# 百问网 Linux 开发板硬件测试说明——100ASK\_IMX6ULL\_Pro

深圳百问网科技有限公司 2022-9-13 [1.0]

# 更新记录

| 日期        | 更改内容 | 版本号  | 更新者     | 审核 |
|-----------|------|------|---------|----|
| 2022/9/13 | 初稿   | V1.0 | 百问网研发团队 |    |
|           |      |      |         |    |
|           |      |      |         |    |

# 目录

| 更新记录 1                 |
|------------------------|
| 目录1                    |
| 第1章 有线网卡接口测试 1         |
| 1.1 ifconfig 查看 IP 1   |
| 1.2 udhcpc 获取 IP 2     |
| 1.3 ifconfig 强制指定 IP 2 |
| 1.4 网络连通性测试            |
| 1.5 使能网卡一接口4           |
| 第2章 无线网卡设备测试6          |
| 2.1 检查 WLAN 接口 6       |
| 2.2 启用 wlan0 无线网络设备6   |
| 2.3 扫描周围网络设备 7         |
| 2.4 配置网络连接参数 8         |
| 2.5 连接 wifi 设备 8       |
| 2.6 查看连接状态 8           |
| 2.7 为 wlan0 获取 ip 地址9  |
| 2.8 测试 wlan0 是否可以上网9   |
| 第 3 章 USB Host 接口测试10  |
| 第 4 章 耳机接口测试方法 12      |
| 4.1 录制音频:              |
| 4.2 播放音频:              |
| 第 5 章 MIC 接口测试方法 15    |
| 5.1 录制音频:              |
| 5.2 播放录音音频 16          |
| 第6章 LINE 接口测试方法        |
| 6.1 外接模块17             |
| 6.2 播放音频 17            |
| 第7章 HDMI 测试18          |
| 第8章 LCD 显示测试19         |
| 8.1 lcd 显示红色 19        |
| 8.2 lcd 显示多种颜色19       |
| 第9章 触摸屏测试              |
| 第 10 章 屏幕背光调节 21       |
|                        |

| 第 11 章 | RTC 测试 21    |
|--------|--------------|
| 第 12 章 | RS485 测试 23  |
| 第 13 章 | CAN 功能测试 24  |
| 第 14 章 | 蓝牙测试         |
| 第 15 章 | Key(按键)测试 26 |
| 第 16 章 | 查看 CPU 温度 26 |

# 第1章 有线网卡接口测试

此节演示在串口终端下如何设置开发板的 ip 地址,测试网络的连通性。

既然是在开发板和电脑之间测试网络,那双方需要有网络连接。可以使用一个路由器,开发板通过网线与路由器连接,而电脑与路由器之间,可以使用网线连接,也可以使用 WIFI 连接。

**注意**:如果要测试全功能版的 2 个网卡,先测一个网卡,然后把它的网线取下来,再接网线到第 2 个网卡并测试。



全功能版网口

图 1.1 IMX6ULL Pro 开发板的网口

# 1.1 ifconfig 查看 IP

使用串口登录开发板后,在串口助手命令行输入 ifconfig 查看 IP:

```
[root@100ask:~]# ifconfig
会得到类似如下结果:
eth1: flags=4163<UP.BROADCAST.RUNNING.MULTICAST> mtu 1500
```

```
eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 169.254.118.140 netmask 255.255.0.0 broadcast 169.254.255.255
       inet6 fe80::63cc:c589:dc93:2607 prefixlen 64 scopeid 0x20<link>
       ether 76:05:eb:9b:8f:c4 txqueuelen 1000 (Ethernet)
       RX packets 72 bytes 4062 (3.9 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 27 bytes 2849 (2.7 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 38 bytes 3436 (3.3 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 38 bytes 3436 (3.3 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 169.254.108.15 netmask 255.255.0.0 broadcast 169.254.255.255
       inet6 fe80::2989:b098:bde9:7eb8 prefixlen 64 scopeid 0x20<link>
       ether b0:02:47:38:57:6e txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
```

2022/6/1 1 slhuan

```
TX packets 87 bytes 6119 (5.9 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
通过上图可知,开发板已经自动获得 IP 地址 169.254.118.140(你的开发板自动获取的 IP 可能不一样)。
```

# 1.2 udhcpc 获取 IP

如果开发板未能获取 IP,则可以使用 udhcpc 命令尝试获取 IP:

```
[root@100ask:~]# udhcpc -i eth0
会得到类似如下的结果:
udhcpc: started, v1.31.1
[ 365.415081] stm32-dwmac 5800a000.ethernet eth0: PHY [stmmac-0:06] driver [Generi
[ 365.477538] dwmac4: Master AXI performs any burst length
[ 365.481505] stm32-dwmac 5800a000.ethernet eth0: No Safety Features support found
 365.488844] stm32-dwmac 5800a000.ethernet eth0: IEEE 1588-2008 Advanced Timestam
p supported
[ 365.502941] stm32-dwmac 5800a000.ethernet eth0: registered PTP clock
[ 365.507899] stm32-dwmac 5800a000.ethernet eth0: configuring for phy/rgmii link m
[ 365.533801] 8021q: adding VLAN 0 to HW filter on device eth0
udhcpc: sending discover
[ 368.651556] stm32-dwmac 5800a000.ethernet eth0: Link is Up - 1Gbps/Full - flow c
ontrol rx/tx
[ 368.658864] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
udhcpc: sending discover
udhcpc: sending discover
udhcpc: sending select for 192.168.50.125
udhcpc: received DHCP NAK
udhcpc: sending discover
udhcpc: sending discover
udhcpc: sending select for 192.168.50.126
udhcpc: lease of 192.168.50.126 obtained, lease time 86400
deleting routers
SIOCADDRT: Network is unreachable
adding dns 192.168.50.1
```

