Arriba de la capa de transporte está la **capa de aplicación.** Contiene todos los protocolos de nivel más alto. Los primeros incluyeron una terminal virtual (TELNET), transferencia de archivos (FTP) y correo electrónico (SMTP), como se muestra en la figura 1-22. El protocolo de terminal virtual permite que un usuario en una máquina se registre en una máquina remota y trabaje ahí. El protocolo de transferencia de archivos proporciona una manera de mover con eficiencia datos de una máquina a otra. El correo electrónico era originalmente sólo un tipo de transferencia de archivos, pero más tarde se desarrolló un protocolo especializado (SMTP) para él. Con el tiempo, se han agregado muchos otros protocolos: DNS (Sistema de Nombres de Dominio) para la resolución de nombres de *host* en sus direcciones de red; NNTP, para transportar los artículos de noticias de USENET; HTTP, para las páginas de World Wide Web, y muchos otros.

La capa host a red

Debajo de la capa de interred hay un gran vacío. El modelo de referencia TCP/IP en realidad no dice mucho acerca de lo que pasa aquí, excepto que puntualiza que el *host* se tiene que conectar a la red mediante el mismo protocolo para que le puedan enviar paquetes IP. Este protocolo no está definido y varía de un *host* a otro y de una red a otra. Este tema rara vez se trata en libros y artículos sobre TCP/IP.

1.4.3 Comparación entre los modelos de referencia OSI y TCP/IP

Los modelos de referencia OSI y TCP/IP tienen mucho en común. Los dos se basan en el concepto de una pila de protocolos independientes. Asimismo, la funcionalidad de las capas es muy parecida. Por ejemplo, en ambos modelos las capas que están arriba de, incluyendo a, la capa de transporte están ahí para proporcionar un servicio de transporte independiente de extremo a extremo a los procesos que desean comunicarse. Estas capas forman el proveedor de transporte. De nuevo, en ambos modelos, las capas que están arriba de la de transporte son usuarias orientadas a la aplicación del servicio de transporte.

A pesar de estas similitudes fundamentales, los dos modelos también tienen muchas diferencias. En esta sección nos enfocaremos en las diferencias clave entre estos dos modelos de referencia. Es importante tener en cuenta que estamos comparando los *modelos de referencia*, no las *pilas de protocolos* correspondientes. Más adelante explicaremos los protocolos. Si desea un libro dedicado a comparar y contrastar TCP/IP y OSI, vea (Piscitello y Chapin, 1993).

Tres conceptos son básicos para el modelo OSI:

- 1. Servicios.
- 2. Interfaces.
- 3. Protocolos.

Probablemente la contribución más grande del modelo OSI es que hace explícita la distinción entre estos tres conceptos. Cada capa desempeña algunos servicios para la capa que está arriba de ella. La definición de *servicio* indica qué hace la capa, no la forma en que la entidad superior tiene acceso a ella, o cómo funciona dicha capa. Define el aspecto semántico de la capa.

La *interfaz* de una capa indica a los procesos que están sobre ella cómo accederla. Especifica cuáles son los parámetros y qué resultados se esperan. Incluso, no dice nada sobre cómo funciona internamente la capa.

Por último, una capa es quien debe decidir qué *protocolos* de iguales utilizar. Puede usar cualesquier protocolos que desee, en tanto consiga que se haga el trabajo (es decir, proporcione los servicios ofrecidos). También puede cambiarlos cuando desee sin afectar el software de las capas superiores.

Estas ideas encajan muy bien con las ideas modernas sobre la programación orientada a objetos. Un objeto, como una capa, cuenta con un conjunto de métodos (operaciones) que pueden ser invocados por procesos que no estén en dicho objeto. La semántica de estos métodos define el conjunto de servicios que ofrece el objeto. Los parámetros y resultados de los métodos forman la interfaz del objeto. El código interno del objeto es su protocolo y no es visible o no tiene importancia fuera del objeto.

