CHƯƠNG 5 – CẢM ỨNG ĐIỆN TỪ

- 1. Hiện tượng cảm ứng điện từ
- 2. Hiện tượng tự cảm
- 3. Năng lượng từ trường

Thí nghiệm Faraday

Thí nghiệm Faraday

Michael Faraday (1791-1867)

Thí nghiệm Faraday

- Dòng cảm ứng xuất hiện trong mạch kín là kết quả của quá trình biến đổi từ thông qua mạch đó.
- Dòng cảm ứng chỉ tồn tại trong thời gian từ thông gửi qua mạch thay đổi.
- Cường độ dòng cảm ứng tỉ lệ thuận với tốc độ biến đổi của từ thông.
- Chiều dòng cảm ứng phụ thuộc vào từ thông gửi qua mạch tăng hay giảm.

Michael Faraday (1791-1867)

Định luật Lenz

- Nội dung: Dòng cảm ứng có chiều sao cho từ trường do nó sinh ra chống lại sự biến thiên của từ thông sinh ra nó.
- Ap dung:
- Khi cực Bắc (N) tiến vào vòng dây \Rightarrow từ thông Φ_m do từ trường B của nam châm gửi qua cuộn dây có chiều từ trên xuống và tăng dần \Rightarrow xuất hiện dòng cảm ứng $I_C \Rightarrow$ tạo ra B' cảm ứng ngược chiều B \Leftrightarrow từ thông Φ'_m của B' chống lại sự tăng của $\Phi_m \Rightarrow$ xác định chiều I_C .
- Nút thanh nam ra khỏi vòng dây ⇒ hiện tượng ngược lại.

Sức điện động cảm ứng

- Dịnh luật cơ bản của hiện tượng cảm ứng điện từ
- Vòng dây dẫn kín di chuyển trong B
- $\begin{align*}{ll} \begin{align*}{ll} \begin{alig$

- Theo đ/l Lenz: từ lực tác dụng lên I_c ngăn cản sự di chuyển của vòng dây (là nguyên nhân sinh ra I_c) \Rightarrow công cản:

$$dA' = -dA = -I_c \cdot d\Phi_m$$

Sức điện động cảm ứng

- Dịnh luật cơ bản của hiện tượng cảm ứng điện từ
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

$$dA' = -I_c$$
. $d\Phi_m = \mathcal{E}_c I_c . dt$ (NL của I_c) $\Rightarrow \mathcal{E}_C = -\frac{d\Phi_m}{dt}$

- Sức điện động cảm ứng trong một mạch kín bất kỳ bằng về trị số nhưng khác dấu với tốc độ thay đổi của từ thông qua mạch.
- Dịnh nghĩa đơn vị từ thông
- $\$ Nếu từ thông gửi qua diện tích mạch kín giảm từ giá trị Φ_m về 0:

$$\mathcal{E}_{C} = -\frac{d\Phi_{m}}{dt} = -\frac{0 - \Phi_{m}}{\Delta t} = \frac{\Phi_{m}}{\Delta t} \implies \Phi_{m} = \mathcal{E}_{C} \cdot \Delta t$$

- \forall Với $\Delta t = 1$ s, $\mathcal{E}_c = 1$ $V \Rightarrow \Phi_m = 1$ (V) . 1 (s) = 1 Webe (Wb)
- Webe là từ thông gây ra trong một vòng dây dẫn bao quanh nó một sức điện động cảm ứng bằng 1 V khi từ thông đó giảm đều xuống giá trị 0 trong thời gian 1 s

Máy phát điện xoay chiều

Khung dây (N vòng dây) diện tích S quay trong từ trường đều ($\vec{B} = const$) với vận tốc góc ω .

