The Dot Product

Definition: For vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, we define the *dot product* of \mathbf{u} and \mathbf{v} to be

$$\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + u_2 v_2 + u_3 v_3.$$

Notes:

- The dot product $\mathbf{u} \cdot \mathbf{v}$ is a scalar (number), not another vector.
- Properties
 - $1. \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
 - 2. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$.
 - 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
 - $4. \ \mathbf{0} \cdot \mathbf{v} = 0$
 - 5. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$

Theorem: If **u** and **v** are nonzero vectors, then the angle θ between them satisfies

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Note that, when $\theta = \pi/2$, the numerator on the right-hand side must be zero. This motivates the following definition.

Orthogonality

Definition: Two vectors \mathbf{u} and \mathbf{v} are said to be *orthogonal* (or *perpendicular*) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example: The zero vector **0** is orthogonal to every other vector. In 2D, the vectors $\langle a, b \rangle$ and $\langle -b, a \rangle$ are orthogonal, since

$$\langle a, b \rangle \cdot \langle -b, a \rangle = (a)(-b) + (b)(a) = 0.$$

Projections

Scalar component of u in the direction of v: $\|\mathbf{u}\|\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{v}\|}$.

Vector projection of u onto v:

$$\text{proj}_v u \ := \ \left(\begin{array}{c} \text{scalar component of } u \\ \text{in direction of } v \end{array} \right) \left(\begin{array}{c} \text{direction} \\ \text{of } u \end{array} \right) \ = \ \left(\frac{u \cdot v}{\|v\|} \right) \left(\frac{v}{\|v\|} \right) \ = \ \frac{u \cdot v}{\|v\|^2} \, v.$$

Work

The *work* done by a constant force **F** acting through a displacement vector $\mathbf{D} = \overrightarrow{PQ}$ is given by

$$W = \mathbf{F} \cdot \mathbf{D} = \|\mathbf{F}\| \|\mathbf{D}\| \cos \theta,$$

where θ is the angle between **F** and **D**.