Exame

Teoría de Autómatas e Linguaxes Formais

Febreiro 2012

- 1. Se o número de 0 antes do primeiro par de 1 é impar entón os ceros despois dese primeiro par de uns tamén é par.
 - A) asdf q_6 e q_7 estados finais
 - B) b, d, e, f, $g \to 0$, -, 0, 1, -, 0
 - C) i, j, k, l, m \rightarrow 1, 0, 1, 1, 0
 - D) n, p, q, r, s \rightarrow 1, 0, 0, 1, 1

 $2.\ AF{=}(\{0,\,1\},\,\{A,\,B,\,C,\,D\},\,D,\,A,\,\{A,\,D\})$

	0	1
→ *A	В	A
В	С	С
С	D	С
*D	A	С

- A) Despois de eliminar C a RE de A a D é 0(0+1)10
- B) Despois de eliminar C a RE de A a D é 11*0
- C) $L_a = [1+0(0+1)1*0(11*0)*0]*$
- D) $L_d = [1 + 0(0+1)1*0(11*0)*0]*0(0+1)1*0$
- 3. Lema do Bombeo para LR $L = \{X | X \in (a+b)*, N(a) = 2N(b) \ e \ N(b) \ impar \}$
 - A) Linguaxe regular
 - B) Aplicando a descomposición $x=a^{4n},y=aab,z=b^{2n}$ non verifica o LB
 - C) Aplicando a descomposición $x=\varepsilon,y=aab,z=a^{4n}b^{2n}$ falla para k=0
 - D) Aplicando a descomposición $x=\varepsilon, y=aab, z=a^{4n}b^{2n}$ falla para k=3
- 4. Vaciado de pila $L = \{a^i b^j c^k/j = 2(i+k)\}$

A) 1, 2, 3, 4 \rightarrow (a, Z, aZ),(a,a,aa),(λ ,Z,Z)(λ ,a,a)

B) 5, 6, 7
$$\rightarrow$$
 (b,a, λ),-,(b,b,bb)

C) 8, 9, 14
$$\rightarrow$$
 $(\lambda, Z, Z), (\lambda, b, b), (\lambda, Z, \lambda)$

D) 10, 11, 12, 13, 14
$$\rightarrow$$
 $(\lambda,b,\lambda),-,(c,b,\lambda)$

5.
$$L = \{a^i(b+c)^j d^k/i > 2(j+k); i, j, k \ge 0\}$$

$$G = (\{S,A,B\},\{a,b,c,d\},\{S;P\})$$

$$S \rightarrow a 1 2 3 \mid 4$$

$$\rm B \rightarrow a~5~6~7~|~a~8~9~10~|~11$$

$$A \rightarrow 1213 \mid a$$

A) 1, 2, 3,
$$4 \rightarrow -$$
, S, d, B

B)
$$5, 6, 7 \rightarrow -, B, b$$

C)
$$8, 9, 10 \rightarrow -, B, C$$

D) 11, 12, 13
$$\rightarrow$$
 A, a, A

6. Lema de Bombeo para linguaxes independentes do contexto.

$$L = \{a^i, b^j, c^n, d^p/i > j, m < p, i, j, m, p \ge 0\}$$

A) Linguaxe independente do contexto

B)
$$U=a^{n+1}b^nc^{n-1},\ V=c,\ W=\lambda,\ X=d,\ Z=d^n$$
 verifica o lema do bombeo

C)
$$U=a^{n+1}b^nc^{n-1},\ V=cd,\ W=\lambda,\ X=\lambda,\ Z=d^n$$
 falla para k=0

D)
$$U=a^{n+1}b^nc^{n-1},\ V=cd,\ W=\lambda,\ X=\lambda,\ Z=d^n$$
 falla para k=2

7.
$$MT = (\{q_0, ..., q_8\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4, 0, B\}, q_0, B, \{q_8\})$$

 $L = \{1^i 2^m 3^i 4^m: \ i \ge 0, m > 0\}$

A) a, b, c, d,
$$\rightarrow$$
 (0, 0, R), (1, 1, R), (2, 2, R), (3, 0, R)

B) e, f, g, h, i
$$\rightarrow$$
 (0, 0, L), (1, 1, L), (2, 2, L), (B, B, R), -

C) j, k, l, m
$$\rightarrow$$
 (0, 0, R), (2, 2, R), -, (4, 4, L)

D) n, p, q,
$$r \rightarrow (0, 0, L), (2, 2, L), -, (0, 0, R)$$

E) s, t, u, v
$$\rightarrow$$
 (0, 0, R), (2, 2, R), -, (4, 0, R)

F) w, x,
$$z \rightarrow (0, 0, L), (2, 2, L), (B, B, R)$$

8.
$$L = \{a^i b^j c^k d^m: i > k; i < m; i, j, k, m \ge 0\}$$

$$G = (\{S, X, A, B, D\}, \{a, b, c, d\}, S, D)$$

$$S \rightarrow Xd~X = 1~2~c~|A$$

$$A = 3 \ 4 \ | 5 \ | 6 \ D$$

$$Dc = 7.8$$

$$\mathrm{cB} = 16~17$$

$$bB = 18 19 D | bb$$

$$aB=20\ 21\ D$$
 |ab

A)
$$1.2 \rightarrow a, X$$

B)
$$3, 4, 5, 6 \rightarrow a, A, a, B$$

C)
$$7, 8 \rightarrow c, D$$

D) 9, 10, 11, 12, 13, 14, 15
$$\rightarrow$$
 d, d, -, d, B, d, d

E)
$$16, 17 \rightarrow B, c$$

F) 18, 19, 20, 21
$$\rightarrow$$
 b, b, b, b

9. Test

A) Sendo L unha linguaxe recursiva, M unha máquina de Turing que o acpeta, calquera W que non pertenza a L a máquina pasa a estado non final ou bucle infinito.

B)

- C) Unha linguaxe pertence a NP se non existe ningunha Máquina de Turing non determinista que o acepte en tempo humano
- D) L é NP-completo si pertence a NP e

(a) L reconsor, H when the god oceph, celques we now perhate a L a morning perm a schle pulm but so both of the advanta on eq c) were lay, perha a HP & Fut non but que oceph a tro pet a PP-Cay so L E PP o hou Cle PP o real entry perman a L