

Faculteit Ingenieurswetenschappen

Theorie der Meetfouten

Egon Geerardyn

Voorwoord

Referenties

1. H. Vanherzeele, *Meten en Experimenteren Deel 1: Theorie der meetfouten*, Dienst Uitgaven VUB 2004.

Inhoudsopgave

1	Basi	sbegrippen 3
	1.1	Fouten
	1.2	Nauwkeurigheid
	1.3	Accuratie
	1.4	Foutopgave
		1.4.1 Afronding
	1.5	Eigenschappen meettoestellen
2	Accı	uratiebespreking / Maximumfouten 4
	2.1	Rechtstreekse meting
		2.1.1 Analoge meettoestellen
		2.1.2 Digitale meettoestellen
		2.1.3 Instelfout
		2.1.4 Toevallige fouten
	2.2	Onrechtstreekse meting
		2.2.1 Calibratie (Testmeetproces)
		2.2.2 Afschatting van de resultante fout
		2.2.3 Bijzondere gevallen
		<u> </u>
3	Nau	wkeurigheidsbespreking / Toevallige fouten 6
	3.1	Steekproef 6
		3.1.1 Kentallen van ligging
		3.1.2 Kentallen van schaal
	3.2	Empirische verdeling
		3.2.1 Histogram en trapfunctie
	3.3	Theoretische verdeling
		3.3.1 Normale Verdeling
	3.4	Steekproeftheorie
		3.4.1 Gelijkwaardige uitslagen
		3.4.2 Gelijkwaardige uitslagen met ongelijke frequenties
		3.4.3 Ongelijkwaardige uitslagen met bekende nauwkeurigheid
		3.4.4 Ongelijkwaardige uitslagen met met bekend gewicht
	3.5	Toevallige fouten in onrechtstreekse metingen
	3.6	Controleberekeningen
	3.7	Verwerping van meetresultaten
4	D	ressie-analyse 11
4	_	
	4.2	Gelijkwaardige y-waarden
	4.3	Ongelijkwaardige y-waarden met bekende nauwkeurigheid
	4.4	Ongelijkwaardige y-waarden met bekend gewicht
	4.5	Standaardfout op de parameters
	4.6	Praktische Toepassingen
		4.6.1 Rechte door de oorsprong
		4.6.2 Rechte niet door de oorsprong
		4.6.3 Veelterm
Α	Tab	ellen van de standaardnormaalverdeling 13
	A.1	Integratie over [0,z]
	A.2	Integratie over [-z,z]

1 Basisbegrippen

1.1 Fouten

toevallig: ten gevolge van fluctuerende invloeden

systematisch: ten gevolge van systematische afwijkingen

theoretisch: gebruik van onjuiste (of te eenvoudige) theorie **instrumentaal:** onjuiste ijking of calibratie van meettoestellen

1.2 Nauwkeurigheid

Maat voor de herhaalbaarheid van een meetproces. Hoe dichter de resultaten bij elkaar liggen, hoe nauwkeurig het meetproces. Wordt bepaald door de toevallige fouten.

1.3 Accuratie

Hoe dichter de resultaten bij de referentiewaarde of echte waarden liggen, hoe hoger de accuratie. Wordt bepaald door de systematische fouten.

1.4 Foutopgave

1.4.1 Afronding

Statistisch berekende fout (nauwkeurigheid)) 2 beduidende cijfers

Systematische fout, maximumfout (accuratie) 1 of 2 beduidende cijfers

Voorbeeld

 $(12,834 \pm 0,018) \cdot 10^{-3} A$

1.5 Eigenschappen meettoestellen

meetbereik: Grootste aanduiding die het meetoestel kan aangeven

resolutie: Kleinste verandering in de te meten grootheid

gevoeligheid: Relatieve maat voor hoe veel een bepaalde verandering in de grootheid een afleesbare verandering op het meettoestel veroorzaakt (is afhankelijk van meetbereik en resolutie)

2 Accuratiebespreking / Maximumfouten

Absolute fout

$$\Delta X = |X - X^{obs}|$$

Relatieve fout

$$RF = \left| \frac{\Delta X}{X} \right| \approx \left| \frac{\Delta X}{X^{obs}} \right|$$

