DWDM Assignment 03 Presentation

Qinyang Wu, st174540@stud.Uni-Stuttgart.de, 3519174 Huicheng Qian, st169665@stud.uni-stuttgart.de, 3443114 Kuang-Yu Li, st169971@stud.uni-stuttgart.de, 3440829

Task1.3: Explore Clustering Algorithms

Spiral.csv c Plot Matrix attr2 attr1 attr2 attr1

X: attr2 Y: attr1 (click to enla

SimpleKMeans: values using k-means++ K = 3

SimpleKMeans: values using k-means++ K = 4

SimpleKMeans: values using k-means++ K = 5

HierachyCluster:

HierachyCluster:

DensityCluster K = 5

DensityCluster K = 3

EM

EM

EM

Running HierachyCluster with Small Guasian takes longer and memory explode

What is your conclusion: Is it a good idea to always run KMeans as clustering algorithm and with the same parameter setting for all datasets? Explain your answer.

Not Suitable to run KMeans on all datasets

Task2.3 Explore different algorithms and parameters

Observation: Apriori to upperBoundMinSupport to 0.1

Runtime: much longer

Frequency of best rules: every time

Cycles: 18Minimum metric <confidence>: 0.9

Number of cycles performed: 18 vs 11 (prev.)

Best rules found:

- 1. water-project-cost-sharing=n physician-fee-freeze=y export-administration-act-south-africa=y 44 ==> crime=y 44 <conf:(1)> lift:(1.75) lev:(0.04)
 2. water-project-cost-sharing=n physician-fee-freeze=y export-administration-act-south-africa=y 44 ==> Class=republican 44 <conf:(1)> lift:(2.59)

Observation: FPGrowth upperBoundMinSupport and lowerBoundMinSupport to **0.1**.

Runtime: Much faster

40 rules found

FPGrowth found 40 rules (displaying top 10)

- 1. [crime=y, immigration=y, el-salvador-aid=y, water-project-cost-sharing=y]: 44 ==> [religious-groups-in-schools=y]: 44 <conf:(1)> lift:(1.6) lev:(0.04) conv:(16.49)
- 2. [adoption-of-the-budget-resolution=v, mx-missile=v, water-project-cost-sharing=v, handicapped-infants=v]: 44 ==> [aid-to-nicaraguan-contras=v]: 44 <conf:(1)> lift:(1.8) lev:(0.04) conv:(19.52)
- 3. [export-administration-act-south-africa=y, crime=y, immigration=y, education-spending=y, Class=republican]: 44 ==> [physician-fee-freeze=y]: 44 <conf:(1)> lift:(2.46) lev:(0.06) conv:(26.1)
- 4. [export-administration-act-south-africa=y, immigration=y, el-salvador-aid=y, education-spending=y, Class=republican]: 44 ==> [physician-fee-freeze=y]: 44
- 5. [immigration=v, el-salvador-aid=v, superfund-right-to-sue=v, water-project-cost-sharing=v]: 45 ==> [religious-groups-in-schools=v]: 44 <conf:(0.98)> lift:(1.56) lev:(0.04) conv:(8.43)
- 6. [export-administration-act-south-africa=y, immigration=y, education-spending=y, Class=republican]: 45 ==> [crime=y]: 44 <conf:(0.98)> lift:(1.72) lev:(0.04) conv:(9.67)
- 7. [export-administration-act-south-africa=v, immigration=v, education-spending=v, Class=republican]: 45 ==> [el-salvador-aid=v]: 44 <conf:(0.98)> lift:(2.01) lev:(0.05) conv:(11.53)
- 8. [religious-groups-in-schools=y, export-administration-act-south-africa=y, crime=y, immigration=y, education-spending=y]: 45 ==> [el-salvador-aid=y]: 44 <conf:(0.98)> lift:(2.01) lev:(0.05) conv:(11.53)
- 9. [religious-groups-in-schools=v, export-administration-act-south-africa=v, immigration=v, el-salvador-aid=v, education-spending=v]: 45 ==> [crime=v]: 44 <conf:(0.98)> lift:(1.72) lev:(0.04) conv:(9.67)
- 10. [export-administration-act-south-africa=y, crime=y, immigration=y, physician-fee-freeze=y, education-spending=y]: 45 ==> [el-salvador-aid=y]: 44 <conf:(0.98)> lift:(2.01) lev:(0.05) conv:(11.53)

Observation: FPGrowth setting upperBoundMinSupport and lowerBoundMinSupport to **1.0**

No rules found!

Three different settings of metricType and minMetric combinations.

```
lift / confidnece↑ (higher)

rules↓ (fewer)

run-time ↓ (faster)

Aprior often crash with confidence < 0.9 and supportMin = Max = 0.1

(Min, Max) = (0.1, 1.0) is too fast to tell difference
```

Task3.3: Explore different algorithms and parameters

	Precision	Recall	F-Measure
J48 Tree	0.735	0.738	0.736
Random Tree	0.684	0.681	0.682

	Precision	Recall	F-Measure
-J48-Tree	0.735	0.738	0.736
Random Tree D=17	0.684	0.681	0.682
Random Tree D=10	0.702	0.704	0.703
Random Tree D=7	0.723	0.727	0.724
Random Forest	0.754	0.758	0.755
NaiveBayes	0.759	0.763	0.760
Logisctic	0.767	0.772	0.765
AdaBoostM1	0.737	0.743	0.738
IBk (Instance Based Learner)	0.696	0.702	0.698