Chapter 4: Set Operators

Exercise 4.1: Set Operators

Connect to the HR account.

- 1. Produce a short report showing the number of employees who earn commission and the number who do not.
 - a. Your report should look like this:

Туре	Count
Employees who earn commission	35
Employees who do not earn commission	72

b. Use a set operator to create this report.

Chapter 5: Aggregating Information

Exercise 5.1: Using the Aggregate Functions

Connect to the SCOTT account.

2. Write a query displaying how many rows there are in the emp table.

3. Write a query displaying the empno, name, salary and commission for all rows in the emp table, sequencing the list in salary (ascending) order.

EMPNO	ENAME	SAL	COMM
7369	SMITH	800	
7900	JAMES	950	
7876	ADAMS	1100	
7521	WARD	1250	500
7654	MARTIN	1250	1400
7934	MILLER	1300	
7844	TURNER	1500	0
7499	ALLEN	1600	300
7782	CLARK	2450	
7698	BLAKE	2850	
7566	JONES	2975	
7788	SCOTT	3000	
7902	FORD	3000	
7839	KING	5000	

4. Write a query displaying how many non-null salary values exist and how many distinct non-null salary values exist in the emp table.

CDistinct	Count
12	14

5. Write a query displaying how many non-null commission values exists, the sum of the non-null commission values, the average of the non-null commission values for all rows in the emp table.

Average	Sum	Count
550	2200	4

6. Modify the above query by adding the average of commission values, treating unknown values as zero. Round this value to three decimal places.

Count	Sum	Average	Average	ΟÍ	all	Records
4	2200	550				157.143

7. Write a query displaying the largest and smallest salaries in the emp table.

${\tt Maximum}$	Salary	Minimum	Salary
	5000		800

8. Write a query displaying the latest and the earliest hire dates in the emp table.

Maximum	Hire	Date	Minimum	Hire	Date
12-JAN-1	1983		17-DEC-1	1980	

Exercise 5.2: GROUP BY and HAVING

Connect to the HR account.

9. For each department in the employees table, show the total count of employees, the highest salary, the smallest salary, the sum of the salaries, and the average of salaries (round to the nearest whole currency unit).

DEPARTMENT_ID	COUNT(*)	MIN(SALARY)	MAX (SALARY)	Total Salary	Avg Salary
10	1	4400	4400	4400	4400
20	2	6000	13000	19000	9500
30	6	2500	11000	24900	4150
40	1	6500	6500	6500	6500
50	45	2100	8200	156400	3476
60	5	4200	9000	28800	5760
70	1	10000	10000	10000	10000
80	34	6100	14000	304500	8956
90	3	17000	24000	58000	19333
100	6	6900	12008	51608	8601
110	2	8300	12008	20308	10154
	1	7000	7000	7000	7000

Note: Your output may not be in the same sequence.

10. Modify the presentation sequence of the above query: the departments should be in ascending average salary order.

DEPARTMENT_ID	COUNT(*)	MIN(SALARY)	MAX (SALARY)	Total Salary	Avg Salary
50	45	2100	8200	156400	3476
30	6	2500	11000	24900	4150
10	1	4400	4400	4400	4400
60	5	4200	9000	28800	5760
40	1	6500	6500	6500	6500
	1	7000	7000	7000	7000
100	6	6900	12008	51608	8601
80	34	6100	14000	304500	8956
20	2	6000	13000	19000	9500
70	1	10000	10000	10000	10000
110	2	8300	12008	20308	10154
90	3	17000	24000	58000	19333

11. Modify the previous query by adding a new column: calculate how much each department's smallest salary is below the average salary. Sequence the list by this expression.

