Συναρτήσεις Θεώρημα Rolle

Κωνσταντίνος Λόλας

- 📵 το θεώρημα... γελοίο
- ② οι εφαρμογές... πφφφ¢
- ③ οι αρχικές ασκήσεις... παιχνιδάκι
- όταν είναι όμως στις πανελλαδικές... ΠΑΤΟΣ

- 1 το θεώρημα... γελοίο
- ② οι εφαρμογές... πφφφφ
- ③ οι αρχικές ασκήσεις... παιχνιδάκι
- όταν είναι όμως στις πανελλαδικές... ΠΑΤΟΣ

- ① το θεώρημα... γελοίο
- ② οι εφαρμογές... πφφφφ
- οι αρχικές ασκήσεις... παιχνιδάκι
- όταν είναι όμως στις πανελλαδικές... ΠΑΤΟΣ

- Το θεώρημα... γελοίο
- ② οι εφαρμογές... πφφφφ
- Οι αρχικές ασκήσεις... παιχνιδάκι
- όταν είναι όμως στις πανελλαδικές... ΠΑΤΟΣ

But Whyyyyyyyyy!

Χωρίς τον Rolle ξεχάστε

- 📵 μονοτονία
- ② ακρότατα
- ③ αντιπαράγωγο, διαφορικές κτλ

But Whyyyyyyyyy!

Χωρίς τον Rolle ξεχάστε

- 📵 μονοτονία
- ② ακρότατα
- ③ αντιπαράγωγο, διαφορικές κτλ

But Whyyyyyyyyy!

Χωρίς τον Rolle ξεχάστε

- 🚇 μονοτονία
- ② ακρότατα
- ③ αντιπαράγωγο, διαφορικές κτλ

- Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- ③ θεωρήστε δύο σημεία μιας συνάρτησης με $f(\alpha) = f(\beta)$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα $x^\prime x$
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- 3 θεωρήστε δύο σημεία μιας συνάρτησης με $f(\alpha)=f(\beta)$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα x'x
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- $oldsymbol{3}$ θεωρήστε δύο σημεία μιας συνάρτησης με f(lpha)=f(eta)
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα x'x
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- ③ θεωρήστε δύο σημεία μιας συνάρτησης με $f(\alpha) = f(\beta)$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα x'x
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- ③ θεωρήστε δύο σημεία μιας συνάρτησης με $f(\alpha) = f(\beta)$
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα $x^{\prime}x$
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- $oldsymbol{3}$ θεωρήστε δύο σημεία μιας συνάρτησης με f(lpha)=f(eta)
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα $x^{\prime}x$
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

- ① Φτιάξτε άξονες
- ② Διαλέξτε δύο διαφορετικές τιμές στον άξονα των x τις α και β
- $oldsymbol{3}$ θεωρήστε δύο σημεία μιας συνάρτησης με f(lpha)=f(eta)
- Φτιάξτε παραγωγίσιμη συνάρτηση στο $[\alpha, \beta]$ και μελετήστε την εφαπτόμενή της
- ⑤ Εντοπίστε σημεία στα οποία η εφαπτόμενη είναι παράλληλη με τον άξονα $x^{\prime}x$
- Επαναλάβετε όλη τη διαδικασία, δημιουργώντας συνάρτηση που δεν έχει οριζόντια εφαπτόμενη

Θεώρημα Rolle

Θεώρημα Rolle

Εστω μία συνάρτηση f:

- ullet συνεχής στο [lpha, eta]
- παραγωγίσιμη στο (α, β)
- $f(\alpha) = f(\beta)$

τότε υπάρχει $\xi \in (\alpha, \beta)$ με $f'(\xi) = 0$

Συμπεράσματα

- ο Rolle όπως και ο Bolzano δεν βρίσκει ρίζες, αλλά βεβαιώνει την ύπαρξη
- ο Rolle από την συνάρτηση βγάζει συμπέρασμα για την παράγωγο
- ③ έχει περίεργες προϋποθέσεις

Συμπεράσματα

- ο Rolle όπως και ο Bolzano δεν βρίσκει ρίζες, αλλά βεβαιώνει την ύπαρξη
- ο Rolle από την συνάρτηση βγάζει συμπέρασμα για την παράγωγο
- ③ έχει περίερνες προϋποθέσεις

Συμπεράσματα

- ο Rolle όπως και ο Bolzano δεν βρίσκει ρίζες, αλλά βεβαιώνει την ύπαρξη
- ο Rolle από την συνάρτηση βγάζει συμπέρασμα για την παράγωγο
- έχει περίεργες προϋποθέσεις

Πώς θα τον χρησιμοποιούμε?

- 1 βεβαιώνουμε ύπαρξη, αν ο Bolzano δεν μας κάνει
- ② βρίσκουμε πλήθος ριζών
- ③ βεβαιώνουμε ότι η συνάρτηση είναι 1-1????????

