AI-powered Nutrition Analyzer for Fitness Enthusiasts

About:

Nutrition is very important for the growth of a human body. Nutritional Analysis ensures that the food has optimal requirement of vitamins and minerals wherein the examining of nutrition in food helps in understanding about the fat proportion, carbohydrates dilution, proteins, fiber, sugar, etc. Another thing we need to take care of is not to exceed daily calorie needs. If exceeded, we maybe end up being obese.

Literature Review

Paper / Title	Author	Year	Journal	Objective	Proposed Technique	Limitations/ Improvements
DeepFood: Deep	Chang Liu, Yu Cao,	2016	Springer	To propose a new CNN	A new architecture was	The inference time
Learning-Based Food	Yan Luo, Guanling		International	architecture for food	proposed based on the	is extremely long
Image	Chen,		Publishing	image recognition and	backbones of LeNet, AlexNet	for even a single
Recognition for	Vinod Vokkarane,		Switzerland	apply benchmark on UEC-	and GoogleNet. After	image and hence
Computer-Aided	and Yunsheng Ma			256 and Food-101	convolutions, it was	not feasible to
Dietary Assessment					followed by sub-sampling to reduce dimensions and FC layers.	deploy in real time

AN IMAGE ANALYSIS SYSTEM FOR DIETARY ASSESSMENT AND EVALUATION	Fengqing Zhu, Marc Bosch, Carol J. Boushey and Edward J. Delp	2011	NCBI	To use a mobile device with a built-in camera, network connectivity, integrated image analysis and visualization tools, and a nutrient database, to allow a user to easily record foods eaten. Images acquired before and after foods are eaten can be used to estimate the amount of food consumed.	 Image Segmentation Classification using SVM Volume Estimation with the help of Camera Calibration 	Not be able to recognize every food or differentiate between similar looking foods.
EVIDENCE-BASED DEVELOPMENT OF A MOBILE TELEPHONE FOOD RECORD	Bethany L Six, TusaRebecca E Schap, Anand Mariappan,	2011	NCBI	(1) to test whether participants' proficiency with the mpFR improved after training and repeated use, and (2) to measure changes in perceptions regarding use of the mpFR after training and repeated use.	 Image Segmentation Volume Estimation FNDDS Indexing Nutrient Info 	Needs to accommodate the lifestyles of its users to ensure useful images and continuous use throughout the day or multiple days.
AUTOMATIC FRUIT RECOGNITION: A SURVEY AND NEW RESULTS USING RANGE/ATTENUATION IMAGES	Jimenez A, Jain A, Ceres R, Pons J.	1999	Science Direct	To recognize spherical fruits in different situations such as shadows, bright areas, occlusions and overlapping fruits.	Two images represent the azimuth and elevation angles the attenuation is in ATTE(x, y) and the reflectance image REFL(x, y). The image analysis process uses the images obtained from the scanner to detect the position of the fruits by thresholding and clustering.	Cannot work with low resolution images.

FOOD IMAGE ANALYSIS AND DIETARY ASSESSMENT VIA DEEP MODEL	Landu Jiang	2020	Research	To design and implement a system for food image analysis - output the amount of nutritional ingredients of each food items from daily captured images. A thorough dietary assessment report will be generated based on what you have during the meal.	Extract the regions of interests (ROIs) by applying the Region Proposal Network derived from the Faster R-CNN model. Apply Convolutional Neural Network (CNN) on selected RoIs and classify them into different food item categories. A regression module is also used to locate the food coordinates in the image.	To provide a healthy diet, an automatic diet calculator.
DEEP-LEARNING- ASSISTED MULTI-DISH FOOD RECOGNITION APPLICATION FOR DIETARY INTAKE REPORTING	Ying-Chieh Liu	2022	Research Gate	To integrate ML innovations of a realistic mobile health application using mobile ICT and AI technology to allow people to report their dietary intake easily and accurately under real conditions.	Adopted EfficientDet-D1 with EfficientNet-B1 as the backbone. EfficientDet detector architecture with EfficientNet was selected	Yet to be integrated with a mobile app or web application.