# CS 208: Automata Theory and Logic

Spring 2024

**Instructor** : Prof. Supratik Chakraborty

## **Disclaimer**

Please note this document has not received the usual scrutiny that formal publications enjoy. This may be distributed outside this class only with the permission of the instructor.

# Contents

| 1 | $\operatorname{Pro}$ | positional Logic            | 3 |
|---|----------------------|-----------------------------|---|
|   | 1.1                  | Syntax                      | 3 |
|   | 1.2                  | Semantics                   | 4 |
|   |                      | 1.2.1 Important Terminology | 6 |
|   | 1.3                  | Proof Rules                 | 7 |

### Chapter 1

## Propositional Logic

In this course we look at two ways of computation: a state transition view and a logic centric view. In this chapter we begin with logic centered view with the discussion of propositional logic.

**Example.** Suppose there are five courses  $C_1, \ldots, C_5$ , four slots  $S_1, \ldots, S_4$ , and five days  $D_1, \ldots, D_5$ . We plan to schedule these courses in three slots each, but we have also have the following requirements:

|       | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $D_5$ |
|-------|-------|-------|-------|-------|-------|
| $S_1$ |       |       |       |       |       |
| $S_2$ |       |       |       |       |       |
| $S_3$ |       |       |       |       |       |
| $S_4$ |       |       |       |       |       |

- For every course  $C_i$ , the three slots should be on three different days.
- Every course  $C_i$  should be scheduled in at most one of  $S_1, \ldots, S_4$ .
- For every day  $D_i$  of the week, have at least one slot free.

Propositional logic is used in many real-world problems like timetables scheduling, train scheduling, airline scheduling, and so on. One can capture a problem in a propositional logic formula. This is called as encoding. After encoding the problem, one can use various software tools to systematically reason about the formula and draw some conclusions about the problem.

### 1.1 Syntax

We can think of logic as a language which allows us to very precisely describe problems and then reason about them. In this language, we will write sentences in a specific way. The symbols used in propositional logic are given in Table 1.1. Apart from the symbols in the table we also use variables usually denoted by small letters  $p, q, r, x, y, z, \ldots$  etc. Here is a short description of propositional logic symbols:

- Variables: They are usually denoted by smalls  $(p, q, r, x, y, z, \dots \text{ etc})$ . The variables can take up only true or false values. We use them to denote propositions.
- Constants: The constants are represented by  $\top$  and  $\bot$ . These represent truth values true and false.

• Operators:  $\land$  is the conjunction operator (also called AND),  $\lor$  is the disjunction operator (also called OR),  $\neg$  is the negation operator (also called NOT),  $\rightarrow$  is implication, and  $\leftrightarrow$  is bi-implication (equivalence).

| Name              | Symbol            | Read as        |
|-------------------|-------------------|----------------|
| true              | Т                 | top            |
| false             | $\perp$           | bot            |
| negation          | $\neg$            | not            |
| conjunction       | $\wedge$          | and            |
| disjunction       | $\vee$            | or             |
| implication       | $\rightarrow$     | implies        |
| equivalence       | $\leftrightarrow$ | if and only if |
| open parenthesis  | (                 |                |
| close parenthesis | )                 |                |

Table 1.1: Logical connectives.

For the timetable example, we can have propositional variables of the form  $p_{ijk}$  with  $i \in [5]$ ,  $j \in [5]$  and  $k \in [4]$  (Note that  $[n] = \{1, \ldots, n\}$ ) with  $p_{ijk}$  representing the proposition 'course  $C_i$  is scheduled in slot  $S_k$  of day  $D_j$ '.

#### Rules for formulating a formula:

- Every variable constitutes a formula.
- The constants  $\top$  and  $\bot$  are formulae.
- If  $\varphi$  is a formula, so are  $\neg \varphi$  and  $(\varphi)$ .
- If  $\varphi_1$  and  $\varphi_2$  are formulas, so are  $\varphi_1 \wedge \varphi_2, \varphi_1 \vee \varphi_2, \varphi_1 \rightarrow \varphi_2$ , and  $\varphi_1 \leftrightarrow \varphi_2$ .

#### Propositional formulae as strings and trees:

Formulae can be expressed as a strings over the alphabet  $\mathbf{Vars} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}$ . **Vars** is the set of symbols for variables. Not all words formed using the alphabet qualify as propositional formulae. A string constitutes a well-formed formula (wff) if it was constructed while following the rules. Examples:  $(p_1 \lor \neg q_2) \land (\neg p_2 \to (q_1 \leftrightarrow \neg p_1))$  and  $p_1 \to (p_2 \to (p_3 \to p_4))$ .

