

Lecture3: Machine Learning Foundations

Xu Ruifeng

Harbin Institute of Technology, Shenzhen

Today's class

- What is machine learning?
- Linear Classifier
 - Logistic Regression
 - Support Vector Machine
- Structured Learning
 - Hidden Markov Model
 - Condition Random Fields

What is Machine Learning?

- **Common theme** is to solve a prediction problem:
 - given an **input** x,
 - **predict** an "appropriate" **output** y.
- Let's start with a few examples...

邮箱首页

Example: Spam Detection

- Input: Incoming email
- Output: "SPAM" or "NOT SPAM"
- A classification problem

| 写信 收件箱 (共 | 收信 删除 通讯录 收件箱(1183) 今天 (2 封 星标邮件 🌟 群邮件(78) 草稿箱(4) 已发送 上周 (8 封 已删除 垃圾箱(19) [清空] 垃圾箱(19) ⊞ 我的文件夹(343) ⊞ 其他邮箱(1) 日历 | 记事本 简历 NEW 在线文档 NEW

• Input: Movie Review

- Output: Recommended level (1~5)
- A regression problem

Example: Named Entity Recognition

• Input: Sentence

- Output: Names of people, location, organization, etc
- A labeling problem

The Prediction Function

- A **prediction function** takes input x and produces an output y.
- We're looking for prediction functions that solve particular problems.
- Rule-based system
 - labor-intensive
 - poor generalization ability
- Machine Learning: Learning from data.

Machine Learning Algorithm

- Learning from the "training data".
 - many examples of (input x, output y) pairs.
 - e.g. A set of emails, and whether or not each is SPAM.
 - e.g. A set of movie reviews, and corresponding sentiment scores.

A machine learning algorithm:

- input: Training Data
- "learns" from the training data.
- **output**: A "prediction function" that produces output y given input x.

Machine Learning Algorithm

- Every machine learning algorithm has three components:
 - **representation**: How to model the relationship between input x and output y.
 - hypothesis space: all possible conditional probability distributions $p(y|x;\theta)$ or decision functions $g(x;\theta)$.
 - evaluation: The way to evaluate candidate hypothesis function.
 - loss Function, Empirical Risk Minimization
 - **optimization**: The algorithm to determine the parameters in the hypothesis function.

Machine Learning Algorithm

- Types of Learning
 - supervised learning
 - unsupervised Learning
 - reinforcement Learning

Today's class

- What is machine learning?
- Linear Classifier
 - Logistic Regression
 - Support Vector Machine
- Structured learning
 - Hidden Markov Model
 - Condition Random Field

- Task: Sentiment classification
 - to determine whether the sentiment polarity expressed by a movie review is positive or negative.

- Feature extraction:
 - to construct a feature vector, e.g.

Var	Definition
x_1	$count(positive lexicon) \in doc)$
x_2	$count(negative lexicon) \in doc)$
x_3	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_4	$count(1st \text{ and } 2nd \text{ pronouns} \in doc)$
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_6	log(word count of doc)

- Feature extraction:
 - to construct a feature vector, e.g.

- Feature extraction:
 - an n-dimensional feature vector is a point in the n-dimensional space(n维空间).

- Feature extraction:
 - an n-dimensional feature vector is a point in the n-dimensional space(n维空间).

- Linear discriminant function.
 - given a sample $\mathbf{x} = [x_1, ..., x_d]^\mathsf{T}$, let $f(\mathbf{x}, \mathbf{w})$ be

$$egin{aligned} f(\mathbf{x},\mathbf{w}) &= \mathbf{w}^ op \mathbf{x} + b \ &= w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b \end{aligned}$$

• $\mathbf{w} = [w_1, ..., w_d]^{\mathsf{T}}$ is a vector of weights, b is a bias term.

- Linear discriminant function.
 - decision boundary(决策边界), hyperplane(超平面)

- For a binary classification, $y \in \{0, 1\}$, but $f(\mathbf{x}, \mathbf{w}) \in R$.
 - unit-step function 单位阶跃函数
 - logistic function (sigmoid)

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Conditional Probability

$$p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x} + b)}$$

 $p(y = 0|\mathbf{x}) = 1 - \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$

$$\hat{y} = egin{cases} 1 & ext{if} \ \ p(y=1|x) > 0.5, \ 0 & ext{otherwise.} \end{cases}$$

- Conditional Probability
 - let's assume that we've already learned the weights and the bias term.

$$\begin{aligned} \mathbf{x} &= [3, 2, 1, 3, 0, 4.19]^{\top} \\ \mathbf{w} &= [2.5, -5.0, -1.2, 0.5, 2.0, 0.7]^{\top}, b = 0.1 \\ p(y = 1 | \mathbf{x}) &= \sigma(\mathbf{w}^{T} \mathbf{x} + b) \\ &= \sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19]^{\top} + 0.1) \\ &= \sigma(0.833) \\ &= 0.70 \\ p(y = 0 | \mathbf{x}) &= 1 - \sigma(\mathbf{w}^{\top} \mathbf{x} + b) \\ &= 0.30 \end{aligned}$$

