Computing the B-differential of the Componentwise Minimum of Affine Functions

Baptiste Plaquevent-Jourdain, with Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

May, 29 2023

Outline

- Overview
- 2 Underlying problem
- 3 An algorithm for arrangements
- 4 Improvements and results

•0000000

- Overview
- 2 Underlying problem
- 3 An algorithm for arrangements
- 4 Improvements and results

Systems of smooth nonlinear equations

General problem:

Find a point $x_* \in \mathbb{R}^n$: $F(x_*) = 0$, with $F : \mathbb{R}^n \to \mathbb{R}^n$ smooth

Illustration of Newton's method in 1D

 x_0 near x_* , $F \in \mathcal{C}^{1,1}$, $F'(x_*)$ non-singular ψ quadratic convergence

Nonsmooth equations

Harder problem:

Find a poind $x_* \in \mathbb{R}^n$: $F(x_*) = 0$, with $F : \mathbb{R}^n \to \mathbb{R}^n$ nonsmooth

Kummer's counter-example to Newton; in the nonsmooth case the Jacobian might not be defined.

 x_0 near x_* , F semismooth, all $J \in "F'(x_*)"$ non-singular ψ quadratic convergence

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

Overview

00000000

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for $k = 1, \ldots$, solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

Overview

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for $k = 1, \ldots$, solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for k = 1 2, ..., solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Adaptation of the usual method for this difficulty ([Qi93; QS93]) Replaces $F'(x_k)$ with a "generalized Jacobian" J_k

Algorithm's sketch

- take $x_0 \in \mathbb{R}^n$ (near x_*)
- for k = 1 2, ..., solve $F(x_k) + J_k \delta_k = 0$ for δ_k , with $J_k \in \partial_B F(x_k)$: $\partial_B F$ is the Bouligand differential
- then $x_{k+1} = x_k + (\alpha_k)\delta_k$

Generalized derivatives

Bouligand differential

$$\partial_{\mathsf{B}}F(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, F'(x_k) \to J \}$$
 (1)

Example:
$$F(x) = \begin{cases} -x/2 & \text{if } x \leq 0 \\ -x & \text{if } x > 0 \end{cases}$$
, $\partial_B F(0) = \{-1/2, -1\}.$

$$\underbrace{\partial_B F(x)}_{=??} \subsetneq \underbrace{\partial_B F_1(x) \times \cdots \times \partial_B F_p(x)}_{\text{I} \cdots = \text{ easy}} \text{ (sometimes =)}$$

∃ other differentials: Clarke, Mordukhovich, 2nd order...

Linear Complementarity Problems

General form [CPS92; FP03]

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \rightarrow A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0 \Leftrightarrow$$

$$\forall i, A_{i,:}x + a_{i} \ge 0, B_{i,:}x + b_{i} \ge 0, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$

$$(2)$$

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(2) $\Leftrightarrow \forall i, F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

Linear Complementarity Problems

General form [CPS92; FP03]

$$A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}, \rightarrow A(x) = Ax + a, B(x) = Bx + b$$

$$0 \le (Ax + a) \perp (Bx + b) \ge 0 \Leftrightarrow$$

$$\forall i, A_{i,:}x + a_{i} \ge 0, B_{i,:}x + b_{i} \ge 0, (A_{i,:}x + a_{i})(B_{i,:}x + b_{i}) = 0$$

$$(2)$$

Remark:
$$u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$$

(2) $\Leftrightarrow \forall i, F_i(x) := \min(A_i(x), B_i(x)) = 0 \Leftrightarrow F(x) = 0$

Summary

Minimum function on LCPs ⇒ semismooth system

Adapted Newton requires info on $\partial_B \min(\mathcal{A}, \mathcal{B})(\cdot) = \partial_B F(\cdot)$

Or to form $\partial_{\mathcal{C}} \min(\mathcal{A}, \mathcal{B})(\cdot)$.

One $J_B \in \partial_B F$: [Qi93] One $J_C \in \partial_C F$: [CX11]

But all of them?

