⑩ 公開特許公報(A) 昭62-20672·

(5) Int. Cl. 4

識別記号

庁内整理番号

❸公開 昭和62年(1987)1月29日

F 02 M 61/16 61/18 8311-3G 8311-3G

審査請求 未請求 発明の数 1 (全5頁)

❷発明の名称

内燃機関の燃料弁アトマイザ

②特 願 昭60-159633

20出 願 昭60(1985)7月18日

賢 司 田 沢 明 者 @発 雄 重 水 清 明 者 四発 治 健 原 明 者 72発 日立造船株式会社 人 顖 ①出 義弘 弁理士 森本 個代 理

大阪市西区江戸堀1丁目6番14号 大阪市西区江戸堀1丁目6番14号 大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 日立造船株式会社内

日立造船株式会社内

大阪市西区江戸堀1丁目6番14号

明 細 包

- 1. 発明の名称
 - 内燃機関の燃料弁アトマイザ
- 2. 特許請求の範囲
 - 1. 少なくともシリンダカバーから燃焼室内へ 突出して燃焼ガスにさらされる先端部分に、耐 食性に優れた表面処理を施した内燃機関の燃料 弁アトマイザ。
- 3. 発明の群細な説明

産菜上の利用分野

本発明は内燃機関の燃料弁アトマイザに関する。 従来の技術

内燃機関の燃料弁アトマイザには、現在のところ、工具鋼ステライト等の材料が使用されている。従来は、これらの材料であっても高温腐食の発生はなく、数年使用後に噴口が軽耗すること等でアトマイザの寿命がきまっていた。第3図はアトマイザのシリンダカバーへの取付状態を示し、(1)は燃料弁、(2)はアトマイザ、(3)はシリンダカバー、(4)は燃焼室である。

発明が解决しようとする問題点

ところが、最近になって、隣口には全く問題のない早期に、アトマイザが焼損し、使用不能になる場合が発生してきた。この早期の焼損発生は最近の出力アップにともない、機関の燃焼室部材の熱負荷が上昇したこと、使用燃料油の粗悪化でパナジウムアタックなどの高温腐食を促進するCaSO4・NaSO4・V2O5などが増加したことによるものと考えられ、この傾向はますます者しくなると推定される。

対策として、アトマイザを従来の材料より耐食性の優れたものに変更することが考えられるが、健度上昇による噴口孔加工が困難なこと、高価なこと等現状ではステライト以上の材料は見い出せないのが実状である。

本発明は上記問題点を解決するもので、従来の 材料を使用したとしても、優れた耐食性が得られ る内燃機関の燃料弁ァトマイザを提供することを 目的とするものである。

問題点を解决するための手段

上記問題点を解決するために本発明は、耐食性が必要な箇所はアトマイザのうち燃焼室内に変みした部分(第3図のA)のみであることに態み、 少なくともシリンダカバーから燃焼室内へ突出して燃焼ガスにさらされる先端部分に、耐食性に優れた表面処理を施したものである。

作 用

この構成において、表面処理は、耐食性(耐高 温腐食性)に優れた業材を選択し、例えば溶射ま たは化学蒸着(CVD)コーティングに依るものであ

溶射の場合は、第1図(a)に示すように、処理層(5)はアトマイザ(2)の先端部にだけ部分的に形成され、その厚さは100~300μmとなるので、アトマイザ(2)の田材と同程度の熱膨張率とすることが望ましい。また噴口(6)および噴口問囲の表面(7)には間で表面(7)については燃料噴射時の剥離防止のために、表面処理は行なわない。

なお、実際の焼損例をみると、全間にわたる例

なった後、水洗、乾燥した。その後第4図に示す CVD 処理装置の CVD 炉心内に供試材印をセットし、 一度真空ポンプ(3)で排気を行なった。その後ポンペ(4)のH₂ガスを純化装置切を通して脱水、脱酸素 を行ない、 CVD 炉心内をこのH₂ガスで置換し、ヒータ(4)により800℃、1時間加熱し、表面の活性化 を行なった。温度は600~1000℃、時間は30分~2時間が適当である。

はなく、第2図(a) (b) に示すように、アトマイザ(2) 周囲の特定部分(8) に焼損が偏っていることから偏心溶射し、特定部分(8) に厚い溶射届(9) を形成する ことも有効である。

CVD コーティングの場合は、処理層厚さは均一で約10μmの薄さであるから、全表面に処理を行ない、噴口径は処理層厚さを見込んだ寸法とする。

上記の要倒によって、耐食性に優れた表面処理 を、焼損の発生しやすい部分にだけ施すことによ り、アトマイザの耐久性を向上させることができ る。

実 施 例

以下本発明の一実施例を図面に基づいて説明する。とこでは、溶射および CVD コーティングによる表面処理についてその具体的実施例を説明する。 選定した材料は2種類であり、アトマイザ母材はステライトNo.6であった。

