

Introduction to the Course

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Example of Time Series: Google Trends

time series analysis deals with data that is ordered in time.

Example of Time Series: Climate Data

Example of Time Series: Quarterly Earnings Data

Example of Multiple Series: Natural Gas and Heating Oil

Goals of Course

- Learn about time series models
- Fit data to a times series model
- Use the models to make forecasts of the future
- Learn how to use the relevant statistical packages in Python
- Provide concrete examples of how these models are used

Some Useful Pandas Tools

Changing an index to datetime

convert index, often read in as a string into a datetime index

```
df.index = pd.to_datetime(df.index)
```

• Plotting data

```
df.plot()
```

Slicing data by year

```
df['2012']
```


Some Useful Pandas Tools

Join two DataFrames

```
dfl.join(df2)
```

• Resample data (e.g. from daily to weekly)

```
df = df.resample(rule='W', how='last')
```


More pandas Functions

• Computing percent changes and differences of a time series

pandas correlation method of Series

```
df['ABC'].corr(df['XYZ'])
```

pandas autocorrelation

```
df['ABC'].autocorr()
```


Let's practice!

Correlation of Two Time Series

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

Correlation of Two Time Series

Plot of S&P500 and JPMorgan stock

Correlation of Two Time Series

Scatter plot of S&P500 and JP Morgan returns

More Scatter Plots

• Correlation = 0.9

correlation coefficient is a measure of how much two series vary together

Correlation = 0.4 low correlation means they vary

together, but there is a weak association

high corr coeff mean that 2 series strongly vary together

• Correlation = -0.9

• Corelation = 1.0

perfect linear relationship with no deviations

Common Mistake: Correlation of Two Trending Series

Dow Jones Industrial Average and UFO Sightings (www.nuforc.org)

even if 2 series are totally unrelated, u could still get a very high correlation

--> it should look at the correlation of their *returns*, not their levels

- Correlation of levels: 0.94
- Correlation of percent changes: ≈ 0

Example: Correlation of Large Cap and Small Cap Stocks

- Start with stock prices of SPX (large cap) and R2000 (small cap)
- First step: Compute percentage changes of both series gives the returns of these series

```
df['SPX_Ret'] = df['SPX_Prices'].pct change()
df['R2000 Ret'] = df['R2000 Prices'].pct change()
```

instead of prices

Example: Correlation of Large Cap and Small Cap Stocks

Visualize correlation with scattter plot

```
plt.scatter(df['SPX_Ret'], df['R2000_Ret'])
plt.show()
```


Example: Correlation of Large Cap and Small Cap Stocks

Use pandas correlation method for Series

```
correlation = df['SPX_Ret'].corr(df['R2000_Ret'])
print("Correlation is: ", correlation)

Correlation is: 0.868
```


Let's practice!

Simple Linear Regressions

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

What is a Regression?

• Simple linear regression: (best fit y and x) x and y can be 2 time series.

$$y_t = \alpha + \beta x_t + \epsilon_t$$

What is a Regression?

• Ordinary Least Squares (OLS) minimize the sum of squared distances btw data points and the regression line

Python Packages to Perform Regressions

• In statsmodels:

```
import statsmodels.api as sm
sm.OLS(y, x).fit()
```

• In numpy:

```
np.polyfit(x, y, deg=1)
```

• In pandas:

```
pd.ols(y, x)
```

• In scipy:

```
from scipy import stats
stats.linregress(x, y)
```

Beware that the order of x and y
is not consistent across
packages

Example: Regresssion of Small Cap Returns on Large Cap

• Import the statsmodels module

```
import statsmodels.api as sm
```

As before, compute percentage changes in both series

```
df['SPX_Ret'] = df['SPX_Prices'].pct_change()
df['R2000_Ret'] = df['R2000_Prices'].pct_change()
```

