L10: Networks and Cryptography

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgement

- Many slides are from or are revised from the slides of the author of the textbook
 - Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's Safari Book Online subscription</u>
 - http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

- □ ISO/OSI 7-layer model
- □ Link and End-to-End protocols
- Concept of traffic analysis
- Two example protocols
 - PEM
 - IPSec

ISO/OSI Model

Conceptual model for for digital communications and computer networks

ISO/OSI Model: Concepts

- Each host has a principal at each layer
- Principals at the same layer of different hosts are peers
- Peers communicate with peers at same layer
- Layer 1, 2, and 3 principals interact with peers at neighboring hosts (directly connected hosts)
- Layer 4, 5, 6, and 7 principals interact only with similar principals at the other end of the communication
- Use host to refer to the appropriate principal in the discussion that follows

Link and End-to-End Protocols

- \square Hosts: $C_0 \dots C_n$ and C_i and C_{i+1} are directly connected
- \Box Link Protocol: C_i and C_{i+1} as comm. end points
- End-to-End Protocol: C₀ and C_n as comm. end points

Link Protocol

End-to-End (or E2E) Protocol

Encryption

- □ Link encryption
 - Each host enciphers message so host at "next hop" can read it
 - Message can be read at intermediate hosts
- End-to-end encryption
 - Host enciphers message so host at other end of communication can read it
 - Message cannot be read at intermediate hosts

Examples

- Secure Shell (SSH) protocol
 - Messages between client and server enciphered
 - Encipherment and decipherment occur only at these hosts
 - End-to-end protocol
- PPP Encryption Control Protocol
 - Host gets message, deciphers it
 - □ Figures out where to forward it
 - Enciphers it in appropriate key and forwards it
 - Link protocol

Cryptographic Considerations

■ Link encryption

- Each host shares key with neighbor
- Can be set on per-host or per-host-pair basis
 - □ Hosts windsor, stripe, and seaview each have own keys
 - One key for (windsor, stripe); one for (stripe, seaview); one for (windsor, seaview)

■ End-to-end

- Each host shares key with destination
- Can be set on per-host or per-host-pair basis
- Message cannot be read at intermediate nodes

Traffic Analysis

- Deduce information from metadata (e.g., sender and recipient)
- Link encryption
 - Can protect headers of packets
 - Possible to hide source and destination
 - Note: may be able to deduce this from traffic flows
- End-to-end encryption
 - Cannot hide packet headers
 - □ Intermediate nodes need to route packet
 - Attacker can read source, destination

Traffic Analysis: Example

- All traffic are enciphered using end-to-end encryption in a company that has leaked proprietary data.
- Investigator Alice monitors senders and recipients of network traffic.
 - Connection from host *larry* always occur between midnight and four in the morning
 - In correlation with the time the leak occurred, Alice suggests that host larry is likely involved in the leak.
- Alice has not read any enciphered data in the network, only the metadata (in the clear)

Example Protocols

- □ Privacy-Enhanced Electronic Mail (PEM)
 - Applications layer protocol
- □ IP Security (IPSec)
 - Network layer protocol

Privacy-Enhanced Electronic Mail (PEM)

- Overview of E-mail service
- □ Threats to E-mail service
- Design goals of PEM
- Design for confidentiality
- Design for integrity and authentication
- Design for non-repudiation
- Practical considerations

Message Handling System

Authentication is minimal and easily evaded

Threats to E-mail Services

- Violation of confidentiality
- Violation of Authentication
- Violation of message integrity
- Violation of non-repudiation

Goals of PEM

- □ To enhance E-mail service with
 - Confidentiality
 - Only sender and recipient(s) can read message
 - Origin authentication
 - Identify the sender precisely
 - Data integrity
 - Any changes in message are easy to detect
 - Non-repudiation of origin
 - Whenever possible ...

Design Principles

- Do not change related existing protocols
 - Cannot alter SMTP
- Do not change existing software
 - Need compatibility with existing software
- Make use of PEM optional
 - Available if desired, but email still works without them
 - Some recipients may use it, others not
- Enable communication without prearrangement
 - Out-of-bands authentication and key exchange are problematic

Basic Design: Keys

■ Two keys

- Interchange keys tied to sender and recipients and are static (for some set of messages)
 - Must be available before messages sent
 - If symmetric ciphers are used, the keys must be exchanged out-of-bands
 - □ If public keys are used, the sender needs to obtain the certificate of the recipient
- Data exchange keys generated for each message
 - □ Like a session key, session being the message

Basic Design: Confidentiality

Confidentiality

- m message
- k_s data exchange key
- k_B Bob's interchange key

Alice
$$\{m\}_{k_s} \mid \mid \{k_s\}_{k_B} \rightarrow Bob$$

Basic Design: Integrity

- □ Integrity and authentication:
 - m message
 - h(m) hash of message m —Message Integrity Check (MIC)
 - \mathbf{k}_A Alice's interchange key
- $lue{\Box}$ Non-repudiation: if k_A is Alice's interchange key, this establishes that Alice's interchange key was used to sign the message

