VEHICLE ROUTING FOR WASTE COLLECTION IN BAGUIO CITY USING PSO-GA

BY LANCE OLIVER LICNACHAN

A SPECIAL PROBLEM SUBMITTED TO THE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

COLLEGE OF SCIENCE

THE UNIVERSITY OF THE PHILIPPINES

BAGUIO, BAGUIO CITY

AS PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN COMPUTER SCIENCE

This is to certify that this Special Problem entitled "Vehicle Routing for Waste Collection in Baguio City Using PSO-GA", prepared and submitted by Lance Oliver Licnachan to fulfill part of the requirements for the degree of Bachelor of Science in Computer Science, was successfully defended and approved on June 25,

2018.

JOEL M. ADDAWE, Ph.D. Special Problem Adviser

The Department of Mathematics and Computer Science endorses the acceptance of this Special Problem as partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science .

JERICO B. BACANI, PH.D.
Chair
Department of Mathematics and
Computer Science

Table of Contents

Acknow	ledgments	•		•					•	V
Abstrac	t									vi
List of	Γables	٠								vii
List of I	Figures	•								ix
Chapter	1. Introduction		_			_				1
1.1	Background of the Study									7
1.2	Statement of the Problem									10
1.3	Objective of the Study									10
1.0	1.3.1 General Objective of the Study									10
	1.3.2 Specific Objective of the Study									11
1.4	Significance of the Study									11
1.5	Scope and Limitation									11
1.0	scope and Emmadelin	•	•	•	•	•	•	•	•	
Chapter	2. Preliminaries									13
	2.0.1 Definitions									13
Chapter	3. Review of Related Literature									42
3.1	Vehicle Routing Problem									42
3.2	PSO									48
	3.2.1 PSO Background									51
	3.2.2 Further Developments									54
3.3	GA									57
	3.3.1 Components of GA									57
3.4	Constrained Optimization Problems									65
0.1	3.4.1 Penalty Function Approach									67
	3.4.2 PSO Fly-back Approach									68
3.5	PSO-GA Approach									69
0.0	3.5.1 Parts of PSO-GA									69
	5.5.1 Tatts 01150-GA	•	•	•	•	•	•	•	•	09
Chapter	4. Methodology									75
4.1	Problem Model									75
1.1	4.1.1 Waste Collection Vehicle Routing Problem Model									76
4.2	Algorithm Implementation									86
4.2	Algorithm Testing									91
-+ .)	/ NEVI DITTE I NATITE	_	_	_	_		_	_	_	.71

Chapter 5. Results and Discussion
Chapter 6. Conclusion and Recommendation
List of References
Appendix A.Table of Node Markers
Appendix B.Table Showing the Distances Between each Barangay Marker
Appendix C.Table of Demands per Barangay
Appendix DComplete Results for 4 Nodes
Appendix E.Complete Results for 5 Nodes
Appendix F.Complete Results for 8 Nodes
Appendix GComplete Results for 11 and 16 Nodes
Appendix HComplete Results for 11 and 16 Nodes Real-World Case
Appendix I.Complete Results for 129 Nodes
Appendix J Code

Acknowledgments

I have had many troubles tribulations in conducting this study however, I was not alone in bearing these problems. Firstly, I would like to acknowledge me adviser, Dr. Joel M. Addawe, for sharing his wisdom and dedicating his time to guide me during the conduction of this study. I would like to extend my appreciation to Prof. Lee Javellana who aided me in using the Matlab software. The model presented in this study was not solely my own but a product of the collaboration with my colleagues, Aaron Dumon, and Juancho Meneses. I would also like to acknowledge the General Services Office - Solid Waste Management Division of Baguio City for entertaining my requests and questions about the state of waste management in the city.

During the conduction of this study, I have fallen mentally and physically ill, therefore, I would love to extend my gratitude to my family and friends for their support in my pursuit to accomplish this study.

Abstract

Vehicle Routing for Waste Collection in Baguio City Using PSO-GA

Lance Oliver Licnachan Adviser:

University of the Philippines, 2018 Joel M. Addawe, Ph.D.

In Baguio City, waste collection has been a main concern for the past years as the population continually increases. The waste collection problem was modeled as a Capacitated Vehicle Routing Problem which considers the total travel distance and fleet size. A hybrid PSO-GA algorithm was employed to obtain the set of routes that give the minimum amount of operational costs. The algorithm was first tested under small-scale problem instances. It was observed that when vehicle capacities were being maximized, the total operational costs decreased. The algorithm was able to reduce the total operational cost for a problem size of ten nodes. However, it failed at obtaining the optimal solution when the problem size was extended to fifteen nodes. When all 129 barangays were considered, the algorithm experienced premature convergence and was not able to obtain any consistent results. Therefore, it was concluded that although the hybrid PSO-GA algorithm of Garg[13]can be used to solve vehicle routing problems, it is not suitable for large scale instances of the problem set.

List of Tables

5.1	Summary of Results for the 4 Node Small Scale Test	97
5.2	Summary of Results for the 5 Node Small Scale Test	99
5.3	Summary of Results for the 8 Node Test Case	101
5.4	Summary of Results for the 11 and 16 Node Test Cases	103
5.5	Summary of Results for the 11 and 16 Node Real-World Schedule Tests $% \left(1\right) =\left(1\right) +\left(1\right)$	105
5.6	Summary of Results for the 130 Nodes Test Case	106
A.1	Nodes and their Google Maps Markers	115
B.1	Distances between Nodes in Kilometers	118
C.1	Demands per Barangay	141
D.1	Complete Results for 4 Nodes	142
E.1	Complete Results for 5 Nodes	145
F.1	Complete Results for 8 Nodes	148
G.1	Complete Results for 11 Nodes	151
G.2	Complete Results for 16 Nodes	152
H.1	Complete Results for 11 Nodes (Real-World Case)	154
H.2	Complete Results for 16 Nodes (Real-World Case)	154
I.1	Complete Results for 129 Node Test Case	157

List of Figures

1.1	A Map Showing the Locations of the 129 Barangays and the Irisan ERS-MRF	12
2.1	A Venn Diagram Showing the Relationship of A, B and $C \ldots \ldots$	18
2.2	A Venn Diagram Showing $A \cup D$	18
2.3	A Venn Diagram Showing $A \cap D$	18
2.4	A Venn Diagram Showing \bar{A}	19
2.5	A Venn Diagram Showing $A-D$	19
2.6	A Venn Diagram Showing the Relationship of Number Sets	20
2.7	A Real Number Line	22
2.8	A Coordinate Plane	23
2.9	Vectors in a Coordinate Plane	24
2.10	Adding and Subtracting Vectors (Coordinate Plane)	24
2.11	Visual examples of arrays	26
2.12	Sample Graph	31
2.13	Flowchart of the Dijkstra Algorithm	33
2.14	Flowchart of Floyd-Warshall Algorithm	35
2.15	Floyd-Warshall Algorithm Example	36
3.1	Flowchart of the PSO Algorithm	50
3.2	Flowchart of the GA Algorithm	59
3.3	Roulette Wheel Selection	62
3.4	Simple Elimination Selection	62
3.5	Singe Point Cross-Over	63
3.6	Mutation in GA	64
3.7	Flowchart of PSO GA Algorithm	73
4.1	Graph of the Basic Example	82
4.2	Graph of the 4 Nodes Small Scale Example	91
4.3	Graph of the 5 Nodes Small Scale Example	93

5.1	Optimal Route of the 4 Node Test	98
5.2	Optimal Route of the 5 Node Test	100
5.3	Optimal Route of the 8 Node Test	102
5.4	Optimal Route of the 11 Node Test	104
5.5	Optimal and Original Route of the 11 Nodes Real-World Case	106

Chapter 1

Introduction

Municipal solid waste management is one of the key services held as a foundation in developing urban cities around the world. There would be an abundant accumulation of waste in cities without waste collection and management services. In addition, our natural resources would dwindle without proper and efficient recycling methods. Human settlements would become unsustainable as the current lifestyle that is centered upon production and consumption leads to rapid generation of waste. Cities would become more susceptible to outbreaks and pandemics because accumulated wastes serve as breeding grounds for diseases and their carriers (i.e. rodents, mosquitoes, etc.). Given the effects of the lack of waste management services, all units of the community should establish their own waste management systems to cope with the problems that are brought about by large amounts of solid waste.

Waste, in this context, is defined as matter that is unwanted or unusable. Waste refers to matter which are discarded after its primary use or are deemed defective, or worthless upon production. There are various types of waste but in this study, we focus on municipal solid waste. This is the type of waste that is produced daily from residential, commercial, institutional and industrial sources. The term 'municipal' comes from the fact that it is the duty of the municipality (local government) to collect and manage these kinds of waste. 'Solid' refers to their physical state. A list of what can be considered as municipal solid waste is as follows:

- Biodegradable waste is any form of organic matter that is found in the trash. This type of solid waste are usually composed of leftover food, by products of cooking, agricultural waste (such as lawn clippings, dead leaves, etc.) and paper-based materials.
- Recyclable materials are objects that can be processed for reuse. Examples of such objects are glass, bottles, jars, clothes, fabrics, rubber etc.

- Residual waste is the type of solid waste that is neither recyclable nor reusable. This may include items that are beyond repair such as broken instruments, shattered glass and ceramics, and used fireworks.
- Inert or nonreactive waste such as dirt, rocks, construction debris, etc.

 These items do not react, chemically or physically, with other substances and hence, do not decompose.
- Electrical and electronic waste by its name, are discarded electrical and electronic devices or components such as appliances, light bulbs, mobile phones, television sets, etc.
- Composite waste are objects that are composed of two or more constituent materials such as toys, tetra packs, clothing, fiber glass, etc.
- Hazardous waste are materials that can pose health risks such as paints, batteries, aerosol sprays, and fertilizers
- Toxic waste are poisonous substances such as pesticides, herbicides and fungicides
- Biomedical waste are objects that may have been used for medical procedures or sanitation. These objects may contain infectious materials such as expired pharmaceuticals, used medical equipment, used tissues, etc.

Waste management consists of all activities involved in handling waste from the source to its final disposal. This includes the collection, transportation, treatment, segregation, and disposal of waste. We focus specifically on waste collection which includes gathering, transporting, and disposing of solid waste. The waste collection process involves deploying a fleet of vehicles that collect and transport the waste from communities to facilities that receive, sort, and process the waste. Waste processing may be done in the form of incineration, rapid degradation, segregation, resource recovery, energy recover, etc.

Waste can be collected in several different ways. House-to-house collection, if possible, is done by individually visiting each house and collecting the garbage straight from the source. This can be done in small subdivisions and areas near disposal sites. Larger communities can settle for gathering waste at designated locations around the area or specifically at large containers called "community bins" in the neighborhood. Another way is through curbside pick-ups where households leave their garbage directly in front

of their houses to be picked-up by waste collection vehicles along the way. A schedule may be followed when the collection is done this way. Households can also volunteer to personally deliver their garbage directly to disposal sites. Local governments can get into a contract with private companies for waste collection services. These companies usually have specialized facilities and vehicles that can handle the job.[18]

Households can be asked to segregate their waste before collection. Waste can be sorted into different sets of categories. These categories might include, wet and dry, biodegradable and non-biodegradable, reusable, recyclable, paper, glass, plastics, aluminum etc. The quality of waste segregation can determine the efficiency and effectiveness of waste processing. Upon reaching disposal facilities, waste can be re-segregated by a machine-sorter or by designated personnel called 'pickers'. The reusable quality of an object can be determined by the machine or by personally inspecting the object. Waste such as bear bottles and plastic-containers can be taken out, cleaned, and re-purposed. Waste such as broken plastic frames or metals can undergo secondary use through remelting and remolding. Papers and cardboard can be recycled for a different use such as fire starters or insulation. Biodegradable waste can be converted to compost and degraded through anaerobic digestion. The rest can be piled into landfills or disintegrated using incinerators. Landfills, however, come with other sets of problems such as health-care, contamination, pollution, land use etc. On the other hand, incinerating waste produces greenhouse gases which may raise health care issues. We must also consider that there exists materials that are immune to incineration such as soil and rocks. Toxic waste disposal is also an arduous task since harmful chemicals are involved. One cannot just dump them in a field and hope for the best.

Waste management becomes better as we develop the methods and facilities needed. Improvements in waste management results in the development of other facets of the communities, however, this comes at a price. Urbanization and development comes with the production of large volumes of waste. Although economic developments and industrialization improves the standards of living, the increase in the total amount of disposable income encourages individuals to consume more goods and services, thereby resulting in an increase in waste generation. Major economies also run on an unyielding cycle of production and consumption which leads to a rapid increase in waste generation. According

to the study conducted by the World Bank, called "WHAT A WASTE: A Global Review of Solid Waste Management", back in 2012, the global urban population annually produced about 1.3 billion metric tons of Municipal Solid Waste (MSW) which is expected to grow to about 2.2 billion metric tons in 2025.[18]

According to the WHAT A WASTE, [18] waste management in underdeveloped countries are worse than that of developing ones. This is because there are few to no proper facilities or vehicles that are needed to efficiently handle waste collection. Poorly managed waste can result to the destruction of the environment, and endangerment of public health. If waste is left uncollected, it may lead to sewer flooding, pollution, road blockades, rodent infestations, and disease outbreaks. Methane, a highly flammable gas, is produced when garbage is decomposed, hence, uncollected waste can become a source of residential fires. Moreover, toxic chemicals from household materials may seep out of garbage bags and contaminate both soil and water. This endangers both flora and fauna living in the environment. In addition to the effects to public health, mismanaged waste can also impact an area's economy. Businesses that do not comply with the rules and regulations imposed by public health and safety get shut down. Uncollected waste can also result to a hazardous work environment that can endanger both employees and customers. Garbage can be a breeding ground for diseases which can lead to epidemics that may cripple not only the work flow but also foreign interest. In contrast, a city that has efficient waste management would be able to develop faster as its focus shifts to other community needs such as transportation, health, and education.

Developed nations highly depend upon their waste management service providers to move waste out of urban districts and industrial sectors. These services help boost public health and provide a clean atmosphere for a conducive area of business. Given that waste collection and management is an important sector for any growing economy, there is a need to allocate funds for the development and maintenance of waste management services. According to WHAT A WASTE[18], solid waste management costs will increase from an annual \$205.4 billion in 2012 to about \$375.5 billion in 2025 to compensate for the projected increase in the amount of waste generated. There is a high allocation of funds towards waste management because there are several requirements needed for a safe and efficient operation. First of all, the construction and maintenance of facilities

needed for safely dealing with waste are expensive. Moreover, a large fleet of waste collection vehicles are needed to serve an ever growing population. Wages for both formal and informal employees are also covered in the budget. Formal employees are those who are known and legally registered under the company while informal employees are those who volunteer to help. The employees involved in waste management are not exclusively garbage collectors. There are multiple bodies at work in waste management. Statistical analysts and business managers are also needed for boosting efficiency not only in handling wastes but also in managing operational costs.

As discussed, waste collection services is an expensive service to develop and maintain. In order to quantify waste collection, we consider the costs involved. Costs in waste collection may involve staff salaries, vehicle purchases, construction of buildings and infrastructure, fuel expenditure, vehicle and equipment maintenance, land purchase, business contracts, environmental and health care expenditures, etc. Each of the collection options presented above also have different ways of computing cost. The population density, demographics, and coverage of the area also affects how much money is needed. It is therefore crucial to find ways to minimize the costs involved while not compromising efficiency. Therefore, we try to look into finding an operation that can be optimized. Specifically we try to generate the most efficient set of waste collection routes in order to minimize waste collection expenses.

The routes of waste collection vehicles are, conventionally, manually determined by drivers on-site. Data collection and surveys can help analyze the conditions that affect vehicle routing such as traffic severity and road availability. However, the use of such methods produce inflexible routes because they are instance-based data. In the recent years, with the development of commercial real-time interactive navigational tools such as Google Maps, Waze and Global Positioning Systems, vehicle routing has become a hot topic. Researchers have used similar kinds of systems to improve delivery and collection services. In order to solve these kinds of problems, a vehicle routing problem model is patterned after the specific problem. Moreover, there are various methods that can be used to solve these kinds of problems.

The Vehicle routing problem (VRP) involves the deployment of a fleet of vehicles which are expected to service a given set of customers. Solutions to the vehicle routing

problem are a set of routes that allow each customer to be serviced by a vehicle in the fleet. The optimal solution is a set of routes that gives the minimum amount of traveling cost. Th VRP is a generalization of the **Traveling Salesman Problem (TSP)**. The TSP problem description is as follows: a salesman is tasked to visit a number of cities during a single trip. He/she must begin and end at the same city. Each city is linked to all other cities. There may be a number of ways to travel from one city to another such as by plane, vehicle, boat, etc. Each of these options are associated with a cost that represents how "expensive" it is to travel from one city to another using that means of transportation. The salesman wants to minimize the costs involved in traveling the entire trip. This can be done by taking on the set of transportation options that give either the least amount of distance, time, expenses or a combination of the three. The aim is to generate a path or a sequence of cities that lets the salesman pass through all cities exactly once before returning to the starting city, spends the minimum amount of travel expenses and the travels shortest possible distance.

The vehicle routing problem is typically the same problem however, there are more than one salesman (vehicle). The load of the single vehicle is distributed among the fleet in order to save other costs (i.e. time) and maximize man power. VRP is a combinatorial problem that deals with arranging multiple customer points along one or more path(s) that gives the smallest amount of transportation cost while satisfying known constraints. When we ignore expenses, VRP is typically concerned with the minimization of the temporal and/or geographical aspects of traveling along road networks while accommodating the most amount of customer demands along the way. Customers are usually distributed at different locations in the real world. In a capacitated VRP, each customer has a certain amount of demand that utilizes the maximum capacity of the vehicles servicing them. Vehicles are assumed to neither collect nor delivery more than their capacities. VRP models may also include minimizing the number of vehicles needed to satisfy the total customer demand.

Municipal waste collection VRP involves vehicles collecting municipal waste at customer locations or community bins and depositing their load at disposal sites. Vehicles start at a depot where they are parked when inactive. They are then dispatched and travel along their respective routes while collecting waste. When full, the vehicle then

moves to a disposal site to unload the waste collected. The vehicle may then either continue along its path or return to the depot. Waste Collection Vehicle Routing Problems may impose that waste must either be completely or partially collected by a vehicle. Complete collection invokes the rule in VRP that customers are only serviced once by any vehicle. On the other hand, partial collection implies that customers can be serviced more than once by one or more vehicles.

In order to solve municipal waste collection VRP, we use the hybrid Particle Swarm Optimization-Genetic Algorithm (PSO-GA) proposed by Harish Garg[13]. The hybrid PSO-GA algorithm is a heuristic approach used in solving constrained optimization problems. Garg used the algorithm in solving engineering designs problems such as the design of a pressure vessel problem and the welded beam problem. These problems are constrained due to the nature of the materials used and physical laws involved. VRP can also be considered a constrained optimization problem wherein the constraints are imposed by vehicle capacities, company policies, time limits etc. Hence we approach the problem with the algorithm. The next sections of this paper are as follows. Chapter 2 is a section dedicated to the different terms used throughout this document. Chapter 3 involves the discussion of related studies conducted by researchers in the previous years. Chapter 4 is a discussion of the method used in order obtain the set of routes. Chapter 5 is where the results from the tests done with the method in chapters 4 is analyzed. Chapter 6 is where the results are summarized and conclusions are stated.

1.1 Background of the Study

According to the National Solid Waste Management Status Report (2008-2014) by the National Solid Waste Management Commission (NSWMC) under the Department of Environment and Natural Resources[25], about 37,000 tons of municipal solid waste (MSW) are produced in the Philippines. Based on the available data from 2008 to 2013, most of the total municipal solid waste in the Philippines comes from the residential sector at 56.7%, while the contributions of the commercial, institutional, and industrial sectors are 27.1%, 12.1% and 4.1% respectively. The municipal solid waste is mostly composed of biodegradable waste at 52.31% while recyclables, residual and special wastes contribute

27.78%, 17.98% and 1.93% respectively. Biodegradable waste consists of kitchen or food waste as well as yard or garden waste. Recyclable wastes consists of plastic packaging, paper and cardboard, metals, glass, textile, leather and rubber. Special waste consists of household health-care waste, electrical and electronic equipment, bulky waste and other hazardous materials. Residual waste is composed of the waste that is neither biodegradable, recyclable, nor special waste. This is the type of waste that is sent to landfills. It was projected that the amount of MSW is to increase to about 40,000 tons in 2016 from 37,000 in 2012[26]. Out of the 16 regions, the Cordillera Administrative Region (CAR) contributed about 1.66% in 2012.

In 2015, the City of Baguio in the Cordillera Administrative Region conducted a Waste Analysis and Characterization Survey (WACS)[12] where they investigated the output of garbage in the city. It was found that the residents of the city produced about 400 tons of mixed waste daily, 41.67% being biodegradable, 33.78% recyclables, 21.41% residuals for recycling, 2.74% residuals for disposal and 0.41% special wastes. Most of the generated waste came from the commercial sector at 60.44%. The contributions of the residential, institutional, and industrial sectors are 35.16%, 3.53%, and 0.86% respectively. Baguio City is essentially a place where farmers from both the surrounding mountains and valleys take their crops to be sold, hence, the reason for the commercial sector generating a majority of its waste.

In relation to the WACS, the city drafted a 10 year solid waste management plan as required by Republic Act 9003 or the Ecological Solid Waste Management Act of 2000. Using the WACS, it was projected that the population of Baguio City would climb to about 398, 215 in 2025 from 337, 798 in 2015 and the daily generated waste would rise to about 522 tons from 402 tons. Inclusive of this 10 year solid waste management plan, several facilities are to be constructed for the recovery of resources from municipal solid waste. The plan was approved by the NSWMC on 2017. The city is now en route to establishing and developing several waste collection facilities for the next ten years, namely, a centralized materials recovery facility, an engineered sanitary land-fill, an anaerobic digester, a waste-to-energy plant, Environmental Recycling System machines, a health and medical waste treatment plant, and a special waste treatment plant. [32] As of 2018, Baguio City has 14 functioning waste collection trucks, two of which are

used as a quick response team in cases of emergencies. The city has purchased 4 more vehicles on January of the same year. This move of purchasing vehicles was said to boost efficiency and to keep-up with the growing tourist influx during the weekends, holidays and the incoming summer vacation.[33] The 14 waste collection vehicles are responsible for servicing the 129 barangays (villages) inclusive of the Central Business District. Vehicle compartments are somewhat partitioned such that there is segregation between residual and biodegradable waste. Recyclable materials are usually dealt with by the barangays (villages) who hire personnel to sort the garbage and take out reusable and recyclable materials. The drivers follow a 5-day schedule, the other two days of the week are given as rest days. In each of the five days, they are to service a set of 2-5 barangays. The drivers are set to work 9 hours each working day. Currently, the drivers are the ones who select their routes. They try to avoid traffic in order to attend to each designated collection site where the residents of each barangay pool their waste. All vehicles start at the Eco-Waste Recovery Services-Material Recovery Facility (ERS-MRF) at Barangay Irisan where the drivers sign in for the day. Garbage is collected until vehicle capacities are reached. Waste is returned to the ERS-MRF for final sorting. The residual waste is then transported to the Garbage Transfer Station at Barangay Dontogan where it is placed before it is finally transported to Capas, Tarlac where for final disposal. Biodegradable waste is composted while recyclable and reusable materials are sold. It is important to note that there are no specific time windows when each collection site is visited because there are too much variables that can affect collection time such as traffic conditions, weather conditions, amount to be collected, etc.

Indeed, the city is doing its part to reduce the carbon footprint by employing the no plastic policy or the "Plastic and Styrofoam-Free Baguio Ordinance" of 2017. This city ordinance regulates the sale, distribution and use of plastic bags and styrofoams in the city. Instead of plastics and styrofoam containers, vendors are encouraged "to provide or make available to customers for free or for a cost, paper bags or reusable bags or containers made of paper or materials which are biodegradable, for the purpose of carrying out goods or other items from the point of sale.[29]

In line with these city policies and activities, we study the current efficiency of the routing and scheduling of waste collection vehicles. Our main motivation is to help the

community.

1.2 Statement of the Problem

We want to find a way to reduce the operational costs of waste collection in Baguio City. It was observed in What a Waste [18] that the cost of waste collection is large for any developing country. In parallel, Baguio City, for over 10 years, has spent over 1 billion Philippine Pesos (Php) for hauling the city's solid waste to the sanitary landfill in Capas, Tarlac. [20] This involves covering the costs in the operation of collection, transportation, and disposal. In 2017, City Budget Officer Leticia Clemente estimated the annual garbage disposal expense at Php 100 million, where Php 80 million of which was spent for hauling and tipping fees in Capas, Tarlac; this amount also covers the expenses on personnel, garbage trucks, and other operating expenses. The city council, like any other, aims to reduce annual solid waste management expenses so that the budget can be allocated elsewhere. We approach the problem by modeling the waste collection problem into a vehicle routing problem wherein the goal is to obtain the minimum travel distance required to collect waste and transport it back to the city's Eco-Waste Recovery Services-Material Recovery Facility (ERS-MRF) at Barangay Irisan for sorting before it is transported to Capas, Tarlac. A hybrid Particle Swarm Optimization - Genetic Algorithm (PSO-GA) proposed by Harish Garg[13] will be used to solve the vehicle routing problem.

1.3 Objective of the Study

1.3.1 General Objective of the Study

The general objective of this study is to identify which processes involved in Baguio City's waste management can be optimized in order to reduce the costs of operation. We also want to explore the capabilities of the hybrid PSO-GA algorithm proposed by Harish Garg[13].

1.3.2 Specific Objective of the Study

We identify that both sorting and waste collection are processes that can affect the cost of waste management. We know that the city has implemented its own policies on waste segregation therefore, we look into waste collection. Specifically, we find a way to reduce the operational cost of waste collection vehicles. Moreover, we aim to obtain a set of vehicle routes that give the minimum amount of travel cost while also determining the minimum number of waste collection vehicles required for completing the task.

The secondary objective of this study is to test the effectiveness of the hybrid PSO-GA algorithm on vehicle routing problems which is considered as a constraint optimization problem.

1.4 Significance of the Study

The researcher is hopeful that the results from this study will allow the determination of the vehicle routes that may minimize the operational costs in waste collection. Determining the number of vehicles required to accomplish the job may give incite as to the scale and severity of the waste collection problem in the city. The robustness of the algorithm used in this study may also be determined by the results obtained. Since the hybrid PSO-GA[13] is designed to solve constraint optimization problems, we expect that the algorithm will produce good results for the vehicle routing problem.

1.5 Scope and Limitation

The study is limited to generating a set of routes involved in waste collection at Baguio City. In order to model the waste collection problem, each of the barangay halls of the 129 barangays (villages) were taken as collection sites since there was no available data on the specific locations of the community bins in each of the barangays. This is because the locations of the specific collection sites vary depending on a number of variables such as accessibility, road conditions, weather, and public health regulation. The ERS-MRF at Barangay Irisan was identified as the location where each waste collection vehicle

Figure 1.1: A Map Showing the Locations of the 129 Barangays and the Irisan ERS-MRF

begins and ends its daily operation. Given that there exists no hourly time table as to when vehicles are required to visit each barangay, we opt only for a Capacitated Vehicle Routing Problem to model the waste collection problem. The real distances between each pair of barangay halls as well as the distances between each barangay hall and the ERS-MRF were obtained through Google Maps[©]. A map of all 129 barangays are shown on figure 1.1. The red house marker indicates the Irisan ERS-MRF, the yellow flag indicates the Dontogan Transfer Station and the blue markers are the 129 barangay markers. A list of the barangays and their respective markers are seen on table A.1

Chapter 2

Preliminaries

We first define some terms and notations we will be using throughout this document.

2.0.1 Definitions

- 1. An **algorithm** is a sequence of unambiguous instructions used for solving problems. Every step is clear and concise. No instruction should be interpreted more than one way.
- 2. **Optimization** is a mathematical technique used for solving the maximum or minimum value of a function or system of equations. In a broader sense, it is a technique used to solve for the optimum solution to a particular problem. Optimality refers to obtaining the best possible form or functionality in the sense that it is more than sufficiently efficient given a set of resources. This involves meeting an expected result with high accuracy and precision such that specifications and limitations are also satisfied.
- 3. An **optimization algorithm** is a process followed in finding the best or most efficient solution to a given problem.
- 4. An Objective Function or Fitness Function is the mathematical equation that is modeled after the problem such that, satisfying the function will satisfy the given problem. The objective function is important because it will determine the computability and complexity of the problem as well as the approach taken to solve the problem. Optimization problems aim to obtain the minimum and/or maximum value of certain properties related to improving some object. The output of the objective function dictates whether or not a specific input is not only a solution but also the most optimal one. We say, it is a 'fitness function' because it measures the capability and efficiency of the input in solving the problem.

- 5. **Design Variables** are the input to objective functions. We say 'design variables' because these sequence of numbers are being used to test and determine the quality of the output. The algorithm is tasked to manipulate the values of these variables in order to get the optimal solution. In tackling real world problems, design often involves a huge amount of data collection through trial-and-error. Our variables are associated to the factors which undergo changes in values during the trial-and-error processes. The data collected should give the efficiency or numerical score of the given design variables.
- 6. A heuristic is a technique designed for solving a problem when classical methods are too slow for finding approximate solutions or when classical methods fail to find any exact solution at all. These classical methods are those that use mathematical identities, properties, and theorems to prove, show, derive or systematically find solutions to problems. The objective of a heuristic is to produce a solution within a reasonable amount of time such that the solution is acceptable enough to the implementor. Although time may not be the only factor that may be taken in consideration, it is the most commonly used factor in differentiating the quality of heuristic approaches.
- 7. **Metaheuristic** is a high-level procedure to find, generate or select a heuristic that may provide a sufficiently good solution to an optimization problem. Since we are dealing with optimization, finding the fastest and most efficient way to solve the problem is considered to help in finding solutions.
- 8. An evolutionary algorithm is a generic population-based metaheuristic optimization algorithm. It uses mechanisms inspired by biological evolution such as reproduction, mutation, recombination and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of these solutions. We say 'candidate solutions' because all of these individuals may give an acceptable solution but not all of them give the best solution. Evolution of the population takes place after repeated applications of the mentioned operators. We say 'evolution' because members of the

population change or are somewhat adaptive as time progresses or as the population shifts from one generation to another.

- 9. A **simulation** is a computational model that imitates real world situations and processes. These usually involved an implementation of mathematical equations that employ stochastic variables for a more 'lifelike' appearance.
- 10. A **stochastic variable** is a variable whose value is a random number usually taken from a uniform distribution from 0 to 1. That is, every number between 0 and 1 has an equal chance to be selected.
- 11. **Natural Selection** is the process by which organisms with better attributes adapted to the environment tend to increasingly survive and transmit their genetic characteristics through generations. **'Survival of the fittest'** is a phrase by Charles Darwin that describes the mechanism of natural selection. It is best understood as survival through reproductive multiplicity. That is, the more survivability an individual has, the more it is likely to reproduce, hence its genes are more likely to be transmitted to the next generation.

In natural selection, there is a variation on traits that is to say that individuals have differences in certain attributes such as height, length, shape etc. It is important to note that not all individuals reproduce to the full potential because the environment has a certain limit to the number of creatures it can sustain. The passing of characteristics or traits from one generation to another is called **heredity**. The more advantageous traits is more commonly passed on and retained because they help the individual or group to survive.

- 12. Chromosomes contain the genes which dictate the attributes of the individual. They tell how the body is to be built and how it functions. Gregor Mendel is known as the father of modern genetics. He discovered the mechanics of heredity or how traits are being passed down from parents to offspring. During cell division, thread-like structures located inside the nucleus of animal and plant cells called chromosomes are replicated.
- 13. Recombination or Crossover is the rearrangement of the genetic material by

exchanging the same gene subsegments of two chromosomes (one from each parent) which allows for the creation of a new individual that has characteristics similar to those of the father and of the mother. Note that the exchanging process may occur in multiple areas of the strands.

- 14. **Mutation** on the other hand is the alteration of genes resulting from an error during replication. This results in unique characteristics that may be new from the gene pool of the previous generation. Mutation may be good or bad for the individual but this phenomenon has a low chance of occurring naturally for every generation.
- 15. Robustness is the balance between efficiency and efficacy necessary for the survival in many different environments. For Algorithms, this translates to consistent efficiency under different problems areas such that there is little to no change in the process. This means that there is less cost for redesigns. Note that nature is the best example in terms of robustness. It tries to maintain and cope with the many different changes that occur everyday. Hence, we have evolutionary algorithms as stated above.
- 16. **Exploration** is the capability an algorithm to search solutions in parts of the subspace it has not yet taken into consideration.
- 17. **Exploitation** is the capability an algorithm to utilize known data in searching for solutions in the search space.
- 18. A set is a collection of well defined objects. In this document, we will talk about sets as a collection of numbers that represent objects. A set is usually denoted by braces ('{' and '}') and capital letters (A,B,C,D,...) (ex. $A = \{1,2,3\}$). In a set, the order of enumeration and repetition of numbers do not matter. That is, $A = \{2,3,3,2,1,1\}$ is equal to $A = \{1,2,3\}$.
- 19. An object is considered an **element** (denoted by \in) of a set if it belongs to the set. Using our previous example, we say that 1 is an element of A $(1 \in A)$ but 4 is not an element of A $(4 \notin A)$. There are two ways of declaring membership of sets,

- (a) (a) **roster method** where we define all the elements included in a set by listing or enumerating all of them; and
- (b) (b) rule method (set-builder notation) where we define all the elements included in a set using their properties.

An example of the rule method is $A = \{x \text{ is a natural number}, x < 4\}$ which can also be written as $A = \{x | x \in \mathbb{N}, x < 4\}$, to be pronounced as "the set of all x, such that x is an element of the natural numbers and x is less than 4". The vertical bar ('|') is usually pronounced as "such that", and it comes between the name of the variable you're using to stand for the elements and the rule that tells you what those elements are.

- 20. Cardinality of a set is the number of unique appearances of elements in a set. Cardinality is denoted by two vertical bars ('|') separated by the set name such as '|A|'. That is, using our example, the cardinality of A written as |A| is 3 because A has unique elements 1, 2 and 3.
- 21. A set without elements is called the **null** or **empty set** (denoted by \emptyset) that is, $\emptyset = \{\}$. Therefore $|\emptyset| = 0$.
- 22. A set with infinite elements is called an **infinite set**, $F = \dots, 1, 2, 3 \dots$ and $|F| = \infty$.
- 23. A **countable** set is a set with the same cardinality as some subset of the set of natural numbers N. A countable set is either a **finite** set or a **countably infinite** set, nevertheless, the elements of a countable set can always be counted one at a time and, although the counting may never finish, every element of the set is associated with a unique natural number.
- 24. A Venn Diagram is a visual representation of the relationships of sets.
- 25. We say that A is a **subset** of B (written as $A \subseteq B$). If all elements of A are also elements of B. If $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5\}$ then $A \subseteq B$. However if we have the set $C = \{1, 2, 3, 6\}$, $C \nsubseteq B$ because $6 \notin B$ but $A \subseteq C$. A venn diagram of the relationships of A, B and C are shown on figure 2.1.

Figure 2.1: A Venn Diagram Showing the Relationship of A, B and C

26. If we have $A = \{1, 2, 3\}$ and $D = \{3, 4, 5, 6\}$, then the **Union** of A and D (written as $A \cup D$) is the set containing all elements of A and D. That is, $E = A \cup D = \{1, 2, 3, 4, 5, 6\}$. A venn diagram showing $A \cup D$ shaded in gray is shown on figure 2.1.

Figure 2.2: A Venn Diagram Showing $A \cup D$

27. If we have the same sets A and D, then the **Intersection** of A and D (written as $A \cap D$) is the set containing all the common elements of A and D. That is, $A \cap D = \{3\}$. A venn diagram of showing $A \cap D$ shaded gray is shown on figure 2.3.

Figure 2.3: A Venn Diagram Showing $A \cap D$

28. If we have the same set A, then the **Complement** of A written as A' or \bar{A} is the set containing all the elements that are not in A. That is $\bar{A} = \{x | x \in \mathbb{N}, x > 3\}$. A venn diagram of showing \bar{A} shaded gray is shown on figure 2.4.

Figure 2.4: A Venn Diagram Showing \bar{A}

29. If we have the same sets A and D, then set **Difference (subtraction)** is defined as A - D or A D which consists of elements in A but not in D. That is, A - D = 1, 2. A venn diagram of showing A - D shaded gray is shown on figure 2.5.

Figure 2.5: A Venn Diagram Showing A - D

- 30. In mathematics, numbers are grouped in sets and subsets.
 - (a) We first have the smallest subset, the set of **Natural** or **Whole Numbers** (\mathbb{N}) which is the set of counting numbers, $\{0, 1, 2, 3, 4, 5...\}$.
 - (b) The next subset is the set of **Integers** (\mathbb{Z}) which is the set of natural numbers and their negatives {...-4, -3, -2, -1, 0, 1, 2, 3, 4, ...}.
 - (c) Next are the **Rational numbers** (\mathbb{Q}) are the ratios of integers, also called fractions, such as $\frac{1}{2}$, $\frac{-10}{56}$ etc.
 - (d) Next are the **Irrational Numbers**, numbers that are not included in the rational number set such as radicals or roots (ex. $\sqrt{5}$) and numbers having infinite non-repeating decimal places such as π .
 - (e) Finally, the set of **Real Numbers** (\mathbb{R}) which consists of both rational and irrational numbers.

- (f) Other than the real numbers, we have the **Imaginary numbers** (\mathbb{I}) which are the numbers that have negative squares. These numbers are involved with the number $i = \sqrt{-1}$.
- (g) The set containing all numbers is called the **Complex Number** (\mathbb{C}). This set is the union of both real and imaginary numbers. These numbers are usually represented by the sum of a real and an imaginary number (ex. 1+i).

A Venn Diagram of the number sets is given by figure 2.6.

Figure 2.6: A Venn Diagram Showing the Relationship of Number Sets

- 31. A **solution space** the set of all possible values of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
- 32. candidate solutions are potential solutions to problems.
- 33. A sequence is a collection of objects wherein the oder of enumeration is important (ex. a list). Unlike a set, the same elements can appear multiple times at different positions in a sequence, and order of which the elements are enumerated matters, that is if we have two sequences (1, 2, 3) and (3, 2, 1, 1), $(1, 2, 3) \neq (3, 2, 1, 1)$. A sequence is usually denoted by parentheses ('(' and ')'), for example, the famous Fibonacci sequence is given as (0, 1, 1, 2, 3, 5, 8, ...). Mathematical objects, functions or relations are usually described as sequences.
- 34. The elements of a sequence are called **terms**.

- 21
- 35. The number of elements of a sequence is called the **length** of that sequence.
- 36. A sequence may be **finite** in length (ex. (1, 2, 3, 4, 5)) or **infinite** (ex. (1, 2, 3, ...)) as in sets.
- 37. Similar to sets, we can define inclusion to a sequence by:
 - (a) The **roster** method, generating all its elements, we must be sure that the sequence is finite.
 - (b) In case that the sequence may be infinite or has too many elements to list, then we use a **rule**. An example is 'the sequence of alternating 0's and 1's, starting with a 0', $(0, 1, 0, 1, 0, 1, \dots)$.
 - (c) We can also use a **formula**. For example, the sequence generated by $(a_n)_{n\in\mathbb{N}} = 2n+1$ is the sequence of odd numbers starting from 3, $(3,5,7,9,\ldots)$.
- 38. In order to specify which element is being called, we say "the n^{th} term" of a sequence. For example, given the same sequence $(a_n)_{n\in\mathbb{N}}=2n+1$ if we want to know the 3rd element of the sequence, we write ' $a_3=7$ ', we say "the third term of the sequence is the number 7".
- 39. A **permutation** is related to the act of arranging items of a set into some sequence or order. The number of all possible arrangements of a set of N items is given by N!. If we have the set A = 1, 2, 3, the permutations of set A is given as follows:
 - (1,2,3)
 - (1,3,2)
 - \bullet (3,1,2)
 - \bullet (3,2,1)
 - \bullet (2,3,1)
 - \bullet (2, 1, 3)
- 40. A **point** is a location. It has neither width nor length, even though it is visually represented as a dot for reference.

- 41. Locations are usually made up of a sequence of numbers called **coordinates**.
- 42. A line is one-dimensional, having length but no thickness. A line is composed of infinite points as it extends infinitely in both directions however, two points are enough to define a line. For example, if we are given two connected points A and B, then make-up the line \overrightarrow{AB} .
- 43. A **real number line** is a line wherein each point is associated to some real number $r \in \mathbb{R}$ This makes sense because the set of real numbers is infinite. Since each point is represented as a real number, the coordinate of any point on the line is given by a real number. A visual representation of a real number line is shown on figure 2.7. As previously stated, if we want to know where a point is on the line, we simply tell what number the point represents. Hence, we also know the distance from which the point is located from our reference point, 0.

Figure 2.7: A Real Number Line

- 44. A part of a line that has defined endpoints is called a **line segment**. A line segment as the segment between A and B is written as: \overline{AB} . Two lines that meet at a point are called **intersecting lines**. Perpendicular lines are two line that form a 90 degree angle.
- 45. We say that a set of points are **collinear** if there is a line that passes through all the points.
- 46. A **plane** is a two-dimensional surface. Ruled and spanned by two independent perpendicular lines. A plane is defined by three non-collinear points.
- 47. A **coordinate plane** is a plane that is spanned by the real number lines, x-axis and y-axis hence, it is also known as the space R^2 . Each point on this plane represents a pair of coordinates (x, y). We usually assign the first number, x, for the distance on

the x-axis and the second number, y, for the distance on the y-axis. A coordinate plane is shown on figure 2.8. As we can see, the black point is said to be located at (1,4) this means that it is 1 unit away from (0,0) on the x-axis and 4 units away from (0,0) on the y-axis.

Figure 2.8: A Coordinate Plane

48. A **Vector** is a quantity having both magnitude and direction. In a coordinate plane, it is represented by an arrow as shown in figure 2.9. We can see that vector a = <1, 1> is 1 unit to the right of the point (0,0) and 1 unit above the point (0,0). A vector is mainly composed of two points in N dimensions, represented by the points on its tail and its head but it these two points are arbitrary because vectors are only concerned with magnitude and distance but not location. Magnitude is visually represented in length. Direction, one the other hand, is visually represented by the arrowhead. A vector is usually given in the form $\langle x_1, x_2, x_3, \dots x_n \rangle$ where each component x_i is the absolute numerical distance between two points in dimension $i \in (1, 2, ..., n)$. When representing vectors in two dimensions, it is broken down into two parts, x and y components. The x component is the horizontal length while the y component is the vertical length. The vector's magnitude (|a|) is given by the 2D Pythagorean theorem: $|a| = \sqrt{x^2 + y^2}$ where x and y are its x and y components. In higher dimensions, the same representations follow and the Pythagorean theorem for higher dimensions are used. $|a| = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$ where each x_i is the component of the vector in dimension $i \in (1, 2, ..., n)$.

Figure 2.9: Vectors in a Coordinate Plane

Figure 2.10: Adding and Subtracting Vectors (Coordinate Plane)

- 49. The number given by the Pythagorean theorem is also known as the **Euclidean** distance from two points, (x,0) and (0,y). Euclidean distance is the length of the shortest possible path through space between two points that could be taken if there were no obstacles in between them.
- 50. The **negative of a vector** is simply a vector having the same magnitude but of opposite direction as seen on figure 2.9. We can see that the vector -a has the same magnitude but opposite of the direction of vector a. Adding and subtracting vectors are simple in that each component of vector A is added or subtracted to the respective components of vector B. For addition, C = A + B can be written as (x,y) = <1,2>+<3,4>=<3,6>. For subtraction, C = A B can be written as < x,y>=<1,2>+<<3,4>=<1,2>+<<-3,-4>=<-2,-2>. An example is seen on figure 2.10. As we can see, if we add two vectors, $V_1 and V_2$, the resulting vector <4,3> is longer than both vectors if they are both in the same direction. If we subtract the vectors, $V_1 and V_2$ the resulting direction will depend on which vectors are considered as the minuend and subtrahend.

If we consider a vector in dimension 3, then we will have to add to its components. Its components are now x, y and z where x is its length, y is its height and z is its width. In general, if we have a vector in dimension n, it is defined with n components.

In this document, we consider the velocity of an object inside a defined virtual space of dimension n.

- 51. **Velocity** is defined in physics as speed with direction. For example, if an object has a speed of 9 m/s then we can say that the object is simply covering a distance of 9 metric units at each time step but if we state that the object has a velocity of 9 m/s to the right, then we can say that the object is covering a distance of 9 metric units at each time step to the right of its current position. It is important that take note that vectors usually involve two ordered n-tuples that give its original and final positions.
- 52. An **Array** is a collection of objects, having shared some similar properties, arranged in a particular order. An array is usually contained in rows and columns.

Arrays are denoted by the syntax ArrayName[Size][Size] wherein every [] denotes a dimension.

For example we have the array MyArray[3] it is an array of one-dimension having 3 elements. Take note that the size is sometimes omitted to represent variability. In simple terms, an array is like a series of boxes that contain elements with some similar properties. If we have an array of dimension 2 (MyArray[X][Y]) then we have X rows of Y boxes. A visual representation is shown on figure 2.11. As we can see, the array A[2][5] has two rows and 5 columns. Each element occupies a single box.

It is common notation to access elements of arrays by its index. Indexing usually starts from 0. In figure 2.11 the red numbers indicate indices of the elements. For example, if we want to access the first element in A from figure 2.11, we say A[0][0]. If we want to access element 'H' in A, we say A[1][2].

In this paper we will be dealing with arrays that whose element are vectors and coordinates.

Figure 2.11: Visual examples of arrays

53. A matrix is an array of numbers.

The **dimensions** of a matrix is the number of rows and columns of the matrix in that order. A 'two by three' matrix is an array with two rows and three columns. A 'three by two' matrix is an array with three rows and two columns. To show this, we let M1 be a 2×3 matrix and M2 be a 3×2 matrix.

$$M1 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, M2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

We access the elements of a matrix the same way as we do for arrays. An example is $M1[1][1] = a_{11}$

A matrix whose row and column have the same dimension is called a **square** matrix.

The operations that can be done for matrices are as follows:

[Matrix Addition] Adding two matrices means that we add their corresponding elements. We can only add matrices with the same dimensions. Let two matrices M3 and M4 be matrices of the same size $n \times m$, then matrix addition M3 + M4 is done as

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1m} + b_{1m} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2m} + b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{nm} + b_{nm} \end{bmatrix}$$

[Multiply by a Constant] Multiplying a constant number c to a matrix M is done by multiplying the constant to every element of the matrix.

$$c \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} c \cdot a_{11} & c \cdot a_{12} & c \cdot a_{13} & \dots & c \cdot a_{1m} \\ c \cdot a_{21} & c \cdot a_{22} & c \cdot a_{23} & \dots & c \cdot a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c \cdot a_{n1} & c \cdot a_{n2} & c \cdot a_{n3} & \dots & c \cdot a_{nm} \end{bmatrix}$$

[Negative of a Matrix] The negative of a matrix is just the matrix multiplied to the constant c = -1 hence, all elements are multiplied to -1.

$$-\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nm} \end{bmatrix} = \begin{bmatrix} -1 \cdot a_{11} & -1 \cdot a_{12} & -1 \cdot a_{13} & \dots & -1 \cdot a_{1m} \\ -1 \cdot a_{21} & -1 \cdot a_{22} & -1 \cdot a_{23} & \dots & -1 \cdot a_{2m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 \cdot a_{n1} & -1 \cdot a_{n2} & -1 \cdot a_{n3} & \dots & -1 \cdot a_{nm} \end{bmatrix}$$

[Matrix Subtraction] Matrix subtraction is just the addition of two matrices where the addend is negative. Note that here, we can only subtract matrices with the same dimensions. Let two matrices M3 and M4 be matrices of the same size $n \times m$, then matrix subtraction M3 - M4 is done as

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} & \dots & a_{1m} - b_{1m} \\ a_{21} - b_{21} & a_{22} - b_{22} & \dots & a_{2m} - b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} - b_{n1} & a_{n2} - b_{n2} & \dots & a_{nm} - b_{nm} \end{bmatrix}$$

[Hadarmard Product] The Hadamard Product is a component/element-wise multiplication where each element is multiplied to the corresponding element of the other matrix. Note that here, we can only multiply matrices with the same dimensions. Let two matrices M3 and M4 be matrices of the same size $n \times m$, then their hadamard product is given by $M3 \circ M4$ is done as

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} \cdot b_{11} & a_{12} \cdot b_{12} & \dots & a_{1m} \cdot b_{1m} \\ a_{21} \cdot b_{21} & a_{22} \cdot b_{22} & \dots & a_{2m} \cdot b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} \cdot b_{n1} & a_{n2} \cdot b_{n2} & \dots & a_{nm} \cdot b_{nm} \end{bmatrix}$$

[Matrix Multiplication] Matrix multiplication is not the Hadamard product. Matrix multiplication involves the sum of products. If A is an $n \times m$ matrix and B is an $m \times p$ matrix, their matrix product AB is an $n \times p$ matrix, in which the m elements across a row of A are multiplied with the m elements down a column of B, the resulting elements are then summed to produce an entry of AB. Let two matrices A and B be matrices of the sizes $n \times m$ and $m \times p$ respectively, then their matrix product is given by $A \times B$ is done as

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mp} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{np} \end{bmatrix}$$

such that

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{im} \cdot b_{mj} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj}, \forall i = 1, 2, \dots, n \text{ and } j = 1, 2, \dots, p$$

An example is

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \times \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} z_{11} \end{bmatrix}$$
$$z_{11} = 1 \cdot 4 + 2 \cdot 5 + 3 \cdot 6 = 32$$

54. The **transpose** of a matrix (denoted as M^T) is a matrix where the rows and columns are swapped. That is

$$M3^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \dots & a_{mn} \end{bmatrix}$$

An example is

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

55. A matrix is said to be **symmetric** if and only if the matrix M is equal to its transpose M^T . Given by $M = M^T$. An example is

$$O = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix} = O^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}, \therefore O \text{ is symmertric}$$

- 56. A **graph** G is a mathematical object composed of two sets, a finite set V called the **vertices** and another set E whose elements are pairs of vertices called **edges**, expressed as G = (V, E).
- 57. A **vertex**, also called a **node**, is the fundamental unit needed to construct graphs. They are visually represented as points in some space S having N dimensions. In this document, they are used to represent real world objects. Later, we will assign numbers to these points to achieve discreteness, (to know what they are and what they are not).
- 58. **Edges** are visually seen as lines that connect vertices, they show that those vertices are related in some way. Edges usually connect two vertices, they represent and show that there exists a relationship between these vertices. If there are no edges that connect a pair of vertices, then it an be said that there is no direct relationship between those edges.
- 59. If two vertices $u, v \in V$ are connected by some edge $(u, v) \in E$, and if the edge $(v, u) \in E$ is the same edge, then we say that vertices u and v are connected by the **undirected edge** (u, v) (or (v, u)).
- 60. We also say that the vertices $u, v \in V$ are **adjacent** because an undirected edge connects them.
- 61. A graph G is called an **undirected graph** if and only if it is made up of undirected edges.
- 62. However, if edge $(u, v) \in E$, and $(v, u) \in E$ are not the same edges, then we say that (u, v) is a **directed edge** from vertex u (called the edge's 'tail') to vertex v (called the edge's 'head').

- 63. If edge $(u, v) \in E$ but $(v, u) \notin E$, then we say that vertex u is **adjacent** to vertex v but vertex v is not adjacent to vertex u.
- 64. A graph G is called a **directed graph** if and only if it is made up of directed edges.
- 65. A graph with which every pair of vertices $u, v \in V$ is connected by an edge $(u, v) \in E$ is called a **complete graph**, denoted as $K_{|V|}$. That is, there exists an edge (u, v) in set E for any pair of u and v in set V (expressed as $\exists (u, v) \in E \ \forall u, v \in V$).
- 66. A graph is said to be a **weighted graph** if numbers are assigned to its edges. These numbers are called **weights** or **costs**.
- 67. A path from vertex u to vertex v of a graph is defined as a sequence of adjacent vertices (connected by edges) that start from u and end with v.
- 68. If all vertices of a path are distinct, then the path is said to be **simple**.
- 69. The **length** of a path is the total number of edges in the path.
- 70. A **directed path** is a sequence of vertices in which every consecutive pair of the vertices u and v is connected by a directed edge from u to v.
- 71. A graph is said to be **connected** if for every pair of vertices u and v in set V, there exists a path from u to v.
- 72. A **cycle** is a path of positive length (at least one edge) that starts and ends at the same vertex and does not traverse the same edge more than once.
- 73. A graph with no cycles is said to be **acyclic**.
- 74. An **adjacency matrix** is a square matrix that shows the relationships of vertices in a graph. Each dimension in the matrix is assigned a vertex. The elements of the matrix is from the set 0,1. The element M[u][v] = 1 if there is an edge that connects vertices u and v, otherwise, is it 0. The unweighted graph in figure 2.12

Figure 2.12: Sample Graph

has the adjacency matrix:

If the graph has weights then we replace the 1's with their respective weights. The adjacency matrix of the weighted graph in figure 2.12 is:

Note that for an undirected graph, the adjacency list is symmetric.

75. The **shortest path problem** is the problem of finding a path between two vertices (or nodes) u and v in a graph G such that (a) if G is unweighted, the total length of the path is minimized; (b) if G is weighted, the sum of the weights of the edges in the path is minimized.

The well known algorithms used to solve the shortest path problem are as follows:

(a) **Dijkstra's Algorithm** which solves the shortest path problem with non-negative weights. It is an algorithm for solving the single-source shortest

path, which means that it solves the shortest path from any node $u \in V$ to any other node $v \in V$.

The dijkstra's algorithm uses a priority queue.

A queue is a list where the elements are inserted at one end and are removed at the other.

A **priority queue** is a queue wherein each element is associated with a value which dictates whether or not that element is highly likely to be selected/removed from the queue. An element with high priority is served before an element with low priority. If two elements have the same priority, they are served according to their order in the queue.

The dijkstra's algorithm is:

- i. Select a source vertex s from the set of vertices V
- ii. Create an empty priority queue Q
- iii. For each vertex v in the Graph, do the following
 - Set the distance from the source s to vertex v as infinity (∞)
 - \bullet Set the optimal path from the source s to node v as empty
 - Add vertex v to the priority queue Q
- iv. Set the distance of vertex s from itself as 0
- v. While Q is not empty, do the following:
 - Select vertex u from the priority queue Q with the minimum distance
 - Remove u from the queue
 - For each vertex w, still in the queue, adjacent to u, do the following:
 - Compute the path from the source vertex s to the node w that passes through u before it reaches w
 - If the newly computed path is shorter than the current one, Update the distance from the source vertex s to vertex wAdd vertex u to the path of w

The flowchart of the algorithm is seen on figure 2.13.

Figure 2.13: Flowchart of the Dijkstra Algorithm

(b) Floyd-Warshall Algorithm which solves the shortest path for any two node u and v in V. The floyd-warshall algorithm starts off with the adjacency matrix of the graph G. All non-existent edges have the value of infinity ∞ . The algorithm takes advantage of the transitivity in order to replace the infinite values. Transitivity is the relation wherein if a property holds between the first and the second and also holds between the second and the third, then it follows that this property also hold between the first and the third. It can be simplified as "if one can go from a to b and from b to b then one can go from a to b by passing through b."

The Floyd-Warshall algorithm is as follows:

- i. Let dist be a matrix of size $|V| \times |V|$ whose values are ∞
- ii. For each edge, $(u, v) \in E$, set $dist_{u,v}$ as the weight of the edge (u, v).
- iii. For each vertex $v \in V$, set the distance to itself as 0. $dist_{u,v} = 0$
- iv. For each vertex $w \in V$, do the following:
 - For each pair of vertices $u, v \in V$ do the following:
 - Check if the distance from u to v is greater than the distance from u to w and w to v. That is, check if $dist_{u,v} > dist_{u,w} + dist_{w,v}$
 - If that is true, set $dist_{u,v} = dist_{u,w} + dist_{w,v}$

The flowchart of the floy-warshall algorithm is seen on figure 2.14. An example is shown on figure 2.15.

Figure 2.14: Flowchart of Floyd-Warshall Algorithm

Figure 2.15: Floyd-Warshall Algorithm Example

An application of this algorithm involves finding a sequence of road segments that take a vehicle from a source to a destination using a graph that represents a road network. In this representation, we can let vertices be the source, destination, intersections, land marks, etc. whatever objects that can help split the entire road systems into road segments. We then let edges be the road segments between any two vertices. We assign the costs/weights to the edges based on some information that can help us understand and/or distinguish edges that are favorable to traverse. These costs may be quantified as actual distances, cost of fuel, average amount of travel time, traffic gradient, risks involved (bridge instabilities, accident proneness, etc.) and much more depending on the realism of the model and/or data availability. The model for the amount of cost can be as simple as minimizing the amount of distance traveled or as complex as maximizing the total amount of money gained after subtracting the total money expended on fuel (affected by both distance and time), car maintenance, driver salary, etc.

76. The Traveling Salesman Problem (TSP) is a problem involving generating a Hamiltonian Cycle from a graph G.

A hamiltonian path is a path in a graph which contains each vertex of the graph

exactly once. A hamiltonian cycle is a hamiltonian path that starts and ends at the same vertex.

The problem description are as follows:

- (a) A salesman needs to visit every city (represented by vertices)
- (b) He/she does not care about the order of visiting each city. As long as he/she visits each one.
- (c) He/she must start and finish at the same city
- (d) Each city is connected to other close by cities, or nodes, by airplanes, or by road or railway. Hence, each of the connections between the cities has one or more weights (or the cost) attached depending on the availability of transportation means.
- (e) The cost describes how "expensive" it is to traverse this edge on the graph, and may be given, for example, by the cost of an airplane ticket or train ticket, or perhaps by the length of the edge, or time required to complete the traversal.
- (f) The salesman wants to keep both the travel costs, as well as the distance he travels to a minimum.

The aim is to generate a path or a sequence of nodes that lets the salesman pass through all cities at most once before returning to starting city and spends the minimum amount of travel expenses and distance.

The problem is mostly concerned about generating the best arrangement of N cities among (N-1)! permutations. As we can see, the amount of permutations rapidly increases as the number of cities is increased. N-1 because we always start with the same given city.

77. The Vehicle Routing Problem is a generalization of the Traveling Salesman Problem. VRP is a problem that involves generating the best set of routes for a fleet of vehicles to service all customers in a graph. Here, there are more 'salesmen' (changed into 'vehicles' for formalities when we consider modern delivery services). VRP is concerned with delivering or collecting 'goods' to and/or from customers using a number of vehicles.

A **route** is a hamiltonian cycle which starts and ends at a depot.

A depot is where vehicles are stored or parked when they are not in use.

The usual way customers and road networks are set-up is to let vertices represent the depot and customers and let the edges represent road segments that connect the vertices. Another way is to represent clusters or customers as an edge, and let the vertices serve as road intersections. This is simple but it is too simple that it does not capture individuality of customers. Hence, the former is commonly used since most adaptable models are complex.

VRP is defined on a complete undirected graph G = (V, E). The set of vertices $V = 0, 1, 2, \ldots, n$ where each vertex $u \in V - \{0\}$ represents a customer having a nonnegative demand q_u . The demand is usually the amount of goods (in some quantity) to be delivered or collected by the vehicle. The amount of goods can be measured in mass, weight, quantity, volume, bulk, etc. Vertex 0 is usually designated as the depot. Each edge $e \in E = (u,v)|u,v \in V$ is associated with a travel cost c_e or $c_{u,v}$. Travel cost may be in terms of distance (actual, euclidean, circular, manhattan, chessboard), time (travel time, time waiting in traffic), fuel cost (convert distance and time into amount of fuel and convert that number into how much money fuel costs), monetary cost (adding up expenses, salaries, penalties) etc. There are a total of k available vehicles in the depot. The vehicles are assumed to be homogeneous and all have the same carrying capacity Q. Carrying capacity refers to the maximum amount of goods that can be carried by a vehicle at any phase or time during its traversal of the route. The task is to develop k routes whose total travel cost is minimized such that

- Each customer is visited exactly once by a route
- Each route starts and ends at the depot
- ullet The total demand of customers served by a route does not exceed the vehicle capacity Q
- The length of the route does not exceed a preset limit L

The last item ensures that all the drivers have the same workload.

- If we consider a directed graph, then we need only to change the edges and must produce directed cycles.
- 78. Waste collection includes gathering, transportation, and delivery for disposal of solid waste and recyclable materials. Waste collection involves vehicles that collect and transport the waste from communities to facilities that receive, sort and process the waste. Processing the received waste may be in the form of incineration, rapid degradation, segregation, resource recovery, energy recover, etc.
- 79. **Residual waste** is the type of solid waste that is neither recyclable nor reusable.
- 80. An Eco-Waste Recovery Services-Material Recovery Facility is where final sorting of waste is done. Once sorted, the garbage is then moved to designated areas for recycling, recovery, reuse, re-purposing, composting, etc. This facility reduces the amount of residual waste and also corrects any mis-segregated matter.
- 81. A Geographic Information System (GIS) is a collection of computer software, and data used to view, manage, analyze, and transform geographical information. A GIS provides a framework for gathering and organizing spatial data and related information such as temporal, visual, demographic, economic, etc. Out of the data available, it is able to produce analyses, maps, patterns, predictions, assessments and other forms of usable information. It can create fast and logical decisions, produce and display maps, graphs, charts and perform a vast quantity of calculations. An example is Google Maps which offers satellite imagery, street maps, 360 deg panoramic views of streets (Street View), real-time traffic conditions (Google Traffic), and route planning for traveling by foot, car, bicycle (in beta), or public transportation. These kinds of information was produced through available data and some algorithms which processes the data for generating visuals and graphics, route creation, land mark associations etc. Data that is stored in a database is placed in several layers of maps and graphs that have common properties. These layers can come in the form of roadways, vegetation patterns, layout of buildings and structures, traffic information, physical layout of the environment, temperature and pressure maps, radiation maps, demographics, environmental compositions, sets of

images and videos, etc. Informally, a physical map is itself a GIS. Within it, is information which can be read and analyzed to produce observations, inferences, hypotheses, predictions, plans, patterns, etc. Basically, it is anything that can tell you something about a place. It has been used in businesses for needs assessments, sales predictions, discovering patterns of customer interests, discovering trends in purchases and demand.

- 82. **Deterministic** means that the next procedure/step is known without having any other choice. There is no randomness involved.
- 83. Non-deterministic means that there are multiple available decisions that can be done at a certain circumstance. This helps examine the ability to make decisions based on the statements.
- 84. **Decision problems** is any yes-or-no question that involves an infinite set of inputs. These inputs are logical objects, be it numbers, graphs, strings, or sets. The input is broken down to its properties and based on those properties, the question is thrown an affirmation or negation. For example, "is 4 an element of \mathbb{Z} ? Well we can compare all numbers in \mathbb{Z} to 4 and this will of course be true, hence the answer returned is 'yes' 4 is an element of \mathbb{Z} .
- 85. Nondeterminstic Polynomial time \mathbf{NP} is a set of problems with the same resource-based complexity used to describe certain types of decision problems. NP is the set of all decision problems for which the instances where the answer is "yes" are efficiently verifiable through deterministic computations that can be performed in polynomial time. A problem belongs to the NP-hard or the set of the "hardest" NP problems if there is no known polynomial time algorithm that can provide an optimal solution.
- 86. A **constrained optimization problem** is a problem that is bounded by some limiting factors. According to Garg[13], Constrained optimization problems are defined as:

41

that is subjected to p equality constraints,

$$h_k(x) = 0;$$
 $k = 1, 2, \dots, p$

and q inequality constraints,

$$g_j(x) \le 0; \qquad j = 1, 2, \dots, q$$

where each set of decision variables x is in D dimensions such that $x = [x_1, x_2, x_3, \dots, x_D]^T$. Each element of x are bounded as

$$l_i \le x_i \le u_i;$$
 $i = 1, 2, \dots, D$

where l_i and u_i are the minimum and maximum permissible values of each element x_i .

- 87. **Feasible solutions** are solutions that do not violate any constraint imposed in a constraint optimization problem. The solution space S is also called the 'feasible space' since it composes of all solutions that are within the limitations of the problem.
- 88. **Infeasible solutions** are solutions that do violate any constraint imposed in a constraint optimization problem.

Chapter 3

Review of Related Literature

As mentioned in the previous chapters, waste collection problems have been solved through the use of the vehicle routing problem. We take a look at some of the studies conducted in solving vehicle routing problems and modeling waste collection into a vehicle routing problem. We then move on to discus the basic PSO and GA algorithms. Finally, we discuss the hybrid PSO-GA approach of Harish Garg.

3.1 Vehicle Routing Problem

In 2007, Cordeau et.al.[6] compiled and defined general models of the vehicle routing problem and its extensions (i.e. capacitated, time windows, etc.). They also collated and cited several approaches done by researchers over the years to tackle these kinds of problems. They give a brief description of the process of how each method solves the problems presented. This paper was used as an overview of past studies and serves as a basis on what methods has already been utilized in solving VRP.

