CHE 312 Midterm1 Review

By James

Key ideas in pure species phase equilibrium

Generally,

$$\Delta G = g^a - g^b$$
 Steam tables

For equilibrium

$$\Delta G = 0 \rightarrow g^a = g^b$$

$$\begin{cases} g^s = g^l & S - L \ equilibrium \\ g^s = g^v & S - V \ equilibrium \\ g^l = g^v & L - V \ equilibrium \end{cases}$$

Equilibrium occurs to balance out energetic states.

$$g_i^{final} - g_i^{initial} = \begin{cases} > 0 & initial \ state \ is \ more \ enegetic \ favorable \\ = 0 & equilibrium \\ < 0 & final \ state \ is \ more \ enegetic \ favorable \end{cases}$$

$$g = h - Ts$$

A lower gibbs energy means the phase change will occur spontaneously, and is more stable

 $\Delta G^{a \rightarrow b}$ is negative, the final phase "b" is more stable

Pure Species Phase Equilibria Equations

Clausius Equation

$$rac{dP}{dT} = rac{\Delta h_{ ext{fus}}^T}{\left(v^s - v^l
ight)T}$$

$$rac{dP}{dT} = rac{\Delta h_{ ext{fus}}^T}{\left(v^s - v^l
ight)T} \qquad rac{ ext{d}P}{ ext{d}T} = rac{h_i^lpha - h_i^eta}{\left(v_i^lpha - v_i^eta
ight)\cdot T}$$

Valid anywhere on the coexistence lines (S-L, L-V, S-V)

*assumes enthalpy not a function of temperature (constant)

If we assume from the Clausius equation:

- 1) L-V equilibrium
- ΔH_{vap} constant
- $V^{\vee} >> V^{|}$
- Ideal gas (low pressure) $v^v = RT/P$

$$rac{dP_{i}^{sat}}{P_{i}^{sat}} = rac{\Delta h_{vap,i} dT}{RT^{2}}$$

Clausius-Clapeyron Equation

$$\ln\left(\frac{P_2^{sat}}{P_1^{sat}}\right) = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2[K]} - \frac{1}{T_1[K]}\right)$$

Valid for LVE

To use this, need reference temperature and pressure on the coexistence line (usually triple point)

Antoine Equation

$$\ln P_i^{sat} = A_i - \frac{B_i}{C_i + T}$$

$$\Delta h_{\text{sub}} = \Delta h_{\text{fus}} + \Delta h_{\text{vap}}$$

Hypothetical Paths

Temperature change: $\Delta H = nCp\Delta T$

Phase change: $\Delta H = n\Delta h_{fus}$

Mixing: $\Delta H = n\Delta h_{mix}$

Useful to find final temperature

 $\Delta H = n\Delta h_{vap}$

 $\Delta H = -n\Delta h_{unmix}$

Temperature change: $\left(\frac{\partial g}{\partial T}\right)_{n} = -s \rightarrow \Delta G = -sdT$

Phase change: $\Delta G = 0$

Mixing: $\Delta G = n\Delta g_{mix}$

Useful to find phase stability

Temperature and Phase Changes

This can be useful for the Clausius Equation

If we are looking at phase changes (hence coexistence line)

Example:

What pressure is needed to isothermally compress ice initially at -5C and 1 bar so that it **changes phase?**

$$rac{dP}{dT} = rac{\Delta h_{
m fus}^T}{\left(v^s - v^l
ight)T}$$

Simple Mixing

 $\mathsf{T_1}$

 $\Delta H_1 = n_{tot} \Delta h_{mix}$ Mix 2 components Temperature change

 $\Delta h_2 = n_1 Cp_1 \Delta T + n_2 Cp_2 \Delta T$ Or $= n_{tot} Cp_{avq} \Delta T$

Substance 1 + Substance 2

 T_2

Substance 2

Assume adiabatic mixing: $\Delta H = 0$

$$\Delta H = \Delta H_{mix} + \Delta H_2 = 0$$

Problem 6.10.4:

Mixing Mixtures

Mixing a 1.0 mole stream of water with a 0.5/0.5 equimolar stream of ethanol/water.

Find final temperature

$$\Delta H = \Delta h_{unmix} + \Delta h_{remix} + \Delta h_3 = 0$$

Complex mixing problems

- Involves temperature changes
- Involves phase changes
- Involves unmixing and remixing
- See studio 3 margarita problem

Mixing Properties

Table 6.4.2: Types of thermodynamic properties.

