MODULE III

IoT Connectivity Technologies

SYLLABUS

Connecting Smart Objects - IoT Access Technologies:

Physical and MAC layers, topology and Security of IEEE

802.15.4, 1901.2a, 802.11ah and LoRaWAN

Connecting Smart Objects

IoT Access Technologies

- IEEE 802.15.4 Smart Objects
- IEEE 802.15.4g Smart Cities
- IEEE 1901.2a Smart Objects over power lines
- IEEE 802.11ah Wi-Fi standards for smart objects
- LoRaWAN
- NB-IoT and other LTE Variations

1. Communication Criteria

Communication Criteria

Short range	Medium range	Long range
Supports: tens of meters of maximum distance between two devices	Supports: tens to hundreds of meters (less than 1 mile between two devices)	Supports : Distances greater than 1 mile between two devices
 Examples: Wireless technologies: IEEE 802.15.1 (Bluetooth) IEEE 802.15.7 Visible Light Communications (VLC) Wired technologies: Serial cable 	 Examples: Wireless technologies: IEEE 802.11 Wi-Fi, IEEE 802.15.4, 802.15.4g and WPAN Wired technologies: IEEE 802.3 Ethernet and IEEE 1901.2 Narrowband Power Line Communications (PLC) 	 Examples: Wireless technologies: cellular (2G, 3G, 4G), IEEE 802.11 Wi-Fi, Low-Power Wide-Area (LPWA) technologies ideal for IoT devices Wired technologies: IEEE 802.3 over optical fiber and IEEE 1901 Broadband Power Line Communications

(b) Frequency Bands

- Radio spectrum is regulated by International Telecommunication Union (ITU) and the Federal Communications Commission (FCC)
- Spectrum critical resource
- Wireless communication frequency bands licensed and unlicensed bands
- ITU Licensed spectrum
 - Applicable to IoT long-range access technologies
 - Allocated to communications infrastructures deployed by service providers, public services, broadcasters and utilities
 - Examples: IoT devices access are cellular, WiMAX and Narrowband IoT (NB-IoT) technologies
 - Digital Enhance Cordless Telecommunication (DECT) No royalty fees

- ITU Unlicensed spectrum
 - Industrial, Scientific and Medical (ISM) portions of radio bands
 - Short range devices (SRD)
 - No guarantee or protection
- Well-known ISM Bands:
 - 2.4 GHz band used by IEEE 802.11B/G/N Wi-Fi
 - IEEE 802.15.1 Bluetooth
 - IEEE 802,15.4 WPAN
- Sub-GHz bands are used by
 - IEEE 802.15.4, 802.15.4g, 802.11ah, LPWA (LoRa and Sigfox)
 - 169 MHz, 433MHz, 868 MHz, 915 MHz
 - CEPT
 - Effective Isotrophic Radiated Power (EIRP)
 - Duty Cycle

c) Power Consumption

- Powered Nodes vs Battery-powered
- LPWA

d) Topology

• Name the topologies learnt before.

d) Topology

Star Topology	Peer-to-peer Topology	Mesh topology
Single central base station or controller to allow communications with endpoints	communicate with any	 Helps to cope with low transmit power Searching to reach a greater overall distance Coverage by having intermediate nodes relaying traffic for other nodes
Long-range, medium- range and Short-range technologies	Medium-range technologies	Medium-range, Long-range technologies
Example: Cellular, LPWA, indoor Wi-Fi deployments and Bluetooth networks	•	Example: outdoor Wi-Fi, IEEE 802.15.4 IEEE 802.15.4g and wired IEEE 1901.2a PLC

Mesh topology:

- Requires the implementation of a forwarding protocol Layer 2 known as **mesh-under** or a Layer 3 referred to as **mesh-over** on each intermediate node
- Battery-powered nodes in mesh topology
- Sleep-mode
- Either act as **leaf nodes** (or reduced-function device RFD) or as a **"last resource path"** to relay traffic when used as intermediate nodes
- The topology type and the role of the node in the topology are significant factors for a successful implementation

e) Constrained Devices

	S.No	Class	Definition	
	1.	Class 0	 Severely constrained with <10KB of memory, <100 KB of Flash processing and storage capability Battery-powered Eg:- Push button that sends 1 byte of information when changing its status Well suited for new unlicensed LPWA wireless technology 	
	2.	Class 1	 Processing and code space characteristics approximately 10 KB RAM and 100 KB Flash Cannot easily communicate with nodes employing a full IP stack Constrained Application Protocol (CoAP) Provides support for the necessary security functions Eg:- Environmental sensors 	
16-:	3.	 Class 2 Running full implementations of an IP stack on embedded devices > 50 KB of memory and 250 KB of Flash Fully integrated in IP networks Eg:- Smart power meter 		

f) Constrained-Node Networks

- Constrained nodes have limited resources networking feature set and capabilities
- The Internet Engineering Task Force (IETF) acknowledges in RFC (Request for Comments) 7228 that different categories of IoT devices are deployed
- Constrained-node networks are often referred to as Low-power and Lossy Networks (LLNs)
 - Low-power indicate powered and battery powered constrained nodes
 - Lossy Networks indicates that network performance may suffer from interference and variability due to harsh radio environments
- Layer 1 and Layer 2 protocols that can be used for constrained-node networks
 - Data Rate and Throughput
 - Latency and Determinism
 - Overhead and Payload

f) Constrained-Node Networks

- LPWA networks
 - Designed with a certain number of messages per day or per endpoint
- LLN constrained nodes
 - Send only one message a day, real throughput is often very important for constrained devices implementing an IP stack
 - Throughput is a lower percentage of the data rate
- Two-way communication handling and variable data payload size reduces the throughput
 - LLNs are able to transport IP such as
 - IEEE 802.15.4 payload size is 127 bytes
 - IPv6 payload size is 1280 bytes
 - IEEE 802.15.4g payload size is 2048 bytes
 - LPWA technologies offer small payload sizes
 - LoRaWAN technology payload size is 19 bytes

Introduction - IoT Access Technology

- > Following topics are addressed:
 - **Standardization and alliances**: Standards bodies that maintain the protocols for a technology
 - Physical layer: Wired or wireless methods and relevant frequencies
 - MAC layer: Considerations at the Media Access Control (MAC) layer, which bridges the physical layer with data link control
 - Topology: The topologies supported by the technology
 - **Security**: Security aspects of the technology
 - Competitive technologies: Other technologies that are similar and may be suitable alternatives to the given technology

IEEE 802.15.4

- > IEEE 802.15.4
 - **low-cost** and **low-data-rate** devices that are powered or run on batteries
- > IEEE 802.15.4 commonly found in the following types of deployments:
 - Home and building automation
 - Automotive networks
 - Industrial wireless sensor networks
 - Interactive toys and remote controls
- ➤ IEEE 802.15.4 uses Collision Sense Multiple Access/Collision Avoidance (CSMA/CA) algorithm degrades the reliability and cause unbounded latency
- > Interference and multipath fading due to lack of frequency-hopping technique

IEEE 802.15.4 Standardization and Alliances

- > Low-data-rate PHY and MAC layer in wireless personal area networks (WPAN)
 - This standard have low-complexity wireless devices with low data rates with good battery life
- > IEEE 802.15.4 PHY and MAC layers are the foundations for several networking protocol stacks
 - ZigBee
 - 6LoWPAN
 - ZigBeelP
 - ISA100.11a
 - WirelessHART
 - Thread

IEEE 802.15.4 - ZigBee

- > ZigBee solutions are aimed at smart objects and sensors that have low bandwidth, interoperate and low power needs
- > Sets of Commands and Message types called **clusters**
- > ZigBee is the most well-known automation for commercial, retail, smart energy, and home applications

Figure 4-3 High-Level ZigBee Protocol Stack

IEEE 802.15.4 – ZigBee IP

ZigBee IP

- IEEE 802.15.4, IP and TCP/UDP protocols and various other open standards are supported at the **network** and transport layers
- Suitable for low-bandwidth, low-power, and costeffective communications when connecting smart objects

ZigBee IP Applications

- Smart Energy (SE) Profile 2.0
- Smart metering and residential energy management systems

