

Master ATAL

H. Mouchère / Harold.Mouchere@univ-nantes.fr

Reconnaissance multi-modale (X3ITM40)

IPI team
Image, Perception et Interaction

ML for Document Analysis

- ****** Several computer vision tasks are not simple classification problems
 - Several sub tasks and sub steps
- **X** Document Analysis is one of these complex topics
 - Character / word recognition
 - Text line segmentation and recognition
 - Word spotting in handwritten text / natural images
 - Document structure analysis (reading path, image / text segmentation)
 - Math recognition
 - €...

Math Recognition

- ★Why Math Reco?
 - Widespread use of math expressions (universality)
 - Very interesting scientific challenges during automatic processing
 - Very high number of symbols (≈ 250)
 - Possibility of very complex 2D symbol organization
 - Conventional tools (LaTex, MathML, MathType,...)
 - ⇒ High input time and know-how required

Math Recognition: On/Off line

- ★ Off-line = image = 2D set of pixels
 - Scanned document, photo, ...

 $\mathsf{**}\mathsf{On}\text{-line} = \mathsf{time} \; \mathsf{sequence} \; \mathsf{of} \; (\mathsf{x},\mathsf{y}) = \mathsf{strokes}$

Math Recognition

******Three main sub-tasks in ME recognition

Symbol Segmentation

group strokes that belong to the same symbol.

Symbol Classification

assign each symbol candidate a class

Structural analysis

identify spatial relations between symbols and with the help of a 2-D language model to produce a math terpretation

- •5 strokes
- •4 symbols
 - •z, d, + z
- •3 relations
 - Superscript
 - •Right

Z

Math representation

★Graph representations at 2 levels

Symbol level

Symbol relation (layout) tree

Node: symbol

Edge: symbols relationships

Stroke level

Stroke label graph(SLG)

Node: stroke

Edge: stroke relationships

Math representation

★Graph representations at 2 levels

Symbol level

Symbol relation (layout) tree

Stroke level

Stroke label graph(SLG)

How to build a Math datasets

- ★ Expression selection (corpus)
 - Realistic expressions
 - Different levels of difficulty
 - According to vocabulary (number of symbols)
 - According to grammar (number of rules)

$$z = 0$$

$$\int \sin^n ax dx = -\frac{1}{na} \sin^{n-1} ax \cos ax + \frac{n-1}{n} \int \sin^{n-2} ax dx$$

How to build a Math datasets

- ★ How to obtain a large corpus?
 - Write a grammar and generate
 - Not so realistic, but ok in specific domain
 - Collect from open sources
 - Wikipedia (<math>), ArXiv.org (tex sources \$ \$)

- removing duplicate expressions
- Filtering by string length
- Filtering with a valid symbol set
- Validating with a grammar parsing tool
- Controlling the symbol frequency compared to an existing set $C_{c,r}(e) = \sum_{t_i \in e} \cos t_{c,r}(t_i)$

$$C_{c,r}(e) = \sum_{t_i \in e} \text{cost}_{c,r}(t_i)$$
$$\text{cost}_{c,r}(t_i) = \log(f_r(t_i)) - \log(f_c(t_i))$$

How to build a Math datasets

- **★ Ink Data collection**
 - Using e-paper and forms
 - Using GUI on tabletpc
- ★ Speech data collection
 - dictation without constraints
 - ◆Micro LEM et enregistreur Mara

HAMEX dataset

Subset	Nb of	Total duration of	Nb of	Nb of
Subset	expressions	audio expressions	writers	speakers
Training	2 925	8 h	39	39
Evaluation	1 425	4 h	19	19
Total	4 350	12 h	58	58

