华中科技大学考试试卷

《电机学(上)》 试题(A)(闭卷)

(电气专业 10 级 2012.7.2)

姓?	级		姓名			学号			_ 成绩	<u>†</u>
į	题号		二(1)	二(2)	二(3)	二(4)	三(1)	三(2)	三(3)	总分
,	分数									
阅	巻人									
	_, _	· 、单项:	选择与均	真空题(每小题	 2 分,‡	t 24 分))		
得分	· 1.	要改态	变并励直	[流电动	机的转向	句,应(().			
			变励磁电						女接励磁	绕组
2.	— 直流		态运行时)。		, 427.4% A LINE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-	_ ,			, , , , , , ,	_ • •	, -	电枢绕组	和励磁	绕组
3.			动机拖动							
٥.			的运行状			4 11 4 7 1 F	4 /4 Li //4/4 Leih	—►HH4.	/- 1	17 10.70
			成小, 			权电流	减小. 葬	考谏 上チ	 	
			曾大,转							
4.			9/ 动机电枢).
••			B.最							
5.			り 単相変							≨ ⊢.
٥.			(J 1717 7	- 1 125 V	(1) 221 30	70 T 1//	N-1-7 /\1
	A. 1		B .		C	$\sqrt{3}$		р 4-	$\pm \sqrt{3}$	
6.			五. 组中通过							1()
0.			转磁动势							,()
7.			动机:							記由流
,.		 ////		r N 75K	,,, ON	2201,	ην 00.5	, 0 0 kg.	C 1 6 H 2 H2	()(<u> </u>
8.			, 玉器, <i>U</i>	$I_{\rm an}/II_{\rm an}=$	10/6 3 k	V. Dv1	1 联接组	1. 该变	压器的码	5比为
0.			тенця С	IN OZN	10/0.5 K	v, Dyr	1 1/13/1		/ HH H 1 /	C P G / J
9.		。 关接的组	式变压	裴. 空差	₽相由卖	热 波形*	为			
	-		运行时,							十. 不允
10.			组 2 17 PJ ,		<u> </u>	' Ш <i>ө</i> -Ш	, ~~	1/T7 TY162	нп ∕ст 11 н.	17 TOU

11.	Yyn	联接的组式变压器带单相至中线负载,	负载电流主要取决
	于	o	

12. 对称三相 6 极交流绕组通入 40Hz 三相对称电流,产生的旋转磁动势基波的转速为____。

二、分析题(共 26 分)

得分

1. 画出串励直流电动机的速率工作特性曲线,为什么串励直流电动机不允许空载运行? (6分)

2. 变压器并联运行的理想状况是什么?要达到理想状况,并联运行各变压器需满足什么条件?(6分)

得分

3. 一台三相变压器绕组联结如图所示,试分析判断其联结组,并说明如何通过实验校核该联结组。(8分)

得分

4. 在三相双层交流绕组中,试分析说明为什么线圈的节距通常取 5/6 倍电机极距。(6分)

三、计算题(共50分)

得分

1. 一台并励电动机, $P_{\rm N}$ =2.2kW, $U_{\rm N}$ =110V, $I_{\rm N}$ =28V, $n_{\rm N}$ =1500 r/min, $R_{\rm a}$ =0.15 Ω (包括电刷接触电阻),励磁回路电阻 $R_{\rm f}$ =110 Ω 。在额定负载工况下,突然在电枢回路串入 $R_{\rm j}$ =0.5 Ω 的调节电阻,若不考虑电感的影响,并略去电枢反应作用。试求:(1)额定运行时的电磁功率和效率;(2)

串入电阻瞬间的电枢反电动势、电枢电流和电磁转矩;(3)若总制动转矩减少一半,求串入电阻后的稳定转速。(16分)

得分

2. 一台 S11 系列电力变压器, S_N =1000kVA, U_{1N}/U_{2N} =10kV /0.4kV,Yd11 联结组。空载试验数据为: 400V,7.22A,1155W;短路试验数据为: 450V,57.74A,10300W。试求: (1) 高压侧的短路参数实际值; (2)

短路参数标幺值;(3)满载、0.8 滞后功率因数时的电压变化率;(4)满载、0.8 滞后功率因数时的效率;(5)1/2 负载、功率因数为 1 时的效率;(6)0.8 滞后功率因数时的最大效率及其对应的电流。(16 分)

得分

动势的性质。(18分)

3. 一台三相、双层、Y接、60°相带对称绕组,每极下有15槽,线圈节 距 y_1 =12 槽, 每线圈 8 匝, 并联支路数为 1。试求: (1) 绕组的短距系 数和分布系数; (2) 若 C 相开路, 在 A、B 相间加交流电压, 电流有效 值为 10A, 分析合成磁动势的性质并计算合成磁动势的幅值; (3) 若 C 相开路, 在 A、B 相间加直流电压,电流为 10A,计算合成磁动势的幅值并说明合成磁

《电机学(上)》 试题(A)(标答)

(电气专业 10 级 2012.7.2)

一、 单项选择与填空题

- 1. **C**
- 2. **A**
- 3. **D**
- 4. B
- 5. **D**
- 6. **A**
- 7. <u>385.2A</u>
- 8. <u>2.749</u>
- 9. 尖顶波(或非正弦波)
- 10. <u>开路</u>; <u>短路</u>。
- 11. 零序励磁阻抗
- 12. <u>800r/min</u>

二、分析题

1. 电动机空载时, P_2 =0,电枢电流 I_a 很小。因为串励电动机 $I_f = I_a$,因此空载时励磁电流很小,磁通 Φ 很小。根据关系式: $n = \frac{U - I_a R_a}{C_E \Phi}$,电机转速非常高,发生"飞速"现象,故串励直流电动机不允许空载运行。

- 2. 并联运行的理想状况:
 - ① 空载时, 各变压器一次侧间无环流;
 - ② 负载时, 各变压器分担的负载电流与容量成比例。

要达到理想情况,各台并联变压器需具备三个条件:

- ①一、二次侧额定电压对应相等(或线电压比相等);
- ② 联结组标号相同;
- ③ 短路阻抗标么值相等,且短路电阻与短路电抗之比相等。

3.

- (1) 根据相量图(图1),联接组为Yy6。
- (2) 实验时,将 A、a 端用导线连接,使二者等电位。
- (3) 高压侧加三相合适电压,低压侧开路。测量以下电压: U_{AB} 、 U_{ab} 、 U_{Bb} 、 U_{Cc} 、 U_{Be} 、 U_{Cb} 。
- (4) 根据此时的电动势相量图(图 2),令 $K_{l}=U_{AB}/U_{ab}$,由几何关系可推导出所测电压应满足如下关系:

$$U_{\rm Bb} = U_{\rm Cc} = U_{\rm ab} (K_l + 1)$$

$$U_{\rm Bc} = U_{\rm Cb} = U_{\rm ab} \sqrt{K_l^2 + 1 + K_l}$$

4.

- (1) 交流绕组感应电动势和磁动势中含有 3、5、7 等奇数次谐波,其中 3 次谐波最强,5、7次谐波次之。
- (2) 由于采用对称三相绕组结构,线电动势和合成磁动势中,3被消除。

- (3) 当线圈节距 $y_1 = \tau \tau/v$ 时, $k_{yv} = \sin(\frac{vy_1}{\tau}\frac{\pi}{2}) = \sin[(v-1)\times\frac{\pi}{2}]) = 0$,即可以消除该v次谐波。
- (4) y_1 =4 π /5 时, k_{y5} = 0,可以消除 5 次谐波,此时 k_{y7} = 0.5878; y_1 =6 π /7 时, k_{y7} = 0,可以消除 7 次谐波,此时 k_{y5} = 0.4339。

 y_1 =5 τ /6 时, k_{y5} = 0.2588, k_{y7} = 0.2588,二者均较小,因此可以达到同时削弱 5 次和 7 次谐波的目的。

三、计算题

1.

(1) 额定电枢电流
$$I_{aN} = I_{N} - I_{fN} = (28 - \frac{110}{110})A = 27A$$

额定电动势
$$E_{N} = U_{N} - I_{aN}R_{a} = (110 - 27 \times 0.15)V = 105.95V$$

电磁功率
$$P_{\text{emN}} = E_{\text{N}} I_{\text{aN}} = (105.95 \times 27) \text{W} = 2860.65 \text{W}$$

输入功率
$$P_1 = U_N I_N = (110 \times 28) W = 3080 W$$

效率
$$\eta = \frac{P_N}{P_1} \times 100\% = \frac{2200}{3080} \times 100\% = 71.43\%$$

电磁转矩
$$T_{\text{emN}} = \frac{P_{\text{emN}}}{\Omega_{\text{N}}} = \frac{7.8 \times 10^{3}}{2 \times \pi \times 900} \text{ N} \cdot \text{m} = 82.76 \text{N} \cdot \text{m}$$

(2) 在电枢串入电阻的瞬时,转速和磁通不变,所以电动势不变,为 $E_N=105.95$ V。

瞬时电枢电流
$$I'_{\rm a} = \frac{U_{\rm N} - E_{\rm N}}{R_{\rm a} + R_{\rm j}} = \frac{110 - 105.95}{0.15 + 0.5} \, A = 6.23 \, A$$

瞬时电磁转矩
$$T'_{\text{em}} = \frac{E_N I'_{\text{a}}}{\frac{2\pi n_N}{60}} = \frac{105.95 \times 6.23}{\frac{2\pi \times 1500}{60}} \text{N} \cdot \text{m} = 4.20 \text{ N} \cdot \text{m}$$

(3) 总制动转矩减小一半,即电磁转矩减小一半。因此有 $C_T\Phi I_a=0.5C_T\Phi I_{aN}$

故电枢电流不为
$$I_a = 0.5I_{aN} = 13.5A$$

稳定电枢电动势 $E = U_N - I_a (R_a + R_j) = (110 - 13.5 \times 0.65) V = 101.225 V$

稳定转速
$$n = n_N \frac{E}{E_N} = 1500 \times \frac{101.225}{105.95}$$
 r/min = 1433.1 r/min

2.

(1)
$$Z_k = \frac{U_{k\phi}}{I_{k\phi}} = \frac{450/\sqrt{3}}{57.74} = 4.50\Omega$$
 $R_k = \frac{P_{k\phi}}{I_{k\phi}^2} = \frac{10300/3}{57.74^2} = 1.03$

$$X_k = \sqrt{Z_k^2 - R_k^2} = \sqrt{4.5^2 - 1.03^2} = 4.38$$

(2)
$$I_{1N} = \frac{S_N}{\sqrt{3}U_{1N}} = \frac{1000 \times 10^3}{\sqrt{3} \times 10 \times 10^3} = 57.74 \text{A}$$

$$Z_{1N} = \frac{U_{1/N}}{I_{1/N}} = \frac{U_{1N}}{\sqrt{3}I_{1N}} = \frac{10 \times 10^3}{\sqrt{3} \times 57.74} \Omega = 100 \Omega$$

$$Z_{k}^{*} = \frac{Z_{k}}{Z_{1N}} = \frac{4.5}{100} = 0.045$$
 $R_{k}^{*} = \frac{R_{k}}{Z_{1N}} = \frac{1.03}{100} = 0.0103$ $X_{k}^{*} = \frac{X_{k}}{Z_{1N}} = \frac{4.38}{100} = 0.0438$

(3)
$$\Delta U = \beta (R_k^* \cos \varphi_2 + X_k^* \sin \varphi_2) = 1 \times (0.0103 \times 0.8 + 0.0438 \times 0.6) = 0.03452$$

(4)
$$\eta = 1 - \frac{P_0 + \beta^2 P_{kN}}{\beta S_N \cos \varphi_2 + P_0 + \beta^2 P_{kN}} = 1 - \frac{1.155 + 1^2 \times 10.3}{1 \times 1000 \times 0.8 + 1.155 + 1^2 \times 10.3} = 0.9859 = 98.59\%$$

