รายละเอียดผลการทดลอง 6610450871 นายชนพัฒน์ โชติกูลรัตน์ หมู่ 200

Model = Decision Tree Dataset = IndiaWeather

วิธีที่ 1

- 1. เริ่มต้นด้วยการอ่านข้อมูลจากไฟล์ Excel
- 2. ค่าที่ผิดปกติหรือสูญหายภายในชุดข้อมูลได้รับการจัดการโดยการแทนที่ด้วยค่า np.nan โดยใช้ ไลบรารี NumPy วิธีนี้ช่วยให้สามารถจัดการกับข้อมูลที่สูญหายได้อย่างเหมาะสมและป้องกันข้อ ผิดพลาดระหว่างการฝึกฝน
- 3. features ที่ใช้คือ features ทั้งหมดที่มีอยู่ในชุดข้อมูลถูกนำมาใช้สำหรับการฝึกฝนการทำนาย

		ปริมาณ	ปริมาณ	ปริมาณ	ปริมาณ	ปริมาณ	ระยะห่างจาก	ความหนาแน่น
อุณหภูมิ	ความชื้น	PM2.5	PM10	ในโตรเจน	ซัลเฟอร์	คาร์บอน	โรงงาน	ประชากร

- 4. จากนั้นชุดข้อมูลจะถูกแบ่งออกเป็นชุดฝึกฝนและชุดทดสอบโดยใช้ฟังก์ชัน train_test_split การแบ่งนี้ช่วยให้มั่นใจได้ว่าประสิทธิภาพของแบบจำลองสามารถประเมินได้จากข้อมูลที่มองไม่ เห็น มีการใช้ test_size เท่ากับ 0.2 ซึ่งหมายความว่า 20% ของข้อมูลถูกสงวนไว้สำหรับการ ทดสอบ ในขณะที่ 80% ที่เหลือใช้สำหรับการฝึกฝน มีการตั้งค่า random_state เป็น 1 เพื่อให้ แน่ใจว่าผลลัพธ์สามารถทำซ้ำได้ การตั้งค่าสถานะแบบสุ่มทำให้มั่นใจได้ว่าการแบ่งข้อมูลจะ สอดคล้องกันหากรันโค้ดหลายครั้ง ทำให้สามารถเปรียบเทียบระหว่างการรันหรือการกำหนดค่า แบบจำลองต่างๆ ได้อย่างยุติธรรม
- 5. แบบจำลอง DecisionTreeClassifier ถูกนำมาใช้สำหรับการทำนาย แบบจำลองนี้ใช้โครงสร้าง แบบต้นไม้เพื่อทำการตัดสินใจตามคุณลักษณะอินพุต อีกครั้ง มีการใช้ random_state เท่ากับ 1 เพื่อให้ได้ผลลัพธ์ที่สอดคล้องกันในการรันหลายครั้ง
- 6. การทำนายและการประเมินผล (ส่วนนี้ต้องการผลลัพธ์จริงเพื่อให้สมบูรณ์) จากนั้นใช้
 DecisionTreeClassifier ที่ผ่านการฝึกฝนแล้วเพื่อทำนายตัวแปรเป้าหมายบนชุดทดสอบที่แยก
 ไว้ ประสิทธิภาพของแบบจำลองได้รับการประเมินโดยใช้เมตริกที่เหมาะสม (เช่น ความแม่นยำ,
 ความเที่ยงตรง, ความระลึก, คะแนน F1) ผลลัพธ์ของการทำนายและการประเมินผลมีดังนี้:

Accuracy: 0.23					
	precision	recall	f1-score	support	
ดี	0.34	0.28	0.31	47	
ปานกล้าง	0.28	0.23	0.25	30	
อันตรายต่อสุขภาพ	0.00	0.00	0.00	11	
แถ	0.12	0.25	0.16	12	
accuracy			0.23	100	
macro avg	0.18	0.19	0.18	100	
weighted avg	0.26	0.23	0.24	100	

วิธีที่ 2

1. มีการจัดการค่าที่หายไปโดยใช้วิธีการแทนที่ค่าที่คำนึงถึงป้ายกำกับ (label-aware imputation) แทนที่จะแทนที่ค่าที่หายไปด้วยค่าเฉลี่ยของทั้งคอลัมน์ เราใช้วิธีการที่มีความละเอียดอ่อนมากขึ้น สำหรับแต่ละคุณลักษณะที่เป็นตัวเลข ค่าที่หายไปจะถูกแทนที่ด้วยค่าเฉลี่ยที่คำนวณ เฉพาะเจาะจง สำหรับแต่ละป้ายกำกับคุณภาพอากาศ วิธีนี้คำนึงถึงความแตกต่างที่อาจเกิดขึ้นในการกระจายของ คุณลักษณะในแต่ละระดับคุณภาพอากาศ ส่งผลให้การแทนที่ค่ามีความแม่นยำและสอดคล้องกับบริบท มากขึ้น วิธีนี้ดีกว่าการใช้ค่าเฉลี่ยของทั้งคอลัมน์ เพราะรักษาความสัมพันธ์ระหว่างคุณลักษณะและ ตัวแปรเป้าหมาย (คุณภาพอากาศ) การแทนที่ค่าที่คำนึงถึงป้ายกำกับนี้ช่วยรักษาความสมบูรณ์ของข้อมูล และป้องกันการเกิดอคติเนื่องจากข้อมูลที่หายไป