		Iuoic II			
Symbols 1	IN THE	VOCABULARY	OF	EACH	CORPUS

Classes	CALCULATOR	WIKIEM	WIKIEM-EXT
Latin		abcdefgi	$a \dots z$
characters		knrsxyz	
Greek char.		$\alpha\beta\gamma\phi\pi\theta$	$\alpha\beta\gamma\phi\pi\theta$
Up. case char.		XY	XY
Digits	09	09	09
Operators	+-±×/÷	+-±×/÷	+-±×/÷
Equality op.	=≠<≤>≥	=≠<≤>≥	=≠<≤>≥
Elastic op.		$\sum - \int \sqrt{}$	$\sum - \int \sqrt{-}$
Set operators			€ A∃
Functions		cos sin log	cos sin log lim
Braces	()	()	()
Others		$. \rightarrow$	$. \to \ldots \infty$,

CROHME dataset

Data size in 2019

Tasks	Training	Validation	Test
Formulae (1, 2)	Train 2014 + Test 2013 + Test 2012	Test 2014	Test 2019
	9993 expr	986 expr	1199 expr
Symbols (1a, 2a)	Train 2014 + Test 2013 + Test 2012	Test 2014	Test 2016
	180440 symbols + junks	18435 symbols + junks	15483 symbols + junks

Year	Grammar	Symbols	# P	Additions (with examples)				
2011	1/I	36 symbols :	38	No nested exprs. in fractions or sub/superscript				
		$abcdeiknxyz0123456789\phi\pi\theta +-\pm\sin\cos\neq \leq >= ()$		$x^2 + y^2 > 1 \qquad \sqrt{b^2 - 4ac}$				
	2/II	56 symbols, 20 added: $ABCFj\alpha\beta\gamma\infty$	60	No recursion limits; complex structurincluded	ures	Freq	. of symbo	ols
				$\sqrt{1 + \frac{1}{\sqrt{2}}} + \sqrt{1 - \frac{1}{\sqrt{2}}}$ $\lim_{x \to \frac{\pi}{2} + 0} \tan x = -\infty$		Train 2013/2014	Test 2013	Test 2014
2012	3/III	75 symbols, 19 added:	95	Set operators and brackets	_	7940 (9.254%)	440 (7.233 %)	910 (9.083 %)
		$\{\}[]XY < tfgmrp/, .\exists \forall \in$		$\forall x \in X \left[\frac{2}{3}x^{\frac{3}{2}}\right]_0^1$	1	6219 (7.248%)	314 (5.162%)	721 (7.196%)
2013	4/IV	101 symbols, 26 added:	155	nth-root	2	6195 (7.220%)	338 (5.556%)	715 (7.136%)
		$EGHILMNPRSTV$ $hloqsuvw '\sigma\Delta\lambda\mu$		$\sqrt[4]{648 + 648} + 8$	+	5409 (6.304%)	267 (4.389%)	622 (6.208%)
2014	matrix/IV-matrix	101 symbols	168	Matrices within and containing expr	ηX	5042 (5.876%)	261 (4.291%)	587 (5.859%)
				$(3 1) (\cos \theta - \sin \theta)$	(3945 (4.598%)	295 (4.850%)	458 (4.571%)
				$A = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$)	3939 (4.591%)	294 (4.833%)	458 (4.571%)
	-	1 1 1			=	3611 (4.209%)	319 (5.244%)	434 (4.332%)
	Syn	nbols, grammars, rules	S		а	2475 (2.885%)	137 (2.252%)	279 (2.785%)

Math recognition: seq. solution

★ Sequential approach

- - Segmentation: symbol or junk?
 - Classification: 101 classes
 - Relation recognition: 6 relations

Math recognition: seq. solution

★ Sequential approach

Seq of strokes

Segmentation

Error propagation

$$p^b < 1 _{p^b 4}$$

- ★Do not take any final decision at each step
 - Hypothesis graph
 - Selection of the best solution
 - Cost function to minimize

- **★** Symbol segmenter
 - Use local information
 - Time / space continuity
 - 2 class classifier trained with wrong segmentation (junk)
 - Huge number of possible segmentation
 - Bell number
 - #symb is smaller...

