

Computação Gráfica, MIEIC

Exame Final 2010/2011, Época Normal 29 de junho de 2011

(Com consulta, 2H 30M)

v↑ <u>Vista de Frente</u>

α

Z♥

Vista de Cima

 P_0

 P_0 , P_1

Χ

- 1. A figura junta apresenta a trajetória helicoidal de um ponto P, com raio igual a 20 unidades. Como se vê, o ponto realiza duas voltas circulares completas (720°), descendo progressivamente desde o ponto P_0 (com y=8) até ao ponto P_1 (y=0).
 - a)- Apresente, em notação simbólica, a matriz de transformação geométrica necessária para passar do ponto inicial P_0 para um ponto genérico P caraterizado por um ângulo α com o eixo α .
 - **b)-** Comente a possibilidade ou não de, neste caso particular, ser possível inverter a ordem de escrita das matrizes parciais.
- 2. A figura seguinte representa duas superficies paralelas, $A \in B$, feitas de materiais diferentes (propriedades juntas). O observador encontra-se no ponto V e a fonte no ponto L.

- a)- Não considerando a projeção de sombras nem a atenuação com a distância, diga justificando, qual dos pontos seguintes se apresenta mais iluminado ao observador: A_1 , A_2 , A_3 .
- **b)-** Idem para os pontos B_1 , B_2 , B_3 .
- c)- Idem para os pontos A_1 , A_3 , considerando a existência de atenuação atmosférica.
- d)- Idem para os pontos A_1 , A_3 , B_2 , considerando a existência de projeção de sombras.
- Comente a eventual existência de semelhanças entre o problema de Cálculo de Visibilidade e o problema de Projeção de Sombras.
- 4. Comente a afirmação "Os métodos de Iluminação Global produzem melhores resultados do que os métodos de Iluminação Local porque se baseiam, tal como o nome indica, no cálculo de iluminação na globalidade dos pixels que compõem a imagem".
- 5. Efetue as conversões de modelo de cor HSV <--> RGB (8 bits por canal) seguintes:
 - a)- HSV=(0, 100%, 50%) --> RGB=(?, ?, ?)
 - b)- HSV=(0, 50%, 100%) --> RGB=(?, ?, ?)
 - c)- RGB=(64, 128, 128) --> HSV=(?, ?, ?)
 - d)- RGB=(64, 64, 16) --> HSV=(?, ?, ?)

- 6. As curvas de Hermite expressam-se por: $Q(t)=T.M_H.G$. Partindo desta situação e da definição de Matriz Base e de Vetor Geométrico de Hermite, determine a matriz base de um novo tipo de curvas cujo vetor geométrico é $G_X=[R_1\ R_3\ R_4\ P_1]$, em que $R_3=3(P_3-P_2)$, com P_2 e P_3 correspondentes a uma curva de Bezier.
- 7. Seja o objeto representado na figura seguinte.

- **a)-** Diga como procederia para o obter, usando a primitiva "cubo de aresta unitária" e operadores Booleanos.
- b)- Faça a sua representação segundo o modelo Octree.
- **8.** A figura seguinte mostra o esboço de uma região cujo interior se pretende preencher (cada quadrícula representa um pixel e o ponto assinalado é o ponto de partida). Apresente as principais etapas do preenchimento da região (conectividade 4), por meio do algoritmo "por análise de contorno".

(Enunciado redigido ao abrigo do novo acordo ortográfico)