Experimental result of the Formula Electric Car Physical Parameters: Torque Array Plots from Dyno Data (Spring '16)

Zainab Hussein 3-24-2017

Hypothesis

Theoretically, current has a linear relationship to torque when motor speed is held constant as in figure 1, while torque has a hyperbolic relationship to motor speed when current is constant in figure 2. Thus, experimental data should ideally show an array of relationships as shown in figure 1 and 2¹.

Figure 1 Current and torque relation at constant motor speed

Figure 2 Motor speed and torque relation with constant current

Method

Raw data collected from the dynamometer was analyzed using Origin. The original data was extrapolated, specifically 1863 columns and 224 rows to form a matrix used to generate a contour 3D plot. Figure 3 shows current and torque relation when the contour plot is cut at constant values of motor speed. Figure 4 shows motor speed and torque relation when the contour plot is cut at constant values of current.

Result

Torque Arrays at constant RPM values

Figure 3 Torque Arrays at constant RPM

Table 1

Torque at Constant RPM values			
	Actual RPM (rad/s)	Approximate RPM (rad/s)	
Pixel 1	8005	8000	
Pixel 2	6000	6000	
Pixel 3	4005	4000	
Pixel 4	2017	2000	
Pixel 5	12.57	0	

Figure 3^2 shows more of a transient behavior than the expected linear relationship. The range of current is 0 - 22A, which may not be sufficient to characterize a motor and motor controller system that goes to a max of 200A.

A wider range of measurement would be the next step to realistically characterize the entire motor and motor controller system, and eliminate the suspicion of the current data depicting a transient behavior, rather than a steady state one.

Figure 4 Torque arrays at constant Current

Table 2

Torque at Constant Current values			
	Actual Current (A)	Approximate Current (A)	
Pixel 1	0.01246	0	
Pixel 2	4.969	5	
Pixel 3	9.992	10	
Pixel 4	15.01	15	
Pixel 5	20.02	20	

Figure 4^2 shows a motor speed array that is not depicting a hyperbolic relationship between motor speed and load torque. The range of current is 0 - 22A, which may not be sufficient to characterize a motor and motor controller system that goes to a max of 200A. Behavior under 1000 rad/s are transient as well.

A wider range of measurement would be the next step to realistically characterize the entire motor and motor controller system, and eliminate the suspicion of the current data depicting a transient behavior, rather than a steady state one.

References:

₁Theoretical relation of the formula Electric Car Physical Parameters of Load Torque, Supply Current and Motor Speed.

₂Plotting 3D surfaces in Origin:

http://wiki.originlab.com/~originla/howto/index.php?title=Tutorial:3D Plotting

http://www.originlab.com/index.aspx?go=Products/Origin/Graphing