Збіжність ітераційних методів

Дана система рівнянь

$$x1+0.42 \cdot x2+0.54 \cdot x3+0.66 \cdot x4=0.3$$

 $0.42+x2+0.32 \cdot x3+0.44 \cdot x4=0.5$
 $0.54 \cdot x1+0.32 \cdot x2+x3+0.22 \cdot x4=0.7$
 $0.66 \cdot x1+0.44 \cdot x2+0.22 \cdot x3+x4=0.9$

Матриці системи:

$$A \coloneqq \begin{bmatrix} 1 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1 \end{bmatrix} \qquad f \coloneqq \begin{bmatrix} 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{bmatrix}$$

Якщо матриця A не ε матрицею із діагональною перевагою, то за допомогою лінійної комбінації її рівнянь можна звести задану систему рівнянь до еквівалентної, у якій ε діагональна перевага, що забезпечить збіжність ітераційного процесу.

 $n \coloneqq 4$

Розглянемо ще два способи зведення системи рівнянь до еквівалентної форми, для якої ітераційні методи будуть збігатись.

1) Спосіб 1. Зведення системи рівнянь до еквівалентної за допомогою знаходження норми матриці

1.1) Зведення системи рівнянь $A \cdot x = f$ до еквівалентної системи $x = \beta \cdot x + b$, шляхом знаходження невідомої х1 з першого рівняння системи, х2 — з другого, х3 — з третього та х4 — з четвертого)

Знайдемо власні значення матриці В

eigenvals
$$(\beta) = \begin{bmatrix} 0.757739 \\ 0.361716 \\ 0.203293 \\ -1.322749 \end{bmatrix}$$

Отже, для системи $x = \beta \cdot x + b$ не виконується умова критерію збіжності, оскільки не всі власні значення матриці β за модулем менші одиниці.

Теорема (критерій збіжності). Для збіжності ітераційного процесу з довільним початковим вектором необхідно і достатньо, щоб усі власні числа матриці були за модулем менші одиниці.

1.2) Зведення системи рівнянь $A \cdot x = f$ до еквівалентної за допомогою норми матриці A

Систему рівнянь $A \cdot x = f$ зведемо до еквівалентної $x = \beta \cdot x + b$, для якої всі власні значення матриці β будуть за модулем менщі одиниці. Для цього:

- 1. Знайдемо норму α матриці A.
- 2. Систему рівнянь $A \cdot x = f$ зведемо до вигляду $x = \left(E \frac{2}{\alpha} \cdot A\right) \cdot x + \frac{2}{\alpha} \cdot f$, тобто $\beta = E \frac{2}{\alpha} \cdot A$, $b = \frac{2}{\alpha} \cdot f$, власні значення такої матриці β будуть знаходитись в інтервалі (-1, 1), тому ітераційні методи будуть збігатись.

1.2.1) Знайдемо норму матриці А (першу норму) за формулою $||A|| = \max_i \sum_{j=1}^n |A_{ij}| < 1$

 $\begin{bmatrix} 2.08 \\ 2.32 \end{bmatrix}$

 $lpha\!:=\!\max\left(\!sum_{_1},\!sum_{_2},\!sum_{_3},\!sum_{_4}\!\right)$ - максимальне значення $lpha\!=\!2.62$ - норма матриці А

1.2.2) Знайдемо матриці β **та** b за допомогою норми

$$\beta \coloneqq E - \frac{2}{\alpha} \cdot A$$
 $b \coloneqq \frac{2}{\alpha} \cdot f$

$$E \coloneqq \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\beta = \begin{bmatrix} 0.236641 & -0.320611 & -0.412214 & -0.503817 \\ -0.320611 & 0.236641 & -0.244275 & -0.335878 \\ -0.412214 & -0.244275 & 0.236641 & -0.167939 \\ -0.503817 & -0.335878 & -0.167939 & 0.236641 \end{bmatrix} \qquad b = \begin{bmatrix} 0.229008 \\ 0.381679 \\ 0.534351 \\ 0.687023 \end{bmatrix}$$

$$ext{eigenvals}(eta) = egin{bmatrix} 0.815068 \\ 0.51276 \\ 0.391827 \\ -0.773091 \end{bmatrix}$$
 - власні значення матриці eta

Отже, для отриманої системи $x = \beta \cdot x + b$ виконується умова критерію збіжності, оскільки всі власні значення матриці β за модулем менщі одиниці, тому ітераційні методи будуть збігатись.

