
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2008; month=9; day=16; hr=8; min=55; sec=13; ms=601;]

Validated By CRFValidator v 1.0.3

Application No: 10597719 Version No: 1.0

Input Set:

Output Set:

Started: 2008-08-14 12:29:23.193

Finished: 2008-08-14 12:29:24.744

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 551 ms

Total Warnings: 20

Total Errors: 0

No. of SeqIDs Defined: 21

Actual SeqID Count: 21

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	402	Undefined organism found in <213> in SEQ ID (11)
W	402	Undefined organism found in <213> in SEQ ID (12)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (14)
W	402	Undefined organism found in <213> in SEQ ID (15)
W	402	Undefined organism found in <213> in SEQ ID (16)
W	402	Undefined organism found in <213> in SEQ ID (18)
W	402	Undefined organism found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)
W	213	Artificial or Unknown found in $\langle 213 \rangle$ in SEQ ID (21)

SEQUENCE LISTING

<110>	syngenta Ltd					
<120>	Methods for sc	reening inse	ecticides			
<130>	PPD 50397/WO					
	10597719					
<141>	2008-08-14					
.1.60:	0.1					
<160>	21					
<170>	PatentIn versi	on 3.1				
<210>	1					
<211>	2797					
<212>	DNA					
<213>	D. melanogaste	r				
<400>	1					
	taaa atatgtggtg	ataacgcgag	ctgccgaatc	tgcgtgcaat	tegtgegttt	60
gacgtg	ggta ctaactgcta	tgctgtcgcg	cggacagttg	ttctgatacg	cagagttcct	120
gcctcad	ccac acacgaccac	ctccattaaa	accagccacc	cccccagcg	cctcctccac	180
cgacago	cage tgetecaceg	caccaccagg	agaggggcaa	ttaaaaaatc	aatcagaggg	240
ccctaat	tga aagctgccac	cgtcgaaatg	tcgccgccga	agaactgcgc	ggtgtgcggg	300
gacaag	gete tgggetacaa	cttcaatgcg	gtcacctgcg	agagctgcaa	ggcgttcttc	360
cgacgga	aacg cgctggccaa	gaagcagttc	acctgcccct	tcaaccaaaa	ctgcgacatc	420
actgtg	gtca ctcgacgctt	ctgccagaaa	tgccgcctgc	gcaagtgcct	ggatatcggg	480
atgaaga	agtg aaaacattat	gtccgaggag	gacaagctga	tcaagcggcg	caagatcgag	540

accaaccggg ccaagcgacg cctcatggag aacggcacgg atgcgtgcga cgccgatggc 600

ggcgaggaaa	gggatcacaa	agcgccggcg	gatagcagca	gcagcaacct	tgaccactac	660	
teggggteae	aggactcgca	gagctgcggc	tcggcggaca	gcggggccaa	tgggtgctcc	720	
ggcagacagg	ccagttcgcc	gggcacacag	gtcaatccgc	ttcagatgac	ggccgagaag	780	
atagtcgacc	agatcgtatc	cgacccggat	cgagcctcgc	aggccatcaa	ccggttgatg	840	
cgcacgcaga	aagaggctat	atcggtgatg	gagaaggtaa	tcagctcaca	aaaggacgcc	900	
ttaaggctgg	tgtcgcattt	gatcgactat	ccaggcgacg	cactcaagat	catttcaaag	960	
tttatgaact	cgccctttaa	cgcgctgaca	gtattcacca	aattcatgag	ctcacccacg	1020	
gacggcgttg	aaattatctc	aaagatagtt	gattcgcccg	cggacgtggt	ggagttcatg	1080	
cagaacttga	tgcactcgcc	agaggacgcc	atcgatataa	tgaacaagtt	catgaatacc	1140	
ccagcggagg	cgctgcgcat	tcttaaccga	atcctaagcg	gcggaggagc	gaacgcagcc	1200	
cagcagacag	cagaccgcaa	gccattgctg	gacaaggagc	cggcggtgaa	gcctgcagcg	1260	
ccagcggagc	gagctgatac	tgtcattcaa	agcatgctgg	gcaacagtcc	gccaatttcg	1320	
ccacatgatg	ctgccgtgga	tctgcagtac	cactcgcccg	gtgtcgggga	gcagcccagt	1380	
acatcgagta	gccacccctt	gccttacata	gccaactcgc	cggacttcga	tctgaagacc	1440	
ttcatgcaga	ccaactacaa	cgacgagccc	agtctggaca	gtgattttag	cattaactca	1500	
atcgaatcgg	tgctatccga	ggtgatccgc	attgagtacc	aggccttcaa	tagcatacaa	1560	
caagcggcat	cgcgcgtaaa	ggaggagatg	tcctacggca	ctcagtctac	gtacggtgga	1620	
tgcaattcgg	ctgcaaacaa	tagccagccg	cacctgcagc	aacccatctg	cgccccatcc	1680	
acccagcagt	tggatcgcga	gctaaacgag	gcggagcaaa	tgaagctgcg	ggagctgcga	1740	
ctggccagcg	aggctcttta	tgatcccgtg	gacgaggacc	tcagcgccct	gatgatgggc	1800	
gatgatcgca	ttaagcccga	cgacactcgc	cacaacccaa	agctattgca	gctgatcaat	1860	
ctgacggcgg	tggccatcaa	gcggcttatc	aaaatggcca	agaagattac	agcattccgt	1920	
gacatgtgcc	aggaggacca	ggtggcccta	ctcaaaggtg	gctgcacaga	aatgatgata	1980	
atgcgctccg	taatgattta	cgacgacgat	cgcgccgcct	ggaaggtacc	ccataccaaa	2040	
gagaacatgg	gcaacatacg	cactgacctg	ctcaagtttg	ccgaaggcaa	tatctacgag	2100	
gagcaccaaa	agttcatcac	aacgtttgac	gagaagtggc	gcatggacga	gaacataatc	2160	
ctgatcatgt	gtgccattgt	cctttttacc	teggetegat	cgcgagtgat	acacaaagac	2220	
gtgattagat	tggaacagaa	ttcctactat	tatcttctgc	gaagatatct	ggagagtgtt	2280	

tattctgg	ct gtgaggcgag	aaacgcgttt	atcaagctaa	tccaaaagat	ttcagatgtg	2340
gagcgtct	ga acaagttcat	aattaatgtc	tatttgaatg	ttaacccatc	ccaggtggag	2400
cccttgct	gc gtgaaatatt	cgatttgaaa	aatcactaga	caaccgatgc	gtgtcgggca	2460
tttaatgc	ct atgttgatgc	ccaatgatga	atggtcaaca	agctgtagtt	gttgttgttg	2520
ttgatgtc	g ttttatcttg	tcgcttgtaa	tgttagattt	taatcgaatg	tgattgttag	2580
atttgcata	at actgcataga	ttttatattt	ctacatcaaa	gagagcatat	ttaggatacc	2640
aagtgcaa	ag caacacaatc	tatatgtaat	gtacaccgtt	tacctagttt	caaataaact	2700
agacgata	at gcaataacta	acttggaagc	gtgggttctg	tgcaaaaagg	aaaaaagaca	2760
aaaaaaat	aa actgactttg	agaaccagtg	gtaaacc			2797
<210> 2						
<211> 3	6					
	AV					
	rtificial sequ	lence				
12.	refrictar beg					
<220>						
	rimer dhr96-F					
<400> 2	rimer dili 90 r					
	at ccttgacgtg	ggtactaact	gctatg			36
<210> 3						
<211> 3	4					
<212> DI	AV					
<213> A:	rtificial sequ	ience				
<220>						
<223> P:	rimer dhr96-R					
<400> 3			tgct			34

```
<211> 24
<212> DNA
<213> Artificial sequence
<220>
<223> dhr96-fwd_primer
<400> 4
catggacgag aacataatcc tgat
                                                                    24
<210> 5
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> dhr96-rev_primer
<400> 5
                                                                    30
cagaagataa tagtaggaat tctgttccaa
<210> 6
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> dhr96-taqman_probe
<400> 6
tgtgccattg tcctttttac ctcggct
                                                                    27
<210> 7
<211> 24
```

<212> DNA

<220>	
~??? >	Dal 22 find arimor
<2232	RpL32-fwd_primer
	7 getaa getgtegeae aaat
gacacg	geraa gergregeae aaar
<210>	8
<211>	23
	23
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	RpL32-rev_primer
<400>	8
ggcatc	agat actgtccctt gaa
<210>	9
<211>	24
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	RpL32-taqman_probe
<400>	9
cgcaag	gecea agggtatega caac
<210>	10
<211>	263
<212>	PRT