$$B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$$
; with $B_0 = B_1 = 1$

- **★** Symbol classifier
 - ◆Online, Offline, On+Off
 - Keep all meaningful hypothesis
 - Use classifier score
 - One or several classes per hypothesis
 - Recognition cost : $C_{reco}(sh_i) = -log(P(c = C_j|sh_i))$

 $\sum_{i=1}^{topN} p(C_j|sh_i) \geqslant k$

- *****Relation classifier
 - ◆Online, Offline, On+Off
 - Keep all meaningful relation hypothesis
 - Use classifier score
 - One or several classes per relation hypothesis
 - Recognition cost

- **★**Graph of hypothesis
 - Keep all meaningful relation an symbol hypothesis
 - Can be quite complex!

★ Language model

- ◆Grammar
 - 2D Context Free Grammar
 - Graph grammar
- ◆Parse algo
 - CYK parsing
- Select the best solution using a global cost
 - Seg + reco + rel + LM

2D Context Free Grammar

- *A grammar is a 4-tuple (N, T, I, R) such that:
 - ◆N: finite set of symbols, called non-terminals;
 - T: finite set of symbols, called terminals;
 - \bullet N \cap T = \varnothing ;
 - •R : set of pairs (P, Q), production or rewriting rules, such that P ∈ (N \cup T)+ and Q ∈ (N \cup T) *;

- \blacksquare I, I \in N, start or initial symbol.
- ★CNF (Chomsky Normal Form): single nonterminal on their LHS

2D Context Free Grammar

≈2D CFG?

•Add a spatial relation ship in each rule

No.		Gene	ration rule	Logical Relationship
1	EXP	\rightarrow	SYM	
2	EXP	\rightarrow	EXP SYM	Right
3	SYM	\rightarrow	SYM EXP	Upper Right
4	SYM	\rightarrow	SYM EXP	Lower Right
5	FUNC	\rightarrow	FUNC EXP	Upper
6	FUNC	\rightarrow	FUNC EXP	Lower
7	DLINE	\rightarrow	LINE EXP	Lower
8	NLINE	\rightarrow	LINE EXP	Upper
9	SYM	\rightarrow	DLINE EXP	Upper
10	SYM	\rightarrow	NLINE EXP	Lower
18	SYM	\rightarrow	a b c	
19	FUNC	\rightarrow	$\lim \sum \max \cdots$	
20	LPAR	\rightarrow	([{	
21	RPAR	\rightarrow)] }	

R. Yamamoto 2006, On-line recognition of handwritten mathematical expressions based on stroke-based stochastic context-free grammar. ICFHR

... 28 rules ...

2D Context Free Grammar

★2D CFG parsing:modified CYK

- J. Cocke, D.H.
 Younger, and T.
 Kasami. (Younger
 1967)
- Add 2D complexity in the token combination

₩Needed

- Symbol classifier
- Relation classifier
- Grammar (handmade)
- Parser which build a graph (Stroke LG)
- ★Very costly!

Math Reco: Merged solution

- ★ Merge recognition steps
- ★ Build directly a stroke label graph
- ₩Use deep learning

- ★ PhD thesis of Ting Zhang (2017)
 - New Architectures for Handwritten Mathematical Expressions Recognition
 - Using Tree-BLSTM on on-line signal

Local on-line features

★ Re-sample strokes

- Connect some pen-up strokes
- ★ Extract 5 local features for each point

 $[\sin \theta_i, \cos \theta_i, \sin \phi_i, \cos \phi_i, PenUD_i]$

BLSTM training / recognition

- ******Use local CTC to constraint local decision
 - ◆1 stroke = 1 label
 - Symbol label
 - Relation label
- Recognition with max rule
 - Class with the best score in the stroke

$$P_c^i = \sum_{t=1}^{|s_i|} p_{ct}^i$$

— - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- —

★ Math Expr are not linear structures: build the graph of all possible connections