那么开发板分配到的 ip 就是 192.168.50.126。

[root@100ask:~]# ifconfig eth1 192.168.5.10

# 1.3 ifconfig 强制指定 IP

如果通过 udhcpc 命令无法获得 IP, 也可以使用 ifconfig 命令强制设置 IP(一般情况下不用), 如下图使用 ifconfig 命令强制指定 IP 地址为 192.168.5.10:

```
再用 ifconfig 查询 ip 的时候就会得到如下结果:
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.50.126 netmask 255.255.255.0 broadcast 192.168.50.255
    inet6 fe80::ae54:676e:dd7a:c583 prefixlen 64 scopeid 0x20<link>
    ether 00:01:1f:2d:3e:4d txqueuelen 1000 (Ethernet)
    RX packets 781 bytes 55612 (54.3 KiB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 170 bytes 16934 (16.5 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
    device interrupt 51
```

```
eth1: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
       inet 192.168.5.10 netmask 255.255.255.0 broadcast 192.168.5.255
       ether 76:05:eb:9b:8f:c4 txqueuelen 1000 (Ethernet)
       RX packets 600 bytes 29553 (28.8 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 31 bytes 4381 (4.2 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 230 bytes 21877 (21.3 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 230 bytes 21877 (21.3 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 169.254.108.15 netmask 255.255.0.0 broadcast 169.254.255.255
       inet6 fe80::2989:b098:bde9:7eb8 prefixlen 64 scopeid 0x20<link>
       ether b0:02:47:38:57:6e txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 354 bytes 20402 (19.9 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

可以看到 eth0 是自动获取的 IP, 而 eth1 则是我们手动指定的 ip: 192.168.5.10。

# 1.4 网络连通性测试

在开发板上执行如下命令,如果有数据返回则表示开发板跟互联网是连通的(前提是你的路由器是可以上网的):

```
[root@100ask:~]# ping www.baidu.com
可以得到如下结果:
```

```
PING www.baidu.com (183.232.231.174): 56 data bytes
64 bytes from 183.232.231.174: seq=0 ttl=54 time=32.148 ms
64 bytes from 183.232.231.174: seq=1 ttl=54 time=31.771 ms
64 bytes from 183.232.231.174: seq=2 ttl=54 time=31.274 ms
64 bytes from 183.232.231.174: seq=3 ttl=54 time=30.633 ms
64 bytes from 183.232.231.174: seq=4 ttl=54 time=30.147 ms
```

这就表示能联通外网。

当然,很多时候开发板不能 ping 通互联网,这也没关系,只要能 ping 通 Windows 或是 Windows 能 ping 通开发板就可以(Windows 开了防火墙时,开发板无法 ping 通 windows)。

比如我们的 Windows IP 地址为 192.168.50.240, 此时可以通过 ping 命令测试两者是否可以相互通信:

### ● 开发板 pingWindows

```
[root@100ask;~]# ping 192.168.50.240
能通信情况下会得到类似如下的结果:
PING 192.168.50.240 (192.168.50.240): 56 data bytes
64 bytes from 192.168.50.240: seq=0 ttl=128 time=138.926 ms
64 bytes from 192.168.50.240: seq=1 ttl=128 time=2.236 ms
```

### 1.5 使能网卡一接口

最短 = 1ms, 最长 = 8ms, 平均 = 3ms

开发板有 2 个网口: eth0、eth1。使用 ifconfig -a 查看都有那些网卡设备:

```
[root@100ask:~]# ifconfig -a
会看到下面这些信息:
can0: flags=128<NOARP> mtu 16
       PEC)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
       device interrupt 55
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
       inet 192.168.50.125 netmask 255.255.255.0 broadcast 192.168.50.255
       inet6 fe80::ae54:676e:dd7a:c583 prefixlen 64 scopeid 0x20<link>
       ether 00:01:1f:2d:3e:4d txqueuelen 1000 (Ethernet)
       RX packets 73 bytes 4790 (4.6 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 27 bytes 2236 (2.1 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
       device interrupt 51
eth1: flags=4099<UP, BROADCAST, MULTICAST> mtu 1500
       ether 76:05:eb:9b:8f:c4 txqueuelen 1000 (Ethernet)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 2 bytes 196 (196.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 2 bytes 196 (196.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

2022/6/1 4 slhuan

```
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 169.254.108.15 netmask 255.255.0.0 broadcast 169.254.255.255
inet6 fe80::2989:b098:bde9:7eb8 prefixlen 64 scopeid 0x20<link>
ether b0:02:47:38:57:6e txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 28 bytes 2959 (2.8 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

图 1.2 ifconfig -a

把网线接入 eth1 网口,最好把 eth0 网口的网线取下。执行以下命令启用 eth1 网卡设备:

### [root@100ask:~]# ifconfig eth1 up

如果网线另一端接入的也是路由器,可能会有如下的 log:

```
[root@100ask:~]# [ 499.936310] IPv6: ADDRCONF(NETDEV_CHANGE): eth1: link becomes ready [ 499.943995] r8152 2-1.2:1.0 eth1: carrier on
```

并使用 udhcpc 自动获取 ip 地址:

### [root@100ask:~]# udhcpc -i eth1

如果连接的是路由器,能正常分配 ip 的情况下会得到如下的 log 信息:

```
udhcpc: started, v1.31.1
udhcpc: sending discover
udhcpc: sending discover
udhcpc: sending select for 192.168.50.156
udhcpc: lease of 192.168.50.156 obtained, lease time 86400
deleting routers
adding dns 192.168.50.1
```

**2022/6/1** 5 **slhuan** 

# 第2章 无线网卡设备测试

注意: 为了保证 wifi 模块使用信号强度和传输速率,请使用 wifi 模块前先插入配套的 wifi 天线。

### 2.1 检查 WLAN 接口

查看所有网络设备

