

Housing Price Prediction Project Report

Submitted by:

Nasim Patil

ACKNOWLEDGMENT

It is my deepest pleasure and gratification to present this report. Working on this project was an incredible experience that has given me a very informative knowledge regarding the data analysis process.

All the required dataset and information are provided by **Flip Robo Technologies**, Bangalore that helped me to complete the project. I want to thank my SME Ms. Khushboo Garg for instructing me and guiding me for his kind instructions and support for case study process and completion of this project.

INTRODUCTION

Houses are one of the necessary needs of each and every person around the globe and therefore housing and real estate market is one of the markets which is one of the major contributors in the world's economy. It is a very large market and there are various companies working in the domain. Data science comes as a very important tool to solve problems in the domain to help the companies increase their overall revenue, profits, improving their marketing strategies and focusing on changing trends in house sales and purchases. Predictive modelling, Market mix modelling, recommendation systems are some of the machine learning techniques used for achieving the business goals for housing companies. Our problem is related to one such housing company. A US-based housing company named Surprise Housing has decided to enter the Australian market. The company uses data analytics to purchase houses at a price below their actual values and flip them at a higher price. For the same purpose, the company has collected a data set from the sale of houses in Australia.

Business Problem Framing

Thousands of houses are sold every day. There are some questions every buyer asks himself like: What is the actual price that this house deserves? Am I paying a fair price? In this paper, a machine learning model is proposed to predict a house price based on data related to the house (its size, the year it was built in, etc.). During the development and evaluation of our model, we will show the code used for each step followed by its output. This will facilitate the reproducibility of our work. In this study, Python programming language with a number of Python packages will be used.

➤ Conceptual Background of the Domain Problem

The main objectives of this study are as follows:

- 1. To apply data pre-processing and preparation techniques in order to obtain clean data
- 2. To build machine learning models able to predict house price based on house features

3. To analyse and compare model's performance in order to choose the best model

> Review of Literature

Machine learning is a form of artificial intelligence which compose available computers with the efficiency to be trained without being veraciously programmed. Machine learning interest on the extensions of computer programs which is capable enough to modify when unprotected to new-fangled data. Machine learning algorithms are broadly classified into three divisions, namely; Supervised learning, Unsupervised learning and Reinforcement learning. Supervised learning is a learning in which we teach or train the machine using data which is well labelled that means some data is already tagged with correct answer. After that, machine is provided with new set of examples so that supervised learning algorithm analyses the training data and produces a correct outcome from labelled data. Unsupervised learning is the training of machine using information that is neither classified nor labelled and allowing the algorithm to act on that information without guidance. Here the task of machine is to group unsorted information according to similarities, patterns and differences without any prior training of data. Unlike, supervised learning, no teacher is provided that means no training will be given to the machine.

Therefore, machine is restricted to find the hidden structure in unlabelled data by our-self.

Reinforcement learning is an area of Machine Learning. Reinforcement. It is about taking suitable action to maximize reward in a particular situation. It is employed by various software and machines to find the best possible behaviour or path it should take in a specific situation. Reinforcement learning differs from the supervised learning in a way that in supervised learning the training data has the answer key with it so the model is trained with the correct answer itself whereas in reinforcement learning, there is no answer but the reinforcement agent decides what to do to perform the given task. In the absence of training dataset, it is bound to learn from its experience. Machine learning has many applications out of which one of the applications is prediction of real estate. The real estate market is one of the most competitive in terms of pricing and same tends to be vary significantly based on lots of factor, forecasting property price is an important module in decision making for both the buyers and investors in supporting budget allocation, finding property finding stratagems and determining suitable policies hence it becomes one of the prime

fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. The study on land price trend is felt important to support the decisions in urban planning. The real estate system is an unstable stochastic process. Investor's decisions are based on the market trends to reap maximum returns.

Developers are interested to know the future trends for their decision making. To accurately estimate property prices and future trends, large amount of data that influences land price is required for analysis, modelling and forecasting. The factors that affect the land price have to be studied and their impact on price has also to be modelled. An analysis of the past data is to be considered. It is inferred that establishing a simple linear mathematical relationship for these timeseries data is found not viable for forecasting.

Hence it became imperative to establish a non-linear model which can well fit the data characteristic to analyse and forecast future trends. As the real estate is fast developing sector, the analysis and forecast of land prices using mathematical modelling and other scientific techniques is an immediate urgent need for decision making by all those concerned. The increase in population as well as the industrial activity is attributed to various factors, the most prominent being the recent spurt in the knowledge sector viz. Information Technology (IT) and Information technology enabled services. Demand for land started of showing an upward trend and housing and the real estate activity started booming. All barren lands and paddy fields ceased their existence to pave way for multistore and high-rise buildings. Investments started pouring in Real Estate Industry and there was no uniform pattern in the land price over the years. The need for predicting the trend in land prices was felt by all in the industry viz. the Government, the regulating bodies, lending institutions, the developers and the investors. Therefore, in this paper, we present various important features to use while predicting housing prices with good accuracy. We can use regression models, using various features to have lower Root Mean Squared error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features linear regression, random forest regression and decision tree regression is used for making better model fit. For these models are expected to be susceptible towards over fitting random forest regression is used to reduce it. So, it directs to the best application of regression models in addition to other techniques to optimize the result.

Linear Regression:

To establish baseline performance with a linear classifier, we used Linear Regression to model the price targets, Y, as a linear function of the data, X

$$(X) = w0 + w1x1 + ... + wmxm + xm$$
$$= \sum (wjxj)$$
$$j=1:m$$

Advantage: A linear model can include more than one predictor as long as the predictors are additive. the best fit line is the line with minimum error from all the points, it has high efficiency but sometimes this high efficiency created.

Disadvantage: Linear Regression Is Limited to Linear Relationships. Linear Regression Only Looks at the Mean of the Dependent Variable. Linear Regression Is Sensitive to Outliers. Data Must Be Independent

Random Forest Regression:

 ∞

The Random Forest Regression (RFR) is an ensemble algorithm that combines multiple Regression Trees (RTs). Each RT is trained using a random subset of the features, and the output is the average of the individual RTs. The sum of squared errors for a tree T is:

Advantages: There is no need for feature normalization. Individual decision trees can be trained in parallel. Random forests are widely used. They reduce overfitting.

Disadvantages: They're not easily interpretable. They're not a state-of-the-art

$$S = \sum_{c \in leaves(T)i \in C} \sum (y_i - m_c)^2$$
 where $m = 1 + \sum_{c \in n_c} y$

Analytical Problem Framing

Mathematical/ Analytical Modelling of the Problem Statistical Analysis

Once it comes time to analyse the data, there are an array of statistical model's analysts may choose to utilize. The most common techniques will fall into the following two groups:

- > Supervised learning, including regression and classification models.
- Unsupervised learning, including clustering algorithms and association rules

Regression Model:

The regression models are used to examine relationships between variables. Regression models are often used to determine which independent variables hold the most influence over dependent variables information that can be leveraged to make essential decision.

The most traditional regression model is linear regression, decision tree regression, random forest regression, xgboost regression and knnneighbours.

There are 4 main components of an analytics model, namely:

- 1) Data Component,
- 2) Algorithm Component,
- 3) Real World Component, and
- 4) Ethical Component.

Data Preparation

In this study, we will use a housing dataset presented by A US-based housing company named Surprise Housing has decided to enter the Australian market. The company uses data analytics to purchase houses at a price below their actual values and flip them at a higher price. For the same purpose, the company has collected a data set from the sale of houses in Australia. The data is provided in the csv file below housing_train.csv and housing_test.csv

Data Description

The dataset contains 1460 records (rows) and 81 features (columns).

