Formal Languages NFAs Accept the Regular Languages

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages
accepted
by NFAs
Regular
Languages

Languages accepted by FAs

NFAs and FAs have the same computation power

We will show:

 Languages

 accepted

 by NFAs

 Regular

 Languages

Languages
accepted
by NFAs
Regular
Languages

Proof-Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Proof?

Proof-Step 1

Proof: Every FA is trivially an NFA

Any language L accepted by a FA is also accepted by an NFA

Proof-Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent FA

Any language L accepted by an NFA is also accepted by a FA

NFA to FA Conversion

We are given an NFA M

We want to convert it to an equivalent $\mathsf{F} A$ M'

With
$$L(M) = L(M')$$

What we need to construct

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the FA has states in the power set

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to FA

1. Initial state of NFA: q_0

Initial state of FA: $\{q_0\}$

Example

Procedure NFA to FA

2. For every FA's state $\{q_i, q_i, ..., q_m\}$

$$\{q_i,q_j,...,q_m\}$$

Compute in the NFA

$$\left.\begin{array}{l} \delta^*(q_i,a),\\ \delta^*(q_j,a),\\ \end{array}\right\} = \left\{q_i',q_j',...,q_m'\right\}$$

Add transition to FA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}$$

Example

FA M'

Procedure NFA to FA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example

Procedure NFA to FA

3. For any FA state $\{q_i, q_j, ..., q_m\}$

If q_j is accepting state in NFA

Then, $\{q_i,q_j,...,q_m\}$ is accepting state in FA

Example

Theorem

Take NFA M

Apply procedure to obtain FA M'

Then M and M' are equivalent:

$$L(M) = L(M')$$

Proof

$$L(M) = L(M')$$

$$L(M) \subseteq L(M')$$
 AND $L(M) \supseteq L(M')$

First we show:
$$L(M) \subseteq L(M')$$

Take arbitrary:
$$w \in L(M)$$

We will prove:
$$w \in L(M')$$

$$w \in L(M)$$

$$M: \rightarrow q_0$$
 w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M : - q_0 \sigma_1 \sigma_2 \sigma_2 \sigma_4 \sigma_6$$

denotes

We will show that if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 $M: \longrightarrow q_0 \overset{\sigma_1}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_k}{\longrightarrow} q_f$

$$M': \longrightarrow \sigma_1 \overset{\sigma_2}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_k}{\longrightarrow} q_f \overset{\sigma_k}{$$

More generally, we will show that if in M:

(arbitrary string)
$$v = a_1 a_2 \cdots a_n$$

$$M: -q_0 \stackrel{a_1}{\smile} q_i \stackrel{a_2}{\smile} q_j \stackrel{a_2}{\smile} q_l \stackrel{a_n}{\smile} q_m$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{\{q_i,...\}} \xrightarrow{\{q_j,...\}} \xrightarrow{\{q_l,...\}} \xrightarrow{\{q_m,...\}}$$

Proof by induction on |v|

Induction Basis:
$$v = a_1$$

$$M: -q_0 q_i$$

$$M'$$
: q_0 q_i ...}

Is true by construction of M':

Induction hypothesis: $1 \le |v| \le k$

$$v = a_1 a_2 \cdots a_k$$

$$M: -q_0^{a_1} q_i^{a_2} q_j - q_c^{a_k} q_d$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{q_0} \xrightarrow{\{q_0,\ldots\}} \xrightarrow{\{q_0,\ldots\}} \xrightarrow{\{q_d,\ldots\}}$$

Induction Step: |v| = k+1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_k}{\longrightarrow} q_d$$

$$M': \longrightarrow \underbrace{a_1}_{\{q_0\}} \underbrace{a_2}_{\{q_i,\ldots\}} \underbrace{a_2}_{\{q_j,\ldots\}} \underbrace{a_k}_{\{q_c,\ldots\}} \underbrace{a_k}_{\{q_d,\ldots\}}$$

Induction Step:
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0^{a_1} q_i^{a_2} q_j - q_c^{a_k} q_d^{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2} \underbrace{a$$

Therefore if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 $M: \longrightarrow q_0 \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_f$

$$M': \longrightarrow \sigma_1 \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} \xrightarrow{\sigma_k} q_f$$
 $w \in L(M')$

We have shown:
$$L(M) \subseteq L(M')$$

We also need to show:
$$L(M) \supseteq L(M')$$

(proof is similar)

Induction Step:
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_2} q_c^{a_k} q_d^{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2} \underbrace{a$$

v' All cases covered?

Single Accepting State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single accepting state

NFA

Equivalent NFA with single accepting state?

NFA

In General

NFA

Equivalent NFA

Single accepting state

Extreme Case

NFA without accepting state

Add an accepting state without transitions

Properties of Regular Languages

For regular languages $L_{\!1}$ and $L_{\!2}$ we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_1

Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA
$$M_2$$

Single accepting state

Single accepting state

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b \rightarrow b$$

$$\lambda \rightarrow b$$

How do we construct automata for the remaining operations?

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Star Operation

NFA for L_1*

NFA for
$$L_1$$
* = $\{a^nb\}$ *

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${\sf FA}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

Another Proof for Intersection Closure

Machine M_1 FA for L_1

Machine M_2 FA for L_2

Construct a new FA M that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

States in M

transition

Both constituents must be accepting states

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$A_{0}$$

Construct machine for intersection

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Note how easy it was to prove closure under union, star, concatenation with NFAs. Would be much harder with DFAs.