edge: Edi=2e => e= Ed/2.
isomorphic: 13 to: check the sequence of degrees.
bipartite: = 3 (Assume it is a bipartite.
Then first wood one node, then wood all modes which connect -
to the previous node with another color, weil all nodes are who
Enler path: a simple path that containing all every edge of a.
Enler circuit: a simple circuit that => check if there's node
circuit: a path that start & end at a same node no Enler circuit.
Connected: there is a path between every nodes => no node left
et is a path, not an edge! unconnected.
Adjancy List: A B
Adjcency list: A B B > C C A > D C C
$C A \rightarrow D B^{C}$
D C-> D
Simple graph: I edge between vertexes
multi graph: allow 2 or more edges between each pair of vertexes.
Strongly connected: a directed graph that is connected.
Weakly connected: the underlying undirected graph is connected
Strong component: maximal connected subgraphs in a directed graph.
Weak component: minimal => every vertexes.
a divides b <=> a b <=> b=ac
a is a factor/divisor of b/b is a multiple of a
$n = d \cdot g + r$

```
disidend disisor quotient remainder
Sieve of Eratosthenes: removes all multiples except itself till In
Mersenne prime : prime in form of 2 -1.
             Encidean algorithm: Finding god
- r_{k-1} = r_{k-1}q_{k+1} + r_{k+1} with r_{k+1} = 0
cute theorem: ab = gcd (a,b). (cm(a,b)
Bézont's Theorem: gcdla, b) = Sa+ tb (Bézont's identity)
                               Becont wefficients.
Béront coeffients can be computed by working backwards
    Enclid's Algorithm

    Gcd(135,145)

                    • 5 = 135 - 10.13
  • 145 = 135 \cdot 1 + 10
                    \cdot 5 = 135 - (145-135·1)·13

 5 = 14.135-13.145

  • 135 = 10.13 + 5
  • 10 = 5.2 + 0
  • Gcd(135,145) = 5
Linear conguerne: ax = b mod m.
Z is an inverse of a modulo m: x = = 1 mod m
an inverse of a modulo m exist iff ged (a, m) = 1
 g x = a mod m
                       => x= c mod mn
 if Bezont identity sm+th =1 is known, then
 c=cb-a)sm+a=ca-b)+n+b
RSA cryptosystem: large prime a, b.
  cryptosystem: p(N) = (a-1)(b-1) where N= ab
                                                        public
     K= Lun(a-1, b-1) < secret
     pick random int e such that eEU, k), gcole, k) =1
     eet die mod K (de % p=1) < secret
```

to encrypt message x: xe mod a.b. decrypt 7: yd mod a.b. n= pq. 1. p=(p-1)(q-1) 2. k = (cmcp, 9) 3.e. gudle, k)=1 • Choose p = 3 and q = 11 • Compute n = p * q = 3 * 11 = 33• Compute $\phi(n) = (p - 1) * (q - 1) = 2 * 10 = 20$ 4. d. de % p=1 • Choose e such that 1 < e < $\phi(n)$ and e and $\phi(n)$ are coprime. Let e = 7 • Compute a value for d such that (d * e) % φ (n) = 1. One solution is d = 3 [(3 * 7) % 20 = 1] • Public key is (e, n) => (7, 33) en: ze%n • Private key is (d, n) => (3, 33) • The encryption of m = 2 is $c = 2^7 \% 33 = 29$ de: yd %n. • The decryption of c = 29 is $m = 29^3 \% 33 = 2$

surjective: onto => : If every element in the codomain has an image bijective = both injective and surjective					
Il these proper	ties only appl	ies eo a Jun	tion!		