Kuliah 6 Dasar Multimedia

Indrabayu
Lab. Multimedia Signal
Processing and Wireless

Last week

- Crucial → size of sampling and quantization
- How about transfer huge size of data?
- Trade off between desired fidelity and file size
- Bandwidth Considerations for Web and other media.

Cont last week, Streaming Audio

- Buffered Data:
 - Trick get data to destination before it's needed
 - Temporarily store in memory (Buffer)
 - Server keeps feeding the buffer
 - Client Application reads buffer
- Needs Reliable Connection, moderately fast too.
- Specialised client, Steaming Audio Protocol (PNM for real audio).

This week Synthetic Sounds

- To cope the size problem
 - Compression
 - Sound → synthetic
- Synthezise sounds hardware or software
- Client produces sound only send parameters to control sound (MIDI)

synthesis techniques

Example

- FM (Frequency Modulation) Synthesis used in low-end Sound Blastercards, OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980's.
- Wavetable synthesis wavetable generated from sound waves of real instruments
- Additive synthesis make up signal from smaller simpler waveforms
- Subtractive synthesis modify a (complex) waveform but taking out elements
- Physical Modelling model how acoustic sound in generated in software
- Modern Synthesisers use a mixture of sample and synthesis.

MIDI

- What is MIDI?
- No Longer Exclusively the Domain of Musicians.
- Midi provides a very low bandwidth alternative on the Web:
 - transmit musical and
 - certain sound effects data
- also now used as a compression control language (modified)
 - MPEG-4

MIDI on the Web

- Very Low Bandwidth (few 100K bytes)
- The responsibility of producing sound is moved to the client:
 - Synthesiser Module
 - Soundcard
 - Software Generated
- Most Web browsers can deal with MIDI.

Definition of MIDI:

• A protocol that enables computer, synthesizers, keyboards, and other musical device to communicate with each other.

Components of a MIDI System

Synthesizer:

- It is a sound generator (various pitch, loudness, tone colour/timbre).
- A good (musician's) synthesizer often has a microprocessor, keyboard, control panels, memory, etc.

• Sequencer:

- It can be a stand-alone unit or a software program for a personal computer. (It used to be a storage server for MIDI data.
- Nowadays it is more a software music editor on the computer

Basic MIDI Concepts

Track:

- Track in sequencer is used to organize the recordings.
- Tracks can be turned on or off on recording or playing back.

Channel

- MIDI channels are used to separate information in a MIDI system.
- There are 16 MIDI channels in one cable.
- Usually a channel is associated with a particular instrument: e.g.,channel 1 is the piano, channel 10 is the drums, etc.
- Channel numbers are coded into each MIDI message.

• Timbre:

- The quality of the sound, e.g., flute sound, cello sound, etc.
- Multitimbral capable of playing many different sounds at the same time (e.g., piano, brass, drums, etc.)

Basic MIDI Concepts (Cont.)

Pitch

The Musical note that the instrument plays

Voice:

- Voice is the portion of the synthesizer that produces sound.
- Synthesizers can have many (12, 20, 24, 36, etc.)
 voices.
- Each voice works independently and simultaneously to produce sounds of different timbre and pitch.

Patch:

The control settings that define a particular timbre.

Hardware Aspects of MIDI

MIDI connectors:

- Three 5-pin ports found on the back of every MIDI unit
 - MIDI IN: the connector via which the device receives all MIDI data.
 - MIDI OUT: the connector through which the device transmits all the MIDI data it generates itself.
 - MIDI THROUGH: the connector by which the device echoes the data receives from MIDI IN.

Hardware cont

- The MIDI hardware setup consists of a 31.25 kbps serial connection.
- Usually, MIDI-capable units are either Input devices or Output devices, not both.

MIDI Messages

- MIDI messages are used by MIDI devices to communicate with each other.
- MIDI messages are very low bandwidth
- Note On Command
 - Which Key is pressed
 - Which MIDI Channel (what sound to play)
 - 3 Hexadecimal Numbers
- Note Off Command Similar
- Other command (program change) configure sounds to be played.

Classification of MIDI messages

```
--- channel messages ---|
--- mode messages

MIDI messages ---|
--- common messages
---- system messages ---|-- real-time messages
--- exclusive messages
```

Channel Message

- A. Channel messages: can have up to 3 bytes:
 - The first byte is the status byte (the opcode, as it were); has its most significant bit set to 1.
 - The 4 low-order bits identify which channel this message belongs to (for 16 possible channels).
 - The 3 remaining bits hold the message. For a data byte, the most significant bit is set to 0.

