Big Data Mining: HW#1

By J. H. Wang

Oct. 4, 2019

Programming Exercise: the First Analysis Program

- Goal: Getting familiar with your big data mining environment and writing your first analysis program
 - MapReduce on multi-node Spark (for CS students)
 - or Python in Jupyter Notebook

Input: Numeric data (to be detailed later)

Output: Results of simple statistics (to be detailed later)

Tasks and Data

- Tasks
 - Performing simple statistics on numeric data (as detailed in the following slides)

Data: an open dataset from UCI Machine Learning Repository

- You have to submit the generated output
- You also have to output the efficiency (running time) of each task

Input Data

• Data:

- [Individual household electric power consumption dataset] from UCI Machine Le arning Repository
 - About 2 million instances, 20MB (compressed) in size
- Available at: https://
 archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

• Format:

- One text file consisting of lines of records
- Each record contains 9 attributes separated by semicolons: Date, time, global_active_power, global_reactive_power, voltage, global_intensity, sub_metering_1, sub_metering_2, sub_metering_3

Detailed Information about Data Attributes

- 1.date: Date in format dd/mm/yyyy
- 2.time: time in format hh:mm:ss
- 3.global_active_power: household global minute-averaged active power (in kilowatt)
- 4.global_reactive_power: household global minute-averaged reactive power (in kilowatt)
- 5.voltage: minute-averaged voltage (in volt)
- 6.global_intensity: household global minute-averaged current intensity (in ampere)
- 7.sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy)
 - It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered)
- 8.sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy)
 - It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light.
- 9.sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy)
 - It corresponds to an electric water-heater and an air-conditioner.

Tasks in this Homework

• 3 subtasks:

- (30pt) (1) Output the minimum, maximum, and count of the columns: 'global active power', 'global reactive power', 'voltage', and 'global intensity'
- (30pt) (2) Output the mean and standard deviation of these columns
- (40pt) (3) Perform min-max normalization on the columns to generate normal ized output

Output Format

- (1) 3 values: min, max, count
- (2) 2 values: mean, standard deviation
- (3) 1 file:
 - Each line: <normalized global active power>, <normalized global reactive power>, <normalized voltage>, and <normalized global intensity>

Implementation Issues

- Missing values
- Conversion of data types

References

- UCI ML repository:
 - Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository [htt p://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Note on Programming Exercises

- Programming exercises can be done as a team
 - at most two persons per team

- Programming language
 - Java on Hadoop (for CS students)
 - Java, Scala, Python, or R on Spark (for CS students)
 - Or Python in Jupyter Notebook

Homework Submission

- For implementation projects, please submit a compressed file containing:
 - Your environment setup
 - How many PCs, what spec, network setup, ...
 - Your source codes
 - The generated output
 - Documentation on how to compile, install, or configure the environment, and also the detailed responsibility of each member

• Due: 2 weeks (Oct. 18, 2019)

Homework Submission Site

- Programs or projects in electronic files must be submitted directly to the TA online at Open Cyber Classrooms
 - http://mslin.ee.ntut.edu.tw
- Please follow the instructions before your first login
 - **Account**: Use your *student ID* as the account and password at your first login. Please change the password *as soon as possible* for better security.
 - *Note*: Even if you already have accounts for other courses, you are still *required* to do it at your first login for this course.
 - **Filename**: Compress your source code and related files into one compressed file. Please name it according to your ID and each homework. For example, [id]_HW1.zip, [id]_Quiz.tar.gz.
- If you cannot successfully submit your work, please contact with the TA or the instructor

Evaluation of Results

- In completion of each of the tasks, you get part of the scores
 - Correctness of Output
 - Efficiency

Please specify the environment setup of your (virtual) machines

You might need to demo if your program was unable to run

Questions or Comments?