Here, we will provide a brief description of dataset features. Since the number of features is large (81), we will attach the original data description file to this study for more information about the dataset. Now, we will mention the feature name with a short description of its meaning.

Dataframe Description:

The dataset contains the data of the house. On the basis of the data we have to predict the sale price of the house, the dataet contains the data like, 'Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatt', 'Exterior1st', 'Exterior2nd', 'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'BsmtFinSF1', 'BsmtFinSF1

Data Pre-processing

Then we move to see statistical information about the non-numerical columns in our dataset:

Preprocessing In [57]: df.describe() #statistics summary for numerical columns Out[57]: Id MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 count 1168.00000 1168.00000 954.0000 1168.00000 1168.00000 1168.00000 1168.00000 1168.00000 1169.000000 1169.000000 1169.000000 1169.000000 mean 724.136130 56.767979 70.98847 10484.749144 6.104452 5.595890 1970.930651 1984.758562 102.310078 444.726027 46.647260 std 416.159877 41,940650 24,82875 8957,442311 1,390153 1,124343 30,145255 20,785185 182,595606 462,664785 163,520016 20.000000 21.00000 1300.000000 1950.000000 **25**% 360.500000 20.000000 60.00000 7621.500000 5.000000 1954.000000 1966.000000 0.000000 0.000000 50% 714.500000 50.000000 70.00000 9522.500000 6.000000 5.000000 1972.000000 1993.000000 0.000000 385.500000 **75**% 1079.500000 70.000000 80.00000 11515.500000 7.000000 6.000000 2000.000000 2004.000000 160.000000 714.500000 0.000000 max 1460.00000 190.00000 313.0000 164660.00000 10.00000 9.00000 2010.00000 2010.00000 1600.00000 5644.00000 1474.00000

From the table above, we can see, for example, that the average lot area of the houses in our dataset is 10,1484.74 ft.² with a standard deviation of 8957.44 ft.². We can see also that the minimum lot area is 1300 ft.² and the maximum lot area is 164660 ft.² with a median of 9522 ft.². Similarly, we can get a lot of information about our dataset variables from the table.

Data Cleaning

Dealing with Missing Values:

We should deal with the problem of missing values because some machine learning models don't accept data with missing values. Firstly, let's see the number of missing values in our dataset. We want to see the number and the percentage of missing values for each column that actually contains missing values.

Columns non-null	Columns non-null	Columns non-null
Id 0	ExterCond 0	Functional 0
MSSubClass 0	Foundation 0	Fireplaces 0
MSZoning 0	BsmtQual 30	FireplaceQu 551
LotFrontage 214	BsmtCond 30	GarageType 64
LotArea 0	BsmtExposure 31	GarageYrBlt 64
Street 0	BsmtFinType1 30	GarageFinish 64
Alley 1091	BsmtFinSF1 0	GarageCars 0
LotShape 0	BsmtFinType2 31	GarageArea 0
LandContour 0	BsmtFinSF2 0	GarageQual 64
LotConfig 0	BsmtUnfSF 0	GarageCond 64
LandSlope 0	TotalBsmtSF 0	PavedDrive 0
Neighborhood 0	Heating 0	WoodDeckSF 0
Condition 1 0	HeatingQC 0	OpenPorchSF 0
Condition2 0	CentralAir 0	EnclosedPorch 0
BldgType 0	Electrical 0	3SsnPorch 0
HouseStyle 0	1stFlrSF 0	ScreenPorch 0
OverallQual 0	2ndFlrSF 0	PoolArea 0
OverallCond 0	LowQualFinSF 0	PoolQC 1161
YearBuilt 0	GrLivArea 0	Fence 931
YearRemodAdd 0	BsmtFullBath 0	MiscFeature 1124
RoofStyle 0	BsmtHalfBath 0	MiscVal 0
RoofMatl 0	FullBath 0	MoSold 0
Exterior1st 0	HalfBath 0	YrSold 0
Exterior2nd 0	BedroomAbvGr 0	SaleType 0
MasVnrType 7	KitchenAbvGr 0	SaleCondition 0
MasVnrArea 7	KitchenQual 0	SalePrice 0
ExterQual 0	TotRmsAbvGrd 0	

In the above table we got, count represents the number of non-null values in each column. Filling the missing values using fillna method.

```
#filling the missing values for numerical terms by mean
df['LotFrontage']=df['LotFrontage'].fillna(df['LotFrontage'].mean())
df['GarageYrBlt']=df['GarageYrBlt'].fillna(df['GarageYrBlt'].mean())
df['MasVnrArea']=df['MasVnrArea'].fillna(df['MasVnrArea'].mean())
df['GarageYrBlt']=df['GarageYrBlt'].fillna(df['GarageYrBlt'].mean())
#filling the missing values for categorical terms by mode
df['Alley']=df['Alley'].fillna(df['Alley'].mode()[0])
df['BsmtQual']=df['BsmtQual'].fillna(df['BsmtQual'].mode()[0])
df['BsmtCond']=df['BsmtCond'].fillna(df['BsmtCond'].mode()[0])
df['BsmtExposure']=df['BsmtExposure'].fillna(df['BsmtExposure'].mode()[0])
df['BsmtFinType1']=df['BsmtFinType1'].fillna(df['BsmtFinType1'].mode()[0])
df['BsmtFinType2']=df['BsmtFinType2'].fillna(df['BsmtFinType2'].mode()[0])
df['FireplaceQu']=df['FireplaceQu'].fillna(df['FireplaceQu'].mode()[0])
df['GarageType']=df['GarageType'].fillna(df['GarageType'].mode()[0])
df['GarageFinish']=df['GarageFinish'].fillna(df['GarageFinish'].mode()[0])
df['MasVnrType']=df['MasVnrType'].fillna(df['MasVnrType'].mode()[0])
df['GarageFinish']=df['GarageFinish'].fillna(df['GarageFinish'].mode()[0])
df['GarageQual']=df['GarageQual'].fillna(df['GarageQual'].mode()[0])
df['GarageCond']=df['GarageCond'].fillna(df['GarageCond'].mode()[0])
df['PoolQC']=df['PoolQC'].fillna(df['PoolQC'].mode()[0])
df['Fence']=df['Fence'].fillna(df['Fence'].mode()[0])
df['MiscFeature']=df['MiscFeature'].fillna(df['MiscFeature'].mode()[0])
```

Now let's check if there is any remaining missing value in our dataset:

Columns	non - nul	Columns	non-null	Columns	non-null
Id	0				
10	Ü	ExterCond	0	Functional	0
MSSubClass	0	Foundation	0	Fireplaces	0
MSZoning	0	BsmtQual	0	FireplaceQu	0
LotFrontage	0	BsmtCond	0	GarageType	0
LotArea	0	BsmtExposure	0	GarageYrBlt	0
Street	0	BsmtFinType1	0	GarageFinish	0
Alley	0	BsmtFinSF1	0	GarageCars	0
LotShape	0	BsmtFinType2	0	GarageArea	0
LandContour	0	BsmtFinSF2	0	GarageQual	0
LotConfig	0	BsmtUnfSF	0	GarageCond	0
LandSlope	0	TotalBsmtSF	0	PavedDrive	0
Neighborhood	0	Heating	0	WoodDeckSF	0
Condition1	0	HeatingQC	0	OpenPorchSF	0
Condition2	0	CentralAir	0	EnclosedPorch	0
BldgType	0	Electrical	0	3SsnPorch	0
HouseStyle	0	1stFlrSF	0	ScreenPorch	0
OverallQual	0	2ndFlrSF	0	PoolArea	0
OverallCond	0	LowQualFinSF	0	PoolQC	0
YearBuilt	0	GrLivArea	0	Fence	0
YearRemodAdd	0	BsmtFullBath	0	MiscFeature	0
RoofStyle	0	BsmtHalfBath	0	MiscVal	0
RoofMatl	0	FullBath	0	MoSold	0
Exterior1st	0	HalfBath	0	YrSold	0
Exterior2nd	0	BedroomAbvGr	0	SaleType	0
MasVnrType	0	KitchenAbvGr	0	SaleCondition	0
MasVnrArea	0	KitchenQual	0	SalePrice	0
ExterQual	0	TotRmsAbvGrd	0		

This means that our dataset is now complete; it doesn't contain any missing value anymore. To show graphical representation of null using heat map for entire dataset.

