Concepts of continuity

Tatsuji Kawai

Japan Advanced Institute of Science and Technology

21 September 2019

Brouwer's argument for the uniform continuity

In 1927, Brouwer announced the following result.

Theorem

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

Brouwer's argument for the uniform continuity

In 1927, Brouwer announced the following result.

Theorem

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

This must be one of his favourite results:

- L. E. J. Brouwer. Über Definitionsbereiche von Funktionen. Math. Ann., 97:60–75, 1927.
- L. E. J. Brouwer. Historical background, principles and methods of intuitionism. South African J. Sci., Oct.-Nov. 130–146, 1952.
- ► *L. E. J. Brouwer.* Points and species. *Can. J. Math.*, 6, 1–17, 1954.

Brouwer's argument for the uniform continuity

In 1927, Brouwer announced the following result.

Theorem

Every function $f:[0,1]\to\mathbb{R}$ is uniformly continuous.

This must be one of his favourite results:

- L. E. J. Brouwer. Über Definitionsbereiche von Funktionen. Math. Ann., 97:60–75, 1927.
- L. E. J. Brouwer. Historical background, principles and methods of intuitionism. South African J. Sci., Oct.-Nov. 130–146, 1952.
- ► *L. E. J. Brouwer.* Points and species. *Can. J. Math.*, 6, 1–17, 1954.

1. Spread representation of real numbers

2. Continuity on formal reals

3. The role of fan theorem in Brouwer's argument

Real numbers

▶ A fundamental sequence (with modulus) is a sequence $\langle r_n \rangle_{n \in \mathbb{N}}$ of rationals together with a function $\delta \colon \mathbb{N} \to \mathbb{N}$, called a modulus of $\langle r_n \rangle_{n \in \mathbb{N}}$, such that

$$\forall k, n, m \in \mathbb{N} \left(|r_{\delta(k)+n} - r_{\delta(k)+m}| \leq 2^{-k} \right).$$

The equality on fundamental sequences is defined by

$$\langle r_n \rangle_{n \in \mathbb{N}} \simeq \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall k \exists n \forall m \left(|r_{n+m} - q_{n+m}| \leq 2^{-k} \right).$$

- ► A real number is a fundamental sequence of rational numbers (with some modulus).
- ▶ Rational numbers are embedded into real numbers by $r \mapsto \langle r \rangle_{n \in \mathbb{N}}$.
- Real numbers are ordered by

$$\langle r_n \rangle_{n \in \mathbb{N}} < \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \exists k, n \in \mathbb{N} \forall m \in \mathbb{N} \left(q_{n+m} - r_{n+m} > 2^{-k} \right),$$

$$\langle r_n \rangle_{n \in \mathbb{N}} \le \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \neg \left(\langle q_n \rangle_{n \in \mathbb{N}} < \langle r_n \rangle_{n \in \mathbb{N}} \right).$$

4

Real numbers

▶ A sequence $\langle r_n \rangle_{n \in \mathbb{N}}$ of rationals is **regular** if

$$\forall n \in \mathbb{N}\left(|r_n - r_{n+1}| \le 2^{-(n+1)}\right).$$

The equality and orders on regular sequences are defined by

$$\langle r_n \rangle_{n \in \mathbb{N}} \simeq \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \forall n \in \mathbb{N} \left(|r_{n+1} - q_{n+1}| \le 2^{-n} \right),$$

$$\langle r_n \rangle_{n \in \mathbb{N}} < \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \exists n \in \mathbb{N} \left(r_{n+1} - q_{n+1} > 2^{-n} \right),$$

$$\langle r_n \rangle_{n \in \mathbb{N}} \le \langle q_n \rangle_{n \in \mathbb{N}} \stackrel{\mathsf{def}}{\Longleftrightarrow} \neg \left(\langle q_n \rangle_{n \in \mathbb{N}} < \langle r_n \rangle_{n \in \mathbb{N}} \right).$$

