A minimum problem

Laurențiu Panaitopol

Abstract

Given a triangle, let R_1 , R_2 , R_3 be the distances from a certain point to the vertices of the triangle. The minimum of $R_1R_2 + R_2R_3 + R_3R_1$ is computed when the considered point runs through triangle's plane.

1 Introduction

Consider a triangle ABC, denote by a, b, c the lengths of its sides and assume $a \ge b \ge c$. For a point M belonging to triangle's plane denote $MA = R_1$, $MB = R_2$ and $MC = R_3$. The inequality

$$R_1^2 + R_2^2 + R_3^2 \ge \frac{1}{3}(a^2 + b^2 + c^2) \tag{1}$$

is well known and the equality holds if and only if M lies in the center of mass of the triangle.

It is also well known the result of Jacob Steiner (cf. [1]) asserting that, if $A < \frac{2\pi}{3}$ then $R_1 + R_2 + R_3$ is minimized if M coincides with Toricelli's point. If $A \ge \frac{2\pi}{3}$ then $R_1 + R_2 + R_3 \ge b + c$ and this quantity is minimized when M coincides with A.

2 The minimum of $R_1R_2 + R_2R_3 + R_3R_1$

Making use of the preceding notation we prove the following fact.

Theorem. If $a \ge b \ge c$ then

$$S(M) := R_1 R_2 + R_2 R_3 + R_3 R_1 \ge bc. \tag{2}$$

Proof. The desired inequality obviously holds when M lies on one of triangle's vertices. Next assume $R_1, R_2, R_3 > 0$. We take into consideration the two cases which can occur:

Case 1: Assume

$$R_1 + R_2 + R_3 > b + c. (3)$$

We have the inequalities $R_2 \ge |c - R_1|$ and $R_3 \ge |b - R_1|$, which imply

$$|R_2R_3| \ge |(c-R_1)(b-R_1)| \ge bc - bR_1 - cR_1 + R_1^2$$

hence $S(M) \ge bc + R_1(R_1 + R_2 + R_3 - b - c) > bc$.

Case 2: Assume

$$R_1 + R_2 + R_3 \le b + c. (4)$$

Denote by x, y, z the measures of the angles \widehat{AMB} , \widehat{BMC} , \widehat{CMA} , respectively. If M lies outside of the triangle, then we have either x=y+z or a similar relation. When M does not lie outside of the triangle we have $x+y+z=2\pi$. It should be said that the cases when one of x, y, z equals 0 or π are considered as well. In either case we have

as well. In either case we have
$$\cos x + \cos y + \cos z + \frac{3}{2} = \cos(y+z) + \cos y + \cos z + \frac{3}{2}$$
$$= 2\cos^2 \frac{x+y}{2} - 1 + 2\cos \frac{x+y}{2}\cos \frac{x-y}{2} + \frac{3}{2}$$
$$= \frac{1}{2} \left(\left(2\cos \frac{x+y}{2} + \cos \frac{x-y}{2} \right)^2 + \sin^2 \frac{x-y}{2} \right)^2$$
$$> 0.$$

Thus

$$\cos x + \cos y + \cos x \ge -\frac{3}{2}.\tag{5}$$

Making use of the cosine theorem in each of the triangle AMB, BMC and CMA, we can write (5) as

$$\frac{R_1^2 + R_2^2 - c^2}{2R_1R_2} + \frac{R_2^2 + R_3^2 - a^2}{2R_2R_3} + \frac{R_3^2 + R_1^2 - b^2}{2R_3R_1} \ge -\frac{3}{2}.$$

This last inequality is further equivalent to

$$R_1 R_2 + R_2 R_3 + R_3 R_1 \ge \frac{a^2 R_1 + b^2 R_2 + c^2 R_3}{R_1 + R_2 + R_3}.$$
 (6)

Note that (6) holds even in the case when one of the triangles degenerates. Since $a \ge b$ it then follows $S(M) \ge \frac{b^2(R_1 + R_2) + c^2R_3}{R_1 + R_2 + R_3}$. Thus it will suffice to prove that $\frac{b^2(R_1 + R_2) + c^2R_3}{R_1 + R_2 + R_3} \ge bc$, that is

$$(b-c)(b(R_1+R_2)-cR_3) \ge 0. (7)$$

Since $R_1 + R_2 \ge c$, by (4) we get $R_3 \ge b$ hence $b(R_1 + R_2) \ge bc \ge cR_3$. Consequently (7) holds and we are done. **Remark.** In order to have equality it is necessary to have equalities in (5), (7) as well as in $a \ge b$, which implies that our triangle is equilateral and M lies on its center. Consequently the equality S(M) = bc holds in the following cases:

- a) If a = b = c then M has to lie either on one of the vertices A, B, C or on triangle's center.
- b) If a = b then M must coincide either with A or with B.
- c) If a > b then M must coincide with A.

We finally note that (6) was proposed by V. Cârtoaje as a problem in a scholar competition that was hold in 1970 in Romania (see [3]). Also, (6) is a special case of a more general inequality to Klamkin [2].

References

- [1] R. Courant, H. Robbins, What is Mathematics? Oxford University Press, 1941, pp. 373-376.
- [2] M. S. Klamkin, Geometric inequalities via the polar moment of inertia. Math. Mag. 48(1975), pp. 44-46.
- [3] C. Ottescu, L. Panaitopol, *Problems from the mathematical competition*. Editura Didactică și Pedagogică, Bucharest, 1976 (in Romanian).

Laurenţiu Panaitopol
Faculty of Mathematics
University of Bucharest
14 Academiei St.
RO-70109 Bucharest
Romania

email: pan@al.math.unibuc.ro