- Conditional Probability
 - $p(y = 1|\mathbf{x}) = 0.7, p(y = 0|\mathbf{x}) = 0.3.$

- Learning in Logistic Regression
 - to determine the parameters of the model, the weights ${f w}$ and bias b
 - we want to learn parameters that make \hat{y} for each training sample as close as possible to the true y.
 - loss function: the distance between the system output \hat{y} and the gold output y.
 - **gradient descent**: an optimization algorithm for iteratively updating the parameters so as to minimize the loss function

- Cross-entropy Loss Function(交叉熵损失函数)
 - given N train samples $\{(\mathbf{x}^{(n)}, y^n)\}_{n=1}^N$
 - let $\hat{y} = p(y = 1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$

$$L(\mathbf{w},b) = -rac{1}{N} \sum_{n=1}^N \left(y^{(n)} \log \hat{y}^{(n)} + (1-y^{(n)}) \log (1-\hat{y}^{(n)})
ight).$$

Cross-entropy loss function

$$L(\mathbf{w},b) = -rac{1}{N} \sum_{n=1}^{N} \left(y^{(n)} \log \hat{y}^{(n)} + (1-y^{(n)}) \log (1-\hat{y}^{(n)})
ight).$$
 $L^{(n)}(\mathbf{w},b) = -\left(y^{(n)} \log \hat{y}^{(n)} + (1-y^{(n)}) \log (1-\hat{y}^{(n)})
ight)$

$$\text{if } y^{(n)} = 0, \ \min L^{(n)}(\mathbf{w}, b) \Longrightarrow \max \log(1 - \hat{y}^{(n)}) \Longrightarrow \min \hat{y}^{(n)}$$

$$\text{if } y^{(n)} = 1, \ \min L^{(n)}(\mathbf{w}, b) \Longrightarrow \max \hat{y}^{(n)} \Longrightarrow \max \hat{y}^{(n)}$$

Gradient Descent

$$\hat{\mathbf{w}}, \hat{b} = rg\min_{\mathbf{w}, b} L(\mathbf{w}, b)$$

• 沿着负梯度方向更新参数

Gradient Descent

$$egin{align} rac{\partial L}{\partial \mathbf{w}} &= -rac{1}{N} \sum_{n=1}^N \mathbf{x}^{(n)} (y^{(n)} - \hat{y}^{(n)}). \ rac{\partial L}{\partial b} &= -rac{1}{N} \sum_{n=1}^N (y^{(n)} - \hat{y}^{(n)}). \end{align}$$

• update **w**, b (沿着负梯度方向更新参数)

$$egin{aligned} \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - lpha rac{\partial L}{\partial \mathbf{w}} \ b_{t+1} \leftarrow b_t - lpha rac{\partial L}{\partial b} \end{aligned}$$

• α is the step (learning rate)

Regularization

- if the weights are learned too perfect that the model completely match the training data, noisy factors that just accidentally correlate with the class will also be modeled.
- this problem is called overfitting.
- one way to avoid overfitting is to add a **regularization term** $R(\theta)$ to the objective function to penalize large weights

$$\hat{\mathbf{w}}, \hat{b} = rg\min_{\mathbf{w}, b} L(\mathbf{w}, b) + lpha R(\mathbf{w}, b)$$

- Regularization
 - let $\theta = [w_1, w_2, ..., w_d, b]^T$
 - 11 regularization

$$R(heta) = \| heta\|_1 = \sum_{i=1}^{d+1} heta_i$$

• 12 regularization

$$R(heta) = rac{1}{2} \| heta\|_2^2 = rac{1}{2} \sum_{i=1}^{d+1} heta_i^2$$

- Motivation
 - the decision boundary could separate samples of two classes
 - the **maximum margin** solution (间隔最大化准则)
 - the decision boundary is chosen to be the one for which the

margin is maximized.

- Motivation
 - margin:

$$\gamma^{(n)} = rac{|\mathbf{w}^{ op}\mathbf{x}^{(n)} + b|}{\|\mathbf{w}\|}$$

Motivation

• assuming that all samples are correctly classified, define $\gamma=\frac{a}{||w||}$ as the **minimum margin** between all samples and the decision boundary.

$$y^{(n)}(\mathbf{w}^{\top}\mathbf{x}^{(n)} + b) \geq a$$

• the **maximum margin** solution

$$\max \gamma \Longrightarrow \max \frac{a}{\|\mathbf{w}\|}$$

Motivation

• objective function

$$egin{aligned} & \max_{\mathbf{w},b} rac{a}{\|\mathbf{w}\|} \ & ext{s.t.} \quad y^{(n)}(\mathbf{w}^{ op}\mathbf{x}^{(n)}+b) \geq a, orall n \end{aligned}$$

• 等比例地缩放**w**和*b*:

$$\begin{aligned} \max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} & \Longrightarrow & \min_{\mathbf{w},b} & \frac{1}{2} \|\mathbf{w}\|^2 \\ \text{s.t.} & y^{(n)} (\mathbf{w}^\top \mathbf{x}^{(n)} + b) \geq 1, \forall n \end{aligned} \qquad \text{s.t.} \quad 1 - y^{(n)} (\mathbf{w}^\top \mathbf{x}^{(n)} + b) \leq 1, \forall n$$

