite d passant par O et dirigée par le vecteur \vec{d} , $(\vec{d} \cdot \vec{n} \neq 0)$ et un point A défini par son rayon vecteur $\vec{a} = \overrightarrow{OA}$.

Soit B la projection du point A sur le plan α parallèlement à la droite d.

A l'aide du calcul vectoriel uniquement, déterminer en fonction des données \vec{a} , \vec{d} et \vec{n}

- a) l'expression du rayon vecteur \overrightarrow{OB} ,
- b) l'aire \mathcal{A} du triangle OAB.

4,5 pts