Generative AI for Chip Design

A Comprehensive Learning Resource Collection

■ Target Audience

This resource collection targets professionals and learners at the intersection of AI and hardware design:

- Hardware Engineers leveraging AI for Verilog generation and verification
- Researchers exploring LLM applications in Electronic Design Automation
- Students studying computer architecture, VLSI design, or AI/ML
- EDA Developers integrating LLM capabilities into design workflows
- Industry Professionals accelerating chip design with Al tools

■■ Expected Learning Time

Flexible learning paths with varying time commitments:

Component	Time	Description
Quick Overview	2-3 hrs	Browse README, intro videos
Single Tutorial	1-2 hrs	One Colab notebook
Project Deep-dive	8-12 hrs	Study one research area
Full Study	30-40 hrs	All tutorials and materials
Implementation	50+ hrs	Adapt for your projects

■ Material Description

A comprehensive educational hub for applying LLMs to chip design challenges, encompassing research, tutorials, and tools:

- Verilog Generation: AutoChip, VeriThoughts, ROME for functional hardware descriptions
- Verification: LLM-aided testbench generation and SystemVerilog assertion creation
- HLS Bridge: C2HLSC framework transforming C code to HLS-synthesizable formats
- Specialized Tools: Prefix circuits, analog netlists, security assertions
- Hands-on Learning: 13 Jupyter tutorials with real-world examples

■ Key Features

Practical Implementation: Each project includes working code, detailed tutorials, and integration examples. **Research Foundation:** All tools are backed by peer-reviewed publications and conference presentations. **Hands-on Learning:** Google Colab notebooks enable immediate experimentation without local setup. **Industry Relevance:** Tools address real challenges in modern chip design workflows and EDA processes.

 $Generated \ on \ September \ 01, \ 2025 \ | \ Repository: \ github.com/FCHXWH823/LLM4ChipDesign$