DEEP NEWS – USING ADVANCED NLP TECHNIQUES TO CATEGORIZE NEWS ARTICLES

AIT PROJECT FINAL PRESENTATION

Presented by

Alan Gaugler

U885853

University of Canberra

October 26, 2023

INTRODUCTION

Why NLP?

Natural Language Processing (NLP) is a very important branch of AI with many practical applications that many of us use every day.

Summary of Literature Review

- Many articles were reviewed on the topic of NLP.
- The News Category Dataset was chosen due to its size and challenges.
- A good understanding of what is involved in an NLP classification problem.
- A good understanding of what vectorization and word embedding techniques are required.
- A good understanding of the various traditional and advanced deep learning models that are options for an NLP project.

DATASET – NEWS CATEGORY DATASET

- From Kaggle.
- HuffPost a progressive and popular American news website.
- 209,527 news headlines from 2012 to 2022.

- 6 Features.
- Target Variable is 'Category'.
- 42 Classes Categories of news articles.
- 'Headline' and 'Short Description' merged
- Average of 29 words per article.

	link	headline	category	short_description	authors	date
0	https://www.huffpost.com/entry/covid- boosters	Over 4 Million Americans Roll Up Sleeves For O	U.S. NEWS	Health experts said it is too early to predict	Carla K. Johnson, AP	2022- 09-23
1	https://www.huffpost.com/entry/american- airlin	American Airlines Flyer Charged, Banned For Li	U.S. NEWS	He was subdued by passengers and crew when he	Mary Papenfuss	2022- 09-23
2	https://www.huffpost.com/entry/funniest- tweets	23 Of The Funniest Tweets About Cats And Dogs	COMEDY	"Until you have a dog you don't understand wha	Elyse Wanshel	2022- 09-23
3	https://www.huffpost.com/entry/funniest- parent	The Funniest Tweets From Parents This Week (Se	PARENTING	"Accidentally put grown-up toothpaste on my to	Caroline Bologna	2022- 09-23
4	https://www.huffpost.com/entry/amy-cooper-lose	Woman Who Called Cops On Black Bird-Watcher Lo	U.S. NEWS	Amy Cooper accused investment firm Franklin Te	Nina Golgowski	2022- 09-22

Figure 1 – The Header of the News Category Dataset

EXPLORATORY DATA ANALYSIS

Figure 2 – The Number of News Articles per Class

- No missing values.
- 42 Categories. A large imbalance.
- Class imbalance techniques such as SMOTE will be investigated.
- Politics is by far the largest category.
- Many appear to be very similar such as "Arts & Culture" and "Culture & Arts".

BASELINE DATA PREPARATION

Text Cleaning and Preprocessing

This was broken down into several steps:

- 1. Text Cleaning: converts the text into lowercase, strips and removes punctuation.
- 2. Expand contractions: "I'd" --> "I would".
- **3. Tokenization**: This separates words. These are called tokens.
- **4. Stop word removal:** very common words that convey no meaning are removed e.g., "the", "he", "you" or "on".
- **5. Stemming:** This reduced words to their root form i.e., "shows", "showing" and "showed" will be reduced to "show".
- **6. Lemmatization:** This also reduced words to their root form i.e., "better" and "best" will be reduced to "good".
- 7. Bigrams and Trigrams: Many sequential words should be treated as one such as "New" followed by "York" really means "New York".
- **8. Removal of unique words:** words that occur only once in the entire dataset will be removed. There were approximately 25,000 unique words out of 63,000 words in total.

BASELINE DATA PREPARATION

Text Vectorization:

This is an important step to convert the words into numerical vectors for the machine learning process.

Three methods were tried in the initial phase:

- **Bag of Words:** A basic method.
- **Term Frequency-Inverse Document Frequency:** (tf-ldf). More advanced than BoW. It also adjusts word weights across the articles.
- **Word2vec:** A more advanced neural network based word embedding algorithm. This did not work too well on the baseline models.

BASELINE MODELS

		Lemmatization		Remove					
		Stemmming or	Contraction	Unique			Tfidf Vecotrizer or	Accuracy	
Model	Classifier	Both	of Words	Words	Bigrams	Trigrams	Other	(%)	Comments
1	Logistic	Lemm	N	N	N	N	max_features=5000	58.30	
2	Multinomial NB	Lemm	N	N	N	N	max_features=5000	52.33	
3	Logistic	Lemm	Υ	Υ	Υ	Υ	max_features=5000	54.09	
4	Multinomial NB	Lemm	Υ	Υ	Υ	Υ	max_features=5000	48.38	
5	Logistic	Lemm	Υ	Ν	N	Ν	max_features=5000	58.28	
6	Multinomial NB	Lemm	Υ	Ν	N	Ν	max_features=5000	52.20	
7	Logistic	Lemm	N	Υ	N	Ν	max_features=5000	58.32	
8	Multinomial NB	Lemm	N	Υ	N	Ν	max_features=5000	52.33	
9	Logistic	Lemm	N	Υ	Υ	Ν	max_features=5000	55.30	
10	Multinomial NB	Lemm	N	Υ	Υ	N	max_features=5000	49.44	
11	Logistic	Lemm	N	Υ	N	N	max_df=0.95, min_df=2	60.34	
12	Multinomial NB	Lemm	N	Υ	Ν	N	max_df=0.95, min_df=2	44.56	
13	Logistic	Stem	N	Υ	N	N	max_features=5000	58.83	
14	Multinomial NB	Stem	N	Υ	N	N	max_features=5000	52.48	
15	Logistic	Stem	N	Υ	N	N	max_features=20000	60.44	
16	Multinomial NB	Stem	N	Υ	N	N	max_features=20000	47.65	
									This is the best Logistic
17	Logistic	Stem	N	Υ	N	N	max_features=50000	60.51	Configuration
18	Multinomial NB	Stem	N	Υ	N	N	max_features=50000	43.64	
19	Logistic	Stem	N	Υ	N	N	max_df=0.95, min_df=2	60.38	
20	Multinomial NB	Stem	N	Υ	N	N	max_df=0.95, min_df=2	45.06	
21	Logistic	Both	N	Υ	N	N	max_features=5000	58.83	
22	Multinomial NB	Both	N	Υ	N	N	max_features=5000	52.42	
23	Logistic	Both	N	Υ	N	N	ngram_range=(1, 2)	NA	MUCH SLOWER!
24	Multinomial NB	Both	N	Υ	N	N	ngram_range=(1, 2)	39.02	
25	Logistic	Both	N	Υ	N	N	word2vec	52.64	
									Cannot take negative
26	Multinomial NB	Both	N	Υ	N	N	word2vec	NA	values
27	Logistic	Stem	N	Υ	N	N	bag of words	59.26	
									This is the best NB
28	Multinomial NB	Stem	N	Υ	N	N	bag of words	57.81	configuration

Table 1 – Evaluation of
Preprocessing and
Vectorization Steps Applied to
the Two Baseline Models

BASELINE RESULTS

Naïve-Bayes and Logistic Regression Models were used.

A good baseline was established.

The Logistic Regressor is clearly a better model for this dataset.

The best accuracy was 60.51% utilizing:

- Stemming
- Disabling Contraction of words
- Removal of unique words
- Bigrams and trigrams disabled. Enabling them resulted in a 4% degradation in both models.
- A Tf-idf vectorizer with max_features set to 50,000.

Class Imbalance affects the minority classes

MERGING OF SIMILAR CATEGORIES

• There are 42 categories, many of them are very similar.

```
['U.S. NEWS', 'COMEDY', 'PARENTING', 'WORLD NEWS', 'CULTURE & ARTS', 'TECH', 'SPORTS', 'ENTERTAINMENT', 'POLITICS', 'WEIRD NEWS', 'ENVIRONMENT', 'EDUCATION', 'CRIME', 'SCIENCE', 'WELLNESS', 'BUSINESS', 'STYLE & BEAUTY', 'FOOD & DRINK', 'MEDIA', 'QUEER VOICES', 'HOME & LIVING', 'WOMEN', 'BLACK VOICES', 'TRAVEL', 'MONEY', 'RELIGION', 'LATINO VOICES', 'IMPACT', 'WEDDINGS', 'COLLEGE', 'PARENTS', 'ARTS & CULTURE', 'STYLE', 'GREEN', 'TASTE', 'HEALTHY LIVING', 'THE WORLDPOST', 'GOOD NEWS', 'WORLDPOST', 'FIFTY', 'ARTS', 'DIVORCE'], dtype=object)
```

- There were reduced down to 31 categories.
- Overall Accuracy improved from 60.51% to 66.76%.
- Similar gains in Precision, Recall and F1-Score.

'PARENTS': 'PARENTING', 'THE WORLDPOST': 'WORLD NEWS', 'WORLDPOST': 'WORLD NEWS', 'BUSINESS': 'BUSINESS & FINANCE', 'MONEY': 'BUSINESS & FINANCE', 'COLLEGE': 'EDUCATION', 'STYLE': 'STYLE & BEAUTY', 'GREEN': 'ENVIRONMENT', 'ARTS': 'ARTS & CULTURE', 'CULTURE & ARTS': 'ARTS & CULTURE', 'HEALTHY LIVING': 'WELLNESS', 'TASTE': 'FOOD & DRINK'

ADDRESSING THE CLASS IMBALANCE

• There is still a large class imbalance.

- SMOTE or oversampling is not an option due to much larger dataset size.
- Undersampling was tried.
- Reduction of dataset to 25% of original size
- 10% degradation in accuracy.
- Far fewer words in the training.
- Recall did rise slightly.
- This was not implemented.

Figure 3 – The Number of News Articles per Class after Merging

DEEP LEARNING

Encoding, Tokenization and Sequence Padding

- Labels encoded as integers
- Unique words tokenized as integers
- Padding ensure all text entries are of equal length

Word Embedding

- Words are represented as vectors.
- Semantic and syntactic similarity are identified between words.
- Relationships with other words detected.
- Word2Vec
- GloVe Global Vectors for word representation

Neural Network Models

Keras package was used for RNNs

These models are designed for sequences.

- BERT pre-trained model. Far too slow!
- GRU Gated Recurrent Unit.
- Long Short-Term Memory more complex than GRU.

DEEP LEARNING RESULTS

			Tokenizer / Word							dropout /	Test	
NAI - I	Classifier	NI	,			Max Length	rate	embedding	0	recurrent dropout	•	C
Model		iveurons	Embedder	num_words	oov_token		rate	dimensions	Optimizer	aropout	(%)	Comments
22	GRU Bi- directional	1	T-1:	-11	al INIZs	90th percentile	0.001	200	A -l	0.3	67.70	-l
23	GRU Bi-	32	Tokenizer	all words	<unk></unk>	90th	0.001	300	Adam	0.2	67.70	slower than 100
24	directional	22	Tokenizer	allwards	<unk></unk>	percentile	0.001	200	Adam	0	67.76	slower than 100
24	GRU Bi-	32	Tokemzer	all words	<unk></unk>	90th	0.001	300	Adam	U	67.76	Slower than 100
25	directional	22	Tokenizer	allwords	<unk></unk>	percentile	0.001	200	RMSProp	0	67.05	slower than 100
23	GRU Bi-	32	TOKETHZEI	all words	CONK	90th	0.001	300	KIVISFIOP	U	07.83	Slower triair 100
26	directional	32	Tokenizer	all words	<unk></unk>	percentile	0.001	500	RMSProp	0	68.05	much slower than 100
20	GRU Bi-	32	TORCHIZE	an words	TOTAL	90th	0.001	300	MINISTIOP	0	00.03	mach slower than 100
27	directional	32	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	68.37	much slower than 500
			TOROTTECT	un words	101110	porcontaile	0.001	1000	Millioniop		00.07	much slower than 1000, 4
	GRU Bi-					90th						mins per epoch to over 10
28	directional	32	Tokenizer	all words	<unk></unk>	percentile	0.001	3000	RMSProp	0	68.36	
	GRU Bi-					90th						
	directional	64	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	68.75	much slower than 500
	GRU Bi-					90th						
30	directional	128	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	69.16	much slower than 500
	GRU Bi-		Tokenizer			90th						
31	directional	32	/GloVe	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	62.77	GloVe decreases performance
	LSTM - Bi-					90th						
32	directional	128/64	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	67.68	GloVe decreases performance
	LSTM - Bi-		Tokenizer			90th						
33	directional	128	/GloVe	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	63.29	much slower than 500
	GRU Bi-		Tokenizer			90th						
34	directional	128/64	/GloVe	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	68.03	much slower than 500
	GRU Bi-		Tokenizer			90th						
35	directional	256	/GloVe	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	68.88	much slower than 500
	GRU Bi-		Tokenizer			90th						
36	directional	128	/GloVe	all words	<unk></unk>	percentile	0.001	1000	Adam	0	68.29	not as good as RMSProp
	LSTM - Bi-					90th						The best LSTM, but GRU is
37	directional	128	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	68.64	better
	GRU Bi-			l		90th						
38	directional	128	Word2Vec	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	65.18	fast but less accurate
	GRU Bi-			l		99th						
39	directional	128	Tokenizer	all words	<unk></unk>	percentile	0.001	1000	RMSProp	0	69.31	much slower than 500
	GRU Bi-						0.051	45			60.55	much slower than 99th
40	directional	128	Tokenizer	all words	<unk></unk>	max	0.001	1000	RMSProp	0	69.32	percentile
	LSTM Bi-	400	T 1		,LINIIZ		0.001	1000	DN 4CD		60.45	much slower than 99th
41	directional	128	Tokenizer	all words	<unk></unk>	max	0.001	1000	RMSProp	0	69.16	percentile

Over 40 combinations of Word Embedders, model architectures and hyperparameters were tried.

Convergence was very fast. Usually after only 2 epochs.

Keras ModelCheckpoint function, saves the best configuration.

Table 2 – Evaluation of RNNs, Hyperparameters and Word Embedding Techniques

DEEP LEARNING RESULTS

GloVe and Word2Vec did not work well. Typically 4 - 5% worse.

GRU was consistently better than the LSTM. Typically by 1%.

Best results with:

- GRU Bi-directional.
- 1 layer architecture, 128 units.
- RMSProp solver.
- Embedding dimension of 1000 words.
- Max length of all sequences worked best. No truncations.

Best Test Set Accuracy of 69.32%

This is better than the Logistic Regression. 66.76%

PREDICTION EXAMPLES

processed_combined_info	true_labels	predicted_labels
elder independ establish common ground whether care age parent neighbor apart build help home health aid connect spous look establish common ground drive forward success caregiv relationshi	WELLINESS	WELLNESS
florida woman bitten shark inner tube	CRIME	WEIRD NEWS
sandal revolut may look go heck thing precis fashion commun put head togeth give shoe name reader like present newest hybrid shoe luxuri flatform	STYLE & BEAUTY	STYLE & BEAUTY
13 reason goe beyond tape haunt season 2 trailer new season debut netflix may 18	ENTERTAINMENT	ENTERTAINMENT
fowl bizarr bowl footbal next big sport mich ap detroit area entrepreneur believ score touchdown new busi idea thrown	WEIRD NEWS	SPORTS
st regi princevil pauper vill st regi love horizont ivori tower isol tip princevil leav kauai alway want	TRAVEL	TRAVEL
nobel prize medicin jame rothman randi thoma jointli win prize nobel committe said research traffic transport system cell help scientist understand	WELLNESS	SCIENCE
start viral pay homag youtub meme video parodi billi joel start fire go stuck head day	COMEDY	COMEDY
poison daughter russian spi releas hospit end treatment mark signific mileston	WORLD NEWS	ENTERTAINMENT
ed sheeran grammi nomin complet surpris expect year alreadi drunk found didnt expect year sheeran told huffington post z100	ENTERTAINMENT	ENTERTAINMENT
challeng patel poll show tighten race key new york primari patel take rep carolyn maloney jerri nadler democrat nomin manhattan congression district	POLITICS	POLITICS
trayvon martin case mean middl class black cri heard zimmerman verdict knew would tear countri apart racial line also knew middl class black person go call upon perspect white colleagu friend famili	BLACK VOICES	BLACK VOICES

Stemming used

Mispredicted labels:

2, 5, 7, 9

Very difficult to classify some of these descriptions accurately

Training on the full article would likely yield better results.

CONCLUSION

Data Preprocessing and Feature Engineering

Merging of Categories: provided the largest improvement. Highlights the importance of good data preparation.

Modelling

Logistic Regression: Compared very well to GRU and LSTM

Recurrent Neural Networks: GRU than LSTM worked better for smaller text sequences.

Hyperparameter Tuning: Improvements were definitely gained.

Improvement from baseline: 60.51% to 69.32%

END OF THE PRESENTATION

THANK YOU