käyrä ↔ yhtälö

Suora, paraabeli, ympyrä, ellipsi ja hyperbeli

Suora = ne tason pisteet [x, y], joiden koordinaatit x ja y toteuttavat yhtälön y = kx + b

k > 0, nouseva suora

Kulmakerroin (slope)

$$k = \frac{\Delta y}{\Delta x}$$

kertoo suoran jyrkkyyden

 $k > 0 \leftrightarrow \mathsf{nouseva}$

 $k < 0 \leftrightarrow laskeva$

Vakiotermi (intercept) b kertoo millä korkeudella suora kulkee, esimerkiksi suoran ja y-akselin leikkauspiste on $x=0,\,y=b$

Jos suoran suuntakulma on θ , niin $k = \tan(\theta)$

k > 0 , nouseva suora

k < 0 , laskeva suora

Esim:

sininen: y = 1.5x - 0.5

vihreä: y = -0.5x + 4.5

Esim. $v = v_0 + at = 3 + 1.5t$

Esim. U = E - RI = 6 - 0.75I

Esim: Pisteen x_0, y_0 kautta kulkeva suora, jonka kulmakerroin on k

Kulmakerroin

$$k = \frac{\Delta y}{\Delta x} = \frac{y - y_0}{x - x_0}$$

eli suoran yhtälö on

$$y - y_0 = k(x - x_0)$$

$$y = k(x - x_0) + y_0$$

$$y = kx \underbrace{-kx_0 + y_0}_{=b}$$

eli vakiotermi

$$b = -kx_0 + y_0$$

Esim. pisteen [4,5] kautta kulkeva suora, jonka kulmakerroin on 3:

$$y - 5 = 3(x - 4)$$

eli

$$y = 3x - 7$$

Esim: Pisteiden $[x_1, y_1]$ ja $[x_2, y_2]$ kautta kulkevan suoran yhtälö:

$$k = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

ja suoran yhtälö on

$$y - y_1 = k(x - x_1)$$

$$y = k(x - x_1) + y_1$$

$$y = kx \underbrace{-kx_1 + y_1}_{=b}$$

Esim. pisteiden [-2,3] ja [4,1] kautta kulkeva suora:

$$k = \frac{1-3}{4-(-2)} = -\frac{1}{3}$$

eli suoran yhtälö on

$$y-3=-\frac{1}{3}(x-(-2))$$

eli

$$y = -\frac{1}{3}x + \frac{7}{3}$$

Esim. Pisteiden [-40, -40] ja [60, 140] kautta kulkeva suora $F = k\,C + b$

kulmakerroin
$$k = \frac{140 - (-40)}{60 - (-40)} = 1.8$$

$$F = 1.8 \cdot (C - (-40)) - 40$$
 tai

$$F = 1.8 \cdot (C - 60) + 140$$

eli
$$F = 1.8C + 32$$

Esim: u = kt + b

$$u = \frac{A}{0.25T} \cdot t = \frac{4A}{T} \cdot t \qquad (\sin)$$

$$u = \frac{-2A}{0.5T} \cdot (t - 0.25T) + A = \frac{-4A}{T} \cdot t + 2A$$
 (pun)

$$u = \frac{A}{0.25T} \cdot (t - 0.75T) - A = \frac{4A}{T} \cdot t - 4A$$
 (vih)

Paraabeli: $y = ax^2 + bx + c$

Kerroin a määrää paraabelin aukeamissuunnan ja muodon:

 $a>0 \rightarrow \text{aukeaa ylöspäin } (\cup)$

 $a < 0 \rightarrow$ aukeaa alaspäin (\cap).

