

2022年7月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -32y^2 - 48xy - 9x^2 + 1$$

$$\bigcirc -16y^2 - 24xy - 18x^2 + 1$$

$$\bigcirc$$
 -32 y^2 - 24 xy - 9 x^2 +

$$\bigcirc \quad -32\,y^2 - 48\,x\,y - 18\,x^2 + 1$$

函数 $z = \log(4y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$0 -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -8y^2 - 24xy + 4y - 18x^2 + 6x$$

$$0 -8y^2 - 12xy + 4y - 9x^2 + 6x$$

$$\bigcirc \quad -8\,y^2 - 12\,x\,y + 4\,y - 9\,x^2 + 6\,x \qquad \qquad \bigcirc \quad -8\,y^2 - 12\,x\,y + 4\,y - 18\,x^2 + 6\,x$$

$$\bigcirc -8y^2 - 24xy + 4y - 9x^2 + 6x$$

函数 $z = e^{2y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 2\,y^2 + 16\,x\,y + 2\,y + 32\,x^2 + 8\,x + 1 \qquad \qquad \bigcirc \quad 2\,y^2 + 16\,x\,y + 2\,y + 16\,x^2 + 8\,x + 1$$

$$0$$
 2 $y^2 + 16 x y + 2 y + 16 x^2 + 8 x + 1$

$$\bigcirc y^2 + 16xy + 2y + 32x^2 + 8x + 1 \qquad \bigcirc 2y^2 + 8xy + 2y + 32x^2 + 8x$$

$$0 \quad 2y^2 + 8xy + 2y + 32x^2 + 8x$$

$$0 \quad 2y^2 + 8xy + 2y + 32x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - 2x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad (\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (-\frac{8}{3}, \frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, -\frac{8}{3})$

函数 $z = 5e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-5,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (\frac{4}{5},0) \qquad \bigcirc \quad (5,0)$

2022年7月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcap$$
 -18 y^2 - 12 xy - 4 x^2 + 1

$$\bigcap$$
 $-18y^2 - 12xy - 8x^2 + 1$

$$\bigcap_{n=1}^{\infty} \frac{18 u^2 - 24 x u - 8 x^2 + 1}{n^2}$$

$$\bigcirc -9y^2 - 12xy - 8x^2 + 1$$

問2 函数 $z = \log(6y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -9y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcirc -18y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcap$$
 -18 y^2 - 36 xy + 6 y - 18 x^2 + 6 x

$$\bigcirc -18\,y^2 - 18\,x\,y + 6\,y - 9\,x^2 + 6\,x \qquad \bigcirc -18\,y^2 - 18\,x\,y + 6\,y - 18\,x^2 + 6\,x$$

$$0 -18y^2 - 18xy + 6y - 18x^2 + 6x$$

$$\bigcirc -18y^2 - 36xy + 6y - 9x^2 + 6x$$

函数 $z = e^{8y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 16y^2 + 48xy + 8y + 18x^2 + 6x + 1$$

$$\bigcirc 32y^2 + 24xy + 8y + 18x^2 + 6x$$

$$\bigcap$$
 32 $y^2 + 24 x y + 8 y + 18 x^2 + 6 x$

$$\bigcirc 32\,y^2 + 48\,x\,y + 8\,y + 9\,x^2 + 6\,x + 1$$

$$\bigcirc 32\,y^2 + 24\,x\,y + 8\,y + 18\,x^2 + 6\,x + 1$$

$$\bigcap$$
 32 $y^2 + 24 x y + 8 y + 18 x^2 + 6 x + 1$

$$\bigcirc$$
 32 $y^2 + 48 x y + 8 y + 18 x^2 + 6 x + 1$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{14}{2},\frac{1}{2}\right)$$

$$\bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right)$$

$$\left(\frac{1}{2}, \frac{14}{2}\right)$$

$$\left(-\frac{1}{2}, \frac{14}{2}\right)$$

$$(\frac{14}{2}, -\frac{1}{2})$$

函数 $z = 5e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 (5.0)

$$\left(\frac{3}{2},0\right)$$

$$\bigcirc (5,0) \qquad \bigcirc (\frac{3}{5},0) \qquad \bigcirc (-1,0) \qquad \bigcirc (-5,0) \qquad \bigcirc (0,0)$$

$$(-5,0)$$

$$\bigcup (0,0)$$

2022年7月20日

$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$-32 y^2 - 48 x y - 18 x^2 + 1$$

函数 $z = \log(4y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$0 -4y^2 - 8xy + 4y - 2x^2 + 2x$$

$$\bigcirc -4y^2 - 8xy + 4y - 2x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - 2x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 8xy + 4y - x^2 + 2x$$

$$0 -8y^2 - 8xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 8xy + 4y - 2x^2 + 2x$$

函数 $z = e^{8y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 32 y^2 + 48 x y + 8 y + 18 x^2 + 6 x + 1$$

$$\bigcirc 32 y^2 + 24 x y + 8 y + 18 x^2 + 6 x$$

$$0 \quad 32y^2 + 24xy + 8y + 18x^2 + 6x$$

$$\bigcirc 16\,y^2 + 48\,x\,y + 8\,y + 18\,x^2 + 6\,x + 1$$

$$\bigcirc 32\,y^2 + 48\,x\,y + 8\,y + 9\,x^2 + 6\,x + 1$$

$$0$$
 32 $y^2 + 48 x y + 8 y + 9 x^2 + 6 x + 1$

$$0 \quad 32y^2 + 24xy + 8y + 18x^2 + 6x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad (-1,3) \qquad \bigcirc \quad (1,-3) \qquad \bigcirc \quad (-3,1) \qquad \bigcirc \quad (3,-1) \qquad \bigcirc \quad (1,3)$

函数 $z = 5e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (5,0) \qquad \bigcirc \quad (-5,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (\frac{4}{5},0) \qquad \bigcirc \quad (-1,0)$

2022年7月20日

$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 2x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$\bigcirc -9y^2 - 6xy - 2x^2 + 1$$

$$\bigcap$$
 -18 y^2 - 12 $xy - x^2 + 1$

$$\bigcirc$$
 -18 y^2 - 6 xy - x^2 + 1

$$\bigcirc -18\,y^2 - 12\,x\,y - 2\,x^2 + 1$$

函数 $z = \log(8y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc \quad -32\,y^2 - 8\,x\,y + 8\,y - 2\,x^2 + 2\,x \qquad \quad \bigcirc \quad -16\,y^2 - 16\,x\,y + 8\,y - 2\,x^2 + 2\,x$$

$$\bigcap$$
 -16 y^2 - 16 xy + 8 y - 2 x^2 + 2 x

$$\bigcirc \quad -32\,y^2 - 16\,x\,y + 8\,y - x^2 + 2\,x \qquad \qquad \bigcirc \quad -32\,y^2 - 8\,x\,y + 8\,y - x^2 + 2\,x$$

$$0 -32y^2 - 8xy + 8y - x^2 + 2x$$

問 3 函数 $z=e^{8\,y+8\,x}$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad 16\,y^2 + 64\,x\,y + 8\,y + 32\,x^2 + 8\,x + 1 \qquad \quad \bigcirc \quad 32\,y^2 + 32\,x\,y + 8\,y + 32\,x^2 + 8\,x + 1$$

$$\bigcap$$
 32 $y^2 + 32 x y + 8 y + 32 x^2 + 8 x + 1$

$$0 32y^2 + 32xy + 8y + 32x^2 + 8x$$

$$\bigcirc 32\,y^2 + 32\,x\,y + 8\,y + 32\,x^2 + 8\,x \qquad \bigcirc 32\,y^2 + 64\,x\,y + 8\,y + 32\,x^2 + 8\,x + 1$$

$$\bigcirc \quad 32\,y^2 + 64\,x\,y + 8\,y + 16\,x^2 + 8\,x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - 4x$ について、極値をとり得る点を求めよ.

$$(-1,2)$$

$$\bigcirc \quad (-1,2) \qquad \bigcirc \quad (-2,-1) \qquad \bigcirc \quad (2,1) \qquad \bigcirc \quad (-1,-2) \qquad \bigcirc \quad (1,2)$$

$$\bigcirc$$
 (2, 1)

$$(-1, -2)$$

函数 $z = 8e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

$$(0,0)$$

$$\bigcirc (0,0) \qquad \bigcirc (-8,0) \qquad \bigcirc (\frac{1}{8},0) \qquad \bigcirc (8,0) \qquad \bigcirc (-1,0)$$

$$\left(\frac{1}{9},0\right)$$

$$\bigcirc (8,0)$$

$$\bigcap$$
 (-1,0

2022年7月20日

$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 2x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$0 -9y^2 - 6xy - 2x^2 + 1$$

$$\bigcirc$$
 $-18y^2 - 12xy - 2x^2 + 1$

$$\bigcirc$$
 -18 y^2 - 6 xy - 2 x^2 + 1

$$\bigcirc \quad -9\,y^2 - 6\,x\,y - 2\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 12\,x\,y - 2\,x^2 + 1 \\ \bigcirc \quad -18\,y^2 - 6\,x\,y - 2\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 12\,x\,y - x^2 + 1$$

函数 $z = \log(8y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -32y^2 - 16xy + 8y - 8x^2 + 4x$$

$$\bigcirc -16y^2 - 32xy + 8y - 8x^2 + 4x$$

$$\bigcap$$
 -16 y^2 - 32 xy + 8 y - 8 x^2 + 4 x

$$\bigcirc \quad -32\,y^2 - 32\,x\,y + 8\,y - 4\,x^2 + 4\,x \qquad \quad \bigcirc \quad -32\,y^2 - 16\,x\,y + 8\,y - 4\,x^2 + 4\,x$$

函数 $z = e^{8y+2x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 32\,y^2 + 8\,x\,y + 8\,y + 2\,x^2 + 2\,x + 1 \qquad \qquad \bigcirc \quad 32\,y^2 + 16\,x\,y + 8\,y + 2\,x^2 + 2\,x + 1$$

$$\bigcap$$
 32 $y^2 + 16 x y + 8 y + 2 x^2 + 2 x + 1$

$$\bigcirc 32y^2 + 16xy + 8y + x^2 + 2x + 1 \qquad \bigcirc 32y^2 + 8xy + 8y + 2x^2 + 2x$$

$$\bigcirc 32y^2 + 8xy + 8y + 2x^2 + 2x$$

$$0 16y^2 + 16xy + 8y + 2x^2 + 2x + 1$$

函数 $z = y^2 + xy - 9y + x^2 - 3x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc \quad (5,-1) \qquad \bigcirc \quad (1,-5) \qquad \bigcirc \quad (-1,5) \qquad \bigcirc \quad (1,5) \qquad \bigcirc \quad (-5,1)$

函数 $z = 6e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (0,0) \qquad \bigcirc \quad (-6,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{2}{3},0) \qquad \bigcirc \quad (6,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1$	$\bigcap_1 \bigcap_1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$ ($\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 8x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$-18y^2 - 48xy - 16x^2 + 1$$

$$\bigcirc -18\,y^2 - 24\,x\,y - 32\,x^2 + 1$$

$$\bigcirc -9y^2 - 24xy - 32x^2 + 1$$

$$-18y^2 - 48xy - 32x^2 + 1$$

函数 $z = \log(2y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 4xy + 2y - 4x^2 + 4x$$

$$\bigcirc -y^2 - 8xy + 2y - 8x^2 + 4x$$

$$-y^2 - 8xy + 2y - 8x^2 + 4x$$

$$0 -2y^2 - 8xy + 2y - 8x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 8x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 4x^2 + 4x$$

$$\bigcirc -2y^2 - 4xy + 2y - 8x^2 + 4x$$

函数 $z = e^{2y+2x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 2\,y^2 + 2\,x\,y + 2\,y + 2\,x^2 + 2\,x + 1 \qquad \qquad \bigcirc \quad y^2 + 4\,x\,y + 2\,y + 2\,x^2 + 2\,x + 1$$

$$u^2 + 4xy + 2y + 2x^2 + 2x + 1$$

$$\bigcirc 2y^2 + 4xy + 2y + 2x^2 + 2x + 1 \qquad \bigcirc 2y^2 + 4xy + 2y + x^2 + 2x + 1$$

$$0$$
 2 $u^2 + 4xu + 2u + x^2 + 2x + 1$

$$0 \quad 2y^2 + 2xy + 2y + 2x^2 + 2x$$

函数 $z = y^2 + xy - 5y + x^2 - x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc \quad (1,3) \qquad \bigcirc \quad (3,-1) \qquad \bigcirc \quad (1,-3) \qquad \bigcirc \quad (-3,1) \qquad \bigcirc \quad (-1,3)$

函数 $z = 9e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (9,0)$ $\bigcirc (\frac{1}{6},0)$ $\bigcirc (-1,0)$ $\bigcirc (-9,0)$ $\bigcirc (0,0)$

2022年7月20日

	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(()0	()0	$\bigcirc 0$	()0	()0	()0	()0
(. J1	()1	()1	$\bigcirc 1$	()1	()1	()1	()1
($^{\circ}$	$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\cup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcirc 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$	$\bigcup 3$
($\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcirc 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$	$\bigcup 4$
-	7-	0-	\bigcirc -	$\bigcirc 5$	0-	\bigcirc	\bigcirc -	0-
(\cup 5	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$	$\bigcup 5$
- ($\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	$\bigcirc 6$	$\bigcap_{\mathcal{C}}$	$\bigcap_{\mathcal{C}}$	\bigcap_{C}	\bigcap_{C}
(\mathcal{O}_{0}	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcirc 0	\bigcirc 6	\bigcirc 6	\bigcup_{0}
- (\bigcap_{τ}	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
()1	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$	$\bigcup i$
- (\cap	\cap	\cap	$\bigcirc 8$	\cap	\cap	\cap	\cap
1	\bigcap_{α}	\bigcap	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap
١	JÐ	(J)	CJB	(J)	(J)	CJB	(Ja	()3

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(4y + 2x)$ の (0,0) における 2 次近似式を求めよ. 問 1

- $\bigcirc -8y^2 8xy x^2 + 1 \qquad \bigcirc -8y^2 4xy 2x^2 + 1 \qquad \bigcirc -8y^2 4xy x^2 + 1$

- $\bigcirc -8y^2 8xy 2x^2 + 1$ $\bigcirc -4y^2 4xy 2x^2 + 1$

函数 $z = \log(4y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- $-8y^2 8xy + 4y 4x^2 + 4x$

問3 函数 $z = e^{4y+2x}$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc \ \ 4\,y^2 + 8\,x\,y + 4\,y + 2\,x^2 + 2\,x + 1 \qquad \ \ \bigcirc \ \ 8\,y^2 + 8\,x\,y + 4\,y + x^2 + 2\,x + 1$
- $\bigcirc \quad 8\,y^2 + 4\,x\,y + 4\,y + 2\,x^2 + 2\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 8\,x\,y + 4\,y + 2\,x^2 + 2\,x + 1$
 - 0 8 $y^2 + 4 x y + 4 y + 2 x^2 + 2 x$

函数 $z = y^2 + xy - 5y + x^2 - 2x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc \quad (\frac{1}{3}, -\frac{8}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, -\frac{1}{3})$

問 5 函数 $z = 7e^x y^2 + 2x e^x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad (-7,0) \qquad \bigcirc \quad (7,0) \qquad \bigcirc \quad \left(\frac{2}{7},0\right) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0)$

2022年7月20日

$\bigcirc 0$	0 ($\bigcirc 0$				
$\bigcirc 1$ $\bigcirc 1$	ı ()ı (\bigcirc_1	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$2\bigcirc 2$	$\bigcirc 2$				
$\bigcirc 3 \bigcirc :$	3 ()3 (\bigcirc_3	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$						
$\bigcirc 5 \bigcirc 0$						
$\bigcirc 6 \bigcirc 6$	6 O6 ($\bigcirc 6$				
$\bigcirc 7 \bigcirc 7$						
$\bigcirc 8 \bigcirc 8$						
$\bigcirc 9 \bigcirc 9$	9 ()	$\bigcirc 9$				

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 8x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$\bigcirc -18\,y^2 - 48\,x\,y - 32\,x^2 + 1 \qquad \bigcirc -18\,y^2 - 24\,x\,y - 32\,x^2 + 1$$

$$\bigcap$$
 -18 y^2 - 24 xy - 32 x^2 + 1

$$\bigcirc -18\,y^2 - 24\,x\,y - 16\,x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 48 xy - 16 x^2 + 1

函数 $z = \log(2y + 8x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 8xy + 2y - 16x^2 + 8x$$

$$\bigcirc -2y^2 - 16xy + 2y - 16x^2 + 8x$$

$$\bigcirc -2y^2 - 16xy + 2y - 16x^2 + 8x$$

$$\bigcirc \quad -2\,y^2 - 16\,x\,y + 2\,y - 32\,x^2 + 8\,x \qquad \qquad \bigcirc \quad -y^2 - 16\,x\,y + 2\,y - 32\,x^2 + 8\,x$$

$$\bigcirc -2y^2 - 8xy + 2y - 32x^2 + 8x$$

函数 $z = e^{8y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 32\,y^2 + 32\,x\,y + 8\,y + 4\,x^2 + 4\,x + 1 \qquad \qquad \bigcirc \quad 16\,y^2 + 32\,x\,y + 8\,y + 8\,x^2 + 4\,x + 1$$

$$\bigcap$$
 16 $y^2 + 32 x y + 8 y + 8 x^2 + 4 x + 1$

$$0$$
 32 $y^2 + 16 x y + 8 y + 8 x^2 + 4 x$

$$\bigcirc$$
 32 $y^2 + 16 x y + 8 y + 8 x^2 + 4 x + 1$

$$0 \quad 32y^2 + 10xy + 8y + 8x^2 + 4x$$

$$\bigcirc 32\,y^2 + 16\,x\,y + 8\,y + 8\,x^2 + 4\,x \qquad \bigcirc 32\,y^2 + 16\,x\,y + 8\,y + 8\,x^2 + 4\,x + 1$$

$$\bigcirc 32y^2 + 32xy + 8y + 8x^2 + 4x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - x$ について、極値をとり得る点を求めよ.

$$(1, -3)$$

$$\bigcirc \quad (1,-3) \qquad \bigcirc \quad (3,-1) \qquad \bigcirc \quad (1,3) \qquad \bigcirc \quad (-3,1) \qquad \bigcirc \quad (-1,3)$$

$$\bigcap$$
 (1,3)

$$(-3.1)$$

$$(-1,3)$$

函数 $z = 5e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$(-5,0)$$

$$\bigcirc (5,0) \qquad \bigcirc (-5,0) \qquad \bigcirc (-1,0) \qquad \bigcirc (\frac{4}{5},0) \qquad \bigcirc (0,0)$$

$$\left(\begin{array}{c}4\\ \overline{\epsilon},0\end{array}\right)$$

$$\bigcup (0,0)$$

2022年7月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$0 -9y^2 - 12xy - 8x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 12 xy - 8 x^2 + 1

$$\bigcap$$
 -18 y^2 - 24 xy - 4 x^2 + 3

$$\bigcirc$$
 -18 y^2 - 12 xy - 4 x^2 + 1

問2 函数 $z = \log(6y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -9y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcirc -18y^2 - 18xy + 6y - 18x^2 + 6x$$

$$\bigcap$$
 -18 y^2 - 18 xy + 6 y - 18 x^2 + 6 x

$$\bigcirc -18y^2 - 18xy + 6y - 9x^2 + 6x \qquad \bigcirc -18y^2 - 36xy + 6y - 18x^2 + 6x$$

$$0 -18y^2 - 36xy + 6y - 18x^2 + 6x$$

$$0$$
 $-18y^2 - 36xy + 6y - 9x^2 + 6x$

函数 $z = e^{8y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$0 16y^2 + 48xy + 8y + 18x^2 + 6x + 1$$

$$\bigcirc 16y^2 + 48xy + 8y + 18x^2 + 6x + 1$$

$$\bigcirc 32y^2 + 48xy + 8y + 9x^2 + 6x + 1$$

$$\bigcirc 32y^2 + 48xy + 8y + 18x^2 + 6x + 1$$

$$\bigcirc 32y^2 + 24xy + 8y + 18x^2 + 6x$$

$$0$$
 32 $y^2 + 24 x y + 8 y + 18 x^2 + 6 x$

$$32y^2 + 24xy + 8y + 18x^2 + 6x + 1$$

問4 函数 $z = y^2 + xy - 8y + x^2 - 3x$ について、極値をとり得る点を求めよ.

$$(\frac{2}{3}, \frac{13}{3})$$

$$\bigcirc \quad \left(\frac{2}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(\frac{13}{3}, -\frac{2}{3}\right) \qquad \bigcirc \quad \left(-\frac{2}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(-\frac{13}{3}, \frac{2}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, -\frac{13}{3}\right)$$

$$\left(-\frac{2}{3}, \frac{13}{3}\right)$$

$$\left(-\frac{13}{2},\frac{2}{3}\right)$$

$$(\frac{2}{3}, -\frac{13}{3})$$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad (-1,0) \qquad \bigcirc \quad (-8,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (\frac{1}{2},0) \qquad \bigcirc \quad (8,0)$$

$$\bigcirc$$
 (-8.0)

$$\bigcap$$
 $(0,0)$

$$\bigcup \quad (\frac{1}{2},0)$$

$$\bigcup$$
 $(8,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$)1 ()1	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	04	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$08 \ 08$	08	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	9 09	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(2y + 6x)$ の (0,0) における 2 次近似式を求めよ. 問 1

$$\bigcirc -2y^2 - 12xy - 18x^2 + 1 \qquad \bigcirc -2y^2 - 12xy - 9x^2 + 1$$

$$\bigcirc -2y^2 - 12xy - 9x^2 + 1$$

$$0 -2y^2 - 6xy - 9x^2 + 1$$

$$\bigcirc \quad -2\,y^2 - 6\,x\,y - 9\,x^2 + 1 \qquad \quad \bigcirc \quad -y^2 - 6\,x\,y - 18\,x^2 + 1 \qquad \quad \bigcirc \quad -2\,y^2 - 6\,x\,y - 18\,x^2 + 1$$

$$0 -2y^2 - 6xy - 18x^2 + 1$$

函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 2xy + 2y - x^2 + 2x$$

$$0 -2y^2 - 4xy + 2y - x^2 + 2x$$

$$-y^2 - 4xy + 2y - 2x^2 + 2x$$

$$\bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - 2\,x^2 + 2\,x$$

問 3 函数 $z = e^{2y+4x}$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc 2y^2 + 8xy + 2y + 4x^2 + 4x + 1 \qquad \bigcirc 2y^2 + 8xy + 2y + 8x^2 + 4x + 1$$

$$0 \quad 2u^2 + 8xu + 2u + 8x^2 + 4x + 1$$

$$y^2 + 8xy + 2y + 8x^2 + 4x + 1$$

$$\bigcirc \quad y^2 + 8\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1 \qquad \qquad \bigcirc \quad 2\,y^2 + 4\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1$$

$$0 \quad 2y^2 + 4xy + 2y + 8x^2 + 4x$$

問4 函数 $z = y^2 + xy - 8y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\bigcirc \quad \left(\frac{4}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{14}{3}, \frac{4}{3}\right) \qquad \bigcirc \quad \left(-\frac{4}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{4}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{4}{3}\right)$$

$$\left(-\frac{14}{3}, \frac{4}{3}\right)$$

$$\left(-\frac{4}{3}, \frac{14}{3}\right)$$

$$\left(\frac{4}{3}, \frac{14}{3}\right)$$

$$\left(\frac{14}{3}, -\frac{4}{3}\right)$$

問 5 函数 $z = 9e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ.

$$(-1,0)$$

$$\bigcirc (0,0)$$

$$\bigcirc \quad (\frac{2}{9},0)$$

$$\bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad \left(\frac{2}{9},0\right) \qquad \bigcirc \quad (-9,0) \qquad \bigcirc \quad (9,0)$$

$$\bigcirc \quad (9,0)$$

2022年7月20日

$\bigcirc 0$	0 00 00	0 00	$\bigcirc 0$
\bigcirc 1 \bigcirc	1 01 0:	l ()1 ()1	$\bigcirc 1$ $\bigcirc 1$
$\bigcirc 2 \bigcirc$	$02 \bigcirc 2 \bigcirc 2$	$2\bigcirc 2\bigcirc 2$	$\bigcirc 2 \bigcirc 2$
\bigcirc 3 \bigcirc	3 (3 (5)	3 🔾 3	$\bigcirc 3 \bigcirc 3$
$\bigcirc 4$ \bigcirc	4 04 04	1 04 04	$\bigcirc 4 \bigcirc 4$
\bigcirc 5 \bigcirc	5 05 05	5 05 05	$\bigcirc 5 \bigcirc 5$
$\bigcirc 6 \bigcirc$	6 06 0	$6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$
\bigcirc 7 \bigcirc	7 07 0	7 07 07	$\bigcirc 7 \bigcirc 7$
$\bigcirc 8 \bigcirc$	8 08 08	8 08 08	$\bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc$	9 09 09	9 09 09	$\bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問 1 函数 $z = \cos(2y + 2x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -2y^2 - 2xy - 2x^2 + 1 \qquad \bigcirc -y^2 - 2xy - 2x^2 + 1 \qquad \bigcirc -2y^2 - 2xy - x^2 + 1 \qquad \bigcirc -2y^2 - 2xy - x^2 + 1 \qquad \bigcirc -2y^2 - 4xy - x^2 + 1$$

問2 函数 $z = \log(2y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ.

問3 函数 $z=e^{8\,y+2\,x}$ の (0,0) における 2 次近似式を求めよ.

問4 函数 $z = y^2 + xy - 6y + x^2 - x$ について、極値をとり得る点を求めよ.

$$\bigcirc \quad (\frac{4}{3}, \frac{11}{3}) \qquad \quad \bigcirc \quad (-\frac{4}{3}, \frac{11}{3}) \qquad \quad \bigcirc \quad (-\frac{11}{3}, \frac{4}{3}) \qquad \quad \bigcirc \quad (\frac{11}{3}, -\frac{4}{3}) \qquad \quad \bigcirc \quad (\frac{4}{3}, -\frac{11}{3})$$

問5 函数 $z = 9e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ.

$$\bigcirc \quad (9,0) \qquad \bigcirc \quad \left(\frac{4}{9},0\right) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-9,0) \qquad \bigcirc \quad (-1,0)$$

2022年7月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -4\,y^2 - 8\,x\,y - 8\,x^2 + 1 \qquad \quad \bigcirc \quad -8\,y^2 - 8\,x\,y - 4\,x^2 + 1 \qquad \quad \bigcirc \quad -8\,y^2 - 16\,x\,y - 8\,x^2 + 1$$

$$-8y^2 - 8xy - 4x^2 + 1$$

$$\bigcirc -8 y^2 - 16 x y - 8 x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 4x^2 + 1 \qquad \bigcirc -8y^2 - 8xy - 8x^2 + 1$$

$$\bigcirc -8y^2 - 8xy - 8x^2 +$$

函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$-2y^2 - 6xy + 2y - 18x^2 + 6x$$

$$0 -2y^2 - 12xy + 2y - 9x^2 + 6x$$

$$0 -2 y^2 - 12 x y + 2 y - 18 x^2 + 6 x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

函数 $z = e^{2y+2x}$ の (0,0) における 2 次近似式を求めよ. 問3

$$\bigcirc \quad 2\,y^2 + 2\,x\,y + 2\,y + 2\,x^2 + 2\,x + 1 \qquad \qquad \bigcirc \quad y^2 + 4\,x\,y + 2\,y + 2\,x^2 + 2\,x + 1$$

$$\int u^2 + 4xu + 2u + 2x^2 + 2x + 1$$

$$0 2y^2 + 4xy + 2y + 2x^2 + 2x + 1$$

$$0 \quad 2y^2 + 2xy + 2y + 2x^2 + 2x$$

函数 $z = y^2 + xy - 8y + x^2 - 4x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc (0,4) \qquad \bigcirc (0,4) \qquad \bigcirc (-4,0) \qquad \bigcirc (4,0) \qquad \bigcirc (0,-4)$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-8,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{1}{2},0) \qquad \bigcirc \quad (8,0)$

2022年7月20日

$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -18\,y^2 - 18\,x\,y - 9\,x^2 + 1 \qquad \qquad \bigcirc \quad -9\,y^2 - 18\,x\,y - 18\,x^2 + 1 \\ \bigcirc \quad -18\,y^2 - 36\,x\,y - 9\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 18\,x\,y - 18\,x^2 + 1$$

$$\bigcirc -9y^2 - 18xy - 18x^2 + 1$$

$$\bigcirc -18y^2 - 36xy - 9x^2 + 1$$

$$\bigcap$$
 -18 y^2 - 18 xy - 18 x^2 +

$$-18y^2 - 36xy - 18x^2 + 1$$

問2 函数 $z = \log(6y + 8x + 1)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -18y^2 48xy + 6y 32x^2 + 8x$ $\bigcirc -18y^2 48xy + 6y 16x^2 + 8x$
- $\bigcirc -18y^2 24xy + 6y 32x^2 + 8x$ $\bigcirc -18y^2 24xy + 6y 16x^2 + 8x$

$$\bigcirc -9y^2 - 48xy + 6y - 32x^2 + 8x$$

函数 $z = e^{4y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc 4y^2 + 32xy + 4y + 32x^2 + 8x + 1$ $\bigcirc 8y^2 + 16xy + 4y + 32x^2 + 8x + 1$
- - - $\bigcirc 8y^2 + 32xy + 4y + 32x^2 + 8x + 1$

問4 函数 $z = y^2 + xy - 6y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad (-\frac{8}{3}, -\frac{2}{3}) \qquad \bigcirc \quad (-\frac{2}{3}, -\frac{8}{3}) \qquad \bigcirc \quad (\frac{2}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{2}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, \frac{2}{3})$

函数 $z = 5e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-1,0) \qquad \bigcirc \quad (-5,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (5,0) \qquad \bigcirc \quad (\frac{1}{5},0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$)1 ()1	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	04	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$08 \ 08$	08	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	9 09	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(2y + 2x)$ の (0,0) における 2 次近似式を求めよ. 問 1

$$\bigcirc -2y^2 - 4xy - x^2 + 1$$

$$-y^2 - 2xy - 2x^2 + 1$$

$$\bigcirc \quad -2\,y^2 - 4\,x\,y - x^2 + 1 \qquad \quad \bigcirc \quad -y^2 - 2\,x\,y - 2\,x^2 + 1 \qquad \quad \bigcirc \quad -2\,y^2 - 4\,x\,y - 2\,x^2 + 1$$

$$0 -2y^2 - 2xy - x^2 + 3$$

$$\bigcirc \quad -2\,y^2 - 2\,x\,y - x^2 + 1 \qquad \qquad \bigcirc \quad -2\,y^2 - 2\,x\,y - 2\,x^2 + 1$$

