Math. - ES 1 -

Lundi 15 janvier 2024 - Durée 4 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

Soit $n \in \mathbb{N}^*$. Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est dite **pseudo-inversible** s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que :

- (1) AB = BA
- (2) ABA = A
- (3) BAB = B

On dit dans ce cas que B est une pseudo-inverse de A.

- 1. Soit A une matrice pseudo-inversible de $\mathcal{M}_n(\mathbb{R})$, et B_1 et B_2 deux pseudo-inverses de A.
 - **a.** En calculant AB_1AB_2 de deux façons différentes, montrer que $AB_1 = AB_2$.
 - **b.** En déduire que $B_1 = B_2$.

Ainsi la matrice A admet une unique pseudo-inverse, appelée la pseudo-inverse de A notée A^* .

- 2. Montrer que la matrice nulle de $\mathcal{M}_n(\mathbb{R})$ est pseudo-inversible et déterminer sa pseudo-inverse.
- 3. Montrer que toute matrice inversible de $\mathcal{M}_n(\mathbb{R})$ est pseudo-inversible et déterminer sa pseudo-inverse.
- **4.** Soit N une matrice non nulle de $\mathcal{M}_n(\mathbb{R})$ telle que :

$$\exists p \in \mathbb{N}^*, \quad N^p = 0_n \quad \text{et} \quad N^{p-1} \neq 0_n$$

On suppose de plus que N est pseudo-inversible.

- **a.** Montrer que pour tout entier $k \ge 2, N^*N^k = N^{k-1}$.
- ${\bf b}.\;$ En déduire que N n'est pas pseudo-inversible.
- **c.** Soit $N = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. N peut-elle être pseudo-inversible?
- **5. a.** Soit D une matrice diagonale de $\mathcal{M}_n(\mathbb{R})$. Montrer que D est pseudo-inversible et déterminer sa pseudo-inverse. On pourra distinguer les éléments diagonaux nuls des autres.
 - **b.** Soient P une matrice inversible de $\mathscr{M}_n(\mathbb{R})$ et D une matrice diagonale de $\mathscr{M}_n(\mathbb{R})$. On pose $A = PDP^{-1}$. Montrer que A est pseudo-inversible et exprimer A^* en fonction de D^* et P.

EXERCICE 2

On donne les valeurs approchées suivantes : $e \simeq 2,72; \frac{1}{\sqrt{e}} \simeq 0,61; \sqrt{2} \simeq 1,41$ et $\ln(3) \simeq 1,10$

I. Étude d'une fonction

Soit f la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \quad f(x) = 3xe^{-x^2} - 1$$

1. Étudier la variations de f sur \mathbb{R} .

- 2. Déterminer les limites de f aux bornes de son domaine, et préciser les éventuelles asymptotes à sa courbe représentative \mathscr{C}_f .
- **3.** Dresser le tableau de variations de f.
- 4. Donner l'équation de la tangente à \mathscr{C}_f en 0, et étudier la position de la courbe par rapport à sa tangente.
- 5. Donner l'allure de la courbe de f.

II. Étude d'une équation différentielle

Soit $n \in \mathbb{N}^*$. Soit E_n l'équation différentielle :

$$xy' - (n - 2x^2)y = n - 2x^2$$

Soit H_n l'équation homogène associée à E_n .

- **1.** Résoudre H_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.
- **2.** En déduire les solutions de E_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.
- **3.** Donner toutes les fonctions de classe C^1 sur \mathbb{R} et solutions de E_n sur \mathbb{R} .

On distinguera les cas n = 1 et $n \ge 2$.

Il s'agit ici de déterminer parmi les solutions trouvées à la question précédente celles qui se recollent en 0 pour former une fonction de classe C^1 sur \mathbb{R} .

III. Etude de deux suites

On suppose désormais que $n \geq 2$. On note

$$\forall x \in \mathbb{R}, \quad f_n(x) = 3x^n e^{-x^2} - 1$$

- **1.** Quel est le signe de $f_n(0)$, de $f_n(1)$?
- **2.** Étudier les variations de f_n sur l'intervalle $[0, +\infty[$, et donner la limite de $f_n(x)$ quand x tend vers $+\infty$.
- **3.** En déduire que f_n s'annule sur $[0, +\infty[$ en deux réels notés u_n et v_n tel que $u_n < 1 < v_n$.
- **4.** Quelle est la limite de la suite $(v_n)_{n\geq 2}$?
- **5. a.** Expliciter $e^{-u_n^2}$ en fonction de u_n^n .
 - **b.** En déduire le signe de $f_{n+1}(u_n)$.
 - **c.** Déduire de ce qui précède la monotonie de la suite $(u_n)_{n\geq 2}$.
 - **d.** Montrer que la suite (u_n) est convergente. On note L sa limite.
- **6.** Soit g_n définie sur $]0, +\infty[$ par

$$\forall x > 0, \quad g_n(x) = \ln(3) + n \ln(x) - x^2$$

- **a.** Soit t > 0. Montrer que $g_n(t) = 0 \Leftrightarrow f_n(t) = 0$.
- **b.** On suppose que $L \neq 1$. Trouver une contradiction en utilisant ce qui précède, et conclure quant à la limite de la suite (u_n) .