Voice messages:

- This type of channel message controls a voice, i.e., sends information specifying which note to play or to turn off, and encodes key pressure.
- Voice messages are also used to specify controller effects such as sustain, vibrato, tremolo, and the pitch wheel. Look at table.

Table voice message

Voice Message	Status Byte	Data Byte1	Data Byte2
Note Off	&H8n	Key number	Note Off velocity
Note On	&H9n	Key number	Note On velocity
Poly. Key Pressure	&HAn	Key number	Amount
Control Change	&HBn	Controller num.	Controller value
Program Change	&HCn	Program number	None
Channel Pressure	&HDn	Pressure value	None
Pitch Bend	&HEn	MSB	LSB

(** &H indicates hexadecimal, and 'n' in the status byte hex value stands for a channel number. All values are in 0..127 except Controller number, which is in 0..120)

Definition

- Midi Channel messages:
 - messages that are transmitted on individual channels rather that globally to all devices in the MIDI network.
- Channel voice messages
 - Instruct the receiving instrument to assign particular sounds to its voice
 - Turn notes on and off
 - Alter the sound of the currently active note or notes

Midi Channel Control Messages

 Notes: 'x' in status byte hex value stands for a channel number.

Voice Message	Status Byte	Data Byte1	Data Byte2
Note off Note on	8 x 9 x	Key number Key number	Note Off velocity Note on velocity
Polyphonic Key Pressure	Ax	Key number	Amount of pressure
Control Change	Bx	Controller number	Controller value
Program Change	Cx	Program number	None
Channel Pressure	Dx	Pressure value	None
Pitch Bend	Ex	MSB	LSB

Midi Command Example

- A Note On message is followed by two bytes, one to identify the note, and on to specify the velocity.
- To play:
 - Note number 80 (HEX 50)
 - With maximum velocity (127 (Hex 7F)
 - On channel 13 (Hex C),
- The MIDI device would send these three hexadecimal byte values: 9C 50 7F

Midi Channel mode messages:

- Channel mode messages are a special case of the Control Change message (Bx (Hex) or 1011nnnn (Binary)).
- The difference between a Control message and a Channel Mode message, is in the first data byte.
 - Data byte values 121 through 127 have been reserved in the Control Change message for the channel mode messages.
 - Channel mode messages determine how an instrument will process MIDI voice messages.

System Messages

- System messages carry information that are not channel specific, Examples:
 - Timing signal for synchronization,
 - Positioning information in pre-recorded MIDI sequences, and
 - Detailed setup information for the destination device
 - Setting up sounds, Patch Names etc.

Midi System Real-time Messages

 These messages are related to synchronization/timing etc.

System Real-Time Message	Status Byte
Timing Clock	F8
Start Sequence	FA
Continue Sequence	FB
Stop Sequence	FC
Active Sensing	FE
System Reset	FF

System common messages

These contain the following (unrelated) messages

System Common Message	Status Byte	Number of Data Bytes
MIDI Timing Code	F1	1
Song Position Pointer	F2	2
Song Select	F3	1
Tune Request	F6	None

General MIDI (GM)

- Problem: Midi Music may not sound the same everywhere?
- Basic GM Idea:
 - MIDI + Instrument Patch Map + Percussion Key Map
 a piece of MIDI music sounds (more or less) the same any-where it is played
 - Instrument patch map is a standardised list consisting of 128 instruments (patches).
 - Same instrument type sounds if not identical sound
 - Percussion map specifies 47 percussion sounds. Same Drum type sounds on keyboard map
 - Key-based percussion is always transmitted on MIDI channel 10 (Default)
 - Can be transmitted on other channels as well

Requirements for General MIDI Compatibility

- Supportall 16channels—Defaultstandard Multitimbral MIDI Specification
- Each channel can play a different instrument/program — multitimbral
- Each channel can play many notes polyphony
- Minimum of 24 (usually much higher 64/128) fully dynamically allocated voices
 - shared across all channels

