ECE537

Random Processes

Problem Set 3

- 1. Assume that *X* is a r.v. uniformly distributed over $\{-4, -3, \dots, 3, 4\}$. Find the mean and variance of $Y = \sin^2\left(\frac{\pi X}{4}\right)$.
- 2. Let M be a geometric random variable, i.e. $P(M = k) = p^k(1 p)$, for $k = 0,1,2,\cdots$ Show that M satisfies the memoriless property, i.e.

$$P(M \ge k + j)/M \ge j + 1) = P(M \ge k) \quad \forall k, j$$

- 3. Find the mean of a Pareto distributed random variable with $\alpha=1$, and $x_m=1$, where $f_X(x;\alpha,x_m)=\frac{\alpha x_m^\alpha}{x^{\alpha+1}}$ $x\geq x_m$, and zero else where.
- 4. The PDF of the random variable *X* is shown in the Figure
 - a) Find the value of c.
 - b) Find the mean and variance of X.
 - c) Find the characteristic function of X, defined as $\Phi_X(\omega) = \mathcal{E}(e^{j\omega X})$.

- 5. By using the derivative method (textbook page 179) show that if X is a Cauchy random variable with parameter α , then $Y = X^{-1}$ is a Cauchy random variable with parameter α^{-1} . (Note $f_X(x) = \frac{\alpha/\pi}{x^2 + \alpha^2}$).
- 6. Let *U* be a random variable with uniform pdf on [0,1] and $X = -\ln\left(\left|1 \frac{1}{U}\right|\right)$. Find $f_X(x)$.
- 7. Let X be a Gaussian random variable with mean μ and variance σ^2 . Find the PDF of

$$Y = \begin{cases} 0 & X \le 0 \\ X & X > 0 \end{cases}$$

8. Show that the covariance matrix of a random vector is positive semidefinite.

