Есть ли жизнь после ТОСМа?

opy

Рассмотрим $\Gamma \subseteq F(\sigma)$ и $FV(\Gamma) = \{x \mid \exists \varphi \in \Gamma : x \in FV(\varphi)\}$. Пусть $FV(\Gamma)\subseteq X$. Тогда говорят, что Γ истинно на модели ${\mathfrak A}$ при означивании γ и пишут $\mathfrak{A} \models \Gamma[\gamma]$, если $\forall \varphi \in \Gamma : \mathfrak{A} \models \varphi[\gamma]$.

Определение 15.34.

Рассмотрим $\Gamma \subseteq F(\sigma)$. Говорят, что Γ совместно, если $\exists \mathfrak{A} \in K(\sigma)$, $\exists \gamma: FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \vDash \Gamma[\gamma]$.

Множество формул Г называется **локально совместным**, если каждое его конечное подмножество является совместным, т.е. $\forall \Gamma_0 \subseteq \Gamma$, где Γ_0 - конечное и совместное.

Теорема 15.36 (Мальцева о компактности). Множество формул совместно тогда и только тогда, когда оно локально совместно.

Доказательство. (\Rightarrow) Пусть Г совместно. Тогда найдутся модель $\mathfrak{A} \in K(\sigma)$ и означивание $\gamma \colon FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \models \Gamma[\gamma]$. Пусть $\Gamma_0 \subseteq \Gamma$ и Γ_0 конечно. Очевидно, что $\mathfrak{A} \models \Gamma_0[\gamma]$. Следовательно Γ_0 совместно. В силу произвольности выбора Γ_0 получаем, что Γ локально совместно.

(\Leftarrow) Пусть Γ локально совместно. Допустим, что Γ не совместно, тогда по Теореме о существовании модели Г противоречиво. Следовательно, найдутся такие $\varphi_1, \dots, \varphi_n \in \Gamma$, что $\varphi_1, \dots, \varphi_n \vdash$ доказуема.

Множество формул $\Gamma_0 = \{\varphi_1, ..., \varphi_n\}$ конечно и $\Gamma_0 \subseteq \Gamma$. Следовательно Γ_0 совместно (так как Г – локально совместно). А, значит, найдутся модель $\mathfrak{B} \in K(\sigma)$ и означивание $\gamma: FV(\Gamma_0) \to |\mathfrak{B}|$ такие, что $\mathfrak{B} \models \Gamma_0[\gamma]$, т.е. $\mathfrak{B} \models$ $\varphi_1[\gamma]$, ..., $\mathfrak{B} \models \varphi_n[\gamma]$. Следовательно, секвенция $\varphi_1, ..., \varphi_n \vdash$ не является тождественно-истинной, а значит и доказуемой. Таким образом, мы пришли к противоречию. Следовательно, Г совместно.

Теорема 15.15. (теорема о существовании модели) Любое непротиворечивое множество формул имеет модель, т.е $\forall \Gamma \subseteq F(\sigma)$ таких, что $\Gamma \not\vdash$, выполняется $\exists \mathfrak{A} \in K(\sigma)$ и $\exists \gamma : FV(\Gamma) \to |\mathfrak{A}|$ такие, что $\mathfrak{A} \models \Gamma[\gamma]$.

3) Секвенция $\varphi_1,\dots,\varphi_n \vdash$ называется тождественно истинной, если $orall \mathfrak{A} \in K(\sigma(\{arphi_1,\ldots,arphi_n\}))$ и $orall \gamma: FV(\{arphi_1,\ldots,arphi_n\})
ightarrow |\mathfrak{A}| \ \exists i \leqslant n:$

miro

Теорема 15.36 доказана.

ТЕОРЕМА 15.39.(Мальцева о расширении)

Если множество предложений имеет бесконечную модель, то оно имеет сколь угодно большую модель, т.е. пусть $\Gamma \subseteq S(\sigma)$, $\mathfrak{B} \models \Gamma$, \mathfrak{B} - бесконечная. Тогда для \forall кардинала $\alpha \exists \mathfrak{A} \in K(\sigma)$ такая, что $\mathfrak{A} \models \Gamma$, $\|\mathfrak{A}\| \geqslant \alpha$.

