ME COPY

TECHNICAL REPORT BRL-TR-3184

BRL

AD-A238956

MARC 8 7 1991

JAN 8 1991

THEORETICAL STUDY OF THE RADIATIVE LIFETIME FOR THE SPIN-FORBIDDEN TRANSITION $a^3\Sigma_u^*\to X^1\Sigma_g^* \ \text{in He}_2$

CARY F. CHABALOWSKI JAMES O. JENSEN DAVID R. YARKONY BYRON H. LENGSFIELD, III

DECEMBER 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNULASSIFIEU

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis High-way. Suite 1264, Artington, VA 22207-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank				
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December 1990 3. REPORT TYPE AND DATES COVERED Final, September 1986 - July 1988				
4. TITLE AND SUBTITLE		rmai, september	5. FUNDING NUMBERS	
Theoretical Study of the Radiat $\rightarrow X^1 \Sigma_g^+$ in He_2 .	ive Lifetime for the Spin-For	bidden Transition $a^3\Sigma_u^+$	PR: 1L161102AH43	
6. AUTHOR(S)				
Cary F. Chabalowski,*James C Byron H. Lengsfield, III). Jensen, David R. Yarkony	and		
7. PERFORMING ORGANIZATION NAT	ME(S) AND ADDRESS(ES)	**************************************	8. PERFORMING ORGANIZATION	
			REPORT NUMBER	
9. SPONSORING/MONITORING AGEN	CY NAME(S) AND ADDRESS(E	5)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER	
U.S. Army Ballistic Research	Laboratory			
ATTN: SLCBR-DD-T	•	Ì	BRL-TR-3184	
Aberdeen Proving Ground, MI	21005-5066			
*James O. Jensen is an e Engineering Center, Aber			velopment, and	
12a. DISTRIBUTION / AVAILABILITY ST	ATEMENT		12b. DISTRIBUTION CODE	
Approved for public release, d	istribution unlimited.			
13. ABSTRACT (Maximum 200 words)				
This transition is assumed to dorder perturbation theory. The state function (CSF) basis by perturbation to the zeroth-order for many eigenstates of the un perturbed wavefunction were us of internuclear separation, R(H 4.0 bohr. The transition dipole	crive its intensity by spin-ord first-order corrections to the solving a set of linear equal $X^1\Sigma_g^+$ and $a^3\Sigma_u^+$ wavefunction perturbed Hamiltonian which sed. The results show a rapid e-He), over the bound region reaches a maximum near the lifetime of the v=0 level of a	bit (S-O) induced coupling wavefunctions are calculuations given by first-ones. This approach climing the would be required if the changing electric transit of the $a^3\Sigma_{\pm}^+$ potential energy small barrier to dissociate	in neutral He ₂ was calculated. Ings which are treated using first- ated directly in the configuration Inder perturbation theory for the mates the need to solve explicitly the spectral representation for the ition dipole moment as a function theory curve, i.e., R(He-He)-1.5 to the around R(He-He)=4.5 bohr. Which is consistent with a recent	
14. SUBJECT TERMS			15. NUMBER OF PAGES	
Helium, Radiative Lifetime, Qu	iantum Chomistry		35	
	Chemsuy		16. PRICE CODE	
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC. OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	ì	

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

		<u>Page</u>
	LIST OF FIGURES	v
	LIST OF TABLES	v
1.	INTRODUCTION	1
2.	METHODS	2
2.1 2.2 2.3	Spin-Orbit Interactions	2 4 4
3.	DETAILS OF CALCULATIONS	5
4.	RESULTS AND DISCUSSION	7
4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2	State Properties . The $a^3\Sigma_u^+$ State . The $F^1\Pi_u$ State . The $b^3\Pi_g$ State . Transition Properties . Spin-Orbit Interactions . Electric Transition Dipole Moment and Lifetimes	7 8 9 9 10 10
5.	CONCLUSIONS	12
6.	REFERENCES	25
	DISTRIBUTION LIST	27

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

<u>Figure</u>		Page
1a.	Potential Energy Curves for the $X^1\Sigma_g^+$, $a^3\Sigma_u^+$, $b^3\Pi_g$, and $F^1\Pi_u$ Electronic States in He ₂	13
1b.	Blow-up of the Potential Energy Curves for the $a^3\Sigma_u$, $b^3\Pi_g$, and $F^1\Pi_u$ States	14
2a.	First-Order Contribution to the S-O Perturbation of the $a^3\Sigma_u^+$ by the ${}^1\Pi_u$ State Manifold (Curve A) and by the $F^1\Pi_u$ State (Curve B)	15
2b.	First-Order Contribution to the S-O Perturbation of the $X^1\Sigma_g^+$ by the ${}^3\Pi_g$ State Manifold (Curve A) and by the $b^3\Pi_g$ State (Curve B)	16
3.	(); Total Electric Dipole Transition Moment and Singlet and Triplet Components Using Perturbed Wavefunctions Including the S-O Interactions with the Entire ${}^1\Pi_u$ and ${}^3\Pi_g$ State Manifolds. (); Electric Dipole Transition Moment and Components for the Single-state Perturbed Wavefunctions Having S-O Interactions With Only the $F^1\Pi_u$, and $b^3\Pi_g$	17
	LIST OF TABLES	
Table		Page
1.	Atomic Basis Set	18
2.	CI State Energies as a Function of R(He-He) ^a	19
3.	Barrier Heights and Barrier Positions for the $a^3\Sigma_u^+$ and $F^1\Pi_u^-$	20
4.	Molecular Constants for the $a^3\Sigma_u^+$, $b^3\Pi_g$	21
5.	Results from Vibrational Analyses of the $a^3\Sigma_u^+$, and $F^1\Pi_u$ States with Energies in cm ⁻¹ and Lifetimes, τ , in Seconds	22
6.	The Total Electric Transition Dipole Moment $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)$, for $a^3\Sigma_u^+ \to X^1\Sigma_g^+$ as a Function R(He-He) (in atomic units)	23

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

The generation of neutral excited state atoms or molecules in a liquid helium bath via collisions with alpha particles was initially reported by Surko and Reif (1968). Subsequent experiments utilizing discharges from beta emitters, again, submerged in liquid helium, also found a neutral entity in a long-lived excited state (Rayfield 1969; Mitchell and Rayfield 1971). This excited atom or molecule produced a He_2^+ ion and an electron at the liquid surface. It was suggested that this excited species was either the helium 2^3S atomic state or the $a^3\Sigma_u^+$ diatomic state which is known to be bound. Calvani, et al. (1972), generating the neutral entities from an alpha source, set a lower limit of 0.1 sec on its natural lifetime (7).

A more recent experimental study by Mehrotra, Mann, and Dahm (1979), concluded that the neutral excited species was the $a^3\Sigma_u^+$ molecular state, i.e., the lowest energy excited state in He₂, and not the 2^3S atomic state. These workers predict a lower bound on the lifetime of 10 sec in liquid helium. This lifetime supports the assignment of the electronic state to the molecular $a^3\Sigma_u^+$ rather than the atomic 2^3S state which has an experimentally known lifetime of 15 µsec in the liquid helium (Mehrotra, Mann, and Dahm 1979).

Another interesting aspect of the excited molecule is that is reportedly forms a microscopic bubble in the liquid (Dennis et al. 1969; Hickman and Lane 1971) with a theoretically estimated diameter of 12.5 Å (Hansen and Pollock 1972). The size of the bubble is attributed to the size of the 2s Rydberg orbital comprising the He 2³S state (Guberman and Goddard 1975).

In view of the large difference (a factor of 100) predicted by the two experiments (Calvani, Maraviglia, and Messana 1972; Calvani et al. 1974; Mehrotra, Mann, and Dahm 1979) for the lower limit of the lifetime of the $a^3\Sigma_u^+$ state in liquid helium, high quality *ab initio* calculations were undertaken in an effort to clarify this situation.