mitä suurempi a (+ tai - merkkinen) , sitä kapeampi paraabeli

Paraabeli $y=ax^2+bx+c$ on samanmuotoinen kuin $y=ax^2$, mutta sen huippu on pisteessä

$$x_0 = -\frac{b}{2a}$$
, $y_0 = ax_0^2 + bx_0 + c = -\frac{b^2}{4a} + c$

Syy: täydennetään neliöksi binomikaavalla

$$y = ax^{2} + bx + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a} \cdot x\right) + c$$

$$= a\left(x^{2} + 2 \cdot \frac{b}{2a} \cdot x + \left(\frac{b}{2a}\right)^{2}\right) - a\left(\frac{b}{2a}\right)^{2} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a(x - x_{0})^{2} + y_{0}$$

 $vihr: y = x^2$

sin: $y = x^2 - 5x + 8 = (x - 2.5)^2 + 1.75$

huippu: $x_0 = 2.5, y_0 = 1.75$

vihr: $y = -0.5x^2$

sin:
$$y = -0.5x^2 + 2x - 3 = -0.5(x - 2)^2 - 1$$

huippu: $x_0 = 2, y_0 = -1$

Esim: Toisen asteen yhtälö

$$ax^{2} + bx + c = 0 \leftrightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

2 ratkaisua $(b^2 - 4ac > 0)$:

1 ratkaisu $(b^2 - 4ac = 0)$:

0 ratkaisua ($b^2 - 4ac < 0$):

Esim. Kolmen pisteen $[x_1, y_1]$, $[x_2, y_2]$ ja $[x_3, y_3]$ kautta kulkeva paraabeli $y = ax^2 + bx + c$

löydetään ratkaisemalla kertoimet a,b ja c yhtälöryhmästä

$$\begin{cases} y_1 = a \cdot x_1^2 + b \cdot x_1 + c \\ y_2 = a \cdot x_2^2 + b \cdot x_2 + c \\ y_3 = a \cdot x_3^2 + b \cdot x_3 + c \end{cases}$$

Tapa 1: solve

solve(y1=a*x1^2+b*x1+c,y2=a*x2^2+b*x2+c,y3=a*x3^2+b*x3+c,a,b,c)

$$a = \frac{x1 (y3 - y2) + x2 (y1 - y3) + x3 (y2 - y1)}{(x1 - x2) (x1 - x3) (x2 - x3)} \quad \text{and}$$

$$b = \frac{x1^2 (y2 - y3) + x2^2 (y3 - y1) + x3^2 (y1 - y2)}{(x1 - x2) (x1 - x3) (x2 - x3)} \quad \text{and}$$

$$c = \frac{x2 (x1^2 y3 - x3^2 y1) + x2^2 (x3 y1 - x1 y3) + x1 x3 y2 (x3 - x1)}{(x1 - x2) (x1 - x3) (x2 - x3)}$$
and $(x1 - x2) (x1 - x3) (x2 - x3) \neq 0$

Tapa 2: vähennetään yhtälöt 2 ja 3 yhtälöstä 1

$$\begin{cases}
\frac{E}{y_1 - y_2} = a \underbrace{(x_1^2 - x_2^2)}_{A} + b \underbrace{(x_1 - x_2)}_{B} \\
\frac{y_1 - y_3}{F} = a \underbrace{(x_1^2 - x_3^2)}_{C} + b \underbrace{(x_1 - x_3)}_{D}
\end{cases}$$

$$\Rightarrow a = \frac{DE - BF}{AD - BC}, \quad b = \frac{AF - CE}{AD - BC}$$

$$\Rightarrow c = y_1 - a \cdot x_1^2 - b \cdot x_1$$

Esim: Paraabelin $y = ax^2 + bx + c$ ja suoran y = kx + p leikkauspisteet

$$ax^2 + bx + c = kx + p$$

$$ax^2 + (b-k)x + c - p = 0$$

$$x = \frac{-(b-k) \pm \sqrt{(b-k)^2 - 4a(c-p)}}{2a}$$

Paraabeli ja suora leikkaavat, jos

$$(b-k)^2 - 4a(c-p) \ge 0$$

Paraabelin $y = ax^2$ polttopiste (focus)

$$F: Fx = 0, Fy = \frac{1}{4a}$$

Paraabelin heijastusominaisuus (parabola reflection property):

pystysuuntaiset säteet heijastuvat polttopisteeseen / polttopisteestä lähtevät säteet heijastuvat pystysuuntaisiksi

Huom: Paraabelin $y = ax^2$ pisteen $P = [x_t, ax_t^2]$ kautta kulkevan tangentin (eli paraabelin suuntaisen suoran) kulmakerroin $k = 2ax_t$.