Dantzig and Ramser[7] were the first to state the vehicle routing problem. Their paper focused on routing a fleet of gasoline-powered delivery trucks that deliver fuel from a 'bulk terminal' to a large number of service stations. The bulk terminal is a facility that stores petroleum products. Service stations are facilities where gasoline-powered vehicles refill their tanks. Dantzig and Ramser stated that the traveling salesman problem is merely concerned with determining the shortest possible route which passes through each of the n given cities exactly once. Assuming that there exists some link that directly connects each pair of cities to and fro, the total number of distinct routes through n cities is given by $\frac{1}{2}n!$. This is because the sequence at which cities are visited is the

same as in the revere order since the salesman returns to the same city. The generalization of the TSP is made by adding more conditions to the problem. They basically thought about the possible outcome when there was a limit to the number of cities that the salesman can visit before returning to the origin city. The salesman would have to take an increasing number of shorter trips every time the maximum number of cities that can be visited is reduced. The context was changed into a delivery truck that transports fuel from the bulk terminal to some n service stations. Hence, a limit was introduced by giving each service station i $(i \in 1, 2, ..., n)$ a quantity q_i equivalent to the amount of fuel to be delivered to that service station. The vehicle is imposed to have the ability to carry only a total amount of C units of fuel every time it is deployed from the bulk terminal. It was set that $C > q_i$ for any service station $i \in 1, 2, ..., n$. Hence, the number of service stations that can be serviced by the vehicle in a single route is determined by the demand q_i of each service station $i \in 1, 2, ..., N$. The vehicle is now forced to make multiple deliveries when the sum of all q_i 's is greater than the vehicle's capacity C. The main goal was still the same, minimize total travel distance covered by the vehicle. Another interpretation made from imposing the limit is that instead of a single vehicle taking on multiple trips, each trip is assigned a different vehicle hence, there are multiple vehicles with the same capacity C that deliver fuel to the same set of service stations. Dantzig and Ramser solved the truck dispatching problem using integer linear programming. This is a method where the solution is obtained by using the linear relationships of the mathematical models in terms of their graphs. A limited space is usually produced when the equations are plotted in a single graph, this space is called the solution space. The best solutions are then identified using the points near or at the boundaries of this space.

In 1987, Solomon[22] proposed some methods of constructing routes in order to solve the Vehicle Routing Problem. He tested them on some problems sets he created called the "Solomon Benchmark Problems". These problems sets are for benchmarking solution methods that are used to solve Vehicle Routing Problems with Time Windows. A time window is a span of time that dictates when a customer is ready to be served by a vehicle. Time windows consists of the earliest and latest possible time that a customer can be served. No vehicle is allowed to service a customer outside the allocated time window.

The first route construction algorithm is called the 'savings' heuristics which starts out with each customer having dedicated routes. This means that each vehicle exclusively services a customer. The algorithm then tries to combine the best pair of routes until the minimum amount of routes are produced. The best pair of routes is decided by some savings equation which gives the amount of cost saved if two routes are combined rather than separate. The best pair of routes saves the most amount of cost among all other pairs. The next heuristic is a greedy approach. This means that in any situation, the best possible choice is selected without thinking of future consequences. The timeoriented nearest-neighbor heuristic starts by selecting the 'closest' node from the depot and attaching it to the current route. 'Closest' means that the node is nearest, in terms of distance or time, to the current location of the vehicle. The process is repeated until the vehicle's schedule is full. The algorithm proceeds to create the next route if there are still un-routed nodes. The next heuristic introduced is the insertion heuristic which constructs routes sequentially. A vehicle's initial route starts as two depot nodes. Each customer node is then inserted between two consecutive nodes in the route. The best location for insertion is determined by some function that shows how efficient the route becomes after insertion. There are three proposed ways of evaluating the efficiency of the routes each called I1, I2, and I3 respectively. I1 evaluates the route by distance and start of service time; I2 evaluates the route by total distance and total time; I3 evaluates the route by a combination of total distance, total travel time, and total time vehicles are late. When a node is inserted, the succeeding nodes in the route are pushed forward, meaning that servicing these nodes are adjusted based on how much time and distance is used to accommodate the inserted node. The last heuristic discussed is the time-oriented sweep heuristic which groups customers into clusters and assigns each cluster to a vehicle. The route construction and scheduling is then done for each cluster of nodes associated to a vehicle. The results show that among the proposed heuristics, the insertion algorithm (specifically the I1) proved to be the most effective in solving the benchmark test cases because it focuses more on correct node sequencing rather than node clustering.

In 2000, Son[34] utilized a Chaotic Particle Swarm Optimization (CPSO) algorithm to generate routes and schedules of the different waste collection vehicles at Danang City Vietnam. CPSO is discussed later in this chapter. The CPSO obtained data on the roads

and waste collection facilities through a Geographic Information System (GIS) that simulates a continuous environment from a model of the road networks and waste collection system of Danag City. The information used in the simulation of the GIS are a collection of real data obtained through observations within a span of time. From this data, the average amount of waste collected at an area is known and is then simulated to vary based on the average amount. Traffic and other variables taken into consideration are also simulated the same way. There are three different kinds of vehicles available, namely, tricycles, hook-lifts and forklifts which take up different roles in the waste collection system. The tricycles and forklifts were used to directly collect waste from household and deliver them to an intermediate disposal site. The hook-lift is then used to transport the gathered waste to its final destination. The objective in this case was to create a schedule that maximizes the amount of garbage collected in the simulation.

In 2005, Nuortio et.al. [27] improved the inflexible and inefficient waste collection scheduling and routing in Eastern Finland by creating a GIS model that is made based on the available road network and waste collection data. They employed a hybrid insertion heuristic for generating the initial population. A guided variable neighborhood thresholding meta heuristic was then used for improving the initial routes. This heuristic is based on three principles, (1) guided local search, which performs a search on the search space S with the intent of finding the local optima. The decision of selecting which part of the search space to explore is based on a deciding factor that 'guides' the search. (2) variable neighborhood search which explores a particular local search space while executing the same local searching approach on adjacent neighborhoods (local search spaces) and switches the current local search space being explored with the neighborhood that shows a better or promising solution. (3) Threshold accepting is a method of evaluating the solutions found and judging whether or not the solution is a good enough approximation of the best solution. This is done for when obtaining the best solution becomes inefficient in terms or resources so instead, it is better to settle for a close approximate. The result of their experimentation showed that the schedule produced by the heuristic significantly reduced traveling distance of vehicles.

In 2012, Burhkal et.al.[2] set-up a model for waste collection vehicle routing problem with time windows (WCVRPTW) with lunch breaks based on two test cases, namely that

of the (1) Waste Management Inc. which is responsible for waste collection in parts of Northern America and (2) the Henrik Tofteng Company responsible for handling waste collection at Denmark. These two cases have different policies for lunch break hours, limits on the number of customers served per route, and total amount collected at each route. They provided both cases with solutions using an adaptive large neighborhood search heuristic. Neighborhood search is a technique that tries to find good or nearoptimal solutions to a combinatorial optimization problem by repeated transformation of a current solution into different solutions in its 'neighborhood'. The neighborhood of a solution is a set of similar solutions obtained by relatively simple modifications to the original solution (i.e. swapping two nodes in the route). For a large-scale neighborhood search, the neighborhood produced from a solution is relatively numerous in count since there are more variables taken into consideration. The 'adoptive' part stems from the fact that the algorithm tries to improve the solution by adjusting the neighborhood produced using the current known solutions at each iteration or time-step. They found that the algorithm produced considerably improved routes from those previously used by the two companies.

In 2015, Akhtar, Hannan and Basri[1] proposed a method of solving Waste Collection Vehicle Routing Problem by node clustering in order to simplify the problem. They distributed customers into bins and modeled a traveling salesman problem (TSP) for each cluster/bin. They then applied the Particle Swarm Optimization algorithm to find optimal routes for each TSP. This method is based on the notion of divide-and-conquer however, note that the clustering method used is significant since it determines which nodes go to which route. In their approach, they used smart bin technology which sends information about each bin specifically the location and current amount.

Masrom et.al.[23] developed a hybrid PSO by incorporating the mutation mechanism of GA. Both PSO and GA are discussed late in this chapter. Each particle is made up of n + 2m components where n is the number of customers and m is the number of vehicles. The initial population is made through assigning real numbers to each component. The n components, associated with customers, are distributed to m vehicles using the real numbers. The customers are assigned to the vehicle whose associated real number is closest to the value of the customers' real number. The whole process of the PSO

algorithm is followed completely at each iteration while the mutation mechanism only occurs when the population's total health is low. A 'healthy' particle is one that changes its personal best at each iteration. A population with low total health is a population where the majority of particles have not changed their personal best positions therefore it can be said that the population might have fallen into a local optima and has stagnated. Mutation maintains that the population keeps moving even if only at a small distance. Both PSO and GA algorithms are discussed later in this chapter.

Similarly, Lu et.al [21] also developed a hybrid PSO algorithm wherein the crossover mechanism of GA was used. Each particle position has n + l - 1 components where n is the number of customers and l is the number of vehicles. Integers are assigned to each component which allows for the creation of the initial population. The position components are arranged using the integers assigned hence, the sequence of visitation for each node is established. Each vehicle's route is given by the sequence of customers between two vehicle components. This is visualized as follows; if we have 3 customers and 2 vehicles, each particle position in the population will have 4 components. We let node 0 to be the depot and nodes 1 through 3 as the collection sites. Given

The route is given as $0 \leftarrow 3 \leftarrow 0 \leftarrow 1 \leftarrow 2 \leftarrow 0$. Notice that both vehicles are used and they have different routes. Crossover is done using two particles in the population, a section of the position vector is selected and removed in each particle. The extracted section is then placed at the beginning of the other particle's position vector. This is done for both particles, hence two new sequences are created which replaces the old ones. We give an example. Given two particle positions [3412] and [2143]. We take the last two sections of each array and place them at the beginning of the other array. Hence we have the two new particles [3421] and 4312. Their results showed that the hyrbid PSO outperformed the basic PSO and basic GA algorithms.

In 1999, Tung and Pinnoi[35] conducted a case study wherein they investigated the refuse collection of a public company (URENCO) in five urban districts of Hanoi, Veitnam. The aimed to improve the company's daily operation, particularly their vehicle

routes and schedule. The collection of waste involved two types of vehicles, motorized vehicles and manually pushed handcarts. The handcarts were used to manually gather refuse from each household or industrial unit. The refuse was then transported to gather sites where the motorized vehicles collect. Each gather site had a set schedule based upon the arrival of vehicles and the time it took for handcarts to deliver the refuse to the site. The motorized vehicles, after having been filled, transport the refuse to a landfill and return to servicing gather sites. The workers were separated into three shifts; morning, afternoon and night. They implemented both route construction and improvement methods. Route construction was done with the I1 insertion heuristic of Solomon. Route improvement manipulates the route constructed by the insertion heuristic in order to obtain better routes. Two route improvement methods were used, either method is invoked in an alternating or random pattern. The Or-opt exchange modification tries to improve a route by removing up-to-three adjacent nodes and reinserts them at different locations within the same route. The 2-opt operation on the other hand removes two edges, one from two selected routes and replaces them with edges wherein the first selected route is connected to the detached segment of the second route and the second route is connected to the detached segment of the first route.

3.2 PSO

Particle Swarm Optimization (PSO) is an optimization algorithm based on a simplified avian social model. PSO was proposed by Kennedy and Eberhart on 1995.[10][9] The PSO algorithm is seen on algorithm 1. PSO was discovered from the attempts to simulate bird flocking and fish schooling. It has been used to solve a wide array of optimization problems ranging from simple root finding to complex engineering optimization problems. The flowchart for the algorithm is shown on figure 3.1.

The original algorithm is quite simple. The population is initialized by randomly obtaining some particles within the search space and generating random velocities that are paired to each particle. There are N particles in the population. Each particle's position $(x_{i,d})$ and velocity $(v_{i,d})$ are composed of D numbers where D is the dimension of the search space S and $i \in (1, 2, 3, ..., N)$. We take note that each dimension of the

Algorithm 1: PSO Algorithm

```
Input: Parameters:
             Population Size N, Maximum Iterations M, Problem Dimension D,
   Cognitive Bias c_1 and Social Bias c_2, Boundary Conditions [l, u] of each
   component, Velocity Boundaries vmin and vmax
   Output: Optimal Solution x_{b,d}
1 for i = 1 : N do
      // d \in 1, 2, ..., D
      Initialize the position of particle i with a uniformly distributed random
        vector of d dimensions: x_{i,d} \sim \bigcup (l, u)
      Initialize the velocity of particle i with a uniformly distributed random vector
3
        of d dimensions: v_{i,d} \sim \bigcup (vmin, vmax)
4 end
j \leftarrow 1
6 while i \le M do
      Evaluate the fitness function values F(x_{i,d}) of each particle x_{i,d},
        i = 1, 2, \dots, N
      // Initialize or change the particle x_{i,d}'s personal best
          location pbest_{i,d}
      if j == 1 or pbest > F(x_{i,d})) then
8
         pbest(x_{i,d}) \leftarrow x_{i,d}
9
      end
10
      // Initialize or change the j^{th} population's global best location
          pbest_{q,d}, g is the index of the prevolus population's best
          particle.
      // b is the index of the of the current population's best
          particle
      if j == 1 or gbest > F(x_{b,d}) then
11
       pbest_{q,d} \leftarrow x_{b,d}
12
13
      end
      Update the velocities and positions of the population according to the
14
        equation:
           v_{i,d} = v_{i,d} + c_1 \cdot rand() \cdot (pbest_{i,d} - x_{i,d}) + c_2 \cdot rand() \cdot (pbest_{q,d} - x_{i,d})
                                        x_{i,d} = x_{i,d} + v_{i,d}
       The process is looped until one of the following conditions are met, a
15
        sufficiently good fitness is reached or a maximum number of iterations
        (generations) are reached.
16 end
```


Figure 3.1: Flowchart of the PSO Algorithm

search space is usually bounded or are in intervals $[a_j, b_j]$, $j \in (1, 2, 3, ..., d)$. a_j is the lowest number that each $x_{i,j}$ can represent while b_j is the highest number that each $x_{i,j}$ can represent.

Each particle's personal best value and location are recorded as pbest and $pbest_{i,d}$. In every iteration, the recorded pbest value is compared to the corresponding particle's current fitness value. pbest and $pbest_{i,d}$ are updated if the fitness value of the particle in the current iteration is better than that of the recorded one. pbest and $pbest_{i,d}$ act as a memory of where the particle was last at its best. Another pair of values and locations are recorded which are the population's overall best particle's fitness value and location. The overall best particle is the particle in the current population that has currently the best fitness value. (Best is usually determined as the lowest or highest fitness value depending on the implementation) These values are known as qbest and $qbest_{q,d}$. This pair serves as a memory of where the currently known optimal location is currently at. These recorded values will serve to guide each member to the most optimum location on the search space as seen on the equations at step 14.

The particle's velocity and location are changed in step 14. As we can see, there are many variables involved in the equations. They will be discussed in the next subsections.

3.2.1 PSO Background

We first discuss the concepts where the algorithm was based upon. Early computer animations used to simulate a flock of birds by individually giving each bird a script to follow, this includes motion, direction, and speed. Each bird was much like an actor in a play, performing actions under a set of instructions. The problem was that it was not scalable. Animators could not possibly give individual scripts to thousands of birds within a short period. This type of approach is too inefficient. This is why, scientists such as Reynolds[31], Heppner and Grenander [17] have tried to simulate movements of birds and fish using the computational power of computers. They tried to simulate where birds would fly to in every time step or frame in the animation. These simulations were using mathematical and physical concepts to mimic the unpredictable movements of birds when they fly in groups. The initial tests were made such that a population of birds were

created. Each having its own velocity and initial position on a defined space of definite dimensions. These birds were "flying" through the virtual space created by simply adding each bird's velocity to its current position at each time step. Their velocities would change each time step according to the velocities of the nearest neighboring birds to avoid collisions. The initial tests showed that direction and speed were not enough to capture the natural flocking of birds this is because after several time steps, the whole flock would unanimously and uniformly fly through the defined space in an unchanging direction. This resulted in the introduction of a 'craziness' factor in the form of stochastic variables multiplied to the velocities of each bird. This change resulted to simulations looking much more 'lifelike'.

Let us take, for example, two birds A and B on a real number Cartesian plane. If bird B is flying at a rate of 9 units per second forward and 5 units per second upward and bird B is bird A's neighbor, bird A will change its velocity to match bird B's velocity. Hence, bird A will have a flying rate of 9 units per second forward and 5 units per second upward with each value multiplied to a random number uniformly distributed from 0 to 1. This means, bird A might not fully replicate the velocity that bird B has. This is seen in nature as bird A trying to "approximate" the velocity of bird B in such a way that they will not collide.

The next step towards development was the introduction of a focal point to which the flock would move toward. This was introduced as a "roost" by Heppner[17], typically it is a point in space that indicated where the flock would finally land. Upon simulating this, the birds already have a 'lifelike' appearance which therefore allowed the elimination of the 'craziness' factor. It was then noted that birds usually land where there is food, hence the roost was replaced by a vector called the "cornfield vector" which is a two-dimensional array of XY coordinates on the Cartesian plane. Given a known position of food, the birds now changed their velocity according to the distance between their current position and the cornfield vector. Each bird now 'remembers' the closest position values it was at during that time step. It also took in consideration the closest position values that any bird in the population has been in. Each bird now changed their velocities with the values that they remember.

The algorithm was then extended to spaces with multiple dimensions. The algorithm

was tested from the singular dimension space R, then to the coordinate system R^2 and finally to the 3-dimensional space, R^3 . It was generalized that the algorithm would work in any number of dimensions R^N .

The velocity equation underwent some changes until it became:

$$V[i][d] = c_1 \cdot rand() \cdot (pbest[i][d] - present[i][d]) + c_2 \cdot rand() \cdot (pbest[gbest][d] - present[i][d])$$

$$(3.1)$$

where v[i][d] is the d^{th} velocity component of particle i in D dimensions, rand() are the randomly generated stochastic variables, pbest[i][d] is the d^{th} component of the particle's best position in D dimensions, pbest[gbest][d] is the d^{th} component of the population's best particle's position (gbest) in D dimensions, present[i][d] is the d^{th} component of the particle's current position in D dimensions, c_1 and c_2 are constant numbers, $x \in (1, 2, 3, ..., n)$

Eberhart and Kennedy [10] adopted the term 'swarm' from Millonas under the circumstance that the behavior of the members of the population satisfies the 5 principles of swarm intelligence as proposed by Millonas. These 5 principles are:

- 1. proximity principle members are able to carry out simple space and time calculations
- 2. quality principle members respond to the quality factors of the environment
- 3. principle of diverse response members do not commit it activities along excessively narrow channels
- 4. principle of stability members do no change the mode of behavior every time the environment changes
- 5. principle of adaptability members are able to change their mode of behavior when it is worth the computation price

The members of the population satisfy these principles because

- 1. The population carries out n-dimensional space calculations over a series of time steps
- 2. Each member responds to the quality of the personal best and global best variables
- 3. The allocation of responses between personal best and global best ensures diversity of response.
- 4. The population changes its overall mode of behavior only when the global best changes.
- 5. The population is adaptive because it does change when the global best changes.

3.2.2 Further Developments

Eberhart and Shi[11] explains that the terms of the velocity vector seen on step 14 of the original algorithm are all important. The first term $(v_{i,d})$ being the previous velocity value gives 'memory' to the particle. It keeps the particle at a good position until a better position is found. Without it, the particle will fly towards the centroid of the locations $pbest_{i,d}$ and $pbest_{g,d}$. In addition, without it, the search space will shrink and never grow since it will only move toward the centroid of its recorded locations $pbest_{i,d}$ and $pbest_{g,d}$. The two terms $c_1 \cdot rand() \cdot (pbest_{i,d} - x_{i,d})$ and $c_2 \cdot rand() \cdot (pbest_{g,d} - x_{i,d})$ concerning the personal best and global best comparisons with the current position is necessary to keep the particles from flying in the same direction for every iteration and leaving the search space.

Eberhart and Shi[11] further improved the original algorithm proposed by Eberhart and Kennedy[10] by introducing inertia weight. Inertia weight is responsible for balancing

global and local exploration. The new velocity equation becomes

$$v_{i,d} = v_{i,d} \cdot w + c_1 \cdot rand() \cdot (pbest_{i,d} - x_{i,d}) + c_2 \cdot rand() \cdot (pbest_{q,d} - x_{i,d})$$

$$(3.2)$$

where the new variable w is the inertia weight. Eberhart and Shi[11] states that having a high inertia weight (w > 1.2) results in more global exploration but less chances of finding the optima because the particles keep exploring new regions in the space. In contrast, having a low inertia weight (w < 0.8) will converge to local optima quickly but will not ensure that the global optimum value will be found. Low inertia weight allows for a fine exploration of a region in the space. Having an inertia weight between 0.8 and 1.2 gives the best chances of finding a global optimum but will take a moderate number of iterations. They surmised that it is best to have a high inertia weight in the beginning for extensive global exploration and then reducing the inertia weight gradually through time for a more refined search on local areas. Although the study does give a good background as to the selection of such numbers, in implementing PSO, one must also take in consideration that not all problems are the same hence, implementor must tweak the PSO variables to suit the problems they are trying to solve.

Fixing Convergence

Although PSO is simple in implementation and design, it had certain flaws. It has high computational costs which is given by it slow convergence.[19] Convergence is a problem for PSO because of the restrictions imposed on the velocities of the particle, in addition, although it converges to a point, the particle are ever moving which causes the particles to be in perpetual oscillation around the optima. The population may still converge but due to the perpetual motion, convergence can become a problem if high precision is taken into consideration. The population may not at all converge. Hence, many studies try to solve such problems.

An innovation to the PSO is the introduction of a constriction factor K necessary for ensured convergence introduced by Clerc[4]. The formula then becomes

$$v_{id} = K[v_{id} + c_1 \cdot rand() \cdot (pbest_{id} - x_{id}) + c_2 \cdot rand() \cdot (pbest_{gd} - x_{id})]$$
 where $K = \frac{2}{|2 - \varphi - \sqrt{\varphi^2 - 4}|}, \varphi = c_1 + c_2$ and $\varphi > 4$.

Chaos Search

Chaos is the characteristic of a non-liner system that includes infinite unstable periodic motions and depends on initial conditions.[30] Due to its uncertainty and stochastic properties, chaotic sequences have been used to replace random generated numbers and to enhance the performance of heuristic optimization algorithms such as GA, PSO and others. There are several chaotic maps available with different properties and characteristics.

The piecewise linear chaotic map (PWLCM) is a simple and efficient chaotic map with good dynamic behavior. The simplest PWLCM is defined by Xiang, Liao and Wong[36] as

$$x(t+1) = \begin{cases} x(t)/p, & x(t) \in (0,p) \\ \frac{1-x(t)}{(1-p)}, & x(t) \in [p,1) \end{cases}$$

The PWLCM behaves chaotically in (0,1) when $p \in (0.05) \cup (0.5,1)$. The chaotic variable, x, can be randomly initialized (i.e. $x(0) \cup (0,1)$) as suggested by Xiang et.al [36] who implemented the PWLCM in PSO to perform chaotic search. They implemented the CPSO (Chaotic PSO) by adding the term r(2cx-1) to the global best \hat{y} . cx is the chaotic variable given by PWLCM and r is a random number taken from the uniform distribution of (0,1). If the resulting vector's objective function value is better, then the global best is replaced, if not, then retain the global best. The velocity function they used for this method is quite different as they have taken inspiration from Clerc and Kennedy [5]:

$$v_{ij} = \chi(v_{ij} + c_1 \cdot r_1 \cdot (y_{ij} - x_{ij}) + c_2 \cdot r_2 \cdot (y_j - x_{ij}))$$

Although it is not very different from the equation of Kennedy et.al.[10], there is no inertial weight present but the variable χ (a.k.a Constricting Factor) is new. χ is added so that the velocity of a particle is throttled such that it does not fly too fast (not having too high of a magnitude for a single time/generation step). χ replaces the need of having to manually set bounds on the magnitude of the velocity. To recall, the velocity of a particle in PSO is usually set to have a bounded magnitude [$vmin\,vmax$] so that it does not travel too fast through the search space, thereby adding realism and further enhance the ability of each particle to explore the search space thoroughly.

3.3 GA

Genetic Algorithm (GA) is an evolutionary algorithm developed by John Holland et. al.[14] It is based on the mechanics of natural selection and genetics. It imitates the processes involved in selection, recombination, and evolution. It involves randomness due to the fact that it mimics natural processes, but users can control the degree of randomness that GA exhibits.

The goals of optimization is to improve performance or efficiency towards some goal. However, there is a distinction between the process of improvement and the destination or optimum itself. In this case, GA is the process and is independent of the objective being approached. GA is not focused only solving a single problem. It is a flexible tool used under different circumstances. This robustness makes GA popular among optimization algorithms.

GA was developed by John Holland[14] with the help of his colleagues and students. Their goal was to (1) abstract and rigorously explain the adaptive process of natural systems and (2) design artificial system software that retains the important mechanisms of natural systems. This approach led to important discoveries in both natural and artificial systems.

3.3.1 Components of GA

The basic algorithm for GA is shown below. A flowchart of the algorithm is also shown on figure 3.2. We now discuss what happens at each part of the algorithm.

Initialization of Population

As we can see, the first step is to generate a population sufficient enough to cover our search space and is limited by the resources at hand. Each member of this population is encoded as an array of values. The number of elements in the array will be determined by the problem and the one who implements the GA. The population size N determines how many chromosomes are in one generation. If there are too few chromosomes, GA will not be able obtain diversity during crossover hence, only a small part of the search

Algorithm 2: GA Algorithm

```
Input: Parameters:
              Population Size N, Maximum Iterations M, Problem Dimension D,
   Mutation Probability \rho_m, Crossover Probability \rho_c Boundary Conditions [l, u] of
   each gene
   Output: Optimal Solution x_{id}
1 for i = 1 : N do
       Initialize the chromosome i with a uniformly distributed random vector of D
        dimensions: x_{i,d} \sim \bigcup (l, u), d \in 1, 2, \dots, D
3 end
4 j \leftarrow 1
5 while i \le M do
       Evaluate the fitness function values F(x_{i,d}) of each chromosome x_{i,d},
        i = 1, 2, \dots, N
       // Create a new population by repeating the following steps
       for i = 1 : N do
7
           (Selection) Select two parent chromosomes x_{p_1,d} and x_{p_2,d} from the
 8
            population according to their fitness (the better fitness, the bigger
            chances of selection)
           // p_1 and p_2 are the indices of the selected chromosomes
           (Crossover)
9
           if r \sim \bigcup (0, 1) < \rho_c then
10
              o_{1,d} \leftarrow x_{p_1,d} \text{ CROSS } x_{p_2,d}
11
               o_{2,d} \leftarrow x_{p_2,d} \text{ CROSS } x_{p_1,d}
12
           else
13
              o_{1,d} \leftarrow x_{p_1,d}
14
              o_{2,d} \leftarrow x_{p_2,d}
15
           end
16
           (Mutation) if r \sim \bigcup (0, 1) < \rho_m then
17
              mutate new offspring at some genes o_{j,d}, j = 1, 2, d \in (1, 2, 3, ..., D)
18
           end
19
           (Acceptance and Replacement) Place new offspring o in the new
20
            population
       end
21
       The process is looped until one of the following conditions are met, a
22
        sufficiently good fitness is reached or a maximum number of iterations
        (generations) are reached.
23 end
```


Figure 3.2: Flowchart of the GA Algorithm

space is explored depending on the values of the initial population. On the other hand, if there are too many chromosomes, GA slows down and many of the elements of the initial population tend to be repeated, hence overestimation occurs. After several years of research, it was determined that after some limit (which depends mainly on the encoding and the problem) it is not useful to increase population size, because it does not make solving the problem faster. [28] This is because the population size becomes too big for the solution space, or the number of computations needed becomes too large and redundant.

Fitness Evaluation

Next is to evaluate the fitness function f(x) for each chromosome x_i in the generation. A fitness function is the mathematical equation that the algorithm is trying to optimize. The word "fitness" is taken from the evolutionary theory. The function tests and quantifies how 'fit' each potential solution is with respect to the problem.[3] It is important to note that the fitness function is a large factor in problem solving using GA. The fitness function must be able to adopt the numerical complexity and constraints that are present in the problem. Choosing the right fitness function will determine computability and complexity usage of the algorithm.

Selection

Selection allows for the persistence and propagation of fitter genes in the current population onto the next generation. Fitter genes are determined by the fitness value of the individual. This is seen in nature wherein creatures that are well-adapted to the current environment would live longer than those that are not. In the animal kingdom, females are more likely to reproduce with males who can provide food, shelter, safety, and healthy offspring. Hence, the less fit individuals in the population have lower chances of reproducing and spreading their inferior genes. In GA, we want to retain individuals that are more capable of obtaining the optimal solution.

The selection process can either be repeating or non-repeating. The selection process is 'repeating' if it allows re-selection of previously selected members. Selection is 'non-repeating' if it does not allow re-selection of members. Non-repeating allows retention of

other possibly 'good' genes (these are genes that might lead to better solutions later on) and a slower convergence rate. Repeating selection can lead to a population of individuals that have the almost the same genes but differ in only some features. This allows for local exploration, searching for a good solution in a specific area in the search space. In consequence, since the same parents can be selected numerous times, it can lead to generating a population with a uniform genetic make-up.

Examples for selection process are roulette wheel selection and elimination selection. Fitness proportionate selection also called the roulette wheel selection is done by assigning probabilities to individuals in the population based on their fitness. Fitter chromosomes should have a higher chance of being selected while inferior chromosomes are less likely to be selected. The sum of the probabilities of assigned to each chromosome in the population should be equal to 1. This makes it similar to a roulette wheel. The wheel is 'spun' through the random number generator and the corresponding member mapped to the portion of the wheel where the number ends at is selected. The process is repeated until there is a good enough number for generating the next population. An example of the roulette wheel is seen on figure 3.3. Elimination selection is done by selecting a number of individuals and pitting them against each other based on their function values. Individuals that have better function values are selected and the process is repeated until there is a good enough number for generating the next population. An example of the elimination selection is seen on figure 3.4.

Recombination or Crossover

Crossover is the process of taking two selected individuals and swapping portions of their genetic make-up to create offspring that have genes from both parents. This mechanic is similar to the biological process called 'heredity'. The crossover mechanism is important because it allows the creation of possibly new solutions from the previous gene pool. This allows exploration over a specific area in the search space. The individuals generated by this process are the members of the next generation. It is up to the implementer how much of the newly generated individuals are chosen. A possible implementation is where offspring that have the better function values may be retained. It is also possible to retain chromosomes form the previous generation. Suppose that we

Figure 3.3: Roulette Wheel Selection

Figure 3.4: Simple Elimination Selection

SINGLE POINT CROSS-OVER

Figure 3.5: Singe Point Cross-Over

have chromosome A having the genetic make-up < 1, 2, 3, 4 > and chromosome B having the genetic make-up < 6, 7, 8, 9 >. If we implement a single point crossover after the second value we get the offspring < 1, 2, 8, 9 > and < 6, 7, 3, 4 >. A visual representation is seen in figure 3.5. Crossover only happens under a probability. If crossover does not occur, there are not genes swapped and the offspring produced are the exactly the same as their parents. The crossover chance and number of crossover points are determined by the implementor after some tests.

Mutation

The mutation mechanism is the process wherein a set of genes from some members in the population are either replaced by a completely new value or are interchanged. This allows for exploration on possibly 'unexplored' areas in the search space. It reduce the chances of the population converging to a local optima. Local optima are the best solutions that can be found for a certain area in the search space but are not the most optimal of solutions in the entire search space. Like the crossover mechanism, mutation also occurs for only some probability. In nature, mutation is a rare occasion hence the mutation chance must be low (usually a probability of 0.02). A visual representation is

Figure 3.6: Mutation in GA

seen in figure 3.6. If the chromosomes are bound to have each gene $x_i \in [1,9]$ where i is from [1,4]. We can see that 3 is replaced by 9 and that both 3 and 9 are still in [1,9]. Note that the number of genes to be mutated is not limited to only one. It is possible to can change a few more genes but the results should only be a minor change. Mutation is defined to be some minor change in the genes this means that it is up to the implementor to determine the number genes to be manipulated such that it only brings a minor change. When we take binary numbers in consideration, flipping a few bits still creates a minor change. If the chromosome is made up of 30 or 50 genes, then flipping 2-3 bits will not cause a major change provided that they are less significant bits.

Acceptance and Replacement

Under acceptance, we evaluating whether or not the newly generated chromosomes can be added to the new population. This can be done through comparing with the parents' fitness values. If the offspring have better fitness values then we replace the parents, otherwise we keep the parents. This step is usually done after crossover to check if the siblings generated will replace members in the population based on their fitness. The retention of old individuals in the population is called being 'elitist' since it keeps

only the fitter members of society to move forward.

Termination Conditions

Testing is done through keeping track of the best fitness value at each generation. If the fitness value is the same for n amount of times and is below a certain acceptable threshold, then we terminate the process. This is considered as a success only if most of the members in the population have the same acceptable fitness, otherwise it is a failure. n is determined by the user. If the population becomes uniform, terminate the process and print out the value. If the fitness is acceptable under a threshold, then it is a success and we say that the population has converged to that point. If the population has become uniform but does not have an acceptable fitness, then it is a convergence but a failure. If a certain number of iterations has been reached and it has not yet converged and has been the same for n times, the process terminates and it is a failure.

3.4 Constrained Optimization Problems

A constrained optimization problem is a problem that is bounded by some limiting factors. Real-worlds problems are always subjected to constraints. For example, if we were to create 3d models of a cube with a single piece of 10x15 inches cardboard. Given that we have limited resources, what is the best way to cut the cardboard in order to have 2 models with the least amount of unused cardboard? We try and think of the best ways of cutting the cardboard so that we can get the best results. That was just a simply problem. Suppose we have a lot of constraints, the problem will becomes more challenging as more constraints are added. Not only the quantity but also the type of the constraints affect the problem as well.

Most real-world optimization problems have constraints of different types which modify the shape of the search space. During the past years, optimization algorithms have been employed to solve such problems. Constraints can be in the form of both equalities and inequalities, they can be discrete and continuous, linear or non-linear, they can also be related to other constraints. Due to these properties, constrained optimization problems are more difficult to solve compared to unconstrained ones. According to Garg[13],

Constrained optimization problems are defined as:

Minimize the fitness function f(X) that is subjected to p equality constraints,

$$h_k(X) = 0; k = 1, 2, ..., p$$

and q inequality constraints,

$$q_i(X) \leq 0; j = 1, 2, ..., q$$

where each set of decision variables X is in D dimensions such that $X = [x_1, x_2, x_3, ..., x_D]^T$. Each element of X are bounded as

$$l_i < x_i < u_i; i = 1, 2, ..., D$$

where l_i and u_i are the minimum and maximum permissible values of each element x_i .

In addition, Deb[8] considered that the equality constraints may be converted into inequality constraints since most real world objects are not perfectly accurate in measurement as implied by the uncertainty principle.

Therefore, equality constraints must be formulated such that the function values of the p equality constraints

$$h_k(X) = 0; k = 1, 2, ..., p$$

must be bounded by some allowable precision δ , that is,

$$|h_k(X)| - \delta < 0: k = 1, 2, ..., p$$

Notice now that if we set δ to some precision, say 1×10^{-6} , then it can be said that it is approximately equal to 0. If we increase the precision, then it will be nearer to 0 itself, hence, there would not be a very big difference and therefore it may as well be equal to 0. Since the equality constraints have been converted, we now have the new definition, Minimize the fitness function f(X) that is subjected to M = p + q inequality constraints,

$$g_i(x) \le 0; j = 1, 2, ..., M$$

where each set of decision variables x is in D dimensions such that $x = [x_1, x_2, x_3, ..., x_D]^T$. Each element of x are bounded as

$$l_i \le x_i \le u_i; i = 1, 2, ..., D$$

where l_i and u_i are the minimum and maximum permissible values of each element x_i .

With that explained, we go on to discuss what feasible and infeasible solutions are. Feasible solutions are solutions that do no violate any constraint while infeasible solutions do. There are many approaches in considering feasible and infeasible solutions when implementing optimization algorithms. Some of these methods include rejection of infeasible individuals, maintaining a feasible population, repairing of infeasible individuals, separation of individuals and constraints, replacement of individuals by their repaired versions and use of decoders. [24]

3.4.1 Penalty Function Approach

In order to solve constrained optimization problems, one may use penalty functions. In using penalty functions, the number of constraint violations are used to punish infeasible solutions so that feasible solutions are much more favored. Unfortunately, penalty functions require parameter tuning for different problems because these parameters are problem-specific.

He and Wang[15] utilized penalty functions for their Co-evolutionary PSO implementation. They used two groups of swarms. The first group is used to explore the search space while the other group is used to tweak the penalty function parameters. Each swarm in the exploration group is paired with an individual in the parameter group. The individuals in the parameter group determine the penalty functions to be used by the corresponding swarms in the exploration groups. Hence, the solutions obtained in the exploration group depend upon the parameter group while the parameter group depend on the exploration group for evaluation and tweaking. The process aimed to explore and exploit different search spaces in finding the solution.

On the other hand, Deb[8] proposes a parameter free function in creating a better

population to solving constrained optimization problems using GA. These penalty functions do not require values to be set by the user instead, it utilizes the values of the constraint violation themselves. Parameter free penalty function is driven by the new fitness value system,

$$F(x_i) = \begin{cases} f(x_i) & \text{if } x_i \in S \\ f_w + \sum_{j=1}^M g_j & \text{if } x_i \notin S \end{cases}$$

where $F(x_i)$ is the penalized objective function value for each individual or particle x_i $i \in {1, 2, 3, ..., N}$ in the population, each x_i must be in the S solution space of D dimensions. f(x) is the non-penalized objective function value of x_i , f_w is the worst objective function value among all x_i individuals and each g_j , $j \in {1, 2, 3, ..., M}$ is the cost or value of each violated constraint. The solution space of the problem contains all the viable solutions to the problem which also satisfies each and every constraint present.

If the individual from the population satisfies all conditions, its fitness value is unchanged but if it does not satisfy the conditions, its fitness value is changed to that of the worst value added with the values of the violated inequality constraints g_j . This allows the selection operator to give a better chance to feasible solutions by setting the fitness values of infeasible solutions far away from the objective. In PSO and PSO-GA, infeasible solutions means that the population ignores them and only flock towards feasible solutions. In GA, infeasible solutions are ignored or have the least chance of being selected for the selection process.

3.4.2 PSO Fly-back Approach

One method for keeping feasible solutions is to make the particles return to their previous positions. [16] When the individual is to venture upon the infeasible solutions, it "moves back" to its previous position instead of flying to the infeasible solution space. This is done be simple retaining the position it currently is at. One the other hand, while the position remains unchanged, the change in velocity is retained hence, in the next iteration, the particle's velocity becomes shorter and more attuned to facing towards the global best position. This method retains a feasible population but the initial population must be feasible.

3.5 PSO-GA Approach

PSO-GA is a hybrid of PSO and GA. Harish Garg has proposed a PSO-GA[13] which supplements the particular disadvantages of both PSO and GA with the advantages of each. The algorithm attempts to balance the exploration and exploitation ability of both algorithms. Exploration happens in PSO when particle fly through the search space. It is less applicable to GA since the algorithm only utilizes what is currently known in the population. It only occurs for GA through Crossover and Mutation. Exploitation happens in PSO when a particle flies to or near an area containing a possible solution, every other particle in the population will tend to flock towards that area in order to find the solution. PSO's problem is that local optima may trap the whole population. Exploitation happens in GA during the Selection operator, wherein the members with the fittest values have a higher chance of being chosen for Crossover and Mutation. Hence, more chances of exploring that particular gene pool.

In GA, if an individual is not selected, the information contained by that individual is lost but in PSO, the memory of the previous best position is always available to each individual. Without a selection operator, PSO may waste resources on poorly located individuals. PSO-GA by Garg[13] combines the ability of social thinking in PSO with the local search capability of GA.

PSO's velocity vector guides the population to a certain solution point while GA's selection and crossover replaces infeasible solutions with feasible ones by creating an individual from the set of feasible solutions.

3.5.1 Parts of PSO-GA

The algorithm for PSO-GA is shown below

- 1. Set PSO and GA parameters
 - Set current PSO iteration, $PSO_{CurrIt} = 0$ and max iteration PSO_{MaxIt}
 - Set PSO population size PSO_{PopNum} , cognitive and social bias constants c_1 and c_2 , maximum and minimum inertial weights w_{max} and w_{min}
 - Set GA parameters, crossover probability GA_{cross} , mutation probability

 GA_{mut}

- Set GA parameters: rate of the number of PSO particles affected by GA γ and rate of increasing GA maximum iterations β , maximum and minimum number of individuals to be selected GA_{NumMax} and GA_{NumMin} , maximum and minimum GA population sizes $GA_{MaxPopSize}$ and $GA_{MinPopSize}$, maximum and minimum GA iteration numbers GA_{MinItr} and GA_{MaxItr}
- Set the PSO dependent GA parameters, number of individuals affected by GA GA_{Num} , GA population size $GA_{PopSize}$ and GA maximum iteration GA_{MaxItr} using the equations

$$GA_{Num} = GA_{NumMax} - \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\gamma} \times \left(GA_{NumMax} - GA_{NumMin}\right) (3.3)$$

$$GA_{PopSize} = GA_{MinPopSize} + \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\gamma} \times \left(GA_{MaxPopSize} - GA_{MinPopSize}\right)$$
(3.4)

$$GA_{MaxItr} = GA_{MinItr} + \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\beta} \times \left(GA_{MaxItr} - GA_{MinItr}\right) \tag{3.5}$$

PSO Section

- 2. Generate a random population of particles of PSO_{PopNum} members in D dimensions, each with a corresponding random velocity v
- 3. Increment PSO_{CurrIt} by 1
- 4. Evaluate each particle's objective function value F(PSOx)
- 5. Update gbest and pbest positions and values of each $PSOx_i$ in the population $(i \in 1, 2, 3, ..., PSO_{PopNum})$
- 6. Update each particle's velocity and position with the equations,

$$w = w_{max} - (w_{max} - w_{min}) \times \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)$$
(3.6)

$$v_i = v_i \times w + c_1 \times rand() \times (pbest_i - PSOx_i) + c_2 \times rand() \times (pbest_g - PSOx_i) \ \ (3.7)$$

where $i \in 1, 2, 3, ..., PSO_{PopNum}$ and g is position/individual in the PSO population that is currently designated as global best (gbest) individual

$$PSOx_i = PSOx_i + v_i (3.8)$$

GA Section

- 7. Set the number of currently selected individuals $GA_{CurrNum} = 0$
- 8. Increment $GA_{CurrNum}$ by 1
- 9. Choose a random position/individual $PSOx_s$ from the PSO population.
- 10. Generate a random population of $GA_{PopSize}$ individuals in the same D dimensions.
- 11. Set the first individual GAx_1 in the GA population to be a randomly selected individual $PSOx_s$ from the PSO particle population.
- 12. Set the current GA iteration $GA_{CurrItr} = 0$
- 13. Increment GA(CurrItr) by 1
- 14. Perform elitism
 - set the replacing individual GA_{rep} as the randomly selected PSO particle $PSOx_s$ if $GA_{CurrNum} = 0$
 - otherwise, check each individual in the current GA population, if $F(GAx_i)$ is less fit than $F(PSOx_s)$, then replace GAx_i with $PSOx_s$

$$GAx_{i} = \begin{cases} PSOx_{s} & \text{if } F(PSOx_{s}) < F(GAx_{i}) \\ GAx_{i} & \text{otherwise} \end{cases} i \in 1, 2, \dots, GA_{PopSize}$$

- 15. Perform selection, crossover and mutation to generate the next GA population
- 16. Evaluate the penalizing objective fitness values $F(GAx_i)$ for each individual in the GA population
- 17. Check if maximum GA iterations is reached
 - If reached, proceed to step 18
 - otherwise, go back to step 13
- 18. Replace the selected PSO particle $PSOx_s$ with the best individual in the GA population

- 19. Check if the maximum number of replacements have occurred
 - If reached, proceed to step 20
 - otherwise, go back to step 9
- 20. Update the PSO dependent GA parameters using equations (3.3), (3.4) and (3.5)
- 21. Check if the maximum number of PSO iterations have been reached or if the population has converged
 - If reached, end
 - otherwise, go back to step 3

The flowchart of the algorithm is shown on figure 3.7

As you can see, the algorithm follows the both PSO and GA algorithms in succession. PSO is first done to the population to obtain points across the search space. GA is then applied to some of the best individuals. This is done to replace the worst individuals in the population with those closer to the better ones.

After forming the new population with PSO, some of the individuals in the population will get replaced. Some not all because if we have a huge population, it would take a long time to complete. This number is given by GA_{Num} . After selecting the best individuals from the population, the algorithm aims to create a new population by replacing points in the current population with better points via the genetic principles, selection, crossover and mutation. After all selected individuals have been processed, we change the GA variables, $GA_{PopSize}$ and GA_{MaxItr} which are for the population size in GA and the maximum iterations done for GA respectively by the equations (3.3), (3.4) and (3.5).

Judging from the equations 3.3, 3.4 and 3.5, GA_{Num} will initially be GA_{NumMax} and slowly become GA_{NumMin} as the number of iterations increases. This is because the fraction PSO_{CurrIt}/PSO_{MaxIt} is raised to γ which is a positive whole number as given by Garg[13], hence, the whole term $(PSO_{CurrIt}/PSO_{MaxIt})^{\gamma}$ will initially be very small and eventually will be equal to 1 when $PSO_{CurrIt} = PSO_{MaxIt}$.

This is also the case for both $GA_{PopSize}$ and GA_{MaxItr} . $GA_{PopSize}$ will initially start equal to $GA_{MinPopSize}$ then slowly become $GA_{MaxPopSize}$. GA_{MaxItr} will initially start equal to GA_{MinItr} then slowly become GA_{MaxItr} . Since the factors will be in fractions,

Figure 3.7: Flowchart of PSO GA Algorithm

there is a need to get the floor values of GA_{Num} , $GA_{PopSize}$ and GA_{MaxItr} . This is because GA_{Num} , $GA_{PopSize}$ and GA_{MaxItr} must be positive integers because they dictate array sizes. However, in the case of Inertial Weight w, which changes according to the equation $w = w_{max} - (w_{max} - w_{min})(PSO_{CurrIt}/PSO_{MaxIt})$, it is most of the time a fraction. Garg[13] started w = 0.9 initially then becoming w = 0.4 as the number of iterations increases.

Chapter 4

Methodology

In this chapter, we first discuss the model of the problem then show how the hybrid PSO-GA algorithm of Harish Garg[13] is implemented. Then we test the effectiveness of the algorithm in solving vehicle routing problems.

4.1 Problem Model

We now develop the specific model for the Baguio City waste collection vehicle routing problem. We start by reevaluating what we know about the current waste collection system in Baguio City. The data on the vehicles and working hours was provided by the Sold Waste Management Division of Baguio City.

- Each driver works for 9 hours each working day on one of three shifts; morning, afternoon, and night.
- Each driver is assigned a 5-day work schedule among different sets of days.
- Each vehicle is assigned to service about 7 to 8 Barangays each day.
- There are, as of June 2018, currently a total of 19 waste collection vehicles. Two of which act as quick response vehicles, these are operated by two teams responsible for collecting the extra amount of waste that is left when a waste collection vehicle becomes too full to collect all of the garbage on-site.
- There are four kinds of vehicles used for waste collection. Most of the vehicles have an approximate capacity of 12 cubic meters.
- Each vehicle has two main partitions for biodegradable and residual waste, however, the partitioning is not fixed.
- Each vehicle start and ends at the Irisan ERS/MRF.
- Each vehicle is empty before leaving the ERS/MRF.
- The vehicles are full when they return to the ERS/MRF but their load is

deposited at the site for final segregation.

- After being sorted, residual waste is brought to the Garbage Transfer Station at Barangay Dontogan where it will be gathered and loaded onto vehicles that transport it to Capas, Tarlac.
- Biodegradable waste remains at Irisan ERS/MRF while the rest of the recyclables are either given away or sold for the compensation of volunteer sorters.
- There are 129 known Barangays (Villages) in the City that are serviced by the General Services Office Solid Waste Management Division.
- No specific time windows are alloted to each collection site due to variability of traffic, road availability, weather conditions, and quantity of waste.

4.1.1 Waste Collection Vehicle Routing Problem Model

The objective in Waste Collection Vehicle Routing Problem is to determine a feasible set of routes that minimizes the total cost involved in waste collection with the following constraints:

- 1. All vehicles begin at and return to the depot;
- 2. All vehicles are homogeneous, they have the same maximum capacity;
- 3. A waste collection site is visited by only one vehicle;
- 4. The total amount of waste collected by vehicle must not exceed its maximum;
- 5. Distances between the depot, collection sites and the disposal site are determined;
- 6. We assume that the disposal site is the same as the depot. This is because the waste collected by trucks will have to be sorted at the ERS-MRF at Irisan before it is transported to the Garbage Transfer Station (GTS). The GTS is not part of the scope of this problem because the job of handling the transfer from Baguio to Tarlac handed to a different body;
- 7. The demand at each collection site should be less than or equal to the maximum capacity of the vehicle. Note that any excess amount at a site will always be covered by the quick response teams.

We represent our network of collection sites and ERS-MRF depot/disposal site as a complete undirected graph G = (V, E) of V vertices and E edges.

The set of vertices V encapsulates the set of waste collection sites (V^c) and the single depot also considered as the single disposal site (V^d) , that is $V = \{V^d \cup V^c\}$. The number of vertices is therefore $|V| = |V^d| + |V^c| = 1 + n = N$ where n is the number of waste collection sites.

$$V = \{v_i\}, i \in \{0, 1, 2, \dots, n\}$$

where

$$v_i = \begin{cases} v_0 & \text{is the Depot} \\ v_1, v_2, \dots, v_n & \text{are the Collection Sites} \end{cases}$$

Each vertex $v_i \in V$ is associated with a demand q_i equivalent to the amount of garbage to be collected in cubic meters.

$$q_i = \begin{cases} q_0 = 0 \text{ m}^3 \\ q_1, q_2, \dots, q_n \in \mathbb{R} \\ \text{specifically } \in [g, Q] \text{ m}^3 \end{cases}$$

where g and Q are the lower and upper bounds of the amount of garbage that can be generated at a collection site i, $i = 1, 2, \dots, n$ moreover, Q is the maximum carrying capacity of a vehicle, defined later.

The set of edges

$$E = \{(v_i, v_j) | v_i, v_j \in V, \ i, j \in 0, 1, 2 \dots, n\}$$

The edge $(v_i, v_j) \in E$ connects an arbitrary pair of vertices v_i, v_j in graph G.

Each edge $(v_i, v_j) \in E$ is associated to a distance $d_{i,j}$ in kilometers. Let $K = \{k_i\}, i \in 1, 2, 3, ..., m$ be the set of waste collection vehicles. The number of vehicles m varies depending on the route constructed however, we set that $1 \le m \le n$. There would always be one vehicle in any route and the maximum number of vehicles that can used in a route is equal to the number of collection sites n, this happens when every collection site is serviced exclusively by its own waste collection vehicle.

Let Q be the maximum carrying capacity of any vehicle $k \in K$. This is the maximum

amount of garbage that can be collected and carried by a vehicle along its path.

The decision variables of the model depend on the vehicle capacity Q and the waste quantity at the next waste collection site it visits. These are modeled as follows:

$$X_{i,j,l} = \begin{cases} 1, & \text{if vehicle } k_l \text{ can travel from vertex } v_i \text{ to } v_j \\ 0, & \text{otherwise} \end{cases}$$

$$(4.1)$$

where $i, j \in {0, 1, 2 ..., n}$. and $l \in {1, 2, ..., m}$.

$$A_{i,j,l} \in \mathbb{R}$$
, specifically $\in [0,Q]$ (4.2)

where each element in A is the accumulated amount collected by vehicle $k_l \in K$ when moving between v_i and v_j where $l \in 1, 2, ..., m$ and $v_i, v_j \in V$, $i, j \in 0, 1, 2, ..., n$.

$$Y_{i,l} = \begin{cases} 1, & \text{if vertex } v_i \text{ is visited by vehicle } k_l \\ 0, & \text{otherwise} \end{cases}$$
 (4.3)

where $i \in \{1, 2, ..., n \text{ and } l \in \{1, 2, ..., m\}$. Note that we do not consider the depot here because it is bound to be visited twice by any vehicle.

We can say that X is an $N \times N \times m$ matrix where each $N \times N$ is the adjacency matrix of the route of vehicle k_l , $l \in 1, 2, ..., m$. Hence, it is the adjacency matrix of a subgraph of G where either none, few, many or all of the edges may have been taken out. Moreover, if we combine all of the $m \ N \times N$ matrices, we come-up with a denser subgraph of G or G itself. It follows that A is also the same $N \times N \times m$ matrix where instead of taking binary variables, it takes on values that represent the accumulative amount of waste collected by a vehicle during its run through edge (v_i, v_j) . Y is an $n \times m$ matrix that acts more like a checklist that shows which waste collection sites $v_i \in V^c$ were visited by vehicle $k_l \in K$.

Our aim is to minimize operational costs. Specifically, we want to minimize not only the total amount of travel cost but also the fleet size (number of vehicles used). We already know that minimizing travel cost is about selecting the best set of road segments that provide us the least amount of expenses between any two points. We now focus on reducing fleet size. We want to know how we can maximize the use of each and every vehicle in the fleet which will be discussed after the model. Our objective function is represented by the equation:

$$\min F(X, A, m) = \alpha_1 \cdot \left(\sum_{l=1}^m \sum_{i=0}^n \sum_{j=0}^n X_{i,j,l} \cdot d_{i,j} \right) + \alpha_2 \cdot \sum_{l=1}^m \sum_{i=1}^n A_{i,0,l} + \alpha_3 \cdot m$$
 (4.4)

Where α_1 is the constant which converts distance to cost, α_2 is the constant which converts the total volume of waste collected by all vehicles to cost, and α_3 is the constant which converts the number of vehicles to cost.

In order to make satisfy our assumptions, we subject our objective function following constraints:

$$\sum_{i=1}^{n} \sum_{l=1}^{m} X_{i,j,l} = 1, \qquad \forall j = 1, 2, \dots, n$$
(4.5)

$$\sum_{i=1}^{n} Y_{i,l} = \sum_{i=1}^{n} X_{i,j,l}, \qquad \forall l = 1, 2, \dots, m; j = 1, 2, \dots, n$$
(4.6)

$$\sum_{i=0}^{n} X_{0,j,l} = 1, \qquad \forall l = 1, 2, \dots, m$$
(4.7)

$$\sum_{i=0}^{n} X_{i,0,l} = 1, \qquad \forall l = 1, 2, \dots, m$$
(4.8)

$$\sum_{j=1}^{n} A_{0,j,l} = 0, \qquad \forall l = 1, 2, \dots, m$$
(4.9)

$$\sum_{l=1}^{m} \sum_{i=1}^{n} A_{i,j,l} \le Q, \qquad \forall i = 0, 1, \dots, n$$
(4.10)

$$\sum_{l=1}^{m} (A_{j,h,l} - A_{i,j,l}) = \sum_{l=1}^{m} X_{i,j,l} \cdot q_j, \qquad \forall i, h = 0, 1, \dots, n; j = 1, 2, \dots, n - 1$$
 (4.11)

$$dist_{i,j} = dist_{j,i},$$
 $\forall i = 0, 1, \dots, n; j = 0, 1, \dots, n$ (4.12)

$$X_{i,j,l} \in 1,0 \tag{4.13}$$

$$Y_{i,l} \in 1,0 \tag{4.14}$$

$$A_{i,j,l} \in \mathbb{R} \tag{4.15}$$

Constraint (4.5) specifies that collection site v_i is visited by not more than one vehicle k_l and (4.6) specifies that a collection site v_i is in the route of vehicle k_l . We will know how many times v_i is visited by all vehicles since the values of each $X_{i,j,l}$ is 1 if vehicle k_l moves from vertex v_i to v_j and 0 otherwise. However, we assumed that vehicles only visit each collection site once, hence, the sum must be equal to one.

Constraints (4.7) and (4.8) imposes that each vehicle $k_l \in K$ must start and end at the depot.

Constraint (4.9) imposes that each vehicle $k_l \in K$ must have no accumulated waste before leaving the depot.

Constraint (4.10) imposes that the accumulated amount of any vehicle $k_l \in K$ traveling between any pair of vertices v_i and v_j must be less than the maximum capacity.

Constraint (4.11) imposes that the vehicle k_l completely collects all waste when it visits vertex v_j .

Constraint (4.12) imposes that the total distance traveled from vertex v_i to vertex v_j must be the same when the vehicle k_l travels from vertex v_j to vertex v_i .

Constraints (4.13), (4.14), and (4.15) define the domain of the decision variables.

We now explain the values of the three constants α_1 , α_2 , and α_3 . We set that the amount of waste is in cubic meters and our distances are in kilometers. We calculate the total cost in terms of operational cost in Philippine Pesos (Php). We first discuss the value of α_1 . In order to convert the total distance covered in operational cost, we must know the amount of fuel (in liters) is needed to travel that amount of distance. Then we convert the liters of fuel into operational cost. Hence, our conversion is done as follows:

Total Distance-Km ×
$$\frac{\tau \text{Liter}}{\text{-Km}}$$
 × $\frac{\lambda \text{ Pesos}}{\text{-Liter}}$ = Total Distance · $\tau \cdot \lambda$ Pesos

where τ is the fuel efficiency of the vehicle and λ is the cost of a liter of fuel. Fuel efficiency τ is obtained by calculating the average daily fuel consumption and travel

distance of the vehicle. This data was obtained through the Monthly Report of Fuel Consumption and Official Travel produced by the Solid Waste Management Division. This report consists of the distance traveled by the vehicle and the amount of gas used for the day. Measuring distance traveled and fuel consumption is done by the odometer of the vehicle. These measurements are recorded by the driver before and after vehicle use. Fuel efficiency of the vehicle used in this model is approximately 0.27 Liters per Kilometers. The cost of the liter of fuel is obtained by checking the gas prices at the petrol stations for a particular span of time. Specifically, we recorded the diesel prices from June 28 to July 2 of 2018 and observed that the diesel costs 46.20 Philippine Pesos (Php) per liter on all five days. Hence, $\alpha_1 = \tau \cdot \lambda = 0.27 \cdot 46.20 = 12.474$ pesos per kilometer.

As for α_2 and α_3 , these constants are for vehicle minimization. α_3 is the salary of a driver who drives vehicle $l \in K$. The conversion from number of vehicles to operational cost in Php is done as follows.

$$m$$
_vehicles $\times \frac{1 \text{ driver}}{\text{-vehicle}} \times \frac{\alpha_2 \text{ Pesos}}{\text{driver}} = m \cdot \alpha_2 \text{ Pesos}$

The value of α_3 is given by the average salary of drivers. The salaries of drivers depend mainly upon their years of service. The range of the salaries of the drivers are from Php 480 to Php 1200 and above. Hence, $\alpha_3 = \frac{480+1200}{2} = 840$. Lastly, we discuss the value of α_2 . Recyclable and reusable waste can be sold by waste collectors to companies that need these materials. An example of this are the glass bottles which can be remelted and molded for either the same use or a different one. α_2 is the amount of money obtained when the recyclables of a fully loaded vehicle is sold. Generally, all the recyclable materials sum up to about Php 400 for a fully loaded truck. Therefore, for the second term of our objective function (4.4), we obtain the sum of all the waste collected by all vehicles and divide that amount by the maximum capacity of a vehicle so that we know how much truck loads of waste was collected. We then multiply that to α_2 so that we know how much money was obtained through selling the recyclables. However, in reality, this amount of money does not go to the management. This amount is given to the volunteers who sort and load the waste on-site. These volunteers are not directly paid by the government but they obtain compensation for their labor through

Figure 4.1: Graph of the Basic Example

the money obtained from selling recyclable and reusable waste. The conversion from amount of waste to peso is done as follows.

$$\frac{\text{Total Collected Waste m'}^3}{Q \frac{\text{-Mis}^3}{\text{vehicle}}} \times \frac{\alpha_1 \text{ Pesos}}{\text{vehicle}} = \frac{\alpha_1 \cdot \text{ Total Collected Waste}}{Q} \text{ Pesos}$$

Do note that the second term of the objective function (4.4) is dependent on the amount of waste collected however, when we only talk about feasible solutions, this value will become constant for all feasible solutions because all waste is collected by the fleet. The second term generally depends on the instance of the problem. When the waste to be collected is large, then so is the amount of recyclables recovered.

We have now established the model for the problem however, we show the reasoning behind the added cost of waste collected and driver salaries. If the problem was just about obtaining the shortest distance, then the problem becomes a regular VRP. The problem would be as reduced to finding the shortest connections between nodes by using the Dijsktra's algorithms. Therefore, the amount of vehicles is ignored. We show an example where a full garbage truck is better than using multiple garbage trucks. If we have graph G in figure 4.1. Then we know that the solution to obtaining the minimum distance is to visit each collection site on different trips, given by the route $0 \to 1 \to 0 \to 2 \to 0 \to 3 \to 0$. That is, if we only consider the first term of our objective function (4.4), then the solution would be the sum of the hadarmard products of each of the vehicle's routes and the distance matrix. Let α_1 be the same value stated above.

We know that each collection site is exclusively serviced by their own vehicles. Therefore we have three waste vehicle collection vehicles traveling from the depot, servicing the node v_1 , v_2 and v_3 respectively, and then returning to the depot after collection. The edges they used are given as follows.

The distance matrix of the graph in figure 4.1 is given below.

$$d_{i,j} = \begin{pmatrix} v_i \setminus v_j & v_0 & v_1 & v_2 & v_3 \\ v_0 & 0.75 & 0.5 & 1.0 \\ v_1 & 0.75 & 0 & 1.5 & 3.0 \\ v_2 & 0.5 & 1.5 & 0 & 2.5 \\ v_3 & 1.0 & 3.0 & 2.5 & 0 \end{pmatrix}$$

Therefore, the cost of traveling this route is given by

$$F = \alpha_{1} \cdot \left(\sum_{i=0}^{3} \left(\sum_{j=0}^{3} (X_{i,j,1} \cdot d_{i,j})\right) + \sum_{i=0}^{3} \left(\sum_{j=0}^{3} (X_{i,j,2} \cdot d_{i,j})\right) + \sum_{i=0}^{3} \left(\sum_{j=0}^{3} (X_{i,j,3} \cdot d_{i,j})\right)\right)$$

$$= \alpha_{1} \cdot \left[\left(\sum_{j=0}^{3} (X_{0,j,1} \cdot d_{0,j})\right) + \left(\sum_{j=0}^{3} (X_{1,j,1} \cdot d_{1,j})\right) + \left(\sum_{j=0}^{3} (X_{2,j,1} \cdot d_{2,j})\right) + \left(\sum_{j=0}^{3} (X_{3,j,1} \cdot d_{3,j})\right) + \left(\sum_{j=0}^{3} (X_{0,j,2} \cdot d_{0,j})\right) + \left(\sum_{j=0}^{3} (X_{1,j,2} \cdot d_{1,j})\right) + \left(\sum_{j=0}^{3} (X_{2,j,2} \cdot d_{2,j})\right) + \left(\sum_{j=0}^{3} (X_{3,j,2} \cdot d_{3,j})\right) + \left(\sum_{j=0}^{3} (X_{3,j,3} \cdot d_{0,j})\right) + \left(\sum_{j=0}^{3} (X_{3,j,3} \cdot d_{3,j})\right)\right]$$

$$=\alpha_1 \cdot \{(X_{0,0,1} \cdot d_{0,0}) + (X_{0,1,1} \cdot d_{1,1}) + (X_{0,2,1} \cdot d_{1,2}) + (X_{0,3,1} \cdot d_{1,3}) + (X_{1,0,1} \cdot d_{1,0}) + (X_{1,1,1} \cdot d_{1,1}) + (X_{1,2,1} \cdot d_{1,2}) + (X_{1,3,1} \cdot d_{1,3}) + (X_{2,0,1} \cdot d_{2,0}) + (X_{2,1,1} \cdot d_{2,1}) + (X_{2,2,1} \cdot d_{2,2}) + (X_{2,3,1} \cdot d_{2,3}) + (X_{3,0,1} \cdot d_{3,0}) + (X_{3,1,1} \cdot d_{3,1}) + (X_{3,2,1} \cdot d_{3,2}) + (X_{3,3,1} \cdot d_{3,3}) + (X_{0,0,2} \cdot d_{0,0}) + (X_{0,1,2} \cdot d_{1,1}) + (X_{0,2,2} \cdot d_{1,2}) + (X_{0,3,2} \cdot d_{1,3}) + (X_{1,0,2} \cdot d_{1,0}) + (X_{1,1,2} \cdot d_{1,1}) + (X_{1,2,2} \cdot d_{1,2}) + (X_{1,3,2} \cdot d_{1,3}) + (X_{2,0,2} \cdot d_{2,0}) + (X_{2,1,2} \cdot d_{2,1}) + (X_{2,2,2} \cdot d_{2,2}) + (X_{2,3,2} \cdot d_{2,3}) + (X_{3,0,2} \cdot d_{3,0}) + (X_{3,1,2} \cdot d_{3,1}) + (X_{3,2,2} \cdot d_{3,2}) + (X_{3,3,2} \cdot d_{3,3}) + (X_{0,0,3} \cdot d_{0,0}) + (X_{0,1,3} \cdot d_{1,1}) + (X_{0,2,3} \cdot d_{1,2}) + (X_{0,3,3} \cdot d_{1,3}) + (X_{2,0,3} \cdot d_{2,0}) + (X_{2,1,3} \cdot d_{2,1}) + (X_{2,2,3} \cdot d_{2,2}) + (X_{2,3,3} \cdot d_{2,3}) + (X_{3,0,3} \cdot d_{3,0}) + (X_{3,1,3} \cdot d_{3,1}) + (X_{2,0,3} \cdot d_{2,0}) + (X_{2,1,3} \cdot d_{2,1}) + (X_{2,2,3} \cdot d_{2,2}) + (X_{2,3,3} \cdot d_{2,3}) + (X_{3,0,3} \cdot d_{3,0}) + (X_{3,1,3} \cdot d_{3,1}) + (X_{3,2,3} \cdot d_{3,2}) + (X_{3,3,3} \cdot d_{3,3}) \}$$

$$=\alpha_1 \cdot \{(0 \cdot 0) + (1 \cdot 0.75) + (0 \cdot 0.5) + (0 \cdot 1.0) + (1 \cdot 0.75) + (0 \cdot 0) + (0 \cdot 1.5) + (0 \cdot 2.0) + (0 \cdot 0.5) + (0 \cdot 1.5) + (0 \cdot 0.5) + (0 \cdot 1.0) + (0 \cdot 0.75) + (0 \cdot 0.5) +$$

We see that the cost of the shortest route gives Php 56.133. We now add the second and third terms of the our objective function (4.4). Let the maximum capacity of the vehicles for this example be $Q = 12\text{m}^3$, and let $\alpha_2 = 400$ and $\alpha_3 = 840$. The unique

feasible solutions of this graph and their function values are as follows:

$$v_{0} \rightarrow v_{1} \rightarrow v_{0} \rightarrow v_{2} \rightarrow v_{0} \rightarrow v_{3} \rightarrow v_{0} = 12.474 \cdot 4.50 - 400 \cdot \frac{9}{9} + 840 \cdot 3 = \text{Php } 2,176.1330$$

$$v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{0} \rightarrow v_{3} \rightarrow v_{0} = 12.474 \cdot 4.75 - 400 \cdot \frac{9}{9} + 840 \cdot 2 = \text{Php } 1,339.2515$$

$$v_{0} \rightarrow v_{1} \rightarrow v_{3} \rightarrow v_{0} \rightarrow v_{2} \rightarrow v_{0} = 12.474 \cdot 4.75 - 400 \cdot \frac{9}{9} + 840 \cdot 2 = \text{Php } 1,339.2515$$

$$v_{0} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{0} \rightarrow v_{1} \rightarrow v_{0} = 12.474 \cdot 5.50 - 400 \cdot \frac{9}{9} + 840 \cdot 2 = \text{Php } 1,348.6070$$

$$v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{0} = 12.474 \cdot 5.75 - 400 \cdot \frac{9}{9} + 840 \cdot 1 = \text{Php } 511.7255$$

$$v_{0} \rightarrow v_{3} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{0} = 12.474 \cdot 5.50 - 400 \cdot \frac{9}{9} + 840 \cdot 1 = \text{Php } 502.3700$$

$$v_{0} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{1} \rightarrow v_{0} = 12.474 \cdot 5.75 - 400 \cdot \frac{9}{9} + 840 \cdot 1 = \text{Php } 511.7255$$

$$v_{0} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{1} \rightarrow v_{0} = 12.474 \cdot 5.75 - 400 \cdot \frac{9}{9} + 840 \cdot 1 = \text{Php } 511.7255$$

The best solution changes because the route that gives us the shortest distance utilizes three vehicle. The best solution in this case is the route where only one vehicle is used, this is given by $0 \to 3 \to 1 \to 2 \to 0$. We have therefore established that there is a difference when we also maximize vehicle use compared to that of when we only minimize distance.

