HAND POLISHING MACHINE WITH LOAD INDICATOR

Patent number:

CN2074697U

Publication date:

1991-04-10

Inventor:

WENGUANG SONG (CN)

Applicant:

SONG WENGUANG (CN)

Classification:

- international:

B24B23/02; B24B49/16

- european:

Application number:

CN19890218775U 19891030

Priority number(s):

CN19890218775U 19891030

Report a data error here

Abstract not available for CN2074697U

Data supplied from the esp@cenet database - Worldwide

迎实用新型专利申请说明书

[21] 申请号

89218775.1

[51] Int.Cl5

B24B 23/02

(43) 公告日 1991年4月10日

224申请日 89.10.30

[71]申请人 宋文广

地址 辽宁省大连市中山区永胜街 2 号 3 门栋 2-

3号

[72]设计人 宋文广

[74]专利代理机构 大连市西岗专利事务所 代理人 高 杰

B24B 49/16

说明书页数: 4

附图页数: 4

[54]实用新型名称 带有负载指示器的手持磨光机 [57]摘要

本实用新型涉及一种手榜磨光机,是在机壳内装有定子,定子中装有转子,转子上装有电刷,转子轴通过减速装置与砂轮相联,在机壳上装有开关,其特征在于;在机壳内装有与电动机电额相联的负载检测器,在机壳上装有与负载检测器相联的负载指示器。

7

- 1、一种带有负载指示器的手持磨光机,由机壳[1]内装有定子[2],定子[2]中装有转子[3],转子[3]上装有电刷[4],转子[3]轴通过减速装置[6]与砂纶[7]相联,在机壳[1]上装有开关[5]所组成,其特征在于:在机壳[1]内装有与电动机电源相联的负载检测器[8]、在机壳[1]上装有与负载检测器[8]相联的负载指示器[9]。
- 2、根据权利要求2所述的带有负载指示器的手持磨光机,其特征在于: 所述的负载指示器 [9] 是由发光元件所构成。

带有负载指示器的手持磨光机

本实用新型涉及一种手持电动机械加工工具。

现有的手持磨光机,都是不能显示工作时的负载大小。 田于手持磨光机工作时由人手持操作,所以负载波动极大,容 易超载使用,损坏电机,又容易轻载使用,降低工效,浪费电 能。

本实用新型的目的是提供一种带有负载指示器的手持磨光机。

本实用新型的技术解决方案是:一种手持磨光机,是在机壳内装有定子,定子中装有转子,转子上装有电刷,转子轴通过减速装置与砂轮相联,在机壳上装有开关,其特征在于:在机壳内装有与电动机电源相联的负载检测器,在机壳上装有与负检测器相联的负载指示器。

所述的负载检测器是由电动机过载电流检测传感器、电动机负载进入正常工作电流区检测传感、检测驱动电路、电源、负载指示器及所属电路相联而成。当手持磨光机的电动机负载进入正常工作电流区时,电动机负载进入正常工作电流区检测传感器将发出电信号,使检测驱动电路接通,负载指示器发出光信号,如果手持磨光机的电动机过载,则电动机过载电流检测传感器将发出电信号,使检测驱动电路接通,负载指示器放出另一种光信号。操作者可根据负载指示器发出的不同光信号判断出电动机负载情况。以便调整用力,使电动机处在最佳工作状态。

所述的负载指示器由发光元件构成。

所述的电动机过载电流检测传感器和电动机负载进人正 常工作电流区检测传感器可由干簧继电器和线圈构成。 本实用新型具有保障电动机始终处于最佳负载工作区。延长电机的使用寿命。节约电能等优点。同时负载检测器和负载指示器也可用于其它手持电动工具上。

附图 1 是本实用新型的示意图: 在机壳 [1] 内装有定子 [2], 定子 [2] 内装有转子 [3], 在转子 [3] 上装有电刷 [4], 转子 [3] 轴通过减速装置 [6] 与砂轮 [7] 相联。在机壳 [1] 的手柄内装有负载检测器 [8] 通过导线分别与电源和负载指示器 [9] 联接。

附图2是本实用新型的原理图:与电动机M和开关相联的是电动机过载电流传感器【10】和电动机负载进入正常工作电流区检测传感器【11】,两个传感器分别接有检测驱动电路【12】、【13】相联的路【12】、【13】和联的是负载指示器【9】和电源【14】。当电动机负载进入正常工作电流区时,电动机负载进入正常工作区检测传感器【11】将发出一个电讯号,使检测驱动电路【13】驱动负载指示器【9】发出光讯号。当电动机过载时,电动机过载电流检测传感器也将发出电讯号,使检测驱动电路【12】驱动负载指示器【9】发出光讯号。由于两个负载指示器【9】分别发出不同的光讯号,所以操作人员可根据不同的光讯号判断出电动机所处的工作状态。

附图4是本实用新型的一个电路图,其中:由变压器T、二极管D1、电阻R1、电容C1组成了负载电流传感电路;由半导体运算放大器A1,电阻R2~R5组成了一个比较输出电路;三极管G1、发光二极管LED1、电阻R6、R7组成了一个检测驱动电路;由半导体运算放大器A2,电阻R8~R11组成了另一个比较输出电路;三极管G2、发光二极管LED2、

电阻R12、R13组成了另一个检测驱动电路;还有检测器工作 电源E为直流电源。其电路系统的工作原理是:调整电阻R2的 阻值,使负载电流超过电动机M额定电源时,电阻R1上的压 降刚好超过半导体运算放大器A1的参考电平;调整电阻R8的 阻值,使负载电流超过电动机M设定低载电流值时,电阻R1 上的压降刚好超过半导体运算放大器A2的参考电平。当磨光 机工作时,变压器T对磨光机的电动机M电流取样,经二极管 D1整流后在电阻R1上产生压降,经电容C1滤波送至半导体 运算放大器A1、A2输入端进行比较,当电动机M空载或轻载 时, 电阻R1上的压降低于半导体运算放大器A1、A2的参考 电平,半导体运算放大器A1、A2输出为低电位,此时三 级管G1、G2基极上无电流处于截止状态,故发光二极管 LED1、LED2无导通电流不发光。当电动机M的负载进入正 常工作电流区域时, 电阻R1上的压降高于半导体运算放大器 A 2的参考电平, 低于半导体运算放大器 A 1的参考电平, 这时 半导体运算放大器A2的输出迅速翻转为高电位,使三极管G2 产生基极电流而导通,集电极电流驱动发光二极管LED2导通 并发光,而这时半导体运算放大器A1的输出为低电位,三极 管G1基极上无电流处于截止状态,故发光二极管LED1无导 通电流不发光。同理当电动机M 负载过载时, 电阻R1上的压 即高于半导体运算放大器A2的参考电平,也高于半导体运算 放大器A1的参考电平,这时半导体运算放大器A1、A2的输 出翻转为高电位,使三极管G1、G2产生基极电流而导通,集 电极电流驱动发光二管LED1、LEG2导通并发光,这样人们 即可从发光二极管不亮, 亮一个和二个全亮判断出磨光机的电 动机M所处于的工作状态。

附图3是本实用新型的一个实施例,图中: 15为干簧继电

器,16为线圈

实施例:

在SIMJ--150A型角向磨光机(900W)-端串联联接两组线圈一组线圈6匝,另一组线圈8匝,两组线圈分别套入JAG干簧继电器上。JAG干簧继电器与10K的电阻和CQY11B发光二极管串联相接,并与电动机以及两组线圈并联相接,同时接入角向磨光机的电源。将两组线圈,两个干簧继电器及两个电阻安装在一块线路板上,并安装在SIMJ--150A型角向磨光机的手柄空间内,将两个CQY11B发光二极管安装在机壳前半部的上表面位置。

多

8

<u>两</u>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: