Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

2º Appello — 4 luglio 2017

Esercizio 1. Sia V uno spazio vettoriale, U_1, \ldots, U_r sottospazi vettoriali non nulli e distinti, tali che $U_1 \subsetneq U_2 \subsetneq \cdots \subsetneq U_r$. Mostrare che dim $V \geq r$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare iniettiva tra due spazi vettoriali. Dimostrare che se i vettori $v_1, v_2, \ldots, v_k \in V$ sono linearmente indipendenti allora anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti.

Esercizio 3. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo lineare tale che $\operatorname{Im}(f) \subseteq \operatorname{Ker}(f)$. Mostrare che $f \circ f$ è la funzione nulla. Chi sono gli autovalori di una tale f?

Esercizio 4. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $A_k = \binom{2k-5}{1-k} \binom{-2}{k+1}$ e poniamo $S = \{A_k \mid k \in \mathbb{Z}\}$. Osserviamo che l'insieme S non è un sottospazio vettoriale di $M_2(\mathbb{R})$.

- (a) Determinare per quale valore di $k \in \mathbb{Z}$ la matrice A_k non ha rango 2.
- (b) Determinare la dimensione e una base del più piccolo sottospazio U di $M_2(\mathbb{R})$ che contiene S.
- (c) Sia $V \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato da tutte le matrici simmetriche. Scrivere una base di $U \cap V$.

Esercizio 5. Si consideri la matrice

$$A_t = \begin{pmatrix} -1 & 3 & 6 \\ t & -1 & 6 \\ 0 & 0 & -4 \end{pmatrix}$$

- (a) Determinare per quali valori di t tutti gli autovalori di A_t sono reali.
- (b) Si ponga ora t=3. Determinare gli autovalori e gli autospazi della matrice A_3 e stabilire se essa è diagonalizzabile.
- (c) Si dica se A_3 è simile alla matrice $\begin{pmatrix} -4 & 0 & 0 \\ 1 & -4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ (la risposta deve essere adeguatamente giustificata).

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1=(1,-1,0,2),\ u_2=(0,2,1,-1)$ e sia L il sottospazio generato dal vettore $\ell=(-1,1,-1,1)$.

- (a) Si dica se $L \subseteq U^{\perp}$ e poi si determini una base di $(U+L)^{\perp}$.
- (b) Dato il vettore w = (3, 1, 4, -2) si determini il vettore v di norma minima tale che $v + w \in L$.
- (c) Si dica se esiste un sottospazio vettoriale $W \subseteq \mathbb{R}^4$ tale che la proiezione ortogonale del vettore w su W sia w' = (2, -1, 4, 1) [la risposta deve essere adeguatamente giustificata].

Esercizio 7. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(2,1,5) e la retta

$$r: \begin{cases} x + 2y + 2z - 5 = 0\\ 2y + z - 1 = 0 \end{cases}$$

- (a) Determinare l'equazione cartesiana del piano π ortogonale alla retta r e passante per il punto P.
- (b) Dato il piano $\sigma: 2x-z+1=0$, determinare le equazioni parametriche della retta s passante per il punto $A=r\cap\sigma$, contenuta nel piano σ e ortogonale alla retta r.
- (c) Determinare le equazioni parametriche della retta r', simmetrica di r rispetto al piano σ .

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

2º Appello — 4 luglio 2017

Esercizio 1. Sia V uno spazio vettoriale, U_1, \ldots, U_r sottospazi vettoriali non nulli e distinti, tali che $U_1 \subsetneq U_2 \subsetneq \cdots \subsetneq U_r$. Mostrare che dim $V \geq r$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare **iniettiva** tra due spazi vettoriali. Dimostrare che se i vettori $v_1, v_2, \ldots, v_k \in V$ sono linearmente indipendenti allora anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti.

Esercizio 3. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo lineare tale che $\operatorname{Im}(f) \subseteq \operatorname{Ker}(f)$. Mostrare che $f \circ f$ è la funzione nulla. Chi sono gli autovalori di una tale f?

Esercizio 4. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $A_k = \binom{2k-1}{k+4} - \binom{1}{2k-6}$ e poniamo $S = \{A_k \mid k \in \mathbb{Z}\}$. Osserviamo che l'insieme S non è un sottospazio vettoriale di $M_2(\mathbb{R})$.