General MIDI Instrument Patch Map

Prog No.	Instrument	Prog No.	Instrument
(1-8	PIANO)	(9-16	CHROM PERCUSSION)
1	Acoustic Grand	9	Celesta
1 2 3	Bright Acoustic	10	Glockenspiel
	Electric Grand	11	Music Box
4 5	Honky-Tonk	12	Vibraphone
5	Electric Piano 1	13	Marimba
6	Electric Piano 2	14	Xylophone
7	Harpsichord	15	Tubular Bells
8	Clav	16	Dulcimer
(17-2	4 ORGAN)	(25-32 GUITAR)
17	Drawbar Organ	25	Acoustic Guitar (nylon)
18	Percussive Organ	26	Acoustic Guitar(steel)
19	Rock Organ	27	Electric Guitar (jazz)
20	Church Organ	28	Electric Guitar(clean)
21	Reed Organ	29	Electric Guitar (muted)
22	Accoridan	30	Overdriven Guitar
23	Harmonica	31	Distortion Guitar
24	Tango Accordian	32	Guitar Harmonics
(33-4	0 BASS)	(41-48 STRINGS)
33	Acoustic Bass	41	Violin
34	Electric Bass(finger)	42	Viola
35	Electric Bass(pick)	43	Cello
36	Fretless Bass	44	Contrabass
37	Slap Bass 1	45	Tremolo Strings
38	Slap Bass 2	46	Pizzicato Strings
39	Synth Bass 1	47	Orchestral Strings
40	Synth Bass 2	48	Timpani

_	MBLE)			BRASS)	
_	Ensemble 1	57	Trumpet		
-	Ensemble 2	58	Trombone		
1 SynthSt		59	Tuba		
2 SynthSt	· ·	60		Trumpet	
•	Aahs	61	French		
4 Voice		62		Section	
5 Synth V		63	SynthB		
6 (65-72 Orchest	ra Hit	64	SynthB 73-80	rass 2 PIPE)	
5 Soprano	Sax	73	Picco	10	
6 Alto Sa	x	74	Flute		
7 Tenor S	ax	75	Recorder		
8 Bariton	e Sax	76	Pan Flute		
9 Oboe		77	Blown Bottle		
0 English	Horn	78	Skakuhachi		
1 Bassoon	l.	79	Whistle		
2 Clarine	-	80	Ocarin	a	
(81-88 SYNT	MLEAD)		(89-96	SYNTH PAD)	
1 Lead 1	(square)	89	Pad1	(new age)	
2 Lead 2	(sawtooth)	90	Pad2	(warm)	
3 Lead 3	(calliope)	91	Pad3	(polysynth)	
4 Lead 4	(chiff)	92	Pad4	(choir)	
5 Lead S	(charang)	93	Pad5	(bowed)	
6 Lead 6	(voice)	94	Pad6	(metallic)	
7 Lead 7	(fifths)	95	Pad7	(halo)	
8 Lead 8	(bass+lead)	96	Pad8	(sweep)	

General MIDI Percussion Key Map

IDI	Key Drum Sound		MIDI	Key	Drum Sound
35	Acoustic Bass	Drum	59		Ride Cymbal 2
36	Bass Drum 1		60		Hi Bongo
37	Side Stick		61		Low Bongo
38	Acoustic Snare		62		Mute Hi Conga
39	Hand Clap		63		Open Hi Conga
40	Electric Snare		64		Low Conga
41	Low Floor Tom		65		High Timbale
42	Closed Hi-Hat		66		Low Timbale
43	High Floor Tom		67		High Agogo
44	Pedal Hi-Hat		68		Low Agogo
45	Low Tom		69		Cabasa
46	Open Hi-Hat		70		Maracas
47	Low-Mid Tom		71		Short Whistle
48	Hi-Mid Tom		72		Long Whistle
49	Crash Cymbal 1		73		Short Guiro
50	High Tom		74		Long Guiro
51	Ride Cymbal 1		75		Claves
52	Chinese Cymbal		76		Hi Wood Block
53	Ride Bell		77		Low Wood Bloc
54	Tambourine		78		Mute Cuica
55	Splash Cymbal		79		Open Cuica
56	Cowbell		80		Mute Triangle
57	Crash Cymbal 2		81		Open Triangle
58	Vibraslap				_

Digital Audio and MIDI

- Modern Recording Studio Hard Disk Recording and MIDI
 - Analog Sounds (Live Vocals, Guitar, Sax etc) DISK
 - Keyboards, Drums, Samples, Loops Effects MIDI
- Sound Generators: use a mix of
 - Synthesis
 - Samples
- Samplers Digitise (Sample) Sound then
 - Playback
 - Loop (beats)
 - Simulate Musical Instruments

End of lectures