4. Labopakket 4: De condensator

Datum : Klasgroep...... Labogroep.......

4.1 Theoretische achtergrond

Enige elementaire basiskennis over de condensator is opgenomen onder paragraaf 4.3. Het is de bedoeling je deze leerstof als zelfstudiepakket doorneemt. Het kan nuttig zijn de grafieken bij de theoriecursus te voegen om een beter inzicht te krijgen.

4.2 Voorbereiding

Hoe lang duurt het (ont)laadproces in het algemeen?

Theoretisch praktisch

Geef de waarde van het getal e (grondgetal natuurlijk logaritme) =

Hoe lang duurt het (ont)laadproces voor R = 1 k Ω en C = 100 μ F praktisch? s

Stel dat je in bovenstaande situatie een ongeladen condensator laat opladen met een bron van 10 V. Hoeveel bedraagt de spanning over de condensator dan na 0,3 seconden?

9,50v V (drie cijfers na de komma)

Berekening:

Stel dat je in bovenstaande situatie een ongeladen condensator laat opladen met een bron van 10 V. Hoeveel bedraagt de spanning over de condensator dan na 5 τ ?

...... V (drie cijfers na de komma)

Berekening:

4.6 Verwerking resultaten - besluiten

Betreft laadproces.

➤ Teken op één assenstelsel de gemeten gegevens, 4 grafieken voor u_c = f(t) en 4 grafieken voor i = f(t). Doe dit zo groot mogelijk en gebruik aangepaste schalen voor i en u_c. Benoem elke grafiek duidelijk. Extrapoleer eventueel ontbrekende beginwaarden. Gebruik dezelfde tijdsas!

Betreft ontlaadproces.

Teken op één assenstelsel de gemeten gegevens, 4 grafieken voor $\mathbf{u}_c = \mathbf{f(t)}$ en 4 grafieken voor $\mathbf{i} = \mathbf{f(t)}$. Doe dit zo groot mogelijk en gebruik aangepaste schalen voor \mathbf{i} en \mathbf{u}_c . Benoem elke grafiek duidelijk. Extrapoleer eventueel ontbrekende beginwaarden. **Gebruik dezelfde tijdsas!** Let op : de stroomzin is nu omgekeerd ten opzichte van de stroom bij het laadproces, verwerk dit in je grafieken. Vraag eventueel info aan de docent.

Beantwoord volgende vragen, **motiveer telkens je antwoord** aan de hand van je waarnemingen. De grafieken zijn hierbij een handig instrument.

Betreft het laadproces.

 \triangleright Heeft de grootte van R invloed op de spanning die de condensator bereikt na 5τ ? Waarom?

Ja, Den grotte weerstand neemt ook een langer fijd voor dat het ogelader wordt.

 \blacktriangleright Heeft de grootte van C invloed op de spanning die de condensator bereikt na 5τ ? Waarom?

The for grotte Condensator heeft meer top noching on 51 te bereiker

Wat (welke parameter of welke instelling) moet je wijzigen om de eindspanning over de condensator te laten stijgen/dalen?

de tijd Ren C

> Controleer of de wiskundige formules bovenstaande conclusies bevestigen. Bespreek kort.

Betreft laden en ontladen.

- ➤ Heeft de grootte van R invloed op de maximale stroom ? Waarom?
- ➤ Heeft de grootte van C invloed op de maximale stroom ? Waarom?
- ➤ Heeft de grootte van R invloed op de duur van het (ont)laden ? Waarom?

12 R.C 1x = Hoe groter R world hoe larger het diwot om on telader

Heeft de grootte van C invloed op de duur van het (ont)laden ? Waarom?

12 R. C 17 2 Hue groter C worlt has larger het downt om te laden

Betreft laadproces voor R= 100 k Ω en C= 200 μ F.

Tot hoeveel procent van de bronspanning is de condensatorspanning gestegen na 1τ , 3τ , 5τ ? Bereken de theoretische waarde, alsook de procentuele waarde van de voedingsspanning die je op dat moment bekomt via je metingen.

Theoretisch:

berekening hieronder vermelden aub

Berekend uit meetwaarden:

Betreft laadproces voor R= 100 k Ω en C= 200 μ F.

Vergelijk je metingen met de theoretisch verwachte waarden uit de formules. Verklaar eventuele afwijkingen.

2-1		berekende	waarden	gemeten waarden		
	tijd [s]	u _C	. I	uc	I I	
1τ	OMB 205	491/167mV	3,6,8 NA	6,32V	3,67NA	
3 τ	Bos	9,5V	4,97pA	9,5V	4,98pA	
5 τ	1003	9,930	6,74nA	9,93	671, 41n A	

ECt)= 1/2 eta

MEETWAARDEN LADEN

ray a	schak	schakeling a		schakeling b		schakeling c		schakeling d	
73.7%	bronspanning [10]		bronspanning [l\(\Omega\)]		bronspanning [[]		bronspanning [LQ]		
tijd [s]	u _C []	i []	u _c []	i []	u _c []	i []	u _c []	i []	
0					Ca 1/5				
10	6,32V	36,7pA	3,93v	30,3 NA	3,93V	60,65p1	2,21V	38940A	
20	8,65V	13,55 pA	6,32V	18,4pA		36,79VA		30,33pA	
30	9,500	4,98pA	7,77	11,16pA		22 p A	5,280	23,62NA	
40					•				
50									
60									
70									
80	iov	330 A	9,820	914n A	9,82	1,83pA	8,65V	6,77 pA	
90		NO - 0000 W - 000 100	.,						
100	100	4,4nA	9,932	335,6nA	9,930	671,4nA	9,180	4,10pA	
110								10/2	
120								475	
130									
140								T. April.	
150	iDu	27,4pA	9,990	27,3 nA	9,99v	54n A	9,77v	1,1740A	
160	VOV	CIITPII	17:10	-/2 [//		Oline	(2.11	The state of	
170				110					
180								191	
190									
200	100	158,6fA	10 v	219nA	100	4,4n A	9,93v	335,63nF	
210	70 -	100/01/1	100	willing	10	[7] [11]	1710		

MEETWAARDEN ONTLADEN

	Te rayla	schakeling a bronspanning []		schakeling b bronspanning []		schakeling c bronspanning []		schakeling d bronspanning []	
	(II)								
	tijd [s]	u _c []	i []	u _c []	i []	u _c []	i []	u _C []	i []
	0								
	10	3,680	36,79vA	6,070	60,65 mA	6,07v	60,6pA	7,791	38,94 VA
7	20	1,35V	13,53pA	3,68V	AMPHORE A	31681	36, +8NA	4	301831
2	30	497mV	4,97pA	2,231	11,16pA	2,230	22,3101		23,6201
	40		171111						
	50								
	60								
	70								
	80 (100)	439,6pA	4,390A	BFILLIN	335,560 A	67,11	671,13In A	820.4mV	4,1024
	90	1 10 p.							
)	100	Var S	A.RFO	VERP	Awith	VERIF	Annik	uo!	
	110								12 108
	120								175
	130								
	140								
	150	2,79mV	27,4pA	5,46m\$	27,28nA	5,46nV	54,5nA	234°+mV	1,17407
	160								
	170								
	180								
	190	-			7,1 20				APX
	200	16,75nV	167,56CA	439pV	2,198nA	439,60A	4,39n A	67111mV	335,6nA
	210		T		74		Ų		