

(11) Publication number:

07306998 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number: 06100424

(51) Intl. Cl.: G08G 1/16 B60K 41/12 G01C 21/00 G08G 1/09 G08G 1/0969

(22) Application date: 16.05.94

(30) Priority:

(43) Date of application

21.11.95

publication:

(84) Designated contracting states:

(71) Applicant: HITACHI LTD

(72) Inventor: KURAGAKI SATOSHI MINOWA TOSHIMICHI ISHII JUNICHI

(74) Representative:

(54) METHOD AND SYSTEM FOR CONTROLLING SAFE TRAVELING OF VEHICLE

(57) Abstract:

PURPOSE: To control the safety vehicle speed according to a driver's skill before the vehicle reaches a point if it is a dangerous one in case the traveling is continued at the present speed along an estimated traveling route.

CONSTITUTION: The device is provided with a means (map information) storing the road map information, self car position detecting means 102 estimating the position of one's own vehicle on the map information, a driver's skill measurement means 115 for measuring and discriminating the driving skill of a driver, means switching the control contents switching the control contents by the skill of the driver, sensor groups being the input, means for switching the control contents switching the control contents based on the skill of the driver, and control means 111 which controls the engine torque. The safe traveling control according to the driving skill is performed from the engine of the vehicle is started to the step. Thus, the traveling course is estimated and if there is a dangerous point in case the traveling is continued at the present speed, it is switched to the safe speed before it reaches the point corresponding to the skill of the driver. Thus, the accident such as turning off the road at the curve and the collision with the surrounding buildings can be

prevented in advance.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-306998

(43)公開日 平成7年(1995)11月21日

削配号		庁内整理番号	FΙ			;	技術表示	箇所
	С							
	Z							
	V							
			家在簡文	未請求	請求項の数7	OL	(全 17	頁)
(21)出願番号 特願平6-100424				0000051	108			
			V (6)	株式会社	吐日立製作所			
平成6年(1994)5月16日				東京都=	千代田区神田駿 孙	可台四	「目6番	地
			(72)発明者	倉垣 智	gi 2			
				茨城県日	日立市大みか町台	比丁目:	1番1号	株
				式会社	日立製作所日立を	究所	A	
			(72)発明者	箕輪 和	利通			
				茨城県日	3立市大みか町+	比丁目 :	Ⅰ番1号	祩
				式会社日	3立製作所日立	开究所	a	
			(72)発明者	石井	罗市			
				茨城県E	3立市大みか町も	比丁目 1	田1号	株
				式会社日	3立製作所日立	究所内	a	
			(74)代理人	弁理士	小川 勝男			

(54)【発明の名称】 車両の安全走行制御システム及び車両の安全走行制御方法

(57)【要約】

【目的】走行経路を推定し、現在の速度で走行を続けた場合に危険な地点がある場合に、その地点に到達する以前に運転者の技量に応じて安全な速度に車両速度を制御する。

【構成】道路地図情報を記憶する手段(地図情報)と、地図情報での自車位置を推定する自車位置検知手段と、運転者の運転技量を計測・判定するためのドライバ技量計測手段とその入力となるセンサ群と、運転者の技量により制御内容を切り換える制御内容切り換え手段と、エンジントルクを制御する制御手段を備え、自動車のエンジン始動時から停止までの間に運転技量に応じた安全走行制御を施す。

【効果】走行経路を推定し、現在の速度で走行を続けた場合に危険な地点がある場合に、運転者の技量に応じた方法で、その地点に到達する以前に安全な速度にすることで、カーブが曲がり切れず道路から飛び出し、周りの構造物などと衝突するといった事故を未然に防ぐことが可能となる。

【特許請求の範囲】

【請求項1】道路地図情報を記憶した地図情報と、地図 上における自車位置を検出する自車位置検出手段と、今 後車両が走行する経路を推定する走行経路推定手段と、 車両の速度を検出する車速検出手段と、運転者の技量を 評価する手段と、運転者の技量に合わせて前記推定経路 内での安全な車速を設定する最適車速演算手段と、設定 した車速と実車両速度を比較する比較手段と、該比較結 果に基づき計画車速を達成する駆動トルクを演算する手 段と、その演算結果に基づき駆動トルクを制御する手段 10 とを有することを特徴とする車両の安全走行制御装置。 【請求項2】道路地図情報を記憶したディジタル地図 と、地図上における自車位置を検出するナビゲーション 装置と、車両の速度を検出する車輪速センサと、今後車 両が走行する経路を推定する走行経路推定手段と. 少な くとも操舵角センサと加速度センサの出力信号に基づき 運転者の運転技量を判定する運転技量判定手段と, 運転 者の技量に合わせて前記推定経路内での安全な車速を計 画する最適車速演算手段と、計画した車速と実車両速度 を比較する比較手段と、との比較結果に基づき計画車速 を達成するエンジントルクを演算する手段と、無段変速 機と、前記演算されたエンジントルクに基づき前記無段 変速機の変速比を制御する手段とを有することを特徴と する車両の安全走行制御装置。

1

【請求項3】道路地図情報を記憶したディジタル地図 と、地図上における自車位置を検出するナビゲーション 装置と、車両の速度を検出する車輪速センサと、今後車 両が走行する経路を推定する走行経路推定手段と、少な くとも操舵角センサと加速度センサの出力信号に基づき 運転者の運転技量を判定する運転技量判定手段と、運転 30 者の技量に合わせて前記推定経路内での安全な車速を計 画する最適車速演算手段と、計画した車速と車両速度を 比較する比較手段と、この比較結果に基づき計画車速を **達成するエンジントルクを演算する手段と,無段変速機** と、前記演算されたエンジントルクに基づき前記無段変 速機の変速比を制御する手段と、変速比の制御にあた り、減速が必要な場合、その減速度合を所定の変化量に 制限する減速度制御手段とを有することを特徴とする車 両の安全走行制御装置。