```
| root@100ask:~] # ifconfig -a
| 关于 WiFi 设备的 log 提示,默认情况下是这样的:
| wlan0: flags=4098<BROADCAST,MULTICAST> mtu 1500
| ether b0:02:47:38:57:6e txqueuelen 1000 (Ethernet)
| RX packets 0 bytes 0 (0.0 B)
| RX errors 0 dropped 0 overruns 0 frame 0
| TX packets 40 bytes 7575 (7.3 KiB)
| TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

### 2.2 启用 wlan0 无线网络设备

```
[root@100ask:~]# ifconfig wlan0 up
会得到这些 log 信息:
  834.287076] [dhd] dhd_open: Enter wlan0
  834.289463] [dhd] dhd_open : no mutex held. set lock
  834.294625] [dhd]
  834.294625] Dongle Host Driver, version 100.10.545.11 (r826445-20200610-1)
  834.303510] [dhd-wlan0] wl_android_wifi_on : in g_wifi_on=0
  834.308970] [dhd] wifi_platform_set_power = 1, delay: 200 msec
  834.314930] [dhd] ======= PULL WL_REG_ON(-1) HIGH! =======
  834.640307] [dhd] sdioh_start: set sd_f2_blocksize 256
  834.644595] [dhd]
  834.644595]
  834.644595] dhd_bus_devreset: == Power ON ==
  834.652482] [dhd] F1 signature read @0x18000000=0x1542a9a6
  834.662043] [dhd] F1 signature OK, socitype:0x1 chip:0xa9a6 rev:0x2 pkg:0x4
  834.668281] [dhd] DHD: dongle ram size is set to 524288(orig 524288) at 0x0
  834.674831] [dhd] dhd_bus_devreset: making DHD_BUS_DOWN
  834.680020] [dhd] dhdsdio_probe_init: making DHD_BUS_DOWN
  834.685416] [dhd] bcmsdh_sdmmc: Failed to Read byte F1:@0x10009=ff, Err: -110 834.693712] [dhd] bcmsdh_sdmmc: Failed to Read byte F1:@0x10009=ff, Err: -110
   834.700890] [dhd] dhd_conf_read_config : Ignore config file /lib/firmware/config.txt
  834.707390] [dhd] dhd_conf_set_path_params : Final fw_path=/lib/firmware/fw_bcm43436b0.bin
  834.715789] [dhd] dhd_conf_set_path_params : Final nv_path=/lib/firmware/nvram_ap6236.txt
  834.724118] [dhd] dhd_conf_set_path_params : Final clm_path=/lib/firmware/clm_bcm43436b0.blob
  834.732596] [dhd] dhd_conf_set_path_params : Final conf_path=/lib/firmware/config.txt
  834.742706] [dhd] dhd_os_open_image1: /lib/firmware/fw_bcm43436b0.bin (421001 bytes) open success
  834.843198] [dhd] dhd_os_open_image1: /lib/firmware/nvram_ap6236.txt (1165 bytes) open success
  834.850705] [dhd] NVRAM version: AP6236 NVRAM V1.0 20170117
  834.857109] [dhd] dhdsdio_write_vars: Download, Upload and compare of NVRAM succeeded.
  834.925808] [dhd] dhd_bus_init: enable 0x06, ready 0x06 (waited 0us)
  834.933871] [dhd] dhd_tcpack_suppress_set: TCP ACK Suppress mode 0 -> mode 1
   834.950166] [dhd] dhd_apply_default_clm: Ignore clm file /lib/firmware/clm_bcm43436b0.blo
  834.989975] [dhd] Firmware up: op_mode=0x0005, MAC=b0:02:47:38:57:6e
```

```
[ 835.101165] [dhd] dhd_preinit_ioctls Set scancache failed -23
  835.110079] [dhd] dhd_preinit_ioctls: event_log_max_sets: 26 ret: -23
  835.310265] [dhd] Driver: 100.10.545.11 (r826445-20200610-1)
  835.310265] Firmware: wl0: Nov 8 2016 18:25:41 version 9.11.3 (r630602) FWID 01-c7935726
  835.310265] CLM: 8.1.0 (2016-11-08 18:23:53)
  835.340461] [dhd] dhd_preinit_ioctls wlc_ver failed -23
  835.351224] [dhd] dhd txglom enable: enable 1
  835.354156] [dhd] dhd conf set txglom params : txglom mode=multi-desc
  835.360830] [dhd] dhd_conf_set_txglom_params : txglomsize=36, deferred_tx_len=0
  835.367970] [dhd] dhd_conf_set_txglom_params : txinrx_thres=128, dhd_txminmax=-1
  835.375498] [dhd] dhd_conf_set_txglom_params : tx_max_offset=0, txctl_tmo_fix=30
  835.383006] [dhd] dhd_conf_get_disable_proptx : fw_proptx=1, disable_proptx=-1
  835.420326] [dhd] dhd_wlfc_hostreorder_init(): successful bdcv2 tlv signaling, 6
  835.460012] [dhd] dhd pno init: Support Android Location Service
  835.470090] [dhd] dhd_ndo_get_version: failed, retcode = -23
  835.490086] [dhd] failed to set WNM capabilities
  835.750077] [dhd] dhd_preinit_ioctls: Failed to get preserve log # !
  835.800167] [dhd] dhd_conf_set_country : set country CN, revision 0
  835.820236] [dhd] dhd_conf_set_country : Country code: CN (CN/0)
  835.910141] [dhd] CONFIG-ERROR) dhd_conf_set_intiovar : ampdu_mpdu setting failed -29
  835.916707] [dhd-wlan0] wl_android_wifi_on : Success
  836.060016] [dhd] CFG80211-ERROR) __wl_update_wiphybands : error reading vhtmode (-23)
[ 836.230296] [dhd] dhd_open : the lock is released.
[ 836.233671] [dhd] dhd open: Exit wlan0 ret=0
[ 836.238117] [dhd] [wlan0] tx queue started
其中
[ 834.742706] [dhd] dhd_os_open_image1: /lib/firmware/fw_bcm43436b0.bin (421001 bytes) open success
[ 834.843198] [dhd] dhd_os_open_image1: /lib/firmware/nvram_ap6236.txt (1165 bytes) open success
[ 834.850705] [dhd] NVRAM version: AP6236_NVRAM_V1.0_20170117
  834.857109] [dhd] dhdsdio_write_vars: Download, Upload and compare of NVRAM succeeded.
```

