Points, Lines, and Planes

Undefined Terms

The undefined terms of geometry are point, line, and plane.

Undefined Terms

The **undefined terms** of geometry are *point*, *line*, and *plane*.

They are considered undefined because we can not give a definition for them without using other geometric terms. We can, at best, describe them.

Points

Description: a location without size.

Points

Description: a location without size.

We name a point using a dot with a capital letter.

Points

Description: a location without size.

We name a point using a dot with a capital letter.

• A

Description: Straight path that extends in two opposite directions without end.

Description: Straight path that extends in two opposite directions without end.

A line contains an infinite number of points.

Description: Straight path that extends in two opposite directions without end.

A line contains an infinite number of points.

We name lines using 2 points with a capital letter, such as \overrightarrow{AB} or \overrightarrow{BA} ,

Description: Straight path that extends in two opposite directions without end.

A line contains an infinite number of points.

We name lines using 2 points with a capital letter, such as \overrightarrow{AB} or \overrightarrow{BA} ,

Description: Straight path that extends in two opposite directions without end.

A line contains an infinite number of points.

We name lines using 2 points with a capital letter, such as \overrightarrow{AB} or \overrightarrow{BA} ,

or as a single lowercase letter such as m.

Planes

Description: Flat surface that extends without end.

Planes

Description: Flat surface that extends without end.

A plane contains infinitely many lines.

Planes

Description: Flat surface that extends without end.

A plane contains infinitely many lines.

We name a plane either by using a capital scripted letter such as \mathcal{M} , or by at least 3 points not on the same line such as ABC.

Defined Terms Based on Undefined Terms

Now that we have the undefined terms above, we can define other geometry vocabulary in terms of them.

Defined Terms Based on Undefined Terms

Now that we have the undefined terms above, we can define other geometry vocabulary in terms of them.

Collinear Points

Collinear points are points that lie on the same line.

Defined Terms Based on Undefined Terms

Now that we have the undefined terms above, we can define other geometry vocabulary in terms of them.

Collinear Points

Collinear points are points that lie on the same line.

Coplanar Points

Coplanar Points

Coplanar points are points and lines that lie on the same plane.

Space

Space

Space is the set of all points in 3 dimensions.

(a) What are two other ways to name \overleftrightarrow{QT} ?

(a) What are two other ways to name \overrightarrow{QT} ?

 \overleftrightarrow{QN} and \overleftrightarrow{TN}

(b) What are two other ways to name \mathcal{P} ?

(b) What are two other ways to name \mathcal{P} ? plane RQW, plane RSW, and plane QSW

(c) What are the names of 3 collinear points?

(c) What are the names of 3 collinear points?

R, Q, and S as well as T, Q, and N

(d) What are the names of 4 coplanar points?

(d) What are the names of 4 coplanar points?

R, Q, S, and W

Segments

Segment

A **segment** is a part of a line that contains 2 endpoints and all points in between them.

Segments

Segment

A **segment** is a part of a line that contains 2 endpoints and all points in between them.

We name segments by the 2 endpoints such as \overline{AB} or \overline{BA} .

Rays

Ray

A \mathbf{ray} is part of a line that consists of 1 endpoint and all the points on the line on one side of the endpoint.

Rays

Ray

A \mathbf{ray} is part of a line that consists of 1 endpoint and all the points on the line on one side of the endpoint.

We name a ray by its endpoint and any point on the ray, such as \overrightarrow{AB} .

Rays

Ray

A ${f ray}$ is part of a line that consists of 1 endpoint and all the points on the line on one side of the endpoint.

We name a ray by its endpoint and any point on the ray, such as \overrightarrow{AB} .

Note: \overrightarrow{AB} is not the same as \overrightarrow{BA}

Opposite Rays

Opposite Rays

Opposite rays are two rays that share an endpoint and form a line.

Opposite Rays

Opposite Rays

Opposite rays are two rays that share an endpoint and form a line.

We name opposite rays by their shared endpoint and any point on each ray such as \overrightarrow{CA} or \overrightarrow{CB} .

(a) What are the names of the segments in the figure?

(a) What are the names of the segments in the figure?

 $\overline{DE}, \overline{ED}, \overline{DF}, \overline{FD}, \overline{EF}, \overline{FE}$

(a) What are the names of the segments in the figure?

$$\overline{DE}$$
, \overline{ED} , \overline{DF} , \overline{FD} , \overline{EF} , \overline{FE}

(b) What are the names of the rays in the figure?

(a) What are the names of the segments in the figure?

$$\overline{DE}$$
, \overline{ED} , \overline{DF} , \overline{FD} , \overline{EF} , \overline{FE}

(b) What are the names of the rays in the figure?

$$\overrightarrow{DE}, \overrightarrow{DF}, \overrightarrow{EF}$$

(a) What are the names of the segments in the figure?

(b) What are the names of the rays in the figure?

$$\overrightarrow{DE}$$
, \overrightarrow{DF} , \overrightarrow{EF}

(c) What are the names of the opposite rays?

(a) What are the names of the segments in the figure?

(b) What are the names of the rays in the figure?

$$\overrightarrow{DE}$$
, \overrightarrow{DF} , \overrightarrow{EF}

(c) What are the names of the opposite rays?

There aren't any

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

Some Geometry Postulates:

• Through any two points there is a line.

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

- Through any two points there is a line.
- If 2 different lines intersect, they intersect at a point.

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

- Through any two points there is a line.
- If 2 different lines intersect, they intersect at a point.
- If 2 different planes intersect, they intersect at a line.

Postulates

A **postulate** (a.k.a. an **axiom**) is an accepted statement of fact.

- Through any two points there is a line.
- If 2 different lines intersect, they intersect at a point.
- If 2 different planes intersect, they intersect at a line.
- You can draw a plane through any 3 noncollinear points.