

A fixed smooth solid sphere has centre O and radius a. A particle of mass m is projected downwards with speed  $\sqrt{\frac{1}{6}ag}$  from the point A on the surface of the sphere, where OA makes an angle  $\alpha$  with the upward vertical through O (see diagram). The particle moves in part of a vertical circle on the surface of the sphere. It loses contact with the sphere at the point B, where OB makes an angle  $\beta$  with the upward vertical through O.

| Given that $\cos \alpha = \frac{2}{3}$ , find the value of $\cos \beta$ . | [5]   |
|---------------------------------------------------------------------------|-------|
|                                                                           | ••••• |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           | ••••• |
|                                                                           |       |
|                                                                           |       |
|                                                                           | ••••• |
|                                                                           | ••••• |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           |       |
|                                                                           | ••••• |
|                                                                           | ••••• |
|                                                                           |       |

© UCLES 2020 9231/32/O/N/20