Álgebra Lineal I

Tarea-Examen 02

Profesor: Rivera Torres Francisco de Jesús Ayudante: Samayoa Donado Víctor Augusto Ayudante: Vargas Martínez Mario Raúl

Abril 30, 2020

- 1. (Elegir 3 de los 5 incisos) Decir si las siguientes afirmaciones son verdaderas o falsas, demostrando/justificando sus afirmaciones. Para lo siguiente, V y W son espacios vectoriales con bases ordenadas finitas α y β , respectivamente, y $T:V\longrightarrow W$ será lineal. A es una matriz.
 - (a) $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$.
 - (b) T es invertible si y sólo si T es invectiva y suprayectiva.
 - (c) $(A^{-1})^{-1} = A$.
 - (d) A es invertible si y sólo si L_A es invertible.
 - (e) A debe ser cuadrada para poder tener una inversa.
- 2. Sean A y B matrices invertibles de $n \times n$. Demostrar que AB es invertible y que $(AB)^{-1} = B^{-1}A^{-1}$.

Definición: Sean V y W espacios vectoriales. Decimos que V es **isomorfo** a W si existe una transformación lineal $T:V\longrightarrow W$ tal que es invertible. A dicha transformación lineal se le conoce como **isomorfismo** de V en W.

- 3. Sean V y W espacios vectoriales dimensionalmente finitos y sea T: $V \longrightarrow W$ un isomorfismo. Sea V_0 un subespacio de V:
 - (a) Demuestre que $T(V_0)$ es un subespacio de W.
 - (b) Demuestre que $\dim(V_0) = \dim(T(V_0))$.

Definición: Sea β una base ordenada de un espacio vectorial ndimensional V sobre un campo F. La **representación estandar de V respecto a** β se define como la función $\phi_{\beta}: V \longrightarrow F^n$ dada por $\phi_{\beta}(x) = [x]_{\beta}$, para cada $x \in V$.

- 4. Demuestre que para cualquier espacio vectorial dimensionalmente finito V con base ordenada β , ϕ_{β} es un isomorfismo.
- 5. Sea $T:V\longrightarrow W$ una transformación lineal de un espacio ndimensional V a un espacio m-dimensional W. Sean β y γ bases ordenadas de V y W, respectivamente. Y sea $A=[T]^{\gamma}_{\beta}$. Demuestre que:
 - (a) $rank(T) = rank(L_A)$.
 - (b) $\operatorname{nulidad}(T) = \operatorname{nulidad}(L_A)$.

Ejercicio extra (opcional) + 1 punto sobre el examen.

NOTA: Para ser acredor al punto extra, las justificaciones deben ser claras y correctas en cada uno de los pasos. Se deben tener correctos todos los incisos ya que no se asignarán decimas de punto. Es todo o nada.

Definición: Para un espacio vectorial V sobre un campo F, se define el **espacio dual** de V como $V^* = \{f : V \longrightarrow F | f \text{ es función}\}.$

Ya se demostró que el conjunto de funciones entre conjuntos con la suma y producto por un escalar usual forma un espacio vectorial. Por ende, el espacio dual es un espacio vectorial.

Definición: Sea V un espacio vectorial V sobre un campo F y sea $x \in V$, se define $\hat{x}: V^* \longrightarrow F$ como $\hat{x}(f) = f(x)$, donde $f \in V^*$,

6. Demuestre los siguientes incisos justificando plenamente sus respuestas:

- (a) Sea V es un espacio vectorial dimensionalmente finito y sea $x \in V$ tal que $\hat{x}(f) = 0$ para todo $f \in V^*$, entonces x = 0.
- (b) Sea V un espacio vectorial dimensionalmente finito, se define ψ : $V \longrightarrow V^{**}$ como $\psi(x) = \hat{x}$. Demuestre que ψ es un isomorfismo.