Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 08.07.2016

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
							_
	Aufgabe	1	2	3	4	Σ	
	erreichbare Punkte	11	10	9	10	40	
	erreichte Punkte						
$\mathbf{Bitte}\;$							
tragen Sie	e Name, Vorname und	Matrik	ælnumr	mer auf	dem I	Deckbla	tt ein,
rechnen S	ie die Aufgaben auf se	eparate	n Blätte	ern, ni o	c ht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Aufg	gabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Namen	sowie d	die Mat	rikelnu	mmer a	an,
begründe	n Sie Ihre Antworten a	ausführ	lich und	d			
kreuzen S antreten l	ie hier an, an welchem könnten:	der fol	genden	Termin	ne Sie z	zur mün	ndlichen Prüfung
	Fr., 15.07.2016	□ Mo.	, 18.07.	2016		Di., 19	0.07.2016

- 1. In dieser Aufgabe wird der Regelkreis aus Abbildung 1 mit dem P-Regler $K_p \in \mathbb{R}$ betrachtet. Der eingerahmte Bereich markiert die zeitkontinuierliche Strecke Σ mit dem Eingang u, dem Ausgang $\mathbf{y} = [y_1, y_2]^{\mathrm{T}}$ und den reellen Konstanten $K_1 > 0$ und $K_2 > 0$.

11 P.

a) Wählen Sie einen geeigneten Zustandsvektor $\mathbf{x} = [x_1, x_2, x_3, x_4]^{\mathrm{T}}$ und bestimmen Sie das zeitkontinuierliche Modell der Strecke Σ in der Form

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$\mathbf{y} = \mathbf{C}\mathbf{x}.$$

Das zeitkontinuierliche Modell des LTI-Systems lautet

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -K_1 & 0 & K_1 & 0 \\ 0 & 0 & 0 & 1 \\ K_2 & 0 & -K_2 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x}.$$

b) Berechnen Sie die Eigenwerte der Matrix A. Ist das System global asymptotisch stabil?

3 P.|

Die Eigenwerte lauten $[0,0,\pm I\sqrt{K_1+K_2}]$. Damit ist das System nicht global asymptotisch stabil.

c) Die Beschreibung des Eingangs-/Ausgangsverhaltens der Strecke Σ erfolgt in 5 P. dieser Teilaufgabe im Laplacebereich anhand der beiden Übertragungsfunktionen G_{u,y_1} bzw. G_{u,y_2} vom Eingang u zu den Ausgängen y_1 bzw. y_2 . Bearbeiten Sie dazu die folgenden Teilaufgaben:

i. Berechnen Sie die Übertragungsfunktionen G_{u,y_1} bzw. G_{u,y_2} für die betrachtete Strecke Σ .

3 P.|

2 P.

Hinweis: Diese Aufgabe kann sowohl anhand des Blockschaltbildes im Laplace Bereich als auch mithilfe des Zustandsraummodells gelöst werden. Beachten Sie dabei die dünn besetzte Matrix C sowie den Vektor b. Die Übertragungsfunktionen lauten

$$G_{u,y_1} = \frac{K_1}{s^2 (s^2 + K_1 + K_2)}$$
 bzw. $G_{u,y_2} = \frac{s^2 + K_1}{s (s^2 + K_1 + K_2)}$.

ii. Nehmen Sie G_{u,y_1} bzw. G_{u,y_2} als gegeben an und zeichnen Sie ein Blockschaltbild des geschlossenen Regelkreises im Laplacebereich. Leiten Sie daraus die Übertragungsfunktion T_{r,y_1} des geschlossenen Regelkreises für $K_p \to \infty$ her.

Zum Blockschaltbild siehe die folgende Abbildung

Die Übertragungsfunktion des geschlossenen Regelkreises lautet

$$T_{r,y_1} = \frac{K_p G_{u,y_1}}{1 + K_p G_{u,y_2}}, \quad \lim_{K_p \to \infty} T_{r,y_1} = \frac{G_{u,y_1}}{G_{u,y_2}}$$

Abbildung 1: Regelkreis zu Aufgabe 1

2. Bearbeiten Sie die folgenden Teilaufgaben:

10 P.

a) Gegeben ist ein LTI-System der Form

4 P.|

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}.\tag{1}$$

i. Geben Sie ein Beispiel für ein System der Form (1) mit $\dim(\mathbf{x}) = 3$ ohne 2P.| Ruhelage an.

Hierfür muss gelten $\det(\mathbf{A}) = \mathbf{0}$ und $\operatorname{rang}(\mathbf{A}) \neq \operatorname{rang}(\left[\mathbf{A}, \mathbf{B}\mathbf{u}_R\right])$. Beispielsweise

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u \tag{2}$$

ii. Nehmen Sie nun an, das System hätte

 $2 \,\mathrm{P.}|$

A. eine einzige Ruhelage.

1 P.|

- A ist regulär.
- B. unendlich viele Ruhelagen.

1 P.

 \mathbf{A} ist singulär und rang $(\mathbf{A}) = \text{rang}([\mathbf{A}, \mathbf{B}\mathbf{u}_R])$.

Geben Sie die notwendigen Eigenschaften von A, B und u_R an.

b) Betrachtet wird das eingangsaffine System

2 P.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{g},\tag{3}$$

mit der Eingangsgröße **u** und dem konstanten Vektor $\mathbf{g} \neq \mathbf{0}$. Geben Sie die Tranformationsvorschrift für $\boldsymbol{\xi}$ an, um das System (3) mit der Ruhelage $\mathbf{x}_R \neq \mathbf{0}$ und $\mathbf{u}_R = \mathbf{0}$ in ein System der Form

$$\dot{\boldsymbol{\xi}} = \bar{\mathbf{A}}\boldsymbol{\xi} + \bar{\mathbf{B}}\mathbf{u},\tag{4}$$

mit $\xi_R = 0$, $\mathbf{u}_R = 0$ zu überführen. Geben Sie auch die Zusammenhänge zwischen $\bar{\mathbf{A}}, \bar{\mathbf{B}}$ und \mathbf{A}, \mathbf{B} an.

Die Transformationsvorschrift lautet $\boldsymbol{\xi} = \mathbf{x} - \mathbf{x}_R$, mit $\mathbf{A}\mathbf{x}_R = \mathbf{g}$. Für die Matrizen gilt $\bar{\mathbf{A}} = \mathbf{A}, \bar{\mathbf{B}} = \mathbf{B}$.

c) Betrachtet wird die Übertragungsfunktion

4 P.|

$$G(s) = \frac{(s^2 - 1)(s + 3)^2}{(s^2 + 3s + 2)(s^2 + 7s + 12)}.$$

- i. Ist die Übertragungsfunktion sprungfähig? Begründen Sie Ihre Antwort. 0.5 P.| Ja, da hier $f\"{u}r$ G(s) = z(s)/n(s) gilt grad(z(s)) = grad(n(s)).
- ii. Ist das System minimalphasig? Begründen Sie Ihre Antwort. 0.5 P.| $Nein,\ da\ eine\ Nullstelle\ bei\ +1\ liegt.$
- iii. Ist die Übertragungsfunktion realisierbar? Begründen Sie Ihre Antwort. 0.5 P.| $Ja,\ da\ die\ Bedingung\ {\rm grad}(z(s)) \leq {\rm grad}(n(s))\ erf\"{u}llt\ ist.$
- iv. Berechnen Sie den Verstärkungsfaktor sowie die Sprungantwort bei t=0. 1P.| $V=-3/8,\,h(t=0)=1$
- v. Zeichnen Sie alle Pole und Nullstellen von G(s) in das beigefügte Diagramm ein.
- vi. Welche Stabilitätsaussage können Sie für ein System mit der Übertragungsfunktion G(s) treffen? Begründen Sie Ihre Antwort.

 Das System ist BIBO-stabil. Weitere Aussagen sind anhand der reinen Kenntnis der Übertragungsfunktion nicht möglich, da Pol-Nullstellenkürzungen nicht auszuschließen sind.

Abbildung 2: Vorlage Pol-Nullstellen-Diagramm zu Aufgabe 3

 $1.5 \, P.$

6 P.

3 P.|

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -\frac{1}{2} \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u_k$$

$$y_k = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \mathbf{x}_k$$
(5)

in Kombination mit einem Zustandsregelgesetz der Form $u_k = \mathbf{k}^T \mathbf{x}_k$ betrachtet, wobei für den Rückführvektor

$$\mathbf{k} = [2, -1, \alpha]^{\mathrm{T}}, \quad \alpha \in \mathbb{R}$$

gilt.

a) Berechnen Sie die Eigenwerte der Dynamikmatrix des Systems (5). Ist das System vollständig erreichbar bzw. vollständig beobachtbar?

Die Eigenwerte lauten $[0, \frac{1}{2} \pm I_{\frac{1}{2}}]$.

Das System ist nicht vollständig erreichbar da rang $(\mathcal{R}(\Phi, \Gamma)) = 2 \neq 3$. Man sieht dies auch direkt an der ersten Zeile des Systems von Differenzengleichungen in (5).