Optimization

- this is a convex quadratic programming(凸二次规划) problem
- this could by solved by Lagrange multiplier method(拉格朗日乘子 法)

- Kernel function(核函数)
 - to deal with linearly inseparability problem(线性不可分问题), it's necessary to map samples from the original feature space to a higher-dimensional space by **kernel function**

The inner product square kernel function can map a picture from a

2-dimensional space to a 3-dimensional space.

$$K(v_1, v_2) = \langle v_1, v_2 \rangle^2 = (x^2, \sqrt{2}xy, y^2)$$

 $v_1 = (x_1, y_1), v_2 = (x_2, y_2)$

Support Vector Machine

- Kernel function
 - decision boundary

$$f(\mathbf{x}) = \mathbf{w}^{ op} \phi(\mathbf{x}) + b$$

the cost of calculating $\phi(x)^{\mathsf{T}}\phi(\mathbf{z})$ is expensive, so define

• dual form of objective function

$$\kappa(\mathbf{x},\mathbf{z}) = \phi(\mathbf{x})^ op \phi(\mathbf{z})$$
kernel function

$$egin{aligned} \max & \sum_{i=1}^n lpha_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y^{(i)} y^{(j)} \underline{\phi(\mathbf{x}^{(i))})^ op \phi(\mathbf{x}^{(j)})} \ & ext{s.t.} & \sum_{i=1}^n lpha_i y^{(i)} = 0, \ & lpha_i \geq 0, orall n \end{aligned}$$

Support Vector Machine

kernel functions commonly used in machine learning

表 6.1 常用核函数

名称	表达式	参数
线性核	$\kappa(\mathbf{x},\mathbf{z}) = \mathbf{x}^{ op}\mathbf{z}$	
多项式核	$\kappa(\mathbf{x},\mathbf{z}) = (\mathbf{x}^{ op}\mathbf{z}+1)^d$	d ≥ 1 为多项式的次数
高斯核	$\kappa(\mathbf{x},\mathbf{z}) = \exp(-rac{\ \mathbf{x}-\mathbf{z}\ ^2}{2\sigma^2})$	$\sigma > 0$ 为高斯核的带宽(width)
拉普拉斯核 Sigmoid 核	$egin{aligned} \kappa(\mathbf{x}, \mathbf{z}) &= \exp(-rac{\ \mathbf{x} - \mathbf{z}\ }{\sigma}) \ \kappa(\mathbf{x}, \mathbf{z}) &= anh(eta \mathbf{x}^ op \mathbf{z} + heta) \end{aligned}$	$\sigma > 0$ tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

Today's class

- What is machine learning?
- Linear Classifier
 - Logistic Regression
 - Support Vector Machine
- Structured learning
 - Hidden Markov Model
 - Condition Random Field

Structured learning

- A classifier predicts which class the input sample belongs to.
- The output of **structured learning**(结构化学习) is no longer discrete labels, but structured objects, such as sequences, trees, or graphs.
- e.g. Part-of-Speech(词性标注)

生活	的	理想	是	理想	的	生活
名词	助词	名词	动词	形容词	助词	名词

• Let's observe the following word sequence and pos sequence.

 生活
 的
 理想
 是
 理想
 的
 生活

 名词
 助词
 名词
 动词
 形容词
 助词
 名词

- Let's observe the following word sequence and pos sequence.
 - "是"一般是名词, "的"一般是助词
 - "理想"可以做名词, 也可以做形容词

生活	的	理想	是	理想	的	生活
	↓	. ↓	↓	↓	↓	. ↓
名词	助词	名词	动词	形容词	助词	名词

P(词性 单词)	名词	助词	动词	形容词
生活	1			
的		1		
理想	0.5			0.5
是			1	

- Let's observe the following word sequence and pos sequence.
 - "是"一般是动词, "的"一般是助词
 - "理想"可以做名词, 也可以做形容词

生活	的	理想	是	理想	的	生活
名词	助词	名词	动词	形容词	助词	名词

P(单词 词性)	生活	的	理想	是
名词	0.5		0.5	
助词		1		
动词				1
形容词			1	

- Let's observe the following word sequence and pos sequence.
 - "形容词"后面一般接"助词"
 - "助词"后面一般接"名词"

生活 的 理想 是 理想 的 生活 名词→助词→名词→动词→形容词→助词→名词

P(后一个词的词性 前一个词的词性)	名词	助词	动词	形容词
名词		0.5	0.5	
助词	1			
动词				1
形容词		1		

- Observation(观测) and State(状态)
 - observation x_t , observation sequence \mathbf{x}

$$\mathbf{x} = (x_1, x_2, \dots, x_T)$$
 生活 的 理想 是 理想 的 生活

• Hidden state z_t , state sequence \mathbf{z}

$$\mathbf{y} = (y_1, y_2, \cdots, y_T)$$
 名词 助词 名词 动词 形容词 助词 名词

the observation is visible, the state is invisible.

