Analysis and applications of i-mix on domain agnostic environment

-Summary-

Introduction

• From DABS 2.0 [A Tamkin, 2022], it turned out that mix-up is an effective data augmentation technique regardless of data domain.

Pretrain Dataset	Transfer Dataset	Encoder	Baseline Performance	<i>e</i> -mix Performance
ImageNet	CIFAR10	Transformer	24.20%	39.43%
ImageNet	CU Birds	Transformer	1.62%	3.86%
ImageNet	VGG Flowers	Transformer	9.03%	25.96%
ImageNet	DTD	Transformer	7.39%	8.83%
ImageNet	Traffic Sign	Transformer	14.33%	65.07%
ImageNet	Aircraft	Transformer	2.70%	10.15%
PAMAP2	PAMAP2	Transformer	69.81%	79.48%
MSCOCO	VQA	Transformer	53.38%	58.77%
MSCOCO	Mismatched Caption	Transformer	49.41%	49.86%
CheXpert	CheXpert	Transformer	68.14%	72.40%

Introduction

• The suggested technique is called 'e-mix', which is variant of i-mix [K Lee, 2020], and have the following loss:

Definition: i-mix InfoNCE loss

Assume f is the encoder for normalized feature embedding with ReLU activation (so that $\nabla_x^2 f(x) = 0$) and $x^{(1)}$, $x^{(2)}$, $x^{(-)}$ are given as two positive samples, and one negative sample. Then, the InfoNCE loss and i-mix InfoNCE loss are given as follows:

$$L_{un} = \mathbb{E}_{x^{(1)}, x^{(2)} \sim D_{sim}} \left[-\log \left(\frac{e^{f(x^{(1)})^T f(x^{(2)})}}{e^{f(x^{(1)})^T f(x^{(2)})} + e^{f(x^{(1)})^T f(x^{(-)})}} \right) \right]$$

$$\lambda \sim Beta(\alpha, \alpha)$$

$$L_{un}^{i-mix} = \mathbb{E}_{x^{(1)}, x^{(2)} \sim D_{sim}} \left[-\lambda \log \left(\frac{e^{f(x^{mix})^T f(x^{(1)})}}{e^{f(x^{mix})^T f(x^{(1)})} + e^{f(x^{mix})^T f(x^{(-)})}} \right) - (1 - \lambda) \log \left(\frac{e^{f(x^{mix})^T f(x^{(2)})}}{e^{f(x^{mix})^T f(x^{(2)})} + e^{f(x^{mix})^T f(x^{(-)})}} \right) \right]$$

$$\lambda \sim Beta(\alpha, \alpha)$$

where $x^{(mix)} = \lambda x^{(1)} + (1 - \lambda)x^{(2)}$, and D_{sim} : distribution for positive pairs, D_{neg} : distribution for negative sample.

Introduction

Domain	Dataset	N-pair	+ i-Mix	MoCo v2	+ i-Mix	BYOL	+ i-Mix
Image	CIFAR-10	93.3 ± 0.1	95.6 ± 0.2	93.5 ± 0.2	96.1 ± 0.1	94.2 ± 0.2	96.3 ± 0.2
	CIFAR-100	70.8 ± 0.4	75.8 \pm 0.3	71.6 ± 0.1	78.1 ± 0.3	72.7 ± 0.4	78.6 ± 0.2
Speech	Commands	94.9 ± 0.1	$\textbf{98.3} \pm 0.1$	96.3 ± 0.1	$\textbf{98.4} \pm 0.0$	94.8 ± 0.2	$\textbf{98.3} \pm 0.0$
Tabular	CovType	$\overline{68.5 \pm 0.3}$	72.1 ± 0.2	70.5 ± 0.2	73.1 ± 0.1	72.1 ± 0.2	74.1 ± 0.2

Table 1: Comparison of contrastive representation learning methods and *i*-Mix in different domains.

- e-mix perform i-mix without any data-augmentation on the input data
 - Q: Why does it improves downstream performance significantly?
 - Q: Why can it be effective at even domain-circumstance? (Note: e-mix does not use positive pairs at all (no data augmentation at all).