DEPARTMENT_ID	COUNT(*)	MIN(SALARY)	MAX(SALARY)	Total Salary	Avg Salary	Below Avg
20	2	6000	13000	19000	9500	3500
80	34	6100	14000	304500	8956	2856
90	3	17000	24000	58000	19333	2333
110	2	8300	12008	20308	10154	1854
100	6	6900	12008	51608	8601	1701
30	6	2500	11000	24900	4150	1650
60	5	4200	9000	28800	5760	1560
50	45	2100	8200	156400	3476	1376
40	1	6500	6500	6500	6500	0
70	1	10000	10000	10000	10000	0
10	1	4400	4400	4400	4400	0
	1	7000	7000	7000	7000	0

12. Modify the above query by changing the analysis: we now want to know all the above information by the manager each employee works for.

MANAGER_ID	COUNT(*)	MIN(SALARY)	MAX (SALARY)	Total Salary	Avg Salary	Below Avg
1.00	1./	5800	17000	155400	11100	5300

101	5	4400	12008	44916	8983	4583
148	6	6100	11500	51900	8650	2550
149	6	6200	11000	50000	8333	2133
147	6	6200	10500	46600	7767	1567
146	6	7000	10000	51000	8500	1500
145	6	7000	10000	51000	8500	1500
121	8	2100	4200	25400	3175	1075
108	5	6900	9000	39600	7920	1020
103	4	4200	6000	19800	4950	750
122	8	2200	3800	23600	2950	750
123	8	2500	4000	25900	3238	738
120	8	2200	3200	22100	2763	563
124	8	2500	3500	23000	2875	375
114	5	2500	3100	13900	2780	280
102	1	9000	9000	9000	9000	0
	1	24000	24000	24000	24000	0
201	1	6000	6000	6000	6000	0
205	1	8300	8300	8300	8300	0

13. Another analysis request has been made: modify the previous query to "rate" managers within each department by how far their lowest employee salary is below average.

DEPTID	MGRID	COUNT(*)	MIN(SALARY)	MAX (SALARY)	Total Salary	Avg Salary	Below Avg
80	148	6	6100	11500	51900	8650	2550
80	149	5	6200	11000	43000	8600	2400
80	100	5	10500	14000	61000	12200	1700
80	147	6	6200	10500	46600	7767	1567
80	146	6	7000	10000	51000	8500	1500
80	145	6	7000	10000	51000	8500	1500
50	100	5	5800	8200	36400	7280	1480
50	121	8	2100	4200	25400	3175	1075
100	108	5	6900	9000	39600	7920	1020
60	103	4	4200	6000	19800	4950	750
50	122	8	2200	3800	23600	2950	750
50	123	8	2500	4000	25900	3238	738
50	120	8	2200	3200	22100	2763	563
50	124	8	2500	3500	23000	2875	375
30	114	5	2500	3100	13900	2780	280
10	101	1	4400	4400	4400	4400	0
90		1	24000	24000	24000	24000	0
30	100	1	11000	11000	11000	11000	0
110	205	1	8300	8300	8300	8300	0
60	102	1	9000	9000	9000	9000	0
100	101	1	12008	12008	12008	12008	0
90	100	2	17000	17000	34000	17000	0
20	100	1	13000	13000	13000	13000	0
20	201	1	6000	6000	6000	6000	0
110	101	1	12008	12008	12008	12008	0
70	101	1	10000	10000	10000	10000	0
40	101	1	6500	6500	6500	6500	0
	149	1	7000	7000	7000	7000	0

14. Modify the above query to show only those managers within a department that have more than 5 employees reporting to them.

DEPTID	MGRID	COUNT(*)	MIN(SALARY)	MAX (SALARY)	Total Salary	Avg Salary	Below Avg
80	148	6	6100	11500	51900	8650	2550
80	147	6	6200	10500	46600	7767	1567
80	146	6	7000	10000	51000	8500	1500
80	145	6	7000	10000	51000	8500	1500
50	121	8	2100	4200	25400	3175	1075
50	122	8	2200	3800	23600	2950	750
50	123	8	2500	4000	25900	3238	738
50	120	8	2200	3200	22100	2763	563
50	124	8	2500	3500	23000	2875	375

15. Display the sum of salary, the average of salary, and the number of employees in departments, consolidating departments 0-99 together, 100-199 together, etc.

