Tutorial 03 – Time and space

Exercise 1.

Tally Language (Berman's Theorem, 1974)

A language is said to be tally (or unary), if it is included in a unary alphabet $\{a\}^*$ for a fixed symbol a.

Definition (SUBSET-SUM). Given n numbers $v_1, \ldots, v_n \in \mathbb{Z}$, and a *target* number $T \in \mathbb{Z}$, we need to decide whether there exists a nonempty subset $S \subseteq [1, n]$ such that $\sum_{i \in S} v_i = T$. The problem size is $|T|_2 + \sum_{i=1}^n |v_i|_2$.

- 1. Prove that Subset-Sum is NP-complete by reduction from 3-SAT
- **2.** Let UNARY-SUBSET-SUM be the tally variant of SUBSET-SUM where all numbers are represented by their unary representation. Show that UNARY-SUBSET-SUM is in P.
- 3. Show that there exist undecidable tally languages.
- **4.** Show that if there exists an NP-hard tally language, then P = NP.

Exercise 2. Universal Turing machines

We want to study the space complexity of universal Turing machines.

1. Prove that a TM on alphabet Γ that has k work tapes and uses at most s(|x|) work cells on input x can be simulated by a TM machine that has one work tape, is on alphabet $\{0,1,,\triangleright\}$, and uses O(s(|x|)) work cells for every input x.

Hint: Look at the construction done in TD 01

2. Prove that there exists a universal Turing machine $\mathcal{U}(x,\alpha)$ such that if the machine M_{α} on input x uses at most s(|x|) work cells, then $\mathcal{U}(x,\alpha)$ uses at most $C_{\alpha}s(|x|)$ work cells, where $C_{\alpha}>0$ depends on α but not on x.

Hint: Look at the construction done in TD 01 for 2-tape to 1-tape TMs

Exercise 3.

Let $x, y, z \in \{0, 1\}^n$ be two binary numbers. Show that we can arrange them on a tape in such a way that we can check if x + y = z in O(1) space.

Exercise 4.

Let $x, y \in \{0,1\}^n$ be two binary numbers. Show that we can compute their product xy in $O(\log n)$ space.

Exercise 5. Time(space)'s up

We recall that a function $f: \mathbb{N} \to \mathbb{N}$ is *space-constructible* if there exists a Turing machine that given 1^n computes $1^{f(n)}$ and uses O(f(n)) space. Similarly, a function $f: \mathbb{N} \to \mathbb{N}$ is *time-constructible* if there exists a Turing machine that given 1^n computes $1^{f(n)}$ in time O(f(n)).

1. Show that we can convert between the binary and unary representation of $n \in \mathbb{N}$ in O(n) time and $O(\log n)$ space. Deduce that if $f(n) \ge cn$ for all n, then we can replace the unary representation by the binary representation in the definition of time-constructible functions.

- **2.** Show that $n \mapsto n$, $n \mapsto n^2$, $n \mapsto 2^n$, $n \mapsto n |\log n|$ are time-constructible functions.
- **3.** Show that $n \mapsto |\log n|$ is space-constructible.

Exercise 6. L, NL

Let $L := \mathsf{DSPACE}(\log n)$ and $\mathsf{NL} := \mathsf{NSPACE}(\log n)$.

- **1.** Show that Even = $\{x \mid x \text{ has an even number of 1s} \}$ is in L.
- 2. Show that the language of balanced parentheses (with only one kind of parenthesis) is in L.
- 3. Show that PATH = $\{ \langle G = (V, E), x \in V, y \in V \rangle \mid \text{There exists a path between } x \text{ and } y \text{ in } G \} \text{ is in NL.}$

Exercise 7.

Little space is no space at all!

We are going to show that a language that can be recognized in $o(\log \log n)$ space can in fact be recognized in O(1) space. This implies, e.g., that $\mathsf{DSPACE}(\sqrt{\log \log n}) = \mathsf{DSPACE}(1)$.

- **1.** Let $\mathcal{L} \notin \mathsf{DSPACE}(1)$ and suppose that M is a Turing machine that recognizes \mathcal{L} in space $o(\log\log n)$. For every $k \in \mathbb{N}$ show that there exists $x \in \mathcal{L}$ such that M(x) uses at least k cells on the work tape during the computation. Furthermore, if $x_k \in \mathcal{L}$ denotes the shortest word with this property, then $\lim_{k \to \infty} |x_k| \to \infty$.
- **2.** At every step of the computation of M(x) we define the current *internal configuration* of M as the tuple (q, y), where q is the current state of M and y encodes the current contents of the work tapes of M and the positions of the work heads. Show that M has $o(\log |x|)$ different internal configurations during the computation of M(x).
- 3. We define the *i*th *crossing sequence* $C_i(x)$ of a M on an input x, $1 \le i \le |x| 1$, as a vector (c_1, c_2, \ldots, c_m) , where c_1 is the internal configuration of M when the input head first crossed from a cell i to a cell i + 1 on the input tape, c_2 is the internal configuration of M when the input head first crossed from a cell i + 1 to i, etc. (so that the odd elements denote configurations of M after crossing ith cell left-to-right, and the even ones after crossing right-to-left from (i + 1)th cell to ith). Show that there are o(|x|) different crossing-sequences that appear on an input x.
- **4.** Show that the crossing sequences of M on x_k are pairwise different. Conclude.

Exercise 8.

Tally Languages Acceptable with Sublogarithmic Space

Let

$$C = \{a^n | F(n) \text{ is a power of 2}\}\$$

where

$$F(n) = \min\{i | i \text{ does not divide } n\}$$

Then we want to prove that $C \in DSPACE(\log \log n)$

1. Let $G(k) = \text{lcm}\{j|j \le k\}$. Show that for $k \ge 2$ there exists constants $c_1, c_2 > 1$, such that

$$c_1^k \leqslant G(k) \leqslant c_2^k$$

Hint: Use without proving the fact that $G(k) = \prod_{all\ primes\ p} p^{\lfloor \log_p k \rfloor}$. You can also use the prime number theorem.

2. Now show that

$$F(k) \le c \log k$$
 for some constant c and $k \ge 2$

- **3.** Use the above bound on F(k) to give a $O(\log \log n)$ space algorithm.
- **4.** [Bonus question:] Show that C is non-regular *Hint: Observe that* F(G(k)) > k. Choose n carefully such that $F(n) = 2^r$. Then use pumping lemma.

Why important? Interesting question in homework. DSPACE(1) = REG where REG is the class of regular languages. This along with Exercise 7 shows that $\Omega(\log \log n)$ space is required to recognize any non-regular language. This shows that for Exercise 8, you cannot do better.