Well-formed formulas can be represented using trees. Consider the formula  $p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow p_4))$ . This can be represented using the parse tree in figure Figure 1.1a. Notice that while strings require parentheses for disambiguation, trees don't, as can be seen in Figure 1.1b and Figure 1.1c.

#### 1.2 Semantics

Semantics give a meaning to a formula in propositional logic. The semantics is a function that takes in the truth values of all the variables that appear in a formula and gives the truth value of the formula. Let 0 represent "false" and 1 represent "true". The semantics of a formula  $\varphi$  of n variables is a function

$$[\![\varphi]\!]: \{0,1\}^n \to \{0,1\}$$



Figure 1.1: Parse trees obviate the need for parentheses.

It is often presented in the form of a truth table. Truth tables of operators can be found in table Table 1.2.

|                                      |             | $arphi_1$                         | $\varphi_2$             | $\varphi_1 \wedge \varphi_2$        |             |             | $\varphi_1$                       | $\varphi_2$                 | $\varphi_1 \to \varphi_2$            |
|--------------------------------------|-------------|-----------------------------------|-------------------------|-------------------------------------|-------------|-------------|-----------------------------------|-----------------------------|--------------------------------------|
|                                      |             | $\frac{r}{0}$                     | 0                       | 0                                   |             |             | $\frac{71}{0}$                    | $\frac{72}{0}$              | 0                                    |
| $\varphi \mid \neg \varphi$          |             | 0                                 | 1                       | 0                                   |             |             | 0                                 | 1                           | 1                                    |
| 0 1                                  |             | 1                                 | 0                       | 0                                   |             |             | 1                                 | 0                           | 1                                    |
| 1 0                                  |             | 1                                 | 1                       | 1                                   |             |             | 1                                 | 1                           | 1                                    |
| (a) Truth table for $\neg \varphi$ . |             | (b) Truth                         | tab                     | le for $\varphi_1 \wedge \varphi_2$ | 2.          |             | (c) Trut                          | th tab                      | ble for $\varphi_1 \vee \varphi_2$ . |
| $_{_{_{}}}\varphi _{1}$              | $\varphi_2$ | $\varphi_1 \rightarrow \varphi_2$ | 2                       |                                     | $\varphi_1$ | $\varphi_2$ | $\varphi_1 \rightarrow \varphi_1$ | $\varphi_2$                 |                                      |
| 0                                    | 0           | 1                                 |                         |                                     | 0           | 0           | 1                                 |                             |                                      |
| 0                                    | 1           | 1                                 |                         |                                     | 0           | 1           | 0                                 |                             |                                      |
| 1                                    | 0           | 0                                 |                         |                                     | 1           | 0           | 0                                 |                             |                                      |
| 1                                    | 1           | 1                                 |                         |                                     | 1           | 1           | 1                                 |                             |                                      |
| (d) Tru                              | th tab      | le for $\varphi_1$ –              | $\rightarrow \varphi_2$ | . (e)                               | ) Trut      | h tab       | le for $\varphi_1$                | $\leftrightarrow \varphi_2$ | ·                                    |

Table 1.2: Truth tables of operators.

**Remark.** Do not confuse 0 and 1 with  $\top$  and  $\bot$ : 0 (false) and 1 (true) are meanings, while  $\top$  and  $\bot$  are symbols.

#### Rules of semantics:

- $\bullet \ \llbracket \neg \varphi \rrbracket = 1 \text{ iff } \llbracket \varphi \rrbracket = 0.$
- $\llbracket \varphi_1 \wedge \varphi_2 \rrbracket = 1$  iff  $\llbracket \varphi_1 \rrbracket = \llbracket \varphi_2 \rrbracket = 1$ .
- $\llbracket \varphi_1 \vee \varphi_2 \rrbracket = 1$  iff at least one of  $\llbracket \varphi_1 \rrbracket$  or  $\llbracket \varphi_2 \rrbracket$  evaluates to 1.

- $\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$  iff at least one of  $\llbracket \varphi_1 \rrbracket = 0$  or  $\llbracket \varphi_2 \rrbracket = 1$ .
- $\llbracket \varphi_1 \leftrightarrow \varphi_2 \rrbracket = 1$  iff at both  $\llbracket \varphi_1 \to \varphi_2 \rrbracket = 1$  and  $\llbracket \varphi_2 \to \varphi_1 \rrbracket = 1$ .

