Problem 1. (Peskin & Schroeder 2.1) Classical electromagnetism (with no sources) follows from the action

$$S = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right), \qquad \text{where } F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}. \tag{1}$$

1(a) Derive Maxwell's equations as the Euler-Lagrange equations of this action, treating the components $A_{\mu}(x)$ as the dynamical variables. Write the equations in standard form by identifying

$$E^{i} = -F^{0i}; \qquad \epsilon^{ijk}B^{k} = -F^{ij}. \tag{2}$$

Solution. We want to extremize the action,

$$S[A_{\mu}] = \int d^4x \, \mathcal{L}(A_{\mu}, \partial_{\mu} A_{\mu}),$$

where \mathcal{L} is the integrand of Eq. (1). Let δA_{μ} denote some arbitrary variation that vanishes at the boundaries of spacetime. The action for $A_{\mu} + \delta A_{\mu}$ is

$$S[A_{\mu} + \delta A_{\mu}] = \int d^4x \, \mathcal{L}(A_{\mu} + \delta A_{\mu}, \partial_{\nu} A_{\mu} + \partial_{\nu} \delta A_{\mu}).$$

Then, to first order in δA_{μ} , the variation of the action is

$$\delta S = S[A_{\mu} + \delta A_{\mu}] - S[A_{\mu}],$$

which we want to vanish for all δA_{μ} . Let $\delta F_{\mu\nu} = \partial_{\mu} \delta A_{\nu} - \partial_{\nu} \delta A_{\mu}$. Then, applying the definition of $F_{\mu\nu}$ given in Eq. (1),

$$\delta S = \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} + \delta F_{\mu\nu}) (F^{\mu\nu} + \delta F^{\mu\nu}) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)
\approx \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} F^{\mu\nu} + F_{\mu\nu} \delta F^{\mu\nu} + \delta F_{\mu\nu} F^{\mu\nu}) + \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)
= \int d^4 x \left(-\frac{1}{4} (F_{\mu\nu} \delta F^{\mu\nu} + \delta F_{\mu\nu} F^{\mu\nu}) \right)
= \int d^4 x \left(-\frac{1}{2} \delta F_{\mu\nu} F^{\mu\nu} \right),$$
(3)

where we have discarded terms of $\mathcal{O}((\delta A^{\mu})^2)$ and swapped covariant and contravariant indices in going to the final equality.

Note that

$$\delta F_{\mu\nu} F^{\mu\nu} = (\partial_{\mu} \delta A_{\nu} - \partial_{\nu} \delta A_{\mu})(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu})$$

$$= \partial_{\mu} \delta A_{\nu} \partial^{\mu} A^{\nu} - \partial_{\mu} \delta A_{\nu} \partial^{\nu} A^{\mu} - \partial_{\nu} \delta A_{\mu} \partial^{\mu} A^{\nu} + \partial_{\nu} \delta A_{\mu} \partial^{\nu} A^{\mu}. \tag{4}$$

Integrating the first term of Eq. (4) by parts, we have

$$\int d^4x \, \frac{\partial \delta A_{\nu}}{\partial x^{\mu}} \frac{\partial A^{\nu}}{\partial x_{\mu}} = \left[\delta A_{\nu} \frac{\partial A^{\nu}}{\partial x_{\mu}} \right]_{-\infty}^{\infty} - \int d^4x \, \delta A_{\nu} \frac{\partial^2 A^{\nu}}{\partial x^{\mu} \partial x_{\mu}} = - \int d^4x \, \delta A_{\nu} \, \partial_{\mu} \partial^{\mu} A^{\nu},$$

because δA^{ν} vanishes at $\pm \infty$. The other terms follow similarly. Then we find

$$\int d^4x \, \delta F_{\mu\nu} \, F^{\mu\nu} = -\int d^4x \, (\delta A_{\nu} \, \partial_{\mu} \partial^{\mu} A^{\nu} - \delta A_{\nu} \, \partial_{\mu} \partial^{\nu} A^{\mu} - \delta A_{\mu} \, \partial_{\nu} \partial^{\mu} A^{\nu} + \delta A_{\mu} \, \partial_{\nu} \partial^{\nu} A^{\mu})$$

