

Malaria Detector CNN

Computational Intelligence and Deep Learning
A.A. 2022-2023

Francesca Pezzuti, Pietro Tempesti

Malaria dataset

- 2 classes: uninfected & parasitized
- 27558 images, perfectly balanced
- Weight: 317.62MB

CNN from scratch

Basic CNN

Bigger CNN

Bigger CNN + 256N dense layer

Bigger CNN + 128N dense layer

Basic CNN + 256N dense layer

Best architecture: Bigger CNN + 256N Dense Layer **Architecture**

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 120, 120, 3)]	0
conv2d_7 (Conv2D)	(None, 118, 118, 32)	896
<pre>max_pooling2d_7 (MaxPooling 2D)</pre>	(None, 59, 59, 32)	0
conv2d_8 (Conv2D)	(None, 57, 57, 64)	18496
<pre>max_pooling2d_8 (MaxPooling 2D)</pre>	(None, 28, 28, 64)	0
conv2d_9 (Conv2D)	(None, 26, 26, 128)	73856
<pre>max_pooling2d_9 (MaxPooling 2D)</pre>	(None, 13, 13, 128)	0
conv2d_10 (Conv2D)	(None, 11, 11, 256)	295168
<pre>max_pooling2d_10 (MaxPoolin g2D)</pre>	(None, 5, 5, 256)	0
flatten_2 (Flatten)	(None, 6400)	0
dense_2 (Dense)	(None, 256)	1638656
dense_3 (Dense)	(None, 1)	257
======================================		

Results

	Precision	Recall	F1-Score	Support
Parasitized	0.9749	0.9319	0.9529	2086
Uninfected	0.9336	0.9756	0.9542	2048
Accuracy			0.9536	4134
Macro Avg	0.9543	0.9538	0.9535	4134
Weighted Avg	0.9545	0.9536	0.9535	4134

Hyper-Parameters Optimization

Hyper Parameters:

Activation Functions:

• Tanh, ReLU

Units in the dense layer:

• 128 to 256 \rightarrow **160**

Learning Rate:

• 0.01, **0.001**, 0.0001

Algorithm:

HyperBand with 3 iterations

	Precision	Recall	F1-Score	Support
Parasitized	0.9721	0.9348	0.9531	2086
Uninfected	0.9361	0.9727	0.9540	2048
Accuracy			0.9536	4134
Macro Avg	0.9541	0.9537	0.9536	4134
Weighted Avg	0.9543	0.9536	0.9535	4134

VGG16 – Feature Extraction

VGG16's architecture:

Top classifier's best architecture:

	Precision	Recall	F1-Score	Support
Parasitized	0.6633	0.5355	0.5926	2086
Uninfected	0.6045	0.7231	0.6585	2048
Accuracy			0.6284	4134
Macro Avg	0.6339	0.6293	0.6255	4134
Weighted Avg	0.6342	0.6284	0.6252	4134

InceptionV3 – Feature Extraction

InceptionV3's architecture:

Top classifier's best architecture:

	Precision	Recall	F1-Score	Support
Parasitized	0.7687	0.8063	0.7871	2086
Uninfected	0.7924	0.7529	0.7722	2048
Accuracy			0.7799	4134
Macro Avg	0.7806	0.7796	0.7796	4134
Weighted Avg	0.6805	0.7799	0.7797	4134

InceptionV3 – Fine tuning

	Precision	Recall	F1-Score	Support
Parasitized	0.7921	0.7196	0.7541	2086
Uninfected	0.7387	0.8076	0.7716	2048
Accuracy			0.7632	4134
Macro Avg	0.7654	0.7636	0.7629	4134
Weighted Avg	0.7656	0.7632	0.7628	4134

XAI – Class Activation Map visualization

- CAM visualization is a popular technique for interpreting the decisions of CNNs and can help identify which parts of an image the network is attending to for classification.
- In a medical scenario this is really important to detect possible misclassifications, or to better address some treatment directly to the infected parts of our blood cells.

Conclusions:

- **CNN from scratch**'s results are comparable to state-of-the-art approaches.
 - The optimized CNN has competitive performances despite its simple architecture.
- XAI experiments allowed us to learn a possible classification pattern exploitable by medical experts to better assess their diagnoses.
- Pre-trained models' results are not satisfactory:
 - the poor performances may be due to the fact that our dataset is composed by very simple and low-definition images, very different from the training base of these models.
- A further improvement of our study may be to leverage other pre-trained models.

Thanks for your attention!