Calendaring for Wide Area Networks

September 10, 2014

Overview

- Introduction
- 2 Related Work
- 3 Guildlines for Online Temporal Planning
- Overview of TEMPUS
- System Design
 - Offline
 - Online
- 6 Conclusion
 - Comp. w Yu's work

Inter-DC WANs

Figure: 1

¹Achieving High Utilization with Software-Driven WAN, SIGCOMM 13 ≥ → ≥ ✓ へ ⊘

Inter-DC WANs

Figure: ¹

Large transfers with preassigned deadlines over Inter-DC WANs. Examples:

moving new search indexes from one DC to another... collected datasets on one DC for later analysis on another Big Data DC...

Challenges

- Long-running transfers are often time-critical.
- The network should at all time be able to serve high-priority traffic and long-running traffics.

The Calendaring Problem

- No delays and zero loss for high-priority traffic.
- When not limited by network capacity, long-running requests are fully met before the deadline.
- When demands exceed network capacity, continue to offer guarantees such as maximizing the minimal fraction of transfers that finish before deadline (fairness), or maximizing a specified total utility function.

Related Work

- B4: Experience with a Globally-Deployed Software Defined WAN (Google, SIGCOMM '13)
- Achieving High Utilization with Software-Driven WAN (Microsoft, SIGCOMM '13)

They operate at high utilizations, but these schemes only plan for a single future timestep. Any transfers that last longer receive no guarantees.

Related Work

NetStitcher uses information about future bandwidth availability to move data between DCs at low costs; it does not support deadlines for requests.

Example

a: arrival, D: demand, d: deadline

Request	а	D	d
$R_1: A \rightarrow B$		4	
R_2 : $A \rightarrow C$	1	2	8
R_3 : A \rightarrow D	1	2	7
$R_4: B \rightarrow C$	4	5	9

ie	R_1	R ₂	R_3	R ₄
Offline	[2,5]	1,8	[6,7]	[4,7], 9
EDF	[1,4]	[7,8]	[5,6]	[4,6][9,10]
Greedy	[1,8]	[1,6]	[1,6]	[4,9]
Online	[1,4]	[7,8]	[5,6]	[4,6][9,10]
Tempus	[1,6]	[1,8]	[1,7]	[4,9]

Example

n	e	R_1	R_2	R ₃	R ₄
	Offline	[2,5]	1,8	[6,7]	[4,7], 9
	EDF	[1,4]	[7,8]	[5,6]	[4,6][9,10]
	Greedy	[1,8]	[1,6]	[1,6]	[4,9]
	Online	[1,4]	[7,8]	[5,6]	[4,6][9,10]
	Tempus	[1,6]	[1,8]	[1,7]	[4,9]

- **EDF** picks requests strictly on deadline order, preventing it from finding beneficial schedules that simultaneously schedule requests on different parts of the network. (e.g., schedule R_2 early so that R_1 and R_4 can run simultaneously).
- **Greedy** (*e.g.*, SWAN) is enable to plan into the future, *i.e.*, fair share at each timestep does not translate into meeting deadlines.
- Online plans into the future for all the requests that it is currently aware of.

Guildlines for Online Temporal Planning

- The offline calendaring problem can be formulated as a LP.
- Planning in the midst of dynamically evolving conditions.
- Promises: do not renege on promises
- Conservation of computation.

Problem Definition

G=(V,E)	V =n, E =m
C _e	edge capacity
request	$(a_i,b_i,d_i,D_i,s_i,t_i,\mathcal{P}_i)$
a _i	the aware time by TEMPUS of the request
b _i	begin time for scheduling
d _i	deadline for scheduling
D_i	demand of the request
Si	source node of the request
ti	target node of the request
\mathcal{P}_i	admissible paths from s to t of the request
$f_{i,p,t}$	flow allocated for request i on path $p \in \mathcal{P}_i$ in time t
α_i	the fraction of request satisfied for request i
$\max \min_i \alpha_i$	maximize the smallest fraction α_i (fairness)
$\delta = \operatorname{avg}_i \alpha_i$	secondary utility function

Offline Case

$$h_{e,t}(f) = \sum_{i:b_i \le t \le d_i} \sum_{p \in \mathcal{P}_i: e \in p} f_{i,p,t}$$
 (capacity usage)
$$\varphi_i(f) = \sum_{t=b_i}^{d_i} \sum_{p \in \mathcal{P}_i} f_{i,p,t}$$
 (satisfied demand)
$$g(f) = \sum_{t=b_i}^{d_i} \sum_{p \in \mathcal{P}_i} \sum_{j=0}^{d_i} u_{i,p,t} \cdot f_{i,p,t}$$
 (utility)

Offline Case (Impractical)

formulate into an LP:

$$LP(\alpha,U) = \{h_{e,t}(f) \leq c_e \ arphi_i(f) \leq D_i \ arphi_i(f) \geq \alpha D_i \ g(f) \geq U \ f \geq 0\}$$
 (capacity) (demand) (fairness)

Online (Challenges)

- Computationally expensive
- can lead to a substantially worse solution
- Running the offline LP at each timestep treats requests that arrive later unfairly (smaller α for later requests)

- TEMPUS systematically under-allocates future edges
- TEMPUS renege upon promises, but it rarely happens
- For faster computation, TEMPUS employs sliding window approach, i.e., long requests are broken into smaller requests with their demand scaled accordingly.

TEMPUS systematically under-allocates future edges. When planning at time τ , the fraction of edge capacity that is available for allocation at time $t > \tau$ is denoted by $\beta_{e,t,\tau}$.