$$= -\int d^4x \, (\delta A_{\nu} \, \partial_{\mu} F^{\mu\nu} + \delta A_{\mu} \, \partial_{\nu} F^{\nu\mu}) = -\int d^4x \, (\delta A_{\nu} \, \partial_{\mu} F^{\mu\nu} + \delta A_{\nu} \, \partial_{\mu} F^{\mu\nu})$$

$$= -2 \int d^4x \, \delta A_{\nu} \, \partial_{\mu} F^{\mu\nu},$$

where in going to the second-to-last equality we have simply swapped the indices.

Making this substitution in Eq. (3), we obtain

$$\delta S = \delta A_{\nu} \int d^4 x \, \partial_{\mu} F^{\mu\nu}.$$

In order for the action to be at a local extremum, we need $\delta S = 0$ for any δA_{ν} . This implies that the integrand is 0. Thus, we obtain

$$\partial_{\mu}F^{\mu\nu} = 0, \tag{5}$$

which is the covariant form of the inhomogeneous Maxwell equations in a source-free region [?, p. 557], as we sought to derive. \Box

From Eq. (2) and the knowledge that $F^{\mu\nu}$ is antisymmetric [?, p. 556], we can write

$$F^{\mu\nu} = \begin{bmatrix} 0 & -E^x & -E^y & -E^z \\ E^x & 0 & -B^z & B^y \\ E^y & B^z & 0 & -B^x \\ E^z & -B^y & B^x & 0 \end{bmatrix}.$$
 (6)

The first equation of Eq. (2) is equivalent to $E^i = F^{i0}$. Then the zeroth component of Eq. (5) can be written

$$\partial_{\mu}F^{\mu0} = \frac{\partial E^{x}}{\partial x} + \frac{\partial E^{y}}{\partial y} + \frac{\partial E^{z}}{\partial z} = \mathbf{\nabla \cdot E} = 0,$$

which is the differential form of Gauss's law.

For the remaining components of Eq. (5), we apply the second equation of Eq. (5) to find

$$\partial_{\mu}F^{\mu i} = -\frac{\partial E^{i}}{\partial t} + \epsilon^{ijk}\frac{\partial B^{k}}{\partial x^{j}} = 0.$$

In vector form, this is

$$\mathbf{\nabla} \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{0},$$

the differential form of Ampère's law.

1(b) Construct the energy-momentum tensor for this theory. Note that the usual procedure does not result in a symmetric tensor. To remedy that, we can add to $T^{\mu\nu}$ a term of the form $\partial_{\lambda}K^{\lambda\mu\nu}$, where $K^{\lambda\mu\nu}$ is antisymmetric in its first two indices. Such an object is automatically divergenceless, so

$$\hat{T}^{\mu\nu} = T^{\mu\nu} + \partial_{\lambda} K^{\lambda\mu\nu} \tag{7}$$

is an equally good energy-momentum tensor with the same globally conserved energy and momentum. Show that this construction, with

$$K^{\lambda\mu\nu} = F^{\mu\lambda}A^{\nu},\tag{8}$$

leads to an energy-momentum tensor \hat{T} that is symmetric and yields the standard formulae for the electromagnetic energy and momentum densities:

$$\mathcal{E} = \frac{E^2 + B^2}{2}; \qquad \mathbf{S} = \mathbf{E} \times \mathbf{B}.$$

