Лекція 3. Теорія числових послідовностей.

§ 1. Границя числової послідовності.

1. Поняття послідовності.

В першій лекції ми назвали послідовністю функцію, визначену на множині N натурального ряду чисел. Тому значення цієї функції можуть бути пронумеровані, і послідовність — це змінна величина із пронумерованими значеннями. Будемо позначати послідовність літерами з індексами $x_1, x_2, x_3, ..., x_n, ...$, або стисло $\{x_n\}$. Символом x_n позначено загальний член послідовності, натуральне число n вказує номер цього члена.

У відповідності до означень послідовності і функції члени послідовності $\{x_n\}$ можуть бути об'єктами довільної множини. Наприклад, це можуть бути n – вимірні вектори $x \in E_n$, функції певної змінної (змінних), дійсні і комплексні числа тощо.

Послідовність **вважається заданою**, якщо вказано спосіб знаходження загального члена послідовності. Найчастіше послідовність задають формулою її загального члена. Проте числові послідовності можна задати і так званим **рекурентним** (зворотним) **способом.** Його суть полягає в тому, що задають кілька членів послідовності і далі вказують правило, за яким можна знайти наступний його член (див. приклад чисел Фібоначчі). Крім того, до послідовностей також можна віднести нескінченні арифметичну і геометричну прогресії.

В цій лекції ми будемо розглядати лише випадок, коли члени послідовності $\{x_n\}$ — це дійсні числа. В цьому випадку множина значень послідовності $\{x_n\}$ є підмножиною множини дійсних чисел. Такі послідовності називають **числовими**.

Означення. Послідовність $\{x_n\}$ називається **сталою**, якщо вона складається з однакових елементів a, a, a, ..., a, ...: $\{x_n\} = \{a, a, a, ..., a, ...\}$.

Зауваження. Різні члени числової послідовності — це числа (елементи), які можуть бути однаковими, проте обов'язково займають різні місця (номери) в послідовності.

Приклади числових послідовностей.

а).
$$x_n = \frac{1}{n}$$
; $\{x_n\} = \left\{\frac{1}{n}\right\}$, тобто послідовність має вигляд: $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$

Множина значень цієї послідовності $\{x_n\}$ складається з раціональних чисел виду $\frac{1}{n}$, де n-цілі додатні числа.

6).
$$x_n = 1 - (-1)^n$$
; $\{x_n\} = 2, 0, 2, 0, \dots, \lceil 1 - (-1)^n \rceil, \dots$

В цьому випадку множина значень послідовності $\{x_n\}$ складається лише з двох чисел: 0 і 2. Тут ми бачимо, що різні члени послідовності (члени з різними номерами) можуть приймати однакові значення.

в). Числа Фібоначчі. Числа (або ряд) Фібоначчі описують кількість кролів, які утримуються і розмножуються в замкненому просторі без врахування їхньої смертності. Записується цей ряд у вигляді рекурентного співвідношення:

$$x_{n+1} = x_n + x_{n-1}; \quad x_1 = x_2 = 1.$$

Якщо розгорнути це співвідношення у список елементів послідовності, то дістанемо таку числову послідовність:

$$\{x_n\} = \{1,1,2,3,5,8,13,21,34,\ldots\}.$$

Кожен член цієї послідовності, починаючи з третього, дорівнює сумі двох попередніх. Перші два члени вважаються заданими.

2. Границя послідовності.

Перше Означення границі. Послідовність $\{x_n\}$ називається збіжною до числа x_0 , якщо для довільного числа $\varepsilon > 0$ існує такий номер $N = N(\varepsilon)$, що для всіх $n > N(\varepsilon)$ має місце нерівність

$$\left|x_{n}-x_{0}\right|<\varepsilon. \tag{1}$$

В цьому випадку число x_0 називається **границею послідовності** $\{x_n\}$. Збіжність послідовності $\{x_n\}$ до числа x_0 позначається такими символами:

$$\lim_{n\to\infty} x_n = x_0$$

або $x_n \to x_0$ при $n \to \infty$.

Іншими словами, встановити, що послідовність $\{x_n\}$ є збіжною до числа x_0 – це означає вказати додатну функцію $N(\varepsilon)$, визначену для всіх $\varepsilon > 0$, яка задовольняє означення границі послідовності.

