Материал курса Функциональный анализ, 2025

Содержание

1.	Теоремы Бэра о категориях	- 2 -
2.	Мера и интеграл	- 3 -
	2.1. Пространства с мерой	- 3 -
	2.2. Интеграл по мере	- 4 -
	2.3. Свойства интеграла	- 4 -
3.	Топологические векторные пространства	- 5 -
	3.1. Основные понятия	- 5 -
	3.2. Свойства отделимости	- 6 -

1. Теоремы Бэра о категориях

Определение 1.1. (плотность): Пусть X — топологическое пространство. Множество $A \subset X$ называется всюду плотным в X, если $\overline{A} = X$. Множество A называется нигде не плотным, если $\left(\overline{A}\right)^{\circ} = \emptyset$, иначе говоря, если замыкание множества A не содержит ни одного открытого подмножества X.

Упражнение 1.2. Покажите, что если A нигде не плотно в X, то его дополнение $A^C = X - A$ всюду плотно в X. Верно ли обратное?

Определение 1.3. (категории Бэра): Подмножество $A \subset X$ является множеством I категории, если A представимо как счётное объединение нигде не плотных множеств:

$$A = \bigcup_{n \in \mathbb{N}} S_n, \quad S_n$$
 нигде не плотны в $X.$

 $\mathit{Множества}\ \mathit{II}\ \mathit{категории}\ \mathit{cocтоят}\ \mathit{u3}\ \mathit{всеx}\ \mathit{подмножеств}\ \mathit{X},$ не относящихся к $\mathit{I}\ \mathit{категории}.$

Определение 1.4. (локальная компактность): Топологическое пространство X называется локально компактным, если каждая точка $x \in X$ имеет окрестность V_x такую, что $\overline{V_x}$ компактно.

Утверждение 1.5. Пусть X локально компактно и хаусдорфово. Тогда каждое непустое открытое множество $U \subset X$ содержит замыкание \overline{V} некоторого непустого относительно компактного открытого множества V.

Доказательство: Рассмотрим открытое множество U и точку $x\in U$. По локальной компактности точка x имеет относительно компактную окрестность V_x . Рассмотрим множество $W=U\cap V_x$. Теперь для каждой точки $y\in \overline{V_x}\cap W^C$ рассмотрим множества A_y и B_y такие, что $y\in A_y, x\in B_y, A_y\cap B_y=\varnothing$. Множество $\overline{V_x}\cap W^C$ компактно, а значит мы имеем

$$\overline{V_x}\cap W^C\subset A_{y_1}\cup A_{y_2}\cup\ldots\cup A_{y_n}.$$

Наконец, положим $V=B_{y_1}\cap B_{y_2}\cap\ldots\cap B_{y_n}$. Множество V непусто, так как оно содержит точку x. Так как V не пересекается с $\bigcup_{k=1}^n A_{y_k}\supset W^C\cap \overline{V_x}$ и $V\subset \overline{V_x}$, мы видим, что $\overline{V}\subset W\subset U$. Кроме того, \overline{V} компактно, как замкнутое подмножество компактного множества $\overline{V_x}$.

Определение 1.6. (полнота): Метрическое пространство (M,d) называется *полным*, если каждая ϕ ундаментальная последовательность, т.е. такая последовательность $x_n \in M$, что

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0,$$

имеет некий предел $x_{\infty} \in M$.

Теорема 1.7. (Первая теорема Бэра о категориях): *Пусть* $X - \pi u \delta o$

- (а) полное метрическое пространство, либо
- (b) локально компактное хаусдорфово пространство.

Тогда пересечение счётного семейства открытых всюду плотных множеств также всюду плотно.

Доказательство: Пусть $\left\{U_n\right\}_{n\in\mathbb{N}}$ — семейство открытых всюду плотных множеств. Мы будем индуктивно строить последовательность открытых множеств B_n таким образом, чтобы выполнялось свойство

$$\overline{B_n} \subset U_n \cap B_{n-1}$$
.

1. В качестве B_1 возьмём произвольное открытое непустое подмножество X.

