[PSZT-P] Kiedy się poddać?

Piotr Frątczak Bartosz Świtalski 26 listopada 2020

1 Opis problemu

Algorytmy ewolucyjne w klasycznym wydaniu nie mogą same zdecydować, kiedy zakończyć swoje działanie. W związku z tym należy rozważyć implementację określonego z góry kryterium. Nie istnieje uniwersalne kryterium wykrywania bezcelowości dalszej pracy algorytmu ewolucyjnego. W naszej pracy zaproponujemy przykładowe rozwiązania, zaimplementujemy je oraz dokonamy analizy ich działania.

2 Decyzje projektowe

Optymalizacja zostanie przeprowadzona na funkcjach z cec2005. Zaimplementowana została strategia ewolucyjna $(\mu + \lambda)$. Przyjęty budżet możliwych ewaluacji funkcji celu dla pojedynczej próby optymalizacji wynosi 10000*wymiarowość zadania. Skupiamy się na wymiarowości D=10. Podczas jednego uruchomienia programu dokonujemy uśrednienia wyników z 51 wywołań algorytmu.

3 Cele eksperymentu

Implementacja kryteriów przerwań optymalizacji. Dobranie przykładowych parametrów dla odpowiednich kryteriów. Zbadanie wpływu tychże kryteriów na ogólny czas optymalizacji oraz dokładność uzyskanego wyniku (optimum).

4 Użycie

```
/when-to-surrender$  python 3 \ when-to-surrender/main.py < funkcja > < kryterium > < p_1 > < p_2 > < p_3 > < p_4 >
```

Oznaczenia argumentów

<funkcja> - optymalizowana funkcja (dozwolone wartości: F_4^1 , F_5^2 , F_6^3). <kryterium> - kryterium przerwania (dozwolone wartości: k-iter, sd, best-worst, variance).

<pi>- kolejne wartości parametru do wcześniej sprecyzowanego kryterium.

Użycie skryptu

```
/when-to-surrender$
./xscript.sh
# po wykonaniu
./xclean.sh
```

Komentarz do użycia

Skrypt umożliwia uruchomienie optymalizacji wszystkich dostępnych funkcji (3) według wszystkich zaimplementowanych kryteriów (4) z wcześniej określonymi parametrami. Pojedyncze uruchomienie skryptu jest dość kosztowne czasowo, więc w celu skrócenia czasu wykonania zalecany jest np. przydział zadań do różnych rdzeni (komenda taskset), ale optymalizacja czasu wykonania wielu uruchomień na raz nie jest tematem projektu.

Wygenerowane dane zostaną zapisane do plików w folderze output. Do czyszczenia służy skrypt xclean.sh.

5 Kryteria przerwań

- K-iterations (K-iteracji). Wykorzystane jako kryterium bazowe. Kryterium jest spełnione, jeśli nie ma poprawy wartości funkcji celu przez K kolejnych iteracji. Należy wybrać odpowiednią wartość K przy założeniu, że niemożliwe jest uzyskanie lepszego wyniku po K kolejnych iteracjach.
- Standard Deviation (Odchylenie Standardowe). Kryterium jest spełnione, jeżeli odchylenie standardowe wartości każdej z cech osobników obecnej generacji jest mniejsze lub równe niż dane próg $\epsilon \geq 0$.
- Best-worst (Najlepszy-Najgorszy). Kryterium jest spełnione, gdy różnica funkcji celu między najlepszym i najgorszym osobnikiem jest mniejsza lub równa niż dany próg $\epsilon \geq 0$.

¹Shifted Schwefel's Problem 1.2 with Noise in Fitness

 $^{^2}$ Schwefel's Problem 2.6 with Global Optimum on Bounds

³Shifted Rosenbrock's Function

• Fit-Variance (Wariancja Dopasowania). Kryterium uwzględniające zróżnicowanie funkcji celu wszystkich osobników populacji. Jest spełnione, jeśli wariancja funkcji celu dla wszystkich osobników w pokoleniu jest mniejsza lub równa niż dany próg ϵ przy czym $1 \gg \epsilon \geq 0$.

