微分方程式

Anko

2023年7月19日

目次

1		特殊関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1.1	ガウス積分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1.2	ガンマ関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	1.3	ベータ関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
	1.4	n 次元超球の体積と表面積 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.5	超幾何関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.6	Bernoulli 数 · · · · · · · · · · · · · · · · · ·	9
	1.7	ゼータ関数 $\zeta(s)$ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2		微分方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	2.1	エルミート多項式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	2.2	ルジャンドル微分方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	2.3	ベッセルの微分方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	2.4	ラゲール多項式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	2.5	ポアソン方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
	2.6	変数分離 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
	2.7	境界値問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20

1 特殊関数

1.1 ガウス積分

定理 1 (Gauss 積分).

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} \qquad (\Re a > 0)$$
 (1)

 \Diamond

証明

まず積分値を I とおく。

$$I := \int_{-\infty}^{\infty} e^{-\alpha x^2} \, \mathrm{d}x \tag{2}$$

ここで I^2 を変数変換して計算する。

$$I^{2} = \int_{-\infty}^{\infty} e^{-\alpha x^{2}} dx \int_{-\infty}^{\infty} e^{-\alpha y^{2}} dy$$
 (3)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\alpha(x^2 + y^2)} \, \mathrm{d}x \, \mathrm{d}y \tag{4}$$

$$= \int_0^\infty \int_0^{2\pi} e^{-\alpha r^2} r \, \mathrm{d}\theta \, \mathrm{d}r \tag{5}$$

$$=2\pi \left[\frac{e^{-\alpha r^2}}{-2\alpha}\right]_0^\infty \tag{6}$$

$$=\frac{\pi}{\alpha}\tag{7}$$

よって示される。

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \, \mathrm{d}x = \sqrt{\frac{\pi}{\alpha}} \tag{8}$$

定理 2 (Gauss 積分).

$$\int_0^\infty x^{2n} e^{-x^2/a^2} \, \mathrm{d}x = \sqrt{\pi} (2n-1)!! \frac{a^{2n+1}}{2^{n+1}} \tag{9}$$

$$\int_0^\infty x^{2n+1} e^{-x^2/a^2} \, \mathrm{d}x = \frac{n!}{2} a^{2n+2} \tag{10}$$

$$\int_{-\infty}^{\infty} e^{-k^2/4} e^{ikx} \, \mathrm{d}k = 2\sqrt{\pi} e^{-x^2} \tag{11}$$

証明

$$\int_0^\infty x^{2n} e^{-\alpha x^2} dx = (-1)^n \int_0^\infty \frac{\partial^n}{\partial \alpha^n} e^{-\alpha x^2} dx$$
 (12)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \int_0^\infty e^{-\alpha x^2} \, \mathrm{d}x \tag{13}$$

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \left(\frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \right) \tag{14}$$

$$=\sqrt{\pi} \frac{(2n-1)!!}{2^{n+1}} \alpha^{-(2n+1)/2} \tag{15}$$

$$\int_0^\infty x^{2n+1} e^{-\alpha x^2} dx = (-1)^n \int_0^\infty \frac{\partial^n}{\partial \alpha^n} x e^{-\alpha x^2} dx$$
 (16)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \int_0^\infty x e^{-\alpha x^2} \, \mathrm{d}x$$
 (17)

$$= (-1)^n \frac{\partial^n}{\partial \alpha^n} \frac{1}{2\alpha} \tag{18}$$

$$=\frac{n!}{2}\alpha^{-(n+1)}\tag{19}$$

1.2 ガンマ関数

定義.

複素平面上で ${\rm Re}\,z>1$ を満たす領域内にある閉曲線 C 上の点 z に対して次の関数は一様収束し正則な関数となる.