2. Пусть множество B_{n-1} уже построено. Тогда в случае (а) можно рассмотреть некий шар B_n с радиусом не более 1/n, такой что $\overline{B_n} \subset U_n \cap B_{n-1}$, так как множество $U_n \cap B_{n-1}$ открыто. В случае (b) <u>утверждение 1.5</u> позволяет выбрать множество B_n таким образом, что $\overline{B_n}$ компактно и $\overline{B_n} \subset U_n \cap B_{n-1}$.

Теперь рассмотрим множество

$$K \coloneqq \bigcap_{n \in \mathbb{N}} \overline{B_n}.$$

В случае (а) центры x_n указанных шаров образуют фундаментальную последовательность, так как $d(x_n,x_m)<1/n$ всякий раз когда $m\geq n$. Следовательно, множество K содержит предел этой последовательности и потому непусто.

В случае (b) множество K является пересечением вложенной последовательности компактных множеств и потому непусто. В обоих случаях мы получили, что множество

$$K \subset B_1 \cap \bigcap_{n \in \mathbb{N}} U_n$$

непусто. Так как B_1 было выбрано произвольно, мы показали, что пересечение семейства $\left\{U_n\right\}_{n\in\mathbb{N}}$ всюду плотно.

2. Мера и интеграл

2.1. Пространства с мерой

Определение 2.1.1. (пространство с мерой): Пара (S, \mathfrak{B}) , где $\mathfrak{B} \subset 2^S$, называется σ -алгеброй подмножеств S, если выполнены следующие условия:

- (1) Всё множество S лежит в \mathfrak{B} ;
- (2) Если $B \in \mathfrak{B}$, то дополнение $B^C = S B$ также является элементом \mathfrak{B} ;
- (3) Если $B_n \in \mathfrak{B}$ при всех $n \in \mathbb{N}$, то $\bigcup_{n \in \mathbb{N}} B_n$ также лежит в \mathfrak{B} . (σ -аддитивность)

Упражнение 2.1.2. Докажите, что и всякое счётное пересечение элементов σ -алгебры (S,\mathfrak{B}) лежит в \mathfrak{B} .

Определение 2.1.3. (мера): Пусть (S,\mathfrak{B}) — некая σ -алгебра. Тогда функция $m:\mathfrak{B}\to\mathbb{R}_0^+$ называется σ -аддитивной мерой, если выполнены следующие условия:

- (1) $mig(igsqcup_{n\in\mathbb{N}}B_nig)=\sum_{n=1}^\infty m(B_n)$, для каждой счётной системы попарно непересекающихся множеств $B_n\in\mathfrak{B};$ (σ -аддитивность)
- (2) Множество S можно представить в виде счётного объединения множеств $B_n \in \mathfrak{B}$, таких, что $m(B_n) < \infty$ при всех $n \in \mathbb{N}$.

Значение m(B) называется m-мерой множества B, а множества $B \in \mathfrak{B}$ называются \mathfrak{B} -измеримыми.

Определение 2.1.4. (измеримые функции): Вещественная функция $x:S\to\mathbb{R}$, определённая на множестве S, называется *измеримой*, если прообраз всякого открытого множества $U\subset\mathbb{R}$ представляет из себя измеримое подмножество S, т.е. $x^{-1}(U)\in\mathfrak{B}$.

Определение 2.1.5. (почти всюду): Свойство P, относящееся к точкам множества S, выполняется m-почти всюду на S, если множество точек, в которых оно не выполняется, имеет m-меру нуль.

2.2. Интеграл по мере

Определение 2.2.1. (простая функция): Вещественная функция $x:S\to\mathbb{R}$ называется *простой*, если существует конечный набор попарно непересекающихся множеств $B_1,...,B_n\in\mathfrak{B}$, такой, что на каждом из множеств B_j функция x принимает постоянное значение, и x(s)=0 при $x\notin\bigcup_{i=1}^n B_i$.

Такая функция x называется m-интегрируемой на множестве S, если

$$\sum_{j=1}^{n} |x_j| \cdot m(B_j) < \infty, \tag{1}$$

где x_j есть постоянное значение x на множестве B_j . Величина (1) называется интешралом функции x и обозначается

$$\int\limits_{S} x(s) \ m(ds)$$
 или $\int\limits_{S} x(s).$

Определение 2.2.2. (интеграл по мере): Произвольная вещественная функция x, определённая m-почти всюду на S, называется

m-интегрируемой, если существует последовательность $\left\{x_n\right\}_{n=1}^{\infty}$ простых m-интегрируемых функций, сходящаяся m-п.в. к x, и при этом

$$\int\limits_{S} |x_n(s)-x_m(s)| \ m(ds) \xrightarrow[n,m\to\infty]{} 0.$$

Так как пространство $\mathbb R$ полно, существует конечный предел

$$\lim_{n\to\infty}\int\limits_S x_n(s)\;m(ds),$$

не зависящий от выбора аппроксимирующей последовательности $\{x_n\}$. Этот предел называется интегралом функции x.

