

Project Report

Title: Simulation of Smart Home Management System

Course: CSE323

Submission Date: 11th November 2023

Group Members	ID	Section
Tahmid Ashraf Khan	2012711042	08
Md Tahmid Ahmed Rakib	2021179642	07
Rakibul Hasan	2013320642	07
Ismot Jahan Moni	2112399642	07
Sofwat Tahsin	2012561042	07

Introduction

Our project idea is similar to what we are familiar with as a smart home management system nowadays. Our goal is

- 1. Sending user commands to devices
- 2. Getting information from the devices.

To simulate our idea, we choose to turn on/off lights by user commands from a webpage and get the temperature and humidity from the device to the user.

In the web application, the user can turn on or off 4 LED lights attached to the microcontroller. There is a dashboard for visualizing temperature and humidity around the device.

To establish the connection between user applications and devices, we have created a custom webpage and used a public MQTT broker server.

Working Diagram

Main workflow

Circuit Diagram

Working Device

Components

 NodeMCU: We used NodeMCU(ESP8266) as our microcontroller. This microcontroller is very capable and lower in cost compared to others. The most significant benefit of using nodeMCU is its built-in WiFi module.

DHT22: To measure the temperature and humidity of the surroundings, we have used a
DHT22 sensor. This sensor is very useful and easy to use since it has its library for the
Arduino programming interface.

• **LED**: Mini LEDs are used to simulate light bulbs.

- **Breadboard**: Breadboard for making the circuit and connecting everything.
- Wires: to connect components with the microcontroller.
- Software: To program the NodeMCU, we used ArduinoIDE. And created a user interface
 with web technologies. We used the MQTT (Message Queuing Telemetry Transport)
 protocol instead of the commonly used TCP/IP protocol to establish the communication
 channel.
- Web Application: https://withtahmid.github.io/323/

Result- Data

This image shows the microcontroller is not connected to the internet.

This image shows the microcontroller is connected to the internet. Temperature is 29.2 degrees Celsius, humidity is 64.7%, and two LEDs are currently on.

