Optimization Techniques for ML (1)

Piyush Rai

Introduction to Machine Learning (CS771A)

August 23, 2018

Recap: Generative Classification

Class-Marginal or Class Prior
$$p(y=k|\boldsymbol{x}) = \frac{p(y=k)p(\boldsymbol{x}|y=k)}{p(\boldsymbol{x})}$$
 Class-Conditional Class-Conditional estimated from training data

$$p(y = k) = \pi_k$$
 and $p(y) = \text{multinoulli}(\pi_1, \dots, \pi_K)$

$$p(\boldsymbol{x}|y=k)$$
 depends on type of \boldsymbol{x}

naïve Bayes assumption:
$$p(x|y=k) = \prod_{d=1}^{D} p(x_d|y=k)$$

(reduces the number of parameters to be estimated for p(x|y=k))

E.g.: Gaussian with Diagonal or Spherical Covariance Matrix

Recap: Generative Classification Decision Boundaries

• We can look at the case when we have Gaussians as class-conditionals

$$p(y = k|\mathbf{x}) = \frac{p(y = k)p(\mathbf{x}|y = k)}{p(\mathbf{x})} = \frac{\pi_k |\mathbf{\Sigma}_k|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]}{\sum_{k=1}^K \pi_k |\mathbf{\Sigma}_k|^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]}$$

- All points x at the boundary between classes k and k' must satisfy p(y = k|x) = p(y = k'|x)
- Quadratic decision boundary if covariances unequal, linear if covariances equal

$$(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) - (\mathbf{x} - \boldsymbol{\mu}_{k'})^{\top} \boldsymbol{\Sigma}_{k'}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k'}) = 0$$
(a quadratic function of \boldsymbol{x})

$$\begin{aligned} (\mathbf{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k) - (\mathbf{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k'}) &= 0 \\ \end{aligned} \\ \text{(reduces to the form } \boldsymbol{w}^\top \boldsymbol{x} + b &= 0 \end{aligned}$$

Recap: Equivalence to Discriminative Model in Linear Case

• For the Gaussian class-conditionals with equal covariances (linear case)

$$p(y=k|\mathbf{x}, heta) \propto \pi_k \exp\left[-rac{1}{2}(\mathbf{x}-oldsymbol{\mu}_k)^ op oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu}_k)
ight]$$

• Expanding further, we can write the above as

$$p(y = k | x, \theta) \propto \exp\left[\mu_k^{\top} \Sigma^{-1} x - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k + \log \pi_k\right] \exp\left[x^{\top} \Sigma^{-1} x\right]$$

• After normalizing, the above posterior class probability can be written as

$$p(y = k | \mathbf{x}, \theta) = \frac{\exp\left[\mathbf{w}_{k}^{\top} \mathbf{x} + \mathbf{b}_{k}\right]}{\sum_{k=1}^{K} \exp\left[\mathbf{w}_{k}^{\top} \mathbf{x} + \mathbf{b}_{k}\right]}$$

where
$$\boldsymbol{w}_k = \Sigma^{-1} \boldsymbol{\mu}_k$$
 and $b_k = -\frac{1}{2} \boldsymbol{\mu}_k^{\top} \Sigma^{-1} \boldsymbol{\mu}_k + \log \pi_k$

• Interestingly, this has exactly the same form as the softmax classification model

Recap: Equivalence to Prototype based Classification

- Again consider, generative clasification with Gaussian class-conditionals
- Consider the prediction rule

$$\hat{y} = \arg \max_{k} p(y = k | \mathbf{x}) = \arg \max_{k} \pi_{k} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k}) \right]$$
$$= \arg \max_{k} \log \pi_{k} - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k})$$

- This is a generalization of prototype based classification
- Generalization because we are not simply computing Euclidean distances to make predictions
- If we assume the classes to be of equal size, i.e., $\pi_k = 1/K$ and $\Sigma_k = \Sigma$. Then we will have

$$\hat{y} = \arg\min_{k} \ (\mathbf{x} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{k})$$

- This is equivalent to assigning x to the "closest" class in terms of a Mahalanobis distance
 - The covariance matrix "modulates" how the distances are computed
- ullet If we further assume $\Sigma=I$, we get the exact same model as prototype based clasification

Discriminative vs Generative: A Few Points

- Generative models are always probabilistic with models for p(y) and p(x|y)
- Some discriminative models are also non-probabilistic
 - Any model of the form y = f(x) with no model for x is a discriminative model
 - Example: Support Vector Machines (SVM), DT, KNN, etc.
- Discriminative models are preferred when
 - There is plenty of training data. Modeling x doesn't usually matter much in that case
- Some situations when generative models are preferred
 - We can (afford to) learn the structure of the inputs
 - We want to do semi-supervised learning (or if we don't have much labeled data)
 - We would like to "generate" data (note that we are learning p(x|y))
- Generative and discriminative models can be combined as well

Optimization Techniques for ML

Optimization Problems in ML

• The generic form of most optimization problems in ML

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}) = \arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} \ell_n(\boldsymbol{w}) + R(\boldsymbol{w})$$

- $\ell_n(\mathbf{w})$: loss function for the n^{th} training example, $R(\mathbf{w})$: (optional) regularizer on the parameters
- Some common examples

$$\hat{w} = \arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 + \lambda ||\boldsymbol{w}||_2^2$$

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} - \left[\sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n))) \right] + \lambda ||\boldsymbol{w}||^2$$

 ℓ_2 regularized logistic regression assuming $u_n \in \{0,1\}$

$$\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{I}[y_n = k] \log \left[\frac{\exp(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n)}{\sum_{k=1}^{K} \exp(\boldsymbol{w}_k^{\top} \boldsymbol{x}_n)} \right]$$

Softmax Regression with K classes (assuming no regularization)

$$\hat{w} = \arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2 + \lambda ||\boldsymbol{w}||_1$$

$$\hat{w} = \arg\min_{\boldsymbol{w}} \sum_{n=1}^{N} \log(1 + \exp(-y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n) + \lambda ||\boldsymbol{w}||^2$$

 ℓ_2 regularized logistic regression assuming $y_n \in \{-1, 1\}$

$$\hat{\theta}_{MAP} = \arg\min_{\theta} - \left[\sum_{n=1}^{N} \log p(y_n | \theta) + \log p(\theta) \right]$$

A general MAP estimation problem

Optimization Problems in ML

- Wish to find the optima (minima) of an objective function, that can be seen as as a curve/surface
- For simple cases, the functions may look like this

• In many cases, the functions may even look like this

• Functions with unique minima: Convex; Functions with many local minima: Non-convex

Interlude: Convex Sets

• A set S of points is a convex set, if for any two points $x, y \in S$, and $0 < \alpha 1$

$$z = \alpha x + (1 - \alpha)y \in \mathcal{S}$$

 \dots i.e., all points on the line-segment between x and y lie within the set

Interlude: Convex Functions

- Note: The domain of a convex function needs to be a convex set (a required condition)
- Informally, a function f(x) is convex if all of its chords lie above the function everywhere

- Formally, (assuming the function is differentiable), some conditions to test for convexity:
 - First-order convexity (graph of f must be above all the tangents)

• Second-order convexity: Second derivative a.k.a. Hessian (if exists) must be positive semi-definite

$$\nabla^2 f(x) \succeq 0$$

Interlude: Convex Functions

- Some basic rules to check if f(x) is convex or not
 - All linear and affine functions (e.g., ax + b) are convex
 - $\exp(ax)$ is convex for $x \in \mathbb{R}$, for any $a \in \mathbb{R}$
 - log(x) is concave (not convex) for x > 0
 - x^a is convex for x > 0, for any a > 1 and a < 0, concave for 0 < a < 1
 - $|x|^a$ is convex for $x \in \mathbb{R}$, for any a > 1
 - All norms in \mathbb{R}^D are convex
 - Non-negative weighted sum of convex functions is also a convex function
 - Affine transformation preserves convexity: if f(x) is convex then f(x) = f(ax + b) is also convex
 - Some rules to check whether composition f(x) = h(g(x)) of two functions h and g is convex

```
f is convex if h is convex and nondecreasing, and q is convex,
f is convex if h is convex and nonincreasing, and g is concave,
f is concave if h is concave and nondecreasing, and g is concave,
f is concave if h is concave and nonincreasing, and q is convex.
```

Most of these also apply when x is a vector (and many other rules)

Disclaimer: It's OK to be non-convex :-)

Many interesting ML problems are in fact non-convex and there are ways to optimize non-convex objectives (non-convex optimization is a research area in itself)

Solving Optimization Problems

• The most basic approach: Use first-order optimality condition

 \bullet First order optimality: The gradient g must be equal to zero at (each of) the optima

$$\mathbf{g} = \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \nabla_{\mathbf{w}} \left[\sum_{n=1}^{N} \ell_n(\mathbf{w}) + R(\mathbf{w}) \right] = 0$$

- ullet Sometimes, setting $oldsymbol{g}=0$ and solving for $oldsymbol{w}$ gives a closed form solution (recall linear regression)
- .. and often it does NOT (recall logistic regression)
- ullet The gradient $oldsymbol{g}$ can still be helpful since we can use it in iterative optimization methods

Gradient Descent

- 1. Initialize \boldsymbol{w} as $\boldsymbol{w}^{(0)}$
- 2. Update \boldsymbol{w} as follows

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \boldsymbol{g}^{(t)}$$

3. Repeat until convergence

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

- A very simple, first-order method (uses only the gradient **g** of the objective)
- Basic idea: Start at some location $\mathbf{w}^{(0)}$ and move in the opposite direction of the gradient

• η_t is called the learning rate (can be constant or may vary at each step)

- ullet Note: The effective step size (how much $oldsymbol{w}$ moves) depends on $\underline{\mathrm{both}}$ η_t and current gradient $oldsymbol{g}^{(t)}$
- ullet A good initialization $oldsymbol{w}^{(0)}$ matters, otherwise might get trapped in a bad local optima
- If run long enough, guaranteed to converge to a local optima (=global optima for convex functions)
- When to stop: Many criteria, e.g., gradients become too small, or validation error starts increasing

- The learning rate η_t is important
- Very small learning rates may result in very slow convergence
- Very large learning rates may lead to oscillatory behavior or result in a bad local optima

- Many ways to set the learning rate, e.g.,
 - Constant (if properly set, can still show good convergence behavior)
 - Decreasing with t (e.g. 1/t, $1/\sqrt{t}$, etc.)
 - Use adaptive learning rates (e.g., using methods such as Adagrad, Adam)

Gradient Descent: Gradient Computations may be Expensive

- Gradient computation in GD may be very expensive
- Reason: Need to evaluate N terms. Assuming no regularization term, something like

$$oldsymbol{g} =
abla_{oldsymbol{w}} \left[\sum_{n=1}^{N} \ell_n(oldsymbol{w})
ight] = \sum_{n=1}^{N} oldsymbol{g}_n$$

.. will be very expensive when N is very large

• A solution: Use stochastic gradient descent (SGD). Pick a random $i \in \{1, ..., N\}$

$$oldsymbol{g} pprox oldsymbol{g}_i =
abla_{oldsymbol{w}} \ell_i(oldsymbol{w})$$

• SGD updates use this approximation of the actual gradient

Stochastic Gradient Descent

- 1. Initialize \boldsymbol{w} as $\boldsymbol{w}^{(0)}$
- 2. Pick a random $i \in \{1, ..., N\}$. Update \boldsymbol{w} as follows

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \boldsymbol{g}_i^{(t)}$$

3. Repeat until convergence

(Stochastic) Gradient Descent

- SGD uses a single example to compute the gradient
- Can show that $\mathbb{E}[\mathbf{g}_i] = \mathbf{g}$. Therefore \mathbf{g}_i is an unbiased estimate of \mathbf{g} (good)
- However, the approximate gradient will have large variance

- Many ways to control the variance in the gradient's approximation
- One simple way is to use a mini-batch containing more than one (say B) example

$$\mathbf{g} pprox rac{1}{B} \sum_{i=1}^{B} \mathbf{g}_{i}$$

This is known as mini-batch SGD

Gradient Descent: Some Simple Examples

• Ignoring the regularizer, consider the loss functions for linear and logistic regression

Linear Regression:
$$\mathcal{L}(\boldsymbol{w}) = \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$$

Logistic Regression: $\mathcal{L}(\boldsymbol{w}) = -\sum_{n=1}^{N} (y_n \boldsymbol{w}^{\top} \boldsymbol{x}_n - \log(1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x}_n)))$ (assuming $y_n \in \{0, 1\}$)

