CSCE 441 Computer Graphics

scan conversion of lines

- horizontal, vertical lines are easy
- for general lines, assume 0 < slope < 1 (flat to diagonal)
 - you can transform any line to fit this
- naive algorithm would just use floating point and round off
 - floating point is sometimes slow (especially back when not every computer did it in hardware)
- slope from two points:

$$m = \frac{y_H - y_L}{x_H - x_L} a$$

- $s\frac{a}{b}a$
- intercept from two points: $b = y_L m * x_L$
- Simple Algorithm
 - start from (xL, yL) and draw to (xH, yH)* where xL < xHdef draw_line(xL, yL, xH, yH): x, y = (xL, yL) for i in range(0, xH - xL): draw_pixel(x, round(y)) x = x + 1 y = m * x + b # simplifies to y = y + m
 - problem: uses floating point math
 - problem: rounding
- Midpoint Algorithm
 - given a point, we just need to know whether we will move right or up and right on the next step (N or NE)
 - we can simplify this to whether the actual line travels above or below the point (x + 1, y + 1/2)
 - * so we derive formula from y = m * x + b
 - formula: f(x, y) = c * x + d * y + e
 - * c = yL yH
 - * d = xL xH
 - * e = b * (xL xH)
 - * f(x,y) = 0: (x,y) is on the line
 - * f(x,y) < 0: (x,y) below line
 - * f(x,y) < 0: (x,y) above line
 - don't want to recalculate formula at every step, so do it iteratively
 - * that is, use f(x+1,y+1/2) to calculate f(x+2,y+1/2) or f(x+2,y+3/2) depending on right or up-right choice last time
 - went right last time, now calculate f(x+2,y+1/2)

```
* f(x+2,y+1/2) = c + f(x+1,y+1/2)
- went up-right last time, now calculate f(x+2,y+1/2)
    * f(x+2,y+3/2) = c+d+f(x+1,y+1/2)
- starting value: f(x+1, y+1/2) = f(xL, yL) + c + (1/2)d = c + (1/2)d
    * we can eliminate f(xL, yL) because we know it is on the line
    * furthermore, we can use f(x+1,y+1/2)=2*c+d because
      multiplying by 2 does not change the sign of f. Also, this saves
      an expensive division
- full algorithm:
  def midpoint_algorithm_line(xL, yL, xH, yH):
      x = xL
      y = yL
      d = xH - xL
      c = yL - yH
      sum = 2*c + d
      draw_pixel(x,y)
      while x < xH:
           if sum < 0:
               sum += 2*d
               y += 1
           x += 1
           sum += 2*c
           draw_pixel(x,y)
- pro:
    * only integer operations
    * extends to other kinds of shapes, just need formula to tell if
      inside/outside shape (called implicit formula)
- same as Bresenham's algorithm (more common algorithm)
```

scan conversion of polygons

- to deal with overlap, we do not draw the top and right of a polygon
 - this means artifacts are possible. This doesn't really matter since pixels are very small
- rectangles (aligned with axes) are easy
- scan line: one row of pixels
- general polygons: basic idea (scanline method)
 - intersect scan lines with edges of polygon
 - this means you must keep track of which edges intersect with which scan lines
 - $\ast\,$ this is easy to do: just look at the y coordinate
 - consecutive scan lines will usually intersect with a similar set of edges
 - * so we can use coherence to speed stuff up
 - we can throw out horizontal lines. They are implicitly represented by

start and end, connecting to the other edges

- data structures
 - * edge: maxY, currentX, xIncr (increment)
 - · calculate these from the two points
 - · xIncr is inverse of slope, but you can't calculate the slope and invert it, because divide by 0
 - · maxY: y value of higher point
 - · currentX: x value of lower point
 - * active edge table
 - · has entry for every scanline on the screen
 - · initialize with edges by indexing by minY of edge
 - * active edge list
 - $\cdot\,$ stores edges that intersect with the current scan line being processed
 - · edges must always be sorted by current x value
- at each step of the algorithm, you must update the active edge list
 - * remove edges where maxY is less than or equal to the current scan line
 - · less or equal because we don't draw the top and right of the polygon
 - * add edges from the current scan line to the edge list
 - * sort all edges by currentX
- then draw the scan line
 - * take pairs of edges and fill in between their currentX values
 - · do not include the right point (because we don't draw the top and right of the polygon)
 - * if you ever have an odd number of edges in the active edge list, you made a mistake
- disadvantages
 - * does not handle long, thin polygons well
 - * incremental updates are not suitable for massively parallel GPUs
- boundary fill
 - draw the boundary of the polygon, then fill in interior
 - * fill in interior wherever it is not the same color as you are drawing
 - need to be sure filling can't escape out from an edge or corner
 - need to be able to choose arbitrary interior point to start from
- flood fill
 - starting at point, recursively replace one color with another
 - paint bucket tool

openGL data CPU to GPU

- openGL can accept data various ways, with different speed impacts
- speed depends on driver implementation