Syy: etsitään k niin, että P:n kautta kulkevalla suoralla $y = k(x - x_t) + ax_t^2$ ja paraabelilla $y = ax^2$ on vain yksi leikkauspiste:

$$k(x - x_t) + ax_t^2 = ax^2$$

$$ax^2 - kx + (kx_t - ax_t^2) = 0$$

Toisen asteen yhtälö: yksi ratkaisu, jos

$$(-k)^2 - 4a(kx_t - ax_t^2) = 0$$

$$k^2 - 4kax_t + 4a^2x_t^2 = 0$$

$$(k - 2ax_t)^2 = 0$$

$$k = 2ax_t$$

Huom: Geometrisesti paraabelilla $y = ax^2$ ovat ne pisteet jotka ovat yhtä kaukana polttopisteestä (focus) $F: x = 0, y = \frac{1}{4a}$

ja (johto)suorasta (directrix)
$$J: y = -\frac{1}{4a}$$

eli allaolevassa kuvassa PF = PQ

Syy:
$$P = [x, y], F = [0, \frac{1}{4a}], Q = [x, -\frac{1}{4a}]$$

$$PF = \sqrt{x^2 + \left(y - \frac{1}{4a}\right)^2}$$
 ja $PQ = y + \frac{1}{4a}$

eli PF = PQ

$$\leftrightarrow \sqrt{x^2 + \left(y - \frac{1}{4a}\right)^2} = y + \frac{1}{4a}$$

$$\leftrightarrow x^2 + \left(y - \frac{1}{4a}\right)^2 = \left(y + \frac{1}{4a}\right)^2$$

$$\Leftrightarrow x^2 + y^2 - \frac{1}{2a}y + \left(\frac{1}{4a}\right)^2 = y^2 + \frac{1}{2a}y + \left(\frac{1}{4a}\right)^2$$

$$\leftrightarrow x^2 = \frac{1}{a}y$$

$$\leftrightarrow y = ax^2$$

Esim: Tasaisesti kiihtyvä liike, kiihtyvyys a, alkunopeus v_0

Kuljettu matka (= etäisyys lähtöpisteestä) hetkellä t

$$s = v_0 t + \frac{1}{2}at^2$$

Esim. Kuljettava matka L, matka-aika T

$$s = v_0 T + \frac{1}{2}aT^2 = L \leftrightarrow \frac{1}{2}aT^2 + v_0 T - L = 0$$

$$\leftrightarrow T = \frac{-v_0 \pm \sqrt{v_0^2 + 2aL}}{a}$$

jos
$$a > 0$$
, niin $T = \frac{-v_0 + \sqrt{v_0^2 + 2aL}}{a}$

jos a<0, niin pitää olla $v_0^2+2aL\geq 0$ eli

$$a \ge -2L/v_0^2 = a \min$$

Tällöin on kaksi ratkaisua

$$T_{1,2} = \frac{-v_0 \pm \sqrt{v_0^2 + 2aL}}{a}$$

Esim. Heittoliike, lähtökorkeus h, -nopeus v_0 ja -kulma α (eikä ilmanvastusta huomioida)

Lentorata on paraabeli

$$y = ax^2 + bx + c$$

x on vaakasuora etäisyys lähtöpaikasta

y on korkeus maan pinnasta

$$a = -\frac{g}{2(v_0 \cos(\alpha))^2}, \quad g = 9.81$$

$$b = \tan(\alpha)$$

$$c = h$$

Syy: alkunopeus x-suuntaan on $v_0 \cos(\alpha)$ ja y-suuntaan $v_0 \sin(\alpha)$, kiihtyvyys x-suuntaan on 0 ja y-suuntaan -g.

Hetkellä t

$$x = v_0 \cos(\alpha) t \to t = \frac{x}{v_0 \cos(\alpha)}$$

$$y = h + v_0 \sin(\alpha) t - \frac{1}{2}gt^2$$

$$= h + v_0 \sin(\alpha) \frac{x}{v_0 \cos(\alpha)} - \frac{1}{2} g \left(\frac{x}{v_0 \cos(\alpha)} \right)^2$$

$$= h + \underbrace{\frac{\sin(\alpha)}{\cos(\alpha)}}_{\tan(\alpha)} x - \frac{g}{2(v_0 \cos(\alpha))^2} x^2$$

Vaakasuora lentomatka

$$y = ax^{2} + bx + c = 0 \leftrightarrow x = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$

$$\leftrightarrow x = \frac{v_0^2}{g}\cos(\alpha)\left(\sin(\alpha) + \sqrt{\sin(\alpha)^2 + \frac{2gh}{v_0^2}}\right)$$

Suurimmillaan, kun lähtökulma

$$\alpha = \tan^{-1} \left(\frac{v_0}{\sqrt{v_0^2 + 2gh}} \right)$$

Suurin arvo on

$$\frac{v_0}{q}\sqrt{v_0^2 + 2gh}$$

(kts. heittoliike.pdf)

Lentoradan $y = ax^2 + bx + c$ huippu eli ylin piste (kts. heittoliike.pdf):

$$x_0 = -\frac{b}{2a} = \frac{v_0^2}{2g}\sin(2\alpha)$$

$$y_0 = -\frac{b^2}{4a} + c = \frac{v_0^2}{2g}\sin(\alpha)^2 + h$$

Huippukorkeuden y_0 kuvaaja, kun $\alpha = 0...90^{\circ}$:

Suurimmillaan $y_0=\frac{v_0^2}{2g}+h$, kun $\alpha=90^\circ$ eli $\sin(\alpha)=1$

Esim: Lähtönopeus v_0 ja -korkeus h=0. Määrää lähtökulma α niin, että kappale osuu pisteessä [L,H] olevaan maaliin, eli

$$H = aL^2 + bL$$

Lähtönopeuden v_0 pitää olla tarpeeksi suuri:

$$v_0 \ge \sqrt{\frac{gL^2}{\sqrt{H^2 + L^2} - H}} = \min v_0$$

Tällöin saadaan kaksi lähtökulmaa:

$$\alpha_1 = \frac{1}{2}(180^{\circ} + \beta - \theta)$$
 ja $\alpha_2 = \frac{1}{2}(360^{\circ} - \beta - \theta)$

missä

$$\beta = \sin^{-1}(k/C), \quad k = \frac{gL^2}{v_0^2 + H}, \ C = \sqrt{L^2 + H^2}$$

$$\theta = \operatorname{atan2d}(H, -L)$$

(kts. heittoliike.pdf)

L = 10, H = 6, min v_0 = 13.16, v_0 = 14 β = 70.68°, θ = 149.04°, α_1 = 50.82°, α_2 = 70.14°

L = 10, H = 6, min v_0 = 13.16, v_0 = 13.2 β = 85.77°, θ = 149.04°, α_1 = 58.37°, α_2 = 62.6°

Ympyrä

Keskipiste $[x_0, y_0]$, säde r

Ympyrän pisteen [x,y] etäisyys keskipisteestä $[x_0,y_0]$ on säde r eli koordinaatit x ja y toteuttavat ehdon (ympyrän yhtälö)

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} = r$$

tai toiseen korotettuna

$$(x-x_0)^2 + (y-y_0)^2 = r^2$$

Esim: keskipiste [2, -3], säde 4

$$(x-2)^2 + (y+3)^2 = 4^2$$

Parametrimuoto:

$$\begin{cases} x = x_0 + r\cos(t) \\ y = y_0 + r\sin(t) \end{cases}, \quad t = 0...360^{\circ}$$

