MATH 302

Chapter 2

SECTION 2.2: SEPARABLE EQUATIONS

Contents

What Is a Separable First Order ODE	2
Implicit Solutions of Separable Equations Implicit Solutions and Integral Curves	4
Constant Solutions of Separable Equations	7

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

A first order differential equation is separable if it can be written as

$$h(y)y' = g(x) \tag{1}$$

where

- the left-hand side is a product of a function h of y with the derivative y'.
- the right-hand side is a function g of the variable x.

EXAMPLE 1. Solve the equation

Write
$$y' = \frac{dy}{dx}$$
 $\Rightarrow \frac{dy}{dx} = x(1+y^2)$
 $\Rightarrow \frac{dy}{1+y^2} = x dx$ (separation of voribles)
Have the for h(y) $dy = g(x) dx$
 $\Rightarrow \int \frac{dy}{1+y^2} = \int x dx + c$
 $\Rightarrow \arctan(y) = \frac{x^2}{2} + c$
 $\tan \arctan(y) = \tan \left(\frac{x^2}{2} + c\right)$
 $\Rightarrow y(x) = \tan \left(\frac{x^2}{2} + c\right)$

Trick:

- Write the derivative y' as $\frac{dy}{dx}$.
- Write the ODE in the form h(y)dy = g(x)dx.
- Integrate both sides.

Example 2.

1. Solve the equation

$$y' = -x/y.$$

2. Solve the initial value problem

$$y' = -x/y, \quad y(1) = 1.$$

1) Write
$$y' = \frac{dy}{dx}$$
 \Rightarrow $\frac{dy}{dx} = -\frac{x}{y}$
 \Rightarrow $ydy = -xdx$
 \Rightarrow $\frac{y^2}{2} = -\frac{x^2}{2} + k$
 \Rightarrow $y^2 = -x^2 + 2k$
Write $c^2 = 2k$ \Rightarrow $x^2 + y^2 = c^2$. (Integral curve)
 $c > 0$
Solution: $y(x) = \sqrt{c^2 - x^2}$ or $y(x) = -\sqrt{c^2 - x^2}$, $-c \le x \le c$.
2) $y(1) = 1$ 4 1 is positive \Rightarrow $y(x) = \sqrt{c^2 - x^2}$ (y is positive).
Thurfore $1 = \sqrt{c^2 - 1}$ \Rightarrow $1 = c^2 - 1$ \Rightarrow $c^2 = 2$
 \Rightarrow $c = \sqrt{2}$ (but. $c > 0$)
 \Rightarrow $y(x) = \sqrt{2 - x^2}$, $-\sqrt{2} \le x \le \sqrt{2}$.

IMPLICIT SOLUTIONS OF SEPARABLE EQUATIONS

In the previous examples, we could find an explicit function y = y(x) that is a solution to the ODE. It not always the case though...

EXAMPLE 3. If possible, find a solution to

Write
$$\frac{dy}{dx} = y'$$
 \Rightarrow $\frac{dy}{dx} = \frac{2x+1}{5y^4+1}$
 \Rightarrow $(5y^4+1)dy = (2x+1)dx$
 \Rightarrow $y^5+y = x^2+x+c$
To find y , we have to find the roots of a fifth degree polynomial in y ... Extremly difficult $\sqrt[8]{5}$
So, we have it as $y^5+y=x^2+x+c$ \Rightarrow Implicit solutions.

Terminology: Let the functions h(y) and g(x) be continuous on (c,d) and (a,b) respectively. Suppose

- H(y) is an antiderivative of h(y) on (c, d).
- G(x) is an antiderivative of h(x) on (a, b).
- c is a constant.

Then the implicit equation

$$H(y) = G(x) + c$$

is called an *implicit solution* to (1).

EXAMPLE 4. Find an implicit solution of

$$y' = \frac{2x+1}{5y^4+1}, \quad y(2) = 1.$$

An implicit polution to the ODE is

From the hypothusis, $x=2 \Rightarrow y=1$

$$\Rightarrow$$
 $|^{5}+| = 2^{2}+2+c$

Therefore, the implicit polution is

$$y^5 + y = x^2 + x - 4$$
The IVP.

Terminology:

Let the functions h(y) and g(x) be continuous on (c,d) and (a,b) respectively. Suppose

- H(y) is an antiderivative of h(y) on (c, d).
- G(x) is an antiderivative of h(x) on (a, b).
- $c = H(y_0) G(x_0)$.

