实验报告

计 42 李晓涵

学号: 2014011297

实验日期: 2016.3.21

- 一. 实验名称: 数字存储示波器与瞬态信号测量
- 二. 实验目的:
- 1、 学会数字存储示波器的使用、传输线中脉冲信号的测量和超 声波测量
- 2、 学会声频信号的捕获及频谱分析
- 三. 数据处理(实验台: 21)
 - (一) 用数字存储示波器观察连续或单脉冲信号

 $\Delta V_{\pi ightarrows} = 100 \text{mV}$ $\Delta t_{\pi ightarrows} = 5 \text{ns}$

	Umax (V)	频率 f (kHz)	上升时间 t _r (ns)	下降时间 t _f (ns)	脉冲宽 度 t _w (ns)	衰减器 I、 II (dB)	存储通 道 A/B
连续脉冲	3. 28	8. 96670	75	250	170		A
单脉冲	2.40		10	200	50		В

(注: 因仪器原因衰减不可调)

根据数据绘出大致波形图:

(二) 传输线中脉冲信号反射波的测量和应用

1. 断路负载

Δ t _{示波器}=25ns

输出端开路					
波形		V (V)	t(ns)		
	2	1.96	400		
输入	4	0.84	1100		
	6	0.44	1800		
	1	1.72	60		
输出	3	0.72	760		
	5	0.32	1440		

计算电缆长度:
$$\tau_2 = \Delta_t = 700 ns = \frac{2l}{v}$$
 => $1 = \frac{v\tau_2}{2} =$

$$\frac{2*10^8*700*10^{-9}}{2} = 70m$$

计算吸收系数:
$$V_l=Ve^{-\alpha l}$$
 => $\alpha=-\frac{\ln\left(\frac{V_l}{V}\right)}{l}=-\frac{\ln(0.374)}{70}=0.014$

其中
$$\frac{V_1}{V}$$
取 $\frac{V_3}{V_2}$ 和 $\frac{V_5}{V_4}$ 的平均值。

2. 短路负载

输出端短路				
波形	τ_2(ns)			
	1	620		
输入	2	600		
	3	660		

3. 电阻负载

	输出端匹配负载				
波形	τ_1(ns)				
输入输出	(1) 290.0 (2) 300.0 (3) 300.0				

(三) 超声波测量试验

1. 声速测量

D=39. 40mm, R1=30. 00mm, R2=H=60. 10mm, \triangle H= \triangle D= \triangle R1= \triangle R2=0. 02mm

, $\rho = 2700 \text{kg/m}^3$

直	斜探头			
底波 T H/ μ S	缺陷波 τ վμ s	τ <u>Λ</u> _R / μ s	$\tau_{R1}/~\mu_S$	$ au_{R2}/~\mu_S$
18. 80	12. 40	18. 80	26. 00	44. 80
18. 80	12. 40	19. 00	26. 00	45. 00
18. 80	12. 40	19. 20	26. 00	45. 20

 Δ t $_{\pi i \chi B}$ = 1 μ s

由直探头数据计算纵波 c_L 与不确定度, $C\Phi3$ 钻缺陷深度 h 和不确定度:

$$\begin{split} c_L &= 2 H/~\tau_H = 2 \times 60.~10 \times 10^{-3}/~(18.~80 \times 10^{-6}) = ~6393.~6~(m/s) \\ &(~\Delta~c_L/c_L)^2 = (~\Delta~H/H)^2 + (~\Delta~t/~\tau_H)^2 = (0.~02/60.~10)^2 + (0.~50/18.~80)^2 = 7.~0 \\ &7 \times 10^{-4} \end{split}$$

故 Δ c_L=170.00

即 c_L = (6.39+0.17) × 10^3 m/s

h=H-0.
$$5c_L$$
 τ q=60. 10 \times 10^{-3} -0. 5 \times 6. 39 \times 10^{3} \times 4. 6 \times 10^{-6}

$$(\Delta h)^{2} = (\Delta H)^{2} + (0.5 \tau_{q} \Delta c_{L})^{2} + (0.5 c_{L} \Delta t)^{2} = (0.02 \times 10^{-3})^{2} + (0.5 \times 4.6 \times 10^{-6} \times 0.2 \times 10^{3})^{2} + (0.5 \times 6.39 \times 10^{3} \times 0.50 \times 10^{-6})^{2} = 2.85 \times 10^{-6}$$

 $\Delta h=1.69 \times 10^{-3} \text{m} \approx 1.7 \text{mm}$

故 h=(44.4+1.7)mm

2. 观察波形转换及表面波

表面波				
	角度			
移动距离(mm)	(°)	表面波移动距离(µs)		
15	65	10		
10	65	6.8		
5	65	3.4		

四. 实验小结

本次实验原理较为复杂,但是实验过程本身并不困难。

示波器的使用对于本次实验非常重要,通过本次实验,我学习 并练习了示波器的使用,了解了长度测量、声速测量等测量方法和 基本知识。