# Analyse hydro-acoustique

Quatres étapes principales sont à effectuer pour appliquer les méthodes acoustiques décrites dans ma thèse (Marggraf, 2024):

- 1. Préparation du fichier de prélèvement
- 2. Préparation des données acoustiques
- 3. Moyennage des mesures le long du faisceau
- 4. Application des méthodes mono- et bi-fréquentielles

# 1 Préparation du fichier de prélèvement

La première étape consiste à créer un fichier avec les résultats de chaque jaugeage (Figure 1). Ce fichier peut être crée à la main ou automatiquement en utilisant le code "1\_Create\_samples\_files" et les sorties du code ASG (Marggraf et al., 2024). De toute manière, il est important que le fichier de sortie a la même forme, les mêmes noms de colonnes etc. Chaque ligne correspond à un jaugeage. Si certaines données ne sont pas connues pour un jaugeage, il faut laisser les cellules vides. De plus, un point et ne pas de virgule est demandé pour les chiffres. Un example du fichier de sortie est "Samples.csv". Le fichier crée ainsi est très important pour la suite de l'analyse acoustique. L'ajout de nouvelles données de jaugeage permet de réajuster et améliorer la calibration acoustique à chaque fois.

| 4 | A  | В        | С               | D               | E F          | G               | Н                  | 1               | J         | K           | L       | M       | N       | 0            | P             | Q       | R      | S       | T      | U         | V          |
|---|----|----------|-----------------|-----------------|--------------|-----------------|--------------------|-----------------|-----------|-------------|---------|---------|---------|--------------|---------------|---------|--------|---------|--------|-----------|------------|
| 1 |    | Date :   | Start_samplin E | nd_sampling Sam | pler Q_sampl | ng_r Stage_samp | lir spm_sampling S | and_concent Sar | d_flux_kg | No_samples_ | D10_mum | D50_mum | D90_mum | Fine_concent | Fine_flux_kg_ | U_C     | U_Q I  | J_F     | Method | sigma_mum | S          |
|   | 0  | 20210406 | 13:21           | 15:25 P72       | 192          | 375 1.98        | 8 0.094            | 0.028           | 5.522     |             |         |         |         | 0.069        | 13.76         | 28.315  | 5.708  | 28.885  | SDC    |           | 2.46428571 |
| 3 | 1  | 20210511 | 12:19           | 16:01 P72       | 451          | 923 3.72        | 6 1.699            | 0.388           | 198.73    |             |         |         |         | 1.871        | 959.041       | 51.377  | 5.822  | 51.706  | SDC    |           | 4.82216495 |
| 1 | 2  | 20210512 | 11:10           | 14:23 P72       | 3            | 56.1 3.12       | 4 0.495            | 0.281           | 81.731    |             |         |         |         | 0.5          | 145.363       | 18.441  | 12.756 | 22.423  | SDC    |           | 1.77935943 |
| 5 | 3  | 20210616 | 10:25           | 12:57 P6        | 396          | 111 3.3         | 4 1.451            | 0.761           | 220.956   | 19          | 38.197  | 113.341 | 296.613 | 3 1.517      | 440.59        | 11.972  | 12.756 | 17.494  | SDC    | 0.585     | 1.9934297  |
| 5 | 4  | 20210616 | 13:25           | 15:27 P6        | 38           | 1.75 3.2        | 6 1.974            | 0.802           | 232.951   | 19          | 40.46   | 125.771 | 348.705 | 5 2.553      | 741.633       | 13.044  | 12.756 | 18.244  | SDC    | 0.58      | 3.18329177 |
| 7 | 5  | 20210729 | 10:53           | 13:35 P6        | 1            | 15.5 1.61       | 1 0.053            | 0.105           | 15.237    |             |         |         |         | 0.061        | 8.832         | 16.789  | 5.255  | 17.592  | SDC    |           | 0.58095238 |
| 3 | 6  | 20210729 | 14:15           | 16:55 P6        | 157          | 667 1.71        | .2 0.048           | 0.155           | 22.503    |             |         |         |         | 0.051        | 7.333         | 19.188  | 5.255  | 19.894  | SDC    |           | 0.32903226 |
| ) | 7  | 20211012 | 10:58           | 16:34 P6        | 80           | 012 0.96        | 4 0.039            | 0.011           | 0.871     |             |         |         |         | 0.013        | 1.023         | 26.578  | 10.911 | 28.731  | SDC    |           | 1.18181818 |
| 0 | 8  | 20220406 | 11:20           | 16:34 P6        | 137          | 733 1.53        | 8 0.112            | 0.09            | 9.946     |             |         |         |         | 0.098        | 10.823        | 18.334  | 5.008  | 19.006  | SDC    |           | 1.08888889 |
| 1 | 9  | 20220408 | 10:29           | 16:40 P6        | 286          | 941 2.62        | 2 0.598            | 0.381           | 41.17     | 3           | 57.796  | 174.447 | 438.311 | 0.417        | 45.022        | 15.623  | 4.528  | 16.266  | SDC    | 0.583     | 1.09448819 |
| 2 | 10 | 20220409 | 08:45           | 13:05 P6        | 277          | 385 2.56        | 8 0.553            | 0.383           | 73.624    | 4           | 86.146  | 240.664 | 527.821 | 0.505        | 97.036        | 19.327  | 6.311  | 20.331  | SDC    | 0.589     | 1.31853786 |
| 3 | 11 | 20220429 | 10:15           | 14:32 P6        | 195          | 077 2.00        | 8 0.048            | 0.057           | 10.913    |             |         |         |         | 0.036        | 6.855         | 32.497  | 6.311  | 33.104  | SDC    |           | 0.63157895 |
| 4 | 12 | 20220506 | 09:37           | 13:48 P6        | 240          | 583 2.3         | 3 0.321            | 0.094           | 27.355    |             |         |         |         | 0.273        | 79.22         | 17.174  | 12.756 | 21.393  | SDC    |           | 2.90425532 |
| 5 | 13 | 20220513 | 08:51           | 10:43 P6        | 309          | 375 2.76        | 4 0.497            | 0.232           | 67.324    | 21          | 52.804  | 184.468 | 425.362 | 2 0.3        | 87.172        | 19.037  | 12.756 | 22.915  | SDC    | 0.583     | 1.29310345 |
| 6 | 14 | 20220513 | 12:07           | 14:01 P6        | 295          | 875 2.68        | 2 0.52             | 0.25            | 72.471    | 20          | 51.354  | 181.82  | 429.444 | 4 0.858      | 249.14        | 14.199  | 12.756 | 19.087  | SDC    | 0.582     | 3.432      |
| 7 | 15 | 20220519 | 10:30           | 12:10 P6        | 342          | 625 2.96        | 1.051              | 0.269           | 78.255    | 10          | 26.259  | 119.836 | 349.2   | 0.844        | 245.063       | 14.388  | 12.756 | 19.229  | SDC    | 0.574     | 3.13754647 |
| 8 | 16 | 20220519 | 13:16           | 15:40 P6        | 331          | 444 2.89        | 3 1.704            | 0.341           | 99.035    | 2           | 67.936  | 240.902 | 553.784 | 4 1.719      | 499.152       | 13.054  | 12.756 | 18.252  | SDC    | 0.582     | 5.04105572 |
| 9 | 17 | 20220601 | 11:05           | 14:35 P6        | 211          | 364 2.12        | 5 0.059            | 0.067           | 13.335    | 4           | 67.618  | 238.548 | 491.151 | 1 0.059      | 11.624        | 27.623  | 5.708  | 28.206  | SDC    | 0.59      | 0.88059701 |
| 0 | 18 | 20221214 | 10:10           | 09:58 P6        | 135          | 154 1.52        | 1 0.053            | 0.034           | 4.581     |             |         |         |         | 0.034        | 4.495         | 20.422  | 7.807  | 21.863  | SDC    |           | 1          |
| 1 | 19 | 20230510 | 13:54           | 15:47 P6        | 45           | 1.25 3.72       | 2 1.12             | 0.448           | 200.351   | 26          | 49.351  | 141.625 | 360.345 | 5 1.079      | 482.956       | 11.864  | 10.686 | 15.967  | SDC    | 0.584     | 2.40848214 |
| 2 | 20 | 20210406 | 10:30           | 15:30 BD        | 188          | 067 1.95        | 5 0.09             | 0.071           | 13.299    | 18          | 69.17   | 175.572 | 404.741 | 1            |               | 33.511  | 5.358  | 33.937  | SDC    | 0.59      |            |
| 3 | 21 | 20210511 | 10:50           | 16:24 BD        | 460          | 067 3.78        | 3 2.074            | 0.773           | 355.59    |             |         |         |         |              |               | 33.511  | 5.358  | 33.937  | NN     |           |            |
| 4 | 22 | 20210512 | 09:49           | 15:51 BD        | 363          | 562 3.10        | 6 0.494            | 0.352           | 127.965   | 13          | 64.196  | 164.014 | 369.46  | 5            |               | 24.284  | 4.893  | 24.772  | SDC    | 0.591     |            |
| 5 | 23 | 20210616 | 09:38           | 16:11 BD        | 388          | 647 3.28        | 6 1.571            | 0.719           | 279.494   | 12          | 37.889  | 99.765  | 258.845 | 5            |               | 23.562  | 4.893  | 24.065  | SDC    | 0.586     |            |
| 6 | 24 | 20210729 | 10:10           | 16:23 BD        | 149          | 875 1.64        | 7 0.052            | 0.111           | 16.654    | 18          | 110.214 | 263.698 | 512.413 | 3            |               | 45.995  | 6.463  | 46.447  | SDC    | 0.6       |            |
| 7 | 25 | 20211012 | 10:32           | 15:18 BD        | 78           | 492 0.94        | 7 0.039            | 0.013           | 1.056     | 3           | 138.717 | 291.974 | 534.508 | В            |               | 65.764  | 11.471 | 66.757  | SDC    | 0.609     |            |
| 8 | 26 | 20220429 | 09:05           | 14:33 BD        | 194          | 933 0.04        | 8 2.007            | 0.088           | 17.117    | 11          | 153.209 | 317.532 | 580.81  | 2            |               | 135.099 | 5.358  | 135.205 | SDC    | 0.609     |            |
| 9 | 27 | 20220506 | 09:30           | 14:41 BD        | 242          | 067 2.3         | 4 0.314            | 0.151           | 36.599    | 19          | 92.781  | 210.117 | 414.967 | 7            |               | 61.03   | 5.128  | 61.245  | SDC    | 0.601     |            |
| 0 | 28 | 20220513 | 09:35           | 14:25 BD        | 301          | 077 2.71        | .4 0.527           | 0.286           | 86.235    | 11          | 62.085  | 161.174 | 388.857 | 7            |               | 40.666  | 5.122  | 40.988  | SDC    | 0.588     |            |
| 1 | 29 | 20220519 | 10:40           | 14:58 BD        | 338          | 083 2.93        | 3 1.379            | 0.239           | 80.969    | 14          | 45.196  | 141.569 | 380.705 | 5            |               | 29.081  | 13.621 | 32.113  | SDC    | 0.579     |            |
| 2 | 30 | 20220601 | 09:40           | 14:52 BD        | 209          | 714 2.11        | 4 0.066            | 0.168           | 35,165    | 20          | 136,472 | 351,475 | 666,859 | 9            |               | 41.549  | 5,358  | 41.893  | SDC    | 0.6       |            |

Figure 1: Example du fichier de sortie "Samples\_HADCP.csv".

### 2 Préparation des données acoustiques

#### 2.1 Informations générales

L'objectif de cette préparation des données acoustiques est de créer un fichier de mesure d'intensité et un de bruit de fond pour chaque fréquence en utilisant les fichiers de mesure des HADCPs. Dans cette étape, aucune analyse ou interprétation acoustique est effectuée, seulement une mise en forme des données. Les fichiers de mesure des HADCPs sont dans les formats (Tableau 1). Les fichiers "raw binary" sont utilisés pour la conversion dans la première étape.

| Table 1: Formats des fichiers de mesure des HADCPs. |           |            |  |  |  |
|-----------------------------------------------------|-----------|------------|--|--|--|
| Fréquence                                           | Raw ASCII | Raw binary |  |  |  |
| 400 kHz                                             | .WPA      | .WPR       |  |  |  |
| 1 MHz                                               | .PRA      | .PICS      |  |  |  |

Il est recommandé d'enregistrer les fichiers dans un dossier par fréquence et ensuite les classer en fonction de leur étape de traitement de données (Figure 2). Chaque dossier Comme le traitement des données s'effectue par mois, il est recommandé d'enregistrer les données dans des dossiers mensuels dans chaque dossier (sauf pour le "4\_ASCII\_converted\_raw\_all\_time"). Le premier dossier contient les fichiers bruts non-triés des HADCPs contenant un fichier raw ASCII et un fichier raw binary pour chaque mesure. Les fichiers de mesure sont des fichiers horaires.

La première étape consiste à distribuer les fichiers dans les dossiers "1A\_Raw\_ASCII" ainsi que "1B\_Raw\_binary" dans des dossiers mensuels. Ensuite, les données "raw binary" sont convertis comme décrit en détail en dessous et les sorties sont enregistrées dans le dossier suivant nommé "2\_ASCII\_converted\_raw\_hourly", de nouveau dans des dossiers mensuels. Des deux prochaines étapes visent à concaténer d'abord les fichiers horaires en fichiers mensuels, enregistrés en "3\_ASCII\_converted\_raw\_monthly", et finalement en fichiers pendant toute la période de mesure, enregistrés en "4\_ASCII\_converted\_raw\_all\_time". La dernière étape crée un fichier de mesure d'intensité et un fichier de bruit de fond pour chaque fréquence, qui seront enregistrés dans le dossier "5\_Intensity\_background". La création des fichiers mensuels, longterme et d'intensité et de bruit de fond se fait en utilisant trois scripts codés en Python.



Figure 2: Arborescence recommendée pour le traitement des données acoustiques. Un tel dossier devrait être utilisé pour chaque fréquence.

#### 2.2 Conversion des fichiers acoustiques de sortie

La conversion des fichiers de mesure HADCP s'effectue dans les logiciels respectives en utilisant les fichiers "raw binary" (.WPR et .PICS). Cette étape se répète pour chaque fréquence et est effectué par mois.

- 1. Ouvrir le logiciel AWAC pour le 400 kHz HADCP et le logiciel AquaPro pour le 1 MHz HADCP. Ces deux logiciels sont aussi téléchargeables sur le site de Nortek dans l'onglet "Software".
- 2. Cliquer sur l'icône "Data conversion", indiqué par le cercle orange ci-dessous:



Figure 3: Icône "Data conversion" ici dans le logiciel AquaPro.

3. Une fenêtre s'ouvre dans laquelle on peut choisir les données binaires en cliquant sur "Add file".



Figure 4: Fenêtre pour la conversion des données acoustiques.

4. Après avoir choisi "Add file", une nouvelle fenêtre s'ouvre dans laquelle les données binaires sont choisies. Elles se trouvent dans le dossier "1B\_Raw\_binary". Toutes les fichiers binaires horaires dans un dossier mensuel (ici 1 MHz et le mois de décembre 2021) sont selectionés et confirmés avec "ouvrir".



Figure 5: Choix des données binaires dans le dossier "1B\_Raw\_binary" à partir de la fenêtre dédiée.

5. Ces fichiers sont ensuite indiqués dans la fenêtre à gauche. Ensuite, il faut choisir le dossier de sortie, dans lequel les fichiers convertis seront enregistrés: "2\_ASCII\_converted\_raw\_hourly", en fonction du mois et la fréquence correspondante. Cliquer sur "Select all" et les fichiers dans la fenêtre à gauche sont marqués en bleu comme sur la figure en dessous et cliquer sur la flèche pour lancer la conversion.



Figure 6: Choix du dossier de sortie et lancement de la conversion des données par la flèche.

6. Une autre fenêtre s'ouvre qui demande les types de fichiers à exporter (Header, velocity, amplitude, sensors, wave). Normalement, ils sont déjà cochés. Confirmer avec "OK".



Figure 7: Confirmer le choix des données à exporter avec "Ok".

- 7. Après la fin de la conversion, vérifier dans le dossier "2\_ASCII\_converted\_raw\_hourly" que toutes les mesures ont été converties. Parfois, le logiciel ne converti pas toutes les données sans avertir. Cette limite est souvent autour du 25 du mois. Dans ce cas, refaire la procédure pour les données manquantes.
- 8. Les données de sortie sont des fichiers horaires classés par mois et fréquence choisi. Il s'agit des fichiers texts sous des formats .A1, .A2, .HDR, .SEN, .SSL, .V1, .V2, .WAD, .WHD.

| Nom                     | Modifié le       | Туре        | Taille |
|-------------------------|------------------|-------------|--------|
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier A1  | 3 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier A2  | 3 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier HDR | 11 Ko  |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier SEN | 1 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier SSL | 1 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier V1  | 3 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier V2  | 3 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier WAD | 6 Ko   |
| ADCP-1MHz20210325212859 | 02.08.2022 09:19 | Fichier WHD | 1 Ko   |

Figure 8: Fichiers horaires converties dans le dossier "2\_ASCII\_converted\_raw\_hourly\202103" du mois mars 2021.

#### 2.3 Création des fichiers mensuels

Les fichiers horaires dans les dossiers "2\_ASCII\_converted\_raw\_hourly", classés par mois et fréquence sont concatenés dans cette étape pour créer des fichiers mensuels. Cette étape sert à concaténer les fichiers horaires de chaque variable (amplitude, vitesse, header,...) en fichiers mensuels (Figure 9).

- 1. Ouvrir et lancer le script ou l'executable "2A\_Create\_monthly\_acoustic\_data\_files"
- 2. Indiquer le mois qu'en veut concaténer en format "AAAAMM" dans la fenêtre qui s'ouvre.
- 3. Choisir la fréquence.
- 4. Choisir le "path", le chemin où se trouvent les fichiers horaires, qui est "2\_ASCII\_converted\_raw\_hourly\AAAMM".
- 5. Choisir le "outpath", le chemin où seront enregistrés les fichiers mensuels concaténés, qui est "3\_ASCII\_converted\_raw\_monthly\AAAMM".
- 6. Les fichiers de sortie sont des fichiers mensuels pour chaque variable acoustique sous des formats .A1, .A2, .HDR, .SEN, .SSL, .V1, .V2, .WAD, .WHD.



Figure 9: Fichiers mensuels concaténés (mois du février 2022) par variable pour le 1 MHz HADCP.

7. Répéter cette étape pour chaque mois et chaque fréquence.

### 2.4 Création des fichiers pendant toute la période

Cette étape crée des fichiers concatenés par variable acoustique et fréquence pendant toute la période de mesure. Cette étape est à répéter quand des nouvelles données ont été enregistrées et leur fichiers mensuels créés.

- 1. Ouvrir et lancer le script ou l'executable "2B\_Create\_acoustic\_all\_time\_files"
- 2. Choisir la fréquence.
- 3. Choisir le "path", le chemin où se trouvent les fichiers mensuels, qui est "3\_ASCII\_converted\_raw\_monthly". Toutes les données mensuels concatenés dans ce fichier seront utilisés.
- 4. Choisir le "outpath", le chemin où seront enregistrés les fichiers concaténés, qui est "4\_ASCII\_converted\_raw\_all\_time".

5. Les fichiers de sortie sont des fichiers concaténés pendant toute la période de mesure pour chaque variable acoustique sous des formats .A1, .A2, .HDR, .SEN, .SSL, .V1, .V2, .WAD, .WHD.

| A1_400kHz    | 18.07.2023 16:41 | Fichier A1  | 37 928 Ko  |
|--------------|------------------|-------------|------------|
| A2_400kHz    | 18.07.2023 16:41 | Fichier A2  | 37 928 Ko  |
| DAT_400kHz   | 18.07.2023 16:41 | Fichier DAT | 25 300 Ko  |
| HDR_400kHz   | 18.07.2023 16:41 | Fichier HDR | 238 139 Ko |
| SEN_400kHz   | 18.07.2023 16:41 | Fichier SEN | 10 482 Ko  |
| SSL_400kHz   | 18.07.2023 16:41 | Fichier SSL | 4 078 Ko   |
| V1_400kHz    | 18.07.2023 16:41 | Fichier V1  | 48 733 Ko  |
| V2_400kHz    | 18.07.2023 16:41 | Fichier V2  | 48 733 Ko  |
| → WAD_400kHz | 18.07.2023 16:41 | Fichier WAD | 139 879 Ko |
| → WHD_400kHz | 18.07.2023 16:41 | Fichier WHD | 15 819 Ko  |

Figure 10: Fichiers concaténés pendant toute la période de mesure par variable pour le 400 kHz HADCP.