Перевірка еквівалентності систем рівнянь $A \cdot x = f$ та $x = \beta \cdot x + b$

$$A \coloneqq \begin{bmatrix} 1 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1 \end{bmatrix} \qquad f \coloneqq \begin{bmatrix} 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{bmatrix} \qquad X \coloneqq \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$given \quad A \cdot X = f$$

$$Find(X) = \begin{bmatrix} -1.257794 \\ 0.043487 \\ 1.039166 \\ 1.482393 \end{bmatrix}$$

$$\beta := \begin{bmatrix} 0.236641 & -0.320611 & -0.412214 & -0.503817 \\ -0.320611 & 0.236641 & -0.244275 & -0.335878 \\ -0.412214 & -0.244275 & 0.236641 & -0.167939 \\ -0.503817 & -0.335878 & -0.167939 & 0.236641 \end{bmatrix} \quad b := \begin{bmatrix} 0.229008 \\ 0.381679 \\ 0.534351 \\ 0.687023 \end{bmatrix} \quad X := \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$given \quad X = \beta \cdot X + b$$

$$Find(X) = \begin{bmatrix} -1.257793 \\ 0.043487 \\ 1.039166 \\ 1.482393 \end{bmatrix}$$

2) Спосіб 2. Зведення системи рівнянь до еквівалентної за допомогою домноження на транспоновану матрицю

Даний метод грунтується на наступних теоремах (див. Демидович, Марон Основи обчислювальної математики)

Теорема 1. Система рівнянь $A \cdot x = f$ є нормальною системою, якщо: 1) матриця A є симетричною; 2) відповідна квадратична форма є додатньо визначеною.

Теорема 2. Якщо система рівнянь $A \cdot x = f$ є нормальною, то ітераційний процес для еквівалентної системи $x = \beta \cdot x + b$ завжди є збіжним.

Теорема 3. Якщо обидві частини системи $A \cdot x = f$ з невиродженою матрицею A домножити зліва на транспоновану матрицю A^{T} , то отримана нова система $A^{\mathrm{T}} \cdot A \cdot x = A^{\mathrm{T}} \cdot f$ буде нормальною.

Нехай матриці системи рівнянь $A \cdot x = f$:

$$A \coloneqq \begin{bmatrix} 2 & 3 & -4 & 1 \\ 1 & -2 & -5 & 1 \\ 5 & -3 & 1 & -4 \\ 10 & 2 & -1 & 2 \end{bmatrix} \qquad f \coloneqq \begin{bmatrix} 3 \\ 2 \\ 1 \\ -4 \end{bmatrix}$$

Домножимо обидві частини даної системи зліва на транспоновану матрицю A^{T} :

$$A1\coloneqq A^{\mathrm{T}} \cdot A$$
 $f1\coloneqq A^{\mathrm{T}} \cdot f$
$$A1=\begin{bmatrix} 130 & 9 & -18 & 3 \\ 9 & 26 & -7 & 17 \\ -18 & -7 & 43 & -15 \\ 3 & 17 & -15 & 22 \end{bmatrix} \text{ - симетрична матриця } 1=\begin{bmatrix} -27 \\ -6 \\ -17 \\ -7 \end{bmatrix}$$

Отримали систему рівнянь $A1 \cdot x = f1$, придатну для побудови ітераційного процесу.

Далі будуємо ітераційний процес зведенням системи рівнянь $A \cdot x = f$ до еквівалентної системи $x = \beta \cdot x + b$, шляхом знаходження невідомої х1 з першого рівняння системи, х2 — з другого, х3 — з третього та х4 — з четвертого.