Organizační úvod

TODO!!!

Úvod

TODO!!!

Definice 0.1

Zúplnění míry λ_B^n nazveme Lebesgueovou mírou v $\mathbb{R}^n.$

Poznámka 1. Lebesgueova míra je σ -konečná.

- 2. Množinu $\mathcal{B}_0(\mathbb{R}^n) := \sigma(\mathcal{B}(\mathbb{R}^n) \cup \mathcal{N})$ nazýváme σ -algebrou lebesgueovsky měřitelných množin. Platí $\mathcal{B}(\mathbb{R}^n) \subsetneq \mathcal{B}_0(\mathbb{R}^n) \subsetneq \mathcal{P}(\mathbb{R}^n)$.
- 3. Lebesgueova míra je regulární v následujícím smyslu:

 $\forall E \in \mathcal{B}_0(\mathbb{R}^n) \ \forall \varepsilon > 0 \ \exists \text{otevřená množina} \ G \ \exists \text{uzavřená množina} \ F : F \subset E \subset G \land \mu(G \backslash F) < \varepsilon.$

Definice 0.2 (Značení)

Nechť X,Y jsou množiny a $f:X\to Y$. Je-li $\mathcal{S}\subset\mathcal{P}(Y)$, pak $f^{-1}(\mathcal{S}):=\{f^{-1}(S)|S\in\mathcal{S}\}.$

Věta 0.1 (O zobrazení $f: X \to Y$)

Nechť X, Y jsou množiny a $f: X \to Y$.

- 1. Je-li \mathcal{M} σ -algebra na Y, pak $f^{-1}(\mathcal{M})$ je σ -algebra na X.
- 2. Je-li $S \subset \mathcal{P}(Y)$, pak $f^{-1}(\sigma(S)) = \sigma(f^{-1}(S))$.

Důkaz Později.

1 Měřitelná zobrazení

Definice 1.1 (Měřitelné zobrazení)

Necht (X, \mathcal{A}) , (Y, \mathcal{M}) jsou měřitelné prostory. Zobrazení $f: X \to Y$ nazveme měřitelným (vzhledem k \mathcal{A} a \mathcal{M}), jestliže $f^{-1}(\mathcal{M}) \subset \mathcal{A}$.

Jestliže některý z prostorů X, Y je metrický prostor, pak za příslušnou σ -algebru bereme σ -algebru borelovských podmnožin (pokud není řečeno jinak).

Měřitelné zobrazení mezi dvěma metrickými prostory se nazývá borelovsky měřitelné (krátce borelovské).

Poznámka 1. Snadno se ověří, e kompozice dvou měřitelných zobrazení je měřitelné zobrazení.

2. Z věty O zobrazení… plyne, že jsou-li $(X, \mathcal{A}), (Y, \mathcal{M})$ měřitelné prostory, pak zobrazení $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(\mathcal{S}) \subset \mathcal{A}$, kde $\mathcal{S} \subset \mathcal{P}(Y)$ je generátor σ -algebry \mathcal{M} . Speciálně je-li (X, \mathcal{A}) a Y metrický prostor, pak zobrazení $f: X \to Y$ je měřitelné $\Leftrightarrow f^{-1}(G) \in \mathcal{A} \ \forall$ otevřenou množinu $G \subset Y$.

Důsledek

Každé spojité zobrazení mezi dvěma metrickými prostory je měřitelné (borelovské).

 $D\mathring{u}kaz$

Z věty O zobrazení... (vzory otevřených množin při spojitém zobrazení jsou otevřené množiny). $\hfill\Box$

Věta 1.1 (Generátory $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$)

Borelovská σ -algebra \mathcal{B}^n je generována

- 1. otevřenými intervaly $(a_1, b_1) \times \ldots \times (a_n, b_n)$, $kde -\infty < a_i < b_i < +\infty$,
- 2. systémem $S := \{(-\infty, a_1) \times \ldots \times (-\infty, a_n)\}, kde \ a_i \in \mathbb{R}.$

Věta 1.2 (O měřitelných zobrazeních)

Nechť (X, A) je měřitelný prostor.

