# DIGITAL DESIGN CS223 SECTION 02 LAB 04 Sümeyye ACAR 22103640 16.05.2023



# 1.2 State Encoding

| $S_2$ | $S_1$ | $S_0$ | State          |
|-------|-------|-------|----------------|
| 0     | 0     | 0     | $S_0$          |
| 0     | 0     | 1     | $S_1$          |
| 0     | 1     | 0     | $S_2$          |
| 0     | 1     | 1     | S <sub>3</sub> |
| 1     | 0     | 0     | S <sub>4</sub> |
| 1     | 0     | 1     | S <sub>5</sub> |
| 1     | 1     | 0     | S <sub>6</sub> |
| 1     | 1     | 1     | S <sub>7</sub> |
|       |       |       |                |

# 1.3 State Transition Table

| Current State  |       | ate   | Input          |                | Next State     |       |                |
|----------------|-------|-------|----------------|----------------|----------------|-------|----------------|
| S <sub>2</sub> | $S_1$ | $S_0$ | S <sub>A</sub> | S <sub>B</sub> | N <sub>2</sub> | $N_1$ | N <sub>0</sub> |
| 0              | 0     | 0     | 1              | Х              | 0              | 0     | 0              |
| 0              | 0     | 0     | 0              | Х              | 0              | 0     | 1              |
| 0              | 0     | 1     | х              | Х              | 0              | 1     | 0              |
| 0              | 1     | 0     | х              | Х              | 0              | 1     | 1              |
| 0              | 1     | 1     | х              | Х              | 1              | 0     | 0              |
| 1              | 0     | 0     | х              | 1              | 1              | 0     | 0              |
| 1              | 0     | 0     | х              | 0              | 1              | 0     | 1              |
| 1              | 0     | 1     | х              | Х              | 1              | 1     | 0              |
| 1              | 1     | 0     | х              | Х              | 1              | 1     | 1              |
| 1              | 1     | 1     | х              | Х              | 0              | 0     | 0              |
|                |       |       |                |                |                |       |                |

# 1.4 Output Table

|       | State |                | O               | utput (L        | A)              | 0               | utput (L | в)       |
|-------|-------|----------------|-----------------|-----------------|-----------------|-----------------|----------|----------|
| $S_2$ | $S_1$ | S <sub>0</sub> | L <sub>A2</sub> | L <sub>A1</sub> | L <sub>AO</sub> | L <sub>B2</sub> | $L_{B1}$ | $L_{B0}$ |
| 0     | 0     | 0              | 0               | 1               | 1               | 1               | 1        | 1        |
| 0     | 0     | 1              | 0               |                 | 1               | 1               | 1        | 1        |
| 0     | 1     | 0              | 1               | 1               | 1               | 1               | 1        | 1        |
| 0     | 1     | 1              | 1               | 1               | 1               |                 |          | 1        |
| 1     | 0     | 0              | 1               | 1               | 1               | 0               | 1        | 1        |
| 1     | 0     | 1              | 1               | 1               | 1               |                 |          | 1        |
| 1     | 1     | 0              | 1               | 1               | 1               | 1               | 1        | 1        |
| 1     | 1     | 1              | 0               |                 | 1               | 1               | 1        | 1        |
|       |       |                |                 |                 |                 |                 |          |          |

111 = RED 011 = GREEN 001 = YELLOW

# 1.5 Equations

### Next State:

$$N_2 = \bar{S}_2 S_1 S_0 + S_2 \bar{S}_1 + S_2 S_1 \bar{S}_0$$

$$N_1 = S_1 \bigoplus S_0$$

$$N_0 = \bar{S}_2 \bar{S}_1 \bar{S}_0 \bar{S}_A + S_2 \bar{S}_1 \bar{S}_0 \bar{S}_B + S_1 \bar{S}_0$$

# Output:

$$L_{A2} = S_2 S_1 \bar{S}_0 + (S_2 \bigoplus S_1)$$

$$L_{A1} = \bar{S}_0 + (S_2 \bigoplus S_1)$$

$$L_{A0} = 1$$

$$L_{B2} = (S_2 \oplus \bar{S}_1) + \bar{S}_2 S_1 \bar{S}_0$$

$$L_{B1} = \bar{S}_0 + (\bar{S}_2 \bigoplus S_1)$$

$$L_{B0} = 1$$

# 2.0 Finite State Machine Schematic



### 3.0 Number of Flip-Flops

The number of needed flip-flops is **3** because the number of states which is 8. 8 states can be represented with 3-bit binary numbers; so, 3 flip-flops will be needed.