- Observation(观测) and State(状态)
 - observation space $O = \{o_1, o_2, \dots, o_M\}$

Vocabulary

• state space $S = \{s_1, s_2, \dots, S_N\}$

Part-of-speech set

ag	adjective morpheme	绿色/n似/d锦/ag	a	adjective	重要/a 步伐/n
ad	adverb-adjective	积极/ad 谋求/v	an	adnoun	克服/v 困难/an
bg	distinguish morpheme	一个/m 次/bg 地区/n	b	distinguish word	女/b 司机/n
c	conjunction	合作/vn 与/c 伙伴/n	dg	adverb morpheme	了解/v 甚/dg 深/a
d	adverb	进一步/d 发展/v	e	exclamation	啊/e
f	position word	贵州/ns 南部/f	h	heading element	非/h 主角/n
i	idiom	一言一行/i	j	abbreviation	德/j 外长/n
k	tail element	朋友/n 们/k	1	habitual word	落到实处/1
mg	numeral morpheme	让/v 乙/mg 背上/v	m	numeral	三/m 个/q
ng	noun morpheme	出/v 两/m 天/q 差/ng	n	noun	科技/n 文献/n
nr	person's name	朴/nr 贞爱/nr	ns	toponym	安徽/ns
nt	organization proper noun	联合国/nt	nx	foreign character	24/m K/nx
nz	other proper noun	满族/nz	0	onomatopoeia	哈哈/o 笑/v
р	preposition	对/p 子孙/n 负责/v	q	quantifier	首/m 批/q
rg	pronoun morpheme	成长/v 于/p 斯/rg	r	pronoun	本/r 地区/n
S	location word	西部/s 交通/n	tg	time morpheme	3 日/t 晚/tg
t	time	下午/t 2时/t	u	auxiliary	填平/v 了/u
vg	verb morpheme	洗/v 了/u 澡/vg	v	verb	编辑/v文献/n
vd	adverb-verb	持续/vd 好转/v	vn	gerund	收费/vn 电话/n
w	punctuation	"/w	yg	modal morpheme	致/v 之/u 耳/Yg
y	modal word	又/d 何在/v 呢/y	Z	state word	短短/z 几/m 年

- Application
 - from observation to state: given a model and some observations, can we estimate the unobservable sequence of states?

Application

• from observation to state: given a model and some observations, can we estimate the unobservable sequence of states?

$$\hat{\mathbf{z}} = \arg\max_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}) = \arg\max_{\mathbf{z}} \underline{p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}$$

- 1. generate the sequence of states
- 2. generate the observations by the states

• Observation(观测) and State(状态)

- Two basic assumptions
 - observational independence hypothesis: the x_t of each moment only depends on its tag z_t .
 - homogeneous Markov property: z_t depends on z_{t-1} at the previous moment:

$$egin{align} p(\mathbf{z}|\mathbf{x}) &= rac{p(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{p(\mathbf{x})} \ &\propto p(\mathbf{x}|\mathbf{z})p(\mathbf{z}) \ &= \left[\prod_{t=1}^T p(x_t|z_t)
ight] p(z_1) \left[\prod_{t=2}^T p(z_t|z_{t-1})
ight] \end{aligned}$$

Two basic assumptions

- Example:
 - 观测:拼音;状态:汉字
 - ta'zhang'le'yi'tou'chang'tou'fa

1她长了一头长头发 2他长 3他 4它 5她 6塔 7踏 🙂

- 如我要打"张"这个字,一般可能的输入是"zh"、"zhang"、"zhagn" 等。另一方面,文字与文字之间也是有一些转移规律的。
- 利用单个文字的输入统计规律、以及文字与文字之间的转移规律这两方面的信息,从一段字符序列推断对应的输入文字也不是什么难事了。

- HMM parameter representation $\lambda = (A, B, \pi)$
 - A is the state transition matrix 状态转移

$$A = [a_{ij}]_{N imes N}$$

- $a_{ij} = p(z_{t+1} = s_j | z_t = s_i)$
- $\sum_j a_{ij} = 1$

- HMM parameter representation $\lambda = (A, B, \pi)$
 - π is the vector of the initial state probabilities

$$\pi=(\pi_i)$$

• $\pi_i = p(z_1 = s_i)$, and $\sum_{i=1}^N \pi_i = 1$

• HMM parameter representation

$$\lambda = (A, B, \pi)$$

• B is the observation probability matrix

$$B = [b_j(k)]_{N imes M}$$

• $b_j(k) = p(x_t = o_k | z_t = s_j)$

- HMM parameter representation
 - A and π determine how to generate the hidden state sequence
 - B determines how to generate observations from the state
 - Together they determine how to generate observation sequences.

• Three Basic HMM Problems

- Evaluation. Given the observation sequence $\mathbf{x}=(x_1,x_2,...,x_T)$ and an HMM model $\lambda=(A,B,\pi)$, how to compute the probability of the observation sequence $P(\mathbf{x}|\lambda)$? 估值问题
- Decoding. Given the observation sequence $\mathbf{x} = (x_1, x_2, ..., x_T)$ and an HMM model $\lambda = (A, B, \pi)$, how to find the state sequence that best explains the observations $P(\mathbf{z}|\mathbf{x}, \lambda)$? 解码问题
- Learning. How to adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(\mathbf{x}|\lambda)$?

