Février 2016

Bérénice Batut

✓ berenice.batut@udamail.fr

Pourquoi la métagénomique?

Ecosystèmes microbiens

- Majeure partie de la biomasse sur Terre
 - 90% des cellules d'un être humain
- Colonisation de la plupart des niches écologiques

Diversité microbienne

Our skewed view of the microbial world

16S rRNA tree of known bacterial phyla

Crédits: Christian Rinke / Tanja Woyke, DOE JGI

Etude de l'ADN des organismes non cultivés

Handelsman et al, Chem Biol, 1998

Information génétique totale d'un ensemble d'organismes, au-delà du génome

Gilbert & Dupont, Annu Rev Marine Sci, 2011

Compréhension du rôle écologique, du métabolisme et de l'histoire évolution d'un cosystème

- Pas de culture nécessaire
- Identification pour un écosystème
 - Micro-organismes (composition)
 - Gènes
 - Fonctions métaboliques

Projets métagénomiques (jusqu'en 2008)

Crédits : Hugenholtz & Tyson, Nature, 2008

Projets métagénomiques

- 2 165 projets sur NCBI (Janvier 2016)
 - Sable de plage
 - Moustique
 - Corail
 - Glace
 - Air de la ville de Singapour
 - Surface de la cuvette des toilettes
 - Fromages
 - **-** ...

Global Ocen Sampling (GOS)

- Estimer la diversité génétique des communautés microbiennes marines
- Comprendre leur rôle dans les processus fondamentaux de la nature

Global Ocen Sampling (GOS)

- Production du plus grand catalogue de gènes de milliers de nouvelles espèces
- Données généréés
 - 3 087 469 séquences nucléotidiques
 - 6 123 395 séquences protéiques identifiées
- 8 publications et 1 édition spéciale de PLoS Biology

Crédits: Cho & Blaser, Nature Rev Genet, 2012

- Human Microbiome Project (HMP)
 - 2,3 Tb de données métagénomique
 - 35 milliard de reads
 - 690 échantillons
 - 300 individus
 - 15 sites du corps

- Metagenomics of the Human Intestinal Tract (MetaHIT)
 - 540 Gb de séquences ADN
 - 134 individus

- American Gut
 - Projet participatif
 - 3,238 participants
 - 101 million de séquences ADN
 - 27 Gb

Principes de la métagénomique

Objectifs:

- Identifier les organismes présents dans un échantillon
- Identifier les fonctions principales réalisés par les organismes d'un échantillon

Extraction et séquençage

2 types d'expériences métagénomiques

- Amplicon
- "Envionmental shotgun metagenomics", WGS ou métagénomique

Amplicon

Morceau d'ADN ou ARN amplifié par PCR

Crédits: Kumar et al, BMC Bioinformatics, 2011

Utilisation de l'ARNr 16S

Crédits: Bodilis et al, PLoS One, 2012

Séquençage des régions

- V1.3
- V3.4
- V4

Possibilité de cibler d'autres gènes

[Home | Display Options | Help | FunGenePipeline | RDP Home]

If you use RDP's FunGene, please cite our most recent article.

Antibiotic resistances

Begin with these gene links: Version 8.3 -- GenBank 211 (as of 1/5/2015)

Process your own Functional Gene data using our new FunGene Pipeline

gene-contributor ACT-Syed Hashsham BEL-Syed Hashsham beta_IS6-Robert Stedtfeld beta_tnpA-Robert Stedtfeld beta tnpA2-Robert Stedtfeld bet_blaSHV-Robert Stedtfeld bet_tnpA-Robert Stedtfeld CARB—Syed Hashsham cefa_qacEdelta-Robert Stedtfeld chl_cmlA-Robert Stedtfeld CMY-Syed Hashsham CDFA-Tamara Tsoi Cole CDFB-Tamara Tsoi Cole CTX-M—Syed Hashsham dfra1—Syed Hashsham dfra12-Syed Hashsham FOX—Syed Hashsham gapA—Tim Johnson GES—Syed Hashsham IMI-Syed Hashsham IMP—Syed Hashsham IncW_trwA-Tim Johnson IncW_trwB-Tim Johnson IND-Syed Hashsham intl-Carlos Rodriguez-Minguela intl1_sub1-Tim Johnson int/2—Tim Johnson intl3—Tim Johnson KPC-Syed Hashsham mdh_sub1-Tim Johnson mdh_sub2-Tim Johnson MIR-Syed Hashsham MOX—Syed Hashsham NDM-Syed Hashsham OXA-Syed Hashsham pec_aad2-Robert Stedtfeld PER-Syed Hashsham

repA-Tim Johnson

Plant Pathogenicity

gene—contributor avrE—James Kremer txtA—RDP txtB—RDP

Biogeochemical cycles

amoA_AOA-Felfel Llu amoA_AOB-RDP buk-RDP but-RDP cbh1-Cheryl Kuske chb-Fan Yang cooS-Fan Yang cydA-Rachel Morris dsrA-Alexander Loy/ Michael Wagner dsrB-Alexander Loy/Michael Wagner exc1—Fan Yang fixN-Rachel Morris glx-Qichao Tu hydA-Fan Yang lcc_ascomycetes-Chris Wright lcc_basidiomycetes-Chris Wright ligE-Ryan Penton lip-Qichao Tu mcrA-Blaz Stres mmoX-Qichao Tu mnp-Qichao Tu nag3-Fan Yang napA-Laurent Philippot narG-Laurent Philippot nifD-RDP nifH-RDP nirA-RDP nirB-RDP nirK-Tracy Teal nirS-Veronica Gruntzia

Phylogenetic markers

gene—contributor
EF-TU—James Kremer
fusA—Scott Santos/Howard Ochman
gyrB—Zarraz May-Ping Lee
ile5—Scott Santos/Howard Ochman
lepA—Scott Santos/Howard Ochman
leuS—Scott Santos/Howard Ochman
pyrG—Scott Santos/Howard Ochman
recA—Scott Santos/Howard Ochman
recG—Scott Santos/Howard Ochman
rplB—Scott Santos/Howard Ochman
rpB—Scott Santos/Howard Ochman
ppB—Scott Santos/Howard Ochman
pbB—Scott Santos/Howard Ochman

arsA-PFAM

gene-contributor alkb-Gerben Zvistra/Elyse Rodgers-Vieira benA-Stephan Gantner bph-Gerben Zylstra bphA1-Stephan Gantner bphA2-Stephan Gantner BSH-Robert Stedtfeld carA-Shoko Iwai cntA-Robert Stedtfeld cutC-Robert Stedtfeld dbfA1-Shoko Iwai dxnA-Shoko Iwai dxnA-dbfA1-Tim Johnson HSDH-Robert Stedtfeld npah-Gerben Zylstra p450—Gerben Zylstra/Elyse Rodgers-Vieira ppah—Gerben Zylstra PSA—Robert Stedtfeld Metal Cycling gene-contributor

"Envionmental shotgun metagenomics", WGS ou métagénomique

Séquençage de l'ensemble des séquences d'un échantillon

Comparaison

Amplicon	Métagénomique
Un fragment de gène	Toutes les séquences
Technique simple	Technique plus complexe
Biais de PCR	-
Information phylogénétique limitée	Information phylogénétique "complète"
Pas d'information fonctionelle	Information fonctionelle complète
Bases de données complètes	Bases de données incomplètes

Prétraitements

Prétraitements

- Contrôle de la qualité des séquences
- Assemblage
- Tri des séquences
- Prédiction des séquences d'intérêt

Assemblage

Crédit: Drew Sheneman

Metagenomics is like a disaster in jigsaw shop

Assemblage

- Objectif
 - Construire des séquences plus longues, voir des organismes entiers
- Problème
 - Séquences courtes
 - Séquences issues d'organismes différents

Assemblage

2 types d'outils d'assemblage

- A l'aide de bases de données
- De novo

A Chimères : assemblage de séquences issues d'espèces différentes

Tri des séquences

- Utilité
 - Assignation des séquences
 - Recherche dans des bases de données spécifiques
- Caractéristiques d'intérêt
 - Gènes ARNr, ARNt
 - ORF
 - Unités taxonomiques opérationnelles (OTU)
- Quelques outils
 - SortMeRNA, rRNA selector
 - MetaGeneAnnotator, Prodigal, Orphelia
 - tRNAscanSE

Affiliation taxonomique des séquences

Pourquoi l'affiliation taxonomique?

Pourquoi l'affiliation taxonomique?