函数 $z = \log(6y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$9y^2 - 12xy + 6y - 2x^2 + 2x$$

$$\bigcirc -18y^2 - 6xy + 6y - 2x^2 + 2x$$

問3 函数 $z = e^{2y+4x}$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad y^2 + 8\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1 \qquad \quad \bigcirc \quad 2\,y^2 + 4\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1$$

$$\bigcap 2u^2 + 4xu + 2u + 8x^2 + 4x + 1$$

$$0$$
 2 $y^2 + 8 x y + 2 y + 8 x^2 + 4 x + 1$

$$\bigcirc \quad 2\,y^2 + 8\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1 \qquad \qquad \bigcirc \quad 2\,y^2 + 8\,x\,y + 2\,y + 4\,x^2 + 4\,x + 1$$

$$0$$
 2 $y^2 + 4xy + 2y + 8x^2 + 4x$

問4 函数 $z = y^2 + xy - 6y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{2}{3}, \frac{10}{3}\right)$$

$$\bigcirc \quad \left(-\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, -\frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{10}{3}, -\frac{2}{3}\right) \qquad \bigcirc \quad \left(-\frac{10}{3}, \frac{2}{3}\right)$$

$$\left(\frac{2}{3}, \frac{10}{3}\right)$$

$$\left(\frac{10}{2}, -\frac{2}{3}\right)$$

$$\left(-\frac{10}{2}, \frac{2}{2}\right)$$

問 5 函数 $z = 7e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ.

$$\bigcap (\frac{2}{5},0)$$

$$\bigcap$$
 (7.0

$$\bigcup (0,0)$$

$$\bigcirc \quad \left(\frac{2}{7},0\right) \qquad \bigcirc \quad \left(7,0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(-7,0\right)$$

$$(-7,0]$$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -16\,y^2 - 16\,x\,y - 8\,x^2 + 1 \qquad \bigcirc -32\,y^2 - 16\,x\,y - 4\,x^2 + 1$$

$$\bigcirc$$
 $-32y^2 - 16xy - 4x^2 + 1$

$$\bigcirc$$
 $-32y^2 - 32xy - 8x^2 + 1$

$$\bigcirc -32 \, y^2 - 32 \, x \, y - 8 \, x^2 + 1$$
 $\bigcirc -32 \, y^2 - 16 \, x \, y - 8 \, x^2 + 1$

$$-32y^2 - 32xy - 4x^2 + 1$$

問2 函数 $z = \log(8y + 8x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -32y^2 - 64xy + 8y - 32x^2 + 8x \qquad \qquad \bigcirc \quad -32y^2 - 32xy + 8y - 32x^2 + 8x$$

$$\bigcirc$$
 $-32y^2 - 32xy + 8y - 32x^2 + 8x$

$$\bigcirc \quad -32\,y^2 - 64\,x\,y + 8\,y - 16\,x^2 + 8\,x \qquad \qquad \bigcirc \quad -16\,y^2 - 64\,x\,y + 8\,y - 32\,x^2 + 8\,x$$

$$\bigcap$$
 -16 y^2 - 64 xy + 8 y - 32 x^2 + 8 x^2

$$\bigcirc -32y^2 - 32xy + 8y - 16x^2 + 8x$$

函数 $z = e^{8y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 32y^2 + 32xy + 8y + 32x^2 + 8x + 1$$

$$\bigcirc 32y^2 + 32xy + 8y + 32x^2 + 8x$$

$$\bigcap$$
 32 $y^2 + 32 x y + 8 y + 32 x^2 + 8 x$

$$\bigcap$$
 16 y^2 + 64 xy + 8 y + 32 x^2 + 8 x + 1

$$\bigcirc 16y^2 + 64xy + 8y + 32x^2 + 8x + 1$$

$$\bigcirc 32y^2 + 64xy + 8y + 16x^2 + 8x + 1$$

$$32y^2 + 64xy + 8y + 32x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 8y + x^2 - x$ について、極値をとり得る点を求めよ.

- $\bigcirc (2,5) \qquad \bigcirc (-2,5) \qquad \bigcirc (5,-2) \qquad \bigcirc (2,-5) \qquad \bigcirc (-5,2)$

函数 $z = 5e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (-1,0) \qquad \bigcirc (\frac{3}{5},0) \qquad \bigcirc (5,0) \qquad \bigcirc (-5,0) \qquad \bigcirc (0,0)$

2022年7月20日

,	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(.)0	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	()0
($\cup 1$	$\bigcup 1$	$\bigcirc 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$	$\bigcup 1$
(\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(\mathcal{I}^2	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
($\bigcap_{\mathfrak{g}}$	\bigcap	$\bigcirc 3$	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap
(\bigcap_{A}	$\bigcap A$	$\bigcirc 4$	$\bigcap A$	$\bigcap A$	$\bigcap A$	$\bigcap A$	$\bigcap A$
	_	_	_	_	_	_	_	_
()5	()5	$\bigcirc 5$	()5	()5	()5	()5	()5
(_)6	$\bigcup 6$	$\bigcirc 6$	$\bigcup 6$	()6	$\bigcup 6$	$\bigcup 6$	$\bigcup 6$
(J7	$\bigcup \gamma$	$\bigcirc 7$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \gamma$	$\bigcup \mathcal{T}$	$\bigcup \gamma$
(\cap	\bigcap	$\bigcirc 8$	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap
(\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap o
١,		$\bigcup g$	$\bigcup g$	$\bigcup g$	\bigcup_{∂}	\bigcup_{∂}	\bigcirc	$\bigcup \partial$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(2y + 6x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -y^2 6xy 18x^2 + 1 \qquad \bigcirc -2y^2 6xy 18x^2 + 1 \qquad \bigcirc -2y^2 6xy 9x^2 + 1$
- $\bigcirc -2y^2 12xy 18x^2 + 1$ $\bigcirc -2y^2 12xy 9x^2 + 1$

函数 $z = \log(4y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- $\bigcirc -8y^2 24xy + 4y 18x^2 + 6x$

問3 函数 $z = e^{4y+6x}$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc \quad 8\,y^2 + 24\,x\,y + 4\,y + 9\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 12\,x\,y + 4\,y + 18\,x^2 + 6\,x + 1$
- $\bigcirc \quad 4\,y^2 + 24\,x\,y + 4\,y + 18\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 24\,x\,y + 4\,y + 18\,x^2 + 6\,x + 1$
 - $0 8y^2 + 12xy + 4y + 18x^2 + 6x$

問4 函数 $z = y^2 + xy - 7y + x^2 - 3x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(\frac{1}{3}, -\frac{11}{3}\right) \qquad \bigcirc \quad \left(-\frac{11}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, \frac{11}{3}\right) \qquad \bigcirc \quad \left(\frac{11}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{11}{3}\right)$

函数 $z = 8e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-8,0) \qquad \bigcirc \quad (\frac{3}{8},0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (8,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -32\,y^2 - 48\,x\,y - 9\,x^2 + 1 \qquad \quad \bigcirc \quad -32\,y^2 - 24\,x\,y - 9\,x^2 + 1$$

$$\bigcirc$$
 $-32y^2 - 24xy - 9x^2 + 1$

$$\bigcirc -32y^2 - 24xy - 18x^2 + 1$$
 $\bigcirc -32y^2 - 48xy - 18x^2 + 1$

$$\bigcirc$$
 $-32 u^2 - 48 x u - 18 x^2 +$

$$\bigcap$$
 -16 y^2 - 24 xy - 18 x^2 + 1

函数 $z = \log(6y + 8x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- $\bigcirc -18y^2 48xy + 6y 16x^2 + 8x$ $\bigcirc -18y^2 24xy + 6y 16x^2 + 8x$
- $\bigcirc -9y^2 48xy + 6y 32x^2 + 8x$ $\bigcirc -18y^2 48xy + 6y 32x^2 + 8x$

$$\bigcirc -18y^2 - 24xy + 6y - 32x^2 + 8x$$

函数 $z = e^{2y+4x}$ の (0,0) における 2 次近似式を求めよ. 問3

- $\bigcirc 2y^2 + 4xy + 2y + 8x^2 + 4x + 1 \qquad \bigcirc 2y^2 + 8xy + 2y + 8x^2 + 4x + 1$
- $\bigcirc 2y^2 + 8xy + 2y + 4x^2 + 4x + 1 \qquad \bigcirc y^2 + 8xy + 2y + 8x^2 + 4x + 1$

 - 0 2 $y^2 + 4xy + 2y + 8x^2 + 4x$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right)$

函数 $z = 6e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (0,0)$ $\bigcirc (6,0)$ $\bigcirc (-6,0)$ $\bigcirc (-1,0)$ $\bigcirc (\frac{1}{2},0)$

2022年7月20日

$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(8y + 2x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$\bigcirc$$
 $-32y^2 - 16xy - x^2 + 1$

$$\bigcirc -16y^2 - 8xy - 2x^2 + 1$$

$$\bigcirc$$
 $-32y^2 - 8xy - x^2 +$

$$\bigcirc -32y^2 - 8xy - 2x^2 + 1$$

函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - 2\,x^2 + 2\,x \qquad \quad \bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - 2\,x^2 + 2\,x$$

$$-2u^2 - 4xu + 2u - 2x^2 + 2x$$

$$\bigcirc -2y^2 - 2xy + 2y - x^2 + 2x \qquad \bigcirc -2y^2 - 4xy + 2y - x^2 + 2x$$

$$\bigcirc -2y^2 - 4xy + 2y - x^2 + 2$$

函数 $z = e^{2y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 2\,y^2 + 12\,x\,y + 2\,y + 18\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad y^2 + 12\,x\,y + 2\,y + 18\,x^2 + 6\,x + 1$$

$$\int u^2 + 12 x u + 2 u + 18 x^2 + 6 x + 1$$

$$0 \quad 2y^2 + 12xy + 2y + 9x^2 + 6x + 1$$

$$\bigcirc 2y^2 + 12xy + 2y + 9x^2 + 6x + 1 \qquad \bigcirc 2y^2 + 6xy + 2y + 18x^2 + 6x$$

$$0 \quad 2y^2 + 6xy + 2y + 18x^2 + 6x + 1$$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right)$

函数 $z = 7e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (7,0) \qquad \bigcirc (\frac{4}{7},0) \qquad \bigcirc (-7,0) \qquad \bigcirc (0,0) \qquad \bigcirc (-1,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 8x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -8y^2 - 16xy - 16x^2 + 1$$

$$\bigcirc -8y^2 - 32xy - 16x^2 + 1$$

$$\bigcirc -8y^2 - 32xy - 32x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 32x^2 + 1$$

$$0 -8y^2 - 32xy - 16x^2 + 1$$

$$\bigcirc -8y^2 - 32xy - 32x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 32x^2 +$$

$$\bigcirc$$
 $-4y^2 - 16xy - 32x^2 + 1$

函数 $z = \log(6y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -18y^2 - 36xy + 6y - 9x^2 + 6x$$

$$\bigcirc -18y^2 - 18xy + 6y - 9x^2 + 6x$$

$$\bigcap$$
 -18 y^2 - 18 xy + 6 y - 9 x^2 + 6 x

$$\bigcirc -18y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcirc -9y^2 - 36xy + 6y - 18x^2 + 6x$$

$$-9y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcirc$$
 -18 y^2 - 18 xy + 6 y - 18 x^2 + 6 x

函数 $z = e^{4y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$8y^2 + 24xy + 4y + 9x^2 + 6x + 1$$

$$\bigcirc 8y^2 + 24xy + 4y + 9x^2 + 6x + 1$$

$$\bigcirc 4y^2 + 24xy + 4y + 18x^2 + 6x + 1$$

$$0 8y^2 + 12xy + 4y + 18x^2 + 6x +$$

$$0 8y^2 + 12xy + 4y + 18x^2 + 6x$$

問4 函数 $z = y^2 + xy - 7y + x^2 - 4x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{1}{2}, -\frac{10}{2}\right)$$

$$\left(-\frac{1}{2}, \frac{10}{2}\right)$$

$$(\frac{10}{2}, \frac{1}{2})$$

$$(\frac{1}{2}, \frac{10}{2})$$

$$\bigcirc \quad (-\frac{1}{3}, -\frac{10}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{10}{3}) \qquad \bigcirc \quad (\frac{10}{3}, \frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{10}{3}) \qquad \bigcirc \quad (-\frac{10}{3}, -\frac{1}{3})$$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 (-1.0)

$$\left(\frac{1}{2},0\right)$$

$$\bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad \left(\frac{1}{2},0\right) \qquad \bigcirc \quad (-8,0) \qquad \bigcirc \quad (8,0)$$

$$\bigcup$$
 $(8,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$ $\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入してください。

氏名

問1 函数 $z = \cos(4y + 2x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -4y^2 4xy 2x^2 + 1 \qquad \bigcirc -8y^2 8xy 2x^2 + 1 \qquad \bigcirc -8y^2 4xy 2x^2 + 1$ $\bigcirc -8y^2 4xy x^2 + 1 \qquad \bigcirc -8y^2 8xy x^2 + 1$
- **問2** 函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.
- **問3** 函数 $z = e^{8y+8x}$ の (0,0) における 2 次近似式を求めよ.
- **問4** 函数 $z = y^2 + xy 8y + x^2 2x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (\frac{4}{3}, -\frac{14}{3}) \qquad \qquad \bigcirc \quad (\frac{14}{3}, -\frac{4}{3}) \qquad \qquad \bigcirc \quad (-\frac{4}{3}, \frac{14}{3}) \qquad \qquad \bigcirc \quad (\frac{4}{3}, \frac{4}{3}) \qquad \qquad \bigcirc \quad (\frac{4}{3}, \frac{14}{3})$
- **問5** 函数 $z = 9e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-1,0) \qquad \quad \bigcirc \quad (\frac{1}{3},0) \qquad \quad \bigcirc \quad (0,0) \qquad \quad \bigcirc \quad (-9,0) \qquad \quad \bigcirc \quad (9,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 8x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -32\,y^2 - 64\,x\,y - 32\,x^2 + 1 \qquad \quad \bigcirc \quad -32\,y^2 - 64\,x\,y - 16\,x^2 + 1$$

$$-32 y^2 - 64 x y - 16 x^2 + 1$$

$$\bigcirc -32y^2 - 32xy - 32x^2 + 1$$

$$\bigcirc -32y^2 - 32xy - 32x^2 + 1 \qquad \bigcirc -16y^2 - 32xy - 32x^2 + 1$$

$$\bigcirc \quad -32\,y^2 - 32\,x\,y - 16\,x^2 + 1$$

函数 $z = \log(2y + 8x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 16xy + 2y - 32x^2 + 8x$$

$$\bigcirc -2y^2 - 8xy + 2y - 32x^2 + 8x$$

$$-2 u^2 - 8 x u + 2 u - 32 x^2 + 8 x$$

$$0 -y^2 - 16xy + 2y - 32x^2 + 8x$$

$$\bigcirc -y^2 - 16xy + 2y - 32x^2 + 8x$$

$$\bigcirc -2y^2 - 16xy + 2y - 16x^2 + 8x$$

$$0 -2y^2 - 8xy + 2y - 16x^2 + 8x$$

函数 $z = e^{6y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 18\,y^2 + 24\,x\,y + 6\,y + 32\,x^2 + 8\,x + 1 \qquad \qquad \bigcirc \quad 18\,y^2 + 48\,x\,y + 6\,y + 32\,x^2 + 8\,x + 1$$

$$\bigcap$$
 18 $y^2 + 48 x y + 6 y + 32 x^2 + 8 x + 1$

$$0$$
 $9 y^2 + 48 x y + 6 y + 32 x^2 + 8 x + 1$

$$18y^2 + 48xy + 6y + 16x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 9y + x^2 - x$ について、極値をとり得る点を求めよ.