Упражнение 2.2.3. Докажите, что если поменять значения интегрируемой функции x на множестве меры нуль, то интеграл не изменится.

2.3. Свойства интеграла

(1) Если x, y — интегрируемые функции, то линейная комбинация $\alpha x + \beta y$ (где $\alpha, \beta \in \mathbb{R}$) также представляет собой интегрируемую функцию, и

$$\int_{S} (\alpha x + \beta y)(s) \ m(ds) = \alpha \int_{S} x(s) \ m(ds) + \beta \int_{S} y(s) \ m(ds).$$

- (2) Функция x интегрируема тогда и только тогда, когда интегрируема |x| (упражнение).
- (3) Если функция x интегрируема и $x(s) \geq 0$ почти всюду на S, то $\int_S x(s) \ m(ds) \geq 0$.
- (4) Если функция x интегрируема, то для любого множества $B \in \mathfrak{B}$ мы полагаем

$$\int\limits_{B} x(s) \ m(ds) \stackrel{ ext{def}}{=} \int\limits_{S} x(s) \cdot \chi_{B}(s) \ m(ds),$$

где χ_B — характеристическая функция множества B. В таком случае, функция $X:\mathfrak{B}\to\mathbb{R}$, определённая как $X(B)=\int_B x(s)\ m(ds)$ является σ -аддитивной.

(5) Опреденённая выше функция X является абсолютно непрерывной относительно меры m, т.е. выполняется сходимость $X(B) \xrightarrow[m(B) \to 0]{} 0$ равномерно по $B \in \mathfrak{B}$. (упражнение)

3. Топологические векторные пространства

3.1. Основные понятия

Определение 3.1.1. (ТВП): Пусть X — векторное пространство над полем $\mathbb R$, и пусть τ — топология на множестве X. Тогда X называется топологическим векторным пространством, если

- (1) каждая точка $x \in X$ является замкнутым множеством;
- (2) операции $(+): X \times X \to X$ и $(\cdot): \mathbb{R} \times X \to X$ непрерывны относительно топологии τ .

В таком случае au называется векторной топологией.

Определение 3.1.2. Пусть X — топологическое векторное пространство. Пожмножество $C \subset X$ называется

- (1) выпуклым, если $tC + (1-t)C \subset C$ при всех $t \in [0,1]$;
- (2) уравновешенным, если $\alpha C \subset C$ при всех $|\alpha| \leq 1$;
- (3) поглощающим, если $X = \bigcup_{\alpha > 0} \alpha C$.
- (4) ограниченным, если для любой окрестности нуля V найдётся число s>0, такое что $C\subset tV$ при $t\geq s$.

Замечание 3.1.3. Условие (2) означает, что

(1) для любой окрестности U точки $x_1+x_2\in X$, существуют окрестности V_1 и V_2 точек x_1 и x_2 , такие, что

$$V_1 + V_2 \subset U$$
.

(2) Для любой окрестности U точки $\alpha x \in X$, существуют открестности $V_{\alpha} \subset \mathbb{R}$ и $V_x \subset X$, такие, что

$$V_{\alpha} \cdot V_x = \{\beta y \mid \beta \in V_{\alpha}, y \in V_x\} \subset U.$$

Утверждение 3.1.4. Отображения $T_a=\lambda x.\ x+a\ u\ M_{\alpha}=\lambda x.\ \alpha x$ являются гомеоморфизмами.

Доказательство: Упражнение.

Замечание 3.1.5. По <u>утверждению 3.1.4</u>, векторная топология *инвариантна относительно сдвигов*: множество U открыто тогда и только тогда, когда открыты все сдвиги a+U, где $a\in X$. Таким образом, топология определяется любой своей локальной базой. Термин локальная база всегда будет означать локальную базу в нуле.