Real numbers

▶ A sequence $\langle r_n \rangle_{n \in \mathbb{N}}$ of rationals is **regular** if

$$\forall n \in \mathbb{N}\left(|r_n - r_{n+1}| \le 2^{-(n+1)}\right).$$

The equality and orders on regular sequences are defined by

$$\begin{split} \langle r_n \rangle_{n \in \mathbb{N}} &\simeq \langle q_n \rangle_{n \in \mathbb{N}} \iff \forall n \in \mathbb{N} \left(|r_{n+1} - q_{n+1}| \leq 2^{-n} \right), \\ \langle r_n \rangle_{n \in \mathbb{N}} &< \langle q_n \rangle_{n \in \mathbb{N}} \iff \exists n \in \mathbb{N} \left(r_{n+1} - q_{n+1} > 2^{-n} \right), \\ \langle r_n \rangle_{n \in \mathbb{N}} &\leq \langle q_n \rangle_{n \in \mathbb{N}} \iff \neg \left(\langle q_n \rangle_{n \in \mathbb{N}} < \langle r_n \rangle_{n \in \mathbb{N}} \right). \end{split}$$

Proposition

There is an order preserving bijection between the set of fundamental sequences with moduli and the set of regular sequences:

- **1.** If $\langle r_n \rangle_{n \in \mathbb{N}}$ is a fundamental sequence with modulus δ , then $\langle r_{\delta(n+1)} \rangle_{n \in \mathbb{N}}$ is a regular sequence.
- **2.** If $\langle r_n \rangle_{n \in \mathbb{N}}$ is a regular sequence, then it is a fundamental sequence with modulus $k \mapsto k + 1$.

Notations for sequences

Let X be a set.

X^*	the set of finite sequences of X
$X^{\mathbb{N}}$	the set of infinite sequences of X
X^n	the set of finite sequences of length n
	$n, i, j, k \in \mathbb{N}; a, b, c \in X^*; \alpha, \beta, \gamma \in X^{\mathbb{N}}$
a	the length of a
$\langle i_0,\ldots,i_{n-1}\rangle$	a finite sequence of length n
⟨ ⟩	the empty sequence
a*b	the concatenation of a and b
$a * \alpha$	the concatenation of \boldsymbol{a} followed by $\boldsymbol{\alpha}$
α_n (or $\alpha(n)$)	the n -th value of α
$\overline{\alpha}n$	the initial segment of α of length n
$\alpha \in a$	" a is an initial segment of $lpha$ "

Spread representation of [0,1] (Signed-digit representation)

Consider the ternary tree $\{0, 1, 2\}^*$.

Spread representation of [0,1] (Signed-digit representation)

Consider the ternary tree $\{0, 1, 2\}^*$.

Assign a natural number to each node of $\{0, 1, 2\}^*$ by

$$\begin{split} N(\langle \, \rangle) &= 1, \\ N(a * \langle i \rangle) &= 2N(a) + (i-1) \qquad \qquad (i \in \{0,1,2\}). \end{split}$$

Spread representation of [0,1] (Signed-digit representation)

Consider the ternary tree $\{0, 1, 2\}^*$.

Assign a natural number to each node of $\{0, 1, 2\}^*$ by

$$\begin{split} N(\langle \, \rangle) &= 1, \\ N(a * \langle i \rangle) &= 2N(a) + (i-1) \qquad \qquad (i \in \{0,1,2\}). \end{split}$$

Each $lpha \in \{0,1,2\}^{\mathbb{N}}$ determines a regular sequence x_{lpha} in [0,1] by

$$x_{\alpha} \stackrel{\text{def}}{=} \langle 2^{-(n+1)} N(\overline{\alpha}n) \rangle_{n \in \mathbb{N}}.$$

Write x_{α}^n for the n-th term of x_{α} , i.e. $x_{\alpha}^n \stackrel{\text{def}}{=} 2^{-(n+1)}N(\overline{\alpha}n)$.

Each $\alpha \in \{0,1,2\}^{\mathbb{N}}$ determines a regular sequence x_{α} in [0,1] by

$$x_{\alpha} \stackrel{\text{def}}{=} \langle 2^{-(n+1)} N(\overline{\alpha}n) \rangle_{n \in \mathbb{N}}.$$

Write x_{α}^{n} for the *n*-th term of x_{α} , i.e. $x_{\alpha}^{n} \stackrel{\text{def}}{=} 2^{-(n+1)}N(\overline{\alpha}n)$.

Let $\Phi \colon \{0,1,2\}^{\mathbb{N}} \to [0,1]$ denote the mapping $\alpha \mapsto x_{\alpha}$.

Lemma

- **1.** Φ is uniformly continuous.
- **2.** $\forall n \in \mathbb{N} \forall \alpha \in \{0,1,2\}^{\mathbb{N}} (|x_{\alpha} x_{\alpha}^{n}| \leq 2^{-(n+1)})$; hence

$$\forall n \in \mathbb{N} \left(V_{\overline{\alpha}n} \subseteq U(x_{\alpha}, 2^{-n+1}) \right).$$

where

$$\begin{split} V_a &\stackrel{\mathsf{def}}{=} \left\{ x_\alpha \mid \alpha \in \{0,1,2\}^{\mathbb{N}} \ \& \ \alpha \in a \right\}, \\ U(x,r) &\stackrel{\mathsf{def}}{=} \left\{ y \in [0,1] \mid |y-x| < r \right\}. \end{split}$$

To each $a \in \{0, 1, 2\}^*$, assign a closed interval with rational endpoints

$$\mathbb{I}_a \stackrel{\text{def}}{=} \left[2^{-(|a|+1)} (N(a) - 1), \ 2^{-(|a|+1)} (N(a) + 1) \right].$$

To each $a \in \{0, 1, 2\}^*$, assign a closed interval with rational endpoints

$$\mathbb{I}_a \stackrel{\mathsf{def}}{=} \left[2^{-(|a|+1)} (N(a) - 1), \ 2^{-(|a|+1)} (N(a) + 1) \right].$$

To each $a \in \{0, 1, 2\}^*$, assign a closed interval with rational endpoints

$$\mathbb{I}_a \stackrel{\mathrm{def}}{=} \left[2^{-(|a|+1)} (N(a)-1), \ 2^{-(|a|+1)} (N(a)+1) \right].$$

- ► The length of \mathbb{I}_a is $2^{-|a|}$.
- ▶ The overlapping of $\mathbb{I}_{a*\langle i\rangle}$ and $\mathbb{I}_{a*\langle i+1\rangle}$ is of length $2^{-(|a|+2)}$.

To each regular sequence $x=\langle r_n\rangle_{n\in\mathbb{N}}$ in [0,1], associate a sequence $\langle \mathbb{I}_n^x\rangle_{n\in\mathbb{N}}$ of rational intervals by

$$\mathbb{I}_n^x \stackrel{\mathsf{def}}{=} \left[\max\{r_{n+3} - 2^{-(n+3)}, 0\}, \min\{r_{n+3} + 2^{-(n+3)}, 1\} \right].$$

Define a path $\alpha_x \in \{0,1,2\}^{\mathbb{N}}$ by primitive recursion:

$$\alpha_{\scriptscriptstyle X}(0)=i \text{ for the least } i\in\{0,1,2\} \text{ such that } \mathbb{I}_0^{\scriptscriptstyle X}\sqsubseteq\mathbb{I}_{\langle i\rangle},$$

$$\alpha_{\scriptscriptstyle X}(n+1)=i \text{ for the least } i\in\{0,1,2\} \text{ such that } \mathbb{I}_{n+1}^{\scriptscriptstyle X}\sqsubseteq\mathbb{I}_{\langle\alpha_{\scriptscriptstyle X}(0),\ldots,\alpha_{\scriptscriptstyle X}(n),i\rangle}.$$

To each regular sequence $x=\langle r_n\rangle_{n\in\mathbb{N}}$ in [0,1], associate a sequence $\langle \mathbb{I}_n^x\rangle_{n\in\mathbb{N}}$ of rational intervals by

$$\mathbb{I}_n^x \stackrel{\mathsf{def}}{=} \left[\max\{r_{n+3} - 2^{-(n+3)}, 0\}, \min\{r_{n+3} + 2^{-(n+3)}, 1\} \right].$$

