## Week 7 - Lecture 33

We lenau:

$$\overline{\mathbb{R}}_{n} = \underbrace{\mathbb{E}}_{i=1}^{K} \mathbb{E}\left[T_{i}(n)\right] \triangle_{i} = \underbrace{\mathbb{E}}_{(i:\Delta_{i}>0)} \mathbb{E}\left[T_{i}(n)\right] \triangle_{i}$$

Theorem: UCB pull each sub-optimal arm K
in expectation at most  $\Delta_i = \max_j M_i - M_i$ 

$$\mathbb{E}\left[T_{K}(n)\right] \leq \frac{6\log n}{\Delta_{K}^{2}} + \pi^{2}/_{3} + 1 \quad \text{times}.$$

And Psuedo-regret is bounded as:

$$\overline{R}_{n} \leq 6 \leq 6 \log K + \leq (\pi^{2}/3 + 1) \cdot \Delta_{i}$$

$$= \frac{1}{1 \cdot \Delta_{i} > 0} \Delta_{K} + \frac{1}{1 \cdot \Delta_{i} > 0}$$

$$= \frac{1}{1}$$

Assuming arm 1 as optimal then  $\triangle_1 = 0$ ,  $\triangle_2 > 0$ ,  $\triangle_3 > 0 - - ...$ 

$$\frac{\text{Defn}:}{\sum_{i>1}} = \min_{i>1} \Delta_i$$



 $\triangle$  is smallest between  $\triangle_2$ ,  $\triangle_3$   $A \triangle_4$ : the gap between highest mean and next highest mean

 $\therefore \triangle \angle \triangle_i \forall i > 1$ 

Plugging in defn of a in ea eq 1

$$\overline{R}_{n} \leq 6\left(K-1\right) \frac{\log n}{\Delta} + \frac{1}{2} \left(\frac{\pi^{2}}{3} + 1\right) \Delta_{i}$$

$$= O\left(\frac{\log n}{\Delta}\right) \longrightarrow Sub-linear in n$$

- -> If  $\triangle$  is smaller then identifying the best arm is more challenging than if  $\triangle$  is larger.

  If the sub-oftimal Ms are closer to the optimal Men figuring and the one optimal arm becomes harder.
- —) The  $\bar{R}_n$  bound given in the theorem captures this as  $\bar{R}_n = O\left(K \frac{\log n}{\Delta}\right)$ : as  $\Delta$  becomes

$$\widehat{\mathcal{M}}_{i}(t) = \frac{1}{T_{i}(t-1)} \underbrace{\leq}_{S=1}^{T_{i}(t-1)} X_{si}$$

$$\underbrace{\int_{i}^{T_{i}(t-1)} X_{si}}_{S=1} X_{si}$$
dirst  $T_{i}(t-1)$ 
observed namples

-> S does not run like t, it is to be taken forly for the rounds where i was played

$$UCB_{i}(t-1) = \hat{\mu}_{i}(t-1) + \sqrt{2 \frac{\log t}{T_{i}(t-1)}}$$
Index of arm i

-> Suppose in round t sub-oftimal arm i is played, this could have happened because for that round t, index of arm i is greater than the index of all other arms and in particular is greater than the index of arm 1 (assumed to be optimal)

At round t, 
$$I_t = i$$
 (i is sub-optimal)

i]:  $\hat{\mathcal{M}}_i(t-1) + \sqrt{\frac{2 \log t}{T_i(t-1)}} \geq \hat{\mathcal{M}}_j(t-1) + \sqrt{\frac{2 \log t}{T_j(t-1)}}$ 
 $\forall j$ 

$$\hat{\mathcal{U}}_{i}(t-1) + \sqrt{\frac{2 \log t}{T_{i}(t-1)}} > \hat{\mathcal{U}}_{i}(t-1) + \sqrt{\frac{2 \log t}{T_{i}(t-1)}}$$

-) Thus the index of i-th arm was overestimated and index of optimal arm was underestimated, because i-th arm was not played enough no. of times

That the estimates were no happened that the estimates were not estimated properly and 
$$\mu$$
, lies above and  $\hat{\mu}$ , lies below the respective confidence bounds.