Upcoming plan

The main question

Determine generalized Jacobians of

$$x \mapsto F(x) = \min(Ax + a, Bx + b)$$

- their structure
- finite (but exponential) number of elements
- how to compute them

Plan

- Overview
- 2 Underlying problem
- 3 An algorithm for arrangements
- 4 Improvements and results

Computing the B-differential

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**

$$\begin{pmatrix}
A_{i,:} &= B_{i,:} \\
A_{i,:}x + a_{i} &< B_{i,:}x + b_{i} \\
A_{i,:}x + a_{i} &> B_{i,:}x + b_{i}
\end{pmatrix} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases}
A_{i,:} = B_{i,:} \\
A_{i,:} \\
B_{i,:}
\end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\mathsf{T}x <, >0\}$$

 H^- or H^+ $\forall i \in [1:n]$: $H^+ \Leftrightarrow I_{i,i} = A_i$. $H^- \Leftrightarrow I_{i,i} = B_{i,i}$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases}$$

$$A_{i,:}x + a_{i} > B_{i,:}x + b_{i}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$$

$$\mathbb{B}^n = H^{-} \cup H_{i,:} \cup H^{+} \quad H^{-,+} = \{x \in \mathbb{B}^n : y^{\mathsf{T}} x \leq x \geq 0\}$$

Hyperplanes $H_i:=(B_{i,:}-A_{i,:})^{\perp}:=v_i^{\perp}$; for ∂_B 's def, $\mathbb{R}^n\setminus\cup H_i$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} \\ B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

 $\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad H_{i}^{-,+} = \{x \in \mathbb{R}^{n} : v_{i}^{+}x <, >0\}$$
Hyperplanes $H_{i} := (B_{i,:} - A_{i,:})^{\perp} := v_{i}^{\perp}$; for ∂_{B} 's def, $\mathbb{R}^{n} \setminus \cup H_{i}$
 H_{i}^{-} or H_{i}^{+} , $\forall i \in [1:p]: H_{i}^{+} \Leftrightarrow J_{i,:} = A_{i,:}, H_{i}^{-} \Leftrightarrow J_{i,:} = B_{i,:}$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(A, B) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \text{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, > 0\}$$
Hyperplanes $H_i := (B_{i,-} - A_i)^{\perp} := v_i^{\perp} \text{ for } \partial_B \text{ is def. } \mathbb{R}^n \setminus \cup H_i$

 H_i^- or H_i^+ , $\forall i \in [1:p]: H_i^+ \Leftrightarrow J_{i:i} = A_{i:i}, H_i^- \Leftrightarrow J_{i:i} = B_{i}$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$

$$\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \textbf{hyperplanes}$$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\mathsf{T}x <, >0\}$$
Hyperplanes $H_i := (B_i, \dots, A_i)^\perp := v_i^\perp : \text{for } \partial_{-i}s \text{ def. } \mathbb{R}^n \setminus H_i$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases} \\ A_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} = B_{i,:} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$
 $\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \mathbf{hyperplanes}$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\mathsf{T}x <, >0\}$$
Hyperplanes $H_i := (B_{i,:} - A_{i,:})^\perp := v_i^\perp ; \text{ for } \partial_B\text{'s def, } \mathbb{R}^n \setminus \cup H_i$

 H_i^+ or H_i^+ , $\forall i \in [1:p]: H_i^+ \Leftrightarrow J_{i,:} = A_{i,:}, H_i^- \Leftrightarrow J_{i,:} = E$

$$f,g \in \mathcal{C}^1$$
: min $(f(x),g(x))$ diff $\Leftrightarrow f(x) \neq g(x)$ or $f'(x) = g'(x)$.