Определение 3.1.6. (типы ТВП): Топологическое пространство X называется

- (1) локально выпуклым, если в нём есть локальная база, состоящая из выпуклых множеств;
- (2) локально ограниченным, если существует ограниченная окрестность нуля;
- (3) локально компактным, если существует относительно компактная окрестность нуля;
- (4) метризуемым, если его топология совметима с некоторой метрикой;
- (5) пространством Фреше, если топология на X порождается некоторой полной инвариантной метрикой d (в том смысле, что d(x+z,y+z)=d(x,y));
- (6) нормируемым, если его топология порождается некоторой нормой;
- (7) npocmpahcmsom Банаха, если <math>X нормируемо и его норма индуцирует полную метрику.

3.2. Свойства отделимости

Определение 3.2.1. (аксиомы отделимости): Пусть X — топологическое пространство. Выделяют 5 основных *аксиом отделимости*:

- (1) \mathbb{T}_0 : для любых отличных точек $x,y\in X$, одна из них имеет окрестность, не содержащую другую;
- (2) \mathbb{T}_1 : для любых двух точек $x \neq y$, каждая содержит окрестность, не содержащую другую;
- (3) \mathbb{T}_2 : Каждые две отличные точки X имеют непересекающиеся окрестности;
- (4) \mathbb{T}_3 : Каждые точка $x \in X$ и замкнутое множество $E \not\ni x$ имеют непересекающиеся окрестности;
- (5) \mathbb{T}_4 : Каждая пара непересекающихся замкнутых множеств имеет непересекающиеся окрестности.

Утверждение 3.2.2. Каждая окрестность нуля U в $TB\Pi X$ допускает симметричную окрестность нуля W (в том смысле, что -W=W), такую, что $W+W\subset U$.

Доказательство: По непрерывности сложения имеем окрестности V_1, V_2 со свойством $V_1 + V_2 \subset U$. Теперь, полагая

$$W = V_1 \cap V_2 \cap (-V_1) \cap (-V_2),$$

имеем искомую оеркстность нуля.

Теорема 3.2.3. Пусть $X-TB\Pi, K, E\subset X$, причём K компактно, E замкнуто, и $K\cap E=\emptyset$. Тогда существует такая окрестность нуля V, что

$$(K+V) \cap (E+V) = \emptyset.$$

(заметим, что множества K + V и E + V открыты)

Доказательство: Заметим, что по предыдущему утверждению для любой окрестности U найдётся симметричная окрестность V таким образом, что

$$V + V + V + V \subset U$$
.

Теперь предположим, что множество K непусто, $x \in K$. Так как E замкнуто, имеем окрестность нуля V_x такую, что

$$V_x + V_x + V_x + V_x \subset E^C - x \Longrightarrow (x + V_x + V_x + V_x) \cap E = \varnothing.$$

Следовательно,

$$(x+V_x+V_x)\cap (E+V_x)=(x+V_x+V_x)\cap (E-V_x)=\varnothing.$$

Так как множество K компактно, найдётся конечное число точек $x_1, x_2, ..., x_n \in K$, таких что

$$K \subset \bigcup_{k=1}^{n} \left(x_k + V_{x_k} \right)$$

Положим $V\coloneqq V_{x_1}\cap\ldots\cap V_{x_n}.$ Имеем

$$\begin{split} K+V \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V\right) \subset \bigcup_{k=1}^n \left(x_k + V_{x_k} + V_{x_k}\right) \subset (E+V)^C \\ \Longrightarrow (K+V) \cap (E+V) = \varnothing, \end{split}$$

и доказательство завершено.

Следствие 3.2.4. Всякое ТВП X удовлетворяет аксиомам \mathbb{T}_0 - \mathbb{T}_3 отделимости (упражнение).

Следствие 3.2.5. Если $\mathcal{B}-$ локальная база ТВП X, то <u>Теорема 3.2.3</u>, применённая ко множествам $\{0\}$ и $U\in\mathcal{B}$, влечёт существование некой другой окрестности $V\in\mathcal{B}$, такой, что $\overline{V}\subset U$.

Следующее техническое утверждение содержит некоторые свойства операторов замыкания и внутренности:

Лемма 3.2.6. Пусть X — топологическое векторное пространство.