- 1. Jsou-li $f:X\to\mathbb{R}^n$ a $g:X\to\mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $(f,g):X\to\mathbb{R}^{n+m}$ je měřitelné.
- 2. Jsou-li $f, g: X \to \mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $f \pm g$ jsou měřitelná zobrazení.
- 3. Jsou-li $f, g: X \to \mathbb{R}$ měřitelné funkce, pak také $f \cdot g, \max(f, g), \min(f, g)$ jsou měřitelné.

Poznámka

Prostor \mathbb{R}^* je metrický prostor s metrikou např. ϱ^* danou předpisem $\varrho^*(x,y) = |\varphi(x) - \varphi(y)|$, kde $\varphi(x) := \frac{x}{1+|x|}$ pro konečné x a $\varphi(\pm \infty) = \pm 1$ (tzv. redukovaná metrika).

Redukovaná metrika má následující vlastnosti (viz Jarník – Diferenciální počet 2, str. 245, 246):

- 1. V množině \mathbb{R} je ekvivalentní s eukleidovskou metrikou.
- 2. Konvergence v prostoru $(\mathbb{R}^*, \varrho^*)$ splývá s konvergencí zavedenou v \mathbb{R}^* pomocí okolí bodů.

Platí
$$\mathcal{B}^* := \mathcal{B}(\mathbb{R}^*) = \sigma(\{\langle -\infty, a \rangle | a \in \mathbb{R}\})$$
. Plyne z:

- 1. \forall otevřenou množinu $G \subset \mathbb{R}^*$ lze psát jako spočetné sjednocení intervalů typu $\langle -\infty, a \rangle, (a, b), (b, \infty \rangle.$
- 2. $\langle -\infty, a \rangle$ je stejný jako v \mathbb{R}^* .
- 3. $(a, +\infty)$ je $\mathbb{R}^* \setminus \langle -\infty, a \rangle$.
- 4. $(a, +\infty) = \bigcup_{n \in \mathbb{N}} \langle a + \frac{1}{n}, +\infty \rangle$.
- 5. $(a,b) = \langle -\infty, b \rangle \cap (a, +\infty \rangle$.

Věta 1.3 (O měřitelných funkcích)

Bud'(X, A) měřitelný prostor. Pak platí

- 1. $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná funkce právě tehdy, když $f^{-1}((-\infty,a))\in\mathcal{A}, \forall a\in\mathbb{R}.$
- 2. $f:(X,\mathcal{A})\to\mathbb{R}^*$ je měřitelná funkce právě tehdy, když $f^{-1}(\langle -\infty,a\rangle)\in\mathcal{A}, \forall a\in\mathbb{R}.$

Důsledek

Necht $f, g: (X, \mathcal{A}) \to \mathbb{R}^*$ jsou měřitelné funkce. Pak

- 1. množiny $\{x \in X | f(x) < g(x)\}, \{f \leq g\}, \{f = g\}$ jsou měřitelné.
- 2. funkce $\max(f, g), \min(f, g)$ jsou měřitelné funkce.

Věta 1.4 (O měřitelných funkcích podruhé)

Jsou-li funkce $(f_n)_{n=1}^{\infty}$ množiny (X, \mathcal{A}) do \mathbb{R}^* měřitelné funkce, pak funkce $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\lim \sup_{n \in \mathbb{N}} f_n$ jsou měřitelné.

Definice 1.2 (Jednoduchá funkce)

Funkce $S: X \to [0, +\infty)$ se nazývá jednoduchá, jestliže množina S(X) je konečná.

Platí, že $s(x) = \sum_{\alpha \in S(X)} \alpha \cdot \chi_{S=\alpha}$. Součet na pravé straně této rovnosti nazveme kanonickým vyjádřením jednoduché funkce.

2 Abstraktní Lebesgueův integrál

Věta 2.1 (O nezáporné měřitelné funkci)

Nechť $f:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ je měřitelná funkce. Pak existuje posloupnost jednoduchých (nezáporných) měřitelných funkcí $\{s_n\}_{n\in\mathbb{N}}$ tak, že $s_n\nearrow f$ (konverguje nahoru).

Jestliže navíc f je omezená, pak $s_n \rightrightarrows f$.

Definice 2.1

Necht (X, \mathcal{A}, μ) je prostor s mírou.

