PRIMITIVES ET INTÉGRALES

1. PRIMITIVES D'UNE FONCTION

DÉFINITION

Soit f une fonction définie sur I.

On dit que F est une primitive de f sur l'intervalle I, si et seulement si F est dérivable sur I et pour tout x de I, F'(x) = f(x).

EXEMPLE

La fonction $F: x \mapsto x^2$ est une primitive de la fonction $f: x \mapsto 2x$ sur \mathbb{R} .

La fonction $G: x \mapsto x^2 + 1$ est aussi une primitive de cette même fonction f.

PROPRIÉTÉ

Si F est une primitive de f sur I, alors les autres primitives de f sur I sont les fonctions de la forme F+k où $k \in \mathbb{R}$.

REMARQUE

Une fonction continue ayant une infinité de primitives, il ne faut pas dire \mathbf{la} primitive de f mais \mathbf{une} primitive de f.

EXEMPLE

Les primitives de la fonction $f: x \mapsto 2x$ sont les fonctions $F: x \mapsto x^2 + k$ où $k \in \mathbb{R}$.

PROPRIÉTÉ

Toute fonction continue sur un intervalle I admet des primitives sur I.

PROPRIÉTÉS (PRIMITIVES DES FONCTIONS USUELLES)

Fonction f	Primitives F	Ensemble de validité
0	k	\mathbb{R}
а	ax + k	\mathbb{R}
$x^n \ (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1} + k$	R
$\frac{1}{x}$	$\ln x + k$]0;+∞[
e^x	$e^x + k$	\mathbb{R}

PROPRIÉTÉS

Si f et g sont deux fonctions définies sur I et admettant respectivement F et G comme primitives sur I et k un réel quelconque.

- F + G est une primitive de la fonction f + g sur I.
- kF est une primitive de la fonction kf sur I.

PROPRIÉTÉS

Soit u une fonction définie et dérivable sur un intervalle I.

Les primitives de la fonction $x \mapsto u'(x) e^{u(x)}$ sont les fonctions $x \mapsto e^{u(x)} + k$ (où $k \in \mathbb{R}$)

EXEMPLE

La fonction $x \mapsto 2xe^{(x^2)}$ est de la forme $u'e^u$ avec $u(x) = x^2$.

Ses primitives sont donc les fonctions $x \mapsto e^{(x^2)} + k(k \in \mathbb{R})$

2. INTÉGRALES

DÉFINITION

Soit f une fonction continue sur un intervalle [a;b] et F une primitive de f sur [a;b].

L'intégrale de a à b **de** f est le nombre réel noté $\int_a^b f(x) dx$ défini par :

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

REMARQUE

L'intégrale ne dépend pas de la primitive de f choisie.

En effet si G est une autre primitive de f, on a G = F + k donc :

$$G(b) - G(a) = F(b) + k - (F(a) + k) = F(b) - F(a)$$

NOTATIONS

On note souvent : $F(b) - F(a) = [F(x)]_a^b$

On obtient avec cette notation:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$$

EXEMPLE

La fonction F définie par $F(x) = \frac{x^3}{3}$ est une primitive de la fonction carré.

On a donc:

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} - \frac{0}{3} = \frac{1}{3}$$

3. PROPRIÉTÉS DE L'INTÉGRALE

PROPRIÉTÉ

Relation de Chasles Soit f une fonction continue sur [a;b] et $c \in [a;b]$.

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx$$

PROPRIÉTÉ

Linéarité de l'intégrale Soit f et g deux fonctions continues sur [a;b] et $\lambda \in \mathbb{R}$.

•
$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

PROPRIÉTÉ

Comparaison d'intégrales Soit f et g deux fonctions continues sur [a;b] telles que $f\geqslant g$ sur [a;b].

$$\int_{a}^{b} f(x) dx \geqslant \int_{a}^{b} g(x) dx$$

REMARQUE

En particulier, en prenant pour *g* la fonction nulle on obtient si $f(x) \ge 0$ sur [a;b]:

$$\int_{a}^{b} f(x) \, dx \geqslant 0$$

4. INTERPRÉTATION GRAPHIQUE

DÉFINITION

Le plan P est rapporté à un repère orthogonal (O, \vec{i}, \vec{j}) .

On appelle **unité d'aire (u.a.)** l'aire d'un rectangle dont les côtés mesurent $||\vec{i}||$ et $||\vec{j}||$.

Unité d'aire dans le cas d'un repère orthonormé

PROPRIÉTÉ

Si f est une fonction continue et **positive** sur [a;b], alors l'intégrale $\int_a^b f(x) \, dx$ est l'aire, en unités d'aire, de la surface délimitée par :

- la courbe C_f
- · l'axe des abscisses
- les droites (verticales) d'équations x = a et x = b

EXEMPLE

L'aire colorée ci-dessus est égale (en unités d'aire) à $\int_{1}^{3} f(x) \, dx$

REMARQUES

- Si f est négative sur [a;b], la propriété précédente appliquée à la fonction -f montre que $\int_a^b f(x)\,dx \text{ est égale à l'} \mathbf{opposé} \text{ de l'aire délimitée par la courbe } C_f, \text{ l'axe des abscisses, les droites d'équations } x=a \text{ et } x=b$
- Si le signe de f varie sur [a;b], on découpe [a;b] en sous-intervalles sur lesquels f garde un signe constant.

PROPRIÉTÉ

Si f et g sont des fonctions continues et telles que $f \leqslant g$ sur [a;b], alors l'aire de la surface délimitée par :

- la courbe C_f
- la courbe C_g
- les droites (verticales) d'équations x = a et x = b

est égale (en unités d'aire) à :

$$A = \int_{a}^{b} g(x) - f(x) dx$$

EXEMPLE

f et g définies par $f(x) = x^2 - x$ et $g(x) = 3x - x^2$ sont représentées par les paraboles ci-dessous :

L'aire colorée est égale (en unités d'aire) à :

$$A = \int_0^2 g(x) - f(x) dx = \int_0^2 4x - 2x^2 = \left[2x^2 - \frac{2}{3}x^3 \right]_0^2 = \frac{8}{3} \text{u.a.}$$