Question	Scheme	Marks
10(a)	$\frac{1}{243} = 3^{-5}$	B1
		D1
	$9^{3y} = 3^{6y}$	B1
	$\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} \Rightarrow \frac{9^{3y}}{243} = 3^{(6y-5)} *$	M1A1 cso
	243 243	[4]
(b)	$27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$	M1
	$6y-5=3x-6 \Rightarrow (6y-3x-1=0)$	M1
	$\log_4 2 = \frac{1}{2}$	
	$\log_4 2 - \frac{1}{2}$	B1
	$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} (6xy) \Rightarrow \log_{10} (6xy) = 1$	M1
	$1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$	M1
	3x - 6y - 1 = 0	
	6xy = 10	
	Method A	2.61
	$6y = \frac{10}{x} \implies 3x - \frac{10}{x} - 1 = 0 \implies 3x^2 - x - 10 = 0$	M1
	$3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{3}$	M1
	$3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$	A1
	$3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$	
	$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1
	6 3 3	[9]
	Method B	
	$3x = \frac{5}{y} \Rightarrow \frac{5}{y} - 6y - 1 = 0 \Rightarrow 6y^2 + y - 5 = 0$	M1
	$6y^2 + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$	M1
	$3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$	A1
	$3x - 6 \times (-1) - 1 = 0 \Rightarrow 3x = -5 \Rightarrow x = -\frac{5}{3}$	
	$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1
	0 3	[9]
	Tot	al 13 marks

Question	Scheme	Marks		
10	$\frac{9^{3y}}{243} = 27^{(x-2)}$			
	$\frac{243}{243}$			
	$\log_{10} \sqrt{6xy} = \log_4 2$			
(a)	Writes down $\frac{1}{243} = 3^{-5}$	B1		
	May be seen as $\frac{1}{243} = \frac{1}{3^5}$ later correctly used as 3^{-5} when			
	combining terms.			
	Writes down $9^{3y} = 3^{6y}$	B1		
	Combines the terms $\frac{9^{3y}}{243} = 3^{-5} \times 3^{6y} = 3^{(6y-5)}$	M1		
	For the correct expression with no errors.			
	$\frac{9^{3y}}{243} = 3^{(6y-5)} *$	A1		
	243	cso		
(b)	(x 2) -3(x 2) -(3x 6)	[4]		
(b)	For dealing with the power of 3 to give $27^{(x-2)} = 3^{3(x-2)} = 3^{(3x-6)}$	M1		
	For equating the powers of 3 to give the equation	N/1		
	$6y-5=3x-6 \Rightarrow (6y-3x-1=0)$	M1		
	For stating $\log_4 2 = \frac{1}{2}$	D.1		
		B1		
	For dealing with the square root	M1		
	$\log_{10} \sqrt{6xy} = \frac{1}{2} \log_{10} \left(6xy \right) = \left(\frac{1}{2} \right) \Rightarrow \log_{10} \left(6xy \right) = 1$	IVII		
	For correctly removing all logarithms from the second equation	M1		
	$1 = \log_{10} 10 \Rightarrow \log_{10} (6xy) = \log_{10} 10 \Rightarrow 6xy = 10$			
3x - 6y - 1 = 0				
6xy = 10				
	Method A			
	For substituting	3.61		
	$6y = \frac{10}{x}$ into the linear equation to give $3x - \frac{10}{x} - 1 = 0$ and	M1		
	attempting to form a 3TQ $3x^2 - x - 10 = 0$ OR for substituting			
	$y = \frac{1}{6}(3x - 1)$ into $6xy = 10$ to give $x(3x - 1) = 10$ and			
	attempting to form a 3TQ $3x^2 - x - 10 = 0$			
	For attempting to solve their 3TQ			
	$3x^2 - x - 10 = (3x + 5)(x - 2) = 0 \Rightarrow x = 2, -\frac{5}{2}$	M1		
	$\int_{0}^{3x} x^{-10} - (3x + 3)(x - 2) - 0 \rightarrow x - 2, -\frac{\pi}{3}$			

For finding the values of <i>y</i>		
$3 \times 2 - 6y - 1 = 0 \Rightarrow 6y = 5 \Rightarrow y = \frac{5}{6}$	A1	
$3 \times \left(-\frac{5}{3}\right) - 6y - 1 = 0 \Rightarrow -6y = 6 \Rightarrow y = -1$		
$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1 [9]	
Answers must be given in pairs, pairing may be implied from		
working.		
Method B		
For substituting		
$3x = \frac{10}{2y} \Rightarrow 3x = \frac{5}{y}$ into the linear equation to give $\frac{5}{y} - 6y - 1 = 0$	M1	
and attempting to form a 3TQ $6y^2 + y - 5 = 0$		
OR		
for substituting $x = \frac{1}{3}(6y + 1)$ into $6xy = 10$ to give		
$2(6y + 1)y = 10 \text{ and attempting to form a 3TQ } 6y^2 + y - 5 = 0$		
For attempting to solve their 3TQ		
$6y^{2} + y - 5 = (6y - 5)(y + 1) = 0 \Rightarrow y = \frac{5}{6}, -1$	M1	
For finding the values of <i>x</i>		
$3x - 6 \times \frac{5}{6} - 1 = 0 \Rightarrow 3x = 6 \Rightarrow x = 2$	A1	
$3x - 6 \times (-1) - 1 = 0 \Rightarrow 3x = -5 \Rightarrow x = -\frac{5}{3}$		
$x=2$ $y=\frac{5}{6}$ or $x=-\frac{5}{3}$ $y=-1$	A1	
	[9]	
Total 13 marks		