

Nature-Inspired Cryptoanalysis Methods for Breaking Vigenère Cipher

Authors: Lucija Brezočnik, Iztok Fister Jr, and Vili Podgorelec

Faculty of Electrical Engineering and Computer Science,

Maribor, Slovenia

Cryptology

Faculty of Electrical Engineering and Computer Science

- Classical ciphers
 - transposition
 - substitution
 - monoalphabetic (e.g. Caesar cipher, Affine cipher)
 - polyalphabetic (e.g. Vigenère cipher, Gronsfeld cipher)
 - polygraphic (e.g. Hill cipher)

cryptoanalysis

Vigenère cipher

Faculty of Electrical Engineering and Computer Science

A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	1
В	С	D	E	F	G	н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	х	Y	Z	1
C	D	E	F	G	н	I	J	K	L	М	N	0	P	Q	R	s	Т	U	٧	W	Х	Y	Z	A	1
D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	т	U	V	W	Х	Y	Z	А	В	1
E	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	T	U	v	W	х	Y	Z	A	В	С	
F	G	н	I	J	К	L	М	N	0	P	Q	R	s	T	U	V	W	х	Y	Z	A	В	С	D	
G	н	I	J	К	L	M	N	0	P	Q	R	s	T	U	v	W	Х	Y	Z	A	В	С	D	E	
н	I	J	K	L	M	N	0	P	Q	R	s	T	U	٧	W	Х	Y	Z	A	В	С	D	E	F	
I	J	К	L	М	N	0	P	Q	R	s	Т	U	V	W	X	Y	Z	A	В	С	D	E	F	G	
J	К	L	М	N	0	P	Q	R	s	T	U	v	W	Х	Y	Z	A	В	С	D	E	F	G	н	
K	L	M	N	0	P	Q	R	s	T	U	V	W	х	Y	Z	A	В	С	D	E	F	G	н	I	13
L	М	N	0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	E	F	G	н	I	J	
М	N	0	P	Q	R	s	T	U	v	W	х	Y	Z	A	В	С	D	E	F	G	Н	I	J	K	
N	0	P	Q	R	s	T	U	٧	W	X	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	0
0	P	Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	М	
P	Q	R	s	T	U	V	W	Х	Y	z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	
Q	R	s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	
R	S	Т	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	K	L	М	N	0	P	
s	T	U	V	W	Х	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	
T	U	V	W	Х	Y	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	
U	٧	W	Х	Y	Z	Α	В	C	D	Е	F	G	н	I	J	K	L	М	N	0	P	Q	R	S	
٧	W	Х	Y	Z	А	В	С	D	Е	F	G	н	I	J	K	L	M	N	0	P	Q	R	s	T	
W	Х	Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	T	U	
X	Y	Z	А	В	С	D	E	F	G	н	I	J	К	L	М	N	0	P	Q	R	s	Т	U	v	1
Y	Z	A	В	С	D	Е	F	G	н	I	J	К	L	М	N	0	P	Q	R	\$	T	U	v	W	
Z	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P	0	R	s	т	U	v	W	х	1

Plain text	N	Е	W	T	Е	С	Н	N	О	L	О	G	I	Е	S
Key	K	Е	Y	K	Е	Y	K	Е	Y	K	Е	Y	K	Е	Y
Ciphertext	X	I	U	D	I	A	R	R	M	V	S	Е	S	I	Q

Vigenère cipher

Definition of plaintext (P), key (K), and ciphertext (C):

$$P=(P_1,P_2,...,P_m); K=(K_1,K_2,...,K_n); C=(C_1,C_2,...,C_m)$$

Encryption E using key K:

$$C_i = E_K(P_i) = (P_i + K_i) \mod 26$$

Decryption D using key K:

$$D_K(C_i) = (E_i + K_i) \mod 26$$

Natural-Inspired algorithms

- Differential Evolution: Storn and Price (1997)
- Particle Swarm Optimization: Kennedy and Eberhart (1995)
- Firefly Algorithm: Yang (2008)
- Artificial Bee Colony Algorithm: Karaboga (2005)
- Cuckoo Search: Yang and Deb (2009)

N-I cryptanalysis methods

- Identification of the period of the cipher
 - Friedman attack based on the Index of Coincidence (I_c)

$$I_c = \frac{\sum_{i=1}^{j} f_i(f_i - 1)}{n(n-1)}$$

$$key_length = \frac{0.027n}{I_c(n-1) - 0.038n + 0.065}$$

Fitness function

$$f(K) = \sum_{i=1}^{j} |FE_i - FD_i|$$

Results

Number of correctly recovered key characters per algorithm

Key	MAX_KC						N	IIN_K	C		AVG_KC					
size	DE	PSO	FA	ABC	CS	DE	PSO	FA	ABC	CS	DE	PSO	FA	ABC	CS	
4	4	4	4	4	3	4	3	3	4	2	4	3.8	3.8	4	2.6	
6	6	6	5	6	3	6	5	5	4	3	6	5.4	5	5.2	3	
8	8	8	6	8	5	6	5	4	5	2	7.6	6	5	6.4	3.8	
12	12	9	8	8	5	11	6	5	6	3	11.2	7.8	6.6	7	4	

 Time analysis of obtaining the max number of correctly recovered key characters

Key size	DE	PSO	FA	ABC	CS
4	35.7	178.8	349.7	180.2	181.7
6	38.3	184.9	232.8	187.3	185.4
8	40.2	214.9	426.4	246.6	205.3
12	52.8	216.4	312.1	200.3	229.5

Sarajevo, NT-2020 Lucija Brezočnik 18. 9. 2020

Results

percentage of all correctly obtained key characters in five independent run

Sarajevo, NT-2020 Lucija Brezočnik 18. 9. 2020

Conclusion

- Proposed method for breaking the Vigenère cipher
 - Tested with four different key sizes
 - One plaintext
- Best performance: Differential Evolution algorithm
 - Recovered the highest amount of key characters
 - Took the least amount of time
- Future work
 - Utilization of other nature-inspired algorithms
 - Utilization of nature-inspired algorithms to modern cryptography