What is claimed is:

1. A monoazoquinolone pigment which, in one of its tautomeric forms, corresponds to formula

wherein

W is unsubstituted or substituted C_6 - C_{24} aryl or unsubstituted or substituted heteroaryl or is a radical of formula

wherein

Ar₂ is unsubstituted or substituted C_6 - C_{24} aryl or unsubstituted or substituted heteroaryl, Ar₁ is unsubstituted or substituted C_6 - C_{24} aryl or unsubstituted or substituted heteroaryl, R, R₁ and R₂ are each independently of the others hydrogen, C_1 - C_6 alkyl, halogen, cyano, CF_3 , nitro, NR₃R₄, COOR₄, NR₄COR₃, COO⁻X⁺, COR₄, OR₄, SR₃, SO₂R₃, SO₂NR₃R₄, SO₃-X⁺, or C_6 - C_{24} aryl which is unsubstituted or mono- or poly-substituted by R₅,

 R_3 is C_1 - C_6 alkyl, or C_6 - C_{12} aryl which is unsubstituted or mono- or poly-substituted by halogen, hydroxy, OR_7 , cyano, nitro, SR_7 , NR_6R_7 , $COOR_7$, $CONR_6R_7$, NR_6COR_7 , NR_6COOR_7 , COO^*X^+ , COR_4 , OR_4 , SO_2R_7 , $SO_2NR_6R_7$, $SO_3^*X^+$ or by SO_3R_7 ,

R₄ is hydrogen or has the meanings of R₃,

R₅ is hydrogen, C₁-C₄alkyl, halogen, nitro, NR₇R₈ or OR₇,

R₆ is hydrogen or C₁-C₃alkyl,

 R_7 and R_8 are each independently of the other hydrogen; C_1 - C_3 alkyl; phenyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR_5 , $NR_{16}R_{17}$; or benzyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR_5 , $NR_{16}R_{17}$, and X^+ is a cation H^+ , Li^+ , Na^+ , K^+ , $Mg^{++}_{1/2}$, $Ca^{++}_{1/2}$, $Sr^{++}_{1/2}$, $Ba^{++}_{1/2}$, Cu^+ , $Cu^{++}_{1/2}$, $Zn^{++}_{1/2}$, $Mn^{++}_{1/2}$, $Al^{+++}_{1/3}$ or $[NR_9R_{10}R_{11}R_{12}]^+$, wherein R_9 , R_{10} , R_{11} and R_{12} are each independently of the others

hydrogen; C_1 - C_6 alkyl; phenyl which is unsubstituted or mono- or poly-substituted by C_1 - C_6 alkyl, halogen, nitro, OR_5 , $NR_{16}R_{17}$; or benzyl which is unsubstituted or mono- or poly-substituted by C_1 - C_6 alkyl, halogen, nitro, OR_5 , $NR_{16}R_{17}$, and

 R_{16} and R_{17} are each independently of the other hydrogen or $C_1\text{-}C_6$ alkyl.

2. A monoazoquinolone pigment according to claim 1, of formula

wherein

 Ar_1 and Ar_2 are each independently of the other unsubstituted or substituted C_6 - C_{24} aryl or unsubstituted or substituted heteroaryl,

R, R₁ and R₂ are each independently of the others hydrogen, C₁-C₆alkyl, halogen, cyano, CF₃, nitro, NR₃R₄, COOR₄, NR₄COR₃, COO^{*}X[†], COR₄, OR₄, SR₃, SO₂R₃, SO₂NR₃R₄, SO₃^{*}X[†], or C₆-C₂₄aryl which is unsubstituted or mono- or poly-substituted by R₅,

 R_3 is C_1 - C_6 alkyl, or C_6 - C_{12} aryl which is unsubstituted or mono- or poly-substituted by halogen, hydroxy, OR_7 , cyano, nitro, SR_7 , NR_6R_7 , $COOR_7$, $CONR_6R_7$, NR_6COR_7 ,

R₄ is hydrogen or has the meanings of R₃,

 R_5 is hydrogen, C_1 - C_4 alkyl, halogen, nitro, NR_7R_8 or OR_7 ,

R₆ is hydrogen or C₁-C₃alkyl,

 R_7 and R_8 are each independently of the other hydrogen; C_1 - C_3 alkyl; phenyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR_5 , $NR_{16}R_{17}$; or benzyl which is unsubstituted or mono- or poly-substituted by halogen, nitro, OR_5 , $NR_{16}R_{17}$, and X^+ is a cation H^+ , Li^+ , Na^+ , K^+ , $Mg^{++}_{1/2}$, $Ca^{++}_{1/2}$, $Sr^{++}_{1/2}$, $Ba^{++}_{1/2}$, Cu^+ , $Cu^{++}_{1/2}$, $Zn^{++}_{1/2}$, $Mn^{++}_{1/2}$, $Al^{+++}_{1/2}$, or $[NR_9R_{10}R_{11}R_{12}]^+$, wherein R_9 , R_{10} , R_{11} and R_{12} are each independently of the others hydrogen; C_1 - C_6 alkyl; phenyl which is unsubstituted or mono- or poly-substituted by C_1 - C_6 alkyl, halogen, nitro, OR_5 , $NR_{16}R_{17}$; or benzyl which is unsubstituted or mono- or poly-substituted by C_1 - C_6 alkyl, halogen, nitro, OR_5 , $NR_{16}R_{17}$, and

 R_{16} and R_{17} are each independently of the other hydrogen or $C_1\text{-}C_6$ alkyl.

3. A monoazoquinolone pigment according to either claim 1 or claim 2, wherein Ar_1 is a radical of formula

$$R_{15} R_{14}$$
 (2)

wherein

 R_{13} , R_{14} and R_{15} are each independently of the others hydrogen, C_1 - C_6 alkyl, halogen, cyano, CF_3 , nitro, NR_3R_4 , $COOR_4$, NR_4COR_3 , COO^*X^* , COR_4 , OR_4 , SR_3 , SO_2R_3 , $SO_2NR_3R_4$, SO_3R_4 , $SO_3^*X^*$, or C_6 - C_{12} aryl which is unsubstituted or mono- or poly-substituted by R_5 .

4. A monoazoquinolone pigment according to either claim 2 or claim 3, wherein Ar_2 is a radical of formula

$$R_{15}$$
 R_{14} (2)

wherein

 R_{13} , R_{14} and R_{15} are each independently of the others hydrogen, C_1 - C_6 alkyl, halogen, cyano, CF_3 , nitro, NR_3R_4 , $COOR_4$, NR_4COR_3 , COO^-X^+ , COR_4 , OR_4 , SR_3 , SO_2R_3 , $SO_2NR_3R_4$, SO_3R_4 , $SO_3^-X^+$, or C_6 - C_{12} aryl which is unsubstituted or mono- or poly-substituted by R_5 .

- 5. A monoazoquinolone pigment according to any one of claims 1 to 4, wherein R_1 and R_2 are each independently of the other hydrogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, chlorine, $COOR_5$, NR_4COR_3 , COO^*X^+ or $SO_3^*X^+$, R_5 is hydrogen or C_1 - C_3 alkyl and X^+ is a cation Na^+ , $Mg^{++}_{1/2}$, $Ca^{++}_{1/2}$, $Sr^{++}_{1/2}$, $Ba^{++}_{1/2}$ or $[NR_9R_{10}R_{11}R_{12}]^+$, wherein R_9 , R_{10} , R_{11} and R_{12} are each independently of the others hydrogen; C_1 - C_6 alkyl; phenyl which is unsubstituted or mono- or polysubstituted by C_1 - C_3 alkyl, halogen, nitro, OR_7 , $N(R_7)_2$; or benzyl which is unsubstituted or mono- or poly-substituted by C_1 - C_3 alkyl, halogen, nitro, OR_7 , $N(R_7)_2$.
- 6. A monoazoquinolone pigment according to any one of claims 1 to 4, wherein R_1 and R_2 are each independently of the other hydrogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, chlorine, COOR₅, NR₄COR₃, COO⁻X⁺ or SO₃-X⁺, R₅ is hydrogen or C₁-C₂alkyl and X⁺ is a cation Na⁺, Mg⁺⁺_{1/2},

 $Ca^{++}_{1/2}$, $Sr^{++}_{1/2}$, $Ba^{++}_{1/2}$ or $[NR_9R_{10}R_{11}R_{12}]^+$, wherein R_9 , R_{10} , R_{11} and R_{12} are each independently of the others hydrogen, C_1 - C_6 alkyl, phenyl which is unsubstituted or mono- or polysubstituted by C_1 - C_2 alkyl and/or by halogen, or benzyl which is unsubstituted or mono- or poly-substituted by C_1 - C_2 alkyl and/or by halogen.

- 7. A monoazoquinolone pigment according to claim 6, wherein R_1 and R_2 are each independently of the other hydrogen, C_1 - C_2 alkyl, C_1 - C_2 alkoxy, chlorine, COOR $_5$ or NR $_4$ COR $_3$ and R $_5$ is hydrogen or C_1 - C_2 alkyl.
- 8. A process for the preparation of a monoazoquinolone pigment of formula (1) according to claim 1, wherein a compound of formula

is diazotised and coupled to a compound of formula

or to a compound of formula

wherein Ar_1 , W, R, R_1 and R_2 are as defined for formula (1) in claim 1 and Ar_2 is as defined for formula (1a) in claim 1.

- 9. The use of a monoazoquinolone pigment according to claim 1 in the colouring of high molecular weight material.
- 10. The use of a monoazoquinolone pigment according to claim 1 as a colourant for plastics, surface coatings or printing inks.

WO 2004/085540 PCT/EP2004/050308

- 42 -

11. The use of a monoazoquinolone pigment according to claim 1 as a colourant in the production of colour filters.