	Extensive	Intensive - molar	Intensive - specific
Pure species property i at the T and P of the mixture	$K_i:V_i,G_i,U_i,H_i,S_i,\dots$	$k_i:v_i,g_i,u_i,h_i,s_i,\dots$	$\hat{k}_i:\hat{v}_i,\hat{g}_i,\hat{u}_i,\hat{h}_i,\hat{s}_i$
Total solution property	$K:V,G,U,H,S,\ldots$	$k: v, g, u, h, s, \dots$	$\hat{k}:\hat{v},\hat{g},\hat{u},\hat{h},\hat{s}$
Property change of mixing	$\Delta K_{mix}: \Delta V_{mix}, \Delta G_{mix}, \ \Delta H_{mix}, \Delta S_{mix}, \dots$	$egin{aligned} \Delta k_{mix}: \Delta v_{mix}, \Delta g_{mix}, \ \Delta h_{mix}, \Delta s_{mix}, \ldots \end{aligned}$	$egin{aligned} \Delta \hat{k}_{mix} : \Delta \hat{v}_{mix}, \Delta \hat{g}_{mix}, \ \Delta \hat{h}_{mix}, \Delta \hat{s}_{mix}, \ldots \end{aligned}$
Partial molar property of species i	_	$\overline{K}_i:\overline{V}_i,\overline{G}_i,\overline{U}_i,\overline{H}_i,\overline{S}_i,\dots$	_

K represents any property, (V, G, U, H, I, S etc) and depends on T, P and n_i

How do I go from extensive to intensive property?

Mixing Properties

Table 6.4.2: Types of thermodynamic properties.

	Extensive	Intensive - molar	Intensive - specific
Pure species property i at the T and P of the mixture	$K_i:V_i,G_i,U_i,H_i,S_i,\ldots$	$k_i: v_i, g_i, u_i, h_i, s_i, \dots$	$\hat{k}_i:\hat{v}_i,\hat{g}_i,\hat{u}_i,\hat{h}_i,\hat{s}_i$
Total solution property	$K:V,G,U,H,S,\dots$	$k: v, g, u, h, s, \dots$	$\hat{k}:\hat{v},\hat{g},\hat{u},\hat{h},\hat{s}$
Property change of mixing	$\Delta K_{mix}: \Delta V_{mix}, \Delta G_{mix}, \ \Delta H_{mix}, \Delta S_{mix}, \ldots$	$egin{aligned} \Delta k_{mix}: \Delta v_{mix}, \Delta g_{mix}, \ \Delta h_{mix}, \Delta s_{mix}, \ldots \end{aligned}$	$egin{array}{l} \Delta \hat{k}_{mix}: \Delta \hat{v}_{mix}, \Delta \hat{g}_{mix}, \ \Delta \hat{h}_{mix}, \Delta \hat{s}_{mix}, \ldots \end{array}$
Partial molar property of species i	_	$\overline{K}_i:\overline{V}_i,\overline{G}_i,\overline{U}_i,\overline{H}_i,\overline{S}_i,\dots$	_

K represents any property, (V, G, U, H, I, S etc) and depends on T, P and n_i

How do I find partial molar property?

$$\overline{K}_i = \left(\frac{\partial K}{\partial n_i}\right)_{T,P,n_{j \neq i}}$$

 $\overline{K}_i = \left(rac{\partial K}{\partial n_i}
ight)_{T,P,n_{j
eq i}}$ Derivative of extensive property, K, with respect to $\mathbf{n_i}$ under constant T, P and moles that are not n

The partial molar property is the contribution for molecular interactions of n_i towards a mixture

Mixing Properties Relations

K represents any property(H,V,G,S...) thus their relationships are similar:

$$\begin{cases} K(H,V,G,S,\dots) & Extensive \ proberties \\ k(h,v,g,s,\dots) & Molar \ properties \\ \bar{K}_i = \frac{dK}{dn_i} & Partial \ molar \ property \end{cases}$$

Partial Molar Property:

$$\overline{K}_i = \left(rac{\partial K}{\partial n_i}
ight)_{T,P,n_{i
eq i}}$$

$$\overline{S} = \left(\frac{\partial S}{\partial n_i}\right)_{T,P,n_i},$$

$$\overline{H} = \left(\frac{\partial H}{\partial n_i}\right)_{T,P,n_i}$$

Property change of mixing (extensive):

$$\Delta K_{
m mix} = K - \sum n_i k_i$$

$$\Delta V_{
m mix} = V - \sum n_i v_i$$

$$\Delta H_{
m mix} = H - \sum n_i h_i$$

$$\overline{\Delta K}_{\mathrm{mix},i} = \overline{K}_i - k_i$$

Property change of mixing (intensive):

$$\Delta k_{
m mix} = k - \sum x_i k_i$$

$$\Delta v_{
m mix} = v - \sum x_i v_i$$

$$\Delta h_{
m mix} = h - \sum x_i h_i$$

Notation

Mixing water(1)+ ethanol(2)