 Hypothesis: There must be a strong regularization effect which acts as 'indirect' contrastive learning (which does not require positive samples)

Conventional analysis of mix-up loss is to apply 2nd order Taylor expansion [Zhang, 2021], [L
 Carratino, 2022], [C Park, 2022] (under the supervised mix-up setting)

Theorem : Approximated i-mix InfoNCE loss ($\lambda \cong 0$) [Informal]

The i-mix InfoNCE L_{un} can be approximated by $2^{
m nd}$ order Taylor expansion near $\lambda=0$ as follows:

$$\widetilde{L_{un}^{i-mix}} = \frac{1}{2}L_{un} + R^{(1)} + R^{(2)}$$

where

$$R^{(1)} = -\frac{1}{2} \mathbb{E}_{x^{(1)}, x^{(2)} \sim D_{sim}} \left[\log \frac{e}{e + e^{f(x^{mix})^T} f(x^{(-)})} \right]$$

$$\lambda \sim Beta(\alpha, \alpha)$$

Repel the negative sample $x^{(-)}$ from the mixup pair $x^{(mix)}$

And, $R^{(2)}$ is given as follows (next page):

Theorem : Approximated i-mix InfoNCE loss ($\lambda \cong 0$) [Informal] (Cont.)

The i-mix InfoNCE L_{un} can be approximated by 2^{nd} order Taylor expansion near $\lambda=0$ as follows:

Indirect Contrastive learning via tangential approximation (unclear)

Note: $R^{(2)}$ terms effects gets significant as $\lambda \to \frac{1}{2}$

$$= \mathbb{E}_{x^{(1)},x^{(2)} \sim D_{sim}} [c_1 \cdot \frac{e^{f(x^{(2)})^T} f(x^{(-)})}{e^{f(x^{(2)})^T} f(x^{(1)}) + e^{f(x^{(2)})^T} f(x^{(-)})} \cdot (x^{(1)} - x^{(2)})^T [f(x^{(2)})^T [f(x^{(1)}) - f(x^{(-)})] + c_2 \cdot \frac{e^{f(x^{(2)})^T} f(x^{(-)})}{e + e^{f(x^{(2)})^T} f(x^{(-)})} \\ \underset{\lambda \sim Beta(\alpha,\alpha)}{\wedge} e^{f(x^{(2)})^T} f(x^{(2)})^T f(x^{(-)}) + e^{f(x^{(2)})^T} f(x^{(-)})$$

$$\cdot \left(x^{(1)} - x^{(2)}\right)^{T} \nabla f(x^{(2)})^{T} \left[f(x^{(2)}) - f(x^{(-)})\right] + c_{3} \cdot \frac{e^{f(x^{(2)})^{T} f(x^{(-)})}}{\left(e + e^{f(x^{(2)})^{T} f(x^{(-)})}\right)^{2}} \cdot \left[\left(x^{(1)} - x^{(2)}\right)^{T} \nabla f(x^{(2)})^{T} \left[f(x^{(2)}) - f(x^{(-)})\right]\right]^{2}$$

- Inside $R^{(2)}$, there are terms related with indirect contrastive loss
 - Attraction between 'tangential approximation of $x^{(1)}$ w.r.t $x^{(2)}$ ' and ' $f(x^{(1)})$ ', and repulsion between 'tangential approximation of $x^{(1)}$ w.r.t $x^{(2)}$ ' and ' $f(x^{(-)})$ ':

$$(x^{(1)}-x^{(2)})^T \nabla f(x^{(2)})^T [f(x^{(1)})-f(x^{(-)})]$$

• Attraction between 'tangential approximation of $x^{(1)}$ w.r.t $x^{(2)}$ ' and ' $f(x^{(2)})$ ', and repulsion between 'tangential approximation of $x^{(1)}$ w.r.t $x^{(2)}$ ' and ' $f(x^{(-)})$ ':

$$(x^{(1)}-x^{(2)})^T \nabla f(x^{(2)})^T [f(x^{(2)})-f(x^{(-)})]$$

- Unsolved Q: Why does it helpful? (why the input gradient control can be effective?)
 - Unclear, but it is speculated that they control the input gradients to make a regularized contrasted feature space. (which might be helpful for downstream performance)

• Empirically, it turned out that the $\|\nabla f(x)\|_2$ is get more stronger at the convex hull of data set:

- Then, does the approximated mix-up loss is accurate compared to true mix-up loss?
 - Under the 3-layer ReLU Network + 2-dimensional blob dataset, the loss trajectory is given as follows (as did in [C. Park, 2022], [Zhang, 2021]): $(\lambda \sim Beta(1,1))$

Downstream performance by i-mix

- How about the downstream performance guarantee under i-mix loss?
- Using the framework from [Arora, 2019], [Verma, 2021], the following claim holds:

Lemma 1: Minimizing the empirical loss → minimizing the upper bound of true loss (similarly as in [Arora, 2019])

With probability at least $1 - \delta$ over the training set \mathcal{S} , for all $f \in \mathcal{F} := \{f : \mathcal{X} \to \mathbb{R}^d \mid ||f||_B < R \text{ for some } R > 0\}$

$$L_{un}^{i-mix}(\hat{f}) \le \widehat{L_{un}}^{i-mix}(f) + O(R \cdot \frac{\mathcal{R}_S(\mathcal{F})}{M} + R^2 \sqrt{\frac{\log \frac{1}{\delta}}{M}})$$

where $\mathcal{R}_{\mathcal{S}}(\mathcal{F}) \coloneqq \mathbb{E}_{\sigma \sim \{\pm 1\}^{3dM}}\left[\sup_{f \in \mathcal{F}} <\sigma, f_{|\mathcal{S}}>\right]$ (= Rademacher complexity], and $M = |\mathcal{S}|$ (= sample size) , $\hat{f} \in argmin_{f \in \mathcal{F}} \widehat{L_{un}}(f)$

Downstream performance by i-mix

Theorem: Weak guarantee of downstream performance under i-mix training [similarly as in [Verma, 2021])

Let $\bar{\rho}(y) = P(y' \neq y \mid y) > 0$, $\rho(y) = P(y' = y \mid y)$, then, under the binary class contrastive learning and linear evaluation setting, the following holds:

$$l_{un}^{i-mix} \cong \frac{1}{2} \mathbb{E}_{(x^{(1)},y)\sim D} \left[\rho(y) l_{sup} \left(f(x^{(1)},y)^T \widetilde{w} \right) \right] + \frac{1}{2} \mathbb{E}_{y} \left[\left(1 - \bar{\rho}(y) \right) \mathcal{E}_{y} \right] + R^{(1)} + R^{(2)}$$

where

$$\mathcal{E}_{y} = \mathbb{E}_{x^{(1)}, x^{(2)} \sim D_{y}} \left[log \left(1 + exp \left(-\frac{f(x^{(1)})^{T}}{\|f(x^{(1)})\|} \left(\frac{f(x^{(2)})^{T}}{\|f(x^{(2)})\|} - \frac{f(x^{(-)})^{T}}{\|f(x^{(-)})\|} \right) \right) \right]$$

$$\widetilde{w} = \frac{1}{\|h(x^{(1)}\|)} \left(\frac{1}{\|h(\pi_{y,1}(x^{(2)}, x^{(-)}))\|} h\left(\pi_{y,1}(x^{(2)}, x^{(-)})\right) - \frac{1}{\|h(\pi_{y,0}(x^{(2)}, x^{(-)}))\|} h\left(\pi_{y,0}(x^{(2)}, x^{(-)})\right) \right)$$

$$\pi_{y,y'}(x^{(2)}, x^{(-)}) = P(y = y') \cdot x^{(2)} + P(y \neq y') \cdot x^{(-)}$$

- In DABS 2.0, they used ViT structure to cover domain agnostic data.
 - But, it turned out that the suggested domain-agnostic algorithms (ex: e-mix, ShED, ContPred) tend to show improvement in certain types of domain:
 - e-mix: strong at continuous data (spectrogram, vision, continuous tabular [sensor])
 - SheD (Shuffled embedding detection) / ContPred (mask certain portion of random patches): strong at discontinuous data (text, vision, discontinuous tabular)

- But, How about exploiting the ViT structure for mix-up?
 - Use patch mix-up in discrete unit => may be helpful for both continuous / discontinuous data.

• e-mix (from DABS 2.0)

• Discrete patch mixup:

- Performance comparison ('dmix' = discrete patch mixup)
 - Online evaluation test accuracy (not linear evaluation, but can be a substitute)

Dataset	CIFAR-10	CIFAR-100	PAMAP2	Euroset	CUBirds	DTD	Traffic Sign	MNLI (matched)
emix	38.4	10.1	81.8	89.2	1.54	7.71	55.4	32.6
ShED	36.4	No data	65.9	55.7	No data	6.12	28.4	38.1
dmix	48.7	19.7	82.8	87.4	1.45	8.24	63.0	32.6

- Clearly shows good performance compared to emix, but unclear on the NLP domain
 - We can further generalize dmix by combining ContPred algorithm (called 'Contdmix')
 - Then, on continuous data : shED < emix < contdmix < dmix
 - On discontinuous data : emix < dmix <= contdmix < shED