Lecture 3, Directed Graphical Models DS-GA 1005 Inference and Representation, Fall 2023

Yoav Wald

09/20/2023

Today's Plan

- Conditional Independence
- Directed Graphical Models (a.k.a Bayesian Networks)

Previous Lectures

In the previous episodes we learned that:

- Brute-force estimation of probabilistic models (i.e. assigning a parameter for each state) is intractable in high-dimensions
- Possible solution: Estimate first and second moments, and "complete the rest" by an inductive rule (e.g. max-entropy)
 - Excellent computational and statistical complexity
 - Bad approximation when higher moments do not adhere to the maximum-entropy principle (i.e. non-Gaussian distributions)
- Natural question: what are other useful assumptions that make learning tractable?

Previous Lectures

In the previous episodes we learned that:

- Brute-force estimation of probabilistic models (i.e. assigning a parameter for each state) is intractable in high-dimensions
- Possible solution: Estimate first and second moments, and "complete the rest" by an inductive rule (e.g. max-entropy)

Today's lesson: Statistical independence assumptions

What can be Gained from Independence?

- For convenience, focus on binary variables X_1, \ldots, X_d , where $X_i \in \{0,1\} \ \forall i \in [d]$
- Example: return to our medical diagnosis motivation
 - Medical event $X_1 = \mathsf{Pneumonia}, \ X_{d/2+1} = \mathsf{Ear} \ \mathsf{Infection}$
 - Symptoms of pneumonia, $X_2 = \mathsf{Cough}, \dots, X_{d/2} = \mathsf{Chest}$ Pain
 - ullet Symptoms of infection, $X_{d/2+2}={\sf Ear}\ {\sf Ache},\ldots,X_d={\sf Nausea}$
- We wish to learn a model $P_{\pmb{\theta}}(X_1,\dots,X_d) = P_{\pmb{\theta}}(\mathsf{P},\mathsf{EI},\mathsf{C},\mathsf{CP},\mathsf{EA},\mathsf{N},\dots)$

What can be Gained from Independence?

Task: learn a model $P_{\theta}(\mathsf{P},\mathsf{EI},\mathsf{C},\ldots,\mathsf{CP},\mathsf{EA},\ldots,\mathsf{N})$ **Strategy**: Assume independence to break P_{θ} into a product of smaller chunks; learn each small model separately

- Example: assume pneumonia and ear infection are independent (symptoms included)
 - Medical event $X_1 = \mathsf{Pneumonia}, \ X_{d/2+1} = \mathsf{Ear} \ \mathsf{Infection}$
 - Symptoms of pneumonia, $X_2 = \mathsf{Cough}, \dots, X_{d/2} = \mathsf{Chest}$ Pain
 - ullet Symptoms of infection, $X_{d/2+2}={\sf Ear}\ {\sf Ache},\ldots,X_d={\sf Nausea}$
- \bullet Formally: $X_{[d/2]} \perp \!\!\! \perp X_{[d/2+1,\ d]}$ Recall that $X_i \perp \!\!\! \perp X_j$ if $P(X_i,X_j) = P(X_i)P(X_j)$

What can be Gained from Independence?

```
Task: learn a model P_{\boldsymbol{\theta}}(\mathsf{P},\mathsf{EI},\mathsf{C},\ldots,\mathsf{CP},\mathsf{EA},\ldots,\mathsf{N})

Assumption: X_{[d/2]} \perp \!\!\! \perp X_{[d/2+1,\ d]}

Result: P_{\boldsymbol{\theta}}(X_1,\ldots,X_d) = P_{\boldsymbol{\theta}}(\mathsf{P},\mathsf{C},\ldots,\mathsf{CP}) \cdot P_{\boldsymbol{\theta}}(\mathsf{EI},\mathsf{EA},\ldots,\mathsf{N})
```

- How many parameters do we need to estimate?
- How many samples are (approximately) required for learning?
- Can we further break down P_{θ} ?

Marginal and Conditional Independence

- Marginal independence, i.e. $P(X_i, X_j) = P(X_i)P(X_j)$, is a special case of conditional independence
- Conditional independence, $X_i \perp \!\!\! \perp X_j \mid X_k$:

$$P(X_i, X_j \mid X_k = x_k) = P(X_i \mid X_k = x_k)P(X_j \mid X_k = x_k)$$

for any x_k such that $P(X_k = x_k) > 0$

• Claim: Conditional independence can also be defined as $P(X_i \mid X_j, X_k = x_k) = P(X_i \mid X_k = x_k)$

Conditional Independence Examples: Naïve Bayes

Example 1: What if we assume that symptoms are independent conditioned on medical event? Cough \bot Fever | Pneumonia, etc.