Доказательство:

Пусть $\mathfrak{B} \models \Gamma$, \mathfrak{B} - бесконечная, дан кардинал α .

Пусть C - множество новых констант такое, что $C\cap\sigma=\varnothing$, $\|C\|=lpha$. Вводим множество новых констант равное альфа по мощность Рассмотрим $\Gamma' = \{ \neg (c = d) \mid c, d \in C, c \neq d \}$. Пусть $\Gamma'' = \Gamma \cup \Gamma'$. Покажем, что Γ'' локально совместно.

Выберем $\Gamma_0''\subseteq\Gamma''$, Γ_0'' - конечное. Пусть $\Gamma_0=\Gamma\cap\Gamma_0''$, $\Gamma_0'=\Gamma'\cap\Gamma_0''$, тогда $\Gamma_0'' = \Gamma_0 \cup \Gamma_0'$. константы которые фигурируют в конечном наборе предложений Г

Пусть $C_0 = C \cap \sigma(\Gamma_0'') = C \cap \sigma(\Gamma_0') \Rightarrow C_0$ - конечно, т.е. $C_0 = \{c_1, \dots, c_n\}$. Расширим сигнатуру $\sigma_0 = \sigma \cup \{c_1, \dots, c_n\} = \sigma \cup C_0$. Рассмотрим $\mathfrak B$ и обогатим её до модели \mathfrak{B}_0 с сигнатурой σ_0 . По условию \mathfrak{B} - бесконечная \Rightarrow $\Rightarrow\exists b_1,\ldots,b_n\in\mathfrak{B}$ такие, что $b_i
eq b_j,\ i
eq j$. В бесконечном множестве можем найти н различных эл-тов Положим $c_1^{\mathfrak{B}_0}=b_1,\dots,c_n^{\mathfrak{B}_0}=b_n\Rightarrow orall i\neq j: c_i^{\mathfrak{B}_0}
eq c_i^{\mathfrak{B}_0}\Rightarrow \mathfrak{B}_0\in K(\sigma_0),$ по условию так как Г не содержит новых констант, они не влияют на истинность предложений Г

Есть ли жизнь после ТОСМа?

$$\mathfrak{B}_0 \models \Gamma_0'(\mathrm{упр.}), \ \mathfrak{B} \models \Gamma \Rightarrow \mathfrak{B}_0 \models \Gamma \Rightarrow \mathfrak{B}_0 \models \Gamma_0, \ \mathrm{T.K.} \ \Gamma_0 \subseteq \Gamma \Rightarrow$$
 произвольное конечное подмножество совместное $\Rightarrow \mathfrak{B}_0 \models \Gamma_0'' = (\Gamma_0 \cup \Gamma_0') \Rightarrow \Gamma'' - \mathrm{ЛОКАЛЬНО} \ \mathrm{COВМЕСТНО} \Rightarrow \Gamma'' - \mathrm{COВМЕСТНО} \Rightarrow \exists \mathfrak{A}' \in K(\sigma \cup C) \ \mathrm{TAKAS}, \ \mathrm{что} \ \mathfrak{A}' \models \Gamma'' \Rightarrow \mathfrak{A}' \models \Gamma, \ \mathfrak{A}' \models \Gamma' \Rightarrow \forall c, d \in C, \ \mathrm{если}$ $c \neq d \Rightarrow c^{\mathfrak{A}'} \neq d^{\mathfrak{A}'}. \ \mathrm{T.K.} \ C^{\mathfrak{A}'} = \{c^{\mathfrak{A}'} \mid c \in C\} \subseteq |\mathfrak{A}'| \Rightarrow \|C^{\mathfrak{A}'}\| = \alpha \Rightarrow$ $\Rightarrow \|\mathfrak{A}'\| \geqslant \alpha.$ Выкидываем константы из сигнатуры