4.2 Algorithm Implementation

In this section, we discuss how the PSO-GA was implemented. We first identify the method of encoding each particle or chromosome in the population. Each particle or chromosome is an array having 2n-1 dimensions, where n is equivalent to the number of collection sites. In this case, n=129 since we have 129 barangays. We borrow the encoding scheme of Liu et.al. [21] wherein we have n collection sites and a maximum of n-1 depots that represent when each vehicle route ends. Instead of using integers, we employ real numbers like Masrom[23] wherein each particle's component or each chromosome's gene is assigned a real number, specifically, we assign a random number uniformly distributed in the interval (0,1). These numbers will be used to determine the order at which nodes are visited or inserted in the route. This particular encoding scheme is used in order to simplify the methods used in computing particle positions

and velocities, and chromosome crossover and mutation. Each particle/chromosome is represented as follows:

Nodes
$$v_1$$
 v_2 v_3 ... v_{2n-1}
Particle $\begin{bmatrix} r_1 & r_2 & r_3 & \dots & r_{2n-1} \end{bmatrix}$

where each r_j , i = 1, 2, ..., n is a random number uniformly distributed in the interval (0, 1).

For example, if we have 3 collection sites, each particle position or chromosome in the population will have 2(3) - 1 = 5 components. We let node v_0 to be the depot and nodes v_1 through v_3 as the collection sites. Given

Nodes
$$v_1$$
 v_2 v_3 v_4 v_5 Particle $\begin{bmatrix} 0.3 & 0.4 & 0.1 & 0.2 & 0.5 \end{bmatrix}$

We arrange the nodes based on their respective component values. The nodes higher than v_n are then converted to v_0 to represent that the vehicle returns to the depot and a new vehicle begins its route if there are still unvisited nodes. This results in the sequence,

Nodes
$$\begin{bmatrix} v_3 & v_0 & v_1 & v_2 & v_0 \end{bmatrix}$$

We add depot nodes at each end and remove consecutive zeros if necessary. Hence, the sequence of collection becomes:

$$v_0 \rightarrow v_3 \rightarrow v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_0$$

It is important to note that when we use this type of encoding, we do not filter infeasible constructed routes. This problem is solved by the hybrid PSO-GA algorithm implementation. An initial population of size PSO_{PopNum} is created by generating a set of random feasible particles $PSOx_i$, $i=1,2,\ldots,PSO_{PopNum}$. The population will be stored in a matrix, $PSO_{Population}[PSO_{PopNum}][N]$. Each row is a particle having N=2n-1 dimensions. The initial velocities $PSOv_i$, $i=1,2,\ldots,PSO_{PopNum}$ are also randomly produced however, they must follow the maximum and minimum values of velocities vmax and vmin respectively. These bounds are given by the formula

$$\frac{u_j - l_j}{=} \frac{1 - 0}{=} 1$$
, $vmax = 1$, and $vmin = -1$;

where $u_j = 1$ and $l_j = 0$ are the upper and lower bounds of the values that can be represented by the j^{th} component of particle $PSOx_i$, j = 1, 2, ..., N; $i = 1, 2, ..., PSO_{PopNum}$. The fitness value $F(PSOx_i)$ of each particle $PSOx_i$, $i = 1, 2, ..., PSO_{PopNum}$ of the population is then obtained by converting the individual into a set of routes using the method presented above. Then we obtain the fitness value of the particle $F(PSOx_i)$ by using the objective function (4.4) in our model where the input is the set of routes constructed previously. We handle infeasible solutions using the equation

$$F(x_i) = \begin{cases} f(x_i) & \text{if } x_i \text{ is feasible} \\ f_w + \alpha_2 \frac{E}{Q} & \text{otherwise} \end{cases}$$
 (4.16)

where f_w is the worst fitness value in the current population, E is the total amount of excess demand collected by the vehicle and Q is the maximum capacity of the vehicle. The penalty $\alpha_2 \frac{E}{Q}$ mimics the second term of our objective function (4.4) however, instead of the total amount collected, we use the excess amount of waste collected by the vehicle. The excess amount of waste is equivalent to the demands at collection sites that the vehicle visited and was forced to collect even though the vehicle was full.

The initial personal best $Pbest_i$ location of each particle and the global best location $Pbest_g$ of the population is then recorded based from the fitness values obtained.

The new inertia weight value and velocities vectors are then computed using the following equations

$$w = w_{max} - (w_{max} - w_{min}) \times \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)$$
(4.17)

where w_{max} and w_{min} are the upper and lower bounds of the inertia weight. Inertial weight dictates how much of the previous velocity is retained by the individual. PSO_{CurrIt} is the current PSO iteration/generation while PSO_{MaxIt} is the maximum PSO iteration. Note that when the PSO_{CurrIt} becomes equal to the PSO_{MaxIt} , the algorithm stops.

We then compute the new velocities and positions of each particle using the following equations.

$$PSOv_i = w \cdot PSOv_i + c_1 \cdot rand() \cdot (Pbest_i - PSOx_i) + c_2 \cdot rand() \cdot (Pbest_g - PSOx_i) \ \, (4.18)$$

$$PSOx_i = PSOx_i + PSOv_i (4.19)$$

where c_1 and c_2 are the cognitive and social biases which affect how each particle adapts velocity from personal and global best data. rand() is a random number uniformly distributed in the interval (0,1). $PSOv_i$ at the left side of the equation (4.18) is the new velocity vector while the one of the right is the old velocity vector. $PSOx_i$ at the left side of equation (4.19) is the new position vector while the one on the right is the old position vector.

The fitness value $F(PSOx_i)$ of each of the particles $PSOx_i$, $i = 1, 2, ..., PSO_{PopNum}$ in the new population is again obtained. Some members of the new PSO population is then selected to undergo GA where the result of GA replaces an infeasible individual in the population.

The number of particles selected at each PSO iteration is given by GA_{num} which is calculated as:

$$GA_{Num} = GA_{NumMax} - \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\gamma} \times (GA_{NumMax} - GA_{NumMin})$$
(4.20)

where GA_{NumMin} and GA_{NumMax} are the minimum and maximum values which GA_{Num} can take. γ is a constant factor that determines how much the ratio of the PSO current and maximum iterations affect the number of individuals obtained. Given that we subtract from the maximum number, it is a given that the number of individuals to be selected becomes lower as the PSO iteration reaches its maximum.

The population size of GA is given by the equation:

$$GA_{PopSize} = GA_{MinPopSize} + \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\gamma} \times \left(GA_{MaxPopSize} - GA_{MinPopSize}\right) \quad (4.21)$$

where $GA_{MinPopSize}$ and $GA_{MaxPopSize}$ are the minimum and maximum values which $GA_{PopSize}$ can represent. γ is the same constant factor above. Given that we add from the minimum number, it is a given that the population size of GA increases at the PSO iteration reaches its maximum.

The maximum iterations of GA is given by the equation:

$$GA_{MaxItr} = GA_{MinItr} + \left(\frac{PSO_{CurrIt}}{PSO_{MaxIt}}\right)^{\beta} \times (GA_{MaxItr} - GA_{MinItr})$$
(4.22)

where GA_{MinItr} and GA_{MaxItr} are the minimum and maximum values which GA_{MaxItr} can take. β is a constant factor that determines how much the ratio of the PSO current and maximum iterations affect the number of individuals obtained. Given that we add from the maximum number, it is a given that the maximum iteration increases as the PSO iteration reaches its maximum.

We set the number of currently selected individuals $GA_{CurrNum} = 0$. We select a random position $PSOx_s$ from the PSO population, s is the index of the selected individual. Then we iterate the number of currently selected individuals by 1, $GA_{CurrNum} = GA_{CurrNum} + 1$.

We generate a random population of size $GA_{PopSize}$, the same method of random generation is used as the one in PSO. Set the first chromosome in the population of GA as the selected position in PSO, $GAx_1 = PSOx_s$. We then set the generation/iteration number of GA to 1, $GA_{CurrItr} = 1$.

We initialize the replacement chromosome GA_{rep} as the selected particle. However, in later iterations, the replacement chromosome becomes the chromosome in the population that has a better fitness value compared to the current replacement chromosome. This is done in the next step.

We then obtain the fitness values $F(GAx_i)$ of each chromosome GAx_i , $i = 1, 2, ..., GAx_{PopSize}$ in the GA population using the same route construction method and objective function in the model. Then we obtain the best feasible solution in the population GAx_b whose fitness value is the minimum, b is the index of the best feasible solution. We then compare the values of the best feasible solution in the GA population and the current replacement chromosome. If the best particle has a better fitness value $(F(GA_{rep}) > F(GAx_b))$ then we replace GA_{rep} with GAx_b . Otherwise, we do not replace it.

We then create the next population by performing roulette wheel selection to obtain pairs of chromosomes GAx_{p1} and GAx_{p2} that would undergo single crossover based on the probability GA_{cross} . Their children will possibly undergo mutation based on the probability GA_{mut} . If crossover occurs, it is done by selecting a random crossover point $cp \in \{1, 2, 3, ..., d-1\}$ which is the index of the gene where the crossover happens. The first child is made by retaining the genes of first parent, specifically the first until the crossover point cp. Then the remaining genes of the first child is filled in by the genes of

Figure 4.2: Graph of the 4 Nodes Small Scale Example

the seconds parent from cp to the last gene. The second child is created by same method but we take genes from the seconds parent first before the first parent. We choose the child that has the better feasible fitness value to be placed in our new population. If the selected child undergoes mutations, some of its genes are re-randomized. After the GA process has terminated, we replace infeasible solutions in the PSO population with GA_{rep} . Note that in total, we replace GA_{num} particles. The PSO process is then looped until either the maximum iterations are reached or the population converges. When the maximum iterations are reached, then we consider that as a failed run. The population is considered 'converged' when the previous and current population is made up of only one solution. This means that the population has become stagnant and that the particles in the population has the same fitness value. If we know the solution to the problem, we can confirm whether or not the converged population is successful or not. If we do not know the solution then we surmise if the solution is successful based on previous runs or results obtained by other studies.

4.3 Algorithm Testing

We now give a small scale example of our main problem. We get the first 3 barangays in the alphabetical list in table A.1 as nodes. Namely, Barangays Andres Bonifacio-Caguioa - Rimando (ABCR), Abanao-Zandueta-Kayong-Chugum-Otek (AZKCO) and

Alfonso Tabora. We have a symmetric and complete graph G seen on figure 4.2. The distances are the same from table B.1. The vehicle capacity Q for this case is 12m^3 since this is the capacity of most vehicles used by the SWMD. We have the same constants $\alpha_1 = 12.474$, $\alpha_2 = 400$ and $\alpha_3 = 840$. We randomized the loads in each barangay as real numbers from 2 to 12 cubic meters. The minimum is set to 2 cubic meters because most of the vehicles are assigned about 7 to 8 areas to service each day. $\lceil 12/8 \rceil = 2$. The maximum is set to 12 cubic meters because this is stated in the assumptions of the model. Also note that even if there were extra waste to be collected in a collection site, a quick response team is used to cover the problem.

The feasible solutions to this instance are as follows

$$v_0 \to v_1 \to v_0 \to v_2 \to v_0 \to v_3 \to v_0 = 12.474 \cdot 34.078 + 1,891.719333 = \text{Php } 2,316.808305$$

$$v_0 \to v_1 \to v_2 \to v_0 \to v_3 \to v_0 = 12.474 \cdot 24.562 + 1,051.719333 = \text{Php } 1,358.105721$$

$$v_0 \to v_2 \to v_3 \to v_0 \to v_1 \to v_0 = 12.474 \cdot 22.934 + 1,051.719333 = \text{Php } 1,337.798049$$

The rest of the possible solutions violate the capacity and servicing constraints.

We test our PSO-GA algorithm using this small scale graph of the problem. The following parameters were used. These parameter values were selected based on the study of Garg[13].

- PSO Population Size = 5, 10
- PSO Maximum Iterations = PSO Population Size \times 10, " \times 20, " \times 30, " \times 40, " \times 50
- Cognitive and Social factors $c_1 = 1.5$, $c_2 = 1.5$
- Initial and final inertia weight $w_i = 0.9 \ w_f = 0.4$
- Crossover Rate = 0.85
- Mutation Rate = 0.02
- \bullet $\gamma = 10$
- $\beta = 15$
- GA Minimum Taken = 1
- GA Maximum Taken = [PSO Population Size $\times 0.1$]
- GA Initial Population Size = 10
- GA Final Population Size = 5

Figure 4.3: Graph of the 5 Nodes Small Scale Example

- GA Minimum Iterations = 10
- GA Maximum Iterations = 15
- Acceptance Threshold = 1×10^{-5}

The algorithm and problems were encoded and run using Matlab v.2015 on a computer with the following specifications:

CPU = Intel core i5 1.4 GHz

RAM = 8 GB

OS = OS X El Capitan v. 10.11.6

We increase the barangays to 4, this time adding Brgy. Ambiong. The graph G is seen on figure 4.3. We also test the algorithm with the same parameters and compare the results from the small scale example with 4 nodes.

The feasible solutions to this instance are as follows

$$v_{0} \to v_{1} \to v_{0} \to v_{2} \to v_{0} \to v_{3} \to v_{0} \to v_{4} \to v_{0} =$$
Php 3, 260.369869

$$v_{0} \to v_{1} \to v_{2} \to v_{0} \to v_{3} \to v_{0} \to v_{4} \to v_{0} =$$
Php 2, 301.667285

$$v_{0} \to v_{1} \to v_{4} \to v_{0} \to v_{2} \to v_{0} \to v_{3} \to v_{0} =$$
Php 2, 302.914685

$$v_{0} \to v_{3} \to v_{4} \to v_{0} \to v_{1} \to v_{0} \to v_{2} \to v_{0} =$$
Php 2, 275.920949

$$v_{0} \to v_{2} \to v_{3} \to v_{0} \to v_{1} \to v_{0} \to v_{4} \to v_{0} =$$
Php 2, 281.359613

$$v_{0} \to v_{2} \to v_{4} \to v_{0} \to v_{1} \to v_{0} \to v_{3} \to v_{0} =$$
Php 2, 268.087277

$$v_{0} \to v_{1} \to v_{2} \to v_{0} \to v_{3} \to v_{4} \to v_{0} =$$
Php 1, 317.218365

$$v_{0} \to v_{1} \to v_{4} \to v_{0} \to v_{2} \to v_{3} \to v_{0} =$$
Php 1, 323.904429

We employ the PSO-GA algorithm to the larger scales of the problem. The 129 barangays are given in table A.1. All the distances used are seen on table B.1. The demand at each barangay is given at table C.1. We test the algorithm for 8, 11 and 16 nodes. The chosen barangays are still in the alphabetic order as in table A.1. We keep the same parameters except for PSO population size and maximum iterations. For 8 nodes, we set the population sizes to 10, 50, and 100 while the maximum iterations are set to PSO Population Size \times 10, " \times 20, and " \times 30. For 11 and 16 nodes, we set the population size to 100 and the maximum iterations to 1000, 2000, and 3000. We also test whether or not the PSO-GA algorithm can solve the full problem size of 130 nodes. The parameters were set the same from the 11 and 16 nodes tests.

We check whether the algorithm actually produces significant results by trying to match a part of the current waste collection vehicle schedules. We test schedules consisting of 10 and 15 collection sites. In order to pattern the real-world schedule with a route, we assign demands to each group of barangays such that the sum of the randomized demands is about 12 cubic meters. In the real-world schedule, each group of barangays are serviced by exactly one vehicle. The barangays selected for the 10 collection site test are given as follows:

```
v_1: South Central Aurora Hill (demand = 3.33379 m<sup>3</sup>)
```

 v_2 : West Bayan Park (demand = 2.15460 m³)

```
v_3: Bayan Park Village (demand = 3.61201 m<sup>3</sup>)
              v_4: Ambiong (demand = 2.58172 m<sup>3</sup>)
               v_5: East Bayan Park (demand = 2.90424m<sup>3</sup>)
               v_6: Brookspoint (demand = 3.53515m<sup>3</sup>)
               v_7: San Antonio Village (Leonila Hill) (demand = 2.02000m<sup>3</sup>)
               v_8: North Sanitary (demand = 3.08999m<sup>3</sup>)
              v_9: South Sanitary (demand = 5.53231m<sup>3</sup>)
         v_{10}: Trancoville (demand = 6.06020m<sup>3</sup>)
The real-world route of the fleet is v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_0 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \rightarrow v_8 \rightarrow v_8
v_8 \rightarrow v_0 \rightarrow v_9 \rightarrow v_{10} \rightarrow v_0 which sums up to an operational cost of Php 1955.382023.
The barangays selected for the 15 collection site test are given as follows:
              v_1: Hillside (demand = 4.48173 m<sup>3</sup>)
              v_2: Gabriela Silang (demand = 5.19283 m<sup>3</sup>)
               v_3: Lower Dagsian (demand = 2.15731 m<sup>3</sup>)
               v_4: Imelda Marcos (demand = 4.46318m<sup>3</sup>)
               v_5: Phil-Am (demand = 5.28218 m<sup>3</sup>)
               v_6: Sto. Rosario (demand = 2.00578 m<sup>3</sup>)
              v_7: City Camp Proper (demand = 2.8611 m<sup>3</sup>)
               v_8: Palma-Ubrano (demand = 6.1878 m<sup>3</sup>)
               v_9: General Emilio F. Aguinaldo (QuirinoMagsaysay,Lower) (demand = 2.90447 m<sup>3</sup>)
          v_{10}: Balsigan (demand = 9.85132 m<sup>3</sup>)
         v_{11}: Upper QuirinoMagsaysay (demand = 2.0079 m<sup>3</sup>)
```

```
v_{12}: City Camp Central (demand = 4.8186 m<sup>3</sup>)
```

 v_{13} : Upper Rock Quarry (demand = 2.41649 m³)

 v_{14} : Middle Rock Quarry (demand = 2.00652 $\mathrm{m}^3)$

 v_{15} : Lower Rock Quarry (demand = 2.36858 m³)

The real-world route of the fleet is $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_0 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_0 \rightarrow v_7 \rightarrow v_8 \rightarrow v_9 \rightarrow v_0 \rightarrow v_{10} \rightarrow v_{11} \rightarrow v_0 \rightarrow v_{12} \rightarrow v_{13} \rightarrow v_{14} \rightarrow v_{15} \rightarrow v_0$ which sums up to an operational cost of Php 3066.927441. The parameters were set the same from the 11 and 16 nodes tests.

Chapter 5

Results and Discussion

We now present the results of the small scale tests. The summary of the results in the small scale test with 4 nodes (3 barangays) is seen on table 5.1 while the test with 5 nodes (4 barangays) is seen on table 5.2. The summary of the results in the larger scale tests with 8 nodes (7 barangays) is seen on table 5.3, while the tests with 11 and 16 nodes is seen on table 5.4.

Table 5.1: Summary of Results for the 4 Node Small Scale Test

Pop Size 5					
Max It	Best (Php)	Mean	Std. Dev.	Ave. Run Time (s)	Success Rate (%)
50	1337.798049	1633.531893	471.547168	4.034216	60.00
100	1337.798049	1339.828817	6.421850	5.615031	90.00
150	1337.798049	1341.859584	8.562466	6.276194	80.00
200	1337.798049	1537.661635	410.730033	4.517066	60.00
250	1337.798049	1435.699075	309.590226	12.729614	90.00
Pop Size 10					
Max It	Best	Mean	Std. Dev.	Ave. Run Time (s)	Success Rate (%)
100	1337.798049	1337.798049	0.000000	16.908758	100.00
200	1337.798049	1337.798049	0.000000	16.510104	100.00
300	1337.798049	1337.798049	0.000000	23.184777	100.00
400	1337.798049	1337.798049	0.000000	14.509856	100.00
500	1337.798049	1337.798049	0.000000	17.806987	100.00

The summary of the results for the 4 Nodes test case is presented in the table above. The results show that the hybrid PSO-GA algorithm was able to obtain the optimal solution given by the route $v_0 \rightarrow v_2 \rightarrow v_3 \rightarrow v_0 \rightarrow v_1 \rightarrow v_0$. For a PSO population size of 5 members, the algorithm has a varying success rate from 60% to 90% as the maximum iterations was increased. This means that the algorithm was able to

Figure 5.1: Optimal Route of the 4 Node Test

converge at the optimal solution from 6 up to 9 times out of 10 trials. The other solutions found by the algorithm were the other two feasible solutions given as follows: $v_0 \rightarrow v_1 \rightarrow v_0 \rightarrow v_2 \rightarrow v_0 \rightarrow v_3 \rightarrow v_0$ and $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_0 \rightarrow v_3 \rightarrow v_0$. In those trials, the population was fast to converge as evidenced by the average running times of about 4 to 6 seconds. A high standard deviation means that some runs converged to the route wherein each collection site is serviced by a vehicle. A low standard deviation means that some runs converged to the sub optimal route where collection sites v_1 and v_2 are grouped together, giving the cost of 1358.105721 Philippine pesos (Php). The difference between the optimal and suboptimal routes is only about Php 20 which is quite insignificant.

The success rate increased when the PSO population size was increased to 10 members. The algorithm was 100% successful in finding the solutions to the problem. The standard deviations for these set of tests is 0 because there are no other solutions found. In all trials, the populations converged to the optimal solution. When we compare the running times, the algorithm ran longer for double the population size but the algorithm success was generally better. The route of this test is displayed on figure 5.1. The complete results of the 4 node test are on table D.1.

1317.218365

1317.218365

1317.218365

1317.218365

1317.218365

100

200

300

400

500

1317.886972

1317.218365

1317.218365

1317.886972

1317.886972

90.00

100.00

100.00

90.00

90.00

Pop Size 5 Max It Best Mean Std. Dev. Ave. Run Time Success Rate (%) 50 1317.218365 1798.131402 681.143544 7.030026 40.00 100 1317.218365 1508.729361400.22607112.47761560.00150 1317.218365 1510.066573 399.524422 10.992185 40.00 200 1317.2183651510.066573 399.524422 8.624570 40.00250 1317.218365 1602.313321 459.313321 11.27235670.00 Pop Size 10 Success Rate (%) Max It Best Mean Std. Dev. Ave. Run Time

2.114319

0.000000

0.000000

2.114319

2.114319

23.474356

27.962506

23.184777

14.509856

17.806987

Table 5.2: Summary of Results for the 5 Node Small Scale Test

The summary of the results for the 5 Nodes test case is presented in the table above. The results shown above are similar to that of the smaller test case. The hybrid PSO-GA algorithm was able to obtain the optimal solution given by the route $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_0 \rightarrow v_3 \rightarrow v_4 \rightarrow v_0$. For a PSO population size of 5 members, the algorithm has a varying success rate from 40% to 70% as the maximum iterations was increased. This means that the algorithm was able to converge at the optimal solution from 4 up to 7 times out of 10 trials. The success rate increased to range of 90% to 100% when the PSO population size was increased to 10 members. When we compare the running times, the algorithm ran longer for double the population size but the algorithm success was generally better. In 1 out of 10 runs, the population converged to the suboptimal route $v_0 \rightarrow v_1 \rightarrow v_4 \rightarrow v_0 \rightarrow v_2 \rightarrow v_3 \rightarrow v_0$ which gives a total cost of Php 1, 323.904429. The difference in the costs between the best and this suboptimal route is about Php 7. This amount is negligible when we consider the prices of vehicles which run in the hundred thousands. The route of this test is displayed on figure 5.2. The complete results of the 5 node test are on table E.1.

Figure 5.2: Optimal Route of the 5 Node Test

It is interesting to note that the cost of servicing four collection sites is smaller than when we service three by about Php 20. Although a negligible amount, this shows that when we maximize vehicle use, some operational costs can be reduced.

Pop Size 10 Std. Dev. Ave. Run Time Success Rate (%) Max It Best Mean 100 2744.350205 3024.252048 414.764784 25.781366 0.0050.00 200 2738.163101 29435.776163 379.005136 30.659876 3020.809224300 2738.163101 428.776617 17.918621 30.00 Pop Size 50 Max It Best Mean Std. Dev. Ave. Run Time Success Rate (%) 2738.1631012765.905277 500 11.697128 247.73513580.00 1000 2738.163101 2738.163101 0.000000 309.940527 100.00 1500 2738.163101 2738.163101 0.000000512.812377 100.00 Pop Size 100 Max It Best Mean Std. Dev. Ave. Run Time Success Rate (%) 1000 2738.163101 2738.163101 0.000000823.417010 100.00 2738.163101917.4899392000 2738.163101 0.000000100.00 3000 2738.163101 2738.163101 0.000000720.828085100.00

Table 5.3: Summary of Results for the 8 Node Test Case

The summary of the results for the 8 Nodes test case is presented in the table above. The hybrid PSO-GA algorithm was able to obtain the optimal solution given by the route $v_0 \rightarrow v_1 \rightarrow v_0 \rightarrow v_3 \rightarrow v_0 \rightarrow v_6 \rightarrow v_5 \rightarrow v_0 \rightarrow v_7 \rightarrow v_2 \rightarrow v_4 \rightarrow v_0$ with a cost of Php 2738.163101. The success rate of having the population converge at the optimal solution increased from about 30%-50% for a population size of 10, to about 80%-100% for a population size of 50. This is further stabilized to 100% for a population size of 100. Therefore based on the success rates for different population sizes, it was found that a population size of 100 was best to use for a higher number of collection sites. This follows the trend of the previous tests wherein doubling the population size to 10 from 5 increased the effectiveness of the algorithm.

In the first set of trials under the population size of 50, there was only an 8/10 successful trials wherein the 2 failed obtained the suboptimal route of $v_0 \to v_1 \to v_0 \to v_3 \to v_0 \to v_6 \to v_4 \to v_0 \to v_7 \to v_2 \to v_5 \to v_0$ with a cost of Php 2765.905277. The difference of this route with the optimal one is that the nodes v_4 and v_5 are interchanged in terms of their position. This difference in sequence generates an excess cost of about

Figure 5.3: Optimal Route of the 8 Node Test

Php 28. Again, this is negligible when we consider vehicle prices but the amount is enough to cover half a liter of diesel fuel (Php 46.20). The route of this test is displayed on figure 5.3. The complete results of the 8 node test are on table F.1.

11 Nodes Pop Size 100 Std. Dev. Max It Best Mean Ave. Run Time Success Rate (%) 4225.056855 1000 4237.245201 13.425704 1030.205816 10.00 4225.942509 4244.231888 17.4166350.00 2000 506.018491 3000 4225.056855 4243.094259 29.341466 1485.573169 20.00 16 Nodes Pop Size 100 Std. Dev. Max It Best Mean Ave. Run Time Success Rate (%) 1000 6302.8394356527.169524 363.103098 341.8078890.00 2000 6302.502637 6452.092176 281.011889 827.101688 0.003000 6301.504717 6626.453916410.197646 331.686621 0.00

Table 5.4: Summary of Results for the 11 and 16 Node Test Cases

The summary of the results for the 11 and 16 Nodes test cases are presented in the table above. We first discuss the results of the 11 Node test case. The hybrid PSO-GA algorithm was able to obtain an optimal solution given by the route $v_0 \rightarrow v_6 \rightarrow v_0 \rightarrow v_1 \rightarrow v_1 \rightarrow v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v$

The results of the 16 node test case is dismal. The best route that the algorithm could obtain was $v_0 o v_9 o v_2 o v_0 o v_3 o v_0 o v_7 o v_0 o v_{13} o v_0 o v_{15} o v_{14} o v_0 o v_5 o v_{12} o v_{11} o v_0 o v_6 o v_{10} o v_0 o v_8 o v_4 o v_0 o v_1 o v_0$ with a cost of Php 6276.070231. However, there is known route that is better than this one which is $v_0 o v_9 o v_4 o v_0 o v_5 o v_8 o v_0 o v_{13} o v_0 o v_{10} o v_6 o v_0 o v_1 o v_0 o v_{12} o v_{11} o v_2 o v_0 o v_{14} o v_{15} o v_0 o v_7 o v_0 o v_3 o v_0$ with a cost of Php 6227.147203. This route was produced by attempting to generate all possible solutions to

Figure 5.4: Optimal Route of the 11 Node Test

this problem instance, however, we were not able to produce all solution given the time alloted for this study. The algorithm was able to get a route which has almost the same cost having a difference of about Php 49. Due to the size of the problem, we are not able to confirm whether or not the latter is the global best route. We can confirm however, that the current best solution obtained by the algorithm is not the best known solution for this instance of the problem. The complete results of the 11 node test are on table G.2.

Table 5.5: Summary of Results for the 11 and 16 Node Real-World Schedule Tests

11 Nodes											
			ize 100								
Best	Mean	Std. Dev.	Ave. Run Time	Success Rate (%)							
1928.924669	1947.572051	21.710114	1309.271021	60.00							
1923.348791	1932.800340	13.048096	3050.558994	80.00							
1923.348791	1938.761665	14.393462	3534.249810	60.00							
	ı	I									
		16 N	lodes								
		Pop S	ize 100								
Best	Mean	Std. Dev.	Ave. Run Time	Success Rate (%)							
3173.804673	3956.586351	363.103098	485.414811	0.00							
3977.580177	4024.467449	29.297437	1531.171985	0.00							
3997.937745	4049.644970	27.909626	1007.049226	0.00							

The summary of the results for the 11 and 16 Nodes real-world schedule cases are presented in the table above. We first discuss the results of the 11 Node real-world case. The hybrid PSO-GA algorithm was able to obtain a better route which is $v_0 \rightarrow v_1 \rightarrow v_7 \rightarrow v_3 \rightarrow v_4 \rightarrow v_0 \rightarrow v_8 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_0 \rightarrow v_{10} \rightarrow v_9 \rightarrow v_0$ with a cost of Php 1923.348791. The route produced by following the schedule is $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_0 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \rightarrow v_8 \rightarrow v_0 \rightarrow v_9 \rightarrow v_{10} \rightarrow v_0$ which sums up to an operational cost of Php 1955.382023. The map of both routes are similar, and is shown on figure 5.5. The differences of the routes are quite minimal. Nodes v_7 and v_2 are swapped for different vehicle routes. Also, there are changes in the sequence at which the barangays are visited. One example is that v_8 is visited before v_5 and v_6 . The amount of money saved by using the new algorithm is about Php 32. This amount may be negligible but the result implies that if there are numerous minor changes that can be done for the route of the 130 barangays then there would be a lot of money saved.

As for the results of the 16 nodes, there were no trials that resulted in an improvement or at least equivalent route to that of the scheduled route. The route produced when

Figure 5.5: Optimal and Original Route of the 11 Nodes Real-World Case

we follow the schedule is $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_0 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_0 \rightarrow v_7 \rightarrow v_8 \rightarrow v_9 \rightarrow v_0 \rightarrow v_{10} \rightarrow v_{11} \rightarrow v_0 \rightarrow v_{12} \rightarrow v_{13} \rightarrow v_{14} \rightarrow v_{15} \rightarrow v_0$ which sums up to an operational cost of Php 3066.927441. The best route we produced generated a cost of 3173.804673 which is close to the original value but it does not improve the route. Hence, the algorithm has failed for this instance. It can be said therefore that the algorithm may not work for large test cases. The full results of the these two real-world tests are on table H.1 and H.2

Table 5.6: Summary of Results for the 130 Nodes Test Case

		Pop Size	100	
Max It	Best	Mean	Std. Dev.	Ave. Run Time
1000	71550.201143	73816.468252	1227.545773	699.839079
2000	72173.752295	73956.207158	917.147435	745.172590
3000	70570.679453	73349.002187	1739.531575	760.194044

The summary of the results for the 130 nodes test cases are presented in the table

above. The best route found by the algorithm generates a cost of Php 70570.679453. We observe that the values of the average running time are lower than that of the average running time of the problem instances of 15 nodes. This tells us that the algorithm prematurely converged. This means that the population in each of these trials was not able to explore the solution space before converging. Hence, we can assume that the routes generated by the algorithm is not optimal one. There is also a large standard deviation present in each set of trials. When we observe the values produced by the algorithm on table I.1, there is no consistent cost value that is being generated. There is almost a Php 5000 difference with the best and worst values generate for the set of results for a maximum iteration of 3000. The best being Php 70570.679453 while the worst being Php 75325.373285. There is also no possible way of telling which route is the best because the only way to do so is to test every possible combination. The scale of the problem is too large in order to do this within a reasonable amount of time.

Chapter 6

Conclusion and Recommendation

A model for the Baguio City waste collection vehicle routing problem was constructed which aimed to minimize the operational costs involved. The model considers the total distance traveled by all vehicle and number of vehicles used. These were converted to cost in terms of Philippines Pesos (Php) by obtaining the fuel efficiency, fuel costs and driver wages. We looked into using the hybrid PSO-GA algorithm by Harish Garg[13] in order to solve the waste collection vehicle routing problem. This algorithm was previously used for constrained optimization problems on engineering designs. The results obtained during the preliminary testing show that the hybrid PSO-GA proposed by Harish Garg can indeed solve small scale vehicle routing problems instances with 3 and 4nodes. The algorithm was able to also solve larger scale problems 7 and 10 nodes but failed to solve a problem instance with 15 nodes. The routes obtained by the algorithm consists of subroutes taken by each vehicle in the fleet wherein the barangays which had small demands (about 2 to 8 cubic meters) were grouped together while those with large demands (about 9 and above) were placed in its own sub-route. It was observed that minor changes in the routes resulted in minor changes in the cost, about a range of Php 20 to Php 50 was saved when two nodes were interchanged.

Two real-world test cases were also tested. These problems were patterned after the schedule of the drivers. For the problem consisting of 10 nodes, the algorithm was able to produce a route that improved the current schedule by only a few pesos. The problem with 15 nodes proved difficult to solve as even an equivalent route to the schedule was not found by the algorithm. The route produced by the hybrid PSO-GA algorithm for problem instance of 130 nodes generates a cost of Php 70570.679453. However, there is now way of telling whether the set of vehicle routes produced by the algorithm are the best ones. This is because the complexity of the problem has increased to a point where it would take a lot of resources to generate all possible routes in order to check whether

the problem was solved or not. If there were enough time to test larger population sizes (i.e. 10,000 members), we might be able to find a better solution but the running time would be excessive.

For the next studies, it is recommend that the specific collection sites per barangay be used instead of barangay halls and landmarks to have a more accurate representation of the problem. It is also recommended that a more dynamic model be used which can reflect the real life situation of waste collection. Dynamism can be employed through adding a time dimension to the problem and/or using a GIS system for real-time data. Demands can also be set higher than the capacity of a vehicle and partial collection can be employed. A simulation may instead be used in order to develop a more efficient schedule as in the studies of Son[34] and Akhtar et.al.[1].

It is also recommended that the PSO-GA algorithm of H. Garg[13] be tested under benchmark problems to fully test its efficiency in solving vehicle routing problems. As for the Baguio City full size problem, it is recommended to try a more appropriate algorithm that is directed towards solving large scale VRP problems such as the adaptive large neighborhood search heuristic by Buhrkal et.al.[2] and the guided variable neighborhood thresholding meta heuristic by Nuortio et.al.[27]. Both studies are discussed in the related literature.

- [1] M. AKHTAR, M. A. HANNAN, AND H. BASRI, Particle swarm optimization modeling for solid waste collection problem with constraints, in 2015 IEEE 3rd International Conference on Smart Instrumentation, Measurement and Applications (IC-SIMA), Nov 2015, pp. 1–4.
- [2] K. Buhrkal, A. Larsen, and S. Ropke, *The waste collection vehicle routing problem with time windows in a city logistics context*, Procedia Social and Behavioral Sciences, 39 (2012), pp. 241 254. Seventh International Conference on City Logistics which was held on June 7- 9,2011, Mallorca, Spain.
- [3] J. Carr, An introduction to genetic algorithms, (2014).
- [4] M. CLERC, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, Evolutionary Computation, (1999).
- [5] M. CLERC AND J. KENNEDY, The particle swarm explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6 (2002), pp. 58–73.
- [6] J.-F. CORDEAU, G. LAPORTE, M. W. SAVELSBERGH, AND D. VIGO, Chapter 6 vehicle routing, in Transportation, C. Barnhart and G. Laporte, eds., vol. 14 of Handbooks in Operations Research and Management Science, Elsevier, 2007, pp. 367 – 428.
- [7] G. B. Dantzig and J. H. Ramser, *The truck dispatching problem*, Manage. Sci., 6 (1959), pp. 80–91.
- [8] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in Applied Mechanics and Engineering, 186 (2000), pp. 311–338.
- [9] R. C. EBERHART AND J. KENNEDY, A new optimizer using particle swarm theory, (1995).

- [10] —, Particle swarm optimization, (1995).
- [11] R. C. EBERHART AND Y. SHI, Particle swarm optimization: developments, applications and resources, Evolutionary Computation, (2001).
- [12] Full Advantage Philippines International Incorporated, Ten-year ecological solid waste management plan 2015-2014.
- [13] H. GARG, A hybrid pso-ga algorithm for constrained optimization problems, Applied Mathematics and Computation, 274 (2016), pp. 292–305.
- [14] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st ed., 1989.
- [15] Q. HE AND L. WANG, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Engineering Applications of Artificial Intelligence, 20 (2007), pp. 89–99.
- [16] S. HE, E. PREMPAUIN, AND Q. H. WU, An improved particle swarm optimizer for mechanical design optimization problems, Engineering Optimization, 36 (2004), pp. 585–605.
- [17] F. Heppner and G. U., *The Ubiquity of Chaos*, AAAS Publications, 1990, ch. A Stochastic Nonlinear Model for Coordinate Bird Flocks.
- [18] D. Hoornweg and B. Perinaz, What a waste: a global review of solid waste management, Urban Development Series Knowledge Papers, 15 (2012), pp. 87–88.
- [19] A. KAVEH AND S. TALATAHARI, Engineering optimization with hybrid particle swarm and ant colony optimization, Asian Journal of Civil Engineering, 10 (2009), pp. 611–628.
- [20] H. C. LACSAMANA, Baguio pays out p1 b for waste hauling in 10 yrs, Baguio Midland Courier, (2017).
- [21] J. LIU AND J. LAMPINEN, A fuzzy adaptive differential evolution algorithm, Soft Computing, 9 (2005), pp. 448–462.

[22] M. M. SOLOMON, Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research, 35 (1987), pp. 254–266.

- [23] S. MASROM, S. ABIDIN, AND A. NASIR, Hybrid Particle Swarm Optimization for vehicle routing problem with Time Windows.
- [24] Z. MICHALEWICZ AND M. SCHOENAUER, Evolutionary algorithms for constrained parameter optimization problems, Evolutionary Computation, 4 (1996), pp. 1–32.
- [25] National Solid Waste Management Commission, National solid waste management status report 2008-2014.
- [26] —, Nswmc on-line database.
- [27] T. Nuortio, J. Kytjoki, H. Niska, and O. Brysy, *Improved route planning* and scheduling of waste collection and transport, Expert Systems with Applications, 30 (2006), pp. 223 232.
- [28] M. Obitko, Introduction to genetic algorithms, 1998.
- [29] F. OLOWAN, E. BILOG, L. Y. JR., E. AVILA, J. ALANGSAB, E. DATUIN, P. FI-ANZA, L. FARINAS, A. ALLAD-IW, B. BOMOGAO, AND M. LAWANA, Baguio city council okays plastic free ordinance, Sun Star Baguio, (2017).
- [30] M. Omran, Codeq: an effective metaheuristic for continuous global optimisation, International Journal of Metaheuristics, 1 (2010), pp. 108–131.
- [31] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), pp. 25–34.
- [32] D. See, Approval of citys solid waste plan in order, Sun Star Baguio, (2017).
- [33] —, City to purchase 4 more trucks, Sun Star Baguio, (2018).
- [34] L. H. Son, Optimizing municipal solid waste collection using chaotic particle swarm optimization in gis based environments: A case study at danang city, vietnam, Expert Systems with Applications, 41 (2014), pp. 8062 8074.

[35] D. Tung and A. Pinnoi, Vehicle routingscheduling for waste collection in hanoi, European Journal of Operational Research, 125 (2000), pp. 449–468.

[36] T. Xiang, X. Liao, and K.-w. Wong, An improved particle swarm optimization algorithm combined with piecewise linear chaotic map, Applied Mathematics and Computation, 190 (2007), pp. 1637–1645.

$\begin{array}{c} \text{Appendix A} \\ \text{Table of Node Markers} \end{array}$

Table A.1: Nodes and their Google Maps Markers

(40,41)	
A. Bonitacio-Caguioa-Kimando (ABCK)	Abanao-Zandueta-Kayong-Chugum-Otek (AZKCO), Baguio, Benguet
Abanao-Zandueta-Kayong-Chugum-Otek (AZKCO)	ABCR MULTI-PURPOSE BRGY.HALL, Rimando Road, Baguio City, Benguet, Philippines
Alfonso Tabora	Alfonso Tabora, Baguio City, Benguet, Philippines
Ambiong	AMBIONG BAGUIO BARANGAY HALL, Ambiong Road, Baguio City, Benguet, Philippines
Andres Bonifacio (Lower Bokawkan)	Andres Bonifacio (Lower Bokawkan), Baguio City, Benguet, Philippines
Apugan-Loakan	Apugan Barangay Hall, Loakan Road, Baguio, 2600 Benguet
Asin Road	Asin Road, Baguio City, Benguet, Philippines
Atok Trail	Atok Trail Barangay Hall, Baguio City, Benguet, Philippines
Aurora Hill Proper (Malvar-Sgt. Floresca)	Aurora Hill Proper Barangay Hall, Malvar Street, Baguio City, Benguet, Philippines
Aurora Hill, North Central	Aurora Hill, North Central, Baguio City, Benguet, Philippines
Aurora Hill, South Central	Aurora Hill, South Central, Baguio City, Benguet, Philippines
Bagong Lipunan (Market Area)	Bagong Lipunan (Market Area), Baguio City, Benguet, Philippines
Bakakeng Central	Bakakeng Central, Marcos Highway, Brgy., Baguio, 2600 Benguet
Bakakeng North	Bakakeng Sur Rd, Norte, Baguio, 2600 Benguet
Bal-Marcoville (Marcoville)	Bal-Marcoville (Marcoville), Baguio City, Benguet, Philippines
Balsigan	Balsigan Road, Baguio, Benguet
Bayan Park East	East Bayan Park Aurora Hill Barangay Multi Purpose Hall
Bayan Park Village	Bayan Park Village Barangay Hall
Bayan Park West (Bayan Park)	, Baguio City, Benguet
BGH Compound	Baguio General Hospital Driveway, Baguio, 2600 Benguet
Brookside	35 Lower Brookside, Baguio, Benguet
Brookspoint	Brookspoint Rd, Baguio, Benguet
Cabinet Hill-Teacher's Camp	, Baguio City, Benguet, Baguio, Benguet
Camdas Subdivision	, Baguio City, Benguet, Philippines
Camp 7	CAMP 7 BARANGAY HALL, Kennon Road, Baguio City, Benguet, Philippines
Camp 8	Camp 8 Health Center, Kennon Road, Baguio City, Benguet, Philippines
Camp Allen	CAMP HENRY T. ALLEN, Baguio City, Benguet, Philippines
Campo Filipino	CAMPO FILIPINO BARANGAY HALL, Quirino Highway, Baguio City, Benguet, Philippines
City Camp Central	City Camp District Health Center, City Camp Road, City Camp Central, Baguio City, Benguet, Philippines
City Camp Proper	City Camp Barangay Hall, City Camp Road, Baguio City, Benguet, Philippines
Country Club Village	Country Club Village Baguio City, Upper Country Club Road, Baguio, Benguet, Philippines
Cresencia Village	Cresencia Village Barangay, Bado Dangwa, Baguio City, Benguet, Philippines
Dagsian, Lower	83, Lower Dagsian Barangay Hall, Baguio City, Benguet, Philippines
Dagsian, Upper	Upper Dagsian Barangay Hall, Lower Dagsian Road, Baguio City, Benguet, Philippines
Dizon Subdivision	DIZON-MANZANILLO SUBDIVISION, Kalapati Street, Baguio City, Benguet, Philippines
Dominican Hill-Mirador	DOMINICAN - MIRADOR BARANGAY, Extension Road, Baguio City, Benguet, Philippines
Dontogan	Dontogan Barangay Hall, Santo Tomas Road, Baguio City, Benguet, Philippines
DPS Compound	DPS Compound Barangay Hall, DBS Compound, Baguio City, Benguet, Philippines
Engineers' Hill	Engineer's Hill Barangay Hall, Marcoville Street, Baguio City, Benguet, Philippines
Fairview Village	FAIRVIEW Barangay Hall, Upper Fairview Ferguson Road, Baguio City, Benguet, Philippines
Ferdinand (Happy Homes-Campo Sioco)	Brgy. Ferdinand Barangay Hall, Baguio City, Benguet, Philippines
Fort del Pilar	Fort Del Pilar, Loakan Road, Baguio City, Benguet, Philippines
Gabriela Silang	Gabriela Silang Covered Court, Gabriela Silang Road, Baguio City, Benguet, Philippines

Table A.1 continued from previous page

LOWER GENERAL LUNA BARANGAY HALL, Baguio City, Benguet, Philippines

General Luna, Upper General Luna, Lower

Greenwater Village

Gibraltar

Guisad Central

Guisad Sorong

Happy Hollow

UPPER GENERAL LUNA, Gen. Luna Road, Baguio City, Benguet, Philippines

Gibraltar Barangay Hall, C. Arellano Street, Baguio City, Benguet, Philippines

Central Guisad Barangay Hall, Pucay Subdivision Road, Baguio City, Benguet, Philippines Greenwater Village, Baguio City, Benguet, Philippines

Guisad Surong Barangay Hall, Unnamed Road, Baguio City, Benguet, Philippines

Happy Hallow Barangay Hall, Brgy. Happy Hallow, Baguio, Benguet

Happy Homes (Happy Homes-Lucban) Barangay Hall

Happy Homes (Happy Homes-Lucban)

Harrison-Claudio Carantes

Holy Ghost Extension

Hillside

Holy Ghost Proper

Honeymoon (Honeymoon-Holy Ghost)

Imelda R. Marcos (La Salle)

Imelda Village

Kabayanihan

Kagitingan

Harrison-Claudio Carantes, Baguio City, Benguet, Philippines

Hillside Baranggay Hall, Hillside Road, Baguio, Benguet

Holy Ghost Extension Barangay Hall, Holy Ghost Extension Road, Baguio City, Benguet, Philippines

Holy Ghost Proper, Baguio City, Benguet, Philippines

Honeymoon-Holyghost Barangay Hall, Baguio City, Benguet, Philippines

Imelda R. Marcos (La Salle), Baguio City, Benguet, Philippines

imelda Village Barangay Multipurpose Hall, Baguio City, Benguet, Philippines

IRISAN BARANGAY HALL, Baguio City, Benguet, Philippines

Kabayanihan Barangay Hall, Central Business District, Mabini Street, Baguio, Benguet

Kagitingan Barangay Hall, Lower Bonifacio Street, Baguio City, Benguet, Philippines Kayang Extension, Baguio City, Benguet, Philippines

Kayang Hilltop Barangay, Hilltop Street, Brgy. Kayang Hilltop, Baguio City, Benguet, Philippines

Kias, Baguio City, Benguet, Philippines

Barangay Office Burnham-Legarda Brgy., Gen. Lim Street, Baguio City, Benguet, Philippines

Liwanag-Loakan, Baguio City, Benguet, Philippines

Loakan Proper Barangay Hall, Purok Bubon, Baguio City, Benguet, Philippines

Lopez Jaena, Baguio City, Benguet, Philippines

Lourdes Subdivision Extension, Baguio City, Benguet, Philippines

Lourdes Subdivision Extension

Legarda-Burnham-Kisad

Liwanag-Loakan

Loakan Proper

Lopez Jaena

Kayang Extension

Kayang-Hilltop

Kias

Lourdes Subdivision, Proper Lourdes Subdivision, Lower

Lualhati

Lucnab

Magsaysay Private Road

Lower Lourdes Day Care and Multipurpose Hall, Baguio City, Benguet, Philippines

Lourdes Barangay Hall, Baguio City, Benguet, Philippines

LUALHATI BARANGAY HALL, Baguio City, Benguet, Philippines

Lucnab, Baguio City, Beanguet, Philippines

Lower Magsaysay Barangay Multi-Purpose Hall, Lower Magsaysay Avenue, Baguio City, Benguet, Philippines Magsaysay Private Road, Baguio City, Benguet, Philippines

Magsaysay, Upper, Baguio City, Benguet, Philippines

Malcolm Square-perfecto (Jose Abad Santos), Baguio City, Benguet, Philippines

Malcolm Square-Perfecto (Jose Abad Santos)

Magsaysay, Upper Magsaysay, Lower

Market Subdivision, Upper

Manuel A. Roxas

Market Subdivision, Upper, Baguio City, Benguet, Philippines Manuel Roxas Barangay, Baguio City, Benguet, Philippines

Middle Quezon Hill Subdivision (Quezon Hill M, Baguio City, Benguet, Philippines Middle Quezon Hill Subdivision (Quezon Hill Middle)

MILITARY CUT OFF BARANGAY HALL, Military Cutoff Road, Baguio City, Benguet, Philippines

Mines View Multipurpose Cooperative, Baguio City, Benguet, Philippines

EAST MODERNSITE BRGY, P. Ledesma Street, Baguio, Benguet

MRR-Queen Of Peace, Baguio City, Benguet, Philippines Modern Site, West, Baguio City, Benguet, Philippines

MRR-Queen of Peace

Outlook Drive

Modern Site, West

Modern Site, East

Mines View Park

Military Cut-off

New Lucban Barangay Hall, New Lucban Road, Baguio City, Benguet, Philippines

Outlook Drive South, Baguio City, Benguet, Philippines

Pacdal Barangay Hall, Siapno Road, Baguio City, Benguet, Philippines

Table A.1 continued from previous page

P. BURGOS MULTI PURPOSE HALL, Upper P. Burgos, Baguio, Benguet

Padre Zamora Barangay Hall

Palma-Urbano (Cario-Palma)

Phil-Am

Pinget

Padre Zamora Padre Burgos

Pinsao Pilot Project

Pinsao Proper

Palma-Urbano (Carino-Palma), Baguio City, Benguet, Philippines

Barangay Hall Phil-am, Worcester Road, Baguio City, Benguet, Philippines

Pinget Barangay Hall, Baguio City, Benguet, Philippines

Pinsao Proper Barangay Hall, Baguio City, Benguet, Philippines Barangay Hall, Pinsao Road, Baguio City, Benguet, Philippines

POLIWES BARANGAY HALL, Puliwes Road, Baguio City, Benguet, Philippines

Pucsusan, Baguio City, Benguet, Philippines

Quezon Hill Proper Barangay Hall, Quezon Hill Road 1, Baguio City, Benguet, Philippines

Upper Quezon Hill, Tin, Brgy Upper Quezon Hill, Baguio, Benguet

Block 7, East Quirino Hill Barangay Hall, Quirino Hill Road, Baguio, Benguet Lower Quirino Hill Barangay Hall, Baguio, Benguet

MIDDLE QUIRINO HILL BARANGAY HALL, Baguio, Benguet

Upper Q.- M Barangay Hall, Jasmin Street, Barangay Upper Q.M., Baguio City, Benguet, Philippines West Quirino Hill Barangay Hall, Baguio, Benguet

Quirino-Magsaysay, Upper (Upper QM)

Quirino Hill, Middle

Quirino Hill, West

Quezon Hill, Upper Quirino Hill, Lower

Quirino Hill, East

Quezon Hill Proper

Pucsusan

Poliwes

Rizal Monument Area

Rock Quarry, Middle Saint Joseph Village

San Antonio Village

Salud Mitra

San Roque Village

San Vicente

San Luis Village

Rock Quarry, Lower Rock Quarry, Upper

Rizal Monument Barangay Hall, Baguio, Benguet

MULTI PURPOSE BRGY. HALL LOWER ROCK QUARRY, Lower Rock Quarry, Baguio City, Benguet, Philippines

Barangay Middle Rock Quarry Multi - Purpose Building, Lower Rock Quarry, Brgy. Middle Rock Quarry, Baguio, Benguet Upper Rock Quarry Barangay Hall, Lower Rock Quarry, Brgy. Upper Rock Quarry, Baguio City, Benguet, Philippines

St. Joseph Village Barangay Hall, Everlasting, Navy Base - Polo Field, St. Joseph Village, Baguio, Benguet

Barangay Hall, Baguio City, Benguet, Philippines

Leonila Hill Barangay Hall, Evangelista Street, Baguio City, Benguet, Philippines

SAN LUIS VILLAGE BARANGAY HALL, Asin Road, Baguio City, Benguet, Philippines

Church of Christ at Pines, Baguio, Benguet

San Vicente-Baguio City Multipurpose Cooperative, Kennon Road, Baguio, Benguet

Sanitary Camp, North, Baguio City, Benguet, Philippines

Brgy. South Sanitary Camp Multi Purpose Hall, South Sanitary Camp Road, Baguio City, Benguet, Philippines Santa Escolastica Village Hall, Sta. Escolastica, Baguio, Benguet

Santo Rosario Barangay Hall, Sto. Rosario Village Road, Baguio City, Benguet, Philippines

Sto Tomas Proper Barangay Hall, Baguio, Benguet

Scout Barrio Basketball Court, Baguio City, Benguet, Philippines Santo Tomas School Area, Baguio City, Benguet, Philippines

BARANGAY HALL, Gov. Pack Road, Baguio City, Benguet, Philippines

SLU-SVP Housing Village Barangay, Baguio City, Benguet, Philippines BARANGAY STO. NIO SLAUGHTER BARANGAY HALL

Slaughter House Area (Santo Nio Slaughter)

Session Road Area

Scout Barrio

Santo Tomas School Area

Santo Tomas Proper

Santa Escolastica

Santo Rosario

Sanitary Camp, North Sanitary Camp, South SLU-SVP Housing Village

Teodora Alonzo Victoria Village

South Drive

T Alonzo Barangay Hall, T. Alonzo Street, Baguio City, Benguet, Philippines Southdrive Barangay, South Drive, Baguio City, Benguet, Philippines

