Planche nº 7. Espaces euclidiens

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

Exercice nº 1 (*** I)

 $\text{Montrer que la matrice de Hilbert } H_n = \left(\frac{1}{\mathfrak{i}+\mathfrak{j}-1}\right)_{1\leqslant \mathfrak{i},\mathfrak{j}\leqslant n} \text{ est définie positive (c'est-à-dire } \forall X\in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXH_nX\geqslant 0$ avec égalité si et seulement si X=0).

Exercice nº 2 (*** I)

- 1) Soit A une matrice carrée réelle de format n et $S = A^T A$. Montrer que S est une matrice symétrique positive.
- 2) Réciproquement, montrer que pour toute matrice S symétrique positive, il existe une matrice A carrée réelle de format n telle que $S = A^T A$. A-t-on l'unicité de A?
- 3) Montrer que S est définie positive si et seulement si A est inversible.
- 4) Montrer que rg(A) = rg(S).
- 5) (Racine carrée d'une matrice symétrique positive) Soit S une matrice symétrique positive.

Montrer qu'il existe une et une seule matrice R symétrique positive telle que $R^2 = S$.

Exercice nº 3 (**** I)

Soit E un espace euclidien de dimension n non nulle. Soit $(x_1,...,x_p)$ une famille de p vecteurs de E $(p\geqslant 2)$. On dit que la famille $(x_1,...,x_p)$ est une famille obtusangle si et seulement si $\forall (i,j) \in [\![1,p]\!]^2$ $(i < j \Rightarrow x_i | x_j < 0)$. Montrer que si la famille $(x_1,...,x_p)$ est une famille obtusangle alors $p\leqslant n+1$.

Exercice nº 4 (** I) (Inégalité de HADAMARD)

Soit E un espace euclidien de dimension $n \ge 1$ et \mathscr{B} une base orthonormée de E.

Montrer que pour tout n-uplet de vecteurs $(x_1,...x_n)$, on a : $|\det_{\mathscr{B}}(x_1,...,x_n)| \leq ||x_1||...||x_n||$. Cas d'égalité?

Exercice no 5 (**)

 $\text{Montrer que pour toute matrice carrée } A \text{ réelle de format } \mathfrak{n}, \text{ on a } |\text{det} A| \leqslant \sqrt{\prod_{j=1}^n \left(\sum_{i=1}^n \mathfrak{a}_{i,j}^2\right)}.$

Exercice nº 6 (***)

Soit A une matrice orthogonale. A l'aide du vecteur colonne U dont toutes les composantes sont égales à 1, montrer que la valeur absolue de la somme des coefficients de A est inférieure ou égale à n. Cas d'égalité si de plus tous les coefficients de A sont positifs ?

Exercice no 7 (** I)

Soit $E = \mathcal{M}_n(\mathbb{R})$. Pour $(A, B) \in E^2$, on pose $\langle A, B \rangle = \operatorname{Tr} (A^T B)$.

- 1) Montrer que \langle , \rangle est un produit salaire sur E. On note $\| \|$ la norme associée.
- 2) Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- 3) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer la distance de A à $\mathcal{A}_n(\mathbb{R})$ (dans (E, || ||)).

Exercice nº 8 (***)

Soit A une matrice carrée réelle symétrique positive de format n. Montrer que $1 + \sqrt[n]{\det(A)} \leqslant \sqrt[n]{\det(I_n + A)}$.

Exercice nº 9 (**)

Déterminer card $(O_n(\mathbb{R}) \cap \mathcal{M}_n(\mathbb{Z}))$.

Exercice nº 10 (**)

Soit A une matrice carrée réelle. Montrer que les matrices A^TA et AA^T sont orthogonalement semblables.

Exercice nº 11 (*** I)

Montrer que le produit de deux matrices symétriques réelles positives est à valeurs propres réelles positives.

Exercice nº 12 (*** I)

Soient A et B deux matrices carrées réelles symétriques positives. Montrer que $\det(A) + \det(B) \leq \det(A + B)$.

Exercice nº 13 (*** I)

Soit f un endomorphisme d'un espace euclidien (E, \langle , \rangle) de dimension $n \in \mathbb{N}^*$ qui conserve l'orthogonalité. Montrer qu'il existe un réel positif k tel que $\forall x \in E, \|f(x)\| = k\|x\|$.

Exercice nº 14 (** I)

Soit P le plan de \mathbb{R}^4 d'équations $\begin{cases} x+y+z+t=0\\ x+y-2z-t=0 \end{cases}$ dans une base orthonormée \mathcal{B} de \mathbb{R}^4 muni de sa structure euclidienne canonique.

- 1) Déterminer les matrices dans \mathcal{B} de la projection orthogonale sur P et de la symétrie orthogonale par rapport à P.
- 2) Calculer la distance d'un vecteur quelconque de \mathbb{R}^4 à P.

Exercice no 15 (***)

 $O_n(\mathbb{R})$ est-il convexe?

Exercice no 16 (***)

Résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation M = com(M) $(n \ge 2)$.

Exercice nº 17 (**)

 $\mathrm{Soit}\;(E,\langle\;,\;\rangle)\;\mathrm{un}\;\mathrm{espace}\;\mathrm{euclidien}.\;\mathrm{Soit}\;f\in\mathbb{L}(E)\;\mathrm{tel}\;\mathrm{que}\;f^2=0.\;\mathrm{Montrer}\;\mathrm{que}\;\mathrm{Ker}\,(f+f^*)=\mathrm{Ker}(f)\cap\mathrm{Ker}\,(f^*).$

Exercice nº 18 (** I)

Soient (E, \langle , \rangle) un espace euclidien puis $f \in \mathcal{L}(E)$. Montrer que deux des trois propriétés suivantes entrainent la troisième :

- (1) $f^2 = -Id_E$,
- (2) $f \in O(E)$,
- (3) $\forall x \in E, \langle f(x), x \rangle = 0.$

Exercice no 19 (*** I)

- 1) Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$. Montrer qu'il existe une matrice triangulaire supérieure inversible T telle que $A = T^T T$ (décomposition de Choleski) (on pourra considérer l'orthonormalisée de la base canonique de $\mathscr{M}_{n,1}(\mathbb{R})$ pour le produit scalaire $(X,Y) \mapsto X^T A Y$). Réciproque?
- $\textbf{2)} \ \mathrm{Soit} \ A = (\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n} \in \mathscr{S}_n^{++}(\mathbb{R}). \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{det}(A) \leqslant \prod_{i=1}^n \mathfrak{a}_{i,i}.$

Exercice n° 20 ()** Soit (E, \langle , \rangle) un espace euclidien. Soit $f \in \mathcal{L}(E)$. f eswt dit *normal* si et seulement si $f^* \circ f = f \circ f^*$. Déterminer tous les endomorphismes normaux de f quand dim(E) = 2.