

by Piotr Krzemiński

Agenda for Today:

- RNNs the heart of all transformers
- A brief summary on Transformers
- Embedding layer, aka convert indices into dimensions
- Attention layer, single or multi-head
- ViT Transformers in Computer Vision
- DIY How to code your own ViT
- Should I code transformers?

Who has seen this picture?

sinusoid

Positional Encoding

Attention

Attention... SIMPLIFIED!

Attention... SIMPLIFIED!

Attention

- Source ≠ Target
 - Queries from Source
 - Key, Values from Target

• Captures inter-sequence dependencies

Multi-Head

Attention

Source

Target

Self-Attention

- Source = Target
 - Key, Queries, Values obtained from the same sentence

• Captures **intra**-sequence dependencies

Self -Attention

Multi – Head Attention

But I Can't Code Complex Stuffs Like These 😊

```
tf.keras.layers.MultiHeadAttention(
    num_heads,
    key_dim,
    value_dim=None,
    dropout=0.0,
    use_bias=True,
    output_shape=None,
    attention_axes=None,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    activity_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    **kwarqs
```

```
torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) [SOURCE]
```

Allows the model to jointly attend to information from different representation subspaces as described in the paper: Attention Is All You Need.

Multi-Head Attention is defined as:

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

where $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$.

Transformers in Computer Vision

Attention for Images

Every Pixel

256px 256px

256² relations = $(256^2)^2$ operations

Positional **Encoding &** Improving Attention Performance

hidden layer 2 image patch hidden laver 1 final layer 1 layer 8 feature maps 4 class units 14x14 10x10 convolution pooling (kernel: 9x9x1) (kernel: 5x5x8)

are_side//2)^2 – still a lot

Chunks

Best performance, but reduced Attention benefits

DIY Time to Code It!

Dataset: CIFAR100

ViT Model from "Transformers for Image Recognition at Scale" paper

Should You Try It?

- Basis of ChatGPT "GPT" is "Generative Pre-Trained Transformer"
- ChatGPT Chief Scientist Salary ~2 000 000 \$/yr
- ViTs are expected to be the next "big boom"

References:

- Attention is All You Need
 https://arxiv.org/pdf/1706.03762.pdf
- An Image Is Worth 16x16 Words: Transformers For Image Rrecognition At Scale https://arxiv.org/pdf/2010.11929v2.pdf

Thank You!