

Emotion Identification and Tagging Music with Appropriate Emotion

Sai Suman Chitturi (1602-18-733-097)

Praneeth Kapila (1602-18-733-116)

Introduction

• Suggest Music based on User's Current Emotion

Emotion Identification

Implicit: Facial Emotion, Keystrokes, Mouse-click patterns

Explicit: Input from User

• Tag Music & Suggest

Music Tagging: K-Means Clustering

Suggestions using Random Sampling

Motivation

- Lack of Context-aware Music system
- Constantly Expanding Digital Music Libraries
 - ❖ Difficult to recall a particular song matching the current mood
- Confusion while choosing songs
- Useful when users can't reveal or express their emotion

Flow

Facial Emotion Recognition: How it Works

Literature Review: Convolutional Neural Networks

[1]. Facial Emotion Recognition using an Ensemble of Multi-Level Convolutional Neural Networks

- Proposed a CNN based on multi-level features for Facial emotion identification.
- Hierarchy of Characteristics are considered to improve the classification job.
- Tested on the FER2013 dataset:
 - Found to be similar to existing state-of-the-art approaches in terms of performance

Literature Review:
Multi-task Cascaded Neural
Network

[2]. Research on Face Detection Technology Based on MTCNN

- Multitask Neural Network model for face detection.
- Image pyramid is used to transform the scale of the initial image.
- Require GPUs to train faster
- Very accurate and Robust

Image Pyramid

Literature Review: Compare & Contrast

Parameter	CNN	Deep Face (DNN)	FER (MTCNN)
Accuracy	High	Low	High
Train time	Low	High	High
Validation time	Low	High	High
Advantages	Speed	Light Weight	Self-alignment of Face
Disadvantages	Large Training Data	Low Accuracy	High Train Time
Common	Unable to detect rare facial expressions like Disgust		

Proposed Methodology: Emotion Detection

- Based on the accuracies, both, CNN and MTCNN, seem a good fit for Facial Emotion Detection
- Choose CNN if time is an Important Factor
- Choose MTCNN if Accuracy is more important
- Time factor can be reduced by using GPUs.
 - ✓ MTCNN is better than CNN

Implementation of Facial Emotion Recognition

• Datasets used:

• FER2013: 28k train images + 7k test images; 48x48; B&W

• Affect Net: 49k train images + 4k test images; 224x224; Colored

Parameter	CNN	Deep Face (DNN)	FER (MTCNN)
Train Accuracy	74.83 %	87.35 %	92.19 %
Train Dataset	FER 2013 Train	FER 2013 Train	FER 2013 Train
Test Dataset	Affect Net	Affect Net	Affect Net

Tagging Music with Appropriate Emotion

Subset of LastFM Million Song Dataset

MuSe: The Musical Sentiment Dataset

Column Label	Description
lastfm_url	Last.fm page of the song
track	Song title
artist	Artist name
seeds	The initial keyword(s) that seeded the scraping of this song
number_of_emotion_tags	Number of words that contributed to the emotion score of the song
valence_tags	Pleasantness dimension of the song
arousal_tags	Intensity dimension of the song
dominance_tags	Control dimension of the song
mbid	MusicBrainz Identifier of the song
spotify_id	Spotify Identifier of the song

Tagging Music

- Tagging Music involves clustering based on Valence, Arousal and Dominance values.
- VAD values identify the emotion associated with the song.
- These are floating-point values.
- Therefore, the dataset is plotted in 3-D space.
- K-Means clustering is used to group similar content.
- 7 Clusters are obtained: Each uniquely identifies an emotion.

K-Means clustering

- VAD values are relative:
 - They change as the range of the dataset varies.

- Based on the range of VAD in MuSe dataset, initial centroids were identified.
- The 7 identified initial centroids uniquely determine the emotion associated with the song.
- K-Means Clustering is then performed with the initial centroids.
- 7 Clusters are obtained at the end, each identifying an emotion.

Results

Method	Accuracy/Silhouette score
Without Initial Centroids	0.31
With Initial Centroids	0.35
Split into Train/Test	87%

Flow: Recap

Top picks for Identified Emotion

- Based on the identified emotion, top 15 songs that are tagged with same emotion are picked and displayed.
- Clickable Spotify Embed widgets are displayed that can be used to play the song.

X Clear photo

Identified Emotion: Surprise

Top Tracks

Thank you