Figure 4-4 ZigBee IP Protocol Stack

IEEE 802.15.4 - Physical Layer

- > 802.15.4: Supports an extensive number of PHY options that range from **2.4 GHz to sub-GHz** frequencies in ISM bands based on Direct Sequence Spread Spectrum (DSSS)
 - Modulation technique in which a signal is intentionally spread in the frequency domain, resulting in greater bandwidth
- Original physical layer transmission options
 - 2.4 GHz, 16 channels, with a data rate of 250 kbps
 - 915 MHz, 10 channels, with a data rate of **40** kbps
 - 868 MHz, 1 channel, with a data rate of 20 kbps
- ➤ PHY communication options: Offset Quadrature Phase-Shift Keying (OQPSK), Binary Phase-Shift Keying (BPSK) and Amplitude Shift Keying (ASK)

20

IEEE 802.15.4 - Physical Layer

- Figure 4-5 IEEE 802.15.4 PHY Format
- ➤ Preamble: 32-bit or 4-byte pattern that identifies the start of the frame and is used to synchronize the data transmission
- > Start of Frame Delimiter fields: Informs the receiver that frame contents start immediately after this byte
- > PSDU (PHY service data unit) is the data field or payload
 - Maximum size of the PSDU is **127** bytes

IEEE 802.15.4 - MAC Layer

- ➤ MAC frames are specified in 802.15.4:
 - Data frame: Handles all transfers of data: maximum payload is 127 bytes
 - **Beacon frame**: Used in the transmission of beacons from a PAN coordinator
 - Acknowledgement frame: Confirms the successful reception of a frame
 - MAC command frame: Responsible for control communication between devices
- > The 802.15.4 MAC frame broken down into

IEEE 802.15.4 - MAC Layer

IEEE 802.15.4 - Topology

- > Star, peer-to-peer or mesh topologies
- A minimum of one **FFD** acting as a PAN coordinator, required to deliver services that allow other devices to associate and form a cell or PAN
- >802.15.4 PAN should be set up with a unique ID
 - FFD devices can communicate with any other devices, whereas RFD devices can communicate only with FFD devices

IEEE 802.15.4 - Security

Figure 4-8 Frame Format with the Auxiliary Security Header Field for 802.15.4

- > Uses Advanced Encryption Standard (AES) with a 128-bit key length
- Frame Control portion of the header is the first step to enabling AES encryption
 - This field is a single bit that is set to 1 for security

IEEE 802.15.4 - Competitive Technologies

- > A competitive radio technology that is different in its PHY and MAC layers is **DASH7**
 - DASH7 was originally based on the **ISO18000-7** standard and positioned for industrial communications, whereas IEEE 802.15.4 is more generic
- > Commonly employed in active radio frequency identification (RFID) implementations
- > DASH7 was used by US military forces for many years
- > Active RFID utilizes radio waves generated by a battery-powered tag on an object to enable continuous tracking
- ➤ The current DASH7 technology offers low power consumption, a compact protocol stack, range **up to 1 mile** and **AES** encryption

IEEE 802.15.4g and IEEE 802.15.4e

Optimization in IEEE 802.15.4g and IEEE 802.15.4e

- What are the drawbacks of IEEE 802.15.4?
- IEEE 802.15.4e:
 - Factory, Process Automation and Smart Grid
- IEEE 802.15.4g:
 - Outdoor wireless mesh networks for FAN

Applications:

- 1. SCADA
- 2. Public Lighting
- 3. Environmental wireless sensors in smart cities
- 4. Electrical Vehicle Charging Stations
- 5. Microgrids
- 6. Smart Parking meters
- 7. Renewable Energy

STANDARDISATION AND ALLIANCE

What can be the major issue when more amendments arises in standards?