In this study, the lifetime, τ , for the spin-forbidden transition $a^3\Sigma_u^+ \to X^1\Sigma_g^+$ is obtained from calculations employing state averaged multiconfiguration SCF (MCSCF) plus configuration interaction (CI) wavefunctions to describe the appropriate zeroth-order states. In order to calculate this spin-forbidden lifetime, the spin-orbit (S-O) induced perturbation Ψ^1 to each zeroth-order state will be calculated using the full microscopic Breit-Pauli Hamiltonian (Bethe and Salpeter 1977). A recently

implemented method (Yarkony 1986, 1987) which employs the symbolic matrix element approach of Liu and Yoshimine (1981) in the evaluation of the S-O matrix elements will be used to evaluate the Ψ^1 directly from a system of linear equations in the configuration state function (CSF) basis. This technique has been used successfully for studying spin-forbidden transitions in other molecules (Yarkony 1986, 1987).

2. METHODS

The CI method used to obtain the zeroth-order wavefunctions is the symbolic matrix element, direct-CI method of Liu and Yoshimine (1981). The molecular orbitals (MOs) needed as a basis set for the CI expansions were obtained from a state-averaged multiconfiguration self consistent field (SA-MCSCF) approach. The SA-MCSCF procedure is the general second-order, density matrix driven MCSCF algorithm of Lengsfield (1982). From the SA-MCSCF procedure one obtains a set of molecular orbitals determined by minimizing the energy functional

$$E_{avg} = \sum_{k} w_{k} < \Psi_{k}^{o} | H^{o} | \Psi_{k}^{o} > = \sum_{k} w_{k} E_{k}$$
 (1)

where the Ψ_k^o 's are the eigenfunctions of H^o , the non-relativistic Hamiltonian operator, in the space of the MCSCF expansion

$$\Psi_k^o = \sum_i c_i^k \Psi_i .$$
(2)

Above, the w_k 's are the non-negative weighing factors for the electronic states which do not vary as a function of internuclear separation, and the ψ_i are the CSFs composed of the state-averaged, optimized MOs. The weights were chosen to provide a balanced description of the states of interest. The sensitivity of the multi-reference CI results to a particular choice of w_k 's in the MCSCF optimization was tested by varying the weights and by comparing our results to both experimentally derived spectroscopic parameters and to spectroscopic parameters obtained in earlier *ab initio* calculations which employed a separate MCSCF procedure for each state (Konowalow and Lengsfield 1987a, 1987b).

2.1 <u>Spin-Orbit Interactions</u>. The spin-orbit part, H^{so}, of the microscopic Breit-Pauli interaction is given by (Bethe and Salpeter 1977)

$$H^{so} = \frac{e}{2mc^2} \left[\sum_{i,K} \frac{Z_K}{r_{Ki}^3} \overrightarrow{l_i(K)} \cdot \overrightarrow{s_i} - \sum_{i \neq j} \left(\frac{\overrightarrow{r_{ij}} \times \overrightarrow{p_i}}{r_{ij}} \right) \cdot (\overrightarrow{s_i} + 2\overrightarrow{s_j}) \right]. \tag{3}$$

Due to helium's small nuclear charge, the S-O interactions are expected to be small and, therefore, well suited for treatment by first order perturbation theory. The total perturbed wavefunction for state I is given by

$$\Psi_I = \Psi_I^o + \Psi_I^1 \,, \tag{4}$$

with Ψ^o_I being the zeroth-order wavefunction. The usual spectral representation for the first-order correction Ψ^I_I due to S-O effects is

$$\Psi_I^1 = \sum_{J=I}^L \frac{\langle \Psi_J^o | H^{so} | \Psi_I^o \rangle}{(E_I^o - E_I^o)} \Psi_J^o . \tag{5}$$

The summation over the L electronic states is, in principle, infinite. One often used approach to solving for Ψ^l_I is to calculate explicitly the wavefunctions for a relatively small number of excited states thereby drastically truncating L. This might cause one to miss important contributions to Ψ^l_I from the omitted states.

Within a given CSF space, this "omitted states" problem is eliminated by solving for Ψ_I^t directly from

$$(H^{\circ} - E) \Psi_I^1 = -H^{so}\Psi_I^{\circ}. \tag{6}$$

Equation 6 can be transformed into matrix form as

$$(H^{\circ} - E)V^{I} = -H^{\circ \circ} C^{I}$$

$$\approx \qquad \approx \qquad (7)$$

where it must be emphasized that $\underline{\underline{H}}^o$ and $\underline{\underline{\underline{H}}}^{so}$ are matrices with elements formed over CSFs, not over eigenstates. The vectors $\underline{\underline{V}}^I$ and $\underline{\underline{C}}^I$ are defined as the coefficients for the first- and zeroth-order parts of Ψ_I :

$$\Psi_{i}^{o} = \sum_{i} C_{i}^{I} \Psi_{i}(\kappa)$$
 (8a)

$$\Psi_I^1 = \sum_j V_j^I \, \Psi_j(\kappa^*) \ . \tag{8b}$$

The κ and κ' label the spatial symmetries to which the CSFs belong, and in general, $\kappa \neq \kappa'$. Equation 7 forms a large set of linear inhomogeneous equations which are solved to obtain ∇ by a variant of the method suggested by Pople, et al (1979).

2.2 <u>Perturbed Wavefunctions</u>. The following perturbations to $\Psi^o(X^1\Sigma_{go+}^+)$ and $\Psi^o(a^3\Sigma_{u1}^+)$ are calculated

$$\Psi (X^{1}\Sigma_{go*}^{+}) = \Psi^{o}(X^{1}\Sigma_{go*}^{+}) + \Psi^{1}(^{3}\Pi_{go*}^{-}; X^{1}\Sigma_{go*}^{+})$$
(9a)

$$\Psi (a^{3}\Sigma_{ul}^{*}) = \Psi^{o}(a^{3}\Sigma_{ul}^{*}) + \Psi^{1}(^{1}\Pi_{ul}; a^{3}\Sigma_{ul}^{*})$$
(9b)

where the first-order corrections arise from the S-O interactions

$$\Psi^{1}(^{3}\Pi_{ga_{*}};X^{1}\Sigma_{go_{*}}^{*}):<.^{3}\Pi_{ga_{*}}|H^{so}|X^{1}\Sigma_{go_{*}}^{*}>\Omega=0^{*}$$

$$\Psi^{1}({}^{1}\Pi_{ul}; a^{3}\Sigma_{ul}^{*}) : < a^{3}\Sigma_{ul}^{*}|H^{so}|{}^{1}\Pi_{ul} > \Omega = 1$$
.

Where the quantum number Ω ($\Omega = A + S_z$), the z-component of the total orbital and spin angular momentum is conserved. Below, the first-order wave-functions will be abbreviated as $\Psi^1(^3\Pi_{go+})$ and $\Psi^1(^1\Pi_{u1})$.

2.3 <u>Electronic Transition Dipole Moment</u>. In order to calculate the lifetime of the $a^3\Sigma_u^+ \to X^1\Sigma_g^+$ transition, the electric transition dipole moment $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)$, defined by

$$\mu_{1}(a^{3}\Sigma_{u}^{*},X^{1}\Sigma_{s}^{*}) = \langle \Psi (a^{3}\Sigma_{u}^{*}) | \mu_{*1} | \Psi (X^{1}\Sigma_{so*}^{*}) \rangle$$
(10)

is required. The quantity, μ_{+1} , is the shift operator form of the total electric dipole moment operator which has components $(\mu_{+1}, \mu_{-1}, \mu_{0})$. Substituting the perturbation expansion for each state in Equation 10 gives, to first-order,

$$\mu_{1}(a^{3}\Sigma_{u}^{*}X^{1}\Sigma_{g}^{*}) = \langle \Psi^{o}(a^{3}\Sigma_{u}^{*})|\mu_{*1}|\Psi^{1}(^{3}\Pi_{go*}) \rangle + \langle \Psi^{1}(^{1}\Pi_{u})|\mu_{*1}|\Psi^{o}(X^{1}\Sigma_{go*}^{*}) \rangle. \tag{11}$$