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t \tag{20}$$

命題 3.

$$\Gamma(z+1) = z\Gamma(z), \qquad \Gamma(n+1) = n!, \qquad \Gamma(1) = 1, \qquad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
 (21)

 \Diamond

 \Diamond

$$\Gamma(z+1) = \int_0^\infty t^z e^{-t} \, \mathrm{d}t \tag{22}$$

$$= \left[-t^z e^{-t} \right]_0^\infty + z \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t$$
 (23)

$$= z\Gamma(z) \tag{24}$$

$$\Gamma(1) = \int_0^\infty e^{-t} \, \mathrm{d}t \tag{25}$$

$$= [-e^{-t}]_0^{\infty} \tag{26}$$

$$=1 (27)$$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty t^{-1/2} e^{-t} \, \mathrm{d}t \tag{28}$$

$$= \int_0^\infty s^{-1} e^{-s^2} 2s \, \mathrm{d}s \tag{29}$$

$$=2\int_{0}^{\infty} e^{-s^{2}} \, \mathrm{d}s \tag{30}$$

$$=\sqrt{\pi}\tag{31}$$

命題 4 (スターリングの公式 (Stirling's formula)).

$$\Gamma(x+1) = \sqrt{2\pi x}e^{-x}x^x \qquad (x \gg 1)$$
(32)

 \Diamond

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t \tag{33}$$

$$= \int_0^\infty e^{s(x-1)} e^{-e^s} e^s \, \mathrm{d}s$$
 (34)

$$= \int_0^\infty e^{sx - e^s} \, \mathrm{d}s \tag{35}$$

$$\approx \int_0^\infty e^{(x\ln x - x) - \frac{x}{2}(s - \ln x)^2} \, \mathrm{d}s \qquad (x \gg 1)$$
 (36)

$$= x^{x} e^{-x} \int_{0}^{\infty} e^{-\frac{x}{2}(s-\ln x)^{2}} ds$$
 (37)

$$= x^{x} e^{-x} \int_{0}^{\infty} e^{-\frac{x}{2}s^{2}} ds \tag{38}$$

$$=\sqrt{\frac{2\pi}{x}}x^x e^{-x} \tag{39}$$

これより

$$\Gamma(x+1) = x\Gamma(x) = \sqrt{2\pi x}x^x e^{-x}$$
(40)

命題 5 (ガンマ関数の極と零点).

 $\Gamma(z) = \infty \iff z = 0, -1, -2, \dots \tag{41}$

 \Diamond

 \Diamond

Res
$$[\Gamma(z); z = -n] = \frac{(-1)^n}{n!}$$
 $(n = 0, 1, 2, ...)$ (42)

$$\{\Gamma(s) = 0 \mid |s| < \infty\} = \emptyset \tag{43}$$

命題 6 (ワイエルシュトラスの公式 (Weierstrass' formula)).

 γ はオイラーの定数 (Euler's constant) とする.

$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-z/n} \tag{44}$$

$$\gamma := \lim_{n \to \infty} \left(\sum_{m=1}^{n} \frac{1}{m} - \log n \right) = 0.577216 \cdots$$
(45)

1.3 ベータ関数

定義.

ベータ関数 (Beta function)

$$B(z,\zeta) := \int_0^1 t^{z-1} (1-t)^{\zeta-1} dt$$
 (46)

命題 7.

$$B(z,\zeta) = B(\zeta,z) \tag{47}$$

$$B(z,\zeta) = 2 \int_0^{\pi/2} \sin^{2z-1}\theta \cos^{2\zeta-1}\theta \,\mathrm{d}\theta \tag{48}$$

$$B(z,\zeta) = \int_0^\infty \frac{u^{z-1}}{(1+u)^{z+\zeta}} \,\mathrm{d}\theta \tag{49}$$

