

Convolutional Neural Network

Dr. Mongkol Ekpanyapong

CNN Example


```
from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
test_images.shape
len(test_labels)
from tensorflow import keras
from tensorflow.keras import layers
img_rows = train_images[0].shape[0]
img_cols = train_images[0].shape[1]
model = keras.Sequential([
layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28,1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(10, activation='softmax')
])
model.summary()
```



```
model.compile(optimizer="sgd",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
train_images = train_images.reshape(train_images.shape[0], img_rows,
img_cols, 1)
test_images = test_images.reshape(test_images.shape[0], img_rows,
img_cols, 1)
train_images = train_images.astype("float32") / 255.0
test_images = test_images.astype("float32") / 255.0
print(train_images.shape)
model.fit(train_images, train_labels, epochs=5, batch_size=128)
```


Homework

 Modify CNN model in Keras on MNIST data set so that the accuracy is better than 98%

Fully Connected Network (FCN)

- Fully connected layers that takes in a 256x256 images and maps to 10 output neural will have 256x256x10+1 = 655,360+1 parameters
- Hence, the FCN model is more complex
- FCN is tended to be more overfit

FCN/CNN layer Comparison

- The Limit of Fully Connected
- Higher number of parameters
- We use information from far-away pixel during the prediction
- Non-translation invariant

The Limit of Fully Connected

 Every input pixel is combined with every other to produce the output results in large number of parameters

CNN

- A convolution is a weighted sum of the pixel values of the image as the window slides across the whole image
- The difference between a fully connected layer and a convolution layer is that the fully connected layers learn global patterns whereas convolution layers learn local pattern
- Convolution operates over 3D tensor called feature map

Key Characteristic of CNN

- The patterns they learn are translation invariant (FCN is not)
- They can learn spatial hierarchies of patterns

Also, it should learn about the filter automatically

CNN

Locality and translation invariance

Convolutional Neural Networks

- CNN has just enough weights to look at a small patch of the image
- The number of parameters are reduced to just 5 x 5+1 = 25+1 parameters per node

CNN Layer Types

- Convolutional (CONV)
- Activation (ACT) e.g., RELU or SOFTMAX
- Pooling (POOL)
- Fully-connected (FC)
- Batch Normalization (BN)
- DropOut (DO)

TIPE OF TECHNOLOGY OF THE PROPERTY OF THE PROP

CONV layers

- Instead of fully connected layer, we can use convolutional layer instead
- Convolutional layer introduces the local connectivity and reduces the number of parameters for training

Given a grayscale image of size 256x256,
 It connects to 25 output neurons, the number of parameters is

256x256x25+bias = 1,638,400+1 for a fully connected layer

Example with CONV

Given a grayscale image of size 256x256,
 It connects to 5x5 patch, the number of

parameters is

5x5+1 = 25+1 for a convolutional layer

Backpropagation

 We can consider the weight/parameter of each kernel similar to fully connected layer as shown below in which sigma is the activation function

$$\sigma \left(b + \sum_{l=0}^{4} \sum_{m=0}^{4} w_{l,m} a_{j+l,k+m} \right)$$

 Hence, the same back propagation can be applied in which now the convolution layer will learn the filters to be used

NAME OF THE PARTY OF THE PARTY

Local Patterns in Image

 Image can be broken into local pattern such as edges, textures

S

CNN Hyper-Parameters

- Number of convolution layers
- Convolution window size
- Convolution filter mask (Filter Depth=K)
- Number of stride
- Padding

Example of random initialized matrices for 32 filter

The filters to be learnt by CNN

K filter/Activation Map

- After we apply K filter, we get the the volume of activation/feature map for the next layer
- Note that the depth can be more than K, as the input can have many channels

We call it Feature Map or Activation Map

Filter Result by applying on a car

Stride

218 | 232

09 411

02 **+2**3

1515 | 200 | 418 |

- The stride is a step of sliding of small matrix over the image (big matrix)
- Example of image (left) and filter (right)

95	242	186	152	39			
39	14	220	153	180	0	1	0
5	247	212	54	46	1	-4	1
46	77	133	110	74	0	1	0
156	35	74	93	116			

Output of a convolution with 1x1 stride (left) and 2x2 stride (right)

602	-315	-6		
0)2	-313	-0	692	-6
-680	-194	305	0,2	
152	50	96	153	-86
133	-39	-80		