Column	Data types	Column Data types
Id	int64	CentralAir object
MSSubClass	int64	Electrical object
MSZoning	Object	1stFlrSF int64
LotFrontage	float64	2ndFlrSF int64
LotArea	int64	LowQualFinSF int64
Street	Object	GrLivArea int64
Alley	Object	BsmtFullBath int64
LotShape	Object	BsmtHalfBath int64
LandContour	Object	FullBath int64
LotConfig	Object	HalfBath int64
LandSlope	Object	BedroomAbvGr int64
Neighborhood	Object	KitchenAbvGr int64
Condition1	Object	KitchenQual object
Condition2	Object	TotRmsAbvGrd int64
BldgType	Object	Functional object
HouseStyle	Object	Fireplaces int64
OverallQual	int64	FireplaceQu object
OverallCond	int64	GarageType object
YearBuilt	int64	GarageYrBlt float64
YearRemodAdd	int64	GarageFinish object
RoofStyle	Object	GarageCars int64
RoofMatl	Object	GarageArea int64
Exterior1st	Object	GarageQual object
Exterior2nd	Object	GarageCond object
MasVnrType	Object	PavedDrive object
MasVnrArea	float64	WoodDeckSF int64
ExterQual	Object	OpenPorchSF int64
ExterCond	Object	EnclosedPorch int64
Foundation	Object	3SsnPorch int64
BsmtQual	Object	ScreenPorch int64

BsmtCond	object	PoolArea int64
BsmtExposure	object	PoolQC object
BsmtFinType1	object	Fence object
BsmtFinSF1	int64	MiscFeature object
BsmtFinType2	object	MiscVal int64
BsmtFinSF2	int64	MoSold int64
BsmtUnfSF	int64	YrSold int64
TotalBsmtSF	int64	SaleType object
Heating	object	SaleCondition object
HeatingQC	object	SalePrice int64

Since the dataset has a lot string values. We will use the encoding techniques to convert the string data to numerical one.

Encoding of Data Frame:

In ordinal encoding, each unique category value is assigned an integer value. This ordinal encoding transform is available in the scikit-learn Python machine learning library via the Ordinal Encoder class. By default, it will assign integers to labels in the order that is observed in the data.

In this encoding scheme, the categorical feature is first converted into numerical using an ordinal encoder. Then the numbers are transformed in the binary number. After that binary value is split into different columns. Binary encoding works really well when there are a high number of categories.

Encoding of DataFrame:

Correlation matrix:

A correlation matrix is simply a table which displays the correlation. The measure is best used in variables that demonstrate a linear relationship between each other. The fit of the data can be visually represented in a heat map.

Pandas data frame. corr () method is used for creating the correlation matrix. It is used to find the pairwise correlation of all columns in the data frame.

To create correlation matrix using pandas, these steps should be taken:

- 1. Obtain the data.
- 2. Create the Data Frame using Pandas
- 3. Create correlation matrix using Pandas.

Observations: We are unable to identify the correlation in above heat map due to huge number of columns.

How correlation matrix is calculated?

A correlation matrix is a table showing correlation coefficients between sets of variables. Each random variable (x) in the table is

correlated with each of the other values in the table x. The diagonal of the table is always a set of ones, because the correlation between a variable and itself is always 1.

```
corr_matrix=df.corr()|
corr_matrix["SalePrice"].sort_values(ascending=False)
```

Columns	Correlation matrix	Columns	Correlation matrix
SalePrice	1.000000	ExterCond	0.115167
OverallQual	0.789185	Exterior1st	0.108451
GrLivArea	0.707300	Condition1	0.105820
GarageCars	0.628329	PoolArea	0.103280
GarageArea	0.619000	ScreenPorch	0.100284
TotalBsmtSF	0.595042	Exterior2nd	0.097541
1stFlrSF	0.587642	LandSlope	0.015485
FullBath	0.554988	MasVnrType	0.007732
TotRmsAbvGrd	0.528363	BsmtFinSF2	-0.010151
YearBuilt	0.514408	BsmtHalfBath	-0.011109
YearRemodAdd	0.507831	MiscVal	-0.013071
MasVnrArea	0.463626	Id	-0.023897
Fireplaces	0.459611	Alley	-0.029798
GarageYrBlt	0.458007	LowQualFinSF	-0.032381
Foundation	0.374169	YrSold	-0.045508
BsmtFinSF1	0.362874	SaleType	-0.050851
OpenPorchSF	0.339500	LotConfig	-0.060452
2ndFlrSF	0.330386	MSSubClass	-0.060775
LotFrontage	0.323779	OverallCond	-0.065642
WoodDeckSF	0.315444	BldgType	-0.066028
HalfBath	0.295592	BsmtFinType1	-0.092109
LotArea	0.249499	Heating	-0.100021
CentralAir	0.246754	EnclosedPorch	-0.115004
Electrical	0.234621	KitchenAbvGr	-0.132108
PavedDrive	0.231707	MSZoning	-0.133221
SaleCondition 0.21		PoolQC	-0.152611
BsmtUnfSF	0.215724	LotShape	-0.248171
BsmtFullBath	0.212924	BsmtExposure	-0.268559
HouseStyle	0.205502	GarageType	-0.299470
Neighborhood	0.198942	HeatingQC	-0.406604
RoofStyle	0.192654	GarageFinish	-0.537121
RoofMatl	0.159865	KitchenQual	-0.592468
BedroomAbvGr	0.158281	ExterQual	-0.624820
GarageCond	0.135071	BsmtQual	-0.626850
Functional	0.118673		

Now we can clearly identify the correlation of independent variables with the target variables "Sale Price". There are around 25 variables who has less than 0.01 correlation value (very week relationship.)

Checking the columns which are positively and negative correlated with the target columns:

```
plt.figure(figsize=(22,7))
df.corr()['SalePrice'].sort_values(ascending=False).drop(['SalePrice']).plot(kind='bar',color='c')
plt.xlabel('Feature',fontsize=14)
plt.ylabel('column with target names',fontsize=14)
plt.title('Correlation',fontsize=18)
plt.show()
```


Let's check the data distribution among all the columns.

We can see skewness in data for the multiple columns, will handle the skewness in further steps.

Outliers Check:

There are 80 columns in dataset so it's not possible to plot each and every column separately or plot all together. so, we will print in 4 steps:

There are outliers in lot area column.

We can see outliers in MasVnrArea, BsmtFinSF1,BsmtFinSF2,BsmtUnfSF,TotalBsmtSF.

We can see outliers in 1stFlrSF, LowQualFinSF,GrLivArea,GarageYrBuilt.