Originalmente, el modelo TCP/IP no distinguía entre servicio, interfaz y protocolo, aunque las personas han tratado de readaptarlo con el propósito de hacerlo más parecido al OSI. Por ejemplo, los únicos servicios ofrecidos realmente por la capa de interred son SEND IP PACKET y RECEIVE IP PACKET.

Como consecuencia, los protocolos del modelo OSI están mejor ocultos que los del modelo TCPI/IP y se pueden reemplazar fácilmente conforme cambia la tecnología. La facilidad para realizar tales cambios es uno de los objetivos principales de tener protocolos en capas.

El modelo de referencia OSI se vislumbró *antes* de que se inventaran los protocolos correspondientes. Esta clasificación significa que el modelo no estaba diseñado para un conjunto particular de protocolos, un hecho que lo hizo general. Una deficiencia de esta clasificación es que los diseñadores no tenían mucha experiencia con el asunto y no tenían una idea concreta de qué funcionalidad poner en qué capa.

Por ejemplo, originalmente la capa de enlace de datos sólo trataba con redes de punto a punto. Cuando llegaron las redes de difusión, se tuvo que extender una nueva subcapa en el modelo. Cuando las personas empezaron a construir redes reales utilizando el modelo OSI y los protocolos existentes, se descubrió que estas redes no coincidían con las especificaciones de los servicios solicitados (maravilla de maravillas), por lo que se tuvieron que integrar subcapas convergentes en el modelo para proporcionar un espacio para documentar las diferencias. Por último, el comité esperaba en un principio que cada país tuviera una red, controlada por el gobierno y que utilizara los protocolos OSI, pero nunca pensaron en la interconectividad de redes. Para no hacer tan larga la historia, las cosas no sucedieron como se esperaba.

Con TCP/IP sucedió lo contrario: los protocolos llegaron primero y el modelo fue en realidad una descripción de los protocolos existentes. No había problemas para ajustar los protocolos al modelo. Encajaban a la perfección. El único problema era que el *modelo* no aceptaba otras pilas de protocolos. Como consecuencia, no era útil para describir otras redes que no fueran TCP/IP.

Volviendo de los asuntos filosóficos a los más específicos, una diferencia patente entre los dos modelos es el número de capas: el modelo OSI tiene siete y el TCP/IP sólo cuatro. Los dos tienen capas de (inter)red, transporte y aplicación, pero las otras capas son diferentes.

Otra diferencia está en el área de la comunicación orientada a la conexión comparada con la no orientada a la conexión. El modelo OSI soporta ambas comunicaciones en la capa de red, pero sólo la de comunicación orientada a la conexión en la capa de transporte, donde es importante (porque el servicio de transporte es transparente para los usuarios). El modelo TCP/IP sólo tiene un modo en la capa de red (no orientado a la conexión) pero soporta ambos modos en la capa de transporte, lo que da a los usuarios la oportunidad de elegir. Esta elección es importante especialmente para protocolos sencillos de solicitud-respuesta.

1.4.4 Crítica al modelo OSI y los protocolos

Ni el modelo OSI y sus protocolos ni el modelo TCP/IP y sus protocolos son perfectos. Se les pueden hacer, y se les han hecho, críticas. En ésta y en la siguiente sección veremos algunas de estas críticas. Empezaremos con el modelo OSI y más adelante examinaremos el modelo TCP/IP.

En la época en la que se publicó la segunda edición de este libro (1989), a muchos expertos en el campo les pareció que el modelo OSI y sus protocolos iban a dominar el mundo y a desplazar a todos los demás. Eso no sucedió. ¿Por qué? Sería útil echar un vistazo a algunas lecciones. Éstas se pueden resumir así:

- 1. Aparición inoportuna.
- 2. Mala tecnología.
- 3. Malas implementaciones.
- 4. Malas políticas.

Aparición inoportuna

Primero veamos la razón número uno: aparición inoportuna. El tiempo en que se establece un estándar es absolutamente crítico para el éxito. David Clark, del M.I.T., tiene una teoría de estándares que llama *apocalipsis de los dos elefantes*, la cual se ilustra en la figura 1-23.