6. Répéter cette étape pour chaque fréquence.

#### 2.5 Création des fichiers d'intensité et de bruit de fond

Cette étape crée deux fichiers; un fichier avec les données de mesure ("Amplitude\_velocity") et un avec les données du bruit de fond ("WHD") pendant toute la période de mesure.

- 1. Ouvrir et lancer le script ou l'executable "2C\_AQD\_append"
- 2. Choisir la fréquence.
- 3. Choisir le "path", le chemin où se trouvent les fichiers concatenés, qui est "4\_ASCII\_converted\_raw\_all\_time".
- 4. Choisir le "outpath", le chemin où seront enregistrés les deux fichiers de sortie, qui est "5\_Intensity\_background".
- 5. Des fichiers "Amplitude\_velocity" et "WHD" sont obtenus en format .csv et pickle.

|                        |                                                       | Rechercher dans : 5_Intensity_background                                                                 |                                                                                                                                                                               |  |  |
|------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Nom                    | Modifié le                                            | Туре                                                                                                     | Taille                                                                                                                                                                        |  |  |
| Amplitude_velocity_400 | 18.07.2023 16:47                                      | Fichier CSV Microsoft E                                                                                  | 149 800 Ko                                                                                                                                                                    |  |  |
| Amplitude_velocity_400 | 18.07.2023 16:47                                      | Document texte                                                                                           | 190 184 Ko                                                                                                                                                                    |  |  |
| ☑ WHD_400              | 18.07.2023 16:47                                      | Fichier CSV Microsoft E                                                                                  | 12 508 Ko                                                                                                                                                                     |  |  |
| WHD_400                | 18.07.2023 16:47                                      | Document texte                                                                                           | 21 193 Ko                                                                                                                                                                     |  |  |
|                        | Amplitude_velocity_400 Amplitude_velocity_400 WHD_400 | Amplitude_velocity_400 18.07.2023 16:47 Amplitude_velocity_400 18.07.2023 16:47 WHD_400 18.07.2023 16:47 | Amplitude_velocity_400 18.07.2023 16:47 Fichier CSV Microsoft E  ☐ Amplitude_velocity_400 18.07.2023 16:47 Document texte  ☐ WHD_400 18.07.2023 16:47 Fichier CSV Microsoft E |  |  |

Figure 11: Fichiers "Amplitude\_velocity" et "WHD" contenant les mesures d'amplitude et de vitesse et de bruit de fond pour le 400 kHz HADCP.

6. Répéter cette étape pour chaque fréquence.

Le code actuel suppose que les paramètres de mesure ne changent pas, par exemple la taille et le nombre des cellules, le blanking etc. Si ces paramètres ont été changés, le fichier header de chaque mesure doit être utilisé et les données correspondantes doivent être exportées de ces fichiers. Cela n'a pas été appliqué car les fichiers header ne sont pas faciles à lire automatiquement et les paramètres de mesure n'ont pas changé.

# 3 Moyennage des mesures le long du faisceau

Cette première partie de l'analyse acoustique est effectuée suivant la méthode TW16-A ("3\_Beam\_averaging\_TW16A" ). Comme les précédentes étapes, cette partie est aussi effectuée pour chaque fréquence séparement, donc deux fois au total. Les valeurs acoustiques, le fluid-corrected backscatter  $B_F$ , l'atténuation liée aux sédiments  $\alpha_{\rm sed}$ , la rétrodiffusion dans chaque cellule B et moyennée le long du faisceau  $\overline{B}$ , sont calculées. Cette partie effectue donc une analyse acoustique et transforme les données. Le calcul sur une période longue peut durer une à deux heures due à multiples itérations.

Précisément, cette étape se déroule de la manière suivante:

- Choisir le dossier pour les résultats "outpath" qui est "6\_Beam\_averaging".
- Choisir le dossier pour les figures des résultats, "outpath\_figures". Il peut être crée avec un dossier nommé "Figures" dans "6\_Beam\_averaging".
- Choisir le fichier "Amplitude\_velocity" (dans le dossier "5\_Intensity\_background") et pour la fréquence définie.
- Choisir le fichier "WHD" (dans le dossier "5\_Intensity\_background") et pour la fréquence définie.
- Choisir le fichier avec les données de hauteur d'eau. Un example est le fichier "Water\_stage" contenu dans le dossier "Sampling\_data".
- Six fenêtres s'ouvrent un après l'autre. Choisir un autre sueil pour les angles des instruments ou accepter la valeur par défaut (généralement recommandé).
- Répéter cette étape pour chaque fréquence.