$$\left(\frac{17}{2}, -\frac{7}{2}\right)$$

$$\bigcirc \quad \left(\frac{17}{3}, -\frac{7}{3}\right) \qquad \bigcirc \quad \left(-\frac{17}{3}, \frac{7}{3}\right) \qquad \bigcirc \quad \left(\frac{7}{3}, \frac{17}{3}\right) \qquad \bigcirc \quad \left(-\frac{7}{3}, \frac{17}{3}\right) \qquad \bigcirc \quad \left(\frac{7}{3}, -\frac{17}{3}\right)$$

$$(\frac{7}{2}, \frac{17}{2})$$

$$\left(-\frac{7}{2}, \frac{17}{2}\right)$$

$$(\frac{7}{2}, -\frac{17}{2})$$

函数 $z = 9e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 (9.0)

$$(-9.0)$$

$$\bigcirc (9,0) \qquad \bigcirc (-9,0) \qquad \bigcirc (-1,0) \qquad \bigcirc (\frac{2}{9},0) \qquad \bigcirc (0,0)$$

$$\bigcup (\frac{2}{9},0)$$

$$\bigcup (0,0]$$

2022年7月20日

\circ	$\overline{}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\bigcirc 0$ (]()	()0	()0	()0	()0	()0	()0
\bigcirc_1 (1	()1	()1	()1	()1	()1	()1
	_	-	-	-	-	-	
$\bigcirc 2$ (12	()2	()2	()2	()2	()2	()2
\bigcirc 3 ()3	()3	()3	()3	()3	()3	$(\)_{3}$
$\bigcirc 4$ ()4	()4	()4	()4	()4	()4	()4
\bigcirc 5 ()5	()5	()5	()5	()5	()5	()5
$\bigcirc 6$	J6	$\bigcup 6$	$\bigcup 6$	$\bigcup 6$	$\bigcup 6$	$\bigcup 6$	$\bigcup 6$
0- 0	<u>`</u>	Ō-	Ō-	Ō-	Ō-	Ō-	Ō-
$\bigcirc 7$ ()7	$\bigcup \gamma$	$\bigcup \mathcal{T}$	$\bigcup \mathcal{T}$	$\bigcup \gamma$	$\bigcup \gamma$	\cup 7
\hat{O}_{α}	<u>آ</u> ۔	Ō.	Ō.	Ō.	O ₀	O ₀	<u></u>
$\bigcirc 8$ (ا8ر	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$
Ω_{α}	\int_{Ω}	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap	\bigcap
$\bigcirc 9$ (J9	$\bigcup 9$	$\bigcup 9$	$\bigcup 9$	$\bigcup 9$	$\bigcup 9$	$\bigcup 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(2y + 4x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc \quad -y^2 4xy 8x^2 + 1 \qquad \quad \bigcirc \quad -2y^2 8xy 8x^2 + 1 \qquad \quad \bigcirc \quad -2y^2 4xy 4x^2 + 1$

 - $\bigcirc -2y^2 4xy 8x^2 + 1$ $\bigcirc -2y^2 8xy 4x^2 + 1$

函数 $z = \log(8y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- \bigcirc $-32y^2 8xy + 8y x^2 + 2x$

問 3 函数 $z = e^{8y+6x}$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc \quad 32\,y^2 + 48\,x\,y + 8\,y + 18\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 32\,y^2 + 24\,x\,y + 8\,y + 18\,x^2 + 6\,x + 1$

 - $\bigcirc \quad 32\,y^2 + 48\,x\,y + 8\,y + 9\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 32\,y^2 + 24\,x\,y + 8\,y + 18\,x^2 + 6\,x$
- - $\bigcap 16y^2 + 48xy + 8y + 18x^2 + 6x + 1$

函数 $z = y^2 + xy - 8y + x^2 - x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc \quad (-5,2) \qquad \bigcirc \quad (2,-5) \qquad \bigcirc \quad (2,5) \qquad \bigcirc \quad (-2,5) \qquad \bigcirc \quad (5,-2)$

函数 $z = 5e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-5,0) \qquad \bigcirc \quad (\frac{2}{5},0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (5,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(4y + 4x)$ の (0,0) における 2 次近似式を求めよ. 問 1

$$\bigcirc -8y^2 - 16xy - 4x^2 + 1 \qquad \bigcirc -8y^2 - 16xy - 8x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 8x^2 + 1$$

$$0 -8y^2 - 8xy - 4x^2 +$$

$$\bigcirc \quad -8\,y^2 - 8\,x\,y - 4\,x^2 + 1 \qquad \quad \bigcirc \quad -8\,y^2 - 8\,x\,y - 8\,x^2 + 1 \qquad \quad \bigcirc \quad -4\,y^2 - 8\,x\,y - 8\,x^2 + 1$$

$$\bigcirc -4y^2 - 8xy - 8x^2 + 1$$

函数 $z = \log(8y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc \quad -32\,y^2 - 16\,x\,y + 8\,y - 8\,x^2 + 4\,x \qquad \quad \bigcirc \quad -32\,y^2 - 32\,x\,y + 8\,y - 8\,x^2 + 4\,x$$

$$-32y^2 - 32xy + 8y - 8x^2 + 4x$$

$$0 -32y^2 - 16xy + 8y - 4x^2 + 4x$$

$$\bigcirc -16y^2 - 32xy + 8y - 8x^2 + 4x$$

函数 $z = e^{4y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 8y^2 + 24xy + 4y + 18x^2 + 6x + 1$$

$$\bigcirc 8y^2 + 12xy + 4y + 18x^2 + 6x$$

$$\bigcirc$$
 8 $y^2 + 12 x y + 4 y + 18 x^2 + 6 x$

$$0 \quad 4 y^2 + 24 x y + 4 y + 18 x^2 + 6 x +$$

$$0 8y^2 + 24xy + 4y + 9x^2 + 6x + 1$$

函数 $z = y^2 + xy - 8y + x^2 - 4x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc (0,4) \qquad \bigcirc (4,0) \qquad \bigcirc (0,-4) \qquad \bigcirc (-4,0) \qquad \bigcirc (0,4)$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad \left(\frac{1}{2},0\right) \qquad \bigcirc \quad \left(8,0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(-8,0\right)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -32\,y^2 - 24\,x\,y - 18\,x^2 + 1 \qquad \quad \bigcirc \quad -16\,y^2 - 24\,x\,y - 18\,x^2 + 1$$

$$\bigcap$$
 -16 y^2 - 24 xy - 18 x^2 + 1

$$\bigcirc$$
 $-32y^2 - 48xy - 18x^2 + 1$

$$\bigcirc -32y^2 - 48xy - 18x^2 + 1$$
 $\bigcirc -32y^2 - 48xy - 9x^2 + 1$

$$-32y^2 - 24xy - 9x^2 + 1$$

函数 $z = \log(4y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -8y^2 - 12xy + 4y - 9x^2 + 6x$$

$$\bigcirc -8y^2 - 24xy + 4y - 18x^2 + 6x$$

$$-8u^2 - 24xu + 4u - 18x^2 + 6x$$

$$\bigcirc -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -8y^2 - 12xy + 4y - 18x^2 + 6x$$

函数 $z = e^{4y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 8\,y^2 + 16\,x\,y + 4\,y + 32\,x^2 + 8\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 32\,x\,y + 4\,y + 32\,x^2 + 8\,x + 1$$

$$0.8y^2 + 32xy + 4y + 32x^2 + 8x + 1$$

$$0.8y^2 + 16xy + 4y + 32x^2 + 8x$$

$$0$$
 $4y^2 + 32xy + 4y + 32x^2 + 8x + 1$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

$$(\frac{1}{2}, \frac{14}{2})$$

$$\left(\frac{1}{3}, -\frac{14}{3}\right)$$

$$\bigcirc \quad \left(\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right)$$

$$\left(-\frac{14}{2},\frac{1}{2}\right)$$

$$\left(-\frac{1}{2}, \frac{14}{2}\right)$$

函数 $z = 6e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 $(-6,0)$

$$\bigcap$$
 $(0,0)$

$$\bigcirc \quad (-6,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (6,0) \qquad \bigcirc \quad (\frac{1}{3},0)$$

$$\bigcap$$
 (6.0)

$$\bigcup (\frac{1}{3},0)$$

2022年7月20日

1	γ_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcirc
($\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
(\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
	-	-	-	-	-	-	-	-
($\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
(\bigcirc	\bigcirc 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcap_{n}
($\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
			O_5					
	_							_
($\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
			Ŏ7					
()8	$\bigcirc 8$	$\bigcirc 8$					
(\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap o
(. 13	()3	()3	くりり	()3	()3	()3	くりり

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 6x)$ の (0,0) における 2 次近似式を求めよ. 問 1

$$\bigcap$$
 -18 u^2 - 18 $x u$ - 9 x^2 + 1

$$\bigcirc -18y^2 - 36xy - 9x^2 + 1$$

$$\bigcap$$
 $-18 y^2 - 36 x y - 18 x^2 +$

$$\bigcirc -9y^2 - 18xy - 18x^2 + 1$$

函数 $z = \log(8y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- $\bigcirc \quad -32\,y^2 16\,x\,y + 8\,y 8\,x^2 + 4\,x \qquad \quad \bigcirc \quad -16\,y^2 32\,x\,y + 8\,y 8\,x^2 + 4\,x$
- $\bigcirc \quad -32\,y^2 32\,x\,y + 8\,y 8\,x^2 + 4\,x \qquad \quad \bigcirc \quad -32\,y^2 16\,x\,y + 8\,y 4\,x^2 + 4\,x$

 - $\bigcirc -32y^2 32xy + 8y 4x^2 + 4x$

函数 $z = e^{2y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc 2y^2 + 4xy + 2y + 8x^2 + 4x + 1 \qquad \bigcirc y^2 + 8xy + 2y + 8x^2 + 4x + 1$

- $\bigcirc 2y^2 + 4xy + 2y + 8x^2 + 4x$ $\bigcirc 2y^2 + 8xy + 2y + 4x^2 + 4x + 1$
 - 0 $2y^2 + 8xy + 2y + 8x^2 + 4x + 1$

函数 $z = y^2 + xy - 8y + x^2 - 4x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc \quad (-4,0) \qquad \bigcirc \quad (0,4) \qquad \bigcirc \quad (4,0) \qquad \bigcirc \quad (0,-4) \qquad \bigcirc \quad (0,4)$

函数 $z = 5e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad \left(\frac{4}{5},0\right) \qquad \bigcirc \quad \left(-5,0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(5,0\right) \qquad \bigcirc \quad \left(0,0\right)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 8x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -8y^2 - 16xy - 16x^2 + 1 \qquad \bigcirc -4y^2 - 16xy - 32x^2 + 1$$

$$\bigcirc -8y^2 - 32xy - 16x^2 + 1 \qquad \bigcirc -8y^2 - 16xy - 32x^2 + 1$$

$$\bigcirc -4y^2 - 16xy - 32x^2 + 1$$

$$-8y^2 - 32xy - 16x^2 + 1$$

$$\bigcap$$
 $-8 y^2 - 16 x y - 32 x^2 + \dots$

$$-8y^2 - 32xy - 32x^2 + 1$$

函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 12xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 18x^2 + 6x$$

$$-2u^2 - 6xu + 2u - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 12xy + 2y - 9x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$\bigcirc -y^2 - 12xy + 2y - 18x^2 + 6x$$

函数 $z = e^{2y+4x}$ の (0,0) における 2 次近似式を求めよ. 問3

$$\bigcirc \quad y^2 + 8\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1 \qquad \quad \bigcirc \quad 2\,y^2 + 4\,x\,y + 2\,y + 8\,x^2 + 4\,x + 1$$

$$\bigcirc 2u^2 + 4xu + 2u + 8x^2 + 4x + 1$$

$$\bigcirc 2y^2 + 8xy + 2y + 4x^2 + 4x + 1 \qquad \bigcirc 2y^2 + 4xy + 2y + 8x^2 + 4x$$

$$0 \quad 2 u^2 + 4 x u + 2 u + 8 x^2 + 4 x^2 + 4$$

$$0 \quad 2y^2 + 8xy + 2y + 8x^2 + 4x + 1$$

函数 $z = y^2 + xy - 5y + x^2 - 2x$ について、極値をとり得る点を求めよ. 問 4

$$\left(\frac{1}{2}, -\frac{8}{2}\right)$$

$$\bigcirc \quad (\frac{1}{3}, -\frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (-\frac{8}{3}, \frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{8}{3})$$

$$\left(-\frac{1}{3}, \frac{8}{3}\right)$$

$$\left(-\frac{8}{2},\frac{1}{2}\right)$$

$$(\frac{1}{2}, \frac{8}{2})$$

函数 $z = 7e^x y^2 + 4x e^x$ について、極値をとり得る点を求めよ. 問 5

$$(-7,0)$$

$$\bigcirc \quad (-7,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (7,0) \qquad \bigcirc \quad (\frac{4}{7},0)$$

$$\bigcirc \quad (0,0]$$

$$\bigcirc \quad (7,0$$

$$\bigcirc \quad (\frac{4}{7},0)$$

2022年7月20日

 $\bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 1$ $\bigcirc 2 \bigcirc 2$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 3$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 4$ $\bigcirc 5 \bigcirc 5$ $\bigcirc 6 \bigcirc 6$ \bigcirc 7 $\bigcirc 8 \bigcirc 8$ $\bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 8x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -18\,y^2 - 48\,x\,y - 16\,x^2 + 1 \qquad \bigcirc -9\,y^2 - 24\,x\,y - 32\,x^2 + 1$$

$$\bigcirc -18\,y^2 - 24\,x\,y - 32\,x^2 + 1 \qquad \bigcirc -18\,y^2 - 24\,x\,y - 16\,x^2 + 1$$

$$\bigcirc -9 y^2 - 24 x y - 32 x^2 + 1$$

$$\bigcap$$
 -18 y^2 - 24 xy - 32 x^2 + 1

$$\bigcap$$
 -18 y^2 - 24 xy - 16 x^2 +

$$\bigcirc$$
 -18 y^2 - 48 xy - 32 x^2 + 1

函数 $z = \log(4y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -8y^2 - 8xy + 4y - 8x^2 + 4x \qquad \bigcirc -8y^2 - 8xy + 4y - 4x^2 + 4x$$

$$-8u^2 - 8xu + 4u - 4x^2 + 4x$$

$$\bigcirc -8y^2 - 16xy + 4y - 8x^2 + 4x$$

$$\bigcirc -8y^2 - 16xy + 4y - 8x^2 + 4x$$

$$\bigcirc -8y^2 - 16xy + 4y - 4x^2 + 4x$$

$$\bigcirc -4y^2 - 16xy + 4y - 8x^2 + 4x$$

函数 $z = e^{2y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 2y^2 + 8xy + 2y + 32x^2 + 8x$$

$$\bigcirc y^2 + 16xy + 2y + 32x^2 + 8x + 1$$

$$\int u^2 + 16 x u + 2 u + 32 x^2 + 8 x + 1$$

$$0$$
 $2y^2 + 8xy + 2y + 32x^2 + 8x + 1$

$$\bigcirc 2y^2 + 8xy + 2y + 32x^2 + 8x + 1 \qquad \bigcirc 2y^2 + 16xy + 2y + 32x^2 + 8x + 1$$

$$0 \quad 2y^2 + 16xy + 2y + 16x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right)$