- We have $X_i \perp \!\!\! \perp X_j \mid X_1 \quad \forall 1 < i, j \leq d/2$ where $X_1 = \text{Pneumonia}$, $X_2 = \text{Cough}, \dots, X_{d/2} = \text{Chest Pain}$
- This lets us further break down our model

$$P_{\theta}(X_1, X_2, \dots, X_{d/2}) = P(X_1) \cdot P(X_2 \mid X_1) P(X_3 \mid X_1, X_2)$$
$$\cdot \dots \cdot P(X_{d/2} \mid X_1, \dots, X_{d/2-1})$$

$$P_{\theta}(X_{1}, X_{2}, \dots, X_{d/2}) = P(X_{1}) \cdot P(X_{2} \mid X_{1}) P(X_{3} \mid X_{1}, X_{2})$$

$$\cdot \dots \cdot P(X_{d/2} \mid X_{1}, \dots, X_{d/2-1})$$

$$= P(X_{1}) \prod_{i=2}^{d/2} P(X_{i} \mid X_{1})$$

Conditional Independence Examples: Naïve Bayes

Example 2: Spam filter

- $Y = \operatorname{Spam}/\operatorname{Not} \operatorname{Spam},$ $X_1 = \operatorname{Does}$ the word "prince" appear in the email? $X_2 = \operatorname{Does}$ the word "heritage" appear in the email? ...
- A Naïve Bayes model assumes $P(Y, X_1, \dots, X_d) = P(Y) \prod_{i=1}^d P(X_i \mid Y)$

Conditional Independence to Graphical Models

- More examples of conditional independence: Markov models $X_{[t-1]} \perp \!\!\! \perp X_{t+1} \mid X_t.$
- Notice that in all these examples we used Bayes rule + independence to rewrite P as a product of smaller distributions
- Q: if $X_i \perp \!\!\! \perp X_j$, does it hold that $X_i \perp \!\!\! \perp X_j \mid X_k$?
 - Maybe the other way around?

Probabilistic Graphical Models

- Goal: A mathematical language to relate factorizations of probability distributions, and independence properties
 - Given such a language, maybe we can come up with learning and inference algorithms that work for many types of models
- Most natural mathematical object to use for this language is a graph G=(V,E)
- Today we will talk about directed graphs

Writing Distributions in a Factorized Form

- We can always write a given distribution $P(X_1, ..., X_d)$ as a product of conditional distributions (factors)
 - Choose some ordering of the variables, and write

$$P(X_1, ..., X_d) = \prod_{i=1}^d P(X_i \mid X_{[i-1]})$$

② We may obtain additional factorizations if for some set $Pa(i) \subseteq [i-1]$, we have $X_i \perp \!\!\! \perp X_{[i-1] \setminus Pa(i)} \mid X_{Pa(i)}$:

$$P(X_1, ..., X_d) = \prod_{i=1}^d P(X_i \mid X_{Pa(i)})$$

• Let us associate these factorizations with graphs

Directed Acyclic Graphs (DAGs)

Definition

A directed graph is a data structure G=(V,E) where $E=\{(i,j),i,j\in V\}$ are **ordered** tuples (also $i\to j$). G is acyclic if it has no directed paths from any node $i\in V$ to itself $(i\not\leadsto i)$

We will usually consider $V=\{X_i\}_{i=1}^d$, where each random variable corresponds to a vertex

- Topological ordering: An ordering $\sigma_1 < \sigma_2 < \ldots < \sigma_d$ of $V = \{X_{\sigma_k}\}_{k=1}^d$ such that $\sigma_i < \sigma_j$ for all $(X_i, X_j) \in E$
- For $i \in V$, we define its parents $Pa(i) = \{j: (j,i) \in E\}$, and non-descendants $ND(i) = \{j: i \not\rightsquigarrow j\}$

Correspondence between DAGs and Factorizations

There seems to be a direct association between a probabilistic model ${\cal P}$ and a DAG ${\cal G}$

- $(P \rightarrow G)$ a factorization of P defines a DAG G, why?
 - \bullet We wrote down P as $\prod_{i=1}^d P(X_i \mid X_{Pa(i)})$ and $Pa(i) \subseteq [i-1]$
- $(G \to P)$ a DAG G can describe properties of distributions that "has the same structure" as the graph

Q: What is the exact correspondence? How is it related to conditional independence?

Graphical Models: Some Examples

• Alarm example, write down the factorized distribution

• Is a distribution *P* always associated with some DAG?

The Separation-Independence Connection: an Intuition

- Intuitively, conditional independence $X_i \perp \!\!\! \perp X_j \mid X_k$ means that observing X_k blocks the flow of information between X_i and X_j
- We can also define separation in G, where the vertex X_k blocks all paths between two vertices X_i, X_j
- Let us explore this correspondence in detail

Independence Sets and I-Maps

Definition (Independence set)

Let P be a distribution over $\mathcal{X} = \{X_1, \dots, X_d\}$. Then $\mathcal{I}(P)$ is the set of all conditional independence statements of the form $X \perp\!\!\!\perp Z \mid Y$ that hold for P

• Intuitively, for each P we will want to establish the existence of a graph from which we can read off I(P). Why?