Alice
$$m \{ h(m) \}_{k_A} \rightarrow Bob$$

Basic Design: Putting Together

- □ Confidentiality, integrity, authentication:
 - Notations as in previous slides

$$\{ m \}_{k_s} || \{ h(m) \}_{k_A} || \{ k_s \}_{k_B}$$
Alice

Bob

Design Goal: Non-Repudiation

■ Non-Repudiation

- Notations as in previous slides
- If a public key cipher is bing used and k_A is Alice's private key, get non-repudiation

$$\{ m \}_{k_s} || \{ h(m) \}_{k_A} || \{ k_s \}_{k_B}$$
Alice

Bob

Practical Considerations

- □ Limits of SMTP
 - Only ASCII characters, limited length lines
- □ Use encoding procedure
 - 1. Map local character representation into canonical format
 - Format meets SMTP requirements
 - Compute and encipher MIC over the canonical format; encipher message if needed
 - 3. Map each 6 bits of result into a character; insert newline after every 64th character
 - 4. Add delimiters around this ASCII message

Problem

- Recipient without PEM-compliant software cannot read it
 - If only integrity and authentication used, should be able to read it
- Mode MIC-CLEAR allows this
 - Skip step 3 in encoding procedure
 - Problem: some MTAs add blank lines, delete trailing white space, or change end of line character
 - Result: PEM-compliant software reports integrity failure

PEM vs. PGP

- Use different ciphers
 - PGP uses IDEA cipher
 - PEM uses DES in CBC mode
- □ Use different certificate models
 - PGP uses general "web of trust"
 - PEM uses hierarchical certification structure
- Handle end of line differently
 - PGP remaps end of line if message tagged "text", but leaves them alone if message tagged "binary"
 - PEM always remaps end of line

IPsec

- Design goals
- □ Transport mode and tunnel mode
- □ IPsec architectures
- IPsec protocols

Design Goals

- Network layer security
 - Provides confidentiality, integrity, authentication of endpoints, replay detection
- □ Protects all messages sent along a path

IPsec Transport Mode

- Encapsulate IP packet data area (containing upper layer packet, e.g., TCP segments) to form IPsecwrapped data packet
- ☐ Use IP to send IPsec-wrapped data packet
- Note: IP header not protected
- ☐ Used when both endpoints support IPsec

IPsec Tunnel Mode

- □ IP header not protected in IP transport mode
- Protect IP header using IP tunnel mode, i.e., encapsulate entire IP packet in an IPsec envelope and forward it using IP
- ☐ Used when either or both endpoints do not support IPsec but two intermediate nodes do

IPsec: Example Scenario

IPsec Protocols

- Authentication Header (AH) protocol
 - Message integrity
 - Origin authentication
 - Anti-replay
- Encapsulating Security Payload (ESP) protocol
 - Confidentiality
 - Others provided by AH
- Internet Key Exchange (IKE) protocol
 - Key management

IPsec Architecture: SPD

- Security Policy Database (SPD)
 - Determine how to handle messages (discard them, add security services, forward message unchanged)
 - SPD associated with network interface
 - SPD determines appropriate entry from packet attributes
 - Including source, destination, transport protocol

SPD: Example

□ Goals

- Discard SMTP packets from host 192.168.2.9
- Forward packets from 192.168.19.7 without change

■ SPD entries

```
src 192.168.2.9, dest 10.1.2.3 to 10.1.2.103, port 25, discard
src 192.168.19.7, dest 10.1.2.3 to 10.1.2.103, port 25, bypass
dest 10.1.2.3 to 10.1.2.103, port 25, apply IPsec
```

- Note: entries scanned in order
 - If no match for packet, it is discarded

IPsec Architecture: SA

- Security Association (SA)
 - Association between peers for security services
 - Identified uniquely by destination address, security protocol (AH or ESP), unique 32-bit number (security parameter index, or SPI)
 - Unidirectional
 - Can apply different services in either direction
 - SA uses either ESP or AH, but not both. If both required, use 2 SAs

SA Database (SAD)

- Entry describes SA; some fields for all packets:
 - AH algorithm identifier, keys
 - When SA uses AH
 - ESP encipherment algorithm identifier, keys
 - When SA uses confidentiality from ESP
 - ESP authentication algorithm identifier, keys
 - □ When SA uses authentication, integrity from ESP
 - SA lifetime (time for deletion or max byte count)
 - IPsec mode (tunnel, transport, either)

SAD Fields

- Antireplay (inbound only)
 - When SA uses antireplay feature
- Sequence number counter (outbound only)
 - Generates AH or ESP sequence number
- Sequence counter overflow field
 - Stops traffic over this SA if sequence counter overflows
- Aging variables
 - Used to detect time-outs

