Learning to Dynamically Allocate Radio Resources in Mobile 6G in-X Subnetworks

Ramoni Adeogun ,⁽¹⁾ Gilberto Berardinelli ⁽¹⁾, Preben Mogensen ^(1,2)

- (1) Department of Electronic Systems, Aalborg University, Denmark
 - (2) Nokia Bell Labs, Aalborg, Denmark

Email: ra@es.aau.dk

Learning to Dynamically Allocate RR in Mobile 6G in-X Subnetworks Outline

Introduction • 6G in-X subnetworks Concept Use-cases • Air-interface components • Existing algorithms Proposed DNN based method • Training and execution results Sensitivity analysis

Introduction 6G in-X Subnetworks

Short range low power cells with extreme performance requirements (e.g., below 0.1 ms communication loops with a wired-like reliability, or multi-Gbps data rates).

- Why 'in-X'?
 - We envision short range cells, to be installed in specific entities such as robots, production modules, vehicles, aircrafts, human bodies.
- Why short-range low power cells?
 - They offload micro/macro networks from the most demanding services, with extreme requirements
 - They enable aggressive spectrum reuse
 - Short range -> low delay spread -> limited system overhead (e.g., short Cyclic Prefix)

Life critical operations -> they should ensure the required service level everywhere, even when in motion (e.g., vehicles, mobile robots), and regardless of perceived channel and interference conditions

Introduction

6G in-X Subnetworks: Envisioned Use-Cases[1,2]

[1]. Adeogun, Ramoni, et al. "Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability." IEEE Access 8 (2020): 110172-110188 [2]. Berardinelli, Gilberto, Preben Mogensen, and Ramoni O. Adeogun. "6G subnetworks for life-critical communication." 2020 2nd 6G Wireless Summit (6G © 2019 Nokia SUMMIT). IEEE, 2020.

Introduction

6G in-X subnetworks - Air interface components[1]

- 0.1 ms periodic traffic with wired-like reliability: large subcarrier spacings (>240 kHz), semipersistent scheduling, blind repetitions (no HARQ) combined with channel hopping (frequency/interference diversity)
- Event-based ultra-low latency (e.g., alarm): large subcarrier spacings (>120 kHz), pre-emptive scheduling
- Multi- Gbps throughput: grant-based channel access, large spectrum, spatial multiplexing gain (though limited by small form factor)
- Battery-driven cells (e.g., in-body): grant-based channel access

TU: transmission unit

DTI: Device transmission interval

T_{proc}: processing time at the controller

6G in-X Subnetworks for Life-Critical Communication Distributed implicit coordination – Existing Algorithms [3]

Extreme requirements in dense deployments -> smart interference coordination -> dynamic channel allocation

Fully distributed implicit coordination (e.g., no explicit signaling among cells)

- 16 independent mobile subnetworks each with 18 sensoractuator pairs in a 30m x 30m area
- Random movement with fixed speed of 2m/s and minimum inter-controller distance of 1.5m

Dynamic channel allocation algorithms:

- Centralized Graph Coloring (CGC);
- Nearest Neighbor Conflict Avoidance (NNCA)
- Greedy channel selection

Large improvement in spectral efficiency possible with appropriate sensing and dynamic channel group selection

Learning to Dynamically Allocate Radio Resources in 6G in-X Subnetworks Proposed Method

Current heuristic methods for resource allocation leads to high spectrum usage in dense networks, or high complexity

✓ NNCA requires identification of neighbor cells -> complex receiver processing!!

Hypothesis: ML can lead to a significantly lower complexity and/or a significantly higher spectral efficiency than heuristic resource allocation methods ☺

Solution: A supervised learning for dynamic channel allocation based on local aggregate interference measurements only.