### 4.0 SystemVerilog Design Code

## 4.1 <u>FSM</u>

S4:

```
module lab4_fsm (input logic clk, sa, sb, reset,
                  output logic [2:0] la, logic [2:0] lb);
  // Slowed Clock
  //logic slower;
  //ClockDiv CD(.clk(clk), .slow(slower));
  //Possible States
  typedef enum logic [2:0] {S0, S1, S2, S3, S4, S5, S6, S7} states; // all states are 3 bit
  states [2:0] current, next;
  // Lights
  parameter red_stop = 3'b111;
  parameter green_go = 3'b011;
  parameter yellow_wait = 3'b001;
  // Reset (CHANGE clk WITH slower TO SLOW THE CLOCK)!!!
  always_ff @(posedge clk, posedge reset)
  if (reset)
    current <= \ S0;
  e1se
    current <= next;
  // State Transition
  always_comb
    case (current)
       S0:
         if (sa)
           next = S0;
         else
           next = S1;
       S1:
         next = S2;
       S2:
         next = S3;
       S3:
         next = S4;
```

```
if (sb)
        next = S4;
      else
        next = S5;
    S5:
      next = S6;
    S6:
      next = S7;
    S7:
      next = S0;
  endcase
// Output - State Matching
always_comb
  case (current)
    S0:
      begin
        la = green_go;
        lb = red_stop;
      end
    S1:
      begin
        la = yellow_wait;
        1b = red\_stop;
      end
    S2:
      begin
        la = red_stop;
        1b = red\_stop;
      end
    S3:
      begin
        la = red_stop;
        1b = yellow_wait;
      end
    S4:
      begin
        la = red_stop;
        1b = green_go;
      end
    S5:
      begin
        la = red\_stop;
        1b = yellow_wait;
      end
    S6:
```

```
begin

la = red_stop;

lb = red_stop;

end

S7:

begin

la = yellow_wait;

lb = red_stop;

end

endcase
endmodule
```

# 4.2 The Clock

```
module\ Clock Div(\ input\ logic\ clk,\ output\ logic\ slow\ );
```

```
// Clock Counter
logic [28:0] counter;

always @( posedge clk )
begin
if( counter >= 199999999 )
begin
counter <= 0;
slow <= 0;
end
else
begin
counter <= counter + 1;
slow <= 1;
end
end
```

endmodule

## 5.0 SystemVerilog Testbench

```
module testBench();
```

```
// Parameters of the Finite State Machine
logic clk, reset, sa, sb;
logic [2:0] LA, LB;

// Device Under Test
lab4_fsm dut(.clk(clk), .sa(sa), .sb(sb), .reset(reset), .la(LA), .lb(LB));
```

```
// Clock Signal
always
  begin
    clk <= 1;
                     #5;
    c1k <= 0;
                     #5;
  end
initial
  begin
    reset = 1;
                     #100; // beginnig
    reset = 0;
     sa = 0; sb = 0;
                      #100;
     sa = 0; sb = 1;
                       #100;
     sa = 1; sb = 0;
                       #100;
     sa = 1; sb = 1;
                      #100;
     reset = 1;
     sa = 0; sb = 0;
                       #40;
     sa = 0; sb = 1;
                       #40;
     sa = 1; sb = 0;
                       #40;
     sa = 1; sb = 1;
                       #40;
     $finish;
  \quad \text{end} \quad
```

endmodule