南大学考试试 暨

得分	评阅人

一、填空题(共10小题,每小题2分,共20分)

- 1. 己知 3 阶矩阵 A 的特征值为 0, -2, 3, 且矩阵 A 与 B 相似, 则|B+I|=_____.
- 2. 若 3 维列向量 α , β 满足 $\alpha^T\beta=2$,则矩阵 $\beta\alpha^T$ 的非零特征值为_____.
- 3. 设矩阵 $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $r(A^3) =$ _______.
- 4. 设 $\alpha_1, \alpha_2, \alpha_3$ 为3维列向量,记矩阵

$$A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3).$$

若| A|=1,则| B|=_____.

- 5. 设 2 阶实对称矩阵 A 的特征值为 1, 2. 若向量 $(1, 2)^T$ 是 A 对应于特征值 1 的 特征向量,则 A 对应于特征值 2 的全部特征向量为______
- 6. 设矩阵 $A = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, 矩阵 B 满足 BA = B + 2I, 则 |B| =______.
- 7. 设 A 为 2 阶矩阵,将 A 的第 2 列的-2 倍加到第 1 列得到矩阵 B . 若 $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则
- 9. 若齐次线性方程 $\begin{cases} ax_1 + x_2 + x_3 = 0 \\ x_1 + ax_2 + x_3 = 0 \text{ 有非零解,则 } a \text{ 的值为 } \underline{\hspace{1cm}}. \end{cases}$

得分	评阅人

1. 行列式 $\left a_{ij}\right = \begin{vmatrix} 0 & -1 \\ 1 & 0 \\ -1 & 1 \end{vmatrix}$	1 -1 中元素 a_{21} 的代数	(余子式为	()
(a) -2	(b) -1	(c) 1	(d) 2	
2. 设 <i>n</i> 阶矩阵 <i>A</i> , <i>B</i> , <i>C</i> ī	可逆且满足 $ABC = I$,则 <i>B</i> ⁻¹ 为	()
(a) $A^{-1}C^{-1}$	(b) $C^{-1}A^{-1}$	(c) AC	(d) <i>CA</i>	
3. 设矩阵 $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \\ -1 & -1 \end{pmatrix}$	$\begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 <i>A</i> 与 <i>B</i>	()
(a) 合同且相似 (c) 不合同但相似	(b) 合 (d) 既	·同但不相似 :不合同也不相似		
4. 设向量组 $\alpha_1, \alpha_2, \alpha_3$,	$lpha_{\scriptscriptstyle 4}$ 线性相关,则下面	陈述正确的是	()
(b) 必有两个向量可(c) 必有三个向量可	「以表示为其余向量的 可以表示为其余向量。 可以表示为其余向量。 表示为其余向量的线。	的线性组合 的线性组合		
5. 设 $\alpha_1, \alpha_2, \alpha_3$ 是齐次	线性方程组 $Ax = 0$ 的]一个基础解系,原	则下面向量组中,	可
以作为 $Ax = 0$ 的基础	础解系的是		()
(a) $\alpha_1, \alpha_2, \alpha_1 + \alpha_2$		(b) $\alpha_1, \alpha_2, \alpha_1$	$-\alpha_2$	
(c) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3$,	$\alpha_3 + \alpha_1$	(d) $\alpha_1 - \alpha_2, \alpha_2$	$-\alpha_3, \alpha_3 - \alpha_1$	
6. 设 <i>n</i> 阶矩阵 <i>A</i> 满足	2A-3I =0,	公有特征值为	()
(a) $-3/2$	(b) $-2/3$	(c) 2/3	(d) 3/2	
7. 设 A, B 为 2 阶矩阵	,若 <i>A</i> = 2, <i>B</i> = 3,贝	則分块矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的	J伴随矩阵为()
(a) $\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix}$	(b) $\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}$	(c) $ \begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix} $		*
8. 设 <i>A</i> 为 <i>n</i> 阶矩阵,	若 $A^3 = O$,则下面陈之	述 正确的是	()
	+ <i>A</i> 不可逆 (b) <i>A</i> 4 不可逆 (d)			
9. 设礼, 礼 是矩阵 A 的	」两个不同特征值,对	付应的特征向量分!	别为 α_1 , α_2 ,则。	$\alpha_{\scriptscriptstyle 1}$,

 $A(\alpha_1 + \alpha_2)$ 线性无关的充分必要条件是

)

- (a) $\lambda_1 \neq 0$ (b) $\lambda_1 = 0$ (c) $\lambda_2 \neq 0$ (d) $\lambda_2 = 0$

- 10. 设 A, B 均是 $m \times n$ 矩阵, 现有 4 个命题

 - ② 若 $r(A) \ge r(B)$,则 Ax = 0的解均是 Bx = 0的解

 - ④ 若 r(A) = r(B),则 Ax = 0与 Bx = 0 同解

以上命题中正确的是

()

- (a) ① ②
- (b) ① ③
 - (c) ② ④
- (d) ② ③

得分	评阅人

三、计算题(共4小题,每小题8分,共32分)

- 2. 求向量组 $\alpha_1 = (1,1,1,3)^T$, $\alpha_2 = (-1,-3,5,1)^T$, $\alpha_3 = (3,2,-1,4)^T$, $\alpha_4 = (-2,-6,10,2)^T$ 的 一个极大无关组,并将其余向量用该极大无关组线性表示.
- 3. 求一非退化线性变换, 化二次型

$$f(x_1, x_2, x_3) = -4x_1x_2 + 2x_1x_3 + 2x_2x_3$$

为标准型.

4. 求矩阵
$$A = \begin{pmatrix} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{pmatrix}$$
的逆矩阵.

得分	评阅人

四、计算题(共2小题,每小题11分,共22分)

- 1. 设矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 求正交矩阵 Q, 使 $Q^{-1}AQ$ 为对角矩阵.
- 2. 用基础解系表示如下线性方程组的全部解.

第 3 页 共 10 页

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1 \\ 4x_1 + 2x_2 - 2x_3 + x_4 = 2 \\ 2x_1 + x_2 - x_3 - x_4 = 1 \end{cases}$$

得分	评阅人

五、证明题(共1小题,每小题6分,共6分)

1. 设 α , β 是n维列向量,矩阵 $A = \alpha \beta^T + \beta \alpha^T$. 证明A的列向量组可由 α , β 线性表示.

答案

一 填空

1. -4 2. 2 3. 0 4. 2 5.
$$c(2, -1)$$
, $c \neq 0$ 6. 2

7.
$$\begin{pmatrix} 5 & 2 \\ 11 & 4 \end{pmatrix}$$
 8. $\begin{pmatrix} -2 & -2 \\ 1 & -1 \end{pmatrix}$ 9. -2 或 1 10. $2x_1^2 + 2x_1x_2 + 2x_2^2$

二 选择

1. c 2. d 3. b 4. a 5. c 6. d 7. b 8. d 9. c 10. b

三 计算

2. 对矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 仅施以初等行变换:

$$A = \begin{pmatrix} 1 & -1 & 3 & -2 \\ 1 & -3 & 2 & -6 \\ 1 & 5 & -1 & 10 \\ 3 & 1 & 4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 3 & -2 \\ 0 & -2 & -1 & -4 \\ 0 & 6 & -4 & 12 \\ 0 & 4 & -8 & 8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & -1 & 3 & -2 \\
0 & -2 & -1 & -4 \\
0 & 0 & -7 & 0 \\
0 & 0 & -10 & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & -1 & 0 & -2 \\
0 & -2 & 0 & -4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
1 & -1 & 0 & -2 \\
0 & 1 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

由最后一个矩阵可知 $\alpha_1,\alpha_2,\alpha_3$ 为一个极大无关组,且------6

$$\alpha_4 = 0 \cdot \alpha_1 + 2\alpha_2 + 0 \cdot \alpha_3$$
 .-----8

3. 此二次型对应的矩阵为

$$A = \begin{pmatrix} 0 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & 1 \\ -2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1/2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2 & 0 & 1 \\ -1 & -1/2 & 1 \\ 1 & 3/2 & 0 \\ 1 & 1/2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & -1/2 & 3/2 \\ 1 & 3/2 & 0 \\ 1 & 1/2 & 0 \\ 0 & 1 & 0 \\ 1 & 1/2 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1/2 & 3/2 \\ 1 & 3/2 & -1/2 \\ 1 & 1/2 & -1/2 \\ 0 & 1 & 0 \\ 1 & 1/2 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1/2 & 3/2 \\ 0 & 3/2 & -1/2 \\ 1 & 1/2 & -1/2 \\ 0 & 1 & 0 \\ 1 & 1/2 & 1/2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
2 & 0 & 0 \\
0 & -1/2 & 0 \\
0 & 3/2 & 4 \\
1 & 1/2 & 1 \\
0 & 1 & 3 \\
1 & 1/2 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & 0 \\
0 & -1/2 & 0 \\
0 & 0 & 4 \\
1 & 1/2 & 1 \\
0 & 1 & 3 \\
1 & 1/2 & 2
\end{pmatrix}$$

所以

$$C = \begin{pmatrix} 1 & 1/2 & 1 \\ 0 & 1 & 3 \\ 1 & 1/2 & 2 \end{pmatrix}, \quad \begin{vmatrix} 1 & 1/2 & 1 \\ 0 & 1 & 3 \\ 1 & 1/2 & 2 \end{vmatrix} = 1 \neq 0 -----5$$

�

$$\begin{cases} x_1 = y_1 - 1/2y_2 + y_3 \\ x_2 = y_2 + 3y_3 - \dots - 6 \\ x_3 = y_1 + 1/2y_2 + 2y_3 \end{cases}$$

代入原二次型可得标准型

$$f = 2y_1^2 - 1/2y_2^2 + 4y_3^2$$
 .----8

4. 对矩阵 $(A I_3)$ 仅施以初等行变换:

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 & 1/4 & -1/4 & -1/4 \\ 0 & 0 & 1 & 1/6 & 1/2 & 1/6 \end{pmatrix} -----7$$

于是得

$$A^{-1} = \begin{pmatrix} -1/2 & -1/2 & 1/2 \\ 1/4 & -1/4 & -1/4 \\ 1/6 & 1/2 & 1/6 \end{pmatrix}.$$

四 计算

1. A的特征方程为

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2 = 0$$

所以 A 的特征值为 $\lambda_1=0$, $\lambda_2=\lambda_3=2$.-----4

当 $\lambda_1 = 0$ 时,解齐次方程组-Ax = 0得基础解系 $\alpha_1 = (1 \ 0 \ -1)^T$,单位化得

$$\gamma_1 = \frac{1}{\|\alpha_1\|} \alpha_1 = (\sqrt{2}/2 \quad 0 \quad -\sqrt{2}/2)^T.$$

当 $\lambda_2 = \lambda_3 = 2$ 时,解齐次方程组(2I - A)x = 0得基础解系

$$\alpha_2 = (0 \quad 1 \quad 0)^T, \alpha_3 = (1 \quad 0 \quad 1)^T.$$

利用施密特正交化方法, 将 α_2 , α_3 , 正交化:

$$\diamondsuit \beta_2 = \alpha_2 = (0 \quad 1 \quad 0)^T$$

$$\beta_3 = \alpha_3 - \frac{\beta_2^T \alpha_3}{\beta_2^T \beta_2} \alpha_2 = (1 \quad 0 \quad 1)^T$$

再将 β_2 , β_3 正交化,得

$$\gamma_2 = (0 \ 1 \ 0)^T, \quad \gamma_3 = (\sqrt{2}/2 \ 0 \ \sqrt{2}/2)^T.$$

2. 作方程组的增广矩阵(A:b), 并对它施以初等行变换:

$$(A \vdots b) = \begin{pmatrix} 2 & 1 & -1 & 1 & \vdots & 1 \\ 4 & 2 & -2 & 1 & \vdots & 2 \\ 2 & 1 & -1 & -1 & \vdots & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & -1 & 1 & \vdots & 1 \\ 0 & 0 & 0 & 1 & \vdots & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1/2 & -1/2 & 0 & \vdots & 1/2 \\ 0 & 0 & 0 & 1 & \vdots & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{pmatrix}$$

即原方程组与方程组

$$\begin{cases} x_1 = -1/2 \ x_2 + 1/2 \ x_3 + 1/2 \\ x_4 = 0 \end{cases}$$

同解,其中x2,x3是自由变量.

原方程组的导出解与方程组

$$\begin{cases} x_1 = -1/2 \ x_2 + 1/2 \ x_3 \\ x_4 = 0 \end{cases}$$

同解,其中 x_2, x_3 是自由变量.

对自由未知量
$$\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$$
取值 $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$,即得导出组的基础解系

$$\xi_1 = \begin{pmatrix} -1\\2\\0\\0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} 1\\0\\2\\0 \end{pmatrix} -----10$$

因此所给方程的全部解为

$$x = \eta + c_1 \xi_1 + c_2 \xi_2$$

其中 c_1,c_2 可为任意常数.-----11

五 证明