- GPUs only render triangles, and triangles usually share vertexes with other triangles, so saving lots of bandwidth is possible
- fastest is usually vertex buffer objects?
 - stores data directly on GPU?

clipping lines

- it's not really possible to draw things that are outside of the viewing area
- clipping points is easy (when comparing to rectangular window)
- clipping lines:
 - if both end points are inside window, draw it
- window intersection method:
 - if either or both is outside, intersect line with each window border in sequence
 - $(x_1, y_1), (x_2, y_2)$ intersect with vertical edge at x_{right} : $y_{intersect} = y_1 + m * (x_{right} - x_1), \text{ where } m = (y_2 - y_1)/(x_2 - x_1)$
 - $(x_1, y_1), (x_2, y_2)$ intersect with horizontal edge at y_{bottom} : $x_{intersect} = x_1 + (y_{bottom} y_1)/m$, where $m = (y_2 y_1)/(x_2 x_1)$
 - all these intersections are costly to compute
 - * we would like to efficiently handle trivial accepts and trivial rejects
- cohen-sutherland algorithm
 - classify two points p_1, p_2 using 4-bit codes c0 and c1
 - if c0 & c1 != 0: trivial reject
 - * bitwise AND
 - * both points are outside one of the boundaries
 - − if c0 | c1 == 0: trivial accept
 - * bitwise OR
 - * none of the coordinates of either point is outside any boundary => line is entirely within window
 - otherwise split line until it is a trivial case
 - bits: | top | bottom | right | left
 - * doesn't matter as long as you're consistent? TODO
 - * you can determine each of these by just comparing one coordinate with the axes
 - * thus the comparison is fast
 - disadvantages
 - * repeated clipping is expensive
 - advantages
 - * considers all possible trivial accept/reject
- laing-barsky algorithm
 - use parametric form of line for clipping
 - * means that lines are oriented (have a direction)
 - need to classify lines as moving into or out of the window

- since lines are parametric, we will be finding the parameter value of the intersection
 - * we can put that back into the formula to get the actual point
- parametric lines

```
* x(t) = x_0 + (x_1 - x_0) * t
```

*
$$y(t) = y_0 + (y_1 - y_0) * t$$

- $* 0 \le t \le 1$
- * solve 2d matrix to intersect lines:

```
[x1-x0, x2-x3][t] == [x2-x0][y1-y0, y2-y3][s] == [y2-y0]
```

- algorithm:
 - * start with t on range [0,1]
 - this is t_{min}, t_{max}
 - * iteratively intersect each line with each edge
 - · find intersection at t
 - · if line is moving in to out: $t_{max} = min(t_{max}, t)$
 - else: $t_{min} = max(t_{min}, t)$
 - · if $t_{min} > t_{max}$: reject line
- moving out vs moving in can be determined by looking at coordinates
 - * different for each boundary
 - * e.g. for right boundary, $x_1 < x_2$ is moving in
 - * does not depend on where either point is, or whether either point is inside/outside window boundary, just relative positions of the points
- disadvantages
 - * does not consider trivial accept/reject
- advantages
 - * computation of (x, y) is done only once at the end
 - * computation of parametric intersections is fast (only one division)
- note: clipping line and then rounding to integer coordinates may not produce the correct result, due to round-off error
 - can account for this by calculating sum for use in midpoint algorithm

clipping polygons

- clipping a polygon can change the number of sides it has
 - minimum number of sides is 3 (triangle)
 - maximum number of sides is 2n + 1? TODO
 - e.g. maximum number of sides of triangle after clipping is 7 sides
- when clipping convex polygons, you could end up with multiple polygons
- sutherland-hodgman clipping
 - clip polygon vs each edge of window individually
 - TODO can this algorithm handle non-rectangular windows?
 - is not guaranteed to handle convex polygons correctly

