Algèbre 3 TD 8

Réduction des endomorphismes

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Des réductions pures et simples

Exercice 1

Dans chacun des cas suivants, répondre aux questions :

- a) Déterminer χ_A , le polynôme caractéristique de la matrice A.
- b) La matrice A est-elle diagonalisable sur \mathbb{R} , sur \mathbb{C} ? Si oui, donner une base du \mathbb{K} -espace vectoriel, formée de vecteurs propres de A et la matrice relativement à celle-ci.

1)
$$A = \begin{pmatrix} 3 & -2 \\ 2 & 1 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{pmatrix}$
3) $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ 4) $A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{pmatrix}$

Exercice 2

Dans les cas suivants calculer $\chi_{M(a)}$ et déterminer les réels a pour lesquels M(a) est diagonalisable sur \mathbb{R} .

1)
$$M(a) = \begin{pmatrix} 1 & -1 & a \\ 0 & 2 & -a \\ 1 & 1 & (2-a) \end{pmatrix}$$
 2) $M(a) = \begin{pmatrix} 0 & a & a^2 \\ \frac{1}{a} & 0 & a \\ \frac{1}{a^2} & \frac{1}{a} & 0 \end{pmatrix}$

Exercice 3 : Construisons des contre-exemples

- 1. Donner un exemple de matrice dans $\mathcal{M}_2(\mathbb{R})$ qui soit diagonalisable sur \mathbb{C} mais pas sur \mathbb{R} .
- 2. Donner un exemple de matrice dans $\mathcal{M}_2(\mathbb{R})$ non diagonalisable ni sur \mathbb{R} ni sur \mathbb{C} .

Exercice 4 : Du côté des endomorphismes

Dans chacun des cas suivants, E est un \mathbb{R} -ev avec \mathcal{B} sa base canonique et $f \in L(E)$. Déterminer si f est diagonalisable et si elle l'est déterminer une base \mathcal{B}' de vecteurs propres de f ainsi que $M_{\mathcal{B}'}(f)$.

1. Soient $E = \mathbb{R}^3$, $a \in \mathbb{R}$ et

$$f(e_1) = (a-1)e_2 + (a^2-1)e_3$$
 $f(e_2) = (1-a)e_2$ $f(e_3) = e_1 + e_2 + (2-a^2)e_3$.

Peut-être devrons-nous discuter suivant les valeurs de a...

2. Soient $n \ge 1$, $E = \mathbb{R}_{2n}[X]$, $a \in \mathbb{R}$ et f(P) = (X - 1)P' - (2n - a)P. Peut-être devrons-nous discuter suivant les valeurs de a...

De l'utilité de la réduction d'endomorphismes

Exercice 5: Matrices semblables

Dans chacun des cas suivants calculer le rang, la trace, le déterminant et le polynôme caractéristique des matrices A et B. Ensuite déterminer si elles sont semblables.

1.
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 4 & 1 \\ -1 & -2 & 1 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & a \end{pmatrix}$$
 et $B = \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{pmatrix}$ où a est un réel.

Exercice 6: Calcul de puissances par diagonalisation

Calculer A^n pour tout entier naturel n pour les matrices A suivantes.

1)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$

3)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 4) $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$