Direct calculation

$$P(\mathbf{x}|\lambda) = \sum_{\mathbf{z}} P(\mathbf{x}|\mathbf{z},\lambda) P(\mathbf{z}|\lambda)$$

$$P(\mathbf{x}|\mathbf{z},\lambda) = \prod_{t=1}^{T} b_{z_t}(x_t)$$

$$P(\mathbf{z}|\lambda) = \pi_{z_1} \prod_{t=2}^{T} a_{z_{t-1}z_t}$$

- there are N^T possible state sequences, and the computational complexity is $O(TN^T)$.
- N is the number of possible state, T is length of sequence
- the solution is dynamic programming.

- Forward Algorithm
 - Forward probability

$$egin{aligned} lpha_t(i) &= P(x_1, x_2, \cdots, x_t, z_t = s_i | \lambda) \ P(\mathbf{x} | \lambda) &= P(x_1, x_2, \cdots, x_T | \lambda) \ &= \sum_{i=1}^N P(x_1, x_2, \cdots, x_T, z_T = s_i | \lambda) \ &= \sum_{i=1}^N lpha_T(i) \end{aligned}$$

Recursive

$$lpha_{t+1}(i) = \left[\sum_{j=1}^N lpha_t(j) a_{ji}
ight] b_i(x_{t+1})$$

- Forward Algorithm
 - Derive the equation

$$lpha_{t+1}(i) = \left[\sum_{j=1}^N lpha_t(j) a_{ji}
ight] b_i(x_{t+1})$$

$$egin{aligned} lpha_{t+1}(i) &= p(x_1\cdots,x_{t+1},z_{t+1}=s_i) \ &= p(x_{t+1}|z_{t+1}=s_i)p(x_1,\cdots,x_t,z_{t+1}=s_i) & \pmb{x_{t+1}} ext{ is only determined by } \pmb{z_{t+1}} \end{aligned}$$

 $\alpha_t(1)$

 $\alpha_{t+1}(1)$

 s_3

 a_{11}

Evaluation Problem

- Forward Algorithm
 - Derive the equation

Derive the equation
$$lpha_{t+1}(i) = \left[\sum_{j=1}^{N} lpha_{t}(j)a_{ji}\right]b_{i}(x_{t+1})$$
 $lpha_{t+1}(i) = p(x_{1}\cdots,x_{t+1},z_{t+1}=s_{i})$ $a_{t}(3)$ $a_$

- Forward Algorithm
 - Algorithm Summary
 - ① Initialization $\alpha_1(i) = \pi_i b_i(x_1)$
 - ② Forward recursion: $\forall t = 1, 2, \dots, T 1$,

$$lpha_{t+1}(i) = \left[\sum_{j=1}^N lpha_t(j) a_{ji}
ight] b_i(x_{t+1})$$

3 Termination

$$P(\mathbf{x}|\lambda) = \sum_{i=1}^N lpha_T(i)$$

- Forward Algorithm
 - Computational complexity is $O(N^2T)$
 - Why? Every calculation directly refers to the calculation result at the previous moment, avoiding repeated calculations.

Backward Algorithm

• Backward probability: $\beta_t(i) = P(x_{t+1}, x_{t+2}, \cdots, x_T | z_t = s_i, \lambda)$

$$P(\mathbf{x}|\lambda) = \sum_{i=1}^N b_i(x_1) eta_1(i) \pi_i$$

• Recursive:

$$eta_t(i) = \sum_{j=1}^N a_{ij} b_j(x_{t+1}) eta_{t+1}(j)$$

- Backward Algorithm
 - Backward probability:

$$egin{aligned} eta_t(i) &= P(x_{t+1}, x_{t+2}, \cdots, x_T | z_t = s_i, \lambda) \ P(\mathbf{x} | \lambda) &= P(x_1, x_2, \cdots, x_T) \ &= \sum_{i=1}^N P(x_1, x_2, \cdots, x_T, z_1 = s_i) \ &= \sum_{i=1}^N P(x_1 | z_1 = s_i) P(x_2, x_3, \cdots, x_T | z_1 = s_i) P(z_1 = s_i) \ &= \sum_{i=1}^N b_i(x_1) eta_1(i) \pi_i \end{aligned}$$

- Backward Algorithm
 - Derive the equation:

$$eta_t(i) = \sum_{j=1}^N a_{ij} b_j(x_{t+1}) eta_{t+1}(j)$$

$$eta_t(i) = P(x_{t+1}, \cdots, x_T | z_t = s_i) \ = \sum_{j=1}^N P(x_{t+1}, \cdots, x_T, z_{t+1} = s_j | z_t = s_i) \ = \sum_{j=1}^N P(x_{t+1}, \cdots, x_T | z_{t+1} = s_j) P(z_{t+1} = s_j | z_t = s_i) \ \sum_{j=1}^N P(x_{t+1}, \cdots, x_T | z_{t+1} = s_j) P(z_{t+1} = s_j | z_t = s_i)$$

$$egin{align} &= \sum_{j=1}^N P(x_{t+2}, \cdots, x_T | z_{t+1} = s_j) P(x_{t+1} | z_{t+1} = s_j) P(z_{t+1} = s_j | z_t = s_i) \ &= \sum_{j=1}^N eta_{t+1}(j) b_j(x_{t+1}) a_{ij} \end{aligned}$$

