

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288

Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

i-DIM

MODEL: IT-373GP FCC ID: ST2-IT373GP IC: 6012A-IT373GP

January 29, 2015

This report concerns (check one): C Equipment type: <u>Low Power Intention</u>	Original grant <u>x</u> Class II change <u> </u>
Company agrees to notify the Comp	yes, defer until:(date)
Transition Rules Request per 15.377 If no, assumed Part 15, Subpart B for provision.	yes nox or unintentional radiators - the new 47 CFR
Report prepared for: Report prepared by: Report number:	CENTRAK, INC. Advanced Compliance Lab 0048-150122-01

Lab Code: 200101 The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	I
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement for the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	
3.2 Special Accessories	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS	12
5. RADIATED EMISSION DATA	13
5.1 Field Strength Calculation	13
5.2 Test Methods and Conditions	13
5.3 Test Data	13
5.4 125KHz Transmission Radiated Test Data	17
6. EUT RECEIVING MODE VERIFICATION	19
7. PHOTOS OF TESTED EUT	20

Figures

Figure 2.1	ID Label	8
Figure 2.2	Location of Label on Back of the EUT	8
Figure 3.1	Radiated Test Setups 1	10
Figure 3.2	Radiated Test Setups 2	11
Figure 4.1	EUT Schematics	12
Figure 7.1	-7.8 EUT Details	21-28

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: i-DIM

Model: IT-373GP

Applicant: CENTRAK, INC.

Test Type: FCC Part 15 Sub Part 15.249 & 15.209

IC RSS-210 (Issue 8) A2.9 & RSS-Gen (Issue 4)

CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: January 22~29, 2015

Report Number: 0048-150122-01

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC/IC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

Date January 29, 2015

1.2 Equipment Modification

N/A

FCC ID: ST2-IT373GP IC: 6012A-IT373GP

1.3 Product Information

System Configuration

Model No.: IT-373GP

ITEM	DESCRIPTION	ID	CABLE
Product	i-DIM	FCC ID: ST2-IT373GP	
	IT-373GP ⁽¹⁾	IC: 6012A-IT373GP	
Housing	PLASTICS		
Power Supply	6V DC Battery		
Operation Freq.	904MHz ~ 926MHz		
Receiver	IT-373GP(RX)	Verification	

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2014 at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Hillsborough, New Jersey, which is designated by IC as "site IC 3130A". This site is also accepted by FCC to perform measurements under Part 15 or 18 (Registration # 90601). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Cal Due dd/mm/yy
Hewlett-	HP8546A	3448A0029	EMI Receiver	15/10/15
Packard		0		
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	15/01/16
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	15/01/16
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	28/05/15
Electro-Metrics	ALR-25M/30	289	10KHz-30MHz Active Loop Antenna	18/03/15
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization	24/03/15
			Networks	
EMCO	3115	4945	Double Ridge Guide Horn Antenna	22/01/16

All Test Equipment Used are Calibrated Traceable to NIST Standards. Calibration Interval: two year.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

Centrak i-DIM Model No.: IT-373GP

FCC ID: ST2-IT373GP IC: 6012A-IT373GP

This device complies with part 15 of the FCC & IC RSS-210 & RSS-Gen Rules. Operating is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Figure 2.1 ID Label

Figure 2.2 Location of the Label

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was permanently attached to the EUT with max length, 3". Testing was performed as EUT was continuously operated at the following frequency channels: Low=904 MHz, Middle= 915 MHz, High=926 MHz for 900 MHz Band and 125 KHz for LF band.

Fresh external battery was used for extended operating time.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figures 3.1 and Figure 3.2 illustrate this system, which is tested standing alone for Radiated Emissions.

Figure 3.1 Radiated Test Setups 1

Figure 3.2 Radiated Test Setups 2

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

Where:

FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

THE "DUTY CYCLE CORRECTION FACTOR" FOR SPURIOUS RADIATED EMISSIONS IS; 20 log * (4 ms / 100 ms) = -28 dB, WHICH WAS USED TO CORRECT THE AVERAGE RADIATED EMISSION READINGS.

5.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 1GHz, 100KHz IF bandwidth / 100KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. The frequency range from 9KHz up to 10th harmonics were investigated.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Typed/Printed Name: Edward Lee

G. Im

Date:

January 29, 2015

Radiated Test Data (CH-904MHz/915MHz/926MHz)

Model No.: IT-373GP

Operation Mode: Vertical Orientation

peration M	ode: vei	rticai Ori	entation						
Frequency	Polarity	Antenna	Azimuth	Peak /QP Reading	FCC/IC 3m	Difference	Average Reading	FCC/IC 3m	Difference
	(V,H)	Height		at 3m	Peak Limit	To Peak Limit	with	QP/Average Limit	To AVG Limit
	Position			(2)	(3)		Correction (>1GHz)	(1)	
(MHz)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
904	V/Z	1.1	150	85.5				94	-8.5
1808	V/Z	1.1	090	63.2	74	-10.8	35.2	54	-18.8
2712	V/Z	1.1	190	55.0	74	-19	27.0	54	-27.0
904	H/Z	1.0	220	89.8				94	-4.2
1808	H/Z	1.0	110	61.9	74	-12.1	33.9	54	-20.1
2712	H/Z	1.0	230	55.7	74	-18.3	27.7	54	-26.3
915	V/Z	1.1	220	84.8				94	-9.2
1830	V/Z	1.1	180	63.4	74	-10.6	35.4	54	-18.6
2745	V/Z	1.1	200	53.4	74	-20.6	25.4	54	-28.6
915	H/Z	1.0	240	89.0				94	-5.0
1830	H/Z	1.0	260	60.8	74	-13.2	32.8	54	-21.2
2745	H/Z	1.0	100	54.9	74	-19.1	26.9	54	-27.1
926	V/Z	1.1	000	83.5				94	-10.5
1852	V/Z	1.1	200	61.4	74	-12.6	33.4	54	-20.6
2778	V/Z	1.1	245	51.6	74	-22.4	23.6	54	-30.4
926	H/Z	1.0	240	89.9				94	-4.1
1852	H/Z	1.0	200	58.9	74	-15.1	30.9	54	-23.1
2778	H/Z	1.0	100	53.5	74	-20.5	25.5	54	-28.5

⁽¹⁾ The limit for emissions within the 902-928MHz band is 50mV(94dB) per FCC Sec. 15.249 & IC RSS-210 Annex 2.9. The limit for its harmonics is 500uV (54dB). Other spurious emissions shall be lower than either its fundamental by 50dB or the limit defined in Sec. 15.209, whichever is higher.

⁽²⁾ If the peak reading is less than the FCC/IC quasi-peak or average limit, it'll be not necessary to show the measured/ calculated quasi-peak or average reading.

⁽³⁾ For above 1GHz range, peak reading shall meet the limit: average Limit+20dB.

Other Spurious outside of the band 902-928MHz

Frequency	Polarity	Antenna	Azimuth	Peak Reading	Peak Reading	FCC/IC 3m	Difference
	(V , H)	Height		at 3m	After	Limit	
	Position			(2)	Correction	(1)	
(MHz)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
338	H/Z	1.0	180	35.4		46.5	-11.1
424	H/Z	1.0	180	36.4		46.5	-10.1
800	H/Z	1.0	045	42.8		46.5	-3.7
933	H/Z	1.0	090	33.5		46.5	-13
358	V/Z	1.1	135	34.1		46.5	-12.4
478	V/Z	1.1	180	36.9		46.5	-9.6
854	V/Z	1.1	235	42.4		46.5	-4.1

Comparing to the limit defined in Sec. 15.209 & RSS-210, emissions below the limit by 20dB were not recorded.

5.4 125KHz Transmission Radiated Test Data

EUT is powered by battery at Vertical Orientation

Frequency	Polarity	Antenna	Azimuth	Peak Reading	Reading	FCC	Difference
	(V,H)	Height		at 3m	After	Limit@ 3m	
	Position			(2)	Correction	(1)	
(MHz)		(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
0.122	Loop	1.0	000	99.4		105.6	-6.2
0.245	Loop	1.0	000	66.0		99.6	-33.6
0.370	Loop	1.0	020	57.9		96.2	-38.3
0.498	Loop	1.0	010	64.2		73.7	-9.5
0.629	Loop	1.0	030	61.5		71.1	-9.6

⁽¹⁾ The limit for emissions per Sec. 15.209 with distance correction factor (40dB/decade at f<30MHz).

⁽²⁾ If each peak reading is less than the FCC QP or average limit, it'll be not necessary to show the measured/calculated QP or average reading (QP detector shall be used except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, in which an average detector shall be employed).

20 dB Bandwidth at 125KHz