= Volume that 1 mol of species i taken up by mixture. It is the contribution of $\overline{V}_i = \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_{j\neq i}}$ \overline{V}_i = Volume that 1 mol of species *i* taken that mol towards that total volume

$$\overline{V}_i = \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_{j\neq i}}$$

 $V = Total \ volume \ of \ mixture = vn_{tot}$

$$V=\sum n_i\,\overline{V}_{\,i}$$

 $v = molar \ volume \ of \ mixture = V/n_{total}$

$$v = \sum x_i \overline{V}_i$$

 V_1 = Volume of pure species 1

 $v_1 = Molar$ Volume of pure species $1 = V_1/n_1$

 \hat{v}_1 = inverse density of species 1

 V_2 = Volume of pure species 2 =

 $v_2 = Molar$ Volume of pure species $1 = V_2/n_2$

 \hat{v}_2 = inverse density of species 2

 ΔV_{mix} = Change in volume after mixing

 $\Delta v_{
m mix}$ = Change in molar volume of mixture = $\Delta V_{
m mix}/{
m n}_{
m total}$ or $\Delta v_{
m mix}=v-\sum x_i v_i$

	Extensive	Intensive - molar	Intensive - specific
SI units	m^3	$\frac{\mathrm{m}^3}{\mathrm{mol}}$	$\frac{\mathrm{m}^3}{\mathrm{kg}}$
Volume of pure species i at the T and P of the mixture	V_{i}	v_{i}	\hat{v}_i
Volume of the mixture itself	V	v	û
Volume change of mixing	ΔV_{mix}	Δv_{mix}	$\Delta \hat{v}_{mix}$
Partial molar volume of species $m{i}$	_	\overline{V}_i	_

A negative ΔV_{mix} reflects that the interactions between species 1/2 are stranger than 1/1 or 2/2 alone, thus they pull the species closer together.

$$\Delta v_{
m mix} = v - \sum x_i v_i$$

Mixing Property Relations

Example) how do I go to some mixing property to partial molar property? Given Δk_{mix} for a mixture, find \overline{K}_i

$$\Delta k_{mix,} \rightarrow \Delta K_{mix,} \rightarrow \overline{\Delta K}_{mix,i} \rightarrow \overline{K}_{i}$$

$$n_{tot} \Delta k_{mix} = \Delta K_{mix} \qquad \left(\frac{\partial \Delta K_{mix}}{\partial n_{i}}\right)_{T,P,n_{i}} = \overline{\Delta K}_{mix,i} \qquad \overline{\Delta K}_{mix,i} = \overline{K}_{i} - k_{i}$$

Ideal Solution/Mixture

No molecular interactions between molecules (similar to ideal gasses), thus $\Delta h_{mix} = \Delta v_{mix} = 0$

$$\Delta H = \Delta U + \Delta PV$$

 $\Delta H_{mix} = 0$

$$\Delta \bar{G}_{mix,1} = i \overline{H}_{mix,1} - T\Delta S_{mix,1}$$

$$\Delta \bar{G}_{mix,1} = -T\Delta S_{mix,1}^{-}$$

$$\Delta \bar{G}_{mix,1} = RTIn(y_1)$$

 $\Delta \bar{G}_{mix,1} = RTln(y_1)$ Partial molar Gibbs of mixing

$$\Delta g_{mix} = RT \Sigma x_i ln(x_i)$$

 $\Delta g_{mix} = RT \Sigma x_i ln(x_i)$ Overall molar Gibbs of mixing

$$\Delta s_{ ext{mix}} = -R \sum_{i=1}^m y_i \ln y_i$$

$$\Delta S_{\text{mix},1}^- = -\text{RIn}(y)$$

Overall molar entropy of mixing

Partial molar entropy of mixing (derivation in goulas review)

Entropy of mixing will always be positive as there are more molecular configurations in a mixture compared to a pure speccies

Notice resemblance between partial molar and molar properties for ideal solution

Example

Molar Gibb's Free Energy (intensive): g
Gibb's Free Energy (extensive): G; G = nh (moles times GFE)

Partial Molar Gibb's Free free energy: $\Delta \bar{\mathsf{G}}_{\mathrm{mix}} = \left(\frac{\partial \Delta Gmix}{\partial n_i}\right)_{T,P,n_i}$ Given $\Delta gmix$ for a binary mixture, derive expression to find $\Delta \bar{\mathsf{G}}_{\mathrm{a}}$

