Automotive Sensors

Sensor Principle and Types

Automotive Intelligence Lab.

Contents

- Sensor's role in vehicle
- Switch sensor
- Resistive sensor
 - Potentiometer
 - **▶** Thermistor
- Optical sensor
- **■** Piezoelectric sensor

- **■** Capacitance sensor
- **Inductance sensor**
- Magnetic sensor

Sensor's role in vehicle

Intelligence Functions on Automobile

Advanced Driver Assistance System (ADAS)

What Makes These Functions Possible?

■ The numerous sensors in the vehicle make this possible!

How Do Sensors Make This Possible?

- Measurement device for monitoring and control of mechatronics system
 - ➤ Sensor: changes "real world" parameter into electrical signal.
 - Signal conditioning and interfacing: converts electrical signal into analog or digital values.

Physical values

- position, velocity, acceleration,
- force, torque, strain, pressure,
- temperature, flow rate, humidity.

. . .

Electrical signal

- Resistance
- Optical
- Piezoelectric
- Capacitance
- Inductance
- Magnetic

Sensor

current or + voltage 0 time

Input signal conditioning and interfacing

Digital control architecture

Switch sensor

Switch Sensor

Mechanical switch sensor

► A sensor that converts physical force or movement into electrical signals.

■ PULL-UP resistor

- ► Switch open →
- ➤ Switch close →

■ PULL-DOWN resistor

- ► Switch open →
- ➤ Switch close →

Example of Switch Sensor

■ Car door (trunk, hood) opening sensor

Resistive sensor

Resistance

Resistance

▶ Device or material's reduction of current flow.

Ohm's law

Current flow through a conductor is proportional to voltage and inversely proportional to resistance.

Resistivity formula

Factors affecting resistance

► Conductor length, diameter, material resistivity, and temperature.

Resistivity formula

- Proportional to the length and resistivity of the conductor.
- ► Inversely proportional to the cross-sectional area.

Potentiometer

- Potentiometer
 - Used for rotational or straight displacement instruments.
- Volage divider rule

Example of Potentiometer (I)

Accelerator pedal module

► Two output signal for fail-safe from separated potential meter circuit.

ACCELERATOR PEDAL MODULE

- 1 Accelerator Pedal
- 2 Accelerator Pedal Sensor
- 3 Bolts

- 4 6-Pin Connector
- 5 Kick-down Switch
- 6 Nut

Example of Potentiometer (II)

Ride height sensor

- Provides information on the height of the body.
- ▶ Ride height sensor body is attached to the chassis, the rod is linked to the wishbone or control arm.

Thermistor

- **Thermistor**
 - Resistor that changes depending on temperature.
 - Semiconductor type of resistor.
- NTC (negative temperature coefficient)

► Temperature rises, resistance	
---------------------------------	--

- PTC (positive temperature coefficient)
 - ► Temperature rises, resistance

 ΔR : change in resistance

 ΔT : change in temperature

k: *approximated first* – *order temperature*

coefficient of resistance

(k < 0: NTC, k > 0: PTC)

Example of Thermistor

© 2021 TE Connectivity. Confidential & Proprietary. Do not reproduce or distribute externally including non-authorized representatives and distributors. Create a sustainable future by limiting print copies, and recycling paper.

Optical sensor

Optical Sensor

Photoresistor

- ► Light dependent resistor
- Cadmium sulfide (CdS)
 - Also called Light Detection Register (LDR).
- ► The brighter the lower the resistance.

Cold weld contacts Ceramic Ceramic Clear coating over entire top surface Photoconductive material over top surface Top surface O.1 DARK DAYLIGHT SUNLIGHT SUNLIGHT SUNLIGHT SUNLIGHT SUNLIGHT O.1 DAYLIGHT SUNLIGHT SUNLIGHT O.1 DAYLIGHT SUNLIGHT SUNLIGHT O.1

Photo diode

- ► P-N junction diode
- Convert photons (light) to electrical current.

Anode Cathode

Incident photons

PN Junction photodiode

Photoelectric effect

► Electrons are emitted because of absorbing electromagnetic waves greater than the limit frequency.

https://m.blog.naver.com/joon9497/221599336814

Example of Optical Sensor

Automatic headlight

Rain sensor

Optical Encoder

IR sensors

- ► IR LED (emitter): emits infrared light (780 nm ~ 50 μm).
- Receiver (photo diode): detects infrared signals.

IR Led Object or Body Reflected rays from the object

Encoder

- Detect changes in slot position by measuring light.
- Absolute
 - Indicates the current shaft position, making it an angle transducer.
- Incremental
 - Provides information about the motion of the shaft, such as position, speed, and distance.

Absolute Encoder

Example of Encoder

■ Steering angle sensor

► Measure absolute steering angle position.

Piezoelectric sensor

Piezoelectric Effect

Piezoelectric

Piezoelectric effect

▶ Piezoelectricity can be generated whenever the material is squeezed by mechanical stress.

Inverse piezoelectric effect

Convert electrical energy into mechanical energy.

Example of Piezoelectric Sensor (I)

■ Tire pressure measurement systems

► A system that monitors the air pressure inside the pneumatic tires on vehicle.

Example of Piezoelectric Sensor (II)

Knock sensor

▶ Detects abnormal combustion such as knocking and early ignition inside the engine.

Capacitance sensor

Capacitance Sensor

Capacitance (C)

Capability of capacitors to store charges.

•

 ε_o : permittivity of vacuum

 ε_r : permittivity of the insulator used

 \boldsymbol{A} : area of overlap of the two plates

x: distance between two plate

Condenser Microphone

Capacitive Sensors

Touch panel

Example of Capacitance Sensor

External microphone

Using for exterior vehicle speech recognition and acoustic sensing.

Inductance sensor

Faraday's Law of Induction

Faraday's law of induction

 Φ_B : magnetic flux, \mathcal{E} : electromotive force

N: number of windings

https://m.blog.naver.com/PostView.nhn?blogId=ssh123451&logNo=221001665110&proxyReferer=https%3A%2F%2Fwww.google.com%2F

Inductance Sensor

Inductive proximity sensor

Detect changes in magnetic field by nearby ferrous metal target.

https://youtu.be/YeXImdIXp2s?t=40

Magnetic sensor

Magnetic

Hall effect

▶ Production of the Hall voltage occurs in an electrical conductor when it is subjected to an electric current and an applied magnetic field perpendicular to the current.

Lorentz force

Hall sensor

Crank Angle Sensor (CAS)

Used in internal combustion engine

Monitor the position or rotational speed of the crankshaft.

Types of sensors

- ► Hall effect sensor
 - Static (unchanging) magnetic fields can be detected.
- ► Inductive sensor
 - Usually purely passive devices (no power supply required).

THANK YOU FOR YOUR ATTENTION