Since the lower state in this transition is largely repulsive (possessing only a very shallow van der Waals well), we need to obtain the vibrationally averaged transition dipole moment between a bound electronic state (here the $a^3\Sigma_u^+$) with vibrational wavefunction χ_v ,(R) and a repulsive state (here the $X^1\Sigma_g^+$ state) with a continuum vibrational wavefunction χ_k ,(R) is

$$S_{\nu'k''} = \langle \chi_{\nu}, (R) | \mu_{1}(a^{3} \Sigma_{u}^{+}, X^{1} \Sigma_{k}^{+}) | \chi_{k}^{-}, (R) \rangle$$
 (12)

where k'' represents the energy for the continuum state (van Dishoeck, Langhoff, and Dalgamo 1983; van Dishoeck and Dalgamo 1983). χ_k ''(R) and χ_v '(R) are obtained by numerically solving the radial Schroedinger equation for nuclear motion while ignoring rotational effects. The vibrational wavefunction for the bound state is normalized to unity and the continuum wavefunction is defined by

$$\chi_{k}(R) = \left(\frac{2\mu}{\pi k}\right)^{1/2} \sin(kR - n) \tag{13}$$

where n is a phase shift factor and μ the reduced mass of He₂.

The Einstein coefficient for spontaneous emission from the v' to the k'' vibrational state is (van Dishoeck, Langhoff, and Dalgamo 1983; van Dishoeck and Dalgamo 1983):

$$A_{v'k''} = (2.1419x10^{10}) \cdot \Delta E^{3}(au) \cdot |S_{v'k''}|^{2} . \tag{14}$$

The radiative lifetime for the v' level is obtained by integrating Equation 14 over k".

3. DETAILS OF CALCULATIONS

The Gaussian-type basis set is essentially that used by Sunil, et al. (1983) in an earlier theoretical study on the excited states of He_2 with two exceptions. A single, primitive p function has been added with its exponent optimized in increments of 0.001 to give the lowest energy for the $F^1\Pi_u$ at R=2.00

bohr (i.e., near r_e). The CI part of the optimization used MOs obtained from a MCSCF calculation on the $F^1\Pi_u$ state (i.e., no state averaging). This additional p function was deemed necessary due to an unacceptably large $\Delta E(F^1\Pi_u - a^3\Sigma_u^+)$ at R=2.00 bohr when compared with the experimental T_e between these two states. The orbital exponent for the more diffuse d-function was also changed to be consistent with a basis set used in an earlier study on He_2 conducted in this laboratory (Konowalow and Lengsfield 1987a, 1987b). The final atomic basis set, reproduced in Table 1, consists of (10s,6p,2d) primitives contracted to (7s,5p,2d), for a total of 34 atomic basis functions per atom.

The calculations are performed in D_{2h} symmetry with the appropriate averaging of states in the SA-MCSCF to give wavefunctions which transform according to $D_{\infty h}$ symmetry. In D_{2h} , the states transform according to the irreducible representations (IRREPs) $X^1 \Sigma_g^+(^1 A_g)$, $a^3 \Sigma_u^+(^3 B_{1u})$, $b^3 \Pi_g(x; ^3 B_{2g}, y; ^3 B_{3g})$, and $F^1 \Pi_u(x; ^1 B_{3u}, y; ^1 B_{2u})$.

The SA-MCSCF is of the CAS type wherein the four electrons are distributed, in all possible ways, amongst the lowest three MOs from IRREPs $a_g(\sigma_g)$ and $b_{1u}(\sigma_u)$, and the lowest MO from $b_{2u}(\pi_{uy})$, $b_{3u}(\pi_{ux})$, $b_{2g}(\pi_{gx})$, and $b_{3g}(\pi_{gy})$, consistent with space and spin symmetry restrictions. The state averaged energy is then optimized according to Equation 1, including the states $X^1\Sigma_g^+$, $a^3\Sigma_u^+$, $b^3\Pi_{gy}$, $b^3\Pi_{gy}$, $F^1\Pi_{ux}$, and $F^1\Pi_{uy}$. Two different weighing schemes were used in this study. The weights $\underline{w} = (2, 2, 1, 1, 1, 1)$, and $\underline{w} = (1.5, 1.5, 1, 1, 1, 1)$ were employed and are denoted as Scheme 1 and Scheme 2, respectively.

The energy was found to be consistent for the two sets of weights to $\leq 1.x10^{-5}$ Hartrees and the electric transition dipole moments (for $X^1\Sigma_g^+ < a^3\Sigma_u^+$) differed by less than 1%. An additional check on the choice of weighing factors comes from the comparison of the computed molecular constants with the experimental values (see Table 4) when available. Finally, comparison of the results for the $a^3\Sigma_u^+$ state from this study with extensive non-state averaged calculations of Konowalow and Lengsfield (1987b) shows good agreement for the r_e , D_e , ω_e , and the description of the "intermediate hump" in the potential energy curve (PEC) for this state.

At smaller internuclear separations (R = 1.3, 1.5, 1.6), the basis set became linearly dependent and molecular orbitals were eliminated in order to obtain convergence in the CI diagonalization. At R(He - He) = 1.30, one MO of b_{1u} symmetry was eliminated from the virtual space, and at R = 1.50 and 1.60, two MOs of b_{1u} symmetry were eliminated. These correspond to MOs consisting primarily of the most diffuse s-type atomic orbital (AOs).

The effect of eliminating these MOs was checked at R = 1.70 by comparing the results for calculations with all MOs included to calculations where first one MO and then a second MO was removed (in decreasing order of diffuseness) from the b_{1u} IRREP. It was found that by eliminating one MO, and then a second, the energy differed by no more than $\pm 3 \times 10^{-5}$ Hartree for any state when compared to the calculation using all the MOs. The transition dipole moment differed by no more than 3%. The vibrational analysis was re-run with the electric transition moment increased at these three points by twice the variation witnessed at R = 1.70 (i.e., by a factor of .06), then again with the transition moment decreased by a factor of .06 at these points. All the resulting lifetimes were identical to the initial results to within at least two significant digits. Stability in the lifetimes to this level of precision is acceptable for this study.

The final zeroth-order wavefunctions were obtained from second-order CIs with respect to the SA-MCSCF active space. The size of the resulting CI expansion (in number of CSFs) for each state is $X^1\Sigma_g^+(27,381)$, $a^3\Sigma_u^+(38,218)$, $b^3\Pi_g(33,702)$, $F^1\Pi_u(23,490)$, for the cases where no MOs were eliminated. When one and two MOs of b_{1u} symmetry were eliminated, the corresponding totals are (26,364, 36,794, 32,607, 22,736) and (25,369, 35,403, 31,530, 21,992), respectively.

In the vibrational analyses, PECs were represented by spline functions over the region for which ab initio data was available with extrapolation using Lennard-Jones 6-12 functional forms. The $a^3\Sigma_u^+$, $b^3\Pi_g$, and $F^1\Pi_u$ states were represented by spline functions for the region R = 1.30 - 6.50 bohr, while spline functions were used to represent the $X^1\Sigma_g^+$ PEC for the region R = 1.30 - 15.0 bohr. The total electric dipole transition moment was also represented by a spline function for points along R = 1.3 - 6.5 bohr, and described by a second-order polynomial outside this range.

4. RESULTS AND DISCUSSION

4.1 State Properties. One finds the following state description at R = 2.00 bohr:

$$X^1\Sigma_g^+$$
: $1\sigma_g^21\sigma_u^2$

$$a^3 \Sigma_u^+$$
: $1\sigma_g^2 2\sigma_g 1\sigma_u$

$$b^3\Pi_g$$
: $1\sigma_g^21\sigma_u1\pi_u$

$$F^1\Pi_u$$
: $1\sigma_g^21\sigma_u1\pi_g$

Much of the behavior in the bound region can be understood by treating He_2^* as He_2^* plus an electron in a Rydberg orbital. The three electrons of He_2^* form the tightly bound "core" electrons (with MO occupation $1\sigma_g^21\sigma_u$) which interact to form the attractive potential at small R values. All three excited states have this core description in the dominant CSF within the bound region. For R > 3.0 bohr, the contribution from a CSF containing the anti-bonding configuration $1\sigma_g1\sigma_u^2$ begins to make a significant contribution for the three excited states in this study. Figure 1 contains plots of the potential energy curves (PECs) for the four states of interest, and Table 2 reports the actual energies. Table 4 compares the spectroscopic constants for the four states of interest as predicted by this study and experiment. These are provided, in part, as a check on the overall quality of the wavefunctions used in this study. The theoretical D_c values are calculated as the difference in energy $E(r_e)$ - E(R = 40 bohr), with $E(r_e)$ determined from a three-point fit to a parabola.

Table 5 lists the lowest 10 vibrational levels for $a^3\Sigma_u^+$ state as calculated from the vibrational analysis. The v=9 level lies 13,332 cm⁻¹ above the equilibrium energy and 2,848 cm⁻¹ below the barrier maximum. Table 5 also includes the v=0-9 levels for the $b^3\Pi_g$ and the v=0-3 for the $F^1\Pi_u$.

In the following sections, an analysis of the $a^3\Sigma_u^+$, $F^1\Pi_u$, and $b^3\Pi_g$ states of He_2 is presented. A general discussion of the structure of the wavefunctions for the excited states of He_2^* and its relationship to the shape of the PECs can be also found in papers by Mulliken (1964a, 1964b, 1966), and by Guberman and Goddard (1975), who place special emphasis on the Σ states.

4.1.1 The $a^3\Sigma_u^+$ State. The small barrier to dissociation, or "hump", has a maximum in this study at R = 2.70Å, and is reported (Jordan, Siddigui, and Siska 1986; Milliken 1964b) to occur from the competition between the attractive ionic-like core and the long-range repulsive interaction. Table 3 gives various estimates of this barrier. The present study calculates the barrier height to be 1.56 kcal/mol at 2.70Å, which agrees well with the relatively recent experimental value of 1.43±.05 kcal/mol at 2.72±.04Å reported by Jordan, Siddigui, and Siska (1986). Probably the best theoretical estimate (and maybe the best overall estimate) for this barrier comes from a recent paper by Konowalow and Lengsfield (1987) who calculate the barrier to lie at 2.712Å with a height of 1.507 kcal/mol. These agree quite well with the values obtained in the current study. As can be seen in Table 4, the calculated r_c , ω_c , T_e , and D_e vary from experiment by no more than 1%.

4.1.2 The $F^1\Pi_u$ State. The existence of the barrier with a predicted maximum of 10.9 kcal/mol at R = 1.79 Å has been shown to arise primarily from an avoided crossing with a higher state of the same ${}^1\Pi_u$ symmetry, particularly the interaction with the state that dissociates to $\text{He}(1\text{s}^2) + \text{He}^*(1\text{s}3\text{d})$ (Gupta and Matson 1969). Mulliken (1964a, 1966) also predicted the existence of a barrier due to a change-over of the $F^1\Pi_u$ state from one which looks like a $3d\Pi$ state in the united atom orbital (UAO) description to one with $1\text{s}^2 + 1\text{s}2\text{p}$ character as it approaches the dissociation limit.

Table 3 compares the current values for the height (10.9 kcal/mol) and location ($R_{max} = 1.79\text{Å}$) of this barrier with results from two other theoretical studies. Gupta and Matsen (1969) calculated values of 13.5 kcal/mol and 1.73Å for the barrier height and location, while Browne's (1965) results predict 12.5 kcal/mol at 1.77Å. The predicted location for the maximum from these three studies are in reasonable accord. It is not surprising however, that the barrier height calculated in this study (i.e., 10.9 kcal/mol) differs significantly from these other, very early calculations.

The calculated r_e , ω_e , and T_e for this state are in good accord with the experimental values (see Table 4). No experimental D_e was reported. It should be pointed out that the $b^3\Pi_g$ and $F^1\Pi_u$ states do not enter independently into our calculations of the $a^3\Sigma_u^+ \to X^1\Sigma_g^+$ transition moment, since the contributions from a large number of states of a particular symmetry are obtained by solving for the perturbation over CSFs. However, it is still important that the CSF lists and MOs provide a suitable basis for describing the ${}^1\Pi_u$ and ${}^3\Pi_g$ spaces, and so a comparison of the theoretical and the experimental spectroscopic constants provides a useful check of our calculations.

4.1.3 The $b^3\Pi_g$ State. The $b^3\Pi_g$ has a UAO description of $2p\Pi$ which dissociates to $He(1s^2)$ + $He^*(1s2p)$, thus Mulliken predicted that a hump is not likely to occur in the PEC for this state since it is not a "promoted" Rydberg MO state. The potential energy curve for the $b^3\Pi_g$ state shown in Figure 1 does not indicate a barrier, thus supporting this prediction.

Table 4 shows the calculated r_e , ω_e , and T_e , to again be in excellent agreement with the available experimental values. No experimental D_e is reported.

4.2 Transition Properties.

4.2.1 Spin-Orbit Interactions. The first-order corrections to the $X^1\Sigma_g^+$ and $a^3\Sigma_u^+$ states arise from interactions of these zeroth-order wavefunctions with the ${}^3\Pi_g$ and ${}^1\Pi_u$ symmetry manifolds, respectively. The magnitude of the perturbation of the $a^3\Sigma_u^+$ by the ${}^1\Pi_u$ manifold is plotted in Figure 2a, and labeled Curve A. Curve B in Figure 2a represents the first-order SO perturbation of the $a^3\Sigma_u^+$ zeroth-order wavefunction attributable to only the lowest energy state of ${}^1\Pi_u$ symmetry, the $F^1\Pi_u$ state. That is the L=1 trunction of Equation 5. Therefore, the difference between Curves A and B reflects the error in the first-order perturbation treatment of $\Psi^o(a^3\Sigma_{u1}^+)$ that is being introduced by truncating the summation in Equation 5 to simply L=1. The analogous information is plotted in Figure 2b for the $X^1\Sigma_g^+$ state being perturbed by the ${}^3\Pi_g$ manifold (Curve A) or only the $b^3\Pi_g$ state (Curve B).

One can immediately see that much of the contribution to the total perturbation is excluded from the Ψ^1 's if only the interaction with the lowest energy ${}^1\Pi_u$ or ${}^3\Pi_g$ state is included. The difference in the contributions at R=2.00 is a factor of ten for the $a^3\Sigma_{u1}^+$ - ${}^1\Pi_{u1}$ SO interaction and more than a factor of 20 for the $X^1\Sigma_{go+}^+$ - ${}^3\Pi_{go+}$ interaction. The discrepancies change near R=4.0 bohr, where the perturbation of the $a^3\Sigma_u^+$ state by a single ${}^1\Pi_u$ state accounts for approximately 79% of the total interaction attributed to the ${}^1\Pi_u$ manifold. However, the single-state approximation for the $X^1\Sigma_{go+}^+$ - ${}^3\Pi_{go+}$ perturbation is more than one hundred-fold less than that calculated from the interaction with the entire ${}^3\Pi_g$ manifold for most of the bound region.

4.2.2 Electric Transition Dipole Moment and Lifetimes. The total electric transition dipole moment, $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)$, obtained from the perturbed wavefunctions in Equations 9, as well as its singlet and triplet components (as given in Equation 11), are plotted as the dotted curves in Figure 3, and Table 6 lists the values of $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)$ as a function of R(He-He). It can be seen that the singlet component dominates over most of the $a^3\Sigma_u^+$ bound potential, with the triplet component having comparable magnitude only at small internuclear separations. At R=1.6, the triplet component is already a factor of five smaller than the single contribution.

The two moments have opposite signs for values less than 2.0 bohr, and then have the same sign up through R=3.5, where the signs are once again opposites. The difference is signs at small internuclear separation causes a cancellation in forming the total transition moment, generating a near

zero moment at R=1.50 bohr. From R≥1.85, the total transition dipole is largely determined by the singlet component which has a maximum value of 6.0×10^{-6} au at R=3.8 (from fitting to a parabola). The decreasing transition moment for large R is consistent with the separated atom limit, for which the electric transition dipole moment must go to zero as it represents a $He(^3s_g) \rightarrow He(^1s_g)$ transition.

The single state L=1 approximation in Equation 5 is also considered in Figure 3. The solid curves in Figure 3 provide the singlet and triplet components, as well as the total $\mu_1(a^3 \Sigma_u^+, X^1 \Sigma_g^+)$ as given in Equation 11, but calculated within the L=1 approximation. Comparing the dotted curves with the solid curves one finds at least three main differences. First, the singlet contribution to $\mu_1(a^3 \sum_{u}^+, X^1 \sum_{e}^+)$ for the single-state perturbation (SSP) (solid curve) is essentially zero for the region R=1.3 to 2.6 bohr, in sharp contrast to the singlet contribution given by the dotted curve, which never falls below 50% of the maximum in $\mu_1(a^3 \Sigma_u^+, X^1 \Sigma_g^+)$. The second observation is that the triplet contribution to $\mu_1(a^3\Sigma_u^+,X^1\Sigma_g^+)$, from the SSP is much larger in this region. For example, at 1.85 bohr, the triplet contribution is -2.1x10⁻⁶ au for the SSP, while it is essentially zero for the perturbation over the manifold of states. The third feature is the relative magnitude of the total $\mu_1(a^3 \Sigma_u^+, X^1 \Sigma_e^+)$'s near their maxima. For example, at R=4.0 bohr, we find $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)=6.0\times10^{-6}$ au for the calculation over the $^{1}\Pi_{u}$ manifold, while the SSP gives $\mu_{1}(a^{3}\Sigma_{u}^{+}, X^{1}\Sigma_{u}^{+}) = 3.5 \times 10^{-6}$ au, and therefore accounts for only 58% of the predicted total magnitude of the transition dipole moment. However, from Figure 2a, we see that at this geometry approximately 79% of the S-O perturbation is accounted for using the SSP. Thus, the electric transition dipole moment converges more slowly with respect to L, the number of excited states included in Equation 5, than the S-O first-order perturbation contribution to $\Psi(a^3\Sigma_{u1}^+)$.

Table 5 lists the predicted lifetimes and energies from this study for the v=0-9 vibrational levels of the $a^3\Sigma_u^+$ state for a radiative decay process to the repulsive $X^1\Sigma_g^+$ state. The predicted lifetime for the v=0 level is 18 sec, which is consistent with the more recent experimental prediction of 10 sec (v=unknown) for a lower bound in liquid helium. The lifetimes are seen to monotonically decrease with increasing vibrational quantum number, at least up to v=9. At v=5, the lifetime falls below the predicted lower bound of 10 sec. The calculated lifetime of the v=0 level using the electric transition dipole moment represented by the solid curve in Figure 3 (from the single state approximation to Equation 5), is predicted to be 195 sec, in sharp contrast with results determined by including all of the eigenstates in our CSF basis.

5. CONCLUSIONS

The lifetime for the He_2 a³ Σ_u^+ excited state is predicted to be 18 sec for the v=0 vibrational level in the gas phase, supporting the experimental value for the lower bound (in condensed phase) offered by Mehrotra, et al. (1979), of 10 sec. These calculations also predict the lifetime to decrease continuously with increasing vibrational quantum number, at least up to the v=9 vibrational state.

One finds that the $\mu_1(a^3\Sigma_u^+,X^1\Sigma_g^+)$ shows maxima near 4 bohr, and the electric transition dipole moment for internuclear separations greater than 1.60 bohr is determined almost entirely by the singlet component, $\langle \Psi^1(^1\Pi_{u1};a^3\Sigma_{u1}^+)|\mu_{+1}|\Psi^o(X^1\Sigma_{go^+})\rangle$. S-O interactions originating in $^1\Pi_u$ states beyond the $F^1\Pi_u$ are essential to the characterization of the $\Psi^1(^1\Pi_{u1};a^3\Sigma_{u1}^+)$ wavefunction, as well as $\mu_1(a^3\Sigma_u^+,X^1\Sigma_g^+)$. This is a strong argument in favor of using the method employed in this study, which is designed specifically to include these higher energy contributions at little or no additional cost.

Figure 1a. Potential Energy Curves for the $X^1\Sigma_g^+$, $a^3\Sigma_u^+$, $b^3\Pi_g$, and $F^1\Pi_u$ Electronic States in He₂.

Figure 1b. Blow-up of the Potential Energy Curves for the $a^3\Sigma_u$, $b^3\Pi_g$, and $F^1\Pi_u$ States.

Figure 2a. First-Order Contribution to the Spin-Orbit Perturbation of the $a^3\Sigma_u^+$ by the ${}^1\Pi_u$ State Manifold (Curve A) and by the $F^1\Pi_u$ State (Curve B).

Figure 2b. First-Order Contribution to the Spin-Orbit Perturbation of the $X^1\Sigma_g^+$ by the $^3\Pi_g$ State Manifold (Curve A) and by the $b^3\Pi_g$ State (Curve B).

Figure 3. (...): Total Electric Dipole Transition Moment and Singlet and Triplet Components Using Perturbed Wavefunctions Including the SO Interactions with the Entire ¹Π_u and ³Π_g State Manifolds. (---); Electric Dipole Transition Moment and Components for the Single-state Perturbed Wavefunctions Having SO Interactions With Only the F¹Π_u, and b³Π_g.

Table 1. Atomic Basis Set

Туре	Exponent	Coefficient
s	501.5045	0.002498
	75.31147	0.019099
	17.20769	0.092978
	4.886925	0.311074
	1.569584	1.0
	0.541551	1.0
	0.193932	1.0
	0.104560	1.0
	0.026725	1.0
	0.008017	1.0
р	10.19643	0.092050
•	2.414857	0.474058
	0.746691	1.0
	0.139276	1.0
	0.032392	1.0
	0.012	1.0
d	1.5	1.0
	0.042	1.0

Table 2. CI State Energies as a Function of R(He-He)^a

r(He-He)	$X^1\Sigma_g^+$	$a^3\Sigma_u^+$	b³Π _g	$F^1\Pi_u$
1.30	-5.302222	-5.021207	-4.986410	-4.901985
1.50	-5.469882	-5.098117	-5.067915	-4.986402
1.60	-5.532127	-5.119922	-5.091493	-5.011180
1.70	-5.583158	-5.134085	-5.107148	-5.027931
1,85	-5.642728	-5.144880	-5.119785	-5.042067
1.90	-5.658859	-5.146409	-5.121831	-5.044584
2.00	-5.686530	-5.147189	-5.123516	-5.047177
2.10	-5.709037	-5.145601	-5.122740	-5.047252
2.15	-5.718626	-5.144177	-5.121637	-5.046572
2.30	-5.741993	-5.138132	-5.116346	-5.042518
2.40	-5.753907	-5.133160	-5.111710	-5.038691
2.50	-5.763483	-5.127971	-5.106540	-5.034360
2.60	-5.771267	-5.122332	-5.101183	-5.029804
2.70	-5.777500	-5.166891	-5.095719	-5.025212
2.85	-5.784629	-5.109085	-5.087677	-5.018643
3.00	-5.789709	-5.102519	-5.080019	-5.012907
3.25	-5.795223	-5.092835	-5.068858	-5.006811
3.40	^b			-5.005982
3.50	-5.798365	-5.085661	-5.059869	-5.006494
3.70	-5.799860	-5.081535	-5.054116	-5.008882
4.00	-5.801126	-5.077456	-5.047474	-5.013024
4.25	-5.801675	-5.075460	-5.043445	-5.015822
4.50	-5.801973	-5.074317	-5.040475	-5.017919
4.75	-5.802132	-5.073739	-5.038312	-5.019440
5.00	-5.802214	-5.073526	-5.036750	-5.020526
5.25	-5.802254	-5.073542	-5.035628	-5.021295
5.50	-5.802272	-5.073692	-5.034824	-5.021838
6.00	-5.802279	-5.074169	-5.033841	-5.022489
6.50	-5.802275	-5.074671	-5.033337	-5.022815
10.00	-5.802260	-5.075958	-5.032746	-5.023218
40.00	-5.802255	-5.075983	-5.032699	-5.023338

 $[\]begin{tabular}{ll} a & Atomic units used throughout. \\ b & Calculated only the $F^1\Pi_u$. \\ \end{tabular}$

Table 3. Barrier Heights and Barrier Positions for the $a^3 \Sigma_u^+$ and $F^1 \Pi_u$ States

	This	Study	Previou	s Theory	Expe	riment
State	Height ^a	Position ^b	Height	Position	Height	Position
$a^3\Sigma_{\mathbf{u}}^+$	1.56	2.70	2.7 1.85 1.507	2.9 ^c 2.68 ^d 2.712 ^j	1.82 ^e 1.55 1.43±.05	2.77 ^f 2.72±.04 ^g
F¹Π _u	10.9	1.79	13.5 12.5 ⁱ	1.73 ^h 1.78 ⁱ		

- Energies in kcal/mol.
- b Distances in Angstroms.
- ^c Peach (1978).
- d Sunil et al. (1983), MCSCF calculations.
- ^e Lundlum, Larson, and Caffrey (1967)
- f Brutschy and Haberland (1979).
- ⁸ Jordan, Siddiqui, and Siska (1986).
- ^h Gupta and Matsen (1969), Valence-bond calculations.
- Browne (1965) did not report a barrier position from any fitting procedure, so we calculated the position and height by fitting the potential energy data in Table 1 of Browne (1965) to a parabola giving these results.
- Large-scale MCSCF plus second-order CI (Konowalow and Lengsfield 1987).

Table 4. Molecular Constants for the $a^3\Sigma_u^+$, $b^3\Pi_g$, and $F^1\Pi_u$ Electronic States

Property	$a^3\Sigma_{\mathrm{u}}^+$	b ³ Π _g	$F^1\Pi_u$
r _e Theory Exp.	1.0493 1.0457	1.0681 1.0635	1.0869 1.0849
T _e ^b	143,768. 144,048.	148,962. 148,835. (5,194.) (4,787.)	165,665. 165,971. (21,897.) (21,923.)
ω _e ^c	1,816. 1,809.	1,766. 1,769.	1,673. 1,671.
D _e ^d	15,636. 15,806.	19,942.	5,293.

All distances in angstroms and energies in cm-1. Experimental data from Huber and Herzberg (1979). The first set of values are T_e with respect to the $X^1 \sum_g^+$ at R=40 au, and the parenthetical values are T_e 's with respect to the E_e of $a^3 \sum_u^+$. Theoretical ω_e 's from $\Delta G(2-1)$ - $\Delta G(1-0)$ =-2 $\omega_e x_e$ and ω_e =G(1-0) + 2 $\omega_e x_e$. See Herzberg (1950), pg. 95. Determined from the energy difference between r_e and R=40 au.

Table 5. Results from Vibrational Analyses of the $a^3\Sigma_u^+$, $b^3\Pi_g$, and $F^1\Pi_u$ States with Energies in cm⁻¹ and Lifetimes, τ , in Seconds

v	a³∑u+ Energy	τ	b ³ П _g Energy	F ¹ Π _u Energy
0	899	18	873	826
1	2,635	15	2,570	2,420
2	4,290	13	4,199	3,936
3	5,867	12	5,757	5,270
4	7,373	11	7,242	
5	8,785	9.6	8,658	
6	10,097	8.5	10,000	
1 7	11,306	7.5	11,270	
8	12,433	6.7	12,459	
9	13,452	6.0	13,569	

Table 6. The Total Electric Transition Dipole Moment $\mu_1(a^3\Sigma_u^+, X^1\Sigma_g^+)$, for $a^3\Sigma_u^+ \to X^1\Sigma_g^+$ as a Function R(He-He) (in atomic units).

R(He-He)	$< X^{1} \sum_{g}^{+} \mu_{+1} a^{3} \sum_{u}^{+} > $ (x10**6) au
1.30	-3.276
1.50	1.030
1.60	2.046
1.70	2.906
1.85	3.622
2.00	4.058
2.10	4,269
2.15	4.352
2.30	4.557
2.40	4.670
2.50	4.794
2.60	4.868
2.70	4.959
2.85	5.089
3.00	5.340
3.25	5.615
3.50	5.877
4.00	5.990
4.25	5.768
4.50	5.383
4.75	4.882
5.00	4.319
5.50	3.182
6.00	2.199
6.50	1.466
10.00	2.145(-3)*
40.00	5.400(-5)

^{*} Characteristic base ten noted parenthetically.

INTENTIONALLY LEFT BLANK.

6. REFERENCES

Bethe, H. A., and E. E. Salpeter. <u>Quantum Mechanics of One- and Two-Electron Atoms</u>. New York: Plenum, 1977.

Brown, C. M., and M. L. Ginter. J. Mol. Spectroscopic. Vol. 40, p. 302, 1971.

Browne, J. C. Phys. Rev., A 138, p. 9, 1965.

Brutschy, B., and H. Haberland. Phys. Rev., Vol. 19, p. 2,232, 1979.

Calvani, P., B. Maraviglia, and C. Messana. Phys. Lett., Vol. 39A, p. 123, 1972.

Diffenderfer, R. N., and D. R. Yarkony. J. Phys. Chem., Vol. 86, p. 5,098, 1982.

Ginter, M. L., and R. Battino. J. Chem. Phys., Vol. 52, p. 4,469, 1970.

Guberman, S. L., and W. A. Goddard III. Phys. Rev., Vol. A4, p. 1,203, 1975.

Gupta, B. K., and F. A. Matsen. J. Chem. Phys., Vol. 50, p. 3,797, 1969.

Hansen, J. P., and E. L. Pollock. Phys. Rev., Vol. A5, p. 2,214, 1972.

Herzberg, G. Spectra of Diatomic Molecules. New York: Van Nostrand-Rheinhold, 1950.

Huber, K. P., and G. Herzberg. <u>Molecular Spectra and Molecular Structure</u>. New York: Van Nostrrand-Rheinhold, 1979.

Jordan, R. M., H. R. Siddiqui, and P. E. Siska. <u>J. Chem. Phys.</u>, Vol. 84, p. 6,719, 1986.

Konowalow, D. D., and B. H. Lengsfield III. Chem. Phys. Lett., Vol. 139, p. 417, 1987a.

Konowalow, D. D., and B. H. Lengsfield III. <u>J. Chem. Phys.</u>, Vol. 87, p. 4,000, 1987b.

Lengsfield, B. H. J. Chem. Phys., Vol. 73, p. 382, 1980.

Liu, B., and M. Yoshimine. <u>J. Chem. Phys.</u>, Vol. 74, p. 612, 1981.

Lundlum, K. H., and L. P. Larson, and J. M. Caffrey. J. Chem. Phys., Vol. 46, p. 127, 1967.

Mchrotra, R., E. K. Mann, and A. J. Dahm. J. Low Temp Phys., Vol. 36, p. 47, 1979.

Mitchell, R. P., and G. W. Rayfield. Phys. Lett., Vol. 37A, p. 231, 1971.

Mulliken, R. S. J. Am. Chem. Soc., Vol. 88, p. 1,849, 1966.

Mulliken, R. S. J. Am. Chem. Soc., Vol. 86, p. 3,183, 1964a.

Mulliken, R. S. Phys. Rev., Vol. A136, p. 962, 1964b.

Peach, G. J. Phys., Vol. B11, p. 2,107, 1978.

Pople, J. A., R. Krishnan, H. B. Schlegel, and J. S. Binckley. <u>Int. J. Quantum Chem.</u>, Vol. 13, p. 225, 1979.