EXERCICE 3

Dans cet exercice, on note F l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ de la forme $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ avec $a, b \in \mathbb{R}$, et G l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = M$.

Soient
$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
 et $M = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \in F$.

- **1.** Montrer que $A \in F \cap G$.
- **2.** La matrice A est-elle inversible?
- 3. a. Montrer que

$$M \in G \Leftrightarrow \left\{ \begin{array}{l} a^2 + 2b^2 = a \\ b(b + 2a - 1) = 0 \end{array} \right.$$

b. En déduire que

$$F \cap G = \{I_3, 0_3, A, I_3 - A\}$$

- **4.** On note $B = I_3 A$.
 - **a.** Déterminer $\alpha, \beta \in \mathbb{R}$ tels que

$$M = \alpha A + \beta B$$

- **b.** Calculer AB et BA.
- c. Montrer par récurrence que

$$\forall n \in \mathbb{N}, \quad M^n = \alpha^n A + \beta^n B$$

- **5.** Montrer que M est inversible si, et seulement si $\alpha \neq 0$ et $\beta \neq 0$.
- **6.** Si $\alpha\beta \neq 0$, montrer que

$$\forall n \in \mathbb{N}, \quad (M^{-1})^n = \alpha^{-n}A + \beta^{-n}B$$

7. Soient
$$T = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
 et $Y = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

On considère alors la suite (X_n) de matrices colonnes définie par $X_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\forall n \in \mathbb{N}, X_{n+1} = TX_n + Y$.

- a. A l'aide de la question $\mathbf{4}$, exprimer la matrice T à l'aide de A et B.
- **b.** Démontrer qu'il existe une unique matrice colonne L, que l'on déterminera, telle que L = TL + Y.
- c. Démontrer que

$$\forall n \in \mathbb{N}, \quad X_{n+1} - L = T(X_n - L)$$

puis que

$$\forall n \in \mathbb{N}, \quad X_n = L + T^n(X_0 - L)$$

d. Pour tout entier naturel n, exprimer X_n en fonction de A, B, L, X_0 et n.

EXERCICE 4

On note f la fonction définie sur $\mathbb{C} \setminus \{1\}$ par

$$f(z) = \frac{z - \frac{7}{4} - i}{z - 1}$$

On munit le plan d'un repère orthonormé direct \mathcal{R} .

- **1. a.** Montrer que les images par f sont dans $\mathbb{C} \setminus \{1\}$.
 - **b.** Montrer que $\forall Z \in \mathbb{C} \setminus \{1\}, \exists z \in \mathbb{C} \setminus \{1\}, f(z) = Z$. Que remarque-t-on?
- **2. a.** Déterminer la forme algébrique de f(z) pour $z \neq 1$. On donnera l'expression à l'aide de Re(z) et Im(z).
 - b. Déterminer les nombres complexes z tels que $f(z) \in \mathbb{R}$. Donner une interprétation géométrique simple.
 - c. Déterminer les nombres complexes z tels que $f(z) \in i \mathbb{R}$ (c'est-à-dire que f(z) est un imaginaire pur). Donner une interprétation géométrique simple.
 - **d.** Déterminer les nombres complexes z tels que $f(z) \in \mathbb{U}$ (c'est-à-dire |f(z)| = 1). Donner une interprétation géométrique simple.
- **3. a.** Résoudre dans $\mathbb C$ l'équation f(z)=z. On obtiendra deux solutions notées a et b avec $\mathrm{Re}(a)<\mathrm{Re}(b)$.
 - **b.** Calculer $\frac{a-1}{b-1}$.
 - **c.** Montrer que si $z \notin \{1; a\}$ alors

$$\frac{b - f(z)}{a - f(z)} = -\frac{b - z}{a - z}$$

4. Dans \mathscr{R} , on note A le point d'affixe a, B le point d'affixe b et C le point d'affixe 1. Pour $z \in \mathbb{C} \setminus \{1\}$, on note M le point d'affixe z et M' le point d'affixe f(z).

On admettra que quatre points distincts du plan N_1, N_2, N_3, N_4 sont sur une même droite ou sur un même cercle si et seulement si

$$\exists k \in \mathbb{Z}, \quad \left(\overrightarrow{N_3N_1}, \overrightarrow{N_3N_2}\right) = \left(\overrightarrow{N_4N_1}, \overrightarrow{N_4N_2}\right) + k\pi$$

- **a.** Vérifier que A, B et C sont alignés.
- **b.** Justifier que si $M \notin \{A, B, C\}$ alors il existe $k \in \mathbb{Z}$ tel que $(\overrightarrow{M'A}, \overrightarrow{M'B}) = (\overrightarrow{MA}, \overrightarrow{MB}) + k\pi$. Que peut-on en déduire géométriquement?
- **c.** Montrer qu'il existe $k \in \mathbb{Z}$ tel que $(\overrightarrow{CM}, \overrightarrow{CM'}) = 2(\overrightarrow{CM}, \overrightarrow{CB}) + 2k\pi$
- **d.** En déduire une construction géométrique simple de M' lorsque M n'est pas sur la droite (AB). Faire une figure.