【請求項4】道路地図情報を記憶したディジタル地図 と、地図上における自車位置を検出するナビゲーション 装置と、車両の速度を検出する車輪速センサと、今後車 両が走行する経路を推定する走行経路推定手段と、少な くとも操舵角センサと加速度センサの出力信号に基づき 運転者の運転技量を判定する運転技量判定手段と、運転 者の技量に合わせて前記推定経路内での安全な車速を計 画する最適車速演算手段と、計画した車速と実車両速度 を比較する比較手段と、この比較結果に基づき計画車速 を達成するエンジントルクを演算する手段と、電子スロ ットルと、前記演算されたエンジントルクを実現するス 50 情報から道路の形状(例えばカーブ路)を取り出し、その

ロットル開度になるよう電子スロットルを制御する手段 とを有する車両の安全走行制御装置。

【請求項5】道路地図情報を記憶したディジタル地図 と、地図上における自車位置を検出するナビゲーション 装置と、車両の速度を検出する車輪速センサと、今後車 両が走行する経路を推定する走行経路推定手段と、操舵 角センサと加速度センサの出力信号に基づき運転者の運 転技量を判定する運転技量判定手段と、運転者の技量に 合わせて前記推定経路内での安全な車速を計画する最適 車速演算手段と、計画した車速と実車両速度を比較する 比較手段と、この比較結果に基づき最適車速を達成する 車両加速度を演算する手段と、無段変速機と、前記演算 された車両加速度に基づいて前記無段変速機の変速比を 制御する手段とを有することを特徴とする車両の安全走 行制御装置。

【請求項6】道路地図情報を記憶したディジタル地図 と、地図上における自車位置を検出する自車位置検出装 置と、車両の速度を検出する車輪速センサと、点火時期 を制御する手段と、今後車両が走行する経路を推定する 走行経路推定手段と、推定された経路から安全な車速を 計画する予想車速演算手段と、計画した車速と車両速度 を比較する比較手段と、との比較結果に基づき前記計画 車速を達成する車両加速度を演算する手段と、無段変速 機と、前記演算された車両加速度に基づき無段変速機の 変速比を制御する手段と、運転者の技量を判定する手段 と、運転者の技量と推定経路情報とから安全車速を演算 する手段と, 該演算結果に基づいて前記点火時期を変化 させて車速を安全な速度に変化させることを特徴とする 車両の安全走行制御装置。

【 請求項7 】 車両が将来とるであろう走行経路を算出 し、ドライバ技量に応じてこの推定経路上の将来通過す る地点での各安全車両速度を演算し、メモリに記憶し、 現在の位置における速度と次の通過地点での計画車速と の差を算出し、加減速する必要があればエンジントルク 制御手段により安全車速に一致するように目標エンジン トルクを設定し、制御すると共に、この操作を安全車速 と実車速が一致するまで行うことを特徴とする車両の安 全走行制御方法。

【発明の詳細な説明】

[0001] 40

> 【産業上の利用分野】本発明は、自動車の走行制御、特 に安全走行制御の制御装置及び制御方式に関する。車載 しているディジタル地図、及び外部インフラストクラク チャからの安全走行情報と、車載センサによるドライバ 技量判定値とから演算される計画車速を基準として、ド ライバの技量に適した速度で車両を運転できる様に支援 する車両の安全走行制御装置に関する。

[0002]

【従来の技術】例えば、ナビゲーション装置の持つ地図

(2)

カーブ路の道路特性に応じた車両進入速度情報を読み出 し又は加工して入手し、運転者に速度低下の告知又は車 速低減手段の作動をもってカーブ路に進入する前に車速 を低減し安全な走行を実現するシステムが従来から知ら れている (例えば特開平4-236699 号公報参照)。

[0003]

【発明が解決しようとする課題】ところで、前述のよう に車速をコントロールするシステムは、道路形態に対応 して安全車速を演算し、その車速を実現するためにスロ ットルやブレーキを操作する。 危険な状況を回避する手 10 に目標エンジントルクを設定し、制御する。 この操作を 段は、前述のように車速を遅くして対応するケートと、 高度なステアリング操作(例えば車両の旋回方向と逆方 向にステアリングを操舵する:カウンターステア)や加 速を行い回避するケースが考えられる。一律に速度を低 下させ安全な走行を保障できるケースばかりではなく、 必要に応じて加速や急激なステアリング操作をもって危 険回避するケース (運転者の意図) に対応するシステム である必要がある。このような危険回避の操作を行う場 合には運転者の運転技量に応じて加減速操作の要否や程 度、ステアリングの要否や程度を設定する必要がある。 本発明の目的は、安全走行実現の為に、経路情報だけで なく運転者の運転技量に応じた運転操作を可能にする点 にある。

[0004]

【課題を解決するための手段】上記目的は、地図情報と 運転者の技量判定結果とから、安全走行の為の走行制御 信号を求めることによって実現される。より具体的には 例えば、道路地図情報を記憶する手段(地図情報)と、 地図情報での自車位置を推定する自車位置検知手段と. 運転者の運転技量を計測・判定するためのドライバ技量 30 計測手段とその入力となるセンサ群、運転者の技量によ り制御内容を切り換える制御内容切り換え手段と、将来 安全に走行できる車速を算出する最適車速計画手段と、 実車速を測定する車速検出手段と、最適車速を達成する ためのエンジントルクを算出する目標エンジントルク演 算手段と、エンジントルクを制御する制御手段を備え、 自動車のエンジン始動時から停止までの間に、運転技量 に応じて安全に走行するための制御内容し、エンジント ルクを制御し、安全に走行できる車速で常に走行すると とにより問題点を解決する。

【0005】ととで、地図情報としては、CDに記憶さ れた情報、路上のインフラからの情報、中央局からの電 波によって送られる情報、衛星通信による情報、車と車 との間の通信による情報、運転者自らが入力した情報す べてを含みまた、単に限定された地図情報をさすもので はなく経路決定の為に用いられるあらゆる情報を含む。 【0006】更に、走行制御信号とは、単にブレーキ信 号、オート・トランスミッションの減速比信号に限ら ず、ステアリング信号、燃料噴射信号、点火時期信号、

要なあらゆる信号をさす。

【0007】本発明を要約すると「走行経路推定手段に より将来とるであろう走行経路を算出し、ドライバ技量 計測手段の判定結果により、最適車速演算手段で将来辿 るであろう推定経路上の将来通過する地点での各々の技 **量に応じた車両速度を演算し、メモリに記憶しておく。** 現在の位置における速度と次の通過地点での計画車速と の差を車速比較手段で算出し、加減速する必要があれば エンジントルク制御手段により最適車速に一致するよう 最適車速と実車速が一致するまで行う。」ととである。 [0008]

【作用】このように構成した本発明によれば、単に地図 情報からだけでなく、運転者の技量に応じた安全車速に よって車両を走行制御できるので、安全走行が可能にな る.

