

Event: The Team Data Science Process

Presenter: Jon Tupitza, CTO Architect

Jon Tupitza

Practice Director, Data Platform & Predictive Analytics

Take-Aways

- Understand the Microsoft
 Team Data Science Process
- Understand How to Implement Predictive Analytics using Python

Agenda

- Introduction to the Microsoft
 Team Data Science Process
- Demonstrations:
 - Acquiring and Preparing Data
 - Exploring and Analyzing Data
 - Selecting Features
 - Reducing Dimensionality
 - Training, Testing & Evaluating Machine Learning Models
 - Using Pipelines
- Deployment Options

The Microsoft Team Data Science Process

Largely Heuristic! Based on Conducting Experiments (i.e., Scientific Method)

Business **Understanding** Data Acquisition Deployment & Understanding Modeling

Business Understanding

- Identify the Problem Domain
- Identify the Solution Scenario

Acquire & Understand Data

- Load, Prepare & Explore Data
- Identify Influential Features

Develop Machine Learning Models

- Select & Engineer Features
- Train, Evaluate & Tune Models

Deployment

- Publish Models as Webservices
- Consume Models Visually and Programmatically

CRISP-DM: Cross Industry Standard Process-Data Mining

This Seems Pretty Familiar: First Introduced in 1996!

Business Understanding

- Identify the Problem Domain
- Identify the Solution Scenario

Data Understanding

- Load and Explore Data
- Identify Influential Features

Data Preparation

- Remove Duplicates & Nulls
- Impute Missing Values
- Select & Engineer Features

Modeling

- Train Models Using a Variety of Algorithms
- Tune Hyper-parameters

Evaluation

- Test Models' Performance & Predictive Power
- Cross-Validate to Appraise Goodness-of-Fit
- Select Most Effective Model for Deployment

Deployment

- Publish Models On-premises or in the Cloud
- Consume Models Visually & Programmatically

Agenda

- Introduction to the Microsoft
 Team Data Science Process
- Demonstrations:
 - Acquiring and Preparing Data
 - Exploring and Analyzing Data
 - Selecting Features
 - Reducing Dimensionality
 - Training, Testing & Evaluating Machine Learning Models
 - Using Pipelines
- Deployment Options

Deployment: Operationalizing Machine Learning Models

- On-Premises:
 - Microsoft SQL Server 2016/2017 Machine Learning Services
- In the Cloud:
 - RESTful Web Service Endpoints
 - HDInsight with Hive
 - Apache Spark / Azure Databricks
 - Azure Container Registry
 - Azure Container Service with Kubernetes

On-Premises: SQL Server Machine Learning Services

- The First Commercial Database Server with Built-In Artificial Intelligence
- Enables Developers to Train, Evaluate and Deploy Machine Learning Models Inside of SQL Server Databases for Enterprise Production

Overcomes Some Major Limitations Inherent to Statistical Software

- System Memory has been limited to the capacity of client workstations
- Data Movement has been saturating networks between remote storage and the development environment
- Performance and Scale have been limited by a lack of multi-threading and parallel processing capabilities

Provides a Convenient Way to Operationalize Machine Learning

- Access ML Algorithms using familiar T-SQL stored procedures
- Manage Machine Learning Models in SQL Server database tables
- Store Predictive Outcomes in SQL Server database tables
- Leverage database mechanisms like security, governance and monitoring

In the Cloud: Continuous Integration & Deployment

Resources

- Python Documentation
- Scikit-Learn Documentation
- Microsoft Docs:
 - Team Data Science Process
 - Tutorials for SQL Server
 Machine Learning Services
- Microsoft Machine Learning Server Blog:
 - Basics of R and Python Execution in SQL Server

Questions

