Question 1

Let m, n, a_i , and $1 \le i \le m$ be integers.

Prove that if $gcd(a_i, n) = 1$ for all $1 \le i \le m$, then $gcd(a_1 \cdots a_m, n) = 1$.

Solution: for m = 1, $gcd(a_1, n) = 1$ then $gcd(a_1, n) = 1$ obviously.

Claim 1

Ig gcd(a, n) = 1 and gcd(b, n) = 1 then gcd(ab, n) = 1.

Proof: If gcd(a, n) = 1 and gcd(b, n) = 1 then $\exists p, q, r, s \in \mathbb{N}$ such that ap + nq = br + ns = 1.

$$1 = (ap + nq)(br + ns)$$
$$= (abpr + nbqr + nasp + nnqs)$$
$$= ab(pr) + n(bqr + asp + nqs)$$

Hence, gcd(ab, n) = 1

From claim 1, the proposition holds at m=2, by substituting a with a_1 and b with a_2 . Then assuming that the argument holds for integer k. By assumption, $gcd(a_1 \cdots a_k, n) = 1$. Therefore, it is possible to substitute a of claim 1 with $a_1 \cdots a_k$ and b with a_{k+1} .

Hence, the proposition holds true for all integer $m \geq 1$, for all integer n, by induction.

Question 2

Let $M_n(\mathbb{R}) = \{n \times n \text{ real matrices}\}$. Define a relation \sim on $M_n(\mathbb{R})$ as follow: $A \sim B$ if there exists an invertible $C \in M_n(\mathbb{R})$ such that $A = CBC^{-1}$. Show that this relation is an equivalence relation.

Solution: The relation \sim would be an equivalence relation if it is symmetric, reflexive, and transitive.

• Reflexive: There exists the identity matrix $I \in M_n(\mathbb{R})$. Since

$$I^{-1} = I$$
, $IA = AI = A$

for all matrices A,

$$A = IAI^{-1}$$

Therefore, $A \sim A$.

• Symmetric: Assume that for some $A, B \in M_n(\mathbb{R}), A \sim B$. Then it follows that

$$\exists C, A = CBC^{-1}$$

By multiplying C and C^{-1} ,

$$C^{-1}AC = C^{-1}A(C^{-1})^{-1} = B$$

Since C^{-1} is also an $n \times n$ matrix, $C^{-1} \in M_n(\mathbb{R})$. Hence, $B \sim A$.

• Transitive: Assume for $X, Y, Z \in M_n(\mathbb{R})$, so that $X \sim Y$ and $Y \sim Z$. Then it follows that

there exists
$$C, D$$
 such that $X = CYC^{-1}, Y = DZD^{-1}$

Then by substituting the second equation into the first,

$$X = CDZD^{-1}C^{-1}$$

Notice that CD is an $n \times n$ matrix since both C and D are an $n \times n$ matrix. Moreover,

$$CD \cdot D^{-1}C^{-1} = C(DD^{-1})C^{-1}$$

= CC^{-1}
= I

and

$$D^{-1}C^{-1} \cdot CD = D^{-1}(C^{-1}C)D$$
$$= D^{-1}D$$
$$= I$$

by the associativity of matrix multiplication. So $(CD)^{-1} = D^{-1}C^{-1}$ by definition. Therefore, $X \sim Z$.

As the relation is symmetric, reflexive, and transitive, it is an equivalence relation.

Question 3

Let H be a non-empty subset of a group G. We define a relation on G by $a \sim b$ if and only if $ab^{-1} \in H$. Prove that H is a subgroup of G if and only if the relation \sim is an equivalence relation.

Solution: Let the operator of the group G be (\cdot) , write briefly by juxtaposition.

 (\Longrightarrow) Assume that H is a subgroup of G. Then

- Reflexive: Since $aa^{-1} = 1 \in H$, $a \sim a$ by definition.
- Symmetric: Assuming that $a \sim b$, then $ab^{-1} \in H$. But since $ab^{-1}ba^{-1} = 1$, then $ba^{-1} \in H$. Which means that $b \sim a$.
- Transitive: Assuming that $a \sim b$, and $b \sim c$. Then $ab^{-1} \in H$ and $bc^{-1} \in H$. Since H has closure over (\cdot) , then $ab^{-1} \cdot bc^{-1} = ac^{-1} \in H$. Thus, $a \sim c$ by definition.

Therefore, the relation \sim is an equivalence relation.