(1) CVD コーティングによる方法

ステライト供試材表面の汚れをエメリー#200 仕上し、市販のアルカリ脱脂剤にて完全脱脂を行

10μmのTiC/TiN 層を得た。

(2) 溶射による方法

ステライト供賦材表面にブラストを行なってアンカーパターンを形成した後、供試材を $100\sim150$ で予熱し、第1表に示す組成のアンダーコートをプラズマ溶射機を用いて $200\mu m$ 溶射した。 $200\mu m$ 溶射した。 $200\mu m$ 溶射した。 $200\mu m$ 溶射した。 $200\mu m$ が 選ばれる。 その後 15wt% 205 を含む部分安定化 ジルコニア($2rO_2$)を $100\mu m$ 溶射した。 なお、アンダーコートは $200\mu m$ 溶射した。 なお、アンダーコートは $200\mu m$ 溶射した。 なお、アンダーコートは $200\mu m$ 容射した。 なお、アンダーコートは $200\mu m$ 容射した。 なお、アンダーコートは $200\mu m$ 容射 $200\mu m$ 容射した。 なお、アンダーコートは $200\mu m$ 容射 $200\mu m$ 容射した。 なお、アンダーコートは $200\mu m$ では $200\mu m$ で $200\mu m$

第 1 表

浴射アンダーコート組成					
	Со	Ni	Cr	Al	Y
w t%	弢	32	21	8	0.5

上記アトマイザの場合、エンジンシリンダカバ 一内面の配置状況から喚口背面の損傷が大きいた め、均一肉厚溶射よりも背面を厚くした偏心肉厚 溶射を行なった。そりすることで、吸口側の孔が 溶射粉により結る恐れはなくなり、かつ溶射作築 が一方向からできるので作葉性が良く、耐久性の ある溶射層が得られる。

これらの方法で得られたアトマイザの実験結果を示すと第5図(a)(b)のようになる。第5図(a)はCVDコーティングによる本発明のものと未処理のものとの耐久性テストの比較を示したものであり、第5図(b)は溶射による本発明のものと未処理のものとの耐酸化性テストの比較を示したものであり、それぞれ本発明のアトマイザの方が遥かに優れているととがわかる。

発明の効果

以上本発明によれば、耐久性に使れたアトマイザを容易に得ることができる。

4. 図面の簡単を説明

第1図(a)(b) は本発明の一実施例を示すアトマイ ザの断面図 および要部断面図、第2図(a)(b) は他の 実施例を示す断面図 および(a) における B-B断面図、 第3図は内燃機関燃料弁の全体を示す断面図、第 4 図は CVD 処理装置の一例を示す構成図、第 5 図(a)(b)は本発明のものと未処理のものとの実験結果の比較を示す特性図である。

(1) … 燃料弁、(2) … アトマイザ、(3) … シリンダカスー、(4) … 燃焼室、(5) … 処理層、(6) … 喰口、(7) … 喰口周囲表面

代理人 森 本 義 弘

手続補正書(自発)

昭和60年9月25日

許庁長官殿

- 昭和60年 特許顯第159633号
- 2. 発明の名称 内燃機関の燃料弁アトマイザ
- 3. 補正をする者 特許出願人 事件との関係 (511) 日立造船株式会社
- Τ 4.代 住所 🐵 550大阪府大阪市西区西木町 1 丁目10番10号 西本町全日空ビル 4階

氏名 (6808)弁理士

5. 拒絶理由通知・補正命令の日付(発送日)

- 昭和 年 月 日
- 6. 補正により増加する発明の数
- 7. 補 正 の 対 象 明梱書の発明の詳細な説明の概 図面の一部
- 8. 補 正 の 内 容

①明和書の発明の詳細な説明の柳

(1) 第3頁第14行目

「 100~ 300μπ 」とあるを「 100~ 400μπ 」と訂正する。

(2) 第6頁

第1衷を次のように訂正する。

第 1 表 溶射アンダーコート組成 (wt%) Co Ni Cr A & Y 残 3 2 2 1 8 0.5

②図面の第5図

別紙の通り訂正する。

CATX

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

62020672

PUBLICATION DATE

29-01-87

APPLICATION DATE

18-07-85

APPLICATION NUMBER

60159633

APPLICANT: HITACHI ZOSEN CORP;

INVENTOR: MAEHARA KENJI;

INT.CL.

: F02M 61/16 F02M 61/18

TITLE

: FUEL VALVE ATOMIZER FOR

INTERNAL-COMBUSTION ENGINE

ABSTRACT: PURPOSE: To easily obtain an atomizer having the superior durability by applying the surface treatment having the superior corrosion resistance onto the top edge part which projects at least from a cylinder cover into a combustion chamber and is exposed to combustion gas.

> CONSTITUTION: The surface treatment 5 having the superior corrosion resistance is applied onto the top edge part which projects inside a combustion chamber at least from a cylinder cover in a fuel valve atomizer 2 and exposed to combustion gas. In this case, the surface treatment 5 is formed by selecting the material having the superior corrosion resistance and through metallizing or chemical evaporation coating. For example, in case of metallizing, the treatment layer 5 is partially formed only at the top edge part of the atomizer 2, and the thickness is set to 100~300µm, and the thermal expansion rate in nearly equal to that of the basic material of the atomizer 2 is desirable. Further, in order to prevent the contraction of the aperture of an injection port 6 and to prevent the exfoliation at the surface 7 on the periphery of the injection port during fuel injection, surface treatment is not applied.

COPYRIGHT: (C)1987,JPO&Japio

NSDOCID: <JP_362020672A_AJ_>