1-)
$$h \in \mathbb{R}$$
 ve $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 2h \\ 3h + 1 \end{bmatrix}$ olmak üzere h nin hangi değerleri için $S = \{v_1, v_2, v_3\}$ kümesi lineer bağımsızdır?

ÇÖZÜM:

$$c_1 v_1 + c_2 v_2 + c_3 v_3 = 0$$

$$c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} h \\ 1 \\ -h \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2h \\ 3h + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Sadecė sıfır çözümünün olması için yani $r_A=3=n\,$ olması için $2h^2+3h+1\neq 0\,$ olmalıdır.

 $2h^2 + 3h + 1 \neq 0 \implies h_1 \neq -1/2$, $h_2 \neq -1$ için S kümesi lineer bağımsızdır.

Başarılar...

l. bøsit relitorlei veriligor. drochi a, b, c & R3 { \$\delta + 5', \$\delta - 2\delta', 36 + \delta'} homesing 2, 5 gs + alupalica difini araptirinit. $\lambda_{1}(\vec{a} + \vec{b}) + \lambda_{2}(\vec{a} - 2\vec{c}) + \lambda_{3}(3\vec{b} + \vec{c}) = \vec{0}$ 1, 0 + 1, 1 + 12 0 - 222 0 + 23 1 + 2 0 = 0 $\vec{a}(\lambda_1 + \lambda_2) + \vec{b}(\lambda_1 + 3\lambda_2) + \vec{e}(-2\lambda_2 + \lambda_3) = \vec{0}$ 07, 6, c l. 6 ps, 2, oldganden $\lambda_{1} + \lambda_{2} = 0$ $\lambda_{1} = -\lambda_{2}$ $\lambda_{1} = 2\lambda_{2}$ $\lambda_{1} = \lambda_{2} = 0$ $\lambda_{1} = \lambda_{2} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{1} = \lambda_{2} = \lambda_{3} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{1} = \lambda_{2} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{3} = \lambda_{3} = 0$ $\lambda_{1} = \lambda_{2} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{3} = \lambda_{3} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{3} = \lambda_{3} = 0$ $\lambda_{4} = \lambda_{3} = 0$ $\lambda_{2} = \lambda_{3} = 0$ $\lambda_{3} = \lambda_{3} = 0$ $\lambda_{4} = \lambda_{3} = 0$ $\lambda_{5} = \lambda_{5} = 0$ $\lambda_{7} = \lambda_{7} = 0$ { d+6, d-20, 36+03 4, 1 g-3, 4dir. Orneh: a, b, c' vehtarler i værte kulules paralel yuzlanin hoem: 5603 olsn. { 3+6, 0 - 20, 36+0) vehtorle; værire hunder perdel y it hæmi) $(\vec{a}+\vec{b}).(\vec{a}-2\vec{c}) \wedge (3\vec{b}+\vec{c})) = (\vec{a}+\vec{b}).(\vec{a}-3\vec{b}) + (\vec{a}\wedge\vec{c}) - (2\vec{c}\wedge3\vec{b}) + (\vec{a}\wedge\vec{c}))$ $= \vec{a} \cdot (\vec{a} \times 3\vec{b}) + \vec{a} \cdot (\vec{a} \times \vec{c}) - \vec{a} \cdot (2\vec{c} \times 3\vec{b}) + \vec{b} \cdot (\vec{a} \times 3\vec{b}) + \vec{b} \cdot (\vec{a} \times 3\vec{b})$ =-2 (22,36). +6 (2,2) = 6 B(Bn E) + B(BnE) = 5 d (Bn2) = 5,5=25

2. Hangi c değeri için $x = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $y = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$ ve $z = \begin{bmatrix} 1 \\ 1 \\ c \end{bmatrix}$ vektörleri \mathbb{R}^3 de lineer bağımlıdır? Bu vektörler arasındaki bağıntıyı bulunuz.

Çözüm: $k_1x + k_2y + k_3z = 0$ sisteminin $k_1 = k_2 = k_3 = 0$ çözümünden farklı bir çözümü de olmalıdır.

$$2k_1 - k_2 + k_3 = 0$$

$$k_1 + k_3 = 0$$

$$2k_1 - k_2 + ck_3 = 0$$

sistemi için
$$\begin{vmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & c \end{vmatrix} = 0$$
 olmalıdır. Yani, $c - 1 = 0$ ve $c = 1$ olmalıdır.

$$c = 1$$
 iken $z = x + y$ olduğu açıktır.

$$k_1 = k_2$$
 | $k_1 = 1$ | $k_2 = 1$ | $k_3 = 1$ | $k_4 = 1$ | $k_5 = 1$ | $k_6 = 1$ | $k_$

$$c = 1 \text{ iken } z = x + y \text{ olduğu açıktır.}$$

$$k_1 = 1 \text{ iqin}$$

$$k_2 = k_2$$

$$k_3 = -k_1$$

$$k_4 = 1$$

$$k_3 = -k_1$$

$$k_4 = 1$$

$$k_5 = -1$$

$$k_6 = 1$$

$$k_7 = 2$$

$$k_8 = -1$$

$$k_8 = -1$$