Assignment02

zerofrom

2024-10-05

1. Data Wrangling

1.1 (Q1)

Properties:

```
[1] "Month"
                        "Day"
                                        "Year"
                                                        "CaptureTime"
                                                                        "ReleaseTime"
   [6] "BandNumber"
                                                        "Sex"
                        "Species"
                                        "Age"
                                                                        "Wing"
## [11] "Weight"
                        "Culmen"
                                                        "Tail"
                                                                        "StandardTail"
                                        "Hallux"
## [16] "Tarsus"
                        "WingPitFat"
                                        "KeelFat"
                                                        "Crop"
```

Species names:

```
## Species
## 1 RT
## 2 CH
## 3 SS
```

Sample Weight data:

```
## Weight
## 1 920
## 2 930
## 3 990
## 4 470
## 5 170
```

Data Frame hSF:

```
##
     Wing Weight Tail
## 1 412
            1090
                  230
     412
## 2
            1210
                  210
## 3
      405
            1120
                  238
## 4
     393
            1010
                  222
## 5
     371
            1010
                  217
```

1.1 (Q2)

How many variables does the data frame hSF have?

[1] 3

What would you say to communicate this information to a Machine Learning practitioner?
[1] "There are 3 variables in the data frame hSF used for training."

How many examples does the data frame hSF have? How many observations? How many cases?

```
## [1] 398
```

1.2 (Q1)

Sort by Wing:

```
##
     Wing Weight Tail
## 1 37.2
            1180 210
## 2 111.0
            1340
                  226
## 3 199.0
            1290
                  222
## 4 241.0
            1320
                  235
## 5 262.0
            1020
                  200
```

1.3 (Q1)

hawk Species Name Codes:

1.3 (Q2)

hawksFullName:

##		Month 1	Day	Year	CaptureTime	Relea	aseTime	Bar	ndNumber	Age	Sex	Wing	Weight	${\tt Culmen}$
##	1	9	19	1992	13:30			87	77-76317	I		385	920	25.7
##	2	9	22	1992	10:30			87	77-76318	I		376	930	NA
##	3	9	23	1992	12:45			87	77-76319	I		381	990	26.7
##	4	9	23	1992	10:50			74	5-49508	I	F	265	470	18.7
##	5	9	27	1992	11:15			125	3-98801	I	F	205	170	12.5
##	6	9	28	1992	11:25			1207	7-55910	I		412	1090	28.5
##	7	9	28	1992	13:30			87	77-76320	I		370	960	25.3
##		Hallux	Tai	il Sta	andardTail T	arsus	WingPit	Fat	KeelFat	Crop)	SI	pecies	
##	1	30.1	21	L9	NA	NA		NA	NA	NA		Red-t	tailed	
##	2	NA	22	21	NA	NA		NA	NA	NA		Red-t	tailed	
##	3	31.3	23	35	NA	NA		NA	NA	NA		Red-1	tailed	
##	4	23.5	22	20	NA	NA		NA	NA	NA		Cod	oper's	
##	5	14.3	15	57	NA	NA		NA	NA	NA	Sha	arp-sl	ninned	
##	6	32.2	23	30	NA	NA		NA	NA	NA		Red-1		
##	7	30.1	21	12	NA	NA		NA	NA	NA		Red-1	tailed	

1.3 (Q3)

hawksFullName Select Print:

```
##
           Species Wing Weight
## 1
       Red-tailed 385
                           920
## 2
       Red-tailed 376
                          930
## 3
       Red-tailed 381
                          990
         Cooper's 265
## 4
                           470
## 5 Sharp-shinned 205
                          170
## 6
       Red-tailed 412
                          1090
```

7 Red-tailed 370 960

Does it matter what type of join function you use here? In what situations would it make a difference?

```
## [1] "A left_join B: Return all rows in A."
## [1] "A right_join B: Return all rows in B."
## [1] "A inner_join B: Return only the rows in both A and B based on the specified keys."
## [1] "A full_join B: Return all rows from both A and B"
```

1.4 (Q1)

bird BMI:

```
##
    Species bird_BMI
         RT 852.69973
## 1
## 2
         RT 108.75741
## 3
         RT 32.57493
## 4
         RT
             22.72688
## 5
          CH 22.40818
## 6
          RT 19.54932
## 7
          CH 15.21998
## 8
          RT
            14.85927
```

1.5 (Q1)

