PRESENTAZIONE DATA TECHNOLOGY & MACHINE LEARNING

Anno accademico 2018/2019

Virgilio Luca 794866

Ventura Samuele 793060

DATA TECHNOLOGY

Obiettivo del progetto

- ► Predire il tempo di attesa agli sportelli, durante la fase di accettazione, presso l'ospedale Galeazzi di Milano.
- Integrare informazioni contenute in diversi dataset per poter aumentare le informazioni di base da sfruttare nella fase di predizione.
- ▶ Utilizzare solo le informazioni disponibili a priori nel momento in cui un paziente si presenta al totem per prenotare il suo turno.

Dataset

TuPassi

contiene le informazioni registrate dal sistema Tu Passi nel momento in cui un paziente si registra al totem prima di recarsi agli sportelli dell'accettazione

Precipitazioni

contiene informazioni riguardo le precipitazioni registrate dal sensore posizionato «il più vicino all'ospedale»

Festivo

per ogni giorno dell'anno 2018 indica la vicinanza ad una data festiva

Data Quality metriche

Dimensione	Tipo	Metrica
Completezza	Completezza per attributo	Numero valori non nulli(per colonna)/ Numero totale di valori
Completezza	Completezza a livello di tabella	Numero valori non nulli/ Numero totale di valori
Consistenza	Vincoli interni alla tabella	Numero valori consistenti / Numero totale di valori
Unicità	Unicità delle tuple	Numero tuple duplicate

Data cleaning

Modifiche effettuate:

- Sostituzione di alcuni valori malformati
- Cancellazione delle tuple nel caso in cui il valore della colonna Presente_alle_ore sia vuoto
- Cancellazione delle tuple nel caso in cui il valore della colonna Ultima_operazione_alle sia vuoto
- Modifica di valori nel caso di errori di data entry

Data Quality

Tu Passi

Metrica	Prima di DQ	Dopo DQ
Completezza della tabella	0.97	0.99
Correttezza dei dati	1	1
Unicità delle tuple	0	0

Per quanto riguarda gli altri due dataset non è stata necessaria una fase di data cleaning.

Data integration

► I tre dataset rappresentano domini differenti quindi sono stati integrati con la tecnica del consolidamento, unendo le colonne Festivo e MediaP rispettivamente sulla base del giorno e della fascia oraria nel dataset TuPassi.

Data exploration 1

Data exploration 2

MACHINE LEARNING

Calcolo parametri

- Calcolo della variabile target Attesa.
- ▶ Data la bassa correlazione delle features con la variabile target Attesa è stato necessario calcolare vari parametri, utilizzando solo le informazioni disponibili nel momento in cui un paziente si presenta al totem.
- I parametri principali calcolati sono:
 - Mediana e media per le ultime 3 o 5 persone
 - Persone_in_sala, in istanti differenti di tempo
 - Sportelli_attivi
 - Ordinamento delle persone per giorno e per giorno/servizio
 - Numero di persone servite negli ultimi 10 minuti

Feature selection

Scelta del modello

- In entrambi i modelli si sono divisi i dati in due subset (70% e 30%) per il training e la predizione del modello.
- Inizialmente si è scelto si sfruttare un albero di decisione per la sua semplicità, successivamente una random forest per aumentare le performance.
- La variabile target Attesa è stata discretizzata, per potere effettuare una classificazione, secondo le seguenti fasce:

VALORE ATTESA IN MINUTI	CLASSE
attesa >= 10	1
11 <= attesa <=20	2
21 <= attesa <=30	3
attesa > 30	4

Analisi esplorativa Training Set

PERSONE IN SALA

Decision tree

Dopo aver provato varie configurazioni si è scelta quella con maggiore interpretabilità e con delle performance discrete.

Random forest - classification

Random forest - regression

Random Forest regression

10-fold cross validation

Performance per 10-cross validation for DT3

> mean_accuracy

[1] 0.6174974

> mean_precision

[1] 0.8415008

> mean_recalls

[1] 0.6917161

> mean_fmeasure

[1] 0.7543822

Performance per 10-cross validation for Random Forest


```
> mean(accuracies_res)
```

[1] 0.865029

> mean(precisions_res)

[1] 0.8424242

> mean(recalls_res)

[1] 0.8424242

> mean(fmeasures_res)

[1] 0.8424242

>

Performance

ROC for Random Forest (trainset: 70%, testset: 30%)

Conclusioni

- ▶ Il lavoro di miglioramento della qualità dei dati è stato molto utile per eliminare valori che avrebbero dato problemi nella fase di predizione
- La stima dei parametri è stata fondamentale per ottenere delle buone features da sfruttare dei modelli di machine learning

GRAZIE PER L'ATTEZIONE