[0009]

【実施例】図1に本発明の第1の実施例のブロック図を 示す。まず初めに安全車速を得るためには、運転者が今 後通るであろう道のりを、推定する必要がある。地図情 報101の情報と、自車位置検知手段102からの自車 位置情報を用い、走行経路推定手段104において、運 転者が将来進む経路を推定し、その経路における安全に 通過する為に必要な道路の形状 (運転幅, 勾配, 曲率半 径)を演算し、メモリに記憶しておく。

【0010】一方、運転者の技量を判断するために、ド ライバ技量計測手段115においては、ステアリング角 度を検知するために操舵角検出手段112と車両の左右 方向の加速度を計測する加速度検出手段113と、タイ ヤと路面との滑りを検出するスリップ率検出手段114 を入力として、ドライバの技量を初級、中級、上級の3 段階に評価する。

【0011】制御内容切替手段107においては、ドラ イバの技量に応じて最適車速の演算手順を切替えを行 う。ドライバ技量は3段階に評価されるので、それぞれ の段階でとに、上級者向最適車速演算手段108, 中級 者向最適車速演算手段109. 初級者向最適車速演算手 段110の中の一つの処理を行う。それぞれの手段にお いて車速検出手段103と走行経路推定手段104の情 40 報から、現在の速度で推定経路を走行した場合に危険な 地点の有無を検索し、危険な地点が存在する場合には、 その地点を安全に走行できる速度を算出し、さらにその 速度を達成するための各地点の目標車速を設定した車速 計画を作成し、メモリに記憶する。その結果は車速比較 手段106において制御が必要か否か判定される。制御 が必要である場合には目標駆動軸トルク演算手段105 において目標車速を目標駆動軸トルクに変換するための 演算を行う。エンジントルク制御手段111によりエン ジントルクを制御し、目標の車速を得る。

スロットル開度信号等、車両の走行制御、安全走行に必 50 【0012】図2にシステム構成の例を示す。ロケータ

装置201は自車の地図上の位置をGPS202、角速 度センサ203、地磁気センサ204,車輪速センサ2 05,FM多重放送受信器206,ビーコン受信器20 7、及び地図208からの情報により決定する。安全走 行コントローラ209は1/0インターフェイス21 O, CPU211, メモリ212で構成される。ロケー タ装置210からの位置情報と、操舵角センサ223の ステアリング情報と、加速度センサ224からの車両運 動情報と、クランク角センサ222からの点火時期情報 に演算を施し、安全に走行するための目標車速や目標エ 10 ンジントルクを算出する。安全走行コントローラ209 での処理結果を基にスピーカ214、ディスプレイ21 5を駆動し、ドライバに警告を促す。また、変速機コン トローラ216, 点火時期コントローラ217, スロッ トルコントローラ218, 燃料噴射コントローラ22 4. バルブタイミングコントローラ223に安全走行コ ントローラ209の処理結果を入力し、その処理結果を 基にそれぞれの制御を行う。

【0013】図3にディジタル地図情報の例を示す。デ ィジタル地図は道路地図をメッシュ状に分割し、分割し たメッシュ単位でノードとリンク、及びそれぞれの属性 (例えばノードに接続しているリンク、 緯度、 経度や、 リンクの道路番号,幅員など)の組み合わせで道路情報を 記憶している。走行経路推定手段104に於いて、ディ ジタル地図の情報を用いて、車両が将来走行する経路を 推定する。経路推定アルゴリズムは図4のとおり行われ る。この経路推定アルゴリズムは、車両がノードを通過 した時点で処理が開始される。ステップ301において 自車位置検知手段102から、今現在、車両が通過した ノード番号N1を取り込む。次にステップ302におい て、メモリから最後に通過したノード番号NO(通過し たノードで最も新しいノード)を取り込む。ステップ3 03ではノードN1が持つ属性情報から接続する複数個 のリンクを検索し、そのリンクの持つ属性情報をリスト アップする。ステップ304ではリストアップしたリン クの持つ属性より接続先のノード番号を取り出す。そし て、接続先のノードがNOであるリンクは、走行してき たリンクと見なし、リストの中から取り除く。こうして 得られた複数個のリンクのリストは将来の経路候補であ る。ステップ305ではリストアップされたリンクの数 40 により処理が異なるため分岐する。 リンク数が] つしか ない場合には、車両が今後とる経路は自動的に決定され るので、推定処理を行う必要がない。一方、リンク数が 複数個ある場合には、その中から、将来走行する最も可 能性の高いリンクを推定する必要があり、それはステッ プ306の処理で行われる。ステップ306で推定を行 うのに必要な情報は、リンクの持つ道路に関する属性 (道路種別,路線番号、幅員) に含まれている。推定方 法の第1例として道路の重要度に着目する。 道路種別を 第1キー属性とし、優先順位は次の通り定義する。

(0014)高速自動車国道>自動車専用道>一般国道 >主要地方道>一般都道府県道>一般市町村道>その他 Cとで優先順位は交通量の多い道路の順につけたもので あり、一般的な移動順序である支線から幹線、そして支 線を通り目的地に達する順路を考慮したものである。と の推定方法では、複数個のリンクの中で、個々のもつ道 路種別の属性が数1の最も左側に位置するリンクを優先 して、今後取るであろう経路と推定する。第2キー属性 として路線番号を用い、番号の若いものを優先する。第 3キー属性として前リンクと交差する角度なを用い、 & の小さいものを優先する。これは、交差点においてなる べく直進するものとしている。第4キー属性として道路 幅員を用い、幅の広いものを優先する。 との第1キー属 性の優先度を最も高くし、第4キー属性の優先度を最も 低くして、取捨選択を行い経路推定を行う。

6

【0015】推定方法の第2例として、道路の実際の大 きさに着目する。第1キー属性として前リンクと交差す る角度な、第2キー属性として道路幅員、第3キー属性 として道路種別、第4キー属性として路線番号を用い る。そして取捨選択を行い、経路推定を行う。

【0016】これらの経路推定アルゴリズムを用いて、 ノードに接続する複数個のリンクの中から経路として用 いる可能性の高いlつのリンクLmを選び出す。そして ステップ307に於いて、ノードN, とリンクLmをメ モリに格納する。さらにステップ308において、更に 先の経路推定を行うために現在位置している通りであろ うノード番号に替えて、リンクLmの接続先のノード番 号をN。として書き換える。そしてステップ303に戻 りステップ309までの処理を任意数組、例えば128 組先まで繰り返すことで、現在位置からノード数128 個先まで車両が通るであろう経路を推定し、その結果は メモリに記憶する。

【0017】図5は任意のノードN、での道路の曲率半 径を求める為に用いる情報の図解である。図5に記載さ れている情報、すなわちノードN。の座標と、リンクL ; - , およびL; のそれぞれのリンク長h,-1, h, 、そしてリンク先のノードN,.., N,.., の座標か ら、ノードN..., N., N... を結ぶ曲線道路の曲率 半径 r,を算出する。

【0018】図6は安全車速計画手段102において、 図4 に記載されている情報から道路の曲率半径を求める アルゴリズムである。ステップ401ではカウンタの初 期化を行う。ステップ402においては前述の経路推定 アルゴリズムでメモリに格納したノード、リンク情報の 中から、リンクLi-1 、Liの属性情報であるノードN , の座標、それぞれのリンクの長さ h, , , h, を読み

【0019】ステップ403ではリンクし,,,の地図座 標上の傾き a... を求める。算出式は数1の通りであ

[0020]

 $\times_{i-1} - \times_i$

…(数1)

【0021】同様にしてリンクし、の地図座標上の傾き X (0022)

a, を求める。算出式は数2の通りである。

【数2】

$$a_{i} = \frac{x_{i} - x_{i+1}}{y_{i} - y_{i+1}}$$

…(数2)

【0023】さらに、ステップ405においてリンクし **★** [0024] 、とし、、がノードN、で交差する角度 θ 、の大きさを

 $\theta_1 = A \operatorname{rctan}(a_1) - A \operatorname{rctan}(a_{1-1})$

算出する。算出式は数3の通りである。

…(数3)

ステップ406においては、ノードN,-, ~N, ~N

☆ (0025)

.., の3点間の道路の曲率半径の近似値 r. を算出す

【数4】

る。算出式は数4の通りである。

★10

$$r_{i} = \frac{h_{i-1} + h_{i}}{\theta_{i}}$$

…(数4)

【0026】 ここで得られた r, をノードN, の新たな 属性情報としてメモリに追加記憶させる。とれら一連の す。との処理を施すととにより、経路として用いるであ ろう道路の曲率半径をそれぞれのノードの属性として持 つととができる。

【0027】次に、運転者の技量判定を行う実施例につ いて述べる。本実施例では運転技量を判定する為に、運 転者のステアリング操作に着目する。図7はドライバ技 量検出手段のフローチャートである。 ステップ701に おいて経路形状(長さ、曲率半径、幅員等)の情報をメ モリから読み出す。ステップ702においてタイヤと路◆

$$\Delta \Phi = \phi_{aa} - \phi$$

との操舵角偏差△Φが小さい場合には適切な運転行動を とっているものとし、△Φが大きい場合には外乱が大き いか不適切な運転行動を行っている。

【0029】一方、後半では操舵遅れを検出する。操舵 遅れは突発現象に対する運転者の反応時間 Δ t を計測 *

$$\Delta \alpha(t) = \alpha(t - \tau) - \alpha(t)$$

ととで τ は横加速度 α を取り込む周期で、横ジャーク Δ α は数6式は前回の横加速度の値 α (t- τ)かと現在の 横加速度αとの差分である。ステップ708において は、あらかじめ設定した関値ΔαΤと比較し、関値を越 40 舵角の変化率を数7式で算出する。 えた場合には操舵遅れの検知を開始する。越えない場合 は処理を終了する。検知を開始した場合にはステップ7※

$$\Delta \phi(t) = \phi(t - \tau) - \phi(t)$$

ステップ12においては、数7式で算出された△φが関 値△φTを越えた場合には次のステップ713へ、越え ない場合にはステップ710の処理へ戻る。ステップ7 13ではタイマの値を反応時間△ t として読み込む。そ してステップ714では操舵偏差の平均値ΔΦ*を、ス テップ7 1 5 では反応時間の平均値△ t * を算出する。

◆面のスリップ率μを、ステップ703では操舵角φを、 ステップ704 においては横方向の加速度αをそれぞれ 演算を経路推定アルゴリズムで得られたノード全てに施 20 のセンサから読み込む。ステップ705においては最適 操舵角φ。。(t)を先に読み込んだ経路形状とタイヤのス リップ率μから算出する。ステップ706においては、 最適操舵角と実操舵角との差である操舵角偏差△Φを算 出する。運転者は周りの環境に応じてステアリングを回 し、その操作量はステアリング角度センサで検出され、 実操舵角々として偏差算出手段に入力される。ステップ 706においては次の数5式の演算を行う。

[0028]

【数5】

… (数5)

* し、その△ t を運転技量の指標に使うものである。ステ ップ707においては横加速度αから横ジャークΔα (t)を数6式で算出する。

[0030]

【数6】

…(数6)

※09において計測用のタイマを起動する。ステップ71 0ではステップ709で起動したタイマがオーバーフロ ーした場合には処理が終了する。ステップ711では操

[0031]

【数7】

· … (数7)

舵角Φ。。と実操舵角Φとの偏差の平均値△Φ*と、横加 速度変化分 (横ジャーク) Δαと、操舵角変化分Δφと の時間差の平均値△t * を入力とし、出力に上級又は中 級もしくは初心の3段階に運転者を評価する。図8に時 間 t に対する横加速度 α , 横ジャーク Δ α , 操舵角 ϕ , 操舵角変化分△φの一例を示す。この例は、車両がカー そしてステップ716において、ステアリングの最適操 50 ブの途中でグリップを失い、その後の運転者のコントロ

ールでグリップを回復する例である。横ジャークに閾値 $\pm \Delta \alpha T$ を設けておく。また、操舵角変化分にも関値 Δ φTを設けておく。カーブに進入し、t、で運転者がス テアリングを回し始め、車両が回頭し、それに伴い横加 速度 αが増加していく。適切な操舵になった後はカーブ が終了するまでその操舵角を保持する。ところがも、に 於いて、タイヤのグリップが急激に低下し(スリップ率※

$$\Delta \alpha(t) > \Delta \alpha T$$

車両が横方向に流れ出したのを修正しようと、運転者は 車両の旋回方向と逆方向にステアリングホイールを操舵 10 【0033】 する(カウンターを当てる)。したがって操舵角変化分※

$$\Delta \phi(t) > \Delta \phi T$$

数9の関係を満たしたとき、運転者がカウンターを当て たと判断し、反応時間 Atの計測を終了する。との反応 時間 Δt が早い場合は運転操作が的確であり、上級の技 量とし、反応時間が長い場合は運転操作が未熟があり、 初心の技量とする。図9は前述の操舵角偏差△φ*と反 応時間△ t * とを用いた総合技量判定のためのマップで ある。図9のように操舵角偏差△φ*と反応時間△t* が共に短い場合には上級の技量を持ち、操舵角偏差△φ * が大きいか反応時間 Δt* が長い場合には初心の技量 と判定する。中間に位置するケースは中級の技量と判定 する。

【0034】次に、図10に車速計画アルゴリズムを示 す。ことでは、現在の車速で走行し続けた場合に、将来 の経路に於いて、前述の道路の曲率半径算出アルゴリズ ムで得られた各ノードでの曲率半径Γ、の道路を安全に 通過できるかどうかを判断し、もし通過が困難であるノ★

$$r \ge \frac{V_0^2}{V_0}$$

【0036】CCでkは車両の旋回能力によって決まる 定数で、車両の重量、サスペンションの構造、タイヤと 路面の摩擦係数などで決定される。ステップ803では ノード番号を示すカウンタの初期化を行う。ステップ8 04においては、各ノードでの道路の曲率半径 r, と、 車速V。で安全に通過できる道路の曲率半径r、とを比 較し、 r, ≥ r, である場合には通過できるものとする。☆

$$V_i = k \cdot \sqrt{r_i}$$

【0038】次にステップ807において、現在位置し 40◆【0039】 ているノードN。からN、までの道のりH、を数12式 で算出する。

$$H_j = \sum_{i=1}^{j-1} h_i$$

【0040】との道のりH、を走行している間に車両速 度V。をV、まで低下させる必要がある。ステップ80 8では、運転技量判定の結果に基づき減速度の加え方を 変化させる。上級の運転技量の判定を受けた場合には減 速度を加えず、減速は行わない。中級の技量判定を受け

* μが小さくなる)、車両が横方向に流れ出す。その時の 横加速度 $\alpha(t, t)$ はゼロとなる。したがって横ジャーク $\Delta \alpha(t_1)$ は急激に大きな値を出力する。事前に設定し た関値ΔαTを越えた場合、すなわち数8式の関係を満 たすときに反応時間△tの計測を開始する。

[0032] 【数8】

(6)

…(数8)

※も大きく変化する。

【数9】

…(数9)

- ★ードN、が存在する場合(例えば、現在の車速で通過す ると曲路を曲がれず脱レーンする) には、安全に通過す るための速度V、を算出し、現在位置のノードN。から N、に至る間に車速をV、にするための車速計画を行 う。車速計画は前述の運転技量判定の結果を考慮して計 画される。ノードN、で車速V、を達成するために、ノ ードN。から各ノードにおける目標車速V.,を設定し、
- 20 各ノードにおいて車速 Vが V、、 になるように、エンジン · トルク、変速機またはブレーキを制御する。目標車速V ,,は次の手順で計画される。ステップ801では現在の 車速V。を車速検知手段で計測し、V。に読み込む。ス テップ802において、ステップ801で得られた現在 の車速V。で安全に通過できる道路の曲率半径r、を数 10式で算出する。

[0035]

【数10】

…(数10)

☆一方、r, <r, である場合には減速を行う必要があると 判定する。ある任意のノードN, において r, < r, と なる場合には、ステップ805に処理が移行する。ノー ドN, における曲率半径r, を読み込み、安全にノード N, を通過できる速度V, を数11式で算出する。

[0037]

(数11)

【数12】

…(数11)

... (数12)

ている場合には、道のりH、の間に等しく減速度をかけ ることで車両を減速する。車両速度をV、にするのに必 要な減速度(加速度g)は数13式で算出する。

[0041]

【数13】

$$= \frac{(V_0^2 - V_i^2)}{H_i} \qquad \cdots (513)$$

【0042】との加速度gが人間の感じる加速度g、よ り大きいケースでは、加速度g、を最大値として、人間 に違和感を感じさせないよう減速する。

* 速度 g を用い、ステップ 8 0 9 では各ノードでの目標速 度V.,を数14式、数15式を用い算出する。

[0044]

【0043】 ことで得られたそれぞれの技量に応じた加米

 $V_{t,i} = V_{t,i-1} + g \cdot t$,

$$t_{i} = \frac{V_{i,i-1} - \sqrt{V_{i,i-1}^{2} - 2 \cdot g \cdot h_{i-1}}}{g} \cdots (\mathfrak{D}14)$$

[0045]

※ ※ (数15)

…(数15)

数14式は、ノードN。。, とN, とを結ぶリンクL,。, を走行するのに要する時間 t, を算出するものである。 数14式の中で用いられる速度V₁₋₁ は、ノードN,か らの再帰演算で得られたものであり、減速が計画通り行 われた場合の推定値である。数15式は、数14式で得 られたt, を用いて、ノードN, に於ける目標速度V., を算出する。ステップ810及び811では、すでにメ モリに格納してある目標速度Vu* (前に計画された車 20 まで演算する。 速)と比較し、V.,*≧V.,である場合には、ノードN , に於ける目標速度としてV., * を消去し、新たにV., をメモリに格納する。 V., * は、ステップ805からス テップ810までの処理が初めての場合には情報が入っ ていない(NULL)である。2回目以降には前回の目 標速度が記憶されている。前回と比べ、今回の目標速度 V.,が大きいケース (V.,*<V.,)では、問題となって いるノードにおける道路の曲率半径よりも小さな曲率半 径の道路が手前にあることを示しているので、小さな曲 率半径を持つノードに即した目標速度V,, * を優先す