**Fichiers de sortie:** Plusieurs différents fichiers sont créés souvent en format csv et pickle (Figure 12):

- "Beam-averaged\_attenuation\_backscatter": date, l'attenuation  $\alpha_{\rm sed}$ , la rétrodiffusion  $\overline{B}$  moyenne le long du faisceau acoustique, l'atténuation lié à l'eau, la température de l'eau, le bruit de fond de l'instrument et le bruit de fond effective
- "FluidCorrBackscatter": valeurs de la rétrodiffusion corrigée par les fluides dans chaque cellule valide pour chaque mesure valide
- "CelldB": valeurs de la rétrodiffusion relative dans chaque cellule valide pour chaque mesure valide
- "AveCount\_db": valeurs de l'intensité acoustique (ou "acoustic signal strength A") dans toutes les cellules et toutes les mesures non-excluées pour des angles d'instruments abérrantes
- "Time\_datetime\_AveCount\_db": dates et horaires de mesure de "AveCount\_db"
- "Celldist\_along\_beam": distance du milieu de chaque cellule du transducer, mesuré le long du faisceau acoustique
- "Usable\_part\_surface": distances des indicateurs d'interférence (Nortek, 2018) pour chaque mesure valide
- "Last\_valid\_index\_corrected": date, dernière cellule valide et sa distance du transducteur le long du faisceau acoustique pour chaque mesure valide
- "Last\_valid\_index\_un\_corrected": date, dernière cellule valide suivant les méthodes de *SNR* de la zone tampon et leur distances du transducteur le long du faisceau acoustique pour toutes les mesures (sans les mesures exclues à cause des angles)
- "Time\_list\_not\_used\_beam\_averaging": dates des mesures acoustiques exclues de l'analyse à cette étape

| Amplitude_velocity_1000               | 22.02.2024 13:07 | Fichier CSV Micros | 13 685 Ko |
|---------------------------------------|------------------|--------------------|-----------|
| Amplitude_velocity_1000               | 22.02.2024 13:07 | Document texte     | 19 245 Ko |
| AveCount_db_1000                      | 22.02.2024 13:43 | Document texte     | 4 462 Ko  |
| Beam_averaged_attenuation_backscatter | 22.02.2024 13:43 | Fichier CSV Micros | 956 Ko    |
| Beam_averaged_attenuation_backscatter | 22.02.2024 13:43 | Document texte     | 588 Ko    |
| CelldB_1000                           | 22.02.2024 13:43 | Document texte     | 4 288 Ko  |
| Celldist_along_beam_1000              | 22.02.2024 13:43 | Document texte     | 2 Ko      |
| FluidCorrBackscatter_1000             | 22.02.2024 13:43 | Document texte     | 4 288 Ko  |
| Time_datetime_AveCount_db_1000        | 22.02.2024 13:43 | Document texte     | 71 Ko     |
| Usable_part_surface_1000              | 22.02.2024 13:43 | Fichier CSV Micros | 811 Ko    |
| <b>▼</b> WHD_1000                     | 22.02.2024 13:07 | Fichier CSV Micros | 1 033 Ko  |
| WHD_1000                              | 22.02.2024 13:07 | Document texte     | 1 814 Ko  |
|                                       |                  |                    |           |

Figure 12: Fichiers de sortie de l'étape de moyennage (en plus de ceux de l'étape précédente) pour le 1 MHz instrument.

Adaptations à d'autres cas: Différents critères sur les angles d'orientation (pitch, roll et heading) sont appliqués afin d'exclure les mesures pendant les maintenances par exemple. Leurs valeurs avant et après l'exclusion sont sauvegardées sous forme des figures pour une analyse visuelle rapide. Les assomptions méthodologiques peuvent être changées pour tester d'autres paramètres, par exemple de la zone tampon ou du seuil de bruit de fond. Si ce code est utilisé pour d'autres instruments, certaines paramètres comme le facteur de conversion (0.43 pour les instruments utilisés (ligne 82) ou les angles d'ouverture des faisceaux (lignes 319 et 321) doivent être adaptés. Le noise floor offset  $A_E$  utilisé pour la méthode TW16 de Topping and Wright (2016) s'ajuste en ligne 201. Le calcul du rapport signal sur bruit SNR, les interferences avec la surface et la zone tampon de 5 m s'effectuent dans la section 7. Le nombre des cellules exclues proche du transducteur se trouve dans les lignes 395 à 398. Le nombre minimal de valeurs par mesure acoustique est défini en ligne 456.

## 4 Application des méthodes mono- et bi-fréquentielles

La dernière étape combine une ou deux fréquences pour effectuer une analyse et inversion acoustique afin d'estimer des concentrations de sédiments fins et de sable ainsi que du diamètre median des sable pour le cas de la méthode bi-fréquentielle. Les mêmes données sont choisies pour la méthode mono- et bi-fréquentielle, la seule différence est qu'une seule fréquence est utilisée pour la méthode mono-fréquentielle. C'est étape est effectué une fois.