Отже, у відповідності із означенням, число x_0 є границею послідовності $\{x_n\}$, якщо при $n > N(\varepsilon)$ має місце нерівність (1), або, що є тим же самим,

$$x_0 - \varepsilon < x_n < x_0 + \varepsilon \tag{2}$$

Геометрично означення границі послідовності означає, що починаючи з номера $n > N(\varepsilon)$ всі члени послідовності $\{x_n\}$ належатимуть інтервалу (2), який називається ε – околом граничної точки x_0 .

Друге Означення границі. Послідовність $\{x_n\}$ називають збіжною до числа x_0 , якщо у довільному його ε -околі $|x'-x_0|<\varepsilon$, починаючи з деякого номера $n>N(\varepsilon)$, містяться всі члени послідовності, за виключенням скінченного їх числа. Тут число x_0 також називається границею послідовності $\{x_n\}$. Члени послідовності $\{x_n\}$, так би мовити, накопичуються у нескінченній кількості у зазначеному ε -околі (2).

Зауваження. Звертаємо увагу на те, що якщо означенню збіжності послідовності $\{x_n\}$ до числа x_0 задовольняє деяка функція $N(\varepsilon)$, то йому також задовольняє і будь-яка інша функція $N_1(\varepsilon)$ при умові, що $N_1(\varepsilon) > N(\varepsilon)$.

Приклади застосування означення збіжної послідовності.

а) Нехай $x_n = \frac{1}{n}$. Очевидно, що із зростанням номера n число x_n стає все меншим і меншим. Покладемо $x_0 = 0$ і перевіримо виконання означення збіжності.

Отже, нехай $x_0=0$ і $\varepsilon>0$ — довільне дійсне додатне число. Розглянемо нерівність $|x_n-x_0|=|x_n-0|=|x_n|=\frac{1}{n}<\varepsilon$. Ця нерівність буде виконуватись для всіх $n>\left\lceil\frac{1}{\varepsilon}\right\rceil+1$. Тому $N(\varepsilon)=\left\lceil\frac{1}{\varepsilon}\right\rceil+1$, і число $x_0=0$ є границею даної послідовності.

Зауваження. Тут символом [y] позначено «цілу частину» числа y, тобто найбільше ціле число n, що задовольняє $n \le y$. Читається цей символ так: антьє «ігрек».

б) Нехай $x_n = (-1)^n$. Перевіримо цю послідовність на збіжність за означенням. Якщо x_0 — можлива границя цієї послідовності, то має існувати функція $N(\varepsilon)$, яка задовольняє означенню границі:

$$|x_n - x_0| < \varepsilon$$
 для довільних $n \ge N(\varepsilon)$ (3)

Виберемо $\varepsilon = \frac{1}{2}$, тоді при парних *n* нерівність (3) буде мати вигляд:

$$\left|1 - x_0\right| < \frac{1}{2}$$
, and $\frac{1}{2} < x_0 < \frac{3}{2}$,

а при непарних $n - \left| -1 - x_0 \right| < \frac{1}{2}$, або $-\frac{3}{2} < x_0 < -\frac{1}{2}$.

Не існує жодного значення x_0 , при якому ці дві нерівності одночасно мають силу. Тим самим ми довели, що не існує такого числа x_0 і функції $N(\varepsilon)$, які б задовольняли означення збіжності, тому задана послідовність не ε збіжною.

в) (Для **СРС**). Нехай $x_n = \sin\left(\frac{\pi n}{2}\right)$, n = 0, 1, 2, ... Перевірити цю послідовність на збіжність за означенням.

Означення. Послідовність, яка не ϵ збіжною, називається **розбіжною**.

3 цього означення випливає, що для розбіжної послідовності $\{x_n\}$ не існує числа x_0 і функції $N(\varepsilon)$, визначеної при $\varepsilon > 0$, які б задовольняли означення збіжності послідовності $\{x_n\}$.

3. Деякі властивості збіжних послідовностей.

Спочатку наведемо декілька означень.

Означення 1. Послідовність $\{x_n\}$ називається обмеженою, якщо множина її значень обмежена, тобто існує таке число M>0, яке не залежить від n, що $|x_n| \leq M$. В протилежному випадку послідовність називається необмеженою.

Для необмеженої послідовності має силу твердження: для будь-якого числа M>0, знайдеться такий номер n , для якого $\left|x_{n}\right|>M$.

Означення 2. Послідовність $\{x_n\}$ називається **нескінченно малою**, якщо вона ϵ збіжною і її границя дорівнює нулю, тобто $\lim_{n\to\infty}x_n=0$.

Із цього означення випливає, що існує така функція $N(\varepsilon)$, визначена при $\varepsilon > 0$, що нерівність $|x_n| < \varepsilon$ виконується для всіх $n \ge N(\varepsilon)$.