 (\Leftarrow) Assume that \sim is an equivalence relation. Then

- Closure: Assuming that $a, b \in H$, then $1 \sim a$ and $1 \sim b^{-1}$. Hence, $a \sim b^{-1}$, which means that $ab \in H$.
- Associativity: Since the operator (\cdot) is associative over G. The restriction of the operator over H must also be associative
- Identity: Since $a \sim a$, then $aa^{-1} = 1 \in H$
- Inverse: Assuming that $ab^{-1} \in H$, then $a \sim b$. Then $b \sim a$ by reflexivity. Therefore, $ba^{-1} \in H$. Note that $ba^{-1}ab^{-1} = 1 = ab^{-1}ba^{-1}$. Hence, $(ab^{-1})^{-1} = ba^{-1}$ by the definition.

Therfore, as H is non-empty, H is a subgroup of G.

Question 4

Compute $(\mathbb{Z}/12\mathbb{Z})^{\times}$

Solution: $\mathbb{Z}/12\mathbb{Z} = \{\bar{0}, \dots, \bar{11}\}$ where \bar{n} is the equivalence class of integer n modulo 12. $(\mathbb{Z}/12\mathbb{Z})^{\times}$ is the subset of elements with inverse. Consider that $\bar{1}$ is identity of multiplication since

$$\bar{1} \times \bar{n} = \bar{n} \times \bar{1} = \bar{n}$$

This is due to the fact that \bar{n} is the equivalence class for 12m + n for some integer m, and that

$$(12m+1)(12k+n) = 12(12mk+k+mn) + n$$

Claim 2

if $gcd(n, 12) \neq 1$ then $\bar{n} \notin (\mathbb{Z}/12\mathbb{Z})^{\times}$

Proof: let $d = \gcd(n, 12)$ and \bar{n} is the equivalence class of 12m + n. But

$$d \mid 12m + n$$

By assumption, $d \neq 1$. Now assume for contradiction that there exists \bar{x} such that $\bar{x} \times \bar{n} = 1$. Then,

$$(12m+n)(12k+x) = (12q+1)$$

contradicts that $d \mid 12m + n$ since $d \nmid 12m + 1$ Therefore, there exists no inverse of \bar{n} , thus $\bar{n} \notin (\mathbb{Z}/12\mathbb{Z})^{\times}$.

Therefore, $(\mathbb{Z}/12\mathbb{Z})^{\times} = \{\bar{1}, \bar{5}, \bar{7}, \bar{11}\}$ as it is easy to see that $\bar{1}^2 = \bar{5}^2 = \bar{7}^2 = \bar{11}^2 = \bar{1}$

Question 5

- (1) Let $G = \mathbb{R} \setminus \{-1\}$. Define an operation by $a \cdot b = a + b + ab$. Show that (G, \cdot) is a group.
- (2) Let $G = \{a + b\sqrt{11} \mid a, b \in \mathbb{Q}\}$ be a subset of \mathbb{R} . Show that $(G \setminus \{0\}, \cdot)$ is a group, where \cdot is the usual multiplication.

Solution:

(1)

let $u, v, w \in G$. Then,

- Well-definedness: Since addition and multiplication is well-defined in \mathbb{R} , then (·) is well-defined since it is a composition of well-defined operators.
- Closure: for $a, b \in \mathbb{R}$, $ab, a+b \in \mathbb{R}$ by the closure of addition and multiplication over real number. Assuming that a+b+ab=-1 yields that

$$0 = a + b + ab + 1$$

= $a(1+b) + (1+b)$
= $(a+1)(b+1)$

Therefore, if $a \neq -1$ and $b \neq -1$, then $a \cdot b \neq -1$ Hence, (·) has a closure in G.

• Associativity: Consider $(u \cdot v) \cdot w$,

$$(u \cdot v) \cdot w = (u + v + uv) \cdot w$$

$$= u + v + uv + w + uw + vw + uvw$$

$$= u + (v + w + vw) + (uw + vw + uvw)$$

$$= u + (v + w + vw) + u(v + w + vw)$$

$$= u \cdot (v + w + vw)$$

$$= u \cdot (v \cdot w)$$

Hence, (\cdot) is associative.

- Identity: Consider $0 \in G$, and $0 \cdot u = 0 + u + 0u = u$, and $u \cdot 0 = u + 0 + u0 = u$. So, $0 \in G$ is the identity.
- Inverse: Consider $u^{-1} = \frac{-u}{1+u}$. Then since $u \neq -1$, $u^{-1} \in G$. Morover,

$$u^{-1} \cdot u = \frac{-u}{1+u} + u + \frac{-u}{1+u}u$$
$$= \frac{u^2 - u^2 + u - u}{1+u}$$
$$= 0$$

And also,

$$u \cdot u^{-1} = u + \frac{-u}{1+u} + u \frac{-u}{1+u}$$
$$= \frac{u^2 - u^2 + u - u}{1+u}$$
$$= 0$$

Therefore, u^{-1} , the inverse of u, exists in G.