1. Je-li $s:(X,\mathcal{A})\to [0,+\infty)$ jednoduchá měřitelná funkce, zapíšeme ji v kanonickém tvaru $s=\sum_{j=1}^k\alpha_j\chi_{E_j}$ a definujeme

$$\int_X s d\mu = \int_X s(x) d\mu(x) := \sum_{j=1}^k \alpha_j \mu(E_j).$$

2. Je-li $f:(X,\mathcal{A})\to [0,+\infty]$ měřitelná funkce, pak definujeme

$$\int_X f d\mu = \sup \left\{ \int_X s d\mu | 0 \le s \le f \wedge s \text{ je jednoduchá} \right\}.$$

3. Je-li $f:(X,\mathcal{A})\to\mathbb{R}^*$, pak definujeme

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu, \text{ má li pravá strana smysl.}$$

Poznámka

Je-li (X, \mathcal{A}, μ) prostor s mírou a f, g jsou nezáporné měřitelné funkce na X splňující $0 \le f < g$ na X, pak $0 \le \int_X f d\mu \le \int_X g d\mu$.

Je-li (X, \mathcal{A}, μ) prostor s mírou a $E \in \mathcal{A}$, pak $\mathcal{A}_E := \{A \cap E, A \in \mathcal{A}\}$ je σ-algebra na E a (E, \mathcal{A}_E, μ) je prostor s mírou $(\Longrightarrow \int_E f d\mu$ je definován).

Je-li f měřitelná funkce na X a $E \in \mathcal{A}$, pak $\int_X (f\chi_E) d\mu = \int_E f d\mu$.

Věta 2.2 (Leviho)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X splňující $f_n \nearrow f$, pak $\int_X f_n d\mu \nearrow \int_X f d\mu$.

Důkaz

Později.

Věta 2.3 (Fatouovo lemma)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce, pak

$$\int_{X} (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu.$$

Důkaz

Později.

Definice 2.2 (Skoro všude)

Buď (X, \mathcal{A}, μ) prostor s mírou, $E \in \mathcal{A}$, $x \in X$. Nechť V(x) je nějaká vlastnost, kterou bod x může, ale nemusí mít. Řekneme, že V(x) platí μ -skoro všude na E, jestliže

$$\exists N \in \mathcal{A}, N \subset E, \mu(N) = 0 : V(x)$$
 platí $\forall x \in E \setminus N$.

Je-li E=X, pak místo μ -skoro všude na E, píšeme pouze μ -skoro všude. Nehrozí li nedorozumění, o jakou míru se jedná, pak místo μ -skoro všude píšeme skoro všude.

Lemma 2.4

Buď (X, \mathcal{A}, μ) prostor s mírou a f, g měřitelné funkce na X takové, že f = g skoro všude, pak $\int_X f d\mu = \int_X g d\mu$, jakmile má jedna strana rovnosti smysl.

Definice 2.3 (Měřitelná funkce (skoro všude))

Buď (X, \mathcal{A}, μ) prostor s mírou, $D \in \mathcal{A}$, $\mu(D^c) = 0$ a $f : D \to \mathbb{R}^*$. Řekneme, že f je měřitelná, jestliže \forall otevřenou množinu $G \subset \mathbb{R}$ platí $f^{-1}(G) \cap D \in \mathcal{A}$.

Pro měřitelnou funkci f pak definujeme $\int_X f d\mu := \int_X \tilde{f} d\mu$, kde $\tilde{f} = \begin{cases} f \text{ na } D, \\ 0 \text{ na } D^c. \end{cases}$

Definice 2.4 (Prostory \mathcal{L})

Označíme $\mathcal{L}^*(\mu) := \{ f : X \to \mathbb{R}^* | f \text{ je měřitelná na } X \land \exists \int_X f d\mu \}.$

Dále $\mathcal{L}^1(\mu) := \{ f \in \mathcal{L}^*(\mu) | \int_X |f| d\mu \in \mathbb{R} \}.$

Věta 2.5 (Linearita integrálů)

Bud (X, \mathcal{A}, μ) prostor s mírou, $f, g \in \mathcal{L}^*(\mu)$ a $\lambda \in \mathbb{R}$. Pak

$$\int_X (\lambda f) d\mu = \lambda \int_X f d\mu,$$

 $\int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu, \ pokud \ m\'a \ prav\'a \ strana \ smysl.$

Důkaz

Později.

