

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

Ingeniería en Computación

		Cálculo Dife	rencial e Integral	
Clave	Semestre	Créditos	Área	
	1	9.0	Matemáticas	
Modalidad	Curso		T-4-i	
Carácter	Obligatorio		Tipo	Teórico
			Horas	
	Semana			Semestre
Teóricas	4	5	Teóricas	72.0
Prácticas	0	0.0	Prácticas	0.0
Total	4	5	Total	72.0

Seriación indicativa			
Asignatura antecedente	Ninguna		
Asignatura subsecuente	Cálculo Vectorial		

Objetivo general: Analizar los conceptos fundamentales del cálculo diferencial e integral de funciones reales de variable real, a fin de aplicarlos a la formulación y manejo de modelos matemáticos de problemas físicos y geométricos.

Indice temático					
No.	Tema	Horas Semestre			
IVO.	rema		Prácticas		
1	FUNCIONES, LÍMITES Y CONTINUIDAD	12.0	0.0		
2	APLICACIONES INMEDIATAS DE LA DERIVADA	12.0	0.0		
3	DERIVADA Y DIFERENCIAL DE UNA FUNCIÓN	15.0	0.0		
4	APLICACIONES INMEDIATAS DE LA INTEGRAL	4.5	0.0		
5	INTEGRAL INDEFINIDA. FÓRMULAS DE REDUCCIÓN	12.0	0.0		
6	INTEGRAL DEFINIDA. APLICACIONES	4.5	0.0		
7	SUCESIONES Y SERIES	12.0	0.0		
	Total	72.0	0.0		
	Suma total de horas	7	2.0		

Contenido Temático

1. FUNCIONES, LÍMITES Y CONTINUIDAD

Objetivo: Analizar la naturaleza y las propiedades de las funciones, así como las operaciones que se pueden definir entre éstas, con el fin de comprender los conceptos de límite y continuidad de una función.

- 1.1 Definición de función real de variables real y su representación gráfica. Definición de dominio, codominio y recorrido. Notación funcional.
- 1.2 Clasificación de funciones según su forma de expresión: implícita, explícita y paramétrica. Funciones definidas por más de una regla de correspondencia.
- 1.3 Definición de operaciones con funciones: igualdad, adición, multiplicación y composición. Concepto de función inversa.
- 1.4 Definición de algunos tipos de funciones: funciones polinomiales, racionales, irracionales, algebraicas y trascendentes. Definición de funciones circulares, logarítmicas y exponenciales. Representación gráfica.
- 1.5 Definición de: vecindades, límite de una función en un punto. Interpretación geométrica del concepto de límite.
- 1.6 Límite de la función constante y de la función identidad. Enunciados de teoremas sobre límites y sobre operaciones con límites. Cálculo de límites.
- 1.7 Definición de límite de una función cuando la variable tiende al infinito.
- 1.8 Concepto de continuidad: definición de límites laterales, definición y determinación de la continuidad de una función en un punto y en un intervalo. Enunciado de teoremas sobre funciones continuas.

2. APLICACIONES INMEDIATAS DE LA DERIVADA

Objetivo: Comprender los conceptos de derivada de una función, sus interpretaciones físicas y geométricas, así como sus aplicaciones inmediatas.

- 2.1 Velocidad y aceleración de una partícula.
- 2.2 Tasas instantáneas de cambio.
- 2.3 Definiciones de función diferenciable y de diferencial de una función. Interpretación geométrica de la diferencial. Concepto de la derivada como cociente de diferenciales. Permanencia de la forma de la diferencial para una función de función.
- 2.4 Relación entre la diferencial y el incremento. Aplicaciones de la diferencial: valores aproximados y errores.
- 2.5 Enunciados e interpretaciones geométricas de los teoremas de Weiertrass y de Bolzano. Enunciado, demostración e interpretación geométrica del Teorema de Rolle. Enunciado, demostración, interpretación geométrica y aplicaciones del Teorema del Valor Medio del Cálculo Diferencial.
- 2.6 Análisis de funciones crecientes y decrecientes y su relación con el signo de la derivada.
- 2.7 Definición de máximos y mínimos relativos. Análisis con el criterio de la primera derivada. Definiciones de concavidad y de puntos de inflexión de una curva. Análisis de la concavidad de una curva y de puntos de inflexión. Análisis con el criterio de la segunda derivada, de máximos y mínimos.

3. DERIVADA Y DIFERENCIAL DE UNA FUNCIÓN

Objetivo: Adquirir las habilidades y herramientas necesarias para realizar el cálculo de la derivada de cualquier función.