函数 $z = 5e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (0,0) \qquad \bigcirc (\frac{1}{5},0) \qquad \bigcirc (-1,0) \qquad \bigcirc (5,0) \qquad \bigcirc (-5,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入してください。

氏名

問 1 函数 $z = \cos(6y + 2x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -18\,y^2 6\,x\,y 2\,x^2 + 1 \qquad \bigcirc -9\,y^2 6\,x\,y 2\,x^2 + 1 \qquad \bigcirc -18\,y^2 6\,x\,y x^2 + 1$ $\bigcirc -18\,y^2 12\,x\,y x^2 + 1 \qquad \bigcirc -18\,y^2 12\,x\,y 2\,x^2 + 1$
- **問2** 函数 $z = \log(6y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.
- 問 3 函数 $z=e^{2\,y+6\,x}$ の (0,0) における 2 次近似式を求めよ.
- **問4** 函数 $z = y^2 + xy 7y + x^2 4x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (\frac{10}{3}, \frac{1}{3}) \qquad \qquad \bigcirc \quad (-\frac{1}{3}, -\frac{10}{3}) \qquad \qquad \bigcirc \quad (-\frac{1}{3}, \frac{10}{3}) \qquad \qquad \bigcirc \quad (\frac{10}{3}, -\frac{1}{3}) \qquad \qquad \bigcirc \quad (\frac{1}{3}, \frac{10}{3})$
- **問5** 函数 $z = 8e^x y^2 + 4x e^x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-8,0) \qquad \bigcirc \quad (\frac{1}{2},0) \qquad \bigcirc \quad (8,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -18\,y^2 - 36\,x\,y - 18\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 36\,x\,y - 9\,x^2 + 1 \\ \bigcirc \quad -18\,y^2 - 18\,x\,y - 9\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 18\,x\,y - 18\,x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 36 xy - 9 x^2 + 1

$$\bigcirc -18\,y^2 - 18\,x\,y - 9\,x^2 + 1$$

$$\bigcap$$
 -18 u^2 - 18 xu - 18 x^2 +

$$0 -9y^2 - 18xy - 18x^2 + 1$$

問 2 函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -y^2 - 4xy + 2y - 2x^2 + 2x \qquad \qquad \bigcirc \quad -2y^2 - 2xy + 2y - 2x^2 + 2x$$

$$-2u^2 - 2xu + 2u - 2x^2 + 2x$$

$$\bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - x^2 + 2\,x \qquad \qquad \bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - x^2 + 2\,x$$

$$\bigcirc -2y^2 - 2xy + 2y - x^2 + 2x$$

$$\bigcirc \quad -2y^2 - 4xy + 2y - 2x^2 + 2x$$

函数 $z = e^{4y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 4\,y^2 + 32\,x\,y + 4\,y + 32\,x^2 + 8\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 32\,x\,y + 4\,y + 32\,x^2 + 8\,x + 1$$

$$0$$
 8 $y^2 + 32 x y + 4 y + 32 x^2 + 8 x + 1$

$$0$$
 8 $y^2 + 32 x y + 4 y + 16 x^2 + 8 x + 1$

$$\bigcirc$$
 8 $y^2 + 16 x y + 4 y + 32 x^2 + 8 x + 1$

問4 函数 $z = y^2 + xy - 6y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(\frac{2}{3}, \frac{10}{3}\right)$$

$$\bigcirc \quad \left(\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, -\frac{10}{3}\right) \qquad \bigcirc \quad \left(-\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{10}{3}, -\frac{2}{3}\right) \qquad \bigcirc \quad \left(-\frac{10}{3}, \frac{2}{3}\right)$$

$$\left(-\frac{2}{3}, \frac{10}{3}\right)$$

$$(\frac{10}{2}, -\frac{2}{3})$$

$$\left(-\frac{10}{2},\frac{2}{3}\right)$$

函数 $z = 5e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 $(0,0)$

$$\bigcirc$$
 (5.0

$$\bigcirc \quad (0,0) \qquad \bigcirc \quad (5,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (-5,0) \qquad \bigcirc \quad (\frac{2}{5},0)$$

$$\bigcup$$
 $(-5,0)$

$$\bigcup (\frac{2}{5},0)$$

2022年7月20日

$\bigcirc 0$ $\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	\bigcirc 3	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 8x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -4y^2 - 16xy - 32x^2 + 1 \qquad \bigcirc -8y^2 - 16xy - 16x^2 + 1$$

$$\bigcirc -8y^2 - 32xy - 32x^2 + 1 \qquad \bigcirc -8y^2 - 16xy - 32x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 16x^2 + 1$$

$$\bigcirc$$
 $-8y^2 - 32xy - 32x^2 + 1$

$$\bigcirc -8 \, y^2 - 16 \, x \, y - 32 \, x^2 + 16 \, x \, y - 32$$

$$\bigcirc -8y^2 - 32xy - 16x^2 + 1$$

函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 6xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 12xy + 2y - 9x^2 + 6x$$

$$\bigcirc -2 y^2 - 12 x y + 2 y - 9 x^2 + 6 x$$

$$\bigcirc -y^2 - 12xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$0 -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$0 -2y^2 - 12xy + 2y - 18x^2 + 6x$$

函数 $z = e^{6y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$0 18y^2 + 36xy + 6y + 9x^2 + 6x + 1$$

$$\bigcirc 18y^2 + 36xy + 6y + 9x^2 + 6x + 1$$

$$\bigcirc 18y^2 + 36xy + 6y + 18x^2 + 6x + 1$$

$$0 \quad 18y^2 + 18xy + 6y + 18x^2 + 6x$$

$$\bigcirc 18y^2 + 18xy + 6y + 18x^2 + 6x \qquad \bigcirc 18y^2 + 18xy + 6y + 18x^2 + 6x + 1$$

$$9y^2 + 36xy + 6y + 18x^2 + 6x + 1$$

問4 函数 $z = y^2 + xy - 7y + x^2 - x$ について、極値をとり得る点を求めよ.

$$(\frac{5}{2}, \frac{13}{2})$$

$$\bigcirc \quad \left(\frac{5}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(-\frac{5}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(-\frac{13}{3}, \frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{13}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, -\frac{13}{3}\right)$$

$$\left(-\frac{13}{2},\frac{5}{2}\right)$$

$$(\frac{13}{2}, -\frac{5}{2})$$

$$(\frac{5}{2}, -\frac{13}{2})$$

函数 $z = 6e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 (6.0)

$$\bigcap$$
 (-6.0)

$$\left(\frac{1}{2}, 0\right)$$

$$\bigcup$$
 $(0,0)$

$$\bigcirc (6,0)$$
 $\bigcirc (-6,0)$ $\bigcirc (\frac{1}{2},0)$ $\bigcirc (0,0)$ $\bigcirc (-1,0)$

2022年7月20日

1	γ_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcirc	\bigcirc
($\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
(\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
	-	-	-	-	-	-	-	-
($\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
(\bigcirc	\bigcirc 3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcap_{n}
($\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
			O_5					
	_							_
($\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
			Ŏ7					
()8	$\bigcirc 8$	$\bigcirc 8$					
(\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap o
(. 13	()3	()3	くりり	()3	()3	()3	くりり

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ. 問 1

$$\bigcirc$$
 $-32y^2 - 48xy - 9x^2 + 1$

$$\bigcirc$$
 $-32y^2 - 48xy - 18x^2 + 1$

$$\bigcirc$$
 -32 y^2 - 24 xy - 9 x^2 +

$$\bigcirc$$
 $-32y^2 - 24xy - 18x^2 + 1$

函数 $z = \log(4y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -8y^2 - 8xy + 4y - x^2 + 2x$$

$$\bigcirc -4y^2 - 8xy + 4y - 2x^2 + 2x$$

$$-4u^2 - 8xu + 4u - 2x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - 2x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 8xy + 4y - 2x^2 + 2x$$

函数 $z = e^{6y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc 18y^2 + 12xy + 6y + 8x^2 + 4x + 1$ $\bigcirc 18y^2 + 24xy + 6y + 4x^2 + 4x + 1$
- - $\bigcirc 18y^2 + 12xy + 6y + 8x^2 + 4x \qquad \bigcirc 18y^2 + 24xy + 6y + 8x^2 + 4x + 1$

 - $9y^2 + 24xy + 6y + 8x^2 + 4x + 1$

函数 $z = y^2 + xy - 6y + x^2 - 3x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc (0,-3) \qquad \bigcirc (3,0) \qquad \bigcirc (-3,0) \qquad \bigcirc (0,3) \qquad \bigcirc (0,3)$

函数 $z = 7e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- \bigcirc (7,0) \bigcirc (-7,0) \bigcirc (-1,0) \bigcirc (0,0) \bigcirc ($\frac{1}{7}$,0)

2022年7月20日

$\bigcirc 0 \bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1$	$\bigcap_1 \bigcap_1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$ ($\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$	\bigcirc 7	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 2x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -9y^2 - 6xy - 2x^2 + 1 \qquad \bigcirc -18y^2 - 12xy - 2x^2 + 1$$

$$\bigcap$$
 $-18y^2 - 12xy - 2x^2 + 1$

$$\bigcirc -18\,y^2 - 12\,x\,y - x^2 + 1$$

$$\bigcirc \quad -18\,y^2 - 12\,x\,y - x^2 + 1 \qquad \quad \bigcirc \quad -18\,y^2 - 6\,x\,y - x^2 + 1$$

$$\bigcap$$
 -18 y^2 - 6 xy - 2 x^2 + 1

函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -y^2 - 4xy + 2y - 2x^2 + 2x$$

$$\bigcirc -2y^2 - 2xy + 2y - x^2 + 2x$$

$$-2y^2 - 2xy + 2y - x^2 + 2x$$

$$\bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - 2\,x^2 + 2\,x \qquad \quad \bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - 2\,x^2 + 2\,x$$

$$\bigcirc -2y^2 - 2xy + 2y - 2x^2 + 2$$

$$\bigcirc -2y^2 - 4xy + 2y - x^2 + 2x$$

函数 $z = e^{2y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 2\,y^2 + 8\,x\,y + 2\,y + 32\,x^2 + 8\,x + 1 \\ \qquad \quad \bigcirc \quad 2\,y^2 + 16\,x\,y + 2\,y + 32\,x^2 + 8\,x + 1$$

$$0$$
 2 $y^2 + 16 x y + 2 y + 32 x^2 + 8 x + 1$

$$0 \quad 2y^2 + 8xy + 2y + 32x^2 + 8x$$

$$0 \quad y^2 + 16xy + 2y + 32x^2 + 8x + 1$$

$$\int y^2 + 16xy + 2y + 32x^2 + 8x + 1$$

$$\bigcirc 2y^2 + 16xy + 2y + 16x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{8}{3},\frac{1}{3}\right)$$

$$\left(-\frac{1}{2}, \frac{8}{2}\right)$$

$$\bigcirc \quad (-\frac{8}{3}, \frac{1}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{8}{3}) \qquad \bigcirc \quad (\frac{8}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, -\frac{8}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{8}{3})$$

$$\left(\frac{1}{3}, -\frac{8}{3}\right)$$

$$\bigcirc \quad (\frac{1}{3}, \frac{8}{3})$$

函数 $z = 9e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$(\frac{2}{9},0)$$

$$\bigcirc \quad (0,0$$

$$\bigcirc \quad (9,0)$$

$$\bigcirc \quad \left(\frac{2}{9},0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(9,0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(-9,0\right)$$

$$\bigcirc \quad (-9,0)$$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$	$)_1 \bigcirc_1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	7 (7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$)8 \)8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	9 ()9	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入してください。

氏名

問 1 函数 $z = \cos(2y + 4x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -2y^2 4xy 8x^2 + 1 \qquad \bigcirc -2y^2 8xy 8x^2 + 1 \qquad \bigcirc -2y^2 4xy 4x^2 + 1$ $\bigcirc -y^2 4xy 8x^2 + 1 \qquad \bigcirc -2y^2 8xy 4x^2 + 1$
- **問2** 函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ.
- **問3** 函数 $z = e^{8y+4x}$ の (0,0) における 2 次近似式を求めよ.
 - $\bigcirc \ \ 32\,y^2 + 16\,x\,y + 8\,y + 8\,x^2 + 4\,x + 1 \\ \bigcirc \ \ 32\,y^2 + 16\,x\,y + 8\,y + 8\,x^2 + 4\,x \\ \bigcirc \ \ 32\,y^2 + 32\,x\,y + 8\,y + 4\,x^2 + 4\,x + 1 \\ \bigcirc \ \ 16\,y^2 + 32\,x\,y + 8\,y + 8\,x^2 + 4\,x + 1$
- **問4** 函数 $z = y^2 + xy 7y + x^2 3x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (\frac{11}{3}, -\frac{1}{3}) \qquad \qquad \bigcirc \quad (\frac{1}{3}, \frac{11}{3}) \qquad \qquad \bigcirc \quad (-\frac{1}{3}, \frac{11}{3}) \qquad \qquad \bigcirc \quad (-\frac{11}{3}, \frac{1}{3})$
- **問5** 函数 $z = 6e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-6,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (6,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (\frac{1}{3},0)$

2022年7月20日

$\bigcirc 0$	0 00 00	0 00	0 00)
$\bigcirc 1$	1 ()1 ()1	$\bigcirc 1 \bigcirc 1$. 01 01	1
	$2\bigcirc 2\bigcirc 2$			
	3 Q3 Q3			
	4 Q4 Q4			
	5 Q5 Q5			
	$6\bigcirc 6\bigcirc 6$			
	7 Q7 Q7			
	$8 \bigcirc 8 \bigcirc 8$			
$\bigcirc 9 \bigcirc 9$	9 09 09	0 09 09	0 ()9 ()9	9

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(8y + 8x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$-32 y^2 - 64 x y - 16 x^2 + 1$$

$$\bigcirc -32y^2 - 32xy - 16x^2 + 1$$

$$\bigcirc \quad -32\,y^2 - 64\,x\,y - 32\,x^2 + 1$$

函数 $z = \log(8y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -32y^2 - 8xy + 8y - 2x^2 + 2x$$

$$\bigcirc -32y^2 - 8xy + 8y - x^2 + 2x$$

$$\bigcirc \quad -32\,y^2 - 16\,x\,y + 8\,y - 2\,x^2 + 2\,x \qquad \qquad \bigcirc \quad -32\,y^2 - 16\,x\,y + 8\,y - x^2 + 2\,x$$

$$0 -32y^2 - 16xy + 8y - x^2 + 2x$$

函数 $z=e^{6y+2x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$0 18y^2 + 6xy + 6y + 2x^2 + 2x$$

$$\bigcirc 18y^2 + 12xy + 6y + x^2 + 2x + 1$$

$$\bigcirc 9y^2 + 12xy + 6y + 2x^2 + 2x + 1$$

$$\bigcirc 18y^2 + 6xy + 6y + 2x^2 + 2x + 1$$

問4 函数 $z = y^2 + xy - 8y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{14}{3}, \frac{4}{3}\right)$$

$$\bigcirc \quad (-\frac{14}{3}, \frac{4}{3}) \qquad \bigcirc \quad (\frac{14}{3}, -\frac{4}{3}) \qquad \bigcirc \quad (\frac{4}{3}, \frac{14}{3}) \qquad \bigcirc \quad (-\frac{4}{3}, \frac{14}{3}) \qquad \bigcirc \quad (\frac{4}{3}, -\frac{14}{3})$$

$$\left(\frac{4}{3}, \frac{14}{3}\right)$$

$$\left(-\frac{4}{3}, \frac{14}{3}\right)$$

$$\left(\frac{4}{3}, -\frac{14}{3}\right)$$

函数 $z = 7e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

$$(\frac{1}{7},0)$$

$$(-7,0)$$

$$\bigcirc \quad (0,0$$

$$\bigcirc \quad (7,0$$

$$\bigcirc \quad \left(\frac{1}{7},0\right) \qquad \bigcirc \quad \left(-7,0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(7,0\right) \qquad \bigcirc \quad \left(-1,0\right)$$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$	$)_1 \bigcirc_1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	7 (7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$	$)8 \)8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	9 ()9	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入してください。

