信安数基研究报告

2212794 曹瑜 密码科学与技术

Topic 1 [离散对数问题]: (小组选题)

1、数学问题:

离散对数: 如果对于一个整数 b,和质数 p 的一个原根 a, 可以找到一个唯一的 z 指数 i, 使得: $b = a^i (\text{mod} p)$,其中 $0 \le i \le p - 1$ 成立,那么指数 i 称为 b 的以 a 为基数的模 p 的离散对数;

离散对数难题: 当已知一个质数p和它的一个原根a,如果给定一个b,要计算i的值是比较困难;给定群 G,设 g, h 属于 G,且有等式 $h=g^x$,那么求解 x,就是离散对数问题(Discrete Logarithm Problem)。x 称为 h 以 g 为底的离散对数,用符号表示为 $\log_a h$,或者 $DL_a(h)$ 。

2、算法介绍&特点:

Babystep-Giantstep 方法:

算法原理: Shanks 的 Babystep-Giantstep 方法是解决离散对数问题的一种有效算法;离散对数问题是指在给定元素 g 和 h 的情况下,在某个群 G 中找到一个整数,使得 g^x =h。这个问题在密码学中非常重要,尤其是在公钥加密和数字签名算法中,其核 心思想是将可能的指数值分割成较小的区块,从而降低必须直接计算的指数的数量。 算法主要分为两个阶段: Babysteps 和 Giantsteps。

具体步骤:

- (1) 选择整数 m:通常取 m=Γ √n ¬, 其中 n 是群 G 的阶;
- (2) Babysteps: 对于 i=0 到 m-1, 计算 gi, 并将结果与 j 存储在一个表中;
- (3) 计算 g (-m): 这是巨步的基础
- (4) Giantsteps: 对于 i=0 到 m-1, 计算 h·g^{-im} 并检查这个结果是否出现在 Babysteps 的表中。如果找到匹配,假设对应的 Babystep 是 gⁱ,则 h=g^{im+j}从而解为 x=im+j;

特点:

相比简单枚举,大大减少了搜索时间,算法直观易理解,易于实现,在非常大的群中,即使是 $O(\sqrt{n})$ 的复杂度也可能导致不实际的计算时间和资源需求,但需要大量内存存储 Babysteps 的结果

Pollard ρ算法:

算法原理: Pollard ρ算法利用了随机漫步和伪随机数生成的思想来寻找循环,从而实现对数值问题的求解。其核心概念是通过构造一个伪随机序列来寻找重复值,进而确定循环长度,并最终找到目标值。

具体步骤:

- (1) 选择初始值 x_0 和伪随机函数 f(x);
- (2) 生成序列 xn+1=f(xn)并计算序列的 gcd 值;
- (3) 使用 Floyd 判环算法(乌龟和兔子算法)检测序列中的循环;
- (4) 一旦检测到循环, 计算两个数值的最大公约数, 即可得到因子。

特点:

内存占用低,在许多实际应用中展现出高效性,但本质上是概率算法,不能保证在所有情况下都能迅速找到解,算法的性能在一定程度上依赖于伪随机函数的选择

Pohlig-Hellman 算法:

算法原理: Pohlig-Hellman 算法利用中国剩余定理和模数的素因子分解,将离散对数问题 $g^x \equiv \pmod{p}$ 转化为多个小规模的离散对数问题。假设 p-1 的素因子分解为 $p-1=q_1^{e_1}q_2^{e_2}\cdots q_k^{e_k}$,则原问题可以分解为模 $q_i^{e_i}$ 的子问题。

具体步骤:

- (1) 将模数字 p-1 分解为素因子乘积 p-1= $q_1^{e1}q_2^{e2}$ ······ q_k^{ek}
- (2) 对于每个素因子 qi 和对应的指数 ei,求解模 q_kek 的离散对数问题;
- (3) 利用中国剩余定理,将各个子问题的解合并,得到原问题的解;

特点:

适用于模数具有较小素因子的情况,能够显著降低计算复杂度;可扩展性:算法可以扩展到处理更大规模的离散对数问题;但算法性能依赖于模数 p-1 的素因子分解,如果 p-1 含有大素因子,算法效率会下降;但适用范围有限,主要适用于模数 p 为大质数的情况。

指数计算法:

算法原理: 指数计算法(Index Calculus Method)是一种解决离散对数问题的算法,特别适用于大素数模数情况下的离散对数计算。该方法利用数论中的一些技巧,将离散对数问题转化为求解线性方程组,从而大大加快计算速度。

具体步骤:

- (1) 选择 $B=\{p^1,p^2,...,p^k\}$, 这些素数通常选取较小的素数;
- (2) 随机选择整数 a, 计算 $g^a \pmod{p}$, 然后检查 $g^a \pmod{p}$ 是否能分解为因子基

中的素数的乘积。如果可以,记录这个关系;

- (3)将所有能分解的关系写成线性方程,形成矩阵 A 和向量 b,即 Ax=b.利用线性代数的方法解出 x,即 $log_g p_i$.
- (4) 对于给定的 h, 找到 a 使得 g^a*h-1 能分解为因子基中的素数的乘积, 通过前面的对数值计算出 x。

具体步骤:

内存占用低,在许多实际应用中展现出高效性,但本质上是概率算法,不能保证在所有情况下都能迅速找到解,算法的性能在一定程度上依赖于伪随机函数的选择:

3、在密码学中的应用:

Diffie-Hellman 密钥交换协议:

Diffie-Hellman 算法由 Whitfield Diffie 和 Martin Hellman 提出,该算法的安全性也是基于一般有限域上的离散对数问题的难解性。该算法的目的是使两个用户能安全地交换密钥,以便在后续的通信中用该密钥对消息加密。该算法本身只限于进行密钥交换。

通俗解释:

算法描述:

Diffie-Hellman 算法主要用于两个用户密钥 K 的安全交换的场景下,利用一般有限域上的离散对数难解问题,使得敌手难以通过假定的已知信息推算得出密钥 K。

Diffie-Hellman 算法描述如下:

首先选取素数 q 和其本原根 α 为两个公开的整数,用户 Alice、Bob 再分别

选取一个随机整数(X < q)并各自计算 $Y = \alpha^X \pmod{q}$ 。在此过程中,用户只需保证各自所选取的 X 为私有的,计算所得出的 Y 则是可以公开访问的。在计算完毕各自的 Y 后,两用户通过信道交换得到对方的Y,再根据各自私有的随机整数 X 计算 K:

$$K = (Y')^X (mod \ q)$$

两用户计算所得出的密钥 K 将是相等的:

$$K = (Y_B)^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha^{X_B})^{X_A} \mod q$$

$$= \alpha^{X_B X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A} \mod q)^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

应用场景:

Diffie-Hellman 密钥交换协议广泛应用于网络通信和数据加密等领域。例如,HTTPS 协议中就使用了这种算法来建立安全连接。通过使用 Diffie-Hellman 密钥交换协议,两个通信方可以在不直接交换密钥的情况下,建立起一个共同的密钥,从而确保通信内容的安全性。Diffie-Hellman 算法也被广泛应用于 VPN、安全通信等场景。

Topic 2 [RSA 问题]:

1、数学问题:

大整数因子分解问题: 给定一个大合数 n,找到它的两个质因子 p 和 q 是一个极其困难的数学问题; 在 RSA 算法中, n 是通过选择两个大质数 p 和 q 并计算它们的乘积得到的,即 n=p*q。这个 n 值将作为公钥和私钥的共同部分。由于大整数的因子分解困难,即使知道了 n 的值,也无法轻易得到 p 和 q 的值,从而保证了私钥的安全性;

求模的离散对数问题:

已知一个数 a、模数 n 和余数 b,求解指数 x,使得 a^x mod n = b。在大整数的情况下,这个问题是非常困难的,因为没有有效的算法可以在多项式时间内解决。在 RSA 算法中,这个问题与私钥的生成密切相关,具体来说,需要找到一个整数 e(公钥的加密指数),使得 $1 < e < \phi(n)$ 且 e 与 $\phi(n)$ 互质(其中 $\phi(n)$ 是欧拉函数,表示小于 n 且与 n 互质的正整数的个数)。然后,需要计算 e 对于 $\phi(n)$ 的乘法逆元 d(私钥的解密指数),满足 ed $\equiv 1 \pmod{\phi(n)}$ 。这个 d 的求解过程就涉及到了求模的离散对数问题

2、算法介绍&特点:

算法介绍:

RSA 算法由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)在 1977 年提出。该算法使用一对密钥,即公钥和

私钥,来进行加密和解密操作。公钥用于加密数据,而私钥用于解密数据。RSA 算法的安全性基于以下两个事实:

大数分解的困难性:给定一个大合数 n,找到它的两个质因子 p 和 q 是一个极其困难的数学问题。RSA 算法中,n 是通过选择两个大质数 p 和 q 并计算它们的乘积得到的。

模幂运算和模逆元的存在性: RSA 算法利用模幂运算和模逆元的概念来进行加密和解密操作。

算法步骤:

参数表:

9000							
参数	解释	公式	描述				
P、Q	质数	P*Q=N	分解模数N后得到的值				
N	公共模数	N=P*Q	在RAS中进行模运算				
E	公钥指数	gcd(φ,e)=1	1 <e<φ< td=""></e<φ<>				
D	私钥指数	gcd(φ,d)=1	1 <d<φ< td=""></d<φ<>				
φ	欧拉公式	φ=(P-1)*(Q-1)	1				
С	密文	c=m ^e mod N	1				
d	明文	m=c ^d mod N	/				

加密算法:

 $c \equiv m^e \mod N$

解密算法:

 $M \equiv c^d \mod N$

密钥生成:

- (1) 选择两个大质数 p 和 q, 计算 n = p * q。
- (2) 计算欧拉函数 $\varphi(n) = (p-1)*(q-1)$ 。
- (3) 选择一个整数 e (公钥的加密指数),满足 $1 < e < \varphi(n)$ 且 $e = \varphi(n)$ 互质。
- (4) 计算 d (私钥的解密指数),满足 ed $\equiv 1 \pmod{\varphi(n)}$ 。
- (5) 公钥为(e, n), 私钥为(d, n)。

算法特点:

RSA 是一种非对称加密,使用一对密钥,且基于大数分解问题的困难性,不仅可以用于加密和解密数据,还可以用于数字签名,允许使用不同长度的密钥,与其他公钥加密算法相比,RSA 算法的实现相对容易理解,但在处理大数据时效率较低

3、在密码学中的应用:

(1) 数据加密:

发送方可以使用接收方的公钥对数据进行加密,确保数据在传输过程中的机密性。只有拥有相应私钥的接收方才能解密数据,从而确保数据的安全性。这种加密方式在网络通信、云计算、移动设备等场景中得到了广泛应用,例如 HTTPS 协议就使用了 RSA 算法进行密钥交换和数据加密。

(2) 数字签名:

RSA 算法也可以用于生成数字签名,用于验证数据的完整性和认证发送方的身份。 发送方使用自己的私钥对数据进行签名,接收方使用发送方的公钥验证签名的有 效性。

(3) 身份认证:

RSA 算法还可以用于身份认证。例如,在网银等场景中,用户可以使用 RSA 算法 生成一对公私钥,将公钥发送给银行。银行使用公钥对数据进行加密,只有用户 拥有私钥才能解密,从而实现身份认证。

(4) 密钥交换:

在网络通信中,RSA 算法还可以用于密钥交换。通信双方可以首先使用 RSA 算法交换对称加密算法的密钥,然后使用对称加密算法进行后续的数据传输。这种方式结合了 RSA 算法的安全性和对称加密算法的高效性,使得网络通信更加安全可靠。

(5) 数字证书:

数字证书是一种由权威机构颁发的电子文件,用于证明某个公钥与某个实体(如个人、组织或设备等)之间的绑定关系。数字证书中通常包含公钥、实体信息、证书颁发机构信息等内容,并使用 RSA 算法进行签名以保证其真实性和完整性。通过验证数字证书的有效性,可以确定通信对方的身份和公钥的可靠性。

Topic 3 [AES 加密]:

1、密码原理:

AES 加密算法是一种分组密码体制,其将明文按照固定大小进行分组,然后对每一分组进行加密。在加密过程中采用了多轮加密的方式,每一轮加密都包含了四种操作: SubBytes、ShiftRows、MixColumns 和 AddRoundKey。

AES 加密算法也是一种对称加密算法,加密和解密操作是相反的过程,因此需要使用相同的密钥作为加密和解密的关键参数。AES 算法支持三种密钥长度:

128 比特、192 比特和 256 比特,对于不同长度的密钥,AES 算法也会采用不同的轮数进行加密。

以 128 比特为例,一共进行 10 轮轮变换,前九轮依次进行 SubBytes、ShiftRows、MixColumns 和 AddRoundKey;最后一轮则只进行 SubBytes、ShiftRows 和 AddRoundKey;

SubBytes: 字节代换

根据字节内容进行查表代换

S 盒:

行/列	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0x63	0x7c	0x77	0x7b	0xf2	0x6b	0x6f	0xc5	0x30	0x01	0x67	0x2b	0xfe	0xd7	0xab	0x76
1	0xca	0x82	0xc9	0x7d	0xfa	0x59	0x47	0xf0	0xad	0xd4	0xa2	0xaf	0x9c	0xa4	0x72	0xc0
2	0xb7	0xfd	0x93	0x26	0x36	0x3f	0xf7	0xcc	0x34	0xa5	0xe5	0xf1	0x71	0xd8	0x31	0x15
3	0x04	0xc7	0x23	0xc3	0x18	0x96	0x05	0x9a	0x07	0x12	0x80	0xe2	0xeb	0x27	0xb2	0x75
4	0x09	0x83	0x2c	0x1a	0x1b	0x6e	0x5a	0xa0	0x52	0x3b	0xd6	0xb3	0x29	0xe3	0x2f	0x84
5	0x53	0xd1	0x00	0xed	0x20	0xfc	0xb1	0x5b	0x6a	0xcb	0xbe	0x39	0x4a	0x4c	0x58	0xcf
6	0xd0	0xef	0xaa	0xfb	0x43	0x4d	0x33	0x85	0x45	0xf9	0x02	0x7f	0x50	0x3c	0x9f	0xa8
7	0x51	0xa3	0x40	0x8f	0x92	0x9d	0x38	0xf5	0xbc	0xb6	0xda	0x21	0x10	0xff	0xf3	0xd2
8	0xcd	0x0c	0x13	0xec	0x5f	0x97	0x44	0x17	0xc4	0xa7	0x7e	0x3d	0x64	0x5d	0x19	0x73
9	0x60	0x81	0x4f	0xdc	0x22	0x2a	0x90	0x88	0x46	0xee	0xb8	0x14	0xde	0x5e	0x0b	0xdb
A	0xe0	0x32	0x3a	0x0a	0x49	0x06	0x24	0x5c	0xc2	0xd3	0xac	0x62	0x91	0x95	0xe4	0x79
В	0xe7	0xc8	0x37	0x6d	0x8d	0xd5	0x4e	0xa9	0x6c	0x56	0xf4	0xea	0x65	0x7a	0xae	0x08
С	0xba	0x78	0x25	0x2e	0x1c	0xa6	0xb4	0xc6	0xe8	0xdd	0x74	0x1f	0x4b	0xbd	0x8b	0x8a
D	0x70	0x3e	0xb5	0x66	0x48	0x03	0xf6	0x0e	0x61	0x35	0x57	0xb9	0x86	0xc1	0x1d	0x9e
Е	0xe1	0xf8	0x98	0x11	0x69	0xd9	0x8e	0x94	0x9b	0x1e	0x87	0xe9	0xce	0x55	0x28	0xdf

逆S盒:

行/列	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	0x52	0x09	0x6a	0xd5	0x30	0x36	0xa5	0x38	0xbf	0x40	0xa3	0x9e	0x81	0xf3	0xd7	0xfb
1	0x7c	0xe3	0x39	0x82	0x9b	0x2f	0xff	0x87	0x34	0x8e	0x43	0x44	0xc4	0xde	0xe9	0xcb
2	0x54	0x7b	0x94	0x32	0xa6	0xc2	0x23	0x3d	0xee	0x4c	0x95	0x0b	0x42	0xfa	0xc3	0x4e
3	0x08	0x2e	0xa1	0x66	0x28	0xd9	0x24	0xb2	0x76	0x5b	0xa2	0x49	0x6d	0x8b	0xd1	0x25
4	0x72	0xf8	0xf6	0x64	0x86	0x68	0x98	0x16	0xd4	0xa4	0x5c	0xcc	0x5d	0x65	0xb6	0x92
5	0x6c	0x70	0x48	0x50	Oxfd	0xed	0xb9	0xda	0x5e	0x15	0x46	0x57	0xa7	0x8d	0x9d	0x84
6	0x90	0xd8	0xab	0x00	0x8c	0xbc	0xd3	0x0a	0xf7	0xe4	0x58	0x05	0xb8	0xb3	0x45	0x06
7	0xd0	0x2c	0x1e	0x8f	0xca	0x3f	0x0f	0x02	0xc1	0xaf	0xbd	0x03	0x01	0x13	0x8a	0x6b
8	0x3a	0x91	0x11	0x41	0x4f	0x67	0xdc	0xea	0x97	0xf2	0xcf	0xce	0xf0	0xb4	0xe6	0x73
9	0x96	0xac	0x74	0x22	0xe7	0xad	0x35	0x85	0xe2	0xf9	0x37	0xe8	0x1c	0x75	0xdf	0x6e
А	0x47	0xf1	0x1a	0x71	0x1d	0x29	0xc5	0x89	0x6f	0xb7	0x62	0x0e	0xaa	0x18	0xbe	0x1b
В	0xfc	0x56	0x3e	0x4b	0xc6	0xd2	0x79	0x20	0x9a	0xdb	0xc0	0xfe	0x78	0xcd	0x5a	0xf4
С	0x1f	0xdd	0xa8	0x33	0x88	0x07	0xc7	0x31	0xb1	0x12	0x10	0x59	0x27	0x80	0xec	0x5f
D	0x60	0x51	0x7f	0xa9	0x19	0xb5	0x4a	0x0d	0x2d	0xe5	0x7a	0x9f	0x93	0xc9	0x9c	0xef
E	0xa0	0xe0	0x3b	0x4d	0xae	0x2a	0xf5	0xb0	0xc8	0xeb	0xbb	0x3c	0x83	0x53	0x99	0x61
F	0x17	0x2b	0x04	0x7e	0xba	0x77	0xd6	0x26	0xe1	0x69	0x14	0x63	0x55	0x21	0x0c	0x7d

ShiftRows: 行移位

将明文分组(一个 4x4 的字节矩阵)的每一行进行循环移位;第一行保持不变,第二行向左循环移位 1 个字节,第三行向左循环移位 2 个字节,第四行向左循环移位 3 个字节;

MixColumns: 列混淆

列混淆操作使用了一个固定的矩阵(在 AES 标准中定义)与每一列进行乘法运算。这里的乘法不是常规的十进制乘法,而是基于伽罗瓦域(Galois Field)GF(2^8)上的运算

列混合变换是通过矩阵相乘来实现的,经行移位后的状态矩阵与固定的矩阵相乘,得到混淆后的状态矩阵,如下图的公式所示:

$$\begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}.$$

状态矩阵中的第i列(0≤i≤3)的列混合可以表示为下图所示:

$$s'_{0,j} = (2 * s_{0,j}) \oplus (3 * s_{1,j}) \oplus s_{2,j} \oplus s_{3,j} \oplus s'_{1,j} = s_{0,j} \oplus (2 * s_{1,j}) \oplus (3 * s_{2,j}) \oplus s_{3,j} \oplus s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 * s_{2,j}) \oplus (3 * s_{3,j}) \oplus s'_{3,j} = (3 * s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 * s_{3,j}) \oplus s'_{3,j} = (3 * s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 * s_{3,j}) \oplus s'_{3,j} \oplus s'$$

代码实现:

```
// MixColumns变换 unsigned char s0 = gfMul2(column[0]) ^ gfMul3(column[1]) ^ column[2] ^ column[3]; unsigned char s1 = column[0] ^ gfMul2(column[1]) ^ gfMul3(column[2]) ^ column[3]; unsigned char s2 = column[0] ^ column[1] ^ gfMul2(column[2]) ^ gfMul3(column[3]); unsigned char s3 = gfMul3(column[0]) ^ column[1] ^ column[2] ^ gfMul2(column[3]);
```

AddRoundKey: 轮密钥加

当前分组和对应的该轮扩展密钥进行按位异或,将输入或中间态 S 的每一列与一个密钥字 ki 进行按位异或,即将 128 位轮密钥 Ki 同状态矩阵中的数据进行逐位异或操作。

KeyExtend: 轮密钥扩展

(1) 扩展密钥数组

扩展过程:为了进行多轮加密,需要对 W 数组进行扩展,增加 40 个新的列,形成总共 44 列的扩展密钥数组。

新列的生成:

如果 i(新列的索引)不是 4 的倍数,则第 i 列由前一个 4 的倍数列(W[i-4])和前一个列(W[i-1])进行异或(\oplus)运算得到: W[i] = W[i-4] \oplus W[i-1]:

如果 i 是 4 的倍数,则第 i 列由前一个 4 的倍数列(W[i-4])和经过函数 T 处理的前一个列(W[i-1])进行异或运算得到: W[i] = W[i-4] \oplus T(W[i-1]);

(2)函数 T

函数 T 用于生成 4 的倍数列时的特殊处理,它由以下三部分组成:

字循环(Word Shift): 将输入的 32 位字中的 4 个字节循环左移 1 个字节。即,如果输入字是[b0, b1, b2, b3],则输出将是[b1, b2, b3, b0]。

<u>字节代换</u>(Byte Substitution): 对字循环的结果使用 AES 的 S 盒 (Substitution-box) 进行字节级的代换。S 盒是一个预定义的替换表,用于将每个输入字节映射到一个输出字节。

<u>轮常量异或</u>(Rcon XOR):将前两步的结果(即字循环和字节代换后的字)与一个轮常量 Rcon[j]进行异或运算。这里的 j 表示当前的轮数(round number)。

轮常量 Rcon[j]:

2、应用场景:

数据保护: AES 算法被广泛用于保护敏感数据的机密性。这包括个人身份信息、商业机密、政府数据等。通过使用 AES 加密,可以确保数据在存储、传输或处理过程中不被未经授权的第三方访问或泄露。

网络通信安全:在网络通信中,AES 用于确保数据的完整性和保密性。无论是电子邮件、即时消息、文件传输还是在线交易,AES 都可以提供强大的加密保护,防止数据在传输过程中被截获或篡改。

软件安全: AES 也常用于软件安全领域,如加密软件、安全通信协议等。通过集成 AES 加密算法,软件可以提供更高级别的数据保护和身份验证功能。

数字内容保护:对于数字内容(如电影、音乐、电子书等),AES 加密算法可以用于防止未经授权的复制和分发。通过加密内容,可以确保只有拥有正确密钥的用户才能访问和使用这些内容。

硬件安全: 在硬件领域, AES 加密算法也扮演着重要角色。例如, 智能卡、安全芯片和加密设备等常常使用 AES 来保护存储在其中的敏感数据。

3、包含的数学问题:

有限域(GF(2^8))

在 AES 中,使用的是 GF(2⁸),即包含 256 个元素的有限域。这些元素对应于一个字节(8 位)的所有可能值(从 00 到 FF 的十六进制数)。

加法与减法: 在 GF(2^8)中,加法和减法实际上是相同的操作,因为它们是在二进制(模 2)下进行的。加法通过异或(XOR)操作实现,即如果两个对应的二进制位不同,则结果为 1,否则为 0。

乘法: 乘法在 GF(2^8)中稍微复杂一些,因为它涉及到多项式乘法和模多项式除法。AES 使用一个固定的模多项式(称为不可约多项式)来定义乘法操作。

<u>逆元</u>: 在 GF(2^8)中,每个非零元素都有一个乘法逆元,即存在一个元素使得与该元素相乘的结果为 1 (模多项式的余数为 1)。逆元在 AES 的列混合步骤中用于实现矩阵的逆运算。

有限域的使用确保了 AES 算法中的运算都是可逆的,并且运算结果始终在有限的范围内。这为算法的加密和解密过程提供了数学基础。

线性代数(Linear Algebra)

线性代数在 AES 算法中主要体现在列混合步骤中。列混合是一个线性变换过程,它通过一个固定的 4x4 矩阵与状态数组(一个 4x1 的列向量)相乘来实现。在列混合步骤中,状态数组的每一列都被视为一个 4x1 的列向量,并与一个固定的 4x4 矩阵相乘。这个矩阵乘法操作是在 GF(2^8)上进行的,因此涉及到有限域中的乘法运算; 线性代数的应用使得 AES 算法在加密过程中具有更高的复杂性和安全性。通过矩阵乘法和扩散性的实现,AES 能够抵御各种密码分析攻击,并保护数据的机密性和完整性。