Analysis of a Complex Kind Week 4

Lecture 4: Möbius Transformations, Part 2

Petra Bonfert-Taylor

Review

Recall: $f(z) = \frac{az + b}{cz + d}$, with $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$ is called a Möbius transformation.

- f maps $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ to $\hat{\mathbb{C}}$.
- f is a conformal map from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$.
- If c = 0, d = 1: f(z) = az + b is a conformal map from \mathbb{C} to \mathbb{C} .
- Möbis transformations map circles and lines to circles or lines.
- For distinct z_1, z_2, z_3 , the Möbius transformation $f(z) = \frac{z z_1}{z z_3} \cdot \frac{z_2 z_3}{z_2 z_1}$ maps z_1, z_2, z_3 to $0, 1, \infty$, respectively.

Further Facts

 The composition of two Möbius transformations is a Möbius transformation, and so is the inverse.

• Given three distinct points z_1, z_2, z_3 and three distinct points w_1, w_2, w_3 , there exists a unique Möbius transformation $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ that maps z_j to $w_j, j = 1, 2, 3$.

Proof:

Let f_1 be the Möbius transformation that maps z_1, z_2, z_3 to $0, 1, \infty$. Let f_2 be the Möbius transformation that maps w_1, w_2, w_3 to $0, 1, \infty$.

Then $f_2^{-1} \circ f_1$ maps z_1, z_2, z_3 to w_1, w_2, w_3 , respectively.

Examples

Find the Möbius transformation f that maps 0 to -1, i to 0, and ∞ to 1.

$$f_1(z) = \frac{z-0}{"z-\infty"} \cdot \frac{"i-\infty"}{i-0} = \frac{z}{i}$$

maps $0, i, \infty$ to $0, 1, \infty$.

$$f_2(z) = \frac{z+1}{z-1} \cdot \frac{0-1}{0+1} = \frac{z+1}{-z+1}$$

maps -1,0,1 to $0,1,\infty$. To find f_2^{-1} , solve for z:

$$w = \frac{z+1}{-z+1} \iff w(-z+1) = z+1$$

$$\iff -wz + w = z+1$$

$$\iff w-1 = z(1+w)$$

$$\iff z = \frac{w-1}{w+1}$$

Möbius transformation f that maps 0 to -1, i to 0, and ∞ to 1

● So far: $f_1(z) = \frac{z}{i}$ maps $0, i, \infty$ to $0, 1, \infty$, and $f_2^{-1}(w) = \frac{w-1}{w+1}$ maps $0, 1, \infty$ to -1, 0, 1.

Thus $f = f_2^{-1} \circ f_1$ is the desired map:

$$(f_2^{-1} \circ f_1)(z) = \frac{f_1(z) - 1}{f_1(z) + 1} = \frac{\frac{z}{i} - 1}{\frac{z}{i} + 1} = \frac{z - i}{z + i}.$$

Let's look at another approach:

Möbius transformation f that maps 0 to -1, i to 0, and ∞ to 1

- 2 f is of the form $f(z) = \frac{az + b}{cz + d}$.
 - Since f(i) = 0, we have $a \neq 0$, we can thus assume that a = 1.

 - Thus $f(z)=\frac{z+b}{cz+d}$. Since f(i)=0, we have that b=-i. Thus $f(z)=\frac{z-i}{cz+d}$. Since $f(\infty)=1$, we have c=1, and since f(0)=-1, we
 - have d = i. Thus $f(z) = \frac{z i}{z + i}$.

Compositions of Möbius transformations

Fact

Every Möbius transformation is the composition of maps of the type

$$z \mapsto az$$
 (rotation&dilation)
 $z \mapsto z + b$ (translation)
 $z \mapsto \frac{1}{z}$ (inversion)

Proof: Let *f* be a Möbius transformation.

① Suppose first that $f(\infty) = \infty$. Then f(z) = az + b. This corresponds to the following composition:

$$z \stackrel{\text{rot. \& dil.}}{\longmapsto} az \stackrel{\text{translation}}{\longmapsto} az + b.$$

Compositions of Möbius transformations

② Suppose next that $f(\infty) \neq \infty$. Then

$$f(z) = \frac{az+b}{cz+d} \text{ with } c \neq 0$$
$$= \frac{\frac{a}{c}z+\frac{b}{c}}{z+\frac{d}{c}},$$

and we can thus assume that c = 1. So

$$f(z) = \frac{az+b}{z+d} = \frac{a(z+d)+b-ad}{z+d} = a + \frac{b-ad}{z+d}.$$

This corresponds to the following composition:

$$z \stackrel{\text{trans.}}{\longmapsto} z + d \stackrel{\text{inv.}}{\longmapsto} \frac{1}{z+d} \stackrel{\text{dil. \& rot.}}{\longmapsto} \frac{b-ad}{z+d} \stackrel{\text{trans.}}{\longmapsto} a + \frac{b-ad}{z+d}.$$

Images of Circles and Lines

We mentioned earlier the fact, that Möbius transformations map circles & lines to circles & lines. How would you prove this?

By the previous composition result it suffices to prove this fact for the three standard types (translation, rotation & dilation, inversion).

Clearly, dilations, rotations and translations preserve circles and lines as circles and lines, and so all that is left to show is that $f(z) = \frac{1}{z}$ maps circles & lines to circles & lines.

We saw the main ideas on how to do so during the last lecture.

Next up: The Riemann mapping theorem!