Esim: Ympyrän ja suoran leikkauspisteet

$$\begin{cases} (x - x_0)^2 + (y - y_0)^2 = r^2 \\ y = kx + b \end{cases}$$

Tapa 1: solve

 $solve((x-x0)^2+(y-y0)^2=r^2,y=k*x+b,x,y)$

$$x = \frac{-\sqrt{-b^2 + b (2 y0 - 2 k x0) + (k^2 + 1) r^2 - (y0 - k x0)^2} - b k + k y0 + x0}{k^2 + 1}$$
 and
$$y = \frac{-k \sqrt{-b^2 + b (2 y0 - 2 k x0) + (k^2 + 1) r^2 - (y0 - k x0)^2} + b + k^2 y0 + k x0}{k^2 + 1}$$
 and
$$k^2 + 1 \neq 0$$

$$x = \frac{\sqrt{-b^2 + b (2 y0 - 2 k x0) + (k^2 + 1) r^2 - (y0 - k x0)^2} - b k + k y0 + x0}{k^2 + 1}$$
 and
$$y = \frac{k \sqrt{-b^2 + b (2 y0 - 2 k x0) + (k^2 + 1) r^2 - (y0 - k x0)^2} + b + k^2 y0 + k x0}{k^2 + 1}$$
 and
$$k^2 + 1 \neq 0$$

Tapa 2: sijoitetaan y = kx + b ympyrän yhtälöön:

$$(x - x_0)^2 + ((kx + b) - y_0)^2 = r^2$$

simplify
$$(x - x0)^2 + (kx + b - y0)^2$$

Results

$$b^2 + 2bkx - 2by0 + k^2x^2 - 2kxy0 + x^2 - 2xx0 + x0^2 + y0^2$$

eli

$$Ax^2 + Bx + C = 0$$

missä

$$\begin{cases} A = k^{2} + 1 \\ B = 2bk - 2ky_{0} - 2x_{0} \\ C = b^{2} - 2by_{0} + x_{0}^{2} + y_{0}^{2} - r^{2} \end{cases}$$

Esim: Paikannus, mitatut etäisyydet pisteestä P=[x,y] tukiasemiin $P_1=[x_1,y_1]$, $P_2=[x_2,y_2]$ ja $P_3=[x_3,y_3]$ ovat r_1,r_2 ja r_3 .

Koska mittaustulokset eivät ole tarkkoja, vastaavat kolme ympyrää eivät leikkaa eli yhtälöryhmällä

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = r_1^2 & (1) \\ (x - x_2)^2 + (y - y_2)^2 = r_2^2 & (2) \\ (x - x_3)^2 + (y - y_3)^2 = r_3^2 & (3) \end{cases}$$

ei ole ratkaisua.

Etsitään likiarvoratkaisu x,y vähentämällä vaikkapa kolmas yhtälö kahdesta ensimmäisestä

$$\begin{cases} x^{2} - 2x_{1}x + x_{1}^{2} + y^{2} - 2y_{1}y + y_{1}^{2} = r_{1}^{2} & (1) \\ x^{2} - 2x_{2}x + x_{2}^{2} + y^{2} - 2y_{2}y + y_{2}^{2} = r_{2}^{2} & (2) \\ x^{2} - 2x_{3}x + x_{3}^{2} + y^{2} - 2y_{3}y + y_{3}^{2} = r_{3}^{2} & (3) \end{cases}$$

jolloin saadaan yhtälöpari

$$\begin{cases} ax + by = e & (s_{13}) = (1) - (3) \\ cx + dy = f & (s_{23}) = (2) - (3) \end{cases}$$

missä

$$a = 2(x_3 - x_1), b = 2(y_3 - y_1)$$

$$e = x_3^2 - x_1^2 + y_3^2 - y_1^2 + r_1^2 - r_3^2$$

$$c = 2(x_3 - x_2), d = 2(y_3 - y_2)$$

$$f = x_3^2 - x_2^2 + y_3^2 - y_2^2 + r_2^2 - r_3^2$$

$$\begin{cases} x = (de - bf)/(ad - bc) \\ y = (af - ce)/(ad - bc) \end{cases}$$

Huom: yhtälöparin ratkaisu [x,y] on kolmen suoran leikkauspiste:

(1):
$$d_1^2 = r_1^2$$
 (2): $d_2^2 = r_2^2$ (3): $d_3^2 = r_3^2$

$$\begin{cases} (s_{13}) = (1) - (3) : d_1^2 - d_3^2 = r_1^2 - r_3^2 \\ (s_{23}) = (2) - (3) : d_2^2 - d_3^2 = r_2^2 - r_3^2 \end{cases}$$

missä d_1, d_2, d_3 ovat pisteen [x, y] etäisyydet tukiasemista P_1, P_2, P_3 .

Esimerkiksi, suoran s_{13} pisteet toteuttavat ehdon $d_1^2 - d_3^2 = r_1^2 - r_3^2$

eli kuvan merkinnöin ($L = P_1P_3, L_3 = L - L_1$)

$$(PQ)^2 = d_1^2 - L_1^2 = d_3^2 - (L - L_1)^2$$

$$\to L_1 = \frac{L^2 + d_1^2 - d_3^2}{2L} = \frac{L^2 + r_1^2 - r_3^2}{2L}$$

Eli, s_{13} on kohtisuorassa P_1P_3 :n kanssa ja sen etäisyys pisteistä P_1 ja P_3 on L_1 ja $L-L_1$. Jos ympyrät leikkaavat, niin suora kulkee leikkauspisteiden kautta (koska leikkauspiste toteuttaa ehdot $d_1=r_1$ ja $d_2=r_2$).

Suora s_{23} vastaavasti

Ratkaisu on myös suoralla $s_{12}=(1)-(2)$, eli se toteuttaa ehdon $d_1^2-d_2^2=r_1^2-r_2^2$:

$$d_1^2 - d_2^2 = (d_1^2 - d_3^2) - (d_2^2 - d_3^2)$$

$$=(r_1^2-r_3^2)-(r_2^2-r_3^2)=r_1^2-r_2^2$$

Ellipsi

Yhtälö

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

keskipiste O = [0, 0]

a ja b ovat puoliakseleiden pituudet

Polttopisteet F_1 ja F_2 (foci):

$$x = \pm \sqrt{a^2 - b^2}, y = 0 \quad (a > b)$$

Parametrimuoto:

$$\begin{cases} x = a\cos(t) \\ y = b\sin(t) \end{cases}, \quad t = 0...360^{\circ}$$

Huom:

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = (\cos(t))^2 + (\sin(t))^2 = 1$$

Jos ellipsin keskipiste on $[x_0, y_0]$ ja puoliakselit a ja b, niin ellipsin yhtälö on

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 = 1$$

polttopisteet F_1 ja F_2

$$x = x_0 \pm \sqrt{a^2 - b^2}, y = y_0 \quad (a > b)$$

ja parametrimuoto

$$\begin{cases} x = x_0 + a\cos(t) \\ y = y_0 + b\sin(t) \end{cases}, \quad t = 0...360^{\circ}$$

Geometrisesti ellipsillä ovat ne pisteet P, joiden etäisyyksien summa polttopisteistä F_1 ja F_2 on 2a:

$$PF_1 + PF_2 = 2a$$

(kts. ellipsi_ja_hyperbeli.pdf)

Heijastusominaisuus: polttopisteestä lähtevä säde heijastuu toiseen polttopisteeseen.

