Applied Algorithms CSCI-B505 / INFO-I500

Lecture 22.

Randomization and Hashing

- Bloom Filters
- Minwise Hashing

Hash Functions and Randomized Algorithms?

- A hash function should be completely deterministic. No randomization!
- Remember in randomization, we repeated the random process a couple of times to reduce the false alarms.
- Can using multiple *randomly chosen hash functions* make sense to reduce the verification complexity in hashing?
- Bloom filter is a good example of such multiple randomly chosen hash functions.

Bloom Filters

- On a document collection free of duplicates, when a new document will be added, check whether a copy of it was previously added.
- Using a hash table means computing the hash of the new item and check it in the hash table.
- In case of a match, perform verification since collisions are unavoidable

How can we reduce the need for verification?

- By using more than one hash function
 - That will increase the space usage
- Bloom filters provide a solution
 - Multiple hash functions with a bitmap structure

Bloom Filters

Bloom filter:

- 8-bits long and two hash functions.
- Insert 0,1,2,3,4 in order

x=0	x=1	x=2	x=3	x=4
1	3	5	7	1
2	5	0	3	6

$$h_1(x) = 2x + 1 \mod 8$$

 $h_2(x) = 3x + 2 \mod 8$

- 0
 1
 2
 3
 4
 5
 6
 7

 0
 0
 0
 0
 0
 0
 0
- 0 1 1 0 0 0 0
- 0 1 1 1 0 1 0
- 1
 1
 1
 1
 0
 1
 0
 0
- 1 1 1 1 0 1 0 **1**

1 1	1	1	0	1	1	1
-----	---	---	---	---	---	---

- How to search for an item?
- Compute the hash bit positions and check whether all are set.
- If so, a match is reported.
- Notice that still it can be a false alarm.

What to do to reduce that possibility?

Bloom Filters

- Assume we have *k* functions and *m* items are inserted into a *n* bits hash table.
- Each insertion marks k bit positions and thus at most km bits are set among n bits.
- The probability that a bit is set is then km/n.
- The probability that an item which has not been inserted into hash table but have all corresponding bits set is $(km/n)^k$.
- This value gets small with increased k.
- With further derivations, it arrives

For a target false alarm probability ϵ , $k=-\log_2\epsilon \text{ and}$ bits per element (inverse load) is $-1.44\log_2\epsilon$

How can we check the similarity of two documents? $J(D_1,D_2)=\frac{|D_1\cap D_2|}{|D_1\cup D_2|}$

Sort the words in D_2 , and then check every word of D_1 on the sorted list $O(n \log n)$

Hash may help to achieve O(n):

• Create a hash table for all the words in D_2 , and search the words of D_1 on that hash

How about finding the similarity between many documents and a queried document?

- Assume we select **one** representative word from each document, and keep an index of those selected words.
- If the representative words of the two queried documents are the same, we say they are similar.
- How would you select the representative word?
- Most frequent, least frequent, random, TF-IDF...?
- Think about maintaining k selected words per document.

Compute the hash of each word in a document, and just select the words that has the minimum hash values.

s:	The	cat	in	the	hat
h(s):	17	128	56	17	4

The	hat	in	the	store
17	4	56	17	96

- Since we use the same hash function, minwise hashing provides us selecting the same random words. Why?
 - Assume the vocabularies of two documents are same and we are selecting a random word from each document.
 - If we do it regularly, the probability of selecting same is $1/\left|V\right|$.
 - With min hash values, it is guaranteed to select a randomly picked word as they both will have the same hash value.
 - Assume the vocabularies are not the same.
 - Then the probability that min hash selects the same word depends on the number of common words in between them.
 - Larger the intersection, greater the probability, which reflects the measurement we need, the Jaccard similarity

- Notice we again need to pass over all documents and compute the hash values
- So, it seems not very advantageous in terms of time over the classical approach
- However, there is a very significant space saving
 - Assume n documents have m words on the average, thus we will need O(nm) space, but with the minwise hash values, it requires O(kn) space, where $k \ll m$

Compute the hash of each word in a document, and just select the words that has the minimum hash values.

s:	The	cat	in	the	hat
h(s):	17	128	56	17	4

The	hat	in	the	store
17	4	56	17	96

Minwise Hash - Another Example

- How can we estimate the number of distinct values in a streaming integer array S, which includes duplicates, using only a constant amount of memory?
- Regular approach requires linear space.
- With minwise hash, it turns to be constant space. How?

- Compute the hash of the each value and store it if it is less than the current minimum value.
- . At the end the estimated value of distinct numbers k is $k = \frac{M}{minhash} 1$,
 - where M is the hash size and minhash is the minimum hash observed.
- Why?

Minwise Hash - Another Example

- Assume we have randomly selected k distinct items from [1..M]. Here k denotes the number of distinct elements of S, since their hashes will be distinct.
- What is the expected minimum of these k values?
 - If k=1, it should be M/2
 - If k = 2, it should be M/3
 - In general we expect the minimum value to be M/(k+1), since the interval will be split into (k+1) pieces, which are expectedly to be of equal length.
- Therefore, given the smallest element a_1 , k can be estimated as $a_1 = \frac{m}{k+1}$ is the expected minimum value.
- Accuracy can be improved by using more than one hash function ?

Reading assignment

Skiena chapter 8.

• Goodrich et al. 10.2