Mixture of species a and b behaves ideally

$$\begin{split} &\Delta g_{\text{mix}} = \text{RT } \Sigma x_{\text{i}} \text{In}(x_{\text{i}}) \\ &\Delta g_{\text{mix}} = \text{RT}[x_{\text{a}} \text{In} x_{\text{a}} + x_{\text{b}} \text{In} x_{\text{b}}] \qquad \text{multiply by } n_{\text{tot}} \\ &\Delta G_{\text{mix}} = RT \left[n_{a} \ln \frac{n_{a}}{n_{a} + n_{b}} + n_{b} \ln \frac{n_{b}}{n_{a} + n_{b}} \right] \\ &\Delta \bar{G}_{\text{mix,a}} &= \left(\frac{\partial \Delta G m i x}{\partial n_{a}} \right)_{T,P,n_{b}} \\ &\Delta \bar{G}_{\text{mix,a}} = RT \left[n_{a} \ln \frac{n_{a}}{n_{a} + n_{b}} + n_{a} \left(\frac{1}{n_{a}} - \frac{1}{n_{a} + n_{b}} \right) - \frac{n_{b}}{n_{a} + n_{b}} \right] \end{split}$$

To find \bar{G}_{a} recall that

$$\Delta \bar{G}_{\text{mix,a}} = \bar{G}_{\text{a}} - g_{\text{a}}$$

$$\bar{G}_a = RTInx_a + g_a$$

 $\Delta \bar{G}_{mix,a} = RTInx_a$

Partial molar Gibbs for species a, same solution as last slide

The Gibbs energy of mixing of a binary liquid mixture of water (1) and 1-propanol (2) vs. mole fraction water (x1) is shown

Determine the partial molar Gibbs energy of water in the liquid, $\bar{G}_1^{\ l}$ for a mixture of 2 moles water and 3 moles of 1-propanol at 40 C

The Gibbs energy of mixing of a binary liquid mixture of water (1) and 1-propanol (2) vs. mole fraction water (x1) is shown

Determine the partial molar Gibbs energy of water in the liquid, $\bar{G}_1^{\ \ \ }$ for a mixture of 2 moles water and 3 moles of 1-propanol at 40 C

$$X_1 = n_1/(n_1 + n_2) = 0.4$$

$$\Delta g_{\text{mix}} = \bar{G} - g$$

The Gibbs energy of mixing of a binary liquid mixture of water (1) and 1-propanol (2) vs. mole fraction water (x1) is shown

Determine the partial molar Gibbs energy of water in the liquid, $\bar{G}_1^{\ \ \ }$ for a mixture of 2 moles water and 3 moles of 1-propanol at 40 C

$$-460 \text{J/mol} = \bar{G}_1 - g_1$$

$$\Delta g_{\text{mix}} = \bar{G} - g$$

The Gibbs energy of mixing of a binary liquid mixture of water (1) and 1-propanol (2) vs. mole fraction water (x1) is shown

Equilibrium

Recall that for a mixture, g is J/mol_{tot} and G is J/mol_i

The following diagram shows the normal melting point of pure solid 1 to be T_m . Consider now that the same pure solid 1 is in a liquid mixture with four species 1, 2, 3, and 4 as shown on the right. How does the temperature at which 1 will be in equilibrium with liquid, T, compare to the case on the left ($T < T_m$, $T = T_m$, $T > T_m$, or you cannot tell without more information)? Explain your answer.

Equilibrium

The following diagram shows the normal melting point of pure solid 1 to be T_m . Consider now that the same pure solid 1 is in a liquid mixture with four species 1, 2, 3, and 4 as shown on the right. How does the temperature at which 1 will be in equilibrium with liquid, T, compare to the case on the left ($T < T_m$, $T = T_m$, $T > T_m$, or you cannot tell without more information)? Explain your answer.

Recall that for a mixture, g is J/mol_{tot} and G is J/mol_i

A few ways to think about this problem:

$$g_1^s = g_1^l$$
 $g_1^s = \bar{G}_1^l$
 $G_1^s = G_1^l$ $g_1^s > g_1^l$

Species 1 in the liquid mixture (right) has higher entropy than pure 1 (left). According to g = h - Ts, the right will have a **lower** molar Gibbs, g, in the liquid phase than the solid: $g_1^s > g_1^l$. As the liquid is more favorable (more negative), the solid will melt. To return to phase equilibrium the temperature must decrease such that $g_1^s = g_1^l$

- 1) Explain why $H_1 + H_2$ is not H_{1+2} , similar situation with V. Explain using molecular interactions
- 2) What is meant by infinite dilution and what is the gibb's energy of a species that is infinitely diluted?
- 3) Why does water boil then freeze under a vacuum?
- 4) The Clausius Clapeyron equation is used for VLE but if we assume it is valid for SVE, how can we determine the triple point temperature?
- 5) Ethanol and water mix. Explain the molecular interactions that occur and what results in them
- 6) For an ideal mixture of two gasses under constant T and P, how will Δv_{mix} , Δh_{mix} , Δg_{mix} , and Δs_{mix} , be affected? (greater, less than or equal to zero)
- 7)) Practice/memorize/recognize simple derivations for given equations for a property when you find the partial molar property