Depts by 100	s SUM(SALARY)	AVG (SALARY)	COUNT(*)
	0 612500	6250	98
10	0 71916	8989.5	8
	7000	7000	1

16. Display the average of all departments' average salaries. Round the result to whole currency units.

17. Compare the result from the step above to the average of employee salaries. Is it the same? Why or why not?

Exercise 5.3: Using Subqueries

Connect to the HR account.

Using subqueries, write queries to display the following information:

18. Display the department id and department name for all departments that have one or more employees. Order the result by department id.

DEPARTMENT_ID	DEPARTMENT_NAME
10	Administration
20	Marketing
30	Purchasing
40	Human Resources
50	Shipping
60	IT
70	Public Relations
80	Sales
90	Executive
100	Finance
110	Accounting

19. Display the employee id, first name, last name, and salary for all employees that have a salary greater than the average salary for all employees. Order the result by salary in descending sequence.

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
100	Steven	King	24000
101	Neena	Kochhar	17000
102	Lex	De Haan	17000
145	John	Russell	14000
146	Karen	Partners	13500
201	Michael	Hartstein	13000
205	Shelley	Higgins	12008
108	Nancy	Greenberg	12008
147	Alberto	Errazuriz	12000
168	Lisa	Ozer	11500
148	Gerald	Cambrault	11000
174	Ellen	Abel	11000
114	Den	Raphaely	11000
162	Clara	Vishney	10500
149	Eleni	Zlotkey	10500
150	Peter	Tucker	10000
156	Janette	King	10000
204	Hermann	Baer	10000
169	Harrison	Bloom	10000
170	Tayler	Fox	9600
163	Danielle	Greene	9500
157	Patrick	Sully	9500
151	David	Bernstein	9500

Continued on next page

158	Allan	McEwen	9000
109	Daniel	Faviet	9000
103	Alexander	Hunold	9000
152	Peter	Hall	9000
175	Alyssa	Hutton	8800
176	Jonathon	Taylor	8600
177	Jack	Livingston	8400
206	William	Gietz	8300
110	John	Chen	8200
121	Adam	Fripp	8200
153	Christopher	Olsen	8000
120	Matthew	Weiss	8000
159	Lindsey	Smith	8000
122	Payam	Kaufling	7900
112	Jose Manuel	Urman	7800
111	Ismael	Sciarra	7700
	Nanette	Cambrault	7500
160	Louise	Doran	7500
171	William	Smith	7400
172	Elizabeth	Bates	7300
164	Mattea	Marvins	7200
161	Sarath	Sewall	7000
155	Oliver	Tuvault	7000
178	Kimberely	Grant	7000
113	Luis	Popp	6900
165	David	Lee	6800
203	Susan	Mavris	6500
123	Shanta	Vollman	6500

51 rows selected.

20. Display the employee id, first name, last name, and salary for the employee that has the highest salary.

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY
100	Steven	King	24000

21. Display the employee id, first name, last name, salary, and commission_pct for all employees that have a salary greater than the average salary for all employees and a commission_pct greater than the average commission_pct for all employees. Order the result by last_name.

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	SALARY	COMMISSION_PCT
174	Ellen	Abel	11000	.3
151	David	Bernstein	9500	.25
148	Gerald	Cambrault	11000	.3
160	Louise	Doran	7500	.3
147	Alberto	Errazuriz	12000	.3
152	Peter	Hall	9000	.25
175	Alyssa	Hutton	8800	.25
156	Janette	King	10000	.35
158	Allan	McEwen	9000	.35
168	Lisa	Ozer	11500	.25
146	Karen	Partners	13500	.3
145	John	Russell	14000	. 4
161	Sarath	Sewall	7000	.25
159	Lindsey	Smith	8000	.3
157	Patrick	Sully	9500	.35
150	Peter	Tucker	10000	.3
162	Clara	Vishney	10500	.25

17 rows selected.

22. Display the employee id, first name, and last name for the employee(s) that work in London. You will need to use two levels of subquery.

EMPLOYEE_ID	FIRST_NAME	LAST_NAME
203	Susan	Mavris