Précisément, cette étape se déroule de la manière suivante:

- 1. Ouvrir et lancer "4\_TAAPS\_TW16A" pour la méthode bi-fréquentielle et "4\_TAAPS\_TW16A\_Single\_freq" pour la méthode mono-fréquentielle
- 2. Choisir le dossier des données "path" qui est "6\_Beam\_averaging" pour chacune des fréquences.
- 3. Choisir le dossier des données de prélèvements, par exemple "Sampling\_data" (voir cidessous pour la description des données de prélèvement).
- 4. Choisir le dossier pour les résultats et les figures des résultats, "outpath" et "outpath\_figures".
- 5. Une fenêtre s'ouvre qui demande le début et la fin d'une période (courte, de quelques jours) qui sera visualisée en détail. Plusieurs périodes peuvent être visualisées en répondant avec "Y" à la question dans la console ou "n" pour continuer.
- 6. Plusieurs fichiers de résultats et des figures ont été enregistrés.

Les fichiers de données de prélèvement nécessaires sont:

- Données manquantes ("Missing\_data"): périodes sans mesures acoustiques des deux fréquences par exemple à cause des problèmes de matériel etc.
- Données supprimées ("Manually\_deleted\_data"): périodes avec des données identifiées abérrantes ou non-valides qui seront exclus dans l'analyse
- Fichier de jaugeage ("Samples"): résultats des jaugeages, utilisé pour la calibration du modèle acoustique (section 1)
- Données ISCO ("ISCO\_data"): résultats des mesures ISCO des concentrations de sédiments fins et sables
- Données de granulométrie des échantillons ISCO ("ISCO\_GSD\_data")
- Données de jaugeage de pompage ("pump\_data"): résultats des jaugeages ici de pompage, utilisé pour la validation du modèle acoustique
- Classes granulométriques normalisées ("ISO\_size\_classes"): classes granulométriques sur lesquelles l'interpolation granulométrique est effectuée, toujours le même fichier
- Données de turbidité de la station
- Données de débit de la station
- Données de la hauteur d'eau de la station

| Missing data         | Données manquantes           | Quelle précision ? si on se trompe sur les     |  |  |  |
|----------------------|------------------------------|------------------------------------------------|--|--|--|
|                      | dans le jeu HADCP            | heures, conséquence                            |  |  |  |
|                      |                              | A quoi cela sert -> Ca supprime les données    |  |  |  |
| Manually delete      | Dates à éliminer dans les    | Indique les données HADCP que l'on souhaite    |  |  |  |
| data                 | données HADCP                | ne pas prendre en compte pour chaque           |  |  |  |
|                      |                              | fréquence car on a détecté des problèmes       |  |  |  |
| Si on a oublié d'inc | diquer qu'il manque des doni | nées, cela ne pose pas de problème.            |  |  |  |
| Il ne faut pas avoir | de données de calibration sa | ans données HADCP                              |  |  |  |
| Samples date         | Données des jaugeages        | Cf tableau ci-dessus pour contenu des colonnes |  |  |  |
|                      | pour calibration (sauf       |                                                |  |  |  |
|                      | pompe pour Jessica)          |                                                |  |  |  |
| Isco data            | Données ISCO F+S             | Que sont les 2 dernière colonnes               |  |  |  |
|                      |                              | ISCO sand concentration corr g l               |  |  |  |
|                      |                              | ISCO fine concentration corr g                 |  |  |  |
|                      |                              | → Corrigé par coefficient Berge/section        |  |  |  |
| Isco GSD             | Données granulo ISCO -       | Pour des graphes.                              |  |  |  |
|                      | MES totales ou sable ou      |                                                |  |  |  |
|                      | fine.                        |                                                |  |  |  |
| Pump data            | Données des jaugeages à      | Pas pris en compte dans les calculs de         |  |  |  |
|                      | la pompe                     | calibration mais pour la vérification          |  |  |  |
| Iso size class       | Classe granulo               | Pour calcul (facteur de forme par exemple).    |  |  |  |
| Turbidity            | Turbidité campus             |                                                |  |  |  |
| Discharge            | Débit Campus                 | Pour calcul de flux + graphes                  |  |  |  |
| Water stage          | Niveau d'eau campus          | Pour interaction avec surface                  |  |  |  |
| RUTS_theo_freq1      | Paramètres issu du RUTS      | Le fait de ne pas recalculer dans le programme |  |  |  |
| RUTS_theo_freq2      |                              | ces paramètre implique que le D50 de référence |  |  |  |
|                      |                              | reste le même + écart type distribution.       |  |  |  |

Figure 13: Description des différents fichiers de prélèvements utilisés.

Toutes les heures sont données en TU. Des fichiers d'example sont données dans le dossier "Sampling\_data". Les colonnes dans le fichier de "Samples" sont détaillées en bas, ceux indiqué avec une croix sont nécessaire pour effectuer l'analyse.