Procédure standard

Limites

- Longueur des séquences
- Nombre de séquences
- Absences d'homologues dans les banques
- Faible abondance des marqueurs phylogénétique classiques
 - Boues d'épuration : 0.17%
 - Mer des Sargasses : 0.06%
 - Sol acide, mines du Minnesota : 0.017%

Clustering des séquences en OTU (Operational taxonomic unit)

Recherche de similarité

- Recherche de similarité par fréquence de k-mer
- Recherche de similarité intrinsèques
 - Contenu en GC
 - Usage des codons

Analyse de la diversité d'un échantillon

Alpha diversité

- Notion définie par Whittaker, Evolution and Measurement of Species Diversity, 1972
- Mesure pour un échantillon de
 - Richesse
 - Nombre de groupes d'individus génétiquement liés (nombre d'espèces)
 - Egalité
 - Proportion d'espèces présentes

Diversité alpha

Affiliation fonctionnelle

Pourquoi l'affiliation fonctionnelle?

Procédure

Classification des fonctions protéiques

- Recherche contre bases de données de références
 - Cluster of orthologous groups of proteins (COG)
 - SEED
 - Kyoto Encyclopedia of Genes and Genomes (KEGG)
 - **—** ...
- Recherche de motifs fonctionnels
 - InterPro
 - Prosite
 - **—** ...

Quelques pipelines

Mothur

Schloss et al, Applied Env Microbiol, 2009

QIIME

Caporaso et al, Nature Methods, 2010

MG-Rast

Meyer et al, BMC Bioinformatics, 2008

EBI metagenomics

Mitchell et all, Nucleic Acids Res, 2015

Exemple

Lean human gut

Importance des métadonnées

Que sont les métadonnées?

Description en profondeur et contrôlée de l'échantillon

- Où?
 - Latitude et longitude
 - Profondeur
 - **...**
- Quand?
- Quoi?
- Comment?
 - Processus de conservation
 - Méthode d'extraction
 - Plateforme de séquençage
 - **—** ...

Importance des métadonnées

Indispensable pour partager et intégrer les données dans la communauté

Besoin d'un vocabulaire standardisé minimal

Genome Standard Consortium (GSC)

Organisme international, ouvert, formé en 2005

Objectifs

- Promouvoir les mécanismes de standardisation de la description des génomes
- Promouvoir l'échange et l'intégration des données génomiques

Genome Standard Consortium (GSC)

Missions

- Développement
 - de nouveaux standards (méta)génomiques
 - des méthodes de capture et d'échange des métadonnées
- Harmonisation de la collection des métadonnées et des efforts d'analyse à travers toute la communauté génomique

Standards des métadonnées

MixS: Minimum Information about any Sequence

MIGS/MIMS: Minimum information about a (Meta)Genome Sequence

MIMARKS: Minimum Information about a MARKer gene Sequence

Métagénomique comparative

Turnbaugh et al, Nature, 2009

Comparaison de la diversité

Comparaison des organismes présents

Crédit: Turnbaugh et al, Nature, 2009

Diversité beta

- Notion définie par Whittaker, Evolution and Measurement of Species Diversity, 1972
- Comparasion entre 2 échantillons de la différence de communauté (difference des espèces ou OTU)

$$\beta = \frac{S}{\alpha}$$

S : nombre total d'espèces enregistrées dans les 2 échantillons

 α : moyenne du nombre d'espèces trouvées au sein des 2 échantillons

Comparaison de la diversité avec la distance Unifrac

Crédit: Turnbaugh et al, Nature, 2009

Comparaison des fonctions réalisées

Comparaison des catégories COG

Crédit: Turnbaugh et al, Nature, 2009

Comparaison des processus biologiques

Crédit : EBI metagenomics

Comparaison des fonctions moléculaires

Crédit : EBI metagenomics

Limites et freins

Conservation des données

Données

- Besoin d'une profondeur de séquençage importante en métagénomique
- Augmentation exponentielle des données générées
- Limites des transferts des données par les réseaux informatiques

Conservation des données

- Quoi?
 - Données brutes
 - Résultats des analyses
 - Description des données
- Où?
 - Localement?
 - Cloud?
 - Dépôts publics?

Principaux dépôts publics

- EBI: ENA, EBI metagenomics,...
- NCBI
- DDBJ

Traitement des données

Fin de la loi de Moore et baisse des prix des séquençage

Crédit: Sboner et al, Genome Biol, 2011

Part plus importante des coûts de traitement des données

Crédit: Sboner et al, Genome Biol, 2011

1 solution : parallélisation

Divide and Conquer

- Données
- Tâches
- Algorithme

Solution pour la parallélisation

Clusters, grilles, cloud

