1D HEAT CONDUCTION IN A UNIFORM ROD WITH DIRICHLET'S BOUNDARY CONDITIONS (Separation of Variable)

Heat Equation (One Dimension)

Heat equation is a *parabolic* partial differenital equaiton. This heat equation in one dimension is used to model the *temprature distribution* in a one dimensional rod.

The equation is given by:

$$s\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

- u(x,t) is the temprature at position x (spatial variable) and time t
- $\frac{\partial u}{\partial t}$ is the partial derivative with respect to time t
- k is the rate of heat transfer in a material
- $\frac{\partial^2 u}{\partial x^2}$ is the second partial derivative of u with respect of spatial variable x

Initial & Boundary Conditions (IBCs)

This equation describes the dissipation of heat for $0 \le x \le L$ and $t \ge 0$. Our goal is to solve it for the temperature u(x,t).

Initially the temperature is a nonzero constant, so the initial condition is

$$u(x,0) = T_0$$

Also, the temperature is zero at the left boundary, and nonzero at the right boundary, so the boundary conditions are

$$u(0,t) = 0$$
 ; $u(L,t) = 1$

Steps to Solve at Matlab

- 1. Code the equation
- 2. Initial conditions & boundary conditions

3. Select a suitable solution mesh before calling the solver pdepe

Code Equation

Before you can code the equation, you need to make sure that it is in the form that the pdepe solver expects:

$$c\left(x,t,u,\frac{\partial u}{\partial x}\right)\frac{\partial u}{\partial t} = x^{-m}\frac{\partial}{\partial x}\left(x^{m}f\left(x,t,u,\frac{\partial u}{\partial x}\right)\right) + s\left(x,t,u,\frac{\partial u}{\partial x}\right).$$

In this form, the heat equation is

$$1 \cdot \frac{\partial u}{\partial t} = x^0 \frac{\partial}{\partial x} \left(x^0 \frac{\partial u}{\partial x} \right) + 0.$$

So the values of the coefficients are as follows:

- m = 0
- *c* = 1
- $f = \frac{\partial u}{\partial x}$
- s = 0

The value of m is passed as an argument to pdepe, while the other coefficients are encoded in a function for the equation, which is

```
function [c,f,s] = heatpde(x,t,u,dudx)
c = 1;
f = dudx;
s = 0;
end
```

(Note: All functions are included as local functions at the end of the example.)

Code Initial Condition

The initial condition function for the heat equation assigns a constant value for u_0 . This function must accept an input for x, even if it is unused.

```
function u0 = heatic(x)
u0 = sin;
end
```

Code Boundary Conditions

The standard form for the boundary conditions expected by the pdepe solver is

$$p(x,t,u) + q(x,t)f\left(x,t,u,\frac{\partial u}{\partial x}\right) = 0.$$

Written in this form, the boundary conditions for this problem are

```
u(0,t) + (0 \cdot f) = 0,

(u(L,t) - 1) + (0 \cdot f) = 0.
```

So the values for p and q are

```
• p_L = u_L, q_L = 0.
• p_R = u_R - 1, q_R = 0.
```

The corresponding function is then

```
function [pl,ql,pr,qr] = heatbc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;
pr = ur - 1;
qr = 0;
end
```

Select Solution Mesh

Use a spatial mesh of 20 points and a time mesh of 30 points. Since the solution rapidly reaches a steady state, the time points near t = 0 are more closely spaced together to capture this behavior in the output.

```
L = 1;
x = linspace(0,L,20);
t = [linspace(0,0.05,20), linspace(0.5,5,10)];
```

Solve Equation

Finally, solve the equation using the symmetry m, the PDE equation, the initial condition, the boundary conditions, and the meshes for x and t.

```
m = 0;
sol = pdepe(m,@heatpde,@heatic,@heatbc,x,t);
```

Plot Solution

Use imagesc to visualize the solution matrix.

```
colormap hot
imagesc(x,t,sol)
colorbar
xlabel('Distance x','interpreter','latex')
ylabel('Time t','interpreter','latex')
title('Heat Equation for $0 \le x \le 1$ and $0 \le t \le 5$','interpreter','latex')
```

