

nell'open source

Tipi di Arduino

Cos'è Arduino Introduzione

- Piattaforma di sviluppo per l'elettronica
- Basata su un micro controllore programmabile
- Software ed hardware open source
- Diverse board per ogni esigenza

Cos'è Arduino

Arduino è una famiglia di microcontrollori in grado di leggere degli input quali luce attraverso un sensore, la pressione di un dito su un pulsante, un messaggio di «X» e trasformarlo in un output, attivando un motore, accendendo un LED e tanto altro ancora.

Cos'è Arduino Totalmente open source

Bootloader open source

(https://github.com/arduino/ArduinoCore-avr/)

Schematiche open source

Cos'è Arduino

https://www.arduino.cc

Arduino è facilmente programmabile inviando un set di istruzioni al microcontrollore situato sulla board. Per far ciò basta utilizzare il suo linguaggio di programmazione e l'ambiente di sviluppo Arduino IDE.

```
sketch_nov17a | Arduino 1.8.19 (Windows Store 1.8.57.0)
File Modifica Sketch Strumenti Aiuto

sketch_nov17a

void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```


Cos'è Arduino Lo schema Pinout

- 14 pin digitali I/O
- 6 pin analogici input (0-5V)
- 6 pin PWM output
- Comunicazione in UART/I2C/SPI

Cos'è Arduino Lo schema Pinout

- 14 pin digitali I/O
- 6 pin analogici input (0-5V)
- 6 pin PWM output
- Comunicazione in UART/I2C/SPI

Cos'è Arduino La programmazione

Accendere un LED

```
// the setup function runs once when you press reset or power the board
void setup() {
    // initialize digital pin LED_BUILTIN as an output.
    pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
    digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
    delay(1000); // wait for a second
    digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
    delay(1000); // wait for a second
```


A cosa serve

Prototipazione

- Utilizzando Arduino si riduce di molto il tempo di sviluppo
- Sviluppo prima di una mass production

Progetti Hobbystici

• Progetti finiti in ambito domestico

Sensori ed attuatori

Sensori

- Segnale in ingresso
- Analogico / Digitale / Seriale
- Possono essere: Pulsanti / Termocoppie / Microfoni ...

Attuatori

- Segnale in uscita
- PWM / Digitale / Seriale
- Possono essere: Motori / Speaker / Led / Display ...

Sensori

Un sensore è un dispositivo che rileva eventi o modifiche nell'ambiente e le invia ad un altro dispositivo, tipicamente un microcontrollore o un microprocessore.

Utilizziamo i sensori nella vita quotidiana come ad esempio i sensori tattili degli ascensori, il dimmer di una lampadina e tanti altri

Sensore di umidità

Sensore di luce

Sensori

Un buon sensore deve avere le seguenti caratteristiche:

- Deve essere sensibile alla proprietà misurata
- Deve essere insensibile a qualsiaisi altra proprietà
- Non deve infliìuenzare la proprietà misurata.

Sensore di umidità

Sensore di luce

Attuatori

Un attuatore è il componente responsabile del movimento e del controllo di un meccanismo o sistema.

In pratica è un "Motore".

Esso richiede un segnale di controllo e una sorgente di energia che può essere tensione, corrente, pneumatica idraulica e anche umana.

Quando riceve un sergnale di controllo, l'attuatore converte l'energia in moto meccanico.

Attuatori

Motore in continua

Motore passo passo

Servo motore

Attuatori

LED

Buzzer

Speaker

LED

LED

RGB LED

Common

Connettere I catodi RGB a massa

Connettere l'anodo comune RGB a 5V

Utilizzare SEMPRE un resistore da 220 ohm per ogni pin

Casi di utilizzo

- Automazione domestica
- Robotica
- Sensori Ambientali
- Arte Interattiva

Automazione domestica

- Controller per l'irrigazione automatica (https://www.hackster.io/chuygen/smart-irrigation-controller-44ad38)
- Framework per il controllo di relè, e sensori in rete (esphome.io)
- Stazione meteo
 (https://openweatherstation.com/ows/index.php)

Robotica

- Risolutore di cubo di Rubik (projecthub.arduino.cc/hbolanos2001/rubiks-cube-solver-robot-6233e2)
- Centralina per Drone (multiwii.com e ardupilot.org)
- Centralina per Auto
 (Gestione carburazione, iniettori, mappa motore)
 (https://speeduino.com)

The ArduPilot family

		-		
Autopilot	ArduPilot (aka "Legacy")	ArduPilotMega APM 1 – 1280	ArduPilotMega APM 1 – 2560	ArduPilotMega APM 2
Date of introduction	Q1 2009	Q1 2010	Q1 2011	Q4 2011
Status	Discontinued	Discontinued	Active	Active
Processors	atmega 328, attiny	atmega 1280, atmega 328	atmega 2560, atmega 328	atmega 2560, atmega 32u2, MPU-6000 DMP processor
Onboard sensors	None. External: Thermopiles or optional ArdulMU	3-axis gyro, 3-axis accel, baro, optional mag	3-axis gyro, 3-axis accel, baro, optional mag	6-axis MPU6000 (gyro+accel), baro, mag, GPS
Datalogging memory	None	2MB	2MB	4MB
Size	30x50x30mm	40x72x20mm	40x72x20mm	40x65x10mm
Assembly required	Lots!	Some soldering	Some soldering	None!

Esempio sensori ambientali

- Sensori di vario tipo con invio di dati su rete TCP/IP
- Lettura di contatori di vario tipo

(https://github.com/jomjol/AI-on-the-edge-device)

Risorse e comunità

- www.hackster.io
- community telegram
- forum arduino
- Youtube et al.

E' il momento di provare.

Per cominciare ci sono gli esempi direttamente nell'IDE

E' il momento di provare.

Grazie e buon divertimento