(5)
$$\eta = 1 - \frac{P_0 + \beta^2 P_{kN}}{\beta S_N \cos \varphi_2 + P_0 + \beta^2 P_{kN}} = 1 - \frac{1.155 + 0.5^2 \times 10.3}{0.5 \times 1000 \times 1 + 1.155 + 1^2 \times 10.3} = 0.9926 = 99.26\%$$

(6)
$$\beta_m = \sqrt{\frac{P_0}{P_{\text{kN}}}} = \sqrt{\frac{1155}{10300}} = 0.3349 \ \text{最大效率为}$$

$$\eta_{\text{max}} = 1 - \frac{2P_0}{\beta_m S_{\text{N}} \cos \varphi_2 + 2P_0} = 1 - \frac{2 \times 1.155}{0.3349 \times 1000 \times 0.8 + 2 \times 1.155} = 0.9915 = 99.15\%$$

$$I_{1N} = \beta_m I_{1N} = 0.3349 \times 57.74 = 19.34 A$$

3.

(1)
$$\tau = \frac{Z}{2p} = 15$$
 $N_c = 8$ $a=1$

$$\alpha_1 = \frac{p \times 360^\circ}{Z} = \frac{180^\circ}{\tau} = 12^\circ \qquad q = \frac{Z}{2mp} = \frac{\tau}{m} = \frac{15}{3} = 5$$

$$N = \frac{2pqN_c}{a} = \frac{2 \times p \times 5 \times 8}{1} = 80p$$

$$k_{y1} = \sin(\frac{y_1}{\tau} \frac{\pi}{2}) = \sin(\frac{12}{15} \times \frac{\pi}{2}) = 0.9511 \qquad k_{q1} = \frac{\sin\frac{q\alpha_1}{2}}{q\sin\frac{\alpha_1}{2}} = \frac{\sin\frac{5 \times 12^\circ}{2}}{5\sin\frac{12^\circ}{2}} = 0.9567$$

$$k_{N1} = k_{y1}k_{q1} = 0.9511 \times 0.9567 = 0.9099$$

(2) 依题意,设 $i_A=-i_B=\sqrt{2}I\sin\omega t$, $i_C=0$ 。其中I=10A。将坐标原点取在A相绕组轴线上,则三相脉振磁动势基波表达式分别为

$$\begin{split} f_{\mathrm{Al}}(t,\theta) &= F_{\mathrm{m}\phi\mathrm{l}} \sin \omega t \cos \theta \\ f_{\mathrm{Bl}}(t,\theta) &= -F_{\mathrm{m}\phi\mathrm{l}} \sin \omega t \cos (\theta - 120^\circ) \\ f_{\mathrm{Cl}}(t,\theta) &= 0 \end{split} \qquad \qquad \begin{aligned} F_{\mathrm{m}\phi\mathrm{l}} &= 0.9 \frac{INk_{N\mathrm{l}}}{p} \\ &= \frac{0.9 \times 10 \times 80 \, p \times 0.9099}{p} \, \mathrm{A} = 655.1 \, \mathrm{A} \end{aligned}$$

合成磁动势基波
$$f_1(t,\theta) = f_{A1}(t,\theta) + f_{B1}(t,\theta) + f_{C1}(t,\theta) = \sqrt{3}F_{m\phi 1}\sin\omega t\cos(\theta + 30^\circ)$$

= 1134.7 $\sin\omega t\cos(\theta + 30^\circ)$

合成磁动势为脉振磁动势,振幅为1134.7A。

(3) 通入直流, 相当于
$$i_A = -i_B = \sqrt{2}I \sin \omega t = 10$$
,即 $I \sin \omega t = 10/\sqrt{2} = 7.07 \text{ A}$

故合成磁动势基波
$$f_1(\theta) = \frac{1134.7}{\sqrt{2}}\cos(\theta + 30^\circ) = 802.3\cos(\theta + 30^\circ)$$

合成磁动势为固定磁动势,幅值为802.3A。