Then the implicit equation

$$H(y) = G(x) + H(y_0) - G(x_0)$$

is called an implicit solution of the initial value problem.

Implicit Solutions and Integral Curves

The graph of an implicit solution to

$$h(y)y' = g(x)$$

is an integral curve.

Figure 1: Direction field and implicit solutions of $y' = -\frac{x}{y}$.

Figure 2: Direction field and implicit solutions of $y' = \frac{2x+1}{5y^4+1}$. In green you can see the implicit solution that satisfies y(2) = 1

An equation of the form

$$y' = g(x)p(y)$$

is separable because it can be put in the following forms:

$$h(y) = \frac{1}{p(y)} \bigvee_{x} \frac{y'}{p(y)} = g(x).$$

Problem:

• The division by p(y) is not possible if p(y) = 0.

EXAMPLE 5. Find all solutions to

Write
$$y' = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{2x}{2x}y^2$$

•
$$y = 0$$
 this is a solution

•
$$\frac{y=0}{y\neq 0}$$
 this is a solution.
• $\frac{dy}{y^2} = 2xdx \Rightarrow -\frac{1}{y} = x^2 + c$

$$\Rightarrow -\frac{1}{x^2+c} = y$$

Thurstone,
$$y(x) = 1$$

$$y(x) = -\frac{1}{x^{2+c}}$$

$$y' = \frac{1}{2}x(1 - y^2).$$

$$y=1$$
 $y'=0$ & $1-y^2=0$ => $y=1$ solution.

$$y=-1$$
 $y'=0$ & $1-y^2=0 \Rightarrow y=-1$ solution.

$$y \neq 1 \neq y \neq -1$$
 $y' = \frac{1}{2} \times \frac{1}{2}$

$$\Rightarrow \frac{1}{2} \left(\frac{1}{1-y} + \frac{1}{1+y} \right) y' = \frac{1}{2} > c$$

$$\Rightarrow \qquad \left(\frac{1}{1-y} + \frac{1}{1+y}\right) y' = \alpha$$

integrate
$$\Rightarrow$$
 -ln/1-y/+ ln/1+y/ = $\frac{x^2}{2}$ + k

$$\Rightarrow \ln\left(\frac{\|+y\|}{\|-y\|}\right) = \frac{\pi^2}{2} + k$$

$$\Rightarrow \frac{|1+y|}{|1-y|} = e^{\frac{z^2}{2}} e^{k}$$

$$\Rightarrow \frac{|+y|}{|-y|} = ce^{\frac{z^2/2}{2}} \left(c = \begin{cases} e^k, + sign \\ -e^k, -sign \end{cases} \right)$$

$$\Rightarrow y(x) = -\frac{1-cc^{x^2/2}}{1+ce^{x^2/2}}$$
 (*)

Remarks: of $c=0 \Rightarrow y=-1$. So the solution y=-1 is included in (π) if we add c=0

• y=1 is not included in our solution (*). But if $c \to \infty$, then $y \to 1$.

Arswer:

$$y(x) = -\frac{1-ce}{1+ce^{x^2/2}}$$
 c any real number

2

$$y(x) = 1$$

Remark: In the textbook, they obtain

$$y/x = \frac{-x^2/2}{1-ce^{-x^2/2}}$$

This is almost the same solution:

$$-\frac{1-ce}{1+ce^{\frac{x^{2}/2}{2}}} = -\frac{1+(-c)e^{\frac{x^{2}/2}{2}}}{1-(-c)e^{\frac{x^{2}/2}{2}}}$$

$$= -\frac{1+ae^{\frac{x^{2}/2}{2}}}{1-ae^{\frac{x^{2}/2}{2}}}$$

$$= -\frac{2\sqrt{2}}{2\sqrt{2}} \left(\frac{1-e^{-\frac{x^{2}/2}{2}}}{\frac{1-e^{-\frac{x^{2}/2}{2}}}{ae^{-\frac{x^{2}/2}{2}}} - 1} \right)$$

$$= \frac{1+\frac{1}{a}e^{-\frac{x^{2}/2}{2}}}{1-\frac{1}{a}e^{-\frac{x^{2}/2}{2}}} \xrightarrow{|+ce^{-\frac{x^{2}/2}{2}}}$$
Same form
$$= \frac{1+ce^{\frac{x^{2}/2}{2}}}{1-ce^{\frac{x^{2}/2}{2}}}$$