Coordinate Systems -

- Kinematics - Constant Acceleration

$$\begin{aligned} \vec{v}_f &= \vec{v}_i + \vec{a}\,t \\ v_f^2 &= v_i^2 + 2\,a(x_f - x_i) \\ \vec{a} &= \frac{d\vec{v}}{dt} \quad \vec{v} = \frac{d\vec{x}}{dt} \\ v &= \frac{\Delta x}{\Delta t} \quad \text{(only if } a = 0) \end{aligned} \quad \begin{aligned} \vec{x}_f &= \vec{x}_i + \vec{v}_i\,t + \frac{1}{2}\vec{a}\,t^2 \\ \vec{a} &: \text{ acceleration } [m/s^2] \\ \vec{v} &: \text{ velocity } [m/s] \\ \vec{x} &: \text{ position } [m] \quad t : \text{time } [s] \end{aligned}$$

- Force F [Newton] [N] $[kg \cdot m/s^2]$ -

$\sum \vec{F} = m\vec{a}$		$\vec{F}_{12} = -\vec{F}_{21}$ (by,on)		
$a_c = v^2/r$	Weight	mg	$down, center\ of\ Earth$	
$a = \sqrt{a_t^2 + a_c^2}$	Tension	T	$only \ pulls$	
	Normal	N	perpendicular, reacts	
$f = \mu N$ $F_s = -kx$	Friction	f	$opposes\ motion$	
$F_s = -kx$	Spring	F_s	$spring\ const\ k\ [N/m]$	

Energy E [Joule] [J]

$W_{nc} = \Delta K$	$+\Delta U$ $F_x = -\frac{d}{d}$	$\frac{dU}{dx}$ $W = \int \vec{F}(r) \cdot d\vec{r}$
$K = \frac{1}{2}mv^2$ $K_{\text{Rot}} = \frac{1}{2}I\omega^2$	$\begin{array}{c} \leftarrow \text{Kinetic E} \\ \text{Power} \rightarrow \end{array}$	$\mathbb{P} = \frac{dE}{dt} = \vec{F} \cdot \vec{v} = \vec{\tau} \cdot \vec{\omega}$ $[Watt = J/s]$
$U_g = m g h$ $U_s = \frac{1}{2}kx^2$	$\leftarrow \text{Potential E} \\ \underline{\textit{Dot Product}} \rightarrow$	$\begin{vmatrix} \vec{A} \cdot \vec{B} = A B \cos(\theta) \\ = A_x B_x + A_y B_y + A_z B_z \end{vmatrix}$

Momentum p $[kg \cdot m/s]$

$\vec{p}=m\vec{v}$	$\vec{F} = \frac{d\vec{p}}{dt}$	$\Delta ec{p}_{ m sys} = \int$	$\vec{F}_{ m ext}(t)dt$
$m_1 \vec{v}_{1i} + $	$m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + n$	$m_2 \vec{v}_{2f}$	$(\leftarrow \Delta p = 0)$
$\frac{1}{2}m_1 \vec{v}_{1i} ^2 + \frac{1}{2}m_2$	$_{2} \vec{v}_{2i} ^{2} = \frac{1}{2}m_{1} \vec{v}_{1f} ^{2}$	$^{2}+\frac{1}{2}m_{2} \vec{v}_{2f} ^{2}$	$(\leftarrow \Delta K = 0)$
v_{1i}	$+ v_{1f} = v_{2i} + v_{2f}$		$(\leftarrow 1D \text{ elastic})$

Angular Variables

Torque τ $[N \cdot m]$ Angular Momentum L $[kg \cdot m^2/s]$ -

$$\sum \vec{\tau} = I\vec{\alpha} \qquad \vec{\tau} = \vec{r} \times \vec{F} = \frac{d\vec{L}}{dt} \qquad |\vec{\tau}| = rF \sin \theta$$

$$\vec{L} = I\vec{\omega} \qquad \vec{L} = \vec{r} \times \vec{p} \qquad |\vec{A} \times \vec{B}| = AB \sin \theta$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} & \hat{x} & \hat{y} & \leftarrow \underline{Cross\ Product} \\ A_x & A_y & A_z & A_x & A_y & \text{down\ right}(+) \\ B_x & B_y & B_z & B_x & B_y & \text{down\ left}(-) \end{vmatrix}$$

Center of Mass [m] -

$$x_{\rm CM} = \frac{\sum x_i \cdot m_i}{\sum m_i} \qquad \vec{r}_{\rm CM} = \frac{1}{M} \int \vec{r} \, dm = \frac{1}{M} \iiint \! \! \rho(\vec{r}) \, \vec{r} \, dV$$

- Moment of Inertia $[kg \cdot m^2]$

· Universal Gravitation -

$$F_G = G \frac{m_1 m_2}{r^2} \qquad U_G = -G \frac{m_1 m_2}{r} \qquad v_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

- Fluid Dynamics - Pressure P [Pascal] [Pa] $[N/m^2]$ -

$$F = \int P dA \qquad P = P_0 + \rho gh \qquad F_B = \rho g V_{\rm disp}$$

$$A_1 v_1 = A_2 v_2 = {\rm const} \qquad P + \frac{1}{2} \rho v^2 + \rho g y = {\rm const}$$

Oscillations - 2nd order ODE -

$$\frac{d^2x}{dt^2} = -\omega^2 x \qquad \Rightarrow \qquad x(t) = A\cos(\omega t + \phi)$$

$$m\frac{d^2x}{dt^2} = -b\frac{dx}{dt} - kx \qquad \Rightarrow \qquad x(t) = Ae^{-\omega_d t}\cos(\omega t + \phi)$$

Simple	AngFreq	Damped	Behavior
mass-spring	$\omega = \sqrt{k/m}$	$\omega_0 = \sqrt{k/m}$	$\omega_d < \omega_0$ under
pendulum	$\omega = \sqrt{g/\ell}$	$\omega_d = b/2m$	$\omega_d = \omega_0$ critical
rigid pend	$\omega = \sqrt{rac{mgd}{I}}$		$\omega_d > \omega_0$ over

- Travelling Waves - 2^{nd} order PDE -

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \quad \Rightarrow \quad y(x,t) = f(x \mp vt)$$

$$y(x,t) = A \sin(k_{\lambda}x - \omega t + \phi) \qquad v = \lambda f = \sqrt{\frac{F_T}{m/\ell}}$$

$$v_t = \partial y/\partial t = -A\omega \cos(\sim) \qquad a_t = \partial^2 y/\partial t^2 = -A\omega^2 \sin(\sim)$$

$$\frac{\phi}{\omega} \qquad T \qquad \lambda$$

- Mechanical Waves -

$$f' = \left(\frac{v + v_o}{v - v_s}\right) f \qquad f_{\text{beat}} = |f_1 - f_2|$$

$$f_n = \frac{(2n)v}{4L} \qquad \leftarrow \text{fixed/fixed} \qquad f_n = \frac{(2n+1)v}{4L}$$

Physics - Mechanics

Conversions · 10^{12} Т 1 in = 2.54 cm $1 \text{ft-lb} = 1.356 \, N \cdot m$ tera 1 ft = 0.3048 m $1 \, cal = 4.186 \, J$ G 10^{9} giga 1 yard = 3 ft $1 \, kWh = 3.60 \, MJ$ mega Μ 10^{6} $1 \, mi = 5280 \, ft$ $1 \, hp = 746 \, J/s$ 10^{3} kilo k $1 \frac{mi}{hr} = 0.447 \frac{m}{s}$ $1 C = 6.25 \cdot 10^{18} e$ 10^{-2} centi $^{\rm c}$ 10^{-3} $1 L = 1000 \, cm^3$ $1eV = 1.60 \cdot 10^{-19} J$ milli $1 \, gal = 3.786 \, L$ $T_C = 5/9(T_F - 32)$ micro 10^{-6} $1 ft^3 = 28.32 L$ $T = T_C + 273$ 10^{-9} nano 10^{-12} $1 \, lb = 4.448 \, N$ 1atm = 101325 Papico

