

AOT2502L/AOB2502L

150V N-Channel MOSFET

General Description

Trench Power MV MOSFET technology

• Low R_{DS(ON)}

Low Gate Charge

Optimized for fast-switching applications

Product Summary

 V_{DS} 150V I_{D} (at V_{GS} =10V) 106A

 $R_{DS(ON)}$ (at V_{GS} =10V) < 11m Ω (10.7m Ω *)

Applications

Synchronous Rectification in DC/DC and AC/DC Converters

Industrial and Motor Drive applications

100% UIS Tested 100% Rg Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOT2502L	TO-220	Tube	1000
AOB2502L	TO-263	Tape & Reel	800

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V _{DS}	150	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _C =25°C	1	106		
Current	T _C =100°C	I _D	67	A	
Pulsed Drain Current ^C		I _{DM}	250		
Continuous Drain	T _A =25°C		18.5	A	
Current	T _A =70°C	IDSM	14.5		
Avalanche Current ^C		I _{AS}	40	A	
Avalanche energy L=0.3mH ^C		E _{AS}	240	mJ	
V _{DS} Spike	10µs	V_{SPIKE}	180	V	
	T _C =25°C	P _D	277	W	
Power Dissipation ^B	T _C =100°C	r _D	111	VV	
	T _A =25°C	D	8.3	W	
Power Dissipation A	T _A =70°C	P _{DSM}	5.3	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	В	12	15	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	50	60	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.35	0.45	°C/W	

^{*} Surface mount package TO-263

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, VGS=0V		150			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V				1	μA
			T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		3.5	4.3	5.1	V
	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =20A	10V, I _D =20A 9.2		9.2	11	mΩ
R		TO-220	T _J =125°C		17.8	21.5	11122
$R_{DS(ON)}$		V _{GS} =10V, I _D =20A			8.9	10.7	mΩ
		TO-263			0.9	10.7	
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			50		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Current					106	Α
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance				3010		pF
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =75V, f=1MHz			345		pF
C _{rss}	Reverse Transfer Capacitance				14		pF
R_g	Gate resistance	f=1MHz		1	2	3	Ω
SWITCH	ING PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =75V, I _D =20A			43	60	nC
Q_{gs}	Gate Source Charge				18		nC
Q_{gd}	Gate Drain Charge				10		nC
t _{D(on)}	Turn-On DelayTime				19		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =75V, R_L =3.75 Ω , R_{GEN} =3 Ω			24		ns
$t_{D(off)}$	Turn-Off DelayTime				30		ns
t _f	Turn-Off Fall Time				8.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			75		ns
Q_{rr}	Body Diode Reverse Recovery Charge	e I _F =20A, dI/dt=500A/μs			880		nC

A. The value of R_{BJA} is measured with the device mounted on $1 in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{tuA} t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150° C may be used if the PCB allows it.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED, AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.1.0: December 2014 www.aosmd.com Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C.

D. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

2

0

5

10

 $\rm I_D$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

20

15

25

30

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{GS}(Volts) Figure 2: Transfer Characteristics (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

Rev.1.0: December 2014 www.aosmd.com Page 3 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Rev.1.0: December 2014 www.aosmd.com Page 4 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.1.0: December 2014 www.aosmd.com Page 5 of 6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.1.0: December 2014 www.aosmd.com Page 6 of 6