Conclusion

- Al Overview
 - History Al
 - Al & Machine Learning
 - Machine Learning
 - Supervised Learning ⇒ การวิเคราะห์/การพยากรณ์
 - Regression
 - Classification
 - Unsupervised Learning ⇒ การทำความเข้าใจโครงสร้างของข้อมูล
 - Clustering
 - Dimensionality Reduction
 - Association
 - Generative Model (ChatGPT & MidJourney)
 - Reinforcement Learning ⇒ การเรียนรู้แบบลองผิดลองถูก
 - Policy
 - Supervised Learning
 - Data ⇒ Model ⇒ Prediction
 - Supervised Learning Workflow
 - Data ⇒ ready-to-use (numerical & table)
 - Model Creation
 - Model Evaluation

- Data Preparation
 - Data Stating
 - การแนะนำ data แบบ formal
 - Data Requirement
 - Numerical Data
 - Table
 - Table (Structured Data)
 - Data Type
 - Numerical Data
 - Categorical Data
 - Ordinal Data (มีลำดับ)
 - Nominal Data (ไม่มีลำดับ)
 - Ordinal Encoding
 - One Hot Encoding
 - Q1 : ข้อมูลที่เป็น Categorical Data มันสามารถตัวเลขเป็นได้ใหม?
 - A : เป็นไปได้
 - ถ้าเป็นแบบ Ordinal Data มันจะไม่เป็นไร ⇒ สามารถใช้งานได้เลย
 - ถ้าเป็นแบบ Nominal Data ⇒ One Hot Encoding
 - Q2 : เราจะรู้ได้อย่างไรว่าข้อมูลเป็นแบบ Ordinal Data หรือ Nominal Data?
 - A2 : ความเข้าใจในข้อมูล ซึ่งแต่ละคนอาจมองไม่เหมือนกันก็ได้
 - *** วิธีการ Encoding จะทำให้ดีต้องเข้าใจ algorithm ที่ใช้ในการสร้าง model ด้วย
 - Not Table (Unstructured Data)
 - Image
 - Read Image ⇒
 - Resize Image ⇒
 - Flatten ⇒
 - Vstack ⇒ Table
 - Text
- Count Vectorization ⇒ Table
- Sound
 - Read Sound ⇒
 - Transform to Image ⇒
 - Resize Image ⇒
 - Flatten ⇒
 - Vstack ⇒ Table

- Model Evaluation
 - Regression
 - R-squared
 - < 0 ⇒ แย่กว่าพยากรณ์ด้วยค่าเฉลี่ยของ y
 - = 0 ⇒ พยากรณ์ได้ดีเท่าค่าเฉลี่ยของ y
 - > 0 ⇒ ดีกว่าพยากรณ์ด้วยค่าเฉลี่ยของ y
 - = 1 ⇒ perfect
 - Mean Squared Error
 - Mean Absolute Error
 - Mean Absolute Percentage Error
 - Classification
 - Confusion Matrix
 - Accuracy ⇒ จำนวน sample ที่พยากรณ์ถูก / จำนวน sample ทั้งหมด
 - การใช้งานจะไม่ specific
 - ง่าย
 - ใช้งานได้ไม่ดีกับ imbalanced class
 - Precision ⇒ TP / TP + FP ⇒

จำนวน positive ที่พยากรณ์ถูกต้อง / จำนวน positive ทั้งหมดที่พยากรณ์ออกมา

- Recall ⇒ TP / TP + FN ⇒

จำนวน positive ที่พยากรณ์ถูกต้อง / จำนวน actual ที่เป็น positive ทั้งหมด

- Precision VS Recall
 - ผู้พิพากษา
 - หมอตรวจมะเร็ง
- F1 score ⇒ ค่าเฉลี่ยแบบ harmonic mean ของ precision & recall
 - การใช้งานจะไม่ specific
 - _ ยาก
 - ใช้งานได้ดีกับข้อมูลที่เป็น imbalanced class

- 12 Algorithm

- Linear Regression
 - คืออะไร : สมการเชิงเส้นที่ใช้ตัวแปรตันเพื่อพยากรณ์ตัวแปรตาม