We can see one or two values outer of whiskers but those are near to whiskers so these are not outliers. The outliers are not consider for target variables.

Skewness:

Skewness is a measure of symmetry in a distribution. Actually, it's more correct to describe it as a measure of lack of symmetry. A standard normal distribution is perfectly symmetrical and has zero skew. Therefore, we need a way to calculate how much the distribution is skewed.

Checking Skewness:

Columns	Skewness	Columns	Skewness	
Id	0.026526	CentralAir	-3.475188	
MSSubClass	1.422019	Electrical	-3.104209	
MSZoning	-1.796785	1stFlrSF	1.513707	
LotFrontage	2.710383	2ndFlrSF	0.823479	
LotArea	10.659285	LowQualFinS	SF 8.666142	
Street	-17.021969	GrLivArea	1.449952	
Alley	5.436187	BsmtFullBath	0.627106	
LotShape	-0.603775	BsmtHalfBatl	n 4.264403	
LandContour	-3.125982	FullBath	0.057809	

LotConfig -1.118821	HalfBath 0.656492
LandSlope 4.812568	BedroomAbvGr 0.243855
Neighborhood 0.043735	KitchenAbvGr 4.365259
Condition1 3.008289	KitchenQual -1.408106
Condition2 11.514458	TotRmsAbvGrd 0.644657
BldgType 2.318657	Functional -3.999663
HouseStyle 0.285680	Fireplaces 0.671966
OverallQual 0.175082	FireplaceQu 0.753507
OverallCond 0.580714	GarageType 0.831142
YearBuilt -0.579204	GarageYrBlt -0.662934
YearRemodAdd -0.495864	GarageFinish -0.450190
RoofStyle 1.498560	GarageCars -0.358556
RoofMatl 7.577352	GarageArea 0.189665
Exterior1st -0.612816	GarageQual -4.582386
Exterior2nd -0.592349	GarageCond -5.422472
MasVnrType -0.104609	PavedDrive -3.274035
MasVnrArea 2.834658	WoodDeckSF 1.504929
ExterQual -1.810843	OpenPorchSF 2.410840
ExterCond -2.516219	EnclosedPorch 3.043610
Foundation -0.002761	3SsnPorch 9.770611
BsmtQual -1.343781	ScreenPorch 4.105741
BsmtCond -3.293554	PoolArea 13.243711
BsmtExposure -1.166987	PoolQC -19.401558
BsmtFinType1 -0.068901	Fence -3.185107
BsmtFinSF1 1.871606	MiscFeature -17.238424
BsmtFinType2 -3.615783	MiscVal 23.065943
BsmtFinSF2 4.365829	MoSold 0.220979
BsmtUnfSF 0.909057	YrSold 0.115765
TotalBsmtSF 1.744591	SaleType -3.660513
Heating 10.103609	SaleCondition -2.671829
HeatingQC 0.449933	SalePrice 1.953878

To handle skewness of the data using different types of functions:

- 1. Log Transform
- 2. Square Root Transform
- 3. Box-Cox Transform
- 4. Power transform

Now here, we are going to use Power transform function to handle skewness in dataset. Then, splitting the independent and target variable in x and y.

```
# Splitting the indepedent and target variable in x and y
x= df.drop('SalePrice',axis=1)
y= df['SalePrice']
```

In statistics, a power transform is a family of functions applied to create a monotonic transformation of data using power functions. It is a data transformation technique used to stabilize variance, make the data more normal distribution-like, improve the validity of measures of association (such as the Pearson correlation between variables), and for other data stabilization procedures.

```
from sklearn.preprocessing import power_transform
df_new=power_transform(x)
df_new=pd.DataFrame(df_new,columns=x.columns)
```

After performing such statistics, the skewness is removed in dataset as shown below:

MSSubClass 0.064007 I MSZoning 0.233113 1 LotFrontage 0.161368 2 LotArea 0.032509 I Street -17.021969 0	CentralAir -3.475188 Electrical -3.006845 1stFlrSF -0.002391 2ndFlrSF 0.280208 LowQualFinSF 6.922843 GrLivArea -0.000054
MSZoning 0.233113 1 LotFrontage 0.161368 2 LotArea 0.032509 I Street -17.021969 0	1stFlrSF -0.002391 2ndFlrSF 0.280208 LowQualFinSF 6.922843
LotFrontage 0.161368 2 LotArea 0.032509 I Street -17.021969 0	2ndFlrSF
LotArea 0.032509 I Street -17.021969 (LowQualFinSF 6.922843
Street -17.021969 (
	GrLivArea -0.000054
Alley 5 436187	0.000000
	BsmtFullBath 0.365488
LotShape -0.594207 I	BsmtHalfBath 3.954345
LandContour -2.592303	FullBath -0.045944
LotConfig -1.030401 I	HalfBath 0.498003
LandSlope 3.954345	BedroomAbvGr 0.116498
	KitchenAbvGr -2.370593
Condition1 0.225468	KitchenQual -0.435558
Condition2 0.537277	TotRmsAbvGrd 0.002332
BldgType 1.857194 I	Functional -3.343664
HouseStyle -0.080331	Fireplaces 0.084950
OverallQual 0.021658	FireplaceQu 0.082653
OverallCond 0.048063	GarageType 0.222501
YearBuilt -0.126641 (GarageYrBlt -0.132523
YearRemodAdd -0.225131	GarageFinish -0.335248
RoofStyle -0.292233	GarageCars -0.022970
RoofMatl -6.314987 (GarageArea -0.320370
Exterior1st -0.338023	GarageQual -4.327379
Exterior2nd -0.352793	GarageCond -4.925781
MasVnrType -0.016203	PavedDrive -3.025809
MasVnrArea 0.416370	WoodDeckSF 0.113026
ExterQual -0.605112 (OpenPorchSF -0.002749
ExterCond -2.270791 I	EnclosedPorch 2.022616
Foundation 0.004296 3	3SsnPorch 7.087955
BsmtQual -0.413999 S	ScreenPorch 3.067153
BsmtCond -3.025865 I	PoolArea 12.817372
BsmtExposure -0.914214	PoolQC -17.021969
BsmtFinType1 -0.206639	Fence 1.116688
	MiscFeature 9.291637
J 1	MiscVal 4.991071
BsmtFinSF2 2.394737 1	MoSold -0.035838
BsmtUnfSF -0.284390	YrSold 0.112893
TotalBsmtSF 0.286779 S	SaleType -2.067563
Heating -4.541694 S	SaleCondition -0.353292
HeatingQC 0.156511	

Hardware and Software Requirements and Tools Used

PYTHON Jupyter Notebook:

Key Features:

An open-source solution that has simple coding processes and syntax so it's fairly easy to learn Integration with other languages such as C/C++, Java, PHP, C#, etc. Advanced analysis processes through machine learning and text mining.

Python is extremely accessible to code in comparison to other popular languages such as Java, and its syntax is relatively easy to learn making this tool popular among users that look for an open-source solution and simple coding processes. In data analysis, Python is used for data crawling, cleaning, modelling, and constructing analysis algorithms based on business scenarios. One of the best features is actually its user-friendliness: programmers don't need to remember the architecture of the system nor handle the memory – Python is considered a high-level language that is not subject to the computer's local processor.

Libraries and Packages used:

Matplotlib:

Matplotlib is a Python library that uses Python Script to write 2-dimensional graphs and plots. Often mathematical or scientific applications require more than single axes in a representation. This library helps us to build multiple plots at a time. You can, however, use Matplotlib to manipulate different characteristics of figures as well.

