Digital-electronics-1

Labs/05-counter

Dominik Grenčík, 220815

Digital-electronics-1

1. Preparation tasks

• Figure and table with connection of push buttons on Nexys A7 board

Buttons	Board
BTNL	P17
BTNR	M17
BTNU	M18
BTND	P18
BTNC	N17

• Table with calculated values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"f_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2fa_f080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5f5_e100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Bidirectional counter

• Listing of VHDL code of the process p_cnt_up_down

```
p_cnt_up_down : process(clk)
    begin
       if rising_edge(clk) then
            if (reset = '1') then
                                           -- Synchronous reset
                s_cnt_local <= (others => '0'); -- Clear all bits
            elsif (en_i = '1') then -- Test if counter is enabled
                -- TEST COUNTER DIRECTION HERE
                if (cnt_up_i = '1') then
                    s_cnt_local <= s_cnt_local + 1;</pre>
                elsif (cnt_up_i = '0') then
                    s_cnt_local <= s_cnt_local - 1;</pre>
                end if;
            end if;
        end if;
    end process p_cnt_up_down;
```

Listing of VHDL reset and stimulus processes from testbench file tb_cnt_up_down.vhd

```
-- Reset generation process
p_reset_gen : process
begin
    s_reset <= '0';</pre>
   wait for 12 ns;
    -- Reset activated
    s_reset <= '1';
    wait for 73 ns;
    s_reset <= '0';
    wait;
end process p_reset_gen;
-- Data generation process
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    -- Enable counting
    s_en <= '1';
    -- Change counter direction
```

```
s_cnt_up <= '1';
wait for 230 ns;
s_cnt_up <= '0';
wait for 180 ns;

-- Disable counting
s_en <= '0';

report "Stimulus process finished" severity note;
wait;
end process p_stimulus;</pre>
```

Screenshot with simulated time waveforms

3. Top level

Listing of VHDL code from source file top.vhd

```
-- Architecture body for top level
architecture Behavioral of top is
    -- Internal clock enable
   signal s_en : std_logic;
    -- Internal counter
    signal s_cnt : std_logic_vector(4 - 1 downto 0);
begin
    -- Instance (copy) of clock_enable entity
    clk_en0 : entity work.clock_enable
        generic map(
           --- WRITE YOUR CODE HERE
            g MAX => 100000000
        port map(
            --- WRITE YOUR CODE HERE
            clk => CLK100MHZ,
            reset => BTNC,
            ce_o => s_en
        );
```

```
-- Instance (copy) of cnt_up_down entity
    bin_cnt0 : entity work.cnt_up_down
        generic map(
            --- WRITE YOUR CODE HERE
            g_CNT_WIDTH => 4
        port map(
             --- WRITE YOUR CODE HERE
             clk => CLK100MHZ,
                        => BTNC,
            reset
            en_i
                        => s_en,
            cnt_up_i => SW(0),
            cnt_o
                     => s_cnt
        );
    -- Display input value on LEDs
    LED(3 downto ∅) <= s_cnt;
    -- Instance (copy) of hex_7seg entity
    hex2seg : entity work.hex_7seg
        port map(
                     => s_cnt,
            hex_i
            seg_o(6) \Rightarrow CA,
            seg_o(5) \Rightarrow CB,
            seg_o(4) \Rightarrow CC,
             seg_o(3) \Rightarrow CD,
             seg_o(2) \Rightarrow CE,
             seg_o(1) \Rightarrow CF,
            seg_o(0) \Rightarrow CG
        );
    -- Connect one common anode to 3.3V
    AN <= b"1111_1110";
end architecture Behavioral;
```

• Image of the top layer