Define a path $\alpha_x \in \{0,1,2\}^{\mathbb{N}}$ by primitive recursion:

$$\alpha_{\scriptscriptstyle X}(0)=i \text{ for the least } i\in\{0,1,2\} \text{ such that } \mathbb{I}_0^{\scriptscriptstyle X}\sqsubseteq\mathbb{I}_{\langle i\rangle},$$

$$\alpha_{\scriptscriptstyle X}(n+1)=i \text{ for the least } i\in\{0,1,2\} \text{ such that } \mathbb{I}_{n+1}^{\scriptscriptstyle X}\sqsubseteq\mathbb{I}_{\langle\alpha_{\scriptscriptstyle X}(0),\ldots,\alpha_{\scriptscriptstyle X}(n),i\rangle}.$$

The mapping $x \mapsto \alpha_x$ does not preserve the equality on \mathbb{R} .

To each regular sequence $x=\langle r_n\rangle_{n\in\mathbb{N}}$ in [0,1], associate a sequence $\langle \mathbb{I}_n^x\rangle_{n\in\mathbb{N}}$ of rational intervals by

$$\mathbb{I}_n^x \stackrel{\mathsf{def}}{=} \left[\max\{r_{n+3} - 2^{-(n+3)}, 0\}, \min\{r_{n+3} + 2^{-(n+3)}, 1\} \right].$$

Define a path $\alpha_x \in \{0,1,2\}^{\mathbb{N}}$ by primitive recursion:

$$\alpha_{x}(0) = i \text{ for the least } i \in \{0, 1, 2\} \text{ such that } \mathbb{I}_{0}^{x} \sqsubseteq \mathbb{I}_{\langle i \rangle},$$

$$\alpha_{x}(n+1) = i \text{ for the least } i \in \{0, 1, 2\} \text{ such that } \mathbb{I}_{n+1}^{x} \sqsubseteq \mathbb{I}_{\langle \alpha_{x}(0), \dots, \alpha_{x}(n), i \rangle}.$$

The mapping $x \mapsto \alpha_x$ does not preserve the equality on \mathbb{R} .

Proposition

For each regular sequence
$$x=\langle r_n\rangle_{n\in\mathbb{N}}\in[0,1]$$
, we have $x\simeq\Phi(\alpha_x).$

To each regular sequence $x=\langle r_n\rangle_{n\in\mathbb{N}}$ in [0,1], associate a sequence $\langle \mathbb{I}_n^x\rangle_{n\in\mathbb{N}}$ of rational intervals by

$$\mathbb{I}_n^x \stackrel{\mathsf{def}}{=} \left[\max\{r_{n+3} - 2^{-(n+3)}, 0\}, \min\{r_{n+3} + 2^{-(n+3)}, 1\} \right].$$

Define a path $\alpha_x \in \{0, 1, 2\}^{\mathbb{N}}$ by primitive recursion:

$$lpha_{\scriptscriptstyle \mathcal{X}}(0)=i$$
 for the least $i\in\{0,1,2\}$ such that $\mathbb{I}^x_0\sqsubseteq\mathbb{I}_{\langle i
angle},$

$$\alpha_{x}(n+1)=i$$
 for the least $i\in\{0,1,2\}$ such that $\mathbb{I}_{n+1}^{x}\sqsubseteq\mathbb{I}_{(\alpha_{x}(0),...,\alpha_{x}(n),i)}$.

The mapping $x \mapsto \alpha_x$ does not preserve the equality on \mathbb{R} .

Proposition

For each regular sequence $x = \langle r_n \rangle_{n \in \mathbb{N}} \in [0, 1]$, we have

$$x \simeq \Phi(\alpha_x)$$
.

Proof.

By induction, show

$$\forall n \in \mathbb{N}\left(|r_{n+1} - 2^{-(n+2)}N(\overline{\alpha_x}(n+1))| \le 2^{-(n+1)}\right).$$

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

The **red** path is not a good representation of a real number. It does not *imitate* other real numbers very closed to it.