- Padding is a technique to retain the original image size when applying a convolution
- In Tensorflow framework, only zero padding is provided
- From the figure, top left is the kernel, top right is the image

			0	0	0	0	0	0	0
			0	95	242	186	152	39	0
692	-315	-6	0	39	14	220	153	180	0
-680	-194	305	0	5	247	212	54	46	0
153	-59	-86	0	46	77	133	110	74	0
	-		0	156	35	74	93	116	0
			0	0	0	0	0	0	0

-99	-673	-130	-230	176
-42	692	-315	-6	-482
312	-680	-194	305	124
54	153	-59	-86	-24
-543	167	-35	-72	-297

Convolution Recap

 Convolution Filters or Kernels detect features in images

Detected features

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

Input Image

Filter or Kernel

Recap

$$(1x0) + (0x1) + (1x0) + (1x1) + (0x0) + (0x-1) + (0x0) + (1x1) + (1x0) = 2$$

1x	0	C)	1	1	k0	0	1
1x	1	C)	0	02	:-1	1	1
0>	0	1x	1	1	ĸ0	0	0
1		0			0	1	0
0		0			1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	

Input Image

Filter or Kernel

Output or Feature Map

$$(0x0) + (1x1) + (0x0) + (0x1) + (0x0) + (1x-1) + (1x0) + (1x1) + (0x0) = 1$$

1	0x0	1x1	0x0	1
1	0x1	0x0	1x-1	1
0	1x0	1x1	0x0	0
1	0	0	1	0
0	0	1	1	0

*

	0	1	0
,	1	0	-1
	0	1	0

=

2	1	

Input Image

Filter or Kernel

Output or Feature Map

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

4

0	1	0
1	0	-1
0	1	0

=

2	1	7

Input Image Filter or Kernel Output or Feature Map

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	1	7
-1		

Input Image Filter or Kernel Output or Feature Map

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	1	7
-1	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	1	-1
-1	1	3

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	1	-1
-1	1	3
2		

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

_

0	1	0
1	0	-1
0	1	0

=

2	1	7
-1	1	з
2	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	1	-1
-1	1	3
2	1	1

Input Image Filter or Kernel Output or Feature Map

Input 5x5 with filter 3x3, then we get 3x3 output

Calculating Feature Map Size

Feature Map Size =
$$n-f+1=m$$

Feature Map Size = $5-3+1=3$

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	1	-1
-1	1	3
2	1	1

$$5 \times 5$$
 $n \times n$

$$3 \times 3$$

 $f \times f$

$$3 \times 3$$

 $m \times m$

Stride

It can use to control feature map output

Larger stride has less overlap

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	

Shift by 2:

				→
1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

0	1	0
1	0	-1
0	1	0

=

2	-1
2	

				•
1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

_

0	1	0
1	0	-1
0	1	0

=

2	7
2	1

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

Input Image

5 x 5

Padding = 0

0 1 0 1 0 -1 0 1 0

=

2	7	1
2	1	0
1	7	1

Filter or Kernel 3 x 3

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 0) - 3}{1} + 1) \times (\frac{5 + (2 \times 0) - 3}{1} + 1) = 3 \times 3$$

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

Input Image

5 x 5

*

0	1	0
1	0	-1
0	1	0

Padding = 0

=

2	-1
2	1

Filter or Kernel 3 x 3

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 0) - 3}{2} + 1) \times (\frac{5 + (2 \times 0) - 3}{2} + 1) = 2 \times 2$$

0	0	0	0	0	0	0
0	1	0	1	0	1	0
0	1	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	0	0	1	1	0	0
0	0	0	0	0	0	0

Input Image 7 x 7

Padding = 1

1 0

0	1	0
1	0	-1
0	1	0

=

2	-1	1	1	0
2	1	0	1	2
1	-1	1	0	1
0	1	2	1	1
2	0	1	0	2

Filter or Kernel 3 x 3

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 1) - 3}{1} + 1) \times (\frac{5 + (2 \times 1) - 3}{1} + 1) = 5 \times 5$$

We have 3x3 filter and 7x7 image with a stride of 2. How many position which we apply the filter?

Output Size

 To guarantee, the integer output size, the following equation can be used to check:

$$((W - F + 2P)/S) + 1$$

When W is the Image size (square)

F is the kernel size (square)

S is stride

P is the padding

Alexnet model

The image size is 227x227.

