Textures

Where we Are

Textured Sphere

Textures

- A texture is an image painted on a surface
 - reduces geometric complexity of object
 - requires more complex processing
- Textures are made of texels
 - need to specify texel for each point
 - a mapping from the surface to the image

Surface Parametrization

- Images are parametrized
 - each texel has an (i,j) location in texture
- Surfaces can also be parametrized
 - each point on surface has (s,t) location
- So the mapping converts from (s,t) to (i,j)

Texture Steps

- Start with a point p
- Convert to surface parameters (s,t)
- Convert to texel indices (i,j)
- Retrieve texel colour
- Use texel colour for shading

Parametric Sphere

Computing Parameters

- Given point (x,y,z) on sphere
 - Find parameters (Φ,θ) on surface
 - Then find texel coordinates

Computing Parameters

$$x = r \cos \phi \cos \theta$$

$$y = r \cos \phi \sin \theta$$

$$\frac{y}{x} = \frac{r\cos\phi\sin\theta}{r\cos\phi\cos\theta} = \frac{\sin\theta}{\cos\theta} = \tan\theta$$

so:

$$\theta = \arctan \frac{y}{x}$$

(Use C function atan2(y,x))

And:

$$z = r \sin \phi$$

SO

$$\phi = \arcsin \frac{z}{r}$$

Cylindrical Projection

Simplest map projection: lat. vs. long.

From Map to Globe

Code in your Assignment 3

COMP 30020: Intro Computer Graphics

Texture Coordinates

Assume that texture has height h, width w

Point	$\left(\phi, heta ight)$	(s,t)	(i,j)	$\frac{\pi}{2}/1/h$
Top Left	$\left(\frac{\pi}{2}, -\pi\right)$	(1,0)	(h,0)	$\frac{1}{2}$ /1/ R
Top Right	$\left(\frac{\pi}{2},\pi\right)$	(1,1)	(h,w)	
Bottom Left	$\left(-\frac{\pi}{2},-\pi\right)$	(0,0)	(0,0)	
Bottom Right	$\left(-\frac{\pi}{2},\pi\right)$	(0,1)	(0,w)	π / 0 / 0
Top Left $\left(\frac{\pi}{2}, -\pi\right)$ $\left(1, 0\right)$ $\left(h, 0\right)$ $\frac{\pi}{2}/1/h$ Top Right $\left(\frac{\pi}{2}, \pi\right)$ $\left(1, 1\right)$ $\left(h, w\right)$ Bottom Left $\left(-\frac{\pi}{2}, -\pi\right)$ $\left(0, 0\right)$ $\left(0, 0\right)$ Bottom Right $\left(-\frac{\pi}{2}, \pi\right)$ $\left(0, 1\right)$ $\left(0, w\right)$ We see a second of $\left(\frac{\pi}{2}, \pi\right)$ and $\left(\frac{\pi}{2}, \pi\right)$ $\left(\frac{\pi}{2}, \pi\right)$ $\left(\frac{\pi}{2}, \pi\right)$ $\left(\frac{\pi}{2}, \pi\right)$ $\left(\frac{\pi}{2}, \pi\right)$				

We can compute (i, j) as follows:

$$-\pi/0/0$$

 $\pi/1/w$

$$s = \frac{\left(\theta + \pi\right)}{2\pi} = \frac{\theta}{2\pi} + \frac{1}{2} \quad i = h \cdot s = h\left(\frac{\theta}{2\pi} + \frac{1}{2}\right)$$

$$t = \frac{\left(\phi + \frac{\pi}{2}\right)}{\pi} = \frac{\phi}{\pi} + \frac{1}{2} \qquad j = w \cdot t = w\left(\frac{\phi}{\pi} + \frac{1}{2}\right)$$

Problems

- This works very well if:
 - i & j are both integers
 - s & t are in range [0..1]
- So we need to deal with
 - interpolation non-integer i, j
 - clamping / repeating s, t outside range

Clamping

- Texture coordinates are 0 ... 1
- For other values, we clamp or we repeat:
 - clamp coords to 0 ... 1 (use edge pixels)
 - repeat texture (duplicates textures)
- Set separately for horizontal & vertical

Clamping Example

- Horizontal clamp
- Vertical repeat

Interpolation

- Texture coordinates are rarely exact
 - land between the texels (texture pixels)
- So interpolate texel values:
 - nearest neighbour
 - bilinear interpolation
 - trilinear interpolation