Rayfield, G. W. Phys. Rev. Lett., Vol. 23, p. 687, 1969.

Sunil, K. K., J. Lin, H. Siddiqui, P. E. Siska, K. D. Jordan, and R. Shepard. <u>J. Chem. Phys.</u>, Vol. 78, p. 6,190, 1983.

Surko, C. M., and F. Reif. Phys. Rev. Lett., Vol. 20, p. 582, 1968a.

Surko, C. M., and F. Reif. Phys. Rev., Vol. 175, p. 229, 1968b.

van Dishoeck, E. F., and A. Dalgamo. J. Chem. Phys., Vol. 79, p. 873, 1983.

van Dishoeck, E. F., S. R. Langhoff, and A. Dalgamo. J. Chem. Phys., Vol. 78, p. 4,552, 1983.

Yarkony, D. R. J. Chem. Phys., Vol. 86, p. 1,642, 1987.

Yarkony, D. R. J. Chem. Phys., Vol. 85, p. 7,261, 1986, and references therein.

No. of Organization Copies

Administrator Defense Technical Info Center ATTN: DTIC-DDA

Cameron Station

Alexandria, VA 22304-6145

- 1 HQDA (SARD-TR) WASH DC 20310-0001
- Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001
- Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145
- Commander US Army, ARDEC ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000
- Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000
- Director Benet Weapons Laboratory US Army, ARDEC SMCAR-CCB-TL Watervliet, NY 12189-4050
- Commander US Army Armament, Munitions and Chemical Command SMCAR-ESP-L ATTN: Rock Island, IL 61299-5000
- Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798
- Director US Army Aviation Research and Technology Activity 1 ATTN: SAVRT-R (Library)

M/S 219-3 Ames Research Center Moffett Field, CA 94035-1000

No. of Copies Organization

- Commander US Army Missile Command AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
- Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
- Director US Army TRADOC Analysis Command ATTN: ATAA-SL White Sands Missile Range, NM 88002-5502
- Commandant (Class. only) 1 US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
- (Unclass, only) 1 Commandant US Army Infantry School ATSH-CD-CSO-OR ATTN: Fort Benning, GA 31905-5660
 - Air Force Armament Laboratory AFATL/DLODL ATTN: Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

- 2 Dir. USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen Cdr, USATECOM
- ATTN: AMSTE-TO-F Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU **SMCCR-MSI**

1

Dir, VLAMO ATTN: AMSLC-VL-D No. of

Copies Organization

4 Commander

US Army Research Office

ATTN: R. Ghirardelli

D. Mann

R. Singleton

R. Shaw

P.O. Box 12211

Research Triangle Park, NC

27709-2211

2 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-B, D.S. Downs

SMCAR-AEE, J.A. Lannon

Picatinny Arsenal, NJ 07806-5000

1 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-BR, L. Harris

Picatinny Arsenal, NJ 07806-5000

2 Commander

US Army Missile Command

ATTN: AMSMI-RK,

DJ. Ifshin

W. Wharton

Redstone Arsenal, AL 35898

1 Commander

US Army Missile Command

ATTN: AMSMI-RKA, A.R. Maykut

Redstone Arsenal, AL 35898-5249

1 Office of Naval Research

Department of the Navy

ATTN: R.S. Miller, Code 432

800 N. Quincy Street

Arlington, VA 22217

1 Commander

Naval Air Systems Command

ATTN: J. Ramnarace,

AIR-54111C

Washington, DC 20360

1 Commander

Naval Surface Warfare Center

ATTN: J.L. East, Jr., G-23

Dahlgren, VA 22448-5000

2 Commander

Naval Surface Warfare Center

ATTN: R. Bernecker, R-13

G.B. Wilmot, R-16

Silver Spring, MD 20903-5000

No. of

Copies Organization

5 Commander

Naval Research Laboratory

ATTN: M.C. Lin

J. McDonald

E. Oran

J. Shnur

R.J. Doyle, Code 6110

Washington, DC 20375

1 Commanding Officer

Naval Underwater Systems

Center Weapons Dept.

ATTN: R.S. Lazar/Code 36301

Newport, RI 02840

2 Commander

Naval Weapons Center

ATTN: T. Boggs, Code 388

T. Parr, Code 3895

China Lake, CA 93555-6001

1 Superintendent

Naval Postgraduate School

Dept. of Aeronautics

ATTN: D.W. Netzer

Monterey, CA 93940

3 AL/LSCF

ATTN: R. Corley

R. Geisler

J. Levine

Edwards AFB, CA 93523-5000

1 AL/MKPB

ATTN: B. Goshgarian

Edwards AFB, CA 93523-5000

1 AFOSR

ATTN: J.M. Tishkoff

Bolling Air Force Base

Washington, DC 20332

1 OSD/SDIO/IST

1 03D/3D10/131

ATTN: L. Caveny

Pentagon

Washington, DC 20301-7100

1 Commandant

USAFAS

ATTN: ATSF-TSM-CN

Fort Sill, OK 73503-5600

1 FJ. Seiler

ATTN: S.A. Shackleford

USAF Academy, CO 80840-6528

No. of Copies

Organization

- University of Dayton Research Institute ATTN: D. Campbell AL/PAP
 Edwards AFB, CA 93523
- NASA
 Langley Research Center
 Langley Station
 ATTN: G.B. Northam/MS 168
 Hampton, VA 23365
- 4 National Bureau of Standards
 ATTN: J. Hastie
 M. Jacox
 T. Kashiwagi
 H. Semerjian
 US Department of Commerce
 Washington, DC 20234
- Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, GA 95813
- Applied Combustion Technology, Inc. ATTN: A.M. Varney
 P.O. Box 607885
 Orlando, FL 32860
- 1 Atlantic Research Corp. ATTN: M.K. King 5390 Cherokee Avenue Alexandria, VA 22314
- 1 Atlantic Research Corp. ATTN: R.H.W. Waesche 7511 Wellington Road Gainesville, VA 22065
- AVCO Everett Research
 Laboratory Division
 ATTN: D. Stickler
 2385 Revere Beach Parkway
 Everett, MA 02149

No. of Copies

Organization

- Battelle Memorial Institute
 Tactical Technology Center
 ATTN: J. Huggins
 505 King Avenue
 Columbus, OH 43201
- Cohen Professional Services
 ATTN: N.S. Cohen
 141 Channing Street
 Redlands, CA 92373
- 1 Exxon Research & Eng. Co. ATTN: A. Dean Route 22E Annandale, NJ 08801
- 1 Ford Aerospace and
 Communications Corp.
 DIVAD Division
 Div. Hq., Irvine
 ATTN: D. Williams
 Main Street & Ford Road
 Newport Beach, CA 92663
- General Applied Science
 Laboratories, Inc.
 77 Raynor Avenue
 Ronkonkama, NY 11779-6649
- General Electric Ordnance
 Systems
 ATTN: J. Mandzy
 100 Plastics Avenue
 Pittsfield, MA 01203
- General Motors Rsch Labs
 Physics Department
 ATTN: T. Sloan
 R. Teets
 Warren, MI 48090
- 2 Hercules, Inc. Allegheny Ballistics Lab. ATTN: W.B. Walkup E.A. Yount P.O. Box 210 Rocket Center, WV 26726
- 1 Honeywell, Inc.
 Government and Aerospace
 Products
 ATTN: D.E. Broden/
 MS MN50-2000
 600 2nd Street NE
 Hopkins, MN 55343