5

 \Diamond

証明

$$B(z,\zeta) = \int_0^1 t^{z-1} (1-t)^{\zeta-1} dt$$
 (50)

$$= \int_{1}^{0} (1-s)^{z-1} s^{\zeta-1} (-dt) \qquad (s=1-t)$$
 (51)

$$= \int_0^1 s^{\zeta - 1} (1 - s)^{z - 1} dt \tag{52}$$

$$=B(\zeta,z)\tag{53}$$

$$B(z,\zeta) = \int_0^1 t^{z-1} (1-t)^{\zeta-1} dt$$
 (54)

$$= \int_0^{\pi/2} \sin^{2(z-1)} \theta \cos^{2(\zeta-1)} \theta 2 \sin \theta \cos \theta \, d\theta \qquad (t = \sin^2 \theta)$$
 (55)

$$=2\int_0^{\pi/2} \sin^{2z-1}\theta \cos^{2\zeta-1}\theta \,\mathrm{d}\theta \tag{56}$$

$$B(z,\zeta) = \int_0^1 t^{z-1} (1-t)^{\zeta-1} dt$$
 (57)

(58)

定理 8.

$$B(a,b) = \frac{b-1}{a}B(a+1,b-1)$$
(59)

$$B(a,b) = \frac{b-1}{a}B(a+1,b-1)$$

$$B(a,n+1) = \frac{n!}{\prod_{k=0}^{n}(a+k)}$$
(59)

 \Diamond

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$$
(61)

$$= \left[\frac{1}{a} t^a (1-t)^{b-1} \right]_0^1 + \frac{b-1}{a} \int_0^1 t^a (1-t)^{b-2} dt$$
 (62)

$$= \frac{b-1}{a}B(a+1,b-1) \tag{63}$$

$$B(a, n+1) = \frac{n \cdot (n-1) \cdots 1}{a \cdot (a+1) \cdots (a+n-1)} B(a+n, 1)$$
(64)

$$= \frac{n!}{\prod_{k=0}^{n-1} (a+k)} \frac{1}{a+n} \tag{65}$$

$$= \frac{n!}{\prod_{k=0}^{n} (a+k)} \tag{66}$$

命題9 (ガンマ関数とベータ関数との関係).

$$B(z,\zeta) = \frac{\Gamma(z)\Gamma(\zeta)}{\Gamma(z+\zeta)} \tag{67}$$

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} \tag{68}$$

 \Diamond

$$\Gamma(z)\Gamma(\zeta) = \int_0^\infty s^{z-1}e^{-s} \,\mathrm{d}s \int_0^\infty t^{\zeta-1}e^{-t} \,\mathrm{d}t \tag{69}$$

$$= \int_0^\infty q^{2(z-1)} e^{-q^2} 2q \, \mathrm{d}q \int_0^\infty p^{2(\zeta-1)} e^{-p^2} 2p \, \mathrm{d}p \qquad (s=q^2, t=p^2) \quad (70)$$

$$=4\int_{0}^{\infty}\int_{0}^{\infty}e^{-(q^{2}+p^{2})}q^{2z-1}p^{2\zeta-1}\,\mathrm{d}p\,\mathrm{d}q\tag{71}$$

$$=4\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r^{2(z+\zeta-1)} \cos^{2z-1} \theta \sin^{2\zeta-1} \theta r \, dr \, d\theta \quad (q=r\cos\theta, p=r\sin\theta) \quad (72)$$

$$=4\int_0^\infty e^{-r^2} r^{2(z+\zeta)-1} dr \int_0^{\frac{\pi}{2}} \cos^{2z-1} \theta \sin^{2\zeta-1} \theta d\theta$$
 (73)

$$= 2 \int_0^\infty e^{-R} R^{z+\zeta-1} r \frac{1}{2r} \, dR \, B(z,\zeta) \tag{74}$$

$$= \int_0^\infty e^{-R} R^{z+\zeta-1} \, \mathrm{d}R \, B(z,\zeta) \tag{75}$$

$$=\Gamma(z+\zeta)B(z,\zeta) \tag{76}$$

これより

$$B(z,\zeta) = \frac{\Gamma(z)\Gamma(\zeta)}{\Gamma(z+\zeta)} \tag{77}$$

$$\Gamma(z)\Gamma(1-z) = \Gamma(1)B(z, 1-z) \tag{78}$$

$$= \int_0^1 t^{z-1} (1-t)^{-z} dt \tag{79}$$

$$=\frac{\pi}{\sin \pi z} \tag{80}$$

命題 10 (ガウスの公式 (Gauss's formula)).