The task carried out is visualization of dataset i.e., nominal data, ordinal data, continuous data, heat map display distribution for correlation matrix and null values, boxplot distribution for checking outliers, scatter plot distribution for modelling approach, subplot distribution for analysis and comparison, feature importance and common importance features, line plot for prediction values vs actual values.

Numpy:

Numpy is a popular array – processing package of Python. It provides good support for different dimensional array objects as well as for matrices. Numpy is not only confined to providing arrays only, but it also provides a variety of tools to manage these arrays. It is fast, efficient, and really good for managing matrices and arrays.

The Numpy is used to managing matrices i.e., MAE, MSE and RMSE and arrays i.e., described the values of train test dataset.

Pandas:

Pandas is a python software package. It is a must to learn for datascience and dedicatedly written for Python language. It is a fast, demonstrative, and adjustable platform that offers intuitive datastructures. You can easily manipulate any type of data such as – structured or time-series data with this amazing package.

The Pandas is used to execute a Data frame i.e., test set.csv, train set.csv, skewness, co-efficient, predicted values of model approach, conclusion

Scikit Learn:

Scikit learn is a simple and useful python machine learning library. It is written in python, C, and C++. However, most of it is written in the Python programming language. It is a free machine learning library. It is a flexible python package that can work in complete harmony with other python libraries and packages such as Numpy and Scipy.

Scikit learn library is used to import a pre-processing function i.e., power transform, ordinal encoder, minimax scaler, linear, random forest, decision tree, xgboost, k-nearest neighbours, r2 score, mean absolute error, mean squared error, train test split, grid search cv and ensemble technique.

Models Development and Evaluation

In this section, we choose the type of machine learning prediction that is suitable to our problem. We want to determine if this is a regression problem or a classification problem. In this project, we want to predict the price of a

house given information about it. The price we want to predict is a continuous value; it can be any real number. This can be seen by looking at the target variable in our dataset Sale Price:

That means that the prediction type that is appropriate to our problem is regression.

Now, we move to choose the modelling techniques we want to use. There are a lot of techniques available for regression problems like Linear Regression, Decision Trees, Random Forest, XGBoost, k-nearest neighbors (KNN) etc. In this project, we will test many modelling techniques, and then choose the technique(s) that yield the best results. The techniques that we will try are:

1. Linear Regression

This technique models the relationship between the target variable and the independent variables (predictors). It fits a linear model with coefficients to the data in order to minimize the residual sum of squares between the target variable in the dataset, and the predicted values by the linear approximation.

2. Random Forest

Bagging is an ensemble method where many base models are used with a randomized subset of data to reduce the variance of the base model.

3. Decision Trees

For this technique, the goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.

Each one of these techniques has many algorithmic implementations. We will choose algorithm(s) for each of these techniques in the next section.

4. XGBoost

It's a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework. In prediction problems involving unstructured data (images, text, etc.) artificial neural networks tend to outperform all other algorithms or frameworks.

5. k-nearest neighbors (KNN)

The k-nearest neighbors (KNN) algorithm is a simple, supervised machine learning algorithm that can be used to solve both classification and regression problems.

Model Building and Evaluation

In this part, we will build our prediction model: we will choose algorithms for each of the techniques we mentioned in the previous section. After we build the model, we will evaluate its performance and results.

Feature Scaling:

In order to make all algorithms work properly with our data, a way to normalize the input features/variables is the Min-Max scaler. By doing so, all features will be transformed into the range [0,1] meaning that the minimum and maximum value of a feature/variable is going to be 0 and 1, respectively.

Importing libraries for metrics and model building:

```
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
```

Import Minimax Scaler for scaling of dataset:

```
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
```

Modelling Approach:

For each one of the techniques mentioned in the previous section (Linear Regression, Random Forest Regression, Decision Tree Regression, XGBoost, k-nearest neighbors(KNN) etc. etc.), we will follow these steps to build a model:

- Choose an algorithm that implements the corresponding technique
- Search for an effective parameter combination for the chosen algorithm
- > Create a model using the found parameters
- > Train (fit) the model on the training dataset
- Test the model on the test dataset and get the results

Regression Method:

Using Scikit-Learn, we can build a model for Linear Regression Model

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
```

Splitting the Dataset:

As usual for supervised machine learning problems, we need a training dataset to train our model and a ttest dataset to evaluate the model. So, we will split our dataset randomly into two parts, one for training and the other for testing. For that, we will use another function from Scikit-Learn called train_test_split ():

```
for i in range(0,100):
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=i)
    lr.fit(x_train,y_train)
    pred_train=lr.predict(x_train)
    pred_test=lr.predict(x_test)
    print(f'At random state {i},the training accuracy is:{r2_score(y_train,pred_train)}')
    print(f'At random state {i},the testing accuracy is:{r2_score(y_test,pred_test)}')
    print('\n')

At random state 0,the training accuracy is:0.8611922773551914
At random state 0,the testing accuracy is:0.6281062711267046

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=99)
lr.fit(x_train,y_train)

LinearRegression()
```

Performance Metric:

For evaluating the performance of our models, we will use mean absolute error (MAE) and mean squared error (MSE). If the predicted

value of the element, and the corresponding true value, then for all the elements, RMSE is calculated as:

```
pred=lr.predict(x_test)

df=pd.DataFrame({'Actual':y_test,'Predicted':pred})
df.head()
```

```
Actual
                 Predicted
1166
      40000 57240.896385
 610 285000 292995.009450
 304 190000 184681.765573
 266 175500 177710.196520
 434 159950 120132.127974
print("error:")
print("Mean absolute error:", mean_absolute_error(y_test, pred))
print("Mean squared error:", mean_squared_error(y_test, pred))
print("Root mean squared error:",np.sqrt(mean_squared_error(y_test,pred)))
error:
Mean absolute error: 23292.08090260509
Mean squared error: 1092376863.4258146
Root mean squared error: 33051.124994859325
```

In Linear Regressor model, The Root mean squared error value (RMSE) is high so we should compare with more model.

The Predict test and train values are calculated for Linear Regression model:

```
predict_test=lr.predict(x_test)
print(r2_score(y_test,predict_test)*100)

82.14120374676183

predict_train=lr.predict(x_train)
print(r2_score(y_train,predict_train)*100)

83.17074217579034
```

The Cross-validation score:

```
Train_accuracy=r2_score(y_train,predict_train)
Test_accuracy=r2_score(y_test,predict_test)

from sklearn.model_selection import cross_val_score
for j in range(2,10):
    cv_score=cross_val_score(lr,x,y,cv=j)
    cv_mean=cv_score.mean()
    print(f'At cross fold(j) the cv score is {cv_mean} and accuracy score for training is {Train_accuracy} and accuracy score for print('\n')
```

At cross fold(j) the cv score is 0.6840977991336635 and accuracy score for training is 0.8317074217579034 and accuracy score for tesing is 0.8214120374676184

Since the number don't have such impact on the accuracy and cv score. Here we have handled the problem of the overfitting and the under fitting by checking the training and testing score.

Visualization:

```
plt.figure(figsize=(8,6))
plt.scatter(x=y_test,y=predict_test, color='b')
plt.plot(y,y, color='r')
plt.xlabel('Actual charges',fontsize=14)
plt.ylabel('Predicted charges',fontsize=14)
plt.title('Linear Regression',fontsize=18)
plt.show()
```


Using Scikit-Learn, we can build a model for Random Forest Regression Model