Solution. We want to evaluate Eq. (2.17) of Peskin & Schroeder,

$$T^{\mu}{}_{\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)}\partial_{\nu}\phi - \mathcal{L}\delta^{\mu}{}_{\nu} \quad \Longrightarrow \quad T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A^{\lambda})}\partial^{\nu}A^{\lambda} - \mathcal{L}g^{\mu\nu}, \tag{9}$$

where we have associated the field ϕ with A^{λ} . In order to evaluate the derivatives, we can use the variational method to calculate $\partial \mathcal{L}/\partial(\partial_{\alpha}A_{\beta})$ by letting $\partial_{\alpha}A_{\beta} \to \partial_{\alpha}A_{\beta} + \delta\partial_{\alpha}A_{\beta}$ [?, p. 81]. Let

$$\delta \mathcal{L} = \mathcal{L}(\partial_{\alpha} A_{\beta}) - \mathcal{L}(\partial_{\alpha} A_{\beta} + \delta \partial_{\alpha} A_{\beta}).$$

Note that

$$\mathcal{L}(\partial_{\alpha}A_{\beta} + \delta\partial_{\alpha}A_{\beta}) = -\frac{1}{4}(F_{\alpha\beta} + \delta F_{\alpha\beta})(F^{\alpha\beta} + \delta F^{\alpha\beta}) \approx -\frac{1}{4}(F_{\alpha\beta}F^{\alpha\beta} + F_{\alpha\beta}\delta F^{\alpha\beta} + \delta F_{\alpha\beta}F^{\alpha\beta}).$$

so

$$\begin{split} \delta \mathcal{L} &= -\frac{1}{4} (F_{\alpha\beta} \, \delta F^{\alpha\beta} + \delta F_{\alpha\beta} \, F^{\alpha\beta}) = -\frac{1}{2} \delta F_{\alpha\beta} \, F^{\alpha\beta} = -\frac{1}{2} (\partial_{\alpha} \, \delta A_{\beta} - \partial_{\beta} \, \delta A_{\alpha}) F^{\alpha\beta} = -\frac{1}{2} (\partial_{\alpha} \, \delta A_{\beta} + \partial_{\alpha} \, \delta A_{\beta}) F^{\alpha\beta} \\ &= -\partial_{\alpha} \, \delta A_{\beta} \, F^{\alpha\beta}, \end{split}$$

where we have used the antisymmetry of $F^{\alpha\beta}$. This gives us

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} A_{\beta})} = -F^{\alpha \beta} \quad \Longrightarrow \quad \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} A^{\beta})} = -F^{\alpha}{}_{\beta},$$

and then we find

$$T^{\mu\nu} = -F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda}. \tag{10}$$

Adding $K^{\lambda\mu\nu}$ as defined in Eq. (8), Eq. (7) becomes

$$\hat{T}^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + \partial_{\lambda} (F^{\mu\lambda} A^{\nu}). \tag{11}$$

Applying the product rule to the third term, we find

$$\partial_{\lambda}(F^{\mu\lambda}A^{\nu}) = A^{\nu}\partial_{\lambda}F^{\mu\lambda} + F^{\mu\lambda}\partial_{\lambda}A^{\nu} = -A^{\nu}\partial_{\lambda}F^{\lambda\mu} + F^{\mu\lambda}\partial_{\lambda}A^{\nu} = F^{\mu\lambda}\partial_{\lambda}A^{\nu},$$

where we have applied the antisymmetry of $F^{\mu\nu}$ and Eq. (5). Making this substitution in Eq. (11),

$$\hat{T}^{\mu\nu} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} + F^{\mu\lambda} \partial_{\lambda} A^{\nu}
= \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} + F^{\mu}{}_{\lambda} \partial^{\lambda} A^{\nu} - F^{\mu}{}_{\lambda} \partial^{\nu} A^{\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} + F^{\mu}{}_{\lambda} F^{\lambda\nu}
= \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu\lambda} F^{\nu}{}_{\lambda}.$$
(12)

