МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа Эффект Холла в полупроводниках

Выполнила: Карасёва Таисия Б02-001 **Цель работы:** измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование: электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

Экспериментальная установка Схема экспериментальной установки показана на рис. 1.

Рис. 1: Экспериментальная установка.

В зазоре электромагнита (рис. 1a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром $_2$.

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла E_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Холла:

$$\varepsilon_X = U_{34} \pm U_0$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку E_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{1}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина. Параметры установки: a=2.2 мм, $L_{35}=3.0$ мм, l=2.5 мм, SN=75 см 2 · вит

Теория

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (Рис. 2).

Рис. 2: Образец с током в магнитном поле.

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями А и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_A = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\varepsilon_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a}$$
 (2)

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

В полупроводниках, когда вклад в проводимость обусловлен и электронами и дырками, выражение для постоянной Холла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p - концентрации электронов и дырок, b_e b_p - их подвижности.

Ход работы

- 1. Определим предельное значение тока через электромагнит $I_{max}=2.18\ A$
- 2. Прокалибруем электромагнит. С помощью милливеберметра снимем зависимость магнитного потока, пронизывающего пробную катушку, находящуюся в зазоре, от тока I.

$$B = \frac{\Delta\Phi}{SN}$$

 $\Delta\Phi-$ разность между начальным и конечным значениями потока вектора индукции, который пронизывал пробную катушку

Таблица 1: Калибровка электромагнита.

I, A	2.00	1.75	1.50	1.25	1.00	0.75	0.50	0.25	0.00
$\Delta\Phi$, мВ	8.1	7.7	7.2	6.5	5.4	4.2	2.9	1.5	0.1
В, Тл	1.08	1.03	0.96	0.87	0.72	0.56	0.39	0.20	0.01

Полагаем $\sigma_{\Phi} = 0.05$ мВб, $\sigma_{I} = 0.05 A$

Погрешность индукции магнитного поля $\sigma_B = \frac{\sigma_{\Delta\Phi}}{SN} = \frac{2\sigma_{\Phi}}{SN} = 10^{-2} \text{ Tл.}$

Рис. 3: Каллибровка электромагнита.

3. Снимем зависимость $U_{34}(I)$ различных токах через образец (табл. 2). А именно, он изменяется от 0.3 до 1.0 мА. При этом в отсутствие магнитного поля вольтметр покажет напряжение U_0 мВ. В последнем опыте изменим направление магнитного поля.

Таблица 2: Результаты измерений U_{34}

		I, mA								
Номер	I_M, A	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.87
U_{34}, mV										
1	0.00	13	16	19	23	26	29	33	36	43
2	0.25	2	2	2	3	0	3	1	3	77
3	0.50	-8	-10	-15	-16	-21	-23	-28	-29	113
4	0.75	-17	-23	-31	-36	-45	-48	-57	-62	144
5	1.00	-27	-36	-47	-54	-67	-74	-86	-92	175
6	1.25	-35	-47	-60	-70	-85	-95	-110	-117	202
7	1.50	-41	-54	-70	-82	-98	-109	-126	-137	219
8	1.75	-45	-60	-76	-90	-107	-121	-137	-151	230
9	2.00	-48	-64	-81	-97	-114	-129	-145	-161	235

4. Рассчитаем ЭДС Холла ε_X по формуле

$$\varepsilon_X = U_{34} - U_0 \tag{3}$$

Таблица 3: Результаты измерений ε_X

		I, mA								
Номер	I_M, A	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.87
ε_X, mV										
1	0.00	0	0	0	0	0	0	0	0	0
2	0.25	-11	-14	-17	-20	-26	-26	-32	-33	34
3	0.50	-21	-26	-34	-39	-47	-52	-61	-65	70
4	0.75	-30	-39	-50	-59	-71	-77	-90	-98	101
5	1.00	-40	-52	-66	-77	-93	-103	-119	-128	132
6	1.25	-48	-63	-79	-93	-111	-124	-143	-153	159
7	1.50	-54	-70	-89	-105	-124	-138	-159	-173	176
8	1.75	-58	-76	-95	-113	-133	-150	-170	-187	187
9	2.00	-61	-80	-100	-120	-140	-158	-178	-197	192

