知识点Z1.5

主要内容:

- 1.阶跃函数的定义
- 2.阶跃函数的性质

基本要求:

- 1.了解阶跃函数的定义方法
- 2.熟练掌握阶跃函数的性质和积分公式

阶跃函数

Z1.5 阶跃函数

1.定义

选定一个函数序列 $\gamma_{\mathbf{n}}(t)$, 求极限。

$$\mathcal{E}(t) = \lim_{n \to \infty} \gamma_n(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

1

2. 性质

(1)表示分段常量信号

$$f(t) = 2\varepsilon(t) - 3\varepsilon(t-1) + \varepsilon(t-2)$$

(2)表示信号的作用区间

(3)积分
$$\int_{-\infty}^{t} \varepsilon(\tau) \, \mathrm{d}\tau = t\varepsilon(t)$$

1. 积分计算:

- 当 $t \leq 0$ 时, $\epsilon(au)=0$ 对所有 $au \leq t$,因此积分结果为0。这时, $t\epsilon(t)=0$,因为 $\epsilon(t)=0$ 。
- 当 t>0 时, $\epsilon(\tau)=1$ 对所有 τ 从 0 到 t,所以积分是从 0 到 t 对1的积分,结果是 t。 这时, $t\epsilon(t)=t$ (因为 $\epsilon(t)=1$)。

这样,无论 t 的值如何,等式都成立:

- 对于 t ≤ 0, 两边都是0。
- 对于 t > 0,两边都是 t。

这个等式在数学和工程中的意义很大,它显示了单位阶跃函数在任意时刻 t 的积分与 t 本身的乘积相等,这种性质在解析信号和系统的行为时非常有用。