6 Uzyskane wyniki

Uzyskane wyniki dla uruchomień funkcji według każdego kryterium z różnymi parametrami zostały zebrane w pojedynczy plik output.pdf i zostaną omówione w dalszej części tego sprawozdania.

Przykłady działania strategii ewolucyjnej $(\mu + \lambda)$

Rysunek 1: Dopasowanie najlepszego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla F_4 .

Rysunek 2: Dopasowanie średniego osobnika populacji w zależności od liczby ewaluacji funkcji celu dla F_6 .

7 Wnioski

Objaśnienia

best fit - najlepsze znalezione optimum

best fit mean - średnia najlepszych znalezionych optimów

best fit std. deviation - odchylenie standardowe najlepszych znalezionych optimów

budget use - średnie wykorzystanie budżetu

Wnioski do kryterium K-iteracji

k value	best fit	best fit	best fit	budget use
k varue	best IIt	mean	std. deviation	mean
100	0.04	0.26	0.14	84.74%
150	0.04	0.22	0.15	95.41%
200	0.03	0.19	0.11	96.63%
budget/lambda	0.03	0.19	0.12	99.98%

Tablica 1: Porównanie najlepszych wartości parametru kdla ${\cal F}_4$

Rysunek 3: Wartości najlepszego dopasowania funkcji F_4 wg kryterium K-iteracji. Najlepszy parametr $k\approx 200$, wykorzystanie $\approx 96.63\%$ budżetu.

k value	best fit	best fit	best fit	budget use
k varue	best IIt	mean	std. deviation	mean
200	1.02	3.32	1.33	94.65%
300	0.61	3.5	1.74	99.52%
400	0.6	3.49	1.87	99.87%
budget/lambda	1.06	3.56	2.38	99.98%

Tablica 2: Porównanie najlepszych wartości parametru kdla ${\cal F}_5$

Rysunek 4: Wartości najlepszego dopasowania funkcji F_5 wg kryterium K-iteracji. Najlepszy parametr $k\approx 200$, wykorzystanie $\approx 94.65\%$ budżetu.

k value	best fit	best fit	best fit	budget use
k value	best iit	mean	std. deviation	mean
50	9.88	1090.58	2400.09	42.34%
75	8.06	886.17	2057.39	56.76%
100	7.69	364.44	918.76	65.22%
budget/lambda	7.37	493.17	1126.43	99.98%

Tablica 3: Porównanie najlepszych wartości parametru k dla ${\cal F}_6$

Rysunek 5: Wartości najlepszego dopasowania funkcji F_6 wg kryterium K-iteracji. Najlepszy parametr $k\approx 100$, wykorzystanie $\approx 65.22\%$ budżetu.

Restarty w
g kryterium K-iteracji mają sens. Nie wykorzystując budżetu w pojedynczym uru
chomieniu możemy wykorzystać niewykorzystane ewaluacje funkcji w nowym uru
chomieniu, co może skutkować uzyskaniem lepszego wyniku.

Wnioski do kryterium Odchylenia Standardowego

	best fit	best fit	best fit	budget use
ϵ	Dest IIt	mean	std. deviation	mean
0.15	0.05	0.22	0.12	89.3%
0.14	0.05	0.22	0.14	95.3%
0.13	0.02	0.2	0.09	95.27%
0.12	0.04	0.21	0.12	97.63%

Tablica 4: Porównanie najlepszych wartości parametru ϵ dla F_4

Rysunek 6: Wartości najlepszego dopasowania funkcji F_4 wg kryterium Odchylenia Standardowego. Najlepszy parametr $\epsilon\approx0.13$, wykorzystanie $\approx95.27\%$ budżetu.

	best fit	best fit	best fit	budget use
ϵ	best iit	mean	std. deviation	mean
0.017	1.66	3.89	1.94	83.7%
0.015	1.23	3.48	1.38	93.03%
0.013	1.18	3.5	1.34	94.6%
0.012	0.5	4.02	1.87	97.92%

Tablica 5: Porównanie najlepszych wartości parametru ϵ dla F_5

Rysunek 7: Wartości najlepszego dopasowania funkcji F_5 wg kryterium Odchylenia Standardowego. Najlepszy parametr $\epsilon\approx 0.015$, wykorzystanie $\approx 93.03\%$ budżetu.

-	best fit	best fit	best fit	budget use
ϵ	best iit	mean	std. deviation	mean
0.25	7.6	972.81	2374.26	56.62%
0.2	7.7	631.97	1646.65	76.59%
0.175	7.9	686.5	1987.23	81.41%
0.1	5.14	929.13	2446.75	99.3%

Tablica 6: Porównanie najlepszych wartości parametru ϵ dla F_6

Rysunek 8: Wartości najlepszego dopasowania funkcji F_6 wg kryterium Odchylenia Standardowego. Najlepszy parametr $\epsilon\approx0.2$, wykorzystanie $\approx76.59\%$ budżetu.

Przerwania wg kryterium Odchylenia Standardowego również mają sens.

Wnioski do kryterium Najlepszy-Najgorszy

	best fit	best fit	best fit	budget use
ϵ	Dest IIt	mean	std. deviation	mean
0.125	0.1	0.28	0.17	73.41&
0.1	0.05	0.26	0.12	85.76%
0.075	0.06	0.21	0.1	93.59%
0.05	0.04	0.21	0.12	99.3%

Tablica 7: Porównanie najlepszych wartości parametru ϵ dla F_4

Rysunek 9: Wartości najlepszego dopasowania funkcji F_4 wg kryterium Najlepszy-Najgroszy. Najlepszy parametr $\epsilon\approx 0.075$, wykorzystanie $\approx 93.59\%$ budżetu.

e hos	best fit	best fit	best fit	budget use
ϵ	best IIt	mean	std. deviation	mean
1.0	1.33	4.37	2.48	88.9%
0.9	0.76	3.78	2.1	89.1%
0.8	1.29	3.19	1.22	98.47%
0.7	1.36	3.61	1.71	98.25%

Tablica 8: Porównanie najlepszych wartości parametru ϵ dla F_5

Rysunek 10: Wartości najlepszego dopasowania funkcji F_5 wg kryterium Najlepszy-Najgroszy. Najlepszy parametr $\epsilon\approx 0.8$, wykorzystanie $\approx 98.47\%$ budżetu.

ϵ	best fit	best fit	best fit	budget use
С	Dest IIt	mean	std. deviation	mean
2.0	8.07	1030.86	2437.83	65.55%
1.75	4.67	759.88	2122.63	81%
1.5	8.33	420.16	1069.83	86.58%
1.0	7.68	1489.94	2933.88	99.69%

Tablica 9: Porównanie najlepszych wartości parametru ϵ dla F_6

Rysunek 11: Wartości najlepszego dopasowania funkcji F_6 wg kryterium Najlepszy-Najgroszy. Najlepszy parametr $\epsilon\approx 1.5,$ wykorzystanie $\approx 86.58\%$ budżetu.

Przerwania wg kryterium Najlepszy-Najgorszy również mają sens.

Wnioski do kryterium Wariancji Dopasowania

_	best fit	best fit	best fit	budget use
ϵ	best iit	mean	std. deviation	mean
0.00055	0.05	0.21	0.12	90.22%
0.00045	0.03	0.2	0.11	91.68%
0.0004	0.03	0.18	0.1	96.89%
0.00035	0.04	0.19	0.14	97.67%

Tablica 10: Porównanie najlepszych wartości parametru ϵ dla F_4

Rysunek 12: Wartości najlepszego dopasowania funkcji F_4 wg kryterium Wariancji Dopasowania. Najlepszy parametr $\epsilon\approx 0.0004$, wykorzystanie $\approx 96.89\%$ budżetu.