С помощью таблицы 1, построим зависимость $\varepsilon_X(B)$

Рис. 4: $\varepsilon_X(B)$ для разных значений тока через образец

5. С помощью МНК определим из предыдущего графика угловые коэффициенты $K=\frac{\Delta \varepsilon_X}{\Delta B}$ и их погрешности

 ${}$ Таблица 4: K(I)

I, A	0.3	0.4	0.5	0.6
$K, \frac{mV}{T}$	-56.9 ± 0.5	-74.9 ± 0.9	-93.9 ± 0.6	-111.9 ± 1.3
I, A	0.7	0.8	0.9	1.0
$K, \frac{mV}{T}$	-130.6 ± 1.1	-148.2 ± 1.6	-167.2 ± 1.0	-184.2 ± 1.9

Рис. 5: K(I)

С помощью МНК определим угловой коэффициент зависимости и его погрешность

$$k = \frac{\varepsilon_X}{BI} = -182.6 \pm 0.7$$

6. По формуле (2) определим значение постоянной Холла $(\sigma_{R_x} = a\sigma_k)$

$$R_X = -ka = 401.7 \pm 1.5 \ \frac{sm^3}{C}$$

7. Определим, знак холловских частиц. Направление тока показано знаками + и -. Направление тока в обмотках показано стрелкой на торце электромагнита. Зная направление тока и магнитного поля, а также знак ЭДС Холла определим, что чатицы являются электронами, т.е. движутся к клемме 4.

Рис. 6: К определению направления движения холловских частиц

8. Определим концентрацию электронов $\left(\sigma_n = \frac{\sigma_{R_X}}{eR_X^2}\right) \approx 10^{20} \frac{1}{m^3}$:

$$n = \frac{1}{R_X e} \approx (1, 56 \pm 0, 01) \cdot 10^{22} \frac{1}{m^3}$$
 (4)

9. При токе через образец I=1 мА измерим напряжение $U_{35}=1.77mV$ и посчитаем удельную проводимость по формуле (1) $\left(\sigma_{\sigma}=\sigma\sqrt{\epsilon_{I}^{2}+\epsilon_{U_{35}}^{2}}\right)$:

$$\sigma \approx 308.2 \pm 1,6 \, \frac{1}{Om \cdot m} \tag{5}$$

10. Посчитаем подвижность электронов $(\sigma_b = b\sqrt{\epsilon_n^2 + \epsilon_\sigma^2})$:

$$b = \frac{\sigma}{en} \approx 0.123 \pm 0.001 \, \frac{m^2}{V \cdot s} \tag{6}$$

11. Построим итоговую таблицу:

Таблица 5: Результаты.

$R_X,$ $10^{-4} m^3/C$	Знак носителей	$ \begin{array}{c} n, \\ 10^{22}, m^{-3} \end{array} $	$Om^{-1} \cdot m^{-1}$	$b, \\ m^2/V \cdot s$
4.017 ± 0.015	_	1.56 ± 0.01	308.2 ± 1.6	0.123 ± 0.001

Вывод

В ходе работы с помощью построения градуировочной кривой между индукцией магнитного поля и тока в єлектромагните

(a) была построена серия графиков зависимости ЭДС Холла от магнитного поля, в которое помещён образец. Относительные погрешности угловых коэффициентов соответсвующих кривых не превосходят 1%

- (b) была построена зависимость углового коэффициента зависимости Магнитное поле-ЭДС Холла от тока в образце. Погрешность соотвествующего углового коэффиициента составила 0.4%. С помощью этого коэффициента было получено значение постоянной Холла, относительная погрешность составила 0.4%.
- (с) было определён знак заряда холловских частиц (-)
- (d) были получены значения с соответсвующими относительными погрешностями: концентрации холловских частиц (1.8%), удельная проводимость образца (0.5%), подвижность холловских частиц (0.8%)