Introdução aos Sistemas Operacionais

Volnys Borges Bernal volnys@lsi.usp.br

Laboratório de Sistemas Integráveis http://www.lsi.usp.br/

Sumário

- Objetivos de um Sistema Operacional
- Componentes de um Sistema Operacional
- Máquina de Níveis
- □ Classificação dos sistemas operacionais
- Variedades de sistema operacional
- □ Chamadas ao sistema
- □ Exemplo de arquiteturas de sistema operacional
 - Arquitetura UNIX
 - Arquiteturas Windows
 - Arquitetura WindowsNT

Sobre esta apresentação

- □ Esta apresentação ...
 - Não apresenta todos os detalhes sobre este tópico.
 - É um resumo para auxiliar a apresentação do tópico em sala de aula.
- □ Para estudo, deve ser utilizada uma das seguintes referências:
 - Capítulos 1 e 2 do livro:
 - ANDREW S. TANENBAUM; Sistemas Operacionais Modernos. Prentice-Hall
 - Capítulos 1 e 2 do livro:
 - ANDREW S. TANENBAUM; Sistemas Operacionais. Prentice-Hall.

Objetivos de um Sistema Operacional

Objetivos de um Sistema Operacional

- □ Principais objetivos de um Sistema Operacional:
 - 1. Fornecer uma interface de alto nível
 - Para os usuários
 - Para as aplicações
 - 2. Gerenciar os recursos do sistema
 - Gerenciar o compartilhamento dos recursos
 - Gerenciamento de conflitos de acesso aos recursos compartilhados
 - Segurança no acesso aos recursos

Objetivos do Sistema Operacional

1) Fornecer uma interface de alto nível

- Fornece uma mesma interface independente do hardware subjacente.
- Interface da alto nível para os usuários:
 - Facilidade de uso do sistema
 - Comandos padronizados
 - Interface visual padronizada
 - Abstrações: arquivo, diretório, processo, ...
- Interface da alto nível para as aplicações
 - Interface de chamadas ao sistema padronizada
 - Facilidade de uso sem preocupação com detalhes de baixo nível.
 - Exemplo: Leitura de dados de um arquivo consiste de inúmeras atividades: acionar a cabeça da leitura, posicionar na trilha e setor, realizar a leitura dos blocos de disco para o buffer do sistema operacional, copiar os dados requisitados do buffer do sistema operacional para o buffer do usuário.
 - Sistema operacional é uma camada de adaptação situada entre as aplicações
 - Máquina Virtual
 - Interface entre:
 - Recursos do sistema
 - Usuário / programas

Objetivos do Sistema Operacional

2) Gerenciar os recursos do sistema

- Problema
 - Gerenciar o compartilhamento
 - Otimização de uso
 - Resolução de conflitos
 - Proteção / segurança
- Recursos
 - Processador (tempo de CPU)
 - Memória Primária
 - Memória Secundária (Disco)
 - Memória Terciária (Fita)
 - Impressoras
 - etc
- Objetivo
 - Maior taxa de utilização dos recursos
 - Diminuição de custos

Objetivos do Sistema Operacional

□ Interface entre processos/usuários e recursos do sistema

□ Estrutura geral de um sistema de computação

□ É composto por:

- Núcleo (kernel) do sistema operacional
 - Permanece carregado em memória
- Processos de gerência
- Arquivos de configuração
- Utilitários do sistema
 - Programas básicos necessários para operação do sistema
 - Ex: DOS: format, dir, edit, copy, type,
 - Ex: UNIX: mkfs, ls, ps, vi, ...

Máquina de Níveis

Máquina de níveis

	Aplicativos
	Processos de gerência
Software	Núcleo do
	sistemas operacional
	Micro núcleo do
	sistema operacional
	Monitor
	Linguagem de Máquina
Hardware	Microprogramação
	Dispositivos Físicos

Classificação dos sistemas operacionais

Classificação dos sistemas operacionais

- □ Classificação quanto à quantidade de aplicações simultâneas:
 - Monoprogramado
 - Suporta somente um processo (execução de uma aplicação) por vez
 - Exemplo:
 - · DOS
 - · CPM
 - Multiprogramado
 - Suporta a execução simultânea de várias aplicações (processos) por vez
 - Exemplos (sistemas operacionais modernos):
 - Unix, Windows 95, Windows NT, ...