2.1 Rechtstreekse meting

2.1.1 Analoge meettoestellen

Afleesfout

- ½ kleinste schaalverdeling
- 1 kleinste schaalverdeling (bij te kleine schaalverdelingen om te interpoleren, of bij nonius)

Instrumentale fout gegeven percentage van het meetbereik (%rg) = klasse van het toestel

2.1.2 Digitale meettoestellen

Afleesfout: Resolutie van het toestel (meestal 1 digit op kleinste aanduiding), tenzij opgave van #dig

Instrumentale fout: Gegeven percentage van de meetuitslag (%rdg), aantal eenheden op de laatste digit (#dig), soms ook een percentage van het meetbereik (%rg)

2.1.3 Instelfout

Grof afschatten door waarde juist te groot en waarde juist te klein te nemen en het zo bekomen foutinterval te halveren.

2.1.4 Toevallige fouten

Bij toevallige fouten groter dan de resolutie:

$$X^{obs} = m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - m)^2}{n-1}}$$

(maximum) toevallige fout:

 $\Delta X = 3\sigma$ slechts 0,3% kans dat deze fout wordt overschreden

2.2 Onrechtstreekse meting

$$Y = \Psi (X_1, X_2, ..., X_N)$$
$$Y^{obs} = \Psi (X_1^{obs}, X_2^{obs}, ..., X_N^{obs})$$

2.2.1 Calibratie (Testmeetproces)

Absolute accuratie

$$\Delta Y = |Y^{obs} - Y^{cal}|$$

Relatieve accuratie

$$\left|\frac{\Delta Y}{Y^{cal}}\right| = \left|\frac{Y^{obs} - Y^{cal}}{Y^{cal}}\right|$$

2.2.2 Afschatting van de resultante fout

Absolute Maximumfout op Y

$$\Delta Y = \sum_{i=1}^{N} \left| \frac{\partial \Psi \left(X_{i}^{obs} \right)}{\partial X_{i}} \right| \Delta X_{i}$$

Relatieve Maximumfout op Y

$$\left|\frac{\Delta Y}{Y^{obs}}\right| = \sum_{i=1}^{N} \left|\frac{\partial \Psi\left(X_{i}^{obs}\right)}{\partial X_{i}}\right| \left|\frac{\Delta X_{i}}{X_{i}^{obs}}\right| \left|\frac{X_{i}^{obs}}{X_{i}^{obs}}\right| |$$

2.2.3 Bijzondere gevallen

Veralgemeende Som De absolute fout op een som/verschil is de som van de (absolute waarden van de) absolute fouten op elk der termen.

$$Y = \sum_{i=1}^{N} a_i X_i$$

$$\Delta Y = \sum_{i=1}^{n} |a_i| \, \Delta X_i$$

Veralgemeend Product De relatieve fout op een product/quotiënt is de som van de (absolute waarden van de) relatieve fouten op elk der factoren.

$$Y = \prod_{i=1}^{N} b_i X_i^{a_i}$$

$$\left| \frac{\Delta Y}{Y^{obs}} \right| = \sum_{i=1}^{N} \left| a_i \frac{\Delta X_i}{X_i^{obs}} \right|$$

Exponentiële functies

$$Y = a \cdot e^{b \cdot X}$$

$$\left| \frac{\Delta Y}{Y^{obs}} \right| = |b| \, \Delta X$$

Logaritmische functies

$$Y = a \cdot \ln(b \cdot X)$$

$$\Delta Y = \left| a \cdot \frac{\Delta X}{X^{obs}} \right|$$

3 Nauwkeurigheidsbespreking / Toevallige fouten

3.1 Steekproef

3.1.1 Kentallen van ligging

(rekenkundig) Gemiddelde m

$$m = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Meetkundig / Geometrisch gemiddelde G

$$G = \sqrt[n]{\prod_{i=1}^{n} x_i}$$

Harmonisch gemiddelde H

$$\frac{1}{H} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{1}{x_i} \right)$$

Middelbare waarde M (ook wel Root-Mean-Square(RMS)-waarde, effectieve of echte waarde)

$$M = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

3.1.2 Kentallen van schaal

Variantie s^2

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - m)^{2} = \frac{1}{n} \sum_{i=1}^{n} v_{i}^{2}$$

Standaardafwijking s (ook wel spreiding, rms-waarde van de afwijkingen)