Poznámka

Má-li pravá strana druhého bodu smysl, pak nemůže nastat případ, kdy by jedna funkcí f,g je rovna $+\infty$ a druhá $-\infty$ na množině kladné míry. Odtud plyne, že součet f+g je definován skoro všude.

Důsledek

Buď (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, nezáporné měřitelné funkce. Pak

$$\int_X \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_X f_n d\mu.$$

 $D\mathring{u}kaz$

Z minulé věty pro libovolné $k \in \mathbb{N}$ platí $\int_X \left(\sum_{n=1}^k f_n\right) d\mu = \sum_{n=1}^k \int_X f_n d\mu$. Použitím limitního přechodu pro $k \to \infty$ a Leviho věty dostaneme příslušnou rovnost.

Věta 2.6 (Zobecněná Leviho)

Buď (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, měřitelné funkce na X splňující $f_n \nearrow f$ a $\int_X f_1 > -\infty$. Pak

$$\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu.$$

 $D\mathring{u}kaz$

 $g_n = f_n - f_1 \ge 0$. Z Leviho věty pak snadno plyne tato.

Dusledek

Buď (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, měřitelné funkce splňující $f_n \searrow f$ a $\int_X f_1 < +\infty$. Pak též můžeme prohodit limitu a integrál.

Věta 2.7 (Lebesgue)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, jsou měřitelné funkce takové, že $\lim_{n\to\infty} f_n = f$ na X, a existuje $g \in \mathcal{L}^1(\mu) : |f_n| \leq g$ skoro všude $\forall n \in \mathbb{N}$. Pak

$$\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu.$$

Důkaz Později.

Dusledek

Nechť (X, \mathcal{A}, μ) je prostor s mírou a $f_n, n \in \mathbb{N}$, jsou měřitelné funkce na X takové, že $\sum_{n=1}^{\infty} f_n$ konverguje skoro všude. Jestliže existuje $g \in \mathcal{L}^1(\mu)$ tak, že $|\sum_{n=1}^k f_n| \leq g$ skoro všude $\forall k \in \mathbb{N}$, pak $\sum_{n=1}^{\infty} f_n \in \mathcal{L}^1(\mu)$ a platí:

$$\sum_{n=1}^{\infty} \int_{X} f_n d\mu = \int_{X} \left(\sum_{n=1}^{\infty} f_n \right) d\mu.$$

 $D\mathring{u}kaz$

Aplikace předchozí věty na posloupnost částečných součtů řady $\sum_{n=1}^{\infty} f_n$.

Věta 2.8 (Další vlastnosti měřitelných funkcí a integrálu)

 $Bud(X, A, \mu)$ prostor s mírou.

- Je-li f nezáporná měřitelná funkce na X a $\int_X f d\mu = 0$, pak f = 0 skoro všude.
- Je-li $f \in \mathcal{L}^1(\mu)$ a $\int_E f d\mu = 0 \ \forall E \in \mathcal{A}$, pak f = 0 skoro všude.
- Je-li f měřitelná, pak $\int_X f d\mu \in \mathbb{R} \Leftrightarrow \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak $|\int_X f d\mu| \le \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak f je konečná skoro všude.

 $D\mathring{u}kaz$

Později.

2.1 Lebesqueův integrál v $\mathbb R$

Poznámka (Značení)

Restrikci míry λ^1 na interval $I \subset \mathbb{R}$ opět značíme λ^1 .

Je-li $I = (a, b) \subset \mathbb{R}, a < b, pak$

$$\int_{a}^{b} f d\lambda^{1} := \int_{(a,b)} f d\lambda^{1}.$$

Věta 2.9 (Vztah Riemannova a Lebesgueova integrálu)

 $\int_a^b f d\lambda^1 = (R) \int_a^b f.$

Věta 2.10 (Vztah Newtonova a Lebesgueova integrálu)

 $Necht\ -\infty \leq a < b \leq +\infty \ a \ f :< a,b> \to \mathbb{R}$ je spojitá a nezáporná. Pak následující tvrzení jsou ekvivalentní:

- $(N) \int_a^b existuje$.
- $\int_a^b d\lambda^1 \in \mathbb{R}$.