- (a) Determinare per quale valore di $k \in \mathbb{Z}$ la matrice A_k non ha rango 2.
- (b) Determinare la dimensione e una base del più piccolo sottospazio U di $M_2(\mathbb{R})$ che contiene S.
- (c) Sia $V \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato da tutte le matrici simmetriche. Scrivere una base di $U \cap V$.

Esercizio 5. Si consideri la matrice

$$A_t = \begin{pmatrix} 4 & 3 & 2 \\ t & -1 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

- (a) Determinare per quali valori di t tutti gli autovalori di A_t sono reali.
- (b) Si ponga ora t = -2. Determinare gli autovalori e gli autospazi della matrice A_{-2} e stabilire se essa è diagonalizzabile.
- (c) Si dica se A_{-2} è simile alla matrice $\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (la risposta deve essere adeguatamente giustificata).

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1=(2,0,2,-1),\ u_2=(1,-1,-2,0)$ e sia L il sottospazio generato dal vettore $\ell=(1,1,0,2)$.

- (a) Si dica se $L \subseteq U^{\perp}$ e poi si determini una base di $(U+L)^{\perp}$.
- (b) Dato il vettore w = (1, -1, 1, -6) si determini il vettore v di norma minima tale che $v + w \in L$.
- (c) Si dica se esiste un sottospazio vettoriale $W \subseteq \mathbb{R}^4$ tale che la proiezione ortogonale del vettore w su W sia w' = (2, -3, -1, -6) [la risposta deve essere adeguatamente giustificata].

Esercizio 7. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(1,3,-3) e la retta

$$r: \begin{cases} x - y - z + 1 = 0 \\ 2y - z - 5 = 0 \end{cases}$$

- (a) Determinare l'equazione cartesiana del piano π ortogonale alla retta r e passante per il punto P.
- (b) Dato il piano $\sigma: x+2y+1=0$ determinare le equazioni parametriche della retta s passante per il punto $A=r\cap\sigma$, contenuta nel piano σ e ortogonale alla retta r.
- (c) Determinare le equazioni parametriche della retta r', simmetrica di r rispetto al piano σ .

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

2º Appello — 4 luglio 2017

Esercizio 1. Sia V uno spazio vettoriale, U_1, \ldots, U_r sottospazi vettoriali non nulli e distinti, tali che $U_1 \subsetneq U_2 \subsetneq \cdots \subsetneq U_r$. Mostrare che dim $V \geq r$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare **iniettiva** tra due spazi vettoriali. Dimostrare che se i vettori $v_1, v_2, \ldots, v_k \in V$ sono linearmente indipendenti allora anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti.

Esercizio 3. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo lineare tale che $\operatorname{Im}(f) \subseteq \operatorname{Ker}(f)$. Mostrare che $f \circ f$ è la funzione nulla. Chi sono gli autovalori di una tale f?

Esercizio 4. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $A_k = \binom{k+3}{3-k} \binom{1}{2k+4}$ e poniamo $S = \{A_k \mid k \in \mathbb{Z}\}$. Osserviamo che l'insieme S non è un sottospazio vettoriale di $M_2(\mathbb{R})$.

- (a) Determinare per quale valore di $k \in \mathbb{Z}$ la matrice A_k non ha rango 2.
- (b) Determinare la dimensione e una base del più piccolo sottospazio U di $M_2(\mathbb{R})$ che contiene S.
- (c) Sia $V \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato da tutte le matrici simmetriche. Scrivere una base di $U \cap V$.

Esercizio 5. Si consideri la matrice

$$A_t = \begin{pmatrix} -7 & t & -4 \\ 6 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$

- (a) Determinare per quali valori di t tutti gli autovalori di A_t sono reali.
- (b) Si ponga ora t = -4. Determinare gli autovalori e gli autospazi della matrice A_{-4} e stabilire se essa è diagonalizzabile.
- (c) Si dica se A_{-4} è simile alla matrice $\begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -3 \end{pmatrix}$ (la risposta deve essere adeguatamente giustificata).

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1=(3,0,-1,1),\ u_2=(2,1,0,-2)$ e sia L il sottospazio generato dal vettore $\ell=(0,2,1,1)$.

- (a) Si dica se $L \subseteq U^{\perp}$ e poi si determini una base di $(U+L)^{\perp}$.
- (b) Dato il vettore w = (-1, 2, 5, 3) si determini il vettore v di norma minima tale che $v + w \in L$.
- (c) Si dica se esiste un sottospazio vettoriale $W \subseteq \mathbb{R}^4$ tale che la proiezione ortogonale del vettore w su W sia w' = (-3, 1, 5, -1) [la risposta deve essere adeguatamente giustificata].