氏名

問 1 函数 $z = \cos(2y + 2x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -2y^2 4xy x^2 + 1 \qquad \bigcirc -2y^2 2xy 2x^2 + 1 \qquad \bigcirc -2y^2 4xy 2x^2 + 1$ $\bigcirc -y^2 2xy 2x^2 + 1 \qquad \bigcirc -2y^2 2xy x^2 + 1$
- 問2 函数 $z = \log(4y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ.
- **問3** 函数 $z = e^{8y+2x}$ の (0,0) における 2 次近似式を求めよ.
 - $\bigcirc \ \, 16\,y^2 + 16\,x\,y + 8\,y + 2\,x^2 + 2\,x + 1 \qquad \bigcirc \ \, 32\,y^2 + 8\,x\,y + 8\,y + 2\,x^2 + 2\,x \\ \bigcirc \ \, 32\,y^2 + 16\,x\,y + 8\,y + x^2 + 2\,x + 1 \qquad \bigcirc \ \, 32\,y^2 + 16\,x\,y + 8\,y + 2\,x^2 + 2\,x + 1 \\ \bigcirc \ \, 32\,y^2 + 8\,x\,y + 8\,y + 2\,x^2 + 2\,x + 1$
- **問4** 函数 $z = y^2 + xy 7y + x^2 2x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-4,1) \qquad \bigcirc \quad (-1,4) \qquad \bigcirc \quad (1,4) \qquad \bigcirc \quad (1,-4) \qquad \bigcirc \quad (4,-1)$
- **問5** 函数 $z = 9e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad \left(\frac{4}{9},0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(-9,0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(9,0\right)$

2022年7月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0$	$\bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc 1$	$\bigcirc 1$	1 🔾 1	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2$	$2\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3$	$\bigcirc 3 \bigcirc 3$	$3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc 4$	$\bigcirc 4$ $\bigcirc 4$	$1 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$5\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc 7$	$\bigcirc 7 \bigcirc 7$	7 🔾 7	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8$	$8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 6$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問 1 函数 $z = \cos(2y + 4x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -2y^2 8xy 4x^2 + 1 \qquad \bigcirc -y^2 4xy 8x^2 + 1 \qquad \bigcirc -2y^2 8xy 8x^2 + 1$ $\bigcirc -2y^2 4xy 4x^2 + 1 \qquad \bigcirc -2y^2 4xy 8x^2 + 1$
- **問2** 函数 $z = \log(4y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ.
- 問 3 函数 $z=e^{4\,y+4\,x}$ の (0,0) における 2 次近似式を求めよ.
- **問4** 函数 $z = y^2 + xy 9y + x^2 2x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-\frac{5}{3}, \frac{16}{3}) \qquad \bigcirc \quad (-\frac{16}{3}, \frac{5}{3}) \qquad \bigcirc \quad (\frac{5}{3}, \frac{16}{3}) \qquad \bigcirc \quad (\frac{5}{3}, -\frac{16}{3}) \qquad \bigcirc \quad (\frac{16}{3}, -\frac{5}{3})$
- **問5** 函数 $z = 7e^x y^2 + 4x e^x$ について、極値をとり得る点を求めよ.
 - $\bigcirc \quad (-7,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{4}{7},0) \qquad \bigcirc \quad (7,0)$

2022年7月20日

	\bigcap_{α}	\bigcirc	\bigcap	\bigcirc	\bigcap	\bigcap	\bigcap	\bigcap
	$\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
1	\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
-)2	()2	$\bigcirc 2$	()2	()2	()2	()2	()2
	$\cup 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcup 3$
1	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	٦	Ō۴	$\bigcirc 5$	Ō۴	Ō۴	Ō۴	Ō۴	Ŏ.
-	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
1	\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
-	$\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
1	\bigcap_{α}	\bigcap	$\bigcirc 9$	\bigcap	\bigcap	\bigcap	\bigcap_{α}	\bigcap
,	しょう	()0	くりひ	()0	()0	()0	()0	() ご

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$\bigcirc -9y^2 - 12xy - 8x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 12 xy - 8 x^2 + 1

$$\bigcap$$
 $-18y^2 - 12xy - 4x^2 + 1$

$$\bigcirc$$
 -18 y^2 - 24 xy - 4 x^2 + 1

函数 $z = \log(6y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -18y^2 - 12xy + 6y - 8x^2 + 4x \qquad \bigcirc -9y^2 - 24xy + 6y - 8x^2 + 4x$$

$$-9 y^2 - 24 x y + 6 y - 8 x^2 + 4 x$$

$$\bigcirc -18y^2 - 12xy + 6y - 4x^2 + 4x$$

$$\bigcirc -18y^2 - 24xy + 6y - 8x^2 + 4x$$

$$\bigcirc -18y^2 - 24xy + 6y - 4x^2 + 4x$$

函数 $z = e^{6y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 18\,y^2 + 12\,x\,y + 6\,y + 8\,x^2 + 4\,x \qquad \bigcirc 9\,y^2 + 24\,x\,y + 6\,y + 8\,x^2 + 4\,x + 1$$

$$0$$
 $9 u^2 + 24 x u + 6 u + 8 x^2 + 4 x + 1$

$$\bigcap$$
 18 $y^2 + 24 x y + 6 y + 4 x^2 + 4 x + 1$

$$0 \quad 18y^2 + 24xy + 6y + 8x^2 + 4x + 1$$

$$\bigcap$$
 18 $y^2 + 24 x y + 6 y + 4 x^2 + 4 x +$

$$0 18y^2 + 12xy + 6y + 8x^2 + 4x + 1$$

問4 函数 $z = y^2 + xy - 9y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{5}{2}, \frac{16}{2}\right)$$

$$\bigcirc \quad \left(-\frac{5}{3}, \frac{16}{3}\right) \qquad \bigcirc \quad \left(-\frac{16}{3}, \frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, -\frac{16}{3}\right) \qquad \bigcirc \quad \left(\frac{16}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, \frac{16}{3}\right)$$

$$\left(\frac{5}{2}, -\frac{16}{2}\right)$$

$$(\frac{16}{2}, -\frac{5}{2})$$

$$(\frac{5}{2}, \frac{16}{2})$$

函数 $z = 6e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad \left(\frac{1}{3},0\right) \qquad \bigcirc \quad \left(-1,0\right) \qquad \bigcirc \quad \left(0,0\right) \qquad \bigcirc \quad \left(6,0\right) \qquad \bigcirc \quad \left(-6,0\right)$$

$$(-1,0]$$

$$\bigcirc$$
 (0.0

$$\bigcup$$
 $(6,0)$

$$\bigcup (-6,0)$$

2022年7月20日

| $\bigcirc 0$ |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $\bigcirc 1$ |
| $\bigcirc 2$ |
| $\bigcirc 3$ |
| | | | $\bigcirc 4$ | | | | |
| $\bigcirc 5$ |
			$\bigcirc 6$				
			$\bigcirc 7$				
			$\bigcirc 8$				
$\bigcirc 9$							

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ. 問1

$$\bigcirc$$
 $-18y^2 - 12xy - 8x^2 + 1$

$$\bigcirc -18\,y^2 - 24\,x\,y - 4\,x^2 + 1$$

$$0 -9y^2 - 12xy - 8x^2 + 1$$

$$\bigcirc -18y^2 - 12xy - 4x^2 + 1$$

函数 $z = \log(6y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -18y^2 - 24xy + 6y - 8x^2 + 4x \qquad \bigcirc -18y^2 - 24xy + 6y - 4x^2 + 4x$$

$$\bigcap$$
 -18 u^2 - 24 x y + 6 y - 4 x^2 + 4 x

$$\bigcirc \quad -18\,y^2 - 12\,x\,y + 6\,y - 8\,x^2 + 4\,x \qquad \quad \bigcirc \quad -9\,y^2 - 24\,x\,y + 6\,y - 8\,x^2 + 4\,x$$

$$0 -9y^2 - 24xy + 6y - 8x^2 + 4x$$

函数 $z = e^{6y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 18y^2 + 48xy + 6y + 16x^2 + 8x + 1$$

$$\bigcirc 18y^2 + 24xy + 6y + 32x^2 + 8x$$

$$\bigcap$$
 18 $y^2 + 24 x y + 6 y + 32 x^2 + 8 x$

$$\bigcirc 18\,y^2 + 24\,x\,y + 6\,y + 32\,x^2 + 8\,x + 1$$

$$\bigcirc 9\,y^2 + 48\,x\,y + 6\,y + 32\,x^2 + 8\,x + 1$$

$$0$$
 $y^2 + 48$ x $y + 6$ $y + 32$ $x^2 + 8$ $x + 1$

$$0 18y^2 + 48xy + 6y + 32x^2 + 8x + 1$$

函数 $z = y^2 + xy - 6y + x^2 - 3x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc (0,3)$ $\bigcirc (0,-3)$ $\bigcirc (3,0)$ $\bigcirc (0,3)$ $\bigcirc (-3,0)$

函数 $z = 7e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-7,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{1}{7},0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (7,0)$

2022年7月20日

$\bigcirc 0$						
$\bigcirc 1$ $\bigcirc 1$	$\bigcirc 1$					
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7$	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	\bigcirc 7	\bigcirc 7	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 2x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -8y^2 - 8xy - 2x^2 + 1 \qquad \bigcirc -8y^2 - 4xy - 2x^2 + 1 \qquad \bigcirc -8y^2 - 8xy - x^2 + 1$$

$$\bigcirc -4y^2 - 4xy - 2x^2 + 1 \qquad \bigcirc -8y^2 - 4xy - x^2 + 1$$

問2 函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.

問3 函数 $z=e^{8\,y+8\,x}$ の (0,0) における 2 次近似式を求めよ.

問4 函数 $z = y^2 + xy - 5y + x^2 - 3x$ について、極値をとり得る点を求めよ.

 $\bigcirc \quad (\frac{7}{3}, \frac{1}{3}) \qquad \quad \bigcirc \quad (-\frac{1}{3}, -\frac{7}{3}) \qquad \quad \bigcirc \quad (\frac{1}{3}, \frac{7}{3}) \qquad \quad \bigcirc \quad (-\frac{1}{3}, \frac{7}{3})$

問5 函数 $z = 6e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ.

 $\bigcirc \quad (0,0) \qquad \quad \bigcirc \quad (\tfrac{2}{3},0) \qquad \quad \bigcirc \quad (-1,0) \qquad \quad \bigcirc \quad (-6,0) \qquad \quad \bigcirc \quad (6,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -8y^2 - 24xy - 18x^2 + 1 \qquad \bigcirc -8y^2 - 12xy - 9x^2 + 1$$

$$\bigcirc -4y^2 - 12xy - 18x^2 + 1 \qquad \bigcirc -8y^2 - 24xy - 9x^2 + 1$$

$$-8y^2 - 12xy - 9x^2 + 1$$

$$0 -4y^2 - 12xy - 18x^2 + 1$$

$$0 -8y^2 - 24xy - 9x^2 + 1$$

$$\bigcirc -8\,y^2 - 12\,x\,y - 18\,x^2 + 1$$

函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc \quad -y^2 - 4\,x\,y + 2\,y - 2\,x^2 + 2\,x \qquad \qquad \bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - x^2 + 2\,x$$

$$-2 y^2 - 4 x y + 2 y - x^2 + 2 x$$

$$\bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - 2\,x^2 + 2\,x \qquad \qquad \bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - x^2 + 2\,x$$

$$\bigcirc -2y^2 - 2xy + 2y - x^2 + 2x$$

$$\bigcirc \quad -2\,y^2 - 2\,x\,y + 2\,y - 2\,x^2 + 2\,x$$

函数 $z = e^{6y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc 9y^2 + 48xy + 6y + 32x^2 + 8x + 1$ $\bigcirc 18y^2 + 24xy + 6y + 32x^2 + 8x + 1$
 - $18y^2 + 48xy + 6y + 16x^2 + 8x + 1$

問4 函数 $z = y^2 + xy - 6y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad (-\frac{2}{3}, \frac{8}{3}) \qquad \bigcirc \quad (-\frac{2}{3}, -\frac{8}{3}) \qquad \bigcirc \quad (-\frac{8}{3}, -\frac{2}{3}) \qquad \bigcirc \quad (\frac{8}{3}, \frac{2}{3}) \qquad \bigcirc \quad (\frac{2}{3}, \frac{8}{3})$

函数 $z = 5e^x y^2 + 3xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (5,0) \qquad \bigcirc (0,0) \qquad \bigcirc (-1,0) \qquad \bigcirc (\frac{3}{5},0) \qquad \bigcirc (-5,0)$

2022年7月20日

\bigcap 0	\bigcap 0	$\bigcirc 0$	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap 0	\bigcap
		$\bigcirc 1$					
$\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
\bigcirc 3	$\bigcirc 3$						
$\bigcirc 4$							
\bigcirc 5	\bigcirc 5	$\bigcirc 5$					
$\bigcirc 6$							
\bigcirc 7	\bigcirc 7	\bigcirc 7	$\bigcirc 7$				
$\bigcirc 8$							
$\bigcirc 9$							

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問 1 函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc$$
 -32 y^2 - 24 xy - 18 x^2 + 1

$$\bigcirc -16\,y^2 - 24\,x\,y - 18\,x^2 + 1$$

$$\bigcap$$
 =32 u^2 = 48 $x u$ = 18 x^2 ±

$$-32y^2-48xy-9x^2+1$$

函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 6xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$-2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$\bigcirc \quad -2\,y^2 - 12\,x\,y + 2\,y - 18\,x^2 + 6\,x \qquad \qquad \bigcirc \quad -2\,y^2 - 12\,x\,y + 2\,y - 9\,x^2 + 6\,x$$

函数 $z = e^{6y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 18\,y^2 + 36\,x\,y + 6\,y + 9\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 9\,y^2 + 36\,x\,y + 6\,y + 18\,x^2 + 6\,x + 1$$

$$0$$
 9 $y^2 + 36$ x $y + 6$ $y + 18$ $x^2 + 6$ $x + 1$

$$\bigcirc$$
 18 $y^2 + 18 x y + 6 y + 18 x^2 + 6 x$

$$\bigcirc 18y^2 + 18xy + 6y + 18x^2 + 6x \qquad \bigcirc 18y^2 + 18xy + 6y + 18x^2 + 6x + 1$$

$$0 18y^2 + 36xy + 6y + 18x^2 + 6x + 1$$

問4 函数 $z = y^2 + xy - 5y + x^2 - 3x$ について、極値をとり得る点を求めよ.

