Rozkład normalny $N(\mu,\sigma^2)$ Zwany jest również rozkładem Gaussa. Jest to najważniejszy z rozkładów. Funkcja gęstości prawdopodobieństwa $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ Rozkład ten jest unormowany: $\int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} dx = 1$ Rozkład jest symetryczny względem x=µ. Dla μ =0 i σ =1 nazywany jest standardowym rozkładem normalnym (standardowym rozkładem Gaussa). RPiS 2013/2014

Dystrybuanta rozkładu normalnego N(0,1) V Dystrybuanta rozkładu normalnego Nie potrafimy policzyć analitycznie. Można tego uniknąć licząc ją numerycznie, korzystając z tablic dla N(0,1) lub korzystając z przybliżonych wzorów dla N(0,1)

- Średnia arytmetyczna $F_\chi^{(3)}(x) \equiv (F_\chi^{(1)}(x) + F_\chi^{(2)}(x))/2$ przybliża prawdziwą dystrybuantę z dokładnością 0.1%.
- Wzory te mogą posłużyć za punkt wyjścia do metody odwracania dystrybuanty (numerycznego) i napisaniu generatora liczb pseudolosowych o rozkładzie N(0,1)
- Funkcja błędu Gaussa bywa zaimplementowana w niektórych kompilatorach (Java)

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$
 wheely $F_X(x) = 0.5 \left(1 + erf(x/\sqrt{2})\right)$

RPiS 2013/2014 2

Rozkład normalny -własności

Wartość oczekiwana i wariancja:

 $E(X) = \mu$ $var(X) = \sigma^2$

 Standaryzacja dowolnego rozkładu pozwala przechodzić pomiędzy rozkładami normalnymi:

Jeżeli zmienna losowa X ma rozkład N(μ,σ²) to zmienna losowa $Y=(X-\mu)/\sigma$ ma rozkład N(0,1) (dowód na ćwiczeniach).

"Reguła trzech sigma":

-	
k	$P(\mu \!\!-\!\! k\sigma \!\!<\!\! X \!\!<\!\! \mu \!\!+\!\! k\sigma)$
1	0.6826895
2	0.9544997
3	0.9973002
4	0.9999367
5	0.9999994

$P(\mu-k\sigma < X < \mu+k\sigma)$	k
0.50	0.6745
0.80	1.2816
0.90	1.6449
0.95	1.96
0.99	2.5758

RPiS 2013/2014 3

Rozkład normalny -własności

Szerokość połówkowa FWHM (full width at half maximum)

 $f_X(x_{1/2}) = 0.5 \cdot f_X^{\text{max}} = 0.5 \cdot f_X(\mu) = \frac{1}{2\sigma\sqrt{2\pi}}$

 $FWHM \equiv \Gamma = x_{1/2}^{(+)} - x_{1/2}^{(-)} =$ $=2\sigma\sqrt{2\ln(2)}\approx 2.355\sigma$

 $\rightarrow \sigma = \frac{\Gamma}{2.355} = 0.425\Gamma$

RPiS 2013/2014

Rozkład normalny -własności

- Rolę rozkładu normalnego podkreśla Centralne Twierdzenie
- Zastosowanie: tam gdzie szereg czynników ma wpływ na wielkość X i wpływają na nią w mniej więcej jednakowym stopniu. Jest szeroko stosowany w naukach społecznych, ekonomicznych, biologicznych (dla X lub ln(X)), np. wzrost, ciśnienie krwi, inteligencja, wielkość rocznych opadów deszczu jak również przy szacowaniu niepewności przypadkowych, testach statystycznych. Często jest używany w sytuacjach gdy nie znamy prawdziwego rozkładu. Nie mniej rzadko występuje naprawdę.
- Generowanie, przykładowe metody:
 - 1) Suma zmiennych o rozkładzie jednorodnym
 - 2) Transformacja Box-Mullera
 - 3) Metoda biegunowa (Marsaglia), v₁ i v₂ mają rozkład N(0,1)

$$x, y \in (-1,1) \rightarrow z \equiv x^2 + y^2$$

$$z < 1 \implies v_1 \equiv x\sqrt{-2z^{-1}ln(z)}$$
 i $v_2 \equiv y\sqrt{-2z^{-1}ln(z)}$

RPiS 2013/2014

Rozkład Pareto

- Generowanie:
 - Jeżeli zmienna losowa X ma rozkład wykładniczy z parametrem a to zmienna losowa Y=be^x ma rozkład Pareto z parametrami a i b. Jeżeli zmienna losowa X ma rozkład jednorodny na przedziale (0,1) to zmienna losowa Y=bX^(-1/a) ma rozkład Pareto z parametrami a i b.
- Poza ekonomią zwany jako rozkład Bradforda (czasopisma w bibliotece).

Rozszerzeniem, również dyskretnym (jest i wersja ciągla) odpowiednikiem rozkładu Pareto są rozkłady Zeta, Zipfa i Zipfa –Mandelbrota
$$P_{\scriptscriptstyle X}(k) = \frac{1}{k^a \xi(\alpha)} \qquad f_{\scriptscriptstyle X}(x) = \frac{ab^a}{(c+x)^{a+1}} \qquad x > b, a > 0, b > 0, c > 0$$

Pojawia się przy grupowaniu w rangi, np. miasta względem liczby mieszkańców.

Np. częstość występowania imion: najczęściej występujące imię dostaje rangę 1, drugie rangę 2 itd., na wykresie odkładamy częstość występowania imienia w funkcji rangi.

RPiS 2013/2014

Rozkład t-Studenta

$$f_X(x) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

- Parametr n=1,2,... opisuje kształt.
- Wartość oczekiwana (dla n>1) i wariancja (dla n>2):

$$E(X) = 0 var(X) = \frac{n}{n-2}$$

- Dla n=1 jest to rozkład Cauchy
- Dla n>30 dobrym przybliżeniem jest rozkład normalny N(0,n/(n-2))
- Generowanie:

Jeżeli zmienna losowa X ma rozkład N(0,1), a zmienna losowa Y ma rozkład

 $\chi_n^2(y)$ to $Z = X \sqrt{n/\gamma}$ ma rozkład t-Studenta o n stopniach swobody.

RPiS 2013/2014 9