Da das System in Beobachtbarkeitsnormalform vorliegt, ist es vollständig beobachtbar und es gilt rang $(\mathcal{O}(\mathbf{C}, \Phi)) = 3$.

b) Bestimmen Sie den Wertebereich von $\alpha \in \mathbb{R}$ so, dass der geschlossene Kreis stabil ist.

Der Wertebereich lautet $-2 < \alpha < 0$.

- c) Die Realisierung des Zustandsregelgesetzes erfolgt in dieser Teilaufgabe in der Form $u_k = \mathbf{k}^T \hat{\mathbf{x}}_k$, wobei der Schätzwert $\hat{\mathbf{x}}$ des Systemzustands von einem Beobachter generiert wird. Bearbeiten Sie dazu die folgenden Teilaufgaben:
 - i. Entwerfen Sie einen trivialen Beobachter und berechnen Sie die Dynamikmatrix des Beobachtungsfehlers $\mathbf{e} = \hat{\mathbf{x}} \mathbf{x}$. Der triviale Beobachter als Kopie der Strecke lautet

$$\hat{\mathbf{x}}_{k+1} = \mathbf{\Phi}\hat{\mathbf{x}}_k + \mathbf{\Gamma}u_k$$

mit Φ und Γ als den üblichen Bezeichnungen für die Dynamikmatrix und dem Eingangsvektor von (5). Φ ist somit auch die Dynamikmatrix des Beobachtungsfehlers.

ii. Ist die Kombination aus Zustandsregler und trivialem Beobachter stabil? Begründen Sie Ihre Antwort anhand der Dynamikmatrix des erweiterten Systems mit dem Zustand $[\mathbf{x}^T, \mathbf{e}^T]$.

Die Dynamik des erweiterten Systems ergibt sich zu

$$egin{bmatrix} \mathbf{x}_{k+1} \ \mathbf{e}_{k+1} \end{bmatrix} = egin{bmatrix} \mathbf{\Phi} + \mathbf{\Gamma} \mathbf{k}^{\mathrm{T}} & \mathbf{\Gamma} \mathbf{k}^{\mathrm{T}} \ \mathbf{0} & \mathbf{\Phi} \end{bmatrix} egin{bmatrix} \mathbf{x}_k \ \mathbf{e}_k \end{bmatrix}$$

mit dem charakteristischen Polynom (Ausnutzung der Blockdiagonalstruktur von Φ_{aes})

$$\det (z\mathbf{E}_{6\times 6} - \mathbf{\Phi}_{qes}) = \det (z\mathbf{E}_{3\times 3} - \mathbf{\Phi}) \det (z\mathbf{E}_{3\times 3} - (\mathbf{\Phi} + \mathbf{\Gamma}\mathbf{k}^{\mathrm{T}})).$$

Somit müssen die Eigenwerte von Φ und $\Phi + \Gamma \mathbf{k}^{\mathrm{T}}$ betraglich kleiner als 1 sein. Diese Bedingung ist für Φ gemäß a) erfüllt. Somit ist das System stabil, wenn α entsprechend b) gewählt wird.

- iii. Entwerfen Sie einen vollständigen Luenberger-Beobachter. Berechnen Sie die Beobachterverstärkung $\hat{\mathbf{k}}$ so, dass sämtliche Eigenwerte der Beobachterfehlerdynamik an der Stelle $\frac{1}{2}$ in der komplexen Ebene zu liegen kommen. Die Beobachterverstärkung lautet $\hat{\mathbf{k}} = \left[\frac{1}{8}, -\frac{1}{4}, \frac{1}{2}\right]$.
- 2 P.|

4. Für die folgende Aufgabe wird ein lineares zeitinvariantes autonomes System mit $10 \,\mathrm{P.}|$ $\dim(\mathbf{x}) = 2$ betrachtet. Bei den gegebenen Anfangszuständen

$$\mathbf{x}_{0,1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}_{0,2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{6}$$

zeigen sich am Ausgang die entsprechenden Signale

$$y_1(t) = \sin(t) + \cos(t), \quad y_2(t) = \sin(t) - \cos(t).$$
 (7)

- a) Berechnen Sie den Ausgangsvektor ${\bf c}$ des Systems. 2 P.| ${\bf c}^{\rm T} = \begin{bmatrix} 1 & -1 \end{bmatrix}$
- b) Berechnen Sie die Dynamik
matrix ${\bf A}$ des Systems. 7 P.| ${\bf A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- c) Geben Sie die Eigenwerte des Systems an. $\lambda_1 = I, \lambda_2 = -I$ 1 P.|