Important: F is piecewise affine: F' is piecewise **constant**.

$$\begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:}x + a_{i} < B_{i,:}x + b_{i} \Rightarrow \forall J \in \partial_{B}F(x), J_{i,:} = \begin{cases} A_{i,:} = B_{i,:} \\ A_{i,:} & B_{i,:} \end{cases} \\ A_{i,:}x + a_{i} > B_{i,:}x + b_{i} \end{cases}$$

$$I(x) := \{i \in [1:n] : A_{i,:}x + a_i = B_{i,:}x + b_i, A_{i,:} \neq B_{i,:}\}; |I(x)| = p$$
 $\min(\mathcal{A}, \mathcal{B}) \text{ non-diff} \Leftrightarrow \text{affine terms equal} \Leftrightarrow \mathbf{hyperplanes}$

$$\mathbb{R}^n = H_i^- \cup H_i \cup H_i^+, \quad H_i^{-,+} = \{x \in \mathbb{R}^n : v_i^\top x <, >0\}$$
Hyperplanes $H_i := (B_{i,:} - A_{i,:})^\perp := v_i^\perp$; for $\partial_{\mathcal{B}}$'s def, $\mathbb{R}^n \setminus \cup H_i$

 H_i^- or H_i^+ , $\forall i \in [1:p]$: $H_i^+ \Leftrightarrow J_{i,:} = A_{i,:}$, $H_i^- \Leftrightarrow J_{i,:} = B_{i,:}$

$V = [v_1 \quad v_2 \quad v_3] = [e_1 \quad e_2 \quad e_1 + e_2]$ H_1 $x + d_k = x + t_k d$ e_2 $e_1 + e_2$

Red, blue, black: H_i and v_i . In magenta, points of the form $x + t_k d$, $t_k \searrow 0$. The points remain on the same sides of the hyperplanes along k: the J is constant; no need for sequences, points are sufficient.

Directions and hyperplanes - 2

 $\forall i \in [1:p]$, 2 possibilities: maximum of 2^p Jacobians. Here, 6 among the $2^3 = 8$ possible Jacobians exist in $\partial_B F$

$$|I(x)| = p$$
 hyperplanes, $H_i = v_i^{\perp}$, $v_i = B_{i,:} - A_{i,:}$
 $\mathbb{R}^n \setminus \bigcup H_i = \text{ differentiable points, on the } + \text{ or } - \text{ side of every } H_i.$

given
$$v_i := (B_{i,:} - A_{i,:})^T$$

find all $s = (s_1, ..., s_p) \in \{\pm 1\}^p$,
s.t. $\exists \ d_s, \forall \ i \in [1:p], s_i v_i^T d_s > 0$

$$|I(x)| = p$$
 hyperplanes, $H_i = v_i^{\perp}$, $v_i = B_{i,:} - A_{i,:}$
 $\mathbb{R}^n \setminus \bigcup H_i = \text{ differentiable points, on the } + \text{ or } - \text{ side of every } H_i.$

Fundamental question

given
$$v_i := (B_{i,:} - A_{i,:})^T$$

find all $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$,
s.t. $\exists d_s, \forall i \in [1:p], s_i v_i^T d_s > 0$

2^p linear feasibility problems to solve... How to improve?

From literature

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results such as $|\partial_B F(x)|$ (Winder [Win66])

$$\begin{aligned} |\partial_B F(x)| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rank}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\operatorname{null}(\mathcal{V})} \end{aligned}$$

or upper bounds but not exactly $\partial_B F(x)$.

Very well-known in algebra / combinatorics...

... but very theoretically: Möbius function, lattices, matroids.

Very impressive results such as $|\partial_B F(x)|$ (Winder [Win66])

$$\begin{split} |\partial_{\mathcal{B}}F(x)| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rank}(\mathcal{V})} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{\operatorname{null}(\mathcal{V})} \end{split}$$

or upper bounds but not exactly $\partial_B F(x)$.

- Overview
- 2 Underlying problem
- 3 An algorithm for arrangements
- 4 Improvements and results

Main reasoning

Algorithm from [RČ18]:

- recursive process that adds hyperplanes one at a time
- uses a tree structure
- each node has one or two descendants.
- depending on linear feasibility (optimization) check

Or same tree structure but in a 'dual' way ('dual algorithm').