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} v_i^2}$$

3.2 Empirische verdeling

3.2.1 Histogram en trapfunctie

Verdeling van de bekomen meetresultaten in n klassen met klassemiddens x_i , klassebreedtes Δx_i en frequenties p_i

$$f_i = \frac{p_i}{\sum_{i}^{n} p_i}$$

$$m = \sum_{i}^{n} f_i x_i$$

$$s^{2} = \frac{\sum_{i=1}^{n} p_{i} (x_{i} - m)}{\sum_{i=1}^{n} p_{i}} = \sum_{i=1}^{n} f_{i} v_{i}^{2}$$

Trapfunctie

$$F(x_i) = \frac{f_i}{\Delta x_i}$$

$$m = \sum_{i=1}^{n} x_i F(x_i) \Delta x_i$$

$$s^2 = \sum_{i=1}^{n} (x_i - m)^2 F(x_i) \Delta x_i$$

$$P(x = x_j) = \frac{p_j}{\sum_{i=1}^{n} p_i} = f_j = F(x_j) \Delta x_j$$

$$P(x_j \le x \le x_k) = \sum_{i=1}^{k} f_i = \sum_{i=j}^{k} F(x_i) \Delta x_i$$

3.3 Theoretische verdeling

$$P(x \le \underline{x} \le x + dx) = F(x) dx$$

 $P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} F(x) dx$

Verwachtingswaarde

$$\mu = \varepsilon \{x\} = \int_{-\infty}^{+\infty} x F(x) dx$$

$$\varepsilon \{\Psi\} = \varepsilon \{\Psi(x)\} = \int_{-\infty}^{+\infty} \Psi(x) F(x) dx$$

Variantie

$$\sigma^2 = \sigma^2 \{x\} = \int_{-\infty}^{+\infty} (x - \mu)^2 F(x) dx$$

Rekenregels

$$\varepsilon \left\{ a\underline{x} + b\underline{y} \right\} = a\varepsilon \left\{ x \right\} + b\varepsilon \left\{ x \right\}$$
$$\sigma^2 \left\{ a\underline{x} + b\underline{y} \right\} = a^2\sigma^2 \left\{ x \right\} + b^2\sigma^2 \left\{ x \right\}$$

Behalve als Ψ een lineaire functie is, geldt:

$$\varepsilon \{\Psi(x)\} \neq \Psi(\varepsilon \{x\})$$

3.3.1 Normale Verdeling

$$x \sim N\left(\mu, \sigma\right) \Leftrightarrow F\left(x\right) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]}$$

Standaardnormaalverdeling

$$z = \frac{x - \mu}{\sigma}$$

$$z \sim N \left(\mu = 0, \sigma = 1\right) \Leftrightarrow F(z) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{z^2}{2}\right)}$$

3.4 Steekproeftheorie

3.4.1 Gelijkwaardige uitslagen

$$x: x_{1}, x_{2}, \dots, x_{n}$$

$$m = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} v_{i}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - m)^{2}$$

$$\varepsilon \{m_{x}\} = \mu_{x}$$

$$\sigma \{m_{x}\} = \frac{\sigma_{x}}{\sqrt{n}}$$

$$\varepsilon \{s_{x}^{2}\} = \frac{n-1}{n} \sigma_{x}^{2} = \hat{s}_{x}^{2}$$

$$\sigma_{x}^{2} = \frac{n}{n-1} s_{x}^{2} = \hat{s}_{x}^{2}$$

$$\sigma_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - m_{x})^{2} = \hat{s}_{x}^{2}$$

Betrouwbaarheid op de schatting van de verwachtingswaarde (standaardfout)

$$\mu=m\pm\frac{a_p\sigma_x}{\sqrt{n}}=m\pm\sqrt{\frac{\sum_{i=1}^na_p^2\left(x_i-m_x\right)^2}{n\left(n-1\right)}}\qquad\text{normaal: }a_p=1\text{ is de betrouwbaarheid 68\%}$$

