

CS & IT

ENGINEERING

Operating Systems

Introduction & Background

Lecture No. 3

By- Dr. Khaleel Khan sir

Architectural Support for M.Pr

Dual Mode Operation of CPU

Mode Shifting

Program VS Process

Multiprogramming A Schematic view of Multiprogramming

-> 0.5 is a Service Bovider & user appl's may need 0 s services (K·m); .. Mode shifting from um 3m Limitions & Km -> U·m f(int K) main() Libraryfor Sim (K); Pre-defined (compiler) int a,b,c; defined print (K); 1. ひこしン 2. b= 2; User mode (4m) 3. c=a+b; 4. f(c); System-Call

In Kernel mode, the executing code has complete and unrestricted access to the underlying hardware. It can execute any CPU instruction and reference any memory address. Kernel mode is generally reserved for the lowest-level, most trusted functions of the operating system. Crashes in kernel mode are catastrophic; they will halt the entire PC.

User Mode

In User mode, the executing code has no ability to directly access hardware or reference memory. Code running in user mode must delegate to system APIs to access hardware or memory. Due to the protection afforded by this sort of isolation, crashes in user mode are always recoverable. Most of the code running on your computer will execute in user mode.

Modebit = 0Modebit = 1**Execute System call**

(Mode bit = 0)

A Processor needs Software Interrupt to

- A Test the Interrupt System of the Processor.
- B Implement Co-Routines.
- Obtain system services which need execution of privileged instructions.
- D Return from subroutine.

A CPU has two Modes-Privileged and Non-Privileged. In order to

change the mode from Non- Privileged to Privileged.

A Hardware Interrupt is needed.

A Software Interrupt is needed.

A Privileged Instruction (which does not generate an interrupt) is needed.

A Non - Privileged Instruction (which does not generate an interrupt) is needed.

System Calls are usually invoked by using:

- A Software Interrupt
 - B Polling
- C An Indirect jump
- D A Privileged Instruction.

A computer handles several interrupt sources of which the following are relevant for this question:

- Interrupt from CPU temperature sensor (raises interrupt if CPU temperature is too high)
- Interrupt from Mouse (raises interrupt if the mouse is moved or a button is pressed)
- Interrupt from Keyboard (raises interrupt if a key is pressed or released)
- Interrupt from Hard Disk (raises interrupt when a disk read is completed)
 Which one of these will be handled at the HIGHEST priority?
- A Interrupt from Hard Disk
- B Interrupt from Mouse
- C Interrupt from Keyboard

4000 200 main() ZB ptr = (int+) malloc (Size of (int)); ZB Heab

