EE23BTECH11054 - Sai Krishna Shanigarapu*

(6)

Exercise 9.2

13 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution: :

$$Y(z) = \sum_{n=0}^{\infty} y(n) z^{-n}$$
(1)

$$= \frac{2(4-z^{-1})}{(1-z^{-1})^3}, \qquad |z| > 1$$
 (2)

$$U(z) = \frac{1}{1 - z^{-1}}, \qquad |z| > 1$$
 (3)

$$X(z) = \frac{Y(z)}{U(z)} \tag{4}$$

$$x(n) = Z_z^{-1} \left[2\left(\frac{1}{1-z^{-1}}\right) + 6\left(\frac{1}{1-z^{-1}}\right)^2 \right]$$
 (5)

In order to compute the Z-inverse of

$$X(z) = (1 - z^{-1})^{-2} \tag{7}$$

we develop the Power series for the function $(1-x)^{-2}$.

$$(1-x)^{-(\beta+1)} = \sum_{n=0}^{\infty} {n+\beta \choose \beta} x^n$$
 (8)

for $x = z^{-1}$ and $\beta = 1$,

$$(1 - z^{-1})^{-2} = \sum_{n=0}^{\infty} {n+1 \choose 1} z^{-n}$$
 (9)

Comparing with the definition of Z-transform,

$$Z_z^{-1} \left(\frac{1}{1-z^{-1}}\right)^2 = (n+1)(u(n))$$
 (10)

$$x(n) = (6n + 8)(u(n))$$
 (11)

$$164 = (6m + 8) (u (n))$$
 (12)

$$m = 26 \tag{13}$$

Fig. 1. Plot of x(n) vs n

Symbol	Remarks
$y\left(n\right) = \left(3n^2 + 11n + 8\right)\left(u\left(n\right)\right)$	Sum of n terms
x(m-1)	164
$y\left(n\right)$	x(n) * u(n)
$Z_z^{-1}\left(\frac{1}{1-z^{-1}}\right)$	$u\left(n\right)$

TABLE I PARAMETERS