Problem C Number

Input: Standard Input
Output: Standard Output
Time Limit: 1 Second

Given a positive integer n, you are to find am integer f, such that: $f^3 = a_1^3 + a_2^3 + ... + a_n^3$

where all $a_1, a_2, ..., a_n$ are distinct positive integers. For example,

if n = 3, one valid f is 71, since $71^3 = 14^3 + 23^3 + 70^3 = 357911$.

if n = 4, one valid f is 100, since $100^3 = 56^3 + 58^3 + 67^3 + 69^3 = 1000000$.

Your number f may be big, but it has at most 250 digits.

Input

The first line contains the number of tests t(1 <= t <= 20). Each case contains a single line with a positive integer n(1 <= n <= 100).

Output

For each test case, print the case number and $\mathbf{n+1}$ numbers: \mathbf{f} , a_1 , a_2 , ... a_n . If no \mathbf{f} exists, print a -1 and \mathbf{n} zeros.

Sample Input Output for Sample Input

3	Case 1: 71 14 23 70
3	Case 2: -1 0 0
2	Case 3: 100 56 58 67 69
4	

Problem idea, statement, solution provider: Rujia Liu, Member of Elite Problemsetters' Panel Problem Solution and Special Judge: Monirul Hasan, Member of Elite Problemsetters' Panel