EECS 126: Probability & Random Processes Fall 2021

Basic Probability

Shyam Parekh

General Framework

- Probability Space = {Sample Space Ω , Events, Probability Measure P}
 - For an event A, 0 ≤ P(A) ≤ 1
 - $P(\phi) = 0, P(\Omega) = 1$
 - If the events A_1, A_2, A_3 ... are disjoint, $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$

Borel-Cantelli Theorem

• Let $\{A_n, n \ge 1\}$ be a collection of events such that $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(A_n \text{ infinitely often}) = 0$.

Independence

- Consider events $\{A_j, j \in J\}$ where J is a set of some positive integers.
 - Pairwise independence: For any pair $j, k \in J, P(A_j \cap A_k) = P(A_j)P(A_k)$.
 - Mutual independence: $P(\bigcap_{j \in K} A_j) = \prod_{j \in K} P(A_j)$, $\forall finitie K \subset J$.
- Pairwise independence

 → Mutual independence

Converse of Borel-Cantelli Theorem

• Let $\{A_n, n \ge 1\}$ be a collection of mutually independent events such that $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(A_n \text{ infinitely often}) = 1$.

Conditional Probability

- Let A and B be two events, and assume P(B) > 0.
 - Conditional probability $P[A|B] := P(A \cap B)/P(B)$
- If A and B are independent, P[A|B] = P(A)
- $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1)P[A_2|A_1]P[A_3|A_1 \cap A_2] \dots P[A_n|A_1 \cap A_2 \cap \dots \cap A_{n-1}],$ if $P(A_1 \cap A_2 \cap \dots \cap A_{n-1}) > 0.$
- Bayes' Rule:
 - Let $A, B_1, ..., B_n$ be the events where B_i 's are disjoint and $\bigcup_{i=1}^n B_i = \Omega$ (sample space).
 - Then, $P[B_i|A] = P[A|B_i]P(B_i) / \sum_{j=1}^n P[A|B_j]P(B_j)$
 - This uses $\sum_{j=1}^{n} P(A \cap B_j) = P(A)$

Random Variable

- A Random Variable (RV) X is a function $X: \Omega \to R$.
- For a $B \subset R$, $P(X \in B) = P(X^{-1}(B))$, where $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$.
- Cumulative Distribution Function (CDF) of $X: F_X(x) := P(X \in (-\infty, x]) = P(X \leq x)$
 - F_X is non-decreasing and right-continuous.
 - $F_X(x) \to 0$ as $x \to -\infty$ and $F_X(x) \to 1$ as $x \to \infty$.

 $P(X \in B) := P(X^{-1}(B))$

Discrete Random Variable

- $X \equiv \{(x_n, p_n), n = 1, ..., N\}$ where $p_n = P(X = x_n)$.
 - N can be infinite.
 - $\{(x_n, p_n), n = 1, ..., N\}$ is called the Probability Mass Function (PMF).
- $E(X) = \sum_{n=1}^{N} x_n p_n$
 - With $N=\infty$, expectation is undefined if both the sums of positive and negatives terms are infinite.
- Function of Random Variable: $\{(h(x_n), p_n), n = 1, ..., N\}$.
 - For defining PMF, we merge identical values and add their probabilities.

- $E(h(X)) = \sum_{n=1}^{N} h(x_n) p_n$
- $var(X) = E((X E(X))^2) = E(X^2) [E(X)]^2 = \sigma_X^2$
- Coefficient of Variation: $CV = \sigma_X / E(X)$
- Refer to the last lecture for the properties of expectation and variance.

Important Discrete Random Variables

• Bernoulli: $X =_D B(p)$ with $p \in [0,1]$

-
$$X \equiv \{(0, 1-p), (1,p)\}$$

-
$$E(X) = p, var(X) = p(1 - p)$$

Canonical example: Models coin flip with 1 for "heads" and 0 for "tails"

• Geometric: $X =_D G(p)$ with $p \in [0,1]$

-
$$P(X = n) = (1 - p)^{n-1}p, n \ge 1$$

-
$$E(X) = 1/p, var(X) = (1-p)p^{-2}$$

- X is memoryless:
$$P[X > m + n \mid X > m] = P(X > n) = (1 - p)^n$$
, m, n ≥ 1

- Canonical example: Models # of coin flips until the first "heads"