Trancoville, Baguio City, Benguet, Philippines

VICTORIA VILLAGE BARANGAY HALL, Baguio City, Benguet, Philippines

Irisan Dumpsite

Purok 18, Barangay Irisan, Baguio, 2600 Benguet

Appendix B

Table Showing the Distances Between each Barangay Marker

Table B.1: Distances between Nodes in Kilometers

NODES	v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}	v_{12}
v_0	0	5.005	6.154	5.88	7.643	4.407	12.017	3.42	12.805	6.994	7.027	7.948	4.832
v_1	5.005	0	1.643	2.426	3.232	1.396	7.752	5.458	8.54	2.418	2.721	3.282	1.026
v_2	6.154	1.643	0	0.89	1.589	2.663	8.267	6.489	9.055	0.775	1.079	1.64	2.29
v_3	5.88	2.426	0.89	0	1.943	2.13	9.157	6.615	9.945	1.057	1.327	1.491	2.35
v_4	7.643	3.232	1.589	1.943	0	3.989	9.856	8.474	10.644	0.888	0.632	1.898	4.209
v_5	4.407	1.396	2.663	2.13	3.989	0	8.706	4.975	9.423	3.094	3.295	4.216	1.338
v_6	12.017	7.752	8.267	9.157	9.856	8.706	0	12.872	0.789	9.042	9.345	9.401	8.725
v_7	3.42	5.458	6.489	6.615	8.474	4.975	12.872	0	13.66	7.395	7.596	8.517	5.401
v_8	12.805	8.54	9.055	9.945	10.644	9.423	0.789	13.66	0	9.582	9.886	10.189	9.053
v_9	6.994	2.418	0.775	1.057	0.888	3.094	9.042	7.395	9.582	0	0.378	1.083	3.297
v_{10}	7.027	2.721	1.079	1.327	0.632	3.295	9.345	7.596	9.886	0.378	0	1.387	3.593
v_{11}	7.948	3.282	1.64	1.491	1.898	4.216	9.401	8.517	10.189	1.083	1.387	0	2.549
v_{12}	4.832	1.026	2.29	2.35	4.209	1.338	8.725	5.401	9.053	3.297	3.593	2.549	0
v_{13}	6.044	3.429	4.608	5.334	6.197	4.108	7.292	5.43	8.726	5.383	5.686	6.477	3.738
v_{14}	7.865	3.431	4.551	5.277	6.14	4.265	5.323	7.251	6.11	5.488	5.791	6.479	3.74
v_{15}	7.197	2.122	2.571	3.461	4.16	2.908	5.807	8.219	6.615	3.346	3.328	3.093	3.281
v_{16}	6.47	2.486	3.726	4.256	5.315	3.226	5.592	7.137	6.38	4.603	4.804	5.594	2.856
v_{17}	7.774	3.363	1.72	2.17	0.173	4.042	9.987	8.343	10.528	1.019	0.763	2.029	4.34
v_{18}	7.423	3.013	1.37	1.723	0.219	3.691	9.389	7.992	10.178	0.669	0.413	1.679	3.989
v_{19}	6.946	3.492	2.29	1.246	1.252	3.214	10.558	7.778	11.346	1.59	1.301	2.6	3.513
v_{20}	6.197	1.932	3.038	3.898	4.627	2.886	6.182	7.452	7.139	3.858	4.116	4.849	2.349
v_{21}	7.048	2.129	0.486	1.136	1.619	3.074	8.765	7.665	9.307	0.939	1.243	1.048	3.422
v_{22}	7.784	3.302	1.66	2.016	0.459	4.052	9.926	8.353	10.467	0.959	0.701	1.968	4.255
v_{23}	7.172	2.895	2.416	2.955	2.884	3.678	8.026	10.35	8.867	3.52	2.373	3.605	3.655
v_{24}	5.676	2.222	2.122	0.808	2.667	1.944	9.641	6.245	9.676	1.54	2.051	2.662	2.263
v_{25}	9.024	4.759	5.865	6.672	7.454	5.713	2.993	9.88	3.781	6.781	7.084	7.772	5.272
v_{26}	6.587	2.322	3.428	4.288	5.017	3.276	5.43	7.842	6.218	4.344	4.647	4.562	2.836
v_{27}	4.383	0.577	1.841	1.901	3.76	0.889	7.818	4.952	8.604	2.313	2.616	3.177	0.449
v_{28}	4.019	0.888	2.135	1.861	3.724	0.848	8.181	4.588	8.898	2.807	3.008	3.269	0.813
v_{29}	4.852	0.786	2.05	2.752	3.639	1.74	8.323	4.657	8.52	3.27	3.573	4.134	1.665
v_{30}	4.746	0.68	1.944	2.646	3.533	1.634	7.633	5.314	8.421	2.646	3.022	3.51	1.04
v_{31}	10.157	5.892	4.38	4.919	6.235	6.162	8.383	11.335	9.225	5.421	4.337	4.102	5.104
v_{32}	4.843	1.374	2.059	1.336	3.195	0.754	8.684	5.411	9.472	2.3	2.501	3.422	1.316
v_{33}	8.233	3.968	4.796	5.686	6.385	4.922	4.746	9.488	5.535	4.88	5.874	5.894	4.467
v_{34}	8.07	3.805	4.723	5.613	6.312	4.759	4.17	9.325	4.959	5.249	5.801	5.318	4.328
v_{35}	5.414	1.96	1.894	0.546	2.405	1.682	9.583	5.983	9.448	1.482	1.683	2.604	2.205
v_{36}	3.832	1.964	3.228	3.233	5.092	1.593	9.105	4.4	9.698	4.012	4.213	5.134	2.018
v_{37}	6.616	5.917	7.097	7.823	8.686	7.653	9.587	6.002	10.375	7.872	8.175	8.965	6.227
v_{38}	7.389	2.21	2.763	3.653	4.352	3.841	5.687	8.409	6.505	3.176	3.48	3.245	3.471
v_{39}	6.188	2.406	1.982	2.872	3.571	2.694	6.214	8.451	6.9	2.736	3.04	2.805	3.513
v_{40}	4.004	1.626	2.893	2.321	4.18	0.548	8.937	4.742	9.653	3.325	3.526	4.447	1.569
v_{41}	5.774	2.202	3.442	4.168	5.133	3.156	6.823	6.678	7.611	4.319	4.622	5.31	2.342
v_{42}	15.446	11.181	11.696	12.586	13.285	12.135	3.43	16.3	3.679	12.223	12.527	12.292	11.694

v_{43}	8.148	3.883	4.711	5.601	6.3	4.837	5.049	9.335	5.821	4.795	5.098	5.845	4.382
v_{44}	4.629	0.837	2.101	2.803	3.69	1.791	7.542	4.921	8.279	2.803	3.106	3.667	1.197
v_{45}	5.47	0.884	0.978	1.868	2.567	1.976	7.355	6.039	7.776	1.753	2.056	2.617	1.823
v_{46}	5.741	1.252	1.281	2.171	2.87	2.561	6.986	6.623	7.774	2.056	2.359	2.84	2.191
v ₄₇	8.588	4.122	3.941	5.017	4.409	5.431	8.88	11.832	9.807	3.594	3.898	3.663	5.061
	7.652	2.89	3.479	4.369	5.068	4.341	4.999	8.907	5.798	4.254	4.281	4.046	3.901
v ₄₈										2.844			
v_{49}	5.148	2.56	2.406	1.626	3.485	1.058	9.853	6.996	10.163		3.045	3.966	2.485
v_{50}	5.032	2.115	2.78	1.982	3.841	0.943	9.408	5.6	10.196	2.946	3.147	4.068	2.04
v_{51}	11.991	7.121	6.48	7.37	6.682	7.996	10.217	13.169	11.005	5.867	6.171	7.614	8.216
v_{52}	5.556	2.125	1.492	0.368	2.227	1.824	9.418	6.315	9.556	1.658	1.611	1.749	2.05
v_{53}	5.128	0.626	1.394	2.302	2.983	1.935	7.083	5.697	8.144	2.132	2.435	2.996	1.565
v_{54}	7.577	3.262	4.14	5.03	5.729	4.266	4.477	8.764	5.25	4.224	4.527	5.274	3.811
v_{55}	6.817	2.248	1.21	2.101	2.52	3.809	8.044	7.386	8.833	1.705	2.009	1.774	3.187
v_{56}	6.273	1.686	1.301	2.191	2.89	2.779	7.65	7.057	8.438	2.076	2.379	2.94	2.625
v_{57}	5.757	1.791	1.548	2.438	3.137	3.1	6.546	8.729	7.579	2.868	3.172	2.937	2.73
v_{58}	6.736	2.738	3.917	4.643	5.609	3.631	7.247	6.121	8.035	4.795	4.995	5.786	3.047
v_{59}	7.884	2.928	1.577	2.115	2.045	4.152	9.844	8.619	8.358	1.23	1.534	1.299	4.354
v ₆₀	1.424	5.698	6.962	6.855	8.714	5.215	12.63	4.228	13.418	7.634	8.098	8.235	6.893
v ₆₁	5.423	0.62	1.383	2.273	2.972	1.929	7.64	5.991	8.428	2.158	2.461	3.022	1.559
v ₆₂	5.475	0.672	0.679	1.569	3.41	1.984	7.685	6.043	8.473	2.593	2.794	3.35	1.611
	4.567	0.779	1.792	2.103	3.381	1.073	8.072	5.136	8.74	2.567	2.87	3.431	0.703
v ₆₃	5.341	0.508	1.792	2.264	4.078	1.847	7.521	5.909	8.922	2.118	3.462	2.982	0.703
v ₆₄	13.472	9.357	9.673	10.563	11.259	10.285	1.651	14.521	1.9	10.444	10.748	10.513	9.915
v_{65}													
v_{66}	5.376	1.022	2.206	3.03	3.795	2	7.101	5.944	7.889	2.981	3.284	3.845	1.63
v_{67}	10.508	6.82	7.136	8.026	8.722	7.321	1.889	11.557	2.678	7.907	8.211	7.976	6.951
v_{68}	10.178	6.073	7.859	8.021	9.445	6.991	1.644	11.227	2.432	8.63	8.934	8.699	6.621
v_{69}	7.185	2.524	1.174	1.318	0.727	3.268	9.44	7.753	10.228	0.473	0.095	1.482	3.488
v_{70}	3.773	1.551	2.735	3.007	4.77	1.534	8.563	4.341	9.351	3.51	4.154	4.374	1.905
v_{71}	3.768	1.676	2.86	3.002	4.765	1.529	8.398	4.336	9.186	3.948	4.149	5.07	2.03
v_{72}	3.548	1.809	2.944	2.782	4.545	1.309	8.821	4.116	9.609	3.728	3.929	4.85	1.734
v_{73}	11.076	4.454	4.273	4.812	4.741	5.763	9.52	12.472	10.308	3.926	4.23	3.995	5.393
v_{74}	11.76	7.108	5.971	6.51	6.439	8.573	10.204	13.156	10.992	5.624	5.928	5.693	8.203
v_{75}	6.049	1.682	1.708	2.58	3.297	2.132	8.695	6.617	9.483	2.483	2.786	3.347	2.352
v_{76}	5.639	1.164											
v ₇₇		1.104	1.19	1.127	2.89	1.722	8.177	6.207	8.965	2.073	2.274	2.829	1.942
v ₇₈	1 5.98												
	5.98	2.358	2.685	2.514	4.277	2.063	9.651	6.548	10.439	3.46	3.661	4.324	2.283
	5.325	2.358 0.522	2.685 0.985	2.514 2.626	4.277 3.325	2.063 1.831	9.651 7.535	6.548 5.893	10.439 8.323	3.46 2.511	3.661 2.814	4.324 3.375	2.283 1.461
v_{79}	5.325 8.467	2.358 0.522 3.343	2.685 0.985 1.992	2.514 2.626 2.531	4.277 3.325 2.46	2.063 1.831 4.55	9.651 7.535 10.259	6.548 5.893 9.035	10.439 8.323 11.047	3.46 2.511 1.645	3.661 2.814 1.949	4.324 3.375 1.714	2.283 1.461 4.77
$v_{79} = v_{80}$	5.325 8.467 5.854	2.358 0.522 3.343 2.232	2.685 0.985 1.992 2.559	2.514 2.626 2.531 2.388	4.277 3.325 2.46 4.151	2.063 1.831 4.55 1.937	9.651 7.535 10.259 9.525	6.548 5.893 9.035 6.422	10.439 8.323 11.047 10.313	3.46 2.511 1.645 3.334	3.661 2.814 1.949 3.535	4.324 3.375 1.714 4.198	2.283 1.461 4.77 2.157
$v_{79} = v_{80} = v_{81}$	5.325 8.467 5.854 3.76	2.358 0.522 3.343 2.232 2.796	2.685 0.985 1.992 2.559 3.809	2.514 2.626 2.531 2.388 3.769	4.277 3.325 2.46 4.151 5.532	2.063 1.831 4.55 1.937 1.91	9.651 7.535 10.259 9.525 9.982	6.548 5.893 9.035 6.422 4.986	10.439 8.323 11.047 10.313 10.77	3.46 2.511 1.645 3.334 4.715	3.661 2.814 1.949 3.535 4.916	4.324 3.375 1.714 4.198 5.837	2.283 1.461 4.77 2.157 2.721
v_{79} v_{80} v_{81} v_{82}	5.325 8.467 5.854 3.76 5.993	2.358 0.522 3.343 2.232 2.796 1.887	2.685 0.985 1.992 2.559 3.809 3.169	2.514 2.626 2.531 2.388 3.769 3.836	4.277 3.325 2.46 4.151 5.532 4.758	2.063 1.831 4.55 1.937 1.91 2.806	9.651 7.535 10.259 9.525 9.982 5.65	6.548 5.893 9.035 6.422 4.986 7.389	10.439 8.323 11.047 10.313 10.77 6.439	3.46 2.511 1.645 3.334 4.715 3.944	3.661 2.814 1.949 3.535 4.916 4.247	4.324 3.375 1.714 4.198 5.837 4.396	2.283 1.461 4.77 2.157 2.721 2.436
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃	5.325 8.467 5.854 3.76 5.993 11.192	2.358 0.522 3.343 2.232 2.796 1.887 4.878	2.685 0.985 1.992 2.559 3.809 3.169 4.697	2.514 2.626 2.531 2.388 3.769 3.836 5.236	4.277 3.325 2.46 4.151 5.532 4.758 5.165	2.063 1.831 4.55 1.937 1.91 2.806 6.187	9.651 7.535 10.259 9.525 9.982 5.65 9.636	6.548 5.893 9.035 6.422 4.986 7.389 12.588	10.439 8.323 11.047 10.313 10.77 6.439 10.424	3.46 2.511 1.645 3.334 4.715 3.944 4.35	3.661 2.814 1.949 3.535 4.916 4.247 4.654	4.324 3.375 1.714 4.198 5.837 4.396 4.419	2.283 1.461 4.77 2.157 2.721 2.436 5.817
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄	5.325 8.467 5.854 3.76 5.993 11.192 7.432	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406	6.548 5.893 9.035 6.422 4.986 7.389 12.588	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇ v ₈₈	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇ v ₈₈ v ₈₉	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇ v ₈₈ v ₈₉ v ₉₀	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇ v ₈₈ v ₈₉ v ₉₀ v ₉₁	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666
v ₇₉ v ₈₀ v ₈₁ v ₈₂ v ₈₃ v ₈₄ v ₈₅ v ₈₆ v ₈₇ v ₈₈ v ₈₉ v ₉₀ v ₉₁ v ₉₂	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v90 v91 v92 v93 v94	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92 v93 v94	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92 v93 v94 v95	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92 v93 v94 v95 v96	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734 6.446	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953 2.869	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032 3.975	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252 4.835	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111 5.564	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708 3.823	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961 5.139	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16 8.389	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749 5.927	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199 4.75	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495 5.053	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632 5.109	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053 4.873
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v90 v91 v92 v93 v94 v95 v96 v97 v98	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734 6.446 8.665	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953 2.869 7.239	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032 3.975 4.892	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252 4.835 5.782	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111 5.564 6.481	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708 3.823 5.859	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961 5.139 9.783	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16 8.389 12.759	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749 5.927 10.572	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199 4.75 5.667	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495 5.053 5.97	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632 5.109 6.026	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053 4.873 5.35
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v90 v91 v92 v93 v94 v95 v96 v97 v98	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734 6.446 8.665 3.308	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953 2.869 7.239 2.063	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032 3.975 4.892 3.469	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252 4.835 5.782 2.897	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111 5.564 6.481 4.756	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708 3.823 5.859 1.124	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961 5.139 9.783 9.373	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16 8.389 12.759 4.734	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749 5.927 10.572 10.09	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199 4.75 5.667 3.844	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495 5.053 5.97 4.14	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632 5.109 6.026 4.277	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053 4.873 5.35 2.974
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 v100	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734 6.446 8.665 3.308 3.274	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953 2.869 7.239 2.063 2.564	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032 3.975 4.892 3.469 3.969	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252 4.835 5.782 2.897 3.397	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111 5.564 6.481 4.756 5.256	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708 3.823 5.859 1.124 1.624	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961 5.139 9.783 9.373 9.995	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16 8.389 12.759 4.734 4.999	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749 5.927 10.572 10.09 10.783	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199 4.75 5.667 3.844 4.728	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495 5.053 5.97 4.14 4.929	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632 5.109 6.026 4.277 5.85	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053 4.873 5.35 2.974 2.734
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v90 v91 v92 v93 v94 v95 v96 v97 v98	5.325 8.467 5.854 3.76 5.993 11.192 7.432 6.742 4.037 5.795 10.757 7.639 5.015 5.676 3.689 5.39 5.808 5.941 3.734 6.446 8.665 3.308	2.358 0.522 3.343 2.232 2.796 1.887 4.878 2.49 1.939 1.815 1.518 6.492 5.525 1.561 1.399 0.626 2.094 3.042 3.305 2.953 2.869 7.239 2.063	2.685 0.985 1.992 2.559 3.809 3.169 4.697 1.14 0.588 2.999 0.489 4.407 3.178 1.38 1.161 1.89 3.334 2.976 3.422 4.032 3.975 4.892 3.469	2.514 2.626 2.531 2.388 3.769 3.836 5.236 1.496 1.126 3.271 1.379 5.297 4.068 1.656 2.051 2.592 4.06 1.628 2.642 3.252 4.835 5.782 2.897	4.277 3.325 2.46 4.151 5.532 4.758 5.165 0.986 1.158 5.034 2.078 5.996 4.767 2.969 2.75 3.479 4.923 3.487 4.501 5.111 5.564 6.481 4.756	2.063 1.831 4.55 1.937 1.91 2.806 6.187 3.515 3.146 1.798 2.786 5.374 4.145 1.283 2.182 1.58 3.048 2.764 2.311 1.708 3.823 5.859 1.124	9.651 7.535 10.259 9.525 9.982 5.65 9.636 9.406 8.855 8.827 8.059 9.036 8.069 8.145 7.926 7.645 6.664 9.741 10.544 9.961 5.139 9.783 9.373	6.548 5.893 9.035 6.422 4.986 7.389 12.588 8 7.31 4.605 6.364 12.012 11.045 5.584 6.245 4.945 7.106 7.065 7.367 5.16 8.389 12.759 4.734	10.439 8.323 11.047 10.313 10.77 6.439 10.424 10.194 9.643 9.615 8.848 9.825 8.858 8.934 8.715 8.433 7.452 10.53 11.332 10.749 5.927 10.572 10.09	3.46 2.511 1.645 3.334 4.715 3.944 4.35 0.439 0.344 3.774 1.254 5.182 3.953 2.634 1.936 2.665 4.109 2.575 3.589 4.199 4.75 5.667 3.844	3.661 2.814 1.949 3.535 4.916 4.247 4.654 0.475 0.648 4.418 1.567 5.485 4.256 2.458 2.239 2.968 4.412 2.871 3.885 4.495 5.053 5.97 4.14	4.324 3.375 1.714 4.198 5.837 4.396 4.419 0.477 1.209 4.638 2.118 5.541 4.312 2.514 2.295 3.024 4.468 3.008 4.022 4.632 5.109 6.026 4.277	2.283 1.461 4.77 2.157 2.721 2.436 5.817 3.735 2.878 2.169 0.784 4.865 3.636 0.885 0.666 2.63 3.792 2.481 3.397 3.053 4.873 5.35 2.974

v_{103}	5.628	2.862	2.762	1.448	3.307	2.584	9.527	6.885	10.316	2.395	2.691	2.828	2.267
v_{104}	6.482	3.716	3.616	2.302	4.161	3.438	10.381	7.739	11.17	3.249	3.545	3.682	3.121
v_{105}	4.518	1.414	2.678	3.38	4.267	2.368	7.494	5.774	8.282	3.453	3.756	3.812	3.418
v ₁₀₆	4.145	0.354	1.395	2.32	2.984	1.308	7.658	5.401	8.447	2.17	2.473	2.529	2.358
v ₁₀₇	3.658	1.08	2.344	3.046	3.933	2.065	7.774	4.914	8.562	3.119	3.422	3.478	3.084
	3.307	1.431	2.695	3.397	4.284	1.714	8.125	4.563	8.913	3.47	3.773	3.829	3.435
v ₁₀₈	3.567	1.172	2.436	3.138	4.025	1.974	7.778	4.823	8.566	3.592	3.895	3.57	3.176
v_{109}													
v_{110}	6.84	3.251	3.067	3.957	4.656	4.034	8.712	10.706	9.501	3.842	4.145	4.201	3.525
v_{111}	8.336	4.759	5.865	6.725	7.454	5.713	2.993	9.88	3.781	6.64	6.943	6.999	6.763
v_{112}	7.133	3.679	1.549	1.433	0.51	3.401	9.568	7.702	10.357	0.848	0.592	0.941	2.459
v_{113}	3.881	2.676	3.94	3.833	5.692	2.193	9.608	2.81	10.396	4.78	5.076	5.213	3.871
v_{114}	2.791	6.817	8.081	7.974	9.833	6.334	13.749	5.347	14.537	8.921	9.217	9.354	8.012
v_{115}	6.674	3.097	4.203	5.063	5.792	4.051	5.443	7.653	6.231	4.978	5.281	5.337	5.101
v_{116}	6.475	3.709	2.506	1.463	1.468	3.431	10.525	7.732	11.314	1.805	1.518	1.898	3.114
v_{117}	5.393	2.627	1.161	0.381	1.96	2.349	9.183	6.65	9.972	1.328	1.344	1.761	2.032
v_{118}	6.78	3.203	4.031	4.921	5.62	4.157	4.749	8.723	5.538	4.806	5.109	5.165	4.489
v_{119}	6.074	3.009	4.249	4.975	5.838	3.963	7.578	6.149	8.366	5.024	5.327	5.383	4.707
v_{120}	5.844	5.773	7.013	7.739	8.602	7.57	6.962	5.919	7.75	7.788	8.091	8.147	7.471
v_{121}	10.158	10.088	11.328	12.054	12.917	11.884	13.818	10.233	14.606	12.103	12.406	12.462	11.786
v ₁₂₂	7.471	3.894	4.587	5.477	6.176	4.848	3.854	9.414	4.643	5.362	5.665	5.721	5.045
v ₁₂₃	6.049	1.662	1.53	2.42	3.119	2.447	6.773	8.086	7.562	2.305	2.608	2.664	1.988
v ₁₂₄	4.829	2.063	1.37	1.067	2.926	1.785	8.135	6.086	8.924	2.014	2.31	2.504	0.875
	7.3	3.435	4.675	5.401	6.264	4.389	5.678	7.375	6.466	5.45	5.753	5.809	5.133
v ₁₂₅	7.78	4.203	4.136	5.026	5.725	4.473	6.747	9.723	7.536	4.911	5.214	5.27	4.594
v ₁₂₆	4.983	1.394	0.476	1.366	2.065	2.662		6.24	8.835	1.251	1.554	1.61	0.66
v_{127}							8.046						
v_{128}	5.577	2.811	0.603	0.496	1.561	2.533	8.625	6.834	9.414	0.674	1.051	1.107	1.513
v_{129}	2.819	2.038	3.302	3.084	4.943	1.311	9.046	4.245	9.834	4.031	4.327	4.464	3.161
NODES	v_{13}	v_{14}	v_{15}	v_{16}	v_{17}	v_{18}	v_{19}	v_{20}	v_{21}	v_{22}	v_{23}	v_{24}	v_{25}
v_0	6.044	7.865	7.197	6.47	7.774	7.423	6.946	6.197	7.048	7.784	7.172	5.676	9.024
v_1	3.429	3.431	2.122	2.486	3.363	3.013	3.492	1.932	2.129	3.302	2.895	2.222	4.759
v_2	4.608	4.551	2.571	3.726	1.72	1.37	2.29	3.038	0.486	1.66	2.416	2.122	5.865
v_3	5.334	5.277	3.461	4.256	2.17	1.723	1.246	3.898	1.136	2.016	2.955	0.808	6.672
v_4													
-4	6.197	6.14	4.16	5.315	0.173	0.219	1.252	4.627	1.619	0.459	2.884	2.667	7.454
v_5	6.197 4.108	6.14 4.265	4.16 2.908	5.315 3.226	0.173 4.042	0.219 3.691	1.252 3.214	4.627 2.886	1.619 3.074	0.459 4.052	2.884 3.678	2.667 1.944	7.454 5.713
			-										
v_5	4.108	4.265	2.908	3.226	4.042	3.691	3.214	2.886	3.074	4.052	3.678	1.944	5.713
v_5 v_6	4.108 7.292	4.265 5.323	2.908 5.807	3.226 5.592	4.042 9.987	3.691 9.389	3.214 10.558	2.886 6.182	3.074 8.765	4.052 9.926	3.678 8.026	1.944 9.641	5.713 2.993
v_5 v_6 v_7 v_8	4.108 7.292 5.43	4.265 5.323 7.251	2.908 5.807 8.219	3.226 5.592 7.137	4.042 9.987 8.343	3.691 9.389 7.992	3.214 10.558 7.778	2.886 6.182 7.452	3.074 8.765 7.665	4.052 9.926 8.353	3.678 8.026 10.35	1.944 9.641 6.245	5.713 2.993 9.88
v_5 v_6 v_7	4.108 7.292 5.43 8.726	4.265 5.323 7.251 6.11	2.908 5.807 8.219 6.615	3.226 5.592 7.137 6.38	4.042 9.987 8.343 10.528	3.691 9.389 7.992 10.178	3.214 10.558 7.778 11.346	2.886 6.182 7.452 7.139	3.074 8.765 7.665 9.307	4.052 9.926 8.353 10.467	3.678 8.026 10.35 8.867	1.944 9.641 6.245 9.676	5.713 2.993 9.88 3.781
v ₅ v ₆ v ₇ v ₈ v ₉ v ₁₀	4.108 7.292 5.43 8.726 5.383	4.265 5.323 7.251 6.11 5.488	2.908 5.807 8.219 6.615 3.346	3.226 5.592 7.137 6.38 4.603	4.042 9.987 8.343 10.528 1.019	3.691 9.389 7.992 10.178 0.669	3.214 10.558 7.778 11.346 1.59	2.886 6.182 7.452 7.139 3.858	3.074 8.765 7.665 9.307 0.939	4.052 9.926 8.353 10.467 0.959	3.678 8.026 10.35 8.867 3.52	1.944 9.641 6.245 9.676 1.54	5.713 2.993 9.88 3.781 6.781
v ₅ v ₆ v ₇ v ₈ v ₉ v ₁₀ v ₁₁	4.108 7.292 5.43 8.726 5.383 5.686	4.265 5.323 7.251 6.11 5.488 5.791	2.908 5.807 8.219 6.615 3.346 3.328	3.226 5.592 7.137 6.38 4.603 4.804	4.042 9.987 8.343 10.528 1.019 0.763	3.691 9.389 7.992 10.178 0.669 0.413	3.214 10.558 7.778 11.346 1.59 1.301	2.886 6.182 7.452 7.139 3.858 4.116	3.074 8.765 7.665 9.307 0.939 1.243	4.052 9.926 8.353 10.467 0.959 0.701	3.678 8.026 10.35 8.867 3.52 2.373	1.944 9.641 6.245 9.676 1.54 2.051	5.713 2.993 9.88 3.781 6.781 7.084
v ₅ v ₆ v ₇ v ₈ v ₉ v ₁₀ v ₁₁ v ₁₂	4.108 7.292 5.43 8.726 5.383 5.686 6.477	4.265 5.323 7.251 6.11 5.488 5.791 6.479	2.908 5.807 8.219 6.615 3.346 3.328 3.093	3.226 5.592 7.137 6.38 4.603 4.804 5.594	4.042 9.987 8.343 10.528 1.019 0.763 2.029	3.691 9.389 7.992 10.178 0.669 0.413 1.679	3.214 10.558 7.778 11.346 1.59 1.301 2.6	2.886 6.182 7.452 7.139 3.858 4.116 4.849	3.074 8.765 7.665 9.307 0.939 1.243 1.048	4.052 9.926 8.353 10.467 0.959 0.701 1.968	3.678 8.026 10.35 8.867 3.52 2.373 3.605	1.944 9.641 6.245 9.676 1.54 2.051 2.662	5.713 2.993 9.88 3.781 6.781 7.084 7.772
v ₅ v ₆ v ₇ v ₈ v ₉ v ₁₀ v ₁₁ v ₁₂ v ₁₃	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272
v5 v6 v7 v8 v9 v10 v11 v12 v13	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934 4.299 2.56	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856 6.468 0 2.437
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934 4.299	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19 2.329	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945 4.559	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052 2.599	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798 7.585	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137 7.235	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971 7.888	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545 3.189	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809 6.438	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498 7.665	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0 4.415 5.856	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415 0 6.468	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856 6.468 0
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934 4.299 2.56	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19 2.329 2.451	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945 4.559 1.757	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052 2.599 0.924	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798 7.585 5.148	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137 7.235 4.798	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971 7.888 5.451	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545 3.189 0.753	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809 6.438 4.001	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498 7.665 5.228	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0 4.415 5.856 3.419	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415 0 6.468 4.032	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856 6.468 0 2.437
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934 4.299 2.56 3.289	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19 2.329 2.451 3.377	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945 4.559 1.757 2.02	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052 2.599 0.924 2.407	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798 7.585 5.148 3.891	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137 7.235 4.798 3.54	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971 7.888 5.451 3.064	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545 3.189 0.753 1.998	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809 6.438 4.001 2.902	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498 7.665 5.228 3.197	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0 4.415 5.856 3.419 2.79	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415 0 6.468 4.032 1.971	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856 6.468 0 2.437 4.823
v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28	4.108 7.292 5.43 8.726 5.383 5.686 6.477 3.738 0 1.969 3.264 1.854 6.431 6.081 6.204 2.169 5.234 6.37 5.068 4.934 4.299 2.56 3.289 3.583	4.265 5.323 7.251 6.11 5.488 5.791 6.479 3.74 1.969 0 2.88 1.797 6.271 5.921 6.44 2.171 5.236 6.21 4.542 5.19 2.329 2.451 3.377 3.74	2.908 5.807 8.219 6.615 3.346 3.328 3.093 3.281 3.264 2.88 0 2.381 4.291 3.941 4.862 1.636 3.255 4.23 2.002 3.945 4.559 1.757 2.02 2.383	3.226 5.592 7.137 6.38 4.603 4.804 5.594 2.856 1.854 1.797 2.381 0 5.548 5.198 5.322 1.139 4.41 5.487 5.044 4.052 2.599 0.924 2.407 2.701	4.042 9.987 8.343 10.528 1.019 0.763 2.029 4.34 6.431 6.271 4.291 5.548 0 0.35 1.383 4.758 1.899 0.59 3.015 2.798 7.585 5.148 3.891 3.855	3.691 9.389 7.992 10.178 0.669 0.413 1.679 3.989 6.081 5.921 3.941 5.198 0.35 0 1.032 4.408 1.549 0.528 4.115 2.137 7.235 4.798 3.54 3.505	3.214 10.558 7.778 11.346 1.59 1.301 2.6 3.513 6.204 6.44 4.862 5.322 1.383 1.032 0 5.061 2.39 1.561 3.586 1.971 7.888 5.451 3.064 3.651	2.886 6.182 7.452 7.139 3.858 4.116 4.849 2.349 2.169 2.171 1.636 1.139 4.758 4.408 5.061 0 3.833 4.697 3.965 3.545 3.189 0.753 1.998 2.194	3.074 8.765 7.665 9.307 0.939 1.243 1.048 3.422 5.234 5.236 3.255 4.41 1.899 1.549 2.39 3.833 0 1.714 1.843 1.809 6.438 4.001 2.902 2.708	4.052 9.926 8.353 10.467 0.959 0.701 1.968 4.255 6.37 6.21 4.23 5.487 0.59 0.528 1.561 4.697 1.714 0 4.404 2.498 7.665 5.228 3.197 3.794	3.678 8.026 10.35 8.867 3.52 2.373 3.605 3.655 5.068 4.542 2.002 5.044 3.015 4.115 3.586 3.965 1.843 4.404 0 4.415 5.856 3.419 2.79 3.153	1.944 9.641 6.245 9.676 1.54 2.051 2.662 2.263 4.934 5.19 3.945 4.052 2.798 2.137 1.971 3.545 1.809 2.498 4.415 0 6.468 4.032 1.971 1.657	5.713 2.993 9.88 3.781 6.781 7.084 7.772 5.272 4.299 2.329 4.559 2.599 7.585 7.235 7.888 3.189 6.438 7.665 5.856 6.468 0 2.437 4.823 5.117

											1		
v_{31}	6.13	5.997	3.407	5.171	6.366	6.016	6.937	4.323	5.219	4.918	2.344	5.616	6.891
v_{32}	4.086	4.243	2.886	3.418	3.248	2.975	2.499	2.697	2.337	3.258	4.352	1.15	5.62
v_{33}	4.206	4.082	2.858	3.478	5.825	6.166	7.087	2.399	5.369	5.764	5.058	5.663	5.933
v_{34}	4.043	3.943	2.282	3.315	6.443	6.093	7.014	2.236	5.296	6.134	4.534	5.343	5.357
v_{35}	4.672	5.132	3.887	3.79	2.43	2.079	1.709	3.283	1.547	2.44	4.187	0.332	6.206
v_{36}	4.001	4.018	4.285	3.281	5.223	4.872	4.132	2.994	3.801	4.97	5.593	2.862	5.917
v_{37}	2.637	4.458	5.752	4.343	8.919	8.467	8.986	4.511	7.67	8.858	7.088	7.423	6.595
v_{38}	3.456	3.07	0.152	2.573	4.122	4.133	5.054	1.828	2.95	4.422	2.194	3.391	4.196
v_{39}	3.548	3.112	0.485	2.287	3.702	3.332	4.273	1.92	2.555	3.621	1.413	3.635	4.426
v_{40}	4.338	4.496	3.139	3.456	4.311	3.96	3.484	2.949	3.322	4.283	4.255	2.175	5.872
v_{41}	1.408	1.351	2.097	0.688	13.169	4.812	5.331	1.003	4.015	5.203	3.433	4.081	3.83
v_{42}	10.721	8.751	9.256	9.021	13.4	13.066	13.739	9.611	11.997	13.355	11.455	12.317	6.422
v_{43}	4.121	3.997	2.227	3.171	6.431	6.081	7.002	2.314	5.284	6.37	4.47	5.578	4.906
v_{44}	2.542	2.503	2.49	1.84	3.821	3.471	3.966	1.722	2.601	3.687	4.152	2.393	4.498
v_{45}	3.737	3.577	1.659	2.752	2.698	2.348	3.268	2.109	1.551	2.637	1.8	2.648	5.032
v_{46}	3.85	3.852	1.29	2.967	3.001	2.651	3.572	2.317	1.854	2.94	1.431	2.655	5.144
v_{47}	6.712	6.494	3.904	5.668	5.847	5.497	6.418	4.905	4.7	4.479	2.264	5.177	7.497
v ₄₈	3.625	3.516	1.019	2.897	5.199	4.849	5.77	1.818	4.052	4.862	3.262	4.853	4.41
v ₄₉	4.848	5.412	4.055	4.587	3.616	3.265	2.789	4.033	2.627	3.802	5.169	1.539	6.382
	4.733	4.967	3.61	4.142	3.972	3.621	3.066	3.344	3.001	3.904	5.076	1.796	6.267
v ₅₀	7.964	7.831	5.241	7.005	8.2	7.85	8.771	6.301	7.053	6.752	4.178	7.854	8.725
v ₅₁	4.814	4.977	3.276	4.152	2.358	2.007	1.531	3.598	1.713	2.616	3.556	0.27	6.348
v ₅₂	3.078	3.318	1.387	2.493	3.114	2.764	3.465	1.45	1.713	3.053	3.331	2.215	4.373
v ₅₃	3.55	3.551	1.656	2.493	5.169	5.51	6.431	1.743	4.713	5.108	3.899	5.007	4.335
v ₅₄	5.659		3.468	4.623		2.301	3.222	4.031	1.479	2.59			6.954
v_{55}		5.448	-		2.651						2.787	2.585	
v_{56}	4.416	4.494	1.954	3.669	3.021	2.671	3.591	2.788	1.874	2.96	2.128	2.675	5.711
v_{57}	3.54	3.39	0.85	2.565	3.268	3.464	3.839	1.877	2.642	3.753	1.978	2.922	4.835
v_{58}	0.839	1.278	2.573	1.163	5.637	5.287	5.806	1.331	4.593	5.679	4.377	4.243	3.608
v_{59}	6.185	6.128	1.8	5.303	2.176	1.826	2.746	3.556	1.004	2.115	2.312	2.812	6.479
v_{60}	6.851	8.64	7.651	7.001	8.845	8.494	8.018	6.714	7.856	8.76	8.327	6.768	9.637
v ₆₁	3.919	3.862	2.004	3.037	3.103	2.673	3.673	2.349	1.876	3.042	2.085	3.053	5.176
v ₆₂	3.976	3.919	1.989	3.094	3.541	3.19	2.713	2.406	2.197	3.37	2.413	1.443	5.233
v_{63}	3.688	3.631	2.274	2.806	3.512	3.162	3.169	2.036	2.278	3.451	3.044	2.276	5.079
v_{64}	3.812	3.755	1.825	2.725	3.063	2.713	3.33	2.242	1.941	3.002	2.595	2.06	5.069
v_{65}	9.588	6.972	7.477	7.242	11.39	11.04	11.96	8.001	10.194	11.576	9.729	10.538	4.643
v_{66}	2.321	2.264	2.281	1.439	3.926	3.576	4.096	1.281	2.704	3.865	4.085	2.826	4.108
v ₆₇	6.624	4.008	4.94	4.278	8.853	8.503	9.423	5.037	7.756	8.792	7.192	8.001	1.679
v_{68}	6.294	3.678	5.663	3.948	9.576	9.226	9.087	4.707	8.355	9.515	7.915	7.817	1.349
v_{69}	5.781	5.724	3.744	4.899	0.858	0.508	1.196	4.211	1.179	0.796	2.468	1.946	7.038
v_{70}	3.846	3.959	3.743	3.134	4.901	4.55	4.073	2.743	3.251	4.394	5.547	2.803	5.57
v_{71}	3.398	3.359	3.673	2.697	4.896	4.545	4.068	2.578	3.946	4.906	5.477	2.798	5.405
v_{72}	3.748	3.709	4.023	3.047	4.676	4.325	3.848	3.001	3.854	4.686	4.074	2.578	5.828
v_{73}	7.191	7.134	4.544	6.308	4.872	4.522	5.442	5.604	3.629	4.811	2.586	5.509	8.028
v_{74}	7.875	7.818	5.228	6.992	6.57	6.22	7.14	6.288	5.448	6.509	4.165	7.207	8.712
v_{75}	4.986	4.929	2.999	4.104	3.428	3.078	3.646	3.416	2.231	3.367	3.423	2.376	6.727
v_{76}	4.468	4.411	2.481	3.586	3.021	2.67	2.193	2.898	1.874	2.849	2.905	0.923	5.725
v_{77}	5.267	5.21	3.853	4.385	4.408	4.057	3.58	3.831	3.369	4.344	4.4	2.31	6.658
v_{78}	3.826	3.769	1.839	2.944	3.456	3.106	4.026	2.256	2.267	3.395	2.34	2.657	5.083
v_{79}	6.6	6.543	4.563	5.718	2.591	2.241	3.161	5.03	1.461	2.53	0.516	3.228	7.857
v_{80}	5.141	5.084	3.727	4.259	4.282	3.931	3.454	3.705	3.309	4.218	4.274	2.184	6.532
v ₈₁	5.136	5.097	4.291	4.435	5.663	5.312	4.835	4.162	4.946	5.673	5.061	3.565	6.989
v_{82}	2.108	2.051	1.36	1.225	4.889	4.539	4.902	0.521	3.7	4.828	3.612	3.632	2.945
v ₈₃	7.307	7.25	4.66	6.424	5.296	4.946	5.866	5.72	4.166	5.235	3.01	5.933	8.144
v ₈₄	5.747	5.69	3.71	4.865	1.117	0.767	1.687	4.177	1.224	1.056	2.434	2.193	7.004
v ₈₅	5.196	5.139	3.159	4.314	1.289	0.939	1.859	3.626	0.544	1.229	2.196	1.824	6.453
v ₈₆	4.11	4.223	4.007	3.398	5.165	4.814	4.337	3.007	3.537	4.658	5.811	3.067	5.834
v ₈₇	4.272	4.274	2.29	3.389	2.209	1.859	2.78	2.644	1.017	2.148	2.782	1.863	5.892
v ₈₈	6.73	6.731	3.965	6.002	6.127	5.777	6.698	4.923	3.97	6.066	2.544	5.781	7.515
v ₈₉	5.763	5.764	2.151	5.035	4.898	4.548	5.469	3.956	3.957	4.837	1.315	4.552	6.548
	4.273	4.275	2.459	3.391	3.1	2.75	2.819	2.884	1.925	3.039	3.673	1.569	5.807
v_{90}	4.213	4.210	2.409	0.091	J.1	2.10	4.019	2.004	1.940	3.039	0.073	1.009	0.007

v_{91}	4.153	4.155	2.24	3.27	2.881	2.531	3.452	2.525	1.706	2.82	3.454	2.535	5.448
v_{92}	3.098	3.1	2.661	2.216	3.61	3.26	3.755	1.729	2.463	3.549	3.255	2.505	4.652
v ₉₃	1.824	1.826	1.663	0.942	5.054	4.704	5.223	0.748	3.907	4.993	3.325	3.973	3.671
v ₉₄	5.754	5.756	4.055	4.872	3.618	3.267	2.791	4.365	2.629	3.533	5.269	1.299	7.288
	6.017	6.019	5.56	5.135	4.632	4.281	3.805	4.628	3.643	4.547	6.185	2.555	7.551
v ₉₅	5.052	5.054	4.982	4.332	5.242	4.891	4.415	4.045	4.253	5.157	5.582	3.165	6.968
v ₉₆							-						
v ₉₇	3.107	2.82	2.304	0.709	5.695	5.345	5.998	1.299	4.548	5.634	3.966	4.748	2.146
v_{98}	7.477	7.478	3.865	6.749	6.612	6.262	7.183	5.67	5.465	6.551	3.029	6.266	8.262
v_{99}	4.596	4.598	4.318	3.893	4.887	4.536	4.06	3.386	3.898	4.802	4.692	2.81	6.309
v_{100}	5.149	5.11	4.304	4.448	5.676	5.325	4.848	4.175	4.783	5.686	5.074	3.578	7.002
v_{101}	6.445	6.388	5.143	5.563	3.686	3.335	2.858	5.009	2.793	3.696	4.636	1.284	7.836
v_{102}	5.609	5.552	4.307	4.727	2.85	2.499	2.022	4.173	1.957	2.86	3.8	0.448	7
v_{103}	5.574	5.576	3.841	4.692	3.438	3.087	2.611	4.451	2.235	3.138	4.078	0.726	7.278
v_{104}	6.428	6.43	4.695	5.546	4.292	3.941	3.465	5.303	3.087	3.99	4.93	1.578	8.13
v_{105}	2.131	2.133	2.494	1.411	4.398	4.048	4.543	1.726	3.178	4.264	4.624	2.97	4.553
v_{106}	3.381	3.383	1.972	2.498	3.115	2.765	3.483	1.842	2.178	3.264	2.857	2.131	4.669
v_{107}	2.843	2.845	2.773	2.123	4.064	3.714	4.209	1.858	2.917	4.003	4.435	2.959	4.781
v ₁₀₈	3.194	3.196	3.124	2.474	4.415	4.065	4.56	2.209	3.268	4.354	4.786	3.31	5.132
v ₁₀₉	2.935	2.937	2.778	2.215	4.156	3.806	4.301	1.95	3.009	4.095	4.527	3.051	4.873
v ₁₁₀	5.424	5.426	2.04	4.541	4.787	4.437	5.358	3.796	3.64	4.726	1.204	4.441	7.191
v ₁₁₁	4.299	2.33	4.194	2.599	7.585	7.235	7.888	3.189	6.438	7.524	5.856	6.638	0
v_{112}	6.26	6.262	3.799	5.377	0.641	0.29	0.742	4.632	1.604	0.819	4.294	1.847	7.555
	4.915	4.701	4.629	3.979	5.823	5.472	4.996	3.692	4.834	5.738	5.305	3.746	6.615
v ₁₁₃	7.97	9.759	8.77	8.12	9.964	9.613	9.137	7.833	8.975	9.879	9.446	7.887	10.756
v ₁₁₄													
v_{115}	2.37	2.372	2.532	0.517	5.923	5.573	6.226	1.527	4.776	5.862	4.194	4.976	2.45
v_{116}	6.421	6.423	4.756	5.539	1.599	1.248	0.217	5.032	2.561	1.777	5.251	1.877	7.955
v_{117}	5.339	5.341	3.414	4.457	2.091	1.74	1.264	3.95	1.382	2.269	3.906	0.795	6.873
v_{118}	3.441	3.442	1.571	1.604	5.751	5.401	6.322	1.634	4.604	5.69	3.79	5.082	3.117
v_{119}	0.867	1.808	2.578	1.495	5.969	5.619	6.138	1.662	4.822	5.908	4.24	4.888	4.585
v_{120}	2.553	3.671	5.342	4.259	8.733	8.383	8.902	4.427	7.586	8.672	7.004	7.652	3.97
v_{121}	6.868	8.656	9.657	8.574	13.048	12.698	13.217	8.742	11.901	12.987	11.319	11.967	10.826
v_{122}	4.132	4.133	2.127	3.404	6.307	5.957	6.878	2.325	5.16	6.246	4.346	5.961	5.041
v_{123}	2.804	2.806	1.087	1.921	3.25	2.9	3.821	1.176	2.103	3.189	2.277	2.904	4.099
v_{124}	4.362	4.364	2.449	3.479	3.057	2.706	2.23	2.734	1.943	3.029	3.663	0.98	5.657
v_{125}	2.093	0.356	3.004	1.921	6.395	6.045	6.564	2.089	5.248	6.334	4.666	5.314	2.685
v_{126}	4.441	4.442	1.676	3.713	5.856	5.506	6.427	2.634	4.709	5.795	1.331	5.51	5.226
v_{127}	4.148	4.15	2.277	3.265	2.196	1.846	2.767	2.52	1.049	2.135	2.769	1.85	5.443
v_{128}	5.314	5.316	2.856	4.431	1.692	1.342	1.728	3.686	0.825	1.632	3.348	0.979	6.609
v ₁₂₉	4.137	4.139	4.067	3.417	5.074	4.723	4.247	3.13	4.085	4.989	4.667	2.997	6.053
120													
NODES	v ₂₆	v_{27}	v ₂₈	v ₂₉	v ₃₀	v ₃₁	v ₃₂	v ₃₃	v ₃₄	v ₃₅	v ₃₆	v ₃₇	v ₃₈
v_0	6.587	4.383	4.019	4.852	4.746	10.157	4.843	8.233	8.07	5.414	3.832	6.616	7.389
	2.322	0.577	0.888	0.786	0.68	5.892	1.374	3.968	3.805	1.96	1.964	5.917	2.21
v ₁	3.428	1.841	2.135	2.05	1.944	4.38	2.059	4.796	4.723	1.894	3.228	7.097	2.763
v ₂	4.288	1.901	1.861	2.752	2.646	4.38	1.336	5.686	5.613	0.546	3.233	7.823	3.653
v_3							_						
v_4	5.017	3.76	3.724	3.639	3.533	6.235	3.195	6.385	6.312	2.405	5.092	8.686	4.352
v_5	3.276	0.889	0.848	1.74	1.634	6.162	0.754	4.922	4.759	1.682	1.593	7.653	3.841
v_6	5.43	7.818	8.181	8.323	7.633	8.383	8.684	4.746	4.17	9.583	9.105	9.587	5.687
v_7	7.842	4.952	4.588	4.657	5.314	11.335	5.411	9.488	9.325	5.983	4.4	6.002	8.409
v_8	6.218	8.604	8.898	8.52	8.421	9.225	9.472	5.535	4.959	9.448	9.698	10.375	6.505
v_9	4.344	2.313	2.807	3.27	2.646	5.421	2.3	4.88	5.249	1.482	4.012	7.872	3.176
v_{10}	4.647	2.616	3.008	3.573	3.022	4.337	2.501	5.874	5.801	1.683	4.213	8.175	3.48
v_{11}	4.562	3.177	3.269	4.134	3.51	4.102	3.422	5.894	5.318	2.604	5.134	8.965	3.245
v_{12}	2.836	0.449	0.813	1.665	1.04	5.104	1.316	4.467	4.328	2.205	2.018	6.227	3.471
v_{13}	2.56	3.289	3.583	2.823	2.717	6.13	4.086	4.206	4.043	4.672	4.001	2.637	3.456
v_{14}	2.451	3.377	3.74	3.719	2.66	5.997	4.243	4.082	3.943	5.132	4.018	4.458	3.07
v_{15}	1.757	2.02	2.383	3.503	2.813	3.407	2.886	2.858	2.282	3.887	4.285	5.752	0.152
v_{16}	0.924	2.407	2.701	2.103	1.997	5.171	3.418	3.478	3.315	3.79	3.281	4.343	2.573
v ₁₇	5.148	3.891	3.855	3.77	3.664	6.366	3.248	5.825	6.443	2.43	5.223	8.919	4.122
v ₁₈	4.798	3.54	3.505	3.42	3.314	6.016	2.975	6.166	6.093	2.079	4.872	8.467	4.133
1.10			1										

v_{19}	5.451	3.064	3.651	3.915	3.809	6.937	2.499	7.087	7.014	1.709	4.132	8.986	5.054
v_{20}	0.753	1.998	2.194	1.816	1.71	4.323	2.697	2.399	2.236	3.283	2.994	4.511	1.828
v ₂₁	4.001	2.902	2.708	2.623	2.517	5.219	2.337	5.369	5.296	1.547	3.801	7.67	2.95
v ₂₂	5.228	3.197	3.794	3.709	3.53	4.918	3.258	5.764	6.134	2.44	4.97	8.858	4.422
	3.419	2.79	3.153	4.415	4.309	2.344	4.352	5.058	4.534	4.187	5.593	7.088	2.194
v ₂₃	4.032	1.971	1.657	2.861	2.236	5.616	1.15	5.663	5.343	0.332	2.862	7.423	3.391
v ₂₄	2.437		5.117				5.62			6.206			
v_{25}		4.823		4.739	4.633	6.891		5.933	5.357		5.917	6.595	4.196
v_{26}	0	2.388	2.751	2.893	2.203	4.454	3.254	2.539	2.4	4.143	3.675	5.048	1.758
v_{27}	2.388	0	0.364	1.216	0.591	5.933	0.867	4.018	3.879	1.756	1.569	5.778	3.022
v_{28}	2.751	0.364	0	1.462	0.885	6.227	1.284	4.312	4.173	2.343	1.205	6.072	3.316
v_{29}	2.893	1.216	1.462	0	0.106	5.849	1.718	3.934	3.795	2.607	1.738	5.312	2.943
v_{30}	2.203	0.591	0.885	0.106	0	5.743	1.612	3.828	3.689	2.501	1.632	5.206	2.837
v_{31}	4.454	5.933	6.227	5.849	5.743	0	6.14	5.468	4.892	5.962	7.245	8.618	3.245
v_{32}	3.254	0.867	1.284	1.718	1.612	6.14	0	4.815	4.676	1.191	2.029	6.575	3.819
v_{33}	2.539	4.018	4.312	3.934	3.828	5.468	4.815	0	0.576	5.789	5.321	6.694	2.216
v_{34}	2.4	3.879	4.173	3.795	3.689	4.892	4.676	0.576	0	5.626	5.158	6.531	2.143
v_{35}	4.143	1.756	2.343	2.607	2.501	5.962	1.191	5.789	5.626	0	2.6	7.161	3.163
v ₃₆	3.675	1.569	1.205	1.738	1.632	7.245	2.029	5.321	5.158	2.6	0	7.077	4.121
v ₃₇	5.048	5.778	6.072	5.312	5.206	8.618	6.575	6.694	6.531	7.161	7.077	0	5.616
v ₃₈	1.758	3.022	3.316	2.943	2.837	3.245	3.819	2.216	2.143	3.163	4.121	5.616	0
	1.989	3.064	3.358	2.985	2.879	3.772	3.861	2.743	2.67	3.407	4.163	5.658	0.637
v ₃₉	3.507	1.12	0.913	1.971	1.865	6.393	0.985	5.153	4.99	1.913	1.553	7.42	3.331
v ₄₀	1.393	1.12	2.187	1.408	1.302	4.963	2.69	3.039	2.876	3.276	2.586	3.886	2.289
v_{41}	_		11.539										
v_{42}	8.859	11.245		11.161	11.055	11.866	12.042	8.176	7.6	12.089	12.339	13.016	9.146
v_{43}	2.454	3.933	4.227	3.849	3.743	4.837	4.73	1.241	1.281	5.316	5.027	6.543	2.117
v_{44}	2.112	0.748	1.042	0.263	0.157	5.682	1.545	3.758	3.595	2.131	1.441	5.031	3.009
v_{45}	2.454	1.374	1.668	1.583	1.477	3.735	2.585	3.884	3.811	2.42	2.761	6.123	1.851
v_{46}	2.707	1.742	2.036	1.951	1.845	3.366	2.888	3.515	3.442	2.723	3.129	6.376	1.482
v_{47}	4.951	4.612	4.906	6.346	6.24	2.345	5.705	5.912	5.336	4.915	7.524	9.04	3.794
v_{48}	1.973	3.452	3.746	3.368	3.262	3.62	4.249	1.394	1.231	3.843	4.546	6.062	0.9
v_{49}	4.423	2.036	2.079	2.887	2.781	7.309	1.329	6.069	5.906	1.432	2.824	9.674	4.247
v_{50}	3.978	1.591	1.473	2.442	2.336	6.864	0.723	5.624	5.461	1.534	2.218	8.278	3.802
v_{51}	6.288	7.767	8.061	7.683	7.577	1.977	8.564	7.249	6.673	7.188	8.861	10.377	5.131
v_{52}	3.988	1.601	2.188	2.452	2.346	5.635	1.036	5.634	5.471	0.246	2.933	7.523	3.468
v_{53}	2.195	1.116	1.41	1.621	1.515	4.641	1.913	3.612	3.539	1.846	2.799	5.864	1.579
v_{54}	1.883	3.362	3.656	3.278	3.172	4.266	4.159	0.656	0.709	4.745	4.456	5.972	1.546
	4.325	2.738	3.032	2.947	2.841	5.543	2.956	5.693	5.62	2.791	4.125	7.994	3.66
v ₅₅	3.371	2.176	2.47	2.385	2.279	4.029	2.908	4.179	4.106	2.743	3.563	7.04	2.146
v_{56}													
v ₅₇	2.267	2.281	2.575	3.263	3.157	3.463	3.078	3.075	3.002	3.011	4.441	5.936	1.042
v_{58}	1.868	2.598	2.892	2.132	2.026	5.438	3.395	3.514	3.351	3.981	3.31	3.328	2.765
v_{59}	5.005	3.905	3.712	3.627	3.521	6.223	3.34	6.373	6.3	2.55	4.805	8.674	4.34
v_{60}	7.201	5.447	4.827	4.897	5.554	10.747	5.651	8.832	8.693	6.71	4.64	7.423	8.197
v ₆₁	2.739	0.804	1.404	1.319	1.213	4.02	1.907	4.169	4.096	2.825	2.497	6.408	2.136
v_{62}	2.796	1.162	1.456	1.371	1.265	4.348	1.38	4.214	4.705	1.215	2.549	6.465	2.181
v_{63}	2.523	0.254	0.548	1.106	0.727	5.528	1.051	4.288	4.125	2.218	1.753	6.177	2.466
v_{64}	2.705	0.318	0.682	1.534	0.909	5.079	1.185	4.336	4.197	2.074	1.887	6.096	3.34
v_{65}	7.08	9.466	9.831	9.382	9.283	10.033	10.334	6.397	5.821	10.31	10.56	11.237	7.367
v_{66}	1.671	1.181	1.475	1.286	1.18	5.215	1.978	3.317	3.154	2.564	2.464	4.81	2.473
v_{67}	4.116	6.502	6.796	6.418	6.312	7.55	7.299	3.861	3.285	7.773	7.596	8.273	4.83
v_{68}	3.786	6.172	6.466	6.088	5.982	8.273	6.969	4.583	4.007	7.555	7.266	7.943	5.553
v_{69}	4.601	2.711	3.626	3.223	3.117	5.819	2.474	5.969	5.896	1.684	4.371	8.27	3.936
v_{70}	3.133	1.456	1.146	1.423	1.317	6.703	1.97	4.779	4.43	2.541	0.861	7.019	3.935
v ₇₁	2.968	1.581	1.141	1.079	0.973	6.538	1.965	4.614	4.451	2.536	0.838	7.014	3.865
v ₇₂	3.391	1.285	0.921	1.429	1.323	6.961	1.745	5.037	4.874	2.316	0.349	6.794	4.215
1.12	5.591	4.944	5.238	6.986	6.88	2.985	6.037	6.552	5.976	5.247	8.164	9.68	4.434
V72						3.669	8.551	7.236	6.66	6.945	8.848	10.364	5.118
v ₇₃	6.275	7 754	8 048	7 67	7 554								
v_{74}	6.275	7.754	8.048	7.67 2.754	7.564					_			_
v ₇₄ v ₇₅	4.29	1.903	2.49	2.754	2.648	5.358	1.528	5.224	5.151	2.114	3.235	7.475	3.191
v ₇₄ v ₇₅ v ₇₆	4.29 3.288	1.903 1.493	2.49 2.08	2.754 2.344	2.648 2.238	5.358 4.84	1.528 1.118	5.224 4.706	5.151 4.633	2.114 0.695	3.235 2.825	7.475 6.957	3.191 2.673
v ₇₄ v ₇₅	4.29	1.903	2.49	2.754	2.648	5.358	1.528	5.224	5.151	2.114	3.235	7.475	3.191

v_{79}	5.42	2.577	4.127	4.042	3.936	6.638	3.756	6.788	6.715	2.966	5.22	9.089	4.755
v_{80}	4.095	1.708	2.295	2.559	2.453	6.209	1.333	5.741	5.578	1.956	3.04	7.63	3.919
v ₈₁	4.552	2.272	1.908	2.817	2.711	8.122	2.346	6.198	6.035	3.303	1.797	7.664	4.483
v_{82}	0.508	1.987	2.281	1.903	1.797	3.97	2.784	2.045	1.882	3.37	3.081	4.597	1.25
v_{83}	5.707	5.368	5.662	7.102	6.996	3.101	6.461	6.668	6.092	5.671	8.28	9.796	4.55
v ₈₄	4.567	3.286	3.274	3.189	3.083	5.785	2.721	5.935	5.862	1.931	4.618	8.236	3.902
v_{85}	4.016	2.429	2.723	2.638	2.532	5.234	2.352	5.384	5.311	1.562	3.816	7.685	3.351
v_{86}	3.397	1.72	1.41	1.687	1.581	6.967	2.234	5.043	4.88	2.805	1.125	7.283	4.199
v_{87}	3.13	1.742	1.776	2.37	1.746	4.673	2.182	4.142	4.515	1.805	2.981	6.76	2.442
v_{88}	5.078	4.486	4.849	7.063	6.373	2.448	5.352	6.068	5.492	5.723	7.845	9.218	3.845
v ₈₉	4.111	3.257	3.62	6.096	5.406	1.481	4.123	5.101	4.525	4.494	6.878	8.251	2.878
v_{90}	3.371	1.31	0.996	2.2	1.575	5.518	0.679	5.002	4.863	1.511	2.201	6.762	2.649
v_{91}	3.011	1.294	1.657	2.251	1.627	5.299	2.16	4.07	4.382	2.477	2.862	6.641	2.43
v ₉₂	2.216	0.692	1.055	0.682	0.399	5.762	1.558	3.847	3.708	2.447	1.465	5.587	2.851
v ₉₃	1.234	2.16	2.523	2.502	1.66	4.78	3.026	2.865	2.726	3.915	2.964	4.313	1.853
v ₉₄	4.852	2.791	2.477	3.681	3.056	6.436	1.97	6.483	6.344	1.082	3.682	8.243	4.245
	5.115	3.054	2.74	4.435	3.319	7.45	2.091	6.746	6.607	2.497	4.178	10.044	5.75
v ₉₅	4.532	2.702	2.082	2.228	2.335	8.078	1.488	6.163	6.024	3.107	1.971	7.837	5.172
v ₉₆	0.547	2.702	3.298	3.44	2.75	5.001	3.801	3.086	2.947	4.69	4.222	5.595	2.305
v ₉₇	5.825	4.971	5.334	7.81	7.12	3.195	5.837	6.815	6.239	6.208	8.592	9.965	4.592
v ₉₈	3.873	1.812	1.192	1.772	1.879	7.419	1.56	5.504	5.365	2.752	1.515	7.411	4.592
v ₉₉	4.565	2.313	1.693	1.768	1.875	7.419	2.06	5.703	5.564	3.252	1.513	7.377	4.712
v ₁₀₀	5.399	3.012	3.599	3.863	3.757	7.018	2.447	7.045	6.882	1.765	4.344	8.934	5.335
v ₁₀₁	4.563	2.176	2.763	3.027	2.921	6.382	1.611	6.209	6.046	0.896	3.508	8.098	4.499
v_{102}													
v_{103}	4.841	2.454	3.041	3.305	3.199	6.66	1.889	6.487	6.324	1.207	3.786	8.376	4.777
v_{104}	5.693	3.306	3.893	4.157	4.051	7.512	2.741	7.339	7.176	2.059	4.638	9.228	5.629
v_{105}	2.116	1.325	1.619	0.84	0.734	5.686	2.122	3.762	3.599	2.708	2.018	4.602	3.012
v_{106}	2.232	0.486	0.78	0.611	0.505	5.802	1.283	3.878	3.715	1.869	1.789	5.767	3.034
v_{107}	2.344	1.146	1.677	0.506	0.4	5.965	1.788	4.041	3.878	2.374	1.223	5.314	3.292
v_{108}	2.695	1.497	1.326	0.857	0.751	6.316	2.192	4.392	4.229	2.725	0.872	5.665	3.643
v_{109}	2.436	1.619	1.586	1.95	0.492	6.057	1.88	4.133	3.97	2.466	1.132	5.071	3.384
v_{110}	4.754	3.146	3.509	5.663	4.973	2.124	4.012	5.744	5.168	4.383	4.714	7.912	2.192
v_{111}	2.437	4.825	5.188	5.33	4.64	6.891	5.691	5.933	5.357	6.58	6.112	6.595	4.195
v_{112}	5.118	3.087	3.114	4.318	3.693	4.808	2.607	5.654	6.024	1.789	4.319	8.748	3.951
v_{113}	4.179	2.426	1.806	1.875	1.982	7.725	2.629	5.81	5.671	3.688	1.618	5.487	4.819
v_{114}	8.32	6.566	5.946	6.016	6.123	11.866	6.77	9.951	9.812	7.829	5.759	8.542	8.96
v_{115}	0.775	3.163	3.526	3.668	2.978	5.229	4.029	3.314	3.175	4.918	4.45	4.859	2.533
v_{116}	5.519	3.458	3.144	4.348	3.723	5.765	2.637	6.611	6.981	1.819	4.349	8.91	4.908
v_{117}	4.437	2.376	2.062	3.266	2.641	5.189	1.555	5.266	5.639	0.737	3.267	7.828	3.566
v_{118}	0.764	3.269	3.632	3.774	3.084	4.147	4.135	1.12	0.981	5.024	4.556	5.929	1.451
v_{119}	2.148	3.075	3.438	3.179	2.102	5.694	3.941	3.779	3.64	4.83	3.46	3.356	2.768
v_{120}	5.989	5.839	7.183	7.252	5.104	8.459	6.705	6.544	6.405	7.594	6.995	2.634	5.532
v_{121}	9.228	10.154	11.497	11.566	9.419	12.774	11.02	10.859	10.72	11.909	11.309	4.231	9.847
v_{122}	2.48	3.96	4.323	4.465	3.775	4.703	4.826	1.067	0.491	5.903	5.247	6.62	2.007
v_{123}	1.662	1.559	1.922	3.043	2.353	4.354	2.425	3.293	3.229	2.846	3.825	5.292	1.277
v_{124}	3.22	1.503	1.498	2.702	2.077	5.508	1.181	4.279	4.591	0.922	2.703	6.85	2.639
v_{125}	2.575	3.501	3.864	3.843	2.784	6.121	4.367	4.206	4.067	5.256	4.142	4.582	3.194
v_{126}	2.789	3.585	3.948	4.774	4.084	1.689	4.451	3.779	3.203	5.452	5.556	6.929	1.556
v_{127}	3.006	1.289	1.652	2.246	1.622	4.614	2.058	4.129	4.502	1.792	2.857	6.636	2.429
v_{128}	4.172	2.56	2.246	3.45	2.825	4.632	1.739	4.708	5.081	0.921	3.451	7.802	3.008
v_{129}	3.617	1.787	1.167	1.313	1.42	7.163	1.747	5.248	5.109	2.939	1.056	6.922	4.257
NODES	v ₃₉	v_{40}	v_{41}	v_{42}	v_{43}	v_{44}	v_{45}	v_{46}	v_{47}	v_{48}	v_{49}	v_{50}	v_{51}
v_0	6.188	4.004	5.774	15.446	8.148	4.629	5.47	5.741	8.588	7.652	5.148	5.032	11.991
v_1	2.406	1.626	2.202	11.181	3.883	0.837	0.884	1.252	4.122	2.89	2.56	2.115	7.121
v_2	1.982	2.893	3.442	11.696	4.711	2.101	0.978	1.281	3.941	3.479	2.406	2.78	6.48
v_3	2.872	2.321	4.168	12.586	5.601	2.803	1.868	2.171	5.017	4.369	1.626	1.982	7.37
v_4	3.571	4.18	5.133	13.285	6.3	3.69	2.567	2.87	4.409	5.068	3.485	3.841	6.682
v_5	2.694	0.548	3.156	12.135	4.837	1.791	1.976	2.561	5.431	4.341	1.058	0.943	7.996
v_6	6.214	8.937	6.823	3.43	5.049	7.542	7.355	6.986	8.88	4.999	9.853	9.408	10.217
<u> </u>						1							<u> </u>

		1	1			1	ı			Т	1		
v_7	8.451	4.742	6.678	16.3	9.335	4.921	6.039	6.623	11.832	8.907	6.996	5.6	13.169
v_8	6.9	9.653	7.611	3.679	5.821	8.279	7.776	7.774	9.807	5.798	10.163	10.196	11.005
v_9	2.736	3.325	4.319	12.223	4.795	2.803	1.753	2.056	3.594	4.254	2.844	2.946	5.867
v_{10}	3.04	3.526	4.622	12.527	5.098	3.106	2.056	2.359	3.898	4.281	3.045	3.147	6.171
v_{11}	2.805	4.447	5.31	12.292	5.845	3.667	2.617	2.84	3.663	4.046	3.966	4.068	7.614
v_{12}	3.513	1.569	2.342	11.694	4.382	1.197	1.823	2.191	5.061	3.901	2.485	2.04	8.216
v_{13}	3.548	4.338	1.408	10.721	4.121	2.542	3.737	3.85	6.712	3.625	4.848	4.733	7.964
v_{14}	3.112	4.496	1.351	8.751	3.997	2.503	3.577	3.852	6.494	3.516	5.412	4.967	7.831
v_{15}	0.485	3.139	2.097	9.256	2.227	2.49	1.659	1.29	3.904	1.019	4.055	3.61	5.241
v_{16}	2.287	3.456	0.688	9.021	3.171	1.84	2.752	2.967	5.668	2.897	4.587	4.142	7.005
v_{17}	3.702	4.311	13.169	13.4	6.431	3.821	2.698	3.001	5.847	5.199	3.616	3.972	8.2
v_{18}	3.332	3.96	4.812	13.066	6.081	3.471	2.348	2.651	5.497	4.849	3.265	3.621	7.85
v_{19}	4.273	3.484	5.331	13.739	7.002	3.966	3.268	3.572	6.418	5.77	2.789	3.066	8.771
v_{20}	1.92	2.949	1.003	9.611	2.314	1.722	2.109	2.317	4.905	1.818	4.033	3.344	6.301
v_{21}	2.555	3.322	4.015	11.997	5.284	2.601	1.551	1.854	4.7	4.052	2.627	3.001	7.053
v_{22}	3.621	4.283	5.203	13.355	6.37	3.687	2.637	2.94	4.479	4.862	3.802	3.904	6.752
v_{23}	1.413	4.255	3.433	11.455	4.47	4.152	1.8	1.431	2.264	3.262	5.169	5.076	4.178
v_{24}	3.635	2.175	4.081	12.317	5.578	2.393	2.648	2.655	5.177	4.853	1.539	1.796	7.854
v ₂₅	4.426	5.872	3.83	6.422	4.906	4.498	5.032	5.144	7.497	4.41	6.382	6.267	8.725
v_{26}	1.989	3.507	1.393	8.859	2.454	2.112	2.454	2.707	4.951	1.973	4.423	3.978	6.288
v ₂₇	3.064	1.12	1.893	11.245	3.933	0.748	1.374	1.742	4.612	3.452	2.036	1.591	7.767
v ₂₈	3.358	0.913	2.187	11.539	4.227	1.042	1.668	2.036	4.906	3.746	2.079	1.473	8.061
v ₂₉	2.985	1.971	1.408	11.161	3.849	0.263	1.583	1.951	6.346	3.368	2.887	2.442	7.683
	2.879	1.865	1.302	11.055	3.743	0.157	1.477	1.845	6.24	3.262	2.781	2.336	7.577
v ₃₀	3.772	6.393	4.963	11.866	4.837	5.682	3.735	3.366	2.345	3.62	7.309	6.864	1.977
v ₃₁	3.861	0.985	2.69	12.042	4.73	1.545	2.585	2.888	5.705	4.249	1.329	0.723	8.564
v ₃₂	2.743	5.153	3.039	8.176	1.241	3.758	3.884	3.515	5.912	1.394	6.069	5.624	7.249
v ₃₃	2.67	4.99	2.876	7.6	1.241	3.595		3.442		1.231	5.906		6.673
v ₃₄	3.407	1.913	3.276	12.089	5.316	2.131	3.811	2.723	5.336 4.915	3.843	1.432	5.461 1.534	7.188
v ₃₅	4.163	<u> </u>	2.586		5.027	1.441		3.129			2.824	2.218	8.861
v ₃₆		7.42		12.339		5.031	2.761		7.524 9.04	6.062			
v_{37}	5.658		3.886	13.016	6.543		6.123	6.376		6.062	9.674	8.278	10.377
v_{38}	0.637	3.331	2.289	9.146	2.117	3.009	1.851	1.482	3.794	0.9	4.247	3.802	5.131
v_{39}	0	2.925	2.381	9.541	2.512	3.101	1.07	0.701	2.819	1.295	3.841	3.396	5.092
v_{40}	2.925	0	2.942	12.294	4.982	1.797	2.423	2.791	5.661	4.501	1.779	1.173	8.816
v_{41}	2.381	2.942	0	10.2	2.887	1.145	2.468	2.721	5.384	2.406	4.303	3.858	6.721
v_{42}	9.541	12.294	10.2	0 470	8.479	10.971	10.784	10.415	12.309	8.429	13.282	12.837	13.646
v_{43}	2.512	4.982	2.887	8.479	0	3.673	3.799	3.43	5.324	1.309	5.984	5.539	6.661
v_{44}	3.101	1.797	1.145	10.971	3.673	0	1.634	2.002	6.104	3.126	2.938	2.493	7.441
v_{45}	1.07	2.423	2.468	10.784	3.799	1.634	0	0.369	3.239	2.171	3.053	2.948	5.512
v_{46}	0.701	2.791	2.721	10.415	3.43	2.002	0.369	0	2.87	1.925	3.421	2.949	5.143
v_{47}	2.819	5.661	5.384	12.309	5.324	6.104	3.239	2.87	0	4.202	6.268	5.796	4.264
v_{48}	1.295	4.501	2.406	8.429	1.309	3.126	2.171	1.925	4.202	0	5.488	5.043	5.429
v_{49}	3.841	1.779	4.303	13.282	5.984	2.938	3.053	3.421	6.268	5.488	0	0.518	8.268
v_{50}	3.396	1.173	3.858	12.837	5.539	2.493	2.948	2.949	5.796	5.043	0.518	0	9.211
v_{51}	5.092	8.816	6.721	13.646	6.661	7.441	5.512	5.143	4.264	5.429	8.268	9.211	0
v_{52}	2.97	2.021	3.868	12.847	5.549	2.503	1.901	2.269	5.116	4.184	1.326	1.682	7.469
v_{53}	1.671	2.165	2.209	10.512	3.527	1.672	0.642	1.011	3.858	2.295	2.675	2.56	6.475
v_{54}	1.941	4.411	2.316	7.907	0.584	3.036	2.475	2.571	4.848	0.724	4.921	4.806	6.1
v_{55}	2.879	3.79	4.339	12.593	5.608	2.998	1.875	2.178	5.024	4.376	3.773	3.68	7.377
v_{56}	1.365	3.742	3.385	11.079	4.094	2.436	0.683	0.766	3.51	2.862	3.725	3.632	5.863
v_{57}	0.431	3.33	2.281	9.975	2.99	3	1.185	0.816	2.944	1.758	3.84	3.725	5.297
v_{58}	2.857	3.647	0.717	10.03	3.429	1.869	3.046	3.159	6.02	2.933	4.157	4.042	7.272
v_{59}	3.559	4.325	5.019	13.273	6.288	3.678	2.555	2.858	5.704	5.056	3.63	3.986	8.057
v_{60}	7.883	4.812	6.306	16.059	8.747	5.437	6.495	6.863	11.244	8.46	7.066	5.84	12.799
v_{61}	1.355	2.159	2.753	11.069	4.084	1.37	0.285	0.654	3.501	2.852	2.669	2.554	5.854
v_{62}	1.683	2.214	2.81	11.114	4.129	1.422	0.614	0.982	3.829	2.897	2.197	2.104	6.182
v_{63}	1.303	2.522	2.522	11.501	4.203	1.157	1.342	1.613	4.46	3.588	2.498	1.698	7.362
v_{64}	3.382	1.438	2.211	10.95	4.251	1.066	0.893	2.06	4.93	2.733	2.354	1.909	8.085
v_{65}	7.762	10.515	8.421	3.967	6.683	9.141	8.638	8.392	10.669	6.66	11.025	10.91	11.921
v_{66}	2.565	2.23	1.155	10.53	3.232	1.206	1.675	2.867	5.823	2.736	2.74	2.625	7.075
		1	1			i .	i .		1		1		

vist 5.225 7.525 7.527 7.527 8.584 8.535 8.137 7.701 1.00 7.701 1.00 3.150 3.150 3.150 3.150 3.150 3.150 3.150 3.150 3.150 3.050 2.701 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.050 3.05				ı			1	ı	ı			1		
	v_{67}													
	v_{68}													
	v_{69}	3.155	3.459	4.615	12.869	5.884	3.274	2.151	2.454	5.3	4.652	2.764	3.12	7.653
	v_{70}	4.027	1.494	2.449	11.992	4.694	1.304	2.285	2.556	7.285	4.198	2.275	2.159	
	v_{71}	3.957	1.489	2.001	11.827	4.529	0.856	2.41	2.681	7.12	4.033	2.27	2.154	8.372
	v_{72}	4.307	1.269	2.351	12.25	4.952	1.206	2.372	2.643	7.543	4.456	2.05	1.934	8.795
cpt 2.69 3.62 3.82 1.214 5.19 2.82 4.839 3.90 2.44 2.92 7.79 cpt 3.67 2.933 4.101 1.308 6.62 2.700 2.601 2.909 5.516 3.290 2.371 2.135 3.156 vrg 1.356 2.233 4.101 1.308 3.670 1.272 2.601 2.979 3.610 2.717 2.511 2.717 2.511 2.710 2.511 2.717 2.510 4.100	v_{73}	3.151	5.993	6.024	12.949	5.964	6.744	3.571	3.202	0.712	4.732	6.327	6.683	4.819
Prof. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	v_{74}	4.849	8.803	6.708	13.633	6.648	7.428	5.269	4.9	3.135	5.416	9.131	8.381	5.503
	v_{75}	2.693	2.362	3.82	12.124	5.139	2.805	1.624	1.992	4.839	3.907	2.444	2.252	7.192
FYC J.366 L.266 L.266 J.3784 L.267 L.268 L.278 L.278 L.278 L.277 L.277 <th< td=""><td>v_{76}</td><td>2.175</td><td>1.952</td><td>3.302</td><td>11.606</td><td>4.621</td><td>2.395</td><td>1.106</td><td>1.474</td><td>4.321</td><td>3.389</td><td>1.677</td><td>2.033</td><td>6.674</td></th<>	v_{76}	2.175	1.952	3.302	11.606	4.621	2.395	1.106	1.474	4.321	3.389	1.677	2.033	6.674
cyg 3.974 4.741 5.344 3.188 6.738 4.933 2.975 3.273 6.199 5.717 4.946 4.242 8.72 vgg 1.367 3.739 13.11 6.113 2.994 3.359 3.63 6.477 5.617 2.506 2.11 9.905 vgg 1.645 3.336 0.941 9.08 1.06 1.661 2.195 2.275 4.502 1.461 3.367 4.317 2.337 4.331 5.284 vga 1.575 6.417 3.337 4.031 1.2285 5.85 3.24 2.117 2.42 5.96 4.641 3.05 7.09 4.335 vga 1.317 3.337 4.331 1.228 5.99 2.680 1.560 1.809 4.610 3.311 3.011 3.327 3.02 3.02 3.02 3.031 3.136 4.136 4.291 4.002 3.232 3.011 3.030 4.131 4.22 5.233 4.22	v_{77}	3.67	2.293	4.101	13.08	3.65	2.736	2.601	2.969	5.816	5.286	2.375	2.183	8.169
No. 3.544 2.167 3.370 12.944 5.666 2.61 2.475 2.435 5.66 2.240 2.070 8.043 val 4.077 1.362 3.379 13.411 6.113 2.594 3.457 5.617 2.526 2.1 9.566 val 3.575 6.147 6.141 13.060 6.08 6.860 3.995 3.626 0.422 1.484 7.389 7.776 4.337 val 3.575 6.147 6.141 13.060 6.08 6.860 1.890 4.272 4.480 7.389 7.761 4.302 val 1.758 2.773 1.338 1.228 5.299 2.880 1.660 1.890 4.775 4.602 2.822 7.402 2.402 2.803 2.423 3.039 2.421 3.504 4.607 2.642 2.803 4.715 4.402 2.803 2.421 3.504 4.213 3.702 4.221 3.202 2.202 2.803 1.7	v_{78}	1.356	2.061	2.66	10.964	3.979	1.272	0.638	0.909	3.756	2.747	2.571	2.456	6.109
val 4.077 1.3622 3.739 1.3411 6.113 2.944 3.359 3.639 6.477 6.157 2.526 2.14 9.996 va2 1.645 3.0360 0.211 6.14 1.3060 6.08 1.96 2.275 4.552 1.464 3.540 3.431 5.804 va4 3.121 3.706 4.881 1.2830 5.89 2.540 1.560 4.611 3.01 3.137 7.107 va6 4.291 1.758 2.713 1.2256 4.988 1.698 1.509 4.715 4.607 2.898 7.609 va7 2.002 3.017 3.105 1.180 4.077 1.280 1.280 2.539 2.233 2.233 2.213 2.284 3.001 2.282 3.301 2.283 3.231 2.284 3.302 3.831 3.231 3.283 3.233 3.002 3.281 3.232 3.831 3.232 3.283 1.975 4.917 5.315 2	v_{79}	3.974	4.741	5.434	13.688	6.703	4.093	2.97	3.273	6.119	5.471	4.046	4.402	8.472
Seg 1.645 3.0364 0.944 9.08 1.661 2.196 1.621 2.275 3.575 4.447 3.147 4.04 1.3065 6.08 3.085 3.262 3.222 4.384 3.011 3.367 7.010 v85 2.57 3.337 4.08 1.2835 5.85 3.24 2.117 2.42 5.266 4.618 3.011 3.367 7.010 v85 2.57 1.337 4.08 1.288 1.566 1.668 2.89 2.759 4.067 4.087 2.759 4.08 2.227 7.09 4.02 2.399 2.000 v87 2.000 3.017 3.105 1.449 4.07 1.003 1.015 1.188 1.188 3.243 3.011 2.684 4.241 2.680 1.117 1.000 2.000 2.000 3.275 1.101 4.243 2.501 2.267 2.900 3.29 3.81 1.000 4.235 2.202 7.000 2.202 2.000 <td>v_{80}</td> <td>3.544</td> <td>2.167</td> <td>3.975</td> <td>12.954</td> <td>5.656</td> <td>2.61</td> <td>2.475</td> <td>2.843</td> <td>5.69</td> <td>5.16</td> <td>2.249</td> <td>2.057</td> <td>8.043</td>	v_{80}	3.544	2.167	3.975	12.954	5.656	2.61	2.475	2.843	5.69	5.16	2.249	2.057	8.043
vsst 3.575 6.417 6.144 1.2065 6.08 6.85 3.991 3.626 0.822 4.848 7.399 7.107 4.935 vsst 2.57 3.337 4.03 12.284 5.299 2.680 1.566 1.869 4.151 4.07 2.642 2.998 7.068 vss 4.291 1.758 2.713 12.256 4.958 1.568 2.549 2.82 7.549 4.462 2.539 2.423 8.01 vss 4.902 3.017 3.05 11.489 4.037 6.826 3.996 3.127 6.759 4.462 2.539 2.423 8.01 vss 1.863 4.357 6.055 1.439 4.075 4.22 6.568 6.076 4.282 vss 1.883 1.357 4.917 1.732 1.906 2.89 1.513 4.317 4.937 4.317 2.928 1.839 1.849 2.928 1.839 1.849 1.829 1.849	v_{81}	4.077	1.362	3.739	13.411	6.113	2.594	3.359	3.63	6.477	5.617	2.526	2.1	9.956
θate 1.21 3.706 4.581 12.83 1.585 3.24 2.17 2.25 6.366 4.618 3.01 3.367 7.05 vas 2.257 3.373 4.03 12.284 5.299 1.560 1.560 2.750 4.067 2.539 2.23 8.08 var 2.002 3.017 3.105 1.1489 4.057 1.003 1.015 1.318 4.188 3.243 3.016 4.884 3.243 3.016 4.887 4.188 3.243 3.016 4.887 4.188 3.243 3.016 4.887 4.188 3.243 3.016 4.887 4.188 3.23 3.040 3.283 1.560 4.887 3.233 1.834 4.984 4.989 4.287 4.188 3.233 3.213 3.203 1.894 4.894 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233	v_{82}	1.645	3.036	0.941	9.08	1.96	1.661	2.195	2.275	4.552	1.464	3.546	3.431	5.804
ν ₈₀ 2.7 3.337 4.03 12.244 5.998 2.689 1.666 1.869 4.169 4.667 2.242 2.908 7.08 7.08 7.08 7.08 7.08 7.08 7.08 7.08 7.08 7.08 8.08 0.08 3.08 1.1489 4.057 1.03 1.118 4.188 3.23 3.011 2.02 4.82 1.08 8.08 3.00 5.60 1.566 1.1499 4.37 6.32 7.02 7.02 1.048 3.15 5.06 4.477 3.151 9.02 2.03 1.154 2.98 1.157 4.917 1.132 1.906 2.09 1.048 3.29 1.040 3.23 1.447 3.132 3.00 1.020 2.00 3.239 1.040 3.03 3.03 3.03 3.03 3.03 4.03 3.03 4.03 3.03 4.04 3.03 4.04 3.03 4.04 3.03 4.04 3.03 4.04 3.03 4.04 3.03 <td>v_{83}</td> <td>3.575</td> <td>6.417</td> <td>6.14</td> <td>13.065</td> <td>6.08</td> <td>6.86</td> <td>3.995</td> <td>3.626</td> <td>0.822</td> <td>4.848</td> <td>7.389</td> <td>7.107</td> <td>4.935</td>	v_{83}	3.575	6.417	6.14	13.065	6.08	6.86	3.995	3.626	0.822	4.848	7.389	7.107	4.935
eb 4.291 1.758 2.713 12.266 4.958 1.668 2.649 2.821 7.490 4.622 2.539 2.423 8.811 vay 2.002 5.003 5.563 12.246 5.437 1.038 3.127 0.104 6.437 0.628 3.028 3.138 4.188 3.243 5.011 2.616 4.547 5.315 0.2267 1.888 1.043 3.553 1.610 4.477 3.315 90 2.533 1.514 2.877 1.732 1.006 2.009 5.079 3.329 1.849 1.013 7.732 1.006 2.009 5.790 3.329 1.840 1.313 3.13 9.20 2.972 2.828 1.735 6.978 1.320 1.006 2.009 5.797 1.432 1.403 3.337 6.00 1.333 6.814 1.353 3.812 1.428 2.202 1.432 1.104 2.202 2.202 1.202 2.202 2.202 2.202 2.202	v_{84}	3.121	3.706	4.581	12.835	5.85	3.24	2.117	2.42	5.266	4.618	3.011	3.367	7.619
seg 4.991 1.758 2.178 12.26e 4.958 1.688 2.49e 2.22e 7.879 4.62e 2.23e 2.610 6.610 <t< td=""><td></td><td>2.57</td><td>3.337</td><td>4.03</td><td>12.284</td><td>5.299</td><td>2.689</td><td>1.566</td><td>1.869</td><td>4.715</td><td>4.067</td><td>2.642</td><td>2.998</td><td>7.068</td></t<>		2.57	3.337	4.03	12.284	5.299	2.689	1.566	1.869	4.715	4.067	2.642	2.998	7.068
sg 2 0.022 3.017 3.018 1.1489 4.057 6.028 1.318 4.148 3.243 3.118 2.684 6.641 sg 1.863 3.676 5.563 12.469 4.477 5.315 2.267 1.888 1.043 3.232 6.164 4.847 3.318 vg 1.863 4.874 2.1516 2.877 1.1575 4.917 1.782 1.906 2.020 5.070 3.329 1.848 7.352 vg 4.274 2.131 2.986 1.1036 3.852 1.878 1.878 1.90 4.86 3.329 1.828 7.756 7.82 vg 4.878 1.979 6.488 1.979 6.267 2.829 1.757 4.128 6.279 2.320 4.116 3.727 2.828 7.758 4.128 4.721 7.101 6.18 4.129 4.171 9.172 2.222 8.222 4.221 4.221 4.222 4.222 4.222 4.222 4.2		4.291	1.758	2.713	12.256	4.958	1.568	2.549	2.82	7.549	4.462	2.539	2.423	8.801
cs 3.092 5.605 5.535 1.2466 6.437 6.828 3.496 3.127 0.735 4.22 6.548 0.767 4.828 v ₈₀ 1.836 4.376 4.506 1.1.499 4.47 5.315 2.267 1.898 1.043 3.239 1.816 4.847 3.315 v ₁₀ 2.674 2.413 2.996 11.356 3.985 1.784 1.687 1.99 4.86 3.11 3.39 2.884 7.33 v ₂₀ 2.833 1.975 1.070 1.1074 3.782 0.556 1.489 1.430 1.323 1.918 6.287 3.281 2.217 2.832 3.737 6.06 3.77 4.184 1.237 6.06 6.14 4.92 2.50 4.185 2.514 6.18 2.261 2.616 8.27 4.18 4.72 7.01 6.18 2.514 2.617 2.618 3.214 1.336 3.628 3.213 3.52 4.18 7.017 4.18<		2.002	3.017	3.105	11.489	4.057	1.903	1.015	1.318	4.188	3.243	3.011	2.684	6.461
csp 1.863 4.376 4.596 11.499 4.47 5.315 2.267 1.898 1.043 3.253 1.616 4.847 3.319 cop 2.293 1.514 2.2877 11.375 4.917 1.732 1.906 2.209 5.079 3.239 1.849 1.403 7.332 cop 2.2833 1.975 1.710 11.074 3.762 0.556 1.423 1.791 6.299 3.281 2.777 2.822 7.596 cop 4.848 2.925 4.388 13.171 6.388 3.213 3.600 5.997 2.299 4.358 13.171 6.388 3.213 3.600 5.997 2.292 4.916 1.279 9.912 cop 5.792 2.542 4.201 1.3373 6.678 2.419 4.418 4.721 7.011 6.18 1.206 8.912 cop 5.5790 6.506 3.071 6.678 3.814 2.629 3.931 5.599 <th< td=""><td></td><td>3.092</td><td></td><td>5.563</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.076</td><td></td></th<>		3.092		5.563									6.076	
cp 2.893 1.514 2.877 11.575 4.917 1.732 1.906 2.209 5.079 3.329 1.849 1.403 7.325 vg1 2.674 2.413 2.986 11.556 3.985 1.784 1.687 1.99 4.86 3.11 3.329 2.884 7.13 vg2 2.893 1.975 1.701 1.1074 3.762 0.584 1.423 1.791 6.259 3.281 2.727 2.824 7.836 vg3 4.889 2.995 4.368 13.171 6.388 3.143 3.500 3.805 5.977 4.955 2.514 2.616 8.274 4.916 2.514 2.616 8.274 4.918 2.524 4.915 3.617 8.527 8.935 9.912 4.925 4.957 4.974 4.525 6.834 vg3 4.554 4.054 1.428 5.688 3.021 2.824 3.938 3.618 3.257 4.925 4.937 4.925 4.		1.863		4.596		4.47	5.315	2.267	1.898	1.043	3.253	5.166	4.847	3.315
vg1 2.674 2.413 2.986 1.1366 3.985 1.784 1.687 1.99 4.86 3.11 3.329 2.884 7.133 vg2 2.893 1.975 1.701 11.074 3.762 0.556 1.423 1.711 6.299 3.281 2.727 2.289 4.515 3.75 6.614 vg3 1.855 3.279 0.658 1.3171 6.388 3.213 3.502 3.805 5.997 4.925 2.514 2.616 8.277 vg6 5.724 1.536 3.337 6.601 3.476 4.418 4.721 7.011 6.18 1.226 1.77 9.284 vg6 5.214 1.536 3.637 6.601 3.981 2.472 4.418 4.721 7.013 6.816 0.827 vg7 2.536 4.054 1.341 8.568 3.001 2.569 3.981 3.249 6.98 4.938 2.722 4.731 4.742 9.252		2.893		2.877	11.575	4.917		1.906	2.209	5.079	3.329	1.849	1.403	
v_{92} 2.893 1.975 1.701 1.1074 3.762 0.556 1.423 1.791 6.259 3.281 2.727 2.282 7.596 v_{94} 4.849 2.995 4.558 1.0038 2.788 1.449 2.360 2.613 5.277 2.999 4.195 3.576 6.614 v_{96} 5.792 2.542 4.621 13.973 6.661 3.476 4.418 4.721 7.011 6.18 1.262 1.77 9.284 v_{96} 5.234 1.536 3.637 13.39 6.078 2.492 3.75 4.118 7.621 5.27 1.836 0.857 9.912 v_{97} 4.526 0.566 3.181 13.213 6.184 7.029 3.981 3.612 0.92 4.967 7.033 6.561 8.323 v_{99} 4.550 0.576 3.181 12.731 5.419 2.036 2.842 3.296 6.981 3.537 7.199 8.542		2.674	2.413	2.986	11.356	3.985	1.784	1.687	1.99	4.86	3.11	3.329	2.884	7.133
v_{93} 1.895 3.279 0.658 10.093 2.78 1.449 2.36 2.613 5.277 2.299 4.195 3.75 6.614 v_{94} 4.489 2.995 4.358 13.171 6.398 3.213 3.502 3.805 5.997 4.925 2.514 2.616 8.27 v_{95} 5.792 2.524 4.621 1.393 6.661 3.676 4.418 4.721 7.101 6.18 1.226 1.77 9.284 v_{97} 2.536 4.054 1.94 8.568 3.001 2.659 3.011 5.498 2.529 4.977 4.525 6.835 v_{98} 3.5777 6.09 6.311 1.219 5.419 2.036 2.86 3.228 6.098 4.938 2.738 1.749 9.239 v_{100} 4.55 0.576 3.181 1.273 5.418 2.032 3.331 3.792 6.599 5.137 2.792 1.815 9.422		2.893		1.701					1.791		3.281	2.727	2.282	7.596
\mathbf{v}_{94} 4.489 2.995 4.358 13.171 6.398 3.213 3.502 3.805 5.997 4.925 2.514 2.616 8.27 \mathbf{v}_{99} 5.722 2.422 4.621 13.93 6.607 3.476 4.118 7.011 6.18 1.226 1.77 9.284 \mathbf{v}_{99} 5.214 1.536 3.637 1.323 6.078 2.492 3.574 4.18 5.997 4.97 4.525 6.835 \mathbf{v}_{99} 4.55 0.576 3.181 12.231 6.184 7.029 3.981 3.612 0.92 4.997 7.033 6.61 0.999 4.55 0.576 0.181 0.929 0.959 0.137 0.238 0.929 0.920 0.999 0.5137 0.799 0.842 \mathbf{v}_{100} 0.423 0.323 0.620 0.384 0.842 0.927 0.920 0.927 0.927 0.927														
vp 5.792 2.542 4.621 13.973 6.661 3.476 4.418 4.721 7.011 6.18 1.226 1.77 9.284 vp 5.214 1.536 3.637 13.39 6.078 2.492 3.75 4.118 7.621 5.597 1.836 0.857 9.912 vp 2.356 4.054 1.921 8.568 3.001 2.659 3.001 3.254 5.498 2.52 4.977 4.525 6.835 vp 4.55 0.576 3.181 12.731 5.419 2.036 2.86 3.228 6.098 4.938 2.738 1.749 9.253 vp 4.554 1.076 3.177 12.93 5.618 2.032 3.66 4.149 6.375 5.569 2.892 2.993 vp 4.184 3.756 4.418 3.037 4.184 3.031 3.24 2.179 2.553 8.494 vp 4.343 3.242 5.274 4.28														
v96 5.214 1.536 3.637 13.39 6.078 2.492 3.75 4.118 7.621 5.597 1.836 0.857 9.912 v97 2.536 4.054 1.94 8.568 3.001 2.659 3.001 3.254 5.498 2.52 4.97 4.525 6.835 v98 3.577 6.09 6.31 13.213 6.149 2.036 2.86 3.228 6.098 4.938 2.738 1.749 9.253 v100 4.754 1.076 3.177 12.93 5.618 2.032 3.361 3.729 6.599 5.137 2.792 1.815 9.452 v101 4.554 3.432 5.279 14.268 6.96 3.944 3.846 4.149 6.375 5.269 2.892 2.994 8.648 v102 3.718 2.556 4.431 13.31 6.6124 3.078 2.714 3.017 5.833 5.215 1.910 2.257 7.812														
v97 2.536 4.054 1.94 8.568 3.001 2.659 3.001 3.254 5.498 2.52 4.97 4.525 6.835 v98 3.577 6.09 6.31 13.213 6.184 7.029 3.961 3.612 0.92 4.97 7.033 6.561 5.029 v99 4.55 0.576 3.181 12.731 5.419 2.036 2.86 3.228 6.098 4.938 2.738 1.749 9.253 v100 4.754 1.076 3.177 12.93 5.618 2.032 3.361 3.729 6.599 5.137 2.792 1.815 9.452 v101 4.554 3.432 5.279 14.268 6.96 3.914 3.846 4.149 6.375 5.269 2.892 2.994 8.648 v103 3.996 2.874 4.721 13.47 6.208 3.441 4.147 6.933 6.345 3.031 3.375 7.52 v104														
v98 3.577 6.09 6.31 13.213 6.184 7.029 3.981 3.612 0.92 4.967 7.033 6.561 5.029 v99 4.55 0.576 3.181 12.731 5.419 2.036 2.86 3.228 6.098 4.988 2.738 1.749 9.253 v100 4.754 1.076 3.177 12.93 5.618 2.032 3.361 3.729 6.599 5.137 2.792 1.815 9.452 v101 4.554 3.432 5.279 14.268 6.96 3.914 3.846 4.149 6.375 5.269 2.892 2.994 8.648 v102 3.718 2.566 4.431 13.432 6.124 3.078 2.714 3.017 5.863 5.215 1.901 2.257 7.812 v103 3.914 4.848 3.726 6.573 14.562 7.254 4.208 3.844 4.417 6.933 6.341 3.311 3.279 2.045				-										
v_{99} 4.55 0.576 3.181 12.731 5.419 2.036 2.86 3.228 6.098 4.938 2.738 1.749 9.253 v_{100} 4.754 1.076 3.177 12.93 5.618 2.032 3.361 3.729 6.599 5.137 2.792 1.815 9.462 v_{101} 4.554 3.342 5.279 14.268 6.96 3.914 3.846 4.149 6.375 5.269 2.892 2.994 8.648 v_{103} 3.996 2.874 4.721 13.71 6.402 3.366 2.992 3.295 6.141 5.493 2.179 2.535 8.494 v_{104} 4.848 3.726 5.573 14.562 7.254 4.208 3.441 4.147 6.993 6.345 3.31 3.387 9.366 v_{105} 3.162 1.335 2.112 1.1091 3.793 0.662														
v_{100} 4.754 1.076 3.177 12.93 5.618 2.032 3.361 3.729 6.599 5.137 2.792 1.815 9.482 v_{101} 4.554 3.342 5.279 14.268 6.96 3.914 3.846 4.149 6.375 5.269 2.892 2.994 8.648 v_{102} 3.718 2.566 4.443 13.432 6.124 3.078 2.114 3.017 5.863 5.215 1.901 2.257 7.812 v_{104} 4.848 3.726 5.573 14.562 7.254 4.208 3.844 4.147 6.993 6.345 3.031 3.387 9.366 v_{106} 3.104 2.374 0.161 1.0975 3.677 0.577 3.293 3.466 6.384 3.297 2.048 2.769 7.52 v_{106} 3.136 2.267 1.426 3.54 3.26 2.248														
v_{101} 4.554 3.432 5.279 14.268 6.96 3.914 3.846 4.149 6.375 5.269 2.892 2.994 8.688 v_{102} 3.718 2.596 4.443 13.32 6.124 3.078 2.714 3.017 5.863 5.215 1.901 2.257 7.812 v_{103} 3.996 2.874 4.721 13.71 6.402 3.356 2.992 3.295 6.141 5.493 2.199 2.535 8.494 v_{104} 4.848 3.726 5.573 14.562 7.567 0.577 3.293 3.406 6.848 3.297 2.045 1.93 7.636 v_{105} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.848 3.297 2.045 1.93 7.636 v_{106} 3.752 1.165 3.966 0.283 1.821 2.992														
v_{102} 3.718 2.596 4.443 13.432 6.124 3.078 2.714 3.017 5.863 5.215 1.901 2.257 7.812 v_{103} 3.996 2.874 4.721 13.71 6.402 3.366 2.992 3.295 6.141 5.493 2.179 2.535 8.494 v_{104} 4.848 3.726 5.573 14.562 7.254 4.208 3.844 4.147 6.993 6.345 3.031 3.387 9.346 v_{105} 3.173 1.562 7.254 4.208 3.844 4.147 6.993 6.345 3.031 3.387 9.346 v_{106} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.384 3.297 2.045 1.93 7.636 v_{107} 3.384 2.067 1.428 11.254 3.956 0.283 1.821 2.092 6.547 3.46 2.848 2.732 7.799				-								-		
v_{103} 3.996 2.874 4.721 13.71 6.402 3.356 2.992 3.295 6.141 5.493 2.179 2.535 8.494 v_{104} 4.848 3.726 5.573 14.562 7.254 4.208 3.844 4.147 6.993 6.345 3.031 3.387 9.346 v_{105} 3.104 2.374 0.716 10.975 3.677 0.577 3.293 3.406 6.268 3.181 2.884 2.769 7.52 v_{106} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.384 3.297 2.045 1.93 7.636 v_{107} 3.884 2.067 1.428 11.254 3.956 0.283 1.821 2.092 6.547 3.46 2.848 2.732 7.793 v_{110} 3.476 2.513 1.52 11.367 4.048 0.375 1.913 3.799 6.66 3.552 3.023 2.998														
v_{104} 4.848 3.726 5.573 14.562 7.254 4.208 3.844 4.147 6.993 6.345 3.031 3.387 9.346 v_{105} 3.104 2.374 0.716 10.975 3.677 0.577 3.293 3.406 6.268 3.181 2.844 2.769 7.52 v_{106} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.384 3.297 2.045 1.93 7.636 v_{107} 3.384 2.067 1.428 11.254 3.956 0.283 1.811 2.092 6.547 3.46 2.848 2.732 7.799 v_{108} 3.755 1.761 1.779 11.605 4.307 0.634 2.172 2.443 6.898 3.811 2.497 2.381 8.15 v_{100} 3.476 2.513 1.52 11.367 4.048 0.375 1.918 3.928 5.919 v_{110} 1.752														
v_{106} 3.104 2.374 0.716 10.975 3.677 0.577 3.293 3.406 6.268 3.181 2.884 2.769 7.52 v_{106} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.384 3.297 2.045 1.93 7.636 v_{107} 3.384 2.067 1.428 11.254 3.956 0.283 1.821 2.092 6.547 3.46 2.848 2.732 7.799 v_{108} 3.735 1.716 1.779 11.605 4.307 0.634 2.172 2.443 6.898 3.811 2.497 2.381 8.15 v_{109} 3.476 2.513 1.52 11.367 4.048 0.375 1.913 3.799 6.66 3.552 3.023 2.908 7.912 v_{110} 1.52 4.265 4.257 12.142 5.134 4.977 2.156 1.787 1.685 3.896 5.208 4.736														
v_{106} 3.126 1.535 2.112 11.091 3.793 0.662 1.155 1.426 6.384 3.297 2.045 1.93 7.636 v_{107} 3.384 2.067 1.428 11.254 3.956 0.283 1.821 2.092 6.547 3.46 2.848 2.732 7.799 v_{108} 3.735 1.716 1.779 11.605 4.307 0.634 2.172 2.443 6.898 3.811 2.497 2.381 8.15 v_{109} 3.476 2.513 1.52 11.367 4.048 0.375 1.913 3.799 6.66 3.552 3.023 2.908 7.912 v_{110} 1.752 4.265 4.257 12.142 5.113 4.977 2.156 1.787 1.685 3.896 5.208 4.736 3.958 v_{111} 4.426 5.944 3.83 6.422 4.891 4.514 7.388 4.41 6.86 6.415 8.725														
v_{107} 3.384 2.067 1.428 11.254 3.956 0.283 1.821 2.092 6.547 3.46 2.848 2.732 7.799 v_{108} 3.735 1.716 1.779 11.605 4.307 0.634 2.172 2.443 6.898 3.811 2.497 2.381 8.15 v_{109} 3.476 2.513 1.52 11.367 4.048 0.375 1.913 3.799 6.66 3.552 3.023 2.908 7.912 v_{110} 1.752 4.265 4.257 12.142 5.113 4.977 2.156 1.787 1.685 3.896 5.208 4.736 3.958 v_{111} 4.426 5.944 3.83 6.422 4.891 4.549 4.891 5.144 7.388 4.41 6.86 6.415 8.725 v_{112} 3.511 3.632 5.093 12.998 5.569 3.85 2.527 2.831 4.369 4.752 3.151 3.253 <														
v_{108} 3.735 1.716 1.779 11.605 4.307 0.634 2.172 2.443 6.898 3.811 2.497 2.381 8.15 v_{109} 3.476 2.513 1.52 11.367 4.048 0.375 1.913 3.799 6.66 3.552 3.023 2.908 7.912 v_{110} 1.752 4.265 4.257 12.142 5.113 4.977 2.156 1.787 1.685 3.896 5.208 4.736 3.958 v_{111} 4.426 5.944 3.83 6.422 4.891 4.549 4.891 5.144 7.388 4.41 6.86 6.415 8.725 v_{112} 3.511 3.632 5.093 12.998 5.569 3.85 2.527 2.83 4.369 4.752 3.151 3.253 6.642 v_{113} 4.861 1.959 3.284 13.037 5.725 2.139 3.473 3.841 8.222 5.244 4.213 2.818 <														
$\begin{array}{c} v_{109} \\ v_{110} \\ v_{111} \\ v_{110} \\$				-										
v_{110} 1.752 4.265 4.257 12.142 5.113 4.977 2.156 1.787 1.685 3.896 5.208 4.736 3.958 v_{111} 4.426 5.944 3.83 6.422 4.891 4.549 4.891 5.144 7.388 4.41 6.86 6.415 8.725 v_{112} 3.511 3.632 5.093 12.998 5.569 3.85 2.527 2.83 4.369 4.752 3.151 3.253 6.642 v_{113} 4.861 1.959 3.284 13.037 5.725 2.139 3.473 3.841 8.222 5.244 4.213 2.818 9.559 v_{114} 9.002 5.931 7.425 17.178 9.866 6.28 7.614 7.982 12.363 9.385 8.185 6.959 13.7 v_{115} 2.764 4.282 1.204 8.872 3.229 2.357 3.229 3.482 5.726 2.748 5.198 4.753														
v_{111} 4.426 5.944 3.83 6.422 4.891 4.549 4.891 5.144 7.388 4.41 6.86 6.415 8.725 v_{112} 3.511 3.632 5.093 12.998 5.569 3.85 2.527 2.83 4.369 4.752 3.151 3.253 6.642 v_{113} 4.861 1.959 3.284 13.037 5.725 2.139 3.473 3.841 8.222 5.244 4.213 2.818 9.559 v_{114} 9.002 5.931 7.425 17.178 9.866 6.28 7.614 7.982 12.363 9.385 8.185 6.959 13.7 v_{115} 2.764 4.282 1.204 8.872 3.229 2.357 3.229 3.482 5.726 2.748 5.198 4.753 7.063 v_{116} 4.468 3.662 5.025 13.955 6.526 3.88				-										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
v_{113} 4.861 1.959 3.284 13.037 5.725 2.139 3.473 3.841 8.222 5.244 4.213 2.818 9.559 v_{114} 9.002 5.931 7.425 17.178 9.866 6.28 7.614 7.982 12.363 9.385 8.185 6.959 13.7 v_{115} 2.764 4.282 1.204 8.872 3.229 2.357 3.229 3.482 5.726 2.748 5.198 4.753 7.063 v_{116} 4.468 3.662 5.025 13.955 6.526 3.88 3.484 3.787 5.326 5.709 3.181 3.283 7.599 v_{117} 3.126 2.58 3.943 12.613 5.181 2.798 2.139 2.442 4.75 4.367 2.099 2.201 7.023 v_{118} 1.978 4.388 2.274 8.179 1.035 2.993														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
v_{115} 2.764 4.282 1.204 8.872 3.229 2.357 3.229 3.482 5.726 2.748 5.198 4.753 7.063 v_{116} 4.468 3.662 5.025 13.955 6.526 3.88 3.484 3.787 5.326 5.709 3.181 3.283 7.599 v_{117} 3.126 2.58 3.943 12.613 5.181 2.798 2.139 2.442 4.75 4.367 2.099 2.201 7.023 v_{118} 1.978 4.388 2.274 8.179 1.035 2.993 3.119 2.75 4.644 0.63 5.304 4.859 5.981 v_{119} 2.81 4.295 0.8 11.007 3.694 1.945 3.275 3.528 6.191 3.213 5.11 4.665 7.528 v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
v_{116} 4.468 3.662 5.025 13.955 6.526 3.88 3.484 3.787 5.326 5.709 3.181 3.283 7.599 v_{117} 3.126 2.58 3.943 12.613 5.181 2.798 2.139 2.442 4.75 4.367 2.099 2.201 7.023 v_{118} 1.978 4.388 2.274 8.179 1.035 2.993 3.119 2.75 4.644 0.63 5.304 4.859 5.981 v_{119} 2.81 4.295 0.8 11.007 3.694 1.945 3.275 3.528 6.191 3.213 5.11 4.665 7.528 v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 10.293 v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509														
v_{117} 3.126 2.58 3.943 12.613 5.181 2.798 2.139 2.442 4.75 4.367 2.099 2.201 7.023 v_{118} 1.978 4.388 2.274 8.179 1.035 2.993 3.119 2.75 4.644 0.63 5.304 4.859 5.981 v_{119} 2.81 4.295 0.8 11.007 3.694 1.945 3.275 3.528 6.191 3.213 5.11 4.665 7.528 v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 10.293 v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509 14.608 v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55														
v_{118} 1.978 4.388 2.274 8.179 1.035 2.993 3.119 2.75 4.644 0.63 5.304 4.859 5.981 v_{119} 2.81 4.295 0.8 11.007 3.694 1.945 3.275 3.528 6.191 3.213 5.11 4.665 7.528 v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 10.293 v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509 14.608 v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55 6.537 v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149														
v_{119} 2.81 4.295 0.8 11.007 3.694 1.945 3.275 3.528 6.191 3.213 5.11 4.665 7.528 v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 10.293 v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509 14.608 v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55 6.537 v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149 6.188 v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021														
v_{120} 5.574 7.337 3.802 10.391 6.459 4.947 6.039 6.292 8.956 5.978 9.591 8.195 10.293 v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509 14.608 v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55 6.537 v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149 6.188 v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021 7.342 v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091														
v_{121} 9.889 11.651 8.117 17.247 10.774 9.262 10.354 10.607 13.271 10.293 13.905 12.509 14.608 v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55 6.537 v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149 6.188 v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021 7.342 v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091 7.955														
v_{122} 2.534 5.079 2.965 7.284 1.37 3.684 3.675 3.306 5.2 1.32 5.995 5.55 6.537 v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149 6.188 v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021 7.342 v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091 7.955				-										
v_{123} 1.163 2.678 1.637 10.203 3.208 2.357 0.556 0.669 3.683 1.957 3.594 3.149 6.188 v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021 7.342 v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091 7.955														
v_{124} 2.883 2.016 3.195 11.565 4.194 2.234 1.896 2.199 5.069 3.319 1.919 2.021 7.342 v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091 7.955				-										
v_{125} 3.236 4.62 1.475 9.107 4.121 2.627 3.701 3.954 6.618 3.64 5.536 5.091 7.955	v_{123}													
	v_{124}									_		_		
v_{126} 2.083 4.704 3.274 10.177 3.148 3.993 3.224 2.855 2.186 1.931 5.62 5.175 3.523	v_{125}													
	v_{126}	2.083	4.704	3.274	10.177	3.148	3.993	3.224	2.855	2.186	1.931	5.62	5.175	3.523

v_{127}	1.989	2.893	2.981	11.476	4.044	1.779	1.002	1.305	4.175	3.23	2.887	2.782	6.448
v_{128}	2.568	2.764	4.147	12.055	4.623	2.982	1.581	1.884	4.193	3.809	2.283	2.385	6.466
v_{129}	4.299	0.763	2.722	12.475	5.163	1.577	2.835	3.203	6.073	4.682	2.751	1.774	8.997
NODES	v_{52}	v_{53}	v_{54}	v_{55}	v_{56}	v_{57}	v_{58}	v_{59}	v_{60}	v_{61}	v_{62}	v_{63}	v_{64}
v_0	5.556	5.128	7.577	6.817	6.273	5.757	6.736	7.884	1.424	5.423	5.475	4.567	5.341
v_1	2.125	0.626	3.262	2.248	1.686	1.791	2.738	2.928	5.698	0.62	0.672	0.779	0.508
v_2	1.492	1.394	4.14	1.21	1.301	1.548	3.917	1.577	6.962	1.383	0.679	1.792	1.343
v_3	0.368	2.302	5.03	2.101	2.191	2.438	4.643	2.115	6.855	2.273	1.569	2.103	2.264
v_4	2.227	2.983	5.729	2.52	2.89	3.137	5.609	2.045	8.714	2.972	3.41	3.381	4.078
v_5	1.824	1.935	4.266	3.809	2.779	3.1	3.631	4.152	5.215	1.929	1.984	1.073	1.847
v_6	9.418	7.083	4.477	8.044	7.65	6.546	7.247	9.844	12.63	7.64	7.685	8.072	7.521
v_7	6.315	5.697	8.764	7.386	7.057	8.729	6.121	8.619	4.228	5.991	6.043	5.136	5.909
v_8	9.556	8.144	5.25	8.833	8.438	7.579	8.035	8.358	13.418	8.428	8.473	8.74	8.922
v_9	1.658	2.132	4.224	1.705	2.076	2.868	4.795	1.23	7.634	2.158	2.593	2.567	2.118
v_{10}	1.611	2.435	4.527	2.009	2.379	3.172	4.995	1.534	8.098	2.461	2.794	2.87	3.462
v ₁₁	1.749	2.996	5.274	1.774	2.94	2.937	5.786	1.299	8.235	3.022	3.35	3.431	2.982
$v_{11} = v_{12}$	2.05	1.565	3.811	3.187	2.625	2.73	3.047	4.354	6.893	1.559	1.611	0.703	0.201
	4.814	3.078	3.55	5.659	4.416	3.54	0.839	6.185	6.851	3.919	3.976	3.688	3.812
v ₁₃	4.814	3.318	3.551	5.448	4.416	3.39	1.278	6.128	8.64	3.862	3.919	3.631	3.755
v ₁₄	3.276	1.387	1.656	3.468	1.954	0.85	2.573	1.8	7.651	2.004	1.989	2.274	1.825
v ₁₅			2.6						7.001	3.037			2.725
v ₁₆	4.152	2.493		4.623	3.669	2.565	1.163	5.303			3.094	2.806	
v_{17}	2.358	3.114	5.169	2.651	3.021	3.268	5.637	2.176	8.845	3.103	3.541	3.512	3.063
v_{18}	2.007	2.764	5.51	2.301	2.671	3.464	5.287	1.826	8.494	2.673	3.19	3.162	2.713
v_{19}	1.531	3.465	6.431	3.222	3.591	3.839	5.806	2.746	8.018	3.673	2.713	3.169	3.33
v_{20}	3.598	1.45	1.743	4.031	2.788	1.877	1.331	3.556	6.714	2.349	2.406	2.036	2.242
v_{21}	1.713	1.967	4.713	1.479	1.874	2.642	4.593	1.004	7.856	1.876	2.197	2.278	1.941
v_{22}	2.616	3.053	5.108	2.59	2.96	3.753	5.679	2.115	8.76	3.042	3.37	3.451	3.002
v_{23}	3.556	3.331	3.899	2.787	2.128	1.978	4.377	2.312	8.327	2.085	2.413	3.044	2.595
v_{24}	0.27	2.215	5.007	2.585	2.675	2.922	4.243	2.812	6.768	3.053	1.443	2.276	2.06
v_{25}	6.348	4.373	4.335	6.954	5.711	4.835	3.608	6.479	9.637	5.176	5.233	5.079	5.069
v_{26}	3.988	2.195	1.883	4.325	3.371	2.267	1.868	5.005	7.201	2.739	2.796	2.523	2.705
v_{27}	1.601	1.116	3.362	2.738	2.176	2.281	2.598	3.905	5.447	0.804	1.162	0.254	0.318
v_{28}	2.188	1.41	3.656	3.032	2.47	2.575	2.892	3.712	4.827	1.404	1.456	0.548	0.682
v_{29}	2.452	1.621	3.278	2.947	2.385	3.263	2.132	3.627	4.897	1.319	1.371	1.106	1.534
v_{30}	2.346	1.515	3.172	2.841	2.279	3.157	2.026	3.521	5.554	1.213	1.265	0.727	0.909
v_{31}	5.635	4.641	4.266	5.543	4.029	3.463	5.438	6.223	10.747	4.02	4.348	5.528	5.079
v_{32}	1.036	1.913	4.159	2.956	2.908	3.078	3.395	3.34	5.651	1.907	1.38	1.051	1.185
v_{33}	5.634	3.612	0.656	5.693	4.179	3.075	3.514	6.373	8.832	4.169	4.214	4.288	4.336
v_{34}	5.471	3.539	0.709	5.62	4.106	3.002	3.351	6.3	8.693	4.096	4.705	4.125	4.197
v_{35}	0.246	1.846	4.745	2.791	2.743	3.011	3.981	2.55	6.71	2.825	1.215	2.218	2.074
v_{36}	2.933	2.799	4.456	4.125	3.563	4.441	3.31	4.805	4.64	2.497	2.549	1.753	1.887
v_{37}	7.523	5.864	5.972	7.994	7.04	5.936	3.328	8.674	7.423	6.408	6.465	6.177	6.096
v ₃₈	3.468	1.579	1.546	3.66	2.146	1.042	2.765	4.34	8.197	2.136	2.181	2.466	3.34
v ₃₉	2.97	1.671	1.941	2.879	1.365	0.431	2.857	3.559	7.883	1.355	1.683	1.303	3.382
v_{40}	2.021	2.165	4.411	3.79	3.742	3.33	3.647	4.325	4.812	2.159	2.214	2.522	1.438
v_{41}	3.868	2.209	2.316	4.339	3.385	2.281	0.717	5.019	6.306	2.753	2.81	2.522	2.211
v_{42}	12.847	10.512	7.907	12.593	11.079	9.975	10.03	13.273	16.059	11.069	11.114	11.501	10.95
v ₄₃	5.549	3.527	0.584	5.608	4.094	2.99	3.429	6.288	8.747	4.084	4.129	4.203	4.251
v_{44}	2.503	1.672	3.036	2.998	2.436	3	1.869	3.678	5.437	1.37	1.422	1.157	1.066
	1.901	0.642	2.475	1.875	0.683	1.185	3.046	2.555	6.495	0.285	0.614	1.342	0.893
v ₄₅	2.269	1.011	2.571	2.178	0.766	0.816	3.159	2.858	6.863	0.283	0.982	1.613	2.06
v ₄₆	5.116	3.858	4.848	5.024	3.51	2.944	6.02	5.704	11.244	3.501	3.829	4.46	4.93
v ₄₇													
v ₄₈	4.184	2.295	0.724	4.376	2.862	1.758	2.933	5.056	8.46	2.852	2.897	3.588	2.733
v_{49}	1.326	2.675	4.921	3.773	3.725	3.84	4.157	3.63	7.066	2.669	2.197	2.498	2.354
v_{50}	1.682	2.56	4.806	3.68	3.632	3.725	4.042	3.986	5.84	2.554	2.104	1.698	1.909
v_{51}	7.469	6.475	6.1	7.377	5.863	5.297	7.272	8.057	12.799	5.854	6.182	7.362	8.085
v_{52}	0	1.954	4.887	2.359	2.449	3.245	4.123	2.373	6.555	2.531	1.323	1.779	1.919
v_{53}	1.954	0	2.911	2.291	1.734	2.179	2.387	2.971	6.237	0.663	0.715	1	1.434
v_{54}	4.887	2.911	0	5.037	3.523	2.419	2.858	5.717	8.176	3.513	3.558	3.498	3.68

v_{55}	2.359	2.291	5.037	0	2.198	2.119	4.968	0.475	7.859	2.28	2.608	2.689	3.056
v_{56}	2.449	1.734	3.523	2.198	0	1.48	3.725	2.878	7.297	1.088	1.416	2.145	1.696
v_{57}	3.245	2.179	2.419	2.119	1.48	0	2.849	3.125	8.161	0.859	1.187	2.417	2.599
v ₅₈	4.123	2.387	2.858	4.968	3.725	2.849	0	5.494	7.543	3.228	3.285	2.997	3.121
v_{59}	2.373	2.971	5.717	0.475	2.878	3.125	5.494	0	8.859	2.88	2.529	3.369	4.223
v_{60}	6.555	6.237	8.176	7.859	7.297	8.161	7.543	8.859	0	6.231	6.283	5.375	5.509
v ₆₁	2.531	0.663	3.513	2.28	1.088	0.859	3.228	2.88	6.231	0	0.624	1.058	1.428
	1.323	0.715	3.558	2.608	1.416	1.187	3.285	2.529	6.283	0.624	0	1.893	1.48
v ₆₂	1.779	1	3.498	2.689	2.145	2.417	2.997	3.369	5.375	1.058	1.893	0	0.572
v ₆₃	1.919			3.056		2.599		4.223	5.509				0.512
v ₆₄		1.434	3.68		1.696		3.121 8.897	9.22	14.28	1.428	9.9	0.572	
v_{65}	10.418	9.006	6.112	9.695	9.056	8.441				9.341		9.602	9.784
v_{66}	2.706	1.057	2.661	3.103	2.478	2.557	1.63	4.201	6.184	1.391	2.307 7.363	1.317	1.499
v ₆₇	7.881	6.469	3.576	7.158	6.519	5.904	5.933	6.683	11.316	6.804		6.638	6.635
v_{68}	7.697	5.722	4.298	7.881	7.242	6.627	5.603	7.406	10.986	6.057	8.086	6.308	6.49
v_{69}	1.506	2.567	5.313	2.104	2.474	2.721	5.09	1.629	7.993	2.476	1.852	3.15	3.357
v_{70}	2.683	1.943	4.123	3.632	3.088	4.019	3.325	4.312	4.581	2.001	2.836	1.592	1.774
v_{71}	2.678	2.068	3.958	3.757	3.213	3.949	2.725	5.593	4.576	2.126	2.961	1.717	1.899
v_{72}	2.458	2.03	4.381	3.719	3.279	2.659	3.075	4.786	4.356	2.088	2.923	1.85	1.603
v_{73}	5.07	5.069	5.393	3.177	3.866	3.716	6.5	2.702	11.884	4.406	4.71	5.08	3.886
v_{74}	6.768	6.757	6.077	4.875	5.564	5.414	7.184	4.4	12.568	6.104	6.408	7.89	8.072
v_{75}	2.256	1.725	4.568	2.605	2.557	2.197	4.295	3.285	6.857	1.634	1.809	2.365	2.221
v_{76}	0.803	1.207	4.05	2.087	2.039	1.679	3.777	2.767	6.447	1.116	1.291	1.955	1.811
v_{77}	2.19	2.579	5.211	3.582	3.534	3.174	4.576	4.262	6.788	2.611	2.786	2.296	2.152
v ₇₈	2.537	0.611	3.408	2.633	1.441	0.925	3.135	2.456	6.133	0.354	1.963	1.148	1.33
v ₇₉	2.789	3.386	6.132	0.896	3.293	3.54	5.909	0.421	9.275	3.295	2.671	3.969	4.639
v ₈₀	2.064	2.453	5.085	3.456	3.408	3.048	4.45	4.136	6.662	2.485	2.66	2.17	2.026
v ₈₁	3.445	3.017	5.542	4.706	4.162	3.646	4.463	5.773	4.568	3.075	3.91	2.734	2.59
v_{82}	3.512	1.536	1.389	3.578	2.939	1.998	1.417	3.103	6.801	1.871	3.396	2.123	2.305
v ₈₃	5.494	5.493	5.509	3.601	4.29	4.14	6.616	3.126	12	4.83	5.134	5.504	5.686
v ₈₄	1.754	2.533	5.279	2.07	2.44	2.687	5.056	1.595	8.24	2.442	1.818	3.116	3.604
v ₈₅	1.384	1.982	4.728	1.831	1.889	2.136	4.505	1.356	7.55	1.891	1.267	2.565	2.747
v_{86}	2.947	2.207	4.387	3.896	3.352	4.283	3.589	4.576	4.845	2.265	3.1	1.856	2.038
v ₈₇	1.859	1.231	3.486	1.386	1.338	2.134	3.581	2.066	6.603	1.42	1.748	1.667	1.218
v ₈₈	5.396	5.241	4.866	5.304	3.79	3.224	6.038	5.984	11.565	3.781	4.109	4.74	4.291
v ₈₉	4.167	2.909	3.899	4.075	2.561	1.995	5.071	4.755	8.447	2.552	2.88	3.511	3.062
v_{90}	1.356	1.332	4.346	2.277	2.229	2.497	3.582	2.957	5.823	2.311	0.701	1.238	1.318
v ₉₁	2.568	1.113	3.414	2.058	2.01	2.278	3.462	2.738	6.484	2.092	0.482	1.548	1.099
v ₉₂	2.292	1.165	3.191	2.787	2.225	3.171	2.407	3.467	5.185	1.159	1.211	0.946	0.994
v ₉₃	3.76	2.101	2.209	4.231	3.277	2.173	1.133	4.911	6.886	2.645	2.702	2.414	2.538
v ₉₄	1.328	2.928	5.827	3.873	3.825	4.093	5.063	3.632	7.304	3.907	2.297	2.719	2.914
	2.342	3.844	6.09	4.789	4.741	5.009	5.326	4.646	7.437	3.838	3.213	2.982	3.83
v ₉₅	2.952	3.492	5.507	4.445	4.397	4.657	4.361	5.256	5.23	3.486	2.869	2.63	3.404
v ₉₆	4.535	2.742	2.43	4.872	3.918	2.814	2.415	5.552	7.942	3.286	3.343	3.189	3.179
v ₉₇	5.881	4.623	5.613	5.789	4.275	3.709	6.785	6.469	10.161	4.266	4.594	5.225	4.776
v ₉₈	2.597	2.602	4.848	4.366	3.662	3.767	3.905	4.901	4.804	2.596	2.79	1.74	2.514
v ₉₉	3.097	3.103	5.047	4.866	4.163	4.268	3.903	5.401	4.804	3.097	3.29	2.241	3.015
v ₁₀₀	1.706	3.272		4.217		4.208		4.01	7.682				3.258
v ₁₀₁			6.205		4.169		5.441			4.251	2.641	3.097	
v_{102}	0.87	2.436	5.369 5.831	3.381	3.333	3.601	4.605	3.174	6.846	3.415	1.805	2.261	2.422
v_{103}			1.5.831	3.225	3.611	3.879	4.883	3.452	7.124	3.693	2.083	2.539	2.7
	0.91	2.855			4.405	4 700	E 707	4 200	7 070				
v ₁₀₄	1.762	3.707	6.683	4.077	4.465	4.733	5.737	4.306	7.978	4.547	2.937	3.393	3.554
$v_{104} = v_{105}$	1.762 2.85	3.707 2.634	6.683 3.106	4.077 3.502	4.108	3.004	1.44	4.255	6.014	1.947	1.999	1.734	1.781
$v_{104} = v_{105} = v_{106}$	1.762 2.85 2.011	3.707 2.634 0.813	6.683 3.106 3.222	4.077 3.502 2.502	4.108 1.73	3.004 2.482	1.44 2.69	4.255 2.972	6.014 5.641	1.947 0.664	1.999 0.716	1.734 0.674	1.781 0.552
$v_{104} = v_{105}$	1.762 2.85 2.011 2.516	3.707 2.634 0.813 1.479	6.683 3.106 3.222 3.385	4.077 3.502 2.502 3.168	4.108 1.73 2.679	3.004 2.482 3.283	1.44 2.69 2.152	4.255 2.972 3.921	6.014 5.641 5.154	1.947 0.664 1.613	1.999 0.716 1.665	1.734 0.674 1.4	1.781 0.552 1.447
$v_{104} = v_{105} = v_{106}$	1.762 2.85 2.011 2.516 2.867	3.707 2.634 0.813 1.479 1.83	6.683 3.106 3.222 3.385 3.736	4.077 3.502 2.502 3.168 3.519	4.108 1.73 2.679 3.03	3.004 2.482 3.283 3.634	1.44 2.69 2.152 2.503	4.255 2.972 3.921 4.272	6.014 5.641 5.154 4.803	1.947 0.664 1.613 1.964	1.999 0.716 1.665 2.016	1.734 0.674 1.4 1.751	1.781 0.552 1.447 1.798
v_{104} v_{105} v_{106} v_{107}	1.762 2.85 2.011 2.516	3.707 2.634 0.813 1.479	6.683 3.106 3.222 3.385	4.077 3.502 2.502 3.168	4.108 1.73 2.679	3.004 2.482 3.283	1.44 2.69 2.152	4.255 2.972 3.921	6.014 5.641 5.154	1.947 0.664 1.613	1.999 0.716 1.665	1.734 0.674 1.4	1.781 0.552 1.447
v_{104} v_{105} v_{106} v_{107} v_{108}	1.762 2.85 2.011 2.516 2.867	3.707 2.634 0.813 1.479 1.83	6.683 3.106 3.222 3.385 3.736	4.077 3.502 2.502 3.168 3.519	4.108 1.73 2.679 3.03	3.004 2.482 3.283 3.634	1.44 2.69 2.152 2.503	4.255 2.972 3.921 4.272 4.013 4.644	6.014 5.641 5.154 4.803	1.947 0.664 1.613 1.964	1.999 0.716 1.665 2.016	1.734 0.674 1.4 1.751	1.781 0.552 1.447 1.798
v_{104} v_{105} v_{106} v_{107} v_{108} v_{109}	1.762 2.85 2.011 2.516 2.867 2.989	3.707 2.634 0.813 1.479 1.83 3.027	6.683 3.106 3.222 3.385 3.736 3.477	4.077 3.502 2.502 3.168 3.519 3.641	4.108 1.73 2.679 3.03 2.771	3.004 2.482 3.283 3.634 3.375	1.44 2.69 2.152 2.503 2.244	4.255 2.972 3.921 4.272 4.013	6.014 5.641 5.154 4.803 5.063	1.947 0.664 1.613 1.964 1.705	1.999 0.716 1.665 2.016 1.757	1.734 0.674 1.4 1.751 1.492	1.781 0.552 1.447 1.798 1.539
v_{104} v_{105} v_{106} v_{107} v_{108} v_{109}	1.762 2.85 2.011 2.516 2.867 2.989 4.056	3.707 2.634 0.813 1.479 1.83 3.027 2.798	6.683 3.106 3.222 3.385 3.736 3.477 4.542	4.077 3.502 2.502 3.168 3.519 3.641 3.964	4.108 1.73 2.679 3.03 2.771 2.45	3.004 2.482 3.283 3.634 3.375 1.884	1.44 2.69 2.152 2.503 2.244 4.733	4.255 2.972 3.921 4.272 4.013 4.644	6.014 5.641 5.154 4.803 5.063 8.336	1.947 0.664 1.613 1.964 1.705 2.441	1.999 0.716 1.665 2.016 1.757 2.769	1.734 0.674 1.4 1.751 1.492 3.4	1.781 0.552 1.447 1.798 1.539 2.951
v104 v105 v106 v107 v108 v109 v110 v111	1.762 2.85 2.011 2.516 2.867 2.989 4.056 6.425	3.707 2.634 0.813 1.479 1.83 3.027 2.798 4.632	6.683 3.106 3.222 3.385 3.736 3.477 4.542 4.32	4.077 3.502 2.502 3.168 3.519 3.641 3.964 6.762	4.108 1.73 2.679 3.03 2.771 2.45 5.808	3.004 2.482 3.283 3.634 3.375 1.884 4.704	1.44 2.69 2.152 2.503 2.244 4.733 3.608	4.255 2.972 3.921 4.272 4.013 4.644 7.442	6.014 5.641 5.154 4.803 5.063 8.336 9.832	1.947 0.664 1.613 1.964 1.705 2.441 5.176	1.999 0.716 1.665 2.016 1.757 2.769 5.233	1.734 0.674 1.4 1.751 1.492 3.4 5.079	1.781 0.552 1.447 1.798 1.539 2.951 5.069

v_{115}	4.763	2.97	2.658	5.1	4.146	3.042	1.679	5.78	8.17	3.514	3.571	3.417	3.407
v_{116}	1.995	3.561	5.955	3.437	3.807	4.6	5.73	2.962	7.971	3.889	2.93	3.386	3.547
v ₁₁₇	0.913	2.479	4.61	2.372	2.462	3.258	4.648	2.385	6.889	2.544	1.848	2.304	2.465
v ₁₁₈	4.869	2.847	0.464	4.928	3.414	2.31	2.749	5.608	8.276	3.404	3.449	3.523	3.285
v ₁₁₉	4.675	3.016	3.123	5.146	4.192	3.088	0.71	5.826	7.571	3.56	3.617	3.329	3.453
	7.439	5.78	5.888	7.91	6.956	5.852	3.244	8.59	7.341	6.324	6.381	6.093	6.217
v ₁₂₀	11.754	10.095	10.203	12.225	11.271	10.167	7.559	12.905	11.655	10.639	10.696	10.408	10.532
v ₁₂₁			0.798							3.96			
v_{122}	5.292	3.403		5.484	3.97	2.866	3.44	6.164	8.967		4.005	4.214	3.841
v_{123}	2.456	0.927	2.637	2.427	1.235	1.125	2.113	3.107	7.545	0.841	1.169	1.813	1.364
v_{124}	0.767	1.322	3.623	2.267	2.219	2.487	3.671	2.947	6.325	2.301	0.691	1.74	1.308
v_{125}	5.101	3.442	3.55	5.572	4.618	3.514	1.402	6.252	8.797	3.986	4.043	3.755	3.879
v_{126}	4.841	2.952	2.577	5.033	3.519	2.415	3.749	5.713	9.276	3.509	3.554	3.839	3.39
v_{127}	1.735	1.107	3.473	1.373	1.325	2.121	3.457	2.053	6.479	1.407	1.735	1.543	1.094
v_{128}	1.097	1.96	4.052	1.814	1.904	2.7	4.623	1.828	7.073	1.986	2.032	2.488	1.946
v_{129}	2.784	2.577	4.592	4.199	3.637	3.742	3.446	5.088	4.315	2.571	2.623	1.715	2.489
NODES	v_{65}	v_{66}	v_{67}	v ₆₈	v_{69}	v_{70}	v_{71}	v_{72}	v_{73}	v_{74}	v_{75}	v_{76}	v_{77}
v_0	13.472	5.376	10.508	10.178	7.185	3.773	3.768	3.548	11.076	11.76	6.049	5.639	5.98
v_1	9.357	1.022	6.82	6.073	2.524	1.551	1.676	1.809	4.454	7.108	1.682	1.164	2.358
v_2	9.673	2.206	7.136	7.859	1.174	2.735	2.86	2.944	4.273	5.971	1.708	1.19	2.685
v_3	10.563	3.03	8.026	8.021	1.318	3.007	3.002	2.782	4.812	6.51	2.58	1.127	2.514
v_4	11.259	3.795	8.722	9.445	0.727	4.77	4.765	4.545	4.741	6.439	3.297	2.89	4.277
v_5	10.285	2	7.321	6.991	3.268	1.534	1.529	1.309	5.763	8.573	2.132	1.722	2.063
v_6	1.651	7.101	1.889	1.644	9.44	8.563	8.398	8.821	9.52	10.204	8.695	8.177	9.651
v ₇	14.521	5.944	11.557	11.227	7.753	4.341	4.336	4.116	12.472	13.156	6.617	6.207	6.548
v_8	1.9	7.889	2.678	2.432	10.228	9.351	9.186	9.609	10.308	10.992	9.483	8.965	10.439
v ₉	10.444	2.981	7.907	8.63	0.473	3.51	3.948	3.728	3.926	5.624	2.483	2.073	3.46
	10.748	3.284	8.211	8.934	0.095	4.154	4.149	3.929	4.23	5.928	2.786	2.274	3.661
v ₁₀	10.748	3.845	7.976	8.699	1.482	4.374	5.07	4.85	3.995	5.693	3.347	2.829	4.324
v ₁₁	9.915	1.63	6.951	6.621	3.488	1.905	2.03	1.734	5.393	8.203	2.352	1.942	2.283
v ₁₂	9.588	2.321	6.624	6.294	5.781	3.846	3.398	3.748	7.191	7.875	4.986	4.468	5.267
v_{13}													
v_{14}	6.972	2.264	4.008	3.678	5.724	3.959	3.359	3.709	7.134	7.818	4.929	4.411	5.21
v_{15}	7.477	2.281	4.94	5.663	3.744	3.743	3.673	4.023	4.544	5.228	2.999	2.481	3.853
v_{16}	7.242	1.439	4.278	3.948	4.899	3.134	2.697	3.047	6.308	6.992	4.104	3.586	4.385
v_{17}	11.39	3.926	8.853	9.576	0.858	4.901	4.896	4.676	4.872	6.57	3.428	3.021	4.408
v_{18}	11.04	3.576	8.503	9.226	0.508	4.55	4.545	4.325	4.522	6.22	3.078	2.67	4.057
v_{19}	11.96	4.096	9.423	9.087	1.196	4.073	4.068	3.848	5.442	7.14	3.646	2.193	3.58
v_{20}	8.001	1.281	5.037	4.707	4.211	2.743	2.578	3.001	5.604	6.288	3.416	2.898	3.831
v_{21}	10.194	2.704	7.756	8.355	1.179	3.251	3.946	3.854	3.629	5.448	2.231	1.874	3.369
v_{22}	11.576	3.865	8.792	9.515	0.796	4.394	4.906	4.686	4.811	6.509	3.367	2.849	4.344
v_{23}	9.729	4.085	7.192	7.915	2.468	5.547	5.477	4.074	2.586	4.165	3.423	2.905	4.4
v_{24}	10.538	2.826	8.001	7.817	1.946	2.803	2.798	2.578	5.509	7.207	2.376	0.923	2.31
v_{25}	4.643	4.108	1.679	1.349	7.038	5.57	5.405	5.828	8.028	8.712	6.727	5.725	6.658
v_{26}	7.08	1.671	4.116	3.786	4.601	3.133	2.968	3.391	5.591	6.275	4.29	3.288	4.221
v_{27}	9.466	1.181	6.502	6.172	2.711	1.456	1.581	1.285	4.944	7.754	1.903	1.493	1.834
v_{28}	9.831	1.475	6.796	6.466	3.626	1.146	1.141	0.921	5.238	8.048	2.49	2.08	2.421
v_{29}	9.382	1.286	6.418	6.088	3.223	1.423	1.079	1.429	6.986	7.67	2.754	2.344	2.685
v ₃₀	9.283	1.18	6.312	5.982	3.117	1.317	0.973	1.323	6.88	7.564	2.648	2.238	2.579
v ₃₁	10.033	5.215	7.55	8.273	5.819	6.703	6.538	6.961	2.985	3.669	5.358	4.84	6.335
v ₃₂	10.334	1.978	7.299	6.969	2.474	1.97	1.965	1.745	6.037	8.551	1.528	1.118	1.459
v ₃₃	6.397	3.317	3.861	4.583	5.969	4.779	4.614	5.037	6.552	7.236	5.224	4.706	5.867
v ₃₄	5.821	3.154	3.285	4.007	5.896	4.43	4.451	4.874	5.976	6.66	5.151	4.633	5.704
v ₃₅	10.31	2.564	7.773	7.555	1.684	2.541	2.536	2.316	5.247	6.945	2.114	0.695	2.082
	10.56	2.464	7.596	7.266	4.371	0.861	0.838	0.349	8.164	8.848	3.235	2.825	3.166
v ₃₆	11.237	4.81	8.273	7.943	8.27	7.019	7.014	6.794	9.68	10.364	7.475	6.957	7.756
v ₃₇													
v ₃₈	7.367	2.473	4.83	5.553	3.936	3.935	3.865	4.215	4.434	5.118	3.191	2.673	4.045
v_{39}	7.762	2.565	5.225	5.948	3.155	4.027	3.957	4.307	3.151	4.849	2.693	2.175	3.67
v_{40}	10.515	2.23	7.551	7.221	3.459	1.494	1.489	1.269	5.993	8.803	2.362	1.952	2.293
v_{41}	8.421	1.155	5.457	5.127	4.615	2.449	2.001	2.351	6.024	6.708	3.82	3.302	4.101
v_{42}	3.967	10.53	5.319	5.073	12.869	11.992	11.827	12.25	12.949	13.633	12.124	11.606	13.08

