Advanced Quantum Mechanics Exercises Set 4

Due date: May 15th, 2023

Exercises 1 and 2: exercises from Le Bellac 8.5.2 and 8.5.6.

Exercise 3. So far we have considered Galilean boosts by a speed v (in one spatial dimension) at t=0 and obtained, by demanding that the expectation values of the position \hat{X} , speed $d\hat{X}/dt$ and momentum \hat{P} transform like their classical counterparts, that the unitary operator $\hat{U}(v)$ that implements such boosts in a Hilbert space is given by (employing the active point of view of the boost)

$$\hat{U}(v) = e^{imv\hat{X}/\hbar}$$

where m is the mass of the particle. Show that this generalizes for an arbitrary time t to

$$\hat{U}(v) = e^{imv\hat{X}/\hbar}e^{-itv\hat{P}/\hbar}e^{-imv^2t/2\hbar} = e^{-itv\hat{P}\hbar}e^{imv\hat{X}/\hbar}e^{imv^2t/2\hbar}$$

Show also that the last result generalizes in three dimensions to

$$\hat{U}(v) = e^{im\vec{v}\cdot\hat{\vec{X}}/h}e^{-it\vec{v}\cdot\hat{\vec{P}}/h}e^{-im\vec{v}^2t/2h} = e^{-it\vec{v}\cdot\hat{\vec{P}}/h}e^{im\vec{v}\cdot\hat{\vec{X}}/h}e^{im\vec{v}^2t/2h}$$

Exercise 4. The Galilean boosts, a.k.a. pure Galilean transformations, form a subgroup of a larger, 10-dimensional group named Galilei (or Galileo) group of spacetime transformations:

$$\vec{x} \rightarrow \vec{x}' = R\vec{x} + \vec{a} + \vec{v}t$$

 $t \rightarrow t' = t + s$

where in the addition to the displacement \vec{a} and boost velocity \vec{v} studied so far, one also has a spatial rotation R and time displacement s. Let $g = (R, \vec{a}, \vec{v}, s)$ denote such a transformation.

Show that the composition law for $g_3 = g_2g_1$, with $g_3 = (R_3, a_3, v_3, s_3)$ is:

$$R_3 = R_2 R_1$$

$$\vec{a}_3 = \vec{a}_2 + R_2 \vec{a}_1 + \vec{v}_2 s_1$$

$$\vec{v}_3 = \vec{v}_2 + R_2 \vec{v}_1$$

$$s_3 = s_2 + s_1$$

Exercises 5–7: exercises from Le Bellac 10.7.1, 10.7.2, and 10.7.4.