

Chapter 7: Transport Layer

Introduction to Networking

Cisco | Networking Academy® | Mind Wide Open™

- 7.0 Introduction
- 7.1 Transport Layer Protocols
- 7.2 TCP and UDP
- 7.3 Summary

Chapter 7: Objectives

- Describe the purpose of the transport layer in managing the transportation of data in end-to-end communication.
- Describe characteristics of the TCP and UDP protocols, including port numbers and their uses.
- Explain how TCP session establishment and termination processes facilitate reliable communication.
- Explain how TCP protocol data units are transmitted and acknowledged to guarantee delivery.
- Explain the UDP client processes to establish communication with a server.
- Determine whether high-reliability TCP transmissions, or nonguaranteed UDP transmissions, are best suited for common applications.

7.1: Transport Layer Protocols

Cisco Networking Academy® Mind Wide Open®

Transportation of Data

Role of the Transport Layer

The transport layer is responsible for establishing a temporary communication session between two applications and delivering data between them.

TCP/IP uses two protocols to achieve this:

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

Primary Responsibilities of Transport Layer Protocols

- Tracking the individual communication between applications on the source and destination hosts
- Segmenting data for manageability and reassembling segmented data into streams of application data at the destination
- Identifying the proper application for each communication stream

Transportation of Data

Role of the Transport Layer (Cont.)

Conversation Multiplexing

Segmenting the Data

- Enables many different communications, from many different users, to be interleaved (multiplexed) on the same network, at the same time.
- Provides the means to both send and receive data when running multiple applications.
- Header added to each segment to identify it.

7

Transportation of Data

Conversation Multiplexing (Cont.)

Conversation Multiplexing (Cont.)

Transportation of Data

Transport Layer Reliability

Different applications have different transport reliability requirements.

TCP/IP provides two transport layer protocols, **TCP and UDP.**

TCP

- Provides reliable delivery ensuring that all of the data arrives at the destination.
- Uses acknowledged delivery and other processes to ensure delivery
- Makes larger demands on the network more overhead.

UDP

- Provides just the basic functions for delivery no reliability.
- Less overhead.

TCP or UDP

- There is a trade-off between the value of reliability and the burden it places on the network.
- Application developers choose the transport protocol based on the requirements of their applications.

Introducing TCP and UDP Introducing TCP

- Defined in RFC 793
- Connection-oriented Creates a session between the source and destination
- Reliable delivery Retransmits lost or corrupt data
- Ordered data reconstruction Reconstructs numbering and sequencing of segments
- Flow control Regulates the amount of data transmitted
- Stateful protocol Tracks the session

Introducing TCP and UDP Introducing UDP

- RFC 768
- Connectionless
- Unreliable delivery
- No ordered data reconstruction
- No flow control
- Stateless protocol

Applications that use UDP:

- Domain Name System (DNS)
- Video Streaming
- VoIP

Introducing TCP and UDP

Separating Multiple Communications

TCP and UDP use port numbers to differentiate between applications.

Introducing TCP and UDP

TCP and UDP Port Addressing

TCP and UDP Port Addressing (Cont.)

Port Numbers

Port Number Range	Port Group	
0 to 1023	Well Known (Contact) Ports	
1024 to 49151	Registered Ports	
49152 to 65533	Private and/or Dynamic Ports	

Registered TCP Ports:

1863 MSN Messenger

2000 Cisco SCCP (VoIP)

8008 Alternate HTTP

8080 Alternate HTTP

Well Known TCP Ports:

21 FTP

23 Telnet

25 SMTP

80 HTTP

110 POP3

194 Internet Relay Chat (IRC)

443 Secure HTTP (HTTPS)

TCP and UDP Port Addressing (Cont.)

Registered UDP Ports:

1812 RADIUS Authentication

Protocol

5004 RTP (Voice and Video

Transport Protocol)

5040 SIP (VoIP)

Well Known UDP Ports:

69 TFTP

520 RIP

Registered TCP/UDP Common

Ports:

1433 MS SQL

2948 WAP (MMS)

Well Known TCP/UDP Common Ports:

53 DNS

161 SNMP

531 AOL Instant Messenger, IRC

TCP and UDP Port Addressing (Cont.)

Netstat is used to examine TCP connections that are open and running on a networked host.