Hence, (G, \cdot) is a group.

(2)

Let $u, v, w \in G \setminus \{0\}$, and let $u = u_a + u_b \sqrt{11}$, $v = v_a + v_b \sqrt{11}$, and $w = w_a + w_b \sqrt{11}$ for $u_a, u_b, v_a, v_b, w_a, w_b \in \mathbb{Q}$. Then,

- Well-definedness: Since $G \subset \mathbb{R}$ and multiplication is well-defined under \mathbb{R} , the operation must also be well-defined under $G \setminus \{0\}$.
- Closure:

$$uv = (u_a + \sqrt{11}u_b)(v_a + \sqrt{11}v_b)$$

= $u_a v_a + u_a v_b \sqrt{11} + u_b v_a \sqrt{11} + 11u_b v_b$
= $(u_a v_a + 11u_b v_b) + (u_a v_b + u_b v_a)\sqrt{11}$

Since $u_a v_a + 11 u_b v_b \in \mathbb{Q}$ and $u_a v_b + u_b v_a \in \mathbb{Q}$. Moreover, both term cannot be 0 simultaneously. Thus, $G \setminus \{0\}$ has a closure.

- Identity: Consider $1 \in G \setminus \{0\}$ and that $1u = u1 = u_a + \sqrt{11}u_b = u$. So $1 \in G \setminus \{0\}$ is the identity.
- Inverse: Consider x for each fixed u, such that

$$x = \frac{-u_a}{-u_a^2 + 11u_b^2} + \frac{u_b}{-u_a^2 + 11u_b^2} \sqrt{11}$$

It is easy to verify that $x \in G \setminus \{0\}$. Then, it will follow that

$$xu = \left(\frac{-u_a}{-u_a^2 + 11u_b^2} + \frac{u_b}{-u_a^2 + 11u_b^2}\sqrt{11}\right)(u_a + u_b\sqrt{11})$$

$$= \left(\frac{-u_a^2 + 11u_b^2 + \sqrt{11}(u_au_b - u_bu_a)}{-u_a^2 + 11u_b^2}\right)$$

$$= 1 + 0\sqrt{11} = 1$$

And since (·) is commutative ux = xu = 1, Therefore, $u^{-1} = x$ by definition.

Hence, $G\setminus\{0\}$ is a group under multiplication.

Question 6

Show that $\mathbb{Z}/n\mathbb{Z}$ with multiplication is not a group for $n \geq 2$.

Solution: for $n \geq 2$, notice that

$$\forall \bar{a} \in \mathbb{Z}/n\mathbb{Z}, \quad \bar{0} \times \bar{a} = \bar{a} \times \bar{0} = \bar{0}$$

Therefore, the inverse of $\bar{0}$ does not exists. Therefore, $(\mathbb{Z}/n\mathbb{Z}, \times)$ is not a group

Question 7

Let $G = \{g \in \mathbb{C} \mid g^n = 1 \text{ for some } n \in \mathbb{N}\}$. Show that G with multiplication is a group.

Solution: let $u, v, w \in G$ and $n, m, k \in \mathbb{N}$ such that $u^n = v^m = w^k = 1$. And let \cdot denotes the multiplication operator. Firstly, G contains 1 as $1^1 = 1$. Therefore G is not empty. Note that the multiplication operation is well-defined on \mathbb{C} , therefore, it is well-defined on G.

- Closure: $(uv)^{nm} = u^{nm}v^{nm} = 1^m1^n = 1$. Therefore, $uv \in G$.
- Associative: The multiplication of complex number is associative, Therefore, it is associative on the well-defined restriction of the operator.

- Identity: $\exists 1 \in G$ since $1 \in \mathbb{C}$, $1^1 = 1$. And by the multiplication of complex number, 1u = u1 = u for all $u \in G \subset \mathbb{C}$
- Inverse: $\forall u \in G \text{ let } n_u \in \mathbb{N} \text{ such that } u^{n_u} = 1.$ If $n_u = 1$, then u = 1 is the identity. For $n_u > 1$, consider $u^{(n_u-1)(n_u)} = u^{(n_u)(n_u-1)} = 1^{n_u-1} = 1$, so $u^{n_u-1} \in G$. But also, $u^{n_u-1} \cdot u = u \cdot u^{n_u-1} = u^{n_u} = 1$. So $u^{-1} = u^{n_u-1}$ is the inverse of u.