Zároveň pokud je jedna (tj. obě) z těchto podmínek splněna, potom

$$\int_{a}^{b} f d\lambda^{1} = (N) \int_{a}^{b} f.$$

8

TODO!!!

Definice 2.5

Systém $\mathcal{D} \subset \mathcal{P}(X)$ nazveme d-systém (nebo Dynkinův systém) na X,jestliže

- $\emptyset \in \mathcal{D}$,
- $D \in \mathcal{D} \implies D^c \in \mathcal{D}$,
- $D_n \in \mathcal{D} \ \forall n \in \mathbb{N}, D_n \cap D_m \ \forall n \neq m \implies \bigcup_n D_n \in \mathcal{D}.$

Poznámka

Každá σ -algebra je d-systém.

D-systém je uzavřený na konečné sjednocení disjunktních množin (jelikož $\emptyset \in \mathcal{D}$).

Je-li $A, B \in \mathcal{D}, A \subset B$, pak $B \setminus A \in \mathcal{D}$, neboť $B \setminus A = X \setminus ((X \setminus B) \cup A)$.

Jsou-li μ a ν dvě míry na (X, \mathcal{A}) , pak $\mathcal{D} := \{A \in \mathcal{A} | \mu(A) = \nu(A)\}$ je d-systém.

Věta 2.11 (O průniku d-systémů)

Nechť \mathcal{D}_{α} , $\alpha \in I$, jsou d-systémy na X (I je libovolná množina indexů). Pak $\bigcap_{\alpha \in I}$ je d-systém.

 $D\mathring{u}kaz$

Přenechán čtenáři.

Důsledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$, pak existuje nejmenší d-systém $d\mathcal{S}$ obsahující systém \mathcal{S} .

Poznámka

Je-li $\mathcal{S} \subset \mathcal{P}(X)$, pak $d\mathcal{S} \subset \sigma \mathcal{S}$.

Definice 2.6

Systém $\mathcal{S} \subset \mathcal{P}(X)$ nazveme π -systém, jestliže systém \mathcal{S} je uzavřen na konečné průniky množin z \mathcal{S} .

Věta 2.12 (O rovnosti $dS = \sigma S$)

Je-li $S \subset \mathcal{P}(X)$ zároveň π -systémem, pak $d\mathcal{S} = \sigma \mathcal{S}$.

 $D\mathring{u}kaz$

Využijeme následující 2 tvrzení. $d\mathcal{S}$ je d-systém, tedy z druhého tvrzení $d\mathcal{S}$ je π -systém. Z prvního tvrzení pak $d\mathcal{S}$ je σ algebra, tedy $\sigma\mathcal{S} \subset d\mathcal{S}$. Opačná implikace plyne z poznámky výše, $d\mathcal{S} \subset \sigma\mathcal{S}$, tedy $d\mathcal{S} = \sigma\mathcal{S}$.

Tvrzení 2.13

Je-li d-systém \mathcal{D} na X zároveň π -systémem, pak \mathcal{D} je σ -algebra na X.

 $D\mathring{u}kaz$

Ověříme body σ -algebry.

Tvrzení 2.14

Je-li $\mathcal{S} \subset \mathcal{P}(X)$ π -systém, pak d \mathcal{S} je π -systém.

 Γ Důkaz

Ověříme, že $\mathcal{D}: \{D \in d\mathcal{S} | D \cap S \in d\mathcal{S} \forall S \in \mathcal{S}\}$ je d-systém. Zřejmě $\mathcal{D} = d\mathcal{D}$. Nyní buď $D \in d\mathcal{S}$ pevné a definujeme $\mathcal{D}_D := \{E \in \mathcal{P}(X) | E \cap D \in d\mathcal{S}\}$. O tom dokážeme, že je to d-systém. Následně dokážeme $\mathbb{S} \subset \mathcal{D}_D$, tedy $D = \mathcal{D}_D$. Vítězství!

TODO?