## Lineare Algebra 2 — Lösung zu Übungsblatt 7

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 18.06.2020 um 9:15 Uhr

**26. Aufgabe:** (6 Punkte, Universelle Eigenschaft des Kerns) Seien R ein Ring, M und N zwei R-Moduln und  $\varphi: M \to N$  ein R-Modulhomomorphismus. Sei  $\iota$ :  $\ker(\varphi) \to M$  die kanonische Inklusion. Man zeige, dass das Paar  $(\ker(\varphi), \iota)$  die folgende Eigenschaft erfüllt:

(UK) Zu jedem *R*-Modul *U* und jedem *R*-Modulhomomorphismus  $f: U \to M$  mit  $\varphi \circ f = 0$  gibt es einen eindeutig bestimmten *R*-Modulhomomorphismus  $g: U \to \ker(\varphi)$  mit  $f = \iota \circ g$ ,



d.h. die Abbildung von Mengen

$$\operatorname{Hom}_R(U, \ker(\varphi)) \to \{ f \in \operatorname{Hom}_R(U, M) \mid \varphi \circ f = 0 \}$$
  
 $g \mapsto \iota \circ g$ 

ist bijektiv.

## Lösung:

Wir betrachten zunächst die einzelnen (kommutativen) Teildiagramme.



- (I) Dies gilt für alle *R*-Modulhomomorphismen, denn  $\varphi(\iota(\ker(\varphi)) = \varphi(\ker(\varphi)) = \{0\}$  und damit  $\varphi \circ \iota = 0$ .
- (II) Dies entspricht gerade der Voraussetzung, dass  $\varphi \circ f = 0$  gilt. Da  $\varphi(f(U)) = \{0\}$ , muss also  $f(U) \subseteq \ker(\varphi)$  gelten.

Wir suchen nun einen R-Modulhomomorphismus g, sodass das Diagramm



kommutiert. Aus (II) wissen wir, dass  $f(U) \subseteq \ker(\varphi)$  gilt, wir können also f einschränken auf den Homomorphismus

$$g := f|^{\ker(\varphi)} : U \to \ker(\varphi), \quad x \mapsto f(x).$$

Offenbar gilt damit  $\iota \circ g = f$  und g ist eindeutig bestimmt. Denn für eine weitere Abbildung g' mit diesen Eigenschaften gilt  $\iota \circ g = f = \iota \circ g'$  und da die Inklusion  $\iota$  eine injektive Abbildung ist, folgt daraus schon g = g'.

**27. Aufgabe:**  $(2+4 \ Punkte, Direkte \ Summen \ von \ freien \ Moduln)$  Seien R ein Ring und  $(M_i)_{i \in I}$  eine Familie von freien R-Moduln. Sei  $M = \bigoplus_{i \in I} M_i$ . In dieser Aufgabe soll mit Hilfe der universellen Eigenschaften von direkten Summen und freien Moduln gezeigt werden, dass M frei ist. Sei dazu  $(x_{i,j})_{j \in J_i}$  eine Basis von  $M_i$ . Wir setzen

$$K := \bigcup_{i \in I} (\{i\} \times J_i)$$

und betrachten  $(x_{i,j})_{(i,j)\in K}$  via der kanonischen Inklusionen  $q_i: M_i \to M$  als Familie von Elementen von M. Sei N ein Modul mit einer Familie von Elementen  $(y_{i,j})_{(i,j)\in K}$  aus N.

- (a) Man zeige, dass es für alle  $i \in I$  einen eindeutigen R-Modulhomomorphismus  $f_i \colon M_i \to N$  mit  $f_i(x_{i,j}) = y_{i,j}$  für alle  $j \in J_i$  gibt.
- (b) Man folgere aus (a) und der universellen Eigenschaft der direkten Summe, dass  $(M, (x_{i,j})_{(i,j)\in K})$  die Eigenschaft (UF) erfüllt, M also frei ist.

## Lösung:

(a) Sei  $i \in I$ . Anwendung der universellen Eigenschaft freier Moduln (UF) aus Satz 7.7 auf das Paar  $(M_i, (x_{i,j})_{j \in J_i})$  liefert zu dem R-Modul N und der Familie  $(y_{i,j})_{j \in J_i}$  einen eindeutigen R-Modulhomomorphismus  $f_i \colon M_i \longrightarrow N$  mit  $f_i(x_{i,j}) = y_{i,j}$  für alle  $j \in J_i$ . M.a.W. ist die Abbildung

$$\Phi_i : \operatorname{Hom}_R(M_i, N) \longrightarrow N^{J_i}, \ \varphi \longmapsto (\varphi(x_{i,j}))_{j \in J_i}$$

bijektiv, da die Familie  $(y_{i,j})_{j \in I_i} \in N^{I_i}$  beliebig war.

(b) Um einzusehen, dass das Paar  $(M, (x_{i,j})_{(i,j)\in K})$  die universelle Eigenschaft (UF) erfüllt, müssen wir gemäß Satz 7.7 zeigen, dass die Abbildung

$$\operatorname{Hom}_R(M,N) \longrightarrow N^K, f \longmapsto (f(x_{i,j}))_{(i,j) \in K}$$

für jeden R-Modul N bijektiv ist.

Setzen wir  $f_i := f \circ q_i \colon M_i \longrightarrow N$  für jedes  $f \in \operatorname{Hom}_R(M, N)$ , so ist nach der UE der direkten Summe 7.4 die Abbildung

$$\operatorname{Hom}_R(M,N) \longrightarrow \prod_{i \in I} \operatorname{Hom}_R(M_i,N), \ f \longmapsto (f_i)_{i \in I}$$

bijektiv, und unter Verwendung der Bijektionen  $\Phi_i$ :  $\operatorname{Hom}_R(M_i, N) \longrightarrow N^{J_i} = \prod_{j \in J_i} N$  aus (a) erhalten wir die Bijektivität von

$$\operatorname{Hom}_{R}(M, N) \longrightarrow \prod_{i \in I} N^{J_{i}} = \prod_{(i,j) \in K} N = N^{K},$$
$$f \longmapsto (\Phi_{i}(f_{i}))_{i \in I} = (f(x_{i,j}))_{(i,j) \in K}$$

(beachte, dass wir gemäß der Angabe die Identifikationen  $x_{i,j} = q_i(x_{i,j}) \in M$  verwenden).

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.