Representação

Após a etapa de segmentação da imagem em regiões, os objetos encontrados são representados em um formato apropriado para a próxima fase. Existem três abordagens básicas para a representação dos objetos: utilizar as características externas (contorno), internas (*pixels*) ou através dos esqueletos/eixos médios.

A opção de representação por contorno ou eixos é indicada quando se buscam as características de forma da imagem. Já a interna é utilizada quando se deseja caracterizar os objetos por cor ou textura.

Código Cadeia

Representa a direção de deslocamento no algoritmo de Rosenfeld.

Exemplo

Determine o código cadeia para o objeto abaixo.

CC: 560762217343

Representação por Região

- Matriz de pixels.
- Lista de pixels.
- Listas comprimidas "run length encoding"
- Quad-trees.

Representação por Eixos Médios e Esqueletos

Algoritmo para Extração do Esqueleto

P9	P2	P3
P8	P1	P4
P7	P6	P5

Repita até não haver mais pontos a serem removidos

- Passo 1
- Remova os pontos marcados
- Passo 2
- Remova os pontos marcados

Algoritmo para Extração do Esqueleto

Passo 1

Para cada ponto P1 do objeto marque-o se

•
$$S(P1) = 1$$

•
$$P2 \times P4 \times P6 = 0$$

• P4 x P6 x P8 =
$$0$$

P9	P2	P3
P8	P1	P4
P7	P6	P5

Algoritmo para Extração do Esqueleto

Passo 2

Para cada ponto P1 do objeto marque-o se

•
$$S(P1) = 1$$

• P6 x P8 x P2 =
$$0$$

•
$$P8 \times P2 \times P4 = 0$$

P9	P2	P3
P8	P1	P4
P7	P6	P5

Descrição

O processo de descrição é quase um subconjunto da parte de Representação e também é chamado de seleção de características. Essa fase tem como objetivo extrair características que resultem em alguma informação quantitativa de interesse ou que sejam básicas para discriminação entre classes de objetos.

Descrição

Desafios: selecionar entre as características, quais são eficazes para a tarefa (separação das classes).

Detecta linhas pela colinearidade de pontos

Cada linha é da forma y = ax + b. Crie espaço de parâmetros (a, b). A
 nova equação será: b = -ax + y

Porém, o espaço (a, b) está no intervalo [-∞, ∞]

- Crie espaço de parâmetros (ρ, θ) : representação polar da reta, onde ρ indica a distância entre a origem e a reta e θ sua orientação. Eles são intervalos finitos!

- o espaço funcionará como uma variável acumuladora; inicie-o todo com 0. Para cada ponto da imagem original, computar (ρ, θ) para as retas que passam pelo ponto. Neste espaço, a equação é da forma:

$$\rho(\theta) = x.\cos(\theta) + y.\sin(\theta)$$

- Após computar as senóides para todos os pontos, detectar os contadores máximos. Estes são os (ρ, θ) de cada reta na imagem original.

Exemplo de imagem com a transformada de Hough

Quantas retas, podemos afirmar, que a imagem original possuía?

Estas retas são paralelas (abstraia pequenos erros de precisão) ou se cruzam?

 θ

- Área
- Perímetro
- Circularidade ou Compacidade $C = \frac{P^2}{4\Pi}$
- Diâmetro
- Raios máximo e mínimo

- Retângulo Básico
 - Menor retângulo circunscritor paralelo ao eixo de inclinação.
- Eixos máximos e mínimos
 - Lados do retângulo básico.
- Excentricidade
 - Eixo máximo / Eixo mínimo.
- Retangularidade
 - Área / Área Retângulo Básico.
- MER
 - Retângulo circunscritor mínimo.

- Curva Phi-S
- Número de forma
- K-derivadas
 - Média de K inclinações do c. cadeia na vizinhança.
- K-curvatura
 - Diferença entre K-derivada posterior e K-derivada anterior.
- Nº Euler
 - N º regiões conectadas-No de furos.

Aproximações Poligonais

- busca capturar a essência da forma com o menor nº de segmentos poligonais
- a menor representação não é trivial de se obter

Assinaturas

- função unidimensional de uma fronteira
- maneira usual: distância da fronteira ao centróide
- centróide: centro da distribuição de pixels do objeto

Cálculo de centróide

Sejam:

- T = total de pixels do objeto
- Sx = soma das coordenadas X de cada pixel do objeto
- Sy = soma das coordenadas Y de cada pixel do objeto
- Cx = coordenada X do centróide
- Cy = coordenada Y do centróide

Assim, temos:
$$Cx = Sx / T$$

 $Cy = Sy / T$

Fecho-convexo (convex hull)

Menor polígono convexo, H, que engloba todo o objeto S

 a diferença D = H - S é chamada deficiência convexa

Fecho-convexo (convex hull)

Projeções

- Padrão visual que possui algumas propriedades de homogeneidade que não resultam simplesmente de uma cor ou intensidade.
- Constituída de elementos mutuamente relacionados: a primitiva de textura dependente de escala.
- •Composta de um grande número de elementos similares mais ou menos ordenados.
- •Relacionada com coeficientes de uniformidade, densidade, aspereza, regularidade, intensidade, dentre outros, oriundos da probabilidade de ocorrência de variações tonais.