Classificação dos sistemas operacionais

- Classificação quando ao suporte a ambiente multiprocessadores
 - Monoprocessador
 - Pode ser executado somente em hardwares monoprocessadores (1 único processador)
 - Multiprocessador
 - Pode ser executado em hardwares multiprocessadores (vários processadores)

Variedades de Sistemas Computacionais

Variedades de Sistemas Computacionais

- □ Atualmente existe uma grande variedade de sistemas computacionais, cada qual necessita de características específicas do sistema operacional.
- □ Exemplo de sistemas computacionais:
 - Computador de grande porte
 - Servidor
 - Computador para uso corporativo
 - Computador pessoal
 - Sistema de controle
 - Equipamento móvel de comunicação (celular, tablet, ...)
 - Sistemas embarcados
 - Cartão inteligente (smartcard)

□ Objetivo

 Possibilitar a garantia da segurança do ambiente computacional suportado pelo sistema operacional

□ Processadores suportam ao menos dois modos de operação:

- Modo usuário
 - Modo mais restritivo
- Modo supervisor
 - Modo irrestrito

□ Presença

Presente nos microprocessadores modernos

■ Modo usuário

- Todos os processos são executados em modo usuário
- Restrições:
 - Execução de determinadas instruções do processador:
 - Exemplo: restrição na execução da instrução halt, reset
 - Acesso a determinados registradores
 - Acessos à determinada posições de memória

□ Modo supervisor

- O núcleo do sistema operacional é executado em modo supervisor
- Não são impostas restrições na execução em modo supervisor

□ Configuração do modo de operação

- Geralmente é um bit (ou um conjunto de bits) do registrador de estado do processador
- O bit de configuração do modo de operação pode somente ser alterado em modo supervisor
- O processador passa para o modo supervisor automaticamente quando:
 - Uma rotina de tratamento de interrupção é ativada, incluindo a interrupção de software.

Portanto:

 O sistema operacional sempre é executado em modo supervisor!!!

- Observe que ...
- O sistema operacional é executado sempre decorrente de uma interrupção:
 - Interface de chamadas ao sistema
 - Quando é ativada uma chamada ao sistema (interrupção de software)
 - Interface de hardware
 - Quando ocorre uma exceção
 - Quando chega uma interrupção externa (de outros componentes)
- Sempre que ocorre a ativação da rotina de tratamento de interrupção o modo de operação passa para "modo supervisor".
 Quando termina a rotina de tratamento de interrupção, o processador volta ao modo anterior.

□ Desta forma

- O sistema operacional sempre executa no modo supervisor.
- Os processo usuários sempre executam em modo usuário. Se necessário que algum processo especial seja executado em modo supervisor, o sistema operacional pode configurar
- Um processos que opere em modo usuário não consegue passar a operar em modo supervisor

Chamadas ao Sistema

Chamadas ao Sistema

- □ Definição de "chamadas ao sistema"
 - Conjunto de funções que o núcleo do sistema operacional disponibiliza aos processos
 - Em inglês: "system calls"
- Cada sistema operacional possui uma interface de chamadas ao sistema específica

Chamadas ao Sistema

Exemplo de chamadas ao sistema: Sistema operacional UNIX

Manipulação de processos

Chamada	Descrição
fork	Duplica um processo
waitpid	Aguarda um processo terminar
execve	Troca a imagem de memória do processo
exit	Termina a execução do processo

Ações sobre arquivos

Chamada	Descrição
open	Abre um arquivo
close	Fecha um arquivo aberto
read	Lê dados de um arquivo
write	Escreve dados em um arquivo
ioctl	Funções de controle para arquivos especiais (dispositivos)
Iseek	Posiciona o ponteiro de deslocamento do arquivo
stat	Obtém informações de controle do arquivo (dono, proteção,)

Manipulação de arquivos e diretórios

Chamada	Descrição
mkdir	Cria um novo diretório
rmdir	Remove um diretório vazio
link	Cria um hard link
unlink	Remove uma entrada do diretório
mount	Monta um sistema de arquivos
umount	Desmonta um sistema de arquivos