<213> Artificial sequence

<213> Artificial sequence

<223> DHR96_peptide2

<400> 10

Thr Asp Gly Val Glu Ile Ile Ser Lys Ile Val Asp Ser Pro Ala Asp 1 5 10 15

Val Val Glu Phe Met Gln Asn Leu Met His Ser Pro Glu Asp Ala Ile 20 25 30

Asp Ile Met Asn Lys Phe Met Asn Thr Pro Ala Glu Ala Leu Arg Ile 35 40 45

Leu Asn Arg Ile Leu Ser Gly Gly Gly Ala Asn Ala Ala Gln Gln Thr 50 55 60

Ala Asp Arg Lys Pro Leu Leu Asp Lys Glu Pro Ala Val Lys Pro Ala 65 70 75 80

Ala Pro Ala Glu Arg Ala Asp Thr Val Ile Gln Ser Met Leu Gly Asn 85 90 95

Ser Pro Gly Val Gly Glu Gln Pro Ser Thr Ser Ser His Pro Leu 115 120 125

Pro Tyr Ile Ala Asn Ser Pro Asp Phe Asp Leu Lys Thr Phe Met Gln 130 135 140

Ser Ile Glu Ser Val Leu Ser Glu Val Ile Arg Ile Glu Tyr Gln Ala 165 170 175

Phe Asn Ser Ile Gln Gln Ala Ala Ser Arg Val Lys Glu Glu Met Ser 180 185 190

Tyr Gly Thr Gln Ser Thr Tyr Gly Gly Cys Asn Ser Ala Ala Asn Asn

195 200 205

Ser Gln Pro His Leu Gln Gln Pro Ile Cys Ala Pro Ser Thr Gln Gln 210 215 220

Leu Asp Arg Glu Leu Asn Glu Ala Glu Gln Met Lys Leu Arg Glu Leu 225 230 235 235 240

Arg Leu Ala Ser Glu Ala Leu Tyr Asp Pro Val Asp Glu Asp Leu Ser 245 250 250

Ala Leu Met Met Gly Asp Asp 260

<210> 11

<211> 440

<212> DNA

<213> D. melanogaster

<400> 11

atcccaaaac	aaactggtta	ttgtggtagg	tcatttgttt	ggcagaaaga	aaactcgaga	60
aatttctctg	gccgttattc	gttattctct	ctttcttt	tgggtctctc	cctctctgca	120
ctaatgctct	ctcactctgt	cacacagtaa	acggcatact	gctctcgttg	gttcgagaga	180
gegegeeteg	aatgttcgcg	aaaagagcgc	cggagtataa	atagaggcgc	ttcgtctacg	240
gagcgacaat	tcaattcaaa	caagcaaagt	gaacacgtcg	ctaagcgaaa	gctaagcaaa	300
taaacaagcg	cagctgaaca	agctaaacaa	tctgcagtaa	agtgcaagtt	aaagtgaatc	360
aattaaaagt	aaccagcaac	caagtaaatc	aactgcaact	actgaaatct	gccaagaagt	420
aattattgaa	tacaagaaga					440

<210> 12

<211> 441

<212> DNA

<213> S. cerevisiae

<400> 12						
atgaagctac	tgtcttctat	cgaacaagca	tgcgatattt	gccgacttaa	aaagctcaag	60
tgctccaaag	aaaaaccgaa	gtgcgccaag	tgtctgaaga	acaactggga	gtgtcgctac	120
tctcccaaaa	ccaaaaggtc	tccgctgact	agggcacatc	tgacagaagt	ggaatcaagg	180
ctagaaagac	tggaacagct	atttctactg	atttttcctc	gagaagacct	tgacatgatt	240
ttgaaaatgg	attctttaca	ggatataaaa	gcattgttaa	caggattatt	tgtacaagat	300
aatgtgaata	aagatgccgt	cacagataga	ttggcttcag	tggagactga	tatgcctcta	360
acattgagac	agcatagaat	aagtgcgaca	tcatcatcgg	aagagagtag	taacaaaggt	420
caaagacagt	tgactgtatc	g				441
<210> 13						
~ZIU/ I3						

<211> 147

<212> PRT

<213> S. cerevisiae

<400> 13

Met Lys Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu 1 5 10

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu 20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro 35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu 50 55 60