这几句表明 wlano 设备已经成功启用。

# 2.3 扫描周围网络设备

```
[root@100ask:~]# iw dev wlan0 scan | grep SSID
如果周围有无线网络信号,就会得到类似下面的信息:
[ 1253.630352] [dhd-wlan0] wl run escan : LEGACY SCAN sync ID: 0, bssidx: 0
       SSID: TP-LINK_DDFC52
       SSID: TP-LINK
       SSID: NETGEAR
       SSID: TP-LINK_97B32A
       SSID: ChinaNet-ci6k
       SSID: 19-5
               * SSID List
       SSID: HP-Print-B8-LaserJet Pro MFP
       SSID: CMCC-mPu7
       SSID: 13-10
       SSID: Koukou
       SSID: MERCURY_B138
       SSID: iTV-xbYt
```

在这里找到自己测试需要连接的 WiFi 名称,比如我这里是 NETGEAR。

### 2.4 配置网络连接参数

假设我们连接到 SSID 为 NETGEAR 的 wifi 设备,已知加密方式为 WPA, 密码为 100ask.cq, 如下设置:

[root@100ask:~]# wpa\_passphrase NETGEAR 100ask.cq >> /etc/wpa\_supplicant.conf 成功设置后是不会有任何 log 提示的,这时候我们可以用 cat 命令查看检查下: [root@100ask:~]# cat /etc/wpa\_supplicant.conf

就可以看到我们的配置信息了:

```
ctrl_interface=/var/run/wpa_supplicant
ap_scan=1

network={
    key_mgmt=NONE
}
network={
    ssid="NETGEAR"
    #psk="100ask.cq"
    psk=2b3f6b000161ec9f953b9e22df162bdbf6996a606b5ef5f64818a13da20a183a
}
```

可以看到, ssid 和 psk 就是我们设置的 WiFi 名称和密码。

**注意**:如果没有无线路由器,你也可以用手机开启热点,效果一样;但是请不要用苹果手机,否则连不上。

注意: 如果之前已经配置过网络连接参数,请先删除配置文件wpa supplicant.conf,再重复上述操作。

注意: 提供热点的路由器或手机必须能上网, 否则开发连上了热点也无法上网。

# 2.5 连接 wifi 设备

[root@100ask:~]# wpa\_supplicant -B -iwlan0 -c /etc/wpa\_supplicant.conf可以看到如下的 log:

```
Successfully initialized wpa_supplicant

[ 1522.260306] [dhd] P2P interface registered

[ 1522.262986] [dhd] wl_cfgp2p_add_p2p_disc_if: wdev: db7d4a15, wdev->net: 1f74e8eb

[ 1522.460257] [dhd] WLC_E_IF: NO_IF set, event Ignored

[root@100ask:~]# [ 1522.530347] [dhd-wlan0] wl_run_escan : LEGACY_SCAN sync ID: 1, bssidx: 0

[ 1523.720229] [dhd] CFG80211-ERROR) wl_set_wsec_info_algos : wsec_info error (-23)

[ 1523.790000] [dhd-wlan0] wl_cfg80211_connect : Connecting with a0:40:a0:88:fd:a2

ssid "NETGEAR", len (7), sec=wpa2psk/mfpn/aes, channel=4

[ 1523.790000]

[ 1523.880342] [dhd-wlan0] wl_ext_iapsta_event : [S] Link UP with a0:40:a0:88:fd:a2

[ 1523.950131] [dhd-wlan0] wl_bss_connect_done : Report connect result - connection succeeded

d

[ 1524.001439] [dhd-wlan0] wl_add_keyext : key index (0)

[ 1524.040164] [dhd] CFG80211-ERROR) wl_set_wsec_info_algos : wsec_info error (-23)

[ 1524.090142] [dhd] CFG80211-ERROR) wl_set_wsec_info_algos : wsec_info error (-23)
```

# 2.6 查看连接状态

```
[root@100ask:~]# iw wlan0 link
可以看到下面的信息:
Connected to a0:40:a0:88:fd:a2 (on wlan0)
SSID: NETGEAR
```

freq: 2427 signal: -58 dBm

tx bitrate: 43.0 MBit/s

# 2.7 为 wlan0 获取 ip 地址

### [root@100ask:~]# udhcpc -i wlan0

可以看到类似下面的信息:

udhcpc: started, v1.31.1 udhcpc: sending discover udhcpc: sending discover

udhcpc: sending select for 192.168.50.196

udhcpc: lease of 192.168.50.196 obtained, lease time 86400

deleting routers

adding dns 192.168.50.1

那么板载的 WiFi 设备 wlan0 的 ip 就是 192.168.50.196。

# 2.8 测试 wlan0 是否可以上网

### [root@100ask:~]# ping -I wlan0 www.baidu.com

能 ping 通的话,结果和前面网口的 ping 百度是一样的提示。

# 第3章 USB Host 接口测试

此节演示在终端下如何在 USB Host 接口上使用 usb 存储设备。 注意: 需要准备一个 USB 设备,比如 U 盘、USB 蓝牙模块、usb 网卡或者 usb 摄像头等。