3.4.2 Gelijkwaardige uitslagen met ongelijke frequenties

$$\mu_{x} = \frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}}$$

$$\sigma_{x} = \frac{\sum_{i=1}^{n} p_{i} (x_{i} - m)^{2}}{(\sum_{i=1}^{n} p_{i}) - 1}$$

$$\sigma\{m_{x}\} = \frac{\sigma_{x}}{\sum_{i=1}^{n} p_{i}}$$

Betrouwbaarheid op de schatting van de verwachtingswaarde (standaardfout)

$$\mu = m \pm \frac{\sigma_x}{\sqrt{\sum_{i=1}^n p_i}} \qquad (68\%)$$

Praktischere schatting hiervan:

$$\mu = \frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i} \pm \sqrt{\frac{\sum_{i=1}^{n} p_i (x_i - m)^2}{(\sum_{i=1}^{n} p_i) [(\sum_{i=1}^{n} p_i) - 1]}}$$
(68%)

3.4.3 Ongelijkwaardige uitslagen met bekende nauwkeurigheid

$$\mu = \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$
$$\sigma^2 \{m_x\} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$$

Betrouwbaarheid op de schatting van de verwachtingswaarde (standaardfout)

$$\mu = m \pm \sigma \{m\} = \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} \pm \frac{1}{\sqrt{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}}$$
(68%)

3.4.4 Ongelijkwaardige uitslagen met met bekend gewicht

$$\sigma_{i}^{2} = \frac{\sigma_{x}^{2}}{w_{i}}$$

$$\mu = \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}$$

$$\sigma_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} w_{i} (x_{i} - m)^{2}$$

$$\sigma^{2} \{m_{x}\} = \frac{\sigma_{x}^{2}}{\sum_{i=1}^{n} w_{i}} = \frac{w_{i} (x_{i} - m)^{2}}{(n-1) \sum_{i=1}^{n} w_{i}}$$

Betrouwbaarheid op de schatting van de verwachtingswaarde (standaardfout)

$$\mu = \frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}} \pm \sqrt{\frac{w_{i} (x_{i} - m)^{2}}{(n-1) \sum_{i=1}^{n} w_{i}}}$$

$$\mu = \frac{\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}} \pm \sqrt{\frac{\frac{(x_{i} - m)^{2}}{\sigma_{i}^{2}}}{(n-1) \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}}$$
(68%)

3.5 Toevallige fouten in onrechtstreekse metingen

$$Y = \Psi\left(X_{1}, \dots, X_{N}\right)$$

$$\varepsilon\left\{X_{i}\right\} = m_{i}$$

$$\sigma\left\{X_{i}\right\} = \hat{s}_{i}$$

$$\Psi\left(X_{1}, \dots, X_{N}\right) = \Psi\left(m_{1}, \dots, m_{i}\right) + \sum_{i=1}^{N} \left(\frac{\partial\Psi\left(m_{1}, \dots, m_{N}\right)}{\partial X_{i}}\right) \left(X_{i} - m_{i}\right)$$

$$\varepsilon\left\{\Psi\left(X_{i}\right)\right\} = \Psi\left(m_{i}\right) + \sum_{i=1}^{N} \left(\frac{\partial\Psi\left(m_{1}, \dots, m_{N}\right)}{\partial X_{i}}\right) \varepsilon\left\{X_{i} - m_{i}\right\} = \Psi\left(m_{i}\right)$$

$$\sigma^{2}\left\{Y\right\} = \sigma^{2}\left\{\Psi\left(X_{i}\right)\right\} = \sum_{i=1}^{N} \left(\frac{\partial\Psi\left(m_{i}\right)}{\partial X_{i}}\right) \sigma^{2}\left\{X_{i} - m_{i}\right\} = \sum_{i=1}^{N} \left(\frac{\partial\Psi\left(m_{i}\right)}{\partial X_{i}}\right) \hat{s}_{i}^{2}$$

3.6 Controleberekeningen

- 1. Controle of ongeveer x% van de uitslagen in het x%-betrouwbaarheidsinterval liggen.
- 2. Controle of de theoretische verdeling de empirische verdeling benadert

3.7 Verwerping van meetresultaten

De kans dat x_i een foutief meetresultaat is, wordt bepaald door:

$$P(|x_i - \mu_x| \ge a_p \sigma) = \frac{100 - p}{100}$$

Voor 1%-risicodrempel:

$$|x_j - m_x| \ge 2.6\sigma_x \Leftrightarrow |z_x| \ge 2.6$$

Slechts 1 meetuitslag per keer verwerpen, daarna moeten μ en σ opnieuw geschat worden!