_	best fit	best fit best	best fit	budget use
ϵ	best IIt	mean	std. deviation	mean
0.15	0.78	4.47	2.78	72.52%
0.1	1.47	4.0	1.84	85.24%
0.075	0.83	3.84	1.82	92.95%
0.05	1.08	4.07	2.79	96.18%

Tablica 11: Porównanie najlepszych wartości parametru ϵ dla F_5

Rysunek 13: Wartości najlepszego dopasowania funkcji F_5 wg kryterium Wariancji Dopasowania. Najlepszy parametr $\epsilon\approx 0.075$, wykorzystanie $\approx 92.95\%$ budżetu.

ϵ best fit	best fit	best fit	budget use	
ϵ	best IIt	mean	std. deviation	mean
0.8	8.3	560.79	1582.09	46.6%
0.5	6.82	409.4	1225.4	50.01%
0.3	8.43	615.06	1427.96	75.1%
0.1	7.46	524.33	1189.06	98.09%

Tablica 12: Porównanie najlepszych wartości parametru
 ϵ dla F_6

Rysunek 14: Wartości najlepszego dopasowania funkcji F_6 wg kryterium Wariancji Dopasowania. Najlepszy parametr $\epsilon\approx0.5,$ wykorzystanie $\approx50.01\%$ budżetu.

Przerwania wg kryterium Wariancji Dopasowania również mają sens.

Dyskusja

kryterium	średnie	odchylenie	wykorzystanie
	dopasowanie	standardowe	budżetu
K-iteracji	0.19	0.11	$\approx 96.63\%$
Odchylenie Standardowe	0.2	0.09	$\approx 95.27\%$
Najlepszy-Najgorszy	0.21	0.1	$\approx 93.59\%$
Wariancja Dopasowania	0.18	0.1	$\approx 96.89\%$

Tablica 13: Porównanie kryteriów przerwań dla F_4 .

lement animon	średnie	odchylenie	wykorzystanie
kryterium	dopasowanie	standardowe	budżetu
K-iteracji	3.32	1.33	$\approx 94.65\%$
Odchylenie Standardowe	3.48	1.38	$\approx 93.03\%$
Najlepszy-Najgorszy	3.19	1.22	$\approx 98.47\%$
Wariancja Dopasowania	3.84	1.82	$\approx 92.95\%$

Tablica 14: Porównanie kryteriów przerwań dla F_5 .

kryterium	średnie dopasowanie	odchylenie standardowe	wykorzystanie budżetu
K-iteracji	364.44	918.76	$\approx 65.22\%$
Odchylenie Standardowe	631.97	1646.65	$\approx 76.59\%$
Najlepszy-Najgorszy	420.16	1069.83	$\approx 86.58\%$
Wariancja Dopasowania	409.4	1225.4	$\approx 50.01\%$

Tablica 15: Porównanie kryteriów przerwań dla F_6 .

Dla funkcji F_4 i F_6 najlepiej zastosować kryterium Wariancji Dopasowania. Dla funkcji F_5 najlepiej zastosować kryterium Najlepszy-Najgorszy. Zauważmy także, że dla funkcji F_6 najlepszy wynik jest osiągalny przy relatywnie niskim wykorzystaniu budżetu (w porównaniu do pozostałych kryteriów).

8 Podsumowanie

Projekt wprowadzający w tematykę algorytmów ewolucyjnych. Dzięki implementacji przykładowej strategii ewolucyjnej poznano istotę algorytmów ewolucyjnych. Implementacja przykładowych kryteriów przerywania pracy algorytmu pozwoliła na analizę procesu optymalizacji funkcji i sensowności stosowania tychże przerwań.

9 Powiązane linki

• Repozytorium projektowe

10 Bibliografia

GHOREISHI, Seyyedeh Newsha; CLAUSEN, Anders; JØRGENSEN, Bo Nørregaard. Termination Criteria in Evolutionary Algorithms: A Survey. In: IJCCI. 2017. p. 373-384.

SUGANTHAN, Ponnuthurai N., et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Kan-GAL report, 2005, 2005005.2005: 2005.