Übungen zu Lineare Algebra II

Jendrik Stelzner

15. Juni 2016

Übung 1.

Es sei V ein K-Vektorraum und $f:V\to V$ ein Endomorphismus. Zeigen Sie:

- 1. Ist $f^2 = f$, so ist $V = \operatorname{im} f \oplus \ker f$, und es gilt im $f = V_1(f)$ und $\ker f = V_0(f)$.
- 2. Ist $f^2 = \mathrm{id}_V$, so ist f diagonalisierbar mit (möglichen) Eigenwerten 1 und -1.
- 3. Sind $\lambda, \mu \in K$ mit $\lambda \neq \mu$ und $(f \lambda)(f \mu) = 0$, so ist f diagonalisierbar mit (möglichen) Eigenwerten λ und μ . Inwiefern sind die vorherigen beiden Aufgabenteile Sonderfälle hiervon?

Übung 2.

Es sei V ein K-Vektorraum. Zeigen Sie, dass die folgenden Aussagen allgemein gelten, oder geben Sie jeweils ein Gegenbeispiel an.

1. Ist $V=V_1\oplus V_2$ für Untervektorräume $V_1,V_2\subseteq V$, so gilt für jeden Untervektorraum $U\subseteq V$ die Zerlegung

$$U = (U \cap V_1) \oplus (U \cap V_2).$$

2. Ist $V = U_1 \oplus W_1 = U_2 \oplus W_2$ mit $W_1 \supseteq W_2$, so ist

$$W_1 = (U_2 \cap W_1) \oplus W_2.$$

- 3. Ist $f\colon V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarinter Untervektorraum, so gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.
- 4. Für alle Untervektorräume $W, U_1, U_2 \subseteq V$ mit $U_1 \subseteq U_2$ gilt

$$(U_1 + W) \cap U_2 = U_1 + (W \cap U_2).$$

- 5. Ist $\mathcal{E}\subseteq V$ ein Erzeugendensystem und $U\subseteq V$ ein Untervektorraum, so ist die Einschränkung $\mathcal{E}'\coloneqq\mathcal{E}\cap U$ ein Erzeugendensystem von U.
- 6. Ist $(U_i)_{i\in I}$ eine Famlie von Untervektorräumen $U_i\subseteq V$ mit $V=\sum_{i\in I}U_i$ und $U_i\cap U_j=0$ für $i\neq j$, so ist $V=\bigoplus_{i\in I}U_i$.

Übung 3.

Es sei V ein Vektorraum und $f\colon V\to V$ ein Endomorphismus. Es sei $(U_i)_{i\in I}$ eine Familie von f-invarianten Untervektorräumen, und $U\subseteq V$ ein f-invarianter Untervektorraum. Zeigen Sie:

- 1. Auch der Schnitt $\bigcap_{i \in I} U_i$ ist f-invariant.
- 2. Auch die Summe $\sum_{i \in i} U_i$ ist f-invariant.
- 3. f induziert eine lineare Abbildung

$$\bar{f}: V/U \to V/U, \quad [x] \mapsto [f(x)].$$

Übung 4.

Es sei K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- 1. f ist diagonalisierbar.
- 2. Für jeden f-invarianten Untervektorraum $U\subseteq V$ gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.

Übung 5.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es sei $\pi\colon V\to V/U$, $v\mapsto [v]$ die kanonische Projektion.

- 1. Es sei $(b_i)_{i\in I}$ eine Basis von V, und für eine Teilmenge $J\subseteq I$ sei $(b_j)_{j\in J}$ eine Basis von U. Zeigen Sie, dass $([b_i])_{i\in I\smallsetminus J}$ eine Basis von V/U ist.
- 2. Es sei $(b_i)_{i\in I}$ eine Basis von U und $(c_j)_{j\in J}$ eine Basis von V/U, wobei $I\cap J=\emptyset$. Für $j\in J$ sei $b_j\in V$ mit $\pi(b_j)=c_j$. Zeigen Sie, dass $(b_l)_{l\in L}$ für $L\coloneqq I\cap J$ ist eine Basis von V ist.

Übung 6.

Es sei V ein reeller Vektorraum und $(U_i)_{i\in I}$ eine Familie von Untervektorräumen $U_i\subseteq V$. Zeigen Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb C}=\bigoplus_{i\in I}(U_i)_{\mathbb C}$.

Übung 7.

Es seien V und W zwei reelle Vektorräume, und $f:V\to W$ sei \mathbb{R} -linear.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb C}) = (\operatorname{im} f)_{\mathbb C}$.
- 5. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 8.

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb C}$ diagonalisierbar mit reellen Eigenwerten ist

Übung 9.

Es sei

$$\iota \colon \mathbb{R}[X] \to \mathbb{C}[X], \quad \sum_{k=0}^{n} a_k X^k \mapsto \sum_{k=0}^{n} a_k X^k$$

die Teilmengeninklusion.

- 1. Zeigen Sie, dass $\iota \mathbb{R}$ -linear ist.
- 2. Zeigen Sie, dass ι einen Isomorphismus $\mathbb{R}[X]_{\mathbb{C}} \to \mathbb{C}[X]$ von \mathbb{C} -Vektorräumen induziert.