The kernel size is 11x11.

No padding.

Stride is 4.

We obtain number below which is integer

$$((227-11+2(0))/4)+1=55$$

Question?

If we have a 21 x 21 filter and a 251 x 151 images with stride of 10. What is the output size?

$$24x14 = [(251-21)/10 + 1][(151-21)/10+1]$$

Activation Layer

 Activation function is used to introduce non-linearity in the system

Example of activation function

RELU Operation

Change all negative values to zero

Leave all positive value alone

$$f(x) = max(0,x)$$

Activation Function

 RELU (Rectifier Linear Unit) and Exponential Linear Unit (ELU)

The Model:

RELU Activation Function

Input				١	ReLU	J		
	-249	-91	-37		0	0	0	
	250	-134	101	-	250	0	101	-
	27	61	-153		27	61	0	

Source - http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Result after Activation Function

Reduce the Input Size

There are two ways to reduce the input size

Convolution with stride > 1

Pooling layer

1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0
1	1	0	0	0

_

1	0	-1
1	0	-1
1	0	-1

_

3	3	0
3	3	0
3	3	0

Convolution on Color Image

1 0 -1 1 0 -1

3 3 0 3 3 0 3 3 0

 $(nxnxn_c)^*(fxfxn_c) => (n-f+1) x (n-f+1) x n_f$ n = number of input pixel f = filter size $n_c = number of channel$ $n_f = number of filter$

=

3	3	0
3	3	0
3	3	0

Input Image 5 x 5 x 3

2 Filters or Kernels $3 \times 3 \times 3 \times 2$

Output or Feature Map 3 x 3 x 2

Pooling

- The pooling is a process of subsample (shrink the image) to reduce the computation
- There are many functions that can be applied such as max pooling, min pooling, mean pooling

 4
 123
 1
 34

 56
 99
 222
 253

 45
 122
 165
 12

 21
 187
 133
 124

Stride = 2Kernel = 2x2

123	167
187	165

Pooling Example

 Example of pooling size using a 2x2 kernel with a stride of 2 and no padding

Results after Pooling

Model with Pooling

Example of a model with Pooling:

INPUT => CONV => RELU => POOL => FC

More on Pooling

Typically, we use 2x2 kernel and stride of

 With that, pooling reduces the dimension by a factor of 2 on width and height

 Pooling makes our model more invariant to minor transformations and distortions

How Max Pooling Achieves Translation Invariance

Convolution

*

Shifting Our C down one pixel

Convolution

*

1	1	1	1
1	0	0	1
1	0	0	1
1	1	1	1

Feature Map

How Pooling Works?

Neighboring pixels are strongly correlated

 Hence, we can reduce the size of the output by subsampling the filter response without losing information

A big stride in the pooling layer leads to high information loss

In practice a stride of 2 was found to be effective

To POOL or CONV?

- In 2014 paper, striving for simplicity: The ALL Convolutional Net, Springenberg et al., propose to discard the POOL layer entirely and use CONV layers with a larger stride to handle downsmapling
- Now, it becomes increasingly common trend to not use POOL

NAIST TABLE OF THE PROPERTY OF

Another way of Pooling

 We can achieve good translation invariant with non-explode weight by using Convoluation Neural Network

Another way of pooling

- Convolution is done on many filters automatically
- Pooling can also be used between filters

Four convolutional kernels predicting over the same 2

Outputs from each of the four kernels in each position

The max value of each kernel's output forms a meaningful representation and is passed to the next layer.

Flattening and Fully Connected Layer

Fully Connected Layer

 It is common to use one or two FC layers prior to applying the softmax classifier

 There is also a trend to not use FC layer as it is computing intensive

Model:

INPUT => CONV => RELU => POOL => FC

Batch Normalization (BN)

Recall- the output of CNN is

Batch size x Feature Map Height x Feature Map Width x Channels

 BN calculates the mean and standard deviation of each input variable, to a layer per mini-batch and uses this to perform the standardization

Batch Normalization

- It is introduced by Ioffe and Szegedy in 2015 paper, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift to add BN layer
- The idea is to normalize the data where x_i is minibatch
- The equation is as follow:

$$\hat{x_i} = \frac{x_i - \mu_{\beta}}{\sqrt{\sigma_{\beta}^2 + \varepsilon}}$$

when

$$\mu_{\beta} = \frac{1}{M} \sum_{i=1}^{m} x_i$$

$$\sigma_{\beta}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\beta})^2$$

Batch Normalization

- Advantage:
 - Help reduce the number of epochs for training and help for regularization
 - Recommend to put wherever we can
- Drawback:
 - Slow down the system
- Model:

- The dropout is a regularization technique
- The idea is to keep turn off some neural so that we use many good neural nodes for prediction (not relying only on one)
- It provides multiple redundant nodes

(a) Standard Neural Net

(b) After applying dropout.