- (a) Для всякого $A\subset X$, имеем $\overline{A}=\bigcap_{0\in V}(A+V)$, где V пробегает все окрестности нуля;
- (b) Если $A, B \subset X$, то $\overline{A} + \overline{B} \subset \overline{A + B}$. Если $\alpha \in \mathbb{R}$, то $\alpha \overline{A} = \overline{\alpha A}$;
- (c) Eс π и $Y\leqslant X$, то $\overline{Y}\leqslant X$; (замыкание подпространства есть подпространство)
- (d) Если $C \subset X$ выпукло, то множества \overline{C} и C° также выпуклы;
- (e) Если $B \subset X$ уравновешено, то \overline{B} также уравновешено. Если к тому же $0 \in B^\circ$, то B° уравновешено;
- (f) Если $E\subset X$ ограничено, то \overline{E} ограничено.

Доказательство:

- (a) $x\in\overline{A}$ тогда и только тогда, когда $(x+V)\cap A\neq\varnothing$ для любой окрестности нуля V. Это эквивалентно условию $x\in A-V$ для всех V, что равносильно $x\in\bigcap_{0\in V}(A+V)$, так как (-V) окр. нуля $\Longleftrightarrow V$ окр. нуля.
- (b) По непрерывности операции сложения, имеем $(x_n+y_n)\to x+y$ при $x_n\to x$ и $y_n\to y$. Равенство $\alpha\overline{A}=\overline{\alpha A}$ остаётся как упражнение.
- (с) Достаточно воспользоваться предыдущим утверждением:

$$\alpha \overline{Y} + \beta \overline{Y} = \overline{\alpha Y} + \overline{\beta Y} \subset \overline{\alpha Y} + \beta \overline{Y} \subset \overline{Y},$$

а значит \overline{Y} — подпространство X.

(d) Пусть $C\subset X$ выпукло. Выпуклость \overline{C} — упражнение. Теперь, так как $C^\circ\subset C$ и C выпукло, имеем

$$tC^\circ + (1-t)C^\circ \subset tC + (1-t)C \subset C$$

при $0 \le t \le 1$. Оба слагаемых слева являются открытыми множествами, я значит их сумма тоже открыта. Так как внутренность C есть объединение всех открытых множеств, содержащихся в C, имеем

$$tC^\circ + (1-t)C^\circ \subset C^\circ,$$

и C° выпукло.

(e) Пусть $B\subset X$ уравновешено. Уравновешенность \overline{B} — упражнение. Если $0\in B^\circ$, то имеем $0\cdot B^\circ\subset B^\circ$. В то же время, при $0<|\alpha|\le 1$ имеем

$$\alpha B^{\circ} = (\alpha B)^{\circ} \subset \alpha B \subset B,$$

так как $\lambda x.~\alpha x$ — гомеоморфизм. Но αB° открыто, а значит $\alpha B^\circ \subset B^\circ.$

(f) Пусть $E\subset X$ ограничено и пусть V — произвольная окрестность нуля. По следствию 3.2.5 имеем такую окрестность нуля W, что $\overline{W}\subset V$. Далее, при достаточно больших t имеем

$$E \subset tW \Longrightarrow \overline{E} \subset \overline{tW} = t\overline{W} \subset tV$$
,

и доказательство завершено.

Лемма 3.2.7. Пусть $X - TB\Pi$. Тогда:

- (а) Каждая окрестность нуля содержит уравновешенную окрестность нуля;
- (b) Каждая выпуклая окрестность нуля содержит выпуклую уравновешенную окрестность нуля.

Доказательство:

- (a) Пусть U произвольная окрестность нуля в X. Так как операция умножения непрерывна, найдутся такое число $\delta>0$ и такая окрестность нуля W, что $\alpha W\subset U$ при $|\alpha|<\delta$. Рассмотрим окрестность $V:=\bigcup_{|\alpha|<\delta}\alpha W$. Очевидно, что $V\subset U$ и что V уравновешено.
- (b) Пусть U выпуклая окрестность нуля. Рассмотрим множество $A=U\cap (-U)$. Как пересечение выпуклых множеств, A выпукло. Кроме того, A симметрично. Теперь, если $|t|\le 1$, мы имеем

$$tA = |t| \ A \subset |t| \ A + (1 - |t|)A \subset A,$$

то есть множество A уравновешено,

что и требовалось доказать.