

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO PESQUISA OPERACIONAL

IMPLEMENTAÇÃO DO MÉTODO SIMPLEX EM PYTHON

Diogo Augusto Martins Honorato Gustavo Euller Honório Pedrosa

> São João del-Rei 2025

Sumário

T	Introdução	2
2	Execução do Programa	2
	2.1 Requisitos	2
	2.2 Como Executar	2
3	Formato do Arquivo de Entrada	2
4	Resultados	3
5	Descrição dos Módulos	4
	5.1 _create_initial_tableau(A, b, c, types)	4
	5.2 solve()	4
	5.3 _check_multiple_solutions()	5
	$5.4 \text{ get_solution()} \dots \dots$	5
6	Capacidades e Limitações da Implementação	5
	6.1 Problemas Tratados com Sucesso	5
	6.2 Limitações Conhecidas	6
7	Conclusão	6

1 Introdução

Este trabalho tem como objetivo implementar o Método Simplex para resolução de Problemas de Programação Linear (PPL). O algoritmo permite resolver problemas de maximização sujeitos a restrições lineares com variáveis não-negativas. A implementação foi feita em Python.

2 Execução do Programa

2.1 Requisitos

- Python 3
- Biblioteca NumPy

2.2 Como Executar

Salve um arquivo de entrada no formato descrito na Seção 3. Em seguida, execute o programa com:

python3 main.py

3 Formato do Arquivo de Entrada

Primeira linha o número de variáveis e número de restrições, segunda linha os coeficientes da função objetivo e linhas seguintes os coeficientes das restrições seguidos do tipo da restrição (\leq ou \geq) e do lado direito

Exemplo:

2 2

3 2

2 1 <= 10

1 3 <= 15

4 Resultados

Input:

```
2 2
```

3 2

2 1 <= 10

1 3 <= 15

Tableau Inicial:

Variáveis básicas iniciais: s_1 (índice 2), s_2 (índice 3) e FO: $-3x_1 - 2x_2$ (coeficientes negados)

Processo de Solução:

Entra na base: x_1 (coeficiente mais negativo na FO) logo em seguida sai da base: s_1 (razão mínima 10/2=5) o pivoteamento e realizado e então uma nova iteração: entra x_2 , sai s_2

Saída do Programa:

```
Tableau Inicial:
```

[[-3. -2. 0. 0. 0.]

[2. 1. 1. 0. 10.]

[1. 3. 0. 1. 15.]]

Variáveis básicas: [2, 3]

Variáveis não básicas: [0, 1]

Solução encontrada:

Valor ótimo: 17.0000

Variáveis (x1, x2): [3. 4.]

Variáveis básicas finais: [0, 1]

Tableau Final:

[[0. 0. 1.4 0.2 17.]

[1. 0. 0.6 -0.2 3.]

[0. 1. -0.2 0.4 4.]

Solução ótima: $x_1=3$, $x_2=4$ com o valor ótimo da FO: 17 e variáveis básicas finais: x_1 e x_2 e com coeficientes zero na FO para s_1 e s_2 indicam solução única

5 Descrição dos Módulos

5.1 _create_initial_tableau(A, b, c, types)

Propósito: Monta o tableau inicial do problema.

Processo:

- 1. Calcula número de variáveis auxiliares (folga/excesso)
- 2. Cria matriz tableau com dimensões adequadas
- 3. Preenche a linha da função objetivo (coeficientes negados)
- 4. Para cada restrição:
 - Adiciona coeficientes das variáveis de decisão
 - Adiciona variável de folga (1) ou excesso (-1)
 - Adiciona termo independente
- 5. Define variáveis básicas e não básicas iniciais

5.2 solve()

Propósito: Executa o algoritmo Simplex até encontrar solução ótima ou detectar problema ilimitado.

Passos:

- 1. Verifica otimalidade (todos coeficientes na FO ≥ 0)
- 2. Seleciona variável para entrar na base (mais negativo na FO)
- 3. Verifica ilimitabilidade
- 4. Seleciona variável para sair da base (teste da razão mínima)
- 5. Atualiza base e não base

- 6. Realiza operação de pivoteamento
- 7. Repete até condição de parada

5.3 _check_multiple_solutions()

Propósito: Verifica se existem múltiplas soluções ótimas.

Lógica:

- Verifica se alguma variável não básica tem coeficiente zero na FO
- Isso indica que poderíamos trazê-la para a base sem alterar o valor da FO

5.4 get_solution()

Propósito: Extrai e retorna a solução encontrada.

Retorno:

- Dicionário com:
 - solution: Valores das variáveis de decisão
 - optimal_value: Valor ótimo da FO
 - multiple_solutions: Flag para múltiplas soluções
 - base: Variáveis básicas finais
- Ou mensagem de erro se problema ilimitado ou não resolvido

6 Capacidades e Limitações da Implementação

6.1 Problemas Tratados com Sucesso

O programa implementado é capaz de resolver eficientemente:

- Problemas padrão de maximização com:
 - Restrições do tipo ≤ com lados direitos positivos
 - Qualquer número de variáveis e restrições (testado até 20x20)
 - Solução ótima única finita

• Casos especiais:

- Problemas ilimitados (identifica corretamente quando a FO pode crescer infinitamente)
- Múltiplas soluções ótimas (detecta quando existem pontos ótimos alternativos)
- Degeneração (lida corretamente com variáveis básicas de valor zero)

6.2 Limitações Conhecidas

A implementação atual **não trata** os seguintes casos:

• Restrições de igualdade (=):

- Não implementa variáveis artificiais
- Exemplo: $x_1 + x_2 = 5$ causa erro no tableau inicial

• Restrições ≥ com base infactível:

- Adiciona variáveis de excesso mas não resolve infactibilidade inicial
- Exemplo: $2x_1 x_2 \ge 5$ pode não convergir

• Problemas infactíveis:

- Não implementa Fase I do Simplex ou Método Big M
- Não detecta explicitamente contradições como $x_1 \leq 3$ e $x_1 \geq 5$

• Minimização:

- Converte apenas problemas de maximização
- Minimização requer transformação manual para -FO

7 Conclusão

A implementação do Método Simplex foi realizada com sucesso e validada por diversos casos de teste. A estrutura modular facilita a compreensão e ampliação futura, como a implementação de fases auxiliares para tratamento de restrições do tipo = e \geq . O código atual atende corretamente problemas padrão de maximização com variáveis não-negativas.