

SISTEMAS DIGITAIS

2018/2019 – 1º Semestre

Trabalho realizado por:

Pedro Grilo, 43012

Diogo Castanho, 42496

Introdução

O objetivo deste trabalho é criar um sistema de controle para um conjunto de semáforos que controlam o trânsito de peões e de veículos numa passadeira. Este conjunto de semáforos é composto por 2 semáforos, um que controla os peões e outro que controla os veículos, por um sensor de excesso de velocidade dos veículos e por um botão para os peões carregarem quando quiserem atravessar a passadeira.

Para explicar o funcionamento deste conjunto de semáforos, foram criados dois modelos ASM, a partir dos quais, se contruíram as respetivas tabelas de verdade e consequentemente os seus mapas de Karnaugh com o objetivo de arranjarmos as suas funções. Através das equações obtidas nestes mapas foi construído o circuito usando o programa Logisim.

Decisões tomadas na realização do trabalho

Em primeiro lugar, tentámos perceber como iríamos proceder para desenhar os modelos ASM. Após várias tentativas erradas no número de estados desenhados e também devido numa entrada do controlador, conseguimos então definir corretamente os modelos para ambos os semáforos.

Após a sua definição, construímos as respetivas tabelas de verdade, com as devidas entradas e estados. Foram usados *flip-flops* D no decorrer do trabalho e foram adicionados os valores destes à tabela, para que posteriormente pudessem ser usados para melhor funcionamento do programa.

Acabadas as tabelas de verdade, foram construídos os mapas de Karnaugh necessários e a partir destes, foram simplificadas as expressões das saídas e dos *flip-flops*.

Já com as expressões feitas, implementámos as mesmas no Logisim de acordo com o pedido no trabalho.

Também foi implementado, posteriormente no Logisim, o display de 7 segmentos pedido (sendo que anteriormente foi feita a sua tabela de verdade, os seus mapas de Karnaugh e após isso, a sua simplificação).

Após todas estas etapas, e com alguns erros quando testados todos estes circuitos, devido a alguma falta de concentração na sua realização, conseguimos então definir corretamente tudo o que se tinha pedido.

Estando verificada a veracidade do trabalho, foi assim realizado este relatório.

1. Semáforo dos veículos

1.1 Modelo ASM para o semáforo dos veículos

1.2Funcionamento do semáforo

Entradas:

- ✓ Sensor de velocidade e botão para os peões;
- ✓ Semáforo dos peões;

Saídas:

✓ Semáforo de luz vermelha, amarela e verde;

1.3 Tabela de verdade

B+SV (BV)	SP	Transições e estados mnemónica		Estado atual (Qn)		Estado seguinte (Qn+1)		D1	D0	S2	S1	S0
		Qn	Qn+1	X1	X0	X1	X0					
0	-	а	а	0	0	0	0	0	0	0	0	1
1	-	а	b	0	0	0	1	0	1	0	0	1
-	-	b	С	0	1	1	0	1	0	0	1	0
-	-	С	d	1	0	1	1	1	1	0	1	0
-	0	d	d	1	1	1	1	1	1	1	0	0
-	1	С	а	1	1	0	0	0	0	1	0	0

1.4 Mapas de Karnaugh

Mapas dos Flip-Flops

• Foram usados flip-flops D e por isso a tabela de excitação foi a seguinte:

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

D1= X1~X0 + ~X1X0 + X0~SP

X1/X0 BV/SP	00	01		11	10	
00	0	$\sqrt{1}$	(1	1	
01	0	1		0	1	
11	0	1		0	1	
10	0	1		1	1	

 $D0=X1^{\sim}X0 + X1^{\sim}SP + ^{\sim}XOBV$

X1/X0 BV/ SR	00	01	11	10
00	0	0	1	1)
01	0	0	0	1
11	1	0	0	1
10	1	0	(1	1

Mapas das saídas

S2=X1X0

X1 BV	/X0 // SR	00	01	11	10
00		0	0 /	1	0
01	L	0	0	1	0
11	L	0	0	1	0
10)	0	0	1	0

S1= X1⊕X0

X1/X0 BV/SR	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

S0= ~X1~X0

X1/X0 BV/ SR	00		01	11	10
00	1		0	0	0
01	1		0	0	0
11	1		0	0	0
10	1		0	0	0

2. Semáforo dos peões

2.1 Modelo ASM para o semáforo dos peões

2.2 Funcionamento do semáforo

Entradas:

✓ Vermelho dos veículos

Saídas:

- ✓ Semáforo de luz vermelha, amarela e verde;
- ✓ Saída_funcional;

