Department of Mathematics

MTL 100: Calculus

Minor 2: 2017-18 Semester I

Total marks: 20

Max Time: 1 hr

1. (a) Let $f:[a,b] \to [a,b]$ be a continuous function. Then prove that there exists a point $x_0 \in [a,b]$ such that $f(x_0) = x_0$.

- (b) Determine the uniform continuity of $g(x) = \tan x, x \in (0, \frac{\pi}{2}).$ [3+2]
- 2. Consider the function $f(x) = \sin x, x \in (0, \frac{\pi}{4}).$ [3+2]
 - (a) Find the Taylor polynomial $P_4(x)$ of degree 4 around $x = \frac{\pi}{6}$
 - (b) Estimate the error in the above approximation of f(x) by $P_4(x)$ in interval $(0, \frac{\pi}{4})$.
- 3. Determine the radius of convergence of the following power series: [3+2]

(a)
$$\sum_{n=1}^{\infty} \frac{n^{n^2} x^n}{(n+1)^{n^2}}$$
 (b) $\sum_{n=2}^{\infty} \frac{x^n}{\log n}$

4. Let
$$f(x,y) = \begin{cases} \frac{\sqrt{|y|}}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 [3+2]

- (a) Is f continuous at (0,0)?
- (b) Do partial derivatives f_x and f_y exist at (0,0)? Justify.