Summarize_data:

```
## # A tibble: 3 x 6
     Species
                   num_rows mn_wing nd_wing t_mn_wing b_wt_ratio
##
     <chr>
                       <int>
                               <dbl>
                                       <dbl>
                                                  <dbl>
                                                              <dbl>
## 1 Cooper's
                          70
                                244.
                                          240
                                                   243.
                                                               1.67
## 2 Red-tailed
                         577
                                          384
                                383.
                                                   385.
                                                               3.16
## 3 Sharp-shinned
                         261
                                185.
                                          191
                                                   184.
                                                               1.67
```

1.5 (Q2)

${\bf Summarize_na_number:}$

##	#	A tibble: 3 x	9							
##		Species	Wing	Weight	${\tt Culmen}$	${\tt Hallux}$	Tail	${\tt StandardTail}$	Tarsus	Crop
##		<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
##	1	Cooper's	1	0	0	0	0	19	62	21
##	2	Red-tailed	0	5	4	3	0	250	538	254
##	3	Sharp-shinned	0	5	3	3	0	68	233	68

. . . .

2. Random experiments, events and sample spaces, and the set theory

2.1 (Q1)

Random experiments: A random experiment is a procedure that meet both of the following conditions:

- (1) has a well-defined set of possible outcomes;
- (2) could (at least in principle) be repeated arbitrarily many times.

Events: An event is a set of possible outcomes of an experiment.

Sample spaces: A sample space is the set of possible outcomes of interest for a random experiment.

The set theory: A set is just a collection of objects of interest, such as the possible outcomes.

2.1 (Q2)

Example: The result of both rolls of the dice is the same: $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$

Sample space: {

$$\dots (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)$$

Total number: 2³⁶

Is the empty set considered as an event: Yes, it represents the event where no outcome occurs, meaning an impossible event.

2.2 (Q1)

$$A \cup B = \{1, 2, 3, 4, 6\}$$

$$A \cup C = \{1, 2, 3, 4, 5, 6\}$$

$$A \cap B = \{2\}$$

$$A \cap C = \emptyset$$

$$A \setminus B = \{1, 3\}$$

$$A \setminus C = \{1, 2, 3\}$$

A and B are not disjoint

A and C are disjoint

B and A B are disjoint

Partition into two sets: $\{\{1, 3, 5\}, \{2, 4, 6\}\}$

Partition into three sets: $\{\{1, 6\}, \{2, 3\}, \{4, 5\}\}$

2.2 (Q1)

1.

$$(A^c)^c = A$$

2.

$$\Omega^c = \emptyset$$

3. Let $x \in B^c$, then $x \notin B$. Since $A \subseteq B$,then $x \notin A$,so $x \in A^c$. Therefore, $B^c \subseteq A^c$.

4.

$$(A \cap B)^c = \{x \in \Omega : x \notin A \cap B\}$$

It means that x is either not in A or not in B. Therefore,

$$(A \cap B)^c = A^c \cup B^c$$

Let's suppose a sequence of events $A_1, A_2, \ldots, A_K \subseteq \Omega$. The general form of this law for the intersection of multiple sets is:

$$\left(\bigcap_{k=1}^K A_k\right)^c = \bigcup_{k=1}^K A_k^c$$

5. The complement of the union $A \cup B$ is the set of all elements not in $A \cup B$:

$$(A \cup B)^c = \{x \in \Omega : x \notin A \cup B\}$$

This means that x is neither in A nor in B.

This means that

$$x \in A^c$$
 and $x \in B^c$

This means that

$$x \in A^c \cap B^c$$

Therefore

$$(A \cup B)^c = A^c \cap B^c$$

6. the complement of the union of multiple sets is the intersection of their complements:

$$\left(\bigcup_{k=1}^{K} A_k\right)^c = \bigcap_{k=1}^{K} A_k^c$$

This is a generalization of the law for multiple events.

2.2 (Q3)

For each element $w_i \in \Omega$, when forming a subset A, we have two choices:

- 1. Include the element w_i .
- 2. Exclude the element w_i .

This means that for every element, there are two possible outcomes.

Since there are K elements in Ω , the total number of subsets can be calculated as follows:

$$|E| = 2^K$$

2.2 (Q4)

- 1. the empty set $A = \emptyset$ is a valid choice. The intersection of the empty set with any other set is empty, so it is disjoint from all other sets.
- 2

. . . .

3. Probability theory

- 3 (Q1)
- 3 (Q2)

.