Problem 1

traver)
$$-0.8_{10} = \left(-\frac{8}{10}\right)_{10} = -\left[(8)_{10} \times (0.1)_{10}\right] = -\left[(1000)_{1} \times (0.5)_{10} + (0.5)_{10}\right]$$

= $-\left[(1000)_{1} \times \left\{(0.1)_{2} + (0.1)_{2}\right\}\right]$

$$F_1 = 1.0 \times 2^3 = 1.0 \times 2^{130-123}$$

$$F_2 = (-1)^1 \times 1.10011 \times 102^{-4} = (-1)^1 \times 1.10011 \times 2^{123-127}$$

$$\Rightarrow F_3 = F_1 \times F_2 = (-1)^1 \times (1.0 \times 1.10011) \times 2^{(120 - 123 + 123) - 123}$$
$$= (-1)^1 \times 1.10011 \times 2^{126 - 123}$$

:. I EEE 64- bit representation that consists of sign, magnitude & significant is as follows:

Problem 2

XI	36	X-1	2(-2	y	Enror = y - x
0	0	0	0	000	+0.
0	0	0	1	001	+3/4
0	0	1	0	001	+1/2
0	0	1	1	001	+1/4
0	10	0	0	004	+0
0	1	0	1	010	43/4
0	1	1	0	0 10	+1/2
0	1	1	1	0 10	+ 1/4
10	0	0	0	010	+ D
1	0	0	1	0 11	+3/24
1	0	1	0	0 11	+ 1/2

1	×. O	×-1	1	{82 8. 803 01 1	Enversy - 21
1	1	0	0	044	+ 0
1	1	0	4	.100	+ 3/4
1	1	7	0	100	+ 1/2
1	1	1	1	1001	+1/4

8° as =
$$\frac{1}{16} \left[4 \left(+ \frac{1}{4} + \frac{1}{2} + \frac{3}{4} \right) \right] = \frac{3/2}{4} = +\frac{3}{8}$$

 $\Rightarrow y_{0} = \bar{x}_{0} x_{-2} + \bar{x}_{0} x_{-1} + x_{0} \bar{x}_{-1} \bar{x}_{-2}$ $= \bar{x}_{0} (x_{-1} + \bar{x}_{-2}) + x_{0} (\bar{x}_{-1} \cdot \bar{x}_{-2})$ $= \bar{x}_{0} (x_{-1} + \bar{x}_{-2}) + x_{0} (\bar{x}_{-1} + \bar{x}_{-2})$ $= \bar{x}_{0} (x_{-1} + \bar{x}_{-2}) + x_{0} (\bar{x}_{-1} + \bar{x}_{-2})$ $= x_{0} \oplus (\bar{x}_{-1} + \bar{x}_{-2})$

2.2.	E .	01	81	10	
00	0.	0	0,	0.	
0 1	0,	1,	0	1)	
11	I,	0,	0,	0,4	
10	0	11.	1,,	100	

 $\begin{cases}
3 & = X_1 \vec{X}_0 + X_1 \cdot (\vec{X}_1 \cdot \vec{X}_{-2}) + \vec{X}_1 X_0 \cdot X_{-2} + \vec{X}_1 X_0 \cdot X_{-1} \\
& = X_1 \cdot (\vec{X}_0 + \vec{X}_{-1} \cdot \vec{X}_{-2}) + \vec{X}_1 \cdot X_0 \cdot (X_{-2} + X_{-1})
\end{cases}$ $= X_1 \cdot (\vec{X}_0 \cdot (\vec{X}_{-1} + \vec{X}_{-2})) + \vec{X}_1 \cdot (\vec{X}_0 \cdot (\vec{X}_{-2} + \vec{X}_{-1}))$ $= X_1 \cdot (\vec{X}_0 \cdot (\vec{X}_{-1} + \vec{X}_{-2})) + \vec{X}_1 \cdot (\vec{X}_0 \cdot (\vec{X}_{-2} + \vec{X}_{-1}))$

Problem 3)

Answer) For the following configuration of the CLA and the two Full Adder's, the critical path delay will be minimal

Citical path delay =
$$T_{NS} \rightarrow C_{out} + T_{cin} \rightarrow C_{out} + T_{con} \rightarrow C_{vi}$$

$$= 2\Delta_G + 2\Delta_G + 4\Delta_G$$
Thinked critical path delay = $\begin{bmatrix} 8\Delta_G \end{bmatrix}$

O ther configurations that are possible are

Toritical = Tely = cy + Tin = cor + Tin = s = 404 + 204 + 304 = 904

So Minimal critical path delay = 8 Ds for comfig. 1

Problem 4) Designing the 26 lit carry-relect adder

> Let 26 - bit carry select adder be divided into l groups of length k₁, k₂..., k₂

→ (l-1) 2DG = 2k₁ D₃ (For FA's for addition & assuming i/b's to

HUX are available at brackly same line

he = (l-1) → sizes are 1, 1, 2, 3, 4, ...

Also, (a. $1 + L(l-1) > n \Rightarrow L(l-1) > 2n+1 (n=26)$ $\Rightarrow L(l-1) > 53$

So, l = 8

And group size are, $k_1 = 1$, $k_2 = 1$, $k_3 = 2$, $k_4 = 3$, $k_5 = 4$, $k_6 = 5$, $k_9 = 6$, $k_8 = 4$

" Culect = 50 FA'S + 1 HA

Tulect=24+2×7 Δq = 15 Δq

* Designing the 26 - bit carry - this adder

⇒ Let 26- Get adder be divided into k groups of equal eyes

$$= (k-1)t_n + t_b + (\frac{m}{R} - 2)(t_s + t_b) + (k-1)t_n$$

$$= (4k + 2m - 7)\Delta_G \quad (t_n = 2\Delta_G, t_s = t_g = \Delta_G)$$

 $\frac{1}{3} \frac{dT_{corry}}{dR} = 4 - \frac{2n}{R_0^2} = 0 \Rightarrow k = \sqrt{\frac{n}{2}} \Rightarrow k = \sqrt{\frac{26}{2}} = \sqrt{13}$

 $T_{\text{opt}} = (4\sqrt{13} + \frac{2(26)}{\sqrt{13}} - 7) \Delta_{\zeta} = \left(\frac{52 + 52 - 7\sqrt{13}}{\sqrt{13}}\right) \Delta_{\zeta} = \left(\frac{104 - 7\sqrt{13}}{\sqrt{13}}\right) \Delta_{\zeta}$

= 21.8 AG

:. Cash = 26 FA'S

Takes = 21.8 Ag

Hence, Cachet > Carip & Tarib > Tacket > (B)

Problem 5) A = (a3 a2 a4 a6); X = (x3 x2 x4 x6) then the seven product lits
P = (b6 b5 b4 b2 b2 b, b6) can be obtained as follows.

P3 P2

No. & FA's required = 8 No. & HA's required = 4

PH

Time delay of multiplier = Time delay to generate + Time delay for the partial products array multiplier partial products oddition

= $1 \Delta_{G} + (1 \Delta_{G} + 2 \Delta_{G} + 2 \Delta_{G} + 3 \Delta_{G} + 2 \Delta_{G} + 2 \Delta_{G})$ = $11 \Delta_{G}$