CB N°9 - SURFACES -

Exercice 1

Déterminer une équation cartésienne du cylindre ayant pour directrice la courbe Γ définie par

$$\Gamma: \left\{ \begin{array}{l} 2x^2 - y^2 + z^2 = 0 \\ 2x + 3y - z = 0 \end{array} \right. \text{ et dont les génératrices sont dirigées par } \vec{u} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Exercice 2

Déterminer une équation cartésienne de la surface de révolution obtenue par la rotation de la courbe

$$C$$
 définie par C :
$$\begin{cases} x(t) = \cos^2(t) \\ y(t) = \sin^2(t) \end{cases}$$
, autour de l'axe Δ défini par Δ :
$$\begin{cases} x = y \\ y = z \end{cases}$$

Exercice 3

On considère la surface Σ d'équation cartésienne

$$x^3 - 3x^2y + 2xy + z - 1 = 0$$

- 1. Montrer que Σ est une surface réglée.
- 2. Justifier que le point A de coordonnées (1,1,1) est un point régulier de Σ , et déterminer une équation cartésienne du plan tangent à Σ en A.

Spé PT B CB9 - 2018-2019