Лабораторная работа 1.2.3

Исследование вынужденной регулярной прецессии гироскопа

Матвей Галицын Б01-411

November 11, 2024

1 Аннотация

В работе измеряется момент инерции ряда тел и сравниваются результаты с расчетами по теоретическим формулам, проверяются аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

2 Теоретические сведения

Возьмем трифилярный подвес.

Уравнение сохранении энергии при крутильных колебаниях можно записать следующим образом:

$$\frac{I\dot{\phi}^2}{2} + mg(z_0 - z) = E,$$

где I - момент инерции платформы вместе с исследуемым телом, m - масса платформы с телом, ϕ - угол поворота платформы от положения равновесия системы, z_0 - координата по вертикали центра нижней платформы O' при равновесии ($\phi=0$), z - координата той же точки при некотором угле ϕ .

Так как при по повороте C' в C'', а CC'' = L. Поэтому:

$$(R\cos(\phi) - r)^2 + R^2\sin^2(\phi) + z^2 = L^2$$

Схема установки

Учитывая, что при малых углах поворота $cos(\phi) \approx 1 - \frac{\phi^2}{2}$

$$z \approx \sqrt{z_0 - Rr\phi^2} \approx z_0 \sqrt{1 - \frac{Rr\phi^2}{z_0^2}} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляем это значение z в уравнение (2), получаем

$$\frac{I\dot{\phi}^2}{2} + mg\frac{Rr}{z_0}\phi = E$$

Решение этого уравнения колебаний имеет вид:

$$\phi = \phi_0 sin\left(\sqrt{\frac{mgRr}{Iz_0}} + \Omega\right),$$

Период крутильных колебани нашей системы равен

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Тогда формула для определения момента инерции:

$$I = \frac{mgRrT^2}{4\pi^2 z_0}$$

3 Оборудование и инструментальные погрешности

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полый цилиндр и другие), линейка, штангенциркуль.

Линейка: $\delta_{lin} \pm 0.5$ мм

Штангенциркуль: $\delta_{tram} \pm 0.5$ мм (маркировка производителя)

Результаты измерений и обработка данных 4

Координата по вертикали центра нижней платформы O' при равновесии ($\phi=0$) $z_0=215$ см

Расстояние от центра малого диска до точки крепления нити: $r = (30 \pm 0.3)$ мм

Расстояние от центра малого диска до точки крепления нити: $R = (114.6 \pm 0.5)$ мм

Константа установки: $k = \frac{gRr}{4\pi^2 z_0} \approx 4.05 \cdot 10^{-4} \text{ м}^2/c^2$ Абсолютная погрешность: $\delta_k = k \cdot \sqrt{\left(\frac{\delta}{z_0}\right)^2 + \left(\frac{\delta}{R}\right)^2 + \left(\frac{\delta}{r}\right)^2} \approx 0.07 \cdot 10^{-4} \text{ м}^2/c^2$

4.1 Определение момента инерции ненагруженной платформы

Масса платформы: $M = 965.7 \pm 0.5$

Время колебаний: $\tau = 61~c$ Кол-во обращений: N = 11 Период колебаний $T=4.36\ c$

 \Rightarrow Момент инерции платформы: $I=0.007~{\rm kr\cdot m^2}$

4.2Определение момента инерции тел

Согласно экспериментальным данным

Относительная погрешность определения момента инерции: $\epsilon_I = \epsilon_T + \epsilon_k = 0.5\% + \frac{\delta_k}{k} \cdot 100\% = 0.5\% + 2\% = 2.5\%$ Заполняем таблицу 1

Таблица № 1

№	Название	т, г	τ , c	N	Т, с	$I, 10^{-3}$ кг · м 2
1	Брусок	1100.9	36.54	10	4.36	4.22
2	Диск с пипкой	881.3	36.97	10	4.45	2.74
3	Цилиндр	730.3	49.74	12	4.14	4.79

m - масса тела (без платформы), au - время вращения тела с платформой, N - кол-во оборотов, T - период колебаний, І - момент инерции тела.

Поставим 10е и 20е тела на платформу вместе, так чтобы центр масс системы оставался в центре диска. Посчитаем суммарный момент инерции этих тел: суммарная масса $m_{\Sigma}=m_1+m_2=1982.2$ г, $\tau=39.52$ с, $N=10\Rightarrow T=3.952\Rightarrow I=6.64\cdot 10^{-3}$ кг \cdot м 2 Видно, что $I_\Sigma\approx I_1+I_2=6.78$ кг \cdot м $^2\Rightarrow addumu$ вность моментов инерции выполняется

4.2.2Согласно теоретическим данным

• Брусок

Длина a = 21 см

Ширина b = 2.6 см

Macca бруска m = 1100.9 г

Момент инерции вдоль оси ОZ: $I_z = \frac{m}{12}(a^2 + b^2) = 4.1 \cdot 10^{-3} \text{ кг·м}^2$

