index

January 10, 2022

1 The Probability Density Function - Lab

1.1 Introduction

In this lab, we will look at building visualizations known as **density plots** to estimate the probability density for a given set of data.

1.2 Objectives

You will be able to:

- Plot and interpret density plots and comment on the shape of the plot
- Estimate probabilities for continuous variables by using interpolation

1.3 Let's get started

Let's import the necessary libraries for this lab.

```
[54]: # Import required libraries
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import pandas as pd
import seaborn as sns
```

1.4 Import the data, and calculate the mean and the standard deviation

- Import the dataset 'weight-height.csv' as a pandas dataframe.
- Next, calculate the mean and standard deviation for weights and heights for men and women individually. You can simply use the pandas .mean() and .std() to do so.

Hint: Use your pandas dataframe subsetting skills like loc(), iloc(), and groupby()

```
[19]: data = pd.read_csv('weight-height.csv')

male_df = data[data["Gender"] == "Male"]
female_df = data[data["Gender"] == "Female"]

# Male Height mean: 69.02634590621737
# Male Height sd: 2.8633622286606517
```

```
# Male Weight mean: 187.0206206581929

# Male Weight sd: 19.781154516763813

# Female Height mean: 63.708773603424916

# Female Height sd: 2.696284015765056

# Female Weight mean: 135.8600930074687

# Female Weight sd: 19.022467805319007
```

1.5 Plot histograms (with densities on the y-axis) for male and female heights

- Make sure to create overlapping plots
- Use binsize = 10, set alpha level so that overlap can be visualized


```
# In average, men have a higher height average compared to women.
# The common region is between 65-67
# Seems that both heights are normally distributed

### From GitHub Solution

# Record your observations - are these inline with your personal observations?

# Men tend to have higher values of heights in general than female.

# The most common region for male and female heights is between 65 - 67
# inches (about 5 and a half feet).

# Male heights have a slightly higher spread than female heights,
# hence the male height peak is slightly smaller than female height.

# Both heights are normally distributed
```

1.6 Create a density function using interpolation

- Write a density function density() that uses interpolation and takes in a random variable
- Use np.histogram()
- The function should return two lists carrying x and y coordinates for plotting the density function

```
[34]: def density(x):
    n, bins = np.histogram(x, 10, density = 1)
    pdfx = np.zeros(n.size)
    pdfy = np.zeros(n.size):
        pdfx[i] = 0.5 * (bins[i] + bins[i+1])
        pdfy[i] = n[i]
        return pdfx, pdfy

# Generate test data and test the function - uncomment to run the test
np.random.seed(5)
mu, sigma = 0, 0.1 # mean and standard deviation
s = np.random.normal(mu, sigma, 100)
x,y = density(s)
plt.plot(x,y, label = 'test')
plt.legend();
```


1.7 Add overlapping density plots to the histograms plotted earlier

1.8 Repeat the above exercise for male and female weights

1.9 Write your observations in the cell below

```
[25]: # Record your observations - are these inline with your personal observations?

# What is the takeaway when comparing male and female heights and weights?
```

1.10 Repeat the above experiments in seaborn and compare with your results

```
[64]: # Code for heights here

sns.distplot(male_df.Height)
sns.distplot(female_df.Height)
plt.title("Comparing Heights")
plt.show();
```

/opt/anaconda3/envs/learn-env/lib/python3.8/sitepackages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a
deprecated function and will be removed in a future version. Please adapt your
code to use either `displot` (a figure-level function with similar flexibility)
or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)
/opt/anaconda3/envs/learn-env/lib/python3.8/sitepackages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a

deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
[65]: # Code for weights here
sns.distplot(male_df.Weight)
sns.distplot(female_df.Weight)
plt.title("Comparing Weights")
plt.show();
```

/opt/anaconda3/envs/learn-env/lib/python3.8/sitepackages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/opt/anaconda3/envs/learn-env/lib/python3.8/site-

packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[11]: # Your comments on the two approaches here.
are they similar? what makes them different if they are?

1.11 Summary

In this lesson, you learned how to build the probability density curves visually for a given dataset and compare the distributions visually by looking at the spread, center, and overlap. This is a useful EDA technique and can be used to answer some initial questions before embarking on a complex analytics journey.