CSE/IT

DISCRETE MATHEMATICS Qunatifier Part - 2

DPP NO: 06

[MCQ]

- Consider a function, P(x, y, z) = x + y + z = 15 and domain = z, then which of the following is correct?
 - (a) $\forall x \exists y \exists z P(x, y, z)$
- (b) $\exists z \forall x \forall y P(x, y, z)$
- (c) $\forall x \exists z \forall y P(x, y, z)$
- (d) $\exists z \ \exists y \forall x \ P(x, y, z)$

[MCQ]

- 2. Consider an asymmetric function $P(x, y) = x^2 + y^2 = 10.0$ on domain integer, then which of the following is correct?
 - (a) $\exists x \exists y P(x, y)$
- (b) $\forall x \exists y P(x, y)$
- (c) $\forall y \exists x P(x, y)$
- (d) None of these

[MSQ]

- 3. Which of the following is/ are negation of $[\forall x \exists y \forall z (P(x, y, z) \oplus Q(x, y, z))]$
 - (a) $\exists x \forall y \exists z (\sim P(x, y, z) \oplus \sim Q(x, y, z))$
 - (b) $\exists x \forall y \exists z (P(x, y, z) \Rightarrow \sim Q(x, y, z))$
 - (c) $\exists x \forall y \exists z (P(x, y, z) \Leftrightarrow Q(x, y, z))$
 - (d) $\exists x \forall y \exists z (\sim P(x, y, z) \Leftrightarrow \sim Q(x, y, z))$

[NAT]

- 4. Consider the following logical expressions
 - (a) $\forall x \forall y P(x, y) \leftrightarrow \exists y \forall x P(x, y)$

- (b) $[\forall x P(x)] \lor Q \leftrightarrow \forall x [P(x) \lor Q]$
- (c) $\forall x[P(x) \land Q] \leftrightarrow [\forall x P(x)] \land Q$
- (d) $\exists x[P(x) \lor Q] \leftrightarrow [\exists x P(x)] \land Q$

Total invalid expressions are ____?

[MCQ]

negative.

Consider the following statementsS₁: There is someone who is loved by everyone.S₂: Every real number has its corresponding

Here L(x, y) denotes "x loves y"

P(x, y) denotes "x + y = 0"

Which of the following represent the correct predicate logic of the given statement?

- (a) S_1 : $\exists x \forall y L(x, y), S_2$: $\exists y \forall x p(x, y)$
- (b) S_1 : $\forall x \exists y \ L(x, y), S_2$: $\forall x \forall y \ p(x, y)$
- (c) S_1 : $\exists y \forall x L(x, y), S_2$: $\forall x \exists y p(x, y)$
- (d) None of these.

Answer Key

1. (a)

2. (d)

3. (c, d)

4. (2)

5. (c)

Hints and Solutions

1. (a)

- (a) $\forall x \exists y \exists z \ P(x, y, z)$ z + y = 15 - x15 - integer = integer **True**
- (b) z = 15 x y False z must be independent, here z depends on x and y.
- (c) z = 15 x y False z should not depend on y.
- (d) y + z = 15 x False the value of (y + z) is depending on x, (y + z)must be independent, so this expression is also False.

False

2. (d)

(a)

- $x^2 + y^2 = 10.0$ F(1, 3) = 1 + 9 = 10Here, 10 is integer but output must be 10.0, it will never come because 10.0 is not an integer.
- (b) $\forall x \exists y \ P(x, y)$ False 10.0 will never come.

 $\forall x \exists y P(x, y)$

(c) $\forall y \exists x \ P(x, y)$ False Hence, option (d) is correct

3. (c, d)

Negation of XOR operator is biconditional.

p	q	$p \oplus q$	$p \leftrightarrow q$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

- (c) $\sim [\forall x \exists y \forall z (P(x, y, z) \oplus Q(x, y, z))]$ $[\exists x \forall y \exists z \sim (P(x, y, z) \oplus Q(x, y, z))]$ $[\exists x \forall y \exists z (P(x, y, z) \Leftrightarrow Q(x, y, z))]$ True
- (d) Property:

$$P \leftrightarrow Q \equiv P \leftrightarrow Q$$

$$\begin{split} P'Q' + PQ &\equiv P'Q' + PQ \\ &\sim [\forall x \exists y \forall z (P(x, y, z) \oplus Q(x, y, z))] \\ & [\exists x \forall y \exists z \ (\sim P(x, y, z) \Leftrightarrow \sim Q(x, y, z))] \ True \\ \text{Hence, option (c, d) are correct.} \end{split}$$

4. (2)

- (a): Invalid $\forall x \forall y P(x, y) \rightarrow \exists y \forall x \ P(x, y) \ (\text{One way true})$ $\forall y \forall x P(x, y) \rightarrow \exists y \forall x \ P(x, y)$
- $$\begin{split} (b) \colon & \left[\forall x P(x) \right] \vee Q \leftrightarrow \left[\forall x P(x) \vee Q \right] \\ & \left(P_1 \wedge P_2 \right) + Q \equiv \left(P_1 \vee Q \right) \wedge \left(P_2 \vee Q \right) \\ & P_1 P_2 + Q \equiv P_1 P_2 + P_1 Q + P_2 Q + Q \\ & P_1 P_2 + Q \equiv P_1 P_2 + Q \text{ (valid)} \end{split}$$
- (c): $\forall x[P(x) \land Q] \leftrightarrow [\forall x P(x)] \land Q$ $(P_1 \land Q) \land (P_2 \land Q) \equiv (P_1 \land P_2) \land Q$ $P_1QP_2 Q \equiv P_1 P_2 Q$ $P_1 P_2Q \equiv P_1 P_2Q$ Valid
- (d): $\exists x (P(x) \lor Q) \leftrightarrow [\exists x P(x)] \land Q$ $(P_1 \lor Q) \lor (P_2 \lor Q) \equiv (P_1 \lor P_2) \land Q$ $P_1 + Q + P_2 + Q \equiv (P_1 + P_2) Q$ $P_1 + P_2 + Q \not\equiv (P_1 + P_2) Q$ Invalid Total 2 expressions are invalid

5. (c)

Statement S₁: There is someone who is loved by everyone.

- Assume, variables x and y denote people
- A predicate L(x, y): denotes "x loves y"
- $\therefore \exists y \forall x \ L(x, y)$ there is someone who is loved by everyone.

Statement S₂: Every real number has its corresponding negative.

- Assume, a real number is denoted as x and its negative as y.
- A predicate p(x, y) denotes "x + y = 0"
- $\therefore \forall x \exists y \ p(x, y)$

Hence, option c is correct answer.

Any issue with DPP, please report by clicking here https://forms.gle/t2SzQVvQcs638c4r5

For more questions, kindly visit the library section: Link for app: https://links.physicswallah.live/vyJw

For more questions, kindly visit the library section: Link for web: https://physicswallah.live/tabs/tabs/library-tab

PW Mobile APP: https://physicswala.page.link/?type=contact-us&data=open

For PW Website: https://www.physicswallah.live/contact-us

