ÁLGEBRA DE BOOLE

Postulados:

Complementação:
$$\begin{cases} Se \ A = 0 \ e \ \overline{A} = 1 \\ então \ \overline{A} = 0 \ ou \ \overline{A} = A \end{cases}$$

$$Adição: \begin{cases} 0 + 0 = 0 \\ 1 + 1 = 1 \\ 1 + 0 = 0 + 1 = 1 \end{cases}$$
 Multiplicação:
$$\begin{cases} 0 * 0 = 0 \\ 1 * 1 = 1 \\ 1 * 0 = 0 * 1 = 0 \end{cases}$$

Adição:
$$\begin{cases} 0+0=0\\ 1+1=1\\ 1+0=0+1=1 \end{cases}$$

Multiplicação:
$$\begin{cases} 0*0 = 0 \\ 1*1 = 1 \\ 1*0 = 0*1 = 0 \end{cases}$$

Teoremas Booleanos:

T1 - Lei comutativa

(a)
$$A + B = B + A$$

(b)
$$A \cdot B = B \cdot A$$

T3 - Lei distribuitiva

(a)
$$A \cdot (B + C) = A \cdot B + A \cdot C$$

(b)
$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

T5 - Lei da Negação

$$(a)\left(\overline{\overline{A}}\right) = A$$

T7 -(a)
$$0 + A = A$$

(b) 1 . $A = A$
(c) $1 + A = 1$
(d) 0 . $A = 0$

T9 -(a) A +
$$\overline{A}$$
 . B = A + B
(b) A . $(\overline{A} + B) = A$. B

T2- Lei Associativa

(a)
$$(A + B) + C = A + (B + C)$$

(b)
$$(A . B) . C = A . (B . C)$$

T4 - Lei da identidade

$$(a) A + A = A$$

(b)
$$A \cdot A = A$$

T6 - Lei de redundância

(a)
$$A + A \cdot B = A$$

(b)
$$A \cdot (A + B) = A$$

T8 - (a)
$$\overline{\frac{A}{A}} + A = 1$$

(b) $\overline{\frac{A}{A}} \cdot A = 0$

(a)
$$\overline{A + B} = \overline{A}$$
. \overline{B}

(b)
$$\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{A} + \overrightarrow{B}$$

SIMPLIFICAÇÃO DE EXPRESSÕES BOOLEANAS

Exemplo 1:

Simplifique a expressão: S = A. (A. (B + C)) Solução:

A.
$$(A. (B + C) = A. A. B + A. C$$
 [T3(a)] distributiva
= A. B + A. C [T4(b)] identidade
= A. $(B + C)$ [T3(a)] distributiva

Exemplo 2:

Simplifique a expressão: $S = ABC + A \overline{C} + A \overline{B}$ Solução:

$$S = A(BC + \overline{C} + \overline{B})$$

$$S = A[BC + (\overline{C} + \overline{B})] \qquad [T2(a)]$$

$$S = A[BC + (\overline{\overline{C} + \overline{B}})] \qquad [T5(a)]$$

$$S = [BC + (\overline{BC})] \cdot A \qquad [T10(a)]$$

$$\rightarrow BC + (\overline{BC}) = 1 \qquad [T8(a)]$$

$$\log o : S = A * 1 = A : S = A$$

Exercícios:

Livro IDOETA – Elementos de Eletrônica Digital: pág. 148, nº 3.10.1 até 3.10.7

SIMPLIFICAÇÃO DE EXPRESSÕES BOOLEANAS ATRAVÉS DOS DIAGRAMAS DE VEITCH-KARNAUGH

MAPA DE KARNAUGH PARA 2 VARIÁVEIS

Possibilidades assumidas entre as variáveis A e B

- (a) região onde A = 1
- (b) região onde A = 0 ($\overline{A} = 1$)
- (c) região onde B = 1
- (d) região onde B = $0 (\overline{B} = 1)$

Com 2 variáveis podemos obter 4 possibilidades:

A	В		
0	0		caso 0
0	1	→	caso 1
1	0		caso 2
1	1	 →	caso 3

Г					
	Caso 0: região	Caso 1: região	Caso 2: região	Caso 3: região	Possibilidades
	$\overline{A}\overline{B}$	$\overline{A}B$	$A\overline{B}$	AB	
	A B	A B	В В А	B B A A	A Caso 2 Caso 3 A B A B A B A B A B A B A B A B A B A B

EXEMPLO

Tabela verdade obtida do estudo de uma função de 2 variáveis:

A	В	S		
0	0	0		caso 0
0	1	1	→	caso 1
	0	1	─	caso 2
1	1	1		caso 3

Expressão característica obtida da tabela verdade:

$$S = \overline{A}B + A\overline{B} + AB$$

Passando para o Mapa de Karnaugh:

_	B	В
Ā	0	1
A	1	1

Efetuando o agrupamento:

Par 1 ocupa a região onde $A = 1 \Rightarrow Par 1 = A$ Par 2 ocupa a região onde $B = 1 \Rightarrow Par 2 = B$

Expressão simplificada: S = Par 1 + Par 2 : S = A + B

AGRUPAMENTO DE REGIÕES

a) Quadra

 $\Leftarrow Quadra: S = 1$

b) Pares

← Par A (está exclusivamente na região A)

 \Leftarrow Par \overline{B} (está exclusivamente na região \overline{B})

c) Termos isolados

EXERCÍCIO: Livro IDOETA – Elementos de Eletrônica Digital: pág. 149, nº 3.10.9