全功能版USB Host口

图 3.1

下面使用一个 U 盘作为例子,插到任意一个 USB Host 接口,会打印出如下设备信息:

```
[root@100ask:~]# [ 2724.499743] usb 2-1.3: new high-speed USB device number 6 using
ehci-platform
[ 2724.551550] usb 2-1.3: New USB device found, idVendor=14cd, idProduct=1212, bcdD
[ 2724.558501] usb 2-1.3: New USB device strings: Mfr=1, Product=3, SerialNumber=2
[ 2724.565972] usb 2-1.3: Product: Mass Storage Device
[ 2724.570848] usb 2-1.3: Manufacturer: Generic
[ 2724.575043] usb 2-1.3: SerialNumber: 121220160204
[ 2724.587424] usb-storage 2-1.3:1.0: USB Mass Storage device detected
[ 2724.596225] scsi host0: usb-storage 2-1.3:1.0
[ 2725.621803] scsi 0:0:0:0: Direct-Access
                                                        Storage Device
                                               Mass
ANSI: 0 CCS
[ 2725.636235] sd 0:0:0:0: Attached scsi generic sg0 type 0
[ 2725.856558] sd 0:0:0:0: [sda] 61069312 512-byte logical blocks: (31.3 GB/29.1 Gi
B)
[ 2725.864506] sd 0:0:0:0: [sda] Write Protect is off
[ 2725.869095] sd 0:0:0:0: [sda] No Caching mode page found
[ 2725.873449] sd 0:0:0:0: [sda] Assuming drive cache: write through
 2725.929946] sda: sda1
 2725.938116] sd 0:0:0:0: [sda] Attached SCSI removable disk
 2726.003471] systemd-journald[199]: /dev/kmsg buffer overrun, some messages lost.
[ 2726.009544] systemd-journald[199]: /dev/kmsg buffer overrun, some messages lost.
```

通过打印的设备信息可知,系统为该 usb 存储设备创建的设备节点为/dev/sda。一般来说/dev/sda 对应整个 U 盘,/dev/sda1 对应该 U 盘的第 1 个分区,/dev/sda2 对应第 2 个分区。

有些 U 盘没有划分分区,它只有一个设备节点/dev/sda,而没有/dev/sda1 等节点。对于这种情况,/dev/sda 既代表整个 U 盘,也代表第 1个分区。

我们可以挂载某个分区,挂载之前要先通过 fdisk 命令获取分区类型,如

### 下所示:

/dev/sda1

### [root@100ask:~]# fdisk -l /dev/sda

会得到如下的信息:

```
Disk /dev/sda: 29.12 GiB, 31267487744 bytes, 61069312 sectors

Disk model: Storage Device

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x6ba2086e

Device Boot Start End Sectors Size Id Type
```

8192 61069311 61061120 29.1G c W95 FAT32 (LBA

从上图可知/dev/sda1 是 FAT32, 挂载时可以指定类型为 "vfat":

```
root@100ask:~]# mount -t vfat /dev/sdal /mnt
root@100ask:~]# ls /mnt/
085-Studio-25.0.8.Full-Installer-x64 (1).exe System Volume Information network
085-Studio-25.0.8.Full-Installer-x64 (1).exe System Volume Information network
root@100ask:~]# [ 2484.098433] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.19960] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.130282] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.13082] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.150005] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.157570] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.169365] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.176891] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
[ 2484.176891] systemd-journald[782]: /dev/kmsg buffer overrun, some messages lost.
```

图 3.2 挂载分区

注意: 暂不支持分区类型为 NTFS 的 U 盘。

测试完以后,通过 umount 卸载/mnt,才可拔下 usb 设备:

[root@100ask:~]# umount /mnt

# 第4章 耳机接口测试方法

此节演示使用三段式耳机在 100ask\_stm32mp157\_pro 开发板上录制声音、播放音频。

注意:需要准备一个带麦克风的三段式耳机,如下图所示:



图 4.1

### 4.1 录制音频:

将耳机插入开发板耳机孔,使用如下命令进行录制(执行命令后,对着麦克 风说话):

```
[root@100ask:~]# arecord -v --format=cd --device=plughw:0,1 test.wav
log:
Recording WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Plug PCM: Hardware PCM card 0 'WM8960-100ASK' device 1 subdevice 0
Its setup is:
  stream
              : CAPTURE
              : RW_INTERLEAVED
  access
  format
              : S16_LE
  subformat
              : STD
  channels
              : 2
               : 44100
  rate
  exact rate
              : 44100 (44100/1)
  msbits
              : 16
  buffer_size : 8192
  period size : 1024
 period_time : 23219
  tstamp_mode : NONE
  tstamp_type : MONOTONIC
  period_step : 1
  avail min
              : 1024
  period event : 0
  start threshold : 1
  stop threshold : 8192
  silence_threshold: 0
  silence_size : 0
              : 1073741824
  boundary
  appl_ptr
              : 0
  hw_ptr
              : 0
Aborted by signal Interrupt...
```

# 4.2 播放音频:

将耳机插入开发板耳机孔,使用 aplay 进行播放音频文件:

```
[root@100ask:~]# aplay -v --format=cd --device=plughw:0,0 test.wav
log:
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Plug PCM: Hardware PCM card 0 'WM8960-100ASK' device 0 subdevice 0
Its setup is:
  stream
               : PLAYBACK
               : RW_INTERLEAVED
  access
               : S16_LE
  format
  subformat
               : STD
  channels
               : 2
  rate
               : 44100
              : 44100 (44100/1)
  exact rate
  msbits
               : 16
  buffer_size : 8192
  period_size : 1024
  period_time : 23219
  tstamp_mode : NONE
  tstamp_type : MONOTONIC
  period_step : 1
  avail_min
              : 1024
  period event: 0
  start_threshold : 8192
  stop_threshold
                  : 8192
  silence_threshold: 0
  silence_size : 0
              : 1073741824
  boundary
               : 0
  appl_ptr
```