State transition probability

 $\beta_t(1)$

 s_2

 a_{11}

 a_{13}

 a_{12}

 $\beta_{t+1}(1)$

 $egin{aligned} & & & \\ \beta_{t+1}(2) & & b_1(x_{t+1}) \end{aligned}$

- Backward Algorithm
 - Algorithm Summary
 - Initialization $\beta_T(i) = 1$

$$rac{ ext{backward recursion}}{eta_t(i)=\sum_{j=1}^N a_{ij}b_j(x_{t+1})eta_{t+1}(j)}$$

Termination

$$P(\mathbf{x}|\lambda) = \sum_{i=1}^N b_i(x_1) eta_1(i) \pi_i$$

 Incorporate Forward Recursion and Backward Recursion to estimate the probability of an observation sequence.

$$P(\pmb{x}) = \sum_{i=1}^N lpha_i(t)eta_i(t)$$
 $lpha_{t+1}(i) = \left[\sum_{j=1}^N lpha_t(j)a_{ji}
ight]b_i(x_{t+1})$ $eta_t(i) = \sum_{j=1}^N a_{ij}b_j(x_{t+1})eta_{t+1}(j)$

Decoding Problem

• Given the observation sequence $\mathbf{x} = (x_1, x_2, ..., x_T)$ and an HMM model $\lambda = (A, B, \pi)$, how to find the state sequence that best explains the observations $P(\mathbf{z}|\mathbf{x}, \lambda)$?

Viterbi algorithm

• define Viterbi variable $\delta_t(i)$ as the maximum probability of producing observation sequence x_1, x_2, \cdots, x_t when moving along any hidden state sequence $z_1, z_2, \cdots, z_{t-1}$ and getting into $z_t = s_i$.

$$\delta_t(i) = \max_{z_1, z_2, \cdots, z_{t-1}} P(x_1, x_2, \cdots, x_t, z_1, z_2, \cdots, z_{t-1}, z_t = s_i | \lambda)$$

- Viterbi algorithm
 - find the global optimal results through find the stage optimal
 - general idea:
 - if best path ending in $z_t=s_j$ goes through $z_{t-1}=s_i$ then it should coincide with best path ending in $z_{t-1}=s_i$

$$\delta_{t+1}(i) = \max_{1 \leq j \leq N} [\delta_t(j)a_{ji}]b_i(x_{t+1})$$

ullet to backtrack best path keep info that predecessor of s_j was s_i

- Viterbi algorithm
 - Algorithm Summary
- $egin{array}{ll} \hline 1 & { ext{Initialization}} & \delta_1(i) = \pi_i b_i(x_1) \ & \Psi_1(i) = 0 \end{array}$
- ② Forward recursion : 对 $t = 1, 2, \dots, T 1$,

$$egin{aligned} \delta_{t+1}(i) &= \max_{1 \leq j \leq N} [\delta_t(j) a_{ji}] b_i(x_{t+1}) \ \Psi_{t+1}(i) &= rg\max_{1 \leq i \leq N} [\delta_t(j) a_{ji}] \end{aligned}$$

- $egin{aligned} egin{aligned} & ext{Termination} & P^* = \max_{1 \leq i \leq N} \delta_T(i) \ & z_T^* = rg\max_{1 \leq i \leq N} \delta_T(i) \end{aligned}$
- ④ Backtrack: 対 t=T-1,...,2,1, $z_t^*=\Psi_{t+1}(z_{t+1}^*)$

• Example: Initialization

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.09409*0.061 = 0.00573949				
<i>S</i> ₂ : V	0				
<i>s</i> ₃: ∨n	0				

$$\delta_1(1) = \pi_1 b_1(我们)$$

$$\delta_1(2) = \pi_2 b_2(我们)$$

$$\delta_1(3) = \pi_3 b_3$$
(我们)

• Example: Forward recursion

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁ : r	0.00573949	▶r->r r->要 0			
S ₂ : ∨	0	r->v v->要 2.26680813 1806e-05			
<i>s</i> ₃ : vn	0	r->vn vn-> 要 0			

$$\delta_2(1) = \max_i \left[\delta_1(i) a_{i1} \right] b_1(\mathfrak{Y})$$

$$\delta_2(2) = \max_i \left[\delta_1(i) a_{i2} \right] b_2(要)$$

$$\delta_2(3) = \max_i \left[\delta_1(i) a_{i3} \right] b_3(要)$$

r 09409 v 07744 vn 00633

		r	V	vn
	r	01615	25140	0239
A	V	03836	16499	0256
	vn	00204	06264	0794

• Example: Forward recursion

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁ : r	0.00573949	0	0		
<i>S</i> ₂ : ∨	0	2.26680813 1806e-05	v->v v->加 强 8.672723739 895865e-15		
<i>s</i> ₃ : vn	0	0	0		

$$\delta_3(1) = \max_i \left[\delta_2(i) a_{i1} \right] b_1(加强)$$

$$\delta_3(2) = \max_i \left[\delta_2(i) a_{i2} \right] b_2(加强)$$

$$\delta_3(3) = \max_i \left[\delta_2(i) a_{i3} \right] b_3(加强)$$

В	r v vn	00000	_要_ 00000 01571 00000	加强 00000 00440 00051	合作 00000 00095 01315	交流 00000 00020 00363
π	r v vn	09409 07744 00633				
Α	r v vn	03836	v 25140 16499 06264	vn 02394 02563 07944		