**Truth Table**: A truth table in propositional logic enumerates all possible truth values of logical expressions. It lists combinations of truths for individual propositions and the compound statement's truth.

**Example.** Let us construct a truth table for  $[(p \lor s) \to (\neg q \leftrightarrow r)]$  (see Table 1.3).

| p | q | r | s | $p \lor s$ | $\neg q$ | $\neg q \leftrightarrow r$ | $(p \lor s) \to (\neg q \leftrightarrow r)$ |
|---|---|---|---|------------|----------|----------------------------|---------------------------------------------|
| 0 | 0 | 0 | 0 | 0          | 1        | 0                          | 1                                           |
| 0 | 0 | 0 | 1 | 1          | 1        | 0                          | 0                                           |
| 0 | 0 | 1 | 0 | 0          | 1        | 1                          | 1                                           |
| 0 | 0 | 1 | 1 | 1          | 1        | 1                          | 1                                           |
| 0 | 1 | 0 | 0 | 0          | 0        | 1                          | 1                                           |
| 0 | 1 | 0 | 1 | 1          | 0        | 1                          | 1                                           |
| 0 | 1 | 1 | 0 | 0          | 0        | 0                          | 1                                           |
| 0 | 1 | 1 | 1 | 1          | 0        | 0                          | 0                                           |
| 1 | 0 | 0 | 0 | 1          | 1        | 0                          | 0                                           |
| 1 | 0 | 0 | 1 | 1          | 1        | 0                          | 0                                           |
| 1 | 0 | 1 | 0 | 1          | 1        | 1                          | 1                                           |
| 1 | 0 | 1 | 1 | 1          | 1        | 1                          | 1                                           |
| 1 | 1 | 0 | 0 | 1          | 0        | 1                          | 1                                           |
| 1 | 1 | 0 | 1 | 1          | 0        | 1                          | 1                                           |
| 1 | 1 | 1 | 0 | 1          | 0        | 0                          | 0                                           |
| 1 | 1 | 1 | 1 | 1          | 0        | 0                          | 0                                           |

Table 1.3: Truth table of  $(p \lor s) \to (\neg q \leftrightarrow r)$ .

#### 1.2.1 Important Terminology

A formula  $\varphi$  is said to (be)

- satisfiable or consistent or SAT iff  $[\![\varphi]\!] = 1$  for some assignment of variables. That is, there is at least one way to assign truth values to the variables that makes the entire formula true. Both a formula and its negation may be SAT at the same time ( $\varphi$  and  $\neg \varphi$  may both be SAT).
- unsatisfiable or contradiction or UNSAT iff  $\llbracket \varphi \rrbracket = 0$  for all assignments of variables. That is, there is no way to assign truth values to the variables that makes the formula true. If a formula  $\varphi$  is UNSAT then  $\neg \varphi$  must be SAT (it is in fact valid).
- valid or tautology:  $[\![\varphi]\!] = 1$  for all assignments of variables. That is, the formula is always true, no matter how the variables are assigned. If a formula  $\varphi$  is valid then  $\neg \varphi$  is UNSAT.
- semantically entail  $\varphi_1$  iff  $[\![\varphi]\!] \preceq [\![\varphi_1]\!]$  for all assignments of variables, where 0 (false)  $\preceq$  0 (true). This is denoted by  $\varphi \models \varphi_1$ . If  $\varphi \models \varphi_1$ , then for every assignment, if  $\varphi$  evaluates to 1 then  $\varphi_1$  will evaluate to 1. Equivalently  $\varphi \to \varphi_1$  is valid.

- semantically equivalent to  $\varphi_1$  iff  $\varphi \models \varphi_1$  and  $\varphi_1 \models \varphi$ . Basically  $\varphi$  and  $\varphi_1$  have identical truth tables. Equivalently,  $\varphi \leftrightarrow \varphi_1$  is valid.
- equisatisfiable to  $\varphi_1$  iff either both are SAT or both are UNSAT. Also note that, semantic equivalence implies equisatisfiability but **not** vice-versa.

| Term                    | Example                  |
|-------------------------|--------------------------|
| SAT                     | $p \lor q$               |
| UNSAT                   | $p \land \neg p$         |
| valid                   | $p \lor \neg p$          |
| semantically entails    |                          |
| semantically equivalent | $p \to q, \neg p \lor q$ |
| equisatisfiable         | $p \wedge q, r \vee s$   |

Table 1.4: Some examples for the definitions.

