语言和文法

短语结构文法

- 基本定义: 一个字母表 Σ 是一个非空有限的集合,这个集合中的元素称为符号. 由 Σ 中的符号组成的有限长度的字符串称为 Σ 上的词. 不包含任何符号的字符串称为空串,记为 λ . Σ 上所有词的集合记为 Σ^* , Σ^* 的任何子集称为 Σ 上的一个语言.
- 短语结构文法的定义: 一个短语结构文法是一个四元组 $G=(\Sigma,T,S,P)$ 其中 Σ 是一个字母表, $T\subset\Sigma$ 是所有的终止符集, $S\in\Sigma$ 是起始符, P 是产生式集合,集合 $\Sigma-T$ 即为 N ,N 中的元素成为非终止符,P 中的每个产生的左端必须至少包含一个非终止符。 Note: 字母表中包含终止符和非终止符,自然包含起始符。**起始符只有一个**。
- 派生的定义: Σ 上的两个字符串 $\omega_0=lz_0r$ 和 $\omega_1=lz_1r$,若存在产生式 $z_0\to z_1$,则称 ω_0 可直接派生 ω_1 ,记作 $\omega_0\Rightarrow\omega_1$,若由一系列产生式可将 ω_0 转化为 ω_1 ,则称 ω_0 可派生 ω_1 ,记作 $\omega_0\overset{*}{\Longrightarrow}\omega_1$ 。由 ω_0 转化成 ω_1 过程中的每一步直接派生得到的序列称为派生。

短语结构文法的类型

根据产生式的类型可以将短语结构文法分类:

- 0型文法: 产生式没有限制
- 1型文法: 只有两种类型的产生式: $\omega_0=lAr\to\omega_1=lar$,其中 l 和 r 是由 0个或者多个 终结符或者非终结符构成的串,a 是终结符或非终结符构成的 非空串。或者 $S\to\lambda$,但是 S 不能出现在任何其他产生式的右边。
- 2型文法: 只有形如 $\omega_0 \to \omega_1$ 的产生式,其中 ω_0 是一个单个的非终结符的符号。
- 3型文法: 只有形如 $\omega_0 \to \omega_1$ 的产生式,同时满足 $\omega_0 = A$ 且 $\omega_1 = aB$ 或者 $\omega_1 = a$,其中 A 和 B 是非终结符,a 是终结符,或者满足 $\omega_0 = S, \ \omega_1 = \lambda$

1型文法称为上下文有关文法,2型文法称为上下文无关文法,3型文法称为正则文法。上下文有关文法是非缔约的(单调的,非收缩的)。 Note: 非缔约是指字符串在派生过程中只能不断变长,而不能缩短。

派生树

适用于上下文无关语法生成的语言。用数的根节点表示起始符,内部节点表示派生过程中产生的非终止符,叶节点表示终止符。一个非终止符对应的产生式右端有多少符号,这个节点就有多少子节点。

巴科斯-诺尔范式

用来表示2型文法的另外一种方式,将左端都是同一个非终结符的产生式合并为一个式子,如产生式 $A \to Aa,\ A \to a,\ A \to AB$ 可以合并为 $\langle A \rangle ::= \langle A \rangle a | a | \langle A \rangle \langle B \rangle$