ค่า Accuracy เพิ่มขึ้น 8 %

Accuracy: 0.31					
	precision	recall	f1-score	support	
ดี	0.42	0.38	0.40	47	
ปานกลาง	0.37	0.37	0.37	30	
อันตรายต่อสุขภาพ	0.00	0.00	0.00	11	
แย่	0.11	0.17	0.13	12	
accuracy			0.31	100	
macro avg	0.22	0.23	0.22	100	
weighted avg	0.32	0.31	0.31	100	

วิธีที่ 3

เพื่อเตรียมข้อมูลให้พร้อมสำหรับการฝึกฝนแบบจำลอง มีการใช้เทคนิคการแปลงและปรับขนาดข้อมูล สองเทคนิค ตัวแปรเป้าหมาย "คุณภาพอากาศ" ซึ่งเป็นข้อมูลประเภทหมวดหมู่ ถูกแปลงเป็นตัวเลขโดย ใช้ LabelEncoder ขั้นตอนนี้จำเป็นสำหรับอัลกอริทึมการเรียนรู้ของเครื่องหลายๆ ตัวที่ต้องการอินพุต เป็นตัวเลข นอกจากนี้ คุณลักษณะที่เป็นตัวเลขทั้งหมดถูกปรับขนาดโดยใช้ StandardScaler เพื่อให้มี ค่าเฉลี่ยเป็น 0 และส่วนเบี่ยงเบนมาตรฐานเป็น 1 การปรับขนาดนี้ช่วยป้องกันไม่ให้คุณลักษณะที่มีช่วง ค่าขนาดใหญ่ครอบงำคุณลักษณะที่มีช่วงค่าขนาดเล็ก และยังช่วยเพิ่มประสิทธิภาพของแบบจำลองอีก ด้วย

ค่า Accuracy ไม่เพิ่มขึ้น

วิธีที่ 4

เนื่องจากค่า ppb (ส่วนในพันล้านส่วน) และ ppm (ส่วนในล้านส่วน) มีหน่วยต่างจาก µg/m³ (ไมโครกรัม ต่อลูกบาศก์เมตร) จึงจำเป็นต้องแปลงหน่วยของข้อมูลความเข้มข้นของก๊าซไนโตรเจนไดออกไซด์ (NO2), ซัลเฟอร์ไดออกไซด์ (SO2) และคาร์บอนมอนอกไซด์ (CO) ให้เป็น µg/m³ เพื่อให้สอดคล้องกัน การแปลงนี้ใช้ค่าคงที่น้ำหนักโมเลกุลของก๊าซแต่ละชนิด และใช้สมมติฐานเกี่ยวกับอุณหภูมิและความดัน มาตรฐาน (STP) ในการคำนวณปริมาตรโมลาร์ของก๊าซ โดยใช้ฟังก์ชัน ppb_to_ugm3 และ ppm_to_ugm3 ที่ได้กำหนดขึ้น การแปลงหน่วยนี้ช่วยให้มั่นใจได้ว่าข้อมูลที่ใช้ในการวิเคราะห์และสร้าง แบบจำลองมีความถูกต้องและสอดคล้องกันมากขึ้น

ค่า Accuracy ไม่เพิ่มขึ้น

วิธีที่ 5

กรองข้อมูล PM2.5 ที่ไม่สอดคล้อง เพื่อเพิ่มความถูกต้องของแบบจำลอง ได้ทำการกรองข้อมูลโดยใช้ค่า PM2.5 โดยกำหนดช่วงค่า PM2.5 และป้ายกำกับคุณภาพอากาศที่ สอดคล้องกันดังนี้: 0-37 (ดี), 38-50 (ปานกลาง), 51-90 (แย่) และ > 91 (อันตราย) จากนั้นจึงสร้าง dataframe ใหม่ชื่อ "pm25_filtered" เพื่อจัดกลุ่มข้อมูล PM2.5 และกรองข้อมูลโดยเลือกเฉพาะแถวที่ ค่า "pm25_filtered" ตรงกับป้ายกำกับ "คุณภาพอากาศ" มีข้อมูลจำนวน 323 แถว ที่ถูกกรองออก เนื่องจากค่า PM2.5 ไม่สอดคล้องกับป้ายกำกับคุณภาพอากาศ

ที่มา : กรมควบคุมโรค

ค่า Accuracy = 1.0

Accuracy: 1.0					
	precision	recall	f1-score	support	
0	1.00	1.00	1.00	31	
1	1.00	1.00	1.00	2	
2	1.00	1.00	1.00	1	
3	1.00	1.00	1.00	2	
accuracy			1.00	36	
macro avg	1.00	1.00	1.00	36	
weighted avg	1.00	1.00	1.00	36	