- * does not split into multiple polygons
- * but usually looks about right
- output is mixture of old/new vertexes
 - * will be exactly old vertexes if polygon was entirely inside the window
 - * will be only new vertexes if all vertexes were outside the window (but not necessarily all edges)
- process each side of the rectangular window separately
 - * and also, process each edge in polygon iteratively
- 4 cases for an edge from S to E:
 - * S and E both outside: no output
 - * S and E both inside: output only E
 - \ast S inside, E outside: compute intersection with border, and output that
 - * S outside, E inside: output intersection with border, and output E
- output of one intersection is used as input for next intersection
 - * you can kind of do these in parallel, with the partial output from the previous stage
 - · pipeline
 - * then you need a end-of-polygon marker, and you need to use that along with the first edge to make the last edge
- weiler-atherton algorithm
 - general intersection between any two kinds of polygons
 - handles non-convex polygons
 - * thus can output more than one polygon for a single input polygon
 - not as efficient as sutherland-hodgman
 - * all those intersections are expensive
 - * difficult to parallelize
 - algorithm
 - * start at point on polygon
 - * follow polygon edges counterclockwise until an edge crosses out of the window
 - * follow window edges from the intersection point until the polygon intersects again
 - * now that part is a polygon. Go back to the first intersection point and follow the polygon until it re-enters the window, and find more polygons

transformations in 2D

- coordinates
 - need point of origin (0,0) and axes (x and y)
 - we want to define transformations generally, without need for coordi-

- nates
- but hardware uses coordinates, so we must use them eventually
- dot product
 - product of magnitudes and cosine of angle between
 - * or sum of product of coordinates along each axes
 - when dot product is 0, vectors are perpendicular
- 2d cross product
 - the cross product we normally think of only makes sense in 3d
 - our 2d cross product is just a vector of same magnitude, perpendicular to original
 - unary operation
 - represented by v superscript perpendicular-sign
 - -vp = (-v.y, v.x)
 - v dot product with (v cross product) == 0
- there are two kinds of transformations
 - conformal:
 - * preserves angles
 - * translation, rotation, uniform scaling
 - affine
 - * can be represented by matrix multiplication
 - * TODO is affine transform a superset of conformal transform?
 - * translation, rotation, uniform/non-uniform scaling, shear
- translation
 - add a vector to every point
- uniform scaling
 - scale about a point (about an origin) by a scale factor
 - the point (origin) about which you scale will be unaffected by the scaling
 - the farther something is from the point (origin), the more it's position will change
- non-uniform scaling
 - same as uniform scaling, but you now have a vector that you're scaling along
 - so take the vector from transform-origin to point, find parallel to transform vector, and scale that
 - scaling along a vector is not the same as scaling along the x and y components of that vector separately
- rotation
 - -q = vector from transform-origin to p
 - new point is transform-origin + linear combination of q and q-cross determined by sin and cos of theta
- shear
 - not the same as non-uniform scaling
 - move point in direction of v, proportional to distance to o perpendicular to v
- reflection

- TODO do we need to know this?
- matrix representation
 - compact
 - allows multiple transforms to be composed to single matrix (efficient)
 - if you have 3 points and those 3 points after some transformation,
 you can solve for the transformation
 - * TODO assuming it is an affine transform?
 - * TODO do we need to know how to solve that on the exam?
- TODO how much of the transformation equations do we need to know?

fractals and iterated function systems

- affine transform fractal is defined by set of contractive transformations
- contractive transform: transform F is contractive if for any two compact sets X1, X2, the distance between them is less after transforming them
 - that is, D(F(X1), F(X2)) < D(X1, X2)
- hausdroff distance:
 - if two sets are equal, their distance is 0
 - distance of a,b is same as distance b,a
 - hausdroff distance is the maximum distance of a point in one set to the closest point in the other
- attractor: shape that fractal approaches after a large (ideally infinite) number of iterations
 - if transforms are contractive, attractor is independent of starting $\operatorname{point}(s)$
- fractal tennis:
 - algorithm to draw fractal by randomly applying transforms to the same point
 - * but need to iterate point for a few hundred iterations first to get it into the attractor
 - resulting fractal is not perfect
 - can be made better by weighting fractal transform random choice by area
 - * difficult to calculate the area of a transform (TODO do you just guess?)
- condensation set: basically a thing you add in at every iteration
 - allows shape to build on itself
- fractal dimension
 - like spatial dimension, but for fractals
 - -dim = -log(#transformations)/log(scalefactor)
- fractal curves can have infinite length but enclose finite surface area
 - and that's fine
 - fractal paint bucket would not work because paint atoms have finite

transformations in 3D

- very similar to transformations in 2d
- things that are the same:
 - dot product, translation, uniform/non-uniform scaling
- cross product
 - now is binary operator
 - produces third vector that is perpendicular to both input vectors
 - magnitude: product of magnitudes and sine of angle between
 - * mag represents area of 4-sided polygon formed by the two vectors
- rotation
 - input: axis to rotate about (specified as point and unit vector), theta to rotate
 - thus you're rotating in the plane that is perpendicular to the axis
 - component of q parallel to axis does not change, perpendicular component is rotated (in plane)
- mirror image

_

color

lighting