Esercizio 7. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(3,-1,3) e la retta

$$r: \begin{cases} 2x + y + z - 3 = 0 \\ x - y - 5 = 0 \end{cases}$$

- (a) Determinare l'equazione cartesiana del piano π ortogonale alla retta r e passante per il punto P.
- (b) Dato il piano $\sigma: 2x+z-5=0$ determinare le equazioni parametriche della retta s passante per il punto $A=r\cap\sigma$, contenuta nel piano σ e ortogonale alla retta r.
- (c) Determinare le equazioni parametriche della retta r', simmetrica di r rispetto al piano σ .

Prof. F. Bottacin, M. Candilera, E. Detomi, G. Gerotto, R. Kloosterman

$2^{\rm o}$ Appello — 4 luglio 2017

Esercizio 1. Sia V uno spazio vettoriale, U_1, \ldots, U_r sottospazi vettoriali non nulli e distinti, tali che $U_1 \subsetneq U_2 \subsetneq \cdots \subsetneq U_r$. Mostrare che dim $V \geq r$.

Esercizio 2. Sia $f: V \to W$ una funzione lineare **iniettiva** tra due spazi vettoriali. Dimostrare che se i vettori $v_1, v_2, \ldots, v_k \in V$ sono linearmente indipendenti allora anche le loro immagini $f(v_1), f(v_2), \ldots, f(v_k)$ sono linearmente indipendenti.

Esercizio 3. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo lineare tale che $\operatorname{Im}(f) \subseteq \operatorname{Ker}(f)$. Mostrare che $f \circ f$ è la funzione nulla. Chi sono gli autovalori di una tale f?

Esercizio 4. Indichiamo con $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 a coefficienti reali. Sia $A_k = \binom{2k+5}{k+4} \binom{3}{2-2k}$ e poniamo $S = \{A_k \mid k \in \mathbb{Z}\}$. Osserviamo che l'insieme S non è un sottospazio vettoriale di $M_2(\mathbb{R})$.

- (a) Determinare per quale valore di $k \in \mathbb{Z}$ la matrice A_k non ha rango 2.
- (b) Determinare la dimensione e una base del più piccolo sottospazio U di $M_2(\mathbb{R})$ che contiene S.
- (c) Sia $V \subset M_2(\mathbb{R})$ il sottospazio vettoriale formato da tutte le matrici simmetriche. Scrivere una base di $U \cap V$.

Esercizio 5. Si consideri la matrice

$$A_t = \begin{pmatrix} -1 & t & 4\\ 2 & 6 & -2\\ 0 & 0 & 3 \end{pmatrix}$$

- (a) Determinare per quali valori di t tutti gli autovalori di A_t sono reali.
- (b) Si ponga ora t = -6. Determinare gli autovalori e gli autospazi della matrice A_{-6} e stabilire se essa è diagonalizzabile.
- (c) Si dica se A_{-6} è simile alla matrice $\begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ (la risposta deve essere adeguatamente giustificata).

Esercizio 6. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (-2, 1, 2, 0), u_2 = (3, 0, -1, 1)$ e sia L il sottospazio generato dal vettore $\ell = (1, 0, 1, -2)$.

- (a) Si dica se $L \subseteq U^{\perp}$ e poi si determini una base di $(U+L)^{\perp}$.
- (b) Dato il vettore w = (2, -3, 4, -3) si determini il vettore v di norma minima tale che $v + w \in L$.
- (c) Si dica se esiste un sottospazio vettoriale $W \subseteq \mathbb{R}^4$ tale che la proiezione ortogonale del vettore w su W sia w' = (1, 1, 4, -2) [la risposta deve essere adeguatamente giustificata].

Esercizio 7. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono assegnati il punto P=(3,2,4) e la retta

$$r: \begin{cases} x - y + z - 4 = 0 \\ 2y + z + 1 = 0 \end{cases}$$

- (a) Determinare l'equazione cartesiana del piano π ortogonale alla retta r e passante per il punto P.
- (b) Dato il piano $\sigma: x+3y+1=0$ determinare le equazioni parametriche della retta s passante per il punto $A=r\cap\sigma$, contenuta nel piano σ e ortogonale alla retta r.
- (c) Determinare le equazioni parametriche della retta r', simmetrica di r rispetto al piano σ .