No. of

Copies Organization

- Honeywell, Inc.
 ATTN: R.E. Tompkins
 MN38-3300
 10400 Yellow Circle Drive
 Minnetonka, MN 55343
- IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
- 1 IIT Research Institute ATTN: R.F. Remaly 10 West 35th Street Chicago, IL 60616
- Director
 Lawrence Livermore
 National Laboratory
 ATTN: C. Westbrook
 M. Costantino
 P.O. Box 808
 Livermore, CA 94550
- Lockheed Missiles & Space Co. ATTN: George Lo
 3251 Hanover Street
 Dept. 52-35/B204/2
 Palo Alto, CA 94304
- Los Alamos National Lab ATTN: B. Nichols T7, MS-B284
 P.O. Box 1663 Los Alamos, NM 87545
- National Science Foundation ATTN: A.B. Harvey Washington, DC 20550
- Olin Ordnance
 ATTN: V. McDonald, Library
 P.O. Box 222
 St. Marks, FL 32355-0222
- Paul Gough Associates, Inc.
 ATTN: P.S. Gough
 1048 South Street
 Portsmouth, NH 03801-5423

No. of

Copies Organization

- Princeton Combustion
 Research Laboratories, Inc.
 ATTN: M. Summerfield
 N.A. Messina
 475 US Highway One
 Monmouth Junction, NJ 08852
- Hughes Aircraft Company ATTN: T.E. Ward
 8433 Fallbrook Avenue
 Canoga Park, CA 91303
- Rockwell International Corp.
 Rocketdyne Division
 ATTN: J.E. Flanagan/HB02
 6633 Canoga Avenue
 Canoga Park, CA 91304
- 4 Sandia National Laboratories Division 8354

ATTN: R. Cattolica S. Johnston P. Mattern D. Stephenson Livermore, CA 94550

- Science Applications, Inc.
 ATTN: R.B. Edelman
 23146 Cumorah Crest
 Woodland Hills, CA 91364
- 3 SRI International
 ATTN: G. Smith
 D. Crosley
 D. Golden
 333 Ravenswood Avenue
 Menlo Park, CA 94025
- Stevens Institute of Tech.
 Davidson Laboratory
 ATTN: R. McAlevy, III
 Hoboken, NJ 07030
- Sverdrup Technology, Inc. LERC Group ATTN: R.J. Locke, MS SVR-2 2001 Aerospace Parkway Brook Park, OH 44142
- 1 Thiokol Corporation
 Elkton Division
 ATTN: S.F. Palopoli
 P.O. Box 241
 Elkton, MD 21921

No. of Copies

Organization

- Morton Thiokol, Inc.
 Huntsville Division
 ATTN: J. Deur
 Huntsville, AL 35807-7501
- Thiokol Corporation
 Wasatch Division
 ATTN: S.J. Bennett
 P.O. Box 524
 Brigham City, UT 84302
- United Technologies Research Center ATTN: A.C. Eckbreth East Hartford, CT 06108
- United Technologies Corp.
 Chemical Systems Division
 ATTN: R.S. Brown
 T.D. Myers (2 copies)
 P.O. Box 49028
 San Jose, CA 95161-9028
- Universal Propulsion Company ATTN: H.J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029
- Veritay Technology, Inc.
 ATTN: E.B. Fisher
 4845 Millersport Highway
 P.O. Box 305
 East Amherst, NY 14051-0305
- Brigham Young University
 Dept. of Chemical Engineering
 ATTN: M.W. Beckstead
 Provo, UT 84058
- California Institute of Tech.
 Jet Propulsion Laboratory
 ATTN: L. Strand/MS 512/102
 4800 Oak Grove Drive
 Pasadena, CA 91009
- California Institute of Technology
 ATTN: F.E.C. Culick/ MC 301-46
 204 Karman Lab. Pasadena, CA 91125
- University of California
 Los Alamos Scientific Lab.
 P.O. Box 1663, Mail Stop B216
 Los Alamos, NM 87545

No. of Copies

Organization

- University of California, Berkeley
 Chemistry Deparment
 ATTN: C. Bradley Moore
 Lewis Hall
 Berkeley, CA 94720
- University of California, San Diego
 ATTN: F.A. Williams
 AMES, B010
 La Jolla, CA 92093
- 2 University of California, Santa Barbara Quantum Institute ATTN: K. Schofield M. Steinberg Santa Barbara, CA 93106
- University of Colorado at Boulder
 Engineering Center
 ATTN: J. Daily
 Campus Box 427
 Boulder, CO 80309-0427
- University of Southern

 California
 Dept. of Chemistry

 ATTN: S. Benson

 C. Wittig

 Los Angeles, CA 90007
- Case Western Reserve Univ.
 Div. of Aerospace Sciences
 ATTN: J. Tien
 Cleveland, OH 44135
- 1 Cornell University
 Department of Chemistry
 ATTN: T.A. Cool
 Baker Laboratory
 Ithaca, NY 14853
- University of Delaware ATTN: T. Brill Chemistry Department Newark, DE 19711
- University of Florida
 Dept. of Chemistry
 ATTN: J. Winefordner
 Gainesville, FL 32611

No. of Copies Organization

3 Georgia Institute of Technology School of Aerospace Engineering ATTN: E. Price

ATTN: E. Price
W.C. Strahle
B.T. Zinn
Atlanta, GA 30332

- University of Illinois
 Dept. of Mech. Eng.
 ATTN: H. Krier
 144MEB, 1206 W. Green St.
 Urbana, IL 61801
- Johns Hopkins University/APL Chemical Propulsion Information Agency ATTN: T.W. Christian Johns Hopkins Road Laurel, MD 20707
- University of Michigan
 Gas Dynamics Lab
 Aerospace Engineering Bldg.
 ATTN: G.M. Faeth
 Ann Arbor, MI 48109-2140
- University of Minnesota
 Dept. of Mechanical
 Engineering
 ATTN: E. Fletcher
 Minneapolis, MN 55455
- 3 Pennsylvania State University
 Applied Research Laboratory
 ATTN: K.K. Kuo
 H. Palmer
 M. Micci
 University Park, PA 16802
- Pennsylvania State University
 Dept. of Mechanical Engineering
 ATTN: V. Yang
 University Park, PA 16802
- Polytechnic Institute of NY Graduate Center
 ATTN: S. Lederman
 Route 110
 Farmingdale, NY 11735

No. of Copies Organization

- Princeton University
 Forrestal Campus Library
 ATTN: K. Brezinsky
 I. Glassman
 P.O. Box 710
 Princeton, NJ 08540
- Purdue University
 School of Aeronautics
 and Astronautics
 ATTN: J.R. Osborn
 Grissom Hall
 West Lafayette, IN 47906
- Purdue University
 Department of Chemistry
 ATTN: E. Grant
 West Lafayette, IN 47906
- Purdue University
 School of Mechanical
 Engineering
 ATTN: N.M. Laurendeau
 S.N.B. Murthy
 TSPC Chaffee Hall
 West Lafayette, IN 47906
- Rensselaer Polytechnic Inst.
 Dept. of Chemical Engineering ATTN: A. Fontijn
 Troy, NY 12181
- Stanford University
 Dept. of Mechanical
 Engineering
 ATTN: R. Hanson
 Stanford, CA 94305
- University of Texas
 Dept. of Chemistry
 ATTN: W. Gardiner
 Austin, TX 78712
- University of Utah
 Dept. of Chemical Engineering
 ATTN: G. Flandro
 Salt Lake City, UT 84112
- Virginia Polytechnic
 Institute and
 State University
 ATTN: J.A. Schetz
 Blacksburg, VA 24061

No. of <u>Copies</u> <u>Organization</u>

No. of Copies Organization

1 Freedman Associates
ATTN: E. Freedman
2411 Diana Road
Baltimore, MD 21209-1525

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts. 1. BRL Report Number <u>BRL-TR-3184</u> Date of Report <u>DECEMBER 1990</u> 2. Date Report Received _____ 3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) Name **CURRENT** Organization **ADDRESS** Address City, State, Zip Code 7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below. Name

Address

City, State, Zip Code

Organization

OLD

ADDRESS

 FOLD	HERE	
		11 1 1 11

DEPARTMENT OF THE ARMY

Director

U.S. Army Ballistic Research Laboratory

ATTN: SLCBR-DD-T

Aberdeen Proving Ground, MD 2106 -5066

OFFICIAL BUSINESS

POSTAGE WILL BE PAID BY ADDRESSEE

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

------FOLD HERE-----

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

