Quiz 3 (5월 2일 금 5, 6 교시)

[2014년 1학기 수학 및 연습 1]

(시간은 20분이고, 20점 만점입니다.)

- * 답안지에 학번과 이름을 쓰시오. 답안 작성시 풀이과정을 명시하시오.
- 1. (5점) 공간에서 (-1,1,2) 방향으로 진행하던 빛이 평면 2x + y z = 1에 반사되어 나가는 방향을 구하시오.
- 2.~(5점) 공간에서 크기가 2 인 벡터 \mathbf{x} 가 표준 단위 벡터 $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$ 와 이루는 각을 각각 $\frac{\pi}{3},\frac{\pi}{4},\theta$ 라 할 때, 벡터 \mathbf{x} 를 구하시오. (단, $\frac{\pi}{2} \leq \theta \leq \pi$)
- 3. (5점) 일차독립인 세 벡터 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 에 대하여 다음과 같이 정의된 세 벡터 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 가 일차종속인지 혹은 일차독립인지 판정하시오.

$$\mathbf{w}_1 = \mathbf{v}_2 - 2\mathbf{v}_3, \ \mathbf{w}_2 = 2\mathbf{v}_1 - \mathbf{v}_3, \ \mathbf{w}_3 = \mathbf{v}_1 - 2\mathbf{v}_2$$

4. (5점) 공간의 두 벡터 **u** 와 **v** 에 대하여

 $|\mathbf{u} \cdot \mathbf{v}| < |\mathbf{u}| |\mathbf{v}|$

이면 두 벡터는 일차독립임을 보이시오.

Quiz 3 모범답안 및 채점기준 예시

1. 빛의 진행방향을 $\mathbf{v}=(-1,1,2)$, 평면에 수직인 벡터를 $\mathbf{n}=(2,1,-1)$, 그리고 반사되어 나가는 방향을 \mathbf{v}^* 라 하면,

$$\mathbf{v}^* = \mathbf{v} - 2p_{\mathbf{n}}(\mathbf{v}) = \mathbf{v} - 2\frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}$$
$$= (-1, 1, 2) - 2\frac{(2, 1, -1) \cdot (-1, 1, 2)}{(2, 1, -1) \cdot (2, 1, -1)} (2, 1, -1)$$

이다. 따라서 구하는 방향은 $\mathbf{v}^* = (1, 2, 1)$ 이다. (5점)

(부분 점수 없음)

2. 방향코사인의 성질에 의해,

$$\cos^2 \frac{\pi}{3} + \cos^2 \frac{\pi}{4} + \cos^2 \theta = 1$$

이므로,

$$\cos \theta = -\sqrt{1 - \frac{1}{4} - \frac{2}{4}} = -\frac{1}{2} \tag{2A}$$

이다. 그런데 $|\mathbf{x}| = 2$ 이므로,

$$\mathbf{x} = 2(\cos\frac{\pi}{3}, \cos\frac{\pi}{4}, \cos\theta) = (1, \sqrt{2}, -1)$$

이다. (5점)

3. $a\mathbf{w}_1 + b\mathbf{w}_2 + c\mathbf{w}_3 = \mathbf{0}$ 을 만족하는 a, b, c 는 $(2b+c)\mathbf{v}_1 + (a-2c)\mathbf{v}_2 - (2a+b)\mathbf{v}_3 = \mathbf{0}$ 을 만족하므로, 다음의 연립방정식의 해이다.

$$2b + c = 0$$
, $a - 2c = 0$, $2a + b = 0$.

그런데 위 연립방정식은 유일한 자명해 (0,0,0) 를 가지므로 세 벡터 $\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3$ 는 일차 독립이다. (5점)

(부분 점수 없음)

4. 두 벡터 \mathbf{u} 와 \mathbf{v} 가 이루는 각을 θ 라 하면,

 $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}||\mathbf{v}||\cos\theta| \le |\mathbf{u}||\mathbf{v}||$

이므로, " $|\mathbf{u}\cdot\mathbf{v}|=|\mathbf{u}||\mathbf{v}|$ 이면 두 벡터 \mathbf{u} 와 \mathbf{v} 는 일차종속이다"를 보이면 충분하다. 이 경우 $\cos\theta=\pm1$ 이므로, $\theta=0$ 또는 π 가 된다. 따라서 두 벡터는 나란하고 일차 종속이다.

(부분 점수 없음)