To show that $\hat{T}^{\mu\nu}$ is symmetric, note that

$$\hat{T}^{\nu\mu} = \frac{1}{4} g^{\nu\mu} F_{\alpha\beta} F^{\alpha\beta} - F^{\nu\lambda} F^{\mu}{}_{\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu}{}_{\lambda} F^{\nu\lambda} = \frac{1}{4} g^{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} - F^{\mu\lambda} F^{\nu}{}_{\lambda} = \hat{T}^{\mu\nu} F^{\mu\nu} F^{\mu\nu} F^{\mu\nu} F^{\nu\nu} F^{\nu$$

as desired. \Box

For the energy and momentum densities, from Eq. (12) we have

$$\hat{T}^{00} = \frac{1}{4}g^{00}F_{\alpha\beta}F^{\alpha\beta} - F^{0\lambda}F^{0}_{\lambda} = \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta} + F^{0\lambda}F_{\lambda}^{0}, \tag{13}$$

$$\hat{T}^{0i} = \frac{1}{4}g^{0i}F_{\alpha\beta}F^{\alpha\beta} - F^{0\lambda}F^{i}_{\lambda} + F^{0\lambda}F^{i}_{\lambda}. \tag{14}$$

Using Eq. (6),

$$F_{\mu\nu}F^{\mu\nu} = -E^{x2} - E^{y2} - E^{z2} - E^{z2} - E^{z2} + B^{z2} + B^{y2} - E^{y2} + B^{z2} + B^{z2} - E^{z2} + B^{y2} + B^{z2} = 2(\mathbf{B}^2 - \mathbf{E}^2).$$

Note also from Eq. (6) that

$$F_{\lambda}{}^{\nu} = g_{\lambda\mu}F^{\mu\nu} = \begin{bmatrix} 0 & -E^x & -E^y & -E^z \\ -E^x & 0 & -B^z & B^y \\ -E^y & B^z & 0 & -B^x \\ -E^z & -B^y & B^x & 0 \end{bmatrix},$$

so

$$F^{0\lambda}F_{\lambda}^{0} = (-\mathbf{E}) \cdot (-\mathbf{E}) = \mathbf{E}^{2}, \qquad F^{0\lambda}F_{\lambda}^{i} = B_{j}E_{k} - E_{k}B_{j} = (\mathbf{E} \times \mathbf{B})_{i}.$$

Equations (13–14) are then

$$\hat{T}^{00} = \frac{1}{8\pi} (\mathbf{E}^2 + \mathbf{B}^2) = \mathcal{E}, \qquad \qquad \hat{T}^{0i} = \frac{1}{4\pi} (\mathbf{E} \times \mathbf{B})_i = \mathbf{S},$$

as we sought to show.

Problem 2. The complex scalar field (Peskin & Schroeder 2.2) Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The action of this theory is

$$S = \int d^4x \left(\partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi\right). \tag{15}$$

It is easiest to analyze this theory by considering $\phi(x)$ and $\phi^*(x)$, rather than the real and imaginary parts of $\phi(x)$, as the basic dynamical variables.

2(a) Find the conjugate momenta to $\phi(x)$ and $\phi^*(x)$ and the canonical commutation relations. Show that the Hamiltonian is

$$H = \int d^3x \left(\pi^*\pi + \nabla\phi^* \cdot \nabla\phi + m^2\phi^*\phi\right). \tag{16}$$

Compute the Heisenberg equation of motion for $\phi(x)$ and show that it is indeed the Klein-Gordon equation.

Solution. The momentum density conjugate to $\phi(x)$ is defined in Peskin & Schroeder (2.4):

$$\pi(x) \equiv \frac{\partial \mathcal{L}}{\partial \dot{\phi}(x)}$$

Here, \mathcal{L} is the integrand of Eq. (15). Expanding its first term yields

$$\mathcal{L} = \dot{\phi}\dot{\phi}^* - \nabla\phi \cdot \nabla\phi^*, \tag{17}$$

so then

$$\pi(x) = \dot{\phi}^*, \qquad \qquad \pi^*(x) = \dot{\phi}, \tag{18}$$

where $\pi^*(x)$ is the momentum conjugate to $\phi^*(x)$. The canonical commutation relations follow from Peskin & Schroeder (2.20):