| Colonne                     | Nécessaire | Explication                                           |
|-----------------------------|------------|-------------------------------------------------------|
| Date                        | х          | aaaammiji                                             |
| Gauging                     | х          | Non pouvant reprendre la date                         |
|                             | х          | Heure TU (toutes les données HADCP, ISCO en           |
| Start_sampling              |            | TU)                                                   |
|                             | x          | Heure TU (toutes les données HADCP, ISCO en           |
| End_sampling                |            | TU)                                                   |
| Start sampling local        |            | Heure locale                                          |
| End sampling local          |            | Heure locale                                          |
| Sampler                     | x          | Non échantillonneur                                   |
| Q_sampling_m3_s             | x          | Débit campus                                          |
| Stage sampling m            | x          | Niveau d'eau de la station campus                     |
| spm_sampling_g_l            | х          | C turbidité                                           |
| Sand concentration g I      | х          | C sable moyen du jaugeage                             |
| Sand flux kg s              | х          | Flux sable jaugeage                                   |
| No samples used for ISO gsd |            | Nombre d'échantillons du jaugeage                     |
|                             |            | D10 sable à partir des échantillons du jaugeage       |
| D10_mum                     |            | calculé avec méthode ISO                              |
|                             |            | D50 sable à partir des échantillons du jaugeage       |
| D50_mum                     |            | calculé avec méthode ISO                              |
|                             |            | D90 sable à partir des échantillons du jaugeage       |
| D90_mum                     |            | calculé avec méthode ISO                              |
| Fine concentration g l      |            | Concentration moyennes des fines                      |
| Fine flux kg s              |            | Flux total des fines                                  |
|                             |            | Incertitude de la concentration sableuse moyenne      |
| U_C                         |            | dans la section des jaugeages selon méthode INRAE     |
| U_Q                         |            | Incertitude du débit (OURSIN)                         |
|                             |            | Incertitude du flux total sableux dans la section des |
| U_F                         |            | jaugeages selon méthode INRAE                         |
| Method                      |            | Méthode dépouillement du jaugeage                     |
| sigma mum                   |            | Sigma des D50 sable                                   |
| S                           |            | Rapport Fine/Sable des moyennes dans la section       |
| D50_mum_fines               |            | D50 sédiments fins                                    |
| sigma mum fines             |            | Ecart-type des sédiments fins                         |
| ISCO fine concentration g I |            | Concentration des sédiments fins ISCO                 |
| ISCO sand concentration g l |            | Concentration des sables ISCO                         |

Figure 14: Description des différentes colonnes dans le fichier "Samples".

Adaptations à d'autres cas: L'exécutable ne propose pas des choix de modification de la méthode, quelques possibilités de modification peuvent être faites dans les scripts eux-mêmes. Les propriétés de la suspension de référence sont définies dans la section "Define reference properties" (à partir de ligne 434). Si elles seront changées, il faudrait recalculer des valeurs des facteurs de forme et du RUTS. Dans le code actuel, ces valeurs et relations sont importées et correspondent à des fréquences et propriétés définies. Elles ne s'adaptent donc pas à des propriétés de référence modifiées. Si ces dernières sont changées, il faut utiliser le code "TAAPS\_article" dans lequel toutes ces valeurs nécessaires sont calculées systématiquement. Le moyennage des données acoustiques pendant le temps des jaugeages peut-être adapté dans l'étape 8. Les données (ici de jaugeages ("Samples") et ISCO ("ISCO\_data)) utilisées pour la calibration entre la concentration des sédiments fins et l'atténuation peuvent être changés à partir de ligne 663. La calibration rétrodiffusion - sable s'effecture dans l'étape 10 en utilisant les critères S < 3 et le diamètre du jaugeage doit être  $\pm 0.4\phi$  du diamètre de référence.

### 5 Refaire l'analyse avec des nouvelles données

Pour refaire l'analyse acoustique avec des nouvelles données acoustiques, il faut créer des fichiers mensuels pour ces données. Pour cela, il est nécessaire de refaire les premières étapes jusqu'à 2.3. pour ces données. Ensuite, des nouveaux fichiers "all\_time" pendant toute la période de mesure doivent être crées et les deux dernières étapes doivent être refaites sur les nouvelles données. Pour recalculer les étapes 3 et 4 (le moyennage et les méthodes acoustiques), des données de hauteur d'eau à la station sont nécessaires aussi pour déterminer les interférences.

Pour refaire l'analyse acoustique avec des nouvelles données de prélèvements, soit des jaugeages pour la calibration ou des informations pour la validation, les données doivent être ajoutées dans

les fichiers correspondants. Il est important d'utiliser le même format, en-tête etc. que les fichiers exemplaires dans le dossier "Sampling\_data". Ensuite, la dernière étape 4 est répétée.

### References

- Marggraf, J. (2024). *Improving methods for the hydroacoustic monitoring of suspended sand concentration and grain size: Application to the Isère River at Grenoble Campus.* PhD thesis, University Claude Bernard Lyon 1.
- Marggraf, J., Dramais, G., Le Coz, J., Calmel, B., Camenen, B., Topping, D. J., Santini, W., Pierrefeu, G., and Lauters, F. (2024). River suspended-sand flux computation with uncertainty estimation, using water samples and high-resolution ADCP measurements. *submitted to Earth Surface Dynamics*.
- Nortek (2018). The Comprehensive Manual for ADCP'S. AWAC, Aquadopp, Aquadopp Deepwater, Aquadopp Profiler, Aquadopp Profiler Z-cell, 2D Horizontal Profiler.
- Topping, D. J. and Wright, S. A. (2016). Long-term continuous acoustical suspended-sediment measurements in rivers theory, application, bias, and error. Professional Paper 1823, U. S. Geological Survey.