 $\$ Vị trí ban đầu của khung tương ứng góc α giữa pháp tuyến mặt phẳng khung \vec{n} và \vec{B}

 $\$ Sau khoảng thời gian $t \Rightarrow$ vị trí khung ứng với góc:

$$\varphi = \omega t + \alpha$$

Từ thông gửi qua khung sau khoảng thời gian t:

$$\Phi_m = N.B.S.\cos\varphi = N.B.S.\cos(\omega t + \alpha)$$

Máy phát điện xoay chiều

Khi khung quay đều trong
The state of the state từ trường ⇒ xuất hiện 1 s.đ.đ cảm ứng xoay chiều hình sin theo d/l Lenz:

$$\mathcal{E}_C = -\frac{d\Phi_m}{dt} = N.B.S.\omega.\sin(\omega t + \alpha)$$

$$\mathcal{E}_{C} = -\frac{m}{dt} = N.B.S.\omega.\sin(\omega t + \alpha)$$

$$\Leftrightarrow \text{ Dặt } \mathcal{E}_{cmax} = N.B.S.\omega \Rightarrow \mathcal{E}_{C} = \mathcal{E}_{cmax}.\sin(\omega t + \alpha)$$

$$\checkmark$$
 Chu kỳ = chu kỳ quay của khung: $T = \frac{2\pi}{\omega}$

Dòng cảm ứng
$$I_c=\frac{E_C}{R}=\frac{NBS\omega}{R}sin\,\omega t$$
 Dặt: $I_{c\,max}=\frac{NBS\omega}{R}=I_0$ $I_c=I_0.sin\,\omega t$

Vị trí khung dây trong từ trường B

Dòng xoáy (dòng Foucault/ eddy current)

Dòng cảm ứng (có dạng xoáy) xuất hiện trên bề mặt vật dẫn khi đặt trong từ trường:

$$I_F = \frac{\mathcal{E}_C}{R}$$

F Hệ quả:

 $\$ Xuất hiện từ trường riêng của dòng cảm ứng I_F

Dòng cảm ứng xuất hiện trên bề mặt vật dẫn sẽ bị tiêu tán dưới dạng nhiệt \Rightarrow tiêu hao năng lượng vô ích \Rightarrow giảm hiệu suất thiết bị (đặc biệt với các động cơ).

Léon Foucault (1819-1868)

Dòng xoáy (dòng Foucault/ eddy current)

To có từ trường của dòng cảm ứng xuất hiện trên bề mặt vật dẫn ⇒ ứng dụng trong các thiết bị dò tìm kim loại.

Cửa an ninh (security gate)

Thiết bị dò mìn (mine detector)

Hiện tượng

Mạch điện:

+ ống dây có lõi sắt + Điện kế (G)

Ngắt mạch \Rightarrow từ thông qua cuộn dây giảm từ $\Phi_m \rightarrow 0$: Xuất hiện dòng cảm ứng I_c ngược chiếu dòng ban đầu (đ/l Lenz) \Rightarrow kim của G lệch theo chiều ngược lại.

- $\$ Sau khoảng thời gian $t \Rightarrow \text{kim G trở về } 0$
- ♦ Đóng mạch ⇒ quá trình ngược lại.
- Dòng tự cảm: dòng điện sinh ra trong một mạch điện khi từ thông gửi qua mạch bởi dòng điện của mạch đó thay đổi.

S.đ.đ tự cảm

Theo đ/l Lenz: $\mathcal{E}_{tc} = -\frac{d\Phi_m}{dt}$

Do:
$$\Phi_m \sim B$$

$$B \sim I$$

$$\Phi_m \sim I = L.I$$

D/v mạch đứng yên và giữ nguyên hình dạng:

$$\mathcal{E}_{tc} = -\frac{d(LI)}{dt} = -L\frac{dI}{dt}$$
 (L: Hệ số tự cảm)

Trong mạch điện đứng yên và không thay đổi hình dạng, sức điện động tự cảm luôn bằng tốc độ biến thiên cường độ dòng điện trong mạch.

Hệ số tự cảm

Dịnh nghĩa đơn vị đo hệ số tự cảm (L)

$$Arr$$
 Don vi : Henry (H) , $1H = \frac{1Wb}{1A} = 1\frac{Wb}{A}$

H là hệ số tự cảm của 1 mạch kín, khi có dòng điện cường độ 1 A chạy qua mạch đó thì sinh ra trong chân không, từ thông bằng 1 Wb.