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)\cdots(z+n)}$$
(81)

(82)

^

証明

命題 11 (Legendre の倍数公式).

$$\Gamma(2z) = \frac{2^{2z}}{2\sqrt{\pi}}\Gamma(z)\Gamma\left(z + \frac{1}{2}\right) \tag{83}$$

 \Diamond

1.4 n 次元超球の体積と表面積

1.5 超幾何関数

定義.

超幾何関数

$$x(1-x)y'' + [c - (a+b+1)x]y' - aby = 0$$
(84)

命題 12.

$$e^x = \lim_{b \to \infty} {}_2F_1\left(1, b, 1; \frac{x}{b}\right) \tag{85}$$

$$\log(1+x) = x \cdot {}_{2}F_{1}(1,1,2;-x) \tag{86}$$

\Diamond

1.6 Bernoulli 数

定義 (Bernoulli 数).

Bernoulli 数 B_n は以下の正則関数の多項式展開の係数として定義される.

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n. \tag{87}$$

命題 13.

$$B_1 = -\frac{1}{2}, B_{2n+1} = 0 \qquad (n = 1, 2, 3, \ldots).$$
 (88)

\Diamond

証明

まず Bernoulli の定義式の両辺に x/2 を加える。

$$\frac{x}{e^x - 1} + \frac{x}{2} = \frac{x}{2} + \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$
 (89)

このとき左辺は偶関数となる。

$$\frac{x}{e^x - 1} + \frac{x}{2} = \frac{x(e^x + 1)}{2(e^x - 1)} = \frac{x}{2} \frac{e^{x/2} + e^{-x/2}}{e^{x/2} - e^{-x/2}} = \frac{x}{2} \coth\left(\frac{x}{2}\right)$$
(90)

$$\frac{-x}{2}\coth\left(\frac{-x}{2}\right) = \frac{-x}{2}\frac{e^{-x/2} + e^{x/2}}{e^{-x/2} - e^{x/2}} = \frac{x}{2}\frac{e^{x/2} + e^{-x/2}}{e^{x/2} - e^{-x/2}} = \frac{x}{2}\coth\left(\frac{x}{2}\right) \tag{91}$$

これより次の右辺も偶関数であることがわかり、一致の定理から右辺について奇数次の項は現れない。よって 3 以上の奇数を添え字に持つ Bernoulli 数はゼロとなる。

$$B_1 = -\frac{1}{2}, \qquad B_{2n+1} = 0 \qquad (n = 1, 2, 3, ...)$$
 (92)

定理 14.

 $\sum_{m=0}^{n-1} \frac{B_n}{(n-m)!m!} x^n = \delta_{n,1} \qquad (n=1,2,3,\ldots).$ (93)

 \Diamond

証明

定義式の左辺の分母を払って展開すると

$$x = (e^x - 1) \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$
 (94)

$$= \left(\sum_{k=1}^{\infty} \frac{x^k}{k!}\right) \left(\sum_{n=0}^{\infty} \frac{B_n}{n!} x^n\right) \tag{95}$$

$$=\sum_{k=1}^{\infty}\sum_{n=0}^{\infty}\frac{B_n}{k!n!}x^{k+n}$$
(96)

$$=\sum_{n=1}^{\infty}\sum_{m=0}^{n-1}\frac{B_n}{(n-m)!m!}x^n.$$
 (97)

となり両辺の係数を比較することで次のようになる。

$$\sum_{m=0}^{n-1} \frac{B_n}{(n-m)!m!} x^n = \delta_{n,1} \qquad (n=1,2,3,\ldots).$$
(98)

命題 15.

