

Winning Space Race with Data Science

Franzisca Gorniacyzk 19.09.2022

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Topic

Evaluate SpaceX's success in launching their Falcon 9 rockets and then returning the booster unharmed, to be reused for further launches.

Approach

Gather data on previous Falcon 9 missions, analyze results and build predictive models.

Methodology

Gather data from remote sources/Internet, perform data wrangling, visualize using tables, graphs and maps, and use classification models to predict landing outcomes.

Results

Find how launch site, payload, booster version and Orbit type affect the landing outcome.

Conclusion

Classification models have an 80% accuracy in prediction the success of future landing attempts.

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Introduction

SpaceX:

American aerospace company building rockets to transport cargo and humans (payload) into orbits around earth or to other planetoids (moons and planets)

Falcon 9 rocket:

SpaceX's partially reusable rocket type, consisting of booster (responsible for lift-off) and second stage (responsible for carrying payload to final destination).

Booster:

Falcon 9's booster have the ability to land again after separating from the second stage. They can be reused for further launches. This results in a significant reduction of expenses.

Question:

Which parameters are essential for a successful landing of the Falcon 9 boosters and can we predict the outcomes of future landing attempts?

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

E

Data Collection - SpaceX API

https://github.com/franziscaG/Coursera _Capstone_Project/blob/master/jupyte _r-labs-spacex-data-collection-api.ipynb

	Unnamed: 0	Flight Number	Launch Site	class	Payload Mass (kg)	Booster Version	Booster Version Category
51	51	48	CCAFS SLC-40	0	4230.0	F9 FT B1032.2	FT
52	52	50	CCAFS SLC-40	0	6092.0	F9 B4 B1044	B4
53	53	52	CCAFS SLC-40	0	2647.0	F9 B4 B1039.2	B4
54	54	53	CCAFS SLC-40	1	362.0	F9 B4 B1045.1	B4
55	55	56	CCAFS SLC-40	0	5384.0	F9 B4 B1040.2	B4

Python:

REST API
(https://api.spacexdata.com/v4/...)

[{"core": "5e9e289df35918033

{"fairings":{"reused":fa

{"campaign":null,"launch

reach-orbit.html", "wikip

oscillation leading to p [], "capsules":[], "payloa

21T13:10:00+12:00", "date

[{"core": "5e9e289ef35918

,{"fairings":{"reused"

{"campaign":null,"launch

5eb0e4b6b6c3bb0006eeb

03T15:34:00+12:00","date [{"core":"5e9e289ef35918

,{"fairings":{"reused"

{"campaign":null,"launch v=dLQ2tZEH6G0","youtube 20T00:00:00.000Z","stat

liquid-propelled carrier

[{"core":"5e9e289ef35918

,{"fairings":{"reused"

{"campaign":null,"launch

v=yTaIDooc80g","youtube_

5","wikipedia":"https://e | Seb0e4b7b6c3bb0006eeb1e6

28T23:15:00.0007"."date

mission-summary", "wikipe [{"time":140, "altitude"

Remote server (SpaceX launch data)

19400, "date_local": "2006-03-25710:30:00+12:00", "date_precision":
dpdad":null), "auto_update": true, "tdvf "false, "launch_library_i
ge": "https://images2.imgbox.com/80/a2/bkWotCIS_o.png"), "redd
Nc', 'youtube_id': "Lk42Q2W-Nc', "article': "https://www.space
d059cado955769ddeb", "success': false, "fallures' [{'time':3}
shutdown at T+7 min 30 s, Falled to reach orbit, Failed to i
32", "date_unix":117443400, "date_local": "2007-03.

nd":null]], "auto_update":true, "tbd":false, "launch_library_io", ge: "https://images2.imgbox.com/4x/86/kloAk/90k.opm"], "redd 50" "youtube_id":"v@w0p3U8860", "article":"http://www.spacex, "rocket":"Sep0dd095eda69957690160", "success":false, "failu en stage 1 and stage 2", "crew":[], "ships":[], "capsules":[] 0002", "date_unix":12173444, "date_local":"2008-08.