```
from sklearn.ensemble import RandomForestRegressor
rdr=RandomForestRegressor()
```

Splitting the Dataset:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=99)
rdr.fit(x_train,y_train)
```

RandomForestRegressor()

```
for i in range(0,100):
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=i)
    rdr.fit(x_train,y_train)
    pred_train=rdr.predict(x_train)
    pred_test=rdr.predict(x_test)
    print(f'At random state {i},the training accuracy is:{r2_score(y_train,pred_train)}')
    print(f'At random state {i},the testing accuracy is:{r2_score(y_test,pred_test)}')
    print('\n')

At random state 0,the training accuracy is:0.9822211262650222
    At random state 0,the testing accuracy is:0.7158165016806713

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=99)
    rdr.fit(x_train,y_train)

RandomForestRegressor()
```

Performance Metric:

```
pred=rdr.predict(x_test)

df=pd.DataFrame({'Actual':y_test,'Predicted':pred})
df.head()
```

	Actual	Predicted
1166	40000	103501.31
610	285000	306372.82
304	190000	214912.54
266	175500	183282.00
434	159950	152483.60

```
print("error:")
print("Mean absolute error:", mean_absolute_error(y_test, pred))
print("Mean squared error:", mean_squared_error(y_test, pred))
print("Root mean squared error:", np.sqrt(mean_squared_error(y_test, pred)))
error:
```

Mean absolute error: 17220.003276353276 Mean squared error: 663925650.8746455 Root mean squared error: 25766.75476024572

In Random Forest Regressor model, the root mean squared error value is low when compared to linear Regressor model but still we proceed with decision tree Regressor model.

The Predicted test and train values are calculated for Random Forest Regressor model:

```
predict_test=rdr.predict(x_test)
print(r2_score(y_test,predict_test)*100)

88.85930988270783

predict_train=rdr.predict(x_train)
print(r2_score(y_train,predict_train)*100)

97.38620959439758
```

The Cross-validation score:

```
Train_accuracy=r2_score(y_train,predict_train)
Test_accuracy=r2_score(y_test,predict_test)

from sklearn.model_selection import cross_val_score
for j in range(2,10):
    cv_score=cross_val_score(rdr,x,y,cv=j)
    cv_mean=cv_score.mean()
    print(f'At cross fold(j) the cv score is {cv_mean} and accuracy score for training is {Train_accuracy} and accuracy score for print('\n')

At cross fold(j) the cv score is 0.813182818886898 and accuracy score for training is 0.9738620959439759 and accuracy score for testing is 0.8885930988270783
```

Since the number don't have such impact on the accuracy and cv_score.

Here we have handled the problem of the overfitting and the under fitting by checking the training and testing score.

Visualization:

Using Scikit-Learn, we can build a model for Decision Tree Regressor Model:

```
from sklearn.tree import DecisionTreeRegressor
dtr=DecisionTreeRegressor()

for i in range(0,100):
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=i)
    dtr.fit(x_train,y_train)
    pred_train=dtr.predict(x_train)
    pred_test=dtr.predict(x_test)
    print(f'At random state {i},the training accuracy is:{r2_score(y_train,pred_train)}')
    print(f'At random state {i},the testing accuracy is:{r2_score(y_test,pred_test)}')
    print('\n')

At random state 0,the training accuracy is:1.0
At random state 1,the training accuracy is:1.0
At random state 1,the training accuracy is:1.0
At random state 1,the training accuracy is:0.7577159767119074
```

Splitting the Dataset:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=6)
dtr.fit(x_train,y_train)
DecisionTreeRegressor()
```

Performance Metric:

```
df=pd.DataFrame({'Actual':y_test,'Predicted':pred})
df.head()
```

Mean squared error: 1271277570.7635329 Root mean squared error: 35654.97960683098

Actual Predicted 601 289000 324000.0 137 106500 113000.0 33 128500 134900.0 315 155000 127000.0 199 237500 272000.0 print("error:") print("Mean absolute error:", mean_absolute_error(y_test, pred)) print("Mean squared error:", mean_squared_error(y_test, pred)) print("Root mean squared error:",np.sqrt(mean_squared_error(y_test,pred))) error: Mean absolute error: 25741.56695156695

In Decision Tree Regressor model, The Root mean squared error value is high when compare with other models.

The Predicted test and train values are calculated for Decision Tree Regressor model:

```
predict_test=dtr.predict(x_test)
print(r2_score(y_test,predict_test)*100)

77.5188152496359

predict_train=dtr.predict(x_train)
print(r2_score(y_train,predict_train)*100)

100.0
```

The Cross-validation score:

```
Train_accuracy=r2_score(y_train,predict_train)
Test_accuracy=r2_score(y_test,predict_test)

from sklearn.model_selection import cross_val_score
for j in range(2,10):
    cv_score=cross_val_score(dtr,x,y,cv=j)
    cv_mean=cv_score.mean()
    print(f'At cross fold(j) the cv score is {cv_mean} and accuracy score for training is {Train_accuracy} and accuracy score for print('\n')

At cross fold(j) the cv score is 0.5684118128193696 and accuracy score for training is 1.0 and accuracy score for testing is 0.7751881524963591
```

Since the number don't have such impact on the accuracy and cv_score. Here we have handled the problem of the overfitting and the under fitting by checking the training and testing score.

Visualization:

Using Scikit-Learn, we can build a model for XGBoost Regressor Model:

```
from xgboost import XGBRegressor
xgb=XGBRegressor()
```

Splitting the Dataset:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=91)
xgb.fit(x_train,y_train)
XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
              importance_type='gain', interaction_constraints='',
              learning_rate=0.300000012, max_delta_step=0, max_depth=6,
              min_child_weight=1, missing=nan, monotone_constraints='()',
              n_estimators=100, n_jobs=8, num_parallel_tree=1, random_state=0,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
              tree_method='exact', validate_parameters=1, verbosity=None)
for i in range(0,100):
   x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=i)
   xgb.fit(x_train,y_train)
   pred_train=xgb.predict(x_train)
   pred_test=xgb.predict(x_test)
   print(f'At random state {i},the training accuracy is:{r2_score(y_train,pred_train)}')
   print(f'At random state {i}, the testing accuracy is:{r2_score(y_test,pred_test)}')
At random state 0, the training accuracy is:0.9999708192693281
At random state 0, the testing accuracy is:0.6903268904314472
At random state 1, the training accuracy is:0.9999805300614729
At random state 1, the testing accuracy is:0.8369764399296244
```

Performance Metric:

```
df=pd.DataFrame({'Actual':y_test,'Predicted':pred})
df.head()
```

```
Actual Predicted

541 139000 129710.453125

298 117000 132248.406250

715 107000 147713.718750

144 155000 150678.093750

942 173000 153960.187500

print("error:")
print("Mean absolute error:",mean_absolute_error(y_test,pred))
print("Mean squared error:",mean_squared_error(y_test,pred))
print("Root mean squared error:",np.sqrt(mean_squared_error(y_test,pred)))

error:
Mean absolute error: 17275.816228187323
Mean squared error: 683514616.461609
Root mean squared error: 26144.11246268668
```

In XGBoost Regressor, The Root mean squared error value is slightly high when compare with Random Forest.

```
predict_test=xgb.predict(x_test)
print(r2_score(y_test,predict_test)*100)

89.23427072753314

predict_train=xgb.predict(x_train)
print(r2_score(y_train,predict_train)*100)

99.9952165169556
```

The Predicted test and train values are calculated for XGBoost Regressor model: The Cross-validation score:

```
Train_accuracy=r2_score(y_train,predict_train)
Test_accuracy=r2_score(y_test,predict_test)

from sklearn.model_selection import cross_val_score
for j in range(2,10):
    cv_score=cross_val_score(xgb,x,y,cv=j)
    cv_mean=cv_score.mean()
    print(f'At cross fold(j) the cv score is {cv_mean} and accuracy score for training is {Train_accuracy} and accuracy score for print('\n')

At cross fold(j) the cv score is 0.8310814932956666 and accuracy score for training is 0.999952165169556 and accuracy score for testing is 0.8923427072753314
```

Since the number don't have such impact on the accuracy and cv_score.