• Example: Forward recursion

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	0	0	0	
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	v->vv->合作 3.553006399 833383e-09	
<i>s</i> ₃: ∨n	0	0	0	v->vn vn->合作 7.639925452 991693e-09	

$$\delta_4(1) = \max_i [\delta_3(i)a_{i1}]b_1$$
(合作)
$$\delta_4(2) = \max_i [\delta_3(i)a_{i2}]b_2$$
(合作)
$$\delta_4(3) = \max_i [\delta_3(i)a_{i3}]b_3$$
(合作)

Example: Forward recursion

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	0	0	0	0
<i>S</i> ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	3.553006399 833383e-09	1.17242105181 >70199e-13
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12

$$\delta_5(1) = \max_i \left[\delta_4(i) a_{i1} \right] b_1(交流)$$

$$\delta_5(2) = \max_i \left[\delta_4(i) a_{i2} \right] b_2(交流)$$

$$\delta_5(3) = \max_i \left[\delta_4(i) a_{i3} \right] b_3(交流)$$

• Example: Termination

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	0	0	0	0
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12

$\delta_t(i)$	我们	要	加强	合作	交流	
<i>s</i> ₁: r	0.00573949	•0	0	0	0	
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13	
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12	V

$\delta_t(i)$	我们	要	加强	合作	交流	
<i>s</i> ₁: r	0.00573949	0	0	0	0	
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13	
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12	1

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	•0	0	0	0
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739/ 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	0	0	0	0
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739/ 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12

$\delta_t(i)$	我们	要	加强	合作	交流
<i>s</i> ₁: r	0.00573949	•0	0	0	0
S ₂ : ∨	0	2.26680813 1806e-05	8.672723739 895865e-15	3.553006399 833383e-09	1.17242105181 70199e-13
<i>s</i> ₃ : vn	0	0	0	7.639925452 991693e-09	2.20310391108 7946e-12

Learning. How to adjust the model parameters $\lambda = (A, B, \pi)$ to maximize

• Given
$$\{(\mathbf{x}^{(n)}, \mathbf{z}^n)\}_{n=1}^N$$

ullet transition probabilities: A_{ij} is the number of transitions from state s_i

to state
$$s_j$$

$$\hat{a}_{ij} = rac{A_{ij}}{\sum_{j=1}^{N} A_{ij}}$$

• Observation probabilities: B_{ij} is the number of observation o_k

occurs in state
$$s_i$$

$$\hat{b}_j(k) = \frac{B_{jk}}{\sum_{k=1}^M B_{jk}}$$

• initial state probabilities
$$\hat{\pi}_i = \frac{\sum_{n=1}^N \mathbb{1}\left(z_1^{(n)} = s_i\right)}{N}$$

Learning. How to adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(\mathbf{x}|\lambda)$?

- Given $\left\{\mathbf{x}^{(n)}\right\}_{n=1}^{N}$
- Baum-Welch algorithm
- initialize the parameters
- repeat
 - **E step:** estimate state $\hat{\mathbf{z}}^{(n)}$ for observation $\mathbf{x}^{(n)}$ by the forward-backward algorithm
 - M step: update parameters by $\mathbf{x}^{(n)}$, $\mathbf{\hat{z}}^{(n)}$

- E step
 - not directly estimated $\mathbf{z}^{(n)}$
 - Instead, it estimates the probability of $z_t^{(n)} = s_i$, So, $\gamma_t(i) = P(z_t = s_i | \mathbf{x}, \lambda)$:

$$\gamma_t(i) = rac{lpha_t(i)eta_t(i)}{\sum_{j=1}^N lpha_t(j)eta(j)}$$
 Forward probability Backward probability

- E step:
 - One variable derivation:

$$egin{aligned} lpha_t(i) &= P(x_1, x_2, \cdots, x_t, z_t = s_i | \lambda) \ eta_t(i) &= P(x_{t+1}, x_{t+2}, \cdots, x_T | z_t = s_i, \lambda) \ \gamma_t(i) &= p(z_t = s_i | \mathbf{x}) \ &= rac{p(\mathbf{x} | z_t = s_i) p(z_t = s_i)}{p(x)} \ &= rac{lpha_t(i) eta_t(i)}{\sum_{j=1}^N lpha_t(j) eta(j)} \end{aligned}$$

• If
$$\xi_t(i,j) = p(z_t = s_i, z_{t+1} = s_j | \mathbf{x}, \lambda)$$
, So
$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(x_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i)a_{ij}b_j(x_{t+1})\beta_{t+1}(j)}$$