INTEROPERABLILITY – Wi-SUN Alliance Smart Utility Network (SUN Alliance Formed)

 Table 4-3
 Industry Alliances for Some Common IEEE Standards

Commercial Name/Trademark	Industry Organization	Standards Body	
Wi-Fi	Wi-Fi Alliance	IEEE 802.11 Wireless LAN	
WiMAX	WiMAX Forum	IEEE 802.16 Wireless MAN	
Wi-SUN	Wi-SUN Alliance	IEEE 802.15.4g Wireless SUN	

IEEE 802.15.4g - Physical Layer

- What is the maximum payload size of IEEE 802.15.4?
- It is now increased to 2047 bytes
- How many bits are used for CRC in IEEE 802.15.4?
- It is now increased to 32 bits

Modulation Techniques

- Supported bandwidth 169MHz to 2.4GHz
- Multi-Rate Multi-Regional FSK
- Multi-Rate Multi-Regional Orthogonal-FDM
- Multi-Rate Multi-Regional Offset-QPSK

IEEE 802.15.4e - MAC Layer

- Time-Slotted Channel Hopping(TSCH) —time slots
 - Number of time slots Slot frame
- Industrial Elements

IE can carry additional metadata to support MAC layer service

- Enhanced Beacons(EB)
 - Construction of application-specific beacon content.
 - Added IE in EB frames
- Enhanced Beacon Request
- Enhanced Acknowledgement

IEEE 802.15.4g/e MAC Frame Format

TOPOLOGY

- Mesh Topology is preferred
- Smart Cities, Industrial Applications
- Battery powered nodes needs optimized Layer 2 forwarding or Layer 3 routing protocol
- Necessary to cope up with sleeping-battery powered nodes

Security

- Encryption AES
- IEEE 802.15.9 Key Management Protocol (KMP)
- Robust Datagram Security

IEEE 1901.2a

- Narrowband Power Line Communication (NB-PLC)
- Low Power, Low Range and Interference over same wires
- Applications
 - Smart metering
 - Distribution automation
 - Public Lighting
 - Electric Vehicle Charging Stations
 - Microgrids
 - Renewable Energy

16-10-2022 35

Standardization and Alliances

- NB-PLC Lack of reliability, manageability, interoperability
- OFDM
- Different standards from various vendors compete with one another- fragmented market
- Encodes digital data on multiple carrier frequencies
- Several parallel streams that suffer less from high frequency attenuation in copper wire and narrowband interference

- Worked only for standardizing NB-PLC PHY and MAC layers independently
- Differs from G.9903 and G.9904 that are focused on single use case single metering
- HomePlug Alliance Technical Specification publicly available

Physical Layer

- CENLEC European Committee for Electrotechnical Standardisation
- CENLEC A and B bands, FCC-Low and FCC-above CENLEC, Japan ARIB bands.
- CENLEC A and B bands refer 9-95kHz and 95-125kHz
- Modulation:

ROBO, DBPSK, DQPSK, D8PSK, 16QAM

- Throughput depends on how much time coding is repeated
- PHY payload size change dynamically based on channel conditions in MAC Payload

FCC-Low 37.5–117.18 ARIB 1 37.5–117.18 FCC-Above-CENELEC 154.687-487.5

ARIB 2 154.687-403.125

- MAC Sublayer Segmentation supports for payload segmentation in PHY Layer
- IE Key Management Protocol and SSID
- Segment Control Controls segments of upper layers that are carried in MAC
 PDU

TOPOLOGY

• Wireless Technologies – noise, interference, distortion and

attenuation

16-10-2022

Figure 4-13 IPv6 Mesh in NB-PLC

SECURITY

- Security Enabled Bit
- Data Encryption Packet Segmentation
- Message Integrity Code (MIC) Non-segmented payload

IEEE 802.11ah

- Unconstrained Network Wi-Fi (IEEE 802.11)
- Can be able to connect endpoints
- Three main use cases:
 - Sensors and meters covering a smart grid
 - Backhaul aggregation of industrial sensors and meter data
 - Extended Range Wi-Fi

Standardization and Alliances

- July 2010 IEEE 802.11 decided to work on "Industrial-Wifi"
- Unlicensed sub-GHz
- Wi-Fi Alliance
- Wi-Fi HaLow Low Power (Hello to Hay-Low)

Physical Layer

- IEEE 802.11 ah:
 - 868 MHz,928 MHz, 316 MHz
- OFDM modulation IEEE 802.11ah uses channels of 2,4,8 or 16 MHz
- IEEE 802.11ah can cover upto 0.62 mile for outdoor transmission

