CPSC 340: Machine Learning and Data Mining

Non-Linear Regression

Admin

- Assignment 1 grades are out.
- Assignment 2 is due Sunday.
- Assignment 3 will be out by early next week.
 - Will be due before the break
- Midterm is after the break (March 1 in class)
- Tutorial next week: practice problems for hw3

Last Time: Linear Regression

We discussed linear models:

$$y_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_k x_{id}$$

$$= \sum_{i=1}^d w_i x_{ij} = w^T x_i$$

- "Multiply feature x_{ij} by weight w_j , add them to get y_i ".
- We discussed squared error function:

To predict on test case
$$\hat{x}$$
;
use $\hat{y}_i = \hat{x}_i$

Last Time: Supervised Learning Notation

• We're treating 'w', 'y', and each x_i as column-vectors:

$$W = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

$$A = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$A = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}$$

$$A = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}$$

So feature matrix 'X' actually has x_i transposed as rows:

$$\chi = \begin{bmatrix} -x_1^7 & -x_2^7 & -x_2$$

Why don't we have a y-intercept?

- Last time: Linear models with no y-intercept.
 - Linear model is $y_i = w^T x_i$ instead of $y_i = w^T x_i + w_0$ with y-intercept w_0 .
 - So if $x_i = 0$ then we must predict $y_i = 0$.

Why don't we have a y-intercept?

• Last time: Linear models with no y-intercept.

- Linear model is $y_i = w^T x_i$ instead of $y_i = w^T x_i + w_0$ with y-intercept w_0 .

- So if $x_i = 0$ then we must predict $y_i = 0$.

Adding a Bias Variable

- Simple trick to add a y-intercept ("bias") variable:
 - Make a new matrix "Z" with an extra feature that is always "1".

$$X = \begin{bmatrix} 0.1 & 0.3 \\ 0.5 & -0.6 \\ 0.2 & 0.4 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0.1 & 0.3 \\ 1 & 0.5 & -0.6 \\ 0.2 & 0.4 \end{bmatrix}$$

Now use "Z" as features to get a model with a non-zero y-intercept:

$$y_{i} = w_{0} z_{i0} + w_{i} z_{i1} + w_{2} z_{i2}$$

$$= w_{0} + w_{1} x_{i1} + w_{2} x_{i2}$$

$$= w_{0} + w_{1} x_{i1} + w_{2} x_{i2}$$

So we can have a non-zero y-intercept by changing features.

Prediction:

$$y = X * w$$

$$why?$$

$$y_{i} = w^{T} x_{i} \quad so \quad y = \begin{bmatrix} y_{i} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \begin{bmatrix} w^{T} x_{i} \\ w^{T} x_{2} \\ \vdots \\ w^{T} x_{n} \end{bmatrix} = \begin{bmatrix} x_{i}^{T} w \\ x_{2}^{T} w \\ \vdots \\ x_{n}^{T} w \end{bmatrix} = \begin{bmatrix} x_{i}^{T} w \\ x_{2}^{T} w \\ \vdots \\ x_{n}^{T} w \end{bmatrix} = \chi w$$

We can rewrite the objective function as a norm

Want 'w' that minimizes
$$f(w) = \frac{1}{4} \sum_{i=1}^{n} (w^{i}x_{i} - y_{i})^{2} = \frac{1}{4} \sum_{i=1}^{n} \Gamma_{i}^{2} = \frac{1}{4} \Gamma_{i}^{2} = \frac{1}{4} ||f||_{2}^{2} = \frac{1}{4} ||f||_{2}^$$

See notes on linear and quadratic derivatives for details.

Want 'w' that minimizes

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{7}x_{i} - y_{i})^{2} = \frac{1}{2} || Xw - y||_{2}^{2} = \frac{1}{2} w^{7}X^{7}Xw - w^{7}X^{7}y + \frac{1}{2}y^{7}y$$
(in motrix potation)

$$\nabla f(w) = X^7 X_w - X^7 Y + 0$$

What are the gradients of these terms?

