Comparison between NSGAII and NSGAIII on DTLZ problems

We consider each problem with 2, 3 and 4 objectives when possible. We performed 10 runs with different initial populations for both algorithms, to test their consistency on multiple runs. We report median, max and min IGD values for the 10 runs in each case. For the run with minimal IGD value we also report the hypervolume and (for comparison) the hypervolume of the pareto front when known. For 2 and 3 objectives we plot the result compared to the Pareto front for the run with lowest IGD value.

1 DTLZ2 problem

1.1 Two Objectives

	NSGAII	NSGAIII
	Median: 0.01817	Median: 0.01949
IGD Values	Max: 0.01973	Max: 0.01955
	Min: 0.01543	Min: 0.01947
HyperVolume	Min IGD: 0.1994	Min IGD: 0.19328
	Pareto: 0.21026	Pareto: 0.21057

Figure 1: Non-dominated front for the two algorithms in red and Pareto front in black.

Both algorithms perform well on this simple problem. NSGAII has slightly lower IGD values but the variance of IGD values for NSGAIII is very low.

1.2 Three Objectives

	NSGAII	NSGAIII
	Median: 0.06999	Median: 0.05157
IGD Values	Max: 0.07403	Max: 0.05223
	Min: 0.06817	Min: 0.05101
HyperVolume	Min IGD: 0.38703	Min IGD: 0.41499
	Pareto: 0.43179	Pareto: 0.43016

Figure 2: Non-dominated front for the two algorithms in red and Pareto front in black.

Both algorithms perform well but NSGAIII has a better distribution, covering the entirety of the pareto front. This is also reflected in lower IGD values with less variance and hypervolume closer to that of the Pareto front. NSGAIII is therefore better in this case.

1.3 Four Objectives

	NSGAII	NSGAIII
	Median: 0.1603	Median: 0.00047
IGD Values	Max: 0.17403	Max: 0.00068
	Min: 0.15529	Min: 0.00038
HyperVolume	Min IGD: 0.47863	Min IGD: 0.54843
	Pareto: 0.55467	Pareto: 0.54858

In this case we cannot plot the four-dimensional fronts and we have to rely on the metrics only. NSGAIII clearly outperformes NSGAII: The IGD values are orders of magnitude better and also the hypervolume is very close to the reference value.

2 DTLZ3 problem

2.1 Two Objectives

	NSGAII	NSGAIII
	Median: 0.0228	Median: 0.02278
IGD Values	Max: 1.02515	Max: 1.00595
	Min: 0.01655	Min: 0.01979
HyperVolume	Min IGD: 0.19894	Min IGD: 0.19407
	Pareto: 0.21214	Pareto: 0.21466

Figure 3: Non-dominated front for the two algorithms in red and Pareto front in black.

Both algorithms perform well on average but NSGAII has slightly lower IGD values. Notice that in this case the IGD values have high variance for both algorithms, indicating that there is a significant chance that a single run does not perform well.

2.2 Three Objectives

	NSGAII	NSGAIII
	Median: 0.07844	Median: 0.05158
IGD Values	Max: 2.01509	Max: 2.01038
	Min: 0.07161	Min: 0.0512
HyperVolume	Min IGD: 0.39356	Min IGD: 0.41393
	Pareto: 0.43604	Pareto: 0.42613

Figure 4: Non-dominated front for the two algorithms in red and Pareto front in black.

Again, as in the previous problem with 3 objectives, NSGAIII has a better distribution covering the entirety of the pareto front and it has better metrics with respect to NSGAII. As in the case with 2 objectives, we have for both algorithms high variance for IGD values.

2.3 Four objectives

	NSGAII	NSGAIII
	Median: 1.04668	Median: 0.05946
IGD Values	Max: 2.14757	Max: 2.00214
	Min: 0.21317	Min: 0.00334
HyperVolume	Min IGD: 448683.96822	Min IGD: 0.55568
	Pareto: 448684.16435	Pareto: 0.56169

In this case the NSGAII algorithm seems to fail to converge properly, in particular the extremely high hypervolume metric suggests the population is not concentrated in the proximity of the

Pareto front. NSGAIII instead converges properly, with low IGD and hypervolume values. Again we can notice a significant variance in IGD values.

3 DTLZ6 problem

This problem is not really defined in the case with 2 objectives, therefore we consider only the cases with 3 and 4 objectives.

3.1 Three Objectives

	NSGAII	NSGAIII
	Median: 0.10183	Median: 0.11539
IGD Values	Max: 0.1636	Max: 0.1535
	Min: 0.06277	Min: 0.06725
HyperVolume	Min IGD: 0.1369	Min IGD: 0.39826
	Pareto: 0.19142	Pareto: 0.52387

Figure 5: Non-dominated front for the two algorithms in red and Pareto front in black.

The IGD values are similar for the two algorithms, but the hypervolume analysis favors NSGAII. Also from the plots we see that NSGAIII has only few non dominated points out of the 100 individuals of the population. in this case NSGAII seems to converge better.

3.2 Four objectives

	NSGAIII
HyperVolume	Median: 9.08415 Max: 34.64039
	Min: 0.64847

Figure 6: Hypervolume value as a function of the number of generations.

The Pareto front is not implemented yet for this problem in pymoo, so we cannot compute IGD and we have to rely on the hypervolume only. We see that for NSGAII the hypervolume does not decrease monotonically during the optimization, indicating that the algorithm is not converging properly. The situation is much better for NSGAIII and therefore we consider median, max and min hypervolume over 10 runs. NSGAIII seems to converge well, even though the hypervolume sequence has a high variance as we can see from the table.

4 DTLZ7 problem

Also in this case we can only consider the cases with 3 and 4 objectives.

4.1 Three objectives

	NSGAII	NSGAIII
	Median: 0.071	Median: 0.0969
IGD Values	Max: 0.076	Max: 0.35901
	Min: 0.06791	Min: 0.09425
HyperVolume	Min IGD: 0.8573	Min IGD: 0.93267
	Pareto: 0.98315	Pareto: 1.07048

Figure 7: Non-dominated front for the two algorithms in red and Pareto front in black.

In this case NSGAII seems to perform better: it has better metrics and more non dominated points close to the true Pareto front.

4.2 Four objectives

	NSGAII	NSGAIII
	Median: 1.26855	Median: 0.94228
HyperVolume	Max: 1.47005	Max: 1.14404
	Min: 1.12044	Min: 0.84756

Also in this case we cannot compute the IGD value and therefore we rely on the hypervolume only. Both algorithms converge but he metric is better for NSGAIII.