ad":null}],"auto_update":true,"tbd":false,"launch_library_i ge":"https://images2.imgbox.com/a3/99/qswRYzE8_o.png"},"red

ried to orbit on the first successful orbital launch of any ","flight_number":4,"name":"RatSat","date_utc":"2008-09-

ad":null}], "auto_update":true, "tbd":false, "launch_library_id".
ge":"https://images2.imgbox.com/92/e4/7Cf6MLV0_o.png"), "reddit".
successfully-delivers-razaksat-satellite-orbit", "webcast":"https:/

import requests import pandas as pd

request data from API

url = "name_of_REST_API"
response = requests.get(url)

convert ISON to pandas dataframe

df = pd.json_normalize(response)

/09dieb","success":true,"failures":[],"details":null,"crew":[],"ships":[],"capsules":[],"payloads" ,o,"date_local:"inuning","alis:is:00+12:00","date_precision":"hour","upcoming":false,"cores": andpad":null)],"auto_update:'true,"tbd";false,"launot,library_id":null,"id":"Seb972cf+f8d6e000604b32e

] ("fairings":("reused":null, "recover, "eccese":unl, "recover, "eccese":unl, "anapa", "reddit":
("campaign":null, "ananch":null, "readed":"inull, "recovery":unll," initiken":("small':[], "original':[]), "presskit":"thttp://forum massapaceflight.com/index.php?actionadlatacht.point=2689.89.attacht.2889

Github:

https://github.com/franziscaG/Course ra_Capstone_Project/blob/master/jup yter-labs-spacex-data-wrangling.ipynb

Data Collection – Web Scraping

Convert to readable dataframe

	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
0	1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	F9 v1.0	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.0	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.0	No attempt	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success	F9 v1.0	No attempt	8 October 2012	00:35
4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success	F9 v1.0	No attempt	1 March 2013	15:10

Python:

```
from bs4 import BeautifulSoup
# request data from API
url = "name_of_website"
response = requests.get(url)
# convert to BeautifulSoup object
soup = BeautifulSoup(response.text)
# find tables
html tables = Soup.find all('table')
# iterate through table elements and add to new
pandas dataframe
df = \dots
```

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

Github:

Data Wrangling

https://github.com/franziscaG/Course ra_Capstone_Project/blob/master/jup yter-labs-spacex-data-wrangling.ipynb

 Data type and information df.info()

Data	columns (total	17 columns):	
#	Column	Non-Null Count	Dtype
0	FlightNumber	90 non-null	int64
1	Date	90 non-null	object

Data statistics
 df.describe()

	FlightNumber	PayloadMass	Flights
count	90.000000	90.000000	90.000000
mean	45.500000	6104.959412	1.788889

Data grouping
 df['column'].value_counts()

Count
55
22
13

df.groupby('column').mean()

	PayloadMass	
LaunchSite		
CCAFS SLC 40	5548.207786	
KSC LC 39A	7606.450856	
VAFB SLC 4E	5919.461538	

classify outcome into good (1) and bad (0) into column 'class'

			/ \	
4	5	None None	0	Target
5	6	None None	0	Target variable CLASS
6	7	True Ocean	1	CLASS
7	8	True Ocean	1	13
			\ /	

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

EDA with Data Visualization

https://github.com/franziscaG/Coursera_Capstone_Project/blob/master/jupyter-labs-eda-dataviz.ipynb

import seaborn as sns

- Scatter plots: CLASS vs Payload mass, Flight number, Launch Site and Orbit
 - Answers which variable affects the landing outcome

```
sns.catplot(x='FlightNumber',y='LaunchSite',data=df,hue='Class')
```

- Bar plot: Success rate vs Orbit
 - Shows which orbit leads to the most successful landings

```
sns.catplot(x='Orbit',y='SuccessRate',data=bar_df,kind='bar')
```

- Line plot: Success rate vs Year
 - Shows the improvements over the years

```
sns.lineplot(x='Year',y='SuccessRate',data=line_df)
```


Github:

https://github.com/franziscaG/Courser a_Capstone_Project/blob/master/jupy ter-labs-eda-sql-coursera_sqllite.ipynb

EDA with SQL

```
import sqlite3

# create local database and load data into it
connection = sqlite3.connect('database_name')
df = read.csv('data_repository')
df.to_sql('SPACEXTBL',connection)

# sql magic
%load_ext sql
%sql lite:///database_name.db
```

Ex. Find number of successful landings

```
%%sql
SELECT
CASE
WHEN [Landing _Outcome] LIKE '%Success%' THEN 'Success'
ELSE 'Failure'
END AS landing_outcome,
COUNT(Date) AS count
FROM SPACEXTBL GROUP BY landing_outcome
```

landing_outcome	count
Failure	40
Success	61

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

E

Build an Interactive Map with Folium

https://github.com/franziscaG/Course ra_Capstone_Project/blob/master/lab jupyter_launch_site_location.ipynb

```
import folium
from folium.plugins import MarkerCluster,MousePosition
from folium.features import DivIcon

site_map = folium.Map(location, zoom_start)
```

- Circles and markers: to mark launch sites
 circle = folium.Circle(coordinates).add_child(folium.Popup(label))
- Marker-cluster: to mark launches (green successful landing, red failure)

 marker=folium.Marker(coordinates, icon)
- Lines and markers: to mark closest coast, railway, highway and city line=folium.PolyLine(locations=[start,end])

Github:

Build a Dashboard with Plotly Dash

https://github.com/franziscaG/C oursera_Capstone_Project/blob /master/Dash_application.ipynb

refer to notebook on how to build a dash application in Python

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Data collection
- Data wrangling
- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

Predictive Analysis (Classification)

Calculate accuracy on testing set

https://github.com/franziscaG/Coursera_Capstone_Project/blob/master/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Define target variable Y and from sklearn import preprocessing dependent variables X from sklearn.model_selection import train_test_split, GridSearchCV Normalize X transform = preprocessing.StandardScaler() X = transform.fit_transform(X) Split X and Y in training and testing sets X_train,Y_train,X_test, Y_test = train_test_split(X,Y,test_size) Split into n folds model=GridSearchCV(model_object,parameters, n_folds) Choose Confusion Matrix model parameters Iterate over - 12 Choose n-1 folds Grid search on choice of ntraining set 1 folds and Fit model model para Calculate accuracy meters 15 Best model for nth fold parameters Average over ndid not land land accuracies

21

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

Flight Number vs. Launch Site

Landing Outcome

- Failure
- Success
- Farlier and most recent flights starting mostly from CCAFS SLC 40
- No earlier flights from KSC LC 39A
- ➤ No recent flights from VAFB SLC 4E
- Increasing success rate with increasing Flight
 Number

Payload vs. Launch Site

Landing Outcome

- Failure
- Success
- There are no heavy launches (mass>10000kg) from VAFB SLC 4E
- High success rate for heavy launches from CAFS SLC 40 and KSC LC 39A

Success Rate vs. Orbit Type

- High success rates for ES-L1, GEO, HEO and SSO orbits, but only few launches in these
- Most launches into GTO orbit, but only about
 50% success rate
- Most promising orbit is VLEO with 14 launches and about 85% success rate

Flight Number vs. Orbit Type

Landing Outcome

- Failure
- Success
- Earlier flights mostly into LEO, ISS, PO and GTO orbits
- Recent flights mostly into SSO, MEO, and VLEO orbits

Payload vs. Orbit Type

Landing Outcome

- Failure
- Success
- Heavy launches (mass>10000kg) only into VLEO orbit
- ➤ For LEO, ISS and PO heavier launches result in successful landings

Launch Success Yearly Trend

 Non-monotonous increase in success rate between the years of 2013 to 2020

Launch Site Names

All unique launch sites

Launch_Site	count
CCAFS LC-40	26
CCAFS SLC-40	34
KSC LC-39A	25
VAFB SLC-4E	16

Five launches from CCAFS location

Date	Launch_Site	Landing _Outcome
04-06-2010	CCAFS LC-40	Failure (parachute)
08-12-2010	CCAFS LC-40	Failure (parachute)
22-05-2012	CCAFS LC-40	No attempt
08-10-2012	CCAFS LC-40	No attempt
01-03-2013	CCAFS LC-40	No attempt