Huom: lieriön ja tason leikkauskäyrä on ellipsi (Dandelin spheres)

Violetit viivat yhtä pitkiä ja vihreät viivat ovat yhtä pitkiä (tangentteja pallolle P:stä) eli

 $PF_1+PF_2=$ mustien ympyröiden välinen etäisyys $=2r/\cos(\alpha)=2a$

Hyperbeli

Yhtälö

$$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$$

keskipiste O = [0, 0]

polttopisteet F_1 ja F_2 :

$$x = \pm \sqrt{a^2 + b^2}, y = 0$$

Asymptootit: suorat

$$y = \pm \frac{b}{a} \cdot x$$

eli hyperbeli lähestyy näitä suoria vasemmalle ja oikealle liikuttaessa

Parametrimuoto:

$$\begin{cases} x = \pm a \cosh(t) \\ y = b \sinh(t) \end{cases}$$

t mitä tahansa (se ei ole mikään kulma).

x:n plusmerkillä saadaan oikea haara, miinusmerkillä vasen

cosh(t) ja sinh(t) ovat ns. **hyperboliset** kosini ja sini.

Huom:

$$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = (\cosh(t))^2 - (\sinh(t))^2 = 1$$

Käänteiset, ns. area-funktiot

$$\cosh(t) = c \leftrightarrow t = \operatorname{acosh}(c) = \operatorname{arcosh}(c)$$

$sinh(t) = s \leftrightarrow = asinh(s) = arsinh(s)$

Hyperbelin pistettä P = [Px, Py] vastaava parametrin t arvo:

$$Px = a \cdot \cosh(t) \rightarrow \cosh(t) = Px/a$$

$$\rightarrow t = \operatorname{acosh}(Px/a)$$

 $Py = b \cdot \sinh(t) \rightarrow \sinh(t) = Py/b$

 $\rightarrow t = asinh(Py/b)$

Jos hyperbelin keskipiste on $[x_0, y_0]$ ja puoliakselit a ja b, niin sen yhtälö on

$$\left(\frac{x-x_0}{a}\right)^2 - \left(\frac{y-y_0}{b}\right)^2 = 1$$

polttopisteet F_1 ja F_2 :

$$x = x_0 \pm \sqrt{a^2 + b^2}, y = y_0$$

ja parametrimuoto

$$\begin{cases} x = x_0 \pm a \cosh(t) \\ y = y_0 + b \sinh(t) \end{cases}$$

Geometrisesti hyperbelillä ovat ne pisteet P, joiden etäisyyksien erotus polttopisteistä F_1 ja F_2 on $\pm 2a$

$$PF_1 - PF_2 = \pm 2a$$

$$(+ = oikea, - = vasen haara)$$

(ellipsi_ja_hyperbeli.pdf)

Heijastusominaisuus: kohti toista polttopistettä menevä säde heijastuu toiseen polttopisteeseen.

Esim: jos $F_1F_2=L$ ja etäisyyksien erotus $PF_1-PF_2=d$, niin piste P on hyperbelillä, jonka polttopisteet ovat F_1 ja F_2 ja puoliakselit

$$a = |d|/2$$
 ja $b = \sqrt{(L/2)^2 - a^2}$

syy: $|PF_1 - PF_2| = |d| = 2a$ ja polttopisteiden välinen etäisyys $L = 2\sqrt{a^2 + b^2}$

Huom: d on välillä $-L \dots L$

Paikannus: tukiasemat

$$F_1 = [0,0], F_2 = [x_2,0]$$
 ja $F_3 = [x_3,y_3]$

Jos pisteen P = [x, y] ja tukiasemien välisten etäisyyksien erotukset ovat

$$PF_1 - PF_2 = d_{12}$$
 ja $PF_1 - PF_3 = d_{13}$

niin P on kahden hyperbelin leikkauspiste

(polttopisteet F_1, F_2 ja F_1, F_3)

(kts. hyperbeli_paikannus.pdf)

Erotukset d_{12} ja d_{13} saadaan P:stä/tukiasemista lähetettyjen signaalien vastaanottoaikojen erotuksista tukiasemissa/P:ssä

1 ratkaisu:

2 ratkaisua:

0 ratkaisua:

Huom: Paraabeli, ellipsi ja hyperbeli ovat kartioleikkauksia (conic section) eli ne syntyvät tason ja kartion leikkauksena

Dandelin spheres:

