Dynamic Moral Hazard with Limited Commitment

Andong Yan

UC Riverside

Research Question

- Would a principal and an agent sign a contract while both of them understand the contract would not be (fully) implemented?
- What contracts are feasible when we explicitly allow for contract default and renegotiation/termination?
- How does the principal provide incentive (or not provide at all) in this limited commitment environment?

Model Setup

- agent makes full commitment, principal makes limited commitment
- common discount factor and discount rate $r = \frac{1}{1+\rho}$
- outcome $y_t \in \{0, 1\}$
- payoff to principal y if $y_t = 1$; 0 otherwise
- agent action $a_t \in \{0, 1\}$
- outcome distribution
 - $\mathbb{P}(y_t = 1 | a_t = 1) = \alpha$; $\mathbb{P}(y_t = 0 | a_t = 1) = 1 \alpha$
 - $\mathbb{P}(y_t = 1 | a_t = 0) = \beta$; $\mathbb{P}(y_t = 1 | a_t = 0) = 1 \beta$
 - $0 < \beta < \alpha < 1$
- payoff to agent
 - wage $w_t \geq 0$
 - shirk rent $\gamma > 0$ if $a_t = 0$; 0 otherwise
- infinite periods $t = 1, 2, 3, \dots$

Model Setup

- Exogenous Contract State
 - $p_t \in \{0,1\}$
 - $\mathbb{P}(p_t = 1) = \kappa$; $\mathbb{P}(p_t = 0) = 1 \kappa$
 - $p_t = 1$, contract could be terminated by the principal
- Contract Termination
 - principal decision $q_t \in \{0,1\}$ (Regardless of p_t)
 - ullet principal's termination cost $c\geq 0$ if $q_t=1$
 - ullet agent's termination compensation $R\geq 0$ if $q_t=1$
- Contract History $h_t = \{y_1, ..., y_t\}$
- Stopping Time $\tau = \min\{t \mid p_t = 1 \land q_t = 1\}$
- Principal Strategy

$$\sigma = \sigma(h_t) = \{w(h_t), q(h_t)\}\$$

Agent Strategy

$$a = a(h_{t-1})$$

Timeline

$$\begin{array}{c|c}
 & V^{P}(h_{t+1}) & W_{t}(C_{P}) \\
 & & & & & & & & & & & & & & & \\
\hline
 & V^{A}(h_{t+1}) & & & & & & & & & & & & & \\
\hline
 & V^{A}(h_{t+1}) & & & & & & & & & & & & \\
\hline
 & V^{A}(h_{t+1}) & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 &$$

Expected Payoffs

Expected Payoffs at the beginning of period t, given history h_{t-1}

Principal Payoff $V^P(h_{t-1}, \sigma, a)$

$$=\mathbb{E}[\sum_{t\leq s\leq \tau}e^{-\rho(s-t)}(y_s-w_s)+e^{-\rho(\tau-t)}(-c+V^P)|h_{t-1}]\quad \text{given τ is bounded}$$

$$= \mathbb{E}[\sum_{s=t} e^{-\rho(s-t)} (y_s - w_s) | h_{t-1}] \quad \text{given } \tau \text{ is infinite}$$

Agent Payoff $V^A(h_{t-1}, \sigma, a)$

$$= \mathbb{E}[\sum_{t \leq s \leq \tau} e^{-\rho(s-t)} (w_s + \gamma(1-a_s)) + e^{-\rho(\tau-t)} R | h_{t-1}] \quad \text{given τ is bounded}$$

$$=\mathbb{E}[\sum e^{-
ho(s-t)}(w_s+\gamma(1-a_s))|h_{t-1}]$$
 given au is infinite

- We denote $V^P(\sigma, a)$ and $V^A(\sigma, a)$ the payoffs at the beginning of period 1
- If a contract (σ, a) satisfies

$$V^A(h_t, \sigma, a) \geq V^A(h_t, \sigma, \bar{a})$$

for all $\bar{a} = \{\bar{a}(h_t)\}$ and for all h_t , then it is **incentive compatible**.

• The optimal contract is (σ, a) such that σ maximizes $V^P(\sigma, a)$ and is incentive compatible.

- ullet From now on, for simplicity, we suppress the arguments σ, a in the payoff functions
- At period 1, let $a_1 = a(h_0)$, we define $V_*^P(h_1)$, $V_*^A(h_1)$ as following:

$$V_*^P(h_1) = p_1[q(h_1)(-c + rV^P) + (1 - q(h_1)(-w(h_1) + rV^P(h_1))]$$

$$+ (1 - p_1)[-w(h_1) + rV^P(h_1)]$$

$$V_*^A(h_1) = p_1[q(h_1)R + (1 - q(h_1)(w(h_1) + rV^A(h_1))]$$

$$+ (1 - p_1)[w(h_1) + rV^A(h_1)]$$

- i.e., $V_*^P(\cdot)$, $V_*^A(\cdot)$ are the expected payoffs after the realization of y_t , p_t but before the principal's decision q_t and payment transfer w_t
- Note that we also suppress the argument p_t in $V_*^P(\cdot), V_*^A(\cdot)$

• We can rewrite V^A , V^P as

$$V^P = \mathbb{E}[y_1 + V_*^P(h_1)|h_0]$$

$$V^A = \mathbb{E}[(1 - a_1)\gamma + V_*^A(h_1)|h_0]$$

- Next, we will reduce the dynamic problem to a static variational problem (Spear and Srivastava 1987)
- Briefly, we will define functions U^P , U^A to update both parties' expected payoffs for period t+1 conditional on the period t outcomes and their initial expected payoffs V^P , V^A .

Reduction of the Problem

- Let $\mathcal{V}^{\mathcal{P}} = \{V^{P}(h_t)\}$ and $\mathcal{V}^{\mathcal{A}} = \{V^{A}(h_t)\}$ where theses values are calculated at the optimal contract
- For each v in $\mathcal{V}^{\mathcal{A}}$, consider solving the optimization problem:
- maximize V^P at period 1 subject to agent receiving v and incentive compatible constraint

Reduction of the Problem

- Then, we denote $U^P(v)$ the principal's payoff in the solution to this problem
- Also, we have a(v) the agent's action, $\sigma(v, y)$ the principal decisions, and $U^A(v, y)$ be the agent's payoff at period t = 2
- By construction, if $v = V^A(h_{t-1})$, we should have

$$U^{P}(v) = V^{P}(h_{t-1}), \ U^{A}(v, y) = V^{A}(h_{t}), \ a(v) = a(h_{t-1}), \ \sigma(v, y) = \sigma(h_{t})$$

We could characterize the optimization problem by four functions:

$$U^{A}: \mathcal{V}^{A} \times \mathbb{R} \to \mathcal{V}^{A}$$

$$U^{P}: \mathcal{V}^{A} \to \mathcal{V}^{P}$$

$$\sigma: \mathcal{V}^{A} \times \mathbb{R} \to \mathbb{R} \times \{0, 1\}$$

$$a: \mathcal{V}^{A} \to \{0, 1\}$$

which satisfies the following (necessary) conditions:

Necessary Conditions

- **1** $v = \mathbb{E}[(1 a(v))\gamma + V_*^A(v, y)] \ge \mathbb{E}[(1 a)\gamma + V_*^A(v, y)]$ for all $a \in \{0, 1\}$
- $2 \ U^A(v,y) = \mathbb{E}[1 a(U^A(v,y))\gamma + V_*^A(U^A(v,y),y')] \text{ for all } v \in \mathcal{V}^A, y \in \{0,1\}$
- $\textbf{3} \ \ U^P(v) = \mathbb{E}[y + V^P_*(v,y)] \ \text{for all} \ v \in \mathcal{V}^\mathcal{A}, y \in \{0,1\}$

where

$$V_*^P(v,y) = p_t[q(v,y)(-c+rV^P) + (1-q(v,y))(-w(v,y)+rU^P(U^A(v,y))] + (1-p_t)[-w(v,y)+rU^P(U^A(v,y))] \text{ for all } v \in \mathcal{V}^A, y \in \{0,1\}$$

$$V_*^A(v,y) = p_t[q(v,y)R + (1-q(v,y))(w(v,y) + rU^A(v,y)) + (1-p_t)[w(v,y) + rU^A(v,y)] \text{ for all } v \in \mathcal{V}^A, y \in \{0,1\}$$