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, B_5 = 0, B_6 = \frac{1}{42}, \cdots$$
 (99)

 \Diamond

上の定理について具体的式を求めると

$$B_0 = 1 \tag{100}$$

$$\frac{1}{2}B_0 + B_1 = 0 ag{101}$$

$$\frac{1}{6}B_0 + \frac{1}{2}B_1 + \frac{1}{2}B_2 = 0 ag{102}$$

$$\frac{1}{24}B_0 + \frac{1}{6}B_1 + \frac{1}{4}B_2 + \frac{1}{6}B_3 = 0 ag{103}$$

$$\frac{1}{120}B_0 + \frac{1}{24}B_1 + \frac{1}{12}B_2 + \frac{1}{12}B_3 + \frac{1}{24}B_4 = 0$$
(104)

$$\frac{1}{720}B_0 + \frac{1}{120}B_1 + \frac{1}{48}B_2 + \frac{1}{36}B_3 + \frac{1}{48}B_4 + \frac{1}{120}B_5 = 0$$
 (105)

$$\frac{1}{5040}B_0 + \frac{1}{720}B_1 + \frac{1}{240}B_2 + \frac{1}{144}B_3 + \frac{1}{144}B_4 + \frac{1}{240}B_5 + \frac{1}{720}B_6 = 0$$
 (106)

$$\cdots$$
 (107)

より添字が奇数のときを代入することで求まる。

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, B_5 = 0, B_6 = \frac{1}{42}, \cdots$$
 (108)

1.7 ゼータ関数 $\zeta(s)$

定義 (ゼータ関数).

ゼータ関数 $\zeta(s)$ は次のように定義される.

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (\Re s > 1).$$
(109)

 \Diamond

命題 16.

$$\zeta(s)$$
 が $\Re s > 1$ において一様絶対収束することを示す.

証明

s = a + bi (a > 1) とおく. すると次のようになる.

$$|\zeta(s)| \le \sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^a} \approx \int_1^{\infty} dx \, x^{-a} = \left[\frac{1}{1-a} x^{1-a} \right]_1^{\infty} < \infty.$$
 (110)

よってゼータ関数 $\zeta(s)$ は一様絶対収束する.

命題 17.

$$\zeta(s) = \prod_{p:prime} \frac{1}{1 - p^{-s}} \qquad (\Re s > 1).$$
 (111)

 \Diamond

証明

素因数分解の一意性より次のようにゼータ関数 $\zeta(s)$ は式変形できる.

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \tag{112}$$

$$= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{2^{2s}} + \frac{1}{5^s} + \frac{1}{(2 \cdot 3)^s} + \cdots$$
 (113)

$$= (1 + 2^{-s} + 2^{-2s} + \cdots)(1 + 3^{-s} + 3^{-2s} + \cdots)(1 + 5^{-s} + 5^{-2s} + \cdots)\cdots$$
 (114)

$$= \prod_{p:prime} (1 + p^{-s} + p^{-2s} + \cdots)$$
 (115)

$$= \prod_{p:prime} \frac{1}{1 - p^{-s}}.$$
 (116)

命題 18.

$$\zeta(s) = 0 \implies \Re s \le 1. \tag{117}$$

 \Diamond

証明

 $\Re s>1$ において $s=a+b\sqrt{-1}\;(a>1)$ とおくと p^{-s} の大きさは次のように評価される.

$$|p^{-s}| = |p^{-a-b\sqrt{-1}}| = |p^{-a}| \cdot |e^{-\sqrt{-1}b\ln p}| = p^{-a}.$$
 (118)

これより $\zeta(s)$ の大きさは次のように評価される.

$$|\zeta(s)| = \left| \prod_{p:prime} \frac{1}{1 - p^{-s}} \right| \ge \prod_{p:prime} \frac{1}{1 - |p^{-s}|} = \prod_{p:prime} \frac{1}{1 - p^{-a}} > 0.$$
 (119)

よって $\Re s > 1$ において $\zeta(s)$ はゼロとならない. つまり次のようになる.

$$\zeta(s) = 0 \implies \Re s \le 1. \tag{120}$$

命題 19.

素数が無限に存在することを示す.