- 3.1 Definición de la derivada de una función en un punto. Interpretaciones física y geométrica de la derivada; notaciones de la derivada y cálculo a partir de la definición.
- 3.2 Derivación de la suma, el producto y el cociente de funciones. Derivación de una función elevada a un exponente racional.
- 3.3 Derivación de la función compuesta, regla de la cadena. Derivación de la función inversa.
- 3.4 Derivación de funciones circulares, logarítmicas y exponenciales.
- 3.5 Derivación de las funciones en forma paramétrica. Definición y cálculo de derivadas de orden superior.
- 3.6 Aplicaciones físicas y geométricas de la derivada como razón de variación de una variable respecto a otra.

4. APLICACIONES INMEDIATAS DE LA INTEGRAL

Objetivo: Aplicar el concepto de integral para calcular áreas bajo la curva y trabajo de una fuerza variable.

- 4.1 Área bajo una curva y entre curvas.
- 4.2 Trabajo.

5. INTEGRAL INDEFINIDA. FÓRMULAS DE REDUCCIÓN

Objetivo: Adquirir la habilidad y las herramientas para calcular la integral de algunas funciones.

- 5.1 Integral inmediata, por cambio de variable, sustituciones algebraicas y trigonométricas.
- 5.2 Métodos de integración, por partes y por descomposición en fracciones racionales.
- 5.3 Aplicaciones de la integral definida al cálculo de áreas, longitudes de arco, áreas y volúmenes de sólidos de revolución.
- 5.4 Aplicaciones de la integral indefinida a la solución de ecuaciones diferenciales lineales de variables separables.

6. INTEGRAL DEFINIDA. APLICACIONES

Objetivo: Aplicar los conocimientos adquiridos para resolver algunos problemas que involucran la integral definida.

- 6.1 Área en coordenadas polares.
- 6.2 Áreas y volúmenes de sólidos de revolución.
- 6.3 Longitud de Arco.
- 6.4 Trabajo.

7. SUCESIONES Y SERIES

Objetivo: Analizar los conceptos relacionados con una sucesión y serie, y desarrollar una función en términos de una serie de potencias, así como los criterios de convergencia.

- 7.1 Sucesiones: definición de sucesión, concepto de límite y convergencia de una sucesión, sucesiones monótonas y acotadas.
- 7.2 Series: definición de serie y convergencia, condición para la convergencia y propiedades de las series. Definición y propiedades de las operaciones con las series: adición y multiplicación por un escalar.
- 7.3 Definición de serie geométrico y de serie "p". Series de términos positivos: criterio de comparación y criterio del cociente.
- 7.4 Series de signos alternados: definición, criterio de Leibniz, concepto de convergencia absoluta y condicional.
- 7.5 Series de potencias: definición de series de potencias: de x-a, conceptos de radio e intervalo de convergencia.
- 7.6 Desarrollo de funciones en series de potencia: definición de la serie de Taylor; desarrollo de funciones trigonométricas, logarítmicas y exponenciales.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	(X)	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico				
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo perfil sea afín al área de Matemáticas. 			
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. 			
	Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno:			
	 Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 			
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza- aprendizaje. 			
	 Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. 			
	• Identificarse con los objetivos educativos de la institución y hacerlos propios.			
	• Tener disposición para ejercer su función docente con ética profesional:			
	 Para observar una conducta ejemplar fuera y dentro del aula. 			
	 Para asistir con puntualidad y constancia a sus cursos. 			
	 Para cumplir con los programas vigentes de sus asignaturas. 			

Bibliografía básica	Temas para los que se recomienda		
Colley, S. (2013). Cálculo Vectorial. México: Pearson.	1,2,3,4,5, 6 y 7		
Granville, W. (2008). <i>Cálculo Diferencial e Integral.</i> México: Limusa.	1,2,3,4,5, 6 y 7		
Lax, P. (2014). Calculus with Applications. New York: Springer.	1,2,3,4,5, 6 y 7		
López, S. I. (2006). <i>Cálculo diferencial de una variable con aplicaciones.</i> México: Thomson.	1,2 y 3		
Mena, B. (2003). <i>Introducción al Cálculo Vectorial.</i> México: Thomson.	1,2,3,4,5, 6 y 7		
Stewart, J. (2007). <i>Cálculo diferencial e integral.</i> México: Cengage Learning.	1,2,3,4,6 y 7		
Taylor, A. y Mann, R. W. (1989). Fundamentos de cálculo avanzado. México: Limusa.	1,2,3 y 4		
Thomas, G. (2016). <i>Cálculo: una variable</i> . México: Pearson.	1,2,3,4,5, 6 y 7		

Bibliografía complementaria Temas para los que se recomienda
--

Dauben, J. y Scriba, C. J. (2002). Writing the History of Mathematics: Its Historical Development. Germany: Birkhäuser.	1,2,3,4,5, 6 y 7
Emmer, M. (2012). Imagine Math. Between Culture and Mathematics. Italia: Springer.	1,2,3,4,5, 6 y 7
Gindikin, S. (2007). Tales of Mathematicians and Physicists. New York: Springer.	1,2,3,4,5, 6 y 7