MAC Layer

- Ability to support large number of devices
- Enhanced Features are:
 - Number of Devices 8192 per access point
 - MAC header Shortened to allow more efficient communication
 - Null data packet (NDP)
 - Grouping and Sectorization
 - Restricted access window (RAW)
 - Target wake time (TWT)
 - Speed Frame Exchange TXOP

Topology

- Star Topology
- Works on two hops
- Relay Function
- Relay Operation Higher Transmission Rate or Modulation Coding Scheme
- Sectorization Partitioning the coverage area into several sectors

IEEE 802.11ah Sectorization

LoRaWAN

- LoRaWAN Unlicensed band LPWA technology
- LoRa- PHY Layer (Layer 1) developed by French Company Cycleo acquired by SemTech
- Long-range and two-way communications LoRa Alliance Specifications
- To differentiate from Layer 1 PHY modulation— named as LoRaWAN

Physical Layer

- Chirp Spread Spectrum Modulation
- Lower data rate receiver sensitivity
- Demodulation below noise floor Robust modulation
- Unlicensed sub-GHz 433 MHz, 779-787 MHz, 863-870 MHz, 902-928 MHz
- LoRaWAN LoRa Gateway act as central hub forming star network
- Multiple transceivers demodulate multiple signals or multiple channels
- Adaptive Data Rate (ADR)
- Spreading Factor

Data Rate vs Spreading Factor

Table 4-4 LoRaWAN Data Rate Example

Configuration	863-870 MHz bps	902-928 MHz bps	
LoRa: SF12/125 kHz	250	N/A	
LoRa: SF11/125 kHz	440	N/A	
LoRa: SF10/125 kHz	980	980	
LoRa: SF9/125 kHz	1760	1760	
LoRa: SF8/125 kHz	3125	3125	
LoRa: SF7/125 kHz	5470	5470	
LoRa: SF7/250 kHz	11,000	N/A	
FSK: 50 kbps	50,000	N/A	
LoRa: SF12/500 kHz	N/A	980	
LoRa: SF11/500 kHz	N/A	1760	
LoRa: SF10/500 kHz	N/A	3900	
LoRa: SF9/500 kHz	N/A	7000	
LoRa: SF8/500 kHz	N/A	12,500	
LoRa: SF7/500 kHz	N/A	21,900	

MAC Layer

- Class A Bidirectional communication
- Class B Experimental (additional receiver windows)
- Class C Powered Nodes (continuously open and keep listening)
- Frequency band ranging from 50 to 230 bytes for 860-870 MHz and 19-250 bytes for 902-928 MHz

MAC Layer – 6 Type of Messages

- Join Request and Join Accept
- Confirmed and Unconfirmed
- Up and Down messages
- Endpoints Global End Device ID, Global Application ID
- LoRaWAN DevAddr, NwkID, NwkAddr

Topology

- Star-of-stars topology having gateways acting as bridges, LoRaWAN network server
- ADR key component for scalability, performance and battery life

Security

- Network Security (NwkSKey) guarantee the authentication in endpoints, data integrity
- Application session key (AppSKey) encryption and decryption between endpoints and its application server
- Endpoints AES Application Key(AppKey)

Security

- Activation by Personalization (ABP)
- Over-the-Air Activation (OTAA)

Competitive Technologies

Table 4-5 Unlicensed LPWA Technology Comparison

Characteristic	LoRaWAN	Sigfox	Ingenu Onramp
Frequency bands	433 MHz, 868 MHz, 902–928 MHz	433 MHz, 868 MHz, 902–928 MHz	2.4 GHz
Modulation	Chirp spread spectrum	Ultra-narrowband	DSSS
Topology	Star of stars	Star	Star; tree supported with an RPMA extender
Data rate	250 bps-50 kbps (868 MHz) 980 bps-21.9 kbps (915 MHz)	100 bps (868 MHz) 600 bps (915 MHz)	6 kbps
Adaptive data rate	Yes	No	No
Payload	59–230 bytes (868 MHz) 19–250 bytes (915 MHz)	12 bytes	6 bytes–10 KB
Two-way communications	Yes	Partial	Yes
Geolocation	Yes (LoRa GW version 2 reference design)	No	No
Roaming	Yes (LoRaWAN 1.1)	No	Yes
Specifications	LoRA Alliance	Proprietary	Proprietary