Homework 3

Alberc Ej Salcedo

February 24, 2019

1 Knowledge Representations

P is a Knight and Q is a Knave Let's say that there are four cases

- 1. p = knight and q = knight
- 2. p = knave and q = knight
- 3. p = knight and q = knave
- 4. p = knace and q = knave

Knave always tell a lie.

Knight always tells the Truth.

If p is a knight then what p says has to be true since knights always tell truth. Therefore, case 1 is impossible. Although Case 3 can occur.

If p is a knave then what he says will always be false. making case 2 and 4 impossible since knave always lies.

Thus making case 3 the only possible case.

A is Knave and B is a Knight

- 1. a = knight and b = knight
- 2. a = knave and b = knight
- 3. a = knight and b = knave
- 4. a = knave and b = knave

Knave always tell a lie.

Knight always tells the Truth.

If A is a knight then what he says is true, making case 1 and 3 impossible

If B is a knave then what he says is false, making case 4 impossible

Thus, making case 2 the only possible case.

2 Logical Identities

1.
$$\neg (p \to (q \to p))$$

 $\neg p \to \neg (q \to p)$
 $\neg p \to (\neg q \to \neg p)$

2.
$$\neg((p \land q) \rightarrow (q \lor p))$$

 $\neg(p \land q) \rightarrow \neg(q \lor p)$
 $(\neg p \lor \neg q) \rightarrow (\neg q \land \neg p)$

3 Logical Equivilances

	p	q	r	$p \to (q \to r)$	$(p \land q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
	0	0	0	1	1	1
	0	0	1	1	1	1
	0	1	0	1	1	1
1.	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	0	0	1
	1	1	1	1	1	1

The propositions are equivilant since the final column of the truth table recieves a value of one for all cases, making $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$ is always true. Therefore, the pair is equivilant.

	p	q	r	$p \to (q \to r)$	$(p \to q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$
	0	0	0	1	0	0
	0	0	1	1	1	1
	0	1	0	1	0	0
2.	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	0	0	1
	1	1	1	1	1	1

The propositional are not equivilant since the final column of the truth table, $(p \to (q \to r)) \leftrightarrow ((p \to q) \to r)$, does not receive a value of one for all cases.

4 Logical Consequence

- 1. This is valid since we have no way of knowing if the conclusion is false or not.
- 2. This is valid since Puerto Rico is surrounded by water and since all islands are surrounded by water, then Puerto Rico has to be an island.

2