*Math Expr are not linear structures: build the graph of all possible connections

- crossing, strokes
- visibility between strokes
- •time order

(c) the derived graph G

— - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- — — - \$- —

★ Math Expr are not linear structures: build the graph of all possible connections

(d)Red: additional edges Blue: missing edges

- ★ Math Expr are not linear structures: build the graph of all possible connections
 - Label the edges with directions

Tree based BLSTM

- ★ Follow a tree structure
 - Both directions
 - Merge/split nodes with updated (back)propagation rules

Tree in the graph

- - Using direction criteria
 - Depth first with priority order (Crossing, R1, R3, R4, R2, R5, Time)

Tree labeling

- ***** label one tree with tree-based BLSTM
 - •Activation following the directions
 - Several staked BLSTM
 - Final decision locally
- ★ Add a label

 "No Relation"

Graph labeling

- ₩To label a graph
 - Generate several different trees
 - With different walking criteria
 - Label them all
 - Merge local decisions
 - Fusion rules (max, mean, weighted...)
 - Add some edges to complete the SLG
 - Segmentation edges
 - Relations in multi-stroke symbols

Results

- ★ Network configuration
 - The hidden layers:
 - one level, Network (i)
 - two levels, Network (ii)
 - three levels, Network (iii)
 - four levels, Network (iv)
 - each level has the forward and backward layers
 - one layer contains 100 blocks
- ₩ Data set (CROHME 2014)
 - ◆Train: 8834(10% for validation)
 - ◆Test: 983

Results

- ★ Performances increase with depth and merging more trees
- **Recall increases but precision decreases...

Symbol level

Network, model	Symbol Segmentation Recall (%)	Symbol Classification Recall (%)	Relationship recognition Recall (%)
i, Merge 3	93.53	86.10	71.16
ii, Merge 3	95.01	88.38	76.20
iii, Merge 3	95.25	88.90	77.33
Merge 9	95.52	89.55	78.08

Expression level

Network, model	Correct (%)	<= 1 error (%)	<= 2 errors (%)
i, Merge 3	19.94	27.57	33.88
ii, Merge 3	25.94	36.72	42.32
iii, Merge 3	29.30	39.06	43.64
Merge 9	29.91	39.94	44.96

3 trees: Tree-Time, Tree-Left-R1 and Tree-0-R1

End-to-end approaches

- **™**No intermediate structure
 - Feed the network with raw input
 - Estimate the cost directly using the output
- ★ For the moment, no system are able to generate a graph
 - LaTeX string comparison

Watch, attend and parse: An end-to-end neural network based approach to handwritten mathematical expression recognition J. Zhang, PR 2017

Using RNN for sequence encoding

- ****One RNN encode**
 - All info is merged in one final state
- **₩**One RNN decode
 - Generate a seq of output
 - Reuse the previous output for the next

[Loïc Barrault, Cours ATAL 2017]

Using RNN for sequence encoding

₩Using Bi-RNN

 All information available in each state

e = (Economic, growth, has, slowed, down, in, recent, years, .)

[Loïc Barrault, Cours ATAL 2017]

НМ

Using RNN for sequence encoding

♯ Using Bi-RNN + Attention

•Attention is focused on a sub part of information by weighted connection

e = (Economic, growth, has, slowed, down, in, recent, years, .)[Loïc Barrault, Cours ATAL 2017]

Attention, images, text

— - ș - — — - ș - — — - ș - — — - ș - — — - ș - — — - ș - — — - ș - — - - ș - — - - ș - — - - ș - — - - ș - — -

******RNN LSTM to generate sentences

Show, Attend and Tell: Neural Image Caption Generation with visual Attention [K Xu 2015]