Nearest Neighbour

- Simplest form of interpolation:
 - take the nearest available texel
 - e.g. (2.5, 1.38765) maps to (3, 1)
 - preserves sharp edges
 - good for geometric patterns

Bilinear Interpolation

- Texels are arranged on a square grid
- We want to interpolate at (i,j)
- Based on the 4 nearest grid points
- Linear interpolation in s then t

Development

$$f(i, \lfloor j \rfloor) = (1 - \Delta i) f(\lfloor i \rfloor, \lfloor j \rfloor) + \Delta i f(\lfloor i \rfloor + 1, \lfloor j \rfloor)$$

$$f(i, \lfloor j \rfloor + 1) = (1 - \Delta i) f(\lfloor i \rfloor, \lfloor j \rfloor + 1) + \Delta i f(\lfloor i \rfloor + 1, \lfloor j \rfloor + 1)$$

$$f(i, j) = (1 - \Delta j) f(i, \lfloor j \rfloor) + \Delta j f(i, \lfloor j \rfloor + 1)$$

Pseudo Code

```
RGBValue BilinearLookup(Image tex, float s, float t)
  { // BilinearLookup()
  int i = s;
                             // truncates s to get i
  int j = t;
                        // truncates t to get j
  float sParm = s - i; // compute s parameter for interpolation
  float tParm = t - j; // compute t parameter for interpolation
  // grab four nearest texel colours
  RGBValue colour00 = tex[i][i];
  RGBValue colour01 = tex[i][j+1];
  RGBValue colour10 = tex[i+1][i];
  RGBValue colour11 = tex[i+1][j+1];
  // compute colours on edges
  RGBValue colour0 = colour00 + tParm * (colour01 - colour00);
  RGBValue colour1 = colour10 + tParm * (colour11 - colour10);
  // compute colour for interpolated texel
  return colour1 + sParm * (colour1 - colour0);
  } // BilinearLookup()
```


Geometric Texture

COMP 30020: Intro Computer Graphics

Non-Geometric Texture

Nearest Neighbour

Bilinear

COMP 30020: Intro Computer Graphics

Texture Modulation

- Colour can be used with or without lighting
 - Texture can replace lighting calculation $Colour_{out} = Colour_{texture}$
 - Or it can modulate lighting calculation

$$Colour_{out} = Colour_{texture} \cdot Colour_{shading}$$

Surface colour usually white for this

Texture Mode

COMP 30020: Intro Computer Graphics

Texture Operations

- Input from file to RAM to VRAM
- Pixel Operations:
 - scaling, biasing, & mapping
 - clamping
 - rasterization
- Readback

Image Coordinates

- OpenGL indexes texels with [0..1]
 - assumes image size is 2^m x 2ⁿ
 - actually allows 1, 2, or 3 texture coords
- Surface parameters don't always match
 - so OpenGL has a texture matrix
 - for transforming texture coordinates

Specifying Parameters

- Give surface parameters for each vertex
 - glTexCoord2f();
- Then interpolate between vertices
 - using barycentric coordinates
 - generates parameters for each pixel

Setting the Texture

Using LWJGL & OpenGL state applies as usual

myTexture.bind();

```
GL11.glTexCoord2f(0,0); // odd bug , sometimes not needed GL11.glVertex2f(100,100); GL11.glTexCoord2f(1,0); GL11.glVertex2f(100+texture.getTextureWidth(),100); GL11.glTexCoord2f(1,1); GL11.glVertex2f(100+texture.getTextureWidth(),100+texture.getTextureHeight()); GL11.glTexCoord2f(0,1); GL11.glTexCoord2f(0,1); GL11.glVertex2f(100,100+texture.getTextureHeight()); GL11.glVertex2f(100,100+texture.getTextureHeight()); GL11.glEnd();
```


Texture Clamping

- Horizontal clamp
- Vertical repeat

```
GL11.glTexParameteri(
    GL11.GL_TEXTURE_2D,
    GL11.GL_TEXTURE_WRAP_S,
    GL11.GL_CLAMP);
GL11.glTexParameteri(
    GL11.GL_TEXTURE_2D,
    GL11.GL_TEXTURE_WRAP_T,
    GL11.GL_REPEAT);
```


Interpolation

- Texture coordinates are rarely exact
 - land between the texels (texture pixels)
- So interpolate texel values:
 - GL_NEAREST (best if geometric tex.)
 - GL_LINEAR (best if organic tex.)
- GL_MAG_FILTER: for magnification

GL_MAG_FILTER

GL_NEAREST GL_LINEAR COMP 30020: Intro Computer Graphics