Problem 1.6

September 25, 2023 6:50 PM

3.24 Distance versus angle nearest neighbor. Suppose z_1, \ldots, z_m is a collection of n-vectors, and x is another n-vector. The vector z_j is the (distance) nearest neighbor of x (among the given vectors) if

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m,$$

i.e., x has smallest distance to z_i . We say that z_i is the angle nearest neighbor of x if

$$\angle(x, z_j) \le \angle(x, z_i), \quad i = 1, \dots, m,$$

i.e., x has smallest angle to z_i .

- (a) Give a simple specific numerical example where the (distance) nearest neighbor is not the same as the angle nearest neighbor.
- (b) Now suppose that the vectors z_1,\ldots,z_m are normalized, which means that $\|z_i\|=1,$ $i=1,\ldots,m$. Show that in this case the distance nearest neighbor and the angle nearest neighbor are always the same. *Hint.* You can use the fact that arccos is a decreasing function, *i.e.*, for any u and v with $-1 \le u < v \le 1$, we have $\arccos(u) > \arccos(v)$.

befinition of angle between vectors:

$$\therefore \Theta = \arccos\left(\frac{a^{T}b}{\|a\|\|b\|}\right)$$

a) ID example:

Oistance Nearest Neighbor:

... Z, 13 the distance nearest heighbor

... Z, 13 the distance nearest heighbor

Angle nearst neighbor

$$\Theta_{z_1} = \operatorname{arcos}\left(\frac{x^T z_1}{||x|| ||z_1||}\right)$$

$$= \operatorname{arccos}\left(\frac{(-1)(10)}{|-1||10|}\right)$$

$$= \operatorname{arccos}\left(\frac{x^T z_1}{|-1||10|}\right)$$

$$= \operatorname{arccos}\left(\frac{x^T z_2}{||x||||z_2||}\right)$$

$$= \operatorname{arccos}\left(\frac{(-1)(-15)}{|-1||1-15|}\right)$$

$$= \operatorname{arccos}\left(\frac{(-1)(-15)}{|-1||1-15|}\right)$$

: 2 15 the angle nearest neighbor.

In this example the distance hearest heighbor was different than the angle hearest heighbor

b) 20 example;

For non-normalized vectors, the distance and angle hearest heighbors will be different when the magnitude of the angle hearest vector is less than another Z vector i.e.

 $\theta_1 \geq \theta_2$ $\theta_2 \geq \theta_3 \Rightarrow \theta_1 \geq \theta_2$ heavet heighbor

heavet heighbor

But if all the Zi Vectors are normalized

d, 2 d2 4 d3 4 0, 2 0, 2 03

So Z, is both the angle and distance menest heighbor

Hint Proporty:

If I SU ZV ZI, then,

$$\Theta_i = \text{avccos}\left(\frac{x^T \neq i}{\|x\|\|\|z_i\|}\right)$$

$$\Theta_1 = \arccos\left(\frac{x^T z_1}{||x||}\right)$$
 and $z_2 = \arccos\left(\frac{x^T z_2}{||x||}\right)$

the only difference being the value of xTZi

If $\theta_1 < \theta_2 \rightarrow so = 2$, is the angle Meanest Neighbor

$$arccos(\frac{x^{T}z_{1}}{||x||})$$
 < $arccos(\frac{x^{T}z_{2}}{||x||})$

which based on the property above Means

$$-1 \leq \frac{x^{T}z_{2}}{\|x\|} < \frac{x^{T}z_{1}}{\|x\|} \geq 1$$

-22>-2, inequality lows with multipolying
-22>-2, or dividing by negative
#s

 $||-2_2+x|| > ||-2_1+x||$ $||x-2_2|| > ||x-2_1||$

.: Z, 13 also the distance heavest neighbor.