TEMPUS chooses β to be a function that decreases with $t-\tau$. Intuitively, the further an edge is into the future, the less its capacity can be used up during the current timestep.

Packing-Covering Solver

Given a variable vector x, a packing matrix P and a covering matrix C, a mixed packing-covering problem finds a feasible solution for these inequalities:

$$\{Px \le 1, Cx \ge 1, x \le 0\}$$

Packing-Covering Solver

Given a variable vector x, a packing matrix P and a covering matrix C, a mixed packing-covering problem finds a feasible solution for these inequalities:

$$\{Px \le 1, Cx \ge 1, x \le 0\}$$

Let x=0 be the starting zero solution; all packing constraints are satisfied, but none of the covering constraints are met. Suppose there exists an increment Δx that satisfies:

$$\max P(x + \Delta x) - \max Px \le \min C(x + \Delta x) - \min Cx$$

which ensures that the smallest covering constraint improves by more than the largest packing constraint. Incrementing by such Δx will yield a feasible solution.

Young's Method

Young's method², first smoothes min and max:

$$\min_{1 \le i \le n} x_i \ge I \min(x) \triangleq -\ln(\sum_{i=1}^n e^{-x_i})$$

$$\max_{1 \le i \le n} x_i \le I \max(x) \triangleq \ln(\sum_{i=1}^n e^{x_i})$$

second, Young restricts the increment per iteration to a small amount and to one variable x_i in x. Then the condition becomes:

$$\frac{\partial I \max(Px)}{\partial x_i} \le \frac{\partial I \min(Cx)}{\partial x_i}$$

²N.E. Young. Sequential and parallel algorithms for mixed packing and covering, FOCS '01

Observe that

- edge capacity translates to a packing constraint,
- request satisfaction translates to a covering constraint,
- the variable vector x contains flow allocation.
- the old solution from previous timestep is a feasible searching point for the next timestep

Observe that

- edge capacity translates to a packing constraint,
- request satisfaction translates to a covering constraint,
- the variable vector x contains flow allocation.
- the old solution from previous timestep is a feasible searching point for the next timestep
 - none of the packing constraints are violated (new edges have flow 0 and every old edge has strictly large capacity to allocate)
 - the old covering constraints are unchanged whereas the new covering constraints are unmet (flow for new requests is 0)
 - none of the work done by previous timesteps, in terms of allocating flow, needs to be redone (speeds-up the computation)

Observe that $LP(\alpha, U)$ is exactly in the form of packing-covering problem, after we normalize the constraints so that the right hand side is all 1s.

- Start with U=0 and conduct a search to find the largest α for which $LP(\alpha,0)$ is feasible.
- The resulting α is then kept fixed and we search for the largest U for which $LP(\alpha, U)$ is feasible.
- Use Young's method to determine whether a flow vector f exists that satisfies $LP(\alpha, U)$ given some values of α and U.

Feasibility Check of $LP(\alpha, U)$

TEMPUS uses internal variables, each corresponding to a constraint of $LP(\alpha, U)$ to search check for feasibility (ε is an accuracy parameter and N is a scaling factor):

$$\begin{array}{ll} y_{e,t} \triangleq e^{\frac{N}{\varepsilon \cdot c_e} \cdot h_{e,t}(f)} & \text{(capacity)} \\ q_i \triangleq e^{\frac{N}{\varepsilon \cdot D_i} \cdot \varphi_i(f)} & \text{(demand-packing)} \\ z_i \triangleq e^{-\frac{N}{\varepsilon \cdot \alpha \cdot D_i} \cdot \varphi_i(f)} & \text{(fairness)} \\ r \triangleq e^{-\frac{N}{\varepsilon \cdot U} \cdot g(f)} & \text{(utility)} \end{array}$$

The running time for the feasibility check is $O(\varepsilon^{-2}(mT+k)\ln(mTk))$. In TEMPUS, $\varepsilon=0.1$.

Feasibility Check of $LP(\alpha, U)$

- ② Find $1 \le i^* \le k$, $b_{i^*} \le t^* \le d_{i^*}$, $p^* \in \mathcal{P}_{i^*}$, s.t.:

$$\frac{\partial I \max(Px)}{\partial x_i} \le \frac{\partial I \min(Cx)}{\partial x_i}$$

- Update $y_{e,t}$, q_i , z_i , r, f... (details omitted)

TEMPUS's workflow

Figure 3: TEMPUS's workflow

$$\begin{cases} \{(a_i,b_i,d_i,D_i,s_i,t_i,P_i)\} \\ y_{e,t} \ \chi_{e,t} \ h_{e,t} & \text{edge} \\ z_i \ q_i \ F_{i,\tau-1} \ Q_{i,t} \ \alpha_i & \text{req.} \\ r \ U_{\tau-1} \ U & \text{utility} \end{cases}$$

Figure 4: State kept by TEMPUS; at time-step τ , for currently active requests $i \in R(\tau)$ and future time-steps $t \ge \tau$.

Experiment

Figure 6: Minimum request fraction satisfied post-facto.

Experiment

Figure 7: Fraction of transfers that finish before deadline.

Experiment

Figure 8: Total utility.

Comparison with Yu's work

- Minor difference in application scenario (TEMPUS doesn't consider a store-and-forward architecture)
- Theoretical breakthrough (applying Young's method online, parallelizing Young's Algorithm) v.s. online heuristic
- Production WAN experiment v.s. small cluster experiment

Thank You

Q&A