Add a constant to the DataFrame for the regression intercept

```
df = sm.add constant(df)
```

need to add a column of ones as a dependent, right hand side variable. Because regression function assumes that if there is no constant column, then u want to run the regression without an intercept.

by adding a column of one, statsmodels will compute the regression coeff of that column as well, which can be interpreted as the intercept of the line

Regresssion Example (continued)

Notice that the first row of returns is NaN

```
SPX_Price R2000_Price SPX_Ret R2000_Ret
Date
2012-11-01 1427.589966 827.849976 NaN NaN
2012-11-02 1414.199951 814.369995 -0.009379 -0.016283
```

each return is computed from 2 prices, so there is one less return than price

Delete the row of NaN

```
df = df.dropna()
```

• Run the regression

```
y const χ
results = sm.OLS(df['R2000_Ret'],df[['const','SPX_Ret']]).fit()
print(results.summary())
```


Regresssion Example (continued)

Regression output

- Intercept in results.params[0]
- Slope in results.params[1]

Regresssion Example (continued)

• Regression output

Dep. Variable:		R2000 Ret		R-squ	ared:	0.753	
Model:		OLS		Adj.	R-squared:	0.753	
Method:		Least Squares		F-sta	tistic:	3829.	
Date:		Fri, 26 Jan 2018		Prob	(F-statistic):	0.00	
Time:		13:29:55		Log-L	ikelihood:	4882.4	
No. Observations:		1257		AIC:		-9761.	
Df Residuals:			1255	BIC:			-9751.
Df Model:			1				
Covariance Type:		nonr	obust				
	coef	f std err		t	P> t	[95.0% Con	f. Int.]
const	-4.964e-05	0.000) -	0.353	0.724	-0.000	0.000
SPX_Ret	1.1412	0.018	3 6	1.877	0.000	1.105	1.177
Omnibus:		61.950		Durbi	n-Watson:	1.991	
Prob(Omnibus):		0.000		Jarqu	e-Bera (JB):	148.100	
Skew:		0.266		Prob(JB):	6.93e-33	
Kurtosis:		4.595		Cond.	No.	131.	

Relationship Between R-Squared and Correlation

- $[\operatorname{corr}(x,y)]^2 = R^2$ (or R-squared) magnitude of the correlation is the square root of R^2
- sign(corr) = sign(regression slope)
- In last example:
 - \blacksquare R-Squared = 0.753
 - Slope is positive
 - correlation = $+\sqrt{0.753}=0.868$

Let's practice!

Autocorrelation

Rob Reider
Adjunct Professor, NYU-Courant
Consultant, Quantopian

What is Autocorrelation?

Correlation of a time series with a lagged copy of itself

Series	Lagged Series	
5		
10	5	
15	10	
20	15	
25	20	
•		

- Lag-one autocorrelation = series's autocorrelation
- Also called serial correlation

Interpretation of Autocorrelation

• Mean Reversion - Negative autocorrelation

with financial time series, when returns have a negative autocorrelation, we say it is "mean reverting"

Interpretation of Autocorrelation

• Momentum, or Trend Following - Positive autocorrelation

Traders Use Autocorrelation to Make Money

- Individual stocks
 - Historically have negative autocorrelation
 - Measured over short horizons (days)
 - Trading strategy: Buy losers and sell winners
- Commodities and currencies
 - Historically have positive autocorrelation
 - Measured over longer horizons (months)
 - Trading strategy: Buy winners and sell losers

to buy stocks that have dropped over the last week and sell stocks that have gone up

Example of Positive Autocorrelation: Exchange Rates

Start with daily data of \(\frac{4}{5}\) exchange rates in DataFrame df from

FRED

Convert index to datetime

```
df.index = pd.to_datetime(df.index)
```

Downsample from daily to monthly data

```
df = df.resample(rule='M', how='last')
```

Compute returns from prices

```
df['Return'] = df['Price'].pct_change()
```

Compute autocorrelation

Let's practice!