MATH255: Mathematics for Computing Tutorial Sheet Week 2 - Autumn 2023

Note. Question 2 is you Tutorial Preparation exercise for this week. It must be completed and handed in on Moodle as a pdf before the start of your tutorial.

- 1. Determine whether the following are statements. If you find one that is, determine its truth value.
 - (a) If x = 3, then x < 2.
 - (b) If x = 0 or x = 1, then $x^2 = x$.
 - (c) $x^2 = x$ only if x = 0 or x = 1.
 - (d) There exists a natural number x such that $x^2 = \frac{x}{2}$.
 - (e) x < -1.
 - (f) $xy = 5 \rightarrow (x = 1, y = 5) \lor (x = 5, y = 1).$
 - (g) For $x, y \in \mathbb{R}$, $xy = 0 \rightarrow (x = 0 \lor y = 0)$.
 - (h) There is a unique even prime number.
 - (i) This statement is false.
- 2. Let p and q be statements.
 - (a) Write truth tables for $(\sim p \lor q) \land q$ and $(\sim p \land q) \lor q$. What do you notice? Based on this result, we hypothesise that we can interchange \lor and \land in a statement without affecting the truth table.
 - (b) Write truth tables for $(\sim p \lor q) \land p$ and $(\sim p \land q) \lor p$. What do you think of the hypothesis now?
- 3. Practice the quick method; do not use truth tables. Determine which of the following statements are tautologies.
 - (a) $\sim (p \rightarrow q) \lor (q \rightarrow p)$
 - (b) $(p \land q) \rightarrow [\sim r \lor (p \rightarrow q)]$
- 4. Use a truth table to prove the distributive law $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.
- 5. Let p, q and r be statements. Using the laws seen in lecture, prove the following.
 - (a) $\sim (p \rightarrow q) \equiv (p \land \sim q)$.
 - (b) $((p \land \sim q) \rightarrow r) \equiv (p \rightarrow (q \lor r))$
 - (c) $p \rightarrow (q \lor p)$ is a tautology.
 - (d) $\sim [(p \land q) \rightarrow (\sim r \lor (p \rightarrow q))]$ is a fallacy.
- 6. In each case, decide whether the proposition is T or F. Give reasons.
 - (a) If x is a positive integer and $x^2 \le 3$ then x = 1.
 - (b) $\left(\sim (x > 1) \lor \sim (y \le 0) \right) \leftrightarrow \sim \left((x \le 1) \land (y > 0) \right)$
- 7. Rewrite the following logical expressions using \vee and \wedge as the only connectives.

1

- (a) $\sim (x > 1) \rightarrow \sim (y \le 0)$
- (b) $(y \le 0) \to (x > 1)$