Übung 10.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f \colon V \to W$ eine \mathbb{R} -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

- 2. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an. Zeigen Sie, dass $f^*\mathbb{R}$ -linear ist.
- 3. Zeigen Sie, dass die Abbildung $g := \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V, w \in W$.

4. Inwiefern ändern sich die obigen Resultate für denn fall $\mathbb{K}=\mathbb{C}$, wenn also V und W endlichdimensionale unitäre Vektorräume sind?

Übung 11.

Es sei $V := \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$. Ferner sei $U := \{f \in V \mid f(0) = 0\}$.

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g \rangle \coloneqq \int_0^1 f(t)g(t)\,\mathrm{d}t$$
 für alle $f,g \in V$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^{\perp}=0$. Folgern Sie, dass $V\neq U\oplus U^{\perp}$. (*Hinweis*: Betrachten Sie für $g\in U^{\perp}$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass $V/(U \oplus U^{\perp})$ eindimensional ist.

Übung 12.

Es sei

$$W = \{(a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z}\}$$

der Vektorraum der beidseitigen reellwertigen Folgen. Ferner sei

$$V := \left\{ (a_n)_{n \in \mathbb{Z}} \in W \middle| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right\}$$

der Untervektorraum der quadratsummierbaren Folgen.

- 1. Zeigen Sie, dass V ein Untervektorraum von W ist.
- 2. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a, b \in \mathbb{R}$.)

3. Zeigen sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \rangle \coloneqq \sum_{n\in\mathbb{Z}} a_n b_n \quad \text{für alle } (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}} \in V$$

ein Skalarprodukt auf V definiert.

4. Es sei

$$R: V \to V, \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, unitär, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S: V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass Sein Adjungiertes besitzt, und entscheiden Sie, obRselbstadjungiert, unitär, bzw. normal ist.

- 7. Zeigen Sie, dass S diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in V \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V = U \oplus U^{\perp}$.

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 13.

1. Zeigen Sie, dass durch

$$\sigma(A, B) := \operatorname{tr}(A^T B)$$
 für alle $A, B \in M_n(\mathbb{R})$

ein Skalarprodukt auf $\mathrm{M}_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,...,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{jl}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $\mathrm{M}_n(\mathbb{R})$ bezüglich σ bilden.

3. Es sei

$$S_+ \coloneqq \{A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A\}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} := \{ A \in \mathsf{M}_{n}(\mathbb{R}) \mid A^{T} = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 14.

Es sei V ein Skalarproduktraum und

$$O(V) := \{ f \in \operatorname{End}(V) \mid ff^* = \operatorname{id} \}.$$

Zeigen Sie, dass O(V) eine Untergruppe von GL(V) bildet.

Übung 15.

Zeigen sie, dass für eine Matrix $A\in \mathrm{M}_n(\mathbb{K})$ die folgenden Bedingungen äquivalent sind:

- 1. A ist invertierbar mit $A^{-1} = A^*$.
- 2. $AA^* = I$.
- 3. $A^*A = I$.
- 4. Die Spalten von A bilden eine Orthonormalbasis des \mathbb{K}^n .
- 5. Die Zeilen von A bilden eine Orthonormalbasis des \mathbb{K}^n .

Übung 16.

Für je zwei K-Vektorräume V und W sei

$$Bil(V, W) := \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}\$$

der Raum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung

$$F \colon \text{Bil}(V, W) \to \text{Bil}(W, V), \quad b \mapsto F(b) \quad \text{mit} \quad F(b)(w, v) = b(v, w)$$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in Bil(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{V,W}(b) \colon V \to W^*, \quad v \mapsto b(v,-)$$

induziert. Dabei ist

$$b(v, -) \colon W \to K, \quad w \mapsto b(v, w).$$

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \text{Bil}(V,W) \to \text{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Geben Sie mithilfe der vorherigen Aufgabenteile explizit einen Isomorphismus ${\rm Hom}(V,W^*)\to {\rm Hom}(W,V^*)$ an.

Wir betrachten nun den Fall $W = V^*$.

5. Zeigen Sie, dass die Evaluation

$$e: V \times V^* \to K, \quad (v, \varphi) \mapsto \varphi(v)$$

eine Bilinearform ist.

- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform e einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

Übung 17.

Es seien V und W zwei K-Vektorräume und $f:V\to W$ eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^* \colon W^* \to V^*$ an, und zeigen sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle \cdot, \cdot \rangle \colon U \times U^* \to K \quad \text{mit} \quad \langle v, \varphi \rangle = \varphi(v) \quad \text{für alle } v \in V, \, \varphi \in V^*$$

eine Bilinearform ist.

3. Zeigen Sie, dass

$$\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle$$
 für alle $v \in V, \psi \in W^*$.

Übung 18.

1. Zeigen Sie, dass die Abbildung

$$\sigma \colon \operatorname{M}_n(K) \times \operatorname{M}_n(K) \to K \quad \operatorname{mit} \quad \sigma(A,B) \coloneqq \operatorname{tr}(AB)$$

eine symmetrische Bilinearform ist.

2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass

$$\sigma(AB,C)=\sigma(A,BC)\quad \text{für alle }A,B,C\in \mathrm{M}_n(K).$$