- E step:
 - Two variables derivation:

$$egin{aligned} lpha_t(i) &= P(x_1, x_2, \cdots, x_t, y_t = s_i | \lambda) \ eta_{t+1}(j) &= P(x_{t+2}, x_{t+3}, \cdots, x_T | z_{t+1} = s_j, \lambda) \end{aligned} \ egin{aligned} \xi_t(i,j) &= p(z_t = s_i, z_{t+1} = s_j | \mathbf{x}) \ &= rac{p(z_t = s_i, z_{t+1} = s_j, \mathbf{x})}{p(\mathbf{x})} \ &= rac{lpha_t(i) a_{ij} b_j(x_{t+1}) eta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N lpha_t(i) a_{ij} b_j(x_{t+1}) eta_{t+1}(j)} \end{aligned}$$

- M step
 - update parameters

$$a_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$b_j(k) = \frac{\sum_{t=1}^{T} \gamma_t(j) \cdot \mathbb{1}(x_t = o_k)}{\sum_{t=1}^{T} \gamma_t(j)}$$

$$\pi_i = \gamma_1(i)$$

Hidden Markov Model

- For Part-of-speech Tagging problem
 - Tagging Task is corresponding to Decoding Problem
 - Training Task is corresponding to Learning Problem
 - Case Study/Explaination is corresponding to Evaluation Problem

• HMM is a generative model that models the generation process of the observation sequence:

$$egin{aligned} \hat{\mathbf{z}} &= rg\max_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}) \ &= rg\max_{\mathbf{z}} p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) \end{aligned}$$

 CRF is a discriminant model that directly models the mapping relationship from input to output:

$$\hat{\mathbf{z}} = \arg\max_{\mathbf{z}} F(\mathbf{z}|\mathbf{x})$$

Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-chain CRFs, generative models, and general CRFs.

- Undirected Graph Model:
 - calculate the probability distribution $P(y_1, y_2, ..., y_n)$:

$$p(y_1,y_2,y_3)=Z^{-1}\Psi_1(y_1,y_2)\Psi_2(y_2,y_3)\Psi_3(y_1,y_3)=Z^{-1}\prod_{a=1}^A\Psi_ay_a$$
 $Z=\sum_Y^\Omega\prod_{a=1}^A\Psi_ay_a$

- CRF is a probabilistic undirected graph model:
 - Let's let the largest group set in CRF be C, so the conditional probability is:

$$p(\mathbf{z}|\mathbf{x}, heta) = rac{1}{Z(\mathbf{x}, heta)} \mathrm{exp} \Biggl(\sum_{c \in \mathcal{C}} heta_c^ op f_c(\mathbf{x}, \mathbf{z_c}) \Biggr)$$

• Among them, $Z(\mathbf{x},\theta)$ is the normalization factor, also known as the partition function:

$$Z(\mathbf{x}, heta) = \sum_{\mathbf{z}} \exp(\sum_{c \in \mathcal{C}} heta_c^ op f_c(\mathbf{x}, \mathbf{z_c}))$$

• Linear chain CRF

$$p(\mathbf{z}|\mathbf{x}, heta) = rac{1}{Z(\mathbf{x}, heta)} \mathrm{exp} \Biggl(\sum_{t=1}^T heta_1^ op f_1(x_t,y_t) + \sum_{t=2}^T heta_2^ op f_2(y_{t-1},y_t) \Biggr)$$

State characteristics

Transition characteristics, generally represented by a state transition matrix

- Linear chain conditional random field in general:
 - Let X, Y be random variables, $F = \{f_k(y, y', x)\}_{\{k=1\}}^K$ is a set of real-valued characteristic functions:

$$p(y,x) = Z^{-1} \prod_{t=1}^T \exp\{\sum_{k=1}^K \theta_k f_k(y_t,y_{t-1},X)\}$$

Linear chain CRF

- The calculation of the partition function is generally calculated by the dynamic programming method.
- The parameters are generally learned through the maximum conditional log-likelihood function.
- The decoding process is similar to HMM, and it is calculated quickly through the Viterbi algorithm.

HMM vs. CRF

• Some Comparisons between HMM and CRF:

	Speed	Discrim vs. Generative	Normalization
нмм	Very fast	Generative	Local
CRF	Kinda slow	Discriminative	Global

Open-Source Package

SVM

 LIBSVM -- A Library for Support Vector Machines https://www.csie.ntu.edu.tw/~cjlin/libsvm/

HMM

GHMM Library http://www.ghmm.org/

CRF

CRF++
 https://drive.google.com/drive/folders/0B4y35FiV1wh7fngteFhHQUN2Y
 1B5eUJBNHZUemJYQV9VWIBUb3JIX0xBdWVZTWtSbVBneU0?usp=drive_
 web#list

- Pocket CRF
- FlexCRF

Reference

- 1. 统计学习方法(第2版).
- 2. Pattern Recognition and Machine Learning.
- 3. Black Box Machine Learning
 https://davidrosenberg.github.io/mlcourse/Archive/2017Fall/Lectures/01.black-box-ML.pdf
- 4. Logistic Regression https://web.stanford.edu/~jurafsky/slp3/5.pdf

The next lecture

 Lecture 4: Deep Learning Foundations