

Базы данных Лекция 10

Cassandra

Мгер Аршакян

План лекции

1

Что такое Apache Cassandra?

2

Архитектура Cassandra vs Реляционные БД

7

Организация данных в Cassandra

Что такое Apache Cassandra?

Apache Cassandra — это NoSQL база данных (column family - key : value), созданная для работы с большими объемами данных в распределенной среде.

Ключевые особенности:

- Масштабируемость легко добавлять новые узлы
- Отказоустойчивость нет единой точки отказа (masterless)
- Высокая доступность работает даже при сбоях узлов
- Производительность оптимизирована для записи

Когда использовать Cassandra:

- Большие объемы данных (терабайты и петабайты)
- Высокие требования к скорости записи
- Приложения с высокой нагрузкой (ІоТ, логи, метрики)

Архитектура Cassandra vs Реляционные БД

Традиционные СУБД (SQL):

```
Сервер БД (единая точка отказа)
↓
База данных
↓
Таблицы с жесткой схемой
```

Cassandra (NoSQL):

```
Кластер узлов (peer-to-peer)
↓
Кеуsрасеs (аналог баз данных)
↓
Таблицы с гибкой схемой
```

Организация данных в Cassandra

- 1. **Cluster** (кластер) группа узлов
- 2. **Keyspace** (пространство ключей) аналог базы данных в SQL
- 3. **Table** (таблица) аналог таблицы в SQL
- 4. **Row** (строка) запись данных
- 5. **Column** (колонка) поле данных

Сравнительная таблица: Cassandra vs SQL

Аспект	SQL (PostgreSQL/MySQL)	Cassandra
Масштабирование	Вертикальное (больше мощности)	Горизонтальное (больше узлов)
JOIN	Поддерживаются	Не поддерживаются
Индексы	Множественные индексы	Ограниченные вторичные индексы
Язык запросов	SQL	CQL (Cassandra Query Language)
Consistency	Строгая согласованность	Настраиваемая согласованность

Первичный ключ в Cassandra

Первичный ключ состоит из двух частей:

- 1. Partition Key (Ключ разделения) Определяет, на каком узле будут храниться данные Используется для распределения данных по кластеру
- 2. Clustering Columns (Колонки кластеризации) Определяют упорядочивание данных внутри партиции Позволяют эффективно искать данные в партиции

```
PRIMARY KEY ((city, country), registration_date, user_id)

↑ ↑

Partition Key Clustering Columns
```

Пример таблицы

Разбор структуры партиции

Размеры партиций Критические ограничения

Правило золотого сечения:

- 1. Максимальное количество значений в партиции: < 100,000
- 2. Максимальный размер партиции на диске: < 100МВ

Почему это важно?

1. Производительность чтения

- Большие партиции = медленные запросы
- Больше операций ввода-вывода

2. Репликация

- Большие партиции дольше реплицируются
- Увеличивается сетевой трафик

3. Compaction

- Большие партиции медленнее обрабатываются
- Больше используется оперативной памяти

Спасибо за внимание!

Беседа курса в Telegram