4 Regressie-analyse

$$(x,y):\left(x_{1},y_{1}
ight),\left(x_{2},y_{2}
ight),\ldots,\left(x_{n},y_{n}
ight)$$
 $y=\Psi\left(x
ight)$ $\sigma\left\{ x_{i}
ight\} =0$ en $\sigma\left\{ y_{i}
ight\} =\sigma_{i}$

Parameters voor de regressiekromme

$$\theta_i:\theta_1,\theta_2,\ldots,\theta_k$$

4.1 Correlatiecoëfficiënt

$$\begin{split} R^2 &= \frac{\text{verklaarde variantie van y}}{\text{totale variantie van y}} = 1 - \frac{\text{onverklaarde variantie van y}}{\text{totale variantie van y}} \\ R^2 &= 1 - \frac{\frac{1}{n}\chi^2}{\frac{1}{n}\sum_{i=1}^n \left(y_i - m_y\right)^2} = 1 - \frac{\chi^2}{\sum_{i=1}^n \left(y_i - m_y\right)^2} \end{split}$$

De correlatiecoëfficiënt is de vierkantswortel van \mathbb{R}^2 met hetzelfde teken als de richtingscoëfficiënt van de regressiekromme.

4.2 Gelijkwaardige y-waarden

$$\chi^{2} = \sum_{i=1}^{n} (y_{i} - \Psi(x_{i}; \theta_{j}))^{2}$$

Stelsel der normaalvergelijkingen

$$\forall j \in [1, \dots, k] : \frac{\partial \chi^2}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\sum_{i=1}^n (y_i - \Psi(x_i; \theta_j))^2 \right] = 0$$

Standaardafwijking op y

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \Psi(x_i; \theta_j))^2 = \frac{\chi^2}{n}$$
$$\sigma^2 = \frac{1}{n-k} \sum_{i=1}^n (y_i - \Psi(x_i; \hat{\theta}_j))^2 = \frac{\chi^2}{n-k}$$

Correlatiecoëfficiënt

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \Psi(x_{i}; \theta_{j}))^{2}}{\sum_{i=1}^{n} (y_{i} - m_{y})^{2}}$$
$$m_{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

4.3 Ongelijkwaardige y-waarden met bekende nauwkeurigheid

$$\chi^{2} = \sum_{i=1}^{n} \frac{1}{\sigma_{i}} (y_{i} - \Psi(x_{i}; \theta_{j}))^{2}$$

4.4 Ongelijkwaardige y-waarden met bekend gewicht

4.5 Standaardfout op de parameters

$$\forall j \in [1, k] : \theta_j = \phi_j (x_1, \dots, x_n; y_1, \dots, y_n)$$

$$\sigma^2 \{\theta_j\} = \sigma^2 \{x_i\} \sum_{i=1}^n \left(\frac{\partial \phi_j}{\partial x_i}\right)^2 + \sigma^2 \{y_i\} \sum_{i=1}^n \left(\frac{\partial \phi_j}{\partial y_i}\right)^2 = \sigma_i^2 \sum_{i=1}^n \left(\frac{\partial \phi_j}{\partial y_i}\right)^2$$

$$\theta_j = \hat{\theta}_j \pm \sigma \{\theta_j\}$$

- 4.6 Praktische Toepassingen
- 4.6.1 Rechte door de oorsprong
- 4.6.2 Rechte niet door de oorsprong
- 4.6.3 Veelterm

A Tabellen van de standaardnormaalverdeling

A.1 Integratie over [0,z]

$$I(-z) = I(z) = \int_0^z \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}t^2\right)} dt$$

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,000000	0,003989	0,007978	0,011966	0,015953	0,019939	0,023922	0,027903	0,031881	0,035856
0,10	0,039828	0,043795	0,047758	0,051717	0,055670	0,059618	0,063559	0,067495	0,071424	0,075345
0,20	0,079260	0,083166	0,087064	0,090954	0,094835	0,098706	0,102568	0,106420	0,110261	0,114092
0.30	0,117911	0.121720	0.125516	0,129300	0.133072	0.136831	0.140576	0,144309	0,148027	0,151732
0,40	0,155422	0,159097	0,162757	0,166402	0,170031	0,173645	0,177242	0,180822	0,184386	0,187933
0,50	0,191462	0,194974	0,198468	0,201944	0,205401	0,208840	0,212260	0,215661	0,219043	0,222405
0,60	0,225747	0.229069	0.232371	0.235653	0.238914	0,242154	0.245373	0,248571	0,251748	0,254903
0.70	0,258036	0,261148	0,264238	0,267305	0,270350	0,273373	0,276373	0,279350	0,282305	0,285236
0,80	0,288145	0,291030	0,293892	0,296731	0,299546	0,302337	0,305105	0,307850	0,310570	0,313267
0,90	0,315940	0,318589	0,321214	0,323814	0,326391	0,328944	0,331472	0,333977	0,336457	0,338913
1,00	0,341345	0,343752	0,346136	0,348495	0,350830	0,353141	0,355428	0,357690	0,359929	0,362143
1,10	0,364334	0,366500	0,368643	0,370762	0,372857	0,374928	0,376976	0,379000	0,381000	0,382977
1,20	0.384930	0.386861	0.388768	0,390651	0,392512	0.394350	0.396165	0.397958	0,399727	0,401475
1,30	0,403200	0,404902	0,406582	0,408241	0,409877	0,411492	0,413085	0,414657	0,416207	0,417736
1,40	0,419243	0,420730	0,422196	0,423641	0,425066	0,426471	0,427855	0,429219	0,430563	0,431888
1,50	0,433193	0,434478	0,435745	0,436992	0,438220	0,439429	0,440620	0,441792	0,442947	0,444083
1,60	0,445201	0,446301	0,447384	0,448449	0,449497	0,450529	0,451543	0,452540	0,453521	0,454486
1,70	0,455435	0,456367	0,457284	0,458185	0,459070	0,459941	0,460796	0,461636	0,462462	0,463273
1,80	0,464070	0,464852	0,465620	0,466375	0,467116	0,467843	0,468557	0,469258	0,469946	0,470621
1,90	0,471283	0,471933	0,472571	0,473197	0,473810	0,474412	0,475002	0,475581	0,476148	0,476705
2,00	0,477250	0,477784	0,478308	0,478822	0,479325	0,479818	0,480301	0,480774	0,481237	0,481691
2,10	0,482136	0,482571	0,482997	0,483414	0,483823	0,484222	0,484614	0,484997	0,485371	0,485738
2,20	0,486097	0,486447	0,486791	0,487126	0,487455	0,487776	0,488089	0,488396	0,488696	0,488989
2,30	0,489276	0,489556	0,489830	0,490097	0,490358	0,490613	0,490863	0,491106	0,491344	0,491576
2,40	0,491802	0,492024	0,492240	0,492451	0,492656	0,492857	0,493053	0,493244	0,493431	0,493613
2,50	0,493790	0,493963	0,494132	0,494297	0,494457	0,494614	0,494766	0,494915	0,495060	0,495201
2,60	0.495339	0,495473	0,495604	0,495731	0,495855	0,495975	0,496093	0,496207	0,496319	0,496427
2,70	0,496533	0,496636	0,496736	0,496833	0,496928	0,497020	0,497110	0,497197	0,497282	0,497365
2,80	0,497445	0,497523	0,497599	0,497673	0,497744	0,497814	0,497882	0,497948	0,498012	0,498074
2,90	0,498134	0,498193	0,498250	0,498305	0,498359	0,498411	0,498462	0,498511	0,498559	0,498605
3.00	0.498650	0,498694	0,498736	0,498777	0.498817	0.498856	0,498893	0,498930	0,498965	0.498999
3,10	0,499032	0,499065	0,499096	0,499126	0,499155	0,499184	0,499211	0,499238	0,499264	0,499289
3,20	0,499313	0,499336	0,499359	0,499381	0,499402	0,499423	0,499443	0,499462	0,499481	0,499499
3,30	0,499517	0,499534	0,499550	0,499566	0,499581	0,499596	0,499610	0,499624	0,499638	0,499651
3,40	0,499663	0,499675	0,499687	0,499698	0,499709	0,499720	0,499730	0,499740	0,499749	0,499758
3,50	0,499767	0,499776	0,499784	0,499792	0,499800	0,499807	0,499815	0,499822	0,499828	0,499835
3,60	0,499841	0,499847	0,499853	0,499858	0,499864	0,499869	0,499874	0,499879	0,499883	0,499888
3,70	0,499892	0,499896	0,499900	0,499904	0,499908	0,499912	0,499915	0,499918	0,499922	0,499925
3,80	0,499928	0,499931	0,499933	0,499936	0,499938	0,499941	0,499943	0,499946	0,499948	0,499950
3,90	0,499952	0,499954	0,499956	0,499958	0,499959	0,499961	0,499963	0,499964	0,499966	0,499967
4.00	0.499968	0.499970	0,499971	0,499972	0.499973	0.499974	0,499975	0.499976	0,499977	0.499978
4,10	0,499979	0,499980	0,499981	0,499982	0,499983	0,499983	0,499984	0,499985	0,499985	0,499986
4,20	0,499987	0,499987	0,499988	0,499988	0,499989	0,499989	0,499990	0,499990	0,499991	0,499991
4,30	0,499991	0,499992	0,499992	0,499993	0,499993	0,499993	0,499993	0,499994	0,499994	0,499994
4,40	0,499995	0,499995	0,499995	0,499995	0,499996	0,499996	0,499996	0,499996	0,499996	0,499996
4,50	0,499997	0,499997	0,499997	0,499997	0,499997	0,499997	0,499997	0,499998	0,499998	0,499998
4,60	0,499998	0,499998	0,499998	0,499998	0,499998	0,499998	0,499998	0,499998	0,499999	0,499999
5,60	0,500000	0,500000	0,500000	0,500000	0,500000	0,500000	0,500000	0,500000	0,500000	0,500000
	.,	-,	.,	.,	.,	.,	-,	.,	.,	.,