Here we have handled the problem of the overfitting and the under fitting by checking the training and testing score.

Visualization:

Using Scikit-Learn, we can build a model for KNeighbors Regressor Model:

```
from sklearn.neighbors import KNeighborsRegressor
knn=KNeighborsRegressor()
```

Splitting the Dataset:

```
for i in range(0,100):
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=i)
    knn.fit(x_train,y_train)
    pred_train=knn.predict(x_train)
    pred_test=knn.predict(x_test)
    print(f'At random state {i},the training accuracy is:{r2_score(y_train,pred_train)}')
    print(f'At random state {i},the testing accuracy is:{r2_score(y_test,pred_test)}')
    print('\n')
At random state 0,the training accuracy is:0.8534033664108981
At random state 0,the testing accuracy is:0.6612470529095025
```

At random state 1,the training accuracy is:0.8184293174912819 At random state 1,the testing accuracy is:0.7571249028987074

KNeighborsRegressor()

Performance Metric:

```
df=pd.DataFrame({'Actual':y_test,'Predicted':pred})
df.head()
```

Actual Predicted 823 120500 120380.0 902 97000 99700.0 903 145000 131551.6 795 107000 127900.0 535 157900 141390.0

```
print("error:")
print("Mean absolute error:", mean_absolute_error(y_test, pred))
print("Mean squared error:", mean_squared_error(y_test, pred))
print("Root mean squared error:", np.sqrt(mean_squared_error(y_test, pred)))
```

error:

Mean absolute error: 21576.032478632478 Mean squared error: 853157344.5457551 Root mean squared error: 29208.857296131173

In KNeighbors Regressor, The Root mean squared error value is high when compare with another model.

The Predicted test and train values are calculated for KNeighbors Regressor model:

```
predict_test=knn.predict(x_test)
print(r2_score(y_test,predict_test)*100)

81.81449423787076

predict_train=knn.predict(x_train)
print(r2_score(y_train,predict_train)*100)

81.60799145180421
```

The Cross-validation score:

```
Train_accuracy=r2_score(y_train,predict_train)
Test_accuracy=r2_score(y_test,predict_test)

from sklearn.model_selection import cross_val_score
for j in range(2,10):
    cv_score=cross_val_score(knn,x,y,cv=j)
    cv_mean=cv_score.mean()
    print(f'At cross fold(j) the cv score is {cv_mean} and accuracy score for training is {Train_accuracy} and accuracy score for print('\n')

At cross fold(j) the cv score is 0.7348250914784015 and accuracy score for training is 0.8160799145180421 and accuracy score for testing is 0.8181449423787076
```

Since the number don't have such impact on the accuracy and cv_score. Here we have handled the problem of the overfitting and the under fitting by checking the training and testing score.

Visualization:

Hyper Parameter Tuning:

Hyper parameters are crucial as they control the overall behaviour of a machine learning model. The ultimate goal is to find an optimal combination of hyper parameters that minimizes a predefined loss function to give better results.

The predict test value for both Random Forest Regressor and XGBoost Regressor are samevalues.so, we need to perform hyper parameter tuning for both of them.

According to the performance of modelling approach, the RMSE value is low for Random Forest Regressor model but R2 score is similar for both Random Forest and XGBoost. Apply ensemble and regularization technique to determine the optimal values of Hyper Parameters.

Ensemble techniques:

Ensemble methods is a machine learning **technique** that combines several base models in order to produce one optimal predictive model. To better understand this definition let's take step back into ultimate goal of machine learning and model building.

Importing GridSearchCV

```
from sklearn.model_selection import GridSearchCV
```

Hyper parameter Tuning for Random Forest Regressor:

Firstly, we will use GridSearchCV () to search for the best model parameters in a parameter space provided by us. criterion, max features and random state.

```
from sklearn.ensemble import RandomForestRegressor
parameters={'criterion':['mse','mae'],'max_features':['auto','sqrt','log2'],'random_state':list(range(0,10))}
rdr=RandomForestRegressor()
clf=GridSearchCV(rdr,parameters)
clf.fit(x_train,y_train)|
print(clf.best_params_)
{'criterion': 'mae', 'max_features': 'auto', 'random_state': 8}
```

We defined the parameter space above using reasonable values for chosen parameters.

```
rdr=RandomForestRegressor(criterion='mae',max_features='auto',random_state=8)
rdr.fit(x_train,y_train)
rdr.score(x_train,y_train)
pred_decision=rdr.predict(x_test)
rdrs=r2_score(y_test,pred_decision)
print('R2 Score:',rdrs*100)
rdrscore=cross_val_score(rdr,x,y,cv=5)
rdrc=rdrscore.mean()
print('Cross Val Score:',rdrc*100)
```

R2 Score: 86.79417521156296 Cross Val Score: 84.6832604168003

We defined the R2 score and Cross validation score of ensemble technique using chosen parameters. We are getting model accuracy and cross validation has 86.8% & 84.7% respectively.

Hyper parameter Tuning for XGBoost Regressor:

Secondly, we will use GridSearchCV () to search for the best model parameters in a parameter space provided by us. max_depth, learning_rate and n estimators.

We defined the parameter space above using reasonable values for chosen parameters.

```
xgb=GradientBoostingRegressor(max_depth=4,learning_rate=0.009,n_estimators=2500)
xgb.fit(x_train,y_train)
xgb.score(x_train,y_train)
pred_decision=xgb.predict(x_test)
xgbs=r2_score(y_test,pred_decision)
print('R2 Score:',xgbs*100)
xgbscore=cross_val_score(xgb,x,y,cv=5)
xgbc=xgbscore.mean()
print('Cross Val Score:',xgbc*100)
```

R2 Score: 89.15088827778462 Cross Val Score: 86.577520878503 We defined the R2 score and Cross validation score of ensemble technique using chosen parameters. We are getting model accuracy and cross validation has 89.2% & 86.6% respectively.

We are getting model accuracy and cross validation has 89.2% & 86.6% respectively.

Finally, Hyper parameter Tuning is compared for both the model. In XGBoost model accuracy and cross validation is better when compared to Random Forest. We consider XGBoost Regressor is our best model for these datasets

Performance Interpretation:

MAE (Mean Absolute Error)

```
x = ['Linear','Random Forest', 'Decision Tree', 'XGBoost', 'KNN']
y = [23292.08, 17556.97 , 25741.56, 17275.81, 21576.03]
colors = ["g", "r", "y", "b", "brown"]
fig, js = plt.subplots()
plt.barh(y=range(len(x)), tick_label=x, width=y, height=0.4, color=colors);
js.set(xlabel="MAE (smaller is better)", ylabel="Model");
```


By looking at the table and the graph, we can see that XGBoost model has the smallest MAE, 17,275.81 followed by Random Forest model with a little larger error of 17556.97. After that, K-Nearest Neighbors come with error of 21,576.03. at last, the linear and Decision Tree model comes with a similar error: 23,292.08 and 25,741.56 respectively.