如果戴上耳机没有听到声音,执行 alsamixer 将最左边的音量调到最大:

### [root@100ask:~]# alsamixer

### 如下图:

hw\_ptr



图 4.2

注意:录音后再播放所录得的音频文件,只有一边耳朵有声音,因为只有一个麦克采集单声道数据。还可以通过 ssh 登录开发板,将电脑中的 wav 格式的音频上传到开发板,再用 aplay 进行播放。也可以执行以下命令,让 2 只耳朵都能听到声音:

[root@100ask:~]# speaker-test -t wav -c 2 -D plughw:0,0 会得到这些信息,并且听到声音:

```
speaker-test 1.2.1

Playback device is plughw:0,0
Stream parameters are 48000Hz, S16_LE, 2 channels
WAV file(s)
Rate set to 48000Hz (requested 48000Hz)
Buffer size range from 512 to 8192
Period size range from 256 to 1024
Using max buffer size 8192
Periods = 4
was set period_size = 1024
was set buffer_size = 8192
0 - Front Left
1 - Front Right
```

# 第5章 MIC 接口测试方法

### 5.1 录制音频:

start\_threshold : 1
stop\_threshold : 8192
silence\_threshold: 0

使用如下命令进行录制(执行命令后,对着板载咪头说话):

```
[root@100ask:~]# amixer -c 0 cset numid=50 1
log:
numid=50,iface=MIXER,name='Right Input Mixer Boost Switch'
  ; type=BOOLEAN,access=rw----,values=1
  : values=on
[root@100ask:~]# amixer -c 0 cset numid=48 1
numid=48,iface=MIXER,name='Right Boost Mixer RINPUT1 Switch'
  ; type=BOOLEAN,access=rw----,values=1
 : values=on
[root@100ask:~]# amixer -c 0 cset numid=46 1
numid=46,iface=MIXER,name='Right Boost Mixer RINPUT2 Switch'
 ; type=BOOLEAN,access=rw----,values=1
 : values=on
[root@100ask:~]# amixer cset numid=3 60000 60000
numid=3,iface=MIXER,name='Capture Switch'
  ; type=BOOLEAN,access=rw----,values=2
 : values=on,on
[root@100ask:~]# arecord -v --format=cd --device=plughw:0,1 test.wav
log:
Recording WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Plug PCM: Hardware PCM card 0 'WM8960-100ASK' device 1 subdevice 0
Its setup is:
  stream
             : CAPTURE
             : RW INTERLEAVED
  access
             : S16_LE
  format
              : STD
  subformat
  channels
             : 44100
  rate
  exact rate : 44100 (44100/1)
             : 16
  msbits
  buffer size : 8192
  period_size : 1024
  period_time : 23219
  tstamp_mode : NONE
  tstamp_type : MONOTONIC
  period_step : 1
  avail_min
             : 1024
  period_event : 0
```

```
silence_size : 0
boundary : 1073741824
appl_ptr : 0
hw_ptr : 0
Aborted by signal Interrupt...
```

不想测试了是按 CTRL+C 退出。

### 5.2 播放录音音频

将耳机插入开发板耳机孔,使用 aplay 进行播放刚才录制的音频文件:

```
[root@100ask:~]# aplay -v --format=cd --device=plughw:0,0 test.wav
log:
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo
Plug PCM: Hardware PCM card 0 'WM8960-100ASK' device 0 subdevice 0
Its setup is:
  stream
              : PLAYBACK
             : RW_INTERLEAVED
  access
             : S16_LE
  format
  subformat : STD
  channels
             : 2
             : 44100
  rate
  exact rate : 44100 (44100/1)
             : 16
  buffer_size : 8192
  period_size : 1024
  period_time : 23219
  tstamp_mode : NONE
  tstamp_type : MONOTONIC
  period_step : 1
             : 1024
  avail_min
  period event : 0
  start_threshold : 8192
 stop_threshold : 8192
  silence threshold: 0
  silence_size : 0
  boundary : 1073741824
  appl_ptr
              : 0
  hw_ptr
              : 0
```

注意:录音后再播放所录得的音频文件,只有一边耳朵有声音,因为只有一个麦克采集单声道数据。还可以通过 ssh 登录开发板,将电脑中的 wav 格式的音频上传到开发板,再用 aplay 进行播放。

# 第6章 LINE 接口测试方法

注意: LINE 接口只支持音频播放输出,需要专门支持 LINE 接口的设备才可以进行连接播放音频。如下红框所示为 LINE 接口所在位置。



# 6.1 外接模块

注意: LINE 模块需要单独购买,我们暂未提供 LINE 模块的相关商品。 请参考下图所示连接 LINE 模块到 LINE 接口,之后使用下述播放音频命令 进行播放音频文件,此时可以通过 LINE 音箱听到声音输出。



图 6.2

# 6.2 播放音频

将耳机插入开发板耳机孔,使用 aplay 进行播放音频文件:

[root@100ask:~]# aplay -v --format=cd --device=plughw:0,0 test.wav

# 第7章 HDMI 测试

HDMI 接口在板上的位置如下图所示,启动开发板电源,把 HDMI 线另一端 连接至 HDMI 显示器,即可看到有终端字符输出或 QT GUI 应用显示。



正常情况下,是能显示出厂UI的:



图 7.2

# 第8章 LCD 显示测试

注意: 此章节测试需要外接 LCD 屏幕才可以进行测试验证,LCD 模块介绍请参 考页面

http://download.100ask.org/modules/Lcd/100ask imx6ull 7-inch LCD/ 此节演示通过 fb-test 测试程序让 lcd 显示红绿蓝白 4 中颜色,用以观察 lcd 的显示效果。

在测试前最好先关闭 UI:

■ LVGL GUI

### [root@100ask:~]# mv /etc/init.d/S05lvgl /root

■ 米尔 GUI

[root@100ask:~]# mv /etc/init.d/S99myirhmi2 /root

然后重启开发板

[root@100ask:~]# reboot

# 8.1 lcd 显示红色

[root@100ask:~]# fb-test -r

log:

fb-test 1.1.0 (rosetta)
fb res 1024x600 virtual 1024x600, line\_len 4096, bpp 32

现象: 屏幕显示纯红色

# 8.2 1cd 显示多种颜色

### [root@100ask:~]# fb-test

log:

fb-test 1.1.0 (rosetta)

fb res 1024x600 virtual 1024x600, line\_len 4096, bpp 32

现象: 开发板显示红绿蓝三色等多种彩色。

# 第9章 触摸屏测试

注意: 此章节测试需要外接 LCD 屏幕才可以进行测试验证, LCD 模块介绍请参考页面

http://download.100ask.org/modules/Lcd/100ask imx6ull 7-inch LCD/ 触摸屏能点击的话,就表示它没问题。另外,电容屏不需要较准。如果你就是 想走一遍,请按下面方法:

最好先关闭 gui:

■ LVGL GUI

#### [root@100ask:~]# mv /etc/init.d/S05lvgl /root

### ■ 米尔 GUI

[root@100ask:~]# mv /etc/init.d/S99myirhmi2 /root 然后重启开发板

#### [root@100ask:~]# reboot

之后在终端执行以下命令:

```
[root@100ask:~]# export TSLIB_TSDEVICE=/dev/input/event1
[root@100ask:~]# export TSLIB_CONFFILE=/etc/ts.conf
[root@100ask:~]# export TSLIB_CALIBFILE=/etc/pointercal
[root@100ask:~]# export TSLIB_PLUGINDIR=/usr/lib/ts
[root@100ask:~]# export TSLIB_CONSOLEDEVICE=none
[root@100ask:~]# export QT_QPA_FB_TSLIB=1
[root@100ask:~]# export QT_QPA_GENERIC_PLUGINS=tslib:/dev/input/event1
[root@100ask:~]# ts_test_mt
```

ts\_test\_mt 用来测试电容触摸屏,可以在屏幕上点击、画线,如下图所示: 注意:暂时不支持多点触摸,以后录到电容屏驱动时再改进驱动程序。



恢复 GUI, 在终端上执行如下命令,即可启动 qt gui 界面:

#### ■ LVGL GUI

[root@100ask:~]# mv /root/S05lvgl /etc/init.d

### ■ 米尔 GUI

[root@100ask:~]# mv /root/S99myirhmi2 /etc/init.d 然后重启开发板

[root@100ask:~]# reboot

# 第10章 屏幕背光调节

注意: 此章节测试需要外接 LCD 屏幕才可以进行测试验证, LCD 模块介绍请参考页面

http://download.100ask.org/modules/Lcd/100ask imx6ull 7-inch LCD/ 此节演示通过操作 LCD 在/sys 目录下的对应文件,以实现查询、调节背光亮度。

目前背光亮度的设置范围有  $0\sim8$ , 0 表示关,其他值表示亮度值。

先通过 cat 命令查看当前背光亮度等级:

#### [root@100ask:~]# cat /sys/class/backlight/backlight/brightness

最后设置背光亮度值为 8, 可以看到 LCD 亮了:

● 关闭背光

[root@100ask:~]# echo 0 > /sys/class/backlight/backlight/brightness

● 开启背光

[root@100ask:~]# echo 8 > /sys/class/backlight/backlight/brightness

# 第11章 RTC 测试

此节演示通过使用 date 和 hwclock 命令设置系统时间、硬件时间,并测试当操作系统重启后,系统时钟与硬件时间是否同步。

一般的板子都会有一个名为 RTC(实时时钟)的硬件,RTC 使用电池模块来供电,在系统关闭时用来维持时钟。RTC 维持的时间,被称为硬件时间。下图显示的是电池模块的安装位置:



rtc 电池模块



RTC 位置示意图

### 图 11.1

注意: 我们没有提供 RTC 模块,需要的话自行购买(淘宝搜"1.25 bios 电池");不装 RTC 电池也可以做实验,但是断电重启后时间无法保存。

Linux 系统启动之后,它会自己维持时间,这个时间被称为系统时间。系统时间的初始值来源有二:

- ① 如果没有 RTC, 系统时间初始值为 1970 年 1 月 1 日 0 点 0 分 0 秒
- ② 如果有 RTC, Linux 启动后,系统时间初始值从 RTC 读取 在实际使用过程中,要注意系统时间、硬件时间的同步问题:
- ① 使用 date 命令查看、设置系统时间,在设置系统时间后,要使用"hwclock-w" 命令同步到 RTC;
- ② 使用 hwclock 查看、设置硬件时间,在设置硬件时间后,要使用"hwclock-s"命令同步到系统时间。

以下命令是设置系统时间、并同步到 RTC:

[root@100ask:~]# date -s "2020-08-15 12:00:00"

log:

Sat Aug 15 12:00:00 UTC 2020

### [root@100ask:~]# hwclock -w

一般不直接设置硬件时间,要设置硬件时间时,先使用 date 设置系统时间,再使用"hwclock -w"同步到 RTC 硬件。

你使用 date、hwclock 命令设置好时间后,可以关闭开发板并等待一会后重启,再用 date 命令查看时间是否正常。

对 RTC 硬件的操作使用 hwclock 命令,常见用法如下:

■ hwclock -r: 显示硬件时钟与日期

Sat Aug 15 12:02:12 2020 0.0000000 seconds Sat Aug 15 12:02:37 2020 0.0000000 seconds Sat Aug 15 12:02:42 2020 0.0000000 seconds

