Chapter 6 — Problem Set 1

Michael Brodskiy

Instructor: Mr. Morgan

November 12, 2020

- 1. Write the electron configuration for the following:
 - (a) Nickel

$$1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^2 3 d^8$$

(b) Tungsten

$$1\,{\rm s}^2\,2\,{\rm s}^2\,2\,{\rm p}^6\,3\,{\rm s}^2\,3\,{\rm p}^6\,4\,{\rm s}^2\,3\,{\rm d}^{10}\,4\,{\rm p}^6\,5\,{\rm s}^2\,4\,{\rm d}^{10}\,5\,{\rm p}^6\,6\,{\rm s}^2\,4\,{\rm f}^{14}\,5\,{\rm d}^4$$

(c) Oxygen

$$1 s^2 2 s^2 2 p^4$$

(d) Lead

$$1\,{\rm s}^2\,2\,{\rm s}^2\,2\,{\rm p}^6\,3\,{\rm s}^2\,3\,{\rm p}^6\,4\,{\rm s}^2\,3\,{\rm d}^{10}\,4\,{\rm p}^6\,5\,{\rm s}^2\,4\,{\rm d}^{10}\,5\,{\rm p}^6\,6\,{\rm s}^2\,4\,{\rm f}^{14}\,5\,{\rm d}^{10}\,6\,{\rm p}^2$$

- 2. Write the box diagram for the following:
 - (a) Fluorine

(b) Vanadium

(c) Bismuth

(d) Silver

- 3. Give the four quantum numbers for the second to last electron in the following:
 - (a) Calcium

$$n=4, l=0, m_l=0, m_s=\frac{1}{2}$$

(b) Iodine

$$n = 5, l = 1, m_l = -1, m_s = -\frac{1}{2}$$

(c) Tin

$$n = 5, l = 1, m_l = -1, m_s = \frac{1}{2}$$

(d) Carbon

$$n=2, l=1, m_l=-1, m_s=\frac{1}{2}$$

(e) Radon

$$n = 6, l = 1, m_l = 0, m_s = -\frac{1}{2}$$

(f) Gallium

$$n=3, l=2, m_l=2, m_s=-\frac{1}{2}$$

- 4. State how many electrons are in the following:
 - (a) f orbital

14

(b) d sublevel

	(c) All sublevels where $n=3$	
		18
	(d) All sublevels where $n = 5$	
		32
	(e) $l = 2$	
		10
	(f) $l = 0$	
		2
5.	State the number of unpaired ele	ctrons in:
	(a) Iron	
	· /	4
	(b) Arsenic	
		3
	(c) Tin	
		2
	(d) Silver	
		1
6.	State what atom's electron configuration ends with the following:	
	(a) $3 d^3$	
		V
	(b) $4p^2$	
		Ge
	(c) $4 f^7$	
		Eu
	(d) 5 s1	
	0	Rb
	(e) $6 s^2$	_
	(c) = 18	Ba
	(f) $5 d^8$	D.
		Pt