★ (V,,*≧ V,,)では、さらに小さな曲率半径を持つノー ドが存在し、なおかつ早期に減速を行う必要があること を示しているので、新しい目標速度V、を優先する。と れらステップ805からステップ811までの一連の処 理は、ノードN。からN、まで繰り返し行う。さらにス テップ804からステップ813までの一連の処理を、 記憶している情報全て、との例の場合にはノードN.,,

【0046】とれまでに得られた情報は、安全走行情報 として、図11の通りメモリに記憶される。

【0047】次に、減速するのに必要な駆動軸トルク (減速トルク)を求める。現在の車速 v, から、図10 の車速計画アルゴリズムで得られた将来の車速v、に変 化させるものとする。初速 v, に於いて、車両の持つ運 動エネルギーT、は数16で、また車速v、における車 両の持つ運動エネルギーT, は数17でそれぞれ表わさ れる。

30 [0048] る。逆に前回と比べ、今回の目標速度が小さいケース ★

【数16】

$$T = \frac{1}{2} m v_1^2 + \frac{1}{2} l_r \omega^2$$

$$= \frac{1}{2} m v_1^2 + \frac{1}{2} l_r \left(\frac{v_1}{r}\right)^2 \qquad \cdots (2 16)$$

[0049]

☆ ☆【数17】

$$T_2 = \frac{1}{2} m v_2^2 + \frac{1}{2} I_r \omega_2^2$$

$$= \frac{1}{2} m v_2^2 + \frac{1}{2} I_r \left(\frac{v_2}{r} \right)^2 \qquad ... (217)$$

【0050】 ことで、v,:現在の車両速度、v::将 来の目標速度、m:車両質量、1,:車輪の慣性モーメ ント、 r : 車輪半径である。初速から目標速度に至るま でに失う運動エネルギー (T, -T,) は外部からの仕 事U,-,(数18) に等しい。 {0051}

【数18】

$$\begin{array}{ll}
13 & 14 \\
U_{1\to 2} = T_1 - T_2 & \\
= \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2 + \frac{1}{2} I_r \left(\frac{v_1}{r}\right)^2 - \frac{1}{2} I_r \left(\frac{v_2}{r}\right)^2 \\
= \frac{1}{2} \left(m + \frac{I_r}{r^2}\right) (v_1^2 - v_2^2) & \dots (数18)
\end{array}$$

【0052】現地点での現車速 v, から目標速度 v, を必 要とする地点までの距離をし【m】とすると、この距離 L[m]の間を走行中に、数19式で与えられる減速力* * F.。を加え続ける必要がある。

[0053]

【数19】

% [0055]

$$F_{rq} = \frac{U_{1\to 2}}{L} = \frac{1}{2} \cdot \frac{1}{L} \left(m + \frac{i_r}{r^2} \right) \left(v_1^2 - v_2^2 \right) \cdots (2019)$$

【0054】とれを数20式で必要な駆動軸トルクF。 に換算する。

【数20】

料噴射量に補正が加わって燃料噴射量が決定される。補

正量は、スロットル開度1205, 水温1206, アイ

ドルスイッチ1207の有無、バッテリ電圧1208,

ぞれの値とエンジン回転数をパラメータとして補正量が

補正マップ1204に記憶されており、基本燃料噴射量に加

算または乗算される。とうして得られた燃料噴射量から

トルク推定手段1211においてエンジントルクを算出

【0057】減速するためのエンジントルクT。。は数2

1式で算出される駆動軸トルクT。。とディファレンシャ ル及び変速機の変速比 i , から、次の数22式で算出さ

し、現在のエンジントルクとして今後の演算に用いる。

 $F_a = F_{ia} + (\mu_i mg + \mu_1 A v_1^2 + mg sin\theta)$ …(数20) ★料噴射量マップ1201から読み出される。との基本燃

CCで、 μ 、は転がり抵抗係数、gは重力加速度、 μ 、 は空気抵抗係数、ψは道路の勾配である。ととで、駆動 軸トルクF。が、O≦F。である場合(Fr。が走行抵抗 より小さい場合)には次の3つの手段(1)点火時期を 制御、(2)空燃比(燃料噴射量)を制御、(3)スロ 20 クランク角センサ1209,O, センサ1210のそれ ットル開度を制御によりエンジントルクを制御する。現 在のエンジントルクは、エンジンコントローラで演算さ れる。一般的にはエンジン回転数、アクセル開度、燃料 噴射量から、前もって実験を行い得られたトルクマップ を参照することでリアルタイムにエンジントルクを推定 することができる。現在のアクセル開度とエンジン回転 数から、現在のエンジントルクT、を得る。

【0056】図12はエンジントルクの推定方法の機能 ブロック図である。基本的にエンジントルクは気筒内へ の燃料噴射量に依存する。基本燃料噴射量は気筒内への 30 流入空気量とエンジン回転数をパラメータとして基本燃★

 $T_{od} = \frac{F_d}{r} = \frac{1}{2} \cdot \frac{1}{L \cdot r} \left(m + \frac{1_r}{r^2} \right) \left(v_1^2 - v_2^2 \right)$

れる.

