Aufgabe 1

- Frage 1: Welche Eigenschaften haben Legendre-Polynome?

 Antwort:
 - (a) $P_n: [-1,1] \to \mathbb{R}$ ist ein Polynom *n*-ten Grades.
 - (b) Für $n \neq m$ sind die Polynome paarweise orthogonal: $\langle P_n, P_m \rangle = 0$.
 - (c) $P_n(1) = 1$
- Frage 2: Wieso ist $p_n(x)$ für n = 0 ein konstanter Term (c_0) ?

 Antwort: Weil p_n ein Polynom n-ten Grades ist und ein Polynom 0-ten Grades nur einen konstanten Term enthält.
- Frage 3: Wie lauten die ersten vier Legendre-Polynome?

 Antwort:
 - (a) $P_0(x) = 1$
 - (b) $P_1(x) = x$
 - (c) $P_2(x) = \frac{1}{2}(3x^2 1)$
 - (d) $P_3(x) = \frac{1}{2}(5x^3 3x)$
- Frage 4: Was sind die Basisfunktionen von Fourierreihen?

 Antwort: Trigonometrische Funktionen.
- Frage 5: Warum ist die Fourier-Approximation meist unpraktisch?

 Antwort: Weil die Berechnung der Integrale der Fourier-Koeffizienten oftmals sehr aufwendig ist.