Active	Connections		
Proto	Local Address	Foreign Address	state
TCP	kenpc:3126	192.168.0.2:netbios-ssn	ESTABLISHED
TCP	kenpc:3158	207.138.126.152:http	ESTABLISHED
TCP	kenpc:3159	207.138.126.169:http	ESTABLISHED
TCP	kenpc:3160	207.138.126.169:http	ESTABLISHED
TCP	kenpc:3161	sc.msn.com:http	ESTABLISHED
TCP	kenpc:3166	www.cisco.com:http	ESTABLISHED
C:\>			

Introducing TCP and UDP

TCP and UDP Segmentation

The transport layer divides the data into pieces and adds a header for delivery over the network

7.2 TCP and UDP

Cisco | Networking Academy® | Mind Wide Open™

TCP Server Processes

Request Destination Ports

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

TCP Communication

TCP Server Processes (Cont.)

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

TCP Communication TCP Connection, Establishment and Termination

Three-Way Handshake

- Establishes that the destination device is present on the network
- Verifies that the destination device has an active service and is accepting requests on the destination port number that the initiating client intends to use for the session
- Informs the destination device that the source client intends to establish a communication session on that port number

TCP Communication

TCP Three-Way Handshake – Step 1

Step 1: The initiating client requests a client-to-server communication session with the server

Frame 10: 62 bytes on wire (496 bits), 62 bytes captured Ethernet II, Src: Vmware_be:62:88 (00:50:56:be:62:88]

Internet Protocol Version 4, Src: 10.1.1.1 (10.1.1.1)

Transmission Control Protocol, Src Port: kiosk (1061)

Source port: kiosk (1061)

Destination port: http (80)

[Stream index: 0]

Sequence number: 0 (relative sequence number)

Header length: 28 bytes

Flags: 0x02 (SYN)

000. = Reserved: Not set

TCP 3-Way Handshake (SYN)

A protocol analyzer shows initial client request for session in frame 10

TCP segment in this frame shows:

- · SYN flag set to validate an Initial Sequence Number
- Randomized sequence number valid (relative value is 0)
- Random source port 1061
- Well-known destination port is 80 (HTTP port) indicates web server (httpd)

TCP Three-Way Handshake – Step 2

Step 2: The server acknowledges the client-to-server communication session and requests a server-to-client communication session.

TCP Three-Way Handshake – Step 3

Step 3: The initiating client acknowledges the server-to-client communication session.

TCP Communication

TCP Session Termination

TCP Reliability – Ordered Delivery

Sequence numbers are used to reassemble segments into their original order.

27

Acknowledgement and Window Size

The sequence number and acknowledgement number are used together to confirm receipt.

The window size is the amount of data that a source can transmit before an acknowledgement must be received.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Reliability and Flow Control Window Size and Acknowledgements

Reliability and Flow Control

TCP Flow Control – Congestion Avoidance

Reliability and Flow Control

TCP Reliability - Acknowledgements

UDP Communication

UDP Low Overhead vs. Reliability

UDP

- Simple protocol that provides the basic transport layer function
- Used by applications that can tolerate small loss of data
- Used by applications that cannot tolerate delay

Used by

- DNS
- Simple Network Management Protocol (SNMP)
- Dynamic Host Configuration Protocol (DHCP)
- Trivial File Transfer Protocol (TFTP)
- IP telephony or VoIP
- Online games

Datagram Reassembly

UDP Communication

UDP Server and Client Processes

- UDP-based server applications are assigned well-known or registered port numbers.
- UDP client process randomly selects port number from range of dynamic port numbers as the source port.

Applications that use TCP

TCP or UDP

Applications That Use UDP

7.3 Summary

Cisco | Networking Academy® | Mind Wide Open™

Chapter 7: Summary

In this chapter, you learned:

- The role of the transport layer is to provide three main services: multiplexing, segmentation and reassembly, and error checking. It does this by:
 - Dividing data received from an application into segments.
 - Adding a header to identify and manage each segment.
 - Using the header information to reassemble the segments back into application data.
 - Passing the assembled data to the correct application.
- How TCP and UDP operate and which popular applications use each protocol.
- Transport Layer functions are necessary to address issues in QoS and security in networks.
- Ports provide a "tunnel" for data to get from the transport layer to the appropriate application at the destination.

Cisco | Networking Academy® | Mind Wide Open™