

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu

OBJETIVOS DE LA SESIÓN

• Conocer otras técnicas de cálculo de eficiencia.

CONTENIDOS DE LA SESIÓN

 Medición de eficiencia a través de regresión lineal

Regresión lineal

• En estadística la regresión lineal o ajuste lineal es un modelo matemático usado para aproximar la relación de dependencia entre una variable dependiente Υ, las variables independientes Xi y un término aleatorio ε.

Diagrama de Dispersión

"Un diagrama de dispersión o gráfica de dispersión o gráfico de dispersión es un tipo de diagrama matemático que utiliza las coordenadas cartesianas para mostrar los valores de dos variables para un conjunto de datos. Los datos se muestran como un conjunto de puntos, cada uno con el valor de una variable que determina la posición en el eje horizontal (x) y el valor de la otra variable determinado por la posición en el eje vertical (y)."

Extraído de Wikipedia

Diagrama de Dispersión

En palabras más sencillas, un diagrama de dispersión nos muestra, a través de puntos en el eje cartesiano, la relación entre 2 variables para distintos comportamientos y/o valores de éstas.

Curva de tendencia

Es el lugar geométrico cuya ecuación describe de manera aproximada la tendencia de la posición para los puntos en un diagrama disperso.

Intenta describir de una manera exacta dónde se encontrarán estos puntos para distintos valores de una de las variables.

Curva de tendencia

Coeficiente de determinación

• Es un valor que determina la fidelidad con la que una curva de tendencia describe el comportamiento de un gráfico disperso.

Se denota como R²

• R² adquiere un valor entre 0 y 1, <u>entre más cercano esté a 1 más fiel</u> <u>es el comportamiento de la dispersión</u> con respecto a la curva de tendencia.

Coeficiente de determinación

Figura 1. Relación del índice de área foliar sobre el rendimiento de tratamientos con diferentes arreglos de plantas, censidades y dos genotipos de maíz 1999-2001.

Eficiencia a través de la regresión lineal

• En ciertas ocasiones, no es posible determinar la eficiencia de un algoritmo tan solo analizando línea a línea su codificación.

 Tampoco podemos, en todos los casos, determinar cuál algoritmo posee un mejor rendimiento cuando su notación asintótica nos permite compararlos solo a nivel de comportamiento general (en el peor, promedio y mejor de los casos).

Eficiencia a través de la regresión lineal

 A través de la regresión lineal podemos determinar cómo se comportará el algoritmo dependiendo del tamaño de su entrada y su uso de recurso pertinente.

Ejemplo 01

Determinar la eficiencia del método de la burbuja.

Determinar el tiempo de ejecución para distintos tamaños de N

100 0,051 200 0,179 300 0,426 400 0,713 500 5,880 600 1,520 700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	N	Tiempo
300 0,426 400 0,713 500 5,880 600 1,520 700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	100	0,051
400 0,713 500 5,880 600 1,520 700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	200	0,179
500 5,880 600 1,520 700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	300	0,426
600 1,520 700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	400	0,713
700 7,620 800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	500	5,880
800 2,554 900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	600	1,520
900 18,339 1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	700	7,620
1000 3,006 1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	800	2,554
1100 4,025 1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	900	18,339
1200 5,946 1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1000	3,006
1300 19,682 1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1100	4,025
1400 21,775 1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1200	5,946
1500 18,268 1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1300	19,682
1600 26,264 1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1400	21,775
1700 36,980 1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1500	18,268
1800 25,072 1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1600	26,264
1900 12,694 2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1700	36,980
2000 20,841 2100 16,981 2200 25,743 2300 18,905 2400 24,021	1800	25,072
2100 16,981 2200 25,743 2300 18,905 2400 24,021	1900	12,694
2200 25,743 2300 18,905 2400 24,021	2000	20,841
2300 18,905 2400 24,021	2100	16,981
2400 24,021	2200	25,743
	2300	18,905
	2400	24,021
2500 22,261	2500	22,261

Graficar la dispersión de los datos.

Tendencia BubbleSort

Curva de tendencia Lineal

Curva de tendencia logarítmica

Curva de tendencia sublinear

Curva de tendencia cuadrática

¿Qué línea de tendencia representa de mejor manera la distribución de los datos?

Respuesta

• La que cuyo coeficiente de determinación R² es más cercano a uno.

Tendencia BubbleSort

Otro ejemplo

Insertion Sort

Insertion Sort

¿Qué podemos decir de las ecuaciones?

 Las ecuaciones entregadas por la curva de tendencia nos sirven para determinar factores importantes dentro del comportamiento y eficiencia de los algoritmos.

Análisis de ecuaciones de tendencia

• Si vemos las ecuaciones para BubbleSort e InsertionSort

BubbleSort

$$y = 4E-06x^2 - 0,0015x - 8,8854$$

InsertionSort

$$y = 9E-07x^2 + 0,0001x + 6,503$$

¿Qué podemos notar?

Ejemplos de análisis

• Si bien, ambas son de comportamiento cuadrático (parabólico), las contantes que definen el comportamiento de ambas nos entregan lo que las notaciones asintóticas desprecian.

• <u>InsertionSort se comporta un poco mejor que bubblesort debido a sus coeficientes</u>.

Ventajas de la regresión lineal

 Podemos encontrar el comportamiento de la eficiencia para algoritmos complejos.

 Podemos comparar algoritmos a partir de sus coeficientes y curvas de tendencia.

 Nos permite estudiar de manera práctica el peor, promedio y mejor de los casos.

CHECK - OBJETIVOS DE LA SESIÓN

• Conocer otras técnicas de cálculo de eficiencia.

CHECK

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu