Отчет по лабораторной работе №1

Операционные системы

Самарханова Полина Тимуровна, НКАбд-05-23 29 февраля 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задания

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка ПО для создания документации
- 5. Дополнительные задания

Выполнение лабораторной работы

Нужно отключить систему безопасности Selinux. Для этого я открыла консоль и прописала следующие команды: sudo -s -она нужна для того, чтобы получить права супер-пользователя затем я перемещаюсь в директорию /etc/selinux и открываю mc

В открывшемся окне нахожу и открываю файл config

В этом файле нахожу строчку SELINUX=enforcing

```
\oplus
                            mc [root@fedora]:/etc/selinux
                                                                   a
                                                                               ×
config
                          8 L: [ 9+13 22/30] *(919 /1187b) 0101 0x065 [*][X]
 NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
 fully disable SELinux during boot. If you need a system with SELinux
 fully disabled instead of SELinux running with no policy loaded, you
 need to pass selinux=0 to the kernel command line. You can use grubby
 to persistently set the bootloader to boot with selinux=0:
    grubby --update-kernel ALL --args selinux=0
 To revert back to SELinux enabled:
    grubby --update-kernel ALL --remove-args selinux
SELINUX=enforcing
 SELINUXTYPE= can take one of these three values:
     targeted - Targeted processes are protected,
     minimum - Modification of targeted policy. Only selected processes are pro
     mls - Multi Level Security protection.
```

Далее меняю параметр enforcing на permissive и закрываю окно с сохранением

```
\oplus
                           mc [root@fedora]:/etc/selinux
                                                                   a
                                                                              ×
                   [-M--] 18 L:[ 9+13 22/ 30] *(929 /1188b) 0010 0x00A [*][X]
config
 NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
 fully disable SELinux during boot. If you need a system with SELinux
 fully disabled instead of SELinux running with no policy loaded, you
 need to pass selinux=0 to the kernel command line. You can use grubby
 to persistently set the bootloader to boot with selinux=0:
    grubby --update-kernel ALL --args selinux=0
 To revert back to SELinux enabled:
    grubby --update-kernel ALL --remove-args selinux
 SELINUXTYPE= can take one of these three values:
     targeted - Targeted processes are protected,
     minimum - Modification of targeted policy. Only selected processes are pro
     mls - Multi Level Security protection.
```

После этого перезагружаю систему с помощью команды reboot

```
[root@fedora selinux]# reboot
```

Установка ПО для создания документации

Все необходимое ПО (Pandoc, Pandoc-crossref, TexLive) было установлено еще при прохождении раздела "Архитектура компьютера"

С помощью команды dmesg | grep -i "Linux version" ищу версию ядра Linux

```
[root@fedora selinux]# dmesg | grep -i "Linux version"
[     0.000000] Linux version 6.5.6-200.fc38.x86_64 (mockbuild@39479204bd704ee0ab
e1946d2acfd6e6) (gcc (GCC) 13.2.1 20230728 (Red Hat 13.2.1-1), GNU ld version 2.
39-9.fc38) #1 SMP PREEMPT_DYNAMIC Fri Oct 6 19:02:35 UTC 2023
[root@fedora selinux]#
```

Аналогично ищу частоту процессора, используя команду dmesg | grep -i "processor"

```
[root@fedora selinux]# dmesg | grep -i "processor"
[     0.000012] tsc: Detected 2111.996 MHz processor
[     0.299991] smpboot: Total of 4 processors activated (16895.96 BogoMIPS)
[     0.310989] ACPI: Added _OSI(Processor Device)
[     0.310991] ACPI: Added _OSI(Processor Aggregator Device)
```

Далее нахожу название модели процессора

```
[root@fedora selinux]# dmesg | grep -i "CPU0"
[ 0.293572] smpboot: CPU0: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz (family:
0x6, model: 0x8e, stepping: 0xc)
```

Потом нужно было найти объем доступной оперативной памяти, работаю аналогично

```
[root@fedora selinux]# dmesg | grep -i "memory"
     0.002943] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
     0.002945] ACPI: Reserving DSDT table memory at [mem 0xdfff0480-0xdfff27a4]
     0.002946] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
     0.002947] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
     0.002949] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff02ab]
     0.002950] ACPI: Reserving SSDT table memory at [mem 0xdfff02b0-0xdfff047b]
     0.003558] Early memory node ranges
     0.021012] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000
0fff1
     0.021015] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009
ffff1
     0.021016] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000e
ffff]
     0.021017] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000f
```

Haxoжy тип обнаруженного гипервизора, используя команду dmesg | grep -i "hypervisor"

```
[root@fedora selinux]# dmesg | grep -i "hypervisor"

[ 0.000000] Hypervisor detected: KVM

[ 0.121860] SRBDS: Unknown: Dependent on hypervisor status

[ 0.121862] GDS: Unknown: Dependent on hypervisor status

[ 4.791086] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.

[root@fedora selinux]#
```

Тип файловой системы корневого раздела пришлось искать с помощью другой команды: df -Th | grep -i " $^/$ dev"

```
[root@fedora selinux]# df -Th | grep -i "^/dev"
dev/sda3
                btrfs
                           34G
                                        15G
                                              20G
                                                           43% /
dev/sda3
                btrfs
                        34G
                                        15G
                                             20G
                                                           43% /home
dev/sda2
                ext4
                          974M
                                       258M
                                             649M
                                                           29% /boot
[root@fedora selinux]#
```

Последовательность монтирования файловых систем можно найти с помощью команды dmesg | grep -i "mounted"

```
[root@fedora selinux]# dmesg | grep -i "mounted"
[ 9.327422] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[ 9.328586] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
[ 9.329774] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 9.333025] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
[ 11.074331] EXT4-fs (sda2): mounted filesystem 70ab2480-743b-44eb-9d43-8d58ba 43da58 r/w with ordered data mode. Quota mode: none.
[root@fedora selinux]#
```

Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а также сделала настройки минимально необходимых для дальнейшей работы сервисов

Список литературы

- 1. Dash, P. Getting Started with Oracle VM VirtualBox / P. Dash. Packt Publishing Ltd, 2013. 86 cc.
- 2. Colvin, H. VirtualBox: An Ultimate Guide Book on Virtualization with VirtualBox. VirtualBox / H. Colvin. CreateSpace Independent Publishing Platform, 2015. 70 cc.
- 3. Vugt, S. van. Red Hat RHCSA/RHCE 7 cert guide: Red Hat Enterprise Linux 7 (EX200 and EX300): Certification Guide. Red Hat RHCSA/RHCE 7 cert guide / S. van Vugt. Pearson IT Certification. 2016. 1008 cc.
- 4. Робачевский, А. Операционная система UNIX / А. Робачевский, С. Немнюгин, О. Стесик. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2010. 656 сс.
- 5. Немет, Э. Unix и Linux: руководство системного администратора. Unix и Linux / Э. Немет, Г. Снайдер, Т.Р. Хейн, Б. Уэйли. 4-е изд. Вильямс, 2014. 1312 сс.
- 6. Колисниченко, Д.Н. Самоучитель системного администратора Linux : Системный администратор / Д.Н. Колисниченко. Санкт-Петербург : БХВ-Петербург, 2011. 544 сс.
- 7. Robbins, A. Bash Pocket Reference / A. Robbins. O'Reilly Media, 2016. 156 cc.