• Диск с пипкой

Больший диаметр D = 16.1 см

Меньший диаметр d=2 см

Общая масса конструкции m = 881.3 г

Высота большого основания $h_D = 0.5$ см

Высота пипки $h_d=1.5$ см Отношение масс $\frac{m_D}{m_d}=\frac{V_D}{V_d}=\frac{D^2\cdot h_D}{d^2\cdot h_d}\approx 21.6\Rightarrow m_D\approx 841.3$ г, а масса пипки $m_d\approx 40$ г Момент инерции вдоль оси OZ: $I_z=\frac{m_DD^2}{8}+\frac{m_dd^2}{8}=2.73\cdot 10^{-3}$ кг·м²

• Цилиндр

Диаметр кольца d = 15.9 см

Масса цилиндра т = 730.3 г

Момент инерции вдоль оси ОZ: $I_z = \frac{md^2}{4} = 4.6 \cdot 10^{-3} \text{ кг·м}^2$

5 Нахождение массы и момента инерции однородного полного цилиндра

Поместим на платформу шайбу, разрезанную по диаметру. Когда мы раздвигаем половинки выполняется теорема Штейнера. А именно момент инерции выражается в каждом конкретном случае

$$I = I_{disk} + I_{puck}^{h=0} + mh^2$$
,

где I_{disk} - момент инерции диска (опоры), $I_{puck}^{h=0}$ - момент инерции полной (без сдвига) шайбы.

Снимем зависимость момента инерции I такой системы от расстояния h между центром одной из половинок и центром платформы.

Масса системы: $M_{\Sigma} = 2501.6$ кг Момент инерции $I = k \cdot M_{\Sigma} \cdot T^2$

Заполняем таблицу 2

Строим график $I(h^2)$

Массу или коэффициент наклона графика можно посчитать как:

$$k=rac{\langle Ih^2
angle-\langle I
angle\langle h^2
angle}{\langle (h^2)^2
angle-\langle h^2
angle^2}pprox 1.54\Rightarrow$$
 Абсолютная погрешность коэфф. наклона

$$\delta_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle h^4 \rangle - \langle h^2 \rangle^2} - k^2} = 0.03$$

Таким образом масса полной шайбы по графику $m_{puck}^{graph} = (1.54 \pm 0.03)$ кг, согласно показаниям весов масса шайбы $m_{puck}^{scales}=1536.1$ г Видно, что масса, определенная по графику с хорошей точность совпадает с массой, показанной весами.

По смещению графика по оси I можно определить момент инерции шайбы в "склеенном" виде, а именно

$$\begin{split} I_{puck}^{h=0} &= I(0) - I_{disk} = 0.0086 - 0.007 = 0.0016 \text{ кг} \cdot \text{м}^2 \\ &\quad \text{Абсолютна погрешность} \\ \delta_{I_{nuck}^{h=0}} &= \delta_m \cdot \sqrt{\langle h^4 \rangle + \langle h^2 \rangle^2} \approx 0.005 \text{ кг} \cdot \text{м}^2 \end{split}$$

Согласно теоретическим данным момент инерции шай-

бы
$$I_{puck}=rac{m_{puck}\cdot d_{puck}^2}{8}pprox 0.0017\ {
m K}\Gamma\cdot {
m M}^2$$
 Как видно $\pmb{meope_{Ma}}$ $\pmb{\Gammaroйzenca\text{-}III}$ тейнера $\pmb{\partial e\ddot{u}\text{-}}$

ствительно выполняется.

6 Обсуждение результатов

В данной работе были измерены моменты инерции нескольких тел теоретически и практически. С помощью трифилярного подвеса можно определять момент инерции с достаточно большой точностью $\varepsilon \approx 2.5\%$. Такая точность обусловлена малой погрешностью измерения времени и условиями, при которых колебания подвеса можно считать слабозатухающими.

Итоговая таблица

Название	Рисунок	Момент инерции (на практике)	Момент инерции (в теории)
	b b		
Брусок		$(4.22 \pm 0.1) \text{ r·m}^2$	4.1 г·м ²
Диск с пипкой	h _b t D	(2.74 ± 0.07) г· м 2	$2.73\ { m r\cdot m}^2$
	d		
Цилиндр		$(4.79 \pm 0.12) \cdot \text{ M}^2$	4.6 г· м ²

В целом, значения момента инерции, полученные экспериментально и теоретически достаточно схожи. Большая погрешность исходит из подсчета коэффициента установки. Уменьшить её возможно, более точно измерив расстояния R и r, описанные в работе.

В работе показано, что выполняется аддитивность моментов инерции. Также показано, что выполняется теорема Γ юйгенса-Штейнера.