Домашняя работа по дискретной математике №22

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Решение. Докажем, что функций, в множестве значений которых есть 2017 бесконечно много. Рассмотрим функцию:

$$f_a(x) = \begin{cases} 2017, \text{ если } x = a \\ 0, \text{ иначе} \end{cases}$$

где $a \in \mathbb{N}$. Очевидно, что таких функций счетно много (так как a может быть любым). Следовательно, $\forall a \in \mathbb{N} \ \exists p_a : U(p_a, x) = f_a(x)$. Также стоит отметить тот факт, что все эти функции различны, поэтому $i \neq j \Rightarrow p_i \neq p_j$.

Задание 2.

Решение. Пусть V(p,x) = px. Так U – г.у.в.ф., то $\exists s : \forall p \ U(s(p),x) = V(p,x)$. По теореме о неподвижной точке $\exists n : s(n) = n$. Тогда запишем равенство: U(n,x) = U(s(n),x) = V(n,x) = nx.

Задание 3.

Решение. Так U – г.у.в.ф., то $\exists s: \forall p\ U(s(p),x) = V(p,x)$. По теореме о неподвижной точке $\exists n: s(n) = n$. Тогда запишем равенство: U(n,x) = U(s(n),x) = V(n,x).

Задание 4.

Решение. Если множество программ I совпадает с множеством четных сечений U, то I – разрешимо (так как проверка на четность проста). Однако свойство определенности – нетривиально, так как существуют функции неопределенные в нуле. Поэтому множество индексов таких функций – неразрешимо. Следовательно, I не может быть разрешимым, а значит и совпадать с четными сечениями U.

Задание 5.

Решение.

Задание 6.

Решение. Пусть \mathbb{K} разрешимо. Тогда рассмотрим некоторую не всюду определенную функцию f(x). Тогда $\exists n: U_n(x) = f(x)$. Пусть $\mathbb{K}' = \{k: U_k(x) - \text{продолжение } U_k(x) + \text{продолжение$