Name of the Program:		m: BTI	ECH CSE	- AIML	Semester: 3 Level		\mathbf{UG}	
Course Name:		Dat	a Structu Algorith		Course Code/ Course Type	UBTML2	UBTML201/PCC	
Cours		2025		Version	1.0	1.0		
Assessment Scheme					Teaching Scheme			
Theory	Practical	Tutorial	Total Credits	Hours	CIA (Continuous Internal Assessment)	ESA (End Semester Assessment)	Practical/ Oral	
3	-	-	3	3	40	60	-	

Pre-Requisite:

1. Knowledge of C Programming

Course Objectives (CO):	The objectives of Data Structures and Algorithms are:
	1. To introduce fundamental problem-solving approaches and concepts of data structures and algorithm analysis.
	2. To provide in-depth knowledge of linked list structures and their operations for dynamic memory management.
	3. To develop understanding of stack and queue abstract data types along with their applications in expression handling and scheduling.
	4. To enable learners to analyze and apply basic searching and sorting techniques along with their performance comparisons.
	5. To impart knowledge about hierarchical and network data structures like trees and graphs, and explore their real-world applications.
Course Learning Outcomes	Students would be able to:
(CLO):	1. Explain data structure types and analyze the efficiency of algorithms using time and space complexity metrics.
	2. Demonstrate operations such as insertion, deletion, and traversal on different types of linked lists.
	3. Apply stack and queue operations to solve computational problems like expression evaluation and process scheduling.
	4. Compare various searching and sorting algorithms and analyze their performance in different scenarios.
	5. Construct tree and graph-based solutions using traversal techniques and shortest path algorithms.

${\bf Course\ Contents/Syllabus:}$

Descriptors/Topics	CLO	Hours
UNIT I		
Introduction to Data Structures: General Problem-Solving Concepts, Types of Problems, Problem Solving Concepts for the Computer. Concept of data, Types of data structures: Concept of Primitive and non-primitive, linear and Nonlinear, static and dynamic, persistent and ephemeral data structures. Algorithm: Characteristics of algorithm, Pseudo code, Flowchart. Analysis of algorithm: Frequency count and its importance in analysis of an algorithm, Time complexity and Space complexity of an algorithm Big 'O', ' Ω' and ' θ' notations.	CLO 1	6
UNIT II		

Stack and Queue: Stack: Concept of stack, Operations on stack (push, pop and display) Applications of stack: recursion, converting expressions from infix to postfix, infix to prefix form, evaluating postfix or prefix form. Queue: Concept of queues as ADT, Implementation of queue using array. Concept of circular queue, double ended queue, Applications of queue: priority queue.	CLO 2	9
UNIT III		
Linked List: Understanding the basics of Linked List, Comparison between array and linked list. Types and basic operations of Linked Lists: 1. Single Linked List. 2. Double Linked List. 3. Circular Linked List. 4. Circular Double Linked List. Basic operations: Creation. Insertion. Deletion. Traversing.	CLO 3	6
UNIT IV		
Searching and Sorting: Searching and sorting: Need of searching and sorting, Concept of internal and external sorting, sort stability, Searching methods: Linear and binary search algorithms Sorting methods: Bubble, Insertion, Quick, Merge. Comparison of all sorting methods. Analyze Bubble Sort, Insertion sort, Quick Sort, Binary for Best, Worst and Average case.	CLO 4	6
UNIT V		
Tree and Graph: Tree: Trees and binary trees-concept and terminology, Expression tree, Binary tree as an ADT, Binary search tree, Binary search tree as ADT (Insert Search Delete, level wise Display) Threaded binary tree: Concept of threaded binary tree (inorder, preorder and postorder), Applications of trees. Graph: Concept and terminologies, Breadth First Search traversal, Depth First Search traversal, Prim's and Kruskal's algorithms for minimum spanning tree, shortest path using Dijkstra's algorithm.	CLO 5	6
Total Hours		

Learning Resources:

Text Books:

- 1. JHerbert Schildt, "C++: The Complete Reference", McGraw Hill Education, 2003.
- 2. John R. Hubbard, "Data Structures with C++", Schaum's Outlines, Tata McGraw Hill Education, 2000.

Reference Books:

- 1. Michael T. Goodrich, Roberto Tamassia, and David Mount, 'Data Structures and Algorithms in C++', Wiley India Pvt. Ltd., 2004.
- 2. Seymour Lipschutz, "Data Structures", Schaum's Outlines, Tata McGraw Hill Education, 2006

Online Resources/E-learning Resources:

- $1.\ https://nptel.ac.in/courses/106102064\ Data\ Structures\ and\ Algorithms,\ IIT\ Delhi\ Prof.\ Naveen\ Garg\ Date\ of\ Reference 18-4-2024$
- $2.\ https://nptel.ac.in/courses/106103069\ Date\ of\ Reference\ 18-4-2024$