UberNet

Kamil Bladoszewski

UberNet: Training a 'Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory

Plan of presentation

- 1. Introduction
- 2. Tasks
- 3. Architecture
- 4. Multi-Task Training
- 5. Low memory usage
- 6. Results
- 7. Bibliography

Introduction

Abstract

In this work we introduce a convolutional neural network (CNN) that jointly handles low-, mid-, and high-level vision tasks in a unified architecture that is trained end-to-end. Such a universal network can act like a 'swiss knife' for vision tasks; we call this architecture an UberNet to indicate its overarching nature.

Source: https://assets.victorinox.com/mediahub/33849/560Wx490H/SAK 1 6795 S2.jpg

Tasks

Boundary Detection

Source: Pascal in Detail Dataset - https://sites.google.com/view/pasd

Normal Estimation

Saliency Estimation

Semantic Segmentation

Human Part Segmentation

Semantic Boundary Detection

Source: https://chrisding.github.io/projects.htm CASENet: Deep Category-Aware Semantic Edge Detection (MERL)

Region Proposal Generation and Object Detection

Architecture

VGG-16

Atrous/Dilated Convolutions

Architecture

- Skip layers
- Skip-layer normalization
- Cumulative task-specific operations
- Fusion layers
- Atrous convolution
- Multi-resolution CNN
- Task-specific deviations

Multi-Task Training

Objective: minimize the loss

$$\mathcal{L}(\mathbf{w}_{0,t_1,...,t_T}) = \mathcal{R}(\mathbf{w}_0) + \sum_{t=1}^{T} \gamma_{t_k} \left(\mathcal{R}(\mathbf{w}_t) + L_t \left(\mathbf{w}_0, \mathbf{w}_t \right) \right)$$

$$L_t(\mathbf{w}_0, \mathbf{w}_t) = \frac{1}{N} \sum_{i=1}^{N} \delta_{t,i} L_t(\mathbf{f}_t^i(\mathbf{w}_0, \mathbf{w}_t), \mathbf{y}_t^i)$$

There isn't a dataset,

Many task = many different type annotations

Problem: Diverse datasets

which contains annotations for all the problems

Divers datasets

	Imagenet [88]	VOC'07 [26]	VOC'10 [26]	VOC'12 [26]	MS-COCO [62]	NYU [74]	MSRA10K [18]	BSD [69]
Detection	Partial	Yes	Yes	Yes	Yes	No	No	No
Semantic Segmentation	No	Partial	[36, 71]	Partial	Yes	Yes*	No	No
Instance Segmentation	No	Partial	[36, 71]	Partial	Yes	No	No	No
Human parts	No	No	[17]	No	No	No	No	No
Human landmarks	No	No	[10]	No	Yes	No	No	No
Surface Normals	No	No	No	No	No	Yes	No	No
Saliency	No	No	No	No	No	No	Yes	No
Boundaries	No	No	[71]	No	No	No	No	Yes
Symmetry	No	No	No	No	Partial, [91]	No	No	[97]

Divers datasets

	VOC'07	VOC'12	VOC'12	NYU	MSRA10K	BSD
	trainval	train	val			
	5011	5717	5823	23024	10000	5100
Detection	5011	5717	5823	0	0	0
S. Segmentation	422	4998	5105	0	0	0
S. Boundaries	0	4998	5105	0	0	0
Human Parts	0	1716	1817	0	0	0
Normals	0	0	0	23024	0	0
Saliency	0	0	0	0	10000	0
Boundaries	0	4998	5105	0	0	5100

PASCAL in Detail

	10100
Semantic Segmentation	10100
Human Parts	3548
Occlusion	10094
Boundaries	10100

There isn't a dataset, which contains annotations for all the problems

Many task = many different annotation types

Problem: Diverse datasets

Synchronous SGD

```
for m=1 to M do
     {construct minibatch}
     \mathcal{B} \leftarrow \{i_1, \dots, i_B\} with i_i \sim U[1, N]
      {initialize gradient accumulators}
     \mathbf{d}\mathbf{w}_0 \leftarrow 0, \mathbf{d}\mathbf{w}_1 \leftarrow 0, \dots, \mathbf{d}\mathbf{w}_T \leftarrow 0
     for i \in \mathcal{B} do
           {cnn gradients}
          \mathbf{dw}_0 \leftarrow \mathbf{dw}_0 + \sum_t \delta_{t,i} \gamma_t \nabla_{\mathbf{w}_0} L_t \left( \mathbf{f}_t^i(\mathbf{w}_0, \mathbf{w}_t), \mathbf{y}_t^i \right)
           {Task gradients, t = 1, ..., T}
          \mathbf{dw}_t \leftarrow \mathbf{dw}_t + \delta_{t,i} \gamma_t \nabla_{\mathbf{w}_0} L_t \left( \mathbf{f}_t^i(\mathbf{w}_0, \mathbf{w}_t), \mathbf{y}_t^i \right)
     end for
     for p \in \{0, 1, ..., T\} do
          \mathbf{w}_{n} \leftarrow \mathbf{w}_{n} - \epsilon \left( \lambda \mathbf{w}_{n} + \frac{1}{R} \mathbf{d} \mathbf{w}_{n} \right)
     end for
end for
```

Asynchronous SGD

```
{initialize gradient accumulators}
\mathbf{d}\mathbf{w}_0 \leftarrow 0, \mathbf{d}\mathbf{w}_1 \leftarrow 0, \dots, \mathbf{d}\mathbf{w}_T \leftarrow 0
{initialize counters}
\mathbf{c}_0 \leftarrow 0, \mathbf{c}_1 \leftarrow 0, \dots, \mathbf{c}_T \leftarrow 0
for m=1 to M \cdot B do
    Sample i \sim U[1, N]
     {cnn gradients & counter: always updated}
    \mathbf{c}_0 \leftarrow \mathbf{c}_0 + 1
    \mathbf{dw}_0 \leftarrow \mathbf{dw}_0 + \sum_t \delta_{t,i} \gamma_t \nabla_{\mathbf{w}_0} L_t \left( \mathbf{f}_t^i(\mathbf{w}_0, \mathbf{w}_t), \mathbf{y}_t^i \right)
    for t \in \{1, ..., T\} do
         if \delta_{t,i} = 1 then
               {update accumulator and counter for task t if the
              current sample is relevant
              \mathbf{c}_t \leftarrow \mathbf{c}_t + 1
              \mathbf{dw}_t \leftarrow \mathbf{dw}_t + \gamma_t \nabla_{\mathbf{w}_t} L_t \left( \mathbf{f}_t^i(\mathbf{w}_0, \mathbf{w}_t), \mathbf{y}_t^i \right)
         end if
```

```
\begin{aligned} &\textbf{for } p \in \{0,1,\ldots,T\} \textbf{ do} \\ &\textbf{ if } \mathbf{c}_p = B_p \textbf{ then} \\ & \{ \text{update parameters if we have seen enough} \} \\ &\mathbf{w}_p \leftarrow \mathbf{w}_p - \epsilon \left( \lambda \mathbf{w}_p + \frac{1}{B_p} \mathbf{dw}_p \right) \\ &\mathbf{c}_p \leftarrow 0, \mathbf{dw}_p \leftarrow 0 \\ &\textbf{ end if} \\ &\textbf{end for} \end{aligned}
```

Low memory usage

Results

Bibliography

- UberNet: Training a 'Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory https://arxiv.org/abs/1609.02132
- Very Deep Convolutional Networks for Large-Scale Image Recognition https://arxiv.org/abs/1409.1556
- CVPR'17 PASCAL in Detail Challenge https://sites.google.com/view/pasd
- Wikipedia:
 - Saliency map https://en.wikipedia.org/wiki/Normal_(geometry)
 - Normal (geometry) <u>https://en.wikipedia.org/wiki/Saliency_map</u>
- An Introduction to different Types of Convolutions in Deep Learning
 https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

Thank you!