So, in our experiment, the best model is XGBoost model and the worst model is Decision Tree model. We can see that the difference in MAE

between the best model and the worst model is significant; the best model has almost 30 % of the error of the worst model.

MSE (Mean Squared Error)

```
x = ['Linear','Random Forest', 'Decision Tree', 'XGBoost', 'KNN']
y = [1092376863.42, 681447503.74, 1271277570.76, 683514616.46, 853157344.54]
colors = ["g", "r", "y", "b", "brown"]
fig, js = plt.subplots()
plt.barh(y=range(len(x)), tick_label=x, width=y, height=0.4, color=colors);
js.set(xlabel="MSE (smaller is better)", ylabel="Model");
```


By looking at the table and the graph, we can see that Random Forest model has the smallest MSE, 68,14,47,503.74 followed by XGBoost with a little larger error of 68,35,14,616.46.

After that, K-Nearest Neighbors come with errors of 85,31,57,344.54. At last, the Linear and Decision tree model comes with a similar error: 109,23,76,863.42 and 127,12,77,570.76 respectively.

So, in our experiment, the best model is Random Forest model and the worst model is Decision Tree model. We can see that the difference in MSE between the best model and the worst model is significant; the best model has almost 40 % of the error of the worst model.

RMSE (Root Mean Squared Error)

```
x = ['Linear','Random Forest', 'Decision Tree','XGBoost', 'KNN']
y = [33051.12, 26104.54, 35654.97, 26144.11, 29208.85]
colors = ["g", "r", "y", "b", "brown"]
fig, js = plt.subplots()
plt.barh(y=range(len(x)), tick_label=x, width=y, height=0.4, color=colors);
js.set(xlabel="RMSE (smaller is better)", ylabel="Model");
```


By looking at the table and the graph, we can see that Random Forest model has the smallest RMSE, 26,104.54 followed by XGBoost with a little larger error of 26,144.11. After that, K-Nearest Neighbors come with error of 29,208.85. At last, the linear and Decision tree model comes with a similar error: 33,051.12 and 35,654.97 respectively.

So, in our experiment, the best model is Random Forest and the worst model is Decision Tree model. We can see that the difference in MSE between the best model and the worst model is significant; the best model has almost 25 % of the error of the worst model.

We chose the root mean squared error (RMSE) as our performance metric to evaluate and compare models. RMSE presents a value that is easy to understand; it shows the average value of model error. For example, for our Random Forest model, its RMSE is 26104.54, which means that on average Random Forest will predict a value that is bigger or smaller than the true value by 26104.54. Now to understand how good this RMSE is, we need to know the range and distribution of the data. In our case, we need to see the values of the target variable Sale Price which contains the actual house prices. Let's see the violin plot, box plot, dist plot of Sale Price in our dataset:

Violin plot:

Box plot:

Dist plot:

Notice here that our residuals looked to be normally distributed and that's really a good sign which means that our model was a correct choice for the data.

From these plots above, we can understand the distribution of Sale Price.

Finally, we came to know that our best model is both XGBoost and the worst model is Decision Tree.

Feature Importance's:

Some of the models we used provide the ability to see the importance of each feature in the dataset after fitting the model. We will look at the feature importance's provided by both Random Forest and XGBoost models. We have 81 features in our data which is a big number, so we will take a look at the 15 most important features.

Random Forest

Now, let's see the most important features as for Random Forest model:

```
rdr_feature_importances = rdr.feature_importances_
rdr_feature_importances = pd.Series(rdr_feature_importances,
                                     index=x_train.columns.values).sort_values(ascending=False).head(15)
fig, ax = plt.subplots(figsize=(7,5))
sns.barplot(x=rdr_feature_importances, y=rdr_feature_importances.index, color="r");
plt.xlabel('Feature Importance');
plt.ylabel('Feature');
     OverallQual
      GrLivArea
    TotalBsmtSF
     GarageArea
        1stFIrSF
       2ndFIrSF
     BsmtFinSF1
        LotArea
        YearBuilt
    LotFrontage
  YearRemodAdd
     BsmtUnfSF
    GarageFinish
             ld
   Neighborhood
               0.00
                        0.05
                                 0.10
                                          0.15
                                                    0.20
                                                             0.25
                                                                      0.30
                                                                               0.35
                                           Feature Importance
```

Notice here in feature importance of Random Forest, the overall qualification feature plays prominent role for target variable.

XGBoost

Let's discover the most important features as determined by XGBoost model:

Notice here in feature importance of XGBoost, the overall qualification feature plays prominent role for target variable.

Common Important Features:

Now, let us see which features are among the most important features for both XGBoost and Random Forest models, and let's find out the difference in their importance regarding the two models:

```
common_imp_feat = [x for x in xgb_feature_importances.index
                   if x in rdr_feature_importances.index]
commImpFeat_xgb = [xgb_feature_importances[x]
                          for x in common_imp_feat]
commImpFeat_rdr = [rdr_feature_importances[x]
                         for x in common_imp_feat]
ind = np.arange(len(commImpFeat_xgb))
width = 0.35
fig, ax = plt.subplots()
ax.bar(ind - width/2, commImpFeat_xgb, width,
       color='b', label='XGBoost Regression');
ax.bar(ind + width/2, commImpFeat_rdr, width,
       color='r', label='Random Forest')
ax.set_xticks(ind);
ax.set_xticklabels(common_imp_feat);
ax.legend();
plt.xticks(rotation=90);
```


Finally, we noticed that overall qualification feature plays a prominent role for deciding the Sale price of the house.

Now, we compare with actual final vs sample prediction:

```
data=pd.DataFrame({'Y Test':y_test , 'Prediction':predict_test}, columns=['Y Test', 'Prediction'])
sns.lmplot(x='Y Test',y='Prediction', data=data, palette='rainbow')
data.head()
```

	Y Test	Prediction
823	120500	120380.0
902	97000	99700.0
903	145000	131551.6
795	107000	127900.0
535	157900	141390.0

Conclusion

In this paper, we built several regression models to predict the price of some house given some of the house features. We evaluated and compared each model to determine the one with highest performance. We also looked at how some models rank the features according to their importance. In this paper, we followed the data science process starting with getting the data, then cleaning and pre-processing the data, followed by exploring the data and building models, then evaluating the results and communicating them with visualizations.

As a recommendation, we advise to use this model (or a version of it trained with more recent data) by people who want to buy a house in the area covered by the dataset to have an idea about the actual price. The model can be used also with datasets that covered areas provided that they contain the same features. We also suggest that people take into consideration the features that were deemed as most important as seen in the previous section; this might help them estimate the house price better.

Learning Outcomes of the Study in respect of Data Science:

- Obtain, clean/process, and transform data.
- Analyse and interpret data using an ethically responsible approach.
- Use appropriate models of analysis, assess the quality of input, derive insight from results, and investigate potential issues.
- Apply computing theory, languages, and algorithms, as well as mathematical and statistical models, and the principles of optimization to appropriately formulate and use data analyses
- Formulate and use appropriate models of data analysis to solve hidden solutions to business-related challenges

Limitations of this work and Scope for Future Work:

There are many things that can be tried to improve the models' predictions. We can create and add more variables, try different models with different subset of features and/or rows, etc. Some of the ideas are listed below:

- ➤ Combine the applicants with 1,2,3 or more dependents and make a new feature as discussed in the EDA part.
- ➤ Make independent vs independent variable visualizations to discover some more patterns.
- Arrive at the EMI using a better formula which may include interest rates as well.
- > Try neural network using Tensor Flow or PyTorch.