×

Machine Learning System Design

Help Center

5 questions

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Enter answer here

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which	are the two?
	We train a model that does not use regularization.
	We train a learning algorithm with a
	large number of parameters (that is able to
	learn/represent fairly complex functions).
	The features x contain sufficient
	information to predict \boldsymbol{y} accurately. (For example, one
	way to verify this is if a human expert on the domain
	can confidently predict y when given only x).
	We train a learning algorithm with a
	small number of parameters (that is thus unlikely to
	overfit).
3.	
_	se you have trained a logistic regression classifier which is outputing
	tly, you predict 1 if $h_{\theta}(x) \ge \text{threshold}$, and predict 0 if < threshold, where currently the threshold is set to 0.5.
	se you increase the threshold to 0.9. Which of the following are true? all that apply.
	The classifier is likely to now have lower precision.
	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.

Ш	The classifier is likely to now have lower recall.	
	The classifier is likely to have unchanged precision and recall, but	
	lower accuracy.	
4		
4. Suppos	se you are working on a spam classifier, where spam	
emails are positive examples ($y = 1$) and non-spam emails are		
negativ	e examples ($y = 0$). You have a training set of emails	
in whicl	n 99% of the emails are non-spam and the other 1% is	
spam. \	Which of the following statements are true? Check all	
that app	oly.	
	A good classifier should have both a	
	high precision and high recall on the cross validation	
	set.	
	If you always predict non-spam (output	
	y = 0), your classifier will have 99% accuracy on the	
	training set, and it will likely perform similarly on	
	the cross validation set.	
	If you always predict non-spam (output	
	y = 0), your classifier will have 99% accuracy on the	
	training set, but it will do much worse on the cross	
	validation set because it has overfit the training	
	data.	
	If you always predict non-spam (output	
_	y = 0), your classifier will have an accuracy of	

99%.

5. Which of the following statements are true? Check all that apply.		
	It is a good idea to spend a lot of time	
	collecting a large amount of data before building	
	your first version of a learning algorithm.	
	The "error analysis" process of manually	
	examining the examples which your algorithm got wrong	
	can help suggest what are good steps to take (e.g.,	
	developing new features) to improve your algorithm's	
	performance.	
	After training a logistic regression	
	classifier, you must use 0.5 as your threshold	
	for predicting whether an example is positive or	
	negative.	
	Using a very large training set	
	makes it unlikely for model to overfit the training	
	data.	
	If your model is underfitting the	
	training set, then obtaining more data is likely to	
	help.	

1 question unanswered
Submit Quiz

(https://accounts.coursera.org/i/zendesk/courserahelp?return_to=https://learner.coursera.help/hc)