IoT-Based Smart Water Management System

Using ESP32, Blynk IoT Cloud, Ultrasonic Sensor & Mobile App

Introduction

□ Objective

- To design an IoT-based water level monitoring and control system that:
- Measures real-time water level in a tank using an ultrasonic sensor.
- Displays water level data on the Blynk IoT dashboard.
- Automatically controls a water pump based on tank level.
- Provides manual override and emergency stop via app.

□ Why This Project?

- Prevents water overflow and dry-run damage to pumps.
- Saves water & electricity by optimizing pump usage.
- Remote monitoring & control via smartphone.
- Affordable & scalable for homes, farms, and industries.

Components Used

Component	Quantity	Purpose		
ESP32 Microcontroller	1	IoT Brain (Wi-Fi & Control)		
HC-SR04 Ultrasonic Sensor	1	Measures water level		
Relay Module	1	Controls water pump		
Transistor (NPN 2N2222)	1	Switch to control relay/pump		
Resistor (1K)	1	Limits current flow into transistor		
Water Pump	1	Moves water in/out of tank		
LED	1	For testing		
Power Supply (5V)	1	Powers ESP32 & sensors		
Blynk Mobile App	1	Remote monitoring & control		
Breadboard & Jumper Wires	As needed	Circuit connections		

System Architecture

☐ Block Diagram

□ Working Principle

- 1. Ultrasonic sensor measures the distance to the water surface.
- 2. ESP32 calculates the water level percentage and sends it to Blynk Cloud.
- 3. Blynk App displays real-time water level and allows manual control.
- 4. Automated Pump Logic:
 - \circ Pump ON if level < 20% (prevent dry run).
 - Pump OFF if level > 80% (prevent overflow).
- 5. Manual override & emergency stop via Blynk app.

Working Procedure of System Model

Workflow of the HC-SR04 ultrasonic sensor

Circuit Diagram & Connections

Wiring Setup

ESP32 Pin	Connected To			
GPIO 23	Ultrasonic (TRIG)			
GPIO 22	Ultrasonic (ECHO)			
GPIO 21	Relay/Pump Control			
GND	Sensor & Relay GND			
5V	Sensor VCC			

Software Setup

1. Install Required Libraries

- Blynk Library (for IoT connectivity)
- WiFi.h (for ESP32 Wi-Fi)

2. Blynk App Configuration

- Create a New Project in Blynk App.
- Add Widgets:
 - \circ Gauge (V0) \rightarrow Water Level (%)
 - \circ Button (V1) \rightarrow Manual Pump Control
 - \circ Button (V2) \rightarrow Force Pump OFF
- Set Up Events & Notifications (e.g., "Tank Full! Pump Turned OFF").

Features & Advantages

- ☐ Key Features
 - ✓ Real-time water level monitoring
 - ✓ Automated pump control
 - ✓ Manual override & emergency stop
 - ✓ Mobile alerts & remote access
 - ✔ Low-cost & energy-efficient

☐ Advantages Over Traditional Systems

- No need for physical checks (remote monitoring).
- Prevents water wastage & pump damage.
- Scalable for large tanks & industrial use.

Results & Demo

Expected Output

- Blynk Dashboard:
 - Gauge showing 0-100% water level.
 - Buttons for manual pump control.
- Serial Monitor:
 - Displays water level & pump status.

Applications

Agriculture (irrigation)

Aquariums & hydroponics

Home water tanks

Industrial liquid storage

Related Works

System	Tech Used	Connectivity	Cost	Key Feature	Reference
Our System	ESP32 + HC-SR04 + Blynk	WiFi + Cloud	\$25	Real-time mobile control	-
SmartTank	Arduino + Ultrasonic + GSM	SMS Alerts	\$35	Low-power SMS notifications	<u>IEEE 2020</u>
AquaMonitor	RPi + Pressure Sensor	LoRaWAN	\$120	Industrial-grade precision	ScienceDirect 2021
WaterWatcher	NodeMCU + Ultrasonic	WiFi + Firebase	\$30	Cloud data logging	Springer 2022
HydroGuard	PIC MCU + Capacitive	Zigbee	\$90	High-accuracy (0.3cm error)	ResearchGate 2021

Future Enhancements

- Integrate multiple tanks in a single dashboard.
- Add water quality sensors (pH, turbidity).
- Solar-powered setup for remote areas.
- Voice control (Alexa/Google Assistant).

Voice assistant

Conclusion

This project successfully demonstrates an IoT-based smart water management system that:

- Automates water pump control for efficiency.
- Provides real-time monitoring via smartphone.
- Reduces manual intervention and prevents water wastage.

This system is cost-effective, scalable, and easy to deploy, making it ideal for smart homes, farms, and industries.

THANK YOU

For watching this project. Share your feedback.

Gmail: pijussahaofficial@gmail.com