Contents

4	Stru	ıkturelle Defekte 0D,1D,2D	2
	4.1	Ausgdehnte Deffekte: 1D - Defekte	3
	4.2	Einkristal: Mechanische Festigkeit	4
	4.3	Plastische Deformationen	5
	4.4	Amorphe Materialien	5

Chapter 4

Strukturelle Defekte 0D,1D,2D

0D-Defekte - Punktdefekte

A - Leerstelle (Schottky-Defekte) B - Zwischengitteratom C' - Interstitueller Fremdatom C'' - substitioneller Fremdatom

 $A \text{ Leerstellen} \to \text{Schottky-Defekte}, z.B \text{ NaCl} \oplus \leftrightarrow \ominus \text{ Die Zahl der Leerstellen}$ (im thermischen Gleichgewischt)

$$N_l = \underbrace{\operatorname{const}}_{Ne^{\frac{S_L}{k_B}T}} \cdot e^{-\frac{E_L}{k_BT}}$$

 E_L ist die Energie die zur Erzeugung einer Leerstelle gebraucht wird. S_L ist die Schwingungsentropie einer Leerstelle. $\frac{S_L}{k_B} \approx 1$

$$\left. \frac{N_L}{N} \right|_{1000K} \approx 10^{-5}; \quad \left. \frac{N_L}{N} \right|_{300K} \approx 10^{-17};$$

Volumenänderung bei höheren Temperaturen $T \to T_c$: $\frac{\Delta V(T)}{V} - 3\frac{\Delta a}{a} \approx N_L(T)$ mit T_C -Termperatur-Schmelzpunkt. Farbzentren (F-Zentren): NaCl: Cl- Leerstellen (e^-) gelb-braune Färbung

<u>A Zwischengitteratome</u> Zwischengitteratome sind starke Verzerrung des Gitters. In Ionenkristallen ist die Energie von Zwischengitteratome in der selben Ordnung wie die Leerstellen $E_{zw.} \propto E_L$ Frenkel-Defekt

C Fremdatome

C' interstitielle F.A. C'' substitutionelle F.A. Si-Dotierung: z.B: $S_i^{4+} \rightarrow Ga^{3+}, \ S_i^{4+} \rightarrow P^{5+}$ Experimentelle Methoden:

- \bullet ESP = Elektronenspinresonanz + Optik
- NMR = Kernspinresonanz + Optik

4.1 Ausgdehnte Deffekte: 1D - Defekte

Versetzungen (engl. dislocations) sind für Mechanische Eigenschaften von Festkörpern verantwortlich.

 \vec{b} - Burgers-Vektor \bot - Stufenversetzung zwei Grundtypen von Versetzungen

Versetzungsknoten

 $\vec{b}_1 + \vec{b}_2 + \vec{b}_3 = 0$ (ähnlich zu Kirchof). $\top \bot$ - Dipol

 $\top \bot \top \bot \top \bot \top \bot \top$ - Multipols

Versetzungen: a) v. Oberfläche b) Versetzungsenergie

Experimentelle Beobachtung durch chemisches Ätzen von Probenoberflächen. (Beobachtung mit Rasterelektronenmikroskop SEM 1944).

Kristallwachstum (Whiskers) Plastische Deformationen

$$\vec{F} = (\vec{\sigma} \cdot \vec{b}) \times \vec{L}$$

 \vec{F} -Versetzungstensor

Einkristal: Mechanische Festigkeit 4.2

$$\sigma = \underbrace{E}_{\text{Electicitätemodul}} \frac{\delta L}{L}$$

Erst ist die Spannung proportional zur Dehnung (Hooksche Gesetzt). Der Bereich zwischen A und B wird Dehnung größer ohne größer werden von Spannung. Hier finden Versetzungen statt.

A-B Plastische Deformation B-C Verfestigung

Einkristalle $\approx 10^2 - 10^5$ Versetzungen/cm² Kalt verformte Metalle $\approx 10^{12}$ Versetzungen/cm²

4.3 Plastische Deformationen

$$\vec{F}(\sigma \cdot \vec{b}) \times \vec{L}$$

Whiskers (engl.) = Vibrisse (lange Stäbchen mit Versetzung) $\underline{\text{2D Defekte}}$: Korngrenzen = Bereiche zu Kristallite (Polykristalle) Kleinwinkelkorngrenzen

Stapelfehler: fcc und hcp A B C A B C—A B—A B—A B C...

4.4 Amorphe Materialien

Paarvertelungfunktion eine Atomsorte

$$g(\vec{r}_1, \vec{r}_2) = \frac{1}{n_0^2} \langle n(\vec{r}_1) \cdot n(\vec{r}_2) \rangle$$

Amorphe Festkörper

keine Fernordnung (metabstabil)

Festplatten sind von amorphen magnetischen Material gemacht. In Flüssiger form wird das material auf eine rotierende disk getropft und erstarrt dort. Anwendungen:

- Festplatten
- α -Si (Solarzellen)