• Binomial: $X =_D B(N, p)$ with $p \in [0,1]$ and $N \ge 1$

-
$$P(X = n) = {N \choose n} p^n (1-p)^{N-n}, n = 0, 1, ..., N$$

$$- E(X) = Np, var(X) = Np(1-p)$$

Canonical example: Models # of "heads" in N coin flips

• Poisson: $X =_D P(\lambda)$ with $\lambda > 0$

$$- P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0$$

$$- E(X) = \lambda, var(X) = \lambda$$

Canonical example: Models # arrivals in a given interval

0.10 0.05 0.00

Multiple Discrete Random Variables

- Consider a pair of RVs (X, Y)
- Joint Probability Mass Function (JPMF): $p_{i,j} = P(X = x_i, Y = y_j) \forall i, j$
 - The number of possible values for X and/or Y can be infinite.
- Marginal PMF from JPMF: $P(X = x_i) = \sum_j P(X = x_i, Y = y_j)$
- RVs X, Y are independent if $P(X = x, Y = y) = P(X = x)P(Y = y) \ \forall \ x, y$
- For $h: R^2 \to R$, $E(h(X,Y)) := \sum_i \sum_j h(x_i,y_j) p_{i,j}$
- As before, cov(X,Y) = E((X E(X))(Y E(Y)) = E(XY) E(X)E(Y)
 - Uncorrelated vs. positively/negatively correlated
- Theorem B.4:
 - Independent RVs are uncorrelated.
 - Converse is not true.
 - The variance of a sum of uncorrelated RVs is the sum of their variances.

Multiple Discrete Random Variables (Cont'd)

- Conditional PMF: $P(Y = y_i \mid X = x_i) = P(X = x_i, Y = y_i)/P(X = x_i)$
- Conditional expectation: $E[Y \mid X = x_i] = \sum_j y_j P[Y = y_j \mid X = x_i]$
 - We define $E[Y \mid X]$ as an RV that takes the value $E[Y \mid X = x_i]$ when $X = x_i$.
 - Observe $E[Y \mid X]$ is a function g(X) with $g(x_i) = E[Y \mid X = x_i]$.
- Theorem B.5:
 - $E[E[Y \mid X]] = E[Y]$
 - $E[h(X)Y \mid X] = h(X)E[Y \mid X]$
 - E[Y | X] = E(Y) if X and Y are independent.
- Conditional expectation of a function of an RV
 - $E[h(Y) | X = x_i] = \sum_j h(y_j) P[Y = y_j | X = x_i]$
- Linearity of conditional expectation
 - $E[h_1(Y) + h_2(Y) | X] = E[h_1(Y) | X] + E[h_2(Y) | X]$

General Random Variables

- Continuous range of possible values.
- Cumulative Distribution Function (CDF) of an RV X is defined as $F_X(x) = P(X \le x)$.
- Probability Density Function (PDF) of an RV X is defined as $f_X(x) = \frac{d}{dx} F_X(x)$ if the derivative exists.
- Observations:
 - $P(a < X \le b) = F_X(b) F_X(a) = \int_a^b f_X(x) dx$.
 - $f_X(x)dx = P(X \in (x, x + dx]).$

Examples of General Random Variables

- Uniform: $X =_D U[a, b]$ with a < b
 - PDF $f_X(x) = \frac{1}{(b-a)} 1\{a \le x \le b\}$
 - CDF $F_X(\mathbf{x}) = \max\{0, \min\left\{1, \frac{x-a}{b-a}\right\}\}$
 - $E(X) = \frac{a+b}{2}, var(X) = \frac{(b-a)^2}{12}$

- Exponential: $X =_D Exp(\lambda)$ with $\lambda > 0$
 - PDF $f_X(x) = \lambda e^{-\lambda x} \mathbb{1}\{x \ge 0\}$
 - CDF $F_X(x) = 1 e^{-\lambda x}$, $x \ge 0$
 - X is memoryless: $P[X > x + y | X > x] = P(X > y) = e^{-\lambda y}, x, y > 0$
 - $E(X) = \lambda^{-1}, var(X) = \lambda^{-2}$

Examples of General Random Variables (Cont'd)

• Gaussian/Normal: $X =_D N(\mu, \sigma^2)$

- PDF
$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2)$$

- CDF
$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x \exp(-\frac{1}{2}(\frac{u-\mu}{\sigma})^2) du$$

$$- E(X) = \mu, var(X) = \sigma^2$$

Expectation of General Random Variables

- $E(h(X)) = \int_{-\infty}^{\infty} h(x) dF_X(x) = \int_{-\infty}^{\infty} h(x) f_X(x) dx$
 - Example: $X =_D U[0, 1], E(X^k) = \int_0^1 x^k dx = 1/(k+1)$
- In general, $X_n \to X \not\Rightarrow E(X_n) \to E(X)$
 - However, Dominated Convergence Theorem (DCT) and Monotone Convergence
 Theorem (MCT) provide sufficient conditions for this to happen.
- Theorem: Let $X \ge 0$ be a non-negative RV with $E(X) < \infty$. Then,

$$E(X) = \int_0^\infty P(X > x) dx.$$

- Proof relies on DCT.
- Expectation is integral of Complementary CDF (CCDF).

Mixed Random Variable Example

- With probability 0.4, X = 0.3 and is uniformly distributed in [0, 1] with probability 0.6.
- Find CDF, PDF, E(X) and var(X).

Multiple General Random Variables

- For RVs X and Y, Joint CDF (JCDF) $F_{X,Y}(x,y) = P(X \le x, Y \le y)$.
 - If exists, Joint PDF (JPDF) $f_{X,Y}(x,y)$ satisfies $F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y) dxdy$.
 - Interpret $f_{X,Y}(x,y)$ dxdy = P(X ϵ (x, x + dx], Y ϵ (y, y + dy]).
 - Example: $f_{X,Y}(x,y) = \frac{1}{\pi} \mathbb{1}\{x^2 + y^2 \le 1\}$, $x,y \in R$ places (x,y) uniformly over a unit circle.
- For $h: R^2 \to R$, $E(h(X,Y)) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f_{X,Y}(x,y) dxdy$.
- If exist, JPDF's of independent RVs X and Y satisfy $f_{X,Y}(x,y) = f_X(x)f_Y(y) \ \forall \ x,y \in R$.
- For independent RVs X and Y, given two functions $g, h: R \to R$, RVs g(X) and h(Y) are independent.
- Minimum and maximum of independent RVs *X* and *Y*:
 - With $V = \min(X, Y)$, P(V > v) = P(X > v, Y > v) = P(X > v)P(Y > v).
 - With W= $\max(X, Y)$, $P(W \le w) = P(X \le w, Y \le w) = P(X \le w)P(Y \le w)$.
- Sum of independent RVs X and Y: Z = X + Y.
 - $f_Z(z)dz = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dxdz \Rightarrow f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx$
 - $f_Z(z) = f_X * f_Y(z)$ (i.e., f_Z is convolution of f_X and f_Y).
- Conditional PDF and expectation.
 - $f_{Y|X}[y \mid x] = f_{X,Y}(x,y)/f_X(x)$ if $f_X(x) > 0$.
 - $E[h(Y) | X = x] = \int_{-\infty}^{\infty} h(y) f_{Y|X}[y | x] dy.$

Random Vectors

- Let $X = (X_1, ..., X_n)' = {X_1 \choose X_n}$ be a random vector in \mathbb{R}^n where the RVs are defined over a common probability space.
- Given two random vectors **X** and **Y**, we define
 - $E(X) = (E(X_1), ..., E(X_n))'$
 - $\Sigma_{\mathbf{X}} = \mathbb{E}((\mathbf{X} \mathbb{E}(\mathbf{X}))(\mathbf{X} \mathbb{E}(\mathbf{X}))')$ (an nxn matrix of $\mathbb{E}((X_i \mathbb{E}(X_i))(X_j \mathbb{E}(X_j)))$
 - $cov(X, Y) = E((X E(X))(Y E(Y))') \text{ (an nxn matrix of } E((X_i E(X_i))(Y_j E(Y_j)))$
 - Note $\Sigma_X = cov(X, X) =: cov(X)$
 - It can be shown that cov(AX + a, BY + b) = Acov(X, Y)B'
- Given two random vectors $\textbf{\textit{X}}$ and $\textbf{\textit{Y}}$, we define their inner product $< \textbf{\textit{X}}, \textbf{\textit{Y}}> := E(\textbf{\textit{X}}'\textbf{\textit{Y}}) = \sum_{i=1}^n E(X_iY_i)$ (Note: Textbook defines $\textbf{\textit{X}} \perp \textbf{\textit{Y}}$ if $E(\textbf{\textit{X}}\textbf{\textit{Y}}') = \textbf{\textit{0}}$, where both sides are nxn matrices.)
 - Define $||X||^2 = \langle X, X \rangle = \sum_{i=1}^n E(X_i^2)$
 - If $\langle X, Y \rangle = 0$, we say X, Y are orthogonal or $X \perp Y$.
 - If $\langle X, Y \rangle = 0$, $||Y X||^2 = ||X||^2 + ||Y||^2$ ("Pythagoras' Theorem")

- If random vectors $X^i \perp Y^j$ (where U^i has i^{th} component as the original U_i and all other components set to 0) for $\forall i, j, E(XY') = \mathbf{0}$. (Both sides are nxn matrices.)
 - If E(X) = 0, cov(X, Y) = 0.
 - This implies $X \perp Y$, and $||Y X||^2 = (||X||^2) + (||Y||^2$.

Density of a Function of RVs

- Suppose a RV X has PDF $f_X(x)$ and Y = aX + b. Then,
 - $f_Y(y) = \frac{1}{|a|} f_X(x)$ where ax + b = y.
- Suppose a random vector X has JPDF $f_X(x)$, and Y = AX + b where A is a nonsingular matrix. Then,
 - $f_Y(y) = \frac{1}{|A|} f_X(\mathbf{x})$ where Ax + b = y, and |A| is the absolute value of the determinant of A.
- Suppose Y = g(X) where X has density $f_X(x)$. Then,
 - $f_Y(y) = \sum_i \frac{1}{|J(x_i)|} f_X(x_i)$ where the sum is over all x_i such that $g(x_i) = y$ and $|J(x_i)|$ is the absolute value of Jacobian evaluated at x_i .
 - Recall $J_{i,j}(\mathbf{x}) = \frac{\partial}{\partial x_i} g_i(\mathbf{x}).$