証明

ゼータ関数 $\zeta(s)$ ($\Re s > 1$) について $s \to 1$ の極限を取ると発散する.

$$\lim_{s \to 1} \zeta(s) = \lim_{s \to 1} \sum_{n=1}^{\infty} \frac{1}{n^s} = \infty.$$
 (121)

また Euler 積表示についても極限を取る.

$$\lim_{s \to 1} \zeta(s) = \prod_{p:prime} \frac{1}{1 - 1/p}.$$
 (122)

ここで素数が有限個しかないならば発散しない. ただゼータ関数は極限を取ると発散するので素数は無限個存在する.

命題 20.

$$\Gamma(s)\zeta(s) = \int_0^\infty \mathrm{d}x \, \frac{x^{s-1}}{e^x - 1} \qquad (\Re s > 1). \tag{123}$$

 \Diamond

 \Diamond

証明

ガンマ関数の定義式について x := nx と置換積分することで次のように式変形できる.

$$\Gamma(s) = \int_0^\infty \mathrm{d}x \, x^{s-1} e^{-x} \tag{124}$$

$$= \int_0^\infty n \, \mathrm{d}x \, (nx)^{s-1} e^{-nx}, \tag{125}$$

$$\Gamma(s)\zeta(s) = \sum_{n=1}^{\infty} \frac{\Gamma(s)}{n^s}$$
(126)

$$= \sum_{n=1}^{\infty} \int_0^{\infty} dx \, x^{s-1} e^{-nx}$$
 (127)

$$= \int_0^\infty dx \, \frac{x^{s-1}}{e^x - 1}.\tag{128}$$

命題 21.

この積分値を求める為に複素解析を用いる. 積分路 C を $C=C(\delta)=C_+(\delta)+C_0(\delta)+C_+(\delta)$

として $C_+(\delta)$ は実軸上無限遠から原点から δ の距離にある点まで, $C_0(\delta)$ は中心を原点とする半径 δ の円を反時計回りに 1 周し, $C_-(\delta)$ は実軸上原点から δ の距離にある点から無限遠までを積分する. また次の関数 I(s;C) を定義しておく.

$$I(s;C) := \int_C dz \, \frac{z^{s-1}}{e^z - 1}.$$
 (129)

 $0<\delta<2\pi$ を満たす範囲で δ を動かしても積分値は一定である. $\Re s>1$ のとき $\delta\to 0$ とすると $C_0(\delta)$ に沿った積分 $I(s;C_0(\delta))$ がゼロになる.

証明

被積分関数は $2n\pi\sqrt{-1}$ について 1 位の極がある. これより留数定理から積分路の内部の極の数が変化しないなら積分値は一定である. よって $0<\delta<2\pi$ を満たす範囲で δ を動かしても極の数は変化しないから積分値は一定である.

$$|I(s; C_0(\delta))| = \left| \int_{C_0(\delta)} dz \, \frac{z^{s-1}}{e^z - 1} \right|$$
 (130)

$$= \left| \int_0^{2\pi} \delta i e^{i\theta} \, \mathrm{d}\theta \, \frac{(\delta e^{i\theta})^{s-1}}{e^{\delta(\cos\theta + i\sin\theta)} - 1} \right| \tag{131}$$

$$\leq \int_0^{2\pi} d\theta \, \frac{|\delta^s|}{e^{\delta \cos \theta} - 1} \tag{132}$$

$$<|\delta^{s-1}|\pi. \tag{133}$$

これより $\delta \to 0$ のとき積分値 $I(s; C_0(\delta))$ は 0 となる.

命題 22.

$$I(s;C) = (e^{2\pi is} - 1) \int_0^\infty dx \, \frac{x^{s-1}}{e^x - 1}.$$
 (134)

 \Diamond

Q 17A-10 の考察から $\delta \to 0$ の極限において積分 I(s;C) を考える.