- ★Input: image
- ★ Output: sequence of words
 - C words among K

$$y = \{\mathbf{y}_1, \dots, \mathbf{y}_C\}, \ \mathbf{y}_i \in \mathbb{R}^K$$

- •One hot vector (K = 10000)
- **₩**Visual Encoder
 - Convolutional, keeping last conv layer
 - 14 x 14 map with 512 features
 - L vector of **D** features

$$a = \{\mathbf{a}_1, \dots, \mathbf{a}_L\}, \ \mathbf{a}_i \in \mathbb{R}^D$$

- VGG pretrained
 - (or any other)

Previous word embedded (dim m)

- ★ Decoder : LSTM based
 - ◆i,f,o,g :input, forget, memory, output and hidden state
 - $\hat{z} \in R^D$: context vector (features)
 - $\bullet E \in \mathbb{R}^{m \times K}$: embedding matrix
 - ◆T : all LSTM weights
- **X**Output

$$\begin{pmatrix} \mathbf{i}_{t} \\ \mathbf{f}_{t} \\ \mathbf{o}_{t} \\ \mathbf{g}_{t} \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} T_{D+m+n,n} \begin{pmatrix} \mathbf{E} \mathbf{y}_{t-1} \\ \mathbf{h}_{t-1} \\ \hat{\mathbf{z}_{t}} \end{pmatrix}$$
$$\mathbf{c}_{t} = \mathbf{f}_{t} \odot \mathbf{c}_{t-1} + \mathbf{i}_{t} \odot \mathbf{g}_{t}$$
$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{c}_{t}).$$

Hidden state (dim n)
Context vector (dim D)

Deep output layer merging embedding, hidden and context

$$p(\mathbf{y}_t|\mathbf{a},\mathbf{y}_1^{t-1}) \propto \exp(\mathbf{L}_o(\mathbf{E}\mathbf{y}_{t-1} + \mathbf{L}_h\mathbf{h}_t + \mathbf{L}_z\hat{\mathbf{z}}_t))$$

*****Attention mechanism

• α_{ti} = how much each location should be participate to the context vector \hat{z}_t

$$\sum_{i} \alpha_{ti} = 1$$

Hard / Soft

• Soft

$$\mathbb{E}_{p(s_t|a)}[\hat{\mathbf{z}}_t] = \sum_{i=1}^{L} \alpha_{t,i} \mathbf{a}_i$$

$$e_{ti} = f_{\text{att}}(\mathbf{a}_i, \mathbf{h}_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}.$$

$$\hat{\mathbf{z}}_t = \phi\left(\left\{\mathbf{a}_i\right\}, \left\{\alpha_i\right\}\right)$$

— - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş - — — - Ş -

X Training

Loss:

$$L_d = -\log(P(\mathbf{y}|\mathbf{x})) + \lambda \sum_{i}^{L} (1 - \sum_{t}^{C} \alpha_{ti})^2$$

- Minimizing the log likelihood
- Regularization of alpha to 1 (try to use all locations)
- CNN : VGG pretrained
- stochastic gradient descent using adaptive learning rate (Adam)
- mini-batch of size 64 of homogenous length of caption
- early stopping on BLEU score
- Microsoft COCO dataset (83.000)
- Flickr8k/Flickr30k

47

Watch, attend and parse

Watch, attend and parse: An end-to-end neural network based approach to handwritten mathematical expression recognition J. Zhang, PR 2017

Attention + LSTM in Math Reco

- ****** Improving Attention-Based Handwritten Mathematical Expression Recognition with Scale Augmentation and Drop Attention
 - **◆ICFHR 2020**

Attention + LSTM in Math Reco

**Attention on symbol and over the relationships...

MDLSTM + Attention + LSTM

- ****MDLSTM & CNN layers extract shape features**
- **Attention module extract local features
- ******LSTM decode characters one by one

[Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention, *T. Bluche 2016*]

MDLSTM + Attention + LSTM

≭Line level

≭Line breaks

★ Paragraph level demo

[Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention, *T. Bluche 2016*]