Claims

We could make following claims:

- w(v, y) is weakly increasing in y
- w(v,0) = 0 for all v
- $U^A(v,y)$ is weakly increasing in y
- $U^P(v)$ is weakly decreasing and concave (without proof yet)

This implies the principal's payoff should not be dominated by the convex combination of any other two potential allocations.

- Contract has no termination: q(v, y) = 0 for all v, y
 - \Rightarrow Stopping time $\tau = \infty$
 - ⇒ Infinite period contract
- Contract has termination: $\exists v, y$ such that q(v, y) = 1
 - \Rightarrow Random stopping time au which is bounded above
 - ⇒ Finite period contract

Proposition

An infinite static contract with no termination is feasible (but maybe suboptimal) for the following two scenarios:

(1)
$$a(v) = 0$$
, $w(v, y) = 0$, $q(v, y) = 0$ for all v, y ; (only possible choice if $c = 0$)

(2)
$$a(v) = 1$$
, $w(v, 1) = w^* = \frac{\gamma}{\alpha}$, $w(v, 0) = 0$, $q(v, y) = 0$ for all v, y .

In these two scenarios, $V^P(\cdot)$, $V^A(\cdot)$ assign constant values for all h_t .

In (1), incentive compatibility is automatically satisfied. In (2), incentive compatibility could be satisfied by providing $w \ge \frac{\gamma}{\alpha}$.

Moreover, in (2), to ensure $q(\cdot)=0$, the principal's participation constraint needs to satisfy $c>w(v,1)=\frac{\gamma}{\alpha}$.

(1) yields principal $V^P=rac{\beta y}{
ho}$ and (2) yields $V^P=rac{\alpha (y-w^*)}{
ho}.$

We will assume (2) is feasible and strictly better than (1).

Proposition

Assume $c<\frac{\gamma}{\alpha}$ and $y\geq\frac{\gamma}{\alpha-\beta}$, in the optimal contract, the principal will induce at least finite periods of a=1.

The optimal dynamic contract payoff to the principal has a lower bound equal to payoff of the static contract which induces a=1 for all periods.

We will keep this assumption in the following sections.

Note that since $U^P(v)$ is weakly decreasing and $U^P(v)$ is bounded below by contract (2), v is also bounded above by what contract (2) yields, which is $v \leq V^A = \frac{\gamma}{\rho}$ (equal to contract (1)).

Proposition

The optimal contract payoff to the agent has a upper bound equal to payoff of the static contract which requires a=1 or a=0 for all periods.

Proposition

For any dynamic contract with no termination, there exists v^* such that for $v > v^*$.

$$a(v) = 0, w(v, y) = 0, U^{A}(v, y) = \frac{v - \gamma}{r}, U^{P}(v) = \beta y + rU^{P}(\frac{v - \gamma}{r})$$

for all y, i.e., the contract requires a = 0 and deducts credits from the agent.

Proposition

- (1) $q(v,0)=1 \Rightarrow q(v,1)=1$;
- (2) $q(v,1)=0 \Rightarrow q(v,0)=0$

Proposition

q(v,y) is weakly increasing in yq(v,y) is weakly increasing in v for $v \in \{v | w(v,y) = 0\}$

Proposition

For contract starts with q(v,y)=0, for $v\in \{v|w(v,y)=0\}$, $\exists \underline{v}<\overline{v}$ such that

- (1) for $v < \underline{v}, q(v, y) = 0$
- (2) for $v \in [\underline{v}, \overline{v}], q(v, 0) = 0, q(v, 1) = 1$
- (3) for $v > \overline{v}$, q(v, y) = 1 (if applies)

for all y

◆□ > 4回 > 4 = > 4 = > = ×9.0°