Foundations of data science, summer 2020

Jonathan Lennartz, Michael Nüsken, Annika Tarnowski

3. Exercise sheet Hand in solutions until Thursday, 7 May 2020, 12:00

Exer	cise 3.1 (Cylinder). (8 points)	
Given a d -dimensional circular cylinder of radius r and height h		
(i)	What is the surface in terms of $\operatorname{vol}(B^{d'})$ and $\operatorname{surface}(B^{d'})$ for appropriate d' ?	6
(ii)	What is the volume?	2
Exer	cise 3.2 (Annuli). (7 points)	
(i)	Compute and estimate the volume of the $\frac{1}{100}$ -annulus compared to the volume of the d -dimensional ball B^d .	1
(ii)	Compute and estimate the volume of the $\frac{1}{\sqrt{d}}$ -annulus compared to the volume of the d -dimensional ball B^d .	1
(iii)	Compute and estimate the volume of the $\frac{1}{d^2}$ -annulus compared to the volume of the d -dimensional ball B^d .	1
(iv)	Plot the three functions and the relative volume of the $\frac{1}{d}\text{-annulus}$ for $d=120.$	2
(v)	For which ε does the ε -annulus have at least 99% of the ball volume?	2
Exer	cise 3.3 (Gamma). (0 points)	
(i)	Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	+0
	<i>Hint</i> : Change the variable and use $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.	
(ii)	Recall the formula for integration by parts (look it up if need be), $\int_a^b f(x)g'(x) dx = \dots$, where f and g are any suitably nice functions.	+0
	Use this formula to show that indeed $\Gamma(x+1) = x\Gamma(x)$.	