[0058]

【数21】

☆ ☆ (数22)
T_{ob}=T_{ol}-T_{od}=T_{ol}-T_{od}
i₁ [0059]

【0060】とこでT。は推定された現在のエンジント ルクである。数22式で得られた目標エンジントルクT 。。を達成するために、3つの制御手段の中から適当なも のを選択する。選択の基準は必要な応答時間をバラメー タとして用いる。図13は制御手段の選択を行うアルゴ リズムである。(1)急速な応答時間が必要なケース (急に減速したい場合) は点火時期を最適な点火進角よ りも遅くしてエンジントルクを低減する。低減したいエ ンジントルクが大きい場合には、特定の気筒の燃料カッ トと未点火によりエンジントルクを低減する。(3)級 慢な応答時間で十分なケース (ゆっくり減速したいケー ス) ではスロットル開度を制御する。(1)と(3)の間 の中庸な(2)のケースでは空燃比を制御する。空燃比

を大きくすることでエンジントルクを低減する。この

…(数22) 際、同時に点火時期も最適な値に制御される。

【0061】はじめに、目標のエンジントルクが与えら れた場合に点火時期を変化させてエンジントルクを制御 40 する方法を説明する。図13は点火時期を制御する機能 ブロック図である。現在のエンシントルクT。と目標の エンジントルクT。。から点火時期の変更量をトルクマッ プ読み込み、最適な点火進角 ξ。。としてエンジンコント ローラ1302に入力される。エンジンコントローラで はそ。。としてエンジンコントローラに入力される。エン ジンコントローラでは最適点火進角を。。を基に各気筒に 点火信号を出力する。これにより、点火時期を変更した 時点からエンジントルクは目標エンジントルクT。。にす ぐさま切り替わる。エンジントルクが変化したことでエ 50 ンジン回転数N。が変化し、次の点火進角 & が決定す

16

る。これを目標車速が違成されるまで制御を続ける。 【0062】次に、前述の目標エンジントルクT。か与 えられた場合に、スロットル開度θを変化させてエンジ ントルクを制御する方法を説明する。図14はスロット ル制御の機能ブロック図である。エンジントルクはエン ジン回転数N。とスロットル開度をパラメータとしてエ ンジントルクマップ1401から読み出される。目標の エンジントルクT。が設定されると、現在のエンジン回 転数から必要なスロットル開度 θ 。が得られ、現在のス てスロットルバルブコントローラ1402に入力され る。スロットル弁1405の開度が目標スロットル開度 θ。。になると、流入空気量が変化し、それに伴いエンジ ントルクが変化し、さらにエンジン回転数が変化する。 との一連の処理を目標車速に達するまで行う。

15

【0063】図15は無段変速機の変速比を変化させて 駆動軸トルクを制御行うブロック図である。入力はスロ*

$$\omega = \frac{1}{r_f} \frac{dV_{ap}}{dt}$$

【0065】車輪速V,,の時間変化分dV,,/dtを変 速機の最終減速比 Γ, で割ったものが車輪の角速度ωで ある。この角速度ωを用いて演算手段1504において 勾配負荷を算出するのに必要なsin少 を数24式で算出※

$$\sin \theta = G - \frac{\omega}{g}$$

【0067】ととで減速度gは、第1の例として図10 のステップ808で得られる数値を用いる。第2の例と して、運転者に不快感を与えないよう、人間が敏感に感 じる0.05G(0.49m/s²) よりも小さい値(例え 30 ば、0.4 m/s²) にあらかじめ設定してもよい。そし★

$$T_o = I \cdot \omega + \sin\theta \cdot W \cdot R + T_{Ro}$$

ととで、 | は慣性重量、 Wは車両重量、 R はタイヤ半 径、Taoは走行抵抗である。走行抵抗Taoは車輪速-走 行負荷マップ(走行負荷マップ)1508から車輪速V ,。における走行抵抗T,。を読み出す。変速比変化率演算☆

$$\Delta i = \frac{\Delta T_0}{T_0}$$

【0070】変速マップ1502からの出力である変速 比iから変速比変化分Δiを差し引いた分を駆動軸トル 40 【0071】 ク演算手段1507に入力する。駆動軸トルクT。は数◆ $T_0 = i \times T_e$

数23式から数27式で得られる各パラメータの中で、 目標の変速比i-Δiを無段変速機コントローラに入力 する。そして無段変速機の変速比は i - △ i に設定さ れ、次のノードにおける計画車速にむけて車両速度は減 少する。

[0072]

【発明の効果】走行経路を推定し、現在の速度で走行を 続けた場合に危険な地点がある場合に、その地点に到達 50 【図2】システム構成。

*ットル開度heta, エンジン回転数 N_{ullet} , 車輪速 V_{ullet} 。, 加速 度センサ出力Gである。エンジントルク-エンジン回転 数の、スロットル開度θをパラメータとしたマップ(T 。マップ)1501において、エンジン回転数N。とス ロットル開度 θ からエンジントルクT。が読み出され る。また、変速機制御に用いる車輪速-エンジン回転数 の、スロットル開度 θ をバラメータとしたマップ(変速 マップ) 1502から、変速比iが算出される。今、目 標速度V., に対して、実車速が早い場合には変速比を変 ロットル開度 θ 。との偏差をスロットル操作量 $\Delta\theta$ とし 10 化させて駆動軸トルクT。を減少させ、実車速を低下さ せる。変速比の変化分Aiは車輪速V.。と勾配を検知す る加速度センサの出力(加速度)Gを入力として算出され る。初めに角速度算出手段1503において、数23式 で車輪の角速度ωを算出する。

> [0064] 【数23】

> > …(数23)

※する。 [0066] 【数24】

…(数24)

★ てトルク差分演算手段 1505 に於いて、目標とするト ルク変化分AT。を数25式で算出する。

[0068]

【数25]

☆手段1506は変速比変化分△iを数26式で算出す る。

[0069]

【数26】

…(数26)

◆27式で算出される。

【数27】

… (数27)

する以前にドライバの技量に適した安全な速度にすると とで、車両がカーブや下り坂の道路を走行する際、運転 者の認識不足や誤判断で車速が早くなって、カーブが曲 がり切れず道路から飛び出したり、降り坂で車速が速く なり過ぎる事故を未然に防ぐことが可能となる。

