

Quantum Information and Computing 2022 - 2023

Nguyen Xuan Tung 21/12/2022 Exercise #03

matrix-matrix multiplication

Theory

matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.

Code development

- We create a function perform matrix multiplication through a loop1, loop2 and matmul method.
- Store the matrix in csv file and run them in python code.

```
function matrix multiplication transposed (matrixA, matrixB) result(matr
     integer :: ii, jj, kk
     logical :: check
     real*4, dimension(:,:) :: matrixA, matrixB
     real*4, dimension(size(matrixA,2),size(matrixB,1)) :: matrixC
Check if multiplication is possible (shapes)
     if (size(matrixA,2) .eq. size(matrixB,1)) then
         check = .TRUE.
         print*, "Input matrices cannot be multiplied"
         check = .FALSE.
     end if
Matrix multiplication
     if (check .eqv. .TRUE.) then
         do kk = 1, size(matrixA,1), 1
             do jj = 1, size(matrixB,2), 1
                 do ii = 1, size(matrixB,1), 1
                     if (kk == 1) then
                         matrixC(ii,jj) = 0
                      end if
                     matrixC(ii,jj) = matrixC(ii,jj) + matrixA(ii,kk)*mat
          enddo
     end if
 end function matrix multiplication transposed
```


matrix-matrix multiplication

Data points

Time Scaling (Loop2)

Result

- We can assume that the matrix multiplication operation scales line $O(n^3)$.

Theory

Random Hermitian matrices, drawn from one-cut regular unitary invariant ensembles, converge in law to Gaussian multiplicative chaos measures. We prove this in the so-called L2L2-phase of multiplicative chaos

Code Development

- Study of the P(s) distribution, where s_i are the normalized spacings between eigenvalues:

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{13} \ a_{31} & a_{32} & a_{33} \ \end{bmatrix}$$
 ZHEEV() (Lapack) $\lambda_1,\lambda_2,\lambda_3$ $\lambda_1<\lambda_2<\lambda_3$ \longrightarrow $s_i=\Delta\lambda_i/\overline{\Delta}\lambda_1$

- We can exploit the 'BLAS' and 'LAPACK' -libraries which contains 'ZHEEV'.
- In python, we will fit the function P(s) using curve fit from scipy.optimize

Random matrix theory

Result

- We perform the fit of normalize spacing of random diagonal and Hermitian matrices.

Normalized spacings of random diagonal matrices

Normalized spacings of random hermitian matrices

Università degli Studi di Padova

Thanks for the attention