Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002005

International filing date: 10 February 2005 (10.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-047915

Filing date: 24 February 2004 (24.02.2004)

Date of receipt at the International Bureau: 10 March 2005 (10.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

10. 2. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月24日

出 願 番 号 Application Number:

特願2004-047915

[ST. 10/C]:

[] P 2 0 0 4 - 0 4 7 9 1 5]

出 願 人
Applicant(s):

ユニマテック株式会社

特許庁長官 Commissioner, Japan Patent Office 2004年12月24日

)· [1]

【書類名】 【整理番号】 【提出日】 【あて先】 【国際特許分類】 【発明者】 【氏名】

【住所又は居所】

【発明者】 【住所又は居所】

【特許出願人】 【識別番号】

【氏名又は名称】

【代理人】

【氏名】

【識別番号】 【弁理士】

【氏名又は名称】

【選任した代理人】

【識別番号】 【弁理士】

【氏名又は名称】

【手数料の表示】

【予納台帳番号】 【納付金額】

【提出物件の目録】

【物件名】 【物件名】

【物件名】

特許願

19524

平成16年 2月24日

特許庁長官殿

C07D305/08

茨城県北茨城市磯原町上相田831-2 ユニマテック株式会社

内

池田 直

茨城県北茨城市磯原町上相田831-2 ユニマテック株式会社

園井 竹比呂

502145313

ユニマテック株式会社

100066005

吉田 俊夫

100114351

吉田 和子

006231

21,000円

特許請求の範囲 1

明細書 1 要約書 1

【書類名】特許請求の範囲

【請求項1】

テトラフルオロエチレンとホルムアルデヒド発生源化合物とを無水フッ化水素中で反応させ、2,2,3,3-テトラフルオロオキセタンを製造するに際し、反応を一般式RfCOORf′(ここで、Rfは炭素数 $1\sim5$ のポリフルオロアルキル基であり、Rf′は水素原子または炭素数 $1\sim5$ のポリフルオロアルキル基である)で表わされたポリフルオロアルキルカルボン酸またはそのポリフルオロアルキルエステルの存在下で行うことを特徴とする2,2,3,3-テトラフルオロオキセタンの製造法。

【請求項2】

一般式RfCOORf で表わされるカルボン酸が CF_3COOH である請求項1記載の2,2,3,3-テトラフルオロオキセタンの製造法。

【請求項3】

一般式RfCOORf'で表わされるカルボン酸エステルが $CF_3COOCH_2CF_2CF_3$ である請求項1記載の2,2,3,3-テトラフルオロオキセタンの製造法。

【請求項4】

一般式RfCOORf'で表わされるカルボン酸エステルが $CF_3COOCH_2CF_3$ である請求項1記載の2,2,3,3-テトラフルオロオキセタンの製造法。

【書類名】明細書

【発明の名称】2,2,3,3-テトラフルオロオキセタンの製造法

【技術分野】

[0001]

本発明は、2,2,3,3-テトラフルオロオキセタンの製造法に関する。さらに詳しくは、無 水フッ化水素中でテトラフルオロエチレンとホルムアルデヒド発生源化合物とを反応させ て2,2,3,3-テトラフルオロオキセタンを製造する方法に関する。

【背景技術】

[0002]

2,2,3,3-テトラフルオロオキセタンは、フッ素オイル、含フッ素ゴムポリマー等の原料 として有用な化合物である。例えば、2,2,3,3-テトラフルオロオキセタンはアルカリ金属 フッ化物の存在下において容易に重合反応し、得られたポリエーテル重合体の水素部分を フッ素ガスによってフッ素化することにより、パーフルオロポリエーテル重合体であるフ ッ素オイルを得ることができる。また、アルカリ金属ハロゲン化物と反応させることによ り、含フッ素ゴムポリマーの原料となる一般式 XCH2 CF2 COF(X:C1、Br、I)で表わされる2, 2-ジフルオロプロピオン酸誘導体を得ることができる。

[0003]

このように有効な用途を有する2,2,3,3-テトラフルオロオキセタンは、無水フッ化水素 中でテトラフルオロエチレンとホルムアルデヒド発生源化合物とを反応させることにより 得られることが知られている。

【特許文献1】特公平2-37904号公報

[0004]