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + ... + w_p x_p$$

- แก้ปัญหา Regression
- การสร้าง model ⇒ minimize SSE โดยการใช้ least squared method
- ข้อดี
 - ความเรียบง่าย
 - ไม่ค่อย overfit
- ข้อเสีย
 - ใช้ได้ดีกับแค่ข้อมูลที่มีพฤติกรรมแบบเชิงเส้น
 - การเข้าใจ algorithm นี้ให้ลึกเป็นเรื่องยากมาก (โดยเฉพาะในส่วนของ assumption)
- การต่อยอด
 - Ridge Regression
 - Lasso Regression
 - Elastic Net
- Logistic Regression
 - คืออะไร : การต่อยอดสมการเชิงเส้นเพื่อแบ่ง class ของข้อมูล

$$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + ... + w_p x_p)$$

- *** 2-class vs multi-class
- แก้ปัณหา Classification
- การสร้าง model ⇒ minimize Cross Entropy โดยการใช้ gradient descent
- ข้อดี
 - ความเรียบง่าย
 - ไม่ค่อย overfit
- ข้อเสีย
 - ใช้ได้ดีกับแค่ข้อมูลที่มีพฤติกรรมแบบเชิงเส้น
 - การเข้าใจ algorithm นี้ให้ลึกเป็นเรื่องยากมาก (โดยเฉพาะในส่วนของ assumption)
- การต่อยอด
 - L2 Regularization / L2 penalty
 - L1 Regularization / L1 penalty
 - Elastic Net
 - Dealing Imbalanced Class
- Neural Network (1 hidden layer)
 - คืออะไร : linear function ⇒ nonlinear function ⇒ หลาย ๆ nf มาประกอบร่าง กัน ⇒ เครื่องมือสำหรับ approximate nonlinear function ที่มีความซับซ้อน
 - แก้ปัณหา Regression & Classification
 - การสร้าง model
 - Regression ⇒ mimimize MSE โดยการใช้ gradient descent

- Classification ⇒ minimize Cross Entropy โดยการใช้ gradient descent
- ข้อดี
 - ิ เป็น algorithm ที่ทรงพลังมาก (approximate ได้ทุก function ในโลกนี้)
- ข้อเสีย
 - Overfit
 - High computational cost
- Deep Learning (>1 hidden layer)
 - คืออะไร : Neural Network ที่มีการเพิ่ม hidden layer เข้ามา ⇒ การ reuse สิ่งที่ hidden layer ในชั้นก่อนหน้าสร้าง ⇒ ในความซับซ้อนที่เท่ากัน DL จะลด computational cost ลง
 - แก้ปัญหา Regression & Classification
 - การสร้าง model
 - Regression ⇒ mimimize MSE โดยการใช้ gradient descent
 - Classification ⇒ minimize Cross Entropy โดยการใช้ gradient descent
 - ข้อดี
 - ์ เป็น algorithm ที่ทรงพลังมาก (approximate ได้ทุก function ในโลกนี้)
 - ข้อเสีย
 - Overfit
 - High computational cost
 - ข้อพึงระวัง
 - i) ความหลากหลายของ plane ใน hidden layer ชั้นแรกต้องมากเพียงพอ
 - ii) ความซับซ้อนต้องมากเพียงพอ
 - iii) จะใช้ i กับ ii เท่าที่จำเป็น ⇒ เพื่อป้องกัน overfit

Classification Tree

- คืออะไร : algorithm สำหรับแก้ปัญหา classification โดยที่ตัว model จะอยู่ในรูป ของกฎแกณฑ์
- แก้ปัญหา Classification (nature : decision boundary จะขนานกับแกนเสมอ)
- การสร้าง model ⇒ การตั้งคำถามที่ทำให้ Information Gain มีค่าสูงสุด (ค่อย ๆ ตั้งไปทีละคำถาม ทีละชั้น ทีละจด)
- สมบัติ : มีความเป็น universal approximator เหมือนกับ NN และ DL
- ข้อดี
 - Model ที่ออกมาเข้าใจได้ง่าย
- . ข้อเสีย
 - มันเสี่ยง overfit

- Regression Tree

- คืออะไร : algorithm สำหรับแก้ปัญหา regression โดยที่ตัว model จะอยู่ในรูป ของกฎแกณฑ์
- แก้ปัญหา Regression (nature : step function)

- การสร้าง model ⇒ การตั้งคำถามที่ทำให้ SSE มีค่าต่ำที่สุด (ค่อย ๆ ตั้งไปทีละคำ ถาม ทีละชั้น ทีละจุด)
- สมบัติ : มีความเป็น universal approximator เหมือนกับ NN และ DL
- ข้อดี
 - Model ที่ออกมาเข้าใจได้ง่าย
- ข้อเสีย
 - มันเสี่ยง overfit

k Nearest Neighbor

- คืออะไร : algorithm สำหรับแก้ปัญหา classification โดยพิจารณาจากเพื่อนบ้าน ที่ใกล้ที่สุด k ตัว
- แก้ปัญหา : Classification & Regression
- การสร้าง model ⇒ วัดระยะห่าง & เลือก k ตัวมา majority
- *** ในปัญหา Regression ⇒ พิจารณาเพื่อนบ้านที่ใกล้ที่สุด k ตัว (หาค่าเฉลี่ย)
- ข้อดี
 - ง่าย
- ข้อเสีย
 - Curse of dimensionality

Naive Bayes

- คืออะไร : algorithm สำหรับแก้ปัญหา classification โดยตั้งต้นคือการพิจารณา ความน่าจะเป็นของการเป็น class นั้น ๆ จากค่า feature ⇒ practical ⇒ conditional probability ⇒ naive bayes
- แก้ปัญหา : Classification
- การสร้าง model ⇒ คำนวณ prob ตามสูตรของ naive bayes (เย่ ! เรารู้ที่มาสูตร ด้วยนะ)
- ข้อดี
- ง่าย (ดูได้จากตอนที่เราทำตัวอย่างการคำนวณ)
- ข้อเสีย
 - Assumption แรงมาก (ไม่สามารถรักษาได้ในชีวิตจริง)
- ตรรกศาสตร์ : ถ้าตรงตาม assumption ⇒ performance ของ model จะดี
- ตรรกศาสตร์ : ถ้าไม่ตรงตาม assumption ⇒ จะการันดีไม่ได้ว่า performance ของ model จะดีรึเปล่า

- Support Vector Classification

- คืออะไร : สร้าง hyperplane ที่ทำให้ margin มีขนาดกว้างมากที่สุด
- แก้ปัญหา : Classification
- การสร้าง model
 - Objective : maximize ขนาดของ vector w ยกกำลัง 2
 - Constraint : ข้อมูลจะต้องแบ่งได้อย่างถูกต้องทุก sample
- ข้อดี
 - ใช้งานได้กับทั้งข้อมูลที่ซับซ้อน & ไม่ซับซ้อน
- ข้อเสีย
 - (เครื่องมืออื่น ๆ มา join/plug ด้วยยาก)
 - เป็น algorithm ที่ซับซ้อน และยากต่อการทำความเข้าใจ

- การต่อยอด
 - พื้นฐาน
 - One-to-rest
 - Improve optimization
 - Improve generalization
 - Improve performance + extend scope
 - *** Lagrange Multipliers + KKT

- Support Vector Regression

- คืออะไร : สร้าง hyperplane ที่ทำให้ margin กว้างมากที่สุดภายใต้ constraint ที่ กำหนด (บางครั้งอาจหาคำตอบ)
- การสร้าง model
 - Objective : maximize ขนาดของ vector w ยกกำลัง 2
 - Constraint : ห้ามความผิดพลาดในการพยากรณ์ของ model เกินเท่าไหร่
- ข้อดี
 - ใช้งานได้กับทั้งข้อมูลที่ซับซ้อน & ไม่ซับซ้อน
- ข้อเสีย
 - (เครื่องมืออื่น ๆ มา join/plug ด้วยยาก)
 - เป็น algorithm ที่ซับซ้อน และยากต่อการทำความเข้าใจ

- Gaussian Process

- คืออะไร : การพิจารณาความสัมพันธ์ของข้อมูลทุกคู่ใน training set เพื่อที่จะ map กับค่า y
- แก้ปัญหา : Regression
- การสร้าง model ⇒ maximum likelihood
- ข้อดี
 - เป็น algorithm เพียงตัวเดียวที่ให้ค่าความมั่นใจในการพยากรณ์ออกมา (sd) ⇒ ปรากฎใน ensemble method ด้วย
- ข้อเสีย
 - Overfit ⇒ คนใช้ algorithm นี้ยาก

- Linear Discriminant Analysis

- คืออะไร : การสร้างมิติใหม่ ที่ทำให้ข้อมูลใน class เดียวกันจะกระจุกตัวกันมากสุด ในขณะข้อมูลคนละ class จะมีระยะห่างกัน (จากจุดศูนย์กลาง) มากที่สุด
- แก้ปัญหา : Classification
- ข้อดี
 - ทำได้ทั้ง dimensionality reduction & classification
 - LDA จะไม่ถกแทนที่ในกรณีที่ เราต้องการ model ตามคำอธิบายข้อมล
- ข้อเสีย
 - คณิตศาสตร์ซับซ้อน และยากต่อการทำความเข้าใจ (theory)
 - ถ้าอยากได้แค่สมบัติการเป็น classification เราใช้ logistic regression แทนได้
 - ถ้าอยากได้สมบัติของ dimensionality reduction เราใช้ PCA
 - แต่ถ้าอยากได้สมบัติทั้ง 2 พร้อมกัน

- PCA + algorithm อื่น ๆ ดีกว่า

Ensemble Method

- 1. Boosting
- 2. Bagging
- 3. Stacking