Mathematical Economics 2, Problem Set 3

HENRY HAUSTEIN

Task 1

(a) matrix:

$$\begin{pmatrix} 2, 2 & 0, 2 & 0, 0 \\ 2, 0 & 0, 0 & 0, 3 \\ 0, 0 & 3, 0 & 4, 4 \end{pmatrix}$$

- (b) Population space is a triangle
- (c) pure $NE = \{e_1, e_3\}$, mixed NE:
 - NE of form (x, 1-x, 0): $u(e_1, x) = 2x = u(e_2, x), u(e_3, x) = 3(1-x) \Rightarrow x \ge \frac{3}{5}$
 - NE of form (x,0,1-x): $u(e_1,x)=2x=u(e_2,x), u(e_3,x)=4(1-x) \Rightarrow x=\frac{2}{3}$
 - NE of form (0, x, 1 x): e_3 does better than $e_2 \Rightarrow$ no reason to play e_2
 - NE of form $(x_1, x_2, 1 x_1 x_2)$: $u(e_1, x) = 2x_1 = u(e_2, x)$, $u(e_3, x) = 3x_2 + 4(1 x_1 x_2) \Rightarrow 6x_1 + x_2 = 4$
- (d) e_3 is a strict NE $\Rightarrow e_3$ is ESS and NSS

 $(\frac{2}{3}, 0, \frac{1}{3})$ is neither ESS nor NSS (e_3 can invade), same for all points ($x_1, x_2, 1 - x_1 - x_2$) on $6x_1 + x_2 = 4$ e_1 is NSS because you can't resist e_2 mutants but they can't invade, same for points (x, 1 - x, 0) on the line $x > \frac{3}{5}$

 $(\frac{3}{5}, \frac{2}{5}, 0)$ is neither ESS nor NSS because e_3 can invade

(e)
$$u(x,x) = (x_1 + x_2)(2x_1) + (1 - x_1 - x_2)(3x_2 + 4(1 - x_1 - x_2))$$

 $\dot{x}_1 = x_1[u(e_1, x) - u(x, x)] = x_1(1 - x_1 - x_2)(6x_1 + x_2 - 4)$

- (f) Sets
 - Stationary: all NE, points between e_1 and e_2
 - Lyapunov stable: NSS
 - Asymptotically stable: e_3
 - Limit states: e_3 , points (x, 1-x, 0) with $x \ge \frac{3}{5}$ but not e_1 , points $(x_1, x_2, 1-x_1-x_2)$ with $6x_1+x_2=4$