Multispectral Object Detection using DETR

UNIVERSITY of HOUSTON | ECE

Alan Devkota, Jayson Varughese, Utkarsh Gupta, Yidan Shen

Table of Contents

- Introduction
 - Application
 - Related work
 - Dataset
 - Challenges
- Transformer Architecture
- Methodology
- Results
- Future Work
- References

Introduction

- Multispectral data for object recognition and location
- Cross-attention
- Detection Transformers (DETR)

• Healthcare– patient diagnosis (UltraSound, CT, X-rays)

Medication (text based modality), test, daily routine dataset (Tabular text)

• Autonomous driving (camera, IR, radar)

• Military reconnaissance (camera, IR, night-vision equipment)

Related work

End-to-End Object Detection with Transformers

- Object detection method using transformer architecture, achieving an end-to-end process.
- Simplifies object detection by directly predicting without needing region proposals or complex feature extraction.
- Utilizes the transformer's self-attention mechanism to better adapt to different object sizes, shapes, and understand global context.
- Implements bipartite matching algorithm in training to streamline model-ground truth object associations.

Dataset

KAIST Dataset:

- Multispectral pedestrian detection dataset.
- Developed by Korea Advanced Institute of Science and Technology.
- Includes visible light and infrared images.
- Captured during various times, weather, and lighting conditions.
- Utilized for advanced computer vision algorithms.

B * B

- Applicable in autonomous driving and urban surveillance.
- Aids in pedestrian identification and tracking.
- Addresses complex environments and diverse spectral characteristics.

E . E

E " E

E . E

Challenges

- KAIST dataset annotations differ from DETR's COCO format.
- Original DETR model requires modification for the encoder.
- Determining layer count and attention in encoders.
- Hard to find fully aligned multimodal datasets, unannotated ones need pre-processing.
- Training on small datasets yields poor results, large datasets needed.
- Uses DETR architecture with 2 parallel modalities, requiring token concatenation in encoders/decoders.
- Matching tensor dimensions in each layer for multimodal dataset is challenging.

Attention is all you need

Self Attention Mechanism used in transformer

DETR Architecture

CNN Backbone

Encoder - Decoder transformers

Feed forward network (FFN)

Methodology (1st stage)

- Two modalities
 - o RGB
 - o IR
- Feature extract
 - Resnet-50
 - o FFN
- Encoder
 - Multi-head Self-attention
 - o FFN
- Positional Encoding
 - DetrSinePositionalEmbedding

Methodology (1st stage)

• ResNet-50

Methodology (1st stage)

- Role of encoder
 - Pixel belonging to same image have high attention
 - Repeat for other source points

Methodology (2nd stage)

- Object queries
- Decoder
 - Multi-head Self-attention
 - Multi-head Cross-attention
 - o FFN
- FFN
 - Bounding box
 - Class
- Positional Encoding
 - DetrSinePositionalEmbedding

Methodology (2nd stage)

- Bipartite Matching
 - Hungarian algorithm

Predi

Methodology

Environment

GPU	Name		Persist	ence-M	Bus-Id Disp.A	Volatile	Uncorr. ECC
Fan 	Temp	Perf	Pwr:Usa	ge/Cap 	Memory-Usage	GPU-Util 	Compute M. MIG M.
===== 0	===== Tesla	 V100	-===== ·DGXS	=====+ 0ff	-=====================================	:+====== 	 0
N/A 	38C	Р0	38W /	300W	190MiB / 32768MiB	0% 	Default N/A
1	Tesla	V100	·DGXS	0ff	00000000:08:00.0 Off		
N/A 	36C	P0	39W /	300W	9MiB / 32768MiB	0% 	Default N/A
2	Tesla	V100	·DGXS	0ff	00000000:0E:00.0 Off	.+ 	
N/A 	37C	P0	39W /	300W	9MiB / 32768MiB	0%	Default N/A
3	Tesla	V100	·DGXS	Off	00000000:0F:00.0 Off		
N/A 	35C	Р0	37W /	300W	9MiB / 32768MiB	0% 	Default N/A
+						+	

Settings

- Input image: 512x640
- Resnet 50, 6 x DETR encoder layers, 6 x DETR Decoder layers, two classifier layers.

Settings:

- Number of epoch for training = 50, logs will be written every 5 steps.
- Trained on Tesla V100
- Initial learning rate = 1*10^-4 for main part, 1*10^-5 for backbone, weight decay used for regularization = 1*10^-5 (learning rate scheduler would change these rates)

• Total 41.5 M parameters, 41.3 M are trainable, 222K are non-trainable, Total estimated size of model parameters = 116.01 MB

Training Results

Results

 $training_loss$

validation_loss

train_loss_bbox

validation_loss_bbox

validation_loss_giou

Detection Examples for FootballPlayers Dataset

image_comp_actual_detected

image_compared_to_detection

Detection Example for Random Object (with and without NMS)

Initial with NMS

Initial without NMS

Example of KAIST dataset

IR Image RGB Image

Results on KAIST Dataset

Future Work

- Extend the two modalities to three modalities
- New architecture use two encoders

Encoder

Add & Norm

FFN

Add & Norm

Multi-Head Self-Attention

References

- [1]. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. arXiv preprint arXiv:2005.12872.
- [2]. Cai, Z., Vasconcelos, N.: Cascade R-CNN: High quality object detection and instance segmentation. PAMI (2019)
- [3]. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)
- [4]. He, K., Girshick, R., Doll'ar, P.: Rethinking imagenet pre-training. In: ICCV (2019)
- [5]. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
- [6]. Hosang, J.H., Benenson, R., Schiele, B.: Learning non-maximum suppression. In: CVPR (2017)
- [7]. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)
- [8]. Kirillov, A., Girshick, R., He, K., Doll'ar, P.: Panoptic feature pyramid networks. In: CVPR (2019)
- [9]. Kuhn, H.W.: The hungarian method for the assignment problem (1955)
- [10]. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Doll'ar, P.: Focal loss for dense object detection. In: ICCV (2017)
- [11]. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll'ar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)
- [12]. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS (2019)
- [13]. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. PAMI (2015)
- [14]. Salvador, A., Bellver, M., Baradad, M., Marqu'es, F., Torres, J., Gir'o, X.: Recurrent neural networks for semantic instance segmentation. arXiv:1712.00617 (2017)
- [15]. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: Fully convolutional one-stage object detection. In: ICCV (2019)
- [16]. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)
- [17]. Zhou, X., Wang, D., Kr"ahenb"uhl, P.: Objects as points. arXiv:1904.07850 (2019)

Thank You

Miscellaneous

- Input image: 512x640
- Resnet 50, 6 x DETR encoder layers, 6 x DETR Decoder layers, two classifier layers.

Name

41.3 M

222 K

41.5 M

166.010

Type

0 | model | DetrForObjectDetection | 41.5 M

Total estimated model params size (MB)

Trainable params

Total params

Non-trainable params

Params

Settings:

- Number of epoch for training = 50, logs will be written every 5 steps.
- Trained on Tesla V100
- Initial learning rate = 1*10^-4 for main part, 1*10^-5 for backbone, weight decay used for regularization = 1*10^-5 (learning rate scheduler would change these rates)