また、2,2,3,3-テトラフルオロオキセタンは、テトラフルオロエチレンとホルムアルデ ヒドとを無水フッ化水素中で反応させ、2,2,3,3,3-ペンタフルオロプロパノール CF₃ CF₂ C H₂ OHを製造する際の副生成物として得られることも報告されているが、副生成物であるた め少量しか得られず、工業的な原料としては使用できない。

【非特許文献1】J. Org. Chem. 第28巻第492~4頁(1963)

【発明の開示】

【発明が解決しようとする課題】

[0005]

本発明の目的は、テトラフルオロエチレンとホルムアルデヒド発生源化合物とを無水フ ッ化水素中で反応させ、2,2,3,3-テトラフルオロオキセタンを製造するに際し、その反応 収率を高めた方法を提供することにある。

【課題を解決するための手段】

[0006]

かかる本発明の目的は、上記2,2,3,3-テトラフルオロオキセタンの製造法において、反 応を一般式RfCOORf'(ここで、Rfは炭素数 $1\sim5$ のポリフルオロアルキル基であり、Rf'は 水素原子または炭素数1~5のポリフルオロアルキル基である)で表わされたポリフルオロ アルキルカルボン酸またはそのポリフルオロアルキルエステルの存在下で行うことによっ て達成される。

【発明の効果】

[0007]

テトラフルオロエチレンとホルムアルデヒド発生源化合物とを無水フッ化水素中で反応 させ、2,2,3,3-テトラフルオロオキセタンを製造するに際し、その反応をポリフルオロア ルキルカルボン酸またはそのポリフルオロアルキルエステルの存在下で行うことにより、 その反応収率を約2倍以上高め、約40%近くに迄高めることができる。

【発明を実施するための最良の形態】

[00008]

2,2,3,3-テトラフルオロオキセタンの製造は、無水フッ化水素中にホルムアルデヒド発 生源化合物およびポリフルオロアルキルカルボン酸またはそのポリフルオロアルキルエス

テルを仕込み、そこにテトラフルオロエチレンを導入することによって行われる。ホルム アルデヒド発生源化合物としては、ホルムアルデヒド自体を用いることができるが、ホル ムアルデヒドは重合し易いなど取扱い上の困難性がみられるので、パラホルムアルデヒド 、トリオキサン等の重合物が好んで用いられる。重合物からホルムアルデヒドを発生させ る方法としては、酸分解、熱分解等の方法があるが、フッ化水素を反応系に用いているの で、それによる酸分解法が一般に用いられる。

[0009]

反応に使用される無水フッ化水素は、ホルムアルデヒド重合物を酸分解すると共に溶媒 の役割をも兼ねているため、ホルムアルデヒド重合物のHCHO換算したモル数の1.0~20当 量、好ましくは5~15当量の割合で用いられる。また、ポリフルオロアルキルカルボン酸 またはそのポリフルオロアルキルエステルは、ホルムアルデヒド重合物のHCHO換算したモ ル数の約0.05~10当量、好ましくは約0.2~1.0当量の割合で用いられる。

$[0\ 0\ 1\ 0\]$

前記一般式で表わされるポリフルオロアルキルカルボン酸またはそのポリフルオロアル キルエステルとしては、好ましくはトリフルオロ酢酸CF₃ COOH、2, 2, 3, 3, 3-ペンタフルオ ロプロピルトリフルオロ酢酸エステル CF_3 COOCH₂ CF_2 CF_3 、 2.2.2-トリフルオロエチルトリ フルオロ酢酸エステルCF3 COOCH2 CF3 が用いられるが、この他次のような化合物も用いられ る。

CF₃ CF₂ COOH

CF₃ CF₂ COOCH₂ CF₂ CF₃

CF₃ CF₂ COOCH₂ CF₃

CF₃ CF₂ CF₂ COOH

CF₃ CF₂ CF₂ COOCH₂ CF₂ CF₃

CF₃ CF₂ CF₂ COOCH₂ CF₃

CF₃ CF₂ CH₂ COOH

CF₃ CF₂ CH₂ COOCH₂ CF₃

[0011]

反応は、始めに無水フッ化水素、ホルマリン重合物およびポリフルオロアルキルカルボ ン酸またはそのポリフルオロアルキルエステルを仕込んだ後に、テトラフルオロエチレン を導入することにより行われる。この反応は、常圧下でも加圧下でも行われるが、常圧の 場合にはテトラフルオロエチレンが系外に排出され、テトラフルオロエチレンベースの収 率を低下させるため、その流量を制限する必要があり、また反応に時間がかかるので、加 圧条件下、一般には約0.1~2MPa程度の加圧条件下で行われる。

