Introduction to Machine Learning - CS725
Instructor: Prof. Ganesh Ramakrishnan
Lecture 5 - Linear Regression - Bayesian Inference and
Regularization

Building on questions on Least Squares Linear Regression

- Is there a probabilistic interpretation?
 - Gaussian Error, Maximum Likelihood Estimate
- Addressing overfitting
 - Bayesian and Maximum Aposteriori Estimates, Regularization
- Mow to minimize the resultant and more complex error functions?
 - Level Curves and Surfaces, Gradient Vector, Directional Derivative, Gradient Descent Algorithm, Convexity, Necessary and Sufficient Conditions for Optimality

Recap: Bayesian Inference with Coin Tossing

Let $\mathcal{D} \mid H$ follow a distribution Ber(p) (p is probability of heads) and p follow a distribution $Beta(p; \alpha, \beta) \sim \frac{p^{(\alpha-1)}(1-p)^{(\beta-1)}}{B(\alpha, \beta)}$,

- The Maximum Likelihood Estimate: $\hat{p} = \mathop{\sf argmax}\limits_{p} {^{n}C_{h}p^{h}(1-p)^{n-h}} = rac{h}{n}$
- **②** The Posterior Distribution: $Pr(p \mid D) = Beta(p; \alpha + h, \beta + n h)$
- The Maximum a-Posterior (MAP) Estimate: The mode of the posterior distribution $\tilde{p} = \underset{H}{\operatorname{argmax}} \Pr(H \mid \mathcal{D}) = \underset{p}{\operatorname{argmax}} \Pr(p \mid \mathcal{D})$ $= \underset{p}{\operatorname{argmax}} \operatorname{Beta}(p; \alpha + h, \beta + n h) = \frac{\alpha + h 1}{\alpha + \beta + n 2}$

Intuition for Bayesian Linear Regression

- The Bayesian interpretation of probabilistic estimation is a logical extension that enables reasoning with uncertainty but in the light of some background belief
- Bayesian linear regression: A Bayesian alternative to Maximum Likelihood least squares regression
- Continue with Normally distributed errors
- \bullet Model the \boldsymbol{w} using a prior distribution and use the posterior over \boldsymbol{w} as the result
- Intuitive Prior: Components of w should not become too large!

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T y$
- We can use a Prior distribution on w to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$

Each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$. λ is also called the precision of the Gaussian

• Q1: How do deal with Bayesian Estimation for Gaussian distribution?

Conjugate Prior for (univariate) Gaussian

• We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i

Conjugate Prior for (univariate) Gaussian

- We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i
- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?

Conjugate Prior for (univariate) Gaussian

- We will temporarily generalize the discussion with x taking the place of ε and μ taking the place of w_i
- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m, \sigma_m^2)$ such that $\mu_m =$ and $\frac{1}{\sigma_m^2} =$
- Helpful tip: Product of Gaussians is always a Gaussian

Detailed derivation

$$\Pr(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left(\frac{-(\mu - \mu_0)^2}{2\sigma_0^2}\right)$$

$$\Pr(x_i|\mu;\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x_i - \mu)^2}{2\sigma^2}\right)$$

$$\Pr(\mathcal{D}|\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^m \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2\right)$$

$$\Pr(\mu|\mathcal{D}) \propto \Pr(\mathcal{D}|\mu) \Pr(\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^m \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2 - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right) \propto$$

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m (x_i - \mu)^2 - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right) = \exp\left(\frac{-1}{2\sigma_m^2}(\mu - \mu_m)^2\right)$$

Our reference equality:

$$exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of $\mu^{2}\text{, we get}$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

$$rac{-\mu^2}{2\sigma_m^2}=rac{-\mu^2}{2}(rac{m}{\sigma^2}+rac{1}{\sigma_0^2})\Rightarrow$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

$$\frac{2\mu\mu_m}{2\sigma_m^2} = \mu \left(\frac{2\sum_{i=1}^m x_i}{2\sigma^2} + \frac{2\mu_0}{2\sigma_0^2} \right) \Rightarrow$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

$$\frac{2\mu\mu_m}{2\sigma_m^2} = \mu\left(\frac{2\sum_{i=1}^m x_i}{2\sigma^2} + \frac{2\mu_0}{2\sigma_0^2}\right) \Rightarrow \mu_m = \sigma_m^2\left(\frac{\sum_{i=1}^m x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \text{ or } \mu_m = \sigma_m^2\left(\frac{m\hat{\mu}_{ML}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \Rightarrow$$

Our reference equality:

$$\exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^m(x_i-\mu)^2-\frac{(\mu-\mu_0)^2}{2\sigma_0^2}\right)=\exp\left(\frac{-1}{2\sigma_m^2}(\mu-\mu_m)^2\right),$$