Problem

Let $\rho \colon \{0,1,2\}^3 \to \{0,1,2\}^3$ be a function which is the identity except on the following patterns:

$$\begin{array}{ccc} \langle 1,0,0\rangle \stackrel{\rho}{\mapsto} \langle 0,2,0\rangle, & \langle 1,2,2\rangle \stackrel{\rho}{\mapsto} \langle 2,0,2\rangle, \\ \langle 2,0,0\rangle \stackrel{\rho}{\mapsto} \langle 1,2,0\rangle, & \langle 0,2,2\rangle \stackrel{\rho}{\mapsto} \langle 1,0,2\rangle. \end{array}$$

Let $\rho\colon\{0,1,2\}^3\to\{0,1,2\}^3$ be a function which is the identity except on the following patterns:

$$\begin{array}{ccc} \langle 1,0,0 \rangle \stackrel{\rho}{\mapsto} \langle 0,2,0 \rangle, & \langle 1,2,2 \rangle \stackrel{\rho}{\mapsto} \langle 2,0,2 \rangle, \\ \langle 2,0,0 \rangle \stackrel{\rho}{\mapsto} \langle 1,2,0 \rangle, & \langle 0,2,2 \rangle \stackrel{\rho}{\mapsto} \langle 1,0,2 \rangle. \end{array}$$

The function ρ is extended to $\rho \colon \{0,1,2\}^{\mathbb{N}} \to \{0,1,2\}^{\mathbb{N}}$ by

$$\rho(\alpha) = \lambda n. (\sigma_{\alpha}^{n})_{0},$$

where $\sigma_{\alpha}^{n} \in \{0, 1, 2\}^{3}$ is defined by

$$\sigma_{\alpha}^{0} = \rho(\alpha_{0}, \alpha_{1}, \alpha_{2}),$$

$$\sigma_{\alpha}^{n+1} = \rho((\sigma_{\alpha}^{n})_{1}, \alpha_{n+2}, \alpha_{n+3}).$$

Let $\rho\colon\{0,1,2\}^3\to\{0,1,2\}^3$ be a function which is the identity except on the following patterns:

$$\langle 1, 0, 0 \rangle \xrightarrow{\rho} \langle 0, 2, 0 \rangle, \qquad \langle 1, 2, 2 \rangle \xrightarrow{\rho} \langle 2, 0, 2 \rangle,$$

$$\langle 2, 0, 0 \rangle \xrightarrow{\rho} \langle 1, 2, 0 \rangle, \qquad \langle 0, 2, 2 \rangle \xrightarrow{\rho} \langle 1, 0, 2 \rangle.$$

The function ρ is extended to $\rho \colon \{0,1,2\}^{\mathbb{N}} \to \{0,1,2\}^{\mathbb{N}}$ by

$$\rho(\alpha) = \lambda n. (\sigma_{\alpha}^n)_0,$$

where $\sigma_{\alpha}^{n} \in \{0, 1, 2\}^{3}$ is defined by

$$\sigma_{\alpha}^{0} = \rho(\alpha_{0}, \alpha_{1}, \alpha_{2}),$$

$$\sigma_{\alpha}^{n+1} = \rho((\sigma_{\alpha}^{n})_{1}, \alpha_{n+2}, \alpha_{n+3}).$$

Lemma

Let $\alpha, \beta \in \mathbb{T}_{\mathbb{R}}$ such that $\alpha = \rho_{\mathbb{R}}(\beta)$. For any $n \in \mathbb{N}$ and $i \in \{0, 2\}$,

$$\beta_n \neq i \implies \forall m \geq n \left(\langle \alpha_m, \alpha_{m+1}, \alpha_{m+2} \rangle \neq \langle i, i, i \rangle \right).$$

Lemma

For any $\alpha \in \{0,1,2\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have

$$|N(\overline{\alpha}(n+1)) - N(\overline{\rho(\alpha)}(n+1))| \le 1.$$

Corollary

For each $\alpha \in \{0,1,2\}^{\mathbb{N}}$, we have $\Phi(\alpha) \simeq \Phi(\rho(\alpha))$.