Λόλας Συναρτήσεις 7/18

Πώς θα τον χρησιμοποιούμε?

- 1 βεβαιώνουμε ύπαρξη, αν ο Bolzano δεν μας κάνει
- ② βρίσκουμε πλήθος ριζών
- ③ βεβαιώνουμε ότι η συνάρτηση είναι 1-1????????

Πώς θα τον χρησιμοποιούμε?

- 1 βεβαιώνουμε ύπαρξη, αν ο Bolzano δεν μας κάνει
- ② βρίσκουμε πλήθος ριζών
- ③ βεβαιώνουμε ότι η συνάρτηση είναι 1-1????????

Δεν σας πείθω για την δυσκολία έ?

Ασκηση 22

Αν για τους αριθμούς α και β με $\alpha<\beta$ ισχύει $\frac{\sigma v \nu \alpha - \sigma v \nu \beta}{\alpha-\beta}=\frac{\alpha+\beta}{2}$ νο δείξετε ότι οι αριθμοί α και β είναι ετερόσημοι

Ασκηση 24

Εστω συνάρτηση παραγωγίσιμη στο [2,3] με 2f(3)=3f(2). Να δείξετε ότι υπάρχει $x_0\in(2,3)$ ώστε $f'(x_0)=\frac{f(x_0)}{x_0}$

Και να φανταστείτε ΣΑΣ ΛΕΩ ότι λύνονται με Rolle

Λόλας Συναρτήσεις 8/18

Δεν σας πείθω για την δυσκολία έ?

Ασκηση 22

Αν για τους αριθμούς α και β με $\alpha<\beta$ ισχύει $\frac{\sigma v \nu \alpha - \sigma v \nu \beta}{\alpha-\beta}=\frac{\alpha+\beta}{2}$ να δείξετε ότι οι αριθμοί α και β είναι ετερόσημοι

Ασκηση 24

Εστω συνάρτηση παραγωγίσιμη στο [2,3] με 2f(3)=3f(2). Να δείξετε ότι υπάρχει $x_0\in(2,3)$ ώστε $f'(x_0)=\frac{f(x_0)}{x_0}$

Και να φανταστείτε ΣΑΣ ΛΕΩ ότι λύνονται με Rolle

Λόλας Συναρτήσεις 8/18

Δεν σας πείθω για την δυσκολία έ?

Ασκηση 22

Αν για τους αριθμούς α και β με $\alpha<\beta$ ισχύει $\frac{\sigma v \nu \alpha - \sigma v \nu \beta}{\alpha-\beta}=\frac{\alpha+\beta}{2}$ να δείξετε ότι οι αριθμοί α και β είναι ετερόσημοι

Ασκηση 24

Εστω συνάρτηση παραγωγίσιμη στο [2,3] με 2f(3)=3f(2). Να δείξετε ότι υπάρχει $x_0\in(2,3)$ ώστε $f'(x_0)=\frac{f(x_0)}{x_0}$

Και να φανταστείτε ΣΑΣ ΛΕΩ ότι λύνονται με Rolle

Λόλας Συναρτήσεις 8/18

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Δίνεται η συνάρτηση $f(x) = x^3 - 6x^2 + 9x$

- Να δείξετε ότι η f ικανοποιεί τις υποθέσεις του θ. Rolle στο $\Delta=[0,3]$

Λόλας Συναρτήσεις 9/18

Δίνεται η συνάρτηση $f(x) = x^3 - 6x^2 + 9x$

- Να δείξετε ότι η f ικανοποιεί τις υποθέσεις του θ. Rolle στο $\Delta=[0,3]$
- Να βρείτε τα $\xi \in (0,3)$ για τα οποία ισχύει $f'(\xi) = 0$

Λόλας Συναρτήσεις 9/18

Δίνεται η συνάρτηση $f(x) = (x-2) \eta \mu x$. Να αποδείξετε ότι:

- Η εξίσωση f'(x) = 0 έχει μία τουλάχιστον ρίζα στο διάστημα $(2, \pi)$

Λόλας Συναρτήσεις 10/18

Δίνεται η συνάρτηση $f(x) = (x-2)\eta \mu x$. Να αποδείξετε ότι:

- Η εξίσωση f'(x) = 0 έχει μία τουλάχιστον ρίζα στο διάστημα $(2, \pi)$
- Η εξίσωση $\varepsilon \varphi x = 2 x$ έχει μία τουλάχιστον ρίζα στο $(2,\pi)$

Λόλας Συναρτήσεις 10/18

Δίνεται η συνάρτηση $f(x) = x^4 - 20x^3 - 25x^2 - x + 1$

- ① Να αποδείξετε ότι η εξίσωση f(x)=0 έχει μία τουλάχιστον ρίζα στο διάστημα (-1,0) και μία τουλάχιστον στο διάστημα (0,1)
- ② Να αποδείξετε ότι η εξίσωση $4x^3-60x^2-50x-1=0$ έχει μία τουλάχιστον ρίζα στο διάστημα (-1,1)

Λόλας Συναρτήσεις 11/18

Δίνεται η συνάρτηση $f(x) = x^4 - 20x^3 - 25x^2 - x + 1$

- Να αποδείξετε ότι η εξίσωση f(x) = 0 έχει μία τουλάχιστον ρίζα στο διάστημα (-1,0) και μία τουλάχιστον στο διάστημα (0,1)
- **2** Να αποδείξετε ότι η εξίσωση $4x^3 60x^2 50x 1 = 0$ έχει μία τουλάχιστον ρίζα στο διάστημα (-1,1)

Λόλας Συναρτήσεις 11/18

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει

$$f'(x) \neq 1$$
, για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η εξίσωση f(x)=x έχει μία το πολύ ρίζα

Λόλας Συναρτήσεις 12/18

Δίνεται η συνάρτηση $f(x) = 2^x + x^2 - 2x - 1$

- Να αποδείξετε ότι για την f ισχύουν οι υποθέσεις του Rolle στο [0,1]

$$g(x) = 2^x \text{ kal } h(x) = 2x - x^2 + 1$$

Λόλας Συναρτήσεις 13/18

Δίνεται η συνάρτηση $f(x) = 2^x + x^2 - 2x - 1$

- Να αποδείξετε ότι για την f ισχύουν οι υποθέσεις του Rolle στο [0,1]
- Nα αποδείξετε ότι η f έχει δύο το πολύ ρίζες

$$g(x) = 2^x$$
 και $h(x) = 2x - x^2 + 1$

Λόλας Συναρτήσεις 13/18

Δίνεται η συνάρτηση $f(x) = 2^x + x^2 - 2x - 1$

- Να αποδείξετε ότι για την f ισχύουν οι υποθέσεις του Rolle στο [0,1]
- Nα αποδείξετε ότι η f έχει δύο το πολύ ρίζες
- Να βρείτε τα κοινά σημεία των γραφικών παραστάσεων των συναρτήσεων:

$$g(x)=2^x$$
 και $h(x)=2x-x^2+1$

Λόλας Συναρτήσεις 13/18

Δίνεται η συνάρτηση $f(x)=\eta\mu(2x)$. Να δείξετε ότι η f ικανοποιεί τις υποθέσεις του Rolle στο διάστημα $[0,\pi]$ και στη συνέχεια, να βρείτε όλα τα $\xi\in(0,\pi)$ για τα οποία ισχύει $f'(\xi)=0$

Λόλας Συναρτήσεις 14/18

Aν $0<\alpha<\beta$ και $\alpha^{\beta}=\beta^{\alpha}$, να δείξετε ότι:

- $\ \, \textbf{Φ} \ \, \text{Για τη συνάρτηση} \, f(x) = \frac{\ln x}{x} \, \text{ισχύουν οι υποθέσεις Rolle στο} \, [\alpha,\beta]$

Λόλας Συναρτήσεις 15/18

Aν $0<\alpha<\beta$ και $\alpha^{\beta}=\beta^{\alpha}$, να δείξετε ότι:

- $\ \, \textbf{Φ} \ \, \text{Για τη συνάρτηση} \, f(x) = \frac{\ln x}{x} \, \text{ισχύουν οι υποθέσεις Rolle στο} \, [\alpha,\beta]$
- $2 1 < \alpha < e < \beta$

Λόλας Συναρτήσεις 15/18

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύει

$$f'(x) \neq 0$$
, για κάθε $x \in \mathbb{R}$

Nα δείξετε ότι η f είναι συνάρτηση 1-1

Λόλας Συναρτήσεις 16/18

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και ισχύουν

- ullet 1 < f(x) < 2 για κάθε $x \in \mathbb{R}$

Να δείξετε ότι υπάρχει μοναδικό $x_0 \in (0,1)$ ώστε $f(x_0) = x_0^2 + 1$

Λόλας Συναρτήσεις 17/18

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία είναι παραγωγίσιμη και η γραφική της παράσταση τέμνει τον άξονα x'x στα σημεία $x_1=1$ και $x_2=2$. Να αποδείξετε ότι:

- ullet Για την συνάρτηση $G(x)=rac{f(x)}{x-3}$ εφαρμόζεται το θ. Rolle στο [1,2]
- Υπάρχει $\xi \in (1,2)$ τέτοιο ώστε η εφαπτομένη της C_f στο σημείο $\mathbf{M}(\xi,f(\xi))$ να διέρχεται από το σημείο $\mathbf{A}(3,0)$

Λόλας Συναρτήσεις 18/18