 Note that we randomly add dropout only during the training time, (testing time, we activate back all nodes)

Model:

How convolution work:

Complete CNN Architecture

A Simple CNN

4 Layer Deep CNN for MNIST

Layer	Depth	Width	Height	Filter (w)	Filter (h)
Input	1	28	28		
Conv_1	32	26	26	3	3
Conv_2	64	24	24	3	3
Max Pool	64	12	12	2	2
Flatten	9216	1	1		
Fully Connected	128	1	1		
Output	10	1	1		

Conv_1 layer

What is the output size after Conv_1 layer?

$$[(n+2p-f)/s + 1] \times [(n+2p-f)/s + 1] = 26 \times 26$$

n = 28, f = 3, s = 1, p = 0

Conv_2 layer

What is the output size after the layer?

$$[(n+2p-f)/s + 1] \times [(n+2p-f)/s + 1] = 24 \times 24$$

 $n = 26$, $f = 3$, $s = 1$, $p = 0$

Max Pool layer

What is the output size after the layer?

$$[(n+2p-f)/s + 1] \times [(n+2p-f)/s + 1] = 12 \times 12$$

 $n = 24$, $f = 0$, $s = 2$, $p = 0$

12x12x64 = 9,216

128

10

Calculate the number of parameters

How many parameters are in 16 Conv. Filters with 3x3 kernels

((Height x Width x Dept) + bias) x #Filters = ((3x3x3)+1)x16 = 448

How many Parameter in this system?

Conv_1 layer

How many parameter?

((Height x Width x Depth) + bias) x #Filters = ((3x3x1+1)x16 = 320

How many parameter?

((Height x Width x Depth) + bias) x #Filters = ((3x3x32+1)x64 = 18,494)

How many parameter?

No trainable parameters

How many parameter?

No trainable parameters (9,216 nodes)

FC1 layer

What is the output size after the layer?

(Input node + bias) x Output node = $(9,216 + 1) \times 128 = 1,179,776$

FC2 layer

What is the output size after the layer?

(Input node + bias) x Output node = $(128 + 1) \times 10 = 1,290$

Layer	Parameters	
Conv_1 + ReLU	320	
Conv_2 + ReLU	18494	
Max Pool	0	
Flatten	0	
FC_1	1,179,776	
FC_2 (Output)	1,290	
Total	1,199,882	

Four Important Feature for Deep Learning

- Dataset
- A Loss Function
- A Neural Network Architecture
- An optimization method

Rules of Thumb

- Common input sizes include 32x32, 64x64, 96x96, 224x224, 227x227 and 229x229
- The input layer should be divisible by two multiple times (to use POOL)
- CONV layers should be small size such as 3x3, 5x5, or 1x1
- Large filter can be used in very first CONV such as 7x7 and 11x11

Is CNN Translation, rotation, and scaling invariant

- CNN is translation invariant with the help of convolutional layer
- It is not rotation and scaling invariant unless you let the network learn a lot of rotation and scaling samples

Why CNNs Work So Well For Images

ANN requires many parameters

ANN is not translation-invariant

3 Layers of ANN on MNIST

- Input 28x28 = 784
- For second layer, if we have same number of node as CNN Feature map second layer: 32x26x26 = 21,631 nodes
- #trainable parameter = 784x 21,631 = 16,958,704

Parameter sharing

 Less number of weight comparing with CNN

Transition Invariance

Low-level features are local

Features are translational invariant

 High-level features are made up of lowlevel features

Rules of Thumb

- We commonly use a stride of S=1, unless we want to do use CONV instead of POOL
- Zero padding should always be applied
- At a novice, POOL is easier to use. Once, you get enough experience, try to avoid it
- POOL should be used with max pooling with 2x2 size and stride =2
- BN and DO should be applied if possible