• Both objectives are convex functions (can get global minima). The (full) gradients for each will be

Linear Regression:
$$\mathbf{g} = -\sum_{n=1}^{N} 2(y_n - \mathbf{w}^{\top} \mathbf{x}_n) \mathbf{x}_n$$

Logistic Regression $\mathbf{g} = -\sum_{n=1}^{N} (y_n - \mu_n) \mathbf{x}_n$ (where $\mu_n = \sigma(\mathbf{w}^{\top} \mathbf{x}_n)$)

- ullet The GD updates in both cases will be of the form $m{w}^{(t+1)} = m{w}^{(t)} \eta_t m{g}^{(t)}$
- Note that highly mispredicted inputs x_n contribute more to g and thus to the weight updates!
- SGD is also straightforward (same as GD but with one or few inputs for each gradient computation)

GD and **SGD**: Some Comments

• Note that we could solve linear regression in closed form

$$oldsymbol{w} = (\sum_{n=1}^N oldsymbol{x}_n oldsymbol{x}_n^{ op})^{-1} \sum_{n=1}^N oldsymbol{y}_n oldsymbol{x}_n = (oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{X}})^{-1} oldsymbol{\mathsf{X}}^{ op} oldsymbol{y}$$

- .. this has $O(D^3 + ND^2)$ cost
- GD for linear regression avoided the matrix inversion
- In general, cost of batch GD with N examples having D features: O(ND)
- SGD cost will be O(D) or O(BD) with mini-batch of size B
- There exist theoretical results on convergence rates of GD/SGD (beyond the scope)
 - GD will take $O\left(\frac{1}{\epsilon^2}\right)$ iterations reach ϵ -close solution, which is defined as

$$\mathcal{L}(\mathbf{w}^{(t)}) \leq \mathcal{L}(\mathbf{w}^{(opt)}) + \epsilon$$
 (up to ϵ worse than optimal)

Gradient Descent: Updates are "Corrective"

• The GD updates for the linear and logistic regression case look like

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + 2\eta_t \sum_{n=1}^{N} (y_n - \mathbf{w}^{(t)^{\top}} \mathbf{x}_n) \mathbf{x}_n$$
 $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta_t \sum_{n=1}^{N} (y_n - \mu_n^{(t)}) \mathbf{x}_n$

- ullet These updates try to correct $oldsymbol{w}$ by moving it in the right direction
- ullet Consider the linear regression case and simplicity assume N=1. Can verify (exercise)
 - ullet If $oldsymbol{w}^{(t)} {}^ op {} x_n < y_n$, the update will make $oldsymbol{w}^{(t+1)} {}^ op {} x_n > oldsymbol{w}^{(t)} {}^ op {} x_n$. Thus $oldsymbol{w}$ moves more towards $oldsymbol{x}_n$
 - If $\mathbf{w}^{(t)^{\top}} \mathbf{x}_n > y_n$, the update will make $\mathbf{w}^{(t+1)^{\top}} \mathbf{x}_n < \mathbf{w}^{(t)^{\top}} \mathbf{x}_n$. Thus \mathbf{w} moves away from \mathbf{x}_n
- Try the same for the logistic regression case (reason about it in terms of probabilities)

Some Other Considerations

- What if the function is not differentiable (e.g., loss function with ℓ_1 norm reg. on weights, or absolute loss function, or many other loss functions for classification models, such as SVM)?
 - One option is to use subgradient instead of gradient (subgradient descent)
- ullet What if there are many variables, not just one (e.g., multi-output regression with $oldsymbol{W}=oldsymbol{\mathsf{BS}})$
 - One option is to use alternating optimization (optimize w.r.t. one, fixing all others, and cycle through)
- What if **w** has too many component: Can even optimize **w** co-ordinate wise (co-ordinate descent)
- What if we have an objective with constraints on variables, e.g.,

$$\hat{\boldsymbol{w}} = \arg\min_{||\boldsymbol{w}|| \le c} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \boldsymbol{x}_n)^2$$
 (constraint based regularization)

- Constrained optimization problem! One option is to use Lagrangian based optimization
- Can we use more than just gradient? Yes! (e.g., Newton's method uses the Hessian)
- Will look at these in the next class...