$$I(s;C) = \int_{C(\delta)} dz \, \frac{z^{s-1}}{e^z - 1}$$
 (135)

$$= \int_{C_{-}+C_{0}+C_{+}} dz \, \frac{z^{s-1}}{e^{z}-1} \tag{136}$$

$$= \int_{C_{-}} dz \, \frac{z^{s-1}}{e^{z} - 1} + \int_{C_{0}} dz \, \frac{z^{s-1}}{e^{z} - 1} + \int_{C_{+}} dz \, \frac{z^{s-1}}{e^{z} - 1}$$
 (137)

$$= e^{2\pi is} \int_{C_{+}} dz \, \frac{z^{s-1}}{e^{z} - 1} + 0 + \int_{C_{+}} dz \, \frac{z^{s-1}}{e^{z} - 1}$$
 (138)

$$= (e^{2\pi is} - 1) \int_0^\infty dx \, \frac{x^{s-1}}{e^x - 1}.$$
 (139)

- Q 17A-12.

$$\zeta(s) = \frac{1}{(e^{2\pi is} - 1)\Gamma(s)} I(s; C). \tag{140}$$

(i) 17A-11 より $\Re s > 1$ において次が成り立つ.

$$\Gamma(s)\zeta(s) = \int_0^\infty \mathrm{d}x \, \frac{x^{s-1}}{e^x - 1} \tag{141}$$

$$= \frac{I(s;C)}{e^{2\pi is} - 1},\tag{142}$$

$$\zeta(s) = \frac{1}{(e^{2\pi i s} - 1)\Gamma(s)} I(s; C) \qquad (\Re s > 1).$$
(143)

(ii) I(s;C) は次のように定義された.

$$I(s;C) = \int_{C(\delta)} dz \, \frac{z^{s-1}}{e^z - 1}.$$
 (144)

これは複素平面全体 $s\in\mathbb{C}$ に対して正則である. よって (i) で求めた式は $\Re s>1$ の条件を取り外すことができ, 解析接続となる.

- Q 17A-13. —

$$\zeta(s) = e^{-\pi i s} \Gamma(1 - s) \frac{1}{2\pi i} I(s; C).$$
 (145)

さらに次のガンマ関数 $\Gamma(s)$ の反転公式より

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}.$$
(146)

ゼータ関数は次のように表される.

$$\zeta(s) = \frac{1}{(e^{2\pi is} - 1)\Gamma(s)}I(s;C) \tag{147}$$

$$= \frac{\sin \pi s}{\pi (e^{2\pi i s} - 1)} \Gamma(1 - s) I(s; C)$$
 (148)

$$= \frac{e^{i\pi s} - e^{-i\pi s}}{e^{2\pi i s} - 1} \Gamma(1 - s) \frac{1}{2\pi i} I(s; C)$$
(149)

$$= e^{-\pi i s} \Gamma(1 - s) \frac{1}{2\pi i} I(s; C). \tag{150}$$

2 微分方程式

2.1 エルミート多項式

定義 (エルミート多項式).

次の級数展開の右辺に現れる $H_n(x)$ をエルミート多項式 (Hermite polynomials) という。

$$e^{-t^2+2tx} = \sum_{n=0}^{\infty} \frac{1}{n!} H_n(x) t^n$$
 (151)

また左辺の関数はエルミート多項式の母関数 (generating function) という。

定理 23 (ロドリグの公式 (Rodrigues's formula)).

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}$$
(152)

\rightarrow

証明

両辺をtでn階微分する。

$$\frac{\partial^n}{\partial t^n} \left(左辺 \right) = e^{x^2} \frac{\partial^n}{\partial t^n} e^{-(t-x)^2} = -e^{x^2} \frac{\partial^n}{\partial x^n} e^{-(t-x)^2}$$
 (153)

t=0 とすると示せる。

$$H_n(x) = -e^{x^2} \frac{\partial^n}{\partial x^n} e^{-x^2} \tag{155}$$

命題 24.

$$H_n(x) = \frac{n!}{2\pi i} \int_C \frac{e^{-z^2 + 2zx}}{z^{n+1}} dz$$
 (156)

$$H_n(x) = \frac{1}{2\sqrt{\pi}} (-i)^n \int_{-\infty + 2ix}^{\infty + 2ix} e^{-q^2/4} (q + 2ix)^n dq$$
 (157)

$$H_n(x) = \sum_{l=0}^{[n/2]} (-1)^l \frac{n!}{(n-2l)! l!} (2x)^{n-2l}$$
(158)

命題 25.