- hwclock -s: 将系统时钟调整为与目前的硬件时钟一致。
- hwclock -w: 将硬件时钟调整为与目前的系统时钟一致。

# 第12章 RS485 测试

此节演示使用 rs485 test 程序测试 rs485 接口。

**注意:** rs485 通信时需要 2 个 rs485 设备,使用 "3.5 15EDG 5P" 插拔式接线端子进行连接测试。

以下测试是通过两块开发板进行测试,板子背面标有 RS485 引脚丝印 "AB", A接 A、B接 B。发货清单中不含接线端子,请自行购买连接测试,或者使用我们的 RS485转 CAN 模块来测试学习。

模块地址:

http://download.100ask.org/modules/CommunicationModule/RS485-CAN/



RS485 连接端子示意图

RS485 测试开发板连接位置示意图

图 12.1

### ① 接收端:

```
[root@100ask:~]# echo 128 > /sys/class/gpio/export
[root@100ask:~]# echo out > /sys/class/gpio/gpio128/direction
[root@100ask:~]# echo 0 > /sys/class/gpio/gpio128/value
[root@100ask:~]# rs485_test -d /dev/ttySTM1 -b 115200
```

### ② 发送端:

```
[root@100ask:~]# echo 128 > /sys/class/gpio/export
[root@100ask:~]# echo out > /sys/class/gpio/gpio128/direction
[root@100ask:~]# echo 1 > /sys/class/gpio/gpio128/value
[root@100ask:~]# rs485_test -d /dev/ttymxc2 -b 115200
```

**2022/6/1** 23 slhuan

# 第13章 CAN 功能测试

此节主要演示使用两块开发板通过 ip 和 can-utils 命令测试 can0 的通信。

注意: CAN 通信时需要 2 个 CAN 设备,使用"3.5 15EDG 5P"插拔式接线端子进行连接测试。

以下测试是通过两块开发板进行测试,板子背面标有 CAN 引脚丝印 "H L", H 接 H、L 接 L。发货清单中不含接线端子,请自行购买连接测试,或者使用我们的 RS485 转 CAN 模块来测试学习。

模块地址:

http://download.100ask.org/modules/CommunicationModule/RS485-CAN/



CAN 接线端子

CAN 测试开发板连接位置示意图

图 13.1

- ① 发送端:
- 关闭 can0 接口:

[root@100ask:~]# ip link set can0 down

■ 设置 can0 传输速率为 50Kbits/sec:

[root@100ask:~]# ip link set can0 type can bitrate 50000

■ 打印 can0 的信息:

[root@100ask:~]# ip -details link show can0

■ 打开 can0 接口:

[root@100ask:~]# ip link set can0 up

■ 使用 cansend 命令向另一端发送数据:

[root@100ask:~]# cansend can0 123#DEADBEEF
[root@100ask:~]# cansend can0 123#DEADBEEF

[root@100ask:~]# cansend can0 123#DEADBE23

2)接收端

建议等接收端设置好并执行 candump 命令之后,发送端再执行 cansend 命令

■ 关闭 can0 接口:

[root@100ask:~]# ip link set can0 down

■ 设置 can0 传输速率为 50Kbits/sec:

[root@100ask:~]# ip link set can0 type can bitrate 50000

■ 打印 can0 的信息:

[root@100ask:~]# ip -details link show can0

■ 打开 can0 接口:

[root@100ask:~]# ip link set can0 up

■ 打印 can0 的接收到的数据:

[root@100ask:~]# candump can0

# 第14章 蓝牙测试

注意: 为了保证 wifi 模块使用信号强度和传输速率,请使用 wifi 模块前先插入配套的 wifi 天线。

注意:此章节测试只是验证蓝牙功能可用,并未有相关的应用示例。如需获取 更多蓝牙相关的资料请参考 wiki 页面:

http://wiki.100ask.org/category:Bluetooth

① 查看是否有蓝牙设备:

如下所示在开发板上执行 hciconfig -a 命令来查看都有哪些蓝牙设备,如果蓝牙设备的 "BD Address" 全为 0 则表示并未正常加载蓝牙设备驱动。

```
[root@100ask:~]# hciconfig -a
log:
hci@: Type: Brimany Rus: IM
```

```
hci0: Type: Primary Bus: UART
BD Address: B0:02:47:38:57:6F ACL MTU: 1021:7 SCO MTU: 64:1

DOWN

RX bytes:2162 acl:0 sco:0 events:205 errors:0

TX bytes:39610 acl:0 sco:0 commands:205 errors:0

Features: 0xbf 0xfe 0xcf 0xfe 0xdb 0xff 0x7b 0x87

Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

Link policy: RSWITCH SNIFF

Link mode: SLAVE ACCEPT
```

② 启动蓝牙设备,并扫描周边蓝牙设备:

```
[root@100ask:~]# hciconfig hci0 up
[root@100ask:~]# hcitool scan
```

扫描的结果:

# 第15章 Key(按键)测试

此节演示通过 hexdump 命令以及 dmesg 命令来查看按键是否有反应。 执行下面命令之后,操作按键,如果一切正常会有打印信息:

```
[root@100ask:~]# hexdump /dev/input/event0
按下按键的 log:
0000000 d39a 5f37 70f2 0000 0001 001e 0001 0000
0000010 d39a 5f37 70f2 0000 0000 0000 0000 0000
0000020 d39a 5f37 b963 0000 0001 001e 0000 0000
0000030 d39a 5f37 b963 0000 0000 0000 0000
退出测试按 CTRL+C。
```

# 第16章 查看 CPU 温度

查看 CPU 温度,可以使用以下命令,这里表示当前 CPU 温度是 52°C。可以用手触摸 CPU 芯片几秒钟后离开,再 cat 查看,可以看到温度短暂下降后又上升。

在开发板终端下执行

```
[root@100ask:~]# cat /sys/class/hwmon/hwmon0/temp1_input
会得到一个数值 log:
```

#### 58661

隔几秒钟后再次执行得到一个新的温度数值 log:

58892