Geometria molecular

 As estruturas de Lewis fornecem a conectividade atômica: elas nos mostram o número e os tipos de ligações entre os átomos.

 A forma espacial de uma molécula é determinada por seus ângulos de ligação.

• Considere o CCl₄:

Experimentalmente, verificamos que todos os ângulos de ligação Cl-Cl são de 109,5°.

- Consequentemente, a molécula não pode ser plana.
- Todos os átomos de Cl estão localizados nos vértices de um tetraedro com o C no seu centro.

- Para prevermos a forma molecular, supomos que os elétrons de valência *do átomo central* se repelem e, conseqüentemente, a molécula assume qualquer geometria 3D que minimize essa repulsão.
- *Regiões eletrônicas* em torno do átomo central compreendem ligações (simples ou múltiplas) e pares de elétrons não ligados
- Denominamos este processo de teoria de Repulsão do Par de Elétrons no Nível de Valência (RPENV, ou VSEPR em inglês).

Existem cinco geometrias fundamentais para a forma molecular:

https://phet.colorado.edu/pt_BR/simulation/molecule-shapes

Para determinar o *arranjo eletrônico em torno do átomo central*:

- Desenhe a estrutura de Lewis,
- conte o número total de *regiões eletrônicas* (ou domínios de elétrons ou número estérico) ao redor do átomo central,
 - regiões eletrônicas = <u>ligações</u> (simples ou múltiplas) <u>e</u> pares de elétrons não <u>ligados</u>.
- ordene as regiões eletrônicas em um dos arranjos básicos para minimizar a repulsão $e^- \leftrightarrow e^-$.

Número de domínios de elétrons

Distribuição dos domínios de elétrons Arranjo

Ângulos de ligação previstos

2

Linear

Número de domínios Distribuição dos de elétrons Arranjo Ângulos de ligação previstos

Número de domínios de elétrons

Distribuição dos domínios de elétrons

Arranjo

Ângulos de ligação previstos

3

Trigonal plano

Número de domínios de elétrons

Distribuição dos domínios de elétrons Arranjo

Ângulos de ligação previstos

3

Trigonal plano

Número de domínios de elétrons

Distribuição dos domínios de elétrons

Arranjo

Ângulos de ligação previstos

4

Tetraédrico

109,5°

Número de domínios de elétrons

Distribuição dos domínios de elétrons Arranjo

Ângulos de ligação previstos

4

Tetraédrico

109,5°

Número de domínios de elétrons

Distribuição dos domínios de elétrons

Arranjo

Ângulos de ligação previstos

Bipiramidal 120° trigonal 90°

Número de domínios de elétrons

Distribuição dos domínios de elétrons

Arranjo

Ângulos de ligação previstos

Bipiramidal 120° trigonal 90°

Número de domínios de elétrons

Distribuição dos domínios de elétrons

Arranjo

Ângulos de ligação previstos

Octaédrico

90°

Número de domínios de elétrons

Distribuição dos domínios de elétrons Arranjo

Ângulos de ligação previstos

Octaédrico

90°

Para determinar o *arranjo eletrônico*:

- Desenhe a estrutura de Lewis
- conte o número total de *regiões eletrônicas* (ou domínios de elétrons ou número estérico) ao redor do átomo central,
- ordene as regiões eletrônicas em um dos cinco arranjos básicos para minimizar a repulsão $e^- \leftrightarrow e^-$:

Regiões eletrônicas:

Pares de elétrons ligados (ligações simples, duplas ou triplas) Pares de elétrons não ligados (pares solitários, pares isolados)

Angular

Formas espaciais moleculares: arranjo eletrônico e geometria molecular

- Definimos o *arranjo eletrônico (ou geometria dos elétrons)* pelas posições no espaço 3D de *TODAS* as regiões eletrônoicas (ligantes ou não-ligantes).
- Para se determinar a *geometria de uma molécula*, fazemos a distinção entre <u>pares de elétrons não-ligados</u> (aqueles que não formam ligação) e <u>pares ligados</u> (aqueles encontrados entre dois átomos).

- Ao considerarmos o arranjo eletrônico ao redor do átomo central, consideramos todos os elétrons (pares não-ligantes e pares ligantes).
- Quando damos nome à *geometria molecular*, focalizamos somente na posição dos átomos.

TABELA 9.2 Arranjos e formas espaciais para moléculas com dois, três e quatro domínios de elétrons ao redor do átomo central

Número de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
2	Linear	2	0	B A B Linear	<u>ö</u> =с= <u>ö</u>
3	Trigonal plano	3	0	B B B Trigonal plana	;F:
		2	1	B Angular	

TABELA 9.2 Arranjos e formas espaciais para moléculas com dois, três e quatro domínios de elétrons ao redor do átomo central

Número de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
4	Tetraédrico	4	0	B A B	H C H H
	retracarres	3	1	Tetraédrica B A B Piramidal	HHH
		2	2	trigonal B A A Angular	H H

Moléculas com níveis de valência expandidos

- Átomos que têm expansão de octeto
- Para as estruturas de *bipirâmides trigonais* existe um plano contendo três pares de elétrons. O quarto e o quinto pares de elétrons estão localizados acima e abaixo desse plano.

- As forças de repulsão são muito intensas em 90°
- As forças de repulsão são menores em 120°
- •As forças de repulsão são ainda menores em 180°

Pares de elétrons não-ligantes:

Para minimizar a repulsão e^--e^- em um arranjo bipirâmide trigonal, os pares não-ligantes são sempre colocados em posições equatoriais.

TABELA 9.3 Arranjos e formas espaciais para moléculas com cinco e seis domínios de elétrons ao redor do átomo central

Total de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
5	Bipiramidal	5	0	B B B B B B B B B B B B B B B B B B B	PCl ₅
	trigonal	4	1	B B B Gangorra	SF_4
		3	2	B B Em 'T'	CIF ₃
		2	3	B B Linear	XeF ₂

Moléculas com níveis de valência expandidos

• Para as estruturas *octaédricas*, existe um plano contendo quatro pares de elétrons. Da mesma forma, o quinto e o sexto pares de elétrons estão localizados acima e abaixo desse plano.

Moléculas com níveis de valência expandidos

- As seis posições do arranjo octaédrico são geometricamente equivalentes.
- O primeiro par de elétrons não-ligante entra em qualquer posição.

Arranjo

octaédrico

Geometria piramidal quadrada

• Para minimizar a repulsão $e^- \leftrightarrow e^-$ num arranjo *octaédrico com* dois pares de elétrons não-ligantes, eles devem ser colocados em posições opostas (180°).

TABELA 9.3 Arranjos e formas espaciais para moléculas com cinco e seis domínios de elétrons ao redor do átomo central

TABELA 9.3	Arranjos e formas espa	ciais para moiecuia	as com cinco e seis do	mínios de elétrons ao redor do	atomo central
Total de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
6	Octaédrico	6	0	B B B B Octaédrica	SF ₆
		5	1	B B B B Piramidal quadrada	${ m BrF}_5$
		4	2	B B B Quadrática plana	XeF ₄

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

• No nosso modelo experimental, o ângulo de ligação H-X-H diminui ao passarmos do C para o N e para o O:

- Como os elétrons em uma ligação são atraídos por dois núcleos, eles não se repelem tanto quanto os pares não ligantes.
- Consequentemente, os ângulos de ligação diminuem quando o número de pares de elétrons não-ligantes aumenta.

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

• Os elétrons nas ligações múltiplas se repelem mais do que os elétrons nas ligações simples.

Polaridade das ligações

Sem a ação do campo elétrico, as moléculas polares se dispõem ao acaso.

Sob a ação do campo elétrico, as moléculas polares se orientam, procurando voltar seu lado positivo na direção das cargas negativas do campo elétrico e vice-versa.

- É possível que uma molécula que contenha ligações polares não seja polar.
- Por exemplo, os dipolos de ligação no CO₂ cancelam-se porque o CO₂ é linear.

• Na água, a molécula não é linear e os dipolos de ligação não se cancelam. Consequentemente, a água é uma molécula polar.

Forma molecular e polaridade

A polaridade de uma molécula depende da sua geometria molecular.

Forma molecular e polaridade

A polaridade de uma molécula depende da sua geometria molecular, e não da presença de pares de elétrons não ligados.

Forma molecular e polaridade

A polaridade de uma molécula depende da sua geometria molecular.

