TabuSearch: Job-shop scheduling problem

Jerzy Wroczyński

2020-06-04

1 Introduction

The job shop scheduling problem is one of many theoretic scheduling problems. In a paper by Dell'Amico and Trubian [1] it was classified as $J||C_{\text{max}}$ using the notation introduced by R.L.Graham et al. [2]. Letter J represents "job shop scheduling problem", two vertical lines with nothing in between mean no further job characteristics are given and C_{max} defines the optimization problem as minimizing the maximum completion time of all given jobs.

Of course, there are many different types of such problems e.g. there can be a predetermined quantity of machines e.g. only one machine, jobs can have certain characteristics e.g. each job has a *fuzzy due date* etc. but in this paper the problem classified in the previous paragraph will be examined.

We are given the following resources:

- 1. a set J of n jobs to schedule,
- 2. a set $O = \{1, ..., N\}$ of N atomic operations
- 3. a set M of m machines.

For each job J_j there is a sequence of operations $O_{i,j} \in O$ and each of these operations has to be processed without interruption separately on machine $\mu_{i,j} \in M$ for $d_{i,j}$ units of time using already mentioned notation [2].

For better understanding of a such schedule problem a visual aid of a Gantt chart can be used:

References

- [1] Mauro Dell'Amico and Marco Trubian. Applying tabu search to the job-shop scheduling problem. Politecnico di Milano, 1-20133 Milano, Italy, 1993. doi: 10.1007/BF02023076.
- [2] R.L.Graham, E.L.Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Elsevier B.V., 1979. doi: 10.1016/S0167-5060(08) 70356-X.

Figure 1: Example Gantt chart