Matching coefficients of
$$\mu^2$$
, we get
$$\frac{-\mu^2}{2\sigma_m^2} = \frac{-\mu^2}{2} \left(\frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \Rightarrow \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$$

$$\frac{2\mu\mu_{m}}{2\sigma_{m}^{2}} = \mu\left(\frac{2\sum_{i=1}^{m}x_{i}}{2\sigma^{2}} + \frac{2\mu_{0}}{2\sigma_{0}^{2}}\right) \Rightarrow \mu_{m} = \sigma_{m}^{2}\left(\frac{\sum_{i=1}^{m}x_{i}}{\sigma^{2}} + \frac{\mu_{0}}{\sigma_{0}^{2}}\right) \text{ or } \mu_{m} = \sigma_{m}^{2}\left(\frac{m\hat{\mu}_{ML}}{\sigma^{2}} + \frac{\mu_{0}}{\sigma_{0}^{2}}\right) \Rightarrow \mu_{m} = \left(\frac{\sigma^{2}}{m\sigma_{0}^{2} + \sigma^{2}}\mu_{0}\right) + \left(\frac{m\sigma_{0}^{2}}{m\sigma_{0}^{2} + \sigma^{2}}\hat{\mu}_{ML}\right)$$

Summary: Conjugate Prior for (univariate) Gaussian

- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m, \sigma_m^2)$ such that

Summary: Conjugate Prior for (univariate) Gaussian

- Let $\Pr(X) \sim \mathcal{N}(\mu, \sigma^2)$ and let the data $\mathcal{D} = x_1...x_m$
- $\mu_{MLE} = \frac{1}{m} \sum_{i=1}^{m} x_i$ and $\sigma_{MLE}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{MLE})^2$
- Suppose you are told that the conjugate prior for the (univariate) normally distributed random variable X in the case that σ^2 is not a random variable is $\Pr(\mu) = \mathcal{N}(\mu_0, \sigma_0^2)$. Then the **posterior** is?
- Answer: $\Pr(\mu|x_1...x_m) = \mathcal{N}(\mu_m, \sigma_m^2)$ such that
- $\mu_m = (\frac{\sigma^2}{m\sigma_0^2 + \sigma^2}\mu_0) + (\frac{m\sigma_0^2}{m\sigma_0^2 + \sigma^2}\hat{\mu}_{ML})$
- $\bullet \ \frac{1}{\sigma_m^2} = \frac{1}{\sigma_0^2} + \frac{m}{\sigma^2}$

Multivariate Normal Distribution and MLE estimate

The multivariate Gaussian (Normal) Distribution is:

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)} \text{ when } \Sigma \in \Re^{n \times n} \text{ is positive-definite and}$$

$$\Sigma_{MLE} \sim rac{1}{m} \sum_{i=1}^{m} (\phi(\mathbf{x}_i) - \mu_{MLE}) (\phi(\mathbf{x}_i) - \mu_{MLE})^T$$

Summary for MAP estimation with Normal Distribution

• Summary: With $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $x \sim \mathcal{N}(\mu, \sigma^2)$

$$\frac{1}{\sigma_m^2} = \frac{m}{\sigma^2} + \frac{1}{\sigma_0^2}$$
$$\frac{\mu_m}{\sigma_m^2} = \frac{m}{\sigma^2} \hat{\mu}_{mle} + \frac{\mu_0}{\sigma_0^2}$$

such that $p(x|D) \sim \mathcal{N}(\mu_m, \sigma_m^2)$. Here m/σ^2 is due to noise in observation while $1/\sigma_0^2$ is due to uncertainty in μ

ullet For the Bayesian setting for the multivariate case with fixed Σ

$$\mathbf{x} \sim \mathcal{N}(\mu, \Sigma), \ \mu \sim \mathcal{N}(\mu_0, \Sigma_0) \ \& \ p(\mathbf{x}|D) \sim \mathcal{N}(\mu_m, \Sigma_m)$$

Summary for MAP estimation with Normal Distribution

• Summary: With $\mu \sim \mathcal{N}(\mu_0, \sigma^2_0)$ and $x \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} \frac{1}{\sigma_m^2} &= \frac{m}{\sigma^2} + \frac{1}{\sigma_0^2} \\ \frac{\mu_m}{\sigma_m^2} &= \frac{m}{\sigma^2} \hat{\mu}_{mle} + \frac{\mu_0}{\sigma_0^2} \end{split}$$

such that $p(x|D) \sim \mathcal{N}(\mu_m, \sigma_m^2)$. Here m/σ^2 is due to noise in observation while $1/\sigma_0^2$ is due to uncertainty in μ

 \bullet For the Bayesian setting for the multivariate case with fixed Σ

$$\mathbf{x} \sim \mathcal{N}(\mu, \Sigma), \ \mu \sim \mathcal{N}(\mu_0, \Sigma_0) \ \& \ p(\mathbf{x}|D) \sim \mathcal{N}(\mu_m, \Sigma_m)$$

$$\Sigma_{m}^{-1} = m\Sigma^{-1} + \Sigma_{0}^{-1}$$

$$\Sigma_{m}^{-1}\mu_{m} = m\Sigma^{-1}\hat{\mu}_{mle} + \Sigma_{0}^{-1}\mu$$

• We now conclude our discussion on Bayesian Linear Regression..

