On Bicycles Stolen on Different Premises in Toronto from 2017 to 2023*

Emily Su

16 January 2024

Toronto's population is increasing alongside the number of bicycle thefts across the city. We used data from Open Data Toronto to create a graph in order to discover any trends and difference between number of thefts before 2020 and 2020 onwards. Our analysis found that there was a steep decline in the number of bicycle thefts after 2020 with a majority of thefts occuring in the premise type, Outside, in most years except for 2019, 2020, and 2021. Factors like the pandemic could have influence the decline however, further investigation is needed on the demographic of people reporting.

Table of contents

1	Introduction	2
2	Process & Data	2
	2.1 Plan	2
	2.2 Simulate	
	2.3 Acquire	
	2.4 Explore	4
3	Results & Discussion	6
Re	erences	8

^{*}Data and code are available at: https://github.com/moonsdust/toronto-bicycles-stolen

1 Introduction

As Toronto's population increases, roads increasingly become packed with roads and bicycles have become one of the more favourable options for transportation, especially during the summer. However, this means that bicycle theft happens around Toronto and on different premises. With the pandemic starting in 2020, we are interested in seeing how the number of bicycle thefts has changed before 2020 versus 2020 onwards.

In this paper, we will look at the number of bicycles stolen from 2017 to 2023 on different types of premises (Commercial (ex: Gas stations, construction sites, etc.), Outside (ex: Parking lots, roads, etc.), House, Apartment, Transit (ex: subway station), Educational, and Other) in Toronto. We then discuss our results and any implications of it.

2 Process & Data

In this section, we will discuss the process and some of the code used to analyze and clean the data from Open Data Toronto on Bicycle Thefts and create a graph from it (Open Data Toronto 2023). See the footnote on the first page for the GitHub repository, which contains the data and all code pertaining to this paper.

2.1 Plan

The sketch showing how we expect the dataset and final graph to look can be found under inputs/sketches/sketch.png in the GitHub repository in the footnote of the first page.

2.2 Simulate

We will first add the preamble documentation and setup our workspace. We will use R (programming language) (R Core Team 2023), tidyverse (Wickham et al. 2019), janitor (Firke 2023), ggplot2 (Wickham 2016), and knitr (Xie 2014).

```
#### Preamble ####
# Purpose: To create a graph of the number of bicycles stolen
# in Toronto on different premises from 2017 to 2023 by reading
# in data from Open Data Toronto.
# Author: Emily Su
# Email: em.su@mail.utoronto.ca
# Date: 16 January 2024
# Prerequisites: Know where the data is for bicycle thefts in Toronto.
```

Now, we will create simulated data for the number of bicycle thefts on different Toronto premises from 2017 to 2023. These premises are the following: Commercial, Outside, House, Apartment, Transit, Educational, and Other.

Table 1: Sample of simulated data

premise	year	num_bikes_stolen
Commercial	2017	2
Commercial	2018	4
Commercial	2019	38
Commercial	2020	5
Commercial	2021	44
${\bf Commercial}$	2022	28

2.3 Acquire

In this step, we will first read in data from Open Data Toronto on Bicycle Thefts and then clean the dataset (Open Data Toronto 2023).

Next, we will clean the column names of the raw data's dataframe, filter for the year 2017 to 2023, and select the following columns: occ_year and premises_type. We will then rename the column occ_year to year and create a new column called num_bikes_stolen to contain the number of bikes stolen for each premises_type for each year.

Now, we will run tests on the clean data to see if it passes the following conditions:

- 1. "year" does not contain years before 2017 and after 2023
- 2. We have 7 types of "premises_type"
- 3. num_bikes_stolen is greater than or equal to 0.

```
# Tests
# 1. "year" does not contain years before 2017 and after 2023
cleaned_bike_data$year |> min() == 2017
```

[1] TRUE

```
cleaned_bike_data$year |> max() == 2023
```

[1] TRUE

```
# 2. We have 7 types of "premise"
cleaned_bike_data$premises_type |>
  unique() |>
  length() == 7
```

[1] TRUE

```
# 3. num_bikes_stolen is greater than or equal to 0.
cleaned_bike_data$num_bikes_stolen |> min() >= 0
```

[1] TRUE

2.4 Explore

We will now create a table and graph for the cleaned data.

Table 2: Table of cleaned data on Number of Bicycles Stolen in Toronto on Different Premises from 2017 to 2023

year	premises_type	num_	_bikes_	_stolen
2017	Outside			1262
2017	Commercial			544
2017	Educational			230
2017	Transit			80
2017	Apartment			815
2017	House			561
2017	Other			425
2018	House			551
2018	Apartment			984
2018	Other			428
2018	Transit			114
2018	Outside			1281
2018	Commercial			465
2018	Educational			169
2019	House			498
2019	Outside			1063
2019	Apartment			1135
2019	Commercial			385
2019	Transit			112
2019	Other			420

year	premises_type	num_	_bikes_	_stolen
2019	Educational			137
2020	Apartment			1322
2020	House			670
2020	Other			495
2020	Outside			959
2020	Commercial			342
2020	Educational			86
2020	Transit			45
2021	Educational			74
2021	Commercial			330
2021	Apartment			1019
2021	Outside			796
2021	House			447
2021	Other			454
2021	Transit			63
2022	House			255
2022	Outside			941
2022	Apartment			836
2022	Other			343
2022	Commercial			389
2022	Educational			147
2022	Transit			72
2023	Apartment			700
2023	Outside			775
2023	Commercial			425
2023	Other			477
2023	House			378
2023	Educational			111
2023	Transit			84

Figure 1: Number of Bicycles Stolen on Different Toronto Premises from 2017 to 2023

3 Results & Discussion

We obtained data from Open Data Toronto on Bicycle Thefts that started in 2013 (Open Data Toronto 2023). We then used the statistical programming language R (R Core Team 2023), tidyverse (Wickham et al. 2019), and janitor (Firke 2023) to clean, tidy, and analyze the dataset. We followed the process (Plan, Simulate, Acquire, and Explore) to obtain a graph on the number of bicycles stolen during each year in Toronto for each type of premise (graph?) using ggplot2 (Wickham 2016), and knitr (Xie 2014).

From our results, (graph?) shows that 2018 had the most number of bicycle thefts with the most occurring Outside such as a parking lot and road. In contrast, the least number of bicycle thefts occurred in 2023 with the most thefts occurring at the premise type, outside. The number of bicycle thefts declined after 2020 when compared to the years before 2020. We can also see that in 2020 and 2021, the most number of bicycle thefts occurred at an apartment. We can predict that this could have been due to factors like the lockdowns and people staying at home more. This can also been seen in 2019 as well. For all years except for 2019, 2020, and 2021, the most bicycle thefts occurred outside.

However, this data only contained bicycle thefts that were reported and the result we would have gotten if all bicycle thefts were reported could look completely different from our current results. Some might have not reported due to various reasons such as historical discrimination from the police, the police station being located too far, or not having access to a phone. Further investigation is needed on the demographics (such as income) of people reporting bicycle theft.

References

- Firke, Sam. 2023. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://github.com/sfirke/janitor.
- Open Data Toronto. 2023. Bicycle Thefts. Toronto: Open Data Toronto. https://open.toronto.ca/dataset/bicycle-thefts/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isb n/9781466561595.