Lasso vs Ridge

$$\hat{m{eta}}^{\mathsf{lasso}} = \operatorname{argmin}_{m{eta}} \|\mathbf{y} - \mathbf{X} m{eta}\|^2$$
 subject to $\sum_{i=1}^p |eta_i| \leq s.$

$$\hat{m{eta}}^{ ext{ridge}} = \operatorname{argmin}_{m{eta}} \| \mathbf{y} - \mathbf{X} m{eta} \|^2$$
 subject to $\sum_{i=1}^p eta_i^2 \leq s$.

- Contour of the optimization function: Ellipsoid;
- Lasso constraint: Diamond.
- Ridge constraint: Sphere.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

TABLE 3.4. Estimators of β_j in the case of orthonormal columns of \mathbf{X} . M and λ are constants chosen by the corresponding techniques; sign denotes the sign of its argument (± 1) , and x_+ denotes "positive part" of x. Below the table, estimators are shown by broken red lines. The 45° line in gray shows the unrestricted estimate for reference.

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I[\operatorname{rank}(\hat{\beta}_j \leq M)]$
Ridge	$\hat{eta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j -\lambda)_+$