Payload Mass

Booster_Version	payload_kg
F9 B5 B1048.4	15600
F9 B5 B1048.5	15600
F9 B5 B1049.4	15600
F9 B5 B1049.5	15600
F9 B5 B1049.7	15600
F9 B5 B1051.3	15600
F9 B5 B1051.4	15600
F9 B5 B1051.6	15600
F9 B5 B1056.4	15600
F9 B5 B1058.3	15600
F9 B5 B1060.2	15600
F9 B5 B1060.3	15600

NASA	total_payload_kg
no	519987
yes	99980

Total payload carried by all the rockets launched for NASA

F9_v1_1	avg_payload_kg	
no	6766.8	
yes	2534.7	

Average payload carried by the F9 v1.1 booster versions

Booster versions that carry maximum payload

Successful Landings

landing_outcome	count
Failure	40
Success	61

 Total number of successful and failed landings

Date	Landing _Outcome
01-05-2017	Success (ground pad)

First successful landing on a ground pad

Booster_Version	payload_kg	Landing _Outcome
F9 FT B1022	4696	Success (drone ship)
F9 FT B1026	4600	Success (drone ship)
F9 FT B1021.2	5300	Success (drone ship)
F9 FT B1031.2	5200	Success (drone ship)

 Successful landings on a drone ship of rockets carrying a payload between 4000 and 6000 kg

Launch Records

year	month	landing	Booster_Version	Launch_Site
2015	01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
2015	04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40
2015	06	Precluded (drone ship)	F9 v1.1 B1018	CCAFS LC-40

Failed landings in 2015

Number of occurrences for each type of landing outcome

landing_outcome	count
Success	38
No attempt	21
Success (drone ship)	14
Success (ground pad)	9
Failure (drone ship)	5
Controlled (ocean)	5
Failure	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1
No attempt	1

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

Map of Launch Site Locations

VAFB Los Angeles SLC-4E

- > Close proximity to the coast
 - > Large uninhabited area
- > Mainly eastern coast
 - ➤ Launches towards east, 'help' due to Earth rotation
- Close to equator
 - ➤ More 'help'

Ottawa

Launch Sites proximity to infrastructure

close proximity to highways and railways

> Bring people and material

- Close proximity to coastline
 - Ocean safe for falling parts
- Safe distance from settlements
 - Avoid damage due to failures

Ottawa

Percentage of total successful landings

- > The launch site KSC LC-39A has the most successful landings (41.7% of the overall successful landings)
- > The fewest successful landings are recorded at launch site CCAFS SLC-40 (12.5%)
- > These numbers are absolute and not weighed against the total number of landings attempted at each site!

Landing outcome at launch site KSC LC-39A

KSC LC-39A has also the highest landing success rate

- Of all the attempted landings at this site
 76.9% were
 successful
- ➤ While only 23.1% failed

Lunch Outcome vs Payload

For all launch sites:

➤ A high percentage of the v1.1 Booster Version resulted in failed landings, independently of payload

For KSC LC-39A:

- Launches with payload smaller than 5500kg resulted in successful landings
- While heavier launches failed to land successfuly

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

- Exploratory data analysis (EDA)
- Interactive visual analytics
- Predictive analysis

Classification Accuracy

- All classification models have a prediction accuracy of around 0.8+- 0.5
- The highest accuracy has the Decision Tree model (although it also has the highest variance in accuracy not seen here)

Confusion Matrix – Decision Tree

- For a selected range of launches the model predicts 9 failed landings and 18 successful ones
- Almost all failure predictions (8 out of 9) were indeed failed landings
- And only 3 of the success predictions actually resulted in failures
- ➤ Total model accuracy: 0.85

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Conclusions

- Most promising orbit is VLEO with 14 launches and about 85% success rate
- Non-monotonous increase in success rate between the years of 2013 to 2020
- Launch Sites: mainly eastern coast; close proximity to transport infrastructure; far from settlements; KSC LC-39A has the most successful landings
- A high percentage of the v1.1 Booster Version resulted in failed landings, independently of payload
- All classification models have a prediction accuracy of around 0.8+- 0.5

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

Yeah – no! Way too many, people would just get confused...