Independence Sets and I-Maps

Definition (Factorization)

Let G be a DAG over vertices that correspond to random variables X_1,\ldots,X_d . We say that P factorizes over G if $P(X_1,\ldots,X_d)=\prod_{i=1}^d P(X_i\mid X_{Pa(i)})$, where Pa(i) are the parents of X_i in G.

We call the tuple (P,G) a Bayesian network if P is specified as a set of conditional distributions associated with vertices of G

Recall, $\mathcal{I}(P)$ is the set of independence statements that hold in P

Definition (I-map)

A DAG G is an I-map for P if $\mathcal{I}_l(G) \subseteq \mathcal{I}(P)$, where $\mathcal{I}_l(G)$ is the set of local independencies of G,

$$\mathcal{I}_l(G) = \{ X_i \perp \!\!\! \perp X_{Nd(i)} \mid Pa(i) \quad \forall i \}$$

Correspondence between $\mathcal{I}_l(G)$ and $\mathcal{I}(P)$

Theorem (Thm 3.1 and 3.2 on Koller & Friedman)

P factorizes according to G if and only if G is I-map for P

- The theorem tells us that if P factorizes over G, it is guaranteed that it satisfies all independence statements in $\mathcal{I}_l(G)$, i.e. $\mathcal{I}_l(G)\subseteq\mathcal{I}(P)$
- Q: Are there additional conditional independence constraints that are encoded by G?

d-separation

- d-separation provides a criterion to check whether G encodes a conditional independence $X_1 \perp \!\!\! \perp X_2 \mid X_3$, where X_1, X_2, X_3 are some disjoint subsets of vertices in G
- It examines whether there is an "active path" in the graph that allows influence to flow. Paths are consisted of 3 building blocks
- Cascade
- Common Cause
- Common Effect (Z is a collider)

d-separation

- Cascade
- Common Cause
- Common Effect (Z is a collider)

 Intuition: conditioning on colliders and their descendants activates paths, conditioning on other vertices deactivates them

D-Separation

Definition (active trail)

An *undirected* trail between X_1 and X_n is active given a set of vertices ${\bf Z}$ if

- For every collider X_i on the trail, either X_i or one of its descendants is in ${\bf Z}$
- ullet No other node along the trail is in ${f Z}$

Definition (d-separation)

Vertices X,Y are d-separated given ${\bf Z}$ if there are no active paths between them given ${\bf Z}$

Claim

If P factorizes over G then $\mathcal{I}(G) \subseteq \mathcal{I}(P)$

D-Separation

It turns out that $\mathcal{I}(G) = \{X \perp\!\!\!\perp Y \mid Z : X, Y \text{ d-separated given } Z\}$ captures the most possible independence statements that can be read from a DAG.

Claim

If P factorizes over G then $\mathcal{I}(G) \subseteq \mathcal{I}(P)$

Proof: in future lectures

Claim

For almost all distributions P that factorize over G (all except a measure 0 set) it holds that $\mathcal{I}(G)=\mathcal{I}(P)$

Does Each Distribution P has a canonical graph?

- It is tempting to think that for any P there is a single "true" graph associated with it, in the sense that $\mathcal{I}(P) = \mathcal{I}(G)$
- This cannot hold because there are graphs G_1, G_2 that have $\mathcal{I}(G_1) = \mathcal{I}(G_2)$.

Can we Always Capture $\mathcal{I}(P)$ via I(G)?

Furthermore, can we always find a graph G such that $\mathcal{I}(P) = \mathcal{I}(G)$? No, as demonstrated by this counter-example:

$$P(x, y, z) = \begin{cases} 1/12 & x \oplus y \oplus z = 0\\ 1/6 & x \oplus y \oplus z = 1 \end{cases}$$

- It is simple to show that $X \perp\!\!\!\perp Y$, and from symmetry also that $Y \perp\!\!\!\perp Z$ and $Z \perp\!\!\!\!\perp X$
- ullet On the other hand, $X \not\perp\!\!\!\perp Y \mid Z$

Conclusion:
$$\mathcal{I}(G) \neq \mathcal{I}(P) = \{X \perp\!\!\!\perp Y, X \perp\!\!\!\perp Z, Y \perp\!\!\!\perp Z\}$$
 for all G

Conclusion

- Bayesian Networks are an intuitive language (yet "imperfect") to encode conditional independence and factorization of distributions
- Useful for
 - More efficient learning (estimating less parameters)
 - We'll see in the future: enables generic graph-based inference algorithms
 - More...
- Recitation: examples of HMMs, Next lectures: undirected models, latent variables, variational inference . . .