Since G is a non-empty set and (G,\cdot) has all the group properties. (G,\cdot) is a group.

Question 8

Given two groups G and H, we denote their Cartesian product by $G \times H$ whose elements are of the form (g, h) for $g \in G$ and $h \in H$. Show that the product $G \times H$ with an operation given by (g, h)(g', h') := (gg', hh') is a group.

Solution: Denote a well-defined operator (\star) of group G, (\times) of group H, and a new operator (\cdot) of $G \times H$. However, the operator might be briefly written as juxtaposition.

For $G \times H$ to be a group, it must satisfies all the following properties.

- Non-emptiness: Since, G and H are both group, they are both non-empty. Therefore, the Cartesian product of G and H must contain at least one element: ie. (e_q, e_h) , denoting the identity of G and H respectively.
- Well-defined: Note that $(g,h) \cdot (g',h') = (g \star g', h \times h')$. And if (g,h) = (a,b) and (g',h') = (a',b') then $(a,b) \cdot (a',b') = (a \star a',b \times b')$ But then, g = a, g' = a', h = b, h' = b', so by the well-definedness of \star and \times , $g \star g' = a \star a'$ and $h \times h' = b \times b'$. Therefore, the operator (\cdot) is well-defined.
- Associativity: For $(a, b), (g, h), (x, y) \in G \times H$,

$$(a,b)((g,h)(x,y)) = (a,b)(gx,hy)$$

$$= (a(gx),b(hy))$$

$$= ((ag)x,(bh)y) by associativity of group G and H

$$= (ag,bh)(x,y)$$

$$= ((a,b)(g,h))(x,y)$$$$

Therefore, (\cdot) is associative.

• **Identity:** Consider (e_g, e_h) where e_g is the identity element of group G and e_h is that of group H. Then for $(a, b) \in G \times H$,

$$(e_q, e_h) \cdot (a, b) = (e_q a, e_h b) = (a, b) = (ae_q, be_h) = (a, b) \cdot (e_q, e_h)$$

• Inverse: For $(g,h) \in G \times H$, $g \in G$ and $h \in H$. Therefore, there exists $g^{-1} \in G$ and $h^{-1} \in H$ such that $gg^{-1} = e_g$ and $hh^{-1} = e_h$. By that reason, $(g^{-1}, h^{-1}) \in G \times H$. Consider

$$(g,h) \cdot (g^{-1},h^{-1}) = (gg^{-1},hh^{-1}) = (e_g,e_h)$$

 $(g^{-1},h^{-1}) \cdot (g,h) = (g^{-1}g,h^{-1}h) = (e_g,e_h)$

Therefore, $(g^{-1}, h^{-1}) = (g, h)^{-1}$.

Hence, $G \times H$ is a group with the operation (\cdot) .

Question 9

Let G be a group. Show that ((ab)c)d = a(b(cd)) for all $a, b, c, d \in G$.

Solution: Let $a, b, c, d \in G$. Then,

$$\begin{array}{ccc} ab \in G & & \text{by closure of } G \\ cd \in G & & \text{by closure of } G \\ ((ab)c)d = (ab)(cd) & & \text{by associativity} \\ a(b(cd)) = (ab)(cd) & & \text{by associativity} \end{array}$$

Therefore, ((ab)c)d = a(b(cd)).

Question 10

Let G be the quaternion group Q_8 . Find two subgroups H and K of G such that their union $H \cup K$ is not a subgroup of G.

Solution: Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group. Let $H = \{\pm 1, \pm i\}$ and $K = \{\pm 1, \pm j\}$. Then for H,

- Well-definedness: Since the operator is the restriction from a group operator, the operator must be well-defined.
- Closure: For all $x \in H$,

$$1x = x1 = x$$

$$i^{2} = -1, \quad (-1)^{2} = 1, \quad (-i)^{2} = -1$$

$$(-1)(i) = i(-1) = -i, \quad (-1)(-i) = (-i)(-1) = i$$

$$(-i)i = i(-i) = 1$$

by the definition.

- Associativity: Since the operator is associative in G, the restriction must also be associative.
- **Identity:** $1 \in H$ is the identity element by definition.
- **Inverse:** The inverse of 1, -1, i, -i is 1, -1, -i, i, respectively.

Therefore, H is a subgroup of G. With similar arguments, K is also a subgroup of G. Consider $H \cup K = \{\pm 1, \pm i, \pm j\}$, The operator (\cdot) of G does not have closure under $H \cup K$ since $i, j \in H \cup K$ but $i \cdot j = k \notin H \cup K$. Therefore, $H \cup K$ is not a subgroup of G.