Assumption: Offline generation of sufficiently large representative examples, i.e., interference power vector – channel selection pairs.

information

Learning to Dynamically Allocate Radio Resources in 6G in-X Subnetworks

Proposed Method (2)

- Centralized dataset generation + distributed execution
 - Data generation: simulated environment with centralized graph coloring (CGC) applied to interference coupling matrix
 - Data transformation: collect measurements of aggregate power vector at each subnetwork
 - Network design and training
 - A single DNN trained with data from all subnetworks
 - Centralized execution
 - Trained DNN deployed at each subnetwork for fully distributed channel selection

- 1: **Input**: Interference matrix, $\mathbf{X}(t)$, number of channel groups, K
- 2: Create conflict graph, G_t
- 3: Apply greedy coloring, $C \leftarrow \text{GreedyColor}(G_t, K)$
- 4: while $\max(C) > K$ do
- Remove edge with lowest interference power in G_t
- Re-apply greedy coloring, $C \leftarrow \text{GreedyColor}(G_t, K)$
- 7: end while
- 8: Output: Assigned colors, C

Supervised Learning for Distributed Channel Allocation Simulation settings and DNN Training Results

Simulation parameters

Parameter	Value
Deployment area [m ²]	30 × 30
Number of controllers/subnetworks, N	16
Number of devices per subnetwork, M	18
Cell radius [m]	2.5
Velocity, v [m/s]	2.0
Minimum inter-subnetwork distance [m]	1.5
Number of channels, $N_{\rm ch}$	12
Number of groups, $N_{\rm gr}$	6
Number of receive antenna	2

Propagation and radio parameters	
Pathloss exponent, ϵ	1.8/2.2
Shadowing standard deviation, σ_s [dB]	3/5
De-correlation distance, d_c [m]	4
Lowest frequency [GHz]	6
Transmit power per channel [dBm]	-10
Noise figure [dB]	10
Subcarrier spacing [kHz]	480
Payload size [bytes]	50
Per channel bandwidth [MHz]	40 - 320

DNN and simulation settings		
Number of hidden layers	2	
Number of neurons per layer	30	
Optimizer	Adam	
Learning rate	0.01	
Batch size	32	
Training duration [s]	600	
Simulation time [s]	2000	
Snapshot duration [s]	20	
Measurement update interval [ms]	5	

Network training performance

Learning to Dynamically Allocate Radio Resources in 6G in-X Subnetworks Performance Metrics

- Failure: A control loop is said to fail if the achieved SINR on either or both the UL and DL is below $P_{outage,T}=10^{-6}$
- Probability of Loop Failure (PLF): The probability that the system does not meet the outage target of 10^{-6} within the $100\mu s$ latency

$$PLF = \frac{1}{N_{sim}} \sum_{n=1}^{N_{sim}} R_n$$
Ratio of number of failed loops (UL and/or DL) to the total number of loops at instant n

- Time between failures: Time between simulation instants where the achieved SINR is below that required to achieve 10^{-6} outage probability.
- Average time between channel switching: A measure of the overhead associated with each dynamic selection algorithm

Learning to Dynamically Allocate Radio Resources in 6G in-X Subnetworks Performance Evaluation Results

Learning to Dynamically Allocate Radio Resources in 6G in-X Subnetworks Performance evaluation results – sensitivity analysis and switching overhead

6G in-X cells for Life-Critical Communication Summary

- 6G in-X cells are short range low power cells meant to support extreme requirements in terms of latency/reliability or data rates
 - In-robot, in-vehicle, in-body cells, etc.
- A supervised learning for distributed channel selection is proposed
 - DNN classifier designed and trained using data generated with CGC
 - The DNN based method can achieve similar performance up to a PLF of 6×10^{-5} as the centralized baseline even in environments with propagation conditions different from the ones used for generating the training data.
- Achieving low PLF at similar bandwidth with centralized algorithms requires more proactive mechanisms, e.g.,
 - Recurrent neural network to learn patterns in sensing data
 - Context-information aware techniques
 - Enabling signaling among in-X cells