**Example.** Consider the formulas  $\varphi_1: p \to (q \to r)$ ,  $\varphi_2: (p \land q) \to r$  and  $\varphi_3: (q \land \neg r) \to \neg p$ . The three formulas  $\varphi_1, \varphi_2$  and  $\varphi_3$  are semantically equivalent. One way to check this is to construct the truth table.

On drawing the truth table for the above example, one would realise that it is laborious. Indeed, for a formula with n variables, the truth table has  $2^n$  entries! So truth tables don't work for large formulas. We need a more systematic way to reason about the formulae. That leads us to proof rules...

But before that let us get a closure on the example at the beginning of the chapter. Let  $p_{ijk}$  represent the proposition 'course  $C_i$  is scheduled in slot  $S_k$  of day  $D_j$ '. We can encode the constraints using the encoding strategy used in tutorial 1 - problem 3. That is, by introducing extra variables that bound the sum for first few variables (sum of i is atmost j). Using this we can encode the constraints as :  $\sum_{k=1}^4 p_{ijk} \leq 1$ ,  $\sum_{j=1}^5 p_{ijk} \leq 1$ ,  $\sum_{i=1}^5 p_{ijk} \leq 1$ ,  $\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 3$ ,  $\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 3$  and  $\neg (\sum_{k=1}^4 \sum_{j=1}^5 p_{ijk} \leq 2)$ .

#### 1.3 Proof Rules

After encoding a problem into propositional formula we would like to reason about the formula. Some of the properties of a formula that we are usually interested in are whether it is SAT, UNSAT or valid. We have already seen that truth tables do not scale well for large formulae. It is also not humanly possible to reason about large formulae modelling real-world systems. We need to delegate the task to computers. Hence, we need to make systematic rules that a computer can use to reason about the formulae. These are called as proof rules.

The overall idea is to convert a formula to a normal form (basically a standard form that will make reasoning easier - more about this later in the chapter) and use proof rules to check SAT etc.

Rules are represented as

$$\frac{\text{Premises}}{\text{Inferences}} \text{Connector}_{i/e}$$

• Premise: A premise is a formula that is assumed or is known to be true.

- **Inference**: The conclusion that is drawn from the premise(s).
- Connector: It is the logical operator over which the rule works. We use the subscript *i* (for introduction) if the connector and the premises are combined to get the inference. The subscript *e* (for elimination) is used when we eliminate the connector present in the premises to draw inference.

Example. Look at the following rule

$$\frac{\varphi_1 \wedge \varphi_2}{\varphi_1} \wedge_{e_1}$$

In the rule above  $\varphi_1 \wedge \varphi_2$  is assumed (is premise). Informally, looking at  $\wedge$ 's truth table, we can infer that both  $\varphi_1$  and  $\varphi_2$  are true if  $\varphi_1 \wedge \varphi_2$  is true, so  $\varphi_1$  is an inference. Also, in this process we eliminate (remove)  $\wedge$  so we call this AND-ELIMINATION or  $\wedge_e$ . For better clarity we call this rule  $\wedge_{e_1}$  as  $\varphi_1$  is kept in the inference even when both  $\varphi_1$  and  $\varphi_2$  could be kept in inference. If we use  $\varphi_2$  in inference then the rule becomes  $\wedge_{e_2}$ .

Table 1.5 summarises the basic proof rules that we would like to include in our proof system.

| Connector | Introduction                                                                                                   | Elimination                                                                                                            |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ^         | $\frac{\varphi_1  \varphi_2}{\varphi_1 \wedge \varphi_2} \wedge_i$                                             | $\frac{\varphi_1 \wedge \varphi_2}{\varphi_1} \wedge_{e_1}  \frac{\varphi_1 \wedge \varphi_2}{\varphi_2} \wedge_{e_2}$ |  |  |  |
| V         | $\frac{\varphi_1}{\varphi_1 \vee \varphi_2} \vee_{i_1}  \frac{\varphi_2}{\varphi_1 \vee \varphi_2} \vee_{i_2}$ | $\frac{\varphi_1 \vee \varphi_2  \varphi_1 \to \varphi_3  \varphi_2 \to \varphi_3}{\varphi_3} \vee_e$                  |  |  |  |

Table 1.5: Proof rules.