Glu Gln Leu Phe Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile 75 65 70

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu 90 85

Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala 100 105 110

Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser 115 120 125

Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu 130 135 140

Thr Val Ser 145

<210> 14

<211> 1944

<212> DNA

<213> D. melanogaster

<400> 14

/400> 14						
aacattatgt	ccgaggagga	caagctgatc	aagcggcgca	agatcgagac	caaccgggcc	60
aagcgacgcc	tcatggagaa	cggcacggat	gcgtgcgacg	ccgatggcgg	cgaggaaagg	120
gatcacaaag	cgccggcgga	tagcagcagc	agcaaccttg	accactactc	ggggtcacag	180
gactcgcaga	gctgcggctc	ggcggacagc	ggggccaatg	ggtgctccgg	cagacaggcc	240
agttcgccgg	gcacacaggt	caatccgctt	cagatgacgg	ccgagaagat	agtcgaccag	300
atcgtatccg	acccggatcg	agcctcgcag	gccatcaacc	ggttgatgcg	cacgcagaaa	360
gaggctatat	cggtgatgga	gaaggtaatc	agctcacaaa	aggacgcctt	aaggctggtg	420
tcgcatttga	tcgactatcc	aggcgacgca	ctcaagatca	tttcaaagtt	tatgaactcg	480
ccctttaacg	cgctgacagt	attcaccaaa	ttcatgagct	cacccacgga	cggcgttgaa	540
attatctcaa	agatagttga	ttegeeegeg	gacgtggtgg	agttcatgca	gaacttgatg	600
cactcgccag	aggacgccat	cgatataatg	aacaagttca	tgaatacccc	agcggaggcg	660
ctgcgcattc	ttaaccgaat	cctaagcggc	ggaggagcga	acgcagccca	gcagacagca	720
gaccgcaagc	cattgctgga	caaggagccg	gcggtgaagc	ctgcagcgcc	agcggagcga	780
gctgatactg	tcattcaaag	catgctgggc	aacagtccgc	caatttcgcc	acatgatgct	840
gccgtggatc	tgcagtacca	ctcgcccggt	gtcggggagc	agcccagtac	atcgagtagc	900
caccccttgc	cttacatagc	caactcgccg	gacttcgatc	tgaagacctt	catgcagacc	960
aactacaacg	acgagcccag	tctggacagt	gattttagca	ttaactcaat	cgaatcggtg	1020

ctatccgagg	tgatccgcat	tgagtaccag	gccttcaata	gcatacaaca	agcggcatcg	1080
cgcgtaaagg	aggagatgtc	ctacggcact	cagtctacgt	acggtggatg	caattcggct	1140
gcaaacaata	gccagccgca	cctgcagcaa	cccatctgcg	ccccatccac	ccagcagttg	1200
gatcgcgagc	taaacgaggc	ggagcaaatg	aagctgcggg	agctgcgact	ggccagcgag	1260
gctctttatg	atcccgtgga	cgaggacctc	agcgccctga	tgatgggcga	tgatcgcatt	1320
aagcccgacg	acactcgcca	caacccaaag	ctattgcagc	tgatcaatct	gacggcggtg	1380
gccatcaagc	ggcttatcaa	aatggccaag	aagattacag	cattccgtga	catgtgccag	1440
gaggaccagg	tggccctact	caaaggtggc	tgcacagaaa	tgatgataat	gcgctccgta	1500
atgatttacg	acgacgatcg	cgccgcctgg	aaggtacccc	ataccaaaga	gaacatgggc	1560
aacatacgca	ctgacctgct	caagtttgcc	gaaggcaata	tctacgagga	gcaccaaaag	1620
ttcatcacaa	cgtttgacga	gaagtggcgc	atggacgaga	acataatcct	gatcatgtgt	1680
gccattgtcc	ttttacctc	ggctcgatcg	cgagtgatac	acaaagacgt	gattagattg	1740
gaacagaatt	cctactatta	tcttctgcga	agatatctgg	agagtgttta	ttctggctgt	1800
gaggcgagaa	acgcgtttat	caagctaatc	caaaagattt	cagatgtgga	gcgtctgaac	1860
aagttcataa	ttaatgtcta	tttgaatgtt	aacccatccc	aggtggagcc	cttgctgcgt	1920
gaaatattcg	atttgaaaaa	tcac				1944