2.3 Tabela de verdade do semáforo

VC	e es	nsições stados mónica	Esta	ado a	tual (Qn)	Est	Estado seguinte (Qn+1)		D3	D2	D1	D0	S 2	S1	S0	VC	
	Qn	Qn+1	Х3	X2	X1	Х0	Х3	X2	X1	X0								
0	а	a	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	а	b	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0
-	b	С	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0	0
-	С	d	1	0	1	0	0	0	1	1	0	0	1	1	0	0	1	0
-	d	е	0	0	1	1	0	1	0	0	0	1	0	0	0	0	1	0
-	е	f	0	1	0	0	0	1	0	1	0	1	0	1	0	0	1	0
-	f	g	0	1	0	1	0	1	1	0	0	1	1	0	0	0	1	0
-	g	h	0	1	1	0	0	1	1	1	0	1	1	1	0	0	1	0
-	h	i	0	1	1	1	1	0	0	0	1	0	0	0	0	0	1	0
-	i	j	1	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0
-	j	k	1	0	0	1	1	0	1	0	1	0	1	0	0	0	1	0
-	k	- 1	1	0	1	0	1	0	1	1	1	0	1	1	0	0	1	0
-		m	1	0	1	1	1	1	0	0	1	1	0	0	0	1	0	0
-	m	n	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	0
-	n	0	1	1	0	1	1	1	1	0	1	1	1	0	1	0	0	0
-	0	р	1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	0
-	р	а	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	1

2.4 Mapas de Karnaugh

Mapas dos Flip-Flops

D3= X3~X2 + X3~X1 + ~X3X2X1X0 + X1~X0X3

X1/X0 BV/ SP	00	01	11	10
00	0	0	0	0
01	0	9	1	0
11 /	1	1	0	1
10	1	1	1	1
10	1	1	1	1

D2= ~X1X2 + ~X0X2 + X1X0~X2

X1/X0 BV/ SR	00	01	11	10
00	0	9	1	0
01 /	1	1	0	1
11	1	1	0	1
10	0	0	1	0

D1= X1 \oplus X0

X1/X0 BV/ SP	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

D0=X1~X0 + ~X1~X0VC + X2~X0~VC +X3~X0~VC

X1/X0 BV/SP	00	01	11	10	X1/X0 BV/ SP	00	01	11	10
00	0	0	0	1	00	1	0	0	1
01	1	0	0	1	01	1	0	0	1
11	1	0	0	1	11	1	0	0	1
10	1	0	0	1	10	1	0	0	1

VC= 0 VC=1

Mapas das saídas

S2= ~X3~X2~X1 + X3X3X0 + X3X2X1

X1/X0 BV/SR	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	0 (1	1	1
10	0	0	1	0

S1= X3X2~X1~X0 + X3~X2X1X0

X1/X0 BV/ SP	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11 (1	0	0	0
10	0	0 (1	0

S0=X1~X3 + ~X3X2 + ~X1X3~X2 + X3~X2~X0

X1/X0 BV/ SP	00	01	11	10
00	0	0	1	1
01	1	1	1	1
11	0	0	0	0
10	1	1	0	(1

S4 ALSO VP= X3X2X1X0

X1/X0 BV/SP	00	01	11	10
00	0	0	0	0
01	0	0	0 (0
11	0	0	$\begin{pmatrix} 1 \end{pmatrix}$	0
10	0	0	0	0

Tabela de verdade do display

 Para fazermos o display pedido, usámos as codificações dos flip-flops sendo que, enquanto aparecessem codificações de um estado em que o semáforo estivesse verde, o display começava a sua contagem de 8 até 0, indicando aos peões quanto tempo demora até que o semáforo fique amarelo e, quando fossem diferentes (não codifiquem um estado em que o semáforo esteja verde), o display não apresentava nada.

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1
0	1	0	0	1	1	1	0	0	0	0
0	1	0	1	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1	0	1	1
0	1	1	1	0	1	1	0	0	1	1
1	0	0	0	1	1	1	1	0	0	1
1	0	0	1	1	1	0	1	1	0	1
1	0	1	0	0	1	1	0	0	0	0
1	0	1	1	1	1	1	1	1	1	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Mapa de karnaugh do display

 $a = ^{\sim}BCD + \tilde{A}B^{\sim}C + \tilde{A}B^{\sim}D + A^{\sim}B^{\sim}C$

X1/X0 BV/SP	00	01	11	10
00	0	0/	1	0
01	1	1)	0	(1
11	0	0	0	0
10	1	1)	1	0

 $b=\tilde{A}CD + \tilde{A}B^{\sim}C^{\sim}D + A^{\sim}B$

X1/X0 BV/ SR	00	01	11	10
00	0	0	1	0
01	(1)	0	1	0
11	0	0	8	0
10 (1	1	1	1

c= ~BCD + ÃB + A~B~D

0	0	1	0
1	1	1	1
0	0	0	0
1	0	1	(1
	1 0 1	1 1 0 0	1 1 1 0 0 0

 $d = ^BCD + ^AB^CD + ^ABC^D + A^B^C$

X1/X0 BV/SR	00	01	11	10
00	0	0	1	0
01	0	(1)	0	(1)
11	0	0	0	0
10	1	1) (1	0

e= ~BCD + ~AB~CD + A~BD

X1/X0 BV/SR	00	01	11	10
00	0	0	1	0
01	0	(1)	0	0
11	0	0	0	0
10	0	1	1	0

f= ~BCD + ÃBD + ÃBC

X1/X0 BV/SR	00	01	11	10
00	0	0	1	0
01	0	1	1	1
11	0	0	0	0
10	0	0	1	0

$g = ^{\sim}ACD + ^{\sim}ABD + ^{\sim}ABC + A^{\sim}B^{\sim}C$

X1/X0 BV/SR	00	01	11	10
00	0	0	1	0
01	0	1	1)	1
11	0	0	0	0
10	1	1)	0	0