$[0\ 0\ 1\ 2]$

反応温度に関しては、それが低すぎると反応速度が遅くなり、また副生成物量も多くな って収率の低下を招き、一方高すぎると目的生成物が分解するなどして収率の低下を招く ので、一般には約0~100℃、好ましくは約30~60℃の温度条件下で反応が行われることが 適当である。

【実施例】

[0013]

次に、実施例について本発明を説明する。

 $[0\ 0\ 1\ 4]$

実施例1

容量10Lのオートクレーブ中に、トリフルオロ酢酸800gおよびHCHO源としてのパラホル ムアルデヒド500gを仕込み、攪拌しながら無水フッ化水素2.9kgを仕込んだ。その後加温 し、内温が50℃になった時点で、テトラフルオロエチレン(TFE)を0.88MPaの圧力で導入し た。TFEを仕込み始めると直ぐに内温が上昇し、オートクレーブ内の圧力が降下した。反 応中、内圧を0.88MPaに保つように、絶えず圧縮機によりTFEの分添を行った。1.1kgのTEE を仕込んだ時点で分添を終了し、その後12時間エージングを行った。エージング終了後、 内温50℃で内容物を-20℃の冷却トラップに留出させた後、アルカリによる中和および水

洗を行い、1130gの粗製物を得た。

[0015]

この粗製物のNMR分析の結果、目的生成物である2,2,3,3-テトラフルオロオキセタンの含有率は51.7重量%であった。この粗製物を蒸留により精製すると、常圧にて沸点27~29 \mathbb{C} の留分が592g(純度95%)得られ、これはTFE換算の収率として39.3%であった。

¹⁹F-NMR(CFCl3基準):

a b
-CF₂CF₂CH₂O-

a -78.4ppm

b -118.0ppm

¹H-NMR:

CF₂CF₂C<u>H</u>₂O

 δ 4.89ppm(ZH, t, J=10.2Hz)

[0016]

実施例2

実施例1において、トリフルオロ酢酸量を800gから400gに変更し、570g(純度93重量%)の2,2,3,3-テトラフルオロオキセタンを得た。TFE換算の収率は、37.1%であった。

[0017]

実施例3

実施例1において、トリフルオロ酢酸の代りに、2,2,3,3,3-ペンタフルオロプロピルトリフルオロ酢酸エステルCF $_3$ COOCH $_2$ CF $_2$ CF $_3$ が800g用いられ、粗製物を960g(含有率55.6重量%)を得た。この粗製物を蒸留により精製すると、2,2,3,3-テトラフルオロオキセタン524g(純度96%)が得られ、これはTFE換算の収率として35.2%であった。

[0018]

実施例 4

実施例1において、トリフルオロ酢酸の代りに、2,2,2-トリフルオロエチルトリフルオロ酢酸エステル CF_3 COOCH₂ CF_3 が800g用いられ、粗製物を982g(含有率56.8重量%)を得た。この粗製物を蒸留により精製すると、2,2,3,3-テトラフルオロオキセタン540g(純度95%)が得られ、これはTFE換算の収率として35.9%であった。

[0019]

比較例

実施例1において、トリフルオロ酢酸を用いなかった。279g(純度94重量%)の2,2,3,3-テトラフルオロオキセタンが得られ、TFE換算の収率は18.3%であった。

1/E

【書類名】要約書

【要約】

【課題】テトラフルオロエチレンとホルムアルデヒド発生源化合物とを無水フッ化水素中で反応させ、2,2,3,3-テトラフルオロオキセタンを製造するに際し、その反応収率を高めた方法を提供する。

【解決手段】上記2,2,3,3-テトラフルオロオキセタンの製造法において、反応を一般式Rf COORf′(ここで、Rfは炭素数1~5のポリフルオロアルキル基であり、Rf′は水素原子または炭素数1~5のポリフルオロアルキル基である)で表わされたポリフルオロアルキルカルボン酸またはそのポリフルオロアルキルエステル、好ましくは CF_3 COOCH $_2$ CF_3 で または CF_3 COOCH $_2$ CF_3 の存在下で行う。

特願2004-047915

出願人履歴情報

識別番号

[502145313]

1. 変更年月日 [変更理由] 住 所 氏 名 2002年 4月23日 新規登録 東京都港区芝大門1-12-15 ユニマテック株式会社