	Student ID:	
	FORMATION CODES AND CIPHERS	
2013 S2	TEST 1	VERSION A
• Time Allowed: 45	minutes	
each multiple choice. For written answer	ce questions, circle the correct answer; ice question is worth 1 mark. er questions, use extra paper. together when finished.	
1. You are given to	the following 7-bit ASCII codewords:	
	L 1001100 o 1101111 v 1110110 e	1100101
	\$ 0100100 0 0110000 h 1101000 d	1011011
togothes 5112 to the 9-charac The message " (a) Love	racter 8-bit ASCII burst code by encoding character 8-bit and 8-character 8-bit ASCII code Love" together with its check character is good a questions let C be a binary linear code $H = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$	deword C(In)s is similar studied in lectures.) iven by:
Assume that the	he check bits correspond to columns 1, 2, ar	nd 4.
2. The codeword	encoding the message 1010 in code C_1 is	
(a) 1101110	(b) 1110010 (c) 1101100 (d)	0111110 (e) 0110100
	atrix G corresponding to the check matrix H	
4. Supposing that	(b) 3×7 (c) 4×3 (d) 3×4 the word 1110011 is received using code 6 ors that could have occurred?	

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

	strategy for decoding C ?		
	(a) $(0,6)$ (b) $(1,5)$ (c) $(2,4)$ (d) $(3,3)$ (e) $(4,2)$		
7.	The message $s_3s_2s_4s_2$ was encoded using a comma code of length 4. The encoded message is		
	(a) 10011111110 (b) 1100111110 (c) 11010111110		
	(d) 01111100110 (e) 11010111010		
8.	A binary UD-code has codewords lengths (not necessarily in order) 1, 3, 3, 4, 4, ℓ . What is the minimum value must ℓ take in order for the code to exist?		
	Assignment Project Exam4Help=5.		
9.	Consider a binary Huffman code for a source with 6 symbols, where the source symbols are given in non-increasing probability order. Suppose that the codeword for symbol s_6 is c_6 Poll. Then the codeword for symbol s_5 is		
(a) 101 (b) 1010 (c) 1111 (d) 0011 (e) 011 Add WeChat powcoder 10. Let $S = \{s_1, s_2\}$ be a source with probabilities $p_1 = \frac{3}{5}$, $p_2 = \frac{2}{5}$. The average length per original symbol of a radix 3 Huffman code for the second extension $S^{(2)}$ of this source (constructed with the usual strategies) is			
	(a) $\frac{7}{10}$ (b) 1 (c) $\frac{41}{25}$ (d) $\frac{41}{50}$ (e) $\frac{7}{5}$		
11.	[5 marks]		
	(a) Show that there is no uniquely decodable ternary (i.e. radix 3) code for the		

 $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$

The symbol s_1 of the source $S = \{s_1, s_2\}$ occurs with probability 5/8 and s_2 occurs with probability 3/8. Find a uniquely decodable binary code of minimal average length for S^2 , assuming that successive symbols occur independently,

and state the average length per original source symbol of the code.

with codeword lengths 1, 1, 2, 2, 3, 3, 3, 4, respectively.

5. Consider a binary 2-error correcting code C with k=3 information bits and m=5

6. A binary code C has minimum distance d = 7. Suppose this is used to correct a errors and detect b errors. Which of the following pairs (a, b) does not give a valid

(c) 5

(d) 6

(e) 7

check bits. What is the largest possible number of codewords in C?

(b) 4

(a) 3

source

Name:		Stud	lent ID:					
UNSW SCHO	OOL OF MA	THEMATIC	S AND STA	ATISTICS				
MATH341	1 Inform	MATION (CODES A	ND CIPE	HERS			
2013 S2		$\mathbf{T}\mathbf{F}$	EST 1			VER	SION 1	1B
• Time Allowe	ed: 45 min u	ites						
each multip For written	e choice que le choice qu answer que apers togeth	estion is w stions, use	orth 1 ma extra pa	ırk.	wer;			
ters in bl for even 8-charac The mes been cor	ge is sent usicocks of four parity in roter 8-bit AS sage 000010 rupted by a	together was and colors of the CII codes	ith a 5th clumns. (T studied in 11 1010101 bise that h	haracter withis is similal lectures.) 11 1100101 as converte	hich is used lar to the 9 1 11010100 ed all 0s to	l as a che	eck codew ter 8-bit a ived and i ft all 1s a	ord and has
					(e) none			
For the	nexhttp							
	Ado	d Wæ	Chat	0 0 0 0 pow 0 0 0 1	ode	er		
Assume	that the che	eck bits cor	respond to	columns	1, 3, 4 and	6.		
2. The code	eword encod	ling the me	essage 110	in code C_1	is			
(a) 100	1110 (b)	0010100	(c) (0011100	(d) 111	0100	(e) 110	1100
3. A genera	tor matrix (G correspon	nding to th	ne check m	atrix H for	the cod	$e C_1$ has s	size
(a) 3	× 7 (b)	4×7	(c) 4 ×	3 (d)	3×4	(e) non	e of these	Э.
	ord 1101001 at could hav			ode C_1 , wh	nat is the	minimur	n numbei	r of
	(a)	0 (b)	1 (c)	2 (d) 3 (e) 4		

	(d) 0111110010 (e) 1001110100
8.	A binary UD-code has codewords lengths (not necessarily in order) 2, 2, 3, 4, 4, ℓ . What is the smallest value must ℓ take in order for the code to exist?
	Assignment Project Exam Help of these.
9.	Consider a binary Huffman code for a source with 7 symbols, where the source symbols are given in non-increasing probability order. Suppose that the codeword for symbol s_7 is (P_{1101}, P_{101}) here the codeword for symbol s_6 is
10.	(a) 010 (b) 0110 (c) 11011 (d) 01110 (e) 01100 Add We Chat powcoder Let $S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$ be a source with probabilities $p_1 = \frac{6}{17}$, $p_2 = \frac{4}{17}$, $p_3 = \frac{3}{17}$, $p_4 = \frac{2}{17}$, $p_5 = p_6 = \frac{1}{17}$. The average length of a radix 4 Huffman code for
	this source (using the usual strategies) is
	(a) $\frac{4}{17}$ (b) $\frac{12}{17}$ (c) $\frac{21}{17}$ (d) $\frac{24}{17}$ (e) $\frac{31}{17}$
11.	[5 marks]
	(a) Find an instantaneous ternary (i.e. radix 3) UD-code for the source
	$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$
	with codeword lengths 1, 2, 2, 2, 2, 4, 4, 4, respectively.
	(b) The symbol s_1 of the source $S = \{s_1, s_2\}$ occurs with probability 7/10 and s_2 occurs with probability 3/10. Find a binary UD-code of minimal average length for S^2 , assuming that successive symbols occur independently, and state the average length per original source symbol of the code.

5. Let C be a binary 1-error correcting code with k information bits, m=3 check bits

6. A binary code C has minumum distance d = 12. Suppose this is used to correct a errors and detect b errors. Which of the following pairs (a, b) gives a valid strategy

7. The message $s_2s_1s_4s_3$ was encoded using a comma code of length 4. The encoded

(b) 1011011110

(c) 3

(c) (4,8)

(d) 4

(d) (5,6)

(e) 5

(c) 1101011110

(e) (7,4)

and 2^k codewords. The maximum possible value for k is

(b) (3,9)

(b) 2

(a) 1

(a) 1001110110

for decoding C?

message is

(a) (0, 12)