Spread representation of $\left[0,1 ight]$

Lemma

For any $\alpha \in \{0,1,2\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have

$$|N(\overline{\alpha}(n+1)) - N(\overline{\rho(\alpha)}(n+1))| \le 1.$$

Corollary

For each $\alpha \in \{0,1,2\}^{\mathbb{N}}$, we have $\Phi(\alpha) \simeq \Phi(\rho(\alpha))$.

Recall

$$\begin{split} V_a &\stackrel{\mathsf{def}}{=} \left\{ x_\alpha \mid \alpha \in \{0,1,2\}^{\mathbb{N}} \ \& \ \alpha \in a \right\}, \\ U(x,r) &\stackrel{\mathsf{def}}{=} \left\{ y \in [0,1] \mid |y-x| < r \right\}. \end{split}$$

Proposition (Quotient property)

For $\alpha \in \{0,1,2\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have $U(\Phi(\rho(\alpha)),2^{-(n+5)}) \subseteq V_{\overline{\rho(\alpha)}n}$.

Proof.

It suffices to show $|x_{\rho(\alpha)}-x_{\beta}|<2^{-(n+5)}\to x_{\beta}\in V_{\overline{\rho(\alpha)}n}.$ Let $\beta\in\{0,1,2\}^{\mathbb{N}}$ such that $|x_{\rho(\alpha)}-x_{\beta}|<2^{-(n+5)}.$ For sufficiently large $m\in\mathbb{N}$, we have $|x_{\rho(\alpha)}^m-x_{\beta}^m|<2^{-(n+5)}.$ Thus

$$\begin{split} &|2^{-(n+5)}N(\overline{\rho(\alpha)}(n+4)) - 2^{-(n+5)}N(\overline{\beta}(n+4))| \\ &= |x_{\rho(\alpha)}^{n+4} - x_{\beta}^{n+4}| \\ &\leq |x_{\rho(\alpha)}^{n+4} - x_{\rho(\alpha)}^{m}| + |x_{\rho(\alpha)}^{m} - x_{\beta}^{m}| + |x_{\beta}^{m} - x_{\beta}^{n+4}| \\ &< 3 \cdot 2^{-(n+5)}. \end{split}$$

Hence $|N(\overline{\rho(\alpha)}(n+4)) - N(\overline{\beta}(n+4))| \leq 2$. Since $\langle \rho(\alpha)_n, \rho(\alpha)_{n+1}, \rho(\alpha)_{n+2} \rangle \in \{\langle 0,0,0 \rangle, \langle 2,2,2 \rangle\}$ implies $\overline{\rho(\alpha)}(n+3)$ is the left-most or the right-most path, we must have

$$|2^4N(\overline{\rho(\alpha)}n) - N(\overline{\beta}(n+4))| \le 2^4 - 1.$$

Since $\langle \rho(\alpha)_n, \rho(\alpha)_{n+1}, \rho(\alpha)_{n+2} \rangle \in \{\langle 0,0,0 \rangle, \langle 2,2,2 \rangle\}$, implies $\overline{\rho(\alpha)}(n+3)$ is the left-most or the right-most path, we must have $|2^4N(\overline{\rho(\alpha)}n)-N(\overline{\beta}(n+4))| \leq 2^4-1$.

Spread representation of $\left[0,1\right]$

Since $\langle \rho(\alpha)_n, \rho(\alpha)_{n+1}, \rho(\alpha)_{n+2} \rangle \in \{\langle 0,0,0 \rangle, \langle 2,2,2 \rangle\}$, implies $\overline{\rho(\alpha)}(n+3)$ is the left-most or the right-most path, we must have

$$|2^4N(\overline{\rho(\alpha)}n) - N(\overline{\beta}(n+4))| \le 2^4 - 1.$$

Thus, there is $a \in \{0,1,2\}^4$ such that $N(\overline{\rho(\alpha)}n*a) = N(\overline{\beta}(n+4))$.