Esta figura muestra la cantidad de actividad que rodea a un sujeto nuevo. Cuando se descubre primero el sujeto, hay una explosión de actividad de investigación en forma de exposiciones, documentos y reuniones. Después de un tiempo esta actividad disminuye, las empresas descubren el sujeto y surge la ola de miles de millones de dólares de inversión.

Es esencial que los estándares se escriban en el punto intermedio entre los dos "elefantes". Si los estándares se escriben demasiado pronto, antes de que se termine la investigación, el tema podría no estar entendido por completo; el resultado son malos estándares. Si se escriben demasiado tarde, varias empresas podrían haber hecho ya inversiones importantes en diversas maneras de hacer las cosas que los estándares han ignorado. Si el intervalo entre los dos elefantes es muy corto (porque cada cual tiene prisa por empezar), las personas que están desarrollando los estándares podrían fracasar.

Figura 1-23. El apocalipsis de los dos elefantes.

Al parecer, los protocolos OSI estándar han sido vencidos. Los protocolos TCP/IP competidores ya eran ampliamente utilizados por las universidades investigadoras al momento en que aparecieron los protocolos OSI. Mientras la ola de los miles de millones de inversión aún no golpeaba, el mercado académico era bastante grande para que los proveedores empezaran a hacer ofertas cautas de los productos TCP/IP. Cuando OSI llegó, no quisieron soportar una segunda pila de protocolos hasta que se vieran forzados, por lo que no hubo ofertas iniciales. Puesto que cada empresa esperaba que la otra diera el primer paso, ninguna lo hizo y OSI nunca prosperó.

Mala tecnología

La segunda razón por la que OSI no tuvo éxito es que tanto el modelo como los protocolos tienen defectos. La elección de las siete capas fue más política que técnica, y dos de las capas (la de sesión y la de presentación) están casi vacías, mientras que las otras dos (la de enlace de datos y la de red) están saturadas.

El modelo OSI, junto con el servicio asociado de definiciones y protocolos, es extraordinariamente complejo. Si se apilan, los estándares impresos ocupan una fracción importante de un metro de papel. Incluso son difíciles de implementar y de operación deficiente. En este contexto, nos viene a la mente un enigma propuesto por Paul Mockapetris y citado en (Rose, 1993):

P: ¿Qué obtiene cuando cruza un gángster con un estándar internacional?

R: Alguien que le hace una oferta que usted no entiende.

Además de ser incomprensible, otro problema con OSI es que algunas funciones, como direccionamiento, control de flujo y control de errores, reaparecen una y otra vez en cada capa. Por

ejemplo, Saltzer y cols. (1984) han apuntado que para ser efectivo el control de errores, se debe hacer en la capa superior, puesto que repetirlo una y otra vez en cada una de las capas inferiores suele ser innecesario e ineficaz.

Malas implementaciones

Ante la enorme complejidad del modelo y los protocolos, no es de sorprender que las implementaciones iniciales fueran grandes, pesadas y lentas. Todos los que lo intentaron fracasaron. No le tomó mucho tiempo a las personas asociar OSI con "baja calidad". Aunque los productos mejoraron con el paso del tiempo, la imagen persistió.

En contraste, una de las primeras implementaciones de TCP/IP era parte de UNIX de Berkeley y fue bastante buena (sin mencionar que era gratis). Las personas pronto empezaron a utilizarla, lo que la llevó a un uso mayor por la comunidad, y esto a su vez condujo a mejoras que la llevaron a un mayor uso en la comunidad. Aquí la espiral fue ascendente en vez de descendente.

Malas políticas

A causa de la implementación inicial, muchas personas, sobre todo en el nivel académico, pensaban que TCP/IP era parte de UNIX, y en la década de 1980, UNIX no parecía tener paternidad alguna en la universidad.

Por otra parte, se tenía la idea de que OSI sería la criatura de los ministerios de telecomunicación de Europa, de la comunidad europea y más tarde del gobierno de los Estados Unidos. Esta creencia era cierta en parte, pero no ayudaba mucho la idea de un manojo de burócratas gubernamentales intentando poner en marcha un estándar técnicamente inferior al mando de los investigadores y programadores pobres que estaban en las trincheras desarrollando realmente redes de computadoras. Algunas personas compararon este desarrollo con la ocasión en que IBM anunció, en la década de 1960, que PL/I era el lenguaje del futuro, o cuando más tarde el DoD corregía esto anunciando que en realidad era Ada.

1.4.5 Crítica del modelo de referencia TCP/IP

El modelo de referencia TCP/IP y los protocolos también tienen sus problemas. En primer lugar, el modelo no distingue claramente los conceptos de servicio, interfaz y protocolo. Una buena ingeniería de software requiere la diferenciación entre la especificación y la implementación, algo que OSI hace con mucho cuidado y que TCP/IP no hace. En consecuencia, el modelo TCP/IP no es una guía para diseñar redes nuevas mediante tecnologías nuevas.

En segundo lugar, el modelo TCP/IP no es general del todo y no está bien ajustado para describir ninguna pila de protocolos más que de TCP/IP. Por ejemplo, es completamente imposible tratar de utilizar el modelo TCP/IP para describir Bluetooth.

En tercer lugar, la capa *host* a red no es en realidad una capa del todo en el sentido normal del término, como se utiliza en el contexto de los protocolos de capas. Es una interfaz (entre la capa de red y la de enlace de datos). La distinción entre una interfaz y una capa es crucial y nadie debe ser descuidado al respecto.

En cuarto lugar, el modelo TCP/IP no distingue (ni menciona) las capas física y de enlace de datos. Son completamente diferentes. La capa física tiene que ver con las características de transmisión de comunicación por cable de cobre, por fibra óptica e inalámbrica. El trabajo de la capa de enlace de datos es delimitar el inicio y fin de las tramas y captarlas de uno a otro lado con el grado deseado de confiabilidad. Un modelo adecuado debería incluir ambas como capas separadas. El modelo TCP/IP no hace esto.

Por último, aunque los protocolos IP y TCP se idearon e implementaron con sumo cuidado, muchos de los demás protocolos fueron hechos con fines específicos, producidos por lo general por estudiantes de licenciatura que los mejoraban hasta que se aburrían. Posteriormente, las implementaciones de tales protocolos se distribuyeron de manera gratuita, lo que dio como resultado un uso amplio y profundo y, por lo tanto, que fueran difíciles de reemplazar. Algunos de ellos ahora están en apuros. Por ejemplo, el protocolo de terminal virtual, TELNET, se diseñó para una terminal de teletipo mecánica de 10 caracteres por segundo. No sabe nada de interfaces gráficas de usuario ni de ratones. No obstante, 25 años más tarde aún tiene un amplio uso.

En resumen, a pesar de sus problemas, el *modelo* OSI (excepto las capas de sesión y presentación) ha probado ser excepcionalmente útil en la exposición de redes de computadoras. En contraste, los *protocolos* OSI no han sido muy populares. Sucede lo contrario con TCP/IP: el *modelo* es prácticamente inexistente, pero los *protocolos* tienen un amplio uso. En este libro utilizaremos un modelo OSI modificado pero nos concentraremos principalmente en el modelo TCP/IP y los protocolos relacionados, así como en los novísimos 802, SONET y Bluetooth. En efecto, utilizaremos el modelo híbrido de la figura 1-24 como marco de trabajo para este libro.

Figura 1-24. Modelo de referencia híbrido que se usará en este libro.

1.5 REDES DE EJEMPLO

El tema de las redes de computadoras cubre muchos y diversos tipos de redes, grandes y pequeñas, bien conocidas y no tan bien conocidas. Tiene diferentes objetivos, escalamientos y tecnologías. En las siguientes secciones veremos algunos ejemplos para tener una idea de la variedad que se puede encontrar en el área de la conectividad de redes.