$$\begin{aligned} [\phi(\mathbf{x}), \pi(\mathbf{y})] &= [\phi^*(\mathbf{x}), \pi^*(\mathbf{y})] = i \, \delta^3(\mathbf{x} - \mathbf{y}), \\ [\phi(\mathbf{x}), \phi(\mathbf{y})] &= [\phi^*(\mathbf{x}), \phi^*(\mathbf{y})] = 0, \\ [\pi(\mathbf{x}), \pi(\mathbf{y})] &= [\pi^*(\mathbf{x}), \pi^*(\mathbf{y})] = 0, \\ [\phi(\mathbf{x}), \pi^*(\mathbf{y})] &= [\phi(\mathbf{x}), \phi^*(\mathbf{y})] = [\pi(\mathbf{x}), \pi^*(\mathbf{y})] = 0. \end{aligned}$$

The Hamiltonian is given in general for a single field by Peskin & Schroeder (2.5),

$$H = \int d^3x \left(\pi(x) \,\dot{\phi}(x) - \mathcal{L} \right).$$

For the two fields $\phi(x)$ and $\phi^*(x)$, this becomes

$$H = \int d^3x \left(\pi(x) \,\dot{\phi}(x) + \pi^*(x) \,\dot{\phi}^*(x) - \mathcal{L} \right)$$

$$= \int d^3x \left(\pi \dot{\phi} + \pi^* \dot{\phi}^* - \dot{\phi} \dot{\phi}^* + \nabla \phi \cdot \nabla \phi^* + m^2 \phi^* \phi \right)$$

$$= \int d^3x \left(\pi \pi^* + \dot{\phi} \dot{\phi}^* - \dot{\phi} \dot{\phi}^* + \nabla \phi \cdot \nabla \phi^* + m^2 \phi^* \phi \right)$$

$$= \int d^3x \left(\pi^* \pi + \nabla \phi \cdot \nabla \phi^* + m^2 \phi^* \phi \right),$$

where we have used Eqs. (17) and (18) as well as the commutation relations. So we have proven Eq. (16).

The Heisenberg equation of motion is Peskin & Schroeder (2.44),

$$i\frac{\partial \mathcal{O}}{\partial t} = [\mathcal{O}, H],$$

where \mathcal{O} is an arbitrary operator. Then

$$\begin{split} i\frac{\partial\phi(x)}{\partial t} &= [\phi(x), H] \\ &= \left[\phi(\mathbf{x}, t), \int d^3x' \, \pi^*(\mathbf{x}', t) \, \pi(\mathbf{x}', t)\right] + \left[\phi(\mathbf{x}, t), \int d^3x' \, \nabla'\phi(\mathbf{x}', t) \cdot \nabla'\phi^*(\mathbf{x}', t)\right] \\ &+ m^2 \left[\phi(\mathbf{x}, t), \int d^3x' \, \phi^*(\mathbf{x}', t) \, \phi(\mathbf{x}', t)\right] \\ &= \left[\phi(\mathbf{x}, t), \int d^3x' \, \pi^*(\mathbf{x}', t) \, \pi(\mathbf{x}', t)\right] = i \int d^3x' \, \delta^3(\mathbf{x} - \mathbf{x}') \, \pi^*(\mathbf{x}', t) = i \pi^*(x), \\ i\frac{\partial\phi^*(x)}{\partial t} &= \left[\phi^*(x), H\right] \\ &= \left[\phi^*(\mathbf{x}, t), \int d^3x' \, \pi^*(\mathbf{x}', t) \, \pi(\mathbf{x}', t)\right] = i \int d^3x' \, \delta^3(\mathbf{x} - \mathbf{x}') \, \pi(\mathbf{x}', t) = i \pi(x), \end{split}$$