<210> 15

<211> 648

<212> PRT

<213> D. melanogaster

<400> 15

Asn Ile Met Ser Glu Glu Asp Lys Leu Ile Lys Arg Arg Lys Ile Glu 5 10

Thr Asn Arg Ala Lys Arg Arg Leu Met Glu Asn Gly Thr Asp Ala Cys 20 25 30

Asp Ala Asp Gly Gly Glu Glu Arg Asp His Lys Ala Pro Ala Asp Ser

35 40 45

Ser	Ser 50	Ser	Asn	Leu	Asp	His 55	Tyr	Ser	Gly	Ser	Gln 60	Asp	Ser	Gln	Ser
Cys 65	Gly	Ser	Ala	Asp	Ser 70	Gly	Ala	Asn	Gly	Суз 75	Ser	Gly	Arg	Gln	Ala 80
Ser	Ser	Pro	Gly	Thr 85	Gln	Val	Asn	Pro	Leu 90	Gln	Met	Thr	Ala	Glu 95	Lys
Ile	Val	Asp	Gln 100	Ile	Val	Ser	Asp	Pro 105	Asp	Arg	Ala	Ser	Gln 110	Ala	Ile
Asn	Arg	Leu 115	Met	Arg	Thr	Gln	Lys 120	Glu	Ala	Ile	Ser	Val 125	Met	Glu	Lys
Val	Ile 130	Ser	Ser	Gln	Lys	Asp 135	Ala	Leu	Arg	Leu	Val 140	Ser	His	Leu	Ile
Asp 145	Tyr	Pro	Gly	Asp	Ala 150	Leu	Lys	Ile	Ile	Ser 155	Lys	Phe	Met	Asn	Ser 160
Pro	Phe	Asn	Ala	Leu 165	Thr	Val	Phe	Thr	Lys 170	Phe	Met	Ser	Ser	Pro 175	Thr
Asp	Gly	Val	Glu 180	Ile	Ile	Ser	Lys	Ile 185	Val	Asp	Ser	Pro	Ala 190	Asp	Val
Val	Glu	Phe 195	Met	Gln	Asn	Leu	Met 200	His	Ser	Pro	Glu	Asp 205	Ala	Ile	Asp
Ile	Met 210	Asn	Lys	Phe	Met	Asn 215	Thr	Pro	Ala	Glu	Ala 220	Leu	Arg	Ile	Leu
Asn 225	Arg	Ile	Leu	Ser	Gly 230	Gly	Gly	Ala	Asn	Ala 235	Ala	Gln	Gln	Thr	Ala 240
Asp	Arg	Lys	Pro	Leu 245	Leu	Asp	Lys	Glu	Pro 250	Ala	Val	Lys	Pro	Ala 255	Ala
Pro	Ala	Glu	Arg 260	Ala	Asp	Thr	Val	Ile 265	Gln	Ser	Met	Leu	Gly 270	Asn	Ser

Pro	Pro	Ile 275	Ser	Pro	His	Asp	Ala 280	Ala	Val	Asp	Leu	Gln 285	Tyr	His	Ser
Pro	Gly 290	Val	Gly	Glu	Gln	Pro 295	Ser	Thr	Ser	Ser	Ser 300	His	Pro	Leu	Pro
Tyr 305	Ile	Ala	Asn	Ser	Pro 310	Asp	Phe	Asp	Leu	Lys 315	Thr	Phe	Met	Gln	Thr 320
Asn	Tyr	Asn	Asp	Glu 325	Pro	Ser	Leu	Asp	Ser 330	Asp	Phe	Ser	Ile	Asn 335	Ser
			Val 340					345				_	350		
		355	Gln				360			_		365			
	370		Ser		_	375		_			380				
385			Leu		390					395					400
			Glu	405					410	_				415	
			420 Gly			-		425					430		
		435	Leu				440	_				445			
	450		Met			455					460				
465 Glu	Asp	Gln	Val	Ala	470 Leu	Leu	Lys	Gly	Gly	475 Cys	Thr	Glu	Met	Met	480 Ile
				485					490					495	

Met Arg Ser Val Met Ile Tyr Asp Asp Asp Arg Ala Ala Trp Lys Val

500 505 510

Pro His Thr Lys Glu Asn Met Gly Asn Ile Arg Thr Asp Leu L