A.2 Integratie over [-z,z]

$$2I\left(z\right) = \int_{-z}^{z} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{1}{2}t^{2}\right)} dt$$

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0,000000	0,007979	0,015957	0,023933	0,031907	0,039878	0,047844	0,055806	0,063763	0,071713
0,10	0,079656	0,087591	0,095517	0,103434	0,111340	0,119235	0,127119	0,134990	0,142847	0,150691
0,20	0,158519	0,166332	0,174129	0,181908	0,189670	0,197413	0,205136	0,212840	0,220522	0,228184
0,30	0,235823	0,243439	0,251032	0,258600	0,266143	0,273661	0,281153	0,288618	0,296055	0,303463
0,40	0,310843	0,318194	0,325515	0,332804	0,340063	0,347290	0,354484	0,361645	0,368773	0,375866
0,50	0,382925	0,389949	0,396936	0,403888	0,410803	0,417681	0,424521	0,431322	0,438085	0,444809
0,60	0,451494	0,458138	0,464742	0,471305	0,477827	0,484308	0,490746	0,497142	0,503496	0,509806
0,70	0,516073	0,522296	0,528475	0,534610	0,540700	0,546745	0,552745	0,558700	0,564609	0,570472
0,80	0,576289	0,582060	0,587784	0,593461	0,599092	0,604675	0,610211	0,615700	0,621141	0,626534
0,90	0,631880	0,637177	0,642427	0,647629	0,652782	0,657888	0,662945	0,667954	0,672914	0,677826
1,00	0.682689	0.687505	0,692272	0,696990	0.701660	0,706282	0.710855	0,715381	0.719858	0.724287
1,10	0.728668	0,733001	0,737286	0,741524	0.745714	0,749856	0,753951	0,757999	0,762000	0,765954
1,20	0,769861	0,773721	0,777535	0,781303	0.785025	0,788700	0,792331	0,795915	0.799455	0,802949
1,30	0,806399	0,809804	0,813165	0,816482	0,819755	0,822984	0,826170	0,829313	0.832413	0,835471
1,40	0,838487	0,841460	0,844392	0,847283	0,850133	0,852941	0,855710	0,858438	0,861127	0,863776
1,50	0,866386	0,868957	0,871489	0,873983	0,876440	0,878858	0,881240	0,883585	0,885893	0,888165
1,60	0,890401	0,892602	0,894768	0,896899	0.898995	0,901057	0,903086	0,905081	0,907043	0,908972
1,70	0,910869	0,912734	0,914568	0,916370	0,918141	0,919882	0,921592	0,923273	0,924924	0,926546
1,80	0,928139	0,929704	0,931241	0,932750	0,934232	0,935686	0,937114	0,938516	0,939892	0,941242
1,90	0,942567	0,943867	0,945142	0,946393	0,947620	0,948824	0,950004	0,951162	0,952296	0,953409
2,00	0.954500	0,955569	0,956617	0.957643	0,958650	0.959636	0,960601	0.961548	0,962474	0,963382
2,10	0.964271	0,965142	0,965994	0,966828	0,967645	0,968445	0,969227	0,969993	0,970743	0,971476
2,20	0,972193	0.972895	0,973581	0,974253	0.974909	0,975551	0,976179	0,976792	0,977392	0,977979
2,30	0,978552	0,979112	0,979659	0,980194	0.980716	0,981227	0,981725	0,982212	0,982687	0.983152
