2023 年秋统计学习题 06

截止日期: 2023.12.03

- 1. 设样本 X_1, X_2, \dots, X_n 来自正态总体 $N(\theta, \theta)$, 其中 $\theta > 0$ 为参数.
 - (a). 求 θ 的极大似然估计 $\hat{\theta}$.
 - (b). 求 $\hat{\theta}$ 的渐进方差. (提示: $\sqrt{nI(\theta_0)}(\hat{\theta} \theta_0)$ 近似服从标准正态分布. 因此, $\hat{\theta}$ 的渐进方差为 $\frac{1}{nI(\theta)}$).
- 2. 设 X_1, X_2, \dots, X_n 为来自几何分布的样本,用因子分解定理证明 $T = \sum_{i=1}^n X_i$ 是充分统计量.
- 3. 设 X 为来自正态总体 $N(0, \sigma^2)$ 的样本. |X| 是否为充分统计量?
- 4. 设 X,Y 为期望有限的随机变量,证明

$$\min_{g(x)} \mathbb{E}(Y - g(X))^2 = \mathbb{E}(Y - \mathbb{E}(Y|X))^2,$$

其中 g(x) 取遍所有的可测函数. $\mathbb{E}(Y|X)$ 有时被称为 Y 在 X 上的回归,为给定条件 X 下, Y 的最好的预测.

- 5. 设 X_1, X_2, \dots, X_n 是来自参数为 $\lambda > 0$ 的 Poisson 分布. 设 \overline{X}, S^2 分别为 样本均值与样本方差.
 - (a). 求证 \overline{X} 是 λ 的 UMVUE.
 - (b). 证明 $\mathbb{E}(S^2|\overline{X}) = \overline{X}$.
 - (c). 证明 $\operatorname{Var} S^2 > \operatorname{Var} \overline{X}$.