TD 1: Mots et langages

Tous les langages considérés sont définis sur l'alphabet $\Sigma = \{a, b\}$.

Opérations entre langages :

Exercice 1 On considère les deux langages : $L = \{\epsilon, a, aa\}$ et $M = \{a, b, ab\}$ définis sur l'alphabet $\Sigma = \{a, b\}$.

Calculer les langages $L^2, L.M, L^*$ et M^* .

Exercice 2 On considère le langage $L = \{a, aa, ba\}$.

Calculer les langages L^0, L^1, L^2, L^3 .

Exercice 3 Dans chacun des cas suivants, caractériser L_1^* et calculer

$$L_1 \cap L_2$$
, $L_1 \cup L_2$, $L_1.L_2$, $L_2.L_1$.

 $\mathbf{1}^{\circ}$) $L_1 = \{ab, bb\}, L_2 = \{a, ab, bb, ba\}.$

 $(2^{\circ})L_1 = \{\epsilon\}, L_2 = \{bb, ba\}.$

 $3^{\circ})L_1 = \emptyset, L_2 = \{bb, ba\}.$

 $\mathbf{4}^{\circ}$) $L_1 = \{ab, bb\}, L_2 = \Sigma^*.$

Comparaison de langages:

Exercice 4 | Soient les langages L_1 , L_2 , L_3 ,

 $\overline{L_1 = \{a^n b(a+b)^n, n \in \mathbb{N}\}},$

 $L_2 = \{(a+b)^n b a^n, \quad n \in \mathbb{N}\},\$

 $L_3 = \{(a+b)^n b(a+b)^n, n \in \mathbb{N}\},\$

Comparer les langages L_1 , L_2 et L_3 , (y a-t-il inclusion? égalité?)

Exercice 5 On considère sur un même alphabet Σ , une lettre a, deux mots u et v et trois langages A, L et M.

1°) Si au = av, a-t-on u = v? justifiez.

 2°) Si aL = aM, a-t-on L = M? justifiez.

 3°)Si AL = AM a-t-on L = M? justifiez.

Exercice 6 Peut-on avoir $L \neq M$ et $L^* = M^*$. Justifiez.

Exercice 7 | Soit L et M sont deux langages construits sur un même alphabet.

Comparer les langages suivants : $(L+M)^*$; $(L^*+M)^*$; $(M^*+L)^*$; $(L^*+M^*)^*$.

Séance 2 : Propriétés des langages :

Exercice 8 On considère des langages L, L_1, L_2 Montrer les propriétés suivantes :

- $\mathbf{1}^{\circ}$) $L_1 \subseteq L_2 \Rightarrow L.L_1 \subseteq L.L_2$.
- 2°)Si $\epsilon \in L$, alors $L^* = L^+$
- 3°) $\epsilon \in L \text{ ssi } L \subseteq L^2$.

Exercice 9

- $\overline{\mathbf{1}^{\circ})}$ Montrer que $L.(L_1 \cap L_2) \subseteq L.L_1 \cap L.L_2$.
- 2°) Montrer à l'aide d'un contre-exemple qu'on n'a pas nécessairement égalité.

Exercice 10

- $\overline{\mathbf{1}^{\circ})}$ Montrer que $(L_1 \cap L_2)^* \subseteq L_1^* \cap L_2^*$.
- 2°) Montrer à l'aide d'un contre-exemple qu'on n'a pas nécessairement égalité.

Expressions régulières:

Exercice 11 Décrire en français le langage défini sur l'alphabet $\Sigma = \{a, b\}$ et représenté par les expressions régulières suivantes :

- 1°)a(a+b)*b.
- $2^{\circ})((\epsilon+b)a^*)^*$.
- $3^{\circ})(aa)^*a$.
- $4^{\circ})(a+b.a)^{*}(b+\epsilon).$

Exercice 12 Représenter par une expression régulière chacun des langages suivants, définis sur l'alphabet $\Sigma = \{a, b\}$:

- 1°)Les mots contenant exactement 2 a.
- 2°)Les mots contenant au moins 2 a.
- 3°)Les mots contenant au plus 2 a.
- 4°)Les mots contenant un nombre pair de a.
- 5°)Les mots ne contenant pas le facteur ab
- 6°) Les mots de longueur paire.