【図面の簡単な説明】

【図1】第1実施例機能ブロック図。

17

【図3】地図情報の例(道路はノードとリンクの組み合 わせで表現)。

【図4】走行経路推定アルゴリズム。

【図5】道路の曲率半径算出の例。

【図6】道路曲率半径算出アルゴリズム。

【図7】ドライバ技量検出手段。

【図8】操舵角おくれ検出信号例。

【図9】総合技量特性判定手段区分図。

【図10】最適車速計画アルゴリズム(安全に走行する ための目標速度の算出)。

【図11】車速計画後のメモリ内容。

【図12】エンジントルク推定の機能ブロック図。

【図13】点火時期制御の機能ブロック図。

【図14】スロットル制御による機能ブロック図。

【図15】駆動軸トルク演算(目標速度にするための駆 動軸トルクの算出)。

【符号の説明】

18

* N, …ノード番号、L, …リンク番号、r, …道路の曲 率半径、θ, …道路の角度、h, …リンク長、x, …ノ ードの地図上のx座標、y, …ノードの地図上のy座 標、a、…リンクの傾き、r、…安全に通過できる道路 の曲率半径、V。…現在の車両速度、k…車両の旋回性 能によって決まる定数、g…減速度、V,…安全に通過 できるノードN、での速度、H、…現在位置からノード N、までの道のり、 t、…リンクし、を通過するのに要 する時間、V., …ノードN, での目標速度、V., * …す 10 でにメモリに記憶されているノードN, での目標速度、 θ …スロットル開度、 N_{\bullet} …エンジン回転数、 $V_{\bullet,\bullet}$ …車 輪速、G…加速度センサの出力、T。…エンジントル ク、R…タイヤ半径、W…車両重量、Tao…走行抵抗、 i …変速比、△i …変速比の変化分、r, …最終変速 比、1 慣性重量、ω…車輪の角加速度、Τ。…駆動ト ルク。

*

(図3)

図 3

0 :/- # ・・リンク 、 【図5】

3 5

【図1】

図 1

【図2】

(図4)

【図6】

【図7】

図 7

【図9】

Ø 9

投作角傷差=最近ほ蛇角-実ほ蛇角 アクセル関原偏差=最近アクセル関度-実アクセル開度

[図10]

図 10 (割込スタート) 現在の重達の最み込みが0 801 YOで安全に迅過できる道路 の曲平半径rsの算出 rs ≧ Vo² k **₩** 802 カウンタの初期設定 1=0 推定提路内の rlars? TNO riersとなるノードNJの属性 情報の読み込み 安全に曲路を通過できる東国 速度の詳出 Vj=k√rj 現在位復しているノード NO からノード NJまでの迫のり のは出 必要な対速度9の貸出 g=-(Vo²V J²) H j るノードでの目標速度Vt1の算出 ti = Vi-1-√Vi-1-2-g·hi-1 YES Vii* E Vii Vtiの書き換え Vti+←Vti YES NO - 813 19 18 18 7 ? i ≧ 128 ?

【図11】

2 11

ノード 登号	リンク 番号		#她班色2	リンク長	商事学征	自探送点
1	1	(xo,yo)	(x1,51)	hı	п	Vii
2	2	(x1.37i)	(x2,y2)	ha	22	Vız
;	:	!	:	:	•	•••
i	i	(X3-1,Y3-1)	(xtyr)	þi	n	٧u
:	•••	!	:		•••	•
j	1	(XJ-1).3/5-1)	(xr\l)	И		Vq
	•••	:		÷	•••	:
127	127	(x128,y126)	(x127,y127)	h127	F127	V1127
128	128	(x 127, y127)	(X128,Y128)	h128 '	ľ128	V1128

[図12]

[図13]

【図14】

【図15】


```
【公報種別】特許法第17条の2の規定による補正の掲載
(部門区分)第6部門第3区分
【発行日】平成13年2月16日(2001.2.16)
【公開番号】特開平7-306998
【公開日】平成7年11月21日(1995.11.21)
【年通号数】公開特許公報7-3070
【出願番号】特願平6-100424
【国際特許分類第7版】
 G03G 1/16
 B60K 41/12
 G01C 21/00
 C08G
     1/09
     1/0969
(F1)
 G08G
    1/16
 B60K
     41/12
 G01C 21/00
             Z
 G08G
     1/09
     1/0969
```

【手続補正書】

【提出日】平成12年3月21日 (2000.3.2 1)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【<u>認求項</u>】 今後車両が走行する道路の特性を把握する 手段と、車両の速度を検出する実車速検出手段と、運転 者の技量を評価する手段と、運転者の技量に合わせて前 記道路の特性に応じて安全な車速を設定する最適車速演 算手段と、設定した最適車速と実車速を比較する車速比 較手段と、該車速比較結果に基づき最適車速を達成する ように少なくともエンジンまたは変速機を制御すること を特徴とする車両の安全走行制御装置。

【<u>請求項2</u>】請求項1 において、変速機の制御にあたり、減速が必要な場合、その減速度合いを所定の変化量に制限する減速度制御手段とをさらに有することを特徴とする車両の安全走行制御装置。

【<u>請求項3</u>】請求項1 において、最適車速を達成するために電子制御スロットルを用いてエンジンを制御することを特徴とする車両の安全走行制御装置。

【<u>請求項4</u>】請求項1において、最適車速を造成するための車両加速度を演算する手段を更に備え、前記演算された車両加速度に基づいてエンジンの点火時期、エンジンの流入空気量、エンジンへの燃料噴射量または変速比の少なくともいずれか一つを制御することを特徴とする車両の安全走行制御装置。

【<u>請求項5</u>】請求項1 において、最適車速と実車速が一致するまで少なくともエンジンまたは変速機を制御する ことを特徴とする車両の安全走行制御装置。

【<u>請求項6</u>】請求項1 において、道路の特性を把握する 手段は、地図情報または道路に設置してあるビーコンま たは放送局からの情報の少なくとも一つを用いて把握す ることを特徴とする車両の安全走行制御装置。

【<u>請求項7</u>】請求項1において、道路の特性を把握する手段は、任意のノードにおいて複数個のリンクがある場合に、道路種別または路線番号の少なくとも一方を用いて演算することを特徴とする車両の安全走行制御装置。【<u>請求項8</u>】請求項1において、運転者の技量を評価する手段は、道路の特性から算出される最適操舵角と、運転者が実際に操作した実操舵角と、車両の横加速度と、車両の横加速度変化分(横ジャーク)の少なくとも一つを用いて評価することを特徴とする車両の安全走行制御装置。