Then, $\gamma \stackrel{\text{def}}{=} \overline{\rho(\alpha)} n * a * \lambda k. \beta(k+4)$ satisfies $x_{\beta} \simeq x_{\gamma}$.

Spread representation of $\left[0,1\right]$

Since $\langle \rho(\alpha)_n, \rho(\alpha)_{n+1}, \rho(\alpha)_{n+2} \rangle \in \{\langle 0,0,0 \rangle, \langle 2,2,2 \rangle\}$, implies $\overline{\rho(\alpha)}(n+3)$ is the left-most or the right-most path, we must have

$$|2^4N(\overline{\rho(\alpha)}n) - N(\overline{\beta}(n+4))| \le 2^4 - 1.$$

Thus, there is $a \in \{0, 1, 2\}^4$ such that $N(\overline{\rho(\alpha)}n * a) = N(\overline{\beta}(n+4))$.

Then, $\gamma \stackrel{\text{def}}{=} \overline{\rho(\alpha)} n * a * \lambda k. \beta(k+4)$ satisfies $x_{\beta} \simeq x_{\gamma}$.

▶ The function $f \colon \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ is **uniformly continuous** if

$$\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall \alpha, \beta \in \{0,1\}^{\mathbb{N}} \left(\overline{\alpha} n = \overline{\beta} n \to |f(\alpha) - f(\beta)| \le 2^{-k} \right).$$

▶ The function $f \colon [0,1] \to \mathbb{R}$ is **uniformly continuous** if

$$\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall x, y \in [0, 1] \left(|x - y| \le 2^{-n} \to |f(x) - f(y)| \le 2^{-k} \right).$$

- ▶ The function $f \colon \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ is uniformly continuous if $\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall \alpha, \beta \in \{0,1\}^{\mathbb{N}} \left(\overline{\alpha}n = \overline{\beta}n \to |f(\alpha) f(\beta)| \le 2^{-k}\right).$
- ▶ The function $f: [0,1] \to \mathbb{R}$ is uniformly continuous if $\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall x, y \in [0,1] \left(|x-y| \le 2^{-n} \to |f(x)-f(y)| \le 2^{-k} \right)$.

Theorem

A function $f \colon [0,1] \to \mathbb{R}$ is uniformly continuous if and only if the composition $f \circ \Phi \colon \{0,1,2\}^{\mathbb{N}} \to \mathbb{R}$ is uniformly continuous.

Theorem

A function $f:[0,1]\to\mathbb{R}$ is uniformly continuous if and only if the composition $f\circ\Phi\colon \left\{0,1,2\right\}^\mathbb{N}\to\mathbb{R}$ is uniformly continuous.

Proof.

Suppose $f\circ\Phi$ is uniformly continuous. Fix $k\in\mathbb{N}$, and let N_k be the modulus of uniform continuity of $f\circ\Phi$. Let $x,y\in[0,1]$ such that $|x-y|\leq 2^{-(N_k+6)}$ (so that $|x-y|<2^{-(N_k+5)}$). Let $\alpha_x\in\{0,1,2\}^\mathbb{N}$ be the path determined by x. Then $x\simeq\Phi(\alpha_x)\simeq\Phi(\rho(\alpha_x))$. By the quotient property, there is a path $\beta\in\overline{\rho(\alpha)}N_k$ such that $y\simeq\Phi(\beta)$. Then

$$|f(x) - f(y)| \simeq |f(\Phi(\rho(\alpha))) - f(\Phi(\beta))| \le 2^{-k}.$$

References

L. E. J. Brouwer.

Über Definitionsbereiche von Funktionen.

Math. Ann., 97:60-75, 1927.

J. van Heijenoort.

From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, 1967.

R. S. Lubarsky and F. Richman. Signed-Bit Representations of Real Numbers *J. Log. Anal.*, 1(10), 1–16, 2009.

A. S. Troelstra and D. van Dalen.

Constructivism in Mathematics: An Introduction. Volume I, North-Holland, Amsterdam, 1988.