Означення 3. Послідовність $\{x_n\}$ називається нескінченно великою, якщо для довільного числа M>0 існує такий номер N(M), що нерівність $|x_n|>M$ виконується для всіх n>N(M).

Зауваження. Відмітимо, що необмежена послідовність не обов'язково є нескінченно великою. Дійсно, для нескінченно великої послідовності нерівність $|x_n| > M$ виконується для всіх номерів n, починаючи з деякого номера N(M). Для необмеженої послідовності ця нерівність має виконуватись лише для деяких номерів $n \ge N(M)$. Наприклад, послідовність $\{x_n\} = \{1,0,2,0,3,0,...,n,0,n+1,0,...\}$ є необмеженою, проте не є нескінченно великою.

Приклади: a) $x_n = \frac{1}{n^2}$ – обмежена нескінченно мала послідовність; б) $x_n = n$ – необмежена нескінченно велика послідовність.

Теорема 1. Довільна збіжна послідовність має тільки одну границю.

Доведення. Припустимо протилежне: нехай x_1, x_0- границі одної і тої ж послідовності $\{x_n\}$ та $x_1 \neq x_0$. Отже, існують такі функції $N_0(\varepsilon)$ і $N_1(\varepsilon)$, що $|x_n-x_0|<\varepsilon$ для довільних $n\geq N_0(\varepsilon)$ і $|x_n-x_1|<\varepsilon$ при $n\geq N_1(\varepsilon)$. Виберемо $\varepsilon=\frac{|x_1-x_0|}{2}$; проте одночасне виконання нерівностей $|x_n-x_0|<\frac{|x_1-x_0|}{2}$ та $|x_n-x_1|<\frac{|x_1-x_0|}{2}$ при $n\geq \overline{N}(\varepsilon)$, де $\overline{N}(\varepsilon)=\max\{N_0(\varepsilon),N_1(\varepsilon)\}$ неможливе через те, що $|x_1-x_0|=|x_1-x_n+x_n-x_0|\leq |x_1-x_n|+|x_n-x_0|<|x_1-x_0|$.

Дійшли протиріччя, звідки випливає, що $x_1 = x_0$, і **Теорему** доведено.

Сформулюємо необхідну умову збіжності послідовності у вигляді Теореми.

Теорема 2. Збіжна послідовність $\{x_n\}$ обмежена.

Доведення. Нехай x_0 – границя послідовності $\{x_n\}$. Вибираємо $\varepsilon>0$ довільним чином. В силу означення границі послідовності існує такий номер $N(\varepsilon)$, що при всіх $n>N(\varepsilon)$ має місце нерівність $|x_n-x_0|<\varepsilon$, звідки при $n>N(\varepsilon)$ отримаємо нерівність: $|x_n|\leq |x_0|+|x_n-x_0|<|x_0|+\varepsilon$.

Покладемо $M=\max\left\{\left|x_{0}\right|+\varepsilon,\left|x_{1}\right|,\left|x_{2}\right|,...,\left|x_{N}\right|\right\}$. Очевидно, що при всіх $n>N(\varepsilon)$ маємо обмеження: $\left|x_{n}\right|\leq M$. Отже, послідовність $\left\{x_{n}\right\}$ обмежена, що і потрібно було довести.

Зауваження 1. Обернене твердження цієї Теореми **не має сили**, тобто з обмеженості послідовності не випливає її збіжність. Наприклад, послідовність $x_n = \sin\left(\frac{\pi n}{2}\right), \ n = 0,1,2,\dots$ є обмеженою, проте розбіжною.

Зауваження 2. Обмеженість послідовності $\{x_n\}$ — це необхідна, але не достатня умова для її збіжності.

Теорема 3 (про границю суми, різниці, добутку і частки).

Припустимо, що послідовності $\{x_n\}$ і $\{y_n\}$ є збіжними, тобто $\lim_{n\to\infty} x_n = x_0$ і $\lim_{n\to\infty} y_n = y_0$. Тоді збіжними є такі послідовності:

$$\{Cx_n\}, \{x_n \pm y_n\}, \{x_n \cdot y_n\}, \left\{\frac{x_n}{y_n}\right\}, \partial e \ C$$
—стала величина,

причому остання послідовність розглядається при $y_0 \neq 0$, $y_n \neq 0$ при n = 1, 2, 3, ... Тоді їхні границі обчислюються за формулами:

a)
$$\lim_{n\to\infty} Cx_n = C \lim_{n\to\infty} x_n = Cx_0$$
;

6)
$$\lim_{n\to\infty} (x_n \pm y_n) = \lim_{n\to\infty} x_n \pm \lim_{n\to\infty} y_n = x_0 \pm y_0$$
;

B)
$$\lim_{n\to\infty} (x_n \cdot y_n) = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} y_n = x_0 \cdot y_0;$$

r)
$$\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n} = \frac{x_0}{y_0}$$
, $(y_0 \neq 0, y_n \neq 0)$.

Довести справедливість кожної з цих формул — означає встановити функцію $N(\varepsilon)$, яка міститься в означенні границі цих послідовностей.

Доведення. Нехай $N_1(\varepsilon)$ і $N_2(\varepsilon)$ є такими, що

$$|x_n - x_0| < \varepsilon$$
 при $n \ge N_1(\varepsilon)$ і $|y_n - y_0| < \varepsilon$ при $n \ge N_2(\varepsilon)$.

Для доведення справедливості **твердження а)** потрібно показати, що існує така функція $N(\varepsilon)$, що при $\varepsilon > 0$ і $n \ge N_1(\varepsilon)$

$$|Cx_n - Cx_0| = |C| \cdot |x_n - x_0| = |C| \cdot \varepsilon$$
.

Покладемо $N(\varepsilon) = N_1 \left(\frac{\varepsilon}{|C|} \right)$, звідки дістанемо доведення правила а).

Доведемо справедливість твердження б). Покладемо

$$N(\varepsilon) = \max \left\{ N_1 \left(\frac{\varepsilon}{2} \right); N_2 \left(\frac{\varepsilon}{2} \right) \right\}.$$

Нехай n ≥ N(ε). Тоді

$$\left|\left(x_{n}\pm y_{n}\right)-\left(x_{0}\pm y_{0}\right)\right|\leq\left|x_{n}-x_{0}\right|+\left|y_{n}-y_{0}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

і твердження б) доведено.

Доведемо справедливість твердження в). Отже, маємо:

$$|x_n y_n - x_0 y_0| = |(x_n - x_0) y_n - x_0 (y_0 - y_n)| \le |(x_n - x_0) y_n| + |x_0 (y_n - y_0)|.$$

Через те, що послідовність $\{y_n\}$ є збіжною, то за **Теоремою 2 вона є обмеженою**, тобто існує таке число M , що $|y_n| < M$ при $n = 1, 2, 3, \ldots$ Збільшуючи, якщо потрібно, число M , доб'ємося, щоби $|x_0| \le M$. Тоді, поклавши

$$N(\varepsilon) = \max \left\{ N_1 \left(\frac{\varepsilon}{2M} \right); N_2 \left(\frac{\varepsilon}{2M} \right) \right\},$$

дістанемо при $n \ge N(\varepsilon)$ наступні нерівності $\left| x_n - x_0 \right| < \frac{\varepsilon}{2M}$, $\left| y_n - y_0 \right| < \frac{\varepsilon}{2M}$; тому

$$|x_n y_n - x_0 y_0| \le |y_n| |x_n - x_0| + |x_0| |y_n - y_0| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon$$

для всіх $n \ge N(\varepsilon)$, і **твердження в) доведене**.

Доведемо останнє **твердження** г). Спочатку покажемо, що $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{y_0}$. За

означенням границі довільно виберемо число $\varepsilon = \frac{|y_0|}{2}$ і за ним знайдемо такий номер

 $N_1(\varepsilon)$, що при $n \ge N_1(\varepsilon)$ має місце нерівність: $\left|y_n - y_0\right| < \frac{\left|y_0\right|}{2}$. Звідси випливає, що при $n \ge N_1(\varepsilon)$ справедливі такі нерівності:

$$|y_n| = |y_0 + (y_n - y_0)| \ge |y_0| - |y_n - y_0| > |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}.$$

Для довільного числа $\varepsilon>0$ знайдемо такий номер $N_2(\varepsilon)$, що при $n>N_2(\varepsilon)$ $|y_n-y_0|<\varepsilon\frac{|y_0|^2}{2} \text{. Покладемо } N(\varepsilon)=\max\left\{N_1,N_2\right\} \text{ і при } n>N(\varepsilon) \text{ маємо:}$

$$\left| \frac{1}{y_n} - \frac{1}{y_0} \right| = \frac{|y_n - y_0|}{|y_n||y_0|} < \frac{2}{|y_0|^2} \cdot \varepsilon \cdot \frac{|y_0|^2}{2} = \varepsilon.$$

Отже, $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{y_0}$. І остаточно формула **г**) випливає з формули **в**) у такий

спосіб: $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} x_n \cdot \lim_{n\to\infty} \frac{1}{y_n} = \frac{x_0}{y_0}$. Теорему доведено.