Main reasoning

Algorithm from [RČ18]:

- recursive process that adds hyperplanes one at a time
- uses a tree structure
- each node has one or two descendants.
- depending on linear feasibility (optimization) check

Or same tree structure but in a 'dual' way ('dual algorithm').

Plan

- An algorithm for arrangements
- Improvements and results

000000

Infeasibility, matroids and circuits - 1

++- (and --+) corresponds to an empty region: + means right to H_1 , + over H_2 , - down left H_3 : such a point does not exist.

000000

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \dots \cdot$ always infeasible.

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T} \gamma = 0
\end{cases}$$
(3)

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \to Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

000000

Overview

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \dots \cdot$ always infeasible.

Gordan's alternative

 $M \in \mathbb{R}^{p \times n}$, exactly one is true:

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T} \gamma = 0
\end{cases}$$
(3)

 $s \in \{\pm 1\}^p$ arbitrary:

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \rightarrow Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

Infeasibility, matroids and circuits - 2

With p > 3, $++- \cdot \cdot \cdot \cdot \cdot$ always infeasible.

Gordan's alternative

 $M \in \mathbb{R}^{p \times n}$, exactly one is true:

$$\begin{cases}
\exists d \in \mathbb{R}^n : Md > 0_{\mathbb{R}^p} \\
\exists \gamma \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T} \gamma = 0
\end{cases}$$
(3)

 $s \in \{\pm 1\}^p$ arbitrary:

$$M = \operatorname{diag}(s)V^{\mathsf{T}} \rightarrow Md = (s_1v_1^{\mathsf{T}}d; \dots; s_pv_p^{\mathsf{T}}d)$$

"Feasibility of a system or element in the null space of the matrix"

Infeasibility, matroids and circuits - 3

Instead: search for $\Gamma=\{\gamma\}$ and prune/stop the tree when an infeasibility is detected.

The γ 's represent the "circuits" of the "matroid" defined by V

- the tree [from [RČ18]]
- slight improvements on the overall tree
- the dual algorithm detecting infeasibilities
- normal tree algorithm but with some infeasibility detection

Quite significant improvements brought by duality!

Infeasibility, matroids and circuits - 3

Instead: search for $\Gamma=\{\gamma\}$ and prune/stop the tree when an infeasibility is detected.

The γ 's represent the "circuits" of the "matroid" defined by V

- the tree [from [RČ18]]
- slight improvements on the overall tree
- the dual algorithm detecting infeasibilities
- normal tree algorithm but with some infeasibility detection

Quite significant improvements brought by duality!

Instead: search for $\Gamma=\{\gamma\}$ and prune/stop the tree when an infeasibility is detected.

The γ 's represent the "circuits" of the "matroid" defined by V

- the tree [from [RČ18]]
- slight improvements on the overall tree
- the dual algorithm detecting infeasibilities
- normal tree algorithm but with some infeasibility detection

Quite significant improvements brought by duality!

Numerical results

	CPU times (in sec)						
	original	Improved tree-1		Improved tree-2		Fully dual tree	
Problem	code	Time	Ratio	Time	Ratio	Time	Ratio
rand-4-8-2	1.06	0.10	10.75	0.02	48.44	0.03	36.67
rand-7-9-4	1.13	0.45	2.51	0.29	3.95	0.02	68.67
rand-7-13-5	11.06	4.29	2.58	2.94	3.76	0.25	44.60
rand-8-15-7	64.79	29.53	2.19	27.59	2.35	4.54	14.29
rand-9-16-8	157.05	78.01	2.01	81.61	1.92	18.87	8.32
rand-10-17-9	352.42	196.09	1.80	213.48	1.65	70.19	5.02
srand-8-20-4	874.01	323.56	2.70	649.61	1.35	705.36	1.24
rc-2d-20-6	12.68	0.35	36.06	0.26	48.78	0.26	49.63
rc-2d-20-7	23.01	0.56	40.87	0.53	43.06	0.45	51.50
rc-perm-6	62.89	0.84	74.44	2.33	27.03	2.46	25.61
rc-perm-8	6589.31	85.70	76.89	1599.53	4.12	5290.13	1.25
rc-ratio-20-5-7	91.57	27.43	3.34	29.70	3.08	20.54	4.46
rc-ratio-20-5-9	88.24	25.21	3.50	27.54	3.20	17.75	4.97
rc-ratio-20-7-7	581.28	241.24	2.41	506.67	1.15	447.83	1.30
rc-ratio-20-7-9	460.64	162.95	2.83	315.67	1.46	234.72	1.96
Mean			16.60		13.90		30.31
Median			3.24		4.12		27.80

Duality and matroids brought considerable improvements

Future work

- adaptations to affine hyperplanes (for themselves)
- Julia code for this in development
- $\partial_B \min(\text{nonlinear})$

Thank you for your attention! Any question?

Conclusion

Overview

Duality and matroids brought considerable improvements

Future work

- adaptations to affine hyperplanes (for themselves)
- Julia code for this in development
- $\partial_B \min(\text{nonlinear})$

Conclusion

Overview

Duality and matroids brought considerable improvements

Future work

- adaptations to affine hyperplanes (for themselves)
- Julia code for this in development
- $\partial_B \min(\text{nonlinear})$

Thank you for your attention! Any question?

- [CPS92] R.W. Cottle, J.-S. Pang, and R.E. Stone. *The Linear Complementarity Problem*. Academic Press, Boston, 1992.
- [CX11] X. Chen and S. Xiang. "Computation of generalized differentials in nonlinear complementarity problems". In: Computational Optimization and Applications 50 (2011). [doi], pp. 403–423.
- [FP03] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer, 2003.
- [Qi93] L. Qi. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations". In: Mathematics of Operations Research 18 (Feb. 1993). [doi], pp. 227–244.

Bibliographic elements II

- [QS93] L. Qi and J. Sun. "A nonsmooth version of Newton's method". In: *Mathematical Programming* 58 (1993). [doi], pp. 353–367.
- [RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32 (Jan. 2018), pp. 455–473. DOI: 10.1137/15M1027930.
- [Win66] Robert O. Winder. "Partitions of N-space by hyperplanes". In: *SIAM Journal on Applied Mathematics* 14.4 (1966). [doi], pp. 811–818.

Various properties

-origin = center of symmetry ; $s_i v_i^\mathsf{T} d > 0 \Leftrightarrow (-s_i) v_i^\mathsf{T} (-d) > 0$

Feasible ⇔ pointed cone

Infeasible ⇔ non-pointed

-"connectedness" property (vertices = J's, edges = hyperplanes)

With one more vector

• Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$

Method - adding vectors one at a time

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^T d_s^{k-1} > 0$

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \left\{ \begin{array}{l} + v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{array} \right. \checkmark, \left\{ \begin{array}{l} v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{array} \right. ? \to \mathsf{L.O.}$

Method - adding vectors one at a time

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], \ s_i v_i^{\top} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$

Method - adding vectors one at a time

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], \ s_i v_i^{\top} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} = 0 \Rightarrow \text{both systems } \checkmark \text{ by perturbation}$

Circuits of matroids

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = \mathbf{1}$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}} \underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma(\eta)\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V, I)) = 1$. $I' \supset I$ useless to check

Circuits of matroids

Overview

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if l s.t. $\dim(\mathcal{N}(V_{-l})) = 1$, $l' \supseteq l$ useless to check

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(\emph{V}_{:,\emph{I}})$ gives 'unsigned' η 's which define the sign $\emph{s}_\emph{I}=1$ because

if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V, I)) = 1$. $I' \supseteq I$ useless to check

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\leq 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supset I$ useless to check

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if l s.t. $\dim(\mathcal{N}(V_{i,l})) = 1$, $l' \supseteq l$ useless to check

Circuits of matroids

Overview

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supset I$ useless to check