2,40	0,983605	0,984047	0,984479	0,984901	0,985313	0,985714	0,986106	0,986489	0,986862	0,987226
2,50	0,987581	0,987927	0,988265	0,988594	0,988915	0,989228	0,989533	0,989830	0.990120	0,990402
2,60	0,990678	0,990946	0,991207	0,991462	0,991709	0,991951	0,992186	0,992415	0.992638	0,992855
2,70	0,993066	0,993272	0,993472	0,993667	0,993856	0,994040	0,994220	0,994394	0,994564	0,994729
2,80	0,994890	0,995046	0,995198	0,995345	0,995489	0,995628	0,995764	0,995895	0,996023	0,996148
2,90	0,996268	0,996386	0,996500	0,996610	0,996718	0,996822	0,996924	0,997022	0,997118	0,997210
3,00	0.997300	0.997388	0.997472	0.997554	0.997634	0.997712	0.997787	0.997859	0.997930	0.997998
3,10	0,998065	0,998129	0,998191	0,998252	0,998311	0,998367	0,998422	0,998476	0,998527	0,998577
3,20	0.998626	0.998673	0.998718	0.998762	0.998805	0.998846	0.998886	0.998925	0.998962	0,998998
3,30	0.999033	0,999067	0,999100	0,999132	0,999162	0,999192	0,999221	0,999248	0,999275	0,999301
3,40	0,999326	0,999350	0,999374	0,999396	0,999418	0,999439	0,999460	0,999480	0,999499	0,999517
3,50	0,999535	0,999552	0,999568	0,999584	0,999600	0,999615	0,999629	0,999643	0,999656	0.999669
3,60	0,999682	0,999694	0,999705	0,999717	0,999727	0,999738	0,999748	0,999757	0,999767	0,999776
3,70	0,999784	0,999793	0,999801	0,999809	0,999816	0,999823	0,999830	0,999837	0,999843	0,999849
3,80	0,999855	0,999861	0,999867	0,999872	0,999877	0,999882	0,999887	0,999891	0,999896	0,999900
3,90	0,999904	0,999908	0,999911	0,999915	0,999919	0,999922	0,999925	0,999928	0,999931	0,999934
4.00	0.999937	0.999939	0.999942	0.999944	0.999947	0.999949	0.999951	0.999953	0.999955	0,999957
4,10	0.999959	0.999960	0.999962	0,999964	0.999965	0,999967	0,999968	0,999970	0,999971	0,999972
4,20	0,999973	0,999974	0,999976	0,999977	0,999978	0,999979	0,999980	0,999980	0,999981	0,999982
4,30	0,999983	0,999984	0,999984	0,999985	0,999986	0,999986	0,999987	0,999988	0,999988	0,999989
4,40	0,999989	0,999990	0,999990	0,999991	0,999991	0,999991	0,999992	0,999992	0,999993	0,999993
4,50	0,999993	0,999994	0,999994	0,999994	0,999994	0,999995	0,999995	0,999995	0,999995	0,999996
4,60	0,999996	0,999996	0,999996	0,999996	0,999997	0,999997	0,999997	0,999997	0,999997	0,999997
5,60	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
3,00	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000

Frequente Waarden

p	99,7%	99,0%	95,4%	68,3%	50,0%
~	3.0	2.6	2.0	1.0	0,67