 $H'_n(x) = 2xH_n(x) - H_{n+1}(x)$ (159)

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$
(160)

$$H_n'(x) = 2nH_{n-1}(x) (161)$$

 \Diamond

 \Diamond

証明

定理 26.

$$\frac{d^{2}}{dx^{2}}f(x) - 2x\frac{d}{dx}f(x) + 2nf(x) = 0$$
(162)

 \Diamond

証明

定理 27.

$$\int_{-\infty}^{\infty} H_m(x)H_n(x)e^{-x^2} dx = 2^n n! \sqrt{\pi}\delta_{mn}$$
(163)

 \Diamond

2.2 ルジャンドル微分方程式

定義 (ルジャンドル微分方程式).

$$(1 - x^2)y'' - 2xy' + \lambda y = 0 (164)$$

$$y = \sum_{j=0}^{\infty} a_j x^j \tag{165}$$

定義 (ルジャンドルの陪微分方程式).

ルジャンドルの陪微分方程式

$$(1-x^2)y'' - 2xy' + \left(n(n+1) - \frac{m^2}{1-x^2}\right)y = 0$$
 (166)

これを満たす独立な 2 つの解 $P_n^m(x)$ と $Q_n^m(x)$ を第一種および第二種ルジャンドル陪関数はルジャンドル関数で表される。

2.3 ベッセルの微分方程式

定義.

ベッセルの微分方程式 (Bessel's equation)

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0$$
(167)

定義.

ベッセルの微分方程式 (Bessel's equation)

$$x^{2}y'' + xy' + (x^{2} - \nu^{2})y = 0$$
(168)

2.4 ラゲール多項式

定義.

ラゲール多項式

$$\frac{e^{-xz/(1-z)}}{1-z} = \sum_{n=0}^{\infty} L_n(x) \frac{z^n}{n!}$$
 (169)

命題 28.

$$L_n(x) = e^x \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x}) \tag{170}$$

$$L_n(x) = \sum_{l=0}^n \frac{(-1)^l (n!)^2}{(l!)^2 (n-l)!} x^l$$
(171)

$$L_{n+1}(x) = (2n+1-x)L_n(x) - n^2L_{n-1}(x)$$
(172)

$$xL'_n(x) = nL_n(x) - n^2L_{n-1}(x)$$
(173)

$$L_n(0) = n! (174)$$

 \Diamond

2.5 ポアソン方程式

2.6 変数分離

2.7 境界值問題

定義.

ラプラス方程式 (Laplace equation)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{175}$$

ポアソン方程式 (Poisson equation)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\rho(x, y) \tag{176}$$

波動方程式 (wave equation)

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \tag{177}$$

熱伝導方程式 (heat conduction equation)

 κ を熱伝導率 (thermal conductivity)

$$\frac{\partial u}{\partial t} = \kappa \frac{\partial^2 u}{\partial x^2} + q(x) \tag{178}$$

命題 29.

ラプラス方程式を満たし

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \tag{179}$$

次の境界条件を満たす関数 u(x,y) を求める。

$$u(0,y) = 0, u(a,y) = 0, u(x,0) = f(x), u(x,b) = 0$$
(180)

 \Diamond

これは変数分離法が使えないと思う。

$$u(x,y) = X(x)Y(y) \tag{181}$$

ラプラス方程式

$$X''(x)Y(y) + X(x)Y''(y) = 0$$
(182)

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} \tag{183}$$

$$X''(x) = -\lambda^2 X(x) \tag{184}$$

$$Y''(y) = \lambda^2 Y(y) \tag{185}$$

$$X(x) = \sin\left(\frac{n\pi x}{a}\right) \tag{186}$$

$$\lambda = \frac{n\pi}{a} \tag{187}$$

$$\lambda = \frac{n\pi}{a}$$

$$f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{a}\right) \sinh\left(\frac{n\pi b}{a}\right)$$
(187)