- •Descritas por medidas que quantificam suas propriedades de suavidade, rugosidade e regularidade.
- •Características estatísticas ou propriedades estruturais locais constantes, com pouca variação ou aproximadamente periódicas.
- •Relacionadas à variação de intensidade luminosa em partes das imagens.

Exemplos de texturas naturais (a,b,c,d,h) e artificiais (e,f,g).

Matrizes de Co-ocorrência

Considere:

- I (N, M) uma imagem quantizada em G níveis de cinza.
- •P é uma matrix GxG. Cada elemento da matriz designa a probabilidade de ocorrência simultânea de dois nível de cinza $i, j \in 0...G-1$ para pares de pixels nas direções e distâncias especificadas.
- •Na matriz de co-ocorrência circular, apenas d Operador $p(i, j, d, \theta)$. é usado

Assim:

- 1. Percorre-se a imagem na forma descrita pelo operador $p(i, j, d, \theta)$ ou $P_{Dx, Dy}(i,j)$ ou p(i,j,d).
- 2. As frequências relativas ou as probabilidades são obtidas dividindo-se os valores obtidos pelo número de ocorrências totais.
- 3. A matriz de co-ocorrência é obtida dividindo-se cada elemento pelo somatório da matriz

Matriz de ocorrência de tons de cinza

Matriz de co-ocorrência de tons de cinza P_{1,0}

Descritores de Textura de Haralick

Característica	Descrição	Fórmula Matemática
Homogeneidade	Distribuição de <i>pixels</i> .	$\sum_{i} \sum_{j} \frac{p(i,j)}{(1+ i-j)}$
Probabilidade Máxima	Indica a direção mais importante da textura a ser examinada.	$\max_{i,j} p(i,j)$
Entropia	Mede a informação contida em p, muitos valores nulos representam pouca informação.	$-\sum_{i}\sum_{j}p(i,j)\log_{2}p(i,j)$

Descritores de Textura de Haralick

Momento de diferenças ordem <i>k</i>	Distorção da imagem. Este descritor apresenta valores pequenos se <i>p</i> tiver	$\sum_{i} \sum_{i} (i - j)^{k} p(i, j)$
anoronças ordem k	maiores valores na diagonal principal.	ı j
Momento inverso de diferenças de ordem <i>k</i>	Inverso de contraste. Este descritor apresenta valores maiores pequenos se <i>p</i> tiver pequenos valores na diagonal principal.	$\sum_{i} \sum_{j} \frac{p(i,j)}{(i-j)^k}$
Energia ou Uniformidade	Retorna a soma dos elementos elevados ao quadrado dentro da matriz de co-ocorrência de tons de cinza. Faixa de valores possíveis: 0 a 1. A energia possui valor 1 para uma imagem constante (mesmo tom de cinza em toda a sua extensão).	$\sum_{i} \sum_{j} p^{2}(i, j)$

Descritores de Textura de Haralick

Variância ou Contraste	Retorna uma medida do contraste entre as intensidades de um <i>pixel</i> analisado e do <i>pixel</i> vizinho. A comparação é realizada em todos os pixels da imagem. Para uma imagem constante (mesmo tom de cinza em toda a extensão), o contraste é 0 (zero). Contraste da imagem corresponde ao Momento de ordem 2.	$\sum_{i} \sum_{j} (i-j)^2 p(i,j)$
Variância Inversa	Inverso de contraste.	$\sum_{i} \sum_{j} \frac{p(i,j)}{(i-j)^{2}}, i \neq j$

Texturas naturais monocromática. (a) Textura 1 - Entropia = 5.8766. (b) Textura 2 - Entropia = 5.9851. (c) Textura 3 - Entropia = 6.2731.

Momentos invariantes de Hu

Se f(x,y) é a intensidade de uma imagem digital, então:

$$\mu_{pq} = \sum_1^{nx} \sum_1^{ny} (x - ar{x})^p (y - ar{y})^q f(x,y)$$

$$\eta_{pq}=rac{\mu_{pq}}{\mu_{00}^{\left(rac{p+q}{2}+1
ight)}}$$

Momentos invariantes de Hu

$$\begin{split} I_1 &= \eta_{20} + \eta_{02} \\ I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ I_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ I_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ I_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ I_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ I_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \end{split}$$