$$\bigcirc \quad (-\frac{1}{3}, -\frac{7}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{7}{3}) \qquad \bigcirc \quad (-\frac{7}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (\frac{7}{3}, \frac{1}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{7}{3})$$

$$\left(\frac{1}{2}, \frac{7}{2}\right)$$

$$\left(-\frac{7}{2}, -\frac{1}{2}\right)$$

$$(\frac{7}{9}, \frac{1}{9})$$

$$\left(-\frac{1}{2},\frac{7}{2}\right)$$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 (8.0)

$$\bigcap$$
 (-1.0)

$$\left(\frac{1}{2}, 0\right)$$

$$\bigcap$$
 (0,0

$$\bigcirc \quad (8,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{1}{2},0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-8,0)$$

2022年7月20日

$\bigcirc 0 \bigcirc 0 \bigcirc 0$	0 00	0 00	0 00
$\bigcirc 1 \bigcirc 1 \bigcirc 1$	1 ()1 ()1	01 ()1 ()1
$\bigcirc 2 \bigcirc 2 \bigcirc 2$	$2\bigcirc 2\bigcirc 2$	$2 \bigcirc 2 \bigcirc$	$)_2 \bigcirc_2$
$\bigcirc 3 \bigcirc 3 \bigcirc 3$	3 03 03	3 (3)3 ()3
$\bigcirc 4 \bigcirc 4 \bigcirc 4$	4 04 04	1 04 0	$)4 \bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc 5$	5 05 05	5 05 0)5 ()5
$\bigcirc 6 \bigcirc 6 \bigcirc 6$	$6 \bigcirc 6 \bigcirc 6$	6 06 0	6 ()6
\bigcirc 7 \bigcirc 7 \bigcirc 7	7 07 07	7 07 0	7)7
$\bigcirc 8 \bigcirc 8 \bigcirc 8$	$8 \bigcirc 8 \bigcirc 8$	$08 \ $	$)8 \bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc 9$	9 09 09	9 ()	9 (9

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(2y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -y^2 - 6xy - 18x^2 + 1 \qquad \bigcirc -2y^2 - 12xy - 18x^2 + 1$$

$$\bigcirc -2y^2 - 12xy - 18x^2 + 1$$

$$\bigcirc \quad -2y^2 - 6xy - 18x^2 + 1 \qquad \quad \bigcirc \quad -2y^2 - 6xy - 9x^2 + 1$$

$$\bigcirc -2y^2 - 6xy - 9x^2 + 1$$

$$\bigcirc -2y^2 - 12xy - 9x^2 + 1$$

函数 $z = \log(4y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -8y^2 - 8xy + 4y - 2x^2 + 2x$$
$$\bigcirc -4y^2 - 8xy + 4y - 2x^2 + 2x$$

$$-4y^2 - 8xy + 4y - 2x^2 + 2x$$

$$\bigcirc -8y^2 - 8xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - x^2 + 2x$$

$$\bigcirc -8y^2 - 4xy + 4y - x^2 + 2$$

$$\bigcirc -8y^2 - 4xy + 4y - 2x^2 + 2x$$

函数 $z = e^{8y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 32 y^2 + 16 x y + 8 y + 8 x^2 + 4 x + 1 \qquad \bigcirc 32 y^2 + 16 x y + 8 y + 8 x^2 + 4 x$$

$$\bigcirc$$
 32 $y^2 + 16 x y + 8 y + 8 x^2 + 4 x$

$$\bigcirc 32\,y^2 + 32\,x\,y + 8\,y + 8\,x^2 + 4\,x + 1$$

$$\bigcirc 32\,y^2 + 32\,x\,y + 8\,y + 4\,x^2 + 4\,x + 1$$

$$0$$
 32 $y^2 + 32 x y + 8 y + 4 x^2 + 4 x + 1$

$$0 16y^2 + 32xy + 8y + 8x^2 + 4x + 1$$

問4 函数 $z = y^2 + xy - 9y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\bigcirc \quad \left(\frac{5}{3}, -\frac{16}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, \frac{16}{3}\right) \qquad \bigcirc \quad \left(-\frac{5}{3}, \frac{16}{3}\right) \qquad \bigcirc \quad \left(\frac{16}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(-\frac{16}{3}, \frac{5}{3}\right)$$

$$\left(\frac{5}{2}, \frac{16}{2}\right)$$

$$\left(-\frac{5}{2}, \frac{16}{2}\right)$$

$$(\frac{16}{2}, -\frac{5}{2})$$

$$\left(-\frac{16}{2}, \frac{5}{2}\right)$$

函数 $z = 6e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcap$$
 $(0,0)$

$$\left(\frac{2}{3},0\right)$$

$$\bigcirc (0,0) \qquad \bigcirc (\frac{2}{2},0) \qquad \bigcirc (-1,0) \qquad \bigcirc (6,0) \qquad \bigcirc (-6,0)$$

$$\bigcup$$
 $(6,0)$

$$(-6,0)$$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -18\,y^2 - 24\,x\,y - 4\,x^2 + 1 \qquad \bigcirc -18\,y^2 - 12\,x\,y - 8\,x^2 + 1$$

$$\bigcirc -18y^2 - 12xy - 8x^2 + 1$$

$$\bigcirc -18y^2 - 12xy - 4x^2 + 1$$

$$\bigcirc -18y^2 - 12xy - 4x^2 + 1$$
 $\bigcirc -9y^2 - 12xy - 8x^2 + 1$

$$\bigcirc -18\,y^2 - 24\,x\,y - 8\,x^2 + 1$$

函数 $z = \log(4y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$0 -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -4y^2 - 24xy + 4y - 18x^2 + 6x$$

$$\bigcirc -8y^2 - 12xy + 4y - 18x^2 + 6x$$

$$0 -8y^2 - 24xy + 4y - 9x^2 + 6x$$

$$\bigcirc \quad -8\,y^2 - 24\,x\,y + 4\,y - 9\,x^2 + 6\,x \qquad \quad \bigcirc \quad -8\,y^2 - 24\,x\,y + 4\,y - 18\,x^2 + 6\,x$$

$$\bigcirc -8y^2 - 12xy + 4y - 9x^2 + 6x$$

函数 $z = e^{6y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 18\,y^2 + 48\,x\,y + 6\,y + 32\,x^2 + 8\,x + 1 \qquad \qquad \bigcirc \quad 18\,y^2 + 48\,x\,y + 6\,y + 16\,x^2 + 8\,x + 1$$

$$\bigcap$$
 18 y^2 + 48 xy + 6 y + 16 x^2 + 8 x + 1

$$0 18y^2 + 24xy + 6y + 32x^2 + 8x$$

$$\bigcirc 18y^2 + 24xy + 6y + 32x^2 + 8x \qquad \bigcirc 18y^2 + 24xy + 6y + 32x^2 + 8x + 1$$

$$9y^2 + 48xy + 6y + 32x^2 + 8x + 1$$

問4 函数 $z = y^2 + xy - 7y + x^2 - 4x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{10}{3}, -\frac{1}{3}\right)$$

$$\left(-\frac{1}{3}, \frac{10}{3}\right)$$

$$\bigcirc \quad (-\frac{10}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{10}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{10}{3}) \qquad \bigcirc \quad (\frac{10}{3}, \frac{1}{3})$$

$$\left(\frac{1}{3}, \frac{10}{3}\right)$$

$$\left(\frac{10}{3}, \frac{1}{3}\right)$$

函数 $z = 6e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad (-6,0) \qquad \bigcirc \quad \left(\frac{2}{3},0\right) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (6,0)$$

$$(\frac{2}{3},0)$$

$$(-1,0)$$

$$\bigcirc \quad (0,0)$$

$$\bigcirc \quad (6,0)$$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -18\,y^2 - 36\,x\,y - 9\,x^2 + 1 \qquad \quad \bigcirc \quad -18\,y^2 - 36\,x\,y - 18\,x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 36 xy - 18 x^2 + 1

$$\bigcirc \quad -9\,y^2 - 18\,x\,y - 18\,x^2 + 1 \qquad \qquad \bigcirc \quad -18\,y^2 - 18\,x\,y - 18\,x^2 + 1$$

$$\bigcap$$
 -18 u^2 - 18 ru - 18 r^2 +

$$\bigcap$$
 $-18y^2 - 18xy - 9x^2 + 1$

函数 $z = \log(4y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -8y^2 - 8xy + 4y - 8x^2 + 4x \qquad \bigcirc -8y^2 - 16xy + 4y - 4x^2 + 4x$$

$$\bigcirc -8 y^2 - 16 x y + 4 y - 4 x^2 + 4 x$$

$$\bigcirc -8y^2 - 16xy + 4y - 8x^2 + 4x \qquad \bigcirc -8y^2 - 8xy + 4y - 4x^2 + 4x$$

$$\bigcirc -4y^2 - 16xy + 4y - 8x^2 + 4x$$

函数 $z = e^{8y+8x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 16y^2 + 64xy + 8y + 32x^2 + 8x + 1 \qquad \bigcirc 32y^2 + 32xy + 8y + 32x^2 + 8x$$

$$\bigcap$$
 32 $y^2 + 32 x y + 8 y + 32 x^2 + 8 x$

$$\bigcirc 32\,y^2 + 32\,x\,y + 8\,y + 32\,x^2 + 8\,x + 1$$

$$\bigcirc 32\,y^2 + 64\,x\,y + 8\,y + 16\,x^2 + 8\,x + 1$$

$$\bigcirc$$
 22 - 2 + 64 - ... + 9 - ... + 16 - 2 + 9 - ... + 3

$$\bigcirc$$
 32 $y^2 + 64 x y + 8 y + 32 x^2 + 8 x + 1$

問4 函数 $z = y^2 + xy - 7y + x^2 - x$ について、極値をとり得る点を求めよ.

$$\left(\frac{5}{2}, \frac{13}{2}\right)$$

$$\bigcirc \quad \left(\frac{5}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(-\frac{13}{3}, \frac{5}{3}\right) \qquad \bigcirc \quad \left(-\frac{5}{3}, \frac{13}{3}\right) \qquad \bigcirc \quad \left(\frac{13}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, -\frac{13}{3}\right)$$

$$(\frac{13}{2}, -\frac{5}{2})$$

$$(\frac{5}{2}, -\frac{13}{2})$$

函数 $z = 5e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad (-1,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-5,0) \qquad \bigcirc \quad (\frac{1}{5},0) \qquad \bigcirc \quad (5,0)$$

$$\bigcap$$
 $(0,0)$

$$\bigcirc$$
 (-5.0)

$$\bigcap$$
 $(\frac{1}{2},0)$

$$\bigcup$$
 $(5,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 2x)$ の (0,0) における 2 次近似式を求めよ.

$$9y^2 - 6xy - 2x^2 + 1$$

$$\bigcirc$$
 $-18y^2 - 6xy - 2x^2 + 1$

$$\int -18y^2 - 6xy - x^2 + 1$$

$$\bigcap$$
 $-18y^2 - 12xy - 2x^2 + 1$

函数 $z = \log(2y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -y^2 - 4xy + 2y - 2x^2 + 2x$$

$$\bigcirc -2y^2 - 2xy + 2y - 2x^2 + 2x$$

$$-2u^2 - 2xu + 2u - 2x^2 + 2x$$

$$\bigcirc -2y^2 - 4xy + 2y - x^2 + 2x$$

$$\bigcirc -2y^2 - 4xy + 2y - 2x^2 + 2x$$

$$0 -2y^2 - 4xy + 2y - 2x^2 + 2x$$

$$0 -2y^2 - 2xy + 2y - x^2 + 2x$$

函数 $z = e^{6y+2x}$ の (0,0) における 2 次近似式を求めよ. 問3

$$\bigcirc \quad 18\,y^2 + 6\,x\,y + 6\,y + 2\,x^2 + 2\,x + 1 \qquad \qquad \bigcirc \quad 18\,y^2 + 12\,x\,y + 6\,y + x^2 + 2\,x + 1$$

$$\bigcap$$
 18 $y^2 + 12 x y + 6 y + x^2 + 2 x + 1$

$$\bigcap$$
 18 $y^2 + 6 x y + 6 y + 2 x^2 + 2 x$

$$9y^2 + 12xy + 6y + 2x^2 + 2x + 1$$

問4 函数 $z = y^2 + xy - 6y + x^2 - x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(-\frac{4}{3}, \frac{11}{3}\right) \qquad \bigcirc \quad \left(\frac{4}{3}, \frac{11}{3}\right) \qquad \bigcirc \quad \left(-\frac{11}{3}, \frac{4}{3}\right) \qquad \bigcirc \quad \left(\frac{4}{3}, -\frac{11}{3}\right) \qquad \bigcirc \quad \left(\frac{11}{3}, -\frac{4}{3}\right)$

函数 $z = 5e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (5,0) \qquad \bigcirc (\frac{2}{5},0) \qquad \bigcirc (-5,0) \qquad \bigcirc (-1,0) \qquad \bigcirc (0,0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -18\,y^2 - 18\,x\,y - 9\,x^2 + 1 \qquad \quad \bigcirc \quad -18\,y^2 - 18\,x\,y - 18\,x^2 + 1$$

$$\bigcirc$$
 -18 y^2 - 18 xy - 18 x^2 + 1

$$\bigcirc -18y^2 - 36xy - 18x^2 + 1$$
 $\bigcirc -9y^2 - 18xy - 18x^2 + 1$

$$\bigcirc -9y^2 - 18xy - 18x^2 +$$

$$\bigcap$$
 $-18y^2 - 36xy - 9x^2 + 1$

函数 $z = \log(2y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$\bigcirc -2y^2 - 6xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 12xy + 2y - 18x^2 + 6x$$

$$0$$
 $-2y^2 - 12xy + 2y - 18x^2 + 6x$

$$\bigcirc -y^2 - 12xy + 2y - 18x^2 + 6x$$

$$\bigcirc -2y^2 - 6xy + 2y - 9x^2 + 6x$$

$$0 -2y^2 - 6xy + 2y - 9x^2 + 6x$$

函数 $z = e^{6y+2x}$ の (0,0) における 2 次近似式を求めよ. 問3

$$\bigcirc 9y^2 + 12xy + 6y + 2x^2 + 2x + 1$$

$$\bigcirc 18y^2 + 6xy + 6y + 2x^2 + 2x$$

$$\bigcap$$
 18 $y^2 + 6 x y + 6 y + 2 x^2 + 2 x$

$$\bigcap$$
 18 $y^2 + 12 x y + 6 y + x^2 + 2 x + 1$

$$\bigcirc 18y^2 + 12xy + 6y + x^2 + 2x + 1 \qquad \bigcirc 18y^2 + 12xy + 6y + 2x^2 + 2x + 1$$

$$\bigcap$$
 18 $y^2 + 6xy + 6y + 2x^2 + 2x + 1$

問4 函数 $z = y^2 + xy - 9y + x^2 - 4x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(\frac{1}{3}, -\frac{14}{3}\right) \qquad \bigcirc \quad \left(-\frac{14}{3}, \frac{1}{3}\right) \qquad \bigcirc \quad \left(\frac{14}{3}, -\frac{1}{3}\right) \qquad \bigcirc \quad \left(-\frac{1}{3}, \frac{14}{3}\right) \qquad \bigcirc \quad \left(\frac{1}{3}, \frac{14}{3}\right)$