$$\begin{split} i\frac{\partial\pi(\mathbf{x})}{\partial t} &= \left[\pi(\mathbf{x}), H\right] \\ &= \left[\pi(\mathbf{x}, t), \int d^3x' \, \pi^*(\mathbf{x}', t) \, \pi(\mathbf{x}', t)\right] + \left[\pi(\mathbf{x}, t), \int d^3x' \, \nabla'\phi(\mathbf{x}', t) \cdot \nabla'\phi^*(\mathbf{x}', t)\right] \\ &\quad + m^2 \left[\pi(\mathbf{x}, t), \int d^3x' \, \phi^*(\mathbf{x}', t) \, \phi(\mathbf{x}', t)\right] \\ &= -i \int d^3x' \left[\nabla'\delta^3(\mathbf{x} - \mathbf{x}') \cdot \nabla'\phi^*(\mathbf{x}', t) + m^2\delta^3(\mathbf{x} - \mathbf{x}') \, \phi^*(\mathbf{x}', t)\right] \\ &= -i \int d^3x' \left[-\delta^3(\mathbf{x} - \mathbf{x}') \cdot \nabla'^2\phi^*(\mathbf{x}', t) + m^2\delta^3(\mathbf{x} - \mathbf{x}') \, \phi^*(\mathbf{x}', t)\right] = -i(-\nabla^2 + m^2) \, \phi^*(\mathbf{x}), \\ i\frac{\partial\pi^*(\mathbf{x})}{\partial t} &= \left[\pi^*(\mathbf{x}), H\right] \\ &= -i \int d^3x' \left[\nabla'\phi(\mathbf{x}', t) \cdot \nabla'\delta(\mathbf{x} - \mathbf{x}') + m^2\delta^3(\mathbf{x} - \mathbf{x}') \, \phi(\mathbf{x}', t)\right] \\ &= -i \int d^3x' \left[-\delta^3(\mathbf{x} - \mathbf{x}') \cdot \nabla'^2\phi(\mathbf{x}', t) + m^2\delta^3(\mathbf{x} - \mathbf{x}') \, \phi(\mathbf{x}', t)\right] \\ &= -i \int d^3x' \left[-\delta^3(\mathbf{x} - \mathbf{x}') \cdot \nabla'^2\phi(\mathbf{x}', t) + m^2\delta^3(\mathbf{x} - \mathbf{x}') \, \phi(\mathbf{x}', t)\right] \\ &= -i \left[-\nabla^2 + m^2\right] \phi(\mathbf{x}). \end{split}$$

Thus we have obtained

$$\frac{\partial \phi(x)}{\partial t} = \pi^*(x), \qquad \frac{\partial \phi^*(x)}{\partial t} = \pi(x), \qquad \frac{\partial \pi(x)}{\partial t} = (\nabla^2 - m^2) \phi^*(x), \qquad \frac{\partial \pi^*(x)}{\partial t} = (\nabla^2 - m^2) \phi(x).$$

Combining these results yields

$$\frac{\partial^2 \phi}{\partial t^2} = (\nabla^2 - m^2)\phi, \qquad \frac{\partial^2 \phi^*}{\partial t^2} = (\nabla^2 - m^2)\phi^*,$$

which is the Klein-Gordon equation and its complex conjugate, as we sought to show.

2(b) Diagonalize H by introducing creation and annihilation operators. Show that the theory contains two sets of particles of mass m.

Solution. Peskin & Schroeder (2.21) gives the Klein-Gordon equation in the momentum basis,

$$\left(\frac{\partial^2}{\partial t^2} + \mathbf{p}^2 + m^2\right)\phi(\mathbf{p}, t) = 0.$$

This is the same as the harmonic oscillator equation of motion. It has solutions [?]

$$\phi(\mathbf{p}, t) = A(\mathbf{p}) e^{i\omega_{\mathbf{p}}t} + B(\mathbf{p}) e^{-i\omega_{\mathbf{p}}t},$$

where $\omega_{\mathbf{p}} = \sqrt{\mathbf{p}^2 + m^2}$ as in Peskin & Schroeder Eq. (2.22), and $A(\mathbf{p})$ and $B(\mathbf{p})$ are arbitrary functions of \mathbf{p} . The complex conjugate of this solution is

$$\phi^*(\mathbf{p}, t) = B^*(\mathbf{p}) e^{i\omega_{\mathbf{p}}t} + A^*(\mathbf{p}) e^{-i\omega_{\mathbf{p}}t}.$$

The field ϕ in the position basis can be expanded as [?, p. 20].

$$\phi(\mathbf{x},t) = \int \frac{d^3p}{(2\pi)^3} e^{i\mathbf{p}\cdot\mathbf{x}} \phi(\mathbf{p},t).$$

so we can write [?, p. 33]

$$\phi(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(a_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{x}} + a_{\mathbf{p}}^{*\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}} \right), \qquad \phi^*(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(a_{\mathbf{p}}^* e^{i\mathbf{p}\cdot\mathbf{x}} + a_{\mathbf{p}}^{\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}} \right),$$

where $a_{\mathbf{p}}$ and $a_{\mathbf{p}}^*$ are creation and annihilation operators. By analogy to Eq. (2.26) of Peskin & Schroeder, we can also write

$$\pi(\mathbf{x}) = -i \int \frac{d^3p}{(2\pi)^3} \sqrt{\frac{\omega_{\mathbf{p}}}{2}} \left(a_{\mathbf{p}}^* e^{i\mathbf{p}\cdot\mathbf{x}} - a_{\mathbf{p}}^{\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}} \right), \qquad \pi^*(\mathbf{x}) = -i \int \frac{d^3p}{(2\pi)^3} \sqrt{\frac{\omega_{\mathbf{p}}}{2}} \left(a_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{x}} - a_{\mathbf{p}}^{*\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}} \right).$$

Simplifying these expressions as in their Eqs. (2.27) and (2.28), we have

$$\phi(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(a_{\mathbf{p}} + a_{-\mathbf{p}}^{*\dagger} \right) e^{i\mathbf{p}\cdot\mathbf{x}}, \qquad \phi^*(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_{\mathbf{p}}}} \left(a_{\mathbf{p}}^* + a_{-\mathbf{p}}^{\dagger} \right) e^{i\mathbf{p}\cdot\mathbf{x}}, \qquad (19)$$

$$\pi(\mathbf{x}) = -i \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{\omega_{\mathbf{p}}}{2}} \left(a_{\mathbf{p}}^* - a_{-\mathbf{p}}^{\dagger} \right) e^{i\mathbf{p} \cdot \mathbf{x}}, \qquad \pi^*(\mathbf{x}) = -i \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{\omega_{\mathbf{p}}}{2}} \left(a_{\mathbf{p}} - a_{-\mathbf{p}}^{*\dagger} \right) e^{i\mathbf{p} \cdot \mathbf{x}}. \tag{20}$$

Also generalizing their Eq. (2.24),

$$[a_{\mathbf{p}}, a_{\mathbf{p'}}^{\dagger}] = [a_{\mathbf{p}}^*, a_{\mathbf{p'}}^{*\dagger}] = (2\pi)^3 \, \delta^3(\mathbf{p} - \mathbf{p'}),$$
 $[a_{\mathbf{p}}, a_{\mathbf{p'}}^{*\dagger}] = [a_{\mathbf{p}}^*, a_{\mathbf{p'}}^{\dagger}] = 0.$

Feeding Eqs. (19) and (20) into Eq. (16),

$$H = \int d^3x \int \frac{d^3p \, d^3p'}{(2\pi)^6} e^{i(\mathbf{p}+\mathbf{p'})\cdot\mathbf{x}} \left[-\frac{\sqrt{\omega_{\mathbf{p}}\omega_{\mathbf{p'}}}}{2} \left(a_{\mathbf{p}} - a_{-\mathbf{p'}}^{*\dagger} \right) \left(a_{\mathbf{p'}}^* - a_{-\mathbf{p'}}^{\dagger} \right) + \frac{-\mathbf{p} \cdot \mathbf{p'} + m^2}{2\sqrt{\omega_{\mathbf{p}}\omega_{\mathbf{p'}}}} \left(a_{\mathbf{p}} + a_{-\mathbf{p}}^{*\dagger} \right) \left(a_{\mathbf{p'}}^* + a_{-\mathbf{p'}}^{\dagger} \right) \right]$$