So at a minimizer where $\nabla f(w) = 0$

Cheut sheet:
$$\nabla_{w} [c] = 0$$
 This is like saying d[aw] = d

Some matrix Some vector

This is a linear system Aw = b

The Punch Line

$$\min_{w} \frac{1}{2} ||Xw - y||_2^2$$

$$w = solve(X.T @ X, x.T @ y)$$

Note that f(w) is a "convex" functionso solving $\nabla f(w) = 0$ gives minimize,

Incorrect Solutions to Least Squares Problem

The least squares objective is
$$f(w) = \frac{1}{2} || X_w - y ||^2$$

The minimizers of this objective are solutions to the linear system:

 $X^T X_w = X^T y$

The following are not the solutions to the least squares problem:

 $w = (x^T x)^T (x^T y)$ (only true if $X^T x$ is invertible)

 $w = (x^T x)^T (x^T y)$ (motive multiplication is not commutative, dimensions don't even match)

 $w = \frac{X^T y}{X^T X}$ (you cannot divide by a matrix)

Least Squares Issues

- Issues with least squares model:
 - Solution might not be unique.
 - It is sensitive to outliers.
 - It always uses all features.
 - Data can might so big we can't store X^TX.
 - It might predict outside range of y_i values.
 - It assumes a linear relationship between x_i and y_i .

and X7X is dxd. Costs O(nd2) - Each of the O(12) elements is an inner product between length 'n' vectors.

>X is nxd

so XT is dxn

Example: Non-Linear Progressions in Athletics

Are top athletes going faster, higher, and farther?

We can adapt our classification methods to perform regression:

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Generative models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Generative models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - Mean y_i among k-nearest neighbours.

.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Generative models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - Mean y_i among k-nearest neighbours.
 - Could be weighted by distance.
 - Close points 'j' get more "weight" w_{ii}.

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Generative models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - Mean y_i among k-nearest neighbours.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y by distance to x_i.25

$$y_i = \underbrace{\sum_{j=1}^{2} W_{ij} y_j}_{\sum_{j=1}^{2} W_{ij}}$$

Adapting Counting/

- We can adapt our classification
 - Regression tree: tree with mea >
 - Generative models: fit $p(x_i | y_i)$
 - Non-parametric models:
 - Mean y_i among k-nearest neighb
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all yi
 - 'Locally linear regression': for each x_i a fit linear model weighted by distance.

 (Better than KNN and NW at boundaries.)

- We can adapt our classification methods to perform regression:
 - Regression tree: tree with mean value or linear regression at leaves.
 - Generative models: fit $p(x_i | y_i)$ and $p(y_i)$ with Gaussian or other model.
 - Non-parametric models:
 - Mean y_i among k-nearest neighbours.
 - Could be weighted by distance.
 - 'Nadaraya-Waston': weight all y_i by distance to x_i.
 - 'Locally linear regression': for each x_i , fit linear model weighted by distance. (Better than KNN and NW at boundaries.)
 - Ensemble methods:
 - Can improve performance by averaging across regression models.

Linear Least Squares for Quadratic Models

Can we use linear least squares to fit a quadratic model?

$$y_{i} = w_{0} + w_{1}x_{i} + w_{2}x_{i}^{2}$$

You can do this by changing the features (change of basis):

$$X = \begin{bmatrix} 6.2 \\ -0.5 \\ 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0.2 & (0.2)^2 \\ 1 & -0.5 & (-0.5)^2 \\ 1 & 1 & (1)^2 \\ 1 & 1 & (1)^2 \end{bmatrix} \qquad \begin{cases} y_i = w^{T} z_i \\ = w_0 z_{i0} + w_1 z_{i1} + w_2 z_{i2} \\ = w_0 + w_1 x_i + w_2 x_i^2 \end{cases}$$
• Fitting with least squares:
$$w = (Z^{T} Z) \setminus (Z^{T} y)$$

- It's a linear function of w, but a quadratic function of x_i.

Linear Least Squares for Quadratic Models

General Polynomial Basis

We can have a polynomial of degree 'p' by using a basis:

$$Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_n)^p \\ 1 & x_2 & (x_2)^2 & \dots & (x_n)^p \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^p \end{bmatrix}$$

- There are polynomial basis functions that are numerically nicer:
 - E.g., Lagrange polynomials (see CPSC 303)

General Polynomial Basis

Degree of Polynomial and Fundamental Trade-Off

As the polynomial degree increases, the training error goes down.

- But training error becomes worse approximation test error.
- Usual approach to selecting degree: validation or cross-validation.

Summary

- Y-intercept can be modeled by using a column of 1s.
- Linear least squares solution is given by normal equations:
 - Solve $(X^TX)w = X^Ty$.
- Tree/generative/non-parametric/ensemble methods for regression.
- Change of basis allows linear models to model non-linear data

- Next time:
 - A general method for avoiding overfitting.