v_{43}	6.683	3.232	4.147	4.869	5.884	4.694	4.529	4.952	5.964	6.648	5.139	4.621	3.65
v_{44}	9.141	1.206	6.177	5.847	3.274	1.304	0.856	1.206	6.744	7.428	2.805	2.395	2.736
v_{45}	8.638	1.675	6.101	6.824	2.151	2.285	2.41	2.372	3.571	5.269	1.624	1.106	2.601
v_{46}	8.392	2.867	5.855	6.578	2.454	2.556	2.681	2.643	3.202	4.9	1.992	1.474	2.969
v ₄₇	10.669	5.823	8.132	8.855	5.3	7.285	7.12	7.543	0.712	3.135	4.839	4.321	5.816
	6.66	2.736	4.124	4.846	4.652	4.198	4.033	4.456	4.732	5.416	3.907	3.389	5.286
v ₄₈	11.025	2.74	8.061	7.731	2.764	2.275	2.27	2.05	6.327	9.131	2.444	1.677	2.375
v ₄₉			7.946										
v_{50}	10.91	2.625		7.616	3.12	2.159	2.154	1.934	6.683	8.381	2.252	2.033	2.183
v_{51}	11.921	7.075	9.384	10.107	7.653	8.537	8.372	8.795	4.819	5.503	7.192	6.674	8.169
v_{52}	10.418	2.706	7.881	7.697	1.506	2.683	2.678	2.458	5.07	6.768	2.256	0.803	2.19
v_{53}	9.006	1.057	6.469	5.722	2.567	1.943	2.068	2.03	5.069	6.757	1.725	1.207	2.579
v_{54}	6.112	2.661	3.576	4.298	5.313	4.123	3.958	4.381	5.393	6.077	4.568	4.05	5.211
v_{55}	9.695	3.103	7.158	7.881	2.104	3.632	3.757	3.719	3.177	4.875	2.605	2.087	3.582
v_{56}	9.056	2.478	6.519	7.242	2.474	3.088	3.213	3.279	3.866	5.564	2.557	2.039	3.534
v_{57}	8.441	2.557	5.904	6.627	2.721	4.019	3.949	2.659	3.716	5.414	2.197	1.679	3.174
v_{58}	8.897	1.63	5.933	5.603	5.09	3.325	2.725	3.075	6.5	7.184	4.295	3.777	4.576
v_{59}	9.22	4.201	6.683	7.406	1.629	4.312	5.593	4.786	2.702	4.4	3.285	2.767	4.262
v_{60}	14.28	6.184	11.316	10.986	7.993	4.581	4.576	4.356	11.884	12.568	6.857	6.447	6.788
v_{61}	9.341	1.391	6.804	6.057	2.476	2.001	2.126	2.088	4.406	6.104	1.634	1.116	2.611
v_{62}	9.9	2.307	7.363	8.086	1.852	2.836	2.961	2.923	4.71	6.408	1.809	1.291	2.786
v_{63}	9.602	1.317	6.638	6.308	3.15	1.592	1.717	1.85	5.08	7.89	2.365	1.955	2.296
v_{64}	9.784	1.499	6.635	6.49	3.357	1.774	1.899	1.603	3.886	8.072	2.221	1.811	2.152
v ₆₅	0	8.751	3.54	3.294	11.09	10.213	10.048	10.471	11.17	11.854	10.345	9.827	11.301
v_{66}	8.751	0	5.784	5.454	3.552	1.926	2.062	2.412	6.352	7.036	3.083	2.673	3.014
v_{67}	3.54	5.784	0	1.238	8.554	7.249	7.084	7.507	8.634	9.318	7.809	7.291	8.337
v ₆₈	3.294	5.454	1.238	0	9.277	6.919	6.754	7.177	9.357	10.041	8.076	7.074	8.007
v ₆₉	11.09	3.552	8.554	9.277	0	4.049	4.044	3.824	4.325	6.023	2.881	2.169	3.556
v ₇₀	10.213	1.926	7.249	6.919	4.049	0	0.443	0.577	7.621	8.305	2.782	2.372	2.713
v ₇₁	10.048	2.062	7.084	6.754	4.044	0.443	0	0.448	7.6	8.284	3.171	2.761	3.102
v ₇₂	10.471	2.412	7.507	7.177	3.824	0.577	0.448	0	8.053	8.737	2.951	2.541	2.882
	11.17	6.352	8.634	9.357	4.325	7.621	7.6	8.053	0.000	2.844	4.714	4.196	5.691
v ₇₃	11.854	7.036	9.318	10.041	6.023	8.305	8.284	8.737	2.844	0	6.723	6.205	7.7
v ₇₄	10.345	3.083	7.809	8.076	2.881	2.782	3.171	2.951	4.714	6.723	0.723	0.851	2.201
v ₇₅	9.827	2.673	7.291	7.074	2.169	2.372	2.761	2.541	4.196	6.205	0.851	0.001	1.495
v ₇₆	11.301	3.014	8.337	8.007	3.556	2.713	3.102	2.882	5.691	7.7	2.201	1.495	0
v_{77}													
v ₇₈	9.185	1.324	6.649	6.432	2.909	1.856	1.981	2.115	3.631	5.64	2.551	1.483	1.11
v_{79}	11.909	4.371	9.373	10.096	2.044	4.677	4.802	4.936	5.994	8.003	3.156	3.191	2.818
v_{80}	9.369	2.888	8.211	6.589	3.43	2.587	2.976	2.756	5.565	7.574	2.075	1.369	2.666
v ₈₁	11.632	3.345	8.668	8.338	4.811	1.738	1.733	1.513	6.352	9.944	3.459	3.343	3.23
v_{82}	7.301	1.269	4.624	4.294	4.342	2.538	2.517	2.97	4.427	5.792	3.526	2.649	2.276
v_{83}	11.286	6.468	8.75	9.473	4.749	7.737	7.716	8.169	2.23	3.417	5.861	5.654	5.281
v ₈₄	11.056	3.518	8.52	9.243	0.57	4.165	3.949	4.334	5.141	7.15	2.121	2.338	1.965
v_{85}	10.505	2.967	7.969	8.692	0.743	3.273	3.398	3.532	4.59	6.599	1.752	1.787	1.414
v_{86}	10.477	2.19	7.513	7.183	4.313	0.36	0.707	0.841	7.424	8.789	2.961	2.845	2.42
v_{87}	9.71	2.081	7.173	7.896	1.662	2.61	2.735	2.697	4.52	6.218	1.582	1.064	2.559
v_{88}	10.687	5.841	8.15	8.873	5.58	7.303	7.138	7.561	0.538	2.4	5.119	4.601	6.096
v_{89}	9.72	4.874	7.183	7.906	4.351	6.336	6.171	6.594	1.375	3.073	3.89	3.372	4.867
v_{90}	9.796	2.165	7.259	7.156	2.553	2.142	2.137	1.917	5.411	7.109	1.079	0.669	1.057
v_{91}	9.577	1.962	7.04	6.797	2.334	2.491	2.616	2.578	5.192	6.89	2.291	1.773	0.334
v_{92}	9.295	1.199	6.331	6.001	3.063	0.922	1.047	1.181	6.899	7.583	2.594	2.184	2.525
v_{93}	8.314	1.047	5.35	5.02	4.507	2.742	2.305	2.655	5.917	6.601	3.712	3.194	3.993
v ₉₄	11.392	3.646	8.855	8.637	2.766	3.623	3.618	3.398	6.329	8.027	3.196	1.777	3.164
v ₉₅	12.194	3.909	9.23	8.9	3.78	4.119	4.114	3.894	7.343	9.041	3.46	2.693	3.391
v ₉₆	11.611	3.515	8.647	8.317	4.39	1.912	1.907	1.687	7.953	9.899	3.017	3.303	2.948
v ₉₇	6.789	2.218	3.825	3.495	5.148	3.68	3.515	3.938	6.138	6.822	4.837	3.835	4.768
v ₉₈	11.434	6.588	8.897	9.62	6.065	8.05	7.885	8.308	1.023	3.061	5.604	5.086	6.581
v ₉₉	10.952	2.667	7.988	7.658	4.035	1.456	1.451	1.231	6.43	9.24	2.938	2.528	2.869
	11.151	3.055	8.187	7.857	4.535	1.452	1.447	1.231	6.931	9.439	3.438	3.028	3.369
v_{100}	11.101	3.000								9.409	_	3.020	5.509
	11 796	4.094	0.100	0.015	2 1 4 4	4.001	3 006	2 776	6 707	8 405	2 574	2 121	3 500
$v_{101} = v_{102}$	11.736 10.9	4.024 3.188	9.199 8.363	9.015 8.179	3.144 2.308	4.001 3.165	3.996	3.776 2.94	6.707 5.871	8.405 7.569	3.574 2.738	2.121 1.285	3.508 2.672

v_{103}	11.178	3.466	8.641	8.457	2.586	3.443	3.438	3.218	6.149	7.847	3.016	1.563	2.95
v_{104}	12.032	4.32	9.495	9.311	3.44	4.297	4.292	4.072	7.003	8.701	3.87	2.417	3.804
v_{105}	9.144	1.463	6.18	5.85	3.851	1.881	1.433	1.783	6.747	7.431	3.382	2.972	3.313
v_{106}	9.309	0.849	6.772	5.839	2.568	1.379	1.504	1.637	5.372	7.06	2.025	1.208	2.253
v_{107}	9.424	1.489	6.46	6.13	3.517	1.021	0.573	0.923	7.027	7.711	2.53	2.638	2.979
v_{108}	9.775	1.84	6.811	6.481	3.868	0.67	0.222	0.572	7.378	8.062	3.399	2.989	3.33
v ₁₀₉	9.516	1.581	6.464	6.222	3.609	0.93	0.482	1.922	7.119	7.803	3.14	2.73	3.071
v_{110}	10.363	4.441	7.826	8.549	4.24	5.903	5.833	4.43	2.017	3.715	3.779	3.261	4.756
v ₁₁₁	4.643	4.108	1.679	1.349	7.038	5.57	5.405	5.828	8.028	8.712	6.727	5.725	6.658
v_{112}	11.219	4.283	8.682	9.405	0.687	4.26	4.255	4.035	4.701	6.399	3.257	2.38	3.767
v ₁₁₃	11.258	3.162	8.294	7.964	4.971	1.559	1.554	1.334	8.862	9.546	3.835	3.425	3.766
	15.399	7.303	12.435	12.105	9.112	5.7	5.695	5.475	13.003	13.687	7.976	7.566	7.907
v ₁₁₄	7.093	2.446	4.129	3.799	5.376	3.908	3.213	3.563	6.366	7.05	5.065	4.063	4.996
v ₁₁₅	12.176	4.313	9.639	9.304	1.413	4.29	4.285	4.065	5.658	7.356	3.863	2.41	3.797
v ₁₁₆	10.834	3.231	8.297	8.222	1.239	3.208	3.203	2.983	5.082		2.781	1.328	2.715
v ₁₁₇										6.78	4.459		
v_{118}	6.4	2.552	3.864	4.586	5.204	4.014	3.849	4.272	5.284	5.968		3.941	5.102
v_{119}	9.228	1.962	6.264	5.934	5.422	3.249	2.801	3.151	6.831	7.515	4.627	4.109	4.908
v_{120}	8.612	4.726	5.648	5.318	8.186	6.936	6.931	6.711	9.596	10.28	7.391	6.873	7.672
v_{121}	15.468	9.041	12.504	12.174	12.501	11.25	11.245	11.025	13.911	14.595	11.706	11.188	11.987
v_{122}	5.505	3.243	2.968	3.691	5.76	4.705	4.54	4.963	5.84	6.524	5.015	4.497	5.793
v_{123}	8.424	1.821	5.887	5.448	2.703	3.283	3.213	3.563	4.015	5.713	2.179	1.661	3.156
v_{124}	9.786	2.667	7.249	7.006	2.205	2.644	2.639	2.419	5.401	7.099	0.491	0.171	1.558
v_{125}	7.328	2.388	4.364	4.034	5.848	4.083	3.483	3.833	7.258	7.942	5.053	4.535	5.334
v_{126}	8.398	3.552	5.861	6.584	5.309	5.014	4.849	5.272	2.826	3.51	4.564	4.046	5.418
v_{127}	9.697	1.957	7.16	6.792	1.649	2.486	2.611	2.573	4.507	6.205	1.458	0.94	2.435
v_{128}	10.276	3.415	7.739	8.462	1.146	3.392	3.387	3.167	4.525	6.223	2.311	1.512	2.899
v_{129}	10.696	2.6	7.732	7.402	4.222	0.997	0.992	0.772	6.405	8.984	3.125	2.715	3.056
NODES	v ₇₈	v ₇₉	v_{80}	v ₈₁	v ₈₂	v ₈₃	v_{84}	v ₈₅	v_{86}	v_{87}	v ₈₈	v ₈₉	v_{90}
v_0	5.325	8.467	5.854	3.76	5.993	11.192	7.432	6.742	4.037	5.795	10.757	7.639	5.015
v_1	0.522	3.343	2.232	2.796	1.887	4.878	2.49	1.939	1.815	1.518	6.492	5.525	1.561
v_2	0.985	1.992	2.559	3.809	3.169	4.697	1.14	0.588	2.999	0.489	4.407	3.178	1.38
v_3	2.626	2.531	2.388	3.769	3.836	5.236	1.496	1.126	3.271	1.379	5.297	4.068	1.656
v_4	3.325	2.46	4.151	5.532	4.758	5.165	0.986	1.158	5.034	2.078	5.996	4.767	2.969
v_5	1.831	4.55	1.937	1.91	2.806	6.187	3.515	3.146	1.798	2.786	5.374	4.145	1.283
v_6	7.535	10.259	9.525	9.982	5.65	9.636	9.406	8.855	8.827	8.059	9.036	8.069	8.145
v_7	5.893	9.035	6.422	4.986	7.389	12.588	8	7.31	4.605	6.364	12.012	11.045	5.584
v_8	8.323	11.047	10.313	10.77	6.439	10.424	10.194	9.643	9.615	8.848	9.825	8.858	8.934
v_9	2.511	1.645	3.334	4.715	3.944	4.35	0.439	0.344	3.774	1.254	5.182	3.953	2.634
v_{10}	2.814	1.949	3.535	4.916	4.247	4.654	0.475	0.648	4.418	1.567	5.485	4.256	2.458
v_{11}	3.375	1.714	4.198	5.837	4.396	4.419	0.477	1.209	4.638	2.118	5.541	4.312	2.514
v_{12}	1.461	4.77	2.157	2.721	2.436	5.817	3.735	2.878	2.169	0.784	4.865	3.636	0.885
	3.826	6.6	5.141	5.136	2.108	7.307	5.747	5.196	4.11	4.272	6.73	5.763	4.273
v_{13} v_{14}	3.769	6.543	5.084	5.097	2.051	7.25	5.69	5.139	4.223	4.274	6.731	5.764	4.275
	1.839	4.563	3.727	4.291	1.36	4.66	3.71	3.159	4.007	2.29	3.965	2.151	2.459
v ₁₅	2.944	5.718	4.259	4.435	1.225	6.424	4.865	4.314	3.398	3.389	6.002	5.035	3.391
v ₁₆	3.456		4.289	5.663		5.296		1.289		2.209			
v ₁₇		2.591			4.889		1.117		5.165		6.127	4.898 4.548	3.1
v_{18}	3.106	2.241	3.931	5.312	4.539	4.946	0.767	0.939	4.814	1.859	5.777		2.75
v_{19}	4.026	3.161	3.454	4.835	4.902	5.866	1.687	1.859	4.337	2.78	6.698	5.469	2.819
v_{20}	2.256	5.03	3.705	4.162	0.521	5.72	4.177	3.626	3.007	2.644	4.923	3.956	2.884
v_{21}	2.267	1.461	3.309	4.946	3.7	4.166	1.224	0.544	3.537	1.017	3.97	3.957	1.925
v_{22}	3.395	2.53	4.218	5.673	4.828	5.235	1.056	1.229	4.658	2.148	6.066	4.837	3.039
v_{23}	2.34	0.516	4.274	5.061	3.612	3.01	2.434	2.196	5.811	2.782	2.544	1.315	3.673
v_{24}	2.657	3.228	2.184	3.565	3.632	5.933	2.193	1.824	3.067	1.863	5.781	4.552	1.569
v_{25}	5.083	7.857	6.532	6.989	2.945	8.144	7.004	6.453	5.834	5.892	7.515	6.548	5.807
v_{26}	2.646	5.42	4.095	4.552	0.508	5.707	4.567	4.016	3.397	3.13	5.078	4.111	3.371
v_{27}	1.012	2.577	1.708	2.272	1.987	5.368	3.286	2.429	1.72	1.742	4.486	3.257	1.31
v_{28}	1.306	4.127	2.295	1.908	2.281	5.662	3.274	2.723	1.41	1.776	4.849	3.62	0.996
v_{29}	1.221	4.042	2.559	2.817	1.903	7.102	3.189	2.638	1.687	2.37	7.063	6.096	2.2
v_{29} v_{30}	1.221 1.115	4.042 3.936	2.559 2.453	2.817 2.711	1.903 1.797	7.102 6.996	3.189 3.083	2.638 2.532	1.687 1.581	2.37 1.746	7.063 6.373	6.096 5.406	2.2 1.575

v_{31}	4.275	6.638	6.209	8.122	3.97	3.101	5.785	5.234	6.967	4.673	2.448	1.481	5.518
v_{32}	1.809	3.756	1.333	2.346	2.784	6.461	2.721	2.352	2.234	2.182	5.352	4.123	0.679
v_{33}	4.064	6.788	5.741	6.198	2.045	6.668	5.935	5.384	5.043	4.142	6.068	5.101	5.002
v_{34}	3.991	6.715	5.578	6.035	1.882	6.092	5.862	5.311	4.88	4.515	5.492	4.525	4.863
v_{35}	2.395	2.966	1.956	3.303	3.37	5.671	1.931	1.562	2.805	1.805	5.723	4.494	1.511
v_{36}	2.399	5.22	3.04	1.797	3.081	8.28	4.618	3.816	1.125	2.981	7.845	6.878	2.201
v ₃₇	6.315	9.089	7.63	7.664	4.597	9.796	8.236	7.685	7.283	6.76	9.218	8.251	6.762
v ₃₈	2.031	4.755	3.919	4.483	1.25	4.55	3.902	3.351	4.199	2.442	3.845	2.878	2.649
v ₃₉	1.356	3.974	3.544	4.077	1.645	3.575	3.121	2.57	4.291	2.002	3.092	1.863	2.893
v ₄₀	2.061	4.741	2.167	1.362	3.036	6.417	3.706	3.337	1.758	3.017	5.605	4.376	1.514
	2.66	5.434	3.975	3.739	0.941	6.14	4.581	4.03	2.713	3.105	5.563	4.596	2.877
v ₄₁	10.964	13.688	12.954	13.411	9.08	13.065	12.835	12.284	12.256	11.489	12.466	11.499	11.575
v ₄₂	3.979	6.703	5.656	6.113	1.96	6.08	5.85	5.299	4.958	4.057	5.437	4.47	4.917
v ₄₃			2.61										1.732
v_{44}	1.272	4.093		2.594	1.661	6.86	3.24	2.689	1.568	1.903	6.282	5.315	
v_{45}	0.638	2.97	2.475	3.359	2.195	3.995	2.117	1.566	2.549	1.015	3.496	2.267	1.906
v_{46}	0.909	3.273	2.843	3.63	2.275	3.626	2.42	1.869	2.82	1.318	3.127	1.898	2.209
v ₄₇	3.756	6.119	5.69	6.477	4.552	0.822	5.266	4.715	7.549	4.188	0.735	1.043	5.079
v_{48}	2.747	5.471	5.16	5.617	1.464	4.848	4.618	4.067	4.462	3.243	4.22	3.253	3.329
v_{49}	2.571	4.046	2.249	2.526	3.546	7.389	3.011	2.642	2.539	3.011	6.548	5.166	1.849
v_{50}	2.456	4.402	2.057	2.1	3.431	7.107	3.367	2.998	2.423	2.684	6.076	4.847	1.403
v_{51}	6.109	8.472	8.043	9.956	5.804	4.935	7.619	7.068	8.801	6.461	4.282	3.315	7.352
v_{52}	2.537	2.789	2.064	3.445	3.512	5.494	1.754	1.384	2.947	1.859	5.396	4.167	1.356
v_{53}	0.611	3.386	2.453	3.017	1.536	5.493	2.533	1.982	2.207	1.231	5.241	2.909	1.332
v_{54}	3.408	6.132	5.085	5.542	1.389	5.509	5.279	4.728	4.387	3.486	4.866	3.899	4.346
v_{55}	2.633	0.896	3.456	4.706	3.578	3.601	2.07	1.831	3.896	1.386	5.304	4.075	2.277
v_{56}	1.441	3.293	3.408	4.162	2.939	4.29	2.44	1.889	3.352	1.338	3.79	2.561	2.229
v_{57}	0.925	3.54	3.048	3.646	1.998	4.14	2.687	2.136	4.283	2.134	3.224	1.995	2.497
v_{58}	3.135	5.909	4.45	4.463	1.417	6.616	5.056	4.505	3.589	3.581	6.038	5.071	3.582
v_{59}	2.456	0.421	4.136	5.773	3.103	3.126	1.595	1.356	4.576	2.066	5.984	4.755	2.957
v ₆₀	6.133	9.275	6.662	4.568	6.801	12	8.24	7.55	4.845	6.603	11.565	8.447	5.823
v ₆₁	0.354	3.295	2.485	3.075	1.871	4.83	2.442	1.891	2.265	1.42	3.781	2.552	2.311
v ₆₂	1.963	2.671	2.66	3.91	3.396	5.134	1.818	1.267	3.1	1.748	4.109	2.88	0.701
v ₆₃	1.148	3.969	2.17	2.734	2.123	5.504	3.116	2.565	1.856	1.667	4.74	3.511	1.238
v ₆₄	1.33	4.639	2.026	2.59	2.305	5.686	3.604	2.747	2.038	1.218	4.291	3.062	1.318
	9.185	11.909	9.369	11.632	7.301	11.286	11.056	10.505	10.477	9.71	10.687	9.72	9.796
v ₆₅	1.324	4.371	2.888	3.345	1.269	6.468	3.518	2.967	2.19	2.081	5.841	4.874	2.165
v ₆₆	6.649	9.373	8.211	8.668	4.624	8.75	8.52	7.969	7.513	7.173	8.15	7.183	7.259
v ₆₇	6.432	10.096	6.589	8.338	4.024	9.473	9.243	8.692	7.183	7.173	8.873	7.906	7.156
v ₆₈													
v ₆₉	2.909	2.044	3.43	4.811	4.342	4.749	0.57	0.743	4.313	1.662	5.58	4.351	2.553
v ₇₀	1.856	4.677	2.587	1.738	2.538	7.737	4.165	3.273	0.36	2.61	7.303	6.336	2.142
v ₇₁	1.981	4.802	2.976	1.733	2.517	7.716	3.949	3.398	0.707	2.735	7.138	6.171	2.137
v ₇₂	2.115	4.936	2.756	1.513	2.97	8.169	4.334	3.532	0.841	2.697	7.561	6.594	1.917
v ₇₃	3.631	5.994	5.565	6.352	4.427	2.23	5.141	4.59	7.424	4.52	0.538	1.375	5.411
v_{74}	5.64	8.003	7.574	9.944	5.792	3.417	7.15	6.599	8.789	6.218	2.4	3.073	7.109
v_{75}	2.551	3.156	2.075	3.459	3.526	5.861	2.121	1.752	2.961	1.582	5.119	3.89	1.079
v_{76}	1.483	3.191	1.369	3.343	2.649	5.654	2.338	1.787	2.845	1.064	4.601	3.372	0.669
v_{77}	1.11	2.818	2.666	3.23	2.276	5.281	1.965	1.414	2.42	2.559	6.096	4.867	1.057
v_{78}	0	2.977	2.167	2.927	1.973	4.512	2.124	1.573	2.117	1.773	4.036	2.927	1.996
v_{79}	2.977	0	4.551	4.848	2.774	2.797	2.01	1.772	5.598	2.481	6.399	5.17	3.372
v_{80}	2.167	4.551	0	3.357	2.403	5.408	2.092	1.541	2.547	2.433	5.97	4.741	0.931
v_{81}	2.927	4.848	3.357	0	3.958	7.641	5.068	4.699	2.002	3.684	6.757	5.528	2.904
v_{82}	1.973	2.774	2.403	3.958	0	5.198	4.167	3.616	2.997	2.73	4.57	3.603	2.971
v_{83}	4.512	2.797	5.408	7.641	5.198	0	6.387	5.836	8.67	4.944	1.017	1.799	5.835
v ₈₄	2.124	2.01	2.092	5.068	4.167	6.387	0	0.732	4.161	1.628	5.546	4.317	2.519
v_{85}	1.573	1.772	1.541	4.699	3.616	5.836	0.732	0	3.587	1.077	4.995	3.766	1.968
v ₈₆	2.117	5.598	2.547	2.002	2.997	8.67	4.161	3.587	0	2.874	7.567	6.6	2.406
v ₈₇	1.773	2.481	2.433	3.684	2.73	4.944	1.628	1.077	2.874	0	4.434	3.205	1.281
v ₈₈	4.036	6.399	5.97	6.757	4.57	1.017	5.546	4.995	7.567	4.434	0	1.851	5.887
v ₈₉	2.927	5.17	4.741	5.528	3.603	1.799	4.317	3.766	6.6	3.205	1.851	0	4.25
v ₉₀	1.996	3.372	0.931	2.904	2.971	5.835	2.519	1.968	2.406	1.281	5.887	4.25	0
~90	1.000	0.012	0.001	2.004	2.011	0.000	2.010	1.000	2.100	1.201	0.001	1.20	_ ~

v_{91}	1.445	3.153	0.208	3.565	2.611	5.616	3.513	1.749	2.755	1.062	5.668	4.031	2.347
v_{92}	1.061	3.882	2.399	2.342	1.816	7.015	3.029	2.478	1.186	1.791	6.361	5.43	1.745
v_{93}	2.552	5.326	3.867	4.043	0.834	6.033	4.473	3.922	3.006	3.361	5.379	4.448	3.213
v_{94}	3.477	4.048	3.038	4.385	4.452	6.753	3.013	2.644	3.887	2.877	6.805	5.168	2.338
v ₉₅	3.74	5.062	3.265	3.449	4.715	7.767	4.027	3.658	4.383	3.793	7.819	6.182	2.611
v ₉₆	3.388	5.672	2.822	1.242	4.132	8.377	4.637	4.268	2.176	3.449	8.677	6.792	2.168
	3.193	5.967	4.642	5.099	1.055	6.254	5.114	4.563	3.944	4.002	5.6	4.669	3.988
v ₉₇	4.521	6.884	6.455	7.242	5.317	0.356	6.031	5.48	8.314	4.919	0.661	1.762	5.755
v ₉₈											_		
v_{99}	2.498	5.317	2.743	0.786	3.473	6.854	4.282	3.913	1.72	3.37	8.018	5.269	2.089
v_{100}	2.999	5.817	3.243	0.335	3.672	7.355	4.782	4.413	1.716	3.87	8.217	5.77	2.589
v_{101}	3.855	4.426	3.382	4.763	4.83	7.131	3.391	3.022	4.265	3.221	7.183	5.546	2.682
v_{102}	3.019	3.59	2.546	3.927	3.994	6.295	2.555	2.186	3.429	2.385	6.347	4.71	1.846
v_{103}	3.297	3.868	2.824	4.205	4.272	6.573	2.833	2.464	3.707	2.663	6.625	4.988	2.124
v_{104}	4.151	4.722	3.678	5.059	5.126	7.427	3.687	3.318	4.561	3.517	7.479	5.842	2.978
v_{105}	1.849	4.67	3.187	3.171	1.664	6.863	3.817	3.266	2.145	2.579	6.209	5.278	2.533
v_{106}	0.566	3.387	2.127	2.691	1.654	5.796	2.534	1.983	1.643	1.296	5.838	4.211	1.473
v_{107}	1.515	4.336	2.853	2.311	1.944	7.143	3.483	2.932	1.285	2.245	6.489	5.558	2.199
v_{108}	1.866	4.687	3.204	1.96	2.295	7.494	3.834	3.283	0.934	2.596	6.84	5.909	2.55
v_{109}	1.988	4.809	3.326	2.22	2.036	7.147	3.575	3.405	1.194	2.337	6.581	5.65	2.672
v_{110}	2.696	5.059	4.63	5.417	4.246	2.441	4.206	3.655	6.167	3.094	2.493	0.856	3.93
v ₁₁₁	5.083	7.857	6.532	6.989	2.945	8.144	7.004	6.453	5.834	5.892	7.49	6.559	5.878
v_{112}	3.285	2.42	3.641	5.022	4.718	5.125	0.946	1.118	4.524	2.028	5.177	3.54	2.941
v ₁₁₃	3.111	6.253	3.64	2.203	3.779	8.978	5.218	4.528	1.823	3.841	8.324	7.393	2.986
v ₁₁₄	7.252	10.394	7.781	5.687	7.92	13.119	9.359	8.669	5.964	7.982	12.465	11.534	7.127
	3.421	6.195	4.87	5.327	1.283	6.482	5.342	4.791	4.172	4.23	5.828	4.897	4.216
v ₁₁₅	4.242	3.377		5.052		6.082	1.903		4.554	2.985	6.134		2.971
v ₁₁₆			3.671		5.119			2.075				4.497	
v_{117}	2.897	2.801	2.589	3.97	4.037	5.506	1.766	1.397	3.472	1.64	5.558	3.921	1.889
v_{118}	3.299	6.023	4.976	5.433	1.28	5.4	5.17	4.619	4.278	4.058	4.746	3.815	4.322
v_{119}	3.467	6.241	4.782	4.539	1.748	6.947	5.388	4.837	3.513	4.276	6.293	5.362	4.128
v_{120}	6.231	9.005	7.546	7.581	4.513	9.712	8.152	7.601	7.2	7.04	9.058	8.127	6.892
v_{121}	10.546	13.32	11.861	11.895	8.828	14.027	12.467	11.916	11.514	11.355	13.373	12.442	11.207
v_{122}	3.855	6.579	5.667	6.124	1.971	5.956	5.726	5.175	4.969	4.614	5.302	4.371	5.013
v_{123}	0.907	3.522	3.03	3.83	1.262	4.439	2.669	2.118	3.547	1.557	4.491	2.854	2.33
v_{124}	1.654	3.362	1.432	3.406	2.82	5.825	2.509	1.958	2.908	1.271	5.877	4.24	0.732
v_{125}	3.893	6.667	5.208	5.221	2.175	7.374	5.814	5.263	4.347	4.702	6.72	5.789	4.554
v_{126}	3.404	6.128	5.292	6.433	2.281	2.942	5.275	4.724	5.278	4.163	2.288	1.357	4.638
v_{127}	1.76	2.468	2.309	3.56	2.606	4.931	1.615	1.064	2.75	0.124	4.983	3.346	1.609
v_{128}	2.339	2.244	2.773	4.154	3.772	4.949	1.112	1.017	3.656	1.082	5.001	3.364	2.073
v_{129}	2.473	5.504	2.93	0.741	3.217	6.829	4.469	4.1	1.261	3.203	7.762	5.244	2.276
NODES	v_{91}	v_{92}	v ₉₃	v_{94}	v_{95}	v_{96}	v ₉₇	v_{98}	v_{99}	v_{100}	v_{101}	v_{102}	v_{103}
v_0	5.676	3.689	5.39	5.808	5.941	3.734	6.446	8.665	3.308	3.274	6.186	5.35	5.628
v_1	1.399	0.626	2.094	3.042	3.305	2.953	2.869	7.239	2.063	2.564	3.42	2.584	2.862
v_2	1.161	1.89	3.334	2.976	3.422	4.032	3.975	4.892	3.469	3.969	3.32	2.484	2.762
v_3	2.051	2.592	4.06	1.628	2.642	3.252	4.835	5.782	2.897	3.397	2.006	1.17	1.448
	2.75	3.479	4.923	3.487	4.501	5.111	5.564	6.481	4.756	5.256	3.865	3.029	3.307
v ₄	2.182	1.58	3.048	2.764	2.311	1.708	3.823	5.859	1.124	1.624	3.142	2.306	2.584
v_5	7.926	7.645	6.664	9.741	10.544	9.961	5.139			9.995	10.839	9.249	9.527
v ₆								9.783	9.373				
v_7	6.245	4.945	7.106	7.065	7.367	5.16	8.389	12.759	4.734	4.999	7.726	6.89	6.885
v_8	8.715	8.433	7.452	10.53	11.332	10.749	5.927	10.572	10.09	10.783	11.627	10.791	10.316
v_9	1.936	2.665	4.109	2.575	3.589	4.199	4.75	5.667	3.844	4.728	2.738	1.902	2.395
v_{10}	2.239	2.968	4.412	2.871	3.885	4.495	5.053	5.97	4.14	4.929	2.939	2.103	2.691
v_{11}	2.295	3.024	4.468	3.008	4.022	4.632	5.109	6.026	4.277	5.85	3.86	3.024	2.828
v_{12}	0.666	2.63	3.792	2.481	3.397	3.053	4.873	5.35	2.974	2.734	3.461	2.625	2.267
v_{13}	4.153	3.098	1.824	5.754	6.017	5.052	3.107	7.477	4.596	5.149	6.445	5.609	5.574
v_{14}	4.155	3.1	1.826	5.756	6.019	5.054	2.82	7.478	4.598	5.11	6.388	5.552	5.576
v_{15}	2.24	2.661	1.663	4.055	5.56	4.982	2.304	3.865	4.318	4.304	5.143	4.307	3.841
v_{16}	3.27	2.216	0.942	4.872	5.135	4.332	0.709	6.749	3.893	4.448	5.563	4.727	4.692
v_{17}	2.881	3.61	5.054	3.618	4.632	5.242	5.695	6.612	4.887	5.676	3.686	2.85	3.438
v_{18}	2.531	3.26	4.704	3.267	4.281	4.891	5.345	6.262	4.536	5.325	3.335	2.499	3.087

v_{19}	3.452	3.755	5.223	2.791	3.805	4.415	5.998	7.183	4.06	4.848	2.858	2.022	2.611
v_{20}	2.525	1.729	0.748	4.365	4.628	4.045	1.299	5.67	3.386	4.175	5.009	4.173	4.451
v_{21}	1.706	2.463	3.907	2.629	3.643	4.253	4.548	5.465	3.898	4.783	2.793	1.957	2.235
v_{22}	2.82	3.549	4.993	3.533	4.547	5.157	5.634	6.551	4.802	5.686	3.696	2.86	3.138
	3.454	3.255	3.325	5.269	6.185	5.582	3.966	3.029	4.692	5.074	4.636	3.8	4.078
v ₂₃	2.535	2.505	3.973	1.299	2.555	3.165	4.748	6.266	2.81	3.578	1.284	0.448	0.726
v ₂₄												7	
v_{25}	5.448	4.652	3.671	7.288	7.551	6.968	2.146	8.262	6.309	7.002	7.836		7.278
v_{26}	3.011	2.216	1.234	4.852	5.115	4.532	0.547	5.825	3.873	4.565	5.399	4.563	4.841
v_{27}	1.294	0.692	2.16	2.791	3.054	2.702	2.935	4.971	1.812	2.313	3.012	2.176	2.454
v_{28}	1.657	1.055	2.523	2.477	2.74	2.082	3.298	5.334	1.192	1.693	3.599	2.763	3.041
v_{29}	2.251	0.682	2.502	3.681	4.435	2.228	3.44	7.81	1.772	1.768	3.863	3.027	3.305
v_{30}	1.627	0.399	1.66	3.056	3.319	2.335	2.75	7.12	1.879	1.875	3.757	2.921	3.199
v_{31}	5.299	5.762	4.78	6.436	7.45	8.078	5.001	3.195	7.419	7.618	7.218	6.382	6.66
v_{32}	2.16	1.558	3.026	1.97	2.091	1.488	3.801	5.837	1.56	2.06	2.447	1.611	1.889
v_{33}	4.07	3.847	2.865	6.483	6.746	6.163	3.086	6.815	5.504	5.703	7.045	6.209	6.487
v_{34}	4.382	3.708	2.726	6.344	6.607	6.024	2.947	6.239	5.365	5.564	6.882	6.046	6.324
v_{35}	2.477	2.447	3.915	1.082	2.497	3.107	4.69	6.208	2.752	3.252	1.765	0.896	1.207
v_{36}	2.862	1.465	2.964	3.682	4.178	1.971	4.222	8.592	1.515	1.511	4.344	3.508	3.786
v_{37}	6.641	5.587	4.313	8.243	10.044	7.837	5.595	9.965	7.411	7.377	8.934	8.098	8.376
v ₃₈	2.43	2.851	1.853	4.245	5.75	5.172	2.305	4.592	4.508	4.712	5.335	4.499	4.777
v_{39}	2.674	2.893	1.895	4.489	5.792	5.214	2.536	3.577	4.55	4.754	4.554	3.718	3.996
v_{40}	2.413	1.975	3.279	2.995	2.542	1.536	4.054	6.09	0.576	1.076	3.432	2.596	2.874
v_{41}	2.986	1.701	0.658	4.358	4.621	3.637	1.94	6.31	3.181	3.177	5.279	4.443	4.721
	11.356	11.074	10.093	13.171	13.973	13.39	8.568	13.213	12.731	12.93	14.268	13.432	13.71
v ₄₂	3.985	3.762	2.78	6.398	6.661	6.078	3.001	6.184	5.419	5.618	6.96	6.124	6.402
v_{43}										2.032			
v_{44}	1.784	0.556	1.449	3.213	3.476 4.418	2.492	2.659	7.029	2.036		3.914	3.078	3.356
v_{45}	1.687	1.423	2.36		-	3.75	3.001	3.981	2.86	3.361	3.846	2.714	2.992
v_{46}	1.99	1.791	2.613	3.805	4.721	4.118	3.254	3.612	3.228	3.729	4.149	3.017	3.295
v_{47}	4.86	6.259	5.277	5.997	7.011	7.621	5.498	0.92	6.098	6.599	6.375	5.863	6.141
v_{48}	3.11	3.281	2.299	4.925	6.18	5.597	2.52	4.967	4.938	5.137	5.269	5.215	5.493
v_{49}	3.329	2.727	4.195	2.514	1.226	1.836	4.97	7.033	2.738	2.792	2.892	1.901	2.179
v_{50}	2.884	2.282	3.75	2.616	1.77	0.857	4.525	6.561	1.749	1.815	2.994	2.257	2.535
v_{51}	7.133	7.596	6.614	8.27	9.284	9.912	6.835	5.029	9.253	9.452	8.648	7.812	8.494
v_{52}	2.568	2.292	3.76	1.328	2.342	2.952	4.535	5.881	2.597	3.097	1.706	0.87	0.91
v_{53}	1.113	1.165	2.101	2.928	3.844	3.492	2.742	4.623	2.602	3.103	3.272	2.436	2.855
v_{54}	3.414	3.191	2.209	5.827	6.09	5.507	2.43	5.613	4.848	5.047	6.205	5.369	5.831
v_{55}	2.058	2.787	4.231	3.873	4.789	4.445	4.872	5.789	4.366	4.866	4.217	3.381	3.225
v_{56}	2.01	2.225	3.277	3.825	4.741	4.397	3.918	4.275	3.662	4.163	4.169	3.333	3.611
v_{57}	2.278	3.171	2.173	4.093	5.009	4.657	2.814	3.709	3.767	4.268	4.437	3.601	3.879
v_{58}	3.462	2.407	1.133	5.063	5.326	4.361	2.415	6.785	3.905	3.901	5.441	4.605	4.883
v_{59}	2.738	3.467	4.911	3.632	4.646	5.256	5.552	6.469	4.901	5.401	4.01	3.174	3.452
v_{60}	6.484	5.185	6.886	7.304	7.437	5.23	7.942	10.161	4.804	4.77	7.682	6.846	7.124
v ₆₁	2.092	1.159	2.645	3.907	3.838	3.486	3.286	4.266	2.596	3.097	4.251	3.415	3.693
v_{62}	0.482	1.211	2.702	2.297	3.213	2.869	3.343	4.594	2.79	3.29	2.641	1.805	2.083
v ₆₃	1.548	0.946	2.414	2.719	2.982	2.63	3.189	5.225	1.74	2.241	3.097	2.261	2.539
v_{64}	1.099	0.994	2.538	2.914	3.83	3.404	3.179	4.776	2.514	3.015	3.258	2.422	2.7
	9.577	9.295	8.314	11.392	12.194	11.611	6.789	11.434	10.952	11.151	11.736	10.9	11.178
v ₆₅	1.962	1.199	1.047	3.646	3.909	3.515	2.218	6.588	2.667	3.055	4.024	3.188	3.466
v ₆₆	7.04	6.331	5.35	8.855	9.23		3.825	8.897	7.988		9.199	8.363	8.641
v ₆₇	_					8.647				8.187			
v_{68}	6.797	6.001	5.02	8.637	8.9	8.317	3.495	9.62	7.658	7.857	9.015	8.179	8.457
v_{69}	2.334	3.063	4.507	2.766	3.78	4.39	5.148	6.065	4.035	4.535	3.144	2.308	2.586
v_{70}	2.491	0.922	2.742	3.623	4.119	1.912	3.68	8.05	1.456	1.452	4.001	3.165	3.443
v_{71}	2.616	1.047	2.305	3.618	4.114	1.907	3.515	7.885	1.451	1.447	3.996	3.16	3.438
v_{72}	2.578	1.181	2.655	3.398	3.894	1.687	3.938	8.308	1.231	1.227	3.776	2.94	3.218
v_{73}	5.192	6.899	5.917	6.329	7.343	7.953	6.138	1.023	6.43	6.931	6.707	5.871	6.149
v_{74}	6.89	7.583	6.601	8.027	9.041	9.899	6.822	3.061	9.24	9.439	8.405	7.569	7.847
v_{75}	2.291	2.594	3.712	3.196	3.46	3.017	4.837	5.604	2.938	3.438	3.574	2.738	3.016
v_{76}	1.773	2.184	3.194	1.777	2.693	3.303	3.835	5.086	2.528	3.028	2.121	1.285	1.563
v_{77}	0.334	2.525	3.993	3.164	3.391	2.948	4.768	6.581	2.869	3.369	3.508	2.672	2.95
v_{78}	1.445	1.061	2.552	3.477	3.74	3.388	3.193	4.521	2.498	2.999	3.855	3.019	3.297

v_{79}	3.153	3.882	5.326	4.048	5.062	5.672	5.967	6.884	5.317	5.817	4.426	3.59	3.868
v ₈₀	0.208	2.399	3.867	3.038	3.265	2.822	4.642	6.455	2.743	3.243	3.382	2.546	2.824
v ₈₁	3.565	2.342	4.043	4.385	3.449	1.242	5.099	7.242	0.786	0.335	4.763	3.927	4.205
v ₈₂	2.611	1.816	0.834	4.452	4.715	4.132	1.055	5.317	3.473	3.672	4.83	3.994	4.272
v ₈₃	5.616	7.015	6.033	6.753	7.767	8.377	6.254	0.356	6.854	7.355	7.131	6.295	6.573
	3.513	3.029	4.473	3.013	4.027	4.637	5.114	6.031	4.282	4.782	3.391	2.555	2.833
v ₈₄	1.749	2.478	3.922	2.644	3.658	4.268	4.563	5.48	3.913	4.413	3.022	2.186	2.464
v ₈₅													
v_{86}	2.755	1.186	3.006	3.887	4.383	2.176	3.944	8.314	1.72	1.716	4.265	3.429	3.707
v ₈₇	1.062	1.791	3.361	2.877	3.793	3.449	4.002	4.919	3.37	3.87	3.221	2.385	2.663
v ₈₈	5.668	6.361	5.379	6.805	7.819	8.677	5.6	0.661	8.018	8.217	7.183	6.347	6.625
v_{89}	4.031	5.43	4.448	5.168	6.182	6.792	4.669	1.762	5.269	5.77	5.546	4.71	4.988
v_{90}	2.347	1.745	3.213	2.338	2.611	2.168	3.988	5.755	2.089	2.589	2.682	1.846	2.124
v_{91}	0	2.191	3.659	2.83	3.057	2.614	4.434	6.247	2.535	3.035	3.174	2.338	2.616
v_{92}	2.191	0	1.824	3.003	3.266	2.516	2.762	7.132	2.06	2.056	3.381	2.545	2.823
v_{93}	3.659	1.824	0	4.48	4.743	3.941	1.832	6.202	3.501	3.481	4.858	4.022	4.3
v_{94}	2.83	3.003	4.48	0	3.58	4.19	5.773	7.291	3.835	4.335	1.72	0.851	1.162
v_{95}	3.057	3.266	4.743	3.58	0	1.838	5.363	7.426	2.739	2.794	3.285	2.449	2.727
v ₉₆	2.614	2.516	3.941	4.19	1.838	0	5.273	8.405	0.901	0.956	4.264	3.428	3.706
v ₉₇	4.434	2.762	1.832	5.773	5.363	5.273	0	6.372	4.419	4.618	5.776	4.94	5.218
v ₉₈	6.247	7.132	6.202	7.291	7.426	8.405	6.372	0	8.679	8.878	7.295	6.459	6.737
	2.535	2.06	3.501	3.835	2.739	0.901	4.419	8.679	0.075	0.5	3.948	3.112	3.39
v ₉₉	3.035	2.056	3.481	4.335	2.794	0.956	4.618	8.878	0.5	0.3	4.776	3.94	4.218
v ₁₀₀						4.264		7.295			0		
v_{101}	3.174	3.381	4.858	1.72	3.285		5.776		3.948	4.776		0.868	0.605
v ₁₀₂	2.338	2.545	4.022	0.851	2.449	3.428	4.94	6.459	3.112	3.94	0.868	0	0.31
v_{103}	2.616	2.823	4.3	1.162	2.727	3.706	5.218	6.737	3.39	4.218	0.605	0.31	0
v_{104}	3.47	3.677	5.154	2.015	3.581	4.56	6.072	7.591	4.244	5.072	0.294	1.163	0.887
v_{105}	2.979	1.133	1.381	4.318	3.908	3.345	2.611	6.87	2.889	3.184	4.491	3.655	3.933
v_{106}	1.919	0.461	2.107	3.258	2.848	2.865	2.6	6.499	1.975	2.704	3.431	2.595	2.873
v_{107}	2.645	0.799	1.732	3.984	3.574	2.485	2.891	7.15	2.029	2.324	4.157	3.321	3.599
v_{108}	2.996	1.274	2.083	4.335	3.972	2.134	3.242	7.501	1.678	1.973	4.508	3.672	3.95
v_{109}	2.737	1.272	1.665	4.076	4.232	2.394	2.895	7.242	1.938	2.233	4.63	3.413	3.691
v_{110}	4.422	4.985	4.15	5.466	5.601	6.58	5.301	2.605	4.701	5.43	5.639	4.803	5.081
v_{111}	6.324	4.652	3.722	7.663	7.253	7.163	2.146	8.151	6.38	7.002	7.836	7	7.278
v_{112}	3.433	3.64	4.986	2.872	3.544	4.523	5.665	5.289	4.207	5.035	3.045	2.209	2.487
v_{113}	3.432	2.163	3.588	4.771	4.215	2.377	4.725	8.985	1.951	2.216	4.944	4.108	4.386
v ₁₁₄	7.573	6.304	7.729	8.912	8.187	6.349	8.866	13.126	5.923	6.188	9.085	8.249	8.527
v ₁₁₅	4.662	2.99	1.458	6.001	5.591	5.501	0.56	6.489	4.718	5.34	6.174	5.338	5.616
	3.463	3.67	5.147	2.902	3.574	4.553	6.065	6.246	4.237	5.065	3.075	2.239	2.517
v ₁₁₆	2.381	2.588	4.065	1.82	2.492	3.471	4.983	5.67	3.155	3.983	1.993	1.157	1.435
v ₁₁₇			2.166	6.107	5.697	5.607		5.407			6.28		
v_{118}	4.768	3.096					1.227		4.824	5.446		5.444	5.722
v_{119}	4.574	2.501	1.465	5.913	5.503	4.713	2.695	6.954	4.257	4.552	6.086	5.25	5.528
v_{120}	7.338	5.503	4.229	8.677	9.593	7.755	5.699	9.719	7.329	7.594	8.85	8.014	8.292
v_{121}	11.653	9.818	8.544	12.992	13.907	12.069	9.775	14.034	11.643	11.908	13.165	12.329	12.607
v_{122}	5.459	3.787	2.857	6.986	6.388	6.298	3.027	5.963	5.515	6.137	7.159	6.323	6.601
v_{123}	2.822	2.365	1.53	3.929	3.987	4.004	2.209	4.603	3.114	3.843	4.102	3.266	3.544
v_{124}	1.224	2.024	3.088	2.005	2.312	3.291	3.767	5.989	2.591	3.419	2.178	1.342	1.62
v_{125}	5	3.165	1.891	6.339	5.929	5.395	3.122	7.381	4.939	5.234	6.512	5.676	5.954
v_{126}	5.084	4.096	3.166	6.535	6.013	6.607	3.336	2.949	5.14	6.446	6.708	5.872	6.15
v_{127}	2.101	1.568	2.874	2.875	3.28	4.259	3.553	5.095	2.844	3.573	3.048	2.212	2.49
v_{128}	2.565	2.772	4.04	2.004	2.676	3.655	4.719	5.113	3.339	4.167	2.177	1.341	1.619
v_{129}	2.722	1.601	3.026	4.022	2.753	0.915	4.163	8.423	0.459	0.754	4.195	3.359	3.637
NODES	v_{104}	v_{105}	v ₁₀₆	v ₁₀₇	v ₁₀₈	v ₁₀₉	v_{110}	v_{111}	v_{112}	v_{113}	v_{114}	v_{115}	v ₁₁₆
v_0	6.482	4.518	4.145	3.658	3.307	3.567	6.84	8.336	7.133	3.881	2.791	6.674	6.475
v_1	3.716	1.414	0.354	1.08	1.431	1.172	3.251	4.759	3.679	2.676	6.817	3.097	3.709
v_2	3.616	2.678	1.395	2.344	2.695	2.436	3.067	5.865	1.549	3.94	8.081	4.203	2.506
v ₃	2.302	3.38	2.32	3.046	3.397	3.138	3.957	6.725	1.433	3.833	7.974	5.063	1.463
	4.161	4.267	2.984	3.933	4.284	4.025	4.656	7.454	0.51	5.692	9.833	5.792	1.468
v ₄													
v_5	3.438	2.368	1.308	2.065	1.714	1.974	4.034	5.713	3.401	2.193	6.334	4.051	3.431
v_6	10.381	7.494	7.658	7.774	8.125	7.778	8.712	2.993	9.568	9.608	13.749	5.443	10.525

v_7	7.739	5.774	5.401	4.914	4.563	4.823	10.706	9.88	7.702	2.81	5.347	7.653	7.732
v_8	11.17	8.282	8.447	8.562	8.913	8.566	9.501	3.781	10.357	10.396	14.537	6.231	11.314
v_9	3.249	3.453	2.17	3.119	3.47	3.592	3.842	6.64	0.848	4.78	8.921	4.978	1.805
v_{10}	3.545	3.756	2.473	3.422	3.773	3.895	4.145	6.943	0.592	5.076	9.217	5.281	1.518
v_{11}	3.682	3.812	2.529	3.478	3.829	3.57	4.201	6.999	0.941	5.213	9.354	5.337	1.898
v_{12}	3.121	3.418	2.358	3.084	3.435	3.176	3.525	6.763	2.459	3.871	8.012	5.101	3.114
v_{13}	6.428	2.131	3.381	2.843	3.194	2.935	5.424	4.299	6.26	4.915	7.97	2.37	6.421
v_{14}	6.43	2.133	3.383	2.845	3.196	2.937	5.426	2.33	6.262	4.701	9.759	2.372	6.423
v_{15}	4.695	2.494	1.972	2.773	3.124	2.778	2.04	4.194	3.799	4.629	8.77	2.532	4.756
v_{16}	5.546	1.411	2.498	2.123	2.474	2.215	4.541	2.599	5.377	3.979	8.12	0.517	5.539
v_{17}	4.292	4.398	3.115	4.064	4.415	4.156	4.787	7.585	0.641	5.823	9.964	5.923	1.599
v ₁₈	3.941	4.048	2.765	3.714	4.065	3.806	4.437	7.235	0.29	5.472	9.613	5.573	1.248
v ₁₉	3.465	4.543	3.483	4.209	4.56	4.301	5.358	7.888	0.742	4.996	9.137	6.226	0.217
v_{20}	5.303	1.726	1.842	1.858	2.209	1.95	3.796	3.189	4.632	3.692	7.833	1.527	5.032
	3.087	3.178	2.178	2.917	3.268	3.009	3.64	6.438	1.604	4.834	8.975	4.776	2.561
v ₂₁	3.99	4.264	3.264	4.003	4.354	4.095	4.726	7.524	0.819	5.738	9.879	5.862	1.777
v ₂₂	4.93	4.624	2.857	4.435	4.786	4.527	1.204	5.856	4.294	5.305	9.446	4.194	5.251
v ₂₃		2.97	2.131	2.959	3.31		4.441	6.638		3.746			1.877
v_{24}	1.578					3.051			1.847		7.887	4.976	
v ₂₅	8.13	4.553	4.669	4.781	5.132	4.873	7.191	0 0 427	7.555	6.615	10.756	2.45	7.955
v_{26}	5.693	2.116	2.232	2.344	2.695	2.436	4.754	2.437	5.118	4.179	8.32	0.775	5.519
v_{27}	3.306	1.325	0.486	1.146	1.497	1.619	3.146	4.825	3.087	2.426	6.566	3.163	3.458
v_{28}	3.893	1.619	0.78	1.677	1.326	1.586	3.509	5.188	3.114	1.806	5.946	3.526	3.144
v_{29}	4.157	0.84	0.611	0.506	0.857	1.95	5.663	5.33	4.318	1.875	6.016	3.668	4.348
v_{30}	4.051	0.734	0.505	0.4	0.751	0.492	4.973	4.64	3.693	1.982	6.123	2.978	3.723
v_{31}	7.512	5.686	5.802	5.965	6.316	6.057	2.124	6.891	4.808	7.725	11.866	5.229	5.765
v_{32}	2.741	2.122	1.283	1.788	2.192	1.88	4.012	5.691	2.607	2.629	6.77	4.029	2.637
v_{33}	7.339	3.762	3.878	4.041	4.392	4.133	5.744	5.933	5.654	5.81	9.951	3.314	6.611
v_{34}	7.176	3.599	3.715	3.878	4.229	3.97	5.168	5.357	6.024	5.671	9.812	3.175	6.981
v_{35}	2.059	2.708	1.869	2.374	2.725	2.466	4.383	6.58	1.789	3.688	7.829	4.918	1.819
v_{36}	4.638	2.018	1.789	1.223	0.872	1.132	4.714	6.112	4.319	1.618	5.759	4.45	4.349
v_{37}	9.228	4.602	5.767	5.314	5.665	5.071	7.912	6.595	8.748	5.487	8.542	4.859	8.91
v_{38}	5.629	3.012	3.034	3.292	3.643	3.384	2.192	4.195	3.951	4.819	8.96	2.533	4.908
v_{39}	4.848	3.104	3.126	3.384	3.735	3.476	1.752	4.426	3.511	4.861	9.002	2.764	4.468
v_{40}	3.726	2.374	1.535	2.067	1.716	2.513	4.265	5.944	3.632	1.959	5.931	4.282	3.662
v_{41}	5.573	0.716	2.112	1.428	1.779	1.52	4.257	3.83	5.093	3.284	7.425	1.204	5.025
v_{42}	14.562	10.975	11.091	11.254	11.605	11.367	12.142	6.422	12.998	13.037	17.178	8.872	13.955
v_{43}	7.254	3.677	3.793	3.956	4.307	4.048	5.113	4.891	5.569	5.725	9.866	3.229	6.526
v_{44}	4.208	0.577	0.662	0.283	0.634	0.375	4.977	4.549	3.85	2.139	6.28	2.357	3.88
v_{45}	3.844	3.293	1.155	1.821	2.172	1.913	2.156	4.891	2.527	3.473	7.614	3.229	3.484
v_{46}	4.147	3.406	1.426	2.092	2.443	3.799	1.787	5.144	2.83	3.841	7.982	3.482	3.787
	6.993	6.268	6.384	6.547	6.898	6.66	1.685	7.388	4.369	8.222	12.363	5.726	5.326
$v_{47} = v_{48}$	6.345	3.181	3.297	3.46	3.811	3.552	3.896	4.41	4.752	5.244	9.385	2.748	5.709
	3.031	2.884	2.045	2.848	2.497	3.023	5.208	6.86	3.151	4.213	8.185	5.198	3.181
v ₄₉	3.387	2.769	1.93	2.732	2.381	2.908	4.736	6.415	3.253	2.818	6.959	4.753	3.283
v ₅₀	9.346	7.52	7.636	7.799	8.15	7.912	3.958	8.725	6.642	9.559	13.7	7.063	7.599
v ₅₁	_	-			2.867		-	6.425		3.533	7.674	4.763	
v ₅₂	1.762	2.85	2.011	2.516		2.989	4.056		1.965				1.995
v_{53}	3.707	2.634	0.813	1.479	1.83	3.027	2.798	4.632	2.906	3.215	7.356	2.97	3.561
v_{54}	6.683	3.106	3.222	3.385	3.736	3.477	4.542	4.32	4.998	5.154	9.295	2.658	5.955
v_{55}	4.077	3.502	2.502	3.168	3.519	3.641	3.964	6.762	2.48	4.837	8.978	5.1	3.437
v_{56}	4.465	4.108	1.73	2.679	3.03	2.771	2.45	5.808	2.85	4.275	8.416	4.146	3.807
v_{57}	4.733	3.004	2.482	3.283	3.634	3.375	1.884	4.704	3.643	5.139	9.28	3.042	4.6
v_{58}	5.737	1.44	2.69	2.152	2.503	2.244	4.733	3.608	5.569	5.607	8.662	1.679	5.73
v_{59}	4.306	4.255	2.972	3.921	4.272	4.013	4.644	7.442	2.005	5.837	9.978	5.78	2.962
v_{60}	7.978	6.014	5.641	5.154	4.803	5.063	8.336	9.832	7.941	4.689	1.119	8.17	7.971
v_{61}	4.547	1.947	0.664	1.613	1.964	1.705	2.441	5.176	2.932	3.209	7.35	3.514	3.889
v_{62}	2.937	1.999	0.716	1.665	2.016	1.757	2.769	5.233	2.9	3.261	7.402	3.571	2.93
v_{63}	3.393	1.734	0.674	1.4	1.751	1.492	3.4	5.079	3.356	2.354	6.494	3.417	3.386
v_{64}	3.554	1.781	0.552	1.447	1.798	1.539	2.951	5.069	2.892	3.127	7.268	3.407	3.547
v_{65}	12.032	9.144	9.309	9.424	9.775	9.516	10.363	4.643	11.219	11.258	15.399	7.093	12.176
v_{66}	4.32	1.463	0.849	1.489	1.84	1.581	4.441	4.108	4.283	3.162	7.303	2.446	4.313
	1	1	1	1	1	1	1	1	1	1			1

v_{67}	9.495	6.18	6.772	6.46	6.811	6.464	7.826	1.679	8.682	8.294	12.435	4.129	9.639
v_{68}	9.311	5.85	5.839	6.13	6.481	6.222	8.549	1.349	9.405	7.964	12.105	3.799	9.304
v ₆₉	3.44	3.851	2.568	3.517	3.868	3.609	4.24	7.038	0.687	4.971	9.112	5.376	1.413
v ₇₀	4.297	1.881	1.379	1.021	0.67	0.93	5.903	5.57	4.26	1.559	5.7	3.908	4.29
	4.292	1.433	1.504	0.573	0.222	0.482	5.833	5.405	4.255	1.554	5.695	3.213	4.285
v ₇₁	4.072	1.783	1.637	0.923	0.572	1.922	4.43	5.828	4.035	1.334	5.475	3.563	4.065
v ₇₂	_		-							8.862			
v_{73}	7.003	6.747	5.372	7.027	7.378	7.119	2.017	8.028	4.701		13.003	6.366	5.658
v_{74}	8.701	7.431	7.06	7.711	8.062	7.803	3.715	8.712	6.399	9.546	13.687	7.05	7.356
v_{75}	3.87	3.382	2.025	2.53	3.399	3.14	3.779	6.727	3.257	3.835	7.976	5.065	3.863
v76	2.417	2.972	1.208	2.638	2.989	2.73	3.261	5.725	2.38	3.425	7.566	4.063	2.41
v_{77}	3.804	3.313	2.253	2.979	3.33	3.071	4.756	6.658	3.767	3.766	7.907	4.996	3.797
v_{78}	4.151	1.849	0.566	1.515	1.866	1.988	2.696	5.083	3.285	3.111	7.252	3.421	4.242
v_{79}	4.722	4.67	3.387	4.336	4.687	4.809	5.059	7.857	2.42	6.253	10.394	6.195	3.377
v_{80}	3.678	3.187	2.127	2.853	3.204	3.326	4.63	6.532	3.641	3.64	7.781	4.87	3.671
v_{81}	5.059	3.171	2.691	2.311	1.96	2.22	5.417	6.989	5.022	2.203	5.687	5.327	5.052
v_{82}	5.126	1.664	1.654	1.944	2.295	2.036	4.246	2.945	4.718	3.779	7.92	1.283	5.119
v_{83}	7.427	6.863	5.796	7.143	7.494	7.147	2.441	8.144	5.125	8.978	13.119	6.482	6.082
v_{84}	3.687	3.817	2.534	3.483	3.834	3.575	4.206	7.004	0.946	5.218	9.359	5.342	1.903
v_{85}	3.318	3.266	1.983	2.932	3.283	3.405	3.655	6.453	1.118	4.528	8.669	4.791	2.075
v_{86}	4.561	2.145	1.643	1.285	0.934	1.194	6.167	5.834	4.524	1.823	5.964	4.172	4.554
v_{87}	3.517	2.579	1.296	2.245	2.596	2.337	3.094	5.892	2.028	3.841	7.982	4.23	2.985
v_{88}	7.479	6.209	5.838	6.489	6.84	6.581	2.493	7.49	5.177	8.324	12.465	5.828	6.134
v_{89}	5.842	5.278	4.211	5.558	5.909	5.65	0.856	6.559	3.54	7.393	11.534	4.897	4.497
v_{90}	2.978	2.533	1.473	2.199	2.55	2.672	3.93	5.878	2.941	2.986	7.127	4.216	2.971
v_{91}	3.47	2.979	1.919	2.645	2.996	2.737	4.422	6.324	3.433	3.432	7.573	4.662	3.463
v_{92}	3.677	1.133	0.461	0.799	1.274	1.272	4.985	4.652	3.64	2.163	6.304	2.99	3.67
v_{93}	5.154	1.381	2.107	1.732	2.083	1.665	4.15	3.722	4.986	3.588	7.729	1.458	5.147
v_{94}	2.015	4.318	3.258	3.984	4.335	4.076	5.466	7.663	2.872	4.771	8.912	6.001	2.902
v ₉₅	3.581	3.908	2.848	3.574	3.972	4.232	5.601	7.253	3.544	4.215	8.187	5.591	3.574
v ₉₆	4.56	3.345	2.865	2.485	2.134	2.394	6.58	7.163	4.523	2.377	6.349	5.501	4.553
v ₉₇	6.072	2.611	2.6	2.891	3.242	2.895	5.301	2.146	5.665	4.725	8.866	0.56	6.065
v ₉₈	7.591	6.87	6.499	7.15	7.501	7.242	2.605	8.151	5.289	8.985	13.126	6.489	6.246
v ₉₉	4.244	2.889	1.975	2.029	1.678	1.938	4.701	6.38	4.207	1.951	5.923	4.718	4.237
	5.072	3.184	2.704	2.324	1.973	2.233	5.43	7.002	5.035	2.216	6.188	5.34	5.065
v ₁₀₀	0.294	4.491	3.431	4.157	4.508	4.63	5.639	7.836	3.045	4.944	9.085	6.174	3.075
v ₁₀₁	1.163	3.655	2.595	3.321	3.672	3.413	4.803	7.030	2.209	4.108	8.249	5.338	2.239
v ₁₀₂	 			3.599	3.95			7.278		4.386			
v_{103}	0.887	3.933	2.873			3.691	5.081		2.487		8.527	5.616	2.517
v_{104}	0	4.785	3.725	4.451	4.802	4.543	5.933	8.13	3.339	5.238	9.379	6.468	3.369
v_{105}	4.785	0	1.249	0.86	1.211	0.952	4.98	4.553	4.427	2.716	6.857	1.927	4.457
v_{106}	3.725	1.249	0	0.905	1.256	0.997	3.213	4.669	3.588	2.585	6.726	3.007	3.618
v_{107}	4.451	0.86	0.905	0	0.351	0.092	5.26	4.832	4.093	2.132	6.273	2.64	4.123
v_{108}	4.802	1.211	1.256	0.351	0	0.259	5.611	5.183	4.444	1.781	5.922	2.991	4.474
v_{109}	4.543	0.952	0.997	0.092	0.259	0	5.352	4.924	4.185	2.041	6.182	2.732	4.215
v_{110}	5.933	4.98	3.213	5.26	5.611	5.352	0	6.212	3.319	5.661	9.802	4.55	4.276
v_{111}	8.13	4.553	4.669	4.832	5.183	4.924	6.212	0	7.555	6.615	10.756	2.45	7.955
v_{112}	3.339	4.427	3.588	4.093	4.444	4.185	3.319	7.555	0	5.182	9.323	5.752	0.958
v_{113}	5.238	2.716	2.585	2.132	1.781	2.041	5.661	6.615	5.182	0	5.351	5.148	4.95
v_{114}	9.379	6.857	6.726	6.273	5.922	6.182	9.802	10.756	9.323	5.351	0	9.289	9.09
v_{115}	6.468	1.927	3.007	2.64	2.991	2.732	4.55	2.45	5.752	5.148	9.289	0	6.294
v_{116}	3.369	4.457	3.618	4.123	4.474	4.215	4.276	7.955	0.958	4.95	9.09	6.294	0
v_{117}	2.287	3.375	2.536	3.041	3.392	3.133	3.7	6.873	1.45	3.868	8.008	5.212	1.48
v_{118}	6.574	2.997	3.113	3.276	3.627	3.368	3.818	3.117	5.58	5.254	9.395	1.456	6.538
v_{119}	6.38	1.516	2.919	2.228	2.579	2.32	4.596	4.585	5.798	5.635	8.69	2.012	6.354
v_{120}	9.144	4.518	5.683	5.23	5.581	5.322	7.36	3.97	8.562	5.405	8.46	5.895	9.118
v_{121}	13.459	8.833	9.998	9.545	9.896	9.637	11.675	10.826	12.877	9.719	12.774	9.091	13.433
v_{122}	7.453	3.688	3.804	3.967	4.318	4.059	5.047	5.041	6.136	5.945	10.086	3.256	7.094
v_{123}	4.396	2.36	2.382	2.64	2.991	2.732	2.633	4.099	3.079	4.523	8.664	2.438	4.037
v_{124}	2.472	2.811	1.972	2.477	2.828	2.569	4.019	5.657	2.416	3.304	7.444	3.996	2.446
v ₁₂₅	6.806	2.198	3.345	2.91	3.261	2.667	5.022	2.685	6.224	6.861	9.916	2.438	6.78
v ₁₂₆	7.002	3.997	4.113	4.276	4.627	4.368	2.033	5.226	5.685	6.254	10.395	3.565	6.643
120	1												

		1				1	1		1		1		
v_{127}	3.342	2.356	1.356	2.022	2.373	2.114	3.125	5.443	2.025	3.458	7.598	3.782	2.983
v_{128}	2.471	3.559	2.72	3.225	3.576	3.698	3.143	6.609	1.521	4.052	8.192	4.948	1.944
v_{129}	4.489	2.154	1.947	1.57	1.219	1.479	5.023	6.053	4.433	1.462	5.434	4.392	4.463
NODES	v_{117}	v_{118}	v_{119}	v_{120}	v_{121}	v_{122}	v_{123}	v_{124}	v_{125}	v_{126}	v_{127}	v_{128}	v_{129}
v_0	5.393	6.78	6.074	5.844	10.158	7.471	6.049	4.829	7.3	7.78	4.983	5.577	2.819
v_1	2.627	3.203	3.009	5.773	10.088	3.894	1.662	2.063	3.435	4.203	1.394	2.811	2.038
v_2	1.161	4.031	4.249	7.013	11.328	4.587	1.53	1.37	4.675	4.136	0.476	0.603	3.302
v_3	0.381	4.921	4.975	7.739	12.054	5.477	2.42	1.067	5.401	5.026	1.366	0.496	3.084
v_4	1.96	5.62	5.838	8.602	12.917	6.176	3.119	2.926	6.264	5.725	2.065	1.561	4.943
v_5	2.349	4.157	3.963	7.57	11.884	4.848	2.447	1.785	4.389	4.473	2.662	2.533	1.311
v_6	9.183	4.749	7.578	6.962	13.818	3.854	6.773	8.135	5.678	6.747	8.046	8.625	9.046
v_7	6.65	8.723	6.149	5.919	10.233	9.414	8.086	6.086	7.375	9.723	6.24	6.834	4.245
v_8	9.972	5.538	8.366	7.75	14.606	4.643	7.562	8.924	6.466	7.536	8.835	9.414	9.834
v_9	1.328	4.806	5.024	7.788	12.103	5.362	2.305	2.014	5.45	4.911	1.251	0.674	4.031
v_{10}	1.344	5.109	5.327	8.091	12.406	5.665	2.608	2.31	5.753	5.214	1.554	1.051	4.327
v_{11}	1.761	5.165	5.383	8.147	12.462	5.721	2.664	2.504	5.809	5.27	1.61	1.107	4.464
v_{12}	2.032	4.489	4.707	7.471	11.786	5.045	1.988	0.875	5.133	4.594	0.66	1.513	3.161
v ₁₃	5.339	3.441	0.867	2.553	6.868	4.132	2.804	4.362	2.093	4.441	4.148	5.314	4.137
v_{14}	5.341	3.442	1.808	3.671	8.656	4.133	2.806	4.364	0.356	4.442	4.15	5.316	4.139
v ₁₅	3.414	1.571	2.578	5.342	9.657	2.127	1.087	2.449	3.004	1.676	2.277	2.856	4.067
v ₁₆	4.457	1.604	1.495	4.259	8.574	3.404	1.921	3.479	1.921	3.713	3.265	4.431	3.417
v ₁₇	2.091	5.751	5.969	8.733	13.048	6.307	3.25	3.057	6.395	5.856	2.196	1.692	5.074
v ₁₈	1.74	5.401	5.619	8.383	12.698	5.957	2.9	2.706	6.045	5.506	1.846	1.342	4.723
v ₁₉	1.264	6.322	6.138	8.902	13.217	6.878	3.821	2.23	6.564	6.427	2.767	1.728	4.247
	3.95	1.634	1.662	4.427	8.742	2.325	1.176	2.734	2.089	2.634	2.52	3.686	3.13
$v_{20} = v_{21}$	1.382	4.604	4.822	7.586	11.901	5.16	2.103	1.943	5.248	4.709	1.049	0.825	4.085
	2.269	5.69	5.908	8.672	12.987	6.246	3.189	3.029	6.334	5.795	2.135	1.632	4.989
v ₂₂	3.906	3.79	4.24	7.004	11.319	4.346	2.277	3.663	4.666	1.331	2.769	3.348	4.667
v ₂₃	0.795	5.082	4.888	7.652	11.967	5.961	2.904	0.98	5.314	5.51	1.85	0.979	2.997
v ₂₄	6.873	3.117	4.585	3.97	10.826	5.041	4.099	5.657	2.685	5.226	5.443	6.609	6.053
v ₂₅	4.437	0.764	2.148	5.989	9.228	2.48	1.662	3.22	2.575	2.789	3.006	4.172	3.617
v ₂₆	2.376	3.269	3.075	5.839	10.154	3.96	1.559	1.503	3.501	3.585	1.289	2.56	1.787
v ₂₇													
v ₂₈	2.062 3.266	3.632 3.774	3.438	7.183 7.252	11.497 11.566	4.323 4.465	1.922 3.043	1.498 2.702	3.864	3.948 4.774	1.652 2.246	2.246 3.45	1.167
v_{29}													1.313
v_{30}	2.641	3.084	2.102	5.104	9.419	3.775	2.353	2.077	2.784	4.084	1.622	2.825	7.162
v_{31}	5.189	4.147	5.694	8.459	12.774	4.703	4.354	5.508	6.121	1.689	4.614	4.632	7.163
v_{32}	1.555	4.135	3.941	6.705	11.02	4.826	2.425	1.181	4.367	4.451	2.058	1.739	1.747
v_{33}	5.266	1.12	3.779	6.544	10.859	1.067	3.293	4.279	4.206	3.779	4.129	4.708	5.248
v_{34}	5.639	0.981	3.64	6.405	10.72	0.491	3.229	4.591	4.067	3.203	4.502	5.081	5.109
v_{35}	0.737	5.024	4.83	7.594	11.909	5.903	2.846	0.922	5.256	5.452	1.792	0.921	2.939
v_{36}	3.267	4.556	3.46	6.995	11.309	5.247	3.825	2.703	4.142	5.556	2.857	3.451	1.056
v_{37}	7.828	5.929	3.356	2.634	4.231	6.62	5.292	6.85	4.582	6.929	6.636	7.802	6.922
v_{38}	3.566	1.451	2.768	5.532	9.847	2.007	1.277	2.639	3.194	1.556	2.429	3.008	4.257
v_{39}	3.126	1.978	2.81	5.574	9.889	2.534	1.163	2.883	3.236	2.083	1.989	2.568	4.299
v_{40}	2.58	4.388	4.295	7.337	11.651	5.079	2.678	2.016	4.62	4.704	2.893	2.764	0.763
v_{41}	3.943	2.274	0.8	3.802	8.117	2.965	1.637	3.195	1.475	3.274	2.981	4.147	2.722
v_{42}	12.613	8.179	11.007	10.391	17.247	7.284	10.203	11.565	9.107	10.177	11.476	12.055	12.475
v_{43}	5.181	1.035	3.694	6.459	10.774	1.37	3.208	4.194	4.121	3.148	4.044	4.623	5.163
v_{44}	2.798	2.993	1.945	4.947	9.262	3.684	2.357	2.234	2.627	3.993	1.779	2.982	1.577
v_{45}	2.139	3.119	3.275	6.039	10.354	3.675	0.556	1.896	3.701	3.224	1.002	1.581	2.835
v_{46}	2.442	2.75	3.528	6.292	10.607	3.306	0.669	2.199	3.954	2.855	1.305	1.884	3.203
v_{47}	4.75	4.644	6.191	8.956	13.271	5.2	3.683	5.069	6.618	2.186	4.175	4.193	6.073
v_{48}	4.367	0.63	3.213	5.978	10.293	1.32	1.957	3.319	3.64	1.931	3.23	3.809	4.682
v_{49}	2.099	5.304	5.11	9.591	13.905	5.995	3.594	1.919	5.536	5.62	2.887	2.283	2.751
v_{50}	2.201	4.859	4.665	8.195	12.509	5.55	3.149	2.021	5.091	5.175	2.782	2.385	1.774
v_{51}	7.023	5.981	7.528	10.293	14.608	6.537	6.188	7.342	7.955	3.523	6.448	6.466	8.997
v_{52}	0.913	4.869	4.675	7.439	11.754	5.292	2.456	0.767	5.101	4.841	1.735	1.097	2.784
v_{53}	2.479	2.847	3.016	5.78	10.095	3.403	0.927	1.322	3.442	2.952	1.107	1.96	2.577
v_{54}	4.61	0.464	3.123	5.888	10.203	0.798	2.637	3.623	3.55	2.577	3.473	4.052	4.592
-			1										

v_{55}	2.372	4.928	5.146	7.91	12.225	5.484	2.427	2.267	5.572	5.033	1.373	1.814	4.199
v_{56}	2.462	3.414	4.192	6.956	11.271	3.97	1.235	2.219	4.618	3.519	1.325	1.904	3.637
v_{57}	3.258	2.31	3.088	5.852	10.167	2.866	1.125	2.487	3.514	2.415	2.121	2.7	3.742
v_{58}	4.648	2.749	0.71	3.244	7.559	3.44	2.113	3.671	1.402	3.749	3.457	4.623	3.446
	2.385	5.608	5.826	8.59	12.905	6.164	3.107	2.947	6.252	5.713	2.053	1.828	5.088
v ₅₉				7.341		8.967				9.276			
v_{60}	6.889	8.276	7.571		11.655		7.545	6.325	8.797		6.479	7.073	4.315
v_{61}	2.544	3.404	3.56	6.324	10.639	3.96	0.841	2.301	3.986	3.509	1.407	1.986	2.571
v_{62}	1.848	3.449	3.617	6.381	10.696	4.005	1.169	0.691	4.043	3.554	1.735	2.032	2.623
v_{63}	2.304	3.523	3.329	6.093	10.408	4.214	1.813	1.74	3.755	3.839	1.543	2.488	1.715
v_{64}	2.465	3.285	3.453	6.217	10.532	3.841	1.364	1.308	3.879	3.39	1.094	1.946	2.489
v_{65}	10.834	6.4	9.228	8.612	15.468	5.505	8.424	9.786	7.328	8.398	9.697	10.276	10.696
v_{66}	3.231	2.552	1.962	4.726	9.041	3.243	1.821	2.667	2.388	3.552	1.957	3.415	2.6
v_{67}	8.297	3.864	6.264	5.648	12.504	2.968	5.887	7.249	4.364	5.861	7.16	7.739	7.732
v_{68}	8.222	4.586	5.934	5.318	12.174	3.691	5.448	7.006	4.034	6.584	6.792	8.462	7.402
v_{69}	1.239	5.204	5.422	8.186	12.501	5.76	2.703	2.205	5.848	5.309	1.649	1.146	4.222
v_{70}	3.208	4.014	3.249	6.936	11.25	4.705	3.283	2.644	4.083	5.014	2.486	3.392	0.997
v_{71}	3.203	3.849	2.801	6.931	11.245	4.54	3.213	2.639	3.483	4.849	2.611	3.387	0.992
v ₇₂	2.983	4.272	3.151	6.711	11.025	4.963	3.563	2.419	3.833	5.272	2.573	3.167	0.772
	5.082	5.284	6.831	9.596	13.911	5.84	4.015	5.401	7.258	2.826	4.507	4.525	6.405
v ₇₃	6.78	5.968	7.515	10.28	14.595	6.524		7.099	7.942	3.51	6.205	6.223	8.984
v ₇₄		+					5.713						
v_{75}	2.781	4.459	4.627	7.391	11.706	5.015	2.179	0.491	5.053	4.564	1.458	2.311	3.125
v_{76}	1.328	3.941	4.109	6.873	11.188	4.497	1.661	0.171	4.535	4.046	0.94	1.512	2.715
v_{77}	2.715	5.102	4.908	7.672	11.987	5.793	3.156	1.558	5.334	5.418	2.435	2.899	3.056
v_{78}	2.897	3.299	3.467	6.231	10.546	3.855	0.907	1.654	3.893	3.404	1.76	2.339	2.473
v_{79}	2.801	6.023	6.241	9.005	13.32	6.579	3.522	3.362	6.667	6.128	2.468	2.244	5.504
v_{80}	2.589	4.976	4.782	7.546	11.861	5.667	3.03	1.432	5.208	5.292	2.309	2.773	2.93
v_{81}	3.97	5.433	4.539	7.581	11.895	6.124	3.83	3.406	5.221	6.433	3.56	4.154	0.741
v_{82}	4.037	1.28	1.748	4.513	8.828	1.971	1.262	2.82	2.175	2.281	2.606	3.772	3.217
v_{83}	5.506	5.4	6.947	9.712	14.027	5.956	4.439	5.825	7.374	2.942	4.931	4.949	6.829
v_{84}	1.766	5.17	5.388	8.152	12.467	5.726	2.669	2.509	5.814	5.275	1.615	1.112	4.469
v_{85}	1.397	4.619	4.837	7.601	11.916	5.175	2.118	1.958	5.263	4.724	1.064	1.017	4.1
v_{86}	3.472	4.278	3.513	7.2	11.514	4.969	3.547	2.908	4.347	5.278	2.75	3.656	1.261
	1.64	4.058	4.276	7.04	11.355	4.614	1.557	1.271	4.702	4.163	0.124	1.082	3.203
v ₈₇	5.558	4.746	6.293	9.058	13.373	5.302	4.491	5.877	6.72	2.288	4.983	5.001	7.762
v ₈₈	3.921		5.362	8.127	12.442	4.371	2.854	4.24		1.357	3.346		5.244
v_{89}		3.815							5.789			3.364	
v_{90}	1.889	4.322	4.128	6.892	11.207	5.013	2.33	0.732	4.554	4.638	1.609	2.073	2.276
v_{91}	2.381	4.768	4.574	7.338	11.653	5.459	2.822	1.224	5	5.084	2.101	2.565	2.722
v_{92}	2.588	3.096	2.501	5.503	9.818	3.787	2.365	2.024	3.165	4.096	1.568	2.772	1.601
v_{93}	4.065	2.166	1.465	4.229	8.544	2.857	1.53	3.088	1.891	3.166	2.874	4.04	3.026
v_{94}	1.82	6.107	5.913	8.677	12.992	6.986	3.929	2.005	6.339	6.535	2.875	2.004	4.022
v_{95}	2.492	5.697	5.503	9.593	13.907	6.388	3.987	2.312	5.929	6.013	3.28	2.676	2.753
v_{96}	3.471	5.607	4.713	7.755	12.069	6.298	4.004	3.291	5.395	6.607	4.259	3.655	0.915
v_{97}	4.983	1.227	2.695	5.699	9.775	3.027	2.209	3.767	3.122	3.336	3.553	4.719	4.163
v_{98}	5.67	5.407	6.954	9.719	14.034	5.963	4.603	5.989	7.381	2.949	5.095	5.113	8.423
v_{99}	3.155	4.824	4.257	7.329	11.643	5.515	3.114	2.591	4.939	5.14	2.844	3.339	0.459
v_{100}	3.983	5.446	4.552	7.594	11.908	6.137	3.843	3.419	5.234	6.446	3.573	4.167	0.754
v_{101}	1.993	6.28	6.086	8.85	13.165	7.159	4.102	2.178	6.512	6.708	3.048	2.177	4.195
v_{102}	1.157	5.444	5.25	8.014	12.329	6.323	3.266	1.342	5.676	5.872	2.212	1.341	3.359
	1.435	5.722	5.528	8.292	12.607	6.601	3.544	1.62	5.954	6.15	2.49	1.619	3.637
v ₁₀₃	2.287	6.574	6.38	9.144	13.459	7.453	4.396	2.472	6.806	7.002	3.342	2.471	4.489
v ₁₀₄	 	 											
v_{105}	3.375	2.997	1.516	4.518	8.833	3.688	2.36	2.811	2.198	3.997	2.356	3.559	2.154
v_{106}	2.536	3.113	2.919	5.683	9.998	3.804	2.382	1.972	3.345	4.113	1.356	2.72	1.947
v_{107}	3.041	3.276	2.228	5.23	9.545	3.967	2.64	2.477	2.91	4.276	2.022	3.225	1.57
v_{108}	3.392	3.627	2.579	5.581	9.896	4.318	2.991	2.828	3.261	4.627	2.373	3.576	1.219
v_{109}	3.133	3.368	2.32	5.322	9.637	4.059	2.732	2.569	2.667	4.368	2.114	3.698	1.479
v_{110}	3.7	3.818	4.596	7.36	11.675	5.047	2.633	4.019	5.022	2.033	3.125	3.143	5.023
v_{111}	6.873	3.117	4.585	3.97	10.826	5.041	4.099	5.657	2.685	5.226	5.443	6.609	6.053
v_{112}	1.45	5.58	5.798	8.562	12.877	6.136	3.079	2.416	6.224	5.685	2.025	1.521	4.433
v_{113}	3.868	5.254	5.635	5.405	9.719	5.945	4.523	3.304	6.861	6.254	3.458	4.052	1.462
v_{114}	8.008	9.395	8.69	8.46	12.774	10.086	8.664	7.444	9.916	10.395	7.598	8.192	5.434
	1	1	1			1	1		1	1	1	1	

v_{115}	5.212	1.456	2.012	5.895	9.091	3.256	2.438	3.996	2.438	3.565	3.782	4.948	4.392
v_{116}	1.48	6.538	6.354	9.118	13.433	7.094	4.037	2.446	6.78	6.643	2.983	1.944	4.463
v_{117}	0	5.192	5.176	7.94	12.255	5.748	2.691	1.268	5.602	5.297	1.637	0.766	3.285
v_{118}	5.192	0	3.028	6.669	10.108	1.059	2.542	3.528	3.455	2.482	3.378	3.957	4.497
v_{119}	5.176	3.028	0	3.272	7.587	3.772	2.444	4.002	1.964	4.081	3.788	4.954	3.522
v_{120}	7.94	6.669	3.272	0	6.865	9.01	5.209	6.767	4.007	6.845	6.553	7.719	6.839
v_{121}	12.255	10.108	7.587	6.865	0	10.851	9.523	11.081	8.813	11.16	10.867	12.033	11.153
v_{122}	5.748	1.059	3.772	9.01	10.851	0	3.093	4.455	4.156	3.067	4.366	4.945	5.198
v_{123}	2.691	2.542	2.444	5.209	9.523	3.093	0	1.624	3.145	2.656	1.409	2.262	2.879
v_{124}	1.268	3.528	4.002	6.767	11.081	4.455	1.624	0	4.706	4.217	1.111	1.485	2.778
v_{125}	5.602	3.455	1.964	4.007	8.813	4.156	3.145	4.706	0	4.566	4.274	5.44	4.263
v_{126}	5.297	2.482	4.081	6.845	11.16	3.067	2.656	4.217	4.566	0	3.939	4.473	5.475
v_{127}	1.637	3.378	3.788	6.553	10.867	4.366	1.409	1.111	4.274	3.939	0	1.069	3.19
v_{128}	0.766	3.957	4.954	7.719	12.033	4.945	2.262	1.485	5.44	4.473	1.069	0	3.47
v_{129}	3.285	4.497	3.522	6.839	11.153	5.198	2.879	2.778	4.263	5.475	3.19	3.47	0

Appendix C

Table of Demands per Barangay

Table C.1: Demands per Barangay

Node	Demand (m^3)	Node	Demand (m^3)	Node	Demand (m^3)
v_0	0	v_{44}	4.5785	v_{88}	2.9035
v_1	9.9896	v_{45}	5.4237	v_{89}	11.884
v_2	3.1035	v ₄₆	9.2017	v_{90}	9.8903
v_3	11.706	v_{47}	9.1568	v_{91}	5.1186
v_4	2.8667	v ₄₈	3.3872	v_{92}	2.6103
v_5	3.0061	v_{49}	11.394	v_{93}	5.181
v_6	8.0353	v ₅₀	7.7676	v_{94}	2.5386
v_7	4.6618	v_{51}	7.9318	v_{95}	8.5012
v_8	8.0986	v_{52}	10.11	v_{96}	9.8115
v_9	8.5557	v_{53}	9.8442	v_{97}	7.9099
v_{10}	3.9625	v_{54}	9.6259	v_{98}	6.9795
v_{11}	2.7735	v_{55}	10.962	v_{99}	5.9629
v_{12}	5.968	v_{56}	9.138	v_{100}	5.0435
v_{13}	9.5811	v ₅₇	4.4623	v_{101}	3.4251
v_{14}	6.5259	v ₅₈	9.2235	v_{102}	10.803
v_{15}	5.1752	v_{59}	7.399	v_{103}	9.8485
v_{16}	3.0592	v ₆₀	5.3068	v_{104}	9.3496
v_{17}	7.1656	v ₆₁	10.186	v_{105}	11.15
v_{18}	7.2504	v ₆₂	7.3189	v_{106}	9.8045
v_{19}	11.326	v ₆₃	7.567	v_{107}	11.636
v_{20}	9.6733	v_{64}	9.7555	v_{108}	3.6157
v_{21}	10.523	v ₆₅	6.5938	v_{109}	10.03
v_{22}	4.2417	v_{66}	7.7162	v_{110}	7.4813
v_{23}	10.416	v ₆₇	8.1739	v_{111}	11.79
v_{24}	8.4012	v ₆₈	9.6668	v_{112}	6.1863
v_{25}	10.006	v_{69}	2.8296	v_{113}	9.424
v_{26}	4.2771	v ₇₀	10.397	v_{114}	10.549
v_{27}	2.1818	v ₇₁	6.4385	v_{115}	5.2415
v_{28}	2.4182	v ₇₂	6.294	v_{116}	4.3412
v_{29}	9.6683	v ₇₃	5.9388	v_{117}	10.103
v_{30}	7.8353	v_{74}	11.011	v_{118}	11.805
v_{31}	10.865	v ₇₅	2.2611	v_{119}	2.0034
v_{32}	10.432	v ₇₆	4.1811	v_{120}	10.323
v_{33}	6.7749	v_{77}	11.091	v_{121}	3.2554
v_{34}	6.8976	v ₇₈	5.3653	v_{122}	3.296
v_{35}	4.1015	v ₇₉	3.5416	v_{123}	7.022
v_{36}	10.116	v ₈₀	8.9962	v_{124}	11.621
v_{37}	11.36	v ₈₁	8.4553	v_{125}	7.7346
v_{38}	11.791	v ₈₂	4.5679	v_{126}	8.1474
v_{39}	5.2775	v ₈₃	11.715	v_{127}	3.0507
v_{40}	8.2457	v ₈₄	3.1612	v_{128}	6.293
v_{41}	9.3105	v ₈₅	5.9067	v_{129}	7.2159
v_{42}	5.5314	v ₈₆	7.7326		
v_{43}	8.2028	v ₈₇	11.711		

Appendix D

Complete Results for 4 Nodes

Table D.1: Complete Results for 4 Nodes

				Pop Siz	e 5			
Max It	Trial	Best	Worst	Mean	Running Time (s)	Converged?	Success?	Route (v_i)
50	1	1337.798049	1337.798049	1337.798049	4.787205	1	1	010320
	2	1358.105721	1358.105721	1358.105721	3.281154	1	0	012030
	3	1337.798049	1337.798049	1337.798049	3.274301	1	1	0 1 0 3 2 0
	4	1337.798049	1337.798049	1337.798049	9.528831	1	1	010320
	5	2316.808305	2316.808305	2316.808305	1.150295	1	0	0102030
	6	1337.798049	1337.798049	1337.798049	6.387746	1	1	010320
	7	2316.808305	2316.808305	2316.808305	1.128646	1	0	0102030
	8	2316.808305	2316.808305	2316.808305	1.136288	1	0	0102030
	9	1337.798049	1337.798049	1337.798049	4.305360	1	1	010320
	10	1337.798049	1337.798049	1337.798049	5.362330	1	1	010320
	Total	16335.318933	16335.318933	16335.318933	40.342156	10	6	
	Mean	1633.531893	1633.531893	1633.531893	4.034216			
	Std. Dev.	471.547168	471.547168	471.547168	2.675738			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
100	1	1337.798049	1337.798049	1337.798049	4.398033	1	1	0 1 0 3 2 0
	2	1337.798049	1337.798049	1337.798049	7.488567	1	1	010320
	3	1358.105721	1358.105721	1358.105721	4.366015	1	0	012030
	4	1337.798049	1337.798049	1337.798049	3.319373	1	1	0 1 0 3 2 0
	5	1337.798049	1337.798049	1337.798049	3.319236	1	1	0 1 0 3 2 0
	6	1337.798049	1337.798049	1337.798049	7.481626	1	1	0 1 0 3 2 0
	7	1337.798049	1337.798049	1337.798049	10.605021	1	1	010320
	8	1337.798049	1337.798049	1337.798049	5.418573	1	1	010320
	9	1337.798049	1337.798049	1337.798049	5.406135	1	1	010320
	10	1337.798049	1337.798049	1337.798049	4.347734	1	1	010320
	Total	13398.288165	13398.288165	13398.288165	56.150314	10	9	010020
	Mean	1339.828817	1339.828817	1339.828817	5.615031	10	9	
	Std. Dev.	6.421850	6.421850	6.421850	2.289212			
	Std. Dev.	0.421850	0.421850	0.421850	2.209212			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
150	1	1337.798049	1337.798049	1337.798049	7.559778	1	1	0 1 0 3 2 0
	2	1358.105721	1358.105721	1358.105721	6.486336	1	0	012030
	3	1337.798049	1337.798049	1337.798049	4.407413	1	1	0 1 0 3 2 0
	4	1337.798049	1337.798049	1337.798049	11.676333	1	1	010320
	5	1337.798049	1337.798049	1337.798049	4.402697	1	1	0 1 0 3 2 0
	6	1337.798049	1337.798049	1337.798049	3.336399	1	1	0 1 0 3 2 0
	7	1337.798049	1337.798049	1337.798049	4.410167	1	1	0 1 0 3 2 0
	8	1337.798049	1337.798049	1337.798049	3.350339	1	1	010320
	9	1337.798049	1337.798049	1337.798049	9.604663	1	1	010320
	10	1358.105721	1358.105721	1358.105721	7.527817	1	0	010320
	Total	13418.595837	13418.595837	13418.595837	62.761940	10	8	012030
	Mean	1341.859584	13418.595837	13418.595837	6.2761940	10	0	
	Std. Dev.	8.562466	8.562466	8.562466				
	sta. Dev.	8.502400	8.502400	8.502400	2.812392			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)

200	1	1358.105721	1358.105721	1358.105721	4.434502	1	0	0 1 2 0 3 0
	2	1337.798049	1337.798049	1337.798049	7.648011	1	1	0 1 0 3 2 0
	3	2316.808305	2316.808305	2316.808305	1.136128	1	0	0102030
	4	2316.808305	2316.808305	2316.808305	1.130189	1	0	0102030
	5	1358.105721	1358.105721	1358.105721	5.562263	1	0	012030
	6	1337.798049	1337.798049	1337.798049	3.416138	1	1	010320
	7	1337.798049	1337.798049	1337.798049	7.586119	1	1	010320
	8	1337.798049	1337.798049	1337.798049	6.574183	1	1	010320
	9	1337.798049	1337.798049	1337.798049	4.386551	1	1	010320
	10	1337.798049	1337.798049	1337.798049	3.296576	1	1	010320
	Total	15376.616349	15376.616349	15376.616349	45.170660	10	6	
	Mean	1537.661635	1537.661635	1537.661635	4.517066			
	Std. Dev.	410.730033	410.730033	410.730033	2.361102			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
250	1	1337.798049	1337.798049	1337.798049	8.704592	1	1	010320
	2	1337.798049	1337.798049	1337.798049	26.261584	1	1	010320
	3	1337.798049	1337.798049	1337.798049	6.581299	1	1	010320
	4	1337.798049	1337.798049	1337.798049	5.465154	1	1	0 1 0 3 2 0
	5	2316.808305	2316.808305	2316.808305	1.120536	1	0	0102030
	6	1337.798049	1337.798049	1337.798049	24.169773	1	1	010320
	7	1337.798049	1337.798049	1337.798049	8.684446	1	1	010320
	8	1337.798049	1337.798049	1337.798049	17.949819	1	1	0 1 0 3 2 0
	9	1337.798049	1337.798049	1337.798049	1.131493	1	1	0 1 0 3 2 0
	10	1337.798049	1337.798049	1337.798049	27.227446	1	1	0 1 0 3 2 0
	Total	14356.990749	14356.990749	14356.990749	127.296141	10	9	010020
	Mean	1435.699075	1435.699075	1435.699075	12.729614	10	Ü	
	Std. Dev.	309.590226	309.590226	309.590226	10.240739			
	Star Bott	000.000220	000.000220	000.000220	10.210.00			
				Pop Size	10			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
100	1	1337.798049	1337.798049	1337.798049	18.298757	1	1	0 1 0 3 2 0
	2	1337.798049	1337.798049	1337.798049	41.623253	1	1	010320
	3	1337.798049	1337.798049	1337.798049	4.484813	1	1	010320
l	3		1337.798049 1337.798049	1337.798049 1337.798049	4.484813 29.969362	1 1	1 1	
		1337.798049						0 1 0 3 2 0
	4	1337.798049 1337.798049	1337.798049	1337.798049	29.969362	1	1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5	1337.798049 1337.798049 1337.798049	1337.798049 1337.798049	1337.798049 1337.798049	29.969362 11.997001	1 1	1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6	1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322	1 1 1	1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245	1 1 1 1	1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082	1 1 1 1	1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677	1 1 1 1 1 1	1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071	1 1 1 1 1 1 1	1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583	1 1 1 1 1 1 1	1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.7980493	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.7980493	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758	1 1 1 1 1 1 1	1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
Max It	4 5 6 7 8 9 10 Total Mean	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.7980493	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.7980493	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758	1 1 1 1 1 1 1	1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0
Max It	4 5 6 7 8 9 10 Total Mean Std. Dev.	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 10	0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev.	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time	1 1 1 1 1 1 1 1 1 1 1 1 1 Converged?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev.	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790	1 1 1 1 1 1 1 1 1 1 1 1 1 Converged?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev.	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042	1 1 1 1 1 1 1 1 1 1 1 1 1 1 Converged? 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254	1 1 1 1 1 1 1 1 1 1 1 1 1 Converged? 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 10 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7 8	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512 9.872016	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7 8 9	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512 9.872016 17.399320	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7 8 9 10	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512 9.872016 17.399320 16.248857	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7 8 9 10 Total	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512 9.872016 17.399320 16.248857 164.278492	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0
	4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 6 7 8 9 10 Total Mean	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Best 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Worst 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 0.000000 Mean 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049 1337.798049	29.969362 11.997001 4.465322 26.732245 14.035082 11.947677 5.534071 169.087583 16.908758 12.362090 Running Time 12.102790 45.042042 9.987254 18.459459 11.043944 12.081299 12.041512 9.872016 17.399320 16.248857 164.278492	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 2 0

Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
300	1	1337.798049	1337.798049	1337.798049	19.610418	1	1	0 1 0 3 2 0
	2	1337.798049	1337.798049	1337.798049	13.241733	1	1	010320
	3	1337.798049	1337.798049	1337.798049	26.980631	1	1	010320
	4	1337.798049	1337.798049	1337.798049	9.029430	1	1	010320
	5	1337.798049	1337.798049	1337.798049	16.470142	1	1	0 1 0 3 2 0
	6	1337.798049	1337.798049	1337.798049	30.196851	1	1	0 1 0 3 2 0
	7	1337.798049	1337.798049	1337.798049	5.606402	1	1	0 1 0 3 2 0
	8	1337.798049	1337.798049	1337.798049	25.908527	1	1	010320
	9	1337.798049	1337.798049	1337.798049	12.225612	1	1	010320
	10	1337.798049	1337.798049	1337.798049	72.578023	1	1	010320
	Total	13377.980493	13377.980493	13377.980493	231.847770	10	10	
	Mean	1337.798049	1337.798049	1337.798049	23.184777			
	Std. Dev.	0.000000	0.000000	0.000000	19.139523			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
400	1	1337.798049	1337.798049	1337.798049	4.508756	1	1	0 1 0 3 2 0
	2	1337.798049	1337.798049	1337.798049	8.975279	1	1	010320
	3	1337.798049	1337.798049	1337.798049	5.662841	1	1	010320
	4	1337.798049	1337.798049	1337.798049	4.556257	1	1	010320
	5	1337.798049	1337.798049	1337.798049	19.861150	1	1	010320
	6	1337.798049	1337.798049	1337.798049	44.179720	1	1	010320
	7	1337.798049	1337.798049	1337.798049	4.499359	1	1	010320
	8	1337.798049	1337.798049	1337.798049	10.146922	1	1	010320
	9	1337.798049	1337.798049	1337.798049	19.735951	1	1	0 1 0 3 2 0
	10	1337.798049	1337.798049	1337.798049	22.972323	1	1	010320
	Total	13377.980493	13377.980493	13377.980493	145.098557	10	10	
	Mean	1337.798049	1337.798049	1337.798049	14.509856			
	Std. Dev.	0.000000	0.000000	0.000000	12.627594			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
500	1	1337.798049	1337.798049	1337.798049	7.871022	1	1	010320
	2	1337.798049	1337.798049	1337.798049	17.837177	1	1	0 1 0 3 2 0
	3	1337.798049	1337.798049	1337.798049	16.806484	1	1	0 1 0 3 2 0
	4	1337.798049	1337.798049	1337.798049	22.031665	1	1	0 1 0 3 2 0
	5	1337.798049	1337.798049	1337.798049	36.928979	1	1	0 1 0 3 2 0
	6	1337.798049	1337.798049	1337.798049	6.726066	1	1	010320
	7	1337.798049	1337.798049	1337.798049	5.632164	1	1	0 1 0 3 2 0
	8	1337.798049	1337.798049	1337.798049	15.724440	1	1	0 1 0 3 2 0
	9	1337.798049	1337.798049	1337.798049	30.757758	1	1	0 1 0 3 2 0
	10	1337.798049	1337.798049	1337.798049	17.754117	1	1	0 1 0 3 2 0
	Total	13377.980493	13377.980493	13377.980493	178.069873	10	10	
	Mean	1337.798049	1337.798049	1337.798049	17.806987			
	Std. Dev.	0.000000	0.000000	0.000000	10.145054			

Appendix E

Complete Results for 5 Nodes

Table E.1: Complete Results for 5 Nodes

				Pop Siz	e 5			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
50	1	1317.218365	1317.218365	1317.218365	4.804052	1	1	0120430
	2	2268.087277	2268.087277	2268.087277	8.601034	1	0	0 4 2 0 3 0 1 0
	3	1317.218365	1317.218365	1317.218365	8.561783	1	1	0 1 2 0 4 3 0
	4	1317.218365	1317.218365	1317.218365	8.572381	1	1	0 1 2 0 4 3 0
	5	1323.904429	1323.904429	1323.904429	9.617525	1	0	0 2 3 0 1 4 0
	6	2268.087277	2268.087277	2268.087277	3.303029	1	0	0 4 2 0 3 0 1 0
	7	1317.218365	1317.218365	1317.218365	10.626164	1	1	0 1 2 0 4 3 0
	8	2268.087277	2268.087277	2268.087277	5.422188	1	0	04203010
	9	3260.369869	3260.369869	3260.369869	2.253704	1	0	0 2 0 3 0 1 0 4
	10	1323.904429	1323.904429	1323.904429	8.538394	1	0	0230140
	Total	17981.314021	17981.314021	17981.314021	70.300255	10	4	0200110
	Mean	1798.131402	1798.131402	1798.131402	7.030026	10	-	
	Std. Dev.	681.143544	681.143544	681.143544	2.854618			
	Std. Dev.	081.143544	081.143344	081.143344	2.834018			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
100	1	1317.218365	1317.218365	1317.218365	5.471331	1	1	0 1 2 0 4 3 0
100	2	1317.218365	1317.218365	1317.218365	5.434076	1	1	0120430
	3	1317.218365	1317.218365	1317.218365	3.355730	1	1	0120430
	4	1317.218365	1317.218365	1317.218365	21.195741	1	1	0120430
	5	1317.218365	1317.218365	1317.218365	14.898282	1	1	0120430
	6	2268.087277	2268.087277	2268.087277	4.398214	1	0	0 1 0 3 0 4 2 0
	7	2268.087277	2268.087277	2268.087277	2.260967	1	0	0 1 0 3 0 4 2 0
	8	1317.218365	1317.218365	1317.218365	45.299792	1	1	0 1 2 0 4 3 0
	9	1323.904429	1323.904429	1323.904429	12.932264	1	0	0 4 1 0 2 3 0
	10	1323.904429	1323.904429	1323.904429	9.529752	1	0	0 4 1 0 2 3 0
	Total	15087.293605	15087.293605	15087.293605	124.776147	10	6	
	Mean	1508.729361	1508.729361	1508.729361	12.477615			
	Std. Dev.	400.226071	400.226071	400.226071	12.994110			
		.		2.5				- · · · ·
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v _i)
150		1323.904429	1323.904429	1323.904429	19.985800	1	0	0 4 1 0 2 3 0
	2	1323.904429	1323.904429	1323.904429	6.441659	1	0	0 4 1 0 2 3 0
	3	1323.904429	1323.904429	1323.904429	28.186267	1	0	0 4 1 0 2 3 0
	4	2268.087277	2268.087277	2268.087277	1.127991	1	0	01030420
	5	1317.218365	1317.218365	1317.218365	7.488596	1	1	0 1 2 0 4 3 0
	6	1317.218365	1317.218365	1317.218365	10.613898	1	1	0 1 2 0 4 3 0
	7	1317.218365	1317.218365	1317.218365	7.480405	1	1	0 1 2 0 4 3 0
	8	1323.904429	1323.904429	1323.904429	3.287745	1	0	0 4 1 0 2 3 0
	9	2268.087277	2268.087277	2268.087277	5.413933	1	0	0 1 0 3 0 4 2 0
	10	1317.218365	1317.218365	1317.218365	19.895559	1	1	0 1 2 0 4 3 0
	Total	15100.665733	15100.665733	15100.665733	109.921853	10	4	
	Mean	1510.066573	1510.066573	1510.066573	10.992185			
<u> </u>	Std. Dev.	399.524422	399.524422	399.524422	8.749777			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)

200	1	2268.087277	2268.087277	2268.087277	3.317812	1	0	0 1 0 3 0 4 2 0
	2	1323.904429	1323.904429	1323.904429	8.614876	1	0	0 4 1 0 2 3 0
	3	1323.904429	1323.904429	1323.904429	5.522934	1	0	0 4 1 0 2 3 0
	4	1317.218365	1317.218365	1317.218365	24.237182	1	1	0 1 2 0 4 3 0
	5	1323.904429	1323.904429	1323.904429	8.645833	1	0	0 4 1 0 2 3 0
	6	1317.218365	1317.218365	1317.218365	5.475353	1	1	0 1 2 0 4 3 0
	7	1317.218365	1317.218365	1317.218365	9.704326	1	1	0 1 2 0 4 3 0
	8	2268.087277	2268.087277	2268.087277	3.307663	1	0	0 1 0 3 0 4 2 0
	9	1317.218365	1317.218365	1317.218365	8.686892	1	1	0 1 2 0 4 3 0
	10	1323.904429	1323.904429	1323.904429	8.732831	1	0	0 4 1 0 2 3 0
	Total	15100.665733	15100.665733	15100.665733	86.245702	10	4	
	Mean	1510.066573	1510.066573	1510.066573	8.624570			
	Std. Dev.	399.524422	399.524422	399.524422	5.971270			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v _i)
250	1	2268.087277	2268.087277	2268.087277	5.542792	1	0	0 1 0 3 0 4 2 0
	2	1317.218365	1317.218365	1317.218365	29.428679	1	1	0 1 2 0 4 3 0
	3	2268.087277	2268.087277	2268.087277	4.394045	1	0	0 1 0 3 0 4 2 0
	4	1317.218365	1317.218365	1317.218365	11.772234	1	1	0 1 2 0 4 3 0
	5	1317.218365	1317.218365	1317.218365	10.767657	1	1	0 1 2 0 4 3 0
	6	1317.218365	1317.218365	1317.218365	11.823227	1	1	0 1 2 0 4 3 0
	7	1317.218365	1317.218365	1317.218365	14.931903	1	1	0 1 2 0 4 3 0
	8	1317.218365	1317.218365	1317.218365	8.724240	1	1	0 1 2 0 4 3 0
	9	2268.087277	2268.087277	2268.087277	6.625279	1	0	0 1 0 3 0 4 2 0
	10	1317.218365	1317.218365	1317.218365	8.713505	1	1	0 1 2 0 4 3 0
	Total	16024.790389	16024.790389	16024.790389	112.723561	10	7	
	Mean	1602.479039	1602.479039	1602.479039	11.272356			
	Std. Dev.	459.313321	459.313321	459.313321	7.138529			
		1		Pop Size	e 10			
Max It	Trial		***			- 10	- n	
	Iriai	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
100	1	Best 1323.904429	1323.904429	Mean 1323.904429	Running Time 25.743121	Converged?	0	Route (v _i) 0 2 3 0 4 1 0
					_	_		
	1	1323.904429	1323.904429	1323.904429	25.743121	1	0	0 2 3 0 4 1 0
	1 2	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388	1 1	0 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3	1323.904429 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365	25.743121 10.844388 13.069612	1 1 1	0 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
	1 2 3 4	1323.904429 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738	1 1 1 1	0 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
	1 2 3 4 5	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282	1 1 1 1 1	0 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267	1 1 1 1 1 1	0 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5 6	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366	1 1 1 1 1 1 1	0 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5 6 7 8	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5 6 7 8 9	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5 6 7 8 9 10	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 5 6 7 8 9 10 Total	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 4 5 6 7 8 9 10 Total Mean	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
	1 2 3 4 4 5 6 7 8 9 10 Total Mean	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9	0 2 3 0 4 1 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Converged?	0 1 1 1 1 1 1 1 1 1 1 9 Success?	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Converged?	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 9 Success? 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
100	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0 0 1 2 0 4 3 0
100	1 2 3 4 5 6 7 8 9 10 Total Mean Std. Dev. Trial 1 2 3 4 5 5	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Best 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Worst 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
100	1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.8869717 1317.886972 2.114319 Mean 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
100	1 2 3 4 5 6 6 7	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 3 0 4 1 0 0 1 2 0 4 3 0
100	1 2 3 4 5 6 6 7 8 8 9 10 Total Mean Std. Dev.	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000 13.158808	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 2 0 4 3 0
100	1 2 3 4 5 6 6 7 8 8 9 9 10 Trial 1 2 3 4 4 5 6 6 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000 13.158808 50.538599	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 9 Success? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 2 0 4 3 0
100	1 2 3 4 5 6 7 8 8 9 10 Trial 1 2 3 4 4 5 6 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000 13.158808 50.538599 43.031667	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 2 0 4 3 0
100	1 2 3 4 5 6 7 8 9 10 Total 1 2 3 4 5 6 7 8 9 10 Total 1 7 5 6 7 7 8 9 10 Total 1 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000 13.158808 50.538599 43.031667 279.625063	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 2 0 4 3 0
100	1 2 3 4 5 6 7 8 8 9 10 Trial 1 2 3 4 4 5 6 7 8 8 9 10 Trial 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1323.904429 1317.218365	1323.904429 1317.218365	1323.904429 1317.218365	25.743121 10.844388 13.069612 69.049738 29.030282 19.289267 23.609366 6.576153 19.323625 18.208003 234.743555 23.474356 17.413122 Running Time 21.623653 42.870202 39.782168 8.900608 20.637436 21.693922 17.388000 13.158808 50.538599 43.031667 279.625063 27.962506	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 2 0 4 3 0

Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
300	1	1317.218365	1317.218365	1317.218365	15.423638	1	1	0 1 2 0 4 3 0
	2	1317.218365	1317.218365	1317.218365	31.396650	1	1	0 1 2 0 4 3 0
	3	1317.218365	1317.218365	1317.218365	17.526476	1	1	0 1 2 0 4 3 0
	4	1317.218365	1317.218365	1317.218365	21.720185	1	1	0 1 2 0 4 3 0
	5	1317.218365	1317.218365	1317.218365	36.772496	1	1	0 1 2 0 4 3 0
	6	1317.218365	1317.218365	1317.218365	16.478884	1	1	0 1 2 0 4 3 0
	7	1317.218365	1317.218365	1317.218365	18.589422	1	1	0 1 2 0 4 3 0
	8	1317.218365	1317.218365	1317.218365	25.971703	1	1	0 1 2 0 4 3 0
	9	1317.218365	1317.218365	1317.218365	45.133819	1	1	0 1 2 0 4 3 0
	10	1317.218365	1317.218365	1317.218365	47.304590	1	1	0 1 2 0 4 3 0
	Total	13172.183653	13172.183653	13172.183653	276.317861	10	10	
	Mean	1317.218365	1317.218365	1317.218365	27.631786			
	Std. Dev.	0.000000	0.000000	0.000000	11.953976			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v _i)
400	1	1317.218365	1317.218365	1317.218365	14.577702	1	1	0 1 2 0 4 3 0
	2	1317.218365	1317.218365	1317.218365	33.629932	1	1	0 1 2 0 4 3 0
	3	1317.218365	1317.218365	1317.218365	27.240256	1	1	0 1 2 0 4 3 0
	4	1317.218365	1317.218365	1317.218365	31.511315	1	1	0 1 2 0 4 3 0
	5	1317.218365	1317.218365	1317.218365	43.441768	1	1	0 1 2 0 4 3 0
	6	1317.218365	1317.218365	1317.218365	25.117313	1	1	0 1 2 0 4 3 0
	7	1323.904429	1323.904429	1323.904429	22.050670	1	0	0 2 3 0 4 1 0
	8	1317.218365	1317.218365	1317.218365	18.783852	1	1	0 1 2 0 4 3 0
	9	1317.218365	1317.218365	1317.218365	18.756770	1	1	0 1 2 0 4 3 0
	10	1317.218365	1317.218365	1317.218365	20.961388	1	1	0 1 2 0 4 3 0
	Total	13178.869717	13178.869717	13178.869717	256.070967	10	9	
	Mean	1317.886972	1317.886972	1317.886972	25.607097			
	Std. Dev.	2.114319	2.114319	2.114319	8.625352			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
500	1	1317.218365	1317.218365	1317.218365	14.597330	1	1	0 1 2 0 4 3 0
	2	1317.218365	1317.218365	1317.218365	33.892542	1	1	0 1 2 0 4 3 0
	3	1317.218365	1317.218365	1317.218365	61.550910	1	1	0 1 2 0 4 3 0
	4	1317.218365	1317.218365	1317.218365	51.056357	1	1	0 1 2 0 4 3 0
	5	1317.218365	1317.218365	1317.218365	53.050193	1	1	0 1 2 0 4 3 0
	6	1317.218365	1317.218365	1317.218365	25.365441	1	1	0 1 2 0 4 3 0
	7	1323.904429	1323.904429	1323.904429	36.020199	1	0	0 2 3 0 4 1 0
	8	1317.218365	1317.218365	1317.218365	5.689141	1	1	0 1 2 0 4 3 0
	9	1317.218365	1317.218365	1317.218365	39.208132	1	1	0 1 2 0 4 3 0
	10	1317.218365	1317.218365	1317.218365	16.834342	1	1	0 1 2 0 4 3 0
	Total	13178.869717	13178.869717	13178.869717	337.264588	10	9	
	Mean	1317.886972	1317.886972	1317.886972	33.726459		-	
	Std. Dev.	2.114319	2.114319	2.114319	18.228594			
						1	1	

Appendix F

Complete Results for 8 Nodes

Table F.1: Complete Results for 8 Nodes

				Pop Size 1	0		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
100	1	2833.788785	2833.788785	2833.788785	16.687605	1	010306204750
	2	2768.811719	2768.811719	2768.811719	16.171513	1	0 1 0 3 0 6 2 0 7 4 5 0
	3	2768.811719	2768.811719	2768.811719	104.871577	1	0 1 0 3 0 6 2 0 7 4 5 0
	4	2744.350205	2744.350205	2744.350205	14.770735	1	010306502470
	5	2744.350205	2744.350205	2744.350205	17.377617	1	0 1 0 3 0 6 5 0 2 4 7 0
	6	2744.350205	2744.350205	2744.350205	14.950106	1	010306502470
	7	2765.905277	2765.905277	2765.905277	30.355596	1	010306405270
	8	3614.400071	3614.400071	3614.400071	13.318990	1	0103060705240
	9	3616.645391	3616.645391	3616.645391	12.061010	1	0103042056070
	10	3641.106905	3641.106905	3641.106905	17.248913	1	0103054062070
	Total	30242.520479	30242.520479	30242.520479	257.813663	10	
	Mean	3024.252048	3024.252048	3024.252048	25.781366		
	Std. Dev.	414.764784	414.764784	414.764784	28.238598		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
200	1	2738.163101	2738.163101	2738.163101	18.871806	1	010306507240
	2	3677.343875	3677.343875	3677.343875	17.469560	1	0103075060240
	3	2738.163101	2738.163101	2738.163101	22.763046	1	0103013003240
	4	2738.163101	2738.163101	2738.163101	47.753634	1	010306507240
	5	3641.106905	3641.106905	3641.106905	10.960782	1	010300307240
	6	2738.163101	2738.163101	2738.163101	68.913614	1	0103034002070
	7	2738.163101	2738.163101	2738.163101	50.280369	1	010306507240
	8	2828.849081	2828.849081	2828.849081	42.486413	1	010306307240
	9	2768.811719	2768.811719	2768.811719	12.258607	1	010306403720
	10	2828.849081	2828.849081	2828.849081	14.840934	1	010306207450
						10	010306403720
	Total Mean	29435.776163 2943.577616	29435.776163 2943.577616	29435.776163 2943.577616	306.598764	10	
					30.659876		
	Std. Dev.	379.005136	379.005136	379.005136	20.090292		
3.5 5.				3.5	- · · · · ·		- · · · ·
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v _i)
300	1	2765.531057	2765.531057	2765.531057	17.645975	1	010302607540
	2	3644.387567	3644.387567	3644.387567	15.065409	1	0103064025070
	3	3614.400071	3614.400071	3614.400071	15.076449	1	0103042507060
	4	3666.129749	3666.129749	3666.129749	12.430107	1	0103045207060
	5	2768.811719	2768.811719	2768.811719	16.291391	1	0 1 0 3 0 6 2 0 7 4 5 0
	6	2738.163101	2738.163101	2738.163101	13.695433	1	0 1 0 3 0 6 5 0 7 2 4 0
	7	2738.163101	2738.163101	2738.163101	13.735158	1	0 1 0 3 0 6 5 0 7 2 4 0
	8	2738.163101	2738.163101	2738.163101	15.009003	1	0 1 0 3 0 6 5 0 7 2 4 0
	9	2768.811719	2768.811719	2768.811719	13.705404	1	010306207450
	10	2765.531057	2765.531057	2765.531057	46.531881	1	010306204570
	Total	30208.092239	30208.092239	30208.092239	179.186209	10	
	Mean	3020.809224	3020.809224	3020.809224	17.918621		
	Std. Dev.	428.776617	428.776617	428.776617	10.161677		
			1	1			I

	ī		ı		Г		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
500	1	2765.905277	2765.905277	2765.905277	162.505022	1	0 1 0 3 0 6 4 0 7 2 5 0
	2	2738.163101	2738.163101	2738.163101	451.815706	1	0 1 0 3 0 6 5 0 7 2 4 0
	3	2738.163101	2738.163101	2738.163101	479.554856	1	0 1 0 3 0 6 5 0 7 2 4 0
	4	2738.163101	2738.163101	2738.163101	226.904787	1	0 1 0 3 0 6 5 0 7 2 4 0
	5	2738.163101	2738.163101	2738.163101	312.114452	1	0 1 0 3 0 6 5 0 7 2 4 0
	6	2738.163101	2738.163101	2738.163101	131.502738	1	0 1 0 3 0 6 5 0 7 2 4 0
	7	2738.163101	2738.163101	2738.163101	199.272769	1	0 1 0 3 0 6 5 0 7 2 4 0
	8	2738.163101	2738.163101	2738.163101	104.529109	1	0 1 0 3 0 6 5 0 7 2 4 0
	9	2738.163101	2738.163101	2738.163101	115.166506	1	0 1 0 3 0 6 5 0 7 2 4 0
	10	2765.905277	2765.905277	2765.905277	293.985407	1	0 1 0 3 0 6 4 0 7 2 5 0
	Total	27437.115359	27437.115359	27437.115359	2477.351351	10	
	Mean	2743.711536	2743.711536	2743.711536	247.735135		
	Std. Dev.	11.697128	11.697128	11.697128	134.706306		
Max It	Trial	Best	Worst	Mean	Danning Time	Converged?	Danta ()
1000	1	2738.163101	2738.163101	2738.163101	Running Time	Converged:	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1000	2	2738.163101	2738.163101	2738.163101	176.974265 214.268100	1	010306507240
	3	2738.163101	2738.163101	2738.163101	143.353633		
	4	2738.163101	2738.163101	2738.163101	288.495617	1	$\begin{array}{c} 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ \hline 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \end{array}$
	5	2738.163101	2738.163101	2738.163101	717.149340	1	010306507240
	6	2738.163101	2738.163101	2738.163101	143.714269	1	010306507240
	7	2738.163101	2738.163101	2738.163101	183.561607	1	0 1 0 3 0 6 5 0 7 2 4 0
	8	2738.163101	2738.163101	2738.163101	231.507186	1	0 1 0 3 0 6 5 0 7 2 4 0
	9	2738.163101	2738.163101	2738.163101	284.844511	1	0 1 0 3 0 6 5 0 7 2 4 0
	10	2738.163101	2738.163101	2738.163101	715.536740	1	010306507240
	Total	27381.631007	27381.631007	27381.631007	3099.405268	10	
	Mean	2738.163101	2738.163101	2738.163101	309.940527		
	Std. Dev.	0.000000	0.000000	0.000000	220.039396		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
Max It 1500	1	Best 2738.163101	Worst 2738.163101	Mean 2738.163101	Running Time 428.302527	Converged?	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
	1 2 3	2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268	1 1 1	$\begin{array}{c} 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \end{array}$
	1 2 3 4	2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993	1 1 1 1 1	$\begin{smallmatrix}0&1&0&3&0&6&5&0&7&2&4&0\\0&1&0&3&0&6&5&0&7&2&4&0\\0&1&0&3&0&6&5&0&7&2&4&0\\0&1&0&3&0&6&5&0&7&2&4&0\end{smallmatrix}$
	1 2 3 4 5	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431	1 1 1 1 1	$0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0\\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0\\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0\\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0\\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0$
	1 2 3 4 5	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986	1 1 1 1 1 1	$\begin{array}{c} 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \end{array}$
	1 2 3 4 5 6	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610	1 1 1 1 1 1 1	$\begin{smallmatrix} 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ 0 & 1 & 0 & 3 & 0 & 6 & 5 & 0 & 7 & 2 & 4 & 0 \\ \end{split}$
	1 2 3 4 5 6 7 8	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258	1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ \end{array}$
	1 2 3 4 5 6 7 8 9	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182	1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 5 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0$
	1 2 3 4 5 6 7 8 9 10	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ \end{array}$
	1 2 3 4 5 6 7 8 9 10 Total	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772	1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 5 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0$
	1 2 3 4 5 6 7 8 9 10 Total Mean	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 5 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0$
	1 2 3 4 5 6 7 8 9 10 Total	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 5 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0$
	1 2 3 4 5 6 7 8 9 10 Total Mean	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 5 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0 \; 0$
1500	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.000000	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ 0\ 1\ 0\ 3\ 0\ 6\ 5\ 0\ 7\ 2\ 4\ 0 \\ \end{array}$
	1 2 3 4 5 6 7 8 9 10 Total Mean	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638	1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0 \; 1 \; 0 \; 3 \; 0 \; 6 \; 5 \; 0 \; 7 \; 2 \; 4 \; 0 \\ 0 \; 1 \; 0 \; 3 \; 0 \; 6 \;$
1500	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Pop Size 16 Mean	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Converged?	0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Best 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000 Worst 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.000000 Pop Size 16 Mean 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 Running Time 459.970377	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Best 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.000000 Pop Size 16 Mean 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 Running Time 459.970377 965.415956	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 4 5 6 6 7 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Best 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.000000 Pop Size 16 Mean 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 6 7 Trial 1 2 3 4 5 6 6	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Pop Size 16 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 6 7 1 1 2 2 3 3 4 4 5 5 6 6 7 7 1 1 2 2 3 3 4 5 5 6 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 16 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 6 7 8 8 9 10 Total Mean Std. Dev.	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 10 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232 1532.358335 815.123949 6.04E+02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 6 7 8 8 9 9 10 Trial 1 2 3 4 4 5 6 6 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 10 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232 1532.358335 815.123949 6.04E+02 851.116907	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 7 8 8 9 10 Trial 1 2 3 4 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 10 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232 1532.358335 815.123949 6.04E+02 851.116907 450.613584	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 7 8 8 9 10 Trial 1 2 3 4 5 6 7 8 8 9 10 Trial 1 7 5 6 7 7 8 8 9 10 Total 1 7 7 8 8 9 10 Total 1 7 7 7 8 9 10 Total 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 10 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232 1532.358335 815.123949 6.04E+02 851.116907 450.613584 8234.170099	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0
1500	1 2 3 4 5 6 7 8 8 9 10 Trial 1 2 3 4 5 6 7 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.1631007 2738.163101 0.0000000 Worst 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 0.000000 Pop Size 10 Mean 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101 2738.163101	428.302527 220.314969 151.404268 172.235993 348.497431 227.241986 213.668610 541.503258 2041.852182 783.102547 5128.123772 512.812377 572.439638 00 Running Time 459.970377 965.415956 1294.668863 919.961343 341.365232 1532.358335 815.123949 6.04E+02 851.116907 450.613584	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Route (v _i) 0 1 0 3 0 6 5 0 7 2 4 0

Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
2500	1	2738.163101	2738.163101	2738.163101	505.805557	1	0 1 0 3 0 6 5 0 7 2 4 0
	2	2738.163101	2738.163101	2738.163101	815.880254	1	0 1 0 3 0 6 5 0 7 2 4 0
	3	2738.163101	2738.163101	2738.163101	1017.215095	1	0 1 0 3 0 6 5 0 7 2 4 0
	4	2738.163101	2738.163101	2738.163101	828.631018	1	0 1 0 3 0 6 5 0 7 2 4 0
	5	2738.163101	2738.163101	2738.163101	1618.745238	1	0 1 0 3 0 6 5 0 7 2 4 0
	6	2738.163101	2738.163101	2738.163101	722.154849	1	0 1 0 3 0 6 5 0 7 2 4 0
	7	2738.163101	2738.163101	2738.163101	438.069724	1	0 1 0 3 0 6 5 0 7 2 4 0
	8	2738.163101	2738.163101	2738.163101	709.731673	1	0 1 0 3 0 6 5 0 7 2 4 0
	9	2738.163101	2738.163101	2738.163101	1583.914744	1	0 1 0 3 0 6 5 0 7 2 4 0
	10	2738.163101	2738.163101	2738.163101	934.751237	1	0 1 0 3 0 6 5 0 7 2 4 0
	Total	27381.631007	27381.631007	27381.631007	9174.899388	10	
	Mean	2738.163101	2738.163101	2738.163101	917.489939		
	Std. Dev.	0.000000	0.000000	0.000000	400.692675		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Route (v_i)
3000	1	2738.163101	2738.163101	2738.163101	533.184452	1	$0\; 1\; 0\; 3\; 0\; 6\; 5\; 0\; 7\; 2\; 4\; 0$
	2	2738.163101	2738.163101	2738.163101	534.122702	1	$0\; 1\; 0\; 3\; 0\; 6\; 5\; 0\; 7\; 2\; 4\; 0$
	3	2738.163101	2738.163101	2738.163101	1277.588279	1	0 1 0 3 0 6 5 0 7 2 4 0
	4	2738.163101	2738.163101	2738.163101	779.470713	1	0 1 0 3 0 6 5 0 7 2 4 0
	5	2738.163101	2738.163101	2738.163101	1100.548824	1	0 1 0 3 0 6 5 0 7 2 4 0
	6	2738.163101	2738.163101	2738.163101	506.448645	1	0 1 0 3 0 6 5 0 7 2 4 0
	7	2738.163101	2738.163101	2738.163101	492.296092	1	0 1 0 3 0 6 5 0 7 2 4 0
	8	2738.163101	2738.163101	2738.163101	670.353208	1	0 1 0 3 0 6 5 0 7 2 4 0
	9	2738.163101	2738.163101	2738.163101	684.330676	1	0 1 0 3 0 6 5 0 7 2 4 0
	10	2738.163101	2738.163101	2738.163101	629.937263	1	0 1 0 3 0 6 5 0 7 2 4 0
	Total	27381.631007	27381.631007	27381.631007	7208.280853	10	
	Mean	2738.163101	2738.163101	2738.163101	720.828085		
	Std. Dev.	0.000000	0.000000	0.000000	266.250524		

Appendix G

Complete Results for 11 and 16 Nodes

Table G.1: Complete Results for 11 Nodes

			P	op Size 100			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Successful?
1000	1	4255.081773	4255.081773	4255.081773	2468.138431	1	0
	2	4257.738735	4257.738735	4257.738735	305.972456	1	0
	3	4230.009033	4230.009033	4230.009033	410.275407	1	0
	4	4229.123379	4229.123379	4229.123379	1021.412293	1	0
	5	4229.123379	4229.123379	4229.123379	1406.815233	1	0
	6	4232.042295	4232.042295	4232.042295	334.217596	1	0
	7	4228.325043	4228.325043	4228.325043	320.392524	1	0
	8	4229.210697	4229.210697	4229.210697	292.760082	1	0
	9	4225.056855	4225.056855	4225.056855	3406.812060	1	0
	10	4256.740815	4256.740815	4256.740815	335.262079	1	1
	Total	42372.452007	42372.452007	42372.452007	10302.058161	10	1
	Mean	4237.245201	4237.245201	4237.245201	1030.205816		
	Std. Dev.	13.425704	13.425704	13.425704	1094.514332		
	Rot	ite (v_i)					
		0 4 9	0 10 5 7 0 8 0 1	062030			
		0.80	0104907250	0 3 0 10 6 0			
		0 6 5	504908072	10 0 1 0 3 0			
		0 7 2	2 10 0 1 0 3 0 4 9	085060			
		0 7 2					
		0 6 0					
		0 9 2					
		0 9 2					
		0 6 (
		0 1 (
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Successful?
2000	1	4230.009033	4230.009033	4230.009033	278.848105	1	0
2000	2	4235.622333	4235.622333	4235.622333	319.956599	1	0
	3	4225.942509	4225.942509	4225.942509	473.327883	1	0
	4	4230.009033	4230.009033	4230.009033	403.943250	1	0
	5	4259.460147	4259.460147	4259.460147	334.188092	1	0
	6	4277.871771	4277.871771	4277.871771	305.688895	1	0
	7	4225.942509	4225.942509	4225.942509	972.173169	1	0
	8	4254.033957	4254.033957	4254.033957	416.093169	1	0
	9	4254.033957	4254.033957	4254.033957	1223.109733	1	0
						1	0
	10	4249.393629	4249.393629	4249.393629	332.856009	10	0
	Total	42442.318881	42442.318881	42442.318881	5060.184905	10	U
	Mean	4244.231888	4244.231888	4244.231888	506.018491		
	Std. Dev.	17.416635	17.416635	17.416635	322.656150		
	Rot	ite (v_i)					
			2 10 0 1 0 4 9 0 3				
			2010106094				
		0 6 5	5080301029	9041070			

		0 1 (065094072	10 0 3 0 8 0			
		0 1 (0 8 5 0 6 2 0 7 10	0 3 0 4 9 0			
			2 0 7 10 0 1 0 4 6				
		0 6 5	501030290	8 0 4 10 7 0			
		0 2 9	0 0 5 7 0 3 0 6 10	0 1 0 8 4 0			
		0 4 8	3 0 6 10 0 7 5 0 9	203010			
		0 1 (803041070	6 2 0 9 5 0			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Successful?
3000	1	4254.033957	4254.033957	4254.033957	360.986693	1	0
	2	4229.210697	4229.210697	4229.210697	291.485444	1	0
	3	4252.661817	4252.661817	4252.661817	346.694454	1	0
	4	4235.622333	4235.622333	4235.622333	3604.737431	1	0
	5	4229.123379	4229.123379	4229.123379	2218.057964	1	0
	6	4225.056855	4225.056855	4225.056855	596.948370	1	1
	7	4321.044285	4321.044285	4321.044285	416.559946	1	0
	8	4225.056855	4225.056855	4225.056855	1344.019893	1	1
	9	4229.123379	4229.123379	4229.123379	1776.446908	1	0
	10	4230.009033	4230.009033	4230.009033	3899.794593	1	0
	Total	42430.942593	42430.942593	42430.942593	14855.731695	10	2
	Mean	4243.094259	4243.094259	4243.094259	1485.573169		
	Std. Dev.	29.341466	29.341466	29.341466	1369.530713		
	Rot	ite (v_i)					
		0 5 7	703010840	6 10 0 2 9 0			
		0 1 (56080307	4 10 0 9 2 0			
		0 1 (7 4 10 0 3 0 8 2	060950			
		0 4 9	0 0 3 0 6 10 0 2 8	0 1 0 7 5 0			
		0 6 0	1 0 9 4 0 10 2 7	058030			
		0.7 1	0 4 0 1 0 3 0 2 9	060580			
		0 1 (80302609	4 0 5 7 10 0			
		0 2 9	001030608	5 0 4 10 7 0			
		0 4 9	001030607	2 10 0 5 8 0			
		0 5 6	3 0 10 2 7 0 1 0 3	0 4 9 0 8 0			

Table G.2: Complete Results for 16 Nodes

			P	op Size 100			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Successful?
1000	1	7186.373695	7186.373695	7186.373695	332.263853	1	0
	2	6319.616965	6319.616965	6319.616965	332.912543	1	0
	3	6429.288373	6429.288373	6429.288373	332.053888	1	0
	4	6364.623157	6364.623157	6364.623157	331.740703	1	0
	5	6352.174105	6352.174105	6352.174105	318.126724	1	0
	6	7239.338299	7239.338299	7239.338299	426.041481	1	0
	7	6360.282205	6360.282205	6360.282205	332.235541	1	0
	8	6366.831055	6366.831055	6366.831055	332.979326	1	0
	9	6350.327953	6350.327953	6350.327953	332.760958	1	0
	10	6302.839435	6302.839435	6302.839435	346.963870	1	0
	Total	65271.695239	65271.695239	65271.695239	3418.078888	10	0
	Mean	6527.169524	6527.169524	6527.169524	341.807889		
	Std. Dev.	363.103098	363.103098	363.103098	30.369584		
	Rot	ite (v_i)					
			$0\ 3\ 0\ 8\ 0\ 14\ 5\ 0$	7 0 9 4 0 13 0 6	0 1 0 15 12 0 10 11 2	2 0	
			0 2 9 0 6 0 15 1	4 0 4 8 0 5 12 0	1 0 3 0 11 10 7 0 13	0	
			0 7 15 0 13 0 4	14 0 6 10 0 12 11	1 0 3 0 5 9 0 2 8 0 1	0	
			0 3 0 9 4 0 12 1	0 0 5 11 7 0 1 0	14 15 0 13 0 2 8 0 6	0	
			0 6 0 13 0 8 11	0 1 0 5 15 2 0 4	9 0 3 0 7 14 0 10 12	0	

	0 7 0 1 0 6 5 0 15 14 0 2 9 0 8 4 0 10 0 3 0 13 0 12 11 0									
					0 5 15 4 0 13 0 7 14					
					0 5 13 4 0 13 0 7 14					
					0 13 0 11 9 0 5 4 15					
					6 0 15 14 0 1 0 5 9					
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Successful?			
2000	1	6353.022337	6353.022337	6353.022337	332.193971	1	0			
	2	7240.074265	7240.074265	7240.074265	332.696859	1	0			
	3	6307.878931	6307.878931	6307.878931	332.607790	1	0			
	4	6473.196853	6473.196853	6473.196853	346.823632	1	0			
	5	6359.895511	6359.895511	6359.895511	5254.880960	1	0			
	6	6344.727127	6344.727127	6344.727127	331.603686	1	0			
	7	6392.452651	6392.452651	6392.452651	331.762579	1	0			
	8	6388.548289	6388.548289	6388.548289	331.453766	1	0			
	9	6302.502637	6302.502637	6302.502637	345.584742	1	0			
	10	6358.623163	6358.623163	6358.623163	331.408897	1	0			
	Total	64520.921761	64520.921761	64520.921761	8271.016883	10	0			
	Mean	6452.092176	6452.092176	6452.092176	827.101688					
	Std. Dev.	281.011889	281.011889	281.011889	1555.774411					
	Rot	ite (v_i)								
					15 0 13 0 2 10 7 0 3					
					11 10 2 0 15 12 0 4 8					
					0 1 0 3 0 11 2 12 0 8					
					0 11 6 0 4 8 0 15 14					
					1 2 0 14 15 0 8 0 13					
					13 0 5 11 10 0 15 12					
					0 13 0 8 5 0 1 0 2 6					
						U				
	0 6 0 3 0 15 14 0 9 5 0 7 10 4 0 13 0 12 11 2 0 8 0 1 0									
1	0 11 8 0 5 12 0 3 0 6 4 0 15 10 0 1 0 7 14 0 13 0 9 2 0									
Max It	Trial	Best			1 0 7 14 0 13 0 9 2		Successful?			
Max It	Trial	Best 6301.504717	0 11 8 0 5 12 0	3 0 6 4 0 15 10 0		0	Successful?			
			0 11 8 0 5 12 0 Worst	3 0 6 4 0 15 10 0 Mean	1 0 7 14 0 13 0 9 2 Running Time	0 Converged?				
	1	6301.504717	0 11 8 0 5 12 0 Worst 6301.504717	3 0 6 4 0 15 10 0 Mean 6301.504717	Running Time 331.946234	Converged?	0			
	1 2	6301.504717 6363.849769	0 11 8 0 5 12 0 Worst 6301.504717 6363.849769	Mean 6301.504717 6363.849769	Running Time 331.946234 346.201389	Converged?	0			
	1 2 3	6301.504717 6363.849769 6501.537781	Worst 6301.504717 6363.849769 6501.537781	Mean 6301.504717 6363.849769 6501.537781	Running Time 331.946234 346.201389 331.730659	Converged?	0 0 0			
	1 2 3 4	6301.504717 6363.849769 6501.537781 6348.045211	Worst 6301.504717 6363.849769 6501.537781 6348.045211	Mean 6301.504717 6363.849769 6501.537781 6348.045211	Running Time 331.946234 346.201389 331.730659 317.229685	Converged? 1 1 1	0 0 0			
	1 2 3 4 5	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081	Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527	Converged? 1 1 1 1 1	0 0 0 0			
	1 2 3 4 5 6	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499	0 Converged? 1 1 1 1 1 1 1	0 0 0 0 0			
	1 2 3 4 5 6 7	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268	0 Converged? 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0			
	1 2 3 4 5 6 7	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0			
	1 2 3 4 5 6 7 8 9 9	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0			
	1 2 3 4 5 6 7 8 9 10	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0			
	1 2 3 4 5 6 7 8 9 10 Total	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020 3316.866211	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0			
	1 2 3 4 5 6 7 8 9 10 Total Mean	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020 3316.866211 331.686621	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020 3316.866211 331.686621 6.831082	Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020 3316.866211 331.686621	Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.747855 331.471020 3316.866211 331.686621 6.831082	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082	0 Converged? 1 1 1 1 1 1 1 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082	0 Converged? 1 1 1 1 1 1 1 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 0 12 7 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082 11 15 0 14 5 0 8 0 3 3 0 1 0 13 0 8 5 0 14 6 2 0 15 14 0 13 0 9 2 0 1 0 14 2 0 10 4 7 0 5 6 0 12 0 14 15 0 3	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 0 12 7 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082 11 15 0 14 5 0 8 0 3 3 0 1 0 13 0 8 5 0 14 6 2 0 15 14 0 13 0 9 2 0 1 0 14 2 0 10 4 7 0 5 6 0 12 0 14 15 0 3 0 0 11 14 0 13 0 7 12	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 0 12 7 0 4 9 0 0 0 0 9 2 0 7 10 11 0 1 0 3 0 11 7 0 0 8 0 13 0 9 11 0 7 0 8 4 0 9 11 0 1 0 8 5 0 2 15 0 8 5 0 9 4 0 1	3 0 6 4 0 15 10 0 Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082 11 15 0 14 5 0 8 0 3 3 0 1 0 13 0 8 5 0 14 6 2 0 15 14 0 13 0 9 2 0 1 0 14 2 0 10 4 7 0 5 6 0 12 0 14 15 0 3 0 0 11 14 0 13 0 7 12 6 0 3 0 14 7 0 10 12	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 0 12 7 0 4 9 0 0 0 0 9 2 0 7 10 11 0 1 0 3 0 11 7 0 8 0 13 0 9 11 0 7 0 8 4 0 9 11 0 1 0 8 5 0 2 15 0 8 5 0 9 4 0 1 0 14 15 0 9 0 1	Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 1 0 6 2 0 13 0 10 0 12 15 0 4 6 0 3 10 0 5 4 12 0 8 0 0 3 0 6 5 0 15 12 0 2 10 0 13 0 1 0 5 0 10 6 0 3 0 4 9 0 15 2 0 13 0 11 0 10 2 11 0 4 6 0	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082 11 15 0 14 5 0 8 0 3 3 0 1 0 13 0 8 5 0 14 6 2 0 15 14 0 13 0 9 2 0 1 0 14 2 0 10 4 7 0 5 6 0 12 0 14 15 0 3 0 0 11 14 0 13 0 7 12 6 0 3 0 14 7 0 10 12 13 0 8 5 0 7 0 3 0 15	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0			
	1 2 3 4 4 5 6 7 8 9 10 Total Mean Std. Dev.	6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 6626.453916 410.197646	Worst 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.554553 66264.539161 410.197646 0 12 7 0 4 9 0 0 0 0 9 2 0 7 10 11 0 1 0 3 0 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mean 6301.504717 6363.849769 6501.537781 6348.045211 7197.463081 6375.712543 6363.488023 7214.003605 7237.379881 6361.5554553 66264.53916 410.197646	Running Time 331.946234 346.201389 331.730659 317.229685 331.805527 331.520499 331.364268 331.849075 331.471020 3316.866211 331.686621 6.831082 11 15 0 14 5 0 8 0 3 3 0 1 0 13 0 8 5 0 14 6 2 0 15 14 0 13 0 9 2 0 1 0 14 2 0 10 4 7 0 5 6 0 12 0 14 15 0 3 0 0 11 14 0 13 0 7 12 6 0 3 0 14 7 0 10 12	0 Converged? 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0			

Appendix H

Complete Results for 11 and 16 Nodes Real-World Case

Table H.1: Complete Results for 11 Nodes (Real-World Case)

				Pop	Size 100			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
1000	1	1932.592025	1932.592025	1932.592025	208.267880	1	1	$0\; 8\; 2\; 6\; 4\; 0\; 7\; 1\; 5\; 3\; 0\; 10\; 9\; 0\\$
	2	1928.924669	1928.924669	1928.924669	401.532700	1	1	$0\ 9\ 10\ 0\ 7\ 3\ 4\ 6\ 0\ 8\ 2\ 5\ 1\ 0$
	3	1935.523415	3946.595849	1965.758919	4424.597053	0	0	$0\; 6\; 4\; 9\; 0\; 8\; 2\; 3\; 5\; 0\; 10\; 1\; 7\; 0\\$
	4	1934.949611	2932.745711	1974.861455	4456.762413	0	0	$0\ 1\ 6\ 5\ 2\ 0\ 10\ 9\ 0\ 7\ 3\ 4\ 8\ 0$
	5	1953.872669	1953.872669	1953.872669	1136.810247	1	1	$0\ 9\ 5\ 8\ 0\ 7\ 3\ 4\ 6\ 0\ 2\ 1\ 10\ 0$
	6	1939.515095	1939.515095	1939.515095	848.985302	1	1	$0\ 9\ 10\ 0\ 4\ 3\ 1\ 7\ 0\ 2\ 5\ 6\ 8\ 0$
	7	1950.442319	1950.442319	1950.442319	385.431766	1	1	$0\; 3\; 4\; 9\; 0\; 7\; 1\; 6\; 5\; 0\; 8\; 2\; 10\; 0\\$
	8	1974.691775	1974.691775	1974.691775	762.580339	1	0	$0\; 8\; 4\; 10\; 0\; 9\; 3\; 2\; 0\; 5\; 7\; 6\; 1\; 0\\$
	9	1994.737493	1994.737493	1994.737493	165.814107	1	0	$0\ 7\ 1\ 10\ 0\ 4\ 9\ 6\ 0\ 3\ 5\ 8\ 2\ 0$
	10	1930.471445	1930.471445	1930.471445	301.928404	1	1	$0\; 2\; 3\; 4\; 5\; 0\; 9\; 10\; 0\; 6\; 7\; 1\; 8\; 0\\$
	Total	19475.720513	22484.589047	19545.867861	13092.710211	8	6	
	Mean	1947.572051	2248.458905	1954.586786	1309.271021			
	Std. Dev.	21.710114	672.083970	22.412483	1678.767515			
		32.033232						
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?	Route (v_i)
2000	1	1957.826927	1957.826927	1957.826927	702.627808	1	0	$0\; 8\; 2\; 4\; 1\; 0\; 7\; 3\; 10\; 0\; 6\; 5\; 9\; 0\\$
	2	1923.348791	1923.348791	1923.348791	588.317955	1	1	$0\ 1\ 7\ 3\ 4\ 0\ 8\ 2\ 5\ 6\ 0\ 10\ 9\ 0$
	3	1923.348791	1923.348791	1923.348791	4046.787179	1	1	$0\ 1\ 7\ 4\ 6\ 0\ 9\ 10\ 0\ 8\ 2\ 5\ 3\ 0$
	4	1923.348791	1923.348791	1923.348791	5390.321085	1	1	$0\ 6\ 5\ 7\ 1\ 0\ 10\ 9\ 0\ 3\ 4\ 2\ 8\ 0$
	5	1930.259387	1930.259387	1930.259387	742.380317	1	1	$0\ 10\ 9\ 0\ 8\ 5\ 3\ 2\ 0\ 1\ 7\ 4\ 6\ 0$
	6	1943.382035	1943.382035	1943.382035	7302.469355	1	1	$0\ 7\ 6\ 10\ 0\ 9\ 1\ 8\ 0\ 2\ 3\ 4\ 5\ 0$
	7	1928.937143	1928.937143	1928.937143	1184.011618	1	1	$0\ 9\ 10\ 0\ 7\ 5\ 3\ 1\ 0\ 8\ 2\ 4\ 6\ 0$
	8	1923.348791	1923.348791	1923.348791	1215.770367	1	1	$0\; 6\; 4\; 2\; 8\; 0\; 9\; 10\; 0\; 3\; 5\; 7\; 1\; 0\\$
	9	1923.348791	2928.055487	1933.910410	8883.530885	0	0	$0\ 9\ 10\ 0\ 3\ 5\ 7\ 1\ 0\ 6\ 4\ 2\ 8\ 0$
	10	1950.853961	1950.853961	1950.853961	449.373371	1	1	$0\ 10\ 9\ 0\ 2\ 5\ 1\ 6\ 0\ 8\ 4\ 3\ 7\ 0$
	Total	19328.003405	20332.710101	19338.565024	30505.589941	9	8	
	Mean	1932.800340	2033.271010	1933.856502	3050.558994			
	Std. Dev.	13.048096	314.648339	12.618421	3146.231885			

Table H.2: Complete Results for 16 Nodes (Real-World Case)

			Po	p Size 100			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?
1000	1	4087.027053	4087.027053	4087.027053	141.433720	1	0
	2	4020.964749	4020.964749	4020.964749	128.109161	1	0
	3	4030.931475	4030.931475	4030.931475	142.119794	1	0
	4	4031.455383	4031.455383	4031.455383	139.183249	1	0
	5	3173.804673	3173.804673	3173.804673	3232.038786	1	0
	6	4063.513563	4063.513563	4063.513563	140.092165	1	0
	7	4036.694463	4036.694463	4036.694463	536.268567	1	0
	8	4022.748531	4022.748531	4022.748531	139.909413	1	0

	9	4061.031237	4061.031237	4061.031237	121.442069	1	0
	10	4037.692383	4037.692383	4037.692383	133.551190	1	0
	Total	39565.863513	39565.863513	39565.863513	4854.148112	10	0
	Mean	3956.586351	3956.586351	3956.586351	485.414811		
	Std. Dev.	275.832915	275.832915	275.832915	973.262173		
	Rot	ite (v_i)					
			2 0 11 6 4 3 0 8	14 0 10 0 7 13 9 1	15 0 12 1 0		
		0.7	15 9 0 4 5 14 0 8	6 0 1 2 3 0 11 10	0 0 12 13 0		
		0 13	3 0 10 14 0 5 8 0	7 12 15 0 2 4 11	0 3 1 9 6 0		
		0 15	5 13 9 0 2 1 0 12	8 0 11 6 4 3 0 5 7	7 14 0 10 0		
		0.3	3 11 12 9 0 8 5 0	4 1 7 0 10 6 0 14	2 15 13 0		
		0 6	10 0 9 15 1 0 5 4	072301280	14 11 13 0		
		0 14	1 13 15 9 0 1 3 6	7 0 11 10 0 8 0 1	2 4 0 5 2 0		
		0 4	5 14 0 7 6 8 0 12	13 15 0 2 1 3 0 1	10 11 0 9 0		
		0 9	15 13 0 2 6 14 0	12 8 0 4 5 0 10 0	7 11 3 1 0		
		0.8	13 15 0 1 2 0 12	9 14 0 7 3 5 0 10	0 4 6 11 0		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?
2000	1	4044.652875	4044.652875	4044.652875	146.871510	1	0
	2	4016.037519	4016.037519	4016.037519	707.848962	1	0
	3	4047.259941	4047.259941	4047.259941	127.843127	1	0
	4	4007.779731	4007.779731	4007.779731	2478.645701	1	0
	5	4011.147711	5002.083111	4081.059426	9684.849422	0	0
	6	3995.081199	3995.081199	3995.081199	128.112358	1	0
	7	4026.291147	4026.291147	4026.291147	134.362978	1	0
	8	3977.580177	3977.580177	3977.580177	1586.039717	1	0
	9	4039.900281	4039.900281	4039.900281	152.524839	1	0
	10	4078.943901	4078.943901	4078.943901	164.621241	1	0
	Total	40244.674485	41235.609885	40314.586200	15311.719855	9	0
	Mean	4024.467449	4123.560989	4031.458620	1531.171985	, ,	
	Std. Dev.	29.297437	310.033104	33.766403	2974.604245		
	Bud. Bev.	23.231401	010.000104	56.100400	2314.004240		
	Roi	ite (v_i)					
	1000		2708111401	2 4 13 0 6 10 0 1	5 0 9 15 0		
				0 13 12 4 0 10 1			
				15 9 0 7 11 13 1			
				12 15 0 14 10 0			
				8 0 10 0 6 4 5 0 1			
				13 5 0 2 3 1 0 10			
				5 14 13 0 7 4 15			
				10 0 3 1 2 0 7 9 1			
				8 6 15 0 3 2 1 0 7			
				0 0 9 8 14 0 2 1 1			
Max It	Trial	Best	Worst	Mean	Running Time	Converged?	Success?
3000	1	4059.322299	4059.322299	4059.322299	146.513982	1	0
	2	3997.937745	3997.937745	3997.937745	4697.842688	1	0
	3	4075.688187	4075.688187	4075.688187	170.522427	1	0
	4	4077.945981	4077.945981	4077.945981	152.758797	1	0
	5	4031.230851	4031.230851	4031.230851	152.592309	1	0
	6	4064.249529	4064.249529	4064.249529	140.318315	1	0
	7	4007.954367	4007.954367	4007.954367	4169.649219	1	0
	8	4064.673645	4064.673645	4064.673645	165.058257	1	0
	9	4052.286963	4052.286963	4052.286963	128.713653	1	0
	10	4065.160131	4065.160131	4065.160131	146.522611	1	0
	Total	40496.449701	40496.449701	40496.449701	10070.492259	10	0
	Mean	4049.644970	4049.644970	4049.644970	1007.049226		
	Std. Dev.	27.909626	27.909626	27.909626	1810.351487		
	I.		L		I .	I	

Route (v_i)			
0 14	4 5 0 2 1 3 0 10 0 4 15 12 0 9 6 13	3 7 0 8 11 0	
0 14	$4\ 4\ 6\ 15\ 0\ 13\ 9\ 2\ 0\ 12\ 7\ 0\ 10\ 11\ 0$	$5\ 1\ 3\ 0\ 8\ 0$	
0 6	$3\ 2\ 11\ 0\ 14\ 9\ 5\ 0\ 13\ 15\ 8\ 0\ 7\ 1\ 0$	10 0 12 4 0	
0 13	$3\ 6\ 5\ 0\ 8\ 1\ 0\ 10\ 14\ 0\ 9\ 11\ 7\ 0\ 2\ 3$	$0\ 12\ 4\ 15\ 0$	
0 1	$3\ 5\ 0\ 7\ 0\ 10\ 11\ 0\ 8\ 12\ 0\ 4\ 2\ 6\ 0\ 9$	9 14 13 15 0	
0 4	$6\ 0\ 10\ 14\ 0\ 11\ 9\ 12\ 0\ 2\ 15\ 13\ 0\ 5$	8 0 3 1 7 0	
0 10	0 11 0 14 12 4 0 13 7 6 0 3 1 2 0 8	8 9 0 5 15 0	
0 7	$2\ 9\ 0\ 8\ 0\ 10\ 14\ 0\ 1\ 3\ 13\ 0\ 12\ 15\ 4$	4 0 5 6 11 0	
0.8	$13\ 0\ 2\ 3\ 11\ 0\ 12\ 15\ 7\ 0\ 9\ 1\ 0\ 10\ $	14 0 4 6 5 0	
0.9	$7\ 15\ 14\ 0\ 8\ 12\ 0\ 6\ 11\ 2\ 0\ 1\ 3\ 4\ 0$	5 13 0 10 0	

Appendix I

Complete Results for 129 Nodes

Table I.1: Complete Results for 129 Node Test Case

			Pop Size	100		
Max It	Trial	Best	Worst	Mean	Running Time	Converged?
1000	1	74335.024163	74335.024163	74335.024163	719.059504	1
	2	72615.568901	72615.568901	72615.568901	716.589238	1
	3	75246.288125	75246.288125	75246.288125	624.689752	1
	4	71550.201143	71550.201143	71550.201143	624.190657	1
	5	75162.600059	75162.600059	75162.600059	811.973808	1
	6	74381.764241	74381.764241	74381.764241	718.719226	1
	7	72515.602265	72515.602265	72515.602265	624.857251	1
	8	73530.263213	73530.263213	73530.263213	718.950911	1
	9	74253.568943	74253.568943	74253.568943	719.559720	1
	10	74573.801471	74573.801471	74573.801471	719.800723	1
	Total	738164.682521	738164.682521	738164.682521	6998.390790	10
	Mean	73816.468252	73816.468252	73816.468252	699.839079	
	Std. Dev.	1227.545773	1227.545773	1227.545773	59.372330	
Max It	Trial	Best	Worst	Mean	Running Time	Converged?
2000	1	74377.385867	74377.385867	74377.385867	624.665781	1
	2	73406.808035	73406.808035	73406.808035	935.303875	1
	3	75510.100751	75510.100751	75510.100751	624.471807	1
	4	73301.739533	73301.739533	73301.739533	779.135197	1
	5	74374.579217	74374.579217	74374.579217	623.479135	1
	6	74486.109251	74486.109251	74486.109251	935.506933	1
	7	73366.230113	73366.230113	73366.230113	716.531666	1
	8	74118.263465	74118.263465	74118.263465	716.723196	1
	9	74447.103053	74447.103053	74447.103053	717.538910	1
	10	72173.752295	72173.752295	72173.752295	778.369394	1
	Total	739562.071577	739562.071577	739562.071577	7451.725896	10
	Mean	73956.207158	73956.207158	73956.207158	745.172590	
	Std. Dev.	917.147435	917.147435	917.147435	115.914581	
Max It	Trial	Best	Worst	Mean	Running Time	Converged?
3000	1	72409.573265	72409.573265	72409.573265	779.127742	1
	2	74511.319205	74511.319205	74511.319205	810.183567	1
	3	70570.679453	70570.679453	70570.679453	777.975829	1
	4	74463.044825	74463.044825	74463.044825	715.918237	1
	5	73430.583479	73430.583479	73430.583479	716.269868	1.
	6	74325.880721	74325.880721	74325.880721	934.673331	1
	7	75325.373285	75325.373285	75325.373285	717.718362	1
	8	75226.417043	75226.417043	75226.417043	717.560262	1
	9	70712.196983	70712.196983	70712.196983	622.937616	1
	10	72514.953617	72514.953617	72514.953617	809.575622	1
	Total	733490.021873	733490.021873	733490.021873	7601.940435	10
	Mean	73349.002187	73349.002187	73349.002187	760.194044	
	Std. Dev.	1739.531575	1739.531575	1739.531575	83.270657	

Appendix J

Code

```
%%%%_MAIN_FILE_%%%%%%%%
 \ensuremath{\text{\%}}\xspace \sqcup \ensuremath{\text{LICNACHAN}}\xspace , \sqcup \ensuremath{\text{LANCE}}\xspace \sqcup \ensuremath{\text{CLIVER}}\xspace \sqcup \ensuremath{\text{CLIVER}}\xspace
 %_LL_2014-64880
%⊔⊔⊔June⊔2018
 format_long;
 CurPopNum<sub>□</sub>=<sub>□</sub>100;
 maxitrun=1;
 while_maxitrun_<=_5
   Y_{\sqcup} =_{\sqcup} sprintf('\setminus nCurPopNum:_{\sqcup}\%d\setminus n',CurPopNum);
   Y_{\sqcup} =_{\sqcup} sprintf('\nMaxIt:_{\sqcup} % d\n', (CurPopNum*(10*maxitrun)));
 disp(Y);
 {\tt ProbDim}_{\sqcup} =_{\sqcup} (2*{\tt CustCnt}) - 1;_{\sqcup \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup} \%_{\sqcup} {\tt Problem}_{\sqcup} {\tt Dimensions}
 RunMax_{\sqcup} = _{\sqcup} 10 \ ; \\ \\ \sqcup UUUUUUUUUUUUUUUUUUUUUUUUUUUU%_UNumber_{\sqcup} of_{\sqcup} Trials
   convRuns=0;
 Ans_=_zeros(RunMax,_ProbDim++1+1);
 timeRec_{\sqcup} =_{\sqcup} zeros(RunMax, 1);
 for_trials_=_1:RunMax
   \verb|tic;_{\sqcup\sqcup\sqcup\sqcup} \%_{\sqcup} Start_{\sqcup} Timer
   Y_{\sqcup}=_{\sqcup} sprintf('\nTrial:_{\sqcup}%d\n',trials);
 \verb"\Lucurum" Lariables" Lapecific Late Lapecito Late Lapecime The Lap
DimMinMax<sub>□</sub>=<sub>□</sub>zeros(ProbDim,<sub>□</sub>2);
 \mathtt{for}_{\sqcup}\mathtt{i=1:ProbDim}
 DimMinMax(i,_{\square}:)_{\square}=_{\square}[0_{\square}1];
 \label{eq:local_problem} \Local_{\square} Variables_{\square} specific_{\square} to_{\square} the_{\square} algorithm
 {\tt AcceptThreshold}_{\sqcup} = {\tt _{\sqcup}} 1e - 5;
 %_PSO_Variables
 {\tt PopNum}_{\sqcup} =_{\sqcup} {\tt CurPopNum}\,;
 PSO_Curr<sub>□</sub>=<sub>□</sub>1;
{\tt PSO\_Max}_{\sqcup} = _{\sqcup} {\tt CurPopNum*10*maxitrun};
c1<sub>□</sub>=<sub>□</sub>1.5;
 c2<sub>□</sub>=<sub>□</sub>1.5;
 wmax_{\sqcup}=_{\sqcup}0.9;
 wmin_{\square} = _{\square} 0.4;
%_GA_Variables
 GA_cross_=_0.85;
 GA_mut_{\sqcup}=_{\sqcup}0.02;
GA_V_=_10;
 GA_B<sub>□</sub>=<sub>□</sub>15;
{\tt GA\_NumMax\_=\_ceil(PopNum*0.1);}
GA_NumMin<sub>□</sub>=<sub>□</sub>1;
   GA\_MinPS_{\sqcup}=_{\sqcup}20;
```

```
GA_MaxPS<sub>□</sub>=<sub>□</sub>10;
GA\_MinItr_{\sqcup}=_{\sqcup}10;
GA_MaxItr = 15;
 \texttt{GA\_MaxItr}_{\sqcup} = _{\sqcup} \texttt{floor}(\texttt{GA\_MinItr}_{\sqcup} + _{\sqcup}((\texttt{PSO\_Curr}/\texttt{PSO\_Max}) \\ ^{\texttt{GA\_B}}) * (\texttt{GA\_MaxItr} - \texttt{GA\_MinItr})); 
\label{eq:GA_Num} $$ GA_Num_{=}_{\sqcup}floor(GA_NumMax_{-}_{\sqcup}((PSO_Curr/PSO_Max)^GA_y)*(GA_NumMax-GA_NumMin)); $$
GA_PS_=_floor(GA_MinPS_+_((PSO_Curr/PSO_Max)^GA_y)*(GA_MaxPS-GA_MinPS));
{\tt TransPos}_{\sqcup} =_{\sqcup} {\tt zeros} ({\tt PopNum},_{\sqcup} {\tt ProbDim}) \; ;
TransVel_=_zeros(PopNum,_ProbDim);
\Lower_{\square}Initialization_{\square}Step
[PosPop, \_VelPop]_{\bot} = \_PSO\_InitPop(PopNum, \_ProbDim, \_DimMinMax);
\verb|FitVal_{\sqcup} = \bigsqcup PSO\_GA\_GetFitValues(PopNum, \bigsqcup PosPop, \bigsqcup ProbDim, \bigsqcup CustCnt);|
[Pbest, \_Gbest] = \_PSO\_GetInitPGBest(PopNum, \_PosPop, \_ProbDim, \_FitVal);
PrevDiff_{\sqcup}=_{\sqcup}0;
while_PSO_Curr_<=_PSO_Max
\LEvaluate_Fitness
\verb|FitVal_{\sqcup} = | PSO\_GA\_GetFitValues(PopNum, | PosPop, | ProbDim, | CustCnt); \\
\verb|\|\| Check | | if | | termination | | conditions | | have | | been | | met
if(PSO Curr == 1)
\label{eq:prevDiff} PrevDiff_{\sqcup} =_{\sqcup} max(FitVal)_{\sqcup} -_{\sqcup} min(FitVal);
CurrDiff_=_max(FitVal)_-_min(FitVal);
\verb|\|\| Check | | for | | population | | convergence |
\tt if_{\square}PrevDiff_{\square} - _{\square}CurrDiff_{\square} < =_{\square}AcceptThreshold_{\square}\&\&_{\square}CurrDiff_{\square} < =_{\square}AcceptThreshold_{\square}\&\&_{\square}PSO\_Curr_{\square} <_{\square}PSO\_Max
for | i | = | 1:PopNum
if_min(FitVal)_==_FitVal(i)
minInd<sub>□</sub>=<sub>□</sub>i;
if_{\sqcup}max(FitVal)_{\sqcup}==_{\sqcup}FitVal(i)
maxInd<sub>□</sub>=<sub>□</sub>i;
end
end
mPos<sub>□</sub>=<sub>□</sub>mean(FitVal);
\verb|seq_route_{\sqcup} = \verb|_{\sqcup} 0 | tainSequence(PosPop(minInd,:), \verb|_ProbDim,_{\sqcup} CustCnt);
disp(seq_route);
X_{\bot} = \_ sprintf('Population\_Converged!\nNumber\_of_\bot Iterations: \_ \%d\nBest_\bot Value: \_ \%.0.15f\nWorst_\_ Value: \_ \%0.15f\nWean: \_ \%0.15f', PSO\_Curr, FitVal(minInd), FitVal(maxInd), mPos);
disp(X):
convRuns_{\sqcup} = convRuns_{\sqcup} + L_{\sqcup}1;
end
PrevDiff_=_CurrDiff;
\tt if(PSO\_Curr_{\sqcup} == _{\sqcup} PSO\_Max)
%_if_max_gen_reached
break;
\quad \text{end} \quad
 [Pbest, \_Gbest]_{\square} = \_PSO\_GetPGBest(PopNum, \_PosPop, \_\_ProbDim, \_FitVal, \_Pbest, \_Gbest);
\verb|\|\| Change | | value | | according | | to | | how | | current | | iteration
w_=_wmax-(wmax-wmin)*(PSO_Curr/PSO_Max);
\verb|\| \verb|\| Calculate | \verb|\| new | | velocities | | and | | move
 [TransPos, \bot TransVel] \bot = \bot PSO\_ChangeVel (PopNum, \bot PosPop, \bot VelPop, \bot ProbDim, \bot Pbest, \bot Gbest, \bot w, \bot c1, \bot c2, \bot DimMinMax);
% Evaluate
TransFitVal_{\sqcup} = _{\sqcup} PSO\_GA\_GetFitValues(PopNum,_{\sqcup} TransPos,_{\sqcup} ProbDim,_{\sqcup} CustCnt);
% GA Portion
```

```
PSO_Arranged<sub>□</sub>=<sub>□</sub>sort(TransFitVal);
GA_Num_Curr<sub>□</sub>=<sub>□</sub>1;
\mathtt{while} \sqcup \mathtt{GA\_Num\_Curr} \sqcup <= \sqcup \mathtt{GA\_Num}
{\tt \% \sqcup Get \sqcup one \sqcup from \sqcup best \sqcup individuals}
for_RowNum_=_1:PopNum
{\tt Sel\_Indiv}_{\sqcup} = {\tt \_TransPos}({\tt RowNum},_{\sqcup}:) \; ;
break;
end
%_chromosome
{\tt GA\_Chroms}_{\sqcup} = {\sqcup} {\tt GA\_InitPop}({\tt GA\_PS}, {\sqcup} {\tt ProbDim}, {\sqcup} {\tt DimMinMax}) \; ;
\texttt{GA\_Chroms(1,\_:)}_{\bot} = _{\bot} \texttt{Sel\_Indiv;}
GA_Fit_Elite_=_PSO_Arranged(GA_Num_Curr);
{\tt GA\_Fit\_Chrom_{\sqcup}=_{\sqcup}Sel\_Indiv;}
GA_Curr<sub>□</sub>=<sub>□</sub>1;
{\tt while} {\sqcup} {\tt GA\_Curr} {\sqcup} {\tt <=} {\sqcup} {\tt GA\_MaxItr}
% Get Fitness
\texttt{GA\_FitVal}_{\sqcup} = _{\sqcup} \texttt{PSO\_GA\_GetFitValues} \\ (\texttt{GA\_PS}, _{\sqcup} \texttt{GA\_Chroms}, _{\sqcup} \texttt{ProbDim}, _{\sqcup} \texttt{CustCnt}) \; ; \\
{\tt TransPop}_{\sqcup} = _{\sqcup} {\tt zeros}({\tt GA\_PS},_{\sqcup} {\tt ProbDim})\,;
%_Keep_Elite
for_i_=_1:GA_PS
[~, \_TotExc2]_{\square} = \_PSO\_GA\_Eval(GA\_Chroms(i,:), \_ProbDim, \_(ProbDim+1)/2);
\tt if_{\sqcup}GA\_Fit\_Elite_{\sqcup}>_{\sqcup}GA\_FitVal(i)_{\sqcup}\&\&_{\sqcup}TotExc1_{\sqcup}>=_{\sqcup}TotExc2
{\tt GA\_Fit\_Chrom}_{\sqcup} = _{\sqcup} {\tt GA\_Chroms(i,:);}
GA_Fit_Elite_=_GA_FitVal(i);
end
\c\c\c_Exit\c\cat\c\cmax\c\citerations
\mathtt{if} \llcorner \mathtt{GA\_Curr} \llcorner \mathtt{==} \llcorner \mathtt{GA\_MaxItr}
break;
end
{\tt GA\_RouWheel} \sqcup = \sqcup {\tt GA\_CreateWheel(GA\_PS, \sqcup GA\_FitVal)};
\verb"\L^{Create}_{\sqcup} the_{\sqcup} next_{\sqcup} population
for_ii_i=_i1:GA_PS
[Parent1, \_Parent2] \_ = \_GA\_Selection(GA\_PS, \_GA\_Chroms, \_ProbDim, \_GA\_FitVal, \_GA\_RouWheel);
{\tt SibRep}_{\sqcup} = {\tt \_GA\_CrossOver(Parent1,}_{\sqcup} {\tt Parent2,}_{\sqcup} {\tt GA\_cross,}_{\sqcup} {\tt ProbDim,}_{\sqcup} {\tt DimMinMax,}_{\sqcup} {\tt CustCnt)} \, ;
%_Mutate
if_{\square}rand()_{\square} <=_{\square}GA_{\underline{mut}}
{\tt SibRep\_=\_GA\_Mutation(SibRep,\_DimMinMax,\_ProbDim);}
%_Place
TransPop(i, :) = SibRep;
GA_Chroms<sub>□</sub>=<sub>□</sub>TransPop;
GA_Curr<sub>□</sub>=<sub>□</sub>GA_Curr<sub>□</sub>+<sub>□</sub>1;
end
\verb|\|_Replace_{\sqcup}the_{\sqcup}infeasible/worst_{\sqcup}individuals
\mathtt{for}_{\sqcup}\mathtt{Row}\mathtt{Num}_{\sqcup}\texttt{=}_{\sqcup}\mathtt{1}\mathtt{:}\mathtt{Pop}\mathtt{Num}
\verb|if_{\sqcup} TransFitVal(RowNum)_{\sqcup} = =_{\sqcup} PSO\_Arranged(PopNum-GA\_Num\_Curr+1);
```

end

```
TransPos(RowNum,:) = GA_Fit_Chrom(1,:);
break;
end
{\tt GA\_Num\_Curr}_{\sqcup} = {\sqcup} {\tt GA\_Num\_Curr}_{\sqcup} + {\sqcup} 1\,;
end
\LUpdate\LGA\LVars
\label{eq:GA_MaxItr} $$ GA_MaxItr_{\sqcup}=_{\sqcup}floor(GA_MinItr_{\sqcup}+_{\sqcup}((PSO_Curr/PSO_Max)^GA_B)*(GA_MaxItr-GA_MinItr)); $$
{\tt GA\_Num}_{\sqcup} = _{\sqcup} {\tt floor}({\tt GA\_NumMax}_{\sqcup} = _{\sqcup} (({\tt PSO\_Curr/PSO\_Max})^G {\tt GA\_y}) * ({\tt GA\_NumMax} = {\tt GA\_NumMin}));
GA_PS_=_floor(GA_MinPS_+_((PSO_Curr/PSO_Max)^GA_y)*(GA_MaxPS-GA_MinPS));
\LUpdate\BoxPSO\Boxvariables
PosPop<sub>□</sub>=<sub>□</sub>TransPos;
{\tt VelPop}_{\sqcup} =_{\sqcup} {\tt TransVel};
PSO_Curr_=_PSO_Curr_+_1;
% Some printing
\mathtt{if} \llcorner \mathtt{PSO\_Curr} \llcorner \mathtt{>=} \llcorner \mathtt{PSO\_Max}
for_i_=_1:PopNum
if_{\sqcup}min(FitVal)_{\sqcup}==_{\sqcup}FitVal(i)
{\tt minInd}_{\sqcup} = _{\sqcup} {\tt i} \, ;
if<sub>□</sub>max(FitVal)<sub>□</sub>==<sub>□</sub>FitVal(i)
\max Ind_{\sqcup} =_{\sqcup} i;
end
{\tt seq\_route}_{\sqcup} = {\tt \sqcup} {\tt ObtainSequence} ({\tt PosPop(minInd,:),}_{\sqcup} {\tt ProbDim,}_{\sqcup} {\tt CustCnt)};
disp(seq_route);
mPos_{\sqcup} =_{\sqcup} mean(FitVal);
disp(X);
end
\mathtt{if} \llcorner \mathtt{PSO} \_\mathtt{Curr} \llcorner \mathtt{>=} \llcorner \mathtt{PSO} \_\mathtt{Max}
Ans(trials,:)_{\sqcup} =_{\sqcup} [PosPop(minInd,_{\sqcup}:)_{\sqcup} FitVal(minInd)_{\sqcup} 0];
\verb|else|| \% LConverged|
\label{eq:loss_pop} \texttt{Ans}(\texttt{trials},:)_{\sqcup} =_{\sqcup} [\texttt{PosPop}(\texttt{minInd},_{\sqcup}:)_{\sqcup} \texttt{FitVal}(\texttt{minInd})_{\sqcup} 1] \ ;
timeRec(trials) = toc;
X_{\sqcup} = _{\sqcup} sprintf('Running_{\sqcup} Time_{\sqcup} for_{\sqcup} this_{\sqcup} trial:_{\sqcup} \%0.15e\n',_{\sqcup} timeRec(trials));
disp(X);
\mathtt{if}_{\sqcup}\mathtt{convRuns}_{\sqcup}\mathtt{>}_{\sqcup}\mathtt{0}
%_Get_Best_Fit
ConvVals_=_zeros(convRuns,1);
i=1;
\mathtt{for}_{\sqcup}\mathtt{o}_{\sqcup}\mathtt{=}_{\sqcup}\mathtt{1}\!:\!\mathtt{RunMax}
if(Ans(o,ProbDim++1+1)_{\square}==_{\square}1)
{\tt ConvVals(i)_{\sqcup}=_{\sqcup}Ans(o,ProbDim+1);}
i=i+1;
end
end
Best<sub>□</sub>=<sub>□</sub>min(ConvVals);
for o = 1: RunMax
if_min(ConvVals)_==_Ans(o,ProbDim+1)
\texttt{BesInd}_{\sqcup} = _{\sqcup} o \, ;
break;
end
```

```
\c\c\cGenerate\c\cStats
Mean, = mean(ConvVals);
StdDev_=_std(ConvVals);
Median = median(ConvVals):
Worst_=_max(ConvVals);
else
 %_Get_Best_Fit
Vals_=_zeros(RunMax,1);
for_o_=_1:RunMax
{\tt Vals(o)_{\sqcup} = \sqcup Ans(o, ProbDim+1);}
{\tt \%_{\sqcup}Generate_{\sqcup}Stats}
Mean<sub>□</sub>=<sub>□</sub>mean(Vals);
StdDev_=_std(Vals);
{\tt Median}_{\sqcup} =_{\sqcup} {\tt median(Vals)};
Worst_=_max(Vals);
{\tt Best}_{\sqcup} =_{\sqcup} {\tt min(Vals)}\,;
%_Get_index_of_best_run
BesInd_{\sqcup}=_{\sqcup}0;
for o = 1: RunMax
 if_{\sqcup}min(Vals)_{\sqcup}==_{\sqcup}Ans(o,ProbDim+1)
{\tt BesInd}_{\sqcup} = {\tt \sqcupo};
end
 end
 end
{\tt ConvRatio}_{\sqcup} =_{\sqcup} {\tt convRuns}/{\tt RunMax};
totalTime_=_sum(timeRec);
 ave {\tt Time}_{\sqcup} =_{\sqcup} {\tt mean(timeRec)};
 \texttt{X} \_ = \_\texttt{LSPrintf('} \texttt{NnNBest} \_\texttt{OverAll} \_\texttt{Value} : \_ \%0.15f \texttt{NnMean} : \_ \%0.15f \texttt
 disp(X);
 save(sprintf('run_%d_%d_%d',CustCnt,PopNum,_PSO_Max),_''Ans',_''Best',_''Mean',_''Median',_''StdDev',_''Worst',_''convRuns',_''ConvRatio',_''totalTime');
 maxitrun=maxitrun+1;
 \verb|\|_Funtion| \verb|\|_that| \verb|\|_records| \verb|\|_the| \verb|\|_inital| \verb|\|_personal| \verb|\|_and| \verb|\|_global| \verb|\|_bests|
 function \_[Pbest, \_Gbest] = \_PSO\_GetInitPGBest(PopNum, \_PosPop, \_ProbDim, \_FitVal)
Pbest_=_zeros(PopNum,_ProbDim+1);
Gbest_{\sqcup} = _{\sqcup} zeros(1,_{\sqcup} ProbDim+1);
\verb|\|_Record_{\sqcup}inital_{\sqcup}as_{\sqcup}Pbest|
 for_RowNum_=_1:PopNum
{\tt Pbest(RowNum, \sqcup:)_{\sqcup}=_{\sqcup}[PosPop(RowNum,:)_{\sqcup}FitVal(RowNum, \sqcup 1)];}
\verb|\|_Record_{\sqcup}the_{\sqcup}Gbest_{\sqcup}with_{\sqcup}the_{\sqcup}best_{\sqcup}value
{\tt Gbest(ProbDim+1)_{\sqcup}=_{\sqcup}min(FitVal);}
 {\tt for} \llcorner {\tt RowNum} \llcorner = \llcorner 1 : {\tt PopNum}
\texttt{if}_{\sqcup} \texttt{Pbest}(\texttt{RowNum},_{\sqcup} \texttt{ProbDim}_{\sqcup} +_{\sqcup} 1)_{\sqcup} = =_{\sqcup} \texttt{Gbest}(\texttt{ProbDim} + 1)
Gbest_=_Pbest(RowNum, :);
break;
 end
 end
 end
```

%_Consecutive_Number_Remover for_i=1:length(seg route)-1

 $\verb"seq_route_{\sqcup} = \!\!\!\! \sqcup \!\!\! \texttt{seq}_route_nocon";$

end end

$$\begin{split} & \text{if}_{\square}\text{``}(\text{seq_route(i)}_{\square}\text{==}_{\square}0_{\square}\&\&_{\square}\text{seq_route(i+1)}_{\square}\text{==}_{\square}0) \\ & \text{seq_route_nocon}_{\square}\text{=}_{\square}[\text{seq_route_nocon}_{\square}\text{seq_route(i)]}; \end{split}$$

```
\verb|\|_{\sqcup} Function \>_{\sqcup} that \>_{\sqcup} recalculates \>_{\sqcup} the \>_{\sqcup} velocity \>_{\sqcup} and \>_{\sqcup} particle \>_{\sqcup} locations
  function \_[TransPos, \_TransVel] = \_PSO\_ChangeVel(PopNum, \_PosPop, \_VelPop, \_ProbDim, \_Pbest, \_Gbest, \_w, \_c1, \_c2, \_DimMinMax)
  TransPos_=_zeros(PopNum, _ProbDim);
 {\tt TransVel}_{\sqcup} = _{\sqcup} {\tt zeros} ({\tt PopNum},_{\sqcup} {\tt ProbDim}) \; ;
  {\tt for} \llcorner {\tt RowNum} \llcorner = \llcorner 1 : {\tt PopNum}
  %_Calculate_new_velocity
   \texttt{TempVel}\_=\_\texttt{U}\texttt{VelPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) * \texttt{W}_\texttt{U}+\_\texttt{U}1*\texttt{rand}()*(\texttt{Pbest}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim})) \_+\_\texttt{C}2*\texttt{rand}()*(\texttt{Gbest}(\texttt{1},\_\texttt{U}1:\texttt{ProbDim}),\_-\_\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim})) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{PosPop}(\texttt{RowNum},\_\texttt{U}1:\texttt{ProbDim}) \_-\_\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*}\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*}\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^*\texttt{U}^
 \verb|\| \verb|\| Check | \verb|\| if | \verb|\| within | \verb|\| Vmin | \verb|\| , | | Vmax
 \mathtt{for}_{\sqcup}\mathtt{i}_{\sqcup}\mathtt{=}_{\sqcup}\mathtt{1}\mathtt{:}\mathtt{Prob}\mathtt{Dim}
VelBound_{\square} =_{\square} (DimMinMax(i,_{\square}2)_{\square} -_{\square}DimMinMax(i,_{\square}1));
 \Label{local_local_local} \Label{local_local_local_local} \Label{local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local
  \mathtt{if}_{\sqcup} \mathtt{TempVel(i)} \mathord{<\!\!\!-} \mathtt{VelBound}
TempVel(i) = VelBound;
 elseif_TempVel(i)>VelBound
\texttt{TempVel(i)}_{\sqcup} =_{\sqcup} \texttt{VelBound;}
  end
  end
 \label{eq:tempPos} $$\operatorname{TempPos}_{\square}=_{\square}\operatorname{PosPop}(\operatorname{RowNum},_{\square}:)_{\square}+_{\square}\operatorname{TempVel};
  [~, \_TotExc]_{\bot} = \_PSO\_GA\_Eval(TempPos(:), \_ProbDim, \_(ProbDim+1)/2);
  if_{\sqcup}TotExc_{\sqcup}>_{\sqcup}1e-5
 {\tt TempPos}_{\sqcup} =_{\sqcup} {\tt PosPop}\left({\tt RowNum}\,,_{\sqcup}\colon\right);
  end
  %_Save_in_respective_arrays
  {\tt TransPos(RowNum, \sqcup:)_{\sqcup}=_{\sqcup} TempPos;}
  {\tt TransVel(RowNum, ...:)_{...} = _{...} TempVel;}
  end
 \verb|\|\| \mathsf{Function} \sqcup \mathsf{for} \sqcup \mathsf{obtaining} \sqcup \mathsf{the} \sqcup \mathsf{sequence} \sqcup \mathsf{of} \sqcup \mathsf{nodes}
 \texttt{function} \sqcup \texttt{seq\_route} \sqcup = \sqcup \texttt{ObtainSequence}(\texttt{Chrom}, \sqcup \texttt{ProbDim}, \sqcup \texttt{CustCnt})
 % Obtain Sequence
  Y_{\sqcup}=_{\sqcup}zeros(1,_{\sqcup}ProbDim);
 \verb|sorted_chrom_{\sqcup} = \!\!\! \sqcup \!\!\! \texttt{sort}(\texttt{Chrom}) \; ;
 seq_route_=_zeros(1,ProbDim);
  for_i=1:ProbDim
for j=1:ProbDim
if(sorted\_chrom(i)_{\sqcup}==_{\sqcup}Chrom(j)_{\sqcup}\&\&_{\sqcup}Y(j)^{\sim}=1)
if<sub>□</sub>j>CustCnt
 seq\_route(i)_{\sqcup}=_{\sqcup}0;
 \texttt{seq\_route(i)}_{\sqcup} =_{\sqcup} \texttt{j};
  end
 Y(j)_{\sqcup}=_{\sqcup}1;
  break:
  end
  seq\_route_{\sqcup}=_{\sqcup}[0_{\sqcup}seq\_route_{\sqcup}0_{\sqcup}1];
  \tt seq\_route\_nocon_{\sqcup} = _{\sqcup}[];_{\sqcup\sqcup\sqcup\sqcup}\%_{\sqcup}Sequence_{\sqcup}without_{\sqcup}Consecutive_{\sqcup}Zeros
```

```
\verb|\|\| \texttt{\|} \texttt{|\|} \texttt
  \texttt{function}_{\sqcup}[\texttt{FitVal},_{\sqcup}\texttt{TotExc}]_{\sqcup} =_{\sqcup} \texttt{PSO}_{\square}\texttt{GA}_{\bot}\texttt{Eval}(\texttt{Chrom},_{\sqcup}\texttt{ProbDim},_{\sqcup}\texttt{CustCnt})
  % Load data
load('demand.mat');
  vec\_cap_{\sqcup}=_{\sqcup}12;
 load('distance_data..mat');
 \label{local_local} \Local_{\square} Obtain_{\square} Sequence
  {\tt seq\_route}_{\sqcup} = _{\sqcup} {\tt ObtainSequence}({\tt Chrom},_{\sqcup} {\tt ProbDim},_{\sqcup} {\tt CustCnt}) \, ;
  seq_inds_{\square} = seq_route + 1;
 \verb|\| \verb|\| Calculate | | total | | distance
for_i=1:length(seq_inds)-1
TotDist_=_TotDist_+_dist_ij(seq_inds(i),seq_inds(i+1));
\c\c\cCalculate\c\ctotal\c\cexcess
VecCnt_=_0; %_vehicle_count
 {\tt AccWst}_{\sqcup} = {\tt LO}; {\tt M}_{\sqcup} {\tt accumulated}_{\sqcup} {\tt by}_{\sqcup} {\tt vehicle}
{\tt TotAcc\_=\_0; \%\_total\_accumulated}
TotUnc_=_0; %_uncollected
for_i=2:length(seq_inds)
\mathtt{if}_{\sqcup}\mathtt{seq\_inds(i)}_{\sqcup}\mathtt{==}_{\sqcup}1
AccWst<sub>□</sub>=<sub>□</sub>0;
{\tt VecCnt}_{\sqcup} =_{\sqcup} {\tt VecCnt+1};
else
 {\tt AccWst}_{\sqcup} = {\tt LAccWst}_{\sqcup} + {\tt Ldmnd(seq\_inds(i))};
\texttt{if}(\texttt{vec\_cap}_{\sqcup} \neg_{\sqcup} \texttt{AccWst}) \texttt{>=} 0
TotAcc_=_TotAcc_+_dmnd(seq_inds(i));
\label{eq:totUnc} \texttt{TotUnc}_{\sqcup} = _{\sqcup} \texttt{TotUnc}_{\sqcup} + _{\sqcup} \texttt{dmnd}(\texttt{seq\_inds(i))};
  end
 FitVal_{\bot} = _{\bot} (TotDist*0.27*46.20) - (((TotAcc)/vec\_cap)*(400))_{\bot} + _{\bot}840*VecCnt;
  TotExc_=_(TotUnc/vec_cap)*(400);
 \verb|\| \verb|\| \verb| Get | | the | | fitness | | values | | of | | the | | whole | | population
 function \_FitVal \_= \_PSO\_GA\_GetFitValues (PopNum, \_PosPop, \_ProbDim, \_CustCnt)
FitVal_=_zeros(PopNum,_1);
  TotExc<sub>□</sub>=<sub>□</sub>zeros(PopNum,<sub>□</sub>1);
\verb|\|\| Evaluate_{\sqcup} each_{\sqcup} particle's_{\sqcup} value
for_RowNum_=_1:PopNum
  [\texttt{FitVal}(\texttt{RowNum}, \llcorner 1), \llcorner \texttt{TotExc}(\texttt{RowNum}, 1)] = \llcorner \texttt{PSO\_GA\_Eval}(\texttt{PosPop}(\texttt{RowNum}, \llcorner :), \llcorner \texttt{ProbDim}, \llcorner \texttt{CustCnt});
 end
 FitWorst_=_max(FitVal);
\verb|\|\| Evaluate_{\sqcup} each_{\sqcup} particle's_{\sqcup} value
for_RowNum_=_1:PopNum
\mathtt{if}(\mathtt{TotExc}(\mathtt{RowNum}, \sqcup 1) \sqcup > \sqcup 0)
FitVal(RowNum, _{\sqcup}1)_{\sqcup} = _{\sqcup}FitWorst_{\sqcup} + _{\sqcup}(TotExc(RowNum, _{\sqcup}1));
 {\tt \%FitWorst}_{\sqcup} +_{\sqcup} ({\tt TotExc}({\tt RowNum},_{\sqcup} 1)) \, ;
  _{\text{UUUUUUUUU}}else
%disp('hey');
  end
  end
```

 $\verb|\|\| Function | | that | | records | | personal | | and | | global | | bests$

```
function \sqcup [Pbest, \sqcup Gbest] = \sqcup PSO\_GetPGBest(PopNum, \sqcup PosPop, \sqcup ProbDim, \sqcup FitVal, \sqcup Pbest, \sqcup Gbest)
\c\c\c_Get_\Pbest\\and\Gbest
for RowNum = 12:PopNum
 \begin{tabular}{l} $ [$^{\sim},$$ $_{\square}$ TotExc1]_{\square} = $_{\square}$ PSO_GA_Eval(PosPop(RowNum,:),$_{\square}$ ProbDim,$_{\square}$ (ProbDim+1)/2); \\ \end{tabular} 
\verb|\| \verb|\| if_{\sqcup} the_{\sqcup} value_{\sqcup} is_{\sqcup} more_{\sqcup} `fit',_{\sqcup} replace_{\sqcup} the_{\sqcup} current_{\sqcup} recorded_{\sqcup} personal
% best
if_Pbest(RowNum,_ProbDim+1)_>_FitVal(RowNum,1)_&&_TotExc1_<=_0
{\tt Pbest(RowNum, \sqcup:)_{\sqcup}=_{\sqcup}[PosPop(RowNum,:)_{\sqcup}FitVal(RowNum, \sqcup 1)];}
\texttt{elseif} \sqcup \texttt{TotExc2} \sqcup \texttt{>} \sqcup \texttt{TotExc1}
{\tt Pbest(RowNum, \_:)_{\_}=_{\square}[PosPop(RowNum,:)_{\square}FitVal(RowNum,\_1)];}
end
\verb|\| \verb|\| if_{\sqcup} the_{\sqcup} value_{\sqcup} is_{\sqcup} more_{\sqcup} `fit', |_{\sqcup} replace_{\sqcup} the_{\sqcup} current_{\sqcup} recorded_{\sqcup} global_{\sqcup} best
\mathtt{if}_{\sqcup}\mathtt{Gbest}(\mathtt{ProbDim+1})_{\sqcup} \mathtt{>}_{\sqcup}\mathtt{min}(\mathtt{FitVal})
for RowNum = 12:PopNum
 \begin{tabular}{ll} $[$^*,$$$ $\sqcup$ TotExc1]$$$ $\sqcup$ $=$$$ $\sqcup$ PSO_GA_Eval(PosPop(RowNum,:),$$$ $\sqcup$ ProbDim,$$$$$ $\sqcup$ (ProbDim+1)/2); $$ \end{tabular} 
[~, _TotExc2] _=_PSO_GA_Eval(Gbest(1:ProbDim), _ProbDim, _(ProbDim+1)/2);
\texttt{if}_{\sqcup} \texttt{Pbest}(\texttt{RowNum},_{\sqcup} \texttt{ProbDim}_{\sqcup} +_{\sqcup} 1)_{\sqcup} = =_{\sqcup} \texttt{min}(\texttt{FitVal})_{\sqcup} \& \&_{\sqcup} \texttt{TotExc1}_{\sqcup} < = 0
{\tt Gbest}_{\sqcup} = _{\sqcup} {\tt Pbest} \left( {\tt RowNum}\,,_{\sqcup} \colon \right) \,;
\verb|elseif_|| TotExc2_|| >_{\sqcup} TotExc1
{\tt Gbest}_{\sqcup} = _{\sqcup} {\tt Pbest} \left( {\tt RowNum} \,, _{\sqcup} \colon \right) \,;
break;
end
end
end
\verb|\| \verb|\| Generate | \verb|\| initial | \verb|\| GA | \verb|\| population
\texttt{function} \cup \texttt{GA\_Chroms} \cup = \cup \texttt{GA\_InitPop}(\texttt{GA\_PS}, \cup \texttt{ProbDim}, \cup \texttt{DimMinMax})
GA_Chroms_=_zeros(GA_PS,_ProbDim);
\verb|\|_{L} Randomly \sqcup Generate \sqcup GA\_PS \sqcup chromosomes
for_RowNum_=_1:GA_PS
\label{eq:cons_pos_loss} \begin{split} TempPos \mathrel{\sqcup} = \mathrel{\sqcup} PSO\_GA\_Cons\_Feasible(ProbDim, \mathrel{\sqcup} DimMinMax) \,; \end{split}
{\tt GA\_Chroms(RowNum, \_:)_{\bot}=_{\bot}TempPos; \_\%_{\bot}Add_{\bot}to_{\bot}positions}
end
\texttt{function} \llcorner \texttt{GA\_RouWheel} \llcorner = \llcorner \texttt{GA\_CreateWheel} (\texttt{GA\_PS}, \llcorner \texttt{GA\_FitVal})
\verb|\|_{\sqcup} Build_{\sqcup} Roulette_{\sqcup} Wheel_{\sqcup} for_{\sqcup} GA_{\sqcup} Selection
{\tt Probabilities}_{\sqcup\sqcup} = _{\sqcup} {\tt zeros}({\tt GA\_PS}, _{\sqcup} 1) \, ;
_{\sqcup}^{\text{get}}
SumFit_{\sqcup} =_{\sqcup} (sum(GA\_FitVal));
{}^{v}_{\sqcup} \texttt{get}_{\sqcup} \texttt{fraction}_{\sqcup} \texttt{of}_{\sqcup} \texttt{fitness}_{\sqcup} \texttt{values}
for_i_=_1:GA_PS
\label{eq:probabilities} Probabilities(\texttt{i}, \_1)_{\bot} = _{\bot} (\texttt{GA\_FitVal}(\texttt{i}) / \texttt{SumFit});
end
\texttt{GA\_FitRatio}_{\sqcup} = _{\sqcup} \texttt{zeros}(\texttt{GA\_PS},_{\sqcup} 1);
{\tt SumProb}_{\sqcup} =_{\sqcup} {\tt sum} ({\tt Probabilities}) \, ;
%_get_probability_ratio
```

 $\texttt{for}_{\sqcup} \texttt{i}_{\sqcup} \texttt{=}_{\sqcup} \texttt{1} : \texttt{GA_PS}_{\sqcup} \%_{\sqcup} \texttt{get}_{\sqcup} \texttt{proper}_{\sqcup} \texttt{probabilities}$

```
{\tt GA\_FitRatio(i, \_1)_{\square}=_{\square}Probabilities(i)/SumProb;}
end
\verb|\|_{\square}Generate | | roulette | | wheel
GA_RouWheel_{\sqcup}=_{\sqcup}zeros(GA_PS_{\sqcup}1);
for_RowNum_=_1:GA_PS
for_{\sqcup}i_{\sqcup}=_{\sqcup}1:RowNum
{\tt GA\_RouWheel(RowNum)_{\sqcup}=_{\sqcup}GA\_RouWheel(RowNum)_{\sqcup}+_{\sqcup}GA\_FitRatio(i);}
end
end
%_GA_Selection_Operator
function_{\sqcup}[Parent1, {\sqcup} Parent2]_{\sqcup} = {\sqcup} GA\_Selection(GA\_PS, {\sqcup} GA\_Chroms, {\sqcup} ProbDim, {\sqcup} GA\_FitVal, {\sqcup} GA\_RouWheel)
\texttt{Parent1}_{\sqcup} = _{\sqcup} \texttt{zeros}(\texttt{1}, _{\sqcup} \texttt{ProbDim});
Parent2<sub>□</sub>=<sub>□</sub>zeros(1,<sub>□</sub>ProbDim);
p1=rand(1,'double');
p2=rand(1,'double');
p1c=0; ⊔%Checker
p2c=0; _%Checker
for_RowNum_=_1:GA_PS
\LSelect_Parent_1
if_GA_RouWheel(RowNum)_>_p1_&&_p1c==0
\texttt{Parent1(1,||:)|=|GA\_Chroms(RowNum,||:);}
p1c=1;
end
LSelect_Parent_2
\texttt{if} \_\texttt{GA\_RouWheel}(\texttt{RowNum}) \_ \\ > \_\texttt{p2} \_ \& \& \_\texttt{p2c} = 0
{\tt Parent2(1, :)_{\sqcup}=_{\sqcup}GA\_Chroms(RowNum, :);}
p2c=1;
end
\mathtt{if} \sqcup \mathtt{p1c} \sqcup == \sqcup 1 \sqcup \&\& \sqcup \mathtt{p2c} \sqcup == \sqcup 1
break;
end
\hbox{$\rlap/{\rm L}$} Function $\sqcup$ that $\sqcup$ does $\sqcup$ the $\sqcup$ GA $\sqcup$ crossover $\sqcup$ mechanic
function \_SibRep \_ = \_GA \_CrossOver(Parent1, \_Parent2, \_GA \_cross, \_ProbDim, \_DimMinMax, \_CustCnt)
CrossVal_=_rand();
%_Cross_or_Not
if_CrossVal_<=_GA_cross
{\tt \%_{\square}Cross_{\square}at_{\square}random_{\square}point}
CrossPos<sub>□</sub>=<sub>□</sub>randi(ProbDim-1);
{\tt Sibling1} \sqcup = \sqcup [{\tt Parent1}(1\!:\!{\tt CrossPos}) \sqcup {\tt Parent2}({\tt CrossPos+1}\!:\!{\tt ProbDim})] \ ;
Sibling2_=_[Parent2(1:CrossPos)_Parent1(CrossPos+1:ProbDim)];
{\tt \%LNo_Lcrossing}
Sibling1_=_Parent1;
{\tt Sibling2}_{\sqcup} =_{\sqcup} {\tt Parent2};
end
\verb|\| \verb|\| Compute | | Fitness | | Values |
[Sib1\_FitVal,Sib1\_Exc] = \_PSO\_GA\_Eval(Sibling1,\_ProbDim,\_CustCnt);
[Sib2\_FitVal,Sib2\_Exc] = \_PSO\_GA\_Eval(Sibling2,\_ProbDim,\_CustCnt);
if_Sib1_FitVal_<=_Sib2_FitVal
if \_Sib2\_Exc \_ < \_Sib1\_Exc
{\tt SibRep}_{\sqcup} =_{\sqcup} {\tt Sibling2};
else
{\tt SibRep}_{\sqcup} = _{\sqcup} {\tt Sibling1};
end
```

```
If _\Sib1_Exc_\<_\Sib2_Exc
SibRep_\=_\Sibling1;
else
SibRep_\=_\Sibling2;
end
end
end

\[
\[
\]_\Function_\for_\GA_\Mutation_\mechanism
function_\for_\GA_\Mutation(Chrom,_\DimMinMax,_\ProbDim)
\[
\]_\Select_\Random_\Gene_\to_\Mutation(Chrom,_\DimMinMax,_\ProbDim)
\[
\]_\Select_\Random_\Gene_\to_\Mutation
\[
\]_\Function_\Finally_\Mutation
\[
\]_\Function_\Gamma\text{ini}(ProbDim);
\[
\]_\Non-\Binary_\Mutation
\[
\]_\Chrom(1,_\MutPos)_\Binary_\Mutation
\[
\]_\Chrom(1,_\MutPos)_\Binary_\DimMinMax(MutPos,_\Binartin))*\rand(1,'\double')_\Binartin\text{pimMinMax}(MutPos,_\Binartin);
end
```