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$

 $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- We can use a Prior distribution on w to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$

- ..Each component w_i is approximately bounded within $\pm \frac{3}{\sqrt{\lambda}}$. λ is also called the precision of the Gaussian
- Q1: How do deal with Bayesian Estimation for Gaussian distribution?
- Q2: Then what is the (collective) prior distribution of the n-dimensional vector \mathbf{w} ?

Multivariate Normal Distribution and MAP estimate

- If $w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$ then $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \frac{1}{\lambda}I)$ where I is an $n \times n$ identity matrix
- \Rightarrow That is, **w** has a multivariate Gaussian distribution $\Pr(\mathbf{w}) = \frac{1}{(\frac{2\pi}{\lambda})^{\frac{n}{2}}} e^{-\frac{\lambda}{2} \|\mathbf{w}\|_2^2}$ with $\mu_0 = \mathbf{0}$. $\Sigma_0 = \frac{1}{\lambda} I$
- **3** We will specifically consider Bayesian Estimation for multivariate Gaussian (Normal) Distribution on \mathbf{w} : $\frac{1}{(2\pi)^{\frac{n}{2}}(\frac{1}{\lambda})^{\frac{1}{2}}}e^{-\frac{\lambda}{2}\|\mathbf{w}\|_2^2}$

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- We can use a Prior distribution on w to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$

(that is, each component w_i is approximately bounded within $\pm \frac{1}{\sqrt{\lambda}}$ by the $3 - \sigma$ rule)

• We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$ Invoking the Bayes Estimation results from before:

Prior Distribution for w for Linear Regression

$$y = \mathbf{w}^T \phi(\mathbf{x}) + \varepsilon$$
$$\varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We saw that when we try to maximize log-likelihood we end up with $\hat{\mathbf{w}}_{MLE} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$
- We can use a Prior distribution on w to avoid over-fitting

$$w_i \sim \mathcal{N}(0, \frac{1}{\lambda})$$

(that is, each component w_i is approximately bounded within $\pm \frac{1}{\sqrt{\lambda}}$ by the $3 - \sigma$ rule)

• We want to find $P(\mathbf{w}|D) = \mathcal{N}(\mu_m, \Sigma_m)$ Invoking the Bayes Estimation results from before:

$$\begin{split} \Sigma_{m}^{-1} \mu_{m} &= \Sigma_{0}^{-1} \mu_{0} + \Phi^{T} y / \sigma^{2} \\ \Sigma_{m}^{-1} &= \Sigma_{0}^{-1} + \frac{1}{\sigma^{2}} \Phi^{T} \Phi \end{split}$$

Finding μ_m & Σ_m for **w**

Setting
$$\Sigma_0 = \frac{1}{\lambda} \emph{I}$$
 and $\mu_0 = \mathbf{0}$

$$\Sigma_{m}^{-1}\mu_{m} = \Phi^{T}\mathbf{y}/\sigma^{2}$$

$$\Sigma_{m}^{-1} = \lambda I + \Phi^{T}\Phi/\sigma^{2}$$

$$\mu_{m} = \frac{(\lambda I + \Phi^{T}\Phi/\sigma^{2})^{-1}\Phi^{T}\mathbf{y}}{\sigma^{2}}$$

or

$$\mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

MAP and Bayes Estimates

- $Pr(\mathbf{w} \mid \mathcal{D}) = \mathcal{N}(\mathbf{w} \mid \mu_m, \Sigma_m)$
- The MAP estimate or mode under the Gaussian posterior is the mode of the posterior ⇒

$$\hat{w}_{MAP} = \operatorname*{argmax}_{\mathbf{w}} \mathcal{N}(\mathbf{w} \mid \mu_{m}, \Sigma_{m}) = \mu_{m}$$

• Similarly, the **Bayes Estimate**, or the expected value under the Gaussian posterior is the mean \Rightarrow

$$\hat{w}_{Bayes} = E_{\mathsf{Pr}(\mathbf{w}|\mathcal{D})}[\mathbf{w}] = E_{\mathcal{N}(\mu_m, \Sigma_m)}[\mathbf{w}] = \mu_m$$

Summarily:

$$\mu_{MAP} = \mu_{Bayes} = \mu_m = (\lambda \sigma^2 I + \Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

$$\Sigma_m^{-1} = \lambda I + \frac{\Phi^T \Phi}{\sigma^2}$$

From Bayesian Estimates to (Pure) Bayesian Prediction

	Point?	p(x D)
MLE	$\hat{ heta}_{ extit{MLE}} = \operatorname{argmax}_{ heta} extit{LL}(D heta)$	$p(x \theta_{MLE})$
Bayes Estimator	$\hat{ heta}_B = extstyle E_{ ho(heta D)} E[heta]$	$p(x \theta_B)$
MAP	$\hat{ heta}_{MAP} = \operatorname{argmax}_{ heta} p(heta D)$	$p(x \theta_{MAP})$
Pure Bayesian		$p(\theta D) = \frac{p(D \theta)p(\theta)}{\int_{m} p(D \theta)p(\theta)d\theta}$
		$p(D \theta) = \prod_{i=1} p(x_i \theta)$
		$p(x D) = \int_{\theta}^{\pi} p(x \theta)p(\theta D)d\theta$

where θ is the parameter