Наведемо **три простих** але **важливих твердження**, доведення яких читач легко проведе самостійно (**Для СРС**!).

- а) Якщо послідовності $\{x_n\}$ і $\{y_n\}$ мають спільну границю $x_0=y_0$, то послідовність $\{z_n\} = \{x_n-y_n\}$ є нескінченно малою.
- б) Якщо послідовність $\{x_n\}$ є нескінченно малою, а $\{y_n\}$ довільна обмежена послідовність, то послідовність $\{z_n\} = \{x_n \cdot y_n\}$ також є нескінченно малою послідовністю. В частинному випадку, нескінченно малою послідовністю буде $\{z_n\} = \{Cx_n\}$, де C стала величина.
- в) Якщо послідовність $\{x_n\}$ є збіжною до числа x_0 , то послідовність $\{\alpha_n\} = \{x_n x_0\}$ є нескінченно малою.

Теорема 4. (**Теорема порівняння**). Нехай задані послідовності $\{x_n\}$, $\{y_n\}$, $\{z_n\}$.

а) Тоді, якщо $x_n \le y_n$ $(x_n \ge y_n)$ при $n \ge N_0$ і послідовності $\{x_n\}$ і $\{y_n\}$ є збіжними, то

$$\lim_{n\to\infty} x_n \le \lim_{n\to\infty} y_n \qquad (\lim_{n\to\infty} x_n \ge \lim_{n\to\infty} y_n).$$

б) Якщо послідовності $\{x_n\}$ і $\{z_n\}$ є збіжними, мають спільну границю $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n$, і $x_n\le y_n\le z_n$ при $n\ge N_0$, то послідовність $\{y_n\}$ також є збіжною; при цьому границі всіх трьох послідовностей співпадають:

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n$$
 (теорема про двох поліцейських).

Доведення. а) Нехай $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} y_n = y_0$. Припустимо протилежне, тобто $x_0 > y_0$. В силу збіжності послідовностей $\{x_n\}$ і $\{y_n\}$ для довільно вибраного $\varepsilon = (x_0 - y_0)/2$ можна знайти такі номери $N_1(\varepsilon)$ і $N_2(\varepsilon)$, що при $n > N_1(\varepsilon)$ виконується нерівність $|x_n - x_0| < (x_0 - y_0)/2$, а при $n > N_2(\varepsilon)$ виконується нерівність $|y_n - y_0| < (x_0 - y_0)/2$. Оберемо

$$N = \max \left\{ N_1 \left(\frac{\left(x_0 - y_0 \right)}{2} \right), N_2 \left(\frac{\left(x_0 - y_0 \right)}{2} \right) \right\},$$

тоді при n > N дістанемо:

$$x_{n} - y_{n} = (x_{n} - x_{0}) - (y_{n} - y_{0}) + (x_{0} - y_{0}) \ge -|x_{n} - x_{0}| - |y_{n} - y_{0}| + (x_{0} - y_{0}) >$$

$$> -\frac{(x_{0} - y_{0})}{2} - \frac{(x_{0} - y_{0})}{2} + (x_{0} - y_{0}) = 0,$$

тобто $x_n > y_n$, що входить у протиріччя з умовами **Теореми**, і твердження а) доведене.

б) Нехай $\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n=x_0$. Тоді для довільного $\varepsilon>0$ знайдуться такі номери $N_1(\varepsilon)$ і $N_2(\varepsilon)$, що $\left|x_n-x_0\right|<\varepsilon$ при $n\geq N_1(\varepsilon)$ і $\left|z_n-x_0\right|<\varepsilon$ при $n\geq N_2(\varepsilon)$.

Звідси, зокрема, випливає, що $x_0-\varepsilon < x_n$ і $z_n < x_0+\varepsilon$ при $n>N_3(\varepsilon)=\max \big\{N_1(\varepsilon),N_2(\varepsilon)\big\}.$ В силу умов **Теореми** виконуються нерівності

$$x_0 - \varepsilon < x_n \le y_n \le z_n < x_0 + \varepsilon \ \text{або} \ \left| y_n - x_0 \right| < \varepsilon \ \text{при} \ n > N = \max \left\{ N_0, N_3 \right\}.$$

Отже, $\lim_{n\to\infty} y_n = x_0$. Теорему доведено.