Optics Formula Sheet

September 21, 2025

Sign Convention (Cartesian)

- Light travels from left to right.
- Object distance (u): Negative (-)
- Image distance (v): Positive for real image, Negative for virtual image.
- Focal length (f): Positive for converging lens/surface, Neg- Where: $k = \frac{2\pi}{\lambda}, \ \omega = 2\pi\nu, \ v = \nu\lambda$. ative for diverging.
- Heights: Positive above the principal axis.

Geometrical Optics

Spherical Refracting Surface

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$

Lens Maker's Formula (Thin Lens)

$$\frac{1}{f} = (n_{\text{lens}} - n_{\text{med}}) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

Magnification

$$m = \frac{h_i}{h_0} = \frac{v}{u}$$

Newton's Lens Equation

$$x_o \cdot x_i = f^2$$

Wave Optics

Wave Equation & Solutions

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

Traveling Harmonic Wave Solutions:

$$\psi = A \sin(k(x \mp vt))$$

$$\psi = A \sin(2\pi(kx \mp vt))$$

$$\psi = A \sin(kx \mp \omega t)$$

• Radius of Curvature (R): Positive if center is to the right of Phase & Group Velocity

$$v_p = \frac{\omega}{k}$$

$$v_g = \frac{d\omega}{dk} = \frac{\omega_1 - \omega_2}{k_1 - k_2}$$

In a dispersive medium $(n(\omega))$:

$$k(\omega) = \frac{\omega}{c} n(\omega)$$

$$v_g = \frac{c}{n(\omega) + \omega \frac{dn}{d\omega}}$$

Polarization

Jones Vectors & Matrices

(Linear
$$x$$
) $\begin{bmatrix} 1\\0 \end{bmatrix}$
(Linear y) $\begin{bmatrix} 0\\1 \end{bmatrix}$
(Linear 45°) $\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}$
(RCP) $\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-i\\i \end{bmatrix}$

Jones Matrices

(Linear polarizer
$$|| x \rangle$$
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $(\lambda/4 \text{ plate, fast } || x \rangle$ $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ (Linear polarizer at 45°) $\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Malus's Law

$$I = I_0 \cos^2 \theta$$

Waveplates

Phase Retardation $(\Delta \phi)$:

$$\Delta \phi = \frac{2\pi}{\lambda} d|n_e - n_o|$$

Maxwell's **Equations** & \mathbf{EM} Waves

In a linear, isotropic, homogeneous medium ($\rho = 0, \vec{J} = 0$):

$$\nabla \cdot \vec{D} = 0$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

With $\vec{D} = \epsilon \vec{E}$, $\vec{B} = \mu \vec{H}$.

Wave Solution

$$\begin{split} \vec{E} &= \vec{E_0} e^{i(\vec{k} \cdot \vec{r} - \omega t)}, \quad \vec{B} &= \vec{B_0} e^{i(\vec{k} \cdot \vec{r} - \omega t)} \\ k &= \frac{\omega}{v} = \frac{n\omega}{c}, \quad n = \sqrt{\frac{\epsilon \mu}{\epsilon_0 \mu_0}} \\ \vec{S} &= \vec{E} \times \vec{H} \quad \text{(Poynting Vector)} \end{split}$$

Reflection & Refraction

Snell's Law

$$n_1 \sin \theta_i = n_2 \sin \theta_t$$

Fresnel's Equations

Parallel Polarization (p):

$$\begin{split} r_p &= \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} = \frac{\tan(\theta_i - \theta_t)}{\tan(\theta_i + \theta_t)} \\ t_p &= \frac{2n_1 \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_t} \end{split}$$

Perpendicular Polarization (s):

$$\begin{split} r_s &= \frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \\ t_s &= \frac{2n_1 \cos \theta_i}{n_1 \cos \theta_i + n_2 \cos \theta_t} \end{split}$$

Reflectance & Transmittance

$$R = |r|^{2}$$

$$T = \frac{n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}} |t|^{2}$$

Brewster's Angle (No r_p)

$$\theta_B = \tan^{-1} \left(\frac{n_2}{n_1} \right)$$

Total Internal Reflection (TIR)

Critical Angle:

$$\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)$$

Evanescent Wave decay constant $(\theta_i > \theta_c)$:

$$\alpha = \frac{2\pi}{\lambda} n_2 \sqrt{\sin^2 \theta_i - \sin^2 \theta_c}$$

Waveguides

V-Number

$$V = \frac{2\pi a}{\lambda} \sqrt{n_1^2 - n_2^2}$$

Single-mode operation: V < 2.405.

Propagation Constant

$$b = \frac{\beta^2 - k_0^2 n_2^2}{k_0^2 (n_1^2 - n_2^2)}$$

A mode is guided if 0 < b < 1. Cut-off occurs at b = 0.