函数 $z = 9e^x y^2 + xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-9,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{1}{9},0) \qquad \bigcirc \quad (9,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0$	0 0	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$	$\bigcirc 0$
$\bigcirc 1 \bigcirc 1 \bigcirc$	$)_1 \bigcirc_1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3 \bigcirc$)3 ()3	\bigcirc 3	$\bigcirc 3$	$\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4 \bigcirc$	$\bigcirc 4$ $\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5 \bigcirc$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7 \bigcirc$	7 (7	\bigcirc 7	$\bigcirc 7$	$\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8 \bigcirc$)8 ()8	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9 \bigcirc$	9 ()9	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問 1 函数 $z = \cos(8y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -32y^2 - 32xy - 8x^2 + 1$$

$$\bigcirc -32\,y^2 - 32\,x\,y - 4\,x^2 + 1$$

$$\bigcirc$$
 $-32 y^2 - 16 x y - 4 x^2 +$

$$-32y^2 - 16xy - 8x^2 + 1$$

問2 函数 $z = \log(6y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc -18y^2 - 36xy + 6y - 18x^2 + 6x$$

$$\bigcirc -9y^2 - 36xy + 6y - 18x^2 + 6x$$

$$-9 u^2 - 36 x u + 6 u - 18 x^2 + 6 x$$

$$\bigcirc \quad -18\,y^2 - 36\,x\,y + 6\,y - 9\,x^2 + 6\,x \qquad \qquad \bigcirc \quad -18\,y^2 - 18\,x\,y + 6\,y - 18\,x^2 + 6\,x$$

$$0 -18y^2 - 18xy + 6y - 9x^2 + 6x$$

函数 $z = e^{4y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc 8y^2 + 16xy + 4y + 8x^2 + 4x + 1 \qquad \bigcirc 8y^2 + 8xy + 4y + 8x^2 + 4x$$

$$\bigcap 8u^2 + 8xu + 4u + 8x^2 + 4x$$

$$0 \quad 4u^2 + 16xu + 4u + 8x^2 + 4x + 1$$

$$\bigcirc 4y^2 + 16xy + 4y + 8x^2 + 4x + 1 \qquad \bigcirc 8y^2 + 8xy + 4y + 8x^2 + 4x + 1$$

$$0$$
 8 $y^2 + 16 x y + 4 y + 4 x^2 + 4 x + 1$

函数 $z = y^2 + xy - 6y + x^2 - 3x$ について、極値をとり得る点を求めよ. 問 4

- $\bigcirc (0,3)$ $\bigcirc (3,0)$ $\bigcirc (0,3)$ $\bigcirc (0,-3)$ $\bigcirc (-3,0)$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (-8,0)$ $\bigcirc (8,0)$ $\bigcirc (0,0)$ $\bigcirc (\frac{1}{2},0)$ $\bigcirc (-1,0)$

2022年7月20日

,	\bigcap_{α}	\bigcap	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcap_{α}	\bigcirc
($\bigcup 0$	$\bigcup 0$	$\bigcirc 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$	$\bigcup 0$
(\bigcap_1	\bigcap_1	$\bigcirc 1$	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1	\bigcap_1
($\bigcup 2$	$\bigcup 2$	$\bigcirc 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$	$\bigcup 2$
			O ₃					
($\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$	$\bigcirc 4$
1	\bigcap_{Σ}	\bigcap_{Σ}	$\bigcirc 5$	\bigcap_{5}	\bigcap_{5}	\bigcap_{Σ}	\bigcap_{Σ}	\bigcap 5
	_					_	_	_
($\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$	$\bigcirc 6$
(\bigcap_{7}	\bigcap_{7}	\bigcirc 7	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}	\bigcap_{7}
	_	_	_	_	_	_	_	_
($\bigcup 8$	$\bigcup 8$	$\bigcirc 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$	$\bigcup 8$
($\bigcap_{\mathbf{Q}}$	\bigcap q	$\bigcirc 9$	\bigcap q	\bigcap q	$\bigcap Q$	$\bigcap g$	\bigcap q
٠,							()0	()0

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問 1 函数 $z = \cos(2y + 4x)$ の (0,0) における 2 次近似式を求めよ.

- $\bigcirc -2y^2 8xy 4x^2 + 1 \qquad \bigcirc -2y^2 4xy 8x^2 + 1 \qquad \bigcirc -y^2 4xy 8x^2 + 1$

- $\bigcirc -2y^2 8xy 8x^2 + 1$ $\bigcirc -2y^2 4xy 4x^2 + 1$

函数 $z = \log(6y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- \bigcirc -18 y^2 12 xy + 6 y 8 x^2 + 4 x

函数 $z = e^{4y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc \quad 8\,y^2 + 8\,x\,y + 4\,y + 8\,x^2 + 4\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 16\,x\,y + 4\,y + 8\,x^2 + 4\,x + 1$
- $\bigcirc \quad 8\,y^2 + 16\,x\,y + 4\,y + 4\,x^2 + 4\,x + 1 \qquad \qquad \bigcirc \quad 4\,y^2 + 16\,x\,y + 4\,y + 8\,x^2 + 4\,x + 1$
- - $0 8y^2 + 8xy + 4y + 8x^2 + 4x$

問4 函数 $z = y^2 + xy - 6y + x^2 - 2x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(-\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, \frac{10}{3}\right) \qquad \bigcirc \quad \left(-\frac{10}{3}, \frac{2}{3}\right) \qquad \bigcirc \quad \left(\frac{2}{3}, -\frac{10}{3}\right) \qquad \bigcirc \quad \left(\frac{10}{3}, -\frac{2}{3}\right)$

函数 $z = 8e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc (-8,0)$ $\bigcirc (0,0)$ $\bigcirc (8,0)$ $\bigcirc (-1,0)$ $\bigcirc (\frac{1}{2},0)$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(4y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc \quad -8\,y^2 - 16\,x\,y - 4\,x^2 + 1 \qquad \quad \bigcirc \quad -8\,y^2 - 8\,x\,y - 8\,x^2 + 1 \qquad \quad \bigcirc \quad -4\,y^2 - 8\,x\,y - 8\,x^2 + 1$$

$$-8y^2 - 8xy - 8x^2 + 1$$

$$-4y^2 - 8xy - 8x^2 + 1$$

$$\bigcirc -8y^2 - 16xy - 8x^2 + 1 \qquad \bigcirc -8y^2 - 8xy - 4x^2 + 1$$

$$\bigcirc -8y^2 - 8xy - 4x^2 +$$

問 2 函数 $z = \log(2y + 4x + 1)$ の (0,0) における 2 次近似式を求めよ.

$$0 -2y^2 - 8xy + 2y - 8x^2 + 4x$$

$$-y^2 - 8xy + 2y - 8x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 4x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 8x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 4x^2 + 4x$$

$$\bigcirc -2y^2 - 8xy + 2y - 4x^2 + 4x$$

$$\bigcirc -2y^2 - 4xy + 2y - 8x^2 + 4x$$

$$\bigcirc \quad -2\,y^2 - 4\,x\,y + 2\,y - 4\,x^2 + 4\,x$$

函数 $z = e^{4y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$\bigcirc \quad 4\,y^2 + 24\,x\,y + 4\,y + 18\,x^2 + 6\,x + 1 \qquad \qquad \bigcirc \quad 8\,y^2 + 12\,x\,y + 4\,y + 18\,x^2 + 6\,x + 1$$

$$\bigcirc$$
 8 $y^2 + 12 x y + 4 y + 18 x^2 + 6 x + 1$

$$0 8y^2 + 24xy + 4y + 9x^2 + 6x + 1$$

$$0 8y^2 + 12xy + 4y + 18x^2 + 6x$$

問4 函数 $z = y^2 + xy - 7y + x^2 - 3x$ について、極値をとり得る点を求めよ.

$$\left(\frac{11}{2}, -\frac{1}{2}\right)$$

$$\left(-\frac{11}{3},\frac{1}{3}\right)$$

$$\left(\frac{1}{3}, -\frac{11}{3}\right)$$

$$\left(\frac{1}{3}, \frac{11}{3}\right)$$

$$\bigcirc \quad (\frac{11}{3}, -\frac{1}{3}) \qquad \bigcirc \quad (-\frac{11}{3}, \frac{1}{3}) \qquad \bigcirc \quad (\frac{1}{3}, -\frac{11}{3}) \qquad \bigcirc \quad (\frac{1}{3}, \frac{11}{3}) \qquad \bigcirc \quad (-\frac{1}{3}, \frac{11}{3})$$

函数 $z = 9e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad (\frac{2}{9},0)$$

$$\bigcirc (9,0) \qquad \bigcirc (\frac{2}{9},0) \qquad \bigcirc (-9,0) \qquad \bigcirc (-1,0) \qquad \bigcirc (0,0)$$

$$\bigcirc \quad (-1,0)$$

$$\bigcirc \quad (0,0)$$

2022年7月20日

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(6y + 4x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcap$$
 $-18y^2 - 24xy - 8x^2 + 1$

$$0 -9y^2 - 12xy - 8x^2 + 1$$

$$\bigcap$$
 $-18y^2 - 24xy - 4x^2 + 1$

$$\bigcap$$
 $-18y^2 - 12xy - 8x^2 + 1$

函数 $z = \log(8y + 6x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

- $\bigcirc -32y^2 48xy + 8y 18x^2 + 6x$ $\bigcirc -16y^2 48xy + 8y 18x^2 + 6x$
- $\bigcirc -32y^2 24xy + 8y 9x^2 + 6x$ $\bigcirc -32y^2 48xy + 8y 9x^2 + 6x$

 - \bigcirc $-32 y^2 24 x y + 8 y 18 x^2 + 6 x$

函数 $z = e^{8y+4x}$ の (0,0) における 2 次近似式を求めよ. 問 3

- $\bigcirc 32y^2 + 16xy + 8y + 8x^2 + 4x + 1$ $\bigcirc 32y^2 + 32xy + 8y + 4x^2 + 4x + 1$
- $\bigcirc 16y^2 + 32xy + 8y + 8x^2 + 4x + 1$ $\bigcirc 32y^2 + 32xy + 8y + 8x^2 + 4x + 1$
 - \bigcirc 32 $y^2 + 16 x y + 8 y + 8 x^2 + 4 x$

問4 函数 $z = y^2 + xy - 9y + x^2 - 2x$ について、極値をとり得る点を求めよ.

- $\bigcirc \quad \left(-\frac{16}{3}, \frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{16}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, -\frac{16}{3}\right) \qquad \bigcirc \quad \left(-\frac{5}{3}, \frac{16}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, \frac{16}{3}\right)$

函数 $z = 5e^x y^2 + 2xe^x$ について、極値をとり得る点を求めよ. 問 5

- $\bigcirc \quad (-1,0) \qquad \bigcirc \quad (\frac{2}{5},0) \qquad \bigcirc \quad (5,0) \qquad \bigcirc \quad (-5,0) \qquad \bigcirc \quad (0,0)$

2022年7月20日

$\bigcirc 0 \bigcirc 0$					
$\bigcirc 1 \bigcirc 1$	$\bigcirc 1$	$\bigcirc 1$ ($)_{1}$ ($\bigcup 1$	$\bigcirc 1$
$\bigcirc 2 \bigcirc 2$	$\bigcirc 2 \bigcirc 2$	$\bigcirc 2$ ($)_2$ ($\bigcirc 2$	$\bigcirc 2$
$\bigcirc 3 \bigcirc 3$	\bigcirc 3 \bigcirc 3	$\bigcirc 3$ ($)_3$ ($\bigcirc 3$	$\bigcirc 3$
$\bigcirc 4 \bigcirc 4$	$\bigcirc 4 \bigcirc 4$	$\bigcirc 4$ ($)_{4}$ ($\bigcirc 4$	$\bigcirc 4$
$\bigcirc 5 \bigcirc 5$	$\bigcirc 5 \bigcirc 5$	$\bigcirc 5$ ($)_5$ ($\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6 \bigcirc 6$	$\bigcirc 6 \bigcirc 6$	$\bigcirc 6$	$)_{6}$ ($\bigcirc 6$	$\bigcirc 6$
$\bigcirc 7 \bigcirc 7$	$\bigcirc 7 \bigcirc 7$	$\bigcirc 7$ ($)_7$ ($\bigcirc 7$	$\bigcirc 7$
$\bigcirc 8 \bigcirc 8$	$\bigcirc 8 \bigcirc 8$	$\bigcirc 8$ ()8 ($)_8$	$\bigcirc 8$
$\bigcirc 9 \bigcirc 9$	$\bigcirc 9 \bigcirc 9$	$\bigcirc 9$ ()9 ($\bigcirc 9$	$\bigcirc 9$

← 学生番号を左にマークし、氏名を下に記入 してください。

氏名

問1 函数 $z = \cos(8y + 6x)$ の (0,0) における 2 次近似式を求めよ.

$$\bigcirc$$
 $-32y^2 - 48xy - 18x^2 + 1$

$$\bigcirc -32\,y^2 - 24\,x\,y - 18\,x^2 + 1$$

$$\bigcap$$
 =32 u^2 = 24 $x u$ = 9 x^2 +

$$\bigcap$$
 -16 y^2 - 24 xy - 18 x^2 + 1

函数 $z = \log(8y + 2x + 1)$ の (0,0) における 2 次近似式を求めよ. 問 2

$$0 \quad -32y^2 - 16xy + 8y - x^2 + 2x$$

$$\bigcirc -32y^2 - 16xy + 8y - x^2 + 2x \qquad \bigcirc -32y^2 - 8xy + 8y - x^2 + 2x$$

$$\bigcirc \quad -16\,y^2 - 16\,x\,y + 8\,y - 2\,x^2 + 2\,x \qquad \quad \bigcirc \quad -32\,y^2 - 8\,x\,y + 8\,y - 2\,x^2 + 2\,x$$

$$\bigcirc -32y^2 - 8xy + 8y - 2x^2 + 2x$$

函数 $z = e^{4y+6x}$ の (0,0) における 2 次近似式を求めよ. 問 3

$$0 8y^2 + 24xy + 4y + 18x^2 + 6x + 1$$

$$\bigcirc 8y^2 + 24xy + 4y + 18x^2 + 6x + 1$$

$$\bigcirc 4y^2 + 24xy + 4y + 18x^2 + 6x + 1$$

$$0.8y^2 + 12xy + 4y + 18x^2 + 6x + 1$$

$$0 8y^2 + 12xy + 4y + 18x^2 + 6x$$

問4 函数 $z = y^2 + xy - 9y + x^2 - 2x$ について、極値をとり得る点を求めよ.

$$\left(-\frac{16}{9}, \frac{5}{9}\right)$$

$$(\frac{5}{2}, \frac{16}{2})$$

$$\bigcirc \quad \left(-\frac{16}{3}, \frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, \frac{16}{3}\right) \qquad \bigcirc \quad \left(\frac{16}{3}, -\frac{5}{3}\right) \qquad \bigcirc \quad \left(\frac{5}{3}, -\frac{16}{3}\right) \qquad \bigcirc \quad \left(-\frac{5}{3}, \frac{16}{3}\right)$$

$$(\frac{5}{2}, -\frac{16}{2})$$

$$\left(-\frac{5}{2}, \frac{16}{2}\right)$$

函数 $z = 5e^x y^2 + 4xe^x$ について、極値をとり得る点を求めよ. 問 5

$$\bigcirc \quad (-5,0) \qquad \bigcirc \quad (0,0) \qquad \bigcirc \quad (5,0) \qquad \bigcirc \quad (\frac{4}{5},0) \qquad \bigcirc \quad (-1,0)$$

$$\bigcap$$
 (0, 0

$$\bigcirc$$
 (5.0

$$\left(\frac{4}{5},0\right)$$

$$\bigcup (-1,0)$$