

Description

The VSM50N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =50A

 $R_{DS(ON)} < 11 m\Omega$ @ $V_{GS} = 10 V$

 $R_{DS(ON)}$ < 16m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and High frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM50N03-TC	VSM50N03	TO-220C	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _G S	±20	V	
Drain Current-Continuous	I _D	50	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	35	А	
Pulsed Drain Current	I _{DM}	140	А	
Maximum Power Dissipation	P _D	60	W	
Derating factor		0.4	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	100	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	2.5	°C/W	
---	----------------	-----	------	--

Electrical Characteristics (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics		•		•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)		•		•		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.6	3	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =25A	-	8	11	mΩ
		V _{GS} =5V, I _D =20A	-	10	16	11177
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -15\/\/ -0\/	-	2000	-	PF
Output Capacitance	Coss	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	280	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIHZ	-	160	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =15V,I _D =20A	-	10	-	nS
Turn-on Rise Time	t _r		-	8	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =1.8 Ω	-	25	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -40\/ -25A	-	32.3	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=10V,I_{D}=25A,$ $V_{GS}=10V$	-	4.9	-	nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	6.9	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =25A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	_	50	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =50A	-	-	35	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	-	18	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=1mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

 T_J -Junction Temperature (°C) **Figure 9 Power De-rating**

Figure 8 Safe Operation Area

Figure 10 ID Current- Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)