Greek Sy	mbo	ols –						
alpha beta gamma delta	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	ΓΔ	iota kappa lambda mu	κ	Λ	rho sigma tau upsilon	$ ho \sigma \ au \ v$	Σ
epsilon zeta	$\epsilon \zeta$	Δ	nu xi	$\mu \ u \ \xi$	Ξ	phi chi	$\phi \ \chi$	Φ
eta theta	$\eta \\ heta$	Θ	omicron pi	σ	П	psi omega	$\psi \ \omega$	Ψ Ω

Physical Constants Name Symbol Value $6.67 \cdot 10^{-11} N \cdot m^2 / kg^2$ Gravitation Constant G $9.8 \ m/s^2$ Earth Surface Accel g $1.38 \cdot 10^{-23} \ J/K$ Boltzmann Constant k_B $6.02 \cdot 10^{23} \text{ mol}^{-1}$ Avogadros Number N_A Ideal Gas Constant R $8.314 \ J/(\text{mol} \cdot K)$ $5.67 \cdot 10^{-8} \ W/(m^2 \cdot K^4)$ Stefan-Boltzmann Speed of Light $2.99792458 \cdot 10^8 \ m/s$ c $8.99 \cdot 10^9 \ N \cdot m^2 / C^2$ Electrostatic Constant k_e $8.854 \cdot 10^{-12} C^2/(N \cdot m^2)$ Electric Permittivity ε_0 $4\pi \cdot 10^{-7} T \cdot m/A$ Magnetic Permeability μ_0 $1.60 \cdot 10^{-19} C$ Elementary Charge e $6.63 \cdot 10^{-34} \ J \cdot s$ hPlanck Constant $1.09737 \cdot 10^{-7} \ m^{-1}$ Rydberg Constant R_H $9.274 \cdot 10^{-24} \ J/T$ Bohr Magneton μ_B $5.292 \cdot 10^{-11} \ m$ Bohr Radius a_0 $9.1093 \cdot 10^{-31} \ kg$ Rest mass of Electron m_e $1.6726 \cdot 10^{-27} \ kg$ Rest mass of Proton m_p $1.6749 \cdot 10^{-27} \ kg$ Rest mass of Neutron m_n Atomic Mass Unit 931.49 MeV/c^2 u $5.97 \cdot 10^{24} \ kg$ Mass Earth M_E $1.99 \cdot 10^{30} \ kg$ Mass Sun M_{\odot} $6.37 \cdot 10^6 \ m$ Radius Earth R_E $6.96 \cdot 10^8 \ m$ Radius Sun R_{\odot} $1.496 \cdot 10^{11} \ m$ Distance Earth/Sun AU

$\overline{}$						
_	Speed of S	ound [m/s] ———			
	Material	v	Material	v	Material	v
	Air $25^{\circ}C$	343	Ice	3845	Copper	5010
	Air $0^{\circ}C$	331	Glass	5640	Aluminum	6420
	Steam	478	P-wave	4k-7k	Iron	5950
	Water	1492	S-wave	2k-5k	Lead	1960

- Friction Coefficients $f = \mu N$ —							
Material	μ_k	μ_s	Material	μ_k	μ_s		
Tire-DryConc	0.68	0.90	Glass-Glass	0.4	0.94		
Tire-WetConc	0.58		Wood-Wood	0.30	0.42		
Tire-Ice	0.15		Ski-Snow	0.05	0.14		
Steel-Steel	0.57	0.74	Teflon-Teflon	0.04	0.04		
Copper-Steel	0.36	0.53	Synovial Fluid	0.01	0.01		

Equation of State - P [Pa] V $[m^3]$ T [K] n [mol] — $PV = nRT \qquad PV = Nk_BT \qquad \text{Ideal Gas}$ $P = \frac{nRT}{V - b} - \frac{a}{V^2} \qquad \text{Van der Waals} \qquad \stackrel{a \to \text{strength}}{b \to \text{volume}}$

- Statistical Thermodynamics Ideal Gas -

$$\Delta U = n C_V dT \qquad P = \frac{2}{3} \frac{N}{V} \left(\frac{1}{2} m \bar{v}^2 \right)$$

$$C_V = \frac{\text{DoF}}{2} R \qquad C_P = \frac{\text{DoF} + 2}{2} R \qquad \gamma = C_P / C_V$$

$$S = k_B \ln(\mathbb{P}) \qquad \mathbb{P}_{\text{Boltz}} \propto exp \left(-E_i / k_b T \right)$$

- 1st Law of Thermodynamics [J] [Joule] $\Delta U = \Delta Q + \Delta W \qquad dU = TdS + (-PdV)$ $\Delta W = \int_{V_i}^{V_f} -P \, dV \Rightarrow \qquad O$ $\Delta Q = \text{"Heat"} = \int TdS$

_	- Heat Engine						
	Q_H Eng Q_C		$= Q_H - Q$		$\frac{W_{\text{eng}}}{Q_H} = 1 - \frac{ Q_C }{ Q_H }$ $e_{\text{carnot}} = 1 - \frac{T_C}{T_H}$		
	PV^m	Process	$\Delta U_{ m int}$	ΔQ	ΔW		
		General	$nC_V dT$	dU - dW	$-\int PdV$		
	∞	Isovolume	$nC_V\Delta T$	$nC_V\Delta T$	0		
	0	Isobaric	$nC_V\Delta T$	$nC_P\Delta T$	$-P\Delta V$		
	1	Isothermal	0	$-\Delta W$	$-nRT\ln(V_f/V_i)$		
	γ	Adiabatic	$nC_V\Delta T$	0	$-rac{P_fV_f-P_iV_i}{(1-\gamma)}$		
	$P_1V_1^{\gamma} = P_2V_2^{\gamma} = \text{constant}$ ($\leftarrow \text{Adiabatic } dQ = 0$)						

_ '	- Thermal Material Properties							
	Material	Density ρ (kg/m^3)	Specific Heat c $(\frac{J}{kg^{\circ}C})$	Thermal Cond k $(\frac{W}{m^{\circ}C})$	Volume Expans β $(\frac{1}{{}^{\circ}C}) \cdot 10^{-6}$			
	Steam Air	$0.590 \\ 1.29$	2010 1004	$0.027 \\ 0.023$	$\frac{3400}{3670}$			
	Water Ethanol	1000 785.1	$4186 \\ 2440$	$0.6 \\ 0.17$	214 109			
	Ice Glass Aluminum Copper Iron Lead	920 2500 2700 8600 7800 11300	2090 840 900 387 448 128	$ \begin{array}{c} \sim 2 \\ 1.05 \\ 238 \\ 397 \\ 79.5 \\ 34.7 \end{array} $	150 27 72 51 33 87			

Latent Heat of Materials —								
$\Sigma Q_{\mathrm{iso}} =$	$=0$ ΔQ	$= mc\Delta T$	$\Delta Q = L$	Δm				
	Melting	L_{fusion}	Boiling	L_{vapor}				
Material	$({}^{\circ}C)$	(J/kg)	$(^{\circ}C)$	(J/kg)				
Nitrogen	-209.97	$2.55\!\times\!10^4$	-195.81	$2.01\!\times\!10^5$				
Water	0.00	3.33×10^{5}	100.0	2.26×10^{6}				
Ethanol	-114	$1.04\!\times\!10^5$	78	$8.54\!\times\!10^5$				

Physics - Thermodynamics