Рассмотрим $\mathfrak{A} = \mathfrak{A}' \upharpoonright \sigma \Rightarrow \mathfrak{A} \models \Gamma, \ \mathrm{T.K.} \ \Gamma \subseteq S(\sigma), \ \|\mathfrak{A}\| \geqslant \alpha, \ \mathrm{T.K.} \ |\mathfrak{A}| = |\mathfrak{A}'|.$ Теорема доказана.

$$\Psi = \neg \left(C_i = C_j \right) \cdot b \rightarrow 0 : \quad b_0 \models \neg \left(C_i^{22} = C_j^{23} \circ \right) \Rightarrow b_0 \not\models \left(b_i = b_j \right)$$
mire

ПРЕДЛОЖЕНИЕ 15.40.(о нестандартной модели натуральных чисел)

Рассмотрим модель $\mathfrak{N} = \langle \mathbb{N}; \leqslant, +, *, 0, 1 \rangle$. Тогда $\exists \mathfrak{M}$ такая, что $\mathfrak{M} \equiv \mathfrak{M}$ и $\exists c \in |\mathfrak{M}|$ такая, что $\underbrace{1 + \dots + 1}_{\text{n pas}} \leqslant c$, $\forall n \in \mathbb{N}$.

Доказательство:

Воспользуемся теоремой Мальцева о расширении.

Рассмотрим $\Gamma = \text{Th}(\mathfrak{N}), \ \sigma = \sigma(\mathfrak{N}) = \langle \leqslant, *, +, 0, 1 \rangle.$

Обогатим сигнатуру одним константным символом: $\sigma' = \sigma \cup \{c\}$. Для $\forall n$ положим $\varphi_n = \{\underbrace{1 + \dots + 1}_{\text{n раз}} \leqslant c\}$. Очевидно, что $\varphi_n \in S(\sigma')$.

Рассмотрим $\Gamma' = \{ \varphi_n \mid n \in \mathbb{N} \}$ и $\Gamma'' = \Gamma \cup \Gamma'$. Покажем, что Γ'' локально совместно. Пусть $\Gamma''_0 \subseteq \Gamma''$, Γ''_0 - конечное, $\Gamma_0 = \Gamma \cap \Gamma''_0$, $\Gamma'_0 = \Gamma' \cap \Gamma''_0$, $\Gamma''_0 = \Gamma_0 \cup \Gamma'_0$.

Так как Γ'_0 конечно, то $\exists m = \max\{n \mid \varphi_n \in \Gamma'_0\}$. Рассмотрим модель $\mathfrak{N}' \in K(\sigma')$ такую, что $\mathfrak{N}' \upharpoonright \sigma = \mathfrak{N}$, означим константу $c : c^{\mathfrak{N}'} = m \Rightarrow$ по есть для каждого конечного подмножетсва мы можем положить с равное м в таком конечном подмножестве будет конечное число предложений фи, и мы можем задать константу. С другой сторошим $\mathfrak{N} \vDash \Gamma \Rightarrow \mathfrak{N} \vDash \Gamma_0$. Отсюда $\mathfrak{N}' \vDash \Gamma_0$. Таким образом получаем, что $\mathfrak{N}' \vDash \Gamma''_0 \Rightarrow \Gamma''_0$ совместно $\Rightarrow \Gamma''$ - локально совместно $\Rightarrow \Gamma''$ - локально совместно $\Rightarrow \Gamma''$ - совместно $\Rightarrow \exists \mathfrak{M}' \in K(\sigma') : \mathfrak{M}' \vDash \Gamma''$.

Возьмем $\mathfrak{M} = \mathfrak{M}' \upharpoonright \sigma$, $\mathfrak{M} \in K(\sigma)$. Т.к. $\mathfrak{M}' \vDash \Gamma \Rightarrow \mathfrak{M} \vDash \Gamma$, $d = c^{\mathfrak{M}'} \Rightarrow \mathfrak{M}$ значит $\mathsf{M} \upharpoonright \mathsf{M}' = \mathsf{M} \mathrel{M} \mathrel{M} = \mathsf{M} \Leftrightarrow \mathsf{M} \Leftrightarrow \mathsf{M} = \mathsf{M} \Leftrightarrow \mathsf{M}$

Есть ли жизнь после ТОСМа?