Outras chamadas

Chamada	Descrição
chdir	Muda o diretório de trabalho
chmod	Altera o modo de permissão do arquivo
kill	Envia um sinal para um processo
time	Obtém o data/hora corrente

Exemplo de chamadas ao sistema: Sistema operacional Windows

Chamadas ao Sistema - Windows

□ Principais Chamadas Win32

Manipulação de processos

Chamada	Descrição
CreateProcess	Cria um processo
WaitForSingleObject	Aguarda um processo terminar
ExitProcess	Termina a execução do processo

Chamadas ao Sistema - Windows

□ Principais Chamadas Win32

Ações sobre arquivos

Chamada	Descrição
CreateFile	Cria um arquivo ou abre um arquivo existente
CloseHandle	Fecha um arquivo aberto
ReadFile	Lê dados de um arquivo
WriteFile	Escreve dados em um arquivo
SetFilePointer	Posiciona o ponteiro de deslocamento do arquivo
GetFileAttributeEx	Obtém informações de controle do arquivo

Chamadas ao Sistema - Windows

□ Principais Chamadas Win32

Manipulação de arquivos e diretórios

Chamada	Descrição
CreateDirectory	Cria um novo diretório
RemoveDirectory	Remove um diretório vazio
DeleteFile	Remove uma entrada do diretório

Chamadas ao Sistema - Windows

□ Principais Chamadas Win32

Outras chamadas

Chamada	Descrição
SetCurrentDirectory	Muda o diretório de trabalho
GetLocalTime	Obtém o data/hora corrente

Arquitetura UNIX

Arquitetura UNIX

- □ Execução em modo usuário/supervisor:
 - Modo supervisor: núcleo do sistema operacional
 - Modo usuário: processos
- □ Chamadas ao sistema:
 - São acionadas através de interrupções de software
- □ Sistema operacional é composto por:
 - Núcleo do sistema operacional
 - Processos de gerência do sistema operacional (daemons)
 - Utilitários do sistema
- Processos de gerência do sistema operacional são executados na forma de processos
- Utilitários do sistema são programas executáveis que, quando acionados são executados na forma de processo
- □ Interfaces para o usuário:
 - Comando de linha: através do utilizado chamado "shell"
 - Gráfica: sistema gráfico é composto por processos

Família Windows 3.x

- Voltado a processadores de 16 bits
- Suporte a multiprogração cooperativa
- Memória virtual primitiva

Windows 95

- Voltado a processadores de 32 bits
- Suporte a multiprogramação preemptiva
- Memória virtual

- Voltado a processadores de 32 bits e 64 bits
- Multiprogramado
 - Multiprogramação preemptiva
- Memória virtual
- Núcleo multi-threaded

□ Arquitetura Windows 95

- □ Interface de chamadas ao sistema
 - Chamada também de <u>Interface NT nativa</u>
 - Define o conjunto de serviços que o sistema operacional fornece aos processos: ~250 funções
 - Implementada através de interrupções de software
- □ Principais características
 - Multi-threaded
 - Reentrante
- Microkernel é responsável pelo escalonamento dos threads, implementação de sincronização e manipulação dos vetores de interrupção.
- □ Hardware Abstraction Layer (HAL) é uma camada utilizada para concentrar as dependências de hardware
- □ Subsistemas: são utilizados para "emular" outros ambientes operacionais. Ex: Win32, POSIX (Unix) e OS/2 (IBM)
- □ Local Procedure Call (LPC): permite à aplicação acionar a interface de funções de um subsistema.

□ Interação entre aplicação e kernel WindowsNT

□ Interação entre aplicações: LPC (Local Procedure Call)

Referências Bibliográficas

Referências Bibliográficas

- □ ANDREW S. TANENBAUM; Sistemas Operacionais Modernos. Prentice-Hall.
- □ ANDREW S. TANENBAUM; Sistemas Operacionais. Prentice-Hall.
- □ Windows 2000 Magazine Online
 - http://www.winntmag.com/Articles
- □ http://www.windowsitlibrary.com/Content/356/03/1.html