IPsec Architecture

- Packet arrives
- □ Look in SPD
 - Find appropriate entry
 - Get dest address, security protocol, SPI
- □ Find associated SA in SAD
 - Use dest address, security protocol, SPI
 - Apply security services in SA (if any)

SA Bundles and Nesting

- Sequence of SAs that IPsec applies to packets
 - This is a SA bundle
- □ Nest tunnel mode SAs
 - This is iterated tunneling

Example: Nested Tunnels

- □ Group in A.org needs to communicate with group in B.org
- ☐ Gateways of A, B use IPsec mechanisms
 - But the information must be secret to everyone except the two groups, even secret from other people in A.org and B.org
- □ Inner tunnel: a SA between the hosts of the two groups
- Outer tunnel: the SA between the two gateways

Example: Systems

Example: Packets

- Packet generated on hostA
- Encapsulated by hostA's IPsec mechanisms
- Again encapsulated by gwA's IPsec mechanisms
 - Above diagram shows headers, but as you go left, everything to the right would be enciphered and authenticated, etc.

IP			IP	7 ** *	ESP	IP	Transport
header	layer						
from	headers,						
gwA	gwA	gwA	hostA	hostA	hostA	hostA	data
_	_	_					5- 5- 5-

AH Protocol

- Parameters in AH header
 - Length of header
 - SPI of SA applying protocol
 - Sequence number (anti-replay)
 - Integrity value check
- Two steps
 - Check that replay is not occurring
 - Check authentication data

Sender

- □ Check sequence number will not cycle
- □ Increment sequence number
- □ Compute IVC of packet
 - Includes IP header, AH header, packet data
 - □ IP header: include all fields that will not change in transit; assume all others are 0
 - AH header: authentication data field set to 0 for this
 - Packet data includes encapsulated data, higher level protocol data

Recipient

- Assume AH header found
- □ Get SPI, destination address
- ☐ Find associated SA in SAD
 - If no associated SA, discard packet
- If antireplay not used
 - Verify IVC is correct
 - If not, discard

Recipient, Using Antireplay

- □ Check packet beyond low end of sliding window
- □ Check IVC of packet
- Check packet's slot not occupied
 - If any of these is false, discard packet

current window

AH Miscellany

□ All implementations must support:

HMAC_MD5

HMAC_SHA-1

■ May support other algorithms

ESP Protocol

- □ Parameters in ESP header
 - SPI of SA applying protocol
 - Sequence number (anti-replay)
 - Generic "payload data" field
 - Padding and length of padding
 - Contents depends on ESP services enabled; may be an initialization vector for a chaining cipher, for example
 - Used also to pad packet to length required by cipher
 - Optional authentication data field

Sender

- □ Add ESP header
 - Includes whatever padding needed
- Encipher result
 - Do not encipher SPI, sequence numbers
- If authentication desired, compute as for AH protocol except over ESP header, payload and not encapsulating IP header

Recipient

- Assume ESP header found
- □ Get SPI, destination address
- □ Find associated SA in SAD
 - If no associated SA, discard packet
- □ If authentication used
 - Do IVC, antireplay verification as for AH
 - Only ESP, payload are considered; not IP header
 - Note authentication data inserted after encipherment, so no deciphering need be done

Recipient

■ If confidentiality used

- Decipher enciphered portion of ESP heaser
- Process padding
- Decipher payload
- If SA is transport mode, IP header and payload treated as original IP packet
- If SA is tunnel mode, payload is an encapsulated IP packet and so is treated as original IP packet

ESP Miscellany

- Must use at least one of confidentiality, authentication services
- Synchronization material must be in payload
 - Packets may not arrive in order, so if not, packets following a missing packet may not be decipherable
- Implementations of ESP assume classical cryptosystem
 - Implementations of public key systems usually far slower than implementations of classical systems
 - Not required

More ESP Miscellany

■ All implementations must support (encipherment algorithms):

DES in CBC mode

NULL algorithm (identity; no encipherment)

All implementations must support (integrity algorithms):

HMAC_MD5

HMAC_SHA-1

NULL algorithm (no MAC computed)

■ Both cannot be NULL at the same time

Which to Use: PEM, IPsec

- What do the security services apply to?
 - If applicable to one application and application layer mechanisms available, use that
 - PEM for electronic mail
 - If more generic services needed, look to lower layers
 - □ IPsec for network layer, either end-to-end or link mechanisms, for connectionless channels as well as connections
 - If endpoint is host, IPsec sufficient; if endpoint is user, application layer mechanism such as PEM needed

Key Points

- Key management critical to effective use of cryptosystems
 - Different levels of keys (session vs. interchange)
- Keys need infrastructure to identify holders, allow revoking
 - Key escrowing complicates infrastructure
- Digital signatures provide integrity of origin and content

Much easier with public key cryptosystems than with classical cryptosystems

Summary

- □ ISO/OSI 7-layer model
- □ Link and End-to-End protocols
- Concept of traffic analysis
- PEM
- IPSec