Trường hợp ống dây có lõi sắt:

$$L = \frac{\Phi}{I} = \frac{N.B.S}{I} = \frac{\mu \mu_0 n^2.S.I}{I.l} = \frac{\mu \mu_0 n^2.S}{l}$$

 \red Do μ lõi sắt lớn \Rightarrow đơn vị H lớn \Rightarrow thực tế chỉ dùng đơn vị $mH=10^{-3}~H$, hoặc $1\,\mu H=10^{-6}~H$

Hiệu ứng bề mặt

 \raiseta Tần số $f = 10^3$ Hz \Rightarrow dòng tự cảm chạy trong lớp vật liệu bề mặt

 $\sim 2 \text{ mm}$

 \raiset Tần số $f=10^5$ Hz \Rightarrow dòng tự cảm chỉ chạy trong lớp vật liệu bề mặt ~ 0.2 mm

" Úng dụng trong công nghệ:

bùng dây dẫn rỗng để tải dòng cao tần

☼ Kỹ thuật tôi bề mặt hợp kim bằng dòng cao tần

Năng lượng từ trường của một ống dây

Mạch điện có khóa K:

+ Sức điện động \mathcal{E} , dòng i_0 + Ông dây hệ số tự cảm L+ Điện trở R

Khi đóng mạch $\Rightarrow i \uparrow \Rightarrow B$ & Φ_m gửi qua $L \uparrow \Rightarrow i_{tc}$ ngược chiều $i_0 \Rightarrow i = i_0 - i_{tc} \Rightarrow NL$ nguồn $(\sim i_0^2) > NL$ mạch $(\sim i^2)$.

Khi ngắt mạch $\Rightarrow i \checkmark \Rightarrow B$ & Φ_m gửi qua $L \checkmark \Rightarrow i_{tc}$ cùng chiều $i_0 \Rightarrow i = i_0 + i_{tc} \Rightarrow NL$ nguồn $(\sim i_0^2) < NL$ mạch $(\sim i^2)$.

Năng lượng từ trường của một ống dây

Áp dụng đ/l Ohm trong quá trình hình thành dòng điện *i*:

$$\mathcal{E} + \mathcal{E}_{tc} = R.i$$
Hay:
$$\mathcal{E} = R.i + L \frac{di}{dt}$$

♦ Nhân 2 vế với *idt*:

$$\mathcal{E}idt = R.i^2dt + L.i.di$$

NL nguồn NL nhiệt NL từ trường

 $\$ NL từ trường khi thiết lập dòng điện trong ống dây: dW = L.i.di

$$\Rightarrow W = \int_{0}^{\infty} dW = \int_{i=0}^{i=I} L \cdot i \cdot di = \frac{1}{2} L \cdot I^{2}$$

Mật độ năng lượng từ trường

- Trong ống dây có thể tích: V = l.S
- Mật độ NL từ trường trong ống dây:

$$w_m = \frac{W}{V} = \frac{\frac{1}{2}L.I^2}{l.S} = \frac{\frac{1}{2}\left(\mu\mu_0 \frac{n^2S}{l}\right)I^2}{l.S}$$

$$= \frac{1}{2}\mu\mu_0 \frac{n^2}{l^2}I^2$$

$$W_m = \frac{1}{2}\frac{B^2}{\mu\mu_0} \text{ (trong \'ong dây: } B = const)$$

$$B = \mu\mu_0 \frac{n}{l}I$$

4 Áp dụng cho mọi từ trường bất kỳ

Năng lượng từ trường không gian

- Thia không gian từ trường thành những thế tích vô cùng nhỏ dV sao cho B = const trong mỗi dV.
- $\$ Năng lượng từ trường trong mỗi thể tích dV:

$$dW_m = w_m dV = \frac{1}{2} \frac{B^2}{\mu \mu_0} dV$$

Năng lượng từ trường trong cả không gian:

$$W_{m} = \int_{V} dW_{m} = \int_{V} \frac{1}{2} \frac{B^{2}}{\mu \mu_{0}} dV$$

$$H = \frac{B}{\mu \mu_{0}}$$

$$W_{m} = \frac{1}{2} \int_{V} BHdV$$